CS 234r: Markets for Networks and Crowds Two-Sided Matching, Stability, Deferred Acceptance

Lecture 3

Two-Sided Matching

Last time: Matching markets with money

- buyers
- sellers

Prices coordinate market, get

- economic efficiency
- no envy (demand correspondence)

These Walrasian prices are

- computable via tatonnement
- strategyproof for one side (pset)

This time: Matching markets without money

- Marriage markets like OKCupid
- Job markets like National Residency Matching Program (NRMP)

Note: No unit of comparison \rightarrow agents have preference orderings instead of values.

Goal: What do you think of these?

• Pareto efficiency: no one can improve without harming others

- No justified envy: if a envies b's match, then b's match prefers b to a
- Algorithmic: polytime alg to find matching
- Strategyproof (SP): reporting true pref's maximizes rank of match

Model

Def: A two-sided one-to-one matching market has

- \bullet set M of m men
- \bullet set W of n women

Def: Preferences \succ_x of agent x are strict total orders over

- $W \cup \{m\}$ for man m
- $M \cup \{w\}$ for woman w

where $a \succ_x b \to \text{agent } x \text{ prefers } a \text{ to } b \text{ and } x \succ_x a \to \text{agent } x \text{ prefers being unmatched to } a$.

Def: A matching $\mu: M \to W$ is a one-to-one mapping. Overloading notation, if $\mu(m) = w$, we say $(m, w) \in \mu$ and $\mu(w) = m$.

Def: A matching μ is Pareto efficient (PE) if there is no matching ν s.t.

• $\nu(x) \succeq_x \mu(x)$ for all agents x

• and $\nu(x) \succ_x \mu(x)$ for some agent x.

Def: A matching μ is *stable* (aka has *no justified envy*) if it is

- individually rational (IR): x prefers $\mu(x)$ to being single,
- and there is no blocking pair (m, w) s.t. $m \succ_w \mu(m)$ and $w \succ_m \mu(m)$.

Goal: Find a PE and stable μ if it exists.

Example: Can you find a stable matching here?

$$M_3: \mathcal{M}_3 >_{\mathcal{W}^2} \mathcal{M}^2 >_{\mathcal{W}^3} \mathcal{M}^1$$
 $M_3: \mathcal{M}_3 >_{\mathcal{W}^2} \mathcal{M}^2 >_{\mathcal{W}^3} \mathcal{M}^1$
 $M_3: \mathcal{M}_3 >_{\mathcal{W}^2} \mathcal{M}^3 >_{\mathcal{W}^3} \mathcal{M}^1$
 $M_3: \mathcal{M}_3 >_{\mathcal{W}^3} \mathcal{M}^3 >_{\mathcal{W}^3} \mathcal{M}^3$
 $M_3: \mathcal{M}_3 >_{\mathcal{W}^3} \mathcal{M}_3 >_{\mathcal{W}^3}$

Matching $\mu = \{(m_1, w_1), (m_2, w_2), (m_3, w_3)\}$ is PE but not stable because (m_3, w_2) are a blocking pair.

Note: When preferences are strict, a stable matching is always PE.

Deferred Acceptance

Algorithm: Tatonnement (Sketch)

- 1. Buyers increasing prices
- 2. Sellers tentatively accept highest offer, rejecting others

Buyers' options get worse, sellers' get better.

Algorithm: Men-proposing Deferred Acceptance (Sketch)

- 1. Men successively offer to marry favorite woman who hasn't rejected them
- 2. Women tentatively accept best man, rejecting others

Men's options get worse, women's get better.

Note: For convenience, assume complete lists, i.e., $a \succ_x x$ for all agents a.

Algorithm: Men-Proposing Deferred Acceptance (m-DA)

- 1. Let $\mu(m) = m$ for all $m \in M$.
- 2. Let S be the set of unmatched men, i.e., $S = \{m : \mu(m) = m\}.$
- 3. While there's an unmatched man $m \in S$,
 - (a) Man m applies to favorite woman w who has not yet rejected him.
 - (b) Let $m' = \mu(w)$ be w's current match. If $m \succ_w m'$, w rejects m' $(\mu(m') = m')$ and tentatively accepts m $(\mu(m) = w)$.
- 4. Return matching μ .

Example: For pref's in previous example,

- 1. $m_1 \to w_1, \, \mu = \{(m_1, w_1)\}$
- 2. $m_2 \to w_2$, $\mu = \{(m_1, w_1), (m_2, w_2)\}$
- 3. $m_3 \to w_2$, $\mu = \{(m_1, w_1), (m_3, w_2)\}$
- 4. $m_2 \to w_3$, $\mu = \{(m_1, w_1), (m_2, w_3), (m_3, w_2)\}$

Note: Can run on more complex markets, might not converge to stable outcome.

Theorem 1 DA computes a stable matching.

Proof:

• Terminates: each man proposes to each woman at most once.

- Stable: IR since pref's complete. No blocking pairs since,
 - if $w \succ_m \mu(m)$, m proposed to w
 - if w rejected m, it was for m' where $m' \succ_w m$
 - w's options only improve, s $\mu(w) \succ_w m' \succ_w m$

so (m, w) don't block.

- 4. $m_3 \to w_3, \ \mu = \{(m_1, w_2), (m_3, w_3)\}$
- 5. $m_2 \to w_1$ $\mu = \{(m_1, w_2), (m_2, w_1), (m_3, w_3)\}$

This is a rejection chain.

Note: No mech that always outputs stable μ is SP: if x doesn't always get favorite stable partner y, can report y as only acceptable unique.

Claim: Best partner agent can receive is favorite stable partner.

Properties

Example: w-DA for running example

1.
$$w_3 \to m_1, \mu = \{(m_1, w_3)\}\$$

2.
$$w_2 \to m_1, \mu = \{(m_1, w_2)\}$$

3.
$$w_3 \to m_3$$
, $\mu = \{(m_1, w_2), (m_3, w_3)\}$

4.
$$w_1 \to m_3, \mu = \{(m_1, w_2), (m_3, w_3)\}$$

5.
$$w_1 \to m_2$$

 $\mu = \{(m_1, w_2), (m_2, w_1), (m_3, w_3)\}$

Note: Every person prefers outcome when they propose!

Claim: There's a unique man-optimal stable matching and m-DA finds it. In fact, stable matchings form a lattice (as do WE).

Claim: m-DA is group SP for men.

Example: women's incentives for m-DA, suppose w_1 claims m_1 unacceptable.

1. ...,
$$\mu = \{(m_2, w_3), (m_3, w_2)\}$$

2.
$$m_1 \to w_1, \mu = \{(m_2, w_3), (m_3, w_2)\}$$

3.
$$m_1 \to w_2$$
, $\mu = \{(m_1, w_2), (m_2, w_3)\}$

Unique stable partners

Can you identify a restriction on prefs in which stable partners are unique?

Theorem 2 (Rural hospital or lone wolf theorem.) Set of unmatched agents same at every stable matching.

Proof:

- for matching μ , let $\mu(M) = \text{matched}$ women, $\mu(W) = \text{matched}$ men.
- consider μ^M , man-opt SM, and μ , another SM: μ^M is
 - worst for women:

$$\mu(M) \supseteq \mu^M(M)$$

so

$$|\mu(M)| \ge |\mu^M(M)|$$

- best for men:

$$\mu(W) \subseteq \mu^M(W)$$

SO

$$|\mu(W)| < |\mu^M(W)|$$

but then, as the number of matched men and women are equal for all matchings, $|\mu(M)| \geq |\mu^M(M)| = |\mu^M(W)| \geq |\mu(W)|$. Hence all cardinalities equal and so set containment relation implies sets are equal as well.

Note: Can count stable partners of x by

- have x start rejection chain (i.e., truncate list just above current stable partner)
- stop if single agent receives proposal
- stop if married man runs through his list

Example: 2 men, 3 women, $w_1 \succ_m w_2 \succ_m w_3, m_1 \succ_w m_2$

To show $\{(m_1, w_1), (m_2, w_2)\}$ unique, have w_2 truncate at m_2 . Then m_2 applies to w_1 and is rejected, then applies to w_3 violating rural hospital theorem.

Claim: If men's lists are random lists of length k << n, almost all agents have unique stable partner.

From Immorlica-Mahdian, Marriage, Honesty, and Stability.

Reasoning: Balls and bins

First compute m - DA:

- women are bins $\rightarrow n$ bins
- men's proposals are balls $\rightarrow k$ balls per man
 - m throws ball into random bin
 - if m rejected, try again up to k times

To see if w has > 1 stable partner, have w reject partner, continue alg., halt if single woman gets proposal \rightarrow probability $1/(\#singles + 1) \approx e^k/n$.

Claim: If lists are random and |M| = |W|, then ave. rank of men in w-DA is $O(n/\log n)$ whereas ave. rank of men in m-DA is $O(\log n)$.

Proposing side does much better than receiving side.

Reasoning: Above balls and bins setup, use coupon collector to count load # balls and load in bins once every bin has been hit.

Claim: If lists are random and |M| = |W| + 1, then ave. rank of men in w-DA is \approx ave. rank of men in m-DA!

From Ashlagi-Kanoria-Leshno, *Unbalanced Random Matching Markets*.

Discussion

What do you think about applying this to our examples from the beginning of class?

- Marriage markets like OKCupid
- Job markets like National Residency Matching Program (NRMP)