Homework 4

Ishita Dutta

6/02/2022

1

a)

```
N <- 828
n <- 85
M <- 215
number_errors \leftarrow c(0,1,2,3,4)
frequency <-c(57,22,4,1,1)
t_sum <- sum(number_errors * frequency)</pre>
t \leftarrow t_sum*(N/n)
s2 \leftarrow (1/(n-1))*sum(frequency*((number_errors - (t_sum/n))^2))
y_hat <- t/(N*M)
SE \leftarrow (sqrt((1-(n/N))*(s2/n)))/M
cat('error rate : ', y_hat, '\n', 'standard error : ', SE)
## error rate : 0.002024624
## standard error: 0.0003570679
b)
total_errors <- N*sqrt((1-(n/N))*(s2/n))
cat("Total number of errors in the 828 claims : ", total_errors)
## Total number of errors in the 828 claims : 63.56523
c)
n <- 18275
N <- 178020
se_p \leftarrow sqrt((1-(n/N))*(((1-y_hat)*y_hat)/n))
cat(se_p)
```

0.0003149797

We can see from the above result that if we just took SRS sampling, the variance would have been smaller.

2

a)

```
N <- 29
n <- 4
total_students = c(1471, 890, 1021, 1587) # Mi
female_stu = c(792,447,511,800) #mi

female_students_interviewed = c(25,15,20,40)
smokers = c(10,3,6,27)

wij = (N * total_students) / (n * female_stu)

#sum(smokers)/sum(female_students_interviewed)

#sum(smokers) / sum(female_stu)

thatclu = sum(wij * (smokers / female_students_interviewed) * total_students)* (N/n)
thatclu / (sum(wij * total_students) * (N/n))</pre>
## [1] 0.4317106
```

b)

```
thatclu
```

[1] 219937.2

c)

```
## This one I don't know ...
```

3

a)

```
measles <- read.csv("measles.csv")</pre>
school_avg <- c()</pre>
for (i in 1:10) {
  school_avg[i] <- mean(measles[measles$school==i & measles$returnf!=9,]$returnf)
school \leftarrow c(1:10)
data.frame(school, school_avg)
##
      school school_avg
## 1
      1 0.5000000
## 2
         2 0.5277778
## 3
         3 0.7647059
         4 0.6000000
## 4
        5 0.4615385
## 5
## 6
         6 0.5416667
      0.6818182
8 0.5833333
9 0 err
## 7
## 8
## 9
## 10 10 0.4117647
b)
N<-46
n<-10
W <-c()
M <- unique(measles$Mitotal)</pre>
for (i in 1:10) {
  #M <- nrow(measles[measles$school==i & measles$previmm==0 ,])</pre>
  #m <- nrow(measles[measles$school==i,])</pre>
  a <-length(measles[measles$school==i,]$mi)</pre>
  m <- sum(measles[measles$school==i,]$mi)/a</pre>
 Mi <- M[i]
  cat(Mi,' : ',m)
  cat('\n')
 w \leftarrow (Mi*N)/(m*n)
 W[i] <- w
}
## 78 : 40
## 238 : 38
## 261 : 19
## 174 : 30
```

236 : 30

188 : 25 ## 113 : 23 ## 170 : 43 ## 296 : 38 ## 207 : 21

W

[1] 8.97000 28.81053 63.18947 26.68000 36.18667 34.59200 22.60000 18.18605 ## [9] 35.83158 45.34286

measles[measles\$school==i,]

##		school	${\tt form}$	${\tt returnf}$	consent	${\tt hadmeas}$	${\tt previmm}$	${\tt sideeff}$	gp	${\tt noshot}$	${\tt notser}$	gpadv
##	287	10	1	1	0	1	1	0	0	0	0	0
##	288	10	1	1	0	0	0	1	0	0	0	0
##	289	10	1	1	0	1	0	0	0	0	0	0
##	290	10	1	0	0	1	0	0	0	0	0	1
##	291	10	1	0	0	1	0	0	0	0	0	0
##	292	10	1	0	0	0	1	0	0	0	0	1
##	293	10	0	9	9	0	0	0	0	0	0	0
##	294	10	1	0	0	0	0	0	1	0	0	0
##	295	10	1	0	0	1	0	0	0	0	0	0
##	296	10	1	1	0	1	0	0	0	0	0	0
##	297	10	1	0	0	1	0	0	0	0	0	0
##	298	10	0	9	9	0	0	0	0	0	0	0
##	299	10	1	0	0	1	0	1	0	0	0	0
##	300	10	1	1	1	0	0	0	0	0	0	0
##	301	10	0	9	9	0	0	0	0	0	0	0
##	302	10	1	0	0	1	0	1	1	0	0	0
##	303	10	1	0	0	1	1	1	0	0	0	0
##	304	10	1	1	1	0	0	0	0	0	0	0
##	305	10	9	9	9	0	0	0	0	0	0	0
##	306	10	1	0	0	1	0	0	1	0	0	0
##	307	10	1	1	1	0	0	0	0	0	0	0

Mitotal mi

287 207 21

288 207 21

289 207 21

290 207 21

291 207 21

292 207 21

293 207 21

294 207 21 ## 295 207 21

296 207 21

297 207 21

298 207 21

299 207 21

300 207 21

301 207 21 ## 302 207 21

303 207 21

```
## 304
            207 21
            207 21
## 305
## 306
            207 21
## 307
            207 21
#measles[measles$school==i & measles$previmm==0,]
c)
# I'm not sure about this but the concept follows (2b)
d)
4
a)
states <- read.csv("statepps.csv")</pre>
landarea <- states$landarea</pre>
states$psi_landarea <- states$landarea / sum(states$landarea)</pre>
n <- 10
states_n \leftarrow 51
cumulative <- cumsum(landarea)</pre>
samples <- sample(1:max(cumsum(landarea)), n, replace = TRUE)</pre>
group <-c()</pre>
index <-c()
for (i in 1:10) {
  temp <- states_n - sum(samples[i] < cumulative) + 1</pre>
  index[i] <-temp</pre>
  group[i] <- states$state[temp]</pre>
    }
group
## [1] "North Dakota"
                            "North Carolina" "Maine"
                                                                  "Virginia"
   [5] "California"
                            "Arizona"
                                              "Texas"
                                                                  "Texas"
## [9] "New York"
                           "Virginia"
```

5

b)

```
pop <- states$pop2019</pre>
psi_pop <- states$pop2019 / sum(states$pop2019)</pre>
states["psi_pop"] <- psi_pop</pre>
n <- 10
states_n \leftarrow 51
cumulative <- cumsum(pop)</pre>
samples <- sample(1:max(cumsum(pop)), n, replace = TRUE)</pre>
group <-c()
index <-c()
for (i in 1:10) {
  temp <- states_n - sum(samples[i] < cumulative) + 1</pre>
  index[i] <-temp</pre>
  group[i] <- states$state[temp]</pre>
    }
group
   [1] "New Mexico"
                            "Utah"
                                                "California"
                                                                   "Nevada"
    [5] "Tennessee"
                            "Maine"
                                               "South Carolina" "Michigan"
##
    [9] "South Carolina" "New York"
c)
   • We can see that there are repetitions in some samples but also can find out that the states with large
     states result in large populations.
5
a)
dat <- states[index,]</pre>
t_hat <- (1/n)*(sum(dat$counties/dat$psi_landarea))</pre>
sum(states$counties)
## [1] 3143
t_hat
## [1] 3467.937
se <- sqrt((1/n)*(1/(n-1))*sum(((dat$counties/dat$psi_landarea) - t_hat)^2))
## [1] 821.2637
b)
```