Assignment 2

Pavan R Hebbar - 130010046

November 15, 2016

1 Question 1:

The following schemes were used to solve the motion of particle in presence of the magnetic field. The value of charge was taken to be 5C wih a mass of 10kg. The value of magnetic field was taken to be 1T in $\cap k$ direction. An initial velocity of 10^4 m/s were given to the charge which was initially kept at origin. For the first question we used a time step of 0.01s and the final time was taken to be 200s

1.1 Explicit Euler method

Following is the plot of the position of the charge over many cycles

Figure 1: Graph of the position of charged particle over many cycles

We see that the particle spirals outwards.

Figure 2: Evolution of energy with time

Thus the energy of the particle increases quadratically with time

1.1.1 Position error:

$$\Delta(x) = O(\Delta t) \tag{1}$$

Figure 3: Evolution of position error

1.1.2 Dissipation:

$$\Delta(E) = O(\delta t) \tag{2}$$

1.2 Semi-implicit Euler:

Following is the plot of the position of the charge over many cycles

Figure 4: Graph of the position of charged particle over many cycles

We see that the particle spirals outwards.

Figure 5: Evolution of energy with time

Thus the energy of the particle increases quadratically with time

1.2.1 Position error:

$$\Delta(x) = O(\Delta t) \tag{3}$$

Figure 6: Evolution of position error

1.2.2 Dissipation:

$$\Delta(E) = O(\delta t) \tag{4}$$

1.3 Runge-Kutta method:

Following is the plot of the position of the charge over many cycles

Figure 7: Graph of the position of charged particle over many cycles

We see that the particle spirals outwards but very slowly.

Figure 8: Evolution of energy with time

Thus the energy of the particle increases quadratically with time

1.3.1 Position error:

$$\Delta(x) = O(\Delta t^2) \tag{5}$$

Figure 9: Evolution of position error expressed as phase

1.3.2 Dissipation:

$$\Delta(E) = O(\delta t) \tag{6}$$

1.4 Boris pusher:

Following is the plot of the position of the charge over many cycles

Figure 10: Graph of the position of charged particle over many cycles

We see that the particle spirals outwards.

Figure 11: Evolution of energy with time

Thus the energy of the particle increases quadratically with time

1.4.1 Position error:

$$\Delta(x) = O(\Delta t) \tag{7}$$

Figure 12: Evolution of position error expressed as phase

1.4.2 Dissipation:

$$\Delta(E) = O(\delta t) \tag{8}$$

2 Question 2:

The variation in the position error in various schemes are plotted below The variation in energy error in various schemes are plotted below

3 Question 3:

The evolution of position of the charge particle is shown below

Figure 13: Variation in the position error

Figure 14: Variation in the position error

Figure 15: Euler method

Figure 16: Semi-implicit euler

Figure 17: RK2 method

Figure 18: Boris pusher method

Observed y position in Boris pusher method after $200s = -2.01 * 10^7$ m/s Observed x position in Boris pusher method after $200s = 1.71 * 10^4$ m/s Since y position due to the gyrating motion will be of the order of 10^4 and observed is $O(10^7)$, we can say that the observed y position is due to the drift velocity i.e Drift velocity = $-2.01 * 10^7/200 = -1.005 * 10^5$ in $\bigcirc j$

Calculated drift velocity = -10^5 Thus the observed drift velocity is within 1% of the calculated drift velocity

4 Question 4:

The motion of the particle under gradB is shown below

Figure 19: GradB shift using Boris pusher method