Finite sets, countable sets, uncountable sets

Definition (Equal cardinality). We say that two sets X and Y have equal cardinality iff there exists a bijection $f:X\to Y$ from X to Y. In this case we say that X and Y are equivalent and write $X\sim Y$.

Example. The sets $\{0,1,2\}$ and $\{3,4,5\}$ have equal cardinality, since we can find a bijection between the two sets.

Example. If X is the set of natural numbers and Y is the set of even natural numbers, then the map $f:X\to Y$ defined by f(n):=2n is a bijection from X to Y, and so X and Y have equal cardinality, despite Y being a subset of X and seeming intuitively as if it should only have "half" of the elements of X.

Proposition. Let X,Y,Z be sets. If X has equal cardinality with Y, then Y has equal cardinality with X. If X has equal cardinality with Y and Y has equal cardinality with Z, then X has equal cardinality with Z.

Definition. Let n be a natural number. A set X is said to have cardinality n, iff it has equal cardinality with $\{i \in \mathbb{N}: 1 \leq i \leq n\}$. We also say that X has n elements iff it has cardinality n.

Example. Let a,b,c,d be distinct objects. Then $\{a,b,c,d\}$ has the same cardinality as $\{i\in\mathbb{N}:1\leq i\leq 4\}=\{1,2,3,4\}$ and thus has cardinality 4.

Proposition. (Uniqueness of cardinality). Let X be a set with some cardinality n. Then X cannot have any other cardinality, i.e., X cannot have cardinality m for any $m \neq n$.

Definition. (Finite sets). A set is finite iff it has cardinality n for some natural number n; otherwise, the set is called infinite. If X is a finite set, we use ${}^{\sharp}(X)$ to denote the cardinality of X.

Definition (Countable sets). A set X is said to be countably infinite (or just countable) iff it has equal cardinality with the natural numbers \mathbb{N} . A set X is said to be at most countable iff it is either countable or finite. We say that a set is uncountable if it is infinite but not countable.

Theorem Every infinite subset of a countable set A is countable.

Proof. Suppose $E\subset A$, and E is infinite. Arrange the elements of A in a sequence $\{x_n\}$ of distinct elements. Construct a sequence $\{n_k\}$ as follows: Let n_1 be the smallest positive integer such that $x_{n_1}\in E$. Having chosen $n_1,\cdots,n_{k-1}(k=2,3,4,\cdots)$, let n_k be the smallest integer greater than n_{k-1} such that $x_{n_k}\in E$. Putting $f(k)=x_{n_k}(k=1,2,3,\ldots)$, we obtain a bijection between E and \mathbb{N} .

Theorem The set of real numbers \mathbb{R} is uncountable.

Proof Assume that the set of real numbers can be arranged as

$$a_1, a_2, \cdots, .$$

Take a closed interval I_1 such that $a_1 \notin I_1$. Take a closed interval $I_2 \subset I_1$ such that $a_2 \notin I_2, |I_2| \leq \frac{1}{2}|I_1|$. Continuing in this process, we can construct a sequence of closed intervals $\{I_n\}_{n=1}^{\infty}$ such that

$$I_1 \supset I_2 \supset \cdots, |I_{n+1}| \leq \frac{1}{2} |I_n|, n = 1, \cdots,$$

Let $\{a\} = \bigcap_{n=1}^{\infty} I_n$; then $a \neq a_i, \ \forall i$. This is a contradiction.

Theorem Let $\{E_k\}_{k\in\mathbb{N}}$ be a countable family of countable sets. Then the set $E=\cup_{k=1}^{\infty}E_k$ is countable.

Proof We arrange the elements of E_k as follows:

These elements can be arranged in a sequence

$$(\star)$$
 $x_{11}, x_{21}, x_{12}, x_{31}, x_{22}, x_{13}, x_{41}, x_{32}, x_{23}, x_{14}, \cdots$

If any two of the sets E_n have elements in common, these will appear more than once in (\star) . Hence there is a subset $T\subset\mathbb{N}$ such that $T\sim E$, which shows that E is at most countable Since $E_1\subset E$, and E_1 is infinite, E is infinite, and thus countable.

Theorem Let A be a countable set, and let

$$B_n = \{(a_1, \dots, a_n), a_k \in A, k = 1, \dots, n\}.$$

Then B_n is countable.

Proof We use induction. It is evident that $B_1=A$ is countable. Assume that B_{n-1} is countable $(n=2,3,4,\cdots)$. The elements of B_n are of the form

$$(b,a)(b \in B_{n-1}, a \in A).$$

For every fixed b, the set of pairs (b,a) is equivalent to A, and hence countable. Thus B_n is the union of a countable set of countable sets. By the above theorem, B_n is countable.

Corollary Any closed interval [a, b], a < b is uncountable.

Proof If a < b, c < d, then $[a,b] \sim [c,d]$. Let us show that [0,1] is uncountable. If [0,1] is countable, then for any integer n, the interval $[n,n+1] \sim [n+1,n+2]$ is countable. This implies that the set of real numbers $\mathbb{R} = \cup_{n=-\infty}^{\infty} [n,n+1]$ is countable, which is a contradiction.

Corollary The set of all rational numbers is countable.

Proof Note that every rational r is of the form b/a, where a and b are integers. The set of pairs (a,b), and therefore the set of fractions b/a, is countable.

Theorem Let $E = \{(a_1, a_2, \dots,): a_i = 0 \text{ or } 1\}$. Then E is uncountable.

Proof Assume that ${\cal E}$ is countable and we arrange the elements of ${\cal E}$ as

$$x_1 = (x_1^1, x_1^2, \cdots), x_2 = (x_2^1, x_2^2, \cdots), \cdots$$

We define an element $y = (y_1, y_2, \cdots)$ by

$$y_i = \begin{cases} 0, & \text{if } x_i^i = 1, \\ 1, & \text{if } x_i^i = 0. \end{cases}$$

Then $y \in E$ but $y \neq x_i$ for any $i \in \mathbb{N}$. This is a contradiction.

For $x=(x_1,\cdots,x_n),y=(y_1,\cdots,y_n)\in\mathbb{R}^k$, the usual distance between x and y is

$$||x - y|| = \left(\sum_{j=1}^{k} |x_j - y_j|^2\right)^{1/2}.$$

If $x \in \mathbb{R}^k$ and r > 0, the open (or closed) ball B with center at x and radius r is defined to be the set of all $y \in R^k$ such that $\|y - x\| < r$ (or $\|y - x\| \le r$).

A set $E \subset \mathbb{R}^k$ is convex if

$$\lambda x + (1 - \lambda)y \in E$$

whenever $x \in E$, $y \in E$, and $0 < \lambda < 1$.

Example. i) Balls are convex. For if ||y-x|| < r, ||z-x|| < r, and $0 < \lambda < 1$, we have

$$\begin{aligned} \|\lambda y + (1 - \lambda)z - x\| &= \|\lambda (y - x) + (1 - \lambda)(z - x)\| \\ &\leq \lambda \|(y - x)\| + (1 - \lambda)\|z - x\| \\ &< \lambda r + (1 - \lambda)r = r. \end{aligned}$$

If $a_i < b_i$; for i=1,...,k, the set of all points $x=(x_1,\cdots,x_k)$ in \mathbb{R}^k whose coordinates satisfy the inequalities $a_i \leq x_i \leq b_i, \ 1 \leq i \leq k$ is called a k-cell. Thus a 1-cell is an interval, a 2-cell is a rectangle, etc.

Example. k-cells are convex.

Metric Spaces

Definition 1 A metric space is a pair (X,d), where X is a set and $d: X \times X \to [0,\infty)$ for all $x,y,z \in X$ has the following properties:

- (Positivity) $d(x,y) = 0 \iff x = y$,
- (Symmetry) d(x,y) = d(y,x),
- (Triangle inequality) $d(x,y) \le d(x,z) + d(z,y)$.

A function $d: X \times X \to [0, \infty)$ that satisfies these axioms is called a distance function on X.

Example 1. The set $\mathbb R$ of all real numbers endowed with the distance function d(x,y)=|x-y|, where |x| is the absolute value of x, is a metric space.

Similarly, the set of all complex numbers $\mathbb C$ is a metric space with the distance function d(z,w)=|z-w|, where |z| is the modulus of z in $\mathbb C$.

Example 2. Let X be a nonempty set. The function

$$d(x,y) = \begin{cases} 0, & \text{if } x = y, \\ 1, & \text{if } x \neq y, \end{cases}$$

is a metric, called the discrete metric (also known as the trivial metric) on X. The space (X,d) is called the discrete metric space.

Example 3. Let $C[a,b] = \{x(t): x(t) \text{ is continuous on } [a,b]\}$ and define

$$d_1(x,y) := \max_{a \le t \le b} |x(t) - y(t)|, \ d_2(x,y) := \int_a^b |x(t) - y(t)| dt.$$

Then d_1 and d_2 are metrics on C[a,b].

Example 4. For any integer $k \geq 1$, the function $d: \mathbb{R}^k \times \mathbb{R}^k \to [0, \infty)$ defined by

$$d(x,y) = \left(\sum_{j=1}^{k} |x_j - y_j|^2\right)^{1/2},$$

is a metric on the set \mathbb{R}^k , called the standard metric on \mathbb{R}^k .

Example 5. More generally, take $X = \mathbb{R}^n$ with any one of the metrics

$$d_{l^{p}}(x,y) = \begin{cases} \left(\sum_{j=1}^{n} |x_{j} - y_{j}|^{p} \right)^{1/p}, & 1 \leq p < \infty, \\ \max_{j=1,\dots,n} |x_{j} - y_{j}|, & p = \infty. \end{cases}$$

It is easy to see that $d_{l^{\infty}}$ is a metric. For the case $1 \leq p < \infty$, we need only to use the

(Minkowski's inequality.) For arbitrary complex numbers $x_1, ..., x_n, y_1, ..., y_n$ and a real number $p \ge 1$,

$$\left(\sum_{j=1}^{n} |x_j + y_j|^p\right)^{1/p} \le \left(\sum_{j=1}^{n} |x_j|^p\right)^{1/p} + \left(\sum_{j=1}^{n} |y_j|^p\right)^{1/p}.$$

Proof. We may assume that both real numbers

$$u = \left(\sum_{j=1}^n |x_j|^p\right)^{1/p} \text{ and } v = \left(\sum_{j=1}^n |y_j|^p\right)^{1/p}$$

are positive. By the triangle inequality, we have

$$|x_k + y_k|^p \le (|x_k| + |y_k|)^p = (u + v)^p \left(\frac{u}{u + v} \frac{|x_k|}{u} + \frac{v}{u + v} \frac{|y_k|}{v}\right)^p.$$

Since $\frac{u}{u+v} + \frac{v}{u+v} = 1$ and x^p is convex for $p \ge 1, x \ge 0$, we have

$$\left(\frac{u}{u+v}\frac{|x_k|}{u} + \frac{v}{u+v}\frac{|y_k|}{v}\right)^p \le \frac{u}{u+v}\frac{|x_k|^p}{u^p} + \frac{v}{u+v}\frac{|y_k|^p}{v^p}.$$

Hence

$$|x_k + y_k|^p \le (u+v)^p \left(\frac{u}{u+v} \frac{|x_k|^p}{u^p} + \frac{v}{u+v} \frac{|y_k|^p}{v^p}\right).$$

By summing both sides of the above inequality, we obtain

$$\sum_{j=1}^{n} |x_j + y_j|^p \le (u+v)^p.$$

Example 6. If d is a metric on X and $A \subset X$, then $d|_{(A \times A)}$ is a metric on A.

Example 7. If (X_1, d_1) and (X_2, d_2) are metric spaces, the product metric d on $X_1 \times X_2$ is given by

$$d((x_1,x_2),(y_1,y_2)) = \max\{d(x_1,y_1),d(x_2,y_2)\}.$$

Other metrics are sometimes used on $X_1 \times X_2$, for instance,

$$d(x_1, y_1) + d(x_2, y_2)$$
 or $\sqrt{d(x_1, y_1)^2 + d(x_2, y_2)^2}$.

Definition. A subset $U\subset X$ of a metric space (X,d) is called open if, for every $x\in U$, there exists a constant $\epsilon>0$ such that the open ball

$$B(x,\epsilon) := \{ y \in X | d(x,y) < \epsilon \}$$

(centered at x with radius ϵ) is contained in U.

We shall also call an open ball with center x a neighborhood of x.

A subset $E \subset X$ of a metric space (X,d) is called closed if $E^c = X \setminus E$ is open.

Some basic facts about open sets

- Every ball B(x,r) is open, for if $y \in B(x,r)$ and d(x,y) = s then $B(y,r-s) \subset B(x,r)$.
- X and \emptyset are both open.
- The union of any family of open sets is open.
- The intersection (resp. union) of any finite family of open (resp. closed) sets is open (resp. closed). Indeed, if U_1, \cdots, U_n are open and $x \in \cap_{i=1}^n U_i$, for each j there exists $r_j > 0$ such that $B(x,r_j) \subset U_j$, and then $B(x,r) \subset \cap_{i=1}^n U_i$ where $r = \min(r_1, \cdots, r_n)$, so $\cap_{i=1}^n U_i$ is open.

Definition 3. A point $x \in E$ is said to be an interior point of E if

$$\exists r > 0, \ s.t. \ B(x,r) \subset A.$$

The interior of E is the set of all its interior points and is denoted by E^o . A point x (not in E) is an exterior point of E when

$$\exists r > 0, \ s.t.B(x,r) \subset X \setminus E.$$

All other points are called boundary points of E.

The set of interior and boundary points of E is called the closure of E and denoted by $\overline{E}=E^o\cup\partial E$. Note that \overline{E} is also the intersection of all closed sets containing E.

The set X is partitioned into three parts: its interior E^o , its exterior $(\overline{E})^c$, and its boundary ∂E .

We call E is dense in X if $\overline{E}=X$, and nowhere dense if \overline{E} has empty interior.

Definition Let X be a metric space. Let $E \subset X$, $x_0 \in X$.

- i) We say that x_0 is an adherent point of E if for every r>0, the ball $B(x_0,r)$ has a non-empty intersection with E. The set of all adherent points of E is just the closure of E.
- ii) A point p is an accumulation point (or limit point) of a set E if every open ball around it contains other points of E,

$$\forall \epsilon > 0, \ \exists q \neq p, q \in E \cap B(p, \epsilon).$$

Note that p is not necessarily an element of E. If $q \in E$ and q is not an accumulation point of E, then q is an isolated point of E.

- iii) E is closed if every limit point of E is a point of E.
- iv) E is perfect if E is closed and if every point of E is a limit point of E.

Theorem. If p is a limit point of a set E, then for any r>0, B(p,r) contains infinitely many points of E.

Proof. Suppose \exists a ball B(p,r) which contains only a finite number of points of E. Let q_1,\cdots,q_n be those points of $B(x,r)\cap E$, which are distinct from p, and put

$$s = \min_{1 \le i \le n} d(p, q_i).$$

Clearly, s>0 and B(p,s) contains no point q of E such that $q\neq p$, so that p is not a limit point of E. This is a contradiction.

Corollary A finite point set has no limit points.

Theorem Let $\{E_{\alpha}\}$ be a (finite or infinite) collection of sets. Then

$$\left(\bigcup_{\alpha} E_{\alpha}\right)^{c} = \bigcap_{\alpha} E_{\alpha}^{c}.$$

Proof Set

$$A = \left(\bigcup_{\alpha} E_{\alpha}\right)^{c}, \ B = \bigcap_{\alpha} E_{\alpha}^{c}.$$

If $x\in A$, then $x\notin\bigcup_{\alpha}E_{\alpha}$, hence $x\notin E_{\alpha}$ for every α , so that $x\in\bigcap E_{\alpha}^{c}$. Thus $A\subset B$.

Conversely, if $x \in B$, then $x \in E_{\alpha}^{c}$, for every α , hence $x \notin E_{\alpha}$ for any α , hence $x \notin \bigcup_{\alpha} E_{\alpha}$, so that $x \in \left(\bigcup_{\alpha} E_{\alpha}\right)^{c}$. Thus $B \subset A$. It then follows that A = B.

Theorem A set E is open if and only if its complement is closed.

Proof Let E^c be closed. Choose $x \in E$. Then $x \notin E^c$, and x is not a limit point of E^c . Hence there exists an open ball B(x,r) such that $E^c \cap B(x,r) = \emptyset$, that is, $B(x,r) \subset E$. Thus x is an interior point of E, and E is open.

Next, suppose E is open. Let x be a limit point of E^c . Then every open ball B(x,r) contains a point of E^c , so that x is not an interior point of E. Since E is open, this means that $x \in E^c$. It follows that E^c is closed.

Corollary i) A set F is closed if and only if its complement is open.

- ii) The intersection of any family of closed sets is closed.
- iii) The union of finitely many closed sets is closed.

Definition. If X is a metric space, if $E \subset X$, and if E' denotes the set of all limit points of E in X, then the closure of E is the set $\overline{E} = E \cup E'$.

Theorem If X is a metric space and $E \subset X$, then

- (a) \overline{E} is closed,
- (b) $E = \overline{E}$ if and only if E is closed,
- (c) $\overline{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$.

By (a), (c), \overline{E} is the smallest closed subset of X that contains E.

Proof (a) If $p \in X$ and $p \notin \overline{E}$ then p is neither a point of E nor a limit point of E. Hence p has a neighborhood which does not intersect E. The complement of E is therefore open. Hence E is closed.

- (b) If $E=\overline{E}$, (a) implies that E is closed. If E is closed, then $E'\subset E$, hence $E=\overline{E}$.
- (c) If F is closed and $F\supset E$, then $F\supset F'$, hence $F\supset E'$. Thus $F\supset \overline{E}$.

Theorem Let E be a nonempty set of real numbers which is bounded above. Let $y=\sup E.$ Then $y\in \overline{E}.$ Hence $y\in E$ if E is closed.

Proof If $y \in E$ then $y \in \overline{E}$. Assume $y \notin E$. For every h > 0 there exists a point $x \in E$ such that y - h < x < y, for otherwise y - h would be an upper bound of E. Thus y is a limit point of E. Hence $y \in E'$.

Definition. Suppose $E\subset Y\subset X$, where X is a metric space. We say that E is open relative to Y if to each $p\in E$ there is an r>0 such that $B(p,r)\cap Y\subset E$.

Theorem Suppose $Y \subset X$. A subset E of Y is open relative to Y if and only if $E = Y \cap G$ for some open subset G of X.

Proof Suppose E is open relative to Y. To each $p \in E$ there is a positive number r_p such that the conditions $d(p,q) < r_p, \ q \in Y$ imply that $q \in E$. Define

$$G = \bigcup_{p \in E} B(p, r_p).$$

Then G is an open subset of X and $E\subset G\cap Y$. By our choice of $B(p,r_p)$, we have $B(p,r_p)\cap Y\subset E$ for every $p\in E$, so that $G\cap Y\subset E$. Thus $E=G\cap Y$.

Conversely, if G is open in X and $E=G\cap Y$, for every $p\in E$ there is a ball $B(p,r_p)\subset G$. Then $B(p,r_p)\cap Y\subset E$, so that E is open relative to Y.

Definition. By an open cover of a set E in a metric space X we mean a collection $\{G_{\alpha}\}$ of open subsets of X such that $E \subset \cup_{\alpha} G_{\alpha}$.

Definition. A subset K of a metric space X is said to be compact if every open cover of K contains a finite subcover.

The requirement is that if $\{G_{\alpha}\}$ is an open cover of K, then there are finitely many indices $\alpha_1, \dots, \alpha_n$ such that

$$K \subset G_{\alpha_1} \cup \cdots \cup G_{\alpha_n}$$
.

Observe that if $E\subset Y\subset X$, then E may be open relative to Y without being open relative to X. The property of being open thus depends on the space in which E is embedded.

Theorem Suppose $K \subset Y \subset X$. Then K is compact relative to X if and only if K is compact relative to Y.

Proof Suppose K is compact relative to X, and let $\{V_{\alpha}\}$ be open sets of Y, such that $K \subset \cup_{\alpha} V_{\alpha}$. There open sets U_{α} of X, such that $V_{\alpha} = Y \cap U_{\alpha}$, for all α ; and since K is a compact set of X, there are indices $\alpha_1, \cdots, \alpha_n$ such that

$$K \subset U_{\alpha_1} \cup \cdots \cup U_{\alpha_n},$$

which, combining with $K \subset Y$, implies that $K \subset V_{\alpha_1} \cup \cdots \cup V_{\alpha_n}$. Thus K is compact relative to Y.

If K is a compact subset of Y and U_{α} is collection of open sets of X which covers K, and put $V_{\alpha} = Y \cap U_{\alpha}$. There are indices $\alpha_1, \cdots, \alpha_n$ such that $K \subset V_{\alpha_1} \cup \cdots \cup V_{\alpha_n}$ and so $K \subset U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$. Thus K is compact relative to X.

Theorem Compact subsets of metric spaces are closed.

Proof Let K be a compact subset of a metric space X. We shall prove that K^c is an open subset of X.

Suppose $p \in X, \ p \notin K$. For any $q \in K$, consider the open balls $B(q,r_q)$ and $B(p,r_q)$, where $r_q < \frac{1}{2}d(p,q)$. Then

$$B(q,r_q)\cap B(p,r_q)=\emptyset$$
 and

$$K \subset \cup_{q \in K} B(q, r_q).$$

Since K is compact, there are finitely many points q_1, \dots, q_n in K such that

$$K \subset B(q, r_{q_1}) \cup \cdots \cup B(q, r_{q_n}).$$

Let $r = \min\{r_{q_1}, \cdots, r_{q_n}\}$; then

$$B(p,r) \cap (B(q,r_{q_1}) \cup \cdots \cup B(q,r_{q_n})) = \emptyset.$$

Thus $B(p,r)\cap K=\emptyset$ and so $B(p,r)\subset K^c$, which shows that K^c is open.

Theorem Closed subsets of compact sets are compact.

Proof Suppose $F \subset K \subset X$, F is closed subset of X, and K is compact. Let $\{V_a\}$ be an open cover of F. If F^c is adjoined to $\{V_a\}$, we obtain an open cover Ω of K. Since K is compact, there is a finite subcollection Φ of Ω which covers K, and hence F. If F^c is a member of Φ , we may remove it from Φ and still retain an open cover of F. Thus there is a finite subcollection of $\{V_a\}$ that covers F.

Corollary If F is closed and K is compact, then $F \cap K$ is compact.

Theorem If $\{K_a\}$ is a collection of compact subsets of a metric space X such that the intersection of every finite subcollection of $\{K_a\}$ is nonempty, then $\cap_a K_a \neq \emptyset$.

Proof Fix a member K_1 of $\{K_a\}$ and put $G_a=K_a^c$. Assume that

$$\cap_a K_a = K_1 \cap (\cap_{a \neq 1} K_a) = \emptyset.$$

Then

$$K_1 \subset (\cap_{a \neq 1} K_a)^c = \cup_{a \neq 1} K_a^c = \cup_{a \neq 1} G_a.$$

Thus $\{G_a\}_{a\neq 1}$ is an open cover of K_1 . Since K_1 is compact, there are finitely many indices a_1, \dots, a_n such that

$$K_1 \subset G_{a_1} \cup \cdots \cup G_{a_n}$$

which gives

$$\emptyset = K_1 \cap (G_{a_1} \cup \cdots \cup G_{a_n})^c = K_1 \cap (K_{a_1} \cap \cdots \cap K_{a_n}).$$

This is a contradiction.

Corollary If $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supset K_{n+1}$, $n=1,2,\cdots$, then $\cap_n K_n \neq \emptyset$.

Theorem If E is an infinite subset of a compact set K, then E has a limit point in K.

Proof If no point of K were a limit point of E, then each $q \in K$ would have a neighborhood V_q which contains at most one point of E (namely, q, if $q \in E$). It is clear that no finite subcollection of $\{V_q\}$ can cover E; and the same is true of K, since $E \subset K$. This contradicts the compactness of K.