

Sequence Listing

<110> Botstein,David

Desnoyers,Luc

Ferrara,Napoleone

Fong,Sherman

Gao,Wei-Qiang

Goddard,Audrey

Gurney,Austin L.

Pan,James

Roy,Margaret Ann

Stewart,Timothy A.

Tumas,Daniel

Watanabe,Colin K.

Wood,William I.

<120> Secreted and Transmembrane Polypeptides and Nucleic
Acids Encoding the Same

<130> P2930R1C10

<150> 60/095,325

<151> 1998-08-04

<150> 60/112,851

<151> 1998-12-16

<150> 60/113,145

<151> 1998-12-16

<150> 60/113,511

<151> 1998-12-22

<150> 60/115,558

<151> 1999-01-12

<150> 60/115,565

<151> 1999-01-12

<150> 60/115,733

<151> 1999-01-12

<150> 60/119,341

<151> 1999-02-09

<151> 2000-03-03
<150> PCT/US99/12252
<151> 1999-06-02

<150> PCT/US99/28634
<151> 1999-12-01

<150> PCT/US99/28551
<151> 1999-12-02

<150> PCT/US00/03565
<151> 2000-02-11

<150> PCT/US00/04414
<151> 2000-02-22

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/08439
<151> 2000-03-30

<150> PCT/US00/14941
<151> 2000-05-30

<150> PCT/US00/15264
<151> 2000-06-02

<150> PCT/US00/32678
<151> 2000-12-01

<140> US 09/866,034
<141> 2001-05-25

<160> 38

<210> 1
<211> 1283
<212> DNA
<213> Homo sapiens

<400> 1
cgacgcgtg ggaccatac ttgtggtct gatccatgca caaggcgaaa 50
ctgttaggcc tctgtccccg ggcttggaaat tcggtgccga tggccagctc 100
cggatgacc cggccggacc cgctcgaaaa taagggtggcc ctggtaacgg 150
cctccaccga cgggatcgcc ttcgcccattcg cccggcggtt ggcccaggac 200
ggggcccatg tggtcgtcag cagccggaaag cagcagaatg tggaccaggc 250
ggtggccacg ctgcagggggg aggggctgag cgtgacgggc accgtgtgcc 300
atgtggggaa ggcggaggac cgggagcgcc tggtgccac ggctgtgaag 350

cttcatggag gtatcgatat cctagtctcc aatgctgctg tcaacccttt 400
cttggaaagc ataatggatg tcactgagga ggtgtggac aagactctgg 450
acattaatgt gaaggccccca gccctgatga caaaggcagt ggtgccagaa 500
atggagaaac gaggaggcgg ctcagtggtg atcgtgtctt ccatagcage 550
cttcagtcca tctcctggct tcagtcctta caatgtcagt aaaacagcct 600
tgctgggcct gaccaagacc ctggccatag agctggcccc aaggaacatt 650
agggtgaact gcctagcacc tggacttatac aagacttagct tcagcaggat 700
gctctggatg gacaaggaaa aagagggaaag catgaaagaa accctgcgg 750
taagaagggtt aggcgagcca gaggattgtg ctggcatcgt gtctttctg 800
tgctctgaag atgccagcta catcaactggg gaaacagtgg tggtggtgg 850
aggaaccccg tcccgccctc gaggaccggg agacagccca caggccagag 900
ttgggctcta gtcctggtg ctgttcctgc attcacccac tggccttcc 950
cacctctgt caccttactg ttacacccat caaatcagtt ctgcccctgtg 1000
aaaagatcca gcattccctg ccgtcaaggt ggcgtcttac tcgggattcc 1050
tgctgttgtt gtggccttgg gtaaaggcct cccctgagaa cacaggacag 1100
gcctgctgac aaggctgagt ctaccttggc aaagaccaag atatttttc 1150
ctggccact ggtaatctg aggggtgatg ggagagaagg aacctggagt 1200
ggaaggagca gagttgcaaa ttaacagctt gcaaatgagg tgcaaataaa 1250
atgcagatga ttgcgcggct ttgaaaaaaaaaaa aaa 1283

<210> 2
<211> 278
<212> PRT
<213> Homo sapiens

<400> 2
Met His Lys Ala Gly Leu Leu Gly Leu Cys Ala Arg Ala Trp Asn
1 5 10 15
Ser Val Arg Met Ala Ser Ser Gly Met Thr Arg Arg Asp Pro Leu
20 25 30
Ala Asn Lys Val Ala Leu Val Thr Ala Ser Thr Asp Gly Ile Gly
35 40 45
Phe Ala Ile Ala Arg Arg Leu Ala Gln Asp Gly Ala His Val Val
50 55 60
Val Ser Ser Arg Lys Gln Gln Asn Val Asp Gln Ala Val Ala Thr
65 70 75

Leu Gln Gly Glu Gly Leu Ser Val Thr Gly Thr Val Cys His Val
80 85 90

Gly Lys Ala Glu Asp Arg Glu Arg Leu Val Ala Thr Ala Val Lys
95 100 105

Leu His Gly Gly Ile Asp Ile Leu Val Ser Asn Ala Ala Val Asn
110 115 120

Pro Phe Phe Gly Ser Ile Met Asp Val Thr Glu Glu Val Trp Asp
125 130 135

Lys Thr Leu Asp Ile Asn Val Lys Ala Pro Ala Leu Met Thr Lys
140 145 150

Ala Val Val Pro Glu Met Glu Lys Arg Gly Gly Ser Val Val
155 160 165

Ile Val Ser Ser Ile Ala Ala Phe Ser Pro Ser Pro Gly Phe Ser
170 175 180

Pro Tyr Asn Val Ser Lys Thr Ala Leu Leu Gly Leu Thr Lys Thr
185 190 195

Leu Ala Ile Glu Leu Ala Pro Arg Asn Ile Arg Val Asn Cys Leu
200 205 210

Ala Pro Gly Leu Ile Lys Thr Ser Phe Ser Arg Met Leu Trp Met
215 220 225

Asp Lys Glu Lys Glu Glu Ser Met Lys Glu Thr Leu Arg Ile Arg
230 235 240

Arg Leu Gly Glu Pro Glu Asp Cys Ala Gly Ile Val Ser Phe Leu
245 250 255

Cys Ser Glu Asp Ala Ser Tyr Ile Thr Gly Glu Thr Val Val Val
260 265 270

Gly Gly Gly Thr Pro Ser Arg Leu
275

<210> 3
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 3
gcataatgga tgcactgag g 21

<210> 4
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 4
agaacaatcc tgctgaaagc tag 23

<210> 5
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 5
gaaacgagga ggcggctcg tggtgatcgt gtttccata gcagcc 46

<210> 6
<211> 3121
<212> DNA
<213> Homo sapiens

<400> 6
gcgcctgag ctccgcctcc gggcccata gcggcatcga gagcgcctcc 50
gtcgaggacc aggccggcga gggggccggc gggcgaaaagg aggatgaggg 100
ggcgcagcag ctgctgaccc tgcagaacca ggtggcgcgg ctggaggagg 150
agaaccgaga ctttctggct gcgttggagg acgccatgga gcagtacaaa 200
ctgcagagcg accggctgctg ttagcagcag gaggagatgg tggactgctg 250
gctgcgtta gagctggtc ggccaggctg gggggccctg cgctccctga 300
atggcctgcc tccccgggtcc tttgtgcctc gacctcatac agccccctg 350
gggggtgccc acgccccatgt gctggcatg gtgccgcctg cctgcctccc 400
tggagatgaa gttggctctg agcagagggg agagcaggtg acaaattggca 450
gggaggctgg agctgagttt ctgactgagg tgaacaggctt gggaaagtggc 500
ttttcagctg cttcagagga ggaagaggag gaggaggagc cgcccaaggcg 550
gaccttacac ctgcgcagaa ataggatcag caactgcagt cagagggcgg 600
gggcacgccc agggagcttg ccagagagga agggcccaaga gctttgcctt 650
gaggagttgg atgcagccat tccagggtcc agagcagttt gtgggagcaa 700
ggcccgagtt caggccccggc aggtcccccc tgccacagcc tcagagtggc 750
ggctggccca ggcccagcag aagatccggg agctggctat caacatccgc 800
atgaaggagg agcttattgg cgagctggtc cgcacagggaa aggcagctca 850
ggccctgaac cgccagcaca gccagcgtat ccgggagctg gagcaggagg 900

cagagcaggt gggggccgag ctgagtgaag gccagaggca gctgcgggag 950
ctcgagggca aggagctcca ggatgctggc gagcggtctc ggctccagga 1000
gttccgcagg agggtcgtcg cggcccagag ccaggtgcag gtgctgaagg 1050
agaagaagca ggctacggag cggctggtgt cactgtcgcc ccagagttag 1100
aagcgactgc aggagctcga gcggAACgtg cagtcatgc ggacgcagca 1150
gggacagctg cagaggcggc ttcgcgagga gacggagcag aagcggcgcc 1200
tggaggcaga aatgagcaag cggcagcacc gcgtcaagga gctggagctg 1250
aagcatgagc aacagcagaa gatcctgaag attaagacgg aagagatcgc 1300
ggccttccag aggaagagggc gcagtggcag caacggctct gtggtcagcc 1350
tggAACAGCA gcagaagatt gaggagcaga agaagtggct ggaccaggag 1400
atggagaagg tgctacagca gcggcgggcg ctggaggagc tgggggagga 1450
gctccacaag cgggaggcca tcctggccaa gaaggaggcc ctgatgcagg 1500
agaagacggg gctggagagc aagcgcctga gatccagcca ggcctcaac 1550
gaggacatcg tgcgagtgtc cagccggctg gagcacctgg agaaggagct 1600
gtccgagaag agcgggcagc tgccggcaagg cagcgcggcag accagcagc 1650
agatccgcgg ggagatcgac agcctgcgcc aggagaagga ctgcgtgtc 1700
aagcagcgcc tggagatcga cggcaagctg aggcaggggc gtctgctgtc 1750
ccccgaggag gagcggacgc tggccagtt ggatgaggccc atcgaggccc 1800
tggatgctgc cattgagtt aagaatgagg ccatcacatg ccgcgcgg 1850
gtgcttcggg cctcagcctc gttgctgtcc cagtgcgaga tgaacctcat 1900
ggccaagctc agtacccctc catcctcaga gaccagagcc ctccctctgca 1950
agtattttga caaggtggtg acgtcccgag aggacgcagca ccagcagcag 2000
attgccttct cgaaacttggaa gatgcagctg gaggagcagc agaggctgg 2050
gtactggctg gaggtggccc tggagcggca gcgcctggag atggaccggc 2100
agctgaccct gcagcagaag gacgcacgcagc agaacatgca gctgcctctg 2150
cagcagagtc gagaccacct cggtaaggg ttagcagaca gcaggaggca 2200
gtatgaggcc cggattcaag ctctggagaa ggaactgggc cgttacatgt 2250
ggataaaacca ggaactgaaa cagaagctcg ggggtgtgaa cgctgttaggc 2300
cacagcaggg gtggggagaa gaggagcctg tgctcgagg gcagacaggc 2350

tcctggaaat gaagatgagc tccacacctgc acccgagctt ctctggctgt 2400
ccccccctcac tgagggggcc ccccgaccc gggaggagac gcgggacttg 2450
gtccacgctc cgttaccctt gacctggaaa cgctcgagcc tgtgtggtga 2500
ggagcagggg tcccccgagg aactgaggca gcgggaggcg gctgagcccc 2550
tggtggggcg ggtgcttctt gtgggtgagg cagggctgcc ctggaaactt 2600
gggcctttgt ccaagccccg ggggaactg cgacgagcca gcccgggat 2650
gattgatgtc cgaaaaacc ccctgttaagc cctcggggca gaccctgcct 2700
tggagggaga ctccgagcct gctgaaaggc gcagctgcct gttttgcttc 2750
tgtgaagggc agtccttacc gcacacccta aatccaggcc ctcatctgt 2800
ccctcaactgg gatcaacaaa tttggccat ggcccaaag aactggaccc 2850
tcatttaaca aaataatatg caaattccca ccacttaactt ccatgaagct 2900
gtggtaccca attgccgcct tgtgtcttgc tcgaatctca ggacaattct 2950
ggtttcaggc gtaaatggat gtgctttagt ttcaagggtt tggccaagaa 3000
tcatcacgaa agggtcggtg gcaaccaggt tgtggttaa atggtcttat 3050
gtatataggg gaaactggga gacttttagga tcttaaaaaa ccatttaata 3100
aaaaaaaaatc tttgaaggga c 3121

<210> 7
<211> 830
<212> PRT
<213> Homo sapiens

<400> 7
Met Glu Gln Tyr Lys Leu Gln Ser Asp Arg Leu Arg Glu Gln Gln
1 5 10 15

Glu Glu Met Val Glu Leu Arg Leu Arg Leu Glu Leu Val Arg Pro
20 25 30

Gly Trp Gly Gly Leu Arg Leu Leu Asn Gly Leu Pro Pro Gly Ser
35 40 45

Phe Val Pro Arg Pro His Thr Ala Pro Leu Gly Gly Ala His Ala
50 55 60

His Val Leu Gly Met Val Pro Pro Ala Cys Leu Pro Gly Asp Glu
65 70 75

Val Gly Ser Glu Gln Arg Gly Glu Gln Val Thr Asn Gly Arg Glu
80 85 90

Ala Gly Ala Glu Leu Leu Thr Glu Val Asn Arg Leu Gly Ser Gly
95 100 105

Ser Ser Ala Ala Ser Glu Glu Glu Glu Glu Glu Pro Pro
 110 115 120
 Arg Arg Thr Leu His Leu Arg Arg Asn Arg Ile Ser Asn Cys Ser
 125 130 135
 Gln Arg Ala Gly Ala Arg Pro Gly Ser Leu Pro Glu Arg Lys Gly
 140 145 150
 Pro Glu Leu Cys Leu Glu Glu Leu Asp Ala Ala Ile Pro Gly Ser
 155 160 165
 Arg Ala Val Gly Gly Ser Lys Ala Arg Val Gln Ala Arg Gln Val
 170 175 180
 Pro Pro Ala Thr Ala Ser Glu Trp Arg Leu Ala Gln Ala Gln Gln
 185 190 195
 Lys Ile Arg Glu Leu Ala Ile Asn Ile Arg Met Lys Glu Glu Leu
 200 205 210
 Ile Gly Glu Leu Val Arg Thr Gly Lys Ala Ala Gln Ala Leu Asn
 215 220 225
 Arg Gln His Ser Gln Arg Ile Arg Glu Leu Glu Gln Glu Ala Glu
 230 235 240
 Gln Val Arg Ala Glu Leu Ser Glu Gly Gln Arg Gln Leu Arg Glu
 245 250 255
 Leu Glu Gly Lys Glu Leu Gln Asp Ala Gly Glu Arg Ser Arg Leu
 260 265 270
 Gln Glu Phe Arg Arg Val Ala Ala Gln Ser Gln Val Gln
 275 280 285
 Val Leu Lys Glu Lys Lys Gln Ala Thr Glu Arg Leu Val Ser Leu
 290 295 300
 Ser Ala Gln Ser Glu Lys Arg Leu Gln Glu Leu Glu Arg Asn Val
 305 310 315
 Gln Leu Met Arg Gln Gln Gln Gly Gln Leu Gln Arg Arg Leu Arg
 320 325 330
 Glu Glu Thr Glu Gln Lys Arg Arg Leu Glu Ala Glu Met Ser Lys
 335 340 345
 Arg Gln His Arg Val Lys Glu Leu Glu Leu Lys His Glu Gln Gln
 350 355 360
 Gln Lys Ile Leu Lys Ile Lys Thr Glu Glu Ile Ala Ala Phe Gln
 365 370 375
 Arg Lys Arg Arg Ser Gly Ser Asn Gly Ser Val Val Ser Leu Glu
 380 385 390
 Gln Gln Gln Lys Ile Glu Glu Gln Lys Lys Trp Leu Asp Gln Glu

395	400	405
Met Glu Lys Val Leu Gln Gln Arg Arg Ala Leu Glu Glu Leu Gly 410	415	420
Glu Glu Leu His Lys Arg Glu Ala Ile Leu Ala Lys Lys Glu Ala 425	430	435
Leu Met Gln Glu Lys Thr Gly Leu Glu Ser Lys Arg Leu Arg Ser 440	445	450
Ser Gln Ala Leu Asn Glu Asp Ile Val Arg Val Ser Ser Arg Leu 455	460	465
Glu His Leu Glu Lys Glu Leu Ser Glu Lys Ser Gly Gln Leu Arg 470	475	480
Gln Gly Ser Ala Gln Ser Gln Gln Ile Arg Gly Glu Ile Asp 485	490	495
Ser Leu Arg Gln Glu Lys Asp Ser Leu Leu Lys Gln Arg Leu Glu 500	505	510
Ile Asp Gly Lys Leu Arg Gln Gly Ser Leu Leu Ser Pro Glu Glu 515	520	525
Glu Arg Thr Leu Phe Gln Leu Asp Glu Ala Ile Glu Ala Leu Asp 530	535	540
Ala Ala Ile Glu Tyr Lys Asn Glu Ala Ile Thr Cys Arg Gln Arg 545	550	555
Val Leu Arg Ala Ser Ala Ser Leu Leu Ser Gln Cys Glu Met Asn 560	565	570
Leu Met Ala Lys Leu Ser Tyr Leu Ser Ser Ser Glu Thr Arg Ala 575	580	585
Leu Leu Cys Lys Tyr Phe Asp Lys Val Val Thr Leu Arg Glu Glu 590	595	600
Gln His Gln Gln Gln Ile Ala Phe Ser Glu Leu Glu Met Gln Leu 605	610	615
Glu Glu Gln Gln Arg Leu Val Tyr Trp Leu Glu Val Ala Leu Glu 620	625	630
Arg Gln Arg Leu Glu Met Asp Arg Gln Leu Thr Leu Gln Gln Lys 635	640	645
Glu His Glu Gln Asn Met Gln Leu Leu Leu Gln Gln Ser Arg Asp 650	655	660
His Leu Gly Glu Gly Leu Ala Asp Ser Arg Arg Gln Tyr Glu Ala 665	670	675
Arg Ile Gln Ala Leu Glu Lys Glu Leu Gly Arg Tyr Met Trp Ile 680	685	690

Asn Gln Glu Leu Lys Gln Lys Leu Gly Gly Val Asn Ala Val Gly
695 700 705

His Ser Arg Gly Gly Glu Lys Arg Ser Leu Cys Ser Glu Gly Arg
710 715 720

Gln Ala Pro Gly Asn Glu Asp Glu Leu His Leu Ala Pro Glu Leu
725 730 735

Leu Trp Leu Ser Pro Leu Thr Glu Gly Ala Pro Arg Thr Arg Glu
740 745 750

Glu Thr Arg Asp Leu Val His Ala Pro Leu Pro Leu Thr Trp Lys
755 760 765

Arg Ser Ser Leu Cys Gly Glu Glu Gln Gly Ser Pro Glu Glu Leu
770 775 780

Arg Gln Arg Glu Ala Ala Glu Pro Leu Val Gly Arg Val Leu Pro
785 790 795

Val Gly Glu Ala Gly Leu Pro Trp Asn Phe Gly Pro Leu Ser Lys
800 805 810

Pro Arg Arg Glu Leu Arg Arg Ala Ser Pro Gly Met Ile Asp Val
815 820 825

Arg Lys Asn Pro Leu
830

<210> 8
<211> 662
<212> DNA
<213> Homo sapiens

<400> 8
atttccttag agcatcttg gaagcatgag gccacgatgc tgcacatgg 50
ctcttgtctg ctggataaca gtcttcctcc tccagtgttc aaaaggaact 100
acagacgctc ctgtggctc aggactgtgg ctgtgccagc cgacacccag 150
gtgtggAAC aagatctaca acccttcaga gcagtgtgt tatgtatgt 200
ccatcttatac cttaaaggag acccgccgct gtggctccac ctgcaccc 250
tggccctgtt ttgagctctg ctgtccccag tctttggcc cccagcagaa 300
gtttcttgtt aagttgaggg ttctgggtat gaagtctcag tgtcaactt 350
ctcccatctc ccggagctgt accaggaaca ggaggcacgt cctgtaccca 400
taaaaaacccc aggctccact ggcagacggc agacaagggg agaagagacg 450
aagcagctgg acatcgaga ctacagttga acttcggaga gaagcaactt 500
gacttcagag ggatggotca atgacatagc tttggagagg agcccagctg 550

gggatggcca gacttcaggg gaagaatgcc ttccctgttc atcccctttc 600
cagctccct tcccgctgag agccactttc atcggcaata aaatccccca 650
catttaccat ct 662

<210> 9
<211> 125
<212> PRT
<213> Homo sapiens

<400> 9
Met Arg Pro Arg Cys Cys Ile Leu Ala Leu Val Cys Trp Ile Thr
1 5 10 15
Val Phe Leu Leu Gln Cys Ser Lys Gly Thr Thr Asp Ala Pro Val
20 25 30
Gly Ser Gly Leu Trp Leu Cys Gln Pro Thr Pro Arg Cys Gly Asn
35 40 45
Lys Ile Tyr Asn Pro Ser Glu Gln Cys Cys Tyr Asp Asp Ala Ile
50 55 60
Leu Ser Leu Lys Glu Thr Arg Arg Cys Gly Ser Thr Cys Thr Phe
65 70 75
Trp Pro Cys Phe Glu Leu Cys Cys Pro Glu Ser Phe Gly Pro Gln
80 85 90
Gln Lys Phe Leu Val Lys Leu Arg Val Leu Gly Met Lys Ser Gln
95 100 105
Cys His Leu Ser Pro Ile Ser Arg Ser Cys Thr Arg Asn Arg Arg
110 115 120
His Val Leu Tyr Pro
125

<210> 10
<211> 1942
<212> DNA
<213> Homo sapiens

<400> 10
cccacgcgtc cgcccacgcg tccgggtgcc actcgcgcgc cggccgcgtc 50
ccgggcttct ctttccctc cgacgcgcga cggctgcccga gacattccgg 100
ctgccgggtc tggagagctc cccgaacccc tccgcggaga ggagcgaggc 150
ggcgccaggg tggccccccgg ggcgcgcgttg gtctcggaga agcggggacg 200
aggccggagg atgagcgact gagggcgacg cgggcactga cgcgagttgg 250
ggccgcgact accggcagct gacagcgcga tgagcgactc cccagagacg 300
ccctagcccg gtgtgcgcgc caggcggagc ggcgcagggtgg ggctgggctg 350

ttagtggtcc gccccacgcg ggtcgccggc cggcccagga tgggcgtgg 400
caacccgggc ccgccggc cgctgctacc cctgcggccg ctgcgagccc 450
ggcggtccggc ccgccggctg cgctcatgga cggcggtcc cggctggogg 500
cggcggcccc cggggctgtg aatgcgactc gcccctccgc cggctcccc 550
gcccggccgc cggccgggac gtggtagggg atgcccagct ccactgcgat 600
ggcagttggc gcgctctcca gttccctctt ggtcacctgc tgccctgatgg 650
tggctctgtg cagtccgagc atcccgttg agaagctggc ccaggcacca 700
gagcagccgg gccaggagaa gcgtgagcac gccactcggg acggcccg 750
gcgggtgaac gagctcgggc gcccggcgag ggacgagggc ggcagcggcc 800
gggactggaa gagcaagagc ggccgtggc tcgcccggc tgagccgtgg 850
agcaagctga agcaggcctg ggtctcccag ggcggggcg ccaaggccgg 900
ggatctgcag gtccggcccc gcggggacac cccgcaggcg gaagccctgg 950
ccgcagccgc ccaggacgag attggcccg aactcgcgcc cacgcccag 1000
ccacccgagg agtacgtgta cccggactac cgtggcaagg gtcgtgtgg 1050
cgagagcggc ttctgttacg cgatcgggaa gaagttcgcg cccggcccc 1100
cgccctgccc gtgcctgtgc accgaggagg ggccgctgtg cgccagccc 1150
gagtgcggca ggctgcaccc gcgtgcatac caegtcgaca cgagccagtg 1200
ctgcccgcag tgcaaggaga ggaagaacta ctgcgagttc cggggcaaga 1250
cctatcagac ttggaggag ttctgtgtgt ctccatgcga gaggtgtcgc 1300
tgtgaaggca acggtgaggt gctatgcaca gtgtcagcgt gtccccagac 1350
ggagtgtgtg gaccctgtgt acgagcctga tcagtgtgt cccatctgca 1400
aaaatggtcc aaactgcattt gcagaaaccg cggtgatccc tgctggcaga 1450
gaagtgaaga ctgacgagtg caccatatgc cactgtactt atgaggaagg 1500
cacatggaga atcgagcggc aggccatgtg cacgagacat gaatgcagggc 1550
aaatgttagac gttcccaaga acacaaaactc tgacttttc tagaacattt 1600
tactgatgtg aacattctag atgactctgg gaactatcag tcaaagaaga 1650
cttttgcgtga ggaataatgg aaaattgttg gtactttcc ttttcttgat 1700
aacagttact acaacagaag gaaatggata tatttcaaaa catcaacaag 1750
aactttggc ataaaaatct tctctaaata aatgtgttat tttcacagta 1800

agtacacaaa agtacactat tatatatcaa atgtattct ataatccctc 1850
cattagagag cttatataag tgtttctat agatgcagat taaaaatgct 1900
gtgttgtcaa ccgtcaaaaa aaaaaaaaaa aaaaaaaaaa aa 1942

<210> 11
<211> 325
<212> PRT
<213> Homo sapiens

<400> 11
Met Pro Ser Ser Thr Ala Met Ala Val Gly Ala Leu Ser Ser Ser
1 5 10 15

Leu Leu Val Thr Cys Cys Leu Met Val Ala Leu Cys Ser Pro Ser
20 25 30

Ile Pro Leu Glu Lys Leu Ala Gln Ala Pro Glu Gln Pro Gly Gln
35 40 45

Glu Lys Arg Glu His Ala Thr Arg Asp Gly Pro Gly Arg Val Asn
50 55 60

Glu Leu Gly Arg Pro Ala Arg Asp Glu Gly Gly Ser Gly Arg Asp
65 70 75

Trp Lys Ser Lys Ser Gly Arg Gly Leu Ala Gly Arg Glu Pro Trp
80 85 90

Ser Lys Leu Lys Gln Ala Trp Val Ser Gln Gly Gly Ala Lys
95 100 105

Ala Gly Asp Leu Gln Val Arg Pro Arg Gly Asp Thr Pro Gln Ala
110 115 120

Glu Ala Leu Ala Ala Ala Ala Gln Asp Ala Ile Gly Pro Glu Leu
125 130 135

Ala Pro Thr Pro Glu Pro Pro Glu Glu Tyr Val Tyr Pro Asp Tyr
140 145 150

Arg Gly Lys Gly Cys Val Asp Glu Ser Gly Phe Val Tyr Ala Ile
155 160 165

Gly Glu Lys Phe Ala Pro Gly Pro Ser Ala Cys Pro Cys Leu Cys
170 175 180

Thr Glu Glu Gly Pro Leu Cys Ala Gln Pro Glu Cys Pro Arg Leu
185 190 195

His Pro Arg Cys Ile His Val Asp Thr Ser Gln Cys Cys Pro Gln
200 205 210

Cys Lys Glu Arg Lys Asn Tyr Cys Glu Phe Arg Gly Lys Thr Tyr
215 220 225

Gln Thr Leu Glu Glu Phe Val Val Ser Pro Cys Glu Arg Cys Arg

	230	235	240
Cys Glu Ala Asn Gly Glu Val Leu Cys Thr Val Ser Ala Cys Pro			
245	250	255	
Gln Thr Glu Cys Val Asp Pro Val Tyr Glu Pro Asp Gln Cys Cys			
260	265	270	
Pro Ile Cys Lys Asn Gly Pro Asn Cys Phe Ala Glu Thr Ala Val			
275	280	285	
Ile Pro Ala Gly Arg Glu Val Lys Thr Asp Glu Cys Thr Ile Cys			
290	295	300	
His Cys Thr Tyr Glu Glu Gly Thr Trp Arg Ile Glu Arg Gln Ala			
305	310	315	
Met Cys Thr Arg His Glu Cys Arg Gln Met			
320	325		

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 12
gaggtgtcgc tgtgaaggcca acgg 24

<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 13
cgctcgattc tccatgtgcc ttcc 24

<210> 14
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 14
gacggagtgt gtggaccctg tgtacgagcc tgatcagtgc tgtcc 45

<210> 15
<211> 1587
<212> DNA
<213> Homo sapiens

<400> 15
cagccacaga cgggtcatga ggcggattt actgctggcc tcctgggt 50
tcatccccc actgccagga gtgcaggcgc tgctctgcca gtttggaca 100
gttcagcatg tgtggaaagg gtccgaccta ccccgcaat ggaccctaa 150
gaacaccagc tgcgacagcg gcttgggtg ccaggacacg ttgatgctca 200
ttgagagcgg accccaagtg agcttggc tctccaagggtgcacggag 250
gccaggacc aggagccccg cgtcaactgag cacggatgg gcggcct 300
ctccctgate tcctacacct tcgtgtggc ccaggaggac ttctgcaaca 350
acctcgtaa ctccctcccg ctttggccc cacagcccc agcagaccca 400
ggatccttga ggtgcccagt ctgttgtct atggaaaggct gtctggaggg 450
gacaacagaa gagatctgcc ccaaggggac cacacactgt tatgtggcc 500
tcctcaggct caggggagga ggcattttt ccaatctgag agtccaggga 550
tgcatgcccc agccagggtt caacctgctc aatgggacac agggaaattgg 600
gcccgtgggt atgactgaga actgcaatag gaaagatttt ctgacctgtc 650
atcgaaaaac caccattatg acacacggaa acttggctca agaaccact 700
gattggacca catcgaatac cgagatgtgc gaggtgggc aggtgtgtca 750
ggagacgctg ctgctcatag atgttagact cacatcaacc ctgggtggga 800
caaaaaggctg cagcactgtt gggctaaa attccagaa gaccaccatc 850
caactcagccc ctccctgggt gcttggcc tcctataccctt acttctgtc 900
ctcgacactg tgcaatagtg ccagcagcag cagcgttctg ctgaactccc 950
tccctcctca agctgcocct gtcccgaggag accggcagtgc tcctacctgt 1000
gtgcagcccc ttggAACCTG ttcaagtggc tccccccgaa tgacctgccc 1050
caggggcgcc actcattgtt atgatgggtt cattcatctc tcaggaggtg 1100
ggctgtccac caaaaatgagc attcagggtt gcgtggccca accttccagc 1150
ttcttgggtga accacaccag acaaatacggtt atcttctctg cgcgtgagaa 1200
gcgtgtatgtc cagcctcctg cctctcagca tgagggaggt gggctgagg 1250
gcctggagtc tctcacttgg ggggtggggc tggcactggc cccagcgctg 1300
tggtggggag tgggttggcc ttccctgttca ctcttattacc cccacgatcc 1350
ttcacccgtc ctgaccacccc acactcaacc tccctctgac ctcataaccc 1400
aatggccttg gacaccagat tctttcccat tctgtccatg aatcatcttc 1450

cccacacaca atcattcata tctactcacc taacagcaac actggggaga 1500
gcctggagca tccggacttg ccctatggga gaggggacgc tggaggagtg 1550
gctgcatgta tctgataata cagaccctgt cctttca 1587

<210> 16
<211> 437
<212> PRT
<213> Homo sapiens

<400> 16
Met Ser Ala Val Leu Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro
1 5 10 15
Leu Pro Gly Val Gln Ala Leu Leu Cys Gln Phe Gly Thr Val Gln
20 25 30
His Val Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys
35 40 45
Asn Thr Ser Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met
50 55 60
Leu Ile Glu Ser Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly
65 70 75
Cys Thr Glu Ala Lys Asp Gln Glu Pro Arg Val Thr Glu His Arg
80 85 90
Met Gly Pro Gly Leu Ser Leu Ile Ser Tyr Thr Phe Val Cys Arg
95 100 105
Gln Glu Asp Phe Cys Asn Asn Leu Val Asn Ser Leu Pro Leu Trp
110 115 120
Ala Pro Gln Pro Pro Ala Asp Pro Gly Ser Leu Arg Cys Pro Val
125 130 135
Cys Leu Ser Met Glu Gly Cys Leu Glu Gly Thr Thr Glu Glu Ile
140 145 150
Cys Pro Lys Gly Thr Thr His Cys Tyr Asp Gly Leu Leu Arg Leu
155 160 165
Arg Gly Gly Gly Ile Phe Ser Asn Leu Arg Val Gln Gly Cys Met
170 175 180
Pro Gln Pro Gly Cys Asn Leu Leu Asn Gly Thr Gln Glu Ile Gly
185 190 195
Pro Val Gly Met Thr Glu Asn Cys Asn Arg Lys Asp Phe Leu Thr
200 205 210
Cys His Arg Gly Thr Thr Ile Met Thr His Gly Asn Leu Ala Gln
215 220 225
Glu Pro Thr Asp Trp Thr Ser Asn Thr Glu Met Cys Glu Val

230	235	240
Gly Gln Val Cys Gln Glu Thr Leu Leu Leu Ile Asp Val Gly Leu		
245	250	255
Thr Ser Thr Leu Val Gly Thr Lys Gly Cys Ser Thr Val Gly Ala		
260	265	270
Gln Asn Ser Gln Lys Thr Thr Ile His Ser Ala Pro Pro Gly Val		
275	280	285
Leu Val Ala Ser Tyr Thr His Phe Cys Ser Ser Asp Leu Cys Asn		
290	295	300
Ser Ala Ser Ser Ser Ser Val Leu Leu Asn Ser Leu Pro Pro Gln		
305	310	315
Ala Ala Pro Val Pro Gly Asp Arg Gln Cys Pro Thr Cys Val Gln		
320	325	330
Pro Leu Gly Thr Cys Ser Ser Gly Ser Pro Arg Met Thr Cys Pro		
335	340	345
Arg Gly Ala Thr His Cys Tyr Asp Gly Tyr Ile His Leu Ser Gly		
350	355	360
Gly Gly Leu Ser Thr Lys Met Ser Ile Gln Gly Cys Val Ala Gln		
365	370	375
Pro Ser Ser Phe Leu Leu Asn His Thr Arg Gln Ile Gly Ile Phe		
380	385	390
Ser Ala Arg Glu Lys Arg Asp Val Gln Pro Pro Ala Ser Gln His		
395	400	405
Glu Gly Gly Ala Glu Gly Leu Glu Ser Leu Thr Trp Gly Val		
410	415	420
Gly Leu Ala Leu Ala Pro Ala Leu Trp Trp Gly Val Val Cys Pro		
425	430	435
Ser Cys		

<210> 17
<211> 2387
<212> DNA
<213> Homo sapiens

<400> 17
cgacgatgct acgcgcgcggc ggctgcctcc tccggacactc cgtagcgcc 50
ggcgcgccccc tggctgcggc gctgctctcg tcgcttgcgc gctgctctct 100
tcttagagccg agggaccgg tggcctcgtc gctcagcccc tatttcggca 150
ccaagactcg ctacgaggat gtcaaccccg tgctattgtc gggccccgag 200

gctccgtggc gggaccctga gctgctggag gggacctgca ccccggtgca 250
gctggtcgcc ctcattcgcc acggcaccccg ctaccccacg gtcaaacaga 300
tccgcaagct gaggcagctg cacgggttgc tgcaggcccg cggtccagg 350
gatggcgggg ctagtagtac cggcagccgc gacctgggtg cagcgctggc 400
cgactggcct ttgtggtacg cggactggat ggacgggcag ctagtagaga 450
agggacggca ggatatgcga cagctggcgc tgcgtctggc ctcgtcttc 500
ccggcccttt tcagccgtga gaactacggc cgcctgcggc tcatacaccag 550
ttccaaggcac cgctgcatgg atagcagcgc cgccttcctg caggggctgt 600
ggcagcacta ccaccctggc ttgcccggc cggacgtcgc agatatggag 650
tttggacctc caacagttaa tgataaaacta atgagatttt ttgatcaactg 700
tgagaagttt ttaactgaag tagaaaaaaaaa tgctacagct ctttatcag 750
tggaagcctt caaaaactgga ccagaaaatgc agaacatttt aaaaaaaagtt 800
gcagctactt tgcaagtgc agtaaatgat ttAAATGCAAG attaaattca 850
agtagccttt ttcacctgtt catttgacct ggcaattaaa ggtgttaaat 900
ctccttggtg tgatgtttt gacatagatg atgcaaaggat attagaatat 950
ttAAATGATC tgaaacaata ttggaaaaga ggatatgggt atactattaa 1000
cagtcgatcc agctgcaccc tttttcagga tatcttcag cacttggaca 1050
aagcagttga acagaaacaa aggtctcagc caatttcttc tccagtcac 1100
ctccagttt gtcatgcaga gactttttt ccactgttt ctctcatggg 1150
ctacttcaaa gacaaggaac ccctaacagc gtacaattac aaaaaacaaa 1200
tgcatcgaa gttccgaagt ggtctcattt taccttatgc ctgcAACCTG 1250
atatttgc tttaccactg tgaaaaatgct aagactccta aagaacaatt 1300
ccgagtgcaag atgttattaa atgaaaaggat gttacccctt gcttactcac 1350
aagaaaactgt ttcattttt gaagatctga agaaccacta caaggacatc 1400
cttcagagtt gtcaaaccag tgaagaatgt gaattagcaa gggctaacag 1450
tacatctgat gaactatgag taactgaaga acatTTTAA ttcttttagga 1500
atctgcaatg agtgattaca tgcttgtaat aggtaggcaa ttcccttgatt 1550
acaggaagct ttatattac ttgagttttt ctgtctttc acagaaaaac 1600
attgggtttc tctctgggtt tggacatgaa atgtaagaaa agatTTTCA 1650

ctggagcgc tctcttaagg agaaaacaaat ctattnagag aaacagctgg 1700
ccctgcaaat gtttacagaa atgaaattct tcctacttat ataagaatac 1750
tcacactgag atagaattgt gatttcataa taacacttga aaagtgcgtgg 1800
agtaacaaaa tatctcagtt ggaccatcct taacttgatt gaactgtcta 1850
ggaactttac agattttct gcagttctct cttctttcc tcaggttagga 1900
cagctctagc attttcttaa tcaggaatat tgtggtaagc tgggagtatc 1950
actctggaag aaagtaacat ctccagatga gaatttggaaa caagaaacag 2000
agtgttgtaa aaggacacct tcactgaagc aagtcggaaa gtacaatgaa 2050
aataaaatatt ttgtgttattt atttatgaaa tatttgaaca ttttttcaat 2100
aattcctttt tacttcttagg aagtctcaaa agaccatctt aaatttattat 2150
atgtttggac aattagcaac aagtcagata gttagaatcg aagttttca 2200
aatccattgc tttagctaact ttttcattct gtcacttggc ttcgattttt 2250
atattttctt attatatgaa atgtatctt tggttgggg atttttcttt 2300
ctttctttgt aaatagttct gagttctgtc aaatgccgtg aaagtatttg 2350
ctataataaa gaaaattctt gtgactttaa aaaaaaaa 2387

<210> 18
<211> 487
<212> PRT
<213> Homo sapiens

<400> 18
Met Leu Arg Ala Pro Gly Cys Leu Leu Arg Thr Ser Val Ala Pro
1 5 10 15
Ala Ala Ala Leu Ala Ala Leu Leu Ser Ser Leu Ala Arg Cys
20 25 30
Ser Leu Leu Glu Pro Arg Asp Pro Val Ala Ser Ser Leu Ser Pro
35 40 45
Tyr Phe Gly Thr Lys Thr Arg Tyr Glu Asp Val Asn Pro Val Leu
50 55 60
Leu Ser Gly Pro Glu Ala Pro Trp Arg Asp Pro Glu Leu Leu Glu
65 70 75
Gly Thr Cys Thr Pro Val Gln Leu Val Ala Leu Ile Arg His Gly
80 85 90
Thr Arg Tyr Pro Thr Val Lys Gln Ile Arg Lys Leu Arg Gln Leu
95 100 105
His Gly Leu Leu Gln Ala Arg Gly Ser Arg Asp Gly Gly Ala Ser

110	115	120
Ser Thr Gly Ser Arg Asp Leu Gly Ala Ala	Leu Ala Asp Trp Pro	
125	130	135
Leu Trp Tyr Ala Asp Trp Met Asp Gly Gln	Leu Val Glu Lys Gly	
140	145	150
Arg Gln Asp Met Arg Gln Leu Ala Leu Arg	Leu Ala Ser Leu Phe	
155	160	165
Pro Ala Leu Phe Ser Arg Glu Asn Tyr Gly	Arg Leu Arg Leu Ile	
170	175	180
Thr Ser Ser Lys His Arg Cys Met Asp Ser	Ser Ala Ala Phe Leu	
185	190	195
Gln Gly Leu Trp Gln His Tyr His Pro Gly	Leu Pro Pro Pro Asp	
200	205	210
Val Ala Asp Met Glu Phe Gly Pro Pro	Thr Val Asn Asp Lys Leu	
215	220	225
Met Arg Phe Phe Asp His Cys Glu Lys	Phe Leu Thr Glu Val Glu	
230	235	240
Lys Asn Ala Thr Ala Leu Tyr His Val	Glu Ala Phe Lys Thr Gly	
245	250	255
Pro Glu Met Gln Asn Ile Leu Lys Lys	Val Ala Ala Thr Leu Gln	
260	265	270
Val Pro Val Asn Asp Leu Asn Ala Asp	Leu Ile Gln Val Ala Phe	
275	280	285
Phe Thr Cys Ser Phe Asp Leu Ala Ile	Lys Gly Val Lys Ser Pro	
290	295	300
Trp Cys Asp Val Phe Asp Ile Asp Asp Ala	Lys Val Leu Glu Tyr	
305	310	315
Leu Asn Asp Leu Lys Gln Tyr Trp Lys	Arg Gly Tyr Gly Tyr Thr	
320	325	330
Ile Asn Ser Arg Ser Ser Cys Thr Leu Phe	Gln Asp Ile Phe Gln	
335	340	345
His Leu Asp Lys Ala Val Glu Gln Lys	Gln Arg Ser Gln Pro Ile	
350	355	360
Ser Ser Pro Val Ile Leu Gln Phe Gly	His Ala Glu Thr Leu Leu	
365	370	375
Pro Leu Leu Ser Leu Met Gly Tyr Phe	Lys Asp Lys Glu Pro Leu	
380	385	390
Thr Ala Tyr Asn Tyr Lys Lys Gln Met His	Arg Lys Phe Arg Ser	
395	400	405

Gly Leu Ile Val Pro Tyr Ala Ser Asn Leu Ile Phe Val Leu Tyr
410 415 420
His Cys Glu Asn Ala Lys Thr Pro Lys Glu Gln Phe Arg Val Gln
425 430 435
Met Leu Leu Asn Glu Lys Val Leu Pro Leu Ala Tyr Ser Gln Glu
440 445 450
Thr Val Ser Phe Tyr Glu Asp Leu Lys Asn His Tyr Lys Asp Ile
455 460 465
Leu Gln Ser Cys Gln Thr Ser Glu Glu Cys Glu Leu Ala Arg Ala
470 475 480
Asn Ser Thr Ser Asp Glu Leu
485

<210> 19
<211> 3554
<212> DNA
<213> Homo sapiens

<400> 19
gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50
atggcgctga ggccggccacc gcgactccgg ctctgcgcgc ggctgcctga 100
cttcttcctg ctgctgttt tcaggggctg cctgataagg gctgtaaatc 150
tcaaattccag caatcgaacc ccagtggta aggaatttga aagtgtggaa 200
ctgtcttgca tcattacgga ttccgcagaca agtgacccca ggatcgagtg 250
gaagaaaatt caagatgaac aaaccacata tgtgttttt gacaacaaaa 300
ttcagggaga cttggcggtt cgtgcagaaa tactgggaa gacatccctg 350
aagatctgga atgtgacacg gagagactca gccctttatc gctgtgaggt 400
cgttgctcga aatgaccgca agggaaattga tgagattgtg atcgagttaa 450
ctgtgcaagt gaagccagt acccctgtct gttagtgcc gaaggctgta 500
ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550
ccggcctcac tacagctggc atcgcaatga tgtaccactg cccacggatt 600
ccagagccaa tccccagatt cgcaattttt ctttccactt aaactctgaa 650
acaggcactt tggtgttac tgctgttac aaggacgact ctgggcagta 700
ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750
agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800
gttgccttg ctgtactggc cctgatcacg ttgggcacatc gctgtgcata 850

cagacgtggc tacttcatca acaataaaaca ggatggagaa agttacaaga 900
accaggaa accagatgga gttaactaca tccgcactga cgaggaggc 950
gacttcagac acaagtcatc gtttgtgatc tgagacccgc ggtgtggctg 1000
agagcgacaca gagcgcacgt gcacataacct ctgctagaaa ctcctgtcaa 1050
ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100
tttcgtttt gccaaagtt gaccactact cttcttactc taacaagcca 1150
catgaataga agaattttcc tcaagatgga cccgtaaat ataaccacaa 1200
ggaagcgaaa ctgggtgcgt tcactgagtt gggttcctaa tctgtttctg 1250
gcctgattcc cgcattgagta ttagggtgat cttaaagagt ttgctcacgt 1300
aaacgcccgt gctggccct gtgaagccag catgttacc actggtcgtt 1350
cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400
agcagcgcat cccggggaa acccagaaaa ggcttcttac acagcagcct 1450
tacttcatcg gcccacagac accaccgcag tttcttctta aaggctctgc 1500
tgatcggtgt tgcagtgtcc attgtggaga agcttttgg atcagcattt 1550
tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600
cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650
actttcgtct taggctaagt ctgaaatggt actgaaatat gctttctat 1700
gggtcttgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750
tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800
catacaatgt taaataaacct attttttaa aaaagttcaa cttaaggtag 1850
aagtccaaag ctactagtgt taaaattggaa aatataaata attaagagta 1900
tttacccaa ggaatccctc catggaagtt tactgtgatg ttccctttct 1950
cacacaagtt ttagcctttt tcacaaggaa actcataactg tctacacatc 2000
agaccatagt tgcttaggaa accttaaaaa attccagttt agcaatgttg 2050
aaatcagttt gcatctttc aaaagaaaacc tctcaggtta gcttgaact 2100
gcctcttctt gagatgacta ggacagtctg tacccagagg ccacccagaa 2150
gcctcagat gtacatacac agatgccagt cagtcctgg gtttgcgc 2200
ggcgcccccg ctctagctca ctgttgctc gctgtctgcc aggaggccct 2250
gcacatccttg gcccctggca gtggctgtgtt cccagtgagc ttactcacg 2300

tggcccttgc ttcatccagc acagctctca ggtgggact gcagggacac 2350
tggtgtttc catgttagcgt cccagcttg ggctcctgta acagacctct 2400
ttttggttat ggatggctca caaaataggg cccccaatgc tattttttt 2450
tttaagttt gttaattat ttgttaagat tgtctaaggc caaaggcaat 2500
tgcgaaatca agtctgtcaa gtacaataac attttaaaaa gaaaatggat 2550
cccactgttc ctcttgcca cagagaaagc acccagacgc cacaggctct 2600
gtcgcatttc aaaacaaacc atgatggagt ggccggccagt ccagcctttt 2650
aaagaacgtc aggtggagca gccaggtgaa aggctggcg gggaggaaag 2700
tgaaacgcct gaatcaaaag cagtttctta atttgactt taaattttc 2750
atccgcccga gacactgctc ccatttgtgg gggacatta gcaacatcac 2800
tcagaagect gtgttcttca agagcaggtg ttctcagect cacatgccct 2850
gccgtgctgg actcaggact gaagtgctgt aaagcaagga gctgctgaga 2900
aggagcactc cactgtgtgc ctggagaatg gctctoacta ctcaccttgc 2950
cttcagctt ccagtgtctt gggttttta tactttgaca gctttttttt 3000
aattgcatac atgagactgt gttgactttt tttagttatg taaaacactt 3050
tgccgcaggc cgccctggcag aggcaggaaa tgctccagca gtggctcagt 3100
gctccctggt gtctgctgca tggcatcctg gatgcttagc atgcaagttc 3150
cctccatcat tgccacccctg gtagagaggg atggctcccc accctcagcg 3200
ttggggattc acgctccagc ctcccttctg gttgtcatag ttagaggta 3250
gccttattgc cccctttct tataccctaa aacccctac actagtgcct 3300
tggaaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctggaa 3350
gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatTTT 3400
aagatatgaa tgtgactcaa gactcgaggg cgatacgagg ctgtgattct 3450
gccttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500
caccgttaatt tggcatttgc ttaacccat ttataaaagc ttcaaaaaaa 3550
ccca 3554

<210> 20
<211> 310
<212> PRT
<213> Homo sapiens

<400> 20

Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu
 1 5 10 15
 Pro Asp Phe Phe Leu Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly
 20 25 30
 Ala Val Asn Leu Lys Ser Ser Asn Arg Thr Pro Val Val Gln Glu
 35 40 45
 Phe Glu Ser Val Glu Leu Ser Cys Ile Ile Thr Asp Ser Gln Thr
 50 55 60
 Ser Asp Pro Arg Ile Glu Trp Lys Ile Gln Asp Glu Gln Thr
 65 70 75
 Thr Tyr Val Phe Phe Asp Asn Lys Ile Gln Gly Asp Leu Ala Gly
 80 85 90
 Arg Ala Glu Ile Leu Gly Lys Thr Ser Leu Lys Ile Trp Asn Val
 95 100 105
 Thr Arg Arg Asp Ser Ala Leu Tyr Arg Cys Glu Val Val Ala Arg
 110 115 120
 Asn Asp Arg Lys Glu Ile Asp Glu Ile Val Ile Glu Leu Thr Val
 125 130 135
 Gln Val Lys Pro Val Thr Pro Val Cys Arg Val Pro Lys Ala Val
 140 145 150
 Pro Val Gly Lys Met Ala Thr Leu His Cys Gln Glu Ser Glu Gly
 155 160 165
 His Pro Arg Pro His Tyr Ser Trp Tyr Arg Asn Asp Val Pro Leu
 170 175 180
 Pro Thr Asp Ser Arg Ala Asn Pro Arg Phe Arg Asn Ser Ser Phe
 185 190 195
 His Leu Asn Ser Glu Thr Gly Thr Leu Val Phe Thr Ala Val His
 200 205 210
 Lys Asp Asp Ser Gly Gln Tyr Tyr Cys Ile Ala Ser Asn Asp Ala
 215 220 225
 Gly Ser Ala Arg Cys Glu Glu Gln Glu Met Glu Val Tyr Asp Leu
 230 235 240
 Asn Ile Gly Gly Ile Ile Gly Gly Val Leu Val Val Leu Ala Val
 245 250 255
 Leu Ala Leu Ile Thr Leu Gly Ile Cys Cys Ala Tyr Arg Arg Gly
 260 265 270
 Tyr Phe Ile Asn Asn Lys Gln Asp Gly Glu Ser Tyr Lys Asn Pro
 275 280 285
 Gly Lys Pro Asp Gly Val Asn Tyr Ile Arg Thr Asp Glu Glu Gly

290 295 300

Asp Phe Arg His Lys Ser Ser Phe Val Ile
305 310

<210> 21
<211> 3437
<212> DNA
<213> Homo sapiens

<400> 21
caggaccagg tcttcctacg ctggagcago ggggagacag ccaccatgca 50
catcctcggt gtccatgcga tggtgatcct gctgacgctg ggccccgcctc 100
gagccgacga cagcgagttc cagggcgctgc tggacatctg gtttccggag 150
gagaagccac tgcccacccgc cttcctggtg gacacatcgg aggaggcgct 200
gctgcttctt gactggctga agctgacgcat gatccgttct gaggtgtcc 250
gcctgggtga cgccgcctg caggacctgg agccgcagca gctgctgctg 300
ttcgtgcagt cgtttggcat ccccggtgtcc agcatgagca aactcctcca 350
gttcctggac caggcagtgg cccacgaccc ccagactctg gagcagaaca 400
tcatggacaa gaattacatg gcccacctgg tggaggtcca gcatgagcgc 450
ggccgcctccg gaggccagac ttccactcc ttgctcacag cctccctgcc 500
gccccgcga gacagcacag aggcacccaa accaaagagc agcccgagac 550
agcccatagg ccaggccggg attcgggtgg ggacccagct ccgggtgtcg 600
ggccctgagg acgacctggc tggcatgttc ctccagattt tcccgctcag 650
cccgacccct cggtgtcaga gctccagtc cccgcctgtg gcccgcggcc 700
tgcagcaggg cctggccag gagctggccc gctgtgttca gggcagcccc 750
gaggtgcggg gcatcacggt gctgtgtcctg caggccctcg ccaccctgct 800
cagctccccca cacggcggtg ccctgggtat gtccatgcac ctagccact 850
tcctggcctg cccgctgtcg cgccagctct gcaagtttca gctgtgttg 900
ccacaggaca ccggcttctc ctgcgttttc ctgaagggtgc tcctgcagat 950
gctgcagtgg ctggacagcc ctggcggtga gggcgccccc ctgcgggcac 1000
agctcaggat gcttgccagc caggcctcag ccggcgccag gctcagtgtat 1050
gtgcgagggg ggctcctgcg cctggccgag gcccgtgcct tccgtcagga 1100
cctggagggtg gtcagctcca ccgtccgtgc cgtcatgcac accctgaggt 1150
ctggggagca gtgcagcgtg gagccggacc tgatcagcaa agtcctccag 1200

gggctgatcg aggtgaggc cccccacact gaggagctgc tgactgcatt 1250
cttctctgcc actgcggatg ctgcctccccc gtttccagcc tgtaagcccg 1300
tttggttgtt gagctccctg ctgctgcagg aggaggagcc cctggctggg 1350
ggaaagccgg gtgcggacgg tggcagcctg gaggccgtgc ggctggggcc 1400
ctcgtcaggc ctcttagtgg actggctgga aatgtggac cccgaggtgg 1450
tcagcagctg ccccgacactg cagctcaggc tgctcttctc ccggaggaag 1500
ggcaaaggc aggcccaggt gcctcggtt cgtccctacc tcctgaccct 1550
cttcacgcat cagtccagct ggcacacact gcaccagtgc atccgagtcc 1600
tgctggcaaa gagccggaa cagaggttcg acccctctgc ctctctggac 1650
ttcctctggg cctgcatcca ttttcctcgc atctggcagg ggcgggacca 1700
gcgcaccccg cagaagccgc gggaggagct ggtgctgcgg gtccaggcc 1750
cgagctcat cagcctggtg gagctgatcc tggccgaggc ggagacgcgg 1800
agccaggacg gggacacacgc cgctgcagc ctcatccagg cccggctgcc 1850
cctgctgctc agctgctgct gtggggacga tgagagtgtc aggaaggtga 1900
cgagcacacct gtcaggctgc atccagcagt gggagacag cgtgctggg 1950
aggcgctgcc gagacccctt cctgcagctc tacctacagc ggccggagct 2000
gcgggtgccc gtgcctgagg tcctactgca cagcgaaggg gctgccagca 2050
gcagcgtctg caagctggac ggactcatcc accgcttcat cacgctcctt 2100
gcggacaccca gcgactcccg ggcgttggag aaccgagggg cgatgccag 2150
catggcctgc cggaaagctgg cggggcgca cccgctgctg ctgctcaggc 2200
acctgcccatt gatcgccgcg ctccctgcacg gcccaccca cctcaacttc 2250
caggagttcc ggcagcagaa ccacctgagc tgcttcctgc acgtgctggg 2300
cctgctggag ctgctgcagc cgcacgtgtt ccgcagcggag caccaggggg 2350
cgctgtggga ctgccttctg tccttcatcc gcctgctgct gaattacagg 2400
aagtccccc gccatctggc tgccttcatac aacaagtttgc tgcaatccat 2450
ccataagtac attacctaca atgcggcaggc agccatctcc ttccctgcaga 2500
agcacgccga cccgctccac gacctgtctt tcgacaacag tgacctggtg 2550
atgctgaaat ccctccttgc agggctcagc ctgcccagca gggacgacag 2600
gaccgaccga ggcctggacg aagagggcga ggaggagagc tcagccggct 2650

ccttgcacct ggtcagcgtc tccctgttca cccctctgac cgccggccgag 2700
atggccccct acatgaaacg gctttcccg ggccaaacgg tggaggatct 2750
gctggaggtt ctgagtgaca tagacgagat gtcccgccgg agacccgaga 2800
tcctgagtt cttctcgacc aacctgcago ggctgatgag ctcggccgag 2850
gagtgttgcc gcaacctcgc cttagcctg gccctgcgct ccatgcagaa 2900
cagccccagc attgcagccg ctttcctgcc cacgttcatg tactgcctgg 2950
gcagccagga ctttgaggtg gtgcagacgg ccctccggaa cctgcctgag 3000
tacgctctcc tgtgccaaga gcacgcggct gtgctgctcc accgggcctt 3050
cctgggtggc atgtacggcc agatggaccc cagcgcgcag atctccgagg 3100
ccctgaggat cctgcatatg gaggccgtga tgtgaggctg tggcagccga 3150
ccccctcca agccccggcc cgtcccggtcc cggggatcc tcgaggcaaa 3200
gcccaggaag cgtggcggtt gctggtctgt ccgaggaggt gagggcgccg 3250
agccctgagg ccaggcaggc ccaggagcaa tactccgagc cctgggggtgg 3300
ctccggcccg gccgctggca tcagggcccg tccagcaagc cctcattcac 3350
cttctgggcc acagccctgc cggcggagccg cggatcccc cgggcatggc 3400
ctgggctggt tttgaatgaa acgacactgaa ctgtcaa 3437

<210> 22
<211> 1029
<212> PRT
<213> Homo sapiens

<400> 22
Met His Ile Leu Val Val His Ala Met Val Ile Leu Leu Thr Leu
1 5 10 15
Gly Pro Pro Arg Ala Asp Asp Ser Glu Phe Gln Ala Leu Leu Asp
20 25 30
Ile Trp Phe Pro Glu Glu Lys Pro Leu Pro Thr Ala Phe Leu Val
35 40 45
Asp Thr Ser Glu Glu Ala Leu Leu Pro Asp Trp Leu Lys Leu
50 55 60
Arg Met Ile Arg Ser Glu Val Leu Arg Leu Val Asp Ala Ala Leu
65 70 75
Gln Asp Leu Glu Pro Gln Gln Leu Leu Leu Phe Val Gln Ser Phe
80 85 90
Gly Ile Pro Val Ser Ser Met Ser Lys Leu Leu Gln Phe Leu Asp
95 100 105

Gln Ala Val Ala His Asp Pro Gln Thr Leu Glu Gln Asn Ile Met
 110 115 120
 Asp Lys Asn Tyr Met Ala His Leu Val Glu Val Gln His Glu Arg
 125 130 135
 Gly Ala Ser Gly Gly Gln Thr Phe His Ser Leu Leu Thr Ala Ser
 140 145 150
 Leu Pro Pro Arg Arg Asp Ser Thr Glu Ala Pro Lys Pro Lys Ser
 155 160 165
 Ser Pro Glu Gln Pro Ile Gly Gln Gly Arg Ile Arg Val Gly Thr
 170 175 180
 Gln Leu Arg Val Leu Gly Pro Glu Asp Asp Leu Ala Gly Met Phe
 185 190 195
 Leu Gln Ile Phe Pro Leu Ser Pro Asp Pro Arg Trp Gln Ser Ser
 200 205 210
 Ser Pro Arg Pro Val Ala Leu Ala Leu Gln Gln Ala Leu Gly Gln
 215 220 225
 Glu Leu Ala Arg Val Val Gln Gly Ser Pro Glu Val Pro Gly Ile
 230 235 240
 Thr Val Arg Val Leu Gln Ala Leu Ala Thr Leu Leu Ser Ser Pro
 245 250 255
 His Gly Gly Ala Leu Val Met Ser Met His Arg Ser His Phe Leu
 260 265 270
 Ala Cys Pro Leu Leu Arg Gln Leu Cys Gln Tyr Gln Arg Cys Val
 275 280 285
 Pro Gln Asp Thr Gly Phe Ser Ser Leu Phe Leu Lys Val Leu Leu
 290 295 300
 Gln Met Leu Gln Trp Leu Asp Ser Pro Gly Val Glu Gly Gly Pro
 305 310 315
 Leu Arg Ala Gln Leu Arg Met Leu Ala Ser Gln Ala Ser Ala Gly
 320 325 330
 Arg Arg Leu Ser Asp Val Arg Gly Gly Leu Leu Arg Leu Ala Glu
 335 340 345
 Ala Leu Ala Phe Arg Gln Asp Leu Glu Val Val Ser Ser Thr Val
 350 355 360
 Arg Ala Val Ile Ala Thr Leu Arg Ser Gly Glu Gln Cys Ser Val
 365 370 375
 Glu Pro Asp Leu Ile Ser Lys Val Leu Gln Gly Leu Ile Glu Val
 380 385 390
 Arg Ser Pro His Leu Glu Glu Leu Leu Thr Ala Phe Phe Ser Ala

395	400	405
Thr Ala Asp Ala Ala Ser Pro Phe Pro Ala Cys Lys Pro Val Val		
410	415	420
Val Val Ser Ser Leu Leu Leu Gln Glu Glu Glu Pro Leu Ala Gly		
425	430	435
Gly Lys Pro Gly Ala Asp Gly Gly Ser Leu Glu Ala Val Arg Leu		
440	445	450
Gly Pro Ser Ser Gly Leu Leu Val Asp Trp Leu Glu Met Leu Asp		
455	460	465
Pro Glu Val Val Ser Ser Cys Pro Asp Leu Gln Leu Arg Leu Leu		
470	475	480
Phe Ser Arg Arg Lys Gly Lys Gly Gln Ala Gln Val Pro Ser Phe		
485	490	495
Arg Pro Tyr Leu Leu Thr Leu Phe Thr His Gln Ser Ser Trp Pro		
500	505	510
Thr Leu His Gln Cys Ile Arg Val Leu Leu Gly Lys Ser Arg Glu		
515	520	525
Gln Arg Phe Asp Pro Ser Ala Ser Leu Asp Phe Leu Trp Ala Cys		
530	535	540
Ile His Val Pro Arg Ile Trp Gln Gly Arg Asp Gln Arg Thr Pro		
545	550	555
Gln Lys Arg Arg Glu Glu Leu Val Leu Arg Val Gln Gly Pro Glu		
560	565	570
Leu Ile Ser Leu Val Glu Leu Ile Leu Ala Glu Ala Glu Thr Arg		
575	580	585
Ser Gln Asp Gly Asp Thr Ala Ala Cys Ser Leu Ile Gln Ala Arg		
590	595	600
Leu Pro Leu Leu Leu Ser Cys Cys Cys Gly Asp Asp Glu Ser Val		
605	610	615
Arg Lys Val Thr Glu His Leu Ser Gly Cys Ile Gln Gln Trp Gly		
620	625	630
Asp Ser Val Leu Gly Arg Arg Cys Arg Asp Leu Leu Leu Gln Leu		
635	640	645
Tyr Leu Gln Arg Pro Glu Leu Arg Val Pro Val Pro Glu Val Leu		
650	655	660
Leu His Ser Glu Gly Ala Ala Ser Ser Ser Val Cys Lys Leu Asp		
665	670	675
Gly Leu Ile His Arg Phe Ile Thr Leu Leu Ala Asp Thr Ser Asp		
680	685	690

Ser Arg Ala Leu Glu Asn Arg Gly Ala Asp Ala Ser Met Ala Cys
 695 700 705
 Arg Lys Leu Ala Val Ala His Pro Leu Leu Leu Leu Arg His Leu
 710 715 720
 Pro Met Ile Ala Ala Leu Leu His Gly Arg Thr His Leu Asn Phe
 725 730 735
 Gln Glu Phe Arg Gln Gln Asn His Leu Ser Cys Phe Leu His Val
 740 745 750
 Leu Gly Leu Leu Glu Leu Leu Gln Pro His Val Phe Arg Ser Glu
 755 760 765
 His Gln Gly Ala Leu Trp Asp Cys Leu Leu Ser Phe Ile Arg Leu
 770 775 780
 Leu Leu Asn Tyr Arg Lys Ser Ser Arg His Leu Ala Ala Phe Ile
 785 790 795
 Asn Lys Phe Val Gln Phe Ile His Lys Tyr Ile Thr Tyr Asn Ala
 800 805 810
 Pro Ala Ala Ile Ser Phe Leu Gln Lys His Ala Asp Pro Leu His
 815 820 825
 Asp Leu Ser Phe Asp Asn Ser Asp Leu Val Met Leu Lys Ser Leu
 830 835 840
 Leu Ala Gly Leu Ser Leu Pro Ser Arg Asp Asp Arg Thr Asp Arg
 845 850 855
 Gly Leu Asp Glu Glu Gly Glu Glu Ser Ser Ala Gly Ser Leu
 860 865 870
 Pro Leu Val Ser Val Ser Leu Phe Thr Pro Leu Thr Ala Ala Glu
 875 880 885
 Met Ala Pro Tyr Met Lys Arg Leu Ser Arg Gly Gln Thr Val Glu
 890 895 900
 Asp Leu Leu Glu Val Leu Ser Asp Ile Asp Glu Met Ser Arg Arg
 905 910 915
 Arg Pro Glu Ile Leu Ser Phe Phe Ser Thr Asn Leu Gln Arg Leu
 920 925 930
 Met Ser Ser Ala Glu Glu Cys Cys Arg Asn Leu Ala Phe Ser Leu
 935 940 945
 Ala Leu Arg Ser Met Gln Asn Ser Pro Ser Ile Ala Ala Ala Phe
 950 955 960
 Leu Pro Thr Phe Met Tyr Cys Leu Gly Ser Gln Asp Phe Glu Val
 965 970 975
 Val Gln Thr Ala Leu Arg Asn Leu Pro Glu Tyr Ala Leu Leu Cys

980	985	990
Gln Glu His Ala Ala Val Leu Leu His Arg Ala Phe Leu Val Gly		
995	1000	1005
Met Tyr Gly Gln Met Asp Pro Ser Ala Gln Ile Ser Glu Ala Leu		
1010	1015	1020
Arg Ile Leu His Met Glu Ala Val Met		
1025		
<210> 23		
<211> 2186		
<212> DNA		
<213> Homo sapiens		
<400> 23		
ccggggccatg cagcctcgac cccgcggcgc cccgcgcgc acccgaggag 50		
atgagggtcc gcaatggcac ctccctgacg ctgctgtct tctgcgttg 100		
cgcccttcctc tcgctgtccct ggtacgcggc actcagcggc cagaaaggcg 150		
acgttgtgga cgtttaccag cgggagttcc tggcgatgcg cgatcggtt 200		
cacgcagctg agcaggagag cctcaagcgc tccaaggagc tcaacctgg 250		
gctggacgag atcaagaggg ccgtgtcaga aaggcaggcg ctgcgagacg 300		
gagacggcaa tcgcacctgg ggccgcctaa cagaggaccc ccgattgaag 350		
ccgtggaacg gtcacacccg gcacgtgtc cacctgcaca ccgttccca 400		
tcacctgcac cacatgttcc ccaaggagag cagtctgcag cccgcgggtgc 450		
gcgtggccca gggccgcacc ggagtgttgg tggtgatggg catccccggc 500		
gtgcggcgcg aggtgcactc gtacctgact gacactctgc actcgctcat 550		
ctcccgagctg agcccgaggc agaaggagga ctccgtcata gtgggtgtga 600		
tcgcccggagac tgactcacag tacacttcgg cagtgcacaga gaacatcaag 650		
gccttggccca ccacggagat ccattctggg ctccctggagg tcatctcacc 700		
ctccccccac ttctaccctg acttctcccg cctccggagag tcctttgggg 750		
accccaagga gagagtcagg tggaggacca aacagaacct cgattactgc 800		
ttccctcatga tgtacgcgcgtc cccaaaggc atctactacg tgcagctgg 850		
ggatgacatc gtggccaaaggc ccaactaccc gggcaccatg aagaactttg 900		
cactgcagca gccttcagag gactggatga tcctggagtt ctccctggagg 950		
ggcttcatttgc gtaagatgtt caagtcgtcg gacctgagcc tgattgtaga 1000		
gttcatttgc atgttctacc gggacaagcc catcgactgg ctccctggacc 1050		

atattctgtg ggtgaaagtc tgcaaccccg agaaggatgc gaagcactgt 1100
gaccggcaga aagccaacct gcggatccgc ttcaaaccgt ccctttcca 1150
gcacgtggc actcacttct cgctggctgg caagatccag aaactgaagg 1200
acaaaagactt tggaaagcag gcgctgcgga aggagoatgt gaacccgcca 1250
gcagaggtga gcacgagcct gaagacatac cagcacttca ccctggagaa 1300
agcctacctg cgcgaggact tcttctggc cttcacccct gccgcggggg 1350
acttcatccg cttccgcttc ttccaacctc taagactgga gcggttcttc 1400
ttccgcagtg ggaacatcga gcacccggag gacaagctct tcaacacgtc 1450
tgtggaggtg ctgccttcg acaaccctca gtcagacaag gaggccctgc 1500
aggagggccg caccgcacc ctcgggtacc ctcggagccc cgacggctac 1550
ctccagatcg gtccttcta caagggagtg gcagagggag aggtggaccc 1600
agcttcggc cctctggaaag cactgcgcct ctcgatccag acggactccc 1650
ctgtgtgggt gattctgagc gagatttcc tgaaaaaggc cgactaagct 1700
gcgggcttct gagggtaccc tgtggccagc cctgaagccc acatttctgg 1750
gggtgtcgcc actgcgtcc ccggagggcc agatacggcc ccgccccaaag 1800
ggttctgcct ggctcgggc ttggggccgc ctgggtccg ccgctggccc 1850
ggaggcccta ggagctggtg ctgcggccgc ccggccggcc gcggaggagg 1900
caggcggccc ccacactgtg cctgaggccc ggaaccgttc gcacccggcc 1950
tgccccagtc aggccgtttt agaagagctt ttacttggc gcccgccgtc 2000
tctggcgcga acactggaat gcatatacta ctttatgtgc tgtgttttt 2050
attcttggat acatttgatt tttcacgta agtccacata tacttctata 2100
agagcgtgac ttgtataaaa gggtaatga agaaaaaaaaaaa 2150
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaa 2186

<210> 24
<211> 548
<212> PRT
<213> Homo sapiens

<400> 24
Met Arg Leu Arg Asn Gly Thr Phe Leu Thr Leu Leu Phe Cys
1 5 10 15
Leu Cys Ala Phe Leu Ser Leu Ser Trp Tyr Ala Ala Leu Ser Gly
20 25 30

Gln Lys Gly Asp Val Val Asp Val Tyr Gln Arg Glu Phe Leu Ala
 35 40 45
 Leu Arg Asp Arg Leu His Ala Ala Glu Gln Glu Ser Leu Lys Arg
 50 55 60
 Ser Lys Glu Leu Asn Leu Val Leu Asp Glu Ile Lys Arg Ala Val
 65 70 75
 Ser Glu Arg Gln Ala Leu Arg Asp Gly Asp Gly Asn Arg Thr Trp
 80 85 90
 Gly Arg Leu Thr Glu Asp Pro Arg Leu Lys Pro Trp Asn Gly Ser
 95 100 105
 His Arg His Val Leu His Leu Pro Thr Val Phe His His Leu Pro
 110 115 120
 His Leu Leu Ala Lys Glu Ser Ser Leu Gln Pro Ala Val Arg Val
 125 130 135
 Gly Gln Gly Arg Thr Gly Val Ser Val Val Met Gly Ile Pro Ser
 140 145 150
 Val Arg Arg Glu Val His Ser Tyr Leu Thr Asp Thr Leu His Ser
 155 160 165
 Leu Ile Ser Glu Leu Ser Pro Gln Glu Lys Glu Asp Ser Val Ile
 170 175 180
 Val Val Leu Ile Ala Glu Thr Asp Ser Gln Tyr Thr Ser Ala Val
 185 190 195
 Thr Glu Asn Ile Lys Ala Leu Phe Pro Thr Glu Ile His Ser Gly
 200 205 210
 Leu Leu Glu Val Ile Ser Pro Ser Pro His Phe Tyr Pro Asp Phe
 215 220 225
 Ser Arg Leu Arg Glu Ser Phe Gly Asp Pro Lys Glu Arg Val Arg
 230 235 240
 Trp Arg Thr Lys Gln Asn Leu Asp Tyr Cys Phe Leu Met Met Tyr
 245 250 255
 Ala Gln Ser Lys Gly Ile Tyr Tyr Val Gln Leu Glu Asp Asp Ile
 260 265 270
 Val Ala Lys Pro Asn Tyr Leu Ser Thr Met Lys Asn Phe Ala Leu
 275 280 285
 Gln Gln Pro Ser Glu Asp Trp Met Ile Leu Glu Phe Ser Gln Leu
 290 295 300
 Gly Phe Ile Gly Lys Met Phe Lys Ser Leu Asp Leu Ser Leu Ile
 305 310 315
 Val Glu Phe Ile Leu Met Phe Tyr Arg Asp Lys Pro Ile Asp Trp

320	325	330
Leu Leu Asp His Ile Leu Trp Val Lys Val Cys Asn Pro Glu Lys		
335	340	345
Asp Ala Lys His Cys Asp Arg Gln Lys Ala Asn Leu Arg Ile Arg		
350	355	360
Phe Lys Pro Ser Leu Phe Gln His Val Gly Thr His Ser Ser Leu		
365	370	375
Ala Gly Lys Ile Gln Lys Leu Lys Asp Lys Asp Phe Gly Lys Gln		
380	385	390
Ala Leu Arg Lys Glu His Val Asn Pro Pro Ala Glu Val Ser Thr		
395	400	405
Ser Leu Lys Thr Tyr Gln His Phe Thr Leu Glu Lys Ala Tyr Leu		
410	415	420
Arg Glu Asp Phe Phe Trp Ala Phe Thr Pro Ala Ala Gly Asp Phe		
425	430	435
Ile Arg Phe Arg Phe Phe Gln Pro Leu Arg Leu Glu Arg Phe Phe		
440	445	450
Phe Arg Ser Gly Asn Ile Glu His Pro Glu Asp Lys Leu Phe Asn		
455	460	465
Thr Ser Val Glu Val Leu Pro Phe Asp Asn Pro Gln Ser Asp Lys		
470	475	480
Glu Ala Leu Gln Glu Gly Arg Thr Ala Thr Leu Arg Tyr Pro Arg		
485	490	495
Ser Pro Asp Gly Tyr Leu Gln Ile Gly Ser Phe Tyr Lys Gly Val		
500	505	510
Ala Glu Gly Glu Val Asp Pro Ala Phe Gly Pro Leu Glu Ala Leu		
515	520	525
Arg Leu Ser Ile Gln Thr Asp Ser Pro Val Trp Val Ile Leu Ser		
530	535	540
Glu Ile Phe Leu Lys Lys Ala Asp		
545		

<210> 25
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 25
tgtaaaacga cggccagttt aatagacctg caattattaa tct 43

<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 26
caggaaacag ctatgaccac ctgcacacacct gcaaattccat t 41

<210> 27
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 27
actcgggatt cctgctgtt 19

<210> 28
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 28
aggcctttac ccaaggccac aac 23

<210> 29
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 29
ggcctgtcct gtgttctca 19

<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 30
tcccaccact tacttccatg aa 22

<210> 31
<211> 25
<212> DNA

<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 31
ctgtggtacc caattgccgc cttgt 25

<210> 32
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 32
attgtcctga gattcgagca aga 23

<210> 33
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 33
gtccagcaag ccctcatt 18

<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 34
cttctgggcc acagccctgc 20

<210> 35
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 35
cagttcaggt cgtttcattc a 21

<210> 36
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 36
ccagtcaggc cgttttaga 19

<210> 37
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 37
cggcgcccc agtaaaaagct c 21

<210> 38
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 38
cataaaagtag tatatgcatt ccagtgtt 28