High-Throughput Sequencing Course Statistical Interaction

Biostatistics and Bioinformatics

Summer 2019

EXAMPLE 1: NO INTERACTION

Example 2: No Interaction

EXAMPLE 3: INTERACTION

MODEL INTERACTION

- ightharpoonup Y denotes the gene expression
- ightharpoonup Let x denote the treatment indicator
 - ightharpoonup x = 0 if not treated or 1 if treated
- ightharpoonup Let z denote the knock-out indicator
 - ightharpoonup z = 0 is WT or 1 otherwise
- lackbox The expected value of Y given treatment indicator x and knock out indicator z is denoted by

$$\mu_{x,z} = E[Y|X=x,Z=z]$$

 \blacktriangleright The model will be

$$Y = \mu_{x,z} + \epsilon$$

where ϵ is a the measurement error

EXAMPLE 1: LINEAR MODEL FOR NO INTERACTION

$$Y = \beta_0 + \beta_1 z + \epsilon \ (\beta_2 = 0)$$

EXAMPLE 2: NO INTERACTION

$$Y = \beta_0 + \beta_1 z + \beta_2 x + \epsilon$$

EXAMPLE 3: INTERACTION

$$Y = \beta_0 + \beta_1 z + \beta_2 x + \beta_3 x z + \epsilon$$

INTERACTION EXAMPLES

- ▶ Example 1: What are the signs for β_0 and β_1 ?
- ▶ Example 2: What are the signs for β_0, β_1 and β_2 ?
- ▶ Example 2: What are the signs for $\beta_0, \beta_1, \beta_2$ and β_3 ?

Incorporating Interactions into the NB Model

- ▶ Conditional on x_j and z_j , the observed number of reads mapped to gene i for sample j, K_{ij} , follows a negative binomial distribution with
 - ► Mean μ_{ij}
 - ▶ Dispersion parameter α_i (gene specific)
- ▶ Conditional on the treatment status of sample j ($x_j = 0$ or 1) and the temperature z_j , the expected value of K_{ij} is

$$\mu_{ij} = s_j \times q_{ij}$$

where

$$\log q_{ij} = \beta_{i0} + \beta_{i1}x_j + \beta_{i2}z_j + \beta_{i3}x_jz_j$$

► The normalization parameters are assumed to be sample (not gene) specific $(s_{ij} = s_j)$

2019 PILOT EXPERIMENT

- ► Condition (X): pH4 (=0) versus pH8 (=1)
- ▶ Strain (Z): WT (=0) versus sre1d (=1)
- ► Negative Binomial Mean Model

$$2^{\beta+0+\beta_1X+\beta_2Z+\beta_3XZ}$$

► Log 2 of the mean model

$$\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z$$

2019 PILOT EXPERIMENT

▶ DE (due to condition) when genotype is WT (Z = 0):

$$\{\beta_0 + \beta_1(1) + \beta_2(0) + \beta_3(1)(0)\}\$$
$$-\{\beta_0 + \beta_1(0) + \beta_2(0) + \beta_3(1)(0)\}\$$

 $=\beta$

▶ DE (due to treatment) when genotype is sred1 (Z = 1):

$$\{\beta_0 + \beta_1(1) + \beta_2(1) + \beta_3(1)(1)\}\$$

$$-\{\beta_0 + \beta_1(0) + \beta_2(0) + \beta_3(1)(0)\}\}$$

$$= \beta_1 + \beta_2 + \beta_3$$

▶ Note that there is no interaction if $\beta_3 = 0$

2019 PILOT EXPERIMENT

- \blacktriangleright β_1 is log2 fold change (due to condition) when genotype is $_{\rm WT}$
- ▶ $\beta_1 + \beta_3$ is log2 fold change (due to condition) when genotype is sre1d
- $\blacktriangleright\ 2^{\beta_1}$ is the fold change (due to condition) when genotype is WT
- $\blacktriangleright \ 2^{\beta_1+\beta_3}$ is the fold change (due to condition) when genotype is sre1d
- ▶ The fold change of the two fold changes is

$$\frac{2^{\beta_1+\beta_3}}{2^{\beta_1}} = \frac{2^{\beta_1}2^{\beta_3}}{2^{\beta_1}} = 2^{\beta_3}.$$

When $\beta_3 = 0$ we have $2^0 = 1$