In this text (W_t) denotes the standard Wiener process*.

- 1. [10] We keep our promises!
 - (a) [3] What is the distribution of $3W_7 W_8$?
 - (b) [5] What is the conditional distribution of $(3W_7 W_8 \mid W_1 = 3)$?
 - (c) [2] Find the probability $\mathbb{P}(W_1W_7 W_8 > W_1 \mid W_1 = 3)$ in terms of a standard normal cdf F().
- 2. [10] Consider the processes $X_t = t^2 W_t t \int_0^t (W_u^3 + W_u) dW_u$.
 - (a) [2] Find dX_t .
 - (b) [1] Is (X_t) a martingale? Why?
 - (c) [2 + 5] Find $\mathbb{E}(X_t)$ and $\mathbb{V}ar(X_t)$.
- 3. [10] Let $M_t = h(t) \cdot \sin(2W_t)$.
 - (a) [6] Find a non-zero function h(t) such that M_t is a martingale.
 - (b) [4] Find $\mathbb{E}(\sin(2W_t))$.
- 4. [10] Let (S_t) be a symmetric random walk with $S_0 = 0$.

What is the expected time to hit the line $S_t = t - 20$ on the (t, S_t) -plane?

5. [10] Consider a two-period binomial tree model with an initial share price $S_0 = 100$. The up and down share price multipliers are u = 2 and d = 0.5. Risk-free interest rate is r = 10% in the first period. The central bank will increase the interest rate in the second period exactly to r = 50%.

The option is a European put with strike price K=300 and maturity T=2.

- (a) [4] Find the risk neutral probabilities.
- (b) [6] Find the arbitrage free price X_0 of this option.
- 6. [10] Let N_t be a Poisson process with $Var(N_7 N_5) = 4$.
 - (a) [4] Find the rate λ of the process N_t .
 - (b) [6] Find the constant b such that $M_t = 3N_t + bt$ is a martingale.

 $^{^*}$ Броуновское движение [до сих пор всё ещё не запрещено на территории $P\Phi$]