2024-2025 学年第二学期高等代数与解析几何 第二次月考

- 1、(15分)
- 1) 设 V 是数域 P 上的 3 维线性空间, ξ_1, ξ_2, ξ_3 是一组基。设 A 是 V 上的线性变换。

$$A(\xi_1, \xi_2, \xi_3) = (\xi_1, \xi_2, \xi_3) \begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \\ 3 & 4 & 6 \end{pmatrix}$$

求
$$A$$
 在基 $(\alpha_1,\alpha_2,\alpha_3)=(\xi_1+\xi_2,\xi_2,-\xi_3)$ 下的矩阵。
2)设 $A=\begin{pmatrix} 2&1&1\\1&2&1\\1&1&2 \end{pmatrix}$,求可逆矩阵 P 使得 $P^{-1}AP$ 为对角阵。

2、(15 分) 设 \mathcal{A} 是 \mathbb{R}^m 上的线性变换, \mathcal{B} 是 \mathbb{R}^n 上的线性变换。定义 Cartesian 积 $\mathcal{A} \times \mathcal{B}$: $\mathbb{R}^{m+n} \to \mathbb{R}^{m+n}$ 满足

$$\mathcal{A} \times \mathcal{B} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \mathcal{A}x \\ \mathcal{B}y \end{pmatrix}, \quad \forall x \in \mathbb{R}^m, y \in \mathbb{R}^n.$$

证明: 1) $A \times B$ 是线性变换; 2) 若 $A \times B$ 可对角化,则 A 与 B 都可对角化。

- 3、(15 分) 设 F[x] 表示数域 F 上一元多项式的全体, $D:F[x]\to F[x]$ 是 F[x] 上的线性变换, 它满足下 列条件: $\forall f, g \in F[x]$,
 - (1) $D(f \cdot g) = D(f) \cdot g + f \cdot D(g)$,
 - (2) Dx = 1,

求证: $D(f) = f' \in f$ 的微商。

- 4、(15 分) 设 $A \in \mathbb{C}^{n \times n}$,线性子空间 $V = L(E, A, A^2, ...)$,其中 $E \in \mathbb{R}$ 阶单位阵。证明:
 - (1) $\dim V < n$;
 - (2) 当 dim V = n 1 时,A 存在特征值 $\lambda \in \mathbb{C}$,使得特征子空间 W_{λ} 满足 dim $W_{\lambda} = 2$ 。
- 5、(15 分) 求下列矩阵的行列式因子、不变因子和 Jordan 标准形:

$$\begin{pmatrix}
0 & 4 & 0 \\
-1 & 4 & 0 \\
-1 & 2 & 2
\end{pmatrix}$$

6、(15 分) 求 A¹⁰⁰, 其中

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ -2 & -1 & -1 \end{pmatrix}$$

1

7、(10 分) 设 n 阶方阵 A 的特征值全是 1 或-1,证明 A 与 A^{-1} 相似。