

Institut für Nachrichtentechnik

Abteilung Informationstheorie und Kommunikationssyteme

Prof. Eduard A. Jorswieck, Dr. Bile Peng

18. August 2023

Klausur - Grundlagen der Informationstechnik, Teil Nachrichtentechnik

Name: ______ Note: _____ Note: ____

Aufgabe	1.	2.	3.	4.	Total
Punkte	21	14	13	12	60
Erreicht					

Aufgabe 1. Entropie, Quell- und Kanalcodierung

21 P.

A) Berechnen Sie den Informationsgehalt in Bit $(-\log_2(p))$ für jedes Zeichen der Nachrichtenquelle Q, deren Zeichen und Auftrittswahrscheinlichkeiten in Tabelle 1 aufgelistet sind. (5 P)

A	В	С	D	Е	F
$\frac{1}{64}$	8/64	2/64	29/64	5/64	19/64

Tabelle 1: Zeichen und Auftrittswahrscheinlichkeiten der Nachrichtenquelle Q

В)	Berechnen Sie die Entropie der Nachrichtenquelle $Q.$ (3 P)
C)	Berechnen Sie die Codelänge für jedes Codewort der Quelle Q , wenn ein Shannon Fano Code angewendet wird, sowie die erwartete Codelänge. (3 P)
D)	Erstellen Sie nachvollziehbar den zur Nachrichtenquelle Q gehörigen Codebaum ent
	sprechend der Huffman-Codierung und nennen Sie die sich ergebenden Codewörter (5 P)

E)	Eine Generatormatrix des Hamming-Codes hat die Größe 4×7 . Welche Coderate hat der dazugehörige Kanalcode? (1 P)
F)	Die Generatormatrix von einem anderen Hamming-Code hat die Größe 11×15 . Im Vergleich zum Kanalcode in Teilaufgabe E): welcher Code kann mehr Fehler in einem Block korrigieren? Bitte begründen Sie Ihre Antwort. (3 P)
	3

- G) Wenn der Mindestabstand zwischen 2 gültigen Codewörtern 5 ist, wie viele Fehler kann der Kanalcode in einem Block korrigieren? (1 P)
 - a) 1 Fehler
 - b) 2 Fehler
 - c) 3 Fehler
 - d) 4 Fehler

Aufgabe 2. Kanalkapazität und Modulationsverfahren

14 P.

- A) Wie lautet die allgemeine Formel für die Kanalkapazität C in bit mit der Bandbreite W, der Signalleistung S und der Rauschleistung $N=N_0W$ mit Rauschleistungsdichte N_0 ? (2 P)
 - a) $C = \log_2(1 + \frac{S}{N})$.
 - b) $C = W \log_2(1 + \frac{S}{N})$.
 - c) $C = W \log_2(\frac{S}{N})$.
 - d) $C = W \ln(\frac{S}{N})$.
- B) Mit einer verdoppelten Bandbreite kann die Kanalkapazität nicht verdoppelt werden, weil (1 P)
 - Die Rauschleistung ist durch die Verdopplung der Bandbreite auch verdoppelt.
 - Der Empfänger hat eine eingeschränkte Empfangsleistung.
 - Die logarithmische Funktion $\log_2(1+a)$ erhöht sich langsamer als a.
 - Die Kanalkapazität ist unabhängig von der Bandbreite.

- C) Mit einer verdoppelten Sendeleistung kann die Kanalkapazität auch nicht verdoppelt werden, weil (1 P)
 - Die Rauschleistung ist durch die Verdopplung der Bandbreite auch verdoppelt.
 - Der Empfänger hat eine eingeschränkte Empfangsleistung.
 - Die logarithmische Funktion $\log_2(1+a)$ erhöht sich langsamer als a.
 - Die Kanalkapazität ist unabhängig von der Bandbreite.
- D) Der Empfänger verwendet die Entscheidungstheorie um herauszufinden, welches Symbol der Sender gesendet hat. Es gibt grundsätzlich Maximum a-posteriori (MAP) Entscheider und Maximum Likelihood (ML) Entscheider. Unter welcher Annahme sind die beide Entscheider äquivalent? (2 P)
 - a) Die Rauschleistung ist klein.
 - b) Der Kanal ist bekannt.
 - c) Der Kanal ist unbekannt.
 - d) Die Wahrscheinlichkeiten der gesendeten Symbole sind gleich.
- E) Wie groß muss das Signal-Rausch-Verhältnis (S/N) sein, um eine spektrale Effizienz von 4 bit/s/Hz zu realisieren? (1 P)

F) Wie groß muss die Bandbreite mit der in Teilaufgabe D) genannten spektrale Effizienz sein, um eine Datenrate von 16kbit/s zu erreichen? (1 P)

α	
\mathbf{G}	Sie möchten in Kanälen mit höherer spezifischer Kanalkapazität die Quadratur-
	Amplituden-Modulation der Ordnung 16 (16-QAM) nutzen, um das Signal zu
	übertragen. Wie viele Bits werden bei der 16-QAM je Konstellationspunkt übertragen?
	(1 P)

H) Zeichnen das Konstellationsdiagramm des Modulationsverfahren 16-QAM. Beschriften Sie es vollständig. (3 P)

I) Wenn sich das Signal-Rausch-Verhältnis reduziert und 16-QAM nicht mehr geeignet ist, sollen Sie QPSK oder 64-QAM auswählen? Begründen Sie Ihre Auswahl. (2 P)

Aufgabe 3. Übertragungskanal und Mehrwegausbreitung

A) Abbildung 1 veranschaulicht den Informationsfluss in einem gestörten Kanal.

13 P.

Abbildung 1: Informationsfluss in einem gestörten Kanal.

Ordnen Sie zu und erklären Sie H(X), H(Y|X) und I(X;Y). (3 P)

H(X)	
H(Y X)	
I(X:Y)	

Bedingte Entropie Entropie am Eingang Transinformation

- B) Welche Aussage ist falsch? (2 P)
 - a) Es gilt H(X|Y) = H(Y|X) = 0 für perfekten Kanal.
 - b) H(Y|X) = H(X|Y) für alle Kanäle.
 - c) H(X|Y) ist die Äquivokation (verloren gegangene Information).
 - d) $H(X) \geq 0$ für alle perfekten und imperfekten Kanäle.
- C) Formel (1) ist die Kanalübertragungsfunktion für den Spezialfall einer Zweiwegausbreitung, der im Folgenden betrachtet werden soll.

$$H(f) = a_d e^{-j2\pi f \tau_d} + a_u e^{-j2\pi f \tau_u}.$$
 (1)

Welche Größen werden durch die Formelzeichen a_d, a_u, τ_d und τ_u beschrieben? (4 P)

D) Nehmen Sie an, dass es sich bei dem gesendeten Signal um ein sinusförmiges Signal der Periodendauer T=1 handelt und dass $a_d=1, a_u=0, 5$. Betrachten Sie die beide Fälle $\tau_u-\tau_d=T$ und $\tau_u-\tau_d=T/2$. Zeichnen Sie die Signale am Empfänger für die beide Fälle. (4 P)

Aufgabe 4. OFDM und MIMO

12 P.

- A) Ein OFDM-Symbol mit 10 binär unipolar modulierten Trägern ist in Abbildung 2 dargestellt. Ist diese Darstellung im Zeit- oder Frequenzbereich? (1 P)
 - a) Zeitbereich.

Abbildung 2: Die schematische Darstellung eines OFDM-Symbols.

- b) Frequenzbereich.
- B) Nennen Sie die zum in Teilaufgabe A) dargestellten OFDM-Symbol gehörige Bitfolge. (2 P)

C) Skizzieren Sie den zeitlichen Verlauf der in Teilaufgabe A) dargestellten Signale, die zu den Trägern mit den Nummern 1, 2, und 6 gehören. (6 P)

- D) Welche Aussage ist falsch? (1 P)
 - a) Mit 4 Sendeantennen und 2 Empfangsantennen können maximal 2 parallele Datenströme realisiert werden.
 - b) Der Matched Filter ist der optimale lineare Filter wenn die Rauschleistung 0 ist.
 - c) Der Zero-forcing Filter ist der optimale lineare Filter wenn die Interferenz 0 ist.
 - d) Ein MIMO-System hat keinen Vorteil gegenüber ein SISO-System wenn keine parallelen Datenströme realisiert werden können.
- E) Die Kanalkapazität von einem Single-Input-Single-Output (SISO) Kanal ist C. Wenn beide Sender und Empfänger mit 4 Antennen ausgerüstet sind, warum kann man die Kanalkapazität 4C nicht erreichen (wählen Sie bitte alle richtigen Gründe). (2 P)
 - a) Weil es Interferenz zwischen den 4 Datenströme gibt.
 - b) Weil die Trägerfrequenz für alle 8 Antennen gleich ist.
 - c) Weil die Sendeleistung nicht vervierfacht ist.
 - d) Weil es nur einen Empfänger gibt und 4 Antennen bei demselben Empfänger äquivalent zu einer Antenne sind.