Image Motion

Information from Image Motion

- 3D motion between observer and scene + structure of the scene
 - \circ Motion Parallax \rightarrow two static points close by in image with different image motion
 - Larger translational motion corresponds to the point closer by (smaller depth
- Create new image out of magnitudes of horizontal and vertical motion components
 - Edge detection to get motion components

Motion Analysis Problems

- Correspondence Problem
 - Track corresponding elements across frames
- Reconstruction PRoblem
 - Given a number of corresponding elements, and camera parameters, what can we say about 3D motion and structure of the observed scene?
- Segmentation Problem
 - \circ What regions of the image correspond to $\textit{different}\xspace$ moving objects?

The Aperture Problem

- Line moving through aperture (hole) \rightarrow only information is motion perpendicular to line.
- Can only find one component of optical flow
 - \circ Only the flow component perpendicular to the line feature ightarrow Normal Flow

- $I(x,y,t) = I(x,y,t) + \frac{\partial I}{\partial x} \frac{dx}{dt} + \frac{\partial I}{\partial y} \frac{dy}{dt} + \frac{\partial I}{\partial t} \frac{dt}{dt}$
 - \circ Taylor Series Expansion o Ignore non-linear terms since they are so small with regard to images

Brightness Constraint Equation

- $E(x,y,t) \rightarrow \text{irradiance}$
- u(x,y),v(x,y) \rightarrow optical flow components
- $E(x + u\delta t, y + v\delta t, t + \delta t) = E(x, y, t)$
 - \circ Taylor Expansion $o E(x,y,t) + \delta x rac{\partial E}{\partial x} + \delta y rac{\partial E}{\partial y} + \delta t rac{\partial E}{\partial t} + e = E(x,y,t)$
 - \circ Divide by δt and take limit as δt o 0
- Vector Notation o $(\nabla E)^T \cdot v + E_t = 0$
- Interpretation \rightarrow Values of (u,v) satisfying the constraint equation lie on a straight line in velocity space. A local measurement only provides this constraint line (aperture problem).
- Normal flow $u_n \, o \, (E_x, E_y) \cdot (u,v) = -E_t$
- Let $\mathbf{n} = \frac{(E_x E_y)^T}{\|(E_x, E_y)^T\|}$
- $ullet u_n=(u\cdot n)n=(rac{-E_xE_t}{E_x^2+E_y},rac{-E_yE_t}{E_x^2+E_y^2})^T$

Optical Flow Equation

- $0 = I_t + \nabla I \cdot [u, v]$
- Use more equations for a pixel
 - Impose additional constraints
 - \circ Assume flow field is smooth \to Same flow within small window (5×5)
 - (5×5) window gives 25 equations per pixel
 - $\bullet \ 0 = I_t(p_i) + \nabla I(p_i) \cdot [u \ v]$
 - $A_{25\times 2}\cdot d_{2\times 1}=b_{25\times 1}$

 - Use least squares to solve \to Minimize $\|Ad-b\|^2A$ $A^TA = \begin{bmatrix} \sum E_x^2 & \sum E_xE_y \\ \sum E_xE_y & \sum E_y^2 \end{bmatrix}$
 - This is the corner detection matrix!
- Low texture regions (i.e. sky)
 - o Gradients have small magnitudes
 - \circ Small λ_1 , small λ_2
- High texture regions (i.e. ground)
 - Gradients are different, large magnitudes

- \circ Large λ_1 , large λ_2
- Improvement
 - Assumption of constant flow is more likely to be wrong as we move away from the point of interest
 - Use weights to control the influence of points
 - \circ Further from p \rightarrow less weight

Iterative Refinement

- Iterative Lukas-Kanade Algorithm
 - 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
 - 2. Warp H towards I using estimated flow field
 - 3. Repeat until convergence
- ullet Flow values (u,v) should be on the order of a pixel
 - \circ If they are larger \rightarrow reduce resolution of image
- Course-to-Fine Optical Flow estimation
 - \circ Gaussian pyramid \rightarrow Gaussian smooth at each iteration
 - Find correspondance between smoothed versions
 - $\circ \text{ i.e. } \rightarrow \text{ } u = 10 \text{ } pixels \xrightarrow{\text{smooth}} u = 5 \xrightarrow{\text{smooth}} u = 2.5 \xrightarrow{\text{smooth}} u = 1.25$
 - \circ Run L-K on appropriately scaled u \rightarrow move to next layer

Additional Constraints

- Additional constraints are necessary to estimate optical flow
 - Constraints on size of derivatives
 - Parametric models of velocity field
- Horn and Schunck (1981): global smoothness term
 - \circ $e_s = \int \int_D (u_x^2 + u_y^2) + (v_x^2 + v_y^2) dx dy$ ightarrow departure from smoothness
 - $\circ \ e_c = \int \int_D (E_x u + E_y u + E_t)^2 dx dy o$ error in optical flow constraint equation
 - \circ Let $orall A = (A_x,A_y)^T$ denote the gradient of A
 - $\circ \int \int (igtriangledown E_t)^2 + \lambda (\|igtriangledown u\|_2^2 + \|igtriangledown v\|_2^2) dx dy
 ightarrow ext{min}$
- This is called regularization
- Solve by means of calculus of variation
- Lucas Kanade (1984) \to Weighted least squares fit to a constant model of ${\bf u}$ in a small neighborhood Ω
- Nagel (1983,87) \rightarrow Oriented smoothness constraint
 - Smoothness is not imposed across edges

• Uras et al. (1988) \rightarrow Use constraints on second-order derivatives

Tichonov Acesnin Regularization

- $\bullet \ \ L(u,v) = I_x u + I_y v + I_t = 0$
- $\phi_{u,v} = \int \int L^2(u,v) + \lambda \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right]$ $\frac{\partial \phi}{\partial u} = \frac{\partial \phi}{\partial v} = 0$