UNRESYST

Universal Recommender System 30th May 2011

Presentation Overview

- 1. Quick Introduction to Recommender Systems
- 2. Problem Analysis
- 3. System Design
- 4. Adaptation to Datasets
- 5. Finale, Discussion

1. Intro Recommenders

- User actions
 - Find items I will like
 - Sort items by preference
 - Advise me on particular item

Festivals » Primavera Sound

Primavera Sound

Thursday 27 May 2010 - Saturday 29 May 2010 (Past event)

1. Intro: Recommenders as a Research Area

Gathering user preference

GroupLens Research

Algorithms transforming past user actions to recommendations

- Privacy, legacy and other aspects
- Measuring recommender efficiency
- Recommender system implementation

2. Analysis: Chosen Research Areas

- Gathering user preference
- Algorithms transforming past user actions to recommendations
- Privacy, legacy and other aspects
- Measuring recommender efficiency
- Recommender system implementation

Thesis type:

- Implementace
- Výzkumný problém
- Analýza a návrh řešení zadaného problému
- Srovnávací studie

2. Analysis Requirements

Features:

- Domain Independence
- Using and combining multiple data sources
- Simple and developerfriendly interface
- Verification on various domains

Adaptation:

- subjects, objects
- rules and relationships
- predicted relationship
- bias

3. Design Unresyst

Architecture concepts:

- outside the client system
- easy-to-use interface
- can share parent system DB
- can use external algorithm implementation
- needs setup

3. Design Architecture - Layers

4. Adaptation to Datasets, Comparison

Offline accuracy analysis:

- Divide data to train and test set (timestamp).
- Run recommender on train set.
- Validate the recommendations against test set values, using RMSE and Rank metrics

Comparison to a collaborative filtering algorithm (slope one).

4. Adaptation to Datasets, Comparison Flixster Data Set

Users rating movies

Social links between users

4. Adaptation to Datasets, Comparison Last.fm Data Set

Users listening to Tracks by Artists

lost.fm

Recommending Artists to Users

4. Adaptation to Datasets, Comparison Travel Agency Data Set

- Users viewing and ordering tours
- Various kinds of implicit feedback

5. Finale

Thanks for your attention.

Unresyst project homepage: http://code.google.com/p/unresyst/

BACKUP Combination – Twisted average

$$f(a) = \begin{cases} 2^n a^{n+1} & \text{if } a \in [0, \frac{1}{2}] \\ 1 - |2^n (a-1)^{n+1}| & \text{if } a \in (\frac{1}{2}, 1] \end{cases}$$

BACKUP Combination – Mycin

$$t(x) = 2x - 1$$

$$t(x) = 2x - 1$$
$$t^{-1}(x) = \frac{x+1}{2}$$

$$CFC(cf_1, cf_2) = \begin{cases} cf_1 + cf_2(1 - cf_1) & \text{if } cf_1, cf_2 > 0 \\ \frac{cf_1 \cdot cf_2}{1 - min(|cf_1|, |cf_2|)} & \text{if } -1 < cf_1cf_2 \le 0 \\ cf_1 + cf_2(1 + cf_1) & \text{if } cf_1, cf_2 < 0 \end{cases}$$

BACKUP Measuring Efficiency – Average Rank

$$\overline{rank} = \frac{\sum_{(s,o) \in T} rank_{so}}{|T|}$$

$$rank_{so} = \frac{i_{so}}{m-1}$$

BACKUP Flixster

BACKUP Last.fm

18

BACKUP Travel Agency

