Datum 9. 10. 2019	SPŠ CHOMUTOV	Třída A4-2
Číslo úlohy 7	MĚŘENÍ ODPORŮ POMOCÍ PŘEVODNÍKŮ R/U	Jméno PETŘÍK

Zadání

Změřte sadu rezistorů a normálů pomocí převodníku R/U

Schéma

Měření středních a velkých odporů

Měření malých odporů

Tabulka použitých přístrojů

Zařízení	Značka	Údaje	Evidenční číslo
Stabilizovaný zdroj		AUL 310	LE2 1044
Odporová dekáda	R _N	$0,1-111\ 111\ \Omega$	LE1 1834
Odporový normál	R _{N1}	1 Ω	LE1 2209
Číslicový voltmetr	ČV	Keysight U3401A	LE 5097
Tranzistor	Т	TESLA KU 605	
Operační zesilovač	OZ	TESLA MAA741	LE 2380

Referenční zdroj	U _{REF}	MAB 01D 10V a 1V	
		$390 - 100 \text{ k}\Omega \text{ P}_{MAX} = 2 \text{ W}$	
		0,1 Ω	LE1 1935
Měřené odpory	R_X	0,01 Ω	LE1 1933
		0,001 Ω	LE1 1934
		0,0001 Ω	LE1 1932

- A) Zapojení pro měření velkých odporů
- 1) Odvoďte vztah pro výpočet R_X

$$R_{x} = -\frac{R_{N}}{U_{R}} \times U_{2}$$

2) Vytvořte převodník R/U dle následujících požadavků

K dispozici máte zdroj referenčního napětí MAB 01D - 10 V OZ MAA 741CN napájený ze symetrického zdroje ± 15 V $4^{\frac{1}{2}}$ místný číslicový voltmetr s rozlišitelností 0.01mV

Jaký odpor Rn zvolíte, aby zobrazený údaj na ČV byl:

- 1) $\vee \Omega (1 \vee \cong 1 \Omega) \Rightarrow R_N = 10 \Omega$
- 2) v k Ω (1 V \cong 1 k Ω) \Rightarrow R_N = 10 k Ω
- 3) v M Ω (1 V \cong 1 M Ω) \Rightarrow R_N = 10 M Ω

Pro jednotlivé odpory R_N určete rozsah převodníku R/U a doplňte tabulku

Pro saturační napětí OZ 14 V				
R _N	R _{MIN}	R _{MAX}		
10 Ω	0,01 mΩ	14 Ω		
10 kΩ	0,1 Ω	14 kΩ		
10 ΜΩ	100 Ω	14 ΜΩ		

- 3) Jaký proud by musel být schopen dodat zdroj referenčního napětí a OZ převodníku v případě, že chceme, aby zobrazený údaj byl přímo v Ω ? Je to možné?
 - 1A takový proud není námi použitý referenční zdroj ani OZ schopný dodat
- 4) Převodník sestavte a změřte dané odpory. Vypočítejte relativní odchylku a vyhodnoťte, zda je rezistor v OK stavu

Při U _R = 10 V				
Rezistor	R_N	R (Ω)	δ _{RM} (%)	Stav
390R 5%	10 kΩ	387,02	-0,76	OK
820R 5%	10 kΩ	818,8	-0,15	OK
4K7 5%	10 kΩ	4712	+0,26	OK
10K 5%	10 kΩ	10071	+0,71	OK

27K 5%	100 kΩ	27412	+1,53	OK
39K 5%	100 kΩ	39708	+1,82	OK
82K 5%	100 kΩ	82400	+0,49	OK
100K 5%	100 kΩ	100440	+0,44	OK

Příklad výpočtu:

$$\delta_{\text{RM}} = \frac{387,02}{390} - 1 = 0.9923589744 - 1 = -7.641025641 \times 10^{-3} \Rightarrow -0.76\%$$

- B)Zapojení pro měření malých odporů
- 1) Odvoďte vztah pro výpočet R_X

$$R_{x} = \frac{R_{N}}{U_{R}} \times U_{2}$$

2) Určete velikost odporu R_N tak, aby údaj zobrazený na ČV byl přímo v Ω při U_R = 1 V

$$R_x = \frac{R_N}{U_R} \times U_2 \Rightarrow R_N = \frac{R_X \times U_R}{U_2} = \frac{1 \times 1}{1} = 1 \Omega$$

Pro zvolení odpor R_N určete rozsah převodníku R/U

$$R_{MIN} = 0.01 \, \text{m}\Omega$$

$$R_{MAX} = 12,3 \text{ V}$$

3) Převodník sestavte a změřte dané odpory. Experimentálně ověřte, jaké chyby se dopouštíme při dvousvorkovém připojení měřeného odporu.

Při $U_R = 1 V a R_N = 1 \Omega$				
Rezistor	R (mΩ) 4 svorkově	R (Ω) 2 svorkově		
0,1 Ω	100,26	100,39		
0,01 Ω	10,03	10,29		
0,001 Ω	1	1		
0,0001 Ω	0,1	0,42		

Závěr

Měřením jsme si ověřili důležitost měřících převodníku R/U v měřící technice a také důležitost 4 svorkového zapojení malých odporů.

Měření měřícím převodníkem je velmi jednoduché v kontrastu s metodami měření odporů ze 3. ročníku.