Беспроводные локальные компьютерные сети

Стандарт IEEE 802.11 (WiFi)

Беспроводные локальные компьютерные сети WLAN

(Wireless Local Area Network)

Без базовой станции

С точкой доступа BSS (Basic Service Set)

Беспроводные локальные компьютерные сети Mesh-WLAN — Ячеистые сети

Беспроводные локальные компьютерные сети WLAN

Конструкция адаптеров беспроводных сетей

Беспроводные локальные компьютерные сети WLAN

Сигналы с расширением спектра (Spread Spectrum, SS).

Скачкообразная перестройка частоты (Frequency Hopping Spread Spectrum, FHSS);

Расширение спектра способом прямой последовательности (*Direct Sequence Spread Spectrum*, DSSS).

1. Достоинства широкополосных сигналов:

- 2. возможность приема и обработки ШПС при отношениях сигнал/помеха много меньших единицы;
- 3. высокая помехозащищенность как по отношению к широкополосным, так и узкополосным помехам;
- 4. инвариантность к явлению многолучевости в канале связи;
- 5. одновременная работа всех абонентов в общей полосе частот;
- 6. высокая достоверность принимаемой информации;
- 7. высокая энергетическая и структурная скрытность сигнала;
- 8. хорошая электромагнитная совместимость (ЭМС) с другими радиоэлектронными средствами.

WLAN - Скачкообразная перестройка частоты (Frequency Hopping Spread Spectrum, FHSS)

Станции используют специальную процедуру синхронизации для одновременного переключения частот.

Расширение спектра способом прямой последовательности

(Direct Sequence Spread Spectrum, DSSS).

Псевдослучайные последовательности Баркера 11100010010;

Комплементарные кодовые последовательности (Complementary Code Keying, CCK) 8-DQPSK – ДКАМ

64 пары комплементарных последовательностей

Беспроводные локальные компьютерные сети WLAN с OFDM

OFDM (*Orthogonal Frequency Division Multiplexing*) - многоканальная передача сигналов с частотным разделением каналов.

Для WLAN стандартом в диапазоне частот 5,2 ГГц выделено 12 неперекрывающихся каналов с одинаковой полосой пропускания 20 МГц. Каждый из этих каналов разделен на 64 подканала с полосой пропускания 20000/64=312,5 кГц. Из них для передачи собственно данных используется 48 подканалов. Четыре подканала служат для передачи опорных колебаний, а по 6 подканалов слева и справа остаются незанятыми и выполняют функции защитных полос.

В подканале при BPSK скорость 125 кбит/с. Итоговая = $48 \times 125 = 6$ Мбит/с. При QAM-128 обеспечивается скорость передачи данных в канале 54 Мбит/с.

Стандарты 802.11 и эталонная модель OSI

PLCP: Physical Layer Convergence Protocol

На физическом уровне определяются методы модуляции и основные характеристики сигналов для передачи данных, физическая топология сети, способ кодирования информации и общей синхронизации битов. Данные на этом уровне рассматриваются как прозрачный поток битов.

Формат кадров 802.11

Кадры MAC-уровня: данных, управляющие (ACK, RTS, CTS и др.) и сигнальные (Beacon).

SYN вида 1010...; SFD (Start Frame Delimiter) F3A0h

SIGNAL - скорость передачи и способ модуляции;

SERVICE - информацию о наличии вариантов расширений;

LENGTH - время в мкс, необходимое для передачи следующей за заголовком части кадра.

МАС-кадр – передаются полезные данные.

Виды и форматы кадров

Кадры MAC-уровня: данных, управляющие (ACK, RTS, CTS и др.) и сигнальные (Beacon).

Уг	правление кадром	Продол- житель- ность/ID		Адрес 2	Адрес 3	Управле- ние оче- редностью	Адрес 4	Данные	КПК
	2 байта	2	6	6	6	2	6	0 - 2312	4

Основной формат МАС-кадра сети 802.11

Управление кадром:

Версия протокола; Тип кадра (Информационный, управляющий, служебный); К DS от DS; Наличие фрагментов; Вид шифрования и др.

Управление очередностью - порядковый номер кадра.

СПОСОБЫ ДОСТУПА:

На МАС-уровне протокола 802.11 определно два типа коллективного доступа к среде передачи данных:

функция распределенной координации – DCF (Distributed Coordination Function);

функция централизованной координации PCF (Point Coordination Function).

При DCF - Множественный доступ с предотвращением коллизий, CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance).

С целью уменьшения вероятности возникновения коллизий после передачи каждого кадра должны выдерживаться межкадровые паузы.

Стандартом установлено три вида таких интервалов:

- ❖межкадровый интервал ожидания DIFS;
- ❖межкадровый интервал ожидания PIFS;
- ❖укороченный межкадровый интервал SIFS.

Равномерный доступ компьютеров к среде на основе способа распределенной координации DCF

межкадровый интервал ожидания **DIFS** (DCF *Interframe Space*), используемый при асинхронном способе обслуживания;

межкадровый интервал ожидания **PIFS** (PCF *Interframe Space*), применяется в сетях с гарантированным временем обслуживания; этот интервал должна выдержать ведущая станция перед началом процедуры опроса подчиненных станций; укороченный межкадровый интервал **SIFS** (*Short Interframe Space*); это самая короткая пауза, которая используется станциями при передаче пакетов квитирования.

Алгоритм RTS/CTS (Request To Send)/(Clear To Send)

Регламентированный коллективный доступ

Функция централизованной координации PCF (Point Coordination Function). Центр координации опрашивает все узлы сети, внесенные в его список (поллинг), и на основании этого опроса организует передачу данных между всеми узлами сети.

Комбинирование функций централизованной и распределенной координации

Бесконкурентный доступ к среде - CFP (Contention-Free Period), и конкурентный доступ к среде CP (Contention Period)

Beacon - управляющий сигнальный (маячный) кадр – указывает пользователям сети продолжительность CFP-промежутка

В процессе передачи точка доступа может совмещать кадр опроса с передачей данных (кадр DATA+CF_POLL).

Установление соединения в сетях 802.11.

Сканирование среды

Сканирование бывает активное и пассивное;

При активном сканировании периодически передаются зондирующие кадры. В них указывается идентификатор SSID желаемой сети, если требуется найти определенную сеть, либо устанавливается широковещательный SSID, если нужно найти какую-нибудь сеть.

Формат зондирующего кадра

BSSID - идентификатор базовой зоны обслуживания (МАС-адрес) точки доступа. **SSID** – идентификатор беспроводной сети

Установление соединения: Аутентификация в сетях 802.11

Аутентификация (открытая; с совместно используемым ключом); Цель: установление подлинности клиента

- 1) клиентская станция передает точке доступа кадр запроса на аутентификацию в режиме совместно используемого ключа.
- 2) точка доступа посылает в ответ кадр вызова (*Challenge Frame*), содержащий незашифрованное текстовое сообщение;
- 3) полученный кадр вызова шифруется на клиентской стороне и отправляется обратно точке доступа;
- 4) если точка доступа в состоянии расшифровать этот кадр и восстановить свое исходное сообщение, то она полагает, что клиент успешно прошел процедуру аутентификации и ему посылается соответствующий кадр подтверждения аутентификации;
- 5) процедура аутентификации завершена, клиент может работать.

Установление соединения: ассоциирование

Ассоциирование (предоставлении клиентской станции логического порта и присвоении ей идентификатора ассоциации **AID** (*Association Identifier*).

Управление кадром	Продолжи- тельность	Адрес прием- ника	Адрес источ- ника	BSSID	Упр-е очеред- ностью	Интервал прослуши- вания	88ID	Индикаторы скоростей	
----------------------	------------------------	-------------------------	-------------------------	-------	----------------------------	--------------------------------	------	-------------------------	--

Формат кадра запроса на ассоциирование

Интервал прослушивания – продолжительность нахождения станции в состоянии возможности принятия кадра (режим экономии питания).

BSSID – MAC-адрес точки доступа. **SSID** – идентификатор беспроводной сети

Стандартизация построения беспроводных сетей Стандарты 802.11, 802.11b, 802.11g и 802.11n

Стандарт 802.11b:

- ❖ несущая частота излучаемых сигналов 2,4... 2.4835 ГГц;
- ❖ число непересекающихся частотных каналов 3;
- ❖ модуляция с использованием комплементарных кодовых последовательностей ССК (Complementary Code Keying), с шириной полосы 22 МГц на канал и одной несущей;
- ◆ метод доступа CSMA/CA;
- ❖ максимальная скорость передачи данных 11 Мбит/с.

Стандартизация построения беспроводных сетей

Стандарт 802.11а:

- несущая частота 5 ГГц;
- число непересекающихся частотных каналов 8;
- модуляция многочастотная передача ортогональными сигналами
 OFDM с шириной полосы 20 МГц на канал несколько несущих;
- метод доступа CSMA/CA;
- максимальная скорость передачи данных 54 Мбит/с.

Стандарт 802.11g – отличие от **802.11b**:

- ❖ модуляция OFDM и ССК (для совместимости с 802.11b);
- ❖ максимальная скорость передачи данных 54 Мбит/с;
- ❖ пакетная передача (Packet Bursting), сжатие данных.

Стандартизация построения беспроводных сетей

Стандарт 802.11n:

- Способ передачи MIMO (Multiple Input Multiple Output)
- Несущая частота 2,4 и 5 ГГц;
- Модуляция OFDM многочастотная передача ортогональными сигналами;
- Ширина канала 20 или 40 МГц;
- Метод доступа CSMA/CA;
- Количество поднесущих 56 или 104;
- Модуляция в подканале 64-QAM;
- Максимальная скорость передачи данных 600 Мбит/с.

Способ передачи MIMO (Multiple Input Multiple Output)

Способ передачи MIMO (Multiple Input Multiple Output)

Сигнал R_1 , принимаемый первой антенной, можно представить в виде:

$$R_1 = h_{11}T_1 + h_{21}T_2 + \dots + h_{n1}T_n$$

где $h_{\rm ij}$ — коэффициенты передачи тракта между i-й передающей антенной и j-й приемной антенной.

Записывая подобные уравнения для каждой приемной антенны, получим следующую систему:

$$\begin{cases} R_1 = h_{11}T_1 + h_{21}T_2 + \dots + h_{n1}T_n; \\ R_2 = h_{12}[R] = [H] \cdot [T] + h_{n2}T_n; \\ \dots \\ R_m = h_{1m}T_1 + h_{2m}T_2 + \dots + h_{nm}T_n. \end{cases}$$

В матричной форме уравнение имеет следующий вид: $[R] = [H] \cdot [T]$

Определение коэффициентов h_{ij} в технологии МІМО производится во время передачи преамбулы пакета. Зная коэффициенты передачи каналов, можно легко восстановить переданный сигнал:

$$[T] = [H]^{-1} \cdot [R]$$

Повышение пропускной способности сети 802.11n за счет агрегации кадров

Повышение пропускной способности за счет пакетной передачи

