Leander Tentrup

Reactive Systems Group Saarland University

September 21, 2013

A Compositional Proof Rule for Coordination Logic Highlights 2013, Paris

joint work with Bernd Finkbeiner

What is Coordination Logic?

Logic of the Distributed Synthesis Problem

What is Coordination Logic?

Logic of the Distributed Synthesis Problem

What is Coordination Logic?

Logic of the Distributed Synthesis Problem

Syntax

$$\begin{array}{c|c} X \mid \neg X \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \bigcirc \varphi \mid \varphi \mathcal{U} \varphi \mid \varphi \overline{\mathcal{U}} \varphi \\ X \in \begin{array}{c} \mathcal{C} \\ \end{array} \cup \mathcal{S} \end{array}$$

Strategic Quantification

$$\exists \mathbf{C} \triangleright \mathbf{s}. \varphi \mid \forall \mathbf{C} \triangleright \mathbf{s}. \varphi$$
$$\mathbf{C} \subseteq \mathbf{C}, \mathbf{s} \in \mathcal{S}$$

Coordination variables

represent information given by the environment

(

Strategy variables

represent strategic choices made based on visible information

S

Syntax

Coordination variables

represent information given by the environment

 \mathcal{C}

Strategy variables

represent strategic choices made based on visible information

S

Syntax

Coordination variables

represent information given by the environment

 \mathcal{C}

Strategy variables

represent strategic choices made based on visible information

S

Decidability

- Distributed Synthesis is undecidable
- Coordination Logic is undecidable

Decidability

- Distributed Synthesis is undecidable
- ➤ Coordination Logic is undecidable
- \downarrow_{x} \downarrow_{y}

- Special cases are decidable
- Syntactic restricted fragment of CL

Decidability

- Distributed Synthesis is undecidable
- Coordination Logic is undecidable

- Special cases are decidable
- Syntactic restricted fragment of CL

- Many practical synthesis problems are not in the fragment
- ➤ **Goal:** Complete Proof Framework for CL

A Compositional Proof Rule

- CL formula $\Phi = \mathcal{H}(S)$. $\varphi = QC_1 \triangleright S_1 \dots QC_n \triangleright S_n$. φ in PNF
- Suitable cut-set $S_{cut} = \{s_1, \dots, s_k\} \subseteq S$

$$(R_{1}) \models \mathcal{H}(S_{cut}) \cdot \psi$$

$$(R_{2}) \models \mathcal{H}(S \setminus S_{cut}) \cdot \varphi'$$

$$(R_{3}) \models \mathcal{H}_{\forall}(S) \cdot \psi \wedge \varphi' \rightarrow \varphi$$

$$\models \Phi$$

A Compositional Proof Rule

- CL formula $\Phi = \mathcal{H}(S)$. $\varphi = QC_1 \triangleright S_1 \dots QC_n \triangleright S_n$. φ in PNF
- Suitable cut-set $S_{cut} = \{s_1, \dots, s_k\} \subseteq S$

A Compositional Proof Rule

- CL formula $\Phi = \mathcal{H}(S)$. $\varphi = QC_1 \triangleright S_1 \dots QC_n \triangleright S_n$. φ in PNF
- Suitable cut-set $S_{cut} = \{s_1, \dots, s_k\} \subseteq S$

Completeness

The proof rule is complete for formulas

- in the universal-hierarchical fragment of Coordination Logic, and
- in Prenex Normal Form (PNF)

$$\exists \{b,c\} \triangleright x_1. \, \forall \{a\} \triangleright y_1. \, \exists \{a,c\} \triangleright x_2. \, \exists \{a,d\} \triangleright x_3. \, \forall \{a,c\} \triangleright y_2. \, \varphi$$

Completeness

The proof rule is complete for formulas

- in the universal-hierarchical fragment of Coordination Logic, and
- in Prenex Normal Form (PNF)

$$\exists \{b,c\} \triangleright x_1. \ \forall \{a\} \triangleright y_1. \ \exists \{a,c\} \triangleright x_2. \ \exists \{a,d\} \triangleright x_3. \ \forall \{a,c\} \triangleright y_2. \ \varphi$$
$$\{a\} \subseteq \{a,c\}$$

Completeness

The proof rule is complete for formulas

- in the universal-hierarchical fragment of Coordination Logic, and
- in Prenex Normal Form (PNF)

$$\exists \{b,c\} \triangleright x_1. \, \forall \{a\} \triangleright y_1. \, \exists \{a,c\} \triangleright x_2. \, \exists \{a,d\} \triangleright x_3. \, \forall \{a,c\} \triangleright y_2. \, \varphi$$
$$\{a\} \subseteq \{a,c\}, \{a\} \subseteq \{a,d\}$$

$$\varphi := \left(y = f(x) \right)$$

 $(\mathsf{operational}_{2,3} \to \square \, \varphi)$

 $\land \left(\mathsf{operational}_{\mathsf{1,3}} \to \square \, \varphi\right)$

 $\land \left(\mathsf{operational}_{1,2} \to \square \, \varphi\right)$


```
\square (y = majority vote)
```

$$\wedge \Box (p_1 = f(x))$$

$$\wedge \Box (p_2 = f(x))$$

$$\wedge \Box (p_3 = f(x))$$

$$\Box$$
 ($p_1 = f(x)$)

$$\square$$
 ($y = majority vote$)

$$\wedge \Box (p_2 = f(x))$$

$$\wedge \Box (p_3 = f(x))$$

$$\Box (p_2 = f(x))$$

$$\Box$$
 $(p_1 = f(x))$

$$\square$$
 ($y = majority vote$)

$$\wedge \Box (p_3 = f(x))$$

$$\begin{array}{c} x \\ \hline \\ x \\ \hline \\ \end{array}$$

$$\Box$$
 ($p_3 = f(x)$)

$$\Box$$
 ($p_2 = f(x)$)

$$\Box$$
 ($p_1 = f(x)$)

$$\square$$
 ($y = majority vote$)

Improvements

Improvements

Theorem

Every CL formula can be transformed into an equivalent CL formula with only prenex quantification.

 Unlike FOL and other logics, prenex normal form transformation is not trivial

$$\forall \{a,b\} \triangleright \mathsf{X}. \bigcirc \exists \{a\} \triangleright \mathsf{y}. \varphi$$

Theorem

Every CL formula can be transformed into an equivalent CL formula with only prenex quantification.

 Unlike FOL and other logics, prenex normal form transformation is not trivial

$$\forall \{a,b\} \triangleright \mathsf{X}. \bigcirc \exists \{a\} \triangleright \mathsf{y}. \varphi$$

Theorem

Every CL formula can be transformed into an equivalent CL formula with only prenex quantification.

 Unlike FOL and other logics, prenex normal form transformation is not trivial

Example $\forall \{a,b\} \triangleright x. \exists \{a,b\} \triangleright s_y. \bigcirc \exists \{a\} \triangleright y. \varphi$

Theorem

Every CL formula can be transformed into an equivalent CL formula with only prenex quantification.

 Unlike FOL and other logics, prenex normal form transformation is not trivial

Example $\forall \{a, b\} \triangleright x. \exists \{a, b, b'\} \triangleright s_y. \exists \{a, b'\} \triangleright y. \varphi'$

Conclusion and Future Work

- A complete proof system for CL formulas with hierarchical universal quantification
- This includes all distributed synthesis problems with Pnueli/Rosner architectures
- Open Problem: complete proof system for non-hierarchical universal quantification?