

Processing EGG data: New methods for a multidimensional time-series assessment of vocal fold activity

Stefano Coretta

The University of Manchester

Manchester Forum in Linguistics, 26th April 2018

Background: Electroglottography

- EGG (Fabre, 1957; Scherer & Titze, 1987; Rothenberg & Mahshie, 1988)
 - estimation of vocal folds contact area (VFCA) based on impedance of high frequency current
- non-invasive
- relatively simple signal

Background: Electroglottography

3

Background: Electroglottography

Background: EGG signal

Background: EGG signal

Background: Contact quotient

Background: Wavegrams (Herbst et al., 2010)

Methods

- 4 phonetically trained BE speakers (1 F, 3 M)
- [a] in modal and breathy voice
 - 10 × 2 = 20 tokens per speaker
 - · 80 tokens
- · equipment
 - · Glottal Enterprises EG2-PCX2 unit
 - Movo LV4-O2 Lavalier microphone (sample rate 44100 Hz, 16-bit)

g

Methods

- 500 ms portion centered around mid point of each token
- dEGG maxima and minima of each cycle within the 500 ms portion
 - · CQ = minimum maximum
 - tracegram
- · wavegram data (Herbst et al., 2010)
 - generalised additive mixed models (Wood, 2006; Sóskuthy, 2017; van Rij et al., 2017)

Results: CQ

Results: CQ

```
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModImerTest1
## Formula: contact quotient ~ phonation + (1 + phonation | speaker)
     Data: tracegram
##
##
## REML criterion at convergence: -19596.2
##
## Scaled residuals:
      Min 10 Median 30 Max
##
## -6.8237 -0.5875 0.0188 0.6320 5.0468
##
## Random effects:
                    Variance Std.Dev. Corr
## Groups Name
## speaker (Intercept) 0.003668 0.06057
         phonationbreathy 0.005922 0.07696 -0.38
##
## Residual
                           0.001081 0.03289
## Number of obs: 4927, groups: speaker, 4
##
## Fixed effects:
          Estimate Std. Error df t value Pr(>|t|)
##
## (Intercept) 0.49460 0.03029 2.99979 16.33 0.0005 ***
## phonationbreathy -0.07312 0.03849 3.00022 -1.90 0.1537
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
##
            (Intr)
## phontnbrthy -0.381
```

Results: Tracegram

References

Fabre, P. 1957. Un procede electrique percutane d'inscrition de l'accolement glottique au cours de la phonation: glottographie de haute frequence. Premiers resultats. *Bulletin de l'Académie nationale de médecine* 141. 66.

Herbst, Christian T., W. Tecumseh S. Fitch & Jan G. Švec. 2010. Electroglottographic wavegrams: A technique for visualizing vocal fold dynamics noninvasively. *The Journal of the Acoustical Society of America* 128(5). 3070–3078.

- Rothenberg, Martin & James J. Mahshie. 1988. Monitoring vocal fold abduction through vocal fold contact area. *Journal of Speech, Language, and Hearing Research* 31(3). 338–351.
- Scherer, Ronald C. & Ingo R. Titze. 1987. The abduction quotient related to vocal quality. *Journal of Voice* 1(3). 246–251.
- Sóskuthy, Márton. 2017. Generalised additive mixed models for dynamic analysis in linguistics: a practical introduction. arXiv preprint arXiv:1703.05339.
- van Rij, Jacolien, Martijn Wieling, R. Harald Baayen & Hedderik van Rijn. 2017. itsadug: Interpreting time series and autocorrelated data using GAMMs. R package version 2.3.
- Wood, Simon. 2006. Generalized additive models: An introduction with R. CRC Press.