Convergence of the empirical measure induced by a Moran type particle system

Josué Corujo Rodríguez

IRMA, Université de Strasbourg

work in collaboration with Bertrand Cloez (INRAE, Montpellier)

21st INFORMS Applied Probability Society Conference · June, 2023

Motivation

• Problem approach ν : quasi-stationary distribution (QSD) of an absorbing MC $(X_t)_{t>0}$ with transitions

$$x \xrightarrow{\mu_{x,y}} y$$
 et $x \xrightarrow{\kappa(x)} \partial$ (absorbing state)

$$Q = (\mu_{x,y})_{x,y \in E}$$
: generator of an irreducible MC and κ : killing rate

• Problem approach ν : quasi-stationary distribution (QSD) of an absorbing MC $(X_t)_{t\geq 0}$ with transitions

$$x \xrightarrow{\mu_{x,y}} y$$
 et $x \xrightarrow{\kappa(x)} \partial$ (absorbing state)

$$Q = (\mu_{x,y})_{x,y \in E}$$
: generator of an irreducible MC and κ : killing rate

$$u(\cdot) := \lim_{t \to \infty} \mathbb{P}[X_t \in \cdot \mid X_t \neq \partial] \quad \text{and} \quad \mathbb{P}[X_t \neq \partial] \to 0$$

• Problem approach ν : quasi-stationary distribution (QSD) of an absorbing MC $(X_t)_{t\geq 0}$ with transitions

$$x \xrightarrow{\mu_{x,y}} y$$
 et $x \xrightarrow{\kappa(x)} \partial$ (absorbing state)

$$Q = (\mu_{x,y})_{x,y \in E} : \text{ generator of an irreducible MC and } \kappa : \text{ killing rate}$$

$$\nu(\cdot) := \lim_{t \to \infty} \mathbb{P}[X_t \in \cdot \mid X_t \neq \partial] \quad \text{and} \quad \mathbb{P}[X_t \neq \partial] \to 0$$

• Fleming – Viot particle system:

$$\eta = (\eta(1), \dots, \eta(x), \dots)$$
, where $\eta(x) =$ nb. of particles of the type x , and $|\eta| = N$

Particle system:

$$(\eta_t^{(N)})_{t\geq 0}$$

• Problem approach ν : quasi-stationary distribution (QSD) of an absorbing MC $(X_t)_{t\geq 0}$ with transitions

$$x \xrightarrow{\mu_{x,y}} y$$
 et $x \xrightarrow{\kappa(x)} \partial$ (absorbing state)

$$\begin{aligned} \mathbf{Q} &= (\mu_{\mathbf{x},\mathbf{y}})_{\mathbf{x},\mathbf{y} \in \mathbf{E}} : \text{ generator of an irreducible MC and } \boldsymbol{\kappa} : \text{ killing rate} \\ \boldsymbol{\nu}(\cdot) &:= \lim_{t \to \infty} \mathbb{P}[X_t \in \cdot \mid X_t \neq \boldsymbol{\partial}] \quad \text{and} \quad \mathbb{P}[X_t \neq \boldsymbol{\partial}] \to 0 \end{aligned}$$

• Fleming – Viot particle system:

$$\eta=(\eta(1),\ldots,\eta(x),\ldots)$$
, where $\eta(x)=$ nb. of particles of the type x , and $|\eta|=N$

$$(\eta_t^{(N)})_{t\geq 0}$$

• Empirical measure:
$$m(\eta_t^{(N)}) = \sum_{x \in E} \frac{\eta_t^{(N)}(x)}{N} \delta_x$$

The empirical measure
$$m(\eta_t^{(N)})$$
 approaches $\mathbb{P}[X_t \in \cdot \mid X_t \neq \partial]$ when $N \to \infty$

Fleming – Viot particle system:

 $\eta(x)\mu_{x,y}$ mutation

reproduction $\eta(x)\kappa(x)\frac{\eta(y)}{N}$ $\eta - \mathbf{e}_x + \mathbf{e}_y$

Multi-allelic Moran process:

Fleming – Viot particle system:

Multi-allelic Moran process:

Questions

- For which selection rates does the Moran process approach a QSD?
- **⇒** Speed of convergence when $N \to \infty$?
- ₩ What is the "optimal" selection rate for approaching a QSD?
- Uniform in time propagation of chaos for a Moran model J. C. & B. Cloez (SPA, 2022)

- set of possible allelic types: *E* (countable)
- number of individuals in the population: N
- state space of the process:

$$\mathcal{E}_N := \{ \eta \in \mathbb{N}_0^E : \eta(1) + \dots + \underbrace{\eta(k)}_{\substack{\text{nb. of indiv.} \\ \text{of type } k}} + \dots = N \}$$

- state of the process at time t: $\eta_t^{(N)}$
- Interactions:
- mutation: each individual mutates independently of the others according to an irreducible Markov chain
- reproduction: one indiv. dies and another randomly chosen is duplicated (Moran type)

- Induced empirical distribution: $m(\eta) := \sum_{x \in E} \frac{\eta(x)}{N} \delta_x$
- Generator:

$$Q_{N}[\eta, \eta - \mathbf{e}_{x} + \mathbf{e}_{y}] = \eta(x) \left(\underbrace{q_{x,y}}_{\text{mutation}} + \underbrace{V_{m(\eta)}(x, y)}_{\text{reproduc.}} \underbrace{\frac{\eta(y)}{N}}_{\text{indiv. to reproduce}} \right)$$

- Induced empirical distribution: $m(\eta) := \sum_{x \in E} \frac{\eta(x)}{N} \delta_x$
- Generator:

$$Q_{N}[\eta, \eta - \mathbf{e}_{x} + \mathbf{e}_{y}] = \eta(x) \left(\underbrace{q_{x,y}}_{\text{mutation}} + \underbrace{V_{m(\eta)}(x, y)}_{\text{reproduc.} \atop \text{rate}} \underbrace{\eta(y)}_{\text{indiv. to reproduce} \atop \text{is of type } y} \right)$$

Special cases:

• neutral reproduction: $V_{\mu}(x,y) \equiv p$

- Induced empirical distribution: $m(\eta) := \sum_{x \in E} \frac{\eta(x)}{N} \delta_x$
- Generator:

$$Q_{N}[\eta, \eta - \mathbf{e}_{x} + \mathbf{e}_{y}] = \eta(x) \left(\underbrace{q_{x,y}}_{\text{mutation}} + \underbrace{V_{m(\eta)}(x, y)}_{\text{reproduc.}} \underbrace{\frac{\eta(y)}{N}}_{\text{indiv. to reproduce}} \right)$$

Special cases:

- neutral reproduction: $V_{\mu}(x,y) \equiv p$
- selection at birth: $V_{\mu}(x,y) = V^{\mathrm{b}}(y)$

- Induced empirical distribution: $m(\eta) := \sum_{x \in E} \frac{\eta(x)}{N} \delta_x$
- Generator:

$$Q_{N}[\eta, \eta - \mathbf{e}_{x} + \mathbf{e}_{y}] = \eta(x) \left(\underbrace{q_{x,y}}_{\text{mutation}} + \underbrace{V_{m(\eta)}(x, y)}_{\text{reproduc.}} \underbrace{\frac{\eta(y)}{N}}_{\text{indiv. to reproduce}} \right)$$

Special cases:

- neutral reproduction: $V_{\mu}(x,y) \equiv p$
- selection at birth: $V_{\mu}(x,y) = V^{\mathrm{b}}(y)$
- ullet selection at death: $V_{\mu}(x,y)=V^{
 m d}(x)$, Fleming Viot particle systems

- Induced empirical distribution: $m(\eta) := \sum_{x \in E} \frac{\eta(x)}{N} \delta_x$
- Generator:

$$Q_{N}[\eta, \eta - \mathbf{e}_{x} + \mathbf{e}_{y}] = \eta(x) \left(\underbrace{q_{x,y}}_{\text{mutation}} + \underbrace{V_{m(\eta)}(x, y)}_{\text{reproduc.}} \underbrace{\eta(y)}_{\text{indiv. to reproduce}} \right)$$

Special cases:

- neutral reproduction: $V_{\mu}(x,y) \equiv p$
- selection at birth: $V_{\mu}(x,y) = V^{\mathrm{b}}(y)$
- selection at death: $V_{\mu}(x,y) = V^{\mathrm{d}}(x)$, Fleming Viot particle systems
- additive selection: $V_{\mu}(x,y) = V_{\mu}^{\rm d}(x) + V_{\mu}^{\rm b}(y)$ \rightsquigarrow favor the indiv. with relatively high values of $\Lambda = V_{\mu}^{\rm b} V_{\mu}^{\rm d}$

Main problems and motivations

• Study the following convergences (existence, speed, ...)

 \circ mean-field limit $N \to \infty$

Main problems and motivations

• Study the following convergences (existence, speed, ...)

$$m(\eta_t^{(N)}) \xrightarrow[t \to \infty]{} m(\eta_\infty^{(N)})$$
 $N \downarrow \qquad \qquad \downarrow N$
 $\mu_t \xrightarrow[t \to \infty]{} \mu_\infty$

 \circ mean-field limit $N \to \infty$

Outline

- **■** Additive reproduction rates
- Propagation of chaos
- Asymptotic normality

(AD) Additive selection

$$V_{\mu}(x,y)=V_{\mu}^{
m d}(x)+V_{\mu}^{
m b}(y)+V_{\mu}^{
m s}(x,y),$$
 such that

$$V_{\mu}^{
m b}-V_{\mu}^{
m d}={\color{blue}\Lambda}+{\color{blue}C_{\mu}}$$
, where ${\color{blue}\Lambda}$ is bounded and does not depend on μ

(AD) Additive selection

$$V_{\mu}(x,y) = V_{\mu}^{
m d}(x) + V_{\mu}^{
m b}(y) + V_{\mu}^{
m s}(x,y),$$
 such that

$$V_{\mu}^{\rm b} - V_{\mu}^{\rm d} = \Lambda + C_{\mu}$$
, where Λ is bounded and does not depend on μ

$$m(\eta_t^{(N)}) \xrightarrow[t \to \infty]{(a)} m(\eta_\infty^{(N)})$$
 $N \downarrow \qquad \qquad \downarrow N$
 $\mu_t \xrightarrow[t \to \infty]{(d)} \mu_\infty$

- $(\mu_t)_{t\geq 0}$: law of absorbing MC conditioned to non-absorption with killing rate $\|\Lambda\|-\Lambda$
- μ_{∞} : the associated QSD

(AD) Additive selection

$$V_{\mu}(x,y) = V_{\mu}^{
m d}(x) + V_{\mu}^{
m b}(y) + V_{\mu}^{
m s}(x,y),$$
 such that

$$V_{\mu}^{
m b}-V_{\mu}^{
m d}={\color{blue}\Lambda}+{\color{blue}C_{\mu}}$$
, where ${\color{blue}\Lambda}$ is bounded and does not depend on μ

$$m(\eta_t^{(N)})$$
 $\xrightarrow[t \to \infty]{(a)}$ $m(\eta_\infty^{(N)})$ $N \downarrow$ $\downarrow N$ $\downarrow N$ $\downarrow M$ $\downarrow M$

- $(\mu_t)_{t\geq 0}$: law of absorbing MC conditioned to non-absorption with killing rate $\|\Lambda\|-\Lambda$
- μ_{∞} : the associated QSD
- Several particle systems approach the same QSD

(AD) Additive selection

$$V_{\mu}(x,y) = V_{\mu}^{
m d}(x) + V_{\mu}^{
m b}(y) + V_{\mu}^{
m s}(x,y),$$
 such that

$$V_{\mu}^{\rm b} - V_{\mu}^{\rm d} = \Lambda + C_{\mu}$$
, where Λ is bounded and does not depend on μ

$$m(\eta_t^{(N)})$$
 $\xrightarrow[t \to \infty]{(a)}$ $m(\eta_\infty^{(N)})$ $N \downarrow$ $\downarrow N$ $\downarrow N$ $\downarrow M$ $\downarrow M$

- $(\mu_t)_{t\geq 0}$: law of absorbing MC conditioned to non-absorption with killing rate $\|\Lambda\|-\Lambda$
- μ_{∞} : the associated QSD
- ➡ Several particle systems approach the same QSD

Main questions

- What is the speed of convergence?
- What system is the best for approximating a given absorbing Markov chain?

Outline

- ✓ Additive reproduction rates
- Uniform in time propagation of chaos
- Asymptotic normality

Hypothesis (IC) Initial condition (chaos or LLN)

$$\sup_{\|\phi\| \le 1} \mathbb{E}[|m(\eta_0^{(N)})(\phi) - \mu_0(\phi)|^p]^{1/p} \le \frac{C}{\sqrt{N}}$$

Hypothesis (IC) Initial condition (chaos or LLN)

$$\sup_{\|\phi\| \le 1} \mathbb{E}[|m(\eta_0^{(N)})(\phi) - \mu_0(\phi)|^p]^{1/p} \le \frac{C}{\sqrt{N}}$$

Hypothesis (UC) Unif. conv. to the QSD

$$\|\mu_t - \mu_\infty\|_{\mathrm{TV}} \leq C \mathrm{e}^{-\gamma t}$$
, for all $\mu_0 \in \mathcal{M}_1(E)$ and $t \geq 0$

Hypothesis (IC) Initial condition (chaos or LLN)

$$\sup_{\|\phi\| \le 1} \mathbb{E}[|m(\eta_0^{(N)})(\phi) - \mu_0(\phi)|^p]^{1/p} \le \frac{C}{\sqrt{N}}$$

Hypothesis (UC) Unif. conv. to the QSD

$$\|\mu_t - \mu_\infty\|_{\mathrm{TV}} \leq C \mathrm{e}^{-\gamma t}$$
, for all $\mu_0 \in \mathcal{M}_1(E)$ and $t \geq 0$

Theorem (Unif. in time propagation of chaos or LLN)

Assume that **(AD)**, **(IC)** and **(UC)** are verified. Then, for every $p \ge 1$,

$$\sup_{\|\phi\| \leq 1} \sup_{t \geq 0} \mathbb{E} \big[|m\big(\eta_t^{(N)}\big)(\phi) - \mu_t(\phi)|^p \big]^{1/p} \leq \frac{C_p}{\sqrt{N}}$$

Theorem (Unif. in time propagation of chaos or LLN)

Assume that **(AD)**, **(IC)** and **(UC)** are verified. Then, for every $p \ge 1$,

$$\sup_{\|\phi\| \leq 1} \sup_{t \geq 0} \mathbb{E} \big[|m\big(\eta_t^{(N)}\big)(\phi) - \mu_t(\phi)|^p \big]^{1/p} \leq \frac{C_p}{\sqrt{N}}$$

Related works:

- P. Del Moral & L. Miclo, Séminaire de Probabilités XXXIV (2000)
- M. Rousset, SIAM J. Math. Anal. (2006)
- P. A. Ferrari & N. Marić, EJP (2007)
- D. Villemonais, ESAIM Probab. Stat. (2014)
- B. Cloez & M.-N. Thai, SPA (2016)
- N. Champagnat & D. Villemonais, ALEA (2021)

. .

Outline

- ✓ Additive reproduction rates
- ✓ Uniform in time propagation of chaos
- **■** Asymptotic normality

Asymptotic normality

• Our result is a Law of Large Numbers

$$\sup_{\|\phi\| \leq 1} \sup_{t \geq 0} \mathbb{E} \big[|m\big(\eta_t^{(N)}\big)(\phi) - \mu_t(\phi)|^p \big]^{1/p} \leq \frac{C_p}{\sqrt{N}}$$

What about a Central Limit Theorem?

Asymptotic normality

Our result is a Law of Large Numbers

$$\sup_{\|\phi\| \leq 1} \sup_{t \geq 0} \mathbb{E} \big[|m\big(\eta_t^{(N)}\big)(\phi) - \mu_t(\phi)|^{\rho} \big]^{1/\rho} \leq \frac{C_\rho}{\sqrt{N}}$$

• What about a Central Limit Theorem?

Hypothesis (IC') Asymptotic normality for initial empirical distribution

$$\sqrt{N} \left(m(\eta_0^{(N)})(\phi) - \mu_0(\phi) \right) \xrightarrow[N \to \infty]{\text{Law}} \mathcal{N} \left(0, \mu_0(\phi^2) \right)$$

Theorem (Asymptotic normality)

Suppose that Assumptions (AD), (IC), (IC') and (UC) are verified.

We have

$$\sqrt{N}(m(\eta_T^{(N)})(\phi) - \mu_T(\phi)) \xrightarrow[N \to \infty]{\text{Law}} \mathcal{N}(0, \sigma_T^2(\phi)),$$

where

$$\sigma_{T}^{2}(\phi) = \mathsf{Var}_{\mu_{T}}(\phi) + \underbrace{\Psi^{b,d}(T,\phi)}_{\text{depending on } V_{\mu}^{b}, V_{\mu}^{d}} + \underbrace{\Psi^{s}(T,\phi)}_{\text{depending on } V_{\mu}^{s}}$$

Theorem (Asymptotic normality)

Suppose that Assumptions (AD), (IC), (IC') and (UC) are verified.

We have

$$\sqrt{N}(m(\eta_T^{(N)})(\phi) - \mu_T(\phi)) \xrightarrow[N \to \infty]{\text{Law}} \mathcal{N}(0, \sigma_T^2(\phi)),$$

where

$$\sigma_{\mathcal{T}}^2(\phi) = \mathsf{Var}_{\mu_{\mathcal{T}}}(\phi) + \underbrace{\Psi^{b,d}(\mathcal{T},\phi)}_{\text{depending on } V_{\mu}^b, V_{\mu}^d} + \underbrace{\Psi^{s}(\mathcal{T},\phi)}_{\text{depending on } V_{\mu}^s}$$

Related works:

- M. Rousset, SIAM J. MATH. ANAL., 2006
- T. Lelièvre, L. Pillaud-Vivien & J. Reygner, ALEA, 2018

Theorem (Asymptotic normality)

Suppose that Assumptions (AD), (IC), (IC') and (UC) are verified.

We have

$$\sqrt{N} \left(m(\eta_T^{(N)})(\phi) - \mu_T(\phi) \right) \xrightarrow[N \to \infty]{\text{Law}} \mathcal{N} \left(0, \sigma_T^2(\phi) \right),$$

where

$$\sigma_T^2(\phi) = \mathsf{Var}_{\mu_T}(\phi) + \underbrace{\Psi^{\mathrm{b,d}}(T,\phi)}_{\mathsf{depending on } V_\mu^{\mathrm{b}}, V_\mu^{\mathrm{d}}} + \underbrace{\Psi^{\mathrm{s}}(T,\phi)}_{\mathsf{depending on } V_\mu^{\mathrm{s}}}$$

Corollary (Reduction of variance)

Take $(\eta_t^{\star})_{t\geq 0}$ with selection rates $V_{\mu}-V_{\mu}^{\rm s}$. Then,

$$\lim_{N\to\infty} N \cdot \mathbb{E}\left[\left(m(\eta_T^{\star})(\phi) - \mu_T(\phi)\right)^2\right] \leq \lim_{N\to\infty} N \cdot \mathbb{E}\left[\left(m(\eta_T)(\phi) - \mu_T(\phi)\right)^2\right]$$

• **Problem:** estimate $\nu_{\kappa}(1)$: ν_{κ} the QSD of the absorbing Markov chain

• **Problem:** estimate $\nu_{\kappa}(1)$: ν_{κ} the QSD of the absorbing Markov chain

• Fact: $\mathbb{P}[X_t \in \cdot \mid \tau_\partial > t]$ is independent of $\kappa \implies \nu_\kappa = \nu_0$

• **Problem:** estimate $\nu_{\kappa}(1)$: ν_{κ} the QSD of the absorbing Markov chain

- Fact: $\mathbb{P}[X_t \in \cdot \mid \tau_{\partial} > t]$ is independent of $\kappa \implies \nu_{\kappa} = \nu_0$
- Approximating particle system: $\mathcal{Z}^{(\kappa)}$ birth-and-death chain in $\{0,\ldots,N\}$

with rates
$$d_n = n\left(\frac{\alpha}{\kappa} + \kappa \frac{N-n}{N}\right)$$
 and $b_n = (N-n)\left(\beta + (\kappa + \gamma)\frac{n}{N}\right)$

• **Problem:** estimate $\nu_{\kappa}(1)$: ν_{κ} the QSD of the absorbing Markov chain

- Fact: $\mathbb{P}[X_t \in \cdot \mid \tau_{\partial} > t]$ is independent of $\kappa \implies \nu_{\kappa} = \nu_0$
- Approximating particle system: $\mathcal{Z}^{(\kappa)}$ birth-and-death chain in $\{0,\ldots,N\}$

with rates
$$d_n = n\left(\alpha + \kappa \frac{N-n}{N}\right)$$
 and $b_n = (N-n)\left(\beta + (\kappa + \gamma)\frac{n}{N}\right)$

ullet Corollary: $\mathcal{Z}^{(0)}$ estimates u_{κ} with the smallest asymptotic squared error

Thank you!

What happens when $t \to \infty$?

Neutral multi-allelic Moran model

$$Q_{N}[\eta, \eta - \mathbf{e}_{x} + \mathbf{e}_{y}] = \eta(x) \left(\underbrace{q_{x,y}}_{\text{mutation}} + \underbrace{p}_{\substack{\text{neutral rep.} \\ \text{rate}}} \underbrace{\eta(y)}_{\substack{\text{indiv. to reproduce} \\ \text{is of type } y}} \right)$$

- \rightarrow explicit expression for the eigenvalues of \mathcal{Q}_N in terms of the eigenvalues of \mathcal{Q}
- \Rightarrow parent independent mutation $q_{x,y} = q_y$: reversible process with explicit stationary distribution and spectral elements

Cut-off phenomenon

Total variation distance and mixing times

Total variation distance to stationarity:

$$d_{\mathrm{TV}}(t;\eta) := d_{\mathrm{TV}}(\delta_{\eta} e^{tQ_{N}}, \nu_{N}),$$

where u_N is the stationary distribution of the process generated by \mathcal{Q}_N

Total variation distance and mixing times

Total variation distance to stationarity:

$$d_{\mathrm{TV}}(t;\eta) := d_{\mathrm{TV}}(\delta_{\eta} e^{tQ_{N}}, \nu_{N}),$$

where u_N is the stationary distribution of the process generated by \mathcal{Q}_N

Mixing time:

$$t_{\text{MIX}}(\eta; \epsilon) := \min_{t>0} \{d_{\text{TV}}(t; \eta) \le \epsilon\}$$

Total variation cutoff

Diaconis (1995), Saloff-Coste (1996), Chen and Saloff-Coste (2008), Levin and Peres (2017)

Theorem (Total variation cutoff)

• **Cutoff:** for every $k \in \{1, ..., K\}$ and $p \ge 0$, we have

$$t_{ ext{MIX}}(\mathsf{N}\mathbf{e}_k,\epsilon)symp rac{\mathsf{In}\;\mathsf{N}}{2|oldsymbol{\mu}|}$$

- $\circ \left(\frac{\ln(N)}{2|\mu|}, 1 \right)$ total variation cutoff when $N o \infty$
- Gaussian profile when p = 0:

$$\lim_{N \to \infty} \mathsf{d}_{N\mathbf{e}_k}^{\mathrm{TV}} \left(\frac{\ln N + c}{2|\boldsymbol{\mu}|} \right) = 2\Phi \left(\frac{1}{2} \sqrt{\frac{|\boldsymbol{\mu}| - \mu_k}{\mu_k}} \mathrm{e}^{-c} \right) - 1$$

On the spectrum and ergodicity of a neutral multi-allelic Moran model J. C. (ALEA, 2023)

Again...

Thank you!

Theorem (Spectrum of $Q_{N,p}$)

where $|\eta| := \eta(1) + \cdots + \eta(K)$.

Let $\lambda_1, \ldots, \lambda_{K-1}$ be the non zero eigenvalues of Q.

Then, the non zero eigenvalues of $Q_{N,p}$, counting algebraic multiplicities, are

Then, the non zero eigenvalues of
$$\mathcal{Q}_{N,p}$$
, counting algebraic multiplicities, are
$$\lambda_{\eta,p} = \sum_{k=1}^{K-1} \eta(k) \lambda_k - \frac{p}{N} |\eta| (|\eta|-1), \ \text{ for any } \eta \in \bigcup_{l=1}^N \mathcal{E}_{K-1,L},$$

Theorem (Spectrum of $Q_{N,p}$)

Let $\lambda_1, \ldots, \lambda_{K-1}$ be the non zero eigenvalues of Q.

Then, the non zero eigenvalues of
$$\mathcal{Q}_{N,p}$$
, counting algebraic multiplicities, are

$$\lambda_{\eta,p}=\sum_{k=1}^{K-1}\eta(k)\lambda_k-rac{p}{N}|\eta|(|\eta|-1), \;\; ext{for any } \eta\inigcup_{L=1}^N\mathcal{E}_{K-1,L},$$

where $|\eta| := \eta(1) + \cdots + \eta(K)$.

Remarks

- Q does not need to be diagonalisable
- One also obtain some information on the eigenvectors of $Q_{N,p}$

Spectrum of $Q_{N,p}$ (numerical example)

Consider the mutation matrix

$$Q = \left(\begin{array}{cc} -1 & 1 \\ 2 & -2 \end{array}\right)$$

The eigenvalues of Q are $\lambda_0 = 0$ and $\lambda_1 = -3$

→ Eigenvalues of Q_N (p = 0) and $Q_{N,p}$, with p = 1?

Spectrum of $Q_{N,p}$ (numerical example)

Consider the mutation matrix

$$Q = \left(\begin{array}{rrr} -3 & 1 & 2 \\ 2 & -3 & 1 \\ 1 & 2 & -3 \end{array}\right)$$

The eigenvalues of Q are

$$\lambda_0=0$$
 and $\lambda_1=\overline{\lambda_2}=-\frac{9}{2}+\mathrm{i}\frac{\sqrt{3}}{2}$

→ Eigenvalues of Q_N (p = 0) and $Q_{N,p}$, with p = 1?

Parent independent mutation (PIM)

"the mutation rates only depend on the type of the new individual"

Etheridge (2011)

$$Q := \begin{pmatrix} -|\boldsymbol{\mu}| + \mu_1 & \mu_2 & \dots & \mu_K \\ \mu_1 & -|\boldsymbol{\mu}| + \mu_2 & \dots & \mu_K \\ \vdots & \vdots & \ddots & \vdots \\ \mu_1 & \mu_2 & \dots & -|\boldsymbol{\mu}| + \mu_K \end{pmatrix},$$

for some vector $\pmb{\mu} \in (\mathbb{R}_+^*)^K$

Generator of the neutral Moran model with PIM:

$$Q_{N,p}[\eta, \eta - \mathbf{e}_i + \mathbf{e}_j] = \eta(i) \left(\mu_j + \frac{\eta(j)}{N} \right)$$

if and only if the mutation rate matrix is parent independent.

Reversibility of the neutral multi-allelic Moran process with p > 0

 $\lambda_{n,p} = -|\mu|n - \frac{p}{N}n(n-1)$, of multiplicity $\binom{K+n-2}{n}$,

Spectral decomposition

• eigenvalues of $Q_{N,p}$:

for $n \in \{0, 1, ..., N\}$

if and only if the mutation rate matrix is parent independent.

Reversibility of the neutral multi-allelic Moran process with p > 0

Spectral decomposition

• eigenvalues of $Q_{N,p}$:

 $\lambda_{n,p} = -|\mu|n - \frac{p}{N}n(n-1)$, of multiplicity $\binom{K+n-2}{n}$,

for $n \in \{0, 1, ..., N\}$

$$\lambda_{n,p} =$$

• stationary distribution
$$\nu_{N,p}$$
: Dirichlet multinomial distribution

 \circ p = 0: multinomial distribution

if and only if the mutation rate matrix is parent independent.

Reversibility of the neutral multi-allelic Moran process with p > 0

Spectral decomposition

• eigenvalues of $Q_{N,p}$:

- $\lambda_{n,p} = -|\mu|n \frac{p}{N}n(n-1)$, of multiplicity $\binom{K+n-2}{n}$,
- - for $n \in \{0, 1, ..., N\}$
- stationary distribution $\nu_{N,p}$: Dirichlet multinomial distribution

 - \circ p = 0: multinomial distribution

 - \circ p = 0: Krawtchouk orthogonal polynomials
- eigenvectors: in terms of the Hahn orthogonal polynomials

Reversibility of the neutral multi-allelic Moran process with p > 0

if and only if the mutation rate matrix is parent independent.

Spectral decomposition

• eigenvalues of $Q_{N,p}$:

$$\lambda_{n,p} = -|\mu|n - \frac{p}{N}n(n-1), \text{ of multiplicity } {K+n-2 \choose n},$$

for $n \in \{0, 1, ..., N\}$

- ullet stationary distribution $u_{N,p}$: Dirichlet multinomial distribution
 - \circ p = 0: multinomial distribution
- eigenvectors: in terms of the Hahn orthogonal polynomials
 - \circ p = 0: Krawtchouk orthogonal polynomials
- Cutoff phenomenon!

Corollary

Assume that (AD), (IC) and (UC) are verified. Then,

Almost sure convergence:

$$m(\eta_T^{(N)})(\phi) \xrightarrow[N \to \infty]{\text{a.s.}} \mu_T(\phi)$$

• Convergence of the mean empirical measure:

$$\sup_{t>0} \left\| \bar{m}\big(\eta_t^{(N)}\big) - \mu_t \right\|_{\mathrm{TV}} \leq \frac{C}{N}, \text{ where } \bar{m}\big(\eta_t^{(N)}\big) := \sum_{t>0} \mathbb{E}\left[\frac{\eta_t^{(N)}(x)}{N}\right] \delta_X$$

Moreover, if the initial distribution of the N particles is exchangeable, then

• Moreover, if the initial distribution of the *N* particles is exchangeable, then

$$\sup_{t>0} \left\| \operatorname{Law}(\xi_t^{(i)}) - \mu_t \right\|_{\operatorname{TV}} \leq \frac{C}{N}$$