Notes on NEWUOA

Zaikun Zhang *

June 8, 2021 1:07pm

$\langle \text{Algorithm 0.1} \rangle$

Input $\Delta_0 \in (0, +\infty)$, $m \in \{n+2, n+3, \dots, (n+1)(n+2)/2\}$, and $\mathcal{X}_0 \subset \mathbb{R}^n$ with $x_0 \in \mathcal{X}_0$ and $|\mathcal{X}_0| = m$. Set $Q_{-1} = 0$ and k = 0.

1:
$$Q_k = \operatorname{argmin}\{\|\nabla^2 Q - \nabla^2 Q_{k-1}\|_F : Q \in \mathcal{Q} \text{ and } Q(x) = f(x) \text{ for } x \in \mathcal{X}_k\}$$

2:
$$x_k = \operatorname{argmin}\{f(x) : x \in \mathcal{X}_k\}$$

3:
$$x_k^+ = \operatorname{argmin}\{Q_k(x) : ||x - x_k|| \le \Delta_k\}$$

4: **if**
$$||x_k^+ - x_k|| \ge \eta \Delta_k$$
 then

5:
$$x_k^- = \operatorname{argmin} \{ \kappa(\mathcal{X}_k, x_k^+, x) : x \in \mathcal{X}_k \setminus \{x_k\} \}$$

6:
$$\kappa_k = \kappa(\mathcal{X}_k, x_k^+, x_k^-)$$

7:
$$\rho_k = [f(x_k) - f(x_k^+)]/[Q_k(x_k) - Q_k(x_k^+)]$$

8: Update
$$\Delta_k$$
 to Δ_{k+1} according to ρ_k

9: else

10:
$$\kappa_k = \infty$$

11:
$$\rho_k = -\infty$$

12:
$$\Delta_{k+1} = \theta \Delta_k$$

13: **end if**

14: If
$$\rho_k > 0$$
 or $\kappa_k < \kappa_0$, then set $\mathcal{X}_{k+1} = \mathcal{X}_k \cup \{x_k^+\} \setminus \{x_k^-\}$. Otherwise, set $y_k^- = \operatorname{argmax}\{\|y - x_k\| : y \in \mathcal{X}_k\}, y_k^+ = \operatorname{argmin}\{\kappa(\mathcal{X}_k, y, y_k^-) : \|y - x_k\| \le \Delta_k\},$ and $\mathcal{X}_{k+1} = \mathcal{X}_k \cup \{y_k^+\} \setminus \{y_k^-\}$. Increment k . Go to Step 1.

How to terminate? Is $\|\nabla Q_k(x_k)\| \le \eta \Delta_k$ attainable? What about $\|\nabla Q_k(x_k)\| \le \epsilon$? What about $\|x_k^+ - x_k\| \le \eta \Delta_k$?

^{*}Hong Kong Polytechnic University, zaikun.zhang@polyu.edu.hk