EKSAMENSSAMARBEIDENDE FORKURSINSTITUSJONER

Forkurs for 3-årig ingeniørutdanning og integrert masterstudium i teknologiske fag og tilhørende halvårig realfagskurs.

Universitetet i Sørøst-Norge, OsloMet, Høgskulen på Vestlandet, Høgskolen i Østfold, NTNU, Universitetet i Agder, Universitetet i Stavanger, UiT-Norges arktiske universitet, NKI, Metis.

Eksamensoppgave

MATEMATIKK

Bokmål

20. mai 2020 kl. 9.00-14.00

Hjelpemidler:

Alle skriftlige hjelpemidler, alle kalkulatorer.

Det presiseres at bruk av programvare/app som viser utregningssteg ikke er tillatt og følgelig vil bli betraktet som fusk, dette vil sjekkes med plagiatkontroll.

Andre opplysninger:

Oppgavesettet består av 4 sider medregnet forsiden, og inneholder 8 oppgaver.

Ved vurdering teller alle deloppgaver likt.

Erklæring: Ved innlevering av dette oppgavesettet, erkjenner jeg at jeg hverken har fått eller gitt relevant informasjon, tilknyttet svar eller løsningsmetoder til oppgavene i dette settet, fra eller til andre personer.

Oppgave 1

a) Skriv så enkelt som mulig

$$\frac{\sqrt{5}(\sqrt[5]{a^2})^2 a^{\frac{1}{5}}}{a^{-1} \left(\sqrt{5}a^{\frac{1}{3}}\right)^3}$$

b) Regnut

$$\frac{5t^2 - 45}{t - 3} : \frac{t + 2}{3t^2 + 6t}$$

c) Løs

$$\ln x - \ln(x^2 - x) = 1$$

Oppgave 2

a) Gjennomfør polynomdivisjonen

$$(3x^3 - 4x^2 - 14x + 11): (x^2 - 3x + 2)$$

b) Sjekk at x + 3 er en faktor i $x^3 - 13x - 12$.

c) Løs ulikheten

$$x^3 - 13x > 12$$

Oppgave 3

Deriver funksjonene

a)
$$g(x) = \frac{\ln x}{x^2}$$

b)
$$f(x) = x(x+3)^3$$

c) Løs differensiallikningen

$$\frac{1}{2x}y'=e^{-y},$$

med randkrav y = 1 når x = 0.

Oppgave 4

Finn eksaktverdien for $\cos x$, $\sin 2x$, og $\tan x$ når det er gitt at $\sin x = \frac{1}{3}$, $x \in [90^{\circ}, 180^{\circ}]$.

Oppgave 5

Gitt en trekant ABC der $\angle A = 30^{\circ}$, $\angle B = 90^{\circ}$ og siden AB = 3.

a) Finn lengde av AC.

Trekanten utvides med et punkt D slik at vi får en firkant ABCD. I denne firkanten er $\angle A = 70^{\circ}$ og $\angle C = 140^{\circ}$.

- b) Finn $\angle D$ og lengden AD i denne firkanten.
- c) Finn firkantens areal.

Oppgave 6

Figur 1: Grafen til en funksjon f. Du kan få bruk for de stiplede linjene til å løse oppgave 6.

- a) Finn likningene til eventuelle asymptoter til funksjonen f med graf i Figur 1.
- b) Tegn fortegnslinje for f'(x) og f''(x).
- c) Finn eventuelle toppunkter, bunnpunkter, vendepunkter. Bruk en desimal.

Oppgave 7

Gitt punktene A(4,1,-1), B(2,3,0) og C(-2,2,1).

- a) Finn koordinatene til et punkt *D* slik at firkant *ABCD* blir et parallellogram.
- b) Finn arealet til parallellogrammet ABCD.

T(1,1,4) er toppunktet i en pyramide der ABCD er grunnflata.

- c) Finn høyden fra T ned på grunnflata i pyramiden ABCDT.
- d) Finn likningen til planet gjennom punktene A, B og C.
- e) Finn vinkelen $\angle BDT$.

Oppgave 8

- a) Vis at formelen $\sin^2 x = \frac{1}{2}(1 \cos 2x)$ stemmer.
- b) Benytt formelen i a) til å bestemme amplituden, likevektslinjen og perioden til $f(x) = \sin^2 x$.
- c) Tegn grafen til $f(x) = \sin^2 x$, $x \in [0,2\pi]$.
- d) Hva blir verdimengden til $f(x) = \sin^2 x$?
- e) Benytt formelen i a) til å bestemme $\int \sin^2 x \ dx$.
- f) Benytt delvis integrasjon til å bestemme $\int \sin^2 x \ dx$. Kommenter eventuelle forskjeller i resultatet fra e).