

# Apresentação

SSC0103

**Prof Delamaro** 



## Objetivo

 Introduzir os conceitos de programação orientada a objetos e metodologia de desenvolvimento de software segundo esse paradigma.



#### Conteúdo

- Encapsulamento e ocultação de informação
- Separação de comportamento e implementação.
- Classes e subclasses.
- Herança.
- Polimorfismo.
- Hierarquias de classes.
- Classes de coleções e métodos de iteração



#### Conteúdo

- Teste automatizado
- GUI
- Threads
- Sockets
- Banco de dados
- etc



# Metodologia

Aulas teóricas e resolução de exercícios

JAVA, Python

- Material será disponibilizado de forma assíncrona
- Aulas presenciais

Slides, vídeos, exercícios, código



# Metodologia

Aulas teóricas e resolução de exercícios

JAVA, Python

- Material será disponibilizado de forma assíncrona
- Aulas presenciais

Slides, vídeos, exercícios, código



## Metodologia

- As aulas com o conteúdo de Java, gravadas em vídeo, serão disponibilizadas para que os alunos estudem
- As aulas de segunda-feira servirão para que os estudantes tirem dúvidas sobre o conteúdo e para exercícios
- Nas aulas de quinta-feira serão apresentados os conteúdos utilizando a linguagem Python



## Avaliação

- Em algumas aulas serão entregues exercícios para nota
- A média dos exercícios (ME) corresponde a 50% da nota final
- Um projeto final (PF) deve ser entregue no fim do semestre
- Corresponde a 50% da nota final
- Nota final é a média entre ME e PF
- Se ME < 5 ou PF < 5 NF = min(ME,PF)</li>
- REC início de agosto



# Avaliação

 Qualquer semelhança entre trabalhos ou projetos dos alunos será considerada plágio

Todos os envolvidos terão nota zero

 Identidades de todos envolvidos serão levadas às comissões responsáveis para punição.



## Presença

 Nas aulas presenciais será feito controle de presença por meio de lista que os alunos devem assinar.



#### **Datas**

Aulas semanais

• Início em 14 de março

Até fim de julho

Conferir calendário da graduação



# Bibliografia

https://www.caelum.com.br/apostilas

Vários outros



#### Material e contato

Moodle (edisciplinas)

delamaro@icmc.usp.br

- Sebastião Henrique (sebastiaohns@usp.br)
- Lucas Dallilo (lucasdallilo@usp.br)



## Projeto final

- Esse trabalho deve ser realizado em grupo de quatro alunos. O objetivo é que os alunos demonstrem, por meio de um trabalho prático, as habilidades aprendidas durante o curso.
- O tema do projeto será proposto pela professor e pelos estagiários PAE.
- Além do código-fonte, o grupo deve entregar uma especificação do que o software deve fazer, e uma documentação sobre como o programa funciona e como foi implementado.



## Projeto final - cronograma

- Até final de maio as equipes devem estar formadas
- 1 julho: cada equipe entrega a especificação do projeto que vai implementar
- 20 de julho: entrega do projeto final



## Projeto final - Avaliação

- A nota será dada em função da criatividade, da complexidade do sistema implementado, da usabilidade e da qualidade do produto final.
- A nota final não será atribuída igualmente para os participantes do grupo. Junto com a entrega final o grupo deve informar o quanto cada membro contribuiu com o projeto. Por exemplo:
- Aluno 1 50%
- Aluno 2 30%
- Aluno 3 10%
- Aluno 4 10%



## Projeto final - Avaliação

- A nota será dada em função da criatividade, da complexidade do sistema implementado, da usabilidade e da qualidade do produto final.
- A nota final não será atribuída igualmente para os participantes do grupo. Junto com a entrega final o grupo deve informar o quanto cada membro contribuiu com o projeto. Por exemplo:
- Aluno 1 50%
- Aluno 2 30%
- Aluno 3 10%
- Aluno 4 10%

Nota 4.0 \* 4 = 16

Aluno 1: 8.0 arredondado para 4

Aluno 2: 4.8 arredondado para 4

Aluno 3 e 4: 1.6

