Institut ${f N}$ ational des ${f S}$ ciences ${f A}$ ppliquées des ${f H}$ auts-de- ${f F}$ rance

Département d'Informatique et de Cybersécurité

RAPPORT DES TRAVAUX PRATIQUES

GRAPHES ET OPTIMISATION : RECHERCHE DU PLUS COURT CHEMIN ET PROBLÈME DU VOYAGEUR DE COMMERCE

Date: 15 avril 2024

Professeur: Raca TODOSIJEVIC - Associate Professor

Elias BOULANGER Thomas AUBERT

Table des matières

1	Introduction	1		
2	2 Structure du projet			
3	Plus court chemin1Modélisation2A Star3Comparaison des deux implémentations	4		
4	Problème du voyageur de commerce 1 Modélisation	5		
5	Conclusion	8		
A	Algorithmes et Code 1 Modélisation du Problème du Voyageur de Commerce	I I		

Liste des Acronymes

Table des figures

4.1	Fonction de génération de graphes aléatoires pour le TSP	7
4.2	Résolution d'un exemple simple de TSP	7

Liste des tableaux

Introduction

aaa

Structure du projet

bbb

Plus court chemin

1 Modélisation

On considère un graphe non orienté $G = \langle S, A \rangle$ où S est l'ensemble des sommets et A l'ensemble des arêtes. Chaque arête a_{ij} est associée à un coût c_{ij} , qui vaudra 1 dans le cas où deux sommets sont reliés horizontalement ou verticalement, et $\sqrt{2}$ dans le cas où ils sont reliés en diagonale. On cherche à déterminer le plus court chemin entre un sommet de départ s et un sommet d'arrivée t.

Variables

— x_{ij} : vaut 1 si l'arête a_{ij} est empruntée, 0 sinon

Fonction objectif

On cherche à minimiser la somme des coûts des arêtes empruntées :

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{3.1}$$

Contraintes

— Le sommet de départ s est toujours relié à un sommet :

$$\sum_{j \in S} x_{sj} = 1 \tag{3.2}$$

— De même, le sommet d'arrivée t est toujours relié à un sommet :

$$\sum_{i \in S} x_{it} = 1 \tag{3.3}$$

— Chaque sommet a le même nombre d'arêtes entrantes et sortantes (sauf s et t) :

$$\sum_{j \in S} x_{ij} = \sum_{j \in S} x_{ji} \quad \forall i \in S \setminus \{s, t\}$$
(3.4)

— Notre graphe n'étant pas orienté, nous devons empêcher les sous-cycles, c'est-à-dire le cas où on trouve une arête a_{ij} et une arête a_{ji} dans le chemin :

$$\sum_{(i,j)\in A} x_{ij} + \sum_{(j,i)\in A} x_{ji} \le 1 \quad \forall i,j\in S\setminus\{s,t\}$$
(3.5)

Nous avons implémenté et résolu ce problème en Python, en utilisant la librairie docplex.mp.model de CPLEX. Le code complet est disponible en annexe ??.

- 2 A Star
- 3 Comparaison des deux implémentations

Problème du voyageur de commerce

Le problème du voyageur de commerce (TSP) consiste à trouver le plus court chemin passant par chaque ville une et une seule fois, et revenant à la ville de départ. Nous allons employer deux méthodes pour résoudre ce problème : une résolution linéaire avec CPLEX [Wik24] et une résolution par énumération des permutations possibles.

1 Modélisation

On considère un graphe non orienté $G = \langle S, A \rangle$ où S est l'ensemble des sommets et A l'ensemble des arêtes. À chaque arête a_{ij} est associée une distance c_{ij} . On cherche à déterminer le plus court chemin passant par chaque sommet une et une seule fois, et revenant au sommet de départ.

Variables

— x_{ij} : vaut 1 si l'arête a_{ij} est empruntée, 0 sinon

Fonction objectif

On cherche à minimiser la somme des distances des arêtes empruntées :

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{4.1}$$

Contraintes

— Chaque sommet doit être relié à une arête entrante :

$$\sum_{i \in S} x_{ik} = 1 \quad \forall k \in S \tag{4.2}$$

— Chaque sommet doit être relié à une arête sortante :

$$\sum_{j \in S} x_{kj} = 1 \quad \forall k \in S \tag{4.3}$$

— Empêcher les sous-cycles :

$$\sum_{(i,j)\in A} x_{ij} + \sum_{(j,i)\in A} x_{ji} \le 1 \quad \forall i,j\in S$$

$$\tag{4.4}$$

Le code Python équivalent à ce modèle est donné en annexe 1.

Résolution par énumération

On peut résoudre le problème du TSP en énumérant toutes les permutations possibles des villes, et en calculant la distance totale pour chaque permutation. La solution optimale est celle qui minimise la distance totale.

```
Data: graph
Result: best route : liste des villes dans l'ordre optimal
min\_cost \leftarrow \infty;
best route \leftarrow [];
for start end node in graph.nodes do
    remaining nodes \leftarrow graph.nodes - start end node;
    for permutation\ in\ permutations(remaining\_nodes)\ \mathbf{do}
        route \leftarrow [start\_end\_node] + permutation + [start\_end\_node];
        cost \leftarrow 0;
        for i \leftarrow 0 to len(route) - 1 do
            cost \leftarrow cost + graph.costs[route[i]][route[i+1]];
        end
        if cost < min \ cost then
            min \ cost \leftarrow cost;
            best\_route \leftarrow route;
        end
    \quad \mathbf{end} \quad
end
return best_route;
```

Algorithm 1: tsp_brute_force

Génération de graphes aléatoires

Nous pouvons implémenter une fonction pour générer des graphes aléatoires de n villes avec des coûts aléatoires. Nous pourrons ainsi tester nos algorithmes sur des graphes de différentes tailles. Nous choisissons des coûts entre 10 et 50, et les villes ont une probabilité p d'être connectées.

```
def gen_tsp(n: int, p:float, file name:str = "tsp.txt"):
    """Generates a random TSP problem with n nodes and probability p of having an edge between nodes."""

nodes = []
cost = {}

# Generate nodes
for i in range(n):
    nodes.append(i)

# Generate edges
for i in range(i+1, n):
    if random.random() < p:
        cost[(i, j)] = random.randint(10, 50)

# Write to file
Path("examples").mkdir(parents=True, exist_ok=True)
with open(f"examples/file_name}", "w") as f:
    f.write(f"{n} {len(cost)}\n")
for (i, j), c in cost.items():
    f.write(f"{i} {j} {c}\n")

print(f"File saved in examples/{file_name}")</pre>
```

FIGURE 4.1 – Fonction de génération de graphes aléatoires pour le TSP

Résultats et comparaison des méthodes

Nous pouvons tester nos algorithmes avec un exemple simple fourni par l'énoncé. Ils nous donnent le même résultat :

FIGURE 4.2 – Résolution d'un exemple simple de TSP

Conclusion

eee

Annexe A

Algorithmes et Code

1 Modélisation du Problème du Voyageur de Commerce

```
def tsp_cplex_solver(graph) -> Optional[List]:
    """"

Solve the Traveling Salesman Problem (TSP) using the CPLEX solver
    :param graph: the graph to explore
    :return: the cheapest path found
    """

nodes = graph.node_list
    costs = graph.cost

# Create a new model
mul = Model('TSP')

# Create variables: x[i, j] is 1 if edge (i, j) is part of the solution
    x = mdl.binary_var_dict(costs.keys(), name='x')

# Objective: Minimize the total cost of the tour
mul.minimize(mdl.sum(x[i, j] * costs[i, j] for (i, j) in costs))

# Constraints: Each node must be entered and left exactly once
# Unique entering and leaving edges for each node
for k in nodes:
    mul.add_constraint(mdl.sum(x[i, k] for i in nodes if (i, k) in x) == 1, f'enter_{k}')
    mdl.add_constraint(mdl.sum(x[k, j] for j in nodes if (k, j) in x) == 1, f'leave_{k}')

# No Sub tours
for i in nodes:
    if i != j and (i, j) in x:
        mdl.add_constraint(x[i, j] + x[j, i] <= 1, f'sub_tour_{i}_{j}'))

# Solve the mode!

solution = mdl.solve()

# Check if a solution exists
if solution:
    edges = [(i, j) for i, j in x if x[i, j].solution_value > 0.5]
    return [edge[0] for edge in edges] + [edges[-1][1]]
else:
    return None
```

Bibliographie

[Wik24] WIKIPEDIA. Problème du voyageur du commerce. 2024. URL: https://fr.wikipedia.org/w/index.php?title=Probl%C3%A8me_du_voyageur_de_commerce&oldid=215118809 (visité le 23/05/2024).