• n distinct elements named 1, 2, ..., n

- n distinct elements named 1, 2, ..., n
- Initially, each element is in its own set

$$S_1 = \{1\}, S_2 = \{2\}, ..., S_n = \{n\}$$

- n distinct elements named 1, 2, ..., n
- Initially, each element is in its own set

$$S_1 = \{1\}, S_2 = \{2\}, ..., S_n = \{n\}$$

• Each set has a representative element

- n distinct elements named 1, 2, ..., n
- Initially, each element is in its own set

$$S_1 = \{1\}, S_2 = \{2\}, ..., S_n = \{n\}$$

- Each set has a representative element
- S_x: Set represented by element x

- n distinct elements named 1, 2, ..., n
- Initially, each element is in its own set

$$S_1 = \{1\}, S_2 = \{2\}, ..., S_n = \{n\}$$

- Each set has a representative element
- S_x: Set represented by element x

Operations:

- n distinct elements named 1, 2, ..., n
- Initially, each element is in its own set

$$S_1 = \{1\}, S_2 = \{2\}, ..., S_n = \{n\}$$

- Each set has a representative element
- S_x: Set represented by element x

Operations:

Union(S_x , S_y): Create set $S = S_x \cup S_y$ and return the representative of S_y

- n distinct elements named 1, 2, ..., n
- Initially, each element is in its own set

$$S_1 = \{1\}, S_2 = \{2\}, ..., S_n = \{n\}$$

- Each set has a representative element
- S_x: Set represented by element x

Operations:

Union(S_x , S_y): Create set $S = S_x \cup S_y$ and return the representative of S_y

Find(z): Given (a ptr to) z, find set S that contains z and return the representative of S

Example

 S_1

 S_2

 S_3

 S_4

S

Initially

•

1

{2}

{3}

{4}

{5}

Example

 S_1

 S_2

 S_3

 S_4

S

Initially :

1

{2}

{3}

{4}

{5}

Union(S_3 , S_4) :

Example

 S_1

 S_2

 S_3

 S_4

 S_5

Initially :

1}

{2}

{3}

{4}

{5}

Union(S_3 , S_4):

1

{2}

{<u>3</u>, 4}

X

5

Example

 S_1

 S_2

 S_3

 S_4

S₅

Initially :

1

{2}

{3}

{4}

{5}

Union(S_3 , S_4):

1

{2}

{<u>3</u>, 4}

X

5

Find(4) =

Example

 S_1

 S_2

 S_3

 S_4

 S_5

Initially :

1}

{2}

{3}

{4}

{5}

Union(S_3 , S_4):

1

{2}

{<u>3</u>, 4}

X

5

 $Find(4) = S_3$

Example

 S_1

 S_2

 S_3

 S_4

S₅

Initially

1

{2}

{3}

{4}

{5}

Union(S_3 , S_4):

1

{2}

{<u>3</u>, 4}

{5}

 $Find(4) = S_3$

Union(S_1 , S_5):

X

 S_1

 S_2

 S_3

 S_4

 S_5

Initially :

1

{2}

{3}

{4}

{5}

Union (S_3, S_4) :

1

{2}

{<u>3</u>, 4}

X

{5}

 $Find(4) = S_3$

Union(S_1, S_5):

{<u>1</u>, 5}

{2}

{<u>3</u>, 4}

X

X

 S_1

 S_2

S₃

 S_4

S₅

Initially

1

2}

3

{4}

{5}

Union (S_3, S_4) :

1

{2}

{<u>3</u>, 4}

X

{5}

 $Find(4) = S_3$

Union (S_1, S_5) :

{<u>1</u>, 5}

{2}

{<u>3</u>, 4}

X

X

Union(S_1 , S_3):

Find(4) =

$$S_{1} \qquad S_{2} \qquad S_{3} \qquad S_{4} \qquad S_{5}$$
Initially : {1} {2} {3} {4} {5}

Union(S_{3}, S_{4}) : {1} {2} {3, 4} X {5}

Find(4) = S_{3}

Union(S_{1}, S_{5}) : {1/2} {2} {3/4} X X

Union(S_{1}, S_{3}) : {1/2} X X

 $Find(4) = S_1$

 S_1 S_2 S_3 S_4 S_5

Initially : $\{1\}$ $\{2\}$ $\{3\}$ $\{4\}$

Union(S_3 , S_4): {1} {2} X {5}

 $Find(4) = S_3$

Union(S_1, S_5): {\(\frac{1}{2}\), 5} {\(2\)} \(\frac{3}{2}\), 4} \times X

Union(S_1, S_3): {1, 5, 3, 4} {2} X X

 $Find(4) = S_1$

Find(2) =

$$S_1$$
 S_2 S_3 S_4 S_5

Initially :
$$\{1\}$$
 $\{2\}$ $\{3\}$ $\{4\}$ $\{5\}$

Union(
$$S_3$$
, S_4): {1} {2} $\{3, 4\}$ X {5}

$$Find(4) = S_3$$

Union(
$$S_1, S_5$$
): {\(\frac{1}{2}\), 5} {\(2\)} \(\frac{3}{2}\), 4} \times X

Union(
$$S_1, S_3$$
): { $1, 5, 3, 4$ } {2} X X

$$Find(4) = S_1$$

$$Find(2) = S_2$$

 S_1 S_2 S_3 S_4 S_5

Initially : $\{1\}$ $\{2\}$ $\{3\}$ $\{4\}$ $\{5\}$

Union(S_3 , S_4): {1} {2} $\{3, 4\}$ X {5}

 $Find(4) = S_3$

Union(S_1, S_5): {\(\frac{1}{2}\), 5} {\(2\)} \(\frac{3}{2}\), 4} \times X

Union (S_1, S_3) : $\{\underline{1}, 5, 3, 4\}$ $\{2\}$ X X

 $Find(4) = S_1$

 $Find(2) = S_2$

Union (S_1, S_2) :

 S_1 S_2 S_3 S_4

S₅

Initially : $\{1\}$ $\{2\}$ $\{3\}$ $\{4\}$

Union(S_3, S_4): {1} {2} $\{3, 4\}$ X {5}

 $Find(4) = S_3$

Union(S_1, S_5): {\(\frac{1}{2}\), 5} {\(2\)} \(\frac{3}{2}\), 4} \times X

Union(S_1, S_3): {1, 5, 3, 4} {2} X X X

 $Find(4) = S_1$

 $Find(2) = S_2$

Union(S_1, S_2): {1, 5, 3, 4, 2} X X X

Each **Union** reduces # of sets by 1

Each **Union** reduces # of sets by 1 \Rightarrow Can do at most n-1 **Unions**

Each **Union** reduces # of sets by 1 \Rightarrow Can do at most n-1 **Unions**

 σ : Sequence of n-1 Unions mixed with $m \ge n$ Finds

Each **Union** reduces # of sets by 1 \Rightarrow Can do at most n-1 **Unions**

 σ : Sequence of n-1 Unions mixed with $m \ge n$ Finds

Goal: a data structure that minimizes the total cost of executing such sequences

Data Structures for Disjoint Sets

• One list per set

- One list per set
- Store a head pointer and tail pointer for each set

- One list per set
- Store a head pointer and tail pointer for each set
- First element of the set is the representative

- One list per set
- Store a head pointer and tail pointer for each set
- First element of the set is the representative

Union

- One list per set
- Store a head pointer and tail pointer for each set
- First element of the set is the representative

Union

- One list per set
- Store a head pointer and tail pointer for each set
- First element of the set is the representative

Union

- One list per set
- Store a head pointer and tail pointer for each set
- First element of the set is the representative

Each Union: O(1)

- One list per set
- Store a head pointer and tail pointer for each set
- First element of the set is the representative

Each Union: O(1)

Find

- One list per set
- Store a head pointer and tail pointer for each set
- First element of the set is the representative

Each Union: O(1)

Each **Find** : O(n)

- One list per set
- Store a head pointer and tail pointer for each set
- First element of the set is the representative

 σ : Any Sequence of n-1 Unions mixed with $m \ge n$ Finds

Each Union : O(1)

Each **Find** : O(n)

- One list per set
- Store a head pointer and tail pointer for each set
- First element of the set is the representative

Each Union : O(1)

Each Find : O(n)

 σ : Any Sequence of n-1 Unions mixed with $m \ge n$ Finds

Worst-case cost of σ :

- One list per set
- Store a head pointer and tail pointer for each set
- First element of the set is the representative

- One list per set
- Store a head pointer and tail pointer for each set
- First element of the set is the representative

Each Union : O(1)

Each Find : O(n)

 σ : Any Sequence of n-1 Unions mixed with $m \ge n$ Finds

Worst-case cost of σ : O(m. n)

• Each element also points to its representative

• Each element also points to its representative

• Each element also points to its representative

Each Find: O(1)

• Each element also points to its representative

Each Find : O(1)

Union

• Each element also points to its representative

Each Find: O(1)

Union

• Each element also points to its representative

Each Find: O(1)

Union: must redirect O(n) pointers to the new representative

• Each element also points to its representative

Each Find: O(1)

Each Union: O(n)

• Each element also points to its representative

Each Find: O(1)

Each **Union**: O(n)

Worst-case cost of σ : O(n . n + m . 1)

• Each element also points to its representative

Each Find: O(1)

Each Union: O(n)

Worst-case cost of σ : O(n² + m)

WU rule: Append the smaller list onto the bigger list (keep track of size of each list)

WU rule: Append the smaller list onto the bigger list (keep track of size of each list)

• Each **Find** : O(1)

Each Union : O(n)

WU rule: Append the smaller list onto the bigger list (keep track of size of each list)

• Each **Find** : O(1)

• Each Union : O(n)

Claim: worst-case cost of executing σ : O(m + n log n)

Proof:

WU rule: Append the smaller list onto the bigger list (keep track of size of each list)

• Each **Find** : O(1)

• Each Union : O(n)

Claim: worst-case cost of executing σ : O(m + n log n)

Proof: Go to the tutorial ©

 $S_1 = \{\underline{1}, 3, 2, 8, 5, 10\}$

• Each set is represented by a tree

$$S_1 = \{\underline{1}, 3, 2, 8, 5, 10\}$$

- Each set is represented by a tree
- Each node represents an element

$$S_1 = \{\underline{1}, 3, 2, 8, 5, 10\}$$

- Each set is represented by a tree
- Each node represents an element
- Each non-root node points to its parent

$$S_1 = \{\underline{1}, 3, 2, 8, 5, 10\}$$

- Each set is represented by a tree
- Each node represents an element
- Each non-root node points to its parent
- The root contains the set representative

$$S_1 = \{1, 3, 2, 8, 5, 10\}$$

 $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$S_1 = \{1, 3, 2, 8, 5, 10\}$$

$$S_6 = \{6\}$$

$$S_9 = \{9, 7, 4\}$$

$$S_1 = \{1, 3, 2, 8, 5, 10\}$$

$$S_6 = \{6\}$$

$$S_9 = \{9, 7, 4\}$$

$$S_1 = \{1, 3, 2, 8, 5, 10\}$$

$$S_6 = \{6\}$$

$$S_9 = \{9, 7, 4\}$$

A[x]: Pointer to element x.

$$S_6 = \{6\}$$

$$S_9 = \{9, 7, 4\}$$

$$S_{9} = \{6\}$$
 $S_{9} = \{9, 7, 4\}$

Find(5)

Find(5)

Find(5)

Find(5)

Find(5)

Find(5) : Return (ptr to) 1

Union(1, 9)

Union(1, 9)

Union(1, 9): Return (ptr to) 9

Initially

Initially :

Union(4, 3) :

Initially :

Union(4, 3) :

Initially :

Union(4, 3) :

Union(5, 1) :

Initially Union(4, 3) : **Union(5, 1)**

Union(5, 1) :

Union(5, 1) : 1 2 3

Union(3, 1)

Union(2, 1)

Operations

• Find(x): Follow path from x up to root, return ptr to the root

Union(S_x, S_y): Make root of S_x the child of root of S_y

Operations

• Find(x): Follow path from x up to root, return ptr to the root

Cost is O(1 + length of the **Find** path)

Union(S_x, S_y): Make root of S_x the child of root of S_y

Operations

• Find(x): Follow path from x up to root, return ptr to the root

Cost is O(1 + length of the **Find** path)

Union(S_x, S_y): Make root of S_x the child of root of S_y

Cost is O(1)

- Cost of **Find** : O(1 + length of the **Find** path)
- Cost of **Union** : O(1)

- Cost of **Find** : O(1 + length of the **Find** path)
- Cost of **Union** : O(1)

 σ : Sequence of n-1 Unions mixed with $m \ge n$ Finds

- Cost of **Find** : O(1 + length of the **Find** path)
- Cost of **Union** : O(1)

 σ : Sequence of n-1 Unions mixed with $m \ge n$ Finds

What is the cost of σ , in the worst-case?

Initially :

(1

2

3

. . . .

Initially :

1

2

(3

. (

Union(1, 2) :

Initially : 1 2 3 n

Union(1, 2) : 1

Union(2, 3) :

Initially Union(1, 2) : Union(2, 3) :

Initially Union(1, 2) : Union(2, 3) :

Initially Union(1, 2) : **Union(2, 3)**

Union(n-1, n):

Worst-case cost of executing σ is $\Omega(m.n)$

Cost of each **Find**: O(1 + length of the **Find** path)

To reduce cost of σ , reduce length of **Find** paths

Worst-case cost of executing σ is $\Omega(m.n)$

Cost of each Find: O(1 + length of the Find path)

To reduce cost of σ , reduce length of **Find** paths

 \Rightarrow reduce height of the trees formed during the execution of σ

Union(A, B)

size: # of nodes in the tree

WU rule (by size): Smaller size tree becomes the child of the bigger size tree

WU rule (by size): Smaller size tree becomes the child of the bigger size tree

With WU:

• Any tree T created during the execution of σ has height at most $\log_2 n$

WU rule (by size): Smaller size tree becomes the child of the bigger size tree

With WU:

- Any tree T created during the execution of σ has height at most $\log_2 n$
- The worst-case cost of executing σ is $O(n + m \log n)$

WU rule (by size): Smaller size tree becomes the child of the bigger size tree

With WU:

- Any tree T created during the execution of σ has height at most $\log_2 n$
- The worst-case cost of executing σ is O(m log n)

WU rule (by size): Smaller size tree becomes the child of the bigger size tree

With WU:

- Any tree T created during the execution of σ has height at most $\log_2 n$ \leftarrow
- The worst-case cost of executing σ is $O(m \log n)$

We now prove this!

Since
$$|T| \le n$$
, $2^h \le |T| \le n \Rightarrow h \le \log_2 n$

Proof Sketch: Induction on h

• h = 0. Any tree of height zero has at least $2^0 = 1$ nodes

- h = 0. Any tree of height zero has at least $2^0 = 1$ nodes
- Suppose the lemma holds for $h \ge 0$ (I.H.). We show it holds for h+1

- h = 0. Any tree of height zero has at least $2^0 = 1$ nodes
- Suppose the lemma holds for $h \ge 0$ (I.H.). We show it holds for h+1

- h = 0. Any tree of height zero has at least $2^0 = 1$ nodes
- Suppose the lemma holds for $h \ge 0$ (I.H.). We show it holds for h+1

- h = 0. Any tree of height zero has at least $2^0 = 1$ nodes
- Suppose the lemma holds for $h \ge 0$ (I.H.). We show it holds for h+1

- h = 0. Any tree of height zero has at least $2^0 = 1$ nodes
- Suppose the lemma holds for $h \ge 0$ (I.H.). We show it holds for h+1

- h = 0. Any tree of height zero has at least $2^0 = 1$ nodes
- Suppose the lemma holds for $h \ge 0$ (I.H.). We show it holds for h+1

- h = 0. Any tree of height zero has at least $2^0 = 1$ nodes
- Suppose the lemma holds for $h \ge 0$ (I.H.). We show it holds for h+1

- h = 0. Any tree of height zero has at least $2^0 = 1$ nodes
- Suppose the lemma holds for $h \ge 0$ (I.H.). We show it holds for h+1

- h = 0. Any tree of height zero has at least $2^0 = 1$ nodes
- Suppose the lemma holds for $h \ge 0$ (I.H.). We show it holds for h+1

$$|\mathsf{T}| = |\mathsf{A}| + |\mathsf{B}|$$

- h = 0. Any tree of height zero has at least $2^0 = 1$ nodes
- Suppose the lemma holds for $h \ge 0$ (I.H.). We show it holds for h+1

$$|T| = |A| + |B| \ge 2^h + 2^h$$

- h = 0. Any tree of height zero has at least $2^0 = 1$ nodes
- Suppose the lemma holds for $h \ge 0$ (I.H.). We show it holds for h+1

$$|T| = |A| + |B| \ge 2^h + 2^h = 2^{h+1}$$
 nodes

- h = 0. Any tree of height zero has at least $2^0 = 1$ nodes
- Suppose the lemma holds for $h \ge 0$ (I.H.). We show it holds for h+1

$$|T| = |A| + |B| \ge 2^h + 2^h = 2^{h+1}$$
 nodes \Rightarrow T has at least 2^{h+1} nodes