CC2: 15 avril 2021: 8h30 - 9h30 (1h; 1h20 pour les tiers temps)

Reponse : immédiat : $y(t) = Ce^{-2t}$ (formule du cours pour EDO d'ordre 1 linéaire homogène).

Soit a>0. La solution du problème de Cauchy : y'-ay=0, y(1)=0 est (trouver la bonne réponse :

a. y(t)=0b. $y(t)=e^{at}-e^a$ c. $y(t)=e^{-at}-e^{-a}$ d. $y(t)=e^{a(t-1)}$ e. $y(t)=-e^{at}+e^a$

Reponse: par la formule du cours pour EDO d'ordre 1 linéaire homogène, $y_H(t) = Ce^{at}$ où $C \in \mathbb{R}$. Donc $y_H(1) = Ce^a = 0 \Rightarrow C = 0$. Ainsi, la solution est y(t) = 0 pour tout $t \in \mathbb{R}$.

Simplifiez le nombre complexe
$$z=\left(\frac{1}{2}+\frac{i}{2}\right)^{2031}$$
 (une seule bonne réponse) :
$$\begin{array}{l} \text{Veuillez choisir une réponse}: \\ \text{a. } z=\frac{1}{\sqrt{2^{2031}}}e^{\frac{ix}{4}} \\ \text{b. } z=\frac{1}{2^{2031}}e^{-\frac{3ix}{4}} \\ \text{c. } z=\frac{1}{\sqrt{2^{2031}}}e^{-\frac{ix}{4}} \\ \text{d. } z=\frac{1}{\sqrt{2^{2031}}}e^{\frac{3ix}{4}} \\ \text{e. } z=\frac{1}{2^{2031}}e^{\frac{ix}{4}} \end{array}$$

Reponse : La réponse est d car en utilisant $2031 = 254 \times 8 - 1$:

$$z = \left(\frac{\sqrt{2}}{2}\right)^{2031} e^{\frac{2031i\pi}{4}} = \frac{1}{\sqrt{2}^{2031}} e^{\frac{2031i\pi}{4}} = \frac{1}{\sqrt{2}^{2031}} e^{\frac{254 \times 8i\pi}{4}} e^{\frac{-i\pi}{4}} = \frac{1}{\sqrt{2}^{2031}} e^{\frac{-i\pi}{4}}.$$

Reponse : L'équation caractéristique est $x^2+r=0$ c.a.d. $x^2-\sqrt{-r}^2$ (comme r<0). D'où $x=\pm\sqrt{-r}$ et $y(t)=Ae^{\sqrt{-r}t}+Be^{-\sqrt{-r}t}$ avec $A,B\in\mathbb{R}$.

```
Soit l'équation différentielle y'+ay=e^{2t} où a\in\mathbb{R}. Trouver la bonne réponse:  
Veuillez choisir une réponse :  
a. Pour a=0, la solution générale s'écrit y(t)=2e^{2t}+C où C\in\mathbb{R}.  
b. Pour a>0, la solution générale de l'équation s'écrit y(t)=\frac{e^{2t}}{2+a}+Ce^{at} où C\in\mathbb{R}.  
c. Pour a\neq 0, une solution particulière de l'équation s'écrit y(t)=\frac{e^{2t}}{2+a}.  
d. Une solution particulière de l'équation pour a=-2 s'écrit y(t)=e^{-2t}.  
e. Une solution particulière de l'équation pour a=-2 s'écrit y(t)=te^{2t}.
```

Reponse: Pour a=-2, l'équation s'écrit $y'-2y=e^{2t}$. La solution de l'équation homogène est $t\mapsto e^{2t}$ donc, une solution de l'équation homogène doit être cherchée sous la forme $t\mapsto \alpha t e^{2t}$ avec $\alpha\in\mathbb{R}$ (il faut augmenter de 1 le degré). Par identification, on trouve $\alpha=1$. D'où $y(t)=te^{2t}$ est une solution particulière de l'équation.

Soit $z=\frac{1-l\omega^2}{1+l\omega^2}$ où $\omega\in\mathbb{R}$. Trouver la bonne réponse (ci-après les symboles \Re et \Im désignent la partie réelle et la partie imaginaire) :
Veuillez choisir une réponse :
a. $\Re(z)=\frac{1+\omega^4}{1-\omega^4}$, $\Im(z)=\frac{-2\omega^2}{1-\omega^4}$ b. $\Re(z)=-\frac{1-\omega^4}{1+\omega^4}$, $\Im(z)=\frac{2\omega^2}{1+\omega^4}$ c. $\Re(z)=-\frac{\omega^4-1}{1+\omega^4}$, $\Im(z)=\frac{-2\omega^2}{1-\omega^4}$ d. $\Re(z)=\frac{1-\omega^4}{1+\omega^4}$, $\Im(z)=\frac{-2\omega^2}{1+\omega^4}$ e. $\Re(z)=\frac{-1+\omega^4}{1-\omega^4}$, $\Im(z)=\frac{-2\omega^2}{1+\omega^4}$

Reponse : par la quantité conjuguée, $z = \frac{(1-i\omega^2)^2}{1+\omega^4} = \frac{1-\omega^4}{1+\omega^4} - \frac{2i\omega^2}{1+\omega^4}$ d'où réponse d.

Reponse : La seule solution qui vérifie les conditions est $y(t) = 1 + \cos(\sqrt{3}t)$ (qui en effet vérifie y(0) = 2, y'(0) = 0 et y'' + 3y = 3).

Reponse: l'équation caractéristique est $(x+1)^2=0$ qui donne x=-1 racine double. Le second membre est $t\mapsto e^{-t}$ avec -1 racine double de l'équation caractéristique. Il faut donc augmenter de 2 le degré et la bonne réponse est donc d). Noter qu'il n'est pas utile d'avoir un terme ce^{-t} en plus (car ce^{-t} est déjà solution de l'équation homogène). Notez également que la solution de l'équation homogène est de la forme $t\mapsto (at+b)e^{-t}$.

Reponse: Reponse: Le discriminant est $\Delta = 4(1-a)$. Pour a > 1, $\Delta < 0$. Donc pour a > 1, les solutions de l'équation sont $x = 2 \pm 2i\sqrt{a-1}$. Donc la bonne réponse est e.

```
On considère l'équation différentielle y''+ay=\cos(t) où a\in\mathbb{R}. Donner la bonne réponse (on rappelle que \Re désigne la partie réelle):  
Veuillez choisir une réponse :

a. Pour tout a\in\mathbb{R}, l'équation admet une solution particulière de la forme y(t)=A\cos t+B\sin t où A,B\in\mathbb{R}.

b. Pour a=1, une solution particulière de l'équation est de la forme y(t)=\Re(ate^{it}) où \alpha\in\mathbb{C}.

c. Pour a=4, la solution de l'équation homogène associée est y(t)=Ae^{2t}+Be^{-2t} où A,B\in\mathbb{R}.

d. Pour a=0, la solution de l'équation est une primitive de la fonction \cos(t).

e. Pour a\neq 1, une solution particulière de l'équation est de la forme y(t)=A\cos(\sqrt{a}t)+B\sin(\sqrt{a}t) où A,B\in\mathbb{R}.
```

Reponse : pour a = 1, comme $\cos t$ et $\sin t$ sont solutions de l'équation homogène il faut augmenter le degré de 1 pour trouver une solution particulière, d'où la bonne réponse est b.

```
Soit z=\frac{4i}{i-4}. Le nombre complexe z s'écrit (une seule bonne réponse):

Veuillez choisir une réponse :

a. z=-\frac{4}{17}-\frac{16i}{17}

b. z=\frac{4}{17}-\frac{16i}{17}

c. z=\frac{4i}{17}-\frac{16}{17}

d. z=\frac{4}{17}+\frac{16i}{17}

e. z=1
```

 ${\bf Reponse}$: quantité conjuguée : z=4/17-16i/17 d'où la bonne réponse est b.

Soit $z = \left(\frac{1-i}{1+i}\right)^2$. On a (choisir une réponse):
Veuillez choisir une réponse :
\bigcirc a. $z=0$
\bigcirc b. $z=i^2$
\circ c. $z = i$
\bigcirc d. $z=1$
\odot e. $z=-i$

Reponse : idem : quantité conjuguée. La réponse est donc b car on a

$$z = \left(\frac{(1-i)^2}{(1-i)(1+i)}\right)^2 = \frac{(-2i)^2}{4} = -1 = i^2$$