- Simulation avec biais, α = 0.1
- Initialisation : $\mathbf{w} \leftarrow [0, 0], b = 0.5$
- Paire $(\mathbf{x}_1, \mathbf{y}_1)$:
 - \uparrow $h(\mathbf{x}_1) = Threshold(\mathbf{w} \cdot \mathbf{x}_1 + b) = Threshold(0.5) = 1$
 - puisque $h(\mathbf{x}_1) = y_1$, on ne fait pas de mise à jour de w et b

 $D_{
m entra \hat{i} nement}^{
m ensemble}$

Xt	y t
[2,0]	1
[0,3]	0
[3,0]	0
[1,1]	1

- Simulation avec biais, $\alpha = 0.1$
- Valeur courante : $\mathbf{w} \leftarrow [0, 0], b = 0.5$
- Paire $(\mathbf{x}_2, \mathbf{y}_2)$:
 - \uparrow $h(\mathbf{x}_2) = Threshold(\mathbf{w} \cdot \mathbf{x}_2 + b) = Threshold(0.5) = 1$
 - puisque $h(\mathbf{x}_2) \neq y_2$, on met à jour w et b

»
$$\mathbf{w}$$
 ← \mathbf{w} + α (y_2 - $h(\mathbf{x}_2)$) \mathbf{x}_2 = [0, 0] + 0.1 * (0 – 1) [0, 3] = [0, -0.3]

»
$$b \leftarrow b + \alpha (y_2 - h(x_2)) = 0.5 + 0.1 (0 - 1) = 0.4$$

$D^{ m ensemble}_{ m entraînement}$

Xt	y t
[2,0]	1
[0,3]	0
[3,0]	0
[1,1]	1

- Simulation avec biais, $\alpha = 0.1$
- Valeur courante : $\mathbf{w} \leftarrow [0, -0.3], b = 0.4$
- Paire (\mathbf{x}_3, y_3) :
 - \uparrow $h(\mathbf{x}_3) = Threshold(\mathbf{w} \cdot \mathbf{x}_3 + b) = Threshold(0.4) = 1$
 - puisque $h(\mathbf{x}_3) \neq y_3$, on met à jour w et b

»
$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (y_3 - h(\mathbf{x}_3)) \mathbf{x}_3 = [0, -0.3] + 0.1 * (0 − 1) [3, 0] = [-0.3, -0.3]$$

»
$$b \leftarrow b + \alpha (y_3 - h(x_3)) = 0.4 + 0.1 (0 - 1) = 0.3$$

$D^{ m ensemble}_{ m entraînement}$

Xt	y t
[2,0]	1
[0,3]	0
[3,0]	0
[1,1]	1

- Simulation avec biais, $\alpha = 0.1$
- Valeur courante : $\mathbf{w} \leftarrow [-0.3, -0.3], b = 0.3$
- Paire $(\mathbf{x}_{4}, \mathbf{y}_{4})$:
 - $h(\mathbf{x}_A) = Threshold(\mathbf{w} \cdot \mathbf{x}_A + b) = Threshold(-0.3) = 0$
 - puisque $h(\mathbf{x}_4) \neq y_4$, on met à jour **w** et b
 - » $\mathbf{w} \leftarrow \mathbf{w} + \alpha (y_4 h(\mathbf{x}_4)) \mathbf{x}_4 = [-0.3, -0.3] + 0.1 * (1 − 0) [1, 1] = [-0.2, -0.2]$

$$b \leftarrow b + \alpha (y_A - h(x_A)) = 0.3 + 0.1 (1 - 0) = 0.4$$

$D^{ m ensemble}_{ m entraînement}$

Xt	y t
[2,0]	1
[0,3]	0
[3,0]	0
[1,1]	1

- Simulation **avec biais**, $\alpha = 0.1$
- Valeur courante : $\mathbf{w} \leftarrow [-0.2, -0.2], b = 0.4$
- Et ainsi de suite, jusqu'à l'atteinte d'un critère d'arrêt...

D ensemble entraînement

Xt	y t
[2,0]	1
[0,3]	0
[3,0]	0
[1,1]	1