Lecture-29

Sushrut Tadwalkar; 55554711

November 20, 2023

Definition: Diameter

We define the diameter of the set as:

$$diam(\mathcal{S}) = \sup\{d(x, y) : x, y \in \mathcal{S}\}\$$

Figure 1: Visualization of the diameter.

Theorem: Cantor's intersection theorem

Let (\mathcal{X}, d) be a metric space; the following are equivalent:

- (a) (\mathcal{X}, d) is complete every Cauchy sequence converges.
- (b) For every sequence of nested, closed, and non-empty sets $\mathcal{F}_1 \supseteq \mathcal{F}_2 \supseteq \mathcal{F}_3 \supseteq \ldots$ in \mathcal{X} with diam $(\mathcal{F}_n) \to 0$ as $n \to \infty$; the set $\mathcal{F} = \bigcap_{n=1}^{\infty} \mathcal{F}_n$ contains exactly one point.

Proof. (a \Rightarrow b) Givens sets (\mathcal{F}_n) as in setup (b). Pick any $x_n \in \mathcal{F}_n$ for each n, this defining a sequence (x_n) ; this sequence is Cauchy: let $\varepsilon > 0$ be given. We use the fact that $\operatorname{diam}(\mathcal{F}_n) \to \infty$ to get $N \in \mathbb{N}$ such that $\operatorname{diam}(\mathcal{F}_n) < \varepsilon$ for all n > N. In our sequence, if m, n > N, then both $x_m, x_n \in \mathcal{F}_{\min\{m,n\}} \subseteq \mathcal{F}_{N+1}$; hence $d(x_m, x_n) < \varepsilon$. By completeness, some $\hat{x} \in \mathcal{X}$ satisfies $\hat{x} = \lim_{n \to \infty} x_n$. Note that:

- (i) $\hat{x} \in \mathcal{F}$, because for each n, closed set \mathcal{F}_n contains each point x_{n+p} for $p \in \mathbb{N}$, so $\hat{x} = \lim_{p \to \infty} x_{n+p}$ lies in \mathcal{F}_n .
- (ii) If $y \neq \hat{x}$, then $y \notin \mathcal{F}$, because if $y \neq \hat{x}$, then $d(y, \hat{x}) > 0$; however, $\mathcal{F} \subseteq \mathcal{F}_n \subseteq \mathbb{B}[\hat{x}; \operatorname{diam}(\mathcal{F}_n))$. Hence, $y \in \mathcal{F}$ is excluded by the fact that $\operatorname{diam}(\mathcal{F}) \to 0$.

This tells us that $\mathcal{F} = \hat{x}$.

(b \Rightarrow a) Given a Cauchy sequence (x_n) in \mathcal{X} , let

$$\mathcal{F}_n = \overline{\{x_n, x_{n+1}, x_{n+2}, \dots\}}.$$

1

Now, each \mathcal{F}_n is closed, non-empty, and $\mathcal{F}_n\supseteq\mathcal{F}_{n+1}$. Furthermore, $\operatorname{diam}(\mathcal{F}_n)\to 0$ as $n\to\infty$, since (x_n) is Cauchy: let $\varepsilon>0$ be given; we get $N\in\mathbb{N}$ such that for all m,n>N, we have $d(x_m,x_n)<\varepsilon$. This makes $\operatorname{diam}(\mathcal{F}_n)\le\varepsilon$ for all $n\in\mathbb{N}$, so using (b), let $\{\hat{x}\}=\bigcap_{n\in\mathbb{N}}\mathcal{F}_n$. We show that $x_n\to\hat{x}$: given any $\varepsilon>0$, we pick a sufficiently large N such that $\operatorname{diam}(\mathcal{F}_n)<\varepsilon$ for all n>N; then $x_n,\hat{x}\in\mathcal{F}_n$ which tells us that $d(x_n\hat{x})<\varepsilon$.

Figure 2: Visualization of the theorem.

0.1 Completing a metric space

Let (\mathcal{X}, d) be a metric space. We can construct a *complete* metric space $(\hat{\mathcal{X}}, D)$ such hat \mathcal{X} is dense in $(\hat{\mathcal{X}}, D)$, and D(x, y) = d(x, y) for all $x, y \in \mathcal{X}$.

Note (Analogy). We built \mathbb{R} from \mathbb{Q} by exactly these methods $(\mathbb{R} = \hat{\mathbb{Q}})$.

Note ("Weasel words'). $(\hat{\mathcal{X}}, D)$ actually contains a "working copy" of (\mathcal{X}, d) ...not the exact points.

Outline of the process

Let $CS(\mathcal{X})$ be the set of all Cauchy sequences $a=(a_1,a_2,\dots)$ with elements in \mathcal{X} ; we will call them "vectors". Elements of $\hat{\mathcal{X}}$ will be sets like this:

$$P[a] = \left\{ b \in CS(\mathcal{X}) : \lim_{n \to \infty} d(a_n, b_n) = 0 \right\}.$$

Observe:

- (i) Every $a \in CS(\mathcal{X})$ lies in P[a].
- (ii) For given $a, b \in CS(\mathcal{X})$, the sets P[a], P[b] are either disjoint or equal.
- (iii) Different "representatives" $a, b \in CS(\mathcal{X})$ can give the same P[a] = P[b] in \hat{X} .

Example 1. If
$$\mathcal{X}=\mathbb{Q}$$
, observe that $a=(0,0,0,\dots)$ and $b=\left(1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\dots\right)$ have $P[a]=P[b]$.

The metric in $\hat{\mathcal{X}}$ is defined as: if $P[a], P[b] \in \hat{\mathcal{X}}$, let

$$D(P[a], P[b]) = \lim_{n \to \infty} d(a_n, b_n).$$

Things to check:

(i) This limit actually exists:

Show
$$\delta_n = d(a_n, b_n)$$
 is Cauchy in \mathbb{R} .

- (ii) Different representatives $a'\in P[a],\,b'\in P[b]$ give the same $\lim_{n\to\infty}d(a'_n,b'_n).$
- (iii) $D(\cdot,\cdot)$ is truly a metric on $\hat{\mathcal{X}}$.
- (iv) \mathcal{X} or a suitable copy is dense in $\hat{\mathcal{X}}$; we use constant sequences for this.