Titanic Survivors

Jens Kobler

February 3, 2025

Contents

1	Main Objective of Analysis Description of Dataset Data Cleaning and Feature Engineering					
2						
3						
4	Variation of Classifier models					
	4.1 Logistic Regression					
	4.2 K Nearest Neighbors					
	4.3 Support Vector Machines					
	4.4 Decision Trees					
	4.5 Final Results					
5	Flaws in model and Revisiting Analysis					

1 Main Objective of Analysis

The main objective of this analysis is to find the best machine learning model for the competition "Titanic - Machine Learning from Disaster" for the stakeholders using only standard models (no hyperparameter optimization). It is assumed that the best model is the model with the highest F1-Score, since this metric balances the precision and recall.

2 Description of Dataset

- Name of dataset: Titanic Machine Learning from Disaster
- Link to dataset: https://www.kaggle.com/competitions/titanic/data

Target column

• Survived (1 = True, 0 = False)

Feature columns:

- Pclass
- Name
- Sex (male and female)
- Age
- \bullet SibSp
- ParCh
- Ticket
- Fare
- Cabin
- Embarked

3 Data Cleaning and Feature Engineering

Data Cleaning

- 1. NaN age numbers to mean of age
- 2. delete Cabin column
- 3. delete Name column
- 4. delete PassengerId column
- 5. delete Ticket column

Feature Engineering

- 1. Embarked column to C, Q, S columns
- 2. Sex column to female, male columns
- 3. convert bool values (True, False) to int values (1,0)
- 4. re-scale features between 0 and 1 using the **Min-Max-Scaler** from *sklearn.preprocessing*, namely *MinMaxScalar*.
- 5. a stratified train-test split is done with test_size = 0.2

4 Variation of Classifier models

4.1 Logistic Regression

The standard logistic regression algorithm from the sklearn.linear_model library was used with solver *liblinear*, namely *LogisticRegression*.

4.2 K Nearest Neighbors

The standard k nearest neighbors algorithm from the sklearn.neighbors library was used with number of neighbors 10, namely *KNeighborsClassifier*.

Figure 1: Result of classification for knn

4.3 Support Vector Machines

The standard support vector machines algorithm from the sklearn.svm library was used, namely SVM

4.4 Decision Trees

The standard decision tree algorithm from the sklearn.tree library was used, namely *Decision-Tree Classifier* (DTC).

Figure 2: Result of classification for standard Decision Tree Classifier

Optimizing the DTC

The DTC is optimized via GridSearchCV.

4.5 Final Results

	Accuracy	Precision	Recall	Specificity	F1-Score
LR-standard	0.799	0.762	0.696	0.864	0.727
KNN-10-standard	0.788	0.782	0.623	0.891	0.694
SVM-standard	0.81	0.857	0.609	0.936	0.712
DTC-standard	0.749	0.671	0.681	0.791	0.676
DTC-optimized	0.805	0.804	0.652	0.9	0.72

The logistic regression model achieves the highest F1-Score.

5 Flaws in model and Revisiting Analysis

- You could include the following columns:
 - Name
 - Cabin
 - PassengerId
 - Ticket

- \bullet instead of using the mean of the age as replacement of the NaN values in the age column, you could use another approach
- improve models by hyperparameter optimization
 - SVM with regularization
 - for LR use other penalty term
- use Voting (Ensemble methods)
- you could start interpretation