Contemporary Natural Language Processing reflected in Language Modeling

Andrey Kutuzov

HSE

26 April 2019

HAVE YOU TRIED SWIFTKEY? IT'S GOT THE FIRST DECENT LANGUAGE MODEL I'VE SEEN. IT LEARNS FROM YOUR SMS/ EMAIL ARCHIVES WHAT WORDS YOU USE TOGETHER MOST OFTEN.

STACEBAR INSERTS ITS DEST CUESS, 50 IF I TAME "THE EMPI" AND HIT SPACE THREE TIMES, IT TAMES "THE EMPIRE STRIKES BACK."

> WHAT IFYOU MASH SPACE IN A BLANK MESSAGE?

I GUESS IT FILLS IN YOUR MOST LIKELY FIRST WORD, THEN THE WORD THAT USUALLY FOLLOWS IT...

SO IT BUILDS UP YOUR "TYPICAL" SENTENCE. (COOL! LET'S SEE YOURS!

(XKCD)

Contents

Language modeling task definition

2 Traditional approach to LM

- 3 Neural language modeling
 - Current state: pre-trained language models

Modeling linguistic sequences

- ► Task 1: to assign probabilities to natural language sequences:
 - ▶ 'What is the probability of *lazy dog*?'
 - ► 'What is the probability of *The quick brown fox jumps over the lazy dog*?'
 - ▶ 'What is the probability of green colorless ideas sleep furiously?'
- ► Task 2: to assign a probability for the likelihood of a word a to follow a word sequence S of length n:
 - 'What is the probability of seeing jumps after The quick brown fox?'
- ► These two tasks are mathematically equivalent.

$$P(w_{1:n}) = P(w_1)P(w_2|w_1)P(w_3|w_{1:2})P(w_4|w_{1:3})...P(w_n|w_{1:n-1})$$
(1)

Modeling linguistic sequences

- ► Task 1: to assign probabilities to natural language sequences:
 - ► 'What is the probability of *lazy dog*?'
 - ▶ 'What is the probability of *The quick brown fox jumps over the lazy dog*?'
 - 'What is the probability of green colorless ideas sleep furiously?'
- ► Task 2: to assign a probability for the likelihood of a word a to follow a word sequence S of length n:
 - ► 'What is the probability of seeing *jumps* after *The quick brown fox*?'
- ► These two tasks are mathematically equivalent.

$$P(w_{1:n}) = P(w_1)P(w_2|w_1)P(w_3|w_{1:2})P(w_4|w_{1:3})...P(w_n|w_{1:n-1})$$
(1)

Modeling linguistic sequences

- ► Task 1: to assign probabilities to natural language sequences:
 - ► 'What is the probability of *lazy dog*?'
 - ► 'What is the probability of *The quick brown fox jumps over the lazy dog*?'
 - 'What is the probability of green colorless ideas sleep furiously?'
- ► Task 2: to assign a probability for the likelihood of a word a to follow a word sequence S of length n:
 - ► 'What is the probability of seeing *jumps* after *The quick brown fox*?'
- ► These two tasks are mathematically equivalent.

$$P(w_{1:n}) = P(w_1)P(w_2|w_1)P(w_3|w_{1:2})P(w_4|w_{1:3})...P(w_n|w_{1:n-1})$$
(1)

Modeling linguistic sequences

- ► Task 1: to assign probabilities to natural language sequences:
 - ► 'What is the probability of *lazy dog*?'
 - ► 'What is the probability of *The quick brown fox jumps over the lazy dog*?'
 - 'What is the probability of green colorless ideas sleep furiously?'
- ► Task 2: to assign a probability for the likelihood of a word a to follow a word sequence S of length n:
 - ► 'What is the probability of seeing *jumps* after *The quick brown fox*?'
- ► These two tasks are mathematically equivalent.

$$P(w_{1:n}) = P(w_1)P(w_2|w_1)P(w_3|w_{1:2})P(w_4|w_{1:3})...P(w_n|w_{1:n-1})$$
 (1)

Modeling linguistic sequences

- ► Task 1: to assign probabilities to natural language sequences:
 - ► 'What is the probability of *lazy dog*?'
 - ▶ 'What is the probability of *The quick brown fox jumps over the lazy dog*?'
 - 'What is the probability of green colorless ideas sleep furiously?'
- ► Task 2: to assign a probability for the likelihood of a word a to follow a word sequence S of length n:
 - 'What is the probability of seeing jumps after The quick brown fox?'
- ► These two tasks are mathematically equivalent.

$$P(w_{1:n}) = P(w_1)P(w_2|w_1)P(w_3|w_{1:2})P(w_4|w_{1:3})...P(w_n|w_{1:n-1})$$
(1)

Modeling linguistic sequences

- ► Task 1: to assign probabilities to natural language sequences:
 - 'What is the probability of lazy dog?'
 - ► 'What is the probability of *The quick brown fox jumps over the lazy dog*?'
 - 'What is the probability of green colorless ideas sleep furiously?'
- ► Task 2: to assign a probability for the likelihood of a word a to follow a word sequence S of length n:
 - ► 'What is the probability of seeing jumps after The quick brown fox?'
- ► These two tasks are mathematically equivalent.

$$P(w_{1:n}) = P(w_1)P(w_2|w_1)P(w_3|w_{1:2})P(w_4|w_{1:3})...P(w_n|w_{1:n-1})$$
(1)

Modeling linguistic sequences

- ► Task 1: to assign probabilities to natural language sequences:
 - ► 'What is the probability of *lazy dog*?'
 - ▶ 'What is the probability of *The quick brown fox jumps over the lazy dog*?'
 - 'What is the probability of green colorless ideas sleep furiously?'
- ► Task 2: to assign a probability for the likelihood of a word a to follow a word sequence S of length n:
 - ► 'What is the probability of seeing jumps after The quick brown fox?'
- ► These two tasks are mathematically equivalent.

$$P(w_{1:n}) = P(w_1)P(w_2|w_1)P(w_3|w_{1:2})P(w_4|w_{1:3})...P(w_n|w_{1:n-1})$$
(1)

- ► Multiplying hundreds or thousands of probabilities can be cumbersome.
- ► Hence, the Markov assumption a.k.a. Markov property:
 - ► future is independent of the past given the present.
- ▶ In LM context: we can look at only the last *k* words.
- ▶ It is a simplification, but it produces good results anyway.

- ► Multiplying hundreds or thousands of probabilities can be cumbersome.
- ► Hence, the Markov assumption a.k.a. Markov property:
 - ► future is independent of the past given the present.
- ▶ In LM context: we can look at only the last *k* words.
- ▶ It is a simplification, but it produces good results anyway.

- ► Multiplying hundreds or thousands of probabilities can be cumbersome.
- ► Hence, the Markov assumption a.k.a. Markov property:
 - ► future is independent of the past given the present.
- ► In LM context: we can look at only the last *k* words.
- ▶ It is a simplification, but it produces good results anyway.

- ► Multiplying hundreds or thousands of probabilities can be cumbersome.
- ► Hence, the Markov assumption a.k.a. Markov property:
 - future is independent of the past given the present.
- ► In LM context: we can look at only the last *k* words.
- ▶ It is a simplification, but it produces good results anyway.

- ► Language modeling is widely used in NLP applications (machine translation, chat-bots, summarization...).
- ► LMs are measured by perplexity (how surprised is the model by test word sequences, the lower the better).
- ▶ For a test corpus of *n* word tokens:

$$probs = \sum_{i=1}^{n} \log_2 LM(w_i|w_{1:i-1})$$

$$perplexity = 2^{-\frac{1}{probs}}$$
(2)

- ► Language modeling is widely used in NLP applications (machine translation, chat-bots, summarization...).
- ► LMs are measured by perplexity (how surprised is the model by test word sequences, the lower the better).
- ► For a test corpus of *n* word tokens:

$$probs = \sum_{i=1}^{n} \log_2 LM(w_i|w_{1:i-1})$$

$$perplexity = 2^{-\frac{1}{probs}}$$
(2)

- ► Language modeling is widely used in NLP applications (machine translation, chat-bots, summarization...).
- ► LMs are measured by perplexity (how surprised is the model by test word sequences, the lower the better).
- ► For a test corpus of *n* word tokens:

$$probs = \sum_{i=1}^{n} \log_2 LM(w_i|w_{1:i-1})$$

$$perplexity = 2^{-\frac{1}{probs}}$$
(2)

Contents

1 Language modeling task definition

Traditional approach to LM

- 3 Neural language modeling
 - Current state: pre-trained language models

Extract probabilities from corpus counts!

- 1. Take a large enough corpus;
- 2. count all sequences;
- 3. use maximum likelihood estimate for each word *m*:

$$\hat{P}((w_{i+1}=m)|w_{i-k:i}) = \frac{\#(w_{i-k:i+1})}{\#(w_{i-k:i})}$$

- 4. where # are corpus counts.
- 5. Et voila! You have probabilities for all seen words given previous sequences:

$$\hat{P}((w_4 = jumps) | [the, quick, brown, fox]) = 0.5$$

Extract probabilities from corpus counts!

- 1. Take a large enough corpus;
- 2. count all sequences;
- 3. use maximum likelihood estimate for each word *m*:

$$\hat{P}((w_{i+1}=m)|w_{i-k:i}) = \frac{\#(w_{i-k:i+1})}{\#(w_{i-k:i})}$$

- 4. where # are corpus counts.
- 5. Et voila! You have probabilities for all seen words given previous sequences:

$$\hat{P}((w_4 = jumps) | [the, quick, brown, fox]) = 0.5$$

Extract probabilities from corpus counts!

- 1. Take a large enough corpus;
- 2. count all sequences;
- 3. use maximum likelihood estimate for each word *m*:

$$\hat{P}((w_{i+1}=m)|w_{i-k:i}) = \frac{\#(w_{i-k:i+1})}{\#(w_{i-k:i})}$$

- 4. where # are corpus counts.
- 5. Et voila! You have probabilities for all seen words given previous sequences:

$$\hat{P}((w_4 = jumps) | [the, quick, brown, fox]) = 0.5$$

Extract probabilities from corpus counts!

- 1. Take a large enough corpus;
- 2. count all sequences;
- 3. use maximum likelihood estimate for each word *m*:

$$\hat{P}((w_{i+1}=m)|w_{i-k:i}) = \frac{\#(w_{i-k:i+1})}{\#(w_{i-k:i})}$$

- 4. where # are corpus counts.
- 5. Et voila! You have probabilities for all seen words given previous sequences:

$$\hat{P}((w_4 = jumps) | [the, quick, brown, fox]) = 0.5$$

Extract probabilities from corpus counts!

- 1. Take a large enough corpus;
- 2. count all sequences;
- 3. use maximum likelihood estimate for each word *m*:

$$\hat{P}((w_{i+1}=m)|w_{i-k:i}) = \frac{\#(w_{i-k:i+1})}{\#(w_{i-k:i})}$$

- 4. where # are corpus counts.
- 5. Et voila! You have probabilities for all seen words given previous sequences:

$$\hat{P}((w_4 = jumps) | [the, quick, brown, fox]) = 0.5$$

- Sequence not seen in the training data? $\hat{P} = 0$
- ► There are ways to deal with unseen events...
 - ▶ but they are tricky...
 - ...and do not scale well to larger n-grams.
- ▶ Unseen events become more frequent as one increases k;
- ▶ number of possible word combinations is $|V|^k$;
- ▶ for the vocabulary of 10 000 words and 5-grams: 10000⁵.
- \blacktriangleright Number of parameters increases polynomially with increasing k.

- Sequence not seen in the training data? $\hat{P} = 0$
- ► There are ways to deal with unseen events...
 - ▶ but they are tricky...
 - ...and do not scale well to larger n-grams.
- ▶ Unseen events become more frequent as one increases k;
- ▶ number of possible word combinations is $|V|^k$;
- ▶ for the vocabulary of 10 000 words and 5-grams: 10000⁵.
- \blacktriangleright Number of parameters increases polynomially with increasing k.

- ► Sequence not seen in the training data? $\hat{P} = 0$
- ► There are ways to deal with unseen events...
 - ▶ but they are tricky...
 - ...and do not scale well to larger n-grams.
- ▶ Unseen events become more frequent as one increases k;
- ▶ number of possible word combinations is $|V|^k$;
- ▶ for the vocabulary of 10 000 words and 5-grams: 10000⁵.
- \blacktriangleright Number of parameters increases polynomially with increasing k.

- ► Sequence not seen in the training data? $\hat{P} = 0$
- ► There are ways to deal with unseen events...
 - ▶ but they are tricky...
 - ...and do not scale well to larger n-grams.
- ▶ Unseen events become more frequent as one increases k;
- ▶ number of possible word combinations is $|V|^k$;
- ▶ for the vocabulary of 10 000 words and 5-grams: 10000^5 .
- \blacktriangleright Number of parameters increases polynomially with increasing k.

- ► Sequence not seen in the training data? $\hat{P} = 0$
- ► There are ways to deal with unseen events...
 - ▶ but they are tricky...
 - ...and do not scale well to larger n-grams.
- ▶ Unseen events become more frequent as one increases k;
- ▶ number of possible word combinations is $|V|^k$;
- ▶ for the vocabulary of 10 000 words and 5-grams: 10000^5 .
- \blacktriangleright Number of parameters increases polynomially with increasing k.

- ► Sequence not seen in the training data? $\hat{P} = 0$
- ► There are ways to deal with unseen events...
 - ▶ but they are tricky...
 - ...and do not scale well to larger n-grams.
- ▶ Unseen events become more frequent as one increases k;
- ▶ number of possible word combinations is $|V|^k$;
- \blacktriangleright for the vocabulary of 10 000 words and 5-grams: 10000 5 .
- \triangleright Number of parameters increases polynomially with increasing k.

- Sequence not seen in the training data? $\hat{P} = 0$
- ► There are ways to deal with unseen events...
 - ▶ but they are tricky...
 - ...and do not scale well to larger n-grams.
- ▶ Unseen events become more frequent as one increases k;
- ▶ number of possible word combinations is $|V|^k$;
- ► for the vocabulary of 10 000 words and 5-grams: 10000⁵.
- \triangleright Number of parameters increases polynomially with increasing k.

- Sequence not seen in the training data? $\hat{P} = 0$
- ► There are ways to deal with unseen events...
 - ▶ but they are tricky...
 - ...and do not scale well to larger n-grams.
- ▶ Unseen events become more frequent as one increases k;
- ▶ number of possible word combinations is $|V|^k$;
- ▶ for the vocabulary of 10 000 words and 5-grams: 10000^5 .
- \blacktriangleright Number of parameters increases polynomially with increasing k.

Lack of generalization power

- ► Representation power not shared between similar words
- ▶ we saw 'fox eats' and 'dog eats' 1000 times each
- ▶ we never saw 'wolf eats'
- ▶ the probability of 'wolf eats' will still be 0.

Lack of generalization power

- ► Representation power not shared between similar words
- ▶ we saw 'fox eats' and 'dog eats' 1000 times each
- ▶ we never saw 'wolf eats'
- ▶ the probability of 'wolf eats' will still be 0.

Lack of generalization power

- ► Representation power not shared between similar words
- ▶ we saw 'fox eats' and 'dog eats' 1000 times each
- ► we never saw 'wolf eats'
- ▶ the probability of 'wolf eats' will still be 0.

Lack of generalization power

- ► Representation power not shared between similar words
- ▶ we saw 'fox eats' and 'dog eats' 1000 times each
- we never saw 'wolf eats'
- ▶ the probability of 'wolf eats' will still be 0.

Lack of generalization power

- ► Representation power not shared between similar words
- ▶ we saw 'fox eats' and 'dog eats' 1000 times each
- we never saw 'wolf eats'
- ► the probability of 'wolf eats' will still be 0.

Contents

Language modeling task definition

2 Traditional approach to LM

- Neural language modeling
 - Current state: pre-trained language models

- ► Neural LM model proposed in [Bengio et al., 2003]:
- ► concatenate learned embeddings of the previous *k* words;
- ▶ this concatenation is fed into a feed-forward neural network...
- ...with hidden layers and non-linearities;
- ▶ cross-entropy loss, the next words as the gold predictions.
- Output probability distribution over possible next words across the whole vocabulary V (using softmax and the second embedding matrix).
- ▶ Input and output vocabularies can be different.

- ► Neural LM model proposed in [Bengio et al., 2003]:
- ► concatenate learned embeddings of the previous *k* words;
- ▶ this concatenation is fed into a feed-forward neural network...
- ...with hidden layers and non-linearities;
- ▶ cross-entropy loss, the next words as the gold predictions.
- Output probability distribution over possible next words across the whole vocabulary V (using softmax and the second embedding matrix).
- ▶ Input and output vocabularies can be different.

- ► Neural LM model proposed in [Bengio et al., 2003]:
- ► concatenate learned embeddings of the previous *k* words;
- ▶ this concatenation is fed into a feed-forward neural network...
- ...with hidden layers and non-linearities;
- ▶ cross-entropy loss, the next words as the gold predictions.
- Output probability distribution over possible next words across the whole vocabulary V (using softmax and the second embedding matrix).
- ▶ Input and output vocabularies can be different.

- ► Neural LM model proposed in [Bengio et al., 2003]:
- ► concatenate learned embeddings of the previous *k* words;
- ▶ this concatenation is fed into a feed-forward neural network...
- ...with hidden layers and non-linearities;
- ▶ cross-entropy loss, the next words as the gold predictions.
- Output probability distribution over possible next words across the whole vocabulary V (using softmax and the second embedding matrix).
- ▶ Input and output vocabularies can be different.

- ► Neural LM model proposed in [Bengio et al., 2003]:
- ► concatenate learned embeddings of the previous *k* words;
- ▶ this concatenation is fed into a feed-forward neural network...
- ...with hidden layers and non-linearities;
- ► cross-entropy loss, the next words as the gold predictions.
- Output probability distribution over possible next words across the whole vocabulary V (using softmax and the second embedding matrix).
- ▶ Input and output vocabularies can be different.

- ► Neural LM model proposed in [Bengio et al., 2003]:
- ► concatenate learned embeddings of the previous *k* words;
- ▶ this concatenation is fed into a feed-forward neural network...
- ...with hidden layers and non-linearities;
- ► cross-entropy loss, the next words as the gold predictions.
- Output probability distribution over possible next words across the whole vocabulary V (using softmax and the second embedding matrix).
- ▶ Input and output vocabularies can be different.

- ► Neural LM model proposed in [Bengio et al., 2003]:
- ► concatenate learned embeddings of the previous *k* words;
- ▶ this concatenation is fed into a feed-forward neural network...
- ...with hidden layers and non-linearities;
- ► cross-entropy loss, the next words as the gold predictions.
- Output probability distribution over possible next words across the whole vocabulary V (using softmax and the second embedding matrix).
- ► Input and output vocabularies can be different.

- ► Neural LM model proposed in [Bengio et al., 2003]:
- ► concatenate learned embeddings of the previous *k* words;
- ▶ this concatenation is fed into a feed-forward neural network...
- ...with hidden layers and non-linearities;
- ► cross-entropy loss, the next words as the gold predictions.
- Output probability distribution over possible next words across the whole vocabulary V (using softmax and the second embedding matrix).
- ► Input and output vocabularies can be different.

Feed-forward neural LM moving through a text

(from Jurafsky and Martin, 2018)

Modern neural LMs are mostly recurrent (gated RNNs like LSTM or GRU).

Feed-forward neural LM moving through a text

(from Jurafsky and Martin, 2018)

Modern neural LMs are mostly recurrent (gated RNNs like LSTM or GRU).

- Outperforms traditional LMs in perplexity.
- ightharpoonup Scales well: higher k leads to linear increase in the parameters number...
- ► ...in traditional LMs it was polynomial.
- ▶ Words in different positions share statistical strength.
- Generalizations to unseen data: similar words get similar representations in the embedding and the output layers:
 - ▶ 'fox eats': seen 1000 times; 'dog eats': seen 1000 times; 'wolf eats': seen 0 times; $\hat{P}([wolf, eats]) \gg 0$, because 'wolf' is similar to 'fox' and 'dog'.
- ► Can easily add more hidden layers.

- Outperforms traditional LMs in perplexity.
- ightharpoonup Scales well: higher k leads to linear increase in the parameters number...
- ► ...in traditional LMs it was polynomial.
- Words in different positions share statistical strength.
- Generalizations to unseen data: similar words get similar representations in the embedding and the output layers:
 - ▶ 'fox eats': seen 1000 times; 'dog eats': seen 1000 times; 'wolf eats': seen 0 times; $\hat{P}([wolf, eats]) \gg 0$, because 'wolf' is similar to 'fox' and 'dog'.
- ► Can easily add more hidden layers.

- Outperforms traditional LMs in perplexity.
- ightharpoonup Scales well: higher k leads to linear increase in the parameters number...
- ► ...in traditional LMs it was polynomial.
- Words in different positions share statistical strength.
- Generalizations to unseen data: similar words get similar representations in the embedding and the output layers:
 - ▶ 'fox eats': seen 1000 times; 'dog eats': seen 1000 times; 'wolf eats': seen 0 times; $\hat{P}([wolf, eats]) \gg 0$, because 'wolf' is similar to 'fox' and 'dog'.
- ► Can easily add more hidden layers.

- Outperforms traditional LMs in perplexity.
- ightharpoonup Scales well: higher k leads to linear increase in the parameters number...
- ► ...in traditional LMs it was polynomial.
- ► Words in different positions share statistical strength.
- Generalizations to unseen data: similar words get similar representations in the embedding and the output layers:
 - 'fox eats': seen 1000 times; 'dog eats': seen 1000 times; 'wolf eats': seen 0 times; $\hat{P}([wolf, eats]) \gg 0$, because 'wolf' is similar to 'fox' and 'dog'.
- ► Can easily add more hidden layers.

- Outperforms traditional LMs in perplexity.
- ightharpoonup Scales well: higher k leads to linear increase in the parameters number...
- ► ...in traditional LMs it was polynomial.
- ► Words in different positions share statistical strength.
- Generalizations to unseen data: similar words get similar representations in the embedding and the output layers:
 - 'fox eats': seen 1000 times; 'dog eats': seen 1000 times; 'wolf eats': seen 0 times; $\hat{P}([wolf, eats]) \gg 0$, because 'wolf' is similar to 'fox' and 'dog'.
- ► Can easily add more hidden layers.

- Outperforms traditional LMs in perplexity.
- ightharpoonup Scales well: higher k leads to linear increase in the parameters number...
- ► ...in traditional LMs it was polynomial.
- ► Words in different positions share statistical strength.
- Generalizations to unseen data: similar words get similar representations in the embedding and the output layers:
 - 'fox eats': seen 1000 times; 'dog eats': seen 1000 times; 'wolf eats': seen 0 times; $\hat{P}([wolf, eats]) \gg 0$, because 'wolf' is similar to 'fox' and 'dog'.
- ► Can easily add more hidden layers.

Shortcomings

- ► Expensive softmax over *V* in the output layer.
- ▶ Increasing the output |V| can significantly slow down the network (already slower than traditional models).
- ► There are ways to deal with this.

Shortcomings

- ► Expensive softmax over *V* in the output layer.
- ▶ Increasing the output |V| can significantly slow down the network (already slower than traditional models).
- ► There are ways to deal with this.

Shortcomings

- ► Expensive softmax over *V* in the output layer.
- ▶ Increasing the output |V| can significantly slow down the network (already slower than traditional models).
- ► There are ways to deal with this.

Language models can provide contextualized word embeddings, with different representations in different contexts.

- ► Embeddings from Language MOdels (ELMo) use LSTMs [Peters et al., 2018]
- ▶ Bidirectional Encoder Representations from Transformer (BERT) use bidirectional transformers [Devlin et al., 2018]

Language models can provide contextualized word embeddings, with different representations in different contexts.

- ► Embeddings from Language MOdels (ELMo) use LSTMs [Peters et al., 2018]
- ► Bidirectional Encoder Representations from Transformer (BERT) use bidirectional transformers [Devlin et al., 2018]

Language models can provide contextualized word embeddings, with different representations in different contexts.

- ► Embeddings from Language MOdels (ELMo) use LSTMs [Peters et al., 2018]
- ► Bidirectional Encoder Representations from Transformer (BERT) use bidirectional transformers [Devlin et al., 2018]

ELMo seem to improve any NLP task you apply them for:

*Kitaev and Klein, ACL 2018 (see also Joshi et al., ACL 2018)

^{&#}x27;ImageNet for NLP' (Sebastian Ruder)

ELMo seem to improve any NLP task you apply them for:

*Kitaev and Klein, ACL 2018 (see also Joshi et al., ACL 2018)

'ImageNet for NLP' (Sebastian Ruder)

Modes of usage

- 1. 'as is': contextualized representations are fed into the overarching architecture like the old-school 'static' embeddings;
- 2. the whole model is fine-tuned on target task data.

Layers of ELMo reflect language tiers

- word embedding layer: morphology;
- ► the first LSTM layer: syntax;
- ▶ the second LSTM layer: semantics (including word senses).

- ▶ https://allennlp.org/elmo
- ▶ https://github.com/allenai/bilm-tf
- ▶ https://github.com/google-research/bert

Modes of usage

- 'as is': contextualized representations are fed into the overarching architecture like the old-school 'static' embeddings;
- 2. the whole model is fine-tuned on target task data.

Layers of ELMo reflect language tiers

- word embedding layer: morphology;
- ► the first LSTM layer: syntax;
- ▶ the second LSTM layer: semantics (including word senses).

- ▶ https://allennlp.org/elmo
- ▶ https://github.com/allenai/bilm-tf
- ▶ https://github.com/google-research/bert

Modes of usage

- 1. 'as is': contextualized representations are fed into the overarching architecture like the old-school 'static' embeddings;
- 2. the whole model is fine-tuned on target task data.

Layers of ELMo reflect language tiers

- word embedding layer: morphology;
- ▶ the first LSTM layer: syntax;
- ▶ the second LSTM layer: semantics (including word senses).

- ▶ https://allennlp.org/elmo
- ▶ https://github.com/allenai/bilm-tf
- ▶ https://github.com/google-research/bert

Modes of usage

- 1. 'as is': contextualized representations are fed into the overarching architecture like the old-school 'static' embeddings;
- 2. the whole model is fine-tuned on target task data.

Layers of ELMo reflect language tiers

- word embedding layer: morphology;
- ▶ the first LSTM layer: syntax;
- ▶ the second LSTM layer: semantics (including word senses).

- ► https://allennlp.org/elmo
- ► https://github.com/allenai/bilm-tf
- ► https://github.com/google-research/bert

References I

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L. (2018).

Deep contextualized word representations.

In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237. Association for Computational Linguistics.