Busca Tabu Aplicada ao Sequenciamento de Tarefas com o Tempo Dependente de Sequência em Sistemas de Manufatura Flexível

Gabriel Carvalho Domingos da Conceição

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

22 de agosto de 2024

Sistema de Manufatura Flexível

Definição

Pode ser entendido como um sistema composto por uma rede de máquinas interconectadas e controladas por um sistema automatizado.

Contexto Socioeconômico

Smith, Johnson e Brown, 2018

Descrevem a necessidade de pintar veículos com diferentes cores em uma linha de produção automotiva, levando em consideração as demandas e preferências dos clientes.

Versão uniforme do SSP

- Uma única máquina;
- Ferramentas de tamanho igual;
- Ferramentas ocupando apenas um compartimento no magazine;
- ► Trocas de ferramentas não ocorrem simultaneamente;
- Tempos de trocas são constantes;
- Não são considerados desgastes ou quebras das ferramentas;
- Crama (1994) provou que o SSP é um problema NP-difícil.

SSP com o tempo dependente de sequência

Os tempos de trocas entre pares de ferramentas não são constantes e dependem do par específico de ferramentas a serem trocadas.

Definição do SSP com o tempo dependente de sequência

Definição

Modelling a tool switching problem on a single nc-machine. Journal of Intelligent Manufacturing (Privault e Finke, 1995).

Estado da arte

A two-stage heuristic for the sequence-dependent job sequencing and tool switching problem. Computers & Industrial Engineering, Elsevier (Rifai, Mara e Norcahyo, 2022).

Sistema de Manufatura Flexível

Exemplo de instância do problema, com C=5:

		Т	arefa	as	
	0	1	2	3	4
[1]	0	0	0	0	1
[2]	1	1	0	0	1
[3]	0	0	1	0	1
[4]	0	1	0	0	0
[5]	1	1	0	0	0
[6]	0	1	0	0	0
[7]	1	0	1	0	0
[8]	0	0	1	0	0
[9]	1	0	0	1	0
[10]	1	0	0	1	0

	۰.	_	_		_	_	_	_	_	
	1	2	3	4	5	6	7	8	9	10
0	1	2	3	4	5	6	7	8	9	10
1	0	5	2	1	4	5	1	4	2	2
2	4	0	5	4	5	2	2	1	5	4
3	2	2	0	3	4	2	4	5	3	1
4	4	3	1	0	4	3	2	3	4	3
5	4	4	2	1	0	3	3	5	3	2
6	2	2	4	4	3	0	4	4	1	2
7	2	2	5	4	2	1	0	4	5	5
8	1	3	5	1	5	2	3	0	1	3
9	1	1	5	1	1	2	2	3	0	4
10	1	5	1	5	4	3	5	4	5	0

$$J = [1, 4, 2, 3, 0]$$

$$T_1 = [2, 4, 5, 6]$$

Tarefas	Magazine	Custo	
1	$\{1, 2, 4, 5, 6\}$	18	

$$J = [1, 4, 2, 3, 0]$$

$$T_4 = [1, 2, 3]$$

Tarefas	Magazine	Custo
1	$\{1, 2, 4, 5, 6\}$	18
2	$\{1, 2, 3, 4, 5\}$	22

$$J = [1, 4, 2, 3, 0]$$

$$T_2 = [3, 7, 8]$$

Tarefas	Magazine	Custo
1	$\{1, 2, 4, 5, 6\}$	18
2	$\{1, 2, 3, 4, 5\}$	22
3	$\{2, 3, 5, 7, 8\}$	26

$$J = [1, 4, 2, 3, 0]$$

$T_3 =$	= [9.	101

Tarefas	Magazine	Custo
1	$\{1, 2, 4, 5, 6\}$	18
2	$\{1, 2, 3, 4, 5\}$	22
3	$\{2, 3, 5, 7, 8\}$	26
4	$\{2, 5, 7, 9, 10\}$	28

$$J = [1, 4, 2, 3, 0]$$

$$T_0 = [2, 5, 7, 9, 10]$$

Tarefas	Magazine	Custo
1	$\{1, 2, 4, 5, 6\}$	18
2	$\{1, 2, 3, 4, 5\}$	22
3	$\{2, 3, 5, 7, 8\}$	26
4	$\{2, 5, 7, 9, 10\}$	28
5	$\{2, 5, 7, 9, 10\}$	28

Definição

Introduzido por Tang e Denardo (1988), SSP pode ser dividido em dois subproblemas:

- ► Problema de sequenciamento das tarefas (SP)
 - NP-Difícil.
- Problema de alocação das ferramentas (TP)
 - **▶** P.

Metodologia

- Problema de sequenciamento das tarefas (SP)
 - Busca tabu.
- Problema de alocação das ferramentas (TP)
 - Problema de atribuição linear.

Busca tabu

Busca tabu aplicada ao problema de sequenciamento das tarefas

Definição

- Difícil se locomover entre diferentes soluções;
- Armazenar soluções com melhoras, Woodruff and Zemel (1993);
- Heurística Construtiva;
- ightharpoonup Hash: pesquisa $O(\log(n))$.

Swap

Definição

Consiste em selecionar um par de tarefas e efetuar a troca. Neste exemplo ilustrado, o par j_2 e j_5 .

2-opt

Definição

Consiste em selecionar um intervalo na solução proposta e inverter a ordem dos elementos contidos nesse intervalo, conforme ilustrado, da tarefa j_2 a j_4 .

Problema de alocação das ferramentas

Definição

Neste subproblema específico, há a necessidade de realizar trocas entre ferramentas a serem retiradas e ferramentas a serem instaladas, sendo que cada troca possui um custo associado

- Problema de atribuição linear em grafos;
- Classificado como P;
- Método exato;
- Busca local.

Problema de atribuição linear aplicado ao problema de trocas de ferramentas

Definição

Modelando o problema de atribuição linear em grafos bipartidos, o grafo G=(V,A) é definido com V representando o conjunto de vértices, que neste caso são as ferramentas disponíveis para atribuição

- O conjunto V é então dividido em dois;
- \triangleright V_i representando as ferramentas a serem retiradas;
- $ightharpoonup V_{i+1}$, representando as ferramentas a serem instaladas;
- ► A, descrevem as possíveis trocas entre as ferramentas;
- ightharpoonup Cada arco $(u,v)\in A$ possui capacidade de uma unidade.

Problema de atribuição linear aplicado ao problema de trocas de ferramentas

Método exato

Definição

Para resolver esse problema, pode-se utilizar o algoritmo *cost-scaling* push-relabel

- $ightharpoonup O(|V||A| \log(|V|\max_d));$
- $ightharpoonup \max_d$ representa o maior valor de um arco do grafo;
- Math-heuristic.

Heurística Construtiva

Definição

- A primeira tarefa é orientada pelo menor custo de setup;
- As similaridades entre as tarefas, calculadas a partir do custo aproximado das trocas de ferramentas entre elas;
- Arestas artificiais, cujos pesos correspondem aos custos de *setup* das ferramentas em questão.

Busca local

Definição

Neste exemplo ilustra um possível movimento na busca local, no qual a ordem de remoção das ferramentas é trocada.

Experimentos preliminares

Definição dos parâmetros.

- ▶ Busca local: swap;
- Pertubação: 2-opt;
- ► Iterações: 100;
- *β*: 100;
- α: 45;
- Lista Tabu: 200.

Experimentos computacionais

Ambiente computacional

- ▶ Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz;
- ► 16GB RAM DDR4 3200MHz;
- Ubuntu 22.04.1 LTS;
- ► Linguagem C++, GCC versão 11.3.0;
- ▶ Flags de otimização -O3 e -march=native.

Tempo e componentes de aleatoriedade

- Limite de tempo para execução de 600 segundos;
- ▶ 10 execuções por instância, devido aos componentes de aleatoriedade.

Instâncias

▶ 10 conjuntos com 4 instâncias.

Comparação com o estado da arte - Método exato

5 minutos

- ► *Gap* médio de -21,60%;
- Gap mínimo de -3,98%;
- ► *Gap* máximo de -41,69%;
- Desvio padrão médio: 0,67.

10 minutos

- ► Gap médio de -22,70%;
- ► Gap mínimo de -8,20%;
- Gap máximo de -42,26%;
- Desvio padrão médio: 0,05.

Comparação com o estado da arte - Método exato

Comparação com o estado da arte

- ► *Gap* médio de -28,81%;
- ► *Gap* mínimo de -15,82%;
- ► *Gap* máximo de -44,43%;
- Desvio padrão médio: 0,01;
- ► Tempo médio: 6.439,10 segundos.

Comparação com o estado da arte - Busca local

Comparação com o estado da arte

- ► *Gap* médio de -28,80%;
- ► *Gap* mínimo de -14,68%;
- ► *Gap* máximo de -41,45%;
- Desvio padrão médio: 0,02;
- Tempo médio: 43,45 segundos.

Análise estatística

Teste de normalidade Shapiro-Wilk

Confirma a hipótese nula de que os resultados de ALNS, BT + busca local e BT + exato podem ser modelados de acordo com uma distribuição normal.

Método paramétrico Student's t-test

- Há diferença significativa entre os resultados de cada método;
- ► Tanto o BT + exato quanto o BT + busca local demonstraram ser estatisticamente superiores ao método ALNS;
- ▶ BT + exato apresenta um desempenho melhor que BT + busca local.

Publicações

Artigo completo aceito

CONCEIÇÃO, G. C. D & CARVALHO, M. A. M. (2023). Busca Tabu Aplicada ao Sequenciamento de Tarefas com o Tempo Dependente de Sequência em Sistemas de Manufatura Flexível. Aceito como artigo completo no LV Simpósio Brasileiro de Pesquisa Operacional.

