Orthogonal Projection

Linear Algebra

Instructor: Ben Huang

Theorem

Let $\{\mathbf{u}_1,\cdots,\mathbf{u}_m\}$ be an orthogonal basis of the subspace W. The orthogonal projection of \mathbf{v} onto W is

$$\sum_{i=1}^m \left(\frac{\mathbf{v} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i} \right) \mathbf{u}_i$$

Theorem

Let $\{u_1,\cdots,u_m\}$ be an orthogonal basis of the subspace W. The orthogonal projection of ${\bf v}$ onto W is

$$\sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}} \right) \mathbf{u}_{i}$$

Proof: Let $\mathbf{w} = \sum_{i=1}^m w_i \mathbf{u}_i$ be an arbitrary vector in W. We want to show $\left(\mathbf{v} - \sum_{i=1}^m \left(\frac{\mathbf{v} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}\right) \mathbf{u}_i\right) \cdot \mathbf{w} = 0$.

Theorem

Let $\{u_1,\cdots,u_m\}$ be an orthogonal basis of the subspace W. The orthogonal projection of ${\bf v}$ onto W is

$$\sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}} \right) \mathbf{u}_{i}$$

Proof: Let $\mathbf{w} = \sum_{i=1}^m w_i \mathbf{u}_i$ be an arbitrary vector in W. We want to show $\left(\mathbf{v} - \sum_{i=1}^m \left(\frac{\mathbf{v} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}\right) \mathbf{u}_i\right) \cdot \mathbf{w} = 0$.

$$\left(\mathbf{v} - \sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}\right) \mathbf{u}_{i}\right) \cdot \mathbf{w} = \left(\mathbf{v} - \sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}\right) \mathbf{u}_{i}\right) \cdot \sum_{i=1}^{m} w_{i} \mathbf{u}_{i}$$

Theorem

Let $\{u_1,\cdots,u_m\}$ be an orthogonal basis of the subspace W. The orthogonal projection of ${\bf v}$ onto W is

$$\sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}} \right) \mathbf{u}_{i}$$

Proof: Let $\mathbf{w} = \sum_{i=1}^{m} w_i \mathbf{u}_i$ be an arbitrary vector in W. We want to show $\left(\mathbf{v} - \sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}\right) \mathbf{u}_i\right) \cdot \mathbf{w} = 0$.

$$\left(\mathbf{v} - \sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}\right) \mathbf{u}_{i}\right) \cdot \mathbf{w} = \left(\mathbf{v} - \sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}\right) \mathbf{u}_{i}\right) \cdot \sum_{i=1}^{m} w_{i} \mathbf{u}_{i}$$

$$= \sum_{i=1}^{m} w_{i} \mathbf{v} \cdot \mathbf{u}_{i} - \sum_{i=1}^{m} w_{i} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}\right) \mathbf{u}_{i} \cdot \mathbf{u}_{i}$$

Theorem

Let $\{u_1,\cdots,u_m\}$ be an orthogonal basis of the subspace W. The orthogonal projection of ${\bf v}$ onto W is

$$\sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}} \right) \mathbf{u}_{i}$$

Proof: Let $\mathbf{w} = \sum_{i=1}^{m} w_i \mathbf{u}_i$ be an arbitrary vector in W. We want to show $\left(\mathbf{v} - \sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}\right) \mathbf{u}_i\right) \cdot \mathbf{w} = 0$.

$$\left(\mathbf{v} - \sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}\right) \mathbf{u}_{i}\right) \cdot \mathbf{w} = \left(\mathbf{v} - \sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}\right) \mathbf{u}_{i}\right) \cdot \sum_{i=1}^{m} w_{i} \mathbf{u}_{i}$$

$$= \sum_{i=1}^{m} w_{i} \mathbf{v} \cdot \mathbf{u}_{i} - \sum_{i=1}^{m} w_{i} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}\right) \mathbf{u}_{i} \cdot \mathbf{u}_{i}$$

Theorem

Let $\{u_1,\cdots,u_m\}$ be an orthogonal basis of the subspace W. The orthogonal projection of v onto W is

$$\sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}} \right) \mathbf{u}_{i}$$

Proof: Let $\mathbf{w} = \sum_{i=1}^{m} w_i \mathbf{u}_i$ be an arbitrary vector in W. We want to show $\left(\mathbf{v} - \sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}\right) \mathbf{u}_i\right) \cdot \mathbf{w} = 0$.

$$\left(\mathbf{v} - \sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}\right) \mathbf{u}_{i}\right) \cdot \mathbf{w} = \left(\mathbf{v} - \sum_{i=1}^{m} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}\right) \mathbf{u}_{i}\right) \cdot \sum_{i=1}^{m} w_{i} \mathbf{u}_{i}$$

$$= \sum_{i=1}^{m} w_{i} \mathbf{v} \cdot \mathbf{u}_{i} - \sum_{i=1}^{m} w_{i} \left(\frac{\mathbf{v} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}\right) \mathbf{u}_{i} \cdot \mathbf{u}_{i}$$

$$= 0.$$

Theorem

The orthogonal projection of \mathbf{v} onto W is the vector in W closest to \mathbf{v} .

Theorem

The orthogonal projection of ${\bf v}$ onto W is the vector in W closest to ${\bf v}$.

Proof: Let
$$\mathbf{u} = \mathbf{v} - \operatorname{proj}_{W} \mathbf{v}$$
, and $\mathbf{w} \in W$. Since $\mathbf{v} - \mathbf{w} = \mathbf{u} + (\operatorname{proj}_{W} \mathbf{v} - \mathbf{w})$,
$$\|\mathbf{v} - \mathbf{w}\|^{2} = (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{v} - \mathbf{w})$$
$$= (\mathbf{u} + (\operatorname{proj}_{W} \mathbf{v} - \mathbf{w})) \cdot (\mathbf{u} + (\operatorname{proj}_{W} \mathbf{v} - \mathbf{w}))$$
$$= \mathbf{u} \cdot \mathbf{u} + (\operatorname{proj}_{W} \mathbf{v} - \mathbf{w}) \cdot (\operatorname{proj}_{W} \mathbf{v} - \mathbf{w})$$
$$\geq \|\mathbf{u}\|^{2}.$$