Déclaration de travail d'Architecture

- Solution Foosus Géolocalisée -

David EVAN

08/10/2021

Version 1.0

Déclaration de travail d'Architecture - Foosus

<u>Projet :</u>	Solution Foosus géo-ciblée
<u>Client :</u>	Foosus
<u>Titre :</u>	Déclaration de travail d'architecture
<u>Préparé par :</u>	EVAN David (Architecte logiciel)
N° de version :	1.0
<u>Date de la version :</u>	08 Octobre 2021
Revu par :	[En attente de révision]
Date de révision :	[En attente de révision]

Tableau 1 – Identification du document

Objectif du document

Dans le cadre du projet de re-construction de la solution « Foosus », ce document défini le périmètre et l'approche utilisé pour la mise en œuvre de ce chantier d'architecture. Les informations de ce document sont de haut niveau. Son utilisation permet de mesurer la réussite de l'exécution du projet d'architecture et forme la base de l'accord contractuel entre le fournisseur et le consommateur de services d'architecture

Ce document ne concerne que la nouvelle solution et ne s'applique pas à l'architecture actuellement existante.

TABLE DES MATIERES

DECLARATION DE TRAVAIL D'ARCHITECTURE	5
REQUETE DU PROJET ET CONTEXTE	5
DESCRIPTION DU PROJET ET PERIMETRE	
Vue d'ensemble	6
ALIGNEMENT STRATEGIQUE	
OBJECTIFS ET PERIMÈTRE	
Objectifs	c
Évoluer avec notre base de clientèle	
Une plateforme sécurisée, utilisable et réactive	
Une technologie transparente	
Une évolutivité capable d'accompagner la croissance	
Expérimentation	
PERIMETRE	
PARTIES PRENANTES, PREOCCUPATIONS, ET VISIONS	
APPROCHE MANAGERIALE	
RÔLES ET RESPONSABILITÉS	10
STRUCTURE DE GOUVERNANCE	10
PROCESS DU PROJET	11
ROLES ET RESPONSABILITES (RACI)	13
APPROCHE ARCHITECTURALE	14
Process d'architecture	14
CONTENU DE L'ARCHITECTURE	16
PLAN DE TRAVAIL	17
ÉLEMENT DE TRAVAIL 1	
Activités	
Livrables	
ÉLEMENT DE TRAVAIL 2	
Activités	
Livrables	
ÉLEMENT DE TRAVAIL 3	18
Activités	18
Livrables	18
ÉLEMENT DE TRAVAIL 4	18
Activités	18
Livrables	18
PLAN DE COMMUNICATION	19
Duree et effort	20
COLLABORATION	20
Plan et calendrier du projet	20

RISQUES ET FACTEURS DE RÉDUCTION	21
Analyse des risques	21
HYPOTHESES	22
CRITÈRES D'ACCEPTATION ET PROCÉDURES	23
Metriques et KPIs	23
TABLES DES RÉFÉRENCES	24
FIGURES	24
Tableaux	24

DÉCLARATION DE TRAVAIL D'ARCHITECTURE

Requête du projet et contexte

La plateforme actuelle de Foosus a atteint un point au-delà duquel elle en peut plus soutenir les projets de croissance et d'expansion de l'entreprise. Après plusieurs années de développement, la solution technique complexe n'évolue plus au rythme de l'activité et risque d'entraver la croissance de l'entreprise. Les études de marché et les analyses commerciales montrent que les clients souhaitent acheter local et soutiennent les producteurs locaux.

Foosus souhaite profiter que ses concurrents n'aient pas ciblé cette niche pour créer une plateforme qui mettra en contact des consommateurs avec des producteurs et artisans locaux dans toutes les catégories de besoins.

Description du projet et périmètre

Les principaux objectifs de l'entreprise en matière d'architecture sont les suivants.

- Tirer parti de la géolocalisation pour relier des fournisseurs et des consommateurs et pour proposer des produits disponibles à proximité des lieux de résidence de ces derniers.
- L'architecture devra être évolutive pour permettre à aux services de se déployer sur diverses régions à travers des villes et des pays donnés.
- La solution doit être disponible pour les fournisseurs et les consommateurs où qu'ils se trouvent.
 Cette solution doit être utilisable avec des appareils mobiles et fixes. Elle doit tenir compte des contraintes de bande passante pour les réseaux cellulaires et les connexions Internet haut débit.
- Elle doit pouvoir prendre en charge différents types d'utilisateurs (par exemple, fournisseurs, back-office, consommateurs) avec des fonctionnalités et des services spécifiques pour ces catégories.
- Les livrables doivent pouvoir être fournis à intervalles réguliers pour que le nouveau système soit rapidement opérationnel et puisse être doté de nouvelles fonctionnalités au fil du temps.
- Les améliorations et autres modifications apportées aux systèmes de production devront limiter ou supprimer la nécessité d'interrompre le service pour procéder au déploiement.

Vue d'ensemble

Componants Collaboration Diagram (Foosus)

Figure 1 - Vue d'ensemble de l'architecture

Alignement stratégique

Les 2 axes stratégiques de l'entreprise sont :

- Soutenir l'alimentation locale
- Mettre les consommateurs en contact avec des producteurs et des artisans locaux

Le système actuel ne possédant pas de service de géolocalisation, il n'est pas possible d'être en adéquation avec la stratégie.

Le système actuel étant vieillissant (technologie et base de code), il a été décidé de ne plus le faire évoluer, il sera uniquement maintenu à partir de maintenant.

Un nouveau système va être créer en parallèle avec une transition pas à pas pour ne pas brusquer les utilisateurs, et nous permettent de le construire sur des bases adaptées à nos nouveaux cas d'utilisation, et d'évolution.

OBJECTIFS ET PERIMÈTRE 08/10/2021

OBJECTIFS ET PERIMÈTRE

Objectifs

Les objectifs business de ce travail d'architecture sont décrits ci-après.

Évoluer avec notre base de clientèle

Respecter les niveaux d'engagement et de croissances attendus en gérant la montée en charge du nombre d'utilisateur.

Une plateforme sécurisée, utilisable et réactive

Garantir la sécurité et s'adapté aux différentes régions géographiques du monde.

Une technologie transparente

La plateforme doit être disponible 24h/24 7j/7 et avoir les mêmes performances peu importe la région du monde où elle est utilisée.

Une évolutivité capable d'accompagner la croissance

Plus aucune régression tolérée, mise en place d'environnement de validation et tout code devra subir des tests croisés avant d'aller en production.

Expérimentation

Permettre un déploiement par région pour tester les nouvelles fonctionnalités au fur à mesure avant de l'étendre à toutes les régions.

Périmètre

Le périmètre du projet sera la nouvelle plateforme mise en place comprenant le backoffice, l'application mobile et l'application web avec les composants backend.

Nous n'interviendrons pas sur le système existant.

Parties prenantes, préoccupations, et visions

Le tableau suivant montre les parties prenantes qui utilisent ce document, leurs préoccupations, et la façon dont le travail d'architecture répondra à ces préoccupations par l'expression de plusieurs visions.

Partie prenante	Préoccupation	Vision
Ash CALLUM Chief Executive Officer	Rentabilité, Alignement à la stratégie de l'entreprise	Business
Natasha JARON Chief Information Officer	Flux d'informations, confidentialité, sécurité	Infrastructure Opérationnelle
Daniel ANTHONY Chief Product Officer	Approche fonctionnelle et cas d'utilisations, métriques qualités	Business
Christina ORGEGA Chief Marketing Officer	Approche fonctionnelle et cas d'utilisations, développement commercial	Business
Jo KUMAR Chief Financial Officer	Rentabilité	Financière, Budget, coûts
David EVAN Architecte Logiciel	Développement, évolution technique et fonctionnelle, gouvernance d'architecture	Applicative, architecture

Tableau 2 - Catalogue des parties prenantes

Lexique:

CEO: Chief Executive Officer
CIO: Chief Information Officer
CPO: Chief Product Officer
CMO: Chief Marketing Officer
CFO: Chief Financial Officer

Approche managériale

L'organisation suit les principes Agile et Lean Management et fonctionne avec des sprints et des tableaux Kanban.

RÔLES ET RESPONSABILITÉS

Structure de gouvernance

Figure 2 - Stucture de gouvernance Foosus

Process du projet

Comités de pilotage :

- COPIL (hebdomadaire Suivi de la planification et des ressources projet)
- Sprint Planning / Sprint Review

Répertoire de documents :

• https://github.com/david-evan/foosus-evolution

Assurance qualité :

- COOP (Bimensuel Suivi des indicateurs qualités et validation expérience utilisateur)
- Instance architecture
- Processus de support maintenance de la plateforme existante

Procédure en cas d'escalade :

Niveau	Impact	Commentaire	Escalade	Communication
1	Pas de conséquence	Coût délai périmètre inchangé	Pas d'escalade	Pas de communication
2	Conséquences limitées	Coût délai périmètre restent dans les hypothèses basses	Escalade responsable d'unité	Indiqué dans le reporting de projet.
3	Conséquence sensible	Coût délai périmètre impactés	Escalade directeur de projet	Prévenir le responsable de projet
4	Conséquence critique	Arrêt du projet, impact au- delà et/ou perte du client	Escalade direction	Prévenir l'équipe de direction

Tableau 3 - Procédure d'escalade

Procédure en cas de changement :

Figure 3 - Procédure de changement de priorité

Gouvernance du changement

Supervisée par les responsables de service

Approbation par toutes les parties prenantes

Modification et rédaction des documents d'architecture

Faites par l'Architecte Logiciel et les parties

Rôles et responsabilités (RACI)

Description de l'activité	CEO	CIO	СРО	СМО	CFO	AL
Approbation de la mission	А	R	С	I	С	I
Gestion du planning	С	А	С	С	I	R
Gestion des changements	Α	I	R	С	I	С
Rédaction de la documentation d'architecture	I	А	I	I	I	R
Définition des objectifs globaux	Α	R	С	С	С	С
Description des processus du système	I	С	I	I	I	A/R
Identification et évaluation des risques	I	А	R	I	I	С
Définition de l'architecture du système	I	А	I	I	I	R
Validation technique	А	А	I	I	I	R

Tableau 4- Matrice RACI

<u>Lexique</u>

R : ResponsableA : ApprobateurC : ConsultéI : Informé

APPROCHE ARCHITECTURALE

Process d'architecture

La méthode de développement d'architecture TOGAF (ou ADM pour « Architecture Development Method ») décrit une méthodologie des meilleures pratiques pour le développement architectural. Néanmoins, toutes les phases ne sont pas également pertinentes pour chaque projet. Le tableau cidessous décrit l'utilisation de l'ADM pour ce projet spécifique.

Figure 4 - ADM TOGAF

Phase	Sortie
Préliminaire	- Autorisation de projet
A —Vision de l'architecture	Périmètre couvertFeuille de routeVision macroscopiqueRisques majeurs
B —Architecture business	 Objectifs stratégiques et opérationnels Fonctions et services métier Processus métier Lexique Ubiquitous language
C — Architecture des systèmes d'information	Architecture des donnéesArchitecture applicative
D — Architecture technologique	Architecture techniqueComposants logicielsInfrastructures
E —Opportunités et solutions	Faisabilité technique et organisationnelleContraintes intégration
F —Planning de migration	 Planning de migration Constitution des projets de mise en œuvre Organisation Objectifs Coûts
G —Gouvernance de l'implémentation	- Version définitive des contrats d'architecture
H —Management du changement d'architecture	- Évaluation des demandes de changements

Tableau 5 - Détail des phases du travail d'architecture - ADM Togaf

Contenu de l'architecture 08/10/2021

CONTENU DE L'ARCHITECTURE

Le cadre de contenu d'architecture TOGAF (ou ACF pour « Architecture Content Framework ») fournit une catégorisation des meilleures pratiques pour le contenu de l'architecture. Néanmoins, tous les éléments ne sont pas également pertinents pour chaque projet. Le tableau ci-dessous décrit les zones de contenu pertinentes pour ce projet spécifique.

Zone de contenu	Entrée/Sortie
Principes, Vision, et Exigences de l'Architecture	- Vision d'architecture
Architecture Business	 Dictionnaire métier Diagramme d'acteurs et de rôles Diagrammes de cas d'utilisation métier Diagramme des entités métier
Architecture SI - Données	 Diagramme de localisation des applications et utilisateurs Diagramme de communication inter-applications
Architecture SI - Applications	Diagramme de migration applicativeDiagramme de réalisation Processus/système
Architecture technologique	- Diagramme de réseau matériel et informatique
Réalisation de l'architecture	- Contrats d'architectures

Figure 5 - Catalogue du contenu de l'architecture

PLAN DE TRAVAIL

Cette section décrit les activités et les livrables du travail d'architecture.

Élément de travail 1

Activités

Demande de chantier d'architecture, la phase préliminaire et la phase A de l'ADM

Livrables

- Autorisation de projet
- Périmètre couvert
- Feuille de route
- Vision macroscopique
- Risques majeurs

Élément de travail 2

Activités

Livraison de l'architecture, les phases B, C, D de l'ADM.

Livrables

- Objectifs stratégiques et opérationnels
- Fonctions et services métier
- Processus métier
- Lexique Ubiquitous language
- Architecture des données
- Architecture applicative
- Architecture technique
 - Composants logiciels
 - Infrastructures

Élément de travail 3

Activités

Planification de la transition, les phases E et F de l'ADM

Livrables

- Faisabilité technique et organisationnelle
- Contraintes intégration
- Planning de migration
- Constitution des projets de mise en œuvre
- Organisation
- Objectifs
- Coûts

Élément de travail 4

Activités

Gouvernance de l'architecture, les phases G et H de l'ADM

Livrables

- Version définitive des contrats d'architecture
- Prototype réalisé
- Évaluation des demandes de changements

Plan de communication

Le tableau ci-dessous présente les principaux canaux de communication pour l'organisation du chantier d'évolution de l'architecture.

Événement	Participants	Contenu	Fréquence
Daily Meeting	Équipes projets / PO	Suivi de l'avancement, des difficultés et des opportunités	Quotidien
Sprint planning	Équipes projets / PO / Représentant des utilisateurs	Définition des lots de travaux pour le sprint à venir	Bimensuel
Sprint Retro	Équipes projets / PO	Revue du workflow et amélioration des process	Bimensuel
Sprint Review	Équipes projets / PO / Représentant des utilisateurs		
COPIL (Comité de pilotage)	Responsables projets / PO	projets / PO Suivi de la planification et des ressources projet	
COOP (Comité opérationnel)	Responsables d'unités / PO	Suivi des indicateurs qualités et validation expérience utilisateur	Bimensuel
COMEX (Comité exécutif)	Équipe de direction	Choix stratégique - Suivi des indicateurs qualités – Arbitrage	
Instance industrialisation	Instance	Industrialisation des process et des workflows	Mensuel
Instance d'architecture	Instance	Gouvernance d'architecture	Bimensuel
Instance sécurité	Instance	Revue des indicateurs sécurité et suivi d'avancement	Bimensuel

Tableau 6 - Plan de communication

Durée et effort

Le projet est approuvé à hauteur de 50 000 USD (45 190 €) et une période de 6 mois est prévue pour définir l'architecture et préparer un projet de-suivi afin de développer un prototype.

Collaboration

Plan et calendrier du projet

Figure 6 - Timeline macroscopique de livraison du prototype

RISQUES ET FACTEURS DE RÉDUCTION

Analyse des risques

Risque	Effet	Fr.	Imp.	Crit.	Actions préventives et correctives	
Serveur d'une région non disponible	Indisponibilité de service, augmentation de la latence	1	4	4	Permettre d'utiliser les ressources du serveur le plus proches le temps de l'indisponibilité.	
Indisponibilité des services suite à une mise en production	Perte de crédibilité, indisponibilité de service	2	5	10	Les déploiements quotidiens doivent se faire dans les périodes creuses de région. Faire le lien de la passerelle après le déploiement pour avoir le minimum downtime.	
Vol de données	Conséquences juridiques	2	5	10	Vérifier la régulation des données de chaque région où l'application sera déployé pour s'adapter aux législations locales.	
Capacité de monter en charge sous-évaluée	Interruption du service	3	5	15	Évaluer la capacité de connexion simultanée nécessaire. Mise en place d'une supervision pour évaluer le trafic. Configuration d'un cluster pour une création des instances dynamiques automatiquement lors d'une montée en charge.	
Risque technique / Manque de compétence Cloud	Architecture non adaptée aux besoins et exigences	4	5	20	Suivre les bonnes pratiques en termes de Cloud. Prévoir une formation Architecte Cloud. Recruter un consultant maîtrisant ce sujet.	

Tableau 7 - Catalogue des risques et mesures d'atténuation

Hypothèses

Les solutions proposées ci-dessus viennent tracer les grandes lignes des réponses à apporter aux hypothèses formulées par Foosus pour l'évolution de l'architecture.

ld.	Hypothèse	Solution proposée		
Н1	Plutôt que d'investir davantage dans la plateforme existante, nous la conserverons en mode de maintenance. Aucune nouvelle fonctionnalité ne sera développée.	Aucune fonctionnalité ne sera ajoutée à l'ancienne plateforme. Un nouveau SI sera déployé et supportera les nouvelles fonctionnalités.		
H2	La nouvelle architecture sera construite en fonction des technologies actuelles et avec la capacité de s'adapter à de nouvelles technologies lorsque cellesci seront disponibles.	Architecture micro-service; Pattern CQRS / SAGA pour les performances et l'intégrité des données; Duo Java (Spring) – Angular pour le front.		
нз	Les équipes étant attachées à la plateforme existante, les dirigeants devront éviter de prendre de faux raccourcis en intégrant un nouveau comportement dans le système existant.	Les fonctionnalités du nouveau SI seront similaire et devront reprendre les mêmes processus.		
Н4	L'offre initiale impliquera la coexistence de deux plateformes et la montée en puissance empirique du volume d'utilisateurs qui migreront vers la nouvelle plateforme à mesure que le produit évoluera. Cette augmentation sera proportionnelle à l'évolution des fonctionnalités.	Déploiement dans le cloud AWS pour adapter la nouvelle plateforme aux besoins d'évolution.		
Н5	La géolocalisation, si elle est modélisée suffisamment tôt dans la nouvelle plateforme, permettra d'introduire d'autres innovations en fonction de l'emplacement de l'utilisateur ou du fournisseur alimentaire	e, l'API Angular Google Maps. n		
Н6	L'élaboration sur mesure d'une approche architecturale de type « Lean » pourra contribuer à la réalisation de cette feuille de route, ce qui évitera de priver les équipes de leur autonomie et de compromettre la rapidité des cycles de versions.	Utilisation de la méthodologie Scrum pour les équipes de développement.		

Tableau 8 - Hypothèses formulées et solutions proposées

CRITÈRES D'ACCEPTATION ET PROCÉDURES

Métriques et KPIs

De plus, les métriques suivantes seront utilisées pour déterminer le succès de ce travail d'architecture :

ld.	Métrique	Mesure	Valeur initiale	Valeur cible
KPI1	Adhésions journalière (utilisateurs)	Surveillance du nombre de nouveau utilisateurs.	NC	+ 10 %
KPI2	Adhésions journalière (Producteur)	Surveillance du nombre de nouveaux producteurs.	1,4 / mois	> 4 / mois
КРІЗ	Délai de déploiement d'une mise à jour	Audit régulier du délai de parution d'une offre.	3,5 semaines	< 1 semaine
KPI4	Taux d'incidents de production P1	Liste des incidents visibles par le client.	> 25 / mois	< 1 / mois

Tableau 9 - Catalogue des métriques de référence pour la mesure du succès

TABLES DES RÉFÉRENCES

Figures

Figure 1 - Vue d'ensemble de l'architecture	6		
Figure 2 - Stucture de gouvernance Foosus	10		
Figure 3 - Procédure de changement de priorité	12		
Figure 4 - ADM TOGAF Figure 5 - Catalogue du contenu de l'architecture Figure 6 - Timeline macroscopique de livraison du prototype	16		
Tableaux			
Tableau 1 – Identification du document			
Tableau 2 - Catalogue des parties prenantes	9		
Tableau 3 - Procédure d'escalade	11		
Tableau 4- Matrice RACI	13		
Tableau 5 - Détail des phases du travail d'architecture - ADM Togaf	15		
Tableau 6 - Plan de communication	19		
Tableau 7 - Catalogue des risques et mesures d'atténuation	21		
Tableau 8 - Hypothèses formulées et solutions proposées	22		
Tableau 9 - Catalogue des métriques de référence pour la mesure du succès	23		