CS146 Data Structures and Algorithms

Chapter 23: Minimum Spanning Trees

Motivation: Minimum Spanning Trees

- To minimize the length of a connecting network, it never pays to have cycles.
- The resulting connection graph is connected, undirected, and acyclic, i.e., a *free tree* (sometimes called simply a *tree*).
- This is the *minimum spanning tree* or *MST* problem.

Formal Definition of MST

- Given a connected, undirected, graph G = (V, E), a
 spanning tree is an acyclic subset of edges T⊆ E that
 connects all the vertices together.
- Assuming G is weighted, we define the cost of a spanning tree T to be the sum of edge weights in the spanning tree

$$w(T) = \sum_{(u,v) \in T} w(u,v)$$

 A minimum spanning tree (MST) is a spanning tree of minimum weight.

Figure1: Examples of MST

Figure 1: Minimum spanning tree.

 Not only do the edges sum to the same value, but the same set of edge weights appear in the two MSTs.
 NOTE: An MST may not be unique.

Minimum Spanning Tree

• Which edges form the minimum spanning tree (MST) of the below graph?

Minimum Spanning Tree

• Answer:

Minimum Spanning Tree

- MSTs satisfy the *optimal substructure* property: an optimal tree is composed of optimal subtrees
 - Let T be an MST of G with an edge (u,v) in the middle
 - Removing (u,v) partitions T into two trees T_1 and T_2
 - Claim: T_1 is an MST of $G_1 = (V_1, E_1)$, and T_2 is an MST of $G_2 = (V_2, E_2)$ (Do V_1 and V_2 share vertices? Why?)
 - Proof: w(T) = w(u,v) + w(T₁) + w(T₂)
 (There can't be a better tree than T₁ or T₂, or T would be suboptimal)