Stat 343, Thu 17-Sep-2020 -- Thu 17-Sep-2020 Probability and Statistics Fall 2020

Thursday, September 17th 2020

Wk 3, Th

Topic:: mean, variance of random variable

Crazy example X has pont $f_{x}(x) | f_{6} | f_{6} | f_{7}(x) | f_{1}(x) | f_{1}(x) | f_{1}(x) | f_{1}(x) | f_{1}(x) | f_{2}(x) | f_{1}(x) | f_{2}(x) | f_{1}(x) | f_{2}(x) | f_{2$ $A 2^{n!} r.v. \qquad Y = \frac{2+x}{1+x^2}$ Its onf f 1/2 | 3/2 | 2 f (y) 1/6 | 2/3 | 1/6 $\mu_{\gamma} = \left(\frac{1}{2}\right)\left(\frac{3}{6}\right) + \left(\frac{3}{2}\right)\left(\frac{3}{3}\right) + \left(2\right)\left(\frac{1}{6}\right)$ $= \sum_{x} \left(\frac{1+x^{2}}{1+x^{2}} \right) \cdot f_{x}(x)$ The corollary: Y = 2 X -5 E(Y) = 2E(X) - 5implies

When Y = -1 $Y = \frac{1}{2}$ X = 0 Y = 2 X = 1 $Y = \frac{3}{2}$

 $F = \frac{9}{5}C + 32$

Mean and Variance of a random variable X

Definition 1 (2.5.1): Given a discrete random variable X with pmf $f_X(x)$, the **expected value** of X, also known as its **mean**, and variously denoted E(X) or μ_X , is given by

$$E(X) = \sum_{x} x f_X(x).$$

• weighted averages: calculating your semester gpa

(b) Find
$$\sum_{x} xf(x)$$
.
$$= (0) \left(\frac{1}{6}\right) + (1) \left(\frac{1}{3}\right) + (2) \left(\frac{1}{4}\right) + (3) \left(\frac{1}{6}\right) + (4) \left(\frac{1}{12}\right)$$

$$= \sum_{3} ?$$

Example: Given our theoretical pmf for X, the sum of pips from the roll of two fair dice, calculate E(X).

```
x = 2:12
probability = c(1:6,5,4,3,2,1) / 36
sum( x * probability )
```

Question: What is $E(X^2)$ for X as in Exercise B.12? Is it the same/different from $(E(X))^2$?

$$\int_{0}^{2} \cdot \frac{1}{6} + \int_{0}^{2} \cdot \frac{1}{3} + 2^{2} \cdot \frac{1}{4} + 3^{2} \cdot \frac{1}{6} + 4^{2} \cdot \frac{1}{12} = \frac{25}{6}$$

$$E(\chi^{2}) = \frac{25}{6} = \frac{25}{6} = \frac{25}{4}$$

$$E(\chi^{2}) = \frac{25}{6} = \frac{25}{6} = \frac{25}{4}$$

Lemma 1 (2.5.3): Suppose X is a discrete random variable, and Y = t(X). Then

$$E(Y) = \sum_{x} \underline{t(x)} \cdot f_X(x).$$

Corollary 1 (2.5.4): If Y = aX + b (that is, Y is a linear transformation of the random variable X), then $E(Y) = a \cdot E(X) + b$.

Question: What is E(X) for $X \sim Binom(n, \pi)$? Do some test cases, then make a conjecture.

$$enn = 5$$

x = 0:enn

testProb = 0.2

sum(x * dbinom(x, size=enn, prob = testProb)

Conjecture
$$E(X) = n\pi$$

General result: the mean of a binomial random variable $X \sim \text{Binom}(n, \pi)$

$$E(X) = \sum_{x=0}^{n} \times {n \choose x} \pi^{x} (1-\pi)^{n-x} = \sum_{x=0}^{\infty} \times \frac{n!}{x! (n-x)!} \pi^{x} (1-\pi)^{n-x}$$

$$=\sum_{n=1}^{\infty} \times \frac{x_{1}(n-x)_{1}}{n} \prod_{x} (1-\mu)_{x-x} = \sum_{n=1}^{\infty} \frac{(x-1)_{1}(n-x)_{1}}{n \cdot (n-1)_{1}} \prod_{x=1}^{\infty} (1-\mu)_{x-x}$$

Note:
$$n-x = (n-1)-(x-1)$$

$$= \sum_{X=1}^{n} n\pi \left(\frac{n-1}{X-1} \right) \pi^{X-1} \left(1-\pi \right)^{\frac{n}{N}-\frac{1}{N}}$$

$$= n\pi \left(\sum_{X=0}^{n} \left(\frac{n}{X} \right) \pi^{\frac{N}{N}} \left(1-\pi \right)^{\frac{N}{N}-\frac{1}{N}} \right) = n\pi$$

$$= n\pi$$

Definition 2 (2.5.7): Let X be a discrete r.v. The **variance** of X, denoted by Var(X) or by σ_X^2 , is that variables mean squared deviation from the mean. More explicitly, that is

$$Var(X) = E((X - \mu_X)^2).$$

Example. Compute by hand the variance for *X* when

(a) $X \sim \text{Binom}(2, 0.3)$

(b) $X \sim \text{Binom}(3, 0.5)$

Theorem 1 (2.5.8): Let X be a discrete r.v. Then $Var(X) = E(X^2) - [E(X)]^2$.

Q: For
$$X \sim NBinom(3, T = 0.2)$$
, con ve estimate
$$E(X) = \sum_{x} x f(x)$$