6.096 – Algorithms for Computational Biology

Sequence Alignment and Dynamic Programming

Lecture 1 - Introduction

Lecture 2 - Hashing and BLAST

Lecture 3 - Combinatorial Motif Finding

Lecture 4 - Statistical Motif Finding

Challenges in Computational Biology

Comparing Genomes

Comparing two DNA sequences

- Given two possibly related strings S1 and S2
 - What is the longest common subsequence?

Edit distance:

•Number of changes needed for S1→S2

How can we compute best alignment

- Need scoring function:
 - Score(alignment) = Total cost of editing S1 into S2
 - Cost of mutation
 - Cost of insertion / deletion
 - Reward of match
- Need algorithm for inferring best alignment
 - Enumeration?
 - How would you do it?
 - How many alignments are there?

Why we need a smart algorithm

Ways to align two sequences of length m, n

$$\binom{n+m}{m} = \frac{(m+n)!}{(m!)^2} \approx \frac{2^{m+n}}{\sqrt{\pi \cdot m}}$$

For two sequences of length n

n	Enumeration	Today's lecture
10	184,756	100
20	1.40E+11	400
100	9.00E+58	10,000

Key insight: score is additive!

- Compute best alignment recursively
 - For a given split (i, j), the best alignment is:
 - Best alignment of S1[1..i] and S2[1..j]
 - + Best alignment of S1[i..n] and S2[j..m]

Key insight: re-use computation

Identical sub-problems! We can reuse our work!

Solution #1 – Memoization

- Create a big dictionary, indexed by aligned seqs
 - When you encounter a new pair of sequences
 - If it is in the dictionary:
 - Look up the solution
 - If it is not in the dictionary
 - Compute the solution
 - Insert the solution in the dictionary
- Ensures that there is no duplicated work
 - Only need to compute each sub-alignment once!

Top down approach

Solution #2 – Dynamic programming

- Create a big table, indexed by (i,j)
 - Fill it in from the beginning all the way till the end
 - You know that you'll need every subpart
 - Guaranteed to explore entire search space
- Ensures that there is no duplicated work
 - Only need to compute each sub-alignment once!
- Very simple computationally!

Bottom up approach

Key insight: Matrix representation of alignments

Goal:

Find best path through the matrix

Sequence alignment

Dynamic Programming
Global alignment

0. Setting up the scoring matrix

1. Allowing gaps in s

2. Allowing gaps in t

3. Allowing mismatches

4. Choosing optimal paths

5. Rewarding matches

Sequence alignment

Dynamic Programming
Global Alignment
Semi-Global

Semi-Global Motivation

Aligning the following sequences

```
CAGCACTTGGATTCTCGG

CAGC-----G-T----GG

VVVV-----V-V----VV = 8(1)+0(-1)+10(-2) = -12

• We might prefer the alignment

CAGCA-CTTGGATTCTCGG match mismatch gap

---CAGCGTGG------

---VV-VXVVV----- = 6(1)+1(-1)+12(-2) = -19
```

- New qualities sought, new scoring scheme designed
 - Intuitively, don't penalize "missing" end of the sequence
 - We'd like to model this intuition

Ignoring starting gaps

Ignoring trailing gaps

Using the new scoring scheme

With the old scoring scheme (all gaps count -2)

CAGCACTTGGATTCTCGG

CAGC----G-T----GG

$$VVVVV----V-V----VV = 8(1)+0(-1)+10(-2)+0(-0) = -12$$

Semi-global alignments

Applications:

- Finding a gene in a genome
- Aligning a read onto an assembly
- Finding the best alignment of a PCR primer
- Placing a marker onto a chromosome

These situations have in common

- One sequence is much shorter than the other
- Alignment should span the entire length of the smaller sequence
- No need to align the entire length of the longer sequence

In our scoring scheme we should

- Penalize end-gaps for subject sequence
- Do not penalize end-gaps for query sequence

Semi-Global Alignment

Sequence alignment

Dynamic Programming
Global Alignment
Semi-Global
Local Alignment

Intro to Local Alignments

- Statement of the problem
 - A local alignment of strings s and t
 is an alignment of a substring of s
 with a substring of t

- Definitions (reminder):
 - A substring consists of consecutive characters
 - A subsequence of s needs not be contiguous in s
- Naïve algorithm
 - Now that we know how to use dynamic programming
 - Take all $O((nm)^2)$, and run each alignment in O(nm) time
- Dynamic programming
 - By modifying our existing algorithms, we achieve O(mn)

Global Alignment

Local Alignment

Local Alignment issues

Resolving ambiguities

- When following arrows back, one can stop at any of the zero entries. Only stop when no arrow leaves. Longest.
- Correctness sketch by induction
 - Assume we've correctly aligned up to (i,j)
 - Consider the four cases of our max computation
 - By inductive hypothesis recurse on (i-1,j-1), (i-1,j), (i,j-1)
 - Base case: empty strings are suffixes aligned optimally
- Time analysis
 - O(mn) time
 - O(mn) space, can be brought to O(m+n)

Sequence alignment

Dynamic Programming
Global Alignment
Semi-Global
Local Alignment
Affine Gap Penalty

Scoring the gaps more accurately

Current model:

Gap of length n

incurs penalty n×d

However, gaps usually occur in bunches

Convex gap penalty function:

$$\gamma(n)$$
: for all n , $\gamma(n + 1) - \gamma(n) \le \gamma(n) - \gamma(n - 1)$

General gap dynamic programming

Initialization: same

Iteration:

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ \max_{k=0...i-1} F(k,j) - \gamma(i-k) \\ \max_{k=0...j-1} F(i,k) - \gamma(j-k) \end{cases}$$

Termination: same

Running Time: $O(N^2M)$ (assume N>M)

Space: O(NM)

Compromise: affine gaps

To compute optimal alignment,

At position i,j, need to "remember" best score if gap is open best score if gap is not open

- F(i, j): score of alignment $x_1...x_i$ to $y_1...y_j$ <u>if</u> x_i aligns to y_j
- G(i, j): score **if** x_i , or y_i , aligns to a gap

Motivation for affine gap penalty

Modeling evolution

- To introduce the first gap, a break must occur in DNA
- Multiple consecutive gaps likely to be introduced by the same evolutionary event. Once the break is made, it's relatively easy to make multiple insertions or deletions.
- Fixed cost for opening a gap: p+q
- Linear cost increment for increasing number of gaps: q

Affine gap cost function

- New gap function for length k: w(k) = p+q*k
- p+q is the cost of the first gap in a run
- q is the additional cost of each additional gap in same run

Additional Matrices

- The amount of state needed increases
 - In scoring a single entry in our matrix, we need remember an extra piece of information
 - Are we continuing a gap in s? (if not, start is more expensive)
 - Are we continuing a gap in t? (if not, start is more expensive)
 - Are we continuing from a match between s(i) and t(j)?
- Dynamic programming framework
 - We encode this information in three different states for each element (i,j) of our alignment. Use three matrices
 - a(i,j): best alignment of s[1..i] & t[1..j] that aligns s[i] with t[j]
 - b(i,j): best alignment of s[1..i] & t[1..j] that aligns gap with t[j]
 - c(i,j): best alignment of s[1..i] & t[1..j] that aligns s[i] with gap

Update rules

$$a(i, j) = score(s[i], t[j]) + \max$$

In s[j] and t[j] are aligned $a(i,j) = score(s[i],t[j]) + \max \begin{pmatrix} a(i-1,j-1) \\ b(i-1,j-1) \\ c(i-1,j-1) \end{pmatrix}$ Score can be different for each pair of chars

When t[j] aligns with a gap in s

$$b(i,j) = \max \begin{pmatrix} a(i,j-1) - (p+q) \\ b(i,j-1) - q \\ c(i,j-1) - (p+q) \end{pmatrix}$$
 starting a gap in s
 --- extending a gap in s
 Stopping a gap in t,

and starting one in s

When s[i] aligns with a gap in t

$$c(i, j) = \max \begin{cases} a(i-1, j) - (p+q) \\ c(i-1, j) - q \\ b(i-1, j) - (p+q) \end{cases}$$

Find maximum over all three arrays max(a[m,n],b[m,n],c[m,n]). Follow arrows back, skipping from matrix to matrix

Simplified rules

Transitions from b to c are not necessary...

...if the worst mismatch costs less than p+q

A--TGGTA

ACCGGTA

A-TGGTA

$$a(i, j) = score(s[i], t[j]) + \max$$

$$c(i-1, j-1)$$

When s[j] and t[j] are aligned $a(i,j) = score(s[i],t[j]) + \max \begin{pmatrix} a(i-1,j-1) \\ b(i-1,j-1) \\ c(i-1,j-1) \end{pmatrix}$ Score can be different for each pair of chars

When t[i] aligns with a gap in s

$$b(i,j) = \max \begin{pmatrix} a(i,j-1) - (p+q) \\ b(i,j-1) - q \end{pmatrix} \leftarrow \text{starting a gap in s}$$
 extending a gap in s

When s[i] aligns with a gap in t

$$c(i,j) = \max \begin{pmatrix} a(i-1,j) - (p+q) \\ c(i-1,j) - q \end{pmatrix}$$

General Gap Penalty

- Gap penalties are limited by the amount of state
 - Affine gap penalty: w(k) = k*p
 - State: Current index tells if in a gap or not
 - Linear gap penalty: $w(k) = p + q^*k$, where q < p
 - State: add binary value for each sequence: starting a gap or not
 - What about quadriatic: $w(k) = p+q*k+rk^2$.
 - State: needs to encode the length of the gap, which can be O(n)
 - To encode it we need O(log n) bits of information. Not feasible
 - What about a (mod 3) gap penalty for protein alignments
 - · Gaps of length divisible by 3 are penalized less: conserve frame
 - This is feasible, but requires more possible states
 - Possible states are: starting, mod 3=1, mod 3=2, mod 3=0

Sequence alignment

Dynamic Programming
Global Alignment
Semi-Global
Local Alignment
Linear Gap Penalty
Variations on the Theme

Dynamic Programming Versatility

Unified framework

- Dynamic programming algorithm. Local updates.
- Re-using past results in future computations.
- Memory usage optimizations

Tools in our disposition

- Global alignment: entire length of two orthologous genes
- Semi-global alignment: piece of a larger sequence aligned entirely
- Local alignment: two genes sharing a functional domain
- Linear Gap Penalty: penalize first gap more than subsequent gaps
- Edit distance, min # of edit operations. M=0, m=g=-1, every operation subtracts 1, be it mutation or gap
- Longest common subsequence: M=1, m=g=0. Every match adds one, be it contiguous or not with previous.

DP Algorithm Variations

0

A 0

G 0

0

Bounded Dynamic Programming

Initialization:

F(i,0), F(0,j) undefined for i, j > k

Iteration:

For
$$i = 1...M$$

For $j = max(1, i - k)...min(N, i+k)$

$$F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) \\ F(i, j - 1) - d, & \text{if } j > i - k(N) \\ F(i - 1, j) - d, & \text{if } j < i + k(N) \end{cases}$$

Termination: same

Easy to extend to the affine gap case

- Now, we can find k* maximizing F(M/2, k) + Fr(M/2, N-k)
- Also, we can trace the path exiting column M/2 from k*

Hirschberg's algorithm

- Longest common subsequence
 - Given sequences $s = s_1 s_2 \dots s_m$, $t = t_1 t_2 \dots t_n$,
 - Find longest common subsequence u = u₁ ... u_k
- Algorithm:

•
$$F(i, j) = max \begin{cases} F(i-1, j) \\ F(i, j-1) \\ F(i-1, j-1) + [1, if s_i = t_j; 0 \text{ otherwise}] \end{cases}$$

Hirschberg's algorithm solves this in linear space

Introduction: Compute optimal score

It is easy to compute F(M, N) in linear space


```
Allocate ( column[1] )
Allocate ( column[2] )

For i = 1....M

If i > 1, then:

Free( column[i - 2] )

Allocate( column[i] )

For j = 1...N

F(i, j) = ...
```

To compute both the optimal score **and** the optimal alignment:

Divide & Conquer approach:

Notation:

```
x<sup>r</sup>, y<sup>r</sup>: reverse of x, y
E.g. x = accgg;
x<sup>r</sup> = ggcca

F<sup>r</sup>(i, j): optimal score of aligning x<sup>r</sup><sub>1</sub>...x<sup>r</sup><sub>i</sub> & y<sup>r</sup><sub>1</sub>...y<sup>r</sup><sub>j</sub>
same as F(M-i+1, N-j+1)
```

Lemma:

$$F(M, N) = \max_{k=0...N} (F(M/2, k) + F^{r}(M/2, N-k))$$

 Now, using 2 columns of space, we can compute for k = 1...M, F(M/2, k), F^r(M/2, N-k)

PLUS the backpointers

- Now, we can find k* maximizing F(M/2, k) + Fr(M/2, N-k)
- Also, we can trace the path exiting column M/2 from k*

Iterate this procedure to the left and right!

Hirschberg's Linear-space algorithm:

```
MEMALIGN(I, I', r, r'): (aligns x<sub>I</sub>...x<sub>I'</sub> with y<sub>r</sub>...y<sub>r'</sub>)
1. Let h = \[ (|I'-I)/2 \] \]
2. Find in Time O((|I'-I|) \times (r'-r)), Space O(r'-r) the optimal path, \quad \text{L}_h, entering column h-1, exiting column h Let k<sub>1</sub> = pos'n at column h - 2 where \( \text{L}_h \) enters \( \text{k}_2 \) = pos'n at column h + 1 where \( \text{L}_h \) exits
3. MEMALIGN(I, h-2, r, k<sub>1</sub>)
4. Output \( \text{L}_h \)
5. MEMALIGN(h+1, I', k<sub>2</sub>, r')
Top level call: MEMALIGN(1, M, 1, N)
```

Time, Space analysis of Hirschberg's algorithm:

To compute optimal path at middle column,

For box of size $M \times N$,

Space: 2N

Time: cMN, for some constant c

Then, left, right calls cost c($M/2 \times k^* + M/2 \times (N-k^*)$) = cMN/2

All recursive calls cost

Total Time: cMN + cMN/2 + cMN/4 + = 2cMN = O(MN)

Total Space: O(N) for computation,

O(N+M) to store the optimal alignment

Main Observation

Within a rectangle of the DP matrix,

values of D depend only on the values of A, B, C, and substrings $x_{l...l'}$, $y_{r...r'}$

Definition:

A t-block is a t × t square of the DP matrix

Idea:

Divide matrix in t-blocks, Precompute t-blocks

Speedup: O(t)

Main structure of the algorithm:

- Divide N×N DP matrix into K×K log₂N-blocks that overlap by 1 column & 1 row
- For i = 1.....K
- For j = 1.....K
- Compute D_{i,j} as a function of

$$A_{i,j}, B_{i,j}, C_{i,j}, x[l_i...l_i], y[r_j...r_j]$$

Time: $O(N^2 / log^2N)$ times the cost of step 4

Another observation: (Assume m = 0, s = 1, d = 1)

Lemma. Two adjacent cells of F(.,.) differ by at most 1

Gusfield's book covers case where m = 0, called the <u>edit distance</u> (p. 216): minimum # of substitutions + gaps to transform one string to another

Proof of Lemma:

1. Same row:

a.
$$F(i, j) - F(i - 1, j) \le +1$$

At worst, one more gap:

$$x_1, \dots, x_{i-1}, x_i$$

 y_1, \dots, y_i

b.
$$F(i, j) - F(i - 1, j) \ge -1$$

$$F(i - 1, j - 1)$$

$$F(i-1, j-1)$$
 $F(i, j) - F(i-1, j-1)$

$$x_1, \dots, x_{i-1}, x_i$$
 x_1, \dots, x_{i-1} — $y_1, \dots, y_{a-1}, y_a, y_{a+1}, \dots, y_j$ $y_1, \dots, y_{a-1}, y_a, y_{a+1}, \dots, y_j$

$$x_1, \dots, x_{i-1}$$

 $y_1, \dots, y_{a-1}, y_a, \dots, y_j$

2. Same column: similar argument

Proof of Lemma:

$$F(i - 1, j - 1)$$

$$F(i-1, j-1)$$
 $F(i, j) - F(i-1, j-1)$

$$\begin{matrix} x_1, \dots, x_{i-1} & x_i \\ & & I \end{matrix}$$

$$X_1, \dots, X_{i-1}$$

$$y_1, \dots, y_{i-1}, y_i$$

$$y_1, \dots, y_{i-1}$$

$$x_1.....x_{i-1} x_i$$
 $x_1.....x_{i-1}$ $y_1.....y_{a-1} - y_a...y_j$ $y_1.....y_{a-1} - y_a...y_j$

Definition:

The offset vector is a t-long vector of values from {-1, 0, 1}, where the first entry is 0

If we know the value at A, and the top row, left column offset vectors, and x₁.....x_{i'}, y_r.....y_{r'},

Then we can find D

Example:

$$x = AACT$$

 $y = CACT$

Example:

$$x = AACT$$

$$y = CACT$$

1				
	T	P	2 ^A	1 A
0	-1 1	-1 2	1	1
1	2	1	1	0
1	1	2	1	1

0

0

Definition:

The offset function of a t-block is a function that for any

given offset vectors of top row, left column, and $x_1, \dots, x_{l'}, y_r, \dots, y_{r'}$

produces offset vectors of bottom row, right column

We can pre-compute the offset function:

3^{2(t-1)} possible input offset vectors

 4^{2t} possible strings $x_1, \dots, x_{l'}, y_r, \dots, y_{r'}$

Therefore $3^{2(t-1)} \times 4^{2t}$ values to pre-compute

We can keep all these values in a table, and look up in linear time, or in O(1) time if we assume constant-lookup RAM for log-sized inputs

Four-Russians Algorithm: (Arlazarov, Dinic, Kronrod, Faradzev)

- 1. Cover the DP table with t-blocks
- 2. Initialize values F(.,.) in first row & column
- Row-by-row, use offset values at leftmost column and top row of each block, to find offset values at rightmost column and bottom row
- Let Q = total of offsets at row N
 F(N, N) = Q + F(N, 0)

Evolution at the DNA level

Sequence Changes

Computing best alignment
•In absence of gaps

...ACGTTGCAGTCCACCA...

Sequence Alignment

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Definition

Given two strings $x = x_1x_2...x_M$, $y = y_1y_2...y_N$,

an <u>alignment</u> is an assignment of gaps to positions 0,..., M in x, and 0,..., N in y, so as to line up each letter in one sequence with either a letter, or a gap in the other sequence

Scoring Function

Sequence edits:

AGGCCTC

Mutations

AGGACTC

Insertions

AGGGCCTC

Deletions

AGG.CTC

Scoring Function:

Match: +m

Mismatch: -s

Gap: -d

Score F = (# matches) \times m - (# mismatches) \times s - (#gaps) \times d

How do we compute the best alignment?

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

Too many possible alignments:

 $O(2^{M+N})$

Alignment is additive

Observation:

The score of aligning

 X_1, \dots, X_M

 y_1, \dots, y_N

is additive

Say that

 $X_1...X_i$ $X_{i+1}...X_M$

aligns to

 $y_1 \dots y_i$ $y_{i+1} \dots y_N$

The two scores add up:

F(x[1:M], y[1:N]) = F(x[1:i], y[1:j]) + F(x[i+1:M], y[j+1:N])

Dynamic Programming

 We will now describe a dynamic programming algorithm

Suppose we wish to align

$$x_1, \dots, x_M$$

$$y_1, \dots, y_N$$

Let

F(i,j) = optimal score of aligning

$$X_1, \dots, X_i$$

$$y_1, \dots, y_j$$

Dynamic Programming (cont'd)

Notice three possible cases:

1.
$$x_i$$
 aligns to y_j

$$x_1 \dots x_{i-1} \quad x_i$$

$$y_1 \dots y_{j-1} \quad y_j$$

2.
$$x_i$$
 aligns to a gap x_1, \dots, x_{i-1}, x_i y_1, \dots, y_i -

3.
$$y_j$$
 aligns to a gap x_1, \dots, x_i - y_1, \dots, y_{j-1}, y_j

$$F(i,j) = F(i-1, j-1) + \begin{cases} m, & \text{if } x_i = y_j \\ -s, & \text{if not} \end{cases}$$

$$F(i,j) = F(i-1, j) - d$$

$$F(i,j) = F(i, j-1) - d$$

Dynamic Programming (cont'd)

How do we know which case is correct?

Inductive assumption:

Then,

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ F(i-1, j) - d \\ F(i, j-1) - d \end{cases}$$

Where
$$s(x_i, y_j) = m$$
, if $x_i = y_j$; -s, if not

Example

$$x = AGTA$$

y = ATA

$$m = 1$$

$$s = -1$$

d = -1

 $i = 0 \quad 1 \quad 2 \quad 3$

4

	^
	()

2

3

		A	G	Т	А
	0	-1	-2	3	-4
Α	-1	,	_0 +	1 +	2
Т	-2	0 ,	0	7	0
Α	-3	-1	-1	0	2

Optimal Alignment:

$$F(4,3) = 2$$

AGTA

A - TA

The Needleman-Wunsch Matrix

The Needleman-Wunsch Algorithm

1. Initialization.

- a. F(0, 0) = 0b. $F(0, j) = -j \times d$ c. $F(i, 0) = -i \times d$

2. Main Iteration. Filling-in partial alignments

 $\begin{array}{ll} \text{For each} & \text{i = 1.....M} \\ \text{For each} & \text{j = 1.....N} \\ \end{array}$ a.

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) & [case 1] \\ F(i-1, j) - d & [case 2] \\ F(i, j-1) - d & [case 3] \end{cases}$$

$$Ptr(i,j) = \begin{cases} DIAG, & \text{if [case 1]} \\ LEFT, & \text{if [case 2]} \\ UP, & \text{if [case 3]} \end{cases}$$

3. Termination. F(M, N) is the optimal score, and from Ptr(M, N) can trace back optimal alignment

Performance

• Time:

O(NM)

• Space:

O(NM)

Later we will cover more efficient methods

A variant of the basic algorithm:

 Maybe it is OK to have an unlimited # of gaps in the beginning and end:

```
-----CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG------
```

Then, we don't want to penalize gaps in the ends

Different types of overlaps

The Overlap Detection variant

Changes:

1. <u>Initialization</u>

For all i, j,

$$F(i, 0) = 0$$

 $F(0, j) = 0$

2. Termination

$$max_{i} F(i, N)$$

$$F_{OPT} = max$$

$$j)$$

$$max_{j} F(M, M)$$

The local alignment problem

Given two strings
$$x = x_1, \dots, x_M$$
,
 $y = y_1, \dots, y_N$

Find substrings x', y' whose similarity (optimal global alignment value) is maximum

Why local alignment

- Genes are shuffled between genomes
- Portions of proteins (domains) are often conserved

Image removed due to copyright restrictions.

Cross-species genome similarity

- 98% of genes are conserved between any two mammals
- >70% average similarity in protein sequence

"atoh" enhancer in human, mouse, rat, fugu fish

The Smith-Waterman algorithm

Idea: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

Initialization:
$$F(0, j) = F(i, 0) = 0$$

Iteration:
$$F(i, j) = max$$

Iteration:
$$F(i, j) = \max \begin{cases} 0 \\ F(i - 1, j) - d \\ F(i, j - 1) - d \\ F(i - 1, j - 1) + s(x_i, y_j) \end{cases}$$

The Smith-Waterman algorithm

Termination:

1. If we want the best local alignment...

$$F_{OPT} = max_{i,j} F(i, j)$$

2. If we want all local alignments scoring > t

For all i, j find F(i, j) > t, and trace back

Scoring the gaps more accurately

Current model:

Gap of length n

incurs penalty n×d

However, gaps usually occur in bunches

Convex gap penalty function:

$$\gamma(n)$$
: for all n , $\gamma(n + 1) - \gamma(n) \le \gamma(n) - \gamma(n - 1)$

General gap dynamic programming

Initialization: same

Iteration:

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ \max_{k=0...i-1} F(k,j) - \gamma(i-k) \\ \max_{k=0...j-1} F(i,k) - \gamma(j-k) \end{cases}$$

Termination: same

Running Time: $O(N^2M)$ (assume N>M)

Space: O(NM)

Compromise: affine gaps

 $\gamma(n)$ e

To compute optimal alignment,

At position i,j, need to "remember" best score if gap is open best score if gap is not open

- F(i, j): score of alignment $x_1...x_i$ to $y_1...y_j$ <u>if</u> x_i aligns to y_j
- G(i, j): score **if** x_i , or y_i , aligns to a gap

Needleman-Wunsch with affine gaps

Initialization:
$$F(i, 0) = d + (i - 1) \times e$$

$$F(0, j) = d + (j - 1) \times e$$

Iteration:

$$F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) \\ G(i - 1, j - 1) + s(x_i, y_j) \end{cases}$$

$$G(i, j) = \max \begin{cases} F(i - 1, j) - d \\ F(i, j - 1) - d \end{cases}$$

$$G(i, j - 1) - e$$

$$G(i - 1, j) - e$$

Termination: same

Sequence Alignment

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Definition

Given two strings $x = x_1x_2...x_M$, $y = y_1y_2...y_N$,

an <u>alignment</u> is an assignment of gaps to positions 0,..., M in x, and 0,..., N in y, so as to line up each letter in one sequence with either a letter, or a gap in the other sequence

Scoring Function

Sequence edits:

AGGCCTC

Mutations

AGGACTC

Insertions

AGGGCCTC

Deletions

AGG.CTC

Scoring Function:

Match: +m

Mismatch: -s

Gap: -d

Score F = (# matches) \times m - (# mismatches) \times s - (#gaps) \times d

The Needleman-Wunsch Algorithm

1. Initialization.

- a. F(0, 0) = 0b. $F(0, j) = -j \times d$ c. $F(i, 0) = -i \times d$

2. Main Iteration. Filling-in partial alignments

 $\begin{array}{ll} \text{For each} & \text{i = 1.....M} \\ \text{For each} & \text{j = 1.....N} \\ \end{array}$ a.

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) & [case 1] \\ F(i-1, j) - d & [case 2] \\ F(i, j-1) - d & [case 3] \end{cases}$$

$$Ptr(i,j) = \begin{cases} DIAG, & \text{if [case 1]} \\ LEFT, & \text{if [case 2]} \\ UP, & \text{if [case 3]} \end{cases}$$

3. Termination. F(M, N) is the optimal score, and from Ptr(M, N) can trace back optimal alignment

The Smith-Waterman algorithm

Idea: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

Initialization:
$$F(0, j) = F(i, 0) = 0$$

Iteration:
$$F(i, j) = \max \begin{cases} 0 \\ F(i - 1, j) - d \\ F(i, j - 1) - d \\ F(i - 1, j - 1) + s(x_i, y_j) \end{cases}$$

Scoring the gaps more accurately

Simple, linear gap model:

Gap of length n incurs penalty n×d

However, gaps usually occur in bunches

Convex gap penalty function:

$$\gamma(n)$$
:

for all n,
$$\gamma(n + 1) - \gamma(n) \le \gamma(n) - \gamma(n - 1)$$

γ(n)

Algorithm: O(N³) time, O(N²) space

Compromise: affine gaps

 $\gamma(n)$ e

To compute optimal alignment,

At position i,j, need to "remember" best score if gap is open best score if gap is not open

- F(i, j): score of alignment $x_1...x_i$ to $y_1...y_j$ <u>if</u> x_i aligns to y_j
- G(i, j): score $\underline{if} x_i$, or y_j , aligns to a gap

Needleman-Wunsch with affine gaps

Why do we need two matrices?

• x_i aligns to y_j $x_1.....x_{i-1} \quad x_i \quad x_{i+1}$ $y_1.....y_{j-1} \quad y_j \quad -$ 2. x_i aligns to a gap $x_1.....x_{i-1} \quad x_i \quad x_{i+1}$ $y_1.....y_j \quad ... \quad -$

Needleman-Wunsch with affine gaps

Initialization:
$$F(i, 0) = d + (i - 1) \times e$$

$$F(0, j) = d + (j - 1) \times e$$

Iteration:

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ G(i-1, j-1) + s(x_i, y_j) \end{cases}$$

$$G(i, j) = \max \begin{cases} F(i - 1, j) - d \\ F(i, j - 1) - d \end{cases}$$

$$G(i, j - 1) - e$$

$$G(i - 1, j) - e$$

Termination: same

To generalize a little...

... think of how you would compute optimal alignment with this gap function

Bounded Dynamic Programming

Assume we know that x and y are very similar

Assumption:
$$\# gaps(x, y) < k(N)$$
 (say N>M)

Then,
$$x_i$$
| implies $|i-j| < k(N)$
| y_j

We can align x and y more efficiently:

Time, Space:
$$O(N \times k(N)) << O(N^2)$$

Bounded Dynamic Programming

Initialization:

F(i,0), F(0,j) undefined for i, j > k

Iteration:

For
$$i = 1...M$$

For $j = max(1, i - k)...min(N, i+k)$

$$F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) \\ F(i, j - 1) - d, \text{ if } j > i - k(N) \\ F(i - 1, j) - d, \text{ if } j < i + k(N) \end{cases}$$

Termination: same

Easy to extend to the affine gap case

Linear-Space Alignment

Hirschberg's algortihm

- Longest common subsequence
 - Given sequences $s = s_1 s_2 \dots s_m$, $t = t_1 t_2 \dots t_n$,
 - Find longest common subsequence u = u₁ ... u_k
- Algorithm:

•
$$F(i, j) = max \begin{cases} F(i-1, j) \\ F(i, j-1) \\ F(i-1, j-1) + [1, if s_i = t_j; 0 \text{ otherwise}] \end{cases}$$

Hirschberg's algorithm solves this in linear space

Introduction: Compute optimal score

It is easy to compute F(M, N) in linear space


```
Allocate ( column[1] )
Allocate ( column[2] )

For i = 1....M

If i > 1, then:

Free( column[i - 2] )

Allocate( column[i] )

For j = 1...N

F(i, j) = ...
```

Linear-space alignment

To compute both the optimal score **and** the optimal alignment:

Divide & Conquer approach:

Notation:

```
x<sup>r</sup>, y<sup>r</sup>: reverse of x, y
E.g. x = accgg;
x<sup>r</sup> = ggcca

F<sup>r</sup>(i, j): optimal score of aligning x<sup>r</sup><sub>1</sub>...x<sup>r</sup><sub>i</sub> & y<sup>r</sup><sub>1</sub>...y<sup>r</sup><sub>j</sub>
same as F(M-i+1, N-j+1)
```

Linear-space alignment

Lemma:

$$F(M, N) = \max_{k=0...N} (F(M/2, k) + F^{r}(M/2, N-k))$$

Linear-space alignment

 Now, using 2 columns of space, we can compute for k = 1...M, F(M/2, k), F^r(M/2, N-k)

PLUS the backpointers

- Now, we can find k* maximizing F(M/2, k) + Fr(M/2, N-k)
- Also, we can trace the path exiting column M/2 from k*

Iterate this procedure to the left and right!

Hirschberg's Linear-space algorithm:

```
MEMALIGN(I, I', r, r'): (aligns x<sub>I</sub>...x<sub>I'</sub> with y<sub>r</sub>...y<sub>r'</sub>)
1. Let h = \[ (|I'-I|)/2 \] \]
2. Find in Time O((|I'-I|) \times (r'-r)), Space O(r'-r) the optimal path, \quad \text{L}_h, entering column h-1, exiting column h Let k<sub>1</sub> = pos'n at column h - 2 where \( \text{L}_h \) enters \( \text{k}_2 = \text{pos'n at column h} + 1 \) where \( \text{L}_h \) exits
3. MEMALIGN(I, h-2, r, k<sub>1</sub>)
4. Output \( \text{L}_h \)
5. MEMALIGN(h+1, I', k<sub>2</sub>, r')
Top level call: MEMALIGN(1, M, 1, N)
```

Time, Space analysis of Hirschberg's algorithm:

To compute optimal path at middle column,

For box of size $M \times N$,

Space: 2N

Time: cMN, for some constant c

Then, left, right calls cost c($M/2 \times k^* + M/2 \times (N-k^*)$) = cMN/2

All recursive calls cost

Total Time: cMN + cMN/2 + cMN/4 + = 2cMN = O(MN)

Total Space: O(N) for computation,

O(N+M) to store the optimal alignment

Main Observation

Within a rectangle of the DP matrix,

values of D depend only on the values of A, B, C, and substrings $x_{l...l'}$, $y_{r...r'}$

Definition:

A t-block is a t × t square of the DP matrix

Idea:

Divide matrix in t-blocks, Precompute t-blocks

Speedup: O(t)

Main structure of the algorithm:

- Divide N×N DP matrix into K×K log₂N-blocks that overlap by 1 column & 1 row
- For i = 1.....K
- For j = 1.....K
- Compute D_{i,j} as a function of

$$A_{i,j}, B_{i,j}, C_{i,j}, x[l_i...l_i], y[r_j...r_j]$$

Time: $O(N^2 / log^2 N)$ times the cost of step 4

Another observation: (Assume m = 0, s = 1, d = 1)

Lemma. Two adjacent cells of F(.,.) differ by at most 1

Gusfield's book covers case where m = 0, called the <u>edit distance</u> (p. 216): minimum # of substitutions + gaps to transform one string to another

Proof of Lemma:

1. Same row:

a.
$$F(i, j) - F(i - 1, j) \le +1$$

At worst, one more gap:

$$x_1, \dots, x_{i-1}, x_i$$

 y_1, \dots, y_i

b.
$$F(i, j) - F(i - 1, j) \ge -1$$

$$F(i - 1, j - 1)$$

$$F(i-1, j-1)$$
 $F(i, j) - F(i-1, j-1)$

$$x_1, \dots, x_{i-1}, x_i$$
 x_1, \dots, x_{i-1} — $y_1, \dots, y_{a-1}, y_a, y_{a+1}, \dots, y_j$ $y_1, \dots, y_{a-1}, y_a, y_{a+1}, \dots, y_j$

$$\begin{array}{lllll}
 & x_1, \dots, x_{i-1}, x_i, & x_1, \dots, x_{i-1}, \\
 & y_1, \dots, y_{a-1}, y_a, \dots, y_i, & y_1, \dots, y_{a-1}, y_a, \dots, y_i,
 \end{array}$$

$$x_1, \dots, x_{i-1}$$

 $y_1, \dots, y_{a-1}, y_a, \dots, y_j$

2. Same column: similar argument

Proof of Lemma:

b.
$$F(i, j) - F(i - 1, j - 1) \ge -1$$

$$F(i - 1, j - 1)$$

$$F(i-1, j-1)$$
 $F(i, j) - F(i-1, j-1)$

$$x_1, \dots, x_{i-1}, x_i$$

$$X_1, \dots, X_{i-1}$$

$$y_1, \dots, y_{i-1}, y_i$$

$$y_1, \dots, y_{i-1}$$

$$x_1.....x_{i-1} x_i$$
 $x_1.....x_{i-1}$ $y_1.....y_{a-1} - y_a...y_i$ $y_1.....y_{a-1} y_a...y_i$

Definition:

The offset vector is a t-long vector of values from {-1, 0, 1}, where the first entry is 0

If we know the value at A, and the top row, left column offset vectors, and x₁.....x_{i'}, y_r.....y_{r'},

Then we can find D

Example:

$$x = AACT$$

 $y = CACT$

Example:

$$x = AACT$$

$$y = CACT$$

1				
	T	P	2 ^A	1 A
0	-1 1	-1 2	1	1
1	2	1	1	0
1	1	2	1	1

0

0

Definition:

The offset function of a t-block is a function that for any

given offset vectors of top row, left column, and $x_1, \dots, x_{l'}, y_r, \dots, y_{r'}$

produces offset vectors of bottom row, right column

We can pre-compute the offset function:

3^{2(t-1)} possible input offset vectors

 4^{2t} possible strings $x_1, \dots, x_{l'}, y_r, \dots, y_{r'}$

Therefore $3^{2(t-1)} \times 4^{2t}$ values to pre-compute

We can keep all these values in a table, and look up in linear time, or in O(1) time if we assume constant-lookup RAM for log-sized inputs

Four-Russians Algorithm: (Arlazarov, Dinic, Kronrod, Faradzev)

- 1. Cover the DP table with t-blocks
- 2. Initialize values F(.,.) in first row & column
- Row-by-row, use offset values at leftmost column and top row of each block, to find offset values at rightmost column and bottom row
- Let Q = total of offsets at row N
 F(N, N) = Q + F(N, 0)

