Các phương pháp học máy Machine learning methods

4 TC: 2 LT - 2 TH

Giảng viên: Tạ Hoàng Thắng

tahoangthang@gmail.com

0975399307

Import data

There are several ways for importing data in machine learning using Python:

- Through URLs
- Integrated Libraries
- From Files

Through URLs

Use requests library (pip install requests)

```
import requests

# Define the URL
url = 'https://www.example.com'

# Send a GET request to the URL
response = requests.get(url)

# Check if the request was successful
if response.status_code == 200:
    # Print the content of the response
    print(response.text)
else:
    print(f"Failed to retrieve data. Status code: {response.status_code}")
```

Integrated Libraries

- Use sklearn.datasets
 - https://scikit-learn.org/stable/datasets.html

7.1. Toy datasets

7.1.1. Iris plants dataset

7.1.2. Diabetes dataset

7.1.3. Optical recognition of handwritten digits dataset

7.1.4. Linnerrud dataset

7.1.5. Wine recognition dataset

7.1.6. Breast cancer wisconsin (diagnostic) dataset

7.2. Real world datasets

7.2.1. The Olivetti faces dataset

7.2.2. The 20 newsgroups text dataset

7.2.3. The Labeled Faces in the Wild face recognition dataset

7.2.4. Forest covertypes

7.2.5. RCV1 dataset

- Use sklearn.datasets
 - Load dataset iris

Integrated Libraries: Use sklearn.datasets: Load dataset iris

```
from sklearn.datasets import load iris
 2
     import pandas as pd
 3
 4
     # Load the Iris dataset
 5
     iris = load iris()
 6
     # Create a DataFrame with features and labels
     iris df = pd.DataFrame(iris.data, columns=iris.feature names)
9
     iris df['species'] = iris.target
10
11
     # Map numeric labels to species names
12
     species map = {i: species for i, species in enumerate(iris.target names)}
     iris df['species'] = iris df['species'].map(species map)
13
14
15
     # Display the DataFrame
16
     print("Iris dataset with labels:")
17
     print(iris df.head())
18
19
     #Iris dataset with labels:
         sepal length (cm) sepal width (cm) ... petal width (cm) species
21
    # 0
                        5.1
                                                                0.2 setosa
                                         3.5 ...
     # 1
                       4.9
                                         3.0 ...
                                                               0.2 setosa
23
                       4.7
                                         3.2 ...
                                                               0.2 setosa
24
     # 3
                                         3.1 ...
                       4.6
                                                                0.2 setosa
25
                                         3.6 ...
                        5.0
                                                                0.2 setosa
26
    # [5 rows x 5 columns]
```

- Use sklearn.datasets
 - Load dataset wine

```
from sklearn.datasets import load wine
     import pandas as pd
     # Load the Wine dataset
     wine = load wine()
     # Create a DataFrame for the feature data
     wine df = pd.DataFrame(wine.data, columns=wine.feature names)
     # Add the target labels to the DataFrame
11
     wine df['class'] = wine.target
12
13
     # Map target labels to class names
14
     wine df['class'] = wine df['class'].map({i: name for i, name in enumerate(wine.target names)})
15
16
     # Display the first few rows of the DataFrame
17
     print(wine df.head())
19
     # alcohol malic acid ash alcalinity of ash ... hue od280/od315 of diluted wines proline
                                                                                                      class
20
          14.23
                       1.71 2.43
                                                15.6 ... 1.04
                                                                                        3.92 1065.0 class 0
          13.20
                       1.78 2.14
                                                11.2 ... 1.05
                                                                                       3.40 1050.0 class 0
          13.16
                       2.36 2.67
                                                18.6 ... 1.03
                                                                                       3.17
                                                                                              1185.0 class 0
                                                                                              1480.0 class 0
23
          14.37
                       1.95 2.50
                                                16.8 ... 0.86
                                                                                        3.45
          13.24
                       2.59 2.87
                                                21.0 ... 1.04
                                                                                        2.93
                                                                                               735.0 class 0
```

- Use seaborn (pip install seaborn)
 - Load iris

```
import seaborn as sns
 2
 3
     # Load the 'iris' dataset
 4
     iris = sns.load dataset('iris')
     print(iris.head())
 5
 6
         sepal length sepal width petal length petal width species
                   5.1
                                3.5
                                                             0.2 setosa
 8
     #0
                                               1.4
                   4.9
                                3.0
                                                             0.2 setosa
                                               1.4
 9
     #1
10
     #2
                   4.7
                                3.2
                                               1.3
                                                             0.2 setosa
                                                             0.2 setosa
11
                   4.6
                                3.1
                                               1.5
     #3
                                                                  setosa
12
     #4
                   5.0
                                3.6
                                               1.4
                                                             0.2
```

- Use TensorFlow/PyTorch
 - Load MNIST

- Use TensorFlow/PyTorch (pip install torch, pip install tensorflow)
 - Load MNIST

```
import torch
      from torchvision import datasets, transforms
4
      # Define a transform to normalize the data
     transform = transforms.Compose([
6
         transforms. ToTensor(), # Convert image to tensor
         transforms.Normalize ((0.5,), (0.5,)) # Normalize with mean=0.5 and std=0.5
8
     1)
9
10
      # Download and load the training data
11
      train dataset = datasets.MNIST(root='data', train=True, download=True, transform=transform)
      train_loader = torch.utils.data.DataLoader(train_dataset, batch size=64, shuffle=True)
12
13
14
      # Download and load the test data
     test dataset = datasets.MNIST(root='data', train=False, download=True, transform=transform)
15
      test loader = torch.utils.data.DataLoader(test dataset, batch size=64, shuffle=False)
16
```

- Use TensorFlow/PyTorch
 - Load MNIST

```
18
      # Check the size of the dataset
19
      print(f'Training dataset size: {len(train dataset)}')
20
      print(f'Test dataset size: {len(test dataset)}')
21
                                                       Training dataset size: 60000
22
      # Example: Accessing a single batch of data
                                                       Test dataset size: 10000
23
      data iter = iter(train loader)
                                                       Batch of images shape: torch.Size([64, 1, 28, 28])
                                                       Batch of labels shape: torch.Size([64])
24
      images, labels = next(data iter)
                                                        Example label: 1
25
26
      print(f'Batch of images shape: {images.shape}')
27
      print(f'Batch of labels shape: {labels.shape}')
28
      print(f'Example label: {labels[0].item()}')
29
```

Integrated Libraries

Use datasets (pip install datasets, https://huggingface.co/datasets)

TẠ HOÀNG THẮNG - Đại học Đà Lạt, Khoa CNTT

- Use datasets (pip install datasets)
 - https://huggingface.co/datasets
- Tìm hiểu CIFAR10 và dog-food bằng https://huggingface.co/datasets
 - Số lượng dữ liệu ở tập train/test/validation?
 - Số nhãn (labels)?
 - Mô tả bí dụ?
 - Kích thước của 1 input?

- Use datasets
 - Load IDBM

```
from datasets import load dataset
 2
 3
      # Load the IMDB dataset
 4
      dataset = load dataset('imdb')
 5
 6
      # Display the dataset structure
      print(dataset)
      # Access the training and test splits
      train dataset = dataset['train']
10
11
      test dataset = dataset['test']
12
13
      # Display the first few examples from the training set
14
      print(train dataset[0])
15
16
      # Display the first few examples from the test set
      print(test dataset[0])
17
18
```

Integrated Libraries

- Use datasets
 - Load IDBM

```
DatasetDict({
    train: Dataset({
        features: ['text', 'label'],
        num_rows: 25000
    })
    test: Dataset({
        features: ['text', 'label'],
        num_rows: 25000
    })
    unsupervised: Dataset({
        features: ['text', 'label'],
        num_rows: 50000
    })
}
```

{'text': 'I rented I AM CURIOUS-YELLOW from my video store because of all the controversy that surrounded it when it was first released in 1967. I also heard that at first it was seized by U.S. customs if it ever tried to enter this country, therefore being a fan of films considered "controversial" I really had to see this for myself...', 'label': 0}

From Files

• CSV: example.csv + pandas

```
Name, Age, City
Alice, 30, New York
Bob, 25, Los Angeles
Charlie, 35, Chicago
David, 40, San Francisco
```

```
import pandas as pd

limport pandas as pd

# Load the CSV file into a DataFrame
df = pd.read_csv('example.csv')

# Display the DataFrame
print("DataFrame:")
print(df)
```

```
DataFrame:
      Name
            Age
                           City
     Alice
              30
                      New York
       Bob
              25
                   Los Angeles
                       Chicago
   Charlie
              35
                  San Francisco
     David
              40
```

From Files

CSV: example.csv + pandas

```
# View the first few rows
     print("\nFirst few rows:")
 8
     print(df.head())
 9
10
     # View the last few rows
     print("\nLast few rows:")
11
12
     print(df.tail())
13
     # Get DataFrame information
14
15
     print("\nDataFrame info:")
16
     print(df.info())
```

```
DataFrame info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 3 columns):
     Column Non-Null Count Dtype
             4 non-null
                             object
     Name
     Age
             4 non-null
                             int64
    City
             4 non-null
                             object
dtypes: int64(1), object(2)
memory usage: 224.0+ bytes
None
```

From Files

CSV: example.csv + pandas

```
# View the first few rows
     print("\nFirst few rows:")
 8
     print(df.head())
 9
10
     # View the last few rows
     print("\nLast few rows:")
11
12
     print(df.tail())
13
     # Get DataFrame information
14
15
     print("\nDataFrame info:")
16
     print(df.info())
```

```
DataFrame info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 3 columns):
     Column Non-Null Count Dtype
             4 non-null
                             object
     Name
     Age
             4 non-null
                             int64
    City
             4 non-null
                             object
dtypes: int64(1), object(2)
memory usage: 224.0+ bytes
None
```

From Files

CSV: example.csv + csv

```
import csv
    # Initialize an empty list to store the data
 4
    data = []
 5
 6
     # Open and read the CSV file
    with open ('example.csv', 'r') as file:
         reader = csv.DictReader(file) # Read CSV into a dictionary format
 8
 9
         for row in reader:
10
             data.append (row)
11
12
    # Display the data
    print("Data loaded as list of dictionaries:")
14
    print(data)
```

```
E:\Sammi\ML>python test.py

Data loaded as list of dictionaries:
[{'Name': 'Alice', 'Age': '30', 'City': 'New York'}, {'Name': 'Bob', 'Age': '25', 'City': 'Los Angeles'}, {'Name': 'Charlie', 'Age': '35', 'City': 'Chicago'}, {'Name': 'David', 'Age': '40', 'City': 'San Francisco'}]
```

From Files

TSV: example.tsv + pandas

```
Name Age City
Alice 30 New York
Bob 25 Los Angeles
Charlie 35 Chicago
David 40 San Francisco
```

From Files

TSV: example.tsv + csv

```
import csv
 3
     # Initialize an empty list to store the data
     data = []
 4
 5
 6
     # Open and read the TSV file
    with open ('example.tsv', 'r') as file:
 8
         reader = csv.DictReader(file, delimiter='\t')
 9
         for row in reader:
             data.append(row)
11
12
     # Display the data
13
    print("Data loaded as list of dictionaries:")
    print(data)
14
15
```

```
E:\Sammi\ML>python test.py

Data loaded as list of dictionaries:

[{'Name': 'Alice', 'Age': '30', 'City': 'New York'}, {'Name': 'Bob', 'Age': '25', 'City': 'Los Angeles'}, {'Name': 'Charlie', 'Age': '35', 'City': 'Chicago'}, {'Name': 'David', 'Age': '40', 'City': 'San Francisco'}]
```

From Files

JSON: example.json + pandas

```
import pandas as pd

load the JSON file into a DataFrame
for the description of the
```

From Files

JSON: example.json + json

```
import json

# Load the JSON file

with open('example.json', 'r') as file:
    data = json.load(file)

# Display the data
print("Loaded data:")
print(data)
```

From Files

JSONL: example.json + pandas

```
{"Name": "Alice", "Age": 30, "City": "New York"}
{"Name": "Bob", "Age": 25, "City": "Los Angeles"}
{"Name": "Charlie", "Age": 35, "City": "Chicago"}
{"Name": "David", "Age": 40, "City": "San Francisco"}

import pandas as pd

# Load the JSONL file into a DataFrame
df = pd.read_json('example.jsonl', lines=True)

# Display the DataFrame
print("DataFrame:")
print(df)
```

From Files

JSONL: example.json + json

```
[{"Name": "Alice", "Age": 30, "City": "New York"}
   {"Name": "Bob", "Age": 25, "City": "Los Angeles"}
   {"Name": "Charlie", "Age": 35, "City": "Chicago"}
   {"Name": "David", "Age": 40, "City": "San Francisco"}
    import json
2
   # Initialize an empty list to store the data
   data = []
4
5
    # Open and read the JSONL file
   with open ('example. isonl', 'r') as file:
       for line in file:
9
           # Parse each line as a JSON object and append it to the list
           data.append(json.loads(line))
10
11
12
   # Display the loaded data
   print("Loaded data:")
   print(data)
```

Xuất nguồn dữ liệu

From Files

CSV/TSV/JSON/JSONL + pandas

```
import pandas as pd
2
 3
     # Sample DataFrame
 4
   ⊟df = pd.DataFrame({
 5
         'Name': ['Alice', 'Bob', 'Charlie', 'David'],
 6
         'Age': [30, 25, 35, 40],
         'City': ['New York', 'Los Angeles', 'Chicago', 'San Francisco']
 7
    })
10
     # Write to CSV
11
     df.to csv('example.csv', index=False)
12
13
     # Write to TSV
     df.to csv('example.tsv', sep='\t', index=False)
14
15
16
     # Write to JSON
17
     df.to json('example.json', orient='records', lines=False)
18
     # Write to JSON Lines (JSONL)
19
     df.to json('example.jsonl', orient='records', lines=True)
20
21
22
    print("Data successfully written to files.")
```

Xuất nguồn dữ liệu

From Files

CSV/TSV/JSON/JSONL + csv & json

```
import csv
2
3
    # Write data to a CSV or TSV file
   with open('example.csv', 'w', newline='') as file:
        writer = csv.DictWriter(file, fieldnames=["Name", "Age", "City"])
6
        #writer = csv.DictWriter(file, fieldnames=["Name", "Age", "City"], delimiter='\t')
        writer.writeheader()
        writer.writerows (data)
    import json
 2
 3
    # Write data to a JSON file
   □with open('example.json', 'w') as file:
 5
         json.dump(data, file, indent=4) # indent=4 for pretty-printing
 6
 7
    # Write data to a JSON Lines (JSONL) file
    □with open('example.jsonl', 'w') as file:
         for record in data:
             json.dump(record, file)
10
11
             file.write('\n') # Write a newline character after each JSON object
```

Thảo luận

CSV vs. TSV vs. JSON vs. JSONL

Which one? Why?

TẠ HOÀNG THẮNG - Đại học Đà Lạt, Khoa CNTT