

卷積神經網路 Convolutional Neural Network &

電腦視覺 Computer Vision Part1

林彥宇 & 教研處

「版權聲明頁」

本投影片已經獲得作者授權台灣人工智慧學校得以使用於教學用途,如需取得重製權以及公開傳輸權需要透過台灣人工智慧學校取得著作人同意;如果需要修改本投影片著作,則需要取得改作權;另外,如果有需要以光碟或紙本等實體的方式傳播,則需要取得人工智慧學校散佈權。

本日課程內容

本日課程:

- 1. 電腦視覺入門
- 2. CNN原理與介紹

延伸閱讀 (Optional):

- 1. Before LeNet
- 2. CNN Application
- 3. OpenCV

本次課程結束後你(妳)應該會什麼?

軟實力

- 了解 Convolution (卷積) 背後的原理及為何其有效
- 了解Filter的工作原理與技法

• 硬底子

- 如何用 TensorFlow 寫出基本的 CNN
- (optional)使用OpenCV來進行圖片的前處理

Code / Data 放在 hub 中的 courses 內

- 為維護課程資料, courses 中的檔案皆為 read-only, 如需修改請 cp 至自身的環境中
- ●打開 terminal, 輸入
 - cp -r courses-tpe/CVCNN/part1/ <存放至本機的名稱>

電腦視覺入門

Computer Vision

What's a picture?

243	239	240	225	206	185	188	218	211	206	216	225
242	239	218	110				152	213	206	208	221
243	242	123		94	82	132	77	108	208	208	215
235	217	115	212	243	236	247	139	91	209	208	211
233	208	131	222	219	226	196	114	74	208	213	214
232	217	131	116	77	150	69			201	228	223
232	232	182	186	184	179	159	123	93	232	235	235
232	236	201	154	216	133	129	81	175	252	241	240
235	238	230	128	172	138			234	249	241	245
237	236	247	143		78		94	255	248	247	251
234	237	245	193			115	144	213	255	253	251
248	245	161	128	149	109	138	65		156	239	255
190	107		102	94		114					137
			148	168	203	179					
			160	255	255	109					

What's a picture?

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(x, y) =$$

243	239	240	225	206	185	188	218	211	206	216	225
242	239	218	110				152	213	206	208	221
243	242	123		94	82	132	77	108	208	208	215
235	217	115	212	243	236	247	139	91	209	208	211
233	208	131	222	219	226	196	114	74	208	213	214
232	217	131	116	77	150	69			201	228	223
232	232	182	186	184	179	159	123	93	232	235	235
232	236	201	154	216	133	129	81	175	252	241	240
235	238	230	128	172	138			234	249	241	245
237	236	247	143		78		94	255	248	247	251
234	237	245	193			115	144	213	255	253	251
248	245	161	128	149	109	138	65	47	156	239	255
190	107		102	94		114					137
			148	168	203	179					
			160	255	255	109					

255	230	205
180	155	115
80	40	0

GRAYSCALE

Intensity

What's a picture?

Channels

	GRAYSCALE	
255	230	205
180	155	115
80	40	0

GRAY = 1 SET OF DIGITS							
11111111	11100110	11001101					
10110100	10011011	01110011					
01010000	00101000	00000000					

	NUMBERS							
R 255	R 102	R 51						
G (G 102	G 204						
В (B 255	B 153						
R 255	R 255	R 51						
G 255	G 0	G 204						
B 102	B 204	B 255						
R 51	R 51	R 255						
G 51	G 51	G 153						
В (B 153	B 153						

'RGB'	= 3 SETS OF I	DIGITS
11111111	01100110	00110011
00000000	01100110	11001100
00000000	11111111	10011001
11111111	11111111	00110011
11111111	00000000	11001100
01100110	11001100	11111111
00110011	00110011	11111111
00110011	00110011	10011001
00000000	10011001	10011001

Grayscale

f(x,y) = [R(x,y), G(x,y), B(x,y)]

RGB 3 channels (not layers)

CV methods

Pixel by pixel

Edge

Kernel

150	150	150	180	250	250	30	120	150	150	Filter	-1	0	1	
150	150	150	180	250	250	30	120	150	150	or	-1	0	1	
150	150	150	180	250	250	30	120	150	150	Kernel	-1	0	1	
150	150	150	180	250	250	30	120	150	150		150	4 1 7	150.6	450
150	150	150	180	250	250	30	120	150	150) + 150 *) + 150 * í
150	150	150	180	250	250	30	120	150	150	+	150 * -	-1 + 1	50 * 0) + 150 * 1
150	150	150	180	250	250	30	120	150	150	240) + 250 *) + 250 * :
150	150	150	180	250	250	30	120	150	150			-) + 250 * 1

Convolution

10	10	10	0	0	0
10	10	10	- 0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

-1	0	1
-1	0	1
-1	0	1

*

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Different filters

Filters

Filters

original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Shift

original

0	0	0
0	0	1
0	0	0

Shifted left By 1 pixel

Blur(Mean filter)

original

$\frac{1}{9}$	1	1	1
	1	1	1
	1	1	1

Blur (with a box filter)

Sharpening

0	0	0
0	2	0
0	0	0

original

Sharpening filter

- Accentuates differences with local average

Sharpened

What does blurring take away?

Let's add it back:

Gaussian Filter

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
			0.097	
			0.059	
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

Constant factor at front makes volume sum to 1 (can be ignored, as we should re-normalize weights to sum to 1 in any case)

CNN的原理與介紹

理論講授01 - Self Introduction

理論講授02 - Conventional Approach v.s Deep Learning

理論講授03 - Neural Network

Before CNN

Ordinary Feedforward DNN with Image 將圖形轉換成一維向量 · Weight 數過多, 造成 training 所需時間太長 左上的圖形跟右下的圖形真的有關係嗎? 300×300×3 1000 27×10⁷ 300x300x3 Figure reference http://www.ettoday.net/dalemon/post/12934

What's this?

decode_predictions(preds, top=3)

```
[[('n02111889', 'Samoyed', 0.8701604),
('n02120079', 'Arctic_fox', 0.12416725),
('n02114548', 'white_wolf', 0.0036498504)]]
```


What's this?

decode_predictions(preds, top=3)

```
[[('n01531178', 'goldfinch', 0.99720144),
('n01537544', 'indigo_bunting', 0.0014747247),
('n01530575', 'brambling', 0.00056995713)]]
```

What's this?

decode_predictions(preds, top=3)

```
[[('n02787622', 'banjo', 0.99902868),
('n02676566', 'acoustic_guitar', 0.000544385),
('n03272010', 'electric_guitar', 0.0001290191)]]
```


Introduction to IMAGENET

- Large Scale Visual Recognition Challenge (ILSVRC)
- 1000 object classes
- 1,431,167 images

Olga Russakovsky Stanford U.)

Sean Ma (Stanford U.)

Jia Deng (U. of Michigan)

Jonathan Krause Alexander Berg (Stanford U.) (UNC Chapel Hill) (Stanford U.)

Fei-Fei Li

Variety of object classes in ILSVRC

DET

birds

bottles

cars

CLS-LOC

beer bottle wine bottle water bottle pop bottle . . .

race car

wagon

jeep

Deep Neural Networks

Human yields 5.1 % error!!

http://cs231n.stanford.edu/slides/winter1516_lecture8.pdf

7.3%

VGG (2014)

AlexNet (2012)

GoogleNet

(Slide Credit: Hung-Yi Lee)

2 Dimensional Inputs

• DNN 的輸入是一維的向量, 那二維的矩陣呢? 例如圖 形資料

Ordinary Feedforward DNN with Image

- 將圖形轉換成一維向量
 - Weight 數過多, 造成 training 所需時間太長
 - 左上的圖形跟右下的圖形真的有關係嗎? 300x300x3

Characteristics of Image

圖的構成:線條 → 圖案 (pattern)→物件 →場景

Line Segment

Pattern

Object

Scene

Figures reference http://www.sumiaozhijia.com/touxiang/471.html http://122311.com/tag/su-miao/2.html

Patterns

- 猜猜看我是誰
- 辨識一個物件只需要用幾個特定圖案

皮卡丘

小火龍

Patterns

- 猜猜看我是誰
- 甚至解析度不需要太高, 有輪廓也行!

Property 1: What

• 圖案的類型

Property 2: Where

• 重複的圖案可能出現在很多不同的地方

Property 3: Size

• 大小的變化並沒有太多影響

Subsampling

Why do humans know that this is PICACHU

CNN Structure

理論講授04 - Convolutional Neural Networks

推薦閱讀1

● 聽聽李宏毅老師怎麼說CNN: <u>影片連結</u>

推薦閱讀2

Write CNN from scratch:

CNN 包含 convolution, pooling, backpropagation... 等操作

, Siraj 教你如何用 numpy 手刻 CNN! <u>影片連結</u>

推薦閱讀3

- 強烈推薦 Stanford CS231n 的課程內容, 清楚且完整的教學 deep learning 技術與原理, 如果覺得助教講的不清楚, 來這 邊看就對了!
 - <u>課堂筆記</u>
 - <u>投影片</u>
 - 課堂錄影
- 給初學者的 CNN 原理

延伸閱讀-1

Before LeNet

Hubel & Wiesel

Receptive fields, binocular interaction and functional architecture in the cat's visual cortex *J Physiol.* 1962 Jan; 160(1): 106–154.2.

D.H.Hubel

T.N.Wiesel

Visual cortex

V1 physiology: orientation selectivity

Hubel & Wiesel discovered that cat's visual cortex respond strongly to lines, bars, or edges of a particular orientation (e.g., vertical) but not to the orthogonal orientation (e.g., horizontal).

Hubel & Wiesel, 1968

Hierarchy

Simple cell sums LGN inputs

Suggested a **hierarchy** of **feature detectors** in the visual cortex, with higher level features responding to patterns of activation in lower level cells, and propagating activation upwards to still higher level cells.

Neocognitron

Fukushima, Biological Cybernetics 1980

The neocognitron is proposed by Fukushima in 1980, it was inspired by the model proposed by Hubel & Wiesel. They found two types of cells in the visual primary cortex called simple cell and complex cell, and also proposed a cascading model of these two types of cells for use in pattern recognition tasks.

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

延伸閱讀-2

影像問題,優先考慮 CNN

CNN Applications

Object detection

Image segmentation

Auto Coloring

https://paintschainer.preferred.tech/index_zh.html https://zhuanlan.zhihu.com/p/24712438

4 台灣人工智慧學校

Colorful Image Colorization

Zhang, Richard, Phillip Isola, and Alexei A. Efros. "Colorful image colorization." *European Conference on Computer Vision*. Springer International Publishing, 2016.

Visual Question Answering

(Slide Credit: Hung-Yi Lee)

Image denoising & inpainting

延伸閱讀-3

OpenCV

OpenCV

OpenCV

OpenCV

(Open source computer vision)

is a library of programming functions mainly aimed at real-time computer vision.

It supports the deep learning frameworks **TensorFlow**, **Torch/PyTorch** and **Caffe**.

OpenCV

範例Code位置:

courses-tpe/CVCNN/part1/00_computer_vision

