令和 4 年 度 前 期 履 修 科 目

力 学 詳 論 I

ラザフォード散乱 (問題)

大阪大学 理学部·物理学科 金 導賢

(計 算 用 紙)

- 〔1〕 **(2021 大阪大学)** 質量 m の質点が、ポテンシャル U による中心力を受けて、2 次元平面内を運動する合を考える。位置ベクトルを \mathbf{r} 、速度ベクトルを $\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt}$ とする。2 次元極座標表示 (r,θ) において、r 方向の単位ベクトルを \mathbf{e}_r 、 θ 方向の単位ベクトルを \mathbf{e}_θ とすると、 $\dot{\mathbf{r}} = \dot{r}\mathbf{e}_r + r\dot{\theta}\mathbf{e}_\theta$ であることを用いてよい。一般に \dot{f} と \ddot{f} は、関数 f の時間微分 $\frac{df}{dt}$ と、時間の 2 階微分 $\frac{d^2f}{dt^2}$ をそれぞれ表すものとする.*1
 - I. ポテンシャルが $U(r) = \frac{\alpha}{r}$ (α は正の定数) の場合を考える.
 - (1) このポテンシャル U(r) による中心力の r および θ についての運動方程式を導け.
 - (2) 前問の θ についての運動方程式から、角運動量が保存していることが分かる。その大きさを L とする。以下の手順に従って、質点の軌道が

$$r = \frac{1}{A\cos(\theta - \theta_0) + \frac{m\alpha}{L^2}} \quad \cdots (*)$$

で表されることを示せ、ここで、A と θ_0 は積分定数である.

【手順】 角運動量 L を用いて r のみで表した系の運動方程式を $u=\frac{1}{r}$ により置換して E(u) で表す. そのあと, θ に関する u の微分方程式を解く.

必要であれば次の積分関係式を利用しても良い:

$$-\int \frac{1}{\sqrt{1-x^2}} \ dx = \cos^{-1} x + C \quad \cdots (**)$$

^{*1} 令和 3 年度 大阪大学理学研究科 入学試験 1 問 (変形)

次に、図1に示すように、入射する速さ v_0 、衝突パラメータbで入射した質点について考える.ここでbは、入射側の軌道の漸近線と原点Oとの距離で定義される.このときの散乱角 φ_s を以下の手順で導出することを考える.散乱角とは、 $t\to -\infty$ のときの速度ベクトルと、 $t\to \infty$ のときの速度ベクトルのなす角で、図1に示した φ_s である.なお以下の問いでは、前問で示した質点の軌道の式(*)を既知のものとして用いてよい.

- (3) 保存している角運動量の大きさ L を m, α , v_0 , b のうち必要なものを用いて求めよ.
- (4) 式 (*) において,質点が原点 O に最も近づくとき, $\theta=\theta_0$ であり,図 1 の太矢印に対応する.以後は $\theta_0=0$ となるように座標系を取る.太矢印と $t\to\pm\infty$ における質点の位置ベクトルとのなす角度を $\theta_1(>0)$ としたとき, $\cos\theta_1$ を m, α , L, A を用いて求めよ.
- (5) $t\to -\infty$ における質点の速さが v_0 であることを利用して, $\sin\theta_1$ を $m,\ L,\ A,\ v_0$ を用いて求めよ.

【手順】 式 (*) を時間で微分し、さらに $\dot{\theta}$ と L の関係を用いる.

(6) $\tan\left(\frac{\varphi_s}{2}\right)$ を m, α , v_0 , b うち必要なものを用いて求めよ.