

Click Save and Submit to save and submit. Click Save All Answers to save all answers.

A. 9,N,1		
☑ B. _{8,N,1}		
C. 8,E,1		
D. 8,0,1		
JESTION 4	10 points (Extra Credit)	rved
/hen using interrupts, we must use Interrupt Service Routir		ow v
Terminal		T
1. Need an interrupt source		
2. Enable specific interrupt		
3. Need an ISR (interrupt service routine)		
Path: div.page » div.section » div.layoutArea » div.column » p » s	pan	\
JESTION 5	5 points Sa	rved

TABLE 7-7: INTERRUPT REGISTER MAP FOR PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES

		<u> </u>	ICOZIVI/	(733131	IZL DEV	ICES													
ess										В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SS0	0000
		15:0	_	_	_	MVEC	_		TPC<2:0>		_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT(8)	31:16	_	_	_	_	_	_	-	_	_	_	_	_	-	-	_	_	0000
		15:0	_	_	_	_	_		SRIPL<2:0>	•	_	_			VEC	<5:0>			0000
1020	IPTMR	31:16 15:0				IPTMR≪31:0>									0000				
1030	IFS0	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	SPI1TXIF	SPI1RXIF	SPI1EIF	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INTOIF	CS1IF	CSOIF	CTIF	0000
		31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	CAN2IF(2)	CAN1IF	USBIF	FCEIF	DMA7IF(2)	DMA6IF(2)	DMA5IF(2)	DMA4IF(2)	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
1040	IFS1	15:0	RTCCIF	FSCMIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF SPI4TXIF	U2RXIF SPI4RXIF	U2EIF SPI4EIF	U3TXIF SPI2TXIF	U3RXIF SPI2RXIF	SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
		24.42						I2C5MIF	I2C5SIF	I2C5BIF	I2C4MIF	I2C4SIF	I2C4BIF						
1050	IFS2	31:16 15:0	_	_	_		U5TXIF	U5RXIF	-	- LIOTAUE	- LIODVIE	U6EIF	-	-	-	-	-	-	0000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE I2C3MIE	U1RXIE SPI3RXIE I2C3SIE	U1EIE SPI3EIE I2C3BIE	U5EIF SPI1TXIE	U6TXIF SPI1RXIE	U6RXIF SPI1EIE	OC5IE	IC5IE	U4RXIF T5IE	U4EIF INT4IE	OC4IE	IC5EIF IC4IE	T4IE	0000
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INTOIE	CS1IE	CSOIE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	CAN2IE ⁽²⁾	CAN1IE	USBIE	FCEIE	DMA7IE(2)	DMA6IE(2)	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	15:0	RTCCIE	FSCMIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE SPI4TXIE I2C5MIE	U2RXIE SPI4RXIE I2C5SIE	U2EIE SPI4EIE I2C5BIE	U3TXIE SPI2TXIE I2C4MIE	U3RXIE SPI2RXIE I2C4SIE	U3EIE SPI2EIE I2C4BIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
1080	IEC2	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1000	IEG2	15:0	_	_	_	_	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000
1090	IPC0	31:16	_	_	_		INT0IP<2:0>			S<1:0>	_	_	_		CS1IP<2:0>		CS1IS		0000
.560	00	15:0	_	_	_		CS0IP<2:0>			S<1:0>	_	_	_		CTIP<2:0>		CTIS		0000
10A0	IPC1	31:16	_	_	_		INT1IP<2:0>	•		S<1:0>	_	_	_		OC1IP<2:0>	•	OC119		0000
		15:0	_	_	_		IC1IP<2:0>		_	<1:0>	_	_	_		T1IP<2:0>		TIIS		0000
10B0	IPC2	31:16		_	_		INT2IP<2:0>	•		S<1:0>	_	_	_		OC2IP<2:0>	•	OC219		0000
		15:0 31:16		_	_		IC2IP<2:0> INT3IP<2:0>			<1:0> S<1:0>					T2IP<2:0> OC3IP<2:0>		T2IS OC3IS		0000
10C0	IPC3	15:0	_	_	_		IC3IP<2:0>			S<1:U>					T3IP<2:0>			<1:0>	0000
		10.0							wn in hexade						1011 12.05		1313	-1.0-	0000

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.
2: This bit is unimplemented on PIC32MX764F128L device.
3: This register does not have associated CLR, SET, and INV registers.

Terminal	
bit 4 of IEC0 SFR	
Address: 0xBF881060	
Hex Value: 0x10	
Path: p » span	Wor
UESTION 6	5 points Saved
52011011 0	3 points Saved
With a word size of 10 bits, what is the minimum signed	integer that we can represent?

Path: p » span											
QUESTION	7							5 poin	ıts	Save	ed
With a word	size of 10	hite using a	two's co	mnlem	ant ra	nreser	ntatio	n what	ic th	o hina	r\/
represent the	e value -10)	two s co	mpieme	ent re	preser	itatioi	n, wnat	15 (11)	e Dilla	ıу
	Terminal	\$ (12pt)	\$								T
1111110110)										
1111110110)										
1111110110)										
1111110110											
								10 poin	nts [Save	∌ď
Path: p » span			1. Period	Register	· Value			10 poin	nts [Save	∌ď
Path: p » span			1. Period 2. Output				Regis		ıts [Save	∌ď
Path: p » span				Compa	re x Co	ompare	Regis		nts [Save	∍d
Path: p » span QUESTION 8 1. • A 4. • B			2. Output	Compa	re x Co	ompare	Regis		nts [Save	∌ď
Path: p » span QUESTION 8 1. • A 4. • B 2. • C			2. Output 3. Output	Compa	re x Co	ompare	Regis		nts [Save	əd

Given the above figure, identify each of the items indicated by the letters:

QUESTION 9

10 points

Saved

Given the following list of attributes, fill in which type of architecture class to which each attribute corresponds. For example, complex instructions would correspond to a CISC architecture.

- D. Fixed length instructions
- A. Von Neumann
- C. Separate Instruction and Data Storage and Transmission
- B. CISC
- C. Harvard
- D. RISC
- B. S Many addressing modes
- D. Many general purpose registers
- B. One to many clock cycles per instruction
- D. Coad/Store Architecture
- A. Co-mingled data and instructions

QUESTION 10

5 points

Saved

Given the pulse width modulated (PWM) signal below, calculate the duty cycle of the signal.

QUESTION 11

10 points Saved

1.

		Address
	0XCD99	0xB000
	0xA100	0xB004
	0x4888	0xB008
	0x6541	0xB00C
\$t0⊕⊕⊕ ⊕⊕⊕	0x722B	0xB010
	0x4220	0xB014
	0xCA0A	0xB018
	0x1BB7	0xB01C
	0x2000	0xB020
	0x78B0	0xB024

Our MIPS code has the following instruction:

lw \$t1, -8(\$t0)

The \$t0 register contains the value 0xB010

- A. What value will be written into \$11?
- B. Provide the instruction that will write the contents of \$t1 to the memory address 0xB020

bf 10 bits, what is the maximum signed integer that we can represent?	B. sw \$t1, 20(\$t0) Path: p » span » span Wo JESTION 12 Saved With a word size of 10 bits, what is the maximum signed integer that we can represent? Terminal \$ 3 (12pt) \$	Terminal \$	3 (12pt)						
bf 10 bits, what is the maximum signed integer that we can represent?	Path: p » span » span DESTION 12 Saved With a word size of 10 bits, what is the maximum signed integer that we can represent? Terminal \$ 3 (12pt) \$	A. 0x4888							
of 10 bits, what is the maximum signed integer that we can represent?	JESTION 12 Saved With a word size of 10 bits, what is the maximum signed integer that we can represent? Terminal 3 (12pt) 3 (12pt)	B. SW \$t1, 20(\$t0)							
of 10 bits, what is the maximum signed integer that we can represent?	JESTION 12 Saved With a word size of 10 bits, what is the maximum signed integer that we can represent? Terminal 3 (12pt) 3 (12pt)								
of 10 bits, what is the maximum signed integer that we can represent?	JESTION 12 Saved With a word size of 10 bits, what is the maximum signed integer that we can represent? Terminal \$\(\frac{3}{3}\) (12pt) \$\(\frac{1}{3}\)								
of 10 bits, what is the maximum signed integer that we can represent?	JESTION 12 Saved With a word size of 10 bits, what is the maximum signed integer that we can represent? Terminal 3 (12pt) 3 (12pt)	D. 11							
of 10 bits, what is the maximum signed integer that we can represent?	Vith a word size of 10 bits, what is the maximum signed integer that we can represent? Terminal 3 (12pt) 3 (12pt)	Path: p » span » span							VVC
of 10 bits, what is the maximum signed integer that we can represent?	Vith a word size of 10 bits, what is the maximum signed integer that we can represent? Terminal \$\(\frac{3}{3}\) (12pt) \$\(\frac{1}{3}\)	HESTION 12				5	nointo		
	Terminal \$\displaysquare 3 (12pt) \$\displaysquare 3		de est de este este este est						
ingl A 2 (12pt) A				almum sigr	lea intege	r that we	can rep	oresent?	
Пат v (3 (12рt) v			(12pt) ₹						
inal \$ 3 (12pt) \$				rimum sigr	ed intege	r that we	can rep	oresent'	?
		511							
W	Path: p » span								W
W	Path: p » span	511							W
W 5 points Saved		511				5	points	Saved	

Servo Motors - range of motion is limited

Stepper Motors – full 360° range of motion – moves in step increments

Unlike servo motors, most steppers do not have integral feedback for position.

Path: p » span Words:30

QUESTION 14

10 points Saved

TABLE 12-1: PORTA REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES

ess										Bi	ts								2
Virtual Addres (BF88_#) Register Name(f)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	2 5/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6000	TDIOA	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6000	TRISA	15:0	TRISA15	TRISA14	_	_	_	TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
6010	PORTA	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6010	PURIA	15:0	RA15	RA14	_	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
6020	LATA	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0020	LAIA	15:0	LATA15	LATA14	_	_	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6030	ODCA	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6030	ODCA	15:0	ODCA15	ODCA14	-	-	_	ODCA10	ODCA9	_	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

The LAT register is the register used to write data to the port I/O pins. Assume we have configured all of the Port A pins as outputs, and each is pin is currently set to a desired value. Now, we need to clear bit 6 while not affecting any of the other bits. What is the hexadecimal value and the address that we must write it to, in order to clear the specific bit while not affecting any of the other bits?

Terminal	†				
Address: 0xBF886024					
Hex Value: 0x40					
Path: p » span				W	ords:5

The micro-controller you are using has an **8-bit** Analog to Digital Converter. In your use, +V_{ref} is set at 3.3 Volts and -V_{ref} is set at ground (0. Volts). What is the resolution of the digital estimate of the unknown analog input signal, or put another way, what is the weight of the least significant bit of the digital result 12.9mV 3.3w 3.3mV 3.22mV 412.5mV

QUESTION 16

5 points Saved

The conceptual block diagram for the PIC32 successive approximation Analog to Digital Converter (ADC) is shown below. We use a Sample and Hold Amplifier (SHA) when sampling analog signals. Explain what an SHA does and why it is needed.

Because the input voltage of our analog signal will vary during the time we're doing our conversion process, we need to keep a constant sample steady to which we can to compare our known reference. This is the role of the Sample and Hold Amplifier.	
Path: p » span Words:45	