Homework 1

Mark Schulist

1) 1.1

$$r \in \mathbb{Q} \quad x \notin \mathbb{Q}$$
 (1)

Show r + x and $r \cdot x$ are not rational.

Proof. Suppose $r + x \in \mathbb{Q}$, where $r = \frac{p}{q}$

$$\frac{p}{q} + x = \frac{a}{b}$$

$$\Rightarrow x = \frac{a}{b} + \frac{p}{q}$$

$$\Rightarrow x = \frac{aq - pb}{bp} \quad \mbox{$\mbo$$

This contradicts assumption that x is not rational, hence $r + x \notin \mathbb{Q}$.

Suppose $r \cdot x \in \mathbb{Q}$, with $r = \frac{p}{q}$.

Contradicts assumption that x is not rational, hence $r \cdot x \notin \mathbb{Q}$.

2) 1.2

Show $\nexists r \in \mathbb{Q}$ such that $r^2 = 12$.

Proof. Let $r = \frac{p}{q}$.

$$\frac{p^2}{q^2} = 12$$

$$p^2 = 12q^2$$
(4)

We can see that 3 must divide both the LHS and RHS, so $3|p^2 \Longrightarrow 3|p$.

Therefore, we can write p = 3a.

$$9a^2 = 12q^2$$

$$\Rightarrow 3a^2 = 4q^2$$
(5)

Now we can see that $3|3a^2$ so 3 must divide q. But then if 3 divides q and p, the quotient cannot be in lowest terms. \mathsection

Hence, there does not exists a $r \in \mathbb{Q}$ with $r^2 = 12$.

3) 1.4

E is nonempty subset of ordered set.

 α is lower bound of E

 β is upper bound of E

Show $\alpha \leq \beta$

Proof.

$$\alpha \le p \forall p \in E
\beta \ge p \forall p \in E$$
(6)

Therefore if we combine the inequalities:

$$\alpha \le p \forall p \in E \le \beta$$

$$\implies a \le \beta \tag{7}$$

4) 1.5

A nonempty subset of \mathbb{R} , bounded below.

$$-A = \{-x \mid x \in A\}$$

Show that $\inf A = -\sup(-A)$.

Proof. Suppose $y \le x \forall x \in A$, and y is a lower bound of A.

Then
$$-y \ge -x \forall -x \in (-A)$$

So -A is bounded above by -y which is $-\inf(A)$

So:

$$-\inf(A) = \sup(-A)$$

$$\inf(A) = -\sup(-A)$$
(8)