

is the network a software like any other?



#### « Raison d'être »

# Invent with you a story of the future for Orange

#### **Missions**

- Light the future : identify risks and ruptures, explore and build opportunities, influence ecosystems
- **build strategic assets**: knowledge, skills, intellectual property, standards & open source, partnerships.
- Feed our innovation chain aiming to differentiate our infrastructure, products and services, customer relationships and / or business models.

« Because tomorrow's world will emerge from increasingly intelligent interaction between the physical and digital worlds, we strongly believe that research must be integrative. »

« ... a research in mode DevOps »

# Plug'in

**Ambiant Connectivity** 

Towards the research an ambiant, flexible & secure 5G Demonstrate Cloud Native 5G its cognitive management

Major advances expected

Ambition of

platforms

- 5G for Verticals
- Automating network management with AI.
- Built with partners

# Thing'in

Web of Objects

**Build the Cornerstone** of the Web of Objects: Indexing and Search **Engine for Object** Discovery, **Exploitation and Enrichment of Object** Relationships

Alignment and **Enrichment of Ontologies** for Scale Upgrading Scalability to one billion objects

### Home'in

Sensible Home

Design the intelligent and sensitive home that protects our private lives and allows openness to the other: an experimental house, an open and interoperable environment, a common architecture

- Management of contents and services of the sensitive house
- Better relevance of interactions through the detection of the user's personality

# No. 1

European operator in terms of patent applications

200 patents filed in 2017



# Our research in numbers

# 600 researchers



140 PhDs / post-doctorates



100 partnerships (labs, collaborative projects, tech research labs, etc.)







**All-knowing** 

### agile networks

5G a network which adapts in real time to process and business model thanks to softwarisation, cloud, prediction and automation



Deployable on the fly



Always optimal



# Key industry trends



#### Microservices

An approach to develop a single application as a suite of small services, each running in its own process and communicating with lightweight mechanisms

✓ Innovate more rapidly and be more agile



#### Containers

A technology to give each application running on a server its own, **isolated environment** to run.

It holds the components necessary to run the desired software.

Speed up the testing process and build large, scalable cloud applications



# Automation

#### "Infrastructure as code"

approach to enable the entire infrastructure deployment to be expressed and controlled through software

 Reduce complexity and offer a more responsive IT environment;

# Operator ambitions

- Need to increase network flexibility while reducing CAPEX and OPEX
- All these approaches are eminently suitable to be used in NFV environments
- NFV should be equally agile and automated



### How to make network functions cloud-native



# Containers are part of a "terrific" transformation of the IT landscape: from Cloud Ready to Cloud Native Applications



# New Ways to Deploy and Manage Applications at Scale

CNA to fully exploit the benefits of the cloud computing model

## Telco-Grade features and orchestration challenges

- Multi-network connectivity: telco workloads may require sophisticated network models to support multi-homing with various QoS
- Service function chaining: telco applications must be configured together as a service through which traffic needs to be correctly steered
- Specific scheduling policies: new placement constraints need to be supported → Network-related, inter-component affinity/anti-affinity, energy, etc.
- Deterministic performances: some telco workloads are performances sensitive and hence need predictable access to CPU and memory
- Accelerated data plane: some telco workloads require native network performances to achieve very low latency and jitter



# From Legacy network functions to VNFaaS

## Functional decomposition approach

1. **Decomposition** 

2. Separation of State

3. Independency

mmm...okay...! But,

Specifications are not that detailed to allow such an approach and are we moving towards decomposed architectures for 5G?

- L. Ocparation of State
  - Separate the service logic and data/state to build stateless services
- 3. Functional independence
  - Define the new service processes
  - Ensure functional independency loosely coupled

# Design of new VNFaaS Cloud-native & aaS features

|           | Cohesion      | <b>✓</b> |
|-----------|---------------|----------|
|           | Reuse         | <b>✓</b> |
| ture      | Abstraction   | ✓        |
| Structure | Invariance    | <b>✓</b> |
|           | Statelessness | <b>✓</b> |
|           | Mutualization | <b>✓</b> |

| ons      | Loose coupling | ✓ |
|----------|----------------|---|
| ractions | Invocation     | ✓ |
| Intel    | Composition    | ✓ |

|            | Description     | <b>√</b> |
|------------|-----------------|----------|
| ent        | Registration    | ✓        |
| ngem       | Exposition      | ✓        |
| Management | Auto-management | <b>√</b> |
|            | Ubiquity        | ✓        |

### t com

# **b<>com \*Unifier Gateway\***

#### Value proposition

pre-5G core network software solution that leverages on SDN and NFV technologies to offer a convergent and secured connectivity to private networks users

**Keywords** – 4G/5G, SDN, NFV, WLAN, LTE, OpenDaylight



#### **Features**

- > Full 3GPP Rel10 LTE EPC
- > Distributed SDN Firewall
- > EAP-AKA, EPS-AKA SIM based authentication mechanisms

21/11/2018 / 14

## DevOps mode



b<>com \*Unifier GW\* Virtual Network Functions

#### Automated deployment

- Continuous Integration & Delivery chain (CI/CD)
- Relying on Ansible playbooks
- Target platforms: KVM, Openstack



## Next step: a microservice based 5G mobile core

VNF skeleton with standard API (AMF, SPF, NRF) Bus implementation – HTTPv2

API Management and « processing optimisations »

Control and user plane separation

Efficient programmable user data plane



Client API Skeleton

Code

Server API

Skeleton

Code

Client API

Skeleton Code

Server API

Skeleton

Code

Code Generated

YAML

**JSON** 

Description

OpenAPL3 (1)

swagger

3GPP API

document

for xxNF

TS29.5xx

# Telco Cloud

Telco cloud is different from classic IT cloud due to network traffic, raising specific issues for an optimal data plane, but



Request to a virtualized application located in the cloud

e.g.: request a database



e.g.: internet access through DPI and firewall

Performant network access from outside to VNF and between VNF (infrastructure transport)

Avoid stacking data plane layers through programmable offloading of VNF data plane to infrastructure

Telco cloud is different from classic IT cloud due to network traffic, raising specific issues for an optimal data plane, but

which data plane

Several technologies

DPDK Click OVS
SR-IOV P4 VPP

But a lack of overall map

Manage data plane or to speed up?

Manage data plane: pure language ? Compiler DSL + engine?

Speed up: in-kernel / bypass? Data plane processing delegation?

Possible combination? Pros/Cons?

...



#### Project Programmable Data Plane for OpenStack using P4"

- P4 provides expressiveness, flexibility and dynamic programmability
- Find a way to bring P4 capabilities to OpenStack network infrastructure
- VNF offloading using P4 switches
  - addition and removal of packet processing modules in the P4 switch (infrastructure level)
  - integrating into Openstack Neutron the life-cycle management of P4 modules

#### Work items:

- Analysis and implementation of solution to integrate P4-capable switches as Neutron backend
- Specification and implementation of new networking APIs for Neutron to enable dynamic life-cycle management of P4 modules
- Proof of Concept of VNF offloading using P4



# Telco PaaS

### NGPaaS project overview

- 5G PPP phase 2 IA project
- Aiming at building a next generation PaaS for 5G
- 12 partners consortium:
  - 6 Large companies: Nokia Bell-Labs France (coordinator)
  - Nokia Israël, Orange, ATOS (SP), BT,
  - ONAPP(UK, technical manager)
  - 2 start-ups: VOSYS (FR, innovation manager),
     VM2M (FR)
  - 4 research laboratories: BCOM, DTU (DK), IMEC (BE), UNIMIB (IT)
- 24-month project, start: June 2017, End : June 2019



# NGPaaS targeted properties

#### PaaS framework

- Modular components (re-use of Superfluidity component model)
- Enable to build customized PaaS according to use cases by combination and extension of the framework components
- Telco-grade
- IT/5G convergent
- Multi-sided
  - Vendor PaaS + Operator PaaS + Vertical PaaS
- Heterogenicity
  - Address both VM, containers, Unikernel and any new techno to come
- New OSS/BSS model

# NGPaaS objective: a Telco-grade Kubernetes for an enhanced orchestration of cloud native VNFs

#### Scope

 Design, develop and deploy a Kubernetes based system for an automated management and orchestration of cloud-native container-based network functions

#### Objectives

- Customize Kubernetes to close the gap with regard to NFV requirements
- A prototype of a telco grade Kubernetes with a first deployed use case

| # | VNF requirement                                          | Enhancement                                                      | description                                                                                            |
|---|----------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 1 | Multi-network<br>support & data<br>plane<br>acceleration | Kubernetes with multi network support and dataplane acceleration | Kubernetes extensions to support multiple network interfaces per POD with DPDK and SR-IOV acceleration |
| 2 | Deterministic<br>Performances                            | Kubernetes with EPA<br>(Enhanced Platform<br>Awareness) support  | Kubernetes extensions to support customized CPU pinning policies and huge pages                        |
| 3 | Custom<br>scheduler                                      | Extended<br>Kubernetes<br>scheduling                             | Extension of Kubernetes scheduling to support new metrics (ex. Network)                                |
| 4 | SFC support                                              | Kubernetes with<br>service function<br>chaining                  | Kubernetes extensions enabling service function chaining for NFV                                       |



| # | VNF requirement                                          | Enhancement                                                      | description                                                                                            |
|---|----------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|   |                                                          |                                                                  |                                                                                                        |
| 1 | Multi-network<br>support & data<br>plane<br>acceleration | Kubernetes with multi network support and dataplane acceleration | Kubernetes extensions to support multiple network interfaces per POD with DPDK and SR-IOV acceleration |
| 2 | Deterministic<br>Performances                            | Kubernetes with EPA<br>(Enhanced Platform<br>Awareness) support  | Kubernetes extensions to support customized CPU pinning policies and huge pages                        |
| 3 | Custom<br>scheduler                                      | Extended<br>Kubernetes<br>scheduling                             | Extension of Kubernetes scheduling to support new metrics (ex. Network)                                |
| 4 | SFC support                                              | Kubernetes with service function chaining                        | Kubernetes extensions enabling service function chaining for NFV                                       |



| # | VNF requirement                                          | Enhancement                                                      | description                                                                                            |
|---|----------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 1 | Multi-network<br>support & data<br>plane<br>acceleration | Kubernetes with multi network support and dataplane acceleration | Kubernetes extensions to support multiple network interfaces per POD with DPDK and SR-IOV acceleration |
| 2 | Deterministic<br>Performances                            | Kubernetes with EPA<br>(Enhanced Platform<br>Awareness) support  | Kubernetes extensions to support customized CPU pinning policies and huge pages                        |
| 3 | Custom<br>scheduler                                      | Extended<br>Kubernetes<br>scheduling                             | Extension of Kubernetes scheduling to support new metrics (e.g. Network)                               |
| 4 | SFC support                                              | Kubernetes with<br>service function<br>chaining                  | Kubernetes extensions enabling service function chaining for NFV                                       |



| # | VNF requirement                                          | Enhancement                                                      | description                                                                                                  |
|---|----------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 1 | Multi-network<br>support & data<br>plane<br>acceleration | Kubernetes with multi network support and dataplane acceleration | Kubernetes extensions to support multiple<br>network interfaces per POD with DPDK and<br>SR-IOV acceleration |
| 2 | Deterministic<br>Performances                            | Kubernetes with EPA<br>(Enhanced Platform<br>Awareness) support  | Kubernetes extensions to support customized CPU pinning policies and huge pages                              |
| 3 | Custom<br>scheduler                                      | Extended<br>Kubernetes<br>scheduling                             | Extension of Kubernetes scheduling to support new metrics (ex. Network)                                      |
| 4 | SFC support                                              | Kubernetes with service function chaining                        | Kubernetes extensions enabling service function chaining for NFV                                             |



# ZDD for Ultra Agile 5G



### "Release Management"



brange restricted - 11

Orange restricted - 30



### Legacy pipeline







#### How much does it take?

# -;0;-

#### Enablers to reach ZDD:

- Docker containers
- Orchestration (Rancher,Swarm, Kubernetes...) // PaaS
- Chain automation (CI / CD)
- DevOps oriented
- Micro-services
- Stateless components
- -> ZDD-native application



# UGW release 3: micro-services based



#### Control plane:

- a set of docker containers running in Kubernetes pods
- orchestrated as micro-services

Initial focus on S/P-GW-C decomposition:

- stateless funtions: front-end, forward-path
- contexts DB





### ZDD - WEF



- (1) Alice attach via Core control network (control plane signaling)
- (2) Alice trafic routed toward Internet (user plane forwarding)
- (3) Bob attach via Core control network
- (4) S/PGW-C forward path function issue: forwarding path rules are wrong due to a bug in SPGW-C id management Thus, Bob trafic cannot be routed Alice traffic is not impacted
- (5) S/PGW-C bug isolated and corrected The new forward path pod is deployed to replace the previous version one's (ZDD)
- (6) Bob user traffic is now routed thanks to the new rules updated by the S/PGW-C foward path pod







# 5G End-to-End Open-Source Network

### 5G End to End Open-Source Mobile Network

### Plug'in













5G End to End Open-Source Mobile Network





Plug'in



#### Tasks

- Using Cloudify
- Writing the lifecycle ops
- Driving the kubernetes cluster

- Packaging OAI and FlexRAN
- Deploying the K8S cluster
- Managing the network UEs





# Thank you

