Physik für B-TI – 1. Semester

Dozentin: Dr. Barbara Sandow, barbara.sandow@fu-berlin.de

Zusammenfassung 10. SU – 9.12.2019

2. MECHANIK

Wellen

Eine Welle ist eine periodische Änderung einer physikalischen Größe mit der Zeit und am Ort (eine Schwingung, die sich auf den Weg gemacht hat).

Wellenarten:

Die klassischen Wellenarten sind *Longitudinal*- und *Transversalwellen*. **Longitudinalwellen** schwingen *parallel* zur Ausbreitungsrichtung. **Transversalwellen** schwingen *senkrecht* zur Ausbreitungsrichtung.

Eigenschaften

- **Amplitude**: Die Amplitude y_0 beschreibt die maximale Auslenkung der Schwingungen der Welle, also dort wo der Wellenberg am höchsten ist.
- Wellenlänge: Die Wellenlänge λ(Lambda) ist der Abstand zweier Punkte mit gleicher Phase - zum Beispiel der Abstand zwischen zwei benachbarten Wellenbergen oder Wellentälern.
- **Ausbreitungsgeschwindigkeit**: Die Ausbreitungsgeschwindigkeit v einer Welle ist die Geschwindigkeit mit der sich eine bestimmte Phase, z.B. ein Wellenberg oder ein Wellental fortbewegt.

Außerdem wird eine Welle durch die von ihr erzeugten Schwingungen charakterisiert:

• **Periodendauer (Schwingungsdauer)**: Die Periodendauer ist die Zeit, die verstreicht, während ein schwingungsfähiges System genau eine Schwingungsperiode durchläuft, d.h. nach der es sich wieder im selben Schwingungszustand befindet. Der Kehrwert der Periodendauer T ist die Frequenz f

Zwischen der Wellenlänge der Welle und der Frequenz der Schwingungen besteht ein direkter physikalischer Zusammenhang und beschreibt auch die Ausbreitungsgeschwindigkeit von Wellen in unterschiedlichen Medien c_w:

$$\lambda \cdot f = c_w$$

Damit ergibt sich auch eine Beziehung zwischen der Wellenlänge und der Periodendauer.

Tabelle: Schwingungen und Wellen

	<u>Schwingungen</u>	<u>Wellen</u>
Definition	periodische Änderung einer physikalischen Größe mit der Zeit	periodische Änderung einer physik- alischen Größe mit der Zeit und am Ort(eine Schwingung, die sich auf den Weg gemacht hat)
charakteristische Größen	- zeitabhängige Größen Frequenz: $f=1/T$ Schwingungsdauer: T Kreisfrequenz: $\omega=2\pi\cdot f$	- zeitabhängige Größen Frequenz: $f=1/T$ Schwingungsdauer: T Kreisfrequenz: $\omega=2\pi\cdot f$ - ortsabhängig Größe Wellenlänge: λ , Wellenzahl: $k=\frac{2\pi}{\lambda}$
harmonisch	werden mit sin- und cos- Funktion beschrieben	werden mit sin- und cos-Funktion beschrieben
Wellenzahl Lösung der Bewegungsgleichung	$x(t) = x_0 \cdot \sin(\omega_0 t + \varphi_0)$ mit Amplitude x_0 ; Kreisfrequenz ω_0 ; Phasendifferenz φ_0	$\psi(t,x) = A_0 \cdot \sin(\omega \cdot t + \frac{2\pi \cdot x}{\lambda} + \varphi_0)$ mit Amplitude A ₀ ; Kreisfrequenz ω ; Wellenzahl k = $\frac{2\pi}{\lambda}$; Phasendifferenz φ_0