Knowledge Graph Embedding for Chemical Effect Prediction

Faglunsj 21.01.20

Erik B. Myklebust

Risk assessment is an estimation of cumulative risk on individuals, populations, communities, and ecosystems from chemical pollutants.

Effect concentrations are found using organism experiments.

$$RQ = \frac{environmental\ concentration}{effect\ concentration}$$

RQs coverage is limited by effect concentration experiments.

$$\text{risk}_{\text{group}} \approx \sum^{\text{chemicals}} \textit{RQ}$$

Risk for a group of species.

The group can contain all species in the ecosystem.

The risk is used to find further susceptible species.

Risk driver describes how the chemical affects an organism.

New effect hypotheses are then tested in the laboratory.

What is a graph?

What is a graph?

What is a knowledge graph?

A knowledge graph is a set of triples (facts) on the form

$$(e_s, r, e_o) \in \mathcal{E} \times \mathcal{R} \times \mathcal{E}$$

 \mathcal{E} : entities \mathcal{R} : relations

Knowledge graph embedding

$$\begin{split} S &= S(\mathbf{v_s}, \mathbf{v_r}, \mathbf{v_o}), \quad P((\mathbf{e_s}, r, \mathbf{e_o}) | KG) = \sigma(S) \\ \\ S &= \|\mathbf{v_s} + \mathbf{v_r} - \mathbf{v_o}\|, \quad \text{(TransE)} \\ \\ S &= \langle \mathbf{v_s}, \mathbf{v_r}, \mathbf{v_o} \rangle, \quad \text{(DistMult)} \\ \\ S &= \mathbf{v_r}^T(\mathbf{v_s} \star \mathbf{v_o}), \quad \text{(HolE)} \end{split}$$

Machine Learning

The Toxicological and Risk Assessment (TERA) knowledge graph integrates data sources varying in format.

ECOTOX is the largest (public) source of effect data.

NCBI's tabular taxonomy is converted to a hierarchy.

Importing the ChEMBL and PubChem knowledge graph.

Aligning proprietary chemical identifiers in ECOTOX to open identifiers in PubChem.

Aligning taxonomies using ontology alignment tool LogMap.

C₂

Chemicals

Species

Chemical classification

Taxonomy

Positive samples

Negative samples

Taxonomic Distance Model - Baseline (BL)

Does C_3 affect S_3 ?

Taxonomic Distance Model - Baseline (BL)

$$\textit{dist}(S_3,S_2)=4$$

Taxonomic Distance Model - Baseline (BL)

Yes, C₃ affects S₃

KG embedding + MLP

KG embedding + MLP

Three embedding models:

- 1. TransE
- 2. DistMult
- 3. HolE

KG embedding + MLP

Three embedding models:

- 1. TransE
- 2. DistMult
- 3. HolE

Optimization:

Simultaneous optimization of prediction and embedding models.

 ${\ensuremath{\checkmark}}$ Improved data access using TERA KG.

- ✓ Improved data access using TERA KG.
- ✓ Introducing background knowledge in form of a KG improved the prediction results.

- ✓ Improved data access using TERA KG.
- ✓ Introducing background knowledge in form of a KG improved the prediction results.

- ✓ Improved data access using TERA KG.
- ✓ Introducing background knowledge in form of a KG improved the prediction results.

Explore the use of more sophisticated models

- ✓ Improved data access using TERA KG.
- ✓ Introducing background knowledge in form of a KG improved the prediction results.

- Explore the use of more sophisticated models
- ☐ Move from binary labels to chemical concentrations.

Erik B. Myklebust, Ernesto Jimenez-Ruiz, Jiaoyan Chen, Raoul Wolf, Knut Erik Tollefsen. *Knowledge Graph Embedding for Ecotoxicological Effect Prediction.*

Erik B. Myklebust, Ernesto Jimenez-Ruiz, Jiaoyan Chen, Raoul Wolf, Knut Erik Tollefsen. *TERA: the Toxicological Effect and Risk Assessment Knowledge Graph.*

 \bowtie

ebm@niva.no