

BT2201 Finance Project

Seah Ding Xuan A0240134X

Chen Jia Wei A0233484A

Leng Jin De Joel A0234179Y

Chong Wai Sheen A0239605B

Zenden Leong Wee Teng A0234553H

Table of contents

01 ETF Details

- Choices of ETFs
- Expense ratio, Coverage
- Holdings

o3 Performance against market

- Performance of 3 portfolios
- Market Benchmark

O2 Overview of 3 Portfolios

 Low, Medium and High risks

04 Appendix

- Portfolio Construction Process
- Backtesting

01

ETF Details

Considerations: Expense Ratio, Coverage, Holdings

ETF	Benchmark	Expense Ratio/%	Sector	Region	Major Holdings
AGG US	Bloomberg US Aggregate	0.03	Bond	US	BlackRock Funds, US Treasury Notes
SCHP	Bloomberg US Treasury Inflation Protected Notes (TIPS)	0.05	Bond	US	US Treasury Notes
VCSH	Bloomberg US Corporate	0.04	Corporate Bonds	Global Developed Markets	US Dollar, Boeing Company, Apple Inc., Bank of America Corporation
BNDX	Bloomberg Global Aggregate x USD Float Adjusted RIC Capped	0.07	Bond	Global	Japan, France, Germany, Italy government bonds
vwob	Bloomberg USD Emerging Markets Govt. RIC Capped Bond	0.20	Bond	Global Emerging markets	Qatar, Saudi Arabia, Indonesia
1306 JT	Topix Gross Total Return Index	0.04	Mid/Small Cap	Japan	Toyota Motor Corp, Sony Corp, Softbank Group Corp

Considerations: Expense Ratio, Coverage, Holdings

ETF	Benchmark	Expense Ratio/%	Sector	Region	Major Holdings
VOO US	S&P 500	0.03%	Large Cap	US	APPL, MSFT, AMZN, TSLA
vo us	CRSP US Mid Cap	0.04	Mid- Cap	US	Palo Alto Networks, Pioneer Natural Resources Company
VSS	FTSE Global ex Small Cap Net Tax(US RIC) Index	0.07	Large/Mid- Cap/ Small	Global	US Dollar, Vanguard Cash Management, First Quantum Minerals
VGK	FTSE Developed Europe All Cap Net Tax(US RIC) Index	0.08	Large-Cap	Europe	Nestle SA, Roche Holding AG, Novartis AG
vwo	FTSE Custom Emerging Markets All Cap China A Inclusion Net Tax (US RIC)	0.08	Large-Cap	Global Emerging Markets	Taiwan SemiConductor, Tencent Holdings, Alibaba
1343 JT	TSE REIT Index	0.12	REITS	Japan	Nippon Building Fund, Japan REIT Group, Japan Metropolitan Fund Inv.

Considerations: Expense Ratio, Coverage, Holdings

ETF	Benchmark	Expense Ratio/%	Sector	Region	Major Holdings
VNQ US	MSCI US Investable Market Real Estate 25/50	0.12	REIT	US	Vanguard Real Estate II Index Fund, Prologis Inc, American Tower Corporation
VNQI US	S&P Global ex-US Property Index	0.12	Large/Mid- Cap REITS	Global	Vonovia SE, Goodman Group, Mitsui Fudosan Co. , Mitsubishi Estate Company
IAU US	LBMA Gold Price PM	0.25	Commodity	-	Gold
ВСІ	Aberdeen Bloomberg All Commodity ETF	0.25	Commodity	Global	Gold FUTR, Crude Future, Natural Gas Future, Corn Future

02

Overview of Portfolios

Low Risk

Bonds: 67% Equities: 9%

Gold &

Commodities: 24%

Low Risk Portfolio

Annual expected returns	Volatility	Sharpe Ratio	
5.75%	0.105	0.535	

Medium Risk

Bonds: 46.9% Equities: 27.1%

Gold &

Commodities:

26%

Medium Risk Portfolio

Annual expected returns	Volatility	Sharpe Ratio	
8.08%	0.129	0.613	

High Risk

Bonds: 5% Equities: 71.4%

Gold &

Commodities:

23.6%

High Risk Portfolio

Annual expected returns	Volatility	Sharpe Ratio	
11.0%	0.193	0.562	

03

Performance against market

Market Performance

Annual expected returns	Volatility	Sharpe Ratio
6.23%	0.106	0.576

Benchmark against market portfolio

Comparing returns

Comparing volatility

Low Risk Portfolio Beta

```
Call:
lm(formula = minvarreturns ~ testfull$mkt)
Residuals:
     Min
               10 Median 30
                                          Max
-0.119500 -0.049629 -0.000753 0.026188 0.143857
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.01368 0.02096 0.653 0.523298
testfull$mkt 0.70426 0.17471 4.031 0.000967 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 0.07601 on 16 degrees of freedom
Multiple R-squared: 0.5039, Adjusted R-squared: 0.4728
F-statistic: 16.25 on 1 and 16 DF, p-value: 0.000967
```

High Risk Portfolio Beta

```
Call:
lm(formula = maxreturnreturns ~ testfull$mkt)
Residuals:
    Min
            10 Median
                            3Q
                                   Max
-0.13054 -0.06385 -0.01047 0.05356 0.19994
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.008447 0.024979 0.338
                                      0.74
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 0.09059 on 16 degrees of freedom
Multiple R-squared: 0.7932, Adjusted R-squared: 0.7803
F-statistic: 61.38 on 1 and 16 DF, p-value: 7.268e-07
```

Medium Risk Portfolio Beta

```
Call:
lm(formula = tangencyreturns ~ testfull$mkt)
Residuals:
    Min
             10 Median
                              30
                                      Max
-0.11401 -0.04355 -0.01559 0.03040 0.16617
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                       0.02261 0.908
            0.02053
                                         0.377
(Intercept)
                       0.18847 5.136 9.95e-05 ***
testfull$mkt 0.96806
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 0.082 on 16 degrees of freedom
Multiple R-squared: 0.6225, Adjusted R-squared: 0.5989
F-statistic: 26.38 on 1 and 16 DF, p-value: 9.95e-05
```

Comparing Sharpe Ratios

O4 Appendix

- Data cleaning and manipulation
 - To account for the exchange rate JPYUSD changes, taking into consideration that there are US ETFs in the portfolio, we mutated the daily returns of each US ETF through the equation:

Currency Accounted returns = (1+daily returns)*(1+JPYUSD returns) - 1

o To manipulate our data for portfolio optimisation in R, we then converted our returns into an time series object, which then allowed us to find the yearly geometric returns for each ETF in the portfolio.

```
rf AGG US Equity SCHP US Equity
2001-12-31 0.06649724 0.0001463167
                                     0.101706546
                                                     0.08935238
2002-12-31 -0.11215371 0.0005551092 -0.005226801
                                                     0.05171745
2003-12-31 0.16839124 0.0004120871 -0.061233960
                                                    -0.02156482
2004-12-31 0.09251594 0.0003751140 -0.006588657
                                                     0.03815481
2005-12-30 0.12074471 0.0004121510
                                     0.173296013
                                                     0.17990141
2006-12-29 0.11611596 0.0021551581 0.050515771
                                                     0.01529592
          VCSH US Equity BNDX US Equity VWOB US Equity 1306 JT Equity
              0.19959965
                             0.10717871
                                            0.14101733
                                                           0.01176471
2001-12-31
2002-12-31
             -0.05108981
                            -0.03598708
                                            0.02820919
                                                          -0.17829457
2003-12-31
              -0.11686321
                            -0.07552222
                                            0.13680720
                                                           0.25613208
2004-12-31
              -0.00628774
                             0.00752676
                                                           0.10918137
                                            0.07004455
2005-12-30
              0.35373079
                             0.20949474
                                            0.27083002
                                                           0.45315277
2006-12-29
              0.02659136
                             0.04341680
                                            0.11486169
                                                           0.03127730
          VOO US Equity VO US Equity VSS US Equity VGK US Equity
2001-12-31
              0.2188594
                           0.2992020
                                         0.1800537
                                                       0.2047633
2002-12-31
              -0.2971264
                          -0.2286476
                                        -0.1603647
                                                      -0.2736456
2003-12-31
              0.1613335
                           0.2239772
                                         0.4681771
                                                       0.2214153
2004-12-31
              0.0612918
                           0.1493192
                                                       0.1279667
                                         0.2445964
2005-12-30
              0.2036238
                           0.3075809
                                         0.4433798
                                                       0.2532602
              0.1706475
                           0.1519765
                                         0.2124201
                                                       0.3454118
2006-12-29
          VWO US Equity 1343 JT Equity VNO US Equity VNOI US Equity
                            -0.0748600
2001-12-31
              0.3974656
                                          0.15557763
                                                         0.14672958
2002-12-31
              -0.1513569
                             0.2739261
                                         -0.06486847
                                                        -0.08918043
2003-12-31
              0.4064956
                             0.1637695
                                          0.23425166
                                                         0.31111881
2004-12-31
              0.2061741
                             0.3197815
                                          0.25572406
                                                         0.33428380
2005-12-30
              0.5231878
                             0.1208753
                                          0.28431062
                                                         0.34327039
2006-12-29
               0.3080363
                             0.2899283
                                          0.36802756
                                                         0.46793148
```

- Portfolio construction and optimisation
 - We ran individual regression to obtain individual β_{OLS} of each ETF and find the respective μ_{CAPM} and total risk.
 - \circ By having our μ_{CAPM} and total risk we are then able to obtain our weights for the portfolio.

$$w*=f(\mu,\Sigma)$$

- From the equation, we can use the covariance matrix and the μ_{CAPM} to find the weights of our portfolio. However, inspecting the covariance matrix led us to find that some of the ETF returns are highly correlated to each other, making determinant of the matrix to be equal to 0, thus making it non invertible. This prevents us from finding reasonable weights using w*=f(μ , Σ). Thus, we added constraints to include all the ETFs provided.
- This was done through the use of the R packages PerformanceAnalytics and fPortfolio.

- Portfolio construction and optimisation
 - To form our 3 portfolios, we sought for points along the efficient frontier.
 - These are the points which gave the minimum variance portfolio, the tangency portfolio and the maximum returns portfolio.
 - o In order to maximise diversification, we have set minimum weights for each ETF in the portfolio to be 1%.
 - Diversification is done to minimise idiosyncratic risk.
 - Ideally, the portfolio constructed should only be left with its systematic risk.
 - Hence, the investor will be compensated with higher return for every unit of risk taken on.

Efficient Frontier

Efficient Frontier

Min Variance Portfolio

```
Title:
MV Minimum Variance Portfolio
 Estimator:
                    covEstimator
                   solveRauadproa
 Solver:
Optimize:
                    minRisk
 Constraints:
                    minW maxW
Portfolio Weights:
AGG US Equity SCHP US Equity VCSH US Equity BNDX US Equity
        0.2500
                       0.1674
                                      0.0100
                                                    0.2126
VWOB US Equity 1306 JT Equity VOO US Equity
                                              VO US Equity
        0.0100
                       0.0100
                                     0.0100
                                                     0.0100
 VSS US Equity VGK US Equity VWO US Equity 1343 JT Equity
       0.0100
                       0.0100
                                     0.0100
                                                     0.0100
 VNQ US Equity VNQI US Equity IAU US Equity BCI US Equity
        0.0100
                       0.0100
                                      0.2500
                                                     0 0100
Covariance Risk Budgets:
AGG US Equity SCHP US Equity VCSH US Equity BNDX US Equity
        0.2020
                       0.1553
                                      0.0179
                                                     0.1973
VWOB US Equity 1306 JT Equity VOO US Equity
                                              VO US Equity
        0.0129
                       0.0146
                                      0.0189
                                                     0.0209
VSS US Equity VGK US Equity VWO US Equity 1343 JT Equity
       0.0211
                       0.0201
                                     0.0237
                                                    0.0132
VNO US Equity VNOI US Equity IAU US Equity BCI US Equity
       0.0195
                       0.0225
                                      0.2257
                                                    0.0143
Target Returns and Risks:
          Cov
               CVaR
0.0620 0.0964 0.1777 0.0365
```

Tangency Portfolio

```
Title:
MV Tangency Portfolio
Estimator:
                    covEstimator
 Solver:
                    solveRquadproq
Optimize:
                    minRisk
Constraints:
                    minW maxW
Portfolio Weights:
AGG US Equity SCHP US Equity VCSH US Equity BNDX US Equity
        0.0671
                      0.2500
                                      0.0100
                                                    0.0100
VWOB US Equity 1306 JT Equity VOO US Equity
                                              VO US Equity
                      0.0100
                                     0.0100
                                                    0.0572
        0.1622
VSS US Equity VGK US Equity VWO US Equity 1343 JT Equity
                      0.0100
        0.0100
                                     0.0100
                                                    0.1135
VNQ US Equity VNQI US Equity IAU US Equity BCI US Equity
       0.0100
                      0.0100
                                     0.2500
                                                    0.0100
Covariance Risk Budgets:
AGG US Equity SCHP US Equity VCSH US Equity BNDX US Equity
        0.0395
                      0.1803
                                     0.0133
                                                    0.0068
VWOB US Equity 1306 JT Equity VOO US Equity
                                              VO US Equity
       0.1779
                      0.0125
                                     0.0159
                                                    0.1029
VSS US Equity VGK US Equity VWO US Equity 1343 JT Equity
                      0.0176
        0.0195
                                     0.0211
                                                    0.1542
VNQ US Equity VNQI US Equity IAU US Equity BCI US Equity
        0.0174
                      0.0206
                                      0.1880
                                                    0.0127
Target Returns and Risks:
          Cov CVaR
0.0796 0.1173 0.2544 0.0382
```

Max Returns Portfolio

```
Title:
MV Return Maximized Efficient Portfolio
 Estimator:
                    covEstimator
 Solver:
                   solveRquadproq
Optimize:
                   minRisk
Constraints:
                   minW maxW
Portfolio Weights:
AGG US Equity SCHP US Equity VCSH US Equity BNDX US Equity
       0.0100
                       0.0100
                                     0.0100
                                                    0.0100
VWOB US Equity 1306 JT Equity VOO US Equity
                                             VO US Equity
                      0.0100
                                     0.0100
                                                    0.2500
       0.0410
VSS US Equity VGK US Equity VWO US Equity 1343 JT Equity
                      0.0100
       0.0100
                                     0.0365
                                                    0.1195
VNQ US Equity VNQI US Equity IAU US Equity BCI US Equity
       0.2029
                      0.0100
                                     0.2500
                                                    0.0100
Covariance Risk Budgets:
AGG US Equity SCHP US Equity VCSH US Equity BNDX US Equity
       0.0038
                      0.0045
                                     0.0087
                                                    0.0044
VWOB US Equity 1306 JT Equity VOO US Equity
                                             VO US Equity
       0.0298
                      0.0094
                                     0.0121
                                                    0.3385
VSS US Equity VGK US Equity VWO US Equity 1343 JT Equity
                      0.0130
       0.0143
                                     0.0529
                                                    0.1166
VNO US Equity VNQI US Equity IAU US Equity BCI US Equity
       0.2648
                      0.0145
                                     0.1042
                                                    0.0084
Target Returns and Risks:
         Cov CVaR
0.1100 0.1710 0.3690 0.0631
```

Portfolio backtesting

- For our data we have split it into T1 (from 2001 2018) and T2 (from 2018 2021). Using our portfolio weights we ran it with our in-sample data T1.
- Thereafter, using the expected returns as of 2018, we forecasted it for the next three years (2018 2021) to obtain predicted cumulative returns.
- By running our weights against the out-of-sample data T2, we would then obtain the actual cumulative returns from 2018 - 2021.
- Hence, by comparing the cumulative returns from the actual and the predicted, we are able to determine the performance of our portfolio models.
- Judging from the performance of our portfolio models, we would then rebalance our portfolios against the in-sample data T1 and repeat the backtesting process.

Backtesting of High Risk Portfolio

Backtesting of Medium Risk Portfolio

Backtesting of Low Risk Portfolio

Thank you

