题目1: 利用字母序对 {0,1}* 中字符串排序并与自然数建立对应 关系,则 $w_1 = \epsilon, w_2 = 0, w_3 = 1, w_4 = 00, w_5 = 01, \ldots$,写出 w_{37} 对应的字符串: 该字符串是否是一个讲义中列举的合法图灵机编 码,请说明原因。

题目2: 假设按照讲义中所给出的方式对图灵机进行编码,写出下 列三个编码对应的图灵机。

<0100100101001100101010100100110010010110010010001000100100100 11001000100010010> 明下面的集合是非递归可枚举的,即不是图灵可识别的。

(1) $L=\{w_i|w_i
otin L(M_{2i})\}$ 提示: 验证合法图灵机编码 (除空串) 均为偶数,则 $\{M_{2i}\}$ 包含所有图灵机

(2) $L=\{w_j|w_{2j}\notin L(M_j)\}$ 提示: 考虑 $L'=\{w_{2j}|w_{2j}\notin L(M_j)\}$ 是否递归可枚举

订昇理论作业	计算理论作业-貳	姓名:	学号:
--------	----------	-----	-----

题目 4: 假设 L_1, L_2, \ldots, L_k 是定义在字符集 Σ 上的语言集合,并且

- (1) 对于任意 $i \neq j$, 我们有 $L_i \cap L_j = \emptyset$; (2) $L_1 \cup L_2 \cup \ldots \cup L_k = \Sigma^*$;
- (3) 每个 L_i 都是递归可枚举的。证明: 每个 L_i 都是递归的。

题目 5: 证明递归语言在并操作下封闭,即如果 L 和 L' 均是递归的,那么 $L \cup L'$ 也是递归的。

题目6:证明递归可枚举语言在并操作下封闭。

题目7: 证明集合 $\{\langle M \rangle | L(M) = \{ww^R | w \neq 0, 1 \neq \emptyset\} \}$ 是不可 判定的, w^R 是 w 的逆序字符串。

题目 8: 证明集合 $\{\langle M \rangle | L(M) = (L(M))^R$, 即若 $w \in L(M)$ 有 $w^R \in$ L(M) 是不可判定的,进一步证明是非递归可枚举的。

以 好 生 化 下 业 一	计算理论作业-貳	姓名:	学号:
--------------------------	----------	-----	-----

题目 9: 令问题集合 $L = \{\langle M \rangle | M$ 在所有输入上均停机 $\}$ 。

- (1) 利用 Rice 定理证明 L 是不可判定的;
- (2) 证明 L 是非递归可枚举的 (提示:利用归约技术);
- (3) 证明 \overline{L} 是非递归可枚举的(提示:利用归约技术)。

计算理论作业–貳 姓名: 学号:

题目 10: 如果波斯特对应问题中的字母表 Σ 只包含一个字符,例如 $\Sigma = \{1\}$,那么波斯特对应问题是否可判定,如果不可判定给出证明,否则给出算法。