QUARTUS 4 ΧΡΗΣΤΟΣ ΚΑΡΑΓΙΑΝΝΙΔΗΣ ΑΜ 4375 ΜΥΡΩΝΑΣ ΚΟΥΦΟΠΟΥΛΟΣ ΑΜ 4398

ΜΕΡΟΣ 1^ο : Συνδιαστικά Κυκλώματα Ερώτημα 1^ο

```
₱ MUX4_1.vhd

                                                                                               🙎 Classic Timing Analy
                                Waveform1.vwf
                                                               🔠 quartus4.bdf
             library IEEE;
             use IEEE.std_logic_l164.all;
           entity MUX4_1 is
                 port (
                         D : in std logic vector(0 to 3);
ţ.
                         SEL:in std logic vector(1 downto 0);
                         Y: out std logic);
ŧ
            end MUX4_1;
       10
           ■architecture RTL of MUX4 1 is
       12
           begin
       13
                 Y<= D(0) when SEL="00" else D(1) when SEL="01" else D(2) when SEL="10" else D(3);
       14
            end RTL;
       15
```


Η μέγιστη χρονική καθυστέρηση του κυκλώματος ειναι 13,962ns από το D[0] στο Υ

ΜΕΡΟΣ 1^ο : Συνδιαστικά Κυκλώματα Ερώτημα 2^ο

```
№ MUX16_1.vhd
                                                                      quartus4.bdf
MUX4_1.vhd
          library ieee;
          use ieee.std logic 1164.all;
         ■ENTITY MUX16 1 is port(
                  D: in std logic vector (0 to 15);
                  SEL: in std logic vector (3 downto 0);
                  F: out std logic);
          END MUX16 1;
      9
         ■ARCHITECTURE RTL OF MUX16 1 IS
     11
         ■COMPONENT MUX4 1
     12 =
              port (
     13
                  D: in std logic vector (0 to 3);
                  SEL: in std logic vector (1 downto 0);
     14
                  Y: out std logic);
     15
     16
          END COMPONENT;
     17
     18
              SIGNAL Y: STD LOGIC VECTOR (0 to 3);
     19
     20
          BEGIN
     21
     22
          u0:MUX4 1 port map(D=>D(0 to 3), SEL=> Sel(1 downto 0), Y=>Y(0));
     23
          u1:MUX4 1 port map(D=>D(4 to 7), SEL=> Sel(1 downto 0), Y=>Y(1));
          u2:MUX4 1 port map(D=>D(8 to 11), SEL=> Sel(1 downto 0), Y=>Y(2));
     24
          u3:MUX4 1 port map(D=>D(12 to 15), SEL=> Sel(1 downto 0), Y=>Y(3));
     25
     26
          u4:MUX4 1 port map(D=>Y, SEL=> Sel(3 downto 2), Y=>F);
     27
     28
          END RTL;
```


egist	ered Per	formance tpd ts	su tco th	C	ustor	n Delays
	Slack	Required P2P Time	Actual P2P Time	From	То	
1	N/A	None	12.629 ns	D[9]	F	
2	N/A	None	12.324 ns	D[14]	F	
3	N/A	None	12.261 ns	D[4]	F	
4	N/A	None	11.964 ns	D[13]	F	
5	N/A	None	11.948 ns	D[6]	F	
6	N/A	None	11.824 ns	D[10]	F	
7	N/A	None	11.562 ns	D[11]		
8	N/A	None	11.393 ns	D[8]	F	
9	N/A	None	11.273 ns	D[15]	F	
10	N/A	None	11.108 ns	SEL[2]		
11	N/A	None	10.986 ns	D[12]		
12	N/A	None	10.887 ns	D[7]	F	
13	N/A	None	10.871 ns	D[5]	F	
14	N/A	None	10.188 ns	SEL[3]	F	
15	N/A	None	9.577 ns		F	
16	N/A	None	9.132 ns	D[0]	F	
17	N/A	None	8.548 ns	SEL[0]	F	
18	N/A	None	8.532 ns	SEL[1]		
19	N/A	None	8.251 ns		F	
20	N/A	None	7.608 ns	D[3]	F	

Η μέγιστη χρονική καθυστέρηση είναι 12,629ns από το D[9] στο F.

ΜΕΡΟΣ 1^ο : Συνδιαστικά Κυκλώματα Ερώτημα 3^ο

```
FA_vhdl.vhd
                                              Compilation Report - Flow Summary
              library IEEE;
use IEEE STD LOGIC 1164 ALL:
å4
            mentity FA vhdl is
いて 事事 人名 20 0
            port (
           A : in STD LOGIC;
            B : in STD_LOGIC;
Cin : in STD_LOGIC;
            S : out STD_LOGIC;
            Cout : out STD LOGIC);
        10
        11
              end FA vhdl;
        12
        13
            architecture comp of FA vhdl is
       14
       15
            begin
       16
       17
             S <= A XOR B XOR Cin ;
<u>~</u>
       18
             Cout <= (A AND B) OR (Cin AND A) OR (Cin AND B) ;
       19
       20
              end comp;
       21
267
268
ab/
```


	Slack	Required P2P Time	Actual P2P Time	From	То	
1	N/A	None	6.537 ns	В	Cout	
2	N/A	None	6.518 ns	В	S	
3	N/A	None	6.357 ns	Α	Cout	
4	N/A	None	6.343 ns	Α	S	
5	N/A	None	6.227 ns	Cin	Cout	
6	N/A	None	6.214 ns	Cin	S	

Η μέγιστη χρονική καθυστέρηση είναι 6,537ns απο το B στο Cout

egis	tered Per	formance tpd t	su tco th		Custom Delays
	Slack	Required P2P Time	Actual P2P Time	From	То
1	N/A	None	16.716 ns	B[1]	S[7]
2	N/A	None	16.532 ns	A[3]	S[7]
3	N/A	None	16.429 ns	Cin	S[7]
4	N/A	None	16.394 ns	B[3]	S[7]
5	N/A	None	16.177 ns	A[1]	S[7]
6	N/A	None	15.752 ns	B[2]	S[7]
7	N/A	None	15.740 ns	A[2]	S[7]
8	N/A	None	15.149 ns	B[1]	Cout
9	N/A	None	15.149 ns	B[4]	S[7]
10	N/A	None	14.965 ns	A[3]	Cout
11	N/A	None	14.862 ns	Cin	Cout
12	N/A	None	14.827 ns	B[3]	Cout
13	N/A	None	14.813 ns	A[4]	S[7]
14	N/A	None	14.610 ns	A[1]	Cout
15	N/A	None	14.328 ns	A[5]	S[7]
16	N/A	None	14.188 ns	B[5]	S[7]
17	N/A	None	14.185 ns	B[2]	Cout
18	N/A	None	14.173 ns	A[2]	Cout
19	N/A	None	13.582 ns	B[4]	Cout
20	N/A	None	13.576 ns	B[6]	S[7]
21	N/A	None	13.364 ns	A[6]	S[7]
22	N/A	None	13.251 ns	B[1]	S[6]
23	N/A	None	13.246 ns	A[4]	Cout
24	N/A	None	13.142 ns	A[0]	S[7]
25	N/A	None	13.067 ns	A[3]	S[6]

Η μέγιστη χρονική καθυστέρηση ειναι 16,716ns από το B[1] στο S[7].

Στο παραπάνω vector waveform βάλαμε να αλλάζει η τιμή του Cin από 0 σε 1 για να δοκιμάσουμε αν λειτουργεί σωστά ενώ ξέρουμε οτι κανονικά θα έπρεπε να είναι μόνιμα στο 0 για να κάνει την κανονική πρόσθεση δύο 8-bit αριθμών.

ΜΕΡΟΣ 1^ο : Συνδιαστικά Κυκλώματα Ερώτημα 4^ο

```
FullAdderEightBitsPlus.vhd
             library IEEE;
use IEEE std logic 1164 all;
44
             use IEEE.std logic unsigned.all;
        3
A. B
        5
           entity FullAdderEightBitsPlus is port (
{}
                 A : in std logic vector (7 downto 0);
                 B : in std logic vector (7 downto 0);
ŧ
                 S : out std logic vector (7 downto 0));
        8
•
        9
       10
             end FullAdderEightBitsPlus;
1
       11
%
       12
           architecture FAEBP of FullAdderEightBitsPlus is
       13
           begin
%
       14
                 S \le A + B;
*
       15
             end FAEBP;
```


y ru	illeooere	ightBitsPlus.vhd	😽	Compil	ation Report - Flow Summary
legis	tered Per	formance tpd t	su tco th		Custom Delays
	Slack	Required P2P Time	Actual P2P Time	From	То
1	N/A	None	13.628 ns	B[1]	S[6]
2	N/A	None	13.580 ns	B[0]	S[6]
3	N/A	None	13.536 ns	B[1]	S[7]
4	N/A	None	13.488 ns	B[0]	S[7]
5	N/A	None	13.283 ns	B[1]	S[5]
6	N/A	None	13.235 ns	B[0]	S[5]
7	N/A	None	13.209 ns	B[1]	S[4]
8	N/A	None	13.161 ns	B[0]	S[4]
9	N/A	None	13.142 ns	B[2]	S[6]
10	N/A	None	13.102 ns	B[1]	S[3]
11	N/A	None	13.080 ns	B[1]	S[2]
12	N/A	None	13.054 ns	B[0]	S[3]
13	N/A	None	13.050 ns	B[2]	S[7]
14	N/A	None	13.032 ns	B[0]	S[2]
15	N/A	None	12.900 ns	B[0]	S[1]

Η μέγιστη χρονική καθυστέρηση είναι 13,628ns απο το B[1] στο S[6]

Σύμφωνα με τη μέγιστη χρονική καθυστέρηση των δύο αθροιστών συμπεραίνουμε οτι ο αθροιστής του ερωτήματος 4 (με τη χρήση του «+») είναι ο πιο γρήγορος απο τους δύο.

Ερώτημα 3 Ερώτημα 4

MEPOΣ 2^o Ερώτημα 1^o D Flip Flop

```
    Q4_DFF.vhd

                                                                                                                                                                       Q4_DFF_BlockDiagramm.bc
                                                                                    Compilation Report - Flow Summary
---
                                  library IEEE;
                     2
                                  use IEEE.std logic 1164.all;
entity Q4_DFF is port (
                                            CLK, D, CLR, SET : in std logic;
                                           Q,Qn : out std_logic);
                                 end Q4_DFF;
                              architecture RTL of Q4_DFF is
                                             signal DFF : std_logic;
                  11
                  12
                             begin
                  13
                                             seq0: process(CLK,CLR,SET)
                  14
                                            begin
                  15
                                                     if(CLR='1') then DFF<='0';
                  16
                                                      elsif(SET='1') then DFF<='1';

    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □
    □

                  17
                                                      elsif(CLK'event and CLK='1') then DFF<=D;</pre>
                                                       end if;
                  18
                             end process;
                  20
                                           Q<=DFF;
                  21
                                            Qn<= not DFF;
                                  end RTL;
ab/
```


Η μέγιστη συχνότητα ρολογιού είναι που μπορεί να χρησιμοποιηθει ειναι:

MEPOΣ 2^o Ερώτημα 1^o My Latch

```
MyLatch.vhd
                                        Block1.bdf*
            library IEEE;
            use IEEE.std logic 1164.all;
44
           entity MyLatch is port(
                Rst, Set, LE, D : in std logic;
7 事事 ▲
                Q, Qn : out std_logic);
            end MyLatch;
       9 architecture RTL of MyLatch is
            signal FF: std_logic;
      10
      11 ■begin
           seq0 :process (Rst, Set, D , LE)
          begin
      14
          if Rst = '1' then FF <= '0';
      15
          elsif Set = '1' then FF <= '1';</pre>
      16
          elsif LE = '1' then FF <= D;
                end if;
      17
      18
            end process;
      19
            Q <= FF;
      20
            Qn <= not FF;
            end RTL;
ab/
```


Σχηματικό DFF και Latch

ΜΕΡΟΣ 2⁰ Ερώτημα 2⁰

```
Reg8.vhd
                                               CountToEightBits.vhd
              library IEEE;
2
              use IEEE.std logic 1164.all;
44
        3
         4
1.₽
        5
            entity Reg8 is port(
{}
        6
                  Set : in std logic;
        7
                  Clr : in std logic;
8
                  Clk : in std logic;
                  D :in std logic vector(7 downto 0);
        9
                  M : out std logic vector(7 downto 0));
       10
1
       11
              end Reg8;
%
%
       12
       13
            architecture Regi8 of Reg8 is
       14
                  signal temp : std logic vector (7 downto 0);
*
       15
            begin
       16
                  seq0: process(Clr,Clk,Set,D)
0
       17
                 begin
       18
                      if (Clr='l') then
7
       19
                               temp<= "000000000";
€2
       20
                      elsif (Set='1') then
       21
                               temp<= "111111111";
267
268
                      elsif (Clk'event and Clk='l') then
       22
       23
                           temp<= D;
ab/
       24
                      end if:
       25
                  end process;
       26
                  M \le temp;
<del>....</del>
       27
              end Regi8;
2
```


Μέγιστη συχνότητα ρολογιού που μπορεί να χρησιμοποιηθεί ειναι:

You are currently converting frequency units from nanosecond(period) to hertz
13.572 ns(p) = 73681108.163867 Hz

nanosecond(period) ☑ hertz ☑

13.572 ns(p) → 73681108.163867 Hz

Conversion base : 1 ns(p) = 1000000000 Hz

Conversion base : 1 Hz = 1000000000 ns(p)


```
EightBit.vhd
Classic Timing Analyzer Tool
             library IEEE;
use IEEE.std logic 1164.all;
å.
             use IEEE.std logic unsigned.all;
        3
A. B
        5
{}
           entity EightBit is port(
                 Reset : in std logic;
*
                 Set: in std logic;
=
                 Clk: in std logic;
                 En: in std logic;
       10
1
       11
                 M : out std logic vector(7 downto 0));
%
       12
             end EightBit;
       13
%
       14
           architecture EB of EightBit is
*
       15
                 signal Y: std logic vector(7 downto 0);
       16
       17
           begin
       18
                 seq0 : process(Reset, Set, Clk, En)
7
       19
                 begin
20
                     if (Reset='l') then
                         Y<="00000000";
       21
267
268
       22
                  elsif (Set='l') then
                         Y<="11111111";
       23
ab/
       24
                  elsif(Clk'event and Clk='l' and En='l') then
       25
                         Y \le Y + '1';
       26
                     end if;
       27
                 end process;
       28
                M < = Y:
       29
10
             end EB;
```


Η μέγιστη ταχύτητα λειτουργίας ειναι 12,76ns.

Και για να δειξουμε οτι οταν φτανει στην τιμη 1111111 παει μετα στην 00000000 :

2 Q4_ROM.hex									
Addr	+0	+1	+2	+3	+4	+5	+6	+7	
00	00	20	20	00	20	20	20	20	
80	20	20	20	20	20	20	20	20	
10	20	20	20	20	20	20	20	20	
18	20	20	20	20	20	20	20	20	

Οι θέσεις 00 και 03 είναι στην τιμή 00 αντί για 20 για να δέχονται τις 2 4bit εισόδους μας. Χρησιμοποιούμε 2 θύρες γιατί δεν μπορούμε να βάλουμε 8bit σε μία