

INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

End-Spring Semester 2016-17

Date of Examination: 25-04-2017

Session (FN/AN): FN

Duration 3 hrs

Subject No.: CY11001

Subject Name : CHEMISTRY

Department/Center/School: Chemistry

Specific charts, graph paper, log book etc., required

-NA-

Special Instructions (if any): Answers of Part A and Part-B should be written SEPARATELY

WITHOUT MIXING and mention the question numbers while answering.

Part A: Inorganic Chemistry: Answer all the questions

[Given data: Atomic No.: N:7, O:8, F:9, Fe:26, Co: 27, Cu:29, Ru:44, Rh:45, Sn: 50, Ir: 77, Pb:82. Velocity of light: 3.0×10^8 m/sec; Mass of electron: 9.1095×10^{-28} g; Gas constant: 8.314 J/mol/K; Faraday's constant: 9.648×10^3 emu; Joule's constant: 4.18 J/cal; Avogadro constant; 6.022×10²³ mole⁻¹; Planck's constant: 6.626 × 10⁻³⁴ J s; 1 eV = 1.602 $\times 10^{-19} \text{ J} = 96.485 \text{ kJ/mol}$

1. (a) Write the Hamiltonian for H₂⁺ species?

[2]

(b) Draw a figure to show the overall potential energy variation of a simple molecule with bond length.

[2]

The work function of a metallic cesium is 1.14 eV. If we shine it with a light of (c) [2] 700 nm wavelength, whether ejection of electrons will occur?

Draw molecurlar obrital diagrams for O_2^{2-} and N_2^{2-} ions and compare their bond 2. [3+3]order and bond stability with respect to their parent molecules.

[2]

Identify bridging and chelating ligand from the following list: 3. Ehylenediaminetetraacetic acid, NH₃, OH⁻, Cl⁻, N₂H₄, ethylenediamine, PH₃.

(b) Following are the data given for two complexes (complex-I and complex-II):

[3+3]

$\Delta H^{\circ} (kJ \text{ mol}^{-1})$	log β
-53.14	7.44
-56.48	10.62
	-53.14

Calculate the thermodynamic parameters responsible for their formation at temperature 298 K and discuss your observations using ΔS° values.

- With the help of diagram, show both types of J-T distortion for d² octahedral 4. (a) [5] complex and choose which type of distortion is preferred.
 - Calculate the crystal field stabilization energy (CFSE) of [Co(H₂O)₆]²⁺? [1+2]Give the reason for colour change of pink solution of $[Co(H_2O)_6]^{+2}$ in water to deep blue in conc. HCl.

1

5. (a) Write down the products of the following reactions (A and B) and calculate the EAN for the complexes (I and II).

$$Et_3P$$
 CO + CH_3Br A

(I)

- (b) Draw the structure of pre-catalyst used in Monsanto acetic acid process. [2]
- 6. (a) Answer the following questions based on the Latimer diagram for chlorine in basic solution as given below:

 +1]

$$CIO_{4} \xrightarrow{0.35} CIO_{3} \xrightarrow{0.30} CIO_{2} \xrightarrow{0.70} CIO_{2} \xrightarrow{0.40} CI_{2} \xrightarrow{1.35} CI$$

- (a) Find out the value of A (show all half reactions).
- (b) Predict whether Cl_2 will undergo disproportionation reaction? Show all the half reactions and full reaction along with E^0 of the cell.
- (c) Predict the strongest oxidizing agent from above.
- (b) From the following standard reduction potential data predict whether Sn²⁺ will be oxidised by Fe³⁺ (with complete cell reaction)?

$$E_{Fe}^{0.3+}/E_{Fe}^{2+} = 0.77 \text{ V} \& E_{Sn}^{0.4+}/E_{N}^{2+} = 0.15 \text{ V}$$

7. (a) (i) Draw the iron porphyrin structure.

[3+3]

- (ii) The binding of O_2 with haemoglobin is reversible, whereas the binding of CO is irreversible reaction. Explain.
- (b) Why the electrical conductivity of all metals decrease with temperature? [2]

.....End of Part A.....

Part B: Organic Chemistry

Answer all the questions

1. (a)	How many stereogenic center (s) is (are) present in each of the following molecules? Assign their absolute configurations showing the priority sequence at each centre.	[8]
	Br $CD_2CH_2CH_3$ $C=C$ $C=C$ CO_2H CO_2H CO_2H	
(b)	Which of the following molecules are chiral? If not then what type(s) of symmetry is (are present)?	[4]
	H_3C H_3C NO_2	
(c)	X contains a stereogenic centre and exist in R or S forms) Write the Fischer Projection Formulae of all possible stereoisomers of CA ₄ (A is a stereogenic centre and can exist in R or S) Or	[3]
	In the case of 2,3 dibromobutane, meso is more stable than active form. Explain this with proper justifications via Newman projections of the different conformers [assuming $\Delta S = 0$, gauche interaction value: Me/Me = 3.3 kJ/mol; Me/Br = 0.8 kJ/mol; Br/Br = 3.0 kJ/mol]	
(d)	Indicate the topic relationship between the circled ligands/atoms.	[2]
	HOW HO OH	
2. (a)	Draw trans-1,3-dimethylcyclohexane in its two chair conformations, and determine whether the two chairs are identical or enantiomers. Then do the same for the cis isomer.	[3]
(b)	Calculate the ratio of axial to equatorial methylcyclohexane that is present at room temperature (300 K). Assume $\Delta s = 0$; (R = 2 cal mol ⁻¹ K ⁻¹ ; antilog(1.2) = 15.85; antilog(1.3) = 19.95, antilog(1.4) = 25.1; Boltzmann's constant = 1.38 x 10 ⁻²³ JK ⁻¹ ; Avogadro's number = 6.023×10^{23} mol ⁻¹ ; 1 cal ≈ 4.2 J	
(c)	For each of the compounds A through D indicate the number of gauche butane interactions present in the most stable above services.	
	interactions present in the most stable chair conformation.	
	A B C D	

(d)	Draw the most stable conformations of the following compounds. Predict with justification the rates of saponifications of the following acetates.	[4]
	(i) Me COOCH ₃ (ii) Me Me Me	
(e)	Which one A or B is the correct product in the following reaction? Justify your answer.	[2]
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3. (a)	Draw the correct Fisher Projection of the product in the following reaction: Explain the steps to arrive at the solution using Newman projection.	[3]
	Me Me Nal	
(b)	The following compound gives a racemic mixture upon treatment with a base followed by acidification. Draw a mechanism for the racemisation. HO Me 1. OH 2. H 2. H 3. OH 2. H 3. OH 3. OH 3. OH 4.	[4]
(c)	Among the following diastereomeric bromides, only one undergoes elimination upon treatment with a base. Write the structure of the elimination product and also justify your answer.	[3]
	Br.W.	
4. (a)	The following pericyclic process can be carried out either thermally or photochemically.	[4]
	The combination of two molecular orbitals for two components K and L during two different cyclization processes P and Q are shown:	

.....End of Part B.....