电力电子技术试题

```
第 1 章 电力电子器件
1. 电力电子器件一般工作在 ___开关 __状态。
2. 在通常情况下,电力电子器件功率损耗主要为 _____通态损耗 ___,而当器件开关频率较高时,功率损耗主要为 _____开关损耗 ___。
3. 电力电子器件组成的系统,一般由  __控制电路 __、_驱动电路 _、 _主电路 _三部分组成,由于电路中存在电压和电流的过冲,往往需添加
                                                                                     _保护电路 ___。
5. 电力二极管的工作特性可概括为 __承受正向电压导通,承受反相电压截止
6. 电力二极管的主要类型有 _普通二极管 _、_快恢复二极管 _、_肖特基二极管 _。7. 肖特基二极管的开关损耗 _小于_快恢复二极管的开关损耗。
8. 晶闸管的基本工作特性可概括为 ____正向电压门极有触发则导通、反向电压则截止 ____。
9. 对同一晶闸管,维持电流 IH 与擎住电流 IL 在数值大小上有 IL__大于 __IH。
10. 晶闸管断态不重复电压 UDSM与转折电压 Ubo数值大小上应为 , UDSM大于 __Uba。
11. 逆导晶闸管是将 _二极管 _与晶闸管 _反并联 _ (如何连接)在同一管芯上的功率集成器件。
12. GTO的 __多元集成 __结构是为了便于实现门极控制关断而设计的。
13. MOSFE 的漏极伏安特性中的三个区域与   GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的
                                                                                 _截止区 _、前者的饱和
区对应后者的 __放大区 __、前者的非饱和区对应后者的 __饱和区 __。
14. 电力 MOSFE的通态电阻具有 ___正__温度系数。
15. IGBT 的开启电压 UGE(th)随温度升高而 _略有下降 ___, 开关速度 ___小于 __电力 MOSFET。
17. IGBT 的通态压降在 1/2 或 1/3 额定电流以下区段具有 __负___温度系数 , 在 1/2 或 1/3 额定电流以上区段具有 __正__温度系数。
18. 在如下器件:电力二极管( Power Diode )、晶闸管( SCR) 、门极可关断晶闸管( GTO)、电力晶体管( GTR)、电力场效应管(电力 MOSFE)、绝缘栅
双极型晶体管( IGBT)中,属于不可控器件的是 __电力二极管 ___,属于半控型器件的是 __晶闸管 _,属于全控型器件的是 _ GTO、GTR、电力 MOSFET、IGBT _;
属于单极型电力电子器件的有  _电力 MOSFET _,属于双极型器件的有  _电力二极管、晶闸管、  GTO、GTR _ ,属于复合型电力电子器件得有   __ IGBT _ ;在可
控的器件中,容量最大的是 _晶闸管__,工作频率最高的是 <u>_电力_MOSFET</u>,属于电压驱动的是 <u>电力_MOSFET、IGBT</u>_,属于电流驱动的是 <u>_晶闸管、_GTO、GTR</u>_。
第2章 整流电路
                                                                        的最大移相范围是 _0-180 °_。
  1. 电阻负载的特点是 _电压和电流成正比且波形相同  _ , 在单相半波可控整流电阻性负载电路中 , 晶闸管控制角
  2. 阻感负载的特点是 _流过电感的电流不能突变  ,在单相半波可控整流带阻感负载并联续流二极管的电路中 ,   晶闸管控制角   的最大移相范围是 ___0-180 <sup>°</sup>
_ , 其承受的最大正反向电压均为 \sqrt{2}U_2__, 续流二极管承受的最大反向电压为 \sqrt{2}U_2_(设 U_2为相电压有效值)。
  3. 单相桥式全控整流电路中,带纯电阻负载时, 角移相范围为 \underline{\phantom{0}0-180}^\circ ,单个晶闸管所承受的最大正向电压和反向电压分别为 \underline{\phantom{0}0-180}^\circ ,单个晶闸管所承受的最大正向电压和反向电压分别为 \underline{\phantom{0}0-180}^\circ ,
带阻感负载时,  角移相范围为 _0-90^\circ_,单个晶闸管所承受的最大正向电压和反向电压分别为   _1\sqrt{2}U_2_和_1\sqrt{2}U_2_;带反电动势负载时,欲使电阻上的
电流不出现断续现象,可在主电路中直流输出侧串联一个    平波电抗器 。
  4.单相全控桥反电动势负载电路中, 当控制角 大于不导电角 \delta时,晶闸管的导通角 \theta = - - \delta_{-}; 当控制角 \alpha小于不导电角 \delta时,晶闸管的导通角 \theta = - 2 \delta_{-}。
  5. 电阻性负载三相半波可控整流电路中,晶闸管所承受的最大正向电压 UFm等于 \sqrt{2}U _{\circ} ,晶闸管控制角 的最大移相范围是 _{\circ}0-150 _{\circ} ,使负载电流连
续的条件为 \underline{\quad} \alpha \leq 30^{\circ} __(U2 为相电压有效值 )。
```

9. 电容滤波单相不可控整流带电阻负载电路中, 空载时,输出电压为 $_{}$ _ $\sqrt{2}U_{2}$ _,随负载加重 Ud逐渐趋近于 $_{}$ _0.9 $_{}$ _ $_{}$ _,通常设计时, 应取 RC $_{}$ __1.5-2.5___T,此时输出电压为 Ud $_{}$ __1.2_ $_{}$ __U(U $_{2}$ 为相电压有效值, T为交流电源的周期)。

的相电压;这种电路 α 角的移相范围是 _0-120 $^{\circ}$ _ , u_d 波形连续的条件是 _ $\alpha \le 60{^{\circ}}$ _ .

8. 对于三相半波可控整流电路,换相重迭角的影响,将使用输出电压平均值 下降。

10. 电容滤波三相不可控整流带电阻负载电路中,电流 id 断续和连续的临界条件是 _∞RC = $\sqrt{3}$, 电路中的二极管承受的最大反向电压为 _ $\sqrt{6}$ _U2。

11. 实际工作中,整流电路输出的电压是周期性的非正弦函数,当 α从 0°~90°变化时,整流输出的电压 ud 的谐波幅值随 α的增大而 _增大 _,当 α

- 从 90° ~ 180° 变化时,整流输出的电压 ud 的谐波幅值随 α 的增大而 α α α
- 12. 逆变电路中, 当交流侧和电网连结时, 这种电路称为 _有源逆变 _ , 欲实现有源逆变, 只能采用 __全控 _电路;对于单相全波电路, 当控制角 $0< \alpha < \pi/2$ 时,电路工作在 __整流 _状态; $\pi/2<\alpha<\pi$ 时,电路工作在 __整流 _状态;
- 13. 在整流电路中,能够实现有源逆变的有 __单相全波 _、_三相桥式整流电路 _等(可控整流电路均可),其工作在有源逆变状态的条件是 _有直流电动势, 其极性和晶闸管导通方向一致,其值大于变流器直流侧平均电压 _和 ___晶闸管的控制角 lpha > 90 $^\circ$,使输出平均电压 U $_{
 m d}$ 为负值 _。

第3章 直流斩波电路

- 1. 直流斩波电路完成得是直流到 __直流 __的变换。
- 3. 斩波电路有三种控制方式: _脉冲宽度调制(PWM _、_频率调制 _和_(t on 和_T都可调,改变占空比)混合型__。
- 4. 升压斩波电路的典型应用有 __直流电动机传动 __和_单相功率因数校正 __等。
- 5. 升降压斩波电路呈现升压状态的条件为 ___ $0.5 < \alpha < 1$ (α 为导通比)______。
- 6. CuK斩波电路电压的输入输出关系相同的有 ____升压斩波电路 ____、__Sepic 斩波电路 _和__Zeta 斩波电路 ___。
- 7. Sepic 斩波电路和 Zeta 斩波电路具有相同的输入输出关系,所不同的是: ___ Sepic 斩波电路 __ 的电源电流和负载电流均连续, __ Zeta 斩波电路 __ 的输入、输出电流均是断续的,但两种电路输出的电压都为 ___ 正_极性的 。
- 8. 斩波电路用于拖动直流电动机时, 降压斩波电路能使电动机工作于第 <u>__1_</u>象限,升压斩波电路能使电动机工作于第 <u>__2_</u>象限,_电流可逆斩波_电路能使电动机工作于第 1 和第 2 象限。
 - 9. 桥式可逆斩波电路用于拖动直流电动机时,可使电动机工作于第_____1、2、3、4_象限。
- <u>10.</u>复合斩波电路中,电流可逆斩波电路可看作一个 <u>升压</u>斩波电路和一个 <u>—降压</u>斩波电路的组合;多相多重斩波电路中, 3 相 3 重斩波电路相当于 3 个__基本__新波电路并联。

第 4 章 交流—交流电力变换电路

- 2. 单相调压电路带电阻负载,其导通控制角 α 的移相范围为 α 0-180 α 0, 随 α 0 的增大, α 00 上降低 α 0, 功率因数 α 0, 上降低 α 0.
- 3. 单相交流调压电路带阻感负载,当控制角 α < Ψ (Ψ =arctan(ω L/R)) 时,VT1 的导通时间 _逐渐缩短 _,VT2 的导通时间 __逐渐延长 _。
- 4. 根据三相联接形式的不同,三相交流调压电路具有多种形式, TCR属于 _支路控制三角形 _联结方式, TCR的控制角 α 的移相范围为 $_{90}^{\circ}$ -180 $_{-}^{\circ}$,线电流中所含谐波的次数为 _6k ± 1_。
- 7. 单相交交变频电路带阻感负载时, 哪组变流电路工作是由 <u>_输出电流的方向</u>_决定的,交流电路工作在整流还是逆变状态是根据 <u>_输出电流方向和输出电</u> 压方向是否相同 _决定的。
 - 8. 当采用 6 脉波三相桥式电路且电网频率为 50Hz 时,单相交交变频电路的输出上限频率约为 __20Hz__。
- 9. 三相交交变频电路主要有两种接线方式, 即<u>公共交流母线进线方式</u>和_输出<u>星形联结方式</u>,其中主要用于中等容量的交流调速系统是 <u>公共交流母线</u>进线方式_。

1、请在空格内标出下面元件的简称:电力晶体管 GTR;可关断晶闸管GTO;功率场效应晶体管MOSFET;绝缘栅双极型晶体管
IGBT; IGBT 是MOSFET和和
2、晶闸管对触发脉冲的要求是 要有足够的驱动功率 、触发脉冲前沿要陡幅值要高 和触发脉冲要与晶闸管阳极电压同步 。
3、多个晶闸管相并联时必须考虑 均流的问题,解决的方法是 串专用均流电抗器。 。
4、在电流型逆变器中,输出电压波形为 _ <u>正弦波</u> 波,输出电流波形为 <u>方波</u> 波。
5、型号为 KS100-8 的元件表示 <mark>双向晶闸管</mark> 晶闸管、它的额定电压为 800V伏、额定有效电流为 100A安。
6、180 ° 导电型三相桥式逆变电路,晶闸管换相是在 _同一桥臂上的上、下二个元件之间进行;而 120o导电型三相桥式逆变电路,晶闸管换相是在 _不同
电流会增加。
。。 8、 在有环流逆变系统中, 环流指的是只流经 <u>_两组变流器之间</u> 而不流经 <u>负载</u> _的电流。 环流可在电路中加 _ <u>电抗器</u> 来限制。 为了减小环流一
0、 任有坏派是支系统中, 坏派指的走只派经 <u>网组支派备之时 </u>
、一个是名的品、、中是这些批品、这个互流的是一个、互相的人是多相反调出它是一样。(当出品代码)) 10、逆变器按直流侧提供的电源的性质来分,可分为电压型型逆变器和电流型型逆变器,电压型逆变器直流侧是电压源,通常由可控整流输出
在最靠近逆变桥侧用 电容器进行滤波,电压型三相桥式逆变电路的换流是在桥路的 本桥元件之间 元件之间换流,每只晶闸管导电的角度是
 异桥元件之间 元件之间换流,每只晶闸管导电的角度是 _120o_
度。
11、直流斩波电路按照输入电压与输出电压的高低变化来分类有 降压斩波电路;升压新波电路;升降压新波电路。
12、由晶闸管构成的逆变器换流方式有 负载换流和强迫换流。
13、按逆变后能量馈送去向不同来分类,电力电子元件构成的逆变器可分为 <u>有源</u> 、逆变器与逆变器两大类。
14、有一晶闸管的型号为 KK200 - 9,请说明 KK <u>快速晶闸管</u> ; 200 表示表示200A,9 表示900V。
15、单结晶体管产生的触发脉冲是 尖脉冲脉冲 ; 主要用于驱动小功率的晶闸管; 锯齿波同步触发电路产生的脉冲为 强触发脉冲脉
冲;可以触发大功率的晶闸管。
17、为了减小变流电路的开、 关损耗,通常让元件工作在软开关状态, 软开关电路种类很多, 但归纳起来可分为 零电流开关 与零电压开关 两 大类。
常在选择晶闸管时还要留出 1.5—2 倍的裕量。
21、在单相交流调压电路中,负载为电阻性时移相范围是 $0 o\pi$,负载是阻感性时移相范围是 $0 o\pi$ $0 o\pi$ 。
22、在电力晶闸管电路中,常用的过电压保护有 避雷器;阻容吸收;硒堆;压敏电阻;整流式阻容吸收 等几种。
23、。晶闸管的维持电流 I _H 是指在 温 40 度以下温度条件下,门极断开时,晶闸管从较大通态电流下降到刚好能保持导通所必须的最小 阳极电流。
25、普通晶闸管的图形符号是
电压,门极接正向电压形成了足够门极电流时晶闸管导通; 关断条件是 当晶闸管阳极电流小于维持电流 I _H 时,导通的晶闸管关断。 .。
27、绝缘栅双极型晶体管是以 _电力场效应晶体管栅极; 作为栅极,以以电力晶体管集电极和发射极 复合而成。
28、在电力晶闸管电路中,常用的过电流保护有 —快速熔断器;电路串电抗器;过流时快速移相;直流快速开关; 等几种。
29、晶闸管的换相重叠角与电路的触发角 ;变压器漏抗 鳰;平均电流 lਖ;电源相电压 ሁ。等到参数有关。
31、单相全波可控整流电路中,晶闸管承受的最大反向电压为 $\sqrt{2}$
相电压为 U ₂)
32、要使三相全控桥式整流电路正常工作,对晶闸管触发方法有两种,一是用
大于 60o小于 120o的宽脉冲,触发;二是用脉冲前沿相差 60o的双窄脉冲触发。
心柱上的两个绕组同名端 相反,所以以两绕组的电流方向也 相反,因此变压器的铁心不会被 磁化。
36、三相桥式全控整流电路是由一组共 阴极三只晶闸管和一组共阳极的三只晶闸管串联后构成的 , 晶闸管的换相是在同一组内的元件进行的。
每隔60 度换一次相,在电流连续时每只晶闸管导通 120度。要使电路工作正常,必须任何时刻要有 两 只晶闸管同时导通, ,一个
是共阴极的,另一个是共阳极的元件,且要求不是 不在同一桥臂上的两个元件。
37、从晶闸管开始承受正向电压起到晶闸管导通之间的电角度称为
38、一般操作引起的过电压都是瞬时尖峰电压,经常使用的保护方法是 阻容保护、
39 、交流零触发开关电路就是利用 过零触发 $_{}$ 方式来控制晶闸管导通与关断的。
40、型号为 KS100-8 的元件表示双向晶闸管管、它的额定电压为800V、伏、额定电流为100A安。
41、实现有源逆为的条件为 _— 要有一个直流逆变电源,它的极性方向与晶闸管的导通方向一致,其幅极应稍大于逆变桥直流侧输出的平均电压;逆变桥必须 ——你在——00
工作在 <90o(即 >90o)区间,使输出电压极性与整流时相反,才能把直流能量逆变成交流能量反送到交流电网。
状态。
45、当负载为大电感负载,如不加续流二极管时, 在电路中出现触发脉冲丢失时 单相桥式半控整流桥, ,与三相桥式半控整流桥电路会出现 失控现象。

1、 晶闸管两端并联 R、C吸收回路的主要作用有哪些?其中电阻 R的作用是什么?

R、C 回路的作用是:吸收晶闸管瞬间过电压,限制电流上升率,动态均压作用。 R 的作用为:使 L、C 形成阻尼振荡,不会产生振荡过电压,减小晶闸管的 开通电流上升率,降低开通损耗 。、

2、实现有源逆变必须满足哪两个必不可少的条件?

直流侧必需外接与直流电流 Id 同方向的直流电源 E,其数值要稍大于逆变器输出平均电压 Ud,才能提供逆变能量。 逆变器必需工作在 <90o(>90o)区域,使 Ud<0,才能把直流功率逆变为交流功率返送电网。

3、晶闸管触发的触发脉冲要满足哪几项基本要求?

A: 触发信号应有足够的功率。

件损坏;四是电源缺相等。

8、指出下图中 ~ 各保护元件及

B 触发脉冲应有一定的宽度,脉冲前沿尽可能陡,使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。

C: 触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范围必须满足电路要求。

u_{VT1}、整流二极管 VD2 电压 u_{VD2},在一周期内的电压波形图。

6、什么是逆变失败?逆变失败后有什么后果?形成的原因是什么 逆变失败指的是: 逆变过程中因某种原因使换流失败, 该关断的器件末 关断,该导通的器件末导通。 从而使逆变桥进入整流状态, 造成两电源 顺向联接,形成短路。 逆变失败后果是严重的, 会在逆变桥与逆变电源 失败的原因: 一是逆变角太小; 二是出现触发脉冲丢失; 三是主电路器

VD、Ld 的名称和作用。

星形接法的硒堆过电压保护; 三角形接法的阻容过电压保护; 桥臂上的快速熔断器过电流保护; 晶闸管的并联阻容过电压保护;

桥臂上的晶闸管串电感抑制电流上升率保护; 直流侧的压敏电阻过电压保护;

直流回路上过电流快速开关保护; VD 是电感性负载的续流二极管;

Ld 是电动机回路的平波电抗器;

9、为使晶闸管变流装置正常工作,触发电路必须满足什么要求?

A、触发电路必须有足够的输出功率; B、触发脉冲必须与主回路电源电压保持同步; C、触发脉冲要有一定的宽度,且脉冲前沿要陡; D、触发脉冲的 移相范围应能满足主电路的要求;

10、下图为一单相交流调压电路, 试分析当开关 Q置于位得到的电压波形。

置 1、2、3 时,电路的工作情况并画出开关置于不同位置时,负载上

Q置于位置 1:双向晶闸管得不到触发信号,不能导通,

负载上无电压。

Q置于位置 2:正半周,双向晶闸管 +触发方式 导通。负半周,由于二极管 VD反偏,双向晶闸管得不到触发信号,不能导通,负载上得到半波整流电压。

Q置于位置 3:正半周,双向晶闸管 +触发方式 导通。负半周,双向晶闸管 - 触发方式 导通,负载上得到近似单相交流电压

- 11、在下面两图中,一个工作在整流电动机状态,另一个工作在逆变发电机状态。
 - (1)、标出 U、 E 及 i ₀的方向。
 - (2)、说明 E与 U的大小关系。
 - (3)、当 与 的最小值均为 30度时,控制角 的移向范围为多少?

整流--电动机状态

逆变--发电机状态

整流电动机状态:电流方向从上到下,电压方向上正下负,反电势 E 方向上正下负 , Ud 大于 E ,控制角的移相范围 0°~90°。 逆变发电机状态:电流方向从上到下 ,电压 Ud 方向上负下正 ,发电机电势 E 方向上负下正 , Ud 小于 E ,控制角的移相范围 90°~150°。

一、填空

1、请在正确的空格内标出下面元件的简称:

电力晶体管 GTR;可关断晶闸管 GTO;功率场效应晶体管 MOSFET;绝缘栅双极型晶体管 IGBT;IGBT是 MOSFET和 GTR的复合管。

- 2、晶闸管对触发脉冲的要求是 要有足够的驱动功率 、 触发脉冲前沿要陡幅值要高 和 触发脉冲要与晶闸管阳极电压同步 。
- 3、多个晶闸管相并联时必须考虑 __均流_的问题,解决的方法是 __串专用均流电抗器 。_
- 5、型号为 KS100-8的元件表示 <u>双向晶闸管</u>晶闸管、它的额定电压为 <u>800V</u>伏、额定有效电流为 <u>100A</u>。
- 6、180°导电型三相桥式逆变电路,晶闸管换相是在 <u>同一桥臂</u>上的上、下二个元件之间进行;而 120o导电型三相桥式逆变电路,晶闸管换相是在 不同桥臂上的元件之间进行的。
- 7、当温度降低时 ,晶闸管的触发电流会 <u>增加</u>、正反向漏电流会 <u>下降</u>;当温度升高时 ,晶闸管的触发电流会 <u>下降</u>、正反向漏电流会 <u>增</u>加。
- 2、由晶闸管构成的逆变器换流方式有 ____负载_换流和 ___强迫(脉冲)_换流。
- 3、按逆变后能量馈送去向不同来分类,电力电子元件构成的逆变器可分为 有源 逆变器与 无源 逆变器两大类。
- 4、有一晶闸管的型号为 KK200- 9 , 请说明 KK 快速晶闸管 ; 200 表示表示 ____200A , 9 表示 ___900V 。
- 5、单结晶体管产生的触发脉冲是 <u>尖脉冲</u>脉冲;主要用于驱动 <u>小</u>功率的晶闸管;锯齿波同步触发电路产生的脉冲为 <u>强触发脉冲</u>脉冲;可以触发 <u>大</u>功率的晶闸管。
- 2、可关断晶闸管的图形符号是 _____; 电力场效应晶体管的图形符号是 _____; 电力晶体管的图形符号是 _____; 电力晶体管的图形符号是 _____; 电力晶体管的图形符号是 _____;
- 3、单相交流调压在电阻性负载电路的移相范围在 $_{00}$ —180 $_{00}$ 变化,在阻感性负载时移相范围在 $_{00}$ —180 $_{00}$ 变化。
- 4、变流电路的换流方式有 __器件换流__、_电网换流_、_负载换流__、_强迫换流_等四种。
- 5、提高变流置的功率因数的常用方法有 <u>_减小触发角__、_增加整流相数__、_采用多组变流装置串联供电__、_设置补偿电容_</u>。
- 7、在电力晶闸管电路中,常用的过电流保护有 <u>快速熔断器</u>;<u>电路串电抗器</u>;<u>过流时快速移相</u>;和<u>直流快速开关</u>等几种。
- 8、晶闸管的换相重叠角与电路的 <u>触发角</u>、<u>变压器漏抗 水、平均电流 L。、电源相电压 U</u>等参数有关。
- 2、单相全波可控整流电路中,晶闸管承受的最大反向电压为 $2\sqrt{2}\,\,U_2$ 。三相半波可控整流电路中,晶闸管承受的最大反向电压

- 为 ^{√6} U₂ 。(电源相电压为 U₂)
- 4、在同步电压为锯齿波的触发电路中,锯齿波底宽可达 240o 度;实际移相才能达 0o-180 o 度。
- 6、软开关电路种类很多,大致可分成 零电压 电路、零电流 电路两大类。
- 8、逆变器环流指的是只流经 _两组反并联的逆变桥_、而不流经 _负载__的电流,环流可在电路中加 采用串联电抗器 来限制。
- 10、绝缘栅双极型晶体管是以 <u>电力场效应晶体管栅极为栅极</u>作为栅极,以 <u>以电力晶体管集电极和发射极</u>作为发射极与集电极复合而成。

- 5、同步电压为锯齿波的触发电路锯齿波底宽可达 <u>240o</u>度;正弦波触发电路的理想移相范围可达 <u>180o</u>度,实际移相范围只有 <u>150o</u>。
- 6、一般操作过电压都是瞬时引起的尖峰电压,经常使用的保护方法是 <u>阻容保护</u>而对于能量较大的过电压,还需要设置非线性电阻保护,目前常用的方法有压敏电阻和<u>硒堆</u>。
- 7、交流零触发开关电路就是利用 过零触发 方式来控制晶闸管导通与关断的。
- 四、问答分析题
- 1、 在晶闸管两端并联 R C吸收回路的主要作用有哪些?其中电阻 R的作用是什么?
- 答:(1) R C回路的作用是:吸收晶闸管瞬间过电压,限制电流上升率,动态均压作用。
- (2) R的作用为:使 L、C形成阻尼振荡,不会产生振荡过电压,减小晶闸管的开通电流上升率,降低开通损耗。
- 3、由下面单结晶体管的触发电路图画出各点波形。

答:

单结晶体管触发电路各点的电压波形(α=90°)

- 1、实现有源逆变必须满足哪两个必不可少的条件?
- 答:(1)直流侧必需外接与直流电流 Id 同方向的直流电源 E,其数值要稍大于逆变器输出平均电压 Ud,才能提供逆变能量。

公众号【大学百科资料】整理,有超百科复习资料+海量网课资源

- (2) 逆变器必需工作在 <90o(>90o) 区域,使 Ud< 0,才能把直流功率逆变为交流功率返送电网。
- 2、晶闸管触发的触发脉冲要满足哪几项基本要求?
- 答:(1)触发信号应有足够的功率。
 - (2)触发脉冲应有一定的宽度,脉冲前沿尽可能陡,使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。
 - (3)触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范围必须满足电路要求。
- 2、PWN逆变电路的控制方法主要有哪几种?简述异步调制与同步调制各有哪些优点?
- 答:(1)PWM逆变电路的常用控制方法有两种,一是计算法;二是调制法。其中调制法又可分为两种,一是异步调制法;二是同步调制法。
- (2)通常异步调制法是保持载波频率不变,信号频率根据需要而改变时,载波比是变化的。优点是:信号频率较低时载波比较大,一周期内脉冲数较多,输出较接近正弦波。
- (3) 同步调制时,保持载波比为常数,并在变频时使载波和信号波保持同步变化。优点是:信号波一周内输出的脉冲数是固定的,脉冲相位也是固定的,对称性好。
- 3、什么是逆变失败?逆变失败后有什么后果?形成的原因是什么
- 答:(1)逆变失败指的是:逆变过程中因某种原因使换流失败,该关断的器件末关断,该导通的器件末导通。从而使逆变桥进入整流状态,造成两电源顺向联接,形成短路。
 - (2)逆变失败后果是严重的,会在逆变桥与逆变电源之间产生强大的环流,损坏开关器件。
 - (3)产生逆变失败的原因:一是逆变角太小;二是出现触发脉冲丢失;三是主电路器件损坏;四是电源缺相等。
- 2、根据对输出电压平均值进行控制的方法不同,直流斩波电路可有哪三种控制方式?并简述其控制原理。
- 答:(1)第一种调制方式为:保持开关周期不变,改变开关导通时间 t տ 称为脉宽调制。简称" PWM 调制。
 - (2) 第二种调制方式为:保持开关导通时间 t ⋅⋅ 不变,改变开关周期,称为频率调制。简称为" PFM"调制。
 - (3)第三种调制方式为:同时改变周期 T与导通时间 t ∞。使占空比改变,称为混合调制。
- 3、电压型逆变电路中反馈二极管的作用是什么?

答:电压型逆变器当交流侧为阻感性负载时,需要向电源反馈无功功率。直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂开关器件都反并联了反馈二极管。

1、 对晶闸管的触发电路有哪些要求?

答:为了让晶闸管变流器准确无误地工作要求触发电路送出的触发信号应有足够大的电压和功率; 门极正向偏压愈小愈好; 触发脉冲的前沿要陡、宽度应满足要求;要能满足主电路移相范围的要求;触发脉冲必须与晶闸管的阳极电压取得同步。

2、 正确使用晶闸管应该注意哪些事项?

答:由于晶闸管的过电流、过电压承受能力比一般电机电器产品要小的多,使用中除了要采取必要的过电流、过电压等保护措施外,在选择晶闸管额定电压、电流时还应留有足够的安全余量。另外,使用中的晶闸管时还应严格遵守规定要求。此外,还要定期对设备进行维护,如清除灰尘、拧紧接触螺钉等。严禁用兆欧表检查晶闸管的绝缘情况。

3、 晶闸管整流电路中的脉冲变压器有什么作用?

答:在晶闸管的触发电路采用脉冲变压器输出,可降低脉冲电压,增大输出的触发电流,还可以使触发电路与主电路在电气上隔离,既安全又可防止干扰,而且还可以通过脉冲变压器多个二次绕组进行脉冲分配,达到同时触发多个晶闸管的目地。

6、 晶闸管的过电流保护常用哪几种保护方式?其中哪一种保护通常是用来作为"最后一道保护"用?

答:晶闸管的过电流保护常用快速熔断器保护; 过电流继电器保护;限流与脉冲移相保护和直流快速开关过电流保护等措施进行。其中快速熔断器过电流保护通常是用来作为"最后一道保护"用的。

五、计算题

1、指出下图中 ~ 各保护元件及 VD、Ld的名称和作用。

解:

星形接法的硒堆过电压保护;

三角形接法的阻容过电压保护;

桥臂上的快速熔断器过电流保护;

晶闸管的并联阻容过电压保护;

桥臂上的晶闸管串电感抑制电流上升率保护;

直流侧的压敏电阻过电压保护;

直流回路上过电流快速开关保护;

VD 是电感性负载的续流二极管;

La 是电动机回路的平波电抗器;

- 2、在下面两图中,一个工作在整流电动机状态,另一个工作在逆变发电机状态。
 - (1)、标出 U、E。及i。的方向。
 - (2) 说明 E与 U的大小关系。

(3) 当 与 的最小值均为 30度时,控制角 的移向范围为多少?

2、解:

整流电动机状态:

电流方向从上到下,电压方向上正下负,反电势 E方向上正下负, Ud大于 E,控制角的移相范围 0°~90°。 逆变发电机状态:

电流方向从上到下,电压 Ud 方向上负下正,发电机电势 E方向上负下正, Ud 小于 E,控制角的移相范围 90°~150°。

3. 单相桥式全控整流电路 , $U_2 = 100V$, 负载中 $R = 2\Omega$, L 值极大 , 当 $\alpha = 30$ 时 , 要求 :

- (1)作出 u_d、 i_d和 i₂的波形;
- (2) 求整流输出平均电压 U d 、平均电流 I d , 变压器二次电流有效值 I 2;

解:(1)作图。

 $(2) U_d = 0.9 U_2 \cos \alpha$

当 α = 30 °时,

 $U_d = 0.9U_2 \cos \alpha = 0.9 \times 100 \times \cos 30^{\circ} \approx 78V$

$$I_d = \frac{U_d}{R} = \frac{78}{2} = 39A$$
 $I_2 = I_d = 39A$

4. 在图 1 所示的降压斩波电路中,已知 E=200V , $R=10\Omega$,L 值极大 , $E_{M}=30V$ 。(1)分析斩波电路的工作原理; (2)采用脉宽调制控制方式,当 T=50 μ s , $t_{on}=20$ μ s 时,计算输出电压平均值 U_{o} 、输出电流平均值 U_{o} 。

解:(1)参考书上简要说明。

(2)根据公式得

$$U_{o} = \frac{t_{on}}{t_{on} + t_{off}} \times E = \frac{t_{on}}{T} \times E = \frac{20}{50} \times 200 = 80V$$

$$I_{o} = \frac{U_{o} - E_{M}}{R} = \frac{80 - 30}{10} = 5A$$

_电压,T2接_____<u>负____</u>

_电压。

三、	、填空(每空 1分,共30分)
1、	请 在 空 格 内 标 出 下 面 元 件 的 简 称 : 电 力 晶 体 管GTR; 可 关 断 晶 闸 管GTO; 功 率 场 效 应 晶 体 管
MC	DSFET;绝缘栅双极型晶体管IGBT;IGBT是的OSFET
	和和
2、	晶 闸 管 对 触 发 脉 冲 的 要 求 是要 有 足 够 的 驱 动 功 率、、
高	和和
	。 多个晶闸管相并联时必须考虑 <u>均流</u> 的问题,解决的方法是 <u>串专用均流电抗器</u> 。
4、	在电流型逆变器中,输出电压波形为 <u>正弦</u> ,输出电流波形为 <u>方波</u> 。
5、	型 号 为 KS100-8 的 元 件 表 示 双 向 晶 闸 管、 它 的 额 定 电 压 为800 伏 、 额 定 有 效 电 流
为	
6、	180°导电型三相桥式逆变电路,晶闸管换相是在 同一桥臂上的上、下二个元件之间进行;而 120o导电型三相桥式逆变电路,
晶	闸管换相是在
7、	当温度降低时,晶闸管的触发电流会 <u>增加</u> 、正反向漏电流会 <u>下降</u> ;当温度升高时,晶闸管的触发电流
会	<u>下降</u> 、正反向漏电流会增加。
8,	在有环流逆变系统中,环流指的是只流经、
	而不流经 <u>负载</u> 的电流。环流可在电路中加电 <u>抗器</u> 来限制。为了减小环流一般
	采用控制角 <u>大于</u> 的工作方式。
9、	常用的过电流保护措施有快速熔断器、、、、、、、
	<u>接入直流快速开关</u> 、、
10.	、双向晶闸管的触发方式有 +、、+
11.	、双向晶闸管的触发方式有:
	l+ 触发:第一阳极 T1 接 <u>正</u> 电压,第二阳极 T₂接 <u>负</u> 电压;门极 G接 <u>正</u> 电压
	T2 接电压。
I-	触发:第一阳极 T1 接电压,第二阳极 T2 接负电压;门极 G接
	<u>负</u> 电压,T2接_ <u></u> 电压。
	+触发:第一阳极 T1 接电压,第二阳极 T2 接电压, 门极 G接

	- 触发:第一阳极 T1 接	<u>负</u> 电压,第	至二阳极 T2接	电压,		<u>负</u>	
	电压,T2接		14 >	7014 (021		16.55	
	由晶闸管构成的逆变器换流方式有)	换流。	
13、	按逆变后能量馈送去向不同来分类,			有源_			
_					· 		-
	有一晶闸管的型号为 KK200-9, i						
	单结晶体管产生的触发脉冲是					率的晶闸管 ;锯	齿波同步触发电路产生
	的脉冲为强触发脉冲	_					
16、	一个单相全控桥式整流电路,交流电	包压有效值为			为 15A,则	这个电路中晶	闸管的额定电压可选为
	<mark>(</mark> 1.5 –2倍)√2220V ; 晶闸	管的额定电流可选	<u>(</u> 1.5 – <u>も</u> 为	- 2倍) <mark>15</mark> A 	o		
17、	为了减小变流电路的开、关损耗,通	通常让元件工作在	软开关状态,软开	关电路种类很多	, 但归纳起来	可分为	零电压电
路	音与	零电流电路		两大类。			
18、	对异步电动机实施变频调速控制,通	簡常的控制方式有	恒压频控制。	转差频率控制。	矢量控制。	直接转矩控制	等四种。
19、	PWM逆变电路的控制方法有	计算法		、ូរ៉	周制法		
法_							
	三种。其中调制法又可	分 为	异 步	调 控 法			同步调控
	·	1 亡 士 右	\$P\$ ## +#A	法			中 図 協
		1 万 私 有	66 1十 1央	<i>γ</i> ιί		` _	电网探
	、 负载换流			础	泊塩流		加 和
	0 >		炒怕况因走			,以 #&	走阻燃性则炒怕况 固
			\\\\\ == \\\\\\\\\\\\\\\\\\\\\\\\\\\\\			70 str 07.116	
22,	在电力晶闸管电路中,常用的过电压	5保护有			;	_	
	Am t /E		上 少	电阻		和	整流式阻容
吸收	等几程		_\	A			₩ ±p ±b >+ ±p
			减 小触 发	角		_ `	增 加 整 流 相
23、	等几程	用 方 法 有					增加整流相
23、	等几元 提高变流置的功率因数的常。 、 	用 方 法 有					
23、 数 容_	等几元 提高变流置的功率因数的常。 、 	用 方 法 有 流 装 置 串 几种。	联 供 电				
23、 数 容_	提高变流置的功率因数的常 提高变流置的功率因数的常。 、 	用 方 法 有 流 装 置 串 几种。	联 供 电			.` GT <u>R</u>	
23、 数 容_ 24、	## ## ## ## ## ## ## ## ## ## ## ## ##	用方法有 流 装 置 串 几种。 3子元件有	联 供 电 GT <u>O</u>	IGBT	\	· GTR 几种。	设置补偿电
23、 数_ 容_ 24、	提高变流置的功率因数的常是。	用方法有 流 装 置 串 几种。 3子元件有	联 供 电 GT <u>O</u>	IGBT	\	.` GT <u>R</u>	
23、数 数 容 24、 25、G	提高变流置的功率因数的常是。	用方法有 流 装 置 串 几种。 3子元件有	联供电 GTO 、, 三个	IGBT	\	· GTR 几种。	设置补偿电
23、数 容 24、	提高变流置的功率因数的常是。 提高变流置的功率因数的常态。 ————————————————————————————————————	用方法有 流 装 置 串 几种。 3子元件有	联供电 GTO 、,三个	IGBT	\	· GTR 几种。	设置补偿电
23、数 容 24、	提高变流置的功率因数的常是。 提高变流置的功率因数的常态。 ————————————————————————————————————	用方法有 流 装 置 串 几种。 3子元件有	联 供 电	IGBT	、	· GTR 几种。	设置补偿电 、 和门
23、数 容 24、 25、 G 晶	### ### #############################	用方法有	联 供 电	TOBT	、 	GTR 几种。 ,	设置补偿电 、 、
23、	### ### #############################	用方法有 串流 器 置 串	联 供 电	TOBT	、 	GTR 几种。 ,	设置补偿电 、MK和门 时晶闸管导
23、	### ### #############################	用方法有	联供电	TIGBT	·	GTR 几种。 ,	设置补偿电 、MK和门 时晶闸管导
23、	世高 变流 置 的 功 率 因 数 的 常 提 高 变流 置 的 功 率 因 数 的 常 强 用 多 组 变 采 用 多 组 变 目前常用的具有自关断能力的电力电 MOSFET	用方法有 串流 装 置 串	联供电 (日本) (日本)	TIGBT	、		设置补偿电 、MK和门 时晶闸管导
23、	世高 变流 置 的 功 率 因 数 的 常 提 高 变流 置 的 功 率 因 数 的 常 强 用 多 组 变 采 用 多 组 变 目前常用的具有自关断能力的电力电 MOSFET	用方法有 串流 装 置 串	联供电 (日本) (日本)	TIGBT	、		设置补偿电
23、	# E	用方法有 串流 装 置 串	联供电 (日本) (日本)	TIGBT	、		设置补偿电

27、	绝缘栅双极型晶体管是以	电力场效应晶	晶体管栅极		■为栅极,以	
_	电力晶体管集电极和发射极			作判	为发射极与集电极复	合而成。
28、	在电力晶闸管电路中,常用的过电	流 保 护 有	快速熔断	哭 ————————————————————————————————————	<u> </u>	电路串电抗
器_	;;	;和_	直	流快速开关	等几种	0
29、	晶闸管的换相重叠角与电路的	触发角	\	变压器漏抗 X __ _		平均电流
	l a、电源相电压 U	等到参数	7有关。			
30、	双向晶闸管的图形符号是		三个电极分别是	皇第一阳板	ኒ T1 ,	第二阳极
T2	和_ <u>门极 G</u>					
	; 双向晶闸管的的触发方式有		<u> </u>			
31、	单相全波可控整流电路中,晶闸管承受的最大的	反向电压为	2√2 ∪	o	三相半波可控整流	电路中,晶闸管
j	承受的最大反向电压为 $\sqrt{6}$ \cup	。(电源相电压为 し)		
	要使三相全控桥式整流电路正常工作,对晶闸管				F 120o的宽脉冲	
发	t;二是用脉冲前沿相差 60ob	灼双窄脉冲		触发。		
33、	在同步电压为锯齿波的触发电路中,锯齿波底罩	宽可达	2400		相	
	才能达0o-180_o	度。				
34、	异步 电 动 机 变 频 调 速 时 , 对 定 子 频 率	的控制方式有_	恒压频比	控制		转差劲频率控
制	、、、、		直接转矩控制		o	
35、	软开关电路种类很多,大致可分成	零电压	电路、	零电流	电路两大类。	
36、						
37、	从晶闸管开始承受正向电压起到晶闸管导通之间	间的电角度称为	控制	角,用		
	a表示。					
38、	一般操作引起的过电压都是瞬时尖峰电压,经常	常使用的保护方法	是	<u> </u>	而对于能量	量较大的过电压 ,
还需	需要设置非线性电阻保护,目前常用的方法有	压敏电	3 <u>日</u>	和	<u> </u>	о
39、	交流零触发开关电路就是利用过零触	发	方式	来控制晶闸管导通与党	た断的。	
40、	型号为 KS100-8 的元件表示	双向晶闸	管、它的	的额定电压为	800	_ 伏 、 额 定 电 流
	为安。					
41、	实现有源逆为的条件为	要有一个直流	流逆变电源 , 它的]极性方向与晶闸管的 <u>!</u>	导通方向一致 ,	其幅极应稍大于逆
变材	作直流侧输出的平均电压		和	逆变桥必须工作在	<90o(即 >90	Do)区间,使输出
电圧	题极性与整流时相反,才能把直流能量逆变成交流	流能量反送到交流	电网		o	
42、	在由两组反并联变流装置组成的直流电机的四级	象限运行系统中,	两组变流装置分别	工作在正组	整流	
	态、	整流_	状态、	_逆变状态	0	
43、	有源逆变指的是把	量转变成	交流	能量后送给	电网的	装置。
44、	给晶闸管阳极加上一定的正向	电压;在门棚	及加上	E向门极电	.压,并形成足够的	门极触
	发电流,晶闸管才能导通。	•				
45、	当负载为大电感负载,如不加续流二极管时,在	生电路中出现触发	脉冲丢失时 _	单相桥ュ	戈半控整流桥	
	与三相桥式半控整流桥		 Ę	3路会出现失控现象。		
46、	三相半波可控整流电路,输出到负载的平均电压	玉波形脉动频率为	150	Hz;而三相全控	桥整流电路,输出	到负载的平均电
	压 波 形 脉 动 频 率 为	300	H ; 这 ì	兑 明	_三 相 桥 式	全 控 整 流

	7								
路	 Z I	电路	 各要小。					_	
`	造 成 逆 变 失!	 败 的 原 因 有	逆 变	桥晶闸管或	元件损坏				供电电源
		_	——— 逆变角太小	\					_
	触发脉冲	——————— 丢失或未按时到边	<u> </u>		 等几种。				
	ョ <i>になっ</i> たみ <i>ル</i> ・エンスン	+10 ch \\/70+7 ch	12 5 45 T	生!! ()-	rts >+; ->	∕ 4□ - + - -	4 + 42	02	아노 모셔였다
、 fi 断。	『闸管在触发开通 》	1. 全国 2. 10 10 10 10 10 10 10 10 10 10 10 10 10	以流小士 _	掣住	电流之制	前,如去掉 	触发 __	<i>B</i> z	k冲 , 晶闸管又
	寸三相桥式全控变	流电路实施触发 时	 加采用单]	宽脉冲触发,单 3	宽脉冲的宽度一般				
取			,		官脉冲的间隔应为		60 度	= - -	
, Ξ	 三相半波可控整流	——— 电路电阻性负载时	^亅 ,电路的移 [。]	相范围	0150	 , 三木	————— 目全控桥电阻\	性负载时,电¦	路的移相范
围	0120		, 三相半控	桥电阻性负载时	, 电路的移相范围	0180)		0
•			_ `	步环节	, 524,312 14,54	锯齿波形			。 、 脉冲
•						VH LI VA			
	 整形放大	•		强触发及输出	4		环节组成。		
— :à		+的中海的性质型	` :分 , 可分:		'		-	型逆变器	号,电压型逆变 3
	[流侧是电压源,i					. B G 7 14	-E//II	主足又能	3, 七瓜主龙文
月					AS女目 大长吸的	-k- ‡ 5.	二件之词:	協法一気口目	问答巴中的名
Л.				桥式逆变电路的抗 器声流侧 - 里 由:		本桥			闸管导电的角原 田
	= 180		,流型逆 变	器直流侧 是电流	流源 ,通常由可	控整流输		逆变桥侧 是	
是			▗▗▗ ▗ ▗▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗	カ+カ ^ナ ロ ナ			カガイ カガイ カス・カス・カス・カス・カス・カス・カス・カス・カス・カス・カス・カス・カス・カ	间换流,每只向	岩画与空田以ぼ
感		虑波,电流型三相	桥式逆变电路	烙换流是在	<u>异桥</u>			1 332(7)10 / -37 (1	
感	·		桥式逆变电路	各换流是在	异桥 __		7011 ~~1	1 337(7)10 / 37 (1	HIT) H 47 CHJ/
感		想波,电流型三相 度。	桥式逆变电路	各换流是在	异桥 __		7011 ~~1	1 337(7)16 / 37 (1	
	· · · · · · · · · · · · · · · · · · ·	度。			<u>异桥</u> 的通断进行有规律	的调制,使输			高不等宽
感 度 、S	· · · · · · · · · · · · · · · · · · ·	度。				的调制,使输			
· · · · · · · · · · · · · · · · · · ·	是 是 120 PW 脉 宽调制型变 列来等效正弦波。	度。 频电路的基本原 ³	里是:对逆变	电路中开关器件					
· · · · · · · · · · · · · · · · · · ·	是是	度。 频电路的基本原 ³	里是:对逆变 题,常用的扩	电路中开关器件空制方式有	的通断进行有规律 定频调宽控制		计出端得到		
· · · · · · · · · · · · · · · · · · ·	是是	度。 频电路的基本原理 变负载的直流电压 、脉宽和	里是:对逆变 时,常用的抗 频率同时控制	电路中开关器件空制方式有 _	的通断进行有规律 定频调宽控制		〕出端得到 三种。	等 i	高不等宽
· 感 度 一 S 冲 直 一 由	是是	度。 频电路的基本原理 变负载的直流电压 上、 脉宽和 晶闸管在额定情况	里是:对逆变时,常用的抗频率同时控制。	电路中开关器件空制方式有	的通断进行有规律 <u>定频调宽控制</u> 于1.57	、 倍丨T(AV) ,	ì出端得到 三种。 如果 т(AV)=	等 i	高不等宽
· 感 度 一 S 冲 道 一 由 济	2	度。 频电路的基本原理 变负载的直流电压 、脉宽和 晶闸管在额定情况 安培。通常	里是:对逆变时,常用的抗频率同时控制。 大的有效值的 实在选择晶闸:	电路中开关器件 空制方式有 _ 则 电流为 I™等 管时还要留出 _	的通断进行有规律 定频调宽控制 于1.57 1.52	、 倍 I T(AV) , 倍的	i出端得到 三种。 如果 I T(AV)= 的裕量。	-100 安培,则	高不等宽
	是	度。 频电路的基本原理 变负载的直流电压 	里是:对逆变时,常用的抗频率同时控制。 数率同时控制 数率有效值的 实在选择晶间的	电路中开关器件 空制方式有 _ 则 电流为 I™等 管时还要留出 _	的通断进行有规律 <u>定频调宽控制</u> 于1.57	、 倍 I T(AV) , 倍的	i出端得到 三种。 如果 I T(AV)= 的裕量。	-100 安培,则	高不等宽
	是 是 120 PWM宽调制型变 可别来等效正弦波。 可别来等效正弦波。 可别来等效正弦波。 可别来等效正弦波。 可别来等效正弦波。 一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	度。 频电路的基本原理 变负载的直流电压 	里是:对逆变时,常用的抗频率同时控制 协产的有效值的 在选择晶间的	电路中开关器件 空制方式有 —— 电流为 I™等 管时还要留出 _ 温度条	的通断进行有规律 定频调宽控制 于1.57 1.52 件下,门极断开时	、 倍 I T(AV) , 倍的 ,晶闸管从软	」 出端得到 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	-100 安培,则	高不等宽
1 感度 一 S 冲 道 一 由 济 晶 须 带	是 是 120 PW M 宽调制型变势, 可来等效正弦波。 可来等效正弦波。 可求新波电路在改变。 定宽调频控制。 一次形系数可知, 一个人。 一个人。 一个人。 一个人。 一个人。 一个人。 一个人。 一个人。	度。 频电路的基本原理 变负载的直流电压 变负载的直流宽和 高闸管在级层, 是指在一段。通常 上是指在一电流 交星形电路,	里是:对逆变时,常用的物态。	电路中开关器件空制方式有 一型流为 I ™等 管时还要留出 _ 温度条	的通断进行有规律 定频调宽控制 于1.57 1.52 件下,门极断开时 相导电;晶闸	、 倍 I T(AV) , 倍的 ,晶闸管从软]管每隔	出端得到 ——三种。 如果 I T(AV) = 的裕量。 大通态电流下	-100 安培,则 F降到刚好能仍	高不等宽 它允许的有效 保持导通所必
	是 是 120 PW M 宽调制型变势, 可来等效正弦波。 可来等效正弦波。 可求新波电路在改变。 定宽调频控制。 一次形系数可知, 一个人。 一个人。 一个人。 一个人。 一个人。 一个人。 一个人。 一个人。	度。 频电路的基本原理 变负载的直流电压 变负载的直流宽和 高闸管在级层, 是指在一段。通常 上是指在一电流 交星形电路,	里是:对逆变时,常用的物态。	电路中开关器件空制方式有 一型流为 I ™等 管时还要留出 _ 温度条	的通断进行有规律 定频调宽控制 于1.57 1.52 件下,门极断开时	、 倍 I T(AV) , 倍的 ,晶闸管从软]管每隔	出端得到 ——三种。 如果 I T(AV) = 的裕量。 大通态电流下	-100 安培,则 F降到刚好能仍	高不等宽 它允许的有效 保持导通所必
	是	度。 频电路的基本原环 变 一	里是:对逆变时,常用逆变时,常用控制的 有效值的 法在全国	电路中开关器件空制方式有 电流为 I ™等 管时还要留出 _ 温度条 有 两 120	的通断进行有规律 定频调宽控制 于1.57 1.52 件下,门极断开时 相导电;晶闸	、 倍 I T (AV) , 倍 , 晶闸管从较]管每隔 一铁心柱上的	Himilian Himilian	-100 安培,则 F降到刚好能仍	高不等宽 它允许的有效 保持导通所必
「感 度 一 S 冲 谨 一 由 济 晶 须 带 一 以	是 是 120 PWMS调制型变 可知来等效正确制型变 可知来等效正数在改善 证形系数电路控制 证形系数可可知, 可以形态, 证形系数可可知, 可以形态, 可以形态, 可以形态, 可以形态, 可以形态, 可以形态, 可以形态, 可以形态, 可以形态。 可以形态, 可以形态。 可以的。 可以的。 可以的。 可以的。 可以的。 可以的。 可以的。 可以的	度。 類电路的基本原理 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种	里是:对逆变时, 对逆变时, 常用的物态。	电路中开关器件空制方式有 一型流为 I ™等 管时还要留出 是 一型	的通断进行有规律	、 、 	一 出端得到 一 一 如果 一 可 知 是 。 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	-100 安培,则 F降到刚好能仍 3端	高不等宽
一感 度 一 S 冲 谨 一 由 济 晶 须 带 一 以 三	是	度。 频电路的基本原现	里是:对逆变时,常用逆变的,常用的控制。	电路中开关器件空制方式有 ————————————————————————————————————	的通断进行有规律	、 		=100 安培,则 下降到刚好能仍 3端 晶闸管串联后	高不等宽 它允许的有效 相反 加成的,晶闸管
一感 度 一 S 冲 直 一 由 济 晶 须 带 一 以 三 的	是	度。 频电路的基本原理 如果你有人,我们就是一个人,我们就是一个人,我们们就是一个人,我们们就是一个人,我们们就是一个人,我们们就是一个人,我们们就是一个人,我们们就是一个人,我们们就是一个人,我们就是我们就是一个人,我们就是我们就是我们就是我们就是我们就是我们就是我们就是我们就是我们就是我们就是	里是:对逆变时, 对逆变时, 常田	电路中开关器件空制方式有 一型流为 I To 等 出 医子子子 出 医子子子 出 医子子子 用	的通断进行有规律			=100 安培,则 下降到刚好能仍 3端 晶闸管串联后机 120	高不等宽 它允许的有效 特导通所必 相反 向成的,晶闸管 度。要
一感 度 一 S 冲 直 一 由 济 晶 须 带 一 以 三 的	是	度。 频电路的基本原理 如果你有人,我们就是一个人,我们就是一个人,我们们就是一个人,我们们就是一个人,我们们就是一个人,我们们就是一个人,我们们就是一个人,我们们就是一个人,我们们就是一个人,我们就是我们就是一个人,我们就是我们就是我们就是我们就是我们就是我们就是我们就是我们就是我们就是我们就是	里是:对逆空时,	e路中开关器件空制方式有 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	的通断进行有规律 定频调宽控制 于1.57 1.52 件下,门极断开目,一个。 一个。 一个。 一个。 一个。 一个。 一个。 一个。	、		=100 安培,则 下降到刚好能仍 3端 晶闸管串联后机 120	高不等宽 它允许的有效 特导通所必 相反 向成的,晶闸管 度。要
一感 度 一 S 冲 谨 一 由 济 晶 须 带 一 以 三 的 电 一	是	度。	里是:对题 知知 知知 知知 知知 知知 知知 知知 知知 的 , 常 不 在 不 在 不 在 不 在 不 在 不 在 不 在 不 在 不 在 不	eB中开关器件 空制方式 I To 等 一 1 1 1 20	的通断进行有规律	、		=100 安培,则 下降到刚好能仍 品闸管串联后 120 极的,另一	高不等宽
一感 度 一 S 冲 谨 一 由 济 晶 须 带 一 以 三 的 电 一 下	是	度。 频电路的基本原	里是:对题 知知 知知 知知 知知 知知 知知 知知 知知 的 , 常 不 在 不 在 不 在 不 在 不 在 不 在 不 在 不 在 不 在 不	e路中开关器件空制方式有 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	的通断进行有规律	、		=100 安培,则 下降到刚好能仍 3端 晶闸管串联后机 120	高不等宽
「感度」の冲す。」は流晶须帯。一以三的电。」	是 120 PWM 等 加速	度。 频电路的基本原理	里是:对频 5 不知 5 不知 5 不知 5 不知 5 不可 5 不可 5 不可 6 不可 6 不可 6 不可 6 不可 6 不可	eB中开关器件空制方式有 Impage Im	的通断进行有规律			=100 安培,则 F降到刚好能仍 品闸管串联后和 120 —极的,另一	高不等宽
一感 度 一 S 冲 谨 一 由 济 晶 须 带 一 以 三 的 电 一 F 一	是	度。路的基本。	里是: 树 频 下 在 游 对 等 的 选 室 的 选 室 的 选 强 第 导 一	e路中开关器件 空制方式有 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	的通断进行有规律			=100 安培,则 F降到刚好能仍 品闸管串联后和 120 —极的,另一	高不等宽

	电力电子承担电能的变换或控制任务,主要为 <u>交流变直流(AG-DC)、直流变交流(DG-AC)、直流变直流(DG-DC)、交流变</u> 注(AC-AC) 四种
4、	流(AC—AC) 四种。 为了减小电力电子器件本身的损耗提高效率,电力电子器件一般都工作在
5、	电力电子技术的一个重要特征是为避免功率损耗过大,电力电子器件总是工作在开关状态,其损耗包括三个方面 : 通态损耗、断态损 耗和 开关损耗。
有-	通常取晶闸管的断态重复峰值电压 UDRM和反向重复峰值电压 URRM中较小标值作为该器件的额电电压。选用时,额定电压要留一定的裕量,一般取额定电压为正常工作时晶闸管所承受峰值电压的 2~3倍。 一定的裕量,一般取额定电压为正常工作时晶闸管所承受峰值电压的 2~3倍。 只有当阳极电流小于维持电流时,晶闸管才会由导通转为截止。 导通:正向电压、触发电流 (移相触发方式)
8,	半控桥整流带大电感负载不加续流二极管电路中, 电路可能会出现失控现象,为了避免单相桥式半控整流电路的失控, 可以在加入续流二极管来防止失控。
•	整流电路中,变压器的漏抗会产生换相重叠角,使整流输出的直流电压平均值 <u>降低</u> 。 、从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度称为 <u>触发角</u> 。 从晶闸管导通到关断称为导通角。 单相全控带电阻性负载触发角为 180 度 三相全控带阻感性负载触发角为 90 度
11、	、单相全波可控整流电路中,晶闸管承受的最大反向电压为2 2U1。(电源相电压为 U1) 三相半波可控整流电路中,晶闸管承受的最大反向电压为2.45U ₂ 。(电源相电压为 U)
为 ⁻	了保证三相桥式可控整流电路的可靠换相,一般采用 双窄脉冲 或者宽脉冲触发。
13, 14,	、四种换流方式分别为 _器件换流 _、电网换流 _、_负载换流 _、_强迫换流 _。 、强迫换流 需要设置附加的换流电路,给与欲关断的晶闸管强迫施加反压或反电流而关断。 、直流—直流变流电路,包括 _直接直流变流电路 _电路和 _间接直流变流电路 _。(是否有交流环节) 、直流斩波电路只能实现直流 _电压大小 _或者极性反转的作用。 6种斩波电路:电压大小变换:降压斩波电路(buck 变换器)、升压斩波电路、 Cuk斩波电路、 Sepic 斩波电路、 Zeta 斩波电路
	升压斩波电路输出电压的计算公式 <u>U= ¹ β E =1-</u> 。
即l 控f 17、 (⁷ 18、	降压斩波电路输出电压计算公式: U= E =占空比,E=电源电压 直流斩波电路的三种控制方式是 PWM频率调制型 、混合型 。 、交流电力控制电路包括 _交流调压电路,即在没半个周波内通过对晶闸管开通相位的控制,调节输出电压有效值的电路, 调功电路以交流电的周期为单位控制晶闸管的通断, 改变通态周期数和断态周期数的比, 调节输出功率平均值的电路,交流电力电子开关 即制制度 以交流电的周期为单位控制晶闸管的通断, 改变通态周期数和断态周期数的比, 调节输出功率平均值的电路,交流电力电子开关 即制制度 以为电路中晶闸管根据需要接通或断开的电路。 《普通晶闸管(用正弦半波电流平均值定义) 与双向晶闸管的额定电流定义不一样, 双向晶闸管的额定电流是用电流有效值来表示的。 双向晶闸管工作在交流电路中,正反向电流都可以流过) 《新控式交流调压电路 _交流调压电路一般采用全控型器件 ,使电路的功率因数接近 1。 《PWM控制技术的理论基础是 (面积等效原理)冲量相等而形状不同的窄脉冲加在具有惯性的环节上时 ,其效果基本相同
20,	、PW 阔 制中常用的计算法有 <u>特定谐波消去法</u> 。 .
	、 PWM逆变电路的控制方法有 <u>计算法</u> 、 <u>调制法</u> 和_规则采样法三种。 中调制法又可以分为 <u>同步调制</u> 和和 <u>异步调制_</u> _两种.(同步调制:载波比相等)
	、直流斩波电路的三种控制方式是 PWM <u>频率调制型</u> 、 <u>混合型</u> 。 、在调制信号上叠加 <u>直流分量(三次谐波)</u> 可以提高直流电压利用率。 改变调制信号的频率就可以改变输出直流信号的频率 改变调制比可以改变输出电压有效值
	电力电子器件串联必须考虑静态和动态 <u>均压 (每个器件并联一个电阻)</u> 。 静态均压:每个器件并联电阻 动态均压:每个器件串联电容 并联时要考虑均 <u>流</u> 方法:一般是串联电感
磁	、电力电子器件的驱动电路的目的是给器件施加 <u>开通、关断</u> 的信号,提供控制电路与主电路之间的 <u>电气隔离</u> 。(光隔离(光耦) 隔离(变压器)等等)
	、电力 MOSFE和 IGBT由于具有正温度系数,所以在并联使用时能够实现 <u>均流</u> 。 早间等额宝电流为 1004 通过光速充流电时 电流的速形系数为 K_1.57 电流的有效值计算为 L_/2 则通过电流显大值 L_为 24.4
	、晶闸管额定电流为 100A , 通过半波交流电时 , 电流的波形系数为 K=1.57 , 电流的有效值计算为 I/ 2 ,则通过电流最大值 I为_314
A _o	

2、举例说明一个电力电子技术的应用实例 变频器、 调光台灯等 。

~ 180 度

内。

27,	单相交流调压电阻性负载电路的移相范围在	王0	180度	$_{-}$ 内 ,在阻感性负载时移相范围在 $_{-}$	切举因素角
				, 	

28、交流调压电路和交流调功电路异同点: 电路结构相同,控制方式不同,(交流调压电路采用移相触发对一个周期内导通角控制, 调功电路对导通周波数与阻断周波数的比值进行控制) 。

29、电压型逆变电路中的反馈二极管的作用是 给交流侧向直流侧反馈的无功能量提供通道

31、在 SCR(Silicon Controlled Rectifier) 、GTO(Gate Turn-Off Thyristor) 、GTR(Giant Transistor) 、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor) 、IGBT(Insulated Gate Bipolar Transistor) 中半控型器件有 SCR,全控型器件有 GTO、GTR MOSFETIGBT ,电流驱动器件有 SCR、GTQ GTR 。

32、单相桥式可控整流电路带电阻性负载,在控制角为 a时,其输出的直流电压为 $0.9\frac{1+\cos x}{2}$

33、带平衡电抗器的双反星型可控整流电路中平衡电抗器的作用是 使两组三相半波整流电路能够同时导电 。

34、有源逆变最小逆变角 $\beta_{min}=\delta+\gamma+\theta$,其每个参数的意义是 $\delta_{min}=\delta$: $\beta_{min}=\delta$, $\beta_{min}=\delta$, $\beta_{min}=\delta$,其每个参数的意义是 $\beta_{min}=\delta$ 。 $\beta_{min}=\delta$,其每个参数的意义是 $\beta_{min}=\delta$ 。 $\beta_{min}=\delta$ 。 $\beta_{min}=\delta$ 。 $\beta_{$

35、单相电压型桥式逆变电路输出给负载的电压波形是方波,电流波形是____近似正弦波____

36、三相电流型桥式逆变电路的换流一般为同一组桥臂组内换流,称为 横向换流。

37、交交变频是一种直接变频,其输出的电压是由多段电网电压拼接而成, 决定了其输出频率不高, 当采用 50Hz工频电压, 三相六脉波桥 式逆变电路,其输出的上限频率一般不超过 20Hz 。

38、晶闸管串联使用的动态均压方法是 电阻电容串联后并联到晶闸管两端 。

二、简答题:

- 1、晶闸管的触发电路有哪些要求?
 - 1 触发电路发 U 的触发信号应具有足够大的功率
 - 2 不该触发时,触发电路因漏电流产生的漏电压应小于控制极不触发电压 UGT
 - 3 触发脉冲信号应有足够的宽度,
 - 4 触发脉冲前沿要陡
 - 5 触发脉冲应与主回路同步,且有足够的移相范围。

导通:正向电压、触发电流

半控:晶闸管 全控:门极可关断晶、电力晶体管、电力场效应管, IGBT 电流控门极可关断晶、电力晶体管、 电压控 电力场效应管, IGBT

半控型器件有 SCR(晶闸管) , 全控型器件有 _ GTQ GTR MOSFET IGBT

电流驱动器件有 SCR GTQ GTR 电压型驱动器件: MOSFET IGBT

半控器件: 大电压大电流,即大功率场合

全控器件: 中小功率

2、具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?

具有变压器中心抽头的单相全波可控整流电路中, 因为变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称, 其 一个周期内的平均电流为零,故不会有直流磁化的问题

(变压器变流时双向流动的就没有磁化 存在磁化的:单相半波整流、三相半波整流)

3、电压型逆变电路中反馈二极管的作用是什么?为什么电流型逆变电路中没有反馈二极管?

在电压型逆变电路中,当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。当输出交流电压和电流的极性相同时,电流经电路中的可控开关器件流通,而当输出电压电流极性相反时,由反馈二极管提供电流通道。

在电流型逆变电路中,直流电流极性是一定的,无功能量由直流侧电感来缓冲。 当需要从交流侧向直流侧反馈无功能量时 ,电流并不反向,依然 经电路中的可控开关器件流通 ,因此不需要并联反馈二极管。

电压型有电容器(电源侧),电流型一般串联大电感

4、绘制直流升压斩波电路原理图。

公众号【大学百科资料】整理,有超百科复习资料+海量网课资源

$$U \circ = \frac{t_{on} + t_{off}}{t_{off}} E = \frac{T}{t_{off}} E = \frac{1}{\beta} E$$

$$I_{\circ} = \frac{U_{\circ}}{R}$$

直流降压斩波电路:

$$U_o = \frac{t_{on}}{t_{on} + t_{off}} E = \frac{t_{on}}{T} E = \alpha E$$

$$I_o = \frac{U_o - E_m}{R}$$

升降压:

$$U \circ = \frac{t \circ n}{t \circ f} E = \frac{t \circ n}{T - t \circ n} E = \frac{\alpha}{1 - \alpha} E$$

$$\frac{I_1}{I_2} = \frac{t_{on}}{t_{off}}$$

- 5、电压型逆变电路的特点。
 - (1) 直流侧为电压源或并联大电容,直流侧电压基本无脉动;
 - (2)输出电压为矩形波(电流为正弦波),输出电流因负载阻抗不同而不同;
 - (3)阻感负载时需提供无功。为了给交流侧向直流侧反馈的无功提供通道,逆变桥各臂并联反馈二极管。

电流型压型逆变电路的特点

流侧串联有大电感,

交流侧输出电流为矩形波(电压为正弦波),并且与负载阻抗角无关。

不必给开关器件反并联二极管

6、什么是异步调制?什么是同步调制?两者各有何特点?分段同步调制有什么优点?

(频率高异步调制,频率低同步调制)

分段调制优点: 1载波频率不会太高 2开关损耗不会太大 3载波频率在低频时不会太低

波信号和调制信号不保持同步的调制方式称为异步调制。在异步调制方式中,通常保持载波频率 fc 固定不变,因而当信号波频率 fr 变化时,载波比 N 是变化的。

异步调制的主要特点是:在信号波的半个周期内, PWM 波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后 1/4 周期的脉冲也不对称。这样,当信号波频率较低时,载波比 N 较大,一周期内的脉冲数较多,正负半周期脉冲不对称和半周期内前后 1/4 周期脉冲不对称产生的不利影响都较小, PWM 波形接近正弦波。而当信号波频率增高时,载波比 N 减小,一周期内的脉冲数减少, PWM 脉冲不对称的影响就变大,有时信号波的微小变化还会产生 PWM 脉冲的跳动。这就使得输出 PWM 波和正弦波的差异变大。对于 三相 PWM 型逆变电路来说,三相输出的对称性也变差。

载波比 N 等于常数,并在变频时使载波和信号波保持同步的方式称为同步调制。同步调制方式中,信号波频率变化时载波比 N 不变,信号波一个周期内输出的脉冲数是固定的,脉冲相位也是固定的。当逆变电路输出频率很低时,同步调制时的载波频率 fc 也很低。 fc 过低时由调制带来的谐小组不易滤除。 当负载为电动机时也会带来较大的转矩脉动和噪声。 当逆变电路输出频率很高时, 同步调制时的载波频率 fc 会过高。使开关器件难以承受。此外,同步调制方式比异步调制方式复杂一些。

分段同步高调制是把逆变电路的输出频率划分为若干段,每个频段的载波比一定, 不同频段采用不同的载波比。 其优点主要是, 在高频段 采用较低的载波比,使载波频率不致过高,可限制在功率器件允许的范围

(1) 简述 PW**娴**制方式的同步调制和异步调制的定义及特点。

答:

载波频率 fc 与调制信号频率 fr 之比,N=fc/fr ,根据载波和信号波是否同步及载波比的变化情况, PW**枫**制方式分为异步调制和同步调制。

异步调制:通常保持 fc 固定不变,当 fr 变化时,载波比 N是变化的。在信号波的半周期内, PW**恢**的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后 1/4 周期的脉冲也不对称。当 fr 较低时,N较大,一周期内脉冲数较多,脉冲不对称产生的不利影响都较小。当 fr 增高时,N减小,一周期内的脉冲数减少, PW**脉**冲不对称的影响就变大。

同步调制:fr 变化时 N不变,信号波一周期内输出脉冲数固定。三相电路中公用一个三角波载波,且取 N为3的整数倍,使三相输出对称;为使一相的 PW**被**正负半周镜对称, N应取奇数。 fr 很低时,fc 也很低,由调制带来的谐波不易滤除。 fr 很高时,fc 会过高,使开关器件难以承受。

1. 如下图所示(L 和 R 串联后作为负载),说明晶闸管导通的条件是什么?关断时和导通后晶闸管的端电压、流过晶闸管的电流和负载

答:晶闸管导通的条件是:阳极承受正向电压,处于阻断状态的晶闸管,只有在门极加正向触发电压,才能使其导通。门极所加正向触发脉冲的最小宽度,应能使阳极电流达到维持通态所需要的最小阳极电流,即擎住电流 I、以上。导通后的晶闸管管压降很小。晶闸管的关断时其两端电压大小由电源电压 以决定,电流近似为零。

导通后流过晶闸管的电流由负载阻抗决定,负载上电压由输入阳极电压 以决定。

- 2. 缓冲电路的作用是什么?关断缓冲与开通缓冲在电路形式上有何区别,各自的功能是什么?
 - 答:缓冲电路的作用是抑制电力电子器件的内因过电压 du/dt 或者过电流 di/dt, 减少器件的开关损耗。缓冲电路分为关断缓冲电路和开通缓冲电路。关断缓冲电路是对 du/dt 抑制的电路,用于抑制器件的关断过电压和换相过电压,抑制 du/dt ,减小关断损耗。开通缓冲电路是对 di/dt 抑制的电路,用于抑制器件开通时的电流过冲和 di/dt ,减小器件的开通损耗。
- 3. 变压器漏抗对整流电路有什么影响 ?
 - 答:出现换相重叠角 7,整流输出电压平均值 U.降低;整流电路的工作状态增多;晶闸管的 di/dt 减小,有利于晶闸管的安全导通。有时 人为串入进线电抗器以抑制晶闸管的 di/dt 。换相时晶闸管电压出现缺口,产生正的 du/di ,可能使晶闸管误导通,为此,必须加吸 收电路。换相使电网电压出现缺口,成为干扰源。
- 4. 在三相桥式整流电路中,为什么三相电压的六个交点就是对应桥臂的自然换流(相)点?(请以 a、b 两相电压正半周交点为例,说 明自然换向原理)
 - 答:三相桥式整流电路中,每只二级管承受的是相邻二相的线电压,承受正向电压时导通,反向电压时截止。三相电压的六个交点是其各 线电压的过零点,是二级管承受正反向电压的分界点,所以,是对应桥臂的自然换流点。
- 5. 试述斩波电路时间比控制方式中的三种控制模式?
 - 答:斩波电路时间比控制方式中的三种控制模式为:
 - (1)定频调宽控制模式

定频就是指开关元件的开、 关频率固定不变,也就是开、 关周期 T 固定不变, 调宽是指通过改变斩波电路的开关元件导通的时间 Ton 来改变导通比 K 值,从而改变输出电压的平均值。

(2) 定宽调频控制模式

定宽就是斩波电路的开关元件的导通时间 Ton 固定不变,调频是指用改变开关元件的开关周期 T来改变导通比 K。

(3)调频调宽混合控制模式

这种方式是前两种控制方式的综合,是指在控制驱动的过程中,即改变开关周期 T ,又改变斩波电路导通时间 T ^{m} 的控制方式。通常用于需要大幅度改变输出电压数值的场合 .

- 6. SPWM制方式是怎样实现变压功能的?又是怎样实现变频功能的?
 - 答:改变调制比 M可以改变输出电压 u_o基波的幅值,所以 , SPWM制是通过改变调制波 u_r 的幅值实现变压功能的。 改变正弦调制波的频率时,可以改变输出电压 u_o的基波频率,所以 , SPWM制是通过改变调制波 u_r 的频率实现变频功能的。
 - (2) 晶闸管的主要动静态性能参数是哪些?晶闸管触发导通后,触发脉冲结束时它又关断的原因是什么?

答:

静态性能指标:

电压定额:断态重复峰值电压、反向重复峰值电压、通态电压。

电流定额:通态平均电流、维持电流、擎住电流、浪涌电流。

动态参数:

开通时间、关断时间、断态电压临界上升率、通态电流临界上升率。

晶闸管触发导通后,触发脉冲结束时它又关断的原因是: a:刚刚导通后电流小于擎住电流,脉冲撤除后晶闸管关断; b:完全导通后,由于电路电流小于维持电流,晶闸管关断。

(3) 变压器漏感对整流电路的影响是什么?

答:

- a:出现换相重叠角 ,整流输出电压平均值 Ud降低。
- b:整流电路的工作状态增多。
- c:晶体管的 di/dt 减小,有利于晶闸管的安全开通。
- d:换相时晶闸管电压出现缺口 ,产生正的 du/dt,可能使晶闸管误导通 ,为此必须加吸收电路。
- .e:换相使电网电压出现缺口,成为干扰源。
- (4) 什么是逆变失败,逆变失败的原因是什么?

答:

逆变失败指的是:逆变过程中因某种原因使换流失败,该关断的器件末关断,该导通的器件末导通。从而使逆变桥进入整流状

态,造成两电源顺向联接,形成短路。逆变失败会在逆变桥与逆变电源之间产生强大的环流,损坏开关器件。

产生逆变失败的原因:(1)触发电路工作不可靠,造成脉冲丢失、脉冲延迟等。(2)晶闸管发生故障,失去正常通断能力。(3)交流电源发生异常现象,如断电、缺相、或电压过低。(4)换相的裕量角不足,晶闸管不能可靠关断。

(5) 说明下图单相半桥电压逆变电路中二极管 VD和 VD 的作用。

VD|或VD2通时,io和uo反向,电感中贮能向直流侧反馈, VD|、VD2称为反馈二极管,还使io连续,又称续流二极管。

三、 分析计算题:

1、在下图中 , E=50V, R=0.5 , L=0.5H , 晶闸管擎住电流为 15mA,要使晶闸管导通 , 门极触发电流脉冲宽度至少应为多少 ?

解:晶闸管导通后,主回路电压方程为

$$L \frac{di_d}{dt} + Ri_d = E$$

主电路电流 ia 按下式由零上升

$$i_d = \frac{E}{R} (1 - e^{\pm R/L})$$

$$\frac{50}{0.5}$$
 (1 - e[±]) \geq 15×10⁻³

取 e[⊥] ≈1-t ,

所以,门极触发电流脉冲宽度至少应大于 150 μ s。

2、三相桥式整流电路, U2=100V, 带电阻电感负载 R=50 , L值极大, 当 =60 度时, 计算 Ud, Id, IdT和 Ivt。

$$U_d = 2.34U_2 \cos \alpha$$

$$I_d = \frac{U_d}{R}$$

$$I_{dt} = \frac{I_d}{3}$$

$$I_{\text{vt}} = \frac{I_{\text{d}}}{\sqrt{3}}$$

单相桥式全控整流:

$$U_d = 0.9 U_2 \cos \alpha$$

$$I_d = \frac{U_d}{R}$$

$$|_2 = |_d$$

$$I_{\text{vt}} = \frac{I_{\text{d}}}{\sqrt{2}}$$

3. 图 1-43 中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为

 $I_{\rm m}$, 试计算各波形的电流平均值 $I_{\rm dl}$ 、 $I_{\rm d2}$ 、 $I_{\rm d3}$ 与电流有效值 $I_{\rm l}$ 、 $I_{\rm 2}$ 、 $I_{\rm 3}$ 。

$$0 \frac{\pi}{4}$$
 π 2π $0 \frac{\pi}{4}$ $\pi \frac{5\pi}{4}$ 2π $0 \frac{\pi}{2}$ 2π 0

#: a)
$$I_{d1} = \frac{1}{2\pi} \int_{\frac{\pi}{4}}^{\pi} I_{m} \sin \omega t d(\omega t) = \frac{I_{m}}{2\pi} (\frac{\sqrt{2}}{2} + 1) \approx 0.2717 I_{m}$$

$$I_{1} = \sqrt{\frac{1}{2\pi} \int_{\frac{\pi}{4}}^{\pi} (I_{m} \sin \omega t)^{2} d(\omega t)} = \frac{I_{m}}{2} \sqrt{\frac{3}{4} + \frac{1}{2\pi}} \approx 0.4767 I_{m}$$

b)
$$I_{d2} = \frac{1}{\pi} \int_{\frac{\pi}{4}}^{\pi} I_m \sin \omega t d(\omega t) = \frac{I_m}{\pi} \left(\frac{\sqrt{2}}{2} + 1 \right) \approx 0.5434 I_m$$

$$\frac{1}{\pi} \int_{\frac{\pi}{4}}^{\pi} I_m \sin \omega t d(\omega t) = \frac{I_m}{\pi} \left(\frac{\sqrt{2}}{2} + 1 \right) \approx 0.5434 I_m$$

$$I_{2} = \sqrt{\frac{1}{\pi} \int_{\frac{\pi}{4}}^{\pi} (I_{m} \sin \omega t)^{2} d(\omega t)} = \frac{\sqrt{2} I_{m}}{2} \sqrt{\frac{3}{4} + \frac{1}{2\pi}} \approx 0.6741 I_{\infty}$$

c)
$$I_{d3} = \frac{1}{2\pi} \int_{0}^{\frac{\pi}{2}} I_{m} d(\omega t) = \frac{1}{4} I_{m}$$

$$I_{3} = \sqrt{\frac{1}{2\pi} \int_{0}^{\frac{\pi}{2}} I_{m}^{2} d(\omega t)} = \frac{1}{2} I_{m}$$

4. 上题中如果不考虑安全裕量,问 100A 的晶闸管能送出的平均电流 I_{d1} 、 I_{d2} 、 I_{d3} 各为多少?这时,相应的电流最大值 I_{m1} 、 I_{m2} 、 I_{m3} 各为多少?

解: 额定电流 $I_{\text{T(AV)}}$ =100A 的晶闸管,允许的电流有效值 I=157A,由上题计算结果知

a)
$$I_{\text{ml}} \approx \frac{I}{0.4767} \approx 329.35$$
, $I_{\text{dl}} \approx 0.2717 I_{\text{ml}} \approx 89.48$

b)
$$I_{\text{m2}} \approx \frac{I}{0.6741} \approx 232.90, \qquad I_{\text{d2}} \approx 0.5434 I_{\text{m2}} \approx 126.56$$

c)
$$I_{\text{m3}}=2 I = 314$$
, $I_{\text{d3}}=\frac{1}{4} I_{\text{m3}}=78.5$

某一电热装置(电阻性负载) ,要求直流平均电压为 75V , 电流为 20A , 采用单相半波可控整流电路直接从 220V 交流电网供电。计算晶闸管的控制角 、导通角 、负载电流有效值 ,

解:(1)整流输出平均电压

$$U_{d} = \frac{1}{2\pi} \int_{\alpha}^{2\pi} \sqrt{2} U_{2} \sin \omega . td (\omega . t) = \frac{1}{2\pi} \int_{\alpha}^{\pi} \sqrt{2} U_{2} \sin \omega . td (\omega . t)$$

$$= \frac{\sqrt{2}}{\pi} U_{2} \left(\frac{1 + \cos \alpha}{2} \right) \approx 0.45 U_{2} \frac{1 + \cos \alpha}{2}$$

$$\cos = \frac{2U_{d}}{0.45 U_{2}} - 1 = \frac{2 \times 75}{0.45 \times 220} - 1 = 0.5152$$

$$\text{控制角} \qquad 60^{\circ} \qquad \text{导通角} \qquad = - = 120^{\circ}$$

(2). 负载电流平均值

则

则

I
$$d = \frac{U_d}{R} = 20(A)$$

 $R = U_1 / I_d = 75 / 20 = 3.75$

负载电流有效值 丨,即为晶闸管电流有效值 丨v1,所以

$$I = I_{V} = \sqrt{\frac{1}{2\pi} \int_{\alpha}^{\pi} \left(\frac{\sqrt{2}U_{2}}{R} \sin \omega t \right)^{2} d(\omega t)} = \frac{U_{2}}{R} \sqrt{\frac{1}{4\pi} \sin 2\alpha + \frac{\pi - \alpha}{2\pi}} = 37.6(A)$$

分析下图示升压斩波电路原理并计算,已知 E=50V, 负载电阻 R=20 , L 值和 C值极大,采用脉宽调制控制方式,当 T=40 μ s , t $_{\circ i}$ =25 μ s 时,计算输出电压平均值 U,输出电流平均值 $_{\circ i}$ 0。

解:

开关元件导通(模式 1)时,电感 L储能,负载 R上的电压 u。和电流 i。由电容器 C上的电压 u。提供。 开关元件关断(模式 2)时,直流电源 U和电感 L储能向负载 R和电容器 C提供能量,电容器 C充电。 因此,可达到输出平均直流电压高于电源输入的直流电压。输出电压平均值 U为

$$U_{o} = \frac{U_{d} \cdot T}{T - T_{on}} = \frac{U_{d}}{1 - K_{t}}$$

其中, Ton 为导通时间, T为开关周期, K为导通比。

$$U_o = \frac{U_d \cdot T}{T - T_{on}} = \frac{50*40}{40 - 25} = 133.3V$$

$$I_o = \frac{U_o}{R} = \frac{133.3}{20} = 6.67A$$

设流过晶闸管的周期电流波形如下图所示,其最大值均为 Im,当采用额定电流为 200A的晶闸管,当不考虑安全余量时,所能送出的平均电流为多少?相应的电流最大值是多少? (7分)。

(在环境温度为 40 和规定的散热冷却条件下,晶闸管在电阻性负载的单相、工频正弦半波导电、结温稳定在额定值 125 时,所对应的通态平均电流值定义为晶闸管的额定电流。

$$I_d = \frac{\sqrt{2}}{\pi} \frac{U_2}{R}$$

$$I_a = \sqrt{\frac{1}{2\pi} \int_0^{\pi} \left(\frac{\sqrt{2}U_2 \sin\omega t}{R} \right)^2 d\omega t} = \frac{\sqrt{2}}{2} \frac{U_2}{R}$$

因此当晶闸管的额定电流为 200A时,其允许通过的电流有效值为 314A。

)

解:电流平均值:I db=
$$\frac{1}{2\pi}\int_{0}^{\frac{2\pi}{3}}I_{m}d(\omega t)=\frac{I_{m}}{3}$$

电流有效值
$$I_a = \sqrt{\frac{1}{2\pi} \int_0^{\frac{2\pi}{3}} (I_m)^2 d(\omega t)} = \frac{I_m}{\sqrt{3}}$$

200A的晶闸管允许通过电流的有效值为 314A,因此相应的电流最大值为 314* $\sqrt{3}$ A,所能送出的平均电流 I № 314/ $\sqrt{3}$ =181A。