INGENIERÍA MECATRÓNICA

DIEGO CERVANTES RODRÍGUEZ

ELECTRÓNICA ANALÓGICA: TIRISTORES

NI MULTISIM 14.0

Tiristores SCR, DIAC y TRIAC

Contenido

Introducción Teórica	2
Tiristor SCR:	2
Simulación MultiSim SCR	2
Tiristor DIAC:	4
Simulación MultiSim DIAC	4
Tiristor TRIAC:	6
Simulación MultiSim TRIAC	6

Introducción Teórica

Tiristor SCR:

Este dispositivo solo conduce en un sentido la corriente (de ánodo a cátodo) y ejecuta una conmutación controlada por el pin Gate, esto implica que se creará un corto circuito siempre que ingrese una corriente por la compuerta y no se volverá a abrir aun cuando deje de suministrar dicha corriente, solo se volverá a abrir el circuito cuando el voltaje entre el cátodo y ánodo sea cero.

Simulación MultiSim SCR

Este es el circuito de disparo más sencillo que se puede hacer con el Tiristor SCR, lo que hace es crear un convertidor de CA a CA, fijando un ángulo de disparo de 0 a 90° solamente, esto se puede usar para alimentar dispositivos CA como motores o focos.

El ángulo de disparo es esa parte que se corta de la señal CA y la recibe el Tiristor, se controla variando el valor de la resistencia en el Potenciómetro:

Tiristor DIAC:

Este dispositivo conduce en ambos sentidos la corriente y ejecuta su conmutación cuando se alcanza cierto voltaje llamado a veces V_{BD}, al igual que el tiristor SCR solo se volverá a abrir el circuito cuando el voltaje entre el cátodo y ánodo sea cero. Esto si se usa solo el tiristor DIAC depende directamente del valor de voltaje en la fuente de alimentación y no se puede variar su ángulo de disparo.

Simulación MultiSim DIAC

Usando una combinación del DIAC y el SCR se puede lograr obtener un convertidor CA-CA de media onda variable como lo hacía el tiristor SRC por sí solo, pero de esta manera se puede alcanzar un ángulo de disparo de 0 a 180° cuando antes solo se podía alcanzar de 0 a 90°. Se realiza de la siguiente manera:

Tiristor TRIAC:

Este dispositivo conduce en ambos sentidos la corriente y al igual que el SCR ejecuta una conmutación controlada por el pin Gate, esto implica que se creará un corto circuito siempre que ingrese una corriente por la compuerta y no se volverá a abrir aun cuando deje de suministrar dicha corriente y solo se volverá a abrir el circuito cuando el voltaje entre el cátodo y ánodo sea cero, esto funciona debido a que el TRIAC es igual a poner dos tiristores SCR en antiparalelo.

Simulación MultiSim TRIAC

Usando una combinación del DIAC y el TRIAC se puede lograr obtener un convertidor CA-CA de onda completa variable que puede alcanzar un ángulo de disparo de 0 a 180° y se realiza de la siguiente manera:

