CS 634 Data Mining Final Term Project -- Tap47

1. Introduction

This notebook provides the report of my work on utilizing 3 machine learning models on loan data for binary classification problem. Machine learning models i chose: 1) Random Forest, 2) KNN, 3) LSTM.

2. Abstract

The notebook includes code for evaluating model performance using various metrics. Key observations:

- Custom Metrics Calculation: The notebook defines a function (matrics_cal) to calculate performance metrics such as accuracy, precision, recall, F1 score, Brier score, AUC, and Brier Skill Score (BSS).
- Model Training and Evaluation: 3 models are defined and evaluated using 10-fold crossvalidation (KFold). For each fold, metrics are calculated and stored in a list, which is later converted to a DataFrame.
- Performance Metrics: Metrics like AUC, precision, and Brier score suggest an evaluation process aimed at assessing probabilistic and classification performance.

3. Data Visualization and Preprocessing

```
In [3]: import pandas as pd

df = pd.read_csv("data/loan_data.csv")
    df.describe()
```

```
Out[3]:
                  person_age person_income person_emp_exp
                                                                 loan amnt
                                                                            loan_int_rate loan_pe
         count 45000.000000
                               4.500000e+04
                                                 45000.000000
                                                               45000.000000
                                                                            45000.000000
                               8.031905e+04
                   27.764178
                                                     5.410333
                                                                9583.157556
                                                                                11.006606
         mean
           std
                    6.045108
                               8.042250e+04
                                                     6.063532
                                                                6314.886691
                                                                                 2.978808
                               8.000000e+03
           min
                   20.000000
                                                     0.000000
                                                                 500.000000
                                                                                 5.420000
          25%
                   24.000000
                               4.720400e+04
                                                     1.000000
                                                                5000.000000
                                                                                 8.590000
          50%
                   26.000000
                               6.704800e+04
                                                     4.000000
                                                                8000.00000
                                                                                11.010000
          75%
                   30.000000
                               9.578925e+04
                                                     8.000000 12237.250000
                                                                                12.990000
          max
                  144.000000
                               7.200766e+06
                                                   125.000000
                                                             35000.000000
                                                                                20.000000
In [4]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 45000 entries, 0 to 44999
       Data columns (total 14 columns):
            Column
                                              Non-Null Count Dtype
       ---
        0
                                              45000 non-null float64
            person_age
        1
            person_gender
                                              45000 non-null object
```

2 person_education 45000 non-null object 3 45000 non-null float64 person income 4 45000 non-null int64 person_emp_exp 5 person_home_ownership 45000 non-null object 6 loan_amnt 45000 non-null float64 7 loan_intent 45000 non-null object loan_int_rate 45000 non-null float64 9 loan percent income 45000 non-null float64 cb_person_cred_hist_length 45000 non-null float64 11 credit_score 45000 non-null int64 previous_loan_defaults_on_file 45000 non-null object

dtypes: float64(6), int64(3), object(5)

memory usage: 4.8+ MB

loan status

As we can see there are multiple columns with string values are present. which we need to encode into their numerical representation.

45000 non-null int64

```
In [5]: df["loan_status"].unique()
Out[5]: array([1, 0])
    as we can see it is binary classification problem.
In [6]: df.isnull().any()
```

```
Out[6]: person_age
                                            False
         person_gender
                                            False
         person_education
                                            False
                                            False
         person_income
         person_emp_exp
                                            False
         person_home_ownership
                                            False
         loan amnt
                                            False
         loan_intent
                                            False
         loan_int_rate
                                            False
                                            False
         loan_percent_income
         cb_person_cred_hist_length
                                            False
         credit_score
                                            False
         previous_loan_defaults_on_file
                                            False
         loan_status
                                            False
         dtype: bool
```

there are no null or missing values in the dataset.

```
In [7]: df = df.groupby('loan_status').sample(frac=0.2, random_state=42)
    df["loan_status"].value_counts()

Out[7]: loan_status
    0     7000
    1     2000
    Name: count, dtype: int64
```

taking sample of the dataset since its too big for the project.

Here is the correlation charts of the data.

Here is the histogram of features based on the target value.

Density graph of labels.

4. Metrics Calculations and Common Training functions.

```
In [8]: def matrics_cal(y_test, y_pred, y_proba = None):
             matrics = {}
             matrics["TP"] = sum(np.where(y_test & y_pred, 1, 0))
             matrics["TN"] = sum(np.where((y_test == 0) & (y_pred == 0), 1, 0))
             matrics["FP"] = sum(np.where((y_test == 0) & (y_pred == 1), 1, 0))
             matrics["FN"] = sum(np.where((y_test == 1) & (y_pred == 0), 1, 0))
             matrics["TPR"] = round(matrics["TP"] / (matrics["TP"] + matrics["FN"]),3)
             matrics["TNR"] = round(matrics["TN"] / (matrics["TN"] + matrics["FP"]),3)
             matrics["FPR"] = round(matrics["FP"] / (matrics["FP"] + matrics["TN"]),3)
             matrics["FNR"] = round(matrics["FN"] / (matrics["TP"] + matrics["FN"]),3)
             matrics["Accuracy"] = round((matrics["TP"] + matrics["TN"]) / (matrics["TP"] +
             matrics["Precision"] = round(matrics["TP"] / (matrics["TP"] + matrics["FP"]),3
             matrics["F1"] = 2 * round(((matrics["Precision"] * matrics["TPR"]) / (matrics["
             matrics["brier_score"] = round(brier_score_loss(y_test, y_proba),3)
             matrics["AUC"] = round(roc_auc_score(y_test, y_proba),3)
             reference_prob = np.mean(y_test)
             reference_brier_score = brier_score_loss(y_test, [reference_prob] * len(y_test)
             matrics["BSS"] = round(1 - (matrics["brier_score"] / reference_brier_score),3)
             return matrics
In [9]: def train(clf, X, y):
             kf = KFold(n_splits=10, shuffle=True, random_state=42)
             metrics_list = []
             for i, (train_index, test_index) in enumerate(kf.split(X), start=1):
                 # Splitting the data
                 X_train, X_test = X.iloc[train_index], X.iloc[test_index]
                 y_train, y_test = y.iloc[train_index], y.iloc[test_index]
                 clf.fit(X_train, y_train)
                 y_pred = clf.predict(X_test)
                 y_pred_proba = clf.predict_proba(X_test)[:, 1]
                 mat = matrics_cal(y_test, y_pred, y_pred_proba)
                 print(f"Fold {i}: {mat}")
                 metrics_list.append(mat)
             return metrics_list, y_pred_proba
In [10]: def plot_matrics(matrics):
             plt.figure(figsize=(15,15))
             for ax, col in enumerate(matrics.columns):
                 plt.subplot(5,4, ax+1)
                 plt.title(col)
                 sns.lineplot(data=matrics, x=matrics.index, y=col)
                 plt.xlabel("Folds")
                 plt.legend()
```

plt.tight_layout()

5 Training.

Below are the plots of metrics for each fold in training.

5.1 Random Forest

5.2 KNN

5.3 LSTM

6 Metrics Comparison

6.1 Random forest

	TP	TN	FP	FN	TPR	TNR	FPR	FNR
Accurac	У	Precisi	.on	F1	brier_s	core	AUC	BSS
0	146	680	21	53	0.734	0.970	0.030	
0.266	0.918		0.874		0.798	0.059		
0.967	0.657							
1	153	661	33	53	0.743	0.952	0.048	
0.257	0.904		0.823		0.780	0.063		
0.963	0.643							
2	136	687	27	50	0.731	0.962	0.038	
0.269	0.914		0.834		0.780	0.063		
0.959	0.616							
3	131	698	29	42	0.757	0.960	0.040	
0.243	0.921		0.819		0.786	0.058		
0.965	0.626							
4	141	671	26	62	0.695	0.963	0.037	
0.305	0.902		0.844		0.762	0.065		
0.963	0.628							

5 0.299	138 0.909	680	23 0.857	59	0.701 0.772	0.967 0.063	0.033
0.965	0.632						
6	143	676	15	66	0.684	0.978	0.022
0.316	0.910		0.905		0.780	0.061	
0.966	0.658						
7	160	659	25	56	0.741	0.963	0.037
0.259	0.910		0.865		0.798	0.062	
0.967	0.660						
8	151	670	27	52	0.744	0.961	0.039
0.256	0.912		0.848		0.792	0.061	
0.966	0.651						
9	160	667	25	48	0.769	0.964	0.036
0.231	0.919		0.865		0.814	0.059	
0.969	0.668						

6.2 KNN

		TN				TNR		FNR
	-	Precisi			_			BSS
		652		60	0.698	0.930	0.070	
0.302	0.879		0.739		0.718	0.096		
0.877	0.443							
1	155	642	52	51	0.752	0.925	0.075	
0.248	0.886		0.749		0.750	0.094		
0.891	0.467							
2	123	653	61	63	0.661	0.915	0.085	
0.339	0.862		0.668		0.664	0.099		
0.883	0.396							
3	115	667	60	58	0.665	0.917	0.083	
0.335	0.869		0.657		0.660	0.101		
0.877	0.350							
4	129	643	54	74	0.635	0.923	0.077	
0.365	0.858		0.705		0.668	0.107		
0.869	0.387							
5	125	646	57	72	0.635	0.919	0.081	
0.365	0.857		0.687		0.660	0.101		
0.879	0.409							
6	136	659	32	73	0.651	0.954	0.046	
0.349	0.883		0.810		0.722	0.087		
0.903	0.512							
7	149	622	62	67	0.690	0.909	0.091	
0.310	0.857		0.706		0.698	0.107		
0.876	0.413							
8	132	653	44	71	0.650	0.937	0.063	
0.350	0.872		0.750		0.696	0.094		
0.893	0.462							
9	141	637	55	67	0.678	0.921	0.079	
0.322			0.719		0.698			
0.899	0.465							

6.3 LSTM

	TP	TN	FP	FN	TPR	TNR	FPR	FNR
Accurac	у	Precisi	on	F1	brier_s	core	AUC	BSS
0	139	632	69	60	0.698	0.902	0.098	
0.302	0.857		0.668		0.682	0.102		
0.923	0.408							
1	137	645	49	69	0.665	0.929	0.071	
0.335	0.869		0.737		0.700	0.093		
0.926	0.473							
2	114	675	39	72	0.613	0.945	0.055	
0.387	0.877		0.745		0.672	0.091		
0.922	0.445							
3	122	663	64	51	0.705	0.912	0.088	
0.295	0.872		0.656		0.680	0.085		
0.932	0.453							

4	111	665	32	92	0.547	0.954	0.046
0.453	0.862		0.776		0.642	0.098	
0.913	0.439						
5	136	667	36	61	0.690	0.949	0.051
0.310	0.892		0.791		0.738	0.075	
0.948	0.561						
6	145	656	35	64	0.694	0.949	0.051
0.306	0.890		0.806		0.746	0.075	
0.950	0.579						
7	146	637	47	70	0.676	0.931	0.069
0.324	0.870		0.756		0.714	0.087	
0.937	0.523						
8	162	635	62	41	0.798	0.911	0.089
0.202	0.886		0.723		0.758	0.079	
0.951	0.548						
9	158	648	44	50	0.760	0.936	0.064
0.240	0.896		0.782		0.770	0.070	
0.958	0.606						

6.4 Average Comparison

	Random Forest	KNN	LSTM
TP	145.9000	134.4000	137.0000
TN	674.9000	647.4000	652.3000
FP	25.1000	52.6000	47.7000
FN	54.1000	65.6000	63.0000
TPR	0.7299	0.6715	0.6846
TNR	0.9640	0.9250	0.9318
FPR	0.0360	0.0750	0.0682
FNR	0.2701	0.3285	0.3154
Accuracy	0.9119	0.8687	0.8771
Precision	0.8534	0.7190	0.7440
F1	0.7862	0.6934	0.7102
brier_score	0.0614	0.0981	0.0855
AUC	0.9650	0.8847	0.9360
BSS	0.6439	0.4304	0.5035

6.5 Foldwise Comparison

6.5.1 Fold 1:

	Random Forest	KNN	LSTM
TP	146.000	139.000	139.000
TN	680.000	652.000	632.000
FP	21.000	49.000	69.000
FN	53.000	60.000	60.000
TPR	0.734	0.698	0.698

TNR	0.970	0.930	0.902
FPR	0.030	0.070	0.098
FNR	0.266	0.302	0.302
Accuracy	0.918	0.879	0.857
Precision	0.874	0.739	0.668
F1	0.798	0.718	0.682
brier_score	0.059	0.096	0.102
AUC	0.967	0.877	0.923
BSS	0.657	0.443	0.408

Fold 2:

	Random Forest	KNN	LSTM
TP	153.000	155.000	137.000
TN	661.000	642.000	645.000
FP	33.000	52.000	49.000
FN	53.000	51.000	69.000
TPR	0.743	0.752	0.665
TNR	0.952	0.925	0.929
FPR	0.048	0.075	0.071
FNR	0.257	0.248	0.335
Accuracy	0.904	0.886	0.869
Precision	0.823	0.749	0.737
F1	0.780	0.750	0.700
brier_score	0.063	0.094	0.093
AUC	0.963	0.891	0.926
BSS	0.643	0.467	0.473

Fold 3:

Random Forest	KNN	LSTM
136.000	123.000	114.000
687.000	653.000	675.000
27.000	61.000	39.000
50.000	63.000	72.000
0.731	0.661	0.613
0.962	0.915	0.945
0.038	0.085	0.055
0.269	0.339	0.387
0.914	0.862	0.877
0.834	0.668	0.745
0.780	0.664	0.672
0.063	0.099	0.091
0.959	0.883	0.922
0.616	0.396	0.445
	136.000 687.000 27.000 50.000 0.731 0.962 0.038 0.269 0.914 0.834 0.780 0.063 0.959	136.000 123.000 687.000 653.000 27.000 61.000 50.000 63.000 0.731 0.661 0.962 0.915 0.038 0.085 0.269 0.339 0.914 0.862 0.834 0.668 0.780 0.664 0.063 0.099 0.959 0.883

Fold 4:

Random Forest	KNN	LSTM
131.000	115.000	122.000
698.000	667.000	663.000
29.000	60.000	64.000
42.000	58.000	51.000
0.757	0.665	0.705
0.960	0.917	0.912
0.040	0.083	0.088
0.243	0.335	0.295
0.921	0.869	0.872
0.819	0.657	0.656
0.786	0.660	0.680
0.058	0.101	0.085
0.965	0.877	0.932
0.626	0.350	0.453
	131.000 698.000 29.000 42.000 0.757 0.960 0.040 0.243 0.921 0.819 0.786 0.058 0.965	131.000 115.000 698.000 667.000 29.000 60.000 42.000 58.000 0.757 0.665 0.960 0.917 0.040 0.083 0.243 0.335 0.921 0.869 0.819 0.657 0.786 0.660 0.058 0.101 0.965 0.877

Fold 5:

	Random Forest	KNN	LSTM
TP	141.000	129.000	136.000
TN	671.000	643.000	633.000
FP	26.000	54.000	64.000
FN	62.000	74.000	67.000
TPR	0.695	0.635	0.670
TNR	0.963	0.923	0.908
FPR	0.037	0.077	0.092
FNR	0.305	0.365	0.330
Accuracy	0.902	0.858	0.854
Precision	0.844	0.705	0.680
F1	0.762	0.668	0.674
brier_score	0.065	0.107	0.100
AUC	0.963	0.869	0.915
BSS	0.628	0.387	0.428

Fold 6:

	Random Forest	KNN	LSTM
TP	138.000	125.000	134.000
TN	680.000	646.000	674.000
FP	23.000	57.000	29.000
FN	59.000	72.000	63.000
TPR	0.701	0.635	0.680
TNR	0.967	0.919	0.959
FPR	0.033	0.081	0.041
FNR	0.299	0.365	0.320

Accuracy	0.909	0.857	0.898
•			
Precision	0.857	0.687	0.822
F1	0.772	0.660	0.744
brier_score	0.063	0.101	0.075
AUC	0.965	0.879	0.949
BSS	0.632	0.409	0.561

Fold 7:

	Random Forest	KNN	LSTM
TP	143.000	136.000	138.000
TN	676.000	659.000	664.000
FP	15.000	32.000	27.000
FN	66.000	73.000	71.000
TPR	0.684	0.651	0.660
TNR	0.978	0.954	0.961
FPR	0.022	0.046	0.039
FNR	0.316	0.349	0.340
Accuracy	0.910	0.883	0.891
Precision	0.905	0.810	0.836
F1	0.780	0.722	0.738
brier_score	0.061	0.087	0.078
AUC	0.966	0.903	0.950
BSS	0.658	0.512	0.563

Fold 8:

	Random Forest	KNN	LSTM
TP	160.000	149.000	139.000
TN	659.000	622.000	642.000
FP	25.000	62.000	42.000
FN	56.000	67.000	77.000
TPR	0.741	0.690	0.644
TNR	0.963	0.909	0.939
FPR	0.037	0.091	0.061
FNR	0.259	0.310	0.356
Accuracy	0.910	0.857	0.868
Precision	0.865	0.706	0.768
F1	0.798	0.698	0.700
brier_score	0.062	0.107	0.088
AUC	0.967	0.876	0.938
BSS	0.660	0.413	0.518

Fold 9:

	Random Forest	KNN	LSTM
TP	151.000	132.000	152.000
TN	670.000	653.000	653.000
FP	27.000	44.000	44.000

FN	52.000	71.000	51.000
TPR	0.744	0.650	0.749
TNR	0.961	0.937	0.937
FPR	0.039	0.063	0.063
FNR	0.256	0.350	0.251
Accuracy	0.912	0.872	0.894
Precision	0.848	0.750	0.776
F1	0.792	0.696	0.762
brier_score	0.061	0.094	0.075
AUC	0.966	0.893	0.950
BSS	0.651	0.462	0.571

Fold 10:

	Random Forest	KNN	LSTM
TP	160.000	141.000	154.000
TN	667.000	637.000	657.000
FP	25.000	55.000	35.000
FN	48.000	67.000	54.000
TPR	0.769	0.678	0.740
TNR	0.964	0.921	0.949
FPR	0.036	0.079	0.051
FNR	0.231	0.322	0.260
Accuracy	0.919	0.864	0.901
Precision	0.865	0.719	0.815
F1	0.814	0.698	0.776
brier_score	0.059	0.095	0.070
AUC	0.969	0.899	0.959
BSS	0.668	0.465	0.606

6.6 ROC curves

6.6.1 Random Forest

6.6.2 KNN

6.6.3 LSTM

7. Conculsion

Random Forest outperforms KNN and LSTM on all critical measures. It has the best accuracy (91.19%), AUC (0.965), and precision (0.8534) while achieving the lowest Brier score (0.0614) and FPR (0.0360), showing good classification and calibration. LSTM performs moderately, with higher precision (0.7440) and F1-score (0.7102) than KNN, but it falls short of Random Forest in accuracy (87.71%) and calibration. KNN performs poorly, with the lowest accuracy (86.87%), AUC (0.8847), and calibration scores. Overall, Random Forest is the most trustworthy option, with LSTM coming in second.