(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS

MATEMATIKA

2011 m. valstybinio brandos egzamino užduotis (pagrindinė sesija)

2011 m. birželio 7 d.

Egzamino trukmė – 3 val.

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

Valstybinio brandos egzamino formulės

B Trikampis.
$$a^2 = b^2 + c^2 - 2bc \cos A$$
, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$, $S = \frac{1}{2}ab \sin C = \sqrt{p(p-a)(p-b)(p-c)} = rp = \frac{abc}{4R}$;

čia a, b, c – trikampio kraštinės, A, B, C – prieš jas esantys kampai,

p – pusperimetris, r ir R – įbrėžtinio ir apibrėžtinio apskritimų spinduliai, S – plotas.

B→Skritulio išpjova.
$$S = \frac{\pi R^2}{360^\circ} \cdot \alpha$$
, $l = \frac{2\pi R}{360^\circ} \cdot \alpha$;

čia α – centrinio kampo didumas laipsniais, S – išpjovos plotas,

l – išpjovos lanko ilgis, R – apskritimo spindulys.

B
$$\rightarrow$$
 Kūgis. $S_{\check{s}on.\ pav.} = \pi Rl, \ V = \frac{1}{3}\pi R^2 H.$

B • Rutulys.
$$S = 4\pi R^2$$
, $V = \frac{4}{3}\pi R^3$.

Nupjautinis kūgis.
$$S_{\check{son.}\;pav.} = \pi(R+r) \cdot l, \quad V = \frac{1}{3}\pi H(R^2 + Rr + r^2);$$

čia R ir r – kūgio pagrindų spinduliai, V – tūris, H – aukštinė, l – sudaromoji.

Nupjautinės piramidės tūris.
$$V = \frac{1}{3}H(S_1 + \sqrt{S_1S_2} + S_2);$$

čia S_1 , S_2 – pagrindų plotai, H – aukštinė.

Rutulio nuopjovos tūris.
$$V = \frac{1}{3}\pi H^2(3R - H);$$

čia R – spindulys, H – nuopjovos aukštinė.

Vektorių skaliarinė sandauga.
$$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2 = |\vec{a}| \cdot |\vec{b}| \cos \alpha$$
;

čia α – kampas tarp vektorių $\vec{a}\{x_1, y_1, z_1\}$ ir $\vec{b}\{x_2, y_2, z_2\}$.

Geometrinė progresija.
$$b_n = b_1 q^{n-1}$$
, $S_n = \frac{b_1 (1 - q^n)}{1 - q}$.

Begalinė nykstamoji geometrinė progresija. $S = \frac{b_1}{1-q}$.

Trigonometrinės funkcijos.

$$\mathbf{B} \to 1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}, \ 1 + ctg^2 \alpha = \frac{1}{\sin^2 \alpha},$$

$$2\sin^2\alpha = 1 - \cos 2\alpha$$
, $2\cos^2\alpha = 1 + \cos 2\alpha$,

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta, \quad \cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta,$$

$$\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cos \frac{\alpha \mp \beta}{2}, \cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2},$$

$$\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}, tg(\alpha\pm\beta) = \frac{tg\alpha\pm tg\beta}{1\mp tg\alpha\cdot tg\beta}.$$

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

B→ Trigonometrinių funkcijų reikšmių lentelė.

	0°	30°	45°	60°	90°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tg a	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

B→Trigonometrinės lygtys.

$$\begin{bmatrix} \sin x = a, \\ x = (-1)^k \arcsin a + \pi k; & \text{``cia } k \in \mathbb{Z}, -1 \le a \le 1; \end{bmatrix}$$

$$\begin{bmatrix} \cos x = a, \\ x = \pm \arccos a + 2\pi k; & \text{\'eia } k \in \mathbb{Z}, -1 \le a \le 1; \end{bmatrix} \begin{bmatrix} \operatorname{tg} x = a, \\ x = \operatorname{arctg} a + \pi k; & \text{\'eia } k \in \mathbb{Z} \end{bmatrix}$$

Išvestinių skaičiavimo taisyklės.

$$\mathbf{B} \rightarrow (cu)' = cu'; \ (u \pm v)' = u' \pm v';$$

$$(uv)' = u'v + uv';$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2};$$

čia u ir v – taške diferencijuojamos funkcijos, c – konstanta.

Funkcijų išvestinės.
$$(a^x)' = a^x \ln a$$
, $(\log_a x)' = \frac{1}{x \cdot \ln a}$;

Sudėtinės funkcijos h(x) = g(f(x)) išvestinė $h'(x) = g'(f(x)) \cdot f'(x)$.

Funkcijos grafiko liestinės taške $(x_0, f(x_0))$ lygtis. $y = f(x_0) + f'(x_0)(x - x_0)$.

Logaritmo pagrindo keitimo formulė. $\log_a b = \frac{\log_c b}{\log_c a}$.

Deriniai.
$$C_n^k = C_n^{n-k} = \frac{n!}{k!(n-k)!}$$
.

Tikimybių teorija. Atsitiktinio dydžio X matematinė viltis yra $\mathbf{E} X = x_1 p_1 + x_2 p_2 + ... + x_n p_n$, dispersija $\mathbf{D} X = (x_1 - \mathbf{E} X)^2 p_1 + (x_2 - \mathbf{E} X)^2 p_2 + ... + (x_n - \mathbf{E} X)^2 p_n$.

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

Kiekvienas teisingas 1–8 uždavinio atsakymas vertinamas 1 tašku.

- 1. $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} =$
- B $\frac{5}{2}$ C $\frac{137}{60}$

- **2.** Stačiojo trikampio^I įžambinės^{II} galų koordinatės yra (1; 2) ir (3; 5). B→ Nustatykite trečiosios trikampio viršūnės koordinates (a; b).

- **A** (5; 2)
- **B** (4; 7)
- **C** (3; 2)
- **D** (1; 5)
- **E** (2; 3)
- 3. Dainų konkurse atlikėjai buvo vertinami balais. Norint patekti į kitą etapą, reikėjo surinkti nuo 37 iki 40 balų. Lentelėje surašyta, kiek dalyvių, praėjusių atranką, įvykdė šį reikalavimą.

Balai	37	38	39	40
Dalyvių skaičius	6	7	5	4

Kaip apskaičiuoti, kiek vidutiniškai^{III} balų surinko atranką praėjęs dalyvis?

- **A** $\frac{37+38+39+40}{4}$
- $D \frac{37 \cdot 6 + 38 \cdot 7 + 39 \cdot 5 + 40 \cdot 4}{4}$
- $\mathsf{B} \ \frac{37 \cdot 6 + 38 \cdot 7 + 39 \cdot 5 + 40 \cdot 4}{22} \qquad \mathsf{E} \ \frac{37 + 38 + 39 + 40}{22}$
- c $\frac{37+38+39+40+6+7+5+4}{8}$
- **4.** $\frac{a-1}{a^2-1} =$
- **B** $\frac{1}{a-1}$ **C** $\frac{1}{a}$

NEPAMIRŠKITE pasirinktus atsakymus žyminčių raidžių įrašyti lentelėje, esančioje paskutiniame šio sąsiuvinio puslapyje.

statusis trikampis – prostokątny trójkąt – прямоугольный треугольник

ižambinė – przeciwprostokatna – гипотенуза

vidutiniškai – średnio – в среднем

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

- **5.** Jei $x^2 > (x-1)^2$, tai:

- **A** $x \in \mathbb{R}$ **B** x > 1 **C** x < 0 **D** $x < \frac{1}{2}$ **E** $x > \frac{1}{2}$
- **6.** Kokiu kampu^I kertasi dvi plokštumos^{II}, iš kurių viena eina per kubo viršūnes A, B, C_1 , o kita per viršūnes A_1, B_1, C ?

- **A** 30°
- **B** 45°
- **C** 60°
- **D** 75°
- E 90°
- **7.** Kiekvienas sekos^{III} a, b, c, d, 0, 1, 1, 2, 3, 5, 8, ... narys^{IV}, pradedant trečiuoju^V, lygus dviejų prieš jį einančių narių sumai. Kam lygus skaičius VI a?

- **E** 3
- **8.** Tris skaičius a, b ir c sieja lygybė^{VII} $|a| = b^2(b-c)$. Vienas iš šių skaičių yra teigiamas, kitas neigiamas, o trečiasis lygus nuliui. Kuris teiginys^{VIII} apie skaičius a, b ir c yra teisingas?

A
$$a < 0, b > 0, c = 0$$

B
$$a < 0, b = 0, c > 0$$

C
$$a > 0, b = 0, c < 0$$

D
$$a > 0, b < 0, c = 0$$

E
$$a = 0, b > 0, c < 0$$

NEPAMIRŠKITE pasirinktus atsakymus žyminčių raidžių įrašyti lentelėje, esančioje paskutiniame šio sąsiuvinio puslapyje.

kampas – kat – угол

plokštumos – płaszczyzny – плоскости

seka - ciąg - последовательность

narys - wyraz - член

trečiasis – trzeci – третий

skaičius – liczba – число

lygybė – równanie – равенство

teiginys – zdanie – утверждение

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

			$(A_{m+n}-2)$		išo vertii	
B→	9	Išspreskite lvočiu sistema ^I	4x + y = 2,	I	II	III
	٠.	Išspręskite lygčių sistemą ^I	-2x+y=8.			
			(3 taškai)			

JUODRAŠTIS

_

¹ išspręskite lygčių sistemą – rozwiążcie układ równań – решите систему уравнений

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

B→	10	Imti ^I sudaro trus natūraliaii skaičiai a 4 a Žinoma kad a < 4 < a o čios	Čia ra	šo vertii	ntojai
D -7	10.	Imtį ^I sudaro trys natūralieji skaičiai a , 4, c . Žinoma, kad $a < 4 < c$, o šios imties vidurkis ^{II} lygus 5. Kokia galima didžiausia skaičiaus c reikšmė ^{III} ?	I	II	III
		(2 taškai)	l !		

imtis – próba – выборка

vidurkis – średnia – среднее didžiausia reikšmė – największa wartość – наибольшее значение

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

B →	11.	Kūgio ^I pagrindo spindulys ^{II} lygus pusrutulio ^{III} spinduliui. Kiek kartų kūgio aukštinė ^{IV} H turi būti ilgesnė už pusrutulio spindulį R , kad abu kūnai ^V būtų lygiatūriai ^{VI} ?	Čia ra I	išo vertii II	ntojai III
		H R			

kūgis – stożek – конус

pagrindo spindulys – promień podstawy – радиус основания

pusrutulis – półkula – полушар

aukštinė – wysokość – высота

kūnai – ciała – тела

lygiatūriai – równoważne – равновеликие

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

12. Paveiksle pavaizduotas funkcijos $f(x) = \lg x$ grafikas.

12.1. Užrašykite taško^I, kuriame grafikas kerta aš i^{II} Ox, koordinates.

(1 taškas)

Čia rašo vertintojai

12.2. Remdamiesi funkcijos $f(x) = \lg x$ grafiku, nustatykite, su kuriomis x reikšmėmis funkcija įgyja teigiamas reikšmes.

(1 taškas)

12.3. Žinoma, kad a, $\lg \frac{1}{10}$ ir b yra trys paeiliui einantys sveikieji skaičiai^{III}. Kokie tai skaičiai? Užrašykite juos.

(2 taškai)

12.4. Išspręskite lygtį $\lg(2x + 2) = 3$.

(2 taškai)

Taškų suma

^I taškas – punkt – точка

кетта аšі – przecina oś – пересекает ось

sveikieji skaičiai – liczby całkowite – целые числа

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

		~
13.	Duota funkcija	$f(x) = \sqrt{4-x}$.

B→ 13.1. Užrašykite šios funkcijos apibrėžimo sritį^I.

(1 taškas)

B \rightarrow **13.2.** Su kuria *x* reikšme funkcijos reikšmė lygi 3?

(2 taškai)

13.3. Užrašykite $f(x) = \sqrt{4-x}$ grafiko susikirtimo su koordinačių ašimis taškus ir nubraižykite grafiko dalį intervale [-5; 4].

(2 taškai)	 	

Čia rašo vertintojai

JUODRAŠTIS

-

I apibrėžimo sritis – dziedzina – область определения

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

B→	14.	Vienos telekomunikacijų bendrovės klientai, nepriklausomai nuo jų kalbėjimo
		telefonu laiko, už 2010 m. kiekvieno vasaros mėnesio (VI-VIII) pokalbius
		moka fiksuotą 15 Lt abonentinį mokestį. Kitu metų laiku už kiekvieno
		mėnesio pokalbius jie moka fiksuotą 10 Lt abonentinį mokestį ir dar po 20 ct
		už kiekvieną pokalbio minutę.

Mėnesiai	Abonentinis mėnesio mokęstis	Mokęstis už pokalbio minutę
VI–VIII	15 Lt	_
I–V, IX–XII	10 Lt	20 ct

Tarkime, kad šios bendrovės klientas kiekvieną 2010 m. mėnesį telefonu kalbėjo x minučių. Kiek litų jis sumokėjo bendrovei per 2010 metus? Atsakymą užrašykite ax + b pavidalo dvinariu^I.

(3 taškai)

Čia rašo vertintojai

^I dvinaris – dwumian – двучлен

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

15. Apskritimo^I, kurio centras taške O(0; 0), spindulio ilgis^{II} lygus 2. $A(x_0; y_0)$ – apskritimo taškas, $\angle AOB = 120^\circ$. Tiesė^{III} DE yra apskritimo liestinė^{IV} taške A.

B \rightarrow **15.1.** Pagrįskite, kad $\angle ADO = 30^{\circ}$.

(2 taškai)

Čia rašo vertintojai

(2 iuski

15.2. Apskaičiuokite taško *A* koordinates.

(3 taškai)

15.3. Apskaičiuokite užbrūkšniuotos dalies *DCA* plotą^V.

(4 taškai)

15.4. Liestinės DE lygtis yra y = mx + b pavidalo. Apskaičiuokite koeficientų m ir b skaitines reikšmes VI.

(2			
(2	taškai)	 <u> </u>	

Taškų suma			
------------	--	--	--

apskritimas – okrąg – окружность

п ilgis – długość – длина

III tiesė – prosta – прямая

liestinė – styczna – касательная

V plotas – pole – площадь

VI skaitinės reikšmės – wartości liczbowe – числовые значения

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

JUODRAŠTIS		
JUODRASTIS		

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

VALSTYBINIO BRANDOS	

16.	Žinomi	du	aritmetinės	progresijos	nariai	$a_{10} = \sqrt{2}$	ir	$a_{19} = \sqrt{3}$.	Čia ro	išo verti	ntojai
	6. Žinomi du aritmetinės progresijos nariai Apskaičiuokite šios progresijos narį a_1 .				- 4						
								(2 taškai)			

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

17.	Vienas jaunuolis pakavimo dėžę pagamina per 30 min., o kitas – per 25 min.	Cia rašo vertintojai				
		I	II	III		
	Jaunuoliai pradeda gaminti dėžes 8 valandą ryto. Kiek laiko rodys laikrodis,					
	kai abu jaunuoliai pirmą kartą baigs gaminti savo eilines dėžes tuo pačiu					
	metu?					
	(2 taškai)					

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

			2 2					Cia ra	išo verti	ntojai
18.	Apskaičiuokite	funkcijos	$f(x) = \frac{x-3}{x+1}$	didžiausią	reikšmę	ir	mažiausią	I	II	III
	reikšmę interval									
							(3 taškai)	l		

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

		Čia ra	šo verti	ntojai
19.	Išspręskite lygtį $1 + 3\cos^2 x = 4\sin\left(\frac{\pi}{2} + x\right)$.		II	
	(4 taškai)			

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

20.	Per dvejus metus parke buvo pasodinta 900 medžių, iš jų – 75% pušų.	Čia ra	šo vertint	ojai
20.		I	II	III
	Pirmaisiais metais pasodinti medžiai sudarė 60% visų per dvejus metus			
	pasodintų medžių. Kiek mažiausiai ¹ pušų turėjo būti pasodinta			
	pirmaisiais ^{II} metais?			
	(4 taškai)	l		

mažiausiai – najmniej – наименее

pirmieji – pierwsze – первые

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

21. Teniso varžybose dalyvauja 9 sportininkai. Reitingų lentelėje dalyviai surašomi nuo stipriausio iki silpniausio. Jonas yra trečias. Tikimybė^I Jonui nugalėti stipresnį varžovą lygi 0,3, nugalėti silpnesnį – 0,8. Kokia tikimybė Jonui laimėti pirmasias rungtynes su atsitiktinai^{II} parinktu varžovu?

Reitingų lentelė
1
2
3. Jonas
4
5
6
7
8
9

(4 taškai)

Čia rašo vertintojai							
I	II	III					
_							

tikimybė – prawdopodobieństwo – вероятность

atsitiktinai – losowo – случайно

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

22. Stačiakampio^I ABCD plotas lygus plotui figūros, kurią riboja^{II} parabolė $y = 5 - x^2$ ir ašis Ox. Apskaičiuokite stačiakampio ABCD dviejų gretimų kraštinių^{III} ilgius.

Čia rašo vertintojai

(5 taškai)

I stačiakampis – prostokąt – прямоугольник

II riboja – ogranicza – ограничивает

III gretimos kraštinės – boki przyległe – смежные стороны

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

JUODRAŠTIS		

2011 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

ČIA RAŠO KANDIDATAS

UŽDAVINIAI SU PASIRENKAMAISIAIS ATSAKYMAIS

Įrašykite pasirinktą atsakymą žyminčią raidę į to uždavinio numerį atitinkantį langelį

ČIA RAŠO VERTINTOJAI Maksimalus taškų skaičius I vertinimas II vertinimas III vertinimas I TAŠKŲ SUMA 8 (1–8 UŽDAVINIAI) II TAŠKŲ SUMA 56 (9–22 UŽĎAVINIAI) TAŠKŲ SUMA 64 GALUTINĖ TAŠKŲ SUMA Vertintojų pastabos: