Decision Tree

```
In [95]: import pandas as pd
In [96]: # data Mining
df= pd.read_csv('stu.csv')
df
```

Out[96]:

	Company	Job	Degree	Salary
0	Infosys	Sales	Gradute	<50000
1	Infosys	Sales	Post Gradute	>50000
2	Infosys	Devloper	Gradute	<50000
3	Infosys	Devloper	Post Gradute	<50000
4	Infosys	Manager	Gradute	>50000
5	Infosys	Manager	Post Gradute	<50000
6	Wipro	Sales	Gradute	<50000
7	Wipro	Sales	Post Gradute	>50000
8	Wipro	Devloper	Gradute	<50000
9	Wipro	Devloper	Post Gradute	<50000
10	Wipro	Manager	Gradute	<50000
11	Wipro	Manager	Post Gradute	<50000
12	TCS	Sales	Gradute	<50000
13	TCS	Sales	Post Gradute	>50000
14	TCS	Devloper	Gradute	<50000
15	TCS	Devloper	Post Gradute	<50000
16	TCS	Manager	Gradute	<50000
17	TCS	Manager	Post Gradute	<50000

In [97]: df.head(1)

Out[97]:

	Company	Job	Degree	Salary	
0	Infosys	Sales	Gradute	<50000	

In [98]: df.sample(1)

Out[98]:

	Company	Job	Degree	Salary	
0	Infosys	Sales	Gradute	<50000	

In [99]: x = df.drop('Salary', axis= 'columns')
x

Out[99]:

	Company	Job	Degree
0	Infosys	Sales	Gradute
1	Infosys	Sales	Post Gradute
2	Infosys	Devloper	Gradute
3	Infosys	Devloper	Post Gradute
4	Infosys	Manager	Gradute
5	Infosys	Manager	Post Gradute
6	Wipro	Sales	Gradute
7	Wipro	Sales	Post Gradute
8	Wipro	Devloper	Gradute
9	Wipro	Devloper	Post Gradute
10	Wipro	Manager	Gradute
11	Wipro	Manager	Post Gradute
12	TCS	Sales	Gradute
13	TCS	Sales	Post Gradute
14	TCS	Devloper	Gradute
15	TCS	Devloper	Post Gradute
16	TCS	Manager	Gradute
17	TCS	Manager	Post Gradute

```
y = df['Salary']
In [100]:
Out[100]: 0
                 <50000
           1
                 >50000
           2
                 <50000
           3
                 <50000
           4
                 >50000
           5
                 <50000
           6
                 <50000
          7
                 >50000
          8
                 <50000
          9
                 <50000
          10
                 <50000
          11
                 <50000
          12
                 <50000
          13
                 >50000
          14
                 <50000
          15
                 <50000
          16
                 <50000
          17
                 <50000
          Name: Salary, dtype: object
          # labling for transform
In [101]:
          from sklearn.preprocessing import LabelEncoder
In [102]:
          com_l = LabelEncoder()
          job_l = LabelEncoder()
          deg_l = LabelEncoder()
```

```
x['com_1']= com_l.fit_transform(x['Company'])# indexing Elphabatic (0,2,1)
In [103]:
```

Out[103]:

```
Company
                    Job
                               Degree com 1
                                            0
  0
                              Gradute
        Infosys
                   Sales
  1
        Infosys
                   Sales
                         Post Gradute
                                            0
  2
        Infosys
                Devloper
                              Gradute
                                            0
  3
        Infosys
                Devloper Post Gradute
                                            0
        Infosys
  4
                              Gradute
                                            0
                Manager
  5
                                            0
        Infosys
                Manager Post Gradute
  6
         Wipro
                   Sales
                              Gradute
                                            2
  7
         Wipro
                   Sales Post Gradute
                                            2
  8
                                            2
         Wipro
                Devloper
                              Gradute
  9
         Wipro
                Devloper Post Gradute
                                            2
 10
         Wipro
                                            2
                Manager
                              Gradute
                                            2
 11
         Wipro
                Manager Post Gradute
 12
          TCS
                              Gradute
                                            1
                   Sales
          TCS
 13
                   Sales Post Gradute
                                            1
          TCS
 14
                Devloper
                              Gradute
                                            1
 15
          TCS
                Devloper Post Gradute
                                            1
 16
          TCS
                Manager
                              Gradute
                                            1
 17
          TCS
                Manager Post Gradute
                                            1
x['job_1'] = job_1.fit_transform(x['Job'])
```

```
In [104]:
```

```
In [105]: x['deg_1'] = deg_l.fit_transform(x['Degree'])
```

```
In [106]: y.replace({'<50000':0, '>50000':1}, inplace= True)
Out[106]: 0
                 0
                 1
           2
                 0
           3
                 0
           4
                 1
           5
          6
                 0
          7
                 1
          8
                 0
          9
                 0
          10
                 0
          11
                 0
          12
                 0
          13
                 1
          14
                 0
          15
                 0
          16
                 0
           17
          Name: Salary, dtype: int64
```

In [107]: x1 = x.drop(['Company','Job','Degree'], axis='columns')
x1

Out[107]:

	com_1	job_1	deg_1
0	0	2	0
1	0	2	1
2	0	0	0
3	0	0	1
4	0	1	0
5	0	1	1
6	2	2	0
7	2	2	1
8	2	0	0
9	2	0	1
10	2	1	0
11	2	1	1
12	1	2	0
13	1	2	1
14	1	0	0
15	1	0	1
16	1	1	0
17	1	1	1

In [108]: x1.head(1)

Out[108]:

com_1 job_1 deg_1
0 0 2 0

```
In [109]: x1['total']='0'
x1
```

Out[109]:

	com_1	job_1	deg_1	total
0	0	2	0	0
1	0	2	1	0
2	0	0	0	0
3	0	0	1	0
4	0	1	0	0
5	0	1	1	0
6	2	2	0	0
7	2	2	1	0
8	2	0	0	0
9	2	0	1	0
10	2	1	0	0
11	2	1	1	0
12	1	2	0	0
13	1	2	1	0
14	1	0	0	0
15	1	0	1	0
16	1	1	0	0
17	1	1	1	0

```
In [110]: # Decision Tree
from sklearn import tree
```

```
In [111]: model =tree.DecisionTreeClassifier()
model.fit(x1,y)
```

```
Out[111]: v DecisionTreeClassifier DecisionTreeClassifier()
```

```
In [112]: model.score(x1,y)
```

Out[112]: 1.0

In [113]: model.predict([[2,1,0,1]])

C:\Users\Administrator\AppData\Local\Programs\Python\Python311\Lib\site-packa
ges\sklearn\base.py:465: UserWarning: X does not have valid feature names, bu
t DecisionTreeClassifier was fitted with feature names
warnings.warn(

Out[113]: array([0], dtype=int64)

In [114]: import pandas as pd
import matplotlib.pyplot as plt

In [115]: df = pd.read_csv('die.csv')
 df.head(1)

Out[115]:

PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunction061487235033.60.627

In [116]: df.sample()

Out[116]:

•		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
	87	2	100	68	25	71	38.5	0.324
	4							•

```
In [117]: x =df.drop('Outcome', axis='columns')
x
```

Out[117]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunctio
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.67
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28
763	10	101	76	48	180	32.9	0.17
764	2	122	70	27	0	36.8	0.34
765	5	121	72	23	112	26.2	0.24
766	1	126	60	0	0	30.1	0.34
767	1	93	70	31	0	30.4	0.31

768 rows × 8 columns

In [118]: x.sample()

Out[118]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunctio
108	3	83	58	31	18	34.3	0.33

In [119]: y =df['Outcome']
Split Dataset

In [120]: feature_col= ['Pregnancies','Glucose','BloodPressure','SkinThickness','Insulin

In [121]: from sklearn.model_selection import train_test_split

In [122]: x_train,x_test, y_train,y_test= train_test_split(x,y)# test size bydefault= 755

In [123]: x_train.shape

Out[123]: (576, 8)

In [124]: # df.info()

```
x_test.shape
In [125]:
Out[125]: (192, 8)
In [126]:
           576/768
Out[126]: 0.75
In [127]: x_train
Out[127]:
                 Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunctio
                                                                                                0.68
            153
                          1
                                 153
                                                82
                                                              42
                                                                     485 40.6
            519
                          6
                                 129
                                                90
                                                               7
                                                                     326 19.6
                                                                                                0.58
            478
                          8
                                 126
                                                74
                                                              38
                                                                      75 25.9
                                                                                                0.16
            176
                          6
                                  85
                                                78
                                                               0
                                                                       0 31.2
                                                                                                0.38
            202
                          0
                                 108
                                                68
                                                              20
                                                                         27.3
                                                                                                0.78
             69
                          4
                                 146
                                                85
                                                              27
                                                                     100 28.9
                                                                                                0.18
            449
                          0
                                 120
                                                74
                                                              18
                                                                      63 30.5
                                                                                                0.28
            652
                          5
                                 123
                                                              40
                                                                                                0.26
                                                74
                                                                      77 34.1
                          6
                                                                                                0.24
            552
                                 114
                                                88
                                                               0
                                                                       0 27.8
                          2
                                 106
                                                                     165 29.0
                                                                                                0.42
            733
                                                56
                                                              27
           576 rows × 8 columns
In [128]:
           # Model
           # from sklearn import DecisionTreeClassifier
           from sklearn import tree
In [129]:
           # model = DecisionTreeClassifier()
           model =tree.DecisionTreeClassifier()
In [130]:
           model.fit(x_train, y_train)
Out[130]:
            ▼ DecisionTreeClassifier
            DecisionTreeClassifier()
           predicted_value = model.predict(x_test)
In [131]:
```

```
In [132]: model.score(x_test, y_test)
Out[132]: 0.671875
          from sklearn import metrics
In [140]:
In [141]: metrics.accuracy_score(y_test, predicted_value)
Out[141]: 0.671875
          # pip install pydotplus
In [142]:
          import pydotplus
In [143]: from sklearn.tree import export_graphviz
In [144]:
          # pip install six
          from six import StringIO
In [145]: # pip install Pillow
          from IPython.display import Image
          a_data = StringIO()
In [146]:
          import cv2
          from PIL import Image
```