Generated on 2014-10-27 16:08:46 by gEcon version 0.7.0 (2014-10-27) Model name: rbc_cu

1 CONSUMER

1.1 Optimization problem

$$\max_{C_t, L_t^s} U_t = \beta \mathcal{E}_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left((1 - L_t^s)^{1 - \mu} C_t^{\mu} \right)^{1 - \eta}$$
(1.1)

s.t. :

$$C_t = \pi_t + L_t^s W_t \quad (\lambda_t^c) \tag{1.2}$$

1.2 First order conditions

$$\beta - \lambda_t^U = 0 \quad (U_t) \tag{1.3}$$

$$-\lambda_t^c + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left((1 - L_t^s)^{1-\mu} C_t^{\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.4)

$$\lambda_t^c W_t + (-1 + \mu) \left(1 - L_t^s\right)^{-\mu} \left(\left(1 - L_t^s\right)^{1-\mu} C_t^{\mu} \right)^{-\eta} C_t^{\mu} = 0 \quad (L_t^s)$$
(1.5)

2 FIRM

2.1 Optimization problem

$$\max_{K_t, L_t^d, Y_t, I_t, \pi_t, CapU_{t_t}} \Pi_t = \pi_t + \lambda_t^{c-1} E_t \left[\lambda_{t+1}^c \lambda_{t+1}^U \Pi_{t+1} \right]$$
(2.1)

s.t.

$$Y_t = L_t^{d^{1-\alpha}} Z_t^{1-\alpha} (K_{t-1} C q \mathcal{U}_t)^{\alpha} \quad (\lambda_t^{\text{FIRM}^1})$$

$$(2.2)$$

$$K_{t} = I_{t} + K_{t-1} \left(1 - \delta C q \mathcal{U} t_{t}^{\omega} \right) \quad \left(\lambda_{t}^{\text{FIRM}^{2}} \right)$$

$$(2.3)$$

$$\pi_t = -I_t - L_t^d W_t + P_t Y_t \quad (\lambda_t^{\text{FIRM}^3})$$
(2.4)

2.2 First order conditions

$$-\lambda_t^{\text{FIRM}^{\Pi}} + \lambda_{t-1}^c^{-1} \lambda_t^c \lambda_t^U = 0 \quad (\Pi_t)$$

$$(2.5)$$

$$-\lambda_{t}^{^{\mathrm{FIRM}^{2}}}+\mathbf{E}_{t}\left[\lambda_{t+1}^{^{\mathrm{FIRM}^{\Pi}}}\left(\lambda_{t+1}^{^{\mathrm{FIRM}^{2}}}\left(1-\delta C q \mathcal{U} t_{t+1}^{\omega}\right)+\alpha \lambda_{t+1}^{^{\mathrm{FIRM}^{1}}} C q \mathcal{U} t_{t+1} L_{t+1}^{d}^{^{1-\alpha}} Z_{t+1}^{^{1-\alpha}}\left(K_{t} C q \mathcal{U} t_{t+1}\right)^{-1+\alpha}\right)\right]=0 \quad (K_{t})$$

(2.6)

$$-\lambda_t^{\text{FIRM}^3} W_t + \lambda_t^{\text{FIRM}^1} (1 - \alpha) L_t^{d-\alpha} Z_t^{1-\alpha} (K_{t-1} Cq U t_t)^{\alpha} = 0 \quad (L_t^d)$$
(2.7)

$$-\lambda_t^{\text{FIRM}^1} + \lambda_t^{\text{FIRM}^3} P_t = 0 \quad (Y_t)$$
 (2.8)

$$\lambda_t^{\text{FIRM}^2} - \lambda_t^{\text{FIRM}^3} = 0 \quad (I_t) \tag{2.9}$$

$$1 - \lambda_t^{\text{FIRM}^3} = 0 \quad (\pi_t) \tag{2.10}$$

$$-\delta\omega K_{t-1}\lambda_{t}^{\text{FIRM}^{2}}\textit{CapUt}_{t}^{-1+\omega} + \alpha K_{t-1}\lambda_{t}^{\text{FIRM}^{1}}L_{t}^{d^{1-\alpha}}Z_{t}^{1-\alpha}(K_{t-1}\textit{CapUt}_{t})^{-1+\alpha} = 0 \quad (\textit{CapUt}_{t}) \tag{2.11}$$

2.3 First order conditions after reduction

$$-\lambda_t^{\text{FIRM}^{\Pi}} + \lambda_{t-1}^c^{-1} \lambda_t^c \lambda_t^U = 0 \quad (\Pi_t)$$
(2.12)

$$-1 + E_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(1 - \delta C q U t_{t+1}^{\omega} + \alpha \lambda_{t+1}^{\text{FIRM}^{1}} C q U t_{t+1} L_{t+1}^{d}^{1-\alpha} Z_{t+1}^{1-\alpha} \left(K_{t} C q U t_{t+1} \right)^{-1+\alpha} \right) \right] = 0 \quad (K_{t}) \quad (2.13)$$

$$-W_{t} + \lambda_{t}^{\text{FIRM}^{1}} (1 - \alpha) L_{t}^{d^{-\alpha}} Z_{t}^{1-\alpha} (K_{t-1} CqUt_{t})^{\alpha} = 0 \quad (L_{t}^{d})$$
(2.14)

$$-\lambda_t^{\text{FIRM}^1} + P_t = 0 \quad (Y_t)$$
 (2.15)

$$-\delta\omega K_{t-1} C_{q} \mathcal{U}_{t}^{-1+\omega} + \alpha K_{t-1} \lambda_{t}^{\text{FIRM}^{1}} L_{t}^{d^{1-\alpha}} Z_{t}^{1-\alpha} (K_{t-1} C_{q} \mathcal{U}_{t})^{-1+\alpha} = 0 \quad (C_{q} \mathcal{U}_{t})$$
(2.16)

3 EQUILIBRIUM

3.1 Identities

$$P_t = 1 (3.1)$$

$$L_t^d = L_t^s (3.2)$$

4 EXOG

4.1 Identities

$$Z_t = e^{\epsilon_t^Z + \phi \log Z_{t-1}} \tag{4.1}$$

5 Equilibrium relationships

$$-1 + \lambda_{t}^{c-1} \mathbf{E}_{t} \left[\lambda_{t+1}^{c} \lambda_{t+1}^{U} \left(1 - \delta C q U t_{t+1}^{\omega} + \alpha C q U t_{t+1} L_{t+1}^{s}^{1-\alpha} Z_{t+1}^{1-\alpha} \left(K_{t} C q U t_{t+1} \right)^{-1+\alpha} \right) \right] = 0 \tag{5.1}$$

$$\beta - \lambda_t^U = 0 \tag{5.2}$$

$$-\lambda_t^c + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left((1 - L_t^s)^{1-\mu} C_t^{\mu} \right)^{-\eta} = 0$$
 (5.3)

$$-W_t + (1 - \alpha) L_t^{s - \alpha} Z_t^{1 - \alpha} (K_{t-1} C q U_t)^{\alpha} = 0$$
(5.4)

$$-Y_t + L_t^{s1-\alpha} Z_t^{1-\alpha} (K_{t-1} C q U_t)^{\alpha} = 0$$
 (5.5)

$$Z_t - e^{\epsilon_t^Z + \phi \log Z_{t-1}} = 0 \tag{5.6}$$

$$\lambda_t^c W_t + (-1 + \mu) \left(1 - L_t^s\right)^{-\mu} \left((1 - L_t^s)^{1 - \mu} C_t^{\mu} \right)^{-\eta} C_t^{\mu} = 0$$
(5.7)

$$-\delta\omega K_{t-1} CqU t_t^{-1+\omega} + \alpha K_{t-1} L_t^{s1-\alpha} Z_t^{1-\alpha} (K_{t-1} CqU t_t)^{-1+\alpha} = 0$$
 (5.8)

$$I_t - K_t + K_{t-1} \left(1 - \delta C q \mathcal{U} t_t^{\omega} \right) = 0$$
 (5.9)

$$U_t - \beta \mathcal{E}_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left((1 - L_t^s)^{1 - \mu} C_t^{\mu} \right)^{1 - \eta} = 0$$
 (5.10)

$$-C_t + \Pi_t - \lambda_t^{c-1} \mathcal{E}_t \left[\lambda_{t+1}^c \lambda_{t+1}^U \Pi_{t+1} \right] + L_t^s W_t = 0$$
 (5.11)

$$-I_t - \Pi_t + Y_t + \lambda_t^{c-1} \mathcal{E}_t \left[\lambda_{t+1}^c \lambda_{t+1}^U \Pi_{t+1} \right] - L_t^s W_t = 0$$
 (5.12)

6 Steady state relationships

$$-1 + \lambda_{\rm ss}^{U} \left(1 - \delta C q U t_{\rm ss}^{\omega} + \alpha C q U t_{\rm ss} L_{\rm ss}^{s-1-\alpha} Z_{\rm ss}^{-1-\alpha} \left(C q U t_{\rm ss} K_{\rm ss} \right)^{-1+\alpha} \right) = 0 \tag{6.1}$$

$$\beta - \lambda_{\rm ss}^U = 0 \tag{6.2}$$

$$-\lambda_{\rm ss}^c + \mu C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^s)^{1-\mu} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^s)^{1-\mu} \right)^{-\eta} = 0 \tag{6.3}$$

$$-W_{\rm ss} + (1 - \alpha) L_{\rm ss}^{s - \alpha} Z_{\rm ss}^{1 - \alpha} \left(CapU t_{\rm ss} K_{\rm ss} \right)^{\alpha} = 0 \tag{6.4}$$

$$-Y_{\rm ss} + L_{\rm ss}^{s \ 1-\alpha} Z_{\rm ss}^{1-\alpha} (CqUt_{\rm ss} K_{\rm ss})^{\alpha} = 0$$
 (6.5)

$$Z_{\rm ss} - e^{\phi \log Z_{\rm ss}} = 0 \tag{6.6}$$

$$\lambda_{\rm ss}^c W_{\rm ss} + (-1 + \mu) C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^s)^{-\mu} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^s)^{1-\mu} \right)^{-\eta} = 0 \tag{6.7}$$

$$-\delta\omega K_{\rm ss}CqUt_{\rm ss}^{-1+\omega} + \alpha K_{\rm ss}L_{\rm ss}^{s}^{1-\alpha}Z_{\rm ss}^{1-\alpha}(CqUt_{\rm ss}K_{\rm ss})^{-1+\alpha} = 0$$

$$(6.8)$$

$$I_{\rm ss} - K_{\rm ss} + K_{\rm ss} \left(1 - \delta C q \mathcal{U} t_{\rm ss}^{\ \omega} \right) = 0 \tag{6.9}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^s)^{1 - \mu} \right)^{1 - \eta} = 0 \tag{6.10}$$

$$-C_{\rm ss} + \Pi_{\rm ss} - \lambda_{\rm ss}^{U} \Pi_{\rm ss} + L_{\rm ss}^{s} W_{\rm ss} = 0$$
(6.11)

$$-I_{ss} - \Pi_{ss} + Y_{ss} + \lambda_{ss}^{U} \Pi_{ss} - L_{ss}^{s} W_{ss} = 0$$
(6.12)

7 Parameter settings

$$\alpha = 0.36 \tag{7.1}$$

$$\beta = 0.99 \tag{7.2}$$

$$\delta = 0.025 \tag{7.3}$$

$$\eta = 2 \tag{7.4}$$

$$\mu = 0.3 \tag{7.5}$$

$$\omega = 1.45 \tag{7.6}$$

$$\phi = 0.95 \tag{7.7}$$

8 Steady state values

	Steady state values
λ^c	0.547
λ^U	0.99
C	0.7449
CapUt	0.9284
I	0.246
K	10.96
L^s	0.2673
П	11.0707
U	-135.8123
W	2.3722
Y	0.9909
Z	1

9 The solution of the perturbation

9.1 P

$$\begin{array}{ccc} K_{t-1} & Z_{t-1} \\ K & \begin{pmatrix} 0.9758 & 0.0705 \\ 0 & 0.95 \end{pmatrix} \end{array}$$

9.2 Q

$$\begin{array}{c} \epsilon^Z \\ K \left(\begin{array}{c} 0.0742 \\ I \end{array} \right) \end{array}$$

9.3 R

9.4 S

$$\begin{array}{c} \epsilon^Z \\ \lambda^c \\ \lambda^U \\ C \\ C \\ C \\ C \\ U \\ I \\ I \\ L^s \\ L^s \\ U \\ U \\ W \\ V \\ Y \\ \end{array} \begin{array}{c} -0.3683 \\ 0 \\ 0.4405 \\ 1.057 \\ 4.8392 \\ 0.8001 \\ 0.0153 \\ -0.0429 \\ 0.7325 \\ 1.5326 \\ \end{array}$$

10 Statistics of the model

10.1 Moments

	Steady state value	Std. dev.	Variance	Loglinear
λ^c	0.547	0.035	0.0012	Y
λ^U	0.99	0	0	Y
C	0.7449	0.0408	0.0017	Y
CapUt	0.9284	0.1001	0.01	Y
I	0.246	0.4485	0.2011	Y
K	10.96	0.0245	0.0006	Y
L^s	0.2673	0.0744	0.0055	Y
П	11.0707	0.0242	0.0006	Y
U	-135.8123	0.004	0	Y
W	2.3722	0.0674	0.0045	Y
Y	0.9909	0.1414	0.02	Y
Z	1	0.0922	0.0085	Y

10.2 Correlation matrix

	λ^c	λ^U	C	CapUt	I	K	L^s	П	U	W	Y	Z
λ^c	1	0	-0.9905	-0.8825	-0.9322	-0.5097	-0.9236	-0.3055	0.9994	-0.9714	-0.9491	-0.953
λ^U	0	0	0	0	0	0	0	0	0	0	0	0
C	-0.9905	0	1	0.9387	0.973	0.3867	0.9675	0.1719	-0.9947	0.9948	0.9834	0.9856
CapUt	-0.8825	0	0.9387	1	0.9929	0.0452	0.9954	-0.1781	-0.8984	0.9689	0.9857	0.9835
I	-0.9322	0	0.973	0.9929	1	0.1636	0.9997	-0.0599	-0.9442	0.9915	0.9987	0.998
K	-0.5097	0	0.3867	0.0452	0.1636	1	0.1408	0.975	-0.4794	0.2908	0.2128	0.2251
L^s	-0.9236	0	0.9675	0.9954	0.9997	0.1408	1	-0.0829	-0.9364	0.9882	0.9973	0.9963
П	-0.3055	0	0.1719	-0.1781	-0.0599	0.975	-0.0829	1	-0.2722	0.0707	-0.0099	0.0027
U	0.9994	0	-0.9947	-0.8984	-0.9442	-0.4794	-0.9364	-0.2722	1	-0.9791	-0.9595	-0.963
W	-0.9714	0	0.9948	0.9689	0.9915	0.2908	0.9882	0.0707	-0.9791	1	0.9967	0.9977
Y	-0.9491	0	0.9834	0.9857	0.9987	0.2128	0.9973	-0.0099	-0.9595	0.9967	1	0.9999
Z	-0.953	0	0.9856	0.9835	0.998	0.2251	0.9963	0.0027	-0.963	0.9977	0.9999	1

10.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
λ^c	0.7487	0.5276	0.3371	0.1768	0.0454
λ^U	NaN	NaN	NaN	NaN	NaN
C	0.7277	0.494	0.2979	0.137	0.0087
CapUt	0.7137	0.4719	0.272	0.1107	-0.0155
I	0.7115	0.4684	0.2679	0.1066	-0.0193
K	0.9603	0.8642	0.731	0.5765	0.4135
L^s	0.7114	0.4682	0.2676	0.1063	-0.0196
П	0.9636	0.8695	0.7371	0.5827	0.4193
U	0.7427	0.518	0.3259	0.1654	0.0349
W	0.7174	0.4777	0.2787	0.1176	-0.0092
Y	0.7128	0.4703	0.2701	0.1089	-0.0172
\overline{Z}	0.7133	0.4711	0.2711	0.1098	-0.0163

11 Statistics of the model

11.1 Moments relative to moments of the reference variable

	Steady state value relative to Y	Std. dev. relative to Y	Variance relative to Y	Loglinear
λ^c	0.552	0.2476	0.0613	Y
λ^U	0.9991	0	0	Y
C	0.7517	0.2886	0.0833	Y
CapUt	0.9369	0.7079	0.5011	Y
I	0.2483	3.1723	10.0637	Y
K	11.0607	0.1733	0.03	Y
L^s	0.2698	0.5261	0.2768	Y
П	11.1724	0.1711	0.0293	Y
U	-137.0598	0.0286	0.0008	Y
W	2.394	0.4768	0.2274	Y
Y	1	1	1	Y
Z	1.0092	0.652	0.4251	Y

11.2 Correlations with the reference variable

	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
λ^c	0.1893	0.0649	-0.1047	-0.3261	-0.6056	-0.9491	-0.759	-0.5852	-0.4297	-0.2936	-0.1769
λ^U	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
C	-0.1167	0.01	0.1782	0.3932	0.66	0.9834	0.7485	0.5426	0.3656	0.2168	0.0945
CapUt	0.0755	0.1973	0.3474	0.5279	0.7405	0.9857	0.6585	0.3894	0.1736	0.0056	-0.1203
I	0.0103	0.1355	0.2939	0.4889	0.7231	0.9987	0.6988	0.4477	0.2423	0.0785	-0.0479
K	-0.5404	-0.4988	-0.413	-0.273	-0.0682	0.2128	0.4076	0.5307	0.5952	0.6134	0.5959
L^s	0.0229	0.1476	0.3046	0.497	0.7273	0.9973	0.6917	0.4369	0.2292	0.0645	-0.062
П	-0.5491	-0.5352	-0.4842	-0.3865	-0.232	-0.0099	0.2549	0.436	0.5477	0.6029	0.6138
U	0.1712	0.046	-0.1236	-0.3437	-0.6205	-0.9595	-0.7577	-0.5754	-0.4142	-0.2746	-0.1563
\overline{W}	-0.0614	0.0655	0.2305	0.438	0.6923	0.9967	0.7315	0.5043	0.3136	0.1572	0.0323
Y	-0.0172	0.1089	0.2701	0.4703	0.7128	1	0.7128	0.4703	0.2701	0.1089	-0.0172
Z	-0.0242	0.1021	0.264	0.4655	0.7099	0.9999	0.716	0.4759	0.2771	0.1165	-0.0095

12 Impulse response functions

12.1 Shock ϵ^Z

Figure 1: Impulse response function for ϵ^Z shock

Figure 2: Impulse response function for ϵ^Z shock