Generative Adversarial Networks with Joint Distribution Moment Matching (GAN with JDMM)

 ${\it Chaomin Shen}^1 \\ {\it Joint work with Yiyin Zhang}^1, {\it Hao Feng}^1, {\it Yaxin Peng}^2, {\it Guixu Zhang}^1 \\$

 $^1{\rm Dept}$ of Computer Science, East China Normal University, Shanghai, China $^2{\rm Dept}$ of Mathematics, Shanghai University, Shanghai, China

Apr. 14, 2018, Nanjing

1 / 32

Generative Adversarial Networks (GAN)

Real MNIST

Generated MNIST

Real CIFAR-10

Generated CIFAR-10

Generative Adversarial Networks (GAN)

Generated Brain MRI

G: Generator

D: Discriminator

$$\min_{G} \max_{D} \underset{\boldsymbol{x} \sim \mathbb{P}_r}{\mathbb{E}} [\log(D(\boldsymbol{x}))] + \underset{\boldsymbol{z} \sim \mathbb{P}_q(\boldsymbol{z})}{\mathbb{E}} [\log(1 - D(G(\boldsymbol{z})))],$$

G: Generator

D: Discriminator

$$\min_{G} \max_{D} \underset{\boldsymbol{x} \sim \mathbb{P}_r}{\mathbb{E}}[\log(D(\boldsymbol{x}))] + \underset{\boldsymbol{z} \sim \mathbb{P}_g(\boldsymbol{z})}{\mathbb{E}}[\log(1 - D(G(\boldsymbol{z})))],$$

■ x: 真实图像 z: 输入网络的噪声

G: Generator

D: Discriminator

$$\min_{G} \max_{D} \underset{\boldsymbol{x} \sim \mathbb{P}_r}{\mathbb{E}}[\log(D(\boldsymbol{x}))] + \underset{\boldsymbol{z} \sim \mathbb{P}_g(\boldsymbol{z})}{\mathbb{E}}[\log(1 - D(G(\boldsymbol{z})))],$$

- x: 真实图像 z: 输入网络的噪声
- D(x): D判断真实图像x是否是真实的概率.

G: Generator

D: Discriminator

$$\min_{G} \max_{D} \underset{\boldsymbol{x} \sim \mathbb{P}_r}{\mathbb{E}}[\log(D(\boldsymbol{x}))] + \underset{\boldsymbol{z} \sim \mathbb{P}_g(\boldsymbol{z})}{\mathbb{E}}[\log(1 - D(G(\boldsymbol{z})))],$$

- x: 真实图像 z: 输入网络的噪声
- D(x): D判断真实图像x是否是真实的概率. D(x)越大越好

- G: Generator
- D: Discriminator

$$\min_{G} \max_{D} \underset{\boldsymbol{x} \sim \mathbb{P}_r}{\mathbb{E}} [\log(D(\boldsymbol{x}))] + \underset{\boldsymbol{z} \sim \mathbb{P}_q(\boldsymbol{z})}{\mathbb{E}} [\log(1 - D(G(\boldsymbol{z})))],$$

- x: 真实图像 z: 输入网络的噪声
- D(x): D判断真实图像x是否是真实的概率. D(x)越大越好
- G(z): G生成的假图像

- G: Generator
- D: Discriminator

$$\min_{G} \max_{D} \underset{\boldsymbol{x} \sim \mathbb{P}_r}{\mathbb{E}}[\log(D(\boldsymbol{x}))] + \underset{\boldsymbol{z} \sim \mathbb{P}_g(\boldsymbol{z})}{\mathbb{E}}[\log(1 - D(G(\boldsymbol{z})))],$$

- x: 真实图像 z: 输入网络的噪声
- D(x): D判断真实图像x是否是真实的概率. D(x)越大越好
- G(z): G生成的假图像 希望能以假乱真, 理想的G应该D(G(z))越大越好, i.e., 1-D(G(z)) 越小越好,

- G: Generator
- D: Discriminator

$$\min_{G} \max_{D} \underset{\boldsymbol{x} \sim \mathbb{P}_r}{\mathbb{E}}[\log(D(\boldsymbol{x}))] + \underset{\boldsymbol{z} \sim \mathbb{P}_g(\boldsymbol{z})}{\mathbb{E}}[\log(1 - D(G(\boldsymbol{z})))],$$

- x: 真实图像 z: 输入网络的噪声
- D(x): D判断真实图像x是否是真实的概率. D(x)越大越好
- G(z): G生成的假图像 希望能以假乱真, 理想的G应该D(G(z))越大越好, i.e., 1-D(G(z)) 越小越好, 所以 $\min G$.

- G: Generator
- D: Discriminator

$$\min_{G} \max_{D} \underset{\boldsymbol{x} \sim \mathbb{P}_r}{\mathbb{E}}[\log(D(\boldsymbol{x}))] + \underset{\boldsymbol{z} \sim \mathbb{P}_g(\boldsymbol{z})}{\mathbb{E}}[\log(1 - D(G(\boldsymbol{z})))],$$

- x: 真实图像 z: 输入网络的噪声
- D(x): D判断真实图像x是否是真实的概率. D(x)越大越好
- G(z): G生成的假图像 希望能以假乱真, 理想的G应该D(G(z))越大越好, i.e., 1-D(G(z)) 越小越好, 所以 $\min G$.
- D(x): 理想的D应该使得 D(x)大; D(G(z))小, 即第2项大,

- G: Generator
- D: Discriminator

$$\min_{G} \max_{D} \underset{\boldsymbol{x} \sim \mathbb{P}_r}{\mathbb{E}}[\log(D(\boldsymbol{x}))] + \underset{\boldsymbol{z} \sim \mathbb{P}_g(\boldsymbol{z})}{\mathbb{E}}[\log(1 - D(G(\boldsymbol{z})))],$$

- x: 真实图像 z: 输入网络的噪声
- D(x): D判断真实图像x是否是真实的概率. D(x)越大越好
- G(z): G生成的假图像 希望能以假乱真, 理想的G应该D(G(z))越大越好, i.e., 1 D(G(z)) 越小越好, 所以 $\min G$.
- D(x): 理想的D应该使得 D(x)大; D(G(z))小, 即第2项大, 所以 $\max D$.

Outline

- Introduction
 - Generative Adversarial Networks (GAN)
 - Main Idea
- Proposed Method
 - Marginal Distribution Moment Matching
 - Conditional Distribution Moment Matching
 - Joint Distribution Moment Matching
 - Proposed Model: GAN with JDMM
- 3 Experimental Results
 - Datasets / Benchmarks
 - Experimental Results
- 4 Conclusion

Generative Adversarial Networks

- A generative network G tries to capture the data distribution. Input: random noise z from prior distribution p(z) (e.g. normal) Output: synthetic data G(z).
- lacksquare An adversarial network D for distinguishing training and generated data.

Input: G(z)

Output: feature indicating whether fake or not

■ The objective function of GAN:

$$\min_{G} \max_{D} \underset{\boldsymbol{x} \sim \mathbb{P}_r}{\mathbb{E}}[\log(D(\boldsymbol{x}))] + \underset{\boldsymbol{z} \sim \mathbb{P}_g(\boldsymbol{z})}{\mathbb{E}}[\log(1 - D(G(\boldsymbol{z})))],$$

where \mathbb{P}_r is the distribution of the training data \mathbb{P}_g is the distribution of the generated data

Conditional GAN:

$$\min_{G} \max_{D} \underset{\boldsymbol{x} \sim \mathbb{P}_r}{\mathbb{E}} [\log(D(\boldsymbol{x}|\boldsymbol{y}))] + \underset{\boldsymbol{z} \sim \mathbb{P}_q(\boldsymbol{z})}{\mathbb{E}} [\log(1 - D(G(\boldsymbol{z}|\boldsymbol{y})))],$$

where y is the label.

Variants of GANs

- Traditional GANs are unsupervised (and also marginal since no label)
- Conditional GANs: generate data with labels in semi-supervised learning
 - Advantages: Achieve better performance than traditional GANs

■ **Disadvantages**: Generally only minimize the difference between marginal distributions of real data and generated data, neglecting the difference with respect to each class, e.g. [1]

[1] Y. Ren, J. Li, Y. Luo, J. Zhu, "Conditional generative moment-matching networks," NIPS 2016.

Chaomin Shen (ECNU) GAN with JDMM 7 / 32

Main idea / Novelties

- Minimize the differences of both the marginal and conditional distributions. Therefore, termed as Joint Distribution Moment Matching.
- Use JDMM as a general framework for both unsupervised and semi-supervised generative tasks.

GAN with JDMM

Frequently used notations

Notation	Description
$oldsymbol{x},y_r$	training data and its corresponding label
$m{ ilde{x}},y_g$	generated data and its corresponding label
$\mathbb{P}_r, \mathbb{P}_g$	marginal distribution of $x/ ilde{x}$
$\mathbb{C}_r, \mathbb{C}_g$	conditional distribution of $x/ ilde{x}$
	e.g., $\mathbb{C}(m{x} y)$ or $\mathbb{C}(y m{x})$
$\mathbb{J}_r, \mathbb{J}_g$	joint distribution of $x/ ilde{x}$
N, M	number of real/generated data
C	number of classes

Maximum Mean Discrepancy (MMD)

■ Given two sets of samples $X = \{x_i\}_{i=1}^N$ and $X' = \{x_j'\}_{j=1}^M$ from distributions \mathbb{P}_X and $\mathbb{P}_{X'}$, MMD¹ is an estimator to answer whether $\mathbb{P}_X = \mathbb{P}_{X'}$.

$$\mathsf{MMD}[\mathcal{K}, \mathbb{P}_X, \mathbb{P}_{X'}] := \sup_{f \in \mathcal{K}} (\mathbb{E}_X[f(X)] - \mathbb{E}_{X'}[f(X')]),$$

where K is a class of functions in a Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} , with an associated continuous kernel $k(\cdot, \cdot)$.

In practice, MMD can also be calculated as the squared difference between the empirical kernel mean embeddings:

$$\mathcal{L}^2_{\mathsf{MMD}} = \left\| \frac{1}{N} \sum_{i=1}^N \phi(oldsymbol{x}_i) - \frac{1}{M} \sum_{j=1}^M \phi(ilde{oldsymbol{x}}_j)
ight\|^2,$$

where ϕ is a feature mapping: $X \to \mathcal{H}$.

Chaomin Shen (ECNU) GAN with JDMM 10 / 32

¹A. Gretton, K. Borgwardt, M. Rasch, et al., "A kernel two-sample test,"

Journal of Machine Learning Research, 13(3):723–773, 2012. → ⟨𝔻⟩ → ⟨𝔻⟩

Marginal Distribution Moment Matching

- Computationally expensive to apply MMD directly on the data space.
- MMD can be computed on the features extracted by the discriminator, since the discriminator is a CNN whose output contains features extracted from input images.

Marginal Distribution Moment Matching

$$L_{\mathsf{MMD}}(\mathbb{P}_r, \mathbb{P}_g) = \left\| \frac{1}{N} \sum_{i=1}^N \phi(D(\boldsymbol{x}_i)) - \frac{1}{M} \sum_{j=1}^M \phi(D(\boldsymbol{\tilde{x}}_j)) \right\|^2$$

where $\phi(\cdot)$ is a feature mapping: $X \to \mathcal{H}$,

 $D(\cdot)$ represents the outputs of the discriminator,

 $\{x_i\}_{i=1}^N$ are samples from the training data distribution,

 $\{ ilde{m{x}}_j\}_{j=1}^M$ are samples from the generated data distribution.

◆ロト ◆団ト ◆差ト ◆差ト 差 めので

Chaomin Shen (ECNU) GAN with JDMM 11 / 32

Conditional Distribution Moment Matching

$$\mathbb{C}_r(y_r=c|\boldsymbol{x}), \ \mathbb{C}_g(y_g=c|\tilde{\boldsymbol{x}}), \qquad \mathbb{C}_r(\boldsymbol{x}|y_r=c), \ \mathbb{C}_g(\tilde{\boldsymbol{x}}|y_g=c)$$

Given labels in the real data, $\mathbb{C}_r(y_r|x)$ is known. We also want to get the labels for the generated data, i.e., $\mathbb{C}_q(y_q|\tilde{x})$

- The conditional distributions $\mathbb{C}_r(y_r|x)$ and $\mathbb{C}_g(y_g|\tilde{x})$ should be close as well.
- Matching $\mathbb{C}_r(y_r|x)$ and $\mathbb{C}_g(y_g|\tilde{x})$ is nontrivial.
 - The probability density of \tilde{x} is changing through the whole training procedure. Therefore it is impossible to compute $\mathbb{C}_g(y_g|\tilde{x})$.

Chaomin Shen (ECNU) GAN with JDMM 12 / 32

Conditional Distribution Moment Matching

We employ the nonparametric statistic $\mathbb{C}_r(m{x}|y_r)$ and $\mathbb{C}_g(m{ ilde{x}}|y_g)$ instead

Conditional Distribution Moment Matching for each class

$$L_{\mathsf{MMD}}^{(c)}(\mathbb{C}_r^{(c)}, \mathbb{C}_g^{(c)}) = \left\| \frac{1}{N^c} \sum_{i=1}^{N^c} \phi(D(\boldsymbol{x}_i)) - \frac{1}{M^c} \sum_{j=1}^{M^c} \phi(D(\tilde{\boldsymbol{x}}_j)) \right\|^2,$$

where $\mathbb{C}_r^{(c)}$ and $\mathbb{C}_g^{(c)}$: conditional distributions,

 $\{m{x}_i: m{x}_i \sim \mathbb{C}_r^{(c)}, y(m{x}_i) = c\}$: set of real samples for class c,

 $y(\boldsymbol{x}_i)$: real label,

 $\{ ilde{m{x}}_j: m{y}_j \sim \mathbb{C}_g^{(c)}, y(ilde{m{x}}_j) = c\}$: set of generated samples for class c,

 $y(\tilde{\boldsymbol{x}}_j)$: generated label,

 N^c and M^c : numbers of real and generated samples for class c.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Chaomin Shen (ECNU) GAN with JDMM 13 / 32

Joint Distribution Moment Matching

Joint Distribution Moment Matching

$$L(\mathbb{J}_r,\mathbb{J}_g) = L_{\mathsf{MMD}}(\mathbb{P}_r,\mathbb{P}_g) + \lambda \sum_{c=1}^C L_{\mathsf{MMD}}^{(c)}(\mathbb{C}_r^{(c)},\mathbb{C}_g^{(c)}),$$

where \mathbb{J}_r represents joint distribution of real data \mathbb{J}_g represents joint distribution of generated data $\lambda=0$ indicates the GAN is unsupervised

Chaomin Shen (ECNU) GAN with JDMM 14 / 32

Framework of GAN with JDMM

A minimax game between the discriminator and generator:

Framework of GAN with JDMM

$$\max_{D} L(\mathbb{J}_r, \mathbb{J}_g) - \gamma L_C,$$

$$\min_{G} L(\mathbb{J}_r, \mathbb{J}_g) + \gamma L_C$$

where L_C is the cross entropy $L_C = -y_r \cdot \log(\hat{y}_r) - y_g \cdot \log(\hat{y}_g)$. $\gamma = 0$ for unsupervised GAN

A. Odena, C. Olah, and J. Shlens, "Conditional image synthesis with auxiliary classifier GANs," in ICML, pp. 2642-2651, 2017

Chaomin Shen (ECNU) GAN with JDMM 15 / 32

Framework of GAN with JDMM

We improve the robustness of our model:

Gradient penalty in WGAN¹

$$GP = \underset{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}}{\mathbb{E}} [(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2]$$

Final framework of GAN with JDMM

$$\max_{D} L(\mathbb{J}_r, \mathbb{J}_g) - \gamma L_C - \xi GP,$$

$$\min_{G} L(\mathbb{J}_r, \mathbb{J}_g) + \gamma L_C$$

[1] M. Arjovsky, S. Chintala, and L. Bottou, "Wasserstein GAN," arXiv preprint arXiv:1701.07875, 2017.

- **4ロ ▶ 4回 ▶ 4** 重 → **り** へ ⊙

Chaomin Shen (ECNU) GAN with JDMM 16 / 32

Network structure

$\mathsf{Network}\ G$

Network D

Chaomin Shen (ECNU)

Implementation

Algorithm 1 GAN with JDMM

Input : n_c : number of iterations for discriminator per generator update α : learning rate β_1, β_2 : Adam hyperparameters

 $heta_G$ and $heta_D$: Initial generator/discriminator parameters

- 1. for number of training iterations do
- 2. **for** t = 1 to n_c **do**
- 3. Sample a minibatch x from \mathbb{P}_r and z from $\mathbb{P}(z)$
- 4. Generate fake data G(z)
- 5. Compute gradient $g_D = \nabla_D L(\mathbb{J}_r, \mathbb{J}_g) \gamma \nabla_D L_C \xi \nabla_D GP$
- 6. $\theta_D = \mathsf{Adam}(g_D, \alpha, \beta_1, \beta_2)$
- 7. end for
- 8. Compute gradient $g_G = \nabla_G L(\mathbb{J}_r, \mathbb{J}_g) + \gamma \nabla_G L_C$
- 9. $\theta_G = \mathsf{Adam}(g_G, \alpha, \beta_1, \beta_2)$
- 10. end for

Experimental results (Databases)

MNIST (unsupervised and semi-supervised)

- 50,000 gray-scale images, 10 classes
- Image size: 28×28

CIFAR-10 (semi-supervised)

- 50,000 color images, 10 classes
- Image size: 32×32

Extended Yale Face (semi-supervised)

- 38 classes of gray-scale human faces under different light conditions and poses
- Resize to 32 × 32

Data provided by 上海市磁共振重点实验室 (unsupervised)

- 3000 images
- Resize to 32 × 32

手写汉字 (Semi-supervised)

- 300×3750 images
- Image size: 32×32

Experimental results (Benchmarks)

WGAN and its variants: One of the best GANs

MMD based GANs: Similar methods

Experimental results (Evaluation rule for CIFAR)

Inception score: a benchmark of measuring sample quality

Method	Score
SteinGAN [Wang and Liu, 2016]	6.35
DCGAN (with labels, in [Radford et al., 2015])	6.58
Improved GAN [Salimans et al., 2016]	$8.09 \pm .07$
AC-GAN [Odena et al., 2017]	$8.25 \pm .07$
WGAN-GP ResNet [Gulrajani et al., 2017]	$8.42 \pm .10$
GAN with JDMM (ours)	$\pmb{8.59 \!\pm .10}$

Examples of inception scores

Experimental results (MNIST: unsupervised and semi-supervised)

Groundtruth

(a).

(b).

990

(a) Unsupervised (labels not used); (b) Semi-supervised (labels used)

Chaomin Shen (ECNU) GAN with JDMM 22 / 32

Experimental results (Comparison with other unsupervised GANs)

Images generated from MNIST in the unsupervised setup

Experimental results (Comparison with other semi-supervised GANs)

Results of WGAN-GP and GAN with JDMM on CIFAR-10 (labels used). Inception score: (a) 8.42 ± 0.1 (b) $\textbf{8.59}\pm0.1$

Experimental results (Inception score and MMD value)

Inception score and MMD during the training of GAN with JDMM on CIFAR-10.

Experimental results (Extended Yale Face: semi-supervised)

Images generated from Extended Yale Face.
Each column represents one particular individual.

Experimental results (MRI: unsupervised)

Generated Brain MRI

Experimental results (Chinese characters: supervised)

Real 彤丽伍依典到医卧固姻 Generated 形丽压傲典到医队国姆 Real 凯功墙文曲起椰曲粗聘 Generated 凯功婧文曲枢柳由粗聘 Real 肝膳要以同路退驰码焉 Generated 肝陽景问回法题驰码箱

Conclusion

- Minimize the difference not only of marginal distributions but also of conditional distributions.
- For unsupervised and semi-supervised cases
- Desirable and competitive performance on several databases.

Conclusion

- Minimize the difference not only of marginal distributions but also of conditional distributions.
- For unsupervised and semi-supervised cases
- Desirable and competitive performance on several databases.

Future Works

- Medical images
 - 512 × 512
 - Images other than brain images, e.g., CT images of bones

Thanks

cmshen@cs.ecnu.edu.cn

www.umi-china.org.cn

Chaomin Shen (ECNU)

GAN with JDMM

