

Global United Technology Services Co., Ltd.

Report No.: GTS201806000119F01

FCC Report (Bluetooth)

Applicant: Soul Electronics Limited

Address of Applicant: 6/F, Enterprise Square Three, 39 Wang Chiu Road, Kowloon

Bay, Hong Kong, China

Soul Electronics Limited Manufacturer/Factory:

Address of 6/F, Enterprise Square Three, 39 Wang Chiu Road, Kowloon

Bay, Hong Kong, China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: X-SHOCK - Absolute True Wireless Earphones

Model No.: X-SHOCK, SX15

Trade Mark: SOUL

FCC ID: 2AAWE-SX15

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: June 04, 2018

Date of Test: June 04, 2018 - June 07, 2018

Date of report issued: June 07, 2018

PASS * Test Result:

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	June 07, 2018	Original

Prepared By:	Tysmilly	Date:	June 07, 2018
	Project Engineer		
Check By:	Andy wa	Date:	June 07, 2018
	Reviewer		

3 Contents

1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5		IERAL INFORMATION	
•	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	TEST FACILITY	
	5.4	TEST LOCATION	
	5.5	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	ADDITIONAL INSTRUCTIONS	
6	TES	T INSTRUMENTS LIST	c
7		T RESULTS AND MEASUREMENT DATA	
1	IES		
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	4.4
	7.3	CONDUCTED LIMISSIONS	11
	1.5	CONDUCTED PEAK OUTPUT POWER	
	7.4		16
		CONDUCTED PEAK OUTPUT POWER	16 20 24
	7.4	CONDUCTED PEAK OUTPUT POWER	16 20 24
	7.4 7.5	CONDUCTED PEAK OUTPUT POWER	16 20 24
	7.4 7.5 7.6	CONDUCTED PEAK OUTPUT POWER	16 20 28 28
	7.4 7.5 7.6 7.7	CONDUCTED PEAK OUTPUT POWER	16 20 28 29 31
	7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED PEAK OUTPUT POWER	
	7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED PEAK OUTPUT POWER	
	7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED PEAK OUTPUT POWER	
	7.4 7.5 7.6 7.7 7.8 7.9 7.9.2	CONDUCTED PEAK OUTPUT POWER	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

•	
Product Name:	X-SHOCK - Absolute True Wireless Earphones
Model No.:	X-SHOCK, SX15
Test Model No:	X-SHOCK
Remark: All above models are The differences are model nar	identical in the same PCB layout, interior structure and electrical circuits. ne for commercial purpose.
Serial No.:	XXXX
Test sample(s) ID:	GTS201806000119-1
Sample(s) Status	Engineer sample
Hardware:	SMBT-0516-1D/2D
Software:	AB1526C_V021_SMBT-0516-8s_20171008_V1.1.airoflashZ
Operation Frequency:	2402MHz-2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Internal Antenna
Antenna gain:	2.0dBi
Power supply:	DC 3.7V

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Other Information Requested by the Customer

None.

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number
APPLE	USB Charger	A1399	N/A

5.7 Additional Instructions

EUT Software Settings:

	Special software is used.
Mode	The software provided by client to enable the EUT under
Mode	transmission condition continuously at specific channel
	frequencies individually.

Power level setup in software					
Test Software Name	me Airoha				
Mode	Channel	Frequency (MHz)	Soft Set		
GFSK, π/4-DQPSK, 8-DPSK	CH01	2402			
	CH40	2441	TX level : default		
	CH79	2480			

Run Software

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 03 2015	July 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 28 2017	June 27 2018		
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 28 2017	June 27 2018		
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 28 2017	June 27 2018		
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 28 2017	June 27 2018		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 28 2017	June 27 2018		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
9	Coaxial Cable	GTS	N/A	GTS213	June 28 2017	June 27 2018		
10	Coaxial Cable	GTS	N/A	GTS211	June 28 2017	June 27 2018		
11	Coaxial cable	GTS	N/A	GTS210	June 28 2017	June 27 2018		
12	Coaxial Cable	GTS	N/A	GTS212	June 28 2017	June 27 2018		
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 28 2017	June 27 2018		
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 28 2017	June 27 2018		
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 28 2017	June 27 2018		
16	Band filter	Amindeon	82346	GTS219	June 28 2017	June 27 2018		
17	Power Meter	Anritsu	ML2495A	GTS540	June 28 2017	June 27 2018		
18	Power Sensor	Anritsu	MA2411B	GTS541	June 28 2017	June 27 2018		
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	June 28 2017	June 27 2018		

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 28 2017	June 27 2018	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 28 2017	June 27 2018	
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 28 2017	June 27 2018	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June 28 2017	June 27 2018	

Gene	General used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Barometer	ChangChun	DYM3	GTS257	June 28 2017	June 27 2018

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is integral antenna, the best case gain of the antenna is 2.0dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	veep time=auto	
Limit:	F (NALL)	Limit (c	dBuV)
	Frequency range (MHz) Quasi-peak		Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm	of the frequency.	
Test setup:	Reference Plane		
	AUX Equipment Test table/Insulation plane Remark EUT: Equipment Under Test L/SN: Line Impedence Stabilization Network Test table height=0.8m		
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement data:

Line:

EUT: X-Shock - Absolute True Wireless Probe: L1

Earphones

Model: X-Shock Power Source: AC120V/60Hz

Mode: BT mode Test by: Bill

Temp./Hum.(%H): 26°C/60%RH

Note:

			Reading	Correct	Measure-			
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector
1		0.4380	25.09	10.03	35.12	57.10	-21.98	QP
2	*	0.4380	15.41	10.03	25.44	47.10	-21.66	AVG
3		1.4260	16.23	9.84	26.07	56.00	-29.93	QP
4		1.4260	10.40	9.84	20.24	46.00	-25.76	AVG
5		2.1860	18.88	9.81	28.69	56.00	-27.31	QP
6		2.1860	9.46	9.81	19.27	46.00	-26.73	AVG
7		3.0300	20.41	9.79	30.20	56.00	-25.80	QP
8		3.0300	10.15	9.79	19.94	46.00	-26.06	AVG
9		7.4500	21.78	9.76	31.54	60.00	-28.46	QP
10		7.4500	11.06	9.76	20.82	50.00	-29.18	AVG
11		16.6420	23.45	9.81	33.26	60.00	-26.74	QP
12		16.6420	14.05	9.81	23.86	50.00	-26.14	AVG

Neutral:

EUT: X-Shock - Absolute True Wireless Probe: N

Earphones

Model: X-Shock Power Source: AC120V/60Hz

Mode: BT mode Test by: Bill

Temp./Hum.(%H): 26°C/60%RH

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBu∨	dBu∀	dB	Detector
1		0.4540	21.34	10.18	31.52	56.80	-25.28	QP
2	*	0.4540	14.43	10.18	24.61	46.80	-22.19	AVG
3		1.4380	19.20	10.01	29.21	56.00	-26.79	QP
4		1.4380	12.07	10.01	22.08	46.00	-23.92	AVG
5		2.1820	21.67	9.99	31.66	56.00	-24.34	QP
6		2.1820	11.63	9.99	21.62	46.00	-24.38	AVG
7		3.0900	20.31	9.98	30.29	56.00	-25.71	QP
8		3.0900	10.60	9.98	20.58	46.00	-25.42	AVG
9		7.4140	22.23	9.95	32.18	60.00	-27.82	QP
10		7.4140	12.17	9.95	22.12	50.00	-27.88	AVG
11		16.7540	20.48	10.02	30.50	60.00	-29.50	QP
12		16.7540	12.57	10.02	22.59	50.00	-27.41	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level +Correct Factor
- 4. Correct Factor = LISN Factor + Cable Loss

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013	
Limit:	30dBm(for GFSK),20.97dBm(for EDR)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	2.04		
GFSK	Middle	2.68	30.00	Pass
	Highest	1.42		
	Lowest	2.79		
π/4-DQPSK	Middle	3.60	20.97	Pass
	Highest	2.32		
	Lowest	3.04		
8-DPSK	Middle	3.62	20.97	Pass
	Highest	2.60		

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plot as follows:

Test mode: GFSK mode

Date: 5.JUN.2018 12:27:39

Lowest channel

Date: 5.JUN.2018 12:28:35

Middle channel

Date: 5.JUN.2018 12:30:00

Highest channel

Test mode: π/4-DQPSK mode

Date: 5.JUN.2018 12:21:43

Lowest channel

Date: 5.JUN.2018 19:30:13

Middle channel

Date: 5.JUN.2018 18:39:09

Highest channel

Test mode: 8-DPSK mode

Date: 5.JUN.2018 12:24:35

Lowest channel

Date: 5.JUN.2018 12:25:22

Middle channel

Date: 5.JUN.2018 18:39:43

Highest channel

7.4 20dB Emission Bandwidth

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.844	
GFSK	Middle	0.848	Pass
	Highest	0.844	
	Lowest	1.242	
π/4-DQPSK	Middle	1.260	Pass
	Highest	1.248	
	Lowest	1.230	
8-DPSK	Middle	1.224	Pass
	Highest	1.224	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 20 of 47

Test plot as follows:

Test mode: GFSK mode

Date: 5.JUN.2018 18:43:15

Lowest channel

Date: 5.JUN.2018 18:45:58

Middle channel

Date: 5.JUN.2018 18:47:37

Highest channel

Test mode: π/4-DQPSK mode

Date: 5.JUN.2018 17:05:45

Lowest channel

Date: 5.JUN.2018 17:07:40

Middle channel

Date: 5.JUN.2018 17:08:58

Highest channel

Test mode: 8-DPSK mode

Date: 5.JUN.2018 17:10:49

Lowest channel

Date: 5.JUN.2018 17:19:21

Middle channel

Date: 5.JUN.2018 17:24:04

Highest channel

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	Lowest	1000	565.33	Pass
GFSK	Middle	1000	565.33	Pass
	Highest	1000	565.33	Pass
	Lowest	1000	840.00	Pass
π/4-DQPSK	Middle	1000	840.00	Pass
	Highest	1000	840.00	Pass
	Lowest	1000	820.00	Pass
8-DPSK	Middle	1008	820.00	Pass
	Highest	1000	820.00	Pass

Note: According to section 7.4

Troto: 7 to octaining to occasion 111					
	Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)		
	GFSK	848	565.33		
	π/4-DQPSK	1260	840.00		
	8-DPSK	1230	820.00		

Test plot as follows:

Modulation mode: GFSK

Date: 5.JUN.2018 15:41:53

Lowest channel

Date: 5.JUN.2018 15:42:52

Middle channel

Date: 5.JUN.2018 15:43:44

Highest channel

Test mode: π/4-DQPSK mode

Date: 5.JUN.2018 19:15:34

Lowest channel

Date: 5.JUN.2018 15:33:10

Middle channel

Date: 5.JUN.2018 15:34:47

Highest channel

Test mode: 8-DPSK mode

Date: 5.JUN.2018 15:38:11

Lowest channel

Date: 5.JUN.2018 15:39:19

Middle channel

Date: 5.JUN.2018 15:40:25

Highest channel

7.6 Hopping Channel Number

<u> </u>		
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass
π/4-DQPSK	79	15	Pass
8-DPSK	79	15	Pass

Date: 5.JUN.2018 12:39:40

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Frequency	Packet	Packet Dwell time(ms)		Result
2441MHz	DH1/2-DH1/3-DH1	142.08	400	Pass
2441MHz	DH3/2-DH3/3-DH3	276.48	400	Pass
2441MHz	DH5/2-DH5/3-DH5	315.73	400	Pass

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2402MHz/2441MHz/2480MHz as blow

DH1/2-DH1/3-DH1 time slot=0.444(ms)*(1600/(2*79))*31.6=142.08ms DH3/2-DH3/3-DH3 time slot=1.728(ms)*(1600/(4*79))*31.6=276.48ms DH5/2-DH5/3-DH5 time slot=2.960(ms)*(1600/(6*79))*31.6=315.73ms

Test plot as follows:

Test channel: 2441MHz

Date: 5..TIIN.2018 12:42:34

DH1/2-DH1/3-DH1

Date: 5.JUN.2018 12:44:05

DH3/2-DH3/3-DH3

Date: 5.JUN.2018 12:45:04

DH5/2-DH5/3-DH5

7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

7.9 Band Edge

7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Test plot as follows:

GFSK Mode:

Test channel:

Lowest channel

No-hopping mode

Hopping mode

Test channel:

Highest channel

Date: 5.JUN.2018 16:05:34

No-hopping mode

Date: 5.JUN.2018 17:02:55

Hopping mode

π/4-DQPSK Mode:

Test channel:

Lowest channel

No-hopping mode

Hopping mode

Test channel:

Highest channel

Date: 5.JUN.2018 18:52:18

Date: 5.JUN.2018 16:44:43

No-hopping mode

Hopping mode

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

8-DPSK Mode:

Test channel:

Lowest channel

No-hopping mode

Hopping mode

Test channel:

Highest channel

Date: 5.JUN.2018 16:57:15 No-hopping mode

Hopping mode

Date: 5.JUN.2018 16:01:02

7.9.2 Radiated Emission Method

7.9.2 Radiated Emission W	etiloa				
Test Requirement:	FCC Part15 C S	ection 15.209	and 15.205		
Test Method:	ANSI C63.10:20	13			
Test Frequency Range:	All restriction bar to 2500MHz ban)MHz to 239	90MHz, 2483.5MHz
Test site:	Measurement Di	istance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
1 tauta.	Frague	Peak	1MHz Limit (dBuV	10Hz	Average Value Remark
Limit:	Freque		54.0		Average Value
	Above 1	GHz -	74.0		Peak Value
Test Setup:	Test Antenna. Im. 4m > 0 Receiver. Preamplifier.				
Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, which tower. 3. The antennal ground to determine the and the rota towar and the rota towar maximum reasonable and with the second the	meter camber position of the position of the position of the set 3 meters where the was mount theight is varied ermine the med vertical polation. The poeted emission and a management of the was turn and ing. The poeted of the latest of th	er. The table was set to Peak Hold Mode. EUT in peak could be stop therwise the early one upone by one u	was rotated liation. The interference of a variable enter to four enter to four enter to four enter to from 1 may rees to 360 mode was arrangents from 1 may rees to 360 mode was a pped and the missions the sing peak, of the interference of the in	r meters above the strength. Both are set to make the ed to its worst case neter to 4 meters of degrees to find the function and Specified 10dB lower than the e peak values of the nat did not have 10dB quasi-peak or
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section	5.2 for details	 S		
Test results:	Pass				

Remark:

During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

Test channel: Lowest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	54.78	-15.05	39.73	74.00	-34.27	Horizontal
2400.00	77.49	-15.01	62.48	74.00	-11.52	Horizontal
2390.00	55.07	-15.05	40.02	74.00	-33.98	Vertical
2400.00	72.15	-15.01	57.14	74.00	-16.86	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	42.37	-15.05	27.32	54.00	-26.68	Horizontal
2400.00	52.89	-15.01	37.88	54.00	-16.12	Horizontal
2390.00	44.81	-15.05	29.76	54.00	-24.24	Vertical
2400.00	45.98	-15.01	30.97	54.00	-23.03	Vertical

Test channel:	Highest
---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	71.20	-14.68	56.52	74.00	-17.48	Horizontal
2500.00	55.04	-14.60	40.44	74.00	-33.56	Horizontal
2483.50	62.35	-14.68	47.67	74.00	-26.33	Vertical
2500.00	55.19	-14.60	40.59	74.00	-33.41	Vertical

Average value:

7 troi ago Taias	· =					
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	42.47	-14.68	27.79	54.00	-26.21	Horizontal
2500.00	42.14	-14.60	27.54	54.00	-26.46	Horizontal
2483.50	41.19	-14.68	26.51	54.00	-27.49	Vertical
2500.00	42.74	-14.60	28.14	54.00	-25.86	Vertical

Remark:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

^{1.} Final Level =Receiver Read level + Correct factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

7.10 Spurious Emission

7.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Remark:

During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

Test channel: Lowest channel

Date: 5.JUN.2018 19:10:0

30MHz~25GHz

Test channel: Middle channel

Date: 5..TUN.2018 19:08:14

30MHz~25GHz

Test channel: Highest channel

Date: 5.JUN.2018 19:06:04

30MHz~25GHz

7.10.2 Radiated Emission Method

7.10.2 Radiated Emission We									
Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Frequency Detector RBW VBW V						Value	
	9KHz-150KHz	Qı	ıasi-peak	2001	Ηz	600H	z	Quasi-peak	
	150KHz-30MHz	Qı	ıasi-peak	9KF	Ηz	30KH	z	Quasi-peak	
	30MHz-1GHz	Qι	ıasi-peak	100K	Hz	300KF	lz	Quasi-peak	
	Above 1GHz		Peak	1MF	Ηz	3MHz	<u>z</u>	Peak	
	Above 1GHz		Peak	1MF	Ηz	10Hz	_	Average	
Limit:	Frequency		Limit (u\	//m)	٧	'alue	N	leasurement Distance	
	0.009MHz-0.490MHz 2400/F(KHz) QP					300m			
	0.490MHz-1.705MHz 2		24000/F(-(KHz)		QP		300m	
	1.705MHz-30MHz		30		QP			30m	
	30MHz-88MHz		100	(QP			
	88MHz-216MHz	<u> </u>	150			QP			
	216MHz-960MH	Z	200			QP	3m		
	960MHz-1GHz		500			QP		3111	
	Above 1GHz		500		Average				
	ABOVE TOTIZ		5000)	F	Peak			
Test setup:	Below 30MHz	,							
	Turntable EUT 0.8 m Test Receiver Coaxial Cable								
	Below 1GHz								

Report No.: GTS201806000119F01

Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ Below 1GHz Horizontal:

EUT: X-Shock - Absolute True Wireless Polarziation: Horizontal

Earphones

Model: X-Shock Power Source: AC120V/60Hz

Mode: BT mode Test by: Bill

Temp./Hum.(%H): 26℃/60%RH

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
1	*	33.4448	57.36	-33.09	24.27	40.00	-15.73	QP
2		84.7018	55.89	-39.02	16.87	40.00	-23.13	QP
3		137.4200	49.54	-35.38	14.16	43.50	-29.34	QP
4		257.4221	54.18	-36.16	18.02	46.00	-27.98	QP
5		410.3824	54.98	-32.17	22.81	46.00	-23.19	QP
6		821.7103	51.22	-24.79	26.43	46.00	-19.57	QP

Vertical:

EUT: X-Shock - Absolute True Wireless Polarziation: Vertical

Earphones

Model: X-Shock Power Source: AC120V/60Hz

Mode: BT mode Test by: Bill

Temp./Hum.(%H): 26°C/60%RH

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		32.1794	64.65	-32.98	31.67	40.00	-8.33	QP
2		67.2022	59.09	-36.88	22.21	40.00	-17.79	QP
3		125.8863	57.69	-36.16	21.53	43.50	-21.97	QP
4		256.5210	59.19	-36.19	23.00	46.00	-23.00	QP
5	*	410.3824	71.63	-32.17	39.46	46.00	-6.54	QP
6		821.7103	57.08	-24.79	32.29	46.00	-13.71	QP

Above 1GHz

Test channel:	Lowest
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	58.72	-7.43	51.29	74.00	-22.71	Vertical
7206.00	57.36	-2.42	54.94	74.00	-19.06	Vertical
9608.00	58.03	-2.38	55.65	74.00	-18.35	Vertical
12010.00	*			74.00		Vertical
14412.00	*			74.00		Vertical
4804.00	59.87	-7.43	52.44	74.00	-21.56	Horizontal
7206.00	58.71	-2.42	56.29	74.00	-17.71	Horizontal
9608.00	57.66	-2.38	55.28	74.00	-18.72	Horizontal
12010.00	*			74.00		Horizontal
14412.00	*			74.00		Horizontal

Average value:

- 111 OT M. 90 T M.						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	48.36	-7.43	40.93	54.00	-13.07	Vertical
7206.00	47.03	-2.42	44.61	54.00	-9.39	Vertical
9608.00	46.03	-2.38	43.65	54.00	-10.35	Vertical
12010.00	*			54.00		Vertical
14412.00	*			54.00		Vertical
4804.00	48.54	-7.43	41.11	54.00	-12.89	Horizontal
7206.00	47.86	-2.42	45.44	54.00	-8.56	Horizontal
9608.00	46.55	-2.38	44.17	54.00	-9.83	Horizontal
12010.00	*			54.00		Horizontal
14412.00	*			54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Middle

Peak value:

					_	
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	59.75	-7.49	52.26	74.00	-21.74	Vertical
7323.00	58.85	-2.40	56.45	74.00	-17.55	Vertical
9764.00	58.66	-2.38	56.28	74.00	-17.72	Vertical
12205.00	*			74.00		Vertical
14646.00	*			74.00		Vertical
4882.00	60.03	-7.49	52.54	74.00	-21.46	Horizontal
7323.00	58.76	-2.40	56.36	74.00	-17.64	Horizontal
9764.00	57.64	-2.38	55.26	74.00	-18.74	Horizontal
12205.00	*			74.00		Horizontal
14646.00	*			74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	52.31	-7.49	44.82	54.00	-9.18	Vertical
7323.00	48.01	-2.40	45.61	54.00	-8.39	Vertical
9764.00	48.96	-2.38	46.58	54.00	-7.42	Vertical
12205.00	*			54.00		Vertical
14646.00	*			54.00		Vertical
4882.00	48.42	-7.49	40.93	54.00	-13.07	Horizontal
7323.00	47.85	-2.40	45.45	54.00	-8.55	Horizontal
9764.00	49.61	-2.38	47.23	54.00	-6.77	Horizontal
12205.00	*			54.00		Horizontal
14646.00	*			54.00		Horizontal

Remark:

- 1. Final Level = Receiver Read level + Correct facto
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:	Highest
---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	59.46	-7.47	51.99	74.00	-22.01	Vertical
7440.00	58.45	-2.45	56.00	74.00	-18.00	Vertical
9920.00	57.74	-2.37	55.37	74.00	-18.63	Vertical
12400.00	*			74.00		Vertical
14880.00	*			74.00		Vertical
4960.00	60.42	-7.47	52.95	74.00	-21.05	Horizontal
7440.00	59.53	-2.45	57.08	74.00	-16.92	Horizontal
9920.00	59.13	-2.37	56.76	74.00	-17.24	Horizontal
12400.00	*			74.00		Horizontal
14880.00	*			74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	47.85	-7.47	40.38	54.00	-13.62	Vertical
7440.00	48.37	-2.45	45.92	54.00	-8.08	Vertical
9920.00	48.84	-2.37	46.47	54.00	-7.53	Vertical
12400.00	*			54.00		Vertical
14880.00	*			54.00		Vertical
4960.00	51.69	-7.47	44.22	54.00	-9.78	Horizontal
7440.00	50.27	-2.45	47.82	54.00	-6.18	Horizontal
9920.00	47.96	-2.37	45.59	54.00	-8.41	Horizontal
12400.00	*			54.00		Horizontal
14880.00	*			54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

----End-----