Homework 7

* Name:Xin Xu Student ID:519021910726 Email: xuxin20010203@sjtu.edu.cn

Problem 1. Fill in the blanks with either true (\checkmark) or false (\times)

f(n)	g(n)	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$
$2n^3 + 3n$	$100n^2 + 2n + 100$	×	✓	X
$50n + \log n$	$10n + \log \log n$	✓	✓	✓
$50n \log n$	$10n \log \log n$	×	✓	×
$\log n$	$\log^2 n$	✓	×	×
n!	5 ⁿ	×	✓	×

Problem 2. 1. Find two functions f(x) and g(x) such that $f(x) \neq O(g(x))$ and $g(x) \neq O(f(x))$.

Solution. Let g(n) = 1 for any integer $n \in N$.

$$f(x) = \begin{cases} \frac{1}{n}, n \neq 2^k (k \in N) \\ n, n = 2^k \end{cases}$$

And the statement that $f(x) \neq O(g(x))$ and $g(x) \neq O(f(x))$ is true because $\lim_{n\to\infty}\frac{f(n)}{g(n)}$ and $\lim_{n\to\infty}\frac{g(n)}{f(n)}$ both don't exist.

2. Furthermore, we say a function $h: \mathbb{R} \to \mathbb{R}$ is monotonically increasing if it satisfies the property ' $x \le y \implies h(x) \le h(y)$ '. Find two monotonically increasing functions f(x) and g(x) such that $f(x) \ne O(g(x))$ and $g(x) \ne O(f(x))$.

Solution. for any integer $k \in N$:

$$f(x) = \begin{cases} 2^n, n = 2^{2k+1} \\ 2^{2^{2k+1}}, 2^{2k+1} < n < 2^{2k+3} \end{cases}$$

$$g(x) = \begin{cases} 2^n, n = 2^{2k} \\ 2^{2^{2k}}, 2^{2k} < n < 2^{2k+2} \end{cases}$$

And the statement that $f(x) \neq O(g(x))$ and $g(x) \neq O(f(x))$ is true because $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ and $\lim_{n\to\infty} \frac{g(n)}{f(n)}$ both don't exist.

When
$$n=2^{2k+1}$$
, $\lim_{k\to\infty}\frac{f(n)}{g(n)}=\frac{2^{2^{2k+1}}}{2^{2^{2k}}}=2^{2^{2k}}$. When $n=2^{2k+2}$, $\lim_{k\to\infty}\frac{g(n)}{f(n)}=\frac{2^{2^{2k+2}}}{2^{2^{2k+1}}}=2^{2^{2k+1}}$. So, $f(x)\neq O(g(x))$ and $g(x)\neq O(f(x))$.

(Please give the detailed proof that your functions satisfy the requirements.)

Problem 3. Prove that

(a)
$$\left(1 + \frac{1}{n}\right)^n \le e$$
 for all $n \ge 1$.

Proof. Since
$$1 + x \le e^x$$
, $\left(1 + \frac{1}{n}\right)^n \le \left(e^{\frac{1}{n}}\right)^n = e$.

(b)
$$\left(1 + \frac{1}{n}\right)^{n+1} \ge e$$
 for all $n \ge 1$.

Proof.
$$\left(1+\frac{1}{n}\right)^{n+1}=\left(\frac{1}{\frac{n}{n+1}}\right)^{n+1}=\left(\frac{1}{1-\frac{1}{n+1}}\right)^{n+1}.$$
 Since $1+x\leqslant e^x, 1-\frac{1}{n+1}\leqslant e^{-\frac{1}{n+1}},$ so $\left(\frac{1}{1-\frac{1}{n+1}}\right)^{n+1}\geqslant (e^{\frac{1}{n+1}})^{n+1}=e.$ As a result, $\left(1+\frac{1}{n}\right)^{n+1}\geq e.$

(c) Using (a) and (b), conclude that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$.

Proof. From problem (a), we know that
$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n \leq e$$
.
From problem (b), we know that $\left(1+\frac{1}{n}\right)^n \geq \frac{e}{1+\frac{1}{n}}$. So, $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n \geq \lim_{n\to\infty}\frac{e}{1+\frac{1}{n}} = e$. As a result, $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n = e$.

Problem 4. Prove Bernoulli's inequality: for each natural number n and for every real $x \ge -1$, we have $(1 + x)^n \ge 1 + nx$.

Proof. We will prove it by induction. The statement $(1+x)^n \ge 1 + nx$ is true when n=1. Hypothesis that it's true for any natural number $n \ge 1$ that $(1+x)^n \ge 1 + nx$. So, $(1+x)^{n+1} \ge (1+nx)(1+x) = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$. So, the statement is true for any natural number n.

Problem 5. Prove that for n = 1, 2, ..., we have

$$2\sqrt{n+1}-2 < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \le 2\sqrt{n} - 1.$$

Proof. We will prove it by induction. The statement is true when n=1. Suppose that it holds true for any natrual number $n\geq 1$ that $2\sqrt{n+1}-2<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}\leq 2\sqrt{n}-1$. So, $2\sqrt{n+1}-2+\frac{1}{\sqrt{n+1}}<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\leq 2\sqrt{n}-1+\frac{1}{\sqrt{n+1}}$.

So, we should prove $2\sqrt{n} - 1 + \frac{1}{\sqrt{n+1}} \ge 2\sqrt{n+1} - 1$. The both sides times $\sqrt{n+1}$ and square, we can get $4n(n+1) \le (2n+1)^2 \Rightarrow 4n^2 + 4n \le 4n^2 + 4n + 1$. And that's true.

Additionally, we should prove $2\sqrt{n+2}-2 \le 2\sqrt{n+1}-2+\frac{1}{\sqrt{n+1}}$. The both sides times $\sqrt{n+1}$ and square, we can get $4(n+2)(n+1) \le (2n+3)^2 \Rightarrow 4n^2+12n+8 \le 4n^2+12n+9$. And that's true. In conclusion, the statement is proved.

Problem 6.

a) Show that the product of all primes p with $m is at most <math>\binom{2m}{m}$.

Proof. $\binom{2m}{m} = \frac{2m(2m-1)(2m-2)...2\times 1}{m(m-1)(m-2)...2\times 1}$. The numerator is the product of all the numbers that between m and 2m. Since prime is a number only has divisors of 1 and itself, the numerator should divide by all the possible factors that the composite numbers between m and 2m hold, which is the denominator of $\binom{2m}{m}$. So, the statement has proved.

b) Using a), prove the estimate $\pi(x) = O(\frac{x}{\ln x})$, where $\pi(x)$ denote the number of primes not exceeding the number x.

Proof. Suppose $x=2^k$. Since the product of all primes p with $\frac{x}{2} is at most <math>\binom{x}{\frac{x}{2}}$, the largest number of primes between $\frac{x}{2}$ and x is $\log_{\frac{x}{2}}\binom{x}{\frac{x}{2}}$. We know from the estimate example that $\binom{n}{k} \leq (\frac{en}{k})^k$, so $\log_{\frac{x}{2}}\binom{x}{\frac{x}{2}} \leq \log_{\frac{x}{2}}(2e)^{\frac{x}{2}} = \frac{x}{2}\log_{\frac{x}{2}}2e = \frac{x}{2}\frac{\ln 2e}{\ln \frac{x}{2}}$. So, $\pi(x) \leq \log_{\frac{x}{2}}\binom{x}{\frac{x}{2}} + \log_{\frac{x}{4}}\binom{\frac{x}{2}}{\frac{x}{4}} + \dots + \log_{2}\binom{4}{2} + 1 \leq 2\ln 2e(\frac{x}{\ln \frac{x}{2}} + \frac{x}{\ln \frac{x}{4}} + \dots + \frac{x}{2}\frac{x}{\ln \frac{x}{2}}) \leq 2\ln 2e(\frac{x}{\ln x} + \frac{x}{\ln x} + \frac{x}{\ln x} + \dots + \frac{x}{2}\frac{x}{\ln x}) \leq 2\ln 2e(\frac{x}{\ln x})$. So, the statement is proved.