

Assignment 01

Algorithms for Sequence Analysis

Sven Rahmann and Jens Zentgraf

23.04.2024, due 29.04.2024 (23:59)

01.1: Naive Pattern Search Algorithm (4 Theory)

Consider

- an alphabet of size 4 $\Sigma = \{A, C, G, T\}$
- with the probabilities ($p_A = 0.26, p_C = 0.23, p_G = 0.24, p_T = 0.27$),
- a random pattern
- of length m = 6.
- a) What is the expected number of comparisons against a text window for the naive algorithm?
- b) What is the number for $m \to \infty$?

01.2: Canonical Codes (4 Theory)

Reminder

The canonical code is the **minimum** of the encoding of the DNA k-mer and its reverse complement.

Calculate the canonical codes for the given k-mers.

- a) TCGAT
- **b)** TAGCTA

Is the given value a canonical code for k = 5?

If yes, what is the corresponding 5-mer?

- 696
- d) 975

01.3: Shift-And Algorithm (4 Theory)

- $\Sigma := \{A, B, C\},$
- P := BBBABBABAB
- T := BBABCBBABBABABABABAB
- Calculate the masks for each character.
- **2** Execute the Shift-And algorithm, and provide the the bit vector *D* after each step.
- 3 Mark the bit vector if we have a hit

01.4: Horspool Implementation (Programming 4P)

The Horspool algorithm was discussed in the lecture. If we have a small alphabet $\Sigma = \{A, B\}$ and a long sequence and pattern, it can be useful two compute the shift table based on more than one character.

```
Example
```

p = BAAAAB

```
shifts
length 1: 1 2

A B AA AB BA BB

1 5 2 1 5 6
```


You can use and adapt the code provided on the lecture slides.

- Implement the support of shift pattern length $I = \{1, 2, ...\}$.
 - Add / as a parameter to the preprocessing and search functions.
 - Adapt the functions to support 1.

For the text

- Print the matching positions.
- Count how often is the comparison between pattern and text done for $l \in \{1, 2, 3\}$
- How often is a shift of length n done for $l \in \{1, 2, 3\}$

