Теория автоматов и формальных языков Регулярные языки

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

сентября 2016г.

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet $A o\omega B$ или $A o\omega$, где $A,B\in V_N,\omega\in V^*$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet $A o B\omega$ или $A o \omega$, где $A,B\in V_N,\omega\in V^*$

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet $A o\omega B$ или $A o\omega$, где $A,B\in V_N,\omega\in V^*$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet $A o B\omega$ или $A o \omega$, где $A,B\in V_N,\omega\in V^*$

Теорема

Пусть L — формальный язык.

 $\exists G_r$ — праволинейная грамматика, т.ч. $L = L(G_r) \Leftrightarrow \exists G_l$ — леволинейная грамматика, т.ч. $L = L(G_l)$

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet $A o\omega B$ или $A o\omega$, где $A,B\in V_N,\omega\in V^*$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet $A o B\omega$ или $A o \omega$, где $A,B\in V_N,\omega\in V^*$

Теорема

Пусть L — формальный язык.

 $\exists G_r - праволинейная грамматика, т.ч. <math>L = L(G_r) \Leftrightarrow \exists G_l - n$ леволинейная грамматика, т.ч. $L = L(G_l)$

Регулярная грамматика — праволинейная или леволинейная грамматика

Конечный автомат

Конечный автомат — $\langle Q, \Sigma, \delta, q_0, F \rangle$

- ullet $Q
 eq \emptyset$ конечное множество состояний
- Σ Конечный входной алфавит
- ullet δ отображение типа $Q imes \Sigma o Q$
- ullet $q_0 \in Q$ начальное состояние
- ullet $F\subseteq Q$ множество конечных состояний

Пример конечного автомата

$$Q = \{0, 1, 2, 3\}, \Sigma = \{0, 1, -\}, q_0 = 0, F = \{1, 2\}$$

$$\delta(0, 0) = 1; \delta(0, 1) = 2; \delta(0, -) = 3; \delta(3, 1) = 2; \delta(2, 0) = 2; \delta(2, 1) = 2$$

Распознавание слова конечным автоматом

- Обобщаем функцию перехода:
 - $\delta'(q,\varepsilon)=q$
 - $m{\delta}'(q,xa)=\delta(\delta'(q,x),a)$, где $x\in \Sigma^*, a\in \Sigma$
- Цепочка ω распознается конечным автоматом $\langle Q, \Sigma, \delta, q_0, F \rangle$, если $\exists p \in P.\delta'(q, \omega) = p$
- Язык, распознаваемый конечным автоматом:

$$\{\omega \in \Sigma^* \mid \exists p \in F.\delta'(q_0, \omega) = p\}$$

Минимальный конечный автомат

- Конечные автоматы A_1 и A_2 эквивалентны, если распознают один и тот же язык
- Минимальный конечный автомат автомат, имеющий наименьшее число состояний, распознающий тот же язык, что и данный

Классы эквивалентности

Отношение эквивалентности — рефлексивное, симметричное, транзитивное отношение

• xRx; $xRy \Leftrightarrow yRx$; xRy, $yRz \Rightarrow xRz$

Теорема

 $\forall R$ — отношение эквивалентности на множестве S Можно разбить S на k непересекающихся подмножеств $I_1 \dots I_k$, т.ч. $aRb \Leftrightarrow a,b \in I_i$

Множества $I_1 \dots I_k$ называются классами эквивалентности

Эквивалентные состояния

- $\omega \in \Sigma^*$ различает состояния q_i и q_j , если $\delta'(q_i,\omega)=t_1, \delta'(q_j,\omega)=t_2 \Rightarrow (t_1 \notin F \Leftrightarrow t_2 \in F)$
- q_i и q_j эквивалентны $(q_i \sim q_j)$, если $orall \omega \in \Sigma^*.\delta'(q_i,\omega) = t_1, \delta'(q_j,\omega) = t_2 \Rightarrow (t_1 \in F \Leftrightarrow t_2 \in F)$
 - ▶ Является отношением эквивалентности

Теорема

$$\mathcal{A}=\langle Q,\Sigma,\delta,q_0,F
angle,$$
 $p_1,p_2,q_1,q_2\in Q,$ $q_i=\delta(p_i,c).$ $\omega\in\Sigma^*$ различает q_1 и $q_2.$ Тогда с ω различает p_1 и p_2