Felipe Santos Lins

1)Converta da base Binária para base Decimal

a) 10110₂:

22

Portanto, 10110₂ em base binária é igual a 22 em base decimal.

b) 11101₂:

29

Portanto, 11101₂ em base binária é igual a 29 em base decimal.

c) 110110₂:

Portanto, 110110₂ em base binária é igual a 54 em base decimal.

d) 1001011₂:

$$(1 * 2^6) + (0 * 2^5) + (0 * 2^4) + (1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (1 * 2^0)$$

 $(1 * 64) + (0 * 32) + (0 * 16) + (1 * 8) + (0 * 4) + (1 * 2) + (1 * 1)$
 $64 + 0 + 0 + 8 + 0 + 2 + 1$

Portanto, 1001011₂ em base binária é igual a 75 em base decimal.

e) 111111₂:

Portanto, 111111₂ em base binária é igual a 63 em base decimal.

2)Converta da base Decimal para base Binária

a) 150₁₀:

$$150 \div 2 = 75$$
, resto 0
75 ÷ 2 = 37, resto 1

```
37 \div 2 = 18, resto 1
```

$$18 \div 2 = 9$$
, resto 0

$$4 \div 2 = 2$$
, resto 0

$$2 \div 2 = 1$$
, resto 0

$$1 \div 2 = 0$$
, resto 1

Portanto, 150_{10} em base decimal é igual a 10010110_2 em base binária.

b) 300₁₀:

 $300 \div 2 = 150$, resto 0

$$150 \div 2 = 75$$
, resto 0

$$75 \div 2 = 37$$
, resto 1

$$37 \div 2 = 18$$
, resto 1

$$18 \div 2 = 9$$
, resto 0

$$9 \div 2 = 4$$
, resto 1

$$4 \div 2 = 2$$
, resto 0

$$2 \div 2 = 1$$
, resto 0

$$1 \div 2 = 0$$
, resto 1

Portanto, 300_{10} em base decimal é igual a 100101100_2 em base binária.

c) 450₁₀:

 $450 \div 2 = 225$, resto 0

225 ÷ 2 = 112, resto 1

 $112 \div 2 = 56$, resto 0

 $56 \div 2 = 28$, resto 0

 $28 \div 2 = 14$, resto 0

 $14 \div 2 = 7$, resto 0

 $7 \div 2 = 3$, resto 1

 $3 \div 2 = 1$, resto 1

 $1 \div 2 = 0$, resto 1

Portanto, 450_{10} em base decimal é igual a 111000010_2 em base binária.

d) 550₁₀:

 $550 \div 2 = 275$, resto 0

275 ÷ 2 = 137, resto 1

 $137 \div 2 = 68$, resto 1

 $68 \div 2 = 34$, resto 0

 $34 \div 2 = 17$, resto 1

 $17 \div 2 = 8$, resto 1

 $8 \div 2 = 4$, resto 0

 $4 \div 2 = 2$, resto 0

 $2 \div 2 = 1$, resto 0

 $1 \div 2 = 0$, resto 1

Portanto, 550_{10} em base decimal é igual a 1000100110_2 em base binária.

e) 700₁₀:

 $700 \div 2 = 350$, resto 0 $350 \div 2 = 175$, resto 0 $175 \div 2 = 87$, resto 1 $87 \div 2 = 43$, resto 1 $43 \div 2 = 21$, resto 1 $21 \div 2 = 10$, resto 1 $10 \div 2 = 5$, resto 0 $5 \div 2 = 2$, resto 1 $2 \div 2 = 1$, resto 0 $1 \div 2 = 0$, resto 1

Portanto, 700_{10} em base decimal é igual a 10101111100_2 em base binária.

3)Converta da base Hexadecimal para base Decimal a) 1A₁₆:

Portanto, 1A₁₆ em base hexadecimal é igual a 26 em base decimal.

b) FF₁₆:

Portanto, FF₁₆ em base hexadecimal é igual a 255 em base decimal.

c) 2E₁₆:

Portanto, 2E₁₆ em base hexadecimal é igual a 46 em base decimal.

d) 3C₁₆:

Portanto, $3C_{16}$ em base hexadecimal é igual a 60 em base decimal.

e) 5D₁₆:

```
5D<sub>16</sub> = (5 * 16^1) + (13 * 16^0)
= (5 * 16) + (13 * 1)
= 80 + 13
= 93
```

Portanto, 5D₁₆ em base hexadecimal é igual a 93 em base decimal.

4)Converta da base Decimal para base Hexadecimal

a) 42₁₀:

Portanto, 42₁₀ em base decimal é igual a 2A₁₆ em base hexadecimal.

b) 255₁₀:

```
255 ÷ 16 = 15, resto 15 (F)
```

 $15 \div 16 = 0$, resto 15

Portanto, 255₁₀ em base decimal é igual a FF₁₆ em base hexadecimal.

c) 163₁₀:

```
163 \div 16 = 10, resto 3 (A)
10 \div 16 = 0, resto 10 (A)
```

Portanto, 163₁₀ em base decimal é igual a A3₁₆ em base hexadecimal.

d) 78₁₀:

Portanto, 78_{10} em base decimal é igual a $4E_{16}$ em base hexadecimal.

e) 123₁₀:

Portanto, 123₁₀ em base decimal é igual a 7B₁₆ em base hexadecimal.

5)Converta da base Octal para base Decimal

a) 34₈:

Portanto, 34₈ em base octal é igual a 28 em base decimal.

b) 127₈:

Portanto, 127₈ em base octal é igual a 87 em base decimal.

c) 562₈:

$$562_8 = (5 * 8^2) + (6 * 8^1) + (2 * 8^0)$$

Portanto, 562₈ em base octal é igual a 370 em base decimal.

d) 745₈:

Portanto, 745₈ em base octal é igual a 485 em base decimal.

e) 6421₈:

Portanto, 6421₈ em base octal é igual a 3345 em base decimal.

6)Converta da base Decimal para base Octal

a) 42₁₀:

$$42 \div 8 = 5$$
, resto 2

$$5 \div 8 = 0$$
, resto 5

Portanto, 42_{10} em base decimal é igual a 52_8 em base octal.

b) 255₁₀:

$$255 \div 8 = 31$$
, resto 7

$$31 \div 8 = 3$$
, resto 7

$$3 \div 8 = 0$$
, resto 3

Portanto, 255_{10} em base decimal é igual a 377_8 em base octal.

c) 163₁₀:

$$163 \div 8 = 20$$
, resto 3

$$20 \div 8 = 2$$
, resto 4

$$2 \div 8 = 0$$
, resto 2

Portanto, 163₁₀ em base decimal é igual a 243₈ em base octal.

d) 78₁₀:

 $78 \div 8 = 9$, resto 6

 $9 \div 8 = 1$, resto 1

 $1 \div 8 = 0$, resto 1

Portanto, 78_{10} em base decimal é igual a 116_8 em base octal.

e) 123₁₀:

123 ÷ 8 = 15, resto 3

 $15 \div 8 = 1$, resto 7

 $1 \div 8 = 0$, resto 1

Portanto, 123₁₀ em base decimal é igual a 173₈ em base octal.