Pizzaseminar zur Kategorientheorie

3. Übungsblatt

Aufgabe 1: "Funktoren bewahren Isomorphien": Sei $F:\mathcal{C}\to\mathcal{D}$ ein Funktor zwischen Kategorien \mathcal{C},\mathcal{D} und seien X und Y Objekte von \mathcal{C} . Zeige:

$$X \cong Y \implies F(X) \cong F(Y).$$

Aufgabe 2: Sei $f: P \to Q$ eine monotone Abbildung zwischen Quasiordnungen P, Q, d.h. für alle $x, y \in P$ gilt

$$x \leq y \text{ in } P \implies f(x) \sqsubseteq f(y) \text{ in } Q.$$

Überlege, wie man daraus einen Funktor $BP \to BQ$ der zugehörigen Kategorien aus Aufgabe 3 von Blatt 2 basteln kann. Wieso sind die Funktoraxiome erfüllt?

Aufgabe 3: Ein Funktor $F: \mathcal{C} \to \mathcal{D}$ heißt...

- a) treu, wenn für je zwei parallele Morphismen f, g in \mathcal{C} (d. h. Morphismen mit gleicher Quelle und gleichem Ziel) gilt: $F(f) = F(g) \implies f = g$.
- b) voll, wenn es für alle Objekte $X, Y \in \mathcal{C}$ und jeden Morphismus $h : F(X) \to F(Y)$ in \mathcal{D} einen Morphismus $f : X \to Y$ in \mathcal{C} mit F(f) = h gibt.
- c) essenziell surjektiv, wenn es für jedes Objekt $Z \in \text{Ob } \mathcal{D}$ ein Objekt $X \in \text{Ob } \mathcal{C}$ mit $F(X) \cong Z$ gibt.

Untersuche einen Funktor deiner Wahl daraufhin, ob er treu, voll oder essenziell surjektiv ist.

Aufgabe 4: Sei \mathcal{C} eine Kategorie und $A \in \mathrm{Ob}\,\mathcal{C}$ ein Objekt. Wir nehmen an, dass wir für jedes Objekt $X \in \mathrm{Ob}\,\mathcal{C}$ ein bestimmtes Produkt $A \times X \in \mathrm{Ob}\,\mathcal{C}$ gegeben haben. Überlege, wie man die unvollständige Zuordnungsvorschrift

$$\begin{array}{cccc} F\colon & \mathcal{C} & \longrightarrow & \mathcal{C} \\ & X & \longmapsto & A \times X \end{array}$$

zu einer Funktordefinition ausweiten kann. Wie kann man F auf Morphismen definieren? Wieso sind die Funktoraxiome erfüllt?

Projektaufgabe: Sei \mathcal{C} eine lokal kleine Kategorie und $A \in \mathrm{Ob}\,\mathcal{C}$ ein Objekt. Der kovariante Hom-Funktor zu A ist definiert als

wobei f_{\star} die Abbildung

$$\begin{array}{cccc} f_{\star} \colon & \operatorname{Hom}_{\mathcal{C}}(A,X) & \longrightarrow & \operatorname{Hom}_{\mathcal{C}}(A,Y) \\ g & \longmapsto & f \circ g \end{array}$$

ist. Zeige als Hinführung auf den Yoneda-Vortrag, dass \widehat{A} tatsächlich ein Funktor ist.