线性代数选择题

(共50题)

不得作商业用途

1. 设A,B是n阶方阵,则下列命题正确的是().

请关注上大数学在线

(A) AB = BA;

- (B) 如果 $AB = \mathbf{0}$, 则 $A = \mathbf{0}$ 或 $B = \mathbf{0}$;
- (C) $|A^TB| = |A| \cdot |B|$;
- (D) $(AB)^k = A^k B^k$,其中k为正整数.

- 3. 设 $Ax = \mathbf{b}$ 为 n 元非齐次线性方程组,且 r(A) = n ,则下列命题正确的是().
 - (A) $Ax = \mathbf{b}$ 一定有无穷多组解; (B) $Ax = \mathbf{b}$ 只有唯一解;
 - (C) $Ax = \mathbf{b}$ 可能有无穷多组解;
- (D) $Ax = \mathbf{b}$ 可能只有唯一解.
- 4. 设A是3阶实对称矩阵,则().
 - (A) A 不可对角化;
- (B) A 可以对角化:
- (C) A 与单位矩阵相抵; (D) A 与单位矩阵不相抵.

5. 设
$$A$$
 为 3 阶矩阵,且 $P^{-1}AP=\begin{pmatrix} 1 & & \\ & 1 & \\ & & 2 \end{pmatrix}, P=(\alpha_1,\alpha_2,\alpha_3), Q=(\alpha_1+\alpha_2,\alpha_2,\alpha_3)$,则

$$Q^{-1}AQ = ().$$

(A)
$$\begin{pmatrix} 1 & & \\ & 1 & \\ & & 2 \end{pmatrix}$$
; (B) $\begin{pmatrix} 1 & & \\ & 2 & \\ & & 1 \end{pmatrix}$; (C) $\begin{pmatrix} 2 & & \\ & 1 & \\ & & 2 \end{pmatrix}$; (D) $\begin{pmatrix} 2 & & \\ & 2 & \\ & & 1 \end{pmatrix}$.

- 6. 设方阵 A 经过初等变换可化为单位矩阵,则 A 一定是().
 - (A) 单位矩阵; (B) 可逆矩阵;
- (C) 对角矩阵;
- (D)不可逆的.

- 7. 下列断言正确的是()
 - (A) 交换行列式两行,行列式值变号:
 - (B) 如果行列式值为零,则行列式存在两行成比例;
 - (C) 行列式与其转置所得行列式值不相等;
 - (D) 上三角行列式值一定不为零.
- 8. 设 $A:\alpha_1,\alpha_2,\cdots,\alpha_n;B:\beta_1,\beta_2,\cdots,\beta_m$ 两个同型向量组,下列结论正确的是().
- (A) 如果向量组 A, B 等价,则 n = m;
- (B) 如果向量组 A, B 等价,则 r(A) = r(B);
- (C) 如果向量组 A 可由向量组 B 线性表示,则 r(A) < r(B);

- (D) 如果向量组 A 可由向量组 B 线性表示,则 $n \le m$.
- 9. 设 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 为非齐次线性方程组Ax=b的线性无关解,如果r=n+1-r(A),则 Ax = b 的通解可以表示为(
 - (A) $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r, k_1, k_2, \cdots, k_r$ 为任意数;
 - (B) $k_1(\alpha_1 \alpha_2) + k_2(\alpha_1 \alpha_3) + \cdots + k_{r-1}(\alpha_1 \alpha_r), k_1, k_2, \cdots, k_{r-1}$ 为任意数;
 - (C) $k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r, k_1 + k_2 + \dots + k_r = 1$;
 - (D) $k_1(\alpha_1 \alpha_2) + k_2(\alpha_1 \alpha_3) + \dots + k_{r-1}(\alpha_1 \alpha_r), k_1 + k_2 + \dots + k_{r-1} = 1.$
- 10. 两个n(n>1)阶方阵A,B相似的充分必要条件是().
 - (A) A, B 有相同的特征多项式;
- (B) A, B 有相同的行列式;

(C) *A*, *B* 有相同的特征值;

- (D) 存在可逆矩阵 P 使得 PA = BP.
- 11. 如果三阶行列式第一行元素为 1, 2,3, 而且第二行余子式是 a,1,2,则 a = ().
 - (A) -8;
- (B) 8;
- (C) -4;
- (D) 4.
- 12. 如果n解方阵A,B可逆,则矩阵方程AXB = C的解X = ().
 - (A) $A^{-1}B^{-1}C$; (B) $A^{-1}CB^{-1}$; (C) $CA^{-1}B^{-1}$; (D) $B^{-1}CA^{-1}$.

- 13.设A为n阶矩阵,且r(A) = n-1 , α_1, α_2 是 $Ax = \mathbf{0}$ 的两个不同解向量,则 $Ax = \mathbf{0}$ 的 (其中<math>k为任意常数) 通解为(
 - (A) $k(\alpha_1 + \alpha_2)$; (B) $k\alpha_1$; (C) $k\alpha_2$; (D) $k(\alpha_1 \alpha_2)$.

- $14. \oplus A \rightarrow n (n > 1)$ 阶矩阵,如果 A 可对角化,则下列结论一定正确的是().
 - (A) 矩阵 A 有 n 个不同特征值;

- (B) 矩阵 *A* 与单位矩阵相似;
- (C) A 一定没有n 个不相同的特征值;
- (D) $A \in n$ 个线性无关的特征向量.
- 15. 设矩阵 $A = \begin{bmatrix} b & a & b \\ b & b & a \end{bmatrix}$, A^* 的秩为 1, 则必有().
 - (A) $a \neq b \perp a + 2b = 0$;
- (C) a = b或 $a + 2b \neq 0$;

- (D) $a \neq b \perp a + 2b \neq 0$.
- 16. 设 $A, B \in n$ 阶方阵,则下列命题**不正确**的是().
 - (A) |AB| = |A||B|;

- (B) $(AB)^{T} = B^{T}A^{T}$;
- (C) 如果 A, B 相似,则 $|\lambda I A| = |\lambda I B|$; (D) AB = BA.
- 17. 设三阶行列式 $D = |\alpha_1, \alpha_2, \alpha_3| = 2$,则 $D_1 = \begin{vmatrix} \alpha_3^T \\ \alpha_3^T + 2\alpha_2^T \\ \alpha_3^T + \alpha_2^T + 3\alpha_1^T \end{vmatrix} = ().$

- (A) 12; (B) 2; (C) -12;
- (D) -6.
- 18. n 元非齐次线性方程组 Ax = b 有唯一解,则().
 - (A) r(A) = n;

- (B) r(A) < n;
- (C) b 不可由 A 的列向量组表示;
- (D)b 可由 A 的行向量组表示.
- 19. 设n阶矩阵的秩为n-2,且 α , β , γ 是非齐次线性方程组 $Ax = \mathbf{b}$ 的三个线性无关解,则 $Ax = \mathbf{b}$ 的通解为().
 - (A) $k_1\alpha + k_2\beta + k_3\gamma, k_1, k_2, k_3$ 为任意数;
 - (B) $k_1\alpha + k_2\beta + k_3\gamma, k_1 + k_2 + k_3 = 1$;
 - (C) $k_1\alpha + k_2\beta + \gamma, k_1, k_2$ 为任意数;
 - (D) $k_1(\alpha-\gamma)+k_2(\beta-\gamma), k_1,k_2$ 为任意数.
- 20. 设矩阵 A 与 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$ 相似,则下列矩阵与 A^2 相似的是().
 - (A) $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$;
- $\begin{array}{ccc}
 (B) & \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix};
 \end{array}$
- (C) $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 4 & 0 \\ 2 & 3 & 9 \end{pmatrix}$; (D) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

- (A) $\mathbf{0}$; (B) 5I; (C) I; (D) -I.
- 22. 设A为三阶方阵,且|A|=-1,则 $|AA^*-I|=($).
 - (A) -2:
- (B) 8;
- (C) 2;
- (D) -8.
- 23. 设 $A:\alpha_1,\alpha_2,\cdots,\alpha_n$ 是m维向量组,下列结论**不正确**的是().
- (A) 如果向量组 A 线性相关,则 r(A) < n;
- (B) 如果向量组A线性无关,则r(A) = n;
- (C) 如果向量组 A 线性相关,则 n > m;
- (D) 如果向量组 A 线性无关,则 $n \le m$.

- 24. 设矩阵 A 与 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$ 相似,则().
 - (A) 矩阵 A 一定与对角矩阵相似;
- (B) 矩阵 A 一定不与对角矩阵相似;
- (C) $(A-I)(A-2I)(A-3I) \neq 0$; (D) 以上结论都不正确.
- 25. 设n(n > 1)元非齐次线性方程组Ax = b有n个线性无关解,则().
 - (A) r(A) = n; (B) $r(A) \ge n$; (C) r(A) = 1; (D) r(A) = 0.

- 26. 设 A, B, C 为 n 阶方阵,则下列结论正确的是 ().

 - (A) 若 AC = BC , 则 A = B ; (B) $AB = \mathbf{0}$, 则 $A = \mathbf{0}$ 或者 $B = \mathbf{0}$;
 - (C) $(AB)^{T} = A^{T}B^{T}$;

- (D)若 A, B 可逆,则 $(AB)^{-1} = B^{-1}A^{-1}$.
- 27. 设 $A \setminus B \setminus C$ 均为n阶矩阵,若ACB = I,则必定有().
 - (A) ABC = I; (B) BAC = I; (C) CAB = I; (D) BCA = I.

- 28. 设三阶方阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 的行列式 |A| = -2 ,则 $|(\alpha_3, \alpha_1 + 2\alpha_3, \alpha_2 + \alpha_1)| = ($)

 - (A) -2; (B) -8; (C) 2; (D) 8.
- 29.设 A, B 为 n 阶矩阵,则下面结论正确的是().
 - (A) 如果 A = B 有相同的特征多项式,则 A = B 相似:
 - (B)如果A与B有相同的特征值,则A与B相似;
 - (C) A = B 相似的充分必要条件是它们有相同的特征多项式.
 - (D)如果 A 与 B 相似,则 A 与 B 有相同的特征多项式;
- 30. 下列命题正确的是().
 - (A) 相似矩阵具有相同特征值;
 - (B)两个同阶矩阵如果相抵,则必相似;
 - (C) 设r(A) = n,则n元线性方程组 $Ax = \mathbf{b}$ 有解;
 - (D)正交矩阵的行列式值必为 1.

33.	设】	1,2,3为3阶7	i降 A 的特	寺祉值,	则 <i>-A</i>	=	()						
	(A)	6;	(B)	−6 ;		(C	c) 3	6;		(D) -	-36.		
34.	设 <i>A</i>	$A \in n$ 阶方阵,	且 $A\alpha$ =	∍β ,贝	训线性力	方程组	$\begin{pmatrix} A \\ I \end{pmatrix}$	$\begin{pmatrix} -\beta \\ 0 \end{pmatrix}$.	$x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\left(\frac{1}{\alpha}\right)$ 有角	牟 ().	
	(A)	$\begin{pmatrix} -\alpha \\ 1 \end{pmatrix}$;	(B) $\begin{pmatrix} a \\ 1 \end{pmatrix}$	$\begin{pmatrix} \chi \\ 1 \end{pmatrix}$;	(C)	$\begin{pmatrix} -\alpha \\ -1 \end{pmatrix}$);	(D)	$\begin{pmatrix} \alpha \\ -1 \end{pmatrix}$				
35.	设 a	$a_1, a_2, \cdots, a_n,$	均为n维	列向量,	A 是	m×n ¾	洰阵,	下列:	选项正	确的是	륃().	
(B (C (E	3)若 a 3)若 a 3)若 a	$egin{aligned} a_1,a_2,\cdots,a_n,\ a_1,a_2,\cdots,a_$	线性相关 线性无关 线性无关	,则 <i>Aa</i> ,则 <i>Aa</i> ,则 <i>Aa</i>	$egin{aligned} m{x}_1, m{A}m{a}_2 \ m{x}_1, m{A}m{a}_2 \ m{x}_1, m{A}m{a}_2 \end{aligned}$	$, \dots, A$ $, \dots, A$ $, \dots, A$	(a_n, ξ) (a_n, ξ) (a_n, ξ)	浅性无 浅性相 线性无	关; 关; 关.				
		()充分必要条											
	设矩 (A) (B) (C) (D) n阶 (A)	()充分而非必是 () A 的任意 r 3 () 线性方程组 () 人的行向量组 () A 的列向量组 () 方阵 A 与对于 () A 是实对称知 () A 有 n 个不同	连初等列到 到组成的向 AX=0 和 A极大无关 A和 B 的列 角矩阵相位 E阵;	变换化为 向量组和 中线性方	B B 的 M 程组 B 的行向 等价.	例()。 対应 r 列 X=0 同]量组材	削组成]解; 吸大无 (B)	就的向。 完美组 ² . A 有	量组等 相同;	价; 线性无	关的特	寺征向量	<u>.</u> ;
39.	有关	长线性方程组	4 x = b 和	Ax = 0	的解,	以下	判断』	E确的	是 ().			
	(A)	$\mathbf{A}\mathbf{x} = 0$ 只有	零解,则.	$\mathbf{A}\mathbf{x} = \mathbf{b}^{T}$	有唯一	解;							
	(B)	$\mathbf{A}\mathbf{x} = 0$ 有非	琴解,则 <i>I</i>	$\mathbf{A}\mathbf{x} = \mathbf{b}^{T}$	有唯一	解;							
	` /	$\mathbf{A}\mathbf{x} = \mathbf{b}$ 有唯				解;							
40.	设A (A)	$\mathbf{A}\mathbf{x} = \mathbf{b}$ 无解 \mathbf{A} 是 $m \times n$ 矩阵 $\mathbf{A} \neq \mathbf{O}$ 时 \mathbf{f} \mathbf{f} \mathbf{f}		$\mathbf{B} = \mathbf{AC}$		(, B =		С.	
41	. 设	0 是矩阵 <i>A</i> =	$ \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 0 \end{pmatrix} $	3 0 a)的特征	征值,「	则 <i>a</i> =	().					

(A) 1; (B) 2; (C) -3; (D)不能确定.

(C)
$$r(kA) = r(A)$$
;

(C)
$$r(kA) = r(A)$$
; (D) $r(AB) = r(A)r(B)$.

49.设 A 是 n 阶可逆方阵(n ≥ 2),如果 k ≠ 0,±1,则(kA)* =().

(A)
$$k^{n-1}A^*$$
; (B) kA^* ; (C) k^nA^* ; (D) $k^{-1}A^*$.

(B)
$$kA^*$$

(C)
$$k^n A^*$$

(D)
$$k^{-1}A^*$$

50. 与矩阵
$$A = \begin{pmatrix} 2 & 2 \\ 0 & 4 \end{pmatrix}$$
 不相似矩阵是().

$$(A)\begin{pmatrix} 2 & 0 \\ 5 & 4 \end{pmatrix}; \qquad (B)\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}; \qquad (C)\begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}; \qquad (D)\begin{pmatrix} 2 & 7 \\ 0 & 4 \end{pmatrix}.$$

(B)
$$\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$
;

(C)
$$\begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}$$
;

(D)
$$\begin{pmatrix} 2 & 7 \\ 0 & 4 \end{pmatrix}$$
.

参考答案

1	2	3	4	5	6	7	8	9	10
C	C	D	В	A	В	A	В	C	D
С	В	D	D	A	D	С	A	В	С
В	D	С	A	С	D	В	A	D	A
С	В	D	В	A	С	<u>D</u>	В	С	С
A	В	C	D	В	A	C	C	A	C

请关注上大数学在线