徙

例

诚信应考,考试作弊将带来严重后果!

华南理工大学期末考试

《操作系统》试卷 B

注意事项: 1. 考前请将密封线内填写清楚;

- 2. 所有答案请答在答题纸上;
- 3. 考试形式: 闭卷;
- 4. 本试卷共 三 大题,满分 100 分, 考试时间 120 分钟。

题 号	 11	111		总分
得 分				
评卷人				

I. 单选题(30 points, 2 points each)

For each question in this section, choose 1 answer. Choose the best answer. Fill your choice in the following table.

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
11.	12.	13.	14.	15.					

1. () Which	one is no	the role	or function	of the o	perating	system?

- A. Extended machine
- C. Providing abstractions to application programs
- B. Resource manager
- D. Executing application programs
- 2. () The _____ solution to the critical section problem will cause the situation that a process running outside its critical region may block another process.
 - A. Disabling interrupts
- C. Strict Alternation
- B. Peterson's Algorithm
- D. Test and Set Lock
- 3. () We define a semaphore, whose initial value is 2 (this means that the number of a certain resource is 2). Now, its value becomes to -1. Assume that M represents the number of available resource and N shows the number of processes waiting for this resource, then the value of M and N is respectively.

	A.	1, 0	B. 0, 1		C. 2, 0	D. 0, 2			
4.	() If the	time slice	is too l	large, round	robin sched	uling	algorithm	may
	deg	enerate (退化	(a) to	schedul	ing algorithn	n. (2 mark)			
	A.	First Come F	First Served (<mark>FCFS)</mark>	C. Sho	rtest Job Firs	t (SJF))	
	B.	Priority			D. Mu	lti-level feedb	oack qu	ueue	
5.	() A 128-M	IB memory	is alloca	ted in units	of n bytes. V	Ve use	a linked l	ist to
	kee	p track of free	e memory. A	ssume t	hat memory	consists of an	ı alteri	nating sequ	ience
	of s	segments and	holes, each	64KB.	Also assume	e that each n	ode in	the linke	d list
	nee	ds a 32-bit m	nemory addre	ess, a 16	b-bit length,	and a 16-bit	next-n	ode field.	How
	mar	ny bytes of sto	orage are requ	uired in	bitmap meth	od?			
	A.	$2^{27}/n$	B. $2^{24}/n$		C. 2 ¹¹	D. 2^{14}			
6.	() If the pa	ge entry says	s that th	e page is no	t in RAM, it	raises	a	_, an
	exc	eption telling	the operating	g system	that it needs	s to bring a pa	ige into	o memory.	
	A.	<mark>page fault</mark>		C. array	y index out o	f bound			
	B.	trap		D. none	e of the abov	e			
7.	() Which of	the following	g statem	ents is true?				
	A.	The use of a	TLB for a pa	iging me	emory systen	n eliminates t	he nee	d for keepi	ng a
		page table in	memory.						
	B.	External frag	mentation ca	n be pre	evented by fr	equent use of	comp	action, but	the
		cost would b	<mark>e too high fo</mark>	<mark>r most s</mark>	<mark>ystems.</mark>				
	C.		_			small holes th	nat can	't be used.	
	D.	More page fi	rames always	have fe	wer page fau	ılts.			
8.	(•		owing m	ethods in im	plementing fi	le stor	age can su	pport
		dom accesses	•						
		Contiguous a				llocation usin	<mark>g FAT</mark>		
	В.	Linked list a	llocation	D.	none of the	above			
9. () The file-ref	ference count	is used	for	·			
	A.	counting nur	nber of bytes	read fro	om the file.				
	B.	counting nur	nber of open	files.					
	C	counting nur	nber of links	pointing	to a file.				

	D.	counting nur	mber o	of process a	ccess	ing a file			
10.	() How n	nany d	isk operation	ons a	re neede	d to re	ad the third	block of the file
	/hoi	me/courses/o	s/test/A	A.doc. Assi	ume	that the	i-node	for the roo	t directory is in
	mei	nory, but not	hing el	lse along th	e patl	h is in me	emory.		
	A.	9	B. 10		C. 1	1	D.	12	
11.	() Requesti	ing all	resources i	nitial	lly is ofte	en used	to prevent d	eadlock to attack
	the	cond	ition.						
	A.	mutual exclu	usion			C. n	o preem	nption	
	B.	hold and wa	it.			D. c	ircular v	wait	
12.	Uni	x takes	_ to de	eal with dea	dlock	s.			
	A.	ostrich algo	rithm			C. b	anker's	algorithm	
	B.	deadlock de	tection	algorithm		D. d	eadlock	prevention a	algorithm
13.	() "Device i	indepe	ndence" me	eans _		<u>.</u> .		
	A.	that devices	are ac	cessed depe	enden	t of their	model	and types of	physical device.
	B.	systems that	have	one set of c	alls f	for writin	g on a	file and the c	onsole (terminal)
		exhibit devi	ce inde	ependence.					
	C.	that files an	d devi	ces are acc	essed	the sam	ne way,	independent	of their physical
		<mark>nature.</mark>							
	D.	none of the	above						
14.	() In which	of the	e four I/O s	oftwa	are layers	s is "Wı	riting comma	nds to the device
	regi	sters" is don				•			
	A.	Interrupt has	ndlers			C. Devic	e-indep	endent OS so	oftware
	B.	Device drive	ers			D. User-	level I/0	O software	
15.	() Disk rea	iests c	ome in to th	ne dis	ak driver	for cyli	nders 9 35 2	22, 16, 40, 11 and
10.	`	, -					-		What is the total
							•	•	iding requests for
		` •						ving towards	-
			ì				•	_	cyllider oj:
	A.	48	B. 6	66	C.	72	D .	75	

II.	简答题(20	points, 5	points each)
-----	--------	-----------	--------------

1. What is the difference between a process and a thread? Describe some benefits using threads.

2. If a disk has double interleaving, does it also need cylinder skew in order to avoid missing data when making a track-to-track seek? Explain your answer briefly.

3.	In a paging system, the page table might be extremely large and requires much memory space. Give 2 possible solutions and explain them briefly.
4.	What is the difference between hard link and symbolic link?

III. 综合题(50 points, 10 points each)

1. Consider a multi-level feedback queue in a single-CPU system. The first level (queue 0) is given a quantum of 4 ms (scheduled using RR), the second one a quantum of 8 ms (scheduled using RR), the third is scheduled using FCFS. Assume jobs arrive all at time zero with the following CPU burst times (in ms): 4, 7, 12, 20, 25 and 30. Show the Gantt chart for this system (5 points) and compute the average turnaround time (5 points).

2. Consider a demand paging system with 3 frames. And the given page reference sequence is A, D, B, E, A, E, F, G, A, G, E, F. How many page faults does each of the FIFO, LRU, and the optimal page replacement algorithms generate? (Show your answer step-by-step. A simple answer will receive no credit.)

3. Consider the following system snapshot using the data structures in the Banker's algorithm, with resources A, B and C, and processes P0 to P4:

n	Max			Allocation			Available		
Process	A	В	C	A	В	C	A	В	C
P0	7	5	3	0	1	0	3	3	2
P1	3	2	2	2	0	0			
P2	9	0	2	3	0	0			
Р3	2	2	2	2	1	1			
P4	4	3	3	0	0	2			

Use Banker's algorithm to answer the following questions.

- (1) What are the contents of the Need matrix? (2 points)
- (2) Is the system in a safe state? Why? (You will receive no credit if only a Yes or Not is given without an elaboration.) (4 points)
- (3) If a request from process P1 arrives for additional resources of (1, 0, 2), can the Banker's algorithm grant the request immediately? Why? (You will receive no credit if only a Yes or Not is given without an elaboration.) (4 points)

4. Consider the following 3-process concurrent program which uses semaphores S1, S2, and S3. The semaphore operation, which are sometimes called "wait" and "signal", are denoted here with the classical notation of "P" and "V".

Process 1	Process 2	Process 3
L1: P(S3);	L2: P(S1);	L3: P(S2);
print("T");	print("U");	print("B");
V(S2);	V(S3);	V(S1);
goto L1;	goto L2;	goto L3;

- (1) Suppose the initial values are S1=0, S2=0, S3=0. Is it possible for the processes to cooperate to produce a string that begins with BBTTUTT? Explain your answer. (5 points)
- (2) Are there initial values that can be given to the semaphores so that the processes cooperate to print the string BUTBUTBUTBU? If so, give the initial values (tell which value is to be used for which semaphore) and explain how the string is printed. (5 points)

5.	A UNIX file system has 2-KB blocks and 32bit disk addresses. Each i-node contains
	10 entries, including one single, one double, and one triple indirect entry. What is the
	maximum file size?