Python CheatSheet

Basics

Basic syntax from the python programming language

Showing Output To User

the print function is used to display or print output

```
print("Content that you wanna print on screen")
```

Taking Input From User

the input function is used to take input from the user

```
var1 = input("Enter your name: ")
```

Empty List

This method allows you to create an empty list

```
my_list = []
```

Empty Dictionary

By putting two curly braces, you can create a blank dictionary

```
my_dict = {}
```

Range Function

range function returns a sequence of numbers, eg, numbers starting from 0 to n-1 for range(0, n)

```
range(int_value)
```

Comments

Comments are used to make the code more understandable for programmers, and they are not executed by compiler or interpreter.

Single line comment

```
#This is a single line comment
```

Multi-line comment

```
'''This is a
multi-line
comment'''
```

Escape Sequence

An escape sequence is a sequence of characters; it doesn't represent itself when used inside string literal or character.

Newline

Newline Character

\n

Backslash

It adds a backslash

\\

Single Quote

It adds a single quotation mark

\'

Tab

It gives a tab space

\t

Backspace

It adds a backspace

\b

Octal value

It represents the value of an octal number

\000

Hex value

It represents the value of a hex number

\xhh

Carriage Return

Carriage return or \r is a unique feature of Python. \r will just work as you have shifted your cursor to the beginning of the string or line.

\r

Strings

Python string is a sequence of characters, and each character can be individually accessed. Using its index.

String

You can create Strings by enclosing text in both forms of quotes - single quotes or double-quotes.

```
variable_name = "String Data"
```

Slicing

Slicing refers to obtaining a sub-string from the given string.

```
var_name[n : m]
```

String Methods isalnum() method

Returns True if all characters in the string are alphanumeric

```
string_variable.isalnum()
```

isalpha() method

Returns True if all characters in the string are alphabet

```
string_variable.isalpha()
```

isdecimal() method

Returns True if all characters in the string are decimals

```
string_variable.isdecimal()
```

isdigit() method

Returns True if all characters in the string are digits

```
string_variable.isdigit()
```

islower() method

Returns True if all characters in the string are lower case

```
string_variable.islower()
```

isspace() method

Returns True if all characters in the string are whitespaces

```
string_variable.isspace()
```

isupper() method

Returns True if all characters in the string are upper case

```
string_variable.isupper()
```

lower() method

Converts a string into lower case

```
string_variable.lower()
```

upper() method

Converts a string into upper case

```
string_variable.upper()
```

strip() method

It removes leading and trailing spaces in the string

```
string_variable.string([chars])
```

List

A List in Python represents a list of comma-separated values of any data type between square brackets.

List

```
var_name = [element1, element2, and so on]
```

List Methods index method

Returns the index of the first element with the specified value

```
list.index(element)
```

append method

Adds an element at the end of the list

```
list.append(element)
```

extend method

Add the elements of a list (or any iterable) to the end of the current list

```
list.extend(iterable)
```

insert method

Adds an element at the specified position

```
list.insert(position, element)
```

pop method

Removes the element at the specified position and returns it

```
list.pop(position)
```

remove method

The remove() method removes the first occurrence of a given item from the list

```
list.remove(element)
```

clear method

Removes all the elements from the list

```
list.clear()
```

count method

Returns the number of elements with the specified value

```
list.count(value)
```

reverse method

Reverse the order of the list

```
list.reverse()
```

sort method

Sorts the list

```
list.sort(reverse=True|False)
```

Tuples

Tuples are represented as a list of comma-separated values of any data type within parentheses.

Tuple Creation

```
variable_name = (element1, element2, ...)
```

Tuple Methods count method

It returns the number of times a specified value occurs in a tuple

```
tuple.count(value)
```

index method

It searches the tuple for a specified value and returns the position.

```
tuple.index(value)
```

A set is a collection of multiple values which is both unordered and unindexed. It is written in curly brackets.

Set Creation: Way 1

```
var_name = {element1, element2, ...}
```

Set Creation: Way 2

```
var_name = set([element1, element2, ...])
```

Set Methods: add() method

Adds an element to a set

```
set.add(element)
```

clear() method

Remove all elements from a set

```
set.clear()
```

discard() method

Removes the specified item from the set

```
set.discard(value)
```

intersection() method

Returns intersection of two or more sets

```
set.intersection(set1, set2 ... etc)
```

issubset() method

Checks if a Set is Subset of Another Set

```
set.issubset(set)
```

pop() method

Removes an element from the set

```
set.pop()
```

remove() method

Removes the specified element from the Set

```
set.remove(item)
```

union() method

Returns the union of Sets

```
set.union(set1, set2...)
```

Dictionaries

The dictionary is an unordered set of comma-separated key: value pairs, within {}, with the requirement that within a dictionary, no two keys can be the same.

Dictionary

```
<dictionary-name> = {<key>: value, <key>: value ...}
```

Adding Element to a dictionary

By this method, one can add new elements to the dictionary

```
<dictionary>[<key>] = <value>
```

Updating Element in a dictionary

If the specified key already exists, then its value will get updated

```
<dictionary>[<key>] = <value>
```

Deleting Element from a dictionary

del let to delete specified key: value pair from the dictionary

```
del <dictionary>[<key>]
```

Dictionary Functions & Methods len() method

It returns the length of the dictionary, i.e., the count of elements (key: value pairs) in the dictionary

```
len(dictionary)
```

clear() method

Removes all the elements from the dictionary

```
dictionary.clear()
```

get() method

Returns the value of the specified key

```
dictionary.get(keyname)
```

items() method

Returns a list containing a tuple for each key-value pair

```
dictionary.items()
```

keys() method

Returns a list containing the dictionary's keys

```
dictionary.keys()
```

values() method

Returns a list of all the values in the dictionary

```
dictionary.values()
```

update() method

Updates the dictionary with the specified key-value pairs

```
dictionary.update(iterable)
```

Conditional Statements

The if statements are the conditional statements in Python, and these implement selection constructs (decision constructs).

if Statement

```
if(conditional expression):
statements
```

if-else Statement

```
if(conditional expression):
  statements
  else:
  statements
```

if-elif Statement

```
if (conditional expression) :
   statements
elif (conditional expression) :
   statements
else :
   statements
```

Nested if-else Statement

```
if (conditional expression):
  if (conditional expression):
  statements
  else:
  statements
  else:
  statements
```

Iterative Statements

An iteration statement, or loop, repeatedly executes a statement, known as the loop body, until the controlling expression is false (0).

For Loop

The for loop of Python is designed to process the items of any sequence, such as a list or a string, one by one.

```
for <variable> in <sequence>:
  statements_to_repeat
```

While Loop

A while loop is a conditional loop that will repeat the instructions within itself as long as a conditional remains true.

```
while <logical-expression> :
loop-body
```

Break Statement

The break statement enables a program to skip over a part of the code. A break statement terminates the very loop it lies within.

```
for <var> in <sequence> :
    statement1
    if <condition> :
    break
    statement2
    statement_after_loop
```

Continue Statement

The continue statement skips the rest of the loop statements and causes the next iteration to occur.

```
for <var> in <sequence> :
    statement1
    if <condition> :
    continue
    statement2
    statement3
    statement4
```

Functions

A function is a block of code that performs a specific task. You can pass parameters into a function. It helps us to make our code more organized and manageable.

Function Definition

```
def my_function(parameters):
# Statements
```