1 plochy

Definice 1.1 (Regulární plocha)

Nechť k < n jsou přirozená čísla. Nechť je φ spojitě diferencovatelné zobrazení otevřené podmnožiny $\mathcal{O} \subseteq \mathbb{R}^k$ do \mathbb{R}^n . Řekněme, že φ je regulární, pokud je to homeomorfismus \mathcal{O} na $M = \varphi(\mathcal{O})$ a pokud má Jacobiho matice $J\varphi$ hodnost rovnou k ve všech bodech \mathcal{O} . Množinu $\varphi(\mathcal{O})$ pak nazveme lokální k-plochou.

Řekněme, že množina $M \subseteq \mathbb{R}^n$ je k-plocha pokud pro každý bod $x \in M$ existuje okolí U_x v \mathbb{R}^n takové, že $M \cap U$ je lokální k-plocha.

Podobný začátek jako Analýza na varietách (AnVar).

Definice 1.2 (Difeomorfismus)

Standardně.

Věta 1.1 (Věta o lokálním difeomorfismu)

Pokud je Jakobián nenulový, pak existuje difeomorfní okolí.

Definice 1.3 (Hladký bod hranice)

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená podmnožina. Označme symbolem \mathbb{H}^n otevřený podprostor. Řekněme, že bod $a \in H(\Omega) = \overline{\Omega} \setminus \Omega$ je hladký bod hranice, pokud existuje okolí U bodu a a difeomorfismus Φ na? U takový, že

$$\Phi(\Omega \cap U) = \Phi(U) \cap \mathbb{H}^n.$$

(Narovnání hranice pomocí difeomorfismu.)

Množinu všech hladkých bodů hranice značíme $H^*(\Omega)$.

Definice 1.4 (Vnější algebra vektorového prostoru)

Nechť \mathbf{V} je vektorový prostor nad reálnými čísly a $\{e_1, \ldots, e_n\}$ je jeho pevně zvolená báze. Vnější algebra $\Lambda^*(\mathbf{V})$ vektorového prostoru \mathbf{V} je definována jako algebra nad tělesem reálných čísel, jejíž báze je množina

$$\{e_I|I\subseteq\{1,\ldots n\}\}$$
.

A prvky báze splňují

$$e_I \wedge e_J := \begin{cases} 0 & I \cap J \neq \emptyset \\ \operatorname{sgn} \binom{I,J}{I \cup J} e_{I \cup J} \end{cases}.$$

Vzhledem k bilinearitě násobení v algebře je tímto výrazem násobení vektorů již plně definováno.

Poznámka

 e_{\emptyset} je podle definice jednotka.

 $\Lambda^k(\mathbf{V})$, což je lineární obal bází $\Lambda^*(\mathbf{V})$ velikosti k, se nazývá k-tá vnější algebra a její prvky jsou k-vektory.

Věta 1.2

Pro vektorový prostor \mathbf{V} s bází e_1, \ldots, e_n a pro libovolná $k, l \in \{1, \ldots, n\}$.

- 1. dim $\Lambda^k(\mathbf{V}) = \binom{n}{k}$, dim $\Lambda^*(\mathbf{V}) = 2^n$.
- 2. \land je asociativní.
- 3. $e_I = e_{i_1} \wedge ... \wedge e_{i_k}, |I| = k.$
- 4. Je-li $\omega \in \Lambda^k(\mathbf{V}), \tau \in \Lambda^l(\mathbf{V}), \ pak \ \omega \wedge \tau = (-1)^{kl} \tau \wedge \omega$.
- 5. Nechť $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbf{V}$ jsou vektory. Potom (matice V_I má za sloupce vektory \mathbf{v}_i a řádky jsou vybrány pouze ty s indexem I)

$$\mathbf{v}_1 \wedge \ldots \wedge \mathbf{v}_k = \sum_{I \subseteq [n], |I| = k} \det \mathbf{V}_I \cdot e_I.$$

 $D\mathring{u}kaz$

Jednoduchý. (Ve skriptech anvar...).

Poznámka (Označení)

Necht $F: \Omega \subseteq \mathbb{R}^m \to \mathbb{R}^n$ je diferencovatelné (spojité), pak diferenciál dF je nejlepší lineární přiblížení, tedy $dF: \mathbb{R}^m \to \mathbb{R}^n$ lineární, $||F(x+a) - F(a) - dF_x(a)|| \to 0$.

Věta 1.3 (Diferenciál složeného zobrazení)

Pokud $F:U\to\mathbb{R}^n$, $F:V\to\mathbb{R}^k$, $U\subseteq\mathbb{R}^m$ otevřená, $V\subseteq\mathbb{R}^n$ otevřená. Potom

$$d(F \circ G) = dF_{G(x)} \circ dF_x.$$

Definice 1.5

Je-li $S \subset \mathbb{R}^3$ plocha, $\forall x \in S: T_xS \subseteq \mathbb{R}^3$. Definujeme bilineární formu I_x na T_xS předpisem

$$\forall \mathbf{u}, \mathbf{v} \in T_x SI_x(\mathbf{u}, \mathbf{v}) = \mathbf{u} \cdot \mathbf{v}.$$

 I_x je positivně definitní forma, kterou nazveme první fundamentální forma S.

Vzor $I_x, x = p(\mathbf{u}), u \in O$ při zobrazení $d_{|u}: \mathbb{R}^2 \to T_x S$ budeme značit g_u . Je to bilineárně

symetrická forma

$$a, b \in \mathbb{R}^2 : g_n(a, b) := I_x(d_{\mid u}(a), d_{\mid u}(b)).$$

Tato forma odpovídá gramově matici (značme ji g_u) ($|_{u_1}, |_{u_2}$).

Důsledek (Délka křivky)

 $c:I\subseteq\mathbb{R}\to S,\,I$ interval. Potom délka křivky cna ploše je

$$L(c) = \int_{I} \sqrt{I_{c(t)}(c'(t), c'(t))} dt.$$

Lemma 1.4

$$L(c) = \int_{I} g_u(d'(t), d'(t)).$$

Lemma 1.5

Je-li $\mathbb{P}: o \to S$ mapa, $W \subseteq \mathsf{I}(o)$ borelovská podmnožina, potom

$$S(W) = \int_{I^{-1}(W)} \sqrt{\det g_u} du = \int_{I^{-1}(W)} 1 \cdot dS.$$

1.1 Hladké (diferencovatelné) zobrazení, tečné zobrazení

Definice 1.6

Jsou-li S a S' dvě plochy v \mathbb{R}^3 a $\Phi:S\to S'$, řekneme, že Φ je diferencovatelné, jestliže $\Phi\circ\iota$ je diferencovatelné \forall mapu ι na S.

Pak definujeme diferenciál Φ v bodě $x \in S$ jako $d\Phi_x := d(\Phi \circ \iota)_u \circ (d\iota_u)^{-1} : T_x S \to \mathbb{R}^3$.

Definice 1.7

Pokud $\varphi: S \to S'$ je diferencovatelné, pak definujeme $T_S \varphi: T_S S \to T_{\varphi(S)S'}$ tečné zobrazení předpisem $c: (-k,k) \to S, \ c(0) = S, \ c'(0) = \nu, \ \nu \in T_S S$, pak $T_S \varphi(\nu) = \frac{d}{dt}|_0 (\varphi \circ c) = w \in T_{\varphi(S)} S'$.

Lemma 1.6

1) $T_S\Phi$ je dobře definované. 2) $T_S\Phi$ je lineární. 3) Pokud $s \in S$ patří do $\iota(u)$, $s \in \iota(o)$, ι mapa, $\Phi(s) \in S'$ patří do $\iota'(o')$, pak matice tečného zobrazení $T_s\Phi$ vzhledem k bázím určeným mapami ι a ι' je Jacobiho matice zobrazení Φ .

Lemma 1.7

Pokud $S \xrightarrow{\varphi} S' \xrightarrow{\psi} S''$, φ , ψ diferencovatelné, pak $\psi \circ \varphi$ je diferencovatelné a $T_S(\psi \circ \varphi) = T_{\varphi(S)}\psi \circ T_S\psi$.

1.2 Normála a druhá fundamentální forma

Poznámka

Budeme předpokládat, že plocha S je orientovaná.

TODO

Definice 1.8

Nechť S je plocha s orientací zadanou (Gaussovým) zobrazením N. Druhá fundamentální forma II je bilineární forma na T_SS zadaná předpisem

$$X, Y \in T_S S : II_S(X, Y) := I_X(-T_S N(X), Y).$$

Věta 1.8

1) IIs je symetrická. 2) Je-li $p:O\to S$ mapa na $S,\ s\in p(o),\ pak$ II má v lokálních souřadnicích daných mapou p tvar

$$II(X,Y) = \sum_{i,j=1}^{2} h_{i,j} \alpha_i \beta_j.$$

Definice 1.9

Matice II vzhledem k bázi $\{p_{u_1}, p_{u_2}\}$ je $h = (h_{i,j})_{i,j}$, kde $h_{i,j} = \langle w(p_{u^i}), p_{u^j} \rangle$.

Věta 1.9 (Mensier)

Nechť S je orientovaná plocha, $a: I \to S$ regulární, $I \subseteq \mathbb{R}$ interval. Nechť $t(s), \varkappa(s), n(s)$ jsou tečný vektor, křivost a vektor hlavní normály. Pak

$$II_{c(s)}(t(s), t(s)) = \varkappa(s), \cos \beta,$$

kde β je úhel mezi N(c(s)) a n(s).

1.3 Normálová křivost plochy

Definice 1.10

Normálová křivost orientované plochy S v bodě $s \in S$ se definuje jako

$$_{n}(X) := \frac{II(X,X)}{I(X,X)}, \qquad X \in T_{s}S.$$

Poznámka

n=N, potom z Mensierovy věty je = II(c',c') – geometrická interpretace II.

Definice 1.11

Minimum a maximum n v $s \in S$ se nazývají hlavní křivosti S v s a odpovídající směry se nazývají hlavní směry.

Definice 1.12

V každém bodě S definujeme 1) Gaussovu křivost jako $K =_1 \cdot_2$ (součin hlavních křivostí), 2) Střední křivost $H = (_1+_2)/2$.

Věta 1.10

Jsou-li $\lambda_1 \neq \lambda_2$ dvě řešení $\det(h_u - \lambda g_u) = 0$ (*) a $\zeta_1 \neq \zeta_2$ odpovídající řešení $(h_u - \lambda g_u)\zeta = 0$ (**). Pak $g_u(\zeta_1, \zeta_2) = 0$.

Hlavní směry jsou vlastní vektory (ζ_1, ζ_2) Weig. zobrazení W a křivosti jsou vlastní čísla (λ_1, λ_2) .

Definice 1.13

Mohou nastat tyto případy: 1) Rovnice (*) má jediné řešení λ_1 , pak $\lambda_1 = K_n(x) \forall x \in T_s S$ (každý směr je hlavní směr – $\lambda_1 = 0$, pak je s tzv. planární bod, $\lambda_1 \neq 0$, pak je s tzv. kruhový bod.

2) Rovnice (*) má 2 různá řešení $\lambda_1 < \lambda_2$ hlavní směry x_1, x_2 jsou kolmé – pokud $\lambda_1, \lambda_2 > 0$, pak s je eliptický bod, $\lambda_1 \cdot \lambda_2 = 0$, pak je parabolický, nebo $\lambda_1, \lambda_2 < 0$, pak je hyperbolický.

Věta 1.11

$$\overline{\text{Je-li }p:O\to S,\ p(u)=s\in S,\ pak\ 1)\ K(s)=\frac{\det h_u}{\det g_u}\ a\ 2)\ H(s)=\frac{g_u^{11}h_u^{22}+g_u^{22}h_u^{11}-2g_u^{12}h_u^{12}}{2\det g_u}}.$$

Definice 1.14

S je orientovaná plocha, $p:O\to S$ mapa. 1) Křivky $u\mapsto p(u,v),\,v$ pevné, a $v\mapsto p(u,v),\,u$ pevné, jsou tzv. parametrické křivky. 2) Regulární křivka $c:I\to S$ je hlavní křivka, pokud c'(t) je hlavní směr $\forall t\in I.$ 3) Nenulový vektor $x\in T_SS$ je asymptotický směr na S v s,

5

pokud $II_s(x,x) = 0$. Regulární křivka $c: I \to S$ se nazývá asymptotická křivka, jestliže c'(t) je asymptotický směr $\forall t \in I$.

Věta 1.12

- 1) Je-li K(s) > 0, pak v s neexistuje žádný asymptotický směr.
 - 2) Je-li K(S) < 0, pak v s existují právě 2 zřejmě asymptotické směry.
- 3) Je-li K(s) = 0 a $0 = \lambda_1(s) + \lambda_2(s)$, pak \exists právě jeden asymptotický směr a ten je zároveň hlavním.
 - 4) Je-li K(S)=0 a $0=\lambda_1(s)=\lambda_2(s)=0$, pak je každý směr asymptotický.

Věta 1.13

 $Je-li\ p:O \to S\ a\ c(t)=p(u(t),v(t))\ na\ S\ je\ hlavn'i\ k\check{r}ivka \Leftrightarrow \det(TODO)=0,$

2) asymptotická křivka $\Leftrightarrow h^{11}(u')^2 + 2h^{12}u'v' + h^{22}(v')^2$.

1.4 Křivky

Poznámka (Značení)

$$\mathbf{p}_1 := \frac{\partial \mathbf{p}}{\partial u^1}.$$
$$a = g^{-1}.$$

Lemma 1.14

1)
$$\mathbf{p}_{ij} = \sum_{k} \Gamma_{ij}^{k} \mathbf{p}_{k} + h^{ij} \mathbf{n}$$
.

2)
$$\mathbf{n}_i = -\sum \sum h^{il} a_l^k \mathbf{p}_k$$
.

Definice 1.15 (Christoffelovy symboly)

$$\overline{\Gamma_{ij}^k = \sum a^{kl} (\mathbf{p}_{ij} \cdot \mathbf{p}_l) = \frac{1}{2} \sum a^{kl} (g_j^{il} + g_i^{jl} - g_l^{ij}).}$$

Poznámko

Vnitřní vlastnosti plochy jsou ty, které závisí jen na g^{ij} . (Tedy např. 1. f. f. je, 2. f. f. není.)

Poznámka

Předpokládejme $\mathbf{p}(u^1, u^2)$ má 3 spojité parciální derivace. Potom

$$\mathbf{p}_{ijk} = \mathbf{p}_{ikj}$$
.

Důsledkem je $\mathbf{p}_{ij} = \sum \Gamma_{ij}^k \mathbf{p}_k + h^{ij} \mathbf{n}$ a derivací

$$\sum_{l}((\Gamma_{ij}^{l})_{k}\mathbf{p}_{l}+\Gamma_{ij}^{l}\mathbf{p}_{kl})+h_{k}^{ij}\mathbf{n}+h^{ij}\mathbf{n}_{k}=$$

$$\sum_{l} ((\Gamma_{ik}^{l})_{j} \mathbf{p}_{l} + \Gamma_{ik}^{l} \mathbf{p}_{jl}) + h_{j}^{ik} \mathbf{n} + h^{ik} \mathbf{n}_{j}$$

Rozepsáním a porovnáním koeficientů u báze $(\mathbf{p}_1, \mathbf{p}_2, \mathbf{n})$ dostaneme Gaussovu a Codazzi-Mainardovu rovnici.

TODO GCM rovnice.

Věta 1.15 (Bonnet)

Je-li $U \subseteq \mathbb{R}^2$, g, h symetrické 2×2 matice závislé na $u \in U$ takové, že g je positivně definitní a platí GCM rovnice. Pak existuje parametrická plocha $\mathbf{p}: U \to \mathbb{R}^3$, jejíž 1. a 2. f. f. je právě g a h.

p je jednoznačně určena až na shodnost.

Věta 1.16 (Theorema egregium (Skvělá obdivuhodná věta))

Gaussova křivost je vnitřní vlastnost plochy.

Důsledek

Rovina a koule nejsou isometrické.

Tvrzení 1.17

Je-li $S \subset \mathbb{R}^3$ plocha pro kterou $\equiv 0$, pak $\forall s \in S \ \exists u : S \ je isometrická s kusem roviny.$

∃ 2 plochy, které mají kladnou v odpovídajících bodech, ale nejsou isometrické.

1.5 Geodetiky

Definice 1.16

Splocha v $\mathbb{R}^3.$ Regulární křivka $c:I\to S$ je geodetika na ploše S, pokud $\forall t\in I:\det(c'(t),c''(t),N(c(t)))=0.$

Poznámka

Bytí geodetikou nezávisí na parametrizaci.

Definice 1.17

Geodetická křivost křivky je

$$_g = \frac{\det(c',c'',N \circ c)}{||c'||^3}, t \in I.$$

Poznámka

cgeodetika $\implies {}_g=0.$ ${}_g$ nezávisí na změně parametrizace, pouze na její orientaci.

Věta 1.18

Je-li c regulární křivka na S bez inflexních bodů, pak

$$\cdot \mathbf{n} =_n (\mathbf{t}) \mathbf{N} +_g (\mathbf{N} \times \mathbf{t}),$$

$$^2 =_n^2 (\mathbf{t}) +_g^2.$$

Definice 1.18

Nech
t $c:I\to S,\,S$ orientovaná, $\mathbf{X}:I\to\mathbb{R}^3$ vektorové pole. Pak definujeme kovariantní derivace

$$\frac{\nabla \mathbf{X}}{dt} := \Pi_s(\mathbf{X}'(t)),$$

kde Π_s je ortogonální projekce.

Regulární křivka $c: I \to S$ je parametrizovaná geodetika, pokud

$$\forall t \in I : \frac{\nabla c}{dt} = 0$$

Věta 1.19

Nechť $c: I \to S$ je regulární křivka, S orientovaná plocha. Pak jsou ekvivalentní: 1) c je parametrizovaná geodetika, 2) c''(t) je násobek N(c(t)), 3) c je geodetika a ||c'(t)|| je konstantní.

Věta 1.20

Je-li \mathbf{v} jednotkový tečný vektor v bodě $s \in S$, S orientovaná, pak $\exists !$ geodetika parametrizovaná obloukem, která prochází bodem $s \in S$ a její tečný vektor v bodě s je \mathbf{v} .

8

2 Hyperbolická geometrie

 $\equiv -1$

Definice 2.1 (Hyperboloid)

$$H_2 = \left\{ x = (x_1, x_2, x_0) \in \mathbb{R}^3 | x_0^2 - x_1^2 - x_2^2 = 1 \land x_0 > 0 \right\}.$$

 $B(x,y) = x_1y_1 + x_2y_2 - x_0y_0.$

Věta 2.1

Restrikce B na T_xH_2 je pozitivně definitní $\forall x \in H_2$.

Poznámka (Značení)

$$SO(2,1) := \left\{ A \in SL(3,\mathbb{R}) | B(AX,AY) = B(X,Y) \forall X,Y \in \mathbb{R}^3 \right\}$$

Věta 2.2

 $A \in SO(2,1)$ je izometrie na H_2 .