April 13, 2015 -

- Bayes' Rule -
 - P(A|B) = P(A) * P(B|A) / P(B)
 - A = some statement
 - B = data; new information
 - o Example -
 - A = accused is guilty
 - B = evidence at trial
 - Example -
 - DNA matches
 - P(A) = 1/10,00,000
 - $P(B \mid \sim A) = 1/1,000,000 \rightarrow false positive$
 - Assumption if accused is guilty, than P(B|A) = 1
 - There will be a match in the DNA evidence
 - Solve for P(B) -
 - $P(B) = P(B \text{ and } A) \text{ or } P(B \text{ and } \sim A)$
 - DNA matches and person is guilty or DNA matches and person is not match
 - Mutually exclusive statement
 - Product rule...
 - = $P(A)*P(B|A) + P(\sim A)*P(B|\sim A)$
 - = 1/10,000,000 * 1 + 9,999,999/10,000,000 * 1/1,000,000
 - P(B) = 11/10,000,000
 - Solve for P(A|B)
 - P(A|B) = [(1/10,000,000) * 1] / (11/10,000,000)
 - = 1/11
 - In light of the evidence, there is a 1/11 chance that the accused is guilty
 - There is a very common problem of assuming $P(B|\sim A) = P(\sim A|B)$ which is *false*
 - o Think about Bayes' rule in terms of cohorts of people
 - Example:
 - The 10,000,000 people in New York
 - 1 person is guilty → 1 positive test result
 - 9,999,999 people are not guilty \rightarrow 1/1,000,000 chance that a person is guilty so 1/1,000,000*9,999,999 = 10 positive test results
 - 11 positive test results for the entire city
 - Discrete random variables -
 - X = random variable; anything we are sure about
 - Space; probability space; support of random variable = set of possible outcomes
 - Example: trying to guess the name of the person walking by and the space would be all possible names
 - Probability distribution; P(X) = complete description of your uncertainty of the random variable

- x = random variable
- X = possible random variable
- How do we specify this?

• 1. Brute force list (not standard terminology)

- \circ Table with potential x's on the right and the P(X=x) on the left
- o Example price of copper
 - x = .99, 1.00, 1.01
 - P(X=x) = .3, .5, .2
- o Example the chance of a no show on a 400 person flight

Х		P(X=x)
	0	0.004
	1	0.005
	2	0.0062
	400	

• Very tedious process so we turn to probability mass function

• 2. Probability mass function (PMF)

- \circ P(X=x) = f(x)
- o Example of PMF -
 - 1. Binomial distribution (parametric probability model)
 - X ~ binomial (N, w) → n possibilities, with w probability of each possibility
 - $P(X=x) = (N \text{ over } x) * W^x * (1-w)^(N-X) = f(x)$
 - 2. Poisson (parametric probability model)
 - $X \sim poisson(\lambda)$
 - $P(X=x) = (\lambda^x / x!) * e^{-x} = f(x)$

• 3. Probability density function

• Expected value -

- Expected value = "center" of your distribution; weighted average of the possible outcomes
- $E(X) = Sum \text{ of } X = \Omega \text{ of } P(X = x) * x$
 - Sum of $X=\Omega \rightarrow$ summing over all possible events (assuming Ω is discrete)
- o Example -
 - X = stock price of Apple 12 months from today

x	P(X=x)
\$100	.2
\$120	.4
\$140	.4

- E(X) = .02*100 + .4*120 + .4*140
- **=** 132

Decision tree -

- Ordered temporally from left to right
- "Chose your own adventure book"
- o Represents how a sequence of events may unfold in time

- Square and Circle = nodes
 - Square = decision node; place where you have to make a decision
 - Circle = stochastic node; place where a random event's consequences unfold
- Defined by terminal outcomes at the leaves of the tree and need to know the probability distribution at of each of the stochastic nodes
- Solving a decision tree steps -
 - 1. Work backwards in time (right to left on the decision tree)
 - 2. Reduce every stochastic node to an expected value
 - 3. At every decision node, take the option of the highest expected value
- Example
 - o Hurricane and house insurance for a \$1,000,000 home
 - Buy insurance?
 - Yes buy insurance
 - Yes hurricane (w) \$1,000,000-c
 - No hurricane (1-w) \$1,000,000-c

$$\circ$$
 E(B) = w(1mil - c) + (1-w)(1mil-c)

- \circ = 1mil c
- No buy insurance
 - Yes hurricane (w) \$0
 - No hurricane (1-w) \$1,000,000

$$\circ$$
 E(C) = w*0 + (1-w)*1mil

- \circ = 1mil w*1mil
- o What is a rule for whether the person should buy insurance or not?
 - E(B) = 1 mil c
 - E(C) = 1mil w*1 mil
 - Buy whenever E(B) > E(C)
 - E(B) > E(C) = 1mil c > 1mil w*1mil
 - = -c > -w*1mil
 - = c < w*1mil