

TABLE OF CONTENTS

01

OVERVIEW

02

EXPLORATORY DATA
ANALYSIS

03

JOB CATEGORY
RECOMMENDATION

04

JOB DESCRIPTION
MATCH

05

END USER INTERFACE:
DASHBOARD

06

RECOMMENDATIONS & LIMITATIONS

Resume is the first impression

What are the Goals?

- What job category fits your resume?
- How your resume matches your desired job?

What are the Tools?

TextHero WordCloud Lexical diversity Summarization Auto Gluon Modeling

Recommendations

ML Models Text similarity (Cosine) Dashboard \circ

UZ EXPLORATORY

DATA ANALYSIS

ABOUT OUR DATASET

2 Columns

25 Categories

962 Resume

Category and Resume

'Data Science', 'HR', 'Web Designing', 'Mechanical Engineer', 'Civil Engineer', 'Java Developer', 'Business Analyst', 'Operations Manager', 'Python Developer'......

Source: https://www.kaggle.com/code/jillanisofttech/resume-screening-with-knn-ml-99

Category vs. Resume

Category vs. No. of Words (TextHero)

PCA

Top Words

```
#most common words of wach category
NUM_TOP_WORDS = 6
df1.groupby('Category')['Resume'].apply(lambda x: hero.top_words(x)[:NUM_TOP_WORDS])
```

Data Science	data exprience months aC learning python	396 248 240 236 204 176
Business Analyst	aC business test description company	482 252 214 168 168
		134

Java Developer	java exprience months developer details aC	636 408 372 288 276 270
DevOps Engineer	aC exprience project months shell team	784 424 420 386 257 215

Top Words

```
common_words = ['aC/','university','+-','bo','|','test']

for i in range(len(df1)):
    df1['Resume'][i] = df1['Resume'][i].replace('exprience', 'experience')
    for j in common_words:
        df1['Resume'][i] = df1['Resume'][i].replace(j, '')
```

DevOps Enginee	Engineer	experience	444
		project	420
		months	386
		shell	257
		team	215
		company	213

Data Science	data	396
	experience	300
	months	240
	learning	204
	python	176
	year	168

Business Analyst	business	252
	description	168
	company	168
	management	128
	ing	128
	project	124

Java Developer	java	636
	experience	426
	months	372
	developer	288
	details	276
	description	198

Word Cloud

```
text = ''
for i in range(len(df1)):
    text = text + ' ' + df1['Resume'][i]
#number of words in total
len(text.split())
```

```
from wordcloud import WordCloud
wordcloud = WordCloud().generate(text)

#Use pyplot from matplotlib
figure(figsize=(20,10))
pyplot.imshow(wordcloud, interpolation='bilinear')
pyplot.axis("off")
```

Lexical diversity


```
df1['lex_div'] = 0

for i in range(len(df1)):
    df1['lex_div'][i] = df['Resume'][i].split()
    df1['lex_div'][i] = len(set(df1['lex_div'][i])) / len(df1['lex_div'][i]))

df2 = df1.groupby('Category')['lex_div'].mean()
    df2.nlargest(10).plot(kind='bar')
```

Summarization

```
from transformers import pipeline
summarizer = pipeline("summarization")
```

'summary_text': ' Python pandas numpy scipy scikit and matplotlib are programming languages . Java jquery machine learning regression svm naa-ve bayes knn random forest decision trees osting techniques cluster analysis.'

```
txt = df2['Resume'][0]

if len(txt)>1024:
   txt = txt[:1024]
print(summarizer(txt, max_length=int(len(txt)/4), min_length=25))
```

0

03

Job Category Recommendations

Auto Gluon Text Classification Models

MODEL 1

Input feature: "Resume"

Train test split

Train Set: 70% Test Set: 30%

MODEL 2

Additional features: "Num_words",'lex_div'

Category	Resume
Data Science	skills programming languages python pandas num
Data Science	education details may may b e uit rgpv data sc
Data Science	areas interest deep learning control system de
Data Science	skills aC/ r aC/ python aC/ sap hana aC/ table
Data Science	education details mca ymcaust faridabad haryan

Category	Resume	Num_words	lex_div
Data Science	skills programming languages python pandas num	503	0.637313
Data Science	education details may may b e uit rgpv data sc	129	0.619632
Data Science	areas interest deep learning control system de	190	0.641509
Data Science	skills aC/ r aC/ python aC/ sap hana aC/ table	763	0.476334
Data Science	education details mca ymcaust faridabad haryan	49	0.42029

MODEL 1

	precision	recall	f1-score	support
Advocate	1.00	0.50	0.67	6
Arts	1.00	1.00	1.00	8
Automation Testing	0.78	1.00	0.88	7
Blockchain	1.00	1.00	1.00	11
Business Analyst	1.00	1.00	1.00	9
Civil Engineer	1.00	1.00	1.00	11
Data Science	1.00	1.00	1.00	11
Database	1.00	1.00	1.00	9
DevOps Engineer	1.00	0.89	0.94	19
DotNet Developer	1.00	1.00	1.00	11
ETL Developer	1.00	1.00	1.00	9
Electrical Engineering	1.00	1.00	1.00	9
HR	0.85	1.00	0.92	17
Hadoop	1.00	1.00	1.00	9
Health and fitness	1.00	1.00	1.00	10
Java Developer	1.00	1.00	1.00	28
Mechanical Engineer	1.00	1.00	1.00	12 4
Network Security Engineer	1.00 1.00	1.00 1.00	1.00 1.00	16
Operations Manager PMO	1.00	1.00	1.00	9
Python Developer	1.00	1.00	1.00	14
SAP Developer	1.00	1.00	1.00	9
Sales	1.00	1.00	1.00	11
Testing	1.00	1.00	1.00	24
Web Designing	1.00	1.00	1.00	6
web besigning	1.00	1.00	1.00	o o
accuracy			0.98	289
macro avg	0.99	0.98	0.98	289
weighted avg	0.99	0.98	0.98	289

MODEL 2

	precision	recall	f1-score	support
Advocate	1.00	0.67	0.80	6
Arts	1.00	1.00	1.00	8
Automation Testing	1.00	1.00	1.00	7
Blockchain	1.00	1.00	1.00	11
Business Analyst	0.90	1.00	0.95	9
Civil Engineer	0.92	1.00	0.96	11
Data Science	1.00	1.00	1.00	11
Database	1.00	1.00	1.00	9
DevOps Engineer	1.00	0.89	0.94	19
DotNet Developer	1.00	1.00	1.00	11
ETL Developer	1.00	1.00	1.00	9
Electrical Engineering	1.00	1.00	1.00	9
HR	0.89	1.00	0.94	17
Hadoop	1.00	1.00	1.00	9
Health and fitness	1.00	1.00	1.00	10
Java Developer	1.00	1.00	1.00	28
Mechanical Engineer	1.00	1.00	1.00	12
Network Security Engineer	1.00	1.00	1.00	4
Operations Manager	1.00	1.00	1.00	16
PMO	1.00	1.00	1.00	9
Python Developer	1.00	1.00	1.00	14
SAP Developer	1.00	1.00	1.00	9
Sales	1.00	1.00	1.00	11
Testing	1.00	1.00	1.00	24
Web Designing	1.00	1.00	1.00	6
accuracy			0.99	289
macro avg	0.99	0.98	0.98	289
weighted avg	0.99	0.99	0.99	289

Job Description Matching

Using Text Similarity

MODELING PROCESS

\mathbf{C}

Working Code

```
1 job = df1['Job Description']
 2 resume = df2['Resume']
   columns = list(df similarity)
 5 data = []
   resume job = []
9 for r in resume:
       resume job = []
10
11
       resume job.append(r)
12
       similarity = []
13
       for j in job:
14
           corpus = [r,j] #Creating corpus of the resume and job to be compared
15
           trsfm = vectorizer.fit transform(corpus) #Vectorizing the text
           cosine = cosine similarity(trsfm[0:1], trsfm) #Finding Cosine Similarity
16
17
           cosine prcnt = cosine[0,1]*100
           similarity.append(cosine prcnt)
18
19
       resume job.extend(similarity)
       zipped = zip(columns, resume job)
20
21
       a dictionary = dict(zipped)
22
       data.append(a dictionary)
23
24 #Creating the similarity matrix
25 df similarity = df similarity.append(data, True)
26 #Finding Max Match
27 df similarity['Max Match Prent'] = df similarity.drop(['Resume'],axis=1).max(axis=1)
28 df similarity['Max Match Job'] = df similarity.drop(['Resume'],axis=1).idxmax(axis=1)
```

Output - Cosine Similarity

	Resume	Data Scientist- Google	Data Scientist- Meta	Business Analyst- Amazon	Python Developer- Microsoft	Software Engineer- Apple	DevOps Engineer- Amazon	ETL Developer- Amazon	Max_Match_Prcnt	Max_Match_Job
0	skills programming languages python pandas num	19.115197	14.651894	12.564862	14.832144	7.887163	5.032347	12.953251	19.115197	Data Scientist- Google
1	education details may may b e uit rgpv data sc	4.206203	5.376500	4.992131	3.710819	1.329258	1.143470	3.703753	5.376500	Data Scientist- Meta
2	areas interest deep learning control system de	8.016517	8.978215	7.097594	10.097543	5.893798	3.391123	7.409766	10.097543	Python Developer- Microsoft
3	skills aC/ r aC/ python aC/ sap hana aC/ table	12.688287	11.118550	14.245513	11.615033	8.014396	5.644845	9.641717	14.245513	Business Analyst- Amazon
4	education details mca ymcaust faridabad haryan	7.009412	4.833435	5.485900	5.089924	2.928431	0.376121	4.476053	7.009412	Data Scientist- Google

- >15% match makes the resume a very good fit for the job description (61/962 resumes Top 6%)
- The best resumes in our database had 28% match.

END USER INTERFACE: DASHBOARD

0

06

RECOMMENDATIONS & LIMITATIONS

Recommendations

- Perfect tool when finding a specific job title/role
- Useful if you want to know how to edit your resume
- SCU Practicum Program should consider to use this tool
- Can coordinate with employment websites (Indeed/LinkedIn)

Limitations

- Limited dataset
 - Add more publicly available job descriptions and resumes
- Limited advice on resume
- Please share your resumes and the jobs you are interested in to help us improve the model.:-)

