

Workshop - Introdução a IoT

A criação de novos modelos de negócio a partir da transformação da interação entre consumidor, produto e indústria.

Ricardo Lins Mota, Eronides da Silva Neto e Heitor Fonseca de Araújo

Instituto SENAI de Inovação para Tecnologias da Informação e Comunicação

Introdução a Internet das Coisas

Curso de Introdução a IoT (EAD)

ferramentas da Indústria 4.0.

Curso introdutório para a Introdução apresentação da IoT como umas ferramentas

Introdução a algumas das ferramentas práticas utilizadas em projetos de IoT.

Workshop Prático

Introdução a IoT

Capacitação em IoT

Uso de temas relacionados a IoT em aulas e projetos

O que aprendemos até agora sobre a Internet das Coisas?

Conteúdos abordados no curso EAD - SENAI/Joy Street

- ☐ IoT conceitos e aplicações
- ☐ Tecnologias digitais da Indústria 4.0.
- Camadas da Internet das Coisas
- ☐ Tecnologias de comunicação
- ☐ Ferramentas de visualização (HMI)

Agenda do Workshop

- Metodologia do workshop
- IoT stack
- Plataforma Arduino
- ESP8266 e NodeMCU
- Conexão de sensores e atuadores
- Desenvolvimento de projetos embarcados
- Conexão com a nuvem

Metodologia do nosso workshop

Uso de ferramentas educacionais de baixo custo para o aprendizado de etapas do desenvolvimento em Internet das Coisas.

IoT Stack: um sistema de ... sistemas

IoT stack

Como podemos ver, temos diferentes áreas:

- 1. As coisas
- 2. Tecnologias de comunicação
- 3. Software: as etapas de processamento, armazenamento e análise dos dados.

As camadas da IoT

Considerando uso da IoT na indústria

Como construir um objeto conectado?

Parte do desenvolvimento

A arquitetura de uma "coisa"

A unidade de controle das diferentes coisas

O funcionamento de um microcontrolador

PARTE I - Conceitos

Arduino

A plataforma Arduino

Arduino é uma plataforma open-source hardware. ** open source hardware.

Qualquer um pode modificar, utilizar e adaptar o ambiente de programação.

A placa é composta por um **microcontrolador**, circuitos de entrada/saída e que pode ser facilmente conectada à um computador e programada via IDE (Integrated Development Environment, ou Ambiente de Desenvolvimento Integrado) utilizando uma linguagem baseada em C/C++, sem a necessidade de equipamentos extras além de um cabo USB.

A plataforma Arduino

O Arduino possui uma gama de módulos, sensores e atuadores, que auxiliam na montagem de uma prova de conceito ou projeto.

☐ Também existem placas auxiliares chamadas de "shield" que auxiliam o arduíno em tarefas mais complexas, como uma pilha Ethernet.

Arduino IDE

- → Programação para diversas placas Arduino, utilizando "bibliotecas" (conjunto de códigos) para sensores e dispositivos específicos.
- Possibilidade de verificar erros.
- Gratuita e compatível com Windows, MAC e Linux.

Arduino e Internet das Coisas

Módulo ESP8266

Placa de desenvolvimento NodeMCU

- Entre os inúmeros módulos que surgiram recentemente para explorar a onda da Internet das Coisas (IoT), o que mais se destaca é o **ESP8266**, da empresa **Espressif**.
- Com diversos modelos diferentes, o módulo ESP8266 pode conter apenas o transceiver ou também operar de maneira standalone, contendo o microcontrolador responsável para comandar diferentes tarefas.
- Conexão Wi-Fi em frequência de 2.4GHz com suporte a WPA e WPA2;

Como começar a programar e fazer projetos com Arduino?

Conceitos básicos

O ambiente de programação Arduino

```
ForLoopIteration | Arduino 1.6.8 Hourly Build 2016/02/19 11:12
                                    ForLoopIteration
                                  10 created 2006
                                   11 by David A. Mellis
                                   12 modified 30 Aug 2011
                                   13 by Tom Igoe
                                   15 This example code is in the public domain.
                                   17 http://www.arduino.cc/en/Tutorial/ForLoop
                                   18 */
Setup do programa
                                   20 int timer = 100:
                                                               // The higher the number, the slower the timing
                                   22 void setup() {
                                   23 // use a for loop to initialize each pin as an output:
                                                                                                                    Executado apenas uma vez
                                   for (int thisPin = 2; thisPin < 8; thisPin++) {</pre>
                                        pinMode(thisPin, OUTPUT);
                                   26 }
                                   27 }
          Loop
                                   29 void loop() {
                                   30 // loop from the lowest pin to the highest:
                                   31 for (int thisPin = 2; thisPin < 8; thisPin++) {
                                        // turn the pin on:
                                        digitalWrite(thisPin, HIGH);
                                        delay(timer);
                                        // turn the pin off:
                                         digitalWrite(thisPin, LOW);
                                                                                                                              Execução infinita
                                   37 }
                                       // loop from the highest pin to the lowest:
                                   40 for (int thisPin = 7; thisPin >= 2; thisPin--) {
                                       // turn the pin on:
                                        digitalWrite(thisPin, HIGH);
                                         delay(timer);
                                        // turn the pin off:
                                         digitalWrite(thisPin, LOW);
```


Estrutura de programação

Documentação de Referência da Linguagem Arduino

A linguagem de programação do Arduino pode ser dividida em três partes principais: estruturas, valores (variáveis e constantes) e funções.

Disponível em https://www.arduino.cc/reference/pt/

Para controlar a placa Arduino e realizar computações.

Entradas e Saídas Digitais	Funções Matemáticas	Números Aleatórios
digitalRead()	abs()	random()
digitalWrite()	constrain()	randomSeed()
pinMode()	map()	
	max()	Bits e Bytes
Entradas e Saídas Analógicas	min()	bit()
analogRead()	pow()	bitClear()
analogReference()	sq()	bitRead()
analogWrite()	sqrt()	bitSet()
		bitWrite()
Apenas Zero, Due e Família MKR	Funções Trigonométricas	highByte()
analogReadResolution()	cos()	lowByte()
analogWriteResolution()	sin()	
	tan()	Interrupções Externas
Entradas e Saídas Avançadas		attachInterrupt()
noTone()	Caracteres	detachInterrupt()

Leitura recomendada

<u>Programação com Arduino, Simon Monk</u>

Conceitos básicos de eletrônica

Básico de eletrônica

Protoboard (matriz de contato)

Componentes de circuitos eletrônicos

O funcionamento de circuitos na protoboard

Circuito elétrico

Representação na protoboard

Obs: Comparativo ilustrativo, são dois circuitos diferentes

Funcionamento da protoboard

Trilhas com diferentes potenciais elétricos

Interfaceamento com a placa NodeMCU

- Cada pino (interface) da placa NodeMCU contém um propósito diferente.
- As interfaces podem ser consideradas digitais e analógicas.
- □ Também temos pinos de comunicação serial (ex: UART, SPI, I2C)

Sinais elétricos digitais e analógicos

☐ A representação de sinais elétricos pode ser feita de duas maneiras:

Sinais elétricos digitais e analógicos

Sinal analógico: é composto por um sinal contínuo, que varia em função do tempo. É possível representá-lo com uma curva, que apresenta intervalos com valores que variam entre um possível intervalo definido;

Exemplos: sinais "reais" como temperatura, umidade, tensão da rede elétrica e velocidade.

Sinal digital: um digital tem valores discretos, com números descontínuos no tempo e na amplitude. Enquanto o formato analógico apresenta variações infinitas entre cada um de seus valores, o digital assumirá sempre os valores discretos (ex: representação binária), diminuindo a faixa de frequência entre eles e a oscilação.

Exemplos: LEDs, buzinas (buzzers), sensor de presença, acionamento de rele.

PARTE II - Atividades

Repositório com os códigos das atividades

Todos os códigos estão disponíveis em https://github.com/kakalins/SENAI-IOT

Atividade 01: acionamento de um LED

- Uso do código <u>blink.ino</u>
- Identificar os pinos para a conexão

Missão do curso:

A loT é, entre tantas coisas, a conexão entre objetos físicos e tecnologias digitais. Projete um objeto, para uso cotidiano, que se utilize da loT.

Objetos do cotidiano com IoT

Unidade de controle de ar/sala

Sensor de presença

Escolha um dos dois objetos para fazer parte da Internet das Coisas!

Sensores - Conectando objetos na IoT

Sensor de temperatura e umidade

Sensor de presença

Metodologia para a conexão do objeto a loT

Teste individual do sensor

Conexão do sensor com o microcontrolador para verificar o funcionamento

Configuração da plataforma de monitoramento

Configuração da conexão do sistema embarcado com a Internet através de plataforma de monitoramento

Estabelecimento de um objeto conectado

Uso de um objeto do cotidiano com novas funcionalidades devido a conectividade.

Atividade 02: teste do sensor

- ☐ Códigos: <u>test-DHT.ino</u> <u>test-PIR.ino</u>
- Visualização de funcionamento via Serial Monitor

Aplicações com objetos conectados na loT

Envio dessas informações para nuvem

Atuação

Sensor detecta calor ou frio

Tomada de decisão

IoT - Plataformas gratuitas para monitoramento e controle

Atividade 03: ThingSpeak

Código: ThingDHT.ino ThingPIR.ino

Configuração ThingSpeak

Siga os seguintes passos para configurar:

- 1. Entre no site ThingSpeak.com.
- 2. Clique em Get Started For Free.
- 3. Na página de cadastro, preencha seus dados para criar sua conta.

Configuração ThingSpeak

Siga os seguintes passos para configurar:

- 1. Após o cadastro, clique em New Channel na página de canais.
- 2. Preencha o formulário com os dados do canal.
- 3. Clique em salvar canal no final da página.

Configuração ThingSpeak

Obrigado!

https://github.com/kakalins/SENAI-IOT

https://isitics.com

