COMP4691 / 8691

Previously on COMP4691/8691

- Move from a solution to its neighbour ≤0607.′ow
- Neighbour defined by an operator
- E.g. n-queens problem
 - Place n queens on an n x n board, so that none can attack another (i.e., no two on the same row, column, or diagonal)

J-MOUG OP

• Neighbourhood: All solutions that can be achieved by moving one queen to a different row

- Alg 1: Random (random walk)
 - Choose a random move; execute; repeat
 - Asymptotically complete (eventually, you visit every state)

O A TTACKS

- Currently 5 attacks, so give this score 5
- We want score 0

• This neighbour has score 2

• We can label all squares with their score

5_	2	4	3
4	W	4	W
w	4′	W	5
3	4	2	5

- Alg 2: Greedy (a.k.a Hill Climbing)
 - Choose the best move / one of the best moves
 - Requires us to evaluate the entire Neighbourhood

DN AI: GREDY BEST FIRST SONCE (GBFS) QUEU E

Hill Climbing has been compared to climbing Mt Everest in thick fog

... and while suffering from amnesia.

- Alg 3: First found
 - Randomise neighbourhood evaluation
 - Make first improving move

CUL SOL! SATTACUS
SCOLG S

computational evidence favours first-found over greedy

- Greedy search is incomplete
- Alg 4: Randomised Greedy
 - With probability p do greedy/first found move
 - With otherwise do a random move
 - Asymptotically complete

5	2	4	3
4	W	4	**
W	4		5
3	4	2	5

- Alg 5: Biased
 - Choose a move with probability (inversely) proportional to score
 - (Twice as likely to choose a '2' move than a '4')

5	2_	4	3 _
4	W	4_	W
w	4	W	5
3	4	2	5

Local Search in VRP

More complex operators

Local Search in VRP

- More complex operators
 - 1-move

-> Pos in whichwallisi7
THE CLIENT

- More complex operators
 - 1-move

- More complex operators
 - 1-move

- More complex operators
 - 1-move

- More complex operators
 - 1-move

Other Neighbourhoods for VRP:

• Swap 1-1

Other Neighbourhoods for VRP:

• Swap 1-1

Other Neighbourhoods for VRP:

• Swap 2-1

Other Neighbourhoods for VRP:

• Swap 2-1

Other Neighbourhoods for VRP:

• Swap tails

Other Neighbourhoods for VRP:

• Swap tails

Other Neighbourhoods for VRP:

• Swap tails

VRP specific operators

- 2-opt (3-opt, 4-opt...)
- Remove 2 arcs
- Replace with 2 others

- Select three arcs
- Replace with three others
- 2 orientations possible

3-opt exchange

3-opt exchange

Other problems

Neighbourhoods for other problems

- Knapsack
- Swap 2 items
 - Swap 1 item with multiple items of equal size
- Scheduling
 - Swap jobs between machines
 Swap order of jobs ___

Neighbourhood

- E.g. Map Colouring (k-colouring)
 - Colour a map (graph) so that no two adjacent countries (nodes) are the same colour
 - Either:
 - Use at most k colours
 - Minimize number of colours

Map Colouring

Define neighbourhood as:

Change the colour of at most one vertex

Make k-colour constraint soft fixes this issue

Neighbourhood

- Hard constraints create impenetrable mountain ranges in solution space
- Soft constraints allow passes through the mountains

Strongly connected: MAP W/ ZWAY STREETS ONLY

Any solution can be reached from any other (e.g. 2-opt)

Weakly optimally connected MAP WITH SOME ONE-WAY STREETS

The optimum can be reached from any starting solution

Problems with Local Search I

Local minima

8 Queens

Hill-climbing search for 8-Queens

- Randomly generated 8-queens starting states...
- 14% the time it solves the problem
- 86% of the time it get stuck at a local minimum

- However...
 - Takes only 4 steps on average when it succeeds
 - And 3 on average when it gets stuck
 - (for a state space with $8^8 = 17$ million states)

Escaping local minima

- Solution 1: Random Restarts
 - Whenever you hit a local minimum, generate a new {random / randomised} starting solution
 - This has proved very powerful on some problems
 - Particularly powerful is combination of randomised greedy + random restarts

Problems with Local Search II

• Plateaux

Escaping Plateaux (Shoulders)

- If no downhill (uphill) moves, allow sideways moves in hope that algorithm can escape
 - Need to place a limit on the possible number of sideways moves to avoid infinite loops
- For 8-queens
- Now allow sideways moves with a limit of 100
 - Raises percentage of problem instances solved from 14% to 94%
- However....
- 21 steps on average for every successful solution
 - 64 for each failure (-/.

Escaping local minima II

Solution 2: Simulated Annealing

- Based on manner in which crystals are formed
 - At high temperatures, molecules move freely
 - At low temperatures, molecules are "stuck"
- If cooling is slow
 - A low energy, organized crystal lattice formed

Minimise energy in crystal Minimise objective

Greedy local search reduces objective at every iteration

Simulated Annealing accepts/rejects solution candidate based on probability

If candidate solution reduces the objective,

always accept the change (c.f. first found)

If candidate solution has higher objective,

• system parameter <u>T</u> ("Temperature") controls probability of acceptance

$$P(accept increase of \Delta in objective) = e^{-\Delta/T}$$

- T reduces as method proceeds
- As $T \rightarrow 0$, only improving moves accepted

- Nice theoretical result:
 - As number of iters $\rightarrow \infty$, probability of finding the optimal solution $\rightarrow 1$
- Experimental confirmation: on many problem, long runs yield good results
- Weak optimal connection required

Initial T

Set equal to max [acceptable] Δ

Updating T

- Geometric update: $T_{k+1} = \alpha T_k$
 - α usually in [0.9, 0.999]

Don't want too many changes at one temperature (too hot):

```
If (numChangesThisT > maxChangesThisT)
  updateT()
```

Updating T

Many other update schemes

Re-boil (== Restart)

Re-initialise T

0-cost changes

• Handle randomly

Adaptive parameters

- If you keep falling into the same local minimum,
 - maxChangesThisT *= 2, or initialT *= 2

VRP – Greedy Search

Hice CcimBing

VRP – Greedy Search

Zoom in on the first 700 iterations

VRP – Simulated Annealing

VRP - Simulated Annealing

Summary

- We have defined Local Search in terms of a <u>Neighbourhood</u> defined by an operator
- We have seen several ways of moving through the search space
 - Greedy, Random, Randomised Greedy, ...
- We have seen some features of the solution space can mess up local search
 - Disconnected spaces, Plateaux, Local minima, ...
- We have seen how to try to alleviate these problems
 - Sideways moves, Restarts, Simulated Annealing, ...

Summary

Simulated Annealing is an example of a meta-heuristic

A heuristic that applies to heuristics

CONTROCKING HEURISZ.'C

Next week

More meta-heuristics