南京大学《微积分11》(第一层次)第二学期期末考试试卷 2011.6

一、计算下列各题(本题满分6分,共42分)

1. 设
$$f$$
 可微, $z = f(xy, x^2 - y^2)$, 求 $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y}$.

- 2. 交换二次积分 $\int_0^1 dx \int_x^{2-x} f(x,y) dy$ 的次序 .
- 3. 求 $\iint_{\Sigma} dydz + \sqrt{z}dxdy$ 其中 $\Sigma : z = x^2 + y^2 (0 \le z \le 1)$, 取上侧 .
- 4. 判别级数 $\sum_{n=2}^{\infty} \frac{(-1)^n \ln^2 n}{n}$ 的敛散性(包含绝对收敛, 条件收敛与发散).
- 5. 求函数 $f(x) = arc \tan(x^2)$ 关于 x 的幂级数展开式 .
- 6. 在函数 $f(x) = x(0 \le x \le \pi)$ 的余弦级数展开式中,求傅里叶系数 a_3 .
- 7. 求微分方程 $v'' + 2v' + 5v = e^{-x}$ 的通解 .
- 二、(10 分)设 Γ 为 $y = \sin x$ 上自点(0,0)到点(π ,0)的一段弧,

$$\Re \int_{\Gamma} \left(\frac{x}{1+x^2} + y \cos(xy) \right) dx + x(1+\cos(xy)) dy.$$

三、(10 分) 设常数
$$a > 0$$
, 讨论级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{a^n}{1+a^{2n}}$ 的敛散性.

四、(10分) 求级数
$$\sum_{n=1}^{\infty} \frac{1}{n!(n+3)}$$
 的和 .

五、(14分) 求微分方程
$$y'' + y = \frac{1}{\sin 2x}$$
 的通解.

六、(14分)本题含两个小题, 商学院学生解第(1)小题, 理科专业学生解第(2)小题. 理科专业学生若不会解第(2)小题, 可解第(1)小题, 但折半给分.

(1) (商学院学生解) $\Omega: x^2+y^2+z^2 \le 1$, Σ 为立体 Ω 的表面的外侧,求 $\iint_{\mathbb{R}} x^3 dy dz + y^3 dz dx + z^3 dx dy .$

(2) (理科专业学生解)
$$\Omega: x^2 + y^2 + z^2 \le 2z$$
, Σ 为立体 Ω 的表面,求
$$\iint_{\Sigma} (x^4 + y^4 + z^4 - z^3) dS .$$

南京大学《微积分11》(第一层次)第二学期期末考试试卷 2012.6

- 一、计算下列各题(10×6=60分)
- 1. 计算曲面积分 $\iint_S z dS$, 其中 S 是球面 $x^2 + y^2 + z^2 = a^2$ 被平面 z = h (0 < h < a) 截出的顶部.
- 2. 计算曲面积分 $\iint_S (x-y)dxdy + (y-z)xdydz$, 其中 S 为柱面 $x^2 + y^2 = 1$ 及平面

z=0, z=3 所围成的空间闭区域 V 的整个边界曲面的外侧.

3. 求级数
$$\sum_{n=1}^{\infty} \frac{n}{(2n-1)^2(2n+1)^2}$$
的和.

- 4. 求幂级数 $x \frac{x^2}{2} + \frac{x^3}{3} \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ 的收敛半径与收敛域.
- 5. 求方程 $y'' + y = x^2$ 的通解.
- 6. 求微分方程 (x-y)dx + (x+y)dy = 0 的通解.
- 7. 求函数 $\ln \frac{1+x}{1-x}$ 在x=0处的泰勒展式.
- 8. 判别广义积分 $\int_0^{+\infty} \frac{\arctan x}{1+x^p} dx (p>0)$ 的敛散性.
- 9. 计算曲线积分 $\int_{C} \sqrt{x^2 + y^2} ds$, 其中C为圆周 $x^2 + y^2 = ay(a > 0)$.
- 10. 计算三重积分 $\iint\limits_{\Omega}y^2dxdydz$, 其中 Ω 为锥面 $z=\sqrt{4x^2+4y^2}$ 与z=2所围立体.
- 二、 $(10\,
 m 分)$ 讨论当实数 p 为何值时,级数 $\sum_{n=1}^{\infty} \left(\frac{1}{n} \sin\frac{1}{n}\right)^p$ 收敛,实数 p 为何值时,级数 发散.
- 三、(10 分) 设函数 f(x), g(x) 连续可微,f(0) = g(0) = 0,使得曲线积分

$$\int_{(0,1,0)}^{(1,0,1)} ((x^2 - f(x))y + \frac{1}{2}g(x)y^2) dx + (f(x)y - g(x))dy + dz$$

与路径无关,求出f(x),g(x),并求该曲线积分的值.

四、 $(10\ eta)$ 1. 设函数 f(x) 是以 2π 为周期的周期函数,它在 $[-\pi,\pi]$ 上的表达式为 $f(x) = \pi^2 - x^2 \ , (-\pi \le x \le \pi) \ , \ \$ 求函数 f(x) 在 $[-\pi,\pi]$ 上的傅里叶展开式.

2. 求级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2}$$
 的和. 3. 求级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 的和.

五、(本题为非商学院的学生必做题,商学院的学生可以选做此题,10~分)已知曲线积分 $\int_L \frac{xdy-ydx}{f(x)+8y^2}$ 恒等于常数 A,其中函数 f(x) 连续可导,L 为任意包围原点 O(0,0) 的简单 闭曲线,取正向,

(1) G 为不包含原点的单连通区域,证明: G 内的曲线积分 $\int_C \frac{xdy - ydx}{f(x) + 8y^2}$ 与路径无关,

其中C为完全位于G内的曲线. (2) 求函数 f(x) 与常数 A.

六、(本题商学院的学生必做,非商学院的学生做了不给分,10分)利用斯托克斯公式计算曲线积分

$$\int_C (y-z)dx + (z-x)dy + (x-y)dz.$$

其中 C 是椭圆 $x^2 + y^2 = a^2$, $\frac{x}{a} + \frac{z}{h} = 1$ (a > 0, h > 0),若从 Ox 轴的正向看去,此椭圆是 依逆时针方向进行的(图略).

南京大学《微积分11》(第一层次)第二学期期末考试试卷 2013.6.26

- 一、计算下列各题(10×5=50分)
- 1. 计算曲面积分 $\iint_S z dS$, 其中 S 是球面 $x^2 + y^2 + z^2 = a^2$ 被平面 z = h (0 < h < a) 截出的顶部.
- 2. 求级数 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$ 的和.
- 3. 求幂级数 $\sum_{n=1}^{\infty} \frac{3^n + (-2)^n}{n} (x+1)^n$ 的收敛半径,收敛区间与收敛域.
- 4. 求微分方程 y''-2y'+5y=0 的通解.
- 5. 解微分方程 $\frac{dy}{dx} = \frac{y^2}{xy + x^2}$.
- 6. 判别广义积分 $\int_{2}^{+\infty} \frac{1}{x^2+x-2} dx$ 的敛散性, 若收敛, 计算其值.
- 7. 计算曲面积分 $\iint_S xyzdxdy$, 其中 S 是球面 $x^2 + y^2 + z^2 = 1$ 外侧在 $x \ge 0$, $y \ge 0$ 的部分.
- 8. 计算曲线积分 $\int_C \frac{xdy-ydx}{x^2+y^2}$,其中 C 为椭圆周 $\frac{x^2}{25}+\frac{y^2}{16}=1$,积分按逆时针方向进行.
- 9. 求曲面 $z = x^2/2 + y^2$ 平行于平面 2x + 2y z = 0 的切平面方程.

10. 计算三重积分
$$\iint\limits_{\Omega} z dx dy dz$$
, 其中 Ω 是区域 $x^2 + y^2 + z^2 \le 4z$, $\sqrt{x^2 + y^2} \le z$.

二、 (8 分) 设区域
$$\Omega = \{(x, y, z) \mid 0 \le z \le t, x^2 + y^2 \le t^2\}(t > 0)$$
,函数 $f(u)$ 可导并且
$$f(0) = 0, f'(0) = 2, F(t) = \iiint_{\Omega} f(x^2 + y^2) dx dy dz. 求 \lim_{t \to 0+} \frac{F(t)}{t^5}.$$

三、
$$(10 分)$$
 设函数 $f(x)$ 二阶连续可微,满足 $\int_0^x (x+1-t)f'(t)dt = x^2 + e^x - f(x)$,求函数 $f(x)$.

四、(12 分) 计算曲线积分 $\int_{l} (x^2 - yz) dx + (y^2 - xz) dy + (z^2 - xy) dz$, 其中积分曲线 l 是从 A(a,0,0) 到 B(a,0,h) 的螺线: $x = a\cos\varphi$, $y = a\sin\varphi$, $z = h\varphi/(2\pi)$.

五、 $(12 \, \%)$ 1. 设函数 f(x) 是周期为 2 的周期函数,并且 f(x) = 2+x, $(-1 \le x \le 1)$, 求 f(x)

在[-1,1]上的傅里叶展开式. 2. 求级数
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$$
 的和. 3. 求级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 的和.

六、(8 分) 设 f(x) 是 $[0,+\infty)$ 上的连续可微函数使得广义积分 $\int_1^{+\infty} |f'(x)| dx$ 收敛,证明:

如果级数 $\sum_{n=1}^{\infty} f(n)$ 收敛,则广义积分 $\int_{1}^{+\infty} f(x) dx$ 收敛.

参考答案:

10 级: 一、1.
$$(x^2+y^2)f_1'$$
; 2. $\int_0^1 dy \int_0^y f(x,y)dx + \int_1^2 dy \int_0^{2-y} f(x,y)dx$

3.
$$2\pi/3$$
; 4. 条件收敛; 5. $\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} x^{4n+2} (|x| \le 1)$; 6. $-4/(9\pi)$;

7.
$$y = e^{-x} (C_1 \cos 2x + C_2 \sin 2x) + \frac{1}{4} e^{-x}$$
. 二. $\frac{1}{2} \ln(1 + \pi^2) - 2$. 三. $0 < a < 1$ 绝对收敛, a>1 绝对收敛, a=1 发散. 四. e-(7/3).

五. $y = C_1 \cos x + C_2 \sin x - \frac{1}{2} \cos x \ln |\sec x + \tan x| + \frac{1}{2} \sin x \ln |\csc x - \cot x|$. 六. (1) $12\pi/5$, (2) $32\pi/5$.

11 级: 一、1.
$$\pi a(a^2-h^2)$$
; 2. $-\frac{9\pi}{2}$; 3. $1/8$; 4. $R=1$, 收敛域为(-1,1] ;

5.
$$y = C_1 \sin x + C_2 \cos x + x^2 - 2$$
; 6. $x^2 + y^2 = Ce^{\frac{2 \arctan \frac{x}{y}}{y}}, C > 0$.

7.
$$2\sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n+1}$$
, $(-1 < x < 1)$; 8. $0 时发散, $p > 1$ 时收敛; 9. $2a^2$;10. $\pi/10$.$

二. p > 1/3 时级数收敛, $p \le 1/3$ 时级数发散.

$$\equiv$$
. $f(x) = -e^{-x} - e^{x} + x^{2} + 2$, $g(x) = e^{-x} - e^{x} + 2x$, 1.

12 级: 一、1、 $\pi a(a^2 - h^2)$. 2、3、 3、R = 1/3,收敛区间 (-4/3, -2/3),收敛域 [-4/3, -2/3).

4、 $y = e^x(C_1\cos 2x + C_2\sin 2x)$, 5、 $y/x + \ln|y| + C = 0$, y = 0 为奇解. 6、收敛, $\frac{2}{3}\ln 2$.

7, 2/15. 8,
$$2\pi$$
. 9, $2x+2y-z=3$. 10, $\frac{56}{3}\pi$. Ξ , π .

$$\equiv f'(x) + 0.5 f(x) = 0.5 e^x + x + 0.5, f(0) = 1, \therefore f(x) = 11 e^{-0.5x} / 3 + e^x / 3 + 2x - 3.$$

四、
$$h^3/3$$
. 五、 $f(x) = \frac{5}{2} - \frac{4}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \cos(2n+1)x, (|x| \le 1) \cdot \frac{\pi^2}{8}, \frac{\pi^2}{6}$. 六、(略)