car_viz.R

radon

2021-09-22

```
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.1
## -- Attaching packages ------ tidyverse 1.3.1 --
## v ggplot2 3.3.5
                     v purrr
                              0.3.4
## v tibble 3.1.3
                   v dplyr
                              1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
          2.0.1
## v readr
                    v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.1
## Warning: package 'tidyr' was built under R version 4.1.1
## Warning: package 'readr' was built under R version 4.1.1
## Warning: package 'purrr' was built under R version 4.1.1
## Warning: package 'dplyr' was built under R version 4.1.1
## Warning: package 'forcats' was built under R version 4.1.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
#package needs to be installed on someone's local machine in order for this to work
# call built-in data mtcars.
data(mtcars)
# Select only car models where mpg<20
mtcars_mpg2 <- mtcars[mtcars$mpg < 20,]</pre>
nrow(mtcars_mpg2)
## [1] 18
#We learned that there are 18 cars where mpg is <20
# Reduce the variables to mpg, cyl, disp, hp, gears
mtcars_mpg2 <- mtcars_mpg2[, c(1,2,3,4,10)]
# read the R file hand functions. R so that it can be used
# notice that with echo = TRUE
source(file = "hand_functions.R", echo = TRUE)
```

```
## > sum_special <- function(df_x) {</pre>
         try(if (!is.data.frame(df_x))
## +
## +
             stop("Input data must be a data frame."))
         sp_means <- apply(df_ .... [TRUNCATED]</pre>
## +
# Now use the function from hand_functions.R
#Need to make sure this is also in the project file for this to run
sp_out <- sum_special(mtcars_mpg2)</pre>
sp_out
## $sp_means
                     cyl
                               disp
                                            hp
                                                     gear
         mpg
              7.555556 313.811111 191.944444
##
   15.900000
                                                 3.44444
##
## $sp_var
##
                         cyl
                                     disp
                                                    hp
            mpg
                                                                gear
##
      7.5258824
                   0.7320261 9438.7645752 3253.5849673
                                                           0.6143791
##
## $sp_cov
##
                                                              gear
                 mpg
                            cyl
                                      disp
                                                   hp
## mpg
           7.5258824 -1.3176471 -188.79529 -75.81176
                                                        0.6352941
         -1.3176471 0.7320261
                                             28.44444 -0.2614379
## cyl
                                  64.71111
## disp -188.7952941 64.7111111 9438.76458 2679.60065 -34.1934641
         -75.8117647 28.4444444 2679.60065 3253.58497 15.2026144
          0.6352941 -0.2614379 -34.19346
                                             15.20261
                                                        0.6143791
## gear
##
## $sp_cor
##
                          cyl
                                    disp
                                                 hp
               mpg
        1.0000000 -0.5613802 -0.7083614 -0.4844811 0.2954459
## mpg
## cyl -0.5613802 1.0000000 0.7784989 0.5828450 -0.3898406
## disp -0.7083614 0.7784989 1.0000000 0.4835389 -0.4490217
        -0.4844811 0.5828450 0.4835389 1.0000000 0.3400314
## gear 0.2954459 -0.3898406 -0.4490217 0.3400314 1.0000000
#The highest positively correlated variables are disp and cyl
#library(esquisse)
#esquisser(data = mtcars_mpg2, viewer = "browser")
#This will also not work if someone doesn't have esquisse installed
ggplot(mtcars_mpg2) +
  aes(x = disp, y = mpg) +
  geom_point(shape = "bullet", size = 4L, colour = "#B22222") +
  geom_smooth(span = 0.5) +
 theme_minimal()
```



```
#mpg seems to trend downward as disp increases.

# note that this boxplot cannot be made with esquisse() unless
# the data is adjusted. What adjustment is needed?

ggplot(mtcars_mpg2, aes(x=as.factor(cyl), y=mpg)) +
   geom_boxplot(fill="slateblue", alpha=0.2) +
   xlab("cyl")
```


#cylinders needs to be treated as a factor for this to work in esquisse

#In order for the pdfs and the htmls to be created, someone would need to hit file, knit and select htm