Mock CCC '18 Contest 2 S5 - A Link/Cut Tree Problem

Given a graph, support the following two operations:

Query(a_i, b_i, w_i): Does there exist a path from a_i to b_i using only edges with weight at least w_i ?

Update(m i, x i): Update the weight of edge m i to be x i.

Constraints

For 2 marks, there will be no update operations.

For 3 additional marks, $M \leq 10^3$ and $Q \leq 10^3$.

Input Specification

The first line will contain two space-separated integers, $N(1 \le N \le 10^3)$ and $M(1 \le M \le 5000)$, indicating respectively the number of vertices and the number of edges in the graph.

The next M lines will contain three space-separated integers $u_i (1 \le u_i \le N)$, $v_i (1 \le v_i \le N, u_i \ne v_i)$ and $z_i (1 \le z_i \le 10^9)$, indicating that edge i is an undirected weighted edge between vertices u_i and v_i with weight z_i . There may be multiple edges between two vertices.

The next line contains a single integer $Q(1 \leq Q \leq 10^5)$, the number of operations to support.

Each of the next Q lines will contain the description of either a query or an update.

An update operation, which can happen at most 2000 times, will take the form 1 m_i x_i $(1 \le m_i \le M, 1 \le x_i \le 10^9)$.

A query will take the form <code>2 a_i b_i w_i</code> $(1 \leq a_i, b_i \leq N, 1 \leq w_i \leq 10^9, a_i \neq b_i)$.

Note that the operations happen in the order specified in the input.

Output Specification

For each query, print on a separate line 1 if the answer to the query is yes, and 0 otherwise.

Sample Input

```
3 4
1 2 3
2 3 3
2 1 1
1 2 1
6
2 1 2 4
2 2 3 2
1 1 4
2 1 2 4
1 2 1
2 2 3 2
```

Sample Output

```
0
1
1
0
```