

Internship Report On Drug Classification Using Decision Tree

Submitted by Kamale Natasha 245521748088 Keshav Memorial Engineering College

Kunapuli Vaishali 245521748094 Keshav Memorial Engineering College

Gali Johnson Rohith Reddy 245521733145 Keshav Memorial Engineering College Submitted to Mallika Srivastava Head, Training Delivery ElSystems Services

&

Mayur Dev Sewak Head, Internships & Trainings ElSystems Services

Student's Declaration

I, KAMALE NATASHA, a student of B.E program, Roll No. 245521748088 of the Department of CSE (AI & ML), Keshav Memorial Engineering College do hereby declare that I have completed the mandatory internship in Eisystems Technologies under the faculty guideship of P. Naresh Kumar, Department of CSE (AI & ML), Keshav Memorial Engineering College.

Endorsements

P. Naresh Kumar

Computer Science and Engineering (Artificial Intelligence & Machine Learning),

Keshav Memorial Engineering College.

Head of the Department:

Dr. B. Devender

Computer Science and Engineering (Artificial In Miles)

Keshav Memorial Engineering College. Keshav

EISYSTEMS SERVICES

Student's Declaration

I, KUNAPULI VAISHALI, a student of B.E program, Roll No. 245521748094 of the Department of CSE (AI & ML), Keshav Memorial Engineering College do hereby declare that I have completed the mandatory internship in Eisystems Technologies under the faculty guideship of P. Naresh Kumar, Department of CSE (AI & ML), Keshav Memorial Engineering College.

(Signature and Date)

Endorsements

Computer Science and Engineering (Artificial Intelligence & Machine Learning), Keshav Memorial Engineering College.

SIGNATURE

Head of the Department:

Dr. B. Devender

Computer Science and Engineering (Artificial Intelligence & Machine Learning),

Keshav Memorial Engineering College

HEAD

Department of CSE (AI & ML) Keshav Memorial Engineering College

Student's Declaration

I, GALI JOHNSON ROHITH REDDY, a student of B.E program, Roll No. 245521733145 of the Department of CSE, Keshav Memorial Engineering College do hereby declare that I have completed the mandatory internship in Eisystems Technologies under the faculty guideship of D.V.S.S Subrahmanyam, Department of CSE, Keshav Memorial Engineering College.

Endorsements

D.V.S.S Subrahmanyam Computer Science and Engineering Keshav Memorial Engineering College

SIGNATURE
Head of the Department
D & S Subrahmanyam

Computer Science and Engineering

Dept. Keshav Memorial Engineering. Keshav Memorial Engineering College.

Table of Content

Serial No	Title	Page No
1.	List of Tables	5
2.	Executive Summary	6
3.	Overview Of Organization	7
4.	Project Summary	8
5.	Data Flow Diagram\Process Flow	9
6.	Code / Program with Supported Screenshots	10
7.	Input / Output with Datasets & Supported Screenshots	17
8.	References	20
9.	Student Self Evaluation of the Short-Term Internship	21
10.	Annexure 1 (Daily Activity Report)	24
11.	Annexure 2 (Weekly Activity Report)	32

List of Tables

Serial No	Table Caption	Page No
1.	Drug200 dataset	15
2.	Annexure 1 (Daily Activity Report)	22
3.	Annexure 2 (Weekly Activity Report)	30

E Systems
Unconventional Idea.
Systematic Approach

Executive Summary

During the internship focused on artificial intelligence, I successfully mastered Python programming concepts,

including data types, control statements, loops, dictionaries, tuples, lists, and object-oriented programming (OOP)

concepts like class, object, inheritance, encapsulation, polymorphism, abstraction. This foundational knowledge

enabled me to effectively manipulate and analyze data using advanced libraries and frameworks.

In the training phase, I gained proficiency in essential AI concepts and tools such as 'NumPy', 'pandas', 'scikit-

learn', and 'matplotlib'. These tools were instrumental in data preprocessing, visualization, and implementing

machine learning models like linear regression, logistic regression, K-Nearest Neighbors (KNN), Support Vector

Machines (SVM), and Decision Trees.

Throughout the internship, I engaged in a variety of activities, starting with learning Python fundamentals and

progressively applying them to AI projects. I actively participated in data preprocessing tasks, model training,

evaluation, and serialization using libraries like 'pandas', 'scikit-learn', and 'pickle'. Additionally, I conducted

experiments to optimize model performance and gained practical insights into interpreting and visualizing data

using 'matplotlib'.

The various objectives and outcomes I have achieved during the internship and project phases are:

The internship's primary objective was to master AI concepts and their practical applications. By the end of the

internship, I achieved the following outcomes:

- Proficiency in Python programming for AI, encompassing foundational concepts and advanced data manipulation

techniques.

- Expertise in utilizing essential AI libraries (`NumPy`, `pandas`, `scikit-learn`, `matplotlib`) for data preprocessing,

visualization, and model implementation.

- Hands-on experience with various machine learning algorithms, enhancing my ability to analyze data, train

models, and evaluate their performance effectively.

These achievements have equipped me with the skills necessary to contribute effectively to AI projects, leveraging

Python and its associated libraries to solve complex problems in healthcare and beyond

EISYSTEMS SERVICES

Page

Overview of Organization

ElSystems Services, commonly known as ElSystem, is an Indian technology company that specializes in conducting training sessions and workshops (IIT's) in various fields like **Python Programming, Data Science, Artificial Intelligence, Machine Learning, Cloud Computing, Website development with JavaScript, Bootstrap, React Js** and many more.

The Vision of the organization includes becoming leading provider of creative and innovative training solutions. The main aim and mission of EI Systems Services is to empower students with practical skills and knowledge through high-quality training programs.

El Systems Values quality education, practical experience and skills and promotes solid foundational education.

The Policy of the organization is to encourage and provide practical experience through immersive learning Sessions and to let intern participate in projects where theoretical knowledge is applied to practical and Real world scenarios and also to develop trending and demanding skills that are aligned with current industry standards.

El Systems has made a significant impact on technology education by training around 50,000 students and reaching approximately 200,000 students through their various initiatives.

EI Systems provides both offline and online training sessions and internships, offering flexibility and accessibility to a wide range of learners.

El Systems has established its presence in several esteemed institutions including:

- -> Indian Institute of Science, Bangalore
- -> Indian Institute of Technology, Bombay
- -> Indian Institute of Technology, Delhi
- -> Indian Institute of Technology, Kanpur
- -> Indian Institute of Technology, Madras
- -> Indian Institute of Technology, Roorkee
- -> Indian Institute of Technology (Banaras Hindu University), Varanasi And many more

Project Summary

The primary idea behind "**Drug Classification using Decision Tree**" project is to develop a machine learning model that can classify patients into different drug categories based on their age, sex, blood pressure (BP), cholesterol levels, and sodium to potassium ratio (Na_to_K). This can aid healthcare professionals in making informed decisions about drug prescriptions based on patient profiles.

This project involves building a **decision tree classifier** to predict the type of drug that a patient should take. The dataset used contains information about patients, including their age, sex, BP, cholesterol, and Na_to_K ratio. By training a model on this data, we aim to achieve high accuracy in drug classification.

The software used in this project is **Python language**. Python was used as the primary programming language due to its versatility and robust library support. Key libraries included **pandas** for data manipulation and analysis, and **sklearn** for **machine learning** algorithms and preprocessing tasks. The warnings library was utilized to manage and suppress unnecessary warning messages. Additionally, **pickle** was employed for model serialization, allowing the trained model to be saved and reused without retraining. These tools collectively enabled the efficient development and execution of the drug classification model. Software like **VS code** and **google colab** are used for execution of project. The working of the model includes:

- The data is first read and preprocessed.
- Encoding categorical variables (Sex, BP, Cholesterol) using **LabelEncoder**.
- Splitting the dataset into training and testing sets using train test split.
- A decision tree classifier is trained on the training data.
- The model is evaluated on the testing data, achieving an accuracy of approximately **accuracy_score**.
- The trained model is serialized and saved to a file using pickle.

The Decision Tree Classifier in the code is used to classify patients into drug categories based on their features. It learns decision rules from the training data and applies these rules to predict the drug category for new patients. Research involved understanding the dataset and preprocessing requirements

- Preprocessing: Researching methods for encoding categorical variables to numerical values.
- **Model Selection**: Deciding on using a Decision Tree Classifier based on its interpretability and suitability for classification problems.
- Evaluation Metrics: Using accuracy as the evaluation metric for model performance.

Further, this project can enhance the model's accuracy by incorporating more advanced algorithms like Random Forest and integrating this model into a healthcare application could provide real-time drug recommendations to medical professionals.

Data Flow Diagram / Process Flow

Code / Program with Supported Screenshots

In Google Colab Importing libraries and reading dataset

Check if the data is clean by Preprocessing the data

[5] dt.info()

Cclass 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):
Column Non-Null Count Dtv

#	Column	Non-Null Count	Dtype			
0	Age	200 non-null	int64			
1	Sex	200 non-null	object			
2	BP	200 non-null	object			
3	Cholesterol	200 non-null	object			
4	Na_to_K	200 non-null	float64			
5	Drug	200 non-null	object			
dtypes: float64(1), int64(1), object(4)						
memory usage: 9 5+ KR						

memory usage: 9.5+ KB

[6] dt.isnull().sum()

EISYSTEMS SERVICES

[7]	dt.desc	cribe()		
_		Age	Na_to_K	
	count	200.000000	200.000000	
	mean	44.315000	16.084485	
	std	16.544315	7.223956	
	min	15.000000	6.269000	
	25%	31.000000	10.445500	
	50%	45.000000	13.936500	
	75%	58.000000	19.380000	
	max	74.000000	38.247000	

No duplicate value exists in the data

Create an array of all input features and define it as "x"

0	<pre>x = dt[["Age","Sex","BP","Cholesterol","Na_to_K"]]</pre>	
	х	

	^						
→		Age	Sex	ВР	Cholesterol	Na_to_K	
	0	23	F	HIGH	HIGH	25.355	
	1	47	М	LOW	HIGH	13.093	
	2	47	М	LOW	HIGH	10.114	
	3	28	F	NORMAL	HIGH	7.798	
	4	61	F	LOW	HIGH	18.043	
	195	56	F	LOW	HIGH	11.567	
	196	16	М	LOW	HIGH	12.006	
	197	52	М	NORMAL	HIGH	9.894	
	198	23	М	NORMAL	NORMAL	14.020	
	199	40	F	LOW	NORMAL	11.349	

200 rows × 5 columns

EISYSTEMS SERVICES


```
y = dt.Drug
      у
               drugY
      0
               drugC
      1
      2
               drugC
      3
               drugX
      4
               drugY
               . . .
      195
               drugC
      196
               drugC
      197
               drugX
      198
               drugX
      199
               drugX
      Name: Drug, Length: 200, dtype: object
[11] import warnings
      warnings.filterwarnings("ignore")
[12] filtered_dt = dt[dt['Drug'].isin(['drugA', 'drugB','drugC','drugX','drugY'])]
     drug_count = filtered_dt['Drug'].value_counts()
    import matplotlib.pyplot as plt
     plt.figure(figsize=(6, 4))
     plt.pie(drug count.values, labels=drug count.index, autopct='%1.1f%%', startangle=140)
     plt.title('Drug Distribution')
     plt.axis('equal')
     plt.show()
\overline{\mathbf{x}}
                          Drug Distribution
                                            drugA
                   drugB
                                      11.5%
                           8.0%
                                           27.0%
                                                      drugX
                         45.5%
                drugY
```

The above pie chart depicts the data balance in drug dataset with balanced proportion of all drugs

Encoding all the variables into numeric format

```
[14] from sklearn.preprocessing import LabelEncoder
     le=LabelEncoder()
     y = le.fit_transform(y)
     У
 4, 4, 4, 4, 4, 3, 4, 4, 3, 1, 3, 4, 3, 3, 0, 3, 3, 3, 4, 1, 4, 3,
            3, 3, 0, 2, 4, 4, 4, 3, 4, 1, 2, 1, 4, 3, 4, 4, 0, 4, 3, 1, 4,
            0, 3, 4, 4, 1, 4, 3, 4, 4, 0, 4, 0, 3, 1, 3, 2, 0, 2, 1, 3, 4,
            4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 0, 0, 2, 3, 4, 3, 3, 4, 1, 4,
            0, 3, 3, 3, 3, 4, 3, 3, 0, 4, 4, 4, 4, 4, 1, 4, 4, 3, 4, 3, 4, 4,
            3, 4, 4, 3, 1, 0, 1, 3, 0, 4, 1, 4, 0, 3, 3, 0, 3, 2, 0, 1, 3, 3,
            4, 2, 0, 4, 2, 3, 3, 1, 3, 4, 4, 4, 4, 3, 4, 0, 3, 3, 4, 4, 0, 4,
            0, 4, 4, 4, 4, 3, 3, 4, 4, 4, 1, 0, 4, 4, 4, 0, 4, 2, 4, 2, 2, 3,
            3, 3])
[15] bp=le.fit transform(dt[["BP"]])
     bp
 → array([0, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 2,
            1, 1, 1, 0, 0, 2, 1, 1, 2, 0, 1, 0, 2, 2, 0, 1, 2, 2, 2, 0, 2, 2,
            2, 2, 0, 1, 2, 1, 0, 2, 1, 0, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 0, 2,
            0, 2, 2, 0, 0, 2, 2, 2, 0, 1, 0, 0, 0, 1, 0, 2, 1, 0, 1, 0, 2, 1,
            0, 2, 2, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 0, 1, 2, 1, 0, 2,
            0, 2, 1, 1, 2, 0, 2, 2, 0, 0, 2, 0, 2, 2, 0, 0, 0, 2, 1, 2, 2, 1,
            1, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 1, 0, 1, 1, 0, 0, 2, 1,
            1, 1, 0, 1, 1, 1, 2, 0, 2, 0, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 0,
            0, 2, 2, 2, 0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2,
            2, 1])
    Sex=le.fit_transform(dt[["Sex"]])
     Sex

→ array([0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1,
           1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1,
           0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0,
           1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1,
           0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,
           1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1,
           1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
           1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
           1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1,
           1, 0])
[17] Cholesterol=le.fit_transform(dt[["Cholesterol"]])
    Cholesterol
🚁 array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0,
           1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0,
           1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1,
           1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0,
           0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1,
           1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1,
           1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0,
           1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
           1, 1])
```

EISYSTEMS SERVICES

Appending the encoded values to the assigned array for model processing

		Age	Sex	ВР	Cholesterol	Na_to_K	
	0	23	0	0	0	25.355	11.
	1	47	1	1	0	13.093	+1
	2	47	1	1	0	10.114	
	3	28	0	2	0	7.798	
	4	61	0	1	0	18.043	
	195	56	0	1	0	11.567	
	196	16	1	1	0	12.006	

200 rows × 5 columns

0 1

52 23

40

197

198

199

Split the dataset for training and testing and apply decision tree classifier

[19] from sklearn.model_selection import train_test_split train_x,test_x,train_y,test_y=train_test_split(x,y,test_size=0.2,random_state=10)

9.894

14.020

11.349

- [20] from sklearn.tree import DecisionTreeClassifier model=DecisionTreeClassifier()
- [21] model.fit(train_x,train_y)

DecisionTreeClassifier

DecisionTreeClassifier()


```
[22] from sklearn.metrics import accuracy_score, classification_report
    y_pred = model.predict(test_x)
    accuracy = accuracy_score(test_y, y_pred)
    accuracy
```

```
→ 1.0
```

```
[23] model.predict(test_x)==test_y
```

```
array([ True, True,
                    True, True,
                                  True,
                                                True,
                                         True,
       True,
              True,
                    True,
                           True, True,
                                         True,
                                                True,
                                                      True,
       True,
              True,
                     True, True,
                                  True,
                                         True,
                                                True,
                                                      True,
                                                             True,
                    True, True,
       True,
              True,
                                  True,
                                         True,
                                               True,
                                                      True,
       True, True,
                    True, True])
```

Check for model accuracy

```
plt.figure(figsize=(5, 3))
plt.scatter(test_y, y_pred, color='blue')
plt.plot([test_y.min(), test_y.max()], [test_y.min(), test_y.max()], 'k--', lw=2)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title('Actual vs. Predicted')
plt.grid(True)
plt.show()
```


The above graph depicts that the model is 100% accurate.

Deploying the model

```
import pickle
pickle.dump(model,open("Drug.pkl","wb"))
```

7

Streamlit is used for construct User Interface of the model

```
import streamlit as st
import pickle
import numpy as np
# Load the trained model
model = pickle.load(open("Drug.pkl", "rb"))
# Streamlit interface
st.title("Drug Prediction App")
# Input fields
age = st.number input("Enter Age", min value=0)
sex = st.selectbox("Enter Sex", ["Male", "Female"])
bp = st.selectbox("Enter BP", ["Low", "Normal", "High"])
cholesterol = st.selectbox("Enter Cholesterol", ["Normal", "High"])
na_to_k = st.number_input("Enter Na_to_K ratio", min_value=0.0, forma
sex encoded = 1 if sex == "Male" else 0
bp encoded = {"Low": 0, "Normal": 1, "High": 2}[bp]
cholesterol encoded = 1 if cholesterol == "High" else 0
# Prediction button
if st.button("Predict Drug"):
    # Prepare input for prediction
    features = np.array([[age, sex encoded, bp encoded, cholesterol e
    prediction = model.predict(features)
    # Mapping the predictions to drug name
    predicted drug = ""
    if prediction[0] == 0:
        predicted drug = 'drugA'
    elif prediction[0] == 1:
        predicted drug = 'drugB'
    elif prediction[0] == 2:
        predicted drug = 'drugC'
    elif prediction[0] == 3:
        predicted drug = 'drugX'
    elif prediction[0] == 4:
        predicted drug = 'drugY'
    st.write(f"The predicted drug is {predicted_drug}")
```


Input / Output with Datasets & Supported Screenshots

Input used for the model is the drug200.csv dataset:

"C:\Users\NATHASHA K\Downloads\drug200.csv"

Output window

EISYSTEMS SERVICES

EISYSTEMS SERVICES

References

- Jordan, Michael I., and Tom M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349, no. 6245 (2015): 255-260.
- El Naga, Issam, and Martin J. Murphy. What is machine learning?. Springer International Publishing, 2015.
- Bi, Qifang, Katherine E. Goodman, Joshua Kaminsky, and Justin Lessler. "What is machine learning? A primer for the epidemiologist." American journal of epidemiology 188, no. 12 (2019): 2222-2239.
- Montgomery, Douglas C., Elizabeth A. Peck, and G. Geoffrey Vining. Introduction to linear regression analysis. John Wiley & Sons, 2021.
- Seber, George AF, and Alan J. Lee. Linear regression analysis. John Wiley & Sons, 2012.
- Sperandei, Sandro. "Understanding logistic regression analysis." Biochemia medica 24, no. 1 (2014): 12-18.
- Peduzzi, Peter, John Concato, Elizabeth Kemper, Theodore R. Holford, and Alvan R. Feinstein. "A simulation study of the number of events per variable in logistic regression analysis." Journal of clinical epidemiology 49, no. 12 (1996): 1373-1379.
- Sun, Shiliang, and Rongqing Huang. "An adaptive k-nearest neighbor algorithm." In 2010 seventh international conference on fuzzy systems and knowledge discovery, vol. 1, pp. 91-94. IEEE, 2010.
- Chomboon, Kittipong, Pasapitch Chujai, Pongsakorn Teerarassamee, Kittisak Kerdprasop, and Nittaya Kerdprasop. "An empirical study of distance metrics for k-nearest neighbor algorithm." In Proceedings of the 3rd international conference on industrial application engineering, vol. 2, p. 4. 2015.
- Charbuty, Bahzad, and Adnan Abdulazeez. "Classification based on decision tree algorithm for machine learning." Journal of Applied Science and Technology Trends 2, no. 01 (2021): 20-28.
- Su, Jiang, and Harry Zhang. "A fast decision tree learning algorithm." In Aaai, vol. 6, pp. 500-505. 2006.
- Geeks for Geeks: https://www.geeksforgeeks.org/decision-tree
- Wikipedia: https://en.wikipedia.org/wiki/Decision tree
- JavatPoint: https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm

Student Self Evaluation of the Short-Term Internship

Please rate your performance in the following areas:

1)	Oral communication	1	2	3	4	5
2)	Written communication	1	2	3	A	5
3)	Initiative	1	2	3	4	18
4)	Interaction with staff	1	2	3	4	5
5)	Attitude	1	2	3	A	5
6)	Dependability	1	2	3	4	5
7)	Ability to learn	1	2	3	4	-8
8)	Planning and organization	1	2	3	4	-5
9)	Professionalism	1	2	3	A	5
10)	Creativity	1	2	3	4	\$
11)	Quality of work	1	2	3	4	8
12)	Productivity	1	2	3	A	5
13)	Progress of learning	1	2	3	4	8
14)	Adaptability to organization's culture/policies	1	2	3	4	8
15)	OVERALL PERFORMANCE	1	2	3	4	8

Rating Scale: 5 will be Best while 1 will be Worst

Signature of the Student

Student Self Evaluation of the Short-Term Internship

Please rate your performance in the following areas:

						-
1)	Oral communication	1	2	3	4	5
2)	Written communication	1	2	3	A	5
3)	Initiative	1	2	3	4	18
4)	Interaction with staff	1	2	3	4	5
5)	Attitude	1	2	3	A	5
6)	Dependability	1	2	3	4	\$
7)	Ability to learn	1	2	3	4	-8
8)	Planning and organization	1	2	3	4	-5
9)	Professionalism	1	2	3	A	5
10)	Creativity	1	2	3	4	\$
11)	Quality of work	1	2	3	4	8
12)	Productivity	1	2	3	A	5
13)	Progress of learning	1	2	3	4	-5
14)	Adaptability to organization's culture/policies	1	2	3	4	8
15)	OVERALL PERFORMANCE	1	2	3	4	8

Rating Scale: 5 will be Best while 1 will be Worst

Signature of the Student

Student Self Evaluation of the Short-Term Internship

Please rate your performance in the following areas:

1)	Oral communication	1	2	3	4	5
2)	Written communication	1	2	3	A	5
3)	Initiative	1	2	3	4	18
4)	Interaction with staff	1	2	3	4	. 5
5)	Attitude	1	2	3	A	5
6)	Dependability	1	2	3	4	\$
7)	Ability to learn	1	2	3	4	8
8)	Planning and organization	1	2	3	4	-5
9)	Professionalism	1	2	3	A	5
10)	Creativity	1	2	3	4	\$
11)	Quality of work	1	2	3	4	18
12)	Productivity	1	2	3	A	5
13)	Progress of learning	1	2	3	4	8
14)	Adaptability to organization's culture/policies	1	2	3	4	\$
15)	OVERALL PERFORMANCE	1	2	3	4	8

Rating Scale: 5 will be Best while 1 will be Worst

Roman 29/6/24

Signature of the Student

Annexure 1 Daily Activity Report

Week No: 1 (1/2/3/4/5/6/7/8)

Day & Date	Brief Description of Daily Activity	Learning Outcome	Person In-Charge
06/05/24-Monday	Introduction to python, prerequisites', important thigs about python, features of python.	Introduction to python and its prerequisites and important things about python'	Mallika Srivastava
07/05/24-Tuesday	System requirements of python, how to install python, IDE's, creating first python program.	System requirements for installation of python, and process of installation of python, knowing about various IDE's and creating first python program	Mallika Srivastava
08/05/24-Wednesday	Variables, constants, conventions, print functions.	Various variable usages, constants, convections used, print functions	Mallika Srivastava
09/05/24-Thursday	Sep and end, comments like Single comment, multiline comment.	Usage of sep and end, comments usage and various types of comments	Mallika Srivastava
10/05/24-Friday	Data type number int datatype float datatype, complex datatype	Various datatypes like number int, float, complex	Mallika Srivastava
Revision/Homework 11/05/24-Saturday	practice	Practiced all above concepts	Mallika Srivastava

Week No: 2 (1/2/3/4/5/6/7/8)

Day & Date	Brief Description of Daily Activity	Learning Outcome	Person In-Charge
13/05/24-Monday	String datatype, functions like upper(), index, lower	Various string functions like upper index lower and other	Mallika Srivastava
14/05/24-Tuesday	Title, capitalize, lists	Some other functions of string include title capitalize and lists	Mallika Srivastava
15/05/24-Wednesday	List methods	List methods like append(), extend(), insert(), remove()	Mallika Srivastava
16/05/24-Thursday	Pop(), index(), count(), rename(), sort(), copy	Some other are Pop(), index(), count(), rename(), sort(), copy	Mallika Srivastava
17/05/24- Friday	Tuples and its properties	Various tuple and its functions	Mallika Srivastava
Revision/Homework 18/05/24-Saturday	Practice	Practicing the above concepts.	Mallika Srivastava

Week No: 3 (1/2/3/4/5/6/7/8)

	•		
Day & Date	Brief Description of Daily Activity	Learning Outcome	Person In-Charge
20/05/24-Monday	Dictionary and its properties	Various Dictionaries and its functions	Mallika Srivastava
21/05/24-Tuesday	Set and its properties	Various sets and its properties	Mallika Srivastava
22/05/24-Wednesday	Boolean and its properties	Boolean and its various function.	Mallika Srivastava
23/05/24-Thursday	User input and typecasting	Type casting used for changing datatype of element for one datatype to other	Mallika Srivastava
24/05/24-Friday	Control flow statements if, if else	Control flow statements like if, if else	Mallika Srivastava
Revision/Homework 25/05/24-Saturday	Practice	Practicing the above concepts	Mallika Srivastava

Week No: 4 (1/2/3/4/5/6/7/8)

Day & Date	Brief Description of Daily Activity	Learning Outcome	Person In-Charge
27/05/24-Monday	If elif- else, nested if	Continuation of control flow statements like if elif-else, nested if	Mallika Srivastava
28/05/24-Tuesday	Project quiz	Doing project quiz	Mallika Srivastava
29/05/24-Wednesday	Loops like for while	Introduction to loops like for and while	Mallika Srivastava
30/05/24-Thursday	Functions in python	Introduction to functions in python language. Functions like inbuilt functions and user defined functions are introduced	Mallika Srivastava
31/05/24-Friday	Types of user defined functions	Introducing various types of user defined functions like Default, parameterized, anonymous functions.	Mallika Srivastava
Revision/Homework 01/06/24-Saturday	Practice	Practicing the above concepts	Mallika Srivastava

Week No: 5 (1/2/3/4/5/6/7/8)

Day & Date	Brief Description of Daily Activity	Learning Outcome	Person In-Charge
03/06/24-Monday	Lambda, global variable, local variable	Functions include various properties like lambda, local variables, and global variables.	Mallika Srivastava
04/06/24-Tuesday	Package, module, library,	Packages, modules and libraries are very important aspect of the programming language. They help in building program more efficiently and accurately and make it easy for understanding.	Mallika Srivastava
05/06/24-Wednesday	Object oriented programming class, object	Object oriented programming is a important aspect of programming language. it can be used to enhance efficiency and readability of the program. Initial properties include object, class.	Mallika Srivastava
06/06/24-Thursday	Abstraction, inheritance	Continuation of object- oriented programming include concepts like Abstraction, inheritance	Mallika Srivastava
07/06/24-Friday	Encapsulation, polymorphism	More topics include object-oriented programming are encapsulation and polymorphism	Mallika Srivastava
Revision/Homework 08/06/24-Saturday	Practice	Practicing the above concepts.	Mallika Srivastava

Week No: 6 (1/2/3/4/5/6/7/8)

Day & Date	Brief Description of Daily Activity	Learning Outcome	Person In-Charge
10/05/24-Monday	Constructor and Methods	Constructor is an important aspect of programming language used to write program effectively and increasing readability of the program. The types include default and parameterized. Methods help in building the structure of the code. The types include instance class, static.	Mallika Srivastava
11/06/24-Tuesday	NumPy, arrange, linespace, logspace	NumPy is the first concept used in building a well-trained model. Some of its functions include arrange, linespace, logspace.	Mallika Srivastava
12/06/24-Wednesday	Arrays 1D, 2D, 3D, reshape	Arrays are used as a datatype to store homogeneous elements. The size of the array varies like 1D, 2D, 3D.	Mallika Srivastava
13/06/24-Thursday	Pandas dataframe	Pandas is used for the model training in the form of data frames. It allows importing of files	Mallika Srivastava
14/06/24-Friday	Matplotlib	Matplotlib is used for visualization of the model. This is a pictographic representation of the data.	Mallika Srivastava
Revision/Homework 15/06/24-Saturday	Practice	Practicing the model building terminologies.	Mallika Srivastava

79

Week No: 7 (1/2/3/4/5/6/7/8)

Day & Date	Brief Description of Daily Activity	Learning Outcome	Person In-Charge
17/06/24-Monday	Model demonstration	Model demonstration include final blueprint of the model.	Mallika Srivastava
18/06/24-Tuesday	Model and project introduction	Model and project construction include building projects using various algorithms depending on the model usage.	Mallika Srivastava
19/06/24-Wednesday	Linear regression, logistic regression	Linear and logistic regression basic model building algorithms. They are done on labeled data.	Mallika Srivastava
20/06/24-Thursday	K – nearest neighbor	This is a type of classification algorithm used to find distance between its nearest similar point and can be used to find outliers.	Mallika Srivastava
21/06/24-Friday	Support vector machine	Support vector machine is a classification algorithm and it is used to find a hyper plane for classification process.	Mallika Srivastava
Revision/Homework 22/06/24-Saturday	Decision tree	Decision tree is used when we have to make a conclusion based on more than 2 attributes.	Mallika Srivastava

Week No: 8 (1/2/3/4/5/6/7/8)

Day & Date	Brief Description of Daily Activity	Learning Outcome	Person In-Charge
24/06/24-Monday	Model deployment	Model deployment is used to take input and give predictions as output on test data. The properties like pickel and streamlit can be used for this.	Mallika Srivastava
25/06/24-Tuesday	Project making	Using above concepts building model.	Mallika Srivastava
26/06/24-Wednesday	Data preprocessing	Preparing the dataset.	Mallika Srivastava
27/06/24-Thursday	Train test splitting	Training testing and splitting of the data for the model	Mallika Srivastava
28/06/24-Friday	Model evaluation	Evaluating the accuracy of the model.	Mallika Srivastava
Revision/Homework 29/06/24-Saturday	Model deployment	Deploying the model.	Mallika Srivastava

Annexure 2 Weekly Progress Report

Week No: 1-8 (1/2/3/4/5/6/7/8)

Summary of Weekly Activity	
Introduction to python, its features variables, constants, conventions, print statements, comments, datatypes like numeric, int float complex.	
Introduction to Strings and its functionalities, list and its list methods and tuple	
Dictionary set Boolean, user input typecasting, control flow statements	
Loops functions various types of functions.	
Lambda, global variable, local variable, package module library object oriented programming class, object, abstraction, inheritance, polymorphism, encapsulation	
Constructor methods NumPy, arrays, pandas, matplotlib.	
Model demonstration, linear regression, logistic regression, k-nearest neighbor support vector machine, decision tree	
Model deployment, project ma king, data processing, train test split model evaluation, model deployment	