Simarik Mikael Note: 8/20 (score total : 8/20)

+257/1/20+

QCM THLR 4

	Non	n et prénom, lisibles :	Identifiant (de haut en bas):	
	SIMARIK			
	1		2 0 1 2 3 4 5 6 7 8 9	
	l .m	KAEL		
	L			
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. J'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +257/1/xx+···+257/2/xx+.			
2,2	Q.2	Le langage $\{a^nb^n \mid \forall n \in \mathbb{N}\}$ est		
-1/2	Q.2		reconnaissable par automate 🔲 vide	
-1/2	0.2			
	Q.3	Les logins de votre promo constituent un lang		
2/2	 non reconnaissable par un automate fini déterministe non reconnaissable par un automate fini nondéterministe non reconnaissable par un automate fini à transitions spontanées 			
	Q.4	Quels langages ne vérifient pas le lemme de po	ompage?	
2/2		 □ Tous les langages reconnus par DFA □ Tous les langages non reconnus par DFA □ Certains langages reconnus par DFA □ Certains langages reconnus par DFA 		
	Q.5	Un automate fini qui a des transitions spontar	nées	
2/2		\square est déterministe \square accepte $arepsilon$ \square	n'accepte pas $arepsilon$ n'est pas déterministe	
	Q.6	Si un automate de n états accepte a^n , alors il a	accepte	
-1/2		\boxtimes $a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p + q \le n$ $\square (a^n)^m : q \in \mathbb{N}$	\square $a^n a^m$ avec $m \in \mathbb{N}^*$ $\textcircled{\textcircled{R}}$ a^{n+1} avec $m \in \mathbb{N}^*$	
	Q.7	Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si :		
-1/2		\bigcirc L_2 est rationnel \square L_1 est ration \square L_1, L_2 so	nel $\boxtimes L_1, L_2$ sont rationnels et $L_2 \subseteq L_1$ ont rationnels	
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):			
2/2	\square Il n'existe pas. \square $\frac{n(n+1)(n+2)(n+3)}{4}$ \square 2^n \square 4^n			
	Q.9	Déterminiser cet automate : $\xrightarrow{a,b} \xrightarrow{a,b}$		

-1/2

- Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

Fin de l'épreuve.