Quantum Golomb Spacetime Simulator

My Spacetime is Made of Numbers and Poor Decisions

Inside the Quantum Golomb Simulator That Accidentally Discovered the Universe

"Some say the universe began with a bang. This one began with [0, 1] and a poorly tuned random number generator."

Overview

This project simulates a playful model of spacetime growth inspired by:

- **B** Golomb rulers
- 🎲 Quantum fluctuations
- **Z** Curved geometry

Causal networks

While not physically rigorous, the simulator explores how structure, density, and curvature can emerge from simple number-theoretic rules—rendered with surprisingly rich visualizations.

What Is a Quantum Golomb Spacetime?

A Golomb ruler is a set of integers (marks) such that all pairwise distances are unique.

In this simulator:

- Each mark is treated as a **discrete event** in time. • New marks are added via a temperature-driven growth process.
- A synthetic **matter-curvature interaction** perturbs new candidates. • The result is embedded in **polar coordinates**, giving rise to:
- Mass density fields
- Local curvature Causal structure
- Fractal geometry

This is not quantum gravity—just quantum creativity.

Step 1: Birth of the Universe

We begin with two marks:

simulator.quantum_growth(max_marks=40, temperature=0.1)

simulator = QuantumGolombSpacetime(initial_marks=[0, 1])

Growth proceeds by probabilistically selecting the next valid integer that maintains the Golomb condition (no repeated distances). The temperature parameter controls how chaotic the search is:

- Low T → Conservative, stable expansion • **High T** → Chaotic, entropy-maximizing behavior

Step 2: Matter-Curvature Coupling

Once the system has enough marks, new ones are influenced by a toy-model "gravity" field based on local curvature:

 $ext{Potential} \sim \sum_i rac{
ho_i}{d_i^2 + arepsilon}$

Where:

Where:

- \$\rho_i\$ = local matter density
- \$d_i\$ = distance to existing mark \$i\$

This coupling perturbs new candidates and introduces asymmetry and feedback.

6 Step 3: Polar Embedding

Each mark is mapped into 2D using polar coordinates:

 $x = r \cdot \cos(\theta), \quad y = r \cdot \sin(\theta)$

• \$r\$ = log-scaled radial distance from origin • \$\theta\$ = angular position around the circle (uniform spacing)

This creates a spiraling spacetime diagram that reveals geometric clustering and local tension.

Step 4: Mass Density and Fractal Geometry

The polar embedding is converted into a 2D density map using Gaussian-smoothed binning. We then estimate the fractal dimension using box-counting:

 $D = \lim_{arepsilon o 0} rac{\log N(arepsilon)}{\log (1/arepsilon)}$

Example result: Estimated fractal dimension: 2.181 This value suggests dimensional emergence or compactified structure.

Step 5: FFT of the Density Field

We apply a 2D Fast Fourier Transform (FFT) to the mass density map. This reveals:

• Radial and angular **symmetries**

- Hidden periodicities • Noise or self-similarity signatures

Step 6: Causal Network Construction

We build a causal graph where:

- Nodes = Events (marks) • **Edges** = Future-directed links based on angular proximity
- Weights encode difficulty of information transfer:

The graph reflects how events influence each other, with metrics like: Causal connection density

- Average path length • Degree-matter correlation

■ Diagnostics: Quantum Physics with a Wink

Quantum Fluctuations Average deviation from uniform growth is computed as:

Quantum Fluctuation = $mean(abs(\Delta position - 1))$

Captures jitter introduced by temperature and curvature feedback.

Curvature-Matter Feedback We compute **local curvature** from nearest-neighbor triangles. Higher curvature regions receive more "matter"—mimicking attraction.

Energy Balance (Kind Of)

A toy-model energy proxy is defined as:

Average Curvature

Total Matter

This ratio is tracked across growth to observe pseudo-conservation behavior.

The simulator outputs a 6-panel visual summary:

Visualization Dashboard

Panel Content Description Polar Embedding (r, θ)

Smoothed Mass Density FFT of Density Field

Local Curvature Map Causal Network Diagram

Matter Density per Event

All panels include colorbars and standardized axis ratios for interpretability.

Summary of Findings

While this simulation is fictional and symbolic, it provides:

• A new way to look at Golomb uniqueness as causal order

• Feedback loops between matter, curvature, and event layout • Visual metaphors for dimensional compactification, causal flow, and quantum foam

• A sandbox for emergent structure from simple constraints

- **Philosophical Addendum**
- "My universe grew, curved, pulsed, and linked. All from [0, 1]. Just like ours—chaotic, kind of pretty, and mostly made up." You may not find a Theory of Everything, but you might:

• Build intuition for emergent geometry

Appreciate discrete structures as creative fuel

- Laugh at causality's LinkedIn behavior
- **X** Requirements

pip install numpy matplotlib scipy scikit-learn networkx scikit-image

Note This simulator is designed for **exploration and metaphor**, not physical accuracy. But it might replace your existential dread with constructive curiosity.