

PROYECTO FIN DE CURSO

RADAR ULTRASÓNICO

Décima, Enrique Emanuel
Castro , Oscar Martin
Ortiz, Nicolás Agustín

Profesor: Ing. Rubén Darío Mansilla

Descripción del Proyecto

El proyecto consiste en el desarrollo de un Radar Ultrasónico, diseñado para detectar objetos dentro de un rango de distancia determinado y alertar al usuario mediante mensajes a través de una pantalla LCD y un dispositivo conectado vía Bluetooth.

Este sistema se basa en la medición de distancias utilizando un sensor ultrasónico HC-SR04, montado sobre un servomotor, que le permite escanear su entorno en un rango de 180°.

El harware del Dispositivo y su interconexion fisica

Especificaciones

- Chip principal: STM32F401CCU6
- Núcleo: Cortex-M4
- Memoria Flash: 256K
- SRAM: 96K
- Max. Velocidad de reloj: 84 MHz
- USB tipo C
- Dimensiones: 20.78mm x 52.81mm
- Peso: 4g

Periféricos

- 32 x GPIOs
- 1 ADC de 12 bits de Resolución
- 11 Timers
- 3 x 12C
- 3 x USARTs
- 4 x SPI
- 1 x SDIO

El harware del Dispositivo y su interconexion fisica

Distribución de Pines (Pinout)

Pin	Etiqueta	Descripcion
PC13	LED0	LED integrado a la placa
PA2	LED_PWR	LED Indicador de Alimentacion
PB0	LED_ON	Indicador de Sistema Activado
PB1	LED_ALARM	LED indicador de alarma
PB2	BUZZER	Buzzer de Alarma
PA6	TIM3_CH1	Servomotor PWM
PB12	Trigger	HCSR04 Trigger Pin
PA8	TIM1_CH1	HCSR04 Echo Pin
PA9	USART_TX	HC-05 Rx
PA10	USART_RX	HC-05 Tx
PB6	I2C_SCL	PCF8574 para Comunicación con LCD
PB7	I2C_SDA	PCF8574 para Comunicación con LCD

El harware del Dispositivo y su interconexion fisica

Consideraciones comunicación 12C – PCF8574

Pin connectivity			Address of PCF8574							Address byte value		7-bit	
A2	A1	A0	A6	A5	A4	А3	A2	A1	A0	R/W	Write	Read	hexadecimal address_ without R/W
V_{SS}	V _{SS}	V _{SS}	0	1	0	0	0	0	0	-	40h	41h	20h
V _{SS}	V_{SS}	V_{DD}	0	1	0	0	0	0	1	-	42h	43h	21h
V_{SS}	V_{DD}	V_{SS}	0	1	0	0	0	1	0	-	44h	45h	22h
V_{SS}	V_{DD}	V_{DD}	0	1	0	0	0	1	1	-	46h	47h	23h
V_{DD}	V_{SS}	V_{SS}	0	1	0	0	1	0	0	-	48h	4 9h	24h
V_{DD}	V_{SS}	V_{DD}	0	1	0	0	1	0	1	-	4Ah	4Bh	25h
V_{DD}	V_{DD}	V_{SS}	0	1	0	0	1	1	0	-	4Ch	4Dh	26h
V_{DD}	V_{DD}	V_{DD}	0	1	0	0	1	1	1	-	4Eh	4Fh	27h

Consideraciones comunicación 12C – PCF8574

Consideraciones comunicación HC - SR04

Puede detectar objetos desde 2 centímetros hasta 400 cm, con una precisión de 3 mm y un angulo de cobertura de medición de 15 grados.

Pinout & Configuration

Consideraciones comunicación Servo SG90

POSICIÓN DEL SERVO	PULS0		
0° (todo a la izquierda)	~ 1 ms		
90° (en medio)	1,5 ms		
180° (todo a la derecha)	~ 2 ms		

Timer input clock Timer Tick Frequency Prescaller+1 Counter Frequency = Frequency Required * Pwm Resolution(Steps) Timer Prescaller Value= (Timer input clock/Counter frequency)-1

Pinout & Configuration

Configuracion del Modulo TIM 1

Configuracion del Reloj

Configuracion de Interrupciones

Pin

Configuracion Principal del Modulo

Parametros del Modulo

Configuracion del Modulo TIM 3

Configuracion del Reloj

PA6 TIM3_CH1 Servomotor PWM

Configuracion Principal de Modulo y Parametros

Consideraciones sobre el software Configuracion del Modulo I2C

PB7 I2C_SDA PCF8574 para
Comunicación con LCD

PB6 PCF8574 para
Comunicación con LCD

Configuracion Principal del Modulo

Bluetooth HC-05

Configuracion de Parametros del Modulo

Salidas Digitales

GPIO

Breve Repaso por el Codigo Main .c

```
18
      /* USER CODE END Header */
19
20
      #include "main.h"
      #include "i2c.h"
22
      #include "tim.h"
23
      #include "usart.h"
24
      #include "gpio.h"
25
26
      /* Private includes -----*/
      /* USER CODE BEGIN Includes */
27
28
      #include "Headers.h"
29
      /* USER CODE END Includes */
```

```
delay_t LCD_Refresh;
 98
                delayInit(&LCD_Refresh, REFRESH_RATE); //Cada 1s se refresca la pantalla LCD
99
100
                //Inicializar Modulos
101
                LCD_Init();
102
                HCSR04 Init();
103
                Servo_Init();
104
                MEF_Init();
105
                LCD Clear();
106
107
                HC05 SendString("Sistema Encendido\n");
108
109
110
```


Breve Repaso por el Codigo Main .c

```
while (1)
        if(delayRead(&LCD_Refresh) && !(MEF_GetAlarmState())){
                LCD_ShowData(MEF_GetDistance(), MEF_GetAngle());
        MEF_Update();
        /* USER CODE END WHILE */
        /* USER CODE BEGIN 3 */
/* USER CODE END 3 */
```



```
case INICIO:
        //Valores Iniciales de Variables
       motor_angle = 0;
       sentido_giro = 0;
       umbral = 7;
       distancia = 10;
        alarm_on = 0;
       Servo_SetAngle(&htim3, TIM_CHANNEL_1, motor_angle);
       Secuencia_Inicio();
       MEF_Actual = MOVER_SERVO;
       break;
```



```
case MOVER_SERVO:
    if(sentido_giro){
        motor_angle = motor_angle - VEL_MOTOR;
    }else{
        motor_angle = motor_angle + VEL_MOTOR;
    }
    Servo_SetAngle(&htim3, TIM_CHANNEL_1, motor_angle);

MEF_Actual = MEDIR_DISTANCIA;
    break;
```



```
case MEDIR_DISTANCIA:
    distancia = HCSR04_GetMeasure();
    if(distancia < umbral){
        MEF_Actual = ALERTA;
    }else{
        alarm_on = 0;
        HAL_GPIO_WritePin(LED_ALARM_GPIO_Port, LED_ALARM_Pin, 0);
        MEF_Actual = VERIFICAR_ANGULO;
    }
    break;</pre>
```



```
case VERIFICAR_ANGULO:
        if(motor_angle == 180){
                sentido_giro = 1;
        }
        if(motor_angle == 0){
                sentido_giro = 0;
        if(motor_angle > 180 || motor_angle < 0){</pre>
                Error_Handler();
        MEF_Actual = MOVER_SERVO;
        break;
```



```
case ALERTA:
    alarm_on = 1;
    Mensaje_Alerta();
    MEF_Actual = MEDIR_DISTANCIA;
    break;
```

```
void Mensaje_Alerta(){
       //Salidas Digitales
       HAL_GPIO_WritePin(LED_ALARM_GPIO_Port, LED_ALARM_Pin, GPIO_PIN_SET);
       HAL GPIO WritePin(BUZZER GPIO Port, BUZZER Pin, GPIO PIN SET);
       //Mensaje por LCD
       LCD_Clear();
       LCD_PutCur(0, 0);
        LCD_SendString("ALARMA");
       LCD_PutCur(1, 0);
        LCD_SendString("ACTIVADA!");
       //Mensaje por Bluetooth
        HC05_SendString("ALARMA ACTIVADA: OBJETO DETECTADO\n");
       //BUZZER
       HAL_Delay(500);
       LCD_Clear();
        HAL_GPIO_WritePin(BUZZER_GPIO_Port, BUZZER_Pin, GPIO_PIN_RESET);
       HAL_Delay(500);
```

iMuchas Gracias.