DEFINITION: Let K be a field and $R = K[X_1, \dots, X_n]$. For a set of polynomials $S \subseteq R$, we define the **zero-set** of **solution set** of S to be

$$\mathcal{Z}(S) := \{(a_1, \dots, a_n) \in K^n \mid F(a_1, \dots, a_n) = 0 \text{ for all } F \in S\}.$$

NULLSTELLENSATZ: Let K be an algebraically closed field, and $R = K[X_1, \dots, X_n]$ be a polynomial ring. Let $I \subseteq R$ be an ideal. Then $\mathcal{Z}(I) = \emptyset$ if and only if I = R is the unit ideal.

Put another way, a set S of multivariate polynomials has a common zero unless there is a "certificate of infeasibility" consisting of $f_1, \ldots, f_t \in S$ and $r_1, \ldots, r_t \in R$ such that $\sum_i r_i s_i = 1$.

PROPOSITION: Let K be an algebraically closed field, and $R=K[X_1,\ldots,X_n]$ be a polynomial ring. Every maximal ideal of R is of the form $\mathfrak{m}_{\alpha}=(X_1-a_1,\ldots,X_n-a_n)$ for some point $\alpha=(a_1\ldots,a_n)\in K^n$.

(1) Draw the "real parts" of $\mathcal{Z}(X^2 + Y^2 - 1)$ and of $\mathcal{Z}(XY, XZ)$.

(2) Explain why the Nullstellensatz is definitely false if K is assumed to *not* be algebraically closed.

To not be algebraically closed means that there is a nonconstant polynomial in one variable that has empty solution set; such a polynomial generates a proper ideal.

- (3) Basics of \mathcal{Z} : Let $R = K[X_1, \dots, X_n]$ be a polynomial ring.
 - (a) Explain why, for any system of polynomial equations $F_1 = G_1, \dots, F_m = G_m$, the solution set can be written in the form $\mathcal{Z}(S)$ for some set S.
 - **(b)** Let $S \subseteq T$ be two sets of polynomials. Show that $\mathcal{Z}(S) \supseteq \mathcal{Z}(T)$.
 - (c) Let I = (S). Show that $\mathcal{Z}(I) = \mathcal{Z}(S)$. Thus, every solution set system of any polynomial equations can be written as \mathcal{Z} of some ideal.
 - **(d)** Explain the following: every system of equations over a polynomial ring is equivalent to a *finite* system of equations.
 - (e) Given a system of polynomial equations and inequations

$$(\star)$$
 $F_1 = 0, \dots, F_m = 0$ $G_1 \neq 0, \dots, G_\ell \neq 0$

come up with a system¹ of equations (†) such that (*) has a solution if and only if (†) has a solution. Thus every equation-and-inequation feasibility problem is equivalent to a question of the form $\mathcal{Z}(I) \stackrel{?}{=} \varnothing$.

¹Hint: $\lambda \in K$ is nonzero if and only if there is some μ such that $\lambda \mu = 1$. You can use more variables if you want!

- (a) Take $S = \{F_1 G_1, \dots, F_m G_m\}.$
- **(b)** $\alpha \in \mathcal{Z}(T)$ implies $F(\alpha) = 0$ for all $F \in T$ implies $F(\alpha) = 0$ for all $F \in S$ implies $\alpha \in \mathcal{Z}(S)$.
- (c) Since $S \subseteq I$ we have $\mathcal{Z}(S) \supseteq \mathcal{Z}(I)$. On the other hand, if $\alpha \in \mathcal{Z}(S)$ and $F \in I$, then $F = \sum_i r_i s_i$ with $s_i \in S$, and $F(\alpha) = \sum_i r_i (\alpha) s_i (\alpha) = \sum_i r_i (\alpha) \cdot 0 = 0$. Thus $\alpha \in \mathcal{Z}(I)$.
- **(d)** We can write any system as $\mathcal{Z}(I)$. By the Hilbert Basis Theorem, $I=(f_1,\ldots,f_m)$, and $\mathcal{Z}(I)=\mathcal{Z}(f_1,\ldots,f_m)$, which is equivalent to the system $f_1=0,\ldots,f_m=0$.
- (e) We can take $F_1 = 0, \ldots, F_m = 0, G_1 G_2 \ldots G_\ell Y 1 = 0$: a solution of this must consist of a solution of (\star) for the X's and the inverse of the product of the $G_i(X)$ for Y.
- **(4)** Proof of Proposition and Nullstellensatz: Let K be an algebraically closed field, and $R = K[X_1, \dots, X_n]$ be a polynomial ring.
 - (a) Use Zariski's Lemma to show that for every maximal ideal $\mathfrak{m} \subseteq R$, we have $R/\mathfrak{m} \cong K$.
 - **(b)** Reuse some old work to deduce the Proposition.
 - **(c)** Deduce the Nullstellensatz from the Proposition.
 - (d) Convince yourself that the "certificate of infeasibility" version follows from the other one.
 - (a) The ring R/\mathfrak{m} is a finitely generated K-algebra and a field, so $K \subseteq R/\mathfrak{m}$ is module-finite by Zariski's Lemma. Since K is algebraically closed, we must have $K \cong R/\mathfrak{m}$.
 - **(b)** From worksheet #2, we know that any maximal ideal in a polynomial ring with $R/\mathfrak{m} \cong K$ is of the form \mathfrak{m}_{α} for some α .
 - (c) If I is a proper ideal, then $I \subseteq \mathfrak{m}$ for some maximal ideal \mathfrak{m} , and from above $I \subseteq \mathfrak{m}_{\alpha}$ for some α . Then $\mathcal{Z}(I) \supseteq \mathcal{Z}(\mathfrak{m}_{\alpha}) = \{\alpha\}$ is nonempty!
 - (d) This is just unpackaging what it means for (S) to be the unit ideal.
- (5) Show that any system of multivariate polynomial equations (or equations and inequations) over a field K has a solution in some extension field of L if and only if it has a solution over \overline{K} .
- (6) Let K be a field and $R = K[X_1, \dots, X_n]$. Let $L \supseteq K$ and $S = L[X_1, \dots, X_n]$.
 - (a) Find some f that is irreducible in R but reducible in S for some choice of $K \subseteq L$.
 - (b) Show that if K is algebraically closed and $f \in R$ is irreducible, then it is irreducible in S.
 - (c) Show that if K is algebraically closed and $I \subseteq R$ is prime, then IS is prime.
- (7) Show that the statement of the Nullstellensatz holds for the ring of continuous functions from [0,1] to \mathbb{R} .