Уменьшение эффективной размерности пространства

Алексей Романенко , alexromsput@gmail.com, Анастасия Зухба, а I@mail.ru

апрель 2017

Задачи обучения без учителя

Задача кластеризации:

 X^{ℓ} — признаковое описание объектов Y — отсутствует $f_j\colon X o D_j, \ j=1,\dots,n$ — признаки объектов (features).

Типы признаков:

- $D_j = \{0,1\}$ бинарный признак f_j ;
- $|D_j| < \infty$ номинальный признак f_j ;
- ullet $|D_j| < \infty$, D_j упорядочено *порядковый* признак f_j ;
- ullet $D_j=\mathbb{R}$ количественный признак f_j .

Вектор $(f_1(x), \dots, f_n(x))$ — признаковое описание объекта x.

Матрица «объекты-признаки» (features data)

$$F = \|f_j(x_i)\|_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}$$

Задачи обучения без учителя

Типы задач без учителя:

- Кластеризация
- Поиск правил ассоциации
- Сокращение размерности
- Визуализация данных

Примеры задач

Кластеризация

Примеры задач

Feature Extraction

Примеры задач

Снижение размерности

Почему большая размерность признакового пространства - это плохо?

Почему большая размерность признакового пространства - это плохо?

Мультиколлинеарность

Почему большая размерность признакового пространства - это плохо?

Проклятие размерности

Почему большая размерность признакового пространства - это плохо?

Неинтерпретируемость

Многомерная линейная регрессия

 $f_1(x), \ldots, f_n(x)$ — числовые признаки;

Модель многомерной линейной регрессии:

$$f(x,\alpha) = \sum_{j=1}^{n} \alpha_j f_j(x), \qquad \alpha \in \mathbb{R}^n.$$

Матричные обозначения:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}, \quad y_{\ell \times 1} = \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix}, \quad \alpha_{n \times 1} = \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix}.$$

Функционал квадрата ошибки:

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i)^2 = \|F\alpha - y\|^2 \to \min_{\alpha}.$$

Нормальная система уравнений

Необходимое условие минимума в матричном виде:

$$\frac{\partial Q}{\partial \alpha}(\alpha) = 2F^{\mathsf{T}}(F\alpha - y) = 0,$$

откуда следует нормальная система задачи МНК:

$$F^{\mathsf{T}}F\alpha = F^{\mathsf{T}}y,$$

где $F^{\mathsf{\scriptscriptstyle T}}_{n \times n} F$ — ковариационная матрица набора признаков f_1, \dots, f_n .

Решение системы:
$$\alpha^* = (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}y = F^+y$$
.

Значение функционала:
$$Q(\alpha^*) = \|P_F y - y\|^2$$
,

где
$$P_F = FF^+ = F(F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}$$
 — проекционная матрица.

Сингулярное разложение

Произвольная $\ell \times n$ -матрица представима в виде сингулярного разложения (singular value decomposition, SVD):

$$F = VDU^{\mathsf{T}}$$
.

Основные свойства сингулярного разложения:

- ① $\ell \times n$ -матрица $V = (v_1, \dots, v_n)$ ортогональна, $V^{\mathsf{T}}V = I_n$, столбцы v_i собственные векторы матрицы FF^{T} ;
- ② $n \times n$ -матрица $U = (u_1, \dots, u_n)$ ортогональна, $U^{\mathsf{T}}U = I_n$, столбцы u_j собственные векторы матрицы $F^{\mathsf{T}}F$;
- $n \times n$ -матрица D диагональна, $D = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$, $\lambda_i \geqslant 0$ собственные значения матриц $F^{\mathsf{T}}F$ и FF^{T} .

Решение МНК через сингулярное разложение

Псевдообратная F^+ , вектор МНК-решения α^* , МНК-аппроксимация целевого вектора $F\alpha^*$:

$$F^{+} = (UDV^{\mathsf{T}}VDU^{\mathsf{T}})^{-1}UDV^{\mathsf{T}} = UD^{-1}V^{\mathsf{T}} = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} v_{j}^{\mathsf{T}};$$

$$\alpha^{*} = F^{+}y = UD^{-1}V^{\mathsf{T}}y = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} (v_{j}^{\mathsf{T}}y);$$

$$F\alpha^{*} = P_{F}y = (VDU^{\mathsf{T}})UD^{-1}V^{\mathsf{T}}y = VV^{\mathsf{T}}y = \sum_{j=1}^{n} v_{j} (v_{j}^{\mathsf{T}}y);$$

$$\|\alpha^{*}\|^{2} = \|D^{-1}V^{\mathsf{T}}y\|^{2} = \sum_{j=1}^{n} \frac{1}{\lambda_{j}} (v_{j}^{\mathsf{T}}y)^{2}.$$

Если имеются $\lambda_j o 0$, то

• МНК-решение α^* неустойчиво и неинтерпретируемо: $\|\alpha\| \to \infty$;

- ullet ответы на новых объектах $y' = F' \alpha^*$ неустойчивы;
- в то время как на обучении, казалось бы, «всё хорошо»: $Q(\alpha^*) = \|F\alpha^* y\|^2 \to 0;$
- мультиколлинеарность влечёт переобучение.

Если имеются $\lambda_j o 0$, то

- МНК-решение α^* неустойчиво и неинтерпретируемо: $\|\alpha\| \to \infty$;
- ullet ответы на новых объектах $y' = F' \alpha^*$ неустойчивы;
- в то время как на обучении, казалось бы, «всё хорошо»: $Q(\alpha^*) = \|F\alpha^* y\|^2 \to 0;$
- мультиколлинеарность влечёт переобучение.

Три стратегии устранения мультиколлинеарности:

Если имеются $\lambda_j o 0$, то

- МНК-решение α^* неустойчиво и неинтерпретируемо: $\|\alpha\| \to \infty$;
- ullet ответы на новых объектах $y' = F' \alpha^*$ неустойчивы;
- в то время как на обучении, казалось бы, «всё хорошо»: $Q(\alpha^*) = \|F\alpha^* y\|^2 \to 0;$
- мультиколлинеарность влечёт переобучение.

Три стратегии устранения мультиколлинеарности:

ullet Регуляризация: $\| \alpha \| o \min$;

Если имеются $\lambda_j o 0$, то

- МНК-решение α^* неустойчиво и неинтерпретируемо: $\|\alpha\| \to \infty$;
- ответы на новых объектах $y' = F'\alpha^*$ неустойчивы;
- в то время как на обучении, казалось бы, «всё хорошо»: $Q(\alpha^*) = \|F\alpha^* v\|^2 \to 0$:
- мультиколлинеарность влечёт переобучение.

Три стратегии устранения мультиколлинеарности:

- Регуляризация: $\|\alpha\| \to \min$;
- ullet Отбор признаков: $f_1, \dots, f_n o f_{j_1}, \dots, f_{j_m}, \ m \ll n.$

Если имеются $\lambda_j o 0$, то

- МНК-решение α^* неустойчиво и неинтерпретируемо: $\|\alpha\| \to \infty$;
- ответы на новых объектах $y' = F'\alpha^*$ неустойчивы;
- в то время как на обучении, казалось бы, «всё хорошо»: $Q(\alpha^*) = \|F\alpha^* y\|^2 \to 0;$
- мультиколлинеарность влечёт переобучение.

Три стратегии устранения мультиколлинеарности:

- Регуляризация: $\|\alpha\| \to \min$;
- Отбор признаков: $f_1, \ldots, f_n \to f_{j_1}, \ldots, f_{j_m}, \ m \ll n$.
- Преобразование признаков: $f_1, \ldots, f_n \to g_1, \ldots, g_m$, $m \ll n$;

Метод главных компонент: постановка задачи

PCA visalisation: http://setosa.io/ev/principal-component-analysis/

Метод главных компонент: постановка задачи

$$f_1(x), \dots, f_n(x)$$
 — исходные числовые признаки; $g_1(x), \dots, g_m(x)$ — новые числовые признаки, $m \leqslant n$;

Требование: старые признаки должны линейно восстанавливаться по новым:

$$\hat{f}_j(x) = \sum_{s=1}^m g_s(x)u_{js}, \quad j=1,\ldots,n, \quad \forall x \in X,$$

как можно точнее на обучающей выборке x_1, \ldots, x_ℓ :

$$\sum_{i=1}^{\ell} \sum_{j=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} \to \min_{\{g_{s}(x_{i})\}, \{u_{js}\}}$$

PCA

Матрицы «объекты-признаки», старая и новая:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}; \quad G_{\ell \times m} = \begin{pmatrix} g_1(x_1) & \dots & g_m(x_1) \\ \dots & \dots & \dots \\ g_1(x_\ell) & \dots & g_m(x_\ell) \end{pmatrix}.$$

Матрица линейного преобразования новых признаков в старые:

$$U_{n\times m} = \begin{pmatrix} u_{11} & \dots & u_{1m} \\ \dots & \dots & \dots \\ u_{n1} & \dots & u_{nm} \end{pmatrix}; \qquad \hat{F} = GU^{\mathsf{T}} \overset{\mathsf{XOTUM}}{\approx} F.$$

Найти: и новые признаки G, и преобразование U:

$$\sum_{i=1}^{\ell} \sum_{j=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} = \|GU^{\mathsf{T}} - F\|^{2} \to \min_{G,U},$$

Основная теорема метода главных компонент

Теорема

Если $m \leqslant \operatorname{rk} F$, то минимум $\|GU^{\mathsf{T}} - F\|^2$ достигается, когда столбцы U — это с.в. матрицы $F^{\mathsf{T}}F$, соответствующие m максимальным с.з. $\lambda_1, \ldots, \lambda_m$, а матрица G = FU.

При этом:

- lacktriangle матрица U ортонормирована: $U^{\mathsf{T}}U = I_m$;
- $oldsymbol{Q}$ матрица G ортогональна: $G^{\mathsf{T}}G = \Lambda = \mathrm{diag}(\lambda_1, \ldots, \lambda_m)$;
- **3** $U\Lambda = F^{\mathsf{T}}FU$; $G\Lambda = FF^{\mathsf{T}}G$;

Три интерпретации метода РСА

 найти подпространства меньшей размерности, в ортогональной проекции на которые разброс данных (то есть среднеквадратичное отклонение от среднего значения) максимален;

Три интерпретации метода РСА

- **①** ..
- найти подпространства меньшей размерности, в ортогональной проекции на которые среднеквадратичное расстояние между точками максимально;

Три интерпретации метода РСА

- **①** .
- 2 ..
- построить такое ортогональное преобразование координат, в результате которого корреляции между отдельными координатами обратятся в нуль.

Связь с сингулярным разложением

Если взять m = n, то:

- ② представление $\hat{F} = GU^{\mathsf{T}} = F$ точное и совпадает с сингулярным разложением при $G = V\sqrt{\Lambda}$:

$$F = GU^{\mathsf{T}} = V\sqrt{\Lambda}U^{\mathsf{T}}; \quad U^{\mathsf{T}}U = I_m; \quad V^{\mathsf{T}}V = I_m.$$

 \odot линейное преобразование U работает в обе стороны:

$$F = GU^{\mathsf{T}}; \quad G = FU.$$

Поскольку новые признаки некоррелированы ($G^{\mathsf{T}}G = \Lambda$), преобразование U называется декоррелирующим (или преобразованием Карунена–Лоэва).

Эффективная размерность выборки

Упорядочим с.з. $F^{\mathsf{T}}F$ по убыванию: $\lambda_1\geqslant\ldots\geqslant\lambda_n\geqslant0$.

Эффективная размерность выборки — это наименьшее целое m, при котором

$$E_m = \frac{\|GU^{\mathsf{T}} - F\|^2}{\|F\|^2} = \frac{\lambda_{m+1} + \dots + \lambda_n}{\lambda_1 + \dots + \lambda_n} \leqslant \varepsilon.$$

Критерий «крутого склона»: находим m: $E_{m-1}\gg E_m$:

Решение задачи НК в новых признаках

Заменим F на её приближение GU^{T} :

$$\|G\underbrace{U^{\mathsf{T}}_{\beta}}_{\beta} - y\|^2 = \|G\beta - y\|^2 \to \min_{\beta}.$$

Связь нового и старого вектора коэффициентов:

$$\alpha = U\beta; \qquad \beta = U^{\mathsf{T}}\alpha.$$

Решение задачи наименьших квадратов относительно β (единственное отличие — m слагаемых вместо n):

$$\beta^* = D^{-1}V^{\mathsf{T}}y = \sum_{i=1}^{m} \frac{1}{\sqrt{\lambda_j}} u_j(v_j^{\mathsf{T}}y);$$

$$G\beta^* = VV^{\mathsf{T}}y = \sum_{j=1}^{\mathbf{m}} v_j(v_j^{\mathsf{T}}y);$$

ProCons no PCA, SVD

- РСА помогает избавиться от "лишних"размерностей
- РСА строит оптимальное линейное преобразование
- РСА применим для больших размерностей
- существуют ядерные вариант PCA (KernelPCA)
- если требуется сложное нелинейное преобразование, РСА не работает
- не подходит для визуализации на двухмерной плоскости при большой размерности исходных пространств

ProCons по PCA, SVD

ProCons πο PCA, SVD

MNIST with PCA

ProCons по PCA, SVD

MNIST with PCA

t-SNE. Шаг первый.

 $x_1, \ldots x_N$ — точки (data points) в исходном пространстве \mathbb{R}^D . $z_1, \ldots z_N$ — точки (map points) в пространстве \mathbb{R}^2 .

Построение плотностей в изначальном пространстве:

$$p_{j|i} = \frac{\exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2 / 2\sigma_i^2)}$$

Это выражение показывает, насколько точка x_j близка к x_i , при гауссовом распределении вокруг x_i с заданной дисперсией σ_i^2 . Дисперсия различна для каждой точки.

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$$

t-SNE. Шаг второй.

Построение приближения в пространстве меньшей размерности:

$$q_{ij} = \frac{(1 + ||z_i - z_j||^2)^{-1}}{\sum_{k \neq m} (1 + ||z_k - z_m||^2)^{-1}}$$

Минимизируется расстояния Кульбака-Лейблера:

$$\mathit{KL}(P||Q) = \sum_{i \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

Градиент может быть вычислен аналитически:

$$\frac{\partial KL(P||Q)}{\partial z_i} = 4\sum_i (p_{ij} - q_{ij})g(|x_i - x_j|)u_{ij}$$

где
$$g(z) = \frac{z}{1+z^2}$$
; u_{ij} – единичный вектор от z_j к z_i .

tSNE for MNIST

MNIST with tSNE

A t-SNE plot of MNIST

Demo see here http://colah.github.io/posts/2014-10-Visualizing-MNIST/

Multi-dimensional Scaling

Многомерное масштабирование (Multidimensional scaling, MDS) пытается моделировать сходство данных как расстояния в геометрических пространствах.

MDS ищет для данных представление низкой размерности максимально учитывая расстояния в изначальном многомерном пространстве.

- Метрический вариант: приближает или сохраняет расстояния.
- Неметрический вариант: приближает или сохраняет порядок расстояний.

MDS for MNIST

MNIST with MDS

See demo here http://colah.github.io/posts/2014-10-Visualizing-MNIST/

Заключение по tSNE

PRO tSNE:

- отлично визуализируют (2D, 3D) данные
- испольюзуются для предобрабтки данных, анализа структуры данных see here http://distill.pub/2016/misread-tsne/

•

Cons tSNE:

- стохастичность (РСА детерминирован)
- интерпретируемость данных
- не применим (сложно применим) для новых данных
- не даёт ответ об оптимальной размерности пространства

Обратная связь

Отзывы о прошедших лекциях и семинарах можно и нужно оставлять здесь:

https://docs.google.com/forms/d/e/1FAIpQLSdefy8neFtoxDIXD3toHi3fV23APTRj-GuTX8wtAJahQ/viewform?c=0w=1