

VinMin = 6.5V VinMax = 7.5V Vout = 5.0V Iout = 1.5A

Device = TPS54160DGQR Topology = Buck Created = 2017-08-22 00:35:42.199

User ID = 5085009Design Id = 5eSim Id = 18

Simulation Type = Startup

WEBENCH® Electrical Simulation Report

Electrical BOM

# Nam	ne	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1. Cboo	oot	MuRata	GRM155R61A104KA01D Series= X5R	Cap= 100.0 nF VDC= 10.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
2. Ccor	omp	Yageo America	CC0805KRX7R9BB471 Series= X7R	Cap= 470.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
3. Ccor	mp2	Kemet	C0805C180K5GACTU Series= C0G/NP0	Cap= 18.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
4. Cin		MuRata	GRM188R61A225KE34D Series= X5R	Cap= 2.2 µF ESR= 9.637 mOhm VDC= 10.0 V IRMS= 1.243 A	1	\$0.02	0603 5 mm ²
5. Cout	ut	TDK	C2012X5R1A476M125AC Series= X5R	Cap= 47.0 µF ESR= 2.94 mOhm VDC= 10.0 V IRMS= 3.805 A	1	\$0.29	0805 7 mm ²
6. Css	i	Yageo America	CC0805KRX7R9BB682 Series= X7R	Cap= 6.8 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
7. D1		Diodes Inc.	B340A-13-F	VF@Io= 500.0 mV VRRM= 40.0 V	1	\$0.12	SMA 37 mm ²
8. L1		Bourns	SRN6045-3R3Y	L= 3.3 μH DCR= 30.2 mOhm	1	\$0.17	SRN6045 64 mm ²
9. Rcor	omp	Yageo America	RC1206FR-0756KL Series= ?	Res= 56.0 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
10. Renl	nΒ	Yageo America	RC1206FR-0730KL Series= ?	Res= 30.0 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
11. Ren	nΤ	Panasonic	ERJ-8ENF1103V Series= ERJ-8E	Res= 110.0 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
12. Rfbb	b	Yageo America	RC1206FR-078K2L Series= ?	Res= 8.2 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
13. Rfbt	t	Yageo America	RC1206FR-0743KL Series= ?	Res= 43.0 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
14.	Rt	Vishay-Dale	CRCW1206110KFKEA Series= CRCWe3	Res= 110.0 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
15.	U1	Texas Instruments	TPS54160DGQR	Switcher	1	\$1.35	S-PDSO-G10 24 mm ²

Simulation Parameters

# Name	Parameter Name	Description	Values
1. Rload	P	Load Resistance	3.3333333333333335 Ohm

Design Inputs

	O 1		
#	Name	Value	Description
1.	lout	1.5 A	Maximum Output Current
2.	VinMax	7.5 V	Maximum input voltage
3.	VinMin	6.5 V	Minimum input voltage
4.	Vout	5.0 V	Output Voltage
5.	base_pn	TPS54160	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0 degC	Ambient temperature

Operating Values

720	raming varace			
#	Name	Value	Category	Description
1.	BOM Count	15		Total Design BOM count
2.	Total BOM	\$2.05		Total BOM Cost
3.	Cin IRMS	516.931 mA	Current	Input capacitor RMS ripple current
4.	Cout IRMS	156.176 mA	Current	Output capacitor RMS ripple current
5.	IC lpk	1.771 A	Current	Peak switch current in IC
6.	lin Avg	1.139 A	Current	Average input current
7.	L lpp	541.01 mA	Current	Peak-to-peak inductor ripple current
8.	FootPrint	225.0 mm ²	General	Total Foot Print Area of BOM components
9.	Frequency	1.013 MHz	General	Switching frequency
10.	Mode	CCM	General	Conduction Mode
11.	Pout	7.5 W	General	Total output power
12.	D1 Tj	45.821 degC	Op_Point	D1 junction temperature
13.	Low Freq Gain	84.563 dB	Op_Point	Gain at 1Hz
14.	Vout Actual	4.995 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
15.	Vout OP	5.0 V	Op_Point	Operational Output Voltage
16.	Cross Freq	28.534 kHz	Op_point	Bode plot crossover frequency
17.	Duty Cycle	72.347 %	Op_point	Duty cycle
18.	Efficiency	87.799 %	Op_point	Steady state efficiency
19.	Gain Marg	-22.44 dB	Op_point	Bode Plot Gain Margin
20.	IC Tj	80.418 degC	Op_point	IC junction temperature
21.	ICThetaJA	62.5 degC/W	Op_point	IC junction-to-ambient thermal resistance
22.	IOUT_OP	1.5 A	Op_point	lout operating point
23.	Phase Marg	66.847 deg	Op_point	Bode Plot Phase Margin
24.	VIN_OP	7.5 V	Op_point	Vin operating point

#	Name	Value	Category	Description
25.	Vout p-p	3.119 mV	Op_point	Peak-to-peak output ripple voltage
26.	Cin Pd	2.575 mW	Power	Input capacitor power dissipation
27.	Cout Pd	71.709 µW	Power	Output capacitor power dissipation
28.	Diode Pd	158.209 mW	Power	Diode power dissipation
29.	IC Pd	806.681 mW	Power	IC power dissipation
30.	L Pd	74.745 mW	Power	Inductor power dissipation
31.	Total Pd	1.042 W	Power	Total Power Dissipation
32.	Vout Tolerance	2.714 %	Unknown	Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Assistance

1. TPS54160 Product Folder: http://www.ti.com/product/TPS54160: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.