1.4. ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1. Να συμπληρώσετε τα κενά:

i. Av A(x,y), τότε d(A, x'x) =, $d(A, y'y) = ..., \vec{OA} = (..., ...)$.

ii. Αν $\vec{a} = x \cdot \vec{i} + y \cdot \vec{j}$, τότε $\vec{a} = (....,)$ και τα διανύσματα $x \cdot \vec{i}$, $y \cdot \vec{j}$, λέγονται...... του \vec{a} .

iii. Αν $\vec{a} = (x_1, y_1)$ και $\vec{\beta} = (x_2, y_2)$, τότε:

 $\alpha. \vec{a} = \vec{\beta} \Leftrightarrow \dots$

 β . $\vec{a} = \vec{0} \Leftrightarrow \dots, \vec{a} \neq \vec{0} \Leftrightarrow \dots$

 γ . $(\vec{a}, \vec{\beta}: αντίθετα) \Leftrightarrow$

δ. Av $\vec{a} \neq \vec{0}$, ισχύει ότι $\vec{a} || x' x \Leftrightarrow$

 $\vec{a} \parallel y \mid y \Leftrightarrow \dots$

iv. Av \vec{a} =(x_1, y_1) και $\vec{\beta}$ =(x_2, y_2), τότε

 $\alpha. \vec{a} + \vec{\beta} = (\dots, \dots)$

 $\beta. \lambda \cdot \vec{a} = (\dots)$

 γ . $\lambda \cdot \vec{a} + \mu \cdot \vec{\beta} = (\dots, \dots, \dots)$

v. Αν M(x,y) μέσον του AB με $A(x_1,y_1)$ και $B(x_2,y_2)$, τότε

x=..... και y=.....

vii. Αν \vec{a} =(x, y), τότε $|\vec{\alpha}|$ =......

viii. $det(\vec{a}, \vec{\beta}) = 0 \Leftrightarrow$

ix. Αν φ η γωνία που σχηματίζει το διάνυσμα $\vec{\alpha}$ με τον άξονα x'x, τότεφ <

x. Αν $\vec{\alpha}$ =(x, y), $x \neq 0$ και $\vec{\alpha}$ να μην είναι παράλληλο με τον άξονα y'y και φ η γωνία που σχηματίζει με τον άξονα x'x, τότε $\lambda_{\vec{\alpha}}$ =

xi. Αν $\vec{\alpha} = (x, y), x \neq 0$ και $\vec{\alpha} || x' x$, τότε $\lambda_{\vec{\alpha}} = \dots$

xii. Αν τα διανύσματα $\vec{\alpha}$, $\vec{\beta}$ δεν είναι παράλληλα με τον άξονα y'y, τότε $\vec{\alpha} \parallel \vec{\beta} \Leftrightarrow \lambda_{\vec{\alpha}} = \dots$

2. Σωστό- Λάθος

i. Αν A(x,y), τότε d(A, x'x) = |x|

ii. Aν $\vec{OA} = (x, y,)$ τότε A(x,y)

iii. Αν $\vec{\alpha} = (x, y)$, τότε:

 α . $\vec{\alpha} \| x'x \Leftrightarrow x = 0$

 β . $\vec{\alpha} || x'x \Leftrightarrow y=0$

 $\gamma. \vec{\alpha} \| y' y \Leftrightarrow y = 0$

iv. Αν $A(x_1, y_1)$ και $B(x_2, y_2)$, τότε

α. (M(x,y): μέσον του AB) $\Leftrightarrow x_1 + x_2 = 2 \cdot x$ και $y_1 + y_2 = 2 \cdot y$

$$\beta$$
. $\vec{AB} = (x_1 - x_2, y_1 - y_2)$

$$\gamma$$
. (AB) = $\sqrt{((x_1 - y_1)^2 + (x_2 - y_2)^2)}$

ν. Αν ϕ η γωνία που σχηματίζει το $\vec{\alpha}$ σχηματίζει με τον άξονα x'x, τότε

$$\alpha.0 \le \varphi < \pi$$

β.
$$\lambda_{\vec{\alpha}} = \varepsilon \varphi \varphi$$
, $\vec{\alpha}$ δεν είναι παράλληλο με τον άξονα y'y

vi. Αν $\vec{\alpha}$, $\vec{\beta}$ δεν είναι παράλληλα με τον άξονα y'y, τότε $\vec{\alpha} \parallel \vec{\beta} \Leftrightarrow \lambda_{\vec{\alpha}} - \lambda_{\vec{\beta}} = 0$

ΑΣΚΗΣΕΙΣ

- 1. Δίνονται τα διανύσματα $\vec{\alpha} = (-1,2)$ και $\vec{\beta} = (3,1)$.
- i. Να βρείτε τα παρακάτω διανύσματα:

$$\alpha$$
. $\vec{v} = \vec{\alpha} + \vec{\beta}$

$$\beta$$
. $\vec{u} = 2 \cdot \vec{\alpha} - 3 \cdot \vec{\beta} - \vec{v}$

- ii. Να βρείτε το διάνυσμα \vec{x} , όταν: $2 \cdot (\vec{\alpha} \vec{x}) 3 \cdot \vec{\beta} = \vec{x} \vec{\alpha}$.
- 2. Αν A(1,-3) και B(-2,1), να βρείτε το διάνυσμα $\vec{v} = 2 \cdot \vec{OA} 3 \cdot \vec{OB}$, (Ο: η αρχή των αξόνων).
- 3. An $\vec{\alpha} = (x^2 4y, 2z 3)$, $\vec{\beta} = (y^2 + 2x + 5, z)$, na breite ta x, y, z, ώστε τα $\vec{\alpha}$, $\vec{\beta}$ na είναι αντίθετα.
- 4. Να βρείτε το συμμετρικό του σημείου A(1,-2) ως προς το σημείο B(-1,3).
- 5. Αν A(-2,1), B(3,-2) και ισχύει $2\vec{AM} 3\vec{BM} = \vec{0}$, να βρείτε τις συντεταγμένες του M.
- 6. Αν $\vec{\alpha} = (-1,2)$ και $\vec{\beta} = (3,-2)$, να υπολογίσετε το μέτρο:

i.
$$|-2\vec{\alpha}|$$

ii.
$$|3\vec{\alpha}-2\vec{\beta}|$$

- 7. Να βρείτε τις συντεταγμένες του διανύσματος $\vec{\alpha}$, για το οποίο ισχύει η σχέση: $\vec{\alpha} = (-4, -2) + |\vec{\alpha}| \cdot (1, 1)$.
- 8. Δίνεται τρίγωνο ABΓ και AM διάμεσος του. Αν A(-1,3) , B(-2, -3), $\Gamma(2,4)$, να βρείτε:
- i. τις συντεταγμένες του \vec{AM}
- ii. το |*ĀM*|

- 9. Δίνεται τρίγωνο ΑΒΓ με Α(-1,0), Β(2,-3) και Γ(0,1). Να βρείτε το διάνυσμα \vec{v} , για το οποίο ισχύει $2\vec{v} = \vec{AB} |\vec{v}| \vec{A\Gamma}$
- 10. Δίνονται τα διανύσματα $\vec{\alpha}$ =(3,1), $\vec{\beta}$ =(-2,1) και $\vec{\gamma}$ =(12,-5)
- i. Να αποδείξετε ότι τα $\vec{\alpha}$, $\vec{\beta}$ δεν είναι συγγραμικά
- ii. Να γράψετε το διάνυσμα $\vec{\gamma}$ ως γραμμικό συνδυασμό των $\vec{\alpha}$, $\vec{\beta}$.
- 11. Δίνονται τα διανύσματα $\vec{\alpha} = (\lambda 1, \kappa)$, $\vec{\beta} = (\kappa, 2 2\lambda)$ και $\vec{\gamma} = (1, 5)$
- i. Να βρείτε τα κ,λ, ώστε τα $\vec{\alpha}$, $\vec{\beta}$ να είναι συγγραμικά.
- ii. Για λ =2 και κ=-1 να αναλύσετε το $\vec{\gamma}$ σε δύο συνιστώσες παράλληλες στα $\vec{\alpha}$, $\vec{\beta}$.
- 12. Να βρείτε τις τιμές του κ, ώστε τα διανύσματα $\vec{\alpha} = (1, \kappa 1), \vec{\beta} = (k 1, 9)$ να είναι αντίρροπα
- 13. Να βρείτε διάνυσμα αντίρροπο του $\vec{\alpha} = (1,4)$ με μέτρο $\sqrt{17}$.
- 14. Έστω το σύστημα Οχγ και τα σημεία A(3,1), B(5,1). Αν $4\vec{OF} = 2\vec{OA} + \vec{AB}$ και M το μέσον του AB,
- i. να βρείτε τις συντεταγμένες των $\vec{O\Gamma}$ και \vec{OM} .
- ii. να αποδείξετε ότι τα σημεία Ο, Γ, Μ είναι συνευθειακά.
- iii. Να βρείτε το λ, όταν $\vec{OF} = \lambda \cdot \vec{FM}$
- 15. Αν τα σημεία Α,Β,Γ έχουν διανύσματα θέσης ως προς το Ο τα $\vec{\alpha}$ =(-1,3) , $\vec{\beta}$ =(3,5) , $\vec{\gamma}$ =(-3,2) αντίστοιχα, τότε:
- i. να βρείτε τις συντεταγμένες των διανυσμάτων \vec{AB} και $\vec{A\Gamma}$
- ii. να αποδείξετε ότι τα σημεία A, B, Γ είναι συνευθειακά
- iii. να βρείτε τη σχετική θέση των A, B, Γ
- 16. Έστω ότι τα διανύσματα $\vec{\alpha} = (\lambda 1, 4)$, $\vec{\beta} = (1, \lambda 1)$ είναι τα διανύσματα θέσης των σημείων A, B με σημείο αναφοράς το O. Να βρείτε το λ , ώστε τα σημεία O, A, B να είναι συνευθειακά.
- 17. Αν φ η γωνία που σχηματίζει το διάνυσμα $\vec{\alpha}$ με τον άξονα x'x, να βρείτε το συντελεστή διεύθυνσης του διανύσματος $\vec{\alpha}$ στις παρακάτω περιπτώσεις:

i.
$$\varphi = \frac{\pi}{6}$$
 ii. $\varphi = 120^{\circ}$ iii. $\varphi = \frac{3\pi}{4}$ iv. $\varphi = 0$

18. Να βρείτε τη γωνία που σχηματίζει το διάνυσμα \vec{AB} με τον άξονα x'x σε κάθε περίπτωση, αν:

i. A(3,0), B(0,
$$-\sqrt{3}$$
)

19. Δίνονται τα διανύσματα $\vec{\alpha}$ =(2,2) και $\vec{\beta}$ =(1, $-\sqrt{3}$).

- i. Να βρείτε τη γωνία που σχηματίζει καθένα από τα διανύσματα α και β με τον άξονα x'x
- ii. Να βρείτε τη γωνία των διανυσμάτων α και β

20. Δίνονται τα σημεία A(3x,y) και B(4x+3y, 2y). Να βρείτε τα x,y έτσι, ώστε το διάνυσμα \vec{AB} να σχηματίζει με τον άξονα x'x γωνία 135° και να έχει μέτρο $2\sqrt{2}$.