$$M = Sqrt(B''/2 A B''/2)$$

$$C'' = B''/2 A'/2$$

$$C^{\frac{1}{2}}C^{\frac{1}{4}} = B''/2 A'/2 A'/2 B'/2$$

$$= B''/2 A B'/2$$

SVD of
$$M_2 = B^{n/2}A^{1/2}$$
 $M_2 = UDV^T$
 $M_2 H_2^T = UDV^TVD^TU^T$
 $= UDD^TU^T$
 $U = PCA \cdot f$
 $M_2 H_2^T = UDV^TVD^TU^T$
 $M_2 H_2^T = UDD^TU^T$
 $M_2 H_2^T = UDD^TU^T$
 $M_2 H_2^T = UDD^TU^T$
 $M_2 H_2^T = UDD^TU^T$
 $M_2 H_2^T = UDV^TVD^TU^T$
 $M_2 H_2^T = UDV^TVD^T$
 $M_2 H_2^T = UDV^T$
 $M_2 H_2$

Here, only interested in penalising
$$u$$
:

But we are interested in $B^{1/2}u = w$

wax $u^T M_2 v$ $\|u\|_2^2 = 1$, $P_1(B^{1/2}u) \leqslant c_1$

max $w^T B^{1/2} M_2 v$, $\|B^{1/2}w\|_2^2 = 1$, $P_2(w) \leqslant c_1$

AV2 wBw = 1

Solution in v is trivial

max v + 1/2 w ||v||2 = 1 v* = A1/2 w

what about w step? max was $\{v^TBw \in I \text{ solve m metrically.} \\ w \} \|w\|_1 \leq c \text{ LASSO.}$

Group lasso penalty? ve can replace P1(") n. group lasso

min
$$-u Mv + Mull_1$$
s.t. $v v \leq 1$
 $u v v \leq 1$

2. Solve
$$\begin{cases} \min & -u^T M^{\frac{1}{1}} + \lambda \|u\|_1 \\ n-t. & u^T B u \leq 1 \end{cases}$$

Routine (v, B, A)

$$mh - u Mv + \Lambda \|u\|_{1}$$

$$h.t. \qquad u Bu \leq 1$$

- Inhaliz no 1.
- 2. $d_{t+1} Mv + \Lambda sgn(u_t)$ 3. $s_{t+1} \frac{B^{-1}d_{t+1}}{\sqrt{d_{t+1}}B^{-2}d_{t+1}}$ 4. $u_{t+1} u_{t+1} = \frac{B^{-1}d_{t+1}}{\sqrt{d_{t+1}}B^{-2}d_{t+1}} \left(s_{t+1} u_{t}\right)$

untl sweeping