Sequential Monte Carlo samplers Fixed dimensional state spaces

Introduction

Many problems require sampling from

$$\pi_n(x) \propto \left(\prod_{k=0}^n G_k(x)\right) \pi_0(x)$$

- Bayes posterior
 - ▶ product likelihood $G_k(x) = g(y_k|x)$
 - non-product likelihoods: $G_k = p(y|x)^{\phi_k \phi_{k-1}}$ with $1 = \phi_n > \phi_{n-1} > \dots > \phi_0 = 0$
- rare event simulation:
 - ightharpoonup estimate $\pi_0(A)$
 - $G_k = 1_{x \in A_k}$ with nested sets $A = A_n \subset \ldots \subset A_k \subset A_{k-1} \subset \ldots$
- optimisation as sampling :
 - $ightharpoonup min_{x \in \mathcal{X}} V(x)$
 - $G_k = \exp(-\beta_k V)$ with $\beta_k > \beta_{k-1} > \ldots > 1$

Introduction

- ▶ In all these problems $x \in \mathcal{X}$, i.e. each π_n is defined on a fixed dimensional state space
- Sequential Monte Carlo (SMC)?
 - sampling using importance sampling and resampling
 - samples/particles propagated through sequence of distributions

$$\left(\Pi_n(x) = \frac{1}{Z_n} \gamma_n(x)\right)_{0 \le n \le T}$$

► How can particle filters be used on a fixed dimensional state space ?

Introduction

Bayesian posterior for Hidden Markov models given observed data $y_{0:n}$:

$$\Pi_{n}(x_{0:n}) = p(x_{0:n}|y_{0:n}) = \frac{1}{Z_{n}} \prod_{k=0}^{n} f(x_{k}|x_{k-1}) G_{k}(x_{k}) \quad (1)$$

and the marginal likelihood, $p(y_{0:n})$, is given by

$$Z_n = p(y_{0:n}) = \int \prod_{k=0}^n f(x_k | x_{k-1}) G_k(x_k) dx_{0:n}.$$
 (2)

Static problems

$$\pi_n(x) = \frac{1}{Z_n} \prod_{k=0}^n G_k(x) \pi_0(x)$$

- can use same method using MCMC within SMC
- use MCMC dynamics instead of f(x|x')

Outline

- ► Revision of particle filtering
- ► Generalising for static problems
- ► SMC samplers

Bayesian Filtering

▶ Often one wants the marginal filter

$$\pi_n(x_n) = \frac{1}{Z_n'} G_k(x_n) \int \pi_{n-1}(x_{n-1}) f(x_n | x_{n-1}) dx_{n-1}$$

- ▶ In practice algorithms operate on path space of $X_{0:n}$
- ▶ In most cases approximations of $\pi_n(x_n)$ are by-products or constructed based on approximations of $\Pi_n(x_{0:n})$

The bootstrap particle filter

For $n \geq 0$, (For i = 1, ... N)

1. Sample from dynamics

$$X_n^i \sim f(\cdot|\bar{X}_{n-1}^i)$$

2. Compute Importance weight:

$$\mathscr{W}_n^i \propto G_n(X_n^i), \quad \sum_{i=1}^N \mathscr{W}_n^i = 1.$$

3. Resample:

$$ar{X}_{0:n}^i \sim \sum_{i=1}^N \mathscr{W}_{\mathsf{n}}^i \delta_{X_{0:n}^i}$$

Particle approximations

$$\Pi_{n}^{N} = \sum_{j=1}^{N} \mathscr{W}_{n}^{i} \delta_{X_{0:n}^{i}} \text{ or } \bar{\Pi}_{n}^{N} = \frac{1}{N} \sum_{j=1}^{N} \delta_{\bar{X}_{0:n}^{i}}, \quad Z_{n}^{N} = Z_{n-1}^{N} \cdot \left(\frac{1}{N} \sum_{i=1}^{N} G_{n}(X_{n}^{i}) \right)$$

Sequential Importance Resampling

For $n \geq 0$, (For $i = 1, \ldots, N$)

1. Sample from dynamics

$$X_n^i \sim q(\cdot|\bar{X}_{n-1}^i, Y_n)$$

2. Compute Importance weight:

$$\mathscr{W}_{n}^{i} \propto \frac{G_{n}(X_{n}^{i})f(X_{n}^{i}|\bar{X}_{n-1}^{i})}{q(X_{n}^{i}|\bar{X}_{n-1}^{i},Y_{n})}, \quad \sum_{i=1}^{N} \mathscr{W}_{n}^{i} = 1.$$

3. Resample:

$$ar{X}_{0:n}^i \sim \sum_{i=1}^N \mathscr{W}_{\mathsf{n}}^i \delta_{X_{\mathbf{0}:n}^i}$$

Adaptive resampling

- Here we resample at every n
 - While resampling is a key component to have a good approximation it tends to leave early states in the path being represented by few particles.
- Better use resampling only when you need to
 - resample only when $ESS_n \leq \alpha N$
 - e.g. $\alpha = 1/2$.
 - here $ESS_n = \left(\sum_{i=1}^N \left(\mathcal{W}_n^i\right)^2\right)^{-1}$
 - Note then expressions for \mathcal{W}_n^i and Z_n^N change a bit.
- Note estimate for Z_n^N is not unbiased in this case

MCMC and particle filtering

Similarly when filtering one can construct an MCMC kernel invariant to $\Pi_n(x_{0:n})$, say K_n , and then target

$$\tilde{\Pi}_{n}\left(dx_{0:n},dx'_{0:n}\right) = \frac{1}{Z_{n}}\left(\prod_{k=0}^{n} f\left(x_{k}|x_{k-1}\right) G_{k}\left(x_{k}\right) dx_{n}\right) \cdot K_{n}(x_{0:n},dx'_{0:n})$$

No problem as a both marginals (w.r.t to x or x') are the same!

$$\int \Pi_n(dx_{0:n}) K_n(x_{0:n}, dx'_{0:n}) = \Pi_n(dx'_{0:n})$$

- In addition, K_n can be designed just to move x_n not full $x_{0:n}$ (and this is still correct!)
 - ▶ this is the **resample move** of [Gillks and Berzuini 99]

SMC sampling

- Last idea is particulary useful when sampling from static target distributions
- Filtering for HMMs has a particular structure
 - dimension of target sequence increases,
 - likelihood is of product form

$$\Pi_n(x_{0:n}) \propto \left(\prod_{k=0}^n G_k(x_k)\right) Prior(x_{0:n})$$

▶ Prior is Markov so one can sample sequentially $x_k|x_{k-1}$

SMC sampling

Consider instead standard Bayes posterior

$$\pi_n(x) \propto \left(\prod_{k=0}^n G_k(x)\right) \pi_0(x)$$

- Recipe:
 - ightharpoonup construct $\Pi_n(x_{0:n})$ admiting $\pi_n(x_n)$ as marginal
 - Set

$$Prior(x_{0:n}) = \prod_{k=1}^{n} \mathcal{K}_k(x_{k-1}, x_k)$$

using Markov dynamics with

$$\pi_k \mathcal{K}_k = \pi_k$$

Chopin 01 Biometrika

Naive sampling

- Naive approach: sample $X_0^i \sim \pi_0$ and then using recursively
 - 1. Compute Importance weight:

$$\mathscr{W}_n^i \propto G_n(X_{0,n}^i), \quad \sum_{i=1}^N \mathscr{W}_n^i = 1.$$

2. Resample:

$$ar{X}_{0,n}^i \sim \sum_{j=1}^N \mathscr{W}_{\mathsf{n}}^i \delta_{X_{0:n}^i}$$

- Path degeneracy means this method will degenerate
 - \triangleright exploration happens only at X_0 , no diversity reintroduced
 - Monte Carlo variance will increase very fast

SMC sampling

- ► More sensible approach (Chopin 01)
 - 1. Compute Importance weight:

$$\mathscr{W}_n^i \propto G_n(X_n^i), \quad \sum_{i=1}^N \mathscr{W}_n^i = 1.$$

2. Resample and move:

$$ar{X}_n^i \sim \sum_{j=1}^N \mathscr{W}_n^i \mathcal{K}_n\left(X_n^i,\cdot\right)$$

- $ightharpoonup \mathcal{K}_n$ here is a MCMC kernel: $\pi_n \mathcal{K}_n = \pi_n$
 - diversity is reintroduced in a way that statistical properties of sample are maintained

SMC sampling

There are many advantages here compared to standard MCMC.

- ▶ One can tune proposals using statistics from π_n^N
 - this can lead to good mixing
- One can monitor output and performance as n increases
 - ▶ this can lead to adaptive algorithms (tempering for each G_n , adapting number of MCMC iterations,...)
- Robust to Multimodality
- Normalising const. estimation is easier
 - unbiased (for non adaptive SMC)
- Many steps are easy to parallelise

Discussion

- \triangleright \mathcal{K}_n being π_n invariant is not only possible choice
 - can always correct using IS
 - Section 2.3 in [Del Moral, Doucet, Jasra 2006]
- Convergence follows similarly to before
 - consistent, CLT, ...
 - ▶ if likelihood follows some asymptotic normality in *n* then finite number of resampling steps are needed (when adaptive resampling) [Chopin 01, preprint]
- Understanding from particle filters still applies
 - ▶ if π_n is very different from π_{n-1} variance of weights can be large even if \mathcal{K}_n mixes fast.

Path space reformulation

- ► Can couple π_n with π_{n-1} and previous marginals in many possible ways
- Consider the following target distribution for time n

$$\Pi_n(dx_{0:n}) = \pi_n(dx_n) \prod_{k=n-1}^1 L_k(x_{k+1}, dx_k)$$

- $ightharpoonup L_k$ is an arbitrary backward Markov kernel
- ► Recall

$$\Pi_n(dx_{0:n}) = \frac{1}{Z_n} \gamma_n(x_{0:n}) dx_{0:n}$$

and let for now

$$\gamma_n(x_{0:n}) = \gamma_n(x_n) \prod_{k=n-1}^1 L_k(x_{k+1}, x_k)$$

Path space reformulation

► As in filtering will use IS with Markov proposal with density

$$\eta_n(x_{0:n}) = \pi_0(x_0) \prod_{k=1}^{n-1} K_k(x_{k-1}, x_k)$$

- $ightharpoonup K_k$ is an arbitrary forward Markov proposal
- ... but some choices are better than others

Path space reformulation

► Recursive weight becomes

$$w_n(x_{0:n}) = w_{n-1}(x_{0:n-1}) \underbrace{\frac{\gamma_n(x_n)L_{n-1}(x_n, x_{n-1})}{\gamma_{n-1}(x_{n-1})K_n(x_{n-1}, x_n)}}_{\tilde{w}(x_{n-1}, x_n)}$$

- $\tilde{w}(x_{n-1},x_n)$ is incremental weight used in algorithm
 - \triangleright shaped both by L_k and K_k
 - ▶ Del Moral et. al. 06 explores design of L_k in detail
 - optimal, suboptimal, convenient when K_k is MCMC kernel, mixtures

SMC sampler

For $n \geq 0$, (For i = 1, ... N)

1. Sample from dynamics

$$X_n^i \sim K_n(\bar{X}_{n-1}^i, \cdot)$$

2. Compute Importance weight:

$$\mathscr{W}_n^i \propto \tilde{w}_n(\bar{X}_{n-1}^i, X_n^i), \quad \sum_{i=1}^N \mathscr{W}_n^i = 1.$$

3. Resample:

$$ar{X}_{0:n}^i \sim \sum_{i=1}^N \mathscr{W}_{\mathsf{n}}^i \delta_{X_{\mathbf{0}:n}^i}$$

SMC approximations

Particle approximations

$$\Pi_n^N = \sum_{j=1}^N \mathscr{W}_n^i \delta_{X_{\mathbf{0}:n}^i} \text{ or } \bar{\Pi}_n^N = \frac{1}{N} \sum_{j=1}^N \delta_{\bar{X}_{\mathbf{0}:n}^i}$$

and

$$Z_n^N = Z_{n-1}^N \cdot \left(\frac{1}{N} \sum_{i=1}^N \tilde{w}_n(\bar{X}_{n-1}^i, X_n^i)\right)$$

A useful extension: adaptive tempering

▶ if π_n is very different from π_{n-1} can also temper and bridge gap:

$$\pi_{n,m} \propto G_n^{\phi_{n,m}} \pi_{n-1}$$

Can tune adaptively by solving bisection:

$$\phi_{n,m+1} = \inf \left\{ \phi: \ \phi_m < \phi \leq 1, : \textit{ESS}^N \left(\Pi^N_{n,m+1}, \phi \right) = N_{\textit{thresh}} \right\}$$

- here $ESS^{N} = (\sum_{j=1}^{N} (\mathcal{W}_{n,m+1}^{j})^{2})^{-1}$
- See
 - ▶ [Beskos, Jasra, K., Thiery 16] or [Cerou & Guyader 16] for some convergence results.
 - ► [Zhou, Johansen, Aston 16] for extensions.

SMC²: parameter inference for HMMs

Recall in HMMs

$$p(\theta|y_{0:n}) \propto \prod_{k=0}^{n} p_{\theta}(y_{k}|y_{0:k-1}) p(\theta).$$

 \blacktriangleright For fixed θ one can use a PF approximations:

$$\widehat{p}_{\theta}(y_k|y_{0:k-1}) = \frac{1}{N_x} \sum_{i=1}^{N_x} w_k^{\theta}(X_{k-1,k}^i)$$

- ► SMC² is a SMC sampler for θ with particles $\{\theta^I\}_{I=1}^{N_{\theta}}$
 - ▶ for each θ_n^l use $\widehat{p}_{\theta_n^l}(y_k|y_{0:k-1})$ obtained from a PF with N_x particles for $x_{0:n}$
 - Move θ_n^l with PMCMC kernels invariant to

$$p\left(\left.\left\{\left\{x_{n}^{i,I},o_{n}(i,I)\right\}_{i=1}^{N_{x}}\right\}_{n=1}^{T},\theta_{n}^{I}\right|y_{0:n}\right)$$

See [Chopin, Jacob, Papaspiliopoulos 13].

Discussion

- ► Here one relies on absolute continuity of $\pi_n(dx_n)L_{n-1}(x_n, dx_{n-1})$ with $\pi_{n-1}(dx_{n-1})K_n(x_{n-1}, dx_n)$
 - one could use contructions for direct approach of $\pi_{n-1}K_n$ targetting π_n when K_n is MCMC kernel
 - see note in A. Doucet's website
- Approach has been very powerful in applications
 - with different structure for Π_n or state space
 - statistics: inference, ABC, phylogenetics, ...
 - beyond: high dimensional inverse problems, computational physics, rare event simulation, optimisation
 - adapting many steps even target distributions very useful

Reading list

Portal by Arnaud Doucet: http://www.stats.ox.ac.uk/~doucet/smc_resources.html

Papers

- Chopin (2001) A Sequential Particle Filter Method for Static Models, Biometrika
- Del Moral, Doucet, Jasra (2006) Sequential Monte Carlo Samplers, JRSSB.
- Zhou, Johansen, Aston (2016) Toward automatic model comparison: an adaptive sequential Monte Carlo approach JCGS
- Chopin, Jacob, & Papaspiliopoulos, O. (2013). SMC2: an efficient algorithm for sequential analysis of state space models. JRSSB