CAP 5610: Machine Learning Lecture 4: Bayes Classifiers II

Instructor: Dr. Gita Sukthankar

Email: gitars@eecs.ucf.edu

Assignment 1: kNN and naive Bayes (due Sept 24)

- Iris dataset
- Implement kNN:
 - Distance metrics: Euclidean and cosine
 - Different values of k
- Implement naive Bayes (MLE) assuming Gaussian distribution model for features
- Report:
 - Accuracy table
 - Confusion matrix
 - Discuss MLE vs. MAP estimation
- Do not use any external machine learning libraries or toolboxes for algorithms or evaluation
- Please cite any sources you refer to

Object Detection Example

Query Image

Retrieved Images

Unretrieved Images

TN

Precision/Recall

- Precision
 - TP/(TP+FP)
- Recall (true positive rate)
 - TP/P or TP/(TP+FN)
- Specificity (true negative rate, 1-FPR)
 - TN/N or TN/(TN+FP)
- False positive rate
 - FP/N or FP/FP+TN
- F1 Score
 - Harmonic average of precision/recall
 - 2 (precision x recall)/precision+recall
 - Other F scores weight precision and recall differently

ROC Curve

- A good ROC curve should lie in the top left part of the graph.
- AUROC: measure of the area under the curve
- Useful metric even when the classes are highly unbalanced

ROC Curves

- Generated by counting # correct/incorrect matches, for different thresholds
- Want to maximize area under the curve
- Useful for comparing different feature matching methods
- For more info: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Confusion Matrix

Commonly to report classifier results in supervised learning Rows are predicted class; columns are actual class.

A good confusion matrix has high values on the diagonal and low values everywhere else.

	image 0	image 1	image 2
class 0	5	2	1
class 1	2	7	1
class 2	3	1	8

Recap: Bayes Classifier

• MAP rule: given an input feature vector $X=(X_1,X_2,...,X_N)$ with N attributes, the optimal binary prediction on its class Y is made by

$$Y = \operatorname{argmax}_{Y \in \{0,1\}} P(Y|X)$$

- Bayes rule: $P(Y|X) \propto P(X|Y)P(Y)$
 - where P(X|Y) is the class-conditional distribution for class y, and
 - P(Y) is the prior distribution.

Bayes Error

Two types of prediction error

$$p(error|X) = \begin{cases} p(Y = C_1|X), & \text{if } P(Y = C_2|X) > P(Y = C_1|X) \\ p(Y = C_2|X), & \text{if } P(Y = C_1|X) > P(Y = C_2|X) \\ = \min\{p(Y = C_1|X), p(Y = C_2|X)\} \end{cases}$$

An example with one dimensional X

Bayes Error

• The shaded area under the curve corresponds to the prediction errors incurred by the Bayes classifier

Optimality

• Bayes classifier is the optimal classifier we can obtained with the smallest prediction error.

• The prediction error of NN classifier is upper bounded by twice Bayes error asymptotically (i.e., when the size of training set is very large).

Decision region and boundary

 Log likelihood ratio divides the feature space into two regions by threshold 0.

The boundary

• is determined by the equation:

$$\log \frac{P(Y=1|X)}{P(Y=2|X)} = \log P(Y=1|X) - \log P(Y=2|X) = 0$$

• Discriminant function $f(X) = \log P(Y = 1|X) - \log P(Y = 2|X)$

Examples of binary decision boundary

Gaussian class-conditional density (one dimensional X)

$$P(X = x | Y = y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{(x - \mu_y)^2}{2\sigma_y^2}\right)$$

with $y = \{1, 2\}$.

High dimensional case

Gaussian class-conditional density in high dimensional space

$$P(X = x | Y = y) = \frac{1}{\sqrt{2\pi |\Sigma_y|}} \exp\left(-\frac{(x - \mu_y)\Sigma_y^{-1}(x - \mu_y)'}{2}\right)$$

Decision boundary equation:

$$f(X) = \log \frac{P(Y=1)P(X|Y=1)}{P(Y=2)P(X|Y=2)}$$

$$= -\frac{(X-\mu_1)\Sigma_1^{-1}(X-\mu_1)' - (X-\mu_2)\Sigma_2^{-1}(X-\mu_2)'}{2} + \frac{1}{2}\log \frac{|\Sigma_2|P(Y=1)}{|\Sigma_1|P(Y=2)} = 0$$

• A quadratic surface in high dimensional space

Special Case

• If $\Sigma_1 = \Sigma_2 = \Sigma$, discriminant function boils down to

$$f(X) = -X\Sigma^{-1}(\mu_1 - \mu_2) + \mu_1 \Sigma^{-1}\mu_1 - \mu_2 \Sigma^{-1}\mu_2 + \log rac{P(Y=1)}{P(Y=2)} \ f(X) = -X\underbrace{\Sigma^{-1}(\mu_1 - \mu_2)}_{ ext{W}} + \underbrace{\mu_1 \Sigma^{-1}\mu_1 - \mu_2 \Sigma^{-1}\mu_2 + \log rac{P(Y=1)}{P(Y=2)}}_{ ext{b}} = XW + b$$

where W is a N dimensional vector, b is a real number.

• f(X) is linear! Decision boundary is a hyperplane in high-dimensional space.

Decision boundary

• We got the first linear classifier from Bayes classifier model.

Linear classifier

• W and b is indirectly obtained from two class-conditional distribution

$$f(X) = -X\Sigma^{-1}(\mu_1 - \mu_2) + \mu_1 \Sigma^{-1}\mu_1 - \mu_2 \Sigma^{-1}\mu_2 + \log rac{P(Y=1)}{P(Y=2)} \ f(X) = -X \underbrace{\Sigma^{-1}(\mu_1 - \mu_2)}_{ ext{W}} + \underbrace{\mu_1 \Sigma^{-1}\mu_1 - \mu_2 \Sigma^{-1}\mu_2 + \log rac{P(Y=1)}{P(Y=2)}}_{ ext{b}}$$

- We waste much effort on estimating Gaussian covariance matrix and mean vector, but what we really need is simply W and b, can we learn W and b directly? Yes!
- Directly estimating W and b reduces the number of parameters we have to estimate.

- Input feature vector X=(X₁,...,X_N) with N attributes
- Step 1: design class-conditional density for $Y \in \{0,1,...,9\}$

$$P(X = x | Y = y) = \frac{1}{\sqrt{2\pi |\Sigma_y|}} \exp\left(-\frac{(x - \mu_y)\Sigma_y^{-1}(x - \mu_y)'}{2}\right)$$

Naïve Gaussian Bayes classifier

$$P(X|Y) = P(X_1|Y) \dots P(X_N|Y)$$

Where each individual term is

$$P(X_n|Y) = rac{1}{\sqrt{2\pi}\sigma_{y,n}} = \expiggl\{rac{(X_n - \mu_{y,n})^2}{2\sigma_{y,n}^2}iggr\}$$

• Maximum Likelihood estimation of $\mu_{\gamma,n}$ and $\sigma_{\gamma,n}$ for

$$P(X_n|Y) = rac{1}{\sqrt{2\pi}\sigma_{y,n}} = \expiggl\{rac{(X_n-\mu_{y,n})^2}{2\sigma_{y,n}^2}iggr\}$$

are

$$egin{align} \mu_{y,n}&=rac{1}{m_y}\sum_{i=1}^m X_{i,n}\delta[Y_i=y] \ & \ \sigma_{y,n}&=rac{1}{m_y-1}\sum_{i=1}^m \delta[Y_i=y](X_{i,m}-\mu_{y,n})^2 \ & \ \end{array}$$

with a set of (X_i, Y_i) for ith training example, and $X_{i,n}$ is the nth feature for X_i , m_v is the number of training examples of class y, and $\delta [Y_i = y]$ is indicator function.

Step 2: Estimate the prior distribution

$$P(y = d) = \theta_d \text{ with } \sum_{d=0}^{3} \theta_d = 1$$

Solution 1: Maximum likelihood estimation

$$\theta_d = \frac{\text{\# of digit d in traing set}}{\text{\# of total digits in training set}}$$

- Solution 2: Maximum A Posterior parameter estimation
 - Imposing a prior $P(\theta)$ on the parameter of prior distribution $P(y|\theta)$: Prior on prior
 - Instead of only estimating a single point for θ , we estimate a posterior distribution $P(\theta|D_Y)$ over all possible θ , where D_Y is the class labels for training examples
 - Dirichlet distribution $P(\theta) \propto \theta_1^{\alpha_1 1} \dots \theta_9^{\alpha_9 1}$, conjugate to $P(y|\theta)$
 - By the property of conjugate distribution, we have $\underset{\theta_d}{\operatorname{argmax}} P(\theta_d | D_Y) = \frac{\# \ of \ digit \ d \ in \ training \ set + \alpha_d}{\# \ of \ training \ examples} + \sum_{d=0}^9 \alpha_d$

Dirichlet Distribution

A multivariate generalization of the beta distribution

$$\operatorname{Dir}(\mathbf{x}|\boldsymbol{\alpha}) \triangleq \frac{1}{B(\boldsymbol{\alpha})} \prod_{k=1}^{K} x_k^{\alpha_k - 1}$$

$$B(\boldsymbol{\alpha}) \triangleq \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\alpha_0)}$$

$$\alpha_0 \triangleq \sum_{k=1}^K \alpha_k$$

$$\mathbb{E}[x_k] = \frac{\alpha_k}{\alpha_0}, \text{ mode}[x_k] = \frac{\alpha_k - 1}{\alpha_0 - K}$$

$$\begin{array}{ll} \mathsf{Posterior} & p(\boldsymbol{\theta}|\mathcal{D}) & \propto & p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta}) \\ & \propto & \prod_{k=1}^K \theta_k^{N_k} \theta_k^{\alpha_k-1} = \prod_{k=1}^K \theta_k^{\alpha_k+N_k-1} \\ & = & \mathrm{Dir}(\boldsymbol{\theta}|\alpha_1+N_1,\dots,\alpha_K+N_K) \end{array}$$

• Test example X, its most possible digit is

$$Y^* = \operatorname{argmax}_{Y \propto \{0,1,\dots,9\}} P(X_1|Y) \dots P(X_N|Y) P(Y)$$

= $\operatorname{argmax}_{Y \propto \{0,1,\dots,9\}} \log P(X_1|Y) + \dots + \log P(X_N|Y) + \log P(Y)$

- A trick: working with log of probability
 - Convert multiplication to summation
 - Avoid arithmetic underflow: too large N will cause too small posterior that cannot be correctly operated by computer.

Why not use multivariate Gaussian?

- With full covariance matrix to model the class-conditional distribution?
- In MNIST, feature space dimension N=28X28, how many parameters are there in a full covariance matrix?
 - $\frac{N(N+1)}{2}$ = 307,720, compared with 50000 training examples
 - Underdetermined: The parameters cannot be completely determined.

Text document: length-varying feature vectors

Input

- For each document m, a vector of length n represents all the words appearing in the document: X_n^m is the n-th word in document m.
 - The domain of X_n^m is a vocabulary of a dictionary (e.g., Webster dictionary)
- The length of documents vary between each other, so feature vector $X^m = (X_1^m, X_2^m, ...,)$ for a document does not have a fixed size.

Output

• Y_m defines the category of document $m - \{Ads, Non-Ads\}$

Naive Bayes: Spam Filtering

Email spam filtering

	docID	X = words in Email	y = spam?
Training set	1	money click money	yes
	2	money money discount	yes
	3	money link	yes
	4	work lunch money	no
Test set	5	money money work lunch	?

- Vocabulary
 - · "money", "click", "discount", "link", "work", "lunch"

Class-conditional distribution

Assume independence between words in a document

$$P(X_1^m, X_2^m, ..., X_n^m | Y_m) = P(X_1^m | Y_m) P(X_2^m | Y_m) ... P(X_n^m | Y_m)$$

- A graphical model representation for the independence decomposition of a distribution
 - Each circle node represent a random variable
 - Each arrow represents a conditional distribution, conditioned on the parent node

Class-conditional distribution

Class-conditional distribution

$$P(X_1^m, X_2^m, \dots, X_n^m | Y_m) = P(X_1^m | Y_m) P(X_2^m | Y_m) \dots P(X_n^m | Y_m) = \prod_{i=1}^{V} P(w_i | Y_m)^{Count_i}$$

• MLE of $P(w_i|Y_m)$ for each word w_i in a vocabulary.

$$P(w_i|Y_m = y) = \frac{\text{# of word } w_i \text{ in documents of class } y}{\text{# of words in documents of class } y}$$

Class-conditional distribution

• MAP estimate of P(wi|Ym) for each word w_i in a vocabulary.

$$P(w_i|Y_m = y) = \frac{\# \ of \ word \ wi \ in \ documents \ of \ class \ y \ plus \ soft \ count \ \alpha_i}{\# \ of \ words \ plus \ all \ soft \ counts \ in \ documents \ of \ class \ y}$$

• Here a soft count α_i is added to each word w_i

Class prior

- Similar MLE/MAP methods can be applied to estimate P(Y)
- Given a test example X,

$$P(X_1, X_2, ..., X_n | Y) = \prod_{i=1}^{V} P(w_i | Y)^{Count_i}$$

Decide the optimal y

$$\operatorname{argmax}_{y} P(Y = y) \prod_{i=1}^{V} P(w_{i}|Y = y)^{Count_{i}}$$

Summary

- Recap Bayes classifier, Bayes error
- Decision region and boundary with Gaussian class-conditional distributions
 - Linear hyperplane and quadratic surface in high dimensional space
- Gaussian Naive Bayes
- Bayes classifier with length-varying feature vector for text document
- Basic concept of graphical model

References

Chap 4, Machine Learning: Probabilistic Perspective (Murphy)