Girocompás y efecto Coriolis

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

6 de mayo de 2025

Agenda

- Girocompás
 - Generalidades
 - Navegación inercial
 - Las velocidades angulares
 - Pequeñas Oscilaciones
- ② Efecto Coriolis
- Recapitulando

Girocompás

 El girocompás, es un instrumento para la navegación inercial, que permite indicar el Norte geográfico sin referencia al campo magnético.

Girocompás

- El girocompás, es un instrumento para la navegación inercial, que permite indicar el Norte geográfico sin referencia al campo magnético.
- Es un disco con momentos principales de inercia $I_1^1 = I_2^2 \neq I_3^3$, que gira con velocidad angular constante ω , alrededor del eje perpendicular a su plano, que llamamos x_3 .

Girocompás

- El girocompás, es un instrumento para la navegación inercial, que permite indicar el Norte geográfico sin referencia al campo magnético.
- Es un disco con momentos principales de inercia $I_1^1 = I_2^2 \neq I_3^3$, que gira con velocidad angular constante ω , alrededor del eje perpendicular a su plano, que llamamos x_3 .
- Simultáneamente, el disco puede rotar libremente un ángulo θ alrededor de un eje perpendicular a x_3 .

Navegación inercial

• Sea ν la magnitud de la velocidad angular de la Tierra alrededor de su eje NorteSur, con $\omega\gg\nu$, donde α es la latidud.

Navegación inercial

- Sea ν la magnitud de la velocidad angular de la Tierra alrededor de su eje NorteSur, con $\omega \gg \nu$, donde α es la latidud.
- El sistema de coordenadas (x, y, z) está fijo en la Tierra y el sistema (x_1, x_2, x_3) está en el CM del disco

Navegación inercial

- Sea ν la magnitud de la velocidad angular de la Tierra alrededor de su eje NorteSur, con $\omega \gg \nu$, donde α es la latidud.
- El sistema de coordenadas (x,y,z) está fijo en la Tierra y el sistema (x_1,x_2,x_3) está en el CM del disco
- Las componentes de la velocidad angular de la Tierra en (x, y, z) son $\nu_x = 0$, $\nu_y = \nu \operatorname{sen} \alpha$ y $\nu_z = \nu \operatorname{cos} \alpha$

• Supongamos que la dirección de $\dot{\theta}$ en un instante dado está sobre el eje x_2 (simetría del disco permite esta simplificación).

- Supongamos que la dirección de $\dot{\theta}$ en un instante dado está sobre el eje x_2 (simetría del disco permite esta simplificación).
- las componentes de Ω respecto a (x_1, x_2, x_3) son:

$$\begin{cases} \Omega^1 = -\nu_z \sin \theta = -\nu \cos \alpha \sin \theta \\ \Omega^2 = \nu_y + \dot{\theta} = \nu \sin \alpha + \dot{\theta} \\ \Omega^3 = \nu_z \cos \theta + \omega = \nu \cos \alpha \cos \theta + \omega \end{cases}$$

- Supongamos que la dirección de $\dot{\theta}$ en un instante dado está sobre el eje x_2 (simetría del disco permite esta simplificación).
- las componentes de Ω respecto a (x_1, x_2, x_3) son:

$$\begin{cases} \Omega^1 = -\nu_z \sin \theta = -\nu \cos \alpha \sin \theta \\ \Omega^2 = \nu_y + \dot{\theta} = \nu \sin \alpha + \dot{\theta} \\ \Omega^3 = \nu_z \cos \theta + \omega = \nu \cos \alpha \cos \theta + \omega \end{cases}$$

• El instrumento es libre de rotar sobre el eje y, no hay componente del torque en dirección de y, que corresponde instantaneamente al eje x_2 .

- Supongamos que la dirección de $\dot{\theta}$ en un instante dado está sobre el eje x_2 (simetría del disco permite esta simplificación).
- ullet las componentes de $oldsymbol{\Omega}$ respecto a (x_1,x_2,x_3) son:

$$\begin{cases} \Omega^1 = -\nu_z \sin \theta = -\nu \cos \alpha \sin \theta \\ \Omega^2 = \nu_y + \dot{\theta} = \nu \sin \alpha + \dot{\theta} \\ \Omega^3 = \nu_z \cos \theta + \omega = \nu \cos \alpha \cos \theta + \omega \end{cases}$$

- El instrumento es libre de rotar sobre el eje y, no hay componente del torque en dirección de y, que corresponde instantaneamente al eje x_2 .
- Entonces, la ecuación de Euler $au^2=\mathit{I}_2^2\dot{\Omega}^2+\Omega_1\Omega_3\left(\mathit{I}_1^1-\mathit{I}_3^3\right)=0$

- Supongamos que la dirección de $\dot{\theta}$ en un instante dado está sobre el eje x_2 (simetría del disco permite esta simplificación).
- las componentes de Ω respecto a (x_1, x_2, x_3) son:

$$\begin{cases} \Omega^1 = -\nu_z \sin \theta = -\nu \cos \alpha \sin \theta \\ \Omega^2 = \nu_y + \dot{\theta} = \nu \sin \alpha + \dot{\theta} \\ \Omega^3 = \nu_z \cos \theta + \omega = \nu \cos \alpha \cos \theta + \omega \end{cases}$$

- El instrumento es libre de rotar sobre el eje y, no hay componente del torque en dirección de y, que corresponde instantaneamente al eje x_2 .
- Entonces, la ecuación de Euler $au^2=\mathit{I}_2^2\dot{\Omega}^2+\Omega_1\Omega_3\left(\mathit{I}_1^1-\mathit{I}_3^3\right)=0$
- Derivando Ω^2 y sustituyendo (con $I_1^1 = I_2^2$) tenemos $I_1^1 \ddot{\theta} + (I_3^3 I_1^1) \nu \cos \alpha \sec \theta (\nu \cos \alpha \cos \theta + \omega) = 0$

- Supongamos que la dirección de $\dot{\theta}$ en un instante dado está sobre el eje x_2 (simetría del disco permite esta simplificación).
- las componentes de Ω respecto a (x_1, x_2, x_3) son:

$$\begin{cases} \Omega^1 = -\nu_z \sin \theta = -\nu \cos \alpha \sin \theta \\ \Omega^2 = \nu_y + \dot{\theta} = \nu \sin \alpha + \dot{\theta} \\ \Omega^3 = \nu_z \cos \theta + \omega = \nu \cos \alpha \cos \theta + \omega \end{cases}$$

- El instrumento es libre de rotar sobre el eje y, no hay componente del torque en dirección de y, que corresponde instantaneamente al eje x_2 .
- ullet Entonces, la ecuación de Euler $au^2=I_2^2\dot\Omega^2+\Omega_1\Omega_3\left(I_1^1-I_3^3
 ight)=0$
- Derivando Ω^2 y sustituyendo (con $I_1^1 = I_2^2$) tenemos $I_1^1\ddot{\theta} + \left(I_3^3 I_1^1\right)\nu\cos\alpha \operatorname{sen}\theta(\nu\cos\alpha\cos\theta + \omega) = 0$
- Como $\omega \gg \nu$, entonces $\omega \gg \nu \cos \alpha \cos \theta$, e implica $I_1^1 \ddot{\theta} + \left(I_3^3 I_1^1\right) \nu \omega \cos \alpha \sin \theta \approx 0$

- Supongamos que la dirección de $\dot{\theta}$ en un instante dado está sobre el eje x_2 (simetría del disco permite esta simplificación).
- las componentes de Ω respecto a (x_1, x_2, x_3) son:

$$\begin{cases} \Omega^1 = -\nu_z \sin \theta = -\nu \cos \alpha \sin \theta \\ \Omega^2 = \nu_y + \dot{\theta} = \nu \sin \alpha + \dot{\theta} \\ \Omega^3 = \nu_z \cos \theta + \omega = \nu \cos \alpha \cos \theta + \omega \end{cases}$$

- El instrumento es libre de rotar sobre el eje y, no hay componente del torque en dirección de y, que corresponde instantaneamente al eje x_2 .
- Entonces, la ecuación de Euler $au^2=I_2^2\dot\Omega^2+\Omega_1\Omega_3\left(I_1^1-I_3^3\right)=0$
- Derivando Ω^2 y sustituyendo (con $I_1^1 = I_2^2$) tenemos $I_1^1 \ddot{\theta} + (I_3^3 I_1^1) \nu \cos \alpha \sec \theta (\nu \cos \alpha \cos \theta + \omega) = 0$
- Como $\omega \gg \nu$, entonces $\omega \gg \nu \cos \alpha \cos \theta$, e implica $I_1^1 \ddot{\theta} + \left(I_3^3 I_1^1\right) \nu \omega \cos \alpha \sin \theta \approx 0$
- Para pequeñas oscilaciones $I_1^1\ddot{\theta}+\left(I_3^3-I_1^1\right)\nu\omega\cos\alpha$ $\theta\approx0$

• Pequeñas Oscilaciones $I_1^1\ddot{\theta}+\left(I_3^3-I_1^1\right)\nu\omega\cos\alpha\ \theta\approx0\Leftrightarrow\ddot{\theta}+\omega_c^2\theta\approx0$, con lo cual $\omega_c^2=\frac{\left(I_3^3-I_1^1\right)}{I_1^1}\nu\omega\cos\alpha$,

- Pequeñas Oscilaciones $I_1^1\ddot{\theta} + \left(I_3^3 I_1^1\right)\nu\omega\cos\alpha$ $\theta \approx 0 \Leftrightarrow \ddot{\theta} + \omega_c^2\theta \approx 0$, con lo cual $\omega_c^2 = \frac{\left(I_3^3 I_1^1\right)}{I_1^1}\nu\omega\cos\alpha$,
- Es la frecuencia para pequeñas oscilaciones del eje x_3 del disco alrededor del eje z, que apunta hacia el Norte.

- Pequeñas Oscilaciones $I_1^1\ddot{\theta} + \left(I_3^3 I_1^1\right)\nu\omega\cos\alpha$ $\theta \approx 0 \Leftrightarrow \ddot{\theta} + \omega_c^2\theta \approx 0$, con lo cual $\omega_c^2 = \frac{\left(I_3^3 I_1^1\right)}{I_1^1}\nu\omega\cos\alpha$,
- Es la frecuencia para pequeñas oscilaciones del eje x_3 del disco alrededor del eje z, que apunta hacia el Norte.
- El punto de equilibrio $\theta = 0$ de la oscilación del eje x_3 señala la dirección del Norte geográfico.

- Pequeñas Oscilaciones $I_1^1\ddot{\theta} + \left(I_3^3 I_1^1\right)\nu\omega\cos\alpha\ \theta \approx 0 \Leftrightarrow \ddot{\theta} + \omega_c^2\theta \approx 0$, con lo cual $\omega_c^2 = \frac{\left(I_3^3 I_1^1\right)}{I_1^1}\nu\omega\cos\alpha$,
- Es la frecuencia para pequeñas oscilaciones del eje x_3 del disco alrededor del eje z, que apunta hacia el Norte.
- El punto de equilibrio $\theta = 0$ de la oscilación del eje x_3 señala la dirección del Norte geográfico.
- La frecuencia de oscilación ω_c permite a su vez calcular la latitud α sin ninguna referencia externa
- $\omega_c = 0 \Rightarrow \alpha = \frac{\pi}{2}$ es Polo Norte. $\omega_c = \text{máxima} \Rightarrow \alpha = 0$ es el Ecuador.

• Sea (x, y, z) un sistema inercial (en reposo respecto a las estrellas fijas) y (x_1, x_2, x_3) un sistema de coordenadas en rotación (la Tierra) con velocidad angular constante Ω relativa al sistema inercial.

- Sea (x, y, z) un sistema inercial (en reposo respecto a las estrellas fijas) y (x_1, x_2, x_3) un sistema de coordenadas en rotación (la Tierra) con velocidad angular constante Ω relativa al sistema inercial.
- Una vez mas $\left(\frac{d\mathbf{r}}{dt}\right)_{(x,y,z)} = \left(\frac{d\mathbf{r}}{dt}\right)_{(x_1,x_2,x_3)} + \mathbf{\Omega} \times \mathbf{r} \equiv \mathbf{v}' + \mathbf{\Omega} \times \mathbf{r},$

- Sea (x, y, z) un sistema inercial (en reposo respecto a las estrellas fijas) y (x_1, x_2, x_3) un sistema de coordenadas en rotación (la Tierra) con velocidad angular constante Ω relativa al sistema inercial.
- Una vez mas $\left(\frac{d\mathbf{r}}{dt}\right)_{(x,y,z)} = \left(\frac{d\mathbf{r}}{dt}\right)_{(x_1,x_2,x_3)} + \mathbf{\Omega} \times \mathbf{r} \equiv \mathbf{v}' + \mathbf{\Omega} \times \mathbf{r},$
- Con lo cual $\frac{d\mathbf{v}}{dt} = \frac{d\mathbf{v}'}{dt} + \mathbf{\Omega} \times \mathbf{v} \equiv \frac{d\mathbf{v}'}{dt} + \mathbf{\Omega} \times \mathbf{v}' + \mathbf{\Omega} \times (\mathbf{v}' + \mathbf{\Omega} \times \mathbf{r})$

- Sea (x, y, z) un sistema inercial (en reposo respecto a las estrellas fijas) y (x_1, x_2, x_3) un sistema de coordenadas en rotación (la Tierra) con velocidad angular constante Ω relativa al sistema inercial.
- Una vez mas $\left(\frac{d\mathbf{r}}{dt}\right)_{(x,y,z)} = \left(\frac{d\mathbf{r}}{dt}\right)_{(x_1,x_2,x_3)} + \mathbf{\Omega} \times \mathbf{r} \equiv \mathbf{v}' + \mathbf{\Omega} \times \mathbf{r},$
- Con lo cual $\frac{d\mathbf{v}}{dt} = \frac{d\mathbf{v}'}{dt} + \mathbf{\Omega} \times \mathbf{v} \equiv \frac{d\mathbf{v}'}{dt} + \mathbf{\Omega} \times \mathbf{v}' + \mathbf{\Omega} \times (\mathbf{v}' + \mathbf{\Omega} \times \mathbf{r})$
- Entonces $\underbrace{m\frac{d\mathbf{v}}{dt}}_{\mathbf{F}} = \underbrace{m\frac{d\mathbf{v}'}{dt}}_{\mathbf{F}'} + \underbrace{2m\Omega \times \mathbf{v}'}_{-\mathbf{F}_{Coriolis}} + \underbrace{m\Omega \times (\Omega \times \mathbf{r})}_{-\mathbf{F}_{centrifuga}}$

- Sea (x, y, z) un sistema inercial (en reposo respecto a las estrellas fijas) y (x_1, x_2, x_3) un sistema de coordenadas en rotación (la Tierra) con velocidad angular constante Ω relativa al sistema inercial.
- Una vez mas $\left(\frac{d\mathbf{r}}{dt}\right)_{(x,v,z)} = \left(\frac{d\mathbf{r}}{dt}\right)_{(x_1,x_2,x_3)} + \mathbf{\Omega} \times \mathbf{r} \equiv \mathbf{v}' + \mathbf{\Omega} \times \mathbf{r},$
- Con lo cual $\frac{d\mathbf{v}}{dt} = \frac{d\mathbf{v}'}{dt} + \mathbf{\Omega} \times \mathbf{v} \equiv \frac{d\mathbf{v}'}{dt} + \mathbf{\Omega} \times \mathbf{v}' + \mathbf{\Omega} \times (\mathbf{v}' + \mathbf{\Omega} \times \mathbf{r})$
- Entonces $\underbrace{m\frac{d\mathbf{v}}{dt}}_{=} = \underbrace{m\frac{d\mathbf{v}'}{dt}}_{=} + \underbrace{2m\Omega \times \mathbf{v}'}_{-\mathbf{F}_{Coriolis}} + \underbrace{m\Omega \times (\Omega \times \mathbf{r})}_{-\mathbf{F}_{centrifuga}}$
- Es decir $\mathbf{F}' = \mathbf{F} + \mathbf{F}_{Coriolis} + \mathbf{F}_{centrifuga}$

Recapitulando

En presentación consideramos

