

Parcours OpenClassRooms

Data Scientist

P6 Classifiez des biens de consommations

Développé sur un Notebook Jupyter Colaboratory

Pictures used for educational purpose only

Benoît DELORME Création : 28/06/21 Mise à jour : 06/07/2021

Sommaire

I. Introduction		
II. Traitement des images		
III. Traitement des textes		
IV. Segmentation		
V. Bilan et perspectives		

1. L'entreprise et son besoin

2. Le livrable recherché

Algorithme de classification

- « Avec un niveau de précision suffisant » :
- → fixer une **limite** au nombre d'**erreurs** d'affectation

Groupe 2

Groupe 3

Groupe 4

Groupe 5

3. Le jeu de données

15 caractéristiques La table principale Dates, prix, descriptions, identifiants, marques, ... crawl timestamp product category tree retail price discounted price product name description Elegance Polyester Key Features of 2016-04-30 03:22:56 ("Home Furnishing >> Curtains & Multipolor Abstract 1899.0 899.0 Elegance Polyester Elegance Accessories >>... Eyelet ... Multicolor ... 1050 La banque d'image associée produits Historia con Allete Competition C 00ex0068 (hec/be4880el/2d/fle/f0.hsS) Ca3664d77s385s2d7s8s25s255s3s4e

Empreson/and/e-chito/aks/an/4

4. Les différents types de données (features)

Certaines données textuelles sont « à tiroir », elles peuvent contenir :

- Une arborescence, avec des embranchements,
- Un dictionnaire, avec des clés propres à chaque produit (≈ .json).

5. Les outils à disposition

Traitement d'image

Filtre de Canny

Descripteurs

Filtre gaussien

Gradient

Réseaux de neurones

Traitement de texte

OneHotEncoding

Color		Red	Yellow	Green
Red		1	0	0
Red		1	D	0
Yellow	_	0	1	0
Graen		0	0	- 1
Yellow		0	1	-0

Specific encoding

Color		Red	Yellow
Red		1.3	. 0
Red	\rightarrow	1	0
low		0	. 4.
neen		0	1
Yellow			

Poids tf-idf

1. Les étapes de traitement

2. Les pré-traitements

1. Egaliser

Sur plusieurs images, on compare visuellement les résultats en faisant varier filtre gaussien et filtre de Canny.

→ Un filtre gaussien de 5 et un filtre de Canny de 3 seront utilisés pour l'ensemble du jeu de données.

3. Les keypoints

4. La segmentation

→ Environ 22 groupes identifiés visuellement.

Segmenter les points remarquables via k-means

Représenter dans le plan t-SNE

Compter le nombre d'étiquettes par images

Avec les coordonnées

uniq_id	descriptor_id	keypoints_x	keypoints_y	labels
280	1.0	310.00000	519.00000	14
280	2.0	519.60004	304.80002	13
280	3.0	302.40002	613.44000	14
280	4.0	172.80002	559.87207	14
86	1.0	889.00000	182.00000	5
86	2.0	172.80000	687.60004	14
86	3.0	732.96002	694.08002	15
86	4.0	412.99203	765.50409	21

Avec le descripteur

uniq_id	descriptor_id	0	1	2	3	4	١.	labels
280	1.0	165	252	156	97	56	١.	17
280	2.0	88	32	19	32	1	ı.	11
280	3.0	43	173	2	186	89	Ĺ	20
280	4.0	96	48	40	104	40	Ľ	19
86	1.0	64	50	128	101	96	ľ	10
86	2.0	48	32	26	48	9	ľ	11
86	3.0	65	20	20	69	48	ŀ	13
86	4.0	36	96	177	64	128	٠	6

11

5. Aperçu des groupes formés

1. Les étapes de traitement

2. Extraire

3. Nettoyer XYZ Designed For Computers, Laptops, Mobiles Model Number SF-VC 011 Phrase brute Model Name Vacuum Cleaner In the Box Sales Package 1 vacuum cleaner XYZ Designed For Computers, Laptops, Mobiles Model Number Model Sans nombre Name Vacuum Cleaner In the Box Sales Package vacuum cleaner XYZ Designed For Computers Laptops Mobiles Model Number Model Name Sans ponctuation Vacuum Cleaner In the Box Sales Package vacuum cleaner XYZ Designed Computers Laptops Mobiles Model Number Model Name Sans stopwords Vacuum Cleaner Box Sales Package vacuum cleaner Sans mots de 1 ou XYZ Designed Computers Laptops Mobiles Model Number Model Name 2 caractères Vacuum Cleaner Box Sales Package vacuum cleaner Uniquement les xyz design comput laptop mobil model number model name vacuum cleaner racines box sale packag vacuum cleaner

4. Encoder

OneHotEncoding → Une catégorie par cellule cat tree 1st home furnish babi care cat1_home_furnish cat1_babi_care 0.0 0.0 1.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

1. La réduction dimensionnelle : choisir en fonction de l'algorithme

Approche habituelle

Garder les 80% ou 95% des composantes principales les plus importantes:

Fonction de k-means

Fonction de DBSCAN

- → Pour k-means : 300 composantes principales
- → Pour DBSCAN, le meilleur compromis : 5 composantes principales

2. La visualisation dans t-SNE

1038 composantes (nombre de produits)

300 composantes

5 composantes

- → Cohérence entre t-SNE et k-means.
- → Les performances de DBSCAN sont insuffisantes (≈ 100 groupes)

3. L'optimisation : rechercher les meilleures performances

k-means

Davies-Bouldin

Silhouette

- → Métriques semblables d'une combinaison à l'autre.
- → Aucune combinaison ne se démarque par rapport aux autres.

DBSCAN

```
# Hyperparameters
eps_list = [0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
min_samples_list = [2, 3, 4, 5]
leaf_size_list = [10, 20, 30]
```

 \rightarrow Meilleurs scores obtenus pour *eps* = **0**,**1**.

eps est habituellement de 0,2.

Pour eps = 0,1, les groupes formés seront plus **compacts**.

Mais il y aura plus de points considérés comme du **bruit**.

- → paramètres de référence pour k-means
- \rightarrow eps = 0,1 pour DBSCAN

4. Le livrable

→ Etude d'un échantillon de sept groupes, à raison de cinq photos par groupe.

k-means Bilan → Niveau de précision : 46% Pertinent 16 → Quelques mélanges entre Limite groupes (par ex. groupe 0 et 15 Bruit groupe 6). 10 20

→ Niveau de précision : 100%

Mais:

- 1. 95,6 % du jeu de données considéré comme du bruit : inutilisable donc. 2. Groupes similaires.
- → k-means, bien qu'imparfait, est plus adapté que DBSCAN pour ce jeu de données.

V. Bilan et perspectives

Sujet		Commentaire
	Le jeu de données	 Peu de données (1050 produits), mais les caractéristiques sont exploitables dans l'ensemble. Le jeu de donnée est petit et limite l'efficacité des algorithmes.
30	Les images	 Pour certaines images, l'algorithme ORB trouve des keypoints pertinents. Pour d'autres images, ORB semble perturbé par du bruit difficilement gommé par les filtres.
product_specifications ("product_specification"=>{("key"=>"Br and, "value"=>"Elegance], ("key"=>"Type" "value"=> Eyelet"),	Les textes	 Les données textuelles sont exploitables. Le résultat du nettoyage est pertinent.
	La segmentation	 La réduction dimensionnelle diffère d'un algorithme à l'autre. k-means fournit les meilleurs résultats, avec 46% sur un échantillon. DBSCAN ne semble pas adapté pour le jeu de données.
	Perspectives	 Enrichir le jeu de données avec d'autre produits. SIFT n'a pas pu être utilisé, mais semble plus accessible dans sa version payante (opencv_contrib).

Perspectives d'améliorations

Réseaux de neurones VGG16 (Keras)

Traitement spécifique aux images difficiles

Abondance de détails

Objets brillants

Autres algorithmes de segmentation

Gaussian Mixture

Fin de la présentation

Merci pour votre attention

