Introduction

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

year 2015-2016

course 01 16 September 2015

Motivating program verification

The cost of software failure

- Patriot MIM-104 failure, 25 February 1991 (death of 28 soldiers¹)
- Ariane 5 failure, 4 June 1996 (cost estimated at more than 370 000 000 US\$²)
- Toyota electronic throttle control system failure, 2005 (at least 89 death³)
- Heartbleed bug in OpenSSL, April 2014
- Stagefright bug in Android, Summer 2015 (multiple array overflows in 900 million devices, some exploitable)
- economic cost of software bugs is tremendous⁴

¹R. Skeel. "Roundoff Error and the Patriot Missile". SIAM News, volume 25, nr 4.

²M. Dowson. "The Ariane 5 Software Failure". Software Engineering Notes 22 (2): 84, March 1997.

³CBSNews. Toyota "Unintended Acceleration" Has Killed 89. 20 March 2014.

⁴NIST. Software errors cost U.S. economy \$59.5 billion annually. Tech. report, NIST Planning Report, 2002.

Zoom on: Ariane 5, Flight 501

Maiden flight of the Ariane 5 Launcher, 4 June 1996.

Zoom on: Ariane 5, Flight 501

40s after launch...

Zoom on: Ariane 5, Flight 501

Cause: software error⁵

 arithmetic overflow in unprotected data conversion from 64-bit float to 16-bit integer types⁶

```
P_M_DERIVE(T_ALG.E_BH) :=
   UC_16S_EN_16NS (TDB.T_ENTIER_16S
   ((1.0/C_M_LSB_BH) * G_M_INFO_DERIVE(T_ALG.E_BH)));
```

- software exception not caught
 - \Longrightarrow computer switched off
- all backup computers run the same software
 - ⇒ all computers switched off, no guidance
 - ⇒ rocket self-destructs

⁵J.-L. Lions et al., Ariane 501 Inquiry Board report.

⁶ J.-J. Levy. Un petit bogue, un grand boum. Séminaire du Département d'informatique de l'ENS, 2010.

How can we avoid such failures?

• Choose a safe programming language.

```
C (low level) / Ada, Java (high level)
```

Carefully design the software.
 many software development methods exist

Test the software extensively.

How can we avoid such failures?

• Choose a safe programming language.

```
C (low level) / Ada, Java (high level)
yet, Ariane 5 software is written in Ada
```

Carefully design the software.
 many software development methods exist
 yet, critical embedded software follow strict development processes

Test the software extensively.
 yet, the erroneous code was well tested... on Ariane 4

⇒ not sufficient!

How can we avoid such failures?

• Choose a safe programming language.

```
C (low level) / Ada, Java (high level)
yet, Ariane 5 software is written in Ada
```

Carefully design the software.

```
many software development methods exist yet, critical embedded software follow strict development processes
```

Test the software extensively.

```
yet, the erroneous code was well tested... on Ariane 4
```

⇒ not sufficient!

We should use **formal methods**.

provide rigorous, mathematical insurance

Proving program properties

```
assume X in [0,1000];
I := 0;
while I < X do
    I := I + 2;
assert I in [0,?]</pre>
```

Goal: find a bound property, sufficient to express the absence of overflow

⁷R. W. Floyd. "Assigning meanings to programs". In Proc. Amer. Math. Soc. Symposia in Applied Mathematics, vol. 19, pp. 19-31, 1967.

```
assume X in [0,1000];
I := 0;
while I < X do
    I := I + 2;
assert I in [0,1000]</pre>
```

Goal: find a bound property, sufficient to express the absence of overflow

⁷R. W. Floyd. "Assigning meanings to programs". In Proc. Amer. Math. Soc. Symposia in Applied Mathematics, vol. 19, pp. 19-31, 1967.

```
assume X in [0,1000];
{X \in [0, 1000]}
I := 0;
{X \in [0, 1000], I = 0}
while T < X do
    {X \in [0, 1000], I \in [0, 998]}
     I := I + 2:
    {X \in [0, 1000], I \in [2, 1000]}
{X \in [0, 1000], I \in [0, 1000]}
assert I in [0,1000]
```


Robert Floyd⁷

invariant: property true of all the executions of the program

⁷R. W. Floyd. "Assigning meanings to programs". In Proc. Amer. Math. Soc. Symposia in Applied Mathematics, vol. 19, pp. 19–31, 1967.

```
assume X in [0,1000];
{X \in [0, 1000]}
I := 0;
{X \in [0, 1000], I = 0}
while T < X do
    {X \in [0, 1000], I \in [0, 998]}
     I := I + 2:
    {X \in [0, 1000], I \in [2, 1000]}
{X \in [0, 1000], I \in [0, 1000]}
assert I in [0,1000]
```


Robert Floyd⁷

invariant: property true of all the executions of the program **issue**: if I = 997 at a loop iteration, I = 999 at the next

⁷R. W. Floyd. "Assigning meanings to programs". In Proc. Amer. Math. Soc. Symposia in Applied Mathematics, vol. 19, pp. 19–31, 1967.

```
assume X in [0,1000];
{X \in [0, 1000]}
I := 0;
{X \in [0, 1000], I = 0}
while T < X do
     \{X \in [0, 1000], I \in \{0, 2, \dots, 996, 998\}\}
     I := I + 2;
     {X \in [0, 1000], I \in \{2, 4, \dots, 998, 1000\}}
{X \in [0, 1000], I \in \{0, 2, \dots, 998, 1000\}}
assert I in [0,1000]
```


Robert Floyd⁷

inductive invariant: invariant that can be proved to hold by induction on loop iterates

(if $I \in S$ at a loop iteration, then $I \in S$ at the next loop iteration)

⁷R. W. Floyd. "Assigning meanings to programs". In Proc. Amer. Math. Soc. Symposia in Applied Mathematics, vol. 19, pp. 19–31, 1967.

Logics and programs

$$\begin{split} \frac{\{P\}\,C_1\,\{R\} - \{R\}\,C_2\,\{Q\}}{\{P\}\,C_1;\,C_2\,\{Q\}} \\ & \frac{\{P\,\&\,b\}\,C\,\{P\}}{\{P\}\,\text{while b do C}\,\{P\,\&\,\neg b\}} \\ & \cdots \end{split}$$

Tony Hoare⁸

- sound logic to prove program properties, (rel.) complete
- proofs can be partially automated (at least proof checking)
 (e.g., using proof assistants: Coq, PVS, Isabelle, HOL, etc.)

 $^{^{8}}$ C. A. R. Hoare. "An Axiomatic Basis for Computer Programming". Commun. ACM 12(10): 576–580 (1969).

Logics and programs

$$\begin{split} \frac{\{P[e/X]\}\,\mathtt{X} := e\,\{P\}}{\{P\}\,\mathtt{C}_1\,\{R\} - \{R\}\,\mathtt{C}_2\,\{Q\}} \\ &\qquad \qquad \{P\,\&\,b\}\,\mathtt{C}\,\{P\} \\ &\qquad \qquad \frac{\{P\,\&\,b\}\,\mathtt{C}\,\{P\}}{\{P\}\,\mathtt{while}\,\mathtt{b}\,\mathtt{do}\,\mathtt{C}\,\{P\,\&\,\neg b\}} \\ &\qquad \qquad \cdots \end{split}$$

Tony Hoare⁸

- sound logic to prove program properties, (rel.) complete
- proofs can be partially automated (at least proof checking)
 (e.g., using proof assistants: Coq, PVS, Isabelle, HOL, etc.)
- requires annotations and interaction with a prover even manual annotation is not practical for large programs

 $^{^{8}}$ C. A. R. Hoare. "An Axiomatic Basis for Computer Programming". Commun. ACM 12(10): 576–580 (1969).

A calculs of program properties

```
\begin{split} &\textit{wlp}(\mathtt{X} := \mathtt{e}, P) \overset{\mathrm{def}}{=} P[e/X] \\ &\textit{wlp}(\mathtt{C}_1; \mathtt{C}_2, P) \overset{\mathrm{def}}{=} \textit{wlp}(\mathtt{C}_1, \textit{wlp}(\mathtt{C}_2, P)) \\ &\textit{wlp}(\mathtt{while} \ \mathtt{e} \ \mathtt{do} \ \mathtt{C}, P) \overset{\mathrm{def}}{=} \\ &\textit{I} \land ((e \land I) \implies \textit{wlp}(\mathtt{C}, I)) \land ((\neg e \land I) \implies P) \end{split}
```


Edsger W. Dijkstra⁹

- predicate transformer semantics
 propagate predicates on states through the program
- weakest (liberal) precondition
 backwards, from property to prove to condition for program correctness
- calculs that can be mostly automated

⁹E. W. Dijkstra. "Guarded commands, nondeterminacy and formal derivation of programs". EWD472. Commun. ACM 18(8): 453-457 (1975).

A calculs of program properties

```
\begin{aligned} &\textit{wlp}(\mathtt{X} := \mathtt{e}, P) \overset{\mathrm{def}}{=} P[\mathtt{e}/X] \\ &\textit{wlp}(\mathtt{C}_1; \mathtt{C}_2, P) \overset{\mathrm{def}}{=} \textit{wlp}(\mathtt{C}_1, \textit{wlp}(\mathtt{C}_2, P)) \\ &\textit{wlp}(\mathtt{while} \ \mathtt{e} \ \mathtt{do} \ \mathtt{C}, P) \overset{\mathrm{def}}{=} \\ &\textit{I} \land ((\mathtt{e} \land \textit{I}) \implies \textit{wlp}(\mathtt{C}, \textit{I})) \land ((\lnot \mathtt{e} \land \textit{I}) \implies P) \end{aligned}
```


Edsger W. Dijkstra⁹

- predicate transformer semantics
 propagate predicates on states through the program
- weakest (liberal) precondition
 backwards, from property to prove to condition for program correctness
- calculs that can be mostly automated, except for:
 - user annotations for inductive loop invariants
 - function annotations (modular inference)
- academic success: complex (functional) but local properties
- industry success: simple and local properties

⁹E. W. Dijkstra. "Guarded commands, nondeterminacy and formal derivation of programs". EWD472. Commun. ACM 18(8): 453-457 (1975).

Limit to automation

Computers, programs, data

$$O(P, D) \in \{ \textit{yes}, \textit{no}, \bot \}$$

The computer O runs the program P on the data D and answers (yes, no)... or does not answer (\bot) .

Computers, programs, data

$$O(P, D) \in \{ \textit{yes}, \textit{no}, \bot \}$$

Note that programs are also a kind of data! They can be fed to other programs. (e.g., to compilers)

Static analysis

Static analyzer A.

Given a program P:

- $O(A, P) = yes \iff \forall D, O(P, D)$ is safe
- $O(A, P) \neq \bot$ (the static analysis always terminates)

Static analysis

Static analyzer A.

Given a program P:

- $O(A, P) = yes \iff \forall D, O(P, D)$ is safe
- $O(A, P) \neq \bot$ (the static analysis always terminates)

 \implies *P* is proved safe even before it is run!

Fundamental undecidability

There cannot exist a static analyzer A proving the termination of every terminating program P.

Alan Turing¹⁰

¹⁰ A. M. Turing. "Computability and definability". The Journal of Symbolic Logic, vol. 2, pp. 153–163, (1937).

¹¹H. G. Rice. "Classes of Recursively Enumerable Sets and Their Decision Problems." Trans. Amer. Math. Soc. 74, 358-366, 1953.

Fundamental undecidability

There cannot exist a static analyzer A proving the termination of every terminating program P.

Proof sketch:

$$A(P \cdot D) : O(A, P \cdot D) =$$
 | yes if $O(P, D) \neq \bot$ no otherwise

A'(X): while $A(X \cdot X)$ do nothing; no

do we have $O(A', A') = \bot$ or $\ne \bot$? neither! $\Longrightarrow A$ cannot exist

Alan Turing¹⁰

All "interesting" properties are undecidable! 11

¹⁰ A. M. Turing. "Computability and definability". The Journal of Symbolic Logic, vol. 2, pp. 153–163, (1937).
¹¹ H. G. Rice. "Classes of Recursively Enumerable Sets and Their Decision Problems." Trans. Amer. Math.
Soc. 74, 358-366, 1953.

Approximation

Approximate static analysis

An approximate static analyzer A always answers in finite time $(\neq \bot)$:

- either *yes*: the program *P* is definitely safe (soundness)
- either *no*: I don't know (incompleteness)

Sufficient to prove the safety of (some) programs. Fails on infinitely many programs. . .

Approximate static analysis

An approximate static analyzer A always answers in finite time $(\neq \bot)$:

- either *yes*: the program *P* is definitely safe (soundness)
- either *no*: I don't know (incompleteness)

Sufficient to prove the safety of (some) programs. Fails on infinitely many programs. . .

- \implies We should adapt the analyzer A to
 - a class of programs to verify, and
 - a class of safety properties to check.

Patrick Cousot¹²

General theory of the approximation and comparison of program semantics:

- unifies many existing semantics
- allows the definition of new static analyses that are correct by construction

¹²P. Cousot. "Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes." Thèse És Sciences Mathématiques, 1978.

```
(S_0)
assume X in [0,1000];
(S_1)
I := 0;
(S_2)
while (S_3) I < X do
(S_4)
I := I + 2;
(S_5)
(S_6)
program
```

```
(S_0)
                                          \mathcal{S}_i \in \mathcal{D} = \mathcal{P}(\{\mathtt{I},\mathtt{X}\} \to \mathbb{Z})
 assume X in [0,1000];
 (S_1)
                                           S_0 = \{(i, x) | i, x \in \mathbb{Z}\}
                                                                                         = T
 I := 0:
                                           S_1 = \{ (i, x) \in S_0 \mid x \in [0, 1000] \} = F_1(S_0)
 (S_2)
                                           S_2 = \{ (0, x) \mid \exists i, (i, x) \in S_1 \}
                                                                                   =F_2(\mathcal{S}_1)
 while (S_3) I < X do
                                          S_3 = S_2 \cup S_5
        (S_4)
                                          S_4 = \{ (i, x) \in S_3 \mid i < x \}
                                                                               =F_4(S_3)
        I := I + 2:
                                           S_5 = \{(i+2,x) | (i,x) \in S_4\} = F_5(S_4)
       (S_5)
                                           S_6 = \{ (i, x) \in S_3 \mid i > x \}
                                                                                         =F_6(S_3)
 (S_6)
program
                                        semantics
```

Concrete semantics $S_i \in \mathcal{D} = \mathcal{P}(\{\mathtt{I},\mathtt{X}\} \to \mathbb{Z})$:

- strongest invariant (and an inductive invariant)
- not computable in general
- smallest solution of a system of equations

```
(S_0)
                                                                                 \mathcal{S}_{i}^{\sharp} \in \mathcal{D}^{\sharp}
   assume X in [0,1000];
                                                                                 \mathcal{S}_0^{\sharp} = \top^{\sharp}
\mathcal{S}_1^{\sharp} = F_1^{\sharp}(\mathcal{S}_0^{\sharp})
   (S_1)
   I := 0:
                                                                                 \mathcal{S}_2^{\sharp} = F_2^{\sharp}(\mathcal{S}_1^{\sharp})
   (S_2)
                                                                                 S_2^{\sharp} = S_2^{\sharp} \cup^{\sharp} S_5^{\sharp}
   while (S_3) I < X do
               (S_4)
                                                                                 \mathcal{S}_4^{\sharp} = F_4^{\sharp}(\mathcal{S}_3^{\sharp})
               I := I + 2;
                                                                                 S_5^{\sharp} = F_5^{\sharp} (S_4^{\sharp})
              (S_5)
                                                                                 S_6^{\sharp} = F_6^{\sharp}(S_2^{\sharp})
   (S_6)
program
                                                                            semantics
```

Abstract semantics $S_i^{\sharp} \in \mathcal{D}^{\sharp}$:

- \mathcal{D}^{\sharp} is a subset of properties of interest (approximation) with a machine representation
- $F^{\sharp}: \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$ over-approximates the effect of $F: \mathcal{D} \to \mathcal{D}$ in \mathcal{D}^{\sharp} (with effective algorithms)

Numeric abstract domain examples

Numeric abstract domain examples


```
concrete sets \mathcal{D}: \{(0,3),(5.5,0),(12,7),\ldots\} abstract polyhedra \mathcal{D}_{\mathcal{D}}^{\sharp}: 6X+11Y\geq 33\wedge\cdots
```

Numeric abstract domain examples


```
concrete sets \mathcal{D}: \{(0,3),(5.5,0),(12,7),\ldots\} abstract polyhedra \mathcal{D}_{\mathcal{P}}^{\sharp}: 6X+11Y\geq 33\wedge\cdots abstract octagons \mathcal{D}_{\mathcal{P}}^{\sharp}: X+Y\geq 3\wedge Y\geq 0\wedge\cdots
```

Numeric abstract domain examples


```
 \begin{array}{ll} \text{concrete sets } \mathcal{D} \colon & \{(0,3),(5.5,0),(12,7),\ldots\} \\ \text{abstract polyhedra } \mathcal{D}_p^{\sharp} \colon & 6X+11Y \geq 33 \wedge \cdots \\ \text{abstract octagons } \mathcal{D}_e^{\sharp} \colon & X+Y \geq 3 \wedge Y \geq 0 \wedge \cdots \\ \text{abstract intervals } \mathcal{D}_i^{\sharp} \colon & X \in [0,12] \wedge Y \in [0,8] \end{array}
```

course 01 Introduction Antoine Miné p. 19 / 32

Numeric abstract domain examples

concrete sets \mathcal{D} : abstract intervals \mathcal{D}_{i}^{\sharp} : $X \in [0, 12] \land Y \in [0, 8]$

 $\{(0,3),(5.5,0),(12,7),\ldots\}$ abstract polyhedra \mathcal{D}_{p}^{\sharp} : $6X + 11Y \ge 33 \land \cdots$ exponential cost abstract octagons \mathcal{D}_{o}^{\sharp} : $X + Y \geq 3 \land Y \geq 0 \land \cdots$ cubic cost

not computable linear cost

Trade-off between cost and expressiveness / precision

Antoine Miné course 01 Introduction p. 19 / 32

Correctness proof and false alarms

The program is correct (blue \cap red $= \emptyset$).

course 01 Introduction Antoine Miné p. 20 / 32

Correctness proof and false alarms

The program is correct (blue \cap red $= \emptyset$).

The polyhedra domain can prove the correctness (cyan \cap red = \emptyset).

course 01 Introduction Antoine Miné p. 20 / 32

Correctness proof and false alarms

The program is correct (blue \cap red $= \emptyset$).

The polyhedra domain can prove the correctness (cyan \cap red = \emptyset).

The interval domain cannot (green \cap red $\neq \emptyset$, false alarm).

course 01 Introduction Antoine Miné p. 20 / 32

Numeric abstract domain examples (cont.)

abstract semantics F^{\sharp} in the interval domain \mathcal{D}_{i}^{\sharp}

- $I \in \mathcal{D}_i^{\sharp}$ is a pair of bounds $(\ell,h) \in \mathbb{Z}^2$ (for each variable) representing an interval $[\ell,h] \subseteq \mathbb{Z}$
- I:=I+2: $(\ell, h) \mapsto (\ell+2, h+2)$
- \cup^{\sharp} : $(\ell_1, h_1) \cup^{\sharp} (\ell_2, h_2) = (\min(\ell_1, \ell_2), \max(h_1, h_2))$
- . . .

course 01 Introduction Antoine Miné p. 21 / 32

Resolution by iteration and extrapolation

 $\underline{ \text{Challenge:}} \text{ the equation system is recursive: } \vec{\mathcal{S}}^{\sharp} = \vec{F}^{\sharp}(\vec{\mathcal{S}}^{\sharp}).$

 $\underline{\text{Solution:}} \text{ resolution by iteration: } \vec{\mathcal{S}}^{\sharp \, 0} = \emptyset^{\sharp}, \ \vec{\mathcal{S}}^{\sharp \, i+1} = \vec{F}^{\sharp}(\vec{\mathcal{S}}^{\sharp \, i}).$

e.g., \mathcal{S}_3^{\sharp} : I \in \emptyset , I = 0, I \in [0,2], I \in [0,4], ..., I \in [0,1000]

course 01 Introduction Antoine Miné p. 22 / 32

Resolution by iteration and extrapolation

Challenge: the equation system is recursive: $\vec{\mathcal{S}}^{\sharp} = \vec{F}^{\sharp}(\vec{\mathcal{S}}^{\sharp})$.

Solution: resolution by iteration: $\vec{\mathcal{S}}^{\sharp \, 0} = \emptyset^{\sharp}, \ \vec{\mathcal{S}}^{\sharp \, i+1} = \vec{F}^{\sharp}(\vec{\mathcal{S}}^{\sharp \, i}).$ e.g., $\mathcal{S}_3^{\sharp} : \mathbf{I} \in \emptyset, \ \mathbf{I} = 0, \ \mathbf{I} \in [0,2], \ \mathbf{I} \in [0,4], \dots, \ \mathbf{I} \in [0,1000]$

Challenge: infinite or very long sequence of iterates in \mathcal{D}^{\sharp}

Solution: extrapolation operator ∇

e.g.,
$$[0,2] \ \forall \ [0,4] = [0,+\infty[$$

- remove unstable bounds and constraints
- ensures the convergence in finite time
- inductive reasoning (through generalisation)

course 01 Introduction Antoine Miné p. 22 / 32

Resolution by iteration and extrapolation

Challenge: the equation system is recursive: $\vec{\mathcal{S}}^{\sharp} = \vec{F}^{\sharp}(\vec{\mathcal{S}}^{\sharp})$.

 $\underline{\text{Solution:}} \text{ resolution by iteration: } \vec{\mathcal{S}}^{\sharp \, 0} = \emptyset^{\sharp}, \ \vec{\mathcal{S}}^{\sharp \, i+1} = \vec{F}^{\sharp}(\vec{\mathcal{S}}^{\sharp \, i}).$

e.g.,
$$\mathcal{S}_3^{\sharp}:\,\mathtt{I}\in\emptyset,\,\mathtt{I}=0,\,\mathtt{I}\in[0,2],\,\mathtt{I}\in[0,4],\,\ldots,\,\mathtt{I}\in[0,1000]$$

Challenge: infinite or very long sequence of iterates in \mathcal{D}^{\sharp}

Solution: extrapolation operator ∇

e.g.,
$$[0,2] \ \forall \ [0,4] = [0,+\infty[$$

- remove unstable bounds and constraints
- ensures the convergence in finite time
- inductive reasoning (through generalisation)

 \Longrightarrow effective solving method \longrightarrow static analyzer!

course 01 Introduction Antoine Miné p. 22 / 32

Other uses of abstract interpretation

- Analysis of dynamic memory data-structures (shape analysis).
- Analysis of parallel, distributed, and multi-thread programs.
- Analysis of probabilistic programs.
- Analysis of biological systems.
- Security analysis (information flow).
- Termination analysis.
- Cost analysis.
- Analyses to enable compiler optimisations.

. . .

course 01 Introduction Antoine Miné p. 23 / 32

Some static analysis tools based on Abstract Interpretation

course 01 Introduction Antoine Miné p. 24 / 32

Analyseur statique de programmes temps-réels embarqués

(static analyzer for real-time embedded software)

- developed at ENS
 - B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, D. Monniaux, A. Miné, X. Rival
- industrialized and made commercially available by AbsInt

www.absint.com

course 01 Introduction Antoine Miné p. 26 / 32

Specialized:

- for the analysis of run-time errors
 (arithmetic overflows, array overflows, divisions by 0, etc.)
- on embedded critical C software (no dynamic memory allocation, no recursivity)
- in particular on control / command software (reactive programs, intensive floating-point computations)
- intended for validation

 (analysis does not miss any error and tries to minimise false alarms)

course 01 Introduction Antoine Miné p. 27 / 32

Specialized:

- for the analysis of run-time errors
 (arithmetic overflows, array overflows, divisions by 0, etc.)
- on embedded critical C software (no dynamic memory allocation, no recursivity)
- in particular on control / command software (reactive programs, intensive floating-point computations)
- intended for validation

 (analysis does not miss any error and tries to minimise false alarms)

Approximately 40 abstract domains are used at the same time:

- numeric domains (intervals, octagons, ellipsoids, etc.)
- boolean domains
- domains expressing properties on the history of computations

course 01 Introduction Antoine Miné p. 27 / 32

Astrée applications

Airbus A340-300 (2003)

Airbus A380 (2004)

- size: from 70 000 to 860 000 lines of C
- analysis time: from 45mn to \simeq 40h
- 0 alarm: proof of absence of run-time error

course 01 Introduction Antoine Miné p. 28 / 32

Fluctuat

course 01 Introduction Antoine Miné p. 29 / 32

Static analysis of the **accuracy of floating-point computations**:

- bound the range of variables
- bound the rounding errors wrt. real computation
- track the origin of rounding errors (which operation contributes to most error, target for improvements)
- uses specific abstract domains (affine arithmetic, zonotopes)
- developed at CEA-LIST (E. Goubault, S. Putot)
- industrial use (Airbus)

course 01 Introduction Antoine Miné p. 30 / 32

Clousot: CodeContract static checker

course 01 Introduction Antoine Miné p. 31 / 32

Clousot: CodeContract static checker

CodeContracts:

- assertion language for .NET (C#, VB, etc.)
 (pre-conditions, post-conditions, invariants)
- dynamic checking (insert run-time checks)
- static checking (modular abstract interpretation)
- automatic inference

 (abstract interpretation to infer necessary preconditions backwards)
- developed at Microsoft Research (M. Fahndrich, F. Logozzo)
- part of .NET Framework 4.0
- integrated to Visual Studio

course 01 Introduction Antoine Miné p. 32 / 32