2、欧拉定理

2、欧拉定理

欧拉定理

绕定点运动的刚体,从某一位置到另一位置的任何位移,都可以通过绕通过定点的某一轴转动一次而实现。

证明: 刚体绕定点运动时,刚体内各点在不同半径的球面上运动,定点为这些球面的中心。

任取球面,与刚体相交截出球面图形S,确定S的位置,即确定刚体的位置。

确定大圆弧 \overrightarrow{AB} 的位置,即确定S的位置。

瞬时t, \widehat{AB} ; 瞬时 $t+\Delta t$, $\widehat{A'B'}$

$$\angle BC^*A = \angle B'C^*A'$$

并且
$$\angle BC^*A + \angle AC^*B' = \angle B'C^*A' + \angle AC^*B'$$

若将球面三角形ABC*绕轴OC*转过 $\Delta \phi$ 角,必定与

球面三角形A'B'C*完全重合,因此大圆弧 \widehat{AB} 绕通过定点O的轴OC*经过一次转动即可达到 $\widehat{A'B'}$ 的位置,定理得证。

