SDMMC SDIO eMMC 开发指南

发布版本:1.1

作者邮箱: <u>lintao@rock-chips.com</u>

日期:2019.11

文件密级:公开资料

前言

概述

产品版本

芯片名称	内核版本
全系列	4.4, 4.19

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

日期	版本	作者	修改说明
2017-12-15	V1.0	林涛	
2019-11-12	V1.1	林涛	针对4.19内核修订

SDMMC SDIO eMMC 开发指南

DTS 配置

SDMMC 的 DTS 配置说明 SDIO 的 DTS 配置说明 eMMC 的 DTS 配置

常见问题排查

硬件问题分析

波形分析

LOG 分析

DTS 配置

SDMMC 的 DTS 配置说明

1. max-frequency = <150000000>;

此配置设置 SD 卡的运行频率,虽然设置为 150M,但是还要根据 SD 卡的不同模式进行调整。这部分不需要用户关心,实际运行频率和模块的关系软件会关联。最大不超过 150MHz。

supports-sd;

此配置标识此插槽为 SD 卡功能, 为必须添加项。否则无法初始化 SD 卡。

3. bus-width = <4>;

此配置标识需要使用 SD 卡的线宽。SD 卡最大支持 4 线模式,如果不配置就模式使用 1 线模式。另外,这个位只支持的数值为 1,4,配置其他数值会认为是非法数值,强制按照 1 线模式进行使用。

4. cap-mmc-highspeed; cap-sd-highspeed;

此配置为标识此卡槽支持 highspeed 的 SD 卡。 如果不配置,表示不支持 highspeed 的 SD 卡。

5. 配置使用 SD3.0

首先确保芯片支持 SD3.0 模式(3288,3328,3399,3368), 并且需要配置 vqmmc 这一路的 SDMMC 控制器的 IO 电源,并添加如下一些 SD3.0 的速度模式

```
sd-uhs-sdr12: 时钟频率不超过24M
sd-uhs-sdr25: 时钟频率不超过50M
sd-uhs-sdr50: 时钟频率不超过100M
sd-uhs-ddr50: 时钟频率不超过50M,并且采用双沿采样
sd-uhs-sdr104: 时钟频率不超过208M
```

6. 配置 SD 卡设备的 3V3 电源

如果硬件上使用的电源控制引脚是芯片上 SDMMC 控制器默认的电源控制脚:sdmmc_pwren,那么只需要在 pinctrl 上配置为 sdmmc_pwren 的功能脚,并在 sdmmc 节点内引入到 default 的 pinctrl 内即可,例如以 RK312X 为例:

```
sdmmc_pwren: sdmmc-pwren {
    rockchip,pins = <1 RK_PB6 1 &pcfg_pull_default>;
};

pinctrl-0 = <&sdmmc_pwr &sdmmc_clk &sdmmc_cmd &sdmmc_bus4>;
```

如果硬件是使用其他 GPIO 作为 SD 卡设备的 3V3 电源控制引脚,则需要将其定义成 regulator 来使用,并在 sdmmc 的节点内将其引用到 vmmc-supply 内,例如:

```
sdmmc_pwr: sdmmc-pwr {
    rockchip,pins = <7 11 RK_FUNC_GPIO &pcfg_pull_none>;
};

vcc_sd: sdmmc-regulator {
    compatible = "regulator-fixed";
    gpio = <&gpio7 11 GPIO_ACTIVE_LOW>;
    pinctrl-names = "default";
    pinctrl-0 = <&sdmmc_pwr>;
    regulator-name = "vcc_sd";
    regulator-min-microvolt = <3300000>;
    regulator-max-microvolt = <3300000>;
    startup-delay-us = <100000>;
    vin-supply = <&vcc_io>;
```

```
};
&sdmmc {
    vmmc-supply = <&vcc_sd>;
};
```

7. 配置 SD 卡热拔插检测脚

如果检测脚是直接连接到芯片的 SDMMC 控制器的 sdmmc_cd 脚 , 则请直接将该脚位配置为功能脚 , 并在 sdmmc 节点的 default 的 pinctrl 内进行引用即可。

如果检测脚是使用其他 GPIO,则需要在 sdmmc 节点内使用 cd-gpios 来进配置,例如

cd-gpios = <&gpio4 24 GPIO_ACTIVE_LOW>;

如果使用 GPIO 的检测脚,但是又要求反向检测方式(即 SD 卡插入时检测脚为高电平),则需要追加 cd-inverted;

SDIO 的 DTS 配置说明

1. max-frequency = <150000000>;

此项同 SD 卡的配置,最大运行频率不超过 150Mhz; SDIO2.0 卡最大 50M, SDIO3.0 最大支持 150M

supports-SDIO;

此配置标识此插槽为 SDIO 功能, 为必须添加项。否则无法初始化 SDIO 外设。

3. bus-width = <4>;

此配置同 SD 卡功能。

4. cap-sd-highspeed;

此配置同 SD 卡功能,作为 SDIO 外设,也有区分是否为 highspeed 的 SDIO 外设。

cap-sdio-irq;

此配置标识该 SDIO 外设(通常是 Wifi)是否支持 sdio 中断,如果你的外设是 OOB 中断,

请不要加入此项。支持哪种类型的中断请联系 Wifi 原厂确定。

keep-power-in-suspend;

此配置表示是否支持睡眠不断电,请默认加入该选项。Wifi 一般都有深度唤醒的要求。

7. mmc-pwrseq = <&sdio_pwrseq>;

此项是 SDIO 外设(一般是 Wifi)的电源控制。为必须项,否则 Wifi 无法上电工作。请参考下面的例子,晶振时钟和复位-使能的 GPIO 的选择按照实际板级硬件要求进行配置。

```
sdio_pwrseq:sdio-pwrseq {
    compatible ="mmc-pwrseq-simple";
    clocks = <&rk808 1>;
    clock-names ="ext_clock";
    pinctrl-names ="default";
    pinctrl-0 =<&wifi_enable_h>;
    /*
    * On the module itself this isone of these (depending
    * on the actual cardpopulated):
    * - SDIO_RESET_L_WL_REG_ON
```

```
* - PDN (power down when low)
*/
reset-gpios = <&gpio0 10GPIO_ACTIVE_LOW>; /* GPIO0_B2 */
};
```

8. non-removable;

此项表示该插槽为不可移动设备且此项为 SDIO 设备必须添加项。

9. num-slots = <4>;

此项同 SD 卡的配置。

10. sd-uhs-sdr104;

此项配置决定该 SDIO 设备是否支持 SDIO3.0 模式。前提是需要 Wifi 的 IO 电压为 1.8v。

eMMC 的 DTS 配置

1. max-frequency = <150000000>;

eMMC 普通模式 50M, eMMC HS200 最大支持 150M;

supports-emmc;

此配置标识此插槽为 emmc 功能, 为必须添加项。否则无法初始化 emmc 外设。

3. bus-width = <4>;

此配置同 SD 卡功能。

4. mmc-ddr-1_8v;

此配置表示支持 50MDDR 模式;

5. mmc-hs200-1_8v;

此配置表示支持 HS200 模式;

6. mmc-hs400-1_8v; mmc-hs400-enhanced-strobe

此两项配置表示支持 HS400 模式以及 HS400ES 模式,仅 RK3399 芯片支持。

7. non-removable;

此项表示该插槽为不可移动设备。此项为必须添加项。

常见问题排查

硬件问题分析

1. SD 卡

从左到右依次是:

DET ---- 检测脚

DATA1 ---- 数据线

DATA0

GND

CLK ---- 时钟

VCC_SD ---- SD 卡供电电源

VCCIO_SD ---- 数据线的 IO 供电电源

CMD ---- 命令线

DATA3

DATA2

除了 DET/CLK/GND 外,其它的 DATA0-3/VCC_SD/VCCIO_SD/CMD 必须都为 3.3v 左右,最小不能低于 3v;DET 脚插入为低,拔出为高; DATA0-3/CMD 的电压都是 VCCIO_SD 供给的,所以 DATA0-3/CMD 必须跟 VCCIO_SD 保持一致,而 VCC_SD 和 VCCIO_SD 要保持一致(NOTE: SD 3.0,要求 VCCIO_SD 为 1.8v);

如果 VCC_SD/VCCIO_SD 的电源是长供电,那么请保证 VCC_SD 和 VCCIO_SD 在卡拔插时不会有塌陷; 2. SDIO

														COG
VCCIO_WL O	R2700	1 RNR _ 2 4.7K	5% R0402	SDIO_D0	R2701	1	2 22R	5%	WIFI_D0	2	1	C2700 DNP	33pF	50V C0402
VCCIO_VIE							R04	02						COG
	R2702	1 RNR 2 4.7K	5% R0402	SDIO_D1	R2703	1	2 22R		WIFI_D1	2	1	C2701 DNP	33pF	50V C0402
							R04	02			ΙГ			COG
_	R2704	1 RNR 2 4.7K	5% R0402	SDIO_D2	R2705	1	2 22R		WIFI_D2	2	_1	C2702 DNP	33pF	50V C0402
							R04	02						COG
	R2706	1 RNP 2 4.7K	5% R0402	SDIO_D3	R2707	1 ~ ~ ~	2 22R		WIFI_D3	2	1	C2703 DNP	33pF	50V C0402
							R04	02						COG
	R2708	1 DNP 2 4.7K	5% R0402	SDIO_CMD	R2709	1	2 22R		WIFI_CM	D 2	1	C2704 DNP	33pF	50V C0402
							R04	02			ΙГ			C0G
				SDIO_CLK	R2710	1	2 22R		WIFI_CLI	(2	1	C2705 DNP	33pF	50V C0402
							R04	02						

首先看下硬件:主要的部分都在绿色方框内

WIFI_D0~3:数据线,平时为高,电压取决于 VCCIO_WL 的电压;

WIFI_CMD:命令线,平时为高,电压取决于 VCCIO_WL 的电压;

WIFI_CLK:时钟,平时为低,电压取决于 VCCIO_WL 的电压;

VBAT_WL: WIFI 模组供电电源,一直都为高,供电需打印3.3v;

VCCIO_WL:给DATA/CMD/CLK的IO供电电源,可以为3.3或者1.8v,但SDIO3.0

必须为 1.8v;

WIFI_REG_ON: 正常工作时为 3.3v, WiFi 关闭时为 0v;

两个晶振: 32K和 26M/37.4M,正常工作时都会有波形输出;

3. eMMC

eMMC 有效电压的组合:

Table 199 — e•MMC voltage combinations

		$ m V_{ccq}$							
		1.1 V-1.3 V	1.70 V-1.95 V	2.7 V-3.6 V					
သ	2.7 V-3.6 V	Valid	Valid	Valid (1)					
V	1.7 V-1.95 V	Valid	Valid	NOT VALID					
NOTE 1 V _{CCO} (I/O) 3.3 V range is not supported in either HS200 or HS400 devices									

VCC_FLASH 对应 VCC;

VCC_IO 对应 VCCQ;

确保 eMMC_CMD/DATA0~7/VCC_IO 电压都一致(1.8 或 3.3v);

确保 VCC_FLAHS/VCC_IO 的电压在开机和运行时或者休眠唤醒时必须保持稳定、不能有塌陷或者纹波过大的情况;

有条件的话,测下 clk 和 cmd 以及 data 的波形质量,确保波形正常;

波形分析

下图是 SD 卡识别模式时的波形时序图 (sdio、emmc一样)

简单说一下识别 SD 卡的方式: 主控发出 48clk 并携带 48bit 的数据发给 SD 卡,而 SD 卡要回应给主控 48clk 加 48bit 的数据; 如下图:

Figure 3-4: "no response" and "no data" Operations

绿色:SDMMC_CLK

黄色:SDMMC_CMD:SDMMC_CMD 空闲时一直处于高电平;

主控发出的波形: 当最开始的两个电平有一高一低时, 是主控发出去的命令;

SD 卡响应的波形: 当最开始的两个电平有连续的两个低电平是表示卡端有响应;

其次主控和响应一般包含 48 个 bit 的数据, 所以 48 个 clk 为一个完整的包。要确认的就是:主控发出去命令包后,SD 卡端是否有响应。

LOG 分析

1. 正确识别 SD 卡的 LOG

```
[ 293.194013] mmc1: new high speed SDXC card at address 59b4
[ 293.198185] mmcblk1: mmc1:59b4 00000 59.6 GiB
[ 293.204351] mmcblk1: p1
```

如果在内核看到这样的打印,说明 SD 卡已经被正确识别,并且已经有一个可用的分区 p1。

如果在用户界面看不到 SD 卡设备或者设备不可使用,请排查用户态磁盘守护进程,如 vold。

另外可手动验证分区是否可以使用

mount -t vfat /dev/block/mmcblk1p1 /mnt

或者

mount -t vfat /dev/block/mmcblk1 /mnt

然后到 mnt 目录下看下是否有 SD 卡里面的文件

2. 开机不读卡,运行时拔插 OK: 大概率时电源问题

例如:拔掉所有电源,发现查着 HDMI 发现有漏电到 VCC_SD 卡里面;或者使用外接电源进行测试。

3. 挂载失败:

如果已经看到(1)中的 LOG, 但是看到如下挂载失败的 LOG

```
[ 2229.405694] FAT-fs (mmcblk1p1): bogus number of reserved sectors
[ 2229.405751] FAT-fs (mmcblk1p1): Can't find a valid FAT filesystem
```

请格式化 SD 卡为 FAT32 文件系统;

或者 NTFS: make menuconfig 选择 NTFS 文件系统的支持即可;

4. 概率性不识别:

```
mmc1: new high speed SD card at address b368
mmcblk1: mmc1:b368 SMI     486 MiB
[mmc1] Data transmission error !!!! MINTSTS: [0x00002000]
dwmmc_rockchip ff0c0000.rksdmmc: data FIFO error (status=00002000)
mmcblk1: error -110 sending status command, retrying
need_retune:0,brq->retune_retry_done:0.
```

降频和增加卡检测延时增强电源稳定性,如果降频 OK 的话,请检查硬件 layout;

```
&sdmmc {
    card-detect-delay = <1200>;
}
```

5. TF 卡已经 mount,但不能访问 TF 卡目录,看起来是卡文件系统问题,但卡在 Windows 下可以访问。

请尝试使用 fsck 对 TF 卡做修复。

6. 硬件问题, io 电压异常

```
Workqueue: kmmcd mmc_rescan
[<c0013e24>] (unwind_backtrace+0x0/0xe0) from [<c001172c>]
(show_stack+0x10/0x14)
[<c001172c>] (show_stack+0x10/0x14) from [<c04fa444>]
(dw_mci_set_ios+0x9c/0x21c)
[<c04fa444>] (dw_mci_set_ios+0x9c/0x21c) from [<c04e7748>]
(mmc_set_chip_select+0x18/0x1c)
[<c04e7748>] (mmc_set_chip_select+0x18/0x1c) from [<c04ebd5c>]
(mmc_go_idle+0x94/0xc4)
[<c04ebd5c>] (mmc_go_idle+0x94/0xc4) from [<c0748d80>]
(mmc_rescan_try_freq+0x54/0xd0)
[<c0748d80>] (mmc_rescan_try_freq+0x54/0xd0) from [<c04e85d0>]
(mmc_rescan+0x2c4/0x390)
[<c04e85d0>] (mmc_rescan+0x2c4/0x390) from [<c004d738>]
(process_one_work+0x29c/0x458)
[<c004d738>] (process_one_work+0x29c/0x458) from [<c004da88>]
(worker_thread+0x194/0x2d4)
[<c004da88>] (worker_thread+0x194/0x2d4) from [<c0052fb4>] (kthread+0xa0/0xac)
[<c0052fb4>] (kthread+0xa0/0xac) from [<c000da98>] (ret_from_fork+0x14/0x3c)
1409..dw_mci_set_ios: wait for unbusy timeout..... STATUS = 0x306 [mmc1]
```

请检查 CMD 线与 DATA 的电压是否在空载状态下为高电平。并且检测 IO 电压是否过低,以及 IO 电压与电源域的配置是否一致。如果是 SDIO 接口,建议排查 VCCIO_WL 电压,VBAT_WL 和 WIFI_REG_ON以及晶振是否正常。另可以尝试排查走线太长导致波形质量很差,降频进行测试。