Laboratorium Podstaw Elektroniki						
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.			
Informatyka	_	I	i i	73		
Temat Laboratorium						
Wzmacniacze operacyjne						
Skład grupy ćwiczeniowej oraz numery indeksów						
Piotr Więtczak(132339), Robert Ciemny(136693), Kamil Basiukajc(136681)						
Uwagi Ocena						

1 PLAYGROUND

1.
$$U_{out} = k_u \cdot U_{in} = k_u (U_A - U_B)$$

2. $\frac{U_{out}(s)}{U_{in}(s)} = 1 + \frac{Z_f}{Z_{in}}$
3. $\frac{U_{out}(s)}{U_{in}(s)} = -\frac{Z_f}{Z_{in}}$
4. $Z_f = \frac{1}{sC}$
5. $\frac{U_{out}(s)}{U_{in}(s)} = -\frac{\frac{1}{sC}}{R} = -\frac{1}{RC} \cdot \frac{1}{s}$
6. $u_{out}(t) = -\frac{1}{RC} \int u_{in}(t) dt = -\frac{1}{T_i} \int u_{in}(t) dt$
7. $Z_{in} = \frac{1}{sC}$
8. $\frac{U_{out}(s)}{U_{in}(s)} = -\frac{R}{\frac{1}{sC}} = -RC \cdot s$
9. $u_{out}(t) = -RC \frac{du_{in}(t)}{dt} = -T_d \frac{du_{in}(t)}{dt}$

2 Wstęp do laboratoriów

Po zapoznaniu się z treścią zaprezentowanego pdfa, złożono układ do badań zgodnie z instrukcjami i po sprawdzeniu połączonego układu przez prowadzącego przystąpiono do dalszych zadań. Prowadzący wybrał dla naszej grupy laboratoryjnej częstotliwość 1kHz.

3 Konfiguracja nieodwracająca

3.1 Cel zadania

Badanie wzmacniacza operacyjnego w konfiguracji nieodwracającej.

3.2 Przebieg zadania

Przygotowano układ zgodnie z instrukcjami i odczytano wartości elementów rezystancyjnych $R_1=1k\Omega$ (wartość z pomiarów 987.573 Ω), $R_2=1k\Omega$ (wartość z pomiarów 992.386 Ω) odpowiedzialnych za wyznaczenie stopnia wzmocnienia w tej konfiguracji.

Za pomocą oscyloskopu odczytano amplitudy przebiegów wejściowego 500mV i wyjściowego 1V, a następnie zapisano ich oscylogram

Rysunek 1: Zapisany oscylogram wybranej pary przebiegów.

3.3 Wnioski

4 Konfiguracja odwracająca

4.1 Cel zadania

Badanie wzmacniacza operacyjnego w konfiguracji odwracającej

4.2 Przebieg zadania

Przygotowano układ zgodnie z instrukcjami i odczytano wartości elementów rezystancyjnych i pojemnościowych możliwych do załączenia w roli impedancji Z_f oraz Z_{in} w tej konfiguracji.

nazwa	$Z_{in}/$	wartości		
elementu	$egin{array}{c} Z_{in}/ \ Z_f \end{array}$	odczytów	pomiarów	
R3		_	_	
C1	Z_{in}	_	_	
R4		_	_	
R5		_	_	
C2		_	_	
R6	Z_f	_	_	
<i>R</i> 7		_	_	
R8		_	_	

Tablica 1: Zestawienie dokonanych pomiarów i odczytów.

Z_{in}	nr przełącznika	Z_f	nr przełącznika	k_u teoretyczne	u_{we}	u_{wy}	$k_u [V/V]$	$k_u [dB]$
$1k\Omega$	1	$2k\Omega$	1	_	_	_	_	_
$1k\Omega$	1	$1k\Omega$	2	_	_	_	_	_
$1k\Omega$	1	$5k\Omega$	3	_	_	_	_	_
$2k\Omega$	2	$1k\Omega$	2	_	-	-	_	_

Tablica 2: Zestawienie danych pomiarowych i obliczeniowych stopnia wzmacniającego. Zapisano oscylogram wybranej pary przebiegów, dla Z_{in} numer przełącznika: 1 i Z_f numer przełącznika: 2.

Rysunek 2: Zapisany oscylogram dla wybranej pary przebiegów.

4.3 Wnioski

5 Blok integratora

5.1 Cel zadania

Badanie układu całkującego.

5.2 Przebieg zadania

Przygotowano układ zgodnie z instrukcjami i za pomocą oscyloskopu odczytano współczynniki nachylenia przebiegu trójkątnego.

R	nr przełącznika	С	nr przełącznika	$\frac{1}{T_i}$ teoretyczne	$\frac{1}{T_i}$ obliczone
$1k\Omega$	1	10 <i>nF</i>	4	_	_
$2k\Omega$	2	10 <i>nF</i>	4	_	_

Tablica 3: Zestawienie danych pomiarowych i obliczeniowych stopnia wzmacniającego.

RIGOL DS1052E
DIGITAL OSCILLOSCOPE

2 Channel
50MHz IGSa/s
DIGITAL OSCILLOSCOPE

RIGOL T'D

(01.02752kHz
CurR:-1.24U
(0urB:-2.68U
(1AV1: 1.44U

CH1::: 500mU Mins 5.00U Time 500.0us @>0.0000s

Zapisano oscylogram wybranej pary przebiegów: wejściowego i wyjściowego, dla $R=2k\Omega$, C=10nF.

Rysunek 3: Przebieg wejściowy (żółty) i jego całka (niebieski) dla wzmacniacza napięciowego w roli integratora.

5.3 Wnioski

6 Blok różniczkujący

6.1 Cel zadania

Badanie układu różniczkującego.

6.2 Przebieg zadania

Przygotowano układ zgodnie z instrukcjami i z jego pomocą uzyskano na wyjściu niestabilny przebieg prostokątny ustawiając przełączniki na 3 dla INPUT i 1,4 dla LOOPBACK.

Rysunek 4: Uzyskany niestabiny przebieg prostokątny (niebieski)

Następnie zmieniono ustawienia przełączników na 3 dla INPUT i 1,4 dla LOOPBACK, dzięki czemu na wyjściu otrzymano stabilny przebieg prostokątny.

Rysunek 5: Przebieg wejściowy (żółty) i jego pochodna (niebieski)

6.3 Wnioski

Literatura

- [1] Stanisław Bolkowski, Elektrotechnika, WSiP, 2005r.
- [2] Krakowski Maciej, Elektrotechnika teoretyczna, Wydawnictwo Naukowe PWN, 1995r.
- [3] R. Kurdziel, *Podstawy elektrotechniki*, Wydawnictwo Naukowe WSiP, 1999r.

Spis treści

1	PLA	AYGROUND	1
2	Wst	ęp do laboratoriów	1
3	Kon	figuracja nieodwracająca	2
	3.1	Cel zadania	2
	3.2	Przebieg zadania	2
	3.3	Wnioski	2
4	Kon	figuracja odwracająca	2
	4.1	Cel zadania	2
	4.2	Przebieg zadania	3
	4.3	Wnioski	
5	Blok	k integratora	4
	5.1	Cel zadania	4
	5.2	Przebieg zadania	
	5.3	Wnioski	
6	Blok	k różniczkujący	5
	6.1	Cel zadania	5
	6.2	Przebieg zadania	
	6.3	Wnjoski	