Maximize Payout Jonathan Wenger

1. The algorithm used for solving this problem.

The way I went about solving this problem is taking both lists, A and B, and sorting them from greatest value to lowest value (in descending order). I then iterated through both sorted lists consecutively, multiplying $(a_i)^{b_i}$ at every index in the lists (in order). That value will be the maximized payout. This algorithm (intuitively) maximizes payout, because it takes the highest possible values from Lists A and B at every step of i, and it is impossible to get a higher value for $(a_i)^{b_i}$ than (the maximum value of A)^{the maximum value of B}. This algorithm is in fact greedy, because this algorithm doesn't take any previous steps into account for deciding which next value to take from Lists A or B; it just takes the current maximum values that haven't been used yet in the multiplicative series.

2. Prove (rigorously) the correctness of your algorithm: i.e., that it maximizes payout.

Let's call the product produced by this greedy algorithm S, and let's call the product produced by the most optimal solution S^* . It is a given that $S^* \ge S$, as if this statement was incorrect, than S^* would not be optimal.

Now, we need to prove that $S^* \le S$, which will be proven now.

Lemma #1 - Given two positive integers, X and Y, and $X \ge Y$, then $(X^X * Y^Y) \ge (X^Y * Y^X)$. This will be proven using a direct proof.

- Let the first term= X^X , the second term= Y^Y , the third term= X^Y , and the fourth term= Y^X .
- X^X (the first term) is $\geq X^Y$ (the third term) by a factor of X^{X-Y} , and Y^X (the fourth term) is $\geq Y^Y$ (the second term) by a factor of Y^{X-Y} . Because $X\geq Y$, $X^{X-Y}\geq Y^{X-Y}$. Because the first term is \geq the third term by a larger scale than the fourth term is \geq the second term (i.e. $X^{X-Y}\geq Y^{X-Y}$), then $(X^X+Y^Y)\geq (X^Y+Y^X)$.

Lemma #2 - For any K such that $1 \le K \le N$, $(\prod_{i=1}^{K} (a_i)^{b_i} \text{ of } S^*) \le (\prod_{i=1}^{K} (a_i)^{b_i} \text{ of } S)$ (i.e. "greedy stays ahead"). This will be proven by induction.

- **The base case**, or when K=1, or $\prod_{i=1}^{1} (a_i)^{b_i}$ of the greedy algorithm (S), will just be an exponent, which equals (the max value of A)^{the max value of B}. Because there are no greater values of A or B in the lists, there is no greater possible value of $(a_i)^{b_i}$, so the base case for greedy is certainly optimal (meaning $(\prod_{i=1}^{1} (a_i)^{b_i})^{b_i}$ of S*) $\leq (\prod_{i=1}^{1} (a_i)^{b_i})^{b_i}$ of S)).
- **The inductive step**: We want to prove that if $(\prod_{i=1}^{K} (a_i)^{b_i} \text{ of S}) \ge (\prod_{i=1}^{K} (a_i)^{b_i} \text{ of S}^*)$, then $(\prod_{i=1}^{K+1} (a_i)^{b_i} \text{ of S}) \ge (\prod_{i=1}^{K+1} (a_i)^{b_i} \text{ of S}^*)$. Let T = the next "term" (i.e. the "K+1'th term") that will be taken

into the series. So for the greedy algorithm (S), $T=(the\ next\ unused\ maximum\ of\ A)^{the\ next\ unused\ maximum\ of\ B}.$ I will now prove that

$$((\prod_{1}^{K}(a_{i})^{b_{i}})*(a_{K+1})^{b_{K+1}} \text{ of } S) \ge ((\prod_{1}^{K}(a_{i})^{b_{i}})*(a_{K+1})^{b_{K+1}} \text{ of } S^{*}), \text{ where } T = (a_{K+1})^{b_{K+1}} \text{ of } S, \text{ and } T^{*} = (a_{K+1})^{b_{K+1}} \text{ of } S^{*}. \text{ Even if } T^{*} > T, S^{*} \le S \text{ (up to and through K)}.$$

∘ It has already been stated that $(\prod_{i=1}^{K} (a_i)^{b_i})$ of S)≥ $(\prod_{i=1}^{K} (a_i)^{b_i})$ of S*). While it is certainly possible that T* (the "K+1'th term" for S*) will have higher values of a^*_i and b^*_i than T would (meaning T*>T), that just means that the greedy algorithm (S) used those values of a^*_i and b^*_i at an earlier step in the series (before K). This is true because the greedy algorithm takes the maximum unused A

and B at every step. In that case where T*>T, then $(\prod_{i=1}^{K}(a_i)^{b_i})^{b_i}$ of S)> $(\prod_{i=1}^{K}(a_i)^{b_i})^{b_i}$ of S*). Let's say that T*>T (which is certainly possible, and is a worst case). Based on Lemma #1, let's call the first term = $\prod_{i=1}^{K}(a_i)^{b_i}$ of S, the second term = $(a_{K+1})^{b_{K+1}}$ of S (i.e. T), the third term = $\prod_{i=1}^{K}(a_i)^{b_i}$ of S*, and the fourth term = $(a_{K+1})^{b_{K+1}}$ of S* (i.e. T*). If T*>T, then $\prod_{i=1}^{K}(a_i)^{b_i}$ of S is greater than $\prod_{i=1}^{K}(a_i)^{b_i}$ of S* by a larger scale than T* is greater than T. As stated in Lemma #1, because the first term is greater than the third term by a larger scale than the fourth term is greater than the second term, $((\prod_{i=1}^{K}(a_i)^{b_i})^*(a_{K+1})^{b_{K+1}})^*(a_i)^{b_i}(a_i)^{b_i$

Because we proved Lemma #2 (that "greedy stays ahead" up to and through K), when K=N, this greedy algorithm "stays ahead" through N (which is all numbers in the series), which shows that greedy is optimal (because it stays ahead throughout the entire algorithm – that $S*\leq S$). Finally, because we proved that $S*\geq S$, as well as $S*\leq S$, it must be that S*=S, and the greedy algorithm is optimal.

3. State (and prove) the running time of your algorithm.

Given the size of Lists A and B are size n, the runtime of this algorithm is O(n log n). This is because my algorithm...

- Copies both final lists into new lists (which is O(n) for each list, totaling 2n)
- Sorts both A and B in descending order, which is O(n log n) for each list, totaling 2(n log n)
- Iterates through A and B to find the product of the multiplicative series (which is O(n) for each list, totaling 2n)

Therefore, the total runtime is $2n+2(n \log n)+2n$. Because $2(n \log n)$ grows faster than all of the other operands, and for Big-O we don't care for constants, the runtime of this algorithm is O(n log n).