Econometrics 710 Midterm Exam March 17, 2005

- 1. Let the variable y_i be generated by $y_i = x_i^2 + \varepsilon_i$ where ε_i is independent of x_i , $E\varepsilon_i = 0$ and $E\varepsilon_i^2 = \sigma^2$. Suppose that $Ex_i = 0$, and let $\mu_2 = Ex_i^2$, $\mu_3 = Ex_i^3$ and $\mu_4 = Ex_i^4$. Using a random sample from (y_i, x_i) , suppose you estimate (by OLS) a linear equation $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{e}_i$. What are $\hat{\beta}_0$ and $\hat{\beta}_1$ estimating? Find expressions for β_0 and β_1 in terms of the moments of ε_i and x_i
- 2. Take the model $y_i = x_i'\beta + e_i$ with $E(x_ie_i) = 0$. Suppose you have two independent random samples of observations (y_i, x_i) of size n_1 and n_2 . Let $\hat{\beta}_1$ and $\hat{\beta}_2$ denote the least-squares estimate of β on each sample. Let $\tilde{\beta} = (\hat{\beta}_1 + \hat{\beta}_2)/2$ denote the average of the two estimates. Let $\hat{\beta}$ denote the least-squares estimate on the combined sample. Which is more efficient, $\tilde{\beta}$ or $\hat{\beta}$? When are they asymptotically equivalent?
- 3. Take the homoskedastic linear regression

$$y_{i} = x'_{1i}\beta_{1} + x'_{2i}\beta_{2} + \varepsilon_{i}$$

$$E(\varepsilon_{i} \mid x_{1i}, x_{2i}) = 0$$

$$E(\varepsilon_{i}^{2} \mid x_{1i}, x_{2i}) = \sigma^{2}$$

$$M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} = \begin{bmatrix} Ex_{1i}x'_{1i} & Ex_{1i}x'_{2i} \\ Ex_{2i}x'_{1i} & Ex_{2i}x'_{2i} \end{bmatrix}.$$

Consider two estimators of β_1 , based on the long regression

$$y_i = x'_{1i}\hat{\beta}_1 + x'_{2i}\hat{\beta}_2 + \hat{e}_i$$

and short regression

$$y_i = x'_{1i}\tilde{\beta}_1 + \tilde{u}_i$$

using a sample of size n. Assume that $\beta_2 \neq 0$.

Assume that $M_{21} = 0$. Find expressions for the (asymptotic) variance of $\hat{\beta}_1$ and $\tilde{\beta}_1$. Which is more efficient?

4. This is a continuation of question 3, but now assume that $M_{21} \neq 0$.

Hint: Parts (b), (c) and (d) are challenging.

- (a) Find the (asymptotic) bias of $\tilde{\beta}_1$
- (b) Find the (asymptotic) variance $\tilde{\beta}_1$
- (c) Construct an expression for the mean-squared error of $\tilde{\beta}_1$
- (d) Contrast the expression in (c) with the asymptotic MSE of $\hat{\beta}_1$.