PROBLEMS

In each of Problems 1 through 8, find the general solution of the given differential equation.

1.
$$y'' + 2y' - 3y = 0$$

2.
$$y'' + 3y' + 2y = 0$$

3.
$$6y'' - y' - y = 0$$

4.
$$2y'' - 3y' + y = 0$$

5.
$$y'' + 5y' = 0$$

6.
$$4y'' - 9y = 0$$

7.
$$y'' - 9y' + 9y = 0$$

8.
$$y'' - 2y' - 2y = 0$$

In each of Problems 9 through 16, find the solution of the given initial value problem. Sketch the graph of the solution and describe its behavior as t increases.

9.
$$y'' + y' - 2y = 0$$
, $y(0) = 1$, $y'(0) = 1$

10.
$$y'' + 4y' + 3y = 0$$
, $y(0) = 2$, $y'(0) = -1$

11.
$$6y'' - 5y' + y = 0$$
, $y(0) = 4$, $y'(0) = 0$

12.
$$y'' + 3y' = 0$$
, $y(0) = -2$, $y'(0) = 3$

13.
$$y'' + 5y' + 3y = 0$$
, $y(0) = 1$, $y'(0) = 0$

14.
$$2y'' + y' - 4y = 0$$
, $y(0) = 0$, $y'(0) = 1$

15.
$$y'' + 8y' - 9y = 0$$
, $y(1) = 1$, $y'(1) = 0$

16.
$$4y'' - y = 0$$
, $y(-2) = 1$, $y'(-2) = -1$

- 17. Find a differential equation whose general solution is $y = c_1 e^{2t} + c_2 e^{-3t}$.
- 18. Find a differential equation whose general solution is $y = c_1 e^{-t/2} + c_2 e^{-2t}$.

19. Find the solution of the initial value problem

$$y'' - y = 0$$
, $y(0) = \frac{5}{4}$, $y'(0) = -\frac{3}{4}$.

Plot the solution for 0 < t < 2 and determine its minimum value.

20. Find the solution of the initial value problem

$$2y'' - 3y' + y = 0$$
, $y(0) = 2$, $y'(0) = \frac{1}{2}$.

Then determine the maximum value of the solution and also find the point where the solution is zero.

- 21. Solve the initial value problem y'' y' 2y = 0, $y(0) = \alpha$, y'(0) = 2. Then find α so that the solution approaches zero as $t \to \infty$.
- 22. Solve the initial value problem 4y'' y = 0, y(0) = 2, $y'(0) = \beta$. Then find β so that the solution approaches zero as $t \to \infty$.

In each of Problems 23 and 24, determine the values of α , if any, for which all solutions tend to zero as $t \to \infty$; also determine the values of α , if any, for which all (nonzero) solutions become unbounded as $t \to \infty$.

23.
$$y'' - (2\alpha - 1)y' + \alpha(\alpha - 1)y = 0$$

24.
$$y'' + (3 - \alpha)y' - 2(\alpha - 1)y = 0$$

25. Consider the initial value problem

$$2y'' + 3y' - 2y = 0$$
, $y(0) = 1$, $y'(0) = -\beta$,

where $\beta > 0$.

- (a) Solve the initial value problem.
- (b) Plot the solution when $\beta = 1$. Find the coordinates (t_0, y_0) of the minimum point of the solution in this case.
- (c) Find the smallest value of β for which the solution has no minimum point.

26. Consider the initial value problem (see Example 5)

$$y'' + 5y' + 6y = 0$$
, $y(0) = 2$, $y'(0) = \beta$,

where $\beta > 0$.

- (a) Solve the initial value problem.
- (b) Determine the coordinates t_m and y_m of the maximum point of the solution as func-
- (c) Determine the smallest value of β for which $y_m \ge 4$.
- (d) Determine the behavior of t_m and y_m as $\beta \to \infty$.
- 27. Consider the equation ay'' + by' + cy = d, where a, b, c, and d are constants.
 - (a) Find all equilibrium, or constant, solutions of this differential equation.
 - (b) Let y_e denote an equilibrium solution, and let $Y = y y_e$. Thus Y is the deviation of a solution y from an equilibrium solution. Find the differential equation satisfied by Y.
- 28. Consider the equation ay'' + by' + cy = 0, where a, b, and c are constants with a > 0. Find conditions on a, b, and c such that the roots of the characteristic equation are:
 - (a) real, different, and negative.
 - (b) real with opposite signs.
 - (c) real, different, and positive.

3.2 Solutions of Linear Homogeneous Equations; the Wronskian

In the preceding section we showed how to solve some differential equations of the form

$$av'' + bv' + cv = 0,$$

where a, b, and c are constants. Now we build on those results to provide a clearer picture of the structure of the solutions of all second order linear homogeneous equations. In turn, this understanding will assist us in finding the solutions of other problems that we will encounter later.

To discuss general properties of linear differential equations, it is helpful to introduce a differential operator notation. Let p and q be continuous functions on an open interval I—that is, for $\alpha < t < \beta$. The cases for $\alpha = -\infty$, or $\beta = \infty$, or both, are included. Then, for any function ϕ that is twice differentiable on I, we define the differential operator L by the equation

$$L[\phi] = \phi'' + p\phi' + q\phi. \tag{1}$$

Note that $L[\phi]$ is a function on I. The value of $L[\phi]$ at a point t is

$$L[\phi](t) = \phi''(t) + p(t)\phi'(t) + q(t)\phi(t).$$

For example, if $p(t) = t^2$, q(t) = 1 + t, and $\phi(t) = \sin 3t$, then

$$L[\phi](t) = (\sin 3t)'' + t^2(\sin 3t)' + (1+t)\sin 3t$$

= -9\sin 3t + 3t^2\cos 3t + (1+t)\sin 3t.