Is Yawning Contagious? (statistical inference from first principles) Big idea: is there an association between two variables? An experiment conducted by MythBusters tested if a person can be subconsciously influenced into yawning if another person near them yawns.

In this study 50 people were randomly assigned to two groups: 34 to a group where a person near them yawned (seeded) and 16 to a control group where there wasn't a yawn seed. The results are as follows:

```
seeded <- c(rep(0, 12), rep(1, 24), rep(0, 4), rep(1, 10))
yawned <- c(rep(0, 36), rep(1, 14))
table(seeded, yawned)

## yawned
## seeded 0 1
## 0 12 4
## 1 24 10</pre>
```

- 1. Here, what do you think is the explanatory variable? Response variable?
- 2. What is the probability of yawning, for the seeded group?
- 3. What is the probability of yawning, for the unseeded group?
- 4. If there were *no association* between yawning and the proximity of another yawner, what would you expect the difference to be between these two probabilities?
- 5. Let X be the number of people in the unseeded group that yawned. What are the possible values that X can take?
- 6. In terms of X, what would be a more extreme result? X =

Group activity Sampling from this table, assuming that there is no association between exposure to yawning and yawning yourself.

- 1. From your two decks, make one single deck that has 50 cards: 14 yawners and 36 non-yawners.
- 2. Shuffle deck well.
- 3. Deal the deck out into two piles: one of 16 (unseeded) and one of 34 (seeded).
- 4. Count up the number of yawners in the pile of 16 and record in the table below.
- 5. Repeat steps 2-4, five times, taking turns.
- 6. When your group is done, add your results to the board.

x_1	x_2	x_3	x_4	x_5	x_6

_	-1	0		4	-	0	l 	0		10	4.4	10	10	1 1	4 -	10
()		2	- 3	14	5	h	1 7	1 X	9	10		12	1.3	14	1.5	1.16
		_			9								10		10	1 -0

- 1. How many red cards would we expect (on average?)
- 2. What did we observe?
- 3. How would we summarize these results? What is the big idea?