Algorithm performance

Asymptotic analysis

Drop constants

$$10000000 = O(1)$$

fastest growing

$$3n+3=O(3n)$$

$$3n+3 = O(3n) = O(n)$$

Examples?

IVQ

- f(n) = 3 log_2 n + 4n log_2 n + n. Which of the following is true?
 - $f(n) = O(log_2 n)$
 - $f(n) = O(n \log_2 n)$
 - $f(n) = O(n^2)$ ** In response, industry / academic use of O
 - f(n) = O(n)
- f(n) = 100. Which of the following is true?
 - $f(n) = O(2^n)$
 - $f(n) = O(n \land 2)$
 - f(n) = O(n)
 - f(n) = O(1)

Formally

$$f(n) = O(g(n))$$

means

there are constants N and c so that for each n > N, $f(n) \le C g(n)$

Next up ...

Analyzing code