FORMAL LANGUAGES AND AUTOMATA 22AIE302

Ayswarya R Kurup

10 July 2024

About the Course

References

- Formal Language and Automata', Peter Linz, Fifth edition, 2012.
- 2 Introduction to Automata Theory, Languages and Computation', J.E.Hopcroft, R.MotwaniandandJ.D.Ullman, Pearson, 2001.
- 3 Elements of the Theory of Computation', H.R.Lewis and C.H.Papadimitriou, Prentice Hall, 1997/Pearson 1998.

Course Outcomes

- Analyse formalisms and write formal proofs for properties
- Use grammatical notations to represent sequence manipulation problems
- 3 Apply various formal grammars to the problem-solving avenues
- Identify limitations of some computational models and possible methods of proving them

3/1

Evaluation Pattern

Assessment	Weightage(%)
Assignments	30
Quiz with equal credits	20
Midterm Examination	20
End Semester Examination	30

Pre-requisites

- Data Structures
- Discrete Mathematics

Syllabus I

- Introduction to Automata and formal language: Finite State machines – Deterministic finite state machine, Non-Deterministic finite state machine, Equivalence of NFA and DFA, Minimization of Finite State Machine, Regular Expression, Regular Language, Properties of Regular Languages.
- 2 Context Free Grammar: Pushdown Automata, Variants of Pushdown automata, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Tress Equivalence between PDA and CFG, Context Free Language, Properties of CFL, Normal Forms.
- 3 Context Sensitive Language: Linear Bound Automata, Turing Machine, Variants of Turing Machine, Decidability, Post correspondence problem, Introduction to undecidable problems.

Why Formal Languages and Automata?

1 3-coloring problem (Graph coloring): Determine whether it is possible to color using three colors $\{1,2,3\}$ provided no adjacent nodes have same color

- **2** A computer with input X: do the program halt on X?
- Shortest path/ route problem: "I want to drive from Ettimadai to Coimbatore", which is the shortest route?

- Every computational problem can be represented as a string input to a computer / device
- ullet String will be over an alphabet denoted by Σ
- Problem can be viewed as a decision problem

Alphabets

- Set of symbols: a finite set, Σ
- Examples:
 - Binary: $\Sigma = \{0, 1\}$
 - Decimal: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - All lower case letters: $\Sigma = \{a, b, c, ..., x, y, z\}$
 - Alphanumeric: $\Sigma = \{a-z, A-Z, 0-9\}$
 - DNA molecule letters: $\Sigma = \{a, c, g, t\}$
- $N = \{0, 1, 2, 3, ...\}$ cannot be an alphabet since it is infinite

Strings

- ullet Finite collection of symbols from chosen from alphabet set Σ
- A string of length n over an alphabet Σ is an ordered n-tuple of elements of Σ
- $\Sigma = \{a,b\}$ then $\{\epsilon,ba,bab,aab\}$ are examples of strings over Σ
- If $\Sigma = \{a\}$ then $\Sigma^* = \{\epsilon, a, aa, aaa, ...\}$
- Length of a string w: |w| number of symbols
- Example: w = 010100 |w| = 6
- If |w| = 0, ϵ , empty string (epsilon) or λ (lambda)
- $\epsilon w = w \epsilon = w$

String Operations

- **1** Concatenation (x = ab, y = bc, xy = abbc)
- **2** Reversal $(x = ab, x^R = ba)$
- $oldsymbol{\epsilon}$ denotes empty string $|\epsilon|=0$
- **4** $x^K = xxx...$: x is repeated or concatenated k times $x^0 = \epsilon$
- **5 Kleene star** of x, denoted by x^* $x^* = \text{set of all } x^k \qquad = \{x^k | k \ge 0\}$
- **6** Σ^* : Set of all strings over Σ of finite length
- **7** Substring: V is a substring of W, if there exist strings X and Y W = XVY

Example: "get" is a substring of together"

f 8 A language over Σ is a set of strings over Σ

$$A\subseteq \Sigma^*$$

String Operations..

" A language over Σ is a set of strings over Σ "

Examples: set of all binary strings with an odd number of 1's is a language over $\{0,1\}$

Set of all dictionary words is a language over the English alphabet

Note: Σ^* is also a language

 ϵ is also a language

Describing languages

- **1** Brute Force Listing: $\{a, ab, abb, ..\}$
- **2** Language Operations: ab^*
- **3** Other set theoretic operations

Refresher of Discrete Mathematics

Set Theory

- $A = \{a, b, c\}$
 - A is the set whose elements a, b, and c
- $\bullet \ W = \{x : x \in N\}$
 - W equals the set of all x such that x is a natural number
- Empty set: $\emptyset = \{\}$

Set Operations

- Union: $A \cup B$
- Intersection: $A \cap B$
- Elements that are in A but not in B: A-B (Complement of B relative to A)
- Complement of A: A^c
- A is a subset of B: $A \subset B$
- Cartesian product: $A \times B$ (set of all ordered pairs in the form (a, b))
- Function: $f: A \to B$ (* Function from A to B is a subset of $A \times B$)

Set Theory..

Power Set

- P(X) is the power set of X
 - Collection of all subsets of X
- |X| is the number of elements in the set X
 - $|P(X)| = 2^{|X|}$
 - $A = \{x, y, z\}$
 - $\bullet \ \ P(A) = \{\{x\}, \{y\}, \{z\}, \{x,y\}, \{y,z\}, \{x,z\}, \{x,y,z\}, \{\}\}$

AUTOMATA

- Automata Theory: Study of abstract computing devices
- Abstract devices are (simplified) models of real computations
- Computations happen everywhere: On your laptop, on your cell phone, in nature, ...
- Used in model-checking

Figure: General model of an automata

- Accepter: Automaton whose output response is limited to a simple "ves" or "no"
- Transducer: Automaton, capable of producing strings of symbols as output

A simple circuit

• Input: switch

• Output: light bulb

• Actions / transitions : flip switch

• States: on, off

A DESIGN PROBLEM

Can you design a circuit where the light is on if and only if all the switches were flipped exactly the same number of times?

A DESIGN PROBLEM...

- Such devices are difficult to reason about, because they can be designed in an infinite number of ways
- By representing them as abstract computational devices, or automata, we will learn how to answer such questions

Various types of Automata

Finite automata	Devices with a finite amount of memory. Used to model "small" computers.
Push-down automata	Devices with infinite memory that can be accessed in a restricted way.
	Used to model parsers, compiler for programming languges etc.
Turing Machines	Devices with infinite memory.
	Used to model any computer.
Time-bounded Turing Machines	Infinite memory, but bounded running time.
	Used to model any computer program that runs in a "reasonable" amount of time.

Finite Automata

- Computers with a limited amount of memory
- State based devices
- Examples: Timers, Door open / close, thermostat
- States acts as the memory

WHY STUDY FINITE AUTOMATA?

- Used for design and verification of circuits and communication protocols
- Used for text-processing applications like text editors, t
- An important component of compilers lexical analysers in programming languages
- Network Protocol Analysis
 - Ex: variable checking
- Identify simple patterns of events DNA sequencing

Deterministic Finite Automata (DFA)

- For every combination of current state and an input symbol, there is precisely one next state
- Definition: A deterministic finite automata is defined by a 5-tuple (Q,Σ,δ,q_0,F)
 - Q is a finite set of states
 - Σ is a finite alphabet
 - $\delta: Q \times \Sigma \to Q$ is the transition function
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of accepting states

DFA..

 $M=(Q,\Sigma,\delta,q_0,F)$ accepts a string $w=w_1,w_2,...w_n$ if there is a sequence of states $r_0,r_1,...r_n$ iff

- $\mathbf{1} r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}, \ \forall \ 0 \le i \le n-1$
- $r_n \in F$

M recognizes the language A if

$$A = \{w | M \text{ accepts } w\}$$

denoted by
$$L(M) = A$$

DFA..

 $M=(Q,\Sigma,\delta,q_0,F)$ accepts a string $w=w_1,w_2,...w_n$ if there is a sequence of states $r_0,r_1,...r_n$ iff

- $\mathbf{1} r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}, \ \forall \ 0 \le i \le n-1$
- $r_n \in F$

M recognizes the language A if

$$A = \{w | M \text{ accepts } w\}$$

denoted by L(M) = A Why it is called deterministic?

DFA..

 $M=(Q,\Sigma,\delta,q_0,F)$ accepts a string $w=w_1,w_2,...w_n$ if there is a sequence of states $r_0, r_1, ... r_n$ iff

- $\mathbf{0} r_0 = q_0$
- **2** $\delta(r_i, w_{i+1}) = r_{i+1}, \forall 0 < i < n-1$
- $r_n \in F$

M recognizes the language A if

$$A = \{w | M \text{ accepts } w\}$$

denoted by L(M) = A

$$L(M) = A$$

Why it is called deterministic?

Unique transitions for each symbol read

Languages

- ullet The language is a collection of appropriate strings, denoted by L
- L is a language over alphabet set Σ , only if $L \subseteq \Sigma^*$
- Examples:
 - If L takes all possible strings consisting of n 0's followed by n 1's over $\Sigma = \{0, 1\}$:
 - $S = \{\epsilon, 01, 00011, 0011, 0101, 000111, ...\}$
 - L = $\{\epsilon, 01, 0011, 000111, ...\}$ L $\subseteq \Sigma^*$
- If L takes all possible strings of with equal number of 0's and 1's over $\Sigma = \{0,1\}$:
- $L = \{\epsilon, 01, 10, 0011, 1100, 0101, 1010, 1001, \ldots\}$ $L = \{\}$,
- Ø denotes the Empty language

Regular Language

- A language is regular if it is recognized by some finite automaton
- The collection of all strings that are recognized by a finite automata

Regular Operations

- Concatenation: $AB = \{xy | x \in A, y \in B\}$
 - x = 010
 - y = 1101
 - $xy = 010 \ 1101$
 - Language Concatenation: $L_1 = \{01, 00\}, L_2 = \{11, 010\}$
 - $L_1L_2 = \{01\ 11, 01\ 010, 00\ 11, 00\ 010\}$
 - ullet Lⁿ can be defined as L concatenated with itself n times
 - $L^0 = \{\lambda\}$
 - $\bullet L^1 = L$

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
 - $L_1 = \{01, 00\}, L_2 = \{01, 11, 010\}$
 - $L_1 \cup L_2 = \{01, 00, 11, 010\}$

- Star: $A^* = \{x_1, x_2, x_k \mid k \geq 0 \text{ and, } x_i \in A \text{ for each } i\}$
- Star-closure of a language is

$$\bullet \ L^* = L^0 \cup L^1 \cup L^2...$$

- Positive Closure: $L^+ = L^1 \cup L^2...$
- Complement: L^{\complement} or $(\overline{L}) = \Sigma^* L$

Example: If
$$L=\{a^nb^n:n\geq 0\}$$

$$L^2=\{a^nb^na^mb^m:n\geq 0,m\geq 0\}$$

Regular languages are closed under regular operations

Grammars

- We need a mechanism to describe languages mathematically
- A grammar implies an algorithm that would generate all legal sentences of the language
- Grammar for the English language tells us whether a particular sentence is well formed or not

Example: A grammar that generates a subset of the English language

$$< sentence > \rightarrow < noun_phrase > < predicate > < noun_phrase > = < article > < noun > < predicate > = < verb >$$

Example

A derivation of "a dog runs"

$$\begin{array}{l} \bullet < sentence > \rightarrow < noun_phrase > < predicate > \\ \rightarrow < noun_phrase > < verb > \\ \rightarrow < article > < noun > < verb > \\ \rightarrow \texttt{a} < noun > < verb > \\ \rightarrow \texttt{a} \texttt{dog} < verb > \\ \rightarrow \texttt{a} \texttt{dog} runs \end{array}$$

Language of the grammar

```
L = \{ "a boy runs", "a boy walks", "the boy runs", "the boy walks", "a dog runs", "a dog walks", "the dog runs", "the dog walks" \}
```

Languages and Grammars

An alphabet is a set of symbols:

Or "words"

Sentences are strings of symbols:

0,1,00,01,10,1,...

A language is a set of sentences:

L = {000,0100,0010,..}

A grammar is a finite list of rules defining a language.

- <u>Languages</u>: "A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols"
- <u>Grammars</u>: "A grammar can be regarded as a device that enumerates the sentences of a language" - nothing more, nothing less
- N. Chomsky, Information and Control, Vol 2, 1959

Definition of the formal grammar G

A grammar G is defined as a quadruple

$$G = (V, T, S, P)$$

- ullet V: variables, set of non-terminal symbols, uppercase letters
- T: symbols set of terminal symbols, lower case letters and some special operators
 - ex: arithmetic, relational operators
- $S \in V$: start variable
- P: set of production rules

Assumption: V and T are nonempty and disjoint

Production rules

- How the grammar transforms one string into another?
- They define a language associated with the grammar

$$x \to y$$

x is an element of $(V \cup T)^+$ and y is in $(V \cup T)^*$

Given a string w of the form: w = uxvReplacing x with y: thereby obtaining a new string

$$z = uyv$$

 $w \Rightarrow z$

"w derives z" or "z is derived from w"

• Derivation of sentence :

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$G = \{\{S\}, \{a, b\}, S, \{S \rightarrow aSb, S \rightarrow \lambda\}\}\$$

$$S \rightarrow aSb \mid \lambda$$

It generates:

•
$$S \to \lambda$$

$$S \to aSb$$

$$\to ab$$

•
$$S \rightarrow aSb$$

$$S \rightarrow aaSbb$$

$$S \rightarrow aaaSbbb$$

$$S \rightarrow aaabbb$$

•
$$S \to aSb$$

$$S \to aaSbb$$

$$S \rightarrow aabb$$

$$\mathsf{L} = \{\lambda, ab, aabb, aaabbb, \ldots\}$$

$$\mathsf{L} = \{a^nb^n, n \geq 0\}$$

Find a grammar that generates

$$\mathsf{L} = \{a^n b^{n+1} : n \ge 0\}$$

Find a grammar that generates

$$\mathsf{L} = \{a^n b^{n+1} : n \ge 0\}$$
$$\mathsf{S} \to \mathsf{Ab}$$

Find a grammar that generates

$$\mathsf{L} = \{a^n b^{n+1} : n \ge 0\}$$

$$\mathsf{S} \to \mathsf{Ab}$$

 $A \rightarrow aAb$

Find a grammar that generates

$$\mathsf{L} = \{a^nb^{n+1} : n \geq 0\}$$
 $\mathsf{S} o \mathsf{A}\mathsf{b}$ $\mathsf{A} o \mathsf{a}\mathsf{A}\mathsf{b}$ $\mathsf{A} o \lambda$

Practice Problems..

Find grammars for $\Sigma = \{a, b\}$ that generate the sets of

1. Strings of a's followed by b's

Practice Problems..

Find grammars for $\Sigma = \{a, b\}$ that generate the sets of

1. Strings of a's followed by b's

$$S \to aSb$$

$$S \to \epsilon$$

Practice Problems..

Find grammars for $\Sigma = \{a, b\}$ that generate the sets of

1. Strings of a's followed by b's

$$S \to aSb$$
$$S \to \epsilon$$

2. all strings with exactly one 'a'.

 $L = \{ ab, ba, bab, bbab, abbb, bbbba, ... \}$

Grammar
$$G = (V, T, S, P)$$

Vocabulary Terminal Start symbols variable

Productions of the form:

$$A \rightarrow x$$

Non-Terminal String of variables and terminals

Classification of formal grammars

Type	Name	Production rules	Recognizing automaton / Storage required / Parsing complexity
3	Regular grammars, Finite state grammars	A -> xB C -> y A, B, C - non-terminal symbols x, y - terminal symbols	Finite state automaton / Finite storage / O (n)
2	Context free grammars	A -> BCD A - non-terminal symbols BCD - any sequence of terminal or non-terminal symbols	Pushdown automaton / Pushdown stack / O (n³)
1	Context sensitive grammars	aAz -> aBCDz A - non-terminal symbols a, z - sequences of zero or more terminal or non-terminal symbols BCD - any sequence of terminal or non-terminal symbols	Linear bounded automaton (non-deterministic Turing machine) / Tape being a linear multiple of input length / NP Complete
0	Unrestricted grammars, General rewrite grammars	Allows the production rules to transform any sequence of symbols into any other sequence of symbols. To convert context-sensitive grammar into unrestricted grammar, replacement of any non-terminal symbol A with an empty sequence needs to be allowed,	Turing machine / Infinite tape / Undecidable

The Chomsky Hierachy

A containment hierarchy of classes of formal languages

Deterministic Finite Accepters (DFA)

$$\mathsf{M} = (Q, \Sigma, \delta, q_0, F)$$

Transition Graphs

- To visualize and represent finite automata
- Vertices represent states
- The edges represent transitions

$$\mathsf{L} = \{a^n b : n \ge 0\}$$

Transition table

	а	ь
90	q_{o}	91
91	92	92
92	q_2	92

- Row label is the current state,
- Column label represents the current input symbol
- The entry in the table defines the next state

Transition table..

Example: Strings With No 11

Transition table..

Example: Strings With No 11

Final states - *
Start state - *

Find a DFA that recognizes the set of all strings on $\Sigma=\{a,b\}$ starting with the prefix ab

Find a DFA that recognizes the set of all strings on $\Sigma=\{a,b\}$ starting with the prefix ab

Find a dfa that accepts all the strings on $\{0,1\},$ except those containing the substring 001

Find a dfa that accepts all the strings on $\{0,1\},$ except those containing the substring 001

Regular Language: Examples

A language ${\cal L}$ is called regular iff there exists some deterministic finite accepter ${\cal M}$ such that

$$L = L(M)$$

Example: Show that the language is regular:

$$L = \{awa : w \in \{a,b\}^*\}$$

Regular Language: Examples

A language ${\cal L}$ is called regular iff there exists some deterministic finite accepter ${\cal M}$ such that

$$L = L(M)$$

Example: Show that the language is regular:

$$L = \{awa : w \in \{a, b\}^*\}$$

Regular Language: Examples...

Show that L^2 is regular

Regular Language: Examples...

Show that ${\cal L}^2$ is regular

$$L = \{aw_1aaw_2a : w_1, w_2 \in \{a, b\}^*\}$$

Regular Language: Examples..

Show that L^2 is regular

$$L = \{aw_1aaw_2a : w_1, w_2 \in \{a, b\}^*\}$$

Regular Language: Examples...

Show that L^2 is regular

$$L = \{aw_1aaw_2a : w_1, w_2 \in \{a, b\}^*\}$$

if a language L is regular, so are L^2 , L^3 ,....

Nondeterministic Finite Accepters (NFA)

A nondeterministic finite accepter or nfa is defined by the quintuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

$$\delta: Q \times (\Sigma \cup \{\lambda\}) \to 2^Q$$

Nondeterministic Finite Accepters (NFA)...

- NFA is defined in the same way as DFA but with the following two exceptions, it contains multiple next states, and it contains ϵ transition.
- Nondeterminism: the automaton can be in multiple states simultaneously and can follow multiple possible transitions for the same input symbol.

NFA and DFA

- DFA has exactly one transition for each state $\mathbf{q} \in \mathbf{Q}$ and symbol $a \in \Sigma$.
 - NFA can have 0, 1, or more than 1
- ullet NFA it can make transitions with out reading input signal $(\epsilon$)
- NFA can have multiple choices at each state. (It could have many possible computation paths)
- NFA accepts a string if there is at least one accepting computation path

Why NFA?

- An exhaustive search with backtracking
 - Eg: playing chess
- When several alternatives are possible, we choose one and follow it until it becomes clear whether or not it was best.
- If not, we retreat to the last decision point and explore the other choices
- NFA machines can serve as models of search-and-backtrack algorithms
- NFA is helpful in solving problems easily

Why NFA?

- An exhaustive search with backtracking
 - Eg: playing chess
- When several alternatives are possible, we choose one and follow it until it becomes clear whether or not it was best.
- If not, we retreat to the last decision point and explore the other choices
- NFA machines can serve as models of search-and-backtrack algorithms
- NFA is helpful in solving problems easily

Every DFA is NFA

$$L = \{\lambda, 1010, 101010, \ldots\}$$

$$L = \{\lambda, 1010, 101010, \ldots\}$$

$$L = \{(10)^n : n \ge 0\}$$

- Extended transition function $\delta^*(q_i, w) = Q_i$
- Q_j is the set of all possible states the automaton may be in, having started in state q_i and having read w.

- Extended transition function $\delta^*(q_i, w) = Q_i$
- Q_j is the set of all possible states the automaton may be in, having started in state q_i and having read w.

Find $\delta^*(q_0, a)$, $\delta^*(q_2, \lambda)$.

- Extended transition function $\delta^*(q_i, w) = Q_j$
- Q_j is the set of all possible states the automaton may be in, having started in state q_i and having read w.

Find
$$\delta^*(q_0, a)$$
, $\delta^*(q_2, \lambda)$.
 $\delta^*(q_0, a) = \{q_0, q_1, q_2\}$
 $\delta^*(q_2, \lambda) = \{q_0, q_2\}$

Draw an NFA with no more than 5 states for
 L = {ababⁿ : n≥0} U {abaⁿ : n≥0}

DFA for strings containing 01

- Regular expression: (0+1)*01(0+1)*
 - What makes this DFA deterministic?

• What if the language allows empty strings?

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{0,1\}$$

• start state =
$$q_0$$

•
$$F = \{q_2\}$$

Transition table

NFA for strings containing 01

• Regular expression: (0+1)*01(0+1)*

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{0,1\}$$

• start state =
$$q_0$$

•
$$F = \{q_2\}$$

Transition table

symbols

	δ	0	1
_	ightharpoonup	$\{q_0,q_1\}$	$\{q_0\}$
states	\mathbf{q}_1	Φ	$\{q_2\}$
St	$*q_2$	{q ₂ }	$\{q_2\}$

The language L accepted by an nfa $M=(Q,\Sigma,\delta,q_0,F)$

$$\mathsf{L}(\mathsf{M}) = \{ w \in \Sigma^* : \delta^*(q_0, w) \cap F \neq \Phi \}$$

The language consists of all strings w for which there is a walk labeled w from the initial vertex of the transition graph to some final vertex

Examples..

Construct an NFA that accepts the language $\{ab, abc\}*$

Examples..

Construct an NFA that accepts the language $\{ab,abc\}*$

