Université de La Rochelle

Rapport de stage de M2

Trouver titre : Génétique des pop des Flippers

Pierre-Louis STENGER
Promo 2016

Maîtres de stage : BENOIT SIMON-BOUHET HÉLÈNE

Labach

REMERCIEMENTS

Je voudrais en premier lieu te remercier chaleureusement Benoit, tout d'abord pour ce stage que tu as rendu possible, dans ce domaine pour lequel tu m'as fait prendre goût en écoutant tes cours de Génétique des Populations sur les bancs de la fac, mais aussi pour la pédagogie et la patience dont tu as fait preuve devant mes questions et mes interrogations chaque fois que ce fût nécessaire. Entre le méli-mélo de fichiers, les codes incorrects ou les heures de débuggages sur le Li-Cor, il en aura fallut de la patience! Je n'aurai jamais autant appris en si peu de temps. Encore merci.

Un grand merci à toi Hélène, qui sans toi non plus, ce stage n'aurait pas pu ce réaliser. Malgré la distance tu as su être présente quand il le fallait, que cela soit par mail, téléphone ou Skype. Encore merci pour ces quelques jours passés sur Marseille où j'ai pu assister au déroulement du Workshop et rencontrer toutes ces personnes extraordinaires!

Encore un grand merci à vous deux.

Merci à Éric et à Amélia qui ont pu me conseiller et m'aiguiller sur des questions de théorie génétique et d'informatique.

Merci aussi à Vanessa Becquet, Hélène Agogué et Martine Bréret qui ont su être là pour m'aider sur la plateforme technique de biologie moléculaire, mais aussi pour leur gentillesse et leurs conseils.

Un merci tout particulier à mes collègues stagiaires de bureau, et collègues doctorants: Alice et ses appels qui n'en finissaient pas (Et désolé pour la Clio sur le BonCoin haha!), Yann et son amour pour les phoques et le Nord (On va finir par y aller en vacances à force!), Mathilde l'accro au sport, Fanny et ses cookies si bons, Émeric qui nous a quitté pour aller se la couler douce à la NASA à L.A., Victor (on aura bien sué dans ce gymnase!), Antoine (Et ça pollue l'océan en perdant ses palmes! Super session en tout cas!), et à tous les autres de LR qui se sont enkystés comme moi dans ce lieu ou il y fait bon vivre. À nos nombreuses pauses café, à tous nos gâteaux et nos soirées. Merci pour votre soutien et votre amitié.

Et enfin merci à mes parents, qui ont permis la réalisation de mes études, qui ont toujours étaient là pour moi et sans qui je n'aurais pas pu faire ce qui me plait aujourd'hui.

État de l'art

Séquençage haut débit et inférences de la structure de populations : perspectives nouvelles et limites

Pierre-Louis Stenger

Mots clés: NGS, Population, Génétique, Conservation

Table des figures

1	Évolution du coût de séquençage d'un génome humain	6
2	Localisation des échantillons et concentrations d'ADN obtenues à	
	l'issue des extractions	11
3	Photographie d'un gel d'agarose placé sur une plaque à UV	13
4	Vraisemblance $(LnPD)$ en fonction de K	18
5	Deviance Information Criterion (DIC) en fonction de K	19
6	Bayesian Information Criterion (BIC) en fonction de K	19
7	Probabilités d'assignations individuelles à chaque population inférée par TESS	20
8	Cartes de probabilité d'appartenance aux populations inférées	21
9	La DAPC présente bien les trois clusters distinctement. Le cluster 1 (rose) correspond à la population des individus de la Méditerranée Nord Occidentale (MNO), le cluster 2 (bleu) à la population des individus de Gibraltar et le cluster 3 (violet) à la population des individus de Galice. Le graphique des "DA eigenvalues" correspond au pourcentage d'information porté par les axes. L'axe un (horizontal) porte environ 90 pour-cent d'information, et l'axe deux (vertical) en porte environ 10. Les composantes principales sont elles mêmes des combinaisons linéaires des variables de départ, c'est à dire des loci.	
	Les individus proches sont alors ceux qui ont des allèles comparables .	22
10	Vraisemblance $(LnPD)$ en fonction de K	23
11	Réseau d'haplotypes	25
Liste	e des tableaux	
1	Assignation des individus aux 3 populations inférées	20
2	F_{ST} par paire de populations	23
3	ρ_{ST} par paire de populations	23
4	Indices synthétiques pour les marqueurs microsatellites	23
5	Table des indices génétiques pour les ADN mitochondriaux	24
6	Table des individus par population	30
Liste	e des encadrés	
1	Les forces évolutives	4
2	Les loci outlier	7
V		

Le taux d'extinction des espèces animales à la surface du globe est actuellement 1000 fois supérieur au taux normal supposé (?). Les conséquences des actions anthropiques sur l'environnement en général et sur la biodiversité en particulier sont telles que certains auteurs n'hésitent pas à parler d'anthropocène pour caractériser l'ère géologique dans laquelle l'Homme semble avoir fait entrer la Terre depuis la fin du XIX^e siècle (?). Dans ce contexte, les efforts de protection de la biodiversité et de conservation des espèces sont plus que jamais d'actualité. Depuis le milieu du XX^e siècle, la prise de conscience de l'impact des activités humaines sur le milieu marin a conduit le législateur à créer des zones de protection en mer comme avec le double objectif de maintenir les activités humaines tout en protégeant la biodiversité (?) L'efficacité des aires marines protégées repose sur la détermination préalable de la structure des populations, qui est très difficile à déterminer en milieu marin (?) pour deux raisons principales :

- 1. la plupart des espèces sont difficiles voire impossibles à observer ou à marquer. C'est par exemple le cas pour les mammifères marins dont 23% des espèces sont pourtant actuellement menacées d'extinction (?).
- 2. l'extrême fécondité de certaines espèces (par exemple *Ostrea virginica* peut relarguer de 15 à plus de 110 millions de gamètes dans le milieu marin, ?) rend l'inférence de la connectivité, et donc de la structure de populations, très difficile (?).

Pourtant, l'inférence de la structure des populations est critique pour la mise en place de mesures de protection adaptées. Par exemple, une analyse de risque a montré que dans l'Atlantique Nord-Est, le niveau de captures accidentelles subit par le dauphin commun *Delphinus delphis* n'est pas supportable sous l'hypothèse d'une population structurée en 2 stocks, l'un néritique et l'autre océanique (?). La détermination précise de la structure de population d'une espèce d'intérêt est donc une question centrale dans le domaine de la conservation. Lorsqu'il est impossible de déterminer la structure des populations par des méthodes directes, le recours à des méthodes indirectes doit alors être envisagé. Ainsi, de nombreuses approches sont couramment utilisées pour l'étude de populations naturelles, notamment en milieu marin comme :

- l'étude de traceurs écologiques : isotopes stables du carbone, de l'azote et du souffre, acides gras, métaux lourds (?),
- l'analyse des contenus stomacaux (??) ou encore,
- l'utilisation de marqueurs moléculaires (allozymes, RAPD, ADN mitochondrial, microsatellites, SNP, etc) (??).

^{1.} Google Scholar indique par exemple que 398 articles publiés en 2015 contiennent, dans leur titre, l'expression "biodiversity conservation".

Les études de génétique des populations sont extrêmement utiles pour inférer la structure des populations car les évènements démographiques et évolutifs laissent des traces dans l'ADN des populations. À l'échelle micro-évolutive, il est généralement admis que le niveau de diversité génétique d'une population est proportionnel à sa taille efficace 2 (voir ???, pour une discussion à ce sujet). Un prélèvement ponctuel chez quelques individus d'une population permet alors d'aborder, entre autres, des questions relatives à la taille actuelle et passée des populations (??), à leurs limites géographiques (??) et à leur connectivité grâce à l'inférence des taux de migrations entre populations (?). Toutefois, comme pour toutes les méthodes indirectes, les outils moléculaires présentent un certain nombre de limites. En effet, les marqueurs classiques tels que l'ADN mitochondrial ou les microsatellites ne permettent que rarement l'accès aux temps courts (quelques générations, du fait de la lenteur de l'apparition de mutations, ?) et à l'échelle locale. En outre, la puissance statistique augmentant avec le nombre de marqueurs (??), les inférences réalisées avec les marqueurs classiques (généralement utilisés en faible nombre) sont parfois peu concluantes.

Ainsi, l'étude de l'isolement par la distance (ou IBD : Isolation By Distance) est une méthode couramment utilisée pour étudier la structure des populations. Elle permet de mesurer l'augmentation de la différenciation génétique avec un accroissement des distances géographiques entre les populations (?) ou les individus (?) quand la dispersion spatiale est limitée. La détection d'IBD suppose (i) que la dérive génétique conduise à des niveaux de différenciation génétique suffisants entre populations et (ii) que la migration entre populations soit limitée afin d'éviter l'homogénéisation trop importante des stocks génétiques (voir encadré 1). Si la dérive génétique est trop faible, la dispersion ne peut pas être inférée grâce à un modèle reposant sur l'équilibre migration/dérive (?). Puisque de nombreuses espèces marines présentent des tailles de populations très importantes et des capacités de dispersion élevées grâce à un stade de vie larvaire (e.g. chez les poissons et invertébrés ??), la méthode de l'IBD est souvent inutilisable avec les marqueurs classiques qui présentent, dans ces conditions, des niveaux de différenciation génétiques faibles (?).

Les analyses bayésiennes de clustering sont une autre famille de méthodes permettant d'inférer la structure des populations. Implémentées dans différents logiciels (e.g. Structure, ?, TESS, ?, Geneland, ?), elles permettent de détecter les discontinuités génétiques (donc les limites entre stocks génétiques distincts) et les migrants (?). Ces méthodes déterminent tout d'abord le nombre de populations le plus vraissemblable compte tenu de l'information génétique disponible (et pour certains logiciels, des coordonnées géographiques des individus étudiés) et calculent ensuite, pour chaque

^{2.} La taille efficace est le nombre d'individus d'une population idéale pour lequel on aurait un degré de dérive génétique équivalent à celui de la population réelle.

Les forces évolutives sont des processus qui modifient les fréquences alléliques observées dans les populations au fil des générations. Elles sont au nombre de 4 :

Mutation : changement accidentel du patrimoine génétique d'un individu. À l'échelle de l'espèce, c'est une source d'innovation qui permet d'augmenter la diversité génétique globale.

Dérive génétique: fluctuation aléatoire des fréquences alléliques au fil des générations liée à un effet d'échantillonnage. Le pool de gènes d'une population à la génération g est issu de tirages aléatoires parmi le pool de gènes de la population à la génération g-1. L'amplitude des fluctuations de fréquences alléliques est inversement proportionnelle à la taille de la population. La dérive génétique peut donc conduire à une perte de diversité genétique en ramenant à 0 la fréquence de certains allèles.

Migration : échange de gènes entres populations distinctes. À chaque génération, une fraction du pool génique d'une population peut provenir d'une autre population. Cette force évolutive tend à homogénéiser les pools de gènes des populations échangeant des migrants et à limiter les risques de perte de diversite génétique.

Sélection: une population est soumise à sélection si la capacité des individus à produire des descendants fertiles est influencée par leur génotype. Certaines formes de sélection vont favoriser un allèle particulier dont la fréquence augmentera au détriment des autres. Dans ce cas, comme pour la dérive génétique, la sélection tend à diminuer la diversité génétique. D'autres formes de sélection vont au contraire permettre le maintien de plusieurs formes alléliques. Dans ce cas, comme pour la migration, la sélection limite les risques de perte de diversité génétique.

Encadré 1: Les forces évolutives

individu échantillonné, la probabilité d'assignation à chacune des populations inférées (??). Pour être précises, ces approches requièrent une forte densité d'échantillonnage sur une large échelle géographique. Leur intérêt est donc limité pour les espèces dont la distribution géographique est mal documentée (?), ce qui est encore aujourd'hui fréquent en milieu marin (?).

Outre les difficultés d'inférence de la structure des populations liées aux taux d'évolution des marqueurs décrites ci-dessus, la prise en compte de la sélection est un autre problème difficile à aborder à l'aide des marqueurs génétiques classiques. Puisque la sélection peut laisser dans les populations des traces comparables à celles d'autres forces évolutives (voir encadré 1) ou à certains régimes de reproduction (consanguinité notamment), les généticiens des populations font généralement abstraction de la sélection en utilisant des marqueurs neutres (?). Or, il est maintenant admis que la préservation des adaptations locales est un enjeu de conservation majeur (?). Elle est d'ailleurs au cœur de la notion d'ESU: Evolutionary Significant Units (?).

Dans ce contexte, la génomique des populations ³ ouvre de nouvelles perspectives prometteuses en terme de conservation (???). En effet, depuis le début des années 2000, de nouvelles technologies de séquençage de l'ADN à très haut débit ⁴ apparaissent et permettent de générer de très grandes quantités d'informations génétiques à moindre coût. Les technologies de séquençage sont nombreuses et évoluent très vite. Citons, parmi les principales, la technique de pyroséquençage 454 (société Roche, avec les appareils GS Junior System, et GS FLX+ System (?)), la technique d'Illumina (société Solexa avec les appareils HiSeq System, Genome analyser Ilx ou encore MySeq (?)), la technique de Life Technologies (société Applied Biosystems avec les appareils SOLID 5500 System (?)) ou encore la technique Ion Torrent de la même société (Life Technologies, avec les appareils Personal Genome Machine et Proton (?)). Et depuis 2012, une nouvelle génération de séquenceur encore plus performant arrive sur le marché (e.g. Helicos Genetic Analysis System, PacBio RS, GridION System et MinION (?)).

La génération rapide de centaines de millions de séquences d'ADN s'est accompagnée d'une chute vertigineuse des coûts et des temps de séquençage : en l'espace de 10 ans, le prix de séquençage d'un génome humain a ainsi été divisé par plus de 100 000 (figure 1). Le prix d'un génome complet approchant les 1 000 dollars (?), la génération d'information génomique n'est plus réservée à quelques organismes modèles (??). En outre le développement de méthodes NGS ciblant en priorité des

^{3.} C'est l'étude, à l'échelle des populations, de l'information génétique répartie dans l'ensemble du génome des individus. La génomique des populations permet d'étudier conjointement des dizaines ou des centaines de milliers de *loci* et non plus seulement quelques dizaines.

^{4.} NGS: Next Generation Sequencing

zones d'intérêt du génome (i.e. les zones présentant de fortes densités de SNPs ⁵), les études génomiques à l'échelle des populations sont maintenant envisageables (?).

FIGURE 1 – Évolution du coût de séquençage d'un génome humain (données du NHGRI Genome Sequencing Program, www.genome.gov/sequencingcostsdata)

L'utilisation de marqueurs en grand nombre (de quelques centaines à plusieurs centaines de milliers) augmente fortement la puissance statistique des tests utilisés (??), ce qui permet par exemple d'inférer la structure des populations à très fine échelle spatiale et temporelle (??). À titre d'exemple, le genotypage de nombreux SNPs chez quatre espèces de poissons commerciaux a permis de décrire la structure des populations à une échelle géographique très fine, jusqu'alors inaccessible (??). Ces progrès ont permis de détecter des erreurs d'étiquetage sur les étals ou des fraudes concernant l'origine des poissons, et donc la mise en application directe de mesures de protection adaptées (?). Ces nouvelles approches permettent en outre d'accéder aux zones du génome subissant la sélection et offrent donc l'opportunité de détecter la mise en place d'adaptations locales par les populations (?) ce qui est particulièrement utile dans un contexte de conservation (?). Ainsi, la méthode des "loci outliers" permettant de détecter des zones du génome potentiellement sous sélection (voir encadré 2) est souvent considérée comme l'une des plus grandes avancées récentes dans le domaine de la conservation (???).

L'utilisation des NGS présentent néanmoins un certain nombre de limites. La qualité et la quantité d'ADN nécessaire pour mettre en oeuvre les NGS est importante ?. En effet, les organismes de toute petite taille (?) ou pour lesquels l'ADN est dégradé comme pour les échantillons issus d'individus échoués (cétacés) (??) apportent des

^{5.} Single Nuclear Polymorphism : polymorphisme d'un seul nucléotide

Le $F_{\rm ST}$ est un indice de fixation permettant d'estimer le niveau de différenciation entre 2 populations grâce aux fréquences alléliques observées dans ces populations. Pour un niveau d'hétérozygotie donné à un locus précis, il est possible de calculer la gamme de variation attendue du $F_{\rm ST}$ sous l'hypothèse de neutralité. Les loci qui présentent des valeurs de $F_{\rm ST}$ en dehors de cette gamme sont appelés loci outlier. Ils peuvent être sous sélection positive ou sélection balancée.

Encadré 2: Les loci outlier

difficultés liées aux quantités et à la qualité d'ADN nécessaire pour les méthodes de séquençage par NGS. Au laboratoire, les protocoles sont beaucoup plus longs et complexes qu'avec les méthodes classiques. Les risques de biais méthodologiques sont donc nombreux (voir par exemple ???????) et les erreurs de séquençage sont également plus fréquentes qu'avec les méthodes classiques (??).

Les NGS présentent aussi des difficultés liées à la puissance de calcul nécessaire au traitement de ces données très abondantes. Le temps de calcul ou le nombre de processeurs nécessaires pour le nettoyage des données et l'assemblage d'un génome est variable selon la taille des génomes. En outre, ces techniques présentent des difficultés liées aux outils et méthodes d'analyse statistique. Sur le long terme, il sera essentiel de développer une gamme de protocoles de laboratoire comme celle proposé par ? et ?, car ces méthodes sont encore coûteuses pour une utilisation en routine. De plus, les pipelines d'analyses sont encore en développement pour la plupart des techniques de NGS (?) ce qui ne facilite pas leur utilisation et il n'y a pas encore de véritable standard. Néanmoins, quelques pipelines d'analyses semblent vouloir commencer à s'imposer comme le logiciel Genome Analysis Toolkit du Broad Institute au MIT. Il s'agit d'une bibliothèque logicielle structurée qui permet d'utiliser efficacement des outils d'analyse avec des données issues des NGS (?). Des ordinateurs à haute performance sont généralement nécessaires pour le stockage et l'analyse de ces données (??) et l'extraction des données est parfois problématiques. Par exemple, un fichier SFF (Standard Flowgram File) est créé en sortie standard de la technologie 454 (Fichier binaire qui est humainement illisible ?), et il faut alors un exécutable particulier pour les décoder. Il y a donc un réel besoin de bio-informaticiens ayant la double compétence génétique des populations/programmation.

Malgré ces nombreuses difficultés, la puissance des NGS permet aujourd'hui d'envisager des avancées rapides en terme de conservation (?). L'identification de structure de populations à très fine échelle (?) ou l'obtention de très grandes quantité de données génétiques sur des espèces difficiles à observer et échantilloner sur le terrain (e.g. le grand dauphin *Tursiops truncatus*, ?) sont autant de facteurs clés pour l'identification d'ESU (Evolutionary Significant Unit, ?) et la mise en place de MU (Management Unit, ?) indispensables à la conservation des espèces (?).

Références bibliographiques

1 Introduction

Dans les eaux méditerranéennes françaises, les aires marines protégées incluant 2 parcs nationaux, 1 parc marin, 36 (ZSC) Zones Spéciales de Conservation ou ZPS (Zones de Protection Spéciales) et 5 ASPIM (Aire Spécialement Protégée d'Importance Méditerranéenne), couvrent 34% de la ZEE (Zone Économique Exclusive) (?). Ce réseau de protection est justifié par le fait que la mer Méditerranée est un point chaud de la biodiversité marine (?). Néanmoins, les tendances temporelles indiquent que la surexploitation et que la destruction de l'habitat ont été les principaux facteurs humains impliquants des changements historiques dans la biodiversité (??). Tous ces impacts devraient croître en importance à l'avenir, en particulier avec le changement climatique et la dégradation de l'habitat (?).

L'inférence de la structure des populations est capitale pour la mise en place de mesures de protection adaptées (?), ainsi que pour adapter les plans de gestion des aires marines protégées (?). Surtout dans un monde où les espèces évoluent et s'adaptent dans un milieu changeant.

Les populations sont aussi définies comme des unités d'organismes avec des dynamiques autonomes et le recrutement d'individus permettant des métissages (?). Définir les limites d'une population donnée est une condition préalable non seulement à des fins de gestion tels que la définition des unités significatives de l'évolution (ESU ⁶) (??) ou dans le management de ces unités (MU ⁷) (??), mais aussi pour étudier l'évolution de la structure au sein d'une population (?). Cependant, la détermination préalable de la structure des populations est très difficile à déterminer en milieu marin (?). De plus, 23% des espèces de mammifères marins sont actuellement menacées d'extinction (?).

Cependant, en dépit de leur capacité de nage développées, les mammifères marins montrent souvent une structure de population à petite échelle, bien que la mesure varie selon les espèces (?). Dans cette étude, nous étudions la structure de la population pour une espèce marine sociale avec une grande mobilité : le grand dauphin *Tursiops truncatus*, Montagu, 1821.

Bien que les *Tursiops truncatus* sont parmi les cétacés les plus connus dans la Mer Méditerranée, les études de ce cétacé n'ont commencé qu'à la fin des années 1980 (?). Les enjeux de conservation sont pourtant importants pour cette espèce patrimoniale.

Un réel besoin de connaissances sur leur structure de population se fait ressentir. De plus, ces dauphins ont été qualifiés comme "vulnérable" selon l'Union Interna-

^{6.} Une ESU est une population d'organismes qui est considérée comme distincte à des fins de conservation .

^{7.} Les MU sont définis comme des populations qui ont des fréquences différentes d'allèles , mais ne montrent pas nécessairement des différences fixes entre les populations

tionale pour la Conservation de la Nature selon les critères de la Liste rouge (?). Cette espèce a aussi été inscrite sur l'annexe II de la directive Habitats de l'UE dans la région méditerranéenne (?). L'objectif général est de maintenir (ou de restaurer) l'espèce à un état de conservation favorable (?). Cela nécessite des informations sur la structure des populations.

L'inférence de leur structure de population via l'utilisation de marqueurs génétiques comme les microsatellites et mitochondriaux s'avère être pertinent pour ce cas d'étude (?). En effet, malgré l'absence de barrière environnementales au flux de gènes, les processus environnementaux historiques et spécialisations écologiques peuvent conduire à une différenciation génétique chez les animaux très mobiles (??). Les microsatellites sont des marqueurs d'ADN⁸ nucléaires avec une héridité bi-parentale (?). Les microsatellites sont des séquences nucléotidiques courtes de deux à quatre paires de bases répétées en tandem, largement intercalés dans le génome eucaryote 9 dans les parties non codantes (?). Les microsatellites sont des marqueurs hautement informatifs car ils ont un polymorphisme ¹⁰ extrêmement variable et sont généralement considérés comme neutres (ne subissant pas la sélection) (?). L'ADN mitochondrial est une molécule circulaire et haploïde (?). Chez les mammifères, il est maternellement hérité et non soumis à la recombinaison. L'absence de recombinaison permet la détection d'événements évolutifs passés tels que les migrations, les goulots d'étranglement, les isolements de la population dans les différentes lignées maternelles (??). L'analyse combinée de ces marqueurs est particulièrement utile dans les espèces ayant un comportement social complexe (?). En raison de mode d'évolution contrastés suivant leur héritage, il est possible d'avoir un aperçu de la structure des espèces (?).

Ainsi, un échantillonnage de tissus d'individus trouvés échoués sur les côtes méditerranéennes ainsi que l'obtention de biopsies réalisées lors de campagnes en mer ont permis d'obtenir un jeu de données d'individus des côtes languedociennes, de Corse et d'Italie. Les données générées lors de cette étude ont été analysées conjointement avec des données générées par Marie Louis lors de son doctorat (?), notamment celles concernant la Méditerranée et la façade Atlantique de la Péninsule Ibérique. Les inférences de structure de populations ont été réalisées sur la base de ce jeu de données étendu. Pour caractériser ces populations, des indices de diversité génétique ont été calculés pour les données microsatellites et mitochondriales.

Ces résultats permettront d'apporter de nouvelles informations sur la distribution et la structuration de cette espèce de cétacé en Mer Méditerranée. Ils aideront donc à la prise de décisions politiques pour la protection de cette espèce, et par conséquent, sur les écosystèmes englobés dans leurs habitats.

^{8.} Acide désoxyribonucléique

^{9.} Organismes uni- ou pluricellulaires qui se caractérisent par la présence d'un noyau

^{10.} Désigne la coexistence de plusieurs allèles pour un gène ou locus donné

2 Matériel et méthodes

2.1 Collecte des échantillons

Au cours de cette étude, 122 échantillons de tissus (peau, N=60, muscle, N=37, rein, N=21, foie, N=1, gencive, N=3) issus de 67 individus des côtes languedociennes, de Corse et d'Italie (voir figure 2) ont été analysés. Ces échantillons sont en partie issus de la banque de réseau national d'échouage français (N=46, individus échoués entre 2001 et 2015) géré par l'Unité Mixte de Recherche PELAGIS (UMS 3462) et d'une part issus de programmes de biopsies (N=16, biopsies collectées par l'association GIS3M (Groupement d'Intérêt Scientifique pour les Mammifères Marins de Méditerranée), l'association GECEM (Groupe d'Etude des Cétacés de Méditerranée) et l'association BREACH (Des voiles pour les cétacés, étudier, protéger et connaître les mammifères marins aux Antilles et en Méditerranée). Enfin, 5 échantillons d'individus échoués en Italie ont été fournis par le Dr Marco Ballardini 11 . La plupart des échantillons est conservée dans l'éthanol (70%) et les biopsies les plus récentes ont été congelées. Pour chaque échantillon, un morceau de tissu de 0.5 cm^3 a été prélevé en vue des extractions d'ADN.

FIGURE 2 – Localisation des échantillons et concentrations d'ADN obtenues à l'issue des extractions

^{11.} MSc, Sezione di Medicina Legale e Scienze Forensi A. Fornari, via Forlanini 12, 27100 Pavia

2.2 Extractions d'ADN

Pour certains échantillons, plusieurs extractions d'ADN ont été faites afin d'augmenter les quantités d'ADN disponibles pour la suite du protocole. Au total, 138 extractions d'ADN ont été réalisées à l'aide d'un kit NucleoSpin® Tissue (Macherey Nagel). Les échantillons sont découpés au scalpel et soumis à une lyse tissulaire en présence de protéinase K à 56°C pendant 12 à 15 heures. Après un passage à 70°C pendant 10 minutes, les échantillons sont placés sur une colonne contenant une membrane de silice à laquelle les acides nucléiques se fixent. Plusieurs étapes de rinçage (par ajout de tampons et centrifugation) permettent d'éliminer les résidus cellulaires. Enfin, les ADN sont récupérés grâce à 2 étapes de centrifugation successives après ajout de 100μ L de tampon d'élution qui permet aux acides nucléiques de se décrocher de la membrane. Pour chaque échantillon, la concentration d'ADN a ensuite été mesurée par spectrophotométrie à l'aide d'un Nanodrop2000.

2.3 Sexage

Le sexage des Tursiops truncatus a été effectué selon le protocole décrit par ?. Un fragment du chromosome X et un fragment du chromosome Y sont amplifiés par PCR (Réaction de Polymérisation en Chaîne). Les 2 fragments d'ADN ciblés ayant des tailles différentes, il est possible de les distinguer visuellement après électrophorèse sur un gel d'agarose à 3%. Les femelles présentent une unique bande sur gel d'agarose (puisqu'elles possèdent 2 copies du chromosome X) et les mâles 2 bandes de tailles legèrement différentes puisqu'ils possèdent un exemplaire de chaque chromosome (voir figure 3). Pour chaque individu, le mélange réactionnel de 25μ L contient : 2.5μ L de tampon 10X, 1,5mM de MgCl₂, 0,15mM de dNTP, 0,3 μ M des amorces TtSRYR (5'-ACCGGCTTTCCATTCGTGAACG-3', ?), PMSRYF (5'-CATTGTGTGTGTCTCGTGATC-3', ?) et ZFX0582F (5'-ATAGGTCTGCAGACTCTTCTA-3', ?), $0.06\mu\mathrm{M}$ de l'amorce ZFX0923R (5'-AGAATATGGCGACTTAGAACG-3', ?), 1 unité de Taq polymérase et 5μ L d'ADN (de moins de 1 à plus de 100 ng/ μ L selon les individus). Les conditions de PCR sont les suivantes : une première dénaturation de 30 secondes à 94°C est suivie de 35 cycles de 30 secondes de dénaturation à 94°C, 45 secondes d'appariement à 51°C et 45 secondes d'élongation à 72°C. Une étape d'élongation finale de 7 minutes à 72°C est également réalisée.

2.4 Séquences mitochondriales

Pour chaque individu, un fragment de 682 paires de bases de la région de contrôle a été amplifié par PCR puis séquencé. Chaque mélange réactionnel de $25\mu L$ contenait : $2.5\mu L$ de tampon 10X, 2mM de $MgCl_2$, 0.25mM de dNTP, $0.125\mu M$ des amorces

FIGURE 3 – Photographie d'un gel d'agarose placé sur une plaque à UV. Les individus placés dans les puits 60, 61 et 63 sont des femelles car il n'y a qu'une seule bande. Les individus des puits 62 et 64 sont des mâles.

Dlp1.5 (5'-TCACCCAAAGCTGRARTTCTA-3', ?) et Dlp8G (5'-GGAGTACTATGTCCTGTAACCA-3', ?), 0,5 unité de Taq polymérase et 2μ L d'ADN (de moins de 1 à plus de 100 ng/ μ L selon les individus). Les conditions de PCR sont les suivantes : une première dénaturation de 3 minutes à 94°C suivie de 40 cycles de 30 secondes de dénaturation à 92°C, 45 secondes d'appariement à 51°C et 45 secondes d'élongation à 72°C. Une étape d'élongation finale de 7 minutes à 72°C est également réalisée. Pour chaque individu, les brins sens et anti-sens de l'ADN ont systématiquement été séquencés (société GATC Biotech) afin de limiter les erreurs de sequençage. De la même façon, certains individus ont été séquencés plusieurs fois afin de s'assurer de la reproductibilité des résultats. Les séquences sont ensuite nettoyées (correction des erreurs de séquençage, élimination de la séquence des amorces) et alignées dans le logiciel BioEditTM v7.2.5 (?).

2.5 Génotypes microsatellites

Un total de 25 loci nucléaires microsatellites ont été ciblés. Ces marqueurs hypervariables sont décrits dans ?. Leurs principales caractéristiques sont présentées dans l'annexe 4.1. Afin de pouvoir comparer les résultats de la présente étude à ceux obtenus par Marie Louis (?), des individus présentant des tailles d'allèles connus ont été utilisés en guise de marqueur de taille. Pour les 67 individus inclus dans ce travail ainsi que pour les individus de référence, les PCR ont été réalisées pour chacun des 25 loci dans les conditions décrites dans ?. Le génotypage a été réalisé au laboratoire sur un séquenceur à plaques Li-Cor 4300 DNA Analyzer. Il s'agit d'un dispositif d'électrophorèse verticale dans un gel de polyacrylamide fin (0,2 millimètres d'épaisseur) extrêmement résolutif puisqu'il permet de visualiser des différences de tailles de fragments d'une paire de bases. Pour chaque marqueur et chaque individu, le génotype est donc enregistré sous la forme de 2 nombres rendant compte de la taille (en nombre de nucléotide) de chaque allèle présent.

2.6 Vérification de la qualité des données

À l'échelle du jeu de données complet, l'écart à l'équilibre de Hardy-Weinberg et l'absence de déséquilibre de liaison entre chaque paire de loci a été testé dans Genepop v4.2 (?) avec les réglages suivants : démémorisation = 1000, nombre de chaînes = 100, nombre d'itérations par chaîne = 1000. La correction séquentielle de Bonferroni a été appliquée pour corriger l'augmentation de l'erreur de type I liée aux comparaisons multiples (?). La présence d'allèles nuls ¹² a été testée dans Microchecker v2.2.3 (?) et la présence de potentiels duplicats parmi les individus biopsiés a été examinée en comparant les génotypes multilocus des individus dans GenAlex v6.5 (?). Enfin, la présence dans le jeu de données d'individus fortement apparentés (qui pourraient donc biaiser les inférences de structure de populations) a été vérifiée grâce au logiciel MLRelate (?). Lorsque des valeurs d'apparentements supérieures à 0.50 ont été détectées entre 2 individus, l'un des deux individus de la paire a été retiré du jeu de données (?).

2.7 Inférences de la structure des populations

Afin de réaliser des analyses ayant une portée régionale, les données générées lors de cette étude ont été analysées conjointement avec des données générées par Marie Louis lors de son doctorat (?), notamment celles concernant la Méditerranée et la façade Atlantique de la Péninsule Ibérique. Les inférences de structure de populations ont été réalisées sur la base de ce jeu de données étendu, uniquement avec les données microsatellites, et à l'aide de 3 méthodes de clustering distinctes.

Structure v2.3.4 (?)

Grâce à un algorithme MCMC (Markov Chain Monte Carlo), le logiciel Structure permet (i) d'inférer le nombre de populations le plus vraisemblable (noté K) compte tenu des génotypes multilocus observés et (ii) de calculer, par individu, la probabilité d'appartenance à chacune des populations inférées. Concrètement, pour chaque simulation, l'utilisateur fixe une valeur pour K et le logiciel fournit une valeur de vraisemblance globale (notée LnPD) pour le modèle testé, et les probabilités d'assignations individuelles. Puisque Structure repose sur un modèle Bayésien, il est important de ne pas se contenter d'une unique simulation pour chaque valeur de K testé. Ainsi, pour chaque valeur de K testée (entre 1 et 15 populations), 15 réplicats ont été réalisés afin de s'assurer de la convergence des simulations. Pour chaque simulation, une phase initiale de "burnin" de 50 000 pas permet de s'affranchir des conditions initiales, et la longueur des chaînes de Markov a été fixée à 150 000

^{12.} allèle ne pouvant pas être détecté en raison de la présence de mutations empêchant son amplification par PCR.

après la phase de "burnin". Le modèle avec admixture mais sans "LOCPRIOR" (i.e. aucune prise en compte de l'origine géographique des individus) a été utilisé. Selon les préconisations de ?, la valeur de K retenue est celle pour laquelle la vraissemblance moyenne (LnPD) est la plus forte et pour laquelle la variance inter simulations est la plus faible.

TESS v2.3 (?)

Ce logiciel produit des résultats similaires à ceux de Structure (i.e. nombre de populations K le plus vraisemblable et assignation des individus aux populations inferées), mais permet en outre d'intégrer une information supplémentaire en guise de prior du modèle : la localisation géographique des individus. Le modèle considère en effet qu'indépendamment de leur génotype, deux individus collectés près l'un de l'autre ont plus de chances d'appartenir à la même population que deux individus collectés dans des localités éloignées (?). Là encore, plusieurs valeurs de K doivent être testées (ici, de 2 à 15) et pour chacune d'entre elles, 15 réplications ont été réalisées avec un modèle d'admixture BYM (Modèle Baysien, utilisant un piror non informatif sur les paramètres de variances de l'algorithme de Gibbs ?) avec une chaine de longueur 1 200 et un burnin de 200. Le choix de la valeur de K la plus vraisemblable se fait en identifiant le point du graphique du DIC (Deviance Information Criterion) en fonction de K pour lequel la rupture de pente est la plus forte.

La visualisation des résultats produits par TESS peut prendre 2 formes :

- un barplot présentant, pour chaque individu, les probabilités d'assignation à chaque populations inférées. Ce mode de visualisation est identique à celui proposé par Structure
- 2. des cartes de probabilités (une carte par population inférée) permettant une visualisation spatiale des contours probables des populations. Ces cartes ont été produites dans le logiciel R v3.2.3 (?) grâce aux packages fields v8.4-1 (?), mapdata v2.2-6 (?), shape v1.4.2 (?) et marmap v0.9.5 (?).

DAPC, adegenet v2.0.1 (?)

La DAPC (Analyse Discriminante sur les Composantes Principales) est une approche très différente de celles développées dans Structure et TESS. En effet, cette méthode ne fait aucune hypothèse concernant le mode d'évolution des marqueurs génétiques, le modèle d'admixture ou l'équilibre de Hardy-Weinberg. C'est une méthode d'analyse multivariée classique qui permet de visualiser les structures les plus marquantes d'un jeu de données multivariées dans un espace en dimension réduites. Ici, l'analyse tente d'identifier les combinaisons linéaires d'allèles permettant

de maximiser la variance inter-cluster tout en minimisant la variabilité intra-cluster. Implémentée dans le package adegenet (?), cette méthode se déroule en deux étapes.

- 1. Dans un premier temps, la méthode des K-moyennes est utilisée pour tester plusieurs valeurs de K (ici, de K = 1 à 65) et plusieurs solutions de clustering sont comparées à l'aide du BIC (Bayesian Information Criterion). La valeur de K la plus vraisemblable est celle pour laquelle la plus faible valeur de BIC est observée. Si aucun minima n'est visible sur la courbe du BIC en fonction de K, c'est alors la valeur pour laquelle une rupture de pente est observée qui doit être retenue (?).
- 2. Dans un second temps, une ACP est réalisée sur les données génotypiques. Les résultats de cette ACP (i.e. les composantes principales) et des K-means (i.e. solution de clustering la plus vraisemblable) sont utilisées pour réaliser une analyse discriminante permettant de visualiser les résultats dans un plan portant la plus grande part de la variabilité totale du jeu de données.

2.8 Caractérisation des populations

Pour caractériser ces populations, des indices de diversité génétique ont été calculés pour les données microsatellites et mitochondriales.

Marqueurs microsatellites

Pour mesurer le niveau de différenciation génétique entre populations, les $F_{\rm ST}$ (méthode de ?) et les $\rho_{\rm ST}$ (méthode de ?) ont été calculés pour chaque paire de populations dans Genepop v4.2 (?) avec une distance minimale de 0.0001 entre les échantillons à prendre en compte pour la régression suivis de 1000 permutations pour le test de Mantel. Le $F_{\rm ST}$ est un indice de fixation qui permet d'estimer la différenciation génétique existant entre 2 populations en terme de fréquences alléliques. Le $\rho_{\rm ST}$ est un homologue du $F_{\rm ST}$ qui tient compte de la taille des allèles, et donc de leurs relations phylogénétiques.

Pour chaque population et pour le jeu de données complet, les $F_{\rm IS}$ ¹³, hétérozygotie observées (H_o) et attendues à l'équilibre de Hardy-Weinberg (H_e) ont été calculés dans Genepop v4.2 (?). Enfin, la richesse allélique (R_{all}) a été obtenue grâce au package hierfstat dans R v3.2.3 (?). C'est un indice qui permet les comparaisons de diversités génétiques entre échantillons d'effectifs différents. Lorsque les échantillons

^{13.} indice de fixation mesurant l'appariement non aléatoire des allèles au sein des individus d'une population. Il rend compte du niveau de déficit en hétérozygotes (par rapport aux proportions attendues à l'équilibre de Hardy-Weinberg) dû à la consanguinité dans les populations.

issus de différentes populations sont de tailles différentes, les richesses alléliques sont obtenues par une méthode de raréfaction qui permet de ramener la taille de chaque échantillon à celle du plus petit échantillon, rendant ainsi les comparaisons possibles (?).

ADN mitochondrial

Le package Pegas v0.9 (?) a été utilisé dans R v3.2.3 (?) pour établir la liste des haplotypes présents dans le jeu de données, calculer leur fréquence et estimer le nombre de migrants pour chaque population selon la méthode de ?. Pour visualiser les relations phylogénétiques entre les haplotypes identifiés, un réseau a été construit dans Network v5.0.0.0 (?) par la méthode du median-joining (?).

De la même manière que le ρ_{ST} permet de calculer la différenciation génétique en tenant compte de la taille des allèles nucléaires, le calcul des Φ_{ST} par paires de populations permet d'estimer la différenciation génétique en tenant compte de la distance génétique séparant les haplotypes mitochondriaux. Les statistiques Φ ont ainsi été calculées dans Arlequin v3.5.2.2 (?) en utilisant le modèle de mutation K80 identifié comme étant le plus probable pour nos données dans Jmodeltest v2 (?).

Enfin, pour chaque population et pour le jeu de données complet, le nombre de sites polymorphes (S), la diversité nucléotidique (π) et haplotypique (h) (selon la méthode décrite par ?) et l'indice D^{14} (?) ont été calculés dans DnaSP v5.10.1 (?).

3 Résultats

3.1 Qualité des données et sélection des marqueurs

Au cours de cette étude, 67 Tursiops truncatus méditerranéens ont été génotypés pour 25 marqueurs microsatellites (voir liste des marqueurs en annexe, table XXX). Pour 26 individus, l'état de putréfaction avancé des tissus a conduit à des rendements d'extraction d'ADN inférieurs à 10 ng. μ L⁻¹ (figure 2). Ces rendements n'ont pas permis l'amplification des marqueurs nucléaires chez ces individus. Par ailleurs, une relation parent-enfant a été identifiée pour 2 individus. L'un des 2 membres de la paire a été retiré afin d'éviter les biais lors des inférences de structure de population. Aucun duplicat de biospie n'a en revanche été détecté. En outre, sur les 25 marqueurs génotypés, 13 ont dû être ignorés : 6 d'entre eux possédaient des niveaux de déséquilibre de liaison très significatifs (p < 0,01), 4 présentaient un taux

^{14.} Cet indice permet de mettre en évidence des effets sélectifs ou des changements de taille des populations en comparant deux estimateurs distincts de $\theta = 4 \times Ne \times \mu$, l'un basé sur le nombre de sites ségrégeants S, l'autre basé sur la diversité nucléotidique π (avec Ne, la taille efficace de la population et μ , le taux de mutation).

de données manquantes superieur à 60% et 3 loci ont été retirés car ils n'étaient pas lisibles sur les gels. Au final, le jeu de données nucléaire comporte 12 loci et 40 individus méditerranéens. Afin de donner une dimension plus regionale aux analyses ultérieures, 81 individus analysés par Marie Louis (?) ont également été considérés (33 issus de Galice, 39 de Cadiz et Gibraltar et 9 du Sud de la France et de Corse) portant le nombre total d'individus analysés ici à 121 pour les données nucléaires.

63 séquences mitochondriales nouvelles de 682 paires de bases ont été obtenues au cours de cette étude. Ces séquences contiennent un total de 37 sites ségrégeants définissant 32 haplotypes distincts. 75 séquences obtenues par Marie Louis ont été ajoutées à notre alignement pour les analyses ultérieures (soit un total de 138 individus analysés).

3.2 Inférence de la structure des populations

L'inférence du nombre de populations le plus vraisemblable dans notre jeu de données a été obtenu par trois méthodes distinctes. Les résultats obtenus grâce au logiciel Structure (?) indiquent que le nombre de populations le plus vraissemblable compte tenu des seules données nucléaires est K=3 (figure 4). Le même résultat a été obtenu avec le logiciel TESS (?, figure 5) qui, outre les informations génétiques, prend également en compte les coordonnées géographiques de chaque individu. Enfin, l'Analyse Discriminante sur les Composantes Principales, qui n'est pas influencée par la nature génétique des données (e.g. la DAPC ne fait pas d'hypothèse concernant le modèle de mutation des marqueurs utilisé, ou ne cherche pas à identifier des populations à l'équilibre de Hardy-Weinberg, ?) arrive au même résultat (figure 6).

FIGURE 4 – Vraisemblance (LnPD) en fonction de K. Les points correspondent aux moyennes de 15 simulations et les barres d'erreurs représentent les écart-types. Le nombre de populations K le plus vraisemblable est celui qui présente une valeur moyenne maximale et un écart-type le plus faible (?).

Les résultats d'assignation des individus aux 3 populations inférées par les différents logiciels, sont très proches. Seuls les probabilités d'assignation calculées

FIGURE 5 — Deviance Information Criterion (DIC) en fonction de K. Les points correspondent aux moyennes de 15 simulations et les barres d'erreurs représentent les écart-types. Le nombre de populations K le plus vraisemblable est celui pour lequel la rupture de pente la plus forte est observée (?).

FIGURE 6 – Bayesian Information Criterion (BIC) en fonction de K. Le nombre de populations K le plus vraisemblable est celui pour lequel la valeur de BIC est minimale (?).

par TESS sont présentées ici (figure 7) puisque ces mêmes résultats ont été utilisés pour réaliser des cartes de probabilité d'appartenance à chacune des 3 populations inférées (voir figure 8).

FIGURE 7 – Probabilités d'assignations individuelles à chaque population inférée par TESS. Les individus ont été classés par longitude croissante et les zones géographiques d'origine sont indiquées. Chaque couleur correspond à l'une des 3 populations inférées.

Les assignations d'individus à chacune des 3 populations inférées sont globalement cohérentes avec la localisation géographique d'où sont issus les individus. En effet, 82% des individus sont assignés à la population dont ils sont issus (58% pour les individus de Galice, 100% pour les individus issus de Cadiz et du Détroit de Gibraltar et 84% des individus de Méditerranée, voir figure 7 et table 1). Toutefois, près de 40% des individus échantillonnés en Galice ont une forte probabilité d'assignation à la population de Gibraltar (i.e. 13 individus sur 33, table 1).

Table 1 – Assignation des individus aux 3 populations inférées. Les 3 régions d'origine sont indiquées en ligne et les populations inférées en colonne. Ainsi, sur les 33 individus issus de Galice, 19 sont assignés à cette même population, 13 sont assignés à la population de Gibraltar, et 1 à la population méditerranéenne.

	Galice	Gibraltar	Méditerranée
Galice	19	13	1
Gibraltar	0	39	0
Méditerrannée	2	6	41

Les cartes de probabilité délimitant les contours probables des populations reflètent bien ce résultat (figure 8). En effet, seuls les individus du Sud de la Galice semblent former une population distincte. Les individus du Nord de la Galice sont en revanche associés aux individus échantillonnés autour du Détroit de Gibraltar et à quelques individus du Sud de la Corse. Enfin, les individus génotypés ors de cette étude forment une population méditerranéenne distincte.

Enfin, les regroupements produits par la DAPC sont tout à fait cohérents avec les résultats de TESS et Structure (voir figure 9). Trois groupes sont clairement identifiés et correspondent aux mêmes populations que celle identifiées par les autres

FIGURE 8 – Cartes de probabilité d'appartenance à chacune des 3 populations inférées. Chaque carte présente les probabilité d'appartenir à l'une des 3 populations inférées. Les probabilités augmentent en passant du bleu (probabilité nulle d'appartenir à la population) au rouge (probabilité maximale d'appartenir à la population).

méthodes. Seuls 0.2% des 121 individus ne sont pas assignés aux mêmes populations que précédemment.

FIGURE 9 – La DAPC présente bien les trois clusters distinctement. Le cluster 1 (rose) correspond à la population des individus de la Méditerranée Nord Occidentale (MNO), le cluster 2 (bleu) à la population des individus de Gibraltar et le cluster 3 (violet) à la population des individus de Galice. Le graphique des "DA eigenvalues" correspond au pourcentage d'information porté par les axes. L'axe un (horizontal) porte environ 90 pour-cent d'information, et l'axe deux (vertical) en porte environ 10. Les composantes principales sont elles mêmes des combinaisons linéaires des variables de départ, c'est à dire des loci. Les individus proches sont alors ceux qui ont des allèles comparables

Afin d'affiner les résultats précédents et dans l'optique de mettre en évidence une éventuelle structure de population hiérarchique, la même approche que précédemment a été mise en œuvre, mais uniquement pour les individus assignés à la population méditerranéenne. Ces analysent ne concernent donc quasiement que les individus génotypés lors de cette étude (individus de Méditerranée Nord Occidentale).

L'examen des résultats produits par Structure (figure 10) montre qu'une unique population méditerranéenne semble être la plus probale. En effet, le LnPD moyen le plus fort est observé pour K=1, de même pour l'écart-type le plus faible. Ce même résultat a été obtenu avec la DAPC qui montre un BIC le plus faible pour K=1 (BIC = 179). Enfin, TESS ne permet pas de tester l'hypothèse K=1, ce logiciel n'a donc pas été utilisé ici.

3.3 Caractérisation des populations

Mettre une décimale de moins dans les tableaux, mais ajouter l'info sur la significativité.

FIGURE 10 – Vraisemblance (LnPD) en fonction de K. Les points correspondent aux moyennes de 15 simulations et les barres d'erreurs représentent les écart-types. Le nombre de populations K le plus vraisemblable est celui qui présente une valeur moyenne maximale et un écart-type le plus faible (?).

Table 2 – F_{ST} par paire de populations
Galice Gibraltar

Gibraltar 0.104 (*)

Méditerranée 0.139 0.055 (**)

r	Table $3- ho_{\mathrm{ST}}$:	par paire de	populations
		Galice	Gibraltar
	Gibraltar	0.070 (**)	-
	Méditerranée	0.266 (*)	0.151

Les $F_{\rm ST}$ par paires de population sont globalement faibles et comparables à ceux calculés par Marie Louis (REF). La différenciation la plus forte est observée entre

les populations de Méditerranée et de Galice (0.1390, table 2). Elle est presque 3 fois

(*)=significatif à 0.05; (**) = significatif à 0.01; (***) = significatif à 0.001

plus forte qu'entre les populations de Gibraltar et de Méditerranée.

Comme pour les F_{ST} , le ρ_{ST} (qui tient compte des distances génétiques entre les allèles des populations comparées) le plus fort est observé entre les populations de Méditerranée et de Galice. En revanche, la valeur la plus faible est cette fois observée entre les populations de Gibraltar et de Galice (table 3).

Table 4 – Indices synthétiques pour les marqueurs microsatellites. N: nombre d'individus, $F_{\rm IS}$: coefficient de consanguinité, Ho: hétérozygotie observée, He: hétérozygotie attendue, R_{All} : Richesse allélique.

	N	$F_{ m IS}$	P value $F_{\rm IS}$	Ho	He	R_{All}
Galice	21	0.1433	0.092	0.6332	0.7391	6
Gibraltar	58	0.0297	0.023	0.7471	0.7700	7.6205
Méditerranée	42	-0.0120	0.009	0.7929	0.7766	8.1162
Global	121	0.1610	0.41	0.7933	0.7791	11.4166

La table 4 présente les différents indices servant à comparer la diversité génétique des populations à l'aide des données microsatellites avec d'autres études. Le $F_{\rm IS}$ est

TABLE 5-N: Nombre d'individus; NH: Nombre d'haplotype; S: Nombre de sites polymorphiques; h: Diversité haplotypique Pi: Diversité nucléotidique, DTaj: D de Tajima

	N	NH	S	h	Pi	DTaj
Galice	18	6	16	0.562	0.0064	-0.1916
Gibraltar	52	18	30	0.918	0.01295	0.9547
Méditerranée	39	12	28	0.808	0.0110	0.3372
Non assigné	29	13	30	0.736	0.0091	-0.79244
Global	138	32	37	0.0.906	0.01285	0.7109

un indice qui renseigne sur les taux de consanguinité. Ce taux est le plus fort dans la population de Galice comparé aux autres populations. Les hétérozygoties attendues et observés (Ho) ont servis pour le calcul des Fis. La richesse allélique R_{All} donne une idée de la diversité réelle des populations, et donc de leur taille. Ici la R_{All} est relativement similaire entre les populations.

La table 5 présente les différents indices servant à comparer la diversité génétique des populations à l'aide des données mitochondriales avec d'autres études. Le nombre d'haplotype donne une idée de la diversité de la population. Le nombre de sites polymorphes est deux fois inférieur en Galice par rapport aux autres populations. La diversité haplotypique et nucléotidique sont aussi les plus basses pour la population de Galice par rapport aux autres populations. Le D de Tajima est aussi un indice de différenciation. Plus les valeurs sont proches de zéro, plus les individus auront des allèles en commun; plus elles sont proches de un, moins les individus auront des allèles en commun. La population de Gibraltar présente beaucoup d'allèles en commun (0.9547), les autres populations ne présentent pas beaucoup d'allèles en commun (bien que de D de Tajima pour la Méditerranée est de 0.3372). Le D de Tajima global est néanmoins assez fort (0.7199).

Le taux de migrants entre population a aussi était calculé, avec 2.605 migrants par génération entre les populations. La moyenne des fréquences allèles privée est de 0.0477864. Un allèle privé et un allèle qui n'existe que dans une seule population, si il y a beaucoup de migrants, il y aura moins d'allèles privés.

FIGURE 11 – Réseau des 32 haplotypes. Les disques rouges représentent les vecteurs médians. Les diagrammes représentent la proportion d'individus par population (marron pour l'Itlaie, beige pour la Galice, bleu clair pour la Méditerranée et bleu foncé pour Gibraltar)

Pour ce réseau, basé sur les données mitochondriales, cinq individus provenant d'Italie ont été volontairement coloriés (en marron). Ces individus non pas pu être exploités pour les données microsatellites. Ce réseau de 32 haplotypes (réalisé à partir des données placées sous Network) démontre que la population de Galice (Haplotypes 13 et 32) est relativement à part. Les individus italiens sont relativement bien répartis dans ce réseau, comme les deux autres populations (de MNO et de Gibraltar). Ce qui démontrent un échange d'individus entre ces trois populations, mais un échange faible avec la population galicienne.

Discussion

Les résultats de cette étude ont révélé différents degrés de différenciation génétique dans la zone d'étude de la Méditerranée étendue à la Galice. Un schéma global de structuration de la population a été détectée par DAPC et les cartes de krigeage, et, dans une moindre mesure, par une approche de classification bayésienne. Les données d'ADN mitochondrial et microsatellites ont révélé une plus forte divergence entre les sites d'échantillonnage géographiquement éloignés (e.g. Galice et Méditerranée Nord Occidentale (MNO)).

Les grands dauphins échantillonnés lors de cette étude et les individus méditerranéens collectés par Marie Louis seraient répartis en trois populations dans la Méditerranée étendue à la Galice :

Une population galicienne, présentant majoritairement des individus autochtones à cette région, exception faite pour deux individus appartenant à cette population

retrouvés en MNO.

Une population en MNO, dans laquelle on ne retrouve qu'uniquement des individus de ce milieu ci. Aucun autre individu rattaché à une autre population n'y a été échantillonnés.

Et enfin une population provenant de Gibraltar, qui présente essentiellement des individus échantillonnés en Andalousie, mais aussi des individus retrouvés en Galice et en MNO.

Les cartes de krigeage ont montrées que des individus du sud de la Corse sont rattachés à la population de Gibraltar. L'étude de la sous-structure de population en MNO n'a pourtant démontrée la présence que d'une seule population dans cette région. Les individus provenant d'Italie n'ont pas pu être intégrés aux données microsatellites, ainsi il n'a pas était possible d'établir si ils faisaient partis uniquement de l'ensemble de MNO, ou au contraire, si ils se serraient rattachés à ces individus du sud de la Corse, et peut-être démontré la présence d'une sous-population. Néanmoins, les données des individus italiens ont pu être utilisés via l'ADN mitochondrial. Celles-ci ont démontré avec le réseau d'haplotypes que les individus italiens présentent des haplotypes partagés avec l'ensemble des populations de MNO et de Gibraltar. Les individus italiens seraient alors bien intégrés à l'ensemble d'une seule et même population en MNO, du fait des haplotypes échangés, et donc d'échanges d'individus. Un échantillonnage plus intense, et couvrant une zone plus large permettrait concrètement de lever le doute sur la présence d'une sous-population avec des individus du sud de la Corse. ? ont réalisé une étude des réseaux de Tursiops truncatus dans le sanctuaire Pelagos à partir de données de photo-identifications. Il semblerait qu'il y ait cinq groupes vivant dans ce sanctuaire. Un groupe Alpha vivant au Nord de la Méditerranée le long des côtes italiennes, un groupe Beta vivant au nord ouest de la corse, un groupe Epsilon vivant dans le sud de la France et au nord est de la Corse, un groupe Delta vivant dans l'archipel toscan, et enfin un groupe Gamma vivant au sud de la Corse. Ce groupe Gamma pourrait être celui des individus retrouvés au sud de la Corse dans notre étude et qui ne faisaient pas parti du cluster MNO selon les cartes de krigeage.

? ont aussi utilisé des microsatellites pour différencier les différentes populations des *Tursiops* sur certaines régions de Méditerranée, et ils ont trouvé une divergence entre les populations de la Mer Tyrrhénienne et d'Espagne. Cependant, des individus de la Mer Tyrrhénienne appartenaient à la population de la Mer Adriatique. Nos individus italiens ayant été échantillonnés en Mer Tyrrhénienne mais semblant faire parti de la population de MNO, il se pourrait qu'il y ait une population plus large regroupant la MNO, la Mer Tyrrhénienne et la Mer Adriatique. Néanmoins, les individus du sud de la Corse sèment le doute. Soit ils font partis d'une petite population, soit ils s'inscrivent dans un sous ensemble bien plus grand mais non

échantillonnés (e.g. Sardaigne, côtes de l'Afrique du Nord..). Il faudrait pouvoir acquérir des données microsatellites pour des individus d'Italie et plus d'individus du sud de la Corse afin de pouvoir trancher.

Les individus de la Mer Méditerranée ont été considérés comme vivant dans des zones côtières dans les études précédentes (??), ce qui contraste avec le niveau élevé de diversité génétique trouvé dans cette étude et qui indiquent des populations pélagiques. Selon ?, certains groupes côtiers seraient résidents mais des mouvements ont été signalés entre la Corse et la France, ce qui indique que les individus ont traversé les eaux pélagiques. De plus, l'utilisation de l'habitat pélagique a été confirmée par des relevés aériens menés pendant l'hiver 2011/2012 où les dauphins étaient principalement vus en eau profonde (> 200 mètres) (?).

Le réseau d'haplotypes présente les individus galiciens comme étant en marge des autres populations, car les deux haplotypes présents (H13 et H32) sont en bout de branche du réseau, ce qui pourrait signifier une divergence évolutive. De plus, la population galicienne présente un nombre de sites polymorphiques deux fois moins important que les deux autres populations (16 sites polymorphes pour la Galice, contre 30 pour Gibraltar et 28 pour la MNO), ce qui pourrait signifier un brassage génétique avec des individus proches. En outre, les indices de diversité haplotypiques et nucléotidiques sont les plus faibles pour cette population, ce qui démontre une population avec une faible diversité génétique, donc avec peu d'échanges inter-populationnels. Un équilibre mutation/dérive génétique se fait au sein des populations, et est mesuré par cet indice de diversité nucléotidique. Cet indice est le facteur du taux de mutation et de la taille de population par quatre. Le taux de mutation est ici plus faible que les autres populations (nombre de sites polymorphiques) mais la taille de cette population est aussi bien plus faible que les deux autres (18 contre 52 et 39 individus). Ceci pourrait expliquer ce faible taux de diversité. Le D de Tajima est quant à lui très faible (même négatif) pour la population galicienne, ce qui démontre que les individus ont beaucoup d'allèles en commun. De plus, le $F_{\rm IS}$ calculé avec les données microsatellites pour la population galicienne prouve un taux de consanguinité certes faible (0.1433, pvalue : 0.092), et comparable avec des valeurs similaires dans la littérature (??), mais qui est de loin le plus fort en comparaison avec les autres populations (sept fois plus important que Gibraltar, et 14 fois plus que la MNO). La population galicienne serait donc bien en marge des autres populations et présenterait peu d'échanges avec les autres populations. Cependant, des individus échantillonnés en Galice appartiennent à la population de Gibraltar. L'explication de ce cas pourrait être apporté par le fait que la Galice présenterai deux populations selon?. Une population serait pélagique et une autre côtière. ? présentent des indices de diversités nucléotidiques (Pi0.005) similaires pour leurs individus côtiers comparés aux individus Galiciens (Pi

= 0.006), et des indices de diversités nucléotidiques similaires pour leurs individus pélagiques (Pi = 0.022) comparés aux individus de Gibraltar (Pi = 0.012) et de MNO (Pi = 0.011) de notre étude. De plus, dans leur étude, ? présentent aussi des richesses alléliques supérieures pour les populations pélagiques, et inférieures pour les populations côtières. La population de notre étude présentant la richesse allélique la plus faible est la population de Galice (6, contre 7.6205 pour Gibraltar et 8.1162 pour la MNO). La population côtière pourrait être celle qui échange peu d'individus avec les autres populations, ce qui expliquerait les faibles taux des indices de diversité trouvé dans la population galicienne. Les individus pélagiques pourraient donc former une population à part entière, et du fait de leur pélagicité rencontrer différentes populations comme celles de Gibraltar. En d'autres termes, des individus de la population pélagique de Gibraltar pourraient se mélanger occasionnellement à la population pélagique galicienne. La population pélagique galicienne et la population côtière galicienne n'aurait pas ou peu d'échanges d'individus selon?. (?) ont comparé l'hématocrite 15 de populations côtières et pélagiques de Tursiops de Floride. Les dauphins du large présentent des valeurs d'hématocrite plus fortes par rapport aux côtiers. Des croisements en captivité de dauphins des deux écotypes ont produits des animaux avec des profils hématologiques intermédiaires, ce qui indique que des facteurs génétiques sont en grande partie responsables des différences entre les deux écotypes. Des populations de grands dauphins vivant sur une même zone géographique mais avec deux comportements différents peuvent donc bien être séparés génétiquement. Cette différence de niche écologique pourrait s'être orchestré selon une préférence alimentaire. Mais selon l'étude de ?, l'analyse des isotopes stables des individus dans l'Adriatique centrale montre que les grands dauphins changent facilement de proie, dépendant probablement de la disponibilité des proies (?).

Cependant l'effet saisonnier ne pas être estimé avec les méthodes génétiques. Il se peut que des individus, voir des populations, changent de milieu au cours des saisons. En effet, cela serait le cas de populations de *Tursiops* en MNO selon (?). Leur modélisation montre le passage d'une distribution clairement côtière en été, à une répartition plus pélagique pendant l'hiver, à l'exception de l'archipel toscan, où les grands dauphins sont présents dans les deux saisons.

Il se pourrait que les *Tursiops* est une structure génétique populationnelle à une petite échelle géographique. Ceci a été suggéré par (?) à Shark Bay, en Australie, par (?) dans l'Atlantique Nord-Ouest (au Mexique), et plus récemment par (?) pour les grands dauphins côtiers (*Tursiops aduncus*) à Moreton Bay, en Australie. Ces études et nos données impliquent la possibilité d'un modèle globale d'une différenciation à petite échelle pour ce genre.

^{15.} Pourcentage relatif du volume des cellules circulant dans le sang par rapport au volume total du sang

Selon ?, lorsque l'on considère les écarts entre l'ADN nucléaire et mitochondrial les données peuvent être influencées par les flux de gènes sexuels. En effet, la dispersion différentielle des mâles et des femelles peut avoir une influence majeure sur la distribution des gènes maternels et bi-parentataux hérités des populations de grands dauphins (?). Dans certaines populations, les dauphins mâles se dispersent plus souvent et plus loin que les femelles ((??). Alors que dans d'autres populations, il n'y a pas de différences significatives dans la dispersion entre les sexes (?). Dans l'étude de ? sur les *Tursiops* en Mer Tyrrhénienne et Adriatique, contrairement aux données d'ADN nucléaire, les séquences d'ADN mitochondrial ne montraient aucune différence entre les sites d'échantillonnages, ce qui suggère que les grands dauphins femelles peuvent avoir un rôle important dans la médiation de flux de gènes à travers le bassin. Voilà pourquoi il serait intéressant de pouvoir coupler les données du sexage obtenues lors de cette étude avec les données microsatellites et mitochondriales afin de connaitre la dispersion différentielle en fonction du sexe.

Il faut néanmoins garder à l'esprit que la majorité des individus échantillonnés provient de cétacés échoués, et parfois en état de putréfaction. Il peut alors s'écouler quelques jours, voir quelques semaines avant que le mammifère marin ne vienne s'échouer sur une côte (communication personnelle; Fabien Demaret ¹⁶). Son lieu de découverte ne correspond pas à son lieu de mort, et donc de vie. Aucun modèle de courantologie en Mer Méditerranée n'a pu être couplé à cette étude, ne permettant donc pas d'interpoler le véritable lieu de vie des individus trouvés échoués. Il se peut alors que l'appartenance à une zone géographique d'individus soit biaisé par ce critère qui n'a pu être étudié.

Ces résultats permettent d'apporter de nouvelles informations sur la distribution et la structuration de cette espèce de cétacé en Mer Méditerranée. Les informations de cette étude aideront donc à la prise de décisions politiques pour la protection de cette espèce dans les plans de gestion des aires marines protégées de la Mer Méditerranée, et par conséquent, sur les écosystèmes englobés dans leurs habitats.

 $^{16.\}$ Observatoire PELAGIS - UMS 3462, Université de La Rochelle / CNRS - 5allée de l'Océan - $17\ 000$ La Rochelle

Galice Gibraltar Méditerranée G10 C30 G23 C1G17 ttr_39 C32G12 C10 G26M12 ttr_40 G13 C11 C33G27M2 ttr_41 C34 G14 C12G28 $ttr_{-}01$ $ttr_{-}42$ G15C13 C35G34 ttr_02 ttr_43 G16 C15C36 G4 ttr_04 $ttr_{-}45$ G18 C16 C37 G5 ttr_07 ttr_46 G2C17 C38 G6ttr_09 $ttr_{-}47$ G21C18 C39 G7 $ttr_{-}11$ ttr_49 G22C19 C4G9 $ttr_{-}12$ $ttr_{-}51$ C2G24C40 M1 ttr_13 ttr_52 C20G25C41 M11 $ttr_{-}15$ $ttr_{-}53$ G29C21C42M14 ttr_17 ttr_54 G3C22C5M15 $ttr_{-}18$ $ttr_{-}55$ C23G30C6 M16 ttr_23 $ttr_{-}56$ G31 C24C7 ttr_{59} ttr_44 ttr_25

Table 6 – Table des individus par population

Références bibliographiques

Total:21

G32

G33

G8

M3

M8

C25

C26

C27

C28

C3

C8

C9

G1

G11

G20

Total:58

 $ttr_{-}27$

 ttr_28

 ttr_33

 ttr_34

 ttr_38

 $ttr_{-}60$

 ttr_61

 $ttr_{-}62$

 ttr_63

 ttr_68

Total:42

4 Annexes

4.1 Caractéristiques des 25 marqueurs microsatellites utilisés

Longueur d'onde	800	800	200	200	800	800	800	800	800	800	800	800	200	200	200	700	200	700	800	800	200	200	200	800	800
T° annealing en $^{\circ}C$	55	46	55	55	55	55	61	63	62	61	55	55	09	62	09	22.8	80	09	09	54	26	56	56	56	56
Concentrations des primers (Tous ou R/F/F*	or \mathbf{R}/\mathbf{F}) en μ_{IM} 0.24	0.125/0.075/0.05	0.2	0.2	0.2	0.4	0.225/0.225	0.225/0.225	0.225/0.225	0.225/0.225	0.125/0.075/0.05	0.2	0.125/0.075/0.05	0.125/0.075/0.05	0.125/0.075/0.05	0.125/0.075/0.05	0.125/0.075/0.05	0.125/0.075/0.05	0.125/0.075/0.05	0.125/0.075/0.05	0.125/0.075/0.05	0.125/0.075/0.05	0.125/0.075/0.05	0.125/0.075/0.05	0.125/0.075/0.05
Taille des allèles	196-250	144-168	205-243	145-191	87-117	166-182	182-202	172-204	280-304	320-340	201-223	162-178	106-128	194-226	174-202	182-204	132-144	168-196	86-140	134-174	117-125	181-209	154-166	149-175	149-167
Motif	(AC)24	(CA)n	$(\mathrm{TG})13\mathrm{CT}(\mathrm{TG})2\mathrm{CA}(\mathrm{TG})2(\mathrm{TA})2(\mathrm{TG})4$	(GT)17	(CA)23	(CA)17	(GATA)8	(GATG)10	(GATA)11	(GATA)9	(CA)24	(CA)12	(CA)25	(CA)21	(CA)17	(CA)19	(CA)18	$(CA)_{17}$	(CA)34	(CA)20	(TG)11	(AC)11	(AC)13	(AC)15	(AC)15
Primers 5'-3' (R et F)	AGCTTGATTTGGAAGTCATGA	GIIIIAGIAGAGOGIIGA GOGTAGAATGAGAGTG GACTGGAAATGATGAGAGG	CTCAGAGGAAATGAGGCTG	GITTIGLOTAGAGGICAAAGCCITCC GTCCTCTTTTCCAGGTGTAGCCC	TCCTGGAGCATCTTATGGG	GTTTCTCTTTGACATGCCCTCACC CATAACAAGTGGGGATCAC	G111111ALCCIG11GCAGIG CCCCATATGATGCCTTTGTAAGTCC AATTCCTTAAAAAAAAAA	GTCCCCAGCTACCACCACCACCACCACCACCACCACCACCACCACCAC	ACCIDENT OF A COURT OF	C111GGACGGGGAGIAGAACCIA GGCCCCCTTTTTCCATCCTCA	CCAGCCCCAAAAICACGAGI GATTGTGCAAATGGAGACA	GTTTTTGAGATGACTCCTGTGGG TGCACTGTAGGGTGTTCAGCAG	CTGACCAGGCCATTTCAC	GTTTGTTTCCCAGGATTTTAGTGC CTTTCAACCTGGCCTTTCTG	GTTTGGCCACTACAAGGGAGTGAA TGGGTGGACTCATCAAATC	GCACATGAGTGTGAGAGGGGGGGGGGGGGGGGGGGGGGG	AAGAGGAATGGCAAG	TGGGTCTTGAGGGGTCTG	GTTTGCTGAGGCTCCTTGTTGG GAGCTTACAGGCAAATGAGAG GAGCTTACAGGCAAATGAGAG	GITTCI CCAI GGCI GAGT CA AAGTAAGT GCCTTTT GACT GG	GIIIGGCAGAGAGAIAIIAGGACAGC CTGTTGTTGCGTCAATTTGC	CCCAIAGGACAIAICCCACA CATTTGTTGGAAGCTGTTG	AG1GGGT1GACACATTCCCT GATGCCTTGCTTGGTGC	1 GGGAGGIAI GICI GCAAIAA AAGGIT GCTAATTT GCGAGGA	ACTIGIGITITICCCIGIC TAGGCTGGCAGAACAAAG TGATTGTTTTCCTTCCTCGTG
Référence	Valsecchi et Amos 1996 -	Volumer 2011 Hoelzel et al. 1998	Krutzen et al. 2001 -	Vollmer 2011 Krutzen et al. 2001 - Vollmer 2011	Krutzen et al. 2001 -	Vollmer 2011 Krutzen et al. 2001 -	vollmer 2011 Nater et al. 2009	Nater et al. 2009	Nater et al. 2009	Nater et al. 2009	Rooney et al. 1999 -	Vollmer 2011 Rooney et al. 1999 -	Vollmer 2011 Rosel et al. 2005	Rosel et al. 2005	Rosel et al. 2005	Rosel et al. 2005	Rosel et al. 2005	Rosel et al. 2005	Rosel et al. 2005	Rosel et al. 2005	Marie Louis 2014	Marie Louis 2014	Marie Louis 2014	Marie Louis 2014	Marie Louis 2014
Marqueurs	EV37	KMW12a	MK5	MK6	MK8	MK9	Tur4-87	Tur4-98	Tur4-128	Tur4-142	TexVet5	${\rm TexVet7}$	Ttr04	Ttr11	Ttr19	Ttr34	Ttr48	$_{ m Ttr58}$	Ttr63	TtrFF6	Tut01	Tut02	Tut05	Tut08	Tut09