Mulțimi

€ apartine ∉ nu apartine ⊂ inclusă ⊃ include

Φ-multimea vidă (nu are niciun element) V-oricare. ∃-există -Cardinalul unei mulțimi=câte elemente are acea mulțime.

-Multimi disjuncte = care nu au elemente comune

 \mathbf{N} – naturale : 0,1,2,3,... \mathbf{N}^* – naturale fără 0 (nenule) : 1,2,3,...

 $Z - \hat{i}ntregi: -4, 0, 9, +12$

diferența $A-B=\{2;4\}$

Q – rationale: $\frac{3}{5}$; –4; 3; –6,2; 3,(4) **R** – reale: $\sqrt{7}$; $\frac{3}{5}$; –4; 3; 3,(4) Iraţionale: $(\mathbf{R} - \mathbf{Q}) \sqrt{7}$; $-\sqrt{2}$; π

Operații cu mulțimi $A = \{2, 4, 7\}, B = \{7, 9\}$

reuniunea $A \cup B = \{2, 4, 7, 9\}$ intersecția $A \cap B = \{7\}$ produs cartezian $A \times B =$

{(2.7) (2.9) (4.7) (4.9) (7.7) (7.9)}

Numere naturale

Numere consecutive = unul după altul Ex. 4:5

Număr **par** (cu soț) 0,2,4,6,8,10,...; are forma 2k

-Număr **impar** (fără soț) 1,3,5,7,9,11,...; are forma 2k+1 $\overline{xy} = 10x + y$ $\overline{abc} = 100a + 10b + c$ $\overline{abcd} = 1000a + 100b + 10c + d$ $\overline{xy} = 10x + y$

Pătratul lui 7 este $7^2 = 49$; **cubul** lui 2 este $2^3 = 8$

-Pătrat perfect – este egal cu pătratul unui număr natural: 0,1,4,9,16,25, Un pătrat perfect nu poate avea ultima cifră 2, 3, 7 sau 8

-Cub perfect - este egal cu cubul unui număr natural: 0, 1, 8, 27,...

-Teorema împărțirii cu rest D=I·C+R, R<I D-deimpărțit, I-împărțitor

-Sum a lui Gauss $|1+2+3+.....+n = \frac{n \cdot (n+1)}{n}|$

Factor comun

-Sume de puteri

 $S = 3 + 3^2 + 3^3 + ... + 3^{25} \mid \cdot 3 \Rightarrow 3S = 3^2 + 3^3 + ... + 3^{25} + 3^{26} \Rightarrow 3S = S - 3 + 3^{26} \Rightarrow S = \frac{3^{26} - 3^{26} +$

3x+3y=3(x+y); 7a+28=7(a+4); 10n-5=5(2n-1);

Transformarea fracțiilor zecimale

-Finite $0,7 = \frac{7}{10}$; $0,207 = \frac{207}{1000}$; $3,45 = \frac{345}{100}$

Periodice mixte $0.13(5) = \frac{135 - 13}{900} = \frac{122}{900}$

Formule de calcul

-Periodice simple $0,(73) = \frac{73}{99}; 2,(5) = 2\frac{5}{9} = \frac{23}{9}$

 $(a+b)(a-b) = a^2 - b^2$ $(3x-4)(3x+4)=9x^2-16$

 $(a+b)^2 = a^2 + 2ab + b^2$ $(2y+3)^2=4y^2+12y+9$

 $(a-b)^2 = a^2 - 2ab + b^2$ (3n-4)²=9n²-24n+16

 $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$

Formula radicalilor compuși

 $\sqrt{a \pm \sqrt{b}} = \sqrt{\frac{a + \sqrt{a^2 - b}}{2}} \pm \sqrt{\frac{a - \sqrt{a^2 - b}}{2}}$

-o zecime prin lipsă=3,1; o zecime prin adaus=3,2

o sutime prin lipsă=3,14; o sutime prin adaus=3,15

Partea întreagă a unui număr x este [x] cel mai mare număi

întreg $\le x$. Ex. [3,7] = 3; [6] = 6; [0,25] = 0; [-3,1] = -4

Partea fracționară a lui x este definită astfel : $\{X\} = x - [x]$

3⊦-----M

 $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$

 $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$

 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

Fie numărul 3.1476. Aproximat cu:

Exemple

8-8k=8(1-k); $x^3+x^2=x^2(x+1)$; $4y-6y^5=2y(2-3y^4)$

Reguli de calcul

-Fracții zecimale 1,37+52,4=53,77; 3-1,2=1,8; $3,87\cdot10=38,7$ $0,02\cdot1000=20$; 2,3.4,25=9,775; 36,2:10=3,62; 2,7:100=0,027; 3,6:4=0,9; 0,26:0,2=2,6:2=1,3

-Numere întregi 5-8=-3; -4-3=-7; -7+2=-5; -7+9=2; 5-(-2)=-5+2=-3 $3 \cdot (-5) = -15$; $(-4) \cdot (+2) = -8$; $(-2) \cdot (-3) = 6$; 8 : (-4) = -2; (-5) : (-1) = 5;

Numere pozitive: +12; 3;.... Numere negative: -23;-2,...

Opusul lui 35 este -35; opusul lui -8 este 8.

Puteri $2^7 \cdot 2^5 = 2^{12}$; $5^{10} : 5^3 = 5^7$; $(7^3)^4 = 7^{12}$; $(2n)^3 = 8n^3$; $(-3)^2 = 9$;

-Fracții ordinare $\frac{1}{6} + \frac{5}{4} = \frac{2^1}{6} + \frac{3^1}{4} = \frac{17}{12}$; $\frac{7}{6} \cdot \frac{5}{4} = \frac{35}{24}$; $\frac{7}{2} \cdot \frac{5}{3} = \frac{7}{2} \cdot \frac{3}{5} = \frac{21}{10}$; $\left(\frac{2}{3}\right)^5 = \frac{2^5}{3^5}$ Inversul lui 35 este $\frac{1}{35}$; inversul lui $\frac{3}{7}$ este $\frac{7}{3}$ $\sqrt{\frac{19,00,96}{83\cdot 3 = 249}}$ Fracții etajate $\frac{3}{7} \cdot \frac{4}{5} = \frac{3}{7} \cdot \frac{5}{5} = \frac{3}{7} \cdot \frac{5}{4} = \frac{15}{28}$

Radicali $\sqrt{49} = 7$; $\sqrt{813} \cdot \sqrt{813} = 813$; $\sqrt{7} \cdot \sqrt{5} = \sqrt{35}$; $\sqrt{374^2} = 374$

Scoaterea factorilor de sub radical
$$\sqrt{63} = \sqrt{9 \cdot 7} = \sqrt{9} \cdot \sqrt{7} = 3\sqrt{7}$$

Rationalizarea numitorului
$$\frac{3}{\sqrt{2}} = \frac{\sqrt{5}}{\sqrt{2}} = \frac{3\sqrt{2}}{2}; \frac{4}{3-\sqrt{2}} = \frac{3 \cdot \sqrt{5}}{3-\sqrt{2}} = \frac{12+4\sqrt{2}}{7}$$

-Calcul algebric 5x + 2x = 7x; 2y - 9y = -7y; $-3n^2 - 5n^2 = -8n^2$; a + a = 2a; $c \cdot c = c^2$; $-3n \cdot 2n^3 = -6n^4$; 3(2n-7) = 6n-21; (a+b)(c+d) = ac+ad+bc+bd; $(x^2-3)(x-4)=x^3-4x^2-3x+12$ +(-5+x-y)=-5+x-y; -(a-b+3)=-a+b-3

Trecerea termenilor dintr-un membru in altul la egalitati: termenii se pot trece dintr-un membru in celalalt cu semn schimbat x-a+b=c-y+z => x+y-z=c+a-b

Modul (valoare absolută)

|6|=6; |-3|=3. în general, |x| =

$$\begin{cases}
x, \text{ dacă } x \ge 0 \\
-x, \text{ dacă } x < 0
\end{cases}$$
Ex. |3 - √2| = 3 - √2, deoarece 3 - √2 ≥ 0
|1 - √2| = -(1 - √2) = √2 - 1, deoarece 1 - √2 < 0

|6| = 6; |-3| = 3. În general, |x| =
$$\begin{cases} x, \text{ data } x \ge 0 \\ -x, \text{ dată } x < 0 \end{cases}$$
Ex. $|3 - \sqrt{2}| = 3 - \sqrt{2}$, deoarece $3 - \sqrt{2} \ge 0$
 $|1 - \sqrt{2}| = (1 - \sqrt{2}) = \sqrt{2} - 1$, deoarece $1 - \sqrt{2} < 0$

 $\{x \in \mathbb{R} / 2 \le x \le 5\} = [2;5]$ (interval închis)

{x∈R / x>-1}=(-1:+∞) (-1...plus infinit) {x∈R / x≤6}=(-∞;6] (minus infinit...6)

{x∈R / -5<x<3}=(-5;3) (interval deschis) -

$$\frac{\text{C om p a r ă r i}}{\frac{7}{5} > \frac{4}{5}; \quad \frac{9}{2} > \frac{9}{7}; \quad \frac{9}{9} < 1 } \\ -9 < -7; \quad -5 < 2; \quad -23 < 0 \\ 2, 4 > 2, 39; \quad -4, 1 < -3, 82$$

$$\sqrt{3} > 1; \quad -\sqrt{6} > -\sqrt{10}$$

Ex. $\{3,7\} = 0,7$; $\{4\} = 0$; $\{0,2\} = 0,2$; $\{-3,1\} = 0,9$

Sisteme de ecuații

-Rezolvare prin metoda substituției

Aproximări

 $\begin{cases} x - y = 4 & \begin{cases} x = 4 + y \end{cases} & \begin{cases} x = 4 + y \end{cases}$ $\int x = 4 + y \quad \int x = 5$ 2x + y = 11 2(4 + y) + y = 11 8 + 3y = 11 3y = 3 y = 1

-Rezolvare prin metoda reducerii

 $\begin{bmatrix} a - b = 4 \\ \cdot 2 \end{bmatrix} \cdot 2 = 8$ (se adună ecuațiile) 3a + 2b = 223a + 2b = 225a / = 30 $\Rightarrow a = 6 \Rightarrow b = 4$

Descompunerea expresiilor în factori

$$x^3 - 5x^2 = x^2(x-5)$$
; $(n-4)^5 + (n-4)^4 = (n-4)^4(n-4+1)$

$$y^2 - 25 = (y - 5)(y + 5); 9x^2 - 6x + 1 = (3x - 1)^2$$

$$2n^{3} + 2n^{2} + 7n + 7 = 2n^{2}(n+1) + 7(n+1) = (n+1)(2n^{2} + 7)$$
$$x^{2} + 6x + 8 = x^{2} + 4x + 2x + 8 = x(x+4) + 2(x+4) = (x+4)(x+2)$$

Ecuația de gradul doi Forma generală $ax^2 +bx+c=0$.

Rezolvare: calculăm Δ (**delta**), $\Delta = b^2 - 4ac$. Dacă Δ<0, ecuația nu are soluții.

Dacă $\Delta > 0$, soluțiile sunt: $x_1 = \frac{-b + \sqrt{\Delta}}{2a}, x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

Sistem de axe

Ox- axa absciselor Oy- axa ordonatelor

5 și 3 sunt coordonatele punctului M. Numărul 5 este abscisa, iar 3 este ordonata lui M.

Unităti de măsură

Lungime	Arie	Volum	Capacitate	Masă	Timp
3 m=30 dm	7 m ² =700 dm ²	5 m ³ =5000 dm ³	1 l=1 dm ³	4 kg=4000 g	1 oră=60 minute
0,7 m=70 cm	0,05m ² =500 cm ²	0,03 cm ³ =30 mm ³	3 l=3000 ml	0,5 dag=5 g	1 minut=60 secunde
2 km=2000 m	2 km ² =200 hm ²	0,05 km ³ =50 hm ³	0,3 dal=3 l	7 cg=70 mg	1 deceniu=10 ani
3,5 cm=35 mm	1 ar=1dam ² =100 m ²	1 dm ³ =1000 cm ³	0,2 hl=20 l	2 hg=200 g	1 secol=100 ani
2,7 dam=0,27 hm	1 ha=1hm2=100 ari	1 m ³ =10 ⁹ mm ³	125 ml=0,125 l	6,23 g=62,3 dg	1 mileniu=1000 ani
1,3 mm=0,13 cm	0,02 ha =2 ari= 200 m ²	3 mm ³ =0,003 cm ³	0,07 kl=70 l	3 t=3000 kg	1/4 ore=15minute
5,7 hm=570 m	0,04 m ² =400 cm ²	0,25 dam3=250 m3	3 cl=0,3 dl	34 dg=0,34 g	½ ore=30 minute

Divizibilitate

http://sorinborodi.ro/

2 | 18 (2 divide pe 18) 18:3 (18 este divizibil cu 3)

-Divizorii lui 18 sunt D, = {1,2,3,6,9,18}

-Multiplii lui 18 sunt M₁₈={0,18,36,54,...}

-număr **nrim** -se divide doar cu 1 și el însuși: 2 3 5 7 11 număr compus -care nu este prim: 4, 6, 8, 9, 10,....

-Cel mai mare divizor comun (8;12) = 4

Numere prime între ele - au c.m.m.d.c.=1 (ex. 15 și 8) -Cel mai mic multiplu comun [8;12] = 24

-Dacă $a = 2^5 \cdot 3 \cdot 7^2$ și $b = 2^6 \cdot 5 \cdot 7$, atunci a și b au

c.m.m.d.c.= $2^5 \cdot 7$ și **c.m.m.m.c.**= $2^6 \cdot 3 \cdot 7^2 \cdot 5$

Relatia între c.m.m.d.c. si c.m.m.m.c. (a;b)•[a;b]=a•b

-Câți divizori naturali are un număr: dacă $n = 2^5 \cdot 3^9 \cdot 7^7$ atunci n are $(5+1)\cdot(9+1)\cdot(2+1)=180$ divizori naturali

Criterii de divizibilitate -cu 2: dacă are ultima cifră 0,2,4,6 sau 8 (ex. 756; 1934)

-cu 3: dacă suma cifrelor se divide cu 3 (ex. 261:1005)

-cu 4 : dacă nr. format din ultimele 2 cifre se divide cu 4 (ex. 912)

-cu 5: dacă are ultima cifră 0 sau 5 (ex. 295;1330)

-cu 9: dacă suma cifrelor se divide cu 9 (ex. 495: 8001)

-cu 10: dacă are ultima cifră 0 (ex. 730; 1900)

-cu 25 : dacă nr.format din ultimele 2 cifre se divide cu 25 (ex. 375) Daca a si b sunt prime între ele, daca n;a si n;b, atunci n;(a•b)

$\frac{\mathbf{Fracții}}{\mathbf{b}}$ $\frac{\mathbf{a}}{\mathbf{b}}$ a - numărător, b - numitor

subunitare; au numitorul > numărătorul. Ex. 2 supraunitare; au numitorul < numărătorul. Ex.

echiunitare; au numitorul = numărătorul. Ex. $\frac{5}{5}$; $\frac{341}{341}$ ireductibile, care nu se pot simplifica. Ex.

14 25 reductibile, care se pot simplifica. Ex. $\frac{15^{(3)}}{10^{-2}} = \frac{5}{5}$

echivalente $\frac{2}{3} = \frac{8}{12}$; se recunosc astfel: $2 \cdot 12 = 3 \cdot 8$

Procente 7% din 300 =
$$\frac{7}{100}$$
 · 300 = 21

Raport raportul numerelor 3 și 5 este $\frac{3}{5}$

Proportie – o egalitate de două rapoarte (ex. $\frac{2}{3} = \frac{4}{6}$) 2.3.4.6 se numesc termenii proportiei 3 și 4 sunt mezii; 2 și 6 sunt extremii.

Proprietatea fundamentală a unei proporții: Proprietatea fundamentata a unei proporții.

produsul mezilor este egal cu produsul extremilor $\frac{2}{3} = \frac{4}{6} = 3 \cdot 4 = 2 \cdot 6$

Numerele x, y, z sunt direct proportionale cu 3, 5, 9 dacă $\frac{x}{3} = \frac{y}{5} = \frac{z}{9}$ Numerele x, y, z sunt invers proportionale cu 2, 4, 7 dacă $\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$

Regula de trei simpla

a) Daca marimile sunt direct proportionale

Ex. 3 robinete pot umple un bazin in 20 ore. Atunci 5 robinete, In cat timp pot umple bazinul?

3 rob......20 ore = 3.20 / 5 = 12 ore

<u>Probabilitatea unui eveniment</u> = $\frac{\text{nr.cazuri favorabile}}{\text{nr.cazuri posibile}}$

<u>Medii</u> Aritmetică $m_a = \frac{x+y}{2}$; Geometrică $m_g = \sqrt{xy}$ Armonică $m_h = \frac{2xy}{x+y}$ Inegalitatea mediilor $m_h \le m_g \le m_a$

Media aritmetică ponderată a numerelor 10; 12; 9, având ponderile 3; 6; 5 este $m_{ab} = \frac{10 \cdot 3 + 12 \cdot 6 + 9 \cdot 5}{2}$

Spunem că am definit o funcție pe mulțimea A cu valori în mulțimea B dacă facem ca fiecărui element din A să-i corespundă un singur element în B.

f: A→B (citim "funcția f definită pe A cu valori în B")

A - domeniul de definitie . B - domeniul de valori Funcție liniară (de gradul I) este o funcție de forma $f: \mathbf{R} \to \mathbf{R}, f(x) = ax + b$.

Functii

Ex. f(x) = 3x - 5

Reprezentare grafică. Fie f: $\mathbf{R} \to \mathbf{R}$, f(x) = 3x - 5Calcularea coordonatelor punctelor de intersecție a graficului cu axele:

-cu axa Oy se calculează f(0); $f(0) = -5 \Rightarrow B(0, -5)$

-cu axa Ox se rezolvă ecuația f(x) = 0; $3x - 5 = 0 \Rightarrow x = \frac{5}{3} \Rightarrow A(\frac{5}{3}; 0)$

Daca punctul P(u,v) se afla pe graficul functiei f, atunci f(u)=v. Calcularea coordonatelor punctului de intersecție a graficelor a două funcții f și g: se rezolvă ecuația f(x) = g(x)

Determinarea functiei de gradul I cunoscând doua puncte ale graficului: Ex. Daca graficul trece prin punctele M(1;7) si N(2;9). $f(x)=ax+b \Rightarrow f(1)=7, f(2)=9. \text{ Se rezolva sistemul de ecuatii} \begin{cases} a+b=7\\ 2a+b=9 \end{cases}$ $\begin{cases} a+b=7\\ 2a+b=9 \end{cases}$

-teorema catetei: $AB = \sqrt{BD \cdot BC}$ -teorema lui Pitagora : $AB^2 + AC^2 = BC^2$	ph
-unghiul la centru <aob are="" măsura<br="">egală cu a arcului cuprins între laturi</aob>	$A \angle AOB = \widehat{AB}$
-unghiul înscris < AMB are măsura jumătate din a arcului cuprins între laturi -unghiul format de o tangentă cu o coardă este jumătate din arcul subântins de coardă	$B^{\angle AMB} = \frac{\widehat{AB}}{2}$
raza este perpendiculară pe tangentă	g / B
-diametrul perpendicular pe o coardă înjumătățește și coarda și arcul.	$^{\wedge}(\bigcirc)$
cercuri secante cercuri tangente cercuri tangente cerc	curi concentrice
-puncte conciclice : care se afla pe un cerc	
Trigonometrie	30° 45° 60°

raportul ariilor a două triunghiuri asemenea este egal cu

pătratul raportului de asemănare

-teorema **bisectoarei**: dacă AD este bisectoare, $\frac{AB}{BD} = \frac{AC}{DC}$

Într-un \(\Delta\) dreptunghic: teorema înălțimii: $AD = \sqrt{BD \cdot DC}$

Trigonometrie		30° 45° 60°
ip ,	$ \begin{aligned} &\text{osinus} = \frac{\text{cat.al.}}{\text{ip}} \\ &\text{ngenta} = \frac{\text{cat.al.}}{\text{cat.op.}} \\ &\text{tg } u = \frac{\sin u}{\cos u} \end{aligned} $	$ \begin{array}{c cccc} \sin & \frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{2} \\ \cos & \frac{\sqrt{3}}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} \\ tg & \frac{\sqrt{3}}{3} & 1 & \sqrt{3} \end{array} $

Puncte și drepte

ВС -puncte coliniare: sunt situate pe o dreaptă –drepte concurente: drepte care se intersectează

-punct de concurență: punctul în care se intersectează două drepte

-semidreapta deschisă: (OA O∉(OA –semidreapta închisă: [OA O∈[OA

-segmente **congruente**: au lungimi egale [AB]≡[CD] -drepte perpendiculare: formează un unghi drept

-drepte paralele: sunt în același plan și nu se intersectează

Axioma lui Euclid:

printr-un punct exterior unei drepte se poate duce o singură paralelă la dreapta dată.

Linii importante în triunghi

-Bisectoarea: împarte un unghi în două unghiuri congruente. Bisectoarele sunt concurente în I - centrul cercului înscris

a∩b={P}

O - originea

Mediatoarea: perpendiculară pe mijlocul unei laturi. Mediatoarele sunt concurente

în O - centrul cercului circumscris La triunghiul obtuzunghic, O este situat în exterior

La triunghiul dreptunghic, O este în mijlocul ipotenuzei.

-Înălțimea: perpendiculara

dintr-un vârf pe latura opusă. Înăltimile sunt concurente în H - ortocentrul. La triunghiul obtuzunghic, H este în exterior.

 $GM = \frac{1}{3}AM$ Centrul de greutate este la $\frac{1}{3}$ de bază și $\frac{2}{3}$ de vârf:

Arii și alte formule

Triunghi $A_{\Delta} = \frac{b \cdot h}{2}$; $A_{\Delta} = \frac{ab \sin C}{2}$; $A_{\Delta} = \sqrt{p(p-a)(p-b)(p-c)}$, unde p este semiperimetrul, $p = \frac{a+b+c}{2}$ (formula lui Heron)

Triunghi echilateral: înălțimea $h = \frac{a\sqrt{3}}{2}$; aria $A_{Acch.} = \frac{a^2\sqrt{3}}{4}$

Triunghi **dreptunghic**: înălțimea $h = \frac{c_1 \cdot c_2}{in}$; aria $A_{\Delta dr} = \frac{c_1 \cdot c_2}{2}$

Linia mijlocie în triunghi -unește mijloacele a două laturi; p Este paralelă cu a treia latură și este jumătate din aceasta.

Raza cercului înscris în triunghi $r = \frac{A}{}$ p (A-aria, p-semiperimetrul)

diag. $d=l\sqrt{2}$

Paralelogram Dreptunghi Romb

 $D \cdot d$ A=L•I Trapez $A = \frac{(B+b) \cdot h}{}$ sau l_m• h

Linia mijlocie în trapez

-unește mijloacele laturilor neparalele; Este paralelă cu bazele și este egală cu media lor aritmetică: $l_m = \frac{B+b}{2}$

Pătrat

Segmentul care uneste mijloacele diagonalelor unui trapez este egal cu $\frac{B-b}{c}$

Poligon regulat -are toate laturile congruente si unghiurile congruente n - nr. laturi apotema $a_n = R \cos \frac{180^\circ}{n}$; latura $l_n = 2R \sin \frac{180^\circ}{n}$ wL° Măsura unghiului $u_n = \frac{(n-2)\cdot 180^{\circ}}{2}$; Nr. diagonalelor = $\frac{n(n-3)}{2}$ OM-apotema

Cerc Lungimea (circumferința) $L = 2\pi R$, Aria $A = \pi R^2$, $\pi \approx 3{,}14159265$.

Figuri geometrice

http://sorinborodi.ro/

Triunghi

isoscel: are două laturi congruente echilateral: are toate laturile congruente oarecare: are laturi de lungimi diferite ascuțitunghic: toate unghiurile ascuțite

obtuzunghic: are un unghi obtuz dreptunghic: are un unghi drept catete: laturile care formează unghiul drept ipotenuza: latura opusă unghiului drept

- Paralelogram : are laturile opuse paralele

Paralelogram: are laturile opuse paral Proprietățile paralelogramului:
 laturile opuse sunt congruente
 unghiurile opuse sunt congruente, iar unghiurile alăturate sunt suplementare
 diagonalele au același mijloc

Dreptunghiul: paralelogramul care are un unghi drept – diagonalele dreptunghiului sunt congruente

Rombul: paralelogramul care are două laturi alăturate congruente - diagonalele rombului sunt perpendiculare și sunt bisectoare ale unghiurilor

Pătratul: are toate proprietățile dreptunghiului și rombului

Trapezul: are două laturi paralele și celelalte două neparalele

Trapez isoscel are laturile neparalele congruente

Trapez dreptunghic are un unghi drept

Geometrie in spatiu

O dreapta este perpendiculara pe un plan daca este perpendiculara pe doua drepte concurente din acel plan -Daca o dreapta este perpendiculara pe un plan, atunci es este perpendiculara pe toate dreptele din acel plan.

teorema celor trei perpendiculare : $AM \perp \alpha, MB \perp d \Rightarrow AB \perp d$

Unghiul dintre o dreapta si un plan este egal cu unghiul format de dreapta cu proiectia ei pe plan.

ria proiectiei pe un plan a unei figuri cu aria A este egala cu A-cos u, unde u este unghiul format de planul figurii cu planul de proiectie.

Poli<u>edre</u>

 $\overline{\mathbf{Prisma}} \ V = A_{\mathrm{B}} \cdot \mathbf{h}$

 $A_{\rm L} = {\rm sum}\,a$ ariilor fețelor laterale $A_L = P_R \cdot h$

 $A_L = P_B \cdot n$ Aria totală $A_T = A_L + 2A_B$

Diagonala paralelipipedului

 $d = \sqrt{a^2 + b^2 + c^2}$ Diagonala cubului $d = l\sqrt{3}$

Piramida $V = \frac{A_B \cdot h}{3}$

 $A_{\rm L} = {\rm sum \, a \, ariilor \, fetelor \, laterale}$ $A_L = \frac{P_B \cdot ap}{}$

Aria totală $A_{\rm T} = A_{\rm L} + A_{\rm B}$ apotemă=înălțimea unei fețe laterale

Volumul tetraedrului regulat $\frac{a^3\sqrt{2}}{1}$

Trunchiul de piramidă

 $V = \frac{h}{3}(A_{\scriptscriptstyle B} + A_{\scriptscriptstyle b} + \sqrt{A_{\scriptscriptstyle B} \cdot A_{\scriptscriptstyle b}})$ $A_{\scriptscriptstyle L} = \text{sum a ariilor fețelor laterale}$ $A_L = \frac{(P_B + P_b) \cdot ap}{2}$ Aria totală $A_{\rm T}=A_{\rm L}+A_{\rm B}+A_b$

Corpuri rotunde

Cilindrul $A_L = 2\pi RG$

G=h

unghiul sectorului desfășurării $u = \frac{360^{\circ}R}{1}$

 $A_L = \pi G (R + r)$ $A_T = A_L + A_B + A_b$ $V = \frac{\pi h}{3} (R^2 + r^2 + Rr)$

