

模式识别与机器学习

4.15、Softmax判据的概念

」引言

逻辑回归输出:属于正类的后验概率

sigmoid
$$(\boldsymbol{w}^T\boldsymbol{x} + w_0) = p(C_1|\boldsymbol{x})$$

」引言

对于多类而言,

每类的后验概率如何表达?

一个类与剩余类的后验概率比率

- 逻辑回归是由Logit变换反推出来的。
- 由Logit变换可知:正负类后验概率比率的对数是一个线性函数。

$$\ln rac{p(C_1|oldsymbol{x})}{p(C_2|oldsymbol{x})} = oldsymbol{w}^Toldsymbol{x} + w_0 \; \Rightarrow \; rac{p(C_1|oldsymbol{x})}{p(C_2|oldsymbol{x})} = \exp \left(oldsymbol{w}^Toldsymbol{x} + w_0
ight)$$

• 分类K个类,可以构建K个线性判据。第i个线性判据表示 C_i 类与剩余类的分类边界,剩余类用一个参考负类(reference class) C_K 来表达。

$$rac{p(C_i|oldsymbol{x})}{p(C_K|oldsymbol{x})} = \exp{(oldsymbol{w}_i^Toldsymbol{x} + w_{0i})} \quad ext{ where } K
eq i$$

参考类的后验概率 $p(C_K|x)$

• 由于所有类别后验概率之和为1,参考类 C_K 的后验概率为:

$$p(C_K|oldsymbol{x}) = 1 - \sum_{i=1}^{K-1} p(C_i|oldsymbol{x}) \qquad \qquad \frac{p(C_i|oldsymbol{x})}{p(C_K|oldsymbol{x})} = \exp{(oldsymbol{w}_i^Toldsymbol{x} + w_{0i})}$$

$$= 1 - p(C_K | \boldsymbol{x}) \sum_{i=1}^{K-1} \exp(\boldsymbol{w}_i^T \boldsymbol{x} + w_{0i})$$

$$\Rightarrow \ p(C_K|oldsymbol{x}) = rac{1}{1 + \sum_{i=1}^{K-1} \exp{(oldsymbol{w}_i^Toldsymbol{x} + w_{0i})}}$$

任意正类的后验概率 $p(C_i|x)$

■ 任意正类 $C_i(i \neq K)$ 的后验概率为:

$$\frac{p(C_i|\boldsymbol{x})}{p(C_K|\boldsymbol{x})} = \exp(\boldsymbol{w}_i^T \boldsymbol{x} + w_{0i})$$

$$\Rightarrow p(C_i|\boldsymbol{x}) = \frac{\exp(\boldsymbol{w}_i^T \boldsymbol{x} + w_{0i})}{1 + \sum_{i=1}^{K-1} \exp(\boldsymbol{w}_j^T \boldsymbol{x} + w_{0j})}$$

重新审视参考负类的后验概率 $p(C_K|x)$

• 把 $p(C_K|x)$ 参照 $p(C_i|x)$ 的形式,可以类比得到:

$$p(C_K|\mathbf{x}) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^T \mathbf{x} + w_{0j})}$$

$$p(C_i|\mathbf{x}) = \frac{\exp(\mathbf{w}_i^T \mathbf{x} + w_{0i})}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^T \mathbf{x} + w_{0j})}$$

$$\Rightarrow \exp(\boldsymbol{w}_K^T \boldsymbol{x} + w_{0K}) = 1$$

$$\boldsymbol{w}_K^T \boldsymbol{x} + w_{0K} = 0$$

I 后验概率: 多类情况

任意类的后验概率 $p(C_i|x)$

■ 因此,得到任意一个类的后验概率 $p(C_i|x)$:

$$p(C_i|\boldsymbol{x}) = \frac{\exp(\boldsymbol{w}_i^T \boldsymbol{x} + w_{0i})}{\sum\limits_{j=1}^K \exp(\boldsymbol{w}_j^T \boldsymbol{x} + w_{0j})}, \quad i = 1, 2, \dots, K$$

■ 可见,对于多类分类(K > 2), K个线性模型也跟每个类对应的后验概率建立起了联系。

I Softmax 函数

Softmax函数

softmax:
$$z_i = \frac{\exp(y_i)}{\sum_{j=1}^{K} \exp(y_j)}, i = 1, 2, ..., K$$

- 该后验概率计算方法被称作softmax函数:
 - 如果一个类 C_i 对应的 y_i (即线性模型的输出)远远大于其他类的,经过exp函数和归一化操作,该类的后验概率 $p(C_i|x)$ 接近于1,其他类的后验概率接近于0,则softmax决策就像是一个max函数。
 - ✓ 但是,该函数又是可微分的,所以称作"软最大值函数"。

I Softmax判据

Softmax判据

■ Softmax判据: K个线性判据 + softmax函数。

Softmax判据的决策过程

• 给定测试样本x,经由线性模型和softmax函数计算K个类对应的后验概率, x属于最大后验概率对应的类别。

$$l(\boldsymbol{x}) = rg \max_{i} p(C_i | \boldsymbol{x}) = rg \max_{i} rac{\exp(\boldsymbol{w}_i^T \boldsymbol{x} + w_{0i})}{\sum\limits_{j=1}^K \exp(\boldsymbol{w}_j^T \boldsymbol{x} + w_{0j})}$$

决策边界

Softmax判据的决策边界

- Softmax判据用于分类,等同于基于one-to-all策略的线性机。
 - \checkmark 决策区域相邻的两类 C_i 和 C_j ,它们的决策边界 H_{ij} 为线性:

$$p(C_i|\mathbf{x}) = p(C_j|\mathbf{x})$$

$$\Rightarrow \exp(\mathbf{w}_i^T \mathbf{x} + w_{0i}) = \exp(\mathbf{w}_j^T \mathbf{x} + w_{0j})$$

$$\Rightarrow \mathbf{w}_i^T \mathbf{x} + w_{0i} = \mathbf{w}_j^T \mathbf{x} + w_{0j}$$

$$\Rightarrow (\mathbf{w}_i - \mathbf{w}_j)^T \mathbf{x} + (w_{0i} - w_{0j}) = 0$$

Softmax判据决策示例

- K = 3
- 细线: 3条线性方程 $\mathbf{w}_i^T \mathbf{x} + w_{0i}$; 粗线: softmax判据决策边界。

▮ Softmax判据与神经网络

Softmax判据与神经网络

- 相当于由K个神经元组成的神经网络输出层,每个神经元输出值代表属于该类的后验概率 $p(C_i|x) \in [0,1]$ 。
- 注意: $\sum_{i=1}^{K} p(C_i|\mathbf{x}) = 1$

■ Softmax判据的决策过程可以进一步表达为:

$$l(\boldsymbol{x}) = \arg\max_{i} \operatorname{softmax}(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{w}_0)$$

where
$$\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_K]^T$$
, $\mathbf{w}_0 = [w_{01}, \dots, w_{0K}]^T$

对比: 线性机模型

I适用范围

适用范围: 分类

• 前提:每个类和剩余类之间是线性可分的。

适用范围:回归

■ 范围:可以拟合指数函数 (exp) 形式的非线性曲线。

总结

总结

- Softmax判据本身是一个非线性模型。
- Softmax判据用于分类:只能处理多个类别、每个类别与剩余类线性可分的情况。但是,Softmax判据可以输出后验概率。因此,Softmax判据比基于one-to-all策略的线性机向前迈进了一步。
- Softmax判据用于拟合:可以输出有限的非线性曲线。

▮模型对比

模型	线性判据	逻辑回归	Softmax判据	MAP分类器
模型表达	$\boldsymbol{w}^T\boldsymbol{x} + w_0$	sigmoid($\mathbf{w}^T \mathbf{x} + w_0$)	$p(C_i \mathbf{x})$ $= \frac{\exp(\mathbf{w}_i^T \mathbf{x} + w_{0i})}{\sum_{j=1}^K \exp(\mathbf{w}_j^T \mathbf{x} + w_{0j})}$	$p(C_i \mathbf{x}) = \frac{p(\mathbf{x} C_i)p(C_i)}{p(\mathbf{x})}$
模型属性	线性	非线性	非线性	线性/非线性
决策边界	线性	线性	线性	线性/ 非线性
输出信号	几何距离	后验概率	后验概率	后验概率
分类	二类分类 (线性可分)	二类分类 (线性可分)	多类分类 (每类与剩余类线性 可分)	多类分类 (线性可分/不可 分)
回归	拟合线性	拟合非线性曲线 (sigmoid形)	拟合非线性曲线 (exp形)	

Softmax判据如何学习?