

MATH5004-LEC2

Finite Difference Method

Boundary Value Problems (BVPs)

A BVP can be written as

$$\begin{cases} L(u) = f & in & \Omega \\ B(u) = g & on & \partial \Omega \end{cases}$$
 (1.1)

f, g = known functions;

L = differential operator;

 \mathbf{B} = boundary operator.

Problem: Find u that satisfies $\begin{cases} D.E. & in \Omega \\ B.C. & in \partial \Omega \end{cases}$

Taylor series expansion

$$f(x + \Delta x) = f(x) + \Delta x \frac{\partial f}{\partial x} + \frac{(\Delta x)^2}{2} \frac{\partial^2 f}{\partial x^2} + \dots + \frac{(\Delta x)^n}{n!} \frac{\partial^n f}{\partial x^n} + \dots$$

$$\frac{f(x+\Delta x)-f(x)}{\Delta x} = \frac{\partial f}{\partial x} + \frac{\Delta x}{2} \frac{\partial^2 f}{\partial x^2} + \dots + \frac{(\Delta x)^{n-1}}{n!} \frac{\partial^n f}{\partial x^n} + \dots$$

Numerical Differentiation-first derivative

$$f'(x) = \frac{\partial f}{\partial x} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$f'(x) = \frac{\partial f}{\partial x} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 or $f'(x) = \frac{\partial f}{\partial x} \approx \frac{f(x) - f(x - \Delta x)}{\Delta x}$

a forward difference

a backward difference

$$f(x + \Delta x) = f(x) + \Delta x \frac{\partial f}{\partial x} + \frac{(\Delta x)^2}{2} \frac{\partial^2 f}{\partial x^2} + \dots + \frac{(\Delta x)^n}{n!} \frac{\partial^n f}{\partial x^n} + \dots$$

$$\frac{f(x+\Delta x)-f(x)}{\Delta x} = \frac{\partial f}{\partial x} + \frac{\Delta x}{2} \frac{\partial^2 f}{\partial x^2} + \frac{(\Delta x)^2}{6} \frac{\partial^3 f(\gamma_1)}{\partial x^3}, \gamma_1 \in (x, x+\Delta x)$$

$$\frac{f(x) - f(x - \Delta x)}{\Delta x} = \frac{\partial f}{\partial x} + \frac{\Delta x}{2} \frac{\partial^2 f}{\partial x^2} + \frac{(\Delta x)^2}{6} \frac{\partial^3 f(\gamma_2)}{\partial x^3}, \gamma_2 \in (x - \Delta x, x)$$

$$f'(x) \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} - \frac{(\Delta x)^2}{6} \left(\frac{f'''(\gamma_1) + f'''(\gamma_2)}{2}\right)$$

a central difference

$$\frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x_i} - f'(x_i) \approx \frac{(\Delta x_i)^2}{6} f'''(\gamma) = O\left(\frac{(\Delta x_i)^2}{6}\right)$$

B Wiwatanapataphee

As the central difference cannot be used at the end points, we now derive $O(\Delta x^2)$ method at the end points.

$$f(x) = f(x)$$

$$f(x + \Delta x) = f(x) + \Delta x f'(x) + \frac{\Delta x^2}{2} f''(x) + \frac{\Delta x^3}{6} f'''(\gamma_1)$$

$$f(x + 2\Delta x) = f(x) + 2\Delta x f'(x) + 2\Delta x^2 f''(x) + \frac{4\Delta x^3}{3} f'''(\gamma_2)$$

Taking linear combination of these above terms gives

$$f'(x) = af(x) + bf(x + \Delta x) + cf(x + 2\Delta x) + O(\Delta x^2)$$

Using the Taylor expansion to find a, b, c.

From

$$f'(x) = af(x) + b\left(f(x) + \Delta x f'(x) + \frac{\Delta x^2}{2}f''(x) + \cdots\right) +$$

$$c(f(x) + 2\Delta x f'(x) + 2\Delta x^2 f''(x) + \cdots)$$

$$a+b+c=0,$$

$$b + 2c = \frac{1}{\Delta x}, \qquad \frac{b}{2} + 2c = 0,$$

$$\frac{b}{2} + 2c = 0$$

$$a = -\frac{3}{2\Lambda x}, \qquad b = \frac{2}{\Lambda x}, \qquad c = -\frac{1}{2h}$$

$$b = \frac{2}{\Lambda x}$$

$$c = -\frac{1}{2h}$$

$$f'(x) = \frac{-3f(x) + 4f(x + \Delta x) - f(x + 2\Delta x)}{2\Delta x} + O(\Delta x^2)$$

Numerical Differentiation-second derivative

We take the difference of forward and backward approximation for f'(x):

- Let $f_i \equiv f(x_i), h = \Delta x$
- Use forward difference to approximate f_i' , f_{i-1}'

$$f_i' \approx \frac{f_{i+1} - f_i}{h}$$

$$f_i' \approx \frac{f_{i+1} - f_i}{h}$$
 $f_{i-1}' \approx \frac{f_i - f_{i-1}}{h}$

$$f_i^{"} \approx \frac{f_i^{'} - f_{i-1}^{'}}{h}$$

$$\approx \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2}$$

Now we check the error.

$$\begin{split} f_{i+1} &= f_i + h f_i' + \frac{h^2}{2} f_i'' + \frac{h^3}{6} f_i^{(3)} + \frac{h^4}{24} f_i^{(4)}(\gamma_1) + \cdots \\ f_{i-1} &= f_i - h f_i' + \frac{h^2}{2} f_i'' - \frac{h^3}{6} f_i^{(3)} + \frac{h^4}{24} f_i^{(4)}(\gamma_2) + \cdots \\ \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2} - f_i'' \\ &= \frac{1}{h^2} \left(f_i + h f_i' + \frac{h^2}{2} f_i'' + \frac{h^3}{6} f_i^{(3)} + \frac{h^4}{24} f_i^{(4)}(\gamma_1) + \cdots - 2f_i \right) \\ &+ \frac{1}{h^2} \left(f_i - h f_i' + \frac{h^2}{2} f_i'' - \frac{h^3}{6} f_i^{(3)} + \frac{h^4}{24} f_i^{(4)}(\gamma_2) + \cdots \right) - f_i'' \\ &\approx \frac{h^2}{24} \left(f_i^{(4)}(\gamma_1) + f_i^{(4)}(\gamma_2) \right) = O(h^2) \end{split}$$

To solve the BVP (1.1) using the FDM, we need to perform the following work.

 \diamond Discretize Ω into a mesh of discrete points called nodes.

Discretization 1D & Derivative Approx.

The domain

 $\Omega = (a,b)$ is subdivided into a set of equal length

$$dx = h = (b-a)/n,$$

partial derivative	finite difference approximation	type	order
$\frac{\partial \mathbf{U}}{\partial \mathbf{x}} = \mathbf{U}_{\mathbf{x}}$	$\frac{\mathbf{U_{i+1}^n} - \mathbf{U_{i}^n}}{\Delta \mathbf{x}}$	forward	first in x
$\frac{\partial \mathbf{U}}{\partial \mathbf{x}} = \mathbf{U_x}$	$\frac{U_i^n - U_{i-1}^n}{\Delta x}$	backward	first in x
$\frac{\partial \mathbf{U}}{\partial \mathbf{x}} = \mathbf{U_x}$	$\frac{U_{i+1}^n - U_{i-1}^n}{2\Delta x}$	central	second in x
$\frac{\partial^2 \mathbf{U}}{\partial \mathbf{x}^2} = \mathbf{U}_{\mathbf{x}\mathbf{x}}$	$\frac{\mathbf{U_{i+1}^n} - 2\mathbf{U_{i}^n} + \mathbf{U_{i-1}^n}}{\Delta x^2}$	symmetric	second in x

partial derivative	finite difference approximation	type	order		
$\frac{\partial \mathbf{U}}{\partial \mathbf{t}} = \mathbf{U_t}$	$\frac{U_i^{n+1} - U_i^n}{\Delta t}$	forward	first in t		
$\frac{\partial \mathbf{U}}{\partial \mathbf{t}} = \mathbf{U_t}$	$\frac{U_i^n - U_i^{n-1}}{\Delta t}$	backward	first in t		
$\frac{\partial \mathbf{U}}{\partial \mathbf{t}} = \mathbf{U_t}$	$\frac{U_i^{n+1} - U_i^{n-1}}{2\Delta t}$	central	second in t		
$\frac{\partial^2 \mathbf{U}}{\partial \mathbf{t}^2} = \mathbf{U}_{tt}$	$\frac{U_i^{n+1} - 2U_i^n + U_i^{n-1}}{\Delta t^2}$	symmetric	second in t		

Approximate all derivatives using the values of the unknown function at the nodes, and thus,

$$DE \approx AU = F$$

with the nodal values of the unknown function as basic unknowns.

Solve the linear (or nonlinear) system of algebraic equations.

Example 1.

Construct a FDS to find an approximation solution of the following PDE:

$$u_t + ku_x = 0$$

$$u(0, x) = f(x), \quad p \le x \le q.$$

Step 1: Spatial Discretisation

The computational domain contains an infinite number of x values. So first we must replace them by a finite set.

The computational domain is replaced by a grid of N equally spaced grid points. Starting with the first grid point at x = p, and ending with the last grid point at x = q, the constant grid spacing, Δx , is

$$\Delta x = \frac{(q-p)}{(N-1)}$$

 The values of x in the discretised computational domain are indexed by subscripts to give,

$$x_1 = p,$$
 $x_2 = p + \Delta x, ...,$ $x_i = p + (i - 1)\Delta x, ..., x_N = p + (N - 1)\Delta x = q.$

Since the grid spacing is constant, ,

$$x_{i+1} = x_i + \Delta x$$
.

The discretised computational domain is as shown below.

$$p=X_1^* \qquad X_2 \qquad X_3 \qquad \qquad X_{N-1} \quad X_N=q$$

PDE: $u_t + ku_x = 0$

• Fixing t at $t = t_n$, we approximate the spatial partial derivative, u_x , at each point (t_n, x_i) using the formula

$$u_{x}(t_{n}, x_{i}) = \frac{u_{i+1}^{n} - u_{i}^{n}}{\Delta x}$$

The PDE becomes

$$u_t + k \frac{u_{i+1}^n - u_i^n}{\Lambda x} = 0 \qquad (*)$$

Step 2: Time Discretisation

• Fixing x at $x = x_i$, we approximate the temporal partial derivative, u_t , at each point (t_n, x_i) using the formula

$$u_t(t_n, x_i) = \frac{u_i^{n+1} - u_i^n}{\Delta t}$$

The equation (*) becomes

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + k \frac{u_{i+1}^n - u_i^n}{\Delta x} = 0$$

$$u_i^{n+1} = u_i^n - k\Delta t \frac{u_{i+1}^n - u_i^n}{\Delta x} = 0$$

- Using a small number of grid points.
- Let p=0 and q=100, k=0.5, and let the initial conditions be

$$u(0,x) = \begin{cases} e^{-0.01(x-45)^2} & 20 \le x \le 70\\ 0 & elsewhere \end{cases}$$

Let the (small) number of grid points be N=11. Then

$$\Delta x = \frac{(100 - 0)}{(11 - 1)} = 10$$

- The subscripts for the grid values go from 1 to 11 and are entered into the first row of the following table.
- The actual x values of the corresponding grid points are entered into the second row of the table.

i	1	2	3	4	5	6	7	8	9	10	11	12
Xi	0	10	20	30	40	50	60	70	80	90	100	110
u _i ⁰												
u _i ¹												
u _i ²												

Let $\Delta t = 3$. Then we have

$$u_i^{n+1} = u_i^n - 0.15(u_{i+1}^n - u_i^n) \tag{**}$$

- Start at time $t_0 = 0$, i.e. n = 0, hence (**) becomes $u_i^1 = u_i^0 0.15(u_{i+1}^0 u_i^0) \qquad (***)$
- Time level zero corresponds to the initial conditions. at time $t_0 = 0$,

$$u_i^0 = u(0, x_i) = \begin{cases} e^{-0.01(x-45)^2} & 20 \le x \le 70 \\ 0 & elsewhere \end{cases}$$
 (****)

Evaluating (****) at a few grid points gives

$$u_1^0 = u(0, x_1) = u(0,0) = 0,$$

 $u_5^0 = u(0, x_5) = u(0,40) = e^{-0.01(40-45)^2} = 0.7788, etc$

• Putting i = 1 into (***) gives $u_2^1 = u_1^0 - 0.15(u_2^0 - u_1^0) = 0 - 0.15(0 - 0) = 0.$

• Putting
$$i = 2$$
 into (***) gives $u_2^1 = u_2^0 - 0.15(u_3^0 - u_2^0)$

$$= 0 - 0.15(0.0019 - 0) = -0.00029$$

• Putting i = 3 into (***) gives

$$u_3^1 = u_3^0 - 0.15(u_4^0 - u_3^0)$$

= 0.0019 - 0.15(0.1054 - 0.0019) = -0.01363

i	1	2	3	4	5	6	7	8	9	10	11	12
Xi	0	10	20	30	40	50	60	70	80	90	100	110
ui ⁰	0	0	0.0019	0.1054	0.7788				0	0	0	0
u _i ¹	0	-0.00029	-0.01363								0	
u _i ²												

Step 3. Pen and Paper Calculation

In practice, numerical schemes are implemented by writing them then running a computer program. Before doing this, it is extremely useful to work through a pen and paper calculation for two reasons:

- 1. To check understanding of the scheme.
- 2. To be able to check results from the computer program against pen and paper results (verification).

Example 2

Unsteady heat conduction in 1- D with constant thermal conductivity

$$\frac{\partial \mathbf{T}}{\partial \mathbf{t}} = \alpha \frac{\partial^2 \mathbf{T}}{\partial \mathbf{x}^2}$$

Expand the individual terms with Taylor series

$$\left(\frac{\partial T}{\partial t}\right)_{i}^{n} = \frac{T_{i}^{n+1} - T_{i}^{n}}{\Delta t} - \left(\frac{\partial^{2} T}{\partial t^{2}}\right)_{i}^{n} \frac{\Delta t}{2} + ----$$

$$\left(\frac{\partial^2 T}{\partial x^2}\right)_i^n = \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\left(\Delta x\right)^2} - \left(\frac{\partial^4 T}{\partial x^4}\right)_i^n \frac{\left(\Delta x\right)^2}{12} + - - - -$$

Unsteady Heat Conduction (cont'd)

PDE

$$\frac{\partial T}{\partial t} - \alpha \frac{\partial^2 T}{\partial x^2} = 0 = \frac{T_i^{n+1} - T_i^n}{\Delta t} - \frac{\alpha (T_{i+1}^n - 2T_i^n + T_{i-1}^n)}{(\Delta x)^2}$$

Difference equation

$$+ \left[-\left(\frac{\partial^2 T}{\partial t^2}\right)_i^n \frac{\Delta t}{2} + \alpha \left(\frac{\partial^4 T}{\partial x^4}\right)_i^n \frac{(\Delta x)^2}{12} + \cdots \right]$$

Truncation error

$$\frac{T_{i}^{n+1} - T_{i}^{n}}{\Delta t} = \frac{\alpha (T_{i+1}^{n} - 2T_{i}^{n} + T_{i-1}^{n})}{\left(\Delta x\right)^{2}}$$

Explicit Solution

$$\frac{T_{i}^{n+1} - T_{i}^{n}}{\Delta t} = \frac{\alpha (T_{i+1}^{n} - 2T_{i}^{n} + T_{i-1}^{n})}{(\Delta x)^{2}} \longrightarrow T_{i}^{n+1} = T_{i}^{n} + \frac{\alpha \Delta t}{(\Delta x)^{2}} (T_{i+1}^{n} - 2T_{i}^{n} + T_{i-1}^{n})$$

Find 1-D unsteady temperature distribution till steady state

$$\Delta x = \frac{50}{5} = 10 \text{cm}$$
 $\alpha = 17 \times 10^{-2} \text{ cm}^2 / \text{s}$

Initial temp
$$T_{in} = 30C$$
, $\Delta t = 10$ sec

Results

Discretization 2D & Derivative Approx.

The domain $\Omega = (a,b) \times (c,d)$ is subdivided into a set of equal rectangles of sides

$$dx = h = (b-a)/n$$
, $dy = k = (d-c)/m$.

Exercise: Finish labelling all grid points in the following figure.

Obviously, in the coordinate system chosen

$$(x_i, y_i) = (a+ih, c+jk), (i=0, n; j=0, m).$$

Thus for convenience in presentation,

we use (i,j) to denote the position (x_i,y_j) & $u_{i,j}$ to represent $u(x_i,y_i)$, namely

$$(x_i, y_j) = (i, j) \ u(x_i, y_j) = u_{i,j}$$

From Taylor's Theorem for 2 variables, we have

$$u(x_i + h, y_j) = u_{i+1,j} = u_{i,j} + hu_x + \frac{h^2}{2}u_{xx} + \dots$$
 (1.2)

$$u(x_i - h, y_j) = u_{i-1,j} = u_{i,j} - hu_x + \frac{h^2}{2}u_{xx} - \dots$$
 (1.3)

where u_x and u_{xx} are all evaluated at (x_i, y_j)

From Taylor's Thm. rearranging (1.2) and (1.3) yields

$$\left(\frac{\partial u}{\partial x}\right)_{i,j} = \frac{u_{i+1,j} - u_{i-1,j}}{2h} + O(h^2).$$

(1.2) + (1.3) and then rearranging yields

$$\left(\frac{\partial^2 u}{\partial x^2}\right)_{i,j} = \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} + O(h^2).$$

$$\left(\frac{\partial^2 u}{\partial y^2}\right)_{i,j} = \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{k^2} + O(k^2).$$

By using the Taylor theorem in 2 variables, we have

$$\left(\frac{\partial^2 u}{\partial x \partial y}\right)_{i,j} = \frac{u_{i+1,j+1} - u_{i+1,j} - u_{i,j-1} + u_{i-1,j-1}}{h^2} + O(h^2 + k^2).$$

If we choose h = k, then

$$\nabla^2 u_{i,j} = \frac{1}{h^2} \left[u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j} \right] + O(h^2).$$

which can be graphically displayed by

$$\nabla^2 u_{i,j} = \frac{1}{h^2} \begin{bmatrix} 1 & 1 \\ 1 & -4 & 1 \end{bmatrix} u_{i,j}$$

called a 5- points difference scheme.

Example 3.

Consider $\nabla^2 u = f(x, y)$ on a square with BCs as shown.

Let N = 4, h = 1/4, then the domain is discretized into a mesh with 5×5 grid points as shown.

The nodes where u is to be determined are only those points

$$(i, j)$$
 for $i = 1$ to 3, $j = 0$ to 3.

At each of these nodes, we can set up an equation

$$\nabla^2 u_{i,j} = f_{i,j}.$$

Thus the total number of equations equals to the number of unknowns, i.e., 12.

Now, we consider construction of the equations for determination of

$$u_{i,j}$$
 ($i = 1, 3, j = 0, 3$).

Using 5-point FD approximation

$$\nabla^2 u_{i,j} = \frac{1}{h^2} \begin{bmatrix} 1 & 1 \\ 1 & -4 & 1 \end{bmatrix} u_{i,j},$$

The given PDE $\nabla^2 u = f(x, y)$ becomes

$$\begin{bmatrix} 1 & 1 \\ 1 & -4 & 1 \end{bmatrix} u_{i,j} = h^2 f_{i,j}$$
 (1.4)

or for i = 1 to 3 and j = 0 to 3

$$u_{i,j-1} + u_{i-1,j} - 4u_{i,j} + u_{i+1,j} + u_{i,j+1}$$

$$= h^2 f_{i,j} \quad (1.5)$$

$$u_{i,j-1} + u_{i-1,j} - 4u_{i,j} + u_{i+1,j} + u_{i,j+1}$$

$$= h^2 f_{i,j} \quad (1.5)$$

- For j = 0, as (1.5) involves $u_{i,-1}$, we need to approximate $u_{i,-1}$ by using the boundary condition;
- While for i, j = 1, 2, 3, we can immediately obtain the following 9 equations

Form matrix

<i>j</i> =0	Col i = 1 2 3	equation	s for j=0 are to b	e constructed lat	er	$\begin{bmatrix} u_{10} \\ u_{20} \\ u_{30} \end{bmatrix}$
<i>j</i> =1	i = 1 2 3	1 1 1	-4 1 1 -4 1 1 -4	1 1 1		<i>u</i> ₁₁ <i>u</i> ₂₁ <i>u</i> ₃₁
j=2	i = 1 2 3		1 1 1	-4 1 1 -4 1 1 -4	1 1 1	u ₁₂ u ₂₂ u ₃₂
j=3	i = 1 2 3			1 1 1	-4 1 1 -4 1 1 -4	u ₁₃ u ₂₃ u ₃₃

$$B = \begin{bmatrix} -4 & 1 \\ 1 & -4 & 1 \\ & 1 & -4 \end{bmatrix}.$$

equations for j=0 are to be constructed later

	1	
<i>u</i> 10		f10
<i>u</i> 20		f_{20}
<i>u</i> ₃₀		f30
<i>u</i> 11		f_{11}
<i>u</i> 21		f21
<i>u</i> ₃₁	$=h^2$	f ₃₁
<i>u</i> ₁₂	<i>- n</i>	f_{12}
u22		f22
<i>u</i> 32		f32
<i>u</i> ₁₃		f_{13}
u23		f23
u_{33}		f33

$$\begin{bmatrix} ? & ? & ? & ? \\ \hline I & B & I \\ \hline & I & B & I \\ \hline & I & B \end{bmatrix} \mathbf{u} = \mathbf{F}$$

Dirichlet boundary condition: On x = 0 (i = 0),

 $x = 1 \ (i = 4) \ \text{and} \ y = 1 \ (j = 4), \ u = 0.$ We must

move these known values to the right hand side of

the equations.

Neumann type boundary condition:

$$u_{i,j-1} + u_{i-1,j} - 4u_{i,j} + u_{i+1,j} + u_{i,j+1}$$

= $h^2 f_{i,j}$ (1.5)

For y = 0 (j = 0), (1.5) becomes

$$u_{i,-1} + u_{i-1,0} - 4u_{i,0} + u_{i+1,0} + u_{i,1} = h^2 f_{i,0}$$
 (1.6)

Obviously, $u_{i,-1}$ is not defined as the point (i,-1) is outside the region Ω .

Neumann type boundary condition:

- So we need to eliminate the term $u_{i,-1}$ using the Neumann boundary condition.
- sAs we know $\frac{\partial u}{\partial y} = u$ on y = 0, we introduce a fictitious set of grid points (i, -1) (i = 1, 2, 3) as shown below.

$$j=0$$

$$j=-1$$

Neumann type boundary condition:

• Then at boundary point (*i*,0), we can approx. the BC by

$$\left. \frac{\partial u}{\partial y} \right|_{j=0} = \frac{u_{i,1} - u_{i-1}}{2h} = u_{i,0}$$
 (1.7)

which gives

$$\underbrace{\qquad \qquad \qquad \qquad }_{j=0} \underbrace{\qquad \qquad \qquad }_{i=-1} \underbrace{\qquad \qquad }_{0=0} \underbrace{\qquad \qquad$$

Substituting (1.8) into (1.6)

$$u_{i,-1} + u_{i-1,0} - 4u_{i,0} + u_{i+1,0} + u_{i,1} = h^2 f_{i,0},$$

we have _

$$u_{i,-1} + (u_{i,1} - 2hu_{i,0}) - 4u_{i,0} + u_{i+1,0} + u_{i,1}$$

= $h^2 f_{i,0}$,

$$u_{i,-1} - (4+2h)u_{i,0} + u_{i+1,0} + 2u_{i,1} = h^2 f_{i,0},$$

or
$$\begin{bmatrix} 1 & 0 \\ 1 & -(4+2h) & 1 \end{bmatrix} u_{i,0} = h^2 f_{i,0}$$
, $(i = 1,2,3)$.

$$\begin{bmatrix} -(4+2h) & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -(4+2h) & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & \mathbf{u} = \mathbf{F} \\ 0 & 1 & -(4+2h) & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{u} = \mathbf{F}$$

$$\begin{bmatrix} B - 2hI & 2I & \mathbf{0} & \mathbf{0} \\ I & B & I & \mathbf{0} \\ \mathbf{0} & I & B & I \\ \mathbf{0} & \mathbf{0} & I & B \end{bmatrix} \mathbf{u} = \mathbf{F},$$

Example 4.

Consider
$$\frac{\partial^2 u}{\partial x^2} = f(x)$$
 in $[a,b]$ $u(a) = \alpha$, $u(b) = \beta$.

a) Divide [a,b] into subintervals by identifying the nodes

$$x_j = j \times h$$
 with $h = \frac{1}{m+1}$.

b) Approximate $u_j := u(x_j)$.

Approximate
$$u_j \coloneqq u(x_j)$$
.

We replace $\frac{\partial^2 u}{\partial x^2}$ by using the centred different approximation:

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{j-1} - 2u_j + u_{j+1}}{h^2} = f(x_j), j = 1..., m$$

and
$$u_0 = u(a) = \alpha$$

$$u_{m+1} = u(b) = \beta.$$

Then we define the solution vector

$$U = \langle u_1, u_2, ..., u_m \rangle^T$$

And we seek the solution to the linear system

$$AU = F$$
,

where

$$A = \frac{1}{h^2} \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ & \ddots & & \\ 0 & 1 & -2 & 1 \\ & 0 & 1 & -2 \end{bmatrix}$$

$$F = \begin{bmatrix} f(x_1) - \frac{\alpha}{h^2} \\ f(x_2) \\ \vdots \\ f(x_m) - \frac{\beta}{h^2} \end{bmatrix}$$

Example 5. 2D Steady State Heat Conduction

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{S(x, y)}{k} = 0$$

$$\left(\frac{\partial^{2} T}{\partial x^{2}}\right)_{i,j} = \frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{(\Delta x)^{2}} \qquad \left(\frac{\partial^{2} T}{\partial y^{2}}\right)_{i,j} = \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{(\Delta y)^{2}}$$

$$T_{i-1,j} + T_{i+1,j} + T_{i,j-1} + T_{i,j+1} - 4T_{i,j} + \frac{S_{i,j}l^2}{k} = 0$$

where $\Delta x = \Delta y = 1$

Flux Boundary Condition

 Nodes (i,j) on a prescribed heat flux boundary

$$q_0 l + k \frac{1}{2} \frac{T_{i,j+1} - T_{i,j}}{l} + k l \frac{T_{i+1,j} - T_{i,j}}{l} + k \frac{1}{2} \frac{T_{i,j-1} - T_{i,j}}{l} + \frac{1}{2} l^2 S_{i,j} = 0$$

After rearrangement

$$T_{i,j+1} + 2T_{i+1,j} + T_{i,j-1} - 4T_{i,j} + \frac{l^2S_{i,j}}{k} + \frac{2lq_o}{k} = 0$$

Flux Boundary Condition (another way)

$$q_o = -k \frac{\partial T}{\partial x} = -k \frac{T_{i+1,j} - T_{i-1,j}}{2l}$$
 $T_{i-1,j} = \frac{2lq_o}{k} + T_{i+1,j}$

$$T_{i,j+1} + 2T_{i+1,j} + T_{i,j-1} - 4T_{i,j} + \frac{1^2 S_{i,j}}{k} + \frac{2lq_o}{k} = 0$$

Convective Boundary Condition

Energy balance gives,

$$k\frac{1}{2}\frac{T_{i,j-1}-T_{i,j}}{l}+kl\frac{T_{i-1,j}-T_{i,j}}{l}+kl\frac{T_{i,j+1}-T_{i,j}}{l}+kl\frac{T_{i,j+1}-T_{i,j}}{l}+k\frac{1}{2}\frac{T_{i+1,j}-T_{i,j}}{l}+hl(T_{\infty}-T_{i,j})+\frac{3}{4}l^2S_{i,j}=0$$

After rearrangement,

$$T_{i,j-1} + 2T_{i-1,j} + 2T_{i,j+1} + T_{i+1,j} - \left(6 + \frac{2hl}{k}\right)T_{i,j} + \frac{3}{2}\frac{l^2}{k}S_{i,j} + \frac{2hl}{k}T_{\infty} = 0$$

Insulated Boundary

Matrix Form

$$\begin{bmatrix} -4 & 2 & 2 & 0 & 0 & 0 \\ 1 & -4 & 0 & 2 & 0 & 0 \\ 1 & 0 & -4 & 2 & 1 & 0 \\ 0 & 1 & 1 & -4 & 0 & 1 \\ 0 & 0 & 1 & 0 & -4 & 2 \\ 0 & 0 & 0 & 1 & 1 & -4 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix} = \begin{bmatrix} 0 \\ -100 \\ 0 \\ -86.66 \\ 0 \\ -50 \end{bmatrix}$$

Exercise 1: Solving Laplace's equation using finite differences

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad 0 < x,y < 1$$

$$u(0,y) = 0; \quad u(1,y) = 0; \quad u(x,0) = f(x); \quad u(x,1) = 0.$$

Exercise

Consider $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x - 2y$ on a square with boundary condition as shown. Construct the finite difference scheme when number of nodes N=9.

$$\frac{\partial u}{\partial y} = 2u$$

$$u = 0$$

$$u = 0$$