概述

芯片是断点续传单线 300/900ns 归零码三通道 LED (发光 二极管显示器) 恒流驱动控制芯片,采用单线 300/900ns 归零码通讯协议。

芯片内部集成有单线归零码数字接口、数据锁存器、LED 输出恒流驱动、电源稳压模块、内置 RC 振荡器、输出数据自动整形转发等电路。

芯片内部集成有断点续传功能模块,可以实现串联应用中的断点续传功能(只要串联应用中不是相邻的两颗芯片端口同时损坏,显示数据都可以断点续传正确传输显示)。

芯片通过外围 MCU 控制实现该芯片的单独辉度、 级联控制等实现户外大屏的彩色点阵发光控制。本产品性能优良,质量可靠。

特点

- 输出端口耐压 >26 V
- 芯片内置稳压管,电源端需串电阻到 IC VDD 脚, 无需外加稳压管
- PWM 辉度调节电路(256 级辉度可调),扫描频率 1KHZ
- 内置断点续传功能,可以保证串联应用中的断点续 传正确传输显示
- 内置双 RC 振荡,并根据数据线上信号进行时钟同步,在接受完本单元的数据后能自动将后续数据进行整形转发
- 内置上电复位电路
- 归零码通讯协议级联接口,能通过一根信号线完成 数据的接收与解码
- 当刷新速率 30 帧/秒时,级联数不小于 1024 点
- 上电默认不亮
- 封装: DIP8、SOP8

应用

- 点光源
- 护栏管
- 软灯条
- 户内外大屏等

典型应用电路

SOP8/DIP8 封装管脚 (800K 传输速率断点续传功能)

SOP8/DIP8 封装管脚描述

管脚编号	管脚符号	管脚名称	描述
1	OUTR	R-LED 输出	Red(红) PWM 控制输出
2	OUTG	G-LED 输出	Green (绿) PWM 控制输出
3	OUTB	B-LED 输出	Blue(蓝) PWM 控制输出
4	GND	地	芯片地
5	DOUT	数据输出	归零码数据级联输出
6	DIN1	数据输入	第一路归零码数据输入
7	DIN2	数据输入	第二路归零码数据输入
8	VDD	电源	芯片电源

V1.0 2

极限参数

参数	符号	额定值	单位
逻辑电源电压	V_{DD}	+4.5~+5.5	V
逻辑输入电压	V _{IN}	-0.5~ V _{DD} +0.5	V
输出端口耐压	V_{OUT}	>26	V
工作温度	T_{opt}	-40~+85	$^{\circ}$
储存温度	T_{stg}	-50~+150	$^{\circ}$
抗静电 ESD(HBM)	ESD	2000	V
额定输出功率	P_d	300	mW

推荐工作范围(无特殊说明, TA=-40~+85℃, GND=0V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	V_{DD}	•	5	1	V	
高电平输入电压	V_{IH}	$0.7 V_{DD}$	-	V_{DD}	V	
低电平输入电压	V_{IL}	0	-	$0.3V_{DD}$	V	
输出端口耐压	V _{OUT}	26			V	

电气参数

(无特殊说明, Ta=25℃)

符号	参数	测试条件	最小值	典型值	最大值	单位
V_{IH}	高电平输入电压	-	0.7 V _{DD}	-	V_{DD}	V
V _{IL}	低电平输入电压	-	0	-	$0.3V_{DD}$	V
I _{OUT_RGB}	R/G/B 端口驱动电流	V _{DS_RGB} =1.5V	-	18.5	-	mΑ
I _{DOUT_H}	DOUT 端口高电平驱动电流	DOUT 端口接地	-	50	-	mA
I _{DOUT_L}	DOUT 端口低电平驱动电流	DOUT 端口接 VDD	-	50	-	mA
I _{DD}	静态电流	芯片上电,不接 LED	-	1	-	mA
R _{DIN}	DIN 端口下拉电阻	DIN 对 GND 测试	-	13	-	ΚΩ
P _D	消耗功率	Ta=25℃	-	-	200	mW

开关特性

(无特殊说明, Ta=25℃)

符号	参数	测试条件	最小值	典型值	最大值	单位
T _{DIN-DOUT}	DIN→DOUT 传输延时	DIN →DOUT 的上升沿延时	-	80	-	ns
F_{tran}	归零码数据传输速率	-	-	800	-	Kbps

内部框图

功能描述

芯片采用单线归零码协议通讯传输。芯片在上电复位以后,接收 DIN 端口传输的数 据,接受 24 bit 后,DOUT 端口开始转发数据,提供下一个芯片的输入数据。在转发之前,DOUT 端口一直拉低。此时芯片将不接收新的数据,芯片OUTR、OUTG、OUTB 三个 PWM 输出口根据接收到的 24 bit 数据, 发出相应的不同占空比的信号,该信号周期在 1 ms 左右。

如果 DIN 端输入信号为 RESET 信号,芯片将接收到的数据送显示,芯片将在该信号结束后重新接收新的数据,在接收完本芯片的 24 bit 数据后, 通过 DOUT 端口转发数据。

芯片在没有接受到 RESET 码前,OUTR、OUTG、OUTB 管脚输出保持不变,当接收 到 RESET 码后,芯片将刚才接收到的 24 bit 数据输出到 OUTR、OUTG、OUTB 引脚上。

断点续传功能: 芯片默认从第二路 DIN2 读取归零码数据,如果一定时间内第一路 DIN1 数据到达时第二路 DIN2 仍然没有数据,则芯片从第一路 DIN1 读取归零码数据,实现断点续传功能。

■ 时序码型如下所示,"0"码是数据 0,"1"码是数据 1,判断标准如表 1。

归零码的时序码型

800K 通讯速率的归零码 "0"或"1"码及 RESET 时间判断

符号	说明	最小值	典型值	最大值	容许偏差	单位
T0H	数据0的高电平时间		0.3		±0.1	us
TOL	数据0的低电平时间		0.9		±0.1	us
T1H	数据 1 的高电平时间		0.9		±0.1	us
T1L	数据 1 的低电平时间		0.3		±0.1	us
Trst	RESET信号低电平时间	100		-		us

■ 24bit 数据结构(高位先发,按照 RGB 的顺序发送数据)

■ 数据传输和转发

注: D1 为控制器发送的归零码数据, D2、D3、D4 为级联芯片转发的归零码数据。

	◀───第N帧数据── ─							
D1	第一位24bit	第二位24bit	第三位24bit	RESET	第一位24bit	第二位24bit	第三位24bit	RESET
D2		第二位24bit	第三位24bit	RESET	 -	第二位24bit	第三位24bit	RESET
D3			第三位24bit	RESET			第三位24bit	RESET
D4	 			RESET	 			RESET

V1.0 5

■ 应用电路图

系统电源 VLED 到芯片 VDD 的串联分压电阻 R $_{\text{ЭЕ}}$, 5V 系统电源 R $_{\text{ЭЕ}}$ 约 100 欧姆,12V 系统电源 R $_{\text{ЭЕ}}$ 约 2K 欧姆,24V 系统电源 R $_{\text{ЭЕ}}$ 约 3.9K 欧姆。(原理是限制芯片的无效发热电流,约为 5mA)。

系统电源 VLED 到显示 LED 的串联分压散热电阻 R wh,根据以下公式计算得到(可以取常用电阻阻值):

公式: (VLED - V_{OUTn} - n*V_{RGB}) / R _{散热} = I (约为 18.5mA)

注: 1): VLED 是系统电源。

- 2): Voutn 是芯片输出端口恒流需求,要求>0.7V,一般选择 1.5V。
- 3): n是红灯/绿灯/蓝灯串联的颗数。
- 4): V_{RGB}是红灯或者绿灯或者蓝灯的压降,一般红灯为 2V,绿灯为 3V,蓝灯为 3.3V。
- 5): 有些同类芯片在系统电源 5V 时 R 散為省略,本芯片也可以;只是此时多余功率降在芯片上,芯片发热较严重。

R _{散热}	5V 系统电源(串联1个LED)	12V 系统电源(串联 3 个 LED)	24V 系统电源(串联6个LED)
R _{散热} (红灯)	75 欧姆	220 欧姆	510 欧姆
R _{散热} (绿灯)	24 欧姆	68 欧姆	220 欧姆
R _{散热} (蓝灯)	10 欧姆	27 欧姆	130 欧姆
R _{分压}	100 欧姆	2K 欧姆	3.9K 欧姆

封装外形尺寸

SOP8

BASE MATEL

符号	毫米						
11 2	最小值	标准值	最大值				
Α	1.35	1.60	1.77				
A1	0.08	0.15	0.28				
A2	1.20	1.40	1.65				
b	0.33	-	0.51				
С	0.17	-	0.26				
D	4.70	4.90	5.10				
Е	5.80	6.00	6.20				
E1	3.70	3.90	4.10				
е	1.27BSC.						
L	0.38	0.60	1.27				
θ	0°	-	8°				

注明:本公司对本文档有修改的权利,本公司对本文档的修改恕不另行通知。

V1.0 7