CÁLCULO AVANZADO

Departamento de Ingenería Mecánica Facultad Regional La Plata Universidad Tecnológica Nacional

Práctica: Unidad 1.

Tema: Introducción a la variable compleja.

Profesor Titular: Manuel Carlevaro. **Ayudante de Primera**: Christian Molina.

Ejercicio 1.

Mostrar que $i^2=-1$, $i^3=-i$, $i^4=1$, $i^5=i$, y 1/i=-i, $1/i^2=-1$, $1/i^3=i$ y $1/i^4=1$.

Ejercicio 2.

Multiplicar por i equivale geométricamente a rotar en sentido antihorario por $\pi/2$ (90°). Verificar graficando z y zi, y el ángulo de rotación, para z=1+i, z=-1+2i, z=4-3i.

Ejercicio 3.

Verificar las siguientes propiedades de los números complejos conjugados:

$$\overline{(z_1 + z_2)} = \overline{z_1} + \overline{z_2} \qquad \overline{(z_1 - z_2)} = \overline{z_1} - \overline{z_2}$$

$$\overline{(z_1 z_2)} = \overline{z_1} \ \overline{z_2} \qquad \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

para
$$z_1 = -11 + 10i$$
 y $z_2 = -1 + 4i$.

Ejercicio 4.

Expresar $\frac{3+5i}{7+9i}$ en la forma a+bi, donde $a \neq b$ son reales.

Ejercicio 5.

En términos del diagrama de Argand, describir la región de puntos definida por:

$$\begin{cases} |z - (1+i)| < 2\\ |z - 2i| > \frac{3}{2} \end{cases}$$

Ejercicio 6.

a) En términos del diagrama de Argand, describir el conjunto:

$$S = \{z: z = \cos t + i \sin t, 0 \leq t \leq \pi\}$$

b) Describir f(S) si f se define como $f(z)=z^2$.

Ejercicio 7.

Determinar el valor principal del argumento de $(1+i)^{20}$.

Ejercicio 8.

Encontrar y graficar en el plano complejo todas las raíces de $\sqrt[3]{i+i}$.

Ejercicio 9.

Determinar Re(f) e Im(f) para

$$f(z) = \frac{1}{1-z}$$

en z = 1 - i.

Ejercicio 10.

Del mismo modo que para las funciones de variable real, una función compleja de variable compleja es continua en $z=z_0$ si $f(z_0)$ está definida y

$$\lim_{z \to z_0} f(z) = f(z_0)$$

Determinar si f(z) es continua en z=0, si f(0)=0 y para $z\neq 0$ la función se define como

$$f(z) = \begin{cases} \frac{\text{Re}(z)}{1-|z|}, & z \neq 0\\ 0, & z = 0 \end{cases}$$

Ejercicio 11.

Si $f(z)=z^3$, escribir f en la forma u(x,y)+iv(x,y) y mostrar que u y v satisfacen las condiciones de Cauchy-Riemann.

Ejercicio 12.

Determinar si las funciones

a)
$$f(z) = e^{-2x}(\cos 2y - i \sin 2y)$$

b)
$$f(z) = \operatorname{Re}(z^2) - i\operatorname{Im}(z^2)$$

son analíticas.

Ejercicio 13.

Si u(x,y)=3x-2y+5, ¿cómo debe estar definida v(x,y) si u(x,y)+iv(x,y) debe ser analítica?

Ejercicio 14.

a) Calcular:

$$\int_0^{2i} z dz$$

b) Calcular:

$$\int_{0}^{2i} \bar{z} dz$$

primero a lo largo del segmento de línea C_1 que une 0 con 2i, y luego a lo largo de la curva C_2 , donde C_2 es la mitad derecha del círculo centrado en i con radio 1.

Ejercicio 15.

Explicar por qué la integral:

$$\int_{1}^{i} 2e^{2z} dz$$

no es ambigua, y encontrar el valor de esta integral.

Ejercicio 16.

Calcular:

$$\int_{1}^{i} \bar{z}^2 dz$$

a lo largo de las siguientes curvas C:

a) C es el segmento de línea que une 1 con i.

b)
$$C=\{z:z=e^{i\theta},\ 0\leq \theta\leq \frac{\pi}{2}\}$$
, es decir, C es el primer cuadrante del círculo $|z|=1$.

Ejercicio 17.

Sea $f(z)=(z-z_0)^m$, donde m es un entero y z_0 una constante. Integrar la función sobre una trayectoria circular C de radio ρ con centro en z_0 en sentido antihorario.

Ejercicio 18.

Suponga que $\lim_{n\to\infty} a_n = L_1$ y $\lim_{n\to\infty} a_n = L_2$. Probar que $L_1 = L_2$.

Ejercicio 19.

Sea f(z) definida por

$$f(z) = 1 - 2z + 3z^2 - 4z^3 + \dots = \sum_{n=0}^{\infty} (-1)^n (n+1)z^n$$

3

a) Encuentre el radio de convergencia de f.

b) Calcule $f(\frac{i}{12})$ con una precisión dada por un disco de radio 0.001.

c) Calcule $f'(\frac{i}{12})$ con una precisión de un dígito decimal.