Open ball: $B_{\sigma}(x, \delta) = \{ y \in \mathbf{X} : \sigma(x, y) < \delta \}$ Closure (\overline{A}) : $\{x \in \mathbf{X} : V \cap A \neq \emptyset, \forall V \in \tau : A \neq \emptyset, \forall V \in T : A \neq$ σ -open: $\forall x \in A, \exists \delta_x > 0 : B_{\sigma}(x, \delta_x) \subseteq A$ Cont. at x_0 : $\forall \epsilon > 0, \exists \delta > 0 : d(x,y) < 0$ *Interior* (\mathring{A}): $\{x \in A : \exists V \in \tau : x \in V \subseteq A\}$ $\delta \implies \sigma(f(x), f(y)) < \epsilon, x \in \mathbf{X}, y \in \mathbf{Y}$. cont Boundary (∂A) : $\{x \in \mathbf{X} : V \cap A \neq \emptyset \text{ and } \}$ $V \cap A^c \neq \emptyset, \forall V \in \tau : x \in V \}. \ \partial A = A \cap A^c$ Theorems & Lemmas *Theorems* & *Lemmas* $(\mathbf{X}, \sigma) \in |\mathsf{MET}|, B_{\sigma}(x, s) \subseteq \mathbf{X} \text{ is } \sigma\text{-open } \square$ Let $(\mathbf{X}, \tau) \in |\text{TOP}|$, $A \subseteq \mathbf{X}, B \subseteq \mathbf{X}$: f is continuous $\iff \forall \sigma$ -open $V \subseteq$ i) $A \subseteq \overline{A}$ ii) $A \subseteq B \Longrightarrow \overline{A} \subseteq \overline{B}$ **Y**, $f^{-1}(v)$ is d-open \square iii) $\overline{A \cup B} = \overline{A} \cup \overline{B}$ iv) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$ v) $(\overline{A}) = \overline{A}$ vi) \overline{A} is closed vii) \overline{A} is the 2 Topologies smallest closed set containing A viii) $A = A \iff A^c \in \tau \square$ Let $(\mathbf{X}, \tau) \in |\mathsf{TOP}|$, $A \subseteq \mathbf{X}, B \subseteq \mathbf{X}$: Definitions i) $\mathring{A} \subseteq A$ ii) $A \subseteq B \implies \mathring{A} \subseteq \mathring{B}$ Topology: i) $\emptyset, \mathbf{X} \in \tau$ ii) $A, B \to A \cap B$ iii) $(A \cap B) = \mathring{A} \cap \mathring{B}$ iv) $\mathring{A} \cup \mathring{B} \subseteq (A \cup B)$ $iii)A_i \rightarrow \bigcup A_i$. $(\mathbf{X}, \tau) \in |\mathsf{TOP}|$ Cont. at x_0 : $\forall V \in \sigma, f(x_0) \in V$, $\Longrightarrow \exists U \in$ v) $(\mathring{A}) = \mathring{A}$ vi) \mathring{A} is open vii) \mathring{A} is the $\tau, x_0 \in U : f(U) \subseteq V$. cont $\forall x \in \mathbf{X}$ largest closed set contained in A Theorems & Lemmas viii) $\mathring{A} = A \iff A \in \tau \square$ $f \text{ cont.} \iff \forall V \in \sigma, f^{-1}(V) \in \tau \square$ Separability, Indiscrete: $\tau = \{\emptyset, X\}$ vergence & Compact-3 Bases & Subbases ness Definitions Definitions $Base(\mathbf{B}): \forall V \in \tau, x \in V, \exists B \in \mathbf{B}: x \in B \subseteq Separable:(\mathbf{X}, \tau) \in |TOP|: \exists a countable$ $V. V = \bigcup \{B_i\}$ $A \subseteq \mathbf{X} : \overline{A} = \mathbf{X}$. A is dense in \mathbf{X} First countable: countable basis at each Converging sequence ($\{x_m\}$): $\forall V \in \tau, x \in$ $V \implies x_m \in V \forall m \ge N, \exists N, \text{ i.e., } \{x_m\} \text{ be-}$ Second countable: $|\mathbf{B}|$ countable OR τ has longs to V eventually a countable basis, i.e. $\exists \mathbf{B} \subseteq \tau : \forall V \in$ Cauchy sequence $(\{x_m\})$: $\forall \epsilon > 0, \exists N$: $\tau, x \in V, \exists B \in \mathbf{B} : x \in B \subseteq V \text{ and } \mathbf{B} \text{ is}$ $d(x_a, x_b) < \epsilon \forall a, b \ge N$ Complete $M \in |MET|$: Each Cauchy secountable Subbase (S): $S \subseteq \mathcal{P}(\mathbf{X})$ and the set of fiquence converges nite intersections of S forms a basis for Hausdorff: $\forall x \neq y \in \mathbf{X}, \exists U, V \in \tau : x \in$ $U, v \in V, U \cap V = \emptyset$ Local basis at x_0 ($\mathbf{B}_{\mathbf{x_0}}$): i) $x_0 \in B \ \forall B \in \mathbf{B}_{\mathbf{x_0}}$ Theorems & Lemmas Second countable \implies separable \square ii) $V \in \tau, x_0 \in V \implies \exists B \in \mathbf{B}_{\mathbf{x_0}} : B \subseteq V$ Theorems & Lemmas $(\mathbf{X}, d) \in |\mathsf{MET}|$ is separable \iff second If $\mathbf{B} \subseteq \mathcal{P}(\mathbf{X}) \wedge i$ $\cup \mathbf{B} = \mathbf{X} \ ii$ $x \in B_1 \cap \text{countable } \square$ $B_2, \exists B_3 \in \mathbf{B} : x \in B_3 \subseteq B_1 \cap B_2$. Then **B** Let $(\mathbf{X}, \tau) \in |TOP|$ be first countable, and is a basis for $\tau = \{A \subseteq \mathbf{X} : A = \bigcup \{B_i \in \mathbf{B}\} \mid \Box A \subseteq \mathbf{X} \implies x \in A \iff \exists \text{ a sequence in } A$ $S \subseteq \mathcal{P}(\mathbf{X}) \land \cup S = \mathbf{X} \implies S$ is a subbasis which converges to x

for a top. τ on $X\square$

Definitions

Boundary

Second countable \implies first countable \square

Metrics

Cauchy: $\sum |x_i y_i| \le ||x_i|| ||y_i||$

ii) $\sigma(x, y) = \sigma(y, x) \forall x, y \in \mathbf{X}$

iii) $\sigma(x, y) \le \sigma(x, z) + \sigma(z, y)$

 $Minkowski: ||x + y|| \le ||x|| + ||y||$

metric: i) $\sigma(x,y) = 0 \iff x = y$

Definitions

Homeomorphisms are open & closed □ 8 Subspaces Definitions Subspace topology on $A(\tau_A)$: $\{B \subseteq A : B =$ $V \cap A \exists V \in \tau$ }. Also: $\{V \cap A : V \in \tau\}$ **Con-** Hereditary property: Invariant through $X_i, \pi_i((x_i)_i) = x_i$ subspaces **Initial** Final and **Topologies** Definitions *Source*: \mathbf{X} ∈ |SET|, (\mathbf{Y}_i, σ_i) ∈ |TOP|, $j \in J$. Suppose $f_i: \mathbf{X} \mapsto \mathbf{Y}_i$. $\mathbf{X} \stackrel{J_j}{\longmapsto} (\mathbf{Y}, \sigma_i)$ is a

Embedding: $f: (\mathbf{X}, \tau) \mapsto (\mathbf{Y}, \sigma)$. If $F: (\mathbf{X}, \tau) \mapsto (f(\mathbf{X}), \tau_{f(\mathbf{X})})$ is a homeomorphism, then f is an embedding. *Embedded*: (**X**, τ) is embedded in (**Y**, σ) Theorems & Lemmas $(\mathbf{X}, \tau) \in |\mathsf{TOP}| \quad \mathsf{and} \quad A \subseteq \mathbf{X}$ $(A, \tau_A) \in |TOP| \square$ $(\mathbf{X}, \tau) \in |\mathsf{TOP}|, A \subseteq \mathbf{X} \implies i) B \subseteq$ $A, B^c \in \tau_A \iff B = C \cap A, \exists C \subseteq \mathbf{X}$ ii) $B \subseteq A \implies \overline{B}^{\tau_A} = \overline{B}^{\tau'} \cap A$ iii) $B^c \in \tau, B \subseteq A, \implies B^c \in \tau_A \text{ iv}$ $A^c \in \tau, B \subseteq A, B^c \in \tau_A \implies B^c \in \tau \square$

Continuity

 $\overline{f^{-1}(B)} \subseteq f^{-1}(B) \forall B \subseteq Y \square$

TFAE: i) f is continuous ii) $f^{-1}(V) \in$

 $f:(X,\tau)\mapsto (Y,\sigma)$ and S be a subbase for σ .

 $f^{-1}(S) \in \tau \forall S \in \mathcal{S} \implies f \text{ is continuous } \square$

Homeomorphism: i) bijection ii) continu-

Topological property: property invariant

(closed) for every open (closed) V (F)

7 Homeomorphisms

ous iii) inverse is continuous

under homeomorphisms

Theorems & Lemmas

Theorems & Lemmas

Definitions

4 Closure, Interior & $\tau \forall V \in \sigma \text{ iii) } f^{-1}(F) \text{ is closed } \forall F \subseteq Y$

Sink: $(\mathbf{X}_i, \tau_i) \stackrel{\mathcal{I}_j}{\longmapsto} \mathbf{Y}$

that is closed iv) $f(A) \subseteq f(A) \forall A \subseteq \mathbf{X}$ v) $\mathbf{X} : f_i : (\mathbf{X}, \tau_i) \mapsto (\mathbf{Y}_i, \sigma_i)$ is continuous

Open (Closed) map: f(V)(f(F)) is open $g \circ f_i : (\mathbf{X}_i, \tau_i \mapsto (\mathbf{Z}, \delta))$ is cont. $\forall j$

obevs (ii)

Theorems & Lemmas

Consider the source $X \xrightarrow{j_j} (Y_j, \tau_i)$:

 $f_i \circ g : (\mathbf{Z}, \delta \mapsto (\mathbf{Y}_i, \sigma_i))$ is cont. $\forall j$

Consider the sink $(\mathbf{X}_i, \tau_i) \stackrel{J_j}{\longmapsto} \mathbf{Y}$:

(ii), called the final topology □

10 Product Spaces

 $\{f_i^{-1}(B): B \in \mathcal{B}_i, \forall i\}$

jth projection map:

Definitions

members of \mathbf{B}_{i}

Theorems & Lemmas

that $f_i: (\mathbf{X}, \tau_i) \mapsto (\mathbf{Y}, \tau_F)$ is cont. $\forall i$

i) \exists a coarsest (smallest) topology τ_I on

ii) $g:(\mathbf{Z},\delta)\mapsto(\mathbf{X},\tau_I)$ is continuous \iff

iv) if $\{x_m\} \xrightarrow{\tau_I} x \implies f_i(x_m) \xrightarrow{\sigma_j} f_i(x), \forall j \square$

i) \exists a finest (largest) top. τ_F on **Y** such

ii) $\forall g: (\mathbf{Y}, \tau_F) \mapsto (\mathbf{Z}, \delta), g$ is cont. \iff

iii) τ_F is the unique top. on Y obeying

Basis for τ_I : $S = \{f_i^{-1}(V) : V \in \sigma_i, \forall j\} \square$

Basis for τ_I with $\dot{\mathcal{B}}_i$ basis of σ_i : $\mathcal{S} =$

Product topology (τ_n) : τ_I such that

 $\mathbf{X} \stackrel{n_j}{\longmapsto} (X_i, \tau_i)$ is continuous $\forall j, \mathbf{X} = \prod \mathbf{X}_i$

Subbase for τ_p : $\{\pi_i^{-1}(V) : V \in \tau_i\}$ or

Typical basis member for τ_p : $\prod B_i : B_i =$

 X_i except for finitely many j which are

Productive property: (\mathbf{X}, τ_p) has the prop-

Consider $(\mathbf{X}, \tau_I) \stackrel{J_j}{\longmapsto} (\mathbf{Y}_i, \sigma_i)$. $\{x_m\} \stackrel{\tau_I}{\longrightarrow}$

 $x \iff \forall j, f_i(x_m) \xrightarrow{\sigma_j} f_i(x), m \to \infty \square$ Let

 $(\mathbf{X}_{\kappa}, \tau_{\kappa}), \kappa \in \mathcal{K}$ be a collection of top.

spaces. Fix $j \in \mathcal{K}$, then (\mathbf{X}_j, τ_i) , can be

 $\{\pi_i^{-1}(B): B \in \mathbf{B}_i\}, \mathbf{B}_i$ a basis of τ_i

Box topology: $\tau_B = \{ \prod B_i : B_i \in \mathbf{B}_i \}$

erty provided each (X_i, τ_i) has it

 $\forall S \in \mathcal{S} \text{ with } x \in S; x_m \in S \forall m \geq N \square$

embedded in $(\mathbf{X}, \tau_p), \mathbf{X} = \prod \mathbf{X}_{\kappa} \square$

 $\pi_i : \mathbf{X} \mapsto$

S is a subbase for τ . If $\{x_m\} \xrightarrow{\tau} x \iff$

Definitions Quotient topology: Final topology where $(\mathbf{X}, \tau) \xrightarrow{J} \mathbf{Y}, f \text{ surjective (onto)}. \ \tau_O = \{V \subseteq \mathcal{V} \in \mathcal{V}\}$

Open map: $f: (\mathbf{X}, \tau) \mapsto (\mathbf{Y}, \sigma)$, where $V \in$

Closed map: $f: (\mathbf{X}, \tau) \mapsto (\mathbf{Y}, \sigma)$, where

f cont. surjection \wedge (f is open \vee f is

 $(\mathbf{X}, \tau) \in |\mathsf{TOP}|$ is Hausdorff $\iff \Delta =$

 $\tau_n \subseteq \tau_B$, thus $\pi_i : (\mathbf{X}, \tau_B) \mapsto (\mathbf{X}_i, \tau_i)$ is

 $\{(x,x):x\in X\}$ is closed in $(X\times X,\tau_n)$

Remarks

 $Y: f^{-1}(V) \in \tau$

 $\tau \implies f(V) \in \sigma$

 $V^c \in \tau \implies (f(V))^c \in \sigma$

Theorems & Lemmas

iii) τ_I is the unique top. on X which 11 Quotient Spaces

closed) \Longrightarrow f is a quotient map \square

Quotient map: $f: (\mathbf{X}, \tau) \mapsto (\mathbf{Y}, \tau_O)$

Connectedness

 $\mathbf{X},\exists\,f^{cont}:[0,1]\mapsto\mathbf{X}:f(0)=a,f(1)=b.$

 $f: (\mathbf{X}, \tau) \mapsto (\mathbf{Y}, \sigma)$ cont. and surj., then

 (\mathbf{X}, τ) connected \Longrightarrow (\mathbf{Y}, σ) connected \square

Suppose $(\mathbf{X}, \tau) \in |\text{TOP}|$: i) $A \subseteq \mathbf{X}$ conn.

 \implies B conn., $A \subseteq B \subseteq A$ ii) A_i conn. and

 $\exists \kappa \in J : A_{\kappa} \cap A_{i} \neq \emptyset \forall j \neq \kappa \implies \bigcup A_{i} \text{ is}$

A subset of (\mathbb{R}, τ) is conn \iff it is an

IVT: Assume $f: (\mathbf{X}, \tau) \mapsto \mathbb{R}$ is cont. and

 (\mathbf{X}, τ) is conn. If $a, b \in \mathbf{X}$ and f(a) < f(b)

 $\forall a,b \in$

 $\overline{Disconnected}$: $\mathbf{X} = V \cup W, V, W \in \tau, V \neq$

Connected: Not disconnected

Connected subset: $A \subseteq \mathbf{X}, (A, \tau_A)$ is con-

 $\emptyset \neq W, V \cap W = \emptyset$

Path (arcwise) connected:

f is a path from a to b

Theorems & Lemmas

 (\mathbb{R}, τ) is connected \square

then $[f(a), f(b)] \subseteq f(\mathbf{X})$

ii) \mathbb{R}^{κ} is path conn. \square

i) A path conn. space is conn.

 (\mathbf{X}, τ_p) conn. \iff (\mathbf{X}_i, τ_i) is conn. $\forall j$

nected

interval □

Definitions

13 Compactness

Definitions

Open cover: $\mathbf{e} \subseteq \tau$, $\cup \mathbf{e} = \mathbf{X}$ Open cover of A: $A \subseteq \cup \mathbf{e}$

Compact: Every open cover has finite subcover. $\mathbf{e} \subseteq \mathbf{X}$ and $A \subseteq \cup \mathbf{e}$, $\Longrightarrow \exists V \subseteq$ $\mathbf{e}:A\subseteq \cup V \land$

Neighborhood of $x: B \subseteq X: x \in V \subseteq$ $B,\exists V\in\tau$

Locally compact: $\forall x \in \mathbf{X}$, x has a compact neighborhood.

Theorems & Lemmas

Let $(\mathbf{X}, \tau) \in |\mathsf{TOP}|$:

i) if **X** compact, so is each closed subset

ii) if **X** Hausdorff, each compact subset is closed

iii) if **X** is a metric space, each copmact subset is closed and bounded

iv) if $f: (\mathbf{X}, \tau) \mapsto (\mathbf{Y}, \sigma)$ is cont., **X** is compact, Y is Hausdorff, then f(X) is a compact subset of **Y** and is closed □

Let $I = [a, b] \subseteq (\mathbb{R}, \tau)$. I is compact \square

 (\mathbf{X}, τ) compact $\iff (\mathbf{X}_i, \tau_i)$ compact \square $A \subseteq \mathbb{R}$ compact \iff A closed and

bounded 🗆 Let $f: (\mathbf{X}, \tau) \mapsto \mathbb{R}$ be cont.:

i) **X** comp. \implies inf $f(\mathbf{X}) \in f(\mathbf{X})$ and $\sup f(\mathbf{X}) \in f(\mathbf{X})$

ii) **X** comp. and conn. $\implies f(\mathbf{X}) =$ $[f(x_0), f(x_1)] \square$

Let $f: (\mathbf{X}, \tau) \mapsto (\mathbf{Y}, \sigma)$ be a cont., open surjection. (\mathbf{X}, τ) loc. comp. $\Longrightarrow (\mathbf{Y}, \sigma)$ loc. comp. □

Let (\mathbf{X}, τ) be loc. comp. and Hausdorff. If $A \subseteq \mathbf{X}$ is closed, (A, τ_A) is also loc. comp.

Let (\mathbf{X}, τ) be Hausdorff. Let compacts subsets $A, B \subseteq \mathbf{X}, A \cap B = \emptyset$:

i) if $x \notin A, \exists V_1, V_2 \in \tau : x \in V_1, A \subseteq$ V_2 , $V_1 \cap V_2 = \emptyset$

ii) $\exists V_1, V_2 \in \tau : A \subseteq V_1, B \subseteq V_2, V_1 \cap V_2 =$

Let (\mathbf{X}, τ) be loc. comp. and Hausdorff. $x \in V \in \tau \implies \exists W \in \tau : x \in W \subseteq W \subseteq$

V, W compact \square

If **e** is a τ -open cover of A, then $\mathcal{D} =$ $\{V \cap A : V \in \mathbf{e}\}$ is a τ_A -open cover of A Compactification $(((\mathbf{Y}, \sigma), f))$: i) (\mathbf{Y}, σ) comp. ii) $f: (\mathbf{X}, \tau) \mapsto (\mathbf{Y}, \sigma)$ is an into homeomorphism iii) $f(\mathbf{X}) = \mathbf{Y}$

One-point compactification: above, and open sets containing $e_{\mathbf{G}}$ to open sets coniii) (\mathbf{X}, d) is compact \square

 $Y - f(\mathbf{X})$ is a singleton Theorems & Lemmas

Assume (X, τ) is Hausdorff. Then it has a Hausdorff one-point compactif. iff (\mathbf{X}, τ) is locally compact. Assume (X, τ) is not compact □

Topological Groups

Definitions

Group ((\mathbf{G} , ·)): $\mathbf{G} \in |SET|$, · : $\mathbf{G} \times \mathbf{G} \mapsto \mathbf{G}$ s.t. i) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associativity) ii) $\exists e \in \mathbf{G} : ae = ea = a \forall a \in \mathbf{G}$ (identity)

iii) $\forall a \in \mathbf{G} \exists v \in \mathbf{G} : ab = ba = e \text{ (inverse)}$ $\theta : \mathbf{G} \times \mathbf{G} \mapsto \mathbf{G}, \theta(x, y) = xy$

 $\psi: \mathbf{G} \mapsto \mathbf{G}, (x) = x^{-1}$

 $\delta: \mathbf{G} \times \mathbf{G} \mapsto \mathbf{G}, \delta(x, y) = xy^{-1}$

Homomorphism: $h : \mathbf{G} \mapsto \mathbf{H}, h(x,y) =$ h(x)h(y)

Topological Group: (\mathbf{G}, \cdot, τ) where

i) θ is cont.

ii) ψ is cont.

Subgroup: $\mathbf{H} \subseteq \mathbf{G}$: $\forall a, b \in \mathbf{H}, ab^{-1} \in \mathbf{H}.\mathbf{H}$. $\mathbf{H}^{-1} \subseteq \mathbf{H}$

Normal Subgroup: Subgroup H where $\forall a \in \mathbf{G}, a\mathbf{H}a^{-1} \subseteq \mathbf{H}$

Theorems & Lemmas

If h is a homomorphism, then $h(e_{\mathbf{G}}) =$ $e_{\mathbf{H}}, h(x^{-1}) = (h(x))^{-1} \square$

Assume $f_i: \mathbf{X}_i \mapsto \mathbf{Y}_i, i = 1, 2$ are cont. Define $f_1 \times f_2 : \mathbf{X}_1 \times \mathbf{X}_2 \mapsto \mathbf{Y}_1 \times \mathbf{Y}_2$, $(f_1 \times \mathbf{Y}_2)$ $f_2(x_1, x_2) = (f_1(x_1), f_2(x_2))$ then $f_1 \times f_2$ is cont. □

 $(\mathbf{G}, \cdot, \tau) \in |\mathsf{TG}| \iff \delta \text{ is cont. } \square$

Fix $a \in \mathbf{G}$. The following are homeomor-

i) $x \mapsto ax$ (left transl.)

ii) $x \mapsto xa$ (right trans.)

iii) $x \mapsto axa^{-1} \square$

 $e \in V \in \tau \iff a \in aV \in \tau \square$ $a \in W \in \tau \implies \exists e \in V \in \tau : W = aV \square$

 (\mathbf{G}, τ) Hausdorff \iff $\{e\}$ closed \square

H (normal) subgroup of $G \implies H$ (normal) subgroup of G. In particular,

 $(\mathbf{H},\cdot,\tau_{\mathbf{H}}),(\overline{\mathbf{H}},\cdot,\tau_{\overline{\mathbf{H}}})\in |\mathrm{TG}|\ \Box$ Let $h: (\mathbf{G}, \cdot, \tau) \mapsto (\mathbf{H}, \cdot, \sigma)$ be a homomor-

phism. h cont. at $x = a \implies h$ is cont. \square $(\mathbf{G}, \cdot) \mapsto (\mathbf{H}_{i}, \cdot, \sigma_{i}), \tau$ the initial top.

on **G**. Then $(\mathbf{G}, \cdot, \tau) \in |\mathsf{TOP}|$ provided $(\mathbf{H}_i, \cdot, \sigma_i) \in |\mathrm{TG}| \ \forall i \square$

ther, if h is a cont. surj., then h is a quotient map □

Actions 15

Definitions

Action (λ) , **G** acts on **X**: $\lambda : \mathbf{G} \times \mathbf{X} \mapsto \mathbf{X}$ such that

i) $\lambda(e, x) = x \forall x \in \mathbf{X}$

ii) $\lambda(g, \lambda(h, x)) = \lambda(gh, x) \forall g, h \in \mathbf{G}, x \in \mathbf{X}$ iii) λ is cont. when $\mathbf{G} \times \mathbf{X}$ has the product

topology Theorems & Lemmas Suppose $(\mathbf{G}, \cdot, \sigma)$ acts cont. on (\mathbf{X}, τ) with

action . Fix $g \in \mathbf{G}$ and define $\theta_{\sigma} : \mathbf{X} \mapsto$ $\mathbf{X}, \theta_{\varphi}(x) = \lambda(g, x), x \in \mathbf{X}. \ \theta_{\varphi}$ is a homeomorphism

More 16 on **Spaces**

Definitions

Countably compact: Every countable open cover of X has a finite subcover Finite Intersection Property: $\bigcap_{i=1}^{m} \mathbf{D}_{i} \neq \emptyset$ m} $\subseteq \mathcal{D}$

Nonempty Intersection: \bigcap **D** \neq \emptyset

Sequentially Compact: Each sequence in **X** has a convergent subsequence

Totally Bounded: $\forall \delta > 0, \exists x_1, x_2, ..., x_n \in$ $\mathbf{X}: \bigcup \mathcal{B}(x_i, \delta) = \mathbf{X}$

Theorems & Lemmas

 $(\mathbf{X}, d) \in |\mathsf{MET}|$, TFAE:

i) (\mathbf{X}, d) is countably compact

ii) Each countable collection of closed

subsets of X with f.i.p. has nonempty intersection

iii) (\mathbf{X}, d) is sequentially compact \square $X \text{ compact} \implies \text{totally bounded } \square$ Sequential compactness \implies total bound. \implies second countable \implies Lindelof □

TFAE: i) (\mathbf{X}, d) is countably compact Let h be a homomorphism. If h maps ii) (\mathbf{X}, d) is sequentially compact

taining $e_{\rm H}$, then h is an open map. Fur- 17 Path Homotopy

Definitions

Loop: A path where f(0) = f(1)*Reverse of f*: The path $f:[0,1] \mapsto$ $X, f(s) = f(1-s), 0 \le s \le 1$

Path Multiplication: Let f,g be paths in X : f(1) = g(0). Define f * g to be the

 $|g(2s-1)| \frac{1}{2} \le x \le 1$ motopic Paths: f,g paths in X: f(0) =g(0), f(1) = g(1). f, g are path homotopic provided \exists a continuous map $F: I^2 \mapsto \mathbf{X}$ where

i) F(0,t) = f(0) = g(0)ii) F(1,t) = f(1) = g(1)

iii) F(s, 0) = f(s)iv) F(s, 1) = g(s)

F is a Path Homotopy

Homotopy Path Equivalence Class: [f] = $\{g: g \sim f, g \text{ is a path in } X\}$ **Metric** Constant Path: $e_x : I \mapsto X, e_x(s) = x \forall s \in I$.

Note e_x is a loop Straight Line Homotopy: F(s,t) = (1 -

t) f(s) + tg(s)Theorems & Lemmas

Parting Lemma: Assume $(X, \tau) \in |TOP|$, $X = A \cup B$, A and B closed subsets of **X**. Suppose $f:(A,\tau_A)\mapsto (\mathbf{Y},\sigma)$ and $g:(B,\tau_B)\mapsto (\mathbf{Y},\sigma)$ are each cont. Fur-

ther, let $f(x) = g(x) \forall x \in A \cap B$. Define $h: \mathbf{X} \mapsto \mathbf{Y} \text{ by } h(x) = \begin{cases} f(x) & x \in A \\ g(x) & x \in B \end{cases}$. h is

continuous □

Lindelof: Every open cover has countable Let $(\mathbf{X}, \tau) \in |\text{TOP}|$. If f, g are paths in \mathbf{X} , define $f \sim g \iff f$ and g are path homotopic. ~ is an equivalence relation on the set of all paths in $X\square$

All paths in (\mathbf{X}, τ) :

i) $f * e_{x1} \sim f$ and $e_{x0} * f \sim f$ where f(0) = $x_0, f(1) = x_1$

ii) $f * f \sim e_{r0}$ and $f * f \sim e_{r1}$

iii) $f \sim g \implies f \sim \overline{g}$ iv) $f \sim f_1, g \sim g_1, \exists f * g \implies f * g \sim f_1 * g_1$ v) If f * g, g * h exist, then $(f * g) * h \sim$ $f * (g * h) \square$