Weka 入門

• Weka とは

- Waikato Environment for Knowledge Analysis
- ・ 機械学習のアルゴリズムを実装した Java ライブラリ
- データファイルを直接操作できる GUI を持つ
- ライセンスは GNU GPL
 - プログラムの実行・改変・再配布が自由
 - ただし二次的著作物に対しても GNU GPL が適用される
- この解説では開発版である ver. 3.9.1 を使用

Weka に関する資料

- 開発者による機械学習一般の解説書
 - Ian H. Witten et.al.: Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, Morgan Kaufmann, 2016.
- web 教材
 - Waikato 大学 Mooc: Data Mining with Weka
 - http://www.cs.waikato.ac.nz/ml/weka/mooc/dataminingwithweka/
 - ビデオやスライドを公開

Weka 付属の学習用データ (一部)

表 2.2 Weka 付属のデータ

データ名	内容	特徴	正解情報
breast-canser	乳癌の再発	ラベル	クラス (2 値)
contact-lenses	コンタクトレンズの推薦	ラベル	クラス (3 値)
cpu	CPU の性能評価	数值	数值
credit-g	融資の審査	混合	クラス (2 値)
diabetes	糖尿病の検査	数值	クラス (2 値)
iris	アヤメの分類	数值	クラス (3 値)
Reuters-Corn	記事分類	テキスト	クラス (2 値)
$\operatorname{supermarket}$	スーパーの購買記録	ラベル	なし
weather.nominal	ゴルフをする条件	ラベル	クラス (2 値)
weather.numeric	ゴルフをする条件	混合	クラス (2 値)

起動

• アプリケーションの選択

・Explorer アプリケーション データの読み込みから、特徴選 択・学習・評価を試行錯誤的に 行うのに適した操作を提供

• Experimenter: ハイパーパラメータ等を変えて性能を比較実験

• KnowledgeFlow: 実験プロセスを GUI で組み立て

• Workbench: すべてのアプリケーションをまとめた GUI

• SimpleCLI: コマンドラインインタフェース

Explorer での操作

- 前処理
 - データの読み込み
 - 標準化
 - 特徵選択
 - 特徴の分析

- 識別
 - 100 以上の識別ア ルゴリズムの実装
 - 学習の設定
 - ハイパーパラメータの設定
 - ・ 学習結果の評価

- 可視化
 - データの 2 次元プ ロット

Explorer での操作

- 特徴抽出後のデータを読み込む
 - いくつかの特徴の操作(フィルタの適用)が可能

- 読み込み可能なデータ形式
 - ARFF (Attribute Relationship File Format) 形式
 - ヘッダ部とデータ部で構成
 - ヘッダ部
 - @relation:データ集合の名前(ファイル名と同じでよい)
 - @attribute:特徴の各次元の名前とデータの型を宣言
 - データ部
 - @data 以降に 1 行 1 件のデータを記述
 - 各特徴・クラスラベルはカンマ区切り

• ARFF ファイルの例

```
Orelation ex7-1
@attribute f1 real
@attribute f2 real
@attribute class {a, i, u, e, o}
@data
700,1100,a
240,1900,i
240,1100,u
440,1700,e
400,750,0
```

連続値データは real

Nominal データは取り得る値のリストを中括弧で囲む

• アヤメの分類データ (iris)

萼・花びらの

長さ・幅

アヤメの

種類

```
% 1. Title: Iris Plants Database
@RELATION iris
                   データセット名
@ATTRIBUTE sepallength
                       REAL
                                特徴名と型
@ATTRIBUTE sepalwidth
                      REAL
@ATTRIBUTE petallength
                       REAL
@ATTRIBUTE petalwidth
                       REAL
@ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-virginica}
ATAG 0
                                       これ以降、1行に1事例
5.1, 3.5, 1.4, 0.2, Iris-setosa
4.9, 3.0, 1.4, 0.2, Iris-setosa
                                      (Excel の CSV 形式と同じ)
7.0, 3.2, 4.7, 1.4, Iris-versicolor
6.4, 3.2, 4.5, 1.5, Iris-versicolor
6.3, 3.3, 6.0, 2.5, Iris-virginica
5.8, 2.7, 5.1, 1.9, Iris-virginica
```

- CSV ファイルの読み込み
 - ファイル形式の前提
 - 1 行目は特徴名である
 - クラスラベルは文字列で表現されている
 - そうでないときは読み込み時に options dialog で指定

	А	В	С
1	f1	f2	class
2	700	1100	а
3	240	1900	i
4	240	1100	u
5	440	1700	е
6	400	750	0

- フィルタの適用
 - 有用なフィルタのほとんどは
 weka → filters → unsupervised → attribute
 の下にある
 - Standardize:標準化(平均0,分散1)
 - 各次元に対して平均値を引き、標準偏差で割る
 - Normalize: 値を [0,1] に変換
 - PrincipalComponents: 主成分分析

主成分分析の考え方

 $ar{x_1},ar{x_2}$:平均値、N: データ数

$$\Sigma = \frac{1}{N} \left(\begin{array}{cc} \sum (x_1 - \bar{x_1})^2 & \sum (x_1 - \bar{x_1})(x_2 - \bar{x_2}) \\ \sum (x_1 - \bar{x_1})(x_2 - \bar{x_2}) & \sum (x_2 - \bar{x_2})^2 \end{array} \right)$$

Σlt

対角成分は分散、 非対角成分は相関を表す

半正値 (→ 固有値が全て 0 以上の実数)

対称行列 (→ 固有ベクトルが実数かつ直交) であるので

$$\Sigma' = U^T \Sigma U = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

λは固有値の大きい順、 Uは対応する固有ベクトルを並べたもの

 λ_1 に対応する固有ベクトルからなる行列 U_1 で 2 次元データを 1 次元に射影

• 標準化

- 主成分分析
 - iris データ (4 次元特徴)を2次元に

補足 - Select Attributes での主成分分析

データのプロット (Visualize)

グラフサイズ、 点のサイズが 調整可能

データのプロット (Visualize)

• 1 つのグラフのみ表示

x軸、y軸、色の 基準が選べる

• 勉強した識別器

• IBk (k-NN 法) のパラメータ

• SMO のパラメータ

More

Cancel

次数

定数項

の有無

• MultilayerPerceptron のパラメータ

• 評価法の設定

• 学習結果の見方

```
=== Summary ===
```

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances

```
14

1

0.9167

0.1051

0.1645

31.4161 %

39.3051 %
```

```
識別率
93.3333 %
6.6667 %
```

=== Confusion Matrix ===

```
a b c d e <-- classified as
3 0 0 0 0 | a = a
0 3 0 0 0 | b = i
0 0 3 0 0 | c = u
0 0 0 3 0 | d = e
1 0 0 0 2 | e = o
```

縦軸が正解、横軸が出力 対角成分が正解数

- 学習結果の保存
 - Result list の該当行を右クリック → Save model
 - Weka を使う Java プログラムでロード可能

KnowledgeFlow による自動化

: Weka による支援が可能

KnowledgeFlow による自動化

• KnowledgeFlow インタフェースの構成

• ArffLoader の配置と設定

• ClassAssigner の配置と設定

- 部品の結合
 - 受け渡す情報に気をつける

• Normalize の配置と設定

評価基準の設定

• 作成したプロセス

- 学習したモデル
 - ・ 式、木構造、ネットワークの重み、 etc.
- 性能
 - 正解率、精度、再現率、 F 値
 - グラフ
 - パラメータを変えたときの性能の変化
 - 異なるモデルの性能比較

• 結果の表示

• 混同行列

	予測+	予測一
正解十	true positive(TP)	false negative(FN)
正解一	falsepositive(FP)	true negative(TN)

• **E**
$$\neq$$
 $Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$

• 精度
$$Precision = \frac{TP}{TP + FP}$$

• 再現率
$$Recall = \frac{TP}{TP + FN}$$

• F i
$$F$$
-measure = $2 \times \frac{Precision \times Recall}{Precision + Recall}$

正解の割合 クラスの出現率に 偏りがある場合は不適

正例の判定が 正しい割合

正しく判定された 正例の割合

> 精度と再現率の 調和平均

- 識別のための閾値の設定
 - sepallength 特徴による Iris-setosa の識別

- 精度と再現率のトレードオフ
 - ROC 曲線

