Problem #1 (10 points): Verify if the function $f(x, y) = \sin x \cosh y + i \cos x \sinh y$ satisfies the Cauchy-Riemann conditions. If it does, find the associated analytic function f(z).

Solution: Let f(x, y) = u(x, y) + iv(x, y) where u and vare real. Then $u = \sin x \cosh y$ and $v = \cos x \sinh y$ s.t.

$$u_x = \cos x \cosh y = v_y$$
, $v_x = -\sin x \sinh y = -u_y$

i.e. CR conditions hold.

$$f(z) = \frac{(e^{ix} - e^{-ix})(e^y + e^{-y})}{4i} + i\frac{(e^{ix} + e^{-ix})(e^y - e^{-y})}{4} =$$

$$= \frac{e^{ix}e^{-y} - e^{-ix}e^y}{2i} = \frac{e^{i(x+iy)} - e^{-i(x+iy)}}{2i} = \sin z.$$

Problem #2 (20 points): Given the imaginary part, v(x, y), of an analytic function, f(z) = u(x, y) + i v(x, y), find the real part, u(x, y), and the analytic function.

- (a) v(x, y) = x(c y), where *c* is constant.
- (b) $v(x, y) = \frac{x}{x^2 + y^2}$.

Solution:

(a) v(x, y) = x(c - y), where *c* is constant.

$$v_x = c - y = -u_y \implies u = -cy + y^2/2 + f(x),$$

 $v_y = -x = u_x \implies u = -x^2/2 + g(y),$

therefore

$$u = (y^{2} - x^{2})/2 - cy + \text{const.},$$

$$f = (y^{2} - x^{2})/2 - cy + \text{const.} + ix(c - y) =$$

$$= -(x + iy)^{2}/2 + ic(x + iy) + \text{const.},$$

i.e.

$$f(z) = -z^2/2 + icz + \text{const.}$$

(b)
$$v(x, y) = \frac{x}{x^2 + y^2}$$
, i.e. $v(r, \theta) = \frac{\cos \theta}{r}$.

$$v_r = -\frac{\cos\theta}{r^2} = -\frac{u_\theta}{r} \implies u = \frac{\sin\theta}{r} + f(r)$$

$$v_{\theta} = -\frac{\sin \theta}{r} = r u_r \implies u = \frac{\sin \theta}{r} + g(\theta)$$

therefore

$$u = \frac{\sin \theta}{r} + \text{const.},$$

$$f = \frac{\sin \theta}{r} + \text{const.} + i \frac{\cos \theta}{r} =$$

$$=i\frac{\cos\theta-i\sin\theta}{r}+\text{const.}=i\frac{e^{-i\theta}}{r}+\text{const.}=$$

$$=i\frac{\bar{z}}{z\bar{z}}+\text{const.}=\frac{i}{z}+\text{const.}$$

Problem #3 (15 points): Determine where the following functions are analytic; find singular

- (a) $\frac{1}{z^3+1}$. (b) $\sec z$.
- (c) $\exp(\cos^2 z)$.

Solution:

(a) $\frac{1}{z^3+1}$. It is analytic everywhere except for roots of equation $z^3+1=0$, which are s.t.

$$z^3 = r^3 e^{3i\theta} = -1 = 1 \cdot e^{\pi i + 2\pi i k}$$

$$\implies r=1, \quad \theta=\frac{\pi(1+2k)}{3}, k\in\mathbb{Z},$$

i.e. different singular points are

$$z = -1$$
, $z = e^{\pi i/3}$, $z = e^{5\pi i/3}$.

(b) $\sec z$.

$$\sec z = \frac{1}{\cos z}$$

a ratio of functions analytic in the whole \mathbb{C} , so it is analytic except for points where $\cos z = 0$, i.e. $z = \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$.

(c) $\exp(\cos^2 z)$. It is analytic everywhere in \mathbb{C} , being a composition of analytic functions, i.e. entire.

Problem #4 (15 points): Show that the real and imaginary parts of a twice-differentiable function $f(\bar{z})$ satisfy Laplace's equation. Show that $f(\bar{z})$ is nowhere analytic unless it is constant.

Solution: Let $f(\bar{z}) = f(x - iy) = u(x, y) + iv(x, y)$ where u and v are real. Then

$$f_x = f'(\bar{z}) = u_x + i v_x, \qquad f_y = -i f'(\bar{z}) = u_y + i v_y.$$

Thus,

$$f'(\bar{z}) = u_x + i v_x = i(u_y + i v_y),$$

which implies

$$u_x = -v_y$$
, $v_x = u_y$.

Differentiating these relations, one gets

$$u_{xx} + u_{yy} = -v_{xy} + v_{yx} = 0,$$
 $v_{xx} + v_{yy} = u_{xy} - u_{yx} = 0.$

For analyticity, f must satisfy CR relations $u_x = v_y$, $v_x = -u_y$. But then $u_x = v_y = -v_y = 0$ etc., i.e. $u_x = u_y = v_x = v_y = 0$, which means u and v are constants and so is f.

Problem #5 (15 points): Consider the following complex potential

$$\Omega(z) = -\frac{k}{2\pi z}, \qquad k \in \mathbb{R},$$

referred to as a *doublet*. Calculate the corresponding velocity potential, stream function, and velocity field. Sketch the stream function (streamlines).

Solution:

$$\Omega(z) = -\frac{k}{2\pi z} = u + iv = -\frac{k(x - iy)}{2\pi (x^2 + v^2)},$$

i.e. the velocity potential is

$$u(x, y) = -\frac{kx}{2\pi(x^2 + y^2)},$$

the stream function is

$$v(x,y) = \frac{ky}{2\pi(x^2 + y^2)},$$

and the velocity field is given by 2-vector

$$\left(u_x = v_y = \frac{k(x^2 - y^2)}{2\pi(x^2 + y^2)^2}, u_y = -v_x = \frac{kxy}{\pi(x^2 + y^2)^2}\right).$$

Extra-Credit Problem #6 (? points): Consider the complex analytic function, $\Omega(z) = \phi(x, y) + i\psi(x, y)$, in a domain D. Let us transform from z to w using w = f(z), w = u + iv, where f(z) is analytic in D, with

the corresponding domain in the w plane, D'. Establish the following:

$$\frac{\partial \phi}{\partial x} = \frac{\partial u}{\partial x} \frac{\partial \phi}{\partial u} + \frac{\partial v}{\partial x} \frac{\partial \phi}{\partial v},$$

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 u}{\partial x^2} \frac{\partial \phi}{\partial u} - \frac{\partial^2 u}{\partial x \partial y} \frac{\partial \phi}{\partial v} + \left(\frac{\partial u}{\partial x}\right)^2 \frac{\partial^2 \phi}{\partial u^2} -$$

$$-2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial^2 \phi}{\partial u \partial v} + \left(\frac{\partial u}{\partial y}\right)^2 \frac{\partial^2 \phi}{\partial v^2}.$$

Also find the corresponding formulae for $\partial \phi/\partial y$ and $\partial^2 \phi/\partial y^2$. Recall that $f'(z) = \partial u/\partial x - i\partial u/\partial y$, and u(x,y) satisfies LaplaceÕs equation in the domain D. Show that

$$\nabla_{x,y}^{2}\phi = \frac{\partial^{2}\phi}{\partial x^{2}} + \frac{\partial^{2}\phi}{\partial y^{2}} =$$

$$= (u_{x}^{2} + u_{y}^{2}) \left(\frac{\partial^{2}\phi}{\partial u^{2}} + \frac{\partial^{2}\phi}{\partial v^{2}} \right) = |f'(z)|^{2} \nabla_{u,v}^{2}\phi.$$

Consequently, we find that if ϕ satisfies LaplaceÕs equation $\nabla^2_{x,y}\phi = 0$ in the domain D, then so long as $f'(z) \neq 0$ in D it also satisfies LaplaceÕs equation $\nabla^2_{u,v}\phi = 0$ in domain D'.

Solution: Considering ϕ as function of u and v, we find

$$\frac{\partial \phi}{\partial x} = \frac{\partial u}{\partial x} \frac{\partial \phi}{\partial u} + \frac{\partial v}{\partial x} \frac{\partial \phi}{\partial v},$$

$$\frac{\partial \phi}{\partial y} = \frac{\partial u}{\partial y} \frac{\partial \phi}{\partial u} + \frac{\partial v}{\partial y} \frac{\partial \phi}{\partial v},$$

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial}{\partial x} \frac{\partial \phi}{\partial x} =$$

$$= \frac{\partial^2 u}{\partial x^2} \frac{\partial \phi}{\partial u} + \left(\frac{\partial u}{\partial x}\right)^2 \frac{\partial^2 \phi}{\partial u^2} + \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} \frac{\partial^2 \phi}{\partial u \partial v} +$$

$$+ \frac{\partial^2 v}{\partial x^2} \frac{\partial \phi}{\partial v} + \left(\frac{\partial v}{\partial x}\right)^2 \frac{\partial^2 \phi}{\partial v^2} + \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} \frac{\partial^2 \phi}{\partial u \partial v} =$$

$$= \frac{\partial^2 u}{\partial x^2} \frac{\partial \phi}{\partial u} - \frac{\partial^2 u}{\partial x \partial y} \frac{\partial \phi}{\partial v} + \left(\frac{\partial u}{\partial x}\right)^2 \frac{\partial^2 \phi}{\partial u^2} -$$

$$-2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial^2 \phi}{\partial u \partial v} + \left(\frac{\partial u}{\partial y}\right)^2 \frac{\partial^2 \phi}{\partial v^2},$$

where in the last equality CR condition $v_x = -u_y$ is used. Similarly,

$$\frac{\partial^2 \phi}{\partial y^2} = \frac{\partial}{\partial y} \frac{\partial \phi}{\partial y} =$$

$$= \frac{\partial^2 u}{\partial y^2} \frac{\partial \phi}{\partial u} + \left(\frac{\partial u}{\partial y}\right)^2 \frac{\partial^2 \phi}{\partial u^2} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \frac{\partial^2 \phi}{\partial u \partial v} +$$

$$+ \frac{\partial^2 v}{\partial y^2} \frac{\partial \phi}{\partial v} + \left(\frac{\partial v}{\partial y}\right)^2 \frac{\partial^2 \phi}{\partial v^2} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \frac{\partial^2 \phi}{\partial u \partial v} =$$

$$= \frac{\partial^2 u}{\partial y^2} \frac{\partial \phi}{\partial u} + \frac{\partial^2 u}{\partial x \partial y} \frac{\partial \phi}{\partial v} + \left(\frac{\partial u}{\partial y}\right)^2 \frac{\partial^2 \phi}{\partial u^2} +$$

$$+2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}\frac{\partial^2 \phi}{\partial u\partial v} + \left(\frac{\partial u}{\partial x}\right)^2\frac{\partial^2 \phi}{\partial v^2}$$

where $v_v = u_x$ is used in the last equality. Adding up the two derived expressions for second derivatives, after cancellations, the last formulas follow when we also use that $u_{xx} + u_{yy} = 0$ and

$$|f'(z)|^2 = |u_x - iu_y|^2 = u_x^2 + u_y^2.$$

Problem #7 (20 points): Find the location of the branch points and discuss possible branch cuts for the following functions:

- (a) $(z-i)^{1/3}$
- (b) $\log \frac{1}{z-2}$

Solution:

- (a) Let $z i = \epsilon e^{i\theta_p}$ which is a circular contour centered at z = i. We have just a power function in terms of $\zeta = z - i$, so z = i and $z = \infty$ are branch points. Any line connecting $z = \infty$ and z = i is a branch cut, e.g. $\{z = iy | y \in [1, +\infty)\}$ is as good as any. There are 3 distinct branches.
- (b) $\log \frac{1}{z-2} = -\log(z-2)$. Again this is $-\log z$ but with shifted origin. So the branch points are z = 2 and $z = \infty$. A branch cut must connect the branch points, it can be e.g. $\{z = x | x \in [2, +\infty)\}$ or ${z = x | x \in (-\infty, 2]}.$

Problem #8 (10 points): Solve for all values of z: $4 + 2e^{z+i} = 2$.

Solution:

$$4 + 2e^{z+i} = 2$$
 \Leftrightarrow $e^{z+i} = -1 = e^{i\pi + 2\pi i n}, n \in \mathbb{Z},$

therefore

$$z + i = i\pi + 2\pi i n$$
 \Leftrightarrow $z = i(\pi - 1 + 2\pi n), n \in \mathbb{Z}.$

Problem #9 (15 points): Derive $\tan^{-1} z = \frac{1}{2i} \log \frac{i-z}{i+z}$ and then find $\frac{d}{dz} \tan^{-1} z$.

Solution: One needs to find w = f(z) such that $z = \tan w$. Then

$$z = \frac{\sin w}{\cos w} = \frac{e^{iw} - e^{-iw}}{i(e^{iw} + e^{-iw})}.$$

Let $\zeta = e^{iw}$, then $e^{-iw} = 1/\zeta$. Substituting these into the above equation, we find

$$iz(\zeta + 1/\zeta) = \zeta - 1/\zeta$$

or

$$(1-iz)\zeta^2 = 1+iz$$
 \Leftrightarrow $\zeta^2 = \frac{i-z}{i+z}$

i.e.

$$e^{2iw} = \frac{i}{i+z}$$
 \Leftrightarrow $w = \frac{1}{2i} \log \frac{i-z}{i+z}$.

Then

$$\frac{d}{dz}\tan^{-1}z = w'(z) = \frac{1}{2i}\left(-\frac{1}{i-z} - \frac{1}{i+z}\right) =$$
$$= -\frac{1}{(i-z)(i+z)} = \frac{1}{z^2+1},$$

as in the real case (as should be).

Problem #10 (15 points): Consider the complex velocity potential $\Omega(z) = -ik \log(z - z_0)$, where k is real. Find the corresponding velocity potential and stream function. Show that the velocity is purely circumferential relative to the point $z = z_0$, being counterclockwise if k > 0. Sketch the flow configuration. The strength of this flow, called a point vortex, is defined to be $M = \oint_C V_{\theta} ds$, where V_{θ} is the velocity in the circumferential direction and ds is the increment of arc length in the direction tangent to the circle *C*. Show that $M = 2\pi k$.

Solution: Let $\Omega(x, y) = \phi(x, y) + i\psi(x, y)$. Since $\log(z?z_0) = \log|z - z_0| + i\theta$, where θ is the angle between the line connecting z_0 and z and positive xdirection. Then the velocity potential $\phi = k\theta$ and the stream function $\psi = -k \log r$, where $r = |z - z_0| = \sqrt{(x - x_0)^2 + (y - y_0)^2}$ and $\theta = \tan^{-1} \frac{y - y_0}{x - y_0}$. For the components of the velocity field V we get

$$V_r = \frac{\partial \phi}{\partial r} = 0, \qquad V_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = \frac{k}{r},$$

so we have only nonzero V_{θ} component which means that the velocity is purely circumferential relative to the point $z = z_0$ and $sign(V_\theta) = sign(k)$ means it is counterclockwise if k > 0. To compute M, let C be a circle of radius R around z_0 . Then

$$M = \oint_C V_{\theta} ds = \int_0^{2\pi} \frac{k}{R} \cdot R d\theta = 2\pi k.$$

Problem #11 (20 points): Show that the solution to Laplace equation $\nabla^2 T = \partial^2 T / \partial u^2 + \partial^2 T / \partial v^2 = 0$ in the region $-\infty < u < \infty$, v > 0, with the boundary

conditions $T(u,0) = T_0$ if u > 0 and $T(u,0) = -T_0$ if u < 0, is given by

$$T(u, v) = T_0 \left(1 - \frac{2}{\pi} \tan^{-1} \frac{v}{u} \right).$$

Solution: From the text we have solutions to Laplace's equation,

$$\Omega(z) = A \log w + iB$$

$$= A \log(re^{i\theta}) + iB$$

$$= A \log r + i \underbrace{(A\theta + B)}_{\psi(\theta)}$$

and so $\psi(\theta)$ satisfies Laplace's equation where $w=re^{i\theta}$, $r=\sqrt{u^2+v^2}$ and $\theta=\tan^{-1}(v/u)$. Now, apply the boundary conditions. At $\theta=0$, we have $\psi(0)=B=T_0$ and at $\psi(\pi)=A\pi+T_0=-T_0$ and so $A=-2T_0/\pi$. Therefore,

$$T(u, v) = \psi(u, v)$$

$$= A\theta + B$$

$$= \frac{-2T_0}{\pi} \tan^{-1}(v/u) + T_0$$

$$= T_0 \left(1 - \frac{2}{\pi} \tan^{-1} \frac{v}{u} \right)$$

Extra-Credit Problem #12 (? points):

- (a) The above.
- (b) Now we'll use this result to solve Laplace's equation in |z| < 1 with the boundary conditions

$$T(r=1,\theta) = \begin{cases} T_0, & 0 < \theta < \pi \\ -T_0, & \pi < \theta < 2\pi \end{cases}.$$

Show that the transformation

$$w = i\left(\frac{1-z}{1+z}\right)$$
 $z = \frac{i-w}{i+w}$

maps

- $|z| \le 1$ to the upper-half w-plane (w = u + iv) and $v \ge 0$,
- $r = 1, 0 < \theta < \pi$ onto v = 0, u < 0, and
- $r = 1, \pi < \theta < 2\pi \text{ onto } \nu = 0, u > 0.$
- (c) Use the result in part (b) and the mapping function to show that the solution of the boundary value problem in the circle is given by

$$T(x,y) = T_0 \left[1 - \frac{2}{\pi} \cot^{-1} \left(\frac{2y}{1 - (x^2 + y^2)} \right) \right]$$
$$= T_0 \left[1 - \frac{2}{\pi} \tan^{-1} \left(\frac{1 - (x^2 + y^2)}{2y} \right) \right]$$

or, in polar coordinates,

$$\begin{split} T(r,\theta) &= T_0 \left[1 - \frac{2}{\pi} \cot^{-1} \left(\frac{2r \sin \theta}{1 - r^2} \right) \right] \\ &= T_0 \left[1 - \frac{2}{\pi} \tan^{-1} \left(\frac{1 - r^2}{2r \sin \theta} \right) \right]. \end{split}$$

Solution:

- (a) see the previous problem.
- (b) One could do this in polar or Cartesian coordinates or staying in (z, \bar{z}) . We do this in Cartesian.

$$w = i\left(\frac{1-z}{1+z}\right)$$

$$= i\left(\frac{1-(x+iy)}{1+(x+iy)}\right) \frac{(1+x)-iy}{(1+x)-iy}$$

$$= i\left(\frac{(1-x)(1+x)-iy(1-x)-iy(1+x)-y^2}{(1+x)^2+y^2}\right)$$

$$= i\left(\frac{1-x^2-iy-iy-y^2}{(1+x)^2+y^2}\right)$$

$$= \frac{2y}{(1+x)^2+y^2} + i\frac{1-(x^2+y^2)}{(1+x)^2+y^2}$$

For u and v we have

$$u(x, y) = \frac{2y}{(1+x)^2 + y^2}$$
$$v(x, y) = \frac{1 - (x^2 + y^2)}{(1+x)^2 + y^2}$$

For $|z| \le 1$ we have $x^2 + y^2 \le 1$ and we see clearly that $v \ge 0$ and since $y \in \mathbb{R}$ it follows $u \in \mathbb{R}$.

For r = 1, $x^2 + y^2 = 1$ and v(x, y) = 0. Now, using $y = r \sin \theta$ we can say

$$y > 0 \iff 0 < \theta < \pi$$
, and $y < 0 \iff \pi < \theta < 2\pi$,

it is the case that

$$u \in (0,\infty) \iff 0 < \theta < \pi$$
, and $u \in (-\infty,0) \iff \pi < \theta < 2\pi$,

(c) Plug in for u and v from part (b) to see

$$\frac{v}{u} = \frac{\frac{1 - (x^2 + y^2)}{(1 + x)^2 + y^2}}{\frac{2y}{(1 + x)^2 + y^2}}$$
$$= \frac{1 - (x^2 + y^2)}{2y}$$
$$= \frac{1 - r^2}{2r\sin\theta}$$

and the result follows.

Problem #13 (30 points): Find the location of the branch points and discuss a branch cut structure associated with the function:

- (a) $f(z) = \frac{z-1}{z}$ (b) $f(z) = \log(z^2 3)$
- (c) $f(z) = e^{\sqrt{z^2-1}}$
- (d) $f(z) = (z^2 1)^{1/3}$
- (e) $f(z) = \tan^{-1} z = \frac{1}{2i} \log \frac{i-z}{i+z}$

Solution:

- (a) $f(z) = \frac{z-1}{z}$. This is a rational function singular at z = 0 but single-valued, so no branch points.
- (b) $f(z) = \log(z^2 3)$. Here $z^2 3$ is entire single-valued function so the only branch points are those where $z^2 - 3 = 0$ or $z^2 - 3 = \infty$. Thus, there are three branch points, $z = \pm \sqrt{3}$ and $z = \infty$. A branch cut must make sure there is no possibility going around any single of them, in this case it must connect all three points. E.g. consider a cut on real axis $\{z=x|x\in\underline{[-3,+\infty)}\}.$
- (c) $f(z) = e^{\sqrt{z^2-1}}$. Since function e^z is entire, the only possible branch points are those of $\sqrt{z^2-1}$, i.e. $z = \pm 1$ and $z = \infty$. However, doing the circle argument $z - 1 = r_1 e^{i\theta_1}$, $z + 1 = r_2 e^{i\theta_2}$ $\theta_1 \to \theta_1 + 2\pi$, $\theta_2 \to \theta_2 + 2\pi$, one sees that $z = \infty$ is not a branch point since $e^{(2\pi i + 2\pi i)/2} = 1$ (consider $\sqrt{z^2 - 1} = e^{\frac{1}{2}\log(z-1) + \frac{1}{2}\log(z+1)}$), which corresponds to encircling both z = 1 and z = -1, equivalent to encircling just $z = \infty$. Thus, $z = \infty$ is not a branch point even for $\sqrt{z^2-1}$. But $z = \pm 1$ are branch points, and a branch cut connecting them is $\{z = x | x \in [-1, 1]\}$.
- (d) $f(z) = (z^2 1)^{1/3}$. By definition, we have $f(z) = e^{\frac{1}{3}\log(z^2 1)}$ and the only possible branch points are that of $\log(z^2 - 1)$, i.e. $z = \pm 1$ and $z = \infty$. By doing circle argument $z - 1 = r_1 e^{i\theta_1}$, $z + 1 = r_2 e^{i\theta_2}, \, \theta_1 \to \theta_1 + 2\pi, \, \theta_2 \to \theta_2 + 2\pi, \, \text{one}$ sees that all three points are indeed branch points. A branch cut must connect them, e.g. a possible branch cut is $\{z = x | x \in [-1, +\infty)\}$ on the real axis.
- (e) $f(z) = \tan^{-1} z = \frac{1}{2i} \log \frac{i-z}{i+z}$. This is (up to a constant) log of rational function, so the branch points are those where $\frac{i-z}{i+z} = 0$ or ∞ , i.e. there

are two branch points $z = \pm i$. As for $z = \infty$, it is not a branch point since $\lim_{z\to\infty} \frac{i-z}{i+z} = -1 \neq 0, \infty$. A branch cut must connect the two points, so a possible one is interval [-i, i] on the imaginary axis.

Problem #14 (15 points): Consider the complex velocity potential

$$\Omega(z, z_0) = \frac{M}{2\pi} [\log(z - z_0) - \log z]$$

for M > 0, which corresponds to a source at $z = z_0$ and a sink at z = 0. Find the corresponding velocity potential and stream function. Let $M = k/|z_0|$, $z_0 = |z_0|e^{i\theta_0}$, and show that

$$\Omega(z,z_0) = -\frac{k}{2\pi} \left(\frac{\log z - \log(z-z_0)}{z_0}\right) \frac{z_0}{|z_0|}.$$

Take the limit as $z_0 \rightarrow 0$ to obtain

$$\Omega(z) = \lim_{z_0 \to 0} \Omega(z, z_0) = -\frac{ke^{i\theta_0}}{2\pi} \frac{1}{z}.$$

This is called a "doublet" with strength k. The angle θ_0 specifies the direction along which the source/sink coalesces. Find the velocity potential and the stream function of the doublet, and sketch the flow.

Solution:

$$\Omega(z, z_0) = \frac{M}{2\pi} [\log|z - z_0| - \log|z| + i(\arg(z - z_0) - \arg(z))],$$

so the velocity potential

$$\phi = \operatorname{Re} \Omega = \frac{M}{2\pi} \log \frac{|z - z_0|}{|z|}$$

and the stream function

$$\psi = \operatorname{Im} \Omega = \frac{M}{2\pi} \left(\operatorname{arg}(z - z_0) - \operatorname{arg}(z) \right).$$

The first formula to show is obtained by just substituting $M = k/|z_0|$ into the definition of $\Omega(z, z_0)$ and multiplying and dividing it by z_0 . Then, since $|z_0/|z_0|=e^{i\theta_0},$

$$\Omega(z) = \lim_{z_0 \to 0} \Omega(z, z_0) =$$

$$= -\frac{ke^{i\theta_0}}{2\pi} \lim_{z_0 \to 0} \frac{\log z - \log(z - z_0)}{z_0} =$$

$$= -\frac{ke^{i\theta_0}}{2\pi} \frac{1}{z},$$

the last equality being true by the definition of the derivative considering z_0 as variable and z as constant. Let $z=re^{i\theta}$, then

$$\begin{split} &\Omega(z) = -\frac{ke^{i\theta_0}}{2\pi} \frac{1}{z} = -\frac{ke^{-i(\theta-\theta_0)}}{2\pi r} = \\ &= -\frac{k(\cos(\theta-\theta_0) - i\sin(\theta-\theta_0))}{2\pi r}, \end{split}$$

i.e. (since $\Omega = \phi + i\psi$), we get the velocity potential ϕ and the stream function ψ ,

$$\phi(r,\theta) = -\frac{k\cos(\theta-\theta_0)}{2\pi r}, \qquad \psi(r,\theta) = \frac{k\sin(\theta-\theta_0)}{2\pi r}.$$