Organisation in lebenden Systemen

Aruscha Kramm Semantic Web

Gemeinsames Problem

- 1. Autopoiesie & 2. Autokatalyse
 - Wie sind lebende Systeme organisiert?
 - Versuch: biologische Prozesse zu systematisieren

Einführung in Autopoiesie

- Autopoiesie = Prozess der Selbsterschaffung und –erhaltung eines Systems
- Prägung des Begriffs durch Humberto Maturana und Francisco Varela
- Hauptfrage: Unterscheidung lebende & nichtlebende Systeme
- Versuch, Merkmale von lebenden Systemen mittels Systemtheorie zu erklären

- Maturana und Varelas Arbeit basiert auf fundamentalen Beobachtungen:
 - 1: lebende Entitäten sind autonom
 - 2: lebende Systeme sind mechanistisch
 - 3: alle Erklärungen und Beschreibungen sind von Beobachtern gemacht
 - 4: Erklärungen von lebenden Systemen dürfen nicht teleologisch sein

Beispiel: Zelle

- Was charakterisiert eine Zelle als autonomisches, dynamisches Lebendiges?
- 2 Fragen:
 - Was ist es, dass die Zelle produziert?
 - Was ist es, das die Zelle produziert?
- Antwort: Eine Zelle produziert ihre eigenen Komponenten, welche benutzt werden, um die Zelle zu produzieren.

Beispiel: Maschine?

- Wie erstellt man eine autopoietische Maschine
 - Außer Energie, müsste alles in der Maschine produziert werden
 - Also bestünde die Maschine aus mehreren Maschinen, die die einzelnen Komponenten herstellen
 - Alles innerhalb einer Maschine
 - => die Maschine würde irgendwann die ganze Wirtschaft umfassen

Zentrale Idee: Autopoiesie

- Autopoiesie = "selbsterzeugend"
- Lebende Systeme sind so organisiert, dass ihre Prozesse die Komponenten produzieren, die für das weitere Bestehen (der Prozesse) notwendig sind.

Vokabular der Autopoiesie

- Einheit (unity): was der Beobachter von einem Hintergrund unterscheidet
 - in dem er es von anderem unterscheidet, entstehen Eigenschaften der *Einheit*
 - Bei tieferer Untersuchung kann die Einheit in Komponenten und deren Beziehungen eingeteilt werden
- Ergebnis: <u>Organisation</u>, die die Komponenten zu einem Ganzen (einer *Einheit*) macht

Vokabular der Autopoiesie (2)

- Organisation: Beziehungen zwischen Komponenten und deren notwendigen Eigenschaften, welche die Einheit zu einer bestimmten Klasse/Typ charakterisieren
- Anordnung/Struktur: Die tatsächlichen Komponenten und die tatsächliche Beziehung eines existierenden Beispiels einer solchen Einheit.
- => Unterscheidung liegt zwischen der Realität eines echten Beispiels und abstrakter Verallgemeinerung

Folgen von Autopoiesie

- Autopoiesie spezifiziert Bedinungen für das Schaffen einer autopoietischen Struktur
- Autopoietische Systeme sind organisatorisch abgeschlossen
- Erfolgreiche Autopoiesie wird zu einer Selektion der am besten geeigneten Struktur in der Umgebung führen (structural coupling)

Doppelnatur von Ökosystem-Dynamik

- Versuch, Ökologie in "hard science" zu verwandeln gescheitert
- Ökosysteme besitzen autokatalytische Prozesse, um Strukturen zu erhalten, dem entgegen wirken Störungen, die zum Zerfall von Strukturen führen
 - => Doppelnatur
- Frage: Was hält ein Ökosystem zusammen?

Grundlegendes Problem

- Gesucht: Regeln und wiederkehrende Strukturen zur mechanistischer Modellierung und Simulation
- Problem: sobald ein Modell mehr als einen biologischen Prozess beschreiben soll, sinkt die Nützlichkeit/Robustheit
- Frage: Wieso gibt es keine robusten Modelle, die mehrere Prozesse beschreiben können?

Gesetzbasierte Ökonomie?

- Elsasser (1981): "Es gibt keine Regeln für die Biologie, die den Kräftegesetzen der Physik ähneln"
- Hauptargument: Heterogenität beherrscht Biologie
- Kraftgesetze der Physik beruht auf Operationen auf echten Mengen
- **1** Echte Mengen (Physik) vs. Individuen (Biologie)

Ökonomie jenseits Statistik

- Elsasser: "Ökosysteme sind voller einzigartiger Events, die nicht mit bekannten statistischen Tools behandelt werden können"
- Hauptargument: um Wahrscheinlichkeiten berechnen zu können, benötigt man mind. ein paar Wiederholungen eines bestimmten Events

Zentrale Idee

- Gregory Bateson (1972): "Ein verursachender Kreislauf (causal circuit) wird eine nicht-zufällige Antwort auf ein zufälliges Event geben"
 - Verkettung von Events oder Prozessen, bei denen das letzte Element der Kette wieder das Erste beeinflusst
 - Feedback -> Autokatalyse
- Prozess hier: Interaktion zwischen Zufall und Folge
 - Prozess = Interaktionen zufälliger Events, unter einer Konfiguration von Bedingungen, die in einem nichtzufälligen aber unklaren Ergebnis münden

Beispiel: Urne

- Kombination von nicht-zufällig & unklar = ????
- Frage: Wie verhält sich das Verhältnis von roten und blauen Bällen?
- Antwort: nach ca. 1.000 Urnenzügen beginnt sich eine Konstante von 0.54 zu bilden
 - > das Verhältnis beginnt nicht-zufällig zu werden, bei großer Zahl von Zügen, dennoch ist der Ausgang eines einzigen Durchgangs unklar

=> Prozess beschreibt, was die meiste Zeit passiert, aber nicht jedes Mal!

Zentrale Idee: Autokatalyse

Autokatalyse

"Centripetality": favorisieren von D über B, Selektion

Ying und Yang

- Zwei ausgleichende Tendenzen:
 - Kontinuierlicher Strom von Störungen, die bestehende Struktur zerfressen
 - Autokatalytische Konfiguration, die Wachstum und Entwicklung f\u00f6rdert
- Problem: diese agonistische Sichtweise kann nicht mit Algorithmen beschrieben werden
- Mechanistische Modellierung nicht angebracht, denn sowohl Komponenten als auch Arbeitsweisen der Autokatalyse mit der Zeit ausgetauscht werden können

Kann man es aber messen?

- Kann man die "Konversation" zwischen strukturbildend und -auflösend messen?
- Ökosystem Dynamiken als Konfiguration von Prozessen betrachten:
 - A = Überlegenheit eines Systems, A ≥ 0
 - Φ = System-Fixkosten (Overhead), Φ ≥ 0
 - $\Longrightarrow C = A + \Phi$, C = Gesamtfähigkeit des Systems sich weiterzuentwickeln
 - $-0 \le A/C \le 1$ Grad der Systemorganisation (=a)

Fitness von Ökosystemen

- a = Schlüsselindikator für die Fähigkeit eines System sich selbst zu organisieren
 - 0 -> 0, zu wenig, Wirksamkeit der existierenden Konfiguration geht in Störungen unter
 - 0 -> 1, zu viel, System friert ein, Zyklen werden unflexibel und anfällig für Störungen
- Die meisten Systeme halten sich beim Punkt maximaler Fitness auf (a = 1/e)

Natur als ein Balanceakt

- mechanistische Modellierung ist nicht nutzlos, dennoch ist ihre Nützlichkeit begrenzt
- kann zur Diagnose und Findung möglicher Lösungen benutzt werden, aber nicht für einen längeren Zeitraum
- irgendwann interveniert etwas in die bestehende Dynamik

Offene Fragen?

- Keines der Modelle beschreibt die Ausgangskonfiguration, wer/was ist das Erschaffende Element?
- Zelle vs. Maschine: Ist die Zelle auch ein Teil eines Ganzen?
 - Verhält sich Maschine (produziert Schrauben für Auto) nicht wie die Zelle zum Mensch (Zelle => Organ => Verdauung)
- Ist Autopoiesie eine Art "Regel"? Widerspruch zur Aussage, dass es keine Regeln im Bezug auf Ökosysteme gibt?
- Gibt es eine Ende solcher Konfigurationen? Oder ist das Ende einfach eine Weiterentwicklung?
 - Nachhaltigkeit: Ökosystem Mensch ist das Ende nah, wo ist der Punkt, an dem wir nicht "weiter produzieren" können?