

Layer-Wise Contrastive Learning for Graph Collaborative Filtering

Charles Tian, Changlong Zheng, Yonghui Yang, Le Wu, Meng Wang

Hefei University of Technology, School of Computer and Information Multimedia Laboratory

*As this is a working paper, some details have been omitted

Backgrounds

- Collaborative Filtering(CF): The most foundational recommendation paradigm
- However, it suffers from data sparsity and popularity bias
- A promising solution: Graph Contrastive Learning

Traditional Data Augmentation

Traditional Self-Supervised Framework for CF

Contrastive learning works a lot! Why?

Backgrounds

- InfoNCE-based contrastive learning operates by learning more evenly distributed user/item representations, which performs well.
- They argue that traditional data augmentation has very limited effectiveness, so they developed a augmentation strategy by simply adding random noise in each layer(i.e. feature-level augmentation) to achieve this target.

Motivation

Diverse cross-layer contrastive learning

Motivation: can we design a novel contrastive way to learn more even distribution?

Methdology

• Layer-wise contrastive learning for collaborative filtering

Experiments

Main Experiments

Dataset	Metric	BPRMF	LightGCN	BUIR	DirectAU	NCL	SGL	SimGCL	Ours
Yelp2018	Recall@10	0.0283	0.0350	0.0291	0.0408	0.0394	0.0396	0.0425	0.0419
	Recall@20	0.0498	0.0639	0.0497	0.0692	0.0673	0.0677	0.0719	0.0712
	Recall@50	0.0988	0.1158	0.0976	0.1326	0.1293	0.1302	0.1358	0.1331
	NDCG@10	0.0321	0.0399	0.0330	0.0472	0.0450	0.0451	0.0485	0.0480
	NDCG@20	0.0401	0.0525	0.0404	0.0573	0.0553	0.0555	0.0593	0.0583
	NDCG@50	0.0581	0.0697	0.0582	0.0808	0.0782	0.0785	0.0827	0.0821
Amazon-Book	Recall@10	0.0172	0.0225	0.0157	0.0250	0.0259	0.0275	0.0306	0.0301
	Recall@20	0.0303	0.0411	0.0271	0.0426	0.0442	0.0448	0.0510	0.0504
	Recall@50	0.0605	0.0746	0.0536	0.0829	0.0845	0.0881	0.0915	0.0909
	NDCG@10	0.0183	0.0239	0.0175	0.0279	0.0271	0.0293	0.0324	0.0313
	NDCG@20	0.0235	0.0315	0.0217	0.0344	0.0343	0.0379	0.0406	0.0408
	NDCG@50	0.0348	0.0436	0.0314	0.0491	0.0492	0.0521	0.0553	0.0550
iFashion	Recall@10	0.0382	0.0603	0.0548	0.0728	0.0617	0.0761	0.0778	0.0794
	Recall@20	0.0583	0.0906	0.0842	0.1086	0.0914	0.1109	0.1138	0.1159
	Recall@50	0.0978	0.1470	0.1411	0.1769	0.1476	0.1743	0.1781	0.1804
	NDCG@10	0.0214	0.0342	0.0305	0.0412	0.0350	0.0437	0.0447	0.0456
	NDCG@20	0.0267	0.0422	0.0383	0.0506	0.0420	0.0532	0.0543	0.0551
	NDCG@50	0.0348	0.0539	0.0501	0.0648	0.0543	0.0659	0.0679	0.0692

Experiments

Ablation Study

Method	Yelp	2018	Amazon-Book		
	Recall@20	NDCG@20	Recall@20	NDCG@20	
SGL	0.0677	0.0555	0.0478	0.0379	
SimGCL	0.0719	0.0593	0.0510	0.0406	
Ours-WithoutInput	0.0705	0.0590	0.0501	0.0410	
Ours-WithoutFirst	0.0695	0.0577	0.0489	0.0392	
Ours-WithoutSecond	0.0692	0.0573	0.0489	0.0400	
Ours-WithoutOutput	0.0689	0.0567	0.0485	0.0390	
Ours	0.0712	0.0583	0.0504	0.0408	

Conclusion

Results:

• We found that directly applying layer-wise contrast can achieve a similar effect to adding uniform noise, further demonstrating that the effectiveness of contrastive learning lies in making embeddings smoother.

Future Work:

