Ejemplo del teórico:

Se tienen dos proposiciones α , $\beta \in PROP$. Se sabe que α es una contradicción y que $\neg \alpha \models \beta$. Se quiere determinar si $\models \beta$.

H) α es una contradicción

H2)
$$\neg \alpha \models \beta$$

T)
$$\mid = \beta$$

H) α es una contradicción

ullet Si fuera un semáforo, α estaría en rojo SIEMPRE

Por lo tanto, $\neg \alpha$ estaría en verde SIEMPRE

H2)
$$\neg \alpha \models \beta$$

• Siempre que el semáforo $\neg \alpha$ está en verde, el semáforo β está en verde

Y por la parte anterior, sabemos que el semáforo $\neg \alpha$ está en verde **siempre**.... Por lo tanto....

El semáforo β está en verde **siempre**

→ β Es tautología

Práctico 3 – ejercicio 6

H1)
$$\mid = \alpha$$

T)
$$\alpha \models \beta$$

Qué significan las hipótesis?

Entonces....

Es cierto que cuando α está en verde, β está en verde también? (este sería el significado de $\alpha \mid = \beta$)

La respuesta es NO, vemos que cuando α está en verde, β está en rojo. Por lo tanto, es **FALSO**. Hay que mostrarlo con un **contraejemplo**.

Debemos encontrar un α y un β que cumplan las hipótesis, y mostrar que la consecuencia lógica NO se cumple, con una tabla de verdad:

Por hipótesis 1, tenemos que Alfa es una tautología, hay que plantear entonces una:

$$\alpha = p v \neg p$$

Probamos que Alfa es tautología:

р	¬р	р∨¬р
0	1	1
1	0	1

Por hipótesis 2, tenemos que NO Beta es tautología, entonces debemos platearnos un beta que sea

contradicción, así la negación es tautología:

$$\beta = p \land \neg p$$
 entonces $\neg \beta = \neg (p \land \neg p)$

Probamos que $\neg \beta$ es tautología:

р	¬р	р∧¬р	¬ (p ∧ ¬p)
0	1	0	1
1	0	0	1

Probemos ahora que no es cierto que $\alpha \mid = \beta$ con una tabla de verdad

$$\alpha = p \vee \neg p$$

 $\beta = p \land \neg p$

Este vendría a ser mi conjunto $\Gamma = \{\alpha\}$

Analizamos los casos en que $v(\alpha) = 1$

	р	¬р	р∨¬р	p ∧ ¬p
\rightarrow	0	1	1	0
\rightarrow	1	0	1	0

Esta es mi proposición β

Aquí se ve claramente que cuando $v(\alpha) = 1$, ocurre que $v(\beta) = 0$, por lo tanto queda probado que la consecuencia lógica NO se cumple para estos ejemplos dados.

Conclusión:

analizando los casos de consecuencia lógica $\alpha \models \beta$

