Thermodynamik Formelsammlung

Jonas Walkling

January 17, 2020

Contents

1	Nomenklatur	3
2	Grundbegriffe	4
3	Basisformeln	4
4	Gibbs	4
5	Thermodynamische Beziehungen	4
6	Guggenheim	4
7	Maxwell	5
8	Ideales Gas	5
9	Van-der-Waals	5
10	Carnot	6
11	Gemische Idealer Gase	6
12	Nassdampf	6
13	Realer Stoff im Nassdampfgebiet	7
14	Maximale Arbeit und Exergie	7
15	Wärmekapazität	7
16	Technische Anwendung 16.1 Kolbenverdichter	8

$$\frac{d}{dt}\left\{U+m\left(\frac{c^2}{2}+gz\right)\right\} = \sum_{j}\left[\dot{m}_{j}\left(h+\frac{c^2}{2}+gz\right)_{i}\right] + \sum_{l}\left(\dot{Q}_{l}\right)_{l} + \sum_{i}\left(\dot{W}_{l}\right)_{i} - p\frac{dV}{dt}$$

1 Nomenklatur

 $\mathbf{An} = \text{Anergie}[\mathbf{J}]$

 $c_s = Schallgeschwindigkeit[m/s]$

 $c_{\rm p} = {\rm Spezifische\ W\"{a}rmekapazit\"{a}t\ dp} = 0\ [{\rm J/kg*K}]$

 $\mathbf{c_v} = \text{Spezifische Wärmekapazität dv} = 0 [J/kg*K]$

 $\mathbf{E} = \text{Energie}[\mathbf{J}]$

 $\mathbf{E}\mathbf{x} = -\mathbf{W}_{\mathbf{e}\mathbf{x}} = \mathrm{Exergie}[\mathbf{J}]$

 $\mathbf{F} = Kraft[N]$

 $\mathbf{F} = \mathbf{U} - \mathbf{TS} = \text{Freie Energie}[\mathbf{J}]$

 $\mathbf{f} = \mathbf{u} - \mathbf{T}\mathbf{s} = \text{Spezifische freie Energie}[J/kg]$

 $\mathbf{f} = \text{Fugazität}[Pa]$

G = H - TS = Freie Enthalpie[J]

 $\mathbf{g} = \mathbf{h} - \mathbf{T}\mathbf{s} = \text{Spezifische freie Enthalpie}[J/kg]$

 $\mathbf{g} = \text{Erdbeschleunigung}[\text{m/s}^2]$

 $\mathbf{H} = \mathbf{U} + \mathbf{pV} = \text{Enthalpie}[\mathbf{J}]$

 $\mathbf{h} = \mathbf{u} + \mathbf{p}\mathbf{v} = \text{Spezifische Enthalpie}[\text{J/kg}]$

■**Hg** = Molare Reaktionsenthalpie

K = Konstante des Massenwirkungsgesetztes[-]

 $\mathbf{M} = \text{Molmasse[kg/mol]}$

 $\dot{\mathbf{m}} = \text{Massestrom}[\text{kg/s}]$

 $\mathbf{m}' = \text{Masse in der flüssigen Phase[kg]}$

 $\mathbf{m}'' = \text{Masse in der gasförmigen Phase[kg]}$

 $Ma = c/c_s = Machzahl[-]$

 $\mathbf{n} = \mathbf{m}/\mathbf{M} = \text{Molzahl[mol]}$

n = Polytropenexponent[-]

 $\mathbf{P_t} = \text{technische Leistung}[\mathbf{W}]$

 $\mathbf{Q} = \text{W\"{a}rme}[J]$

 $\dot{\mathbf{Q}} = \text{Wärmestrom}[\mathbf{W}]$

q = Spezifische Wärme[J/kg]

 $\mathbf{r} = \text{Spezifische Verdampfungsenthalpie}[J/kg]$

 $\mathbf{R} = \text{Gaskonstante}[J/(\text{kg K})]$

 $\mathbf{R}_{\mathbf{m}} = \text{Universelle Gaskonstante}[J/(\text{mol } K)]$

S = Entropie[J/K]

s = Spezifische Entropie[J/(kg K)]

T = Temperatur[K]

 $\mathbf{t} = \text{Zeit}[s]$

 $\mathbf{t} = \text{Temperatur}[^{\circ}\text{C}]$

T = Sättigungstemperatur[K]

U = Innere Energie[J]

 $\mathbf{u} = \text{Spezifische innere Energie [J/kg]}$

 $V = Volumen[m^3]$

 $\mathbf{v} = \text{Spezifisches Volumen}[\text{m}^3/\text{kg}]$

 $V_m = Molares Volumen[m³/mol]$

 $\mathbf{W} = \text{Arbeit}[J]$

 $\mathbf{w} = \text{Spezifische Arbeit}[J/kg]$

 $\mathbf{W}_{\mathbf{V}} = \text{Volumen}$ änderungsarbeit[J]

 $W_{el} = Elektrische Arbeit[J]$

 $\mathbf{W}_{\mathbf{w}} = \text{Wellenarbeit}[\mathbf{J}]$

 $W_{diss} = Dissipations arbeit[J]$

 $W_t = \text{Technische Arbeit}[J]$

 $\mathbf{W}_{Virrev} = \text{Arbeits verlust durch Irreversibilität}[J]$

 $\mathbf{x} = \frac{m''}{m' + m''} = \text{Dampfanteil[-]}$

 $\mathbf{x} = \frac{m_{H_2O}}{m_L} = \text{Wassergehalt}$

 $\mathbf{Z} = \text{Allgemeine extensive Zustandsgrößen}[\mathbf{Z}]$

z = Allgemeine

 β = Isobarer Ausdehnungskoeffizient[1/K]

 γ = Isochorer Spannungskoeffizeint[1/K]

 $\delta_{\rm T} = {\rm Isothermer\ Drosselkoeffizient[m^3/kg]}$

 $\delta_{\mathbf{h}} = \text{Isenthalper Drosselkoeffizient}[\text{Ks}^2\text{m/kg}]$

 ε = Leistungsziffer[-]

 $\varepsilon = \text{Verdichtungsverhältnis}[-]$

 $\eta_{\rm th} = \text{Thermischer Wirkungsgrad}[-]$

 $\eta_{\text{mech}} = \text{Mechanischer Wirkungsgrad[-]}$

 $\kappa = \text{Adiabaten- oder Isentropenexponent}[-]$

 $\lambda = \text{Reaktionslaufzahl}[-]$

 μ_i = Chemisches Potential[J/mol]

 v_i = Stöchiometrische Koeffizienten[-]

 $\xi_{\mathbf{i}} = \text{Masseanteil}[-]$

 $\pi = \text{Druckverhältnis}[-]$

 $\rho = \text{Dichte}[\text{kg/m}^3]$

 $\tau = \text{Temperaturverhältnis}[-]$

 ϕ = Relative Feuchte[-]

 $\phi = \text{Einspritzverhältnis}[-]$

 ξ = Isothermer Kompressibilitätskoeffizient[m²/N]

 \blacksquare = Dissipationsenergie[J]

 $\psi = \text{Spezifische Dissipationsenergie}[J]$

 ψ = Drucksteigerungsverhältnis[-]

 $\psi_{\mathbf{i}} = \text{Molanteil[-]}$

2 Grundbegriffe

Systeme

- Abgeschlossenes System kein Stoff oder Energietransport
- Geschlossenes System kein Stofftransport
- Adiabates System kein Δq , aber Masse und Arbeit.
- Offenes System Stoff und Energietransport
- Stationäres System $\rightarrow \Delta U = 0$

Messgrößen

- Prozessgrößen sind Wegabhängig (eg. Arbeit, Wärme)
- Zustandsgrößen sind Wegunabhängig (eg. Volumen, Druck)
- Extensive Zustandsgrößen sind abhängig von der Masse des Systems (V, m, H, S, F, G, E)
- Intensive Zustandsgrößen sind unabhängig von der Masse des Systems (T, p)

Zustandsgleichungen

- Thermisch $\rightarrow f(p, V, T) = 0$
- Kalorisch $\rightarrow f(U, V, T) = 0$, U = U(V, T), u = u(v, T)

Hauptsätze

- 0: Temperatur existiert, ihre gleichheit ist notwendige Vorraussetzung für das thermische Gleichgewicht.
- 1: Energie existiert, sie ist für abgeschlossene Systeme konstant.
- 2: Entropie existiert, sie wird bei allen irreversiblen Prozessen erzeugt. $dS = \frac{\delta Q_{rev}}{T}$
- 3: 0K exisitert, bei dieser Temperatur ist die Entropie = 0

4 Gibbs

$$dU = Tds - pdV + \sum_{k=1}^{K} \mu_k dn_k$$

$$dG = -SdT + Vdp + \sum_{k=1}^{K} \mu_k dn_k$$

$$dH = TdS + Vdp + \sum_{k=1}^{K} \mu_k dn_k$$

$$dF = -SdT - pdV + \sum_{k=1}^{K} \mu_k dn_k$$

$$dU = \left(\frac{\partial U}{\partial S}\right)_V dS + \left(\frac{\partial U}{\partial V}\right)_S dV + \sum_{k=1}^{K} \left(\frac{\partial U}{\partial n_k}\right)_S dn_k$$

5 Thermodynamische Beziehungen

$$T = \left(\frac{\partial U}{\partial S}\right)_{V} = T(S, V) \qquad -S = \left(\frac{\partial F}{\partial T}\right)_{V} = S(T, V)$$

$$T = \left(\frac{\partial H}{\partial S}\right)_{p} = T(S, p) \qquad -S = \left(\frac{\partial G}{\partial T}\right)_{p} = S(T, p)$$

$$p = -\left(\frac{\partial U}{\partial V}\right)_{S} = p(V, S) \qquad V = \left(\frac{\partial G}{\partial p}\right)_{T} = V(p, T)$$

$$-p = \left(\frac{\partial F}{\partial V}\right)_{T} = p(T, V) \qquad \mu = \left(\frac{\partial U}{\partial n}\right)_{S, V} = \mu(S, V, n)$$

3 Basisformeln

$$dS = \frac{Q_{rev}}{T} + S_{prod}$$

$$dS = \frac{\delta Q_{rev}}{T}$$

$$F = U - TS$$

$$G = \frac{H - ST}{I}$$

$$W = -\int p \, dV$$

$$dS = \frac{Q_{rev}}{T} + S_{prod}$$

$$\Psi = \int_{1}^{2} T \, dS_{prod}$$

$$W_{ir} = \frac{T_{u}}{T} \Psi$$

$$p_{1} = p_{a} + \frac{\varphi_{1} - \varphi_{a}}{\varphi_{b} - \varphi_{a}} (p_{b} - p_{c})$$

6 Guggenheim

$$W_{ir} = \frac{T_u}{T} \Psi$$

$$p_1 = p_a + \frac{\varphi_1 - \varphi_a}{\varphi_b - \varphi_a} (p_b - p_a)$$

$$-S \quad U \quad V \quad U = U(S, V)$$

$$H \quad F \quad H = H(S, p)$$

$$-p \quad G \quad T \quad F = F(T, V)$$

$$G = G(T, p)$$

$$\underbrace{\frac{d}{dt}\left\{U+m\left(\frac{c^{2}}{2}+gz\right)\right\}}_{\text{Stationäres System -> 0}} = \underbrace{\sum_{j}\left[\dot{m}_{j}\left(h+\frac{c^{2}}{2}+gz\right)_{j}\right]}_{\text{Geschlossenes System -> 0}} + \underbrace{\sum_{l}\left(\dot{Q}_{t}\right)_{l}}_{\text{Keine Leistung -> 0}} + \underbrace{\sum_{l}\left(\dot{W}_{t}\right)_{i}}_{\text{Keine Volumenänderung -> 0}} + \underbrace{\sum_{l}\left(\dot{W}_{t$$

7 Maxwell

$$\left(\frac{\partial T}{\partial p}\right)_{S,n_j} = \left(\frac{\partial V}{\partial S}\right)_{p,n_j} \\
\left(\frac{\partial S}{\partial V}\right)_{T,n_j} = \left(\frac{\partial p}{\partial T}\right)_{V,n_j} \\
\left(\frac{\partial S}{\partial p}\right)_{T,n_j} = -\left(\frac{\partial V}{\partial T}\right)_{p,n_j} \\
\left(\frac{\partial \mu_i}{\partial T}\right)_{p,n_j} = -\left(\frac{\partial S}{\partial n_i}\right)_{T,p,n_j \neq n_i} \\
\left(\frac{\partial \mu_i}{\partial p}\right)_{T,n_i} = \left(\frac{\partial V}{\partial n_i}\right)_{T,p,n_i \neq n_i} \\$$

8 Ideales Gas

$$pV = mRT$$

$$pV = nR_mT$$

$$\beta = \frac{1}{T}$$

$$\gamma = \frac{1}{T}$$

$$\chi = \frac{1}{p}$$

$$\beta = p\gamma\chi$$

$$R_m = 8,3143 \left[\frac{kJ}{kmolK} \right]$$

$$R = c_p - c_v$$

$$R = \frac{R_m}{M}$$

$$U - U_0 = mc_v(T - T_0)$$

$$H - H_0 = mc_p(T - T_0) \leftarrow \text{Für } c_p \text{ und } c_v \text{ const.}$$

$$s - s_0 = R \ln \left(\frac{v}{v_0} \right) + c_v \ln \left(\frac{T}{T_0} \right)$$

$$= c_v \ln \left(\frac{p}{p_0} \right) + c_p \ln \left(\frac{v}{v_0} \right)$$

$$= c_p \ln \left(\frac{T}{T_0} \right) - R \ln \left(\frac{p}{p_0} \right)$$

$$\beta = \frac{1}{T} = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_p$$

$$\gamma = \frac{1}{T} = \frac{1}{p} \left(\frac{\partial P}{\partial T} \right)_v$$

$$\chi = \frac{1}{p} = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_T$$

$$u_2 - u_1 = \int_{T_1}^{T_2} c_v(T) dT$$

9 Van-der-Waals

$$\left(p + \frac{a}{v^2}\right)(v - b) = RT$$

$$\left(\overline{p} + \frac{3}{\overline{v^2}}\right)(3\overline{v} - 1) = 8\overline{T}$$

$$\overline{p} = \frac{p}{p_K}, \quad \overline{v} = \frac{v}{v_K}, \quad \overline{T} = \frac{T}{T_K}$$

$$p_K = \frac{a}{27b^2}, \quad T_K = \frac{8}{27}\frac{a}{b}\frac{1}{R}, \quad \overline{=} \mathcal{D}$$

$$a = 3p_K v_K^2, \quad b = \frac{v_K}{3}, \quad \frac{p_K v_K}{RT_K} = \frac{3}{8}$$

$$\beta = \frac{(v - b)Rv^2}{RTv^3 - 2a(v - b)^2}$$

$$\gamma = \frac{Rv^2}{RTv^3 - 2a(v - b)}$$

$$\chi = \frac{(v - b)^2 v^2}{RTv^3 - 2a(v - b)^2}$$

$$du = \frac{a}{v^2}dv + c_v(T)dT$$

$$u - u_0 = \left(\frac{a}{v_0} - \frac{a}{v}\right) + \int_{T_0}^T c_v(\tilde{T}) d\tilde{T}$$

$$u - u_0 = \left(\frac{a}{v_0} - \frac{a}{v}\right) + c_v(T - T_0) \leftarrow \text{für } c_v = \text{const.}$$

$$c_p - c_v = \frac{Tv\beta^2}{\chi}$$

$$s - s_0 = c_v \ln\left(\frac{T}{T_0}\right) + R\ln\left(\frac{v - b}{v_0 - b}\right)$$

10 Carnot

$$\eta_{th} = 1 - \frac{-Q_{34}}{Q_{12}} = 1 - \frac{T_3(S_3 - S_4)}{T_1(S_2 - S_1)} = 1 - \frac{T_3}{T_1}$$

$$\frac{Q_{12}}{T_1} + \frac{Q_{34}}{T_3} = 0$$

$$\Delta S_{ges} = -Q_{34} \left(\frac{1}{T_{KK}} - \frac{T_1}{T_3} \frac{1}{T_{HK}} \right)$$

11 Gemische Idealer Gase

$$\begin{split} \xi_i &= \frac{m_i}{m}, \quad \psi_i = \frac{n_i}{n}, \quad p_i = \psi_i p \\ \xi_i &= \frac{M_i n_i}{\sum_{k=1}^K M_k n_k} = \frac{M_i}{M_G} \psi \\ p_i V &= m_i R_i T, \quad p_i V = n_i R_m T, \quad p V = m R_G T \\ \sum_{k=1}^K p_k &= p \\ R_G &= \frac{1}{m} \sum_{k=1}^K m_k R_k = \sum_{k=1}^K \xi_k R_k \\ U_G &= \sum_{k=1}^K U_k = \sum_{k=1}^K m_k u_k = \sum_{k=1}^K c_{vk} m_k T \leftarrow c_v = \text{const} \\ H_G &= \sum_{k=1}^K H_k = \sum_{k=1}^K m_k h_k = \sum_{k=1}^K c_{pk} m_k T \leftarrow c_p = \text{const.} \\ c_{vG} &= \sum_{k=1}^K c_{vk} \xi_k, \quad c_{pG} &= \sum_{k=1}^K c_{pk} \xi_k \\ S_2 - S_1 &= R_m \left(n \ln n - \sum_{k=1}^K n_k \ln n_k \right) \end{split}$$

Adiabate Drosselung (ideal): $h + \frac{c^2}{2} + gz = \text{const.}$ dh = 0Adiabet Drosselung (real):

12 Nassdampf

$$v = (1-x)v' + xv''$$

$$v = v' + (v'' - v')x$$

$$T' = T''$$

$$p' = p''$$

$$g' = g''$$

$$dg' = v'dp' - s'dT'$$

$$dg'' = v''dp'' - s''dT''$$

$$dg'' = dg''$$

$$dg' = dg''$$

$$df = \frac{1}{T} \frac{h'' - h'}{v'' - v'}$$

$$s = s' + (s'' - s')x$$

$$\frac{dp}{dT} = \frac{1}{T} \frac{r}{v'' - v'}$$

$$r = h'' - h' = T(s'' - s')$$

13 Realer Stoff im Nassdampfgebiet

Isobare Zustandsänderung

$$q_{12} = T(s_2 - s_1)$$

$$= T(s'' - s')(x_2 - x_1)$$

$$w_{V,12} = -\int_1^2 p \, dv$$

$$= -p(v_2 - v_1) = -p(v'' - v')(x_2 - x_1)$$

Isochore Zustandsänderung

$$q_{12} = u_2 - u_1 = u_2^{'} + x_2 \left(u_2^{''} - u_2^{'}\right) - u_1^{'} - x_1 \left(u_1^{''} - u_1^{'}\right)$$

Adiabate Zustandsänderung

$$w_{V,12} = u_2 - u_1 = u_2^{'} + x_2 \left(u_2^{''} - u_2^{'}\right) - u_1^{'} - x_1 \left(u_1^{''} - u_1^{'}\right)$$

Entropieänderung wärend des Mischvorgangs

$$S_2 - S_2 = R_m \left(n \ln n - \sum_i n_i \ln n_i \right)$$

14 Maximale Arbeit und Exergie

Maxiaml nutzbare Arbeit → isentrop, reibungsfrei

 $1 \rightarrow 1'$: isentrop auf T_u $1' \rightarrow u$: isotherm auf u

$$\begin{split} -\dot{W}_{ex} &= -(\dot{W}_{t})_{rev} = -\frac{d}{dt} \left(U + m \left(\frac{c^{2}}{2} + gz \right) + p_{u}V - T_{u}S \right) \\ &+ \sum_{j=1}^{K} \left(\dot{m}_{j} \left(h + \frac{c^{2}}{2} + gz - T_{s} \right) \right) + \sum_{l=1}^{K} \left(1 - \frac{T_{u}}{T} \right) \dot{Q}_{l} \end{split}$$

Die Exergie der Enthalpie (offens, stationäres System)

$$-\dot{W}_{ex,1u} = \dot{m}(h_1 - h_u - T_u(s_1 - s_u))$$

Die Exergie der inneren Energie (geschlossenes, instationäres System)

$$-\dot{W}_{ex} = -\frac{d}{dt}(U + p_u V - T_u S)$$

$$-\dot{W}_{ex,1u} = U_1 - U_u - p_u(V_1 - V_u) - T_u(S_1 - S_u)$$

$$-\dot{W}_{ex,1u} = H_1 - (p_1 - p_u)V_1 - H_u - T_u(S_1 - S_u)$$

Für Ideales Gas

$$-W_{ex} = mc_v(T_1 - T_u) + p_u(V_1 - V_u) - T_u m \left(c_p \ln\left(\frac{T_1}{T_u}\right) - R_i \ln\left(\frac{p_1}{p_u}\right)\right)$$

Dampf/Luftdruckkammer

$$-W_{ex,1u} = m_1[u_1 - u_u + p_u(v_1 - v_u) - T_u(s_1 - s_u)]$$

Die Exergie der Wärme (geschlossenes, stationäres System)

$$-\dot{W}_{ex} = \left(1 - \frac{T_u}{T_1}\right)\dot{Q}_1 = \eta_{th,C}\dot{Q}_1$$

WärmekraftprozessWärmepumpenprozess

Kälteprozess

15 Wärmekapazität

$$C_{v,m} = \frac{1}{\kappa - 1} R_m \qquad C_{p,m} = \frac{\kappa}{\kappa - 1} r_m$$

$$c_v = \frac{1}{\kappa - 1} R_j \qquad c_p = \frac{\kappa}{\kappa - 1} R_j$$

$$\kappa = \frac{c_p}{c_v} \qquad R = c_p - c_v$$

$$R = \frac{R_m}{M} \qquad R_m = 8,3143 \left[\frac{kJ}{kmolK} \right]$$

$$C_{v,m} = \underbrace{3 + \frac{R_m}{2}}_{\text{Translatorisch}} + \underbrace{\frac{n_{\text{rot}}R_m}{2}}_{\text{Rotatorisch}} + \underbrace{\frac{R_M(3n_{\text{Atome}} - 3 - n_{rot})}{\text{Vibratorisch}}}_{\text{Relevant ab: } T \approx 10^4 K}$$

16 Technische Anwendung

adiabat $(c_p = const.)$	$W_{t,12} = mc_p(T_2 - T_1) = \frac{\kappa}{\kappa - 1}(p_2V_2 - p_1V_1)$	$Q_{12}=0$
reversibel adiabat $\kappa = const.$	$W_{t,12} = \frac{\kappa}{\kappa - 1} (p_1 V_1) \left[\left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} - 1 \right]$	$Q_{12}=0$
irreversibel adiabat als Polytrope $n > \kappa; n, \kappa = const.$	$W_{t,12} = \frac{\kappa}{\kappa - 1} (p_1 V_1) \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right]$	$Q_{12}=0$
reversibel polytrop $n, \kappa = const.$	$W_{t,12} = \frac{n}{n-1} (p_2 V_2 - p_1 V_1)$	$Q_{12} = mc_n(T_2 - T_1)$
	$= \frac{n}{n-1} mR(T_2 - T_1)$	$= \frac{n-\kappa}{(n-1)(\kappa-1)} (p_1 V_1) \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}-1} \right]$
	$= \frac{n}{n-1}(p_1V_1)\left[\left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} - 1\right]$	$c_n = \frac{n-\kappa}{n-1}cv$
isotherm	$W_{t,12} = (p_1 V_1) \ln \left(\frac{p_2}{p_2}\right)$	$Q_{12} = -W_{t,12}$

16.1 Kolbenverdichter

V1 = Maximales Zylindervolumen

V2 =Volumen nach Verdichtung

V3 =

V4 = Schädlicher Raum

$$\mu = \frac{V_1 - V_4}{V_1 - V_3}, \qquad \varepsilon_S = \frac{V_3}{V_1 - V_3}$$

$$\mu = 1 - \varepsilon_S \left[\left(\frac{p_2}{p_1} \right)^{\frac{1}{n}} - 1 \right]$$

$$W_{t,12} = \int_1^2 V \, dp$$

$$= \underbrace{p_2 V_2}_{Ausschiebearbeit} - \underbrace{p_1 V_1}_{Einschiebearbeit} - \int_1^2 p \, dV$$

$$= \frac{n}{n-1} p_1 (V_1 - V_4) \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - \right]$$

Verdichter Wirkungsgrad

$$\eta_{sV} = \frac{w_{t,12,rev}}{w_{t,12}} = \frac{h_{2,rev} - h_1}{h_2 - h_1}$$

Verdichter wirkungsgrad (Ideales Gas, $c_p = \text{const.}$)

$$n_{sV} = \frac{T_{2,rev} - T_1}{T_2 - T_1}$$

Technische Verlustarbeit

$$w_{t,Verl,12} = w_{t,12} - w_{t,12,rev} = h_2 - h_{2,rev}$$

= $\int_{2,rev}^{2} T|_{p_2 = const.} ds$

Ideales Gas

	Isothermo	Isobare	Isochore	Isentrop	Polytrope
konstant:	T	d	Λ	$\delta q = 0$	pv^n
	ı	ı	I	$p_1 v_1^K = p_2 v_2^K$	$v_1^n = p_2 v_2^n$
	$p_1p_2 = p_2v_2$	$\frac{v_1}{v_2} = \frac{T_1}{T_2}$	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$		$T_1 \nu_1^{n-1} = T_2 \nu_2^{n-1}$
	ı	1	$\mathcal{D}_{\bar{z}}$	$\frac{T_1^{\frac{K}{K-1}}}{p_1} = \frac{T_2^{\frac{K}{K-1}}}{p_2}$	$\frac{T_1^{n-1}}{p_1} = \frac{T_2^{n-1}}{p_2}$
p, ν	$p = \frac{p_1 v_1}{v}$	$p = p_1$	$\nu = \nu_1$	$p = \frac{p_1 v_1^{\kappa}}{v^{\kappa}}$	$p=rac{p_1 v_1^n}{v^n}$
p,T	$p = \frac{p_1 v_1}{v}$	$p = p_1$	$p = rac{p_1}{T_1}T$	$p = \frac{p_1}{T_1^{\frac{K}{K-1}}} T^{\frac{K}{K-1}}$	$p = rac{p_1}{T_1^{n-1}} T^{rac{n}{n-1}}$
ν, T	$T = T_1$	$ u = rac{ u_1}{T_1} T $	$\nu = \nu_1$	$T=rac{T_1 v_1^{\mathcal{K}-1}}{v^{\mathcal{K}-1}}$	$T = \frac{T_1 v_1^{n-1}}{v^{n-1}}$
q 12	$= p_1 v_1 \ln \frac{p_1}{p_2}$	$=c_p(T_2-T_1)$	$=c_{ u}(T_2-T_1)$	0 =	$=c_{\nu \frac{n-\kappa}{n-1}}(T_2-T_1)$
WV,12	$=-q_{12}$	$=-p_1(\nu_2-\nu_1)$	0 =	$= \frac{p_1 v_1}{k-1} \left[\left(\frac{v_1}{v_1} \right)^{K-1} - 1 \right]$	$= \frac{p_1 \nu_1}{n-1} \left[\left(\frac{\nu_1}{\nu_2} \right)^{n-1} - 1 \right]$
$s_2 - s_1$	$s_2 - s_1 = R \ln \left(\frac{p_1}{p_2} \right)$	$\left \; ight = c_p \ln \left(rac{T_2}{T_1} ight)$	$=c_ u \ln \left(rac{T_2}{T_1} ight) \;$	0 =	$=c_{rac{n-\kappa}{n-1}}\ln\left(rac{T_2}{T_1} ight)$

Van-Der-Waals-Gas

	Isotherme	Isobare	Isochore	Isentrop
konst.	T	d	Λ	$\delta = 0$
	$(p_1 + rac{a}{v^2})(v_1 - b) = (p_2 + rac{a}{v^2})(v_2 - b)$	$\frac{RT_1}{v_1 - b} - \frac{a}{v_1^2} = \frac{RT_2}{v - b} - \frac{a}{v_2^2}$	$\frac{p_1 + \frac{a}{2}}{T_1} = \frac{p_2 + \frac{a}{\sqrt{2}}}{T_2}$	$(p_1 + rac{a}{v^2})(v_1 - b)rac{c_{v} + R}{c_{v}} = (p + rac{a}{v^2})(v_2 - b)rac{c_{v} + R}{c_{v}}, \ T_1(v_1 - b)^{R/c_{v}} = T_2(v_2 - b)^{R/c_{v}}$
p, v	$p = (p + \frac{a}{v^2}) \frac{v_u}{v - b} - \frac{a}{v^2}$	$p = p_1$	$v = v_1$	$p = -\frac{a}{v^2} + \left(p_1 + \frac{a}{v^2}\right) \left(\frac{v_1 - b}{v_m}\right)^{\frac{v_v + R}{R}}$
p,T	$T=T_1$	$p = p_1$	$p = \frac{T}{T_1}(p_1 + \frac{a}{v^2}) - \frac{a}{v_1^2}$	$p = -\frac{a}{v^2} + \left(p_1 + \frac{a}{v^2}\right) \left(\frac{T}{T_1}\right)^{\frac{c_V + R}{R}}$
ν, T	$T=T_1$	$T = T_1 \frac{v - b}{v_1 - b} + \frac{a}{R}(v - b) \left(\frac{1}{v^2} - \frac{1}{v_1^2}\right)$	$\nu = \nu_1$	$T=T_1\left(rac{ u_1-b}{ u-b} ight)^{rac{R}{c_{ m V}}}$
<i>q</i> 12	$=RT_1\ln\left(rac{ u_2-b}{ u_1-b} ight)$	$= rac{a}{ u_1} - rac{a}{ u_2} + c_ u (T_2 - T_1) + p_1 (u_2 - u_1) \ = c_ u (T_2 - T_1)$		0 =
WV,12	$= -RT_1 \ln \left(\frac{v_2 - b}{v_1 - b} \right) + \frac{a}{v_1} - \frac{a}{v_2}$	$=-p_1(v_2-v_1)$	=0	$= \frac{a}{v_1} - \frac{a}{v_2} + c_v (T_2 - T_1)$
$s_2 - s_1$	$s_2 - s_1 \mid = R \ln \left(\frac{v_2 - b}{v_1 - b} \right)$	$=c_{ u}\ln\left(rac{T_{2}}{T_{1}} ight)+R\ln\left(rac{ u_{2}-b}{ u_{1}-b} ight)$	$=c_{ u}\ln\left(rac{T_{2}}{T_{1}} ight)$	0 =

p [bar]	h' [kJ/kg]	h" [kJ/kg]	s' [kJ/(kgK)]	s" [kJ/(kgK)]
0,01	29,3	2513,3	0,1058	8,9732
0,03	101,0	2544,7	0,3543	8,5754
90,0	151,4	2566,7	0,5207	8,3283
0,08	173,8	2576,3	0,5922	8,2266
0,10	191,7	2583,9	0,6489	8,1480
0,30	289,1	2624,4	0,9435	7,7657
0,50	340,4	2644,7	1,0906	7,5903
0,80	391,6	2664,3	1,2325	7,4300
1,00	417,4	2673,8	1,3022	7,3544
2,00	504,6	2704,6	1,5295	7,1212
3,00	561,3	2723,2	1,6711	6,9859
4,00	604,5	2736,5	1,7758	6,8902
900,9	670,2	2755,2	1,9301	6,7555
8,00	720,6	2768,0	2,0448	6,6594
10 00	2 692	2777 5	2 1372	6 5843