پروژه صفر

پرکردن نواقص یک دیتاست با پیشبینی آن ها به کمک تحلیل آماری

سينا سليميان

810197528

توضیح کلی پروژه:

در این پروژه dataset ای مربو به 205 خودرو به ما داده شده است که شامل انواع مختلف خودرو و اطلاعاتی منحصر به فرد برای هر کدام می باشد. برخی از این اطلاعات برای برخی از خودرو ها نا موجود می باشد از جمله قیمت خودرو. هدف ما تخمین قیمت احتمالی این خودرو ها می باشد که این کار را با سایر اطلاعات موجود از آن خودرو می خواهیم انجام دهیم.

بخش اول: داده ی ورودی ما یک فایل با پسوند CSV است که در ابتدای کار آن را خوانده و به کمک کتابخانه pandas در یک Data Frame ذخیره می کنیم.

Head: 5 داده ی اول در آرایه

Tail: 5 داده ی آخر در آرایه

count :Describe (تعداد داده های غیر NA/null)

max (ماکسیمم داده در آن ستون)

min (مینیمم داده در آن ستون)

std (انحراف معيار)

25%: چارک اول

50%: چارک دوم(میانه)

75%: چارک سوم

بخش دوم: با استفاده از تابع info نوع هر داده (ستون ها) مشخص می شود. برای داده ی fueltype، به کمک تابع replace، مقدار gas را با 0 و diesel را با 1 جایگذاری می کنیم و همچنین برای ستون دادی تغییر می دهیم.

برای ستون CarName، چون تنوع خودرو ها زیاد است، به جای استفاده از replace، از Label، از Label اورای ستون Encoding استفاده می کنیم. در این تکنیک، به هر نوع جدید از خودرو یک id جدید نسبت داده می شود و به این صورت به جای کار با نام خودرو ها، با id آن ها کار می کنیم.

بخش سوم: به کمک تابع ()isna تعداد داده های Nan هر ستون را بدست می آوریم و به کمک تابع ()fillna این مقادیر را با ()mean. پر می کنیم.

مزایا: باعث می شود میانگین کلی داده ها تغییری نکند و بتوان با احتمال خوبی از آن داده در صورت نیاز استفاده کرد و همچنین اگر بتوانیم

مقدار Nan را پر کنیم، از سایر ویژگی های دقیق خودرو نیز می توانیم استفاده کنیم و بی استفاده نمی شوند.

معایب: به دلیل دقیق نبودن داده ی مورد نظر، ممکن است از آن داده به عنوان داده دقیق استفاده کرد و این استفاده برایمان مشکل ساز شود. می دانیم اگر میانگین چند عدد را داشته باشیم بی نهایت حالت برای اعداد وجود خواهد داشت و ممکن است تفاوت میان آن ها خیلی کن و خیلی زیاد باشد.

به کمک تابع ()dropna سطر هایی که قیمت آن ها Nan می باشد را جدا می کنیم و در Nan علی کنیم و در DataFrame

بخش چهارم: به کمک تابع ()value_counts تعداد خودرو برای هر cilyndernumber را پیدا می کنیم.

بخش پنجم: با فیلتر کردن داده ها به کمک عملیات های Boolean ای به تعداد 3 خودرو با Poolean بخش پنجم: با فیلتر کردن داده ها به کمک عملیات های 75,474 اینجم.

	car _ID	Car Nam e	fuel typ e	carle ngth	car widt h	carh eight	curb weig ht	cylinder number	engin esize	horse power	city mp g	highw aympg	pric e
4 9	50	50	0	191. 7	70.6	47.8	3950	12	326.0 00000	262.0 00000	13	17	360 00. 0
7	74	18	0	208. 1	71.7	56.7	3900	8	125.4 18848	105.7 47253	14	16	409 60. 0
7 4	75	21	0	199. 2	72.0	55.4	3715	8	304.0 00000	184.0 00000	14	16	454 00. 0

بخش ششم: داده ها را با تابع ()eq فيلتر مي كنيم و سپس ()mean را روى price آن ها صدا مي زنيم.

gas mean: 13170.738957831325
diesel mean: 15326.894736842105
time is: 0.01123046875

بخش هفتم: به کمک حلقه ی for قیمت خودرو ها را با یکدیگر جمع کرده و تقسیم بر تعدادشان می کنیم تا میانگین بدست آید.

gas mean: 13170.738957831325
diesel mean: 15326.894736842105
time is: 0.034984588623046875

با تقسیم زمان اجرای دو بخش بر یکدیگر متوجه می شویم که در حالتی که از vrctorization استفاده می کنیم. کنیم، سرعت 3.1 برابر حالتی است که از حلقه for استفاده می کنیم.

Speed difference: 3.1x

بخش هشتم: به کمک تابع ()hist نمودار توزیع هر ویژگی را نشان می دهیم. به کمک این نمودار می توان میزان پراکندگی داده ها را در یک ویژگی مشخص مشاهده کرد و یک تجسمی از فراوانی داده ها و میانگین آن ها یبدا کرد.

در آخر ستون های fueltype و CarName را که مقدار عددی ندارند، از data حذف می کنیم. و در NewData خیره می کنیم.

بخش نهم: میانگین و انحراف معیار را با ()mean و ()std پیدا کرده و قیمت ها را نرمال سازی می کنیم.

```
0.012484
0
1
       0.377353
2
       0.377353
       0.067731
5
       0.225577
       0.419243
200
201
       0.686368
       0.982634
202
203
       1.102234
       1.121054
204
```

بخش دهم: برای پیدا کردن ویژگی با بیشترین همبستگی، نمودار های هر ویژگی را رسم می کنیم تا بتوانیم بهتر مقایسه کنیم.

با مقایسه ی ویژگی ها، مشاهده می کنیم که ویژگی enginesize به نسبت سایرین همبستگی بیشتری با قیمت دارد و نمودار آن خطی تر می باشد و می توانیم خطی فرضی میان داده ها داشته باشیم که داده ها از آن خط خیلی فاصله نداند و پراکندگی شان کمتر است.

بخش یازدهم: یک DataFrame جدید با دو ستون enginesize و price می سازیم(EnginePrice_df)

محاسبه teta_0 و teta_1 :

برای محاسبه شیب نمودار، اگر دقت کنیم می بینیم که کمترین داده و بیشترین داده روی خط فرضی قرار می گیرند که بین تمام داده ها می باشد. پس شیب بین این رو نقطه را حساب می کنیم و برابر با teta_1 قرار می دهیم.

teta_1 = (max price - min price)/(max enginesize - min enginesize)

 $teta_1 = 0.018456839711072422$

برای محاسبه ی teta_0 نقطه ی کوچکترین داده را داخل فرمول خط قرار می دهیم.

teta_0 = -teta_1 * (min enginesize) + (min price)

teta 0 = -2.130522934925918

بخش دوازدهم: تابع MSE را می سازیم تا میزان خطای تخمین تابع H_teta را محاسبه کنیم که می بینیم این مقدار برار 0.4 می باشد.

بخش سیزدهم: برای مقایسه تابع تخمین گر و مقادیر واقعی قیمت بر حسب enginesize، آن ها را در یک نمودار رسم می کنیم و می بینیم که تقریبا در یک راستا قرار دارند و نزدیک به یکدیگر هستند و تابع خوبی برای تخمین قیمت می باشد.

بخش چهاردهم: حال که از دقت تابع مورد نظرمان مطمین شدیم، می توانیم از آن در تخمین قیمت های Nan_prices

car_ID	price
5	16518.566038
30	19558.716981
32	9830.233962
53	9678.226415
54	9678.226415
60	14390.460377
63	14390.460377
68	23662.920755
79	9830.233962
85	19558.716981
88	12566.369811
89	12566.369811
105	23358.905660
124	14390.460377
137	14910.151101
138	14238.452830
142	12262.354717
150	12262.354717
182	20318.754717
190	12414.362264

نتیجه: به کمک داده هایی که همبستگی خوبی با داده های مطلوب دارند، می توان با توجه به سوابق گذشته، داده مطلوب را تخمین زد.

منابع:

Geeksforgeeks.com Stackoverflow.com numpy.org pandas.pydata.org matplotlib.org