

VGUMACHINE LEARNING

YOUR COMPANY

CLIENT

Team members

⁰¹ Thái Hoàng Tâm

Dinh Minh Hoàng

⁰³ Huỳnh Minh Triết

Agenda –

on Introduction

02 Methodology

03 Experiment

04 Q&A

Introduction

Dire situation

Traffic jam in Saigon has always been a serious issue.

1000

daily registeration

source:

https://www.baogiaothong.vn/t
phcm-moi-ngay-hon-1000phuong-tien-dang-ky-moid568127.html

Level 6

traffic density

source:

https://tienphong.vn/qua-taigiao-thong-o-tphcm-da-onguong-nguy-hiempost1473821.tpo

207M+

sale of vehicle as of Dec 2021

source:

https://www.ceicdata.com/en/i ndicator/vietnam/motorvehicle-sales-passenger-cars

Problem Statement

A way to catergorize and create quick data for surverys. Which means the following requirement

Cheap

The model should require little to no computational cost, so that it can reliably run on any device.

Ease of usage

Minimal design so that anyone can use it

Modes

The project includes different mode to handle different situation.

Real time mode

Run with a phone connected via QR

Website

locally hosted

Website with Real-ESRGAN

Upscalled using Real-ESRGAN

Methodology

Details

How our team working to make the final system

System design

Challenges

Data collection and Processing

System design

Challenges

Data source

- Kaggle 433 (images)
- Various machine learning forum - 3692
- Capture on road 17
- From various websites 20

Detect license

- How many images are needed
- Condition of the images

OCR

 What library to use (easyOCR vs pytesseract)

Tools

labellmg

- Use Python
- Easy to use, download
- Can convert
 different label
 format to Yolov5

Change label format

labellmg + pyautogui

- Data from Kaggle is in xml format
- Yolov5 need txt format
- Pyautogui save time by clicking button

```
while(true):
    keyboard.press('d')
    pyautogui.click(x=57, y=519)
    keyboard.press(' ')
```

Next image

Click change format button

Save label

Auto label

labellmg + bash script

- Use model trained on 2000 images to label 2000 new images
- All new images only has one license
- Use bash script to detect label that have more than one license

Experiments

Benchmark

Detection Percentage

The number of license detected in an image

False Positive

The number of license falsely detected in an image

mAP (mean Average Precision)

Average Precision is calculated as the weighted mean of precisions at each threshold

Average Runtime

Average time to detect licenses in an image

mAP Benchmark

There is a total of 4000 train images and 148 validation images

	Average mAP	Best mAP
Small - Yolov5s	0.7452764	0.78473
Medium - Yolov5m	0.7263648	0.76881
Large - Yolov5l	0.7714684	0.80372

Two Categories of Validation Data: Simple & Hard

Simple

Easy to detect licenses
Small amount of licenses

Hard

Hard to detect licenses
Larger amount of licenses

Benchmark

There is a total of 52 license plates in 18 simple images and 5 hard images

	Detected Licenses	Falsely Detected Licenses	Detection Percentage	Average Run Tlme
Small - Yolov5s	42/52	4	80.77%	143.01
Medium - Yolov5m	37/52	1	71.15%	323.53
Large - Yolov5l	42/52	4	80.77%	634

Benchmark of Small and Hard Model

There is a total of 52 license plates in 18 simple images and 5 hard images

	Validation Category	Detected Licenses	Falsely Detected Licenses	Detection Percentage
Small - Yolov5s	Simple	23/24	1	95.83%
	Hard	20/29	3	68.97%
Large - Yolov5l	Simple	22/24	1	91.67%
	Hard	21/29	3	72.41%

Benchmark Summary

	Conclusion from Benchmark	Application
Small - Yolov5s	stuggles with hard images	suitable for low-end hardware and detection image is simple
Medium - Yolov5m	has low false detection but also low detection percentage	suitable when false detection is not tolerable
Large - Yolov5l	sometimes struggles with simple images	suitable for high-end hardware and detection image is complex

Q&A —

