

Family list

10 family members for:

JP4219815

Derived from 6 applications.

- 1 Peripheral mass memory subsystem have identical controllers connected to two parallel buses for accessing disk memory banks, solid-state disks, and cache memories
Publication Info: **DE69021192D** D1 - 1995-08-31
- 2 Peripheral mass memory subsystem have identical controllers connected to two parallel buses for accessing disk memory banks, solid-state disks, and cache memories
Publication Info: **DE69021192T** T2 - 1995-12-07
- 3 Mass storage peripheral subsystem.
Publication Info: **EP0445479** A1 - 1991-09-11
EP0445479 B1 - 1995-07-26
- 4 Peripheral mass memory subsystem have identical controllers connected to two parallel buses for accessing disk memory banks, solid-state disks, and cache memories
Publication Info: **FR2659460** A1 - 1991-09-13
FR2659460 B1 - 1992-05-22
- 5 PERIPHERAL MASS-MEMORY SUBSYSTEM
Publication Info: **JP1981312C** C - 1995-10-25
JP4219815 A - 1992-08-10
JP6100957B B - 1994-12-12
- 6 Peripheral mass memory subsystem have identical controllers connected to two parallel buses for accessing disk memory banks, solid-state disks, and cache memories
Publication Info: **US5325488** A - 1994-06-28

Data supplied from the esp@cenet database - Worldwide

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 04-219815

(43)Date of publication of application : 10.08.1992

(51)Int.CI.

G06F 3/06

G06F 13/12

(21)Application number : 03-069318

(71)Applicant : BULL SA

(22)Date of filing : 08.03.1991

(72)Inventor : CARTEAU DANIEL
SCHRECK PHILIPPE
GIACOMINI PATRICIA

(30)Priority

Priority number : 90 9002962 Priority date : 08.03.1990 Priority country : FR

(54) PERIPHERAL MASS MEMORY SUBSYSTEM

(57)Abstract:

PURPOSE: To obtain a system which manages not only the transfer of data from a central unit to a mass memory, but also the reading and writing of data to and from the mass memory instead of the central unit.

CONSTITUTION: This system includes two control units UC1 and UC2 which belong to an information processing system including one of central hosts H1-H4, and are so constituted as to control one of mass memories BMD1 and BMD2, and equipped with plural structure elements PR1-PR2, DE1-DE2, CA1-CA2, HA1-HA2, and DA1-DA2 connected to an independent power source and 1st and 2nd parallel buses B1 and B2. Then the system includes microsoftware architecture which is so constituted as to execute commands to the host and inform the host of state changes of the mass memories BMD1 and BMD2, characteristic of the structure elements PR1-PR2, DE1-DE2, CA1-CA2, and DA1-DA2, and mounted on the hardware structure of the elements.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-219815

(43)公開日 平成4年(1992)8月10日

(51)Int.Cl.
G 06 F 3/06
13/12

識別記号 庁内整理番号
301 H 7165-5B
R 7165-5B
310 E 7230-5B

F I

技術表示箇所

審査請求 有 請求項の数12(全 17 頁)

(21)出願番号 特願平3-69318
(22)出願日 平成3年(1991)3月8日
(31)優先権主張番号 9002962
(32)優先日 1990年3月8日
(33)優先権主張国 フランス(FR)

(71)出願人 390035633
ブル・エス・アー
フランス国、75116・パリ、アブニユ・ド
ウ・マラコフ、121
(72)発明者 ダニエル・カルト
フランス国、78180・モンティニ・ル・ブ
ルトヌー、プラス・ジヨルジュ・ポンピド
ウ、6
(72)発明者 フィリップ・シユルク
フランス国、78310・モルバ、リュ・ド
ウ・ロレンヌ、13
(74)代理人 弁理士 川口 義雄 (外2名)

最終頁に続く

(54)【発明の名称】周辺マスメモリサブシステム

(57)【要約】 (修正有)

【構成】 1つのセントラルホスト (H_1, H_2, H_3, H_4) を含む情報処理システムに属しており、1つのマスメモリ (BMD_1, BMD_2, \dots) を制御するように構成され且つ独立電源 ($ALIM_1, ALIM_2, BAT_1, BAT_2$) と、第1及び/又は第2の並列型バス (B_1, B_2) に接続された複数の構造エレメント ($PR_1 - PR_2, DE_1 - DE_2, CA_1 - CA_2, HA_1 - HA_2, DA_1 - DA_2$) とを夫々有する2つのコントロールユニット (UC_1, UC_2) を含む周辺マスメモリサブシステム (PSS_1, PSS_2)。本サブシステムは、ホストのコマンドを実行すると共にマスメモリの状態変化をホストに知らせるように構成され、各々が各々のコントロールユニットの構造エレメントに固有であり且つ該エレメントのハードウェア構造に搭載されるマイクロソフトウェアアーキテクチャを含むことを特徴とする。

【効果】 本発明はあらゆる型の情報処理システムに有効に適用可能である。

【請求項10】 ソリッドステートディスクユニットのサブアセンブリが、ホストアダプタのモジュールと同一のモジュールM₀, M₁, M₃, M₆, M₁₀と、セントラルホストから対応するソリッドステートディスクユニットへのコマンドを翻訳するためのモジュールM₉とを含むことを特徴とする請求項8に記載のサブシステム。

【請求項11】 キャッシュメモリのサブアセンブリCがモジュールM₀, M₁と、キャッシュメモリのテーブルを管理するためのモジュールM₁₁とを含むことを特徴とする請求項8に記載のサブシステム。

【請求項12】 セントラルプロセッサの機能サブアセンブリPがモジュールM₀及びM₁以外に、対応するコントロールユニットを初期化するためのモジュールM₁₂と、2つのコントロールユニット間の通信用モジュールであって、該ユニットの一方を構成する構造エレメントの一つが使用不能の場合に、該ユニット間に情報交換を設定するように特に構成されたモジュールM₁₃と、対応するセントラルプロセッサによりコマンドされるコントロールユニットの電源を管理するためのモジュールM₁₄と、電源が切断された場合に対応するセントラルプロセッサによりコマンドされるコントロールユニットのコンテキストを救済するためのモジュールM₁₅と、電源が切断され、モジュールM₁₆により救済が行われた後に、対応するソリッドステートディスクユニットの書き込み又は読み取りオペレーションをリストアするためのモジュールM₁₇と、バックアップディスクメモリと関連するセントラルプロセッサとの間のインターフェースを管理するためのモジュールM₁₈とを備えることを特徴とする請求項8に記載のサブシステム。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は周辺マスメモリサブシステムに係る。より詳細には、本発明は該サブシステムのハードウェア及びマイクロソフトウェアーアーキテクチャに係り、あらゆる型の情報処理システムに適用可能である。

【0002】

【従来の技術】 情報処理システムが少なくとも1つのセントラルプロセッサ及び駆動プロセッサが接続された1つの主記憶装置から形成される少なくとも1つの中央処理装置即ちセントラルホストと、複数の周辺装置と、主記憶装置と種々の周辺装置との間のデータ交換の制御を確保する少なくとも1つの入出力プロセッサとから構成されることは知られている。

【0003】 種々のコントロールユニット即ちコントローラが種々の周辺装置に関連付けられており、セントラルホストと種々のコントローラに関連付けられる周辺装置との間のデータの物理的転送を確保する。

【0004】 一般に、同一の地理的位置において情報処理システムを構成する全機能エレメントは、これらの工

レメントを担持する種々のボードとその電源との間のデータ転送を確保する同一の並列バスに接続されている。

【0005】 現在最も汎用されているバスはMultibus I I (Intel社の登録商標) である。そのアーキテクチャはInstitute of Electrical and Electronic Engineers (IEEE) 規格1296により規格化された並列型の主バスを中心に構築される。

【0006】 最も頻用されている周辺装置としては回転磁気ディスクメモリ又は光ディスクメモリのようなマスメモリがある。マスメモリは非常に大量の情報を保存し且つ比較的迅速に情報にアクセスすることができるので、非常に広く使用されている。その平均アクセス時間は約20~25ミリ秒である。市販の最高性能のディスクメモリの容量は1ギガバイトを越える。

【0007】 マスメモリとしては、半導体メモリを使用する電子メモリ又は電子ディスク(又はソリッドステートディスク)として知られるメモリが現在開発中である。そのアクセス時間は1ミリ秒(即ち最高性能の回転ディスクメモリのアクセスタイムの數十分の1)を大幅に下回り、回転部分を備えない。しかしながら、その単位記憶容量コストは高く、磁気ディスクメモリの約20倍である。もっとも、エレクトロニックメモリの単位記憶容量コストは回転磁気ディスクメモリよりも著しく迅速に低下しつつあり、このコストは数年以内に等しくなるだろうと考えられる。したがって、情報処理システムの周辺装置として回転磁気ディスクメモリとソリッドステートディスクとを同時に使用すると有用であると考えられる。

【0008】

【発明が解決しようとする課題】 情報処理システムの構造はますます複雑になっており、ますます多数のエレメントが必要になっている。更に、このようなシステムにより処理すべきデータ量は極めて甚大であり、システムのセントラルプロセッサにより処理する前に多数のマスメモリを使用してこれらのデータを保存する必要がある。その結果、このようなシステム全体を中央処理装置により管理するのは著しく複雑である。

【0009】 したがって、夫々システムのエレメントの一部、特に周辺装置を管理する複数のサブシステムのレベルに、情報処理システムを構成するエレメントアセンブリに管理を分散させることが望ましい。

【0010】 本発明の目的は明確には、セントラルユニットの代わりにセントラルユニットからマスメモリへのデータの転送のみならずマスメモリへの情報の読み書きを管理する周辺マスメモリサブシステムを提供することである。

【0011】 このようなサブシステムはできるだけ使い易く且つ高性能でなければならない。

【0012】 更に、データへのアクセスは完全に保護されなければならない、即ち一部又は全体の故障時であろう

と、システムのエレメントの全体又は一部の保守のためのダウン時間であろうと状況に関係なく、サブシステムにより管理されるマスメモリに含まれる任意のデータに常にアクセスできなければならない。

【0013】換言するならば、セントラルホストはサブシステムがマスメモリを実際にどのように管理するかを気遣う必要なく、サブシステム又はマスメモリに影響し得る誤動作とは無関係に、サブシステムにより管理されるマスメモリに含まれる任意のデータにアクセスできなければならない。これはホストにとってデータの可用性を規定する。

【0014】

【課題を解決するための手段】このために、本発明の周辺マスメモリサブシステムはMultibus II型の2つの並列バスを中心構成されたモジュラーハードウェアアーキテクチャにしたがって構成され、種々の型のハードウェアエレメント（ロジックボード）の数は著しく少ない。これらのハードウェアエレメントは相互に同形の部分を有しており、これらの種々のハードウェアエレメントに搭載されたマイクロソフトウェアアーキテクチャは同様にモジュラー型であり、所定のハードウェアエレメントに夫々搭載される複数の機能サブアセンブリを含み、マイクロソフトウェアアーキテクチャのサブアセンブリはマイクロソフトウェアモジュールから形成され、モジュールの一部はサブアセンブリ間で共通である。

【0015】

【作用】本発明によると、少なくとも1つのセントラルホストを含む情報処理システムに属しており、少なくとも1つのマスメモリを制御するように構成され且つ独立電源と、第1及び／又は第2の並列型バスに接続された複数の構造（ハードウェア＋マイクロソフトウェア）エレメントとを夫々有する2つのコントロールユニットを含む周辺マスメモリサブシステムは、ホストのコマンドを実行すると共にマスメモリの状態変化をホストに知らせるように構成されており、各々が各々のコントロールユニットの各々の構造エレメントに固有であり且つ該エレメントのハードウェア構造に搭載される複数の機能マイクロソフトウェアサブアセンブリから形成されるマイクロソフトウェアアーキテクチャを含むことを特徴とする。

【0016】

【実施例】本発明のその他の特徴及び利点は添付図面に関する以下の詳細な説明に明示される。

【0017】図1は本発明の周辺マスメモリサブシステムの第1の実施態様PSS₁を示す。

【0018】サブシステムPSS₁は例えば2つのセントラルホストH₁及びH₂を含むより大型の情報処理システムに属する。

【0019】サブシステムPSS₁は好ましくは2つの同一のコントロールユニット、即ち図1の左側のUC₁

と右側のUC₂とを含む。

【0020】サブシステムPSS₁のハードウェアアーキテクチャは好ましくはMultibus II型の相互に並列な2つの同形のバスB₁及びB₂の周囲に構築され、該バスは相互に完全に正対する中心ゾーンと、相互に正対しない2つの側部ゾーンとを有する。

【0021】2つのコントロールユニットUC₁及びUC₂は厳密に同形であり、対称面PSに関して相互に対称である。

10 【0022】第1のコントロールユニットUC₁は第1の電源ALIM₁により電気エネルギーを供給され、バッテリBAT₁により構成される第1の緊急電源手段に接続されている。

【0023】同様に、第2のコントロールユニットUC₂は第1の電源から独立した第2の電源ALIM₂により給電され、第2の緊急電源BAT₂に接続されている。

【0024】第1のコントロールユニットUC₁は以下の構造エレメント、即ち第1のセントラルプロセッサPR₁と、ソリッドステートディスクユニットDE₁と、ホストアダプタHA₁、マスメモリ（マスメモリは6つのディスクメモリD₁～D₆を有するパンクBMD₁から形成される）アダプタ（本明細書中では簡単にするためにディスクアダプタと呼称する）DA₁と、バックアップディスクメモリMSD₁と、キャッシュメモリCA₁を含み、1つの構造エレメントはハードウェア構造とこの構造に搭載されたマイクロソフトウェアサブアセンブリとの組み合わせとして規定される。

【0025】

【0026】同様に、第2のコントロールユニットUC₂は第2のセントラルプロセッサPR₂と、第2のソリッドステートディスクユニットDE₂と、ホストアダプタHA₂と、第2のディスクアダプタDA₂と、第2のバックアップディスクメモリMSD₂と、第2のキャッシュメモリCA₂とを含む。

【0027】第1及び第2のディスクアダプタDA₁及びDA₂は夫々のリンクCS₁及びCS₂を介してディスクメモリパンクBMD₁に接続されている（図1には6つのディスクメモリ即ちD₁～D₆のみを示す）。該ディスクアダプタは更にリンクCS₁及びCS₂を介して第2のディスクメモリパンクBMD₂（図1には簡単にするために図示せず）に接続されている。

【0028】リンクCS₁～CS₄は、American National Standards Institute (ANSI) 及びInternational Standard Organization (ISO) により規格化されたIPI-2型である。

【0029】第1のホストアダプタHA₁は第1の接続チャネルCE₁により第1のホストH₁に接続され、第2の接続チャネルCE₂により第2のホストH₂に接続されている。

【0030】同様に、第2のホストアダプタHA₂は第

1の連結チャネルCE₁により第2のホストH₂に接続されており、第2の接続チャネルCE₂により第1のホストH₁に接続されている。

【0031】この場合、第1及び第2のホストアダプタHA₁及びHA₂の第1の連結チャネルCE₁及びCE₂は第2の連結チャネルCE₂及びCE₁よりも優先される。

【0032】4つの接続チャネルCE₁～CE₄はANSI(及びISO)により規格化されたIPI-3型である。

【0033】第1のコントロールユニットを構成する全構造エレメント即ちPR₁, DE₁, HA₁, DA₁, MSD₁及びCA₁は、ハードウェア及びマイクロソフトウェアの両面から見て第2のコントロールユニットUC₂の対応するエレメント即ちPR₂, DE₂, HA₂, DA₂, MSD₂及びCA₂と同形であり、面PSに関して相互に対称に配置されている。

【0034】6つの構成エレメントDE₁, DE₂, PR₁, PR₂, CA₁, CA₂は、2つのバスB₁及びB₂バスの相互に正対している中心部分でこれらのバスに同時に接続されている。

【0035】第1のコントロールユニットUC₁の構成エレメントHA₁及びDA₁は第1のバスBS₁に接続され、第2のコントロールユニットUC₂の対応するエレメントHA₂及びDA₂は第2のバスBS₂に接続されている。

【0036】第1のバックアップディスクメモリMSD₁は、SCSI型のリンクL₁を介して第1のセントラルプロセッサPR₁と第2のソリッドステートディスクユニットDE₂とに接続されている。

【0037】同様に第2のバックアップディスクメモリMSD₂は、SCSI型のリンクL₂を介して第2のセントラルプロセッサPR₂と第1のソリッドステートディスクユニットDE₁とに接続されている。したがって、2つのバックアップディスクメモリMSD₁及びMSD₂は同時に第1及び第2のコントロールユニットUC₁及びUC₂からアクセス可能である。

【0038】2つのバックアップディスクメモリは、電源ALIM₁及びALIM₂(図1では簡単にするために図示せず)に夫々接続された2つの入力を有するOR回路により電圧を供給される。

【0039】図2に示す本発明の周辺マスメモリサブシステムの第2の実施態様PSS₂は、図1に示した第1の実施態様PSS₁の拡張形でより高性能である。該サブシステムは同様に2つのバスB₁及びB₂の周囲に構築されると仮定される。該サブシステムは同様に2つの同形のコントロールユニットUC₁及びUC₂を含む。該コントロールユニットの各々はエレメントPR₁, DE₁, CA₁, MSD₁, DA₁及びHA₁(ユニットUC₁)と、PR₂, DE₂, CA₂, MSD₂, DA₂及びHA₂(ユニットUC₂)を含んでおり、これらのエレメントは図1の対応エレメントと全く同一の参照符号を付

し、厳密に同一の役割及び機能を有する。6つのディスクメモリD₁～D₆から構成されるディスクメモリバンクBMD₁は図1と同様に2つのディスクアダプタDA₁及びDA₂に接続されている。

【0040】第1のコントロールユニットUC₁は、更にホストアダプタHA₁と3つのディスクアダプタDA₃, DA₄, DA₅とを含む。

【0041】同様に、第2のコントロールユニットUC₂は、更にホストアダプタHA₂と3つのディスクアダプタDA₆, DA₇及びDA₈とを含む。

【0042】ホストアダプタHA₁及びHA₂と4つのディスクアダプタDA₁, DA₂, DA₅及びDA₆とはバスB₁に接続されており、ホストアダプタHA₁及びHA₂とディスクアダプタDA₂, DA₄, DA₇, DA₈とはバスB₂に接続されている。

【0043】上記の他のエレメント、即ちセントラルプロセッサPR₁, PR₂, キャッシュメモリCA₁, CA₂及びソリッドステートディスクユニットDE₁, DE₂は同時に2つのバスB₁及びB₂に接続されていることが明らかである。

【0044】2つのディスクアダプタDA₃及びDA₄は、例えば6つのディスクメモリD₁₁～D₁₆により構成されるディスクメモリバンクBMD₂に接続されている。

【0045】同様に、ディスクアダプタDA₅及びDA₆とDA₇及びDA₈とは、夫々例えば6つのディスクメモリD₂₁～D₂₆及びD₃₁～D₃₆(図2には簡単にするために図示せず)により構成されるディスクメモリバンクBMD₃及びBMD₄に夫々接続されている。

【0046】ディスクアダプタに接続されたディスクメモリの数が十分に多い場合、コントロールユニットUC₁及びUC₂は夫々第1のセントラルプロセッサPR₁及び第2のソリッドステートディスクユニットDE₂と、第2のセントラルプロセッサPR₂及び第1のソリッドステートディスクユニットDE₁とに夫々接続された補助バックアップディスクメモリ(例えばMSD₁及びMSD₂)を含み得る。

【0047】本発明の周辺サブシステムは図2に示す以外のホストアダプタ及びディスクアダプタを含んでもよいことが明らかであり、これらの補助ディスクアダプタは他の磁気ディスクメモリバンク、例えば光ディスクメモリバンク、テープ駆動装置又は磁気光学ディスクメモリ等に接続される。換言するならば、本発明の周辺マスメモリサブシステムは多数の可能な機器構成を含むことができ、多大な記憶容量を有するマスメモリを管理することができる。

【0048】本発明のサブシステムのディスクメモリは(UC₁又はUC₂のホスト及びディスクアダプタを介する)デュアルアクセス型であることが理解されよう。更に、ユニットUC₁及びUC₂の各々が同形であり且つ2

つのバスB₁及びB₂に接続されているため、互換可能である。その結果、UC₁の構造エレメントの1つが（例えば全体又は一部の故障、保守又は移動のために）使用不能な場合にUC₂の対応するエレメントで代替することができる。同様に、ユニットUC₁又はUC₂の一方が使用不能な場合（電源が切断された場合、又は保守作業中）には他方のユニットで代替する。二重のMultibus I Iを有する完全に冗長な本発明の周辺サブシステムの構造（ハードウェア及びマイクロソフトウェアの両方）はデータの完全な保護とセントラルホストH₁のデータ可用性とを確保する。

【0049】ホストアダプタ（例えばHA₁）及びディスクアダプタ（例えばDA₁）のより詳細なハードウェア構造を図3に示す。アダプタ夫々HA₁～HA₄及びDA₁～DA₄のハードウェア構造はHA₁及びDA₁について以下に記載する対応する構造と完全に同形であることが理解されよう。

【0050】ホストアダプタHA₁は、接続チャネルCE₁及びCE₂によりセントラルホストH₁及びH₂に接続するための（上記IPI-3規格により規定される型）インターフェースIH₁と、好適態様によると約512～768KBの容量を有するホストバッファメモリ（簡単にホストバッファと呼称する）MTH₁と、ホストアダプタの機能を制御するマイクロプロセッサMPH₁（例えばRISC型のAMD 29000マイクロプロセッサ）と、マイクロプロセッサMPH₁に関連するRAM型メモリであって、例えばホストアダプタHA₁に搭載されるマイクロソフトウェアモジュールの種々の命令を受け取るよう構成された1つのRAM型メモリとデータのための1つのRAM型メモリ（夫々命令及びデータに充てられるこれらの2つのRAM型メモリは例えば各々256Kの容量を有する）とから構成されるRAM型メモリRAH₁と、バスB₁を介してホストアダプタをコントロールユニットの他のエレメントと接続するためのマイクロコントローラMCH₁と、上記IBEE規格1296により規定されるMultibus IIバスB₁との接続用インターフェースであって、例えば本発明の周辺サブシステムPSS₁、PSS₂の他の構成エレメントとメッセージモードで通信するVL 82c389コプロセッサ（Intel社製）により構成されるインターフェースIBH₁とを含む。

【0051】上記ホストアダプタの全構成エレメントはマイクロプロセッサMPH₁の内部バスB₁により相互に通信する。

【0052】ディスクアダプタDA₁のハードウェア構造はホストアダプタHA₁のハードウェア構造と同様である。

【0053】即ちアダプタDA₁は、上記IEEE規格1296により規定されるバスB₁との接続用接続インターフェースIBD₁と、ディスクメモリD₁～D₆に書き込むべきデータ又は該ディスクメモリに書き込まれた

データの読み取りに由来するデータのためのバッファメモリ（より簡単にディスクバッファと呼称する）MTD₁と、ディスクアダプタのコマンドマイクロプロセッサMPD₁と、相互接続用マイクロコントローラMCD₁と、マイクロプロセッサMPD₁に関連するRAM型メモリRAD₁と、接続チャネルCS₁及びCS₂を介してディスクメモリバンクBMD₁に接続するためのインターフェースID₁（このインターフェースは上記IPI-2規格により規定される）とを含む。

10 【0054】ホストアダプタ及びディスクアダプタHA₁及びDA₁のハードウェア構造は、マザーボード及びドーターボードから構成される。

【0055】即ちホストアダプタHA₁は、マザーボードCMH₁とドーターボードCFH₁とを含み、ディスクアダプタDA₁はマザーボードCMD₁とドーターボードCFD₁とを含む。

【0056】マザーボードCMH₁は上記エレメントMTH₁、MPH₁、RAH₁、MCH₁、IBH₁を含み、マザーボードCMD₁はエレメントMCD₁、MTD₁、RAD₁、MPD₁及びIBD₁を含む。

【0057】ドーターボードCFH₁はインターフェースIH₁を含み、ドーターボードCFD₁はインターフェースID₁を含む。

【0058】2つのマザーボードCMH₁及びCMD₁は厳密に同形であり、したがってホスト及びディスクアダプタHA₁及びDA₁はドーターボードCFH₁及びCFD₁以外は同一のハードウェアを有することが理解されよう。マザーボードCMH₁、CMD₁は、Multibus II型の単一バス（例えばB₁）に接続できるという意味でmon～Multibus II型である。

【0059】コントロールユニットUC₁の種々の構造エレメントPR₁、CA₁、DE₁のハードウェア構造を図4に示す。

【0060】これらのエレメントPR₁、CA₁、DE₁の各々はマザーボード夫々CMP₁、CMC₁及びCMD₁と、少なくとも1つのドーターボードCFC₁及びCFD₁（夫々CA₁及びDA₁の場合）とから形成される。

【0061】種々のマザーボードCMP₁、CMC₁及びCMD₁は同一のハードウェア構造を有する。

40 【0062】即ち、マザーボードCMP₁は、いずれも内部バス5に接続されたハードウェアコンポーネント1～8を含み、マザーボードCMC₁は、いずれも内部バス15に接続されたハードウェアコンポーネント11～18を含み、マザーボードCMD₁は、いずれも内部バス25に接続されたハードウェアコンポーネント21～28を含む。

【0063】ハードウェアコンポーネント1～8、11～18及び21～28は夫々上記順序で相互に同形である。即ち、エレメント1、11及び21は相互に同形であり、エレメント2、12、22は相互に同形であり、

11

以下同様である。したがって、ハードウェアコンポーネント11～18及び21～28を認識するためには、ハードウェアコンポーネント1～8について説明すれば十分である。

【0064】コンポーネント1及び2はバスB₁及びB₂との通信用インターフェースであり、上記インターフェースIBH₁及びIBD₁と同一型である。

【0065】2つのコンポーネント3及び4は、バスB₁及びB₂により周辺サブシステムの他の構成エレメントと接続するためのマイクロコントローラである。これらのマイクロコントローラは、上記マイクロコントローラMCH₁及びMCD₁と同一型の例えばIntel 80c32型マイクロコントローラである。

【0066】コンポーネント6はセントラルプロセッサPR₁を構成するコンポーネント全体のコマンドマイクロプロセッサである。該マイクロプロセッサはRISC型のAMD 2900マイクロプロセッサからなり、したがって、上記マイクロプロセッサMPH₁及びMPD₁と同形である。

【0067】コンポーネント7は512～768K(MTD₁及びMTH₁に等しい)の容量を有するバッファメモリであり、コンポーネント8は図3に関して上述したと同一型のメモリ(即ちRAH₁及びRAD₁)と同一のRAM型メモリである。したがってコンポーネント8は、セントラルプロセッサPR₁に含まれる種々のマイクロソフトウェフモジュールの命令を含む1つのRAM型メモリと、マイクロプロセッサ6により処理されるデータのための1つのRAM型メモリとにより構成される。

【0068】マザーボードCMP₁、CMC₁、CMD₁は、bi-Multibus II型のマザーボードである。

【0069】セントラルプロセッサPR₁のマザーボードCMP₁は更に、セントラルプロセッサとDE₂とをバックアップディスクユニットMSD₁に接続するリンクL₁とのインターフェースであるハードウェアコンポーネント9を含む。インターフェースはしたがってIPI-2規格型である。

【0070】同様に、ソリッドステートディスクユニットのマザーボードCMD₁は、PR₁及びDE₁をMSD₂に接続するリンクL₂とのインターフェースを構成するコンポーネント29を含む。

【0071】ソリッドステートディスクユニットDE₁のマザーボードCFD₁はこのユニットのメモリプレーンを構成し、例えばRAMメモリの複数のカラム(カラム1R₁、...、1R₂、...、1R₃)を含む。

【0072】このメモリプレーンCFD₁から又は該メモリプレーンへの情報(データ及びこれらのデータがメモリプレーンCMD₁のRAMの内側で位置付けられるアドレス)はバスBDA₁を通って輸送され、該バスはこのメモリプレーンのRAMメモリカラム全体に供給す

12

るに十分な数のブランチに分割している(ソリッドステートディスクユニットが第2のメモリプレーンを含む場合、該ユニットはBDA₁と同一型のバスにより第1のドーターボードCFD₁に接続された第2のドーターボードCFD₂により構成される)。

【0073】キャッシュメモリCA₁のドーターボードCFC₁はドーターボードCFD₁と同一である。

【0074】このドーターボードCFC₁はキャッシュメモリCA₁のメモリプレーンを含んでおり、複数の並列RAM型カラム2R₁、...、2R₂、...、2R₃により構成され、これらの列の組はバス(データ及びアドレスバス)BDA₁によりマザーボードCMC₁のバッファメモリ17に接続されている。

【0075】したがって本発明の周辺サブシステムのハードウェアーキテクチャは、一般にホストアダプタ及びディスクアダプタのマザーボードと、セントラルプロセッサ、キャッシュメモリ及びソリッドステートディスクユニットのマザーボードとの単に2つの型のマザーボードの周囲に構築されることが明らかである。これらのエレメントの各々により確保される機能にしたがって異なる型の1以上のドーターボードがこれらの2つの型のマザーボードの各々に関連付けられる。

【0076】この非常に簡単な構造は、Multibus II型の一方及び/又は他方のバスに接続されたエレメント全体が同一のボードホルダマガジンの内側に配置されている点と相俟って非常に経済的である。更に、製造中に極めて迅速に組み立てができる。

【0077】図5について説明すると、本発明の周辺サブシステムのマイクロソフトウェアーキテクチャAM₁は5つの主なマイクロソフトウェアサブアセンブリP₁、H₁、D₁、C₁、S₁を含み、該サブアセンブリはPR₁、HA₁(HA₁～HA₄)、DA₁(DA₂～DA₈)、CA₁(CA₂)及びDE₁(DE₂)のハードウェア構造に夫々搭載されている。

【0078】各サブアセンブリは夫々特定の機能を有する所定数のモジュールから構成される。所定のモジュールはサブアセンブリ間で共通である。

【0079】同一のサブアセンブリのモジュールは、RAMメモリに配置された共通メモリゾーン(例えばRAH₁、RAD₁、8、18、28)により又は相互間の直接呼出しにより相互に通信する。

【0080】異なるサブアセンブリに属するモジュールは、Multibus IIを規定するIEEE規格により規定されるようなMultibus IIメッセージにより相互に通信し、これらのメッセージはデータについては請求メッセージであり、要求、応答及び通告については非請求メッセージである。

【0081】図5に示す5つのマイクロソフトウェアサブアセンブリ以外に、全ハードウェア構造に共通し且つ

該ハードウェア構造の各々に含まれるマイクロコントローラ（即ちマイクロコントローラMCH₁, MCD₁, 3, 4, 13, 14, 23, 24）に関する別のサブアセンブリが存在する。このマイクロソフトウェアサブアセンブリを参照符号MICで示す。該サブアセンブリは以下のモジュールを含む。

【0082】構造エレメントHA₁～GA₁, DA₁～D_A₈, PR₁, PR₂, CA₁, CA₂, DE₁, DE₂の各々のハードウェアコンポーネント全体を初期化するよう構成されたモジュールm₁。この初期化はより詳細には2つのコントロールユニットUC₁及びUC₂の電源投入時のこれらのハードウェアコンポーネントの種々の試験に關係する。これらの試験は英語の頭文字BIST及びBOOTとして實際によく知られている。

【0083】2つのコントロールユニットの電源投入時に種々のハードウェア構造の相互接続に關係し且つMultibus IIに関する上記IEEE規格1296により規定される接続用モジュールm₂（英文用語interconnect spaceとして知られる）。

【0084】コントロールユニットの各々を2つの電源ALIM₁及びALIM₂に接続する規格化RS-232型のワイヤリンク（これらのリンクは図1、図2及び図3では簡単にするために図示せず）の管理のためのモジュールm₃。

【0085】サブアセンブリHは以下のモジュールを含む。

【0086】モジュールM₄はホストアダプタのオペレーティングシステムに係る。以下に示すように、このモジュールM₄はサブアセンブリP, H, D, C, Sに共通である。このモジュールは、一方から他方への通行を確保することにより夫々が帰属するサブアセンブリ（この場合H）を構成する種々のモジュール間の連係作業を組織する。

【0087】サブアセンブリP, H, D, C, Sに共通の情報（データ、アドレス）の転送を管理するためのモジュールM₅。該モジュールはMultibus IIバス（B₁, B₂）の一方又は他方を介してこのモジュールが搭載されているハードウェアエレメント（この場合H）から他のエレメントへの情報の転送を確保する。

【0088】ホストアダプタHA₁のホストインターフェースIH₁の管理のためのモジュールM₆。このモジュールは全ホストアダプタHA₁～HA₈に共通であることが理解されよう。

【0089】メモリRAH₁の命令RAMに含まれるコマンドスタックの管理のためのモジュールM₇。該モジュールは他のサブアセンブリH, D, Sに共通である。

【0090】ホストH₁によりコントロールユニットUC₁及びUC₂にアドレスされるコマンドを実行するためのモジュールM₈。

【0091】例えばセントラルホストH₁からパンクB

MD₁のディスクメモリへのコマンドを受け取り、これらのコマンドをディスクアダプタDA₁に経路指定するモジュールM₉。

【0092】ホストアダプタのハードウェアコンポーネントの一方又は他方にエラーが検出されたときに再始動及びエラー処理するためのモジュールM₁₀。このモジュールはサブアセンブリH, D及びSに共通である。

【0093】例えばサンプリングを実施する監視及び管理モジュールM₁₁は、モジュールm₁（上述）との接続、

10 例えはホストアダプタが属するコントロールユニットの電源が切断した場合にコンテキストの救済、テーブル初期化等を確保する。このモジュールはサブアセンブリH, D及びSに共通である。

【0094】ホストバッファメモリMTD₁の管理のためのモジュールM₁₂。

【0095】ホストアダプタDA₁に搭載されるサブアセンブリDは、上記に規定したモジュールM₁₃と、同様に上記に規定したMultibus II転送管理用モジュールM₁₄と、上記に規定したコマンドスタックの管理のためのモジュールM₁₅と、上記に規定したバッファメモリMTD₁の管理のためのモジュールM₁₆と、上記に規定した再始動及びエラー処理モジュールM₁₇と、上記に規定した監視及び管理モジュールM₁₈と、セントラルホストからパンクBMD₁のディスクメモリの方又は他方へのコマンドを翻訳するためのモジュールM₁₉とを含む。

【0096】ソリッドステートディスクユニットDE₁及びDE₂のマイクロソフトウェアサブアセンブリSは、マイクロソフトウェアサブアセンブリDと厳密に同一である。

30 【0097】キャッシュメモリCA₁, CA₂のマイクロソフトウェアサブアセンブリCは、モジュールM₂₀（上記）と、Multibus IIバスの一方又は他方を経る情報の転送を管理するためのモジュールM₂₁（上記）と、キャッシュメモリCA₁, CA₂に含まれるテーブルを管理するためのモジュールM₂₂とを含む。

【0098】2つのセントラルプロセッサPR₁及びPR₂の各々に搭載されるマイクロソフトウェアサブアセンブリPは、オペレーティングシステムに関するモジュールM₂₃（上記）と、Multibus II転送を管理するためのモジュールM₂₄（上記）と、対応するコントロールユニット（UC₁, UC₂）の初期化モジュールM₂₅と、2つのコントロールユニット間の通信用モジュールであつて、特に一方のコントロールユニットの構造エレメントの1つが使用不能の場合にこれらの2つのコントロールユニット間で情報交換を設定するように構成されたモジュール（このとき、他方のユニットの対応する構造エレメントは使用不能なエレメントにより通常実施されるオペレーションを実行するように構成される）M₂₆と、電源ALIM₁（ALIM₂）と本発明の周辺サブシステムの保守を担当するオペレーターに用意された保守盤とを管

理するためのモジュールM₁₄と、電源が切断された場合に対応するコントロールユニット全体のコンテキストを救済するためのモジュールM₁₅と、電源が切断され、前記モジュールM₁₆により対応する救済が行われた後にシリッドステートディスクユニットDE₁, DE₂の書き込み又は読み取りオペレーションを再始動するためのモジュールM₁₇と、バックアップディスクメモリMSD₁(MSD₂)とこれに関連するセントラルプロセッサ(即ちPR₁)との間のインターフェースを管理するためのモジュールM₁₈とを含む。

【0099】上記マイクロソフトウェアサブアセンブリの各々がどのように作動するか、及び該サブアセンブリを構成するこれらのモジュールの各々が他のモジュールとの関連でどのように作用するかについては、ディスクメモリバンクBMD₁及びキャッシュメモリCA₁, CA₂の内側のオペレーションに関する特に図7A及び図7B並びに図8A及び図8Bと共に以下の説明から良く理解されよう。

【0100】まず最初にセントラルプロセッサPR₁(PR₂)のサブアセンブリPの役割を大まかに説明しよう。

【0101】2つのセントラルプロセッサPR₁及びPR₂は、コントロールユニットUC₁及びUC₂の各々に属する種々のハードウェアエレメントの夫々親装置である。該セントラルプロセッサは、夫々に割り当てられた機能を実行できるように種々のエレメントHA₁～H_{A8}, DA₁～DA₈, DE₁, DE₂, CA₁, CA₂の実行プログラムを内側にロードする。当然のことながら、これらのプログラムの実行は上記機能サブアセンブリH, D, C, Sに対応する。プロセッサPR₁及びPR₂は、例えばバックアップ回転ディスクメモリMSD₁及びMSD₂に保存されたこれらのプログラムを探索する。その場合、これらのバックアップメモリはデュアル機能、即ちまず第1にアダプタDA₁, DA₂等が使用不能な場合に、まだ保存されずにバンクBMD₁, BMD₂等の回転ディスクメモリへの書き込みを待機している情報をバックアップする機能と、第2に上記実行プログラムを保存する機能とを有する。しかしながらこれらのプログラムは、プロセッサPR₁及びプロセッサPR₂の両方に接続されたシステムディスクメモリと呼称される特別のディスクメモリに保存され得る。以下の説明では、バックアップ回転ディスクメモリMSD₁及びMSD₂もシステムディスクメモリの役割を果すと仮定する。

【0102】本発明の周辺マスメモリサブシステムの初期設定は以下のように行われる。

【0103】各コントロールユニット(UC₁, UC₂)は電源を入れると自動的にブートロードされるように構成されている。ブートロード(即ちコントロールユニットを含む構造エレメントのハードウェア構造の各々における種々のマイクロソフトウェアサブアセンブリの実

行)は、(バックアップディスクメモリがシステムディスクメモリの役割を果すため)バックアップディスクメモリ中のファイルから行われる。初期設定は順次以下のオペレーションの実行を含む。

【0104】ハードウェア構造の各々についてマイクロコントローラMCH₁, MCD₁, 3, 4, 13, 14, 23, 24はモジュールm₁の命令を実行し、そのハードウェアコンポーネントを初期設定する。

【0105】この間PR₁のハードウェア構造は、ディスクメモリMSD₁からブートロードされ、他の構造エレメントの他のハードウェア構造はそれ自体のマイクロソフトウェアサブアセンブリがロードされるのを待機する。換言するならば、セントラルプロセッサPR₁はモジュールM₀, M₁, M₁₂, M₁₃, M₁₄, M₁₅, M₁₆及びM₁₇によりRAMメモリ8にロードされる。

【0106】次にプロセッサPR₁は、コントロールユニットUC₁を構成する他のハードウェア構造の各々にローディングコードを送る。次に該プロセッサは、Multiibus II型の2つのバスの一方又は他方を介して該ハードウェア構造に対応するマイクロソフトウェアサブアセンブリ(プロセッサがバックアップディスクメモリMSD₁中で探し、例えばそのバッファメモリ7中に保存しておいたサブアセンブリ)を送る。

【0107】エレメント(DE₁, CA₁, HA₁, DA₁)の各々は、該エレメントに含まれるマイクロコントローラによりモジュールm₀, m₁, m₂, m₃の各々を実行することによりそのハードウェアコンポーネントを初期設定する。次に、該エレメントは実行しようとするマイクロソフトウェアサブアセンブリを含む種々のモジュールをロードする。

【0108】システムディスクメモリとしての機能においてバックアップディスクメモリが何らかの理由でセントラルプロセッサPR₁によりアクセス不能な場合、このセントラルプロセッサは他方のコントロールユニットUC₂のセントラルプロセッサPR₂によりロードされる。いったんロードされると、PR₁は、UC₂のシステムディスクメモリとして機能する他方のディスクメモリMSD₂中でコントロールユニットUC₁の構造エレメントのマイクロソフトウェアサブアセンブリをロードするためのファイルを探索する。

【0109】コントロールユニットのハードウェア構造の各々が該ハードウェア構造に対応するマイクロソフトウェアサブアセンブリを含む全モジュールをロードされるや否や、こうして形成された構造エレメントは該エレメントに割り当てられた機能を実行することができる。

【0110】マイクロソフトウェアサブアセンブリがどのように作動するかをよく理解するためには、バンク(例えばBMD₁)のディスクメモリ内に情報を書き込むオペレーションがHA₁, DA₁及びCA₁にロードされるサブアセンブリH, D及びCを含むマイクロソフト

ウェアモジュールの各々によりどのように実施されるかを示す図7A及び図7Bをまず参照されたい。

【0111】図6も参照することができ、同図は、HA₁及びDA₁に搭載されるソフトウェアサブアセンブリのモジュールが相互にどのように機能するかを示すと共に、データブロックがバンクBMD₁（又はBMD₂等）のディスクメモリの1つとキャッシュメモリCA₁（CA₂）との両方で読み取られるときにこれらのモジュールの各々により実施される種々のオペレーションを示す。

【0112】データブロックがBMD₁のディスクメモリD₁～D₈の1つ及びキャッシュメモリCA₁で読み取られる時に関連する種々のオペレーションを説明する前に、情報がディスクメモリにどのように書き込まれるか、及びキャッシュメモリの役割についてまず説明することが肝要である。

【0113】データブロックをディスクメモリの磁気ディスクに書き込むために、ディスクメモリは各々同一の長さを有するセクタに分割されている。これは固定フォーマットメモリとして知られるディスクメモリで現在一般に使用されている。種々のセクタはすべて同一のバイト数（例えば512K）を有する。各セクタにはヘッダ、データブロック及びフッタが順次書き込まれる。ヘッダは磁気ディスクのトラック上のセクタでヘッダが位置する物理的位置に情報を含み、フッタはデータの完全性を確認するための情報を含み、このセクタに記録される全バイトが正しいか否かを確認する。情報書き込みのためのこのようなセクタ構成及びセクタ内の分配は非常によく知られており、従来のディスクメモリで広く使用されている。本発明の周辺サブシステムでもこの書き込み構成をソリッドステートディスクユニットDE₁及びDE₂で使用する。

【0114】ディスクメモリに関するオペレーションの過程ではしばしば同一のデータブロックが読み取られることが予想される。換言するならば、経時に同一のデータブロックへのアクセスの確率は非常に高い。更に、複数のデータブロックが逐次読み取られる場合、第1の所定のデータブロックがいったん読み取られてから同一のデータブロックがこの同一の所定のブロックに引き続いで読み取られる確率も多い。

【0115】上記の理由から、高頻度で読み取られる確率が高いデータを正確に含むキャッシュメモリが使用される。したがって、これらのデータはキャッシュメモリに直接読み取られ、対応するディスクメモリで探索する必要はない。

【0116】データは次に、磁気ディスクメモリのアクセス時間よりも実質的に著しく短いキャッシュメモリのアクセス時間（磁気ディスクメモリの数十ミリ秒に対して約0.1ミリ秒）で読み取られる。

【0117】キャッシュメモリCA₁の内側で、情報は

キャッシュブロックと呼称されるブロックの形態のデータボードCFC₁のRAMメモリカラム2M₁, ..., 2M, ..., 2Mに書き込まれる。ディスクメモリの各セクタと同様に、該キャッシュブロックの各々はヘッダと、後続するデータ（典型的にはデータフィールドと呼称される）と、後続するフッタとを含む。ヘッダ及びフッタの夫々の役割は、磁気ディスクメモリに記録されるデータのセクタのヘッダ及びフッタと同一である。

10 【0118】单一のキャッシュメモリのデータフィールドは、バンクBMD₁, BMD₂等の1つに属するディスクメモリの磁気ディスクのN（整数）個のセクタに記録される全データに対応する。

【0119】各キャッシュブロックと、所与のディスクメモリに属する所与の磁気ディスクの種々の対応するセクタとの間の対応はテーブルに示される。テーブルは例えばマザーボードCMC₁に属するRAMメモリ18のメモリスペースを占有する。

【0120】図7A及び図7Bは、データの一部がキャッシュメモリCA₁で読み取られるか否かに拘わらず、バンクBMD₁のディスクメモリのいずれか1つにおけるデータブロックの読み取り時に、ホストアダプタHA₁とディスクアダプタDA₁との間、ディスクアダプタとキャッシュメモリとの間、及びキャッシュメモリとホストアダプタHA₁との間の対話を示す。

【0121】読み取りオペレーションは以下の通りである。

【0122】1) ホストアダプタHA₁は、例えばメモリRAH₁に配置されるコマンドスタック中に送られるコマンドメッセージCMDとしてホストH₁からの読み取り要求を受け取る。このオペレーションはモジュールM₁及びM₂により順次実行される。

【0123】2) コマンドメッセージCMDの内側でモジュールM₂はデータブロックを読み取るべきディスクメモリのアドレスをデコードする。このディスクメモリは簡単にリソースと呼称される。

【0124】3) モジュールM₂はリソースのアドレスをデコードするや否や、コマンドメッセージMSG CMDを作成する。

40 【0125】4) 実際にMultibus II型のメッセージであるこのメッセージMSG CMDは、モジュールM₁の指令下にバスB₁を通じてディスクアダプタDA₁に送られる。

【0126】5) メッセージはモジュールM₂の指令下にマイクロプロセッサMPD₁によりデコードされる。

【0127】6) 該モジュールM₂は妥当性をチェックする。

【0128】モジュールM₂はホストH₁が該当データブロックを読み取ろうとするリソースを予約する。いった

19

ルリソースが予約されたらオペレーション100に移る。

【0129】100： モジュールM₁の指令下で、ディスクアダプタはキャッシュメモリCA₁のプロセッサ16に問い合わせコマンドC1を送る。このコマンドの目的は、データブロックがドーターボードCFC₁のRAMメモリに記憶されているか否かを認識することである。

【0130】101： キャッシュメモリのテーブルを管理するためのモジュールM₁は該当データブロックの有無を知るためにキャッシュメモリのテーブルを探索する。

【0131】A) まず応答がイエスであると仮定する。

【0132】キャッシュメモリCA₁とホストアダプタHA₁との間に対話が設定される。この対話は次のオペレーション102A～111を含む。

【0133】102A： キャッシュメモリCA₁のモジュールM₁は、パッファメモリMTH₁のページを予約する要求をホストアダプタに送る。

【0134】103： ホストアダプタの管理モジュールM₁は次に、キャッシュメモリCA₁に読み取ろうとするデータブロックを一時的に記憶するために、パッファメモリMTH₁のページを割り当てる。パッファメモリのページが割り当てられるや否やオペレーション104に移る。

【0135】104： ホストアダプタはモジュールM₁の指令下に、バスB₁を介してキャッシュメモリにメッセージを送り、そのパッファメモリMTH₁のページが割り当てられたことを知らせる。

【0136】105： キャッシュメモリのデータブロックは、キャッシュメモリ及びホストアダプタのモジュールM₁の指令下でパッファメモリMTH₁に転送される。

【0137】106： ブロックの全データがパッファメモリMTH₁に記憶されるや否や、ホストアダプタは該当データブロックを転送することをホストH₁に通知する。この通知はモジュールM₁の指令下に行われる。

【0138】107： ホストH₁が転送を受諾するや否や、モジュールM₁の指令下にホストアダプタにより転送が実施される。

【0139】108： オペレーション106及び107が実行されている間、キャッシュメモリは信号HITをディスクアダプタDA₁に送り、該当データブロックがキャッシュメモリからホストアダプタHA₁に転送されたことを知らせる。このメッセージHITは、キャッシュメモリのモジュールM₁によりキャッシュメモリCA₁からディスクアダプタDA₁に送られる。

【0140】109： ディスクアダプタはメッセージHITを受け取るや否や、モジュールM₁の指令下で応

20

答メッセージMSG REPを作成する。

【0141】110： ディスクアダプタは次に、ディスクアダプタ及びホストアダプタのモジュールM₁の指令下で応答メッセージMSG REPをホストアダプタHA₁に送る。

【0142】111： ホストアダプタは応答メッセージMSG REPを受け取るや否やモジュールM₁の指令下で完了送信信号を送り、キャッシュCA₁におけるデータブロックの読み取りオペレーションが完了したことをホストH₁に知らせる。

【0143】B) 応答がノーであると仮定する。

【0144】オペレーション101（上記）に引き続きオペレーション102Bを実施する。

【0145】102B： キャッシュメモリCA₁はそのモジュールM₁によりバスB₁を通じてディスクアダプタDA₁にメッセージを送り、データブロックがそこに存在しないことを知らせる。このメッセージがDA₁により受けとられると、次のオペレーション8に移る。

【0146】8) アダプタDA₁は、リソースで読み取られるデータブロックを受け取るためにパッファメモリMTD₁の1ページ以上を割り当てる（モジュールM₁により実施されるオペレーション）。こうして次のオペレーションに移る。

【0147】9) モジュールM₁の指令下にリソースにおけるデータブロックの読み取りが実施される。

【0148】10) 読み取りが完了すると、データブロックはパッファメモリMTD₁の割り当てられたページに一時的に記憶され、アダプタDA₁はモジュールM₁の指令下にそのパッファメモリMTH₁～HA₁のページ割り当て要求を送る。

【0149】11) この要求に応答してHA₁は該当するデータブロックを受け取るためにそのパッファメモリMTH₁のページを割り当てる。

【0150】12) HA₁はバスS₁を介してDA₁にメッセージを送り、MTH₁の1ページ以上が割り当てられたことを知らせる（HA₁及びDA₁のモジュールM₁）。

【0151】13) DA₁は次にこの最後のメッセージに応答して、これらの2つのアダプタのモジュールM₁の指令下にリソースで読み取られた情報をHA₁に転送する。

【0152】14A) ホストアダプタはモジュールM₁の指令下に、リソースで読み取られ且つパッファメモリMTH₁に一時的に記憶されたデータブロックをすぐに転送するようにホストH₁に知らせる。

【0153】14B) オペレーション14Aしが実施されている間、ディスクアダプタは応答メッセージMSG REPを作成する。このメッセージはディスクアダプタ及びホストアダプタのモジュールM₁の指令下にHA₁に送られる（オペレーション15B）。HA₁はこの応

21

答メッセージを受け取ると、オペレーション15Aを実行する。

【0154】15A) HA₁はモジュールM₂の指令下でホストH₁にデータブロックを転送する。この間、DA₁はオペレーション15B及び16Bを実行する。

【0155】15B) ディスクアダプタはモジュールM₁によりリソースを解放し、次いでモジュールM₁の指令下にバッファメモリMTD₁を解放する(オペレーション16B)。

【0156】16A) ホストアダプタはホストH₁へのデータ転送を完了するや否や、ホストに完了送信信号を送り、リソースにおけるデータブロックの読み取りの全オペレーションが完了したことを知らせる(モジュールM₂)。

【0157】17A) ホストアダプタは次にモジュールM₁の指令下にMTH₁を解放する。

【0158】図8A及び図8BはキャッシュメモリCA₁又はBMD₁、BMD₂等のようなパンクのディスクメモリのいずれか1つにデータブロックを書き込むために実行される全オペレーションを示す。

【0159】HA₁とDA₁との間の対話に関するオペレーションセット1~8は、リソース又はキャッシュメモリCA₁におけるデータブロックの読み取りについて図7A及び図7Bに関して上述したオペレーション1~8と厳密に同一である。その後、オペレーション20に移る。

【0160】20) ディスクアダプタDA₁は、書き込むべきデータブロックの転送を要求するためにバスB₁を通じてホストアダプタHA₁にメッセージを送る。このオペレーションは2つのアダプタの2つのモジュールM₁の指令下に行われる。

【0161】21) 次にホストアダプタは、データブロックを受け取るためにホストバッファメモリMTH₁の1ページ以上を割り当てる(モジュールM₁)。

【0162】22) 次にHA₁は、書き込むべきデータブロックを転送すべきであることをセントラルホストH₁に知らせる(モジュールM₂)。

【0163】23) 次にセントラルホストは、オペレーション21で割り当てられたバッファメモリのページに一時的に記憶されていた書き込むべきデータブロックを、モジュールM₂の指令下に転送する。

【0164】24) 次にHA₁は、書き込むべきデータブロックを後で受け取るためにバッファメモリMTD₁の1ページ以上を割り当てるように要求するメッセージをDA₁に送る(2つのアダプタのモジュールM₁)。

【0165】25) このメッセージに答えてDA₁はMTD₁の1ページ以上が割り当てられたことを知らせるメッセージをHA₁に送る(モジュールM₁)。

【0166】26) 次にHA₁は書き込むべきデータブロックをDA₁に転送し、DA₁は先に割り当てられたM

50

22

TD₁のページに該データブロックを一時的に記憶する。

【0167】27) MTD₁に書き込むべきデータブロックを受け取ると、DA₁は応答メッセージMSG REPを作成する(モジュールM₂)。DA₁はモジュールM₁の指令下に該応答メッセージをHA₁に送る(オペレーション28)。

【0168】29) HA₁はメッセージMSG REPを受け取ると、モジュールM₂の指令下に完了送信信号をホストに送る。ホストH₁にとってこのメッセージは、予約されたリソース又はキャッシュメモリCA₁のいずれかで(実際にはまだあるが)データブロックの書き込みオペレーションが完了したことを意味する。

【0169】次にオペレーション30に進む。

【0170】30) モジュールM₂の指令下で、アダプタDA₁は該当リソースにデータブロックを書き込む。この書き込みと平行してディスクアダプタは、モジュールM₁の指令下に2つのバスB₁、B₂の一方又は他方を通じてコマンド信号C IWをキャッシュメモリCA₁に送る。この信号の目的は、書き込むべきデータブロックをそのメモリCF C₁に書き込むことができるか否かを該キャッシュメモリに尋ねることである。コマンド信号C IWを送ることがオペレーション128の目的である。

【0171】129: 128に答えてキャッシュメモリはモジュールM₁の指令下に、データブロックをキャッシュメモリに書き込むべきであることを意味する信号HIT、又はそうすべきでないことを意味する信号HITバーをディスクアダプタに送る(前者はオペレーション130A、後者は130B)。自明のように後者の場合、オペレーション130Bに答えてディスクアダプタは以後、キャッシュメモリCA₁を無視する。前者の場合(130A)、手続きはオペレーション131に進む。

【0172】131: ディスクアダプタはメモリCF C₁に書き込む前に書き込むべきデータブロックを一時的に記憶するために、キャッシュバッファメモリ17の1ページ以上の予約を要求するメッセージをキャッシュメモリに送る。このオペレーションはDA₁及びCA₁のモジュールM₁の指令下に行われる。

【0173】132: CA₁のモジュールM₁の指令下に、CA₁はバッファ17の1ページ以上が書き込むべきデータブロックを一時的に記憶するために割り当てられたことをDA₁に知らせる。

【0174】133: オペレーション132に答えて、DA₁はCA₁のバッファメモリ17に書き込むべきデータブロックを転送する。

【0175】134: データブロックは17に転送されるや否やM₁の指令下にメモリCF C₁に転送される。

【0176】オペレーションセット128A～134はオペレーション30（上記）と平行して実施される。

【0177】このオペレーション30後、手続きはオペレーション31に移る。

【0178】31) 書き込むべきデータブロックセットが書き込まれると、モジュールM₁はリソースを解放する。

【0179】32) リソースがいったん解放されると、モジュールM₁は先に割り当てられていたバッファメモリMTD₁のページを解放する。

【0180】33) いったんオペレーション32が完了すると、DA₁はモジュールM₁の指令下にホストアダプタにメッセージを送り、オペレーション34でそのホストバッファメモリMTD₁を解放できるようにする。

【0181】ホストアダプタHA₁が使用不能であることが判明したならば、該ホストアダプタはUC₂の対応するアダプタHA₂で代替される。同様に、DA₁はDA₂で代替される。こうして、B₂を介してHA₂、DA₂及びCA₂の間に対話が設定される。

【0182】ユニットUC₁全体が使用不能であるならば、CA₁に含まれ、同様にCA₂にも書き込まれたデータはCA₂で直接読み取られ、HA₁、DA₂及びCA₂の間で対話が行われる。この場合も、キャッシュメモリCA₁、CA₂へのデュアルアクセスと、CA₁及びCA₂の両方に書き込まれる冗長性の利点は明らかである。

【0183】図6、図7A、図7B、図8A及び図8Bから明らかなように、所定数のモジュールは、ホストアダプタ、ディスクアダプタ又はキャッシュメモリのいずれであろうとも、ハードウェア相互間で共通の多数のオペレーションを実行する。例えばモジュールM₂及びM₃がその例である。モジュールM₂、M₃及びM₄の重要性にも着目されたい。

【0184】所定のデータブロックの全読み書きオペレーションは、2つのソリッドステートディスクユニットDE₁及びDE₂に関して同一の方法で実施されることに留意すべきである。回転ディスクメモリと同様に、書き込むべきデータブロックは同一バイト数を含むセクタに分割され、1つのセクタの情報の組は相互に連続するアドレス、例えばユニットアドレスを有する記憶場所に書き込まれる。本発明の好適実施態様によると、データは7エラー修正ビットECC（エラーコレクタコード）に加えられる4バイトに分配される有効な39又は32ビットのフォーマットとして書き込まれ、このエラーコレクタコードはダイナミックRAMメモリで從来から使用されている。図7A、図7B、図8A及び図8Bに示すような読み書き方法をDE₁又はDE₂のようなソリッドステートディスクも良好に使用できるようにするために、以上の全説明でディスクアダプタDA₁をマザーボードCMD₁に置き換えれば十分であり、マイクロプロセッサ26はマイクロプロセッサMPD₁と同一の役割

を果し、バッファメモリ27はディスクアダプタのバッファメモリMTD₁と同一の役割を果す。データがメモリCFD₁にいったん書き込まれると、バックアップディスクメモリMSD₁は遮蔽時間で更新され、メモリCFD₁に書き込まれたブロックと同一のデータブロックを受け取り、これらのデータはホストバッファMTD₁に由来する。

【図面の簡単な説明】

【図1】本発明の周辺サブシステムのハードウェアアーキテクチャの最も単純な形態である第1の実施態様の説明図である。

【図2】本発明の周辺サブシステムのハードウェアアーキテクチャの最も複雑な形態である第2実施態様の説明図である。

【図3】ホストアダプタ及びメモリアダプタのハードウェア構造の詳細図である。

【図4】本発明の周辺サブシステムの2つのコントロールユニットの一方のセントラルプロセッサ、キャッシュメモリ及びソリッドステートディスクユニットのハードウェア構造の詳細図である。

【図5】本発明の周辺サブシステムのコントロールユニットを構成するハードウェアエレメントの各々にマイクロソフトウェアアーキテクチャの種々の機能サブアセンブリをどのように搭載するかを示す説明図である。

【図6】ホストアダプタ及びメモリアダプタに固有のマイクロソフトウェアアーキテクチャの機能サブアセンブリが夫々どのように構成されるかを示す構成図である。

【図7A】キャッシュメモリとマスメモリのディスクメモリの1つとの両方でデータブロックの読み取りオペレーションを実行できるように、ホストアダプタとディスクメモリアダプタとの間、及びこれらのアダプタとキャッシュメモリとの間の対話を説明するフローチャートである。

【図7B】キャッシュメモリとマスメモリのディスクメモリの1つとの両方でデータブロックの読み取りオペレーションを実行できるように、ホストアダプタとディスクメモリアダプタ間及びこれらのアダプタとキャッシュメモリとの間の対話を説明するフローチャートである。

【図8A】キャッシュメモリとマスメモリのディスクメモリとの両方への書き込みオペレーションを実行できるように、ホストアダプタとディスクメモリアダプタ間及びこれらのアダプタとキャッシュメモリとの間の対話を示すフローチャートである。

【図8B】キャッシュメモリとマスメモリのディスクメモリとの両方への書き込みオペレーションを実行できるように、ホストアダプタとディスクメモリアダプタ間及びこれらのアダプタとキャッシュメモリとの間の対話を示すフローチャートである。

【符号の説明】

25

PSS₁, PSS₂: 周辺マスメモリサブシステム
 H₁, H₂, H₃, 4: セントラルホスト
 UC₁, UC₂: コントロールユニット
 BMD₁, BMD₂: マスメモリ
 ALIM₁, ALIM₂, BAT₁, BAT₂: 電源
 PR₁–PR₂, DE₁–DE₂, CA₁–CA₂, HA₁–

26

HA₂, DA₁–DA₂: 構造エレメント
 B₁, B₂: バス
 AML: マイクロソフトウェアーキテクチャ
 B, H, D, C, S: 機能マイクロソフトウェアサブアセンブリ

【図1】

【図5】

FIG.1

【図2】

FIG.2

【図3】

FIG.3

【図7 A】

FIG. 7A

【図4】

FIG.4

【図6】

FIG.6

【図7B】

FIG.7B

【図8A】

FIG.8A

【図8B】

FIG.8B

フロントページの続き

(72)発明者 パトリスイア・ジャコミニ
 フランス国、78390・ポア・ダルシ、リ
 ュ・バラゲ、12