# Module 4.3: Functions MCIT Online - CIT592 - Professor Val Tannen

LECTURE NOTES



#### Functions I

A **function** (sometimes called **mapping**) denoted  $f: A \rightarrow B$ , consists of

- a set A, called **domain**,
- a set B, called **codomain**, and
- a way of associating with **every** element of the domain,  $x \in A$ , a **unique** element of the codomain,  $f(x) \in B$ , write  $x \mapsto f(x)$ .

The **range** of a function  $f: A \rightarrow B$  is:

$$Ran(f) = \{ y \mid y \in B \land \exists x \in A \ y = f(x) \}$$

Note that this defines a subset  $Ran(f) \subset B$ .

### Functions II

#### Examples.

$$h: \mathbb{N} \to \mathbb{N}$$
 where  $h(n) = 2n$ . Ran $(h) =$  even integers  $\geq 0$ 

$$g:[0,\infty) o\mathbb{R}$$
 where  $g(x)=\sqrt{x}$ .  $\mathsf{Ran}(g)=[0,\infty)$ 

$$f: A \rightarrow B$$
 with domain  $A = \{1, 2, 3\}$ , codomain  $B = \{a, b, c\}$  with  $1 \mapsto a$ ,  $2 \mapsto b$ ,  $3 \mapsto b$  or  $f(1) = a$ ,  $f(2) = b$ ,  $f(3) = b$ .

Table and diagram representations:

| $x \in \{1, 2, 3\}$ | $f(x) \in \{a, b, c\}$ |
|---------------------|------------------------|
| 1                   | а                      |
| 2                   | Ь                      |
| 3                   | Ь                      |



$$Ran(f) = \{a, b\}.$$



#### $\operatorname{Quiz}$

Consider the function  $f:[1,\infty)\to\mathbb{R}$  where  $f(n)=\log_2 n$ .

What is the range of this function?

- A.  $\mathbb{R}$
- B.  $\mathbb{Z}^+$
- C.  $[0,\infty)$

#### Answer

Consider the function  $f:[1,\infty)\to\mathbb{R}$  where  $f(n)=\log_2 n$ .

What is the range of this function?

- A.  $\mathbb{R}$  Incorrect. A log function defined on real numbers  $\geq 1$  does not return negative numbers.
- B.  $\mathbb{Z}^{+}$  Incorrect. The log of a number does not have to be an integer.
- C.  $(0, \infty)$ Correct. The log function defined on numbers  $\geq 1$  returns positive real numbers (or 0).

## The set of all functions

Let A, B be two sets. The set

$$\{f \mid f : A \to B\}$$
 is denoted by  $B^A$ 

**Proposition.** If |A| = r and |B| = n then the number of different functions with domain A and codomain B is  $n^r$ .

**Proof.** Let  $A = \{a_1, \ldots, a_r\}$ . We can construct a function from A to B in r steps,  $i = 1, 2, \ldots, r$  as follows.

In step (i) we choose  $b \in B$  to define  $f(a_i) = b$ , that is  $a_i \mapsto b$ . This can be done in n ways.

By the multiplication rule, the number of functions is  $n \cdot n \cdots n = n^r$ .

Therefore 
$$|B^A| = |B|^{|A|}$$

#### ACTIVITY: Example of one-to-one correspondence

Consider a function  $f: A \to B$  where A is the set of elements  $\{a_1, a_2, ..., a_n\}$ .

First notice that the number of possible functions is also the number of sequences of length n of elements in the set B.

In an activity in an earlier segment we showed that the subsets of a set A are in one-to-one correspondence with sequences of bits of size |A|.

Recall that we denoted the set of subsets of A by  $2^A$ .

**Question:** What is the cardinality of  $2^A$ ?

In the video, there is a box here for learners to put in an answer. As you read these notes, try it yourself using pen and paper!



ACTIVITY: Example of one-to-one correspondence (Continued)

Answer:  $2^{|A|}$ .

Now consider the particular case when B has two elements, for example  $B = \{0, 1\}$ . In this case, and using the formula we just learned, there are

$$|B^A| = |B|^{|A|} = 2^{|A|}$$

possible functions from A to B.

This is also the number of subsets of the set A!

Is there a connection between the subsets of A and the functions from A to  $\{0,1\}$ ? Yes!

We will describe a one-to-one correspondence between them.

ACTIVITY: Example of one-to-one correspondence (Continued)

Namely, to any function  $f: A \to \{0,1\}$  this correspondence associates a subset  $S_f$  of A where:

$$S_f = \{x \in A \mid f(x) = 1\}$$

Conversely, to any subset  $S\subseteq A$  this correspondence associates a function  $f_S:A\to\{0,1\}$  defined by

$$f_s(x) = \begin{cases} 1 & \text{if } x \in S, \\ 0 & \text{otherwise} \end{cases}$$