Lecture 2 — Formula Sheet

Vector Spaces & Subspaces (over R)

- Vector space: closed under + and scalar multiplication; addition has identity (0) and inverses.
- Subspace U of V: $U \neq \emptyset$, closed under + and scalar multiplication.

Linear Combination, Independence, Span, Basis, Dimension

- Linear combo: $\sum (\lambda i x i)$
- Independence: $\sum \lambda_i x_i = 0 \Rightarrow \text{all } \lambda_i = 0$
- Span[x1,...,xk] = { $\sum \lambda i x i$ }
- Basis: independent set that spans the space
- Dimension: number of vectors in any basis

Determinant Essentials

- Row swap ⇒ det changes sign
- Scale a row by $\lambda \Rightarrow$ det scales by λ
- Row replacement (R i \leftarrow R i + λ R j) \Rightarrow det unchanged
- 2×2 : det[[a,b],[c,d]] = a*d b*c
- 2×2 inverse (if det $\neq 0$): (1/(ad-bc)) * [[d, -b], [-c, a]]

```
Sarrus' Rule (3\times3 \text{ only})

For A = [[a,b,c],[d,e,f],[g,h,i]]:

det(A) = (a*e*i + b*f*g + c*d*h) - (c*e*g + a*f*h + b*d*i)
```

Nullspace (kernel)

- $N(A) = \{ x : A x = 0 \}$ is a subspace
- Solve via Gaussian elimination; express in terms of free variables to get a spanning set