APRIL 2021: END SEMESTER ASSESSMENT (ESA) B Tech 1 SEMESTER (Chemistry Cycle) UE20MA101: Engineering Mathematics - I

		Time: 3 Hrs	Answer All Questions	Max Marks: 100	
1	a)	Prove that the series 1 convergent if $a>0$, $b>0$	$+\frac{1}{2}\frac{a}{b} + \frac{1.3}{2.4}\frac{a(a+1)}{b(b+1)} + \frac{1.3.5}{2.4.6}\frac{a(a+1)}{b(b+1)}$ and $b > a + \frac{1}{2}$.	$\frac{(a+1)(a+2)}{(b+1)(b+2)} + \dots \infty \text{ is}$	7 M
	b)				7 M
	c)	Test the convergence o	f the series $\sum \frac{[(n+1)x]^n}{n^{n+1}}$.		6 M
2	a)	If $(\sqrt{x} + \sqrt{y})cotu - x$	$-y = 0$, prove that $4x \frac{\partial u}{\partial x}$	$+4y\frac{\partial u}{\partial y} + \sin 2u = 0.$	4 M
	b)	If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.			4 M
	c)	Find the Taylor's exp degree terms.	ansion of $e^{ax}sinby$ about	the origin upto third	6 M
	d)	vertical of length b and	me has a square base of side of side of side of surmounted by a regulated by interms of h such that the mum.	or pyramid of height h.	6 M
	· .	dy			T
3	a)	Solve: $x \sin x \frac{dy}{dx} + y(x)$	$(x\cos x - \sin x) = 2$		7 M
	b)	Find the orthogonal tra $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1, \text{where } \lambda$	jectories of the family of cur is a parameter.	rves	6 M
	c)	Solve: $y = 2px + p^n$.			7 M
4	a)	Solve: $(D^2 - 4D + 1)$	$y = \sin^2 x + e^x + e^3 x$		6 M
	b)	Solve the differential ed	quation: $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y =$	$=\frac{x^3}{1+x^2}$	7 M

	c)	A circuit consists of an inductance of 0.5 henrys, resistance of 6 ohms, capacitance of 0.02 farads and an e.m.f of voltage $E=24\sin 10t$. Find the charge and the current at time $t>0$ given that the circuit carries no charge and no current at time $t=0$.		
5	a)	Show that for $m, n > 0$ $\int_0^1 x^{m-1} \left(\log \frac{1}{x} \right)^{n-1} dx = \frac{\Gamma(n)}{m^n}$.	5 M	
	Show that for $m, n > 0$ $\int_0^\infty x^n \left(\log x\right) dx = \frac{1}{m^n}$.			
	b)	Show that for $m, n > 0$, $\int_{-a}^{a} (a+x)^{m-1} (a-x)^{n-1} dx = (2a)^{m+n-1} \beta(m,n).$	5 M	
		$(2a)^{m+n-1}\beta(m,n).$		
	c)	Use Jacobi series to derive the Bessel's integral formula		
		$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x\sin\theta) d\theta$ where n is a positive integer.		
	d) Evaluate $\int J_4(x)dx$.		4 M	