论文名称	状态变量 X	转移矩阵 F	观测变量 Z	观测矩阵 H	过程噪声 Q	观测噪声 R	备注
基于 ARM 与低成 本 MEMS 器件的 AHRS 设计	4×四元数 q	四元数微分方程的矩阵形式	3×加速度计 g or 3×电子罗盘 m	观测方程: $h = C_n^b v(v)$ 为加速度计或电子罗盘在 n 系中的参考向量) 对观测方程在 <u>先验概率估计处</u> 求偏导 $H = \frac{\partial h}{\partial x} \Big _{x=x^-}$			原文在上一次状态 估计处求偏导,而 这里的观测矩阵的 线性化属于广义 EKF 算法
用于微小型飞行器 姿态估计的四元数 扩展卡尔曼滤波算 法	$3 imes$ 误差四元数 $oldsymbol{q}_e$ $3 imes$ 陀螺仪随机漂移 Δ_b	误差四元数微分方程 $\dot{\boldsymbol{q}}_{e} = -[\hat{\boldsymbol{\omega}}_{b} \times] \boldsymbol{q}_{e} - \frac{1}{2} \boldsymbol{\varepsilon} (\boldsymbol{\varepsilon} = \boldsymbol{\Delta}_{b} + \boldsymbol{w}_{g})$ 陀螺仪随机漂移方程 $\dot{\boldsymbol{\Delta}}_{b} = \boldsymbol{w}_{b} (随机漂移导数\boldsymbol{w}_{b} \boldsymbol{\Sigma} \hat{\boldsymbol{\sigma}} + \boldsymbol{\Sigma} \hat{\boldsymbol{\omega}} \hat{\boldsymbol{\omega}})$ 般而言为 $\boldsymbol{0}$ 或者极小的常数)	3×误差四元数 q e	高斯-牛顿法求得观测四元数 \mathbf{Q}_s $\mathbf{Q}_I \otimes \mathbf{Q}_s^{-1}$ 取后三行向量作为 \mathbf{Z} $\mathbf{H} = [-I_{3\times3} \ O_{3\times3}]$			最终的四元数 $Q = Q_I \otimes \hat{Q}_{Ie}(Q_I)$ 为四元数微分方程而来, \hat{Q}_{Ie} 为 Kalman 滤波器输出)
基于 MEMS 的分散 式低阶 AHPRS 系 统设计	姿态 Kalman: $3 imes$ 误差四元数 $oldsymbol{q}_e$ $3 imes$ 陀螺仪随机漂移 $oldsymbol{\varepsilon}_b$ $3 imes$ 一阶马尔可夫过程 $oldsymbol{\varepsilon}_r$	误差四元数微分方程 $\dot{q}_e = -[\hat{\omega}_b \times] q_e - \frac{1}{2} (\varepsilon_b + \varepsilon_r + w_g)$ $\dot{\varepsilon}_b = 0$ $\dot{\varepsilon}_r = -\frac{1}{T_r} \varepsilon_r + w_{gw}$	3×误差四元数 q e	$m{Z} = m{Q}_I \otimes m{Q}_a^{-1}(m{Q}_a$ 为补偿 Kalman 滤波器输出, $m{Q}_I$ 由四元数微分方程求出),取后三行 $m{H} = [-I_{3\times3} \ O_{3\times6}]$			两个亮点: 1、补 偿 Kalman 和姿态 Kalman; 2、加入 了位置参考,即 AHPRS
Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing	4×四元数 q 3×加计随机漂移 ^a b 3×地磁随机漂移 ^m b	四元数微分方程的状态转移矩阵 $e^{\Omega T_s}$ (近似解法: 毕卡法,泰勒级数展开) 加计和地磁的随机漂移方程直接传递 四元数过程噪声与陀螺仪测量噪声的关系: ${}^q w = -\frac{T_s}{2} \Xi^g v = -\frac{T_s}{2} \begin{bmatrix} [e \times] + q_0 \mathbb{I} \\ -e^T \end{bmatrix}^g v$ (e 为四元数向量部分, g v为陀螺仪测量噪声。 重要公式: $Xq = \Xi x$)	3×加速度计 g 3×电子罗盘 m	观测方程: $\mathbf{Z} = \begin{bmatrix} \mathbf{C}_n^b(q) \\ \mathbf{C}_n^b(q) \end{bmatrix} \begin{bmatrix} \mathbf{g} \\ \mathbf{h} \end{bmatrix} + \begin{bmatrix} a \mathbf{b} \\ m \mathbf{b} \end{bmatrix} + \begin{bmatrix} a \mathbf{v} \\ m \mathbf{v} \end{bmatrix}$ 观测矩阵 $\mathbf{H} = \frac{\partial \mathbf{Z}}{\partial \mathbf{x}} \Big _{\mathbf{X} = \mathbf{X}^-}$ (后验概率估计处求偏导)	$ \begin{aligned} & \boldsymbol{Q} \\ & = \begin{bmatrix} (T_s/2)^2 \mathbf{E} \sum_g \mathbf{E}^T \\ & & \mathbf{E} \end{bmatrix} \\ & & \sum_g = \sigma_g^2 \mathbf{I} \\ & & a_{\sum} = T_s a_{\sigma_w}^2 \mathbf{I} \\ & & a_{\sum} = T_s a_{\sum}^2 \mathbf{E}^T \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E}$	$m{R} = \left[egin{array}{c} ^{a} \mathbf{R} & & & & \\ & m_{\mathbf{R}} & & & \\ & ^{a} \mathbf{R} = \sigma_{a}^{2} \mathbf{I} & & & \\ & ^{m} \mathbf{R} = \sigma_{m}^{2} \mathbf{I} & & & \\ & \sigma_{a}^{2} \pi \sigma_{m}^{2} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} H$	当前加速度超过了 g ,则增大加计的观测噪声 σ_a^2 ,用以排除额外加速度的影响
An extended Kalman filter for quaternion-based orientation estimation using MARG sensors	4×四元数 q 3×陀螺仪输出 ω	四元数微分方程的矩阵形式	4×观测四元数 q 3×陀螺仪输出 ω	4 个观测四元数 q 由高斯-牛顿法求得 观测矩阵 $H=I_{7\times 7}$			状态方程没有线性 化,高斯-牛顿法将 观测方程线性化
An improved quaternion-based Kalman filter for real-time tracking of rigid body orientation	4×四元数 q 3×陀螺仪输出 ω	四元数微分方程的矩阵形式	4×观测四元数 q 3×陀螺仪输出 ω	3 个误差四元数由高斯-牛顿法求得后与当前估计四元数 \hat{q} 进行四元数乘法运算得到 4 个观测四元数观测矩阵 $H=I_{7\times7}$			状态方程没有线性 化,高斯-牛顿法将 观测方程线性化 (利用了误差四元 数)
Implementation and experimental results of a quaternion-based Kalman filter for human body motion tracking	4×四元数 q 3×陀螺仪输出 ω	四元数微分方程的 <mark>线性化处理</mark> $\Delta \dot{x} = \frac{\partial f}{\partial x} \Big _{x=\hat{x}} \Delta x + w(t)$	4×观测四元数 q 3×陀螺仪输出 ω	4 个观测四元数由 Factored Quaternion 算法得到; 观测矩阵 H = I _{7×7}	四元数无过程噪声 陀螺仪有过程噪声: $oldsymbol{Q}_i = rac{D_i}{2 au_i}(1-e^{-rac{2\Delta t}{ au_i}})$ D_i 为白噪声方差, $ au_i$ 为过程模型的时间常数, Δt 为采样间隔	四元数观测噪声 0.001 陀螺仪测量噪声 0.01	状态方程线性化, Factored 法将观测 方程线性化
Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking	4×四元数 q 3×陀螺仪输出 ω	四元数微分方程的 <mark>线性化处理</mark> $\Delta \dot{x} = \frac{\partial f}{\partial x} \Big _{x=\hat{x}} \Delta x + w(t)$	4×观测四元数 q 3×陀螺仪输出 ω	4 个观测四元数由 QUEST 算法得到; 观测矩阵 H = I _{7×7}	四元数无过程噪声 陀螺仪有过程噪声: $oldsymbol{Q}_i = rac{D_i}{2 au_i}(1-e^{-rac{2\Delta t}{ au_i}})$ D_i 为白噪声方差, $ au_i$ 为过程模型的时间常数, Δt 为采样间隔	四元数观测噪声 0.0001 陀螺仪测量噪声 0.01	状态方程线性化, QUEST 法将观测方 程线性化
其他状态向量 X	[3×误差四元数+3×陀螺		差四元数+3×陀螺仪队	值机漂移+3×加速度计偏差]、[4×四元数+3×陀螺仪随材	—————————————————————————————————————	 机漂移]、[4×四元数]	