ptinization on Closed Bounded Donains
Extreme Value Thron: 75 f is cts on a closed, bounded set
SCR, then & has an absolute may & min on 5.
How to find?
Recall single unable are:
1) Find 10001 max/min 2) ovaluate 5 at ondots 0 & 1
For file, same thing.
1) crit pts.
2) evaluate & on the boundary
Ex/ Find the max/min of 5(I,y)=ay on the triangle
with vertices (0,0), (1,0), (0,1).
1) Crit pts include $ S_{x}=y, S_{y}=x $ $ \nabla S_{z}=(0,0) \Rightarrow (x,y)=(0,0). $
2) On the boundary.
a) y=0, xe [0,1] b) x=0, y= [0,1].
5(x,0)=0 $5(0,y)=0$
c) y=1-x, x ∈ [0,1]. S Find als mout/min
c) $y=1-x$, $x \in [0,1]$. Show the continuous continuous find also marked the continuous formulation of g on $[0,1]$.
1) crit pts. g'can=1-2x=0 when x=至
$g(\frac{1}{2})=\frac{1}{4}$ All together: The als mark is $\frac{1}{4}$ which occurs at $(\frac{1}{2},\frac{1}{2})$, & the 2) end pts. $g(0)=0=g(1)$ also min is 0, according along the coordinates.

Lagrange Multipliers
- used for optimizing a Sunction given a constraint
e.g. Find max/mm of $f(x,y)$ on the curve $g(x,y)=k$
Idea: draw level curves of 5 along with g(x,y)=k.
May of f is largest value of C s.t. the level
curve flagy)=c intersects g(x,y)=k.
Intersection happens at a single
Stary)=4 point. At this more the come of
At this point, the curves share
a common tongent.
=> The gradient vectors \$5,00
Stary=2 ove parallel.
$= The gradient vectors \nabla J, \nabla g = S(x,y)=2 \qquad \text{over parallel.} (6) \text{ hor are orthog. to level curves} $
Therefore, $\nabla f = 2 \nabla g$, where 2 is a const called the Lagrange multiplier.
The Lagrange multiplier.
2 egns + const egn = 3 egn, 3 unkrs. 20,4, t.
Summary: To find min/max of & on gla, y)=k,
find (a,b) that satisfy 1) of=289 & g(x,y)=k.
2) \qz(0,0) & g(x,y)=k
3) (a,b) is an and pt. of glossy)=k
Evaluate 5 at all such points & prok out the
largest/smaller.
Ex/Fill the max & min of f(x,y)=x2+2y2 on the
Ex./ Find the max & min of 56x, y)=x2+2y2 on the unit circle.