TFLite Micro: Interpreter

TFLite Micro Design

- TFLite Micro uses an interpreter design
- Store the model as data and loop through its ops at runtime

ops

Interpreter (generally slower than compiled code)

Compiler (generally faster than interpreted code)

ML is **Different**

Each layer like a Conv
 or softmax can take
 tens of thousands or
 even millions of cycles
 to complete execution

ML is **Different**

 Parsing overhead is relatively small for the TFMicro interpreter when we consider the overall network graph

Model	Total Cycles	Calculation Cycles	Interpreter Overhead
Visual Wake Words (Ref)	18,990.8K	18,987.1K	< 0.1%
Google Hotword (Ref)	36.4K	34.9K	4.1%

Sparkfun Edge 2 (Apollo 3 **Cortex-M4**)

dispatch

instruction **ops**

Interpreter **Advantages**

Change the model
 without recompiling
 the code

instruction **ops**

Interpreter **Advantages**

- Change the model
 without recompiling
 the code
- Same operator code
 can be used across
 multiple different
 models in the system

Arduino BLE Sense 33 Himax WE-I Plus EVB

Espressif EYE

SparkFun Edge 2

Interpreter **Advantages**

serialization format can be used **across a lots of systems**.

TFLite Micro Interpreter Execution

```
if (op_type == CONV2D) {
   Convolution2d(conv_size, input, output, weights);
} else if (op_type == FULLY_CONNECTED) {
   FullyConnected(input, output, weights)
}
```