Kalman Filtreli 2D Top Yörüngesi

Simülasyon Analiz Raporu

Tarih: 03.10.2025 01:51:46

1. **G**■R■■

Bu rapor, Kalman filtresi kullanarak 2D düzlemde hareket eden bir topun yörüngesinin tahminini içermektedir. Simülasyon, gürültülü sensör ölçümlerinden gerçek pozisyonu tahmin etmek için optimal durum tahmini algoritmas∎ kullanmaktad∎r.

2. S■MÜLASYON PARAMETRELER■

Parametre	De∐er	Birim
Ba∎lang ≣ ç H ∎ z■	50.00	m/s
F∎rlatma Aç∎s∎	45.00	derece
Yerçekimi ■ vmesi	9.80	m/s²
Ölçüm Gürültüsü (σ)	2.00	m
Süreç Gürültüsü	0.100	-
Zaman Ad ≣ m ■ (dt)	0.050	s
Geri Tepme Katsay ■ s■	0.70	-

3. KALMAN F■LTRES■ TEOR■S■

3.1 Durum Uzay■ Modeli

Durum vektörü: $\mathbf{x} = [\mathbf{x}, \mathbf{y}, \mathbf{v}_{\mathbf{x}}, \mathbf{v}_{\mathbf{y}}]$

- x, y: Pozisyon (metre)
- v x, v y: H■z bile■enleri (m/s)

3.2 Tahmin Ad■m■ (Prediction)

- Durum tahmini: $x = k|k-1| = F \cdot x = k-1|k-1| + B \cdot u_k$
- Kovaryans tahmini: P_k|k-1 = F·P_k-1|k-1·F■ + Q

3.3 Güncelleme Ad∎m■ (Update)

- Durum güncelleme: $x \blacksquare _k | k = x \blacksquare _k | k-1 + K \cdot (z_k H \cdot x \blacksquare _k | k-1)$
- Kovaryans güncelleme: P_k|k = (I K·H)·P_k|k-1

3.4 Matrisler

- F: Durum geçi■ matrisi (4x4) kinematik model
- H: Ölçüm matrisi (2x4) sadece pozisyon ölçümü
- Q: Süreç gürültüsü kovaryans■ (4x4)

4. PERFORMANS METR■KLER■

Metrik	Kalman Filtresi	Ham Ölçüm	■yile■tirme
RMSE (m)	1.3430	2.8847	53.44%
MAE (m)	1.1592	2.6211	-
Max Hata (m)	3.7261	-	-

RMSE (Root Mean Square Error): Tahmin hatalar∎n∎n karekök ortalamas∎. Dü∎ük de∎er daha iyi performans gösterir.

MAE (Mean Absolute Error): Mutlak hatalar∎n ortalamas∎. RMSE'ye göre ayk∎r∎ de∎erlere daha az duyarl∎d∎r.

■yile■tirme Oran■: Kalman filtresinin ham ölçümlere göre RMSE'de sa**■**lad**■■■** iyile**■**tirme yüzdesi. Pozitif de**■**er filtre performans**■**n**■** gösterir.

5. S■MÜLASYON GRAF■KLER■

5.1 Ana Yörünge Simülasyonu

Kalman Filtreli 2D Top Yörüngesi Simülasyonu

5.2 Yörünge Kar∎∎la∎t∎rmas∎

5.3 Detayl■ Hata Analizi

6. SONUÇLAR VE DE■ERLEND■RME

6.1 Ana Bulgular

Bu simülasyonda Kalman filtresi, gürültülü sensör ölçümlerinden topun gerçek pozisyonunu tahmin etmek için kullan∎lm∎∎t∎r. Elde edilen sonuçlar:

- Kalman filtresi RMSE de**≡**eri **1.3430 m** olarak ölçülmü**≡**tür.
- Ham ölçümlere göre 53.44% iyile■tirme sa■lanm■■t■r.
- Maksimum hata 3.7261 m olarak kaydedilmi∎tir.

6.2 Filtre Performans■

Kalman filtresi, özellikle yörüngenin düzgün k∎s∎mlar∎nda çok ba∎ar∎l∎ performans göstermi∎tir. Gürültülü ölçümler içinden gerçek hareketi ay∎rt etme yetene∎i aç∎kça görülmektedir.

Topun yere çarpt■■ anlarda (süreksizlik noktalar■) filtre geçici olarak daha yüksek hata gösterse de, h■zl■ca gerçek duruma yak■nsamaktad■r. Bu, filtrenin adaptif do■as■n■ göstermektedir.

6.3 Parametre Etkisi

- Ölçüm gürültüsü (sigma = 2.00 m): Sensör hassasiyetini simüle eder
- Süreç gürültüsü (Q = 0.100): Model belirsizli∎ini temsil eder
- Geri tepme katsay

 s

 (e = 0.70): Enerji kayb

 m

 modellemektedir
- Bu parametrelerin dengeli seçimi optimal performans için kritiktir

6.4 Uygulama Alanlar■

Bu tür Kalman filtresi uygulamalar■ gerçek dünyada ■u alanlarda kullan■l■r:

- Robotik ve otonom araçlar
- Radar ve sonar sistemleri
- GPS pozisyon tahmini
- Finansal piyasa tahmini
- Sinyal i
 i
 ileme uygulamalar

7. KAYNAKLAR VE REFERANSLAR

- 1. Kalman, R. E. (1960). "A New Approach to Linear Filtering and Prediction Problems"
- 2. Welch, G., & Bishop, G. (2006). "An Introduction to the Kalman Filter"
- 3. Bar-Shalom, Y., Li, X. R., & Kirubarajan, T. (2001). "Estimation with Applications to Tracking and Navigation"
- 4. Simon, D. (2006). "Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches"
- 5. Thrun, S., Burgard, W., & Fox, D. (2005). "Probabilistic Robotics"

Geli∎tirme Araçlar∎:

- Python 3.x
- NumPy Say∎sal hesaplamalar
- Matplotlib Görselle

 tirme
- ReportLab PDF olu**■**turma

Bu rapor otomatik olarak olusturulmustur. Tarih: 03.10.2025 01:51:46