I.C.E.: towards long-baseline atom interferometry

Long interrogation times for high-precision atom-interferometric inertial sensing

Ultra-precise, exact, gravito-inertial sensing

Fundamental measurements

- \blacksquare Test mass = atoms
- Measured on optical ruler
- Trajectories follow a geodesic

Tests of GR

Long interrogation times

■ Larger fall height Drop tower, orbital station

■ Well-collimated atomic source Need narrow momentum spread

+ Controlled trap release

Ballistic flights for long free-fall distance

Successful test flight

- Rubidium MOT in flight
- Harsh environment:

 $5^{\circ} - 20^{\circ}$ thermal cycling Nightly power cuts $800 - 1000 \,\mathrm{hPa}$ pressure High level of vibrations

An airbus as an Einstein elevator

4s of true free fall

Modular, robust, apparatus

■Fibered ultra-stable telecom lasers doubled to $780\,\mathrm{nm}$

- ■Fully rack-mounted optics and electronics (9 g structural strength)
- \blacksquare Minimalistic vacuum system on breadboard with free space optics

Degenerate atomic gases for a collimated source

BEC: collisional shift

 \Rightarrow uncontrollable systematic

Fermi sea: Pauli blocking

- No collisional shift in spinpolarized samples
- ■Broadened velocity distribution

⁸⁷Rb – ⁴⁰K mixture

- 780 nm & 767 nm laser cooling transitions
- Tunable interactions Feschbach resonances

All optical cooling

for controlled trap release

■Compressible trap for optimized evaporation

■ Recirculating crossed dipole trap geometry

Boson-Fermion coherent atom-interferometer

- ■2D-MOT as an atomic source
- Moderately compact apparatus $(900 \times 700 \times 700 \, \text{mm})$

Dipole trap at 1565 nm

- ■50 W erbium fiber laser
- ■40 nm to the red of highest upper level transition

G. Varoquaux[†], J-F. Clément[†], N. Zahzam[‡], J-P. Brantut[†], R. A. Nyman[†], F. Pereira Dos Santos*, O. Carraz[‡], Y. Bidel[‡], A. Bresson[‡], A. Landragin*, A. Aspect, and P. Bouyer gael.varoquaux@normalesup.org

† Institut d'Optique, Campus Polytechnique, RD128, 91127 Palaiseau, France. ‡ LNE-SYRTE, UMR8630, Observatoire de Paris, 61 av. de l'Observatoire, 75014 France. * Office National d'Etude et de Recherche Aérospatiales, Chemin de la Hunière, 91761 Palaiseau, France.

