| GRADING PERIOD (PUT AN X TO THE LEFT OF THE SPECIFIC GRADING PERIOD) |                                      |  |         |   |          | MODE OF SUBMISSION (PUT AN X TO THE LEFT OF THE SPECIFIC MODE/S) |                       |   |                   |   |                     |       |                   |  |                  |
|----------------------------------------------------------------------|--------------------------------------|--|---------|---|----------|------------------------------------------------------------------|-----------------------|---|-------------------|---|---------------------|-------|-------------------|--|------------------|
|                                                                      | PRELIM                               |  | MIDTERM | X | PREFINAL |                                                                  | FINAL                 | Х | UPLOAD TO<br>eLMS | X | SUBMIT VIA<br>PAPER |       | MS TEAMS<br>ASGMT |  | OUTLOOK<br>EMAIL |
| NA                                                                   | NAME: Chris Furd Apuyan              |  |         |   |          |                                                                  | DATE: 05-04-25        |   |                   |   |                     | SCORE |                   |  |                  |
| BLOCK: BSCPE102A                                                     |                                      |  |         |   |          | STI COLLEGE LEGAZPI                                              |                       |   |                   |   |                     |       |                   |  |                  |
| AC                                                                   | ACTIVITY NAME: 05 Performance Task 1 |  |         |   |          |                                                                  | LESSON: Number Theory |   |                   |   |                     |       |                   |  |                  |

<sup>\*</sup>Multiple deductions and deductions of varying magnitude can be given by the instructor if deemed necessary

You may answer now on the space provided below:



|          | COLOR 1   | COLOR 2   | COLOR 3   | COLOR 4   | COLOR 5   |
|----------|-----------|-----------|-----------|-----------|-----------|
| HEX CODE | E96B17    | 4B6E8B    | 182863    | 631A31    | E8B751    |
| OCTAL    | 0351 0153 | 0113 0156 | 0030 0050 | 0143 0032 | 0350 0267 |
|          | 0027      | 0213      | 0143      | 0061      | 0121      |
| BINARY   | 11101001  | 01001011  | 00011000  | 01100011  | 11101000  |
|          | 01101011  | 01101110  | 00101000  | 00011010  | 10110111  |
|          | 00010111  | 10001011  | 01100011  | 00110001  | 01010001  |



1. Color: E96B17

Hex: E9 6B 17

B = 99 = 143

Octal: 0030 0050 0143

RGB: R=233, G=107, B=23

Binary:

R = 24 = 00011000 G = 40 = 00101000

B = 99 = 01100011

Binary: 00011000 00101000 01100011

Octal:

- 222 - 251

R = 233 = 351

G = 107 = 153

B = 23 = 027

Octal: 0351 0153 0027

4. Color: 631A31

Hex: 63 1A 31

Binary:

R = 233 = 11101001

G = 107 = 01101011

B = 23 = 00010111

Binary: 11101001 01101011 00010111

Octal:

R = 99 = 143

G = 26 = 032

2. Color: 4B6E8B

Hex: 4B 6E 8B

B = 49 = 061

Octal: 0143 0032 0061

RGB: R=99, G=26, B=49

RGB: R=75, G=110, B=139

Binary:

R = 99 = 01100011

R = 75 = 113

Octal:

G = 110 = 156

B = 139 = 213

B = 49 = 00110001

G = 26 = 00011010

Binary: 01100011 00011010 00110001

Octal: 0113 0156 0213

5. Color: E8B751

Hex: E8 B7 51

Binary:

R = 75 = 01001011

G = 110 = 01101110

B = 139 = 10001011

Octal:

R = 232 = 350

G = 183 = 267

3. Color: 182863

Binary: 01001011 01101110 10001011

B = 81 = 121

Hex: 18 28 63

Octal: 0350 0267 0121

RGB: R=232, G=183, B=81

RGB: R=24, G=40, B=99

Binary:

R = 232 = 11101000

Octal: G = 183 = 10110111

B = 81 = 01010001

G = 40 = 050

R = 24 = 030

Bihary: 1/1101000/10130101161010001

#### **EXTRA CREDIT ITEMS**

#### 1. GCD(18, 14, 12) vs GCD\[(18, 14), 12]

We'll compute GCD using the Euclidean Algorithm:

GCD(18, 14):

\* 18 mod 14 = 4

 $*14 \mod 4 = 2$ 

\*  $4 \mod 2 = 0 \rightarrow GCD = 2$ 

Now, GCD(2, 12):

\* 12 mod 2 =  $0 \rightarrow GCD = 2$ 

So,

\* GCD(18, 14, 12) = 2

\* GCD\[(18,14), 12] = 2

Observation: The order or grouping doesn'

t affect the result. GCD is associative.

# 2. LCM(8, 20, 14) vs LCM\[(8, 20), 14]

Use the formula:

 $LCM(a, b) = (a \times b) / GCD(a, b)$ 

\* First, LCM(8, 20):

\* GCD(8, 20) = 4

\* LCM = (8 × 20) / 4 = 160 / 4 = 40

\* Now, LCM(40, 14):

\* GCD(40, 14) = 2

\* LCM = (40 × 14) / 2 = 560 / 2 = 280

So,

\* LCM(8, 20, 14) = 280

\* LCM\[(8,20), 14] = 280

Observation: Like GCD, LCM is also associative.

3. Convert 111001112 to Hexadecimal

Group in 4s from right:

`11100111 → 1110 0111`

\* 1110 = E

\* 0111 = 7

## 4. Convert 5E<sub>16</sub> to Binary

Break into digits:

\* 5 = `0101`

\* E = `1110`

Answer: `01011110<sub>2</sub>`

### 5. Convert 10011112 to Octal

Group in 3s from right:

`1 001 111 → 001 001 111` (pad left with 0s)

\* 001 = 1

\* 001 = 1

\* 111 = 7

Answer\*\*: `117<sub>8</sub>`

### 6. Convert 745<sub>8</sub> to Binary

Each octal digit to 3-bit binary:

\*7 = `111`

\* 4 = `100`

\* 5 = `101`

Answer: `111100101<sub>2</sub>`

#### 7. Convert 6042<sub>8</sub> to Hexadecimal

Step 1: Convert each octal digit to 3-bit binary:

\* 6 = 110

\* 0 = 000

\* 4 = 100

\* 2 = 010

→ Combined: `110000100010`

Step 2: Group into 4s (from right):

`0001 1000 0100 010`

Pad left with zero to complete last group:

Answer: `E7<sub>16</sub>`



```
* 0001 = 1
```

\* 0010 = 2

Answer: `1842<sub>16</sub>`

# 8. Convert $C3A_{16}$ to Octal

Step 1: Hex to binary:

```
* C = 1100
```

\* 3 = 0011

\* A = 1010

→ `110000111010`

Step 2: Group into 3s:

`001 100 001 110 010` (pad left with zeros)

\* 001 = 1

\* 100 = 4

\* 001 = 1

\* 110 = 6

\* 010 = 2

Answer: `14162<sub>8</sub>`



<sup>\* 1000 = 8</sup>