# Algorithms Test 1 Review

## Benjamin Boudra

## February 20, 2016

### **Contents**

3.1 Prompt

| 1       | EX 1 1.1 Prompt                                                                                                                                                                                                                                                                                                                  | 1<br>1<br>1                          |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 2       | EX 2 2.1 Prompt                                                                                                                                                                                                                                                                                                                  | 1 1                                  |
| 3       | EX 3         3.1       Prompt          3.2       Answer          3.2.1       Step 1: Draw a graph of the summation and Integral          3.2.2       Step 2: Deduce the Graph's implications          3.2.3       Step 3: Calculate the Definite integral          3.2.4       Step 4: Prove Upper Bound is in $\Theta(nlog(n))$ | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>3 |
| 4       | EX 4 4.1 Prompt                                                                                                                                                                                                                                                                                                                  | 3 3                                  |
| 5       | EX 5 5.1 Prompt                                                                                                                                                                                                                                                                                                                  | 3                                    |
| 6       | EX 6 6.1 Prompt                                                                                                                                                                                                                                                                                                                  | 3 3                                  |
| 7       | EX 7 7.1 Prompt                                                                                                                                                                                                                                                                                                                  | 3 3                                  |
| 1<br>1. | EX 1 1 Prompt                                                                                                                                                                                                                                                                                                                    |                                      |
|         | 2 Answer EX 2                                                                                                                                                                                                                                                                                                                    |                                      |
| 2.      | 1 Prompt<br>2 Answer                                                                                                                                                                                                                                                                                                             |                                      |

 $A(n) = log_2(1) + log_2(2) + log_2(3) + ... + log_2(n-1) + log_2(n)$ 

(1)

Use the technique of bounding definite integrals to find the  $\boldsymbol{\Theta}$  category for the function.

Actually, you should use the integral bound technique for one equality, and use trivial analysis for the other.

#### 3.2 Answer

#### 3.2.1 Step 1: Draw a graph of the summation and Integral



#### 3.2.2 Step 2: Deduce the Graph's implications

Following from the facts that:

- 1. The integral is the area under the function  $log_2(x)$  from 1 to n.
- 2. If we chose to view the integral as the summation of all of its length one segments from 1 to *n* plus the integral of whatever is left over (if n is not an integer value), the resulting integral's value will be unaffected.
- 3. The value of each integral segment is greater than the value of its corresponding series segment because:
  - (a) the value of the function and the series are equal at integer values
  - (b) the value of the function increases between integers and the value of the series does not.

 $\int_1^n log_2(x)$  is greater than  $\sum_{i=1}^n log_2(i)$  for any n greater than 1. Thus, to find the upper bound or O of  $\sum_{i=1}^n log_2(i)$  we merely need to find the integral of  $\int_1^n log_2(x)$ 

#### 3.2.3 Step 3: Calculate the Definite integral

So now I will calculate  $\int_1^n log_2(x)$ 

1. Recognize that to take the integral of a logarithm, we will have to perform integration by parts. so we must chose u and dv values.

$$u = log_2(x)$$
  $du = 1/x ln(2)$   $dv = 1$   $v = x$  (2)

2. solve for the indefinite integral

$$\int_{1}^{n} log_{2}(x) = \frac{\ln(x) * x}{\ln(2)} \Big|_{1}^{n} - \int_{1}^{n} \frac{x}{x \ln(2)} = \frac{\ln(x) * x}{\ln(2)} \Big|_{1}^{n} - \int_{1}^{n} \frac{1}{\ln(2)} = \frac{\ln(x) * x}{\ln(2)} - \frac{x}{\ln(2)} \Big|_{1}^{n} = \frac{\ln(x) * x - x}{\ln(2)} \Big|_{1}^{n}$$

$$\frac{\ln(x) * x - x}{\ln(2)} \Big|_{1}^{n}$$
(3)

3. solve for the definite integral

$$\frac{ln(x)*x-x}{ln(2)}\bigg|_1^n = \frac{ln(n)*n-n}{ln(2)} - \left(\frac{ln(1)*1-1}{ln(2)}\right) = \frac{ln(n)*n-n}{ln(2)} + \left(\frac{1}{ln(2)}\right) = \frac{ln(n)*n-n+1}{ln(2)}$$

Thus, The equation:

$$\frac{ln(n)*n-n+1}{ln(2)}$$

Acts as an upper bound for the summation.

### **3.2.4** Step 4: Prove Upper Bound is in $\Theta(nlog(n))$

1. prove equation is O(nlog(n)). According to our notes, an equation of the category O(n) when it

(4)

2.



- 4 EX 4
- 4.1 Prompt
- 4.2 Answer
- 5 EX 5
- 5.1 Prompt
- 5.2 Answer
- 6 EX 6
- 6.1 Prompt
- 6.2 Answer
- 7 EX 7
- 7.1 Prompt
- 7.2 Answer