

Prof. Matthias Beck Hauke Sprink Institut für Mathematik AG Diskrete Geometrie Arnimallee 2

Quiz-Aufgaben

- Es seien $k \leq n$ natürliche Zahlen. Definieren sie n! und $\binom{n}{k}$.
- Definieren Sie den Multinomialkoeffizienten $\binom{n}{k_1,k_2,\ldots,k_m}$. (Vergessen Sie nicht, die genauen Bedingungen für die Zahlen n,k_1,k_2,\ldots,k_m mit anzugeben.)
- \bullet Was besagt das Inklusions–Exklusions–Prinzip (auch: Einschluß–Ausschluß–Prinzip) für drei Mengen A,B,C?
- Gegeben ein diskreter Wahrscheinlichkeitsraum (Ω, \mathbb{P}) , definieren sie die bedingte Wahrscheinlichkeit $\mathbb{P}(E|F)$ für $E, F \subseteq \Omega$.
- Gegeben sei ein diskreter Wahrscheinlichkeitsraum (Ω, \mathbb{P}) . Definieren sie, was es heißt, daß zwei Ereignisse $A, B \subseteq \Omega$ unabhängig sind.
- Gegeben sei ein diskreter Wahrscheinlichkeitsraum (Ω, \mathbb{P}) . Definieren sie, was es heißt, daß zwei Ereignisse $A, B \subseteq \Omega$ bedingt unabhängig gegeben $C \subseteq \Omega$ sind.
- Gegeben sei ein diskreter Wahrscheinlichkeitsraum (Ω, \mathbb{P}) . Definieren sie eine (diskrete) Zufallsvariable.
- Gegeben sei ein diskreter Wahrscheinlichkeitsraum (Ω, \mathbb{P}) und eine (diskrete) Zufallsvariable $X : \Omega \to C$. Definieren Sie die Verteilung \mathbb{P}_X .
- \bullet Definieren Sie die Bimomialverteilung mit Parametern n und p.
- Definieren Sie die Poissonverteilung mit Parameter λ .
- Definieren Sie die geometrische Verteilung mit Parameter p.
- \bullet Definieren Sie die hypergeometrische Verteilung mit Parametern N, m und n.
- Gegeben sei ein diskreter Wahrscheinlichkeitsraum (Ω, \mathbb{P}) und eine (diskrete) Zufallsvariable $X : \Omega \to C$. Definieren Sie den Erwartungswert von X.
- Gegeben sei ein diskreter Wahrscheinlichkeitsraum (Ω, \mathbb{P}) und eine (diskrete) Zufallsvariable $X : \Omega \to \mathbb{R}$. Definieren Sie das k-te Moment von X.

- Gegeben sei ein diskreter Wahrscheinlichkeitsraum (Ω, \mathbb{P}) und eine (diskrete) Zufallsvariable $X : \Omega \to \mathbb{R}$. Definieren Sie die Varianz von X.
- Gegeben sei ein diskreter Wahrscheinlichkeitsraum (Ω, \mathbb{P}) und eine (diskrete) Zufallsvariable $X : \Omega \to \mathbb{R}$. Definieren Sie die Streuung von X.
- Gegeben sei ein diskreter Wahrscheinlichkeitsraum (Ω, \mathbb{P}) und (diskrete) Zufallsvariablen $X, Y : \Omega \to \mathbb{R}$. Definieren Sie, was es bedeutet, daß X und Y unabhängig sind.
- Definieren Sie eine stetige Zufallsvariable $X:\Omega\to\mathbb{R}$.
- Gegeben sei eine stetige Zufallsvariable X mit Dichtefunktion f(x). Definieren Sie die kumulierte Verteilungsfunktion $\mathbb{P}(X \leq a)$.
- Gegeben sei eine stetige Zufallsvariable X mit Dichtefunktion f(x). Definieren Sie den Erwartungswert von X.
- Gegeben sei eine stetige Zufallsvariable X mit Dichtefunktion f(x). Definieren Sie die Varianz von X.
- Gegeben sei eine stetige Zufallsvariable X mit Dichtefunktion f(x). Definieren Sie die Streuung von X.
- Definieren Sie eine normalverteilte Zufallsvariable mit Parametern μ und σ .
- Definieren Sie eine expotentialverteilte Zufallsvariable mit Parameter λ .
- Was besagt das Gesetz der grossen Zahlen?
- Was besagt der zentrale Grenzwertsatz?
- Definieren Sie das Stichprobenmittel der Stichprobe x_1, x_2, \ldots, x_n .
- Definieren Sie die Stichprobenvarianz der Stichprobe x_1, x_2, \ldots, x_n .