

HALDOR TOPSØE A/S

NYMØLLEVEJ 55 · P.O. BOX 213 · DK-2800 LYNGBY · DENMARK · VAT. NO. DK 41853816
TELEPHONE: +45 4527 2000 · FAX: +45 4527 2999 · WWW.HALDORTOPSOE.COM · REG.NO. 52370

11 January 2001

US3301737003

HABS/AKN

**Process for reducing Content of Sulphur compounds and
Poly-aromatic Hydrocarbons in a Hydrocarbon Feed**

0926833-012401

BACKGROUND OF THE INVENTION

The present invention relates to a process for removal of sulphur and poliaromatic compounds in vacuum gas oil by hydrotreatment of FCC hydrocarbon feed stock.

5

Many countries are tightening specifications for the sulphur content in diesel and gasoline fuels. The fluid catalytic cracking (FCC) units are a major source of gasoline, but also the major source of sulphur in gasoline and diesel 10 fuels. Lower sulphur content in fuel requests either treating the FCC feed or treating its products.

Treating the FCC products involves multiple process solutions: naphtha treating, light-cycle oil (LCO) treating and 15 flue gas treating to control the SO_x emissions. Treating feed to the FCC unit can increase yields and at the same time lower sulphur levels in gasoline, and diesel fuels and reduces SO_x emissions. The increased conversion in the FCC unit resulting from feed treatment may improve refinery 20 margins. Product treatment, however, offers no yield benefits.

It is, thus, a general object of the invention to improve production of a FCC feed being substantially reduced in 25 content of sulphur and nitrogen compounds and in particular having a low content of poliaromatic hydrocarbons and thereby improved crackability and conversion and selectivity in the FCC unit.

30

Description of Prior Art

Hydrotreatment of FCC feed substantially reduces sulphur content of gasoline, light (LCO), and decant oil. It also

P012270-00235260

lowers the amount of sulphur in spent catalyst coke, which results in the reduction of SO_x emissions from the regenerator. For most feedstocks moderate to high severity hydrotreating can be used to achieve a high level of desulphurization (>90%) and greatly reduce the sulphur content of the FCC products. High severity desulphurization would be needed to reduce coke sulphur to the near zero level.

It is well known that removal of nitrogen from FCC feed yields the benefits of increasing conversion and product yields. Nitrogen compounds poison the active sites in the FCC catalyst and increase coke-making propensity of the catalyst and reduce the yield of valuable products. Nitrogen removal by hydrotreatment is much harder than sulphur removal. Moderate to high severity is generally required to achieve a high denitrogenation level (>70%).

Poly-aromatic hydrocarbons (PAH) do not crack in a FCC unit, but instead undergo condensation reactions to form coke. PAH are defined as fused multiring aromatic compounds containing two or more aromatic rings. The concentration of PAH can be measured by the analysis method IP 391. Hydrotreating can saturate PAH and form naphthenes and paraffin compounds, which are more easily cracked in the FCC.

This improves conversion and product yields. Mono-aromatics another product of PAH hydrogenation resist cracking in a FCC unit, but lose side chains and produce high-octane components in the FCC gasoline.

Di-aromatic species distribute in all liquid products from the FCC and also convert to coke on the FCC catalyst. Tri-aromatic and tetra-aromatic species either convert to coke on the catalyst or distribute in the light cycle oil or heavier fraction from the FCC. Maximising FCC gasoline and lighter valuable products requires an understanding of how to maximise the conversion of multiple ring aromatic species (di+) to single (mono) aromatic or saturated ring species in the FCC feed hydrotreater.

10 The degree of aromatic saturation is highly dependent on
hydrogen partial pressure, catalyst type and the space ve-
locity of the hydrotreater. The kinetic and thermodynamic
responses of sulphur, nitrogen and other contaminant re-
moval are such that an increase in temperature results in
conversion of these contaminants. The kinetic responses for
15 these contaminants represent irreversible reactions.

Typical conditions for a FCC pre-treatment reactor are hydrogen pressure of 40-120 bar; average reactor temperature 350-410°C; liquid hourly space velocity (LHSV) of 0.5-2.5 m³oil/m³catalyst/h. The exact conditions will depend on the type of the feedstock, the required degree of desulphurisation and the desired run length. The reactor temperature on fresh catalyst (start of run) is normally at the lower end of the above range and as the catalyst deactivates the reactor temperature is raised to compensate for loss of catalyst activity.

30 The end of the run is normally reached when the design temperature for the reactor is reached, which is decided by the metallurgy of the reactor. The lower the start of run

- temperature and the higher the end of run temperature the longer the catalyst run length for a given rate of deactivation. For a refiner, the run length is a very important consideration. A shorter run length means high costs due to
5 a higher rate of catalyst replacement, and relative more downtime (i.e. time off-stream) for catalyst change-out with a resultant loss of revenue due to reduced production of high quality FCC gasoline products.
- 10 Further restriction on run length may be imposed, if the FCC unit operations need a reduction in poly-aromatic hydrocarbon content in addition to the reduction in sulphur and nitrogen. PAH compounds reacts readily at hydrotreating conditions. Tetra-aromatic and three-ring aromatic compounds
15 are hydrogenated to mono-aromatic compounds. The mono-aromatic compounds react slowly at typical FCC pre-treatment conditions to form naphthenes.
- 20 The reactions are reversible and at high reaction temperatures and low hydrogen pressure the conversion of the PAH compounds is thermodynamically limited by equilibrium. Consequently, the conversion of PAH compounds in a FCC pre-treatment unit producing low sulphur and nitrogen feed to the FCC unit might at first increase as reaction temperature is increased, and then decrease as temperature is increased further owing to equilibrium constraints at the
25 high temperature.
- 30 The aromatic saturation will pass through a maximum as the reaction temperature is increased. The maximum is identified as the point, where the net rate of aromatic satura-

tion is zero due to the effects of the forward and reverse reactions.

5 The temperature at which the PAH equilibrium is met will depend on a number of factors including hydrogen pressure, feed PAH content and composition and LHSV.

10 It is, thus, the general object of the invention to provide a process for the production of a low sulphur and nitrogen FCC feed with a low content of polyaromatic hydrocarbons and thereby increase the FCC yields and in particular the FCC gasoline production.

SUMMARY OF THE INVENTION

15 The present invention is a process for reducing content of sulphur compounds and poly-aromatic hydrocarbons in a hydrocarbon feed stock having a boiling range between 200°C and 600°C, which process comprises the steps of:
20 (a) contacting the feed stock with hydrogen over a hydrotreating catalyst at conditions being effective in hydrotreating and obtaining a hydrotreated effluent with the hydrotreated feed stock, hydrogen sulphide and hydrogen;
25 (b) cooling the effluent; and
 (c) contacting the effluent with a hydrotreating catalyst at conditions being effective in hydrogenation of polyaromatic hydrocarbons.

30 By the inventive process, a low PAH content is achieved in FCC feeds with only slight additional investment in reactor volume and without reduction in run length. The essences of the inventive process consists of cooling the effluent exiting the hydrotreating reactor and passing the cooled

product through a small posttreat reactor containing a suitable catalyst. The PAH content of the product existing in the hydrotreating reactor is reduced in the posttreatment reactor owing to the more favourable equilibrium conditions at the lower temperature. Consequently, the end of run temperature in the main hydrotreating reactor is not limited by the PAH content of the product exiting the main reactor, and a small overall reactor volume (main hydrotreater plus post treat reactor) is required for a given run length. In another embodiment of the process, the final bed of the main hydrotreating reactor is operated at lower temperature instead of using a post treatment reactor. The process can be used to lower the content of poly-aromatic hydrocarbons and thereby improve the performance of the FCC unit because of improved crackability of the FCC feed as well as the FCC product qualities.

DETAILED DESCRIPTION OF THE INVENTION

- 20 The petroleum vacuum distillates used in the present invention boil in the range 400-650°C and have a PAH content in the range 5-50 wt%. Examples of petroleum fractions include straight run vacuum gas oils from a vacuum crude distillation and vacuum fractions of the product from fluid catalytic cracking and thermal cracking processes including cooking and mixtures thereof. The process is particularly suitable for blends of vacuum distillates containing thermal cracked oils and FCC products because these oils generally have a high PAH content.
- 25 The process layout is illustrated in Fig. 1. Feedstock is mixed with hydrogen, heated in the furnace 1 and passed

through the hydrotreating reactor 2. The conditions used in the hydrotreating reactor are the same as those normally used for hydrotreatment of FCC feeds, i.e. typical hydrogen pressure=40-120 bar; typical average reactor temperature 5 =340-410°C; typical LHSV=0.5-2.0 m³oil/m³catalyst/h and typical hydrogen gas to oil ratio=100-1000Nm³/m³.

The effluent from the hydrotreater is cooled to a suitable temperature by heat exchange with the feed to hydrotreater 10 3 or by other means before passing to post-treatment reactor 4. The temperature employed in the post-treatment reactor will typically be in the range of 300°C to 375°C, and will typically be at least 50°C lower than the outlet temperature of the hydrotreater. The LHSV in the posttreatment reactor will typically be in the range 2-20 15 m³oil/m³catalyst/h and the total pressure will be at the same level as that in the hydrotreating reactor. The catalyst used in the hydrotreating reactor may be any catalyst used for hydrotreating petroleum fractions and known in the art. The catalyst contains at least one metal on a porous 20 refractory inorganic oxide support. Examples of metals having hydrotreating activity include metals from groups VI-B and VIII e.g. Co, Mo, Ni, W, Fe with mixtures of Co-Mo, Ni-Mo and Ni-W preferred.

The metals are employed as oxides or sulphides. Examples of 25 porous material suitable as support include alumina, silica-alumina, alumina-titania, natural and synthetic molecular sieves and mixtures hereof with the alumina and silica-alumina being preferred.

The catalyst used in the posttreatment reactor may be any catalyst used for hydrotreating vacuum distillate streams. Preferred catalysts are Ni-Mo, Co-Mo and Ni-W on alumina. The active metal on the catalyst may be either presulphided or in-situ sulphide prior to use by conventional means. The hydrotreating reactor section may consist of one or more reactors. Each reactor may have one or more catalyst beds.

The function of the hydrotreating reactor is primarily to reduce product sulphur, nitrogen, CCR and metals. Owing to the exothermic nature of the desulphurisation reaction, the outlet temperature is generally higher than the inlet temperature. Some reduction of PAH may be achieved in the hydrotreating reactor especially at start of run conditions.

As the catalyst activity declines due to the deactivation by carbonaceous deposits, sintering of the active phase and other mechanisms, the inlet temperature to the hydrotreating reactor is raised, resulting in an increased outlet temperature.

This will result at some point in an increase in the PAH content in the effluent of the hydrotreater reactor due to equilibrium limitations. The temperature at which this occurs will depend on the amount and type of aromatic compounds in the oil, and the hydrogen partial pressure in the unit.

The function of the post-treatment reactor is primarily to reduce the PAH content, but also to lower the sulphur and nitrogen. The reduction in PAH will result in a reduction in the product oil density and refractive index (RI) both of which are desirable. Also reduction in the sulphur and

nitrogen content will be achieved at the conditions in the post-treatment reactor. The present invention is illustrated in the following examples of specific embodiments.

5 **Example 1**

Feedstock A (Table 1) was hydrotreated in a semi-adiabatic pilot plant unit running with an outlet temperature of 405°C - a temperature, which normally is considered as end of run temperature (EOR) conditions and LHSV at 1 (hr⁻¹).
 10 The pressure was 50 bar. Pure hydrogen was used as gas. Feedstock A is a mixture of 50% cooker gas oil and 50% straight run vacuum gas oil (SR VGO). Feedstock B (Table 1) was hydrotreated at typical FCC pretreatment conditions in a pilot plant unit at temperature at 400°C (inlet) - 420°C
 15 (outlet) temperature, which normally is considered as end of run conditions at LHSV at 1.7 (h⁻¹). The pressure was 50 bar. The feedstock was a pure cracked VGO.

Table 1

Properties of feedstock used in the following Examples:

Properties	Feedstock A	Feedstock B
SG 60/60	0,9279	0,9924
S (wt %)	1,34	3,53
N (wt ppm)	2677	3594
Aromatics (wt%)		
Mono-	17,7	8,36
Di-	9,9	7,29
Tri-	11,4	36,5

Product properties from both of the tests are shown in Table 2.
 25

Table 2

Properties of products in Example 1:

Properties	Product A	Product B
SG 60/60	0,8920	0,9411
S (wt %)	0,02	0,1905
N (wt ppm)	526	2046
Aromatics (wt%)		
Mono-	31,0	22,6
Di-	7,8	11,3
Tri-	6,7	23,9
Distillation, D2887 (°C)		
5	236	287
10	267	314
30	342	360
50	392	392
70	437	428
90	495	479
95	518	503

5

Product A contains 14,5 wt% PAH, which would be typical for a product obtained at EOR conditions in a unit where the hydrogen partial inlet pressure is 50 bar, if the feedstock contains more cracked feedstock or DAO (De-Asphalt Oil) the contents will be higher.

10

Product B contains 35,2 wt% PAH, which is rather high, but typical for cracked feedstocks.

15

Example 2

Product A from Example 1 is further hydrotreated at lower temperatures at high LHSV. The pressure is 50 bar, which is identical to the pressure at which product A was obtained.

A Ni-Mo on alumina catalyst is used in this test. The results are shown in Table 3.

[Handwritten signature]

5

Table 3.

Properties of products in Example 2:

Tempera-ture (°C)	LHSV (h ⁻¹)	SG 60/60	S (wt%)	N (wt ppm)	Di-aro-matics (wt%)	Tri-aro-matics (wt%)	PAH (wt%)
325	6	0,8914	0,0038	505	4,6	5,0	9,6
350	6	0,8911	0,0029	468	4,9	4,9	9,5

- 10 As illustrated from the Table 3 there are a remarkable sulphur and nitrogen removal in this low temperature hydro-treatment, and further it is quite obvious that a large amount of the PAH can be removed at a relatively high LHSV during this low temperature posttreatment. Both the sulphur removal and the PAH removal is due to the shift in equilibrium.
- 15

Example 3

- Product B from Example 1 is further hydrotreated at lower temperatures at different LHSV and temperatures. The pressure is 50 bar, which is identical to the pressure at which product B was obtained. A Ni-Mo on alumina catalyst is also used in this test. The results are shown in Table 4.

TOP SECRET - GOVERNMENT USE ONLY

Table 4

Properties of products in Example 3:

Tempera-ture (°C)	LHSV (h ⁻¹)	SG 60/60	S (wt%)	N (wt ppm)	Di-aro-matics (wt%)	Tri-aro-matics (wt%)	PAH (wt%)
300	2	0,9369	0,1500	2058	7,7	20,1	27,8
300	4	0,9390	0,1588	2067	10,2	21,3	31,5
300	6	0,9406	0,1618	2080	9,9	21,4	31,6
350	2	0,9335	0,1049	1657	6,6	17,0	23,6
350	4	0,9365	0,1317	1870	9,2	18,1	27,3
350	6	0,9378	0,1442	1877	9,6	19,3	28,9

5

Again it is clear that a large amount of the poly-aromatic compounds can be removed at low temperature (and the same pressure) due to the shift in equilibrium. Again there is a significant and important sulphur removal at this low-temperature hydrotreatment.

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000