МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА ФИЛИАЛ В ГОРОДЕ ТАШКЕНТЕ

ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Ванесян Роман Грачикович

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

«Оптическое распознавание схем из функциональных элементов»

Научный руководитель,			
к.фм.н			Шуткин Ю.С.
	«	»	2020 г

Содержание

1	$\mathbf{A}\mathbf{A}$	4
2	asdasd	و

1 AA

Определение 1. Изображением будем называть множество $I = \{p_i \mid p_i \in C\}$ на плоскости, где множество C — множество любой природы.

Определение 2. Изображение для которого множество C определено как $\{0,1\}$ будем называть двоичным изображением.

Определение 3. Множество $V = \{p_i \mid p_i \in D\}$ будем считать вершиной, если:

- Пусть $F \subset V$. Подмножество $H = \{p_i \mid p_i \in F, p_i = 1\}$ образует одну из следующих фигур: треугольник, окружность, либо прямоугольник.
- Пусть $G = F \setminus H$. Существует такое подмножество $M = \{p_i \mid p_i \in G, p_i = 1\}$ метка вершины.
- Никакие две рядом лежащие вершины не расположены так, что пересечение минамальных гиперпрямоугольников (прямоугольник в смысле \mathbb{R}^2) содержащих соответствующие вершины есть множество не пустое, то есть: $\forall V_i, V_i, V_i \neq V_j, i \neq j : P(V_i) \cap P(V_i) = \varnothing$.

Определение 4. Ребром будем называть жорданову дугу образованную последовательностью точек $p_i = 1$ и соединяющее вершины $v_i, v_j, i \neq j$.

2 asdasd

Определение 5. Схемой из функциональных элементов $(C\Phi\Theta)$ над базисом $F \cup X$ будем называть ориентированны граф, каждая вершина которого помечена одним из элементов множества $F \cup X$, либо обозначением формулы.

При изображении схемы из функциональных элементов входы будем обозначать окружностями, внутри которых записаны входные переменные. Вершины являющиеся операциями, — треугольниками, внутри которых записаны обозначения соответствующих функций. А вершину обозначающую выход СФЭ, будем обозначать прямоугольником, внутри которого записано обозначение реализуемой формулы. Выходы функций будем отмечать "выходными"стрелками.

Без ограничения общности будем полагать, что СФЭ определена над стандартным базисом $\{x_1 \land x_2, x_1 \lor x_2, \neg x_1\}$.

Так же будем рассматривать задачу о распознавании двоичного изображения СФЭ. Так как любую задачу о распознавании изображения СФЭ можно свести к аналогичной задаче о распознавания двоичного изображения СФЭ, путем введения биективного отображения, которое по какому-то заранее известному закону каждой точке изображения ставит в соответствие точку в двоичном отображении.