第7章 习 题

- 7.1 在 555 定时器构成的施密特触发器电路中,当控制输入 V_{co} 悬空, V_{cc} = 15 V 时, V_{T+} 、 V_{T-} 、 ΔV 分别等于多少? 当 V_{co} = 6 V 时, V_{T+} 、 V_{T-} 、 ΔV 分别等于多少?
- 解: 当 V_{CO} 悬空, V_{CC}=15 V

$$V_{T+}=10 \text{ V}, V_{T-}=5 \text{ V}, \qquad \triangle V = V_{T+} - V_{T-}=10-5=5 \text{ V}$$

当 V_{CO}=6 V,

$$V_{T+}=6 \text{ V}, V_{T-}=3 \text{ V}, \qquad \triangle V = V_{T+} - V_{T-}=6-3=3 \text{ V}$$

7.2 555 定时器构成的施密特触发器输入波形 V_i 如题图 7.2 所示, 试对应 V_i 画出 Q 端波形。

7.3 已知 CMOS 反相器构成的施密特触发器的输入波形如题图 7.3 所示, 试对应画出触发器的输 出波形。

解:输出波形如下图

7.4 门电路构成的施密特触发器如图 7.4(a)所示,若 V_{DD} = 10 V, R_1 = 3 k Ω , R_2 = 6 k Ω ,计算电路 的 V_{T+} 、 V_{T-} 和 ΔV 值。

$$P(T_{th}) = \frac{1}{2}V_{DD} = 2 \times 10 = 5 \text{ V}$$

$$V_{T+} = \left(1 + \frac{R_1}{R_2}\right)V_{th} = \left(1 + \frac{3}{6}\right) \times 5 = 7.5 \text{ V}$$

$$V_{T-} = \left(1 - \frac{R_1}{R_2}\right)V_{th} = \left(1 - \frac{3}{6}\right) \times 5 = 2.5 \text{ V}$$

$$\Delta V = V_{T+} - V_{T-} = 7.5 - 2.5 = 5 \text{ V}$$

7.5 在图 7.4(a)的施密特触发器电路中,已知 $V_{\rm DD}$ = 12 V,若取 R_1 = 5 k Ω , R_2 = 8 k Ω ,计算电路的 $V_{\rm T+}$ 、 $V_{\rm T-}$ 和 ΔV 值,并画出其电压传输特性曲线($V_{\rm o} \sim V_{\rm i}$)。

$$W_{th} = \frac{1}{2}V_{DD} = 2 \times 12 = 6 \text{ V}$$

$$V_{T+} = \left(1 + \frac{R_1}{R_2}\right)V_{th} = \left(1 + \frac{5}{8}\right) \times 6 = 9.75 \text{ V}$$

$$V_{T-} = \left(1 - \frac{R_1}{R_2}\right)V_{th} = \left(1 - \frac{5}{8}\right) \times 6 = 2.25 \text{ V}$$

$$\Delta V = V_{T+} - V_{T-} = 9.75 - 2.25 = 7.5 \text{ V}$$

电压传输特性曲线如题解图 7.5

题解图 7.5

7.6 试计算题图 7.6 微分型单稳态触发器的最高工作颇率。

解:
$$T_{\rm W}$$
=1.1RC=1.1×510×0.1×10⁻⁶=56.1 µs
$$T_{\rm R}=(3\sim5){\rm RC}=(3\sim5)~\times510\times0.1\times10^{-6}~=153~\mu s\sim255~\mu s$$
 $T_{\rm min}=T_{\rm W}+T_{\rm R}=209~\mu s\sim311~\mu s$ 所以 , $f_{\rm max}=4.78~{\rm kHz}\sim3.22~{\rm kHz}$

- 7.7 用 555 定时器组成的单稳态触发器对输入信号 V_i 的负脉冲宽度有何要求?为什么?若 V_i 的负脉冲宽度过大,应采取什么措施?
- 解: 用 555 定时器组成的单稳态触发器要求输入信号 V_i 的负脉冲宽度小于暂稳态时间 T_{W_i} 否则,暂稳态将不能正常的回到稳态.若 V_i 的负脉冲宽度过大,应在 V_i 和 555 的 TR 端之间加一级微分电路。
- 7.8 题图 7.8 是 555 定时器构成的单稳态触发器及输入 $V_{\rm i}$ 的波形,已知: $V_{\rm cc}$ = 10 V,R = 33 kΩ,C = 0.1 μF,求:
 - (1) 输出电压 V_0 的脉冲宽度 T_{w} ;
 - (2) 对应 V_i 画出 V_c 、 V_o 的波形,并标明波形幅度。

题图 7.8

解: (1)
$$T_W = 1.1RC$$

= $1.1 \times 33 \times 10^3 \times 0.1 \times 10^{-6}$
= 3.63 ms

(2) 波形如图

- 7.9 用 555 定时器设计一个单稳态触发器,要求输出脉冲宽度在 $1\sim10~{\rm s}$ 范围内连续可调(取定时电容 $C=8~{\rm \mu F}$)。
 - 解:设计后的电路如解题图 7.9.

$$T_{\rm W}$$
=1 s $\rm HJ$, $T_{\rm W}$ =1.1RC=1.1R \times 20 \times 10⁻⁶=1 s R=1/(1.1 \times 8 \times 10⁻⁶) = 113.6 kΩ $T_{\rm W}$ =10 s $\rm HJ$, $T_{\rm W}$ =1.1 \times R'C=1.1 \times R' \times 8 \times 10⁻⁶=10 s R'=1136 kΩ

所以,555 构成的单稳态触发器可用可变电阻为定时电阻。可变电阻阻值范围为 113.6 k Ω ~ 1136 k Ω , 即在达到脉冲宽度 1~10 秒范围内连续可调。

解题图 7.9

7.10 用 555 定时器设计一个输入 V_i 和输出 V_o 对应波形如题图 7.10 所示的电路(设定时电阻R=500 Ω).

解:根据题图 7.10 所示波形可知:

 $T_{\rm W}$ =0.5 s=1.1×500C $C=0.5/1.1\times500=909~\mu F$ 所设计电路如解题图 7.10 所示.

7.11 题图 7.11 是用 555 定时器组成的开机延时电路,若 R=90 kΩ,C=20 μF, $V_{\infty}=6$ V,试计算 常闭开关K断开后经过多长的延迟时间,输出端Q才由低电平到高电平跳变,实现开机。

解:波形如下图所示。

K 断开前, $V_c = 0$, $V_6 = V_2 = V_{cc} > 2/3 V_{cc}$; K 断开后, $V_{cc} \rightarrow C \rightarrow R \rightarrow$ 地 充电.

 $V_{\rm c}$ 由 0 V 指数上升, $V_{\rm R}$ 由 $V_{\rm cc}$ 指数下降.

当 $V_c \ge 2V_{cc}/3$, $V_R \le 1V_{cc}/3$ 时,Q 由 0 \to 1, $V_R = V_6 = V_2$, 开关 K 断开到实现开机的时间 T_W 由

下式求出:

$$T_W = RC \ln \frac{V_R(\infty) - V_R(0^+)}{V_R(\infty) - V_R(T_W)} = 90 \times 10^3 \times 20 \times 10^{-6} \ln \frac{0 - V_{cc}}{0 - \frac{1}{3} V_{cc}} = 730 \text{ ms}$$

7.12 利用74121 设计脉冲电路,要求输入、输出波形的对应关系如题图7.12 所示,画出所设计的电路,计算器件参数。设 $C_1 = 5000 \text{ pF}$, $C_2 = 2000 \text{ pF}$ 。

题图 7.12

解: 画出 Q_1,Q_2 波形如解题图 7.12 (a)。 器件值计算如下:

$$T_{W1}$$
 =50 μs =0.7R₁C₁, 取 C₁=5000 pF,

$$R_1 = \frac{50 \times 10^{-6}}{0.7 \times 5000 \times 10^{-9}} = 14.28 \times 10^3 \ \Omega$$

$$T_{\text{W2}} = 3 \text{ } \mu\text{s} = 0.7\text{R}_2\text{C}_2, \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{C}_2 = 2000 \text{ } \text{pF},$$

$$R_2 = \frac{3 \times 10^{-6}}{0.7 \times 2000 \times 10^{-9}} = 2.14 \times 10^3 \ \Omega$$

所设计的电路图如解题图 7.12 (b)。

7.13 电路及输入波形 V_i 如题图 7.13 所示,对应 V_i 画出 Q_1 、 Q_2 波形,并计算 T_w 。

题图 7.13

解: Q_1,Q_2 的波形幅度: 高电平 3.6 V, 低电平 0.1 V Q_1 负脉冲宽度< 5 ms, 周期 T_1 =70 ms Q_2 正脉冲宽度 T_W = 44 ms ,周期 T_2 = 70 ms 波形如解题图 7.13

解题图 7.13

- 7.14 若需要使用振荡周期为 5 s,占空比为 $\frac{3}{4}$ 的 *CLK* 脉冲,试用 555 定时器设计满足需要的多谐振荡器。
- 解: 所设计的电路如解题图 7.14 所示,设定电容 C=10 μ F,须确定定时电阻 R_1 、 R_2 的值,

解题图 7.14

- 7.15 用 555 定时器设计一脉冲电路,该电路振荡 0.2 s 停 0.1 s,如此循环下去,电路输出脉冲的振荡周期 T=8 ms,占空比 $q=\frac{1}{2}$,两级电容均取 C=1 μ F,画出电路并计算电路各元件参数。
- 解: 根据题意,须设计一个 T=0.3 s、每振荡 0.2 s 停 0.1 s 的多谐振荡器,用 555 定时器的 R_D 来控

制不振荡, Q₁ 高电平为 0.2 s, 低电平 0.1 s, 周期 T=0.3 s, 占空比 q=0.2/0.3=2/3

代入周期公式: $T_1=0.7(R_1+2R_2)C=0.7\times 3R_1\times 1\times 10^{-6}$ s =0. 3 s

 \therefore R₁ = R₂ = 143 k Ω

第(II)级. $: T_2 = 8 \text{ ms}, C_2 = 1 \mu\text{F}$,占空比 $q_2 = R_3 / (R_3 + R_4) = 1/2$ $: R_3 = R_4$

∴(Ⅱ)级可用占空比可调的多谐振荡器, 带入周期公式

 $T_2=0.7(R_3+R_4)C_2=0.7\times 2R_3C_2$

8 ms= $0.7 \times 2R_3 \times 1 \times 10^{-6}$

 \therefore R₃=R₄=5.7 k Ω

根据以上设计, 画出的电路如解题图 7.15.

解题图 7.15

7.16 555 定时器组成的占空比可调的多谐振荡器如题图 7.16 所示,电位器 R '滑动触点位于中心点时, $R_1 = R_2 = 500 \Omega$,求此时振荡输出波形的频率 f 以及占空比 q; 当电位器 R ' = 400 Ω 的滑动触点从上滑到下时,占空比 q 的变化范围是多少?

题图 7.16

解: R'触点位于中央时, $R_1=R_2=500 \Omega$ $T=0.7(R_1+R_2)C=0.7\times10^3\times10^{-5}=0.7\times10^{-2}=7 \text{ ms}$ f=1/T=143 Hz, $q=R_1/(R_1+R_2)=1/2$ 在 R'触点在上时:

 $R_1 = 300 \Omega$, $R_2 = 700 \Omega$

 $q_1 = R_1/(R_1+R_2) = 300/1000 = 0.3$

R'触点在下时:

 $R_1 = 700 \Omega$, $R_2 = 300 \Omega$

 $q_2 = R_1/(R_1+R_2) = 700/1000 = 0.7$

所以, 占空比的变化范围在 0.3~0.7

7.17 简述题图 7.17 所示电路的工作原理。若要求扬声器 TH 在开关 K 瞬间按下后以 f=0.2 kHz 的频率响 3 s,试计算图中 R_1 、 R_2 的值。

题图 7.17

解: 555(I)是单稳态触发器, 555(II)是多谐振荡器.

Q₁=1 时, (II)片 R_D(4 脚)为高电平, (II)振荡, TN响;

Q₁=0 时, (II)片停振, TN 不响.

开关 K 断开时, (I) 片 2 脚为高电平 V_{cc} , K 按下后, 2 脚由 $V_{cc} \rightarrow 0$, 即由 $1\rightarrow 0$. 此下降沿触发(I)片, Q_1 由 $0\rightarrow 1$, (II)片起振, TN 发声, 经过时间 $T_W=1.1R_1C_1=10$ s 后, Q_1 由 $1\rightarrow 0$, (II)片停振.

(I): $T_W = 1.1R_1C_1$,

 $3=1.1R_1\times20\times10^{-6}$ $R_1=136 \text{ k}\Omega$

(II): f = 0.2 kHz, T = 1/f = 1/0.2 kHz = 0.005 s

T=0.7(R₂+2R₃)C; 0.005=0.7(R₂+2×2.5×10³) ×0.22×10⁻⁶; R₂= 27.5 kΩ

7.18 已知 555 定时器的 6 脚和 2 脚连在一起作为输入端 A, 4 脚作为输入端 B, 3 脚为输出端 F, 如题 图 7.18 (a)所示. A 和 B 输入波形如题图 7.18 (b)所示, 对应画出输出端 F 的波形.

解: 电路为施密特触发器。F的波形如解题图 7.18.

解题图 7.18

7.19 说明书中图 7.31 所示多谐振荡器电路的振荡频率 f 与哪些参量有关?

(图 7.31)

解: 电路的振荡频率 f 与电阻 R_{F1} 、 R_{F2} 和电容 C_1 、 C_2 的值及非门的相关参数(如 R_1 、 V_{OH} 、 V_{IK} 、 V_{TH}等)有关。

7.20 说明石英晶体振荡器电路的振荡频率 f 与哪些参量有关? 电路的特点是什么?

解:石英晶体多谐振荡器的振荡频率取决于石英晶体的固有谐振频率 fo,而与外接电阻、电容无关。 石英晶体的谐振频率由石英晶体的结晶方向和外形尺寸所决定。 电路的特点是频率稳定性好。其频率稳定度($\Delta f_0/f_0$)可达 $10^{-11}\sim10^{-10}$ 。

7.21 题图 7.21 示出了由施密特触发器组成的占空比可调的振荡器。已知: R_1 = 10 k Ω , R_2 = 6 k Ω , $C=10~{\rm pF},~V_{\rm T+}=6~{\rm V},~V_{\rm T-}=3~{\rm V},~$ 画出 $V_{\rm c}$ 和 Q 的对应波形,并计算振荡周期 T。

解: $T_1 = 0.7R_1C = 0.7 \times 10 \times 10^3 \times 10 \times 10^{-6} = 0.07 \text{ s} = 70 \text{ ms}$ 解题图 7.21 $T_2=0.7R_2C=0.7\times6\times10^3\times10\times10^{-6}=0.042 \text{ s}=42 \text{ ms}$ $T=T_1+T_2=70 \text{ ms} + 42 \text{ ms} = 112 \text{ ms}$ 波形如解题图 7.21 所示

- 7.22 555 定时器和 74LS14 组成题图 7.22 所示电路。已知 74LS14 的 V_{T+} = 1.7 V, V_{T-} = 0.9 V, V_{OH} = 3.6 V, V_{OL} = 0.3 V。电路元件参数为 R_1 = R_2 = 10 k Ω , C_1 = C_2 = 0.2 μ F, V_R = 3.6 V。
 - (1) 74LS14 和 R_1 、 C_1 组成何种功能电路? 并求其电路主要参数。
 - (2) 555 定时器组成何种功能电路? 并求其电路主要参数。
 - (3) 说明电路中 V_R 和 R_d 、 C_d 的作用。

题图 7.22

- 解: (1) 多谐振荡器, T=2.39 ms, q=29.3%;
 - (2) 555 定时器组成单稳态触发器, $T_{\rm w}$ = 2.2 ms;
 - (3) V_R 保证 \overline{TR} 稳态时为高电平, R_d , C_d 的作用 V_{o1} 宽脉冲变为窄脉冲(微分电路)。