On the Power of Automata Minimization in Reactive Synthesis

Shufang Zhu¹, Lucas M. Tabajara², Geguang Pu³ and Moshe Vardi²

¹Sapienza University of Rome ²Rice University ³East China Normal University

Temporal Logic

- Temporal logic, properties over a sequence of successive state
- Linear Temporal Logic (LTL), infinite sequence [Pnueli, 1977]
- LTL over Finite traces (LTL_f) [De Giacomo & Vardi, 2013]
 - Natural to capture finite-horizon tasks
 - Numerous applications
 - Markov Decision Processes (MDPs) with non-Markovian rewards, MDPs policy synthesis, program synthesis etc.

LTL_f and Finite-word Automata

 LTL_f : same syntax as LTL, interpreted on finite (unbounded) traces

$$\phi ::= p \mid \neg \phi \mid \phi_1 \land \phi_2 \mid X\phi \mid \phi_1 U\phi_2 \mid F\phi$$

- LTL_f formula, corresponding DFA that accepts the same language
- Reasoning about LTL_f, compiling to DFA
- ullet LTL $_f$ synthesis, reduction to an adversarial reachability game on DFA

Shufang Zhu (Sapienza)

LTL_f and Minimized DFA

- Doubly-exponential blowup, bottleneck of LTL_f synthesis [Zhu et al., 2017]
- DFA can be fully minimized
- The best way of constructing a minimal DFA from LTL_f?

Automata Minimization

- Two minimization algorithms
 - Hopcroft algorithm
 - Brzozowski algorithm
- Prior work, starting from randomly-generated NFA [Tabakov, Rozier & Vardi, 2012]
 - Neither algorithm dominates
 - No specific application scenario

Automata Minimization in LTL_f Synthesis

- Hopcroft vs. Brzozowski, starting from LTL_f formulas
- In the context of program synthesis
- Symbolic synthesis framework
 - Symbolic DFA representation

Semi-Symbolic DFA

A tuple
$$\mathcal{A} = (\mathcal{P}, \mathcal{S}, s_0, H, Acc)$$

- ullet ${\mathcal P}$ a set of propositions
- ullet $\mathcal S$ is a set of states
- $s_0 \in \mathcal{S}$ is the initial state
- $H: \mathcal{S} \times \Lambda \times \mathcal{S}$, where Λ is a set of propositional formulas over \mathcal{P} . For example, $(s, a \wedge b, s') \in H$
- Acc is a set of final states

Symbolic DFA

Given a semi-symbolic DFA $\mathcal{A} = (\mathcal{P}, \mathcal{S}, s_0, H, Acc)$, its symbolic representation is a tuple $\mathcal{D} = (\mathcal{P}, \mathcal{Z}, I, \delta, f)$

- ullet ${\cal P}$ a set of propositions
- ullet ${\mathcal Z}$ is a set of state variables, every state is an assignment over ${\mathcal Z}$
- $I \in 2^{\mathbb{Z}}$ is the initial assignment
- $\delta: 2^{\mathcal{Z}} \times 2^{\mathcal{P}} \to 2^{\mathcal{Z}}$ is the transition function, an indexed family $\{\delta_z: 2^{\mathcal{Z}} \times 2^{\mathcal{P}} \to \{0,1\} \mid z \in \mathcal{Z}\}$
- ullet f is a propositional formula over \mathcal{Z} , the set of accepting states

Hopcroft vs. Brzozowski from LTL_f

- Hopcroft's algorithm
 - ullet Construct non-deterministic automata ${\cal N}$
 - $A = [equivalence \circ determinize](N)$
 - MONA, temporal specification to minimized DFA [Henriksen, 1995]
- Brzozowski's algorithm
 - $\mathcal{A} = [reachable \circ determinize \circ reverse]^2(\varphi)$
 - No existing implementation

Brzozowski's Algorithm from LTL_f

 $\mathcal{A} = [\mathit{reachable} \circ \mathit{determinize} \circ \mathit{reverse}]^2(\varphi)$

- ${\bf 0}$ Reverse DFA construction, DFA accepting the ${\bf reverse}$ language of φ
 - [reachable \circ determinize \circ reverse](φ)
- Reversal into a co-DFA
 - [reverse]
- Oeterminization and pruning
 - [reachable ∘ determinize]

Shufang Zhu (Sapienza)

Brzozowski's Algorithm from LTL_f

- Reverse DFA construction
 - \bullet Minimal DFA of φ^R [Zhu et al., 2019]
- 2 Reversal into a co-DFA, [reverse]
 - Swapping initial and final states, reversing transitions
- Oeterminization and pruning, [reachable determinize]
 - Symbolic or Explicit

Symbolic Subset Construction

Given NFA $\mathcal{N}=(\mathcal{P},\mathcal{S},\mathcal{S}_0,H,Acc)$, the symbolic DFA $\mathcal{D}=(\mathcal{P},\mathcal{S},I,\delta,f)$ can be obtained by

- ullet ${\cal S}$ is the set of state variables
- $I \in 2^{\mathcal{S}}$ is such that I(s) = 1 iff $s \in \mathcal{S}_0$
- $f = \bigvee_{s \in Acc} s$
- $\delta_s: 2^{\mathcal{S}} \times 2^{\mathcal{P}} \to \{0,1\}$ is such that $\delta_s(S,\sigma) = 1$ iff $(d,\lambda,s) \in H$ for some d such that S(d) = 1 and λ such that $\sigma \models \lambda$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣へ○

Symbolic State-Space Pruning

The set of reachable states r over state variables \mathcal{Z}

•
$$r_0(Z) = I(Z)$$

•
$$r_{i+1}(Z) = r_i(Z) \vee \exists Z' . \exists X . \exists Y . r_i(Z') \wedge (\delta(Z', X \cup Y) = Z)$$

Shufang Zhu (Sapienza)

Empirical Evaluation

Candidates:

- Hopcroft minimization, represented by MONA
- Explicit Brzozowski minimization
- Symbolic Brzozowski minimization

Synthesis Benchmarks:

- Random benchmarks
- Two-player-game benchmarks: Single-Counter, Double-Counter, Nim

Random Benchmarks

Two-player-game Benchmarks

Observations

- 4 Hopcroft's approach dominates on all benchmarks
- Explicit Brzozowski's approach even performs better than the symbolic version

Recap on Brzozowski's Approach

- Reverse DFA construction
 - Theoretical conclusion: Reverse DFA, exponentially smaller than DFA
- Reversal into a co-DFA
- Oeterminization and pruning
 - Second exponential blowup

Reverse DFA vs. DFA on Random Benchmarks

Reverse DFA vs. DFA on Single-Counter Benchmarks

Reverse DFA vs. DFA on Nim Benchmarks

Reasons of Failure

- Theoretical result: Reverse DFA can be exponentially smaller than DFA
- Practical observation: No, this is not the case!
- Subsequent effects: cannot handle further steps of determinization and pruning

Takeaways

- Using Hopcroft's algorithm is more promising for synthesis than employing Brzozowski's construction.
- Theoretical worst-case scenario might not be the common case in practice