Sistemi Elettronici, Tecnologie e Misure Appello del 25/2/2022

Nome:	
Cognome:	
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a						
b						
c						
d						

- 1. In un circuito contenente un diodo semi-ideale D con $V_{\gamma}=0.7\mathrm{V}$ si è fatta l'ipotesi che il diodo sia ON. L'ipotesi è verificata se e solo se:
 - (a) $v_{\rm D} < 0.7 {\rm V}$
 - (b) $v_{\rm D} > 0.7 {\rm V}$
 - (c) $i_{\rm D} > 0$
 - (d) $v_{\rm D} < -0.7 {\rm V}$
- 2. In un amplificatore invertente basato su operazionale ideale, il resistore che collega il morsetto invertente all'uscita è sostituito da un diodo, con anodo collegato al morsetto invertente e catodo collegato all'uscita. Per $v_{\rm in}>0$ il circuito che si ottiene si comporta come un
 - (a) amplificatore esponenziale invertente
 - (b) amplificatore esponenziale non invertente
 - (c) amplificatore logaritmico invertente
 - (d) amplificatore logaritmico non invertente
- 3. Un amplificatore differenziale fornisce in uscita una tensione $v_{\rm out} = 99v^+ 101v^-$. Il rapporto di reiezione del modo comune (CMRR) dello stadio vale:
 - (a) 34dB
 - (b) 40dB
 - (c) 100dB
 - (d) -6dB
- 4. In un circuito voltage follower realizzato utilizzando un amplificatore operazionale con amplificazione differenziale $A_{\rm d}$ finita e resistenze d'ingresso e uscita trascurabili (cioè $R_{\rm in,d} \to \infty, R_{\rm in,cm} \to \infty, R_{\rm out} = 0$), l'amplificazione di tensione ad anello chiuso $A_{\rm v} = v_{\rm out}/v_{\rm in}$ vale:

 - (b) $\frac{1}{A_{d}+1}$ (c) $\frac{A_{d}}{A_{d}-1}$ (d) $\frac{A_{d}}{A_{d}+1}$
- 5. In un amplificatore invertente basato su operazionale si sono scambiati erroneamente gli ingressi non-invertente ed invertente dell'operazionale. Il circuito che si ottiene si comporta come:
 - (a) un comparatore di tensione non invertente con isteresi
 - (b) un comparatore di tensione invertente con isteresi
 - (c) un amplificatore di tensione non invertente
 - (d) un amplificatore di tensione invertente
- 6. In uno stadio amplificatore a singolo transitore MOS, il segnale d'ingresso è applicato al terminale di source e l'uscita è prelevata al terminale di drain. Si tratta di uno stadio:
 - (a) source comune
 - (b) drain comune
 - (c) gate comune
 - (d) per rispondere occorre sapere se il transistore è nMOS o pMOS

Esercizio 1.

Con riferimento allo stadio in figura:

- 1. determinare il punto di funzionamento a riposo dei transistori MN ed MP, verificare il funzionamento dei dispositivi in regione di saturazione e ricavarne i parametri del modello per il piccolo segnale;
- 2. disegnare il circuito equivalente per il piccolo segnale dello stadio e calcolare, in condizioni di piccolo segnale, l'amplificazione di tensione $A_{\rm v}=v_{\rm out}/v_{\rm in}$, la resistenza di ingresso $R_{\rm in}$ e la resistenza di uscita $R_{\rm out}$ in banda, assumendo che in banda il condensatore C si comporti come un corto circuito;
- 3. con riferimento allo stadio analizzato al punto precedente, si considerino i due casi:
 - (a) lo stadio è accoppiato in AC ad una sorgente di segnale $v_{\rm s}$ con resistenza interna $R_{\rm S}=10\,\Omega$ e la porta di uscita è accoppiata in AC ad un carico resistivo $R_{\rm L}=10\,{\rm M}\Omega$;
 - (b) lo stadio è accoppiato in AC ad una sorgente di segnale $v_{\rm s}$ con resistenza interna $R_{\rm S}=100\,{\rm M}\Omega$ e la porta di uscita è accoppiata in AC ad un carico resistivo $R_{\rm L}=10\,{\rm M}\Omega$.

Per ciascuno dei due casi si valuti la tensione sul carico $R_{\rm L}$ in funzione di $v_{\rm s}$, assumendo che i condensatori di accoppiamento in AC si possano considerare come corto circuiti nella banda del segnale. Si indichi inoltre quale delle possibili rappresentazioni dello stadio (amplificatore di tensione, corrente, transconduttanza o transresistenza) è più appropriata nel caso a) e quale è più appropriata nel caso b), motivando le risposte.

Esercizio 2.

Nel circuito in figura:

Nel circuito in figura:
$$R_2=R_3=R_5=R_7=R_8=R_9=R_{10}=R=1 \mathrm{k}\Omega$$

$$R_1=R_4=10 \mathrm{k}\Omega$$

$$R_6=5 \mathrm{k}\Omega$$

$$C_1=100/\left(2\pi\right) \mathrm{nF}$$

$$R_1 = R_4 = 10 \text{k}\Omega$$

$$R_6 = 5k\Omega$$

$$C_1 = 100/(2\pi) \, \text{nF}$$

Determinare:

- 1. l'espressione delle tensioni $v_{\text{OUT},1}$, $v_{\text{OUT},2}$ e v_{OUT} in condizioni statiche (DC);
- 2. l'intervallo di valori che possono assumere le tensioni $v_{\mathrm{OUT},1}, v_{\mathrm{OUT},2}$ e v_{OUT} quando tutti i generatori sono spenti, assumendo che tutti gli operazionali presentino input offset voltage (max.): 1mV;
- 3. l'espressione della funzione di trasferimento $A_{v1}=v_{\mathrm{OUT},1}/v_{1}$, disegnandone i diagrammi di Bode del modulo e della fase.

