Билеты к коллоквиуму по математическому анализу

VG6

11 неделя 2025

Содержание

1	Введение		
	1.1	Комплексные числа. Действия над ними. Геометрическое представлние. Алгебраическая и триганометрическая форма записи комплексных чисел. Формула Эйлера, определение e^z через действительную экспоненту и действи-	
		тельные триганометрические функции	3
		1.1.1 Определение и свойства	3
		1.1.2 Арифметические операции	3
		1.1.3 Геометрическое представление	4
		1.1.4 Тригонометрическая форма	4
		1.1.5 Формула Эйлера	4
	1.2	Возведение в степень и извлечение корня из комплексных чисел. Форула	4
	1.2	Муавра	4
		1.2.1 Формула Де-Муавра	4
		1.2.1 Формула де-муавра	4
	1.3	Неравенство треугольника для действительных и комплексных чисел, гео-	4
	1.0	метрическое и алгебраическое доказательства	5
		1.3.1 Неравенство треугольника	5
	1.4	Метод математической индукции (ММИ). Прямая индукция. Формула Би-	0
	1.1	нома Ньютона	6
		1.4.1 Метод математической индукции (ММИ)	6
		1.4.2 Бином Ньютона	6
	1.5	ММИ. Обратная индукция. Неравенство между средним арифметическим и	Ü
	1.0	средним геометрическим	7
		ородины гоомогри псеким.	•
2	Дей	иствительные чсла. Числовые множества.	9
	2.1	Дедекиндовы сечения. Определение действительных чисел по Дедекинду.	
		Полнота \mathbb{R} по Дедекинду. (Полноты я не нашёл)	9
		2.1.1 Неполнота рациональных чисел	9
		2.1.2 Ограничение на количество элементов центрального класса	11
		2.1.3 Действительные числа	11
	2.2	Лемма об отделимости	12
	2.3	Точная верхняя и нижняя грани ограниченных множеств из В. Теорема	
		Вейерштрасса о существовании точной верхней грани ограниченного свер-	
		ху множества как следствие леммы об отделимости (принцип полноты В по	
		Вейерштрассу)	12
	2.4	Последовательности стягивающихся отрезков с действительными концами.	
		Теорема Кантора о стягивающихся отрезках с действительными концами	
		(принцип полноты (В) по Кантору)	13

	2.5	Полнота К по Дедекинду как следствие принципа стягивающихся отрезков.	13
	2.6	Счётность множества, рациональных чисел и несчётность множества дей-	
		ствительных чисел	13
3	Пос	следовательность и ряды.	13
	3.1	Свойства сходящихся последовательностей (сходимость постоянной после-	
		довательности, единственность предела, ограниченность сходящейся после-	
		довательности).	13
		3.1.1 Предел последовательности	13
	3.2	Сходимость постоянной последовательности	13
		3.2.1 Теорема о единственности предела	13
		3.2.2 Ограниченные и сходящиеся последовательности	14
	3.3	Предельный переход в неравенствах для последовательностей	15
	3.4	Теорема о зажатой последовательности (о трёх последовательностях)	15
	3.5	Теоремы о сохранении знака сходящейся последовательностью и о сходимо-	
		сти модулей	15
	3.6	Бесконечно малые последовательности, их свойства	15
	3.7	Бесконечно большие последовательности. Связь бесконечно малых и беско-	
		нечно больших последовательностей	17
	3.8	Арифметические свойства сходящихся последовательностей	17
	3.9	Монотонные последовательности. Критерий сходимо	17
	3.10	Число е как предел последовательности	17
	3.11	Теорема Больцано-Вейерштрасса	18
	3.12	Частичные пределы. Критерий частичного предела.	19
	3.13	Критерий Коши существования предела последовательности	19
		3.13.1 Фундоментальные последовательности	20
	3.14	Существование верхнего и нижнего пределов у любой последовательности	20
	3.15	Числовые ряды. Абсолютная и условная сходимость числовых рялов. Крите-	
		рий Коши сходимости ряда. Необходимое условие сходимости ряда. Признак	
		сравнения	21
		3.15.1 Определения и элементарные факты	21
		3.15.2 Теорема 1	22
		3.15.3 Теорема 2. Критерий Коши о сходимости ряда	22
		3.15.4 Следствие 1. Изменение конечного числа членов ряда не	
		влияет на сходимость	22
	3.16	Следствие 2. Необходимое условие сходимости ряда	22
	3.17	Абсолютно сходящийся ряд	23
		3.17.1 Теорема 1. Если ряд сходится абсолютно, то ряд сходится	23
		3.17.2 Определение	23
		3.17.3 Теорема 2	24
		3.17.4 Теорема 3. Признак сравнения	24
		3.17.5 Следствие. (Признак сравнения)	24
	3.18	Признаки абсолютной сходимости рядов Даламбера и Коши	25
		3.18.1 Теорема 4. Признак Коши	25
	3.19	Критерий Коши сходимости ряда с монотонными членами. Исследование	
		сходимости ряда $\sum_{n=1}^{\infty} \frac{1}{n^p}, \ p > 0$	27

1 Введение

- 1.1 Комплексные числа. Действия над ними. Геометрическое представлние. Алгебраическая и триганометрическая форма записи комплексных чисел. Формула Эйлера, определение e^z через действительную экспоненту и действительные триганометрические функции.
- 1.1.1 Определение и свойства

Определение. Комплексными числами называются числа вида z=x+iy, где $x,y\in\mathbb{R},$ а i — мнимая единица, обладающая свойством $i^2=-1$.

- \bullet $x=\mathrm{Re}\,z-$ действительная часть числа z.
- $y = \operatorname{Im} z$ мнимая часть числа z.
- Если y = 0, то z = x действительное число.
- Число $\overline{z} = x iy$ называется комплексно-сопряжённым к z.

Свойство:
$$z \cdot \overline{z} = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 - i^2y^2 = x^2 + y^2$$
.

Важное примечание

Нельзя сравнивать комплексные числа операциями $<,>,\leq,\geq!$

1.1.2 Арифметические операции

Пусть $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$.

- 1. Сложение/Вычитание: $z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$
- 2. Умножение:

$$z_1 \cdot z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

3. Деление:

$$\frac{z_1}{z_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)} = \frac{(x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2)}{x_2^2 + y_2^2}$$

3

1.1.3 Геометрическое представление

1.1.4 Тригонометрическая форма

$$z = r(\cos\phi + i \sin\phi), \ r = |z|$$

$$z_1 \cdot z_2 = r_1 \cdot r_2 \cdot (\cos(\phi_1 + \phi_2) + i \sin(\phi_1 + \phi_2))$$
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\phi_1 - \phi_2) + i \sin(\phi_1 - \phi_2))$$

1.1.5 Формула Эйлера

$$e^{i\phi} = \cos\phi + i\sin\phi$$

$$e^z = e^{x+iy} = e^x \cdot e^{iy} = e^x \cdot (\cos y + i \cdot \sin y)$$

Действительная часть: $Re~e^z=e^x\cos y$

Мнимая часть: $Im e^z = e^x \sin y$

1.2 Возведение в степень и извлечение корня из комплексных чисел. Форула Муавра.

1.2.1 Формула Де-Муавра

$$(\cos\phi+i\,\sin\phi)^k=\cos\,k\phi+i\,\sin\,k\phi$$

1.2.2 Комплексные корни

$$\begin{split} \sqrt[n]{z} &= \omega \\ \omega^n &= z, z \neq 0 \\ z &= r e^{i\phi}, \omega = \rho e^{i\Psi} \\ \omega^n &= \rho^n e^{in\Psi} = z = r e^{i\phi} = r e^{i(\phi + 2\pi k)} \end{split}$$

$$\rho^n = r \Rightarrow \rho = \sqrt[n]{r}$$

$$n\Psi = \phi + 2\pi k \Rightarrow \Psi = \frac{\phi}{n} + \frac{2\pi}{n}k$$

Корни будут образовывать правильный многоугольник.

1.3 Неравенство треугольника для действительных и комплексных чисел, геометрическое и алгебраическое доказательства.

1.3.1 Неравенство треугольника

Рис. 1: Геометрический смысл неравенства треугольника: длина стороны $|\vec{a} + \vec{b}|$ не превосходит суммы длин сторон $|\vec{a}| + |\vec{b}|$.

Теорема (Неравенство треугольника): Для любых комплексных чисел z_1, z_2 справедливо:

$$|z_1 + z_2| \le |z_1| + |z_2|$$

Доказательство

$$|a+b| \leq |a| + |b|$$

1.
$$a \ge 0 \ (|a| \ge |b|)$$
 $a+b \ge 0$, to $|a+b| = a+b$. $a+b \le 0$, to $|a+b| = -(a+b) = -a-b \le |a|+|b|$

2.
$$|a-b| \ge ||a|-|b||$$
 $a=(a-b)+b$ по н.т.: $|a+0| \le |a-b|+|b| \Rightarrow |a-b| \ge |a|-|b|$

Аналогично
$$|b| \le |b-a| + |a| \Rightarrow |a-b| \ge |b| - |a|$$
 Получим, что
$$\begin{cases} |a-b| \ge |a| - |b| \\ |a-b| \ge |-(|a|-|b|) \end{cases} \Rightarrow |a-b| \ge ||a| - |b||$$

Следствие

$$||z_1| - |z_2|| \le |z_1 \pm z_2| \le |z_1| + |z_2|$$

1.4 Метод математической индукции (ММИ). Прямая индукция. Формула Бинома Ньютона

1.4.1 Метод математической индукции (ММИ)

Алгоритм доказательства по индукции:

- 1. **База индукции:** Проверить утверждение для n=1.
- 2. **Индукционное предположение:** Предположить, что утверждение верно для n=k.
- 3. **Индукционный переход:** Доказать, что из этого следует верность утверждения для n = k + 1 (Прямая индукция).

1.4.2 Бином Ньютона

Определение.

Биномиальный коэффициент:
$$C_n^k = \frac{n!}{k!(n-k)!}$$
, где $n, k \in \mathbb{N}_0$

Формула бинома Ньютона:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$$

Доказательство по ММИ

База индукции: Для n=1:

$$(a+b)^1 = a+b$$

$$\sum_{k=0}^{1} C_1^k a^{1-k} b^k = C_1^0 a^1 b^0 + C_1^1 a^0 b^1 = 1 \cdot a \cdot 1 + 1 \cdot 1 \cdot b = a + b$$

База индукции доказана.

Индукционное предположение: Предположим, формула верна для n=m:

$$(a+b)^m = \sum_{k=0}^m C_m^k a^{m-k} b^k$$

Индукционный переход: Докажем для n=m+1. Рассмотрим левую часть:

$$(a+b)^{m+1} = (a+b) \cdot \sum_{k=0}^{m} C_m^k a^{m-k} b^k$$

Раскроем скобки:

$$= \sum_{k=0}^{m} C_{m}^{k} a^{m+1-k} b^{k} + \sum_{k=0}^{m} C_{m}^{k} a^{m-k} b^{k+1}$$

Во второй сумме сделаем замену индекса j = k + 1:

$$= \sum_{k=0}^{m} C_m^k a^{m+1-k} b^k + \sum_{j=1}^{m+1} C_m^{j-1} a^{m+1-j} b^j$$

Теперь объединим суммы, выделяя крайние слагаемые:

$$= C_m^0 a^{m+1} + \sum_{k=1}^m \left[C_m^k + C_m^{k-1} \right] a^{(m+1)-k} b^k + C_m^m b^{m+1}$$

Используем свойство биномиальных коэффициентов:

$$C_m^k + C_m^{k-1} = C_{m+1}^k$$

Учитывая, что $C_m^0=C_{m+1}^0=1$ и $C_m^m=C_{m+1}^{m+1}=1$, получаем:

$$(a+b)^{m+1} = \sum_{k=0}^{m+1} C_{m+1}^k a^{(m+1)-k} b^k$$

Индукционный переход завершён.

1.5 ММИ. Обратная индукция. Неравенство между средним арифметическим и средним геометрическим.

Неравенство о средних

Теорема (Неравенство между средним арифметическим и средним геометрическим): Для любых $a_1, a_2, \ldots, a_n \ge 0$ справедливо:

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

Равенство достигается тогда и только тогда, когда $a_1 = a_2 = \cdots = a_n$.

Доказательство по ММИ (метод Коши / метод обратой индукции)

Докажем теорему в три этапа.

1. База индукции для степеней двойки $(n=2^m)$.

• Для
$$n=2$$
: Докажем $\frac{a_1+a_2}{2} \ge \sqrt{a_1a_2}$.

$$(a_1 - a_2)^2 \ge 0 \Rightarrow a_1^2 - 2a_1a_2 + a_2^2 \ge 0 \Rightarrow a_1^2 + 2a_1a_2 + a_2^2 \ge 4a_1a_2 \Rightarrow$$
$$\Rightarrow (a_1 + a_2)^2 \ge 4a_1a_2 \Rightarrow \frac{a_1 + a_2}{2} \ge \sqrt{a_1a_2}$$

- Предположим, неравенство верно для n = k.
- Докажем для n = 2k:

$$\frac{a_1 + \dots + a_{2k}}{2k} = \frac{\frac{a_1 + \dots + a_k}{k} + \frac{a_{k+1} + \dots + a_{2k}}{k}}{2} \ge$$

$$\ge \frac{\sqrt[k]{a_1 \dots a_k} + \sqrt[k]{a_{k+1} \dots a_{2k}}}{2} \ge \sqrt{\sqrt[k]{a_1 \dots a_k} \cdot \sqrt[k]{a_{k+1} \dots a_{2k}}} = \sqrt[2k]{a_1 \dots a_{2k}}$$

2. Докажем, что если неравенство верно для n, то оно верно и для n-1. Рассмотрим $a_1, a_2, \ldots, a_{n-1} \geq 0$. Пусть

$$a_n = \frac{a_1 + a_2 + \dots + a_{n-1}}{n-1}$$

Для набора из n чисел неравенство верно:

$$\frac{a_1 + \dots + a_{n-1} + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_{n-1} a_n}$$

Подставим a_n :

$$\frac{(a_1 + \dots + a_{n-1}) + \frac{a_1 + \dots + a_{n-1}}{n-1}}{n} = \frac{a_1 + \dots + a_{n-1}}{n-1} = a_n$$

Таким образом:

$$a_n \ge \sqrt[n]{a_1 a_2 \dots a_{n-1} a_n}$$

Возведём в степень n:

$$a_n^n \ge a_1 a_2 \dots a_{n-1} a_n \Rightarrow a_n^{n-1} \ge a_1 a_2 \dots a_{n-1}$$

Извлекая корень (n-1)-й степени:

$$a_n \ge \sqrt[n-1]{a_1 a_2 \dots a_{n-1}} \Rightarrow \frac{a_1 + \dots + a_{n-1}}{n-1} \ge \sqrt[n-1]{a_1 a_2 \dots a_{n-1}}$$

- 3. Завершение доказательства. Мы доказали, что:
 - 1. Неравенство верно для n=2 (а значит, для n=4,8,16,...)
 - 2. Из верности для n следует верность для n-1

Следовательно, неравенство верно для любого натурального n.

- 2 Действительные чсла. Числовые множества.
- 2.1 Дедекиндовы сечения. Определение действительных чисел по Дедекинду. Полнота \mathbb{R} по Дедекинду. (Полноты я не нашёл)
- 2.1.1 Неполнота рациональных чисел.

$$r=\frac{p}{q}, p\in\mathbb{Z}, q\in\mathbb{N}$$

Дробь можно сделать несократимой.

Пусть
$$(\frac{p}{q})^2=2$$
 - несократимая дробь $\Rightarrow p^2=2q^2\Rightarrow p=2k$ (р - чётное число) $k^2=2q^2\Rightarrow q^2=2k^2\Rightarrow$ q - чётное число

т.к. дробь несократимая, а числитель и знаменатель чётные, то она на самом деле сократимая. Противоречие!

Значит это число нельзя представить рациональной дробью.

Если на оси отметить все рациональные числа точками, то $\sqrt{2}$ - будет выколотой точкой.

Отрезки

$$I_n = [a_n, b_n] = \{r \in \mathbb{Q} \mid a_n \le r \le b_n\},$$
 где $a_n, b_n \in \mathbb{Q}$

Будем считать, что $\forall n[a_{n+1},b_{n+1}]\subset [a_n,b_n]$ - вложенные отрезки. Это значит, что $a_n\leq a_{n+1}\leq b_{n+1}\leq b_n$ и следующий отрезок меньше предыдущего.

$$b_n - a_n \xrightarrow{n \to \infty} 0$$
 - стягивающиеся отрезки.

Дальше будем подразумеваться, что все последовательности $\{I_n\}$ - вложенные и стягивающиеся в точку.

9

Что нам дают такие отрезки: $\forall r$

$$\exists n : r < a_n \Rightarrow \forall m > n : r < a_m \tag{1}$$

$$\exists n : r > b_n \Rightarrow \forall m > n : r > b_m \tag{2}$$

$$\forall n : a_n \le r \le b_n \tag{3}$$

- 1. левый класс для $\{I_n\}$ (всегда не пуст)
- 2. правый класс для $\{I_n\}$ (всегда не пуст)

3. центральный класс для $\{I_n\}$ (может быть пустым учитывая $r \in \mathbb{Q}$). Не может содержать более 1 Q числа.

Слово "класс"подразумевает множество.

Дедекиндово сечение - множество рациональных чисел (Q) порождённое последовательностью $\{I_n\}$.

Тогда каждому действительному числу будет соответствовать своё дедекиндово сечение.

Определение

 $\{I_n\}$ и $\{I_n``\}$ - эквиваленты, если они порождают одинаковые разбиения на классы

Теорема 1

 $\{I_n\}\sim$ эквивалентна $\{I_n`\}\Leftrightarrow$

1.
$$\forall n \ a_n - a_n' \xrightarrow{n \to \infty} 0$$

2.
$$\forall na_n \leq b_n', \ a_n' \leq b_n$$

Доказательство Т1

Только п.1.

$$\Rightarrow$$
: $\{I_n\} \sim \{I_n'\} \Rightarrow a_n - a_n' \rightarrow 0$

от противного: тогда
$$a_n - a_n$$
 $\rightarrow 0 \Leftrightarrow$

$$\exists \varepsilon > 0 : \ \forall N \ \exists n > N \ |a_n - a_n`| \ge \varepsilon$$

 \Rightarrow для бесконечно многих номеров либо a_n-a_n , $> \varepsilon$, либо a_n , $-a_n > \varepsilon$ Пусть для бесконечно многих номеров a_n-a_n , $> \varepsilon$

$$\exists n_{arepsilon}$$
 длина $[a_n`,b_n`]<rac{arepsilon}{2}$

$$b_n' - a_n' \to 0 \ \exists n_{\varepsilon} : \ \forall n > n_{\varepsilon} \ |b_n' - a_n'| < \frac{\varepsilon}{2}$$

Т.к. $\exists r \in [b_n, a_n]$, то она принадлежит правому классу $\{I_n\}$ и левому классу $\{I_n\}$. Последовательности не эквивалентны.

$$\Leftarrow: a_n - a_n$$
, $\xrightarrow{n \to \infty} 0 \Rightarrow \{I_n\} \sim \{I_n\}$

От противного: пусть $\{I_n\} \nsim \{I_n'\}$, то есть $\exists r \in Q \ r$ из левого класса для одной и центрального или правого класса другой.

г из левого класса $\{I_n\}\exists n: r < a_n$

і.
г из правого класса
$$\{I_n`\} \Rightarrow \exists n`: \forall n > n` \ a_n` \leq b_n` < r < a_n \leq a_m$$

іі. г из центрального класса
$$\{I_n'\}$$
 $\exists n: r < a_n$ Пусть $\varepsilon = a_n - r(>0)$ $\exists n_\varepsilon: \forall m > n_\varepsilon |b_m' - a_m'| < \frac{\varepsilon}{2} \Rightarrow [a_m', b_m']$ на расстоянии не меньше $\frac{\varepsilon}{2}$

2 вариант доказательства в обратную сторону.

$$\Leftarrow: a_n - a_n, \xrightarrow{n \to \infty} 0 \Rightarrow \{I_n\} \sim \{I_n\}$$

а) совпадение левых классов r \in левый класс для $\{I_n\}$

 $\exists n : r < a_n$

 $\exists n_{arepsilon}: \forall n>n_{arepsilon}\ |a_n-a_n`|<rac{arepsilon}{2} \Rightarrow r< a_n`\Rightarrow r\ \in$ левый класс для $\{I_n`\}$

б) правые классы аналогично

2.1.2 Ограничение на количество элементов центрального класса.

Если г из центрального класса, то $\forall n: a_n \leq r \leq b_n$

А если $\exists r`, r \in$ центральный класс r < r`, то $a_n \le r < r` \le b_n$. Тогда длина отрезка не может быть меньше длины отрезка [r, r`] значит она не стремится к 0.

В центральном классе может быть либо 1 число либо 0.

Пример 2-х последовательностей стягивающихся к 0

$$\{I_n\}=[rac{1}{2n},rac{1}{2n}]$$
 $\{I_n`\}=[rac{1}{2n+1},rac{1}{2n+1}]$ $\{I_n``\}=[0,rac{1}{2n+1}]$ Они определяют 1 и то же число.

Пример 2-х последовательностей стягивающихся к $\sqrt{2}$

$$\left[\sqrt{2} - \frac{1}{n}, \sqrt{2} + \frac{1}{n}\right]$$

2.1.3 Действительные числа

Действительные числа - это вложенные стягивающиеся отрезки с рациональными концами. Числа равны, если последовательность $\{I_n\} \sim \{I_n'\}$

Действительные число - отождествляется с дедекиндовым сечением, порождённым $\{[a_n,b_n]\}$. Числа равны, если последовательность $\{[a_n,b_n]\} \sim \{[a_n',b_n']\}$

Ограничение на количество элементов центрального класса.

Если г из центрального класса, то $\forall n: a_n \leq r \leq b_n$

A если $\exists r`, r \in$ центральный класс r < r`, то $a_n \leq r < r` \leq b_n$. Тогда длина отрезка не

может быть меньше длины отрезка [r, r'] значит она не стремится к 0. В центральном классе может быть либо \ddot{e} число либо 0.

Пример 2-х последовательностей стягивающихся к 0

$$\{I_n\}=[rac{1}{2n},rac{1}{2n}]$$
 $\{I_n`\}=[rac{1}{2n+1},rac{1}{2n+1}]$ $\{I_n``\}=[0,rac{1}{2n+1}]$ Они определяют 1 и то же число.

Пример 2-х последовательностей стягивающихся к $\sqrt{2}$

$$[\sqrt{2} - \frac{1}{n}, \sqrt{2} + \frac{1}{n}]$$

- 2.2 Лемма об отделимости.
- 2.3 Точная верхняя и нижняя грани ограниченных множеств из В. Теорема Вейерштрасса о существовании точной верхней грани ограниченного сверху множества как следствие леммы об отделимости (принцип полноты В по Вейерштрассу).

Принцип полноты множества по Вейерштрассу Принцип полноты множества по Вейерштрассу означает, что любое ограниченное сверху множество имеет точную верхнюю грань

Определение $\{a_n\}$ монотонна, если возрастает/ строго возрастает/убывает/строго убывает.

Теорема по Вейерштрассу

- 1. $\{a_n\} \uparrow \Rightarrow a_n \to \sup\{a_n\}$
- 2. $\{a_n\} \downarrow \Rightarrow a_n \to \inf\{a_n\}$

Определение $sup\{a_n\}$ - это sup множества членов последовательности.

Доказательство полноты \mathbb{R} по Вейерштрассу

Доказательство

1. Ограничено сверху $\exists M: \forall na_n \leq M \Rightarrow \exists sup\{a_n\} = M \in \mathbb{R}$ По определению предела $\forall \varepsilon > 0 \exists n_\varepsilon: \forall n > n_\varepsilon | a_n - M | < \varepsilon$ $\Leftrightarrow M - \varepsilon < a_n < M + \varepsilon$ т.к. $M = sup\{a_n\}$, то $a_n \leq M$ надо проверить $M - \varepsilon < a_n \leq M$

М - наименьшая верхняя грань $\Rightarrow \exists n_{\varepsilon}: \forall n>n_{\varepsilon} ~~M-\varepsilon \leq a_{n_{\varepsilon}} \leq a_{n} \leq M$

т.е. по определению

$$M = \lim_{n \to \infty} a_n$$

Следствие $\{a_n\}$ - монотонна $\{a_n\}$ - сходится $\Leftrightarrow \{a_n\}$ - ограничена.

- 2.4 Последовательности стягивающихся отрезков с действительными концами. Теорема Кантора о стягивающихся отрезках с действительными концами (принцип полноты (R) по Кантору).
- 2.5 Полнота К по Дедекинду как следствие принципа стягивающихся отрезков.
- 2.6 Счётность множества, рациональных чисел и несчётность множества действительных чисел.
- 3 Последовательность и ряды.
- 3.1 Свойства сходящихся последовательностей (сходимость постоянной последовательности, единственность предела, ограниченность сходящейся последовательности).
- 3.1.1 Предел последовательности

Определение. Число a называется npedeлом $nocnedoв ameльности <math>\{a_n\}$, если

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall n > N_{\varepsilon} : |a_n - a| < \varepsilon$$

Обозначение: $\lim_{n\to\infty} a_n = a$ или $a_n \to a$ при $n \to \infty$.

3.2 Сходимость постоянной последовательности

Теорема 1. Если $\exists N : \forall n > N \ a_n = a \Rightarrow a_n \rightarrow a$

Доказательство

$$\forall \varepsilon > 0 \ \forall n > N \ |a_n - a| = 0 < \varepsilon \Rightarrow a_n \to a$$

по определению

Теорема 2. Если $a_n \to a$, $b_n \to b$ $\forall n > N$ $a_n \le b_n \Rightarrow a \le b$

Доказательство

От противного:

Пусть a < b

НАДО ПОСМОТРЕТЬ ПРЕДЫДУЩИЕ ЛЕКЦИИ. ЭТО ОТТУДА.

3.2.1 Теорема о единственности предела.

Теорема: Последовательность не может иметь более одного предела.

Доказательство теоремы

Доказательство от противного: Предположим, что последовательность $\{a_n\}$ имеет два различных предела: $a_n \to A$ и $a_n \to B$, где $A \neq B$. Пусть $\varepsilon = \frac{|A-B|}{4} > 0$. Тогда по определению предела:

- $\exists N_1 : \forall n > N_1 : |a_n A| < \varepsilon$
- $\exists N_2 : \forall n > N_2 : |a_n B| < \varepsilon$

Возьмём $n > \max(N_1, N_2)$. Тогда выполняются оба неравенства. Оценим разность |A - B|:

$$|A - B| = |(A - a_n) + (a_n - B)| \le |A - a_n| + |a_n - B| < \varepsilon + \varepsilon = 2\varepsilon = \frac{|A - B|}{2}$$

Получили противоречие: $|A-B|<\frac{|A-B|}{2}$. Следовательно, наше предположение неверно, и предел единственен.

3.2.2 Ограниченные и сходящиеся последовательности

Определение $\{a_n\}$ ограничена, если $\exists M > 0 : \forall n \ |a_n| < M, \ a_n, M, n \in Q$

Определение $\{a_n\}$ не ограничена, если $\forall M>0: \exists n \ |a_n|\geq M, \ a_n, M, n\in Q$

Теорема 2 Любая сходящаяся последовательность ограничена Если $\{a_n\}$ сходиться $\Rightarrow \{a_n\}$ ограничена

Доказательство Т2

$$arepsilon:=1\ \exists N: \forall n>N\ |a_n-a|<1\Leftrightarrow -1< a_n-a<1\Leftrightarrow a-1< a_n< a+1$$

$$M:=\max\{|a_1|,|a_2|,...,|a_N|,|a-1|,|a+1|\}+1$$
 $\Rightarrow \{a_n\}$ - ограничена (сверху)

Определение $\{a_n\}$ ограничена сверху, если $\exists M : \forall n \ a_n < M$

Определение $\{a_n\}$ ограничена снизу, если $\exists m : \forall n \ a_n < m$

Пример:

- $1. \ \left\{ \cos n \right\} \ \left| \cos n \right| \le 1$
- 2. $\{n\}$ ограничена снизу но не сверху (0, 1, ...)

- 3.3 Предельный переход в неравенствах для последовательностей.
- 3.4 Теорема о зажатой последовательности (о трёх последовательностях).
- 3.5 Теоремы о сохранении знака сходящейся последовательностью и о сходимости модулей.
- 3.6 Бесконечно малые последовательности, их свойства.

Определение Бесконечно малые последовательности

$$\{\alpha_n\}\ (\forall n,\alpha_n\in Q)$$
 бесконечно малая, если $\alpha_n\xrightarrow{n\to\infty}0$

Теорема 3

Если
$$a_n \to a \Leftrightarrow a_n = a + \alpha_n$$
, где $\{\alpha_n\}$ - б.м.

Доказательство Т3

 \Rightarrow :

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n > n_{\varepsilon} \ |a_n - a| < \varepsilon$$

Пусть
$$|a_n - a| = \alpha_n \Rightarrow a_n = a + \alpha_n$$

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n > n_{\varepsilon} \ |a_n - a| = |\alpha_n - 0| < \epsilon \Leftrightarrow \alpha_n \xrightarrow[n \to \infty]{} 0$$

 \Leftarrow :

$$\{\alpha_n\}$$
 - б.м., т.е. $\forall \varepsilon > 0 \ \exists n_\varepsilon : \forall n > n_\varepsilon \ \varepsilon > |\alpha_n| = |a_n - a| \Leftrightarrow a_n \xrightarrow[n \to \infty]{} a$

Теорема 4

- 1. $\{\alpha_n\}$ и $\{\beta_n\}$ б.м. $\Rightarrow \{\alpha_n \pm \beta_n\}$ б.м.
- 2. $\{\alpha_n\}$ б.м. и $\{\beta_n\}$ ограничена $\Rightarrow \{\alpha_n\cdot\beta_n\}$ б.м.

Доказательство Т4: Предел суммы/разности б.м. последовательностей

Доказательство:

- I Требуется доказать, что $\forall \varepsilon > 0 \; \exists n_{\varepsilon} \in \mathbb{N} : \forall n > n_{\varepsilon} \; |\alpha_n \pm \beta_n| < \varepsilon$.
 - 1. Зафиксируем произвольное $\varepsilon > 0$.
 - 2. Так как $\{\alpha_n\}$ б.м., то для числа $\frac{\varepsilon}{2}>0$ найдётся номер n_ε' такой, что: $\forall n>n_\varepsilon' \quad |\alpha_n|<\frac{\varepsilon}{2}$
 - 3. Аналогично $\forall n > n_{\varepsilon}'' \quad |\beta_n| < \frac{\varepsilon}{2}$
 - 4. Выберем номер $n_{\varepsilon} = \max\{n'_{\varepsilon}, n''_{\varepsilon}\}$. Тогда для всех $n > n_{\varepsilon}$ будут выполняться **оба** неравенства из пунктов (2) и (3).

5. Оценим модуль суммы (или разности) для всех $n > n_{\varepsilon}$, используя неравенство треугольника:

$$|\alpha_n \pm \beta_n| \le |\alpha_n| + |\beta_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Так как $\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n > n_{\varepsilon} \ |\alpha_n \pm \beta_n| < \varepsilon$, то по определению последовательность $\{\alpha_n \pm \beta_n\}$ является бесконечно малой.

II
$$\beta_n$$
 - ограничена $\Rightarrow \exists M>0: \ \forall n \ |b_n| < M \ \forall \varepsilon > 0 \ \exists n_\varepsilon: \forall n>n_\varepsilon \ |\alpha_n| < \frac{\varepsilon}{2}$ $|\alpha_n\cdot\beta_n|=|\alpha_n|\cdot |\beta_n| \leq \frac{\varepsilon}{M}\cdot M=\varepsilon$

Теорема 5

$$a_n \xrightarrow[n \to \infty]{} a, \ b_n \xrightarrow[n \to \infty]{} b$$

1.
$$a_n + b_n \xrightarrow[n \to \infty]{} a + b$$

2.
$$a_n \cdot b_n \xrightarrow[n \to \infty]{} a \cdot b$$

3. Если
$$b_n \neq 0 \ \forall n \ nb \neq 0$$
, то $\frac{a_n}{b_n} \xrightarrow[n \to \infty]{} \frac{a}{b}$

Доказательство Т5: Арифметические свойства предела

Из Т4 про арифметические свойства б.м. последовательностей

1.
$$a_n + b_n = (a + \alpha_n) + (b + \beta_n) = (a + b) + (\alpha_n + \beta_n)$$
 $(\alpha_n + \beta_n)$ - Сумма б.м., $(a + b) + (\alpha_n + \beta_n) =$ по Т3 = $a_n + b_n \rightarrow a + b$

2.
$$a_n b_n = (a + \alpha_n) + (b + \beta_n) = ab + (\alpha_n b + \beta_n a + \alpha_n \beta_n) \xrightarrow{T3} ab$$

3. Докажем, что
$$\frac{a_n}{b_n} - \frac{a}{b}$$
 - б.м. $a_n - a - a_n b - ab_n - (a + \alpha_n)b$ -

$$\frac{a_n}{b_n} - \frac{a}{b} = \frac{a_n b - ab_n}{b_n b} = \frac{(a + \alpha_n)b - a(b + \beta_n)}{bb_n} = \frac{\alpha_n b - a\beta_n}{bb_n}$$

$$\alpha_n b - a\beta_n - \text{бесконечно малая}$$

Проверим ограниченность $\frac{1}{bb_n}$

$$\varepsilon = \frac{|b|}{2} : \exists n_{\varepsilon} \ \forall n > n_{\varepsilon} \ |b_n - b| < \frac{\varepsilon}{2}$$

$$arepsilon = rac{|b|}{2}$$
: $\exists n_{arepsilon} \ \forall n > n_{arepsilon} \ |b_n - b| < rac{arepsilon}{2}$ $|b_n| = |b - (b - b_n)| \ge (\text{неравенство треугольника}) \ge ||b| - |b - b_n|| \ge |b|$

$$|b|-|b-b_n|>rac{|b|}{2}$$
 $\Rightarrow rac{1}{|b_n|}<rac{2}{|b|}$ $\Rightarrow \{rac{1}{b_n}\}$ - ограничена

Значит, что
$$\frac{a_n}{b_n} - \frac{a}{b} = \frac{\alpha_n b - a \beta_n}{b b_n}$$
 - бесконечно малая.

- 3.7 Бесконечно большие последовательности. Связь бесконечно малых и бесконечно больших последовательностей.
- 3.8 Арифметические свойства сходящихся последовательностей.
- 3.9 Монотонные последовательности. Критерий сходимо сти монотонной последовательности.

3.10 Число е как предел последовательности.

Вспомним неравенство среднего геометрического и среднего арифметического.

$$\forall k : a_k > 0 \quad \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n} \le \frac{a_1 + a_2 + \dots + a_3}{n}$$

Пусть
$$a_1 = a > 0, \ a_2 = a_3 = \dots = a_{n+1} = d > 0$$

$$\sqrt[n+1]{a \cdot b^n} \le \frac{a+nb}{n+1}$$

$$(1+\frac{1}{n})^k - \text{сходится}$$

Доказательства монотонности

$$(1+\frac{1}{n})^n < (1+\frac{1}{n+1})^{n+1}$$

2.
$$(1-\frac{1}{n})^k \uparrow$$
Пусть $a=1,\ b=1-\frac{1}{n}$

$$\sqrt[n+1]{a\cdot (1-\frac{1}{n})^n} < \frac{1+n(1-\frac{1}{n})}{n+1} = \frac{n+1-1}{n+1} = 1 - \frac{1}{n+1} \uparrow n+1$$

$$(1 - \frac{1}{n})^n < (1 - \frac{1}{n+1})^{n+1}$$

3.
$$(1+\frac{1}{n})^{n+1} = (\frac{1}{\frac{n}{n+1}})^{n+1} = \frac{1}{(1-\frac{1}{n+1})^{n+1}} \downarrow$$

 $\forall k, m \quad n = \max\{k, m\}$

$$(1+\frac{1}{k})^k \le (1+\frac{1}{n})^n < (1+\frac{1}{n})^{n+1} \le (1+\frac{1}{m})^{m+1} \Rightarrow$$

 $(1+\frac{1}{n})^n$ - ограничена сверху \Rightarrow сходится.

Определение

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

Доказать/подумать

1.

$$e = \lim_{n \to \infty} (1 + \frac{1}{1!} + \frac{1}{2!} + \dots + + \frac{1}{n!})$$

- 2. $(1+\frac{1}{n})^{n+2}$
- 3. Сколько слагаемых нужно взять, чтобы получить е с точностью 10^{-3}
- 4. Какое нужно взять n, чтобы получить е c точностью 10^{-3}

Теорема Больцано-Вейерштрасса. 3.11

 n_k - строго возрастает последовательность натуральных чисел $\Rightarrow n_k \geq k$.

Определение $\forall \{a_n\} \ \{a_n\}$ - подпоследовательность $\{a_n\}$

 $\{a_n\}=2^n,$ тогда 2, 16, 64, 128 - подпоследовательность

 $\left\{ egin{array}{lll} 2,{f 3},4,16,... \\ 16,{f 2},32,... \end{array}
ight.$ - не подпоследовательности

Теорема Больцано-Вейерштрасса

 \forall ограниченой $\{a_n\}$ \exists сходящаяся подпоследовательность $\{a_n\}$

Доказательство

Прицип вложенных отрезков.

 $\exists [c,d] : \forall n \ a_n \in [c,d]$

1.
$$[c_1, d_2] = [c, d] \ \forall a_{n_1} \in [c_2, d_1]$$

2.
$$b_1=\frac{c_1+d_1}{2}$$
 $[c_2,d_2]$ тот из $[c_1,b_1]$ и $[b_1,d_1]$ на котором содержится бесконечно много членов последовательности $\{a_n\}$ $a_{n_2}:a_{n_2}\in[c_2,d_2],n_2>n_1$

3.
$$b_2 = \frac{c_2 + d_2}{2}$$
 $[c_3, d_3]$ тот из $[c_2, b_2]$ и $[b_2, d_2]...$ $a_{n_3}: a_{n_3} \in [c_3, d_3], n_3 > n_3$ $\{a_n\}$ $a_{n_k} \in [c_k, d_k], n_k > n_{k-1}$ $[c_1, d_1] \supset [c_2, d_2] \supset ... \supset [c_k, d_k] \supset ...$ длина $[c_k, d_k] = \frac{1}{2^{k-1}}$ длина $[c_1, d_1] \to 0 \Leftrightarrow \exists a' = U[c_k, d_k]$ $\forall k \ |a_n - a'| \leq \frac{1}{2^{k-1}}$ - длина $[c_1, d_1] \to 0$ $a_{n_k}, a' \in [c_k, d_k] \Rightarrow a_{n_k} \to 0$

Определение Частичный предел $\{a_n\}$ - предел \forall сходящейся подпоследовательности $\{a_n\}$

Следствие из теоремы

 $\forall \{a_n\} \exists$ подпоследовательность $\{a_{n_k}\}$ которая имеет либо конечное либо бесконечное число пределов.

Доказательство

Если в $\{a_n\}\exists\{a_{n_k}\}a_{n_k}\to a`\in\mathbb{R}$

Если такого нет, то по Теореме Б-В $\{a_n\}$ - не ограничена сверху или снизу.

Если $\{a_n\}$ - не ограничена сверху:

1. 1 - не верхняя грань $\{a_n\}: a_{n_1}: a_{n_1} > 1$

2. 2 - не верхняя грань $\Rightarrow \exists n_2 : a_{n_2} > 2, n_2 > n_1$

. . .

k. $\exists n_k : a_{n_k} > \max\{k, a_1, a_2, ..., a_{n_{k-1}}\}, n_k > n_{k-1}$

3.12 Частичные пределы. Критерий частичного предела.

3.13 Критерий Коши существования предела последовательности.

 $\{a_n\}$ - сходится $\Leftrightarrow \{a_n\}$ - фундаментальна.

Доказательство

Взять с записи

3.13.1Фундоментальные последовательности.

Последовательность $\{a_n\}$ фундаментальна - если

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n, m > n_{\varepsilon} \ |a_n - a_m| < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n > n_{\varepsilon}, \forall p \ |a_{n+p} - a_n| < \varepsilon$$

3.14Существование верхнего и нижнего пределов у любой последовательности.

Утверждение 1. ∀ последовательность имеет хотя-бы 1 частичный предел (конечный или бесконечный).

Доказательство

1. Пусть $\{a_n\}$ - не ограничена сверху.

Напоминание: $\{a_n\}$ - не ограничена сверху, если $\forall M \ \exists a_n > M \Leftrightarrow \exists$ бесконечно много таких членов.

$$a_n > 1, a_{n_2} > 2, \ n_2 > n_1$$

$$a_{n_k} > k, n_k > n_{k-1}$$

$$\{a_{n_k}\}\to +\infty$$

- 2. Если $\{a_n\}$ не ограничена снизу, то $\exists a_{n_k} \to -\infty$ (аналогично)
- 3. Если $\{a_n\}$ огрничена, то Б-В.

Утверждение 2. критерий частичного предела.

а - частичный предел $\{a_n\} \Leftrightarrow \forall U_a$ принадлежит б.м. членов последовательности.

$$\forall U_a \exists a_{n_k} \in U_a^\circ = U_a/\{a\}$$

- ЭТО ХУЙНЯ. НАДО НАЙТИ ОШИБКУ

На экзамене: что-то может быть.

$$\forall U_a \; \exists k_{II} : \forall k > k_{II} \quad a_{n,i} \in U_a$$

 $\forall U_a \; \exists k_{U_a} : \forall k > k_{U_a} \; a_{n_k} \in U_a$ \Rightarrow в U_a бесконечно много членов последовательности. \Leftarrow в $\forall U_a$ бесконечно много членов $\{a_n\}$.

$$arepsilon_1=rac{1}{2}\ U_a=(a-arepsilon;a+arepsilon)$$
 - отсюда любой член $\{a_n\}$

$$\varepsilon_2 = \frac{1}{2^2} \ \exists a_{n_2} \in (a - \varepsilon_2; a + \varepsilon_2), n_2 > n$$

$$\varepsilon_k = \frac{1}{2^k} \ \exists a_{n_k} \in (a - \varepsilon_k; a + \varepsilon_k), n_k > n_{k-1}$$

$$\{a_{n_k}\}a_{n_k} \to a$$
, при $k \to \infty$

$$\Leftarrow$$
 в $\forall U_a$ бесконечно много членов $\{a_n\}$. $\varepsilon_1=\frac{1}{2}\ U_a=(a-\varepsilon;a+\varepsilon)$ - отсюда любой член $\{a_n\}$ $\varepsilon_2=\frac{1}{2^2}\ \exists a_{n_2}\in (a-\varepsilon_2;a+\varepsilon_2), n_2>n_1$... $\varepsilon_k=\frac{1}{2^k}\ \exists a_{n_k}\in (a-\varepsilon_k;a+\varepsilon_k), n_k>n_{k-1}$ $\{a_{n_k}\}a_{n_k}\to a,\ \text{при }k\to\infty$ $\forall k\ a-\frac{1}{2^n}\to a=a-\varepsilon_k< a_{n_k}< a_\varepsilon=a+\frac{1}{2^k}\to a$ По теореме о зажатой последовательности $a_{n_k}\to\infty$

По теореме о зажатой последовательности $a_{n_k} \to \infty$

Определене.

Наибольший из часичных пределов. $\{a_n\}$ - верхний прдел a_n Наименьший из часичных пределов. $\{a_n\}$ - нижний прдел a_n

Теорема $\forall \{a_n\} \; \exists \; \text{верхний и нижний предел.}$

1. $\exists \underline{\lim} a_n$ - нижний предел a_n Пусть $\{a_n\}$ - не ограничена те $\forall M \exists a_n < M$. Таких a_n - бесконечно много.

$$\begin{aligned} &a_{n_1}<-1,a_{n_2}<\min\{-2,a_1,...,a_{n_1}\}-1\ n_2>n_1\\ &a_{n_k}<\min\{-k,a_1,...,a_{n_{k-1}}\}-1\\ &a_{n_k}-k,n_k>n_{k-1}\\ &\{a_{n_k}\}\text{ - подпоследовательность}. \end{aligned}$$

$$a_{n_k} < -k \Rightarrow a_{n_k} \to -\infty$$

- 2. Пусть $\{a_n\}$ ограничена снизу.
- а) $\{a_n\}$ имеет конечные частичные пределы. A - множество конечных частных пределов. $A \neq \emptyset$ и ограничена снизу. $\exists inf\ A = a.$ Покажем, что $a = \varliminf_{n \to \infty} a_n$

$$\forall \varepsilon > 0 \exists a' \in A$$
$$a < a' < a + \varepsilon$$

б) $\{a_n\}$ нет конечных частичных пределов.

$$a_n \to +\infty$$

Если $a_n \not\to +\infty \;\; \exists M : \forall N \;\; \exists n > N \;\;\; a_n \leq M$

 \exists бесконечно много $\{a_n\} < M$ по Б-В \exists конечный частичный предел.

!!! Каждое действитеьное число является её частиыным пределом.

- 3.15 Числовые ряды. Абсолютная и условная сходимость числовых рялов. Критерий Коши сходимости ряда. Необходимое условие сходимости ряда. Признак сравнения.
- 3.15.1 Определения и элементарные факты.

$$\{a_k\}$$
 - Π

$$\{a_k\} \to S_n = \sum_{k=1}^n a_k$$

Определения

Определяем бесконечную сумму.

$$\sum_{k=1}^{\infty} a_k$$
 - ряд

 a_k - элемент ряда (общий член). S_n - n-ая частичная сумма ряда. Если S_n - сходится, то ряд $(\sum_1^\infty a_k)$ называется сходящимся, $S:=\lim_{n\to\infty} s_n$ - суммой ряда: $\sum_1^\infty = S$. Если $\{S_n\}$ расходится, то $\sum_1^\infty a_k$ - расходится.

3.15.2Теорема 1.

$$\sum_{1}^{\infty} a_k \pm \sum_{1}^{\infty} b_k = \sum_{1}^{\infty} (a_k \pm b_k)$$

Теорема 2. Критерий Коши о сходимости ряда.

 $\sum_{1}^{\infty} a_k$ - сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n > n \varepsilon \forall p \ |S_{n+p} - S_n| < \varepsilon$

$$|\sum_{1}^{n+p} a_k - \sum_{1}^{n} a_k| = |\sum_{n+1}^{n+p} a_k| < \varepsilon$$

3.15.4 Следствие 1. Изменение конечного числа членов ряда не влияет на сходимость.

Сумма конечно может измениться, но на сходимость это не влияет.

Следствие 2. Необходимое условие сходимости ряда.

Можно считать определением: Если $\sum_{1}^{\infty} a_k$ сходится $\Rightarrow a_k \xrightarrow[k \to \infty]{} 0$

Доказательство

 $\sum_{1}^{\infty}a_{k}$ - сходится $\forall \varepsilon>0$ $\exists n_{\varepsilon}: \ \forall n>n_{\varepsilon} \ \forall p \ |\sum_{n+1}^{n+p}a_{k}|<arepsilon\Leftrightarrow |a_{n+1}|<arepsilon$ При $\mathrm{p}=1$, то есть $\{a_{n}\}$ - б.м. по определению.

Пример 1.

Eсли |q| < 1

$$\sum_{1}^{\infty} q^{k}, S_{n} = 1 + \dots + q^{n} = \frac{1 - q^{n+1}}{1 - q} \xrightarrow[n \to \infty]{} \frac{q}{1 - q}$$

Пример 2.

$$\sum_{1}^{\infty} \frac{1}{n}$$

а, b, c положительные. c - среднее гармоническое а и b, если $\frac{2}{c} = \frac{1}{a} + \frac{1}{b}$

$$a = \frac{1}{n-1}, b = \frac{1}{n+1}$$

$$\frac{2}{c} = (n-1) + (n+1) = 2n$$

Каждый элемент является средним гармоническим 2-х соседий. По критерию Коши ряд - расходящийся.

$$|\sum_{n+1}^{n+p} \frac{1}{k}| = \frac{2}{n+1} + \dots + \frac{1}{n+p} \ge \frac{p}{n+p}$$

Пусть
$$p = n$$
. $\frac{p}{n+p} = \frac{1}{2}$.

Пример 3.

$$1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\dots$$

$$S_{2n} = 0$$

$$S_{2n+1} = \frac{1}{n+1} \to 0$$

А теперь давайте мухлевать. Переставим сумму ряда. Шоу ИМПРОВИЗАЦИЯ!!!

$$(1+\frac{1}{2})-1+(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\ldots+\frac{1}{11})-\frac{1}{2}$$

Берём много положительных слагаемых и вычитаем меньшее по модулю число. Из-за этого ряд расходится.

Пример 4.

$$\sum_{0}^{\infty} (-1)^k = (1-1) + (1-1) + \dots$$

$$\sum_{k=0}^{\infty} (-1)^k = 1 - (1-1) - (1-1) - \dots$$

3.16 Абсолютно сходящийся ряд.

Определение. Если $\sum_1^\infty |a_k|$ сходится, то $\sum_1^\infty a_k$ сходится абсолютно.

3.16.1 Теорема 1. Если ряд сходится абсолютно, то ряд сходится.

Доказательство (Критерий Коши)

По критерию Коши, т.к. $\sum_{1}^{\infty}|a_k|$ сходится, то $\forall \varepsilon>0$ $\exists n_{\varepsilon}:\forall n>n_{\varepsilon}$ $\forall p\mid\sum_{n+1}^{n+p}a_k|\leq |\sum_{n+1}^{n+p}|a_k||<\varepsilon\Rightarrow$ по критерию Коши $\sum a_k$ сходится.

23

Пример 1.

 $1 - 1 + \frac{1}{2} - \frac{1}{2} + \dots$ - сходится, но не абсолютно.

3.16.2 Определение.

Если $\sum_{1}^{\infty} a_k$ сходится, а $\sum_{1}^{\infty} |a_k|$ расходится, то $\sum a_k$ сходится условно.

3.16.3 Теорема 2.

 $\sum_{1}^{\infty} a_k, \forall k \ a_k \geq 0$ $\sum_{1}^{\infty} a_k$ сходится $\Leftrightarrow \{S_N\}$ ограничена.

Доказательство

$$\forall n \ S_{n+1} = \sum_{1}^{n+1} a_k \ge \sum_{1}^{n} a_k = S_n$$

 $S_n \uparrow$ возрастающая $\{S_n\}$ сходится \Leftrightarrow ограничена.

3.16.4 Теорема 3. Признак сравнения.

Для комплов не годится.

$$\sum_{1}^{\infty} a_k, \quad \sum_{1}^{\infty} b_k, \quad \forall k \quad a_k \ge \underline{b_k} \ge 0$$
 Тогда:

- 1. Если $\sum_{1}^{\infty} a_k$ сходится $\Rightarrow \sum_{1}^{\infty} b_k$ сходится.
- 2. Если $\sum_{1}^{\infty} a_k$ расходится $\Rightarrow \sum_{1}^{\infty} b_k$ расходится.

Доказательство

Следствие критерия сходимости ряда с неотрицательными членами.

1.
$$A_n = \sum_{1}^{n} a_k$$
, $B_n = \sum_{1}^{n} b_k$ $A_n \uparrow$, $B_n \uparrow$ и $A_n \geq B_n$ (A_n можарирует B_n) Если $\sum a_k$ сходится $\Rightarrow \{A_n\}$ ограничена сверху $\Rightarrow \sum b_k$ сходится.

3.16.5 Следствие. (Признак сравнения).

 $\sum a_k$, $\sum b_k \ \forall k \ a_k \ge |b_k| > 0$. Не отрицательность a_k . Сходимость $\sum a_k \Rightarrow$ сходимость $\sum b_k$ (абсолютная).

Пример 1.

$$\sum_{1}^{\infty} \frac{\sin n}{n^{2}}$$

$$\left|\frac{\sin n}{n^{2}}\right| \le \frac{1}{n^{2}} < \frac{1}{(n-1)n}, n \ne 1$$

$$\frac{1}{(n-1)n} = \frac{1}{n-1} - \frac{1}{n}$$

$$\sum_{2}^{\infty} \frac{1}{n-1)n} = \sum_{2}^{\infty} \left(\frac{1}{-1} - \frac{1}{n}\right)$$

$$S_{n} = \sum_{2}^{n} \left(\frac{1}{k-1} - \frac{1}{k}\right) = \left(\frac{1}{2-1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots$$

3.17Признаки абсолютной сходимости рядов Даламбера и Коши.

3.17.1Теорема 4. Признак Коши.

$$\sum_{1} a_{k}$$

$$q = \overline{\lim} \sqrt[k]{|a_{k}|}$$

Тогда:

- 1. $q < 1 \Rightarrow$ абсолютно сходится.
- 2. q > 1 расходится
- 3. q = 1?

Доказательство

Сравнение с геометрической прогрессией.

Конечное число членов

1.
$$0 \le q$$

$$\exists n_p : \forall n > n_p$$

$$\sqrt[k]{a_k}$$

 $\sqrt[k]{a_k}$ $<math>\sum_{n+1}^{\infty} p^k$ геометрическая прогрессия с положительным знаком $|\mathbf{x}|$. $\Rightarrow \sum_{1}^{\infty} a_k$ сходится абсолютно (по признаку сравнения)

2.
$$q = \overline{\lim} \sqrt[k]{a_k} > 1$$

$$1 > p > \dot{1}$$

 \forall окрестности q бесконечно много членов $\sqrt[k]{|a_k|}$

Замечание. Признак Коши бесполезно использовать, если ряд не похож на геометрическую прогрессию.

Запомните. Признак коши достаточное условие абсолютной сходимости.

Следствие Если $\sqrt[n]{|a_n|} \le q < 1 \Rightarrow \exists q, N \ \forall n > N : \sum a_n$ сходится абсолютно Пример. $\sum_{n=1}^{\infty} (2 + (-1)^n)^n \cdot z^n$

$$\sqrt[n]{((2+(-1)^n)^n z^n} = (2+(-1)^n)|z|n = 2k : \sqrt[n]{|a_n|} = 3|z| = \overline{\lim} \sqrt[n]{|a_n|} n = 2k+1 : \sqrt[n]{|a_n|} = |z|$$

Если: 3|z| < 1 сходится $|z| < \frac{1}{3}$

|3|z| > 1 расходится $|z| > \frac{1}{3}$

$$3|z| = 1|z| = \frac{1}{3}$$

Теорема 5. Признак д-Аламбера

!Он всегда слабее признака Коши.

$$\sum_{n=1}^{\infty} : \left| \frac{a_{n+1}}{a_n} \right| \to q$$

1. $q < 1 \Rightarrow$ абсолютно сходится

2. $q < 1 \Rightarrow$ расходится

 $3. \ q=1 \Rightarrow$ Ничего не даёт

Доказательство.

1. Сравнение с геометрической прогрессией.

$$\exists n_p : \forall n > n_p \mid \frac{a_{n+1}}{a_n} \mid < p$$

Пусть для $\forall n$

$$a_{n+1} = \frac{a_{n+1}}{a_n} \cdot \frac{a_n}{a_{n-1}} \cdot \ldots \cdot \frac{a_2}{a_1} \left| a_{n+1} \right| = \left| \frac{a_{n+1}}{a_n} \right| \cdot \left| \frac{a_n}{a_{n-1}} \right| \cdot \ldots \cdot \left| \frac{a_2}{a_1} \right| \cdot \left| a_1 \right| < p^n |a_1|$$

 $\sum p^n |a_1|$ сходится (геометрическая прогрессия)

2.
$$\exists N : |\frac{a_n + 1}{a_n}| > 1 \ \forall n > N$$

Пусть
$$\forall N \mid \frac{a_{n+1}}{a_m} \mid > 1$$

$$|a_{n+1}| > |a_n| > |a_{n-1}| > \dots |a_1| > 0 \Rightarrow a_n \not\to 0$$

3.
$$\sum_{1}^{\infty} \frac{1}{n} \left| \frac{a_{n+1}}{n} \right| = \frac{n}{n+1} \to 1$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \mid \frac{a_{n+1}}{n} \mid = \frac{n^2}{(n+1)^2} \to 1$$

Следствие. $\forall n>N: \ |\frac{a_{n+1}}{a_n}|\leq q<1\Rightarrow \sum a_n$ сходится абсолютно.

Доказательство следствия

Пусть
$$\forall n \mid \frac{a_{n+1}}{a_n} \mid \leq q < 1$$

$$|a_{n+1}|=|rac{a_{n+1}}{a_n}\cdot|rac{a_n}{a_{n-1}}\cdot...\cdot|rac{a_2}{a_1}\cdot|a_1|\leq q^n|a_1|$$
 Т.к. $|q|<1,$ то $\sum q^n|a_1|$ сходящаяся

геометрическая прогрессия.

Вопрос на 5: Если можно исследовать по Деламберу то можно и по Коши.

Пример
$$\sum_{1}^{\infty} \frac{1}{(3+)-1)^n)^n}$$

$$\sqrt[n]{|a_n|} = \frac{1}{3 + (-1)^n} = \frac{1}{4}, n = 2k$$

$$\sqrt[n]{|a_n|} = \frac{1}{3 + (-1)^n} = \frac{1}{2}, n = 2k + 1$$

$$\sqrt[n]{|a_n|} \le \frac{1}{2} < 1$$

$$|\frac{a_{n+1}}{a_n} = \frac{\frac{1}{2^{2k+1}} \frac{1}{4^{2k}}}{\frac{1}{(3+) - 1)^n}}$$

$$\sqrt[n]{|a_n|} = \frac{1}{3 + (-1)^n} = \frac{1}{4}, n = 2k$$

$$\sqrt[n]{|a_n|} = \frac{1}{3 + (-1)^n} = \frac{1}{2}, n = 2k + 1$$

$$\operatorname{sqrt}[n]|a_n| \le \frac{1}{2} < 1$$

$$|\frac{a_{n+1}}{a_n} = \frac{\frac{1}{2^{2k+1}}}{\frac{1}{4^{2k}}} = \frac{4^{2k}}{2^{2n+1}} = \frac{1}{2}2^{2k}n = 2k$$

$$|\frac{a_{n+1}}{a_n}| = \frac{\frac{1}{2^{2k+1}}}{\frac{1}{4^{2k}}} = \frac{4^{2k}}{2^{2n+1}} = \frac{1}{2^{2k+1}} = \frac{4^{2k}}{2^{2n+1}} = \frac{1}{2^{2n+1}} = 2k + 1$$

Замечание. $|\frac{a_{n+1}}{a_n}| \le 1 < 1$, а не $|\frac{a_{n+1}}{a_n}| < 1$ Пример.

$$\sum_{0}^{\infty} \frac{z^{n}}{n!}$$

$$\left|\frac{a_{n+1}}{a_{n}}\right| = \frac{\frac{z^{n+1}}{(n+1)!}}{\frac{z^{n}}{n!}} = \frac{|z|}{n+1} \to 0$$

3.18 Критерий Коши сходимости ряда с монотонными членами. Исследование сходимости ряда $\sum_{n=1}^{\infty} \frac{1}{n^p}, \ p>0.$

Теорема 6. Теорема Коши о сходимости монотонных рядов.

$$\sum_{1}^{\infty} a_n, \ a_n \downarrow, \ \forall n \ a_n \ge 0$$

 $\sum_{1}^{\infty} a_n$ сходится $\Leftrightarrow \sum_{1}^{\infty} 2^n \cdot a_{2n}$ сходится

Если
$$\sum a_k$$
: $\forall k \ a_k \geq 0$, то $\sum a_k$ сходится $\Leftrightarrow S_n = \sum_1^n a_k$ ограничена $a_2 \leq a_2 \leq a_1$ $2a_4 < a_3 + a_4 \leq 2a_2$ $\frac{1}{2}2^3a_{2^3} = 2^2a_{2^3} = 2^2a_8 \leq a_5 + a_6 + a_7 + a_8 \leq 4a_4 = 2^2a_{2^2}$

$$\frac{1}{2} 2^{k+1} a_{2^{2k+1}} = 2^k a_{2^{k+1}} \le a_{2^{k+1}} + \dots + a_{2^{k+1}} \le 2^k a_{2^k} \sum_{n=2}^{2^{k+1}} a_n \le \sum_{n=0}^{2^k} 2^n a_{2^n}$$