スプラスサ 只能出现在主对角线上: (2x+1)x(-x)(x)=2xt-x3 バ スサ与スプ的多数分别为 2かー1. (A)

5.
$$\begin{cases} \lambda x_1 + x_2 + x_3 = \lambda \\ x_1 + x_2 + x_3 = \lambda \end{cases} = \begin{cases} \hat{A} \circ (\mathbf{i} - \hat{A}\mathbf{i} + \lambda_1 + x_2 + x_3 = \lambda_1^2) & \hat{A} \circ (\mathbf{i} - \hat{A}\mathbf{i} + \lambda_2 + x_3 = \lambda_1^2) & \hat{A} \circ (\mathbf{i} - \hat{A}\mathbf{i} + \lambda_2 + x_3 + \lambda_3^2) & \hat{A} \circ (\mathbf{i} - \hat{A}\mathbf{i} + \lambda_2 + x_3 + \lambda_3^2) & \hat{A} \circ (\mathbf{i} - \hat{A}\mathbf{i} + \lambda_2 + \lambda_3 + \lambda_3^2) & \hat{A} \circ (\mathbf{i} - \hat{A}\mathbf{i} + \lambda_3 + \lambda_3^2) & \hat{A} \circ (\mathbf{i} - \hat{A}\mathbf{i} + \lambda_3 + \lambda_3^2) & \hat{A} \circ (\mathbf{i} - \hat{A}\mathbf{i} + \lambda_3 + \lambda_3^2) & \hat{A} \circ (\mathbf{i} - \hat{A}\mathbf{i} + \lambda_3 + \lambda_3^2) & \hat{A} \circ (\mathbf{i} - \hat{A}\mathbf{i} + \lambda_3 + \lambda_3^2) & \hat{A} \circ (\mathbf{i} - \hat{A}\mathbf{i} + \lambda_3^2) & \hat{$$

9. A*是"A的伴随矩阵,则有()(B) (A) $A^* = |A| \cdot A^{-1}$ (B) $|A^*| = |A|^{n-1}$, (C) $(kA)^* = k^n A^*$, (D) $A^{**} = 0$ 解: $AA^* = |A|E(美键)$, (A)错, 因为 A^{\dagger} 不一定存在. (=) A=0, 此时 A*=0, 矛盾. 所从 A*=0. $(B) \vee (A^*|=|A|^{n-1})$ (d) 由于 kA 的代数争式 为A的 代数到式 (n-1)所行到式) $(kA)^* = k^M A^*$ (D) 显然错, A可适时. A*可适, A**也通 实际上 岩 IAI+O 日 AA*=IAI·E, A*A**= IA*| E=IAI^ME ASD ヲ A**= |A|ⁿ⁻²A. <u></u> 此式当|A|=0时,也成立 (1000 NZ2) 1 1 1 0 0 pm (n=2 情形) 证明(摄对法) **原题 联络科拉伊** 考 |A|=0, @ 取 € 充分 + 的 正数, 使得 A-εE 亚兹. $(A-\epsilon E)^{**}=|A-\epsilon E|^{n-2}(A-\epsilon E)$ 单左右两端 斩元素都是 ϵ 的 因此舒连续,全至力,即得A*= |A|^n2.A. 多项式

10. ABCn阶方阵, I单位阵 且 ABC=工,则有 key: XY=I,X,Yn阶i阵 => YX=I (X,Yoité,可旋) A BC=I => BCA=I 选(D) =) CAB=I $= \cdot 11.$ $A = (d_1, d_2, d_3, \beta_1) |A| = 2$ $B = (d_3, d_1, d_2, \beta_2)$ $|B| = 3 = |d_1, d_2, d_3, \beta_2|$ $|A+B| = |a_1+d_3, a_1+d_2, a_2+d_3, \beta_1+\beta_2| = ?$ = | d1, d1+d2, d2+d3 B1+B2| 将第1列折成两列 + | d3, d, t d2 d2 t d3, B, t B2 | = |d1, d2, d3 P1+P2| — 用第例去减第2到, 第3到 + |d3, d1, d2, B+ B2 = $2 | d_1, d_2, d_3, \beta_1 + \beta_2 | = 2 (2+3) = 10$ (B) 12. n阶分件 A, IAI=0 的义要条件是() · 义罗科: |A|=0 => ... 选(D) A 7=0 有至少两组解 (IA)=0 (A)<n)

13. A 为3阶部, IAI=4, A*为A的伴随阵 | (A*)*-2AI= 由9题的分析, (A*)*= |A|^n-2A = 4A, : |A**-2A|=|2A| B*= |B|.B1 = 8 |A| = 32或 $A^{**} = |A^{*}| (A^{*})^{\dagger} = |A|^{n+1} (|A| \cdot A^{\dagger})^{\dagger}$ (d) $= |A|^{n-2} A$. 14. A, B, A+B, A+B, 改 均可选 则 $(A^{1}+B^{1})^{1}=(A^{1}(A+B)\cdot B^{1})^{-1}$ $= B (AtB)^{T} A$ [马道正 A+B+B+= A+(A+B) B+ $= B^{\dagger}(A+B)A^{\dagger}$ = $(A^{1}+B^{1})^{1}=(B^{1}(A+B)A^{1})^{1}$ = A (A+B) 1 B 选 (C) 15. A,B 叫价件, B是对换A的第一,=到所得矩阵,若IAI+IBI. 別有() |B|=-|A| + |A| => |A| + o 选(B) $|A|=|a_1,a_2,a_3-\cdots|$ $|A+B|=|a_1+d_3,2d_2,a_1+d_3,-\cdots|=0$ $|B| = |a_3, a_2, a_1, - |A - B| = |a_1 - a_3| 0 |a_3 - a_1| - |a_1| = 0$