Exercise 1:

1) Ker (A) = (Vn+1, ---, Vn)

For (C) the singular value decomposition (SVD) can easily write $Av_i = 0$ for i = n+1, ..., n. This proves immediately that $v_i \in Ker(A)$ for i = 17+1, ..., n. Since Ker(A) is vector subspace of IR^m , any linear combination of $v_{n+1}, ..., v_n$ is in Ker(A). Hence $(v_{n+1}, ..., v_n) \subseteq Ker(A)$

For (2)

x & Ken(A) (=) 11 An112=0

(=) 11 UZ VT x112=0

(=) 11 2 VT x112 = 0

(=) 11 ∑ J112 =0; where y=V x

= (0, -,0, J_{R+2}, --, y_n)^T

€ Mr = NA + + +

 $[y = (0, ..., y_{n+1}, ..., y_n)^T]$

(=) κ = Σ ζίνί i=π+1

⇒ n ∈ (v_{n+1}, ···· v_n)

This proves that (Vn+2, --, Vn)] Ker(A)

2. $Im(A) = \langle v_1, \dots, v_n \rangle$

For (\subseteq) the SVD can easily write $Av_i=0_iv_i$, for $i=1,...,\tau$. This proves immediately that $U_i \in Im(A)$ for $i=1,...,\tau$. Since Im(A) is a vector subspace of \mathbb{R}^m , any Linear combination of $U_1,...,U_n$ is in Im(A). Hence $(U_1,...,U_n) \subseteq Im(A)$

For (2)

y & Im(A) (=) In such that y = An

E) J= UZVTx

=> J= UZZ; where Z=VTx

=> y = U (0, 2, ... on 2n, 0... o) T

 $A = \sum_{i} (a_i s_i) \alpha_i$

⇒

∀ = ⟨ u₁, ..., u_n⟩

This proves that (41, -- , un) = Im(A)