PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI DEL 18/07/2019 – TRACCIA A

ESERCIZIO 1A: Si realizzi una rete sequenziale sincrona R con una linea di ingresso x ed una linea di uscita z. Ogni 4 bit, la rete riceve una sequenza S sulla linea x della forma $S = S_1S_2$, dove S_1 e S_2 sono due sequenze di 2 bit che costituiscono le rappresentazioni binarie di due numeri naturali, rispettivamente X e Y, ordinate a partire dal bit più significativo. La rete calcola il valore |X-Y| e ne restituisce la rappresentazione binaria, ordinata a partire dal bit più significativo, in corrispondenza del quarto bit di S e del primo bit della sequenza successiva.

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13
X:	1	0	0	0	1	0	1	1	0	1	0	1	0	
Z:	0	0	0	1	<u>0</u>	0	0	<u>0</u>	1	0	0	<u>0</u>	0	

Nell'esempio riportato, la prima sequenza S è compresa tra t=0 a t=3 ed è tale che $S_1=10$ e $S_2=00$, per cui X=2 e Y=0 e la rete restituisce 10. La seconda sequenza S è compresa tra t=4 a t=7 ed è tale che $S_1=10$ e $S_2=11$, per cui X=2 e Y=3 e la rete restituisce 01.

PRIMA

V[0] 1053

V[1] 1054

V[3]

V[4] 1057

V[5] V[6] 1052

1055

1056

1058

1059

V[7] 1060

4

1052

ESERCIZIO 2A: Estendere il set di istruzioni della macchina ad accumulatore con l'operazione **MAXDIFF X**, definita come segue. A partire dalla locazione X+1 della RAM è memorizzato un vettore formato da un numero \mathbf{n} di elementi, dove \mathbf{n} è il valore contenuto in M[X].

L'istruzione restituisce nell'accumulatore la massima differenza V[i] - V[(i+1)%n] tra gli elementi $V[i] \in V[(i+1)\%n]$, con i = 0,1, ... n-1. Si noti che le coppie da considerare sono:

$$(V[0],V[1]),(V[1],V[2]),(V[2],V[3]),...,(V[n-2],V[n-1]),(V[n-1],V[0]).$$

La figura sulla destra mostra un esempio dello stato della memoria e dei registri prima e dopo l'esecuzione dell'istruzione. L'istruzione valuterà le seguenti differenze:

$$4 - (-1) = 5$$
, $-1 - (-3) = 4$, $-3 - (-3) = 0$, $-3 - (8) = -11$, $8 - (4) = 4$, $4 - (-11) = 15$, $-11 - (-2) = -9$, $-2 - (4) = -6$, e restituirà il massimo tra esse, ovvero il valore 15.

ESERCIZIO 3A: Scrivere una procedura assembly che riceve un vettore V di word e un valore k e restituisce il numero di coppie di elementi (V[i], V[(i+1)%n]), dove n è la lunghezza di V, tali che la loro somma <u>non</u> è multipla di 2^K . Scrivere inoltre il programma principale che invoca opportunamente la procedura descritta. Si noti che le coppie da considerare sono:

$$(V[0],V[1]),(V[1],V[2]),(V[2],V[3]),...,(V[n-2],V[n-1]),(V[n-1],V[0]).$$

La figura sulla destra mostra un esempio dello stato della memoria assumendo che l'indirizzo di partenza del vettore \mathbf{V} sia 1452 e la lunghezza del vettore sia uguale a 8. Si assuma, inoltre, che il parametro \mathbf{k} valga 2. In tal caso, la procedura deve individuare le coppie di valori la cui somma non è multipla di 2^2 = 4, cioè (5,-2), (-2,1), (-3,-7), (-7,1) perciò, il valore restituito è 4.

1467 1466	-7	V[7]
1465 1464	-3	V[6]
1463 1462	7	V[5]
1461 1460	1	V[4]
1459 1458	-2	V[3]
1457 1456	5	V[2]
1455 1454	3	V[1]
1453 1452	1	V[0]
- 1		,

DOPO

V[0] 1053

V[1] 1054

V[2] 1055

V[3] 1056

V[4] 1057 V[5] 1058 V[6] 1059

V[7] 1060

1052

1052

AC

PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI DEL 18/07/2019 – TRACCIA B

ESERCIZIO 1B: Si realizzi una rete sequenziale sincrona R con una linea di ingresso x ed una linea di uscita z. Ogni 4 bit, la rete riceve una sequenza S sulla linea x della forma $S = S_1S_2$, dove S_1 e S_2 sono due sequenze di 2 bit che costituiscono le rappresentazioni binarie di due numeri naturali, rispettivamente X e Y, ordinate a partire dal bit più significativo. La rete calcola il valore [(X+Y)/2] e ne restituisce la rappresentazione binaria, ordinata a partire dal bit più significativo, in corrispondenza del quarto bit di S e del primo bit della sequenza successiva.

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13
X:	0	1	0	1	1	0	1	1	1	0	0	0	1	
Z:	0	0	0	<u>0</u>	1	0	0	1	<u>0</u>	0	0	<u>0</u>	1	

Nell'esempio riportato, la prima sequenza S è compresa tra t=0 a t=3 e tale che $S_1=01$ e $S_2=01$, per cui X=1 e Y=1 e la rete restituisce Y=10. La seconda sequenza Y=11 e la rete restituisce Y=12 e la rete restituisce Y=13 e la rete restituisce Y=14.

ESERCIZIO 2B: Estendere il set di istruzioni della macchina ad accumulatore con l'operazione **MINSUM X**, definita come segue. A partire dalla locazione X+1 della RAM è memorizzato un vettore formato da un numero \mathbf{n} di elementi, dove \mathbf{n} è il valore contenuto in M[X].

L'istruzione restituisce nell'accumulatore la minima somma tra gli elementi V[i] e V[(i+1)%n], con i=0,1,...,n-1. Si noti che le coppie da considerare sono:

$$(V[0],V[1]),(V[1],V[2]),(V[2],V[3]),...,(V[n-2],V[n-1]),(V[n-1],V[0]).$$

La figura sulla destra mostra un esempio dello stato della memoria e dei registri prima e dopo l'esecuzione dell'istruzione. L'istruzione valuterà le seguenti somme:

$$4 + (-2) = 2$$
, $-2 + (-3) = -5$, $-3 + (-3) = -6$, $-3 + (8) = 5$, $8 + (4) = 12$, $4 + (-1) = 3$, $-1 + (-2) = -3$, $-2 + (4) = 2$, e restituirà il minimo tra esse, ovvero il valore -6.

ESERCIZIO 3B: Scrivere una procedura assembly che riceve un vettore V di word e un valore k e restituisce il numero di coppie di elementi (V[i], V[(i+1)%n]), dove n è la lunghezza di V, tali che la loro differenza V[i] - V[(i+1)%n] è multipla di 2^K . Scrivere inoltre il programma principale che invoca opportunamente la procedura descritta. Si noti che le coppie da considerare sono:

$$(V[0],V[1]),(V[1],V[2]),(V[2],V[3]),...,(V[n-2],V[n-1]),(V[n-1],V[0]).$$

La figura sulla destra mostra un esempio dello stato della memoria assumendo che l'indirizzo di partenza del vettore \mathbf{V} sia 1452 e la lunghezza del vettore sia uguale a 8. Si assuma, inoltre, che il parametro \mathbf{k} valga 2. In tal caso, la procedura deve individuare le coppie di valori la cui differenza è multipla di 2^2 = 4, cioè (6,10), (10,2), (-5,-1), perciò, il valore restituito è 3.

1467 1466	-5	V[7]
1465 1464	1	V[6]
1463 1462	-8	V[5]
1461 1460	-3	V[4]
1459 1458	2	V[3]
1457 1456	10	V[2]
1455 1454	6	V[1]
1453 1452	-1	V[0]
		,