Chapitre 28: Déterminants

Dans tout le chapitre n désignera un entier naturel supérieur ou égal à 2 et $\mathbb K$ désignera $\mathbb R$ ou $\mathbb C$.

Introduction

On se place dans le plan \mathbb{R}^2 muni de sa base canonique que l'on note $(\overrightarrow{i}, \overrightarrow{j})$. Soit \overrightarrow{u} , \overrightarrow{v} deux vecteurs de \mathbb{R}^2 .

On appelle parallélogramme construit sur les vecteurs \vec{u} et \vec{v} l'ensemble noté $\mathscr{P}_{\vec{u},\vec{v}}$ et définie par :

$$\mathcal{P}_{\overrightarrow{u},\overrightarrow{v}} = \{ \alpha \overrightarrow{u} + \beta \overrightarrow{v} \mid \alpha, \beta \in [0,1] \}$$

On note $\mathscr{A}(\mathscr{P}_{\overrightarrow{u},\overrightarrow{v}})$ l'aire algébrique de $\mathscr{P}_{\overrightarrow{u},\overrightarrow{v}}$ c'est à dire que l'aire de $\mathscr{P}_{\overrightarrow{u},\overrightarrow{v}}$ est comptée :

- positivement si une mesure de l'angle (\vec{u}, \vec{v}) appartient à $[0, \pi]$.
- négativement si une mesure de l'angle $(\overrightarrow{u}, \overrightarrow{v})$ appartient à $]-\pi,0[$.

Proposition

Soit $\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{v_1}, \overrightarrow{v_2}$ quatre vecteurs de \mathbb{R}^2 . Soit $\lambda \in \mathbb{R}$. On a les propriétés suivantes :

a.
$$\mathcal{A}(\mathcal{P}_{\lambda \overrightarrow{\mu_1} \overrightarrow{\mu_2}}) = \lambda \mathcal{A}(\mathcal{P}_{\mu_1} \overrightarrow{\mu_2})$$

a.
$$\mathcal{A}(\mathcal{P}_{\lambda \overrightarrow{u_1}, \overrightarrow{v_1}}) = \lambda \mathcal{A}(\mathcal{P}_{\overrightarrow{u_1}, \overrightarrow{v_1}})$$

b. $\mathcal{A}(\mathcal{P}_{\overrightarrow{u_1} + \overrightarrow{u_2}, \overrightarrow{v_1}}) = \mathcal{A}(\mathcal{P}_{\overrightarrow{u_1}, \overrightarrow{v_1}}) + \mathcal{A}(\mathcal{P}_{\overrightarrow{u_2}, \overrightarrow{v_1}})$
c. $\mathcal{A}(\mathcal{P}_{\overrightarrow{u_1}, \lambda \overrightarrow{v_1}}) = \lambda \mathcal{A}(\mathcal{P}_{\overrightarrow{u_1}, \overrightarrow{v_1}})$

c.
$$\mathscr{A}(\mathscr{P}_{\overrightarrow{\mu_1},\lambda\overrightarrow{\nu_1}}) = \lambda\mathscr{A}(\mathscr{P}_{\overrightarrow{\mu_1},\overrightarrow{\nu_1}})$$

d.
$$\mathcal{A}(\mathcal{P}_{\overrightarrow{u_1},\overrightarrow{v_1}+\overrightarrow{v_2}}) = \mathcal{A}(\mathcal{P}_{\overrightarrow{u_1},\overrightarrow{v_1}}) + \mathcal{A}(\mathcal{P}_{\overrightarrow{u_1},\overrightarrow{v_2}})$$

e. $\mathcal{A}(\mathcal{P}_{\overrightarrow{v_1},\overrightarrow{u_1}}) = -\mathcal{A}(\mathcal{P}_{\overrightarrow{u_1},\overrightarrow{v_1}})$
f. $\mathcal{A}(\mathcal{P}_{\overrightarrow{i},\overrightarrow{j}}) = 1$.

e.
$$\mathscr{A}(\mathscr{P}_{\overrightarrow{v_1},\overrightarrow{u_1}}) = -\mathscr{A}(\mathscr{P}_{\overrightarrow{u_1},\overrightarrow{v_1}})$$

f.
$$\mathscr{A}(\mathscr{P} \rightarrow \rightarrow) = 1$$

Démonstration.

e

b

Remarque : On peut montrer des propriétés analogues sur les volumes des parallélépipèdes de \mathbb{R}^3 .

Généralisons ceci en dimension finie quelconque.

Déterminant d'une matrice carrée

Dans toute la suite, si $C_1, \ldots, C_n \in \mathcal{M}_{n,1}(\mathbb{K})$, on notera $(C_1|\ldots|C_n)$ la matrice dont les colonnes sont C_1, \ldots, C_n .

Définition

Soit $f: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ une application. On dit que :

• f est linéaire par rapport à chacune des colonnes de sa variable ssi : $\forall j \in [1, n], \forall C_1, ..., C_{j-1}, C_{j+1}, ..., C_n \in$ $\mathcal{M}_{n,1}(\mathbb{K})$

$$\begin{array}{cccc} \mathcal{M}_{n,1}(\mathbb{K}) & \to & \mathbb{K} \\ X & \mapsto & f((C_1|\dots|C_{j-1}|X|C_{j+1}|\dots|C_n)) \end{array}$$

est linéaire.

• f est **antisymétrique** par rapport aux colonnes de sa variable ssi pour tout $C_1, \ldots, C_n \in \mathcal{M}_{n,1}(\mathbb{K})$, pour tout $(i, j) \in [1, n]^2$ tel que $i \neq j$,

$$f((C_1|\ldots|C_i|\ldots|C_j|\ldots,C_n)) = -f((C_1|\ldots|C_j|\ldots|C_i|\ldots|C_n)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$i \qquad j \qquad \qquad i \qquad j$$

Remarque: Une application linéaire par rapport à chacune des colonnes de sa variable n'est pas linéaire.

Par exemple, soit $f: \mathcal{M}_2(\mathbb{K}) \to \mathbb{K}$ linéaire par rapport à chacune des colonnes de sa variable.

Soient
$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
, $A' = \begin{pmatrix} a' & c' \\ b' & d' \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$.

Si
$$f$$
 était linéaire, on devrait avoir $f(A + A') = f(A) + f(A')$.
Or, ici: $f(A + A') = f\left(\begin{pmatrix} a + a' & c + c' \\ b + b' & d + d' \end{pmatrix}\right)$

$$= f\left(\begin{pmatrix} a & c + c' \\ b & d + d' \end{pmatrix}\right) + f\left(\begin{pmatrix} a' & c + c' \\ b' & d + d' \end{pmatrix}\right) \quad \text{par linéarité par rapport à la 1ère colonne}$$

$$= f\left(\begin{pmatrix} a & c \\ b & d \end{pmatrix}\right) + f\left(\begin{pmatrix} a & c' \\ b & d' \end{pmatrix}\right) + f\left(\begin{pmatrix} a' & c \\ b' & d \end{pmatrix}\right) + f\left(\begin{pmatrix} a' & c' \\ b' & d' \end{pmatrix}\right) \quad \text{par linéarité par rapport à la 2ème colonne}$$

Proposition

Soit $f: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ une application antisymétrique. Pour tout $C_1, \ldots, C_n \in \mathcal{M}_{n,1}(\mathbb{K})$, pour tout $(i, j) \in [1, n]^2$ tel

$$C_i = C_i \implies f((C_1 | \dots | C_n)) = 0.$$

Démonstration. Soient $C_1, \ldots, C_n \in \mathcal{M}_{n,1}(\mathbb{K})$. Soit $(i, j) \in [1, n]$ tel que $i \neq j$. Supposons que $C_i = C_i$, alors :

$$\begin{split} f(C_1|\ldots|C_i|\ldots|C_j|\ldots,C_n) &= -f(C_1|\ldots|C_j|\ldots|C_i|\ldots|C_n) \quad \text{ par antisymétrie de } f \\ &\uparrow \qquad \uparrow \\ &i \qquad j \\ &= -f(C_1|\ldots|C_i|\ldots|C_j|\ldots|C_n) \quad \text{ car } C_i = C_j. \end{split}$$

Donc $2f(C_1|\ldots|C_i|\ldots|C_j|\ldots|C_n)=0$ et $f(C_1|\ldots|C_i|\ldots|C_j|\ldots|C_n)=0$.

Définition -

Il existe une unique application $f: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ vérifiant les trois propriétés suivantes :

- f est linéaire par rapport à chacune des colonnes de sa variable
- f est antisymétrique par rapport aux colonnes de sa variable.
- $f(I_n) = 1$.

Cette application est appelée déterminant et notée det.

Pour tout $A \in \mathcal{M}_n(\mathbb{K})$, le scalaire f(A) sera noté $\det(A)$ et est appelé déterminant de la matrice A.

Si
$$A = (a_{i,j})_{i,j \in [1,n]}$$
, le déterminant de A sera aussi noté : $\det(A) = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{bmatrix}$.

Démonstration. • Dans le cas n=2. On raisonne par analyse/synthèse : supposons qu'il existe $f: \mathcal{M}_2(\mathbb{K}) \to \mathbb{K}$ vérifiant les trois propriétés.

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$$
. Notons $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in \mathcal{M}_{2,1}(\mathbb{K})$. On a :

$$f(A) = f((ae_1 + ce_2|be_1 + de_2))$$

$$= af((e_1|be_1 + de_2)) + cf((e_2|be_1 + de_2)) \quad \text{par linéarité par rapport à la première colonne}$$

$$= abf((e_1|e_1)) + adf((e_1,e_2)) + bcf((e_2,e_1)) + cdf((e_2|e_2)) \quad \text{par linéarité par rapport à la deuxième colonne}$$

$$= adf\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + bcf\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \quad \text{par antisymétrie de } f$$

$$= adf(I_2) - bcf(I_2) \quad \text{par antisymétrie de } f$$

$$= ad - bc$$

donc on a unicité.

Synthèse : Posons
$$f: \mathcal{M}_2(\mathbb{K}) \to \mathbb{K}$$

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto ad-bc$. On vérifie que :

• f est linéaire par rapport à chacune des colonnes de sa variable :

Soient
$$C_1 = \begin{pmatrix} a \\ c \end{pmatrix}$$
, $C_1' = \begin{pmatrix} a' \\ c' \end{pmatrix}$ et $C_2 = \begin{pmatrix} b \\ d \end{pmatrix}$. Soient $\lambda, \mu \in \mathbb{K}$, on a:

$$f((\lambda C_1 + \mu C_1'|C_2)) = f\begin{pmatrix} (\lambda a + \mu a' & b) \\ \lambda c + \mu c' & d \end{pmatrix}$$
$$= (\lambda a + \mu a')d - b(\lambda c + \mu c')$$
$$= \lambda (ad - bc) + \mu (a'd - bc')$$
$$= \lambda f((C_1|C_2)) + \mu f((C_1'|C_2))$$

Ainsi, f est linéaire par rapport à la première colonne. De même, f est linéaire par rapport à la deuxième colonne.

• f est antisymétrique par rapport aux colonnes de sa variable :

$$f((C_2|C_1)) = f\left(\begin{pmatrix} b & a \\ d & c \end{pmatrix}\right)$$

$$= bc - ad$$

$$= -(ad - bc)$$

$$= -f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right)$$

$$= f((C_1|C_2))$$

3

• Enfin,
$$f(I_2) = f\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 \times 1 - 0 \times 0 = 1.$$

Ainsi, on a bien existence et unicité.

• Dans le cas n=3. On raisonne encore par analyse/synthèse : supposons qu'il existe $f:\mathcal{M}_3(\mathbb{K}) \to \mathbb{K}$ vérifiant les trois propriétés.

Soit
$$A = \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{K}).$$

Par linéarité par rapport à chacune des colonnes de sa variable on a :

$$\begin{split} f(A) &= x_1 f \begin{pmatrix} 1 & y_1 & z_1 \\ 0 & y_2 & z_2 \\ 0 & y_3 & z_3 \end{pmatrix} + x_2 f \begin{pmatrix} 0 & y_1 & z_1 \\ 1 & y_2 & z_2 \\ 0 & y_3 & z_3 \end{pmatrix} + x_3 f \begin{pmatrix} 0 & y_1 & z_1 \\ 0 & y_2 & z_2 \\ 1 & y_3 & z_3 \end{pmatrix} \quad \text{linéarité par rapport à la première colonne} \\ &= x_1 y_1 f \begin{pmatrix} 1 & 1 & z_1 \\ 0 & 0 & z_2 \\ 0 & 0 & z_3 \end{pmatrix} + x_1 y_2 f \begin{pmatrix} 1 & 0 & z_1 \\ 0 & 1 & z_2 \\ 0 & 0 & z_3 \end{pmatrix} + x_1 y_3 f \begin{pmatrix} 1 & 0 & z_1 \\ 0 & 1 & z_2 \\ 0 & 0 & z_3 \end{pmatrix} \quad \text{linéarité} \\ &+ x_2 y_1 f \begin{pmatrix} 0 & 1 & z_1 \\ 1 & 0 & z_2 \\ 0 & 0 & z_3 \end{pmatrix} + x_2 y_2 f \begin{pmatrix} 0 & 0 & z_1 \\ 1 & 1 & z_2 \\ 0 & 0 & z_3 \end{pmatrix} + x_2 y_3 f \begin{pmatrix} 0 & 0 & z_1 \\ 1 & 0 & z_2 \\ 0 & 1 & z_3 \end{pmatrix} \quad \text{par rapport à la} \\ &+ x_3 y_1 f \begin{pmatrix} 0 & 1 & z_1 \\ 0 & 0 & z_2 \\ 1 & 0 & z_3 \end{pmatrix} + x_3 y_2 f \begin{pmatrix} 0 & 0 & z_1 \\ 0 & 1 & z_2 \\ 1 & 0 & z_3 \end{pmatrix} + x_3 y_3 f \begin{pmatrix} 0 & 0 & z_1 \\ 0 & 0 & z_2 \\ 1 & 1 & z_3 \end{pmatrix} \quad \text{deuxième colonne} \\ &= x_1 y_2 z_3 f \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + x_1 y_3 z_2 f \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + x_2 y_1 z_3 f \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + x_2 y_3 z_1 f \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ x_3 y_1 z_2 f \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + x_3 y_2 z_1 f \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{par antisymétrie} \\ &= (x_1 y_2 z_3 - x_1 y_3 z_2 - x_2 y_1 z_3 + x_2 y_3 z_1 + x_3 y_1 z_2 - x_3 y_2 z_1) f(I_3) \\ &= x_1 y_2 z_3 - x_1 y_3 z_2 - x_2 y_1 z_3 + x_2 y_3 z_1 + x_3 y_1 z_2 - x_3 y_2 z_1 \end{pmatrix}$$

donc on a unicité.

On vérifie ensuite que f est linéaire et antisymétrique par rapport aux colonnes de sa variable, et que $f(I_3) = 1$ donc on a existence.

• Le théorème est admis pour $n \ge 4$.

Remarque: On ne calcule le déterminant que d'une matrice carrée.

Proposition Expression du déterminant en dimension 2 et 3

- Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$. On a $\det(A) = ad bc$.
- Soient $x_1, x_2, x_3, y_1, y_2, y_3 \in \mathbb{K}$.

$$\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = x_1 y_2 z_3 + x_3 y_1 z_2 + x_2 y_3 z_1 - x_3 y_2 z_1 - x_1 y_3 z_2 - x_2 y_1 z_3$$

Remarque: La formule en dimension 3 se retrouve par la règle de Sarrus.

2 Propriétés du déterminant

Proposition

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice carré.

- 1. Si une colonne de A est nulle, alors det(A) = 0.
- 2. Si deux colonnes de A sont égales, alors det(A) = 0.
- 3. Pour tout $\lambda \in \mathbb{K}$, $\det(\lambda \cdot A) = \overline{\lambda}^n \det(A)$

Démonstration.

• Notons $C_1, ..., C_n$ les colonnes de A. Si $C_i = 0$ alors :

$$\begin{split} \det(A) &= \det((C_1|...|C_{i-1}|0|C_{i+1}|...|C_n)) \\ &= \det((C_1|...|C_{i-1}|0 \times 0|C_{i+1}|...|C_n)) \\ &= 0 \times \det((C_1|...|C_{i-1}|0|C_{i+1}|...|C_n)) \quad \text{linéarité par rapport à la ième colonne} \\ &= 0 \end{split}$$

- cf proposition précédente, conséquence de l'antisymétrie.
- Notons $C_1, ..., C_n$ les colonnes de A. En développant par rapport à chaque colonne, on obtient :

$$\det(\lambda A) = \det(\lambda C_1 | \dots | \lambda C_n)$$

$$= \lambda \det(C_1 | \lambda C_2 | \dots | \lambda C_n)$$

$$= \dots$$

$$= \lambda^n \det(C_1 | \dots | C_n) = \lambda^n \det(A)$$

2.1 Opérations élémentaires

Rappel On a définit les matrices d'opérations élémentaires de $\mathcal{M}_n(\mathbb{K})$:

• matrice de dilatation :

$$i^{e} \text{ colonne}$$

$$\downarrow$$

$$D_{i}(\lambda) = I_{n} + (\lambda - 1)E_{i,i} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \lambda & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix} \qquad \longleftarrow i^{e} \text{ ligne}$$

où $\lambda \in \mathbb{K}^*$ et $i \in [1, n]$.

• matrice de transposition :

où $(i, j) \in [1, n]^2$ avec $i \neq j$.

• matrice de transvection:

$$J^{e} \text{ colonne}$$

$$\downarrow$$

$$T_{i,j}(\mu) = I_n + \mu E_{i,j} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \ddots & \mu & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix} \quad \leftarrow i^{e} \text{ ligne}$$

où $\mu \in \mathbb{K}$ et $(i, j) \in [1, n]^2$ avec $i \neq j$.

Proposition

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soit B la matrice de $\mathcal{M}_n(\mathbb{K})$ obtenue à partir de A en faisant :

- 1. $C_i \leftarrow \lambda C_i$ avec $i \in [1, n]$, $\lambda \in \mathbb{K}^*$, c'est à dire $B = AD_i(\lambda)$. Alors $\det(B) = \lambda \det(A)$
- 2. $C_i \leftrightarrow C_j$ avec $(i, j) \in [1, n]^2$ et $i \neq j$, c'est à dire $B = AP_{i,j}$. Alors $\det(B) = -\det(A)$
- 3. $C_j \leftarrow C_j + \mu C_i$, avec $(i, j) \in [1, n]^2$, $i \neq j$ et $\mu \in \mathbb{K}$, c'est à dire $B = AT_{i,j}(\mu)$. Alors $\det(B) = \det(A)$

Démonstration. Notons $C_1,...,C_n$ les colonnes de A.

1. Par linéarité de det par rapport à la *i*-ème colonne :

$$\det(B) = \det((C_1|...|C_{i-1}|\lambda C_i|C_{i+1}|...|C_n)) = \lambda \det((C_1|...|C_{i-1}|C_i|C_{i+1}|...|C_n)) = \lambda \det(A)$$

2. Par antisymétrie de det, on a :

$$\det(B) = \det((C_1|...|C_i|...|C_i|...|C_n)) = -\det((C_1|...|C_i|...|C_i|...|C_n)) = -\det(A)$$

3. Par linéarité de det par rapport à la i-ème colonne, on a

$$\det(B) = \det(C_1|...|C_i|...|C_j-1|C_j + \mu C_i|C_{j+1}|...|C_n)$$

$$= \underbrace{\det(C_1|...|C_i|...|C_j-1|C_j|C_{j+1}|...|C_n)}_{=\det(A)} + \mu \underbrace{\det(C_1|...|C_i|...|C_{j-1}|C_i|C_{j+1},...|C_n)}_{=0 \text{ par antisymétrie}}$$

$$= \det(A)$$

Remarque : En prenant $A = I_n$, on obtient :

$$\det(D_i(\lambda)) = \lambda$$
 ; $\det(P_{i,j}) = -1$; $\det(T_{i,j}(\mu)) = 1$.

En particulier si E est une matrice d'opération élémentaire, alors $\det(E) \neq 0$ et pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, $\det(A \times E) = \det(A) \times \det(E)$.

Proposition Déterminant d'une matrice triangulaire

Soit $T=(t_{i,j})\in\mathcal{M}_n(\mathbb{K})$ une matrice triangulaire (supérieure ou inférieure) ou diagonale. Alors :

$$\det(T) = t_{1,1} t_{2,2} \dots t_{n,n}$$
.

 $D\acute{e}monstration$. Traitons le cas où T est triangulaire supérieure (la preuve est la même si T est triangulaire inférieure). On applique l'algorithme de Gauss sur les colonnes de T.

Par la linéarité sur la première colonne et les opérations élémentaires, on obtient :

$$\det(T) = \begin{vmatrix} t_{1,1} & t_{1,2} & \dots & t_{1,n} \\ 0 & t_{2,2} & \dots & t_{2,n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & t_{n,n} \end{vmatrix} = t_{1,1} \times \begin{vmatrix} 1 & t_{1,2} & \dots & t_{1,n} \\ 0 & t_{2,2} & \dots & t_{2,n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & t_{n,n} \end{vmatrix} = t_{1,1} \times \begin{vmatrix} 1 & 0 & \dots & 0 \\ 0 & t_{2,2} & \dots & t_{2,n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & t_{n,n} \end{vmatrix}$$

Le déterminant est inchangé par cette opération.

En poursuivant l'algorithme de Gauss sur les colonnes de *T*, on obtient ainsi :

$$\det(T) = t_{1,1} t_{2,2} \dots t_{n,n} \begin{vmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{vmatrix} = t_{1,1} t_{2,2} \dots t_{n,n}.$$

Méthode

Pour calculer le déterminant d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$, on applique souvent l'algorithme de Gauss sur les colonnes de la matrice. On se ramène ainsi à une matrice carrée échelonnée par colonnes donc triangulaire inférieure (inutile de la réduire) dont le calcul du déterminant est aisé.

2.2 Inversibilité

Théorème

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors :

A est inversible \Leftrightarrow det(A) \neq 0.

Démonstration. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On sait qu'il existe une matrice R échelonnée réduite par colonnes et $E = E_1 \times \cdots \times E_k$ un produit de matrices d'opérations élémentaires telles que :

$$A = RE$$
.

On en déduit alors que :

$$\det(A) = \det(RE) = \det(R \times E_1 \times \dots \times E_k) = \det(R \times E_1 \times \dots \times E_{k-1}) \det(E_k) = \dots = \det(R) \underbrace{\times \det(E_1) \times \dots \times \det(E_k)}_{\neq 0}.$$

- \Rightarrow Supposons que *A* soit inversible. Alors $R = I_n$. Ainsi, $\det(A) = \det(E_1) \times \cdots \times \det(E_k) \neq 0$.
- \Leftarrow Supposons que A ne soit pas inversible, alors $\operatorname{rg}(R) = \operatorname{rg}(A) < n$ et donc le nombre de pivots dans la matrice R est < n. En d'autres termes, R admet au moins une colonne nulle donc $\det(R) = 0$. On obtient alors :

$$det(A) = det(RE) = det(R) \times det(E_1) \times \cdots \times det(E_n) = 0.$$

Remarque: On retrouve ici qu'une matrice triangulaire est inversible si et seulement si tous ces coefficients diagonaux sont non nuls.

Exemple : Les matrices $A = \begin{pmatrix} 0 & -1 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 8 \end{pmatrix}$ sont inversibles.

2.3 Déterminant d'un produit

Proposition -

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Alors :

$$det(A \times B) = det(A) \times det(B)$$
.

Si $A \in GL_n(\mathbb{K})$ alors $\det(A^{-1}) = \frac{1}{\det(A)}$

Démonstration. ON a déjà prouvé que si E est une matrice d'opération élémentaire alors $\det(AE) = \det(A) \det(E)$. Par récurrence, on obtient que si E est le produit fini de matrices d'opérations élémentaires alors $\det(AE) = \det(A) \det(E)$.

• Si B est inversible, alors $B \underset{C}{\sim} I_n$ alors il existe $E_1,...,E_n$ matrices d'opérations élémentaires tels que $B = I_n E_1 ... E_n = E_1 ... E_n$. Le résultat découle d'un résultat précédent :

$$\det(AB) = \det(A \times E_1 ... E_n) = \det(A) \times \det(E_1 ... E_n) = \det(A) \times \det(B).$$

• Si B n'est pas inversible, alors $A \times B$ n'est pas inversible non plus. En effet, par l'absurde : supposons AB inversible alors, il existe $C \in GL_n(\mathbb{K})$ tel que $C(AB) = I_n$ donc $(CA)B = I_n$ et B serait inversible. On a alors : $\det(AB) = 0 = \det(B)$.

Enfin si A est inversible, alors :

$$\det(A) \times \det(A^{-1}) = \det(I_n) = 1.$$

Donc: $det(A^{-1}) = \frac{1}{det(A)}$.

Corollaire

Soit $A \in \mathcal{M}_n(\mathbb{K})$, $P \in GL_n(\mathbb{K})$. On a :

$$\forall p \in \mathbb{N}, \det(A^p) = \det(A)^p$$

 $\det(P^{-1}AP) = \det(A)$

$$D\acute{e}monstration. \ \det(P^{-1}AP) = \det(P^{-1})\det(A)\det(P) = \frac{1}{\det(P)}\det(A)\det(P) = \det(A).$$

Remarque : \bigwedge En général, il n'y a aucun lien entre $\det(A+B)$, $\det(A)$ et $\det(B)$.

2.4 Déterminant de la transposée

Proposition

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On a :

$$\det({}^t A) = \det(A).$$

Démonstration. • Supposons que *A* soit non inversible. Alors tA est non inversible également (car rg(A) = rg(tA) et *A* inversible ssi rg(A) = A ssi rg(A

- Supposons que A soit une matrice d'opération élémentaire, alors $\det({}^tA) = \det(A)$. En effet :
 - ${}^tD_i(\lambda) = D_i(\lambda)$ où $i \in [1, n]$ et $\lambda \in \mathbb{K}^*$.
 - ${}^tP_{i,j} = P_{i,j}$ où $i, j \in [1, n]$ et $i \neq j$.
 - ${}^tT_{i,j}(\mu) = T_{j,i}(\mu)$ et $\det({}^tT_{i,j}(\mu)) = 1 = \det(T_{j,i}(\mu))$ où $i,j \in [1,n], i \neq j$ et $\mu \in \mathbb{K}$.

Supposons à présent que A soit inversible. On sait alors qu'il existe $E_1, ..., E_k$ matrices élémentaires telles que $A = I_n E_1 ... E_k = E_1 ... E_k$:

$$\det({}^tA) = \det({}^tE_k \times \cdots \times {}^tE_1) = \det({}^tE_k) \times \cdots \times \det({}^tE_1) = \det(E_k) \times \cdots \times \det(E_1) = \det(A).$$

Remarque : Le déterminant vérifie les mêmes propriétés vis à vis des lignes que des colonnes :

- det est linéaire par rapport à chacune des lignes de sa variable
- det est antisymétrique par rapport aux lignes de sa variable

En particulier

- si A à une ligne nulle ou deux lignes égales, det(A) = 0.
- il est également possible de faire des opérations élémentaires sur les lignes d'un déterminant, avec les mêmes règles de calcul que pour les colonnes. Si *B* est la matrice obtenu à partir de *A* en faisant
 - $Li \leftarrow \lambda L_i$ avec $i \in [1, n]$, $\lambda \in \mathbb{K}^*$, $\det(B) = \lambda \det(A)$
 - $L_i \leftrightarrow L_j$ avec $(i, j) \in [1, n]^2$ et $i \neq j$, $\det(B) = -\det(A)$
 - $L_i \rightarrow L_i + \mu L_j$, avec $(i, j) \in [1, n]^2$, $i \neq j$ et $\mu \in \mathbb{K}$, det(B) = det(A)

2.5 Développement par rapport à une ligne ou par rapport à une colonne

Lemme

Soit
$$N \in \mathcal{M}_{n-1}(\mathbb{K})$$
. Alors $\begin{vmatrix} 1 & 0_{1,n-1} \\ 0_{n-1,1} & N \end{vmatrix} = \det(N)$.

Démonstration. Soit $g: \mathcal{M}_{n-1}(\mathbb{K}) \to \mathbb{K}$, $N \mapsto \begin{bmatrix} 1 & 0_{1,n-1} \\ 0_{n-1,1} & N \end{bmatrix}$. Comme le déterminant est linéaire et antisymétrique par rapport aux colonnes de sa variable, il en est de même pour g. De plus $g(I_{n-1}) = 1$. Par unicité d'une telle application, g est le déterminant de taille n-1. Ainsi $g(N) = \det(N)$. □

Définition

Soit $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{K})$. Pour tout $i, j \in [1, n]$, on appelle mineur d'indice (i, j) le déterminant $\Delta_{i,j}$ de la matrice carrée d'ordre n-1 obtenue en supprimant dans M la ligne i et la colonne j.

Proposition

Pour toute matrice carrée $M \in \mathcal{M}_n(\mathbb{K})$, on peut calculer le déterminant de M:

• en développant suivant la *j*-ème colonne :

$$\det(M) = \sum_{i=1}^{n} (-1)^{i+j} \Delta_{i,j} a_{i,j}.$$

• en développant suivant la *i*-ème ligne :

$$\det(M) = \sum_{i=1}^{n} (-1)^{i+j} \Delta_{i,j} a_{i,j}.$$

Démonstration. Faisons la preuve du développement suivant la i-ème ligne. Notons $M = (m_{i,j})_{i,j \in [1,n]}$. Soit $i \in [1,n]$. On commence par développer par linéarité par rapport à la i-ème ligne :

$$\det(M) = \sum_{j=1}^{n} m_{i,j} \begin{vmatrix} m_{1,1} & \dots & m_{1,j-1} & m_{1,j} & m_{1,j+1} & \dots & m_{1,n} \\ \vdots & & \vdots & \vdots & & \vdots & & \vdots \\ m_{i-1,1} & \dots & m_{i-1,j-1} & m_{i-1,j} & m_{i-1,j+1} & \dots & m_{i-1,n} \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ m_{i+1,1} & \dots & m_{i+1,j-1} & m_{i+1,j} & m_{i+1,j+1} & \dots & m_{i+1,n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ m_{n,1} & \dots & m_{n,j-1} & m_{n,k} & m_{n,k+1} & \dots & m_{n,n} \end{vmatrix}$$

On ramène la i-ème ligne en première position, sans changer l'ordre des autres, en effectuant $L_k \leftrightarrow L_{k-1}$ pour k allant de i à 2 (dans cet ordre). Cela fait i-1 échanges, donc le déterminant est multiplié par $(-1)^{i-1}$:

$$\det(M) = \sum_{j=1}^{n} m_{i,j} (-1)^{i-1} \begin{vmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ m_{1,1} & \dots & m_{1,j-1} & m_{1,j} & m_{1,j+1} & \dots & m_{1,n} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ m_{i-1,1} & \dots & m_{i-1,j-1} & m_{i-1,j} & m_{i-1,j+1} & \dots & m_{i-1,n} \\ m_{i+1,1} & \dots & m_{i+1,j-1} & m_{i+1,j} & m_{i+1,j+1} & \dots & m_{i+1,n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ m_{n,1} & \dots & m_{n,j-1} & m_{n,j} & m_{n,j+1} & \dots & m_{n,n} \end{vmatrix}.$$

Pour tout $j \in [1, n]$, on ramène la j-ème colonne en première position, sans changer l'ordre des autres, en effectuant $C_k \leftrightarrow C_{k-1}$ pour k allant de j à 2 (dans cet ordre). Cela fait j-1 échanges, donc le déterminant est multiplié par $(-1)^{j-1}$:

$$\det(M) = \sum_{j=1}^{n} m_{i,j} (-1)^{i+j-2} \begin{vmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ m_{1,j} & m_{1,1} & \dots & m_{1,j-1} & m_{1,j+1} & \dots & m_{1,n} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ m_{i-1,j} & m_{i-1,1} & \dots & m_{i-1,j-1} & m_{i-1,j+1} & \dots & m_{i-1,n} \\ m_{i+1,j} & m_{i+1,1} & \dots & m_{i+1,j-1} & m_{i+1,j+1} & \dots & m_{i+1,n} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ m_{n,j} & m_{n,1} & \dots & m_{n,j-1} & m_{n,j+1} & \dots & m_{n,n} \end{vmatrix}.$$

Notons $N_{i,j}$ la matrice obtenue à partir de M en supprimant la i-ème ligne et la j-ième colonne. On effectue enfin les opérations élémentaires nécessaires pour éliminer tous les coefficients sous le 1 de la première colonne : $L_k \leftarrow L_k - m_{k,j} L_1$ pour $k \in [i+1,n]$ et $L_k \leftarrow L_k - m_{k-1,j} L_1$ pour $k \in [2,i]$ (ce qui ne change pas le déterminant). On obtient alors :

$$\begin{split} \det(M) &= \sum_{j=1}^{n} m_{i,j} (-1)^{i+j} \begin{vmatrix} 1 & 0_{1,n-1} \\ 0_{n-1,1} & N_{i,j} \end{vmatrix} \\ &= \sum_{j=1}^{n} m_{i,j} (-1)^{i+j} \det(N_{i,j}) \\ &= \sum_{j=1}^{n} m_{i,j} (-1)^{i+j} \Delta_{i,j}. \end{split}$$

La formule de développement suivant une colonne se montre de même.

Exemple: On a, en développant par rapport à la deuxième ligne:

$$\begin{vmatrix} 1 & 3 & -2 \\ -2 & 1 & 3 \\ 2 & -3 & 1 \end{vmatrix} =$$

Remarque : Développer par rapport à une ligne ou une colonne peut permettre de trouver une relation de récurrence et de calculer un déterminant de taille n.

Méthode

Pour calculer un déterminant, on commence par faire des opérations élémentaires pour faire apparaître le maximum de 0 sur une ligne ou une colonne avant de développer.

3 Déterminant d'une famille de vecteurs

Définition

Soit E un \mathbb{K} -espace vectoriel de dimension n, $\mathscr{B} = (e_1, \dots, e_n)$ une base de E. Soit $\mathscr{F} = (v_1, \dots, v_n)$ une famille de vecteurs de E.

On appelle déterminant de la famille \mathscr{F} dans la base \mathscr{B} et on note $\det_{\mathscr{B}}(\mathscr{F}) = \det_{\mathscr{B}}(v_1,...,v_n)$, le déterminant $\det(Mat_{\mathscr{B}}(\mathscr{F}))$.

Théorème

Soit E un \mathbb{K} -espace vectoriel de dimension n, \mathscr{B} une base de E. Soit $\mathscr{F} = (u_1, \dots, u_n)$ une famille de vecteurs de E.

On a l'équivalence :

 \mathscr{F} est une base de $E \Leftrightarrow \det_{\mathscr{B}}(\mathscr{F}) \neq 0$.

Démonstration. $(u_1,...,u_n)$ est une base de E si et seulement si $\mathcal{M}_B(u_1,...,u_n)$ est inversible, si et seulement si $\det(\mathcal{M}_B(u_1,...,u_n)) = \det_{\mathcal{B}}(u_1,...,u_n) \neq 0$.

4 Déterminant d'un endomorphisme

Lemme

Soit E un \mathbb{K} -espace vectoriel de dimension n et $f \in \mathcal{L}(E)$. Soient $\mathcal{B}, \mathcal{B}'$ deux bases de E. Alors:

 $\det(Mat_{\mathcal{B}}(f)) = \det(Mat_{\mathcal{B}'}(f)).$

En particulier, le scalaire $\det(Mat_{\mathcal{B}}(f))$ ne dépend que de f, et pas de la base \mathcal{B} de E choisie.

Démonstration. Notons $A = Mat_{\mathscr{B}}(f)$, $A' = Mat_{\mathscr{B}'}(f)$, et soit $P = P_{\mathscr{B},\mathscr{B}'}$ la matrice de passage de la base \mathscr{B} à la base \mathscr{B}' . Alors on a $A' = P^{-1}AP$ et donc en prenant le déterminant :

$$\det(A') = \det(P^{-1}AP) = \det(P^{-1})\det(A)\det(P) = \det(A).$$

Définition

On appelle déterminant de l'endomorphisme $f \in \mathcal{L}(E)$, et on note $\det(f)$, le déterminant de la matrice de f dans n'importe quelle base de E.

Exemple : Soit $\mathcal{B} = (e_1, ..., e_n)$ une base de E.

- $\det(Id_E) =$.
- $\det(\lambda Id_E) =$.
- Soient F et $G \neq \{0_E\}$ deux espaces supplémentaires dans E. Soient $(e_1,...e_p)$ une base de F et $(e_{p+1},...,e_n)$ une base de G.

Notons $\mathscr{B} = (e_1, \dots, e_p, e_{p+1}, \dots, e_n)$ une base adaptée à la somme directe $E = F \oplus G$.

Soit p la projection sur F parallèlement à $G \neq \{0_E\}$ et s la symétrie par rapport à F parallèlement à G.

Proposition

Soient $f, g \in \mathcal{L}(E)$.

- 1. $det(f \circ g) = det(f) \times det(g)$;
- 2. f est un automorphisme $\Leftrightarrow \det(f) \neq 0$. Et si f est bijective, alors $\det(f^{-1}) = \frac{1}{\det(f)}$.

 $D\acute{e}monstration$. Soit $\mathcal B$ une base de E. Toutes ces propriétés découlent directement de celles démontrées pour le déterminant d'une matrice car on a :

$$\mathcal{M}_{\mathscr{B}}(f \circ g) = \mathcal{M}_{\mathscr{B}}(f) \times \mathcal{M}_{\mathscr{B}}(g)$$

f est bijective ssi $\mathcal{M}_{\mathcal{B}}(f)$ est inversible ssi $\det(\mathcal{M}_{\mathcal{B}}(f)) \neq 0$ De plus, si f est bijective, $\mathcal{M}_{\mathcal{B}}(f^{-1}) = \left(\mathcal{M}_{\mathcal{B}}(f)\right)^{-1}$.