← Optimization algorithms

Quiz, 10 questions

	Congratulations! You passed!	Next Item
~	1/1 point	
1.		
Which	notation would you use to denote the 3rd layer's activations when the input is the 7th exa	mple from the 8th minibatch?
0	$a^{[3]\{8\}(7)}$	
Corr	ect	
	$a^{[8]\{7\}(3)}$	
	$a^{[3]\{7\}(8)}$	
	$a^{[8]\{3\}(7)}$	
•	1/1	
	point	
2. Which	of these statements about mini-batch gradient descent do you agree with?	
VIIICII	Training one epoch (one pass through the training set) using mini-batch gradient descent	t is factor than training one on och
	using batch gradient descent.	this faster than training one epoch
0	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster descent.	than one iteration of batch gradient
Corr	ect	
	You should implement mini-batch gradient descent without an explicit for-loop over differ algorithm processes all mini-batches at the same time (vectorization).	erent mini-batches, so that the
	1/1	
~	1/1 point	
3.		
Why is	the best mini-batch size usually not 1 and not m, but instead something in-between?	

If the mini-batch size is 1, you end up having to process the entire training set before making any progress.

If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

https://www.coursera.org/learn/deep-neural-network/exam/rqT6n/optimization-algorithms

Un-selected is correct

Correct Optimization algorithms

Quiz, 10 questions

If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient
descent.

Un-selected is correct

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making
progress.

Correct

1/1 point

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

	Whether you're using batch	gradient descent	or mini-hatch s	radient descent	something is wrong	σ
- (Whether you're using batti	gradient descent	oi iiiiiii-battii į	gradieni descent,	Sometime is whom	5

\bigcirc	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is
	wrong.

Correct

If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks
acceptable.

Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

Optimization algorithms

Quiz, 10 questions

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1 = 10^o C$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

Correct

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

$$v_2=10$$
 , $v_2^{corrected}=10$

1/1 point

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

 $lpha=e^tlpha_0$

Correct

$$\alpha = 0.95^t \alpha_0$$

$$lpha = rac{1}{1+2*t} lpha_0$$

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

1/1 point

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $p_t = \beta v \ \text{pti} \ \text{mization} \ \text{mat} \ \text{mization} \ \text{mat} \ \text{mat}$

Un-selected is correct

Quiz, 10 questions

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent with momentum (small β), (4) is gradient descent with momentum (small β), (5) is gradient descent with momentum (small β), (6) is gradient descent with momentum (small β), (6) is gradient descent with momentum (small β).	it descent
---	------------

(1) is gradient descent (2) is gradient descent with momentum	(large β) (3) is gradien	nt descent with momentum	(small β)
(1) is gradient descent, (2) is gradient descent with momentum	(laige p). (3) is grauler	it descerit with monientani	(Siliali \mathcal{D})

	(1) ic	gradient	doccont	with m	nomentum	(cmall	Qι	(2) id	gradiant	doccont	(2) ic	gradient	doccont	with r	mamantu	m (1	argo	Q١
)	(1)15	gradient	uescent	WILLII	iomentum	(SIIIali	ρ).	(Z) is	s gradient	descent.	(5) 13	s gradient	uescent i	/VILII I	nomentu	ш (1	arge /	U)

\bigcirc	(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β	3
------------	---	---

Correct

1/1 point

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

Try initializing all the weights to zero

Un-selected is correct

 $lue{}$ Try tuning the learning rate lpha

Correct

Try using Adam

Correct

19/1/8	Improving Deep Neural Netwo
<u> </u>	Try better random initialization for the weight Optimization algorithms
•	eceuiz, 10 questions
	Try mini-batch gradient descent

Correct

1/1 point

10.

Which of the following statements about Adam is False?

- The learning rate hyperparameter $\boldsymbol{\alpha}$ in Adam usually needs to be tuned.
- Adam should be used with batch gradient computations, not with mini-batches.

Correct

- Adam combines the advantages of RMSProp and momentum
- We usually use "default" values for the hyperparameters eta_1,eta_2 and arepsilon in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)

