Graph Classification with Spatial GNNs

from How powerful are Graph Neural Networks? by Lucas Kania

Graph Classification

Outline

- Describe GNNs
- ► Introduction to the Graph Isomorphism Problem and the WL Test
- Prove that GNN is at most as powerful as the WL Test for differentiating Graphs
- ▶ Derive an optimal architecture and approximate it with a NN
- Experiments and extensions

Graph Neural Networks

Given a graph
$$G=(V,E)$$
 and $h_v^0=X_v$
$$a_v^{(k)}=\mathsf{AGGREGATE}^{(k)}(\{h_u^{(k-1)}|u\in \mathit{N}(v)\})$$

Graph Neural Networks

Given a graph
$$G=(V,E)$$
 and $h_v^0=X_v$
$$a_v^{(k)}=\mathsf{AGGREGATE}^{(k)}(\{h_u^{(k-1)}|u\in N(v)\})$$

$$h_v^{(k)}=\mathsf{COMBINE}^{(k)}(h_v^{(k-1)},a_v^{(k)})$$

Graph Neural Networks

Given a graph
$$G=(V,E)$$
 and $h_v^0=X_v$
$$a_v^{(k)}=\mathsf{AGGREGATE}^{(k)}(\{h_u^{(k-1)}|u\in N(v)\})$$

$$h_v^{(k)}=\mathsf{COMBINE}^{(k)}(h_v^{(k-1)},a_v^{(k)})$$

$$h_G=\mathsf{READOUT}(\{h_v^{(K)}|v\in V\})$$

Connection with the Graph Isomorphism Problem

Problem: Given two graphs, is there an isomorphism between them? (i.e. is there a re-labeling that makes them equal?)

Connection with the Graph Isomorphism Problem

Heuristic: Weisfeiler-Lehman Graph Isomorphism Test (WL Test)

```
function WL(G=(V,E))
    for v \in V do
        h_{v} = degree(v)
    while label did not convergence do
        for v \in V do
            a_v = AGGREGATE(\{h_u|u \in N(v)\})
            h_{\nu} = \text{COMBINE}(h_{\nu}, a_{\nu})
return \{h_v|v\in V\}
WL(G) \neq WL(G') \implies G \not\equiv G'
```

where AGGREGATE and COMBINE are injective functions (i.e. $\forall a, b \in X$, $a \neq b \Rightarrow f(a) \neq f(b)$)

GNNs and the WL Test

$$\mathsf{GNN}(G) \neq \mathsf{GNN}(G') \implies \mathsf{WL}(G) \neq \mathsf{WL}(G')$$

There doesn't exist a pair of graph that a GNN can differentiate, and the WL test cannot. Thus, A GNN is at most as powerful as the WL test.

GNNs and the WL Test

$$\mathsf{GNN}(G) \neq \mathsf{GNN}(G') \implies \mathsf{WL}(G) \neq \mathsf{WL}(G')$$

There doesn't exist a pair of graph that a GNN can differentiate, and the WL test cannot. Thus, A GNN is at most as powerful as the WL test.

We would like to have

$$\mathsf{GNN}(G) \neq \mathsf{GNN}(G') \iff \mathsf{WL}(G) \neq \mathsf{WL}(G')$$

GNNs and the WL Test

$$\mathsf{GNN}(G) \neq \mathsf{GNN}(G') \iff \mathsf{WL}(G) \neq \mathsf{WL}(G')$$

It's true if AGGREGATE, COMBINE, and READOUT are injective.

$$a_{v}^{(k)} = \mathsf{AGGREGATE}^{(k)}(\{h_{u}^{(k-1)}|u \in N(v)\})$$
 $h_{v}^{(k)} = \mathsf{COMBINE}^{(k)}(h_{v}^{(k-1)}, a_{v}^{(k)})$
 $h_{G} = \mathsf{READOUT}(\{h_{v}^{(K)}|v \in V\})$

Injectivity in AGGREGATE

Given that the input space is countable (e.g. one hot encoded categorical data), there exist injective functions ψ and ϕ s.t. g is an injective function over multi-sets

$$g(h_v, \{h_u|u \in N(v)\}) = \phi\left((1+\epsilon)\psi(h_v) + \sum_{u \in N(v)}\psi(h_u)\right)$$

$$g(h_{v},\{h_{u}|u\in N(v)\})=\phi\left((1+\epsilon)\psi(h_{v})+\sum_{u\in N(v)}\psi(h_{u})\right)$$

$$a_v^{(k)} = \mathsf{AGGREGATE}^{(k)}(\{h_u^{(k-1)}|u \in N(v)\}) = \sum_{u \in N(v)} \psi(h_u^{(k-1)})$$

$$h_{v}^{(k)} = \mathsf{COMBINE}^{(k)}(h_{v}^{(k-1)}, a_{v}^{(k)}) = \phi\left((1+\epsilon)\psi(h_{v}^{(k-1)}) + a_{v}^{(k)}\right)$$

$$g(h_v, \{h_u|u \in N(v)\}) = \phi\left((1+\epsilon)\psi(h_v) + \sum_{u \in N(v)}\psi(h_u)\right)$$

$$a_v^{(k)} = \mathsf{AGGREGATE}^{(k)}(\{h_u^{(k-1)}|u \in N(v)\}) = \sum_{u \in N(v)} h_u^{(k-1)}$$

$$h_v^{(k)} = \mathsf{COMBINE}^{(k)}(h_v^{(k-1)}, a_v^{(k)}) = \mathsf{MLP}^{(k)}\left((1+\epsilon)h_v^{(k-1)} + a_v^{(k)}\right)$$

$$g(h_v, \{h_u|u \in N(v)\}) = \phi\left((1+\epsilon)\psi(h_v) + \sum_{u \in N(v)}\psi(h_u)\right)$$

$$\begin{aligned} a_v^{(k)} &= \mathsf{AGGREGATE}^{(k)}(\{h_u^{(k-1)}|u \in N(v)\}) = \sum_{u \in N(v)} h_u^{(k-1)} \\ h_v^{(k)} &= \mathsf{COMBINE}^{(k)}(h_v^{(k-1)}, a_v^{(k)}) = \mathsf{MLP}^{(k)}\left((1+\epsilon)h_v^{(k-1)} + a_v^{(k)}\right) \\ h_G &= \mathsf{READOUT}(\{h_v^{(K)}|v \in V\}) = \sum_k^K W \sum_{v \in V} h_v^{(k)} \end{aligned}$$

Experiments

Experiments

name	MUTAG	PROTEINS	NCI1
sum-e	0.883 ± 0.099	0.661 ± 0.028	0.765 ± 0.023
sum	0.889 ± 0.044	0.660 ± 0.037	0.760 ± 0.022
mean-e	0.835 ± 0.069	0.652 ± 0.027	0.716 ± 0.016
mean	0.852 ± 0.066	0.622 ± 0.066	0.717 ± 0.022
max-e	0.813 ± 0.095	0.648 ± 0.035	0.717 ± 0.014
max	0.814 ± 0.092	0.668 ± 0.035	0.724 ± 0.037

Extensions

- Use an irrational number approximation.
- Derive a different COMBINE function that doesn't require learning an irrational number.
- ▶ Force the network to learn injective functions.
- ► Implement variational inference (Bayesian Graph Neural Network) to obtain a posterior over the weights.

 ${\sf Questions?}$