Best practices in the analysis of RNA-seq and ChIP-seq data

27th – 31st, July 2015 University of Cambridge, Cambridge, UK

ChIP-Seq Data Analysis: Pre-processing, QC and Primary Analyses

Suraj Menon Ines de Santiago

CRUK Cambridge Research Institute

Ines.desantiago@cruk.cam.ac.uk

Suraj.menon@cruk.cam.ac.uk

"Typical" ChIP-Seq Analysis workflow

PRE-PROCESSING AND DATA QC

QC very important for ChIP-Seq data!

- ChIP Seq data is noisy
 - only a small proportion of reads actually represent protein-bound sequences. Mostly 'background'
- Many sources of experimental bias
 - Antibody binding efficiency and specificity
 - Fragmentation biases
 - PCR amplification biases
- Highly variable patterns of enrichment between ChIPs.
 - Transcription factors show sharp/narrow peaks.
 - Histones more dispersed/broad peaks

ChIP-Seq QC resources

 ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.

(Landt et al – Genome Research 2012)

- ChIPQC Tom Carroll and Rory Stark (Diffbind)
- **ChIPQC** provides workflow to generate metrics per sample/experiment.
- package SPP (for UNIX/LINUX)

Common QC/Filtering steps (ChIPQC)

Distribution of Signal

- Visualisation of coverage profiles
- Signal in peaks (FRIP)
- Relative enrichment in genomic intervals (REGI)
- Signal in blacklists (FRIBL)
- Dispersion of coverage
- Clustering of Watson/Crick reads.
- Duplication Rate

Common QC/Filtering steps (ChIPQC)

- Distribution of Signal
 - Visualisation of coverage profiles
 - Signal in peaks (FRIP)
 - Relative enrichment in genomic intervals (REGI)
 - Signal in blacklists (FRIBL)
 - Dispersion of coverage
- Clustering of Watson/Crick reads.
- Duplication Rate

Visualise coverage profiles

- Simplest QC
 - Qualitative and subjective
- Various data formats
 - Wigs, Bams, bigWigs, bedGraphs
- Various browsers
 - UCSC, Ensembl, IGV
- Recommendation:
 - bigWigs on IGV

Distribution of Signal Signal in Peaks (FRIP)

• The simplest assessment of enrichment.

- Good quality TF > 5%
- Good quality Pol-II > 30%

Relative Enrichment in Genomic Intervals (REGI) Signal in Peaks (FRIP)

 Plot relative enrichment of reads in annotated regions.

Signal in blacklists

- Encode empirically identified regions that showed anomalous and near-universal artefact signal
- Represent around 0.5% of genome.
 - Various reasons e.g. chromatin accessibility, repeats
- Can account for high proportion of total signal (> 10%)
 - Enriched for duplicate and multi-mapping reads
- Adversely affect fragment length calculations and in thus any analyses that require these e.g. peak calling

Carroll et al., Front Genet. 2014 Apr 10;5:75.

Dispersion of coverage

- Depth of signal: number of fragments at a genomic location.
- Expectation is that for an enriched ChIP sample, depth should show inequality in dispersion across the genome
- Build global profile of signal depth
 - Measure number of base pairs with given depth of signals.
 - Normalise to total number of reads to compare samples

Depth	Base Pairs
1	3
2	4
3	3
5	3
6	4
7	3
8	26

Dispersion of coverage

- Global signal profile "histogram"
- Enriched (ChIP) libraries show higher number of bases at greater depths.
- Profile for inputs (no enrichment) drops off more quickly
- Gap between sample and input indicates enrichment

Metric for dispersion of coverage: SSD

- SSD: Standardised Standard Deviation of coverage
- Metric for assessment of dispersion coverage developed in htseqtools package

$$SSD = \frac{SD}{\sqrt{n}}$$

- Provides measure of pile-up across genome
 - High for samples with enriched regions (ChIP)
 - Low for samples with uniform coverage (input)

Common QC/Filtering steps (ChIPQC)

- Distribution of Signal
 - Visualisation of coverage profiles
 - Signal in peaks (FRIP)
 - Relative enrichment in genomic intervals (REGI)
 - Signal in blacklists (FRIBL)
 - Dispersion of coverage
- Clustering of Watson/Crick reads
- Duplication Rate

Clustering of Watson/Crick reads

- Bias in ChIP-Seq data:
 - Only ends of a fragment are sequenced
 - Shift is apparent between reads aligning to the Watson and Crick strands
 - For transcription factors the extent of this clustering related to ChIP-seq quality
- Reads need to be extended to fragment length to re-create true signal

Metrics to assess W/C read clustering

- Fragment length can be estimated from data:
 - Cross-correlations Correlation of reads on positive and negative strand after successive read shifts
 - Cross-coverage Coverage of reads on both strand after successive shifts of reads on one strand. Total area covered by reads will be reduced after shifting
- These provide useful QC metrics

Clustering of Watson/Crick reads

- Cross-correlation/Crosscoverage score plots are useful for QC
- Blacklisted regions strongly contribute to read length crosscoverage peak
 - Small to non-existent peaks are seen in failed ChIPs and inputs
- ChIPQC metrics:
 - FragCC = CC_{fragmentlength}.
 - ReICC = FragCC/ CC_{readlength}

Common QC/Filtering steps (ChIPQC)

Distribution of Signal

- Visualisation of coverage profiles
- Signal in peaks (FRIP)
- Relative enrichment in genomic intervals (REGI)
- Signal in blacklists (FRIBL)
- Dispersion of coverage
- Clustering of Watson/Crick reads
- Duplication Rate

- Single-end Duplicate is read with same start position.
- First read at duplicated position is retained and remaining are marked.
- Duplicates can represent experimental artefacts, but not all the time!

- Duplicates can be artefacts
- PCR bias: certain genomic regions are preferentially amplified
- Low initial starting material
 - Overamplification -> artificially enriched regions
 - Compounded by PCR bias

- Duplicates can also be 'legitimate'
 - In highly efficient enrichments
 - In deeply sequenced ChIPs
 (Duplication rate increases with sequencing depth)
- Removing these duplicates limits the dynamic range of ChIP signal
 - Max signal for a base is (2*read length)-1

- So what to do about duplicates?
- Keep in mind enrichment efficiency and read depth
- Thumb-rules
 - Remove duplicates prior to peak calling (some peak callers do this by default)
 - Keep duplicates for differential binding analysis
- A more objective approach:
 - htSeqTools package
 - Estimate duplicate numbers expected for sequencing depth using negative binomial model and attempt to identify significantly anomalous duplicate numbers.

- Duplication rates are a useful QC metric
 - (Duplicate reads/Total Mapped Reads) *100
 - Expected to be low (<~ 1%) for inputs
- Non-Redundant Fraction (NRF)
 - Unique Reads/Total Mapped Reads
 - ENCODE guidelines:

```
NRF >= 0.8 for 10M reads
```

PEAK CALLING

Peak Calling: Experimental Considerations

- Use of controls highly recommended
- Input DNA
 - popularly used
 - controls for CNVs, sequencing biases, fragmentation and shearing biases

IgG

- as with input but also controls for non-specific binding
- but introduces new biases
- Controls required for
 - different types of samples (e.g. Cell lines, mice, patients)
 - different treatment groups / experimental conditions

Peak Calling: Experimental Considerations

- Replicates
 - Biological (as much as possible) rather than technical
 - Different antibody for enrichment
- Check parameters of peak caller!
 - Do duplicates need to be removed?
 - Do reads need to be extended to fragment length?

Peak Calling: Which Peak Caller to Use?

- Transcription factor peaks: MACS is very popular
- For histone marks with spanning longer regions,
 Sicer is recommended
 - MACS can be used by tweaking parameters
- Several peak callers in R/Bioconductor
 - e.g SPP, TPIC, BayesPeak
 - Not really considered gold-standard (other than SPP)
 - Often impractical: memory hungry and slow

Peak Calling: MACS

- Sliding window run across genome
- Peak height in window compared to that in windows of surrounding regions in control

- Statistical significance of peak estimated by using Poisson distribution
 - log10(pvalue) reported as peak score
- FDR calculated by calling peaks in control over sample

Peak Calling: Post-peak QC

- Peak profile plots
 - Mean read density at positions relative to peak summits
 - Input profiles should be flat
- Fraction of Reads in Peaks (FRIP)
 - Reads in peaks/Total mapped reads
 - Analogous to signal to noise ratio

ChIP-Seq Practical

Working with ChIP-Seq Data in R/Bioconductor

chipqc_sweave.pdf