

Scalable Data Science

Lecture 15b: Modified QB + Linear Regression

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

QB decomposition

Can we find orthogonal $Q \in \Re^{n \times (k+p)}$ and B such that

$$|A - QB|_F \approx |A - A_k|_F$$
 and/or $|A - QB|_F \approx |A - A_k|_2$

Also want
$$k + p = O(k)$$

QB: prototype algorithm

Find $\Omega \in \Re^{d \times (k+p)}$ a random matrix

$$Y = A \Omega$$

Find Q = orthogonal basis for col(Y)

Return $(Q, Q^t A)$

Modified Algorithm

In reality, the bound $|A-QB|_F$ depends on the singular values $\{\sigma_{k+1},\ldots,\}$

Bound improves if $\sum_{i \le k} \sigma_i^2 \gg \sum_{i > k} \sigma_i^2$

Power scheme

In reality, the bound $|A-QB|_F$ depends on the singular values $\{\sigma_{k+1},\ldots,\}$

Bound improves if $\sum_{i \le k} \sigma_i^2 \gg \sum_{i > k} \sigma_i^2$

To achieve this, we use $(AA^t)^P A = U \Sigma^{2P+1} V^t$

Modified Algorithm [HMK10]

```
function [\mathbf{Q}, \mathbf{B}] = \text{randQB}_{\mathbf{p}}(\mathbf{A}, \ell, P)
\mathbf{\Omega} = \text{randn}(n, \ell).
\mathbf{Q} = \operatorname{orth}(\mathbf{A}\mathbf{\Omega}).
for j = 1 : P
        \mathbf{Q} = \operatorname{orth}(\mathbf{A}^*\mathbf{Q}).
         \mathbf{Q} = \operatorname{orth}(\mathbf{AQ}).
end for
B = Q^*A
```

Total runtime =
$$O(nd\ell + n\ell^2)$$

$$\ell = k + p \approx k + 5$$

$$P = 1 \text{ or } 2 \text{ is sufficient}$$

Linear Regression

Finding the "best linear" relation that explains the target

Linear Regression

Overconstrained setting, $n \gg d$

 \rightarrow there is no x that satisfies Ax = b

Want to find "best" x such that $Ax \approx b$

Statistical interpretation: Find the best "unbiased estimator"

Geometric interpretation: orthogonal projection of b onto span(A)

Solving Linear Regression

Cholesky decomposition:

- find out upper triangular R such that $R^tR = A^tA$
- solve normal equations $R^t R x = A^t b$

QR decomposition:

-
$$A = QR$$
. Solve $Rx = Q^t b$

SVD:

-
$$A = U\Sigma V^t$$
, solve $x = V\Sigma^{-1}U^tb$

Solving Linear Regression

Cholesky decomposition:

- find out upper triangular R such that $R^tR = A^tA$
- solve normal equations $R^t R x = A^t b$

Normal equations: $(A^tA)x = A^tb$

QR decomposition:

-
$$A = QR$$
. Solve $Rx = Q^tb$

Time taken = $O(nd^2)$

SVD:

-
$$A = U\Sigma V^t$$
, solve $x = V\Sigma^{-1}U^tb$

Prototype Randomized Algorithm

Input: $A \in \Re^{n \times d}$, $b \in \Re^d$

Create $\Omega \in \Re^{s \times n}$, random

Solve
$$\tilde{x} = \min_{\mathbf{x}} |\Omega A \mathbf{x} - \Omega b|_2$$

Prototype Randomized Algorithm

Input: $A \in \Re^{n \times d}$, $b \in \Re^d$

Create $\Omega \in \Re^{s \times n}$, random

Solve
$$\tilde{x} = \min_{\mathbf{x}} |\Omega A \mathbf{x} - \Omega b|_2$$

Tentative claim: $|A \tilde{x} - b| \le (1 + \epsilon)|Ax^* - b|$

Running time: If $\Omega \sim N(0,1)$, then $O(nd^2)$

Why would it work?

Geometrically, solution depends on projection of b on the span(A)

$$x = (A^t A)^{-1} A^t b = A^+ b$$

Similarly, the optimal solution for the sampled problem

$$\tilde{x} = (A^t \Omega^t \Omega A)^{-1} A^t \Omega^t \Omega b = (\Omega A)^+ S \Omega b$$

Guarantee

At its core, uses a matrix concentration type inequality to show that $|U(I-\Omega\Omega^t)U^t| \leq \epsilon \ , U = \text{left singular vectors of } A$

Holds for S satisfying the JL lemma with (ϵ, δ) . Not always more efficient.

Randomized Hadamard based projection

$$\Omega = PHD \in \Re^{s \times n}$$

 $H = n \times n$ Hadamard matrix

 $D = \text{diagonal random } \pm 1$

P = can be just a sampling matrix now, i.e.

For each $t \in [1, s]$

$$P_{t*} = e_i \cdot \sqrt{n/s}$$
 with prob $1/n$

Running time

To ensure
$$|A\tilde{x} - b| \le (1 + \epsilon)|Ax^* - b|$$
, need $s \ge Cd \log(d) / \epsilon$

Time for projection = $O(nd \log n + sn)$

Time to solve = $O(sd^2)$

Overall time =
$$O\left(nd\log n + \frac{d^3\log(n)}{\epsilon}\right)$$
, ignoring lower terms

Guarantees

1.
$$|A\tilde{x} - b| \leq (1 + \epsilon)|Ax^* - b|$$

2.
$$|\tilde{x} - x^*| \le \sqrt{\epsilon} \kappa \left(\frac{1}{\gamma^2} - 1\right)^{\frac{1}{2}} |x|$$

 $\kappa = \text{condition number of } A$

$$\gamma = \frac{|UU^tb|}{|b|} = \text{captures how much of } b \text{ is present in span(A)}$$

Extensions

- Can be extended using sparse JL so that theoretical runtime depends on sparsity
 - sorting out the stability issues is still an open question
- L2 regularized versions
 - Stated results work as it is, but we should be able to do better, recent results on sharper bounds
- BLENDENPIK: an implementation of randomized regression that beats decades old and optimized LAPACK routines for a thin rectangular matrices.

[Avron, Maymounkov, Toledo]

References:

- Primary reference
 - Lecture notes on Randomized Numerical Linear Algebra by Petros Drineas and Michael Mahoney, https://arxiv.org/abs/1712.08880

Thank You!!

