BEST AVAILABLE COPY

pSPE2 CLONE OF THE cDNA

FIG. 5

•				
	90 100 100 III PVUII ALUI DDEI	190 ATAATACCCGCTGCTTG BBVI ' FNU4HI TH1111II	280 300 CTGGGTGCCTGCTAGACTCTCA PYI BSP1286 MAEI HPHI BSTNI HINFI ECORII SCRFI	FIG.6
•	70 CAGGGCAGGAAGTAACT MAEIII	170 CCTCATATTCTCTGT. MNLI	ACGGATGAGCCTGGGT APYI BS: BSTNI ECORII SCRFI BAN	370 GCTGCAGTAGAAGCA LUI BBVI FNU4H1
	40 80 90 100 GTTAAAGGACAGGAACTATACTTGGTCAGGGCAGGAAGTAACTAAC	110 120 130 140 150 160 200 ACTGCAGGGACTTTCCAGAAGGGCTGTAACCAAGGGACATGGGAGGAGCTGGTGGGGAACGCCTCATATTCTCTGTATAATATACCCGCTGCTTG PSTI MAEIII MNLI NLAIII ALUI MNLI FNU4HI STYI MNLI ALUI TAIII	210 220 230 240 250 260 270 280 290 300 CATTGTACTTCAGTCGCAGAGAGCTGGCAGATTGAGCCCTGGAGGATCTCTCCAGCACTAGACGCTGGCTG	310 320 330 340 350 360 370 380 CCAGCACTTGCCTGCTTAATAAACCTGCCGCAGTAGAAGCAAAACCTTTGCCTGCTGCAGTAGAAGCAAAACCTTTGCCTGCTGCAGTAGAAGCAAAGCAAAACCTTAATAAAAACTGCAGTAGAAGCAAAAACCTTAATAAAAAAAA
	10 20 30 40 GTGGAAGGCGAGACTGAAAGCAAGAATACCATTTAGTTAA MNLI	120 JAAGGGGCTGTAACCAAGGGAGGGAG MAEIII MNLI N STYI	CTGCGGAGAGCTGGCAGATTGAGCCC CTGCGGAGAGCTGGCAGATTGAGCCC MNLI BANII BSP128 APY APY APY SCI	330 340 SAU96A SAU96A
	10 GTGGAAGGCGAGACTGA <i>l</i>	ACTGCAGGGACTTTCCAG	210 CATTGTACTTCAGTCGC RSAI	310 CCAGCACTTGGCCGGTG HAEIII HAPII MSPI

FIG.7A

FIG.7B

③ 0 0 9 0 0 တ 0 ∞ o ∏⊡⊡—tat— 0 ည[သ[0 9 0 0]w]4 lod 0 Tm-3 © © LTR gag Tm-42 Tm-20 FRAGMENT HIV -1-FRAGMENT HIV -2-Tm-3

Ģ.