Chương 3 Cổng logic

Nội dung chương 3

- Mức logic 0, 1
- Cổng logic cơ bản
- Chuyển đổi giữa các cổng logic
- Thực hiện hàm Boole bằng cổng logic

Mức logic 0, 1

- Nhiều đại lượng vật lý tồn tại ở một trong hai giá trị đối nghịch
- Ví dụ:
 - Đèn: sáng <> tắt
 - Khóa: mở <> đóng
 - Điện áp: cao <> thấp
 - Biểu thức: đúng <> sai
- Dùng hai mức logic 0, 1 để biểu diễn hai giá trị đối nghịch

Cổng logic

- Cổng logic là thành phần cơ bản để xây dựng mạch số
- Cổng logic được thiết kế trên cơ sở các phần tử linh kiện bán dẫn như diode, BJT, FET
- Phân loại:
 - Theo chức năng
 - Theo phương pháp chế tạo
 - Ngõ ra

- Cổng đảo (NOT)
 - Ký hiệu (ANSI):

- Phương trình logic: $y = \bar{x}$
- Bảng trạng thái:

x	$y = \overline{x}$
0	1
1	0

- Cổng AND
 - Ký hiệu (ANSI):

- Phương trình logic: z = x. y
- Bảng trạng thái:

x	y	Z
0	0	0
0	1	0
1	0	0
1	1	1

$$y = x_1 x_2 \dots x_n = \begin{cases} 1 \text{ n\'eu } x_1 = x_2 = \dots = x_n = 1 \\ 0 \text{ n\'eu } \exists x_i = 0 \text{ } (i = 1, \dots, n) \end{cases}$$

- Cổng OR
 - Ký hiệu (ANSI):

$$\begin{array}{c}
x \\
y
\end{array}$$

- Phương trình logic: z = x + y
- Bảng trạng thái:

x	у	Z
0	0	0
0	1	1
1	0	1
1	1	1

$$y = x_1 + x_2 + \dots + x_n = \begin{cases} 0 & \text{n\'eu } x_1 = x_2 = \dots = x_n = 0 \\ 1 & \text{n\'eu } \exists x_i = 1 \ (i = 1, \dots, n) \end{cases}$$

- Cổng NAND
 - Ký hiệu (ANSI):

- Phương trình logic: $z = \overline{x \cdot y}$
- Bảng trạng thái:

x	у	Z
0	0	1
0	1	1
1	0	1
1	1	0

$$y = \overline{x_1 x_2 \dots x_n} = \begin{cases} 0 \text{ n\'eu } x_1 = x_2 = \dots = x_n = 1\\ 1 \text{ n\'eu } \exists x_i = 0 \text{ } (i = 1, \dots, n) \end{cases}$$

- Cổng NOR
 - Ký hiệu (ANSI):

$$\begin{array}{c}
x \\
y
\end{array}$$

- Phương trình logic: $z = \overline{x + y}$
- Bảng trạng thái:

x	у	Z
0	0	1
0	1	0
1	0	0
1	1	0

$$y = \overline{x_1 + x_2 + \dots + x_n} = \begin{cases} 1 & \text{n\'eu } x_1 = x_2 = \dots = x_n = 0 \\ 0 & \text{n\'eu } \exists x_i = 1 \ (i = 1, \dots, n) \end{cases}$$

- Cổng XOR (Exclusive_OR)
 - Ký hiệu:

$$\begin{array}{c} x \\ y \end{array}$$

- Phương trình logic: $z = x \oplus y = \overline{x}y + x\overline{y}$
- Bảng trạng thái:

x	у	Z
0	0	0
0	1	1
1	0	1
1	1	0

$$y = x_1 \oplus x_2 \oplus \dots \oplus x_n = \begin{cases} 1 & \text{n\'eu s\'o d\`au vào bằng 1 là s\'o l\'e} \\ 0 & \text{n\'eu s\'o d\`au vào bằng 1 là s\'o chẳn} \end{cases}$$

- Các tính chất của phép XOR
 - $x \oplus y = y \oplus x$
 - $x \cdot (y \oplus z) = (x \cdot y) \oplus (x \cdot z)$
 - $x \oplus 0 = x$
 - $x \oplus 1 = \overline{x}$
 - $x \oplus x = 0$
 - $x \oplus \overline{x} = 1$

- Cổng XNOR (Exclusive_NOR)
 - Ký hiệu:

$$\begin{array}{c} x \\ y \end{array}$$

- Phương trình logic: $z = \overline{x \oplus y} = (\overline{x} + y)(x + \overline{y}) = \overline{x}\overline{y} + xy$
- Bảng trạng thái:

x	y	Z
0	0	1
0	1	0
1	0	0
1	1	1

$$y = \overline{x_1 \oplus x_2 \oplus ... \oplus x_n} = \begin{cases} 0 \text{ n\'eu s\'o d\`au vào bằng 1 là s\'o l\'e} \\ 1 \text{ n\'eu s\'o d\`au vào bằng 1 là s\'o chẳn} \end{cases}$$

Chuyển đổi giữa các cổng logic

- Sử dụng cổng NAND tạo các cổng logic khác
 - Dùng cổng NAND tạo cổng NOT:

$$y = \overline{x \cdot x} = \overline{x}$$

Dùng cổng NAND tạo cổng AND:

$$y = \overline{\overline{x_1.x_2}} = x_1x_2$$

Chuyển đổi giữa các cổng logic (tt)

- Sử dụng cổng NAND tạo các cổng logic khác
 - Dùng cổng NAND tạo cổng OR:

$$y = \overline{\overline{x_1} \cdot \overline{x_2}} = \overline{\overline{x_1} + x_2} = x_1 + x_2$$

Chuyển đổi giữa các cổng logic (tt)

- Sử dụng cổng NOR tạo các cổng logic khác
 - Dùng cổng NOR tạo cổng NOT:

$$y = \overline{x + x} = \overline{x}$$

Dùng cổng NOR tạo cổng OR:

$$y = \overline{\overline{x_1 + x_2}} = x_1 + x_2$$

Chuyển đổi giữa các cổng logic (tt)

- Sử dụng cổng NOR tạo các cổng logic khác
 - Dùng cổng NOR tạo cổng AND:

$$y = \overline{\overline{x_1} + \overline{x_2}} = \overline{\overline{x_1} \cdot x_2} = x_1 \cdot x_2$$

- Cấu trúc cổng AND OR:
 - Thực hiện hàm Boole biểu diễn theo dạng chính tắc 1 (tổng các tích)
 - Ví dụ:

- Cấu trúc cổng OR AND:
 - Thực hiện hàm Boole biểu diễn theo dạng chính tắc 2 (tích các tổng)
 - Ví dụ:

$$F(A, B, C, D) = (\overline{A} + D)(B + \overline{C} + \overline{D})$$

- Cấu trúc cổng AND OR INVERTER (AOI):
 - Thực hiện hàm Boole biểu diễu diễn theo dạng bù của tổng các tích
 - Ví dụ:

- Cấu trúc cổng OR AND INVERTER (OAI):
 - Thực hiện hàm Boole biểu diễu diễn theo dạng bù của tích các tổng
 - Ví dụ:

$$F(A, B, C, D) = \overline{(\overline{A} + \overline{D})(B + C)}$$

- Cấu trúc toàn cổng NAND:
 - Thực hiện hàm Boole có dạng bù của một số hạng tích
 - Dùng định lý De-Morgan để biến đổi số hạng tổng thành tích
 - Cổng NOT cũng được thực hiện bằng cổng NAND
 - Ví dụ:

$$F(A, B, C, D) = \overline{A}BD + C\overline{D} = \overline{\overline{A}BD} + \overline{C}\overline{\overline{D}} = \overline{\overline{A}BD}.\overline{C}\overline{\overline{D}}$$

- Cấu trúc toàn cổng NOR:
 - Thực hiện hàm Boole có dạng bù của một số hạng tổng
 - Dùng định lý De-Morgan để biến đổi số hạng tích thành tổng
 - Cổng NOT cũng được thực hiện bằng cổng NOR
 - Ví du:

$$F(A, B, C, D) = (A + \overline{D})(\overline{B} + C + D) = \overline{(A + \overline{D})(\overline{B} + C + D)} = \overline{(A + \overline{D}) + (\overline{B} + C + D)}$$

- 1. Lập bảng trạng thái mô tả hoạt động của mạch
- 2. Lập hàm logic ngõ ra theo ngõ vào và tối thiểu hóa các hàm logic
- 3. Lập sơ đồ logic

- Ví dụ: Thiết kế mạch giải mã BCD 8421 sang Gray
 - 1. Lập bảng trạng thái mô tả hoạt động của mạch

Ngỗ vào			Ngô	ĭ ra			
а	b	С	d	х	У	Z	t
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	Х	Х	Х	Х
1	0	1	1	Х	Х	Х	Х
1	1	0	0	Х	Х	Х	Х
1	1	0	1	Х	Χ	Χ	Χ
1	1	1	0	Х	Χ	Χ	Χ
1	1	1	1	Х	Х	Х	Х

Ví dụ: Thiết kế mạch giải mã BCD 8421 sang Gray
2. Lập hàm logic ngõ ra theo ngõ vào và tối thiểu hóa các hàm logic

$$x = a$$

$$y = a + b$$

Ví dụ: Thiết kế mạch giải mã BCD 8421 sang Gray
2. Lập hàm logic ngõ ra theo ngõ vào và tối thiểu hóa các hàm logic

$$z = b\overline{c} + \overline{b}c = b \oplus c$$

$$t = \overline{c}d + c\overline{d} = c \oplus d$$

Ví dụ: Thiết kế mạch giải mã BCD 8421 sang Gray
3. Lập sơ đồ logic

