Erweiterte Higgs Sektoren

Seminarvortrag - Emilia Welte

28. Juni 2021

Gliederung

Wiederholung SM

Wiederholung Eichbosonensektor Wiederholung Fermionsektor Wiederholung Higgssektor

Erweiterung des SM Higgs Sektors am Beispiel des 2HDM

Zu klärende Fragen

- ► Was sind erweiterte Higgs Sektoren ?
- ▶ Warum braucht man erweiterte Higgs Sektoren ?

SM Wiederholung- Eichsektor

- Dynamik der Eichbosonen steckt in Form von Feldstärketensoren in der Lagrangedichte \(\mathcal{L}_{Eich} \)
- Die Wechselwirkung der Eichbosonen mit Fermionen/Skalaren steht in der kovarianten Ableitung \mathcal{D}_{μ}

SM Eichstruktur

$$SU(3)_C \times SU(2)_L \times U(1)_Y \tag{1}$$

Massenterme treten in quadratischer Ordnung der Felder auf, dies ist nicht mehr Eichinvariant nach Einsetzen in $\mathscr{L}_{\mathsf{Eich}} \to \mathsf{ungebrochene}$ Eichsymmetrie führt zu masselosen Eichbosonen

SM Wiederholung - Fermionsektor

► SM enthält 3 Generationen von händigen Fermionen Feldern mit jeweils unterschiedlichen Transformationseigenschaften

Allg. Fermionen Feld Lagrange

$$\mathscr{L}_{\mathsf{Fermion}} = \overline{\Psi} i \partial_{\mu} \gamma^{\mu} \Psi - \mathsf{m} \overline{\Psi} \Psi \tag{2}$$

Dabei entspricht erster Term dem kinetischen Anteil und zweiter Term massen Anteil. γ^μ entsprich den Dirac-Matrizen.

▶ Unter Ausnutzung der Projektionsoperatoren für links- und rechtshändige Fermionen $(1 = P_R^2 + P_L^2)$ separiert der der kinetische Teil in händige Anteile und ist Eichinvariant

kinetischer Anteil

$$\overline{\Psi}i\partial_{\mu}\gamma^{\mu}\Psi \rightarrow \overline{\Psi}_{L}i\partial_{\mu}\gamma^{\mu}\Psi_{L} + \overline{\Psi}_{R}i\partial_{\mu}\gamma^{\mu}\Psi_{R} \tag{3}$$

Unter Ausnutzung derselben Relation von den Projektionsoperatoren sieht man am Massenterm, dass hierbei die händigen Zustände mischen. Dieser ist also nicht Eichinvariant.

Massen Term

$$\mathsf{m}\overline{\Psi}\Psi \to \mathsf{m}\overline{\Psi}_R\Psi_L + \mathsf{m}\overline{\Psi}_L\Psi_R$$
 (4)

Zusammenfassung

- ▶ Der Eichbosonen Masseterm ist nicht Eichinvariant und kann nicht ohne Weiteres in die Lagrangedichte eingesetzt werden → Ohne Symmetriebrechung sind Eichbosonen also Masselos
- Der Fermion Masseterm ist nicht Eichinvariant und kann wie der Bosonen Trem nicht ohne Weiteres in die Lagrangedichte eingesetzt werden → Ohne Symmetriebrechung sind Fermionen also Masselos

- Neuer Bestandteil der experimentell bestätigte Bosonenmassen Erklärt \rightarrow Einführung eines skalaren SU(2)_L-Duplett Feldes was durch Higgs Mechanismus zu spontaner SU(2)_L \times U(1)_Y Symmetriebrechung führt
- ▶ Duplett hat Hypercharge $Y = \frac{1}{2}$ und ist ein Farb Singlett

Higgs Duplett

$$\Phi = \begin{pmatrix} \Phi^0 \\ \Phi^+ \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Phi_1 + i\Phi_2 \\ \Phi_3 + i\Phi_4 \end{pmatrix}$$
 (5)

Dabei entsprechen Φ_j normierten reellen Feldern wobei $j \in [1,4]$

Unsere SM Lagrangedichte sieht dann wie folgt aus

SM Higgs Lagrangedichte

$$\mathcal{L}_{\Phi} = (\mathscr{D}_{\mu}\Phi)^{\dagger}(\mathscr{D}^{\mu}\Phi) - \mathsf{V}(\Phi) + \mathscr{L}_{\mathsf{Yukawa}} \tag{6}$$

Die Allgemeine Form eines Higgs Potentials könnte wie folgt aussehen

$$V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 \tag{7}$$

- ▶ ist $-\mu^2 < 0$ und $\lambda > 0$ das das Minimum des Potentials weg von $|\Phi| = 0$ womit Vakuums/minimums Energie nicht mehr invariant unter SU(2)_L × U(1)_Y Symmetrie → Eich Symmetrie ist spontan gebrochen
- ▶ sind beide größen positiv hat das Potential sein minimum bei $|\Phi|=0$ und ist parabelförmig, elektroschwache Symmetrie ist dann ungebrochen
- im Falle $\lambda < 0$ ist das Potential ungebunden und es gibt keinen stabilen Vakuumszustand

- Da wir wissen das der Vakuumszustand im Potential Minimum liegen muss, erhalten wir für den Vakuumserwartungswert $v=\sqrt{\frac{\mu^2}{\lambda}}$
- Wir definieren unsere Felder so, dass die Erwartungswerte wie folgt aussehen $\langle \Phi_3 \rangle = \nu$ und $\langle \Phi_1 \rangle = \langle \Phi_2 \rangle = \langle \Phi_2 \rangle = 0$
- ightharpoonup Zusätzlich addieren wir zu $Φ_3$ ein Feld h welches einen verschwindenden Erwartungswert hat. Umgeformt nach μ und eingesetzt in unser Potential erhalten wir:

Diese Form des Potentials wollen wir nun nutzen um Sie in eine Form der Massen und Wechselwirkung des Higgsteilchens umzuschreiben:

Allgemeine Form der Massenmatrizen

$$V(\Phi) = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \\ \Phi_4 \end{pmatrix}^{\dagger} \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \\ \Phi_4 \end{pmatrix} + h.O. (8)$$

Mit Blick auf unsere Rechnung folgen dann ausschließlich Massen für das Feld mit nichtverschwindendem Erwartungswert:

SM Wiederholung - Eichbosonenmasse

Um diese Massen zu bekommen, betrachten wir den Eichkinetischen Term:

Eichkinetischerterm

$$\mathcal{L} \supset (\mathcal{D}_{\mu} \Phi)^{\dagger} (\mathcal{D}^{\mu} \Phi)$$

$$= \frac{1}{2} (\partial_{\mu} h) (\partial^{\mu} h)$$

$$+ \frac{1}{8} g^{2} (v + h)^{2} (W_{\mu}^{1} - W_{\mu}^{2}) (W^{\mu 1}$$

$$+ W^{\mu 2}) + \frac{1}{8} (v + h)^{2} (gW_{\mu}^{3} - g'\mathcal{B}_{\mu})^{2}$$
(9)

SM Wiederholung - Fermionenmassse

Beispiel anhand der Quark Massen, um bei den Leptonen das Neutrinomassenproblem zu umgehen. Man verwende dabei eine unitäre Eichung gemäß $\Phi^\dagger Q_L = \left(0, \frac{\nu + h}{\sqrt{2}}\right) \left(\begin{array}{c} u_L \\ d_L \end{array} \right)$

Yukawa Term

$$\mathcal{L}_{\mathsf{Yukawa}} \supset -[\mathsf{y_d} \overline{\mathsf{d}_\mathsf{R}} \Phi^\dagger \mathsf{Q}_\mathsf{L} + \mathsf{y_d^*} \overline{\mathsf{Q}_\mathsf{L}} \Phi \mathsf{d}_\mathsf{R}] \tag{10}$$

Damit erhalten wir für unser Beispiel, wobei quadratischer Term hier die Masse des down quarks angibt:

$$\mathcal{L}_{\mathsf{Yukawa}} \supset -\frac{\mathsf{y_d} \mathsf{v}}{\sqrt{2}} \overline{\mathsf{d}} \mathsf{d} - \frac{\mathsf{y_d}}{\sqrt{2}} h \overline{\mathsf{d}} \mathsf{d} \tag{11}$$

SM Wiederholung - Fermionenmassse

Um die Masse des up Quarks zu bekommen, muss in unitärer Eichung die Kopplung mit diesem stattfinden können \to

Verwendung des konjugierten Higgs Skalars $\tilde{\Phi}=\left(egin{array}{c} \Phi^{0*} \\ -\Phi^{+*} \end{array}\right)$

Diese Vorgehensweise gilt für die einzelnen Generationen von Quarks. Das SM besitzt jedoch 3 von ihnen, weshalb die allgemeine Form wie folgt aussieht:

Massenanteil Quarks

$$\mathscr{L}_{\mathsf{Yukawa}}^{\mathsf{q}} = -\sum_{i=1}^{3} \sum_{j=1}^{3} [y_{ij}^{\mathsf{u}} \overline{u_{\mathsf{R}i}} \tilde{\Phi}^{\dagger} Q_{\mathsf{L}j} + y_{ij}^{\mathsf{d}} \overline{\mathsf{d}_{\mathsf{R}i}} \Phi^{\dagger} Q_{\mathsf{L}j}] + h.c. \qquad (12)$$

Dabei entspricht y_{ij}^u der Yukawa Matrix und Q_{Lj} , u_{Ri} und d_{Ri} für die drei Generationen wobei $j \in [1,3]$. Diese Form wollen wir wieder in eine Form der Massenmatrizen umschreiben.

SM Wiederholung - Fermionenmassse

Motivation zu Erweiterten Higgs Sektoren

- Wir haben alle Massen berechnet
- Aus Lagrange konnten wir auch alle theoretisch möglichen WW ablesen
- Mit diesen Größen können nun Zerfallsbreiten,
 Wirkungsquerschnitte und Verzweigungsverhältnisse berechnet werden
- ▶ Gibt es nun experimentelle Abweichungen von den Vorhersagen → Erweiterung
- ightharpoonup Erweiterung die Randbedingung und Symmetrie des SM gehorcht aber zusätzliche Zerfälle, WW erlauben würde ightharpoonup hoffen auf Bestätigung durch experiment

Erweiterung des SM Higgs Sektors am Beispiel des 2HDM

Zusammenfassung

- Erweiterte Higgs Sektoren können sowohl aus experimenteller als auch aus theoretischer Sicht sinnvoll sein
- ▶ Bei Erweiterungen sind Randbedingungen durch experimentelle Erkenntnisse gegeben

Quellen