- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

9 giugno 2015

			(Co	gnor	me)						(No	me)			_	ume	i ma	trice	ola)

1	0000
2	00000
3	00000
4	
5	00000
6	0000
7	00000
8	0000
9	00000
10	0000

1. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^{x^2}$ è

A: N.A. B: iniettiva C: surgettiva D: non derivabile in x = 0 E: monotona crescente

2. L'integrale

$$3\int_{1}^{e} \log^{2}(x) \frac{1}{x} dx$$

vale

A: 1 B: $\sqrt{e} + 1$ C: N.A. D: $\frac{1}{3}$ E: $\frac{1}{2}$

3. Una soluzione dell'equazione differenziale $y'(x) = e^x + e^{-x}$ è

A: N.A. B: $\frac{1}{\cos(x)}$ C: $2e^{2x}$ D: $\frac{1}{\sin(x)}$ E: $e^x + e^{-x}$

4. Il limite

$$\lim_{x \to 0} \frac{\sqrt[3]{1 + x^2} - 1}{\sin(x^2)}$$

vale

A: N.E. B: 1 C: $+\infty$ D: N.A. E: $\frac{1}{3}$

5. La funzione $f(x)=\left\{ egin{array}{ll} 0 & & \mbox{per } x\leq 0 \\ x^a\sin\frac{1}{x} & & \mbox{per } x>0 \end{array} \right.$ è derivabile su tutto \mathbbm{R} per

A: a > 0 B: a > 1 C: mai D: N.A. E: $a \ge 1$

6. Data $f(x) = (e^x)^x$. Allora f'(1) è uguale a

A: e² B: 2e C: N.A. D: 3e³ E: log(2e)

7. Modulo e argomento del numero complesso $z=\left(\frac{i}{\sqrt{3}}\right)^8$ sono

A: $(3^5, 0)$ B: N.A. C: $(3^{-4}, \pi/2)$ D: $(27, 2\pi)$ E: $(9^{-2}, 0)$

8. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : e^{-x^4} > \frac{1}{2}\}$$

valgono

A: $\{-\infty, N.E., \sqrt[4]{\log 2}, N.E.\}$ B: $\{-\frac{1}{2}, N.E., \frac{1}{2}, N.E.\}$ C: $\{-\infty, N.E., \frac{1}{2}, \frac{1}{2}\}$ D: N.A. E: $\{-\sqrt[4]{\log 2}, N.E., \sqrt[4]{\log 2}, N.E.\}$

9. Dato $x \ge 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\log(1+n^2x)}{n}$$

converge per

A: $x \le 1$ B: x = 0 C: x > 0 D: N.A. E: 1 < x

10. La retta tangente al grafico di $y(x) = \sin^2(4x)$ nel punto $x_0 = \pi/16$ vale

A: N.A. B: $3x - \frac{\pi}{4} + \frac{1}{2}$ C: $-\frac{-12x + \pi - 4}{4\sqrt{2}}$ D: $1 + \sin(3x)(x - \pi/12)$ E: $4x - \frac{\pi}{4} + \frac{1}{2}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

9 giugno 2015

			(Co	gnoi	me)				-			(No	me)			=	ume	ro d	i ma	trice	ola)

1	0000
2	00000
3	00000
4	
5	
6	
7	
8	
9	
10	0000

1. Data
$$f(x) = (e^x)^x$$
. Allora $f'(1)$ è uguale a A: $3e^3$ B: $\log(2e)$ C: N.A. D: $2e$ E: e^2

2. Dato $x \ge 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\log(1+n^2x)}{n}$$

converge per

A:
$$1 < x$$
 B: $x > 0$ C: $x \le 1$ D: $x = 0$ E: N.A.

3. La retta tangente al grafico di $y(x) = \sin^2(4x)$ nel punto $x_0 = \pi/16$ vale A: $1 + \sin(3x)(x - \pi/12)$ B: $-\frac{-12x + \pi - 4}{4\sqrt{2}}$ C: $3x - \frac{\pi}{4} + \frac{1}{2}$ D: $4x - \frac{\pi}{4} + \frac{1}{2}$ E: N.A.

4. L'integrale

$$3\int_{1}^{e} \log^{2}(x) \frac{1}{x} dx$$

vale

A:
$$\sqrt{e} + 1$$
 B: N.A. C: $\frac{1}{3}$ D: $\frac{1}{2}$ E: 1

5. Il limite

$$\lim_{x \to 0} \frac{\sqrt[3]{1 + x^2} - 1}{\sin(x^2)}$$

vale

A:
$$+\infty$$
 B: N.E. C: $\frac{1}{3}$ D: N.A. E: 1

6. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^{x^2}$ è

A: monotona crescente B: non derivabile in x = 0 C: surgettiva D: iniettiva E: N.A.

7. La funzione
$$f(x)=\left\{ egin{array}{ll} 0 & & \mbox{per } x\leq 0 \\ x^a\sin\frac{1}{x} & & \mbox{per } x>0 \end{array} \right.$$
è derivabile su tutto \mathbbm{R} per

A:
$$a > 0$$
 B: $a > 1$ C: $a \ge 1$ D: N.A. E: mai

8. Modulo e argomento del numero complesso $z=\left(\frac{i}{\sqrt{3}}\right)^8$ sono

A:
$$(3^5, 0)$$
 B: $(9^{-2}, 0)$ C: $(27, 2\pi)$ D: N.A. E: $(3^{-4}, \pi/2)$

9. Inf, min, sup e max dell'insieme

$$A = \{ x \in \mathbb{R} : e^{-x^4} > \frac{1}{2} \}$$

valgono

A:
$$\{-\sqrt[4]{\log 2}, N.E., \sqrt[4]{\log 2}, N.E.\}$$
 B: $\{-\frac{1}{2}, N.E., \frac{1}{2}, N.E.\}$ C: $\{-\infty, N.E., \frac{1}{2}, \frac{1}{2}\}$ D: N.A. E: $\{-\infty, N.E., \sqrt[4]{\log 2}, N.E.\}$

10. Una soluzione dell'equazione differenziale $y'(x) = e^x + e^{-x}$ è

A:
$$2e^{2x}$$
 B: N.A. C: $\frac{1}{\sin(x)}$ D: $e^x + e^{-x}$ E: $\frac{1}{\cos(x)}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

9 giugno 2015

			(Co	gnoi	me)				-			(No	me)			=	ume	ro d	i ma	trice	ola)

1	0000
2	0000
3	0000
4	0000
5	00000
6	
7	
8	0000
9	0000
10	00000

1. Il limite

$$\lim_{x \to 0} \frac{\sqrt[3]{1 + x^2} - 1}{\sin(x^2)}$$

vale

A: N.A. B: N.E. C: $+\infty$ D: 1 E: $\frac{1}{3}$

2. La retta tangente al grafico di $y(x) = \sin^2(4x)$ nel punto $x_0 = \pi/16$ vale A: $1 + \sin(3x)(x - \pi/12)$ B: $4x - \frac{\pi}{4} + \frac{1}{2}$ C: N.A. D: $3x - \frac{\pi}{4} + \frac{1}{2}$ E: $-\frac{-12x + \pi - 4}{4\sqrt{2}}$

3. Modulo e argomento del numero complesso $z = \left(\frac{i}{\sqrt{3}}\right)^8$ sono

A: $(3^{-4}, \pi/2)$ B: $(27, 2\pi)$ C: $(3^5, 0)$ D: N.A. E: $(9^{-2}, 0)$

4. L'integrale

$$3\int_{1}^{e} \log^2(x) \frac{1}{x} \, dx$$

vale

A: $\sqrt{e} + 1$ B: $\frac{1}{3}$ C: $\frac{1}{2}$ D: N.A. E: 1

5. Dato $x \ge 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\log(1+n^2x)}{n}$$

converge per

A: $x \le 1$ B: N.A. C: x > 0 D: x = 0 E: 1 < x

6. La funzione $f(x)=\left\{ egin{array}{ll} 0 & & \mbox{per } x\leq 0 \\ \\ x^a\sin\frac{1}{x} & & \mbox{per } x>0 \end{array} \right.$ è derivabile su tutto \mathbbm{R} per

A: a > 1 B: N.A. C: $a \ge 1$ D: a > 0 E: mai

7. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^{x^2}$ è

A: iniettiva B: non derivabile in x=0 C: monotona crescente D: N.A. E: surgettiva

8. Una soluzione dell'equazione differenziale $y'(x) = e^x + e^{-x}$ è

A: $2e^{2x}$ B: $\frac{1}{\cos(x)}$ C: $e^x + e^{-x}$ D: $\frac{1}{\sin(x)}$ E: N.A.

9. Data $f(x) = (e^x)^x$. Allora f'(1) è uguale a

A: N.A. B: e^2 C: log(2e) D: 2e E: $3e^3$

10. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : e^{-x^4} > \frac{1}{2}\}$$

valgono

A: $\{-\infty, N.E., \sqrt[4]{\log 2}, N.E.\}$ B: N.A. C: $\{-\infty, N.E., \frac{1}{2}, \frac{1}{2}\}$ D: $\{-\frac{1}{2}, N.E., \frac{1}{2}, N.E.\}$ E: $\{-\sqrt[4]{\log 2}, N.E., \sqrt[4]{\log 2}, N.E.\}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

9 giugno 2015

			(Co	gno	me)				_			(No	me)			-	ume	ı ma	trice	ola)

1	0000
2	00000
3	00000
4	
5	
6	
7	
8	
9	
10	0000

1. Una soluzione dell'equazione differenziale $y'(x) = e^x + e^{-x}$ è

A:
$$\frac{1}{\cos(x)}$$
 B: $2e^{2x}$ C: N.A. D: $\frac{1}{\sin(x)}$ E: $e^x + e^{-x}$

2. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : e^{-x^4} > \frac{1}{2}\}$$

valgono

A: N.A. B:
$$\{-\frac{1}{2}, N.E., \frac{1}{2}, N.E.\}$$
 C: $\{-\sqrt[4]{\log 2}, N.E., \sqrt[4]{\log 2}, N.E.\}$ D: $\{-\infty, N.E., \frac{1}{2}, \frac{1}{2}\}$ E: $\{-\infty, N.E., \sqrt[4]{\log 2}, N.E.\}$

3. Data $f(x) = (e^x)^x$. Allora f'(1) è uguale a

A:
$$3e^3$$
 B: e^2 C: N.A. D: $\log(2e)$ E: $2e$

4. La retta tangente al grafico di $y(x)=\sin^2(4x)$ nel punto $x_0=\pi/16$ vale

A:
$$3x - \frac{\pi}{4} + \frac{1}{2}$$
 B: $-\frac{-12x + \pi - 4}{4\sqrt{2}}$ C: $4x - \frac{\pi}{4} + \frac{1}{2}$ D: $1 + \sin(3x)(x - \pi/12)$ E: N.A

5. Dato $x \ge 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\log(1+n^2x)}{n}$$

converge per

A:
$$x \le 1$$
 B: $x = 0$ C: $x > 0$ D: N.A. E: $1 < x$

6. Modulo e argomento del numero complesso $z = \left(\frac{i}{\sqrt{3}}\right)^8$ sono

A:
$$(3^5, 0)$$
 B: N.A. C: $(9^{-2}, 0)$ D: $(3^{-4}, \pi/2)$ E: $(27, 2\pi)$

7. La funzione $f(x) = \begin{cases} 0 & \text{per } x \leq 0 \\ x^a \sin \frac{1}{x} & \text{per } x > 0 \end{cases}$ è derivabile su tutto $\mathbb R$ per

A: mai B: N.A. C: a > 1 D: $a \ge 1$ E: a > 0

8. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^{x^2}$ è

A: monotona crescente B: iniettiva C: N.A. D: surgettiva E: non derivabile in x=0

9. L'integrale

$$3\int_1^e \log^2(x) \frac{1}{x} dx$$

vale

A: 1 B:
$$\sqrt{e} + 1$$
 C: $\frac{1}{2}$ D: N.A. E: $\frac{1}{3}$

10. Il limite

$$\lim_{x \to 0} \frac{\sqrt[3]{1 + x^2} - 1}{\sin(x^2)}$$

vale

A:
$$\frac{1}{3}$$
 B: N.E. C: N.A. D: $+\infty$ E: 1

9 giugno 2015

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

9 giugno 2015

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

9 giugno 2015

(Cognome)										(Nome)									(Numero di matricola)											

9 giugno 2015

(Cognome)										(Nome)									(Numero di matricola)											

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

9 giugno 2015

PARTE B

1. Studiare il grafico della funzione

$$f(x) = \log(x - \log(x))$$

Soluzione: La funzione risulta definita se x > 0 (per definire il logaritmo "più interno") se inoltre $x - \log(x) > 0$. Osservando che il logaritmo è concavo e che il grafico è tangente a quello della retta y = x per x = 1, si ha quindi che la seconda diseguaglianza è sempre verificata $x - \log(x) > 0$. Il dominio pertanto è $D = (0, \infty)$. La funzione f risulta continua in tutto il dominio e usando i limiti notevoli si ha che

$$\lim_{x \to 0^+} f(x) = +\infty \qquad \text{e} \qquad \lim_{x \to +\infty} f(x) = +\infty.$$

Calcolando la derivata prima si ha

$$f'(x) = \frac{x-1}{x(x-\log(x))}$$

e dato che il denominatore risulta positivo per tutte le $x \in D$ si ha

$$f'(x) < 0 \iff 0 < x < 1$$

con un cambio di segno da negativo a positivo in x = 1, quindi tale punto è di minimo relativo.

La derivata seconda risulta

$$f''(x) = \frac{x - \log(x) - (x - 1)^2}{x^2(x - \log(x))^2}.$$

Il denominatore è sempre positivo, ma il segno del numeratore risulta complesso da studiare. Osserviamo però che

$$\lim_{x \to 0^+} x - \log(x) - (x - 1)^2 = +\infty \qquad \text{e} \qquad \lim_{x \to +\infty} x - \log(x) - (x - 1)^2 = -\infty,$$

quindi c'è almeno un cambio di concavità (in effetti ne ha uno solo).

Figura 1: Andamento del grafico di f

2. Trovare la soluzione del problema di Cauchy

$$\begin{cases} y''(t) + 2y'(t) + y(t) = \sin(t) e^{3t} \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

Soluzione. La soluzione dell'equazione caratteristica è $\lambda = -1$ con molteplicità 2, quindi l'equazione omogenea associata Y''(t) + 2Y'(t) + Y(t) = 0 ha come soluzione

$$Y(t) = c_1 e^{-t} + c_2 t e^{-t}$$
 $c_1, c_2 \in \mathbb{R}$.

Dato che non c'è risonanza la soluzione particolare va cercata della forma

$$y_f(t) = A\sin(t)e^{3t} + B\cos(t)e^{3t}.$$

Sostituendo si trova pertanto la forma dell'integrale generale

$$y(t) = Y(t) + y_f(t) = c_1 e^{-t} + c_2 t e^{-t} - \frac{1}{289} e^{3t} (8\cos(t) - 15\sin(t)).$$

Imponendo le condizioni iniziali si ha alla fine la soluzione

$$y(t) = -\frac{1}{289}e^{-t} \left(-306t + 8e^{4t}\cos(t) - 15e^{4t}\sin(t) - 297 \right).$$

3. Studiare la convergenza dell'integrale generalizzato

$$\int_{0}^{+\infty} \left(\sqrt{1 + x^2} - x \right)^{3/2} dx$$

Soluzione. La funzione integranda è per x > 0 continua e nonnegativa dato che $\sqrt{1 + x^2} > \sqrt{x^2} = x$, se x > 0. Inoltre la funzione integranda è limitata nell'intorno destro di 0, quindi risulta integrabile secondo Riemann su ogni intervallo della forma (0, b), con b > 0.

Per studiare l'integrabilità in senso generalizzato su (b,∞) possiamo quindi applicare il teorema del confronto asintotico. Moltiplicando e dividendo osserviamo che che

$$\sqrt{1+x^2} - x = \frac{(\sqrt{1+x^2} - x)(\sqrt{1+x^2} + x)}{\sqrt{1+x^2} + x} = \frac{1}{\sqrt{1+x^2} + x}.$$

Pertanto

$$\left(\sqrt{1+x^2} - x\right)^{3/2} = \mathcal{O}(x^{-3/2}) \quad \text{per } x \to +\infty,$$

e quindi risulta integrabile in senso generalizzato.

4. Sia k un numero reale maggiore di $\frac{1}{\mathrm{e}}.$ Dimostrare che

$$x^k \log(x) \ge -1 \qquad \forall x > 0$$

Soluzione. Per verificare la diseguaglianza studiamo la funzione $f_k(x) = x^k \log(x)$ al variare del parametro k. Dato che k > 0 si ha

$$\lim_{x \to 0^+} f_k(x) = 0 \qquad \text{e} \qquad \lim_{x \to +\infty} f_k(x) = +\infty.$$

 ${\rm Inoltre}$

$$f'_k(x) = x^{k-1}(k\log(x) + 1).$$

Dallo studio del segno della derivata si ha che f_k decresce per $0 < x < \mathrm{e}^{-1/k}$, mentre è crescente per $x > \mathrm{e}^{-1/k}$. Il minimo assoluto vale pertanto

$$f_k(e^{-1/k}) = -\frac{1}{e k},$$

$$e^{-\frac{1}{ek}} \ge -1 \text{ se } k > \frac{1}{e}.$$