

Smart Scalable Feature Reduction with Random Forests

Erik Erlandson Red Hat, Inc.

Erik Erlandson

- Software Engineer
- Radanalytics.io community
- Apache Spark on OpenShift
- Intelligent Applications in the cloud

Talk

- Motivate Feature Reduction
- Random Forest Clustering
- T-Digest Feature Sketching
- RF Feature Reduction
- Example: Tox21 Assay Data

Features

Feature Reduction

Full Feature Set

Identify Useful Features

Reduced Feature Set

Feature Sets Can Be Very Large

hundreds thousands

millions

```
3119
                   rooo
                         0007
                   1101
1100
             1001
                           rood
                   0001
      OLOL
LOL
            0017
                    1101
                           ror
                            roa
```


Features Cost Resources

Memory

Network

Time

Disk

Features Inject Noise

Features Impact Model Size

Representation & Transfer Learning

Random Forests

Leo Breiman (2001)

Ensemble of Decision Tree Models

Each tree trains on random subset of data

Each split considers random subset of features

Random Forest Clustering

2 Key Benefits of RF Clustering

RF Training ignores unhelpful features

Features Used by RF Model

Full Feature Set

Data with a Joint Distribution in R^2

Data with Synthetic

RF Rules for Data (non-synthetic)

```
List((x2 <= -1.32), (x1 <= 0.87))

List((x1 > -1.37), (x2 > 1.03))

List((x2 <= 2.09), (x1 <= 0.87))

List((x1 <= 2.13), (x2 <= -1.32))

List((x2 <= -2.31), (x1 <= 0.87))
```


RF Rules in Feature Space

What Features Did the RF Use?

```
List((x2 <= -1.32), (x1 <= 0.87))

List((x1 > -1.37), (x2 > 1.03))

List((x2 <= 2.09), (x1 <= 0.87))

List((x1 <= 2.13), (x2 <= -1.32))

List((x2 <= -2.31), (x1 <= 0.87))
```

reduced = {"x1", "x2"}

T-Digest Sketches a Distribution

Inverse Transform Sampling

T-Digests Can Aggregate

Sketching a Feature

```
feature.aggregate(TDigest.empty())(
  (td, x) => td + x,
  (td1, td2) => td1 ++ td2
)
```


Synthesizing Data from TDigests

```
def synthesize (tdVec: Vector[TDigest],
               n: Int) = {
  val tdVecBC = sc.broadcast(tdVec)
  sc.parallelize(1 to n).map { =>
    tdVecBC.value.map( .sample)
```


Random Forest Training Data

```
val fvSketches = sketchFV(trainFV)
val synthFV = synthesize(fvSketches, 48000)
val trainLab = trainFV.map(_.toLabeledPoint(1.0))
val synthLab = synthFV.map(_.toLabeledPoint(0.0))
val trainFR = trainLab ++ synthLab
```


Random Forest Feature Reduction

Tox21 Data Challenge

National Institute of Health (2014) 12 Toxicity Assays 12060 compounds + 647 hold-out

https://tripod.nih.gov/tox21/challenge/index.jsp

DeepTox

Johannes Kepler University Linz Institute of Bioinformatics

http://bioinf.jku.at/research/DeepTox/tox21.html

[Mayr2016] Mayr, A., Klambauer, G., Unterthiner, T., & Hochreiter, S. (2016). DeepTox: Toxicity Prediction using Deep Learning. *Frontiers in Environmental Science*, **3**:80.

[Huang2016] Huang, R., Xia, M., Nguyen, D. T., Zhao, T., Sakamuru, S., Zhao, J., Shahane, S., Rossoshek, A., & Simeonov, A. (2016). Tox21Challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to environmental chemicals and drugs. *Frontiers in Environmental Science*, **3**:85.

Tox21 Data

I used these

801 Dense Features
272K Sparse Features
Each assay represented on a different subset

+	+ 	+ -	+		
· ·				 NR.Aromatase	
·	•		•	<u> </u>	
NCGC00261900-01	l U	⊥	NA NA	U	
NCGC00260869-01	0	1	l NA	NA	•
NCGC00261776-01	1	1	0	NA	•
NCGC00261380-01	l NA	0	l NA	1	•
NCGC00261842-01	0	0	0	NA	
NCGC00261662-01	1	0	0	NA	
NCGC00261190-01	l NA	0	0	NA	

Experiment

Train models on all 12 assays

Perform Random Forest Feature Reduction

Train similar models on reduced feature set

Compare models on each assay

85 of 801 Features Were Used

-6	RNCS	21	Number trees used
Features	MRVSA7	20	trees
Fear	VSAEstate2	19	used
	VSAEstate3	18	
	slogPVSA8	18	
	VSAEstate0	17	
	slogPVSA6	16	
	RDFM29	12	
	slogPVSA3	12	
	RDFM30	12	

Full vs Reduced (Logistic Reg)

Full vs Reduced (Boosted DTE)

Full vs Reduced (SVM)

Training Times

(times in seconds)	Full (801)	Reduced (85)
Logistic Regression	68.5	46.8
SVM	35.3	33.8
GB Tree Ensemble	247	65.0

Evaluation Times

(times in seconds)	Full (801)	Reduced (85)
Logistic Regression	32.1	3.88
SVM	0.59	0.23
GB Tree Ensemble	1.33	0.88

Thank You

Erik Erlandson

eje@redhat.com

@manyangled

https://github.com/erikerlandson/feature-reduction-talk