Quantum affine algebras and their applications to scattering amplitudes

Jian-Rong Li
University of Vienna
joint work with Wen Chang, Bing Duan, Chris Fraser, 1907.13575
with Nick Early, 2303.05618
and with James Drummond, Ömer Gürdoğan, in preparation

Quantum affine algebras

- A quantum affine algebra $U_q(\widehat{\mathfrak{g}})$ is a Hopf algebra that is a q-deformation of the universal enveloping algebra of an affine Lie algebra $\widehat{\mathfrak{g}}$.
- Hernandez and Leclerc proved that the Grothendieck ring $K_0(\mathcal{C}_\ell^{\mathfrak{g}})$ of certain subcategory $\mathcal{C}_\ell^{\mathfrak{g}}$ of the category of finite dimensional $U_q(\widehat{\mathfrak{g}})$ -modules has a cluster structure. In the case of $\mathfrak{g}=\mathfrak{sl}_k$, $K_0(\mathcal{C}_\ell^{\mathfrak{sl}_k})$ is isomorphic to a quotient $\mathbb{C}[\operatorname{Gr}(k,n,\sim)]$ of the Grassmannian cluster algebra (some frozen variables are set to 1).
- In [CDFL19], we proved that the dual canonical basis of $\mathbb{C}[Gr(k,n,\sim)]$ are parametrized by semistandard Young tableaux. Using results in representations of p-adic groups and representations of quantum affine algebras, we gave an explicit formula of elements ch(T) in the dual canonical basis of $\mathbb{C}[Gr(k,n,\sim)]$.

Grassmannian cluster algebras

• Let $k \leq n \in \mathbb{Z}_{\geq 1}$ and

$$Gr(k, n) = \{k \text{ dimensional subspaces of } \mathbb{C}^n\}$$

= $\{k \times n \text{ full rank matrices}\}/\text{row operations}.$

- A Plücker coordinate $P_{i_1,...,i_k} \in \mathbb{C}[\operatorname{Gr}(k,n)]$ $(i_1 < \cdots < i_k)$: for a $k \times n$ matrix $x = (x_{ij})_{k \times n}$, $P_{i_1,...,i_k}(x)$ is the minor of x with 1st, ..., kth rows and i_1 th, ..., i_k th columns.
- Dual canonical basis of $\mathbb{C}[Gr(k, n)]$ is [CDFL2019]

$$\{\operatorname{ch}(T): T \in \operatorname{SSYT}(k, [n])\},\$$

where ch(T) is a polynomial in Plücker coordinates and is given by an explicit formula, SSYT(k, [n]) is the set of rectangular tableaux with k rows and with entries in [n].

- ch(T) is called prime if $ch(T) \neq ch(T')ch(T'')$ for any non-trivial tableaux T', T''.
- $\mathbb{C}[Gr(2,5)]$ has 5 (non-frozen) prime elements $p_{13}, p_{24}, p_{14}, p_{25}, p_{35}$. They are all cluster variables.
- For general $\mathbb{C}[Gr(k, n)]$, all cluster variables are prime but there are more prime elements than cluster variables.

- How to classify all prime elements in the dual canonical basis of $\mathbb{C}[Gr(k,n)]$? This is a difficult question and it is only known in the case of k=2. An element ch(T) in the dual canonical basis of $\mathbb{C}[Gr(2,n)]$ is prime if and only if T is a one-column tableau, i.e. ch(T) is a Plücker coordinate (Chari-Pressley).
- When $\mathbb{C}[Gr(k, n)]$ is of finite type, all prime elements are cluster variables and they can be obtained using mutations.

- When $\mathbb{C}[Gr(k,n)]$ is of infinite type, using tropical Grassmannians, certain prime elements in $\mathbb{C}[Gr(4,8)]$, $\mathbb{C}[Gr(4,9)]$, $\mathbb{C}[Gr(3,9)]$, $\mathbb{C}[Gr(3,10)]$, were obtained in the works by:
 - Nima Arkani-Hamed, Thomas Lam, Marcus Spradlin, 2021,
 - James Drummond, Jack Foster, Omer Gürdoğan, Chrysostomos Kalousios, 2020,
 - Niklas Henke, Georgios Papathanasiou, 2020, 2021,
 - Dani Kaufman, Zachary Greenberg, 2021,
 - Lecheng Ren, Marcus Spradlin, Anastasia Volovich, 2021.
- In [Early-L. 2023] we use Newton polytopes to give a recursive way of constructing prime elements in the dual canonical basis of $\mathbb{C}[Gr(k,n)]$. We conjecture that all prime elements can be obtained in this way.

- Let $\mathcal{T}_{k,n}^{(0)}$ be the set of all one-column tableaux which are obtained by cyclic shifts of the one-column tableau with entries $1, 2, \ldots, k-1, k+1$.
- For $d \ge 0$, we define recursively

$$\mathbf{N}_{k,n}^{(d)} = \operatorname{Newt}\left(\prod_{T \in \mathcal{T}_{k,n}^{(d)}} \operatorname{ch}_{T}(x_{i,j})\right),$$

where $\mathcal{T}_{k,n}^{(d+1)}$ is the set of all tableaux which correspond to facets of $\mathbf{N}_{k,n}^{(d)}$, $\mathrm{ch}_{\mathcal{T}}(x_{i,j})$ is the polynomial obtained by evaluating $\mathrm{ch}(\mathcal{T})$ on the web matrix (Speyer and Williams 2005).

From facets of Newton polytopes to tableaux

- The Newton polytope $\mathbf{N}_{k,n}^{(d)}$ can be described using certain equations and inequalities in its H-representation.
- Let F be a facet of the Newton polytope $\mathbf{N}_{k,n}^{(d)}$. The normal vector \mathbf{v}_F of F is the coefficient vector in one of the inequalities in the H-representation of $\mathbf{N}_{k,n}^{(d)}$.
- If there is an entry of the vector v_F which is negative, then we add some vectors which are coefficients of the equations in the H-representation of $\mathbf{N}_{k,n}^{(d)}$ corresponding to frozen variables to v_F such that the resulting vector v_F' have non-negative entries.

From facets of Newton polytopes to tableaux

- The vector v_F' can be written as $v_F' = \sum_{i,j} c_{i,j} e_{i,j}$ for some positive integers $c_{i,j}$, where $e_{i,j}$ is the standard basis of $\mathbb{R}^{(k-1)\times(n-k)}$.
- We send the vector $e_{i,j}$ to a fundamental tableau $T_{i,j}$ which is defined to be the one-column tableau with entries $[j, j+k] \setminus \{i+j\}$.
- The tableau T_F corresponding to F is obtained from $\bigcup_{i,j} T_{i,j}^{\bigcup c_{i,j}}$ by removing all frozen factors (if any).

• The web matrix for Gr(3,6) is

$$M = \begin{bmatrix} 1 & 0 & 0 & x_{1,1}x_{2,1} & x_{1,1}x_{2,12} + x_{1,2}x_{2,2} & x_{1,1}x_{2,123} + x_{1,2}x_{2,23} + x_{1,3}x_{2,3} \\ 0 & 1 & 0 & -x_{2,1} & -x_{2,12} & -x_{2,123} \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix},$$

where we abbreviate for example $x_{2,23} = x_{2,2} + x_{2,3}$.

• Evaluating all Plücker coordinates on M and take their product, we obtain a polynomial p. The Newton polytope $\mathbf{N}_{3,6}^{(1)}$ is the Newton polytope defined by the vertices given by the exponents of monomials of p.

• The H-representation of $\mathbf{N}_{3,6}^{(1)}$ is given by

$$\begin{aligned} &(0,0,0,1,1,1)\cdot x-20=0,\ (1,1,1,0,0,0)\cdot x-10=0,\ (0,1,1,0,0,0)\cdot x-4\geq 0,\\ &(0,0,1,0,0,0)\cdot x-1\geq 0,\ (0,0,0,0,1,1)\cdot x-11\geq 0,\ (0,0,0,0,0,1)\cdot x-4\geq 0,\\ &(0,0,1,1,0,0)\cdot x-6\geq 0,\ (0,0,0,0,1,0)\cdot x-4\geq 0,\ (0,0,0,1,0,0)\cdot x-4\geq 0,\\ &(1,0,0,0,0,0)\cdot x-1\geq 0,\ (1,0,0,0,1,0)\cdot x-6\geq 0,\ (1,1,0,0,1,1)\cdot x-16\geq 0,\\ &(1,1,0,0,0,0)\cdot x-4\geq 0,\ (0,0,0,1,1,0)\cdot x-11\geq 0,\ (0,1,0,0,0,0)\cdot x-1\geq 0,\\ &(1,0,0,0,1,1)\cdot x-14\geq 0,\ (0,1,0,0,0,1)\cdot x-6\geq 0,\ (1,1,0,0,0,1)\cdot x-11\geq 0, \end{aligned}$$

where $(0,0,0,1,1,1) \cdot x$ is the inner product of the vectors (0,0,0,1,1,1) and x.

• For the facet F with the normal vector $v_F = (0,1,1,0,0,0)$ in the first line of the above, we have that $v_F = e_{1,2} + e_{1,3}$. The generalized roots $e_{1,2}$, $e_{1,3}$ corresponds to tableaux $\begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 5 \\ 6 \end{bmatrix}$ respectively. Removing the frozen factor $\begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$ in $\begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 5 \\ 6 \end{bmatrix}$ we obtain $T_F = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$.

facets, hyperplanes	tableaux	modules
(0,0,0,1,0,0)	[124]	$Y_{1,-1}$
(0,0,0,1,1,0)	[125]	$Y_{1,-3}Y_{1,-1}$
(1,0,0,0,0,0)	[134]	$Y_{2,0}$
(1,0,0,0,1,0)	[135]	$Y_{1,-3}Y_{2,0}$
(1,0,0,0,1,1)	[136]	$Y_{1,-5}Y_{1,-3}Y_{2,0}$
(1,1,0,0,0,0)	[145]	$Y_{2,-2}Y_{2,0}$
(1,1,0,0,0,1)	[146]	$Y_{1,-5}Y_{2,-2}Y_{2,0}$
(0,0,0,0,1,0)	[235]	$Y_{1,-3}$
(0,0,0,0,1,1)	[236]	$Y_{1,-5}Y_{1,-3}$
(0,1,0,0,0,0)	[245]	$Y_{2,-2}$
(0,1,0,0,0,1)	[246]	$Y_{1,-5}Y_{2,-2}$
(0,1,1,0,0,0)	[256]	$Y_{2,-4}Y_{2,-2}$
(0,0,0,0,0,1)	[346]	$Y_{1,-5}$
(0,0,1,0,0,0)	[356]	$Y_{2,-4}$
(0,0,1,1,0,0)	[[124],[356]]	$Y_{2,-4}Y_{1,-1}$
(1,1,0,0,1,1)	[[135],[246]]	$Y_{1,-5}Y_{2,-2}Y_{1,-3}Y_{2,0}$
(0,0,0,1,1,1)	[126]	$Y_{1,-5}Y_{1,-3}Y_{1,-1}$
(1,1,1,0,0,0)	[156]	$Y_{2,-4}Y_{2,-2}Y_{2,0}$

Quantum affine algebras

- The results in Grassmannian case correspond to representations of $U_q(\widehat{\mathfrak{sl}_k})$.
- The results in Grassmannian case can be generalized to general quantum affine algebras.

Quasi-homomorphisms of cluster algebras

- Chris Fraser 2017 introduced the concept of quasi-homomorphisms of cluster algebras (they have appeared in Melissa's talk).
- Let \mathcal{A} , \mathcal{A}' be two cluster algebras defined over \mathbb{ZP} , and \mathbb{ZP}' respectively, where \mathbb{P},\mathbb{P}' are semifields. An algebra homomorphism $f:\mathcal{A}\to\mathcal{A}'$ is called a quasi-homomorphism if $f(\mathbb{P})\subset\mathbb{P}'$, and there is a seed Σ for \mathcal{A} and a seed Σ' for \mathcal{A}' such that f sends a cluster variable Σ to a cluster variable in Σ' (after removing frozen factors), f sends a cluster X-variable in Σ to a cluster X-variable in Σ' , and the mutable part of the exchange matrix of \mathcal{A} and mutable part of the exchange matrix of \mathcal{A}' are the same.
- By definition, a quasi-homomorphism sends cluster variables to cluster variables (after removing frozen factors), and sends a cluster to a cluster.

- With James Drummond and Ömer Gürdoğan, we study tropicalization of quasi-automorphisms of cluster algebras.
- The tropicalization of a quasi-automorphism sends a g-vector to a g-vector.
- ([Drummond-Gürdoğan-L.]) The map $g \mapsto g'$ sends the g-vector g(b) of a cluster variable b to the g-vector $g(f^{-1}(b))$ of a cluster variable $f^{-1}(b)$.
- I will explain the definition of tropicalization of a quasi-homomorphism using an example later.

Braid group actions

- Tropicalization of quasi-automorphisms gives a convenient way to compute quasi-automorphisms.
- Fraser 2020 defined a braid group action on $\mathbb{C}[Gr(k, n)]$. Each generator σ_i of the braid group Br_d , $d = \gcd(k, n)$, is a quasi-automorphism on $\mathbb{C}[Gr(k, n)]$.
- For each i, tropicalization of σ_i gives a map sending a g-vector to a g-vector, and sending a semistandard Young tableau to a semistandard Young tableau.

• Consider the case of Gr(3,6). The web matrix W (we use another version of web matrix) is

• Evaluating cluster \mathcal{X} -coordinates on W, we obtain

$$(x_{11}, x_{12}, x_{21}, x_{22}).$$

• $\sigma_1(W)$ is equal to

$$\begin{pmatrix} 0 & -1 & 0 & \frac{x_{11}x_{21}+x_{21}+1}{x_{11}x_{21}} & \frac{x_{11}x_{12}x_{21}+x_{12}x_{21}+x_{12}+x_{21}+1}{x_{11}^2x_{21}x_{22}+x_{12}x_{21}+x_{22}+x_{12}x_{21}+x_{22}$$

• Evaluating cluster \mathcal{X} -coordinates on $\sigma_1(W)$, we obtain

$$(\frac{(x_{11}x_{21}+x_{21}+1)x_{12}}{x_{21}+1},(x_{21}+1)x_{22},\frac{x_{21}+1}{x_{11}x_{21}},\frac{x_{11}}{x_{11}x_{21}+x_{21}+1}).$$

Tropicalising the above vector, we obtain

$$\begin{split} &(\widetilde{x}_{12}+\min(\widetilde{x}_{11}+\widetilde{x}_{21},\widetilde{x}_{21},0)-\min(\widetilde{x}_{21},0),\min(\widetilde{x}_{21},0)+\widetilde{x}_{22},\\ &\min(\widetilde{x}_{21},0)-\widetilde{x}_{11}-\widetilde{x}_{21},\widetilde{x}_{11}-\min(\widetilde{x}_{11}+\widetilde{x}_{21},\widetilde{x}_{21},0)). \end{split}$$

- The tropicalization of σ_1 sends a *g*-vector $(\widetilde{x}_{11}, \widetilde{x}_{12}, \widetilde{x}_{21}, \widetilde{x}_{22})$ to the above vector.
- There is a one to one correspondence between tableaux and g-vectors. Therefore tropicalization of σ_1 sends a tableau to a tableau.

Fixed points of quasi-automorphisms

- Let A be any cluster algebra of rank n and f is a quasi-automorphism on A.
- We say that a g-vector $g \in \mathbb{Z}^n$ is a fixed point of f if f(g) = g.
- For a g-vector g which is fixed by a quasi-automorphism f on \mathcal{A} , we say that g is a stable fixed point if for every generic vector g' in \mathbb{Z}^n , the sequence $\sigma^j(g')$, $j=1,2,\ldots$, has a limit and the limit is $\frac{1}{r}g$ for some $r\in\mathbb{Z}_{\geq 1}$. Otherwise, we say that g is an unstable fixed point.

Fixed points of the maps given by braid group generators

- Denote by ρ the cyclic shift map. It is a cluster automorphism on $\mathbb{C}[Gr(k, n)]$.
- Denote $\sigma_3 = \rho \circ \sigma_2 \circ \rho^{-1}$. The stable fixed points of σ_1 , σ_2 , σ_3 in $\mathbb{C}[Gr(3,9)]$ are:

• Denote $\sigma_4 = \rho \circ \sigma_3 \circ \rho^{-1}$. The stable fixed points of σ_1 , σ_2 , σ_3 , σ_4 in $\mathbb{C}[Gr(4,8)]$ are:

1	3		1	2		1	3		1	2
2	5		3	4		2	5		3	4
4	7	,	5	6	,	4	7	,	5	6
6	8		7	8		6	8		7	8

where the first and the third are the same, and the second and the fourth are the same.

Fixed points of the maps given by braid group generators

• Denote $\sigma_4 = \rho \circ \sigma_3 \circ \rho^{-1}$. The stable fixed points of σ_1 , σ_2 , σ_3 , σ_4 in $\mathbb{C}[Gr(4,12)]$ are:

1	3	5		1	2	6		1	3	7		1	2	4
2	7	9		3	4	8		2	5	9		3	6	8
4	8	11	,	5	9	10	,	4	6	11	,	5	7	10
6	10	12		7	11	12		8	10	12		9	11	12

• Denote $\sigma_5 = \rho \circ \sigma_4 \circ \rho^{-1}$. The stable fixed points of $\sigma_1, \ldots, \sigma_5$ in $\mathbb{C}[\mathsf{Gr}(5, 10)]$ are:

1	3		1	2		1	3		1	4		1	2
2	6		3	4		2	5		2	6		3	5
4	8	,	5	7	,	4	6	,	3	7	,	4	7
5	9		6	9		7	8		5	9		6	8
7	10		8	10		9	10		8	10		9	10

Orbits of braid group actions

• We proved that the number of rank r prime non-real elements in the dual canonical basis of $\mathbb{C}[Gr(4,8)]$ which can be obtained by applying the braid group action to the following

0 if $r \pmod{2} \neq 0$.

Grassmannian string integrals

Arkani-Hamed, He, and Lam 2019 introduced Grassmannian string integrals:

$$I = (\alpha')^a \int_{\mathbb{R}^a_{>0}} \prod_{i,j} \frac{dx_{ij}}{x_{ij}} \prod_J p_J^{-\alpha'c_J},$$

where the second product runs over all Plücker coordinates p_J , α' , c_J are some parameters, a=(k-1)(n-k-1), x_{ij} 's are variables used in the web matrix (Speyer and Williams 2005).

Grassmannian string integrals

In [Early-L. 2023], we generalize the above integral: for every d > 1, we define

$$\mathbf{I}_{k,n}^{(d)} = (\alpha')^{a} \int_{\mathbb{R}_{>0}^{a}} \left(\prod_{(i,j)} \frac{dx_{i,j}}{x_{i,j}} \right) \left(\prod_{T} \mathsf{ch}_{T}^{-\alpha' c_{T}}(x_{i,j}) \right).$$

where the second product is over all tableaux T such that the face \mathbf{F}_T corresponding to T is a facet of the Newton polytope $\mathbf{N}_{k,n}^{(d-1)}$, ch $_T$ is given in [CDFL2019].

We expect that these integrals have applications in physics.

u-variables and *u*-equations

- Another application to physics is about u-variables and u-equations. u-variables and u-equations have appeared in Hugh's talk on Monday.
- u-variables are certain rational fractions in Plücker coordinates originally defined by physicists Koba-Nielsen in 1969 in the case of Gr(2, n).
- Arkani-Hamed, Frost, Plamondon, Salvatori, and Thomas have obtained general formulas for u-variables for cluster algebras from surfaces.
- In [Early-L.], we give a general formula for u-variables in the case of Gr(k, n).

Grassmannian cluster categories

- Jensen, King, and Su 2016 gave an additive categorification of $\mathbb{C}[Gr(k,n)]$ using Cohen-Macaulay modules.
- Denote by $CM(B_{k,n})$ the category of Cohen-Macaulay $B_{k,n}$ -modules. The category $CM(B_{k,n})$ has an Auslander-Reiten quiver.

Cluster variables, rigid indecomposable modules, real prime modules, tableaux

- Cluster variables in $\mathbb{C}[Gr(k,n)]$ are in bijection with reachable rigid indecomposable modules in $CM(B_{k,n})$ [Jensen, King, Su 2016].
- Cluster variables in $\mathbb{C}[\operatorname{Gr}(k,n)]$ are in bijection with reachable prime real modules in $\mathcal{C}_{\ell}^{\mathfrak{sl}_k}$ [Hernandez-Leclerc 2010, Qin 2017, Kang-Kashiwara-Kim-Oh 2018, Kashiwara-Kim-Oh-Park 2019].
- Cluster variables in $\mathbb{C}[Gr(k, n)]$ are in bijection with reachable prime real tableaux in SSYT(k, [n]) [Chang-Duan-Fraser-L. 2020].
- We replace the modules at the vertices of the Auslander-Reiten quiver by the corresponding tableaux.

Auslander-Reiten quiver in the case of Gr(3,6)

Figure: The Auslander-Reiten quiver for $CM(B_{3.6})$ with vertices labelled by tableaux

u-variables in the case of Gr(3,6)

The *u*-variables for Gr(3,6) are

$$\begin{array}{l} u_{126} = \frac{p_{136}}{p_{126}}, \ u_{345} = \frac{p_{346}}{p_{345}}, \ u_{125} = \frac{p_{126}p_{135}}{p_{125}p_{136}}, \ u_{136} = \frac{\text{ch}_{135,246}}{p_{136}p_{245}}, \ u_{245} = \frac{p_{345}p_{246}}{p_{245}p_{346}}, \\ u_{346} = \frac{\text{ch}_{124,356}}{p_{346}p_{125}}, \ u_{124,356} = \frac{p_{125}p_{134}p_{356}}{\text{ch}_{124,356}p_{135}}, \ u_{134} = \frac{p_{135}p_{234}}{p_{134}p_{235}}, \ u_{135} = \frac{p_{136}p_{145}p_{235}}{p_{135}\text{ch}_{135,246}}, \\ u_{235} = \frac{\text{ch}_{135,246}}{p_{235}p_{146}}, \ u_{135,246} = \frac{p_{146}p_{245}p_{236}}{\text{ch}_{135,246}p_{246}}, \ u_{146} = \frac{p_{246}p_{156}}{p_{146}p_{256}}, \ u_{246} = \frac{p_{346}p_{256}p_{124}}{p_{246}\text{ch}_{124,356}}, \\ u_{256} = \frac{\text{ch}_{124,356}}{p_{256}p_{134}}, \ u_{234} = \frac{p_{235}}{p_{234}}, \ u_{156} = \frac{p_{256}}{p_{156}}, \ u_{356} = \frac{p_{135}p_{456}}{p_{356}p_{145}}, \ u_{145} = \frac{\text{ch}_{135,246}}{p_{145}p_{236}}, \\ u_{236} = \frac{p_{246}p_{123}}{p_{236}p_{124}}, \ u_{124} = \frac{\text{ch}_{124,356}}{p_{124}p_{356}}, \ u_{456} = \frac{p_{145}}{p_{456}}, \ u_{123} = \frac{p_{124}}{p_{123}}, \\ \end{array}$$

where we use $\operatorname{ch}_{T_1,\dots,T_r}$ to denote ch_T , and T_i 's are columns of T. Here $\operatorname{ch}_{124,356}=p_{124}p_{356}-p_{123}p_{456}$, and $\operatorname{ch}_{135,246}=p_{145}p_{236}-p_{123}p_{456}$.

A general formula for *u*-variables

For every mesh

in the Auslander-Reiten quiver of $CM(B_{k,n})$, we define the corresponding u-variable as

$$u_{\mathcal{S}} = \frac{\prod_{i=1}^{r} \operatorname{ch}_{\mathcal{T}_{i}}}{\operatorname{ch}_{\mathcal{S}} \operatorname{ch}_{\mathcal{S}'}}.$$

u-equations

• We conjecture that there exist unique integers $a_{T,T'}$ such that

$$u_T + \prod_{T' \in \mathrm{PSSYT}_{k,n}} u_{T'}^{a_{T,T'}} = 1,$$

for all $T \in \mathrm{PSSYT}_{k,n}$, $\mathrm{PSSYT}_{k,n}$ is the set of all (non-frozen) prime tableaux in $\mathrm{SSYT}(k,[n])$.

- These equations are called *u*-equations.
- The following is an example of u-equation in the case of Gr(3,6):

$$u_{124,356} + u_{135}u_{136}u_{145}u_{146}u_{235}u_{236}u_{245}u_{246}u_{135,246}^2 = 1.$$

Quantum affine algebras and Grassmannians Tropical symmetries of cluster algebras Application to physics

Thank you!