Nome	Número
Lic. em Ciências de Computação - 2º ano	duração: uma hora
terceiro teste :: Álgebra	15 de dezembro de 2021
Departamento de Matemática	Universidade do Minho

Responda no próprio enunciado, seguindo rigorosamente as instruções dadas em cada um dos grupos

GRUPO I

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente. Cada questão está cotada com 1.2 valores numa escala de 0 a 20.

a 20.	
1. Se $(A,+,\times)$ é um anel com identidade, então, (A,\times) é um grupo.	V□ F⊠
1. Se $(A,+, imes)$ é um anel comutativo com identidade, então, $(A, imes)$ é um grupo comutativo.	
1. Se $(A,+, imes)$ é um anel comutativo com identidade, então, $(A\backslash\{0_A\}, imes)$) é um grupo comutativo.
$(\mathbb{Z},+,\times)$ é um anel (comutativo) com identidade e (\mathbb{Z},\times) não é gr comutativo.	upo (comutativo) nem $(\mathbb{Z}ackslash\{0\}, imes)$ é grupo
2. A caraterística do anel $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$ é 216.	V□ F⊠
2. A caraterística do anel $\mathbb{Z}_{11} \times \mathbb{Z}_{15}$ é 165.	V⊠F□
2. A caraterística do anel $\mathbb{Z}_{12} \times \mathbb{Z}_9$ é 108.	V□ F⊠
Sejam $n, m \in \mathbb{N} \setminus \{1\}$. Então, $c(\mathbb{Z}_n \times \mathbb{Z}_m) = \text{m.m.c.}(n, m)$.	
3. O anel $\{0\} \times \mathbb{Z}$ é um domínio de integridade.	V⊠F□
$\{0\}\times \mathbb{Z}$ é um anel comutativo com identidade $(0,1)$ no qual $(0,0)$ é o	único divisor de zero.
3. O anel $\mathbb{Z} \times \{0\}$ é um domínio de integridade.	V⊠F□
$\mathbb{Z} \times \{0\}$ é um anel comutativo com identidade $(1,0)$ no qual $(0,0)$ é o	único divisor de zero.
3. O anel $\mathbb{Z}\times\mathbb{Z}$ é um domínio de integridade.	V□ F⊠
$\mathbb{Z}\times\mathbb{Z}$ é um anel comutativo com identidade $(1,1)$ com divisores de zero que $(1,0)(0,1)=(0,0).$	o não nulos, como é exemplo $(1,0)$, uma vez
4. Sejam A um anel e $a \in A$. Se $o(a) = 7$, então, a não é um divisor de z	ero em A . V \square F \boxtimes
4. Sejam A um anel e $a \in A$. Se $o(a) = 5$, então, a não é um divisor de z	ero em A . $V \square$ F \boxtimes
4. Sejam A um anel e $a \in A$. Se $o(a) = 11$, então, a não é um divisor de	zero em A . $V \square F \boxtimes$
Se $n\geq 4$ é um natural par, em \mathbb{Z}_n , a classe $[2]_n$ tem ordem $\frac{n}{2}$ e $[2]_n\times[\frac{n}{2}]_n=[n]_n=[0]_n.$	
5. Se A_1 e A_2 são subanéis de um anel A , então, $A_1\cap A_2$ é um subanel d	e A . $\bigvee \boxtimes F \Box$
5. Se A_1 e A_2 são subanéis de um anel A , então, $A_1 \cup A_2$ é um subanel d	e A . $V \square$ F \boxtimes
5. Se A_1 e A_2 são subanéis de um anel A , então, A_1+A_2 é um subanel d	le A . $V \square F \boxtimes$
A interceção do dois subanéis do um anol. A é um subanol do A: a união	do dois subanéis é um subanol so a sé sa um

A interseção de dois subanéis de um anel A é um subanel de A; a união de dois subanéis é um subanel se e só se um deles estiver contido no outro; a soma de subanéis é um subanel se um deles for um ideal.

6. $(\mathbb{Q}, +, \times)$ é um subcorpo de $(\mathbb{R}, +, \times)$. V⊠ F□ 6. $(\mathbb{Q}, +, \times)$ é um ideal de $(\mathbb{R}, +, \times)$. V□ F⊠ 6. $(\mathbb{Q}, +, \times)$ é um subanel de $(\mathbb{R}, +, \times)$. V⊠ F□ Tanto $(\mathbb{Q}, +, \times)$ como $(\mathbb{R}, +, \times)$ são corpos e, por isso, são anéis. Como $\mathbb{Q} \subseteq \mathbb{R}$, temos que $(\mathbb{Q}, +, \times)$ tanto é subanel como é subcorpo de $(\mathbb{R}, +, \times)$. Sendo um corpo, $(\mathbb{R}, +, \times)$ admite apenas dois ideais: o ideal trivial $\{0\}$ e o próprio \mathbb{R} . 7. Todo o elemento simplificável de um anel com identidade é invertível. V□ F⊠ No anel dos inteiros, se $x \neq 0$, $x \in \text{simplification}$. No entanto, apenas 1 e -1 são invertíveis. 7. Todo o elemento simplificável de um anel com identidade é um divisor de zero. V□ F⊠ 7. Todo o elemento simplificável de um anel com identidade não é um divisor de zero. V⊠ F□ Se x é simplificavel e $y \in A$ é tal que $xy = 0_A$, temos que $xy = x0_A$ e, por isso, $y = 0_A$. Logo, x não é divisor de 8. $2\mathbb{Z} \times 3\mathbb{Z}$ é um ideal primo de $\mathbb{Z} \times \mathbb{Z}$. V□ F⊠ 8. $4\mathbb{Z} \times 3\mathbb{Z}$ é um ideal primo de $\mathbb{Z} \times \mathbb{Z}$. V□ F⊠ 8. $2\mathbb{Z} \times \mathbb{Z}$ é um ideal primo de $\mathbb{Z} \times \mathbb{Z}$. V⊠ F□ Os únicos ideais primos de $\mathbb{Z} \times \mathbb{Z}$ são $\{0\} \times \mathbb{Z}$, $\mathbb{Z} \times \{0\}$, $p\mathbb{Z} \times \mathbb{Z}$ e $\mathbb{Z} \times p\mathbb{Z}$, com p primos 9. A soma de dois ideais maximais de um anel é um ideal maximal desse mesmo anel. V□ F⊠ 9. A soma de dois ideais primos de um anel é um ideal primo desse mesmo anel. V□ F⊠ 9. A soma de um ideal maximal com um ideal primo de um anel é um ideal primo desse mesmo anel. V□ F⊠ $2\mathbb{Z}$ e $3\mathbb{Z}$ são ideais primos e maximais de \mathbb{Z} . No entanto, $2\mathbb{Z} + 3\mathbb{Z} = \mathbb{Z}$, que é um ideal não primo e não maximal de \mathbb{Z} . 10. $\{[0]_8, [4]_8\}$ é um ideal maximal de \mathbb{Z}_8 . V□ F⊠ $\{\{[0]_8, [4]_8\} \text{ e } \{\{[0]_8, [2]_8, [4]_8, [6]_8\} \text{ são ideais de } \mathbb{Z}_8 \text{ tais que } \{\{[0]_8, [4]_8\} \subsetneq \{\{[0]_8, [2]_8, [4]_8, [6]_8\} \subsetneq \mathbb{Z}_8, \text{ pelo que a proposition of the proposition of th$ afirmação é claramente falsa. 10. $\{[0]_4,[2]_4\}$ é um ideal maximal de \mathbb{Z}_4 . V⊠ F□ Os ideais de \mathbb{Z}_4 são $\{[0]_4\}$, $\{\{[0]_4,[2]_4\}$ e \mathbb{Z}_4 , pelo que a afirmação é claramente verdadeira. 10. $\{[0]_{12}, [6]_{12}\}$ é um ideal maximal de \mathbb{Z}_{12} . V□ F⊠ $\{\{[0]_{12},[6]_{12}\} \in \{\{[0]_{12},[3]_{12},[6]_{12},[9]_{12}\} \text{ s\~ao ideais de } \mathbb{Z}_{12} \text{ tais que } \{\{[0]_{12},[6]_{12}\} \subsetneq \{\{[0]_{12},[3]_{12},[6]_{12},[9]_{12}\} \subsetneq \mathbb{Z}_{12}, \{[0]_{12},[9]_{12}\} \subseteq \mathbb{Z}_{12}, \{[0]_{12},[9]_{$ pelo que a afirmação é claramente falsa.

GRUPO II

Este grupo tem duas questões em alternativa, ambas cotadas com 8.0 valores numa escala de 0 a 20. Deve escolher APENAS UMA DAS QUESTÕES para responder. Se responder às duas, ignorarei a segunda resposta.

Alternativa 1. Justifique devidamente todas as respostas. Dê um exemplo, caso exista, de

- (a) um anel comutativo com identidade A de característica 10 e com um elemento de ordem 3. Não existe. se A tem característica finita, a característica é o mínimo múltiplo comum entre as ordens de todos os seus elementos. Acontece que 10 não é múltiplo de 3.
- (b) um ideal maximal e um ideal primo não maximal do anel $\mathbb{Z} \times \mathbb{R}$.

Sabemos que qualquer ideal de $A=\mathbb{Z}\times\mathbb{R}$ é da forma $I\times J$ com I ideal de \mathbb{Z} e J ideal de \mathbb{R} . Então, $2\mathbb{Z}\times\mathbb{R}$ é um ideal de A. Como o único ideal de A que contém estritamente $2\mathbb{Z}\times\mathbb{R}$ é o próprio A, temos que $2\mathbb{Z}\times\mathbb{R}$ é um ideal maximal de A.

Por outro lado, $\{0\} \times \mathbb{R}$ é um ideal primo de A pois, para $(a,b),(x,y) \in A$,

$$(a,b) = (x,y) \in \{0\} \times \mathbb{R} \Rightarrow a = 0 \lor x = 0 \Leftrightarrow (a,b) \in \{0\} \times \mathbb{R} \lor (x,y) \in \{0\} \times \mathbb{R}.$$

No entanto, $\{0\} \times \mathbb{R}$ não é maximal pois

$$\{0\} \times \mathbb{R} \subseteq 2\mathbb{Z} \times \mathbb{R} \subseteq \mathbb{Z} \times \mathbb{R}.$$

(c) um anel A e um seu subanel B que não é ideal de A.

Seja $A = \mathbb{R}$ e $B = \mathbb{Z}$. Então B é subanel de A e não é ideal de A. Como A é corpo, os seus únicos ideais são $\{0\}$ e A.

(d) um anel A com mais divisores de zero do que elementos simplificáveis.

Seja A o anel \mathbb{Z}_6 . Sabemos que $[x]_6 \in \mathbb{Z}_6$ é divisor de zero em \mathbb{Z}_6 se e só se $\mathrm{m.d.c.}(x,6) \neq 1$ e que $[x]_6$ é simplificável (se e só se é invertível) em \mathbb{Z}_6 se e só se $\mathrm{m.d.c.}(x,6) = 1$. Logo, \mathbb{Z}_6 tem 4 divisores de zero ($[0]_6, [2]_6, [3]_6, [4]_6$) e 2 elementos simplificáveis ($[1]_6, [5]_6$).

(e) Um anel A sem identidade e um seu ideal I tal que A/I seja um anel com identidade.

Considere-se o anel sem identidade dos inteiros pares $2\mathbb{Z}$. Então, $4\mathbb{Z}$ é um ideal de $2\mathbb{Z}$ e $2\mathbb{Z}/4\mathbb{Z} = \{4\mathbb{Z}, 2+4\mathbb{Z}\} \simeq \mathbb{Z}_2$, pelo que é um anel com identidade.

Alternativa 2. Sejam A um anel não nulo e $R = \{x \in A : nx = 0_A, \text{ para algum } n \in \mathbb{N}\}.$

(a) Mostre que R é um ideal de A;

Para provar que R é um ideal de A, temos de provar as seguintes condições:

- i. $R \neq \emptyset$;
- ii. $x, y \in R \Rightarrow x y \in R$;
- iii. $x \in R, a \in A \Rightarrow ax, xa \in R$.

De facto,

- i. o elemento $0_A \in A$ é tal que $n0_A = 0_A$, para todo $n \in \mathbb{N}$. Logo, $0_A \in R$ e, portanto, $R \neq \emptyset$;
- ii. sejam $x,y\in R$. Então, $x,y\in A$, $nx=0_A$, para algum $n\in\mathbb{N}$, e $my=0_A$, para algum $m\in\mathbb{N}$. Assim, $x-y\in A$ e

$$(mn)(x-y) = (nm)x - (mn)y = m(nx) - n(my) = m0_A - n0_A = 0_A - 0_A = 0_A,$$

com $mn \in \mathbb{N}$. Logo, $x - y \in R$;

iii. sejam $x\in R$ e $a\in A$. Então, $x,a\in A$ e $nx=0_A$, para algum $n\in \mathbb{N}$. Logo, $ax,xa\in A$ e

$$n(ax) = a(nx) = a0_A = 0_A$$

e

$$n(xa) = (nx)a = 0_A a = 0_A,$$

pelo que $ax, xa \in R$.

- (b) Determine R, sabendo que:
 - i. $A=\mathbb{Z}$;

Sabemos que se $a\in\mathbb{Z}$ é tal que na=0, para algum $n\in\mathbb{N}$, então, a=0, uma vez que $c(\mathbb{Z})=0$. Logo, $R=\{0\}.$

ii. $A = \mathbb{Z}_{10}$.

Sabemos que, para todo $[a]_{10} \in \mathbb{Z}_{10}$, $10[a]_{10} = [0]_{10}$, uma vez que $c(\mathbb{Z}_{10}) = 10$. Logo, $R = \mathbb{Z}_{10}$.

(c) Dê um exemplo de um domínío de integridade A onde R seja um ideal maximal. Sabemos que se $a \in \mathbb{R}$ é tal que na=0, para algum $n \in \mathbb{N}$, então, a=0, uma vez que $c(\mathbb{R})=0$. Logo, $R=\{0\}$. Como \mathbb{R} é corpo, os únicos ideais de \mathbb{R} são $\{0\}$ e \mathbb{R} , pelo que $R=\{0\}$ é claramente um ideal maximal.