Integrales triples

- Sea una función $f:\mathbb{R}^3 \to \mathbb{R}$ f(x,y,z) definida en una caja rectangular V=[a;b]x[c;d]x[r;s].
- Dividimos V en pequeñas cajas rectangulares como se muestra en la figura y evaluamos la función en un punto arbitrario.

• Formamos los productos $f(x_i^*, y_j^*, z_k^*) \Delta x_i \Delta y_j \Delta z_k$

• Se suman esos productos $\sum_{k=1}^r \sum_{i=1}^n \sum_{j=1}^m f(x_i^*, y_j^*, z_k^*) \Delta x_i \Delta y_j \Delta z_k$

• Se toma límite

$$\lim_{\substack{n \to +\infty \\ m \to +\infty}} \sum_{k=1}^{r} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i^*, y_j^*, z_k^*) \Delta x_i \Delta y_j \Delta z_k$$

Definición de integral triple

Sea f: $\mathbb{R}^3 \to \mathbb{R}$ una función definida sobre un paralepípedo V. La integral triple de f sobre V se define como

$$\lim_{\substack{n \to +\infty \\ m \to +\infty}} \sum_{k=1}^{r} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i^*, y_j^*, z_k^*) \Delta x_i \Delta y_j \Delta z_k$$

si este límite existe y se denota:

dV Diferencial de volumen

$$\iiint\limits_V f(x,y,z) dx dy dz$$

Observaciones

- La continuidad de f es una condición suficiente para la existencia de la integral triple.
- El límite existe también para muchas funciones discontinuas.
- Vale el teorema de Fubbini para el cálculo de la integral triple resolviendo tres integrales simples.
- Vale el teorema de cambio de variable.

Propiedades

Linealidad

• Si $D = D_1 \cup D_2$ unión disjunta, entonces

$$\iiint\limits_{D} f(x, y, z) dx dy dz = \iiint\limits_{D_{1}} f(x, y, z) dx dy dz + \iiint\limits_{D_{2}} f(x, y, z) dx dy dz$$

• Vol (D)= $\iiint_D 1 dx dy dz$

Cálculo en regiones de cualquier tipo

REGIONES TIPO I

• $z_1(x,y) \le z \le z_2(x,y)$, $(x,y) \in D_{xy}$

$$\iiint\limits_{V} f(x,y,z)dxdydz = \iint\limits_{D_{xy}} dxdy \int\limits_{Z_{1}(x,y)}^{Z_{2}(x,y)} f(x,y,z)dz$$

REGIONES TIPO II

• $y_1(x,z) \le y \le y_2(x,z)$, $(x,z) \in D_{xz}$

$$\iiint\limits_V f(x,y,z)dxdydz = \iint\limits_{D_{xz}} dxdz \int\limits_{y_1(x,z)}^{y_2(x,z)} f(x,y,z)dy$$

REGIONES TIPO III

• $x_1(y,z) \le x \le x_2(y,z)$, $(y,z) \in D_{yz}$

$$\iiint\limits_{V} f(x,y,z)dxdydz = \iint\limits_{D_{yz}} dydz \int\limits_{x_{1}(y,z)}^{x_{2}(y,z)} f(x,y,z)dx$$

 $\iiint_E^{\square} 6xydV$ donde E está bajo el plano z=1+x+y y arriba de la región del plano xy limitada por las curvas y= \sqrt{x} , y=0,x=1

12) Calcule mediante integrales triples el volumen del cuerpo H, usando el sistema de coordenadas que crea más conveniente.

b)
$$H = \{(x,y,z) \in \mathbb{R}^3 / x + y + z \le 6 \land z \ge x + y \land x \ge 0 \land y \ge 0\}$$

e)
$$H = \{(x,y,z) \in \mathbb{R}^3 / z \ge x^2 \land x \ge z^2 \land x \ge |y| \}.$$

h) *H* definido por $x^2 + 2y^2 + z \le 32$, $z \ge x^2$.

Cambio de Variables

Recordamos que:

$$\iiint\limits_E f(x;y;z)dxdydz = \iiint\limits_{E^*} f[x(u;v;w);y(u;v;w);z(u;v;w)]|J|dudvdw$$

siendo:
$$|J| = \begin{vmatrix} x'_{u} & x'_{v} & x'_{w} \\ y'_{u} & y'_{v} & y'_{w} \\ z'_{u} & z'_{v} & z'_{w} \end{vmatrix}$$

Obs: Las hipótesis del teorema son similares a las de integrales dobles

Coordenadas cilíndricas

- ρ es la distancia de O a Q. Es un número real positivo o cero.
- ϕ es el ángulo que forma \overrightarrow{OQ} con el semieje positivo de las x. " $\phi \in [0, 2\pi)$ "
- Las fórmulas del pasaje son:

$$x = \rho \cos \phi$$

 $y = \rho \sin \phi$
 $z = z$

Jacobiano para coordenadas cilíndricas

$$\bullet |J_T| = \begin{vmatrix} x'_{\rho} & x'_{\varphi} & x'_{z} \\ y'_{\rho} & y'_{\varphi} & y'_{z} \\ z'_{\rho} & z'_{\varphi} & z'_{z} \end{vmatrix} \text{ con } \begin{cases} x = \rho \cdot cos\varphi \\ y = \rho \cdot sen\varphi \\ z = z \end{cases}$$

$$\bullet |J_T| = \begin{vmatrix} \cos\varphi & -\rho \cdot \sin\varphi & 0 \\ \sin\varphi & \rho \cdot \cos\varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \cdot (\rho \cdot \cos^2\varphi + \rho \cdot \sin^2\varphi) = \rho$$

•
$$\left| \iiint_{E} F(x; y; z) dx dy dz = \iiint_{E^{*}} F(\rho \cdot \cos \varphi; \rho \cdot \sin \varphi; z) \cdot \rho d\rho d\varphi dz \right|$$

 $\iiint_E x dV$ donde E está definido por el paraboloide $4y^2+4z^2 \le x \le 4$

D definido por:
$$x^2 + y^2 - 6 \le z \le \sqrt{x^2 + y^2}$$

- 12) Calcule mediante integrales triples el volumen del cuerpo H, usando el sistema de coordenadas que crea más conveniente.
- f) H definido por $x^2 + z^2 \le 9$, $y \ge 2x$, $y \le 2x + 4$.
- g) *H* definido por $y \ge x^2$, $x^2 + y^2 \le 2$, $z \ge 0$, $z \le x$.
- h) *H* definido por $x^2 + 2y^2 + z \le 32$, $z \ge x^2$.

Coordenadas esféricas

- $r \in \mathbb{R}_0^+$ es la distancia entre el centro de coordenadas y el punto P
- λ es el ángulo que forma el semieje positivo de las z con el radio vector ($\lambda \in [0,\pi]$)
- ϕ es el ángulo que forma el semieje positivo de las x con la proyección de r sobre el plano xy, ($\phi \in [0,2\pi)$).

1º) en el triángulo rectángulo cuya hipotenusa es r, planteamos:

$$cos\lambda = \frac{z}{r} \Longrightarrow z = r \cdot cos\lambda$$

$$sen\lambda = \frac{\rho}{r} \Longrightarrow \rho = r \cdot sen\lambda$$

 2°) en el triángulo cuya hipotenusa es ρ , planteamos:

$$cos\varphi = \frac{x}{\rho} \Longrightarrow x = \rho \cdot cos\varphi$$

 $sen\varphi = \frac{y}{\rho} \Longrightarrow y = \rho \cdot sen\varphi$

$$sen \varphi = \frac{y}{\rho} \Longrightarrow y = \rho \cdot sen \varphi$$

• Reemplazamos $\rho = r \cdot sen\lambda$ en $x = \rho \cdot cos\phi$ y en $y = \rho \cdot sen\phi$

Obtenemos:

$$\begin{cases} x = r \cdot sen\lambda \cdot cos\varphi \\ y = r \cdot sen\lambda \cdot sen\varphi \\ z = r \cdot cos\lambda \end{cases}$$

• $T(r; \varphi; \lambda) = (r \cdot sen\lambda \cdot cos\varphi; r \cdot sen\lambda \cdot sen\varphi; r \cdot cos\lambda)$

Ahora armamos el jacobiano:

•
$$J = \begin{vmatrix} x'_r & x'_{\varphi} & x'_{\lambda} \\ y'_r & y'_{\varphi} & y'_{\lambda} \\ z'_r & z'_{\varphi} & z'_{\lambda} \end{vmatrix} \Longrightarrow \begin{cases} x = r \cdot sen\lambda \cdot cos\varphi \\ y = r \cdot sen\lambda \cdot sen\varphi \\ z = r \cdot cos\lambda \end{cases}$$

$$|J| = r^2 \cdot sen\lambda$$

12) Calcule mediante integrales triples el volumen del cuerpo *H*, usando el sistema de coordenadas que crea más conveniente.

d) *H* definido por $z \ge \sqrt{x^2 + y^2}$, $x^2 + y^2 + z^2 \le 2a^2$ con a > 0.

Aplicaciones físicas

Masa de un sólido:

$$M = \iiint_D \delta(x, y, z) dV$$

Momentos estáticos

$$S_{xy} = \iiint_{D} z \delta(x, y, z) dV$$

$$S_{xz} = \iiint_{D} y \delta(x, y, z) dV$$

$$S_{yz} = \iiint_{D} x \delta(x, y, z) dV$$

• Coordenadas del centro de masa:

$$x_{cm} = \frac{\mathsf{S}_{\mathsf{yz}}}{M}$$
 $y_{cm} = \frac{\mathsf{S}_{\mathsf{xz}}}{M}$ $z_{cm} = \frac{\mathsf{S}_{\mathsf{xy}}}{M}$

Momento de inercia de un sólido

$$J_{x} = \iiint_{D} (y^{2} + z^{2}) \delta(x, y, z) dV$$

$$J_{y} = \iiint_{D} (x^{2} + z^{2}) \delta(x, y, z) dV$$

$$J_z = \iiint_D (x^2 + y^2) \delta(x, y, z) dV$$

- 17) Calcule la masa de los siguiente cuerpos:
 - a) Cuerpo limitado por $z = 4 x^2 y^2$, $z = 8 2x^2 2y^2$ si la densidad en cada punto es proporcional a la distancia desde el punto al eje z.