Домашнее задание по алгебре

Родигина Анастасия, 167 группа 10 апреля 2017

Задача 1

Найдите все левые смежные классы и все правые смежные классы группы A_4 по подгруппе $H=<\sigma>$, где= $\sigma=\begin{pmatrix}1&2&3&4\\2&1&4&3\end{pmatrix}$. Является ли подгруппа H нормальной в группе A_4 ?

Замитим, что в H находится всего два элемента: σ и Id, так как $\sigma \cdot \sigma = Id$ Выпишем все левые смежные классы, используя перебор (повторяющиеся классы не будем выписывать с целью экономии времени и пространства)

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

Теперь выпишем еще и все правые смежные классы, используя перебор (повторяющиеся классы снова не будем выписывать с целью экономии времени и пространства)

H не является нормальной подгруппой, так как, например, в множестве правых смежных классов нет 3-го левого смежного класса.

Задача 2

 Π усть $SL_2(\mathbb{Z})$ группа всех целочисленных (2×2) - матриц с определителем 1.

Докажите, что множество

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid a \equiv d \equiv 1 \pmod{3}; b \equiv c \equiv 0 \pmod{3} \right\}$$

является нормальной подгруппой в $SL_2(\mathbb{Z})$

Возьмем произвольную матрицу (2×2) с определителем 1 и запишем в виде: A = $\begin{pmatrix} x & y \\ z & u \end{pmatrix} \mid xu - yz = 1$ Найдем ее обратную матрицу:

$$A^{-1} = \begin{pmatrix} x & y \\ z & u \end{pmatrix}^{-1} = \frac{1}{\det A} \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = 1 \times \begin{pmatrix} u & -y \\ -z & x \end{pmatrix} = \begin{pmatrix} u & -y \\ -z & x \end{pmatrix}$$

Проанализируем произвольную матрицу вида AhA^{-1} , $h \in H$:

$$\begin{pmatrix} x & y \\ z & u \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u & -y \\ -z & x \end{pmatrix} = \begin{pmatrix} ax + cy & bx + dy \\ cu + az & du + bz \end{pmatrix} \begin{pmatrix} u & -y \\ -z & x \end{pmatrix} =$$

$$= \begin{pmatrix} aux + cuy - bxz - dyz & bx^2 - cy^2 - axy + dxy \\ cu^2 - bz^2 + auz - duz & dux - cuy + bxz - ayz \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$a_{11} \equiv aux + cuy - bxz - dyz \equiv aux - dyz \equiv 1 \cdot ux - 1 \cdot yz \equiv 1 \pmod{3}$$

$$a_{12} \equiv bx^2 - cy^2 - axy + dxy \equiv -axy + dxy \equiv (d - a)xy \equiv 0 \pmod{3}$$

$$a_{21} \equiv cu^2 - bz^2 + auz - duz \equiv auz - duz \equiv (a - d)uz \equiv 0 \pmod{3}$$

$$a_{22} \equiv dux - cuy + bxz - ayz \equiv dux - ayz \equiv 1 \cdot ux - 1 \cdot yz \equiv 1 \pmod{3}$$

Отсюда получаем, что $AHA^{-1} = H$. Т.е. H является нормальной подгруппой.

Задача 3

Hайdите все гомомор ϕ измы из группы \mathbb{Z}_{12} в группу \mathbb{Z}_{16}

 $\phi: G \to F$ - произвольный гомоморфизм Воспользуемся следующими утверждениями:

- 1) $\forall g \in G \quad \phi(g^n) = \phi(g)^n$ следует из определения гомоморфизма
- 2) $\forall g \in G \ ord\phi(g) \mid ord(g)$ 3) $ord(g^k) = \frac{ord(g)}{gcd(k,n)}$, для $\{\mathbb{Z}_n, +\}$ -доказывалось на семинаре

Возьмем произвольный гомоморфизм $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_{16}$ Возьмем за x порождающий элемент в \mathbb{Z}_{12} , а за y его образ в \mathbb{Z}_{16} . $\phi(x) = y, \phi(k) = \phi(kx) = k\phi(x) = ky$. Для того, чтобы найти все гомоморфизмы, достаточно найти образы порождающего элемента. Заметим, что ord(x) = 12, а $ord(\phi(x)) \mid 12$ Покажем, что данное условие является достаточным. $t, s \in \mathbb{Z}, \quad t = s \ n \mid (t - s) \Rightarrow (t - s)y = 0 \Rightarrow \phi(s) = \phi(t)$ Покажем, что данное отображение - гомоморфизм.

$$\phi(s+t) = (s+t)y = sy + ty = \phi(s) + \phi(t)$$

Из написанного ранее: $ord(y)=\frac{16}{gcd(y,16)}\mid 12$. Тогда ordy будет принимать следующие значения: $\{1, 2, 3, 4, 6, 12\}$. Еще воспользуемся фактом, что $\frac{16}{acd(u, 16)}$ | 16. Тогда $gcd(y, 16) = \{4, 8, 16\}$. Отсюда получаем, что: $gcd(y, 16) = 4, y = \{4, 12\}.$

$$gcd(y, 16) = 8, y = 8.$$

 $gcd(y, 16) = 16, y = 0.$

Выпишем явные формулы для полученных гомоморфизмов:

$$f(x) = 0$$
$$f(x) = 4x$$
$$f(x) = 8x$$
$$f(x) = 12x$$

Задача 4

Перечислите все с точностью до изоморфизма группы, каждая из которых изоморфна любой своей неединичной подгруппе.

Рассмотрим два варианта 1) $|G| < \infty$ Из того, что изоморфизм подразумевает биекцию, получаем, что мощности произвольной подгруппы и самой группы должны совпадать, а, значит, подгруппа может быть только одна. Из этого следует что сама группа является своей собственной циклической подгруппой. Из предложения, доказанного на лекции $G \simeq \{\mathbb{Z}_n, +\}$. Подберем такие n, которые будут обеспечивать выполнимость данных условий. Заметим, что n должно быть простым (или равным 1), иначе $|< g^l> |< n$, где l - какой-то делитель n (что нарушает возможность проведения биекции). 2) $|G| = \infty$ Тогда в ней не должно быть конечных циклических подгрупп, иначе нельзя будет построить биекцию. Тогда любая циклическая подгруппа должна быть бесконечной. Воспользуемся (снова) предложением, доказанным на лекции: $H \simeq \{\mathbb{Z}, +\}$. Отсюда и $G \simeq \{\mathbb{Z}, +\}$. Данная группа нам действительно подходит, так как она изоморфна всем своим неединичным подгруппам.