## Exercícios de Confiabilidade

Estudante: Eduardo Eiji Goto, Gustavo Hammerschmidt, João Vitor Andrioli de Souza.

1) Um complexo míssil tem quatro subsistemas: O subsistema de radar, o míssil, os dispositivos de controle computacionais, e os operadores humanos. O complexo dispõe de um único míssil. O sistema de radar tem quatro radares, dos quais são necessários três para o bom funcionamento do sistema. Há três computadores, dos quais basta que um esteja funcionando para o bom funcionamento do sistema. Existem dois operadores humanos, um dos quais deve ser capaz de disparar o míssil. Escreva a função de estrutura para este sistema composto por 10 componentes.

Temos 4 subsistemas: míssil, radar, computacional e operação.

Representar cada componente por uma variável binária  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$ ,  $x_5$ ,  $x_6$ ,  $x_7$ ,  $x_8$ ,  $x_9$ ,  $x_{10}$ Vetor estado  $\mathbf{x} = [x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}]$ 

Representar cada subsistema por uma função estrutura: míssil  $(\varphi_1)$ , sistema de radares  $(\varphi_2)$ , sistema computacional  $(\varphi_3)$ , sistema de operação  $(\varphi_4)$ 

```
\varphi_1([x_1]) = \text{retorna } x1

\varphi_2([x_2, x_3, x_4, x_5]) = \text{se } (x^2 + x^3 + x^4 + x^5) = 3) \text{ retorna } 1 \text{ senão retorna } 0

\varphi_3([x_6, x_7, x_8]) = \text{se } (x^6 + x^7 + x^8) = 1) \text{ retorna } 1 \text{ senão retorna } 0

\varphi_4([x_9, x_{10}]) = \text{retorna } 1 - ((1-x^9) * (1-x^10))
```

Todos os sistemas devem funcionar para lançar o míssil (série)

$$\phi(\mathbf{x}): \varphi_1 * \varphi_2 * \varphi_3 * \varphi_4$$

2) Seja um sistema com 5 componentes que funciona somente se seus componentes 1 e 2 funcionam juntamente com pelo menos 1 dos demais componentes. Se a disponibilidade dos componentes for  $A_1 = 0.9$ ,  $A_2 = 0.8$ ,  $A_3 = 0.85$ ,  $A_4 = 0.80$ ,  $A_5 = 0.9$ , calcular disponibilidade do sistema.



Disponibilidade dos componentes em paralelo:

$$1 - ((1 - 0.85) * (1 - 0.80) * (1 - 0.9))$$

Disponibilidade do sistema 0.9 \* 0.8 \* (1 - ((1 - 0.85) \* (1 - 0.80) \* (1 - 0.9)))