Содержание

Лекция 1. Магнитное поле	2
Лекция 2. Теорема Гаусса для магнитного поля	5
Лекция 3. Сила Ампера. Явление электромагнитной индукции	8
Сила Ампера	8
Явление электромагнитной индукции. Закон Фарадея. Правило Лоренца	10
Лекция 4. Электромагнитная индукция и магнетики	11
Электромагнитная индукция	11
Магнитное поле в веществе	11
Типы магнетиков и энергия поля	12
Лекция 5. Колебания	13

Лекция 1. Магнитное поле

Давным-давно верили, что существовал «эфир», который опоясывал всю вселенную и который был посредником в гравитационных/электромагнитных взаимодействиях. Позднее от теории эфира перешли к теории поля. Согласно нее каждый электрический заряд создает электрическое поле, которое действует на другие заряды

Опыт показывает, что сила \vec{F} , действующая на точечный заряд q, зависит в общем случае не только от положения этого заряда, но и от его скорости v. Соответственно этому силу F разделяют на две составляющие - электрическую F_{\Im} (не зависит от движения заряда) и магнитую F_{M} (зависит от скорости заряда). В любой точке пространства направление и модуль магнитной силы зависят от скорости v заряда, причем эта сила всегда перпендикулярна вектору v. Свойства магнитной силы можно описать, если ввести понятие магнитного поля. Силовой характеристикой магнитного поля (его действия на двигающиеся заряженные частицы) в данной точке пространства является вектор магнитной индукции B. Он определяет магнитную силу, действующую на двигающийся электрический заряд q

$$F_{\rm M} = q[\vec{v}, \vec{B}]$$

Полная электромагнитная сила, действующая на заряд q: $F_L = q\vec{E} + q[\vec{v}, \vec{B}]$

Силу F_L называеют силой Лоренца. Выражение выше справедливо как для постоянных, так и для переменных электрических и магнитных полей при любых значениях скорости v заряда. По действию силы Лоренца на заряд можно в принципе определить модули и направления векторов E и B. Поэтому выражение для силы Лоренца можно рассматривать как определение электрического и магнитного полей

Магнитная часть силы Лоренца действует на движущийся заряд в направлении, перпендикулярном его скорости, и, таким образом, не совершает работы над зарядом, оставляя неизменной его энергию и меняя лишь направление импульса (изменяет траекторию движения частицы)

Магнитная сила не делает вклад в тангенциальную составляющую скорости, следовательно не изменяет энергию заряда и не делает работы

Магнитная часть силы Лоренца максимальна, если направление движения частицы составляет с направлением магнитного поля прямой угол, и равна нулю, если частица движется вдоль направления магнитного поля

Сила Лоренца не зависит от выбора системы отсчета, однако магнитная составляющая силы Лоренца меняется при переходе от одной системы отсчета к другой (из-за изменения v).

Опыты показывают, что магнитное поле порождается движущимися зарядами. В результате обощения экспериментальных данных был получен закон, определяющий поле B точечного заряда q, движущегося с постоянной нерелятивистской скоростью v. Этот закон записывается

в виде:

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q[\vec{v}, \vec{r}]}{r^3}$$

где μ_0 - магнитная постоянная $(\frac{\mu_0}{4\pi}=10^{-7}\frac{\Gamma_{\rm H}}{{}^{\rm M}}),\,r$ - радиус-вектор, проведенный от заряда q к точке наблюдения

Магнитная постоянная существует из-за СИ (в СГС $\mu_0 = 1$). В некоторых средах μ_0 заменяется на $\mu_0\mu$, где μ - магнитная проницаемость среды

Конец радиус-вектора r неподвижен в данной системе отсчета, а его начало движется со скоростью v, поэтому вектор B в данной системе отсчета зависит не только от положения точки наблюдения, но и от времени

Пока что мы будем разбирать системы с равномерно двигающимися частицами

В соответствии с формулой вектор B перпендикулярен плоскости, в которой расположены v и r. Единицей магнитной индукции служит тесла (Тл). Формулу можно представить как:

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q[\vec{v}, \vec{r}]}{r^3} = \varepsilon_0 \mu_0 \left[\vec{v}, \frac{q}{4\pi\varepsilon_0} \frac{\vec{r}}{r} \right] = \varepsilon_0 \mu_0 [\vec{v}, \vec{E}] = \frac{[\vec{v}, \vec{E}]}{c^2}, \text{ где } c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \text{ - электродинамическая постоянная, равная скорости света в вакууме}$$

Из этого следует, что магнитное поле не может быть без электрического поля

Для магнитного поля справедлив **принцип суперпозиции**: вектор магнитного поля в точке равен сумме магнитных полей, создаваемых каждым зарядом или током в отдельности: $\vec{B} = \sum_i \vec{B}_i$

Найдем, пользуясь формулой магнитное поле, создаваемое постоянными электрическими токами. Подставим вместо q заряд $dq = \rho dV$, где dV - элементарный объем, ρ - объемная плотность заряда, и учтем, что $\rho v_d = j \ (v_d$ - дрейфовая скорость носителей заряда (средняя скорость частиц)). Тогда формула получает такой вид: $d\vec{B} = \frac{\mu_0}{4\pi} \frac{[\vec{j}, \vec{r}] dV}{r^3}$ Если ток силы I течет по тонкому проводу с площадью поперечного сечения S, то

$$\vec{j}dV = Sdl = Idl$$

$$\vec{j}dV = Id\vec{l}$$

Векторы jdV и Idl называют объемным и линейным элементами тока соответственно

Получам
$$\vec{B} = \frac{\mu_0}{4\pi} \int_l \frac{I[d\vec{l},\vec{r}]}{r^3} = \frac{\mu_0}{4\pi} \int_V \frac{[\vec{j},\vec{r}]dV}{r^3}$$
 - Закон Био-Савара

Расчет по этим формулам индукции магнитного поля тока значительно упрощается, если распределение тока имеет определенную симметрию

Ex. Магнитное поле прямого тока, то есть тока, текущего по тонкому прямому проводу. Согласно формуле в произвольной точке A векторы dB от всех элементов тока имеют одинаковое направление. Поэтому сложение векторов dB можно заменить сложением их модулей: $dB = \frac{Idl \cdot r \sin \alpha}{r^3} = \frac{\mu_0}{4\pi} I \frac{dl \sin \alpha}{r^2} = \frac{\mu_0}{4\pi} I \frac{d\alpha}{r^2} = \frac{\mu_0}{4\pi} I \frac{d\alpha}{r} = \frac{\mu_0}{4\pi} I \frac{d\alpha}$

I b B

В интеграле получаем $B=\frac{\mu_0}{4\pi}\int_0^\pi \frac{I}{b}\sin\alpha d\alpha=\frac{\mu_0}{4\pi}\frac{I}{b}(\cos\alpha_1-\cos\alpha_2)$

Для бесконечного проводника получаем $B = \frac{\mu_0}{2\pi} \frac{I}{b}$

Линии магнитной индукции поля прямого тока представляют собой систему охватывающих провод концентрических окружностей

Важно заметить, что линии электрического поля не замкнуты - у них есть начало (в плюсе) и конец (в минус), тогда как линии магнитного поля - замкнуты

Ex. Магнитное поле на оси кругового тока. Ищем вектор индукции в точке на оси кольца. В силу симметрии вектор магнитной индукции сонаправлен оси кольца. По закону Био-Савара получаем

$$dB_z = dB \cos \beta = \frac{\mu_0}{4\pi} \frac{Idl \cdot r \sin 90^{\circ}}{r^3} \cos \beta$$
$$\cos \beta = \frac{R}{r} \Longrightarrow B(z) = \frac{\mu_0}{4\pi} \frac{2\pi R^2 I}{(z^2 + R^2)^{\frac{3}{2}}} = \frac{\mu_0 R^2 I}{2(z^2 + R^2)^{\frac{3}{2}}}$$

Лекция 2. Теорема Гаусса для магнитного поля

В электростатике было введено понятие потока вектора напряженности электрического поля. Аналлогичное понятие можно ввести для магнитного поля.

Def. Потоком вектора магнитной индукции (или магнитным потоком) через элемент площади dS называется скалярная величина, равная $d\Phi = \vec{B}d\vec{S} = BdS\cos\alpha = B_n dS$

Полный магнитный поток через поверхность S равен сумме магнитных потоков через все элементы поверхности:

$$\Phi = \int_{S} \vec{B} d\vec{S}$$

Теорема Гаусса для вектора индукции магнитного поля: поток вектора магнитной индукции сквозь произвольную замкнутую поверхность равен нулю:

$$\oint_{S} \vec{B} d\vec{S} = 0, \quad \text{div} \vec{B} = 0$$

Эта теорема отражает факт непрерывности силовых линий магнитного поля, то есть отсутствия «магнитных зарядов», на которых бы начинались или заканчивались линии магнитной индукции

Так как линии вектора индукции магнитного поля не имеют ни начала, ни конца, то число силовых линий, входящих в ограниченную замкнутую поверхность, равно числу выходящих из нее

Пусть магнитное поле создано бесконечно длинным прямолинейным проводником с током. Рассчитаем циркуляцию вектора индукции магнитного поля по произвольному замкнутому контуру, охватывающему проводником

$$\oint_{L} \vec{B} d\vec{l} = \oint_{L} B dl \cos \alpha$$

$$dl\cos\alpha = rd\varphi, B = \frac{\mu_0 I}{2\pi r} \Longrightarrow \oint_L \vec{B} d\vec{l} = \frac{\mu_0 I}{2\pi} \oint_L d\varphi = \mu_0 I$$

Получаем теорему о циркуляции вектора магнитной индукции:

Циркуляция вектора магнитной индукции по произвольному замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром (или пронизывающих поверхность, опирающуюся на этот контур):

$$\oint_L \vec{B}d\vec{l} = \mu_0 \sum_k I_k$$

При вычислении суммы токов нужно учитывать знаки: положительными считаются те токи, направление которых связано с направлением обхода контура правилом правого винта, отрицательными - токи противоположного направления

Если контур в проводящей среде с непрерывным распределением тока, то $\oint_{\vec{r}} \vec{B} d\vec{l} = \mu_0 \int_{\vec{s}} \vec{j} d\vec{S}$

По теореме Стокса: $\oint_{I} \vec{B} d\vec{l} = \int_{S} \text{rot} \vec{B} d\vec{S} = \mu_0 \int_{S} \vec{j} d\vec{S}$ Таким образом, $\operatorname{rot} \vec{B} = \mu_0 \vec{j}$

Ех. Найдем магнитное поле соленоида (катушки)

Возьмем контур L_1 (см. кривой рисуночек), в нем $\oint_{L_1} \vec{B} d\vec{l} = (B_{23} - B_{41})l = 0 \Longrightarrow B_{23} = B_{41} = B_{\text{внутри}}$

 $J_{L_1} \qquad \qquad J_{L_1} \qquad \qquad J_{L_2} \qquad \qquad D_{41}/l - 0 \Longrightarrow B_{23} = B_{41} = B_{\rm внутри}$ В другом контур $L_2 \oint_{L_2} \vec{B} d\vec{l} = B_{\rm внутри} l = \mu_0 NI \Longrightarrow B_{\rm внутри} = \mu_0 \frac{N}{l} I = \mu_0 nI$, где n - плотность витков катушки на длину катушки

Получаем $|B = \mu_0 nI|$ - поле катушки пропорционально плотности витков

Ех. Найдем поле тороида. Из соображений симметрии очевидно, что линии индукции - окружность, концентричные с тороидом. В качестве контура L выберем окружность с радиусом r

$$\oint_L \vec{B} d\vec{l} = B \cdot 2\pi r = \mu_0 NI \Longrightarrow \boxed{B(r) = \frac{\mu_0 NI}{2\pi r}},$$
 где N - число

Вектора магнитной индукции будут являться касательными к окружности, концентричной тороиду

Ex. Постоянный ток I = 10 A, течет по длинному прямому проводнику круглого сечения. Найти магнитный поток через одну из половин осевого сечения проводника в расчете на один метр его длины.

Возьмем контур L - окружность радиуса r, меньшего радиуса сечения проводника R. По теореме

о циркуляции $\oint_L B(r)dr = \mu_0 I_{\text{внутри}}$. В силу симметрии считаем, что вектор $\vec{B}(r)$ равен по модулю на всем контуре L. Тогда получаем $B(r) \cdot 2\pi r = \mu_0 I_{\text{внутри}} = \mu_0 j S = \mu_0 j \pi r^2 \Longrightarrow B(r) = \frac{\mu_0 I r}{2\pi R^2}$ Тогда поток через половину осевого сечения равен $\frac{\Phi}{l} = \int_0^R B(r) dr = \int_0^R \frac{\mu_0 I r}{2\pi R^2} dr = \boxed{\frac{\mu_0 I}{4\pi}} = 10^{-6} \frac{\text{B6}}{\text{M}}$

Ex. Непроводящая сфера радиуса R=50 мм, заряженная равномерно с поверхностной плотностью $\sigma=10$ мкКл/м², вращается с угловой скоростью $\omega=70$ рад/с вокруг оси, проходящей через ее центр. Найти магнитную индукцию в центре сферы

Сделаем разбиение сферы на колечки высотой dx, длина каждой такой колечки равна $2\pi r$, где $r=\sqrt{R^2-x^2}$. Его площадь $2\pi r dx$. Точка на кольце движется с линейной скоростью $x=\omega r$

Лекция 3. Сила Ампера. Явление электромагнитной индукции

Сила Ампера

Вектор магнитной индукции характеризует силовое действие магнитного поля на движущиеся заряды. Сила, действующая на движущийся точечный зарядв магнитном поле, равна $\vec{F}_{\text{Л}\ (\text{M})} = q[\vec{v},\vec{B}]$ и называется магнитной составляющей силы Лоренца

Направление магнитной составляющей силы Лоренца зависит от знака заряженной частицы Магнитная составляющая силы Лоренца всегда направлена перпендикулярно скорости, поэтому не совершает работы и не изменяет величину скорости заряженной частицы

Ex. Частица влетает перпендикулярно силовым линиям магнитного поля: $\vec{v}\perp\vec{B}$

Скорость частицы и действующая на нее сила все время лежат в плоскости, перпендикулярной к силовым линиям магнитного поля. Траекторией движения частицы будет окружность радиуса R, лежащая в этой плоскости. Условием движения по окружности является $qvB = m\frac{v^2}{R}$, из этого $R = \frac{mv}{qB}$

Ex. Частица влетает под углом α к силовым линиям магнитного поля

Составляющая скорости, направленная вдоль силовых линий магнитного поля, не будет изменяется, а в плоскости, перпендикулярной силовым линиям, частица движется по окружности. Траектория движения представляет собой винтовую линию

Mem. Сила Лоренца - полная сила, действующая на заряд: $\vec{F}_\Pi = q\vec{E} + q[\vec{v},\vec{B}]$

Разделение полной силы Лоренца на электрическую и магнитную зависит от выбора системы отсчета

Def. Сила Ампера - сила, действующая под действием магнитного поля на заряды проводника, создающие электрический ток

Пусть электрический ток в объеме dV элемента тока длиной dl и площадью сечения S образован заряженными частицами с зарядом q, движущимися со средней скоростью v вдоль элемента тока:

$$d\vec{F}_A = [\vec{j}, \vec{B}]dV$$

$$d\vec{F}_A = I[d\vec{l}, \vec{B}]$$

Направление силы Ампера можно определить с помощью правила левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор индукции магнитного поля, а четыре вытянутых - пальца по направлению тока, то отогнутый на 90° большой палец покажет направление силы Ампера

Для изучения свойств магнитного поля используется замкнутый плоский контур с током (рамка с током). Форма контура не имеет значения, а его размеры должны быть малы по сравнению с расстоянием до источников магнитного поля. Контур с током принято характеризовать магнитным моментом: $\vec{p}_m = IS\vec{n}$, где I - сила тока, S - площадь, ограниченная контуром, \vec{n} - нормаль, образующая с направлением тока правовинтовую систему

На контур с током действует сила Ампера $d\vec{F}_A = I[d\vec{l}, \vec{B}] \Longrightarrow \vec{F}_A = I \oint [d\vec{l}, \vec{B}]$

Если поле однородно, то $\vec{F}_A = I \oint \left[d\vec{l}, \vec{B} \right] = I [\oint \, d\vec{l}, \vec{B}] = 0$

Если поле неоднородно, то $\vec{F} = p_m \frac{\partial \vec{B}}{\partial n}$

Ex. Рассмотрим случай поведения прямоугольного контура с током в однородном магнитном поле. Предположим, что рамка имеет возможность вращаться вокругоси, проходящей через середины ее сторон длиной a и перпендикулярной к силовым линиям магнитного поля.

Силы Ампера, действующие на стороны a рамки, направлены вдоль оси вращения, поэтому действие этих сил сводится только к деформации контура (сжатию или растяжению). Силы Ампера, действующие на сто

роны b рамки, создают вращающий момент и равны $F_A = IBb$.

Тогда момент сил равен $M=Fa\sin\alpha=IBS\sin\alpha=p_mB\sin\alpha\Longrightarrow\vec{M}=[\vec{p}_m,\vec{B}]$

Работа сил магнитного поля по перемещению подвижного проводника будет равна:

$$dA = d\vec{F} \cdot d\vec{r} = I[d\vec{l}, \vec{B}] \cdot d\vec{r} = Id\Phi$$

$$A = \int_{1}^{2} Id\Phi$$

Явление электромагнитной индукции. Закон Фарадея. Правило Лоренца

В цепи первой катушки течет постоянный ток I_1 , в цепи второй ток отсутствует. Если катушку 1 приближать к 2, в последней возникнет ток I_2 , который Фарадей назвал индукционным током. При удалении катушки 1 от 2 ток I_2 тоже появляется, но имеет противоположное направление. Катушку 1 можно заменить длинным полосовым магнитом.

При перемещении магнита вдоль оси катушки 2, тоже обнаружится возникновение в ней индукционного тока.

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении магнитного потока, охватываемого этим контуром.

Закон Фарадея: ЭДС индукции в контуре пропорциональна скорости изменения магнитного потока сквозь площадь, ограниченную контуром:

$$\varepsilon = -\frac{d\Phi}{dt}$$

Правило Ленца: индукционный ток всегда направлен так, что его магнитное поле противодействует причине, вызвавшей его появление

Самоиндукцией называется явление возникновение ЭДС индукции в электрической цепи вследствие изменения электрического тока в этой же цепи.

Заметим, что $B \sim I$ и $\Phi \sim B$ (в отсутствии ферромагнетиков). Тогда $\Phi \sim I$ или же $\Phi = LI$ Коэффициент пропорциональности L называется индуктивностью контура. Индуктивность контура зависит от его размеров и формы, магнитных свойств среды

При изменении силы тока в контуре возникает ЭДС самоиндукции $\varepsilon_s = -\frac{d\Phi}{dt} = -\frac{d}{dt}(LI) = -L\frac{dI}{dt} - I\frac{dL}{dt}$

Лекция 4. Электромагнитная индукция и магнетики

Электромагнитная индукция

Закон Фарадея связывает ЭДС индукции с изменением магнитного потока через контур:

$$arepsilon_{ ext{ iny IHJ}} = \oint \, ec{E} \cdot d ec{l} = - rac{\partial \Phi}{\partial t},$$

где магнитный поток $\Phi = \int_{\mathcal{S}} \vec{B} \cdot d\vec{S}$. Переменное магнитное поле создаёт вихревое электрическое поле: силовые линии такого поля замкнуты, а само поле действует на заряды даже в отсутствие проводника. Это явление лежит в основе работы трансформаторов и генераторов. Например, если быстро вращать магнит рядом с катушкой, возникающая ЭДС заставляет ток течь в цепи.

Для произвольного контура изменение потока связано с локальным изменением \vec{B} :

$$\frac{\partial \Phi}{\partial t} = \int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}.$$

ЭДС можно выразить через интеграл от производной магнитного поля:

$$\varepsilon_S = -\int_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}.$$

Это означает, что чем быстрее меняется магнитное поле или чем больше площадь контура, тем сильнее индуцированный ток.

Магнитное поле в веществе

В материальной среде полное поле \vec{B} складывается из внешнего \vec{B}_0 и поля \vec{B}' , создаваемого намагниченностью вещества. Магнитные свойства описываются вектором намагниченности \vec{J} - магнитным моментом единицы объема:

$$\vec{J} = n\vec{p}_m$$
, $[\vec{J}] = A/M$,

где n — концентрация атомов, \vec{p}_m — магнитный момент одного атома. Намагниченность связана с молекулярными токами: каждый атом ведёт себя как микроскопический виток с током $I' = \vec{J} \cdot \vec{l}$ (рис. 1). Суммарный молекулярный ток через поверхность S равен циркуляции \vec{J} по контуру:

$$I' = \oint \vec{J} \cdot d\vec{l}.$$

Основные уравнения. Полный ток (внешний I и молекулярный I') создаёт магнитное поле:

$$\oint \vec{B} \cdot d\vec{l} = \mu_0(I + I').$$

Чтобы исключить молекулярные токи, вводят **напряжённость магнитного поля** \vec{H} :

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{J}, \quad \oint \vec{H} \cdot d\vec{l} = I.$$

В дифференциальной форме: $\nabla \times \vec{H} = \vec{j}$, где \vec{j} — плотность внешних токов. Для большинства веществ \vec{B} и \vec{H} связаны линейно:

$$\vec{B} = \mu_0 \mu \vec{H}, \quad \vec{J} = \chi \vec{H},$$

где $\mu = 1 + \chi$ — относительная магнитная проницаемость, χ — магнитная восприимчивость.

Граничные условия. По аналогии с электрическим полем при переходе между средами с разными коэффициентами магнитной проницаемости:

- Нормальная компонента B непрерывна: $B_{1n} = B_{2n}$ (магнитные заряды не существуют).
- Касательная компонента H скачкообразно меняется при наличии поверхностных токов: $H_{2\tau} H_{1\tau} = I_{\text{пов}}$. Если токов нет, $H_{1\tau} = H_{2\tau}$, а B-поле меняется пропорционально μ : $B_{2\tau} = \frac{\mu_2}{\mu_1} B_{1\tau}$.

Типы магнетиков и энергия поля

Диамагнетики (медь, вода) слабо выталкиваются из поля ($\chi < 0$, $|\chi| \sim 10^{-5}$). Их атомы не имеют собственного момента; наведённые токи ослабляют внешнее поле.

Парамагнетики (алюминий) слабо втягиваются ($\chi > 0$, $\chi \sim 10^{-3}$): тепловое движение мешает ориентации атомных моментов.

Ферромагнетики (железо) сильно усиливают поле ($\mu \gg 1$) за счёт доменов - областей спонтанной намагниченности. При циклическом перемагничивании наблюдается гистерезис: зависимость B(H) образует петлю, что приводит к потерям энергии.

Энергия магнитного поля. При изменении тока в катушке совершается работа против ЭДС индукции:

$$dW = I \cdot d\Phi = LI \, dI \quad \Rightarrow \quad W = \frac{LI^2}{2}.$$

Эта энергия «запасена» в поле: плотность энергии $w = \frac{B^2}{2\mu_0\mu}$. В ферромагнетиках часть энергии тратится на переориентацию доменов (гистерезисные потери).

Лекция 5. Колебания

Колебаниями называются процессы (изменения состояния тела или системы), обладающие той или иной степенью повторяемости во времени. Повторение может быть строго периодическим (например, движение маятника) или хаотическим (апериодические колебания). Различают:

- **Периодические:** значения физических величин повторяются через равные интервалы времени T
- Апериодические: нет строгой периодичности, например, затухающие колебания груза
- **Свободные** (собственные): возникают после выведения системы из равновесия без внешнего воздействия
- Вынужденные: поддерживаются внешней периодической силой. Амплитуда зависит от соотношения частоты силы и собственной частоты системы (явление резонанса).
- Автоколебания: энергия поступает в систему по её внутренним законам. Пример: генератор на транзисторе, где обратная связь поддерживает незатухающие колебания.

Колебательная система - физическая система, в которой могут существовать свободные колебания. Реальные системы всегда имеют затухание из-за диссипативных сил (трение, сопротивление). Систему, в которой описывающие ее величины совершают колебания около точки равновесия, называют осциллятором

Системы, в которых возможны колебательные процессы, подразделяются на линейные и нелинейные. В первом случае дифференциальные уравнения, описывающие поведение системы, являются линейными, и система подчиняется принципу суперпозиции.

Во втором случае такие дифференциальные уравнения нелинейны и принцип суперпозиции не справедлив. Большинство физических систем нелинейны, однако, при малых отклонениях от состояний равновесия они демонстрируют линейное поведение

Простейшими являются гармонические колебания, которые описываются формулой $x = A\cos(\omega_0 t + \alpha)$ (или $x = A\sin(\omega_0 t + \alpha)$). Обычно точка x = 0 считается положением равновесия. Такие колебания часто встречаются в природе (например, маятник). К тому же, другие периодические процессы могут быть представлены как комбинация гармонических (подобно рядам Фурье)

Величина α называется начальной фазой колебаний, а A - амплитуда, наибольшее значение колебания. Косинус - 2π -периодичная функция, из этого можно найти период колебаний: $(\omega_0(t+T)+\alpha)-(\omega_0t+\alpha)=2\pi\Longrightarrow T=\frac{2\pi}{C^2}$

Период отражает величину времени, через которое система придет в исходное положение. 1

Обратная величина - частота $v = \frac{1}{T}$

Можем получить скорость колебаний: $v_x = \dot{x} = -A\omega_0\sin(\omega_0t + \alpha)$

И ускорение: $a_x = \ddot{x} = -A\omega_0^2\cos(\omega_0 t + \alpha)$

Из этого $\ddot{x} + \omega_0^2 x = 0$

По формуле Эйлера функцию гармонических колебаний можно представить как $x(t) = \operatorname{Re}(Ae^{i(\omega_0 t + \alpha)})$

Ex. Пружсинный маятник. Сила упругости по закону Гука равна F = -kx. Подставляя в $F = m\ddot{x}$, получаем:

$$m\ddot{x} + kx = 0 \implies \omega_0 = \sqrt{\frac{k}{m}}, \quad T = 2\pi\sqrt{\frac{m}{k}}$$

Полная энергия в отсутствие трения сохраняется: $W = \frac{mv^2}{2} + \frac{kx^2}{2}$. И в пике достигает $W_{\text{пот}} = W_{\text{кин}} = \frac{mv^2}{2} = \frac{mA^2\omega_0^2}{2} = \frac{kA^2}{2}$

Ex.~Mатематический маятник. - подвешенный грузик на нерастяжимой нити, совершающий движение по окружности. Момент силы равет $M=mgl\sin\varphi, I=ml^2$, угловое ускорение - $\varepsilon=\frac{d^2\varphi}{dt^2}$ По основному уравнению вращательного движения $I\varepsilon=M\Longrightarrow\ddot{\varphi}l=g\sin\varphi$

При малых колебаниях $\sin \varphi \sim \varphi$ и получаем $\varphi = \varphi_{\max} \cos(\omega_0 t + \alpha)$

Отсюда период
$$T=2\pi\sqrt{\frac{l}{g}}, \omega_0=\sqrt{\frac{g}{l}}$$

Ex. Электрический LC-контур:. Пусть конденсатор ёмкостью C заряжен до напряжения U_0 . При соединении конденсатора с катушкой индуктивности в цепи потечёт ток I, что вызовет в катушке ЭДС самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности), в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора равна нулю. Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна

После этого начнётся перезарядка конденсатора, то есть зарядка конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор в этом случае снова будет заряжен до напряжения $-U_0$

$$L\frac{d^2q}{dt^2} + \frac{q}{C} = 0 \implies \ddot{q} + \frac{1}{LC}q = 0$$

Отсюда циклическая частота: $\omega_0 = \frac{1}{\sqrt{LC}}$, период - $T = 2\pi\sqrt{LC}$

Энергия переходит между конденсатором $\left(W_E = \frac{q^2}{2C}\right)$ и катушкой $\left(W_M = \frac{LI^2}{2}\right)$.

Лекция 6. Колебания

$$T = 2\pi\sqrt{LC}$$
 - формула Томпсона

Напряжение на конденсаторе меняется в такт с зарядом

$$U_C(t) = \frac{q}{C} = \frac{q_{\text{max}}}{C} \cos(\omega_0 t + \alpha) = U_{\text{max}} \cos(\omega_0 t + \alpha)$$

А сила тока опережает по фазе напряжение на конденсаторе на $\frac{\pi}{2}$

$$I(t) = \frac{dq}{dt} = -\omega_0 q_{\text{max}} \sin(\omega_0 t + \alpha) = I_{\text{max}} \cos(\omega_0 t + \alpha + \frac{\pi}{2})$$

$$U_{\text{max}} = \frac{1}{\omega_0 C} I_{\text{max}} = \sqrt{\frac{L}{C}} I_{\text{max}}$$

$$W_E = \frac{CU_C^2(t)}{2}$$

$$W_B = \frac{LI^2(t)}{2}$$

Вектор колебаний

Сложение нескольких гармонических колебаний одного направления и одинаковой частоты облегчается, если изображать колебания графически в виде векторов на плоскости. Полученная таким способом схема называется векторной диаграммой.

Возьмем ось Ox, точку O, от оси с углом α отложим вектор длиной A. Если привести вектор во вращение с угловой скоростью ω_0 , то проекция вектора будет перемещаться в по оси Ox в пределах от -A до A. Причем координата проекции будет изменяться по закону: $x(t) = A\cos(\omega_0 t + \alpha)$

Если два колебания представить с помощью векторов A_1 и A_2 , то проекция суммы векторов A на ось будет представлять сумму проекций. A будет вращаться с той же частотой, что и A_1 и A_2

По геометрическим соображениям тангенс угла вектора A α (также начальная фаза колебаний) равен $\operatorname{tg} \alpha = \frac{A_1 \sin \alpha_1 + A_2 \sin \alpha_2}{A_1 \cos \alpha_1 + A_2 \cos \alpha_2}$

Если частоты двух гармонических колебаний различны, то их сумма не будет являться гармоническим колебанием. Но если колебания одного направления мало отличаются по частоте, то сумму колебаний можно рассматривать как гармоническое колебание с пульсирующей амплитудой. Такое колебание называется биениями.

Рассмотрим одно колебание с частотой ω , другое колебание с частотой $\omega+\Delta\omega$, причем $\Delta\omega\ll\omega$

Тогда
$$x = x_1 + x_2 = A(\cos \omega t + \cos((\omega + \Delta \omega)t)) = 2A\cos \frac{\Delta \omega}{2} \cdot \cos \left(\omega + \frac{\Delta \omega}{2}\right)t$$

Величину $2A\cos\frac{\Delta\omega}{2}$ можно рассматривать как амплитуду

Предположим, что имеются две взаимно перпендикулярные векторные величины x и y, изменяющиеся по закону: $\vec{x} = \vec{e}_x A \cos \omega t$, $\vec{y} = \vec{e}_u B \cos(\omega t + \alpha)$

Здесь e_x, e_y - орты координатных осей, A, B - амплитуды

$$\cos \omega t = \frac{x}{A}, \qquad \sin \omega t = \pm \sqrt{1 - \frac{x^2}{A^2}}$$

$$\frac{y}{B} = \cos(\omega t + \alpha) = \cos \omega t \cdot \cos \alpha - \sin \omega t \cdot \sin \alpha = \frac{x}{A} \cos \alpha \mp \sin \alpha \cdot \sqrt{1 - \frac{x^2}{A^2}}$$

Немного преобразив выражение, получаем уравнение эллипса: $\frac{x^2}{A^2} + \frac{y^2}{B^2} - \frac{2xy}{AB} \cos \alpha = \sin^2 \alpha$ При $\alpha = 0$ результирующее движение является гармоническим колебанием вдоль прямой $y = \frac{B}{A}x$, при других - эллипсом

При почти одинаковых частотах движение происходит по видоизменяющейся кривой. При разных частотах получаются фигуры Лиссажу

Затухающие колебания

Во всякой реальной колебательной системе всегда имеется либо сила трения, либо активное электрическое сопротивление, действие которых приводит к уменьшению энергии системы

Для пружинного маятника в вязкой среде получаем $m\ddot{x} = -kx - r\dot{x}$ или $\ddot{x} + 2\beta\dot{x} + \omega_0^2 x = 0$ Ища решения в виде $x(t) = u(t)e^{\beta t}$, получаем $\ddot{u} + (\omega_0^2 - \beta^2)u = 0$

При $\omega_0 > \beta$ получим $\omega \equiv \sqrt{\omega^2 - \beta^2}$ и $\ddot{u} + \omega^2 u = 0$

Из этого $u = A_0 \cos(\omega t + \alpha)$, а $x(t) = A_0 e^{\beta t} \cos(\omega t + \alpha)$

Скорость затухания колебаний определяется величиной β , которую называют коэффициентом затухания. Также затухания можно характеризовать декрементом затухания $\lambda = \ln \frac{A(t)}{A(t+T)} = \beta T$

За время $\tau = \frac{T}{\lambda}$, за которое амплитуда уменьшается в e раз, система успевает совершить $N_{\tau} = \frac{\tau}{T}$ колебаний

Также применяется величина добротности колебательной системы $Q = \frac{\pi}{\lambda}$

В электрическом колебательном контуре получаем $2\beta \equiv \frac{R}{L}$ и $\omega_0^2 \equiv \frac{1}{LC}$

$$\ddot{q}+2\beta\dot{q}+\omega_0^2q=0$$
 Здесь $\lambda=\frac{R}{2L}\cdot\frac{2\pi}{\omega}=\frac{R\pi}{L\omega},\;Q=\frac{L\omega}{R}$

Вынужденные колебания

Пусть механическая колебательная система подвергается действию внешней силы, изменяющейся со временем по гармоническому закону: $F_x = F_0 \cos \omega t$

Тогда $m\ddot{x} + r\dot{x} + kx = F_0 \cos(\omega t)$

Установившееся решение:
$$x(t)=\frac{F_0}{\sqrt{(k-m\omega^2)^2+(r\omega)^2}}\cos(\omega t-\phi)$$
, где $\phi=\arctan\left(\frac{r\omega}{k-m\omega^2}\right)$ — сдвиг фазы.

Резонанс возникает при частоте: $\omega_{\rm pes} = \sqrt{\omega_0^2 - 2\beta^2}$

Добротность определяет остроту резонанса: $Q = \frac{\omega_0}{2\beta}$.

Лекция 7. Электромагнитные волны

Вспомним знаменитые уравнения Максвелла

- $[\vec{\nabla}\vec{E}] = -\frac{\partial \vec{B}}{\partial t}$ закон Фарадея
- $[\vec{\nabla}\vec{D}] = \rho$ теорема Гаусса
- $[\vec{\nabla}\vec{H}] = \vec{j} + \frac{\partial \vec{D}}{\partial t}$ закон Ампера
- $\vec{\nabla} \vec{B} = 0$ теорема Гаусса для магнитного поля

А также $\vec{\nabla}\vec{j}=-\frac{\partial\rho}{\partial t}$ - уравнение непрерывности, $\vec{B}=\mu\mu_0\vec{H},\;\vec{D}=\varepsilon\varepsilon_0\vec{E}$

В среде однородной, нейтральной ($\rho=0$) и непроводящей (j=0) получаем:

$$[\vec{\nabla}\vec{E}] = -\frac{\partial\vec{B}}{\partial t}$$

$$[\vec{\nabla}\vec{D}] = 0$$

$$[\vec{\nabla}\vec{B}] = 0$$

$$[\vec{\nabla}\vec{B}] = 0$$

Из этого:
$$\frac{\partial}{\partial t} \left(\frac{\partial \vec{D}}{\partial t} \right) = \varepsilon \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$$

$$\parallel$$

$$\frac{\partial}{\partial t} [\vec{\nabla} \vec{H}] = \left[\vec{\nabla} \frac{\partial \vec{H}}{\partial t} \right] = -\frac{1}{\mu \mu_0} [\vec{\nabla} [\vec{\nabla} \vec{E}]] = \vec{\nabla} (\vec{\nabla} \vec{E}) - (\vec{\nabla} \vec{\nabla}) \vec{E} \underset{\vec{\nabla} \vec{D} = \vec{\nabla} \varepsilon \varepsilon_0 \vec{E} = 0}{===} - \vec{\nabla}^2 \vec{E}$$

Далее получаем $-\vec{\nabla}^2 \vec{E} = \varepsilon \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$. Приходим к волновым уравнениям:

$$\nabla^{2}\vec{E} - \varepsilon\varepsilon_{0}\mu\mu_{0}\frac{\partial^{2}\vec{E}}{\partial t^{2}} = 0$$
$$\nabla^{2}\vec{H} - \varepsilon\varepsilon_{0}\mu\mu_{0}\frac{\partial^{2}\vec{H}}{\partial t^{2}} = 0$$

Коэффициент перед вторым членом определяет скорость волны $v=\frac{1}{\sqrt{\varepsilon\varepsilon_0\mu\mu_0}}=\frac{c}{\sqrt{\varepsilon\mu}},$ где c - скорость света в вакууме

Главное отличие волны от колебания - это то, что волна переносит энергию

В простейшем случае решением уравнения может быть такая функция (так называемая гармоническая расходящася сферическая волна):

 $E(r,t) = E_0 \cos(\omega t \pm \vec{k}\vec{r} + \varphi_0)$, где \vec{k} - волновой вектор, а \vec{r} - расстояние от наблюдаемой нами точки до источника волн

В таком случае поток по сферам разных радиусов в центре источника будет одинаков Если волна зависит только от одной координаты, то волна будет называться плоской: $E(x,t) = E_0 \cos(\omega t \pm kx + \varphi_0)$

Анализ электромагнитных волн (ЭМВ) показывает, что они обладают свойствами:

- \bullet Вектора $\vec{E},\,\vec{B}$ и \vec{k} взаимно ортогональны и образуют правовинтовую тройку векторов
- Между напряженностью электрического поля и индукцией магнитного поля волны в вакууме существует прямая связь: $|\vec{E}| = c|\vec{B}|$ (не в вакууме $\sqrt{\varepsilon\varepsilon_0}|\vec{E}| = \sqrt{\mu\mu_0}|\vec{B}|$)

При этом начальная фаза и частота у колебаний B и E равны

Объемная плотность ЭМ-энергии равна: $w = \frac{\varepsilon \varepsilon_0 E^2}{2} + \frac{\mu \mu_0 H^2}{2}$. Из этого $w = \varepsilon \varepsilon_0 E^2 = \mu \mu_0 H^2 = \frac{EH}{v}$, где v - скорость волны

Вектор $\vec{S} = [\vec{E}\vec{H}]$ называют вектором Умова-Пойнтинга и отображает плотность потока энергии Интенсивность волны (мощность, переносимая через площадку за время) равна усредненному модулю вектора Умова-Пойнтинга за данный промежуток времени $I = \langle |\vec{S}| \rangle = \frac{1}{2} \sqrt{\frac{\varepsilon \varepsilon_0}{\mu \mu_0}} E_m^2$ Для ЭМВ также справедлив эффект Доплера:

- Продольный: $f = f_0 \cdot \sqrt{\frac{1 \frac{v}{c}}{1 + \frac{v}{c}}}$
- Поперечный: $f = f_0 \cdot \sqrt{1 \frac{v^2}{c^2}}$

Здесь f_0 - частота волн, испускаемых источником, f - частота волн, воспринимаемых приемников, v - скорость источника относительно приемника

Из граничных условий при переходе между средами и из знания того, что свет - ЭМВ, выводится закон Снелла