V103 - Biegung elastischer Stäbe

 ${\it Jan~Herdieckerhoff} \\ {\it jan.herdieckerhoff@tu-dortmund.de}$

Karina Overhoff karina.overhoff@tu-dortmund.de

Durchführung: 30.10.2018, Abgabe: 06.11.2018

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	3		
2	Theorie	3		
3	Durchführung	6		
4	Auswertung	7		
	4.1 Bestimmung des Elastizitätsmoduls des ersten Stabes	7		
	4.2 Bestimmung des Elastizitätsmoduls des zweiten Stabes	10		
	4.3 Bestimmung des Elastizitätsmoduls des dritten Stabes	13		
5	Diskussion	17		
Lit	Literatur			

1 Ziel

Ziel dieses Versuches ist es, die Elastizitätsmodule verschiedener Stäbe durch Messung ihrer Biegung zu bestimmen.

2 Theorie

Die Spannung ist die Kraft auf einen Körper pro Flächeneinheit. Die Komponente, die senkrecht zur Oberfläche steht, ist die Normalspannung σ . Ihre oberflächenparallele Komponente heißt Tangentialspannung. Das Hookesche Gesetz stellt den Zusammenhang zwischen der Spannung σ , die am Körper angreift, und der Deformation des Körpers dar:

$$\sigma = E \frac{\Delta L}{L} \tag{1}$$

E ist dabei das Elastizitätsmodul. Das Elastizitätsmodul ist eine Materialkonstante, die anhand der Deformation eines Körpers bestimmt werden kann. Eine Art der Deformation ist die Biegung. Sie entsteht, wenn eine Kraft, wie in Abbildung 1 und in Abbildung 2 gezeigt, auf einen Körper wirkt. Zunächst wird die Berechnung der Biegung eines Stabes

./plots/abb1.png

bei einseitiger Einspannung beschrieben. Die Durchbiegung D(x) bezeichnet die Verschiebung eines Oberflächenpunktes an der Stelle x zwischen dem belasteten und unbelasteten Zustand des Stabes. Es wird eine Drehmomentgleichung aufgestellt, um D(x) zu bestimmen. Die Zug- und Druckspannungen, die an der Querschnittsfläche Q angreifen, sind entgegesetzt gleich und bewirken deshalb ein Drehmoment M_{σ} :

$$M_{\sigma} = \int_{O} y \sigma(y) dq$$

y ist der Abstand des Flächenelementes dq von der neutralen Faser. Die neutrale Faser ist die Fläche, in der keine Spannungen auftreten. Ihre Länge ändert sich bei der Biegung folglich nicht. Ein weiteres Drehmoment M_F entsteht durch die Kraft auf einen senkrecht zur Stabachse stehenden Querschnitt. Es verdreht den Querschnitt aus seiner ursprünglichen vertikalen Lage. Die Deformation des Körpers stellt sich so ein, dass die Drehmomente an jeder Stelle x übereinstimmen:

$$M_F = M_{\sigma}$$

Dabei ist

$$M_F = F(L - x),$$

da die Kraft F über den Hebelar
mL-x an Q angreift. Damit ist das Gleichgewicht der Drehmomente durch

$$\int_{Q} y\sigma(y)dq = F(L-x) \tag{2}$$

gegeben. Mit dem Hookeschen Gesetz (1) wird die Normalspannung $\sigma(y)$ mittels

$$\sigma(y) = E \frac{\delta x}{\Delta x}$$

berechnet. Hier ist Δx die Länge eines kurzen Stabstücks und δx die Längenänderung der Faser. Es gilt außerdem

$$\delta x = y\Delta\phi = y\frac{\Delta x}{R},$$

wobei R der Krümmungsradius der Faser bei x ist. Damit ist

$$\sigma(y) = E\frac{y}{R} = Ey\frac{d^2D}{dx^2},$$

da für geringe Kurvenkrümmungen

$$\frac{1}{R} \approx \frac{d^2 D}{dx^2}$$

gilt, falls

$$(\frac{dD}{dx})^2 << 1$$

ist. Für (2) ergibt sich damit:

$$E\frac{d^2D}{dx^2}\int_Q y^2dq = F(L-x). \tag{3}$$

Dabei ist

$$I = \int_{O} y^2 dq(y)$$

das Flächenträgheitsmoment. Integriert man (3) und stellt die Gleichung nach D(x) um, erhält man für die Biegung bei einseitiger Einspannung

$$D(x) = \frac{F}{2EI}(Lx^2 - \frac{x^3}{3}). {4}$$

Diese Gleichung ist für $0 \le x \le L$ definiert. Die Integrationskonstanten verschwinden, weil D(0)=0 und $\frac{dD}{dx}=0$ sein müssen.

./plots/abb2.png

Liegen beide Stabenden auf und lässt man in der Mitte des Stabes eine Kraft angreifen, greift an der Querschnittsfläche die Kraft $\frac{F}{2}$ mit dem Hebelarm x an. Für die erste Stabhälfte $0 \le x \le \frac{L}{2}$ gilt für das Drehmoment

$$M_F = -\frac{F}{2}x.$$

Für die zweite Hälfte $\frac{L}{2} \le x \le L$ gilt

$$M_F = -\frac{F}{2}(L-x).$$

Damit ergibt sich hier für (3)

$$\frac{d^2D}{dx^2} = -\frac{F}{EI}\frac{x}{2} \quad \text{für } 0 \le x \le \frac{L}{2} \tag{5}$$

und

$$\frac{d^2D}{dx^2} = -\frac{1}{2}\frac{F}{EI}(L-x) \quad \text{für } \frac{L}{2} \le x \le L \quad . \tag{6}$$

Integriert man beide Gleichungen, ergibt sich

$$\frac{dD}{dx} = -\frac{F}{EI}\frac{x^2}{4} + C \quad \text{für } 0 \le x \le \frac{L}{2}$$

und

$$\frac{dD}{dx} = -\frac{1}{2} \frac{F}{EI} (Lx - \frac{x^2}{2}) + C' \quad \text{für } \frac{L}{2} \leq x \leq L \quad .$$

Da die Biegekurve in der Mitte des Stabes eine horizontale Tangente haben muss, muss für die Konstanten gelten:

$$C = \frac{F}{EI} \frac{L^2}{16}$$

und

$$C' = \frac{3}{16} \frac{F}{EI} L^2.$$

Setzt man die Konstanten in (5) und (6) ein und integriert die Ausdrücke, erhält man die Gleichungen für die Biegung bei zweiseitiger Auflage des Stabes:

$$D(x) = \frac{F}{48EI}(3L^2x - 4x^3) \quad \text{für } 0 \le x \le \frac{L}{2}$$
 (7)

und

$$D(x) = \frac{F}{48EI}(4x^3 - 12Lx^2 + 9L^2x - L^3) \quad \text{für } \frac{L}{2} \le x \le L \quad . \tag{8}$$

Die Integrationskonstanten verschwinden hier, weil D(0) = 0 und D(L) = 0 sein müssen. Die Biegung eines elastischen Stabes kann also durch (4), (7) und (8) bestimmt werden. Weil die Stäbe nicht als exakt gerade angenommen werden können, muss die Biegung ohne angehängtes Gewicht gemessen werden. Die Biegung des Stabes durch die Last ist dann

$$D(x) = D_M(x) - D_0(x). (9)$$

Der Elastizitätsmodul lässt sich mittels einer linearen Regression bestimmen. Die Werte für die Biegung (9) werden gegen eine liearisierte Form des horizontalen Abstands

aufgetragen. Diese können aus den Gleichungen (4), (7) und (8) entnommen werden. Die Steigung berechnet sich dabei wie folgt:

$$m = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - \overline{x}^2}.$$
 (10)

Bei dem ersten und zweiten Stab entspricht die Steigung $\frac{F}{2EI}$. Stellt man den Ausdruck nach E um, erhält man eine Gleichung für den Elastizitätsmodul:

$$E = \frac{F}{2mI}. (11)$$

Für den dritten Stab ergibt sich für den Elastizitätsmodul auf die selbe Weise die Gleichung:

$$E = \frac{F}{48mI}. (12)$$

3 Durchführung

Die Apparatur ist in Abbildung xy zu sehen. Die Stäbe werden entweder einseitig eingeklemmt oder zweiseitig auf den Punkten A und B gelagert. Die Stäbe werden belastet, indem ein Gewicht entweder am Stabende oder in der Stabmitte angehängt wird. Die Biegung wird mit zwei Messuhren, die sich auf einer Längen-Skala befinden und verschiebbar sind, sodass die Biegung an verschiedenen Stellen x bestimmt werden kann, gemessen. Bei Messuhren wird die Verschiebung eines Objektes mittels eines federnden

./plots/abb3.png

Taststiftes gemessen. Lunachst wird jeweils für zwei einseitig eingespannte Stäbe die Biegung ohne angehängtes Gewicht gemessen. Danach wird an das Stabende ein Gewicht angehängt. Die Biegung wird mit einer der Messuhren gemessen. Ein dritter Stab wird zweiseitig aufgelegt. Es wird wieder zunächst die Biegung ohne Gewicht und dann mit Gewicht gemessen. Hier wird für die erste Hälfte des Stabes $\frac{L}{2} \leq x \leq L$ die linke Messuhr und für die zweite Hälfte $0 \leq x \leq \frac{L}{2}$ die rechte Messuhr verwendet. Zuletzt werden die Längen, Breiten, beziehungsweise Durchmesser und Massen der Stäbe, sowie die Masse des angehängten Gewichts bestimmt.

4 Auswertung

4.1 Bestimmung des Elastizitätsmoduls des ersten Stabes

Tabelle 1: Gewicht, Länge und Durchmesser des ersten Stabs

Gewicht/g	Länge/cm	Durchmesser/mm
460,30	51,20	8,00

Die Biegung D(x) an den Stellen x mit und ohne Gewicht ist für den ersten Stab in 2 zu sehen. Die Biegung ist jeweils in mm angegeben. Die horizontale Länge x ist in cm angegeben.

Tabelle 2: Vertikaler Abstand der Stange zur Messuhr mit und ohne Gewicht, Abstand der Messuhr vom Ursprung auf der horizontalen Achse

D(x)/mm ohne Gewicht	D(x)/mm mit Gewicht	x/cm
0,98	1,10	3,00
1,04	1,10	5,00
1,11	1,17	8,00
1,16	1,17	11,00
$1{,}12$	1,18	14,00
$1{,}12$	$1,\!19$	17,00
1,10	$1,\!19$	20,00
1,03	1,21	23,00
0,93	1,23	26,00
0,80	1,24	29,00
0,68	$1,\!25$	32,00
0,58	$1,\!25$	$35,\!00$
0,40	$1,\!25$	38,00
0,20	1,26	41,00
0,08	1,26	44,00
-0,10	1,26	47,00
-0,38	1,26	49,00

Die Differenz (9) der beiden Biegungen aus 2 und die jeweiligen horizontalen Abstände in linearisierter Form $Lx^2-\frac{x^3}{3}$ sind in 3 dargestellt.

Tabelle 3: Differenz der vertikalen Abstände mit und ohne Gewicht, Formel zur Linearisierung der Messkurve

D(x)/m Differenz	$Lx^2 - x^3/3/\mathrm{m}^3$
0,00	0,00
$6,00 \cdot 10^{-5}$	0,00
$6,00 \cdot 10^{-5}$	0,00
$1,00 \cdot 10^{-5}$	0,01
$6,00 \cdot 10^{-5}$	0,01
$7,00 \cdot 10^{-5}$	0,01
$9,00 \cdot 10^{-5}$	$0,\!02$
0,00	$0,\!02$
0,00	0,03
0,00	0,04
0,00	0,04
0,00	$0,\!05$
0,00	0,06
0,00	$0,\!07$
0,00	0,08
0,00	0,08
0,00	0,09

Auf diese Weise lässt sich mit Hilfe des Graphen der Elastizitätsmodul durch die Steigung bestimmen.

Abbildung 1: Auftragung der Differenzen der vertikalen Abstände des Stabes mit und ohne Gewicht gegen die horizontalen Abstände in linearisierter Form mit zusätzlicher Ausgleichsgeraden

Die Steigung ergibt sich mit (10) zu $m=0.016\,939\,\mathrm{m}$. Damit ist der Elastizitätsmodul mit (11) $E=459.04\,\mathrm{GPa}$.