Advanced Attention Mechanisms - I

Large Language Models: Introduction and Recent Advances

ELL881 · AlL821

Sourish Dasgupta
Assistant Professor, DA-IICT, Gandhinagar
https://daiict.ac.in/faculty/sourish-dasgupta

Year: 2017, NeurIPS

Self Attention

	THE	CAT	15	ON		CHAIR
THE	0.268	0.119	0.134	0.148	0.179	0.152
CAT	0.124	0.278	0.201	0.128	0.154	0.115
15	0.147	0.132	0.262	0.097	0.218	0.145
ON	0.210	0.128	0.206	0.212	0.119	0.125
A	0.146	0.158	0.152	0.143	0.227	0.174
CHAIR	0.195	0.114	0.203	0.103	0.157	0.229

(6, 6)

Causal (Forward Masked) Attention

(6, 6)

Zoom-in! (simplified without Scale and Softmax)

Why do we need to do better?

KV Cache based (Forward Masked) Attention

LLMs: Introduction and Recent Advances

Source: https://medium.com/@joaolages/kv-caching-explained-276520203249

Sliding Window Attention

(a) Full n^2 attention

(b) Sliding window attention

Year: 2020, Arxiv

Sliding Window Attention

	THE	CAT	IS	ON	A	CHAIR	
THE	1.0	0	0	0	0	0	
CAT	0.461	0.538	0	0	0	0	
ıs	0.3219	0.317	0.361	0	0	0	
ON	0	0.316	0.341	0.343	0	0	
A	0	0	0.326	0.323	0.351	0	
CHAIR	0	0	0	0.313	0.331	0.356	

What happens to the KV Cache?

(1, 8)

The motivation

Since our sliding window size is 4, we only want the dot-product of the current token with the previous 4 (including the token itself)

We don't care about these either, as we want the output token to only depend on the previous 4 tokens!

(8,4096)

Time: $O(N^*w^*d) + O(N^*w) + O(N^*w^*d) = O(N^*w^*d)$

Space: O(2*N*d) + O(N*w) = O(N*w + N*d)

(2×<u>w</u>×d)×Size of a float vs.

VS.

(1, 4096)

OUTPUT TOKEN 8

 $(2\times N\times d)\times Size$ of a float

 $Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{T}}{\sqrt{d_k}}\right)V$

Inference T = 4

Multi-Head Self Attention

Multi-Query Attention (MQA)

Do we lose out on something?

- Decline in performance quality
- Training instability

Uptraining: Converting MHA to MQA

What can still go wrong?

- Decline in performance quality
- Training instability

Year: 2023; EMNLP

Grouped Query Attention

What did we gain?

Model	T _{infer}	Average	CNN	arXiv	PubMed	MediaSum	MultiNews	WMT	TriviaQA
	s		\mathbf{R}_{1}	\mathbf{R}_{1}	\mathbf{R}_1	\mathbf{R}_{1}	\mathbf{R}_{1}	BLEU	F1
MHA-Large MHA-XXL MQA-XXL GQA-8-XXL	0.37 1.51 0.24 0.28	46.0 47.2 46.6 47.1	42.9 43.8 43.0 43.5	44.6 45.6 45.0 45.4	46.2 47.5 46.9 47.7	35.5 36.4 36.1 36.3	46.6 46.9 46.5 47.2	27.7 28.4 28.5 28.4	78.2 81.9 81.3 81.6

So are we all set? Key Takeaways takeaways

- GQA/MQA Aim: To reduce the need for storing a large amount of KV cache
- LLM server can handle more requests, larger batch sizes and increased throughput
- Cannot significantly reduce the computational load
- Quality degradation remains

