

Ein Raum-Zeit-Scheduler und Trajektorienplaner für ein Schwarmsystem

Masterarbeit

am Fachgebiet Kommunikations- und Betriebssysteme (KBS)
Prof. Dr. Hans-Ulrich Heiß
Fakultät IV Elektrotechnik und Informatik
Technische Universität Berlin

vorgelegt von **Rico Jasper**

Betreuer: Daniel Graff

Rico Jasper

Matrikelnummer: 319396 Landsberger Allee 208

10367 Berlin

Erklärung der Urheberschaft

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und Hilfsmittel angefertigt habe.

Ort, Datum Unterschrift

Zusammenfassung

Die Vernetzung elektronischer Geräte wird durch den technologischen Fortschritt immer weiter vorangetrieben. Cyber-physische Systeme (CPS) stellen die nächste Evolutionsstufe dieser Entwicklung dar, welche sich aus einer Vielzahl vernetzter Elemente zusammensetzt.

Die steigende Komplexität solcher Systeme erfordert neue Ansätze, um diesen Herausforderungen Herr zu werden. *jSwarm* ist ein verteiltes Betriebssystem, welches eine Vielzahl mobiler Roboter zu einem einzigen System, dem Schwarm, vereint. Durch ein geeignetes Programmiermodell soll die schwerfällige und fehleranfällige Softwareentwicklung verteilter Anwendungen erleichtert werden.

Das Modell sieht vor, verteilte Anwendungen in *Actions* aufzuteilen, die durch einen Scheduler in Raum und Zeit eingeplant werden. Ort und Zeitpunkt können mithilfe von Constraints eingeschränkt werden. Dadurch gelingt eine Entkopplung der Raum-Zeit-Anforderungen und der eigentlichen Handlung einer Action. Die Auswahl eines Roboters und die Planung der Fahrtrouten übernimmt dabei der Scheduler und ist somit für den Entwickler der Schwarmanwendung transparent.

Gegenstand dieser Arbeit ist die Entwicklung des Raum-Zeit-Schedulers, welcher die Actions sowohl in Zeit als auch Raum einplant. Dazu erfüllt er zwei Kernkompetenzen: Die Jobplanung und die Trajektorienplanung. Die erste Aufgabe umfasst die Auswahl eines Roboters, sowie die Orts- und Zeitbestimmung einer Action. Die Trajektorienplanung bestimmt die Fahrtrouten der Roboter, sodass diese rechtzeitig zum Ausführungsort ihrer Actions gelangen ohne mit bewegten oder unbewegten Hindernissen zu kollidieren.

Summary

The increasing interconnection of electronic devices is driven by technological progress. The next step of this evolution is represented by cyber-physical systems which consist of a large number of networked elements.

As such systems rise in complexity new approaches are needed to cope with the evoked challenges. *jSwarm* is a distributed operating system which manages a variety of mobile robots as one system: the swarm. The project aims to make software development of distributed applications less cumbersome and error-prone using an appropriate programming model.

Following the model distributed applications are divided into actions which are scheduled in space and time. By attaching constraints to actions the exact location and time can be restricted. This enables to decouple space-time requirements from the actual operation of an action. Selecting an available robot and pathfinding are taken care of by the scheduler and thus are transparent to the application developer.

Subject of this thesis is the development of the space-time scheduler which schedules actions in both space and time. For this purpose it fulfills two core functions: job planning and trajectory planning. The first function involves selecting a robot, as well as the location and the start time. The trajectory planner determines the routes of the robots and therefore ensures that they arrive in time at the location without colliding with moving or stationary obstacles.

Inhaltsverzeichnis

	Erklärung der Urheberschaft				
	Zus	ammenfassung	III		
	Inha	altsverzeichnis	V		
1	Einführung				
	1.1	Motivation	1		
	1.2	Zielsetzung und Abgrenzung	2		
	1.3	Struktur der Arbeit	2		
2	Grundlagen und Stand der Forschung				
	2.1	Verteilte Systeme	4		
	2.2	jSwarm	5		
	2.3	Raum-Zeit-Scheduling	6		
	2.4	Wegfindung	7		
	2.5	Path-Velocity-Decomposition	7		
3	Problemanalyse				
	3.1	Entwicklung verteilter Raum-Zeit-Anwendungen	8		
	3.2	Raum- und Echtzeitbedingungen	9		
	3.3	Fehlersituationen	10		
4	Lösı	ungsansatz	11		
	4.1	Modell des allwissenden Schedulers	11		
	4.2	Jobplanung	12		
		4.2.1 Planung eines Jobs	12		
		4.2.2 Planung mehrerer Jobs	18		
		4.2.3 Planung periodischer Jobs	18		

		4.2.4	Planung abhängiger Jobs
		4.2.5	Entfernen eines Jobs
		4.2.6	Umplanen eines Jobs
		4.2.7	Transaktionen
	4.3	Trajekt	torienplanung
		4.3.1	Räumliche Pfadplanung
		4.3.2	Temporale Pfadplanung
		4.3.3	Verbotene Regionen
		4.3.4	Wartezeiten
	4.4	Knoten	nauslastung
5	Imp	lementi	erung 39
	5.1	Konzej	pte
		5.1.1	Kein null
		5.1.2	Unveränderliche Objekte
		5.1.3	Fail-Fast
	5.2	Abhän	gigkeiten
		5.2.1	Java 8
		5.2.2	Java Topology Suite
		5.2.3	JGraphT
		5.2.4	la4j
		5.2.5	straightedge
	5.3	Typen	
		5.3.1	Gleitkommazahl
		5.3.2	Zeittypen
		5.3.3	Pfade
		5.3.4	Hindernisse
		5.3.5	Jobs
	5.4	Kompo	onenten
		5.4.1	Scheduler
		5.4.2	Knoten
		5.4.3	Pathfinder
	5.5	Schnitt	stellen
		5.5.1	Initialisierung des Schedulers
		5.5.2	Knoten hinzufügen und entfernen
		5.5.3	Planung eines Jobs

IN	HALT	TSVER2	ZEICHNIS	VII	
		5.5.4	Planung periodischer Jobs	48	
		5.5.5	Planung abhängiger Jobs	49	
		5.5.6	Umplanen eines Jobs	50	
		5.5.7	Entfernen eines Jobs	50	
		5.5.8	Gegenwart setzen	50	
		5.5.9	Knotenauslastung	51	
6	Evaluation				
	6.1	Kompl	exität	53	
		6.1.1	Trajektorienplanung	53	
		6.1.2	Jobplanung	57	
		6.1.3	Bewertung	60	
	6.2	Benchr	mark	61	
		6.2.1	Trajektorienplanung	61	
		6.2.2	Jobplanung	64	
		6.2.3	Bewertung	68	
	6.3	Problei	mfälle	69	
		6.3.1	Allwissenheit	69	
		6.3.2	Pseudostationäre Hindernisse	70	
		6.3.3	Orts-Sampling	70	
		6.3.4	Zeitintervall und Pfadlänge	71	
		6.3.5	Trajektoriendauer	71	
7	Fazit und Ausblick				
	Literaturverzeichnis				
	Abb	verzeichnis	76		
	Tabe	zeichnis	78		
	Abkürzungsverzeichnis				
A	Pseu	docode		80	

Kapitel 1

Einführung

1.1 Motivation

Die technologische Entwicklung der letzten Jahre ist geprägt durch eine zunehmende Vernetzung elektronischer Geräte. Die nächste Evolutionsstufe dieser Entwicklung stellen sogenannte cyber-physische Systeme (CPS) dar [14]. Diese setzen sich aus einer Vielzahl vernetzter Elemente zusammen, die mithilfe von Sensoren und Aktoren auf die reale Welt Einfluss nehmen können.

Aufgrund der Komplexität der cyber-physischen Systeme gestaltet sich die Entwicklung verteilter Anwendungen als schwierig und fehleranfällig. *jSwarm*, ein verteiltes Betriebssystem für mobile Roboter, nimmt sich daher zum Ansatz die Vielzahl von Geräten unter ein einziges System zu vereinigen [1]. Ziel dieses Betriebssystems ist die Schaffung einer einheitlichen und zentralen Programmierschnittstelle, die das Entwickeln verteilter Schwarmanwendungen vereinfacht. Dies ermöglicht weitgehende Transparenz der Heterogenität und Vielfalt der Roboter. Zudem werden essentielle Funktionen zur Koordination, Wegfindung und Wegausführung durch das Betriebssystem übernommen.

In einem klassischen Betriebssystem bestimmt der Scheduler, wann ein Prozess auf dem Prozessor ausgeführt wird. Ein Raum-Zeit-Scheduler wählt neben der Zeit zusätzlich den Ausführungsort. Dieser Ort ist relevant für Raum-Zeit-Aufgaben, die der Roboterschwarm bewältigen soll.

Im Rahmen dieser Arbeit wird ein Raum-Zeit-Scheduler vorgestellt, welcher in *jSwarm* Anwendung findet. Der Schwarm vereint mehrere physisch unabhängige Roboter (Knoten) unter sich, die in der realen Welt agieren. Zu erledigende Aufgaben bringen Spezifikationen zu Gebiet und Zeitraum mit sich, in dem bzw. zu der sie bearbeitet werden müssen. Eine Aufgabe könnte beispielsweise so aussehen, dass an einem gewissen Ort ein Bild des Sonnenuntergang aufgenommen werden soll. Um diese Aufgabe zu er-

füllen, muss sich zu gegebener Zeit ein Roboter an diesem Ort befinden, um das Foto zu schießen zu können.

1.2 Zielsetzung und Abgrenzung

Ziel dieser Arbeit ist die Bereitstellung eines funktionstüchtigen Raum-Zeit-Schedulers. Der Scheduler muss in der Lage sein Raum-Zeit-Aufgaben konfliktfrei in einen bestehenden Schedule einzuplanen, sodass ein gültiger Schedule stets in einen gültigen Schedule transformiert wird. Dazu müssen unter anderen folgende Punkte beachtet werden:

- Ein Roboter kann höchstens eine Aufgabe gleichzeitig bearbeiten.
- Aufgabenspezifikationen an Raum und Zeit müssen erfüllt werden.
- Roboter dürfen nicht mit Hindernissen oder anderen Robotern kollidieren.
- Limitierungen der Roboter (Höchstgeschwindigkeit) müssen beachtet werden.
- Es können nur zukünftige Ereignisse geplant werden.

Zur Einplanung einer Aufgabe ist eine Spezifikation nötig, die Anforderungen an Ort, Zeit und Knoten vorgibt, welche durch den Scheduler bestimmt werden. Dabei muss gewährleistet werden, dass es dem Knoten auch tatsächlich möglich ist, diesen Ort zur angegebenen Zeit zu erreichen, ohne dass andere Aufgaben in Verzug geraten.

Neben den funktionalen Anforderungen muss der Scheduler Einschränkungen hinsichtlich Speicherverbrauch und Berechnungsaufwand genügen. Dazu wird er sowohl in einer theoretischen Komplexitätsanalyse (Abschnitt 6.1) als auch Simulationen (6.2) untersucht.

Die funktionalen Anforderungen haben jedoch Vorrang gegenüber der Leistung. Da Optimierungen aufwändig und fehleranfällig sind, steht die Korrektheit der Algorithmen im Vordergrund. Des Weiteren wird von einem einfachen Fehlermodell ausgegangen. In einem Schwarmsystem können unzählige Fehlersituationen auftreten. Der Entwicklungsaufwand zur Abdeckung aller Fehlersituationen ist äußerst hoch. Der Fokus liegt daher auf elementare Scheduler-Funktionen. Eine umfassende zuverlässige Umsetzung zur Handhabung verschiedenster Fehler ist damit Gegenstand zukünftiger Forschungsarbeiten.

1.3 Struktur der Arbeit

Zu Beginn möchte ich im Grundlagenkapitel (2) einen Überblick auf einige Forschungsarbeiten zu verteilten Systemen verschaffen. Das Schwarmbetriebssystem jSwarm ist

unter diesen hervorzuheben, da dieses den hier entwickelten Scheduler verwendet. Des Weiteren gehe ich in 2.3 und 2.4 auf weitere Veröffentlichungen zu Raum-Zeit-Scheduling und Wegfindung ein. Dem letzteren Punkt ist auch die Path-Velocity-Decomposition von Kant und Zucker aus [2] zuzuordnen, auf die ich jedoch gesondert in Abschnitt 2.5 Bezug nehme, da sie die Basis der Trajektorienplanung des Schedulers bildet.

Darauf folgt Kapitel 3, in dem die Problempunkte des Schedulings von Raum-Zeit-Anwendungen identifiziert werden. Diese gilt es anschließend im Folgekapitel 4 zu lösen. Hervorzuheben sind hier die Abschnitte zur Jobplanung und Trajektorienplanung, welche die beiden Kernaufgaben des Schedulers widerspiegeln.

Details zur Implementierung in Java werden in Kapitel 5 behandelt. Hier wird ein allgemeiner Überblick der angewandten Konzepte, verwendeten Bibliotheken und Typen gegeben sowie die Komponenten und Schnittstellen der Umsetzung präsentiert.

In der Evaluation in Kapitel 6 werden die wichtigsten Komponenten sowohl in ihrer Komplexität untersucht, als auch deren Zeitverhalten in Benchmarks ermittelt und bewertet. Darüber hinaus werden einige Problemfälle des Schedulers aufgedeckt.

Kapitel 7 schließt die Arbeit mit einem Fazit ab und gewährt einen Ausblick auf zukünftige Arbeiten.

Kapitel 2

Grundlagen und Stand der Forschung

2.1 Verteilte Systeme

Die National Science Foundation erwartet für die Zukunft, dass cyber-physische Systeme jene von heute in wesentlichen Eigenschaften wie Anpassungsfähigkeit, Autonomie, Effizienz, Zuverlässigkeit und Sicherheit übertreffen werden und ruft daher in ihrem Programm *Cyber-Physical Systems (CPS)* seit 2009 alljährlich zu Bewerbungen auf [3].

Das Interesse in cyber-physischen Systemen zeigt sich auch in Projekten wie das *SwarmOS* des *TerraSwarm Research Centers* [4]. Zur Vision der Forschungsgruppe gehört ein weltumfassendes Netz aus vernetzten Sensoren und Aktoren, welche die Cyberwelt nahtlos mit der realen Welt verbindet. Zu den großen Herausforderungen gehören die Fragen, wie die gewaltige Menge an Daten der heterogenen Sensoren gespeichert, abgerufen, verarbeitet und interpretiert und wie Vertraulichkeit und Sicherheit gewährleistet werden können.

Mit *MagnetOS* wird in [5] ein verteiltes Betriebssystem zur Verwaltung von Ad-hoc-Sensornetzwerken vorgestellt. Im Fokus liegt die Bereitstellung einer netzwerkweiten Energieverwaltung auf Systemebene. Dabei erscheint MagnetOS als eine einzelne Java Virtual Machine, die Anwendungen automatisch und transparent auf mehrere Arbeitsknoten aufteilt.

Andere Ansätze werden mit kollektiven Systemen aus Robotern verfolgt, welche von symbiotischen Organismen der Natur inspiriert wurden [6]. Ein Vertreter ist das *Replicator*-Projekt, das sich mit der Rekonfiguration von Sensoren und Aktoren, anpassungsfähiger Steuerung und Lernfähigkeit auseinandersetzt. Ein weiteres Beispiel ist das *Symbrion*-Projekt, welches die künstliche Evolution von Roboterorganismen erforscht.

2.2 jSwarm 5

Abbildung 2.1: jSwarm-Architektur [7]

2.2 jSwarm

jSwarm ist ein verteiltes Laufzeitsystem um Raum-Zeit-Anwendungen auf einem Roboterschwarm auszuführen [1][7]. Dadurch soll die Heterogenität und Vielfältigkeit der Roboter versteckt werden, indem eine gemeinsame Programmierschnittstelle angeboten wird. Desweiteren ermöglicht das System die Virtualisierung des Schwarms, sodass mehrere Schwarmanwendungen parallel ausgeführt werden können. Der Programmierer erfährt dabei Transparenz gegenüber Koordination, Synchronisation, Auswahl und Bewegung der Roboter. D.h. er muss sich weder darum kümmern, welcher Roboter zur Erfüllung einer Aufgabe verwendet wird, noch wie er zum Ausführungsort gelangt.

Das Programmiermodell sieht vor, dass Schwarmanwendungen sogenannte *Actions* in Auftrag geben, die innerhalb eines gewissen Areals und während eines bestimmten Zeitintervalls ausgeführt werden. Areal und Zeitintervall bilden gemeinsam ein *Constraint*. Des Weiteren können auch relative Constraints angegeben werden. Diese beziehen sich auf den Ausführungsort und/oder Ausführungszeit einer anderen Action. Eine Schwarmanwendung setzt sich typischerweise aus mehreren Actions zusammen. Die Ergebnisse einer Action können dabei als Eingabe einer anderen Action verwendet werden. Die nötige Koordination und Kommunikation übernimmt *jSwarm*.

Die Komponenten des Schwarmsystems teilen sich als lose gekoppelte Dienste auf, die durch ein Nachrichtensystem miteinander kommunizieren (Abbildung 2.1). Dies ermöglicht eine einfache Replikation der Dienste um leichter mit Ausfällen umgehen zu können. Die Dienste lassen sich in zwei Gruppen einordnen: globale Systemdienste und lokale Knotendienste. Die Systemdienste dienen zur Systemverwaltung, Ressourcenallokation und Steuerung der Roboter. Knotendienste sind für die lokale Verwaltung der Roboter zuständig sowie der Steuerung der Sensoren und Aktoren. Zu jedem System-

Abbildung 2.2: jSwarm-Testumgebung

dienst existiert immer nur eine aktive Instanz währenddessen Knotendienste auf allen Robotern ausgeführt werden.

Für Experimente stehen 40 mobile Roboter zu Verfügung, die jeweils mit einem 400 MHz ARM9 Prozessor und 64 MB Speicher ausgestattet sind (siehe Abbildung 2.2). Zur autonomen Fortbewegung besitzen sie zwei separat ansteuerbare Elektromotoren. Von insgesamt 13 Infrarotsensoren sind 5 nach unten und 8 horizontal nach außen gerichtet, sodass sowohl Bodenmarkierungen als auch nahe Objekte erkannt werden können. Zur Entfernungsmessung im Bereich 20-170 cm sind außerdem 6 Ultraschallsensoren angebracht.

2.3 Raum-Zeit-Scheduling

Im Bereich der Robotik präsentiert [8] ein schnelles Scheduling-Verfahren, genannt *Tercio*, um mehreren Agenten Aufgaben mit raum-zeitlichen Constraints zuzuweisen, wodurch untere und obere Grenzen von Deadlines sowie räumliche Einschränkungen durch andere Roboter oder Menschen in der näheren Umgebung berücksichtigt werden.

[9] formuliert das *Law Enforcement Problem* (LEP), in dem sich Polizeibeamte auf Patrouillen befinden und auf Zwischenfälle (Aufgaben) reagieren müssen, die auch von mehreren Beamten bewältigt werden können. Des Weiteren wird der heuristische Algorithmus *FMC_TA* vorgestellt, welcher die Teamauslastung für das LEP optimiert.

Sowohl FMC_TA als auch Tercio haben mit dem Scheduler dieser Arbeit gemein, dass sie Aufgaben unter raum-zeitlichen Einschränkungen einplanen müssen.

2.4 Wegfindung 7

2.4 Wegfindung

Die Grundlage der Trajektorienplanung des Raum-Zeit-Schedulers bildet die Path-Velocity-Decomposition (siehe Abschnitt 2.5 und 4.3) aus [2]. [10] greift diese Vorgehensweise auf und erweitert sie um benachbarte Pfade, welche alternative Routen zwischen Start und Ziel einführen. Das Wechseln zu einem benachbarten Pfad ermöglicht während der Trajektorienberechnung neben dem zeitlichen auch das räumliche Ausweichen bewegter Hindernisse.

Die kollisionsfreie Koordination mehrerer Roboter ist Gegenstand in [11]. Auch hier werden zuerst räumlichen Pfade berechnet. Die Vermeidung anderer Roboter gelingt durch ein sogenanntes Koordinationsdiagramm, welches erstmalig für zwei Roboter in [12] eingeführt wurde.

In [13] werden mehrere Roboter innerhalb eines gemeinsamen Konfigurationsraumes betrachtet. Um die Dimension dieses Raumes zu reduzieren, wird das Problem in kleinere Unterprobleme aufgespalten, die sequentiell gelöst werden können. Der verwendete Algorithmus ermittelt dazu eine Ausführungssequenz, welche die höchste Dimension der Unterprobleme minimiert.

2.5 Path-Velocity-Decomposition

In ihrem Paper Toward Efficient Trajectory Planning: The Path-Velocity Decomposition [2] haben Kant und Zucker einen Algorithmus zur Lösung des Trajectory Planning Problems (TPP) vorgestellt. Im Gegensatz zu einer statischen Umgebung, in denen sich keine Hindernisse bewegen, wird beim TPP auch die zeitliche Komponente berücksichtigt. Dabei gilt es eine Trajektorie $\vec{x}_{\pi}: T \to \mathbb{R}^n$ zu bestimmen, die den Aufenthaltsort $\vec{x} \in \mathbb{R}^n$ eines Roboters in Abhängigkeit der Zeit $t \in T$ beschreibt.

Zur Lösung des TTPs haben Kant und Zucker vorgeschlagen, das Problem in zwei Teile aufzuspalten. Der erste umfasst das statische *Path Planning Problem* (PPP), bei dem lediglich unbewegte Hindernisse $O^s \subset \mathbb{R}^n$ berücksichtigt werden. Der zweite Teil ist das *Velocity Planning Problem* (VPP). Hierbei werden Kollisionen mit bewegten Hindernissen $O^m: T \to \mathbb{R}^n$ durch Anpassung der Geschwindigkeit vermieden.

Da die Path-Velocity Decomposition ein integraler Bestandteil der Wegfindung des Schedulers darstellt, wird sie zu Gunsten der Kontinuität im Abschnitt Trajektorienplanung in Detail vorgestellt.

Kapitel 3

Problemanalyse

3.1 Entwicklung verteilter Raum-Zeit-Anwendungen

Die Entwicklung einer Anwendung für verteilte Systeme gestaltet sich meist als schwierig aufgrund fehleranfälliger Konzepte wie Verteilung und Nebenläufigkeit [14]. Die Einführung von Raum und Zeit erschwert die Situation zusätzlich. Das Ziel von *jSwarm* ist daher die Komplexität von Heterogenität, Transparenz oder Nebenläufigkeit zu verbergen. Die Virtualisierung des Schwarms stellt ein weiteres Merkmal dar, sodass mehrere Schwarmanwendungen zeitgleich auf demselben physischen Schwarm ausgeführt werden können. Des Weiteren soll die Anwendung von ihrer Ausführung in Raum und Zeit entkoppelt werden. Die Fragen "Wo?" und "Wann?" werden somit getrennt "Was?" und "Wie?" beantwortet. Diese Trennung wird durch die Formulierung von Raum- und Zeit-Constraints ermöglicht.

Eine Schwarmanwendung wird dazu in Aktionen (Jobs) aufgeteilt, die im weiteren Verlauf Jobs genannt werden. Diese stellen die kleinsten Programmeinheiten dar, die in den Schedule eingefügt werden können. Diese Programmteile klären somit "wie" "was" getan wird. Die Schwarmanwendung definiert für Aktionen Constraints, die bestimmen "wo" und "wann" die Ausführung stattfindet. Konkret geben die Constraints ein Areal A und ein Zeitintervall T vor, in denen der Ausführungsort $(x,y) \in A$ und deren Ausführungszeit $t \in T$ des Jobs liegen müssen.

Neben dem Ort und der Zeit wird einem Job auch eine Dauer d und der beauftragte Roboter zugeordnet. Während der Ausführung darf sich der Roboter nicht von der Stelle bewegen. Das bedeutet, dass Jobs stets stationär sind. Darüber hinaus kann ein Roboter nur einen Job gleichzeitig durchführen.

Der Schedule des Gesamtsystems setzt sich somit aus den lokalen Schedules der Roboter zusammen. Diese enthalten eine Liste der eingeplanten Jobs, die zu einer bestimmten Zeit an einem festen Ort und für eine vorgegebene Dauer ausgeführt werden missen

Die Konsequenzen für den Scheduler sind somit, dass dieser in der Lage sein muss, Jobs verschiedener Schwarmanwendungen unter Berücksichtigung der Constraints einzuplanen. Dazu gehört die Wahl eines geeigneten Ortes, Startzeitpunktes und Roboters.

Neben der Einplanung eines einzelnen Jobs soll es des Weiteren ermöglicht werden eine Jobmenge atomar in den Schedule aufzunehmen. Dies umfasst die Ausführung von periodischen und in Abhängigkeit stehenden Jobs. Es gilt dabei zu verhindern, dass diese nur teilweise eingeplant werden. Gelingt es dem Scheduler die gesamte Menge an Jobs zuzuteilen, so darf kein Element dem Schedule hinzugefügt werden.

3.2 Raum- und Echtzeitbedingungen

Da die Roboter des Schwarmsystems in der realen Welt agieren sollen, sind sie auch deren physikalischen Gegebenheiten unterworfen. Dies betrifft insbesondere Raum und Zeit. Wenn ein Roboter zu einer bestimmten Zeit an einem bestimmten Ort eine Aktion ausführen soll, so muss er auch rechtzeitig dorthin gelangen. Dabei muss beachtet werden, dass der Roboter sich nicht frei durch Raum und Zeit bewegen kann. Beispielsweise kann er seine Höchstgeschwindigkeit nicht überschreiten und sollte sowohl statische (unbewegte) als auch dynamische (bewegte) Hindernisse umgehen.

Eine Trajektorie $\vec{x}_{\pi}: T \to \mathbb{R}^2$ beschreibt dazu die Bahn des Roboters über dessen Einsatzdauer. Wird der lokale Schedule des Roboters verändert (z.B. durch Einplanung eines Jobs), so hat dies in der Regel auch eine Aktualisierung seiner Trajektorie zur Folge.

Ein weiterer Aspekt der Zeit ist die Unterscheidung zwischen Gegenwart und Zukunft. Es können nur zukünftige Ereignisse geplant werden. Eine zusätzliche Einschränkung ist durch Verarbeitungs- und Nachrichtenlaufzeiten gegeben. Aktionen können daher nicht beliebig früh in der Zukunft geplant werden.

Der Scheduler muss Algorithmen und Schnittstellen zu Verfügung stellen, um diese Raum- und Echtzeitbedingungen erfüllen zu können. Seine Trajektorie darf dazu zu keinem Zeitpunkt zu einer Kollision mit einem Hindernis führen. Des Weiteren kann die Trajektorie zu keinem Zeitpunkt vor der Gegenwart manipuliert werden. Außerdem muss bedacht werden, dass ein neu berechneter Teil der Bahn möglicherweise verspätet oder gar nicht beim Roboter angelangt. Es muss dennoch gewährleistet werden, dass es infolgedessen zu keinen Kollisionen kommt.

3.3 Fehlersituationen 10

3.3 Fehlersituationen

Aufgrund der Größe und Komplexität des Schwarms sind Fehlersituationen unabwendbar. Roboter können spontan ausfallen oder Fehlfunktionen aufweisen. Aktionen werden möglicherweise unvollständig oder gar nicht ausgeführt. Nachrichten treffen verspätet ein oder gehen verloren. Der Scheduler muss Mittel und Wege bereitstellen, damit das Gesamtsystem mit derartigen Situationen umgehen kann. Dies erfordert zudem ein Fehlermodell, welches erwartete Fehler beschreibt.

Kapitel 4

Lösungsansatz

Der Scheduler ist die zentrale Instanz zur Zuteilung von Aufgaben im Schwarm. Der Schwarm setzt sich aus autonomen Ausführungseinheiten, den Knoten, zusammen. Dabei handelt es sich in der Regel um Roboter. Der Scheduler bestimmt welche Aufgabe, auch Job genannt, wann, wo und von welchem Knoten ausgeführt wird. Außerdem berechnet er die Fahrtrouten der Knoten. Somit besitzt er zwei Kernaufgaben, die Jobplanung und die Trajektorienplanung. Die Jobplanung umfasst das Einplanen und Verwalten der Jobs. Die Trajektorienplanung beinhaltet das Berechnen und Aktualisieren der Trajektorien. Beide Aufgaben sind eng miteinander verknüpft, da die Einplanung eines Jobs meist auch eine Trajektorienanpassung erfordert, um sie am korrekten Ort auszuführen.

4.1 Modell des allwissenden Schedulers

Da die Trajektorien der Roboter kollisionsfrei sein sollen, muss der Scheduler Wissen über den Zustand der realen Welt besitzen. Die Welt wird dabei ohne explizite Grenzen in zwei Raumdimensionen (x, y) und einer Zeitdimension (t) abgebildet. Um Ausweichrouten planen zu können, benötigt der Scheduler Standortinformationen der Hindernisse und Roboter. Einfachheitshalber wird davon ausgegangen, dass der Scheduler allwissend über die Hindernisse der Welt ist. Das bedeutet, dass es keine unbekannten Hindernisse geben kann, die ansonsten zu Kollisionen führen könnten. Des Weiteren wird angenommen, dass die Roboter den Verlauf ihrer Trajektorien in der realen Welt exakt verfolgen. Die Berücksichtigung von Abweichungen und Toleranzen ist demnach nicht erforderlich.

Die Informationen über die Hindernisse der Welt sind unveränderlich. Das bedeutet, dass nachträglich keine neuen Hindernisse definiert werden können. Somit wird bei-

spielsweise ausgeschlossen, dass eine vormals kollisionsfreie Route sich nun mit dem neuen Hindernis schneidet.

Im Gegensatz zu Hindernissen können Roboter hinzugefügt und entfernt werden. Um jedoch keine potentiellen Kollisionskonflikte einzuführen, wird die Annahme gemacht, dass inaktive Roboter nie mit anderen Robotern zusammenstoßen. Dies bedeutet, dass aus der Sicht des Schedulers hinzugefügte Roboter aus dem Nichts erscheinen und entfernte Roboter auch dorthin wieder verschwinden. Darüber hinaus dürfen frisch aktivierte Roboter nicht mit anderen Hindernissen oder Robotern kollidieren.

Die zwei zentralen Zustandsinformationen eines Roboters sind seine Liste von Jobs und seine Trajektorie. Die Trajektorie beschreibt seinen Aufenthaltsort in Abhängigkeit der Zeit beginnend von seinem Initialisierungszeitpunkt bis ans "Ende der Zeit". Die Jobs besitzen eine exakte Start- und Endzeit sowie einen exakten Ausführungsort. Ein Roboter kann immer nur einen Job gleichzeitig ausführen und muss sich zwischen der Start- und Endzeit am Ausführungsort befinden.

Das Fehlermodell geht davon aus, dass Roboter nicht spontan ausfallen und keine Fehlfunktionen aufweisen. Andernfalls wäre die Allwissenheit des Schedulers gefährdet, da sich der Standort eines defekten Roboters nicht in jedem Fall bestimmen ließe. Aufgaben können jedoch stets abgebrochen und Roboter ohne unabgeschlossene Jobs entfernt werden. Somit existiert ein gewisser Raum an Möglichkeiten um außerhalb des Schedulers einige Fehlersituationen aufzulösen. Nachrichtenverlust oder -verzögerungen werden jedoch durch das Konzept von Transaktionen (siehe Abschnitt 4.2.7) unterstützt.

4.2 Jobplanung

4.2.1 Planung eines Jobs

Bei der Zuteilung einer Aufgabe muss der Scheduler drei Variablen belegen: Ort, Zeit und Knoten. Diese müssen zum einen den gestellten Bedingungen einer Aufgabenspezifikation genügen und zum anderen realisierbar sein.

Der hier beschriebene Ansatz belegt nach und nach die Variablen mit konkreten Werten und überprüft sie auf Umsetzbarkeit. Erweist sich ein Wert einer zu Beginn belegten Variable als unergiebig, so wird ihr nach dem Backtracking-Prinzip ein neuer Wert zugewiesen bis entweder eine gültige Belegung gefunden wurde oder alle Kombinationsmöglichkeiten erschöpft sind. Die Prozedur SCHEDULE_SINGLE aus Algorithmus A.1 beschreibt dieses Vorgehen in Pseudocode.

- (a) Aufgabenorte und Fahrtrouten der Knoten
- (b) Schedule der Knoten

Abbildung 4.1: Ausgangssituation vor Jobeinplanung

Abbildung 4.2: Aufgabenareal A

Im Normalfall befinden sich schon vor der Einplanung einer neuen Aufgabe bereits andere Aufgaben im Schedule. Für das folgende Beispiel wird in Abbildung 4.1 die Ausgangssituation dargestellt. Es existieren zwei Knoten n_1 und n_2 . Beide haben eine Höchstgeschwindigkeit von $v_{max}=0.5.\ n_1$ wurden bereits drei Aufgaben zugewiesen, n_2 dagegen zwei.

Aufgabenspezifikation

Der Scheduler weist eine Aufgabe einem Knoten zu, der diese an einem bestimmten Ort zu einer bestimmten Zeit ausführt. Der Aufgabe geht eine Spezifikation voraus, die Anforderungen an den Ort und den Zeitpunkt stellt. Außerdem gibt diese die Dauer d zur Bearbeitung der Aufgabe an. Der Ort (x,y) muss innerhalb eines definierten Areals $A\subseteq\mathbb{R}^2$ liegen und der Zeitpunkt t innerhalb eines Zeitintervalls $T=[t_{min},t_{max}]$, sodass $(x,y)\in A$ und $t\in T$. Der Scheduler nimmt solch eine Spezifikation entgegen und erzeugt daraus eine konkrete Aufgabe, die er einem Knoten zuweist.

Abbildung 4.3: Punkt P aus der Schnittmenge $A \cap S$ (gelblich) mit dem Areal A (gestrichelt) und der Freifläche (Hindernisse durchgezogen)

Im Beispiel besitzt das Areal die Form eines Rechtecks mit den diagonalen Eckpunkten (4,2) und (6,4) (siehe Abbildung 4.2). Das Zeitintervall ist durch [10,60] gegeben. Die Aufgabendauer beträgt 10.

Ort

Der erste Schritt von der Spezifikation zur konkreten Aufgabe ist die Ortsbestimmung. Es wird innerhalb des spezifizierten Areals A ein Punkt P ermittelt, welcher sich nicht innerhalb eines statischen Hindernisses befindet. Dieser Punkt ist also ein Element aus der Schnittmenge der freien Fläche $S=\mathbb{R}^2\setminus O^s$ und des Areals der Spezifikation (siehe Abbildung 4.3):

$$P \in S \cap A \tag{4.1}$$

Dynamische Hindernisse werden an dieser Stelle nicht berücksichtigt, da ein genauer Zeitpunkt noch nicht bestimmt wurde. Möglicherweise führt der gewählte Ortspunkt zu keiner realisierbaren Belegung der übrigen Variablen, wenn beispielsweise dynamische Hindernisse den Weg versperren. In solch einem Fall muss ein neuer alternativer Ortspunkt gewählt werden. Die Anzahl der Alternativen wird dabei beschränkt, um eine endlose Suche zu vermeiden.

Im Falle des Aufgabenareals aus dem Beispiel wird der Punkt (5,3) gewählt 1 (siehe Abbildung 4.4).

 $^{^1\}mathrm{Die}$ Wahl des Punktes ist beliebig, solang $P\in A\cap S$ gilt.

Abbildung 4.4: Gewählter Ort P aus dem Areal $A \cap S$.

Abbildung 4.5: Knotenpausen (grün)

Knotenpause

Da ein Ortspunkt gewählt wurde, kann nun nach einem Knoten gesucht werden, welcher diesen Punkt innerhalb des erlaubten Zeitintervalls erreichen kann.

Im Normalfall muss ein Knoten vor und nach der einzuplanenden Aufgabe ebenfalls Aufgaben erledigen. Er muss genügend Zeit haben, um nach Abschluss der vorherigen Aufgabe (Vorgänger) zur neuen zu fahren, diese abzuarbeiten, und rechtzeitig die nachfolgende (Nachfolger) zu beginnen. Zudem muss die neue Aufgabe weiterhin innerhalb des spezifizierten Zeitraums begonnen werden.

Die Zeit zwischen zwei Aufgaben eines Knotens wird als Pause bezeichnet. Die neue Aufgabe kann demnach nur in eine Pause eingeplant werden. In Abbildung 4.5 sind die Pausen der Knoten aus dem Beispiel grün markiert. Formal muss eine Pause drei Bedingungen erfüllen:

1. Die Aufgabe kann innerhalb des Zeitintervalls begonnen werden.

$$t_{max} - t_1 \ge \frac{s_1}{v_{max}} \tag{4.2}$$

2. Die Aufgabe kann innerhalb des Zeitintervalls abgeschlossen werden

$$t_2 - t_{min} \ge \frac{s_2}{v_{max}} + d \tag{4.3}$$

3. Die Pausendauer ist ausreichend lang für Fahrzeiten und Aufgabendauer.

$$t_2 - t_1 \ge \frac{s_1 + s_2}{v_{max}} + d \tag{4.4}$$

 s_1 und s_2 sind die Strecken der Luftlinien zu und von der neuen Aufgabe. v_{max} ist die Höchstgeschwindigkeit des Knotens. t_1 und t_2 geben das Zeitintervall $[t_1, t_2]$ der Pause an. d ist die Dauer der neuen Aufgabe. Das Zeitintervall, in der die neue Aufgabe gestartet werden muss, ist durch $[t_{min}, t_{max}]$ gegeben.

Die ersten beiden Bedingungen stellen sicher, dass die neue Aufgabe während des vorgegebenen Zeitintervalls begonnen wird. Die dritte Bedingung ist wahr, wenn zwischen Ende und Beginn der bereits eingeplanten Aufgaben genügend Zeit für den Fahrweg und der Aufgabendauer vorhanden ist.

Jeder Knoten besitzt Pausen, in denen er keine Aufgabe bearbeitet. In diesem Sinne gehören die Fahrzeiten ebenfalls zu den Pausen. Nur in jenen Pausen, welche die drei Bedingungen erfüllen, kann die neue Aufgabe eingeplant werden. Wurde solch eine Pause gefunden, so muss nun noch geprüft werden, ob auch gültige Wege zu und von dem Aufgabenort existieren.

Alle drei Bedingungen werden nur von der großen Pause von n_2 erfüllt. Diese dauert 30 Zeiteinheiten von $t_1=20$ bis $t_2=50$ an. Die Strecke zum neuen Aufgabenort beträgt $s_1=\sqrt{8}\approx 2.83$. Dieselbe Strecke muss (zufälligerweise) auch zur nachfolgenden Aufgabe zurückgelegt werden: $s_2=s_1\approx 2.83$. Somit ergibt sich eine Gesamtstrecke von $s_1+s_2\approx 5.66$ die der Roboter bei Höchstgeschwindigkeit $v_{max}=0.5$ in etwa 11.31 Zeiteinheiten abfahren kann. Da das Zeitintervall $[t_{min},t_{max}]=[10,60]$ die Pause nicht einschränkt, bleibt dem Roboter genügend Zeit um den Job in 10 und den Fahrtweg in 11.31 Zeiteinheiten zu absolvieren.

Stehen mehrere Pausen zur Verfügung, die alle Bedingungen erfüllen, so lässt sich bei der Wahl der Pause eine Heuristik nach dem geringsten Umweg Δs anwenden. Dazu wird die Strecke s_{12} zwischen den Aufgabenorten des Vorgängers und Nachfolgers berechnet und davon s_1 und s_2 subtrahiert:

$$\Delta s := s_{12} - (s_1 + s_2) \tag{4.5}$$

 Δs bezeichnet somit die Strecke, die der Knoten zusätzlich fahren muss, um zur neuen Aufgabe zu gelangen. Somit werden jene Pausen bevorzugt, deren Luftlinie nah am neuen Aufgabenort vorbeiführt. Hindernisse werden jedoch vernachlässigt, da dies ansonsten eine Wegfindung erfordern würde.

Die gewählte Pause des Beispiels hat somit einen Umweg von $\Delta s \approx 1.66$.

Wegfindung

Bis hierhin wurden ein Ortspunkt und eine Pause eines bestimmten Knoten als Kandidaten für die Einplanung der Aufgabe gewählt. Ob diese jedoch auch möglich ist, ergibt sich erst durch die Wegfindung. Wie bereits im Unterabschnitt Knotenpause erwähnt, besitzt die einzuplanende Aufgabe im Regelfall einen Vorgänger und einen Nachfolger. Daher muss der Knoten vom Vorgänger zur neuen Aufgabe fahren, diese ausführen, und anschließend zum Nachfolger fahren. Es sind jeweils Trajektorien für beide Fahrwege zu ermitteln, welche Kollisionen mit Hindernissen vermeiden.

Der konkrete Startzeitpunkt wird erst durch die Wegfindung bestimmt. Die Aufgabenspezifikation und die gewählte Pause geben dazu den Zeitrahmen vor. Innerhalb dieses Rahmens versucht die Wegfindung eine Trajektorie zu bestimmen, die so früh wie möglich zum Aufgabenort führt. Allerdings muss hierbei beachtet werden, dass der Knoten auch genügend Zeit zum Ausführen der Aufgabe hat, ohne dass er einem dynamisches Hindernis im Weg steht.

Für den zweiten Fahrweg muss die Wegfindung eine Trajektorie liefern, die als Zielzeitpunkt den Start des Nachfolgers verwendet. Es wird hier also nicht nach dem schnellstmöglichen Weg gesucht.

Dieses Vorgehen kann auch dem Algorithmus A.4 entnommen werden. Details zur Bestimmung der Trajektorien werden im Abschnitt Trajektorienplanung erläutert.

Gegenwart und eingefrorener Horizont

Wie im Abschnitt 3.2 geschildert, können nur zukünftige Ereignisse geplant werden. Die Gegenwart markiert eine Zeitgrenze, vor der keine Änderungen am Schedule möglich sind. Aufgrund der Berechnungsdauer und der Nachrichtenlaufzeit muss diese Grenze zusätzlich in die Zukunft verschoben werden. Diese Grenze bezeichne ich als *eingefrorenen Horizont*.

Bei der Job- und Trajektorienplanung muss dieser Horizont beachtet werden. Aufgabenspezifikationen werden daher implizit eingeschränkt, sodass der frühest mögliche Startzeitpunkt t_{min} effektiv bei $t'_{min} = \max(t_{min}, t_{FH})$ liegt, wobei t_{FH} den eingefrorenen Horizont bezeichnet. Zudem werden bei der Wahl der Pause nur jene Pausen betrachtet, deren Endzeitpunkte t_2 hinter t_{FH} liegen. Ihre Startzeitpunkte t_1 werden verschoben, falls sie vor t_{FH} liegen, sodass $t'_1 = \max(t_1, t_{FH})$.

$$\begin{bmatrix} J_1 & J_2J_3 & J_4 & J_5 \\ t_0 & t_1 & t_2 & t_3 & t_4 & t_5 \end{bmatrix}$$

Abbildung 4.6: Periodischer Schedule

4.2.2 Planung mehrerer Jobs

Neben der Planung eines einzelnen Jobs soll es auch ermöglicht werden mehrere Jobs atomar einzuplanen. Das bedeutet, dass der Scheduler entweder alle angegebenen Jobs im Schedule aufnimmt oder keinen. Das Scheduling einer Menge von Jobs lässt sich zurückführen auf das mehrfache Einplanen einzelner Jobs wie im Abschnitt 4.2.1 beschrieben.

Die beiden folgenden Abschnitte Planung periodischer Jobs und Planung abhängiger Jobs präsentieren zwei Möglichkeiten mehrere Jobs atomar in den Schedule zu übernehmen.

4.2.3 Planung periodischer Jobs

Jobs können in einer endlichen Wiederholung periodisch eingeplant werden. Ähnlich wie im Abschnitt 4.2.1 wird in einer Spezifikation eine Dauer d und ein Areal A angegeben. Die Dauer bezieht sich dabei auf eine einzelne Wiederholung. Die Zeitrestriktion wird durch eine Startzeit t_0 und eine Periodendauer $d_P \geq d$ festgelegt. Die Anzahl der Wiederholungen wird durch n definiert und muss endlich sein, da für jede Wiederholung die Umsetzbarkeit geprüft wird und gegebenenfalls Trajektorien berechnet werden.

Die erste Periode beginnt zum Zeitpunkt t_0 . Pro Periode muss eine Wiederholung J_i mit $i \in \{1, \ldots, n\}$ erfolgen (siehe Abbildung 4.6). Somit muss ein Job J_i im Zeitintervall $[t_{i-1}, t_i - d]$ starten, wobei $t_i := t_0 + (i-1) \cdot d_P$. Die Wiederholungen können entweder allesamt am selben Ort $P \in A$ ausgeführt werden oder jede Wiederholung J_i an einem unabhängigen Ort $P_i \in A$ (siehe Algorithmus A.2).

4.2.4 Planung abhängiger Jobs

Eine weitere Möglichkeit mehrere Jobs atomar einzuplanen ist das Scheduling abhängiger Jobs. Dazu werden wie im Abschnitt 4.2.1 Aufgabenspezifikationen der Jobs und zusätzlich ein Abhängigkeitsgraph übergeben. Dieser zyklenfreier gerichtete Graph enthält alle Jobs als Knoten. Eine Kante von Job C zu Job A gibt dabei an, dass C erst begonnen werden kann nachdem A abgeschlossen wurde. Dies ermöglicht C die Ergebnisse von A als Eingabeparameter zu verwenden.

Abbildung 4.7: Abhängigkeitsgraph

Job	t_{min}	t_{max}	d
A	20	70	5
В	0	100	5
C	0	100	10

Tabelle 4.1: Aufgabenspezifikationen

Ein Anwendungsszenario könnte so aussehen, dass zwei Bälle in einen Eimer geworfen und herausgeholt werden sollen. Dies erfordert drei Aufgaben: Job A und B werfen die Bälle und C holt sie aus dem Eimer. Das Holen kann jedoch nicht erfolgen, solange die Bälle nicht auch geworfen wurden (siehe Abbildung 4.7). Die Aufgabenspezifikationen der Aufgaben ist Tabelle 4.1 zu entnehmen.

Zur Einplanung werden die Jobs topologisch sortiert, sodass erst A oder B und anschließend C in den Schedule aufgenommen werden. Dabei muss beachtet werden, dass sich die Anforderungen an die Ausführungszeiten implizit durch die Zuteilung ändern. Wenn A beispielsweise zum Zeitpunkt $t_A=40$ gestartet wird, dann kann C frühestens zur Zeit $t_C=45$ begonnen werden. Aber auch A und B müssen eingeschränkt werden, da eine Ausführung nach $t_A, t_B=95$ zu keiner gültigen Belegung von t_C führt. Die Aufgabenspezifikation muss deshalb sowohl vor als auch während der Belegung der Variablen eingeschränkt werden.

Die Gleichungen unten geben an, wie die neuen Werte der frühest- und spätestmöglichen Startzeiten zu berechnen sind. Die α -Funktion aus Gleichung (4.6) dient als Hilfsfunktion um rekursiv den impliziten frühestmöglichen Endzeitpunkt² einer Spezifikation s zu bestimmen. dep gibt dazu alle Spezifikationen, von der s abhängig ist, zurück ($\deg(s_C) = \{s_A, s_B\}$).³ β aus Gleichung (4.7) berechnet den impliziten spätestmöglichen Startzeitpunkt, wobei \deg^{-1} alle abhängigen Spezifikationen angibt ($\deg^{-1}(s_A) = \{s_C\}$).⁴

 $^{^{2}}$ Der frühestmögliche Endzeitpunkt ist gegeben durch $t_{min}+d$.

 $^{^{3}}$ Mit anderen Worten gibt dep(s) die Zielknoten aller Kanten an, die von s ausgehen.

 $^{^4\}mathrm{dep}^{-1}(s)$ kann analog zu dep als Menge der Startknoten aller Kanten, welche in s münden, definiert werden.

Job	t'_{min}	t'_{max}	d
A	20	70	5
В	0	95	5
C	25	100	10

Tabelle 4.2: Implizite Aufgabenspezifikationen

$$\alpha(s) := \max \left[\alpha(\operatorname{dep}(s)) \cup \{s.t_{min}\} \right] + s.d \tag{4.6}$$

$$\beta(s) := \min \left[\left(\beta(\operatorname{dep}^{-1}(s)) - s.d \right) \cup \left\{ s.t_{max} \right\} \right]$$
 (4.7)

$$s.t'_{min} := \alpha(s) - s.d \tag{4.8}$$

$$s.t'_{max} := \beta(s) \tag{4.9}$$

Dabei ist der Term $\alpha(\operatorname{dep}(s))$ so zu deuten, dass α elementweise auf die Menge $\operatorname{dep}(s)$ angewandt wird, sodass sich eine neue Menge $\{\alpha(s^*) \mid s^* \in \operatorname{dep}(s)\}$ bildet. Auf dieselbe Art sind analoge Ausdrücke wie M-x zu deuten, in der M eine Menge und x ein Element darstellen, sodass daraus $\{m-x \mid m \in M\}$ resultiert. Insbesondere wird dadurch der Rekursionsabbruch gewährleistet, da $\alpha(\operatorname{dep}(s) = \emptyset) = \emptyset$.

Vor der Zuweisung konkreter Startzeiten sehen die impliziten Spezifikationen aus wie in Tabelle 4.2. Wenn der Aufgabe einer Spezifikation bereits ein konkreter Startzeitpunkt t zugewiesen wurde, dann lassen sich die angegebenen Formeln ebenfalls anwenden indem $t_{min} = t_{max} = t$ gesetzt werden.

Nach der topologischen Sortierung könnte die Reihenfolge, in der das Einplanen erfolgt, entweder A, B, C oder B, A, C lauten. Je eher ein Job eingeplant wird, desto mehr Möglichkeiten stehen für eine gültige Variablenbelegung offen. Darum sollten zunächst die Jobs eingeplant werden, deren implizite Deadline am ehesten ist. Somit steigt die Wahrscheinlichkeit, dass alle Jobs erfolgreich in den Schedule aufgenommen werden können. Demnach sollte die Reihenfolge A, B, C gewählt werden.

Vor der Ausführung von C sollte überprüft werden, ob die Würfe A und B auch erfolgreich waren. Wenn jedoch C direkt nach A oder B anschließt, bleibt keine Zeit zum Informationsaustausch. Zwischen zwei abhängigen Aufgaben kann deshalb eine Art Sicherheitsabstand d_m definiert werden. Die Formeln (4.6) und (4.7) müssen entsprechend

(a) Vor dem Entfernen

(b) Nach dem Entfernen

Abbildung 4.8: Entfernen des Jobs X

angepasst werden:

$$\alpha(s) := \max \left[\left(\alpha(\operatorname{dep}(s)) + d_m \right) \cup \left\{ s.t_{min} \right\} \right] + s.d \tag{4.10}$$

$$\beta(s) := \min \left[\left(\beta(\operatorname{dep}^{-1}(s)) - s.d - d_m \right) \cup \left\{ s.t_{max} \right\} \right]$$
 (4.11)

Der geschilderte Algorithmus zur Einplanung mehrerer abhängiger Jobs ist in A.3 in Pseudocode dargestellt.

4.2.5 Entfernen eines Jobs

Ein bereits eingeplanter Job kann auch wieder aus dem Schedule entfernt werden. In Abbildung 4.8a sind die Ausführungsorte der drei Aufgaben A, B und X dargestellt. Wird X einfach entfernt, so verläuft die Trajektorie von A zu B immer noch über das entfernte X. Daher wird die Trajektorie neu geplant, sodass sie direkt von A zu B verläuft wie in Abbildung 4.8b. Bei der Pfadfindung muss allerdings beachtet werden, dass die Trajektorie sich nur ab der Zeit nach dem eingefrorenen Horizont t_{FH} ändern darf.

Das Entfernen eines Jobs kann allerdings auch fehlschlagen, da die Pfadfindung scheitern kann.⁵ Darum existiert auch eine Schedulerfunktion, die das Entfernen ohne Neuberechnung ermöglicht.

4.2.6 Umplanen eines Jobs

Das Umplanen eines Jobs wird durch eine atomare Komposition des Entfernens (Abschnitt 4.2.5) und erneuten Planens (Abschnitt 4.2.1) erreicht. Dies ermöglicht eine Änderung der Aufgabenspezifikation, sodass sich Ort, Zeit oder zugeteilter Knoten des Jobs ändern können. Falls die Pfadfindung daran scheitert eine neue Trajektorie zu berechnen, so werden keine Änderungen vorgenommen.

⁵Die neue Route könnte durch ein dynamisches Hindernis blockiert sein. Die Wegfindung ist nicht in der Lage solchen Hindernissen räumlich auszuweichen.

Abbildung 4.9: Einplanen des Jobs X

4.2.7 Transaktionen

Wenn der Schedule durch das Planen oder Entfernen eines Jobs aktualisiert wird, so müssen auch die betroffenen Knoten über Nachrichten darüber informiert werden. Allerdings können diese Nachrichten verloren gehen oder verspätet eintreffen. Erst wenn der Knoten die Aktualisierung bestätigt, ist gewiss, ob er auch die neue Fahrtroute übernommen hat. Wenn in der Zeit der Ungewissheit Änderungen vorgenommen werden sollen, dann ist nicht bekannt, welche Route der Knoten nun abfahren wird.

Nebenläufiges Einplanen

Das Beispiel in Abbildung 4.9a zeigt die Route eines Knotens, die von A zu B führt $(A \to B)$. In einer Aktualisierung wurde nun Job X eingeplant, sodass die Route nun $A \to X \to B$ lautet (siehe Abbildung 4.9b). Dies wird nun zum physischen Roboter kommuniziert. Dieser könnte die Änderungen jedoch ablehnen⁶ oder nie erhalten.

Wenn nun unabhängig von der Einplanung des Jobs X eine Trajektorie eines anderen Roboters berechnet werden soll, so führt das zu einem Problem: Die Trajektorie könnte sich mit einer der beiden Routen $A \to B$ oder $A \to X \to B$ schneiden. Eine einfache Lösung des Problems könnte vorsehen, dass keine Änderungen am Schedule vorgenommen werden dürfen bis eine Bestätigung (ACK) oder Ablehnung (NAK) des ersten Roboters eingetreten ist. Allerdings würde somit die Nachrichtenübermittlung hier schnell zum Flaschenhals werden. Gewünscht ist jedoch, dass auch andere Operationen nebenläufig durchgeführt werden können, die den Schedule verändern während auf ein ACK/NAK gewartet wird. Ermöglicht wird dies durch Transaktionen.

Eine Transaktion ist eine Scheduleroperation, wie das Einplanen oder Entfernen von Jobs. Eine Transaktion kann durch ein sogenanntes *Commit* angewandt oder durch *Abort*

⁶Die Ablehnung des Roboters könnte zum Beispiel eintreten, wenn die Nachricht zu spät eintrifft und die Änderungen bereits veraltet sind.

abgebrochen werden. Bis zum Abschluss durch Commit oder Abort stellt eine Transaktion eine Alternative des Schedules dar.

Damit es zu keinen Kollisionen kommt, werden bei der Wegfindung nicht nur die Routen im Schedule berücksichtigt, sondern auch die alternativen Routen der Transaktionen. Ein Roboter kann somit als zwei unabhängige Hindernisse auftreten (siehe Abbildung 4.9c). Diese Vorgehensweise stellt in den Fällen beider Routen sicher, dass kein anderer Roboter mit dem ersten kollidiert. Sobald der Knoten eine der beiden Routen bestätigt hat, wird die andere Route verworfen, sodass er nur als *ein* Hindernis auftritt.

Bei der nebenläufigen Planung mehrerer Jobs auf einem Knoten muss auch beachtet werden, dass Trajektorienabschnitte nicht beliebig aktualisiert werden dürfen. Generell dürfen Trajektorien nicht in den Zeiträumen verändert werden, in denen der Knoten Jobs ausführt. Unbestätigte Routen dürfen allerdings auch nicht aktualisiert werden. Bis eine Transaktion nicht bestätigt oder abgebrochen wurde, ist deren finaler Verlauf nicht bekannt. Angenommen man möchte neben X noch eine weitere Aufgabe Y zwischen A und B einplanen, so könnten die finalen Routen wie folgt aussehen:

- X und Y werden nicht übernommen $A \to B$
- Nur X wird übernommen

$$A \to X \to B$$

• Nur Y wird übernommen

$$A \to Y \to B$$

• X und Y werden übernommen

$$A \to X \to Y \to B$$
oder

$$A \to Y \to X \to B$$

Dies übersteigt jedoch die Anzahl von zwei Routenalternativen während beide Transaktionen noch unbestätigt sind. Falls eine weitere Aufgabe Z ebenfalls neben X und Y eingeplant werden sollte, so wären noch mehr Alternativen zu betrachten. Um diese Komplexität zu vermeiden, wird die Trajektorie zwischen A und B während der Transaktion von X gesperrt sodass Y erst nach Abschluss Transaktion eingeplant werden kann. Die Sperrung betrifft jedoch nur fremde Transaktionen. Die eigene Transaktion kann die Trajektorie zwischen A und B mehrfach aktualisieren, um beispielsweise mehrere Jobs X_1 , X_2 dazwischen einzuplanen.

Abbildung 4.10: Entfernen des Jobs X

Nebenläufgies Entfernen

Da das Entfernen eines Jobs ebenfalls Trajektorienänderungen auslöst, findet auch diese Operation in Form einer Transaktion statt. Hier könnte eine Situation so aussehen, dass eine Aufgabe X, die zwischen A und B eingeplant wurde, nun gelöscht werden soll (siehe Abbildung 4.10). Wie auch im vorherigen Abschnitt Nebenläufiges Einplanen wird hier die Trajektorie zwischen A und B gesperrt. Zusätzlich wird auch X zum Löschen gesperrt. Das bedeutet, dass keine andere Transaktion diesen Job nochmals entfernen kann.

4.3 Trajektorienplanung

Die zweite Kernaufgabe des Schedulers ist die Trajektorienplanung. Damit ein Roboter eine Aufgabe am korrekten Ort erledigen kann, muss ihn seine Trajektorie auch dorthin führen. Durch das Einplanen und Entfernen von Jobs ändert sich seine Trajektorie jedoch immerzu. Der Trajektorienplaner sorgt dafür, dass der Roboter rechtzeitig und kollisionsfrei zur rechten Zeit am rechten Ort angelangt.

Die Path-Velocity-Decomposition aus Abschnitt 2.5 des Grundlagenkapitels bildet die Basis der Trajektorienplanung. Zum Teil geben die folgenden Abschnitte die Inhalte aus [2] für ein besseres Verständnis wieder, greifen aber auch neue Punkte auf. Unter 4.3.3 wird genauer auf die Berechnung der verbotenen Regionen eingegangen und 4.3.4 zeigt, wie besonders langsame Trajektorienabschnitte vermieden werden können.

Ziel der Trajektorienplanung ist, einen Knoten von einem Startpunkt $(\vec{x}_I, t_I) \in \mathbb{R}^2 \times T$ zu einem Zielpunkt $(\vec{x}_F, t_F) \in \mathbb{R}^2 \times T$ zu führen $(T = [t_I, t_F])$. Hindernisse dürfen dabei nicht mit dem Knoten kollidieren. Die Hindernisse werden dazu als zeitabhängige Punktmenge $O: T \to \mathcal{P}(\mathbb{R}^2)$ dargestellt, wogegen der Knoten nur als punktgroß⁷

⁷Die Punktgröße vereinfacht die folgenden Betrachtungen. Da die Roboter des Schwarms jedoch keine Punktgröße aufweisen, müssen die Hindernisse gepuffert werden.

Abbildung 4.11: Kürzester Pfad (grün) entlang der Eckpunkte

 $\vec{x}_{\pi}: T \to \mathbb{R}^2$ angenommen wird. $\vec{x}_{\pi}(t)$ gibt damit dessen Aufenthaltsort zur Zeit t an. Eine kollisionsfreie Route liegt dann vor, wenn $\vec{x}_{\pi}(t) \cap O(t) = \emptyset, \forall t \in T$.

Hindernisse werden in ihrer Beweglichkeit unterschieden, sodass sich O aus statischen Hindernissen O^s und dynamischen Hindernissen O^m zusammensetzt: $O(t) = O^s \cup O^m(t)$. Diese Unterscheidung motiviert die Dekomposition in eine räumliche Pfadplanung, die alle statischen Hindernissen umfährt, und eine temporale Pfadplanung, die dagegen dynamischen Hindernissen durch Geschwindigkeitsanpassung ausweicht.

Das Ergebnis der räumlichen Planung ist ein kontinuierlicher Pfad $\pi \subset \mathbb{R}^2$, welcher \vec{x}_I und \vec{x}_F verbindet. π stellt somit die Menge an Punkten dar, welche der Roboter befahren muss, um sein Ziel zu erreichen. Die temporale Planung legt dagegen fest, wann der Roboter diese Punkte beschreitet. π wird dazu in Abhängigkeit des Bogenmaßes s des Pfades parametrisiert: $\vec{x}_{\pi}(s)$. Für s gilt es eine zeitliche Zuordnung $s:T\to S$ zu finden, wobei $S=[s_I,s_F]$ das Bogenmaßintervall des Pfades π bezeichnet. Durch Komposition erhält man die Trajektorie $\vec{x}_{\pi}(t)=(\vec{x}_{\pi}\circ s)$ (t).

Die Aufgabe der temporalen Planung ist, eine Zuordnung $\vec{x}_{\pi}: T \to \pi$ zwischen der Zeit t und den Punkten des Pfades π zu finden, welche allen dynamischen Hindernissen entgeht.

4.3.1 Räumliche Pfadplanung

Der erste Schritt der Wegfindung vernachlässigt jegliche temporalen Aspekte zur Lösung des Path-Planning-Problems (PPP). Daher werden bei der Bestimmung des Pfades π lediglich die statischen Hindernisse O^s betrachtet, welche als Polygone auftreten.

Im zweidimensionalen Raum verläuft der kürzeste Pfad von Eckpunkt zu Eckpunkt der Hindernisse (siehe Abbildung 4.11) [15][16]. Zur Bestimmung dieses Pfades bildet man einen Graphen, der den Startpunkt \vec{x}_I , den Endpunkt \vec{x}_F und die Eckpunkte V der Hindernisse als Knoten enthält. Die Menge der Kanten des Graphen umfasst jene Knoten, die zueinander sichtbar sind (siehe Abbildung 4.12). Das heißt, ihre Sichtlinie wird

Abbildung 4.12: Sichtlinien (rot gestrichelt) zwischen Polygonen

Abbildung 4.13: Verbotene Regionen (grau) und Geschwindigkeitsprofil (rot)

nicht durch Hindernisse blockiert.⁸ Als Kantengewicht dient der euklidische Abstand des jeweiligen Punktepaares. Zu dem so konstruierten Graph kann nun die kürzeste Route zwischen Start- und Endpunkt ermittelt werden, welche den Pfad π darstellt.

4.3.2 Temporale Pfadplanung

Während die Kollisionsfreiheit mit statischen Hindernissen durch die Berechnung von π an dieser Stelle garantiert werden kann, muss nun noch das Geschwindigkeitsprofil durch die Zuordnung s bestimmt werden, um dynamischen Hindernissen zu entgehen (Velocity-Planning-Problem, kurz VPP). Bei dynamischen Hindernissen handelt es sich ebenfalls um Polygone, die allerdings mit der Zeit verschoben werden. Grundlage zur Bestimmung des Geschwindigkeitsprofils bieten sogenannte verbotene Regionen, deren Berechnung im folgenden Abschnitt 4.3.3 ausführlich beschrieben wird.

Verbotene Regionen sind Gebiete des $s \times t$ -Raums, die nicht befahren werden dürfen. Sie geben an zu welchen Zeiten t der $x \times y$ -Pfad π aufgrund dynamischer Hindernisse unpassierbar ist (siehe Abbildung 4.13). s stellt hierbei den Bogenlängenparameter der Ortsfunktion $\vec{x}_{\pi}(s)$ dar.

⁸Die Hindernisse enthalten nicht ihren eigenen Rand ($O^s \cap \partial O^s = \emptyset$), sodass die Polygonkanten als befahrbar gelten.

Abbildung 4.14: Graphkonstruktion des Geschwindigkeitsprofils

Durch die Wahl eines Geschwindigkeitsprofils $s:T\to S$, welches keine verbotenen Regionen im $s\times t$ -Raum schneidet, werden alle dynamischen Hindernisse durch Justierung der Geschwindigkeit entlang der Route gemieden. Der nachfolgende Schritt bestimmt nun einen neuen Pfad $\sigma=\{\ (s(t),t)\mid t\in T\ \}$ innerhalb dieses Raumes. Dieser legt das Geschwindigkeitsprofil des Roboters fest. Man kann ihn auf ähnlicher Weise bestimmen wie bereits die Lösung des PPPs. Allerdings muss dabei zusätzlich beachtet werden, dass der Pfad nicht rückwärts in der Zeit verlaufen kann und eine maximale Geschwindigkeit nicht überschreiten darf. Da es sich bei einer Dimension im $s\times t$ -Raum um die Zeit handelt, werden folgende Regeln hinzugefügt:

1. Der Roboter kann sich nur in der Zeit vorwärts bewegen. Darum sind zwei Knoten des Graphen nur dann sichtbar, wenn die Zeit des ersten vor dem des zweiten liegt:

$$t_i < t_i \tag{4.12}$$

2. Der Roboter kann sich nicht unendlich schnell bewegen, sondern besitzt eine Höchstgeschwindigkeit:

$$\left| \frac{s_j - s_i}{t_j - t_i} \right| \le v_{max} \tag{4.13}$$

Wobei $n_i = (s_i, t_i)$ der erste und $n_j = (s_j, t_j)$ der zweite Knoten ist.

Wie schon beim PPP lässt sich so ein Graph konstruieren (Abbildung 4.14a) und somit der Pfad bestimmen, welcher das Geschwindigkeitsprofil beschreibt.

Abbildung 4.15: Komposition einer Trajektorie

Um eine Route mit minimaler Fahrzeit zu bestimmen, müssen dem Graphen zusätzliche Knoten und Kanten hinzugefügt werden (siehe Abbildung 4.14b). Diese Knoten liegen auf einer Geraden mit $s=s_F$ und dienen als potentielle Endknoten. Jeder dieser Knoten ist mit einem anderen Knoten des Graphen verbunden, welcher entweder der Startpunkt (s_I,t_I) oder einer der Eckpunkte der verbotenen Regionen ist. Die Kanten dieser Paare haben einen Anstieg entsprechend der Höchstgeschwindigkeit v_{max} des Roboters. Zur Bestimmung des Pfades σ verwenden die Kanten deren Zeitkosten als Gewicht. Die Suche nach der kostengünstigsten Route, welche den Startknoten mit einen der Endknoten verbindet, führt somit zur frühestmöglichen Ankunftszeit des Roboters am Ziel.

Aus dem räumlichen Pfad π und dem temporalen Pfad σ kann man nun eine dreidimensionale Trajektorie $\tau = \{ (x,y,t) \mid t \in T \land \vec{x}_{\pi}(t) = (x,y) \}$ des $x \times y \times t$ -Raums berechnen. Dazu werden die Daten des Geschwindigkeitsprofils genutzt um Zeitwerte für die Eckpunkte des räumlichen Pfades zu bestimmen. In gleicher Weise werden Ortspunkte zu den Eckpunkten des Geschwindigkeitsprofils anhand der Daten des räumlichen Pfades ermittelt. Das Ergebnis ist ein $x \times y \times t$ -Pfad, welcher die Eckpunkte beider Pfadkomponenten enthält (siehe Abbildung 4.15).

4.3.3 Verbotene Regionen

In Abbildung 4.16 wird dargestellt, wie ein dynamisches Hindernis aus dem $x \times t$ -Raum zu einer verbotenen Region des $s \times t$ -Raums transformiert wurde. Im linken Bild 4.16a ist der Pfad π zu sehen. Der Roboter muss vom Punkt \vec{x}_I zu \vec{x}_F gelangen ohne das eingezeichnete Hindernis zu schneiden, welches den Abschnitt $[s_1, s_2]$ des Pfades im Zeitraum $[t_1, t_2]$ blockiert. Dies ist anhand des rechten Bildes 4.16b deutlich zu entnehmen. Der Roboter entgeht einer Kollision, indem er seine Geschwindigkeit soweit ver-

den räumlicher Pfad π .

(a) Ein dynamisches Hindernis O^m kreuzt (b) Die resultierende verbotene Region (grau) und der temporale Pfad σ (rot).

Abbildung 4.16: Abbildung eines dynamischen Hindernisses als verbotene Region

Abbildung 4.17: Kachelmuster der segmentweisen Berechnung einer verbotener Regionen.

langsamt, dass das Hindernis die Strecke genau dann freigibt, wenn er am Punkt $\vec{x}_{\pi}(s_1)$ angelangt. Danach beschleunigt der Roboter, um sein Ziel rechtzeitig zu erreichen.

Zur Berechnung der verbotenen Regionen werden alle dynamischen Hindernisse separat betrachtet. Wie der Roboter selbst, verfolgt das Hindernis eine Trajektorie, die in lineare Segmente unterteilt ist. Die gesamte Region wird segmentweise berechnet. Bei n Trajektoriensegmenten des Roboters und m Segmenten des Hindernisses entsteht so ein $n \times m$ großes Kachelmuster, wobei jede Kachel einen Ausschnitt der ganzen Region enthält (siehe Abbildung 4.17).

 $\vec{x}_i^r := (x_i^r, y_i^r)^T$ bezeichnet den i-ten Eckpunkt des Roboterpfades und $\left(x_j^m, y_j^m, t_j^m\right)^T$ den j-ten Eckpunkt der Hindernistrajektorie. Das i-te Robotersegment legt dabei das Bogenlängenintervall fest: $S_i := \left[s_i^r, s_{i+1}^r\right] \ \ni \ s$; und das j-te Hindernissegment das Zeitintervall: $T_j := [t_j^m, t_{j+1}^m] \ni t$. Des Weiteren wird $\vec{v}_j^m :=$

 $⁹s_i$ und t_i sind gegeben durch $s_i := \sum_{k=1}^{i-1} \left\| \vec{x}_{i+1}^r - \vec{x}_i^r \right\|$ und $t_j := t_j^m$

rienplanung 30

Abbildung 4.18: Fallunterscheidung zur Berechnung verbotener Regionen

 $\left(\Delta x_j^m,\Delta y_j^m\right)^T/\Delta t_j^m$ definiert als der Geschwindigkeitsvektor des Hindernisses während des j-ten Segments.¹⁰

Es werden drei Fälle unterschieden, um die Kachel einer verbotenen Region zu bestimmen (siehe Abbildung 4.18):

• Der reguläre Fall, in dem weder $\Delta \vec{x}_i^r$ noch $\Delta \vec{v}_j$ gleich null sind und zudem linear unabhängig:

$$\det \begin{bmatrix} \Delta \vec{x}_i^r & \Delta \vec{v}_j \end{bmatrix} \neq \vec{0} \tag{4.14}$$

• Der parallele Fall, in dem der Geschwindigkeitsvektor \vec{v}_j^m parallel zum Segment $\Delta \vec{x}_i^r$ verläuft oder null ist:

$$\det \begin{bmatrix} \Delta \vec{x}_i^r & \Delta \vec{v}_j \end{bmatrix} = \vec{0} \wedge \Delta \vec{x}_i^r \neq \vec{0}$$
 (4.15)

• Der stationäre Fall, in dem das Robotersegment keine Länge besitzt:

$$\Delta \vec{x}_i^R = \vec{0} \tag{4.16}$$

Regulärer Fall

Im regulären Fall wird die verbotene Region durch Transformation der Polygonpunkte $O^m(t^m_j)$ erzeugt. Zum Verständnis wird ein einzelner Hindernispunkt P betrachtet. Dieser Punkt besitzt die Geschwindigkeit \vec{v} und wird zu einem bestimmten Zeitpunkt t auf eine bestimmte Stelle s des Streckenabschnitts des Roboterpfades treffen. In der Abbildung 4.19 ist zu sehen, dass die Stelle anhand des Schnittpunkts mit dem verlängerten Geschwindigkeitsvektor zu ermitteln ist. Um den Zeitpunkt t zu bestimmen, muss zunächst die Entfernung t zwischen dem Startpunkt des Punktes und dem Schnittpunkt berechnet werden. Teilt man die Entfernung durch die absolute Geschwindigkeit, so erhält man den Zeitpunkt t.

 $[\]overline{^{10}\Delta}$ zeigt im Folgenden die Differenz zwei benachbarter indizierter Werte an: $\Delta(\cdot)_i:=(\cdot)_{i+1}-(\cdot)_i$

Abbildung 4.19: Bewegter Hindernispunkt P und Segment des Pfades π

Abbildung 4.20: $s \times t$ -Basis

Abbildung 4.21: Beschneidung im regulären Fall

Eine andere Herangehensweise ist, den Streckenabschnitt und den negativen Geschwindigkeitsvektor als eine Basis des $s \times t$ -Raumes aufzufassen (siehe Abbildung 4.20). Mit Hilfe dieser Basis lassen sich die Koordinaten (s,t) einfach in (x,y)-Koordinaten umrechnen:

$$\begin{bmatrix} x - x_i^r \\ y - y_i^r \end{bmatrix} = (s - s_i^r) \cdot \vec{e}_s - (t - t_j^m) \cdot \vec{v}_j^m$$

$$(4.17)$$

Wobei $\vec{e_s}$ der Einheitsvektor des Streckenabschnitts des Roboters ist. ¹¹ Diese Gleichung lässt sich in das folgende Gleichungssystem umwandeln, dessen Lösung zum transformierten Polygon im $s \times t$ -Raum führt:

$$\begin{bmatrix} x - x_i^r \\ y - y_i^r \end{bmatrix} = \begin{bmatrix} \vec{e_s} & -\vec{v_j}^m \end{bmatrix} \begin{bmatrix} s - s_i^r \\ t - t_j^m \end{bmatrix}$$
(4.18)

Da jedoch das Polygon die Strecke des Roboters nicht immer in seiner Gänze durchläuft, muss es beschnitten werden (siehe Abbildung 4.21). Zum einen wird der Schnittbereich durch den Streckenabschnitts S_i des Roboters begrenzt und zum anderen durch das Zeitintervall T_i . Die Beschneidung legt somit das Ausmaß der aktuellen Kachel fest.

Paralleler Fall

Nicht in jedem Fall kann die Berechnung der verbotenen Region eines Hindernisses wie vorherigen Abschnitt Regulärer Fall erfolgen. Bewegt sich das Hindernis parallel zur Strecke des Roboters oder befindet sich im Stillstand, so spannen Strecken- und

 $[\]overline{}^{11}$ Der Einheitsvektor lässt sich durch die Gleichung $\vec{e}_s = \frac{\Delta \vec{x}_i^r}{\|\Delta \vec{x}_i^r\|}$ bestimmen.

Abbildung 4.22: Schnittmenge der Geraden g mit dem Hindernis O^m

Geschwindigkeitsvektor keine Basis auf. Der parallele Fall deckt hierbei nur jene Situationen ab, in denen der Streckenabschnitt des Roboters eine Länge $\Delta s_i^r > 0$ aufweißt.

Betrachten wir eine Gerade g auf der sich der Pfadabschnitt des Roboters befindet. Allgemein lässt sich eine Mengenfunktion $S:T_j\to \mathcal{P}(\mathbb{R})$ definieren, die zu einem Zeitpunkt t verbotene Bogenlängen s angibt:

$$S(t) := \left[\left(O^m(t) \cap g \right) - \vec{x}_i^r(t) \right] \cdot \vec{e}_s + s_i^r$$
(4.19)

Da sich das Hindernis O^m parallel zum Pfad bewegt, schneidet es zu jeder Zeit $t \in T_j$ die Gerade in Bezug zum Ort $\vec{x}^m(t)$ stets an derselben Stelle (siehe Abbildung 4.22). Daher kann man für den parallelen Fall die Menge S(t) auch wie folgt berechnen:

$$S(t) = S(t_j) + \vec{v}_j^m \cdot \vec{e}_s(t - t_j), \forall t \in T_j$$

$$(4.20)$$

Somit bestimmt man die Schnittmenge nur für den Zeitpunkt t_j und verschiebt diese dann in Abhängigkeit der Zeit t (siehe Abbildung 4.23a).

Da die Strecke jedoch endlich ist und die Funktion S die Schnittpunkte für die gesamte Gerade g angibt, muss die Menge wie schon im regulären Fall beschnitten werden (siehe Abbildung 4.23b).

Stationärer Fall

Der letzte Fall findet seine Anwendung bei stationären Pfadsegmenten des Roboters. Sowohl der reguläre als auch der parallele Fall sind hier ungeeignet, da sich kein Einheitsvektor \vec{e}_s bestimmen lässt. Stattdessen befindet sich der Roboter über den Zeitraum T_j an derselben Position $\vec{x}_i^r = \vec{x}_{i+1}^r$. Demnach ist die zu bestimmende Kachel der verbotenen Region nur eine vertikale Linie der Länge Δt_j^m an der Stelle $s_i^r = s_{i+1}^r$.

(a) Verschiebung der Schnittlinie im $s \times t$ -Raum

(b) Beschneidung der Schnittfläche $S(T_j)$

Abbildung 4.23: Berechnung der verbotenen Region im parallelen Fall.

Abbildung 4.24: Spur V des Punktes \vec{x}_i^r

Wenn auch das Streckensegment des Hindernisses stationär ist, muss lediglich überprüft werden, ob der Punkt $\vec{x}_i^r \in O^m(t_j)$ ist. Falls dies zutrifft, ist die Region ein Punkt an der Stelle (s_i^r, t_j) . Andernfalls muss bestimmt werden, zu welchen Zeiten die Stelle s_i^r blockiert wird.

Zur Bestimmung dieser Zeiten wird das Hindernis O^m zur Zeit t_j betrachtet. Der Punkt \vec{x}_i^r berührt nur jene Punkte des Hindernisses, welche zum Zeitpunkt t_j auf der Spur $V:=\left\{\left.\vec{x}_i^r-\vec{v}_j^mt\;\middle|\;t\in T_j\right.\right\}$ liegen (siehe Abbildung 4.21). Die Schnittpunkte der Spur V mit dem Hindernis $O^m(t_j)$ geben die Zeitpunkte $T^f\subseteq T_j$ wieder, an denen der Punkt des Roboterpfades blockiert wird:

$$T^{f} = \left[\left(V \cap O^{m}(t_{j}) \right) - \vec{x}_{i}^{r} \right] \cdot \left(-\vec{v}_{j}^{m} / \left(\vec{v}_{j}^{m} \right)^{2} \right) + t_{j}^{m}$$

$$(4.21)$$

Abbildung 4.25: Einfacher Graph ohne Wartezeiten

4.3.4 Wartezeiten

Im Abschnitt 4.3.2 werden zur Erstellung des Geschwindigkeitsprofils Start (s_I,t_I) und Ziel (s_F,t_F) über die Eckpunkte der verbotenen Regionen durch gerade Strecken verbunden (siehe Abbildung 4.13). Ein Nachteil dieses Vorgehens ist jedoch, dass beliebig langsame Geschwindigkeiten v>0 auftreten können. Zum Stehen kommt der Roboter dagegen im Regelfall allerdings nur, wenn er eine Aufgabe durchführt. Sehr langsame Geschwindigkeiten können jedoch ineffizient oder sogar nicht realisierbar sein.

Stattdessen ist ein Verhalten vorzuziehen, bei dem der Roboter erst an Ort und Stelle wartet, um anschließend mit einer höheren Geschwindigkeit v_L zum Ziel zu gelangen. Das Warten ist auch im Falle von Trajektorienänderungen vorteilhaft. Beispielsweise könnte ein Roboter eine lange Pause zwischen zwei Aufgaben haben. Die Einplanung einer neuen Aufgabe innerhalb der Pause ist daher wahrscheinlich. Würde der Roboter bereits zur nächsten Aufgabe unterwegs sein, bevor es zur Anpassung des Fahrweges kommt, so wäre er bereits einen unnötigen Umweg gefahren.

Zur Realisierung der Wartezeiten ist eine Modifikation des Graphen notwendig, da dieser ursprünglich wie in Abbildung 4.25 üblicherweise keine stationären Kanten enthält. In Abbildung 4.26b ist dagegen ein Graph zu sehen, der Kanten und Knoten nach dem oben geschilderten Prinzip mit Wartezeiten besitzt. Um den letztgenannten Graphen zu erzeugen geht man wie folgt vor:

Als Ausgangspunkt dient ein Graph der lediglich als Knoten Start- und Endpunkt sowie die Eckpunkte der verbotenen Regionen enthält.

- 1. Beginnend von jedem Knoten wird ein vertikaler Strahl nach oben in *t*-Richtung gezogen. Hier sollte noch beschrieben werden wozu das gut ist .. mögliche Wartezeiten
- 2. Beginnend von jedem Knoten wird ein schräger Strahl mit Anstieg v_L nach unten links gegen t- und s-Richtung gezogen.

Das Gleiche gilt hier .. was ist vL? Max., optimale, mittlere Geschwindikgeit?

(a) Vertikale und schräge Strahlen (gestrichelt)

(b) Konstruierter Graph (rot)

Abbildung 4.26: Graphkonstruktion mit Wartezeiten

- 3. Die Schnittpunkte aller vertikalen und schrägen Strahlen bilden neue Knoten insofern keiner der jeweiligen Strahlen bereits mit einer Region kollidierte (siehe Abbildung 4.26a).
- 4. Es werden Kanten hinzugefügt, die die neuen Knoten mit den Ursprüngen der jeweiligen Strahlen verbindet.

Um zu verhindern, dass sehr kurze Wartezeiten eingeführt werden, kann ein finale Bild. Du schreibschwellwert d_{th} definiert werden. In diesem Fall werden nur jene Wartezeiten in den Graph aufgenommen, die den Schwellwert nicht unterschreiten. Allerdings kann es nun dazu kommen, dass ein Pfad aufgrund dieser Regel nicht gefunden werden kann. Durch das zusätzliche Hinzufügen von Kanten nach der alten Vorschrift aus Abschnitt 4.3.2 kann hier Abhilfe geschaffen werden. Als Kantengewicht empfiehlt sich die Fahrzeit. Dadurch werden Pfade mit geringer Fahrzeit bevorzugt.

> Wenn das Ziel durch keine Zeitvorgabe spezifiziert wurde, sondern die frühestmögliche Ankunftszeit t_{min} gewünscht ist, so geht man hier in zwei Phasen vor. Zunächst wird t_{min} ermittelt, indem ein Pfad minimaler Dauer ohne Wartezeiten bestimmt wird wie bereits im Abschnitt 4.3.2 vorgeschlagen. $(s_F, t_F = t_{min})$ geben dann den festen Zielpunkt in der zweiten Phase vor, in der der Graph wie oben beschrieben konstruiert wird.

Knotenauslastung 4.4

Der Scheduler erlaubt die Auskunft über die Auslastung der Knoten. Diese Informationen sind beispielsweise für den Lastverteiler des Schwarmbetriebssystems nützlich, der

Hier fehlt mir das nach der alten Vorschrift. Dann solltest du auch eine Abb. 4.26 (c) entwerfen, die dann alle möglichen Pfade besitzt, so dass das Vorgehen klar ist.

nicht Teil des Schedulers ist. Dazu werden im Folgenden verschiedene Arten von Lasten definiert. Diese unterscheiden grundsätzlich zwei Arten: Jobausführung und Bewegung. Ein Roboter kann nach dieser Unterscheidung drei Zustände einnehmen. Entweder er führt einen Job aus, befindet sich in Bewegung oder in Stillstand (ohne Job).

Die erste Art gibt Auskunft über die Jobauslastung L_J eines Knotens innerhalb eines Zeitintervalls T. Resultat ist ein Wert zwischen 0 und 1. Führt ein Knoten während des gesamten Zeitraums T keinen Job aus, so liefert L_J den Wert 0. Ist er dagegen vollbeschäftigt, lautet der Wert 1. Die konkrete Berechnung ist gegeben durch:

Menge aller Zeitpunkte?

$$L_J(T) := \frac{\operatorname{dur}(J \cap T)}{\operatorname{dur}(T)} \tag{4.22}$$

J ist eine Menge über alle Zeitpunkte, zu denen der Knoten durch ein Job beschäftigt ist: $J := \{t \mid \text{Knoten bearbeitet einen Job zum Zeitpunkt } t \}$. Die Hilfsfunktion dur gibt die Dauer einer Menge aus Zeitpunkten zurück:

$$\operatorname{dur}(T) := \int_{T} \mathrm{d}t \tag{4.23}$$

Analog lässt sich die Bewegungsauslastung definieren. Die Menge M erstreckt sich hier über alle Zeitpunkte, zu der sich der Knoten in Bewegung befindet: $M:=\{\ t\mid v(t)>0\ \}$

$$L_M(T) := \frac{\operatorname{dur}(M \cap T)}{\operatorname{dur}(T)} \tag{4.24}$$

Auch die stationäre Auslastung L_S folgt diesem Schema. Bei S handelt es sich um die Zeit, in der sich der Roboter weder bewegt $(S \cap M = \emptyset)$ noch einen Job ausführt $(S \cap J = \emptyset)$. Daher gilt $S \cup J \cup M = T$.

$$L_S(T) := \frac{\operatorname{dur}(S \cap T)}{\operatorname{dur}(T)} = 1 - L_J(T) - L_M(T)$$
 (4.25)

Aus der Auslastung L_J und L_M lässt sich die Gesamtauslastung L definieren:

$$L(T) := \frac{\operatorname{dur}((M \cup J) \cap T)}{\operatorname{dur}(T)} = L_J(T) + L_M(T)$$
(4.26)

Da sich ein Roboter nie in Bewegung befindet, wenn er gerade ein Job ausführt, sind die Mengen J und M disjunkt, sodass $J \cap M = \emptyset$. Daher lässt sich L(T) auch Summe von L_J und L_M notieren.

Die letzte Variante berechnet die Geschwindigkeitsauslastung L_v . Dazu wird die Geschwindigkeit des Roboters während des Zeitintervalls T der Höchstgeschwindigkeit gegenüber gestellt. Eine Auslastung von 1 wird hier nur dann erreicht, wenn der Roboter sich während T stets mit maximaler Geschwindigkeit fortbewegt. Nach einer anderen Interpretation wird hier der zurückgelegte Weg gegenüber dem maximal möglichen Weg verglichen.

$$L_v(T) := \frac{\int_T v(t) \, \mathrm{d}t}{v_{max} \cdot \mathrm{dur}(T)} \tag{4.27}$$

Kapitel 5

Implementierung

Die Umsetzung des Lösungskonzepts erfolgte vollständig in Java 8. Die Ausführung ist daher weitestgehend plattformunabhängig, da für die meisten Betriebsumgebungen eine JVM zur Verfügung steht. Als Build-Tool dient Maven, welches Abhängigkeiten zu externen Bibliotheken automatisch auflöst und das Kompilieren des Quellcodes zu einer JAR-Datei ermöglicht.

Der Scheduler wurde als Bibliothek konzipiert und ist daher für sich nicht als eigenständiges Programm ausführbar. Jedoch finden sich im Quellcode einige Beispielprogramme, die die Verwendung des Schedulers demonstrieren.¹²

Die in Eigenentwicklung erstellten Quellen befinden sich unter der Packagestruktur de.tu_berlin.mailbox.rjasper. Das Subpackage st_scheduler enthält den Raum-Zeit-Scheduler. Die Unterteilung der beiden Kernaufgaben spiegelt sich in dessen Unterordnern scheduler (Jobplanung) und world (Trajektorienplanung) wider.

5.1 Konzepte

5.1.1 Kein null

Im Allgemeinen akzeptiert die Schnittstellen des Schedulers keine **null**-Argumente. Ebenso werden auch keine **null**-Objekte zurückgegeben. Stattdessen werden leere Objekte verwendet. Beispielsweise ein Pfad ohne Knoten oder eine leere Liste. Dies sorgt für weniger Fallunterscheidungen und eine leichter verständliche Logik.

¹Die Beispiele befinden sich im Package de.tu_berlin.mailbox.rjasper.st_scheduler.example ²**TODO**: linebreak

5.1.2 Unveränderliche Objekte

An vielen Stellen werden unveränderliche Objekte genutzt. Beispiele dafür sind LocalDateTime, ImmutableList oder ImmutablePolygon. Dies gewährleistet zum einen die Sicherheit, dass sich Objekte nicht unerwartet ändern und zudem ohne Gefahr direkt zurückgegeben werden können.

Dies ist von großem Vorteil, da sich an den meisten Stellen Objekte, einmal erstellt, nicht ändern. Das Klonen von Objekten beim Initialisieren oder setzen (Setter-Methoden) entfällt somit ebenso wie das Verschachteln in unmodifizierbaren Wrappern beim Zurückgeben (Getter-Methoden).

Viele Klassen verwenden unveränderliche Objekte um ihre Attribute zu speichern. Beispielsweise liegt die Form eines DynamicObstacles als ImmutablePolygon vor.

5.1.3 Fail-Fast

Bei der Entwicklung des Schedulers wurde darauf Wert gelegt, Fehler an dessen inneren und äußeren Schnittstellen frühzeitig zu erkennen. Somit werden beispielsweise unzulässige Parameterwerte und **null**-Objekte zurückgewiesen. Die falsche Verwendung von Schnittstellen oder Ursachen von Bugs können so schneller identifiziert werden. Falls es zu einem Fehler kommt, werden in der Regel Ausnahmen wie NullPointerException, IllegalArgumentException oder IllegalStateException geworfen.

5.2 Abhängigkeiten

Die Implementierung ist in Java 8 geschrieben und von mehreren externen Java-Bibliotheken abhängig, die allesamt über Maven eingebunden werden. Mit Ausnahme der *straightedge*-Bibliothek, sind alle Abhängigkeiten öffentlich über das Maven Repository³ zugänglich.

5.2.1 Java 8

Java 8 ist die neueste Version der Programmiersprache und enthält gegenüber den Vorgängern umfangreiche Neuerungen. Im Mittelpunkt steht die Einführung von Lambda-

³http://www.mvnrepository.com/

Ausdrücken. Diese ermöglichen Funktionen kompakt zu definieren, die früher umständlich durch anonyme innere Klassen erzeugt wurden:

```
JButton button = new JButton("Button");
// before Java 8: anynomous inner class
button.addActionListener(new ActionListener() {
    @Override
    public void actionPerformed(ActionEvent e) {
        System.out.println("button_clicked");
    }
});
// Java 8: lambda expression
button.addActionListener(e ->
        System.out.println("button_clicked"));
```

Lambda-Ausdrücke motivierten auch die neue Stream-Schnittstelle, die Operationen wie Map oder Reduce ermöglicht:

```
List<Integer> list = Arrays.asList(1, 2, 3);
list.stream().map(n -> 2*n);
```

5.2.2 Java Topology Suite

Die Trajektorienplanung ist stark auf die *Java Topology Suite* (JTS) angewiesen. Diese Bibliothek implementiert die *Simple Features Specification for SQL*, welche grundlegende Geometrien wie Punkte, Linien oder Polygone spezifiziert. Des Weiteren stellt JTS ein umfangreiches Angebot fundamentaler Funktionen für zweidimensionale Geometrien zur Verfügung. Somit lassen sich beispielsweise verbotene Regionen, wie in Abschnitt 4.3.3 beschrieben, transformieren und beschneiden.

5.2.3 JGraphT

Zur Berechnung der Geschwindigkeitsprofile der Trajektorienplanung werden die Graph-Algorithmen der *JGraphT*-Bibliothek verwendet. Auch die Auflösung des Abhängigkeitsgraphen aus Abschnitt 4.2.4 gelingt mit Hilfe dieser Bibliothek.

5.3 Typen 42

5.2.4 la4j

Die Lösung der Gleichung (4.18) erfolgt durch die *la4j*-Bibliothek. Sie stellt Typen, wie Matrizen und Vektoren, sowie Algorithmen der linearen Algebra Verfügung. Ihre Funktionen kommen auch bei der Berechnung der übrigen Fälle verbotener Regionen zur Anwendung.

5.2.5 straightedge

Die räumliche Wegfindung, welche lediglich stationäre Hindernisse umgeht und die Zeitdimension nicht berücksichtigt, wird von der *straightedge*-Bibliothek bewältigt. Hindernisse werden durch 2D-Polygone beschrieben. Die Suche erfolgt durch die Erstellung eines Navigationsgraphen und der Anwendung des A*-Algorithmus.

5.3 Typen

5.3.1 Gleitkommazahl

Raumordinaten werden stets als 64-bit Gleitkommazahlen (**double**) gespeichert. Auch Zeitangaben erfolgen in gewissen Teilen des Programmcodes ebenfalls als **double**, um Operationen wie Multiplikation mit anderen Größen zu ermöglichen. Generell werden alle physikalischen Werte wie Entfernung, Zeit oder Geschwindigkeit in SI-Einheiten $(m, s, \frac{m}{s})$ angegeben.

Beim Umgang mit Gleitkommazahlen gilt zu beachten, dass sich bei jeder Verdopplung des Wertes die Präzision halbiert. Möchte man beispielsweise für Zeitangaben eine Präzision im Nanosekundenbereich erhalten, so dürfen die Werte einen Absolutbetrag von etwa 97 Tagen nicht überschreiten.

5.3.2 Zeittypen

Im Allgemeinen werden Zeitpunkte als LocalDateTime und Zeitdauern als Duration dargestellt. Beide Klassen bieten grundlegende arithmetische Operationen, wie das Addieren oder Subtrahieren einer Dauer. Sie besitzen eine fixe Präzision von einer Nanosekunde.

An einigen Programmstellen des Schedulers müssen LocalDateTime oder Duration in double-Werte umgewandelt werden. Die Genauigkeit eines doubles

5.3 Typen

43

kann jedoch problematisch werden, wenn eine Zeitdauer von 97 Tagen überschritten wird. In solch einem Fall kann eine Umrechnung nicht exakt abgebildet werden. double-Werte können zudem den Wertebereich der anderen Klassen übersteigen. Der letzte Zeitpunkt einer LocalDateTime ist der 31.12.99999999 um 23:59:59.99999999 und die längste Duration beträgt etwa 292 Milliarden Jahre. Gegenüber steht die maximale Dauer eines **double**s von etwa 5.7×10^{300} Jahren.

5.3.3 **Pfade**

Um die Bahnen der Hindernisse und Roboter in Raum und Zeit zu beschreiben, wird das Interface Trajectory verwendet. Objekte dieses Interfaces speichern eine Liste von dreidimensionalen Punkten (x, y, t), welche die geradlinig verbundenen Eckpunkte der Bahn angeben. Trajectory wird von zwei Klassen implementiert.

Die SimpleTrajectory speichert zwei gleich lange Listen aus zweidimensionalen Punkten der JTS-Bibliothek (Point) und Zeitpunkten (LocalDateTime), die gemeinsam die Ordinaten der Raumzeitpunkte bilden.

Die zweite Klasse ist die DecomposedTrajectory. Sie wird durch zwei zweidizwischen Trajectory mensionale Pfade Spatial Path und ArcTimePath gebildet. Der Spatial Path entspricht dem räumlichen Pfad π und ArcTimePath dem temporalen Pfad σ . Bei beiden handelt es sich um Listen von JTS-Punkten.

> Klassen SimpleTrajectory, DecomposedTrajectory, SpatialPath und ArcTimePath implementieren allesamt das Interface Path und bieten Funktionen wie Interpolation, Konkatenation oder die Bestimmung von Teilpfaden an.

Hindernisse 5.3.4

beiden werden durch die Klassen StaticObstacle DynamicObstacle dargestellt. Ein statisches Hindernis setzt sich lediglich aus ein zweidimensionales JTS-Polygon, welches dessen Form angibt, zusammen. Dynamische Hindernisse besitzen zudem noch eine Trajektorie, die in Abhängigkeit der Zeit die Verschiebung derer Formen anzeigt.

Die Klasse World setzt sich aus statischen und dynamischen Hindernissen zusammen, um somit die Beschaffenheit der Wirklichkeit abzubilden.

Wo besteht denn der konzeptionelle Unterschied Arten?

5.4 Komponenten 44

5.3.5 Jobs

Eingeplante Jobs werden durch die Klasse Job implementiert. Objekte dieser Klasse sind unveränderlich und geben Auskunft über Ort, Startzeit, Dauer und Knoten. Erzeugt wird ein Job durch den Scheduler, der festlegt, wann, wo und von welchen Knoten der Auftrag ausgeführt wird.

5.4 Komponenten

5.4.1 Scheduler

Die Scheduler-Klasse ist die zentrale Komponente des Raum-Zeit-Schedulers. Sie bietet die wichtigsten Schnittstellen an und enthält den gesamten Zustand. Dazu gehört die Abbildung der realen Welt (World) sowie die Roboter und Jobs. Über seine Schnittstellen kann man unter anderen Knoten (Roboter) hinzufügen oder entfernen, Jobs einplanen oder zurücknehmen, die Uhrzeit aktualisieren und Parameter festlegen.

Der Plan, welcher die Jobs aller Knoten enthält, wird durch die Schedule-Klasse implementiert. Der Scheduler besitzt genau einen Schedule, welcher auch die Knoten speichert. Neben dem aktuellen Plan speichert der Schedule auch beliebig viele Alternativen (ScheduleAlternative). Dabei handelt es sich um Änderungen des Schedules, die noch nicht durch ein Commit bestätigt oder ein Abort abgewiesen wurden. Um den Plan zu manipulieren, werden spezialisierte Scheduler eingesetzt, die der zentrale Schedule aufruft.

Für das Einplanen von Jobs wird die schedule-Methode verwendet, die in drei Ausführen auftritt: Die Einplanung von

- einzelnen Jobs,
- periodischen Jobs und
- abhängigen Jobs.

Die drei spezialisierten Scheduler SingleJobScheduler, PeriodicJobScheduler und DependentJobScheduler suchen nach einer gültigen Belegung der Variablen des Ortes, Zeitpunktes und Knotens der Jobs. Die anderen beiden Scheduler greifen dabei auf den SingleJobScheduler zurück. Das Aufnehmen oder Löschen eines Jobs in bzw. aus dem Schedule erfordert eine Trajektorienplanung, die durch den JobPlanner oder JobRemovalPlanner eingeleitet wird.

5.4.2 Knoten

Roboter und andere Arbeitseinheiten werden vom Scheduler unter dem Begriff Knoten vereinigt. Objekte der Klasse Node speichern sowohl die physikalischen Eigenschaften als auch die Joblisten und Trajektorien der Knoten.

Zu den physikalischen Eigenschaften zählen die Form, die wie auch bei den Hindernissen durch ein JTS-Polygon dargestellt wird, die Höchstgeschwindigkeit und der initiale Raum-Zeit-Punkt, der Ort und Zeit angibt ab dem der Knoten für den Scheduler beginnt zu existieren.

Die Jobliste und Trajektorie eines Knotens bilden den Schedule des Knotens ab. Die Jobs liegen sortiert nach Startzeit in einem Suchbaum vor. Die Trajektorie setzt sich aus mehreren Abschnitten zusammen, die sich ebenfalls in einem Suchbaum innerhalb eines speziellen Objekts (TrajectoryContainer) befinden.

Node-Objekte bieten Methoden zur Manipulation des Schedules an und werden daher vom Scheduler nicht öffentlich zugänglich gemacht. Um dem Scheduler neue Knoten hinzuzufügen, muss zunächst eine NodeSpecification erzeugt werden, die die physikalischen Eigenschaften des Knotens festlegt. Auf bestimmte Informationen des Knotens kann über eine NodeReference zugegriffen werden, die keine Manipulation des Knotens zulässt.

5.4.3 Pathfinder

Da der Trajektorienplaner nur mit punktgroßen Robotern umgehen kann, müssen zuvor alle Hindernisse mit dem Radius des Roboters gepuffert werden. Die JTS-Bibliothek stellt dazu bereits eine Funktion bereit, die geometrische Formen entsprechend transformieren kann.

Die Planung von Trajektorien erfolgt stets in zwei Phasen. Zunächst wird der räumliche Pfad π mithilfe des StraightEdgePathfinders bestimmt, welcher auf die *straightedge*-Bibliothek zurückgreift. In der zweiten Phase wird das Geschwindigkeitsprofil bestimmt. Dazu existieren die beiden Implementierungen LazyFixTimePathfinder und LazyMinimumTimePathfinder. Der erste dient zur Berechnung des Profils dessen Start- und Zielzeitpunkte vorgegeben sind. Beim zweiten ist lediglich die Startzeit festgelegt. Die Zielzeit soll dagegen minimiert werden.

Die Berechnung des Geschwindigkeitsprofils erfolgt in drei Schritten. Ziel ist die Vermeidung jeglicher dynamischer Hindernisse. Als erstes werden die verbotenen Regionen im $s \times t$ -Raum vom ForbiddenRegionBuilder berechnet. Jedes Hindernis

muss dabei einer Transformation unterzogen werden. Viele Hindernisse kommen jedoch womöglich gar nicht in die Nähe des Pfades π . Diese können daher wie im Pseudocode A.7 in Zeile 5, 9 und 14 vorzeitig aussortiert werden.

Anschließend erstellt sogenannter "Mesher" Navigationsgraein den phen. Dafür existieren zwei Varianten; der LazyFixTimeMesher und der LazyMinimumTimeMesher, die jeweils beim entsprechenden Pathfinder Anwendung finden. Diese greifen wiederum auf Konnektoren zurück, die anhand der verbotenen Regionen Knoten und Kanten des Graphen erstellen oder löschen. Der SimpleVertexConnector verbindet beispielsweise alle Eckpunkte der verbotenen Regionen miteinander insofern sie zueinander sichtbar sind und die Kriterien aus Abschnitt 2.5 erfüllen. Der MinimumTimeVertexConnector erstellt dagegen mögliche Zielknoten um die Suche nach dem schnellsten Pfad zu ermöglichen. Als Kantengewicht wird die Fahrtdauer verwendet. Stationäre Pfadsegmente verursachen keine Kosten.

Nach der Erstellung des Graphen erfolgt die Bestimmung des kürzesten Weges⁴ durch Dijkstras Algorithmus der *JGraphT*-Bibliothek.

5.5 Schnittstellen

5.5.1 Initialisierung des Schedulers

Die Initialisierung des Schedulers erfordert die Übergabe eines unveränderlichen World-Objekts, welches die statischen und dynamischen Hindernisse enthält. Die Welt des Schedulers kann nachträglich nicht mehr geändert werden.

```
public Scheduler(World world)

// World constructor

public World(

ImmutableCollection<StaticObstacle> staticObstacles,

ImmutableCollection<DynamicObstacle> dynamicObstacles)
```

5.5.2 Knoten hinzufügen und entfernen

Um einen Knoten beim Scheduler zu registrieren, muss man zunächst eine NodeSpecification erstellen, die sich aus dessen ID und physikalischen Eigen-

⁴Der kürzeste Weg bezeichnet hier den Pfad mit den geringsten Kosten.

schaften zusammensetzt. Mithilfe der ID lässt sich der Knoten wieder auffinden. Es gilt dabei zu beachten, dass eine ID nur einem Knoten zugeordnet sein kann.

```
public NodeSpecification constructor
public NodeSpecification(
String nodeId,
ImmutablePolygon shape,
double maxSpeed,
ImmutablePoint initialLocation,
LocalDateTime initialTime)
```

Das Hinzufügen des Knotens kann eine Ausnahme auslösen, falls der angegebene Ort und Zeitpunkt zu einer Kollision mit einem Hindernis oder anderen Knoten führen würde. Zum Löschen eines Knotens ist dessen ID notwendig. Zudem dürfen ihm keinerlei unerledigten Aufgaben zugeordnet sein.

```
public NodeReference addNode(NodeSpecification spec)
throws CollisionException
public void removeNode(String nodeId)
```

Die Schnittstelle erlaubt es nicht, direkt auf den erstellten Knoten des Schedulers zuzugreifen. Um dennoch bestimmte Funktionen aufrufen zu können, ermöglicht die Methode getNodeReference die Rückgabe einer Referenz. Eine NodeReference bietet verschiedene delegierende Methoden an, um Informationen (z.B. Auslastung) zur Verfügung zu stellen.

public NodeReference getNodeReference(String nodeId)

5.5.3 Planung eines Jobs

Zur Einplanung eines einzelnen Jobs wird eine Spezifikation benötigt.

public ScheduleResult schedule(JobSpecification spec)

Diese grenzt den konkreten Ort und Startzeitpunkt durch ein Areal und Zeitintervall ein. Die Dauer ist dagegen fest vorgegeben. Die Spezifikation enthält auch eine ID um den Job später adressieren zu können. Bereits verwendete IDs sind jedoch unzulässig

```
public static <G extends Geometry & ImmutableGeometry>
   JobSpecification createSF(
        UUID jobId,
        G locationSpace,
```

- 5 LocalDateTime earliestStartTime,
- 6 LocalDateTime latestFinishTime,
- Duration duration)

Zur Erzeugung einer JobSpecification existieren drei statische Funktionen createSF, createSS und createFF. Sie unterscheiden sich in der Semantik des Zeitintervalls. Das Suffix "SF" gibt an, dass sich das Intervall vom frühstmöglichen Startzeitpunkt bis zum spätestmöglichen Endzeitpunkt erstreckt. Damit enthält das Intervall auch die Dauer des Jobs. Die anderen beiden Methoden beziehen sich dagegen entweder auf das Intervall des Start- ("SS") oder Endzeitpunktes ("FF").

Die Rückgabe der schedule-Methode ist ein ScheduleResult. Dieser Typ dient dazu, zu überprüfen, ob die Einplanung erfolgreich war und welche Änderungen am Schedule vorgenommen wurden. Im Falle eines Erfolgs muss die Planung jedoch noch bestätigt werden. Das ScheduleResult stellt dazu eine Transaktions-ID zur Verfügung, mit der die Änderungen übernommen oder verworfen werden können. Der Scheduler bietet hierfür die folgenden Methoden an:

```
public void commit (UUID transactionId)

// partial commit

public void commit (UUID transactionId, String nodeId)

// total abort

public void abort (UUID transactionId)

// partial abort

public void abort (UUID transactionId)

// partial abort

public void abort (UUID transactionId, String nodeId)
```

Die Bestätigung oder Abweisung kann auch partiell für einzelne Knoten erfolgen. Dies ermöglicht die Freigabe von knotenspezifischen Sperren (engl.: Locks), welche durch die Transaktion entstanden sind.

5.5.4 Planung periodischer Jobs

Auch periodische Jobs werden mithilfe einer Spezifikation eingeplant. Allerdings handelt es sich hier um eine PeriodicJobSpecification:

- public ScheduleResult schedule(PeriodicJobSpecification spec)

 Ihre Parameter sind zum Teil mit der JobSpecification aus dem vorherigen Abschnitt 5.5.3 zu vergleichen.
- 1 // PeriodicJobSpecification constructor

```
public <G extends Geometry & ImmutableGeometry>
PeriodicJobSpecification(
ImmutableList<UUID> jobIds,
G locationSpace,
boolean sameLocation,
Duration duration,
LocalDateTime startTime,
Duration period)
```

Bei der periodischen Planung werden beliebig viele Einzeljobs nacheinander in den Schedule aufgenommen. Für jeden dieser Jobs muss eine ID angegeben werden. Die Größe der joblds-Liste gibt die Jobanzahl vor. Der erste Job erhält die erste ID, der zweite die zweite und so weiter. Der locationSpace gibt auch hier das Areal vor, wo die Aufgabe ausgeführt werden kann. Neu ist der boolesche Parameter sameLocation. Wenn dieser wahr ist, so werden alle Jobs am selben Ort durchgeführt. Andernfalls können die Jobs an verschiedenen Orten, jedoch im selben Areal, zugewiesen werden. Die Periodendauer wird durch period definiert. Die erste Periode beginnt zur startTime und jede weitere setzt an ihrem Vorgänger an. Innerhalb jeder Periode muss ein Job eingeplant werden.

Falls die Einplanung aller Jobs nicht möglich ist, so wird keiner in den Schedule aufgenommen.

5.5.5 Planung abhängiger Jobs

Bei der Planung abhängiger Jobs können mehrere Jobs durch einen Scheduler-Aufruf auf einmal eingeplant werden. Jeder Job wird durch eine JobSpecification spezifiziert. Der dependencies-Parameter ist ein einfacher Graph, der die Abhängigkeiten der einzuplanenden Jobs definiert. Als Knoten dienen die Job-IDs. Die Kanten des Graphen zeigen auf die Jobs, von der ein Job selbst abhängt. Alle Jobs der specs müssen auch im Graphen vorliegen und umgekehrt.

```
public ScheduleResult schedule(
    Collection<JobSpecification> specs,
    SimpleDirectedGraph<UUID, DefaultEdge> dependencies)
```

Durch die Angabe des Graphen wird gewährleistet, dass die Abhängigkeiten eines Jobs stets abgeschlossen sind bevor er selbst startet. Im Abschnitt 4.2.4 wurde ein weiterer Parameter d_m eingeführt, durch den man einen zeitlichen Sicherheitsabstand festlegen kann. Der Job wird dann erst frühestens d_m nach Abschluss der letzten Abhängigkeit

ausgeführt. In der Implementierung handelt es sich bei d_m um einen globalen Parameter des Schedulers, der dort als interDependencyMargin bezeichnet wird:

- public void setInterDependencyMargin(
- Duration interDependencyMargin)

Wie schon bei der Planung periodischer Jobs werden entweder alle oder keine Jobs eingeplant.

5.5.6 Umplanen eines Jobs

Die Umplanung eines Jobs erfolgt ähnlich wie die Einplanung mit dem Unterschied, dass bereits ein Job mit der ID existieren muss, die in der Spezifikation angegeben wird. Auch das Umplanen erfordert eine Bestätigung oder Abweisung.

public ScheduleResult reschedule(JobSpecification spec)

5.5.7 Entfernen eines Jobs

Ein Job kann auf zwei Weisen entfernt werden. Entweder man verwendet unschedule, welches auch eine Neuplanung der Trajektorien durchführt. Oder man verzichtet auf die Anpassung der Trajektorie durch Aufruf von removeJob. Zum Entfernen sollte man zunächst die unschedule-Variante probieren, da so die Fahrtwege optimiert werden können. Da die Trajektorienplanung allerdings fehlschlagen kann und weil die Anpassung eventuell nicht durch den Roboter bestätigt wird, existiert auch die zweite Variante. Führt die erste nicht zum gewünschten Ergebnis, so kann somit auf removeJob zurückgegriffen werden.

- public ScheduleResult unschedule(UUID jobId)
- public void removeJob(UUID jobId)

5.5.8 Gegenwart setzen

Der Großteil der genannten Methoden des Schedulers sind zeitabhängig. Das bedeutet, das Verhalten kann sich unterscheiden, wenn sich die Zeit der Gegenwart ändert. Beispielsweise kann eine Aufgabe nicht eingeplant werden, falls deren Startzeitpunkt bereits in der Vergangenheit liegt.

Die Gegenwart wird als Variable (presentTime) des Schedulers gespeichert. Diese muss allerdings explizit durch Aufruf gesetzt werden:

public void setPresentTime(LocalDateTime presentTime)

Dabei ist es unzulässig, die bereits gesetzte Zeit zu verringern. Damit Methoden wie schedule oder unschedule ordnungsgemäß funktionieren, sollte diese Zeit vor Aufruf aktualisiert werden. Auf ein implizites Aktualisieren auf die Systemzeit wurde verzichtet, um Tests und Simulationen zu ermöglichen. Das Verhalten des Schedulers wird somit allein durch die Aufrufe der Schnittstellen bestimmt.

Eine weitere wichtige Größe in Zusammenhang der Gegenwart t_{PT} ist der eingefrorene Horizont t_{FH} . Er gibt an bis zu welcher Zeit keine Änderungen am Schedule mehr möglich sind. Die Zeit des eingefrorenen Horizonts wird implizit gesetzt, wenn die Gegenwart aktualisiert wird. Ein entscheidender Wert dazu ist die Dauer $d_{FH} = t_{FH} - t_{PT}$. Diese Dauer wird durch die folgende Methode festgelegt:

```
public void setFrozenHorizonDuration(
    Duration frozenHorizonDuration)
```

Im Normalfall wird die Dauer einmalig festgelegt. Mit

Silbentrennung

```
public LocalDateTime getFrozenHorizonTime()
```

lässt sich der Zeitpunkt t_{FH} abfragen. Es wird gewährleistet, dass sich dieser Wert niemals reduziert, selbst wenn sich der Wert d_{FH} durch setFrozenHorizonDuration verringert.

5.5.9 Knotenauslastung

Die folgenden Schnittstellen werden von der Klasse NodeReference zu Verfügung gestellt um Auskunft über die Knotenauslastung zu geben. Mithilfe der Knoten-ID gibt der Scheduler durch Aufruf der getNodeReference-Methode die entsprechende Referenz zurück.

```
public Duration calcJobDuration(
  LocalDateTime from, LocalDateTime to)

public Duration calcMotionDuration( ... )

public double calcJobLoad( ... )

public double calcMotionLoad( ... )

public double calcLoad( ... )

public double calcStationaryIdleLoad( ... )

public double calcVelocityLoad( ... )
```

Alle oben genannten Methoden betrachten ein gegebenes Zeitintervall. calcJobLoad berechnet den relativen Zeitanteil L_J innerhalb des Gesamtintervalls, in dem

ein Job ausgeführt wird. calcMotionLoad bezieht sich dagegen auf den Bewegungsanteil L_M . calcLoad stellt die Summe L der beiden Werte dar. calcStationaryIdleLoad gibt dagegen den Anteil L_S des Stillstands außerhalb einer Jobausführung an. calcVelocityLoad berechnet die Geschwindigkeitsauslastung L_v hinsichtlich der Höchstgeschwindigkeit.

Bei den Rückgabewerten all dieser Methoden muss beachtet werden, dass sich die Berechnungen lediglich auf den aktuellen Schedule stützen. Dessen Alternativen, durch Transaktionen hervorgerufen, können nicht berücksichtigt werden.

Kapitel 6

Evaluation

6.1 Komplexität

Die Komplexitätsanalyse (Zeitkomplexität) erfolgt im Gegensatz zum Lösungs- und Implementierungsteil in umgekehrter Richtung (Bottom-Up), sodass aufbauend auf Teilergebnissen die Komplexitätsbestimmung übergeordneter Komponenten gelingt. Als Grundlage dient der Pseudocode aus Anhang A.

6.1.1 Trajektorienplanung

Die Trajektorienplanung eines Jobs wird durch die Prozedur PLAN_JOB aus Algorithmus A.4 vorgenommen. Die Trajektorien werden durch die Funktionen CALC_FT_TRAJECTORY und CALC_MT_TRAJECTORY bestimmt. Diese berechnen dazu zunächst die verbotene Region des räumlichen Pfades mithilfe von CALC_FORBIDDEN_REGION. Anschließend wird der Navigationsgraph von CONNECT_DIRECTLY, CONNECT_LAZY und CONNECT_FINISH_CANDIDATES konstruiert. Des Weiteren werden grundlegende Funktionen betrachtet, die ebenfalls zur Komplexität beitragen.

Geometrische Mengenoperationen

Zwei grundlegende Funktionen sind die Schnittmengen- und Differenzmengenoperation (\cap, \setminus) für geometrische Objekte. Realisiert werden diese durch die JTS-Bibliothek. Da derartige Funktionen nicht trivial und äußerst komplex sind, kann an dieser Stelle über die eigentliche Komplexität nur gemutmaßt werden.

Ein zentraler Schritt bei derartigen Mengenoperationen ist die Bestimmung der Schnittpunkte der Ränder beider Geometrien. Anschließend wird durch das geeignete Zusammenfügen der Ränder die resultierende Geometrie bestimmt.

Die Schnittpunkte können durch paarweise Betrachtung der Randsegmente berechnet werden. Ich gehe daher von einer Komplexität von $\mathcal{O}(m \cdot n)$ aus, wobei m und n die Zahl der Eckpunkte beider Geometrien bezeichnet. Bei der Zusammenfügung des Randes nehme ich stattdessen nur $\mathcal{O}(m+n)$ an. Bei übrigen Operationen wie Fallunterscheidungen gehe ich nicht davon aus, dass solche die Komplexität von $\mathcal{O}(m \cdot n)$ verschlechtern. Kombiniert verbleibt somit eine Komplexität von

$$\mathcal{O}(m \cdot n). \tag{6.1}$$

CALC_FORBIDDEN_REGION

Von zentraler Bedeutung für die Komplexität sind die drei ineinander verschachtelten **for**-Schleifen (siehe Algorithmus A.7). Die oberste Schleife iteriert über die individuellen Hindernisse, die zweite über deren Trajektoriensegmente und die innerste über die Pfadsegmente des Roboters. Die Hauptberechnung stellt die Transformation der Hindernisse in den $s \times t$ -Raum dar.

Bei der Transformation werden drei Fälle unterschieden (regulär, parallel und stationär). Interessant sind die Zeilen 19, 23 und 33, da diese von der Anzahl der Eckpunkte von $O_k^m(t)$ abhängen.

Einfachheitshalber wird diese Anzahl im Rahmen der Komplexitätsanalyse mit $\underline{O_k^m(t)}$ bezeichnet. Dies wird mit weiteren Parametern in analoger Weise fortgeführt, sodass $\underline{\pi}$ und $\underline{\tau}$ die Segmentanzahl des Pfades π bzw. der Trajektorie τ angeben.

Die innerste Schleife wird $\underline{\pi}$ -mal ausgeführt und hat daher eine $\mathcal{O}\left(\underline{\pi}\cdot\underline{O_k^m(t)}\right)$ -Komplexität. $O_k^m(t)$ stellt ein Teilstück des $x\times y\times t$ -Raumes dar, welches von der Punktmenge O^m eingenommen wird. Die beiden ersten Schleifen in Zeile 3 und 8 iterieren über diese Teilstücke, sodass im Gesamten die verbotene Region von O_k^m berechnet wird. Daher lautet die Gesamtkomplexität aller Schleifen $\mathcal{O}\left(\underline{\pi}\cdot\underline{O^m}\right)$, wobei $\underline{O^m}$ die Anzahl der dreidimensionalen Eckpunkte von O^m angibt.

Bisher wurde ignoriert, dass jeder Schleifendurchlauf vorzeitig in den Zeilen 6, 10 und 15 übersprungen werden kann. Oftmals kann anhand eines Tests auf Hüllenüberschneidung bereits geschlossen werden, dass ein Hindernis für eine Kachel des $s \times t$ -Raumes keine verbotene Region verursacht. Ob diese Abkürzung allerdings auch einen Einfluss auf die Komplexität hat, ist schwer zu bestimmen. Nicht in jedem Fall wird für

 $^{^{1}\}mathcal{O}$ wird innerhalb der Komplexitätsanalyse stellvertretend für Θ verwendet.

ein Hindernis auch eine Transformation durchgeführt. Es steht die Frage offen, ob die Zunahme an Hindernissen, Trajektorien- oder Pfadsegmenten auch zu einer Steigerung des Berechnungsaufwands in den Zeilen 19, 23 und 33 führt. Entscheidend ist hier die genaue Lage der Hindernisse, Trajektorien und Pfade. Ohne empirische Daten von konkreten Anwendungsfällen ist die Entwicklung eines geeigneten Modells jedoch kaum möglich. Daher verzichte ich auf die Berücksichtigung der Zeilen 6, 10 und 15.

Die Gesamtkomplexität beträgt daher

$$\mathcal{O}\left(\pi\cdot O^{m}\right).\tag{6.2}$$

CONNECT_DIRECTLY, CONNECT_LAZY und CONNECT_FINISH_CANDIDATES

In Zeile 2 der CONNECT_DIRECTLY-Prozedur aus Algorithmus A.8 werden die Eckpunkte der verbotenen Region als Graphknoten aufgefasst, deren Anzahl $\underline{O^f}$ benennt. Über die Knoten wird paarweise iteriert und verursacht dadurch $\mathcal{O}\left(\underline{O^f}^2\right)$. In der innersten Schleife ist lediglich der VISIBLE-Aufruf von Bedeutung, da dieser $\mathcal{O}\left(\underline{O^f}\right)$ bewirkt. Insgesamt lautet die Komplexität daher:

$$\mathcal{O}\left(\underline{O^f}^3\right)$$
. (6.3)

Die Prozedur CONNECT_LAZY berechnet in Zeile 13 und 14 Strahlen (CAST_MOTION_RAYS, CAST_STATIONARY_RAYS), die zur Erzeugung zusätzlicher Knoten und Kanten verwendet werden. Für jeden Eckpunkt der verbotenen Region wird dazu ein Strahl berechnet, der sich bis zur ersten Kollision mit einer Hinderniskante fortsetzt. Die Kollisionsbestimmung hat dabei einen Aufwand von $\mathcal{O}\left(\underline{O^f}\right)$. CAST_MOTION_RAYS und CAST_STATIONARY_RAYS verursachen deshalb jeweils eine Komplexität von $\mathcal{O}\left(\underline{O^f^2}\right)$.

Die Schnittpunktberechnung der Strahlen ab Zeile 15 beruht auf zwei verschachtelten Schleifen, die alle Strahlenpaare durchlaufen. Der Rumpf der innersten Schleife hat einen konstanten Aufwand. Deshalb wird auch hier $\mathcal{O}\left(\underline{O^f}^2\right)$ verursacht und der Gesamtaufwand lautet:

$$\mathcal{O}\left(\underline{O^f}^2\right)$$
. (6.4)

Die letzte der drei Prozeduren durchläuft alle Knoten in Zeile 27 einmal. Die Sichtbarkeitsprüfung im Rumpf in Zeile 29 sorgt auch hier für einen Aufwand von insgesamt

$$\mathcal{O}\left(\underline{O^f}^2\right). \tag{6.5}$$

CALC_FT_TRAJECTORY und CALC_MT_TRAJECTORY

Die Funktion CALC_FT_TRAJECTORY führt einige der bisher betrachteten Prozeduren und Funktionen nacheinander aus, sodass deren Komplexitäten lediglich zusammengeführt werden müssen. Der Aufwand zur Berechnung der verbotenen Region in Zeile 1 ist durch $\mathcal{O}\left(\underline{O^m}\cdot\underline{\pi}\right)$ aus (6.2) gegeben. CONNECT_DIRECTLY in Zeile 4 übertrifft CONNECT_LAZY und verursacht $\mathcal{O}\left(\underline{O^f}^3\right)$ (6.3). Dijkstras Algorithmus hat allgemein einen Aufwand von $\mathcal{O}\left(V\log V+E\right)$, wobei V die Knotenzahl und E die Kantenzahl angibt. An dieser Stelle führe ich unter der Annahme, dass die Knoten eng vermascht sind, die Vereinfachung durch, dass $E=V^2=\underline{O^f}^2$ ist. Somit führt auch Zeile 8 zu einem quadratischen Aufwand. Die letzte Zeile verursacht $\mathcal{O}\left(\underline{O^f}+\underline{\pi}\right)$.

Insgesamt führt das zum Gesamtaufwand von

$$\mathcal{O}\left(\underline{O^m} \cdot \underline{\pi} + \underline{O^f}^3\right). \tag{6.6}$$

CALC_MT_TRAJECTORY (Algorithmus A.6) stellt eine alternative Version von CALC_FT_TRAJECTORY dar und unterscheidet sich lediglich in den Zeilen 6 und 8. CONNECT_FINISH_CANDIDATES führt den Aufwand $\mathcal{O}\left(\underline{O^f}^2\right)$ ein. DETERMINE_FINISH prüft welcher Zielknoten erreichbar ist und wählt den mit der geringsten Zeit aus. Da es sich dabei um eine Traversion handelt, kann der Aufwand den des Dijkstra-Algorithmus nicht übersteigen. Die Gesamtkomplexität ist daher identisch zu (6.6).

PLAN_JOB

Die Trajektorienplanung eines neuen Jobs umfasst die Planung von zwei Raumpfaden und zwei Trajektorien. Algorithmus A.4 berechnet die Pfade π_1 und π_2 in den Zeilen 2-3. Implementiert wird die die Funktion CALL_SPATIAL_NODE durch die *straightedge*-Bibliothek. Die generelle Umsetzung dürfte wie schon bei der Trajektorienberechnung die Konstruktion eines Navigationsgraphen und eines Graphenalgorithmus wie Dijkstra beinhalten.

Der Navigationsgraph für die räumliche Wegfindung muss nur einmalig durchgeführt werden und wird hier daher nicht betrachtet. Damit reduziert sich die Berechnung auf den Graphenalgorithmus. Unterstellt man auch hier Dijkstra, so kann man wie schon im vorigen Abschnitt quadratischen Aufwand unterstellen. Allerdings kommt es auch hier auf die Beschaffenheit der statischen Hindernisse an. Handelt es sich beispielsweise um identische abgeschlossene Räume, so würde die Kantenzahl linear mit den Räumen und somit den Knoten zunehmen. Sind es dagegen viele kleine Hindernisse, die die Sicht kaum beeinträchtigen, so ist auch hier eine quadratische Knoten-zu-Kanten-Relation zu

Abbildung 6.1: Extraktion eines Punktes aus einem Areal. Dieses erstreckt sich in x-Richtung über das Intervall $[x_1, x_2]$ aus dem die Ordinate x^* gewählt wird. Die Schnittmenge (rot) aus dem Areal und der Linie $\{(x^*, y) \mid y \in \mathbb{R}\}$ gibt das Intervall $[y_1, y_2]$ vor, aus dem die zweite Ordinate y^* entnommen wird.

vermuten. Da es an einem Modell mangelt, gehe ich von einer quadratischen Relation aus, sodass es zum Aufwand $\mathcal{O}\left(\underline{O^{s^2}}\right)$ kommt. Zusammen mit der Trajektorienberechnung sieht die Komplexität daher wie folgt aus:

$$\mathcal{O}\left(\underline{O^{s^2}} + \underline{O^m} \cdot \underline{\pi} + \underline{O^f}^3\right). \tag{6.7}$$

6.1.2 Jobplanung

Zur Einplanung von Jobs existieren die drei Methoden SCHEDULE_SINGLE, SCHEDULE_PERIODIC und SCHEDULE_DEPENDENT. Die beiden letztgenannten greifen dabei auf SCHEDULE_SINGLE zurück, welche sich wiederum der PLAN_JOB-Prozedur der Trajektorienplanung bedient.

SCHEDULE_SINGLE

SCHEDULE_SINGLE aus Algorithmus A.1 berechnet in Zeile 2 die Differenzmenge des spezifizierten Aufgabenareals mit statischen Hindernissen O^s . Diese Operation nimmt $\mathcal{O}(L \cdot \underline{O^s})$ in Anspruch, wobei L der Eckpunktzahl des Aufgabenareals entspricht.

In der nächsten Zeile werden l Ortspunkte dem Differenzgebiet extrahiert. Die Funktion SAMPLE_LOCATIONS ist in Zeile 15 definiert. Dort wird eine **while**-Schleife bis zu l mal durchlaufen. Im Rumpf benötigt Zeile 21 mit SAMPLE_LOCATION eine Zeit von $\mathcal{O}(L)$. Diese Funktion extrahiert einen Punkt aus einer Menge von Polygonen. Dazu wird zunächst ermittelt über welche Intervalle einer Dimension sich das Polygon erstreckt (siehe Abbildung 6.1). Wurden die Intervalle für die x-Richtung bestimmt, so

wählt man daraus nun einen x^* -Wert aus. Durch diesen Wert lässt sich nun eine Linie $\{(x^*,y)\mid y\in\mathbb{R}\}\$ definieren, die mit dem Polygon geschnitten wird. Aus der resultierenden Schnittmenge muss nun lediglich ein Punkt ausgewählt werden. Sowohl zum Bestimmen der Intervalle als auch der Schnittmenge müssen alle Punkte des Polygons einmal betrachtet werden. Daher ist mit einem Zeitaufwand von $\mathcal{O}(L)$ zu rechnen. Zeile 23 ruft DEVIDE_AREA auf. Diese teilt die aktuelle area in bis zu vier subareas auf. Die Aufteilung gelingt in $\mathcal{O}(L)$. Damit ergibt sich für SAMPLE_LOCATIONS ein Aufwand von $\mathcal{O}(L \cdot l)$.

In Zeile 4 wird die äußere zweier verschachtelter Schleifen l mal ausgeführt. Die innere Schleife iteriert über S Knotenpausen, die von FIND_SLOTS ermittelt wurden. Diese Funktion iteriert über alle Knoten und deren Pausen. Dadurch entsteht ein Zeitaufwand von $\mathcal{O}(n \cdot s)$. n bezeichnet die Anzahl der Knoten und s die durchschnittliche Pausenzahl.

Innerhalb der inneren Schleife aus der Prozedur SCHEDULE_SINGLE wird in Zeile 7 nun der Job eingeplant. PLAN_JOB benötigt bekanntermaßen nach (6.7) $\mathcal{O}\left(\underline{O^{s^2}} + \underline{O^m} \cdot \underline{\pi} + \underline{O^f}^3\right)$. Falls die Planung erfolgreich war, wird der Prozeduraufruf in Zeile 9 beendet. Ist eine Einplanung für alle Ortspunkte und Pausen jedoch unmöglich, so wird PLAN_JOB $l\cdot S$ mal ausgeführt. Daher gehe ich davon aus, dass es im Mittel zu $l \cdot S$ Aufrufen von PLAN JOB kommt.

Durch Zusammenfügung der Teilergebnisse gelangt man zu folgenden Aufwand der SCHEDULE_SINGLE-Prozedur:

Du hast das sehr ordentlich und detailliert betrachtet. Allerdings bleibt die Aussagefähigkeit auf der Strecke. Dem Leser ist bei der neben-

$$O\left(L \cdot \underline{O^s} + L \cdot l + l \cdot n \cdot s + l \cdot S \cdot \left(\underline{O^{s^2}} + \underline{O^m} \cdot \underline{\pi} + \underline{O^{f^3}}\right)\right). \tag{6.8}$$

stehenden Komplexität nicht wirklich

klar, ob das gut oder schlecht ist. Im Prinzip solltest du hier noch verknappend sagen, was die relevanten Komponenten sind. Ich glaube z.B., dass der O(f^3) Aufwand nicht wirklich wichtig ist. Ich vermute, dass es nicht so viele Eckpunkte von

SCHEDULE_PERIODIC

Die Einplanung mehrerer periodischer Jobs kommt in zwei Varianten daher. Die erste plant die Jobs alle am selben Ort ein und ist im Algorithmus A.2 unter der Bezeichnung SCHEDULE_PERIODIC_SAME_LOCATION zu finden. Wie auch schon bei der Prozedur SCHEDULE_SINGLE wird hier in den Zeilen 2 und 3 das spezifizierte Aufgabenareal beschnitten $(\mathcal{O}(L \cdot Q^s))$ und Ortspunkte extrahiert $(\mathcal{O}(L \cdot l))$. In l Durchläufen wird versucht j Jobs einzuplanen. Der Aufwand des SCHEDULE_SINGLE-Aufrufs in Zeile 10 ist gegenüber (6.8) reduziert auf $\mathcal{O}\left(\underline{O^s} + n \cdot s + S \cdot \left(\underline{O^{s^2}} + \underline{O^m} \cdot \underline{\pi} + \underline{O^f}^3\right)\right)$, da die verbotenen RegioneSpezifizierung spec nur einen Ortspunkt als Aufgabenareal enthält.²

den Haupteinfluss ausüben wird.

aktuell nicht sagen,

geben wird. Ich kann aber auch

Was denkst du denn?

²Der Aufwand ließe sich hier noch weiter reduzieren, da SCHEDULE_SINGLE in den Zeilen 2 und 3 welche Komponentemehrfach dieselben Rechnungen wiederholt.

gleicher Kommentar wie oben. Vereinfache das. Für die Prozedur SCHEDULE_PERIODIC_SAME_LOCATION ergibt sich somit

$$\mathcal{O}\left(L \cdot \underline{O^s} + L \cdot l + l \cdot j \cdot \left(\underline{O^s} + n \cdot s + S \cdot \left(\underline{O^{s^2}} + \underline{O^m} \cdot \underline{\pi} + \underline{O^{f^3}}\right)\right)\right). \tag{6.9}$$

Die zweite Variante SCHEDULE_PERIODIC_INDEPENDENT_LOCATION plant die Jobs an unabhängigen Orten ein. Gegenüber der ersten Variante reduziert sich die Prozedur auf die *j*-malige Ausführung von SCHEDULE_SINGLE.³ Der benötigte Zeitaufwand beträgt daher

$$\mathcal{O}\left(j\cdot\left(L\cdot\underline{O^s}+L\cdot l+l\cdot n\cdot s+l\cdot S\cdot\left(\underline{O^{s2}}+\underline{O^m}\cdot\underline{\pi}+\underline{O^{f^3}}\right)\right)\right). \tag{6.10}$$

SCHEDULE_DEPENDENT

SCHEDULE_DEPENDENT ist die letzte der drei Varianten, mit der sich Jobs in den Schedule einplanen lassen. Diese fügt mehrere Jobs unter Berücksichtigung ihrer Abhängigkeiten untereinander ein.

Der erste Schritt dieser Planung ist Zeile 2 des Algorithmus A.3 zu entnehmen. Dort werden die übergebenen Spezifikationen zunächst normalisiert. Die Normalisierung erfolgt in der Prozedur NORMALIZE_SPECS in Zeile 15. In Zeile 16 werden dazu zuerst die Abhängigkeiten topologisch in $\mathcal{O}(D+j)$ sortiert. D bezeichnet die Anzahl der Abhängigkeiten (bzw. Kanten) und j die Jobanzahl (Knoten). Zeile 17 kopiert die Spezifikationen in $\mathcal{O}(j)$. Die beiden Schleifen aus Zeile 18 und 23 überschreiben das Startzeitintervall der Spezifikationen und sind ähnlich aufgebaut. Dabei werden die Abhängigkeiten aller Jobs besucht. Somit verursachen beide Schleifen jeweils einen Aufwand von $\mathcal{O}(D+j)$. Zum Schluss werden die normalisierten Spezifikationen nochmals nach ihrer Deadline sortiert, wodurch $\mathcal{O}(j\log j)$ eingeführt wird. Die NORMALIZE_SPECS-Prozedur besitzt damit die Komplexität $\mathcal{O}(D+j\log j)$.

In Zeile 3 beginnt die Schleife der SCHEDULE_DEPENDENT-Prozedur, welche in j Durchgängen über alle Aufgabenspezifikationen iteriert. Der SCHEDULE_DEPENDENT-Aufruf betrachtet alle Abhängigkeiten des aktuellen Jobs, wodurch insgesamt alle Abhängigkeiten betrachtet werden $(\mathcal{O}(D))$. Zeile 8 enthält die SCHEDULE_SINGLE-Anweisung, die den Aufwand in (6.8) verursacht. Falls ein Job nicht eingeplant werden kann, so wird die Schleife abgebrochen. Andernfalls wird sie voll durchlaufen.

³Auch hier ist eine Optimierung möglich, sodass die Rechnungen aus den Zeilen 2 und 3 in SCHEDU-LE_SINGLE nur einmalig erfolgen.

Abbildung 6.2: Pufferung von Hindernissen durch Berechnung der Minkowski-Summe.

Die Gesamtkomplexität beläuft sich in der Summe auf

$$\mathcal{O}\left(D + j\log j + j\cdot\left(L\cdot\underline{O^s} + L\cdot l + l\cdot n\cdot s + l\cdot S\cdot\left(\underline{O^{s^2}} + \underline{O^m}\cdot\underline{\pi} + \underline{O^f}^3\right)\right)\right). \tag{6.11}$$

6.1.3 Bewertung

Betrachtet man die Ergebnisse der drei SCHEDULE-Prozeduren, so zeigt sich als ausschlaggebender Term des Berechnungsaufwandes $O^{s^2} + O^m \cdot \pi + O^{f^3}$, welcher seinen Ursprung in der PLAN_JOB-Prozedur hat. Die beiden Faktoren I und I bestimmen wie häufig diese Prozedur aufgerufen wird. Die Anzahl der Ortskandidaten I ist in der konkreten Implementierung nach oben durch I beschränkt. Das heißt aus einem Areal werden von SAMPLE_LOCATIONS nur bis zu fünf Ortspunkte extrahiert. I ist dagegen nur durch die Gesamtzahl aller Knotenpausen I beschränkt. Die genaue Zahl hängt von der Situation ab. Beeinflusst wird sie durch die Aufgabendichte der Roboter, ihrer Entfernung zum Aufgabenareal und das gegebene Zeitintervall der Spezifikation. Je größer das Zeitintervall, je mehr Roboter, je geringer ihre Entfernung und je höher ihre Aufgabendichte, desto höher fällt I aus.

Die eingeführte Komplexität $\mathcal{O}\left(\underline{O^s^2}\right)$ ist situationsabhängig möglicherweise überschätzt. Die größte Last $\mathcal{O}\left(\underline{O^f^3}\right)$ wird potentiell von den verbotenen Regionen verursacht. Es ist daher besonders wichtig dafür zu sorgen, dass diese in ihrer Beschaffenheit möglichst einfach ausfallen. Wie groß $\underline{O^f}$ auftritt, hängt von mehreren Faktoren ab. Generell gilt, je mehr Hindernisse den Roboterpfad kreuzen, desto mehr Regionen treten hervor. Eine große Dichte an Robotern, ein langer Pfad und ein großes Zeitintervall begünstigen solch eine Situation. Jedoch trägt auch der Detailgrad der Form der

Ich dachte du pufferst auf Rechteck-Basis? Kann man das konfigurieren oder ist das Anfassen des Srccodes dafür notwendig? dynamischen Hindernisse entscheidend zu $\underline{O^f}$ bei. Roboter sollten daher lediglich als Rechteck dargestellt werden. Eine weitere Maßnahme liegt in der Implementierung der Pufferung von Hindernissen. Sowohl statische als auch dynamische Hindernisse werden gepuffert, um zur Berechnung der Trajektorie von einem punktgroßen Roboter ausgehen zu können. Zurzeit wird die Pufferung von der JTS-Bibliothek übernommen, welche die Minkowski-Summe des Hindernisses mit einem gefüllten Kreis bildet (Abbildung 6.2a). Ein Kreis ist zwar genauer, was die Pufferung anbelangt, steigert aber auch den Detail und führt daher zu Mehraufwand. Ein Rechteck würde dagegen ebenfalls genügen und den Detailgrad nur gering anheben (Abbildung 6.2b).

Eine weitere Optimierung ist bei SCHEDULE_PERIODIC möglich. Dessen Varianten rufen jeweils SCHEDULE_SINGLE auf, welche mehrfach dieselbe Berechnung aus Zeile 2 und 3 des Algorithmus A.1 wiederholen.

6.2 Benchmark

Neben einer Komplexitätsanalyse wurden die Komponenten des Schedulers auch einem Benchmark-Test unterzogen. Als Testsystem diente ein PC mit einem 3.2 GHz Intel Core i5-3470 Prozessor unter Windows 7 (64-Bit) und Java in der Version 8 Update 25.

In 16 Testfällen wurden die Berechnungszeiten des Schedulers und seiner Komponenten ermittelt. Jeder Einzeltest erlaubt das Festlegen einer Problemgröße, beispielsweise die Zahl der Roboter. Die Messung der Berechnungsdauer für verschiedene Problemgrößen desselben Testfalls ermöglicht somit die Prüfung der Ergebnisse der Komplexitätsanalyse. Pro Testfall und Problemgröße wurde die Messung 5 bis 20 mal wiederholt und der geringste Messwert gewählt, um äußere Einflüsse zu minimieren.

6.2.1 Trajektorienplanung

CALC_FORBIDDEN_REGION

Das Zeitverhalten der CALC_FORBIDDEN_REGION-Funktion wurde in mehreren Testfällen für vier Problemgrößen untersucht.

Bei der ersten Größe handelt es sich um die Zahl bewegter Hindernisse, welche den Roboterpfad kreuzen (siehe Abbildung 6.3a). In Abbildung 6.3b zeigen die Messzeiten einen linearen Zusammenhang mit der Zahl der Hindernisse auf. Dies befindet sich im Einklang mit der Komplexitätsanalyse, da \underline{O}^m linear mit den Hindernissen steigt. Der Anstieg der Hinderniszahl bewirkt eine höhere Anzahl an Durchläufen der äußersten Schleife in Zeile 3 des Algorithmus A.7.

Abbildung 6.3: Anzahl bewegter Hindernisse

Abbildung 6.4: Detailgrad bewegter Hindernisse

Abbildung 6.6: Segmentanzahl des Roboterpfades

Im nächsten Test wird der Detailgrad der Hindernisform erhöht. Dabei handelt es sich um ein Polygon, welches einen Kreis approximiert (siehe Abbildung 6.4a). Ausschlaggebend ist die Anzahl der Eckpunkte des Polygons. Wie auch im vorherigen Testfall, ist hier ein linearer Zusammenhang festzustellen. Ein höherer Detailgrad erfordert einen größeren Aufwand bei der Transformation des Hindernisses in den Zeilen 17 bis 35. Die Komplexität wird auch hier bestätigt, da O^m proportional zunimmt.

Die Segmentanzahl der Hindernistrajektorie stellt die dritte Möglichkeit dar $\underline{O^m}$ zu steigern. In Abbildung 6.5a wandert ein Hindernis wiederholt über den Roboterpfad. Auch hier wächst die Ausführungsdauer proportional zur Problemgröße (siehe Abbildung 6.5b), da nun die innere Schleife aus Zeile 8 mehrfach iteriert wird.

Die letzte untersuchte Problemgröße ist die Anzahl der Pfadsegmente des Roboters. Im Testfall überquert ein Hindernis alle Segmente des Pfades (siehe Abbildung 6.6a) und

Abbildung 6.7: Detailgrad verbotener Regionen (Aufstellung)

führt auch hier zu einer linearen Zunahme der Berechnungsdauer (siehe 6.6b) aufgrund der innersten Schleife in Zeile 13.

CONNECT_DIRECTLY, CONNECT_LAZY und CONNECT_FINISH_CANDIDATES

Der Berechnungsaufwand der drei CONNECT-Funktionen wird in Abhängigkeit zum Detailgrad der verbotenen Regionen geprüft. Der Testfall, dargestellt in Abbildung 6.7, enthält vier "kreisförmige" Polygone, deren Detail mit der Problemgröße zunimmt.

Alle Funktionen weisen ein überproportionales Verhalten auf. Anhand der Komplexitätsanalyse liegt die Annahme nahe, dass es sich um quadratischen bzw. kubischen Aufwand handelt. Visuell lässt sich dies jedoch schwer einschätzen. Möglicherweise sind die untersuchten Problemgrößen im Falle von CONNECT_DIRECTLY noch zu gering, um die kubische Komponente offensichtlich zu machen.

Sollte hier nicht irgendwo 6.8 referenziert werden??

6.2.2 Jobplanung

SCHEDULE_SINGLE

Die Testfälle für die SCHEDULE_SINGLE-Funktion untersuchen die Knoten- und Pausenanzahl als Problemgrößen. Dabei wird unterschieden, ob bereits der erste Planungsversuch erfolgreich ist, oder ob alle Variablenkombinationen erschöpft werden müssen.

Beim ersten Fall werden n Knoten in einem Kreis aufgestellt (siehe Abbildung 6.9). Im Zentrum soll eine Aufgabe eingeplant werden, die in Reichweite aller Roboter liegt. Daher kann bereits dem ersten Roboter die Aufgabe zugeteilt werden. Es ergibt sich eine

Nicht referenziert!!!

Abbildung 6.8: Detailgrad verbotener Regionen (Zeitmessung)

Abbildung 6.9: Knotenanzahl (Aufstellung)

6.2 Benchmark 66

Abbildung 6.11: Pausenanzahl eines Knotens – Einzelner Knoten (Zeitmessung)

Du meinst die Berechnungszeit des Schedulers, richtig?

Ich dachte, dass ist genau nicht der Fall!? Ich dachte dass du mit der bounding-box arbeitest und nur bei anstehenden Kollisionen, dwirklich diese berechnen li musst..

lineare Beziehung zwischen n und der Ausführungszeit (siehe Abbildung 6.10a) Dies chte primär dadurch zu begründen, dass jeder Knoten auch als dynamisches Hindernis auftritt und somit O^m steigt.

In der zweiten Variante dieses Falls kann die Aufgabe nicht eingeplant werden, da der Ort durch ein fremdes dynamisches Hindernis blockiert wird. Durch die Wiederholung der Planung für jeden Fall steigt der Aufwand nun quadratisch an (siehe Abbildung 6.10b).

Im nächsten Test wird die Anzahl der Pausen eines einzelnen Knoten verändert. Im Erfolgsfall hat die Problemgröße nur einen geringen linearen Einfluss, der selbst bei hohen Werten kaum Auswirkungen zeigt, da die Trajektorienplanung nur einmalig durchgeführt werden muss (siehe Abbildung 6.11a).

Die zweite Variante verhindert auch hier die Einplanung mithilfe einer Blockade eines fremden Hindernisses. Aufgrund dessen kommt es zu mehreren Versuchen eine 6.2 Benchmark 67

Abbildung 6.12: Pausenanzahl eines Knotens – Zwei Knoten (Zeitmessung)

Abbildung 6.13: Anzahl einzuplanender periodischer Jobs (Zeitmessung)

Trajektorie zum Aufgabenort zu planen. Es zeigt sich daher ein linearer Aufwand mit einem weitaus höheren Anstieg (siehe Abbildung 6.11b).

Der letzte Testfall umfasst zwei Knoten. Nur ein Knoten ist in der Lage den Aufgabenort zu erreichen. Der andere Knoten tritt jedoch als dynamisches Hindernis auf. Modifiziert werden hier nur die Pausen des zweiten Knotens, wodurch seine Trajektorie in mehrere Abschnitte aufgeteilt wird. Deshalb steigt hier die Ausführungszeit linear an, da O^m durch zusätzlichn Trajektorien erhöht wird.

Im Falle der Blockade des Aufgabenortes sieht die Situation ähnlich aus (siehe Abbildung 6.12b). Auch hier trägt die Trajektorie des zweiten Knotens maßgeblich zur Linearität bei. Da nur ein Planungsversuch unternommen wird, verläuft die Kurve ähnlich zum obigen Fall.

6.2 Benchmark 68

Abbildung 6.14: Anzahl einzuplanender abhängiger Jobs (Zeitmessung)

Nochmal zum Verstä

SCHEDULE_PERIODIC

Die SCHEDULE_PERIODIC-Prozedur wird hinsichtlich der Anzahl einzuplanender Jobs untersucht. Ein Roboter soll an einem nahe gelegenen Punkt periodische Jobs ausführen. Nach Abbildung 6.13a und 6.13b ergibt sich für die Varianten SCHEDULE_PERIODIC_SAME_LOCATION und SCHEDULE_PERIODIC_INDEPENDENT_LOCATION ein ähnlicher linearer Verlauf.

SCHEDULE_DEPENDENT

Wie auch schon bei der periodischen Einplanung wird die Berechnungsdauer der SCHE-DULE_DEPENDENT-Prozedur in Abhängigkeit der Jobanzahl ermittelt. Als Abhängigkeitsgraph wird einfachheitshalber eine kettenförmige Struktur gewählt, sodass alle Jobs der Reihe nach ausgeführt werden müssen. Ebenso steht hier nur ein Roboter zur Entgegennahme der Aufgaben zur Verfügung. Erwartungsgemäß der Komplexitätsanalyse ergibt sich auch hier ein linearer Aufwand (siehe Abbildung 6.14).

6.2.3 Bewertung

Nach Betrachtung der Ergebnisse des Benchmarks ist festzustellen, dass diese mit den Resultaten der Komplexitätsanalyse konform gehen. Allerdings gilt an dieser Stelle zu bemerken, dass die Testfälle die Laufzeit stets in nur einer Dimension untersuchen und daher nicht alle Aspekte der Komplexität geprüft werden konnten.

Vergleicht man die Messwerte der SCHEDULE-Prozeduren zwischen Erfolg und Misserfolg, so wird deutlich, dass das Zeitverhalten stark davon abhängt, wie früh der Scheduler einen Job einplanen kann. Die Kombinationsvielfalt der Variablenbelegung

6.3 Problemfälle 69

Abbildung 6.15: Pseudostationäres Hindernis O^m blockiert den Pfad π

(Ort, Zeit, Knoten) kann hier schnell zum Verhängnis werden. Es wäre an dieser Stelle besser, nur einen Teil der Kombinationsmöglichkeiten zu prüfen.

Besondere Aufmerksamkeit muss der Erstellung des Navigationsgraphen geschenkt werden. Die Prozeduren CONNECT_DIRECTLY und CONNECT_LAZY weisen hier den höchsten Aufwand auf. Daher ist es umso dringlicher, den Detailgrad der verbotenen Regionen so niedrig wie möglich zu halten. Es bleibt zu untersuchen, wie hoch das Auftreten der Regionen in der Praxis ausfällt.

Abschließend ist festzustellen, dass alle untersuchten Problemgrößen dem Scheduler Grenzen vorgeben. Selbst in den besten Fällen ist ein linearer Zusammenhang zum Aufwand zu beobachten. Um beispielsweise besonders hohe Knotenzahlen zu ermöglichen, sind tiefer greifende Ansätze (z.B. hierarchische Verwaltung) von Nöten.

6.3 Problemfälle

6.3.1 Allwissenheit

Das Modell der Allwissenheit des Schedulers kann in der Praxis schnell an seine Grenzen stoßen. Der Umgang mit unbekannten Hindernissen oder Ausfällen von Robotern ist nicht möglich. Auch das Hinzufügen und Entfernen von Robotern kann nicht zufriedenstellend abgebildet werden, da diese in der Wirklichkeit nicht aus dem Nichts erscheinen und dorthin verschwinden. Die Praxistauglichkeit in einer realen alltäglichen Umgebung ist damit stark beeinträchtigt und beschränkt sich damit auf Laborversuche.

Die im Folgenden und auch im Fazit genannten Probleme und Inspirationen für weitere Lösungsansätze sind gut und kritisch. Allerdings würde ich die beim Abschlussvortrag auch nur bedingt (wenn überhaupt) nennen. Es ist sicher sinnvoll eine oder mehrere "spare" slides zu haben, so dass du bei Nachfragen nochmal detailliert darauf eingehen kannst, weil du ja bereits dran gedacht hast und das alles durchdacht hast. Aber zu viel Eigenkritik ist auch nicht gut. Insbesondere würde dann sicherlich die Frage kommen, warum du das dann nicht gleich anders gemacht hast.

Theoretisch kannst du diesen Ansatz aber auch weiter hochskalieren: Stell dir vor deine Hindernisse sind jetzt nicht kleine Roboter, sondern topologische Objekte wie Gebirge oder Gebäude, die eine Überquerung für Bodenfahrzeuge verhindern. Für kleinere dynamische Hindernisse wie Roboter kann man dann immer noch "genug zusätzliche Zeit" einplanen. Klar, ist das dann nicht mehr 100 %ig, aber es stellt sicher eine gute Approximation dar. Man könnte sich das auch für Indoor Navigation/ Koordination überlegen. Da gibt es auch viele statische Hindernisse.

6.3 Problemfälle 70

Abbildung 6.16: Ungünstiges Orts-Sampling

6.3.2 Pseudostationäre Hindernisse

Eine Kernannahme der Path-Velocity-Decomposition ist, dass dynamische Hindernisse sich in Bewegung befinden und einen bestimmen Raum nur kurz in Anspruch nehmen. Bei den Robotern ist dies jedoch nicht immer der Fall. Bearbeiten sie gerade eine Aufgabe oder haben noch ausreichend Zeit, um zur nächsten Aufgabe zu fahren, dann bewegen sie sich unter Umständen für einige Zeit nicht. Da die Trajektorienplanung jedoch nicht in der Lage ist dynamischen Hindernissen räumlich auszuweichen, blockieren jene Roboter für andere möglicherweise den Weg, ohne dass diese ausweichen können. In Abbildung 6.15 muss ein Roboter innerhalb des Zeitintervalls T den Pfad π bewältigen. Jedoch blockiert das Hindernis O_k^m einen Abschnitt des Pfades über das gesamte Intervall T.

6.3.3 Orts-Sampling

Aufgabenspezifikationen ermöglichen es ein Areal festzulegen, in dem ein Job ausgeführt werden soll. Allerdings werden nur wenige Punkte dieses Areals betrachtet. Im ungünstigsten Fall werden nur solche Punkte berücksichtigt, für die eine Einplanung unmöglich ist, obwohl das Areal als Ganzes dies erlauben würde. Ein Beispiel dazu ist in Abbildung 6.16 dargestellt, in dem eine Mauer ein Areal so schneidet, dass sich alle Sampling-Punkte auf der linken Seite befinden. Der Roboter rechts hat jedoch nicht ausreichend Zeit um die Mauer zu umfahren. Der linke Teil des Areals ist theoretisch erreichbar, wird jedoch aufgrund des Samplings nicht betrachtet.

6.3 Problemfälle 71

6.3.4 Zeitintervall und Pfadlänge

Die Dauer des Zeitintervalls, in der eine Aufgabe eingeplant werden soll, kann die Leistung des Schedulers beeinträchtigen. Zum einen führt eine längere Dauer in der Regel zu mehr zu betrachtenden Knotenpausen. Zum anderen fällt die Berechnung des Geschwindigkeitsprofils umfangreicher aus. Lange Pfade erhöhen ebenfalls die Wahrscheinlichkeit dynamische Hindernisse zu kreuzen und führen daher auch zu mehr Aufwand.

6.3.5 Trajektoriendauer

Die Dauer einer Trajektorie kann problematisch werden, wenn sie 97 Tage überschreitet. Ursache ist eine Umrechnung zu Gleitkommazahlen und wurde bereits im Abschnitt 5.3.1 behandelt. Durch die Umwandlung können Rundungsfehler auftreten, sodass die Dauer einer Trajektorie nicht korrekt berechnet wird. In solch einem Fall scheitert der Scheduler in einen Programmfehler.

Kapitel 7

Fazit und Ausblick

Der Raum-Zeit-Scheduler ermöglicht die Einplanung von Aufgaben durch eine Constraint-basierte abstrakte Spezifikation. Dies verschafft einem Schwarmbetriebssystem den Vorteil, Benutzerprogrammen eine Schnittstelle zu bieten, bei der sich der Programmierer nur noch wenige Gedanken darüber machen zu muss, wie ein Roboter zu einer bestimmten Zeit an den Ort einer Aufgabe gelangt. Die Aufgabenzuweisung und Pfadplanung wird vom System übernommen und ist gegenüber des Benutzerprogramms transparent. Dazu werden die Constraints der Spezifikation durch den Scheduler ausgewertet und eine Kombination aus Ort, Zeit und Roboter gesucht, welche diese erfüllen. Anschließend wird eine Trajektorienplanung von Start zu Ziel vorgenommen, welche Hindernisse umgeht.

Die zu Beginn gesteckten Ziele werden somit vom Scheduler erfüllt. Seine Schwächen zeigt er jedoch in seiner Skalierbarkeit. Vor allem an der Trajektorienplanung bestehen Verbesserungsmöglichkeiten. Auch das Modell des allwissenden Schedulers ist nicht zukunftsträchtig. Die reale Welt enthält Unbekannte, die nicht vorab erfasst werden können. Zukünftige Arbeiten sollten darauf abzielen, dass die Roboter eigenständig Ausweichmanöver einleiten. Der Scheduler würde dann nur noch eine grobe Fahrtplanung durchführen ohne dynamische Hindernisse zu berücksichtigen. Weitere Entwicklungen sollten in der Richtung des Best-Effort-Prinzips erfolgen, da man in der Welt der Unbekannten keine Garantien geben kann.

In seiner jetzigen Form soll der Scheduler in der nahen Zukunft jedoch dazu dienen, neue Spezifikationen für spätere Entwicklungen zu formulieren. Zunächst steht die Sammlung von Erfahrungen mit dem bestehenden System im Vordergrund. Beispielsweise sollte der Ansatz der Constraint-getriebenen Aufgabenplanung geprüft werden. Es muss auch die Frage geklärt werden, wie sinnvolle Anwendungen für ein derartiges Schwarmbetriebssystem überhaupt aussehen könnten.

Literaturverzeichnis

- [1] GRAFF, D., J. RICHLING und M. WERNER: *jSwarm: Distributed Coordination in Robot Swarms*. In: *Robotic Sensor Networks (RSN 2014)*, April 2014. 1, 5
- [2] KANT, K. und S. W. ZUCKER: *Toward Efficient Trajectory Planning: The Path-velocity Decomposition*. Int. J. Rob. Res., 5(3):72–89, September 1986. 3, 7, 24
- [3] NATIONAL SCIENCE FOUNDATION: *Cyber-Physical Systems (CPS)*, 9 2008. Program Solicitation. 4
- [4] LEE, EDWARD A., JOHN D. KUBIATOWICZ, JAN M. RABAEY, ALBERTO L. SANGIOVANNI-VINCENTELLI, SANJIT A. SESHIA, JOHN WAWRZYNEK, DAVID BLAAUW, PRABAL DUTTA, KEVIN FU, CARLOS GUESTRIN, ROOZBEH JAFARI, DOUG JONES, VIJAY KUMAR, RICHARD MURRAY, GEORGE PAPPAS, ANTHONY ROWE, CARL M. SECHEN, TAJANA SIMUNIC ROSING, BEN TASKAR und DAVID WESSEL: *The TerraSwarm Research Center (TSRC) (A White Paper)*. Technischer Bericht UCB/EECS-2012-207, EECS Department, University of California, Berkeley, Nov 2012. 4
- [5] BARR, RIMON, JOHN C. BICKET, DANIEL S. DANTAS, BOWEI DU, T. W. DANNY KIM, BING ZHOU und EMIN GÜN SIRER: *On the Need for System-level Support for Ad Hoc and Sensor Networks*. SIGOPS Oper. Syst. Rev., 36(2):1–5, April 2002. 4
- [6] KERNBACH, SERGE, EUGEN MEISTER, FLORIAN SCHLACHTER, KRISTOF JEBENS, MARC SZYMANSKI, JENS LIEDKE, DAVIDE LANERI, LUTZ WINKLER, THOMAS SCHMICKL, RONALD THENIUS, PAOLO CORRADI und LEONARDO RICOTTI: Symbiotic Robot Organisms: REPLICATOR and SYMBRION Projects. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, PerMIS '08, Seiten 62–69, New York, NY, USA, 2008. ACM. 4

- [7] GRAFF, D., D. RÖHRIG, R. JASPER, H. PARZYJEGLA und J. RABAEY: Operating System Support for Mobile Robot Swarms. In: Second International Workshop on the Swarm at the Edge of the Cloud (accepted for publication), April 2015. 5
- [8] GOMBOLAY, MATTHEW C., RONALD WILCOX und JULIE A. SHAH: Fast Scheduling of Multi-Robot Teams with Temporospatial Constraints. In: Robotics: Science and Systems IX, Technische Universität Berlin, Berlin, Germany, June 24-June 28, 2013, 2013. 6
- [9] AMADOR, SOFIA, STEVEN OKAMOTO und ROIE ZIVAN: Dynamic Multi-agent Task Allocation with Spatial and Temporal Constraints. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS '14, Seiten 1495–1496, Richland, SC, 2014. International Foundation for Autonomous Agents and Multiagent Systems. 6
- [10] FRAICHARD, T. und C. LAUGIER: Path-velocity decomposition revisited and applied to dynamic trajectory planning. In: Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on, Seiten 40–45 vol.2, May 1993.
- [11] SIMEON, T., S. LEROY und J.-P. LAUUMOND: *Path coordination for multiple mobile robots: a resolution-complete algorithm*. Robotics and Automation, IEEE Transactions on, 18(1):42–49, Feb 2002. 7
- [12] O'DONNELL, P.A. und T. LOZANO-PEREZ: Deadlock-free and collision-free coordination of two robot manipulators. In: Robotics and Automation, 1989. Proceedings., 1989 IEEE International Conference on, Seiten 484–489 vol.1, May 1989. 7
- [13] BERG, JUR VAN DEN, JACK SNOEYINK, MING C. LIN und DINESH MANOCHA: Centralized path planning for multiple robots: Optimal decoupling into sequential plans. In: Robotics: Science and Systems V, University of Washington, Seattle, USA, June 28 July 1, 2009, 2009. 7
- [14] GRAFF, DANIEL, JAN RICHLING und MATTHIAS WERNER: Programming and Managing the Swarm An Operating System for an Emerging System of Mobile Devices. In: LIN, KAI, HENG QI, KEQIU LI, IVAN STOJMENOVIC, ALBERT ZOMAYA, HONGYI WU, SONG GUO und SYMEON PAPAVASSILIOU (Herausgeber): 9th IEEE International Conference on Mobile Ad-hoc and Sensor Networks (MSN 2013), Seiten 9–16. IEEE Computer Society, December 2013. 1, 8

- [15] WANGDAHL, G. E., S. M. POLLOCK und J. B. WOODWARD: *Minimum-Trajectory Pipe Routing*. Journal of Ship Research, 18(1):46–49, 3 1974. 25
- [16] LOZANO-PEREZ, T.: *Spatial Planning: A Configuration Space Approach*. Computers, IEEE Transactions on, C-32(2):108–120, Feb 1983. 25

Abbildungsverzeichnis

2.1	jSwarm-Architektur	5
2.2	jSwarm-Testumgebung	6
4.1	Ausgangssituation vor Jobeinplanung	13
4.2	Aufgabenareal A	13
4.3	Schnittmenge $A \cap S$	14
4.4	Ortswahl	15
4.5	Knotenpause	15
4.6	Periodischer Schedule	18
4.7	Abhängigkeitsgraph	19
4.8	Entfernen eines Jobs	21
4.9	Einplanen eines Jobs (Transaktion)	22
4.10	Entfernen eines Jobs (Transaktion)	24
4.11	Kürzester Pfad entlang der Eckpunkte	25
4.12	Sichtlinien zwischen Polygonen	26
4.13	Verbotene Regionen und Geschwindigkeitsprofil	26
4.14	Graphkonstruktion des Geschwindigkeitsprofils	27
4.15	Komposition einer Trajektorie	28
4.16	Abbildung eines dynamischen Hindernisses als verbotene Region	29
4.17	Kachelmuster der segmentweisen Berechnung einer verbotener Regionen.	29
4.18	Fallunterscheidung zur Berechnung verbotener Regionen	30
4.19	Bewegter Hindernispunkt P und Segment des Pfades π	31
4.20	$s \times t$ -Basis	31
4.21	Beschneidung im regulären Fall	32
4.22	Schnittmenge der Geraden g mit dem Hindernis O^m	33
4.23	Berechnung einer verbotenen Region im parallelen Fall	34
4.24	Spur V des Punktes \vec{x}_i^r	34
4.25	Einfacher Graph ohne Wartezeiten	35

4.26	Graphkonstruktion mit Wartezeiten	36
6.1	Extraktion eines Punktes aus einem Areal	57
6.2	Pufferung von Hindernissen durch Berechnung der Minkowski-Summe.	60
6.3	Testfall: Anzahl bewegter Hindernisse	62
6.4	Testfall: Detailgrad bewegter Hindernisse	62
6.5	Testfall: Segmentanzahl der Hindernistrajektorie	63
6.6	Testfall: Segmentanzahl des Roboterpfades	63
6.7	Testfall: Detailgrad verbotener Regionen (Aufstellung)	64
6.8	Testfall: Detailgrad verbotener Regionen (Zeitmessung)	65
6.9	Testfall: Knotenanzahl (Aufstellung)	65
6.10	Testfall: Knotenanzahl (Zeitmessung)	66
6.11	Testfall: Pausenanzahl eines Knotens – Einzelner Knoten (Zeitmessung)	66
6.12	Testfall: Pausenanzahl eines Knotens – Zwei Knoten (Zeitmessung)	67
6.13	Testfall: Anzahl einzuplanender periodischer Jobs (Zeitmessung)	67
6.14	Testfall: Anzahl einzuplanender abhängiger Jobs (Zeitmessung)	68
6.15	Pseudostationäres Hindernis blockiert den Pfad	69
6.16	Ungünstiges Orts-Sampling	70

Tabellenverzeichnis

4.1	Aufgabenspezifikationen	19
4.2	Implizite Aufgabenspezifikationen	20

Abkürzungsverzeichnis

JAR Java ArchiveJVM Java Virtual Machine

Anhang A

Pseudocode

Algorithmus A.1 Planung eines Jobs

```
input: Jobspezifikation
output: Erfolgsstatus
 1: procedure SCHEDULE_SINGLE(spec)
         location\_space \leftarrow spec.location\_space \setminus O^s
 2:
         locations \leftarrow SAMPLE\_LOCATIONS(location\_space)
 3:
         for all location \in locations do
 4:
             slots \leftarrow FIND\_SLOTS(spec, location)
 5:
             for all slot \in slots do
 6:
 7:
                 status \leftarrow PLAN\_JOB(location, slot, spec)
                 if status then
 8:
 9:
                     return true
                 end if
10:
             end for
11:
         end for
12:
         return false
13:
14: end procedure
15: function SAMPLE_LOCATIONS(location_space)
         queue \leftarrow [location\_space]
                                                                         ⊳ eine Singleton-Liste
16:
         locations \leftarrow \emptyset
17:
         i \leftarrow N
                                             \triangleright N (konstant) beschränkt die Anzahl der Orte
18:
         while queue \neq [] \land i > 0 do
19:
                                                                   N mal oder bis queue leer
20:
             area \leftarrow POP(queue)
                                                                           \triangleright Punkt der subarea
             sample \leftarrow SAMPLE\_LOCATION(area)
21:
             locations \leftarrow locations \cup \{ sample \}
22:
             subareas \leftarrow \text{DEVIDE\_AREA}(area, sample)
                                                                      ⊳ teilt area in bis zu vier
23:
    rechteckige Untergebiete auf
             ADD(queue, subareas)
24:
             i \leftarrow i - 1
25:
         end while
26:
27:
         return locations
28: end function
29: function FIND_SLOTS(spec, location)
         slots \leftarrow \emptyset
30:
         for all node \in nodes do
31:
             for all slot \in node.slots do
32:
                 if CHECK(spec, location, slot) then

    ▷ CHECK prüft die Bedingungen

33:
    (4.2), (4.3) und (4.4) aus 4.2.1 Knotenpause
                     slots \leftarrow slots \cup \{ slot \}
34:
                 end if
35:
             end for
36:
         end for
37:
         return slots
38:
39: end function
```

Algorithmus A.2 Planung periodischer Jobs

```
input: Periodische Jobspezifikation
output: Erfolgsstatus
 1: procedure SCHEDULE_PERIODIC_SAME_LOCATION(pspec)
 2:
        location\_space \leftarrow pspec.location\_space \setminus O^s
 3:
        locations \leftarrow SAMPLE LOCATIONS(location space)
        for all location \in locations do
 4:
            pstart \leftarrow pspec.t_{start}
                                                         ▶ Beginn der aktuellen Periode
 5:
            nobreak \leftarrow true
 6:
 7:
            for pspec.repetitions times do
 8:
                pend \leftarrow pstart + pspec.period
                                                           9:
                spec \leftarrow (location, pstart, pend, pspec.duration)
                                                                         Der Job muss
    innerhalb von [pstart, pend] begonnen und abgeschlossen werden.
                status \leftarrow SCHEDULE\_SINGLE(spec)
10:
                if \neg status then
11:
                   nobreak \leftarrow \mathbf{false}
12:
                   break
13:
                end if
14:
            end for
15:
            if nobreak then
16:
                return true
17:
            else
18:
19:
                UNDO_CHANGES
20:
            end if
        end for
21:
        return false
22:
23: end procedure
24: procedure SCHEDULE_PERIODIC_INDEPENDENT_LOCATION(pspec)
        pstart \leftarrow pspec.t_{start}
                                                         ▶ Beginn der aktuellen Periode
25:
26:
        for pspec.repetitions times do
27:
            pend \leftarrow pstart + pspec.period
                                                           spec \leftarrow (pspec.location\_space, pstart, pend, pspec.duration) \triangleright Der Job
28:
    muss innerhalb von [pstart, pend] begonnen und abgeschlossen werden.
            status \leftarrow SCHEDULE\_SINGLE(spec)
29:
            if \neg status then
30:
                return false
31:
            end if
32:
        end for
33:
        return true
34:
35: end procedure
```

Algorithmus A.3 Planung abhängiger Jobs

```
input: Mehrere Jobspezifikationen und Abhängigkeitsgraph
output: Erfolgsstatus
 1: procedure SCHEDULE_DEPENDENT(specs, dependencies)
                                                                         Die Graphknoten
    sind IDs der Jobs.
        specs' \leftarrow NORMALIZE\_SPECS(specs, dependencies)
 2:
        for all spec \in specs' do
 3:
            spec' \leftarrow CONSTRAIN(spec, dependencies)
 4:
 5:
            if spec' = null then
                return false
 6:
            end if
 7:
            status \leftarrow SCHEDULE\_SINGLE(spec')
 8:
 9:
            if \neg status then
                return false
10:
            end if
11:
        end for
12:
13:
        return true
14: end procedure
15: function NORMALIZE_SPECS(specs, dependencies)
                                                                           ⊳ normalisiert die
    Spezifikationen nach den Formeln (4.8) und (4.9) aus Abschnitt 4.2.4
        sorted \leftarrow TOPOSORT(dependencies)
                                                                  16:
        normalized \leftarrow CLONE(specs)
17:
        for all id \in sorted do
18:
19:
            spec \leftarrow Lookup(normalized, id) \rightarrow sucht nach der Spezifikation mit der
    angegebenen ID
20:
            T_{dep} \leftarrow \{ s.t_{finish,min} + d_m \mid s \in normalized \land s.id \in dep(dependencies, id) \}
            spec.t_{start,min} \leftarrow \max T_{dep} \cup \{ spec.t_{start,min}, t_{FH} \}
21:
        end for
22:
        for all id \in reversed(sorted) do
23:
            spec \leftarrow LOOKUP(normalized, id)
24:
            T_{dep} \leftarrow \{ s.t_{start,max} - d_m \mid s \in normalized \land s.id \in dep^{-1}(dependencies, id) \}
25:
26:
            spec.t_{finish,max} \leftarrow \min T_{dep} \cup \{ spec.t_{finish,max} \}
27:
        end for
28:
        return SORT_BY_DEADLINE(normalized)
29: end function
30: function CONSTRAIN(spec, dependencies)

    ⊳ schränkt die Spezifikation

    hinsichtlich der eingeplanten Abhängigkeiten weiter ein
        if dep(dependencies, spec.id) \neq \emptyset then
31:
32:
            return spec
33:
        end if
        t_{dep} \leftarrow \max \{ j.t_{finish} \mid j \in J \land j.id \in dep(dependencies, spec.id) \}
34:
                                                                                             \triangleright
    Abschlusszeit der letzten Abhängigkeit
        t_{start,min} \leftarrow t_{dep} + d_m
35:
36:
        if t_{start,min} < spec.t_{start,min} then
37:
            return spec
                                                                 end if
38:
39:
        if t_{start,min} > spec.t_{start,max} then
            return null
                                                                ⊳ Einplanung nicht möglich
40:
        end if
41:
        return SUBSTITUTE_EARLIEST_START_TIME(spec, t_{start.min})
42:
43: end function
```

Algorithmus A.4 Trajektorienplanung eines neuen Jobs

```
input: Ort, Knotenpause und Jobspezifikation
output: Erfolgsstatus
 1: procedure PLAN_JOB(location, slot, spec)
          node \leftarrow slot.node
 2:
          \pi_1 \leftarrow \text{CALC\_SPATIAL\_PATH}(slot.\vec{x}_{start}, location) \Rightarrow \text{ermittelt den r\u00e4umlichen}
 3:
     Pfad zwischen einem Start- und Zielpunkt
 4:
          \pi_2 \leftarrow \text{CALC\_SPATIAL\_PATH}(location, slot.\vec{x}_{finish})
 5:
          \tau_1 \leftarrow \text{CALC\_MT\_TRAJECTORY}(\pi_1, slot.t_{start})
 6:
          job \leftarrow (node, location, \tau.t_{finish}, spec.d)
 7:
          \tau_2 \leftarrow \text{CALC\_FT\_TRAJECTORY}(\pi_2, job.t_{finish}, slot.t_{finish})
          \tau_{12} \leftarrow \text{STATIONARY\_TRAJECTORY}(location, job.t_{start}, job.t_{finish})
                                                                                                      ⊳ eine
     stationäre Trajektorie am Ort location von job.t_{start} bis job.t_{finish}
          UPDATE_TRAJECTORY(node, \tau_1 \cup \tau_{12} \cup \tau_2)
 9:
          ADD\_JOB(node, job)
10:
11: end procedure
```

Algorithmus A.5 Berechnung einer Trajektorie mit fester Ankunftszeit

```
input: Raumpfad und Zeitintervall
output: Trajektorie
  1: function CALC_FT_TRAJECTORY(\pi, t_{start}, t_{finish})
          forbidden \leftarrow FRB(O^m, \pi)
          graph \leftarrow (\emptyset, \emptyset)
  3:
          CONNECT_DIRECTLY(graph, forbidden)
 4:
 5:
          CONNECT_LAZY(graph, forbidden)
          start \leftarrow (0, t_{start})
 6:
 7:
          finish \leftarrow (length(\pi), t_{finish})
          \sigma \leftarrow \text{DIJKSTRA}(graph, start, finish) \triangleright \text{berechnet das Geschwindigkeitsprofil}
  8:
 9:
          return COMPOSE(\pi, \sigma)
10: end function
```

Algorithmus A.6 Berechnung einer Trajektorie mit variabler Ankunftszeit

```
input: Raumpfad und Abfahrtszeit
output: Trajektorie
 1: function CALC_MT_TRAJECTORY(\pi, t_{start})
         forbidden \leftarrow \texttt{CALC\_FORBIDDEN\_REGION}(O^m, \pi)
 2:
 3:
         graph \leftarrow (\emptyset, \emptyset)
         CONNECT_DIRECTLY(graph, forbidden)
 4:
         CONNECT_LAZY(graph, forbidden)
 5:
 6:
         candidates \leftarrow \texttt{CONNECT\_FINISH\_CANDIDATES}(graph, forbidden)
         start \leftarrow (0, t_{start})
 7:
         finish \leftarrow \texttt{DETERMINE\_FINISH}(graph, candidates)
                                                                                 ⊳ bestimmt den
    Zielknoten aus der Menge candidates der als erstes erreicht werden kann
         \sigma \leftarrow \text{DIJKSTRA}(graph, start, finish) \triangleright \text{berechnet das Geschwindigkeitsprofil}
 9:
         return COMPOSE(\pi, \sigma)
10:
11: end function
```

Algorithmus A.7 Berechnung der verbotenen Region

```
input: Dynamische Hindernisse und Raumpfad
output: Verbotene Region
 1: function CALC_FORBIDDEN_REGION(O^m, \pi)
          forbidden \leftarrow \emptyset
 2:
          \  \, \mathbf{for} \  \, \mathbf{all} \  \, O_k^m \in \mathsf{GET\_OBSTACLES}(O^m) \  \, \mathbf{do} 
 3:
              \tau \leftarrow \text{GET\_TRAJECTORY}(O_k^m)
 4:
              if \neg \text{CHECK\_ENVELOPE\_INTERSECTION}(O_k^m, \pi) then \triangleright prüft ob sich die
 5:
     rechteckigen Hüllen zweier Punktmengen schneiden
                   continue
 6:
              end if
 7:
              for all \tau^* \in \text{GET\_SEGMENTS}(\tau) do
 8:
                   if \negCHECK_ENVELOPE_INTERSECTION(O_k^{m*}, \pi) then
                                                                                                    \triangleright O_k^{m*}
 9:
     bezeichnet den Ausschnitt des Hindernisses O_k^m während der Zeit von \tau^*
                        continue
10:
                   end if
11:
                   t \leftarrow \text{GET\_START\_TIME}(\tau^*)
12:
                   for all \pi^* \in \text{GET\_SEGMENTS}(\pi) do
13:
                        if \negCHECK_ENVELOPE_INTERSECTION(O_k^{m*}, \pi^*) then
14:
                            continue
15:
                        end if
16:
                        if regular case then
17:
                            mask \leftarrow \text{MAKE\_PARALLELOGRAM}(\tau^*, \pi^*)
18:
                            f \leftarrow \text{TRANSFORM\_REGULAR}(O_k^m(t) \cap mask)
19:
20:
                        else if parallel case then
21:
                            mask_{xy} \leftarrow \text{MAKE\_SPATIAL\_MASK}(\tau^*, \pi^*)
22:
                            mask_{st} \leftarrow \text{MAKE\_ARC\_TIME\_MASK}(\tau^*, \pi^*)
                            f \leftarrow \text{TRANSFORM\_PARALLEL}(O_k^m(t) \cap mask_{xy}) \cap mask_{st}
23:
                        else if stationary case then
24:
                            if \tau^* is stationary) then
25:
                                 if \pi^* \cap O_k^m(t) = \emptyset then
26:
27:
28:
                                 else
                                      f \leftarrow a fully filled region tile
29:
                                 end if
30:
                            else
31:
                                 mask \leftarrow \texttt{make\_trace\_mask}(\tau^*, \pi^*)
32:
                                 f \leftarrow \text{TRANSFORM\_STATIONARY}(O_k^m(t) \cap mask)
33:
                            end if
34:
                        end if
35:
                        forbidden \leftarrow forbidden \cup f
36:
                   end for
37:
              end for
38:
          end for
39:
          return forbidden
41: end function
```

Algorithmus A.8 Erstellung des Navigationsgraphen für Geschwindigkeitsprofile

```
input: Graph und verbotene Region
 1: procedure CONNECT_DIRECTLY(graph, forbidden)
        vertices \leftarrow GET\_VERTICES(forbidden)
 2:
        ADD_VERTICES(graph, vertices)
 3:
        for all src \in vertices do
 4:
            for all dst \in vertices do
 5:
                if src \neq dst \land VISIBLE(src, dst, forbidden) \land CAUSAL(src, dst) then
 6:
    ▷ CAUSAL prüft ob zeitliche Relationen erfüllbar sind
                    ADD\_EDGE(graph, (src, dst))
 7:
                end if
 8:
 9:
            end for
        end for
10:
11: end procedure
12: procedure CONNECT_LAZY(graph, forbidden)
        motion\_rays \leftarrow \texttt{CAST\_MOTION\_RAYS}(forbidden)
        stationary\_rays \leftarrow \texttt{CAST\_STATIONARY\_RAYS}(forbidden)
14:
        for all mr \in motion\_rays do
15:
            for all sr \in stationary\_rays do
16:
                if mr \cap sr \neq \emptyset then
17:
                    vertex \leftarrow point(mr \cap sr) \rightarrow point fasst die Punktmenge <math>mr \cap sr
    als einzelnen Punkt auf
19:
                    ADD\_VERTEX(graph, vertex)
                    ADD\_EDGE(graph, (sr.origin, vertex))
20:
                    ADD\_EDGE(graph, (vertex, mr.origin))
21:
                end if
22:
23:
            end for
        end for
24:
25: end procedure
26: procedure CONNECT_FINISH_CANDIDATES(graph, forbidden)
27:
        for all v \in graph.vertices do
            c \leftarrow \text{CALC\_CANDIDATE}(v)
                                                  ▷ CALC_CANDIDATE berechnet einen
28:
    Zielknotenkandidaten
            if VISIBLE(v, c, forbidden) \land CAUSAL(v, c) then
29:
                ADD_VERTEX(graph, c)
30:
                ADD\_EDGE(graph, (v, c))
31:
            end if
32:
        end for
33:
34: end procedure
35: function VISIBLE(src, dst, forbidden)
        return line(src, dst) \cap forbidden = \emptyset
37: end function
```