Math 458: Differential Geometry

Shereen Elaidi

Winter 2020 Term

Contents

1 Introduction			1	
	1.1	Implicit and Inverse Function Theorems	1	
2	Man		1	
	2.1		2	
	2.2		2	
	2.3		2	
	2.4	Multi-Linear Algebra	2	
	2.5		2	
	2.6	Change of Variables for Integrals in \mathbb{R}^n	2	
	2.7	Integrating a <i>n</i> -Form on M^n $(\int_M \omega)$	2	
3	Curv	ves	2	
	3.1	Definitions	2	
	3.2	Frenet-Serret Frame	2	
	3.3	Global Properties of Curves	2	
		3.3.1 The Isoperimetric Inequality	2	
		3.3.2 Cauchy Crofton Formula	2	
4	Surfaces			
	4.1	Definitions	2	
	4.2	Differentiable Functions on Surfaces	2	
	4.3	Tangent Plane	2	
	4.4	First Fundamental Form: Area	2	
5	The	Gauss Map	2	
	5.1	Ruled Surfaces and Minimal Surfaces	2	
6	The	Intrinsic Geometry of Surfaces	2	
-	6.1	· · · · · · · · · · · · · · · · · · ·	2	

1 Introduction

1.1 Implicit and Inverse Function Theorems

2 Manifolds in \mathbb{R}^3

The aim of this part of the course is to build up to integration on manifolds and the invariant Stokes' theorem. The main purpose of this sections is to develop *coordinate-free* calculus, which clarifies the essence of what is happening (sometimes coordinates can be noisy).

- 2.1 Definitions
- **2.2 Smooth Maps from** $M^m \rightarrow N^n$
- 2.3 Change of Coordinates
- 2.4 Multi-Linear Algebra
- **2.5** Differential Forms in M^n
- **2.6** Change of Variables for Integrals in \mathbb{R}^n
- **2.7** Integrating a *n*-Form on M^n ($\int_M \omega$)
 - 3 Curves

- 3.1 Definitions
- 3.2 Frenet-Serret Frame
- 3.3 Global Properties of Curves
- 3.3.1 The Isoperimetric Inequality
- 3.3.2 Cauchy Crofton Formula

4 Surfaces

4.1 Definitions

Motivation: we want to define a regular surface to be something that is nice enough for us to extend the usual notions of calculus to.

Definition 1 (Regular Surface). A subset $S \subseteq \mathbb{R}^3$ is called a <u>regular surface</u> if, $\forall p \in S$, there exists a neighbourhood $V \subseteq \mathbb{R}^3$ and a map $\mathbb{X} : U \to V \cap S$ of an open set $V \subseteq \mathbb{R}^2$ onto $V \cap S \subseteq \mathbb{R}^3$ for which the following conditions hold:

1. X is differentiable; that is, if we write

$$\mathbb{X}(u,v) = (x(u,v), y(u,v), z(u,v))$$

for $(u, v) \in U$, then the functions x(u, v), y(u, v) and z(u, v) have continuous partial derivatives of all orders in U.

- 2. \mathbb{X} is a **homeomorphism**: there exists an inverse $\mathbb{X}^{-1}: V \cap S \to U$, which is continuous.
- 3. (Regularity Condition): $\forall q \in U$, the differential $dx_q : \mathbb{R}^2 \to \mathbb{R}^3$ is bijective.

Then, the mapping X is called a <u>parameterisation</u> or a <u>system of local coordinates</u> in a neighbourhood of p. The neighbourhood $V \cap S$ of p is called a <u>coordinate neighbourhood</u>.

- 4.2 Differentiable Functions on Surfaces
- 4.3 Tangent Plane
- 4.4 First Fundamental Form: Area

5 The Gauss Map

5.1 Ruled Surfaces and Minimal Surfaces

6 The Intrinsic Geometry of Surfaces

6.1 Isometries and Conformal Maps