Université Mohamed El Bachir EL IBRAHIMI - Bordi Bou Arreridi -

Faculté des Sciences et de la Technologie

Année universitaire: 2017-2018 Département ELM. 3^{ème} Année E.L.T. Module : Conception des Systèmes Electriques #

Le 05/02/2018 **EXAMEN** durée: 1H30

- I. Pourquoi le circuit magnétique des transformateurs est-il fermé, en fer et feuilleté?
- II. Définir les déférents types des matériaux magnétiques souvent utilisés dans la conception des transformateurs monophasés.
- III. Soit un transformateur monophasé 38 watt, porte les indications suivantes :

$$V_{in}=24\,\mathrm{V}$$
, $V_{o}=12\,\mathrm{V}$, $I_{o}=1\,\mathrm{A}$, $B=0.54\,\mathrm{T}$, $f=50\,\mathrm{Hz}$ (signal sinusoïdal), $K_{u}=0.4$, $\alpha=5\%$ et $\eta=98\%$.

- ✓ Définir les grandeurs suivantes : K_{μ} , α et η
- Calculer le coefficient géométrique de ce transformateur et déduire son format.
- Dans un schéma équivalent, préciser les dimensions du circuit magnétique de ce transformateur.
- Calculer le nombre de spires des enroulements, primaire et secondaire de ce transformateur.
- ✓ Calculer les pertes de cuivre du circuit électrique secondaire.

	Toroidal Tape Cores, Magnetics 2 mil Iron Alloy (cased and coated)											
Part No.	OD cm	ID cm	HT cm	Part No.	OD cm	ID cm	HT cm	Part No.	OD cm	ID cm	HT cm	
52402	1.346	0.724	0.610	52057	2.134	1.359	0.610	52061	2.781	1.664	0.927	
52107	1.651	1.041	0.610	52000	2.134	1.041	0.610	52004	3.429	2.286	0.927	
52153	1.499	0.724	0.610	52155	1.659	0.884	0.927	52076	2.794	1.334	0.762	
52056	1.816	1.041	0.610	52176	2.134	1.041	0.927	52007	2.794	1.334	0.927	

	EI, Laminations, (Tempel) 14 mil												
Part	D	Е	F	G	Part	D	Е	F	G				
No.	cm	cm	cm	cm	No.	cm	cm	cm	cm				
EI-375	0.953	0.953	0.794	1.905	EI-112	2.857	2.857	1.429	4.286				
EI-021	1.270	1.270	0.794	2.064	EI-125	3.175	3.175	1.588	4.763				
EI-625	1.588	1.588	0.794	2.381	EI-138	3.493	3.493	1.746	5.239				
EI-750	1.905	1.905	0.953	2.857	EI-150	3.810	3.810	1.905	5.715				
EI-875	2.223	2.223	1.111	3.333	EI-175	4.445	4.445	2.223	6.668				
EI-100	2.540	2.540	1.270	3.810	EI-225	5.715	5.715	2.858	8.573				

IV. Les pertes Joule d'un rotor d'une machine à courant continu sont données par l'équation suivante :

$$P_{jr} = R_a . I_a^2$$

 \checkmark Trouver l'expression de P_{ir} en fonction du diamètre d'alésage et de la longueur du rotor.

	Wire Table													
				Heavy Synthetics										
	Bare Area		Resistance μΩ/cm	Area		Diameter		Turns-Per		Turns-Per		Weight		
AWG	cm ² (10 ⁻³)	cir-mil	20°C	cm ² (10 ⁻³)	cir-mil	cm	Inch	cm	Inch	cm ²	Inch ²	gm/cm		
1	2	3	4	5	6	7	8	9	10	11	12	13		
10	52.6100	10384.00	32.7	55.9000	11046.00	0.2670	0.105	3.9	10	11	69	0.46800		
11	41.6800	8226.00	41.4	44.5000	8798.00	0.2380	0.094	4.4	11	13	90	0.37500		
12	33.0800	6529.00	52.1	35.6400	7022.00	0.2130	0.084	4.9	12	17	108	0.29770		
13	26.2600	5184.00	65.6	28.3600	5610.00	0.1900	0.075	5.5	13	21	136	0.23670		
14	20.8200	4109.00	82.8	22.9500	4556.00	0.1710	0.068	6.0	45	26	169	0.18790		
15	16.5100	3260.00	104.3	18.3700	3624.00	0.1530	0.060	6.8	17	33	211	0.14920		
16	13.0700	2581.00	131.8	14.7300	2905.00	0.1370	0.054	7.3	19	41	263	0.11840		
17	10.3900	2052.00	165.8	11.6800	2323.00	0.1220	0.048	8.2	21	51	331	0.09430		
18	8.2280	1624.00	209.5	9.3260	1857.00	0.1090	0.043	9.1	23	64	415	0.07474		
19	6.5310	1289.00	263.9	7.5390	1490.00	0.0980	0.039	10.2	26	80	515	0.05940		
20	5.1880	1024.00	332.3	6.0650	1197.00	0.0879	0.035	11.4	29	99	638	0.04726		
21	4.1160	812.30	418.9	4.8370	954.80	0.0785	0.031	12.8	32	124	800	0.03757		

	Toroidal Tape Cores, Magnetics 2 mil Iron Alloy (cased)											
Part No.	W _{teu} grams	W _{tfe} grams	MLT cm	MPL cm	W _a	$A_{\rm c}$ ${ m cm}^2$	W_a cm^2	A_{p} cm ⁴	K _g cm ⁵	$\begin{array}{c} A_t \\ cm^2 \end{array}$		
52402	2.84	0.50	2.16	3.25	18.727	0.022	0.412	0.00906	0.0000369	9.80		
52107	6.76	0.70	2.30	4.24	38.682	0.022	0.851	0.01872	0.0000716	15.50		
52153	3.20	1.10	2.20	3.49	9.581	0.043	0.412	0.01772	0.0001385	11.20		
52056	7.40	1.50	2.40	4.49	19.791	0.043	0.851	0.03659	0.0002622	16.80		
52057	13.80	1.80	2.70	5.48	33.744	0.043	1.451	0.06239	0.0003975	23.70		
52000	8.10	3.30	2.70	4.99	9.895	0.086	0.851	0.07319	0.0009324	20.60		
52155	6.10	2.60	2.80	3.99	7.140	0.086	0.614	0.05280	0.0006487	16.00		
52176	9.70	6.50	3.20	4.99	4.977	0.171	0.851	0.14552	0.0031105	23.30		
52061	28.70	9.10	3.70	6.98	12.719	0.171	2.175	0.37193	0.0068756	40.30		
52004	61.70	11.70	4.20	8.97	24.000	0.171	4.104	0.70178	0.0114291	62.20		
52076	17.20	9.50	3.50	6.48	7.244	0.193	1.398	0.26981	0.0059513	34.60		
52007	18.50	12.70	3.70	6.48	5.440	0.257	1.398	0.35929	0.0099823	36.40		

EI, Laminations, (Tempel) 14 mil											
Part No.	W _{teu} grams	W _{tfe} grams	MLT cm	MPL cm	W _a	A _c cm ²	W _a cm ²	A _p cm ⁴	K _g cm ⁵	A _t cm ²	
EI-375	36.1	47.2	6.7	7.3	1.754	0.862	1.512	1.303	0.067	46.2	
EI-021	47.6	94.3	8.2	8.3	1.075	1.523	1.638	2.510	0.188	62.1	
EI-625	63.5	170.0	9.5	9.5	0.418	2.394	1.890	4.525	0.459	83.2	
EI-750	108.8	296.0	11.2	11.4	0.790	3.448	2.723	9.384	1.153	120.0	
EI-875	171.0	457.0	13.0	13.3	0.789	4.693	3.705	17.384	2.513	163.0	
EI-100	254.0	676.0	14.8	15.2	0.790	6.129	4.839	29.656	4.927	212.9	
EI-112	360.0	976.0	16.5	17.2	0.789	7.757	6.124	47.504	8.920	269.4	
EI-125	492.0	1343.0	18.3	19.1	0.789	9.577	7.560	72.404	15.162	333.0	
EI-138	653.0	1786.0	20.1	21.0	0.789	11.588	9.148	106.006	24.492	403.0	
EI-150	853.0	2334.0	22.0	22.9	0.789	13.790	10.887	150.136	37.579	479.0	
EI-175	1348.0	3711.0	25.6	26.7	0.789	18.770	14.818	278.145	81.656	652.0	
EI-225	2844.0	7976.0	32.7	34.3	0.789	31.028	24.496	760.064	288.936	1078.0	

Corrigé type de l'examen conception des systèmes électriques

3ème Année Electrotechnique

- I. Pourquoi le circuit magnétique des transformateurs est-il fermé, en fer et feuilleté?
 - Le rôle du circuit magnétique est de canaliser le flux magnétique et de présenter le minimum de pertes par hystérésis et par courant de Foucault
- II. Définir les déférents types des matériaux magnétiques souvent utilisés dans la conception des transformateurs monophasés.

On peut distinguer deux grandes catégories des matériaux magnétiques:

> Les alliages ferromagnétiques;

Les alliages ferromagnétiques sont réalisés à partir de fer associé à du silicium, du nickel ou du molybdène. Les circuits sont constitués :

- soit de tôles empilées en forme de E, de C ou de I
- soit de rubans enroulés et assemblés, réalisant des circuits coupés en forme de E ou de C. Ils permettent de travailler à induction maximale élevée (de 0,85 à 2,35 T), mais à fréquence faible (f max de quelques centaines de hertz à 10 kHz) à cause des courants de Foucault qui deviennent vite importants.

Les ferrites ;

Les ferrites sont fabriqués à partir de poudres d'oxyde de fer associé à du zinc, du nickel ou du manganèse, assemblés par frittage (agglomération sous pression et par chauffage). Ils permettent de travailler à fréquence plus élevée (jusqu'à un mégahertz), mais l'induction maximale est relativement faible (de 0,2 à 0,4 T). Il faut noter que l'induction de saturation décroît lorsque la température augmente. Les ferrites se présentent sous forme de circuits en E ou en C, de tores ou de pots.

III. Soit un transformateur monophasé 38 watt, porte les indications suivantes :

$$V_{\rm in}=24\,{
m V}$$
 , $V_o=12\,{
m V}$, $I_o=1\,{
m A}$, $B=0.54\,{
m T}$, $f=50\,{
m Hz}$ (signal sinusoïdal), $K_u=0.4$, $\alpha=5\%$ et $\eta=98\%$.

✓ Définir les grandeurs suivantes : K_u , α et η

 K_u : Facteur d'utilisation du noyau (Facteur d'utilisation du corps magnétique)

 η : Le rendement du transformateur.

 \checkmark Calculer le coefficient géométrique de ce transformateur et déduire son format.

Le coefficient géométrique donné par :

donne par :
$$K_g = \frac{P_t}{2 K_e \alpha}$$

Avec P_t la puissance apparente :

ente:

$$P_t = P_0 \left(1 + \frac{1}{\eta} \right) \Rightarrow P_t = 38 \left(1 + \frac{1}{0.98} \right) = 76.77 \, Watt$$

Et K_e le coefficient de la condition électrique :

$$K_e = 0.145 (K_f)^2 (f)^2 (B)^2 10^{-4} \Rightarrow K_e = 0.145 (4.44)^2 (50)^2 (0.54)^2 10^{-4} = 0.208$$
while à:

Donc, la valeur de K_g est égale à :

$$K_g = \frac{P_t}{2K_e \alpha} = \frac{76.77}{2(0.208)5} = 36.90 \, \text{cm}^5$$

D'après la valeur de Kg et le tableau 5 on peut déduire que le format du transformateur de type EI-150.

✓ Dans un schéma équivalent, préciser les dimensions du circuit magnétique de ce transformateur.

Schéma équivalent du circuit magnétique d'un transformateur de type EI-150. Les dimensions de ce transformateur dans le tableau suivant : (d'après les tableaux 2 et 5)

	D (cm)	E (cm)	F (cm)	G (cm)	Wa (cm ²)	Ac (cm ²)
EI-150	3.810	3.810	1.905	5.715	10.887	13.790

✓ Calculer le nombre de spires des enroulements, primaire et secondaire de ce transformateur.

Nombre de spires d'enroulement primaire :

$$N_p = \frac{V_{in}(10^4)}{K_f B f A_c} \Rightarrow N_p = \frac{24(10^4)}{(4.44)(0.54)(50)(13.790)} \approx 145 \text{ Spires}$$

Nombre de spires d'enroulement secondaire :

✓ Calculer les pertes de cuivre du circuit électrique secondaire.

Pertes de cuivre d'enroulement secondaire

$$P_{cus} = R_s I_0^2$$

 R_s : La résistance électrique d'enroulement secondaire, donnée par :

$$R_s = (MLT) N_s \left(\frac{\mu\Omega}{cm}\right) 10^{-6}$$

Avec : MLT = 22.00 cm, d'après le tableau 5.

Pour trouver la valeur de $\left(\frac{\mu\Omega}{cm}\right)$, on va calculer la surface de fil conducteur sans isolant $\left(A_{ws}\right)$ par

l'équation suivante :

$$A_{ws} = \frac{I_0}{J} \quad O(2)$$

Avec:

$$J = \frac{P_t \left(10^4\right)}{K_f K_u B f A_p}$$

$$J = \frac{76.77(10^4)}{(4.44)(0.4)(0.54)(50)(150.136)} = 106.63(A/cm^2)$$

$$\Rightarrow A_{ws} = \frac{1}{106.63} = 9.3910^{-3} cm^2$$

De cette valeur de A_{ws} , on peut déduire la valeur de $\left(\frac{\mu\Omega}{cm}\right)$ d'après le tableau $3:\left(\frac{\mu\Omega}{cm}\right)=209.5 \frac{\mu\Omega}{cm}$

Alors, la valeur de $R_s = 22(76)(209.5)10^{-6} = 0.35 \Omega$.

Donc, le pertes de cuivre d'enroulement secondaire sont : $P_{cus} = 0.35 (1)^2 = 0.35 Watt .$

IV. Les pertes Joule d'un rotor d'une machine à courant continu sont données par l'équation suivante :

$$P_{jr} = R_a . I_a^2$$

 \checkmark Trouver l'expression de P_{ir} en fonction du diamètre d'alésage et de la longueur du rotor.

La résistance totale de l'induit Ra, peut se calculer à partir de la résistance d'une branche Rl. La résistance Ra est la résistance équivalente à 2a résistance RI branchées en parallèle. Donc, on a :

$$R_a = \frac{R_l}{2a} \quad \text{(25)}$$

La résistance d'une branche d'enroulement est la suivante ;

$$R_l = \rho \frac{L}{S} \frac{N_c}{2.2a}$$

Nc : nombre total des conducteurs.

S: Section d'un conducteur m²

ρ: Résistivité du cuivre à la température de l'induit

Le courant lc dans chaque conducteur se déduit du courant d'alimentation en considérant le nombre de voies d'enroulement :

$$I_a = 2a.I_c$$

Les pertes Joule sont égale à :

$$P_{jr} = \frac{R_l}{2a} (2a.I_c)^2 = \rho \frac{L}{S} \frac{N_c}{2} I_c^2$$

On note par A la charge linéique (A/m)

$$A = \frac{I_c N_c}{\pi . D}$$

On note par $\,\delta\,$ la densité du courant dans les conducteurs (A/ m²)

$$\delta = \frac{I_c}{S} \quad (2)$$

D'après l'expression de la charge linéique A et de la densité δ de courant, le produit de A. δ est égal à :

$$A.\delta = \frac{I_c}{S} \cdot \frac{I_c N_c}{\pi . D} = \frac{N_c I_c^2}{\pi . D.S}$$

On peut déduire l'expression suivante pour les pertes Joule rotorique en fonction de D et L :

$$P_{jr} = \rho \frac{L}{2}.A.\delta.\pi.D$$