Suffix Trees and Applications

Philip Bille

Exact String Matching

- Input: Two strings over alphabet Σ .
 - A target $T[1 \dots n]$.
 - A pattern $P[1 \dots m]$.
- ullet Output all occurences of P in T.

Exact String Indexing

- Given a string $T[1\dots n]$ build a data structure (or index) for T supporting the operation:
- Occur($P[1 \dots m]$): Report all occurences (if any) of P in T.
- For simplicity assume that $\sigma = O(1)$.

Tries

- Membership problem: Build a data structure for a set of strings $S = \{S_1, \ldots, S_k\}$ supporting the following operation:
- Member($P[1 \dots m]$): Decide if $P \in S$.
- A trie is useful for retrieving this information.

Tries

- A trie for $S = \{S_1, \dots, S_k\}$ is a rooted tree R such that:
- ullet Each edge is labeled by a character from Σ .
- Child edges of a node have distinct labels.
- ullet R has k leaves each corresponding to a string in S.

Example

- Trie for $S = \{a, ca, cb\}$
- Member($P[1 \dots m]$): Search from top.
- $\bullet \mathsf{What \ about} \ S = \{a, c, ca, cb\}$

Tries

Concatenate each string with \$.

$$S = \{a\$, c\$, ca\$, cb\$\}$$

- No string in S is a prefix of another.
- I-to-I correspondance between leaves and S.

Constructing tries

- Let $S = \{S_1, \dots, S_k\}$.
- How do we build trie for S?
- Add one string at the time.
- To add S_i find the longest prefix of S_i in the current trie consisting of $\{S_1, \ldots, S_{i-1}\}$. Create a new branch representing the remaining part of S_i .

Complexity

- Let $|S| = \sum_{i=1}^k S_i$.
- Member($P[1 \dots m]$): O(m).
- ullet Preprocessing: O(|S|).
- Space: O(|S|).

Tries and string indexing

- Recall: Build index for $T[1 \dots n]$ supporting $\operatorname{Occur}(P[1 \dots m])$.
- ullet Preprocessing: Build trie R for $\{T[1..n], T[2..n], \ldots, T[n]\}$
- Leaf corresponding to T[i..n] is labeled i.
- Occur($P[1 \dots m]$): Find longest match for P in R. Report labels of all descendent leafs.

trie of suffixes for "cocoa"

Complexity

- Preprocessing: $O(n^2)$
- Space: $O(n^2)$
- Occur($P[1 \dots m]$):O(nm)
- Member is O(m).

Compressed tries

 Idea: Merge paths consiting of nodes with I child into a single node.

Compressed trie (or suffix tree) for "cocoa"

Suffix tree

- What is the size of the suffix tree:
- How many nodes and edges are in the suffix tree?
- How much space is needed for the edges?

Edge label compression for "cocoa" suffix tree

Complexity

- Occur($P[1 \dots m]$): O(m+z), where z is number of occurrences of P.
- Space: O(n)
- ullet Preprocessing: $O(n^2)$ using tries.
- Can be done in O(n) time.

- Let S be a string and R be the corresponding suffix tree.
- What the maximum height of R and when it this achieved?
- ullet What is the minimum height of R and when is this achieved?
- ullet What is the degree of the root of R?
- How can we use R find the length of the longest substring occurring more than once in S?

Applications

- String indexing.
- Exact set matching problem.
- Longest common substring.
- Frequent substring

Exact Set Matching

• Given a set of pattern strings $\{P_1,\ldots,P_k\}$ and a target $T[1\ldots n]$ find all occurrences of pattern strings in T.

Solution

- ullet Build suffix tree for T and lookup all patterns.
- Total time $O(n + \sum_{i=1}^{k} |P_i| + z)$, where the total number of occurrences is z.

Indexing multiple strings

- Suffix trees are useful for indexing a single string.
- How do we index multiple strings, e.g, a set of strings $S = \{S_1, \ldots, S_k\}$?

"Generalized" suffix trees

- A Generalized suffix tree for S is a compressed trie of the all suffixes of each string in S.
- Each leaf is labeled by a pair (i, j), where i indentifies the string and j is the start position in S_i .

Example

Figure 6.11: Generalized suffix tree for strings $S_1 = xabxa$ and $S_2 = babxba$. The first number at a leaf indicates the string; the second number indicates the starting position of the suffix in that string.

Construction

ullet Build a suffix tree R for string

$$C = S_1 \$_1 \cdots S_k \$_k$$

- Each leaf in R is labeled by a start position of C.
- Remove suffixes that "span" multiple strings.
- Convert leaf labels into (i, j) pairs.
- Total time O(|C|).

Longest common substring

- Given two strings S_1 and S_2 compute a longest common substring of S_1 and S_2 .
- Ex: Longest common substring of
 - S_1 = "superiorcalifornialives"
 - S_2 ="sealiver"
 - is "alive".

Solution

- I. Build generalized suffix tree for S_1 and S_2 .
- 2. Mark each internal node v by I (2) if the subtree below v contains a leaf for a suffix of $S_1(S_2)$.
- 3. Traverse tree to find a node u of maximal string-depth marked by I and 2.
 - \boldsymbol{u} correspond to a longest common substring.

Complexity

- Building the generalized suffix tree for S_1 and S_2 takes linear time.
- Step 2 and 3 can be implemented in linear time using a simple tree traversal. (exercise)

Frequent substrings

 How do we find frequent substrings in a set of string? I.e substrings that are common to many strings in the set.

Frequent substrings

- ullet Let $S = \{S_1, \dots, S_k\}$ be a set of strings
- Define l(i) for each $i=2,\ldots,k$ as the length of a longest substring that is common to at least i strings in S.
- The frequent substring problem is to compute l(i) for $i=2,\ldots,k$.

{sandollar, sandlot, handler, grand, pantry}

i	l(i)	substring
2	4	sand
3	3	and
4	3	and
5	2	an

Solution

- Compute generalized suffix tree R for S. Label each leaf with a number $1, \ldots, k$ indentifying the string.
- Compute the number of distinct string identifiers, C(v), that occur below each internal node v in R.

Solution

- With C(v)'s compute vector V(k) defined as the string depth of the deepest node such that C(v)=k.
- V(k) is the length of the longest string that occurs exactly k times.
- Finally, compute l(k) values from V(k).

Computing C(v)

- Compute for each internal node v a bitvector b[1..k] where b[i]=1 iff identifier of string i occurs in a leaf below v.
- Vector for v is computed by ORing the vectors of the child nodes v_1, \ldots, v_l .
- Time for v is O(lk).
- In total O(nk) time. How do we get C(v)?

More Applications

- Show how to find the longest palindrome in S.
- Preprocess two strings S_1 and S_2 such that longest common extension queries can be solved efficiently. Assume that a nearest common ancestor data structure is available.

Conclusion

- Suffix trees can be built in linear time and space.
- Provides fundamental data structure with a huge number of applications.