Assignment 1

- 1. Convert the following decimal number to equivalent binary numbers:
 - (a) $(652.2350)_{10}$
 - (b) $(6.25563)_{10}$

[for infinite fractional part, just do 4-5 steps]

- 2. Convert the following base number to equivalent base 5 numbers:
 - (a) $(45012)_7$
 - (b) (764.248)₉
 - (a) $(012012)_3$
 - (b) $(35.12304)_6$
- 3. Convert the following binary numbers to equivalent hexadecimal numbers:
 - (a) $(10101.01010100)_2$
 - (b) (11010001.1110101111)₂
 - (a) $(1011111101011)_2$
- 4. Convert the following binary numbers to equivalent octal numbers:
 - (q) (101010101010101)₂
 - (b) (1101011101.111010101011111)₂
 - (b) (11111.111010111)₂
- 5. Perform the following base conversions
 - (a) $(48A)_{13} = (?)_6$
 - (b) $(10110111)_7 = (?)_4$
 - (c) $(0011)_{BCD} = (?)_4$
 - (d) $(10011)_{10} = (?)_{Excess3}$
 - (e) $(110\ 0011)_{10} = (?)_{\text{Excess}7}$
- 6. Perform **addition**, **subtraction** and **multiplication** for the pair of following base-7 numbers. Verify your results by converting the problem into decimal.

645

566

- 7. Perform **addition**, **subtraction** and **multiplication** for the pair of following base-9 numbers. Verify your results by converting the problem into decimal. 623
 - 178
- 8.
- (a) $(01001010111111)_{2s} = (?)_{10}$
- (b) $(1010101000011)_{2s} = (?)_{10}$
- (c) $(010010101111)_{1s} = (?)_{10}$
- (d) $(111010101010101011)_{1s} = (?)_{10}$
- 9. Subtract 13 from 22 in 7 bits using 2's complement number system and justify whether there is an overflow or not.
- 10. Subtract 45 from 98 in 12 bits using 2's complement number system and justify whether there is an overflow or not.
- 11. Add 19 with 47 in 8 bits using 2's complement number system and justify whether there is an overflow or not.
- 12. Perform the following arithmetic operations using 13-bit two's complement and one's complement systems and justify if there is an overflow in each case.
 - a) 91- 499
 - b) 379 + 98