UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

ANÁLISIS MATEMÁTICO III (ejemplo)

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: **Séptimo u octavo**

CLAVE: **0011**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Análisis Matemático II, Álgebra Mo-

derna I y Variable Compleja I.

SERIACIÓN INDICATIVA SUBSECUENTE: Análisis Matemático IV.

OBJETIVO(S): Que el alumno conozca las nociones de espacios de Banach, espacios de Hilbert y espacios topológicos vectoriales y los principales resultados del área.

NILLY TIOD AC	TAME A DEG TENT (TICAG
NUM. HORAS	UNIDADES TEMÁTICAS
5	1. Espacios topológicos vectoriales
	1.1 Subespacio, espacio cociente, funcionales lineales, hiperplano.
	Operadores lineales.
10	2. Conjuntos convexos y funcionales convexas
	2.1 El teorema de Hahn-Banach y separación de conjuntos convexos.
	Funcional de Minkowski.
5	3. Seminormas y espacios localmente convexos
5	4. Espacios normados vectoriales
	4.1 Criterio de normabilidad. Espacios normados de dimensión finita.
5	5. Espacios duales y topologías débiles
	5.1 Espacios normados reflexivos.
10	6. Espacios de Banach
	6.1 El principio de acotabilidad uniforme.
10	7. Los teoremas de función abierta y de gráfica cerrada
	7.1 Aplicaciones.
15	8. Espacios de Hilbert
	8.1 Ortogonalidad y bases. Ortogonalizacón. Caracterización de es-
	pacios de Hilbert.

15	9. Teorema de Riesz-Fisher
	9.1 Teorema sobre el isomorfismo.

BIBLIOGRAFÍA BÁSICA:

- 1. Taylor, A.E., Lay, D.C. *Introduction to Functional Analysis*, Florida: Krieger Publishing Company, 1980.
- 2. Kolmogorov, A.N., Fomin, S.V. Introductory Real Analysis, New York: Dover, 1970.
- 3. Schecheter, M. *Principles of Functional Analysis*, Providence, Rhode Island: American Mathematical Society, 2002.
- 4. Rudin, W. Functional Analysis, New York: McGraw-Hill, 1973.

BIBLIOGRAFÍA COMPLEMENTARIA:

1. Zeidler, E., Nonlinear Functional Analysis and its Applications, New York: Springer Verlag, 1993.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.