Data Structures Programming Project #2

The Fifth-generation (5G) Network

- Enhance mobile broadband (EMBB)
- Massive machine type communications (MMTC)
- Ultra-reliable and low latency communications (URLLC)

 Enhanced Mobile Broadband

The Fifth-generation (5G) Network

- New Radio (NR): flexible frame structure with multi-numerology technology
- Adjustable subcarrier spacing (SCS) and transmission time interval (TTI)

New Radio Numerologies

Basic Unit (BU) in NR

• A rectangle of 15 kHz x 0.0625 ms

Multi-numerology in NR

Various types of rectangles (16 BUs)

Similar to Sorting Function in Diablo 2...

Users in 5G networks

• Each user has a set of candidate shapes due to the quality of service (QoS) requirement

For example,

a request for video streaming: 2 x 8, and 1 x 16

a request for V2V transmission: 16×1 , 8×2 , and 4×4

System Model & Problem Formulation

- Given:
- The wireless transmission resource (frequency, time)
- Users, each of which has a set of candidate shapes
- Goal: maximize the number of accepted requests
- Constraints: No request shares BUs with others

Programming Project #2: 2D Resource Allocation Problem with NR

• Input:

• An $X \times Y$ resource:, e.g., 16×32

Programming Project #2: 2D Resource Allocation Problem with NR

• Input:

- An $X \times Y$ resource:, e.g., 16×32
- User, each of which has a set of candidate shapes e.g., 2×8 and 1×16

• Procedure:

- Accept or reject each SD request
- Choose a shape for each accepted user
- Put the shapes of accepted users into the resource without overlap

Output:

- The accepted users, their shapes, and shapes' positions
- The grade is proportional to the number of accepted users

The Competition

- The grade is proportional to # accepted users
- Basic: 60 (deadline)
 - A baseline solution (see the following pages)
- Performance ranking (decided after the deadline)
 - [0%, 30%) (bottom): +0
 - [30%, 50%): + 5
 - [50%, 75%): + 10
 - [75%, 85%): + 15
 - \bullet [85%, 90%): + 20
 - [90%, 95%): + 25
 - [95%, 100%] (top): + 30
- Homework assistant (superb deadline)
 - $\bullet + 10$

The Competition

- Basic: 75
 - A baselii
- Performa
 - [0%, 509
 - [50%, 75]
 - [75%, 90
 - [90%, 95
 - [95%, 10
- Homework
 - +10

The Competition

- Basic: 75
 - A baselii
- Performa
 - [0%, 509
 - [50%, 75]
 - [75%, 90
 - [90%, 95
 - [95%, 10
- Homework
 - +10

The Baseline Algorithm (這方法很爛)

- Sequentially set each user's shape to the first candidate shape
- E.g., 2 x 8, and 1 x 16 choose the first one, so 2 x 8
- Sequentially put the users' shapes on the bottom from the left (0, 0) to the right (31, 0) (see the example in the next page)

Input Sample: use scanf

Format:

ResourceX ResourceY #Users
UserID CandidateShape1 Candidate

UserID CandidateShape1 CandidateShape2 ...

16 32 5

0 4x4 2x8

1 1x16

2 8x2 4x4 2x8

3 2x8 1x16

4 16x1 8x2 4x4 2x8 1x16

Output Sample: use printf

Format:

#AcceptedUsers

UserID UsedShape PositionX PositioinY

. . .

Ex:

5

 $0 \ 4x4 \ 0 \ 0$

1 1x16 4 0

2 8x2 20 0

3 2x8 22 0

4 16x1 30 0

The solution is generated by the baseline \rightarrow You can design your algorithm to beat it

Note

- Superb deadline: 11/1 Tue (adjust?)
- Deadline: 11/8 Tue (adjust?)
- Pass the test of our online judge platform
- Submit your code to E-course2
- Demonstrate your code remotely with TA
- C Source code (i.e., only .c)
- Show a good programming style