Prescriptive Analytics - HW 7

Saundarya Badhrinathan, Nabeel Ahmed, Divya Chandramohan, Uttara Thiagarajan, Megan Mugavero

1. Readings completed

2. John's Problem:

Payoff Matrix:

	Re-Elected	Not re-elected
Sell half of the business	480,000	70,000
Sell entire business	260,000	260,000

Maxi-Min & Maxi-Max Approaches:

	Re-Elected	Not re-elected	Maxi-Min	Maxi-Max
Sell half of the business	480,000	70,000	70,000	480,000
Sell entire business	260,000	260,000	260,000	260,000

Mini-Max Regret Approach:

	Re-Elected	Not re-elected	Mini-Max Regret
Sell half of the business	0	190,000	190,000
Sell entire business	220,000	0	220,000

Maxi-Min: \$260,000 payoff (**Decision: Sell the entire business**)
Maxi-Max: \$480,000 payoff (**Decision: Sell half of the business**)

Mini-Max Regret: \$190,000 (Decision: Sell half of the business)

MO: 0.65(Not re-elected) > 0.35(Re-elected) $\rightarrow $260,000 > $70,000$

(Decision: Sell his entire business)

EV: Sell half of the business $\rightarrow 0.35(\$480,000) + 0.65(\$70,000) = \$213,500$

Sell entire business \rightarrow 0.35(\$260,000)+0.65(\$260,000) = \$260,000

(Decision: Sell his entire business)

ER: Sell half of the business $\rightarrow 0.35(\$0)+0.65(\$190,000) = \$123,500$

Sell entire business \rightarrow 0.35(\$220,000)+0.65(\$0) = \$77,000

(Decision: Sell his entire business)

Expected payoff with PI = 0.35(\$480,000)+0.65(\$260,000) = \$337,000

Expected payoff based on EV = \$260,000

EVPI = |\$337,000 - \$260,000| = \$77,000 (Equal to ER)

(Decision: John should accept the offer)

3. Decision Tree:

Property damage from seeding is lower.

4. Decision Tree:

Decision: Sell at beginning of Year 1

5.

6.

Path	Length	Slack
1-2-3-8-9	3+7+9+3 = 22	30 - 22 = 8
1-2-3-7-8-9	3+7+7+7+3 = 27	30 - 27 = 3
1-2-4-5-6-7-8-9	3+5+3+4+3+7+3 = 28	30 - 28 = 2
1-2-4-5-7-8-9	3+5+3+8+7+3 = 29	30 - 29 = 1

1-2-4-5-8-9	3+5+3+8+3 = 22	30 - 22 = 8
1-2-5-6-7-8-9	3+9+4+3+7+3 = 29	30 - 29 = 1
1-2-5-7-8-9	3+9+8+7+3 = 30	30 - 30 = 0
1-2-5-8-9	3+9+8+3 = 23	30 - 23 = 7

(1) Critical path: 30

(2) Critical activities: 1-2-5-7-8-9

(3) 30 weeks

(4) See aforementioned chart for answers

(5) Yes, Activity I is a critical activity; any delays to a critical activity will lengthen the project duration

(6) No, Activity L is not a critical activity; any delays to a noncritical activity won't lengthen the project duration

7.

Critical Activities: A (1-2), D (2-5), G (5-7)

Critical Path: 1-2-5-7 Project Duration: 22 days

```
8.
```

(1)

Minimize Z = XJ

Subject to:

XA = 0

 $XB-XA \ge 0$

 $XC-XB \ge 0$

 $XD-XA \ge 0$

 $XE-XC \ge 0$

 $XF-XE \ge 0$

 $XG-XD \ge 0$

 $XH-XE \ge 0$

 $XI-XH \ge 0$

 $XI-XG \ge 0$

 $XJ-XF \ge 0$

 $XJ-XI \ge 0$

 $XA, \dots, XJ \ge 0$

(2) .

(3) Yes, the project durations match for both methodologies