Abstract

Menschen lernen offensichtlich in unterschiedlicher Art und Weise. Eine solche Unterteilung kann zum einen in Persönlichkeitstypen, wie bei Schrader, als auch in kompetenzbezogene Unterschiede, wie bei Zech, getroffen werden. Zum anderen können Aufgaben anhand ihres Grades an Nützlichkeit, in Form von beigelegten Bildern, gestaltet sein. Diese Bilder können entweder nur dekorativen Nutzen haben oder auch essenziell für das Lösen der Aufgabe sein und somit zusätzlich eine Anschauung vermitteln. In vorliegender Studie wurden 39 Studenten der TU München in einer Eyetrackingstudie zu den Fragestellungen untersucht: Lassen sich die Studenten in Lerntypen anhand ihrer Augenbewegungen einteilen? Wie wirkt sich der Lerntyp auf die Leistungsfähigkeit der Versuchsteilnehmer aus? Mit welcher Erfolgsquote werden dekorative oder essenzielle Bilder bearbeitet? Und schließlich, gibt es Lerntypen, die mit unterschiedlich beigelegten Bildern, besser oder schlechter umgehen können?

Um diese Fragen beantworten zu können, wurde den Studenten zu Beginn ein heuristisches Lösungsbeispiel für einen mathematischen Zusammenhang gezeigt. Die Blickbewegungen der Studenten auf diesem Lösungsbeispiel legt die Lerntypunterteilung der Probandinnen und Probanden fest. Im weiteren Teil wurden mathematische Aufgaben mit dekorativen und essenziellen Bildern gestellt, welche die Probandinnen und Probanden bearbeiten mussten. Eine Unterteilung der Lerntypen war in der Mehrheit der Versuchsteilnehmer möglich, jedoch die Unterschiede ihrer Leistungsfähigkeit nicht signifikant. Bei der Verwendung unterschiedlicher Bildtypen wurden Aufgaben mit essenziellen Bildern etwas besser bearbeitet als Aufgaben mit nur dekorativen Bildern. Bei der Auswertung, wie die unterschiedlichen Lerntypen mit den beigefügten Bildern umgegangen sind, war festzustellen, dass Lernende, die im ersten Teil der Studie sehr oft die Abbildungen betrachtet haben, im zweiten Teil mit essenziellen Bildern nicht gewinnbringend umgehen konnten.

Inhaltsverzeichnis

Ei	Εi	inl	leitu	ung	 3
Ei	Εi	inl	leitu	ıng	

1. Einleitung

Im ersten Schritt des Projektes stand im Vordergrund, welches Projekt man überhaupt realisieren wollte. Hierbei kristalisierte sich schnell herraus, dass ein Projekt sinvoll erschien, welches sich mit gerade gelernten Objekten befasst. Da Elena, Philip und ich alle im Semester davor die Vorlesung Theoretische Informatik gehört hatten, reizte es und zu diesem Thema einen DFA-Editor zu programmieren, welcher verschiedene Funktionen für den User überprüft und veranschaulicht.

Abbildungsverzeichnis

Tabellenverzeichnis