EE 330 Lecture 34

- High Gain Amplifiers
- Current Source Biasing
- Current Sources and Mirrors

Review from Last Lecture

Basic Amplifier Gain Table

	CE/CS		CC/CD		CB/CG		CEWRE/CSWRS	
	BJT	MOS	BJT	MOS	BJT	MOS	BJT	MOS
	$v_{\rm in} \bigoplus_{c} v_{\rm out}$	v_{in}	$v_{\rm in}$	v_{in}	$v_{\rm in} \bigoplus_{i=1}^{\infty} \mathbb{R}_{\rm C}$	$v_{\rm in}$	v_{in}	$v_{\rm in}$
A _V	- g _m R _C		9m 9m + 9E		$g_{m}R_{C}$		$-\frac{R_C}{R_E}$	
	$-\frac{I_{CQ}R_{C}}{V_{t}}$	$-\frac{2I_{DQ}R_{D}}{V_{EB}}$	$\frac{I_{CQ}R_E}{I_{CQ}R_E + V_t}$	$\frac{2I_{DQ}R_{E}}{2I_{DQ}R_{E} + V_{EB}}$	$\frac{I_{CQ}R_{C}}{V_{t}}$	$\frac{2I_{DQ}R_{C}}{V_{EB}}$		
R _{in}	r _π		$r_{\pi} + \beta R_{E}$		9 _m -1		$r_{\pi} + \beta R_{E}$	
	$\frac{\beta V_t}{I_{CQ}}$	∞	$\beta\!\!\left(\!\frac{V_t}{I_{CQ}}\!+\!R_E\right)$	∞	$\frac{V_t}{I_{CQ}}$	$\frac{V_{\text{EB}}}{2I_{\text{DQ}}}$	$\beta \Biggl(\frac{V_t}{I_{CQ}} \! + \! R_E \Biggr)$	∞
R _{out}	R _C		g _m ⁻¹		R _C		R _C	
			$\frac{V_t}{I_{CQ}}$	V _{EB} 2l _{DQ}				

Can use these equations only when small signal circuit is EXACTLY like that shown !!

Review from Last Lecture

Cascaded Amplifier Analysis and Operation

Case 2: One or more stages are not unilateral

Standard two-port cascade

Analysis by creating new two-port of entire amplifier quite tedious because of the reverse-gain elements

➤ Right-to-left nested R_{inx},A_{vX} approach

- R_{inx} includes effects of all loading
- AV_X is the voltage ratio from input to output of a stage
- AV_x's include all loading
- Can not change any loading without recalculating everthing!

High-gain amplifier

This gain is very large (but realistic)!

And no design parameters affect the gain

But how can we make a current source?

High-gain amplifier

Same gain with both npn and pnp transistors

How can we build the ideal current source?

What is the small-signal model of an actual current source?

a "sinking" current source

Since I_X is independent of V_{DCS} , acts as an ideal current source (with this model)

Termed a "sinking" current source since current is pulled out of the load

If V_{XX} is available, each dc current source requires only one additional transistor!

Have several methods for generating V_{XX} from V_{DD} (see HW problems)

But for the npn high-gain amplifier considered need a sourcing current

But how good is this current "sink"?

a "sourcing" current source

Since I_X is independent of V_{DCS} , acts as an ideal current source (with this model)

Termed a "sourcing" current source since pushed into the load

If V_{XX} is available, each dc current source requires only one additional transistor!

Have several methods for generating V_{XX} from V_{DD} (see HW problems)

But how good is this current "source"?

a "sinking" current source

Since I_X is independent of V_{CCS} , acts as an ideal current source (with this model)

Termed a "sinking" current source since current is pulled out of the load

If V_{XX} is available, each dc current source requires only one additional transistor!

Have several methods for generating V_{XX} from V_{DD} (see HW problems)

But for the npn high-gain amplifier considered need a sourcing current

But how good is this current "sink"?

a "sourcing" current source

Since I_X is independent of V_{CCS} , acts as an ideal current source (with this model)

Termed a "sourcing" current source since pushed into the load

If V_{XX} is available, each dc current source requires only one additional transistor!

Have several methods for generating V_{XX} from V_{DD} (see HW problems)

But how good is this current "source"?

Before addressing the issue of how a current source is designed, will consider another circuit that uses current source biasing

The Basic Differential Amplifier

If A_V is large

Operational Amplifier (Op Amp)

Example: Determine the voltage gain of the following circuit

Since symmetric when $v_{\scriptscriptstyle {
m IN}}$ =0

$$I_{C1} = I_{C2} = \frac{I_{EE}}{2}$$

$$g_{m1} = g_{m2} = \frac{I_{EE}}{2V_{t}}$$

Determine the voltage gain of the Example: following circuit

$$v_{E}(g_{\pi 1} + g_{\pi 1}) = g_{\pi 1}v_{IN} + g_{m1}(v_{IN} - v_{E}) + g_{m2}(-v_{E})$$

$$v_{E}(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2}) = v_{IN}(g_{m1} + g_{\pi 1})$$

$$v_{E}(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2}) = v_{IN}(g_{m1} + g_{\pi 1})$$

$$v_{E}(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2}) = v_{IN}(g_{m1} + g_{\pi 1})$$

$$v_{E}(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2}) = v_{IN}(g_{m1} + g_{\pi 1})$$

$$V_E(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2}) = V_{IN}(g_{m1} + g_{\pi 1})$$

$$\mathbf{v}_{E} = \frac{(g_{m1} + g_{\pi 1})}{(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2})} \mathbf{v}_{IN}$$

$$\mathbf{v}_{OUT} = -R_{C1}g_{m1}\mathbf{v}_{IN} \left[1 - \frac{\left(g_{m1} + g_{\pi 1}\right)}{\left(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2}\right)} \right]$$

$$\mathbf{V}_{OUT} = -R_{C1}g_{m1}\mathbf{V}_{IN} \left[\frac{g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2} - (g_{m1} + g_{\pi 1})}{(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2})} \right]$$

Example: Determine the voltage gain of the following circuit

$$v_{OUT} = -R_{C1}g_{m1}v_{IN} \left[\frac{g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2} - (g_{m1} + g_{\pi 1})}{(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2})} \right]$$

$$v_{OUT} \cong -R_{C1}g_{m1}v_{IN} \left[\frac{g_{m2}}{(g_{m1} + g_{m2})} \right]$$

$$v_{OUT} \cong \left[\frac{-R_{C1}g_{m1}}{2} \right]v_{IN}$$

$$v_{OUT2} \cong \left[\frac{R_{C1}g_{m1}}{2} \right]v_{IN}$$

Differential amplifier

- Very useful circuit
- This is a basic Op Amp
- Uses a current source and V_{DD} for biasing (no biasing resistors or caps!)
- But needs a dc current source !!!!

But how good are these current sources?

Model of dc Current Source

"Reasonable dc Current Source"

 I_{XX} independent of V_1 and t, R_S large

Small-signal model of dc current source (since one-port)

want R_{IN} large

Ideal dc Current Source

I_{XX} independent of V₁ and t

Will show circuit in red behaves as a current source

R and Q_0 simply generate voltage V_{XX} in previous circuit

$$I_0 \cong \frac{\left(V_{CC}\text{-}0.6V\right)}{R}$$

If the base currents are neglected

$$I_0 \cong \frac{\left(V_{CC}\text{-}0.6V\right)}{R}$$

If the base currents are neglected

$$I_0 = J_S A_{E0} e^{\frac{V_{BE0}}{V_t}}$$
 $I_1 = J_S A_{E1} e^{\frac{V_{BE1}}{V_t}}$

since V_{BE1}=V_{BE2}

$$\mathbf{I}_{1} \cong \left(\frac{\mathsf{A}_{\mathsf{E}1}}{\mathsf{A}_{\mathsf{E}0}}\right) \mathbf{I}_{0} = \left(\frac{\mathsf{A}_{\mathsf{E}1}}{\mathsf{A}_{\mathsf{E}0}}\right) \frac{\mathsf{V}_{\mathsf{CC}} - 0.6\mathsf{V}}{\mathsf{R}}$$

Note I₁ is not a function of V₁

Behaves as a current sink! So is ideal with this model!!

And does not require an additional dc voltage source !!!

- Multiple Outputs Possible
- Can be built for sourcing or sinking currents
- Also useful as a current amplifier
- MOS counterparts work very well and are not plagued by base current

Two ways to look at this circuit:

- Q₀ and R bias Q₁
- R biases the Q₀: Q₁ block

Multiple-Output Bipolar Current Sink

$$\mathbf{I}_{k} = \left[\frac{\mathbf{A}_{Ek}}{\mathbf{A}_{E0}} \right] \mathbf{I}_{0}$$

Multiple-Output Bipolar Current Source

$$\mathbf{I}_{k} = \left[\frac{\mathbf{A}_{Ek}}{\mathbf{A}_{E0}} \right] \mathbf{I}_{0}$$

Multiple-Output Bipolar Current Source and Sink

$$I_{nk} = ? I_{pk} = ?$$

Multiple-Output Bipolar Current Source and Sink

$$I_{nk} = \left[\frac{A_{Enk}}{A_{E0}}\right]I_0 \qquad I_{pk} = \left[\frac{A_{En1}}{A_{E0}}\right] \left[\frac{A_{Epk}}{A_{Ep0}}\right]I_0$$

npn Current Mirror

$$\mathbf{I}_{\text{out}} = \left[\frac{\mathbf{A}_{\text{E1}}}{\mathbf{A}_{\text{E0}}} \right] \mathbf{I}_{\text{in}}$$

- Termed a "current mirror"
- Output current linearly dependent on lin
- Serves as a current amplifier
- Widely used circuit
 But I_{in} and I_{out} must be positive!

npn Current Mirror

$$\mathbf{I}_{\text{out}} = \left[\frac{\mathbf{A}_{\text{E1}}}{\mathbf{A}_{\text{E0}}} \right] \mathbf{I}_{\text{in}}$$

- Termed a "current mirror"
- Output current linearly dependent on lin
- Small-signal and large-signal relationships the same since linear
- Serves as a current amplifier
- Widely used circuit

But I_{in} must be positive!

npn current mirror amplifier

$$i_{\text{out}} = i$$

$$\begin{split} \frac{i_{\text{OUT}} + \text{MI}_{\text{BS}}}{i_{\text{in}} + \text{I}_{\text{BS}}} &= \text{M} \\ i_{\text{in}} + \text{I}_{\text{BS}} &= \text{M} \left(i_{\text{in}} + \text{I}_{\text{BS}} \right) \\ i_{\text{OUT}} + \text{MI}_{\text{BS}} &= \text{M} \left(i_{\text{in}} + \text{I}_{\text{BS}} \right) \\ \frac{i_{\text{OUT}}}{i_{\text{in}}} &= \text{M} \\ \frac{i_{\text{OUT}}}{i_{\text{in}}} &= \text{M} \\ \text{But I}_{\text{BS}} + i_{\text{in}} > 0 \end{split}$$

npn current mirror amplifier

$$i_{\text{out}} = \left[\frac{A_{\text{E1}}}{A_{\text{E0}}}\right] i_{\text{in}}$$

Amplifiers both positive and negative currents (provided i_{IN}>-I_{BS})

Current amplifiers are easy to build !!

Current gain can be accurately controlled with appropriate layout !!

$$I_{out} = ?$$

n-channel Current Mirror

$$I_{in} = \frac{\mu C_{OX} W_0}{2L_0} (V_{GS0} - V_{T0})^2$$

$$I_{out} = \frac{\mu C_{OX} W_1}{2L_1} (V_{GS1} - V_{T1})^2$$

If process parameters are matched, it follows that

$$I_{out} = \left[\frac{W_1}{W_0} \frac{L_0}{L_1} \right] I_{in}$$

- Current mirror gain <u>can</u> be accurately controlled!
- Layout is important to get accurate gain (for both MOS and BJT)

Current Sources/Mirrors Summary

npn Current Mirror

n-channel Current Mirror

$$I_{out} = \left[\frac{A_{E1}}{A_{E0}} \right] I_{in}$$

$$\mathbf{I}_{out} = \left[\frac{\mathbf{W}_1}{\mathbf{W}_0} \frac{\mathbf{L}_0}{\mathbf{L}_1} \right] \mathbf{I}_{in}$$

Layout of Current Mirrors

Example with M = 2

Standard layout

$$M = \left[\frac{W_2}{W_1} \frac{L_1}{L_2} \right]$$

$$\mathsf{M} = \left[\frac{\mathsf{W}_2 + 2\Delta\mathsf{W}}{\mathsf{W}_1 + 2\Delta\mathsf{W}} \bullet \frac{\mathsf{L}_1 + 2\Delta\mathsf{L}}{\mathsf{L}_2 + 2\Delta\mathsf{L}} \right]$$

$$\mathsf{M} = \left[\frac{2\mathsf{W}_1 + 2\Delta\mathsf{W}}{\mathsf{W}_1 + 2\Delta\mathsf{W}} \bullet \frac{\mathsf{L}_1 + 2\Delta\mathsf{L}}{\mathsf{L}_1 + 2\Delta\mathsf{L}} \right] \neq 2$$

Gate area after fabrication depicted

Layout of Current Mirrors

Example with M = 2

$$M = \left[\frac{W_2}{W_1} \frac{L_1}{L_2} \right]$$

$$M = \left[\frac{2W_1 + 2\Delta W}{W_1 + 2\Delta W} \bullet \frac{L_1 + 2\Delta L}{L_1 + 2\Delta L} \right] \neq 2$$

$$\mathsf{M} = \left[\frac{2\mathsf{W}_1 + 4\Delta\mathsf{W}}{\mathsf{W}_1 + 2\Delta\mathsf{W}} \bullet \frac{\mathsf{L}_1 + 2\Delta\mathsf{L}}{\mathsf{L}_1 + 2\Delta\mathsf{L}} \right] = 2$$

Better Layout

Layout of Current Mirrors

Example with M = 2

$$M = \left[\frac{W_2}{W_1} \frac{L_1}{L_2} \right]$$

$$\mathsf{M} = \left\lceil \frac{2\mathsf{W}_1 + 4\Delta\mathsf{W}}{\mathsf{W}_1 + 2\Delta\mathsf{W}} \bullet \frac{\mathsf{L}_1 + 2\Delta\mathsf{L}}{\mathsf{L}_1 + 2\Delta\mathsf{L}} \right\rceil = 2$$

$$\mathsf{M} = \left[\frac{2\mathsf{W}_1 + 4\Delta\mathsf{W}}{\mathsf{W}_1 + 2\Delta\mathsf{W}} \bullet \frac{\mathsf{L}_1 + 2\Delta\mathsf{L}}{\mathsf{L}_1 + 2\Delta\mathsf{L}} \right] = 2$$

This is termed a common-centroid layout

Even Better Layout

n-channel current mirror current amplifier

$$i_{\text{out}} = \left[\frac{W_2}{W_1} \frac{L_1}{L_2} \right] i_{\text{in}}$$

Amplifies both positive and negative currents

$$I_{k} = \left[\frac{W_{k}}{W_{0}} \frac{L_{0}}{L_{k}} \right] I_{0}$$

multiple sourcing and sinking current outputs

m and k may be different Often M=1

High-gain amplifier

How can we build the current source?

What is the small-signal model of an actual current source?

Basic Current Sources and Sinks

Bipolar Mirror-Based Current Sink

Bipolar Mirror-Based Current Source

Biasing circuit uses same V_{CC} as amplifier and no other independent sources

High-gain amplifier

- Bias circuitry requires only a single independent dc voltage source!
- Incremental overhead is only one transistor, Q_B

Basic Current Sources and Sinks

Basic Bipolar Current Sinks

Basic Bipolar Current Sources

- Very practical methods for biasing the BJTs (or MOSFETs) can be used
- Current Mirrors often used for generating sourcing and sinking currents
- Can think of biasing transistors with V_{XX} and V_{YY} in these current sources

End of Lecture 34