## Pytorch를 활용한 딥러닝 학습 환경 구축 및 실습

- 1일차 -

강수명

smgang.kmu@gmail.com



# CONTENTS

- \_ 시작하며
- Ⅱ \_ 딥러닝이란?
- Ⅲ \_ 딥러닝과 프레임워크
- Ⅴ \_ 개발 환경 설정
- V \_ Pytorch 시작하기
- Ⅵ \_ Classification 문제 접근하기





배포용 자료 (일 별로 자료 업로드 예정)

https://url.kr/grs716

| ㅐ드라이브 > KMU_Pytorch_특 | ਜੋਹ ▼ ≛ |                 |       |
|-----------------------|---------|-----------------|-------|
| l름 <b>↑</b>           | 소유자     | 내가 마지막으로 수정한 날짜 | 파일 크기 |
| 1일차 참고자료              | 나       | 오전 12:08        | _     |



#### **이** 시작하며

## 강수명 (smgang.kmu@gmail.com)

#### 이력

2007.03~2010.02 계명대학교 게임모바일콘텐츠학과 졸업 (공학사)

2010.03~2013.08 계명대학교 미디어아트학과 (게임모바일전공) 졸업 (게임학석사)

졸업논문: 방향성 특징 기술자를 이용한 식물 잎 분류 (지도교수 이준재)

2016.09~2022.02 계명대학교 컴퓨터공학과 (모바일소프트웨어전공) 졸업 예정 (공학박사)

졸업논문 : Knowledge Distillation을 활용한 Anchor Free Continual Learning 및 응용 (지도교수 이준재)

2014.03~2017.01 ㈜지오씨엔아이 공간정보기술연구소

#### 관심 분야

딥러닝, 패턴인식, 영상처리, 게임 응용

#### 세부 관심 분야

- 지속적으로 학습 가능한 딥러닝 문제
- 지리정보+딥러닝 응용문제

### **이** 시작하며

**일시** : 2022년 2월 7일(월) ~ 11일(금) 일주일간, 오후 10시부터 12시까지

**준비물** : 개인 노트북 (Colab시 맥, 윈도우 관계 없음)

개인 PC 환경은 윈도우 환경에서 진행(GPU 환경이 없을 시 CPU로 구동)

**강의 환경** : 윈도우 환경 + COLAB

| 일정  |             | 내용                                         |         |
|-----|-------------|--------------------------------------------|---------|
| 1일차 | 10:00~10:50 | 딥러닝 프레임워크 및 Pytorch와 Pytorch 환경 설정         |         |
|     | 11:00~11:50 | Mnist 및 여러 데이터 활용 Classification(분류) 문제 해결 | Colab환경 |
| 2일차 | 10:00~10:50 | Object detection (물체 검출) 문제 해결하기 (1)       | Colab환경 |
|     | 11:00~11:50 | Object detection (물체 검출) 문제 해결하기 (2)       | Colab환경 |
| 3일차 | 10:00~10:50 | 생성적 적대적 모델(GAN)을 활용한 응용 (3)                | Colab환경 |
|     | 11:00~11:50 | 생성적 적대적 모델(GAN)을 활용한 응용 (4)                | Colab환경 |
| 4일차 | 10:00~10:50 | 개인 PC 설정 및 환경 설정 (Anaconda+Pytorch)        | 개인 PC   |
|     | 11:00~11:50 | Git-hub와 여러가지 딥러닝 코드 맛보기                   | 개인 PC   |
| 5일차 | 10:00~10:50 | Git-hub에서 받은 코드 다루기 (1)                    | 개인 PC   |
|     | 11:00~11:50 | Git-hub에서 받은 코드 다루기 (2)                    | 개인 PC   |

Pytorch를 활용한 딥러닝 학습 환경 구축 및 실습

#### **이** 시작하며

- 딥러닝의 입문
- 딥러닝 공부할 때 고민되는 것들
  - 프레임워크
  - 학습 환경 : 컴퓨터 사양, GPU, 메모리
- 초심자로서의 딥러닝 : 어떻게 시작해야 하는지?
- 연구자로서의 딥러닝 : 무엇을 새로 만들 수 있을지?
- 실무자로서의 딥러닝 : 현장 시스템에 어떻게 적용할지

#### 인공지능, 머신러닝, 딥러닝의 관계



출처: https://samstory.coolschool.co.kr/zone/story/modi/streams/76601



#### 기계학습과 딥러닝의 학습 방법 차이



출처 : https://arxiv.org/abs/1704.06857

#### 머신러닝의 여러가지 분야



출처: https://m.blog.naver.com/k0sm0s1/221863569856

#### 머신러닝의 여러가지 응용분야



출처: http://www.softline.biz/2018/sub03\_03.html







출처: https://www.slideshare.net/darian\_f/introduction-to-theartificial-intelligence-and-computer-vision-revolution



## Programming language for Machine Learning



출처 - http://artificialintelligencemania.com/2018/07/02/the-best-programming-language-for-machine-learning/



#### Python

- ML 연구 분야에 있어서 대체하기 어려운 프로그래밍 언어
- Tensorflow, Pytorch 등의 딥러닝 프레임워크
- Numpy, Jupyter Notebook, Matplotlib, Pandas, ...





#### ◆ 시간순으로 본 딥러닝 프레임워크



- Tensorflow와 PyTorch는 모두 오픈 소스
- Tensorflow는 Theano를 기반, Google에서 개발
- PyTorch는 Torch를 기반으로 하고 Facebook에서 개발
- 중국 연구는 최근 바이두에서 만든 paddle을 사용



K-ICT 딥러닝 개요



출처: https://wikidocs.net/156950

#### PyTorch VS TensorFlow에서 고민해야 하는 사항

- 1. 모델 가용성: 딥 러닝의 영역이 매년 확장되고 모델이 차례로 커지면서 처음부터 최첨단 (SOTA, State-of-the-Art) 모델을 훈련하는 것은 더 이상 실현 가능하지 않습니다. 다행히 공개적으로 사용할 수 있는 SOTA 모델이 많이 있으며 가능한 한 이를 활용하는 것이 중요합니다.
- 2. **배포 인프라**: 성능이 좋은 모델을 훈련하는 것은 사용할 수 없다면 무의미합니다. 특히 마이크로서비스 비즈니스 모델의 인기가 높아짐에 따라 배포 시간을 줄이는 것이 무엇보다 중요합니다. 효율적인 배포는 기계 학습을 중심으로 하는 많은 비즈니스를 성패할 수 있는 잠재력을 가지고 있습니다.
- 3. 생태계: 딥 러닝은 더 이상 고도로 통제된 환경의 특정 사용 사례에 국한되지 않습니다. AI는 수많은 산업에 새로운 힘을 불어넣고 있으므로 모바일, 로컬 및 서버 애플리케이션 개발을 용이하게 하는 더 큰 생태계 내에 있는 프레임워크가 중요합니다. 또한 Google의 Edge TPU와 같은 특수 기계 학습 하드웨어의 등장으로 성공적인 실무자는 이 하드웨어와 잘 통합될 수 있는 프레임워크로 작업해야 합니다.

#### PyTorch 또는 TensorFlow를 사용하는 출판물





#### 프레임워크를 마이그레이션한 연구자의 비율



#### Papers with Code (코드가 있는 논문)





#### 초보자라면?





#### 내가 연구원이라면?





#### 내가 교수라면?





#### 내가 업계에 있으면?





#### 경력 변경을 원하고 있다면?





## **Jupyter Notebook?**

- 웹 브라우저에서 파이썬 코드를 작성하고 실행해 볼 수 있는 개발도구
  - 원격 코딩 가능
  - 코드 블록 단위로 실행 / 디버깅
  - Text block을 이용한 문서화
  - Figure plotting 등 GUI

**147.46.123.123**:8888









147.46.123.123



## Google Colab?

- Google Colaboratory = Google Drive + Jupyter Notebook
  - 구글 계정 전용의 가상 머신 지원 GPU 포함
  - Google drive 문서와 같이 링크만으로 접근 / 협업 가능
  - 코드 실행 시 딜레이 존재



Google server 술저 : https://bi.snu.ac.kr/Courses/ML2019/ML2019.html





출처: https://colab.research.google.com/?utm\_source=scs-index#scrollTo=Nma\_JWh-W-IF

#### **NVIDIA GeForce RTX 3060**

#### Colab에서 사용할 수 있는 GPU 유형은 무엇인가요?

Colab에서 사용할 수 있는 GPU 유형은 시간에 따라 달라집니다. 이러한 방식은 Colab에서 리소스를 무료로 제공하는 데 필요합니다. Colab에서 사용할 수 있는 GPU로는 보통 Nvidia K80, T4, P100이 있습니다. Colab에서 가장 빠른 GPU에 더욱 안정적으로 액세스하는 데 관심이 있다면 Colab Pro 및 Pro+가 적합할 수 있습니다. Colab에서 특정 하드웨어를 사용하고 싶다면 Colab GCP Marketplace VM을 확인하세요.

Colab을 암호화폐 채굴에 사용하는 것은 전면 금지되어 있으며 사용할 경우 Colab을 사용할 수 없도록 계정이 완전히 제한될 수 있습니다.

#### Colab에서 노트북을 얼마나 오래 실행할 수 있나요?

<u>노트북은 최대 수명이 12시간인 가상 머신에 연결되어 실행</u>됩니다. 유휴 상태가 너무 오래 지속되면 노트북의 VM 연결이 해제됩니다. 최대 VM 수명 및 유휴 시간 제한 동작은 시간 또는 사용량에 따라 달라질 수 있습니다. 이러한 방식은 Colab에서 컴퓨팅 리소스를 무료로 제공하는 데 필요합니다. 시간에 따라 크게 달라지지 않는 더 긴 VM 수명이나 더 관대한 유휴 시간 제한 동작에 관심이 있다면 Colab Pro 및 Pro+가 적합할 수 있습니다.

Colab VM의 전체 기간을 관리하고 싶다면 원하는 대로 관리할 수 있는 지속적인 환경을 제공하는 Colab GCP Marketplace VM을 확인하세요.

#### Colab을 최대한 활용하려면 어떻게 해야 하나요?

한정된 리소스를 소수의 사용자가 독점하지 않도록 하기 위해 Colab의 리소스는 최근에 리소스를 상대적으로 적게 사용한 사용자에게 우선으로 할당됩니다. Colab을 최대한 활용하려면 작업이 끝난 후 Colab 탭을 닫고, 작업에 필요하지 않은 GPU를 선택하지 않는 것이 좋습니다. 이렇게 하면 Colab 사용 중에 사용량 한도에 걸릴 가능성이 낮아집니다. Colab 무료 버전의 리소스 한도 이상을 사용하는 데 관심이 있다면 Colab Pro 및 Pro+가 적합할 수 있습니다.

#### Time out 조건

- 90분이상 아무 인터렉션이 없는경우
- 1일 12시간 이상 세션이 동작한 경우

출처: https://research.google.com/colaboratory/faq.html



### <1> NVIDIA GeForce RTX 3060 Epoch 27/100 Epochs = 27실행시간 = 2m 13s (133s) 1 Epoch 당 실행 시간 = 4.9259s 〈2〉 코랩 GPU (NVIDIA Tesla K80 GPU) ==] - 6s 20ms/step - loss: 0.4088 - accuracy: 0.8166 - val\_loss: 0.4322 - val\_accuracy: 0.7984 Epochs = 36실행시간 = 3m 54s (234s) 1 Epoch 당 실행 시간 = 6.5s

```
<1> NVIDIA GeForce RTX 3060
313/313 [====
                               =] - 2s 8ms/step - loss: 0.4111 - accuracy: 0.8156 - val_loss: 0.4384 - val_accuracy: 0.7950
Epoch 40/100
Epoch 41/100
Epoch 42/100
313/313 [==
                                  - 3s 10ms/step - loss: 0.4102 - accuracy: 0.8156 - val_loss: 0.4412 - val_accuracy: 0.7942
0:02:32
Epochs = 42
실행시간 = 2m 32s (152s)
1 Epoch 당실행시간 = 3,619s
〈2〉 코랩 GPU (NVIDIA Tesla K80 GPU)
==] - 6s 20ms/step - loss: 0.4188 - accuracy: 0.8153 - val_loss: 0.4484 - val_accuracy: 0.7930
                               ==] - 6s 20ms/step - loss: 0.4185 - accuracy: 0.8148 - val loss: 0.4464 - val accuracy: 0.7912
                               =] - 6s 20ms/step - loss: 0.4168 - accuracy: 0.8157 - val_loss: 0.4474 - val_accuracy: 0.7936
                              ==] - 6s 20ms/step - loss: 0.4168 - accuracy: 0.8159 - val_loss: 0.4484 - val_accuracy: 0.7866
Epochs = 42
실행시간 = 4m 30s (270s)
1 Epoch 당 실행 시간 = 6.4286s
```

출처: https://blog.naver.com/spiderman25/222530913904

## Google Colab - 사용법

- 개인 구글 계정 필요
- Colab과 Jupyter Notebook 사용 방법은 유사한 부분이 많음
  - 실습 수업에서는 Colab 위주로 설명
  - GPU가 내장된 서버를 사용할 수 있을 시 로컬에서 작업을 권장





Pytorch를 활용한 딥러닝 학습 환경 구축 및 실습 - 30 -





Pytorch를 활용한 딥러닝 학습 환경 구축 및 실습 - 31 -





Pytorch를 활용한 딥러닝 학습 환경 구축 및 실습 -32 -





Pytorch를 활용한 딥러닝 학습 환경 구축 및 실습 -33 -



| 구분       | 무료                                          | 유료                                              | 의견                                                                                   |
|----------|---------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------|
| GPU      | K80, T4                                     | T4, P100 등 무료보<br>다는 좋은 사양에 할<br>당<br>TPU 우선 할당 | 상당히 애매하게 작성해놓음무료보다는 조금 더 좋은 사양에 할당이 된다 정도인데 사용시간에 따라 다르다라고<br>언급<br>무료도 보통 T4로 할당 됨. |
| 유지<br>시간 | 12시간                                        | <b>24시간</b><br>(단, 완전보장 못함)                     | 24시간이라고 쓰여있지만, 끊길 수도 있고, 24시간 보다<br>줄어들수도 있다고 언급                                     |
| RAM      | 12.72 GB                                    | 고용량: <b>25.51 GB</b><br>표준: 12.72 GB            | 런타임 유형을 고용량 RAM 으로 직접 변경해야 커짐                                                        |
| CPU      | Intel(R) Xeon(R) CPU<br>@ 2.20GHz / 2.30GHz | Intel(R) Xeon(R)<br>CPU @ 2.30GHz               | 무료도 2.30 할당 되기도 함<br>사양 거의 동일                                                        |

출처: https://limitsinx.tistory.com/135?category=905034

-34-





#### 폴더 구조 체크

Pytorch를 활용한 딥러닝 학습 환경 구축 및 실습 -35 -



배포용 자료 (일 별로 자료 업로드 예정)

https://url.kr/grs716



Pytorch를 활용한 딥러닝 학습 환경 구축 및 실습 - 36 -





## Google Colab - 사용법

- 파일 생성/접근 방법
  - 개인 구글 계정으로 접속
  - <a href="https://colab.research.google.com">https://colab.research.google.com</a> 접속
  - GOOGLE 드라이브 탭 이동
  - 새 PYTHON 노트 선택



## Google Colab - 사용법

#### ■ 파일 이름 변경



#### Code cell, Text cell

- .ipynb 파일은 code cell과 text cell로 구성
- 각 셀 하단에 마우스를 대거나, 화면 좌상단 버튼으로 셀 추가 가능
- 셀 선택(마우스) 후 셀 우상단 삭제버튼으로 셀 삭제 가능



## Google Colab - 사용법

- Code cell
  - 일반적인 파이썬 코딩 방식과 동일
  - 각 셀은 한번에 실행할 단위를 뜻함
  - 실행 이후에도 메모리는 유지되어 다른 셀 실행 시 영향을 줌
    - 런타임 다시 시작 시 초기화
  - 상단 메뉴의 런타임
    - 실행 중인 셀 중단
    - 런타임 다시 시작



## Google Colab - 사용법

- Text cell
  - 여러 줄 주석의 효과적인 시각화
  - 마크다운(Markdown) 문법
  - 자동 목차 생성





1



## Google Colab - 사용법

#### ■ 단축키

- 대부분의 작업은 단축키로 실행 가능
- 단축키 설정 가능
- 단축키 설정화면 Ctrl+M H
- 유용한 단축키
  - 코드 셀 생성 Ctrl+M A(B)
  - 코드 셀 실행 Ctrl+Enter
  - 셀 삭제 Ctrl+M D
  - 실행중인 셀 중단 Ctrl+M I
  - 런타임 다시 시작 Ctrl+M .
  - 코드(텍스트) 셀로 변환 Ctrl+M Y(M)
  - 마지막 셀 작업 실행취소 Ctrl+Shift+Z



## Google Colab - 사용법

- GPU 설정
  - 런타임 -> 런타임 유형 변경 -> 하드웨어 가속기를 GPU로 변경
  - 유의사항 GPU는 최대 12시간 실행을 지원
    - 12시간 실행 이후에는 런타임 재시작으로 VM을 교체해야 함







## Google Colab - 사용법

- 명령어 실행하기
  - !코드 셀에 를 붙이고 터미널 명령어를 입력하여 실행하면 터미널에서 실행하는 것과 같은 결과가 출력됨
  - 예외로 cd 명령어는 %cd /your/desired/path



## Google Colab - 사용법

- 구글 드라이브 연동
  - 간단한 인증 절차 이후 구글 드라이브의 파일을 Colab에서 접근 가능



15



## Google Colab - 사용법

- Github 연동
  - 단일 .ipynb 파일을 clone 하는 방법
    - https://github.com/~~~ 부분을 https://colab.research.google.com/github/~~~ 로 교체
    - 파일 -> 드라이브에 사본 저장



- !git clone project.git
- github repository에 파일을 올리는 방법
  - 파일 Github에 사본 저장 선택
  - 저장소, 브랜치, 경로 지정





16

감사합니다

