The number of sample questions does not reflect the number of questions that may appear on a test or exam.

1.	Which ONE of the following pairings of molecule and intermolecular force is CORRECT?

- A Ethene (C_2H_4) , dipole-dipole.
- **B** H₂S, only London dispersion
- C CH₃CH₂NH₂, hydrogen bonding
- D NCl₃, only London dispersion
- E MgBr₂, dipole-dipole
- 2. Which of the following substances exhibits only London dispersion forces?
 - A Potassium bromide (KBr) dissolved in water (H₂O)
 - **B** Liquid bromine (Br₂)
 - C Boiling methanol (CH₃OH)
 - **D** Solid magnesium oxide (MgO)
 - E Solid gold (Au)
- 3. Ice is less dense than water. Why?
 - A Dispersion forces are lower in a solid than in a liquid.
 - **B** When water crystallizes into ice, ion-dipole forces are no longer effective.
 - **C** Hydrogen bonds are less effective in the solid state than in the liquid state, reducing intermolecular forces and lowering the density.
 - **D** Hydrogen bonding is optimized in the solid state when each water molecule is involved in a tetrahedral arrangement of hydrogen bonds, creating an open lattice.
 - **E** More dipole-dipole interactions can be formed for each water molecule in the liquid state.
- 4. At room temperature, which of the following compounds is most ordered?
 - A NaCl
 - \mathbf{B} H_2O
 - \mathbf{C} CO_2
 - \mathbf{D} O_2
 - **E** polyethylene

5.	Which of the following mixtures will contain an example of an ion-dipole interaction?			
	A B C D	HF and CO ₂ HCl and HF NaCl and [PH ₄][BrO ₄] NaCl and CCl ₄ H ₂ O and [NH ₄][CIF ₄]		
6.	Which	of the following compounds has the weakest intermolecular forces?		
	A B C D	HBr H_2Te HI H_2S H_2Se		
7.	Which A B C D E	of the following compounds will experience the strongest covalent bond? Na_2CO_3 $HNNH$ $HOOH$ CO_2 H_2CCH_2		
8.	Which A B C D E	of the following compounds exhibits the strongest London dispersion forces? 3-methyl-1-pentene 2-methylpentane hexane heptene cyclopentane		
9.	What i A B C D E	ionic dipole-dipole ion-dipole dipole-induced dipole induced dipole-induced dipole		

- 10. Which of the following compounds will experience the strongest intermolecular forces?
 - **A** HNNH
 - \mathbf{B} H_2O
 - \mathbf{C} H_2CCH_2
 - \mathbf{D} MgH₂
 - E CaO
- 11. Which of the following drawings represents the band structure of a p-type semiconductor?

Α

В

C

D

Ε

- 12. Which of the following statements is false?
 - **A** The strength of an intermolecular attraction or repulsion is proportional to the distance between the molecules.
 - **B** The strength of an intermolecular attraction or repulsion is proportional to the charges of the molecules involved.
 - **C** The energy of an intermolecular attraction or repulsion is generally weaker than the energy for covalent bonds.
 - **D** Compounds with greater intermolecular forces have higher boiling points.
 - **E** Compounds with greater intermolecular forces have higher viscosity.

13. Which of the following polymers can be formed by condensation polymerization? (NOTE Fall 2020– condensation polymerization is not examinable this year)

- 14. Which of the series below indicates the correct relationship for the boiling points of the shown compounds?
 - $\mathbf{A} \quad \mathsf{H}_2\mathsf{S} < \mathsf{SiH}_4 < \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3 < \mathsf{H}_2\mathsf{O}$
 - **B** SiH₄ < CH₃CH₂CH₂CH₃ < H₂S < H₂O
 - **C** SiH₄ < H₂S < CH₃CH₂CH₂CH₃ < H₂O
 - **D** $H_2S < CH_3CH_2CH_2CH_3 < SiH_4 < H_2O$
 - **E** $CH_3CH_2CH_2CH_3 < H_2S < SiH_4 < H_2O$
- 15. What is the strongest intermolecular force for CaCl₂ in methanol?
 - A Hydrogen bonding
 - **B** Dispersion force
 - **C** Dipole-dipole forces
 - **D** Ion dipole forces
 - E Ionic bond
- 16. Which of the following compounds exhibits the strongest intermolecular forces?
 - A 2-hexanol
 - **B** 2,3-dimethyl-2-butanol
 - **C** pentane
 - **D** heptane
 - E 2-pentanol
- 17. If it takes 10 minutes to cook an egg in boiling water at sea level, how long would it take to cook an egg in boiling water on a mountain at an elevation of 2,500 meters?
 - A The boiling point of water on top of the mountain is less than 100 °C because of the lower atmospheric pressure and it will take longer to boil the egg.
 - **B** The boiling point of water on top of the mountain is greater than 100 °C because of lower atmospheric pressure and it will take less time to boil the egg.
 - **C** The boiling point of water is always 100 °C regardless of elevation so it would take the same amount of time to boil the egg.
 - **D** The boiling point of water on top of the mountain is less than 100 °C because of the lower atmospheric pressure and it will take less time to boil the egg.
 - **E** The boiling point of water on top of the mountain is greater than 100 °C because of lower atmospheric pressure and it will take longer to boil the egg.

18. Why does the viscosity of a liquid increase when the temperature is lowered?

B C D	making it At lower more into As the te constant At lower to more of	t possible for intemperatures ermolecular intemperature is but the strentemperatures collisions between	the kinetic energy of the more intermolecular into the kinetic energy of the teractions can occur. Howered the kinetic energy of the movement of the veen the molecules.	teractions to occur. The molecules in a liquerry of the molecules ar interactions incresed the liquerry in th	uid is lower and s in a liquid is ases. uid increases leading		
19. The capillary action for a liquid in a glass tube leads to a concave surface when:							
В							
20. A solid has a very high melting point, great hardness, poor electrical conduction, and does not dissolve in polar solvents. This is a(n) solid.							
 A ionic B molecular C metallic D covalent network E metallic and covalent network 							
21. Fo	i) ii)	SiO₂ KCl CO₂ Co	ces below is(are) the cry	ystalline solid(s) a mo	olecular solid?		
A i or	nly	B iii only	C iii and v only	D i, iii, and v	E iv only		

22. Which of the statements is correct with respect to the synthesis of the polymer shown in the structure below?

- **A** The monomer is an alcohol and the polymers is formed through an addition reaction.
- **B** The monomer is an alkyne and the polymer is formed through a condensation reaction
- **C** The monomer is an alkene and the polymer is formed through an addition reaction
- **D** The monomers are an alkene and an alkyne, and the polymer is formed through a condensation reaction.
- **E** The monomer is an alkene and the polymer is formed through a condensation reaction.
- 23. Which one of the following substances will <u>not</u> have hydrogen bonding as one of its intermolecular forces?

24. Based on the phase diagram for carbon (below), what are the transitions when (a) the pressure is kept constant at 10^{10} Pa and the temperature is raised from 3200 K to 5800 K and (b) the pressure is kept constant at 10^6 Pa and the temperature is raised from 3000 K to 4500K?

- A (a) no transition and (b) solid-to-liquid transitions
- **B** (a) solid-to-liquid and (b) liquid-to-gas transitions
- **C** (a) solid-to-solid and (b) gas-to-liquid transition
- **D** (a) solid-to-solid and (b) liquid-to-solid transition
- **E** (a) solid-to-liquid and (b) solid-to-gas transition
- 25. Considering intermolecular forces, which of the following liquids has the highest vapour pressure:
 - **A** acetone
 - **B** methanol
 - **C** water
 - **D** ethyl ether
 - **E** ethanol

Question	Answer
1	С
2	В
3	D
4	A
5	E
6	В
7	D
8	D
9	В
10	E
11	С
12	A
13	A
14	С
15	D
16	A
17	A
18	В
19	С
20	D
21	С
22	С
23	A
24	E
25	D