Sudoku

Il "Sudoku dei quattro serpenti" è il più difficile che esista. Provate a risolverlo con carta e penna se volete convincervene. Se non ci riuscite, risolvetelo scrivendo un modello di programmazione matematica.

Esempio

1			2					
	2			3				
		4			1			
		3			5			6
	7						4	
8			9			2		
9			8			7		
	3			9			1	
		2			6			5

Tabella 1: Il Sudoku dei quattro serpenti.

Soluzione

Dati. I dati sono le posizioni delle cifre note all'inizio. Ogni dato è rappresentato da una terna (i,j,k) con $i\in R, j\in C, k\in N$, essendo R l'insieme delle righe, C l'insieme delle colonne e N l'insieme delle cifre. Tutti e tre gli insiemi sono indicizzati da 1 a 9.

Variabili. Le variabili binarie di assegnamento con tre indici x_{ijk} indicano la scelta di assegnare alla riga $i \in R$ e colonna $j \in C$ la cifra $k \in N$.

Vincoli. Ci sono diversi insiemi di vincoli di assegnamento. Ad ogni posizione dev'essere assegnata un'unica cifra:

$$\sum_{k \in N} x_{ijk} = 1 \quad \forall r \in R, \forall c \in C.$$

Su ogni riga ogni cifra deve comparire in una colonna:

$$\sum_{c \in C} x_{ijk} = 1 \quad \forall r \in R, \forall k \in N.$$

Su ogni colonna ogni cifra deve comparire in una riga:

$$\sum_{r \in R} x_{ijk} = 1 \quad \forall c \in C, \forall k \in N.$$

Infine, ogni cifra deve comparire una volta in ogni quadrato 3x3. Per imporre questo ulteriore vincolo, definiamo tre macrorighe composte da terne di righe consecutive e tre macrocolonne composte da terne di colonne consecutive. Usiamo un indice r' per indicare la macroriga e un indice c' per indicare la macrocolonna:

$$\sum_{i \in R, j \in C: (i > 3(r'-1)) \land (i \le 3r') \land (j > 3(c'-1)) \land (j \le 3c')} x_{ijk} = 1 \ \forall r' = 1..3, \forall c' = 1..3, \forall k \in N.$$

Infine, bisogna imporre $x_{ijk} = 1$ per tutte le terne (i, j, k) corrispondenti ai dati di ingresso.

Il problema non ha alcun obiettivo.

Il modello risultante è di programmazione lineare intera con variabili binarie.

La soluzione è garantita essere unica solo perché questo è un requisito del Sudoku, ma non perché lo si possa dedurlo dal fatto di averlo risolto con il solutore.