Jigsaw-Unintended-Bias-in-Toxicity-Classification-solution

Pengcheng Jiang

JiLin University

2021-07-17

Overview

Problem Definition

Text preprocessing

Embedding

moudle

Text preprocessing

Embedding

moudle

Problem Definition

Jigsaw-Unintended-Bias-in-Toxicity-Classification-solution

Problem Definition
Text preprocessing
Embedding

given	A tagged dataset containing comments. Target 0 for malicious com-
	ments and 1 for friendly comments.
target	detect toxic comments and minimize unintended model bias.
evaluate	ACC.

Train

id	target	comment_text
	9848 0.000000	This is so cool. It's like, 'would you want yo
9849	0.000000	Thank you!! This would make my life a lot less
852	0.000000	This is such an urgent design problem; kudos t

Text preprocessing

Embedding

moudle

Text preprocessing

Text preprocessing

- Count the total number of words contained in all texts, the maximum and minimum number of words contained in a text
- Check for missing data
- Change abbreviations to full:isn't -> is not(via dictionnary)
- clean_numbers
- Find all non alphabetic characters and clean_special_chars
- Solve the problem of misspelling words
- lower

Text preprocessing

Problem Definition

Text preprocessing

Embedding

comment_text	comment_text
This is so cool.	this is so cool it
It's like, 'would	is like would
you want yo	you want y
Thank yould	thank you this
This would	would make
make my life a	my life a lot
lot less	less
This is such an	this is such an
urgent design	urgent design
problem;	problem kudos
kudos t	t
Is this	is this
something I'll	something I
be able to	will be able to
install on m	install on
haha you guys	haha you guys
are a bunch of	are a bunch of
losers.	losers

Text preprocessing

Embedding

moudle

Embedding

Tokenizer

concept	What tokenizer does is actually very simple. It divides the words it
	sees into spaces, and then uses numbers to correspond one by one.
	Then we take the first num_ Words is the word with the highest
	frequency, others are not recognized.
	First learn the dictionary of the text, and then get the correspond-
Instruction	ing relationship between words and numbers, and then convert the
	text into a number string through this relationship, and then use
	the padding method to make up the number string to the same
	degree, then you can proceed to the next step: embedding
Method	collections.counter,pytorch:torchtext.vocab,

Embedding

Instruction	The embedding layer is the same as word2vec. Whether it is skip
	gram or cbow model, they infer each other from the context and the
	current, so we consider the relationship between the preceding and
	the following.
Method	glove.42B.300d.txt

Text preprocessing

Embedding

moudle

LSTM

Ingtructiv	BiRNN:In practical problems, there are also problems that not only
	rely on the previous sequence, but also rely on the subsequent se-
	quence for prediction. For those problems, we need to use bidirec-
	tional RNN (birnn)
setting	embed_size, num_hiddens, num_layers = 300, 100, 2

LSTM

Problem Definition

Text preprocessing

Embedding

Birnn

Problem Definition

Text preprocessing

Embedding

Result

Problem Definition

Text preprocessing

Embedding

moudle

acc: 0.9468