9 הסתברות מ' ו הרצאה (00094412)

שם: איל

March 13, 2024

נושאי השיעור: משתנים מקריים רציפים

נושא ראשון - המשך הגדרות משתנים מקריים רציפים

תזכורת:

הגדרה. משתנה מקרי רציף.

ייקרא רציף למקוטעין רציפה $f_X:\mathbb{R} o[0,\infty)$ משתנה מקרי אם קיימת רציף (לחלוטין) ייקרא רציף (Ω,P) ייקרא מעל מרחב משתנה מקרי X

$$P(X \in [a, b]) = \int_{a}^{b} f_X(x) dx$$

- \boldsymbol{X} של אנקצית הצפיפות תיקרא פונקציה איקרא פונקציה •
- $F_{X}\left(x
 ight)=P\left(X\leq b
 ight)=\int_{-\infty}^{b}f_{X}\left(x
 ight)\ dx$ מתקיים b לכל לכל תנאי שקול

ראינו שתי דרכים למציאת צפיפות:

: או יש שתי אפשרויות רציפות אל f_X אם נקודת היא נקודת xוי רציף משפט הוא אם אם גע הוא אם משפט היא משפט הוא משפט

$$f_X(x) = F'_X(x) = (P(X \le x))'$$
 .1

$$f_X(x) = \lim_{\Delta \to 0} \frac{P(X \in [x, x + \Delta])}{\Delta}$$
 .2

הערה. באופן כללי יש משתנים מקריים שהם לא רציפים ולא בדידים. בקורס שלנו יש רק בדידים ורציפים ולכן אם משתנה מקרי הוא לא בדיד אז מבחינתנו הוא בהכרח רציף.

דוגמה 2. המשך מההרצאה הקודמת:

- בוחרים נקודה באקראי בדיסק היחידה.
 - יש סיכוי שווה לכל נקודה.

- . נסמן בR את מרחק הנקודה שנבחרה מהראשית.
- :R מצאנו את פונקציית ההתפלגות המצטברת של

$$F_R(a) = \begin{cases} 0 & a < 0 \\ a^2 & 0 \le a \le 1 \\ 1 & a > 1 \end{cases}$$

 F_R משתנה מכן ומצאנו את ומצאנו מקרי משתנה משתנה R- משתנה מכן –

כעת נפתור את הדוגמה בדרך אחרת:

- P(R=r)=1 כי משתנה מקרי בדיד לא יכול לקיים את זה (כי P(R=r)=0 לכל P(R=r)=0 לכל ידי על ידי כך שנראה ש-R.
 - $P\left(R>1
 ight)=P\left(R<0
 ight)=0$ נשים לב שהנקודה לא מחוץ לדיסק ולכן מהגדרה מתקיים
 - r עבור תת-מעגל ברדיוס על ההיקף של תת-מעגל ברדיוס עבור $r \in [0,1]$
 - $r+\Delta$ טבעת שנסמנו יותר, שנסמנו אוההסתברות שהנקודה נפלה בשטח אדול אותר, שנסמנו אייותר, אוההסתברות א
 - : וההסתברות לנקודה ליפול בטבעת $r+\Delta$ היא ליפול שווה, כלומר

$$\begin{split} &= \frac{S\left(r + \Delta \ disc\right)}{S\left(whole \ unit \ circle\right)} = \frac{\pi \cdot \left(r + \Delta\right)^2}{\pi \cdot 1^2} \\ &= \frac{\pi \cdot \left(r + \Delta\right)^2}{\pi \cdot 1^2} \\ &= 2r\Delta + \Delta^2 \xrightarrow[\Delta \to 0]{} 0 \end{split}$$

$$P\left(R=r
ight) \leq 0$$
 כלומר $P\left(R=r
ight) = 0$ ילכו י

- . הראנו כי R רציף
- \cdot לכן לפי משפט 1, מתקיים –

$$f_{R}\left(r\right) = \lim_{\Delta \to 0} \frac{P\left(R \in [r, r + \Delta]\right)}{\Delta}$$

- $f_R\left(r
 ight)=0$ נשים לב שאם r>1 או r<0 או -
 - :אס $r \in (0,1)$ אז –

$$f_{R}\left(r\right) = \lim_{\Delta \to 0} \frac{P\left(R \ is \ in \ \left(r + \Delta\right) \ disc\right)}{\Delta}$$

$$= \lim_{\Delta \to 0} \frac{2r\Delta + \Delta^2}{\Delta}$$

$$= \lim_{\Delta \to 0} 2r$$

$$= 2r$$

- r=0, r=1 חוץ מהנקודות וחוץ מחפר סופי שלה (בהכרח מספר שלה הרציפות אי הרציפות אי הרציפות אי הרציפות שלה שלה ה
 - $P\left(R=0
 ight) = P\left(R=1
 ight) = 0$ מכיוון שזו משתנה מקרי רציף מתקיים –
- מכיוון שהצפיפות לא משתנה אם משנים אותה במספר סופי של נקודות אז נקודות אי הרציפות לא משפיעות על פונקציית הצפיפות. * לכן קיבלנו:

$$f_{R}\left(r\right) = egin{cases} 2r & r \in [0,1] \\ 0 & otherwise \end{cases}$$

נושא שני - תוחלת של משתנה מקרי רציף:

הגדרה 3. תוחלת של משתנה מקרי רציף

 \cdot אם X משתנה מקרי רציף עם צפיפות f_X אז התוחלת שלו היא •

$$E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$$

– בהנחה שהאינטגרל קיים (כלומר מתכנס בהחלט).

משמעות ההגדרה:

. ניסויים. $n o \infty$ על פני X על ידי על המיוצג על המוצע של הגודל ממוצע הרציף, כלומר ממוצע ידי א ניסויים.

תזכורת:

 $Y\left(\omega
ight)=g\left(X\left(\omega
ight)$ מוגדר על ידי משתנה מקרי משתנה מקרי $g:\mathbb{R} o \mathbb{R}$ ו ווא המשתנה מקרי בדיד משתנה מקרי בדיד אז גם $g\left(X\right)$ הוא גם משתנה מקרי בדיד. משתנה מקריים רציפים זה לא נכון: $g\left(X\right)$ יכול להיות רציף, בדיד (או לא זה ולא זה, בקורסים אחרים).

משפט 4. תוחלת של פונקציה של משתנה מקרי רציף.

- $Y=g\left(X
 ight)$ אם $Y=g\left(X
 ight)$ פונקציה ונגדיר פונקציה פונקציה ונגדיר יציף
 - \cdot אזי התוחלת של Y היא:

$$E[Y] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx$$

(אם התוחלת של Y מוגדרת) –

. בדיד X הערה. המשפט הזה יעבוד גם אם X רציף וגם אם החרה.

הערה. התכונות והמשפטים שחלו על תוחלת במקרה הבדיד נכונים גם למקרה הרציף. לדוגמה לינאריות התוחלת.

משפט 5. נוסחת הזנב למשתנה מקרי רציף:

. אז: $P\left(X\in[0,\infty]
ight)=1$ משתנה מקרי רציף המקבל ערכים אי שליליים בלבד, כלומר Y

$$E[X] = \int_{x=0}^{\infty} P(X > x) dx = \int_{x=0}^{\infty} (1 - F_X(x)) dx$$

 ± 1 משתנה מקרי רציף עם תוחלת מוגדרת אז הערה. אם X

$$Var(X) = E\left[\left(X - E[X]\right)^{2}\right]$$

$$SD = \sqrt{Var(X)}$$

• כלומר בשונות וסטיית תקן אין הבדל בין המקרה הרציף לבדיד.

נושא שלישי - התפלגויות רציפות מוכרות (חשובות):

התפלגות ראשונה - התפלגות אחידה על קטע.

משפט 6. פונקציית צפיפות של משתנה יוניפורמי

 \cdot מקרי רציף X עם צפיפות •

$$f_X(x) = \begin{cases} \frac{1}{d-c} & c \le x \le d\\ 0 & otherwise \end{cases}$$

- $(-\infty < c < d < \infty$ (עבור על התפלגות אחידה על התפלגות יש התפלגות -
 - $X \sim Uni\left([c,d]
 ight)$: סימון
- [c,d] אווה בקטע שווה בסיכוי שווה בקטע (שדיברנו עליה בהרצאה הקודמת) היא ש-X הוא ערכה של נקודה הנבחרת האראי בסיכוי שווה בקטע
 - פונקציית ההתפלגות המצטברת שלה היא:

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f_X(u) du$$

$$= \begin{cases} \int_{-\infty}^{x} 0 dx & x \le c \\ \int_{-\infty}^{c} 0 dx + \int_{c}^{x} \frac{1}{d-c} dx & c < x \le d \\ 1 & x > d \end{cases}$$

$$= \begin{cases} 0 & x \le c \\ \frac{x-c}{d-c} & c < x \le d \\ 1 & x > d \end{cases}$$

הערה. עבור משתנה מקרי רציף X, פונקציית ההתפלגות המצטברת היא תמיד רציפה (כי היא אינטגרל של פונקציה).

תוחלת של משתנה מקרי רציף יוניפורמי

• התוחלת היא:

$$E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \int_{c}^{d} x \cdot \frac{1}{d-c} dx$$
$$= \frac{1}{d-c} \cdot \frac{x^2}{2} \Big|_{x=c}^{d} = \frac{1}{2} \cdot (d+c)$$

שונות וסטיית תקן של משתנה מקרי רציף יוניפורמי

• לפי הגדרה, השונות היא:

$$Var(X) = E[(x - E[X])^{2}]$$

- נשים לב שקיבלנו תוחלת של פונקציה של משתנה מקרי רציף.
- $\int \left(x-E\left[X
 ight]
 ight)^2\cdot$ כלומר קעום לחשב אותו באופן ישיר לפי הגדרה, לחשב את התוחלת של הפונקציה $f_{X}\left(x
 ight)$
 - אבל יהיה יותר נוח להשתמש בנוסחה ממשתנים בדידים:

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

 $\pm X^2$ את התוחלת של הפונקציה של המשתנה המקרי הרציף *

$$E[X^{2}] = \int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) dx =$$

$$= \int_{c}^{d} x^{2} \cdot \frac{1}{d-c} dx$$

$$= \frac{1}{d-c} \cdot \frac{x^{3}}{3} \Big|_{x=c}^{x=d}$$

$$= \frac{d^{2} + cd + c^{2}}{3}$$

 $\left(E\left[X
ight]
ight)^2=\left(rac{d+c}{2}
ight)^2$ אחר מכן נחשב את * *

- סה"כ נקבל:

$$Var\left(X\right) = \frac{\left(d-c\right)^2}{12}$$

התפלגות שנייה - התפלגות נורמלית/גאוסית

חלק ראשון - המקרה התקני/סטנדרטי:

הגדרה 7. התפלגות נורמלית (גאוסית) תקנית/סטנדרטית:

. (סטנדרטית) עם צפיפות (גאוסית) עם אפיפות פיש התפלגות (עבור $f_Z(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$ עבור עם אפיפות Z עם אפיפות (סטנדרטית) עם אפיפות בייש התפלגות עם אפיפות למשתנה מקרי רציף עם אפיפות בייש ביישור בייש העבור עבור למשתנה מקרי רציף עם אפיפות ביישור ב

משמעות: אפשר לייצג (בקירוב) את ההתפלגות של הרבה גדלים בטבע בעזרת התפלגות נורמלית. לדוגמה, גובה/משקל/ציונים וכו'.

וידוא שפונקציית הצפיפות מוגדרת היטב:

: נדרוש

$$\int_{-\infty}^{\infty} f_Z(z) dz = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz = 1$$

- אבל לפונקציה הזו אין פונקציה קדומה ידועה.
- 1 אווה אוה ולאמת הזר המסוים אבל לחשב את האינטגרל המסוים הזה ולאמת שהוא שווה לא נכנסנו לזה בהרצאה, אבל זה אפשרי לחשב את האינטגרל

וידוא שפונקציית התפלגות המצטברת מוגדרת היטב:

: ראינו שמתקיים

$$F_{Z}(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^{2}} dt$$

- . פונקציה קדומה $f_{Z}\left(z\right)$ לי, כי אין בעיה, בעיה לאותה -
 - : נגדיר פונקציה חדשה

$$F_{Z}(z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^{2}} dt$$

- * ונשתמש בה כדי לפתור תרגילים עם אינטגרלים כאלה.
- . מחשבון, במחשבון אפשר לחשב את הפיתרון (לדוגמה על אידי קירוב של אפשר לחשב את בל גבל $z\in\mathbb{R}$

:(צריך להחליף את בשביל להתאים בשביל להיות z להיות את איור להמחשה בהיץ לאיור איור להחליף את איור להחליף את

.8 טענה

- . היא רציפה ועולה ממש Φ .1
 - : מתקיים

$$\Phi\left(-\infty\right) = \lim_{z \to -\infty} \Phi\left(z\right) = 0$$

$$\Phi\left(\infty\right) = \lim_{z \to \infty} \Phi\left(z\right) = 1$$

$$\Phi(-z) = 1 - \Phi(z)$$
 .3

הוכחה.

- .1 מכיוון ש- Φ היא אינטגרל של פונקציה חיובית, מתקיים שהיא רציפה ועולה.
 - : מההגדרה מתקיים:

$$\lim_{z \to -\infty} \int_{-\infty}^{z} f_Z(z) dz = 0$$

$$\lim_{z \to \infty} \int_{-\infty}^{z} f_{Z}(z) dz = \int_{-\infty}^{\infty} f_{Z}(z) dz \stackrel{by \ definition}{=} 1$$

.3 הסברנו בציורים על האיור למעלה.

תוחלת של משתנה מקרי המתפלג נורמלי:

: כפי שראינו, מתקיים

$$E[Z] = \int_{-\infty}^{\infty} z \cdot f_Z(z) dz$$

$$= \int_{-\infty}^{\infty} z \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz = 0$$

(צריך להוכיח שאינטגרל קיים) זו פונקציה אי זוגית ב-z ולכן האינטגרל הוא אפס.

 $E\left[X
ight]=\int_{-\infty}^{\infty}x\cdot f_{X}\left(x
ight)dx=0$ אז $f_{X}\left(-x
ight)=f_{X}\left(x
ight)$ הערה 9. באופן כללי, אם X משתנה מקרי רציף עם צפיפות זוגית, כלומר (אם האינטגרל קיים).

שונות של משתנה מקרי המתפלג נורמלי:

: נשתמש בנוסחה

$$Var\left(Z\right) = E\left[Z^{2}\right] - \overbrace{\left(E\left[Z\right]\right)^{2}}^{=0}$$

 $:E\left[Z^{2}
ight]$ נחשב את התוחלת •

$$E\left[Z^{2}\right] = \int_{-\infty}^{\infty} z^{2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^{2}} dz$$

$$=\int_{-\infty}^{\infty} z \cdot \overbrace{z \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}}^{=v'} dz$$

: ונקבל u=z , $v'=z\cdot rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}z^2}$ ונקבל – נבצע אינטגרציה בחלקים

$$=\overbrace{z}^{u}\cdot\overbrace{\left(-\frac{1}{\sqrt{2\pi}}\cdot e^{-\frac{z^{2}}{2}}\right)}^{v}|_{-\infty}^{\infty}-\int\limits_{-\infty}^{\infty}\overbrace{1}^{u'}\cdot\overbrace{\left(-\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^{2}}\right)}^{v}dz$$

נשאר להראות שהביטוי
$$u\cdot v$$
 (לא עשינו) עו $u\cdot v$ שווה ל- $0-0$ על ידי שימוש בכלל לופיטל על הביטוי $u\cdot v$ (לא עשינו) $u\cdot v$ בהרצאה)

* ונקבל בסוף:

$$=0-0+\int_{-\infty}^{\infty}f_{Z}\left(z\right) dz=1$$

חלק שני - המקרה הלא סטנדרטי של התפלגות נורמלי:

 $\cdot Z$ פפונקציה על ינגדיר משתנה מקרי אדש ינגדיר משתנה י

$$Y = \sigma \cdot Z + \mu, \ \sigma > 0 \ \mu \in \mathbb{R}$$

 $:F_{Y}\left(y
ight)$ את נחשב •

$$F_Y(y) = P(Y \le y)$$

:Y מציב את הגדרת -

$$= P(\sigma \cdot Z + \mu \leq y)$$

: נעביר אגפים

$$= P\left(Z \le \frac{y - \mu}{\sigma}\right)$$

$$= F_Z\left(\frac{y - \mu}{\sigma}\right)$$

$$= \Phi\left(\frac{y - \mu}{\sigma}\right)$$

$$= \int_{-\sigma}^{\frac{y - \mu}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

: ונקבל $dz=rac{du}{\sigma}$, $z=rac{u-\mu}{\sigma}$ משתנים, משתנים *

$$= \int_{u=-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(\frac{u-\mu}{\sigma}\right)^2}{2}} \cdot \frac{1}{\sigma} du$$

$$= \int_{u=-\infty}^{y} \frac{1}{\sqrt{\sigma^2 \cdot 2 \cdot \pi}} e^{-\frac{(u-\mu)^2}{2\sigma^2}} du$$

היא: שלו שלו היא הוא הם האפיפות היא ולכל היא היא הוא ל $-\infty < y < \infty$ ולכל מקרי מקרי משתנה משתנה משתנה י

$$f_Y(y) = \frac{1}{\sqrt{\sigma^2 \cdot 2 \cdot \pi}} e^{-\frac{(u-\mu)^2}{2\sigma^2}}$$

הגדרה 10. התפלגות נורמלית.

 μ,σ^2 נאמר שיש לו התפלגות פרמטרים פרמטרים אין נאמר $f_Y(y)=rac{1}{\sqrt{\sigma^2\cdot2\cdot\pi}}e^{-rac{(u-\mu)^2}{2\sigma^2}}$ אין רציף עם התפלגות פרמטרים ישרא למשתנה מקרי Y

 $Y \sim \mathcal{N}\left(\mu, \sigma^2
ight)$. פימון

התפלגות ההתפלגות היסון. כלומר סימון. כלומר ההתפלגות הנורמלית התקנית ולכן הסימון הוא אותו הימוף. כלומר זוהי הכללה של ההתפלגות הערה. אם $\mu=0$ היורמלית התקנית.

פונקציית ההתפלגות המצטברת היא:

$$F_Y(y) = \Phi\left(\frac{y-\mu}{\sigma}\right)$$

 \cdot (לפי לינאריות של תוחלת) היא Y היא התוחלת

$$E[Y] = E[\sigma Z + \mu]$$

$$= \sigma \cdot E\left[Z\right] + \mu$$

י ולכן:

$$E[Y] = \mu$$

 \cdot היא: איל Y היא

$$Var(Y) = Var(\sigma Z + \mu)$$

$$=\sigma^{2}\widetilde{Var\left(Z\right)}$$

$$=\sigma^2$$

• קיבלנו:

$$Var\left(Y\right) = \sigma^2$$

. הכללית הנורמלית הנורמלית של ההתפלגות והתוחלת הכללית הכללית הכללית הנורמלית הכללית. μ

.12 טענה

. איז אלכל מהתוחלת מהתוחלת עד כדי א הוא אד האסתברות א מתקיים שההסתברות א לכל א לכל א לכל א לכל א י א א לכל פ

$$P(\mu - s \cdot \sigma \le Y \le \mu + s \cdot \sigma) = 2 \cdot \Phi(s) - 1$$

- בפרט, אם נחשב במחשבון נקבל:

$$= \begin{cases} 0.63 & s = 1 \\ 0.95 & s = 2 \end{cases}$$

הוכחה.

- $.P\left(\mu-s\cdot\sigma\leq Y\leq\mu+s\cdot\sigma
 ight)$ נבחן את ההסתברות
 - לפי משפט מההרצאה הקודמת מתקיים:

$$P(\mu - s \cdot \sigma \le Y \le \mu + s \cdot \sigma) = F_Y(\mu + s \cdot \sigma) - F_Y(\mu - s \cdot \sigma)$$

:נקבל F_Y ונקבל *

$$= \Phi\left(\frac{\mu + s \cdot \sigma - \mu}{\sigma}\right) - \Phi\left(\frac{\mu - s \cdot \sigma - \mu}{\sigma}\right)$$
$$= \Phi(s) - \Phi(-s)$$
$$= \Phi(s) - (1 - \Phi(s))$$
$$= 2 \cdot \Phi(s) - 1$$

:ציור להמחשה

: מתקיים

$$\mu_2 > \mu_1$$

$$\sigma_2 < \sigma_1$$

$$\mathbf{y_1} = \mathcal{N}\left(\mu_1, \sigma_1\right)$$

$$y_2 = \mathcal{N}(\mu_2, \sigma_2)$$

התפלגות שלישית - התפלגות מעריכית/אקספוננציאלית:

הגדרה 13.

 \cdot למשתנה מקרי T רציף עם צפיפות •

$$f_{T}(t) = \begin{cases} \lambda \cdot e^{-\lambda t} & t \ge 0\\ 0 & otherwise \end{cases}$$

 $\lambda > 0$ עבור –

 λ נאמר כי יש התפלגות מעריכית עם פרמטר –

• דוגמאות: זמן עד לקלקול של רכיב, זמן עד להגעת בקשה לשרת.

נוודא שזאת אכן פונקציית צפיפות מוגדרת היטב:

$$\int_{-\infty}^{\infty} f_T(t) dt = \int_{0}^{\infty} \lambda \cdot e^{-\lambda t} dt = -e^{-\lambda t} \mid_{t=0}^{\infty} = -0 - (-1) = 1$$

פונקציית ההתפלגות המצטברת:

$$F_{T}(t) = P(T \le t) = \int_{-\infty}^{t} f_{T}(t) dt$$

$$= \int_{-\infty}^{0} f_{T}(t) dt + \int_{t}^{\infty} f_{T}(t) dt$$

$$=1-e^{-\lambda t}$$

:ולכן $F_{T}\left(t
ight)$ היא •

$$F_T(t) = \begin{cases} 1 - e^{-\lambda t} & 0 \le t \\ 0 & t < 0 \end{cases}$$

 $t \geq 0$ פונקציית הזנב עבור

$$P(T > t) = 1 - F_T(t) = 1 - (1 - e^{-\lambda t}) = e^{-\lambda t}$$

......

Tים, לפי נוסחת הזנב נקבל: • מכיוון ש-T מקבל רק ערכים אי שליליים,

$$E[T] = \int_{t=0}^{\infty} P(T > t) dx$$
$$= \int_{0}^{\infty} e^{-\lambda t} dt$$
$$= -\frac{1}{\lambda} e^{-\lambda t} \mid_{t=0}^{\infty}$$
$$= \frac{1}{\lambda}$$

 $\lambda=rac{1}{average~time~until~event}$ אם ורק אם ורק או הזמן הזמן אז קיבלנו שממוצע לשהו, אז קיבלנו עד לאירוע כלשהו, אז היבלנו בערה הזמן הזמן הזמן עד לאירוע כלשהו. בתור בתור הקצב של ההתפלגות.

השונות שלו היא:

$$Var(T) = E[T^2] - (E[T])^2$$

• לפי תוחלת של פונקציה של משתנה מקרי נקבל:

$$E\left[T^{2}\right] = \int_{-\infty}^{\infty} t^{2} \cdot f_{T}\left(t\right) dt$$

$$= \int_{-\infty}^{\infty} t^2 \cdot \lambda \cdot e^{-\lambda t} dt$$

 $u=t^2, v'=\lambda \cdot e^{-\lambda t}$ נבצע אינטגרציה בחלקים עם

$$= \underbrace{t^2}^{u} \cdot \underbrace{(-e^{-\lambda t})}^{v} \mid_{t=0}^{\infty} - \int_{0}^{\infty} \underbrace{2t}^{u'} \cdot \underbrace{((-e^{-\lambda t}))}^{v} dt$$

$$= 0 - 0 - \frac{2}{\lambda} \int_{0}^{\infty} t\lambda - e^{-\lambda t} dt$$

$$= \frac{2}{\lambda^2}$$

• ולכן נקבל:

$$Var(T) = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$$

תכונת חוסר הזיכרון של המשתנה המקרי המעריכי:

משפט 15. חוסר זיכרון של משתנים מקריים המתפלגים באופן מעריכי.

- $(\lambda > 0 \; | \; U \sim Exp(\lambda) \;)$ יהא
 - : מתקיים 0 < t, s מתקיים •

$$P({T > s + t} | {T > s}) = P({T > t})$$

הערה 16. אפשר להוכיח שההתפלגות הגאומטרית וההתפלגות המעריכית הן היחידות שמקיימות את תכונת חוסר הזיכרון.

הוכחה.

 $P(\{T>s+t\}\mid \{T>s\})$ לפי הגדרת הסתברות מותנית: • נבחן את הביטוי

$$P\left(\left\{T>s+t\right\}\mid\left\{T>s\right\}\right)=\frac{P\left(\left\{T>s+t\right\}\cap\left\{T>s\right\}\right)}{P\left(\left\{T>s\right\}\right)}$$

 $\{T>s+t\}$ זהו המאורע אהור $\{T>s+t\}\cap\{T>s\}$ - נשים לב כי

- לכן נקבל:

$$P\left(\left\{T>s+t\right\}\mid\left\{T>s\right\}\right)=\frac{P\left(T>t+s\right)}{P\left(T>s\right)}$$

: נשתמש בפונקציית הזנב של ההתפלגות המעריכית

$$\frac{P(T > t + s)}{P(T > s)} = \frac{e^{-\lambda(t + s)}}{e^{-\lambda s}}$$
$$= e^{-\lambda t}$$

* ושוב לפי הזנב מתקיים:

$$=P(T>t)$$

המשמעות של תכונת חוסר הזיכרון:

- אם s יחידות און והאירוע עוד לא התרחש, א המשפט אומר אם חיכינו כבר האירוע עוד א התרחש, א התרחש, א התרחש, א האירוע כלשהו
- . אז הסיכוי שהאירוע יתרחש לא לפני t יחידות זמן נוספות הוא כמו הסיכוי שמלכתחילה הוא יתרחש לא לפני t יחידות זמן מההתחלה.
 - א עוד א עוד אמן פהוא s יחידות אמתנו א זמן האירוע שוכחת שכבר המתנו יחידות אמן כשהוא אוד לא קרה.

דוגמה 17. מוטיבציה להתפלגות המעריכית

- \cdot מכוניות יוצאות ממנהרות הכרמל אחרי השעה 00:00 לפי החוקיות הבאה:
- מכונית אחת לכל היותר במקטע זמן קטן כלשהו (אסור שיצאו יותר ממכונית אחת בו זמנית)
- . $P\left(car\ will\ go\ at\ time\ interval\ \Delta\right)=\lambda\cdot\Delta$ כלומר , $\lambda=rac{cars}{time\ unit}$ קצב היציאה קבוע -
 - λ הוא המכוניות שיוצאות במקטע באורך המכוניות א כלומר הוחלת מספר המכוניות שיוצאות במקטע באורך
 - מספר המכוניות במקטעי זמן זרים הם בלתי תלויים.

פיתרון:

- T-ב 00:00 ב-תרי השעה אחרי המכונית המכונית ליציאת ליציאת המכונית נסמן את הזמן עד ליציאת המכונית הראשונה אחרי
 - Δ נבחר t לתתי מקטעים באורך נבחר t נבחר את ציר הזמן עד t
 - . תתי מקטעים כאלה בערך $\frac{t}{\Delta}$ תתי בערך –
 - : יחידות אמן יחידות אחרי אחרי יצאה הראשונה ישהמכונית הראשונה יצאה ההסתברות שהמכונית הראשונה יצאה אחרי יחידות אמני

$$P(T > t) = P\left(no \ car \ left \ in \ all \ of \ the \ \frac{t}{\Delta} \ sub-intervals\right)$$

- $= P \left(no \ car \ left \ in \ the \ 1_{st} \ sub-interval \ \cap \ no \ car \ left \ in \ the \ 2_{nd} \ sub-interval \ \cap \ldots \right)$
 - נתון כי המאורעות הללו בלתי תלויים ולכן:
- = P (no car left in the 1_{st} sub interval) + P (no car left in the 2_{nd} sub interval) + ...
 - :מכיוון שקצב היציאה λ קבוע, נקבל –

$$=(1-\lambda\Delta)^{\frac{t}{\Delta}}$$

: נשאיף את ט $\Delta \to 0$ את נשאיף *

$$P\left(T > t\right) = e^{-\lambda t}$$

: נקבל,
$$F_{T}\left(t
ight)=P\left(T\leq t
ight)=1-P\left(T>t
ight)$$
, נקבל נקבל יומכיוון ש

$$F_T(t) = 1 - e^{-\lambda t}$$

י נגזור ונקבל:

$$f_T(t) = e^{-\lambda t}$$

· כלומר:

$$T \sim Exp(\lambda)$$