Autómatas y Lenguajes Formales, 2022-1 Tarea 1

Noé Salomón Hernández S. Alan Ernesto Arteaga Vázquez

Fecha de entrega: martes 12 de octubre

Nota 1: La tarea se entrega por equipos de dos integrantes.

Nota 2: Esta tarea tiene un puntaje máximo de 11 puntos.

- 1. a) (1 pt.) Encuentre lenguajes L_1 y L_2 tales que L_1^* , L_2^* no son subconjuntos uno del otro, pero se cumple que $L_1^* \cup L_2^* = (L_1 \cup L_2)^*$.
 - b) (1 pt.) Demuestre que si $L_1 \subseteq L_2$, entonces $L_1^* \subseteq L_2^*$.
 - c) (0.5 pts.) Encuentre un lenguaje infinito L en $\Sigma = \{a,b\}$ para el cual $L \neq L^*$.
- 2. (1.5 pts.) Pruebe que para todo lenguaje $L\subseteq\{a,b\}^*$, si $L^2\subseteq L$, entonces $LL^*\subseteq L$. Recuerde que $L^*=\bigcup_{k\in\mathbb{N}}L^k$.
- 3. (2 pts.) Suponga que $L \subseteq \{a, b\}^*$ se define como sigue:
 - $\epsilon \in L$
 - $\forall x, y \in L$, las cadenas xy, axb y bxa están en L.

Demuestre que $L = L_{AB}$, el lenguaje de todas las cadenas $w \in \{a, b\}^*$ tales que $n_a(w) = n_b(w)$.

4. (1 pt.) Demuestre la siguiente propiedad de la función de transición extendida $\hat{\delta}$. Para todo estado $q \in Q$ y cualesquiera cadenas $x, y \in \Sigma^*$ se satisface:

$$\widehat{\delta}(q, xy) = \widehat{\delta}(\widehat{\delta}(q, x), y)$$

5. Describa en español el lenguaje reconocido por los siguientes Autómatas Finitos Deterministas (AFD):

- 6. a) (1 pt.) Diseñe un Autómata Finito Determinista (AFD) que reconozca el lenguaje $\{w \in \{a,b\}^* \mid w \text{ tiene como subcadena a } bb \text{ pero } \mathbf{no} \text{ contiene a la subcadena } ab.\}.$
 - b) (1 pt.) Diseñe un Autómata Finito Determinista (AFD) que reconozca el lenguaje $\{w \in \{a,b\}^* \mid w \text{ contiene a lo más una presencia de la cadena } aa\}$. (La cadena aaa contiene dos presencias de la cadena aa.)