Diodos y Rectificadores

Tomado de https://electronicaonline.net/componentes-electronicos/diodo/tipos-de-diodos/

Semiconductores

 Un semiconductor es todo aquel material que, dependiendo de las circunstancias (temperatura, presión, radiación y campos magnéticos), puede actuar como conductor o como aislante

Dependiendo de su pureza, los semiconductores se clasifican en dos tipos:

- •Intrínsecos: son puros, ya que su estructura molecular está conformada por un solo tipo de átomo, como el silicio, el germanio, el estaño, el selenio o el telurio.
- •Extrínsecos: son aquellos a los que se añaden impurezas en un proceso conocido como dopaje, cuyo fin es aumentar la conductividad de los materiales

Tomado de https://errebishop.com/es/49semiconductores

Semiconductores

•Tipo P: al dopar un átomo tetravalente (como el silicio) con otro trivalente (como el aluminio, el boro o el galio), hay tres electrones para cuatro enlaces covalentes, generándose un hueco por el que se produce el flujo de electrones que da lugar a la corriente eléctrica. Debido a la carga positiva del hueco, son conocidos con la

•Tipo N: se forman al dopar un átomo tetravalente (como el silicio) con otro pentavalente (como el fósforo, el antimonio o el arsénico). Al haber cinco electrones y cuatro enlaces covalentes, un electrón con carga negativa, de ahí la letra N, queda libre para desplazarse a través de la red cristalina, aumentando la conductividad del semiconductor intrínseco Un diodo se forma de la juntura P Y N

Polarización directa de un diodo

Polarización inversa de un diodo

Tomado de https://es.wikipedia.org/wiki/Diodo

JAVERIANA

Diodos

Ley de Moore Semiconductor

(process nodes)

10 µm - 1971 6 µm - 1974

3 µm - 1977 1.5 µm - 1981

1 um - 1984

800 nm - 1987 600 nm - 1990

350 nm - 1993

250 nm - 1996

180 nm - 1999

130 nm - 2001

90 nm - 2003

65 nm - 2005

45 nm - 2007

32 nm - 2009

22 nm - 2012

14 nm - 2014

10 nm - 2016

7 nm - 2018

5 nm - 2020

Future

3 nm ~ 2023

2 nm ~ 2024

Curva característica de un diodo real

Curva característica de un diodo ideal

Tomado dehttp://www.learningaboutelectro nics.com/Articulos/Diodo-ideal.php

Tomado dehttp://www.learningaboutelectronics.com/Articulos/Diodo-ideal.php

Rectificador de media onda

Rectificador

Este rectificador de media onda tiene el problema que señales pequeñas la caída de voltaje en el diodo se hace significativa

Rectificador de media onda de precisión

Este rectificador de media onda de precisión tiene la limitante que altas frecuencias no logra responder adecuadamente

Rectificador de onda completa

Este rectificador de onda completa o puente de diodos permite rectificar una señal AC. Tiene el problema que señales pequeñas la caída de voltaje en los diodos se hace

significativa

Rectificador de onda completa de precisión

Rectificador

