Relations

1 Généralités

Considérons un ensemble non vide X. Pour $n \in \mathbb{N}$, on appelle relation n-aire sur X toute partie \mathcal{R} de X^n .

On ne s'intéressera dans ce chapitres qu'aux relations binaires

Pour deux éléments x, y de X, on note $x\mathcal{R}y$ et on dit que x est en relation avec y si et seulement si $(x,y) \in \mathcal{R}$.

On considèrera désormais que X est un ensemble non vide et que $\mathcal R$ est une relation binaire sur X

On dit que \mathcal{R} est :

- réflexive ssi $\forall x \in X^2 : x \mathcal{R} x$
- transitive ssi $x\mathcal{R}y$ et $y\mathcal{R}z \Rightarrow x\mathcal{R}z$
- symétrique ssi $x\mathcal{R}y \Rightarrow y\mathcal{R}x$
- antisymétrique ssi $x\mathcal{R}y$ et $y\mathcal{R}x \Rightarrow x = y$

On vérifie aisément que pour toute partie Y de X, $\mathcal{R} \cap Y^2$ vérifie les mêmes propriétés que X sur Y.

2 Composition de relations

Soient \mathcal{R} et \mathcal{R}' deux relations binaires sur X. On définit la composée de \mathcal{R} et \mathcal{R}' , notée $\mathcal{R} \circ \mathcal{R}'$ par :

$$\mathcal{R} \circ \mathcal{R}' = \left\{ (x, y) \in X^2 \mid \exists z \in X : x \mathcal{R} z \text{ et } z \mathcal{R}' y \right\}$$

Propriété \circ est associatif et possède pour neutre $\Delta_X = \{(x, x) | x \in X\}$

▶ Fastidieux mais sans difficulté...

On définit par récurrence $\mathbb{R}^n = \underbrace{\mathbb{R} \circ \mathbb{R} \circ ... \circ \mathbb{R}}_{n \text{ fois}}$. On conviendra que $\mathbb{R}^0 = \Delta_X$.

Propriété Soient \mathcal{R} et \mathcal{R}' deux relations binaires symétriques de X. On a $x(\mathcal{R} \circ \mathcal{R}')y \Leftrightarrow y(\mathcal{R}' \circ \mathcal{R})x$.

▷ Soit $(x,y) \in X^2$ tel que $x (\mathcal{R} \circ \mathcal{R}') y$. Il existe alors $z \in X$ tel que $x\mathcal{R}z$ et $z\mathcal{R}'y$. Comme \mathcal{R}' et \mathcal{R} est symétrique, on a aussi $z\mathcal{R}x$ et $y\mathcal{R}'z$, d'où $y (\mathcal{R}' \circ \mathcal{R}) x$

Remarque En particulier, si \mathcal{R} est symétrique, \mathcal{R}^n l'est aussi pour tout entier naturel n.

3 Fonctions

On dit que \mathcal{R} définit une fonction ssi $x\mathcal{R}y$ et $x\mathcal{R}y' \Rightarrow y = y'$

Propriété Si \mathcal{R} définit une fonction f et \mathcal{R}' définit une fonction g, alors $\mathcal{R} \circ \mathcal{R}'$ définit la fonction $g \circ f$.

⊳ Soit $(x, y, y') \in X^3$, tel que $x\mathcal{R} \circ \mathcal{R}'y$ et $x\mathcal{R} \circ \mathcal{R}'y'$. Par définition, il existe $z \in X$ tel que $x\mathcal{R}z$ et $z\mathcal{R}'y$, et $z' \in X$ tel que $x\mathcal{R}z'$ et $z'\mathcal{R}'y'$. Comme $x\mathcal{R}z$ et $\mathcal{R}z'$, on a z = z' = f(x) car \mathcal{R} définit la fonction f. Alors on a $f(x)\mathcal{R}'y$ et $f(x)\mathcal{R}'y'$ d'où $y = y' = g \circ f(x)$ car \mathcal{R}' définit la fonction g.

4 Étude des propriétés de relations binaires

4.1 Composition de relations binaires

Comme pour tout couple d'entiers naturels (m, n), on a $\mathcal{R}^n \circ \mathcal{R}^m = \mathcal{R}^m \circ \mathcal{R}^n$ (cela découle simplement de l'associativité de \circ), on peut définir la fermeture (ou clôture) transitive de la relation binaire \mathcal{R} par :

$$\mathcal{R}_{\mathcal{T}} = \bigcup_{n \ge 1} \mathcal{R}^n$$

Lemme Soit \mathcal{R}' une relation binaire transitive sur X contenant \mathcal{R} . Alors, pour tout entier naturel $n \geq 1$, $\mathcal{R}^n \subset \mathcal{R}'$

Par récurrence sur n. C'est vrai pour n=1 car $\mathcal{R}\subset\mathcal{R}'$. Supposons que ce soit vrai pour $n\in\mathbb{N}^*$ quelconque. Soit $(x,y)\in\mathcal{R}^{n+1}$. Alors il existe $z\in X$ tel que $x\mathcal{R}^nz$ et $z\mathcal{R}^ny$. Comme par hypothèse $\mathcal{R}^n\subset\mathcal{R}'$, on a $z\mathcal{R}'y$, et comme $\mathcal{R}\subset\mathcal{R}'$, $x\mathcal{R}'z$. Par transitivité, on a $x\mathcal{R}'y$, ce qui prouve l'inclusion et donc la proposition au rang n+1.

Propriété $\mathcal{R}_{\mathcal{T}}$ est la plus petite (au sens de l'inclusion) relation binaire transitive sur X contenant R

- \triangleright Montrons que $\mathcal{R}_{\mathcal{T}}$ est transitive : Soient x, y et z dans X tels que $x\mathcal{R}_{\mathcal{T}}y$ et $y\mathcal{R}_{\mathcal{T}}z$. Alors il existe $(m,n) \in \mathbb{N}^2$ tels que $x\mathcal{R}^m y$ et $y\mathcal{R}^n z$. On a donc $x\mathcal{R}^m \circ \mathcal{R}^n z$ i.e $x\mathcal{R}^{m+n} z$, d'où $x\mathcal{R}_{\mathcal{T}}z$.
- \triangleright Montrons que $\mathcal{R}_{\mathcal{T}}$ est minimale : Considérons \mathcal{R}' une relation binaire transitive contenant \mathcal{R} . Soit $(x,y) \in \mathcal{R}_{\mathcal{T}}$. Il existe donc $n \in \mathbb{N}^*$ tel que $x\mathcal{R}^n y$. D'après le lemme, $\mathcal{R}^n \subset \mathcal{R}'$, donc $(x,y) \in \mathcal{R}'$.

4.2 Relations d'équivalence

On dit que \mathcal{R} est une relation d'équivalence sur X ssi elle est réflexive, transitive et symétrique. On note classe d'équivalence de $a \in X$ l'ensemble $\dot{a} = \{x \in X | x\mathcal{R}a\}$. On dit alors que a est un représentant de \dot{a}

Propriété Soient x et y deux éléments de X. Soit $y \in \dot{x}$ et alors $\dot{x} = \dot{y}$, soit $\dot{x} \cap \dot{y} = \emptyset$

 \triangleright On a forcément $y \in \dot{x}$ ou $y \notin \dot{x}$. Dans le premier cas, y est en relation avec x, donc par transitivité tout élément en relation avec y sera en relation avec x, d'où $\dot{y} \subset \dot{x}$. L'autre inclusion découle de la symétrie de \mathcal{R} . Dans le second cas, si $\dot{x} \cap \dot{y} \neq \emptyset$, il existerait $a \in X$ tel que $a\mathcal{R}y$ et $a\mathcal{R}x$. Par symétrie et transitivité, on aurait alors $y\mathcal{R}x$, ce qui contredit $y \notin \dot{x}$.

L'ensemble des classes d'équivalences de X par \mathcal{R} est appelé ensemble quotient de X par \mathcal{R} , et est noté X/R

Corrolaire L'ensemble des classes d'équivalence par \mathcal{R} forme une partition de X

Notons $H=\bigcup_{x\in X}\dot{x}$. $H\subset X$ en tant qu'union de parties de X, et $X\subset H$ car tout élément de X appartient à sa propre classe d'équivalence. Cela prouve que l'ensemble des classes d'équivalence forme un recouvrement de X. Prenons alors deux classes d'équivalences \dot{x} et \dot{y} . D'après le lemme, on a soit $\dot{x}=\dot{y}$, soit $\dot{x}\cap\dot{y}=\varnothing$, ce qui prouve que ce recouvrement est bien disjoint.

Soient X et Y deux ensembles non vides. Soit \mathcal{R} une relation d'équivalence sur X. On dit que $f \in \mathcal{F}(X,Y)$ passe au quotient si elle est constante sur les classes d'équivalence, c'est à dire si $x\mathcal{R}y \Rightarrow f(x) = f(y)$.

On peut alors définir $\bar{f} \in \mathcal{F}(X/R,Y)$ qui à une classe d'équivalence \dot{x} associe l'image d'un de ses représentants par f.

Remarque Quelque part, \dot{f} "gagne" en injectivité par rapport à f, puisqu'il y a "moins" d'éléments ayant la même image.

Remarque On a $f(X) = \bar{f}(X/R)$

4.3 Relations d'ordre

On dit que \mathcal{R} est une relation d'ordre sur X ssi elle est réflexive, transitive et antisymétrique.

On notera désormais une telle relations \leq

Un ensemble (X, \leq) muni d'une telle relation est dit ordonné. Pour une partie Y de X, on note (Y, \leq) l'ensemble ordonné induit (c'est à dire Y muni de la relation \leq restreite à Y).

On dit que \mathcal{R} est une relation d'ordre totale sur Y si et seulement si pour tout couple (x, y) d'éléments de Y, on a $x\mathcal{R}y$ ou $y\S$.

On note x < y ssi $x \le y$ et $x \ne y$, $x \ge y$ ssi $y \le x$ et x > y ssi y < x.