PSYCH 260

Hormones

Rick O. Gilmore 2021-10-07 11:32:17

Prelude

Even when practiced discreetly, raised eyebrows and disapproving glances still meet with those who dare to udder-feed in public.

Announcements

- Quiz 2 today
- Blog post 1 (of 3) due today by 5:00 PM
- Exam 2 *next* Thursday

Today's Topics

Hormonal communication

Warm-up

Black widow spider venom causes paralysis by impeding the normal function of which neurotransmitter system?

- Glutamate (Glu)
- GABA (GABA)
- Dopamine (DA)
- Acetylcholine (ACh)

Black widow spider venom causes paralysis by impeding the normal function of which neurotransmitter system?

- Glutamate (Glu)
- GABA (GABA)
- Dopamine (DA)
- Acetylcholine (ACh)

With one exception, the monoamine neurotransmitters bind to what type of receptors?

- ionotropic
- voltage-gated
- nicotinic
- metabotropic

With one exception, the monoamine neurotransmitters bind to what type of receptor?

- ionotropic
- voltage-gated
- nicotinic
- metabotropic

With one exception, the monoamine neurotransmitters bind to what type of receptor?

- · ionotropic
- voltage-gated
- nicotinic ACh binds to nAChR; ACh not a monoamine
- metabotropic

The *outward* flow of this ion across the neural membrane creates what kind of PSP?

- · Cl-; IPSP
- K+; IPSP
- Glutamate; EPSP
- GABA; EPSP

The *outward* flow of this ion across the neural membrane creates what kind of PSP?

- · Cl-; IPSP
- K+; IPSP
- Glutamate; EPSP
- GABA; EPSP

The *outward* flow of this ion across the neural membrane creates what kind of PSP?

- Cl-; IPSP Outward Cl- -> inside less negative == EPSP
- K+; IPSP Make inside less positive
- · Glutamate; EPSP Glu not an ion; transported across
- GABA; EPSP GABA not an ion; transported across

Hormones

Hormones

- · Chemical secreted into blood
- Act on specific target tissues
- Produce specific effects

Can a substance be a hormone AND a neurotransmitter?

- Yes, why not?
- No, absolutely not.

Can a substance be a hormone AND a neurotransmitter?

- Yes, why not?
- No, absolutely not.
- Do the substances bind to neurons AND to other cells in the body?

Examples of substances that are both hormones and neurotransmitters

- Melatonin
- Epinephrine/adrenaline
- Oxytocin
- Vasopressin

- Ingestive (eating/ drinking)
 - Fluid levels
 - Na, K, Ca levels
 - Digestion
 - Blood glucose levels

- Reproduction
 - Sexual Maturation
 - Mating
 - Birth
 - Care giving

- Responses to threat/challenge
 - Metabolism
 - Heart rate, blood pressure
 - Digestion
 - Arousal

What do these physiological responses and behaviors have in common?

- Biological imperatives
- Events restricted in space and time
- Often involve other animals

Differences between neural and hormonal communication

- Point to point vs."broadcast"
 - Wider broadcast than neuromodulators
 - Everywhere in body via bloodstream
- Fast vs. slow-acting
- Short-acting vs. long-acting
- Digital (yes-no) vs. analog (graded)
- Voluntary control vs. involuntary

Similarities between neural and hormonal communication

- Chemical messengers stored for later release
- Release follows stimulation
- Action depends on specific receptors
- · 2nd messenger systems common

Where are hormones released

o 2001 Sinauer Associates, Inc.

Where are hormones released?

- · CNS
 - Hypothalamus
 - Pituitary
 - Anterior
 - Posterior
 - Pineal gland

Where are hormones released

o 2001 Sinauer Associates, Inc.

Where are hormones released?

- Rest of body
 - Thyroid
 - Adrenal (ad=adjacent, renal=kidney) gland
 - Adrenal cortex
 - Adrenal medulla
 - *Gonads* (testes/ovaries)

Two hypothalamus/pituitary release systems

- Direct
- Indirect

Direct hormone release into bloodstream

- Hypothalamus (paraventricular, supraoptic nucleus) to
- Posterior pituitary
 - Oxytocin
 - Arginine Vasopressin (AVP, vasopressin)

Direct release

https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/1807_The_Posterior_Pituitary_Complex.jpg/594p 1807_The_Posterior_Pituitary_Complex.jpg

Indirect release

- Hypothalamus -> releasing hormones
- Anterior pituitary -> tropic hormones
- End organs

Indirect release

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Figure 5.14 @ 2004 Sinauer Associates, Inc.

Case studies

Case 1: Responses to threat or challenge

- Neural response
 - Sympathetic Adrenal Medulla (SAM) response
 - Sympathetic NS activation of adrenal medulla, other organs
 - Releases NE and Epi

(Deussing & Chen, 2018)

Case 1: Responses to threat or challenge

- Endocrine response
 - Hypothalamic Pituitary Adrenal (HPA) axis
 - Adrenal hormones released
- Hypothalamus
 - Corticotropin Releasing Hormone (CRH)
- Anterior pituitary
 - Adrenocorticotropic hormone (ACTH)

Case 1: Responses to threat or challenge

- Adrenal cortex
 - Glucocorticoids (e.g., cortisol)
 - Mineralocorticoids (e.g. aldosterone)

(Deussing & Chen, 2018)

Adrenal hormones

- Steroids
 - Derived from cholesterol
- Cortisol
 - increases blood glucose, anti-inflammatory
 - negative consequences of prolonged exposure
- Aldosterone
 - Regulates Na (and water) retention in kidneys

Case 2: Reproductive behavior – the milk letdown reflex

- Hypothalamus releases oxytocin into posterior pituitary
- Targets milk ducts in breast tissue

Milk letdown reflex

Oxytocin's role

- Sexual arousal
- Released in bursts during orgasm
- Stimulates uterine, vaginal contraction
- Links to social interaction, bonding (Weisman & Feldman, 2013)
- · Alters face processing in autism (Domes et al., 2013)

Oxytocin

References

- Deussing, J. M., & Chen, A. (2018). The Corticotropin-Releasing factor family: Physiology of the stress response. *Physiological Reviews*, *98*(4), 2225–2286. https://doi.org/10.1152/physrev.00042.2017
- Domes, G., Heinrichs, M., Kumbier, E., Grossmann, A., Hauenstein, K., & Herpertz, S. C. (2013). Effects of intranasal oxytocin on the neural basis of face processing in autism spectrum disorder. *Biological Psychiatry*, 74(3), 164–171. https://doi.org/http://dx.doi.org/10.1016/j.biopsych.2013.02.007
- Weisman, O., & Feldman, R. (2013). Oxytocin effects on the human brain: Findings, questions, and future directions. *Biological Psychiatry*, *74*(3), 158–159. https://doi.org/http://dx.doi.org/10.1016/j.biopsych.2013.05.026