FRA 331: Basic Control Theory

Homework Assignment 1: Modelling

Written

1: Integrator Circuit

The following circuit is an integrator. Using Krichoff's Voltage and Current laws, derive the expression of v_o in term of t, R, R_1 , R_2 , C, and $v_i n$.

In order to receive full credits, determine the condition of R_1 and R_2 such that the circuit is a direct integrator without any gain.

Problem 1

-

2: second-order circuit

Problem 2

Using Kirchoff's Voltage and Current laws, show that the dynamics of the circuit is the following. You do not need to box the answer for this problem.

$$v_{in} = v_c + L \frac{di_L}{dt}$$

$$C \frac{dv_c}{dt} = i_L + \left(\frac{1}{R_1 R_2 + R_1 R_3 + R_2 R_3}\right) \left(R_1 v_{in} - (R_1 + R_3) v_c\right)$$

$$v_o = \left(\frac{R_2}{R_1 R_2 + R_1 R_3 + R_2 R_3}\right) \left(R_1 v_{in} - (R_1 + R_3) v_c\right)$$

-

3: Belt-Driven Mechanism

Problem 3

The given belt-driven mechanism consists of a brushless DC motor with the following specification.

- R: internal resistance $[\Omega]$
- L: internal inductance [H]
- K_m : motor-torque constant $[\frac{N \cdot m}{A}]$
- K_b : internal inductance $[\frac{V\cdots}{rad}]$
- r: gearbox ratio []
- J_m : total motor inertia $[kg \cdot m^2]$
- B_m : total motor mechanical damping $[\frac{kg \cdot m^2}{s}]$

Given an input voltage of v_{in} and external load the output shaft τ_l , the current of the motor i_a and the angular displacement of output shaft θ_s change due to its dynamics.

The belt mechanism can be modeled as a mass-damper-spring system with a mass of m, mechanical damping of b, and a stiffness of k. The radius of the pulley is c. Let the linear displacement z of the belt mechanism.

Derive the equation which describes the dynamics of the entire system, where v_{in} is the input. DO NOT LEAVE THE ANSWER IN TERM OF θ (Note: the transmission formula for belt is $\tau_l=cf$, where f is the transmitted force by the belt. And $z=c\theta$, where θ is the angular displacement of the output shaft at the pulley)

