2 - Existence of optimal solutions and optimality conditions

Mauro Passacantando

Department of Computer Science, University of Pisa mauro.passacantando@unipi.it

Optimization Methods and Game Theory

Master of Science in Artificial Intelligence and Data Engineering
University of Pisa – A.Y. 2020/21

Optimization problem in standard form

$$\begin{cases} \min f(x) \\ g(x) \le 0 \\ h(x) = 0 \end{cases}$$

- $f: \mathbb{R}^n \to \mathbb{R}$ is the objective function
- $ightharpoonup g(x) = (g_1(x), \dots, g_m(x)), \text{ where } g_i : \mathbb{R}^n \to \mathbb{R}, i = 1, \dots, m \text{ are the } i = 1, \dots, m$ inequality constraints functions
- $h(x) = (h_1(x), \dots, h_p(x)),$ where $h_j : \mathbb{R}^n \to \mathbb{R}, j = 1, \dots, p$ are the equality constraints functions

Domain:
$$\mathfrak{D} = \mathsf{dom}(f) \cap \bigcap_{i=1}^m \mathsf{dom}(g_i) \cap \bigcap_{j=1}^p \mathsf{dom}(h_j)$$

Feasible region: $\Omega = \{x \in \mathfrak{D} : g(x) \leq 0, h(x) = 0\}$

Feasible region:
$$\Omega = \{x \in \mathcal{D} : g(x) \le 0, h(x) = 0\}$$

implicit constraint:
$$x \in \mathcal{D}$$
 explicit constraints: $g(x) \le 0$, $h(x) = 0$

From now on, we will only consider minimization problems since

$$\max\{f(x): x \in \Omega\} = -\min\{-f(x): x \in \Omega\}.$$

Global and local optima

Optimal value: $v^* = \inf\{f(x): x \in \Omega\}$ $v^* \in \mathbb{R}$ if the problem is bounded below $v^* = -\infty$ if the problem is unbounded below $v^* = +\infty$ if the problem is infeasible, i.e., $\Omega = \emptyset$

Global optimal solution (or global optimum): a feasible point $x^* \in \Omega$ s.t. $f(x^*) \le f(x)$ for all $x \in \Omega$. arg min $\{f(x): x \in \Omega\}$ denotes the set of global minima.

Local optimal solution (or local optimum): a feasible point $x^* \in \Omega$ s.t. $f(x^*) \le f(x)$ for all $x \in \Omega \cap B(x^*, R)$ for some R > 0.

Examples

- $f(x) = \log(x)$, $v^* = -\infty$, no optimal solution
- $f(x) = x^3 3x$, $v^* = -\infty$, $x^* = 1$ is a local optimum
- $f(x) = e^x$, $v^* = 0$, no optimal solution
- $f(x) = x \log(x)$, $v^* = -1/e$, $x^* = 1/e$ is a global optimum
- ▶ $f(x) = 3x^4 8x^3 6x^2 + 24x + 19$, $v^* = 0$, $x^* = -1$ is a global optimum and $\tilde{x} = 2$ is a local optimum

Convex optimization problems

An optimization problem $\begin{cases} \min f(x) \\ g(x) \le 0 \text{ is said convex if:} \\ h(x) = 0 \end{cases}$

- objective function f is convex
- \triangleright inequality constraints g_1, \ldots, g_m are convex functions
- equality constraints h_1, \ldots, h_p are affine functions (i.e., $h_i(x) = c^\top x + d$)

Examples

a) Problem
$$\begin{cases} & \min \ x_1^2 + x_1x_2 + 3x_2^2 + 4x_1 + 5x_2 \\ & x_1^2 + x_2^2 - 4 \le 0 \\ & x_1 + x_2 - 2 = 0 \end{cases}$$
 is convex

b) Problem
$$\begin{cases} & \min \ x_1^2 + x_2^2 \\ & x_1/(1+x_2^2) \le 0 \\ & (x_1+x_2)^2 = 0 \end{cases}$$
 is NOT convex,

but it is equivalent to the problem $\begin{cases} & \min x_1^2 + x_2^2 \\ & x_1 \le 0 \end{cases}$

that is convex.

Why convex problems are important?

Theorem 1

In any convex optimization problem the feasible region is a convex set.

Theorem 2

In any convex optimization problem any local optimum is a global optimum.

Proof. Let x^* be a local optimum, i.e. there is R > 0 s.t.

$$f(x^*) \le f(z) \quad \forall z \in \Omega \cap B(x^*, R).$$

By contradiction, assume that x^* is not a global optimum, i.e., there is $y \in \Omega$ s.t. $f(y) < f(x^*)$. Take $\alpha \in (0,1)$ s.t. $\alpha x^* + (1-\alpha)y \in B(x^*,R)$. Then we have

$$f(x^*) \le f(\alpha x^* + (1 - \alpha)y) \le \alpha f(x^*) + (1 - \alpha)f(y) < f(x^*),$$

which is impossible.

Existence of global optima

Theorem (Weierstrass)

If the objective function f is continuous and the feasible region Ω is closed and bounded, then there exists a global optimum.

Proof. Let $v^* = \inf_{x \in \Omega} f(x)$. Define a minimizing sequence $\{x^k\} \subseteq \Omega$ s.t. $f(x^k) \to v^*$. Since $\{x^k\}$ is bounded, the Bolzano-Weierstrass theorem guarantees that there exists a subsequence $\{x^{k_p}\}$ converging to some point x^* . Since Ω is closed, we get $x^* \in \Omega$.

Finally, $f(x^{k_p}) \to f(x^*)$ since f is continuous. Therefore, $f(x^*) = v^*$, i.e., x^* is a global

optimum.

Corollary 1

If all the functions f, g_i, h_i are continuous, the domain \mathcal{D} is closed and the feasible region Ω is bounded, then there exists a global optimum.

Example

$$\begin{cases} \min x_1 + x_2 \\ x_1^2 + x_2^2 - 4 \le 0 \end{cases}$$

admits a global optimum. Where?

Existence of global optima

Corollary 2

If the objective function f is continuous, the feasible region Ω is closed and there exists $\alpha \in \mathbb{R}$ such that the α -sublevel set

$$S_{\alpha}(f) = \{x \in \Omega : f(x) \le \alpha\}$$

is nonempty and bounded, then there exists a global optimum.

Proof. Minimizing f on Ω is equivalent to minimize f on $S_{\alpha}(f)$.

Example

$$\begin{cases} \min e^{x_1 + x_2} \\ x_1 - x_2 \le 0 \\ -2x_1 + x_2 \le 0 \end{cases}$$

f is continuous, Ω is closed and unbounded. But the sublevel set $S_2(f)=\{x\in\Omega:\ f(x)\leq 2\}$ is nonempty and bounded, thus there exists a global optimum.

Existence of global optima

Corollary 3

If the objective function f is continuous and coercive, i.e.,

$$\lim_{\|x\|\to\infty}f(x)=+\infty,$$

and the feasible region Ω is closed, then there exists a global optimum.

Proof. Any sublevel set of f is bounded, then use Corollary 2.

Example

$$\begin{cases} \min x^4 + 3x^3 - 5x^2 + x - 2 \\ x \in \mathbb{R} \end{cases}$$

Since f is coercive, there exists a global optimum.

Existence and uniqueness of global optima

Corollary 4

- ▶ If f is strongly convex and Ω is closed, then there exists a global optimum.
- ▶ If f is strongly convex and Ω is closed and convex, then there exists a unique global optimum.

Proof. Any strongly convex function is coercive, then use Corollary 3.

Example. Any quadratic programming problem

$$\begin{cases} \min \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x \\ A x \le b \end{cases}$$

where Q is a positive definite matrix has a unique global optimum.

What if Q is positive semidefinite or indefinite?

Existence of global optima for quadratic programming problems

Consider

$$\begin{cases}
\min \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x \\
A x \le b
\end{cases} \tag{P}$$

The recession cone of Ω is $rec(\Omega) = \{d : Ad \leq 0\}$.

Theorem (Eaves)

- (P) has a global optimum if and only if the following conditions hold:
- (a) $d^T Q d \ge 0$ for any $d \in rec(\Omega)$,
- (b) $d^{\mathsf{T}}(Qx+c) \geq 0$ for any $x \in \Omega$ and any $d \in \operatorname{rec}(\Omega)$ s.t. $d^{\mathsf{T}}Qd = 0$.

Existence of global optima for quadratic programming problems

Special cases:

- ▶ If Q = 0 (i.e., linear programming) then (P) has a global optimum if and only if $d^{\mathsf{T}}c > 0$ for any $d \in \operatorname{rec}(\Omega)$.
- ▶ If Q is positive definite, then (a) and (b) are satisfied.
- If Ω is bounded, then (a) and (b) are satisfied.

Exercise 2.1. Prove that the quadratic programming problem

$$\begin{cases}
\min \frac{1}{2}x_1^2 - \frac{1}{2}x_2^2 + x_1 - 2x_2 \\
-x_1 + x_2 \le -1 \\
-x_2 \le 0
\end{cases}$$

has a global optimum.

Consider the unconstrained problem: $\min\{f(x): x \in \mathbb{R}^n\}$.

Theorem (Necessary optimality condition)

If x^* is a local optimum, then

$$\nabla f(x^*)=0.$$

First order optimality conditions

Proof. By contradiction, assume that $\nabla f(x^*) \neq 0$. Choose direction $d = -\nabla f(x^*)$, define $\varphi(t) = f(x^* + td)$.

$$\varphi'(0) = d^{\mathsf{T}} \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0,$$

thus $f(x^* + td) < f(x^*)$ for all t small enough, which is impossible because x^* is a local optimum.

Optimality condition for unconstrained convex problems

If f is convex, then x^* is a global optimum if and only if $\nabla f(x^*) = 0$.

Constrained problems

Example.

$$\begin{cases} \min x_1 + x_2 \\ x_1^2 + x_2^2 - 4 \le 0 \end{cases}$$

 $\Omega = B(0,2)$, global optimum is $x^* = (-\sqrt{2}, -\sqrt{2})$, $\nabla f(x^*) = (1,1)$.

Definition - Tangent cone

Given $x \in \Omega$, the set

$$T_{\Omega}(x) = \left\{ d \in \mathbb{R}^n : \exists \left\{ z_k \right\} \subset \Omega, \ \exists \left\{ t_k \right\} > 0, \ z_k \to x, \ t_k \to 0, \ \lim_{k \to \infty} \frac{z_k - x}{t_k} = d \right\}$$

is called the *tangent cone* to Ω at x.

Example (continued). What is $T_{\Omega}(x^*)$?

First order necessary optimality condition

Theorem

If x^* is a local optimum, then

$$d^{\mathsf{T}} \nabla f(x^*) \geq 0, \qquad \forall \ d \in \mathcal{T}_{\Omega}(x^*).$$

Proof. By contradiction, assume that there exists $d \in T_{\Omega}(x^*)$ s.t. $d^T \nabla f(x^*) < 0$. Take the sequences $\{z_k\}$ and $\{t_k\}$ s.t. $\lim_{k\to\infty}(z_k-x^*)/t_k=d$. Then $z_k=x^*+t_k\,d+o(t_k)$, where $o(t_k)/t_k \to 0$. The first order approximation of f gives

$$f(z_k) = f(x^*) + t_k d^{\mathsf{T}} \nabla f(x^*) + o(t_k),$$

thus there is $\bar{k} \in \mathbb{N}$ s.t.

$$\frac{f(z_k) - f(x^*)}{t_k} = d^{\mathsf{T}} \nabla f(x^*) + \frac{o(t_k)}{t_k} < 0 \qquad \forall \ k > \bar{k},$$

i.e. $f(z_k) < f(x^*)$ for all $k > \bar{k}$, which is impossible because x^* is a local optimum.

First order optimality condition for convex problems

Theorem

If Ω is convex, then $\Omega \subseteq T_{\Omega}(x) + x$ for any $x \in \Omega$.

Optimality condition for constrained convex problems

If the optimization problem is convex, then x^* is a global optimum if and only if

First order optimality conditions

$$(y - x^*)^T \nabla f(x^*) \ge 0, \quad \forall y \in \Omega.$$

Exercise 2.2. Prove the latter result.

Properties of the tangent cone

 $T_{\Omega}(x)$ is related to geometric properties of Ω .

Which is the relation between $T_{\Omega}(x)$ and constraints g, h defining Ω ?

Example (continued).
$$g(x) = x_1^2 + x_2^2 - 4$$
, $\nabla g(x^*) = (-2\sqrt{2}, -2\sqrt{2})$, $T_{\Omega}(x^*) = \{d \in \mathbb{R}^2 : d^{\mathsf{T}} \nabla g(x^*) \leq 0\}$

First order optimality conditions

Definition – First-order feasible direction cone

Given $x \in \Omega$, the set $\mathcal{A}(x) = \{i: g_i(x) = 0\}$ denotes the set of inequality constraints which are active at x. The set

$$D(x) = \left\{ d \in \mathbb{R}^n : \begin{array}{ll} d^\mathsf{T} \nabla g_i(x) \leq 0 & \forall \ i \in \mathcal{A}(x), \\ d^\mathsf{T} \nabla h_j(x) = 0 & \forall \ j = 1, \dots, p \end{array} \right\}$$

is called the first-order feasible direction cone at x.

Properties of the tangent cone

Theorem

 $T_{\Omega}(x) \subseteq D(x)$ for all $x \in \Omega$.

Definition – Abadie Constraints Qualification (ACQ)

If $T_{\Omega}(x) = D(x)$, then the Abadie Constraints Qualification holds at x.

Remark

In general, ACQ does not hold at any $x \in \Omega$.

Example

$$\begin{cases} \min x_1 + x_2 \\ (x_1 - 1)^2 + (x_2 - 1)^2 - 1 \le 0 \\ x_2 \le 0 \end{cases}$$

First order optimality conditions

$$\Omega = \{(1,0)\}, \ T_{\Omega}(1,0) = \{(0,0)\}.$$

$$\nabla g_1(1,0) = (0,-2), \ \nabla g_2(1,0) = (0,1), \ D(1,0) = \{d \in \mathbb{R}^2: \ d_2 = 0\}.$$

a) (Affine constraints)

Properties of the tangent cone

Theorem - Sufficient conditions for ACQ

If g_i and h_i are affine for all i = 1, ..., m and j = 1, ..., p, then ACQ holds at any $x \in \Omega$. **b)** (Slater condition)

First order optimality conditions

- If g_i are convex for all $i=1,\ldots,m,\ h_i$ are affine for all $j=1,\ldots,p$ and there exists $\bar{x} \in \text{int}(\mathcal{D})$ s.t. $g(\bar{x}) < 0$ and $h(\bar{x}) = 0$, then ACQ holds at any $x \in \Omega$.
- c) (Linear independence of the gradients of active constraints) If $\bar{x} \in \Omega$ and the vectors

$$\begin{cases} \nabla g_i(\bar{x}) & \text{for } i \in \mathcal{A}(\bar{x}), \\ \nabla h_j(\bar{x}) & \text{for } j = 1, \dots, p \end{cases}$$

are linear independent, then ACQ holds at \bar{x} .

Why ACQ is important?

Karush-Kuhn-Tucker Theorem

If x^* is a local optimum and ACQ holds at x^* , then there exist $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ s.t. (x^*, λ^*, μ^*) satisfies the KKT system:

$$\begin{cases} \nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) + \sum_{j=1}^p \mu_j^* \nabla h_j(x^*) = 0 \\ \lambda_i^* g_i(x^*) = 0 & \forall i = 1, \dots, m \\ \lambda^* \ge 0 \\ g(x^*) \le 0 \\ h(x^*) = 0 \end{cases}$$

Exercise 2.3. Use the KKT Theorem to solve the optimization problem

$$\begin{cases} \min x_1 - x_2 \\ x_1^2 + x_2^2 - 2 \le 0 \end{cases}$$

Karush-Kuhn-Tucker Theorem

Remark

ACQ assumption is crucial in the KKT Theorem.

Example.

$$\begin{cases} \min x_1 + x_2 \\ (x_1 - 1)^2 + (x_2 - 1)^2 - 1 \le 0 \\ x_2 \le 0 \end{cases}$$

 $x^* = (1,0)$ is the global optimum.

$$T_{\Omega}(x^*) = \{0\}, \ D(x^*) = \{d \in \mathbb{R}^2 : \ d_2 = 0\}, \ \text{hence ACQ does not hold at } x^*.$$

$$\nabla g_1(x^*) = (0, -2)$$
, $\nabla g_2(x^*) = (0, 1)$, $\nabla f(x^*) = (1, 1)$, hence there is no λ^* s.t. (x^*, λ^*) solves KKT system.

KKT Theorem gives necessary optimality conditions, but not sufficient ones.

First order optimality conditions

Example.

$$\begin{cases} \min x_1 + x_2 \\ -x_1^2 - x_2^2 + 2 \le 0 \end{cases}$$

 $x^* = (1,1), \ \lambda^* = \frac{1}{2}$ solves KKT system, but x^* is not a local optimum.

KKT Theorem for convex problems

If the optimization problem is convex and (x^*, λ^*, μ^*) solves KKT system, then x^* is a global optimum.

Exercise 2.4. Prove the latter result.

Exercise 2.5. Compute the projection of a point $z \in \mathbb{R}^n$ on the hyperplane $\{x \in \mathbb{R}^n : a^\mathsf{T} x = b\}$

Exercise 2.6. Compute the projection of a point $z \in \mathbb{R}^n$ on the ball with center x^0 and radius r.

First order optimality conditions

Exercise 2.7. Compute the projection of a point $z \in \mathbb{R}^2$ on the box

$$\{x \in \mathbb{R}^2 : a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2\}.$$

Critical cone

Consider now a non-convex optimization problem.

If (x^*, λ^*, μ^*) solves the KKT system, x^* is a candidate to be a local optimum. Is really x^* a local optimum?

First order optimality conditions

Definition – Critical cone

If (x^*, λ^*, μ^*) solves the KKT system, then the critical cone is defined as

$$C(x^*, \lambda^*, \mu^*) = \left\{ d \in \mathbb{R}^n : \begin{array}{ll} d^\mathsf{T} \nabla g_i(x^*) = 0 & \forall \ i \in \mathcal{A}(x^*) \ \text{con} \ \lambda_i^* > 0 \\ d^\mathsf{T} \nabla g_i(x^*) \leq 0 & \forall \ i \in \mathcal{A}(x^*) \ \text{con} \ \lambda_i^* = 0 \\ d^\mathsf{T} \nabla h_j(x^*) = 0 & \forall \ j = 1, \dots, p \end{array} \right\}$$

Equivalent definition

$$C(x^*, \lambda^*, \mu^*) = \{ d \in D(x^*) : d^{\mathsf{T}} \nabla f(x^*) = 0 \}$$

Second order necessary optimality condition

The Lagrangian function is defined as

$$L(x,\lambda,\mu):=f(x)+\sum_{i=1}^m\lambda_i\,g_i(x)+\sum_{j=1}^p\mu_j\,h_j(x).$$

Necessary condition

Assume that (x^*, λ^*, μ^*) solves the KKT system and the gradients of active constraints at x^* are linear independent.

If x^* is a local optimum, then

$$d^{\mathsf{T}} \nabla^2_{xx} L(x^*, \lambda^*, \mu^*) d \ge 0 \qquad \forall d \in C(x^*, \lambda^*, \mu^*),$$

where $\nabla^2_{xx} L(x^*, \lambda^*, \mu^*)$ denotes the Hessian matrix of $L(\cdot, \lambda^*, \mu^*)$ at x^* .

Special case of unconstrained problems:

If x^* is a local optimum, then $\nabla^2 f(x^*)$ is positive semidefinite.

Second order necessary optimality condition

The previous theorem does not give a sufficient optimality condition.

Example.

$$\begin{cases} \min x_1^3 + x_2 \\ -x_2 \le 0 \end{cases}$$

 $x^* = (0,0), \lambda^* = 1$ is the unique solution of KKT system.

The linear constraint is active at x^* and $\nabla g(x^*) = (0, -1) \neq 0$.

Matrix $\nabla^2_{xx} L(x^*, \lambda^*) = 0$, but x^* is not a local optimum because f(t, 0) < f(0, 0) for all t < 0.

Sufficient condition

If (x^*, λ^*, μ^*) solves the KKT system and

$$d^{\mathsf{T}} \nabla^2_{xx} L(x^*, \lambda^*, \mu^*) d > 0 \qquad \forall d \in C(x^*, \lambda^*, \mu^*), d \neq 0,$$

then x^* is a local optimum.

Special case of unconstrained problems:

If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, then x^* is a local optimum.

Example. Find local and global optima of the following problem:

$$\begin{cases} \min -x_1 + x_2^2 \\ -x_1^2 - x_2^2 + 4 \le 0 \end{cases}$$

The problem is not convex because the inequality constraint is not a convex function.

There is no global optimum because the sequence of points $\{(k,0)\}$ is feasible and $\lim_{k\to +\infty} f(k,0) = -\infty$.

The ACQ holds in any feasible point because of the linear independence of the gradients of active constraints.

The solutions of the KKT system are:

a)
$$x^1 = (-2,0), \lambda^1 = 1/4;$$

b)
$$x^2 = (-1/2, \sqrt{15}/2), \lambda^2 = 1;$$

c)
$$x^3 = (-1/2, -\sqrt{15}/2), \lambda^3 = 1.$$

Therefore, there are 3 candidate points to be local optima. We have to investigate the second order conditions for each KKT solution.

The Lagrangian function is $L(x,\lambda)=-x_1+x_2^2+\lambda(4-x_1^2-x_2^2)$, hence its Hessian matrix is

$$\nabla_{xx}^2 L(x,\lambda) = \begin{pmatrix} -2\lambda & 0 \\ 0 & 2-2\lambda \end{pmatrix}.$$

a) The constraint is active at x^1 with $\lambda^1>0$ and $\nabla g(x^1)=(4,0)$, hence the critical cone

$$C(x^1, \lambda^1) = \left\{ d \in \mathbb{R}^2 : (4, 0)^\mathsf{T} d = 0 \right\} = \left\{ (0, d_2) : d_2 \in \mathbb{R} \right\}.$$

For any $d \in C(x^1, \lambda^1)$ with $d \neq 0$ we have

$$d^{\mathsf{T}}\nabla^2_{\mathsf{xx}}\mathsf{L}(\mathsf{x}^1,\lambda^1)d = (0,d_2)\left(\begin{array}{cc} -1/2\lambda & 0 \\ 0 & 3/2 \end{array}\right)\left(\begin{array}{c} 0 \\ d_2 \end{array}\right) = \frac{3}{2}d_2^2 > 0,$$

i.e., the second order sufficient optimality condition is satisfied, hence $x^1=(-2,0)$ is a local minimum.

b) The constraint is active at x^2 with $\lambda^2>0$ and $\nabla g(x^2)=(1,-\sqrt{15})$, hence the critical cone

$$C(x^2, \lambda^2) = \left\{ d \in \mathbb{R}^2 : \ (1, -\sqrt{15})^\mathsf{T} d = 0 \right\} = \left\{ (\sqrt{15}d_2, d_2) : \ d_2 \in \mathbb{R} \right\}.$$

For any $d \in C(x^2, \lambda^2)$ we have

$$d^{\mathsf{T}} \nabla^2_{xx} L(x^2, \lambda^2) d = (\sqrt{15} d_2, d_2) \begin{pmatrix} -2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{15} d_2 \\ d_2 \end{pmatrix} = -30 d_2^2 < 0,$$

whenever $d_2 \neq 0$, i.e., the second order necessary optimality condition is not satisfied, hence $x^2 = (-1/2, \sqrt{15}/2)$ is not a local minimum.

c) The constraint is active at x^3 with $\lambda^3>0$ and $\nabla g(x^3)=(1,\sqrt{15})$, hence the critical cone

$$C(x^3, \lambda^3) = \left\{ d \in \mathbb{R}^2 : \ (1, \sqrt{15})^{\mathsf{T}} d = 0 \right\} = \left\{ (-\sqrt{15}d_2, d_2) : \ d_2 \in \mathbb{R} \right\}.$$

For any $d \in C(x^3, \lambda^3)$ we have

$$d^{\mathsf{T}} \nabla^2_{xx} L(x^3, \lambda^3) d = (-\sqrt{15} d_2, d_2) \begin{pmatrix} -2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -\sqrt{15} d_2 \\ d_2 \end{pmatrix} = -30 d_2^2 < 0,$$

whenever $d_2 \neq 0$, i.e., the second order necessary optimality condition is not satisfied, hence $x^3 = (-1/2, -\sqrt{15}/2)$ is not a local minimum.

Exercise 2.8. Find local and global optima of the following non-convex problems:

a)
$$\left\{ \begin{array}{l} \min \; -2x_2^3 + x_1 \, x_2^2 + x_1^2 - 2 \, x_1 \, x_2 + 3 \, x_2^2 \\ x \in \mathbb{R}^2 \end{array} \right.$$

b)
$$\begin{cases} \min & -x_1^2 - 2x_2^2 \\ -x_1 + 1 \le 0 \\ -x_2 + 1 \le 0 \\ x_1 + x_2 - 6 \le 0 \end{cases}$$

c)
$$\begin{cases} \min x_1^3 + x_2^3 \\ -x_1 - 1 \le 0 \\ -x_2 - 1 \le 0 \end{cases}$$