

Metody przybliżone w optymalizacji zagadnień dyskretnych

Badania Operacyjne 2 – lab 11 Laboratorium I st. III rok AiR Katedra Automatyki i Robotyki Laboratorium Badań Operacyjnych i Systemowych

Prowadzący:

dr hab. inż. Wojciech Chmiel

dr inż. Piotr Kadłuczka

dr hab. inż. Joanna Kwiecień

Zagadnienia

Stanowisko badawcze:

- Interfejs we,
- Interfejs wy,
- Testy
 - Zadania
 - Metodyka
 - Opracowanie wyników
- Zadanie badanie własności alg. zakres
- Sprawozdanie końcowe wymagania
- Zaliczenie tryb

Stanowisko badawcze - interface

Wejście:

- Wprowadzenie danych
 - Wczytywanie z pliku format danych
 - Generacja zadań testowych parametry
- Konfiguracja algorytmu
 - Wybór elementów algorytmu
 - Parametry algorytmu
 - Funkcja celu
 - Warunki ograniczające
 - Rozwiązanie początkowe

Interface cd.

Wyjście:

Prezentacja rozwiązania:

- Graficzna, numeryczna
- Wartość funkcji celu
- Dopuszczalność rozwiązania
- Rozwiązanie startowe, bieżące, najlepsze

Prezentacja przebiegu algorytmu:

- Wykresy iteracja, wartość f.celu, dopuszczalność rozwiązania
- Monitorowanie wystąpienia określonej sytuacji
- Badanie efektywności działania elementów algorytmu:
 - liczba realizacji
 - liczba popraw/pogorszeń f.celu %, wartości bezwzględne
 - Następstwo jakość rozwiązań, nr iteracji,
 - Złożoność obliczeniowa elementu czasowa , pamięciowa.

Testowanie

Poziom testów:

- Testowanie modułowe
- Testowanie integracyjne
- Testowanie systemowe
- Testowanie akceptacyjne

Typy testów

- Testowanie funkcjonalne
- Testowanie niefunkcjonalne
- Testowanie białoskrzynkowe
 - Testowanie i pokrycie instrukcji kodu
 - Testowanie i pokrycie decyzji
- Testowanie czarnoskrzynkowe
 - Podział na klasy równoważności
 - Analiza wartości brzegowych
 - Testowanie w oparciu o tablicę decyzyjną
 - Testowanie przejść pomiędzy stanami
 - Testowanie oparte na przypadkach użycia
- Testowanie związane ze zmianami
- Testowanie statyczne dynamiczne

Poprawność implementacji –

mały rozmiar,

symulacja "odręczna" - porównanie

Przypadki "obojętne" statystycznie –

Sposób generowania

Zróżnicowanie rozmiaru

Oszacowanie czasu i zapotrzebowania pamięci

Przypadki "złośliwe" -

Błędy danych

Rozmiar problemu

Wartości dominujące

Układ danych

Zadania o znanym rozwiązaniu optymalnym

Biblioteki zadań testowych

Konstruowanie zadań o znanym rozwiązaniu optymalnym

Eksperymenty obliczeniowe

- Cel eksperymentu
- Sposób analizy wiedzy z przebiegu algorytmu
- Przeprowadzenie eksperymentów obliczeniowych dla zróżnicowanych zadań testowych
- Badania statystyczne metody ulosowiane!
- Zbiorcze opracowanie wyników
- Analiza uzyskanych wyników
- Wnioski

Badania dla algorytmu SA

Mechanizm schładzania – czy dobrane temperatury gwarantują:

Początkowe błądzenie (długość faz), Końcowe osiągnięcie optimum lokalnego Zbieżność

Schematy wyżarzania –

Porównanie efektywności dla różnych schematów Długości przebiegu algorytmu – liczba iteracji

Długość serii -

Wydłużanie serii z obniżaniem temp / stałe

Sąsiedztwo

Porównanie dla różnych sąsiedztw Dynamiczna zmiana sąsiedztwa

Nakład obliczeniowy (każdy element algorytmu)

Teoria / pomiar

Badania dla algorytmu TS

Mechanizm zabronień:

Lista LT – zawartość, zmiany,

Skuteczność zabronienia, charakterystyka rozw. zabr/nie

Zależność dla czas zabronienia – równomiernie / ostatnie

Kryteria aspiracji – kiedy / ile razy

Przebieg algorytmu –

Porównanie efektywności z mech zabronień / bez

Niemonotoniczny przebieg

Restart (zależność od jakości rozwiązania)

Różnicowanie rozwiązań -

Pamięć długoterminowa - wpływ

Sąsiedztwo

Porównanie dla różnych sąsiedztw

Dynamiczna zmiana sąsiedztwa

Nakład obliczeniowy (każdy element algorytmu)

Teoria / pomiar

Badania dla algorytmu AE

Badanie populacji:

Zawartość – różnorodność rozwiązań, Charakterystyka – najlepsze, najgorsze, średnie, powtórzenia

Metody selekcji -Wpływ na zbieżność

Sąsiedztwo

Porównanie dla różnych operatorów krzyż/mutacji Dopuszczalność i jakość rozwiązań w krzyżowaniu

Przebieg algorytmu -

Porównanie efektywności dla różnych konfiguracji Zbieżność brak/przedwczesna Restart (odświeżanie populacji)

Nakład obliczeniowy (każdy element algorytmu) Wielkość populacji * liczba iteracji

Zadanie domowe

Opracować koncepcję (wspólnie zespół) - UPEL:

- 1. Funkcjonalność aplikacji stanowisko badawcze
 - Konfiguracja algorytmu, wczytywanie danych, wyprowadzenie wyników, interfejs (krótki opis), tworzenie wykresów (narzędzia zewn.?)
- 2. Prezentacja własności rozwiązania problemu
- Prezentacja własności algorytmu przebieg, mechanizmy, elementy
- 4. Eksperymenty obliczeniowe
 - Instancje testowe sposób generacji zadań ile, jaki rozmiar, jakie własności
 - Metodyka badań środowisko testowe, statystyka badań (metody losowe) - liczba powtórzeń, średnia, wartości ekstremalne
 - Problemy badawcze pełna lista wpływ jakich parametrów algorytmu będzie badany, w jaki sposób?
 - Jakie zmienne wynikowe zostaną zdefiniowane (obliczone) np. liczba przyjętych/odrzuconych rozwiązań w serii (SA), itp.
 - Wykresy zależność ... od ... co pokażą (jak interpretujemy)?

Zaliczenie laboratorium

Sprawozdanie końcowe (dokumentacja)

- Przygotowane wg zaleceń
- Umieszczone na UPEL (1 na cały zespół)
- Kod aplikacji (pliki, źródłowe / dostęp)

Prezentacja aplikacji:

- Charakterystyka danych
- Parametry algorytmu
- Funkcjonalność aplikacji
- Uzyskiwane wyniki
- Sposób interpretacji wyników
- Wnioski

Dyskusja i ocena

- Przedstawienie wyników eksperymentów
- Ocena etapów prac wg skali

Sprawozdanie końcowe (dokumentacja)

1. Podział pracy

- Wkłady każdego członka zespołu
- Każdy wypełnia swoją kolumnę tabeli

Etap	Osoba 1	
Model zagadnienia	[%] – procentowy Wymienione elementy	20% Funkcja celu Struktury danych
Algorytm opracowanie	[%] – procentowy Wymienione elementy	30% Definicja ruchu v. II, III Lista tabu v. I
Implementacja Aplikacji	Liczba linii kodu / całkowitej Wymienione funkcje	400/1000 Evol_function()
Testy	[%] – procentowy Zrealizowane testy Opracowane instancje	50% Eksperyment II, IV Wykresy 7, 15
Dokumentacja	Napisane rozdziały	Rozdział 1 i 3.1

Sprawozdanie końcowe (dokumentacja)

2. Zawartość sprawozdania

- Model zagadnienie (1 strona)
 - krótki opis słowny,
 - model matematyczny (poprawność notacji)
- Algorytm (2-3 strony)
 - Pominąć wprowadzenie ogólne (opisy z literatury)
 - Schemat / pseudokod algorytmu
 - Opis elementów opracowanych (np. operator krzyżowania/ mutacji I, II, stosowane typy selekcji, ...)
 - Parametry algorytmu
- Aplikacja (2 strony)
 - Bez zrzutów ekranu
 - Wymagania odnośnie uruchomienia
 - Format danych / wyników
 - Krótko opisana funkcjonalność (punkty)

Sprawozdanie końcowe (dokumentacja)

2. Zawartość sprawozdania

- Testy (10 stron)
 - Wykaz scenariuszy podlegające badaniu aspekty
 - Opis metodyki badań
 - Zdefiniowane zadania testowe (charakterystyka) dane w plikach
 - Opis kolejnych testów (Autor, cel testu, wyniki, tabele zbiorcze – nie jednostkowe/pliki, wykresy, interpretacja)
- Podsumowanie (1 strona)
 - Wnioski
 - Stwierdzone problemy
 - Kierunki dalszego rozwoju

Zaliczenie

3. 2 wskazane przez prowadzących terminy laboratorium

- Po 3 zespoły
 - Ustalony "przydział" wg stanu zaawansowania prac lub obligatoryjnie
- Umieszczenie sprawozdania i zasobów na UPEL
 - Niedziela 23.59 poprzedzająca zaliczenie
- Prezentacja działania aplikacji oraz wyników eksperymentów

4. Ocena

- Zespołu zmodyfikowana na indywidualne oceny wg wkładu pracy (waga 0,7)
- Uwzględnienie oceny etapów prac
- Kolokwium/test z części teoretycznej (waga 0,3)

5. Kolokwium/test

- Termin i forma podana przez prowadzących
- Zakres wykład (semestr BO2) + ćwiczenia lab.

Kryteria uzyskania zaliczenia

■ Model zagadnienia - 0 - 10:

wybór zagadnienia, stopień komplikacji – uproszczenia, poprawność opisu modelu, samodzielność i inwencja własna, ...

Algorytm - 0 - 10:

poprawność, implementacja, propozycje własnych rozwiązań, wielowariantowość, dostosowanie do specyfiki zagadnienia, ...

Aplikacja - 0 - 10:

sposób prezentacji – rozwiązania, istotnych parametrów algorytmu, poprawność działania, strona graficzna, złożoność, funkcjonalność,...

Testowanie - 0 - 10:

określenie reprezentatywnego zestawu zadań, przypadki "złośliwe", statystyka testów, analiza efektywności wariantów, ...

Dokumentacja - 0 - 5:

kompletność, adekwatność do wymagań, strona edytorska, ...

■ Inne - -5 - 0:

terminowość, uczestnictwo w zajęciach, ...

Skala ocen

Zgodnie z §13 ust.1 Regulaminu Studiów Przy zaliczeniach zajęć i egzaminach oraz wystawianiu oceny końcowej stosuje się i wpisuje do indeksu następujące oceny:

90 - 100%	bardzo dobry (5.0)	41 – 45 pkt
80 - 89%	plus dobry (4.5)	36 – 40 pkt
70 - 79%	dobry (4.0)	32 – 35 pkt
60 - 69%	plus dostateczny (3.5)	27 – 31 pkt
50 - 59%	dostateczny (3.0)	23 – 26 pkt
poniżej 50%	niedostateczny (2.0)	-5 – 22 pkt

Projekty inżynierskie

Prace dyplomowe inżynierskie (projekty) mogą zostać opracowane na bazie zrealizowanych projektów:

- Dostosowanie modelu do rzeczywistych wymaga np. rozważenie pizzy = problemy logistyczne VRP
- Oparcie na literaturze prac dotyczących zastosowanych algorytmów optymalizacji
- Pozyskanie / generacja danych rzeczywistych
- Pełna realizacja badań eksperymentalnych

Pytania? Dziękuję za uwagę!