NEC

PNP SILICON TRANSISTOR

2SA1206

DESCRIPTION

The 2SA1206 is designed for general purpose amplifier and high speed switching applications.

FEATURES

- High Frequency Current Gain.
- High Speed Switching.
- Small Output Capacitance.
- Low Collector Saturation Voltage.

ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)

Maximum Temperatures
Storage Temperature55 to +150 °C
Junction Temperature 150 °C Maximum
Maximum Power Dissipation (Ta=25 °C)
Total Power Dissipation 600 mW
Maximum Voltages and Currents (Ta=25 °C)
V _{CBO} Collector to Base Voltage
V _{CEO} Collector to Emitter Voltage15 V
V _{EBO} Emitter to Base Voltage4.5 V
Ic Collector Current (D.C.)50 mA
Ic Collector Current (pulse) *100 mA
* PW ≤ 2 ms, duty cycle ≤ 50 %

ELECTRICAL CHARACTERISTICS (Ta=25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
ton	Turn-on Time		9.0	20	ns .	See test circuit.
toff	Turn-off Time		19	40	ns	See test circuit.
t _{stq}	Storage Time		16	40	ns	See test circuit.
fT	Gain Bandwidth Product	-800	1800		MHz	$V_{CE} = -10 \text{ V}, I_{E} = 10 \text{ mA}, f = 100 \text{ MHz}$
C _{ob}	Output Capacitance		2.0	3.0	pF	$V_{CB} = -5.0 \text{ V}, I_{E} = 0, f = 1 \text{ MHz}$
hFE1*	DC Current Gain	50	80	150	-	$V_{CE} = -1.0 \text{ V, } I_{C} = -10 \text{ mA}$
hFE2+	DC Current Gain	30	70		-	$V_{CE} = -1.0 \text{ V, } I_{C} = -1.0 \text{ mA}$
VCE(sat)*	Collector Saturation Voltage		-0.09	-0.20	V	$I_{C} = -10 \text{ mA}, I_{B} = -1.0 \text{ mA}$
V _{BE(sat)} *	Base Saturation Voltage		-0.80	-0.95	V	$I_{C} = -10 \text{ mA}, I_{B} = -1.0 \text{ mA}$
ICBO	Collector Cutoff Current			-0.1	μΑ	$V_{CB} = -8.0 \text{ V}, I_{E} = 0$
IEBO	Emitter Cutoff Current			-0.1	μΑ	$V_{EB} = -3.0 \text{ V, I}_{C} = 0$

^{*} Pulsed PW \leq 350 μ s, duty cycle \leq 2 %

TYPICAL CHARACTERISTICS (Ta = 25 °C)

SWITCHING TIME TEST CIRCUIT

ton, toff Test Circuit

 $t_{\text{on Test Waveforms (VBB}=\text{GROUND)}}$

 t_{off} Test Waveforms (VBB = -8.0 V)

tstg Test Waveforms