

What is claimed is:

1 1. A compound characterized by the general formula:

2
3 wherein R¹ is any group that can be expelled as its free radical form in an addition-
4 fragmentation reaction;
5 R² and R³ are each independently selected from the group consisting of hydrogen,
6 hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted
7 heteroatom-containing hydrocarbyl, and combinations thereof, and optionally R² and R³
8 are joined together in a ring structure having from 3 to 50 atoms in the backbone of the
9 ring; also optionally, R² and R³ are joined together to form a double bond optionally
10 substituted alkenyl moiety.

1 2. The compound of claim 1, wherein R¹ is selected from the group consisting of
2 optionally substituted alkyl, optionally substituted aryl, optionally substituted alkenyl,
3 optionally substituted alkoxy, optionally substituted heterocyclyl, optionally substituted
4 alkylthio, optionally substituted amino and optionally substituted polymer chains.

1 3. The compound of claim 2, wherein R¹ is selected from the group consisting of
2 -CH₂Ph, -CH(CH₃)CO₂CH₂CH₃, -CH(CO₂CH₂CH₃)₂, -C(CH₃)₂CN, -CH(Ph)CN,
3 -C(CH₃)₂Ph, -CH(CH₃)CN, and -CH₂CH₂CH₂CH₃.

1 4. The compound of claim 1, wherein R² and R³ are each independently selected
2 from the group consisting of hydrogen, optionally substituted alkyl, optionally
3 substituted aryl, optionally substituted alkenyl, optionally substituted acyl, optionally
4 substituted, aroyl, optionally substituted alkoxy, optionally substituted heteroaryl,
5 optionally substituted heterocyclyl, optionally substituted alkylsulfonyl, optionally
6 substituted alkylsulfinyl, optionally substituted alkylphosphonyl, optionally substituted
7 arylsulfinyl, and optionally substituted arylphosphonyl.

8 5. The compound of claim 1, wherein R² and R³ form an optionally substituted
9 heterocycle ring.

10 6. The compound of claim 1, wherein the compound is selected from the group
11 consisting of:

12

13 7. A compound characterized from any of the following general formulas:

14

15 wherein R¹ is any group that can be expelled as its free radical form in an
16 addition-fragmentation reaction;

17 R² and R³ are each independently selected from the group consisting of hydrogen,
18 hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, and
19 substituted heteroatom-containing hydrocarbyl, and combinations thereof; and optionally
20 R² and R³ together to form a double bond optionally substituted alkenyl moiety; and also
21 optionally R² and R³ together joined in a ring structure having from 3 to 50 atoms in the
22 ring backbone;

23 Core is a core molecule;

24 c is 1 or more; and

25 d is 2 or more.

1 8. The compound of claim 7, wherein R¹ is selected from the group consisting of
2 optionally substituted alkyl, optionally substituted aryl, optionally substituted alkenyl,
3 optionally substituted alkoxy, optionally substituted heterocycl, optionally substituted
4 alkylthio, optionally substituted amino and optionally substituted polymer chains.

1 9. The compound of claim 8, wherein R¹ is selected from the group consisting of -
2 CH₂Ph, -CH(CH₃)CO₂CH₂CH₃, -CH(CO₂CH₂CH₃)₂, -C(CH₃)₂CN, -CH(Ph)CN and
3 -C(CH₃)₂Ph, -CH(CH₃)CN, -CH₂CH₂CH₂CH₃.

1 10. The compound of claim 7, wherein R² and R³ are each independently selected
2 from the group consisting of hydrogen, optionally substituted alkyl, optionally
3 substituted aryl, optionally substituted alkenyl, optionally substituted acyl, optionally
4 substituted, aroyl, optionally substituted alkoxy, optionally substituted heteroaryl,
5 optionally substituted heterocycl, optionally substituted alkylsulfonyl, optionally
6 substituted alkylsulfinyl, optionally substituted alkylphosphonyl, optionally substituted
7 arylsulfinyl, and optionally substituted arylphosphonyl.

1 11. The compound of claim 7, wherein wherein R² and R³ form an optionally
2 substituted heterocycle ring.

1 12. The compound of claim 7, wherein Core is selected from the group consisting of:

1 13. The compound of claim 7, wherein the compound is selected from the group
2 consisting of:

