Docket No.: 13077-00124-US Reply to Office Action of June 30, 2008

AMENDMENTS TO THE CLAIMS

1-10 (Cancelled)

11. (New) A process for the production of a valve metal oxide powder which comprises

continuous reacting a fluoride-containing valve metal compound with a base in the presence of

water at a temperature of at least 45°C and calcination of the resultant product, wherein the

fluoride-containing valve metal compound is employed as an aqueous solution at a concentration

of 0.3 mol/l to 1.2 mol/l, based on the amount of valve metal, wherein the base is an aqueous

ammonia solution with a concentration of 3 weight percent to 15 weight percent and the reaction

is carried out continuously, wherein the volumetric flow ratios are adjusted such that the ratio of

the volumetric flow rate of an aqueous solution of the fluoride-containing valve metal compound

to the volumetric flow rate of the aqueous solution of the base is from 1:0.9 to 1:2, and wherein

the molar concentration ratio of fluoride-containing valve metal compound, calculated as valve

metal, to base is adjusted to from 1: 5.6 to 1: 8.5 and the, reaction is performed in a single

reaction vessel.

12. (New) The process according to claim 11, wherein the residence time in the reaction vessel

is between 30 minutes and 3 hours.

13. (New) The process according to claim 11, wherein the fluoride-containing valve metal

compound and the base used are in each case used in the form of an aqueous solution or

suspension.

14. (New) The process according to claim 11, wherein the fluoride-containing valve metal

2

compound is H_2NbF_7 or H_2TaF_7 .

640974

Reply to Office Action of June 30, 2008

640974

The process according to claim 11, wherein the reaction of the fluoride-containing 15. (New) valve metal compound with the base is performed at a pH value, measured at reaction temperature, of 7 to 14.

- 16. (New) A spherical valve metal oxide powder with an average particle diameter D_{50} , determined by MasterSizer to ASTM B 822, of 10 to 80 µm, characterized in that the BET surface area, determined by the N₂ 3-point method according to ASTM D 3663, is at least 10 m²/g.
- 17. (New) The valve metal oxide powder according to claim 16, wherein the valve metal oxide is a niobium or tantalum oxide.
- The valve metal oxide powder according to claim 17, wherein the valve metal 18. (New) oxide is Nb₂O₅ or Ta₂O₅.
- 19. (New) The valve metal oxide powder according to claim 16, wherein the BET surface area determined by the N₂ 3-point method according to ASTM D 3663, is at least 15 m²/g.
- 20. (New) The valve metal oxide powder according to claim 16, wherein the BET surface area determined by the N₂ 3-point method according to ASTM D 3663, is at least 20 m²/g.
- 21. (New) The valve metal oxide powder according to claim 16, wherein the BET surface area determined by the N₂ 3-point method according to ASTM D 3663, is at least 40 m²/g.
- 22. (New) The valve metal oxide powder according to claim 16, wherein the BET surface area determined by the N₂ 3-point method according to ASTM D 3663, is at least 60 m²/g.
- 23. (New) The valve metal oxide powder according to claim 16, wherein when applying said powder onto a square slide with an adhesive surface, an area is measured in which at least 200 particles are visible, and the powder particles visible in this image are evaluated by laying a circle around an imaged powder particle, the circle touching the two maximally distant points on the circumference of the particle, a further circle with an identical center point is drawn, but now touching the two minimally distant points on the circumference of the particle, the ratio of the diameter of these two circles is used as a criterion for describing the morphology of the valve 3

Reply to Office Action of June 30, 2008

metal oxide powder wherein at least 95% of the powder particles exhibit a ratio of the diameter of the larger circle to the diameter of the smaller circle of 1.0 to 1.4.

24. (New) A process for the production of valve metal powders or valve metal suboxide powders which comprises converting the valve metal oxide powder according to claim 16 to a valve metal powder or valve metal suboxide powder by reduction.

25. (New) The valve metal oxide powder according to claim 23, wherein the BET surface area determined by the N_2 3-point method according to ASTM D 3663, is at least 60 m²/g.

26. (New) The valve metal oxide powder according to claim 18, wherein the BET surface area determined by the N_2 3-point method according to ASTM D 3663, is at least 60 m²/g.

4

640974