# ECON 6140 - Problem Set # 3

Julien Manuel Neves

February 15, 2018

## Open Economy with Durable Goods

(1) The Langrangian of the problem:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^{t} [u(c_{t}) + v(z_{t+1}) + \lambda_{t}(R^{*}b_{t} + af(k_{t}) - c_{t} - x_{kt} - qx_{zt} - b_{t+1} - \frac{d}{2}(z_{t+1} - z_{t})^{2}) + \mu_{t}(x_{zt} + (1 - \delta_{z})z_{t} - z_{t+1}) + \nu_{t}(x_{kt} + (1 - \delta_{k})k_{t} - k_{t+1})]$$

KKT:

$$c_{t}: c_{t}^{-\eta} - \lambda_{t} = 0$$

$$z_{t+1}: z_{t+1}^{-\eta} - \lambda_{t}d(z_{t+1} - z_{t}) + \beta \lambda_{t+1}d(z_{t+2} - z_{t+1}) - \mu_{t} + \beta \mu_{t+1}(1 - \delta_{z}) = 0$$

$$b_{t+1}: \beta \lambda_{t+1}R^{*} - \lambda_{t} = 0$$

$$k_{t+1}: \beta \lambda_{t+1}af'(k_{t+1}) + \beta \nu_{t+1}(1 - \delta_{k}) - \nu_{t} = 0$$

$$x_{zt}: \mu_{t} - q\lambda_{t} = 0$$

$$x_{kt}: \nu_{t} - \lambda_{t} = 0$$

$$: R^{*}b_{t} + af(k_{t}) \geq c_{t} + x_{kt} + qx_{zt} + b_{t+1} + \frac{d}{2}(z_{t+1} - z_{t})^{2}$$

$$: x_{zt} + (1 - \delta_{z})z_{t} \geq z_{t+1}$$

$$: x_{kt} + (1 - \delta_{k})k_{t} \geq k_{t+1}$$

$$TVC_{1}: \lim_{T \to \infty} \beta^{T}u_{c}(c_{T})k_{T+1} = 0$$

$$TVC_{2}: \lim_{T \to \infty} \beta^{T}u_{c}(c_{T})b_{T+1} = 0$$

Note that we need an extra tranversality condition for capital.

Note that since  $R^* = \frac{1}{\beta}$ , then  $\lambda_t = \lambda_{t+1}$ .

The steady state FOCs are given by

$$\left(\frac{c}{z}\right)^{\eta} = q(1 - \beta(1 - \delta_z))$$
$$\beta(af'(k) + (1 - \delta_k)) = 1$$

and the steady state constraint yield

$$(R^* - 1)b + af(k) = c + x_k + qx_z$$
$$x_z = \delta_z z$$
$$x_k = \delta_z k$$

Note that if  $f'(\cdot)$  is decreasing, k is uniquely determined by  $(\beta, a, \delta_k, f(\cdot))$ .

Since d doesn't enter these equations, hence it is irrelevant for the steady states.

If  $q \uparrow$  or  $\delta_z \uparrow$ , then  $\frac{c}{z} \uparrow$ . Since k is only determined by the coefficient, we need b to adjust such that  $(R^* - 1)b + af(k) = c + q\delta_z z + \delta_z k$  holds for the new steady state.

(2) Recall that since  $R^* = \frac{1}{\beta}$ , we have  $\lambda_t = \lambda_{t+1} = \lambda$ . This in turns implies that  $\mu_t = q\lambda$  and  $\nu_t = \lambda$ , i.e. every Lagrange multiplier is constant. This implies that  $c_t$  and  $z_{t+1}$  are also constant for  $t \geq 0$ . Note that  $z_0$  is given, therefore  $z_t = z$  for  $t \geq 1$  which might not be equal to  $z_0$ . In fact, z is equal to the steady state value of

$$z = c[q(1 - \beta(1 - \delta_z))]^{-\frac{1}{\eta}}$$

Moreover, we get

$$\beta(af'(k_{t+1}) + (1 - \delta_k)) = 1$$

i.e.  $k_{t+1}$  is also constant if  $f'(\cdot)$  is decreasing and k is given by  $\beta(af'(k) + (1 - \delta_k)) = 1$ . Since  $k_{t+1}$  is constant  $x_{kt} + (1 - \delta_k)k_t = k_{t+1}$  becomes  $x_{kt} = \delta_k k$  for  $t \ge 1$  and  $x_{k0} = k - (1 - \delta_k)k_0$  for t = 0. Since  $z_{t+1}$  is constant  $x_{zt} + (1 - \delta_z)z_t = z_{t+1}$  becomes  $x_{zt} = \delta_z z$  for  $t \ge 1$  and  $x_{z0} = z - (1 - \delta_z)z_0$  for t = 0.

Now, we look at the dynamics of  $b_t$ . Note that it is fully determined by

$$b_{t+1} = R^*b_t + af(k_t) - c - x_{kt} - qx_{zt}$$

Since we know  $b_0$ , the whole sequence of  $x_{kt}$  and  $x_{zt}$ , the only thing missing is c. As shown previously,  $c_t$  is constant. Hence, to pin down  $b_t$  we need to find  $c_0 = c$ .

Let's look at the phase diagram of b and z with  $t \geq 1$ . Note that we get the following equation

$$z_{t+1} = z_t = z$$
$$b_{t+1} = R^*b_t + af(k) - c - \delta_k k - q\delta z_t$$

Hence, the locus for b is

$$b_t = -\frac{a\beta}{1-\beta}f(k) + \frac{c\beta}{1-\beta} + \frac{\delta_k\beta}{1-\beta}k + \frac{q\delta_z\beta}{1-\beta}z_t$$

Hence, any point that satisfy  $b_t = -\frac{a\beta}{1-\beta}f(k) + \frac{c\beta}{1-\beta} + \frac{\delta_k\beta}{1-\beta}k + \frac{q\delta_z\beta}{1-\beta}z$  is the bond steady state. To get on this locus, we need  $b_0$  to be such that  $b_1 = -\frac{a\beta}{1-\beta}f(k) + \frac{c\beta}{1-\beta} + \frac{\delta_k\beta}{1-\beta}k + \frac{q\delta_z\beta}{1-\beta}z$ . Hence,  $c_0$  needs to be such that  $b_1 = R^*b_0 + af(k_0) - c_0 - x_{k0} - qx_{z0}$  holds and voilà!

(3) Again, every Lagrange multiplier are constant. Therefore, we get

$$\beta(af'(k_{t+1}) + (1 - \delta_k)) = 1$$

i.e.  $k_{t+1}$  is constant if  $f'(\cdot)$  is decreasing. Since  $k_{t+1}$  is constant  $x_{kt} + (1 - \delta_k)k_t = k_{t+1}$  becomes  $x_{kt} = \delta_k k$  for  $t \ge 1$  and  $x_{k0} = k - (1 - \delta_k)k_0$  for t = 0.

Moreover, the FOC of  $z_{t+1}$  is now

$$z_{t+1}^{-\eta} = \lambda [d(z_{t+1} - z_t) - \beta d(z_{t+2} - z_{t+1}) + q(1 - \beta(1 - \delta_z))]$$

Since capital is constant, we can focus on a phase diagram to see what happens to  $z_t$  only. Let  $y_t = z_{t+1} - z_t$ . Hence, we have the two following dynamic equations

$$z_{t+1} = y_t + z_t$$

$$y_{t+1} = \frac{1}{\beta} y_t + \frac{q}{\beta d} (1 - \beta (1 - \delta_z)) - \frac{1}{\lambda \beta d} (y_t + z_t)^{-\eta}$$

Take the loci where z is constant. This yields y = 0, i.e. the y-axis.

For the second loci is shape is not too important for our analysis. We simply note that for y = 0, we get

$$z^{-\eta} = \lambda q (1 - \beta (1 - \delta_z))$$

Since,  $\lambda = c^{-\eta}$ , we have  $z^{-\eta} = c^{-\eta}q(1-\beta(1-\delta_z))$ , i.e. the steady state derived previously.

To describe the dynamics, take  $y_t < 0$ . This implies that  $z_{t+1} < z_t$ . Therefore on the steady path, if we start over the steady state,  $z_t$  will decrease until it reaches z. The reverse can be said for  $y_t > 0$ . The speed of converge is describe in part 4).

(4) Note that as derived previously, capital goods are constant for period  $t \geq 1$ . Hence to converge to the steady state, we only one period.

For durable goods, our analysis implies that regardless if we start over or under the second locus, the  $y_t$  will converge to the steady state y = 0 over time. This in turns implies that the difference between  $z_{t+1}$  and  $z_t$  will decrease every period until  $z_t = z$ . Hence, the convergence of durable goods is not "instantaneous" like capital.

### Transition paths in the one sector growth model

(1) With the parameters defined in the problem set, we get that the steady state is  $k^* = 10.03$  and  $c^* = 1.639$ . Thus, our starting value is  $k_0 = 9.027599$ . Figure 1 shows the transition of  $k_0$  on the steady path. It takes 53 periods to converge to the steady state when starting from  $k_0 = .9k^*$ .



Figure 1: Transition path for growth model starting at  $k_0 = .9k^*$ 

Note that we also plot the loci of our phase diagram on Figure 1. Recall that they are given by

$$k : c_t = Ak_t^{\alpha} - \delta k_t$$
$$c : c_t = k_t^{\alpha} + (1 - \delta)k_t - k^*$$

where  $k^*$  is the steady state value equal to  $\left(\frac{\alpha\beta A}{1-\beta+\beta\delta}\right)^{\frac{1}{1-\alpha}}$ .

#### (2) See Figure 2.



Figure 2: Phase diagram for growth model

Note that the scales on this figure are not 1-1.



Figure 3: Phase diagram for growth model with increase of 1% in  $\beta$ 

- (3) By increasing  $\beta$  by 1% the second locus shift to the right and we get that the new steady state is  $k^* = 12.640$  and  $c^* = 1.678$ . Therefore the starting value is  $k_0 = 11.376$ . Note that since  $k^*$  is bigger,  $k_0$  is a bit farther in absolute terms. This results in a longer convergence term of 59 periods. The transition path is plotted in Figure 3.
- (4) Note that if A goes up, the first locus also goes up. This implies that the new steady path also shifts up and the new steady state will be one where  $k^* \uparrow$  and  $c^* \uparrow$ .

In this problem, we let the increase in A happen at t = 1. Moreover, let's assume that it was an unexpected increase permanent increase in A, i.e. consumer don't preventively adjust to a future steady path.



Figure 4: Time path for consumption and capital with increase of 1% in A

Now, since the point  $(k_0, c_0)$  is the old steady, it might not be on the new steady path. To adjust to that the consumer will instantaneously change it consumption at time t=1 to get on the new steady path unlike  $k_0$  that can't act reactively. From there on on out, both  $k_t$  and  $c_t$  will monotonically increase until it reaches the new steady path as shown in Figure 4.

#### Code

- 1 % Shooting Algorithm 2 % Course: ECON 6140
- з % Version: 1.0
- 4 % Author: Julien Neves

```
% Question
  tol = .001; \% tolerance
  N = 100000; % grid size
  T = 600;
                % time periods
10
  alpha = 0.33;
                     % labor share
11
  delta = 0.05;
                     % depreciation of capital
  sigma = 0.5;
                     % CRRA
  beta = .98;
                     % discount factor
  A = 1;
                     % technology
15
16
  k = zeros(1,T+1);
                          % initial k path vector
17
                          % initial c path vector
  c = zeros(1,T+1);
18
19
  kstar = ((alpha*beta*A)/(1-beta+beta*delta))^(1/(1-alpha)); \% k
      steady state
   cstar = A*kstar^alpha+(1-delta)*kstar-kstar;
                                                          % c steady state
^{21}
22
  k0 = 0.9*kstar; % starting k value
24
                          % lower bound of k axis
  lb_k = 0.9*kstar;
                          % upper bound of k axis
  ub_k = 1.3*kstar;
26
27
  lb_c = 0.9*cstar;
                          % lower bound of c axis
28
  ub_c = 1.1 * cstar;
                          % lower bound of c axis
29
30
   axis_k = lb_k : (ub_k - lb_k)/(N-1) : ub_k;
                                                      % k axis
31
                                                      % c axis
   axis_c = lb_c : (ub_c - lb_c)/(N-1) : ub_c;
32
33
                % initialize tolerance criteria
   crit = 1;
34
                % initialize iteration
   ite = 1;
35
36
   while (crit>tol && ite <= length(axis_c))
37
       k(1) = k0; % set starting k0
38
       c(1) = axis_c(ite); \% pick c0
39
       for t = 1:T
40
            k(t+1) = A*k(t)^a + (1-delta)*k(t)-c(t); % compute k(t)
41
               +1)
            c(t+1) = c(t)*(beta*alpha*A*k(t+1)^(alpha-1)+beta*(1-delta)
42
               )) (1/\text{sigma}); %compute c(t+1)
            \operatorname{crit} = \max(\operatorname{abs}(\operatorname{kstar} - \operatorname{k}(t+1)), \operatorname{abs}(\operatorname{cstar} - \operatorname{c}(t+1)));
43
               deviation from steady state
            if crit <=tol
44
                % if close to steady state stop algorithm
45
```

```
k = k(1:t+1); % cut path after convergences
46
               c = c(1:t+1); % cut path after convergences
47
               break
48
           else
49
               continue
           end
51
      end
52
       ite = ite + 1; \% update iteration
53
  end
55
  u = gradient(k);
                        % compute k gradient of steady path
56
  v = gradient(c);
                       % compute c gradient of steady path
57
  loci_k = A*axis_k.^alpha - delta*axis_k;
                                                 % compute k loci
59
  loci_c = axis_k.^alpha +(1-delta)*axis_k-kstar; % compute c loci
60
61
  [K,C] = meshgrid(lb_k : (ub_k-lb_k)/(10-1) : ub_k, lb_c : (ub_c-lb_c)
62
     (10-1) : ub<sub>-c</sub>); % create (k,c) grid
63
  dK = A*K.^alpha-delta.*K-C; % compute k gradient of every point in
      grid
  dC = C.*(beta*alpha*A*(dK+K).^(alpha-1)+beta*(1-delta)).^(1/sigma)
     -C; % compute c gradient of every point in grid
  \% plot steady path, phase diagram, and locus
  figure (1)
  quiver (k, c, u, v, 0)
69
  axis ([lb_k ub_k lb_c ub_c])
  xlabel('k') % x-axis label
  ylabel('c') % y-axis label
72
  hold on
  quiver (K, C, dK, dC, 0)
  plot (axis_k, loci_k)
  plot (axis_k, loci_c)
  legend ('Transition Path', 'Phase', 'Locus-K', 'Locus-C')
  hold off
  print -depsc fig1.eps
79
80
  fprintf('Question 1 \nStarting - K : %f \nSteady state - K : %f \
     nSteady state - C: %f \nConvergence time: %d.\n\n', k0, kstar,
     cstar,t);
82
                      % store original k steady state
  kstar_old = kstar;
                       % store original c steady state
  cstar_old = cstar;
  k_{-}old = k; % store transition path for k
```

```
c_{old} = c;
                 % store transition path for c
                 % store transition path for k
   u_{-}old = u;
   v_{old} = v;
                 % store transition path for c
89
   % Question 2
   k = zeros(1,T+1);
                           % initial k path vector
91
   c = zeros(1, T+1);
                           % initial c path vector
92
93
   k0 = 1.1*kstar; \% starting k value
95
   crit = 1:
                  % initialize tolerance criteria
96
                 % initialize iteration
   ite = 1;
97
98
   while (crit>tol && ite <= length(axis_c))
99
        k(1) = k0; % set starting k0
100
        c(1) = axis_c(ite); \% pick c0
101
        for t = 1:T
102
             k(t+1) = A*k(t)^a alpha + (1-delta)*k(t)-c(t); % compute k(t)
103
                 +1)
             c(t+1) = c(t)*(beta*alpha*A*k(t+1)^(alpha-1)+beta*(1-delta)
104
                 )) (1/\text{sigma}); %compute c(t+1)
             \operatorname{crit} = \max(\operatorname{abs}(\operatorname{kstar} - \operatorname{k}(t+1)), \operatorname{abs}(\operatorname{cstar} - \operatorname{c}(t+1)));
                                                                            %
105
                 deviation from steady state
             if crit <=tol
106
                 % if close to steady state stop algorithm
107
                  k = k(1:t+1); % cut path after convergences
108
                  c = c(1:t+1); % cut path after convergences
109
                  break
110
             else
111
                  continue
112
             end
113
        end
114
        ite = ite + 1; % update iteration
115
   end
116
117
   u = gradient(k);
                           % compute k gradient of steady path
118
   v = gradient(c);
                           % compute c gradient of steady path
119
120
   % plot steady path, phase diagram, and locus
   figure (2)
122
   quiver (k, c, u, v, 0)
123
   hold on
124
   quiver (K, C, dK, dC, 0)
   plot (axis_k, loci_k)
   plot (axis_k, loci_c)
```

```
quiver (k_old, c_old, u_old, v_old, 0)
   hold off
129
   axis ([lb_k ub_k lb_c ub_c])
   xlabel('k') % x-axis label
131
   ylabel('c') % y-axis label
   legend ('Steady Path', 'Phase', 'Locus-K', 'Locus-C', 'Steady Path')
133
   print -depsc fig2.eps
134
135
136
   % Question 3
137
   alpha = 0.33;
                      % labor share
138
   delta = 0.05;
                      % depreciation of capital
139
   sigma = 0.5;
                      % CRRA
   beta = .9898;
                        % discount factor
141
                      % technology
  A = 1:
142
143
                          % initial k path vector
   k = zeros(1,T+1);
144
   c = zeros(1, T+1);
                          % initial c path vector
145
146
   kstar = ((alpha*beta*A)/(1-beta+beta*delta))^(1/(1-alpha)); \% k
      steady state
   cstar = A*kstar^alpha+(1-delta)*kstar-kstar; % c steady state
148
149
   k0 = 0.9*kstar; \% starting k value
150
151
   \% note that we use the axis define in question 1
152
   axis_k = lb_k : (ub_k-lb_k)/(N-1) : ub_k;
                                                       % k axis
153
   axis_c = lb_c : (ub_c-lb_c)/(N-1) : ub_c;
                                                       % c axis
154
155
   crit = 1;
                 % initialize tolerance criteria
156
   ite = 1;
                 % initialize iteration
157
158
   while (crit>tol && ite <= length(axis_c))
159
        k(1) = k0; % set starting k0
160
        c(1) = axis_c(ite); \% pick c0
161
        for t = 1:T
162
             k(t+1) = A*k(t)^a lpha + (1-delta)*k(t)-c(t); \% compute k(t)
163
                +1)
             c(t+1) = c(t)*(beta*alpha*A*k(t+1)^(alpha-1)+beta*(1-delta)
164
                )) (1/\text{sigma}); %compute c(t+1)
             \operatorname{crit} = \max(\operatorname{abs}(\operatorname{kstar} - \operatorname{k}(t+1)), \operatorname{abs}(\operatorname{cstar} - \operatorname{c}(t+1)));
                                                                          %
165
                deviation from steady state
             if crit <=tol
166
                 % if close to steady state stop algorithm
167
                 k = k(1:t+1); % cut path after convergences
168
```

```
c = c(1:t+1); % cut path after convergences
169
                 break
170
            else
171
                 continue
172
            end
173
       end
174
        ite = ite + 1; % update iteration
175
   end
176
177
                         % compute k gradient of steady path
   u = gradient(k);
178
   v = gradient(c);
                         % compute c gradient of steady path
179
180
   loci_k = A*axis_k.^alpha - delta*axis_k; % compute k loci
181
   loci_c = axis_k.^alpha +(1-delta)*axis_k-kstar; % compute c loci
182
183
   [K,C] = \text{meshgrid}(lb_k : (ub_k-lb_k)/(10-1) : ub_k, lb_c : (ub_c-lb_c)
184
      (10-1) : ub_c); % create (k,c) grid
185
   dK = A*K.^alpha-delta.*K-C; % compute k gradient of every point in
186
       grid
   dC = C.*(beta*alpha*A*(dK+K).^(alpha-1)+beta*(1-delta)).^(1/sigma)
187
      -C; % compute c gradient of every point in grid
188
   % plot steady path, phase diagram, and locus
   figure (3)
190
   quiver (k, c, u, v, 0)
191
   axis ([lb_k ub_k lb_c ub_c])
192
   xlabel ('k') % x-axis label
   ylabel('c') % y-axis label
194
   hold on
195
   quiver (K,C,dK,dC,0)
196
   plot (axis_k, loci_k)
   plot (axis_k, loci_c)
198
   hold off
199
   legend ('Transition Path', 'Phase', 'Locus-K', 'Locus-C')
200
   print -depsc fig3.eps
201
202
   fprintf('Question 3 \setminus nStarting - K : \%f \setminus nSteady state - K : \%f \setminus
203
      nSteady state - C: %f \nConvergence time: %d.\n\n', k0, kstar,
      cstar,t);
204
205
   % Question 4
206
   alpha = 0.33;
                     % labor share
207
   delta = 0.05;
                     % depreciation of capital
```

```
sigma = 0.5;
                      % CRRA
   beta = .98;
                      % discount factor
210
   A = 1.01;
                      % technology
211
212
   k = zeros(1,T+1);
                           % initial k path vector
213
                           % initial c path vector
   c = zeros(1, T+1);
214
215
   kstar = ((alpha*beta*A)/(1-beta+beta*delta))^(1/(1-alpha)); % k
216
      steady state
   cstar = A*kstar^alpha+(1-delta)*kstar-kstar; % c steady state
217
218
   k0 = kstar_old; % starting k value
219
220
   lb_k = kstar_old;
                           % lower bound of k axis
221
   ub_k = 1.1 * kstar;
                           % upper bound of k axis
222
223
   lb_c = 0.9*cstar;
                           % lower bound of c axis
224
   ub_c = 1.1*cstar;
                           % lower bound of c axis
225
226
   axis_k = lb_k : (ub_k - lb_k)/(N-1) : ub_k;
                                                        % k axis
   axis_c = lb_c : (ub_c-lb_c)/(N-1) : ub_c;
                                                        % c axis
228
229
                 % initialize tolerance criteria
   crit = 1;
230
   ite = 1;
                 % initialize iteration
231
232
   while (crit>tol && ite <= length(axis_c))
233
        k(1) = k0; % set starting k0
234
        c(1) = axis_c(ite); \% pick c0
235
        for t = 1:T
236
             k(t+1) = A*k(t)^a + (1-delta)*k(t)-c(t); % compute k(t)
237
                +1)
             c(t+1) = c(t)*(beta*alpha*A*k(t+1)^(alpha-1)+beta*(1-delta)
238
                )) (1/\text{sigma}); %compute c(t+1)
                                                                           %
             \operatorname{crit} = \max(\operatorname{abs}(\operatorname{kstar} - \operatorname{k}(t+1)), \operatorname{abs}(\operatorname{cstar} - \operatorname{c}(t+1)));
239
                deviation from steady state
             if crit <=tol
240
                 % if close to steady state stop algorithm
241
                 k = k(1:t+1); % cut path after convergences
242
                  c = c(1:t+1); % cut path after convergences
243
                  break
244
             else
245
                  continue
246
             end
247
        end
248
        ite = ite + 1; % update iteration
249
```

```
end
251
   k = [kstar_old, k]; \% add k0
252
   c = [cstar\_old, c]; \% add c0
253
254
   \% plot time path of k and c
255
   figure (4)
256
   subplot (2,1,1)
257
   plot(0:length(k)-1,k, '--o');
258
   xlabel('t') % x-axis label
259
   ylabel ('k') % y-axis label
260
   subplot (2,1,2)
261
   plot (0:length(c)-1,c, '---o');
^{262}
   xlabel('t') % x-axis label
263
   ylabel('c') % y-axis label
264
   print -depsc fig4.eps
265
266
   fprintf('Question 4 \nStarting - K : %f \nSteady state - K : %f \
267
      nSteady state - C: %f \nConvergence time: %d.\n\n', k0, kstar,
      cstar,t);
```