ELSEVIER

Contents lists available at SciVerse ScienceDirect

# Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb



# Alumina-supported $In_2O_3$ , $Ga_2O_3$ and $B_2O_3$ catalysts for lean $NO_x$ reduction with dimethyl ether

Sara Erkfeldt<sup>a,b,\*</sup>, Martin Petersson<sup>c</sup>, Anders Palmqvist<sup>a</sup>

- a Competence Centre for Catalysis, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
- <sup>b</sup> Volvo Technology Corporation, Chalmers Science Park, SE-412 88 Göteborg, Sweden
- <sup>c</sup> Volvo Powertrain Corporation, Dept. 91514, BC2, SE-405 08 Göteborg, Sweden

#### ARTICLE INFO

Article history: Received 21 October 2011 Received in revised form 23 January 2012 Accepted 28 January 2012 Available online 6 February 2012

Keywords: Hydrocarbon-SCR NO<sub>x</sub> reduction Alumina Alternative fuel Dimethyl ether Indium Gallium Boron

#### ABSTRACT

Alumina-supported  $In_2O_3$ ,  $Ga_2O_3$  and  $B_2O_3$  were investigated as catalysts for lean  $NO_x$  reduction with DME as reducing agent and compared to pure  $Al_2O_3$  and  $In_2O_3$ . The  $In_2O_3$ -promoted alumina catalysts showed the highest  $NO_x$  conversion at low temperatures, although with a narrow temperature window. Pure  $In_2O_3$ , on the other hand, was inactive for  $NO_x$  reduction with DME. The  $Ga_2O_3$ - and  $B_2O_3$ -promoted alumina catalysts gave the highest  $NO_x$  conversion at higher temperatures, showed a temperature window similar to pure alumina, but were less sensitive to  $H_2O$  inhibition. Possible reasons for these observations are discussed.

© 2012 Elsevier B.V. All rights reserved.

# Introduction

The concern for global warming and energy supply has induced a large increase in research activities and investments in production of alternative fuels. This is of particular importance in the transport sector where virtually all of the energy (95%) comes from oil based fuels [1]. For the diesel engine, dimethyl ether (DME) is a potent alternative fuel, with its high cetane number and virtually soot free combustion [2,3]. DME can be produced from fossil feedstock such as natural gas and coal as well as from biomass. If it is produced from biomass it offers a high potential for low  $\rm CO_2$  emissions combined with a high well-to-wheel energy efficiency [4,5].

Although the combustion of DME provides the possibility to reach very low  $NO_x$  emissions compared to diesel, afterteatment measures could be a cost effective alternative to reach the toughest emission legislation levels. As the DME engine operates under lean conditions the ordinary three-way catalyst is not suitable for  $NO_x$  reduction. The  $NO_x$  aftertreatment technologies that can be used under these conditions are the periodically operating lean  $NO_x$ 

trap (LNT) or the continuous selective catalytic reduction (SCR) by ammonia or hydrocarbons. The main drawbacks with the LNT are that it requires expensive noble metal catalysts and complicated engine control to achieve periodic enrichment of the exhaust in order to regenerate the trap. NH<sub>3</sub>-SCR on the other hand requires that an additional reductant, ammonia or urea, is carried onboard. Hydrocarbon-SCR or in this case DME-SCR, utilizing the vehicle fuel as reducing agent, would be a simpler alternative to implement. The catalysts used for this process are generally called lean NO<sub>x</sub> catalysts (LNC). Earlier studies have shown that conventional diesel LNCs such as Cu-ZSM-5 or Ag/Al<sub>2</sub>O<sub>3</sub> give very low NO<sub>x</sub> reduction with DME as reducing agent [6-8]. This study has been focused on investigating alternative catalysts more efficient at reducing NO<sub>x</sub> with DME. A limited amount of studies can be found in the literature on HC-SCR with DME as reductant [8-21]. The catalysts studied have been either pure Al<sub>2</sub>O<sub>3</sub>, Al<sub>2</sub>O<sub>3</sub>-supported noble metals (Ag) or transition- or post-transition metal oxides (V, Co, Mo, Ga, Sn), or ion-exchanged (H, Na, Ag, Pd) zeolites. Pure alumina showed considerable activity for DME-SCR at higher temperatures (above 300-350 °C) [8,12]. However, for the diesel engine application it is desirable to lower the temperature where the catalyst becomes active. A recent patent claimed that Al<sub>2</sub>O<sub>3</sub> promoted with indium oxide was active at lower temperatures than pure Al<sub>2</sub>O<sub>3</sub> with DME [22]. Similar behaviour has been demonstrated with propene and ethanol as reducing agents [23-26].

<sup>\*</sup> Corresponding author at: Volvo Technology Corporation, Chalmers Science Park, SE-412 88 Göteborg, Sweden. Tel.: +46 31 322 09 89; fax: +46 31 772 40 70. E-mail addresses: sara.erkfeldt@volvo.com, saraerk@chalmers.se (S. Erkfeldt).

The purpose of this study was to investigate and compare the DME-deNO<sub>x</sub> activity and characteristics of oxides of the group 13 elements of the periodic table. A series of catalysts consisting of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> promoted with In<sub>2</sub>O<sub>3</sub>, Ga<sub>2</sub>O<sub>3</sub>, or B<sub>2</sub>O<sub>3</sub> at different loadings was thus compared to pure  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> in the SCR reaction with DME. Earlier studies on alumina promoted with In<sub>2</sub>O<sub>3</sub>, Ga<sub>2</sub>O<sub>3</sub> or B<sub>2</sub>O<sub>3</sub>, found in the literature, were performed with a variety of reducing agents including alkanes, alkenes, and alcohols [23-39]. Only one of these studies included the use of DME as reductant; Miyahara et al. [27] investigated the SCR of NO with  $C_1-C_3$  reductants over Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts. They reported a maximum NO conversion of about 35% with DME, compared to 90-100% with alkanes or alkenes, under dry conditions. However, in contrast to alkanes and alkenes, the NO conversion with DME was almost unaffected by the addition of water. They explained this by the fact that the dissociative adsorption of DME was not inhibited by water. Similar behaviour in the presence of water has also been reported with alcohols in another study [30]. To our knowledge, the  $NO_x$  reduction with DME has not previously been reported as a comparative study between In<sub>2</sub>O<sub>3</sub>-, Ga<sub>2</sub>O<sub>3</sub>-, and B<sub>2</sub>O<sub>3</sub>-promoted Al<sub>2</sub>O<sub>3</sub> catalysts.

#### **Experimental**

## Catalyst preparation

A commercial γ-Al<sub>2</sub>O<sub>3</sub> powder (Puralox<sup>®</sup> SBa200, Sasol) was used for the catalyst preparation. The promoted catalyst samples were prepared by incipient wetness impregnation of this  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> with aqueous solutions of indium(III)nitrate (Aldrich, 99.9% metals basis), gallium(III)nitrate (Aldrich, 99.9% metals basis) or boric acid (Aldrich, 99.999% metals basis). The concentration of these solutions was varied to obtain powders with four different loadings of each metal. To enable the comparison between the different metals, their loadings were based on equal molar content. After impregnation the powders were freezed in liquid nitrogen, freeze dried overnight, and calcined in air at 550 °C for 2 h. Pure In<sub>2</sub>O<sub>3</sub> powder was obtained from Aldrich (Indium(III)oxide nanopowder, <100 nm). The catalyst powders were then mixed in a weight ratio of 4:1 with a binder (Disperal® P2, Sasol for the Al<sub>2</sub>O<sub>3</sub>-based samples and Bindzil® colloidal silica 30NH<sub>3</sub>/220, Eka Chemicals for the In<sub>2</sub>O<sub>3</sub> sample), suspended in deionised water to obtain a slurry, and washcoated onto cordierite monoliths. The monolith samples had a length of 20 mm, a diameter of 20 mm, and a cell density of 400 cpsi (cells per square inch). In the washcoating procedure the monolith was immersed in the slurry and excess liquid was removed by gently blowing air through the channels and on the outside of the monolith sample. The sample was then dried in air at 90 °C and calcined in air at 600 °C for 2 min. This procedure was repeated until the weight of the washcoat corresponded to approximately 20% of the total sample weight. Finally, the monoliths were calcined in air at 550 °C for 2 h and were then ready for reactor tests. The final weight of the washcoat of the monoliths after calcination was measured to be  $0.73 \pm 0.03$  g.

#### Catalyst characterisation

Surface area, pore volume and pore size distribution measurements were performed on the catalyst powders using a Micromeritics Tristar® 3000 analyser. The samples were outgassed under vacuum at 225 °C overnight before nitrogen adsorption—desorption isotherms were collected at -196 °C. The specific surface area was calculated according to the Brunauer–Emmett–Teller (BET) equation, and specific pore volume and pore diameter were obtained using the Barrett–Joyner–Halenda (BJH) model [40,41].

X-ray powder diffraction patterns were obtained with a Bruker AXS D8 ADVANCE diffractometer using monochromatic Cu  $K_{\alpha1}$  radiation. Data were collected in the  $2\theta$  range 10–80°, which was scanned at a rate of  $0.04^\circ/2$  s.

# Catalytic activity measurements

The catalytic activity tests were performed in a horizontally mounted quartz tube flow reactor. Thermocouples were used to measure the temperature in the gas stream before the catalyst as well as inside a centre channel of the monolith sample. The inlet gas tubes and the reactor wall were heated by metallic heating coils. The set temperature for the reactor wall was varied during the experiments, whereas that for the inlet gas tubes was set to 100 °C. Mass flow controllers (Bronkhorst Hi-Tech) for gases and distilled water were used to regulate the flow composition into the reactor. The reactor outlet gas was continuously analysed with a frequency of 1 Hz using a MKS Multigas<sup>TM</sup> 2030 FTIR analyser.

Similar experiments were performed on all catalysts included in the study and also in the empty reactor to study the conversion of DME. All tests were initiated with a conditioning of the catalyst at 550 °C for 30 min in 8% O<sub>2</sub> in Ar. The total gas flow in all tests was  $3500 \, \text{ml/min}$ , giving a space velocity of  $33,400 \, \text{h}^{-1}$  based on the monolith volume. After conditioning, the NO reduction activity was evaluated during temperature ramps from 550 to 200°C at 10 °C/min. In the first ramp the feed gas consisted of 500 ppm NO, 1000 ppm DME, 8% O<sub>2</sub>, and Ar as balance. Similar ramps were also performed with 5% H<sub>2</sub>O added to the feed, with 5% H<sub>2</sub>O and doubled DME concentration (2000 ppm), or with 500 ppm NO<sub>2</sub> instead of NO. Finally, activity measurements were performed during steadystate conditions at temperatures between 550 and 250 °C in a feed gas consisting of 500 ppm NO, 1000 ppm DME, 8% O<sub>2</sub>, 5% H<sub>2</sub>O, and Ar as balance. Measurements were made after conditions had been allowed to stabilise for 15 min at each temperature.

In the evaluation of the results, the conversion of  $NO_x$  and DME is defined as  $1-[X]_{out}/[X]_{in}$  and the yield of CO, CO<sub>2</sub>, formaldehyde, and formic acid as  $[X]_{out}/2[DME]_{in}$ , were X denotes the component in question. The concentrations of the different gases were calculated by the FTIR instrument based on calibration curves using  $N_2$  as carrier gas. In this study, however, Ar was used as carrier gas. Differences in the measured concentrations depending on the carrier gas are less than 10%. The reported concentrations of NO,  $NO_2$ , DME, CO, and  $CO_2$  were compensated for these differences by separate calibrations.

# Results and discussion

## Characterisation of catalysts

Table 1 shows the nominal elemental composition of the different catalyst powder samples as well as their BET surface area, pore volume, and average pore diameter. The specific surface area decreased with increasing content of In<sub>2</sub>O<sub>3</sub> or Ga<sub>2</sub>O<sub>3</sub>, where the difference was especially large for the In2O3-loaded materials. For the Ga<sub>2</sub>O<sub>3</sub>-loaded materials the difference can be attributed to the higher atomic mass of Ga compared to Al. This becomes obvious when comparing the surface area per gram of Al<sub>2</sub>O<sub>3</sub> in the materials. For the  $In_2O_3/Al_2O_3$  materials there is a decrease in the specific surface area even if the effect of the atomic mass difference is taken into account. The specific surface area of the B2O3-loaded materials was similar to that of pure Al<sub>2</sub>O<sub>3</sub>. The pure In<sub>2</sub>O<sub>3</sub> powder had a low specific surface area, but again, the much higher molar mass of In<sub>2</sub>O<sub>3</sub> (about 2.7 times) compared to Al<sub>2</sub>O<sub>3</sub> must be taken into account. The pore volume and pore diameter decreased with increasing content of  $In_2O_3$ ,  $Ga_2O_3$ , or  $B_2O_3$ . The pure  $In_2O_3$ 

**Table 1** Physical properties of the catalysts.

| Catalyst                                                             | Nominal metal loading (wt%) |                               | BET surface area $(m^2 g^{-1})$ of sample | BET surface area<br>(m <sup>2</sup> g <sup>-1</sup> of support) <sup>a</sup> | Pore volume $(cm^3 g^{-1})$ | Average pore diameter (nm) |
|----------------------------------------------------------------------|-----------------------------|-------------------------------|-------------------------------------------|------------------------------------------------------------------------------|-----------------------------|----------------------------|
|                                                                      | M                           | M <sub>2</sub> O <sub>3</sub> |                                           |                                                                              |                             |                            |
| Al <sub>2</sub> O <sub>3</sub>                                       | 0                           | 0                             | 198                                       | 198                                                                          | 0.503                       | 8.21                       |
| 1.2% In <sub>2</sub> O <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub>  | 1.0                         | 1.2                           | 192                                       | 194                                                                          | 0.503                       | 8.38                       |
| 3.0% In <sub>2</sub> O <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub>  | 2.5                         | 3.0                           | 190                                       | 195                                                                          | 0.490                       | 8.23                       |
| 6.0% In <sub>2</sub> O <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub>  | 5.0                         | 6.0                           | 181                                       | 193                                                                          | 0.470                       | 8.26                       |
| 12% In <sub>2</sub> O <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub>   | 10                          | 12                            | 166                                       | 189                                                                          | 0.430                       | 8.17                       |
| $In_2O_3$                                                            | 83                          | 100                           | 28.4                                      | =                                                                            | 0.0965                      | 14.0                       |
| 0.82% Ga <sub>2</sub> O <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub> | 0.61                        | 0.82                          | 195                                       | 196                                                                          | 0.504                       | 8.27                       |
| 2.0% Ga <sub>2</sub> O <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub>  | 1.5                         | 2.0                           | 194                                       | 198                                                                          | 0.497                       | 8.25                       |
| 4.1% Ga <sub>2</sub> O <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub>  | 3.0                         | 4.1                           | 189                                       | 197                                                                          | 0.479                       | 8.22                       |
| 8.2% Ga <sub>2</sub> O <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub>  | 6.1                         | 8.2                           | 184                                       | 200                                                                          | 0.454                       | 8.08                       |
| 0.30% B <sub>2</sub> O <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub>  | 0.094                       | 0.30                          | 197                                       | 198                                                                          | 0.507                       | 8.24                       |
| 0.76% B <sub>2</sub> O <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub>  | 0.24                        | 0.76                          | 199                                       | 200                                                                          | 0.509                       | 8.14                       |
| 1.5% B <sub>2</sub> O <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub>   | 0.47                        | 1.5                           | 197                                       | 200                                                                          | 0.504                       | 8.17                       |
| 3.0% B <sub>2</sub> O <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub>   | 0.94                        | 3.0                           | 196                                       | 202                                                                          | 0.493                       | 8.09                       |

<sup>&</sup>lt;sup>a</sup> Based on the weight of the Al<sub>2</sub>O<sub>3</sub> support only.

material had a lower pore volume and about twice the pore diameter compared to the  $Al_2O_3$ -based materials. If the difference in molar mass of  $In_2O_3$  compared to  $Al_2O_3$  is taken into account the pore volume of  $In_2O_3$  is about half that of  $Al_2O_3$ . As will be apparent later, the small differences in surface area, pore volume, and pore diameter between the promoted and pure  $Al_2O_3$  samples do not appear to play a major role for the  $NO_x$  reduction as some of the catalysts with smaller pores showed the highest activity.

The X-ray diffractograms of the In<sub>2</sub>O<sub>3</sub>-, Ga<sub>2</sub>O<sub>3</sub>-, and B<sub>2</sub>O<sub>3</sub>promoted alumina powders are compared to those of the pure  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and In<sub>2</sub>O<sub>3</sub> powders in Fig. 1. The pattern of the pure In<sub>2</sub>O<sub>3</sub> material verified that it was in its cubic polymorph (PDF no. 00-006-0416, ICDD). For the high In<sub>2</sub>O<sub>3</sub>-loaded materials, i.e. 6.0 and 12%  $In_2O_3/Al_2O_3$ , peaks characteristic for both  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and cubic  $In_2O_3$ were observed. The peaks due to In<sub>2</sub>O<sub>3</sub> increased with increasing In<sub>2</sub>O<sub>3</sub> content. For the low In<sub>2</sub>O<sub>3</sub>-loaded samples, i.e. 1.2 and  $3.0\% \text{ In}_2\text{O}_3/\text{Al}_2\text{O}_3$ , only peaks due to  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and no peaks due to In<sub>2</sub>O<sub>3</sub> were observed, most likely as a result of its low concentration in these materials. This is in agreement with results presented in the literature [28]. Regarding the Ga<sub>2</sub>O<sub>3</sub>- and B<sub>2</sub>O<sub>3</sub>-promoted alumina powders no peaks other than the ones due to  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> were observed even at the highest loadings, why only the patterns for  $8.2\% \, Ga_2O_3/Al_2O_3$  and  $3.0\% \, B_2O_3/Al_2O_3$  are shown in Fig. 1. This is in accordance with other XRD studies of samples with similar composition [29,42] and the fact that B<sub>2</sub>O<sub>3</sub> is known to be a difficult substance to crystallise [43].



**Fig. 1.** XRD patterns for pure  $Al_2O_3$  and  $In_2O_3$ , for the four  $In_2O_3/Al_2O_3$  materials and for the  $Ga_2O_3/Al_2O_3$  and  $B_2O_3/Al_2O_3$  materials with the highest loading of  $Ga_2O_3$  and  $B_2O_3$ , respectively.

Catalytic activity measurements under steady-state conditions

The steady state experiments were performed in order to assess general differences between the catalysts. The detailed behaviour of the catalysts, including by-product formation and temperature dependence, was studied during the temperature ramp experiments discussed in the following section.

Fig. 2 shows the conversion of  $NO_x$  and DME over the  $In_2O_3$ promoted Al<sub>2</sub>O<sub>3</sub> catalysts compared to pure In<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub> catalysts during steady-state at temperatures between 250 and 550 °C, in the presence of 5%  $H_2O$  and at an  $HC_1/NO_x$ -ratio of 4. The results show that In<sub>2</sub>O<sub>3</sub>-promoted Al<sub>2</sub>O<sub>3</sub> and pure Al<sub>2</sub>O<sub>3</sub> were active for NO<sub>x</sub> reduction with DME, whereas pure In<sub>2</sub>O<sub>3</sub> was virtually inactive for this reaction in the temperature range studied. Similar results were reported by Maunula et al. [30] with propene as reductant. Comparing the results for the In<sub>2</sub>O<sub>3</sub>-promoted samples with the pure Al<sub>2</sub>O<sub>3</sub> sample, the maximum NO<sub>x</sub> conversion increased and occurred at 350 °C instead of 450 °C as a result of In<sub>2</sub>O<sub>3</sub> addition. The highest NO<sub>x</sub> conversion of 47% was observed for 1.2% In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>, whereas for Al<sub>2</sub>O<sub>3</sub> the maximum was only 31%. The influence of the In<sub>2</sub>O<sub>3</sub> loading on NO<sub>x</sub> conversion was relatively low within the range studied. The maximum NO<sub>x</sub> conversion at 350 °C decreased slightly with higher In<sub>2</sub>O<sub>3</sub> loading, but not proportionally. Increasing the loading of In<sub>2</sub>O<sub>3</sub> from 1.2 to 12% gave only a difference of about 10%-units in NO<sub>x</sub> conversion. At 300 °C, however, the catalyst with highest In<sub>2</sub>O<sub>3</sub> loading showed the highest NO<sub>x</sub> conversion. This observation will be analysed in more detail in the temperature ramp experiments. Above 400 °C, the pure Al<sub>2</sub>O<sub>3</sub> catalyst showed the highest NO<sub>x</sub> conversion, whereas among the In<sub>2</sub>O<sub>3</sub>-loaded samples the 1.2% In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst was still the most active.

DME was converted at slightly higher temperature over the  $In_2O_3$ -promoted catalysts than over pure alumina at temperatures below 350 °C, although at 400 °C and above, DME was completely converted over all these catalysts. Pure  $In_2O_3$  showed the lowest conversion of DME through the entire temperature range and the light-off for DME conversion occurred at higher temperature than for the other catalysts. In fact, over this catalyst DME was not completely converted even at 550 °C. With the exception of the pure  $In_2O_3$ , the catalyst with the highest  $In_2O_3$  loading showed the lowest DME conversion at 300 °C and thus the highest selectivity for the DME-SCR reaction at that temperature, whereas at 350 °C the opposite trend is found.

At  $300\,^{\circ}$ C neither pure  $In_2O_3$  nor pure  $Al_2O_3$  were able to reduce  $NO_x$ , whereas the four  $In_2O_3/Al_2O_3$  catalysts were. In fact, when studying the gas composition after the pure  $In_2O_3$  sample (not



Fig. 2. Conversion of  $NO_x$  and DME during steady-state experiments with  $In_2O_3/Al_2O_3$ , pure  $In_2O_3$  and pure  $Al_2O_3$  catalysts. Gas feed contained 500 ppm NO, 1000 ppm DME, 5%  $H_2O_3$ , 8%  $O_2$ , and Ar as balance. Space velocity = 33,400  $h^{-1}$ .

shown), neither NO nor DME were affected at  $300\,^{\circ}\text{C}$  over this catalyst alone. This shows that the  $\text{In}_2\text{O}_3$  and  $\text{Al}_2\text{O}_3$  sites need to be in close proximity for the  $\text{NO}_x$  reduction reaction to occur at  $300\,^{\circ}\text{C}$ , and placing two separate  $\text{In}_2\text{O}_3$  and  $\text{Al}_2\text{O}_3$  catalysts in series would not give any  $\text{NO}_x$  conversion with DME at this temperature. Possibly, the improved  $\text{NO}_x$  conversion over the  $\text{In}_2\text{O}_3$ -promoted  $\text{Al}_2\text{O}_3$  catalysts may be associated with distinct active sites at the boundary between  $\text{In}_2\text{O}_3$  and  $\text{Al}_2\text{O}_3$ -phases.

Based on these observations, the promoting effect on the NO<sub>x</sub> conversion reaction when In2O3 is added to Al2O3 could come from the creation of a more efficient reaction path or from the creation of additional or more active reaction sites, e.g. at the In<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> interface. In the first case, the rate determining step in the reaction on Al<sub>2</sub>O<sub>3</sub> is bypassed by a reaction on the In<sub>2</sub>O<sub>3</sub> surface, but the In<sub>2</sub>O<sub>3</sub> surface in itself is inefficient in producing or converting essential reaction intermediates for this alternative reaction path. In order for the overall reaction to proceed certain reaction steps thus need to occur on the Al<sub>2</sub>O<sub>3</sub> surface. In the second proposal, the presence of an In<sub>2</sub>O<sub>3</sub> interface generates new reaction sites, or alters the electronic structure of sites on the Al<sub>2</sub>O<sub>3</sub> surface making them more reactive. A third possibility is that In<sub>2</sub>O<sub>3</sub> consumes a species, which would otherwise inhibit the reaction. The mechanistic aspects of the promoting effect of In<sub>2</sub>O<sub>3</sub> on Al<sub>2</sub>O<sub>3</sub> will be studied with in situ DRIFT spectroscopy and covered in a separate study.

A comparison of the NO<sub>x</sub> and DME conversion over the Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts during the steady-state experiments is shown in Fig. 3. The traces for the pure Al<sub>2</sub>O<sub>3</sub> catalyst are also included in these graphs for comparison. The Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts showed a higher NO<sub>x</sub> conversion than the pure Al<sub>2</sub>O<sub>3</sub> catalyst up to about 450 °C. The maximum NO<sub>x</sub> conversion of 43% was obtained at 400 °C over the 8.2% Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst. At both 350 and 400 °C this catalyst showed the highest NO<sub>x</sub> conversion, but on the other hand it gave the lowest NO<sub>x</sub> conversion at temperatures between 450 and 550 °C. The influence of the Ga<sub>2</sub>O<sub>3</sub>-loading on NO<sub>x</sub> conversion was relatively small within the range studied. Above 450 °C the difference between the Ga<sub>2</sub>O<sub>3</sub>-promoted samples and pure Al<sub>2</sub>O<sub>3</sub> was low. In contrast to the In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts, the Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts were not active at 300 °C. The NO<sub>x</sub> conversion over these catalysts showed a temperature dependence more similar to that of the pure Al<sub>2</sub>O<sub>3</sub> catalyst. Similar results have been reported with propene as reducing agent over  $In_2O_3/Al_2O_3$  and  $Ga_2O_3/Al_2O_3$ [30].

Regarding the conversion of DME, results were similar for the  $Ga_2O_3/Al_2O_3$  catalysts as for the pure  $Al_2O_3$  catalyst, with the

exception that at lower temperatures, mainly at  $300\,^{\circ}$ C, the catalyst with the highest  $Ga_2O_3$  loading (8.2%) showed a higher DME conversion than the other catalysts. Complete conversion of DME was reached for all catalysts at  $400\,^{\circ}$ C and above.

Fig. 4 shows results from the steady-state experiments of NO<sub>x</sub> and DME conversion over B<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> and pure Al<sub>2</sub>O<sub>3</sub> catalysts at temperatures between 250 and 550 °C. The B<sub>2</sub>O<sub>3</sub>-promoted alumina catalysts showed a higher NO<sub>x</sub> conversion than the pure Al<sub>2</sub>O<sub>3</sub> catalyst, at least up to 500 °C. At 550 °C the NO<sub>x</sub> conversion was relatively similar for all catalysts in this series. The highest NO<sub>x</sub> conversion of 51% was obtained at 400 °C over the catalyst with the lowest  $B_2O_3$ -loading (0.30%). This catalyst showed the highest activity between 350 and 450 °C. In this temperature range, the influence of the B<sub>2</sub>O<sub>3</sub>-loading on NO<sub>2</sub> conversion was relatively large, with a maximum difference of 28%-units between the highest and lowest B<sub>2</sub>O<sub>3</sub>-loaded material. At higher temperatures, i.e. 500 and 550 °C, the 0.76- and 3.0% B<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts showed the highest NO<sub>x</sub> reduction, but the differences were smaller. In similarity with Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>, the B<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts were not active at 300 °C and the NO<sub>x</sub> conversion over these catalysts showed a temperature dependence more similar to the pure  $Al_2O_3$  catalyst.

Regarding the DME conversion, results were similar for the  $B_2O_3/Al_2O_3$  catalysts and the pure  $Al_2O_3$  catalyst, with the exception that at lower temperatures (300 and 350 °C), the catalyst with the lowest  $B_2O_3$  loading (0.30%) showed a higher DME conversion than the other catalysts. Thus, for both  $Ga_2O_3$ - and  $B_2O_3$ -promoted  $Al_2O_3$  the catalysts with the highest  $NO_x$  conversion at low temperatures also gave a higher conversion of DME at low temperatures. It is thus likely that the higher  $NO_x$  conversion is connected to an increased oxidation ability of these catalysts. Complete conversion of DME was reached for all  $B_2O_3/Al_2O_3$  catalysts at 400 °C and above.

Although pure  $Ga_2O_3$  or  $B_2O_3$  catalysts were not included in this study, it is likely that these, in similarity to pure  $In_2O_3$ , are not active for  $NO_X$  reduction with DME. In an earlier study pure  $Ga_2O_3$  was reported inactive for  $NO_X$  reduction with  $CH_4$ , while  $Ga_2O_3$  supported on  $Al_2O_3$  was active [31].

### Temperature ramp experiments

In order to investigate in more detail the temperature dependence of the different catalysts, the activity and by-product formation over the catalysts were studied during temperature ramps from 550 to  $200\,^{\circ}$ C. Because DME is known to undergo gas phase reactions in the presence of oxygen [19,20], the conversion



Fig. 3. Conversion of  $NO_x$  and DME during steady-state experiments with  $Ga_2O_3/Al_2O_3$  and pure  $Al_2O_3$  catalysts. Gas feed contained 500 ppm NO, 1000 ppm DME, 5%  $H_2O_3$  8%  $O_2$ , and Ar as balance. Space velocity = 33,400 h<sup>-1</sup>.

of DME in the empty reactor was investigated initially. Results from this experiment both in the absence (solid lines) and presence (dotted lines) of 5% H<sub>2</sub>O in the feed are shown in Fig. 5. Similar results were achieved in both cases, although the on-set of the reactions shifted to a slightly higher temperature in the presence of H<sub>2</sub>O. At 340 °C, 80% conversion of DME was achieved in the empty reactor. The reactions led to an almost complete conversion of NO to NO<sub>2</sub>. Some CO, formaldehyde, and formic acid were also formed, but the yield of methanol and CH<sub>4</sub> was very low (1% or below, not shown). Interestingly, the conversion of  $NO_x$  in the empty reactor reached about 15%. However, the FTIR measurements showed that nitric acid was produced simultaneously with the NO<sub>x</sub> conversion. Although exact quantification of the formed nitric acid was not possible, because the calibration curves available for this component were obtained at a different temperature of the FTIR instrument than used in the present study, it is most likely that the observed  $NO_x$  conversion was due to the formation of nitric acid.

The reactions of DME in the gas phase are radical reactions and have been investigated in detail by Dagaut et al. [44] and in relation to DME-SCR by Tamm et al. [19,20]. Our observations are in good agreement with those studies. When discussing the results in the remainder of this study it is important to bear in mind the empty reactor data because gas phase reactions will occur to some extent

in the reactor tube before the catalyst and change the composition of the gas reaching the catalyst.

# Catalytic performance of In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>

The results from temperature ramp experiments in the absence of  $\rm H_2O$  in the feed over the  $\rm In_2O_3/Al_2O_3$ , pure  $\rm Al_2O_3$ , and  $\rm In_2O_3$  catalysts are shown in Fig. 6. When using NO in the feed a maximum of 67%  $\rm NO_x$  conversion was obtained at 305 °C over the 12%  $\rm In_2O_3/Al_2O_3$  catalyst, whereas for pure  $\rm Al_2O_3$  the maximum was 49% at 365 °C. When comparing the light-off temperature for  $\rm NO_x$  conversion over these two catalysts, it is clear that the addition of  $\rm In_2O_3$  to  $\rm Al_2O_3$  decreased the light-off temperature by about 75 °C, but gave a narrower active temperature window. With decreased  $\rm In_2O_3$ -loading from 12 to 1.2% the maximum  $\rm NO_x$  conversion gradually decreased and the  $\rm NO_x$  conversion curve shifted to higher temperatures. The  $\rm NO_x$ - and DME conversion curves follow each other and start to increase at about the same temperature. At the temperature where the maximum in  $\rm NO_x$  conversion was achieved the DME conversion was about 90%.

For the pure  $Al_2O_3$  sample both the  $NO_{x^-}$  and DME conversion started around the same temperature as where the gas phase reactions of DME started in the empty reactor experiments. The  $In_2O_3$ -promoted catalysts, however, started to reduce  $NO_x$  at a



Fig. 4. Conversion of  $NO_x$  and DME during steady-state experiments with  $B_2O_3/Al_2O_3$  and pure  $Al_2O_3$  catalysts. Gas feed contained 500 ppm NO, 1000 ppm DME, 5%  $H_2O$ , 8%  $O_2$ , and Ar as balance. Space velocity = 33,400 h<sup>-1</sup>.



**Fig. 5.** Conversion of DME and  $NO_x$ , and formation of various gases during temperature ramp experiments from 550 to  $200^{\circ}C$  in the empty reactor in the absence (solid lines) or presence (dotted lines) of  $5\% H_2O$  in the feed. Gas feed contained 500 ppm NO, 1000 ppm DME,  $8\% O_2$ , and Ar as balance. Space velocity =  $33,400 \text{ h}^{-1}$ .

lower temperature and gave only a small shoulder on the NO<sub>x</sub> conversion curve around the temperature where the gas phase reactions started. This indicates that the NO<sub>2</sub> formed in the gas phase reactions promoted the  $NO_x$  reduction over pure  $Al_2O_3$ , as has previously been reported [19], whereas the  $NO_x$  reduction over In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> did not rely on the gas phase formation of NO<sub>2</sub>. Similarly, the conversion of DME occurred at a lower temperature over the In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>-catalysts compared to in the empty reactor, but the DME conversion curves also show a shoulder around the temperature where the gas phase reactions start. Over the pure Al<sub>2</sub>O<sub>3</sub> sample, DME was converted at a higher temperature than over In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>, but at a lower temperature than over pure In<sub>2</sub>O<sub>3</sub>. For both the In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>- and pure Al<sub>2</sub>O<sub>3</sub> catalysts, DME conversion was higher than in the empty reactor and reached 100% at around 350 °C. DME oxidation occurred at a lower temperature with increased In<sub>2</sub>O<sub>3</sub>-loading. It has previously been reported that oxidation properties are associated with In<sub>2</sub>O<sub>3</sub> phases and a shift in the oxidation of hydrocarbons and alcohols to lower temperatures with increased In<sub>2</sub>O<sub>3</sub>-loading [23,25,28]. Park et al. suggested that well-dispersed In<sub>2</sub>O<sub>3</sub> species at low concentrations promote the lean NO<sub>x</sub> reduction reaction via partial oxidation and activation of hydrocarbons, whereas high concentrations of In<sub>2</sub>O<sub>3</sub> decrease the  $NO_x$  reduction activity by blocking active alumina sites [25]. However, for DME the activation through partial oxidation may not be as important. Instead, the increase in NO<sub>x</sub> conversion could be a secondary effect connected to an increased oxidation ability of the catalysts.

The CO yield was lower and the  $CO_2$  yield higher over the studied catalysts compared to the empty reactor, but a peak in CO was observed around the temperature where the gas phase reactions started. The  $NO_2$  concentration was very low in the presence of the  $In_2O_3/Al_2O_3$  catalysts, which thus convert the  $NO_2$  produced in

the gas phase above 320 °C back to NO. Over the pure  $Al_2O_3$  catalyst a steady increase in  $NO_2$  slip was observed between 350 and 550 °C.

Consistent with the results from the steady-state experiments, the pure  $\ln_2 O_3$  catalyst was completely inactive for  $NO_x$  reduction over the entire temperature range studied. Even when DME became oxidised no  $NO_x$  was reduced over  $\ln_2 O_3$ . In fact, the DME conversion curve over this catalyst is similar to that of the non-catalytic reaction in the empty reactor, not reaching full conversion until around 550 °C. However,  $NO_x$  conversion and nitric acid production were negligible indicating that the nitric acid produced in the gas phase reactions was converted to  $NO_x$  over  $\ln_2 O_3$ . Studying the NO and  $NO_2$  curves it is interesting to note that, despite showing no  $NO_x$  conversion, even the pure  $\ln_2 O_3$  catalyst converted all  $NO_2$  produced in the gas phase back to  $NO_x$ .

With  $NO_2$  in the feed instead of NO, the maximum  $NO_x$  conversion increased and reached 80% over the 12% In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst. Furthermore, some NO<sub>x</sub> conversion was achieved already at 200 °C, but the difference in light-off temperature was relatively small. Thus, the  $NO_x$  reduction appears in this case to some extent limited by the oxidation of NO to NO<sub>2</sub> at low temperatures. It has previously been reported that over pure Al<sub>2</sub>O<sub>3</sub> with propene, the NO<sub>x</sub> conversion is increased and shifted to lower temperatures when replacing NO by NO<sub>2</sub> [45,46]. However, at higher temperatures in the current experiments, mainly NO<sub>2</sub> will reach the catalyst even with NO in the feed, due to the gas phase reactions between DME,  $O_2$  and NO, and the difference in NO<sub>x</sub> conversion with NO or NO<sub>2</sub> is smaller. Furthermore, the  $NO_x$  conversion over  $In_2O_3/Al_2O_3$  catalysts is highly limited by the amount of reducing agent at these temperatures. The DME conversion was similar when using either NO or NO<sub>2</sub> in the feed. Thus, NO<sub>2</sub> was not promoting the DME oxidation and possible activation over this catalyst.



**Fig. 6.** Catalytic activity test of  $In_2O_3/Al_2O_3$  and pure  $Al_2O_3$  and  $In_2O_3$  catalysts during temperature ramp experiments from 550 to 200 °C. Gas feed contained 500 ppm NO or NO<sub>2</sub>, 1000 ppm DME, 8% O<sub>2</sub>, and Ar as balance. Space velocity = 33,400 h<sup>-1</sup>.

The formation of  $N_2O$  was negligible over the pure  $Al_2O_3$  catalyst, but increased with  $In_2O_3$  loading. The  $N_2O$  curves follow the temperature-dependence of the  $NO_x$  conversion curves and the highest  $N_2O$  concentration was produced over the catalyst with highest  $In_2O_3$  loading, and increased when  $NO_2$  was used in the feed gas. Thus, there is a loss in selectivity for  $N_2$  formation

associated with increased  $In_2O_3$  loading. The yield of methanol was low, but not negligible, over the  $In_2O_3/Al_2O_3$  and pure  $Al_2O_3$  catalysts and peaked where the DME conversion levels out. Over the pure  $In_2O_3$  catalyst the methanol yield was negligible similar to the empty reactor experiments. In contrast to the empty reactor experiments, the formic acid and nitric acid emissions were

negligible (not shown) and formaldehyde emissions low in the presence of any of the catalysts.

Fig. 7 shows the results from temperature ramp experiments over In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> and pure In<sub>2</sub>O<sub>3</sub>- and Al<sub>2</sub>O<sub>3</sub> catalysts in the presence of H<sub>2</sub>O. The higher maximum conversion obtained in these experiments compared to the steady-state experiments is likely due to that the optimum temperature for the catalysts was in between two of the temperatures chosen for steady-state experiments, but could also be partly due to transient effects during the temperature ramps. Comparing Figs. 6 and 7, it is clear that a lower maximum  $NO_x$  conversion is obtained in the presence of  $H_2O$ . The difference for the In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts was about 5–20%-units, and about 15% for the pure Al<sub>2</sub>O<sub>3</sub> sample. The 3% In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst was the least sensitive to inhibition by H<sub>2</sub>O. The NO<sub>x</sub> conversion curves were also shifted to a slightly higher temperature in the presence of H<sub>2</sub>O. Furthermore, the influence of the In<sub>2</sub>O<sub>3</sub> loading was lower and the 3.0% In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst now showed the highest  $NO_x$  conversion, whereas the 6.0 and 12%  $In_2O_3/Al_2O_3$  catalysts gave the lowest. The DME conversion for the In<sub>2</sub>O<sub>3</sub>-promoted samples was also shifted to a slightly higher temperature, although for the pure Al<sub>2</sub>O<sub>3</sub> catalyst there was an opposite effect, in the presence of H<sub>2</sub>O. In fact, the DME conversion curve for the In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts and pure Al<sub>2</sub>O<sub>3</sub> catalyst follow each other well, although it was only over In<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> that DME reduced NO below 350 °C. The CO<sub>2</sub> yield was lower, and CO- and methanol yields were higher in the presence of H<sub>2</sub>O. Thus, H<sub>2</sub>O inhibited the complete oxidation to CO2 to some extent. The methanol yield was especially large over the pure Al<sub>2</sub>O<sub>3</sub> catalyst and decreased with the amount of In<sub>2</sub>O<sub>3</sub> added. It is likely that the DME that was converted over the pure Al<sub>2</sub>O<sub>3</sub> catalyst below 350 °C produced methanol as the curves of DME conversion and methanol yield follow each other well. Methanol production is expected as Al<sub>2</sub>O<sub>3</sub> catalyses the hydrolysis of DME to methanol according to Reaction (1) above about 300 °C [47,48].

$$H_3C-O-CH_3+H_2O \ \leftrightarrow \ 2H_3COH \tag{1}$$

The reaction is promoted by high acidity of the catalyst and adding  $In_2O_3$  to  $Al_2O_3$  reduces the acidity [34,49]. Additionally, the reduced methanol formation over  $In_2O_3/Al_2O_3$  catalysts could be due to that it was consumed by oxidation with  $O_2$  or  $NO_x$  over these catalysts at lower temperatures (around  $300\,^{\circ}\text{C}$ ) than over pure  $Al_2O_3$  [30]. Above  $350\,^{\circ}\text{C}$  the methanol yield decreased further, as the gas phase oxidation of DME reduced the amount of DME present. Over pure  $In_2O_3$  no methanol was formed.

A similar experiment with doubled DME concentration  $(HC_1/NO_x=8)$  gave an increase in maximum  $NO_x$  conversion by 10–15%-units and a slight shift to lower temperature (not shown). This temperature shift may partly be explained by an increase in catalyst temperature from the reaction heat of DME oxidation.

#### Catalytic performance of Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>

The results from temperature ramp experiments in the absence of  $\rm H_2O$  over the  $\rm Ga_2O_3/Al_2O_3$  catalysts are shown in Fig. 8 in comparison to pure  $\rm Al_2O_3$ . When using NO in the feed a maximum of 56% NO $_{\rm X}$  conversion was obtained at 360 °C or 370 °C for the 2.0 and 8.2%  $\rm Ga_2O_3/Al_2O_3$  catalysts, respectively. Thus, a somewhat higher maximum NO $_{\rm X}$  conversion was obtained with  $\rm Ga_2O_3/Al_2O_3$ , but with a similar temperature window as pure  $\rm Al_2O_3$ . Thus, addition of  $\rm Ga_2O_3$  to  $\rm Al_2O_3$  did not have the same effect on the light-off temperature for NO $_{\rm X}$  reduction as addition of In $_{\rm 2}O_{\rm 3}$ . The influence of Ga $_{\rm 2}O_{\rm 3}$ -loading on the NO $_{\rm X}$  conversion was limited within the range studied, although the curve for the 8.2% Ga $_{\rm 2}O_{\rm 3}/Al_2O_{\rm 3}$  catalysts showed a different behaviour compared to the other Ga $_{\rm 2}O_{\rm 3}/Al_2O_{\rm 3}$  catalysts. This catalyst started to reduce NO $_{\rm X}$  at the lowest temperature, has a shoulder on the NO $_{\rm X}$  conversion curve, reached

maximum conversion at a somewhat higher temperature, but also lost the conversion faster than the other catalysts at higher temperature. DME conversion also started at a slightly lower temperature over the  $8.2\%~Ga_2O_3/Al_2O_3$  catalyst compared to the other  $Ga_2O_3/Al_2O_3$  catalysts. In similarity to pure  $Al_2O_3$ , DME was completely converted at around  $350~^{\circ}\mathrm{C}$  for all the  $Ga_2O_3/Al_2O_3$  catalysts. The CO yield was higher and  $CO_2$  yield lower over  $Ga_2O_3/Al_2O_3$  catalysts compared to pure  $Al_2O_3$ . Also the CO yield showed a different trend for the  $8.2\%~Ga_2O_3/Al_2O_3$  sample, where CO was released at a lower temperature compared to the other samples. This catalyst was apparently able to oxidise and activate the hydrocarbon at a lower temperature than the other catalysts. Similar to pure  $Al_2O_3$ , the  $Ga_2O_3/Al_2O_3$  catalysts showed a considerable  $NO_2$  slip above  $350~^{\circ}\mathrm{C}$ .

With NO<sub>2</sub> in the feed instead of NO over 8.2%  $Ga_2O_3/Al_2O_3$ , the NO<sub>x</sub> conversion increased over the entire temperature range. The maximum NO<sub>x</sub> conversion reached 73% and was shifted to a lower temperature ( $320\,^{\circ}$ C). Furthermore, about 15% NO<sub>x</sub> conversion was achieved already at  $200\,^{\circ}$ C with NO<sub>2</sub>. Thus, the NO<sub>x</sub> reduction was to some extent limited by the oxidation of NO to NO<sub>2</sub> at low temperature. Above the temperature where the gas phase reactions of DME start to occur (ca  $320\,^{\circ}$ C) mainly NO<sub>2</sub> will reach the catalyst also with NO in the feed. The reason for the increased NO<sub>x</sub> conversion with NO<sub>2</sub> at these temperatures is most likely that it limits the gas phase oxidation of DME, and thus more DME will be accessible for the NO<sub>x</sub> reduction [20]. The DME conversion was also shifted to a lower temperature when using NO<sub>2</sub> in the feed instead of NO. This indicates that NO<sub>2</sub> formation may be important for DME activation over this catalyst.

The formation of  $N_2O$  was negligible over all catalysts, except for the experiment with  $NO_2$  in the feed, where some  $N_2O$  was produced at temperatures below  $350\,^{\circ}C$ . This could be expected as  $N_2O$  is generally formed during  $NO_X$  reduction at low temperatures and the experiment with  $NO_2$  is the only one where  $NO_X$  conversion was achieved between 200 and  $300\,^{\circ}C$ . The yield of methanol over  $Ga_2O_3/Al_2O_3$  was similar to that over pure  $Al_2O_3$ . The formic acid (not shown) and formaldehyde emissions were negligible over the  $Ga_2O_3/Al_2O_3$  catalysts with NO in the feed. With  $NO_2$  in the feed there was a slightly higher formaldehyde yield at low temperatures.

Fig. 9 shows the results from temperature ramp experiments over Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> and pure Al<sub>2</sub>O<sub>3</sub> catalysts in the presence of H<sub>2</sub>O. A lower maximum NO<sub>x</sub> conversion was obtained in the presence of H<sub>2</sub>O than in its absence. The difference was larger for pure Al<sub>2</sub>O<sub>3</sub> than for the Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts. Thus, addition of Ga<sub>2</sub>O<sub>3</sub> to Al<sub>2</sub>O<sub>3</sub> made it less susceptible to inhibition by  $H_2O$  in the feed. The  $NO_X$ conversion curves were also shifted to a slightly higher temperature in the presence of  $H_2O$ , especially for the 8.2%  $Ga_2O_3/Al_2O_3$  catalyst, whose shoulder on the NO<sub>x</sub> conversion curve also disappeared in the presence of H<sub>2</sub>O, indicating that one of the concurrent processes occurring on this catalyst was inhibited by H2O. The shift to higher temperature is likely due to that the gas phase reactions of DME shifted to higher temperature in the presence of H<sub>2</sub>O as shown in Fig. 5. Interestingly, the DME conversion over the Ga<sub>2</sub>O<sub>3</sub>-promoted catalysts shifted to slightly lower temperature in the presence of  $H_2O$  in similarity to over pure  $Al_2O_3$ . This is in accordance with previously reported results by Miyahara et al. [27] over Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> with DME. In that study, the conversion of alkanes or alkenes, on the other hand, was shifted to higher temperatures in the presence of H<sub>2</sub>O. Thus, addition of H<sub>2</sub>O promoted DME conversion over  $Ga_2O_3/Al_2O_3$  and pure  $Al_2O_3$  catalysts, but not over  $In_2O_3/Al_2O_3$ . As discussed for pure Al<sub>2</sub>O<sub>3</sub> above, the DME that is converted likely produced methanol according to Reaction (1), because the curves of DME conversion and methanol yield follow each other well. The methanol yield was much higher in the presence of H<sub>2</sub>O and similar over Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> and pure Al<sub>2</sub>O<sub>3</sub> catalysts. Thus, Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts in similarity to pure Al<sub>2</sub>O<sub>3</sub> are relatively active catalysts



Fig. 7. Catalytic activity test of  $In_2O_3/Al_2O_3$  and pure  $Al_2O_3$  and  $In_2O_3$  catalysts during temperature ramp experiments from 550 to  $200\,^{\circ}$ C in the presence of  $H_2O$ . Gas feed contained 500 ppm NO, 1000 ppm DME, 8%  $O_2$ , 5%  $H_2O$ , and Ar as balance. Space velocity = 33,400  $h^{-1}$ .

for the hydrolysis of DME to methanol. Additionally, it is plausible that  $Ga_2O_3/Al_2O_3$  is not so active for methanol oxidation with  $O_2$  or  $NO_x$  at low temperatures (around  $300\,^{\circ}$ C), in similarity to pure  $Al_2O_3$ . The  $CO_2$  yield was lower and CO yield slightly higher in the presence of  $H_2O$  at higher temperatures. Formaldehyde yield was higher in the presence of  $H_2O$  and similar over the  $Ga_2O_3/Al_2O_3$ 

and pure  $Al_2O_3$  catalysts, whereas formic acid yield (not shown) and  $N_2O$  formation were still negligible.

A similar experiment with doubled DME concentration  $(HC_1/NO_x=8)$  gave an increase in maximum  $NO_x$  conversion by 10–15%-units and a slight shift to lower temperature (not shown). In particular, the  $NO_x$  conversion at high temperature,



Fig. 8. Catalytic activity test of  $Ga_2O_3/Al_2O_3$  and pure  $Al_2O_3$  catalysts during temperature ramp experiments from 550 to  $200\,^{\circ}$ C. Gas feed contained 500 ppm NO or  $NO_2$ , 1000 ppm DME, 8%  $O_2$ , and Ar as balance. Space velocity =  $33,400\,h^{-1}$ .

where it is limited by the amount of reducing agent available, was considerably increased, over the  $Ga_2O_3/Al_2O_3$  catalysts. This was not observed over the  $In_2O_3/Al_2O_3$  catalysts, which is likely due to that over these catalysts all DME was consumed by oxidation with oxygen even at doubled DME concentration due to the higher oxidation ability of this catalyst. The decrease in light-off temperature for  $NO_X$  conversion is consistent with the results by Tamm

et al. [20], showing that the gas phase reaction of DME and NO was shifted to lower temperatures with increased DME/ $NO_X$  ratio.

# Catalytic performance of B<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>

The results from temperature ramp experiments in the absence of  $H_2O$  over  $B_2O_3/Al_2O_3$  catalysts are shown in Fig. 10 in comparison to pure  $Al_2O_3$ . When using NO in the feed a maximum of 67%



**Fig. 9.** Catalytic activity test of  $Ga_2O_3/Al_2O_3$  and pure  $Al_2O_3$  catalysts during temperature ramp experiments from 550 to  $200\,^{\circ}$ C in the presence of  $H_2O$ . Gas feed contained 500 ppm NO, 1000 ppm DME, 8%  $O_2$ , 5%  $H_2O$ , and Ar as balance. Space velocity = 33,400 h<sup>-1</sup>.

 $NO_x$  conversion was obtained at 355 °C for the 0.30%  $B_2O_3/Al_2O_3$  catalyst. This is the same degree of conversion as the maximum observed with  $In_2O_3/Al_2O_3$ , although for that catalyst at about 50 °C lower temperature. Thus, a higher maximum in  $NO_x$  conversion was obtained over  $B_2O_3/Al_2O_3$  compared to both  $Ga_2O_3/Al_2O_3$  and pure  $Al_2O_3$ , but with a similar temperature window. The influence

of  $B_2O_3$  loading on the  $NO_x$  conversion was larger than for  $Ga_2O_3$  and  $In_2O_3$ , and showed the opposite trend, because the catalyst with the lowest  $B_2O_3$  loading (0.30%) showed the highest maximum  $NO_x$  conversion, which then gradually decreased with increased  $B_2O_3$  loading. In addition, the 0.30%  $B_2O_3/Al_2O_3$  catalyst started to reduce  $NO_x$  at the lowest temperature. The DME conversion



Fig. 10. Catalytic activity test of  $B_2O_3/Al_2O_3$  and pure  $Al_2O_3$  catalysts during temperature ramp experiments from 550 to  $200\,^{\circ}$ C. Gas feed contained 500 ppm NO or  $NO_2$ , 1000 ppm DME, 8%  $O_2$ , and Ar as balance. Space velocity =  $33,400\,h^{-1}$ .

also started at the lowest temperature over the  $0.30\%~B_2O_3/Al_2O_3$  catalyst compared to over the other  $B_2O_3/Al_2O_3$ - and pure  $Al_2O_3$  catalysts. Similar to pure  $Al_2O_3$ , DME was completely converted at around  $350\,^{\circ}\text{C}$  for all the  $B_2O_3/Al_2O_3$  catalysts and these catalysts also showed a considerable  $NO_2$  slip above  $350\,^{\circ}\text{C}$ , which was the highest for  $0.30\%~B_2O_3/Al_2O_3$ . As was the case for the  $Ga_2O_3/Al_2O_3$ 

catalysts, the CO yield was higher and the CO $_2$  yield lower over the  $B_2O_3/Al_2O_3$  catalysts compared to pure  $Al_2O_3$ .

With  $NO_2$  in the feed instead of NO over the 3.0%  $B_2O_3/Al_2O_3$  catalyst, the  $NO_x$  conversion increased over the entire temperature range, but especially at low temperature. Thus, the  $NO_x$  reduction was to some extent limited by the oxidation of NO to  $NO_2$  at low



Fig. 11. Catalytic activity test of  $B_2O_3/Al_2O_3$  and pure  $Al_2O_3$  catalysts during temperature ramp experiments from 550 to  $200\,^{\circ}$ C in the presence of  $H_2O$ . Gas feed contained 500 ppm NO, 1000 ppm DME, 8%  $O_2$ , 5%  $H_2O$ , and Ar as balance. Space velocity = 33,400 h<sup>-1</sup>.

temperature. As mentioned for  $Ga_2O_3/Al_2O_3$ , above the temperature where the gas phase reactions of DME started (ca  $320\,^{\circ}$ C) the reason for the increased  $NO_x$  conversion with  $NO_2$  is most likely that it inhibits the gas phase oxidation of DME, and thus more DME will be accessible for  $NO_x$  reduction [20]. The DME conversion was also shifted to a lower temperature when using  $NO_2$  in the feed

instead of NO. This indicates that  $NO_2$  may be important for DME activation over this catalyst.

With both NO and  $NO_2$  in the feed the formation of  $N_2O$  was negligible over the  $B_2O_3/Al_2O_3$  catalysts, indicating a high selectivity to  $N_2$ . The yield of methanol over  $B_2O_3/Al_2O_3$  was similar to that over the pure  $Al_2O_3$  catalyst. The formic acid (not shown)

emissions were negligible and formaldehyde emissions low over  $B_2O_3/Al_2O_3$  with NO in the feed. With NO<sub>2</sub> in the feed, there was a slightly higher formaldehyde yield at lower temperatures, similar to the corresponding experiment with  $Ga_2O_3/Al_2O_3$ .

Fig. 11 shows the results from temperature ramp experiments over B<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>- and pure Al<sub>2</sub>O<sub>3</sub> catalysts in the presence of H<sub>2</sub>O. A lower maximum NO<sub>x</sub> conversion was obtained in the presence of H<sub>2</sub>O than in its absence. The difference was larger for the pure Al<sub>2</sub>O<sub>3</sub> sample than for the B<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts. Thus, similar to Ga<sub>2</sub>O<sub>3</sub>, addition of B<sub>2</sub>O<sub>3</sub> to Al<sub>2</sub>O<sub>3</sub> made it less susceptible to inhibition by  $H_2O$  in the feed. The  $NO_x$  conversion curves were also shifted to a slightly higher temperature in the presence of H<sub>2</sub>O, especially for the 0.3% B<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> sample. As discussed for Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts, this is likely due to that the gas phase reactions of DME shifted to higher temperatures in the presence of H<sub>2</sub>O as shown in Fig. 5. The DME conversion for the B<sub>2</sub>O<sub>3</sub>-promoted samples was shifted to a somewhat lower temperature. As discussed earlier, it is likely that the DME that was converted produced methanol by hydrolysis, because the curves of DME conversion and methanol yield follow each other well. The methanol yield was much higher in the presence of  $H_2O$  and similar over the  $B_2O_3/Al_2O_3$  and pure  $Al_2O_3$  catalysts. Thus,  $B_2O_3/Al_2O_3$  catalysts in similarity to the Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> and pure Al<sub>2</sub>O<sub>3</sub> catalysts are relatively active catalysts for the hydrolysis of DME to methanol. Additionally, it is plausible that Ga<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> is not so active for methanol oxidation with O<sub>2</sub> or NO<sub>x</sub> at low temperatures (around 300 °C), in similarity to pure Al<sub>2</sub>O<sub>3</sub>. The CO<sub>2</sub> yield was slightly lower and the CO yield slightly higher in the presence of H<sub>2</sub>O at high temperatures. The formaldehyde yield was higher in the presence of H<sub>2</sub>O and somewhat higher over the high loaded B<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts compared to pure Al<sub>2</sub>O<sub>3</sub>, whereas the formic acid yield (not shown) and N<sub>2</sub>O formation were still negligible.

Similar to the  $Ga_2O_3/Al_2O_3$  catalysts, an experiment with doubled DME concentration ( $HC_1/NO_x=8$ ) over  $B_2O_3/Al_2O_3$  gave an increase in maximum  $NO_x$  conversion by 10-15%-units and a slight shift to lower temperature (not shown). Furthermore, the  $NO_x$  conversion at high temperature, where it is limited by the amount of reducing agent available, was considerably increased, over both catalysts.

In summary, the flow reactor experiments of the  $In_2O_3$ -,  $Ga_2O_3$ -, and  $B_2O_3$ -promoted  $Al_2O_3$  catalysts showed that  $In_2O_3/Al_2O_3$  gave the highest  $NO_x$  conversion at low temperatures, but a more narrow active temperature window compared to pure  $Al_2O_3$ .  $Ga_2O_3/Al_2O_3$ , and  $B_2O_3/Al_2O_3$ , on the other hand, gave an active temperature window more similar to pure  $Al_2O_3$ , but with a higher  $NO_x$  conversion. The  $Ga_2O_3$ - and  $B_2O_3$ - promoted catalysts did not show the same promoting effect on the light-off temperature for  $NO_x$  conversion as the  $In_2O_3$ -promoted catalysts, but only increased the maximum  $NO_x$  conversion compared to pure  $Al_2O_3$ . Thus, it is likely that the promoting effect of  $Ga_2O_3$  and  $B_2O_3$  may have a different origin than the effect of  $In_2O_3$ .

The differences between the catalysts activity for  $NO_x$  reduction could to some extent be connected to the acidic or basic properties of the oxides. The connection between catalytic activity for  $NO_x$  reduction and the surface acidity of solid acid type catalysts like  $\gamma$ -Al $_2O_3$  has been proven in several studies [12,50,51]. For  $NO_x$  reduction with DME, Masters et al. [12] found that the alumina catalyst with highest acidity gave the highest  $NO_x$  conversion. Relevant to the present study, Petre et al. [49] studied the surface acidity and basicity of  $B_2O_3$ -,  $Ga_2O_3$ -, and  $In_2O_3/Al_2O_3$  catalysts by gas phase adsorption microcalorimetry. They found that addition of  $B_2O_3$  to  $Al_2O_3$  increased the acidity, especially the number of sites with weak acidic strength, whereas it demonstrated no real basic properties. On the other hand, at low loadings addition of  $Ga_2O_3$  and  $In_2O_3$  (ca 3 wt%) to  $Al_2O_3$  showed little difference compared to  $Al_2O_3$ , except that  $In_2O_3$  decreased the number of basic

sites, whereas at higher loadings (17–25 wt%) they both decreased the number of acidic sites, particularly the sites with medium and strong acidic strength. At high loading the number of acidic sites varied in the order  $B_2O_3 > Al_2O_3 > Ga_2O_3 > In_2O_3$ , which in some aspects correlate with the  $NO_x$  reduction activity found here. Thus, the high activity of the low loaded  $B_2O_3$  for  $NO_x$  reduction with DME could be connected to this sample having an optimised balance of the surface acidity. However, when comparing all catalysts no clear trend between the activity and the surface acidity of the different group 13-oxides can be discerned.

#### **Conclusions**

The group 13 oxides,  $In_2O_3$ ,  $Ga_2O_3$ , and  $B_2O_3$  supported on  $\gamma$ -alumina were shown to be active catalysts for lean  $NO_x$  reduction with DME. At an optimum concentration, all promoters increased the maximum  $NO_x$  conversion compared to pure  $Al_2O_3$ . Of the catalysts studied,  $In_2O_3/Al_2O_3$  gave the highest activity at lower temperatures and reduced the light-off temperature for  $NO_x$  reduction by about 50– $100\,^{\circ}$ C compared to pure alumina. However,  $In_2O_3/Al_2O_3$  gave a narrower active temperature window and a lower  $NO_x$  conversion than pure alumina at temperatures above  $400\,^{\circ}$ C. Pure  $In_2O_3$  was found inactive for  $NO_x$  reduction with DME.  $B_2O_3$ - and  $Ga_2O_3/Al_2O_3$  catalysts, on the other hand, gave a temperature window more similar to pure  $Al_2O_3$ , but with higher  $NO_x$  conversion. The presence of 5%  $H_2O$  in the feed resulted in a lower  $NO_x$  conversion over all catalysts, although addition of  $Ga_2O_3$  or  $B_2O_3$  to  $Al_2O_3$  made it less susceptible to inhibition by  $H_2O$ .

Regarding the promoting effect of  $In_2O_3$  at lower temperature, it was concluded that a close interaction between  $In_2O_3$  and  $Al_2O_3$  is needed, because  $In_2O_3$  by itself does not affect the gas composition under these conditions. The promoting effect could be due to that  $In_2O_3$  consumes a species which would otherwise inhibit the reaction; come from the creation of a more efficient reaction path; or formation of additional or more active reaction sites.

# Acknowledgements

This work was supported by the Swedish Research Council, the Swedish Energy Agency, and the Competence Centre for Catalysis hosted by Chalmers University of Technology and financially supported by the Swedish Energy Agency and the member companies: AB Volvo, Volvo Car Corporation, Scania CV AB, Saab Automobile Powertrain AB, Haldor Topsøe A/S, and the Swedish Space Corporation.

# References

- [1] S. Kahn Ribeiro, S. Kobayashi, M. Beuthe, J. Gasca, D. Greene, D.S. Lee, Y. Muromachi, P.J. Newton, S. Plotkin, D. Sperling, R. Wit, P.J. Zhou, in: B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom/New York, NY, USA, 2007.
- [2] S. Kajitani, Z.L. Chen, M. Konno, K.T. Rhee, Soc. Automotive Eng. SP-1298 (1997) 35-44.
- [3] R. Egnell, Soc. Automotive Eng. SP-1608 (2001) 251–265.
- [4] P. Ahlvik, Å. Brandberg, Well-to-Wheel Efficiency for Alternative Fuels from Natural Gas or Biomass, 2001:85, Swedish National Road Administration, 2001.
- [5] R. Edwards, J.-F. Larivé, V. Mahieu, P. Rouveirolles, WELL-to-WHEELS Report, Version 2c, March 2007, http://ies.jrc.ec.europa.eu/WTW.
- [6] S. Erkfeldt, A. Palmqvist, E. Jobson, Top. Catal. 42–43 (2007) 149–152.
- [7] S. Erkfeldt, A. Palmqvist, M. Petersson, Appl. Catal. B 102 (2011) 547-554
- [8] S. Tamm, H.H. Ingelsten, M. Skoglundh, A.E.C. Palmqvist, Top. Catal. 52 (2009) 1813–1816.
- [9] M. Alam, O. Fujita, K. Ito, Proc. Inst. Mech. Eng. Part A: J. Power Energy 218 (2004) 89–95.
- [10] M. Alam, O. Fujita, K. Ito, S. Kajitani, M. Konno, M. Oguma, ICE: Am. Soc. Mech. Eng. 33 (1999) 61–68.
- [11] M. Alam, O. Fujita, K. Ito, S. Kajitani, M. Oguma, H. Machida, Soc. Automotive Eng. SP-1482 (1999) 175–182.

- [12] S.G. Masters, D. Chadwick, Appl. Catal. B 23 (1999) 235-246.
- [13] S.G. Masters, D. Chadwick, Catal. Today 42 (1998) 137-143.
- [14] S. Tamm, H.H. Ingelsten, A.E.C. Palmqvist, Catal. Lett. 123 (2008) 233–238.
- [15] E. Ozensoy, D. Herling, J. Szanyi, Catal. Today 136 (2008) 46-54.
- [16] K. Masuda, K. Shinoda, T. Kato, K. Tsujimura, Appl. Catal. B 15 (1998) 29–35.
- [17] K. Masuda, K. Tsujimura, K. Shinoda, T. Kato, Appl. Catal. B 8 (1996) 33-40.
- [18] S.G. Masters, D. Chadwick, Catal. Lett. 61 (1999) 65-69.
- [19] S. Tamm, H. Ingelsten, A. Palmqvist, Catal. Lett. (2011) 1-9.
- [20] S. Tamm, H.H. Ingelsten, M. Skoglundh, A.E.C. Palmqvist, Appl Catal. B 91 (2009) 234–241.
- [21] S. Tamm, H.H. Ingelsten, M. Skoglundh, A.E.C. Palmqvist, J. Catal. 276 (2010) 402–411.
- [22] A.Y. Stakheev, P. Gabrielsson, US Patent No. 7,850,935 B2, Haldor Topsoe A/S, Den. (2010).
- [23] M. Haneda, Y. Kintaichi, N. Bion, H. Hamada, Appl. Catal. B: Environ. 42 (2003)
- 57–68. [24] T. Maunula, Y. Kintaichi, M. Haneda, H. Hamada, Catal. Lett. 61 (1999) 121–130.
- [25] P.W. Park, C.S. Ragle, C.L. Boyer, M.L. Balmer, M. Engelhard, D. McCready, J. Catal. 210 (2002) 97–105.
- [26] M. Boutros, J.-M. Trichard, P. Da Costa, Top. Catal. 52 (2009) 1780–1785.
- [27] Y. Miyahara, M. Takahashi, T. Masuda, S. Imamura, H. Kanai, S. Iwamoto, T. Watanabe, M. Inoue, Appl. Catal. B 84 (2008) 289–296.
- [28] M. Boutros, J. Starck, B. de Tymowski, J.-M. Trichard, P. Da Costa, Top. Catal. 52 (2009) 1786–1790.
- [29] K.I. Shimizu, M. Takamatsu, K. Nishi, H. Yoshida, A. Satsuma, T. Tanaka, S. Yoshida, T. Hattori, J. Phys. Chem. B 103 (1999) 1542–1549.
- [30] T. Maunula, Y. Kintaichi, M. Inaba, M. Haneda, K. Sato, H. Hamada, Appl. Catal. B 15 (1998) 291–304.
- [31] K.-i. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B 16 (1998) 319-326.
- [32] M. Takahashi, T. Nakatani, S. Iwamoto, T. Watanabe, M. Inoue, Appl. Catal. B 70 (2007) 73–79.

- [33] A. Luminita Petre, B. Bonnetot, A. Gervasini, A. Auroux, Stud. Surf. Sci. Catal. 143 (2000) 747–755.
- [34] J.A. Perdigon-Melon, A. Gervasini, A. Auroux, J. Catal. 234 (2005) 421-430.
- [35] J. Li, J. Hao, X. Cui, L. Fu, Catal. Lett. 103 (2005) 75–82.
- [36] G.E. Marnellos, E.A. Efthimiadis, I.A. Vasalos, Appl. Catal. B 48 (2004) 1–15.
- [37] D.N. Tran, C.L. Aardahl, K.G. Rappe, P.W. Park, C.L. Boyer, Appl. Catal. B 48 (2004) 155–164.
- [38] M. Haneda, Y. Kintaichi, H. Hamada, Catal. Lett. 55 (1998) 47-55.
- [39] M. Haneda, E. Joubert, J.-C. Ménézo, D. Duprez, J. Barbier, N. Bion, M. Daturi, J. Saussey, J.-C. Lavalley, H. Hamada, J. Mol. Catal. A: Chem. 175 (2001) 179–188.
- [40] S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309-319.
- [41] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373-380.
- [42] F.M. Bautista, J.M. Campelo, A. Garcia, D. Luna, J.M. Marinas, M.C. Moreno, A.A. Romero, J.A. Navio, M. Macias, J. Catal. 173 (1998) 333–344.
- [43] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed., Elsevier,
- [44] P. Dagaut, J. Luche, M. Cathonnet, Combust. Sci. Technol. 165 (2001) 61-84.
- [45] K.A. Bethke, H.H. Kung, J. Catal. 172 (1997) 93-102.
- [46] F.C. Meunier, J.P. Breen, V. Zuzaniuk, M. Olsson, J.R.H. Ross, J. Catal. 187 (1999) 493–505
- [47] T.A. Semelsberger, K.C. Ott, R.L. Borup, H.L. Greene, Appl. Catal. B 61 (2005) 281–287.
- [48] T. Mathew, Y. Yamada, A. Ueda, H. Shioyama, T. Kobayashi, Catal. Lett. 100 (2005) 247–253.
- (2003) 247-233. [49] A.L. Peter, J.A. Perdigón-Melón, A. Gervasini, A. Auroux, Top. Catal. 19 (2002)
- 271–281. [50] H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, M. Tabata, Appl. Catal. 75 (1991) L1–L8.
- [51] C.K. Narula, M. Rokosz, L.F. Allard, R.J. Kudla, M.S. Chattha, Langmuir 16 (2000) 3818–3822.