9) K-Nearest Neighbors

Vitor Kamada

December 2018

Reference

Tables, Graphics, and Figures from

James et al. (2017): Chapters: 2.2.3, 3.5, 4.5, 4.6.5, 4.6.6

Hastie et al. (2017): Chapters: 2.3

Training Error and Test Error

$$Y = f(X) + \epsilon$$
 $\hat{Y} = \hat{f}(X)$
 $\{(x_1, y_1), ..., (x_n, y_n)\}$
 $rac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$
 $Ave(I(y_0 \neq \hat{y}_0))$

Bayes Classifier and Error Rate

$$Pr(Y = j | X = x_0)$$

$$1 - E[\max_{j} Pr(Y = j|X)] = 0.13$$

4 / 24

K-Nearest Neighbors (K=3)

$$Pr(Y=j|X=x_0) = \frac{1}{K} \sum_{i \in N_0} I(y_i=j)$$

KNN: K=10

 X_1

KNN: K=1 and K=100

KNN Training and Test Error Rate

KNN Regression: K=1 and K=9

$$\hat{f}(x_0) = \frac{1}{K} \sum_{x_i \in N_0} y_i$$

One-dimension KNN Regression: K=1 and K=9

Mean Squared Error (MSE)

$$E(Y - \hat{Y})^2 = E[f(X) + \epsilon - \hat{f}(X)]^2$$

$$= E[f(X) - \hat{f}(X)]^2 + Var(\epsilon)$$
 $MSE(x_0) = E_{\tau}[f(x_0) - \hat{y}_0]^2$
 $E_{\tau}[\hat{y}_0 - E_{\tau}(\hat{y}_0)]^2 + [E_{\tau}(\hat{y}_0) - f(x_0)]^2$
 $Var_{\tau}(\hat{y}_0) + [Bias(\hat{y}_0)]^2$

Bias-Variance Tradeoff

Model Complexity

MSE: OLS vs KNN

Slightly Non-Linear Relationship

Strongly Non-Linear Relationship

Additional Noise Variables

Test Error Rates: Linear Scenarios

Test Error Rates: Non-Linear Scenarios

Caravan Insurance Data

library(ISLR); library(class)
dim(Caravan)

5822 86

summary(Purchase)

No	Yes
5474	348

$$\frac{348}{5822} \cong 6\%$$

Standardize the Data

standardized.X=scale(Caravan[,-86])

var(Caravan[,1]) **165** var(Caravan[,2]) **0.165**

var(standardized.X[,1]) 1

var(standardized.X[,2]) 1

```
set.seed(1); test=1:1000
train.X = standardized.X[-test,]
test.X = standardized.X[test,]
train.Y=Purchase[-test]
test.Y=Purchase[test]
knn.pred=knn(train.X,test.X,train.Y,k=1)
mean(test.Y!=knn.pred)
                                0.118
mean(test.Y!="No")
                           0.059
```

K = 3 and K=5

knn.pred=knn(train.X,test.X,train.Y,k=3)table(knn.pred,test.Y)

knn.pred/test.Y	No	Yes
No	920	54
Yes	21	5

$$\frac{5}{26} = 19.2\%$$

knn.pred=knn(train.X,test.X,train.Y,k=5)table(knn.pred,test.Y)

knn.pred/test.Y	No	Yes
No	930	55
Yes	11	4

$$\frac{4}{15} = 26.7\%$$

Logistic Regression

glm.pred/test.Y	No	Yes
No	934	59
Yes	7	0

Cut-off of 0.25

glm.pred=rep("No",1000) glm.pred[glm.probs>.25]="Yes" table(glm.pred,test.Y)

glm.pred/test.Y	No	Yes
No	919	48
Yes	22	11

$$\frac{11}{33} = 33\%$$