

Technical Approach. How to Improve Sintering

Spray-coat: To uniformly distribute sintering additives

Fig. 1

Eliminate porosity by decreasing activation energy for diffusion-

Improved sintering → low porosity, high strength, high optical transmission

AC 84,352

Fig. 2

Achievements Optical Transmission

Fig. 4

Fig. 3

Sintered Spinel

- Traditional mechanical mixing of LiF gives poor transmission
- Spray coating LiF on spinel gives highest transparency

Status of Ceramic Materials for Transparent Armor

Ceramic Materials Development:

- Polycarbonate/glass laminates
- Aluminum oxide (Al_2O_3) ✓
- Aluminum oxynitride ($\text{Al}_{23}\text{O}_{27}\text{N}_5$) ✓
- Magnesium Spinel (MgAl_2O_4) ✓

Fig. 5

	AlON	Mg-Spinel	Glass
Density (g/cm^3)	3.67	3.58	2.51
Elastic Modulus (GPa)	3.15	277	82
Flexure Strength (MPa)	22	241	70
Fracture toughness (MPa m ^{1/2})	2.1	1.7	1
Hardness (Kg/cm ²)	1380	1210	610
Transmission range (μm)	0.3-5	0.3-5.5	0.3-4.5

Ceramic/laminate armors are excellent candidates for
Type III and beyond → ISSUES