In [2]:

* A banking institution requires actionable insights into mortgage-backed securities, geographic business investment, and real estate analysis.

* The mortgage bank would like to identify potential monthly mortgage expenses for each region based on monthly family income and rental of the real estate.

* A statistical model needs to be created to predict the potential demand in dollars amount of loan for each of the region in the USA. Also, there is a need to create a dashboard which would refresh periodically post data retrieval from the agencies.

* The dashboard must demonstrate relationships and trends for the key metrics as follows: number of loans, average rental income, monthly mortgage and owner's cost, family income vs mortgage cost comparison across different regions. The metrics described here do not limit the dashboard to these few.

Out[2]: '\nDESCRIPTION:\n\n* A banking institution requires actionable insights into mortgage-backed securities, geographic business investment, and \nreal estate analysis. \n* The mortgage bank would li ke to identify potential monthly mortgage expenses for each region based on monthly family income\nand rental of the real estate.\n* A statistical model needs to be created to predict the potenti al demand in dollars amount of loan for each of the region \nin the USA. Also, there is a need to create a dashboard which would refresh periodically post data retrieval from the agencies.\n* The dashboard must demonstrate relationships and trends for the key metrics as follows: number of loans, average rental \nincome, monthly mortgage and owner's cost, family income vs mortgage cost com parison across different regions. The metrics \ndescribed here do not limit the dashboard to these few.\n\n'

100

In [3]:

| ''' | Data Import and Preparation:

| Import data. | Figure out the primary key and look for the requirement of indexing. | Gauge the fill rate of the variables and devise plans for missing value treatment. | Please explain explicitly the reason for the treatment chosen for each variable. | '''

Out[3]: '\nData Import and Preparation:\n\nImport data.\nFigure out the primary key and look for the requirement of indexing.\nGauge the fill rate of the variables and devise plans for missing value trea tment. \nPlease explain explicitly the reason for the treatment chosen for each variable.\n'

In [4]: # Importing required Libraries and dataset
import pandas as pd
train_url = "https://raw.githubusercontent.com/PraveenBandla/Data-Science-Projects/master/Data-Science-Capstone-Projects/Project%201/train.csv"
 real_train_df = pd.read_csv(train_url)
 real_train_df

Out[4]:

	UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	1	female_age_mean	female_age_median	female_age_stdev	female_age_sample_weight	female_age_samples	pct_own	marrie
0	267822	NaN	140	53	36	New York	NY	Hamilton	Hamilton	City		44.48629	45.33333	22.51276	685.33845	2618.0	0.79046	0.5785
1	246444	NaN	140	141	18	Indiana	IN	South Bend	Roseland	City		36.48391	37.58333	23.43353	267.23367	1284.0	0.52483	0.3488
2	245683	NaN	140	63	18	Indiana	IN	Danville	Danville	City		42.15810	42.83333	23.94119	707.01963	3238.0	0.85331	0.6474
3	279653	NaN	140	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban		47.77526	50.58333	24.32015	362.20193	1559.0	0.65037	0.4725
4	247218	NaN	140	161	20	Kansas	KS	Manhattan	Manhattan City	City		24.17693	21.58333	11.10484	1854.48652	3051.0	0.13046	0.1235
																		•
27316	279212	NaN	140	43	72	Puerto Rico	PR	Coamo	Coamo	Urban		42.73154	40.16667	24.79821	230.87898	938.0	0.60422	0.2460
27317	277856	NaN	140	91	42	Pennsylvania	PA	Blue Bell	Blue Bell	Borough		38.21269	39.50000	21.84826	496.20427	2039.0	0.68072	0.6112
27318	233000	NaN	140	87	8	Colorado	СО	Weldona	Saddle Ridge	City		43.40218	46.33333	23.40858	316.52078	1364.0	0.78508	0.7045
27319	287425	NaN	140	439	48	Texas	TX	Colleyville	Colleyville City	Town		39.25921	43.41667	21.36235	1373.94120	5815.0	0.93970	0.7550
27320	265371	NaN	140	3	32	Nevada	NV	Las Vegas	Paradise	City		34.45345	29.83333	19.77208	526.73261	1911.0	0.27912	0.3442

27321 rows × 80 columns

4

```
In [5]: # Data Preparation
           # Figure out the primary key and look for the requirement of indexing.
           real_train_df.info()
           # Observations:
           # We can consider UID (location ID) as the primary key as it is unique across different locations # UID can be moved to dataframe index since it is used for identifying a record and not for prediction
```

<class 'pandas.core.frame.DataFrame'>

	eIndex: 27321 entries, 0 to 2	7320	
	columns (total 80 columns):		
#	Column	Non-Null Count	Dtype
0	UID	27321 non-null	int64
1	BLOCKID	0 non-null	float64
2	SUMLEVEL	27321 non-null	int64
3	COUNTYID	27321 non-null	int64
4	STATEID	27321 non-null	int64
5	state	27321 non-null	object
6	state_ab	27321 non-null	object
7	city	27321 non-null	object
8	place	27321 non-null	object
9	type	27321 non-null	object
10	primary	27321 non-null	object
11	zip_code	27321 non-null	int64
12	area_code	27321 non-null	int64
13	lat	27321 non-null	
14	lng	27321 non-null	
15	ALand	27321 non-null	
16	AWater	27321 non-null	
17	рор	27321 non-null	int64
18	male_pop	27321 non-null	int64
19	female_pop	27321 non-null	int64
20	rent_mean	27007 non-null	float64
21	rent_median	27007 non-null	float64
22	rent_stdev	27007 non-null	float64
23	rent_stuev rent_sample_weight	27007 non-null	float64
24		27007 non-null	float64
25	rent_samples		float64
	rent_gt_10	27007 non-null	
26 27	rent_gt_15	27007 non-null	
27	rent_gt_20	27007 non-null	
28	rent_gt_25	27007 non-null	
29	rent_gt_30	27007 non-null	
30	rent_gt_35	27007 non-null	float64
31	rent_gt_40	27007 non-null	float64
32	rent_gt_50	27007 non-null	float64
33	universe_samples	27321 non-null	int64
34	used_samples	27321 non-null	int64
35	hi_mean	27053 non-null	float64
36	hi_median	27053 non-null	float64
37	hi_stdev	27053 non-null	float64
38	hi_sample_weight	27053 non-null	float64
39	hi_samples	27053 non-null	float64
40	family_mean	27023 non-null	float64
41	family_median	27023 non-null	float64
42	family_stdev	27023 non-null	float64
43	<pre>family_sample_weight</pre>	27023 non-null	float64
44	<pre>family_samples</pre>	27023 non-null	float64
45	hc_mortgage_mean	26748 non-null	float64
46	hc_mortgage_median	26748 non-null	float64
47	hc_mortgage_stdev	26748 non-null	float64
48	hc_mortgage_sample_weight	26748 non-null	float64

49	hc_mortgage_samples	26748	non-null	float64
50	hc_mean	26721	non-null	float64
51	hc_median	26721	non-null	float64
52	hc_stdev	26721	non-null	float64
53	hc_samples	26721	non-null	float64
54	hc_sample_weight	26721	non-null	float64
55	home_equity_second_mortgage	26864	non-null	float64
56	second_mortgage	26864	non-null	float64
57	home_equity	26864	non-null	float64
58	debt	26864	non-null	float64
59	second_mortgage_cdf	26864	non-null	float64
60	home_equity_cdf	26864	non-null	float64
61	debt_cdf	26864	non-null	float64
62	hs_degree	27131	non-null	float64
63	hs_degree_male	27121	non-null	float64
64	hs_degree_female	27098	non-null	float64
65	male_age_mean	27132	non-null	float64
66	male_age_median	27132	non-null	float64
67	male_age_stdev	27132	non-null	float64
68	<pre>male_age_sample_weight</pre>	27132	non-null	float64
69	male_age_samples	27132	non-null	float64
70	<pre>female_age_mean</pre>	27115	non-null	float64
71	<pre>female_age_median</pre>	27115	non-null	float64
72	<pre>female_age_stdev</pre>	27115	non-null	float64
73	<pre>female_age_sample_weight</pre>	27115	non-null	float64
74	<pre>female_age_samples</pre>	27115	non-null	float64
75	pct_own	27053	non-null	float64
76	married	27130	non-null	float64
77	married_snp	27130	non-null	float64
78	separated	27130	non-null	float64
79	divorced	27130	non-null	float64
dtyp	es: float64(62), int64(12),	object(6	5)	

dtypes: float64(62), int64(12), object(6)
memory usage: 16.7+ MB

In [6]: #Checking for duplicates
 real_train_df[real_train_df.duplicated()]
 # Observations:
160 duplicate records are present in our dataset

Out[6]:

	UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type .	female_age_mean	female_age_median	female_age_stdev	female_age_sample_weight	female_age_samples	pct_own	married
1623	230058	NaN	140	73	6	California	CA	Oceanside	Camp Pendleton North	City .	19.99315	22.41667	11.62088	3406.53918	11492.0	0.00107	0.33566
1907	292484	NaN	140	25	55	Wisconsin	WI	Madison	Madison City	City .	22.03226	21.08333	5.13435	1365.86300	1981.0	0.00000	0.00773
2447	268401	NaN	140	61	36	New York	NY	Long Island City	New York City	City .	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4161	284060	NaN	140	113	48	Texas	TX	Dallas	University Park City	Town .	35.57082	31.00000	14.89626	248.71488	1066.0	0.00419	0.39327
5066	274254	NaN	140	109	40	Oklahoma	ОК	Oklahoma City	Oklahoma City City	CDP .	36.16616	29.83333	13.14478	23.22171	113.0	0.00000	0.22881
26769	252187	NaN	140	33	24	Maryland	MD	Morningside	Andrews Afb	CDP .	21.92741	22.50000	15.50144	375.14523	1687.0	0.00000	0.78735
26872	293566	NaN	140	133	55	Wisconsin	WI	Brookfield	Pewaukee City	City .	39.92907	44.33333	22.25252	593.35393	2424.0	0.99468	0.77148
26910	222470	NaN	140	11	4	Arizona	AZ	Morenci	Clifton	CDP .	28.24603	27.83333	17.42918	392.61849	1710.0	0.00517	0.46198
27175	235725	NaN	140	57	12	Florida	FL	Tampa	Pebble Creek	City .	29.08800	28.08333	14.65116	144.78344	648.0	0.00000	0.25806
27176	247777	NaN	140	61	21	Kentucky	KY	Brownsville	Brownsville City	City .	19.39847	19.00000	1.49474	3.39130	6.0	NaN	0.00000

160 rows × 80 columns

In [7]: #Removing duplicates

real_train_df = real_train_df.drop_duplicates()
real_train_df.shape

Out[7]: (27161, 80)

```
In [8]: # Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicitly the reason for the treatment chosen for each variable.
                   # Checking for NULL Values
                   real train df.isna().sum()
                   # Observations:
                   # Block ID is NULL for all the records => It can be removed from the dataset
                   # There are NULL Values across rent, income, mortgage, equity, age and marital status columns
                   # Since the NULL values are only ~2%, We can drop the records with NULL Values
                   4
  Out[8]: UID
                                                         0
                   BLOCKID
                                                 27161
                   SUMLEVEL
                                                         0
                   COUNTYID
                                                         0
                                                         0
                   STATEID
                                                 . . .
                                                     207
                   pct_own
                   married
                                                    150
                   married_snp
                                                     150
                                                    150
                   separated
                   divorced
                                                     150
                   Length: 80, dtype: int64
  In [9]: # Moving UID to Index
                   real_train_df.index = real_train_df['UID']
                   real_train_df.head()
  Out[9]:
                                       UID BLOCKID SUMLEVEL COUNTYID STATEID
                                                                                                                           state state ab
                                                                                                                                                               city
                                                                                                                                                                                           type ... female_age_mean female_age_median female_age_stdev female_age_sample_weight female_age_samples pct_own married ma
                                                                                                                                                                               place
                          UID
                                                                                                                            New
                     267822 267822
                                                        NaN
                                                                             140
                                                                                                  53
                                                                                                                  36
                                                                                                                                                                                                                         44.48629
                                                                                                                                                                                                                                                          45.33333
                                                                                                                                                                                                                                                                                        22.51276
                                                                                                                                                                                                                                                                                                                                  685.33845
                                                                                                                                                                                                                                                                                                                                                                                       0.79046 0.57851
                                                                                                                                               NY
                                                                                                                                                        Hamilton
                                                                                                                                                                          Hamilton
                                                                                                                                                                                            City ...
                                                                                                                                                                                                                                                                                                                                                                          2618.0
                                                                                                                             York
                                                                                                                                                             South
                     246444 246444
                                                                             140
                                                                                                                                                                                                                         36.48391
                                                                                                                                                                                                                                                         37.58333
                                                                                                                                                                                                                                                                                        23.43353
                                                                                                                                                                                                                                                                                                                                  267.23367
                                                                                                                                                                                                                                                                                                                                                                                       0.52483  0.34886
                                                        NaN
                                                                                                141
                                                                                                                  18 Indiana
                                                                                                                                                IN
                                                                                                                                                                         Roseland
                                                                                                                                                                                             City ...
                                                                                                                                                                                                                                                                                                                                                                          1284.0
                                                                                                                                                             Bend
                     245683 245683
                                                        NaN
                                                                             140
                                                                                                  63
                                                                                                                  18 Indiana
                                                                                                                                                                                                                         42.15810
                                                                                                                                                                                                                                                         42.83333
                                                                                                                                                                                                                                                                                        23.94119
                                                                                                                                                                                                                                                                                                                                  707.01963
                                                                                                                                                                                                                                                                                                                                                                          3238.0
                                                                                                                                                                                                                                                                                                                                                                                       0.85331
                                                                                                                                                                                                                                                                                                                                                                                                     0.64745
                                                                                                                                                IN
                                                                                                                                                          Danville
                                                                                                                                                                            Danville
                                                                                                                                                                                             City ...
                                                                                                                          Puerto
                                                                                                                                                                                                                                                                                        24.32015
                     279653 279653
                                                        NaN
                                                                             140
                                                                                                127
                                                                                                                  72
                                                                                                                                               PR
                                                                                                                                                                                                                         47.77526
                                                                                                                                                                                                                                                          50.58333
                                                                                                                                                                                                                                                                                                                                  362.20193
                                                                                                                                                                                                                                                                                                                                                                                       0.65037 0.47257
                                                                                                                                                       San Juan
                                                                                                                                                                        Guaynabo Urban ...
                                                                                                                                                                                                                                                                                                                                                                          1559.0
                                                                                                                             Rico
                                                                                                                                                                        Manhattan
                                                                                                                                                                                            City ...
                                                                                                                  20 Kansas
                                                                                                                                                                                                                         24.17693
                                                                                                                                                                                                                                                         21.58333
                     247218 247218
                                                        NaN
                                                                             140
                                                                                                161
                                                                                                                                               KS
                                                                                                                                                                                                                                                                                        11.10484
                                                                                                                                                                                                                                                                                                                                 1854.48652
                                                                                                                                                                                                                                                                                                                                                                          3051.0 0.13046 0.12356
                                                                                                                                                     Manhattan
                   5 rows × 80 columns
In [10]: # Dropping UID, BlockID columns
                   real_train_df.drop(['UID', 'BLOCKID', 'SUMLEVEL'], axis=1, inplace=True)
                   real_train_df.shape
                   C:\Users\bpk20\anaconda3\lib\site-packages\pandas\core\frame.py:4312: SettingWithCopyWarning:
                   A value is trying to be set on a copy of a slice from a DataFrame
                   See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-co
                   e/indexing.html#returning-a-view-versus-a-copy)
                       errors=errors,
```

Out[10]: (27161, 77)

```
In [11]: # Checking columns with a constant value
                           real train df.columns[real train df.nunique()<=1]</pre>
Out[11]: Index(['primary'], dtype='object')
In [12]: # Dropping columns with constant value
                           real_train_df.drop(real_train_df.columns[real_train_df.nunique()<=1],axis=1,inplace=True)</pre>
                           real_train_df.shape
                           C:\Users\bpk20\anaconda3\lib\site-packages\pandas\core\frame.py:4312: SettingWithCopyWarning:
                           A value is trying to be set on a copy of a slice from a DataFrame
                           See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-copy (https://pa
                           e/indexing.html#returning-a-view-versus-a-copy)
                                 errors=errors,
Out[12]: (27161, 76)
In [13]: # Dropping records with NULL Values
                           real_train_df.dropna(inplace=True)
                           real_train_df.shape
                           C:\Users\bpk20\anaconda3\lib\site-packages\ipykernel_launcher.py:2: SettingWithCopyWarning:
                           A value is trying to be set on a copy of a slice from a DataFrame
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Out[13]: (26585, 76)

```
In [14]: # Importing the test dataset
import pandas as pd
test_url = "https://raw.githubusercontent.com/PraveenBandla/Data-Science-Projects/master/Data-Science-Capstone-Projects/Project%201/test.csv"
real_test_df = pd.read_csv(test_url)
real_test_df
```

Out[14]:

· 	UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	 female_age_mean	female_age_median	female_age_stdev	female_age_sample_weight	female_age_samples	pct_own	marri
0	255504	NaN	140	163	26	Michigan	MI	Detroit	Dearborn Heights City	CDP	 34.78682	33.75000	21.58531	416.48097	1938.0	0.70252	0.282
1	252676	NaN	140	1	23	Maine	ME	Auburn	Auburn City	City	 44.23451	46.66667	22.37036	532.03505	1950.0	0.85128	0.642
2	276314	NaN	140	15	42	Pennsylvania	PA	Pine City	Millerton	Borough	 41.62426	44.50000	22.86213	453.11959	1879.0	0.81897	0.599
3	248614	NaN	140	231	21	Kentucky	KY	Monticello	Monticello City	City	 44.81200	48.00000	21.03155	263.94320	1081.0	0.84609	0.569
4	286865	NaN	140	355	48	Texas	TX	Corpus Christi	Edroy	Town	 40.66618	42.66667	21.30900	709.90829	2956.0	0.79077	0.576
11704	238088	NaN	140	105	12	Florida	FL	Lakeland	Crystal Springs	City	 53.51255	59.58333	23.23426	699.33353	2914.0	0.93121	0.659
11705	242811	NaN	140	31	17	Illinois	IL	Chicago	Chicago City	Village	 33.14169	32.83333	20.24698	306.63915	1191.0	0.33122	0.428
11706	250127	NaN	140	9	25	Massachusetts	MA	Lawrence	Methuen Town City	City	 43.53905	43.66667	23.17995	900.13903	3723.0	0.84372	0.502
11707	241096	NaN	140	27	19	lowa	IA	Carroll	Carroll City	City	 45.63179	48.16667	24.84209	693.82905	3213.0	0.83330	0.666
11708	287763	NaN	140	453	48	Texas	TX	Austin	Sunset Valley City	Town	 35.99955	35.41667	20.68049	559.30291	2047.0	0.52587	0.519

11709 rows × 80 columns

4

•

```
In [15]: #Data Preparation for test dataset
         real test df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 11709 entries, 0 to 11708
         Data columns (total 80 columns):
          #
              Column
                                          Non-Null Count Dtype
              ----
                                          -----
              UID
          0
                                          11709 non-null int64
          1
              BLOCKID
                                          0 non-null
                                                          float64
          2
              SUMLEVEL
                                          11709 non-null int64
                                          11709 non-null int64
          3
              COUNTYID
          4
              STATEID
                                          11709 non-null
                                                         int64
                                          11709 non-null object
          5
              state
          6
              state_ab
                                          11709 non-null
                                                         object
          7
              city
                                          11709 non-null
                                                         object
          8
              place
                                          11709 non-null
                                                         object
          9
              type
                                          11709 non-null
                                                         object
          10
              primary
                                          11709 non-null object
          11
             zip_code
                                          11709 non-null
                                                         int64
                                          11709 non-null int64
          12
             area_code
                                          11709 non-null float64
          13
             lat
          14
             lng
                                          11709 non-null float64
             ALand
                                          11709 non-null int64
          15
          16
             AWater
                                          11709 non-null int64
                                          11709 non-null int64
          17
              pop
                                          11709 non-null int64
          18
             male pop
             female_pop
                                          11709 non-null int64
          19
              rent_mean
                                          11561 non-null float64
          20
          21
             rent_median
                                          11561 non-null float64
             rent_stdev
                                          11561 non-null float64
              rent_sample_weight
                                          11561 non-null float64
          23
              rent_samples
                                          11561 non-null float64
          24
              rent_gt_10
                                          11560 non-null float64
          25
                                          11560 non-null float64
          26
             rent_gt_15
          27
              rent_gt_20
                                          11560 non-null float64
                                          11560 non-null float64
          28
              rent_gt_25
             rent_gt_30
                                          11560 non-null float64
              rent_gt_35
                                          11560 non-null float64
          30
          31
              rent_gt_40
                                          11560 non-null float64
                                          11560 non-null float64
          32
             rent_gt_50
              universe_samples
                                          11709 non-null
                                                         int64
          33
                                          11709 non-null int64
              used_samples
                                          11587 non-null float64
          35
             hi_mean
                                          11587 non-null float64
          36
             hi_median
                                          11587 non-null float64
          37
              hi_stdev
                                          11587 non-null float64
          38
             hi_sample_weight
             hi_samples
                                          11587 non-null float64
             family_mean
                                          11573 non-null float64
          40
             family_median
                                          11573 non-null float64
                                          11573 non-null float64
             family_stdev
             family_sample_weight
                                          11573 non-null float64
             family_samples
                                          11573 non-null float64
          45
             hc_mortgage_mean
                                          11441 non-null float64
             hc_mortgage_median
                                          11441 non-null float64
             hc_mortgage_stdev
                                          11441 non-null float64
                                          11441 non-null float64
             hc_mortgage_sample_weight
             hc_mortgage_samples
                                          11441 non-null float64
                                          11419 non-null float64
          50
             hc_mean
```

51 hc_median

52 hc_stdev

11419 non-null float64 11419 non-null float64

```
55 home_equity_second_mortgage 11489 non-null float64
          56 second_mortgage
                                          11489 non-null float64
          57 home_equity
                                          11489 non-null float64
          58 debt
                                          11489 non-null float64
          59
              second_mortgage_cdf
                                          11489 non-null float64
              home_equity_cdf
                                          11489 non-null float64
             debt_cdf
          61
                                          11489 non-null float64
          62 hs_degree
                                          11624 non-null float64
             hs_degree_male
                                          11620 non-null float64
             hs_degree_female
                                          11604 non-null float64
             male_age_mean
                                          11625 non-null float64
          66 male_age_median
                                          11625 non-null float64
          67 male_age_stdev
                                          11625 non-null float64
          68 male_age_sample_weight
                                          11625 non-null float64
          69 male_age_samples
                                          11625 non-null float64
          70 female_age_mean
                                          11613 non-null float64
          71 female_age_median
                                          11613 non-null float64
          72 female_age_stdev
                                          11613 non-null float64
          73 female_age_sample_weight
                                          11613 non-null float64
             female_age_samples
                                          11613 non-null float64
          75
             pct own
                                          11587 non-null float64
          76 married
                                          11625 non-null float64
          77 married_snp
                                          11625 non-null float64
          78 separated
                                          11625 non-null float64
             divorced
                                          11625 non-null float64
         dtypes: float64(61), int64(13), object(6)
         memory usage: 7.1+ MB
In [16]: # Checking for duplicates
         real_test_df[real_test_df.duplicated()].shape
         # Observations:
         # 32 duplicate records are present in our dataset
Out[16]: (32, 80)
In [17]: #Removing duplicates
         real_test_df = real_test_df.drop_duplicates()
```

53 hc_samples

real_test_df.shape

Out[17]: (11677, 80)

54 hc_sample_weight

11419 non-null float64

11419 non-null float64

```
In [18]: #Checking for NULL values
                   real_test_df.isna().sum()
                   # Observations:
                   # Block ID is NULL for all the records => It can be removed from the dataset
                   # There are NULL Values across rent, income, mortgage, equity, age and marital status columns
                   # Since the NULL values are only ~2%, We can drop the records with NULL Values
Out[18]: UID
                                                          0
                                                  11677
                   BLOCKID
                   SUMLEVEL
                                                          0
                   COUNTYID
                                                          0
                   STATEID
                                                          0
                                                     112
                   pct_own
                   married
                                                       77
                                                       77
                   married_snp
                                                       77
                   separated
                   divorced
                                                       77
                   Length: 80, dtype: int64
In [19]: # Moving UID to Index
                   real_test_df.set_index('UID')
                   real_test_df.head()
Out[19]:
                               UID BLOCKID SUMLEVEL COUNTYID STATEID
                                                                                                                                                                 city
                                                                                                                                                                                                type ... female_age_mean female_age_median female_age_stdev female_age_sample_weight female_age_samples pct_own married n
                                                                                                                             state state_ab
                                                                                                                                                                                place
                                                                                                                                                                           Dearborn
                                                                                                                        Michigan
                     0 255504
                                                NaN
                                                                      140
                                                                                                                                                                                                CDP
                                                                                                                                                                                                                                                                                              21.58531
                                                                                          163
                                                                                                           26
                                                                                                                                                 MI
                                                                                                                                                             Detroit
                                                                                                                                                                             Heights
                                                                                                                                                                                                                              34.78682
                                                                                                                                                                                                                                                               33.75000
                                                                                                                                                                                                                                                                                                                                         416.48097
                                                                                                                                                                                                                                                                                                                                                                                 1938.0
                                                                                                                                                                                                                                                                                                                                                                                              0.70252 0.28217
                                                                                                                                                                                  City
                                                                                                                                                                              Auburn
                                                                                                                                                                                                                                                                                              22.37036
                     1 252676
                                                NaN
                                                                      140
                                                                                                           23
                                                                                                                                                ME
                                                                                                                                                                                                  City
                                                                                                                                                                                                                              44.23451
                                                                                                                                                                                                                                                               46.66667
                                                                                                                                                                                                                                                                                                                                         532.03505
                                                                                                                                                                                                                                                                                                                                                                                 1950.0
                                                                                                                                                                                                                                                                                                                                                                                               0.85128 0.64221
                                                                                                                            Maine
                                                                                                                                                            Auburn
                                                                                                                                                                                  City
                                                                                                           42 Pennsylvania
                                                                                                                                                                            Millerton
                     2 276314
                                                NaN
                                                                      140
                                                                                           15
                                                                                                                                                 PA
                                                                                                                                                          Pine City
                                                                                                                                                                                           Borough ...
                                                                                                                                                                                                                              41.62426
                                                                                                                                                                                                                                                                44.50000
                                                                                                                                                                                                                                                                                              22.86213
                                                                                                                                                                                                                                                                                                                                         453.11959
                                                                                                                                                                                                                                                                                                                                                                                 1879.0
                                                                                                                                                                                                                                                                                                                                                                                               0.81897
                                                                                                                                                                                                                                                                                                                                                                                                             0.59961
                                                                                                                                                                           Monticello
                     3 248614
                                                NaN
                                                                      140
                                                                                         231
                                                                                                           21
                                                                                                                                                KY Monticello
                                                                                                                                                                                                  City
                                                                                                                                                                                                                              44.81200
                                                                                                                                                                                                                                                               48.00000
                                                                                                                                                                                                                                                                                              21.03155
                                                                                                                                                                                                                                                                                                                                         263.94320
                                                                                                                                                                                                                                                                                                                                                                                 1081.0
                                                                                                                                                                                                                                                                                                                                                                                              0.84609 0.56953
                                                                                                                        Kentucky
                                                                                                                                                             Corpus
                                                                                                                                                 TX
                     4 286865
                                                                      140
                                                                                         355
                                                                                                           48
                                                                                                                                                                                                                              40.66618
                                                                                                                                                                                                                                                               42.66667
                                                                                                                                                                                                                                                                                              21.30900
                                                                                                                                                                                                                                                                                                                                         709.90829
                                                                                                                                                                                                                                                                                                                                                                                 2956.0
                                                                                                                                                                                                                                                                                                                                                                                               0.79077
                                                                                                                                                                                                                                                                                                                                                                                                              0.57620
                                                NaN
                                                                                                                            Texas
                                                                                                                                                                                Edroy
                                                                                                                                                                                                Town ...
                                                                                                                                                              Christi
                   5 rows × 80 columns
In [20]: # Dropping UID and BlockID columns
                   real_test_df.drop(['UID','BLOCKID'],axis=1,inplace=True)
                   real_test_df.shape
                   C:\Users\bpk20\anaconda3\lib\site-packages\pandas\core\frame.py:4312: SettingWithCopyWarning:
                   A value is trying to be set on a copy of a slice from a DataFrame
                   See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-co
                   e/indexing.html#returning-a-view-versus-a-copy)
                       errors=errors,
Out[20]: (11677, 78)
In [21]: # Checking for columns with constant value
                   real_test_df.columns[real_test_df.nunique()<=1]</pre>
Out[21]: Index(['SUMLEVEL', 'primary'], dtype='object')
```

```
In [22]: # Dropping columns with constant value
                          real test df.drop(real test df.columns[real test df.nunique()<=1],axis=1,inplace=True)
                          real test df.shape
                          C:\Users\bpk20\anaconda3\lib\site-packages\pandas\core\frame.py:4312: SettingWithCopyWarning:
                          A value is trying to be set on a copy of a slice from a DataFrame
                          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-co
                          e/indexing.html#returning-a-view-versus-a-copy)
                               errors=errors,
Out[22]: (11677, 76)
In [23]: # Dropping records with NULL Values
                          real test df.dropna(inplace=True)
                          real test df.shape
                          C:\Users\bpk20\anaconda3\lib\site-packages\ipykernel_launcher.py:2: SettingWithCopyWarning:
                          A value is trying to be set on a copy of a slice from a DataFrame
                          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-co
                          e/indexing.html#returning-a-view-versus-a-copy)
Out[23]: (11355, 76)
In [24]: '''
                          Exploratory Data Analysis (EDA):
                          4.Perform debt analysis. You may take the following steps:
                          a) Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map.
                                 You may keep the upper limit for the percent of households with a second mortgage to 50 percent
                          b) Use the following bad debt equation: Bad Debt = P (Second Mortgage n Home Equity Loan) Bad Debt = second_mortgage + home_equity_second_mortgage
                          c) Create pie charts to show overall debt and bad debt
                          d) Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities
                          e) Create a collated income distribution chart for family income, house hold income, and remaining income
Out[24]: '\nExploratory Data Analysis (EDA):\n\n4.Perform debt analysis. You may take the following steps:\n\na) Explore the top 2,500 locations where the percentage of households with a second mortgage i
```

Out[24]: '\nExploratory Data Analysis (EDA):\n\n4.Perform debt analysis. You may take the following steps:\n\na) Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map. \n You may keep the upper limit for the percent of households with a second mortgage to 50 percent\n\nb) Use the following bad debt equation: Bad Debt = P (Second Mortgage n Home Equity Loan) Bad Debt = second_mortgage + home_equity_second_mortgage \n\nc) Create pie charts to show overall de bt and bad debt\n\nd) Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities\n\ne) Create a collated income distribut ion chart for family income, house hold income, and remaining income\n'

In [25]: # Combining train and test datasets for EDA
 real_df = real_train_df.append(real_test_df)
 real_df

Out[25]:

	COUNTYID	STATEID	state	state_ab	city	place	type	zip_code	area_code	lat	 female_age_mean	female_age_median	female_age_stdev	female_age_sample_weight	female_age_samples	pct_own	mar
267822	53	36	New York	NY	Hamilton	Hamilton	City	13346	315	42.840812	 44.48629	45.33333	22.51276	685.33845	2618.0	0.79046	0.57
246444	141	18	Indiana	IN	South Bend	Roseland	City	46616	574	41.701441	 36.48391	37.58333	23.43353	267.23367	1284.0	0.52483	0.34
245683	63	18	Indiana	IN	Danville	Danville	City	46122	317	39.792202	 42.15810	42.83333	23.94119	707.01963	3238.0	0.85331	0.64
279653	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	927	787	18.396103	 47.77526	50.58333	24.32015	362.20193	1559.0	0.65037	0.47
247218	161	20	Kansas	KS	Manhattan	Manhattan City	City	66502	785	39.195573	 24.17693	21.58333	11.10484	1854.48652	3051.0	0.13046	0.12
11704	105	12	Florida	FL	Lakeland	Crystal Springs	City	33810	863	28.226068	 53.51255	59.58333	23.23426	699.33353	2914.0	0.93121	0.65
11705	31	17	Illinois	IL	Chicago	Chicago City	Village	60609	773	41.804936	 33.14169	32.83333	20.24698	306.63915	1191.0	0.33122	0.42
11706	9	25	Massachusetts	MA	Lawrence	Methuen Town City	City	1841	978	42.737778	 43.53905	43.66667	23.17995	900.13903	3723.0	0.84372	0.50
11707	27	19	lowa	IA	Carroll	Carroll City	City	51401	712	42.081366	 45.63179	48.16667	24.84209	693.82905	3213.0	0.83330	0.66
11708	453	48	Texas	TX	Austin	Sunset Valley City	Town	78745	512	30.219013	 35.99955	35.41667	20.68049	559.30291	2047.0	0.52587	0.51

37940 rows × 76 columns

4

In [26]: # a) Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map. # You may keep the upper limit for the percent of households with a second mortgage to 50 percent geo_df = real_df[real_df.home_equity > 0.1].sort_values('second_mortgage',ascending=False).head(2500) geo_df

Out[26]:

	COUNTYID	STATEID	state	state_ab	city	place	type	zip_code	area_code	lat	 female_age_mean	female_age_median	female_age_stdev	female_age_sample_weight	female_age_samples	pct_own
222830	13	4	Arizona	AZ	Scottsdale	Tempe City	CDP	85257	480	33.458658	 31.91429	30.83333	14.45269	229.39846	981.0	0.05660
251185	27	25	Massachusetts	MA	Worcester	Worcester City	City	1610	508	42.254262	 30.60147	26.16667	19.21553	262.09529	994.0	0.20247
278178	101	42	Pennsylvania	PA	Philadelphia	Millbourne	Borough	19104	215	39.952954	 22.42708	21.08333	7.39823	2280.04214	3446.0	0.05041
9088	33	22	Louisiana	LA	Baton Rouge	Port Allen City	City	70802	225	30.414676	 23.22094	21.50000	8.51933	711.05609	1640.0	0.03976
287621	453	48	Texas	TX	Austin	Austin City	Town	78705	512	30.285534	 21.71204	20.50000	5.97345	2119.00876	3203.0	0.01737
1501	31	12	Florida	FL	Jacksonville	Orange Park	City	32257	904	30.180957	 45.61859	46.16667	24.67458	428.88514	1722.0	0.61322
278643	125	42	Pennsylvania	PA	Canonsburg	Canonsburg	Borough	15317	724	40.259249	 43.40131	44.50000	23.89332	344.10155	1572.0	0.58465
10563	31	17	Illinois	IL	Cicero	Cicero	Village	60804	708	41.834200	 29.09346	25.25000	19.76185	679.19639	2650.0	0.56228
3017	121	13	Georgia	GA	Atlanta	Hapeville City	City	30310	404	33.693486	 39.54266	39.08333	20.79632	448.10167	1807.0	0.27609
7843	163	26	Michigan	MI	Woodhaven	Woodhaven City	CDP	48183	734	42.146180	 42.87377	43.25000	21.33776	467.16762	1911.0	0.80903

2500 rows × 76 columns

In [27]: !pip install -U plotly

Requirement already satisfied: plotly in c:\users\bpk20\anaconda3\lib\site-packages (4.13.0) Collecting plotly

Downloading plotly-4.14.3-py2.py3-none-any.whl (13.2 MB)

Requirement already satisfied: retrying>=1.3.3 in c:\users\bpk20\anaconda3\lib\site-packages (from plotly) (1.3.3)

Requirement already satisfied: six in c:\users\bpk20\anaconda3\lib\site-packages (from plotly) (1.15.0)

Installing collected packages: plotly

Attempting uninstall: plotly

Found existing installation: plotly 4.13.0

Uninstalling plotly-4.13.0:

Successfully uninstalled plotly-4.13.0

Successfully installed plotly-4.14.3

In [30]: # b) Use the following bad debt equation: Bad Debt = P (Second Mortgage n Home Equity Loan) Bad Debt = second_mortgage + home_equity - home_equity_second_mortgage # c) Create pie charts to show overall debt and bad debt real_df['bad_debt'] = real_df.second_mortgage + real_df.home_equity_second_mortgage real_df['good_debt'] = real_df.debt - real_df.bad_debt real_df

Out[30]:

	COUNTYID	STATEID	state	state_ab	city	place	type	zip_code	area_code	lat	 female_age_stdev	female_age_sample_weight	female_age_samples	pct_own	married	married_snp	separated	divorced
267822	53	36	New York	NY	Hamilton	Hamilton	City	13346	315	42.840812	 22.51276	685.33845	2618.0	0.79046	0.57851	0.01882	0.01240	0.08770
246444	141	18	Indiana	IN	South Bend	Roseland	City	46616	574	41.701441	 23.43353	267.23367	1284.0	0.52483	0.34886	0.01426	0.01426	0.09030
245683	63	18	Indiana	IN	Danville	Danville	City	46122	317	39.792202	 23.94119	707.01963	3238.0	0.85331	0.64745	0.02830	0.01607	0.10657
279653	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	927	787	18.396103	 24.32015	362.20193	1559.0	0.65037	0.47257	0.02021	0.02021	0.10106
247218	161	20	Kansas	KS	Manhattan	Manhattan City	City	66502	785	39.195573	 11.10484	1854.48652	3051.0	0.13046	0.12356	0.00000	0.00000	0.03109
								•••			 							
11704	105	12	Florida	FL	Lakeland	Crystal Springs	City	33810	863	28.226068	 23.23426	699.33353	2914.0	0.93121	0.65969	0.02135	0.02135	0.08780
11705	31	17	Illinois	IL	Chicago	Chicago City	Village	60609	773	41.804936	 20.24698	306.63915	1191.0	0.33122	0.42882	0.07781	0.02829	0.05305
11706	9	25	Massachusetts	MA	Lawrence	Methuen Town City	City	1841	978	42.737778	 23.17995	900.13903	3723.0	0.84372	0.50269	0.00108	0.00108	0.07294
11707	27	19	lowa	IA	Carroll	Carroll City	City	51401	712	42.081366	 24.84209	693.82905	3213.0	0.83330	0.66699	0.02738	0.00000	0.04694
11708	453	48	Texas	TX	Austin	Sunset Valley City	Town	78745	512	30.219013	 20.68049	559.30291	2047.0	0.52587	0.51922	0.08066	0.02520	0.10586

37940 rows × 78 columns

4

```
In [31]: #Calculating number of households with bad debt
    debt_df = real_df[['type','debt','good_debt','bad_debt','hi_samples']]
    debt_df['debt_num'] = debt_df.debt * debt_df.hi_samples
    debt_df['good_debt_num'] = debt_df.good_debt * debt_df.hi_samples
    debt_df['bad_debt_num'] = debt_df.bad_debt * debt_df.hi_samples
    debt_df
```

C:\Users\bpk20\anaconda3\lib\site-packages\ipykernel_launcher.py:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

C:\Users\bpk20\anaconda3\lib\site-packages\ipykernel_launcher.py:4: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

C:\Users\bpk20\anaconda3\lib\site-packages\ipykernel_launcher.py:5: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Out[31]:

	type	debt	good_debt	bad_debt	hi_samples	debt_num	good_debt_num	bad_debt_num
267822	City	0.52963	0.43555	0.09408	2024.0	1071.97112	881.55320	190.41792
246444	City	0.60855	0.56581	0.04274	1127.0	685.83585	637.66787	48.16798
245683	City	0.73484	0.63972	0.09512	2488.0	1828.28192	1591.62336	236.65856
279653	Urban	0.52714	0.51628	0.01086	1267.0	667.88638	654.12676	13.75962
247218	City	0.51938	0.46512	0.05426	1983.0	1029.93054	922.33296	107.59758
11704	City	0.43593	0.37973	0.05620	2496.0	1088.08128	947.80608	140.27520
11705	Village	0.63182	0.55000	0.08182	838.0	529.46516	460.90000	68.56516
11706	City	0.74273	0.60728	0.13545	2739.0	2034.33747	1663.33992	370.99755
11707	City	0.65546	0.57579	0.07967	2596.0	1701.57416	1494.75084	206.82332
11708	Town	0.63866	0.58824	0.05042	1396.0	891.56936	821.18304	70.38632

37940 rows × 8 columns

Good Debt

Bad Debt

```
In [34]: # d) Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities import matplotlib.pyplot as plt import seaborn as sns

data = real_df[['second_mortgage','home_equity','good_debt','bad_debt']]
    plt.figure(figsize=(12,6))
    sns.boxplot(y='variable',x='value',data=pd.melt(data))
    plt.show()

# Observations:
# Second Mortgage has a smaller range and is silghtly right skewed with outliers towards right
# Home Equity and Bad debt has moderate range and is normally distributed with outliers towards right
# Good Debt has wide range of values and is normally distributed with outliers on both ends
```


In [35]: # Create a collated income distribution chart for family income, house hold income, and remaining income
plt.figure(figsize=(20,8))
sns.distplot(real_df.hi_mean,label='Household Income')
sns.distplot(real_df.family_mean,label='Family Income')
plt.legend()
plt.show()

C:\Users\bpk20\anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an ax es-level function for histograms).

C:\Users\bpk20\anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an ax es-level function for histograms).


```
In [36]:

Exploratory Data Analysis (EDA):

1. Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight averages for accurate measurements):

a) Use pop and ALand variables to create a new field called population density

b) Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age c) Visualize the findings using appropriate chart type

2. Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don't exceed 5 for the ease of analysis.

a) Analyze the married, separated, and divorced population for these population brackets

b) Visualize using appropriate chart type

3. Please detail your observations for rent as a percentage of income at an overall level, and for different states.

4. Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.
```

Out[36]: '\nExploratory Data Analysis (EDA):\n\n1. Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight averages for accurate meas urements):\n\na) Use pop and ALand variables to create a new field called population density\n\nb) Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called me dian age c) Visualize the findings using appropriate chart type\n\n2. Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don't exceed 5 for the ease of analysis.\n\na) Analyze the married, separated, and divorced population for these population brackets\n\nb) Visualize using appropriate chart type\n\n3. Please detail you r observations for rent as a percentage of income at an overall level, and for different states.\n\n4. Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.\n'

In [37]: # a) Use pop and ALand variables to create a new field called population density
real_df['pop_den'] = real_df['pop']/real_df['ALand']
real_df

Out[37]:

	COUNTYID	STATEID	state	state_ab	city	place	type	zip_code	area_code	lat	 female_age_sample_weight	female_age_samples	pct_own	married	married_snp	separated	divorced	bad_debt	good_d
267822	53	36	New York	NY	Hamilton	Hamilton	City	13346	315	42.840812	 685.33845	2618.0	0.79046	0.57851	0.01882	0.01240	0.08770	0.09408	0.43
246444	141	18	Indiana	IN	South Bend	Roseland	City	46616	574	41.701441	 267.23367	1284.0	0.52483	0.34886	0.01426	0.01426	0.09030	0.04274	0.56
245683	63	18	Indiana	IN	Danville	Danville	City	46122	317	39.792202	 707.01963	3238.0	0.85331	0.64745	0.02830	0.01607	0.10657	0.09512	0.63
279653	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	927	787	18.396103	 362.20193	1559.0	0.65037	0.47257	0.02021	0.02021	0.10106	0.01086	0.51
247218	161	20	Kansas	KS	Manhattan	Manhattan City	City	66502	785	39.195573	 1854.48652	3051.0	0.13046	0.12356	0.00000	0.00000	0.03109	0.05426	0.46
11704	105	12	Florida	FL	Lakeland	Crystal Springs	City	33810	863	28.226068	 699.33353	2914.0	0.93121	0.65969	0.02135	0.02135	0.08780	0.05620	0.37
11705	31	17	Illinois	IL	Chicago	Chicago City	Village	60609	773	41.804936	 306.63915	1191.0	0.33122	0.42882	0.07781	0.02829	0.05305	0.08182	0.55
11706	9	25	Massachusetts	MA	Lawrence	Methuen Town City	City	1841	978	42.737778	 900.13903	3723.0	0.84372	0.50269	0.00108	0.00108	0.07294	0.13545	0.60
11707	27	19	lowa	IA	Carroll	Carroll City	City	51401	712	42.081366	 693.82905	3213.0	0.83330	0.66699	0.02738	0.00000	0.04694	0.07967	0.57
11708	453	48	Texas	TX	Austin	Sunset Valley City	Town	78745	512	30.219013	 559.30291	2047.0	0.52587	0.51922	0.08066	0.02520	0.10586	0.05042	0.58

37940 rows × 79 columns

In [38]: # b) Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age
real_df['median_age'] = (real_df['male_age_median']*real_df['female_age_median']*real_df['female_pop'])/(real_df['male_pop']+real_df['female_pop'])
real_df

Out[38]:

	COUNTYID	STATEID	state	state_ab	city	place	type	zip_code	area_code	lat	 female_age_samples	pct_own	married	married_snp	separated	divorced	bad_debt	good_debt	pop_den	median_age
267822	53	36	New York	NY	Hamilton	Hamilton	City	13346	315	42.840812	 2618.0	0.79046	0.57851	0.01882	0.01240	0.08770	0.09408	0.43555	0.000026	44.667430
246444	141	18	Indiana	IN	South Bend	Roseland	City	46616	574	41.701441	 1284.0	0.52483	0.34886	0.01426	0.01426	0.09030	0.04274	0.56581	0.001687	34.722748
245683	63	18	Indiana	IN	Danville	Danville	City	46122	317	39.792202	 3238.0	0.85331	0.64745	0.02830	0.01607	0.10657	0.09512	0.63972	0.000099	41.774472
279653	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	927	787	18.396103	 1559.0	0.65037	0.47257	0.02021	0.02021	0.10106	0.01086	0.51628	0.002442	49.879012
247218	161	20	Kansas	KS	Manhattan	Manhattan City	City	66502	785	39.195573	 3051.0	0.13046	0.12356	0.00000	0.00000	0.03109	0.05426	0.46512	0.002207	21.965629
11704	105	12	Florida	FL	Lakeland	Crystal Springs	City	33810	863	28.226068	 2914.0	0.93121	0.65969	0.02135	0.02135	0.08780	0.05620	0.37973	0.000061	57.620624
11705	31	17	Illinois	IL	Chicago	Chicago City	Village	60609	773	41.804936	 1191.0	0.33122	0.42882	0.07781	0.02829	0.05305	0.08182	0.55000	0.008241	31.159118
11706	9	25	Massachusetts	MA	Lawrence	Methuen Town City	City	1841	978	42.737778	 3723.0	0.84372	0.50269	0.00108	0.00108	0.07294	0.13545	0.60728	0.001415	39.323630
11707	27	19	lowa	IA	Carroll	Carroll City	City	51401	712	42.081366	 3213.0	0.83330	0.66699	0.02738	0.00000	0.04694	0.07967	0.57579	0.000537	44.528597
11708	453	48	Texas	TX	Austin	Sunset Valley City	Town	78745	512	30.219013	 2047.0	0.52587	0.51922	0.08066	0.02520	0.10586	0.05042	0.58824	0.002069	35.207171

37940 rows × 80 columns

In [39]: # c) Visualize the findings using appropriate chart type plt.figure(figsize=(20,8)) sns.distplot(real_df.male_age_median,label='Male Median Age') sns.distplot(real_df.female_age_median,label='Female Median Age') sns.distplot(real_df.median_age,label='Overall Median Age') plt.legend() plt.show() # Observations: # Female median age (>40 years) is greater than male median age (<40 years) on an average</pre>

C:\Users\bpk20\anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an ax es-level function for histograms).

C:\Users\bpk20\anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an ax es-level function for histograms).

C:\Users\bpk20\anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an ax es-level function for histograms).


```
In [40]: # Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don't exceed 5 for the ease of analysis.

import numpy as np

real_df['pop_bins'] = pd.cut(real_df['pop'],bins=np.linspace(0,54000,6),labels=["0-10800","10800-21600","21600-32400","32400-43200","43200-54000"])

real_df[['pop','pop_bins']]
```

Out[40]:

	pop	pop_bins
267822	5230	0-10800
246444	2633	0-10800
245683	6881	0-10800
279653	2700	0-10800
247218	5637	0-10800
11704	5611	0-10800
11705	2695	0-10800
11706	7392	0-10800
11707	5945	0-10800
11708	4117	0-10800

37940 rows × 2 columns

```
In [41]: # Checking the count of population for the bins created
    real_df['pop_bins'].value_counts()
```

```
Out[41]: 0-10800 37585
10800-21600 339
21600-32400 12
32400-43200 3
43200-54000 1
```

Name: pop_bins, dtype: int64

```
In [42]: # a) Analyze the married, separated, and divorced population for these population brackets
    marital_df = real_df[['pop', 'married', 'separated', 'divorced', 'pop_bins']]
    marital_df['married_num'] = marital_df['pop'] * marital_df['married']
    marital_df['separated_num'] = marital_df['pop'] * marital_df['separated']
    marital_df['divorced_num'] = marital_df['pop'] * marital_df['divorced']
    marital_df
```

C:\Users\bpk20\anaconda3\lib\site-packages\ipykernel_launcher.py:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

C:\Users\bpk20\anaconda3\lib\site-packages\ipykernel_launcher.py:4: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

C:\Users\bpk20\anaconda3\lib\site-packages\ipykernel_launcher.py:5: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Out[42]:

	pop	married	separated	divorced	pop_bins	married_num	separated_num	divorced_num
267822	5230	0.57851	0.01240	0.08770	0-10800	3025.60730	64.85200	458.67100
246444	2633	0.34886	0.01426	0.09030	0-10800	918.54838	37.54658	237.75990
245683	6881	0.64745	0.01607	0.10657	0-10800	4455.10345	110.57767	733.30817
279653	2700	0.47257	0.02021	0.10106	0-10800	1275.93900	54.56700	272.86200
247218	5637	0.12356	0.00000	0.03109	0-10800	696.50772	0.00000	175.25433
11704	5611	0.65969	0.02135	0.08780	0-10800	3701.52059	119.79485	492.64580
11705	2695	0.42882	0.02829	0.05305	0-10800	1155.66990	76.24155	142.96975
11706	7392	0.50269	0.00108	0.07294	0-10800	3715.88448	7.98336	539.17248
11707	5945	0.66699	0.00000	0.04694	0-10800	3965.25555	0.00000	279.05830
11708	4117	0.51922	0.02520	0.10586	0-10800	2137.62874	103.74840	435.82562

37940 rows × 8 columns

```
In [43]: group = marital_df.groupby('pop_bins')
         group = pd.DataFrame(group['married_num','separated_num','divorced_num'].agg(np.sum))
         print(group)
         print("\nTotal Population:",np.sum(marital_df['pop']))
         print("Total Married:",np.sum(marital_df.married_num))
         print("Total Separated:",np.sum(marital_df.separated_num))
         print("Total divorced:",np.sum(marital_df.divorced_num))
         # Observations:
         # Out of ~166Mn population, ~87Mn are married, ~16Mn are divorced and ~3Mn are separated
         # Majority of the population is falling in first (0-10800) and second (10800-21600) bins
         # ~84Mn are married, ~15.7Mn divorced and ~3Mn separated people fall in locations having <10800 population
                       married_num separated_num divorced_num
         pop_bins
         0-10800
                      8.397593e+07 2.966350e+06 1.571751e+07
         10800-21600 2.675873e+06 6.521666e+04 3.349785e+05
```

Total Population: 166403989
Total Married: 86946807.97670999
Total Separated: 3036875.1934
Total divorced: 16083544.64636

21600-32400 1.771719e+05 3.424042e+03 2.112078e+04 32400-43200 7.829652e+04 1.666850e+03 8.300232e+03 43200-54000 3.953783e+04 2.179386e+02 1.633732e+03

C:\Users\bpk20\anaconda3\lib\site-packages\ipykernel_launcher.py:2: FutureWarning:

Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead.

In [44]: # b) Visualize using appropriate chart type
plt.figure(figsize=(12,8))
fig = px.bar(group, x=group.index, y=["married_num", "separated_num", "divorced_num"])
fig.show()

<Figure size 864x576 with 0 Axes>

In [45]: # Calculating average rent as percentage of average household income
real_df['rent_pct'] = real_df['rent_mean']/real_df['hi_mean']
real_df

Out[45]:

	COUNTYID	STATEID	state	state_ab	city	place	type	zip_code	area_code	lat	 married	married_snp	separated	divorced	bad_debt	good_debt	pop_den	median_age	pop_bins	rent_pct
267822	53	36	New York	NY	Hamilton	Hamilton	City	13346	315	42.840812	 0.57851	0.01882	0.01240	0.08770	0.09408	0.43555	0.000026	44.667430	0-10800	0.012188
246444	141	18	Indiana	IN	South Bend	Roseland	City	46616	574	41.701441	 0.34886	0.01426	0.01426	0.09030	0.04274	0.56581	0.001687	34.722748	0-10800	0.019195
245683	63	18	Indiana	IN	Danville	Danville	City	46122	317	39.792202	 0.64745	0.02830	0.01607	0.10657	0.09512	0.63972	0.000099	41.774472	0-10800	0.008744
279653	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	927	787	18.396103	 0.47257	0.02021	0.02021	0.10106	0.01086	0.51628	0.002442	49.879012	0-10800	0.016486
247218	161	20	Kansas	KS	Manhattan	Manhattan City	City	66502	785	39.195573	 0.12356	0.00000	0.00000	0.03109	0.05426	0.46512	0.002207	21.965629	0-10800	0.029483
11704	105	12	Florida	FL	Lakeland	Crystal Springs	City	33810	863	28.226068	 0.65969	0.02135	0.02135	0.08780	0.05620	0.37973	0.000061	57.620624	0-10800	0.025273
11705	31	17	Illinois	IL	Chicago	Chicago City	Village	60609	773	41.804936	 0.42882	0.07781	0.02829	0.05305	0.08182	0.55000	0.008241	31.159118	0-10800	0.019873
11706	9	25	Massachusetts	MA	Lawrence	Methuen Town City	City	1841	978	42.737778	 0.50269	0.00108	0.00108	0.07294	0.13545	0.60728	0.001415	39.323630	0-10800	0.011945
11707	27	19	lowa	IA	Carroll	Carroll City	City	51401	712	42.081366	 0.66699	0.02738	0.00000	0.04694	0.07967	0.57579	0.000537	44.528597	0-10800	0.012042
11708	453	48	Texas	TX	Austin	Sunset Valley City	Town	78745	512	30.219013	 0.51922	0.08066	0.02520	0.10586	0.05042	0.58824	0.002069	35.207171	0-10800	0.016379

37940 rows × 82 columns

In [46]: # 3. Please detail your observations for rent as a percentage of income at an overall level, and for different states.
sns.distplot(real_df['rent_pct'])

Observations:

Overall, Average rent is approximately slightly less than 2% of average household income

C:\Users\bpk20\anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an ax es-level function for histograms).

Out[46]: <AxesSubplot:xlabel='rent_pct', ylabel='Density'>


```
In [47]: # Grouping rent and household income by states
         rent = real_df[['state','state_ab','rent_mean','hi_mean']]
         rent = rent.groupby('state_ab')
         rent_df = pd.DataFrame(rent['rent_mean', 'hi_mean'].agg(np.sum))
         rent_df['rent_pct'] = rent_df['rent_mean']/rent_df['hi_mean']
         print(rent_df)
                     rent_mean
                                     hi_mean rent_pct
         state ab
         ΑK
                   1.208197e+05 8.637785e+06 0.013987
         AL
                   4.630363e+05 3.386336e+07 0.013674
                   2.541412e+05 1.939590e+07 0.013103
         AR
         ΑZ
                   8.402896e+05 5.147532e+07 0.016324
                   5.962284e+06 3.348984e+08 0.017803
         CA
                   7.692085e+05 5.096446e+07 0.015093
         CO
                   5.738708e+05 4.078962e+07 0.014069
         \mathsf{CT}
         DC
                  1.350433e+05 8.539456e+06 0.015814
         DE
                   1.191767e+05 8.039070e+06 0.014825
         FL
                   2.562324e+06 1.433095e+08 0.017880
         GΑ
                   9.957610e+05 6.766986e+07 0.014715
         ΗI
                   2.493010e+05 1.339747e+07 0.018608
                   3.049067e+05 2.638637e+07 0.011555
         IΑ
         ID
                   1.194074e+05 8.883005e+06 0.013442
         ΙL
                   1.614683e+06 1.143652e+08 0.014119
         ΙN
                   6.405490e+05 4.744462e+07 0.013501
         KS
                   3.523778e+05 2.772092e+07 0.012712
                   4.069758e+05 3.175204e+07 0.012817
         ΚY
         LA
                   4.960024e+05 3.520436e+07 0.014089
         MΑ
                   9.210372e+05 6.642643e+07 0.013866
         MD
                   1.034573e+06 6.879901e+07 0.015038
         ME
                   1.607734e+05 1.177583e+07 0.013653
         ΜI
                   1.314129e+06 9.107831e+07 0.014429
         MN
                   6.655876e+05 5.246227e+07 0.012687
         MO
                   5.989782e+05 4.460168e+07 0.013429
         MS
                   2.562751e+05 1.769839e+07 0.014480
         ΜT
                  1.177861e+05 9.523003e+06 0.012369
         NC
                   1.005367e+06 7.252183e+07 0.013863
         ND
                   8.098510e+04 7.558809e+06 0.010714
         NE
                   2.237015e+05 1.843371e+07 0.012135
         NH
                  1.722034e+05 1.288359e+07 0.013366
         NJ
                  1.371290e+06 9.043635e+07 0.015163
         NM
                   2.488255e+05 1.744334e+07 0.014265
         NV
                   3.946941e+05 2.360372e+07 0.016722
         NY
                   3.033738e+06 1.911373e+08 0.015872
         OH
                  1.243341e+06 9.422098e+07 0.013196
         OK
                   4.286365e+05 3.230959e+07 0.013267
                   4.642075e+05 3.052355e+07 0.015208
         OR
         PΑ
                   1.609767e+06 1.176124e+08 0.013687
         PR
                   2.413552e+05 1.336698e+07 0.018056
         RΙ
                  1.305354e+05 9.423114e+06 0.013853
         SC
                   4.707948e+05 3.229436e+07 0.014578
         SD
                   8.527400e+04 7.874415e+06 0.010829
         ΤN
                   6.377417e+05 4.558342e+07 0.013991
         ΤX
                   2.638443e+06 1.862740e+08 0.014164
                   3.459038e+05 2.450165e+07 0.014118
         UT
                   1.275800e+06 8.418195e+07 0.015155
         VA
         VT
                   8.784145e+04 6.308668e+06 0.013924
         WΑ
                   8.999345e+05 6.083478e+07 0.014793
         WΙ
                   6.064904e+05 4.690733e+07 0.012930
```

```
WV 1.781120e+05 1.443400e+07 0.012340
WY 6.296093e+04 5.226764e+06 0.012046
```

C:\Users\bpk20\anaconda3\lib\site-packages\ipykernel_launcher.py:4: FutureWarning:

Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead.

Out[49]:

	ALand	AWater	pop	male_pop	female_pop	rent_mean	hi_mean	family_mean	hc_mortgage_mean	hc_mean	 hs_degree	hs_degree_male	hs_degree_female	male_age_mean	female_age_mean	pct_own	married	marı
267822	202183361.0	1699120	5230	2612	2618	769.38638	63125.28406	67994.14790	1414.80295	570.01530	 0.89288	0.85880	0.92434	42.48574	44.48629	0.79046	0.57851	
246444	1560828.0	100363	2633	1349	1284	804.87924	41931.92593	50670.10337	864.41390	351.98293	 0.90487	0.86947	0.94187	34.84728	36.48391	0.52483	0.34886	
245683	69561595.0	284193	6881	3643	3238	742.77365	84942.68317	95262.51431	1506.06758	556.45986	 0.94288	0.94616	0.93952	39.38154	42.15810	0.85331	0.64745	
279653	1105793.0	0	2700	1141	1559	803.42018	48733.67116	56401.68133	1175.28642	288.04047	 0.91500	0.90755	0.92043	48.64749	47.77526	0.65037	0.47257	
247218	2554403.0	0	5637	2586	3051	938.56493	31834.15466	54053.42396	1192.58759	443.68855	 1.00000	1.00000	1.00000	26.07533	24.17693	0.13046	0.12356	
11704	92582775.0	1166617	5611	2697	2914	1458.82449	57723.48180	70786.81912	1269.83033	536.66053	 0.92097	0.95007	0.89480	51.03535	53.51255	0.93121	0.65969	
11705	327029.0	0	2695	1504	1191	700.53513	35249.76522	38912.54156	1406.83478	487.66419	 0.54890	0.49817	0.60965	32.94145	33.14169	0.33122	0.42882	
11706	5225804.0	393810	7392	3669	3723	1069.70567	89549.15374	99484.96572	1791.63902	654.78088	 0.94057	0.94000	0.94105	35.85743	43.53905	0.84372	0.50269	
11707	11066759.0	0	5945	2732	3213	696.93368	57877.26387	75066.29009	1182.30365	369.29903	 0.91407	0.92428	0.90634	39.18219	45.63179	0.83330	0.66699	
11708	1990126.0	0	4117	2070	2047	950.09294	58006.33817	54913.24441	1364.17379	550.78197	 0.78685	0.80615	0.76820	35.56404	35.99955	0.52587	0.51922	

37940 rows × 25 columns

•

```
In [50]: #Correlation heat map
plt.figure(figsize=(20,15))
sns.heatmap(rel_var.corr(),cmap='Blues',annot=True)
plt.show()

# Observations:
# Household and family Income is highly correlated with high school degree, percent of owned houses, marriage, average rent, monthly mortgage and owner costs,
# debt and bad debt
# Home equity loan is highly correlated with bad debt
# Home equity und second mortgage is highly correlated with second mortgage
# Bad debt is more likely due to home equity loans and second mortgage
# Age is directly influencing marriage, divorce and percent of home ownership
# Higher houselhold and family income => less divorces and separations
```

- 0.6 - 0.4 - 0.2 - 0.0 - -0.2

- -0.4

```
In [51]: # Dropping unnecessary variables
real_df.drop(['pop_bins'],axis=1,inplace=True)

In [52]: # Finding categorical columns
cat_col = real_df.select_dtypes(include="object").columns
cat_col = real_df.select_dtypes(include="object").dtype='object')

Out[52]: Index(['state', 'state_ab', 'city', 'place', 'type'], dtype='object')

In [53]: # Label Encoding
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
for col in cat_col:
    real_df[col] = le.fit_transform(real_df[col].astype(str))
    real_df

Out[53]:

COUNTYID STATEID state state_ab city place type zip_code area_code lat ... pct_own married_snp separated divorced bad_debt_good_debt_pop_den_median_age_rent_pct
```

	COUNTYID	STATEID	state	state_ab	city	place	type	zip_code	area_code	lat	 pct_own	married	married_snp	separated	divorced	bad_debt	good_debt	pop_den	median_age	rent_pct
267822	53	36	32	34	2933	4296	2	13346	315	42.840812	 0.79046	0.57851	0.01882	0.01240	0.08770	0.09408	0.43555	0.000026	44.667430	0.012188
246444	141	18	14	15	6773	9032	2	46616	574	41.701441	 0.52483	0.34886	0.01426	0.01426	0.09030	0.04274	0.56581	0.001687	34.722748	0.019195
245683	63	18	14	15	1700	2457	2	46122	317	39.792202	 0.85331	0.64745	0.02830	0.01607	0.10657	0.09512	0.63972	0.000099	41.774472	0.008744
279653	127	72	39	39	6378	4227	4	927	787	18.396103	 0.65037	0.47257	0.02021	0.02021	0.10106	0.01086	0.51628	0.002442	49.879012	0.016486
247218	161	20	16	16	4235	6241	2	66502	785	39.195573	 0.13046	0.12356	0.00000	0.00000	0.03109	0.05426	0.46512	0.002207	21.965629	0.029483
11704	105	12	9	9	3797	2375	2	33810	863	28.226068	 0.93121	0.65969	0.02135	0.02135	0.08780	0.05620	0.37973	0.000061	57.620624	0.025273
11705	31	17	13	14	1240	1845	5	60609	773	41.804936	 0.33122	0.42882	0.07781	0.02829	0.05305	0.08182	0.55000	0.008241	31.159118	0.019873
11706	9	25	21	19	3877	6607	2	1841	978	42.737778	 0.84372	0.50269	0.00108	0.00108	0.07294	0.13545	0.60728	0.001415	39.323630	0.011945
11707	27	19	15	12	1044	1560	2	51401	712	42.081366	 0.83330	0.66699	0.02738	0.00000	0.04694	0.07967	0.57579	0.000537	44.528597	0.012042
11708	453	48	44	44	275	10266	3	78745	512	30.219013	 0.52587	0.51922	0.08066	0.02520	0.10586	0.05042	0.58824	0.002069	35.207171	0.016379

37940 rows × 81 columns

```
In [54]: # Splitting into train and test sets
    real_train_df1 = real_df.iloc[0:26585,:]
    real_test_df1 = real_df.iloc[26585:,:]
    print(real_train_df1.shape)
    print(real_test_df1.shape)
```

(26585, 81) (11355, 81)

```
In [55]: '''
         Data Pre-processing:
         1. The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a
         number of smaller unobserved common factors or latent variables.
         2. Each variable is assumed to be dependent upon a linear combination of the common factors, and the coefficients are known as loadings.
         Each measured variable also includes a component due to independent random variability, known as "specific variance" because it is specific to one variable.
         Obtain the common factors and then plot the loadings. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships
         in the data.
         Following are the list of latent variables:

    Highschool graduation rates

    Median population age

         • Second mortgage statistics

    Percent own

    Bad debt expense

Out[55]: '\nData Pre-processing:\n\n1. The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a \nnumber of smaller unobs
         erved common factors or latent variables. \n2. Each variable is assumed to be dependent upon a linear combination of the common factors, and the coefficients are known as loadings. \nEach measure
         d variable also includes a component due to independent random variability, known as "specific variance" because it is specific to one variable.\nObtain the common factors and then plot the loadi
         ngs. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships\nin the data. \n\nFollowing are the list of latent variables:\n\n• Highschool gradu
         ation rates\n\n• Median population age\n\n• Second mortgage statistics\n\n• Percent own\n\n• Bad debt expense\n'
In [56]:
         !pip install factor_analyzer
         Collecting factor analyzer
           Downloading factor_analyzer-0.3.2.tar.gz (40 kB)
```

Collecting factor_analyzer Downloading factor_analyzer-0.3.2.tar.gz (40 kB) Requirement already satisfied: pandas in c:\users\bpk20\anaconda3\lib\site-packages (from factor_analyzer) (1.2.0) Requirement already satisfied: scipy in c:\users\bpk20\anaconda3\lib\site-packages (from factor_analyzer) (1.5.2) Requirement already satisfied: numpy in c:\users\bpk20\anaconda3\lib\site-packages (from factor_analyzer) (1.19.2) Requirement already satisfied: scikit-learn in c:\users\bpk20\anaconda3\lib\site-packages (from factor_analyzer) (0.23.2) Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\bpk20\anaconda3\lib\site-packages (from pandas->factor_analyzer) (2.8.1) Requirement already satisfied: pytz>=2017.3 in c:\users\bpk20\anaconda3\lib\site-packages (from pandas->factor_analyzer) (2020.5) Requirement already satisfied: six>=1.5 in c:\users\bpk20\anaconda3\lib\site-packages (from python-dateutil>=2.7.3->pandas->factor_analyzer) (1.15.0) Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\bpk20\anaconda3\lib\site-packages (from scikit-learn->factor_analyzer) (2.1.0) Requirement already satisfied: joblib>=0.11 in c:\users\bpk20\anaconda3\lib\site-packages (from scikit-learn->factor_analyzer) (1.0.0) Building wheels for collected packages: factor-analyzer Building wheel for factor-analyzer (setup.py): started Building wheel for factor-analyzer (setup.py): finished with status 'done' Created wheel for factor-analyzer: filename=factor_analyzer-0.3.2-py3-none-any.whl size=40380 sha256=1cfbb77d6535997e0a5a4756f550844d3572cd41lb10483b41f3539db749aa84 Stored in directory: c:\users\bpk20\appdata\local\pip\cache\wheels\8d\9e\4c\fd4cb92cecf157b13702cc0907e5c56ddc48e5388134dc9f1a Successfully built factor-analyzer

Installing collected packages: factor-analyzer Successfully installed factor-analyzer-0.3.2

```
In [57]: # Bartlett's Test --checks whether the correlation is present in the given data
from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity

chi2,p = calculate_bartlett_sphericity(real_df)
print("Chi squared value : ",chi2)
print("p value : ",p)

# Observations:
# Since p-value < 0.05 => correlation is present among the variables in the dataset
```

Chi squared value : 13574065.536081182 p value : 0.0

In [58]: # KMO test --Measures the proportion of common variance among the variables
from factor_analyzer.factor_analyzer import calculate_kmo

kmo_vars,kmo_model = calculate_kmo(real_df)
print(kmo_model)

C:\Users\bpk20\anaconda3\lib\site-packages\factor_analyzer\utils.py:248: UserWarning:

The inverse of the variance-covariance matrix was calculated using the Moore-Penrose generalized matrix inversion, due to its determinant being at or very close to zero.

0.41338612846626166

```
In [59]: # Factor Analysis
    from factor_analyzer import FactorAnalyzer

    fa = FactorAnalyzer()
    fa.fit(real_df,10)

#Get Eigen values and plot them
    ev, v = fa.get_eigenvalues()
    ev
    plt.scatter(range(1,real_df.shape[1]+1),ev)
    plt.plot(range(1,real_df.shape[1]+1),ev)
    plt.title('Scree Plot')
    plt.xlabel('Factors')
    plt.ylabel('Eigen Value')
    plt.grid()

# Observations:
    # Eigen Values are dropping below 3 after 7th factore an ddropping below 2 after 8th factor
# Optimal number of factors = 7 or 8
```



```
In [60]: # Interpreting the Factors by plotting loadings
       fa = FactorAnalyzer(n factors=7,rotation='varimax')
       fa.fit(real df)
       # Settings to see all rows and columns
       pd.set_option('display.max_columns', None,'display.max_rows',None)
       print(pd.DataFrame(fa.loadings_,index=real_df.columns))
       # Observations:
       # Factor1 - Higher Loadings on income, degree, rent, mortgage costs and debt
       # Factor2 - Higher loadings on population and number of samples used
       # Factor3 - Higher loadings on age related variables
       # Factor4 - Higher Loadings on rent as percent of household income
       # Factor5 - Higher Loadings on mortgage, home equity Loan and bad debt
       # Factor6 - Higher loadings on number of smples used for rent, universe samples, pct own and married
       # Factor7 - Higher Loadings on state and city (location)
                                    0
                                                     2
                                                             3
                                                                     4 \
                                            1
       COUNTYID
                              -0.097256   0.025290   -0.062471   -0.029951   -0.095203
       STATEID
                              -0.091589 0.012910 -0.020031 -0.074374 -0.087602
       state
                              state_ab
       city
                              0.000412 0.015274 0.029055 0.005352 0.028644
                              0.025166 0.004227 0.001258 0.008086 0.008176
       place
       type
                              zip_code
                              area code
       lat
                              0.116377 -0.104782 -0.002249 -0.138891 0.256577
       lng
                              -0.018869 -0.049593 0.165753 0.048882 -0.014724
       ALand
                              -0.050740 -0.023625 0.040989 -0.107808 -0.096798
       AWater
                              0.114414 0.972192 -0.125582 0.014183 0.046952
       pop
                              0.109631 0.945854 -0.143080 -0.003806 0.036450
       male_pop
       female_pop
                               rent_mean
                               0.813326  0.056810 -0.120581  0.106553  0.147375
       rent_median
                               In [61]: # Variance captured by each factor
       print(pd.DataFrame(fa.get_factor_variance(),index=['Variance','Proportional Var','Cumulative Var']))
                            0
                                     1
                                             2
                                                     3
                                                             4 \
                      12.949905 11.918745 6.889901 6.266754 5.376851
       Variance
       Proportional Var
                               0.147145 0.085061 0.077367 0.066381
                      0.159875
       Cumulative Var
                       0.159875
                               0.307020 0.392081 0.469448 0.535829
```

5

Proportional Var 0.065848 0.042098

5.333653 3.409919

0.601677 0.643774

Variance

Cumulative Var

6

In [62]: # Communality - Proportion of each variable's variance explained by each factor
print(pd.DataFrame(fa.get_communalities(),index=real_df.columns,columns=['Communalities']))

print(pd.DataFrame(fa.get_co	mmunalities(),:
	Communalities
COUNTYID	0.062154
STATEID	0.872988
state	0.879970
state_ab	0.869175
city	0.004555
place	0.001624
type	0.026250
zip_code	0.214368
area_code	0.008547
lat	0.148296
lng	0.248962
ALand	0.030753
AWater	0.006964
pop	0.985176
male_pop	0.935528
female_pop	0.965196
rent_mean	0.759268
rent_median	0.686887
rent_stdev	0.477813
rent_sample_weight	0.759403
rent_samples	0.963845
rent_gt_10	0.196571
rent_gt_15	0.423013
rent_gt_20	0.629172
rent_gt_25	0.767717
rent_gt_30	0.819245
rent_gt_35	0.798159
rent_gt_40	0.733241
rent_gt_50	0.586214
universe_samples	0.964491
used_samples	0.958398
hi_mean	0.956558
hi_median	0.904637
hi_stdev	0.850432 0.943161
hi_sample_weight	0.965814
hi_samples family_mean	0.934510
family_median	0.884887
family_median family_stdev	0.721977
family_stuev family_sample_weight	0.856723
family_samples	0.949141
hc_mortgage_mean	0.891354
hc_mortgage_median	0.864005
hc_mortgage_stdev	0.618264
hc_mortgage_sample_weight	0.804096
hc_mortgage_samples	0.902672
hc_mean	0.754688
hc_median	0.700030
hc_stdev	0.479048
hc_samples	0.820641
hc_sample_weight	0.800902
home_equity_second_mortgage	0.513724
second_mortgage	0.525632
home_equity	0.734844
debt	0.729572
second_mortgage_cdf	0.522839
home_equity_cdf	0.778317
- ' '-	

```
debt_cdf
                                 0.734485
                                 0.591043
hs_degree
hs_degree_male
                                 0.555473
hs_degree_female
                                 0.549235
male_age_mean
                                 0.825634
male_age_median
                                 0.788499
                                 0.341424
male_age_stdev
male_age_sample_weight
                                 0.853178
male_age_samples
                                 0.935528
female_age_mean
                                 0.822017
female_age_median
                                 0.818427
female_age_stdev
                                 0.242223
female_age_sample_weight
                                 0.868804
                                 0.965196
female_age_samples
pct_own
                                 0.884761
married
                                 0.583822
married_snp
                                 0.220001
separated
                                 0.162206
divorced
                                 0.284110
bad_debt
                                 0.753889
good_debt
                                 0.418790
pop_den
                                 0.299481
median_age
                                 0.898180
rent_pct
                                 0.556919
```

In [63]: # Resetting display options

pd.reset_option('display.max_columns')
pd.reset_option('display.max_rows')
real_df

Out[63]:

	COUNTYID	STATEID	state	state_ab	city	place	type	zip_code	area_code	lat	 pct_own	married	married_snp	separated	divorced	bad_debt	good_debt	pop_den	median_age	rent_pct
267822	53	36	32	34	2933	4296	2	13346	315	42.840812	 0.79046	0.57851	0.01882	0.01240	0.08770	0.09408	0.43555	0.000026	44.667430	0.012188
246444	141	18	14	15	6773	9032	2	46616	574	41.701441	 0.52483	0.34886	0.01426	0.01426	0.09030	0.04274	0.56581	0.001687	34.722748	0.019195
245683	63	18	14	15	1700	2457	2	46122	317	39.792202	 0.85331	0.64745	0.02830	0.01607	0.10657	0.09512	0.63972	0.000099	41.774472	0.008744
279653	127	72	39	39	6378	4227	4	927	787	18.396103	 0.65037	0.47257	0.02021	0.02021	0.10106	0.01086	0.51628	0.002442	49.879012	0.016486
247218	161	20	16	16	4235	6241	2	66502	785	39.195573	 0.13046	0.12356	0.00000	0.00000	0.03109	0.05426	0.46512	0.002207	21.965629	0.029483
11704	105	12	9	9	3797	2375	2	33810	863	28.226068	 0.93121	0.65969	0.02135	0.02135	0.08780	0.05620	0.37973	0.000061	57.620624	0.025273
11705	31	17	13	14	1240	1845	5	60609	773	41.804936	 0.33122	0.42882	0.07781	0.02829	0.05305	0.08182	0.55000	0.008241	31.159118	0.019873
11706	9	25	21	19	3877	6607	2	1841	978	42.737778	 0.84372	0.50269	0.00108	0.00108	0.07294	0.13545	0.60728	0.001415	39.323630	0.011945
11707	27	19	15	12	1044	1560	2	51401	712	42.081366	 0.83330	0.66699	0.02738	0.00000	0.04694	0.07967	0.57579	0.000537	44.528597	0.012042
11708	453	48	44	44	275	10266	3	78745	512	30.219013	 0.52587	0.51922	0.08066	0.02520	0.10586	0.05042	0.58824	0.002069	35.207171	0.016379

37940 rows × 81 columns

```
In [64]: '''
         Data Modeling:
         1. Build a linear Regression model to predict the total monthly expenditure for home mortgages loan. Please refer 'deplotment_RE.xlsx'.
         Column hc mortgage mean is predicted variable. This is the mean monthly mortgage and owner costs of specified geographical location.
         Note: Exclude loans from prediction model which have NaN (Not a Number) values for hc mortgage mean.
         a) Run a model at a Nation level. If the accuracy levels and R square are not satisfactory proceed to below step.
         b) Run another model at State level. There are 52 states in USA.
         c) Keep below considerations while building a linear regression model. Data Modeling :
         • Variables should have significant impact on predicting Monthly mortgage and owner costs
         • Utilize all predictor variable to start with initial hypothesis
         • R square of 60 percent and above should be achieved
         • Ensure Multi-collinearity does not exist in dependent variables
         • Test if predicted variable is normally distributed
Out[64]: '\nData Modeling :\n\n1. Build a linear Regression model to predict the total monthly expenditure for home mortgages loan. Please refer 'deplotment_RE.xlsx'. \nColumn hc_mortgage_mean is predicte
         d variable. This is the mean monthly mortgage and owner costs of specified geographical location. \n\nNote: Exclude loans from prediction model which have NaN (Not a Number) values for hc_mortgage
         e mean.\n\na) Run a model at a Nation level. If the accuracy levels and R square are not satisfactory proceed to below step.\n\nb) Run another model at State level. There are 52 states in USA.\n
         \nc) Keep below considerations while building a linear regression model. Data Modeling :\n\n• Variables should have significant impact on predicting Monthly mortgage and owner costs\n\n• Utilize
         all predictor variable to start with initial hypothesis\n\n• R square of 60 percent and above should be achieved\n\n• Ensure Multi-collinearity does not exist in dependent variables\n\n• Test if
         predicted variable is normally distributed\n'
In [65]: # Splitting the dataset into x and y variables
         x train = real train df1.drop(['state','state ab','hc mortgage median','hc mortgage stdev', 'hc mortgage sample weight', 'hc mortgage samples'],axis=1)
         y_train = real_train_df1['hc_mortgage_mean']
         print(x_train.shape)
         print(y_train.shape)
         (26585, 75)
         (26585,)
In [66]: # Splitting the dataset into x and y variables
         x_test = real_test_df1.drop(['state','state_ab','hc_mortgage_median','hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_samples'],axis=1)
         y_test = real_test_df1['hc_mortgage_mean']
         print(x_test.shape)
         print(y_test.shape)
```

(11355, 75) (11355,)

```
In [67]: # Feature Scaling --Standardizing our dataset
         from sklearn.preprocessing import StandardScaler
         # Initialization
         sc = StandardScaler()
         # Fitting and transforming on train data
         x_train_std = sc.fit_transform(x_train)
         # Transforming test data
         x_test_std = sc.transform(x_test)
In [68]: # Model Building
         # Regression Model 1 ---Multiple Linear Regression
         from sklearn.linear_model import LinearRegression
         # Initialization
         lr = LinearRegression()
         # Fitting the model on train set
         real_lin_reg = lr.fit(x_train_std,y_train)
         # Predictions on test set
         y_pred = real_lin_reg.predict(x_test_std)
In [69]: # Model Evaluation
         from sklearn import metrics
         print("Accuracy: ",metrics.r2_score(y_test,y_pred))
         print("MSE: ",metrics.mean_squared_error(y_test,y_pred))
         print("RMSE: ",np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
         Accuracy: 1.0
         MSE: 3.0404658380029244e-24
         RMSE: 1.7436931605081568e-12
In [70]: # Creating variables to capture evaluation metrics
         r2s = []
         mse = []
         rmse = []
In [71]: # Appending results into the list
         r2s.append(metrics.r2_score(y_test,y_pred))
         mse.append(metrics.mean_squared_error(y_test,y_pred))
         rmse.append(np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
```

```
In [72]: # Model Building
         # Regression Model 2 ---Ridge Regression
         from sklearn.linear_model import Ridge
         # Initialization
         rdg = Ridge()
         # Fitting the model on train set
         real_rdg_reg = rdg.fit(x_train_std,y_train)
         # Predictions on test set
         y_pred = real_rdg_reg.predict(x_test_std)
In [73]: | # Model Evaluation
         from sklearn import metrics
         print("Accuracy: ",metrics.r2_score(y_test,y_pred))
         print("MSE: ",metrics.mean_squared_error(y_test,y_pred))
         print("RMSE: ",np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
         Accuracy: 0.999999888232182
         MSE: 0.004453686657809074
         RMSE: 0.06673594726838808
In [74]: | # Appending results into the list
         r2s.append(metrics.r2_score(y_test,y_pred))
         mse.append(metrics.mean_squared_error(y_test,y_pred))
         rmse.append(np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
In [75]: # Model Building
         # Regression Model 3 ---Lasso Regression
         from sklearn.linear_model import Lasso
         # Initialization
         lso = Lasso()
         # Fitting the model on train set
         real_lso_reg = lso.fit(x_train_std,y_train)
         # Predictions on test set
         y_pred = real_lso_reg.predict(x_test_std)
In [76]: # Model Evaluation
         from sklearn import metrics
         print("Accuracy: ",metrics.r2_score(y_test,y_pred))
         print("MSE: ",metrics.mean_squared_error(y_test,y_pred))
         print("RMSE: ",np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
         Accuracy: 0.9999974029216658
         MSE: 1.0348750933186275
         RMSE: 1.0172881073317566
In [77]: # Appending results into the list
         r2s.append(metrics.r2_score(y_test,y_pred))
         mse.append(metrics.mean_squared_error(y_test,y_pred))
         rmse.append(np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
```

```
In [78]: # Model Building
         # Regression Model 4 ---Elastic Net Regression
         from sklearn.linear_model import ElasticNet
         # Initialization
         en = ElasticNet()
         # Fitting the model on train set
         real_en_reg = en.fit(x_train_std,y_train)
         # Predictions on test set
         y_pred = real_en_reg.predict(x_test_std)
In [79]: | # Model Evaluation
         from sklearn import metrics
         print("Accuracy: ",metrics.r2_score(y_test,y_pred))
         print("MSE: ",metrics.mean_squared_error(y_test,y_pred))
         print("RMSE: ",np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
         Accuracy: 0.9243020218845118
         MSE: 30163.877282578163
         RMSE: 173.677509432218
In [80]: # Appending results into the list
         r2s.append(metrics.r2_score(y_test,y_pred))
         mse.append(metrics.mean_squared_error(y_test,y_pred))
         rmse.append(np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
In [81]: # Model Building
         # Regression Model 5 ---Decision Tree Regression
         from sklearn.tree import DecisionTreeRegressor
         # Initialization
         dtr = DecisionTreeRegressor()
         # Fitting the model on train set
         real_dtr_reg = dtr.fit(x_train_std,y_train)
         # Predictions on test set
         y_pred = real_dtr_reg.predict(x_test_std)
In [82]: # Model Evaluation
         from sklearn import metrics
         print("Accuracy: ",metrics.r2_score(y_test,y_pred))
         print("MSE: ",metrics.mean_squared_error(y_test,y_pred))
         print("RMSE: ",np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
         Accuracy: 0.9999955608177532
         MSE: 1.7689105027810774
         RMSE: 1.330003948408078
In [83]: # Appending results into the list
         r2s.append(metrics.r2_score(y_test,y_pred))
         mse.append(metrics.mean_squared_error(y_test,y_pred))
         rmse.append(np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
```

```
In [84]: # Model Building
         # Regression Model 6 ---Random Forest Regression
         from sklearn.ensemble import RandomForestRegressor
         # Initialization
         rfr = RandomForestRegressor()
         # Fitting the model on train set
         real_rfr_reg = rfr.fit(x_train_std,y_train)
         # Predictions on test set
         y_pred = real_rfr_reg.predict(x_test_std)
In [85]: |# Model Evaluation
         from sklearn import metrics
         print("Accuracy: ",metrics.r2_score(y_test,y_pred))
         print("MSE: ",metrics.mean_squared_error(y_test,y_pred))
         print("RMSE: ",np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
         Accuracy: 0.9999911712014465
         MSE: 3.5180701354103006
         RMSE: 1.8756519227751989
In [86]: # Appending results into the list
         r2s.append(metrics.r2_score(y_test,y_pred))
         mse.append(metrics.mean_squared_error(y_test,y_pred))
         rmse.append(np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
In [87]: # Model Building
         # Regression Model 7 ---Support Vector Regression
         from sklearn.svm import SVR
         # Initialization
         svr = SVR()
         # Fitting the model on train set
         real_svr_reg = svr.fit(x_train_std,y_train)
         # Predictions on test set
         y_pred = real_svr_reg.predict(x_test_std)
In [88]: # Model Evaluation
         from sklearn import metrics
         print("Accuracy: ",metrics.r2_score(y_test,y_pred))
         print("MSE: ",metrics.mean_squared_error(y_test,y_pred))
         print("RMSE: ",np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
         Accuracy: 0.6889994642255626
         MSE: 123926.45390877084
         RMSE: 352.0318933119141
In [89]: # Appending results into the list
         r2s.append(metrics.r2_score(y_test,y_pred))
         mse.append(metrics.mean_squared_error(y_test,y_pred))
         rmse.append(np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
```

Out[90]:

	Regression Model	R2_Score	Mean Squared Error	Root Mean Squared Error
0	Linear Regression	1.000000	3.040466e-24	1.743693e-12
1	Ridge regression	1.000000	4.453687e-03	6.673595e-02
2	Lasso Regression	0.999997	1.034875e+00	1.017288e+00
3	Elastic Net Regression	0.924302	3.016388e+04	1.736775e+02
4	Decision Tree Regression	0.999996	1.768911e+00	1.330004e+00
5	Random Forest Regression	0.999991	3.518070e+00	1.875652e+00
6	Support Vector Regression	0.688999	1.239265e+05	3.520319e+02