Kto?

- Piotr Filipkowski
- p.t.filipkowski@gmail.com

Gdzie?

Eo/15

W jakim celu?

 Zdobycia elementarnej wiedzy o mikrokontrolerach i poobcowania z nimi

Sylabus:

- •http://wmii.uwm.edu.pl/~zajac/sw/sylabus_2317N1-SYSWBUD_PL.pdf
- Zobaczcie ile godzin pracy własnej!

CEL KSZTAŁCENIA

Celem zajęć jest zapoznanie studentów informatyki z podstawami systemów wbudowanych. Wykład jest wprowadzeniem do komputerowych systemów sterowania. Wykład/ ćwiczenia wprowadzają studenta w programowalne układy logiczne, mikrokontrolery oraz techniki ich programowania

EFEKTY KSZTAŁCENIA

Wiedza

1. Student ma ogólne pojęci na temat komputerowych systemów sterowania 2. Student posiada wiedzę na temat programowalnych sterowników logicznych, mikrokontrolerów.

Umiejętności

1. Student buduje opis działania komputerowego systemu sterującego. 2. Student opisuję budowę mikrokontrolera, systemu wbudowanego 3. Student programuje mikrokontrolery 4. Student samodzielnie wykrywa i usuwa typowe błędy w oprogramowaniu mikrokontrolera

Kompetencje społeczne

1. Zna ograniczenia własnej wiedzy i rozumie potrzebę dalszego kształcenia. 2. Student rozumie znaczenie i przestrzega podstawowe zasady BHP w trakcie pracy z urządzeniami elektronicznymi. 3. Student ocenia swoją pracę i poszukuje przyczyn popełniania błędów. 4. Student jasno przedstawia swoje zdanie i znajduje argumenty na jego poparcie.

Systemy wbudowane Przebieg zajęć:

- 2 tygodnie przypomnienie języka C
- 2 tygodnie prezentacje tematyczne
- 11 tygodni praca z mikrokontrolerem z rodziny PIC 5 zadań

Warunki zaliczenia:

- 5 pełnych zadań 5
- 4 pełnych zadania 4
- 3 pełne zadania 3
- · Wyjątkowo dobra prezentacja może pomóc w przypadku wątpliwości (+o.5 oceny)

Terminy:

- Do 14tego tygodnia bardzo dobre oceny
- Później oceny :D

Maszynki:

• z rodziny PIC

IDE:

•MPLAB X IDE

Symulator do poćwiczenia w chacie:

PicsimLab

Ken Thompson

Dennis Ritchie

Przypomnijmy sobie język C

Zaimplementuj bramkę XOR mając do dyspozycji inne bramki

```
12 = 00001100 (In Binary)
25 = 00011001 (In Binary)

Bitwise XOR Operation of 12 and 25
00001100

^ 00011001

00010101 = 21 (In decimal)
```


- Zaimplementuj zamianę liczby w systemie dziesiętnym na liczbę w systemie bitowym, używając przesunięcia bitowego.
- 2. Dodaj metodę, która wyświetli wybrany bit danej liczby.
- 3. Dodaj metodę która zmieni wartość wybranego bitu, następnie wyświetli nową wartość liczby

