Lecture 10

Inference for One Population Mean Text: Chapter 5

STAT 8010 Statistical Methods I February 18, 2020

> Whitney Huang Clemson University

Notes Notes

Agenda

- Statistical Inferences
- 2 Point/Interval Estimation
- 3 Confidence Intervals
- 4 Hypothesis Testing

Notes			
-			

Statistical Inference

For the rest of the semester, we will focus on conducting statistical inferences for the following tasks:

- Estimating one population mean
- Comparing two population means
- Comparing more than two population means
- Estimating population proportions
- Estimating relationship between two quantitative variables

Inference for One Population Mean
Statistical Inferences

Notes				

Statistical Inference Cont'd

• We use parameters to describe the population **Example:** population mean (μ_X) ; population variance (σ_X^2)

• We use statistics of a sample to infer the population **Example:** sample mean (\bar{X}) ; sample variance (s_X^2)

Estimating Population Mean μ

Goal: To estimate the population mean using a (representative) sample:

- The sample mean, $\bar{X}_n = \frac{\sum_{i=1}^{n} X_i}{n}$, is a reasonable point estimate of the population mean μ_X
- Need to quantify the level of uncertainty of the point $estimate \Rightarrow Interval\ estimation$
- Need to figure out the sampling distribution of \bar{X}_n in order to construct interval estimates \Rightarrow Central Limit Theorem (CLT)

Inference for One Population Mean
Statistical Inferences

Notes

-				
_				
_				

Central Limit Theorem (CLT)

CLT

The sampling distribution of \bar{X}_n will become approximately normally distributed as the sample size (n) becomes "large", regardless of the shape of the population distribution!

Let X_1, X_2, \cdots, X_n be a random sample from a population X with $\mu=\mathbb{E}[X]$ and $\sigma^2=\operatorname{Var}[X]$. Then $\bar{X}_n=\frac{\sum_{i=1}^n X_i}{n}\overset{d}{\to}\operatorname{N}(\mu,\frac{\sigma^2}{n})$ as $n\to\infty$.

1	Notes				
-					
-					
_					
_					

CLT In Action

- Generate 100 (n) random numbers from an Exponential distribution (population distribution)
- Compute the sample mean of these 100 random numbers
- Repeat this process 120 times

Inference for One Population Mean
CLEMS N
Statistical nferences
10.7

INCLUC

CLT: Sample Size (n) and the Normal Approximation

N	otes
ıν	Oles

Why CLT is important?

• CLT tells us the distribution of our estimator

$$\bar{X}_n \approx N(\mu, \frac{\sigma^2}{n})$$

- \bullet The distribution of \bar{X}_n is center around the true mean
- \bullet The variance of \bar{X}_n is decrease with n
- With normality approximation of the sampling distribution of \bar{X}_n , we can perform interval estimation $\mathsf{about}\ \mu$
- Applications: Confidence Interval, Hypothesis testing

Population Mean								
C	r	Ē	λ	45	S	4	ì	J
UN	1	٧	Ε	R	s	7	Ť	Ì

Notes

Confidence Intervals (CIs) for μ

- \bullet Let's assume we know the population variance σ^2 (will relax this assumption later on)
- $(1 \alpha) \times 100\%$ Cl for μ :

$$\left[\bar{X}_n - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right],$$

where $z_{\frac{\alpha}{2}}$ is the $1-\frac{\alpha}{2}$ percentile of $Z\sim N(0,1)$

• $\frac{\sigma}{\sqrt{n}}$ is the standard error of \bar{X}_n , that is, the standard deviation of its sampling distribution

	Inference for One Population Mean
(CLEMS ** T
	Point/Interval Estimation

Notes

Making Sense of Confidence Intervals

For any $\alpha \in (0,1)$:

$$\begin{split} & \mathbb{P}\left(\bar{X}_n - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}_n + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) \\ = & \mathbb{P}\left(-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leq \bar{X}_n - \mu \leq z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) \\ = & \mathbb{P}\left(-z_{\frac{\alpha}{2}} \leq \frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \leq z_{\frac{\alpha}{2}}\right) \\ = & \mathbb{P}\left(-z_{\frac{\alpha}{2}} \leq Z \leq z_{\frac{\alpha}{2}}\right) \\ = & \Phi(z_{\frac{\alpha}{2}}) - \Phi(-z_{\frac{\alpha}{2}}) \\ = & 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - \alpha \end{split}$$

Inference for One Population Mean
CLEMS N
Point/Interval Estimation

Notes

Making Sense of Confidence Intervals Cont'd

Inference for One Population Mean
Point/Interval Estimation

Notes		

Example: Average Height

We measure the heights of 40 randomly chosen men, and get a mean height of 5'9" ($\approx\!175 \text{cm}).$ Suppose we know the standard deviation of men's heights is 4" ($\approx\!10 \text{cm}).$ Find the 95% confidence interval of the true mean height of ALL men.

WORLD HEIGHT CHART(MALE)

Notes

Notes

Average Height Example Cont'd

- Operation Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Population standard deviation: $\sigma = 4$ inches
- § Standard error of $\bar{X}_{n=40}=\frac{\sigma}{\sqrt{n}}=\frac{4}{\sqrt{40}}=0.63$ inches
- **③** 95%CI: Need to find $z_{0.05/2} = 1.96$ from the Z-table
- **95%** CI for μ_X is:

$$\begin{aligned} &[69-1.96\times0.63,69+1.96\times0.63]\\ &=[67.77,70.23] \end{aligned}$$

Properties of Confidence Intervals

- In contrast with the point estimate, \bar{X}_n , a $(1-\alpha)\%$ CI is an interval estimate, where the **length of CI** reflects our estimation uncertainty
- Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1-\alpha)\%$ of these confidence intervals will contain the true μ
- The length of a CI depends on
 - ullet Population Standard Deviation: σ
 - ullet Confidence Level: 1-lpha
 - Sample Size: n

Inference for One Population Mean
Confidence Intervals

Notes			

Sample Size Calculation

- We may want to estimate μ with a confidence interval with a predetermined margin of error (i.e. $z_{\alpha/2} \frac{\sigma}{\sqrt{\eta}}$)
- For example, in estimating the true mean height of All men we may want our CI to be just 0.5 inches in width
- The question is then, "how many observations do we need to take so that we have the desired margin of error?"

Sample Size Calculation Cont'd

To compute the sample size needed to get a CI for μ with a specified margin of error, we use the formula below

$$n = \left(\frac{z_{\alpha/2} \times \sigma}{\text{Margin of error}}\right)^2$$

Exercise: Derive this formula using margin of error $= z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

Notes

Average Height Example Revisited

Compute the sample size needed in order to estimate the true mean height of All men such that the 95% CI to be 0.5 inches in width

- **①** Length of CI: $2 \times z_{0.025} \frac{\sigma}{\sqrt{n}} = 2 \times$ margin of error
- ② Want to find *n* s.t. $z_{0.025} \frac{\sigma}{\sqrt{n}} = 0.25$
- **o** We have $n = \left(\frac{1.96 \times 4}{0.25}\right)^2 = 983.4496$

Therefore, the required sample size is 984

Notes			

Confidence Intervals When σ Unknown

- \bullet In practice, it is unlikely that σ is available to us
- \bullet One reasonable option is to replace σ with s, the sample standard deviation
- We need to account for this added uncertainty with a (slightly) different sampling distribution that has fatter tails
 - ⇒ Student t Distribution (William Gosset, 1908)

Notes ______

Student t Distribution

- Recall the standardize sampling distribution $\frac{\bar{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)$
- \bullet Similarly , the studentized sampling distribution $\frac{\bar{X}_n-\mu}{\frac{N}{\sqrt{n}}}\sim t_{df=n-1}$

Notes

Confidence Intervals (CIs) for μ When σ is Unknown

$$\left[\bar{X}_n - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}, \bar{X}_n + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}\right],$$

where $t_{\frac{\alpha}{2},n-1}$ is the $1-\frac{\alpha}{2}$ percentile of a student t distribution with the degrees of freedom =n-1

ullet is an estimate of the standard error of $ar{X}_n$

Notes			

Average Height Example Revisited

We measure the heights of 40 randomly chosen men, and get a mean height of 5'9" (\approx 175cm), and a standard deviation of 4.5" (\approx 11.4cm). Find the 95% confidence interval of the true mean height of ALL men.

Notes

Notes

Average Height Example Cont'd

- Operation Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches
- **9** 95%CI: Need to find $t_{0.05/2,39}=2.02$ from a t-table (or using a statistical software)
- **⑤** 95% CI for μ_X is:

$$[69 - 2.02 \times 0.71, 69 + 2.02 \times 0.71]$$

= [67.57, 70.43]

Hypothesis Testing

- **Hypothesis Testing**: A method for using sample data to decide between two competing claims (hypotheses) about a population characteristic (a parameter. e.g. μ)
- Examples:
 - The true mean starting salary for graduates of four-year business schools is \$4,500 per month $\Rightarrow \mu = 4,500$
 - The true mean monthly income for systems analysts is at least \$6,000 $\Rightarrow \mu \geq 6,000$

Inference for One Population Mean
CLEMS N
Hypothesis Testing

Notes			

Hypotheses

- Null Hypothesis: A claim about a parameter that is initially assumed to be true. We use H₀ to denote a null hypothesis
- $\begin{tabular}{ll} \bullet & \textbf{Alternative Hypothesis} : The competing claim, \\ & \textbf{denoted by } H_a \end{tabular}$
- In carrying out a test of H_0 versus H_a , the hypothesis H_0 will be rejected in favor of H_a only if sample evidence strongly suggests that H_0 is false. If the sample data does not contain such evidence, H_0 will not be rejected
- Therefore, the two possible decisions in a hypothesis test are:
 - Reject H_0 (and go with H_a)
 - Fail to Reject H_0

Notes

Hypotheses

Be careful setting up hypotheses:

- A statistical hypothesis test is only capable of demonstrating strong support for the alternative hypothesis H_a (by rejecting the null hypothesis H₀)
- Failing to reject H₀ does not show strong support for the null hypothesis – only a lack of strong evidence against H₀, the null hypothesis

ļ	Notes				

The 2×2 Decision Paradigm for Hypothesis Testing

True State	Decision			
True State	Reject H_0	Fail to reject H_0		
H_0 is true	Type I error	Correct		
H_0 is false	Correct	Type II error		

Errors in Hypothesis Testing

- \bullet The probability of a type I error is denoted by α
- The probability of a type II error is denoted by β

Inference for One Population Mean
Hypothesis Testing

Notes			