Announcements:

- The Lecture Recordings will be available on the following YouTube Playlists Link:

https://youtube.com/playlist?list=PLZaTmV9UMKlgYpo2cAiMaEWxqyvbiXDFd

Stable Matching

References:

Algorithm Design - Chapter 1 section 1

Review Exercise/In class quiz from previous class

- Prove that $1+1\cdot 2+1\cdot 2\cdot 3+\cdots+1\cdot 2\cdot 3\cdot ...\cdot n$ is $\Theta(n!)$.

$$1 + 1 \cdot 2 + 1 \cdot 2 \cdot 3 + \dots + 1 \cdot 2 \cdot 3 \cdot \dots \cdot n = 1! + 2! + 3! + \dots + n!$$

To show $1! + 2! + 3! + \cdots + n! = O(n!)$:

If you have $1! + 2! + 3! + \cdots + n! \le n! + n! + n! + \cdots + n! = n \cdot n!$, which c = n,

then c is not constant. It doesn't work.

Instead, you can do $1! + 2! + 3! + \dots + n! \le (n-1)! + (n-1)! + \dots + (n-1)! + n!$

$$=(n-1)(n-1)!+n! \le n(n-1)!+n!=n!+n!=2\cdot n!$$
, then you have $c=2,n_0=1$.

To show $1! + 2! + 3! + \dots + n! = \Omega(n!)$, you want to have $1! + 2! + 3! + \dots + n! \ge c \cdot n!$. $1! + 2! + 3! + \dots + n! \ge n!$, for c = 1 and $n_0 = 1$.

We have shown that $1!+2!+3!+\cdots+n!$ is both O(n!) and $\Omega(n!)$, thus, $1!+2!+3!+\cdots+n!$ is O(n!).

- Solve for x and y in the following system of equations:

$$\begin{cases} 2^{\left(\frac{\log_2 y^3}{3}\right)} + 4^{\left(\log_2 \sqrt{x}\right)} = 8 \\ 8^{\left(\log_4(x^{2/3})\right)} \cdot 9^{\left(\log_3 \sqrt{y}\right)} = 15 \end{cases}$$

$$2^{\left(\frac{\log_2 y^3}{3}\right)} + 4^{\left(\log_2 \sqrt{x}\right)} = 2^{\left(\frac{3 \cdot \log_2 y}{3}\right)} + 4^{\left(\frac{1}{2} \cdot \log_2 x\right)} = 2^{\left(\log_2 y\right)} + \left(4^{\frac{1}{2}}\right)^{\log_2 x} = y + 2^{\log_2 x} = y + x = 8$$

$$8^{\left(\log_4(x^{2/3})\right)} \cdot 9^{\left(\log_3 \sqrt{y}\right)} = 8^{\left(\frac{2}{3} \cdot \log_4 x\right)} \cdot 9^{\left(\frac{1}{2} \cdot \log_3 y\right)} = \left(8^{\frac{2}{3}}\right)^{\log_4 x} \cdot \left(9^{\frac{1}{2}}\right)^{\log_3 y} = 4^{\log_4 x} \cdot 3^{\log_3 y} = x \cdot y = 15$$
To solve for x and y :
$$\begin{cases} x = 3 \\ y = 5 \end{cases} \text{ or } \begin{cases} x = 5 \\ y = 3 \end{cases}$$

Stable Matching Problem

- Consider the job market:
 - o Employers have job openings to fill.
 - o Applicants apply to the job openings.
- After a round of interviews:
 - o Every employer has ranked applicants based on qualifications.
 - o Every applicant has ranked employers based on preferences.
- After a round of job offers and acceptances, we ask the question.
- Is there a **stable** matching?
 - o Every employer prefers every one of its accepted applicants, over every other applicant who was not received an offer.
 - o Every applicant prefers the current employer over every other employer who has made an offer.
- In the stable matching problem,
 - o while every applicant can accept only one job,
 - o an employer may have many jobs, and
 - o there may not be a job for every applicant.

- To eliminate complications caused by asymmetries:
 - o n applicants apply to n employers, and
 - o each employer accepts only one single applicant.
- In the marriage problem we want to arrange n marriages for n men and n women who want to get married.

Stable Marriage Problem

- Input: A list of n men, $\{m_1,m_2,\dots,m_n\}$, and n women, $\{w_1,w_2,\dots,w_n\}$.
 - Preference ordering on the other set
 - 1) For every man m_i , list of n women in decreasing order of preference. $m_i = \{w_7, w_3, w_{10}, ..., w_n, ..., w_6\}$.
 - 2) Similarly, for every woman w_i , list of n women in decreasing order of preference. $w_i = \{m_9, m_3, m_n, ..., m_5\}$.
 - o Input size: $2n^2 = O(n^2)$
- Output: A perfect matching pairing of n men and n women such that every man is paired with exactly one woman.
 - o Example: Given m_1, m_2, m_3 and w_1, w_2, w_3 , a matching could be $\{(m_1, w_2), (m_2, w_1), (m_3, w_3)\}.$
 - o Number of possible matching: n!
 - n = 3: 6 matchings
- Given $M = \{m_1, m_2, ..., m_n\}$ and $W = \{w_1, w_2, ..., w_n\}$.

The set of all possible pairs $M \times W = \{(m, w) \mid m \in M, w \in W\}$.

A $\underline{matching}$ is a subset of $M \times W$ such that each $m \in M$ and each $w \in W$ appear at most once.

A <u>perfect matching</u> is a matching such that each $m \in M$ and each $w \in W$ appear exactly once.

- When is a matching stable in the marriage problem?
 - o A matching is stable if it has no unstable pairing.
 - o An unstable pairing is a man-woman pair (m, w) such that
 - lacktriangledown and w are not matched together.
 - lacktriangledown m prefers w to his currently matched woman.
 - lacktriangledown w prefers m to his currently matched man.

Example of Stable Matching

Men's Preference				
	$1^{ m st}$	2 nd	3 rd	
m_1	W_3	W_2	w_1	
m_2	w_1	W_3	W_2	
m_3	w_1	W_2	W_3	

Women's Preference			
	$1^{ m st}$	2^{nd}	3 rd
w_1	m_2	m_3	m_1
w_2	m_1	m_2	m_3
W_3	m_1	m_2	m_3

- o Is the matching $\{(m_1, w_2), (m_2, w_3), (m_3, w_1)\}$ stable? No! (m_1, w_3) and (m_2, w_1) are unstable pairs.
- o Is the matching $\{(m_1, w_3), (m_2, w_1), (m_3, w_2)\}$ stable? Yes, it's stable.
- How do we find the stable matching?
 - o Brute force: 1) List all matchings
 - 2) Check if any of them are stable
 - Runtime will be at least n! time, which approximately n^n , exponential growth, not polynomial, which consider not efficient.

- o Gale-Shapley Algorithm
 - A more efficient algorithm with $O(n^2)$ runtime.
- Gale-Shapley Algorithm Pseudocode [Algorithm Design, page 6]
 - o Initially all $m \in M$ and $w \in W$ are free

While there is a man m who is free and hasn't proposed to every woman

Choose such a man m

Let w be the highest-ranked woman in m^\prime s preference list to whom m has not yet proposed

If w is free then

(m, w) become engaged

Else w is currently engaged to m

If w prefers m' to m then

m remains free

Else w prefers m to m'

(m, w) become engaged

m' becomes free

Endif

Endif

Endwhile

Return the set S of engaged pairs

- Description of the G-S algorithm (Men propose, women reject):
 - o Runs in rounds
 - Round 1 every man proposes to his top choice. What might happen?
 - A woman might not have any offer (no man proposes to her).
 - A woman has a man propose to her, then she will temporarily engage with the man.
 - A woman can get multiple offers, in this case, she will choose her favor among the offers.
 - Round 1 every woman who received a propose temporarily engages herself to her most preferred among those that proposed. Reject the other proposals.
 - Round 2 Rejected men propose to second best choice.
 - If a previously free woman gets an offer(s), she gets proposed.
 - If an engaged woman gets a better offer, she breaks her previous engagement, and gets engaged to the new best.
 - And so on (Repeat Round 2) ... until no proposals made in a round

Example of Running G-S algorithm

Men's Preference				
	$1^{\rm st}$	2 nd	3 rd	
m_1	w_3	W_2	w_1	
m_2	w_1	W_3	w_2	
m_3	w_1	w_2	W_3	

Women's Preference				
	$1^{\rm st}$	2 nd	3 rd	
w_1	m_2	m_3	m_1	
w_2	m_1	m_2	m_3	
w_3	m_1	m_2	m_3	

- Round 1: m_1 proposes to w_3 , both m_2 and m_3 propose to w_1 .

 w_1 gets two offers, she will engage with m_2 , her top choice, and reject m_3 .

 w_2 will be free, since no man proposes to her.

 w_3 gets only one offer from m_1 so she will engage with m_1 .

- After Round 1: We have $(m_1, w_3), (m_2, w_1), m_3$ being rejected, and w_2 is free.
- Round 2: m_3 will propose to w_2 , his second choice, and w_2 is free, so they will engage.
- After Round 2, everyone is engaged, no more proposal needs to make.
- So, we have the matching $(m_1, w_3), (m_2, w_1), (m_3, w_2)$.

Analysis of the G-S algorithm

- Does the program always terminate?
- Does it return a perfect matching?
- Is the matching stable?
- The Gale-Shapley algorithm looks simple, but it is not obvious that the returned set of pairs is a stable matching.
- Consider the viewpoint of a woman during the algorithm:
 - o If free, a woman accepts the first proposal.
 - o If engaged, then an additional proposal is accepted only if the man is ranked higher in the list of preferences.
 - o After the first proposal, a woman stays engaged.
- A woman ends up engaged to the highest ranked man, highest ranked of all men who proposed to her.
- Consider the viewpoint of a man during the algorithm:
 - o A man remains free until a proposal made to his highest ranked woman (who he has not yet proposed to) is accepted.
 - o Once engaged, a man may become free again.
- During the running of the algorithm, the ranking of women in the preference list of the man who proposes gets worse.
- [Theorem] For n men and n women, the G-S algorithm terminates after at most n^2 iterations in the loop. Proof:
 - o At each round, at least one new proposal is made.

 If there is no new proposal, the algorithm will stop.
 - o The same proposal cannot be made twice, since the men propose to the women by going down the preference list, and each woman is listed only once in their lists.
 - o There are n^2 possible pairs. Therefore, the algorithm will terminate in n^2 rounds.
- [Lemma] If a man is free at some point in the execution of the algorithm, then there is a woman to whom he has not yet proposed. Proof by contradiction:
 - o Assume a man is free and has already proposed to every woman.
 - o Recall the analysis from the viewpoint of a woman:
 - once a woman has been proposed to, she is no longer free;
 - either she stays in her current engagement or becomes engaged to the man who proposed if that man is higher in her ranking.
 - o The assumption implies then that all n women are engaged, and since each woman is paired only with one man, all n men must be engaged.
 - o This leads to a contradiction, so the assumption is false.

What to expect or prepare for the next class:

- We will finish up the analysis of G-S algorithm. Shown that the G-S algorithm will always return a stable matching.
- Think about whom will the G-S algorithm be in favor of?

Reading Assignment

Algorithm Design: 1.1

Suggested Problems

- Algorithm Design - Chapter 1 - 1,2

Assignment/Project [5 %]

- Implement the the G-S algorithm.

Men's Preference				
	1 st	2 nd	3 rd	4 th
m_1	<i>w</i> ₂	<i>w</i> ₃	w_4	w_1
m_2	w_1	w_4	w_2	w_3
m_3	w_1	w_3	w_4	w_2
m_4	w_2	w_1	w_3	w_4

Women's Preference				
	1 st	2 nd	3 rd	4 th
w_1	m_1	m_3	m_2	m_4
w_2	m_2	m_1	m_4	m_3
w_3	m_1	m_3	m_2	m_4
w_4	m_4	m_1	m_3	m_2

- 1) Run this example on your program, show evolution of each round.
- 2) Run this example again with the roles of men and women swapped (women propose, mem reject), show evolution of each round.
- 3) Compare your result in part (1) and (2).

Submission instruction:

- 1) You can implement the algorithm in any language you prefer.
- 2) I will suggest you put your code, comments, and answer to above questions on a Jupyter Notebook. However, it's nor mandatory. You can have also sent the coding file with your implementation and answer the questions in email.
- 3) You will submit your work via email with the subject "CS323 GS algorithm". Please sent the email from your school email to xinying.chyn@qc.cuny.edu.
- 4) In the email, please include the following:
 - a. explanation of how do your program import input.
 - b. outputs of the about example for part (1) and (2)
 - c. Your answer to part (3).
 - d. the coding file with your implementation.
- 5) It's due Friday, February 18, 2022. No late submission.