QUESTION. The region (domain) D is defined by the cone $z = \sqrt{x^2 + y^2}$ and the sphere with radius one centered at the origin of the coordinate system.

Write the integral of $f(x, y) = x^2 + y^2$ in D by a. spherical, b. cylindrical coordinates. (Reduce the triple integral to a single integral, but No need to calculate it.)

a. In spherical coordinates: $f(x, y) = x^2 + y^2 = r^2 = R^2 \sin^2 \phi$ SOLUTION.

$$dV = R^{2} \sin \phi \ dR \ d\phi \ d\theta \qquad I = \int_{\theta=0}^{\theta=2\pi} \int_{\phi=0}^{\phi=\pi/4} \int_{R=0}^{R=1} R^{4} \sin^{3} \phi \ dR \ d\phi \ d\theta$$

I is Separable:
$$I = \left[\int_{\theta=0}^{\theta=2\pi} d\theta \right] \left[\int_{R=0}^{R=1} R^4 dR \right] \left[\int_{\phi=0}^{\phi=\pi/4} \sin^3 \phi \right] d\phi = \frac{2\pi}{5} \int_{\phi=0}^{\phi=\pi/4} \sin^3 \phi \, d\phi$$

b. In cylindrical coordinates: $f(x, y) = x^2 + y^2 = r^2$ $dV = r dr dz d\theta$ Eq. of the cone: $z = \sqrt{(1-r^2)}$ $I = \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=1/\sqrt{2}} \int_{r=0}^{z=\sqrt{1-r^2}} r^3 dz \ dr \ d\theta$

Separable in θ , integrable in z: $I = 2\pi \int_{r=0}^{r=1/\sqrt{2}} \left[\sqrt{1-r^2} - r \right] r^3 dr$