1/1 point

If $x=$ "It is raining," what is $\sim (\sim x)$?	1/1 point
"It is raining"	
○ "It is never raining"	
○ "It is always raining"	
○ "It is not raining"	
✓ Correct The second negation cancels out the first one.	
Similarly $\sim (\sim (\sim x)) = \sim x$	
If the statement "I am 25 years old" is assigned probability 0 , what probability is assigned to the statement "I am not 25 years old"?	1/1 point
○ −1 ○ Unknown	
\checkmark correct $\label{eq:correct} \text{It is always the case that } p(x) + p(\sim x) = 1.$	
If I assign to the statement x = "it will rain today" a probability of $p(x)=0.35$, what probability must I assign to the statement "it will not rain today?"	1/1 point
○ .5	
○ .35	
O 0	
● .65	
\checkmark Correct $p(x)+p(\sim x)=1$	
Is the following collection of statements a probability	1/1 point
Is the following collection of statements a probability distribution?	17 I point
1. I own a Toyota pickup truck	
2. I do not own a Toyota pickup truck	
3. I own a non-Toyota pickup truck	
4. I do not own a non-Toyota pickup truck	
○ Yes	

The statements are not *exclusive*:1 and 4 could both be true, 2 and 3 could both be true, 2 and 4 could both be true, and even (1) and (3) could both be true (if I owned more than one pickup truck).

- Tuont know what it means to be ingenuous, what	17 F point
probability would I assign to the statement, "I am ingenuous OR I am not ingenuous"?	
O .5	
O -1	
① 1	
O 0	
✓ Correct	
It is always the case, regardless of the content of the statement x, that $p(x ext{ or } \sim x) = 1$	
5. A friend of mine circumscribes a circle inside a square, so	1/1 point
that the diameter of the circle and the edge of the square are the same length.	77 · point
He asks me to close my eyes and pick a point at random inside the square. He	
says the probability that my point will also be inside the circle is $\frac{\pi}{4}$	
Is this correct?	
is this correct	
♠ v _r -	
Yes	
○ No	
✓ Correct	
Probabilities can be any real number between 0 and 1 . They do not need to be rational numbers – a numerator that is a transcendental number like Pi is	
acceptable.	
Note that	
the correct probability does not depend on the length r of the circle's radius. For a circle with any radius r to be circumscribed inside a square, the square	
must have sides each of length 2r. The area of the circle is Pi*r^2 and the	
area of the square is (2r)^2 = 4*r^2 = The probability of landing in a circle of area Pi*r^2 when it is known that one is	
in the area of the square is equal to the ratio of the area of the circle to	
the area of the square in which it is circumscribed, or Pi*r^2/4*r^2, which equals Pi/4.	
equation in	
7. The probability of drawing a straight flush (including a Royal Flush) in a five-card poker hand is 0.0000153908	1 / 1 point
Noyal Flush) iii a live-card poker fland is 0.0000100000	
What is	
the probability of not drawing a straight flush?	
○ .9996582672	
○ .9999745688	
○ .9967253809	
✓ Correct	
$p(\sim x) = 1 - p(x)$	
What is the probability that a fair, six-sided die will come	1/1 point
up with a prime number? (Recall that prime numbers are positive integers other than 1 that are divisible only by themselves and 1)	
O 1	
$\frac{2}{3}$	
① 1	
$\frac{1}{2}$	
O <u>1</u>	
$\bigcirc \frac{1}{6}$	
$\bigcirc \frac{1}{6}$	
O <u>1</u>	
$\begin{array}{c} \frac{1}{6} \\ 0 \\ \frac{2}{3} \end{array}$	
$\begin{array}{c} \begin{array}{c} \frac{1}{6} \\ \\ \frac{2}{3} \end{array}$	ie
$ \begin{array}{c} \frac{1}{6} \\ \frac{2}{3} \end{array} $	ie

9.	The joint probability p (the die will come up 5 , the next card will be a heart) Is equal to the joint probability:
	lacktriangledown p (the next card will be a heart, the die will come up 5)
	$\bigcirc p$ (the die will not come up 5, the next card will not be a heart)
	$\bigcirc \ p$ (the next card will be a heart, the die will not come up 5)
	$\bigcirc p$ (the next card will not come up 5, the next card will be a heart)
	\checkmark $\ \ $ Correct In joint probabilities, the order does not change the probability: $p(A,B)=p(B,A)$

1/1 point