

Bluetooth 5.3 Ultra-Low Energy Soc CP8101

Datasheet

V1.0.2

产品说明

CP8101 芯片将高性能无线通信能力和超低的功耗相结合,集成了 32 位 RISC-V 处理器、高性能 BLE5.3 射频和超低功耗设计,是针对物联网(IoT)应用场景而推出的超低功耗蓝牙 SoC 芯片。射频工作在 2.400~2.483GHz 通用 ISM 频段,符合全球无线电频率规定(ETSI EN 300 328 / EN 300 440 Class 2 (Europe)/ FCC CFR47 Part 15 (US) / ARIB STD-T66 (Japan))。且支持私有 2.4G 协议,频率支持范围为 2386-2524MHz。

射频的发射机和接收机设计优化,尤其在 GFSK 调制解调器、高倍数 PGA 运放、LNA 和频率综合器等方面,使得射频性能优良;芯片内置高性能 PA,射频最高发射功率可达 12dbm;使用极快的 PLL 锁频时间结合专有的 AGC 自动增益控制算法和跳频算法对 2.4G 频段的抗干扰性能进行了优化,提高了系统的数据传输稳定性和减少传输延迟;芯片的温度补偿模块可使射频高低温时工作自动校准;先进的功耗控制和优良射频性能可以满足更多应用场景需求。

芯片配置了 16KB SRAM、16KB OTP 和 256KB FLASH 用于程序运行,还集成了丰富的外设资源,包含: 15个 GPIO、UART*2、SPI*2、I2C、QSPI、8个独立 TIMER/PWM、WDT、RTC、ADC、IRTX/RX(红外接收和发送)、LEDC(单线编码输出模块)等。芯片内部集成 RF 射频匹配网络、频率补偿模块以及 T/R 开关和 LDO,无需片外 LDO 退耦电容和射频匹配元器件,外围应用电路极简(仅需 2 颗电容),可帮助客户实现高性价比方案设计。

主要特点

- MCU
- ◆ 32位 RISC-V 处理器,最高 48MHz 工作频率
- 存储
- ♦ 16 KB SRAM
- ♦ 64 KB ROM
- ◆ 16 KB OTP (内置 Charge pump)
- ◆ 256KB 片外 Flash 存储(可选), 支持加密
- ◆ 4 KB 指令 Cache

● 射频特性

- ◆ 发射功率高达 12dbm,可调范围: -25~ +12 dBm
- ♦ 接收灵敏度: -98.2dBm(1Mbps)
- ◆ 支持 RSSI 侦测(分辨率: 1dB)
- ◆ 支持 1 Mbps,2 Mbps,500 Kbps,125Kbps
- ◆ 射频内置匹配回路,支持天线直接连
- ◆ 满足 SRRC /FCC/ETSI 等安规认证要求
- ◆ 协议支持:
- BLE5.3
- 2.4G 私有协议

● 电源管理

◆ 1.8 V to 5.5 V 供电

- ◆ 上电复位(POR)、掉电复位(PDR)、低电 压检测(LVD)
- ♦ 低功耗: 睡眠和待机

● 系统功耗

- ♦ 休眠功耗: 1 µ A
- ◆ Rx 峰值功耗(1Mbps): 4.5mA@DCDC
- ◆ Tx 峰值功耗 (0dBm): 5.0mA@DCDC
- ♦ BLE 连接保持功耗 10 μA (1S 连接间隔)

● 外设

- ◆ 多达 15 个 GPIO 端口: 支持外部中断和睡眠 唤醒、GPIO 支持防倒灌设置、最大驱动电流 20mA
- ◆ 2个 UART 接口: 支持 5V 输出
- ◆ 2 个 SPI 接口
- ◆ 1 个 I2C 接口
- ◆ QSPI, 时钟速率最高支持 48 MHz
- ♦ 多达 11 个定时器
- 一8个16位定时器,每个定时器可用于PWM输出支持互补和死区控制
- 一1个看门狗定时器(WDT)
- 一1个32位实时时钟定时器(RTC)
- 一1个系统滴答定时器: 24 位递减计数器

- ◆ 1 个 10 位 3MSPS A/D 转换器,多达 8 个外部 通道、温度传感器(VTS)、电源电压 (VBAT)、内部参考电压(VINTRV)
- ◆ 2路 LEDC 控制接口
- ◆ 红外发射器和接收器
- ♦ 32 通道 System DMA
- ◆ 硬件 AES-128 加解密模块
- 时钟
- ◆ 24 MHz 晶振时钟

- ◆ 内置高精度高速 24 MHz 时钟
- ◆ 内部高精度低速 32 KHz 时钟
- ◆ 支持所有时钟相互校准
- ◆ 48MHz PLL 时钟
- 封装形式
- ♦ QFN20
- 工作温度
- \Leftrightarrow -40° C ~ + 105° C

典型应用

- 健康医疗
- 电子标签
- Beacon 定位信标
- 资产管理/智能物流/智能畜牧
- 键盘/鼠标/自拍器等 HID 设备
- 电动车仪表
- 无线传感器
- 智能照明

- 智能温湿度计
- 智能电工
- 工业自动化
- 智能家电
- 智能开关/遥控器
- 无线钥匙

目录

产品说明	2
主要特点	2
典型应用	3
目录	4
图目录	5
表目录	6
1产品型号	7
2 引脚功能定义	8
2.1 QFN20 封装	8
3 电气参数	10
3.1 测试条件	10
3.1.1 最小和最大值	10
3.1.2 典型数值	10
3.1.3 射频测试	10
3.2 绝对最大额定值	10
3.3 推荐工作条件	11
3.4 射频特性	11
3.5 上下电复位	12
3.6 GPIO 特性	13
4 参考设计	14
5 封装数据	15
5.1 QFN20	15
文档版本历史	16

图目录

图 2-1	QFN20 封装引脚图	8
图 5-1	OFN20 封装尺寸	1:

表目录

表 1-1	芯片型号	7
表 2-1	QFN20 封装引脚定义	8
表 3-1	电压特性	. 10
表 3-2	电流特性	. 10
表 3-3	温度特性	.11
表 3-4	推荐工作条件	.11
表 3-5	射频特性	.11
表 3-6	射频发射特性	.11
表 3-7	射频接收特性(1Mbps)	. 12
表 3-8	上下电复位特性	.12
表 3-9	GPIO 特性	.13

1 产品型号

表 1-1 芯片型号

序号	芯片型号	封装/GPIO 数量/存储器/温度级别
1	CP8101-QA23	QFN20/15/2M FLASH/105

2 引脚功能定义

2.1 QFN20 封装

图 2-1 QFN20 封装引脚图

表 2-1 QFN20 封装引脚定义

序号	名称	类别	描述
1	XIN	模拟	晶体时钟输入引脚
2	XOUT	模拟	晶体时钟输出引脚
3	VDDL	电源	RF 电源
4	VDD	电源	电源电压
5	P0	数字 I/O	GPIO 0/PWM0/SWD_TCLK
6	P1	数字 I/O	GPIO 1/PWM1/SWD_TMS
7	P2	数字 I/O	GPIO 2/PWM2
8	P4	数字 I/O	GPIO 4/PWM4
9	P5	数字 I/O	GPIO 5/PWM5/SPI_SCK
10	P6	数字 I/O	GPIO 6/PWM6/SPI_MOSI/ADC1
11	P7	数字 I/O	GPIO 7/PWM7/SPI_MISO/ADC2

12	P8	数字 I/O	GPIO 8/PWM0/SPI_NCS/UART0_Rx
13	Р9	数字 I/O	GPIO 9/PWM1/SPI_SCK/UART0_Tx
14	P15	数字 I/O	GPIO 15/ADC4
15	P18	数字 I/O	GPIO 18/PWM2/SPI_MOSI
16	P19	数字 I/O	GPIO 19/PWM3/SPI_MISO/ADC6
17	P20	数字 I/O	GPIO 20/PWM4/SPI_NCS
18	P21	数字 I/O	GPIO 21/PWM5
19	P23	数字 I/O	GPIO 23/PWM7/BUCK_EN
20	RF	模拟	2.4G/BLE 射频收发引脚

3 电气参数

3.1 测试条件

3.1.1 最小和最大值

所有最小和最大值是在最坏的条件下测得。在每个表格下方的注解中说明为通过综合评估、设计模 拟和/或工艺特性得到的数据,不会在生产线上进行测试。

3.1.2 典型数值

典型数据是基于 Ta = 25 ℃和 VDD = 3.3 V。

3.1.3 射频测试

射频性能指标在传导模式下测量获得

3.2 绝对最大额定值

绝对最大额定值是指短时间暴露并不会导致器件永久损伤的极限值,长时间在绝对最高额定值下使用可能会影响设备的可靠性。这只是一个器件过压级别,不保证在这些过压级别或超出推荐工作条件范围外器件的正常工作。

符号	描述	最小值	典型值	最大值	单位
VDD -VSS	外部主供电电压	-0.3		5.5	V
VIN	输入电压	VSS-0.3		VDD+0.3	V
$ \Delta \text{ VDDx} $	不同供电引脚之间的电压差			50	mV
VSSx-VSS	不同接地引脚之间的电压差			50	mV

表 3-1 电压特性

表 3-2 电流特性

符号	描述	最小值	典型值	最大值	单位
$I_{VDD_{\Sigma}_MAX}$	外部主供电电流(包含 VDD 和 VDDIO)供电电流			200	mA
I _{VSS Σ} _MAX	经过 VSS 地线的总电流(流出电流)			200	mA
I _{IO_MAX}	任意 GPIO 和控制引脚上的输 出拉/灌电流			20	mA
I _{IOΣ} _MAX	多个 GPIO 和控制引脚上的输出总电流			90	mA

表 3-3 温度特性

符号	描述	最小值	典型值	最大值	单位
T_{J_MAX}	最大结温度			125	° C
T_{STG}	储存温度范围	-40		150	° C

3.3 推荐工作条件

表 3-4 推荐工作条件

符号	描述	最小值	典型值	最大值	单位
VDD	供电电压	1.8		5.5	V
T _A	工作温度	-40		105	° C

3.4 射频特性

表 3-5 射频特性

符号	描述	条件	最小值	典型值	最大值	单位
f_{op}	频率范围	-	2400	-	2483.5	MHz
ΔF	频偏	-	-	250	-	KHz
DataRate	数据传输速率	-	0.125		2	Mbps

表 3-6 射频发射特性

符号	描述	条件	最小值	典型值	最大值	单位
Pout	发射功率	-	-25	-	12	dbm
P _{2harm}	二次谐波功率	0 dBm		-45.0		dBm
F2harm		10 dBm		-25.5		dBm
D	三次谐波功率	0 dBm				
P _{3harm}	二人的权力学	10 dBm				
$P_{ m spur}$		30 MHz 到 1000 MHz		-43.7		dBm
	带外杂散	1 GHz 到 12.75 GHz		-31.0		dBm
		47 MHz 到 74 MHz		-75		dBm

		87.5 MHz 到 108 MHz		-75		dBm
	174 MHz 到 230 MHz		-75		dBm	
		470 MHz 到 862 MHz		-44.0		dBm
$P_{ ext{spur-inb}}$		$0~\mathrm{dBm},\pm2~\mathrm{MHz}$	-54	-51.4	-47	dBm
	rpur-inb 带内杂散	10 dBm, ± 2 MHz	-42	-37.4	-32	dBm
		0 dBm,± 3 MHz	-57	-55.3	-53	dBm
		10 dBm, ± 3 MHz	-46	-42.2	-39	dBm

表 3-7 射频接收特性(1Mbps)

符号	描述	条件	最小值	典型值	最大值	单位
P _{rxmax}	最大可用接收输 入电平	0.1 % BER			0	dBm
P _{SENS_1M}	接收灵敏度	0.1 % BER		-98.2		dBm
C/I _{CO_1M}	信道干扰比	0.1 % BER		3.8	21	dB
C/I _{1_1M}	第一邻信道干扰	0.1 % BER		-23.6	15	dB
C/I _{2_1M}	第二邻信道干扰	0.1 % BER		-26.8	-17	dB
C/I _{3_1M}	第三邻信道干扰	0.1 % BER		-37.9	-27	dB
C/I _{im_1M}	选择性针对镜像 频率	0.1 % BER		-16.3	-9	dB
C/I _{im+1_1M}	选择性针对镜像 频率±1M	0.1 % BER		-19.5	-15	dB

3.5 上下电复位

上电复位电路监测 VDD 脚。

表 3-8 上下电复位特性

符号	描述	条件	最小值	典型值	最大值	单位
V _{POR}	上电复位电压	上升沿	1.60	1.70	1.80	V
V _{PDR}	掉电复位电压	下降沿	1.52	1.62	1.72	V
V _{RESET_HYS}	复位迟滞电压			80		mV
T _{POR}	上电复位时间		20	30	42	mS
T_{PDR}	掉电复位时间		19	23	28	μS

3.6 GPIO 特性

表 3-9 GPIO 特性

符号	描述	条件	最小值	典型值	最大值	单位
V _{IL}	输入低电平电压				0.3 x V _{DDIO}	V
V _{IH}	输入高电平电压		0.7x V _{DDIO}			V
$ m V_{OL}$	输出低电平				0.5	V
		$I = 8 \text{ mA}, V_{DDIO} = 1.8 \text{ V}$			0.4	V
V	输出高电平	I =20 mA, V _{DDIO} = 3 V	2.5			V
V_{OH}		I = 8 mA, V _{DDIO} = 1.8 V	1.3			V
R _{PU}	上拉电电阻			25		kΩ
R _{PD}	下拉电阻			25		kΩ

4 参考设计

QFN20 参考设计:

图 4-1 QFN20 封装参考设计

5 封装数据

5.1 QFN20 封装尺寸

图 5-1 QFN20 封装尺寸

文档版本历史

版本	日期	变更
V0.0.1	2024.06.13	最初版本
V1.0.0	2024.09.28	增加封装定义和增加参考设计
V1.0.1	2025.03.08	修改封装管教定义和参考设计,并校正测试参数