EECS151: Introduction to Digital Design and ICs

Lecture 12 – Delays

Bora Nikolić and Sophia Shao

Oct. 15, 2019, Artificial intelligence research organization OpenAl has achieved a new milestone in its quest to build general purpose, self-learning robots. The group's robotics division says Dactyl, its humanoid robotic hand first developed last year, has learned to solve a Rubik's cube one-handed.

OpenAl Nikolić, Shao Fall 2019 © UCB

Review

- Modern lithography is reflected in design rules
- FinFET widths are quantized
- MOS transistors can be modeled as resistive switches
 - They also have a capacitance

MOS Transistor as a Switch

EECS151/251A L12 CMOS II Nikolić, Shao Fall 2019 © UCB

MOS Transistor as a Resistive Switch

MOS Transistor

A Switch!

- V_{GS} controls the switch
 - (it also charges the channel capacitor)

ON/OFF Switch Model of MOS Transistor

A More Realistic Model

• It is a dimmer!

EECS151/251A L12 CMOS II

A Logic Perspective

NMOS Transistor

PMOS Transistor

AND and OR

AND

$$F = AB$$

 $(F = AB + \overline{A} \cdot O)$

$$F = A + B$$

$$(F = A \cdot 1 + \overline{A}B)$$

- Keep in mind single NMOS/PMOS transistors are imperfect switches!
 - Turns off when $|V_{GS}| = |V_{Th}|$

Peer Instruction

- Switch logic
- Which combination of inputs implements F = AB?

	R1	R2	R3	R4
a)	1	X	X	Х
b)	0	X	X	X
c)	1	0	0	0
d)	1	1	1	0
e)	1	1	1	1
f)	None of the above			

CMOS Inverter

CMOS Inverter

- Simple DC behavior
 - Schematic

Switch model

$$V_{OL} = 0$$
 $V_{OH} = V_{DD}$

Voltage Transfer Characteristic (VTC)

$$V_A = V_{DD} + V_{GSp}$$
 $I_{Dn} = -I_{Dp}$
 $V_{out} = V_{DD} + V_{DSp}$

Voltage Transfer Characteristic (VTC)

• Can we change switching point $(V_A \text{ for which } V_{out} = V_{DD}/2)$?

Digital Circuits

One logic representation

Out =
$$\overline{A}$$

Truth table

Α	Out
0	1
1	0

- Multiple libraries
- Layouts
 - Number of metal 'tracks'
 - More tracks, faster, but larger
 - Less tracks more compact, but slower
- Transistor thresholds (V_{Th}) (for each track height):
 - Regular (RVT)
 - Low (LVT)
 - Faster, higher power
 - Slower, lower power
 - High (HVT)
- Transistor lengths

Multiple gate sizes within a library

• Symbol

• Schematic

INVX3, INVX4,...

Layout

Administrivia

• Use this week to finish labs!

Midterm 2 in 3 weeks

Bora is away next week

EECS151/251A L12 CMOS II Nikolić, Shao Fall 2019 © UCB

CMOS Logic

Building logic from switches

Series

AND

Y = X if A AND B

Parallel

OR

Y = X if A OR B

(output undefined if condition not true)

Logic using inverting switches

Series

NOR

$$Y = X \text{ if } \overline{A} \text{ AND } \overline{B}$$

$$= \overline{A + B}$$

Parallel

(output undefined if condition not true)

NAND

$$Y = X \text{ if } A \text{ OR } B$$
$$= AB$$

Static Complementary CMOS

PUN and PDN are dual logic networks
PUN and PDN functions are complementary

Complementary CMOS Logic Style

☐ PUN is the <u>dual</u> to PDN (can be shown using DeMorgan's Theorems)

$$A + B = AB$$

$$\overline{AB} = \overline{A} + \overline{B}$$

☐ Static CMOS gates are always inverting

AND = NAND + INV

Example Gate: NAND

A	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

Truth Table of a 2 input NAND gate

- \square PDN: G = AB \Rightarrow Conduction to GND
- \square PUN: $F = \overline{A} + \overline{B} = AB \Rightarrow Conduction to <math>V_{DD}$
- $\Box \quad \overline{G(\ln_1, \ln_2, \ln_3, \dots)} \equiv \overline{F(\ln_1, \ln_2, \ln_3, \dots)}$

Example Gate: NOR

A	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Truth Table of a 2 input NOR gate

Complex CMOS Gate

$$OUT = D + A \cdot (B + C)$$

$$OUT = D \cdot A + B \cdot C$$

Note: In scaled processes max #inputs is 3

Stick Diagrams

Contains no dimensions
Represents relative positions of transistors

Inverter

Stick Diagrams

Two Versions of C • (A + B)

Consistent Euler Path

OAI22 Logic Graph

Example: x = ab+cd

(a) Logic graphs for $\overline{(ab+cd)}$

(b) Euler Paths $\{a \ b \ c \ d\}$

(c) stick diagram for ordering {a b c d}

Switch Limitations

Transmission Gate

- Transmission gates are the way to build "switches" in CMOS.
- In general, both transistor types are needed:
 - nFET to pass zeros.
 - pfet to pass ones.
- The transmission gate is 'non-isolating'.

Transmission-Gate Multiplexer

Implementation

Sel	Υ
0	Α
1	В


```
module comb(input a, b, sel,
    output reg y);

always @(*) begin
    if (sel) y = b;
    else out = a;
end
endmodule
```

EECS151/251A L12 CMOS II Nikolić, Shao Fall 2019 © UCB

CMOS Multiplexer

Sel	Y
0	Α
1	В

Nikolić, Shao Fall 2019 © UCB

CMOS Sizing

Transistor Sizing

Optimal Wp/Wn

- In the past, Wp > Wn (see Rabaey, 2^{nd} ed)
- In modern processes (finFET), Wp = Wn

Gate Sizing

Doubling the gate size (by doubling Ws):

- Doubles C_{in}
- Halves equivalent gate resistance

• Doubles C_p

CMOS Delay

Inverter Delay

• How to time this?

 ullet Each gate has an R_{eq} and drives C_{in} of the next gate

Inverter Delay

High-to-low

$$t_{p,HL} = (ln2)\tau = 0.7 R_{eq,n}(C_p + C_L)$$

Inverter Delay

$$t_{p,LH} = (ln2)\tau = 0.7 R_{eq,p}(C_p + C_L)$$

Summary

- CMOS allows for convenient switch level abstraction
- CMOS pull-up and pull-down networks are complementary
- Transistor sizing affects gate performance
- Delay is a linear function of R and C