Model Free Control Exploration

Marius Lindauer

102

Leibniz Universität Hannover

Recap Model-free Policy Iteration

- Initialize policy π
- Repeat:
 - Policy evaluation: compute Q^{π}
 - ▶ Policy improvement: update π given Q^{π}

Recap Model-free Policy Iteration

- Initialize policy π
- Repeat:
 - Policy evaluation: compute Q^{π}
 - Policy improvement: update π given Q^{π}
- May need to policy evaluation
 - \blacktriangleright If π is deterministic, we may not observe all possible actions $a\in A$ in a state s
 - ▶ So, we cannot compute Q(s,a) for any $a \neq \pi(s)$

Recap Model-free Policy Iteration

- Initialize policy π
- Repeat:
 - Policy evaluation: compute Q^{π}
 - Policy improvement: update π given Q^{π}
- May need to policy evaluation
 - If π is deterministic, we may not observe all possible actions $a \in A$ in a state s
 - ▶ So, we cannot compute Q(s,a) for any $a \neq \pi(s)$
- → How to interleave policy evaluation and improvement?

Policy Evaluation with Exploration

- ullet Want to compute a model-free estimate of Q^π
- In general seems subtle
 - ▶ Need to try all (s,a) pairs but then follow π
 - lacktriangle Want to ensure resulting estimate Q^π is good enough so that policy improvement is a monotonic operator
- \bullet For certain classes of policies can ensure all (s,a) pairs are tried such that asymptotically Q^π converges to the true value

ϵ -greedy Policies

- Simple idea to balance exploration and exploitation
- ullet Let |A| be the number of actions
- Then a ϵ -greedy policy wrt a state-action value Q(s,a) is $\pi(a\mid s)\in$
 - $rg \max_{a \in A} Q(s, a)$ with probability 1ϵ
 - \blacktriangleright a random action with probability ϵ

Monotonic ϵ -greedy Policy Improvement

• Theorem: For any ϵ -greedy policy π_i , the ϵ -greedy policy wrt Q_i^π is a monotonic improvement $V^{\pi_{i+1}} \geq V^{\pi_i}$

$$\begin{split} Q^{\pi_i}(s,\pi_{i+1}(s)) &= \sum_{a\in A} \pi_{i+1}(a\mid s)Q^{\pi_i}(s,a) \\ &= (\epsilon/|A|) \left[\sum_{a\in A} Q^{\pi_i}(s,a) \right] + (1-\epsilon) \max_{a\in A} Q^{\pi_i}(s,a) \\ &= (\epsilon/|A|) \left[\sum_{a\in A} Q^{\pi_i}(s,a) \right] + (1-\epsilon) \max_{a\in A} Q^{\pi_i}(s,a) \frac{1-\epsilon}{1-\epsilon} \\ &= (\epsilon/|A|) \left[\sum_{a\in A} Q^{\pi_i}(s,a) \right] + (1-\epsilon) \max_{a\in A} Q^{\pi_i}(s,a) \sum_{a\in A} \frac{\pi_i(a\mid s) - \frac{\epsilon}{|A|}}{1-\epsilon} \\ &\geq (\epsilon/|A|) \left[\sum_{a\in A} Q^{\pi_i}(s,a) \right] + (1-\epsilon) \qquad Q^{\pi_i}(s,a) \sum_{a\in A} \frac{\pi_i(a\mid s) - \frac{\epsilon}{|A|}}{1-\epsilon} \\ &= \sum_{a\in A} \pi_i(a\mid s)Q^{\pi_i}(s,a) = V^{\pi_i}(s) \end{split}$$

Greedy in the Limit of Infinite Exploration (GLIE)

- Definition of GLIE:
 - All state-action pairs are visited an infinite number of times

$$\lim_{i \to \infty} N_i(s, a) \to \infty$$

 Behavior policy (policy used to act in the world) converges to greedy policy

$$\lim_{i \to \infty} \pi(a \mid s) \to \operatorname*{arg\,max}_{a \in A} Q(s, a)$$

with probability 1

Greedy in the Limit of Infinite Exploration (GLIE)

- Definition of GLIE:
 - All state-action pairs are visited an infinite number of times

$$\lim_{i \to \infty} N_i(s, a) \to \infty$$

 Behavior policy (policy used to act in the world) converges to greedy policy

$$\lim_{i \to \infty} \pi(a \mid s) \to \arg\max_{a \in A} Q(s, a)$$

with probability 1

- Simple Strategy:
 - ϵ -greedy where ϵ is annealed to 0 with $\epsilon_i = 1/i$

Greedy in the Limit of Infinite Exploration (GLIE)

- Definition of GLIE:
 - All state-action pairs are visited an infinite number of times

$$\lim_{i \to \infty} N_i(s, a) \to \infty$$

 Behavior policy (policy used to act in the world) converges to greedy policy

$$\lim_{i \to \infty} \pi(a \mid s) \to \arg\max_{a \in A} Q(s, a)$$

with probability 1

- Simple Strategy:
 - ϵ -greedy where ϵ is annealed to 0 with $\epsilon_i=1/i$
- Theorem:
 - ▶ GLIE Monte-Carlo control converges to the optimal state-action value function $Q(s,a) \rightarrow Q^*(s,a)$