

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA CIÊNCIAS DA COMPUTAÇÃO

Gabriel Medeiros Lopes Carneiro

Problemas de Empacotamento:

métodos de solução baseados em bottom-left

Florianópolis, SC 2023

Gabriel Medeiros Lopes Carneiro

Problemas de Empacotamento

Trabalho de conclusão de curso submetido ao curso de Ciências da Computação da Universidade Federal de Santa Catarina para a obtenção do título de Bacharel em Ciências da Computação.

Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Informática e Estatística Ciências da Computação

Orientador: Prof. Dr. Pedro Belin Castellucci Coorientador: Prof. Dr. Rafael de Santiago

Resumo

Este trabalho estuda estratégias de otimização para o problema de empacotamento de itens retangulares, com o uso da técnica bottom-left. A escolha dessa técnica se deve a dificuldade de usar métodos exatos para resolução em tempo hábil. Algoritmos serão implementados e instâncias de teste serão escolhidas para fins comparativos com os resultados de outros autores.

Palavras-chave: problema de empacotamento, otimização, heurística, pesquisa operacional.

Abstract

This work studies optimization strategies for the packing problem of rectangular items, using the bottom-left technique. The choice of this technique is due to the difficulty of using exact methods for timely resolution. Algorithms will be implemented and test instances will be chosen for comparative purposes with the results of other authors.

Keywords: packing problem, optimization, heuristic, operational research.

Lista de ilustrações

Figura 1 –	Representação para o problema de empacotamento 1D, 2D e 3D	8
Figura 2 –	Exemplo de modelo contínuo e discreto	11
Figura 3 –	A figura da direita mostra paças regular e irregulares. A esquerda	
	possui as mesmas peças porém com seus contornos convexos	13
Figura 4 –	Representação de alocação usando bottom-left	16
Figura 5 -	Resolvendo sobreposição e domínio infinito	17
Figura 6 –	Resolvendo sobreposição e domínio infinito	17
Figura 7 –	Resolvendo sobreposição e domínio infinito	18
Figura 8 -	Resolvendo sobreposição e domínio infinito	18
Figura 9 –	Resolvendo sobreposição e domínio infinito	19
Figura 10 –	Regiões criadas traçando uma linha vertical	19
Figura 11 –	Regiões criadas traçando uma linha horizontal	20
Figura 12 –	Regiões criadas maximizando uma das regiões	20
Figura 13 –	Regiões criadas possibilitando sobreposições	21

Lista de tabelas

Tabela 1 – Resultados da instância BKW01
Tabela 2 — Resultados da instância BKW02
Tabela 3 — Resultados da instância BKW 03
Tabela 4 — Resultados da instância BKW04
Tabela 5 — Resultados da instância BKW05
Tabela 6 – Resultados da instância BKW 06
Tabela 7 — Resultados da instância BKW07
Tabela 8 – Resultados da instância BKW 08
Tabela 9 — Resultados da instância BKW09
Tabela 10 – Resultados da instância BKW10
Tabela 11 – Resultados da instância BKW11
Tabela 12 – Resultados da instância BKW12
Tabela 13 – Resultados da instância BKW13
Tabela 14 – Resultados da instância GCUT01
Tabela 15 – Resultados da instância GCUT02
Tabela 16 – Resultados da instância GCUT03
Tabela 17 – Resultados da instância GCUT04
Tabela 18 – Resultados da instância GCUT05
Tabela 19 – Resultados da instância GCUT06
Tabela 20 — Resultados da instância GCUT07
Tabela 21 – Resultados da instância GCUT08
Tabela 22 – Resultados da instância GCUT09
Tabela 23 – Resultados da instância GCUT10
Tabela 24 – Resultados da instância GCUT11
Tabela 25 – Resultados da instância GCUT12
Tabela 26 – Resultados da instância GCUT13
Tabela 27 – Resultados da instância NGCUT01 49
Tabela 28 – Resultados da instância NGCUT02 50
Tabela 29 – Resultados da instância NGCUT03 5
Tabela 30 – Resultados da instância NGCUT04 55
Tabela 31 – Resultados da instância NGCUT05 53
Tabela 32 – Resultados da instância NGCUT06 54
Tabela 33 – Resultados da instância NGCUT07 58
Tabela 34 – Resultados da instância NGCUT08 56
Tabela 35 – Resultados da instância NGCUT09 5
Tabela 36 – Resultados da instância NGCUT10

Tabela 37 – Resultados da instância NGCUT11	59
Tabela 38 – Resultados da instância NGCUT12	60
Tabela 39 – Resultados da instância OF1	61
Tabela 40 – Resultados da instância OF2	62
Tabela 41 – Resultados da instância OKP1	63
Tabela 42 – Resultados da instância OKP2	64
Tabela 43 – Resultados da instância OKP3	65
Tabela 44 – Resultados da instância OKP4	66
Tabela 45 – Resultados da instância OKP5	67
Tabela 46 – Resultado da comparação entre Desc	67
Tabela 47 – Resultado da comparação entre SplitMode	68
Tabela 48 – Resultado da comparação entre OrderKey	68
Tabela 49 – Resultado da comparação entre ['Split', 'Order', 'Descending', 'Wons',	
'Draws', 'Quality %', 'Items %', 'Time (s)']	69
Tabela 50 – Configuração do computador de testes	69

Sumário

	INTRODUÇÃO	8
1	CONCEITOS BÁSICOS	10
1.1	Modelos de Otimização	10
1.2	Definições	10
1.3	Tipos de Modelo	11
1.3.1	Modelo Linear × Não-linear	11
1.3.2	Modelo Contínuo × Discreto	11
1.3.3	Modelo Determinístico × Estocástico	12
1.3.4	Tipos de Programação	
1.4	Métodos Exatos × Heurísticos	
2	PROBLEMA DE EMPACOTAMENTO	13
2.1	Definição	13
2.2	Classificação	14
2.3	Variantes	
3	BOTTOM-LEFT	16
3.1	Critérios de ordenação	16
3.2	Sobreposição e domínio infinito	17
3.3	Criação de regiões	
	Referências	22
	APÊNDICE A - RESULTADOS	23

Introdução

Este trabalho visa estudar o Problema de Empacotamento de peças retangulares em uma caixa também retangular no espaço de duas dimensões, sendo sua solução considerada NP-difícil (IORI; LIMA et al., 2022). Antes de abordar o problema (Capítulo 2) e buscar soluções alguns conceitos básicos são mostrados no Capítulo 1.

O Capítulo 1 foca em definições sobre otimização (seção 1.2) e em modelos de otimização (seção 1.1 e seção 1.3). No Capítulo 2 é dada a definição do problema (seção 2.1), para então mostrar algumas classificações (seção 2.2) e variantes (seção 2.3), por fim é explicada a heurística bottom-left (Capítulo 3), a qual será utilizada na resolução das instâncias de teste.

O problema tem várias aplicações nas indústrias de móveis, têxtil e metal-mecânica (QUEIROZ, 2022; CAVALI, 2004; BELLUZZO; MORABITO, 2005), além ser extremamente útil em carregamento de paletes e *containers* (MORABITO NETO; WIDMER, 1992). É possível dividir o problema de acordo com sua dimensão.

Problemas unidimensionais podem ser associados ao corte de barras ou canos, para atender uma demanda por peças de diferentes tamanhos. As indústrias de tecido ou couro usam o caso 2D para minimizar o desperdício ao se cortar suas peças. O caso 3D é facilmente associável ao carregamento de *containers*, onde objetos são geralmente caixas a serem alocadas em algum veículo. A Figura 1 mostra um exemplo para cada dimensão do problema.

Basicamente, pode-se aplicá-lo em qualquer área que precise de organização ou logística, bem como situações que envolvam o corte de algum material. Ao utilizar soluções para resolver problemas de empacotamento, é possível reduzir o desperdício de materiais e impacto ambiental, diminuir tempo de entregas e otimizar espaços de estoque.

Figura 1 – Representação para o problema de empacotamento 1D, 2D e 3D. Fonte: (CASTELLUCCI, 2019)

Introdução 9

Objetivos

O principal objetivo deste trabalho é estudar e compreender o problema de empacotamento bem como suas aplicações no mundo real. Outros objetivos mais específicos são: revisar a bibliografia, implementar heurísticas baseadas em *bottom-left*, definir instâncias de teste e analisar os dados obtidos e compará-los com os de outros autores.

1 Conceitos Básicos

Antes de estudar o problema, são necessários alguns conceitos básicos e definição formal de termos importantes para a área de Pesquisa Operacional e otimização. Pesquisa Operacional pode ser entendida como o estudo e a aplicação de métodos científicos para tomada de decisões em problemas complexos (ARENALES et al., 2007, p.IX). Ela permite modelar, analisar e solucionar tais problemas de modo, geralmente, satisfatório.

Neste capítulo será mostrado o que são modelos de otimização (seção 1.1) e seus tipos (seção 1.3), além de algumas definições sobre otimização (seção 1.2).

1.1 Modelos de Otimização

Modelos são aproximações da realidade, representam o problema de maneira simples e objetiva, usando restrições. Eles são o que baseiam a Pesquisa Operacional. De forma geral, um modelo de otimização quer minimizar ou maximizar uma função f(x) com x obedecendo algumas restrições. Pode-se então representar o modelo do seguinte modo:

$$\min/\max f(x), x \in \mathcal{X}.$$

Onde

- x: variável de decisão, $x = x_1, x_2, \dots, x_n$.
- \mathcal{X} : conjunto factível ou domínio, possui todas as soluções possíveis para o problema.
- f(x): função objetivo, a qual determinará o critério de escolha da solução.

1.2 Definições

A seguir serão dadas as definições de quatro expressões que aparecem com frequência no estudo de problemas de otimização.

Uma solução x' é **factível** somente se satisfaz todas as restrições dadas ao problema, ou seja, $x' \in \mathcal{X}$. Existem casos onde o problema não tem solução, possivelmente por muitas restrições terem sido aplicadas. Isso é chamado **problema infactível** e $\mathcal{X} = \emptyset$. Se para toda solução for possível encontrar outra melhor o problema é dito **ilimitado**.

Uma solução x' é **ótima** somente se for **factível** e possuir resultado melhor que as demais soluções, isto é, $f(x') \leq f(x), \forall x \in \mathcal{X}$ (caso seja um problema de maximização é necessário substituir " \leq " por " \geq "). Importante observar que existe somente solução ótima se o problema não for infactível nem ilimitado.

1.3 Tipos de Modelo

É importante saber diferenciar os modelos devido ao método de resolução que varia para cada um deles.

1.3.1 Modelo Linear × Não-linear

Modelos lineares possuem como função objetivo uma função linear e todas as restrições também são lineares. Exemplos:

- $\bullet \ f(x) = ax + b.$
- $f(x_1, x_2) = x_1 + x_2 5$.

Já os não-lineares não obedecem essa regra, podendo ter suas variáveis se multiplicando ou funções trigonométricas e logarítmicas. Exemplos:

- $f(x_1, x_2) = x_1^2 + x_2^2$.
- $f(x_1, x_2) = \tan(x_1 + x_2)$.

1.3.2 Modelo Contínuo × Discreto

Um modelo é contínuo quando sua região factível é contínua, ou seja, dado um ponto dessa região todos os seus vizinhos também serão uma solução. Modelos discretos não possuem seu domínio contínuo. A Figura 2 mostra um gráfico com exemplos de um modelo contínuo e outro discreto.

Figura 2 – Exemplo de modelo contínuo e discreto.

1.3.3 Modelo Determinístico × Estocástico

Em modelos determinísticos seus dados são conhecidos, enquanto os estocásticos possuem uma incerteza quanto aos dados.

1.3.4 Tipos de Programação

Com base nas categorias de modelo é possível também dividir métodos de programação (planejamento) para sua solução.

- Linear: modelo linear contínuo determinístico.
- Inteira: modelo linear discreto determinístico.
- Estocástica: modelo linear contínuo estocástico.
- Não-linear: modelo não-linear contínuo determinístico.

1.4 Métodos Exatos × Heurísticos

Métodos exatos sempre vão garantir a solução ótima para o problema, porém encontrar tal solução pode requerer grande tempo e/ou muitos recursos computacionais. Já heurísticas buscam por soluções factíveis e são geralmente usadas em problemas de grande porte.

Como o problema de interesse é NP-difícil e o principal interesse é em instâncias de médio e grande porte, utilizar um método exato seria bastante desafiador e, provavelmente, não seria possível obter um resultado em tempo hábil devido aos recursos computacionais atuais. Portanto, métodos heurísticos serão usados, já que eles tendem a diminuir a demanda computacional, porém não garantem otimalidade da solução resultante.

Heurísticas geralmente convergem para ótimos locais, por isso geralmente mecanismos de fuga são usados para se escapar dessa região e tentar atingir um resultado melhor. Alguns exemplos desses mecanismos são o *multi-start* e o *simulated annealing*.

2 Problema de Empacotamento

O problema de empacotamento, é um problema de otimização de difícil resolução. Seu objetivo é simples, colocar peças em um espaço N-dimensional, na Figura 1 é possível ver representações para os casos 1D, 2D e 3D. Tanto as peças quanto o espaço, podem ser de formato regular (convexo) ou não (côncavo). Pensando no caso 2D, triângulos, retângulos, círculos e outros polígonos convexos são considerados regulares, enquanto estrelas e outros polígonos côncavos são irregulares.

Outra forma de definir se uma peça é regular ou não, é o número de parâmetros necessários para representá-la. Se forem preciso três ou mais é irregular, caso contrário, regular (BARTMEYER et al., 2021). A Figura 3 mostra alguns exemplos de ambos tipos de peças.

O foco deste trabalho será em problemas de empacotamento 2D de peças e objetos retangulares ortogonais, sem qualquer variante (seção 2.3). Por mais simples que seja, é uma categoria muito importante do problema, visto que, no mundo real, a maioria do que temos interesse em resolver se encaixa nessas características. Existem até mesmo instâncias padronizadas para realizar comparativos entre algoritmos (IORI; LIMA et al., 2022).

Figura 3 – A figura da direita mostra paças regular e irregulares. A esquerda possui as mesmas peças porém com seus contornos convexos.

Fonte: (BARTMEYER et al., 2021)

2.1 Definição

De acordo com (IORI; LIMA et al., 2022), dado uma caixa retangular $\mathcal{B} = (W, H)$ de comprimento $W \in \mathbb{Z}_+$ e altura $H \in \mathbb{Z}_+$ e um conjunto \mathcal{I} de itens também retangulares, onde cada item $i \in \mathcal{I}$ com comprimento $w_i \in \mathbb{Z}_+, w_i \leq W$ e altura $h_i \in \mathbb{Z}_+, h_i \leq H$. Um empacotamento $\mathcal{I}' \subseteq \mathcal{I}$ em \mathcal{B} pode ser descrito como uma função $\mathcal{F} : \mathcal{I}' \to \mathbb{Z}_+^2$ que mapeie cada item $i \in \mathcal{I}'$ para um par de coordenadas $\mathcal{F}(i) = (x_i, y_i)$, de forma

$$x_i \in \{0, \dots, W - w_i\}, y_i \in \{0, \dots, H - h_i\} (i \in \mathcal{I}')$$
 (1)

$$[x_i, x_i + w_i) \cap [x_j, x_j + w_j] = \emptyset \text{ ou } [y_i, y_i + h_i] \cap [y_j, y_j + h_j] = \emptyset (i, j \in \mathcal{I}', i \neq j).$$
 (2)

Nessa forma de representação a caixa está posicionada no plano cartesiano, com seu canto inferior esquerdo na origem. Já as coordenadas $\mathcal{F}(i) = (x_i, y_i)$ representam a posição em que o canto inferior esquerdo da peça será alocado. A Restrição 1 garante que cada item deve estar inteiramente na caixa, enquanto a Restrição 2 impede sobreposição entre peças. Ambas restrições indicam uma orientação fixa, ou seja, peças não podem ser rotacionadas.

2.2 Classificação

Por existirem diferentes objetivos na solução de um problema de empacotamento foram criadas algumas classificações. Algumas delas (as principais) são mostradas em (IORI; DE LIMA et al., 2021), as quais serão exploradas em seguida, com alguns exemplos já vistos na Introdução.

O objetivo do **Empacotamento 2D em Faixa** é encontrar um empacotamento de altura mínima para um dado conjunto de itens em uma caixa com comprimento fixo. Muito aplicado na área têxtil para minimizar o comprimento de tecido cortado para fazer peças de roupas.

No Empacotamento 2D da Mochila deve-se encontrar $\mathcal{I}' \subseteq \mathcal{I}$ que maximize o valor de \mathcal{B} . Geralmente o valor é dado pela área de caixa ocupada pelos itens, dessa forma, outra interpretação do problema seria minimizar a área desperdiçada (vazia). Pode ser utilizado para maximizar o número de peças cortadas de um pedaço de couro, por exemplo.

Já o Empacotamento 2D em Caixas envolve encontrar uma solução que minimize o número de caixas necessárias para empacotar todos os itens. As caixas podem possuir diferentes tamanhos, mas a maioria dos problemas lida com as mesmas dimensões. Facilmente aplicável na área logística e de transporte, seja minimizando o número de paletes ou veículos de entrega.

Por fim, no **Empacotamento 2D Ortogonal** busca-se uma solução, caso exista, para empacotar **todos** os itens na caixa. Usado em situações onde se precisa alocar todos os itens dentro de um caminhão.

Todos os problemas descritos são NP-difícil, com exceção do Ortogonal, sendo NP-completo (IORI; LIMA et al., 2022).

2.3 Variantes

Variantes são pequenas alterações no escopo do problema, também podem ser vistas como restrições ou relaxamento. Existem quatro mais comuns (IORI; LIMA et al., 2022), as quais são descritas a seguir.

Corte guilhotinado consiste em cortar a caixa de forma paralela a um de seus lados recursivamente, é útil na resolução de problemas de corte (problemas de empacotamento podem ser reduzidos para essa categoria e vice-versa). Rotações ortogonais são um modo de relaxar o problema, permitindo rotações de 90 graus para os itens a serem alocados.

Restrições de carga e descarga implicam que algumas peças devem ser posicionadas em dada posição, usando como exemplo um caminhão de entregas, visa evitar situações onde um produto precisa ser descarregado para se ter acesso a um item mais ao fundo e então carregar novamente o primeiro item. Existem variantes aplicáveis somente a algumas categorias do problema, é o caso de caixas de tamanho variável que pode ser unida ao Empacotamento 2D em Caixas e define que caixas não têm de ter as mesmas dimensões.

3 Bottom-Left

Como descrito na seção 2.2, a maioria das classes do problema são NP-difíceis. Isso torna métodos de soluções exatos, os quais buscam pela solução ótima, extremamente custosos em tempo e recursos computacionais em instâncias de porte moderado, muitas vezes sendo inviável por falta de algum desses dois motivos. Consequentemente a literatura é dominada por abordagens que usem heurísticas e meta-heurísticas, sendo a bottom-left uma das principais estratégias de solução e será usada no estudo deste trabalho.

Figura 4 – Representação de alocação usando bottom-left.

Fonte: (BARTMEYER et al., 2021)

Sua premissa é simples, dado uma fila como entrada, enquanto ela não estiver vazia, basta retirar o primeiro item dela e alocar no canto mais a baixo e a esquerda quanto for possível(BARTMEYER et al., 2021), sem sobreposições entre peças (seção 2.1). Caso não exista uma posição válida, a peça é desconsiderada e passa-se para próxima da fila. A Figura 4 mostra um exemplo de alocação para um dado conjunto de peças regulares.

Vale destacar que a própria ordem da fila pode gerar resultados diferentes, alterando a qualidade da solução. Um dos resultados esperados deste trabalho é comparar diferentes formas de ordenação e identificar se há alguma que se destaque na qualidade de solução, para isso será usado um conjunto de instâncias.

3.1 Critérios de ordenação

Para determinar o impacto da ordenação da fila, cinco critérios de ordenação foram escolhidos, sendo eles: área, perímetro, largura, altura e *id*. A ordenação por *id* considera a ordem em que os itens foram colocados na lista, ou seja, seria a forma padrão de resolver

e ele será a base para definir se os demais critérios possuem algum benefício. Além disso, cada critério pode ser usado para ordenar a fila em ordem crescente ou decrescente, algo que também será analisado.

3.2 Sobreposição e domínio infinito

Por mais simples que a heurística bottom-left seja, ainda existem duas complicações, respeitar a Restrição 2 sobre sobreposição de peças e o domínio infinito de coordenadas ao tentar alocar um item. As Figuras 5 a 9 serão usadas para demonstrar as complicações citadas.

A Figura 5 mostra o estado de um modelo onde o item 0 foi o primeiro alocado e o item 1 foi alocado a sua direita na posição (2, 0) para respeitar a Restrição 1, porque não cabia logo acima na posição (0, 2).

Figura 5 – Resolvendo sobreposição e domínio infinito.

Supondo que a próxima peça da fila tenha largura 3 e altura 1, ao posicioná-la na posição (0, 2) percebe-se que a Restrição 1 é satisfeita, mas a Restrição 2 não (Figura 6).

Figura 6 – Resolvendo sobreposição e domínio infinito.

Nesse caso, com poucas peças alocadas e auxílio visual, é fácil identificar que a posição correta, seguindo a lógica bottom-left, seria a de coordenadas (0, 4) (Figura 7). Porém, encontrar tal posição pode ser extremamente complexo. Entre as coordenadas (0, 2) e (0, 4) o espaço é contínuo, existindo infinitas outras coordenadas entre elas, sendo impossível checar todas.

Figura 7 – Resolvendo sobreposição e domínio infinito.

Como todas as instâncias usadas para testes tratam somente de peças e recipientes com valores inteiros, uma abordagem possível seria discretizar o domínio, conforme a Figura 8.

Figura 8 – Resolvendo sobreposição e domínio infinito.

Dessa forma somente coordenadas de valores inteiros precisariam ser verificadas, resolvendo parcialmente o problema com domínio, já que ainda existiriam muitos pontos, principalmente em instâncias com espaços grandes. Mas isso ainda não resolve a parte de sobreposição. Para cada ponto ainda é necessário verificar se existe sobreposição com cada uma das peças já alocadas, algo extremamente custoso.

Na Figura 9 é possível notar que três coordenadas precisaram ser checadas até encontrar uma que cumprisse as Restrições 1 e 2. Por se tratar de um estado inicial de um

modelo pequeno esse processo não é tão custoso, porém em modelos maiores ou estados mais avançados isso se tornará cada vez mais custoso, visto que o domínio será maior e, principalmente, mais peças estarão alocadas para checar possíveis sobreposições.

Figura 9 – Resolvendo sobreposição e domínio infinito.

Outro fator o qual deve ser observado é de que a discretização do domínio pode não funcionar bem em casos onde os valores trabalhados não sejam inteiros. Nesses casos a discretização poderia ocorrer com algum nível de precisão nas casas decimais, mas ainda assim as chances de desperdício de área são grandes. Ou seja, muitos problemas reais seriam complexos de serem resolvidos com a discretização.

3.3 Criação de regiões

Os dois problemas expostos na Seção 3.2 podem ser facilmente resolvidos utilizando a estratégia de criação de regiões. Com essa técnica é possível ignorar a Restrição 2. Nela, ao posicionar uma peça, duas regiões são criadas (Figura 10) e o item seguinte será somente posicionado se couber em uma das regiões disponíveis.

Figura 10 – Regiões criadas traçando uma linha vertical.

Agora o domínio passa a ser somente o canto inferior esquerdo de cada uma das regiões e sobreposições deixam de ser possíveis. Além disso, a regra para definir se uma peça cabe em dada região é igual a Restrição 1, tornando o algoritmo de solução bem simples. A fim de identificar o impacto das regiões na solução do modelo, quatro formas de criação delas foram usadas.

A primeira delas é **traçando uma linha vertical** a partir do canto superior direito de cada peça alocada (Figura 10). A segunda é igual a primeira, porém **traçando uma linha horizontal** (Figura 11).

Figura 11 – Regiões criadas traçando uma linha horizontal.

Já na terceira, a linha traçada (vertical ou horizontal) depende da área das regiões criadas com cada linha. Nesse modo o objetivo é maximizar a área de uma das regiões geradas, ele identifica qual linha irá gerar a região de maior área e a traça. Por exemplo, a Figura 10 gerou uma região com 252 de área e outra com 1320, enquanto a Figura 11 obteve regiões com 1440 e 132, então, nesse caso, a linha traçada será a horizontal (Figura 12).

Figura 12 – Regiões criadas maximizando uma das regiões.

Maximizar uma região pode ser interessante, pois aumenta as chances do próximo item conseguir ser alocado, visto que uma das regiões será mais espaçosa. Em contrapar-

tida, esse método também pode acabar gerando muitas regiões pequenas que não sejam utilizadas, diminuindo a qualidade da solução.

No quarto e último modo de criar regiões nenhuma linha é traçada, todas as regiões vão até o final do recipiente (Figura 13). Nesse caso, sobreposições de peças podem ocorrer, então verificações são necessária para cumprir a Restrição 2. Ao fazer isso, possibilita que mais peças sejam alocadas, visto que todas as regiões possuem área máxima. Esse modo foi criado para identificar se é de fato melhor que os demais e qual seu custo.

Figura 13 – Regiões criadas possibilitando sobreposições.

Com os critérios para criação de regiões explicados, é possível diferenciá-los em dois tipos. O primeiro é dos que permitem sobreposição entre peças e, por isso, precisam de verificações para respeitar a Restrição 2, nesse tipo se encaixa somente o quarto modo. O segundo tipo contém os três primeiros critérios, onde somente a Restrição 1 precisa ser checada.

Referências

ARENALES, Marcos et al. **Pesquisa Operacional**. [S.l.]: Elsevier, 2007.

BARTMEYER, Petra Maria et al. Aprendizado por reforço aplicado ao problema de empacotamento de peças irregulares em faixas. **Anais**, 2021. Disponível em: https://repositorio.usp.br/directbitstream/455094df-864a-4fad-8a97-c5f59fd3d6ca/3051981.pdf.

BELLUZZO, Luciano; MORABITO, Reinaldo. Otimização nos padrões de corte de chapas de fibra de madeira reconstituída: um estudo de caso. **Pesquisa Operacional**, SciELO Brasil, v. 25, p. 391–415, 2005. Disponível em:

<https://www.scielo.br/j/pope/a/tTXXckvGTHbDfZQkmzCqdkp>.

CASTELLUCCI, Pedro Belin. Consolidation problems in freight transportation systems: mathematical models and algorithms. 2019. Tese (Doutorado) – Universidade de São Paulo. Disponível em: https://pdfs.semanticscholar.org/ 90e7/bd898951e1350c2694478b63fbcde508e189.pdf>.

CAVALI, Roberto. Problemas de corte e empacotamento na indústria de Móveis: um estudo de caso. Universidade Estadual Paulista (Unesp), 2004. Disponível em: https://repositorio.unesp.br/bitstream/handle/11449/94286/cavali_r_me_sjrp.pdf.

IORI, Manuel; DE LIMA, Vinícius L. et al. Exact solution techniques for two-dimensional cutting and packing. **European Journal of Operational Research**, v. 289, n. 2, p. 399–415, 2021. ISSN 0377-2217. DOI:

https://doi.org/10.1016/j.ejor.2020.06.050. Disponível em: https://doi.org/10.1016/j.ejor.2020.06.050. Disponível em: https://www.sciencedirect.com/science/article/pii/S0377221720306111.

IORI, Manuel; LIMA, Vinícius Loti de et al. 2DPackLib: a two-dimensional cutting and packing library. **Optimization Letters**, Springer, v. 16, n. 2, p. 471–480, 2022.

MORABITO NETO, Reinaldo; WIDMER, Joao Alexandre. **Abordagem em grafo-e-ou para o problema do empacotamento: aplicacao ao carregamento de paletes e conteineres**. 1992. Tese (Doutorado). Disponível em:

<https://repositorio.usp.br/item/000734666>.

QUEIROZ, Layane Rodrigues de Souza. Estudo de problemas de corte de itens irregulares com incertezas. 2022. Tese (Doutorado) — Universidade de São Paulo. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10032022-110656/en.php.

APÊNDICE A - Resultados

Tabela 1 – Resultados da instância BKW01.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW01	V	A	Τ	100	7.48158e-05	100
BKW01	V	A	\mathbf{F}	60	8.36372 e-05	90
BKW01	V	P	T	100	7.13348e-05	100
BKW01	V	P	F	60	8.48293 e-05	90
BKW01	V	H	T	60	9.05037e-05	90
BKW01	V	H	F	24	8.14438e-05	80
BKW01	V	W	T	100	6.16074 e-05	100
BKW01	V	W	F	60	8.61168e-05	90
BKW01	V	I	T	60	0.000102329	90
BKW01	V	I	\mathbf{F}	60	0.000102139	90
BKW01	Η	A	T	100	6.52313 e-05	100
BKW01	Η	A	\mathbf{F}	12.75	7.05242e-05	60
BKW01	Η	P	T	100	6.44207 e-05	100
BKW01	Η	P	F	12.75	7.04288e-05	60
BKW01	Η	H	T	100	6.99997e-05	100
BKW01	Η	H	F	12.75	7.07626e-05	60
BKW01	Η	W	T	88.75	7.04288e-05	80
BKW01	Η	W	F	24	8.95977e-05	80
BKW01	Η	I	T	17.75	8.05855 e-05	70
BKW01	Η	I	F	52.75	7.1764e-05	70
BKW01	M	A	T	100	0.000155687	100
BKW01	M	A	F	60	0.000189352	90
BKW01	M	P	T	100	0.000154638	100
BKW01	M	P	F	60	0.00019536	90
BKW01	M	H	T	98.75	0.000157166	90
BKW01	M	H	F	60	0.000189638	90
BKW01	M	W	T	88.75	0.000140667	80
BKW01	M	W	F	60	0.000184679	90
BKW01	M	I	T	60	0.000184488	90
BKW01	M	I	F	52.75	0.000230074	70
BKW01	N	A	T	100	0.00164299	100
BKW01	N	A	F	60	0.0016438	90
BKW01	N	P	T	100	0.00162854	100
BKW01	N	P	F	60	0.0016748	90
BKW01	N	\mathbf{H}	${ m T}$	60	0.00129995	90
BKW01	N	H	F	60	0.00190244	90
BKW01	N	W	${ m T}$	100	0.0020637	100
BKW01	N	W	F	60	0.00180497	90
BKW01	N	I	${ m T}$	60	0.00167823	90
BKW01	N	I	F	52.75	0.000847721	70

Tabela 2 – Resultados da instância BKW02.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW02	V	A	T	61	0.000150204	70
BKW02	V	A	F	29.1333	0.000172043	60
BKW02	V	Р	T	63.4	0.000176191	75
BKW02	V	Р	F	29.1333	0.000126314	60
BKW02	V	H	T	57.2667	0.000154543	65
BKW02	V	H	F	34.2	0.00014596	65
BKW02	V	W	T	81.0667	0.000174713	90
BKW02	V	W	\mathbf{F}	26.7333	0.000114441	55
BKW02	V	I	T	40.7333	0.000146866	65
BKW02	V	I	F	57.4667	0.000182724	60
BKW02	Η	A	T	82.6667	0.000167894	65
BKW02	Η	A	F	40.1333	0.000172758	70
BKW02	Η	P	T	82.6667	0.000169897	65
BKW02	Η	P	F	49.3333	0.000175238	75
BKW02	Η	H	T	82.5333	0.00019927	80
BKW02	Η	H	F	47.4667	0.000169945	70
BKW02	Η	W	T	73.4	0.000184059	85
BKW02	Η	W	F	60.2	0.000254059	85
BKW02	Η	I	T	50.4	0.000168943	75
BKW02	Η	I	F	78.5333	0.000185442	80
BKW02	M	A	T	71.9333	0.000417852	85
BKW02	M	A	F	43.8667	0.000322151	75
BKW02	M	P	T	71.9333	0.00037384	85
BKW02	M	P	F	60.2	0.000353718	85
BKW02	M	Η	T	68.2	0.000350428	80
BKW02	M	Η	F	49.3333	0.000337648	75
BKW02	M	W	T	79.4667	0.000356483	90
BKW02	M	W	F	55.2667	0.000311279	75
BKW02	M	I	T	54.1333	0.000328588	80
BKW02	M	I	F	76.8	0.000387478	85
BKW02	N	A	T	85.8667	0.00555429	70
BKW02	N	A	F	43.5333	0.0119086	75
BKW02	N	P	T	89.8667	0.00630503	80
BKW02	N	P	F	49.9333	0.0107538	80
BKW02	N	H	T	82	0.00732751	85
BKW02	N	Η	F	59.1333	0.0150655	85
BKW02	N	W	T	96.5333	0.0157199	90
BKW02	N	W	F	65.5333	0.0182476	80
BKW02	N	Ι	T	64.3333	0.0130246	85
BKW02	N	I	F	76.8	0.00792232	85

Tabela 3 – Resultados da instância BKW03.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW03	V	A	T	84.1333	0.00022397	76.6667
BKW03	V	A	F	52	0.00022337	80
BKW03	V	P	T	80.1333	0.000240008 0.000243568	73.3333
BKW03	v	P	F	52	0.000249300 0.000219727	80
BKW03	V	Н	$^{\mathrm{T}}$	75.4667	0.000213727	73.3333
BKW03	V	Н	F	55.3333	0.000252505 0.000254726	83.3333
BKW03	v	W	T	88.6	0.000231720 0.000239754	80
BKW03	v	W	F	52	0.000226974	80
BKW03	v	Ī	T	65.9333	0.000240564	83.3333
BKW03	V	Ī	F	66.4	0.000255013	83.3333
BKW03	H	A	$^{\mathrm{T}}$	88.8	0.000307989	76.6667
BKW03	Н	A	F	20.2	0.000233841	56.6667
BKW03	H	P	$\overline{\mathrm{T}}$	93	0.000295782	90
BKW03	H	P	F	20.2	0.00022769	56.6667
BKW03	Н	H	Т	83.0667	0.000340605	83.3333
BKW03	Н	H	F	20.2	0.00024662	56.6667
BKW03	Н	W	Т	58.1333	0.000286531	80
BKW03	Н	W	F	39.6667	0.000308084	76.6667
BKW03	Н	I	T	67.1333	0.000327921	86.6667
BKW03	Η	I	F	33.8667	0.000428295	66.6667
BKW03	\mathbf{M}	A	Τ	92.4	0.00055542	83.3333
BKW03	M	A	F	35.0667	0.000502348	73.3333
BKW03	M	P	${ m T}$	92.6667	0.000584841	93.3333
BKW03	M	P	F	38.1333	0.00048871	73.3333
BKW03	${\bf M}$	H	${ m T}$	90.4	0.000539398	83.3333
BKW03	${\bf M}$	H	F	38.1333	0.000535774	73.3333
BKW03	${\bf M}$	W	T	78.3333	0.000645876	93.3333
BKW03	${\bf M}$	W	F	55.3333	0.000518656	83.3333
BKW03	\mathbf{M}	I	T	72.8667	0.000607824	90
BKW03	\mathbf{M}	I	F	62.9333	0.00059104	90
BKW03	N	A	T	93.8	0.0295979	90
BKW03	N	A	F	58.3333	0.0512242	86.6667
BKW03	N	P	T	92.6667	0.030483	93.3333
BKW03	N	P	\mathbf{F}	55.7333	0.0457568	86.6667
BKW03	N	Η	T	89.7333	0.0259913	83.3333
BKW03	N	H	F	51.4667	0.0534011	80
BKW03	N	W	${ m T}$	93.8	0.0514221	86.6667
BKW03	N	W	F	71.6	0.0559319	93.3333
BKW03	N	I	${ m T}$	78.9333	0.0521503	93.3333
BKW03	N	I	F	80	0.0343661	93.3333

Tabela 4 – Resultados da instância BKW04.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW04	V	A	T	91.0781	0.000413847	85
BKW04	V	A	F	46.2812	0.000360441	92.5
BKW04	V	P	T	93.4062	0.000300441 0.00041132	90
BKW04	V	P	F	44.4688	0.00041152 0.000353956	90
BKW04	V	Н	$^{\mathrm{T}}$	88.4375	0.000333330 0.000381422	80
BKW04	V	Н	F	48.2812	0.000301422 0.000416327	95
BKW04	v	W	T	94.5	0.000481224	87.5
BKW04	v	W	F	42.2812	0.000336885	87.5
BKW04	v	I	T	46.2812	0.000394678	92.5
BKW04	v	Ī	F	81.5938	0.000416422	85
BKW04	H	A	T	87.3125	0.000555563	85
BKW04	Н	A	F	18.6875	0.000481176	70
BKW04	Н	P	$^{\mathrm{T}}$	85.7812	0.000363636	77.5
BKW04	Н	P	F	17.5625	0.000398636	65
BKW04	Н	H	$^{\mathrm{T}}$	74.6094	0.000433826	90
BKW04	H	H	F	17.5625	0.000416327	65
BKW04	H	W	$\overline{\mathrm{T}}$	75.6406	0.00042057	85
BKW04	H	W	$\overline{\mathrm{F}}$	18.6875	0.000400496	70
BKW04	Н	Ι	Т	33.8594	0.000436449	85
BKW04	Н	I	F	62.7656	0.000449085	85
BKW04	M	A	Т	86.5	0.000859547	90
BKW04	M	A	F	38.5938	0.00074091	90
BKW04	\mathbf{M}	P	T	88.125	0.000876093	92.5
BKW04	\mathbf{M}	P	F	38.5938	0.00076685	90
BKW04	\mathbf{M}	H	T	92.7969	0.000802946	90
BKW04	${\bf M}$	H	F	49.3125	0.000779629	90
BKW04	${\bf M}$	W	T	90.3125	0.000989199	95
BKW04	${\bf M}$	W	F	48.2812	0.000853062	95
BKW04	${\bf M}$	I	T	61.6719	0.000852537	95
BKW04	M	I	F	85.5312	0.00112362	92.5
BKW04	N	A	T	96.1875	0.0452466	82.5
BKW04	N	A	F	44.6719	0.114416	87.5
BKW04	N	P	T	95.0625	0.0556697	75
BKW04	N	P	F	48.2812	0.13407	95
BKW04	N	Η	T	94	0.0527213	92.5
BKW04	N	H	F	58.1562	0.103932	95
BKW04	N	W	T	93.875	0.118128	95
BKW04	N	W	F	63.7812	0.154315	97.5
BKW04	N	I	T	48.2812	0.0522459	95
BKW04	N	I	F	88.7656	0.0849498	92.5

Tabela 5 – Resultados da instância BKW05.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW05	V	A	T	64.92	0.000527477	78
BKW05	V	A	F	22.27	0.000321411	58
BKW05	v	P	T	74.01	0.000813001 0.000802994	82
BKW05	V	P	F	22.27	0.000321579	58
BKW05	V	Н	$^{\mathrm{T}}$	55.1	0.000506878	64
BKW05	V	H	F	30.83	0.000480604	68
BKW05	V	W	$^{\mathrm{T}}$	87.05	0.000541592	82
BKW05	V	W	F	22.27	0.000311232	58
BKW05	V	Ī	$^{\mathrm{T}}$	27.35	0.000434113	64
BKW05	V	Ī	F	43.14	0.000555038	72
BKW05	H	A	$^{\mathrm{T}}$	90.47	0.000494432	70
BKW05	Н	A	F	41.1	0.000545502	78
BKW05	Н	Р	T	90.88	0.000556231	80
BKW05	Н	P	F	41.1	0.000615215	78
BKW05	Н	H	Т	77.42	0.000626516	84
BKW05	Н	H	F	25.08	0.000349712	46
BKW05	Н	W	Т	83.96	0.000549936	78
BKW05	Н	W	F	42.81	0.000680637	80
BKW05	Н	I	Т	55.29	0.00059762	74
BKW05	Η	I	F	77.5	0.000579786	86
BKW05	\mathbf{M}	A	Τ	92.14	0.00120373	84
BKW05	${\bf M}$	A	F	50.92	0.00105114	86
BKW05	M	P	Τ	93.2	0.00120549	90
BKW05	M	P	F	50.92	0.00105896	86
BKW05	M	H	Τ	80.48	0.00121603	90
BKW05	${\bf M}$	H	\mathbf{F}	44.77	0.0010118	74
BKW05	${\bf M}$	W	T	89.7	0.00106049	84
BKW05	${\bf M}$	W	\mathbf{F}	52.92	0.00132608	86
BKW05	\mathbf{M}	I	T	62.75	0.00107346	92
BKW05	\mathbf{M}	I	F	88.04	0.00100088	92
BKW05	N	A	T	92.05	0.177481	76
BKW05	N	A	F	62.75	0.247756	92
BKW05	N	P	T	93.13	0.19128	72
BKW05	N	P	F	67.88	0.276854	94
BKW05	N	Η	T	80.48	0.201295	90
BKW05	N	H	F	62.59	0.288999	92
BKW05	N	W	T	93.56	0.193728	76
BKW05	N	W	F	59.57	0.282892	90
BKW05	N	I	${ m T}$	67.88	0.236274	94
BKW05	N	I	F	88.04	0.156715	92

Tabela 6 – Resultados da instância BKW06.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW06	V	A	T	70.02	0.000650406	80
BKW06	V	A	F	33.86	0.0004498	85
BKW06	V	P	${ m T}$	70.58	0.00070281	90
BKW06	V	P	F	33.86	0.000442982	85
BKW06	V	H	$^{\mathrm{T}}$	69.38	0.000612926	86.6667
BKW06	V	H	F	33.86	0.000483036	85
BKW06	V	W	$\overline{\mathrm{T}}$	86.9	0.00051322	56.6667
BKW06	V	W	$\overline{\mathrm{F}}$	32.42	0.000423574	83.3333
BKW06	V	I	Т	45.26	0.00053544	88.3333
BKW06	V	I	F	56.18	0.000540924	88.3333
BKW06	Н	A	Т	95.74	0.000592041	81.6667
BKW06	Η	A	F	13.24	0.000617027	61.6667
BKW06	Η	P	T	96.06	0.000646353	88.3333
BKW06	Η	P	F	13.24	0.000627041	61.6667
BKW06	Η	H	T	81.6	0.000984097	93.3333
BKW06	Η	H	F	22.88	0.000653267	65
BKW06	Η	W	${ m T}$	88.02	0.00074892	86.6667
BKW06	Η	W	F	22.46	0.000773478	76.6667
BKW06	Η	I	Τ	45.14	0.000752449	83.3333
BKW06	Η	I	\mathbf{F}	48.32	0.000733852	81.6667
BKW06	${\bf M}$	A	${ m T}$	95.92	0.0012887	85
BKW06	\mathbf{M}	A	F	35.78	0.00118899	86.6667
BKW06	\mathbf{M}	P	T	95.34	0.00121427	85
BKW06	\mathbf{M}	P	F	35.78	0.00126514	86.6667
BKW06	\mathbf{M}	H	T	72.5	0.0014461	91.6667
BKW06	${\bf M}$	Η	\mathbf{F}	28.52	0.00129929	80
BKW06	${\bf M}$	W	T	92.76	0.00141101	91.6667
BKW06	${\bf M}$	W	\mathbf{F}	42.5	0.00121622	88.3333
BKW06	${\bf M}$	I	T	77.4	0.00141392	95
BKW06	${\bf M}$	I	F	72.5	0.00142927	91.6667
BKW06	N	A	Τ	96.94	0.161368	78.3333
BKW06	N	A	F	56.9	0.386329	90
BKW06	N	P	Τ	97.38	0.181329	81.6667
BKW06	N	P	F	60	0.400375	91.6667
BKW06	N	H	${ m T}$	72.5	0.168962	91.6667
BKW06	N	H	F	57.88	0.367675	91.6667
BKW06	N	W	${ m T}$	98.14	0.360116	95
BKW06	N	W	F	42.5	0.410012	88.3333
BKW06	N	I	${ m T}$	63	0.294715	93.3333
BKW06	N	Ι	F	72.5	0.244765	91.6667

Tabela 7 – Resultados da instância BKW07.

	G 11:	0 1	- D - 11	0 11 6	TD1 ()	T. 04
Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW07	V	A	T	78.8	0.000760746	84.2857
BKW07	V	A	F	41.5375	0.000629044	85.7143
BKW07	V	P	T	75.775	0.000708008	84.2857
BKW07	V	P	F	40.6375	0.000621176	84.2857
BKW07	V	H	${f T}$	67.8	0.000747824	81.4286
BKW07	V	Н	F	42.0875	0.000708628	87.1429
BKW07	V	W	${ m T}$	91.6625	0.000865507	95.7143
BKW07	V	W	F	38.725	0.000543356	80
BKW07	V	Ι	${ m T}$	66.6	0.000843382	88.5714
BKW07	V	I	F	46.725	0.000789738	84.2857
BKW07	Η	A	${ m T}$	74.0125	0.00088582	85.7143
BKW07	Η	A	F	8.725	0.000820494	62.8571
BKW07	Η	P	${ m T}$	83.775	0.000965977	88.5714
BKW07	Η	P	\mathbf{F}	11.525	0.000853729	67.1429
BKW07	Η	H	${ m T}$	86.1	0.000823164	95.7143
BKW07	Η	H	F	6.75	0.00078702	58.5714
BKW07	Η	W	${ m T}$	46.675	0.000730562	78.5714
BKW07	Η	W	F	26.7375	0.000958061	80
BKW07	Η	I	T	46.825	0.000719404	78.5714
BKW07	Η	I	F	59.8	0.00112739	87.1429
BKW07	M	A	T	82.725	0.00155454	90
BKW07	\mathbf{M}	A	F	40.1375	0.00144701	88.5714
BKW07	M	P	T	90.5875	0.00149145	91.4286
BKW07	M	P	F	42.0875	0.00145383	90
BKW07	${\bf M}$	Η	T	82.35	0.00155249	95.7143
BKW07	${\bf M}$	Η	F	38.9	0.00141234	81.4286
BKW07	\mathbf{M}	W	T	49.075	0.00137482	82.8571
BKW07	${\bf M}$	W	\mathbf{F}	61.2125	0.00142508	94.2857
BKW07	${\bf M}$	I	T	79.4375	0.00166879	94.2857
BKW07	M	I	F	64.3375	0.00148234	91.4286
BKW07	N	A	T	90.2375	0.314977	95.7143
BKW07	N	A	F	50.2875	0.657058	92.8571
BKW07	N	P	Τ	91.5875	0.234417	92.8571
BKW07	N	P	F	60.7125	0.639531	92.8571
BKW07	N	H	T	82.35	0.256859	95.7143
BKW07	N	H	\mathbf{F}	56.6875	0.54043	88.5714
BKW07	N	W	T	94.5	0.19643	95.7143
BKW07	N	W	$\overline{\mathrm{F}}$	64.3	0.728899	94.2857
BKW07	N	I	$\overline{\mathrm{T}}$	79.4375	0.337527	94.2857
BKW07	N	I	F	75.8125	0.334543	97.1429

Tabela 8 – Resultados da instância BKW08.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW08	V	A	Τ	81.7	0.000980997	82.5
BKW08	V	A	F	47.85	0.000714493	85
BKW08	V	P	T	86.9375	0.00102673	80
BKW08	V	P	\mathbf{F}	58.3625	0.000853205	90
BKW08	V	H	T	70.2375	0.000971889	80
BKW08	V	H	\mathbf{F}	57.675	0.000934029	92.5
BKW08	V	W	T	92.7	0.000884581	86.25
BKW08	V	W	\mathbf{F}	51.1875	0.000711966	81.25
BKW08	V	I	T	54.4875	0.00142937	85
BKW08	V	I	\mathbf{F}	70.1875	0.000896454	83.75
BKW08	Η	A	T	72.1875	0.00113058	78.75
BKW08	Η	A	F	16.3875	0.00071249	51.25
BKW08	Η	P	T	72.95	0.00124288	78.75
BKW08	Η	P	F	16.3875	0.0007164	51.25
BKW08	Η	Η	${ m T}$	83.3125	0.00184498	90
BKW08	Η	Η	F	10.95	0.000646305	35
BKW08	Η	W	${ m T}$	53.8875	0.000849533	71.25
BKW08	Η	W	F	24.7625	0.000967121	68.75
BKW08	Η	I	${ m T}$	32.35	0.00111809	73.75
BKW08	Η	I	F	36.7625	0.00094471	70
BKW08	M	A	${ m T}$	93.7875	0.00208473	93.75
BKW08	${\bf M}$	A	F	50.55	0.0015254	90
BKW08	${\bf M}$	P	${ m T}$	96.3	0.00159864	82.5
BKW08	${\bf M}$	P	F	57.675	0.00178442	92.5
BKW08	M	Η	${ m T}$	91.7	0.0022449	88.75
BKW08	${\bf M}$	H	F	39.875	0.00203371	81.25
BKW08	${\bf M}$	W	${ m T}$	80.5	0.00192633	91.25
BKW08	${\bf M}$	W	F	58.35	0.00169339	92.5
BKW08	\mathbf{M}	I	${ m T}$	63.075	0.00176029	91.25
BKW08	\mathbf{M}	I	F	82.7125	0.00182967	95
BKW08	N	A	${ m T}$	94.2	0.542582	68.75
BKW08	N	A	F	66.725	1.19571	95
BKW08	N	P	${ m T}$	95.5375	0.598825	77.5
BKW08	N	P	F	66.725	1.1602	95
BKW08	N	H	${ m T}$	91.0375	0.723944	88.75
BKW08	N	Η	F	53	1.08041	85
BKW08	N	W	${ m T}$	94.175	0.67467	97.5
BKW08	N	W	F	70.4375	1.31557	93.75
BKW08	N	I	${ m T}$	82.45	0.911094	96.25
BKW08	N	I	F	86.95	0.616457	95

Tabela 9 – Resultados da instância BKW09.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW09	V	A	Τ	70.5467	0.00093708	80
BKW09	V	A	F	35.68	0.000865507	85
BKW09	V	P	T	73.5867	0.00101247	80
BKW09	V	P	\mathbf{F}	35.68	0.00074091	85
BKW09	V	H	Τ	50.7067	0.000925303	82
BKW09	V	H	F	34.3467	0.00079546	83
BKW09	V	W	T	90.04	0.00102248	85
BKW09	V	W	\mathbf{F}	31.8267	0.000660658	78
BKW09	V	I	T	42.76	0.00106444	88
BKW09	V	I	\mathbf{F}	35.3467	0.000932074	82
BKW09	Η	A	T	91.7867	0.0016902	95
BKW09	Η	A	F	22.12	0.0013567	72
BKW09	Η	P	T	94.0933	0.00117106	65
BKW09	Η	P	F	24.6267	0.00140162	73
BKW09	Η	H	T	83.4533	0.00154905	94
BKW09	Η	H	F	14.6933	0.00117717	49
BKW09	Η	W	T	70.48	0.00152965	89
BKW09	Η	W	\mathbf{F}	34.12	0.00151138	86
BKW09	Η	I	T	57.12	0.00170364	90
BKW09	Η	I	\mathbf{F}	54.92	0.00148849	83
BKW09	\mathbf{M}	A	T	87.3467	0.00267596	95
BKW09	${\bf M}$	A	F	37.52	0.00217714	87
BKW09	${\bf M}$	P	T	93.1067	0.00276437	98
BKW09	${\bf M}$	P	F	32.9867	0.00217786	85
BKW09	${\bf M}$	Η	T	86.1733	0.00248289	94
BKW09	${\bf M}$	Η	F	27.4533	0.00235658	77
BKW09	${\bf M}$	W	T	76.4533	0.00271249	92
BKW09	${\bf M}$	W	F	63.9867	0.00221543	94
BKW09	${\bf M}$	I	T	63.9867	0.00265903	94
BKW09	M	I	F	78.2	0.00262709	94
BKW09	N	A	T	94.2933	1.19273	97
BKW09	N	A	F	62.5733	2.03207	96
BKW09	N	P	T	96.92	1.28711	79
BKW09	N	P	F	58.2533	1.9654	95
BKW09	N	Η	T	85.2133	1.33373	93
BKW09	N	Η	F	54.28	2.03874	94
BKW09	N	W	T	96.28	1.86233	98
BKW09	N	W	F	68.4667	2.40126	96
BKW09	N	I	${ m T}$	72.5733	1.53907	97
BKW09	N	I	F	82	1.45392	96

Tabela 10 – Resultados da instância BKW10.

BKW10 V A T 61.8381 0.00253057 88.5 BKW10 V A F 22.5714 0.00137687 84 BKW10 V P F 22.5714 0.00142279 83 BKW10 V P F 21.981 0.00142279 83 BKW10 V H T 50.9905 0.00262079 85 BKW10 V H F 24.3048 0.001685 86 BKW10 V W T 84.0667 0.00245037 93.5 BKW10 V W F 21.981 0.00125227 83 BKW10 V I T 37.2762 0.00203419 87.5 BKW10 V I F 41.6286 0.0016489 85.5 BKW10 H A F 16.3714 0.0049236 99 BKW10 H P T 95.5048 0.00353732	Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW10 V A F 22.5714 0.00137687 84 BKW10 V P T 62.5714 0.00249224 90 BKW10 V P F 21.981 0.00142279 83 BKW10 V H T 50.9905 0.00262079 85 BKW10 V H F 24.3048 0.001685 86 BKW10 V W T 84.0667 0.00245037 93.5 BKW10 V I T 37.2762 0.0023419 87.5 BKW10 V I F 21.981 0.0012527 83 BKW10 H A T 95.3714 0.0016489 85.5 BKW10 H A T 95.5144 0.0049236 99 BKW10 H A F 16.3714 0.0049273 76 BKW10 H P F 16.3714 0.00432865 9						\ /	
BKW10 V P T 62.5714 0.00249224 90 BKW10 V P F 21.981 0.00142279 83 BKW10 V H T 50.9905 0.00262079 85 BKW10 V H F 24.3048 0.001685 86 BKW10 V W T 84.0667 0.00245037 93.5 BKW10 V I T 37.2762 0.00203419 87.5 BKW10 V I F 41.6286 0.0016489 85.5 BKW10 H A T 95.3714 0.0049236 99 BKW10 H A F 16.3714 0.0049236 99 BKW10 H P T 95.5048 0.00353732 95.5 BKW10 H P T 16.3714 0.00429773 76 BKW10 H H T 77.0952 0.00342865			A				
BKW10 V P F 21.981 0.00142279 83 BKW10 V H T 50.9905 0.00262079 85 BKW10 V H F 24.3048 0.001685 86 BKW10 V W T 84.0667 0.00245037 93.5 BKW10 V W F 21.981 0.00125227 83 BKW10 V I T 37.2762 0.00203419 87.5 BKW10 H A T 95.3714 0.00490236 99 BKW10 H A F 16.3714 0.0049236 99 BKW10 H P T 95.5048 0.00353732 95.5 BKW10 H P F 16.3714 0.00429773 76 BKW10 H H F 98.8571 0.0038723 51.5 BKW10 H H F 98.8571 0.0038723 <							
BKW10 V H T 50.9905 0.00262079 85 BKW10 V H F 24.3048 0.001685 86 BKW10 V W T 84.0667 0.00245037 93.5 BKW10 V W F 21.981 0.00125227 83 BKW10 V I T 37.2762 0.00203419 87.5 BKW10 H A T 95.3714 0.00409236 99 BKW10 H A F 16.3714 0.0049236 99 BKW10 H A F 16.3714 0.0049236 99 BKW10 H P T 95.5048 0.00353732 95.5 BKW10 H P F 16.3714 0.00429773 76 BKW10 H H F 77.0952 0.00342865 93.5 BKW10 H W T 87.8571 0.0038723							
BKW10 V H F 24.3048 0.001685 86 BKW10 V W T 84.0667 0.00245037 93.5 BKW10 V W F 21.981 0.00125227 83 BKW10 V I T 37.2762 0.00203419 87.5 BKW10 H A T 95.3714 0.00409236 99 BKW10 H A T 95.3714 0.00409236 99 BKW10 H A F 16.3714 0.00431018 76 BKW10 H P T 95.5048 0.00353732 95.5 BKW10 H P F 16.3714 0.00429773 76 BKW10 H H F 98.8571 0.00358265 93.5 BKW10 H H F 98.8571 0.00358438 89.5 BKW10 H I T 40.4095 0.0031981							
BKW10 V W T 84.0667 0.00245037 93.5 BKW10 V W F 21.981 0.00125227 83 BKW10 V I T 37.2762 0.00203419 87.5 BKW10 H A T 95.3714 0.00409236 99 BKW10 H A F 16.3714 0.00431018 76 BKW10 H A F 16.3714 0.00431018 76 BKW10 H P T 95.5048 0.00353732 95.5 BKW10 H H T 77.0952 0.00342865 93.5 BKW10 H H F 9.88571 0.00328723 51.5 BKW10 H W T 87.8571 0.0038723 51.5 BKW10 H W F 28.981 0.00358438 89.5 BKW10 H I T 40.4095 0.00300126							
BKW10 V I T 37.2762 0.00203419 87.5 BKW10 V I F 41.6286 0.0016489 85.5 BKW10 H A T 95.3714 0.00409236 99 BKW10 H A F 16.3714 0.00431018 76 BKW10 H P T 95.5048 0.00353732 95.5 BKW10 H P F 16.3714 0.00429773 76 BKW10 H H T 77.0952 0.00342865 93.5 BKW10 H H F 9.88571 0.00308723 51.5 BKW10 H W T 87.8571 0.0026926 95 BKW10 H W F 28.981 0.00358438 89.5 BKW10 H I F 28.981 0.00300126 93.5 BKW10 M A T 91.3429 0.00617456	BKW10	V	W	Τ		0.00245037	93.5
BKW10 V I F 41.6286 0.0016489 85.5 BKW10 H A T 95.3714 0.00409236 99 BKW10 H A F 16.3714 0.00431018 76 BKW10 H P T 95.5048 0.00353732 95.5 BKW10 H P F 16.3714 0.00429773 76 BKW10 H H T 77.0952 0.00342865 93.5 BKW10 H H F 9.88571 0.00308723 51.5 BKW10 H W T 87.8571 0.0026926 95 BKW10 H W F 28.981 0.00358438 89.5 BKW10 H I T 40.4095 0.00300126 93.5 BKW10 M A T 91.3429 0.00617456 97.5 BKW10 M A F 31.3143 0.00517456			W				
BKW10 H A T 95.3714 0.00409236 99 BKW10 H A F 16.3714 0.00431018 76 BKW10 H P T 95.5048 0.00353732 95.5 BKW10 H P F 16.3714 0.00429773 76 BKW10 H H T 77.0952 0.00342865 93.5 BKW10 H H F 9.88571 0.00308723 51.5 BKW10 H W T 87.8571 0.0026926 95 BKW10 H W T 28.981 0.00358438 89.5 BKW10 H I T 40.4095 0.00309126 93.5 BKW10 H I F 75.4952 0.0031981 95 BKW10 M A T 91.3429 0.00617456 97.5 BKW10 M A F 31.5619 0.0059403	BKW10	V	I	T	37.2762	0.00203419	87.5
BKW10 H A F 16.3714 0.00431018 76 BKW10 H P T 95.5048 0.00353732 95.5 BKW10 H P F 16.3714 0.00429773 76 BKW10 H H T 77.0952 0.00342865 93.5 BKW10 H H F 9.88571 0.00308723 51.5 BKW10 H W T 87.8571 0.0026926 95 BKW10 H W F 28.981 0.00358438 89.5 BKW10 H I T 40.4095 0.00300126 93.5 BKW10 H I F 75.4952 0.0031981 95 BKW10 M A T 91.3429 0.00617456 97.5 BKW10 M A F 31.3143 0.00539403 99 BKW10 M P F 31.5619 0.00539403	BKW10	V	I	F	41.6286	0.0016489	85.5
BKW10 H P T 95.5048 0.00353732 95.5 BKW10 H P F 16.3714 0.00429773 76 BKW10 H H T 77.0952 0.00342865 93.5 BKW10 H H F 9.88571 0.00308723 51.5 BKW10 H W T 87.8571 0.0026926 95 BKW10 H W F 28.981 0.00358438 89.5 BKW10 H I T 40.4095 0.00300126 93.5 BKW10 H I F 75.4952 0.0031981 95 BKW10 M A T 91.3429 0.00617456 97.5 BKW10 M A F 31.3143 0.00551944 94 BKW10 M P T 95.9429 0.0059403 99 BKW10 M H T 72.2952 0.00631909	BKW10	Η	A	Τ	95.3714	0.00409236	99
BKW10 H P F 16.3714 0.00429773 76 BKW10 H H T 77.0952 0.00342865 93.5 BKW10 H H F 9.88571 0.00308723 51.5 BKW10 H W T 87.8571 0.0026926 95 BKW10 H W F 28.981 0.00358438 89.5 BKW10 H I T 40.4095 0.00300126 93.5 BKW10 H I F 75.4952 0.0031981 95 BKW10 M A T 91.3429 0.00617456 97.5 BKW10 M A F 31.3143 0.00551944 94 BKW10 M P T 95.9429 0.00599403 99 BKW10 M P F 31.5619 0.00573902 94 BKW10 M H F 30.581 0.00530767	BKW10	Η	A	F	16.3714	0.00431018	76
BKW10 H H T 77.0952 0.00342865 93.5 BKW10 H H F 9.88571 0.00308723 51.5 BKW10 H W T 87.8571 0.0026926 95 BKW10 H W F 28.981 0.00358438 89.5 BKW10 H I T 40.4095 0.00300126 93.5 BKW10 H I F 75.4952 0.0031981 95 BKW10 M A T 91.3429 0.00617456 97.5 BKW10 M A F 31.3143 0.00551944 94 BKW10 M P T 95.9429 0.00599403 99 BKW10 M P F 31.5619 0.00573902 94 BKW10 M H T 72.2952 0.00631909 97.5 BKW10 M H F 30.581 0.00530767	BKW10	Η	P		95.5048	0.00353732	95.5
BKW10 H H F 9.88571 0.00308723 51.5 BKW10 H W T 87.8571 0.0026926 95 BKW10 H W F 28.981 0.00358438 89.5 BKW10 H I T 40.4095 0.00300126 93.5 BKW10 H I F 75.4952 0.0031981 95 BKW10 M A T 91.3429 0.00617456 97.5 BKW10 M A F 31.3143 0.00551944 94 BKW10 M P T 95.9429 0.00599403 99 BKW10 M P F 31.5619 0.00573902 94 BKW10 M H F 30.581 0.00573902 94 BKW10 M H F 30.581 0.00530767 90.5 BKW10 M W F 54.6 0.0045886 <	BKW10	Η	P	F	16.3714	0.00429773	76
BKW10 H W T 87.8571 0.0026926 95 BKW10 H W F 28.981 0.00358438 89.5 BKW10 H I T 40.4095 0.00300126 93.5 BKW10 H I F 75.4952 0.0031981 95 BKW10 M A T 91.3429 0.00617456 97.5 BKW10 M A F 31.3143 0.00551944 94 BKW10 M P T 95.9429 0.00599403 99 BKW10 M P F 31.5619 0.00573902 94 BKW10 M H T 72.2952 0.00631909 97.5 BKW10 M H F 30.581 0.00530767 90.5 BKW10 M W F 54.6 0.0045886 97 BKW10 M I F 86.286 0.00486569 <	BKW10	Η	H	T	77.0952	0.00342865	93.5
BKW10 H W F 28.981 0.00358438 89.5 BKW10 H I T 40.4095 0.00300126 93.5 BKW10 H I F 75.4952 0.0031981 95 BKW10 M A T 91.3429 0.00617456 97.5 BKW10 M A F 31.3143 0.00551944 94 BKW10 M P T 95.9429 0.00599403 99 BKW10 M P F 31.5619 0.00573902 94 BKW10 M H T 72.2952 0.00631909 97.5 BKW10 M H F 30.581 0.00530767 90.5 BKW10 M W F 34.6 0.0045886 97 BKW10 M I T 58.6286 0.0048866 98.5 BKW10 N A T 96.1238 9.71423 <	BKW10	Η	H	F	9.88571	0.00308723	51.5
BKW10 H I T 40.4095 0.00300126 93.5 BKW10 H I F 75.4952 0.0031981 95 BKW10 M A T 91.3429 0.00617456 97.5 BKW10 M A F 31.3143 0.00551944 94 BKW10 M P T 95.9429 0.00599403 99 BKW10 M P F 31.5619 0.00573902 94 BKW10 M H T 72.2952 0.00631909 97.5 BKW10 M H F 30.581 0.00530767 90.5 BKW10 M W T 94.0381 0.00518079 98.5 BKW10 M W F 54.6 0.0045886 97 BKW10 M I T 58.6286 0.00486569 98.5 BKW10 N A T 96.1238 9.71423	BKW10	Η	W	T	87.8571	0.0026926	95
BKW10 H I F 75.4952 0.0031981 95 BKW10 M A T 91.3429 0.00617456 97.5 BKW10 M A F 31.3143 0.00551944 94 BKW10 M P T 95.9429 0.00599403 99 BKW10 M P F 31.5619 0.00573902 94 BKW10 M H T 72.2952 0.00631909 97.5 BKW10 M H F 30.581 0.00530767 90.5 BKW10 M W T 94.0381 0.00530767 90.5 BKW10 M W F 54.6 0.0045886 97 BKW10 M I T 58.6286 0.0045886 97 BKW10 M I F 83.0667 0.00608282 96 BKW10 N A F 45.6381 17.8907	BKW10	Η	W	F	28.981	0.00358438	89.5
BKW10 M A T 91.3429 0.00617456 97.5 BKW10 M A F 31.3143 0.00551944 94 BKW10 M P T 95.9429 0.00599403 99 BKW10 M P F 31.5619 0.00573902 94 BKW10 M H T 72.2952 0.00631909 97.5 BKW10 M H F 30.581 0.00530767 90.5 BKW10 M W T 94.0381 0.00518079 98.5 BKW10 M W F 54.6 0.0045886 97 BKW10 M I T 58.6286 0.00486569 98.5 BKW10 M I F 83.0667 0.00608282 96 BKW10 N A T 96.1238 9.71423 98 BKW10 N P T 97.5619 7.9507	BKW10	Η	I	T	40.4095	0.00300126	93.5
BKW10 M A F 31.3143 0.00551944 94 BKW10 M P T 95.9429 0.00599403 99 BKW10 M P F 31.5619 0.00573902 94 BKW10 M H T 72.2952 0.00631909 97.5 BKW10 M H F 30.581 0.00530767 90.5 BKW10 M W T 94.0381 0.00518079 98.5 BKW10 M W F 54.6 0.0045886 97 BKW10 M I T 58.6286 0.00486569 98.5 BKW10 M I F 83.0667 0.00608282 96 BKW10 N A T 96.1238 9.71423 98 BKW10 N A F 45.6381 17.8907 97.5 BKW10 N P T 97.5619 7.9507 69.	BKW10	Η	I	F	75.4952		95
BKW10 M P T 95.9429 0.00599403 99 BKW10 M P F 31.5619 0.00573902 94 BKW10 M H T 72.2952 0.00631909 97.5 BKW10 M H F 30.581 0.00530767 90.5 BKW10 M W T 94.0381 0.00518079 98.5 BKW10 M W F 54.6 0.0045886 97 BKW10 M I T 58.6286 0.00486569 98.5 BKW10 M I F 83.0667 0.00608282 96 BKW10 N A T 96.1238 9.71423 98 BKW10 N A F 45.6381 17.8907 97.5 BKW10 N P T 97.5619 7.9507 69.5 BKW10 N H T 77.8952 9.24358 94.5					91.3429	0.00617456	97.5
BKW10 M P F 31.5619 0.00573902 94 BKW10 M H T 72.2952 0.00631909 97.5 BKW10 M H F 30.581 0.00530767 90.5 BKW10 M W T 94.0381 0.00518079 98.5 BKW10 M W F 54.6 0.0045886 97 BKW10 M I T 58.6286 0.00486569 98.5 BKW10 M I F 83.0667 0.00608282 96 BKW10 N A T 96.1238 9.71423 98 BKW10 N A F 45.6381 17.8907 97.5 BKW10 N P T 97.5619 7.9507 69.5 BKW10 N P F 50.3619 18.6467 98 BKW10 N H T 77.8952 9.24358 94.5 <td>BKW10</td> <td></td> <td></td> <td></td> <td>31.3143</td> <td>0.00551944</td> <td></td>	BKW10				31.3143	0.00551944	
BKW10 M H T 72.2952 0.00631909 97.5 BKW10 M H F 30.581 0.00530767 90.5 BKW10 M W T 94.0381 0.00518079 98.5 BKW10 M W F 54.6 0.0045886 97 BKW10 M I T 58.6286 0.00486569 98.5 BKW10 M I F 83.0667 0.00608282 96 BKW10 N A T 96.1238 9.71423 98 BKW10 N A F 45.6381 17.8907 97.5 BKW10 N P T 97.5619 7.9507 69.5 BKW10 N P F 50.3619 18.6467 98 BKW10 N H T 77.8952 9.24358 94.5 BKW10 N W T 98.1143 12.3049 82.5 <td>BKW10</td> <td>M</td> <td></td> <td>Τ</td> <td>95.9429</td> <td>0.00599403</td> <td>99</td>	BKW10	M		Τ	95.9429	0.00599403	99
BKW10 M H F 30.581 0.00530767 90.5 BKW10 M W T 94.0381 0.00518079 98.5 BKW10 M W F 54.6 0.0045886 97 BKW10 M I T 58.6286 0.00486569 98.5 BKW10 M I F 83.0667 0.00608282 96 BKW10 N A T 96.1238 9.71423 98 BKW10 N A F 45.6381 17.8907 97.5 BKW10 N P T 97.5619 7.9507 69.5 BKW10 N P F 50.3619 18.6467 98 BKW10 N H T 77.8952 9.24358 94.5 BKW10 N H F 48.5905 12.5673 97.5 BKW10 N W T 98.1143 12.3049 82.5							
BKW10 M W T 94.0381 0.00518079 98.5 BKW10 M W F 54.6 0.0045886 97 BKW10 M I T 58.6286 0.00486569 98.5 BKW10 M I F 83.0667 0.00608282 96 BKW10 N A T 96.1238 9.71423 98 BKW10 N A F 45.6381 17.8907 97.5 BKW10 N P T 97.5619 7.9507 69.5 BKW10 N P F 50.3619 18.6467 98 BKW10 N H T 77.8952 9.24358 94.5 BKW10 N H F 48.5905 12.5673 97.5 BKW10 N W T 98.1143 12.3049 82.5 BKW10 N W F 55.8 21.3953 97.5 </td <td>BKW10</td> <td></td> <td></td> <td></td> <td>72.2952</td> <td>0.00631909</td> <td>97.5</td>	BKW10				72.2952	0.00631909	97.5
BKW10 M W F 54.6 0.0045886 97 BKW10 M I T 58.6286 0.00486569 98.5 BKW10 M I F 83.0667 0.00608282 96 BKW10 N A T 96.1238 9.71423 98 BKW10 N A F 45.6381 17.8907 97.5 BKW10 N P T 97.5619 7.9507 69.5 BKW10 N P F 50.3619 18.6467 98 BKW10 N H T 77.8952 9.24358 94.5 BKW10 N H F 48.5905 12.5673 97.5 BKW10 N W T 98.1143 12.3049 82.5 BKW10 N W F 55.8 21.3953 97.5 BKW10 N I T 58.6286 13.9195 98.5							
BKW10 M I T 58.6286 0.00486569 98.5 BKW10 M I F 83.0667 0.00608282 96 BKW10 N A T 96.1238 9.71423 98 BKW10 N A F 45.6381 17.8907 97.5 BKW10 N P T 97.5619 7.9507 69.5 BKW10 N P F 50.3619 18.6467 98 BKW10 N H T 77.8952 9.24358 94.5 BKW10 N H F 48.5905 12.5673 97.5 BKW10 N W T 98.1143 12.3049 82.5 BKW10 N W F 55.8 21.3953 97.5 BKW10 N I T 58.6286 13.9195 98.5 BKW10 N I F 76.2476 13.4088 98.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BKW10 M I F 83.0667 0.00608282 96 BKW10 N A T 96.1238 9.71423 98 BKW10 N A F 45.6381 17.8907 97.5 BKW10 N P T 97.5619 7.9507 69.5 BKW10 N P F 50.3619 18.6467 98 BKW10 N H T 77.8952 9.24358 94.5 BKW10 N H F 48.5905 12.5673 97.5 BKW10 N W T 98.1143 12.3049 82.5 BKW10 N W F 55.8 21.3953 97.5 BKW10 N I T 58.6286 13.9195 98.5 BKW10 N I F 76.2476 13.4088 98.5					54.6	0.0045886	
BKW10 N A T 96.1238 9.71423 98 BKW10 N A F 45.6381 17.8907 97.5 BKW10 N P T 97.5619 7.9507 69.5 BKW10 N P F 50.3619 18.6467 98 BKW10 N H T 77.8952 9.24358 94.5 BKW10 N H F 48.5905 12.5673 97.5 BKW10 N W T 98.1143 12.3049 82.5 BKW10 N W F 55.8 21.3953 97.5 BKW10 N I T 58.6286 13.9195 98.5 BKW10 N I F 76.2476 13.4088 98.5							
BKW10 N A F 45.6381 17.8907 97.5 BKW10 N P T 97.5619 7.9507 69.5 BKW10 N P F 50.3619 18.6467 98 BKW10 N H T 77.8952 9.24358 94.5 BKW10 N H F 48.5905 12.5673 97.5 BKW10 N W T 98.1143 12.3049 82.5 BKW10 N W F 55.8 21.3953 97.5 BKW10 N I T 58.6286 13.9195 98.5 BKW10 N I F 76.2476 13.4088 98.5							
BKW10 N P T 97.5619 7.9507 69.5 BKW10 N P F 50.3619 18.6467 98 BKW10 N H T 77.8952 9.24358 94.5 BKW10 N H F 48.5905 12.5673 97.5 BKW10 N W T 98.1143 12.3049 82.5 BKW10 N W F 55.8 21.3953 97.5 BKW10 N I T 58.6286 13.9195 98.5 BKW10 N I F 76.2476 13.4088 98.5							
BKW10 N P F 50.3619 18.6467 98 BKW10 N H T 77.8952 9.24358 94.5 BKW10 N H F 48.5905 12.5673 97.5 BKW10 N W T 98.1143 12.3049 82.5 BKW10 N W F 55.8 21.3953 97.5 BKW10 N I T 58.6286 13.9195 98.5 BKW10 N I F 76.2476 13.4088 98.5							
BKW10 N H T 77.8952 9.24358 94.5 BKW10 N H F 48.5905 12.5673 97.5 BKW10 N W T 98.1143 12.3049 82.5 BKW10 N W F 55.8 21.3953 97.5 BKW10 N I T 58.6286 13.9195 98.5 BKW10 N I F 76.2476 13.4088 98.5							
BKW10 N H F 48.5905 12.5673 97.5 BKW10 N W T 98.1143 12.3049 82.5 BKW10 N W F 55.8 21.3953 97.5 BKW10 N I T 58.6286 13.9195 98.5 BKW10 N I F 76.2476 13.4088 98.5							
BKW10 N W T 98.1143 12.3049 82.5 BKW10 N W F 55.8 21.3953 97.5 BKW10 N I T 58.6286 13.9195 98.5 BKW10 N I F 76.2476 13.4088 98.5							
BKW10 N W F 55.8 21.3953 97.5 BKW10 N I T 58.6286 13.9195 98.5 BKW10 N I F 76.2476 13.4088 98.5							
BKW10 N I T 58.6286 13.9195 98.5 BKW10 N I F 76.2476 13.4088 98.5							
BKW10 N I F 76.2476 13.4088 98.5							
	BKW10	N	I	F	76.2476	13.4088	98.5

Tabela 11 – Resultados da instância BKW11.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW11	V	A	Т	65.7238	0.00390029	86.3333
BKW11	V	A	F	37.9238	0.00241423	85.6667
BKW11	V	P	${ m T}$	73.9429	0.00388575	87
BKW11	V	Р	F	37.9238	0.00260563	85.6667
BKW11	V	Η	${ m T}$	56.7238	0.0037015	86.6667
BKW11	V	H	F	35.7524	0.00295582	86
BKW11	V	W	${ m T}$	88.9714	0.00340586	64.6667
BKW11	V	W	F	37.9238	0.00208626	85.6667
BKW11	V	I	Τ	46.3905	0.00294666	88.3333
BKW11	V	I	F	39.2	0.00318027	84.3333
BKW11	Η	A	T	93.7905	0.00664406	85.6667
BKW11	Η	A	F	21.781	0.00533447	68.3333
BKW11	Η	P	Τ	94.8857	0.00480752	85.3333
BKW11	Η	P	F	21.781	0.0055768	68.3333
BKW11	Η	H	Τ	82.181	0.00638766	95
BKW11	Η	Η	F	10.781	0.00445347	35.3333
BKW11	Η	W	T	80.4286	0.00530772	84.3333
BKW11	Η	W	F	27.2667	0.00685868	78.6667
BKW11	Η	I	T	52.4571	0.00626779	89.3333
BKW11	Η	I	F	54.4952	0.00598688	89
BKW11	M	A	T	96.7143	0.00937181	94.3333
BKW11	M	A	F	41.2667	0.00901389	90.3333
BKW11	M	P	T	97.7714	0.00880809	83.3333
BKW11	M	P	F	41.8286	0.00933299	90
BKW11	M	H	T	82.2571	0.0117291	95.3333
BKW11	M	H	F	27.8762	0.00975714	75.3333
BKW11	M	W	T	89.9905	0.00969214	95.3333
BKW11	M	W	F	61.1238	0.0065022	94.6667
BKW11	M	I	Τ	80.5143	0.0103827	97.6667
BKW11	M	I	F	80.2762	0.00908313	97.3333
BKW11	N	A	T	97.2095	47.6853	92
BKW11	N	A	F	69.4381	67.3668	97
BKW11	N	P	Τ	98.1524	47.2976	86.6667
BKW11	N	P	F	69.9905	65.9799	96.3333
BKW11	N	H	T	83.381	37.1351	96.3333
BKW11	N	H	F	58.0381	52.7709	93.3333
BKW11	N	W	T	98.0952	60.246	90
BKW11	N	W	F	72.7238	70.3336	96.3333
BKW11	N	I	$\overline{\mathrm{T}}$	78.7143	55.696	97.3333
BKW11	N	I	F	85.2095	41.4134	98

Tabela 12 – Resultados da instância BKW12.

BKW12 V A T 80.6733 0.00854292 92 BKW12 V A F 51.1267 0.00457072 92.4 BKW12 V P F 51.1267 0.00457072 92.4 BKW12 V P F 56.2433 0.00451002 93.2 BKW12 V H T 74.5833 0.00960941 90 BKW12 V H F 50.2133 0.00568471 93 BKW12 V W F 55.9967 0.00383987 91.4 BKW12 V I T 59.3267 0.00383987 91.4 BKW12 V I T 59.3267 0.00383987 91.4 BKW12 V I F 49.83 0.00669918 91.6 BKW12 H A T 89.3767 0.0205091 89 BKW12 H A F 8.55 0.00937166	Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW12 V A F 51.1267 0.00457072 92.4 BKW12 V P T 81.0333 0.00881557 92.2 BKW12 V P F 56.2433 0.00451002 93.2 BKW12 V H T 74.5833 0.00960941 90 BKW12 V H F 50.2133 0.00568471 93 BKW12 V W T 87.8 0.00586576 62.6 BKW12 V W F 55.9967 0.00383987 91.4 BKW12 V I F 49.83 0.00669918 91.6 BKW12 H A T 89.3767 0.0205091 89 BKW12 H A F 8.55 0.00928559 36.6 BKW12 H P T 91.2 0.0149393 78 BKW12 H P T 8.55 0.00937166					• •	\ /	
BKW12 V P T 81.0333 0.00881557 92.2 BKW12 V P F 56.2433 0.00451002 93.2 BKW12 V H T 74.5833 0.00960941 90 BKW12 V H F 50.2133 0.00568471 93 BKW12 V W T 87.8 0.00586576 62.6 BKW12 V W F 55.9967 0.00383987 91.4 BKW12 V I T 59.3267 0.00800271 91.6 BKW12 V I F 49.83 0.00669918 91.6 BKW12 H A T 89.3767 0.0205091 89 BKW12 H A F 8.55 0.00928559 36.6 BKW12 H P T 91.2 0.0149393 78 BKW12 H H T 8.55 0.00937616			A				
BKW12 V P F 56.2433 0.00451002 93.2 BKW12 V H T 74.5833 0.00960941 90 BKW12 V H F 50.2133 0.00568471 93 BKW12 V W T 87.8 0.00586576 62.6 BKW12 V W F 55.9967 0.00383987 91.4 BKW12 V I T 59.3267 0.00800271 91.6 BKW12 H A T 89.3767 0.0205091 89 BKW12 H A T 89.3767 0.0205091 89 BKW12 H A F 8.55 0.00928559 36.6 BKW12 H P T 91.2 0.0149393 78 BKW12 H P F 8.55 0.00937166 36.6 BKW12 H H T 74.5833 0.0163762 36							
BKW12 V H T 74.5833 0.00960941 90 BKW12 V H F 50.2133 0.00568471 93 BKW12 V W T 87.8 0.00586576 62.6 BKW12 V I T 55.9967 0.00800271 91.6 BKW12 V I F 59.3267 0.00800271 91.6 BKW12 H A T 89.3767 0.0205091 89 BKW12 H A F 8.55 0.00928559 36.6 BKW12 H P T 91.2 0.0149393 78 BKW12 H P T 91.2 0.0149393 78 BKW12 H P F 8.55 0.00937166 36.6 BKW12 H H T 74.5833 0.0163762 92.6 BKW12 H W F 26.6167 0.0142647 81.8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BKW12 V H F 50.2133 0.00568471 93 BKW12 V W T 87.8 0.00586576 62.6 BKW12 V W F 55.9967 0.00383987 91.4 BKW12 V I T 59.3267 0.00800271 91.6 BKW12 H A T 49.83 0.00669918 91.6 BKW12 H A T 89.3767 0.0205091 89 BKW12 H A F 8.55 0.00928559 36.6 BKW12 H P T 91.2 0.0149393 78 BKW12 H P F 8.55 0.00937166 36.6 BKW12 H H T 74.5833 0.0163762 92.6 BKW12 H H F 26.6167 0.0142647 81.8 BKW12 H I T 45.3133 0.0258911 8							
BKW12 V W F 55.9967 0.00383987 91.4 BKW12 V I T 59.3267 0.00800271 91.6 BKW12 V I F 49.83 0.00669918 91.6 BKW12 H A T 89.3767 0.0205091 89 BKW12 H A F 8.55 0.00928559 36.6 BKW12 H P T 91.2 0.0149393 78 BKW12 H P T 91.2 0.0149393 78 BKW12 H P F 8.55 0.00937166 36.6 BKW12 H H F 8.55 0.00937614 36.6 BKW12 H W T 74.5833 0.0163762 92.6 BKW12 H W F 26.6167 0.0142647 81.8 BKW12 H I T 45.3133 0.025799 78 <td></td> <td></td> <td></td> <td>F</td> <td></td> <td></td> <td></td>				F			
BKW12 V I T 59.3267 0.00800271 91.6 BKW12 V I F 49.83 0.00669918 91.6 BKW12 H A T 89.3767 0.0205091 89 BKW12 H A F 8.55 0.00928559 36.6 BKW12 H P T 91.2 0.0149393 78 BKW12 H P F 8.55 0.00937166 36.6 BKW12 H H T 86.9067 0.0201834 92.4 BKW12 H H F 8.55 0.00937614 36.6 BKW12 H W T 74.5833 0.0163762 92.6 BKW12 H W F 26.6167 0.0142647 81.8 BKW12 H I F 26.6167 0.0142647 81.8 BKW12 M A T 95.11 0.0205799 78<	BKW12	V	W	Τ	87.8	0.00586576	62.6
BKW12 V I F 49.83 0.00669918 91.6 BKW12 H A T 89.3767 0.0205091 89 BKW12 H A F 8.55 0.00928559 36.6 BKW12 H P T 91.2 0.0149393 78 BKW12 H P F 8.55 0.00937166 36.6 BKW12 H H T 86.9067 0.0201834 92.4 BKW12 H H F 8.55 0.00937614 36.6 BKW12 H W T 74.5833 0.0163762 92.6 BKW12 H W F 26.6167 0.0142647 81.8 BKW12 H I T 45.3133 0.0258911 89.8 BKW12 M A T 95.11 0.0205799 78 BKW12 M A F 28.7067 0.0293505 86 <td></td> <td></td> <td>W</td> <td>F</td> <td></td> <td></td> <td></td>			W	F			
BKW12 H A T 89.3767 0.0205091 89 BKW12 H A F 8.55 0.00928559 36.6 BKW12 H P T 91.2 0.0149393 78 BKW12 H P F 8.55 0.00937166 36.6 BKW12 H H T 86.9067 0.0201834 92.4 BKW12 H H F 8.55 0.00937614 36.6 BKW12 H W T 74.5833 0.0163762 92.6 BKW12 H W F 26.6167 0.0142647 81.8 BKW12 H I T 45.3133 0.0157242 82.6 BKW12 H I F 34.7533 0.0157242 82.6 BKW12 M A T 95.11 0.0205799 78 BKW12 M A F 28.7067 0.0293505 86 <td>BKW12</td> <td>V</td> <td>I</td> <td>T</td> <td>59.3267</td> <td>0.00800271</td> <td>91.6</td>	BKW12	V	I	T	59.3267	0.00800271	91.6
BKW12 H A F 8.55 0.00928559 36.6 BKW12 H P T 91.2 0.0149393 78 BKW12 H P F 8.55 0.00937166 36.6 BKW12 H H T 86.9067 0.0201834 92.4 BKW12 H H F 8.55 0.00937614 36.6 BKW12 H W T 74.5833 0.0163762 92.6 BKW12 H W F 26.6167 0.0142647 81.8 BKW12 H I T 45.3133 0.0258911 89.8 BKW12 H I F 26.6167 0.0142647 81.8 BKW12 M A T 95.11 0.0205799 78 BKW12 M A F 28.7067 0.0293505 86 BKW12 M P F 28.21 0.0216132 85.4 <td>BKW12</td> <td>V</td> <td>I</td> <td>F</td> <td>49.83</td> <td>0.00669918</td> <td>91.6</td>	BKW12	V	I	F	49.83	0.00669918	91.6
BKW12 H P T 91.2 0.0149393 78 BKW12 H P F 8.55 0.00937166 36.6 BKW12 H H T 86.9067 0.0201834 92.4 BKW12 H H F 8.55 0.00937614 36.6 BKW12 H W T 74.5833 0.0163762 92.6 BKW12 H W F 26.6167 0.0142647 81.8 BKW12 H I T 45.3133 0.0258911 89.8 BKW12 H I F 34.7533 0.0157242 82.6 BKW12 M A T 95.11 0.0205799 78 BKW12 M A F 28.7067 0.0293505 86 BKW12 M P T 94.7 0.0183156 68.4 BKW12 M H T 88.0967 0.036373 97.2 <td>BKW12</td> <td>Η</td> <td>A</td> <td>Τ</td> <td>89.3767</td> <td>0.0205091</td> <td>89</td>	BKW12	Η	A	Τ	89.3767	0.0205091	89
BKW12 H P F 8.55 0.00937166 36.6 BKW12 H H T 86.9067 0.0201834 92.4 BKW12 H H F 8.55 0.00937614 36.6 BKW12 H W T 74.5833 0.0163762 92.6 BKW12 H I T 74.5833 0.0163762 92.6 BKW12 H I T 45.3133 0.0258911 89.8 BKW12 H I F 34.7533 0.0157242 82.6 BKW12 M A T 95.11 0.0205799 78 BKW12 M A F 28.7067 0.0293505 86 BKW12 M P T 94.7 0.0183156 68.4 BKW12 M P F 28.21 0.0216132 85.4 BKW12 M H F 24.49 0.0216557 78.8<	BKW12	Η	A	F	8.55	0.00928559	36.6
BKW12 H H T 86.9067 0.0201834 92.4 BKW12 H H F 8.55 0.00937614 36.6 BKW12 H W T 74.5833 0.0163762 92.6 BKW12 H W F 26.6167 0.0142647 81.8 BKW12 H I T 45.3133 0.0258911 89.8 BKW12 H I F 34.7533 0.0157242 82.6 BKW12 M A T 95.11 0.0205799 78 BKW12 M A F 28.7067 0.0293505 86 BKW12 M P T 94.7 0.0183156 68.4 BKW12 M P F 28.21 0.0216132 85.4 BKW12 M H F 24.49 0.0216557 78.8 BKW12 M W F 67.24 0.0124371 97.6<	BKW12	Η	P	T	91.2	0.0149393	78
BKW12 H H F 8.55 0.00937614 36.6 BKW12 H W T 74.5833 0.0163762 92.6 BKW12 H W F 26.6167 0.0142647 81.8 BKW12 H I T 45.3133 0.0258911 89.8 BKW12 H I F 34.7533 0.0157242 82.6 BKW12 M A T 95.11 0.0205799 78 BKW12 M A F 28.7067 0.0293505 86 BKW12 M P T 94.7 0.0183156 68.4 BKW12 M P F 28.21 0.0216132 85.4 BKW12 M H T 88.0967 0.036373 97.2 BKW12 M W T 89.6933 0.0270993 99.2 BKW12 M H F 67.24 0.0124371 97.6	BKW12	Η	P	F	8.55	0.00937166	36.6
BKW12 H W T 74.5833 0.0163762 92.6 BKW12 H W F 26.6167 0.0142647 81.8 BKW12 H I T 45.3133 0.0258911 89.8 BKW12 H I F 34.7533 0.0157242 82.6 BKW12 M A T 95.11 0.0205799 78 BKW12 M A F 28.7067 0.0293505 86 BKW12 M P T 94.7 0.0183156 68.4 BKW12 M P F 28.21 0.0216132 85.4 BKW12 M H T 88.0967 0.036373 97.2 BKW12 M H F 24.49 0.0216557 78.8 BKW12 M W T 89.6933 0.0270993 99.2 BKW12 M I T 84.9233 0.0285264 98	BKW12	Η	H	T	86.9067	0.0201834	92.4
BKW12 H W F 26.6167 0.0142647 81.8 BKW12 H I T 45.3133 0.0258911 89.8 BKW12 H I F 34.7533 0.0157242 82.6 BKW12 M A T 95.11 0.0205799 78 BKW12 M A F 28.7067 0.0293505 86 BKW12 M P T 94.7 0.0183156 68.4 BKW12 M P F 28.21 0.0216132 85.4 BKW12 M H T 88.0967 0.036373 97.2 BKW12 M H F 24.49 0.0216557 78.8 BKW12 M W T 89.6933 0.0270993 99.2 BKW12 M W F 67.24 0.0124371 97.6 BKW12 M I F 75.5567 0.0288291 97.8	BKW12	Η	H	F	8.55	0.00937614	36.6
BKW12 H I T 45.3133 0.0258911 89.8 BKW12 H I F 34.7533 0.0157242 82.6 BKW12 M A T 95.11 0.0205799 78 BKW12 M A F 28.7067 0.0293505 86 BKW12 M P T 94.7 0.0183156 68.4 BKW12 M P F 28.21 0.0216132 85.4 BKW12 M H T 88.0967 0.036373 97.2 BKW12 M H F 24.49 0.0216557 78.8 BKW12 M W T 89.6933 0.0270993 99.2 BKW12 M W F 67.24 0.0124371 97.6 BKW12 M I T 84.9233 0.0285264 98.6 BKW12 N A T 95.91 223.229 76.6 <td>BKW12</td> <td>Η</td> <td>W</td> <td>T</td> <td>74.5833</td> <td>0.0163762</td> <td>92.6</td>	BKW12	Η	W	T	74.5833	0.0163762	92.6
BKW12 H I F 34.7533 0.0157242 82.6 BKW12 M A T 95.11 0.0205799 78 BKW12 M A F 28.7067 0.0293505 86 BKW12 M P T 94.7 0.0183156 68.4 BKW12 M P F 28.21 0.0216132 85.4 BKW12 M H T 88.0967 0.036373 97.2 BKW12 M H F 24.49 0.0216557 78.8 BKW12 M W T 89.6933 0.0270993 99.2 BKW12 M W F 67.24 0.0124371 97.6 BKW12 M I T 84.9233 0.0285264 98.6 BKW12 M I F 75.5567 0.0288291 97.8 BKW12 N A T 95.91 223.229 76.6 <td>BKW12</td> <td>Η</td> <td>W</td> <td>F</td> <td>26.6167</td> <td>0.0142647</td> <td>81.8</td>	BKW12	Η	W	F	26.6167	0.0142647	81.8
BKW12 M A T 95.11 0.0205799 78 BKW12 M A F 28.7067 0.0293505 86 BKW12 M P T 94.7 0.0183156 68.4 BKW12 M P F 28.21 0.0216132 85.4 BKW12 M H T 88.0967 0.036373 97.2 BKW12 M H F 24.49 0.0216557 78.8 BKW12 M W T 89.6933 0.0270993 99.2 BKW12 M W F 67.24 0.0124371 97.6 BKW12 M I T 84.9233 0.0285264 98.6 BKW12 M I F 75.5567 0.0288291 97.8 BKW12 N A T 95.91 223.229 76.6 BKW12 N P T 95.84 223.486 74.4	BKW12	Η	I	T	45.3133	0.0258911	89.8
BKW12 M A F 28.7067 0.0293505 86 BKW12 M P T 94.7 0.0183156 68.4 BKW12 M P F 28.21 0.0216132 85.4 BKW12 M H T 88.0967 0.036373 97.2 BKW12 M H F 24.49 0.0216557 78.8 BKW12 M W T 89.6933 0.0270993 99.2 BKW12 M W F 67.24 0.0124371 97.6 BKW12 M I T 84.9233 0.0285264 98.6 BKW12 M I F 75.5567 0.0288291 97.8 BKW12 N A T 95.91 223.229 76.6 BKW12 N A F 66.8933 366.344 97.8 BKW12 N P F 68.8833 356.08 98	BKW12	Η	I	F	34.7533	0.0157242	82.6
BKW12 M P T 94.7 0.0183156 68.4 BKW12 M P F 28.21 0.0216132 85.4 BKW12 M H T 88.0967 0.036373 97.2 BKW12 M H F 24.49 0.0216557 78.8 BKW12 M W T 89.6933 0.0270993 99.2 BKW12 M W F 67.24 0.0124371 97.6 BKW12 M I T 84.9233 0.0285264 98.6 BKW12 M I F 75.5567 0.0288291 97.8 BKW12 N A T 95.91 223.229 76.6 BKW12 N A F 66.8933 366.344 97.8 BKW12 N P T 95.84 223.486 74.4 BKW12 N P F 68.8833 356.08 98						0.0205799	78
BKW12 M P F 28.21 0.0216132 85.4 BKW12 M H T 88.0967 0.036373 97.2 BKW12 M H F 24.49 0.0216557 78.8 BKW12 M W T 89.6933 0.0270993 99.2 BKW12 M W F 67.24 0.0124371 97.6 BKW12 M I T 84.9233 0.0285264 98.6 BKW12 M I F 75.5567 0.0288291 97.8 BKW12 N A T 95.91 223.229 76.6 BKW12 N A F 66.8933 366.344 97.8 BKW12 N P T 95.84 223.486 74.4 BKW12 N P F 68.8833 356.08 98 BKW12 N H T 90.05 230.05 97 <td>BKW12</td> <td>M</td> <td></td> <td></td> <td>28.7067</td> <td>0.0293505</td> <td>86</td>	BKW12	M			28.7067	0.0293505	86
BKW12 M H T 88.0967 0.036373 97.2 BKW12 M H F 24.49 0.0216557 78.8 BKW12 M W T 89.6933 0.0270993 99.2 BKW12 M W F 67.24 0.0124371 97.6 BKW12 M I T 84.9233 0.0285264 98.6 BKW12 M I F 75.5567 0.0288291 97.8 BKW12 N A T 95.91 223.229 76.6 BKW12 N A F 66.8933 366.344 97.8 BKW12 N P T 95.84 223.486 74.4 BKW12 N P F 68.8833 356.08 98 BKW12 N H T 90.05 230.05 97 BKW12 N H F 65.8767 302.29 97.2 <td>BKW12</td> <td>M</td> <td></td> <td>Τ</td> <td>94.7</td> <td>0.0183156</td> <td>68.4</td>	BKW12	M		Τ	94.7	0.0183156	68.4
BKW12 M H F 24.49 0.0216557 78.8 BKW12 M W T 89.6933 0.0270993 99.2 BKW12 M W F 67.24 0.0124371 97.6 BKW12 M I T 84.9233 0.0285264 98.6 BKW12 M I F 75.5567 0.0288291 97.8 BKW12 N A T 95.91 223.229 76.6 BKW12 N A F 66.8933 366.344 97.8 BKW12 N P T 95.84 223.486 74.4 BKW12 N P F 68.8833 356.08 98 BKW12 N H T 90.05 230.05 97 BKW12 N H F 65.8767 302.29 97.2 BKW12 N W T 96.28 295.204 92.2	BKW12	M		F	28.21	0.0216132	85.4
BKW12 M W T 89.6933 0.0270993 99.2 BKW12 M W F 67.24 0.0124371 97.6 BKW12 M I T 84.9233 0.0285264 98.6 BKW12 M I F 75.5567 0.0288291 97.8 BKW12 N A T 95.91 223.229 76.6 BKW12 N A F 66.8933 366.344 97.8 BKW12 N P T 95.84 223.486 74.4 BKW12 N P F 68.8833 356.08 98 BKW12 N H T 90.05 230.05 97 BKW12 N H F 65.8767 302.29 97.2 BKW12 N W T 96.28 295.204 92.2 BKW12 N W F 73.9967 368.863 98	BKW12	M	Η		88.0967	0.036373	97.2
BKW12 M W F 67.24 0.0124371 97.6 BKW12 M I T 84.9233 0.0285264 98.6 BKW12 M I F 75.5567 0.0288291 97.8 BKW12 N A T 95.91 223.229 76.6 BKW12 N A F 66.8933 366.344 97.8 BKW12 N P T 95.84 223.486 74.4 BKW12 N P F 68.8833 356.08 98 BKW12 N H T 90.05 230.05 97 BKW12 N H F 65.8767 302.29 97.2 BKW12 N W T 96.28 295.204 92.2 BKW12 N W F 73.9967 368.863 98 BKW12 N I T 88.5733 299.701 98.6 <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>					_		
BKW12 M I T 84.9233 0.0285264 98.6 BKW12 M I F 75.5567 0.0288291 97.8 BKW12 N A T 95.91 223.229 76.6 BKW12 N A F 66.8933 366.344 97.8 BKW12 N P T 95.84 223.486 74.4 BKW12 N P F 68.8833 356.08 98 BKW12 N H T 90.05 230.05 97 BKW12 N H F 65.8767 302.29 97.2 BKW12 N W T 96.28 295.204 92.2 BKW12 N W F 73.9967 368.863 98 BKW12 N I T 88.5733 299.701 98.6	BKW12	M		Τ	89.6933	0.0270993	99.2
BKW12 M I F 75.5567 0.0288291 97.8 BKW12 N A T 95.91 223.229 76.6 BKW12 N A F 66.8933 366.344 97.8 BKW12 N P T 95.84 223.486 74.4 BKW12 N P F 68.8833 356.08 98 BKW12 N H T 90.05 230.05 97 BKW12 N H F 65.8767 302.29 97.2 BKW12 N W T 96.28 295.204 92.2 BKW12 N W F 73.9967 368.863 98 BKW12 N I T 88.5733 299.701 98.6					67.24	0.0124371	97.6
BKW12 N A T 95.91 223.229 76.6 BKW12 N A F 66.8933 366.344 97.8 BKW12 N P T 95.84 223.486 74.4 BKW12 N P F 68.8833 356.08 98 BKW12 N H T 90.05 230.05 97 BKW12 N H F 65.8767 302.29 97.2 BKW12 N W T 96.28 295.204 92.2 BKW12 N W F 73.9967 368.863 98 BKW12 N I T 88.5733 299.701 98.6							
BKW12 N A F 66.8933 366.344 97.8 BKW12 N P T 95.84 223.486 74.4 BKW12 N P F 68.8833 356.08 98 BKW12 N H T 90.05 230.05 97 BKW12 N H F 65.8767 302.29 97.2 BKW12 N W T 96.28 295.204 92.2 BKW12 N W F 73.9967 368.863 98 BKW12 N I T 88.5733 299.701 98.6							
BKW12 N P T 95.84 223.486 74.4 BKW12 N P F 68.8833 356.08 98 BKW12 N H T 90.05 230.05 97 BKW12 N H F 65.8767 302.29 97.2 BKW12 N W T 96.28 295.204 92.2 BKW12 N W F 73.9967 368.863 98 BKW12 N I T 88.5733 299.701 98.6							
BKW12 N P F 68.8833 356.08 98 BKW12 N H T 90.05 230.05 97 BKW12 N H F 65.8767 302.29 97.2 BKW12 N W T 96.28 295.204 92.2 BKW12 N W F 73.9967 368.863 98 BKW12 N I T 88.5733 299.701 98.6							
BKW12 N H T 90.05 230.05 97 BKW12 N H F 65.8767 302.29 97.2 BKW12 N W T 96.28 295.204 92.2 BKW12 N W F 73.9967 368.863 98 BKW12 N I T 88.5733 299.701 98.6							
BKW12 N H F 65.8767 302.29 97.2 BKW12 N W T 96.28 295.204 92.2 BKW12 N W F 73.9967 368.863 98 BKW12 N I T 88.5733 299.701 98.6					68.8833		
BKW12 N W T 96.28 295.204 92.2 BKW12 N W F 73.9967 368.863 98 BKW12 N I T 88.5733 299.701 98.6						230.05	
BKW12 N W F 73.9967 368.863 98 BKW12 N I T 88.5733 299.701 98.6							97.2
BKW12 N I T 88.5733 299.701 98.6							
					73.9967	368.863	
BKW12 N I F 78.0967 318.79 98.6							
	BKW12	N	I	F	78.0967	318.79	98.6

Tabela 13 – Resultados da instância BKW13.

	~ 1.			0 11 64		- C
Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW13	V	A	Τ	94.9339	0.116755	84.0102
BKW13	V	A	F	72.6849	0.0956778	96.4467
BKW13	V	P	${ m T}$	91.0596	0.0820553	74.2386
BKW13	V	Р	F	73.5465	0.0809931	96.1294
BKW13	V	H	T	86.7168	0.0906435	86.9607
BKW13	V	H	F	78.2632	0.0731152	96.986
BKW13	V	W	T	97.9108	0.0926637	90.736
BKW13	V	W	F	73.9661	0.0609208	88.8325
BKW13	V	I	T	61.0007	0.120608	83.9467
BKW13	V	I	F	60.3755	0.0897346	82.2018
BKW13	H	A	T	51.3125	0.230229	57.868
BKW13	H	A	\mathbf{F}	4.21354	0.372174	32.2335
BKW13	H	Р	T	63.4264	0.183033	63.2614
BKW13	H	P	F	4.26562	0.355907	29.9492
BKW13	H	H	T	85.3234	0.236992	86.0406
BKW13	H	H	F	1.2526	0.322697	18.7817
BKW13	H	W	T	32.3698	0.310274	54.3147
BKW13	H	W	F	11.562	0.418725	55.7424
BKW13	H	I	T	38.9907	0.250041	77.1574
BKW13	H	I	F	38.8179	0.240461	76.7449
BKW13	M	A	${ m T}$	92.3503	0.54441	94.1307
BKW13	M	A	F	32.1917	0.717847	81.8528
BKW13	M	P	Τ	91.9723	0.534671	93.8135
BKW13	M	P	F	33.3984	0.743062	82.0431
BKW13	M	H	T	97.1108	0.526851	95.8122
BKW13	M	H	F	9.58626	0.435822	44.4162
BKW13	M	W	${ m T}$	55.9587	0.610397	85.0254
BKW13	M	W	F	82.3021	0.14048	95.3363
BKW13	M	I	${ m T}$	94.4312	0.589158	98.7627
BKW13	M	I	F	94.6325	0.596748	98.7944

Tabela 14 – Resultados da instância GCUT01.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT01	V	A	T	77.3888	3.74317e-05	30
GCUT01	V	A	F	62.0688	4.87804 e - 05	40
GCUT01	V	P	T	67.3808	2.65121e-05	20
GCUT01	V	P	F	63.48	4.91142e-05	40
GCUT01	V	H	T	67.3808	2.68936e-05	20
GCUT01	V	H	F	46.784	3.56674 e - 05	30
GCUT01	V	W	${ m T}$	77.3888	3.31879e-05	30
GCUT01	V	W	F	43.4768	3.65734 e - 05	30
GCUT01	V	I	${ m T}$	63.104	4.73022 e-05	40
GCUT01	V	I	F	77.3888	3.35693e-05	30
GCUT01	Н	A	${ m T}$	67.7568	3.30925 e - 05	20
GCUT01	Η	A	F	43.8528	3.87669 e - 05	30
GCUT01	Η	P	T	67.3808	2.70367e-05	20
GCUT01	Η	P	F	43.8528	3.94344e-05	30
GCUT01	Η	H	T	67.3808	2.80857e-05	20
GCUT01	Η	H	F	31.1552	2.9707e-05	20
GCUT01	Η	W	T	67.7568	2.57015 e-05	20
GCUT01	Η	W	F	43.8528	4.03404 e - 05	30
GCUT01	Η	I	T	47.4752	4.11987e-05	30
GCUT01	Η	I	F	67.7568	2.40803e-05	20
GCUT01	${ m M}$	A	T	77.3888	7.01427e-05	30
GCUT01	${\bf M}$	A	F	62.0688	9.4986 e - 05	40
GCUT01	${\bf M}$	P	T	67.3808	5.00679 e-05	20
GCUT01	${\bf M}$	P	F	63.48	9.43661e-05	40
GCUT01	${\bf M}$	Η	T	67.3808	5.17845 e-05	20
GCUT01	${\bf M}$	Η	F	46.784	7.03812e-05	30
GCUT01	${\bf M}$	W	T	77.3888	6.78539 e-05	30
GCUT01	${\bf M}$	W	F	62.0688	9.52721 e-05	40
GCUT01	M	I	T	63.104	9.47952e-05	40
GCUT01	${\bf M}$	I	F	77.3888	6.73294 e-05	30
GCUT01	N	A	T	77.3888	0.00012126	30
GCUT01	N	A	F	62.0688	0.000469971	40
GCUT01	N	P	T	67.3808	5.62191e-05	20
GCUT01	N	P	F	63.48	0.000582457	40
GCUT01	N	H	T	67.3808	5.49316e-05	20
GCUT01	N	H	F	49.7472	0.000371695	30
GCUT01	N	W	${ m T}$	77.3888	0.000118542	30
GCUT01	N	W	F	62.0688	0.000229025	40
GCUT01	N	I	${ m T}$	63.104	0.000211	40
GCUT01	N	I	F	77.3888	0.000114298	30

Tabela 15 – Resultados da instância GCUT02.

Instance Split Order Descending Quality % Time (s) Items %							
GCUT02 V A F 29.5232 4.23908e-05 15 GCUT02 V P T 75.976 4.04358e-05 15 GCUT02 V P F 50.1248 5.53131e-05 20 GCUT02 V H T 60.1696 3.2568e-05 10 GCUT02 V H F 46.0144 5.35965e-05 20 GCUT02 V W T 67.6032 4.35352e-05 15 GCUT02 V W F 39.1968 4.25816e-05 15 GCUT02 V I T 69.6704 5.12123e-05 20 GCUT02 V I F 56.8624 5.57899e-05 20 GCUT02 H A T 65.656 3.29018e-05 10 GCUT02 H A F 56.2416 7.13348e-05 25 GCUT02 H P F 63.64 7.45773e	Instance	-	Order		Quality %	Time (s)	
GCUT02 V P T 75.976 4.04358e-05 15 GCUT02 V P F 50.1248 5.53131e-05 20 GCUT02 V H T 60.1696 3.2568e-05 10 GCUT02 V H F 46.0144 5.35965e-05 20 GCUT02 V W T 67.6032 4.35352e-05 15 GCUT02 V W F 39.1968 4.25816e-05 15 GCUT02 V I T 69.6704 5.12123e-05 20 GCUT02 V I F 56.8624 5.57899e-05 20 GCUT02 H A T 65.656 3.29018e-05 10 GCUT02 H A F 56.2416 7.13348e-05 25 GCUT02 H P T 65.656 3.33309e-05 10 GCUT02 H H T 60.1696 3.35217	GCUT02	V	A		75.976	4.01974e-05	15
GCUT02 V P F 50.1248 5.53131e-05 20 GCUT02 V H T 60.1696 3.2568e-05 10 GCUT02 V H F 46.0144 5.35965e-05 20 GCUT02 V W T 67.6032 4.35352e-05 15 GCUT02 V W F 39.1968 4.25816e-05 15 GCUT02 V I T 69.6704 5.12123e-05 20 GCUT02 V I F 56.8624 5.57899e-05 20 GCUT02 H A T 65.656 3.29018e-05 10 GCUT02 H A F 56.2416 7.13348e-05 25 GCUT02 H P T 65.656 3.33309e-05 10 GCUT02 H P F 63.64 7.45773e-05 25 GCUT02 H H F 44.344 4.58717e-							
GCUT02 V H T 60.1696 3.2568e-05 10 GCUT02 V H F 46.0144 5.35965e-05 20 GCUT02 V W T 67.6032 4.35352e-05 15 GCUT02 V W F 39.1968 4.25816e-05 15 GCUT02 V I T 69.6704 5.12123e-05 20 GCUT02 V I F 56.8624 5.57899e-05 20 GCUT02 H A T 65.656 3.29018e-05 10 GCUT02 H A F 56.2416 7.13348e-05 25 GCUT02 H P T 65.656 3.33309e-05 10 GCUT02 H P F 63.64 7.45773e-05 25 GCUT02 H H T 60.1696 3.35217e-05 10 GCUT02 H W T 68.1568 5.53131e	GCUT02				75.976	4.04358e-05	15
GCUT02 V H F 46.0144 5.35965e-05 20 GCUT02 V W T 67.6032 4.35352e-05 15 GCUT02 V W F 39.1968 4.25816e-05 15 GCUT02 V I T 69.6704 5.12123e-05 20 GCUT02 V I F 56.8624 5.57899e-05 20 GCUT02 H A T 65.656 3.29018e-05 10 GCUT02 H A F 56.2416 7.13348e-05 25 GCUT02 H P T 65.656 3.33309e-05 10 GCUT02 H P F 63.64 7.45773e-05 25 GCUT02 H H T 60.1696 3.35217e-05 10 GCUT02 H W T 68.1568 5.53131e-05 20 GCUT02 H W F 56.2416 7.24792	GCUT02				50.1248	5.53131e-05	20
GCUT02 V W T 67.6032 4.35352e-05 15 GCUT02 V W F 39.1968 4.25816e-05 15 GCUT02 V I T 69.6704 5.12123e-05 20 GCUT02 V I F 56.8624 5.57899e-05 20 GCUT02 H A T 65.656 3.29018e-05 10 GCUT02 H A F 56.2416 7.13348e-05 25 GCUT02 H P T 65.656 3.33309e-05 10 GCUT02 H P F 63.64 7.45773e-05 25 GCUT02 H H T 60.1696 3.35217e-05 10 GCUT02 H H F 44.344 4.58717e-05 15 GCUT02 H W T 68.1568 5.53131e-05 20 GCUT02 H W F 56.2416 7.24792e	GCUT02	V			60.1696	3.2568e-05	10
GCUT02 V W F 39.1968 4.25816e-05 15 GCUT02 V I T 69.6704 5.12123e-05 20 GCUT02 V I F 56.8624 5.57899e-05 20 GCUT02 H A T 65.656 3.29018e-05 10 GCUT02 H A F 56.2416 7.13348e-05 25 GCUT02 H P T 65.656 3.33309e-05 10 GCUT02 H P F 63.64 7.45773e-05 25 GCUT02 H H T 60.1696 3.35217e-05 10 GCUT02 H H F 44.344 4.58717e-05 15 GCUT02 H W T 68.1568 5.53131e-05 20 GCUT02 H W F 56.2416 7.24792e-05 25 GCUT02 H I I F 56.8624	GCUT02				46.0144	5.35965 e - 05	20
GCUT02 V I T 69.6704 5.12123e-05 20 GCUT02 V I F 56.8624 5.57899e-05 20 GCUT02 H A T 65.656 3.29018e-05 10 GCUT02 H A F 56.2416 7.13348e-05 25 GCUT02 H P T 65.656 3.33309e-05 10 GCUT02 H P F 63.64 7.45773e-05 25 GCUT02 H H T 60.1696 3.35217e-05 10 GCUT02 H H F 44.344 4.58717e-05 15 GCUT02 H W T 68.1568 5.53131e-05 20 GCUT02 H W F 56.2416 7.24792e-05 25 GCUT02 H I T 76.7008 7.0715e-05 25 GCUT02 M A T 77.6864 7.88212e-	GCUT02		W	${ m T}$	67.6032	4.35352 e-05	15
GCUT02 V I F 56.8624 5.57899e-05 20 GCUT02 H A T 65.656 3.29018e-05 10 GCUT02 H A F 56.2416 7.13348e-05 25 GCUT02 H P T 65.656 3.33309e-05 10 GCUT02 H P F 63.64 7.45773e-05 25 GCUT02 H H T 60.1696 3.35217e-05 10 GCUT02 H H F 44.344 4.58717e-05 15 GCUT02 H W T 68.1568 5.53131e-05 20 GCUT02 H W F 56.2416 7.24792e-05 25 GCUT02 H I T 76.7008 7.0715e-05 25 GCUT02 H I F 56.8624 5.76973e-05 20 GCUT02 M A T 77.6864 7.88212e-	GCUT02	V	W	\mathbf{F}	39.1968	4.25816 e-05	15
GCUT02 H A T 65.656 3.29018e-05 10 GCUT02 H A F 56.2416 7.13348e-05 25 GCUT02 H P T 65.656 3.33309e-05 10 GCUT02 H P F 63.64 7.45773e-05 25 GCUT02 H H T 60.1696 3.35217e-05 10 GCUT02 H H F 44.344 4.58717e-05 15 GCUT02 H W T 68.1568 5.53131e-05 20 GCUT02 H W F 56.2416 7.24792e-05 25 GCUT02 H I T 76.7008 7.0715e-05 25 GCUT02 H I F 56.8624 5.76973e-05 20 GCUT02 M A T 77.6864 7.88212e-05 15 GCUT02 M A F 41.5536 0.0001047	GCUT02	V			69.6704	5.12123e-05	20
GCUT02 H A F 56.2416 7.13348e-05 25 GCUT02 H P T 65.656 3.33309e-05 10 GCUT02 H P F 63.64 7.45773e-05 25 GCUT02 H H T 60.1696 3.35217e-05 10 GCUT02 H H F 44.344 4.58717e-05 15 GCUT02 H W T 68.1568 5.53131e-05 20 GCUT02 H W F 56.2416 7.24792e-05 25 GCUT02 H I T 76.7008 7.0715e-05 25 GCUT02 H I F 56.8624 5.76973e-05 20 GCUT02 M A T 77.6864 7.88212e-05 15 GCUT02 M A F 41.5536 0.000104761 20	GCUT02	V	I	\mathbf{F}	56.8624	5.57899e-05	20
GCUT02 H P T 65.656 3.33309e-05 10 GCUT02 H P F 63.64 7.45773e-05 25 GCUT02 H H T 60.1696 3.35217e-05 10 GCUT02 H H F 44.344 4.58717e-05 15 GCUT02 H W T 68.1568 5.53131e-05 20 GCUT02 H W F 56.2416 7.24792e-05 25 GCUT02 H I T 76.7008 7.0715e-05 25 GCUT02 H I F 56.8624 5.76973e-05 20 GCUT02 M A T 77.6864 7.88212e-05 15 GCUT02 M A F 41.5536 0.000104761 20					65.656	3.29018e-05	
GCUT02 H P F 63.64 7.45773e-05 25 GCUT02 H H T 60.1696 3.35217e-05 10 GCUT02 H H F 44.344 4.58717e-05 15 GCUT02 H W T 68.1568 5.53131e-05 20 GCUT02 H W F 56.2416 7.24792e-05 25 GCUT02 H I T 76.7008 7.0715e-05 25 GCUT02 H I F 56.8624 5.76973e-05 20 GCUT02 M A T 77.6864 7.88212e-05 15 GCUT02 M A F 41.5536 0.000104761 20	GCUT02			F	56.2416	7.13348e-05	25
GCUT02 H H T 60.1696 3.35217e-05 10 GCUT02 H H F 44.344 4.58717e-05 15 GCUT02 H W T 68.1568 5.53131e-05 20 GCUT02 H W F 56.2416 7.24792e-05 25 GCUT02 H I T 76.7008 7.0715e-05 25 GCUT02 H I F 56.8624 5.76973e-05 20 GCUT02 M A T 77.6864 7.88212e-05 15 GCUT02 M A F 41.5536 0.000104761 20	GCUT02	Η	P		65.656	3.33309e-05	10
GCUT02 H H F 44.344 4.58717e-05 15 GCUT02 H W T 68.1568 5.53131e-05 20 GCUT02 H W F 56.2416 7.24792e-05 25 GCUT02 H I T 76.7008 7.0715e-05 25 GCUT02 H I F 56.8624 5.76973e-05 20 GCUT02 M A T 77.6864 7.88212e-05 15 GCUT02 M A F 41.5536 0.000104761 20	GCUT02	Η	P	\mathbf{F}	63.64	7.45773e-05	25
GCUT02 H W T 68.1568 5.53131e-05 20 GCUT02 H W F 56.2416 7.24792e-05 25 GCUT02 H I T 76.7008 7.0715e-05 25 GCUT02 H I F 56.8624 5.76973e-05 20 GCUT02 M A T 77.6864 7.88212e-05 15 GCUT02 M A F 41.5536 0.000104761 20	GCUT02	Η	Η		60.1696	3.35217e-05	10
GCUT02 H W F 56.2416 7.24792e-05 25 GCUT02 H I T 76.7008 7.0715e-05 25 GCUT02 H I F 56.8624 5.76973e-05 20 GCUT02 M A T 77.6864 7.88212e-05 15 GCUT02 M A F 41.5536 0.000104761 20	GCUT02	Η		\mathbf{F}	44.344	4.58717e-05	15
GCUT02 H I T 76.7008 7.0715e-05 25 GCUT02 H I F 56.8624 5.76973e-05 20 GCUT02 M A T 77.6864 7.88212e-05 15 GCUT02 M A F 41.5536 0.000104761 20	GCUT02	Η	W	${ m T}$	68.1568	5.53131e-05	20
GCUT02 H I F 56.8624 5.76973e-05 20 GCUT02 M A T 77.6864 7.88212e-05 15 GCUT02 M A F 41.5536 0.000104761 20	GCUT02	Η	W	F	56.2416	7.24792e-05	25
GCUT02 M A T 77.6864 7.88212e-05 15 GCUT02 M A F 41.5536 0.000104761 20	GCUT02	Η	I	${ m T}$	76.7008	7.0715e-05	25
GCUT02 M A F 41.5536 0.000104761 20	GCUT02	Η	I	F	56.8624	5.76973e-05	20
	GCUT02	M	A	${ m T}$	77.6864	7.88212e-05	15
CCHT02 M D T 77.6864 7.557975.05 15	GCUT02	M	A	\mathbf{F}	41.5536	0.000104761	20
GCU102 M F 1 (1.0004 1.557676-05) 15	GCUT02	M	P	${ m T}$	77.6864	7.55787e-05	15
GCUT02 M P F 41.5536 0.00010128 20	GCUT02	M	P	F	41.5536	0.00010128	20
GCUT02 M H T 60.1696 5.75542e-05 10	GCUT02	M	H	${ m T}$	60.1696	5.75542e-05	10
GCUT02 M H F 54.664 0.000102949 20	GCUT02	M	H	F	54.664	0.000102949	20
GCUT02 M W T 68.1568 9.99451e-05 20	GCUT02	M	W	${ m T}$	68.1568	9.99451e-05	20
GCUT02 M W F 39.1968 7.82013e-05 15	GCUT02	M	W	F	39.1968	7.82013e-05	15
GCUT02 M I T 69.984 0.000102472 20	GCUT02	M	I	${ m T}$	69.984	0.000102472	20
GCUT02 M I F 73.8544 0.000122595 25	GCUT02	M	I	\mathbf{F}	73.8544	0.000122595	25
GCUT02 N A T 77.6864 0.000129843 15	GCUT02	N	A	${ m T}$	77.6864	0.000129843	15
GCUT02 N A F 56.2416 0.00127311 25	GCUT02	N	A	F	56.2416	0.00127311	25
GCUT02 N P T 77.6864 0.000129747 15	GCUT02	N	P	${ m T}$	77.6864	0.000129747	15
GCUT02 N P F 76.2352 0.00133896 30	GCUT02	N	P	\mathbf{F}	76.2352	0.00133896	30
GCUT02 N H T 72.2 0.000128031 15	GCUT02	N	H	${ m T}$	72.2	0.000128031	15
GCUT02 N H F 54.664 0.000774622 20		N	H	F	54.664	0.000774622	20
GCUT02 N W T 68.1568 0.00035162 20	GCUT02	N	W	${ m T}$	68.1568	0.00035162	20
GCUT02 N W F 50.1248 0.000846434 20	GCUT02	N	W	\mathbf{F}	50.1248	0.000846434	20
GCUT02 N I T 69.984 0.000656366 20		N	I	${ m T}$			
GCUT02 N I F 56.8624 0.000451708 20	$\underline{\text{GCUT02}}$	N	I	F	56.8624	0.000451708	20

Tabela 16 – Resultados da instância GCUT03.

Instance Split Order Descending Quality % Time (s) Items % GCUT03 V A T 87.4512 5.82218e-05 13.3333 GCUT03 V A F 54.9824 7.96318e-05 16.6667	
GCUT03 V A F 54.9824 7.96318e-05 16.6667	33
	00
	67
	10
	20
GCUT03 V H T 76.6 6.62327e-05 13.3333	33
GCUT03 V H F 72.8752 7.84397e-05 16.6667	67
GCUT03 V W T 87.0368 6.12736e-05 13.3333	33
GCUT03 V W F 40.2928 5.04017e-05 10	10
GCUT03 V I T 68.736 7.90596e-05 16.6667	67
GCUT03 V I F 66.1776 6.35147e-05 13.3333	33
GCUT03 H A T 87.016 5.87463e-05 13.3333	33
GCUT03 H A F 61.6464 7.71046e-05 16.6667	67
GCUT03 H P T 93.5504 6.18935e-05 13.3333	
GCUT03 H P F 61.6464 8.08716e-05 16.6667	67
	10
	10
GCUT03 H W T 75.7456 6.27518e-05 13.3333	33
GCUT03 H W F 49.6064 6.96659e-05 13.3333	33
GCUT03 H I T 56.0832 6.74725e-05 13.3333	33
GCUT03 H I F 57.9184 8.64983e-05 13.3333	33
GCUT03 M A T 87.3984 0.000107527 13.3333	33
GCUT03 M A F 41.5568 0.00011282 13.3333	33
GCUT03 M P T 93.5504 0.000107527 13.3333	33
GCUT03 M P F 41.5568 0.00011158 13.3333	33
GCUT03 M H T 76.6 0.000109911 13.3333	33
GCUT03 M H F 56.2256 0.000108862 13.3333	33
GCUT03 M W T 75.7456 0.000101042 13.3333	33
GCUT03 M W F 58.9504 0.000113916 13.3333	33
GCUT03 M I T 56.0832 0.00011158 13.3333	33
GCUT03 M I F 66.1776 0.000105906 13.3333	33
GCUT03 N A T 87.3984 0.000427628 13.3333	33
GCUT03 N A F 67.7792 0.00358415 20	20
GCUT03 N P T 86.0608 0.000366545 10	10
GCUT03 N P F 68.104 0.00317931 20	20
GCUT03 N H T 76.6 0.000225973 13.3333	33
GCUT03 N H F 56.2256 0.00131464 13.3333	
GCUT03 N W T 87.0368 0.000354624 13.3333	33
GCUT03 N W F 58.9504 0.0006392 13.3333	
	20
GCUT03 N I F 57.9184 0.00121841 13.3333	33

Tabela 17 – Resultados da instância GCUT04.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT04	V	A	Τ	92.816	6.84738e-05	8
GCUT04	V	A	\mathbf{F}	58.848	0.00010767	12
GCUT04	V	P	T	92.816	7.41959e-05	8
GCUT04	V	P	F	58.848	0.000107574	12
GCUT04	V	Η	T	90.8624	7.66754 e - 05	10
GCUT04	V	Η	F	61.568	0.000107479	12
GCUT04	V	W	T	86.7136	6.89507 e-05	8
GCUT04	V	W	F	44.5504	6.60896 e - 05	8
GCUT04	V	I	T	72.9616	7.76768e-05	8
GCUT04	V	I	F	63.7264	8.564 e - 05	10
GCUT04	Η	A	T	83.6768	6.53744 e-05	6
GCUT04	Η	A	F	71.9872	0.000146818	14
GCUT04	Η	P	${ m T}$	83.6768	6.11782 e- 05	6
GCUT04	Η	P	F	54.7504	0.000130653	12
GCUT04	Η	Η	T	82.728	7.10487e-05	8
GCUT04	Η	Η	F	34.8656	7.44343e-05	6
GCUT04	Η	W	T	96.1424	8.43525 e - 05	10
GCUT04	Η	W	F	64.032	0.000129986	12
GCUT04	Η	I	T	79.336	8.54015 e-05	8
GCUT04	Η	I	F	67.7552	8.90255 e-05	8
GCUT04	M	A	T	94.3856	0.00011673	8
GCUT04	M	A	F	64.5616	0.000192499	14
GCUT04	M	P	T	94.3856	0.000116968	8
GCUT04	M	P	F	64.5616	0.000191879	14
GCUT04	M	Η	T	93.4368	0.000138712	10
GCUT04	M	Η	F	53.4192	0.000158453	10
GCUT04	M	W	T	96.1424	0.0001441	10
GCUT04	M	W	F	71.2128	0.000163174	12
GCUT04	M	I	T	72.9616	0.00012188	8
GCUT04	M	I	F	67.7552	0.000131512	8
GCUT04	N	A	T	94.3856	0.000424194	8
GCUT04	N	A	F	75.2704	0.0063355	16
GCUT04	N	P	${ m T}$	94.3856	0.000369072	8
GCUT04	N	P	F	75.2704	0.00636544	16
GCUT04	N	Η	T	93.4368	0.000379848	10
GCUT04	N	Η	F	62.848	0.00367494	12
GCUT04	N	W	${ m T}$	96.1424	0.000389242	10
GCUT04	N	W	F	71.2128	0.00524592	12
GCUT04	N	I	${ m T}$	79.336	0.000852728	8
GCUT04	N	I	F	67.7552	0.000873375	8

Tabela 18 – Resultados da instância GCUT05.

Instance Split Order Descending Quality % Time (s) Items % GCUT05 V A T 65.744 3.80516e-05 30 GCUT05 V A F 36.6852 3.66211e-05 30	
	COTTON
GCUT05 V A F 36.6852 3.66211e-05 30	GCUT05
	GCUT05
GCUT05 V P T 65.744 3.65734e-05 30	GCUT05
GCUT05 V P F 36.6852 3.80039e-05 30	GCUT05
GCUT05 V H T 65.744 3.80039e-05 30	GCUT05
GCUT05 V H F 56.6948 4.72546e-05 40	GCUT05
GCUT05 V W T 63.9648 3.94821e-05 30	GCUT05
GCUT05 V W F 36.6852 3.93867e-05 30	GCUT05
GCUT05 V I T 46.244 3.88145e-05 30	GCUT05
GCUT05 V I F 52.5148 4.87328e-05 40	GCUT05
GCUT05 H A T 56.5568 2.79903e-05 20	
GCUT05 H A F 56.6948 5.04494e-05 40	GCUT05
GCUT05 H P T 56.5568 2.72751e-05 20	GCUT05
GCUT05 H P F 56.9356 4.96387e-05 40	GCUT05
GCUT05 H H T 56.5568 4.03404e-05 20	GCUT05
GCUT05 H H F 57.0664 3.7241e-05 30	GCUT05
GCUT05 H W T 63.9648 3.69072e-05 30	GCUT05
GCUT05 H W F 52.9212 5.15938e-05 40	GCUT05
GCUT05 H I T 57.342 5.03063e-05 40	GCUT05
GCUT05 H I F 52.5148 5.2166e-05 40	GCUT05
GCUT05 M A T 72.7928 7.59125e-05 30	GCUT05
GCUT05 M A F 56.6948 9.5892e-05 40	GCUT05
GCUT05 M P T 72.7928 7.1907e-05 30	GCUT05
GCUT05 M P F 52.9212 9.57966e-05 40	GCUT05
GCUT05 M H T 72.7928 7.11441e-05 30	GCUT05
GCUT05 M H F 66.2536 9.4986e-05 40	GCUT05
GCUT05 M W T 63.9648 7.1907e-05 30	GCUT05
GCUT05 M W F 52.9212 9.17435e-05 40	GCUT05
GCUT05 M I T 57.342 9.08375e-05 40	GCUT05
GCUT05 M I F 68.9148 0.000117874 50	GCUT05
GCUT05 N A T 72.7928 0.000122213 30	GCUT05
GCUT05 N A F 56.6948 0.000473309 40	GCUT05
GCUT05 N P T 72.7928 0.000122213 30	GCUT05
GCUT05 N P F 52.5148 0.000568724 40	GCUT05
GCUT05 N H T 72.7928 0.000115204 30	GCUT05
GCUT05 N H F 66.2536 0.000424099 40	GCUT05
GCUT05 N W T 63.9648 0.000118256 30	GCUT05
GCUT05 N W F 52.9212 0.000395823 40	GCUT05
GCUT05 N I T 73.3356 0.000308418 50	GCUT05
GCUT05 N I F 52.5148 0.000315094 40	GCUT05

Tabela 19 – Resultados da instância GCUT06.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT06	V	A	T	82.0112	5.12123e-05	20
GCUT06	V	A	F	57.9372	5.18322e-05	20
GCUT06	V	P	T	81.918	5.14507e-05	20
GCUT06	V	P	F	53.0764	5.37395 e-05	20
GCUT06	V	Η	T	59.9172	3.28064 e-05	10
GCUT06	V	Η	F	55.6788	5.4884 e-05	20
GCUT06	V	W	T	67.9596	4.42028e-05	15
GCUT06	V	W	F	60.3732	4.90665e-05	20
GCUT06	V	I	T	64.4944	4.53949 e - 05	15
GCUT06	V	I	F	75.8792	5.37395 e-05	20
GCUT06	Η	A	T	89.7596	5.49316e-05	20
GCUT06	Η	A	F	51.546	6.02722 e-05	20
GCUT06	Η	P	T	79.2576	4.55379 e - 05	15
GCUT06	Η	P	F	51.546	5.97954 e-05	20
GCUT06	Η	Η	T	59.9172	3.39031e-05	10
GCUT06	Η	Η	F	54.9244	4.68254 e-05	15
GCUT06	Η	W	T	67.9596	4.42028 e - 05	15
GCUT06	Η	W	F	57.9372	6.26087 e-05	20
GCUT06	Η	I	T	58.5072	4.67777e-05	15
GCUT06	Η	I	F	81.918	5.80788e-05	20
GCUT06	${\bf M}$	A	T	89.7596	0.000101089	20
GCUT06	M	A	F	51.546	0.000102568	20
GCUT06	M	P	T	89.2368	9.77993e-05	20
GCUT06	M	P	F	74.426	0.00013299	25
GCUT06	M	Η	T	76.0284	7.71523e-05	15
GCUT06	M	Η	F	64.9036	0.000102472	20
GCUT06	${\bf M}$	W	T	67.9596	7.41959e-05	15
GCUT06	${\bf M}$	W	F	60.3732	0.000105143	20
GCUT06	M	I	T	58.5072	7.92027e-05	15
GCUT06	M	I	F	81.918	0.000102425	20
GCUT06	N	A	T	89.7596	0.000299025	20
GCUT06	N	A	F	51.546	0.00131993	20
GCUT06	N	P	T	89.2368	0.000299215	20
GCUT06	N	P	F	51.546	0.00141735	20
GCUT06	N	Η	T	76.0284	0.000130367	15
GCUT06	N	Η	F	64.9036	0.000666761	20
GCUT06	N	W	${ m T}$	67.9596	0.000131512	15
GCUT06	N	W	F	60.3732	0.00092411	20
GCUT06	N	I	${ m T}$	64.4944	0.000367785	15
GCUT06	N	Ι	F	81.918	0.000321198	20

Tabela 20 – Resultados da instância GCUT07.

	G 1:4	0.1	D 1:	0 1:4 07	m· ()	T1 07
Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT07	V	A	T	72.406	4.51565e-05	10
GCUT07	V	A	F	63.742	6.9809e-05	16.6667
GCUT07	V	P	T	72.406	4.3869e-05	10
GCUT07	V	Р	F	63.742	7.12395e-05	16.6667
GCUT07	V	Н	T	72.406	4.53472e-05	10
GCUT07	V	Н	F	63.742	6.76155e-05	16.6667
GCUT07	V	W	T	72.406	4.42982e-05	10
GCUT07	V	W	F	53.3224	5.67913e-05	13.3333
GCUT07	V	I	T	53.3224	6.41346e-05	13.3333
GCUT07	V	I	F	67.194	5.92232e-05	13.3333
GCUT07	H	A	$_{-}^{\mathrm{T}}$	72.406	4.67777e-05	10
GCUT07	H	A	F	29.6964	6.2418e-05	10
GCUT07	H	P	${f T}$	72.406	4.77314e-05	10
GCUT07	Η	P	F	29.6964	5.9557e-05	10
GCUT07	Η	Н	T	72.406	4.63009e-05	10
GCUT07	Η	H	F	19.4796	4.52518e-05	6.66667
GCUT07	Η	W	T	72.406	4.71115e-05	10
GCUT07	Η	W	F	29.6964	6.15597e-05	10
GCUT07	Η	I	${ m T}$	50.1948	7.20978e-05	13.3333
GCUT07	Η	I	F	68.8716	6.47545 e - 05	13.3333
GCUT07	M	A	${ m T}$	72.406	8.05378e-05	10
GCUT07	M	A	F	61.1696	0.000122929	16.6667
GCUT07	M	P	${ m T}$	72.406	8.43048e-05	10
GCUT07	M	P	F	61.1696	0.000125885	16.6667
GCUT07	M	Η	${ m T}$	72.406	8.26836 e-05	10
GCUT07	M	Η	F	48.4644	0.000106668	13.3333
GCUT07	M	W	T	72.406	8.03471e-05	10
GCUT07	M	W	F	53.3224	0.000103331	13.3333
GCUT07	M	I	T	65.2168	0.000132799	16.6667
GCUT07	M	I	F	76.0008	0.000106478	13.3333
GCUT07	N	A	T	72.406	0.000149965	10
GCUT07	N	A	\mathbf{F}	61.1696	0.00223007	16.6667
GCUT07	N	P	T	72.406	0.000150251	10
GCUT07	N	P	F	61.1696	0.00215402	16.6667
GCUT07	N	H	Τ	72.406	0.000167274	10
GCUT07	N	H	F	38.2476	0.00104232	10
GCUT07	N	W	${ m T}$	72.406	0.000146437	10
GCUT07	N	W	F	53.3224	0.00239635	13.3333
GCUT07	N	I	Τ	71.0972	0.000812292	16.6667
GCUT07	N	I	\mathbf{F}	76.0008	0.000391626	13.3333

Tabela 21 – Resultados da instância GCUT08.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT08	V	A	T	79.6752	5.63145e-05	6
GCUT08	V	A	\mathbf{F}	63.7732	0.000107336	12
GCUT08	V	P	T	79.6752	5.80311e-05	6
GCUT08	V	P	F	52.9528	9.30786 e - 05	10
GCUT08	V	H	T	79.6752	6.20842 e-05	6
GCUT08	V	H	F	62.9792	0.000108194	12
GCUT08	V	W	T	81.3776	7.27654e-05	8
GCUT08	V	W	F	35.9152	6.1512 e-05	6
GCUT08	V	I	T	72.664	7.7343e-05	8
GCUT08	V	I	F	74.4596	9.20773e-05	10
GCUT08	Η	A	T	72.1296	6.44684 e-05	4
GCUT08	Η	A	F	61.8724	0.00012908	12
GCUT08	Η	P	T	72.1296	4.93526 e - 05	4
GCUT08	Η	P	F	61.8724	0.000138092	12
GCUT08	Η	Η	T	72.1296	6.45161 e-05	4
GCUT08	Η	H	F	39.6812	7.40528e-05	6
GCUT08	Η	W	T	63.4032	5.84126e-05	6
GCUT08	Η	W	F	66.0228	0.000132227	12
GCUT08	Η	I	T	72.664	8.59261 e-05	8
GCUT08	Η	I	F	66.914	9.01699 e - 05	8
GCUT08	M	A	T	79.6752	9.20296 e - 05	6
GCUT08	M	A	F	48.0484	0.000157833	10
GCUT08	M	P	T	79.6752	9.16958 e-05	6
GCUT08	M	P	F	48.0484	0.000147963	10
GCUT08	M	Η	T	79.6752	9.43184 e-05	6
GCUT08	M	Η	F	39.6812	0.000107527	6
GCUT08	M	W	T	63.4032	9.35555e-05	6
GCUT08	M	W	F	55.2024	0.000148726	10
GCUT08	M	I	T	84.072	0.000149632	10
GCUT08	M	I	F	66.914	0.000127172	8
GCUT08	N	A	${ m T}$	79.6752	0.000170326	6
GCUT08	N	A	F	61.8724	0.00434747	12
GCUT08	N	P	${ m T}$	79.6752	0.000167513	6
GCUT08	N	P	F	61.8724	0.00390096	12
GCUT08	N	H	${ m T}$	79.6752	0.000202131	6
GCUT08	N	H	F	47.5604	0.00232964	8
GCUT08	N	W	${ m T}$	81.3776	0.000264549	8
GCUT08	N	W	F	72.9048	0.00430069	12
GCUT08	N	I	${ m T}$	84.072	0.000531626	10
GCUT08	N	Ι	F	66.914	0.00116959	8

Tabela 22 – Resultados da instância GCUT09.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT09	V	A	T	72.2042	3.62873e-05	30
GCUT09	V	A	F	54.3733	5.04017e-05	40
GCUT09	V	P	T	72.2042	3.78132e-05	30
GCUT09	V	P	F	54.3733	4.9305e-05	40
GCUT09	V	H	T	60.5416	3.57628e-05	30
GCUT09	V	H	F	72.1475	6.29425 e-05	50
GCUT09	V	W	${ m T}$	80.6112	5.12123e-05	40
GCUT09	V	W	F	47.476	3.72887e-05	30
GCUT09	V	I	T	60.5416	3.70979e-05	30
GCUT09	V	I	F	77.7122	5.64098e-05	40
GCUT09	H	A	T	77.7122	5.07832e-05	40
GCUT09	Η	A	F	24.9023	2.985e-05	20
GCUT09	Η	P	T	77.7122	4.81606e-05	40
GCUT09	Η	P	F	24.9023	2.90871e-05	20
GCUT09	H	H	T	48.8453	2.94209 e - 05	20
GCUT09	Η	H	F	24.9023	2.85625 e - 05	20
GCUT09	Η	W	T	76.1225	4.94003e-05	40
GCUT09	H	W	F	38.1883	4.0102 e-05	30
GCUT09	H	I	T	57.3318	3.97205 e-05	30
GCUT09	Η	I	F	69.6847	5.00679e-05	40
GCUT09	M	A	T	82.2804	9.60827 e - 05	40
GCUT09	M	A	F	54.3733	9.61781e-05	40
GCUT09	M	P	T	82.2804	9.67026 e - 05	40
GCUT09	M	P	F	54.3733	9.82285 e-05	40
GCUT09	M	Η	T	60.5416	7.32422e-05	30
GCUT09	M	Η	F	55.9625	0.00010066	40
GCUT09	M	W	T	82.2004	0.000101757	40
GCUT09	M	W	F	63.661	9.71794e-05	40
GCUT09	M	I	T	60.5416	7.46727e-05	30
GCUT09	M	I	F	77.7122	9.57012 e-05	40
GCUT09	N	A	T	72.2042	0.000286341	30
GCUT09	N	A	F	54.3733	0.000551891	40
GCUT09	N	P	T	72.2042	0.000276899	30
GCUT09	N	P	F	54.3733	0.000532961	40
GCUT09	N	H	T	60.5416	0.000123549	30
GCUT09	N	H	F	55.9625	0.000545073	40
GCUT09	N	W	${ m T}$	82.2004	0.000321007	40
GCUT09	N	W	F	63.661	0.000440788	40
GCUT09	N	I	${ m T}$	60.5416	0.000116014	30
GCUT09	N	I	F	72.5837	0.000425291	40

Tabela 23 – Resultados da instância GCUT10.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT10	V	A	T	85.6445	4.10557e-05	15
GCUT10	V	A	F	63.9774	5.76496e-05	20
GCUT10	V	Р	T	85.6445	4.33445e-05	15
GCUT10	V	P	F	63.9774	5.50747e-05	20
GCUT10	V	H	T	59.7263	3.19958e-05	10
GCUT10	V	H	F	65.2485	5.85556e-05	20
GCUT10	V	W	T	87.7079	4.40121e-05	15
GCUT10	V	W	F	38.7183	3.13759e-05	10
GCUT10	V	I	T	70.819	3.24726e-05	10
GCUT10	V	I	F	73.1757	5.36919e-05	20
GCUT10	Н	A	T	85.6445	4.09603e-05	15
GCUT10	Н	A	F	44.2233	4.63486e-05	15
GCUT10	Н	P	T	85.6445	4.36783e-05	15
GCUT10	Н	P	F	44.5464	4.96387e-05	15
GCUT10	Н	H	T	59.7263	3.36647e-05	10
GCUT10	Н	H	F	51.2196	4.42982e-05	15
GCUT10	Н	W	T	68.4206	3.32832e-05	10
GCUT10	Н	W	F	51.2763	4.84467e-05	15
GCUT10	Н	I	T	70.819	3.39508e-05	10
GCUT10	Н	I	F	66.4464	5.70774e-05	20
GCUT10	M	A	T	85.6445	7.77721e-05	15
GCUT10	M	A	F	44.2233	8.90732e-05	15
GCUT10	M	P	${ m T}$	85.6445	7.658e-05	15
GCUT10	M	P	F	44.5464	7.89642e-05	15
GCUT10	M	H	${ m T}$	59.7263	5.85079e-05	10
GCUT10	M	H	F	51.2196	7.84874e-05	15
GCUT10	M	W	${ m T}$	68.4206	5.88417e-05	10
GCUT10	M	W	F	53.622	8.04424e-05	15
GCUT10	M	I	${ m T}$	70.819	5.76496e-05	10
GCUT10	M	I	F	84.2369	0.00010438	20
GCUT10	N	A	T	85.6445	0.00013237	15
GCUT10	N	A	F	61.308	0.000872612	20
GCUT10	N	P	T	85.6445	0.000136995	15
GCUT10	N	P	F	84.6795	0.000695515	25
GCUT10	N	H	T	59.7263	6.40869 e-05	10
GCUT10	N	H	F	51.2196	0.00052104	15
GCUT10	N	W	T	87.7079	0.000143719	15
GCUT10	N	W	F	53.622	0.000184202	15
GCUT10	N	I	T	70.819	6.34193 e - 05	10
GCUT10	N	I	F	73.1757	0.000456047	20

Tabela 24 – Resultados da instância GCUT11.

	G 114	0.1	D 11	0 1:1 04	m, ()	T1 07
Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT11	V	A	T	76.0952	5.36442e-05	10
GCUT11	V	A	F	51.201	0.000117588	16.6667
GCUT11	V	P	T	76.0952	4.8542e-05	10
GCUT11	V	P	F	51.201	7.86304e-05	16.6667
GCUT11	V	H	T	59.2969	3.98636e-05	6.66667
GCUT11	V	Н	F	59.5818	7.9298e-05	16.6667
GCUT11	V	W	$_{-}^{\mathrm{T}}$	82.6283	5.25475e-05	10
GCUT11	V	W	F	38.3174	5.34534e-05	10
GCUT11	V	I	${f T}$	66.3607	7.46727e-05	16.6667
GCUT11	V	I	F	59.7295	5.24044e-05	10
GCUT11	Η	A	${ m T}$	66.0312	4.71592e-05	6.66667
GCUT11	Η	A	F	66.5978	0.000100756	20
GCUT11	Η	P	T	66.0312	4.43459e-05	6.66667
GCUT11	Η	P	F	66.5978	0.00010047	20
GCUT11	Η	H	Τ	59.2969	4.24862e-05	6.66667
GCUT11	Η	Η	F	46.0496	5.70297e-05	10
GCUT11	Η	W	Τ	81.7617	6.07491e-05	13.3333
GCUT11	Η	W	F	65.997	0.00010128	20
GCUT11	Η	Ι	${ m T}$	54.3848	5.64575 e - 05	10
GCUT11	Η	I	F	62.8011	5.35011e-05	10
GCUT11	M	A	${ m T}$	78.1734	8.74043e-05	10
GCUT11	M	A	F	51.201	0.000129747	16.6667
GCUT11	M	P	${ m T}$	78.1734	8.40187e-05	10
GCUT11	M	P	F	51.201	0.000139189	16.6667
GCUT11	M	Η	T	59.2969	6.39915 e-05	6.66667
GCUT11	M	Η	F	56.1136	0.000112915	13.3333
GCUT11	M	W	T	81.7617	0.000108767	13.3333
GCUT11	M	W	\mathbf{F}	58.7358	0.000133801	16.6667
GCUT11	M	I	T	79.2448	0.000134325	16.6667
GCUT11	M	I	F	71.8717	0.000107908	13.3333
GCUT11	N	A	T	78.1734	0.0001513	10
GCUT11	N	A	F	65.997	0.0018229	20
GCUT11	N	P	Τ	78.1734	0.00014205	10
GCUT11	N	P	F	66.5978	0.00189857	20
GCUT11	N	H	${ m T}$	59.2969	0.00010004	6.66667
GCUT11	N	H	F	68.2558	0.00161762	16.6667
GCUT11	N	W	${ m T}$	82.6283	0.000265694	10
GCUT11	N	W	F	58.7358	0.00125918	16.6667
GCUT11	N	I	$\overline{\mathrm{T}}$	64.4488	0.000669289	13.3333
GCUT11	N	I	F	71.8717	0.000209665	13.3333

Tabela 25 – Resultados da instância GCUT12.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT12	V	A	Τ	86.2188	5.84602e-05	6
GCUT12	V	A	\mathbf{F}	75.9497	0.000109577	12
GCUT12	V	P	${ m T}$	86.2188	5.80311e-05	6
GCUT12	V	P	F	77.3433	0.000107861	12
GCUT12	V	Η	${ m T}$	86.2188	5.87463e-05	6
GCUT12	V	Η	F	62.7312	9.53674 e-05	10
GCUT12	V	W	${ m T}$	87.9958	6.59466 e-05	6
GCUT12	V	W	\mathbf{F}	42.5142	6.17981e-05	6
GCUT12	V	I	${ m T}$	84.8231	9.54151e-05	10
GCUT12	V	I	\mathbf{F}	69.2716	6.44207 e-05	6
GCUT12	Η	A	${ m T}$	86.2188	5.98431e-05	6
GCUT12	Η	A	F	45.9083	9.41277e-05	8
GCUT12	Η	P	${ m T}$	86.2188	6.03676 e - 05	6
GCUT12	Η	P	F	46.0824	9.90868e-05	8
GCUT12	Η	Η	${ m T}$	86.2188	6.10828 e- 05	6
GCUT12	Η	Η	F	46.6858	7.38144e-05	6
GCUT12	Η	W	${ m T}$	80.0304	6.07014 e-05	6
GCUT12	Η	W	\mathbf{F}	67.3601	0.00010519	10
GCUT12	Η	I	${ m T}$	75.9252	8.74996e-05	8
GCUT12	Η	I	\mathbf{F}	81.7816	9.00745 e-05	8
GCUT12	M	A	${ m T}$	86.2188	9.41753 e - 05	6
GCUT12	M	A	F	88.4597	0.000227261	14
GCUT12	M	P	${ m T}$	86.2188	9.5892e-05	6
GCUT12	M	P	\mathbf{F}	88.4597	0.000198746	14
GCUT12	M	Η	${ m T}$	86.2188	9.44614 e-05	6
GCUT12	M	Η	\mathbf{F}	62.4328	0.000129747	8
GCUT12	M	W	T	80.0304	9.66072 e-05	6
GCUT12	M	W	F	56.874	0.000134134	8
GCUT12	M	I	${ m T}$	75.9252	0.000136709	8
GCUT12	M	I	F	81.6102	0.000129271	8
GCUT12	N	A	${ m T}$	86.2188	0.000171995	6
GCUT12	N	A	F	72.7781	0.00243087	12
GCUT12	N	P	${ m T}$	86.2188	0.000167131	6
GCUT12	N	P	F	58.4183	0.00269961	10
GCUT12	N	H	${ m T}$	86.2188	0.000162601	6
GCUT12	N	H	\mathbf{F}	62.4328	0.00143991	8
GCUT12	N	W	${f T}$	80.0304	0.000239086	6
GCUT12	N	W	\mathbf{F}	70.6035	0.00101504	10
GCUT12	N	I	${f T}$	75.9252	0.000395203	8
GCUT12	N	I	F	81.6102	0.000507116	8

Tabela 26 – Resultados da instância GCUT13.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT13	V	A	T	91.2187	0.000153828	34.375
GCUT13	V	A	F	22.6051	0.000190544	37.5
GCUT13	V	Р	T	91.2187	0.000158548	34.375
GCUT13	V	Р	F	34.3835	0.000219536	46.875
GCUT13	V	H	Τ	91.4087	0.000181437	40.625
GCUT13	V	H	F	30.7244	0.000216961	43.75
GCUT13	V	W	T	81.8049	0.000237751	53.125
GCUT13	V	W	F	10.1909	0.000105858	21.875
GCUT13	V	I	T	81.9018	0.000184488	40.625
GCUT13	V	I	F	10.1909	0.00010376	21.875
GCUT13	Н	A	T	84.1311	0.000230312	46.875
GCUT13	H	A	F	34	0.000250435	46.875
GCUT13	H	P	${ m T}$	84.7578	0.000255823	50
GCUT13	H	P	F	34.0502	0.000253391	46.875
GCUT13	Η	H	T	83.4785	0.000253153	50
GCUT13	Η	H	F	16.3304	0.000169277	31.25
GCUT13	Η	W	T	47.0389	0.000270033	56.25
GCUT13	Η	W	F	37.3764	0.000271225	50
GCUT13	Η	I	T	47.0389	0.00026679	56.25
GCUT13	Η	I	F	37.3764	0.000272942	50
GCUT13	M	A	T	91.2187	0.000276184	34.375
GCUT13	M	A	F	40.5105	0.000465775	53.125
GCUT13	M	P	T	91.2187	0.00026989	34.375
GCUT13	M	P	F	40.5105	0.000464296	53.125
GCUT13	M	Η	T	91.4087	0.000315237	40.625
GCUT13	M	Η	F	32.934	0.000377607	43.75
GCUT13	M	W	T	73.4412	0.000514221	62.5
GCUT13	M	W	F	40.0229	0.000399065	46.875
GCUT13	M	I	T	75.5894	0.000491953	59.375
GCUT13	M	I	F	40.0229	0.000404119	46.875
GCUT13	N	A	T	91.2187	0.0125647	34.375
GCUT13	N	A	F	58.9385	0.05015	65.625
GCUT13	N	P	T	91.2187	0.0125752	34.375
GCUT13	N	P	F	54.0947	0.0459689	62.5
GCUT13	N	H	T	91.2187	0.0126344	34.375
GCUT13	N	H	F	58.9385	0.0497567	65.625
GCUT13	N	W	${ m T}$	72.3215	0.0262862	65.625
GCUT13	N	W	F	47.4392	0.0240194	46.875
GCUT13	N	I	${ m T}$	77.8546	0.0251795	62.5
GCUT13	N	I	F	47.4392	0.0241768	46.875

Tabela 27 – Resultados da instância NGCUT01.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT01	V	A	Τ	78	5.21183e-05	40
NGCUT01	V	A	F	70	4.16279e-05	40
NGCUT01	V	P	T	62	3.19004e-05	30
NGCUT01	V	Р	F	60	3.32832e-05	30
NGCUT01	V	Η	${ m T}$	78	4.97341e-05	40
NGCUT01	V	H	F	70	4.3726e-05	40
NGCUT01	V	W	${ m T}$	72	3.67165 e-05	40
NGCUT01	V	W	F	78	4.673e-05	40
NGCUT01	V	I	${ m T}$	76	4.68731e-05	40
NGCUT01	V	I	F	78	4.81129e-05	40
NGCUT01	Η	A	T	62	3.26157e-05	30
NGCUT01	Η	A	F	92	4.51088e-05	50
NGCUT01	Η	P	T	62	2.93732e-05	30
NGCUT01	Η	P	F	76	3.91483e-05	40
NGCUT01	Η	Η	T	78	4.1008e-05	40
NGCUT01	Η	Η	F	92	4.32491e-05	50
NGCUT01	Η	W	T	92	4.3726e-05	50
NGCUT01	Η	W	F	78	4.52042 e-05	40
NGCUT01	Η	I	T	76	4.75407e-05	40
NGCUT01	Η	I	F	58	3.47614 e-05	30
NGCUT01	\mathbf{M}	A	T	78	9.84669 e-05	40
NGCUT01	M	A	F	92	9.62257e-05	50
NGCUT01	M	P	T	62	6.814 e-05	30
NGCUT01	\mathbf{M}	Ρ	F	60	6.28948 e- 05	30
NGCUT01	M	Η	T	78	9.48429 e-05	40
NGCUT01	M	Η	F	92	9.26971 e-05	50
NGCUT01	M	W	T	92	8.92162 e-05	50
NGCUT01	\mathbf{M}	W	F	78	9.40323e-05	40
NGCUT01	M	I	T	76	9.84192e-05	40
NGCUT01	\mathbf{M}	I	F	78	9.42707e-05	40
NGCUT01	N	A	T	62	0.000230789	30
NGCUT01	N	A	F	70	0.000353765	40
NGCUT01	N	P	T	62	0.000114679	30
NGCUT01	N	P	F	76	0.000197554	40
NGCUT01	N	H	Τ	78	0.000192642	40
NGCUT01	N	H	F	92	0.000408888	50
NGCUT01	N	W	${ m T}$	92	0.000286436	50
NGCUT01	N	\mathbf{W}	F	78	0.000196457	40
NGCUT01	N	I	${ m T}$	76	0.000201559	40
NGCUT01	N	I	F	58	0.000216818	30

Tabela 28 – Resultados da instância NGCUT02.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT02	V	A	Т	97	6.49452 e-05	29.4118
NGCUT02	V	A	F	76	6.93798e-05	41.1765
NGCUT02	V	P	T	97	4.26769e-05	29.4118
NGCUT02	V	Р	F	76	7.16209e-05	41.1765
NGCUT02	V	Η	${ m T}$	78	4.81606e-05	29.4118
NGCUT02	V	H	F	56	6.38962 e-05	35.2941
NGCUT02	V	\mathbf{W}	${ m T}$	97	4.52042e-05	29.4118
NGCUT02	V	\mathbf{W}	F	78	4.64916e-05	29.4118
NGCUT02	V	I	${ m T}$	70	5.08785e-05	23.5294
NGCUT02	V	I	F	64	5.16415 e - 05	35.2941
NGCUT02	Η	A	T	91	5.71728e-05	29.4118
NGCUT02	Η	A	F	52	7.76768e-05	35.2941
NGCUT02	Η	P	${ m T}$	91	5.73158e-05	29.4118
NGCUT02	Η	P	F	52	7.76768e-05	35.2941
NGCUT02	Η	Η	T	90	5.98431e-05	41.1765
NGCUT02	Η	Η	F	52	7.82967e-05	35.2941
NGCUT02	Η	W	T	91	8.06808e-05	29.4118
NGCUT02	Η	W	F	88	6.13213 e-05	41.1765
NGCUT02	Η	I	T	64	8.24928e-05	35.2941
NGCUT02	Η	I	F	82	8.45432 e-05	52.9412
NGCUT02	M	A	T	91	0.000106525	29.4118
NGCUT02	M	A	F	52	0.000138283	35.2941
NGCUT02	M	P	${ m T}$	91	0.000110149	29.4118
NGCUT02	M	P	F	52	0.000142813	35.2941
NGCUT02	M	Η	T	78	9.83715 e-05	29.4118
NGCUT02	M	Η	F	52	0.000137663	35.2941
NGCUT02	M	W	T	91	0.000102854	29.4118
NGCUT02	M	W	F	78	0.000102091	29.4118
NGCUT02	${\bf M}$	I	T	64	0.000137091	35.2941
NGCUT02	${\bf M}$	I	F	82	0.000169992	52.9412
NGCUT02	N	A	T	97	0.000383615	29.4118
NGCUT02	N	A	F	76	0.00114837	41.1765
NGCUT02	N	Ρ	T	97	0.000376749	29.4118
NGCUT02	N	Ρ	F	76	0.00107827	41.1765
NGCUT02	N	H	T	90	0.000703573	41.1765
NGCUT02	N	H	F	86	0.00134726	47.0588
NGCUT02	N	W	T	91	0.000589943	29.4118
NGCUT02	N	\mathbf{W}	F	88	0.000553226	41.1765
NGCUT02	N	I	${ m T}$	88	0.00075531	41.1765
NGCUT02	N	I	F	82	0.000933886	52.9412

Tabela 29 – Resultados da instância NGCUT03.

NGCUT03	T.,	C 1:4	01	D1:	O1:4 07	T: (-)	T4 07
NGCUT03 V A F 66 8.54015e-05 38.0952 NGCUT03 V P T 84 5.04494e-05 23.8095 NGCUT03 V P F 57 7.47681e-05 33.3333 NGCUT03 V H T 85 5.80311e-05 28.5714 NGCUT03 V H F 66 8.50201e-05 38.0952 NGCUT03 V W T 88 5.87463e-05 28.5714 NGCUT03 V W F 64 5.24044e-05 23.80952 NGCUT03 V I T 93 7.20024e-05 38.0952 NGCUT03 V I F 70 7.57217e-05 38.0952 NGCUT03 H A T 81 5.05924e-05 19.0476 NGCUT03 H A F 72 9.57489e-05 42.8571 NGCUT03 H P T 90	Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT03 V P T 84 5.04494e-05 23.8095 NGCUT03 V P F 57 7.47681e-05 33.3333 NGCUT03 V H T 85 5.80311e-05 28.5714 NGCUT03 V H F 66 8.50201e-05 38.0952 NGCUT03 V W T 88 5.87463e-05 28.5714 NGCUT03 V W F 64 5.24044e-05 23.8095 NGCUT03 V I T 93 7.20024e-05 38.0952 NGCUT03 V I F 70 7.57217e-05 38.0952 NGCUT03 H A T 81 5.05924e-05 19.0476 NGCUT03 H A F 72 9.57489e-05 42.8571 NGCUT03 H P T 90 6.59466e-05 33.3333 NGCUT03 H H T 93							
NGCUT03 V P F 57 7.47681e-05 33.3333 NGCUT03 V H T 85 5.80311e-05 28.5714 NGCUT03 V H F 66 8.50201e-05 38.0952 NGCUT03 V W T 88 5.87463e-05 28.5714 NGCUT03 V W F 64 5.24044e-05 23.8095 NGCUT03 V I T 93 7.20024e-05 38.0952 NGCUT03 V I F 70 7.57217e-05 38.0952 NGCUT03 H A T 81 5.05924e-05 19.0476 NGCUT03 H A F 72 9.57489e-05 42.8571 NGCUT03 H P T 90 6.59466e-05 33.3333 NGCUT03 H H F 72 9.64165e-05 42.8571 NGCUT03 H H F 80							
NGCUT03 V H T 85 5.80311e-05 28.5714 NGCUT03 V H F 66 8.50201e-05 38.0952 NGCUT03 V W T 88 5.87463e-05 28.5714 NGCUT03 V W F 64 5.24044e-05 23.8095 NGCUT03 V I T 93 7.20024e-05 38.0952 NGCUT03 V I F 70 7.57217e-05 38.0952 NGCUT03 H A T 81 5.05924e-05 19.0476 NGCUT03 H A F 72 9.57489e-05 42.8571 NGCUT03 H P T 90 6.59466e-05 33.3333 NGCUT03 H P F 72 9.64165e-05 42.8571 NGCUT03 H H F 90 6.85215e-05 33.3333 NGCUT03 H W T 90							
NGCUT03 V H F 66 8.50201e-05 38.0952 NGCUT03 V W T 88 5.87463e-05 28.5714 NGCUT03 V W F 64 5.24044e-05 23.8095 NGCUT03 V I T 93 7.20024e-05 38.0952 NGCUT03 V I F 70 7.57217e-05 38.0952 NGCUT03 H A T 81 5.05924e-05 19.0476 NGCUT03 H A F 72 9.57489e-05 42.8571 NGCUT03 H P T 90 6.59466e-05 33.3333 NGCUT03 H P F 72 9.64165e-05 42.8571 NGCUT03 H H T 93 6.63757e-05 38.0952 NGCUT03 H W T 90 6.85215e-05 33.3333 NGCUT03 H W F 78							
NGCUT03 V W T 88 5.87463e-05 28.5714 NGCUT03 V W F 64 5.24044e-05 23.8095 NGCUT03 V I T 93 7.20024e-05 38.0952 NGCUT03 V I F 70 7.57217e-05 38.0952 NGCUT03 H A T 81 5.05924e-05 19.0476 NGCUT03 H A F 72 9.57489e-05 42.8571 NGCUT03 H P T 90 6.59466e-05 33.3333 NGCUT03 H P F 72 9.64165e-05 42.8571 NGCUT03 H H F 80 9.48906e-05 42.8571 NGCUT03 H W T 90 6.85215e-05 33.3333 NGCUT03 H W F 78 8.61168e-05 38.0952 NGCUT03 H I T 90							
NGCUT03 V W F 64 5.24044e-05 23.8095 NGCUT03 V I T 93 7.20024e-05 38.0952 NGCUT03 V I F 70 7.57217e-05 38.0952 NGCUT03 H A T 81 5.05924e-05 19.0476 NGCUT03 H A F 72 9.57489e-05 42.8571 NGCUT03 H P T 90 6.59466e-05 33.3333 NGCUT03 H P F 72 9.64165e-05 42.8571 NGCUT03 H H T 93 6.63757e-05 38.0952 NGCUT03 H H F 80 9.48906e-05 42.8571 NGCUT03 H W T 90 6.85215e-05 33.3333 NGCUT03 H W F 78 8.61168e-05 38.0952 NGCUT03 H I T 90							
NGCUT03 V I T 93 7.20024e-05 38.0952 NGCUT03 V I F 70 7.57217e-05 38.0952 NGCUT03 H A T 81 5.05924e-05 19.0476 NGCUT03 H A F 72 9.57489e-05 42.8571 NGCUT03 H P T 90 6.59466e-05 33.3333 NGCUT03 H P F 72 9.64165e-05 42.8571 NGCUT03 H H T 93 6.63757e-05 38.0952 NGCUT03 H H F 80 9.48906e-05 42.8571 NGCUT03 H W T 90 6.85215e-05 33.3333 NGCUT03 H W F 78 8.61168e-05 38.0952 NGCUT03 H I T 90 0.000159931 52.381 NGCUT03 M A T 80 <							
NGCUT03 V I F 70 7.57217e-05 38.0952 NGCUT03 H A T 81 5.05924e-05 19.0476 NGCUT03 H A F 72 9.57489e-05 42.8571 NGCUT03 H P T 90 6.59466e-05 33.3333 NGCUT03 H P F 72 9.64165e-05 42.8571 NGCUT03 H H T 93 6.63757e-05 38.0952 NGCUT03 H H F 80 9.48906e-05 42.8571 NGCUT03 H W T 90 6.85215e-05 33.3333 NGCUT03 H W F 78 8.61168e-05 38.0952 NGCUT03 H I T 90 0.000159931 52.381 NGCUT03 M A T 80 9.90868e-05 23.8095 NGCUT03 M A T 80 <							
NGCUT03 H A T 81 5.05924e-05 19.0476 NGCUT03 H A F 72 9.57489e-05 42.8571 NGCUT03 H P T 90 6.59466e-05 33.3333 NGCUT03 H P F 72 9.64165e-05 42.8571 NGCUT03 H H T 93 6.63757e-05 38.0952 NGCUT03 H H F 80 9.48906e-05 42.8571 NGCUT03 H W T 90 6.85215e-05 33.3333 NGCUT03 H W F 78 8.61168e-05 38.0952 NGCUT03 H I T 90 0.000159931 52.381 NGCUT03 H I F 70 9.40323e-05 38.0952 NGCUT03 M A T 80 9.90868e-05 23.8095 NGCUT03 M A F 60 <							
NGCUT03 H A F 72 9.57489e-05 42.8571 NGCUT03 H P T 90 6.59466e-05 33.3333 NGCUT03 H P F 72 9.64165e-05 42.8571 NGCUT03 H H T 93 6.63757e-05 38.0952 NGCUT03 H H F 80 9.48906e-05 42.8571 NGCUT03 H W T 90 6.85215e-05 33.3333 NGCUT03 H W F 78 8.61168e-05 38.0952 NGCUT03 H I T 90 0.000159931 52.381 NGCUT03 H I F 70 9.40323e-05 38.0952 NGCUT03 M A T 80 9.90868e-05 23.8095 NGCUT03 M A F 60 0.000185966 38.0952							
NGCUT03 H P T 90 6.59466e-05 33.3333 NGCUT03 H P F 72 9.64165e-05 42.8571 NGCUT03 H H T 93 6.63757e-05 38.0952 NGCUT03 H H F 80 9.48906e-05 42.8571 NGCUT03 H W T 90 6.85215e-05 33.3333 NGCUT03 H W F 78 8.61168e-05 38.0952 NGCUT03 H I T 90 0.000159931 52.381 NGCUT03 H I F 70 9.40323e-05 38.0952 NGCUT03 M A T 80 9.90868e-05 23.8095 NGCUT03 M A F 60 0.000185966 38.0952							
NGCUT03 H P F 72 9.64165e-05 42.8571 NGCUT03 H H T 93 6.63757e-05 38.0952 NGCUT03 H H F 80 9.48906e-05 42.8571 NGCUT03 H W T 90 6.85215e-05 33.3333 NGCUT03 H W F 78 8.61168e-05 38.0952 NGCUT03 H I T 90 0.000159931 52.381 NGCUT03 H I F 70 9.40323e-05 38.0952 NGCUT03 M A T 80 9.90868e-05 23.8095 NGCUT03 M A F 60 0.000185966 38.0952							
NGCUT03 H H T 93 6.63757e-05 38.0952 NGCUT03 H H F 80 9.48906e-05 42.8571 NGCUT03 H W T 90 6.85215e-05 33.3333 NGCUT03 H W F 78 8.61168e-05 38.0952 NGCUT03 H I T 90 0.000159931 52.381 NGCUT03 H I F 70 9.40323e-05 38.0952 NGCUT03 M A T 80 9.90868e-05 23.8095 NGCUT03 M A F 60 0.000185966 38.0952							
NGCUT03 H H F 80 9.48906e-05 42.8571 NGCUT03 H W T 90 6.85215e-05 33.3333 NGCUT03 H W F 78 8.61168e-05 38.0952 NGCUT03 H I T 90 0.000159931 52.381 NGCUT03 H I F 70 9.40323e-05 38.0952 NGCUT03 M A T 80 9.90868e-05 23.8095 NGCUT03 M A F 60 0.000185966 38.0952							
NGCUT03 H W T 90 6.85215e-05 33.3333 NGCUT03 H W F 78 8.61168e-05 38.0952 NGCUT03 H I T 90 0.000159931 52.381 NGCUT03 H I F 70 9.40323e-05 38.0952 NGCUT03 M A T 80 9.90868e-05 23.8095 NGCUT03 M A F 60 0.000185966 38.0952						6.63757e-05	38.0952
NGCUT03 H W F 78 8.61168e-05 38.0952 NGCUT03 H I T 90 0.000159931 52.381 NGCUT03 H I F 70 9.40323e-05 38.0952 NGCUT03 M A T 80 9.90868e-05 23.8095 NGCUT03 M A F 60 0.000185966 38.0952	NGCUT03			F	80	9.48906e-05	42.8571
NGCUT03 H I T 90 0.000159931 52.381 NGCUT03 H I F 70 9.40323e-05 38.0952 NGCUT03 M A T 80 9.90868e-05 23.8095 NGCUT03 M A F 60 0.000185966 38.0952	NGCUT03	Η			90	6.85215 e-05	33.3333
NGCUT03 H I F 70 9.40323e-05 38.0952 NGCUT03 M A T 80 9.90868e-05 23.8095 NGCUT03 M A F 60 0.000185966 38.0952	NGCUT03	Η	W	F	78	8.61168e-05	38.0952
NGCUT03 M A T 80 9.90868e-05 23.8095 NGCUT03 M A F 60 0.000185966 38.0952	NGCUT03	Η	I	T	90	0.000159931	52.381
NGCUT03 M A F 60 0.000185966 38.0952	NGCUT03	Η	I	F	70	9.40323e-05	38.0952
	NGCUT03	M	A	T	80	9.90868e-05	23.8095
NGCUT03 M P T 90 0.000130463 33.3333	NGCUT03	\mathbf{M}	A	F	60	0.000185966	38.0952
	NGCUT03	\mathbf{M}	P	T	90	0.000130463	33.3333
NGCUT03 M P F 72 0.000187302 42.8571	NGCUT03	M	P	F	72	0.000187302	42.8571
NGCUT03 M H T 85 0.000122499 28.5714	NGCUT03	\mathbf{M}	H	T	85	0.000122499	28.5714
NGCUT03 M H F 80 0.000188351 42.8571	NGCUT03	M	H	F	80	0.000188351	42.8571
NGCUT03 M W T 90 0.000130367 33.3333	NGCUT03	M	W	T	90	0.000130367	33.3333
NGCUT03 M W F 78 0.000167227 38.0952	NGCUT03	M	W	F	78	0.000167227	38.0952
NGCUT03 M I T 90 0.00020771 52.381	NGCUT03	\mathbf{M}	I	T	90		52.381
NGCUT03 M I F 70 0.000174761 38.0952	NGCUT03	M	I	F	70	0.000174761	38.0952
NGCUT03 N A T 90 0.000606346 28.5714	NGCUT03	N	A	Τ	90	0.000606346	28.5714
NGCUT03 N A F 86 0.00535707 42.8571							
NGCUT03 N P T 84 0.000549841 23.8095		N		Т			
NGCUT03 N P F 72 0.00190721 42.8571			Р				
NGCUT03 N H T 93 0.000912476 38.0952							
NGCUT03 N H F 88 0.00291681 47.619							
NGCUT03 N W T 90 0.000712872 33.3333							
NGCUT03 N W F 72 0.00305543 33.3333							
NGCUT03 N I T 93 0.00315442 38.0952							
NGCUT03 N I F 80 0.00251474 42.8571							

Tabela 30 – Resultados da instância NGCUT04.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT04	V	A	Т	70	3.19004e-05	57.1429
NGCUT04	V	A	F	20	2.45571 e-05	28.5714
NGCUT04	V	P	T	78	4.24862e-05	71.4286
NGCUT04	V	Р	F	30	2.25067e-05	28.5714
NGCUT04	V	Η	${ m T}$	30	2.20776e-05	28.5714
NGCUT04	V	H	F	20	2.56538e-05	28.5714
NGCUT04	V	W	${ m T}$	78	4.42982e-05	71.4286
NGCUT04	V	W	F	30	2.31743e-05	28.5714
NGCUT04	V	I	${ m T}$	62	3.86238e-05	57.1429
NGCUT04	V	I	F	70	3.33786e-05	57.1429
NGCUT04	Η	A	T	92	4.6587e-05	85.7143
NGCUT04	Η	A	F	52	4.64916e-05	57.1429
NGCUT04	Η	P	T	78	4.56333e-05	71.4286
NGCUT04	Η	P	F	52	4.53472e-05	57.1429
NGCUT04	Η	Η	T	70	3.68118e-05	57.1429
NGCUT04	Η	Η	F	78	4.70638e-05	71.4286
NGCUT04	Η	W	T	78	4.73022 e-05	71.4286
NGCUT04	Η	W	F	52	4.54426 e - 05	57.1429
NGCUT04	Η	I	T	88	5.50747e-05	85.7143
NGCUT04	Η	I	F	92	4.67777e-05	85.7143
NGCUT04	${ m M}$	A	T	92	0.00010519	85.7143
NGCUT04	${\bf M}$	A	F	52	8.85487e-05	57.1429
NGCUT04	${\bf M}$	Ρ	T	78	9.67979e-05	71.4286
NGCUT04	${\bf M}$	Ρ	F	52	8.82149 e - 05	57.1429
NGCUT04	${\bf M}$	Η	T	70	7.48634e-05	57.1429
NGCUT04	${\bf M}$	Η	F	78	0.000101376	71.4286
NGCUT04	${ m M}$	W	T	78	0.000138092	71.4286
NGCUT04	\mathbf{M}	W	F	52	0.000110435	57.1429
NGCUT04	${ m M}$	I	T	88	0.000107145	85.7143
NGCUT04	\mathbf{M}	I	F	70	7.61986e-05	57.1429
NGCUT04	N	A	T	92	0.000423479	85.7143
NGCUT04	N	A	F	52	0.000194979	57.1429
NGCUT04	N	P	T	78	0.000292778	71.4286
NGCUT04	N	P	F	52	0.000194883	57.1429
NGCUT04	N	H	${ m T}$	70	0.000187826	57.1429
NGCUT04	N	\mathbf{H}	F	78	0.000293541	71.4286
NGCUT04	N	W	${ m T}$	78	0.000294685	71.4286
NGCUT04	N	\mathbf{W}	F	52	0.000198174	57.1429
NGCUT04	N	I	${ m T}$	88	0.000424051	85.7143
NGCUT04	N	I	F	92	0.000409985	85.7143

Tabela 31 – Resultados da instância NGCUT05.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT05	V	A	Т	92.6667	4.72546e-05	35.7143
NGCUT05	V	A	F	53.3333	4.89712e-05	35.7143
NGCUT05	V	P	T	92.6667	4.58241e-05	35.7143
NGCUT05	V	Р	F	31.3333	2.61784e-05	14.2857
NGCUT05	V	Η	${ m T}$	71.3333	4.1008e-05	28.5714
NGCUT05	V	H	F	75.3333	5.71728e-05	42.8571
NGCUT05	V	\mathbf{W}	${ m T}$	92.6667	5.32627e-05	42.8571
NGCUT05	V	\mathbf{W}	F	31.3333	2.35081e-05	14.2857
NGCUT05	V	I	${ m T}$	75.3333	5.42641e-05	42.8571
NGCUT05	V	I	F	71.3333	4.673e-05	28.5714
NGCUT05	Η	A	T	79.3333	4.99725 e-05	28.5714
NGCUT05	Η	A	F	70	7.41959e-05	42.8571
NGCUT05	Η	P	${ m T}$	79.3333	4.80175e-05	28.5714
NGCUT05	Η	P	F	60	6.47068e-05	35.7143
NGCUT05	Η	Η	T	78.6667	5.14507e-05	35.7143
NGCUT05	Η	Η	F	70	7.41959e-05	42.8571
NGCUT05	Η	W	T	79.3333	6.11305 e-05	35.7143
NGCUT05	Η	W	F	78.6667	5.04494e-05	35.7143
NGCUT05	Η	I	T	83.3333	6.70433e-05	42.8571
NGCUT05	Η	I	F	65.3333	5.20229 e-05	28.5714
NGCUT05	M	A	T	79.3333	9.62257 e - 05	28.5714
NGCUT05	Μ	A	F	70	0.000136614	42.8571
NGCUT05	Μ	P	${ m T}$	79.3333	9.43661e-05	28.5714
NGCUT05	Μ	P	F	60	0.000119925	35.7143
NGCUT05	M	Η	T	71.3333	8.71181e-05	28.5714
NGCUT05	M	Η	F	70	0.000136471	42.8571
NGCUT05	M	W	T	79.3333	0.000109386	35.7143
NGCUT05	\mathbf{M}	W	F	78.6667	0.000105143	35.7143
NGCUT05	${\bf M}$	I	T	83.3333	0.000129557	42.8571
NGCUT05	${\bf M}$	I	F	58	7.30038e-05	21.4286
NGCUT05	N	A	T	92.6667	0.000309277	35.7143
NGCUT05	N	A	F	73.3333	0.000691748	42.8571
NGCUT05	N	Ρ	T	92.6667	0.000312424	35.7143
NGCUT05	N	Ρ	F	60	0.000341892	35.7143
NGCUT05	N	H	T	78.6667	0.00029521	35.7143
NGCUT05	N	H	F	70	0.000586367	42.8571
NGCUT05	N	W	T	92.6667	0.000437689	42.8571
NGCUT05	N	\mathbf{W}	F	78.6667	0.000334167	35.7143
NGCUT05	N	I	${ m T}$	83.3333	0.000420189	42.8571
NGCUT05	N	I	F	65.3333	0.000287056	28.5714

Tabela 32 – Resultados da instância NGCUT06.

	~ 11			0 11 8		
Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT06	V	A	T	80	7.06196e-05	40
NGCUT06	V	A	F	70.6667	8.53062e-05	46.6667
NGCUT06	V	P	T	90.6667	6.66618e-05	46.6667
NGCUT06	V	P	F	70.6667	8.77857e-05	46.6667
NGCUT06	V	H	T	68	8.3065e-05	40
NGCUT06	V	H	F	78.6667	7.37667e-05	46.6667
NGCUT06	V	W	${f T}$	76	7.69138e-05	46.6667
NGCUT06	V	W	F	70.6667	0.0001091	46.6667
NGCUT06	V	Ι	T	72	6.88076e-05	40
NGCUT06	V	Ι	F	70.6667	7.66277e-05	46.6667
NGCUT06	Η	A	Τ	74.6667	6.70433e-05	40
NGCUT06	Η	A	F	62.6667	7.51495e-05	40
NGCUT06	Η	P	T	64	7.09534e-05	33.3333
NGCUT06	Η	Р	F	69.3333	6.61373e-05	40
NGCUT06	Η	H	${ m T}$	70.6667	8.06332 e-05	46.6667
NGCUT06	Η	H	F	57.3333	6.69956 e - 05	33.3333
NGCUT06	Η	W	T	57.3333	7.30991e-05	33.3333
NGCUT06	Η	W	F	65.3333	6.5279 e-05	40
NGCUT06	Η	I	Τ	72	7.1764e-05	40
NGCUT06	Η	I	\mathbf{F}	74.6667	7.48634e-05	40
NGCUT06	M	A	T	60	0.000117302	33.3333
NGCUT06	${\rm M}$	A	F	70.6667	0.000165844	46.6667
NGCUT06	M	P	${ m T}$	64	0.000118113	33.3333
NGCUT06	M	P	\mathbf{F}	70.6667	0.000168228	46.6667
NGCUT06	${\bf M}$	Η	T	70.6667	0.000170612	46.6667
NGCUT06	${\bf M}$	Η	F	57.3333	0.000119257	33.3333
NGCUT06	${\bf M}$	W	T	57.3333	0.000121689	33.3333
NGCUT06	${\bf M}$	W	F	70.6667	0.00016284	46.6667
NGCUT06	${\bf M}$	I	T	72	0.000126123	40
NGCUT06	${\bf M}$	I	F	80	0.00015645	46.6667
NGCUT06	N	A	T	85.3333	0.000766373	46.6667
NGCUT06	N	A	F	70.6667	0.00267515	46.6667
NGCUT06	N	P	T	77.3333	0.000723839	40
NGCUT06	N	P	F	88	0.00228376	53.3333
NGCUT06	N	H	T	70.6667	0.00153131	46.6667
NGCUT06	N	H	F	73.3333	0.00110459	46.6667
NGCUT06	N	W	${ m T}$	70.6667	0.0013248	40
NGCUT06	N	W	F	84	0.00127835	53.3333
NGCUT06	N	I	${ m T}$	84	0.000895262	46.6667
NGCUT06	N	I	F	70.6667	0.00160666	46.6667

Tabela 33 – Resultados da instância NGCUT07.

Instance		Split	01	Descending	01:4 07	T: (-)	T4 07
NGCUT07 V A F 20.25 5.63145e-05 75 NGCUT07 V P T 100 8.23021e-05 100 NGCUT07 V P F 20.25 5.7984e-05 75 NGCUT07 V H T 20.25 6.49452e-05 75 NGCUT07 V H F 20.25 6.66618e-05 75 NGCUT07 V W F 8.25 5.27382e-05 62.5 NGCUT07 V I F 20.25 8.70228e-05 75 NGCUT07 V I F 20.25 8.666618e-05 75 NGCUT07 H A T 100 7.48634e-05 75 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.57217e-05 100 NGCUT07 H H T 100 7.57217e-05		-				\ /	
NGCUT07 V P T 100 8.23021e-05 100 NGCUT07 V P F 20.25 5.79834e-05 75 NGCUT07 V H T 20.25 6.49452e-05 75 NGCUT07 V H F 20.25 6.66618e-05 75 NGCUT07 V W T 100 7.8249e-05 100 NGCUT07 V I T 20.25 8.70228e-05 75 NGCUT07 V I F 20.25 8.70228e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.66618e-05 75 NGCUT07 H A F 33.75 6.81877e-05 87.5 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H F 100 7.5217e-05							
NGCUT07 V P F 20.25 5.79834e-05 75 NGCUT07 V H T 20.25 6.49452e-05 75 NGCUT07 V H F 20.25 6.66618e-05 75 NGCUT07 V W F 8.25 5.27382e-05 62.5 NGCUT07 V I T 20.25 8.666618e-05 75 NGCUT07 V I F 20.25 8.666618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.5721re-05 100 NGCUT07 H H F 100 7.5721re-05 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
NGCUT07 V H T 20.25 6.49452e-05 75 NGCUT07 V H F 20.25 6.66618e-05 75 NGCUT07 V W T 100 7.8249e-05 100 NGCUT07 V W F 8.25 5.27382e-05 62.5 NGCUT07 V I T 20.25 8.66618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H F 100 7.5217e-05 100 NGCUT07 H H F 100 7.52436e-05							
NGCUT07 V H F 20.25 6.66618e-05 75 NGCUT07 V W T 100 7.8249e-05 100 NGCUT07 V W F 8.25 5.27382e-05 62.5 NGCUT07 V I T 20.25 8.70228e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H F 100 7.57217e-05 100 NGCUT07 H W T 100 7.83443e-05 100 NGCUT07 H W F 33.75 7.24316e-05			_				
NGCUT07 V W T 100 7.8249e-05 100 NGCUT07 V W F 8.25 5.27382e-05 62.5 NGCUT07 V I T 20.25 8.70228e-05 75 NGCUT07 V I F 20.25 6.66618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05							
NGCUT07 V W F 8.25 5.27382e-05 75 NGCUT07 V I T 20.25 8.70228e-05 75 NGCUT07 V I F 20.25 6.66618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I F 100 7.61032e-05							
NGCUT07 V I T 20.25 8.70228e-05 75 NGCUT07 V I F 20.25 6.66618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.57217e-05 100 NGCUT07 H W T 100 7.57217e-05 100 NGCUT07 H W T 100 7.534343e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I F 100 7.61032e-05							
NGCUT07 V I F 20.25 6.66618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 M A T 100 7.61032e-05							
NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 7.61032e-05 100 NGCUT07 M A F 33.75 0.000213671							
NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 7.61032e-05 100 NGCUT07 M A F 33.75 0.000176001 100 NGCUT07 M A F 33.75 0.000136805 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.61032e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M H T 33.75 0.00014863							
NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416							
NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.67032e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M H F 100 0.000165224							
NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.67721e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W F 33.75 0.00015242			_	_			
NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W F 33.75 0.00015924 100 NGCUT07 M I T 100 0.000172472							
NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.00014663 87.5 NGCUT07 M W T 100 0.000166416 100 NGCUT07 M W F 33.75 0.000172472 100 NGCUT07 M I T 100 0.00074873							
NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.00014863 87.5 NGCUT07 M W T 100 0.000166416 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 N A T 100 0.00074873				Τ			
NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873	NGCUT07	Η	W	_	33.75	7.24316e-05	87.5
NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478	NGCUT07	Η			100	7.77721e-05	100
NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.00016416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536	NGCUT07	Η	I	F	100	7.61032e-05	100
NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.00016416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.00057478 87.5 NGCUT07 N P F 33.75 0.000566196	NGCUT07	M	A	T	100	0.000176001	100
NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N P F 33.75 0.000566196 </td <td>NGCUT07</td> <td>M</td> <td>A</td> <td>F</td> <td>33.75</td> <td>0.000213671</td> <td>87.5</td>	NGCUT07	M	A	F	33.75	0.000213671	87.5
NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N P F 33.75 0.000746536 100 NGCUT07 N H T 100 0.000736761	NGCUT07	M			100	0.000166702	100
NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397	NGCUT07	M	P	F	33.75	0.000136805	87.5
NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	M	H	T	33.75	0.00014863	87.5
NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	M	H	F	100	0.000166416	100
NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	\mathbf{M}	W	T	100	0.000165224	100
NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	M	W	\mathbf{F}	33.75	0.000151968	87.5
NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	M	I	T	100	0.000172472	100
NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	M	I	F	33.75	0.0001472	87.5
NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	N	A	T	100	0.00074873	100
NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	N	A	F	33.75	0.00057478	87.5
NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	N	P	Τ	100	0.000746536	100
NGCUT07 N H F 100 0.000749397 100	NGCUT07	N	P	F	33.75	0.000566196	87.5
NGCUT07 N H F 100 0.000749397 100			H	${ m T}$			
NGCUT07 N W T 100 0.000742579 100	NGCUT07	N	H	F	100	0.000749397	100
		N					
NGCUT07 N W F 33.75 0.000569916 87.5							
NGCUT07 N I T 100 0.000740957 100							
NGCUT07 N I F 100 0.00074439 100							

Tabela 34 – Resultados da instância NGCUT08.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT08	V	A	Т	79.5	4.19617e-05	30.7692
NGCUT08	V	A	F	39.5	6.59466e-05	46.1538
NGCUT08	V	P	T	85.25	5.57899e-05	46.1538
NGCUT08	V	Р	F	33	4.70161e-05	30.7692
NGCUT08	V	Η	${ m T}$	55	5.02586e-05	38.4615
NGCUT08	V	H	F	39.5	6.53744 e - 05	46.1538
NGCUT08	V	W	${ m T}$	85.25	5.53131e-05	46.1538
NGCUT08	V	W	F	61	5.70774e-05	46.1538
NGCUT08	V	I	${ m T}$	73	6.78539e-05	53.8462
NGCUT08	V	I	F	38.25	4.9448e-05	30.7692
NGCUT08	Η	A	T	88.75	6.54697 e - 05	46.1538
NGCUT08	Η	A	F	62.75	8.84056e-05	61.5385
NGCUT08	Η	P	T	85.25	7.04288e-05	46.1538
NGCUT08	Η	P	F	62.75	8.62598 e - 05	61.5385
NGCUT08	Η	Η	T	73	6.73294 e-05	53.8462
NGCUT08	Η	Η	F	58.25	7.1907e-05	46.1538
NGCUT08	Η	W	T	85.25	6.83308e-05	46.1538
NGCUT08	Η	W	F	51.5	8.22544 e-05	53.8462
NGCUT08	Η	I	T	69.5	7.4482e-05	46.1538
NGCUT08	Η	I	F	62.75	9.0456 e - 05	61.5385
NGCUT08	${ m M}$	A	T	85.5	0.000113297	38.4615
NGCUT08	${\bf M}$	A	F	51.5	0.000157166	53.8462
NGCUT08	${\bf M}$	Ρ	T	85.25	0.000132084	46.1538
NGCUT08	${\bf M}$	Ρ	F	53.5	0.000156355	53.8462
NGCUT08	${\bf M}$	Η	T	73	0.000156927	53.8462
NGCUT08	${\bf M}$	Η	F	58.25	0.000135422	46.1538
NGCUT08	${ m M}$	W	T	85.25	0.000146723	46.1538
NGCUT08	${ m M}$	W	F	67.5	0.000177622	61.5385
NGCUT08	${ m M}$	I	T	69.5	0.000134754	46.1538
NGCUT08	\mathbf{M}	I	F	64.75	0.000175095	61.5385
NGCUT08	N	A	T	88.75	0.000445175	46.1538
NGCUT08	N	A	F	62.75	0.00132923	61.5385
NGCUT08	N	P	T	85.25	0.000444031	46.1538
NGCUT08	N	P	F	64.75	0.00150189	61.5385
NGCUT08	N	\mathbf{H}	${ m T}$	73	0.000669289	53.8462
NGCUT08	N	\mathbf{H}	F	58.25	0.00193605	46.1538
NGCUT08	N	W	${ m T}$	85.25	0.000430965	46.1538
NGCUT08	N	W	F	67.5	0.00122709	61.5385
NGCUT08	N	I	${ m T}$	69.5	0.000908756	46.1538
NGCUT08	N	I	F	64.75	0.00125551	61.5385

Tabela 35 – Resultados da instância NGCUT09.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT09	V	A	T	55.5	7.19547e-05	33.3333
NGCUT09	V	A	F	56.25	0.000114584	50
NGCUT09	V	P	T	84.25	7.55787e-05	44.4444
NGCUT09	V	P	F	49.25	8.4734e-05	44.4444
NGCUT09	V	H	$\overline{\mathrm{T}}$	55.5	7.84397e-05	33.3333
NGCUT09	V	Н	F	57	9.59873e-05	50
NGCUT09	V	W	${ m T}$	83.75	8.3828e-05	50
NGCUT09	V	W	F	46.75	7.07626e-05	33.3333
NGCUT09	V	Ι	${ m T}$	55.5	7.46727e-05	33.3333
NGCUT09	V	I	F	62.5	9.50813e-05	50
NGCUT09	Н	A	T	76.75	7.77245e-05	38.8889
NGCUT09	Н	A	F	57	0.00011282	50
NGCUT09	Н	Р	${ m T}$	79	5.56946e-05	27.7778
NGCUT09	Н	Р	F	57	0.000114059	50
NGCUT09	Н	Η	${ m T}$	72	6.99043e-05	38.8889
NGCUT09	Н	Η	F	74	7.16686e-05	33.3333
NGCUT09	Н	W	${ m T}$	78.5	6.40869 e - 05	33.3333
NGCUT09	Н	W	\mathbf{F}	55.5	0.000100613	44.4444
NGCUT09	Н	I	${ m T}$	60.75	8.83102e-05	38.8889
NGCUT09	Н	I	\mathbf{F}	66.25	7.0858e-05	33.3333
NGCUT09	${\bf M}$	A	${ m T}$	55.5	0.000146484	33.3333
NGCUT09	M	A	\mathbf{F}	72.75	0.000214577	55.5556
NGCUT09	M	P	${ m T}$	84.25	0.000226307	44.4444
NGCUT09	M	P	\mathbf{F}	72.75	0.000216436	55.5556
NGCUT09	M	H	${ m T}$	55.5	0.000143385	33.3333
NGCUT09	M	H	F	74	0.00013566	33.3333
NGCUT09	M	W	${ m T}$	78.5	0.000160646	33.3333
NGCUT09	M	W	F	46.75	0.00013752	33.3333
NGCUT09	M	I	${ m T}$	55.5	0.000139713	33.3333
NGCUT09	M	I	F	76.5	0.000207663	50
NGCUT09	N	A	${ m T}$	76.75	0.00100493	38.8889
NGCUT09	N	A	F	72.75	0.00315299	55.5556
NGCUT09	N	P	${ m T}$	84.25	0.000754452	44.4444
NGCUT09	N	P	F	72.75	0.0039856	55.5556
NGCUT09	N	Η	${ m T}$	72	0.00123024	38.8889
NGCUT09	N	H	F	80.5	0.00324054	55.5556
NGCUT09	N	W	${ m T}$	83.75	0.000930691	50
NGCUT09	N	W	F	69.75	0.00388875	44.4444
NGCUT09	N	I	${ m T}$	76.75	0.00246787	38.8889
NGCUT09	N	I	F	71.5	0.00210328	50

Tabela 36 – Resultados da instância NGCUT10.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT10	V	A	Т	91	7.08103e-05	46.1538
NGCUT10	V	A	F	29.4444	3.46184 e-05	30.7692
NGCUT10	V	P	T	91	5.14507e-05	46.1538
NGCUT10	V	Р	F	29.4444	3.29971e-05	30.7692
NGCUT10	V	H	T	91	4.15325 e-05	46.1538
NGCUT10	V	H	F	39.4444	3.51906e-05	30.7692
NGCUT10	V	W	T	74	4.17233e-05	38.4615
NGCUT10	V	W	F	29.4444	3.37601e-05	30.7692
NGCUT10	V	I	T	90.1111	6.86646 e - 05	53.8462
NGCUT10	V	I	F	29.4444	3.39031e-05	30.7692
NGCUT10	Η	A	T	87.6667	5.0211e-05	30.7692
NGCUT10	Η	A	F	90.1111	6.19411e-05	53.8462
NGCUT10	Η	P	T	87.6667	5.04971e-05	30.7692
NGCUT10	Η	P	F	90.1111	6.34193e-05	53.8462
NGCUT10	Η	Η	T	91	4.03881e-05	46.1538
NGCUT10	Η	Η	F	79.8889	5.3978e-05	46.1538
NGCUT10	Η	W	T	74	4.67777e-05	38.4615
NGCUT10	Η	W	F	90.1111	6.5136 e-05	53.8462
NGCUT10	H	I	T	80.6667	6.39439 e-05	46.1538
NGCUT10	Η	I	F	83.4444	4.9305e-05	46.1538
NGCUT10	M	A	T	87.6667	9.34601 e-05	30.7692
NGCUT10	\mathbf{M}	A	F	90.1111	0.000129843	53.8462
NGCUT10	${ m M}$	P	T	87.6667	9.12189e-05	30.7692
NGCUT10	\mathbf{M}	P	F	90.1111	0.000138569	53.8462
NGCUT10	${ m M}$	H	T	91	9.6941e-05	46.1538
NGCUT10	M	H	F	79.8889	0.000114059	46.1538
NGCUT10	\mathbf{M}	W	Τ	74	9.68456 e - 05	38.4615
NGCUT10	M	W	F	90.1111	0.000138569	53.8462
NGCUT10	M	I	${ m T}$	80.6667	0.000123978	46.1538
NGCUT10	M	I	F	83.4444	0.000103998	46.1538
NGCUT10	N	A	T	87.6667	0.000439978	30.7692
NGCUT10	N	A	F	90.1111	0.000567341	53.8462
NGCUT10	N	P	Τ	87.6667	0.000444937	30.7692
NGCUT10	N	P	F	90.1111	0.000564098	53.8462
NGCUT10	N	H	${ m T}$	91	0.000398493	46.1538
NGCUT10	N	H	F	79.8889	0.000414515	46.1538
NGCUT10	N	W	${ m T}$	74	0.000288916	38.4615
NGCUT10	N	W	F	90.1111	0.000548363	53.8462
NGCUT10	N	I	${ m T}$	80.6667	0.000660706	46.1538
NGCUT10	N	I	F	83.4444	0.000408363	46.1538

Tabela 37 – Resultados da instância NGCUT11.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT11	V	A	Т	75.4444	7.47681e-05	40
NGCUT11	V	A	F	45.8889	8.94547e-05	53.3333
NGCUT11	V	Р	${ m T}$	79.7778	8.6832 e-05	46.6667
NGCUT11	V	P	F	46	7.17163e-05	40
NGCUT11	V	H	T	75.4444	7.72953e-05	40
NGCUT11	V	Н	F	45.8889	8.49724 e-05	53.3333
NGCUT11	V	W	Τ	78.4444	7.03812e-05	53.3333
NGCUT11	V	W	F	31.8889	6.38962 e-05	33.3333
NGCUT11	V	Ι	${ m T}$	50.5556	6.77109e-05	40
NGCUT11	V	I	F	78.5556	8.75473e-05	53.3333
NGCUT11	Η	A	T	69.1111	5.68867e-05	33.3333
NGCUT11	Η	A	F	44.6667	8.42571e-05	46.6667
NGCUT11	Η	P	T	78.4444	9.00745e-05	53.3333
NGCUT11	Η	Р	F	44.6667	8.36372e-05	46.6667
NGCUT11	Η	Н	T	86.3333	7.10964e-05	46.6667
NGCUT11	Η	Н	F	60.7778	9.63688e-05	53.3333
NGCUT11	Η	W	${ m T}$	78.4444	8.88348e-05	53.3333
NGCUT11	Η	W	F	67.6667	9.68456e-05	66.6667
NGCUT11	Η	I	${ m T}$	63.3333	9.59873e-05	53.3333
NGCUT11	Η	I	F	84.7778	8.26836 e-05	60
NGCUT11	M	A	${ m T}$	61.3333	0.000118303	33.3333
NGCUT11	\mathbf{M}	A	F	44.6667	0.000148392	46.6667
NGCUT11	M	P	Τ	64.4444	0.000116825	33.3333
NGCUT11	M	P	F	44.6667	0.000165796	46.6667
NGCUT11	M	H	${ m T}$	83.2222	0.000133038	40
NGCUT11	Μ	H	F	60.7778	0.000178909	53.3333
NGCUT11	Μ	W	T	78.4444	0.000176525	53.3333
NGCUT11	Μ	W	F	67.6667	0.000212526	66.6667
NGCUT11	\mathbf{M}	I	T	58.6667	0.0001616	46.6667
NGCUT11	M	I	F	78.5556	0.000177002	53.3333
NGCUT11	N	A	${ m T}$	69.1111	0.000474453	33.3333
NGCUT11	N	A	F	63.3333	0.00140924	53.3333
NGCUT11	N	P	T	92.5556	0.00124326	60
NGCUT11	N	P	\mathbf{F}	63.3333	0.00142422	53.3333
NGCUT11	N	Η	T	87.6667	0.00318589	46.6667
NGCUT11	N	H	F	60.7778	0.00260434	53.3333
NGCUT11	N	W	T	78.4444	0.00165014	53.3333
NGCUT11	N	W	F	67.6667	0.00269532	66.6667
NGCUT11	N	I	T	63.3333	0.00161729	53.3333
NGCUT11	N	I	F	84.7778	0.0023355	60

Tabela 38 – Resultados da instância NGCUT12.

	~ .					
Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT12	V	A	Т	74.8889	8.01086e-05	31.8182
NGCUT12	V	A	F	48.6667	0.000100374	40.9091
NGCUT12	V	P	${ m T}$	95	9.67503e-05	40.9091
NGCUT12	V	Р	F	52	8.28743e-05	31.8182
NGCUT12	V	Η	${ m T}$	84.3333	8.41141e-05	40.9091
NGCUT12	V	Η	F	48.6667	9.60827e-05	40.9091
NGCUT12	V	W	${ m T}$	82.5556	9.75609 e-05	45.4545
NGCUT12	V	W	F	65.6667	7.26223e-05	36.3636
NGCUT12	V	I	${ m T}$	71.1111	9.0456e-05	36.3636
NGCUT12	V	I	F	97.2222	9.84669 e-05	40.9091
NGCUT12	Η	A	${ m T}$	68.4444	8.7738e-05	36.3636
NGCUT12	Η	A	F	53.3333	0.000135231	45.4545
NGCUT12	Η	P	${ m T}$	97.6667	9.408e-05	45.4545
NGCUT12	Η	P	F	53.3333	0.000137234	45.4545
NGCUT12	Η	Η	${ m T}$	84.3333	7.47204 e - 05	40.9091
NGCUT12	Η	H	F	53.3333	0.000135565	45.4545
NGCUT12	Η	W	T	54.4444	0.000120687	40.9091
NGCUT12	Η	W	F	83.4444	9.75132e-05	40.9091
NGCUT12	Η	I	Τ	65.7778	0.000121212	45.4545
NGCUT12	Η	I	F	53.3333	0.000130987	45.4545
NGCUT12	M	A	Τ	57.7778	0.000163317	31.8182
NGCUT12	M	A	F	53.3333	0.000246143	45.4545
NGCUT12	M	P	Τ	95	0.000192642	40.9091
NGCUT12	M	P	F	53.3333	0.000226068	45.4545
NGCUT12	M	H	Τ	84.3333	0.000176334	40.9091
NGCUT12	M	Η	F	53.3333	0.000241232	45.4545
NGCUT12	M	W	T	54.4444	0.000209951	40.9091
NGCUT12	M	W	F	83.4444	0.000195646	40.9091
NGCUT12	M	I	${ m T}$	57.7778	0.00017643	31.8182
NGCUT12	M	I	F	53.3333	0.000235033	45.4545
NGCUT12	N	A	${ m T}$	85.5556	0.000835943	36.3636
NGCUT12	N	A	F	53.3333	0.00555758	45.4545
NGCUT12	N	Р	T	95	0.00142913	40.9091
NGCUT12	N	Р	F	53.3333	0.00465908	45.4545
NGCUT12	N	Н	T	84.3333	0.000932407	40.9091
NGCUT12	N	H	F	53.3333	0.008707	45.4545
NGCUT12	N	W	$^{\mathrm{T}}$	65.4444	0.00359254	45.4545
NGCUT12	N	W	F	65.6667	0.00548348	36.3636
NGCUT12	N	I	T	71.1111	0.00125933	36.3636
NGCUT12	N	I	F	53.3333	0.00314965	45.4545

Tabela 39 – Resultados da instância OF1.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OF1	V	A	T	71	8.69751e-05	26.087
OF1	V	A	F	56.6071	8.91685e-05	34.7826
OF1	V	P	T	84.8571	9.25064e-05	30.4348
OF1	V	P	F	56.6071	9.00745e-05	34.7826
OF1	V	Н	$^{\mathrm{T}}$	95	0.000108004	34.7826
OF1	V	H	F	74.75	8.81195e-05	39.1304
OF1	V	W	$\overline{\mathrm{T}}$	75.5714	0.00010376	34.7826
OF1	V	W	F	85.8571	0.000110388	34.7826
OF1	V	I	${f T}$	74.5714	0.000113153	39.1304
OF1	V	Ī	F	78.75	0.000104761	34.7826
OF1	H	Ā	${f T}$	80.8929	7.71046e-05	30.4348
OF1	Н	A	$\bar{\mathrm{F}}$	56.2143	9.57012e-05	30.4348
OF1	Н	Р	T	77.7857	6.67572 e-05	21.7391
OF1	Н	P	F	70.7143	0.000101662	34.7826
OF1	Н	Н	Т	90.4286	8.51154e-05	34.7826
OF1	Н	Н	F	58.1429	8.58784e-05	26.087
OF1	Н	W	${ m T}$	60.25	8.81672e-05	26.087
OF1	Н	W	F	85.8571	9.25541e-05	34.7826
OF1	Н	I	${ m T}$	69.1071	9.54628e-05	34.7826
OF1	Η	I	F	60.25	8.06332e-05	26.087
OF1	${\bf M}$	A	${ m T}$	75.7143	0.000147247	26.087
OF1	\mathbf{M}	A	F	56.6071	0.000204086	34.7826
OF1	${\bf M}$	P	Τ	83.1786	0.000163364	30.4348
OF1	${\bf M}$	P	F	56.6071	0.000185156	34.7826
OF1	${\bf M}$	\mathbf{H}	${ m T}$	95	0.000195026	34.7826
OF1	M	H	F	64.4286	0.00017972	30.4348
OF1	M	W	${ m T}$	74.75	0.000170326	30.4348
OF1	M	W	F	85.8571	0.000205135	34.7826
OF1	M	I	${ m T}$	51.4286	0.000172853	30.4348
OF1	\mathbf{M}	I	\mathbf{F}	69.1786	0.000281477	34.7826
OF1	N	A	T	80.8929	0.00123076	30.4348
OF1	N	A	F	56.6071	0.00387659	34.7826
OF1	N	P	T	84.8571	0.00121098	30.4348
OF1	N	P	F	56.6071	0.00546713	34.7826
OF1	N	Η	T	95	0.00144744	34.7826
OF1	N	H	F	64.4286	0.00351505	30.4348
OF1	N	\mathbf{W}	T	81.0357	0.00174747	34.7826
OF1	N	\mathbf{W}	F	89	0.00117393	39.1304
OF1	N	I	${ m T}$	74.5714	0.00252275	39.1304
OF1	N	I	F	78.75	0.00174804	34.7826

Tabela 40 – Resultados da instância OF2.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OF2	V	A	T	81.2857	6.49929e-05	25
OF2	V	A	F	62.8214	9.15051e-05	33.3333
OF2	V	P	T	75.8214	7.31945e-05	25
OF2	V	P	F	76.0214	0.000100279	37.5
OF2	V	Н	$^{\Gamma}$ $^{\Gamma}$	63.3929	7.16209e-05	20.8333
OF2	V	Н	F	78.5714	0.000110722	37.5
OF2	V	W	T	81.8214	7.79629e-05	25
OF2	V	W	F	54.75	8.39233e-05	$\frac{25}{25}$
OF2	V	I	T	84.0714	8.16345e-05	29.1667
OF2	V	I	F	82.4643	9.01699e-05	29.1667
OF2	H	A	$^{\mathrm{T}}$	89.1429	7.92027e-05	33.3333
OF2	H	A	F	50.2857	9.69887e-05	29.1667
OF2	Н	P	T	77.1071	9.06467e-05	29.1667
OF2	Н	P	F	50.2857	9.68933e-05	29.1667
OF2	Н	Н	T	81.3571	7.82013e-05	29.1667
OF2	H	H	F	35.4286	8.13961e-05	20.8333
OF2	Н	W	$\overline{\mathrm{T}}$	77.1071	9.35555e-05	29.1667
OF2	Н	W	F	79.6071	0.000101852	37.5
OF2	Н	I	${f T}$	58.2857	6.46114e-05	20.8333
OF2	Н	I	F	82.7143	8.18253e-05	29.1667
OF2	${ m M}$	Ā	${f T}$	83.0714	0.000162077	29.1667
OF2	M	A	F	50.2857	0.000174618	29.1667
OF2	M	P	Т	69.3214	0.000147104	25
OF2	M	P	F	50.2857	0.000174189	29.1667
OF2	M	H	${ m T}$	63.3929	0.000132465	20.8333
OF2	M	H	F	49.7143	0.000156784	25
OF2	${\bf M}$	W	${ m T}$	77.1071	0.000174332	29.1667
OF2	${\bf M}$	W	F	54.75	0.000154829	25
OF2	${\bf M}$	I	Τ	71.1786	0.000151157	25
OF2	${\bf M}$	I	F	82.4643	0.000161219	29.1667
OF2	N	A	${ m T}$	81.2857	0.00149522	25
OF2	N	A	F	75.3571	0.00522213	37.5
OF2	N	P	T	81.8214	0.00189652	25
OF2	N	P	\mathbf{F}	63.1786	0.0049437	33.3333
OF2	N	H	T	73.9643	0.00198612	29.1667
OF2	N	H	F	64.5714	0.00526438	33.3333
OF2	N	\mathbf{W}	T	77.1071	0.00296488	29.1667
OF2	N	\mathbf{W}	F	71.3214	0.00245285	33.3333
OF2	N	I	T	92.3571	0.00144391	33.3333
OF2	N	I	F	82.4643	0.00188279	29.1667

Tabela 41 – Resultados da instância OKP1.

OKP1 V A T 77.56 0.000144005 16 OKP1 V A F 65.74 0.000409698 48 OKP1 V P T 91.16 0.000158834 34 OKP1 V P F 59.86 0.0003964422 46 OKP1 V H T 79.7 0.000364923 38 OKP1 V H F 91.38 0.000290903 42 OKP1 V W T 91.62 0.000151587 32 OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.00018913 28 OKP1 V I F 86.74 0.00048983 46 OKP1 H A T 93.1 0.000148983 46 OKP1 H A F 58.66 0.000148983 46 <tr< th=""><th>Instance</th><th>Split</th><th>Order</th><th>Descending</th><th>Quality %</th><th>Time (s)</th><th>Items %</th></tr<>	Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OKP1 V P T 91.16 0.000158834 34 OKP1 V P F 59.86 0.000396442 46 OKP1 V H T 79.7 0.000364923 38 OKP1 V H F 91.38 0.000209093 42 OKP1 V W T 91.62 0.000151587 32 OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.000181913 28 OKP1 V I F 65.74 0.00048983 46 OKP1 H A T 93.1 0.00018933 46 OKP1 H A F 58.66 0.000250721 42 OKP1 H A F 58.66 0.00017336 26 OKP1 H P T 83.78 0.00017336 26	OKP1	V	A	Т	77.56	0.000144005	16
OKP1 V P F 59.86 0.000396442 46 OKP1 V H T 79.7 0.000364923 38 OKP1 V H F 91.38 0.000209093 42 OKP1 V W T 91.62 0.000151587 32 OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.000181913 28 OKP1 V I F 82.12 0.00048983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H A F 58.66 0.000250721 42 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.78 0.000118637 26 <tr< td=""><td>OKP1</td><td>V</td><td>A</td><td>\mathbf{F}</td><td>65.74</td><td>0.000409698</td><td>48</td></tr<>	OKP1	V	A	\mathbf{F}	65.74	0.000409698	48
OKP1 V H T 79.7 0.000364923 38 OKP1 V H F 91.38 0.000209093 42 OKP1 V W T 91.62 0.000151587 32 OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.000183913 28 OKP1 V I F 82.12 0.00048983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000133904 22 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.78 0.00021833 36 OKP1 H W F 61.06 0.000283718 48	OKP1	V	P	T	91.16	0.000158834	34
OKP1 V H F 91.38 0.000209093 42 OKP1 V W T 91.62 0.000151587 32 OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.000148983 46 OKP1 V I F 82.12 0.00048983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.00013336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.7 0.000261593 46 OKP1 H W T 83.78 0.000118637 26 OKP1 H W F 61.06 0.000283718 48	OKP1	V	P	F	59.86	0.000396442	46
OKP1 V W T 91.62 0.000151587 32 OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.000181913 28 OKP1 V I F 82.12 0.000408983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.78 0.000118637 26 OKP1 H W T 83.78 0.000118637 26 OKP1 H W F 61.06 0.000233718 48 OKP1 H U F 61.06 0.00017333 26 <t< td=""><td>OKP1</td><td>V</td><td>H</td><td>T</td><td>79.7</td><td>0.000364923</td><td>38</td></t<>	OKP1	V	H	T	79.7	0.000364923	38
OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.000181913 28 OKP1 V I F 82.12 0.000408983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.00283718 48 OKP1 H I T 81.52 0.000117333 26 <t< td=""><td>OKP1</td><td>V</td><td>H</td><td>\mathbf{F}</td><td>91.38</td><td>0.000209093</td><td>42</td></t<>	OKP1	V	H	\mathbf{F}	91.38	0.000209093	42
OKP1 V I T 86.04 0.000181913 28 OKP1 V I F 82.12 0.000408983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.7 0.000261593 46 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.000118256 26 OKP1 M A T 77.56 0.000231123 16 <t< td=""><td>OKP1</td><td>V</td><td>W</td><td>T</td><td>91.62</td><td>0.000151587</td><td>32</td></t<>	OKP1	V	W	T	91.62	0.000151587	32
OKP1 V I F 82.12 0.000408983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.7 0.000261593 46 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118637 26 OKP1 H W T 83.78 0.000118637 26 OKP1 H W T 83.78 0.000118637 26 OKP1 H I T 81.52 0.000118637 26 OKP1 H I F 68.56 0.00017333 26 <tr< td=""><td>OKP1</td><td>V</td><td>W</td><td>F</td><td>65.74</td><td>0.000423241</td><td>48</td></tr<>	OKP1	V	W	F	65.74	0.000423241	48
OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.78 0.000118637 26 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.00075147 50 <tr< td=""><td>OKP1</td><td>V</td><td>I</td><td>T</td><td>86.04</td><td>0.000181913</td><td>28</td></tr<>	OKP1	V	I	T	86.04	0.000181913	28
OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.7 0.000261593 46 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.00017333 26 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.0002553916 28 <tr< td=""><td>OKP1</td><td>V</td><td>I</td><td>F</td><td>82.12</td><td>0.000408983</td><td>46</td></tr<>	OKP1	V	I	F	82.12	0.000408983	46
OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.7 0.000261593 46 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.00023123 16 OKP1 M A F 67.06 0.00075147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000255877 34	OKP1	Η	A	T	93.1	0.000139904	22
OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.7 0.000261593 46 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.00075147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.00055877 34 OKP1 M H F 78.56 0.000295877 30	OKP1	Η	A	\mathbf{F}	58.66	0.000250721	42
OKP1 H H T 83.7 0.000261593 46 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.00075147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.00055877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30	OKP1	Η	Р	T	83.78	0.000107336	26
OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.00055877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W F 65.74 0.000680542 48	OKP1	Η	Р	\mathbf{F}	57.92	0.000238132	38
OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000253916 28 OKP1 M P F 67.16 0.00055877 34 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48	OKP1	Η	H	T	83.7	0.000261593	46
OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.00075147 50 OKP1 M A F 67.06 0.00075147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000253916 28 OKP1 M H T 79.7 0.00055877 34 OKP1 M H F 79.7 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000251436 18	OKP1	Η	H	\mathbf{F}	69.32	0.000118637	26
OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.00055877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 N A T 97.22 0.00178461 18	OKP1	Η	W	T	83.78	0.000118256	26
OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000505877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 N A T 97.22 0.00178461 18	OKP1	Η	W	\mathbf{F}	61.06	0.000283718	48
OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000505877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N P F 65.92 0.0223252 50	OKP1	Н	I	Τ	81.52	0.00017333	26
OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000505877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34	OKP1	Η	I	F	68.56	0.000196552	34
OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000505877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N H T 88.54 0.00844831 42	OKP1	M	A	Τ	77.56	0.000231123	16
OKP1 M P F 67.16 0.000505877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42	OKP1	\mathbf{M}	A	\mathbf{F}	67.06	0.000705147	50
OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.62 0.00297956 32	OKP1	\mathbf{M}	P	T	88.4	0.000253916	28
OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.62 0.00297956 32 OKP1 N W T 91.62 0.00228897 48	OKP1	\mathbf{M}	Р	\mathbf{F}	67.16	0.000505877	34
OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48	OKP1	\mathbf{M}	H	T	79.7	0.000563192	38
OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	\mathbf{M}	H	\mathbf{F}	78.56	0.000295877	30
OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	\mathbf{M}	W	T	88.4	0.000371981	28
OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	\mathbf{M}	W	F	65.74	0.000680542	48
OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	\mathbf{M}	I	T	77.52	0.000251436	18
OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	M	I	F	62.66	0.000575829	40
OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	N	A	T	97.22	0.00178461	18
OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	N	A	\mathbf{F}	67.06	0.021143	50
OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	N	Р	T	91.16	0.00405669	34
OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	N	P	F	65.92	0.0223252	50
OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	N	H	Τ	88.54	0.00844831	42
OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36			H	F			42
OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36			W	${ m T}$			32
OKP1 N I T 90.04 0.00944791 36		N	W	F			
				${ m T}$			
UKP1 IN 1 F 92.12 0.0185555 50	OKP1	N	I	F	92.12	0.0185555	50

Tabela 42 – Resultados da instância OKP2.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OKP2	V	A	T	84.62	0.000164795	20
OKP2	V	A	F	57.02	0.000196171	40
OKP2	V	Р	T	86.82	0.000120544	33.3333
OKP2	V	Р	F	67.76	0.000207376	43.3333
OKP2	V	H	T	86.82	0.000135422	30
OKP2	V	H	F	77.02	0.000178432	40
OKP2	V	W	T	87.69	0.000121403	33.3333
OKP2	V	W	F	68.24	0.000195789	40
OKP2	V	I	T	83.61	0.000150585	33.3333
OKP2	V	I	F	70.42	0.000163507	36.6667
OKP2	Н	A	${ m T}$	84.58	0.000107956	26.6667
OKP2	Η	A	F	51.7	0.000173235	33.3333
OKP2	Η	P	${ m T}$	84.59	0.000100565	30
OKP2	Η	P	F	41.18	0.000108767	23.3333
OKP2	Η	H	${ m T}$	86.82	0.000138235	30
OKP2	Η	H	F	55.62	9.59396e-05	23.3333
OKP2	Η	W	${ m T}$	84.95	0.000108004	30
OKP2	Η	W	F	51.7	0.000155258	33.3333
OKP2	Η	I	${ m T}$	68.09	0.000129509	26.6667
OKP2	Η	I	F	63.04	0.000105572	23.3333
OKP2	${\bf M}$	A	${ m T}$	83.61	0.000180912	23.3333
OKP2	\mathbf{M}	A	F	61.28	0.000326443	40
OKP2	\mathbf{M}	P	T	90.05	0.000192976	30
OKP2	\mathbf{M}	P	F	60.48	0.00026722	33.3333
OKP2	\mathbf{M}	H	T	86.82	0.000233316	30
OKP2	\mathbf{M}	H	F	54.62	0.000211	26.6667
OKP2	\mathbf{M}	W	${ m T}$	84.95	0.000200367	30
OKP2	\mathbf{M}	W	F	68.24	0.000324345	40
OKP2	\mathbf{M}	I	T	83.61	0.000252247	33.3333
OKP2	\mathbf{M}	I	F	74.71	0.00028038	36.6667
OKP2	N	A	T	84.62	0.00124054	20
OKP2	N	A	F	57.13	0.00413117	33.3333
OKP2	N	P	T	90.05	0.00143237	30
OKP2	N	P	F	61.32	0.0054472	33.3333
OKP2	N	Η	T	94.8	0.00120964	33.3333
OKP2	N	H	F	66.18	0.00417547	30
OKP2	N	W	${ m T}$	84.95	0.00169311	30
OKP2	N	W	F	69.89	0.00589476	46.6667
OKP2	N	I	${ m T}$	78.31	0.0028646	26.6667
OKP2	N	I	F	78.94	0.00289049	43.3333

Tabela 43 – Resultados da instância OKP3.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OKP3	V	A	Τ	93.64	8.40187e-05	20
OKP3	V	A	\mathbf{F}	73.21	0.00018239	40
OKP3	V	P	${ m T}$	92.62	0.000125074	26.6667
OKP3	V	P	F	59.01	0.00015645	33.3333
OKP3	V	Η	${ m T}$	87.84	0.000144911	30
OKP3	V	Η	F	80.64	0.000160789	40
OKP3	V	W	T	78.78	0.000105	26.6667
OKP3	V	W	\mathbf{F}	58.59	0.000157166	33.3333
OKP3	V	I	T	87.04	0.000163174	36.6667
OKP3	V	I	\mathbf{F}	68.13	0.000125265	26.6667
OKP3	Η	A	T	87.71	0.000104046	23.3333
OKP3	Η	A	F	40.82	9.43184 e-05	23.3333
OKP3	Η	P	${ m T}$	82.12	8.88824 e-05	20
OKP3	Η	P	F	40.32	0.000108242	23.3333
OKP3	Η	Η	${ m T}$	89.4	0.000177002	33.3333
OKP3	Η	H	\mathbf{F}	40.82	9.30309 e-05	23.3333
OKP3	Η	W	T	84.12	9.06944 e-05	23.3333
OKP3	Η	W	\mathbf{F}	41.86	0.000135183	26.6667
OKP3	Η	I	T	55.74	0.000103426	20
OKP3	Η	I	\mathbf{F}	47	0.000111532	23.3333
OKP3	M	A	T	91.85	0.000166702	20
OKP3	M	A	F	49.96	0.00020771	26.6667
OKP3	M	P	T	92.62	0.000212288	26.6667
OKP3	M	P	\mathbf{F}	51.9	0.000187588	23.3333
OKP3	M	H	T	89.4	0.000273132	33.3333
OKP3	M	Η	F	56.46	0.000249624	30
OKP3	M	W	T	85.68	0.000181341	26.6667
OKP3	M	W	\mathbf{F}	70.75	0.000296021	36.6667
OKP3	M	I	T	68.48	0.00018425	23.3333
OKP3	M	I	\mathbf{F}	75.88	0.000209808	26.6667
OKP3	N	A	T	93.64	0.00094986	20
OKP3	N	A	F	40.32	0.00439701	23.3333
OKP3	N	P	T	92.62	0.000914907	26.6667
OKP3	N	P	\mathbf{F}	51.9	0.00365572	23.3333
OKP3	N	H	${ m T}$	89.4	0.00152011	33.3333
OKP3	N	H	\mathbf{F}	71.51	0.00701923	30
OKP3	N	W	Τ	85.68	0.00186644	26.6667
OKP3	N	W	\mathbf{F}	73.97	0.00324073	40
OKP3	N	I	${ m T}$	87.04	0.00278034	36.6667
OKP3	N	I	F	67	0.00256896	30

Tabela 44 – Resultados da instância OKP4.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OKP4	V	A	Τ	93.89	0.000109434	13.1148
OKP4	V	A	\mathbf{F}	73.77	0.000409603	37.7049
OKP4	V	P	T	90.99	0.00020833	19.6721
OKP4	V	P	F	71.06	0.000383568	34.4262
OKP4	V	H	T	94.72	0.000278854	24.5902
OKP4	V	H	\mathbf{F}	77.99	0.000213194	26.2295
OKP4	V	W	${ m T}$	86.95	0.000206375	27.8689
OKP4	V	W	\mathbf{F}	76.85	0.000437069	37.7049
OKP4	V	I	${ m T}$	91.86	0.000250769	22.9508
OKP4	V	I	\mathbf{F}	77.85	0.000292015	26.2295
OKP4	Η	A	T	66.14	9.94682e-05	9.83607
OKP4	Η	A	F	67.5	0.000247526	26.2295
OKP4	Η	P	T	89.54	0.000117683	13.1148
OKP4	Η	P	\mathbf{F}	69.52	0.000233459	24.5902
OKP4	Η	H	${ m T}$	93.46	0.000181484	19.6721
OKP4	Η	H	\mathbf{F}	68.35	0.0002285	22.9508
OKP4	Η	W	${ m T}$	82.15	0.000230789	24.5902
OKP4	Η	W	\mathbf{F}	49.89	0.000225115	26.2295
OKP4	Η	I	Τ	71.56	0.000186729	21.3115
OKP4	H	I	F	82.37	0.000161505	21.3115
OKP4	M	A	Τ	66.14	0.00015831	9.83607
OKP4	\mathbf{M}	A	\mathbf{F}	73.77	0.000670385	37.7049
OKP4	\mathbf{M}	P	T	90.99	0.000341845	19.6721
OKP4	\mathbf{M}	Р	\mathbf{F}	68.15	0.000517893	29.5082
OKP4	\mathbf{M}	H	${ m T}$	94.72	0.00044775	24.5902
OKP4	\mathbf{M}	H	\mathbf{F}	70.55	0.00036664	24.5902
OKP4	\mathbf{M}	W	${ m T}$	82.15	0.000354719	24.5902
OKP4	\mathbf{M}	W	\mathbf{F}	76.85	0.000737238	37.7049
OKP4	\mathbf{M}	I	${ m T}$	88.61	0.000365782	19.6721
OKP4	M	I	F	78.41	0.000320768	19.6721
OKP4	N	A	${ m T}$	93.89	0.00167918	13.1148
OKP4	N	A	\mathbf{F}	73.77	0.0260915	37.7049
OKP4	N	P	Τ	90.99	0.00208235	19.6721
OKP4	N	P	F	70.57	0.0238347	29.5082
OKP4	N	H	Τ	94.72	0.00276513	24.5902
OKP4	N	H	\mathbf{F}	82.15	0.0191098	24.5902
OKP4	N	W	${ m T}$	88.31	0.00450363	26.2295
OKP4	N	W	F	78.85	0.0120415	39.3443
OKP4	N	I	${ m T}$	91.86	0.00380301	22.9508
OKP4	N	I	F	77.85	0.00503736	26.2295

Tabela 45 – Resultados da instância OKP5.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OKP5	V	A	T	84.86	0.000170279	10.3093
OKP5	V	A	F	58.74	0.000478125	22.6804
OKP5	V	P	Τ	96.27	0.000140762	12.3711
OKP5	V	P	F	64.23	0.000298357	18.5567
OKP5	V	H	Τ	92.46	0.000273609	12.3711
OKP5	V	H	F	83.79	0.000238085	19.5876
OKP5	V	W	Τ	98.17	0.000152016	17.5258
OKP5	V	W	F	74.86	0.000524998	24.7423
OKP5	V	I	Τ	82.92	0.000376892	19.5876
OKP5	V	I	F	76.46	0.000355959	18.5567
OKP5	Н	A	Τ	87.79	0.000333214	13.4021
OKP5	Η	A	F	62.2	0.000425053	21.6495
OKP5	Η	P	${ m T}$	96.27	0.000154543	12.3711
OKP5	Η	Р	F	75.96	0.000391293	21.6495
OKP5	Η	H	${ m T}$	92.46	0.000174999	12.3711
OKP5	Η	H	\mathbf{F}	58.19	0.000386477	15.4639
OKP5	Η	W	${ m T}$	98.17	0.000229216	17.5258
OKP5	Η	W	F	70.21	0.00038805	22.6804
OKP5	Η	I	${ m T}$	71.31	0.000295877	16.4948
OKP5	Η	I	F	80.3	0.00025239	17.5258
OKP5	\mathbf{M}	A	T	86.82	0.000329733	11.3402
OKP5	${\bf M}$	A	F	58.74	0.000707722	22.6804
OKP5	${\bf M}$	P	${ m T}$	96.27	0.000255251	12.3711
OKP5	${\bf M}$	P	F	69.06	0.000460052	17.5258
OKP5	${\bf M}$	Η	${ m T}$	92.46	0.000409222	12.3711
OKP5	\mathbf{M}	H	F	79.11	0.000539827	18.5567
OKP5	\mathbf{M}	W	T	98.17	0.000410271	17.5258
OKP5	${\bf M}$	W	F	74.86	0.0008008	24.7423
OKP5	${\bf M}$	I	${ m T}$	77.06	0.00061326	20.6186
OKP5	${\bf M}$	I	F	66.86	0.000523663	16.4948
OKP5	N	A	${ m T}$	84.86	0.00472121	10.3093
OKP5	N	A	F	83.74	0.101231	27.8351
OKP5	N	P	${ m T}$	96.27	0.00186729	12.3711
OKP5	N	P	F	72.24	0.0847682	19.5876
OKP5	N	Η	${ m T}$	92.46	0.00197048	12.3711
OKP5	N	Η	F	74.15	0.0703918	17.5258
OKP5	N	W	${ m T}$	98.17	0.00453982	17.5258
OKP5	N	W	F	74.86	0.0895785	24.7423
OKP5	N	I	${ m T}$	82.92	0.0148974	19.5876
OKP5	N	I	F	89.9	0.0277001	19.5876

Tabela 46 – Resultado da comparação entre Desc..

Desc.	Wons	Draws	Quality %	Items %	Time (s)
T	736	8	78.9136	46.3642	1.7798e+00
F	167	8	57.3060	47.6518	2.3715e+00

Tabela 47 – Resultado da comparação entre Split Mode.

SplitMode	Wons	Draws	Quality %	Items %	Time (s)
V	98	79	76.4030	45.0191	2.7157e-03
H	70	60	75.9970	45.5439	6.2101e-03
M	104	89	79.7175	47.6795	1.3743e-02
N	176	119	83.6420	47.2335	7.2176e+00

Tabela 48 – Resultado da comparação entre OrderKey.

OrderKey	Mong	Draws	Quality %	Items %	Time (s)
urderkey	Wons	Draws	Quartty %	items /	Time (s)
Α	63	39	82.7353	44.0979	1.5874e+00
P	71	38	84.6986	44.8012	1.5769e+00
H	40	16	77.4182	46.3004	1.5655e+00
W	66	24	81.1899	47.6751	2.0805e+00
I	16	5	68.5261	48.9461	2.0889e+00

Tabela 49 – Resultado da comparação entre ['Split', 'Order', 'Descending', 'Wons', 'Draws', 'Quality %', 'Items %', 'Time (s)'].

Split	Order	Descending	Wons	Draws	Quality %	Items %	Time (s)
V	A	T	6	6	78.9961	43.2429	3.0834e-03
V	Α	F	0	0	50.9443	47.8026	2.4805e-03
V	P	T	7	6	82.6210	45.6727	2.3285e-03
V	P	F	0	0	51.2033	46.2057	2.1488e-03
V	Н	T	4	4	70.7811	42.5165	2.5334e-03
V	Н	F	0	0	55.2624	48.4624	2.0178e-03
V	W	T	9	8	84.5497	47.0580	2.4820e-03
V	W	F	0	0	47.9606	42.6878	1.6620e-03
V	I	T	1	1	65.0670	46.6058	3.1510e-03
V	I	F	1	1	62.6394	46.0333	2.4236e-03
H	Α	T	5	5	81.5022	43.6548	5.9963e-03
Н	Α	F	1	1	44.9575	42.0545	8.8805e-03
H	P	T	4	3	82.6390	43.4046	4.7573e-03
H	P	F	0	0	45.0368	41.4449	8.5250e-03
H	H	T	4	4	79.2274	47.8350	6.1442e-03
H	H	F	2	2	43.4125	35.4793	7.7093e-03
H	W	T	4	4	74.9317	45.5948	7.6157e-03
H	W	F	0	0	51.7897	47.2147	1.0063e-02
H	I	T	1	1	61.6848	47.2300	6.5370e-03
H	I	F	2	2	64.9816	47.1122	6.0956e-03
M	Α	T	7	7	83.2483	45.6017	1.3233e-02
M	Α	F	2	2	53.1636	50.7883	1.7284e-02
M	P	T	7	6	85.8682	46.3078	1.2944e-02
M	P	F	1	1	53.7023	49.7762	1.7675e-02
M	H	T	4	4	78.5353	47.1767	1.3269e-02
M	H	F	2	2	54.8203	45.9835	1.0842e-02
M	W	T	5	5	79.4570	48.8029	1.4847e-02
M	W	F	0	0	62.4641	51.3552	4.0100e-03
M	I	T	2	2	71.4787	50.5082	1.4421e-02
M	I	F	2	2	72.6713	50.9134	1.4607e-02
N	Α	T	13	11	87.2957	43.8875	6.4349e+00
N	Α	F	0	0	62.5408	52.6598	1.0376e+01
N	P	T	9	6	87.7336	43.7974	6.3945e+00
N	P	F	0	0	63.3835	52.6368	1.0127e+01
N	H	T	6	5	81.2132	47.7048	6.3465e+00
N	H	F	2	2	64.9412	51.0923	8.4619e+00
N	W	T	16	10	85.9266	49.2806	8.4384e+00
N	W	F	0	0	66.2589	52.1936	1.0595e+01
N	I	T	5	3	76.0408	51.4971	8.4736e+00
N	I	F	4	4	74.9990	51.6276	8.5603e+00

Tabela50 – Configuração do computador de testes.

CPU	AMD Ryzen [™] 5 3600X
RAM	16 GiB
Python	3.11.0
SO	Linux Mint 21.1 Cinnamon
Kernel	5.15