CPSC 313 -Assignment 3

1. a) Simulate a RAM Turing machine by a standard Turing machine

Suppose that there is a standard Turing machine $M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{accept}, q_{reject})$ whose language is $L \subseteq \Sigma^*$. Consider a RAM Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ that will be simulated by standard Turing machine. Now we define the 7-tuple for the Turing machines M, M':

qo, qaccept, qreject: are the start, accept and reject states for both Turing machines M', M.

 Σ : is the input alphabet $\Sigma = {\sigma_1, \sigma_2, ..., \sigma_m}$ for m >= 1 for both Turing machines M, M'.

Q, Q': set of states for the Turing machines M, M' specifically $Q \subseteq Q'$ with Q' having some additional states for simulating operations.

 Γ , Γ ': tape alphabet for the Turing machines M, M' specifically $\Gamma = \{0,1,2,3,4,5,6,7,8,9,R,W\}$ and $\Gamma' = \Gamma \cup \{\spadesuit\}$, where R, W $\notin \Sigma$ are symbols for initiating read, write instructions and $\spadesuit \notin \Gamma$.

 δ , δ ': transition functions for Turing machines M, M'.

The standard Turing machine M' must have work tapes:

Memory tape: this is an array A[0], A[1], . . . , where each memory cell A[k] takes an integer value i, such that $i \ge 0$ to store contents of registers.

Location tape: this array tracks currently visible register on memory tape.

Input tape: the array containing initial string input and is an identical copy to M's input tape

Address tape: the array address and is identical copy to M's address tape but uses \spadesuit symbols to enclose the input.

Initialization

All cells are filled with blanks first. Initialization starts with writing 0 onto second most leftmost cell on location tape so that tape head for memory tape is pointing to its leftmost cell A[0].

If the machine M' is in state q_{access}, then if the non-blank part of the address tape stores a string in the form

 μR - where $\mu \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^{\star}$ is the unpadded decimal representation of some integer $i \geq 0$, then the address tape is erased (that is, filled with blanks), and the symbol σ currently stored in the array entry A[i] is then written onto the leftmost cell of this tape — with the tape head pointing to this symbol. The Turing machine moves to $q_{complete}$, after having completed this read operation.

 μ Wσ - where $\mu \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^*$ is the unpadded decimal representation of some integer $i \ge 0$, and σ is a symbol in Γ that is not in {R,W}, then A[i] is set to be (i.e., overwritten with) σ. The address tape is erased, with the tape head pointing to the leftmost cell on this tape. The Turing machine moves to $q_{complete}$, after having completed this write operation.

Otherwise, if the non-blank part of the address tape stores anything else, then the instructions on it are considered to be invalid so the address tape is erased (without the array A being either accessed or modified), and its tape head is moved to the leftmost cell on the tape. The machine moves to state q_{complete}, once again.

Simulate read

Suppose M enters state q_{access} , when memory tape stores μR where $\mu \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^*$, $i \ge 0$. Then M reads A[i]. Suppose location tape also stores unpadded decimal representation of an integer $j \ge 0$, Then we have three cases

Case i < j: cell of memory tape storing A[i] is left of current location of memory tape head. Then the read algorithm is

```
While (i != j)

j = j - 1

move memory tape head one position to left position A[j]
```

This ensure memory tape head points to cell A[i] on termination, as required.

Case i > j: cell of memory tape storing A[i] is left of current location of memory tape head. Then the read algorithm is

```
While (i != j)

j = j + 1

move memory tape head one position to right position A[j]
```

This ensure memory tape head points to cell A[i] on termination, as required.

Case i = j: either this is initially the case or after above algorithms execute. The address tape is erased and symbol that is stored in A[i] is written on leftmost cell of this tape. Non blank of address tape is now $\Phi \sigma \Phi$.

Simulate write

Suppose M enters state q_{access} , when memory tape stores $\mu W \sigma$ where $\mu \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^*$, $i \ge 0$. Then M writes σ into A[i]. Suppose location tape also stores unpadded decimal representation of an integer $j \ge 0$, Then we have three cases as before

Case i < j: cell of memory tape storing A[i] is left of current location of memory tape head. Then the write algorithm is

```
While (i != j)  j = j - 1  move memory tape head one position to left position A[j] Write \sigma
```

This ensure memory tape head points to cell A[i] on termination and then writes σ, as required.

Case i > j: cell of memory tape storing A[i] is left of current location of memory tape head. Then the write algorithm is

```
While (i != j)

j = j + 1

move memory tape head one position to right position A[j]
```

Write σ

This ensure memory tape head points to cell A[i] on termination and then writes σ , as required.

Case i = j: either this is initially the case or after above algorithms execute. Location tape now stores unpadded decimal representation of i, memory tape head points to A[i] and after writing the σ , address tape should be updated/erased so it contains blanks.

Simulating other operations

Suppose M enters state q_{access} , when address tape stores anything else than above. Address tape should then be erased to the form of $\spadesuit \sqcup \spadesuit$, containing infinite blanks to the right.

Suppose M enters a state other than qaccess, then M' should have similar moves:

- symbol on address tape is visible after move left, then a move right is required
- ♠ symbol on address tape is visible after move right, then ♠ should be replaced by blank and then another ♠ written to the right

During moves not part of simulation with M, M' contents and tape heads of memory/address tapes must remain unchanged

Using induction to prove correctness

M makes $k \ge 0$ moves when executed on input string $w \in \Sigma^*$. M' simulates these k moves and doing so results in

M, M' being in the same state

M' memory tape stores A[0], A[1], ..., contents

M' location tape stores unpadded decimal representation of integer i>=0 and memory tape head of M' points to location of A[i]

M address tape stores string w, M' address tape stores the string w with \spadesuit to the left, some n>=0 blanks, another \spadesuit , and then infinite blanks

Other work tapes of M have the same content and locations of tape heads to the work tapes of M'.

As such, given the entirety above, we can claim that M accepts w iff M' accepts w, M rejects w iff M' rejects w, M loops on w iff M' loops on w.

Thus, it is shown if there is a standard Turing machine M' with a given language $L \subseteq \Sigma^*$ then there is a RAM Turing machine M with language $L \subseteq \Sigma^*$ as well. Furthermore, if standard Turing machine M' decides $L \subseteq \Sigma^*$ then M decides $L \subseteq \Sigma^*$ as well as required.

1. b) Simulate a standard Turing machine with RAM Turing machine

Suppose that there is a RAM Turing machine $M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{accept}, q_{reject})$ whose language is $L \subseteq \Sigma^*$. Consider a standard Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ that will be simulated by a RAM Turing machine M'. Then M has

Same set of states with qaccess, qcomplete also added arbitrarily

Same transition functions out of q_{complete} into q_{complete} keeping contents and tape heads same and all other work tapes are same.

M is a copy of M' that does not use memory tape. The number of moves made by M doesn't allow M to reach q_{access} , $q_{complete}$ on an input string w, M recognizes same language and if M decides $L \subseteq \Sigma^*$ then RAM machine decides $L \subseteq \Sigma^*$ too.

Thus, if a RAM Turing machine decides a language $L \subseteq \Sigma^*$, a standard Turing machine M decides $L \subseteq \Sigma^*$ as well.

2. Proof by reduction

Reduce a known undecidable language to L_{Blank} to show that it implies L_{Blank} being undecidable. From tutorial #17, we know that language Nonempty_{TM} $\subseteq \Sigma$ '_{TM} was proved to be undecidable. Let that known undecidable language be that, the set of encodings of Turing machines M such that $L(M) = \emptyset$ (M accepts at least one string of symbols over its input alphabet), and reduce L_{Blank} to it.

A many one reduction function is required where f: $\Sigma_{TM} \to \Sigma_{TM}$ from Nonempty_{TM} to L_{Blank}. Let $v \in \Sigma_{TM}$.

Case 1: Suppose $v \notin TM$. Then $v \notin Nonempty_{TM}$ and $v \notin L_{Blank}$ so f(v) = v, concluding $f(v) \notin L_{Blank}$ as shown.

Case 2: Suppose $v \in TM$. v encodes $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ and f(v) encodes $M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{accept}, q_{reject})$. We must now define $Q, Q', \Sigma, \Gamma, \Gamma', \delta, \delta'$.

qo, qaccept, qreject: are the start, accept and reject states for both Turing machines M', M.

 Σ : is the input alphabet for Turing machines M, M', same for both $\Sigma = {\sigma_1, \sigma_2, ..., \sigma_m}$ for m >= 1.

Q, Q': set of states for the Turing machines M, M' specifically if $Q = \{q_0, q_1, q_2 ..., q_k, q_{accept}, q_{reject}\}$ then Q' = $\{q_0, q_1, q_2 ..., q_k, q_{k+1}, q_{k+2}, q_{k+3}, q_{accept}, q_{reject}\}$ for k>=0 (Q is a subset of Q' with Q' having three new states).

 Γ , Γ ': tape alphabet for the Turing machines M, M' specifically if $\Gamma = \{\sigma_1, \sigma_2, ..., \sigma_m, \sigma_{m+1}, ..., \sigma_n\}$ then $\Gamma' = \{\sigma_1, \sigma_2, ..., \sigma_m, \sigma_{m+1}, ..., \sigma_n\}$ (Γ is a subset of Γ ' with Γ ' having one additional symbol). σ_{n+1} is a non blank replacement for \square and will be designated as \square '.

 δ , δ ': transition functions for Turing machines M, M' specifically if δ is a transition function of M, then δ ' is a transition function of M' with three changes in the following order:

```
1) for all states q \in Q but q \not\in \{q_{accept}, q_{reject}\} and for all \sigma \in \Gamma, if \delta(q,\sigma) = (r, \, \sqcup, \, m) then \delta'(q,\sigma) = (r, \, \sqcup', \, m) where r \in Q and m \in \{L,R\}.
```

- 2) for all states $q \in Q$ but $q \notin \{q_{accept}, q_{reject}\}\$ and for all $\sigma \in \Gamma$, $\delta'(q, \sqcup') = \delta'(q, \sqcup)$
- 3) if $q \in Q$ such that $q \not\in \{q_{accept}, q_{reject}\}$ and $\sigma \in \Gamma'$ and $\delta' = (q_{accept}, t, m)$, then $\delta'(q,\sigma) = (q_{k+1}, t, m)$ where $t \in \Gamma'$ and $m \in \{L,R\}$.

In addition, the three new states in Q' for Turing machine M' needs to have the corresponding transition functions:

i)
$$\delta'(q_{k+1},\sigma) = (q_{k+2}, \perp', R)$$
, ii) $\delta'(q_{k+2},\sigma) = (q_{k+3}, \sigma, L)$, iii) $\delta'(q_{k+3},\sigma) = (q_{accept}, \perp, R)$ for all $\sigma \in \Gamma'$.

We have now fully defined our Turing machines M, M' and can work on unravelling definitions and claim certain properties.

Sub-claim: Let $w \in \Sigma^*$ be an input of M. Let n be some arbitrary amount of moves M makes on input. Let M not accept w after n moves. Then M' makes at least n moves on the same input and does not accept w either. As such, M' has not yet written a blank \sqcup onto its tape during those first moves, $f(v) \not\in L_{Blank}$.

Sub-proof: using induction on n by applying transition functions δ' for M', showing configuration of each machine at incremental integers, full proof available in lecture notes #25 slides 15-22 and tutorial 16. So we have $f(v) \not\in L_{Blank}$ as required.

Using the above, we can similarly claim that if M rejects or loops on w, then M' never writes a blank \square on top of a non blank symbol \square ' when running on the same input w. This is because M never enters accept state and again $f(v) \not\in L_{Blank}$ as required.

We can also say if v encodes a Turing machine M with an empty language, then M rejects or loops on every string w, so $f(v) \notin L_{Blank}$ as required

Sub-claim: Let $w \in \Sigma^*$ be an input of M. Let n>=1 be some arbitrary integer amount of moves M makes on input. Let M accept input w after n moves. Then M' writes a blank \sqcup on top of a non blank symbol \sqcup ' when running on input w so $f(v) \in L_{Blank}$.

Sub-proof: Suppose $w \in \Sigma^*$ and M accepts w. After n moves on input w, M enters q_{accept} . Consider the configuration just before being in the accept state, for some n-1 moves so that q is some state that is not the accept state. Then correspondingly, M' is also in some state q after running n-1 moves, specifically it will be in state q_{k+1} . Then, we use the transition function δ ' for M' on the input, specifically the ones above being i, ii and iii. Informally, it proceeds as writing nonblank symbol \square ', M' change state, move right, change state again, move left and writing a blank \square on top of \square ' as it changes state finally to q_{accept} . Thus, M' writes a blank \square on top of nonblank \square ' when running on w and we have shown $f(v) \in L_{Blank}$ as required.

Given the above, we can say if $v \in Nonempty_{TM}$ then v encodes Turing machine M that accepts at least one input string w for the input language. Since it does accept at least input string, we have $f(v) \in L_{Blank}$ as required.

Sub-claim: If $v \in \Sigma^*_{TM}$ and $v \notin Nonempty_{TM}$ then $f(v) \notin L_{Blank}$.

Sub-proof: Suppose: $v \in \Sigma^*_{TM}$ and $v \notin Nonempty_{TM}$ then we have two cases:

Case A: if $v \notin TM$ then we have f(v) = v so $f(v) \notin TM$. Since L_{Blank} is a subset of TM, it must be the case $f(v) \notin L_{Blank}$ as required.

Case B: if $v \in TM$ and $v \notin Nonempty_{TM}$ then v encodes a Turing machine M with an empty language $L(M) = \emptyset$ and that was shown to be $f(v) \notin L_{Blank}$ above.

Now we can show that the many one reduction function required where f: $\Sigma^{\cdot}_{TM} \to \Sigma^{\cdot}_{TM}$ from Nonempty_{TM} to L_{Blank} is a computable function.

Subproof: the language TM is known to be decidable. We can determine whether or not if $v \in TM$ in algorithm to find f(v) from an input string. When $v \notin TM$, we have v = f(v) so f(v) can be determined from v whenever $v \notin TM$.

Suppose instead $v \in TM$, v encodes some Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ and f(v) encodes $M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{accept}, q_{reject})$. Suppose the corresponding input strings for the Turing machines would be x in form $(code(Q), code(\Sigma), code(\Gamma), code(\delta))$ and f(x) string form $(code(Q'), code(\Sigma), code(\Gamma'), code(\delta'))$. We can then separate the strings into substrings:

code(Q) is a substring of $(code(Q), code(\Sigma), code(\Gamma), code(\delta))$ and Q is the set of states for M, $\{q_0, q_1, q_2 ..., q_k, q_{accept}, q_{reject}\}$. code(Q') is substring of $(code(Q'), code(\Sigma), code(\Gamma'), code(\delta'))$ and Q' is the set of states for M', $\{q_0, q_1, q_2 ..., q_k, q_{k+1}, q_{k+2}, q_{k+3}, q_{accept}, q_{reject}\}$. We can let the substrings be binary representations of integer k, and so code(Q') can be computed from code(Q) by counter addition.

 $code(\Sigma)$ is a substring of both the strings, so it can obviously be computed from itself.

 $\begin{array}{l} \text{code}(\Gamma) \text{ is a substring of } (\text{code}(Q), \ \text{code}(\Sigma), \ \text{code}(\Gamma), \ \text{code}(\delta)) \text{ and } \Gamma = \{\sigma_1, \sigma_2, ..., \sigma_m, \sigma_{m+1}, ..., \sigma_n\}. \\ \text{code}(\Gamma') \text{ is substring of } (\text{code}(Q'), \ \text{code}(\Sigma), \ \text{code}(\Gamma'), \ \text{code}(\delta')) \text{ and } \Gamma' = \{\sigma_1, \sigma_2, ..., \sigma_m, \sigma_{m+1}, ..., \sigma_n\}. \\ \sigma_{n+1}\}. \text{ We can let the substrings be binary representations of integer n, and so } \text{code}(\Gamma') \text{ can be computed from } \text{code}(\Gamma) \text{ by counter addition.} \\ \end{array}$

 $code(\delta)$ is a substring of $(code(Q), code(\Sigma), code(\Gamma), code(\delta))$ and δ was defined above. $code(\delta')$ is substring of $(code(Q'), code(\Sigma), code(\Gamma'), code(\delta'))$ and δ' was also defined above. $code(\delta')$ can be computed from $code(\delta)$ by a Turing machine as they are merely sequences of strings, following the description of the transition functions given above. This shows that function f is indeed computable, as required.

Finally, to summarize claims, we have:

- f is a many one reduction function where f: $\Sigma^{\cdot}_{TM} \to \Sigma^{\cdot}_{TM}$ from Nonempty_{TM} to L_{Blank}
- if $v \in Nonempty_{TM}$ then $f(v) \in L_{Blank}$
- if v ∉ Nonempty_{TM} then f(v) ∉ L_{Blank}
- this function f is computable

Hence, since Nonempty $_{\text{TM}}$ is undecidable, it is implied L_{Blank} is undecidable too by using reduction.