

What Is AlphaGo?

What Is AlphaGo?

- Al developed by DeepMind that plays the board game Go
 - DeepMind is owned by Google
- Was created to test how effective DeepMind's deep learning neural network algorithm was

Al's Struggle with Go

Al's Struggle with Go

- 10⁷⁶¹ possible game states, compared to 10¹²⁰ for chess
- More legal moves per turn than chess and longer games (about ×2 more total moves per game)
- Needed a new method
 - Old methods relied on Monte Carlo search trees

Go Game Tree

Monte Carlo Search Trees

- MCST is an alternative to searching a game tree like we did with tic-tac-toe
 - Run simulation games from current state until someone wins
 - Simulations use random moves at the beginning
- Simulations return values like if a certain player won

Monte Carlo Search Trees

- Return values are used in later simulations
- There is a direct correlation with the more simulations you run, the better the algorithm gets at winning
- To combat the algorithm from becoming too narrow (picking the same moves over and over again) a random component is added to promote exploration of new states

Hello, AlphaGo

AlphaGo

- DeepMind's AlphaGo research paper
 - "Mastering the Game of Go with Deep Neural Networks and Tree Search" from Nature

Big Picture

Big Picture

- DeepMind took the existing MCST approach and added machine learning to the mix
 - Neural net approach
 - Good at handling a lot of data
- Two main components
 - Tree search (MCST)
 - Convolutional networks that guide MCST

What Is a Convolutional Network?

- Used extensively in image processing
- Takes an image as an input and applies filters to it
- At every game state, AlphaGo passes in the actual image of the board to the algorithm
- AlphaGo trained 4 separate networks: 3 policy networks
 and 1 value network

Convolutional Network Diagram

Convolutional Network

- Policy: guides which action to take from current state
 - Out of all legal moves from this state, which has the highest odds of resulting in a win?
- Value: assigns value to this current game state
 - What are the odds of this player winning from this state?

Different Convolutional Networks

- 3 policy networks
 - SL policy or supervised learning policy
 - RL policy or reinforcement learning policy
 - Fast or rollout policy
- 1 value network

Combining Approaches

- Combine tree search and convolutional networks is similar to using both reflection and intuition
- Reflection and intuition: closer to how a human thinks
 - Reflection: We look back at how we handled similar situations (i.e. tree search)
 - Intuition: We use our gut to make decisions (i.e. heuristics)

Training

Training: Policy

- First, SL policy network was trained on 30 million game positions (played by experts) obtained from a Go server
 - 13 layers deep
 - Deep learning: a neural net with many layers
- Next, a faster rollout policy network was trained
 - 1500x faster than SL policy

Training: Policy

- The RL policy network is trained by having the SL network play against random past iterations of itself
 - Prevents overfitting from if you just play the SL network against one with identical weights
 - 1.2 million total games
- This RL policy is the strongest policy

Training: Value

- Next, the value network was trained using 30 million unique positions collected from the RL policy playing itself
- This value network essentially acts as an evaluation function at each state
 - However, evaluations functions are designed by hand
 - This value network is learned
 - This is one key difference from DeepBlue's chess algorithm that relied on hand-crafted evaluation

- Combines a policy network (rollout policy being the best),
 value network, and MCST together
 - Using the SL or RL in real gameplay was too slow
- This MCST keeps track of how many times a node (game state) has been visited
 - The more times a node is visited, the less likely to pick it in the future
 - Encourages exploration

- Every turn, AlphaGo is running simulations in its "head" from the current game state
 - It uses the two neural networks to guide the moves picked in these simulations
 - After running many simulations, it will pick that move that led to the most victories in these simulations

- AlphaGo uses multi-threading to evaluate the policy networks at the same times as running MCST simulations
 - Simulations are run on CPUs
 - Policy and value networks are computed on GPUs
- Final version used 40 search threads, 48 CPUs, 8 GPUs
- Distributed version used 40 search threads, 1,202 CPUs, and 176 GPUs

Conclusion

Conclusion

- Only one human left with a higher Elo
 - He was unofficially beaten in online Go when DeepMind secretly unleashed distributed AlphaGo on the site
- AlphaGo gets us closer to true AI as more parts of these algorithms are becoming learned rather than designed by hand

Pros of the Research

- AlphaGo shines a light on a key insight: combining multiple approaches seems to have the best outcome
 - Combining brute force search (i.e. MCST) with intuition (values derived by machine learning, i.e. neural nets)
 - This is more similar to how humans approach problems, combining reflection of past experiences and also using their "gut"
- This research points to a trend of more "self taught" algorithms and less on human crafted evaluation functions/heuristics
 - AlphaGo made the most leaps in performance after the RL policy was created from self play

Cons of the Research

- AlphaGo is still heavily reliant on humans
 - First policy network trained on 30 million expert game positions
- Convolutional networks are a specialized form of neural nets
 - Won't work on every problem
- Effective AlphaGo iterations were the ones that relied on massive hardware specs
 - Also, the effective policy and value networks were the ones derived from the millions of games fed into it
 - Very long to train

Questions?