

Torsion member with restrained ends.

OCT. 30/18

Shear concentration:

Ch. 7 - Bending of Straight Beams

7.1 - Fundamentals of beam bending

40 ≥ 5

Homogeneous and isotropic (material assumption)

no twisting (only bending deformation)

Beam has a symmetrical plane

Ozz = Mx 4

Ix = Sy'diedy

Forces Px and Py are passing through the shear center of the beam.

* Shear Centre

Find the max tensile and compressive normal stress at the middle span of the beam.

Solution:

Parallel axis theorem:

$$\begin{cases}
I_x = I_{x'} + A\bar{y}^2 \\
I_y = I_{y'} + A\bar{x}^2 \\
I_{xy} = I_{x'y'} + A\bar{x}\bar{y}
\end{cases}$$

$$Ix' = \frac{1}{2} bh^3$$

$$Iy' = \frac{1}{2} hb^3$$

$$Ixy' = 0$$

Nov. 1/18

$$O_{1}(\bar{x}_{1}, \bar{y}_{1})$$
 $O_{2}(\bar{x}_{2}, \bar{y}_{2})$
 $\bar{y}_{1} = (10/2) = 5$
 $\bar{y}_{2} = (\frac{50}{2}) + 10 = 35$
 $A_{1} = (50) \times (10) = 500$
 $A_{2} = (50)(10) = 500$

$$= \frac{A_1 \overline{y}_1 + A_2 \overline{y}_2}{A_1 + A_2} = \frac{500(5) + (500)(35)}{(500 + 500)} = 20$$

$$I_{x} = I_{x} + I_{x}$$

$$I_{x}^{\circ} = I_{x}^{\circ} + Ad^{2}$$

$$= (1/2)(50)(10)^{3} + (500)(20-5)^{2}$$

$$I_{x}^{\circ} = I_{x}^{\circ} + Ad^{2}$$

$$= (1/12)(10)(50)^{3} + (500)(20-35)^{2}$$

$$EM_{x} = 0$$
: $M_{x} = (2250)(500) + (1500)(100)$
 $M_{x} = 975000 N.mm$

At the top,
$$y = -20$$

 $0_{22} = \frac{975000}{333334} \times (-20) = -58.8 \text{ MPa}$

7.2 Bending Stress in Beams subjected to Non-symmetric bending

P: through Shear center C
(no twisting)

(Plane cross-section remain Plane)

Method of Section

dFz = Bzzdxdy

Resutant

SS Jzz dxdy = ∞ (no axiai Force)

A → SS y Gzz dxdy = Mx

SS x Gzz dxdy = -My

Cross-section has a rigid body rotation

The disp. at point (x,y, 2)

$$\begin{cases} U = \emptyset \\ V = \emptyset \end{cases}$$

$$\begin{cases} W = Q_{(2)}^{"} + X b_{(2)}^{"} + Q C_{(2)}^{"} \end{cases}$$

$$Ezz = \frac{\partial w}{\partial z} = \alpha'(z) + xb'(z) + yc'(z)$$

=
$$b(z)$$
 $\iint_{A} x^{2} dxdy + (c(z)) \iint_{A} xy dxdy = -Mx$

$$-e b(z) = -M_y I_{x+} M_x I_{xy}$$
 $\begin{cases} b = I_x I_y - I_{xy}^2 \\ b = I_x I_y - I_{xy}^2 \end{cases}$