ST205A - HW3

Hoang Duong

September 22, 2014

Problem 1. Monotone Convergence Theorem

Proof. (i) We have $\mathbb{E}X_n < \infty$ for some n, since we are working with limit, we can assume $\mathbb{E}X_1 < \infty$ (reindex the sequence). Let $Y_n = X_1 - X_n, Y = X_1 - X$ we have: $0 = Y_1 \le Y_2 \le Y_3 \le ...$, almost surely, and $\lim Y_n = \lim (X_1 - X_n) = X_1 - \lim X_n = X_1 - X = Y$. So $Y_n \uparrow Y$ and Y_n is bounded below by 0, thus $\lim_{n\to\infty} \mathbb{E}Y_n = \mathbb{E}Y \Rightarrow \lim_{n\to\infty} \mathbb{E}[X_1 - X_n] = \mathbb{E}[X_1 - X] \Rightarrow \lim_{n\to\infty} \mathbb{E}X_n = \mathbb{E}X$, since $\mathbb{E}X_1 < \infty$. (It seems we don't need condition $X_n \ge 0$??)

- (ii) Let $X_n = |X|\mathbb{I}[|X| > n]$, then $X_1 \ge X_2 \ge X_3 \ge \dots$ since $\mathbb{I}[|X| > m] \ge \mathbb{I}[|X| > n]$, $\forall m < n$. Also $X_n \ge 0$, $\forall n$ and $\mathbb{E}X_1 < \mathbb{E}|X| < \infty$. Also, $\lim_{n \to \infty} X_n = 0$. Thus by (i) we have $\lim_{n \to \infty} \mathbb{E}X_n = 0$.
 - (iii) Let $Y_n = X_n X_1$, then $0 \le Y_n \uparrow X X_1$ since $\mathbb{E}X_1 < \infty$. Thus $\lim \mathbb{E}Y_n = \mathbb{E}[X X_1]$.
 - $\text{If } \mathbb{E}|X|=\infty \Rightarrow \mathbb{E}|X|-\mathbb{E}|X_1|=\infty \Rightarrow \mathbb{E}|X-X_1|\geq \mathbb{E}\left[|X|-|X_1|\right]=\mathbb{E}|X|-\mathbb{E}|X_1|=\infty.$

 $\Rightarrow \mathbb{E}|X-X_1|=\infty \Rightarrow \mathbb{E}[X-X_1]=\mathbb{E}|X-X_1|=\infty$ since $X\geq X_1$ almost surely. So $\lim \mathbb{E}Y_n=\infty \Rightarrow \lim \mathbb{E}X_n=\infty$ as $\mathbb{E}X_1<\infty$

Else if $\mathbb{E}|X| < \infty \Rightarrow \mathbb{E}X \leq \mathbb{E}|X| < \infty$. Thus $\lim \mathbb{E}Y_n = \mathbb{E}[X - X_1] = \mathbb{E}X - \mathbb{E}X_1 \Rightarrow \lim \mathbb{E}X_n = \mathbb{E}X$ since $\mathbb{E}X_1 < \infty$.

(iv) Let $X_n = \sum_{i=1}^n \mathbb{I}[X \ge i]$, then we have $0 \le X_1 = \mathbb{I}[X \ge 1] \le X_2 = \mathbb{I}[X \ge 1] + \mathbb{I}[X \ge 2] \le X_3 \le \dots$ We need to prove that $\lim X_n = X$, which by definition means $\mathbb{P}\{\omega \mid X_n(\omega) \to X(\omega)\} = 1$.

Let $\omega \in \Omega$ be arbitrarym let $m = X(\omega)$ then $m \in \mathbb{N}^+$. We have:

 $X(\omega)=1, X_2(\omega)=2, ..., X_{m-1}(\omega)=m-1, X_m(\omega)=m, \text{ and } \forall n>m, X_n(\omega)=m.$ Thus $\lim_{n\to\infty}X_n(\omega)=m=X(\omega).$ So $\lim X_n=X$ almost surely. Thus by the monotone convergence theorem, $\lim \mathbb{E}X_n=\mathbb{E}X\Rightarrow\sum_{n=1}^\infty \mathbb{P}(X\geq n)=\mathbb{E}X.$

Problem 2. Variance of simple function

Proof. (i) We have:

$$\begin{aligned} \operatorname{Var}[X] = & \mathbb{E}\left[(X - \mathbb{E}X)^2\right] = \mathbb{E}\left[X^2\right] - (\mathbb{E}X)^2 \\ = & \mathbb{E}\left[\left(\sum_{i=1}^n \mathbb{I}[A_i]\right)^2\right] - \left(\sum_{i=1}^n \mathbb{P}[A_i]\right)^2 \\ = & \sum_{i=1}^n \sum_{j=1}^n \mathbb{E}\left[\mathbb{I}[A_i]\mathbb{I}[A_j]\right] - \left(\sum_{i=1}^n \mathbb{P}[A_i]\right)^2 \\ = & \sum_{i=1}^n \mathbb{P}[A_i] + 2\sum_{i \neq j} \mathbb{P}\left[A_i \cap A_j\right] - \left(\sum_{i=1}^n \mathbb{P}[A_i]\right)^2 \end{aligned}$$

(ii) Let A_i be the event that box i'th is empty. We need to $Var[X] = Var[\sum_{i=1}^n \mathbb{I}[A_i]]$. From (i), we have:

$$\operatorname{Var}[X] = \sum_{i=1}^{n} \mathbb{P}[A_i] + 2 \sum \mathbb{P}[A_i \cap A_j] - \left(\sum_{i=1}^{n} \mathbb{P}[A_i]\right)^2$$
$$= n\left(\frac{n-1}{n}\right)^k + 2\frac{n(n-1)}{2}\left(\frac{n-2}{n}\right)^k - \left(n\left(\frac{n-1}{n}\right)^k\right)^2$$
$$= \frac{(n-1)^k}{n^{k-1}} + \frac{(n-1)(n-2)^k}{n^{k-1}} - \frac{(n-1)^{2k}}{n^{2k-2}}$$

Problem 3. Markov Inequality

Proof. (i) Consider $\phi(x) = (x+b)^2$. According to the General Markov Inequality,

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}\phi(X)}{\phi(a)}, \forall b$$

$$\Rightarrow \mathbb{P}[X \ge a] \le \frac{\sigma^2 + b^2}{(a+b)^2}, \forall b$$

$$= \frac{\sigma^2 + b^2}{a^2 + 2ab + b^2}$$

We need to find b such that:

$$\begin{split} \frac{\sigma^2 + b^2}{a^2 + 2ab + b^2} \leq & \frac{\sigma^2}{\sigma^2 + a^2} \\ \Leftrightarrow & \sigma^4 + \sigma^2 a^2 + \sigma^2 b^2 + a^2 b^2 \leq & \sigma^2 a^2 + 2ab\sigma^2 + b^2 \sigma^2 \\ \Leftrightarrow & \sigma^4 + a^2 b^2 \leq & 2ab\sigma^2 \end{split}$$

But with A.C. inequality we have: $\sigma^4 + a^2b^2 \ge 2ab\sigma^2$, the equality hold iff $\sigma^4 = a^2b^2 \Leftrightarrow b = \sigma^2/|a| = \sigma^2/a$ since a > 0. So if we pick $b = \sigma^2/a$, then we have the inequality that we need to prove.

(ii) We need to prove:

$$\begin{split} \mathbb{P}[X > 0] \geq & \frac{\left(\mathbb{E}X\right)^2}{\mathbb{E}X^2} \\ \Leftrightarrow & (\mathbb{E}X^2)\mathbb{P}[X > 0] \geq & (\mathbb{E}X)^2 \end{split}$$

Let $Y = \mathbb{I}[X > 0]$ then Y is a random variable. According to the Cauchy-Schwarz inequality:

$$\begin{split} &(\mathbb{E}X^2)(\mathbb{E}Y^2) \geq &(\mathbb{E}[XY])^2 \\ &\Leftrightarrow (\mathbb{E}X^2)\mathbb{E}Y \geq &(\mathbb{E}[X\mathbb{I}[X>0]])^2 \\ &\Leftrightarrow \mathbb{E}X^2\mathbb{P}[X>0] \geq &(\mathbb{E}X)^2 \end{split}$$

Problem 4. Chebyshev's other inequality

Proof. Let Y be an independent copy of X. Since f(x), g(x) is an increasing bounded function, and X, Y independent, we have:

2

$$\begin{split} & \big(f(X) - f(Y) \big) \big(g(X) - g(Y) \big) \ge 0 \\ & \Rightarrow f(X) g(X) + f(Y) g(Y) \ge f(X) g(Y) + f(Y) g(X) \\ & \Rightarrow \mathbb{E} \left[f(X) g(X) + f(Y) g(Y) \right] \ge \mathbb{E} \left[f(X) g(Y) + f(Y) g(X) \right] \\ & \Rightarrow \mathbb{E} \left[f(X) g(X) \right] + \mathbb{E} \left[f(Y) g(Y) \right] \ge \mathbb{E} \left[f(X) g(Y) \right] + \mathbb{E} \left[f(Y) g(X) \right] \\ & \Rightarrow 2 \mathbb{E} \left[f(X) g(X) \right] \ge \mathbb{E} \left[f(X) \right] \mathbb{E} \left[g(Y) \right] + \mathbb{E} \left[f(Y) \right] \mathbb{E} \left[g(X) \right] \\ & \Rightarrow 2 \mathbb{E} \left[f(X) g(X) \right] \ge 2 \mathbb{E} \left[f(X) \right] \mathbb{E} \left[g(X) \right] \\ & \Rightarrow \mathbb{E} \left[f(X) g(X) \right] \ge \mathbb{E} \left[f(X) \right] \mathbb{E} \left[g(X) \right] \end{split}$$

Lemma 1. Moment Generating Function for $X \sim Poisson(\lambda)$ is

Proof. We have

$$\mathbb{E}\left[\exp(uX)\right] = \sum_{x=0}^{\infty} \exp(ux) \exp(-\lambda) \frac{\lambda^x}{x!}$$

$$= \sum_{x=0}^{\infty} \exp(-\lambda) \frac{(\lambda \exp(u))^x}{x!}$$

$$= \sum_{x=0}^{\infty} \exp(-\lambda + \lambda \exp u) \exp(-\lambda \exp u) \frac{(\lambda \exp(u))^x}{x!}$$

$$= \exp(\lambda(\exp u - 1)) \sum_{x=0}^{\infty} \exp(-\lambda \exp u) \frac{(\lambda \exp(u))^x}{x!}$$

$$= \exp(\lambda(\exp u - 1))$$

Problem 5. Difference of Poisson random variable

Proof. (i) Applying the general Markov Inequality (special version Elementary Large Deviation inequality) we have:

$$\begin{split} \mathbb{P}[X \geq Y] = & \mathbb{P}[X - Y \geq 0] \\ & \leq \inf_{\theta} \exp(-\theta \times 0) \mathbb{E}[\exp\{\theta(X - Y)\}] \\ = & \inf_{\theta} \mathbb{E}[\exp(\theta X) \exp(-\theta Y)] \\ = & \inf_{\theta} \mathbb{E}[\exp(\theta X)] \mathbb{E}[\exp(-\theta Y)] \\ = & \inf_{\theta} \exp(\lambda(\exp\theta - 1) + 2\lambda(\exp-\theta - 1)) \\ = & \inf_{\theta} \exp(-3\lambda + \lambda \exp\theta + 2\lambda \exp(-\theta)) \end{split}$$

Applying the A.C. inequality we have:

$$\exp \theta + 2 \exp(-\theta) \ge 2\sqrt{2 \exp(\theta) \exp(-\theta)} = 2\sqrt{2}$$
$$\Rightarrow \mathbb{P}[X \ge Y] \le \exp((-3 + \sqrt{8})\lambda)$$

(Equality for A.C. hold iff $\theta=0$)

(ii) Applying the Large Deviation inequality and Cauchy-Schwarz inequality we have:

$$\begin{split} \mathbb{P}[X \geq Y] & \leq \inf_{\theta} \mathbb{E}[\exp(\theta X) \exp(-\theta Y)] \\ & \leq \inf_{\theta} \left(\left(\mathbb{E}[\exp^2(\theta X)] \right) \left(\mathbb{E}[\exp^2(\theta Y)] \right) \right)^{1/2} \\ & = \inf_{\theta} \left(\left(\mathbb{E}[\exp(2\theta X)] \right) \left(\mathbb{E}[\exp(2\theta Y)] \right) \right)^{1/2} \\ & = \inf_{\theta} \left(\exp(\lambda(\exp(2\theta) - 1) + 2\lambda(\exp(-2\theta) - 1)) \right)^{1/2} \\ & = \inf_{\theta} \exp\left(-\frac{3\lambda}{2} + \frac{\lambda}{2} \exp(2\theta) + \lambda \exp(-2\theta) \right) \end{split}$$

Applying the A.C. inequality we have:

$$\frac{1}{2}\exp(2\theta) + \exp(-2\theta) \ge \sqrt{2}$$
$$\Rightarrow \mathbb{P}[X \ge Y] \le \exp((-\frac{3}{2} + \sqrt{2})\lambda).$$