Erlang/JavaScript example \$\(\sigma_1 \) (most likely prob that uses)s day 2) $p(E|X = \mathsf{JavaScript})$ $p(E|X = \mathsf{Erlang})$ happy happy 3/4angry angry JS 1/2Start

ICS Summer Academy Session II Topic 8: Clustering

Michael Shindler

Clustering

Setup Given $\mathcal{D} = \{x_n\}_{n=1}^N$ and K, we want to output

- $\blacktriangleright \{\mu_k\}_{k=1}^K$: prototypes of clusters
- $ightharpoonup A(x_n) \in \{1, 2, \dots, K\}$: the cluster membership

Example Cluster data into two clusters.

Why Clustering?

- Biology
- ► Information Retrieval
- Psychology and Medicine
- Business
- Compression
- ► Nearest Neighbors

Application: who wrote which Federalist papers?

- ► Federalist Papers: essays written anonymously
- True authors a subject of much speculation
- ▶ 1963: Frederick Mosteller and David L. Wallace: Inference in an Authorship Problem
- ▶ 2018: a student applies modern statistical methods (k-means and TFIDF)
- Used three features:
 - lexical similarity in sentence structure
 - lexical similarity in punctuation
 - syntactic similarity.
- ▶ Two clusters, removing the papers of John Jay.
- Prediction similar to Mosteller and Wallace

Problem: k-means clustering

Select K Vectors \mathcal{M} Intuition Data points assigned to cluster k should be close to μ_k

Distortion measure (clustering objective function, cost function)

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\boldsymbol{x}_n - \boldsymbol{\mu}_k\|_2^2$$

where $r_{nk} \in \{0,1\}$ is an indicator variable

Alternate Distortions: Total Cohesion

$$\sum_{k=1}^K \sum_{oldsymbol{x} \in C_k} \mathsf{cosine}(oldsymbol{x}, oldsymbol{c}_k)$$

Basic k-means Algorithm (Lloyd's)

measure
$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\boldsymbol{x}_n - \boldsymbol{\mu}_k\|_2^2 \qquad \overrightarrow{J} : \quad \text{(if point i)}$$

Step 0 Initialize $\{\mu_k\}$ to some values

▶ **Step 1** Optimize $\{r_{nk}\}$ values, keeping $\{\mu_k\}$ fixed.

I.e., assign all points to nearest ▶ **Step 2** Optimize $\{\mu_k\}$ values, keeping $\{r_{nk}\}$ fixed. move each Mk to center of moss of assigned points: Juk = sum vers Writer

Example of running K-means algorithm

Question 3

11

What do you suppose the "natural" cluster count for this data is?