

- **Def. 1:** Ein "Henkel" ist eine Verbindung zwischen zwei Löchern, die in eine Fläche geschnitten werden. Der <u>Torus</u> ist die Fläche, die man durch das Hinzufügen eines Henkels zu einer Kugel erhält.
- **Def. 2:** Das <u>Geschlecht einer Fläche</u> ist die Anzahl der hinzugefügten Henkel, bzw. die Anzahl der Löcher in der Fläche. Schreibe S_{γ} für eine Fläche vom Geschlecht γ .

Das <u>Geschlecht eines Graphen G</u> ist das minimale γ , sodass G in S_{γ} eingebettet wird.

https://apps.hegl.mathi.uni-heidelberg.de/rectangle-to-toruscoloured/

- 2γ Schnitte durch einen Punkt bis flach
- Repräsentation in der Ebene durch ein 4γ –gon z.B. 4-Eck bei einem torodialen Graphen (γ =1)

• Repräsentation in der Ebene durch ein 4γ –gon z.B. Oktagon bei doppeltorodialen Graphen (γ =2)

https://www.youtube.com/watch?v=G1yyfPShgqw

- 2γ Schnitte durch einen Punkt bis flach
- 2γ Schleifen um einen einzelnen Knoten

$$\gamma = 1: \quad \alpha_1 \beta_1 \alpha_1^{-1} \beta_1^{-1}$$

$$\gamma = 2$$
: $\alpha_1 \beta_1 \alpha_1^{-1} \beta_1^{-1} \alpha_2 \beta_2 \alpha_2^{-1} \beta_2^{-1}$

Allgemein für Geschlecht γ : $\alpha_1 \beta_1 \alpha_1^{-1} \beta_1^{-1} \cdots \alpha_{\gamma} \beta_{\gamma} \alpha_{\gamma}^{-1} \beta_{\gamma}^{-1}$

Bem. 1: Eulers Formel für S_v

Für eine einfach-zusammenhängende Einbettung eines Graphs in S_{γ} wird Eulers Formel verallgemeinert zu:

$$n - e + f = 2 - 2\gamma = \chi(S_{\gamma})$$
 Euler-Charakteristik von S_{γ}

Lemma 1: Jeder einfache n-eckige Graph, der in S_{γ} eingebettet ist, hat höchstens

$$e \leq 3(n-2+2\gamma)$$

Kanten.

Torodiale Einbettung von K_{3,3}

https://apps.hegl.mathi.uni-heidelberg.de/rectangle-to-toruscoloured/

Satz von Ringel-Youngs / Heawood Formel

Wenn G in S_v mit $\gamma > 0$ eingebettet werden kann, dann gilt

$$\chi(G) \leq \left\lfloor (7 + \sqrt{1 + 48\gamma})/2 \right\rfloor$$

wobei $\chi(G)$ die Anzahl der benötigten Farben ist.

Achtung: Die Heawood-Formel gilt nur für orientierbare Flächen von Geschlecht $\gamma > 0$. Gegenbeispiele:

