

<u>Gameboard</u>

Physics

Dynamics

Gravitational Potential and Kinetic Energy 1.1

Gravitational Potential and Kinetic Energy 1.1

Mechanics

Quantities:

 h_0 starting height (m)

 h_1 final height (m)

m mass (kg)

 E_{K} kinetic energy (J)

 η efficiency (no unit)

 v_0 starting speed (m s⁻¹)

 v_1 final speed (m s⁻¹)

g gravitational field strength (N kg $^{-1}$)

 E_{GP} gravitational potential energy (J)

 E_{T} total energy (J)

Equations:

$$E_{\mathsf{K}} = rac{1}{2} m v^2 \qquad \qquad E_{\mathsf{GP}} = m g h \qquad \qquad E_{\mathsf{T}} = E_{\mathsf{K}} + E_{\mathsf{GP}} \qquad \qquad E_{\mathsf{T,after}} = \eta E_{\mathsf{T,before}}$$

$$E_{\mathsf{T}} = E_{\mathsf{K}} + E_{\mathsf{GI}}$$

$$E_{\mathsf{T},\mathsf{after}} = \eta E_{\mathsf{T},\mathsf{before}}$$

In the absence of air resistance, use the above equations to derive expressions for:

Speed on the ground for a dropped object Part A

the speed v_1 at the ground if an object was dropped from h_0 .

The following symbols may be useful: E_GP, E_K, E_T, eta, g, h_0, h_1, m, v_0, v_1

Part B Speed for an object with initial speed $v_{ m 0}$

the speed v_1 at a height h_1 if an object had speed v_0 at h_0 .

The following symbols may be useful: E_GP, E_K, E_T, eta, g, h_0, h_1, m, v_0, v_1

Part C Greatest height starting from the ground

the greatest height h_1 for an object projected up from the ground with speed v_0 .

The following symbols may be useful: E_GP, E_K, E_T, eta, g, h_0, h_1, m, v_0, v_1

Part D Greatest height reached starting from $h_{ m 0}$

the greatest height h_1 for an object projected up from a height h_0 with speed v_0 .

The following symbols may be useful: E_GP, E_K, E_T, eta, g, h_0, h_1, m, v_0, v_1

Part E Greatest height after a bounce

the greatest height h_1 above a hard surface reached by an object dropped from a height h_0 if the efficiency of the bounce is η .

The following symbols may be useful: E_GP , E_K , E_T , eta, g, h_0 , h_1 , m, v_0 , v_1

Part F Speed after a bounce

the speed v_1 just after a bounce from a hard surface if the speed just before was v_0 .

The following symbols may be useful: E_GP , E_K , E_T , eta, g, h_0, h_1, m, v_0, v_1

Gameboard

Physics

Mechanics Dynamics

Gravitational Potential and Kinetic Energy 1.7

Gravitational Potential and Kinetic Energy 1.7

A worker at ground level throws a $2.2\,\mathrm{kg}$ drinks bottle upwards to a thirsty colleague $3.2\,\mathrm{m}$ above the ground. It just reaches him, but he fails to catch it, and it falls into an excavated trench $1.6\,\mathrm{m}$ below ground level.

Part A Initial speed of bottle

At what speed did the worker need to throw the bottle if she threw it from the waist, $1.0\,\mathrm{m}$ above the ground?

Part B Impact speed

How fast was it moving when it struck the base of the trench?

Gameboard:

STEM SMART Physics 22 - Combining Energies

Home G

<u>Gameboard</u>

Physics

Dynamics

Gravitational Potential and Kinetic Energy 1.10

Gravitational Potential and Kinetic Energy 1.10

Mechanics

How high would a ball bounce if it struck an efficiency $\eta=0.75$ surface at $13\,\mathrm{m\,s^{-1}}$?

Gameboard:

STEM SMART Physics 22 - Combining Energies

Home Gameboard Physics Mechanics Dynamics Gravitational, Elastic and Kinetic Energy 2.1

Gravitational, Elastic and Kinetic Energy 2.1

Figure 1: Objects suspended from a spring exchange stores of kinetic, elastic potential and kinetic energy as they move up and down.

Quantities:

x spring extension (m)

 x_B equilibrium x (m)

v speed (m s⁻¹)

m mass (kg)

 E_{K} kinetic energy (J)

 E_{T} total energy (J)

F spring tension (N)

 ℓ spring natural length (m)

y distance from equilibrium (m)

k spring constant (N m⁻¹)

g gravitational field strength (N $m kg^{-1}$)

 E_{GP} gravitational potential energy (J)

 E_{FP} elastic potential energy (J)

W weight (N)

Equations:

$$E_{\mathsf{K}}=rac{1}{2}mv^2$$
 $E_{\mathsf{GP}}=-mgx$ $E_{\mathsf{EP}}=rac{1}{2}kx^2$ $F=-kx$ $E_{\mathsf{T}}=E_{\mathsf{K}}+E_{\mathsf{GP}}+E_{\mathsf{EP}}$ $W=mg$ $y=x-x_{\mathsf{B}}$

In the absence of air resistance, use the equations above to derive expressions for

Part A The total energy

Derive an expression for the total energy, E_{T} , in terms of x and v.

The following symbols may be useful: E_B , E_EP , E_GP , E_T , g, k, m, v, x, x_B , y

Part B The value of x where the forces balance

Derive an expression for the value of x where the forces balance (we will call this x_B).

The following symbols may be useful: E_B, E_EP, E_GP, E_T, g, k, m, v, x, x_B, y

Part C $E_{\mathsf{GP}} + E_{\mathsf{EP}}$ at the point where the forces balance

Derive an expression for $E_{\sf GP}+E_{\sf EP}$ at the point where the forces balance (we will call this $E_{\sf B}$).

The following symbols may be useful: E_B , E_EP , E_GP , E_T , g, k, m, v, x, x_B , y

Part D The greatest value of x

Derive an expression for the greatest value of x if you hold the mass at x=0 and let go.

The following symbols may be useful: E_B, E_EP, E_GP, E_T, g, k, m, v, x, x_B, y

Part E $E_{\mathsf{GP}} + E_{\mathsf{EP}}$ in terms of $y = x - x_{\mathsf{B}}$

Derive an expression for the value of $E_{\sf GP}+E_{\sf EP}$ in terms of $y=x-x_{\sf B}$. You may find it simplifies the algebra if you give your answer in the form $E_B+\ldots$

The following symbols may be useful: E_B , E_EP , E_GP , g, k, m, y

Gameboard:

STEM SMART Physics 22 - Combining Energies

Home Gameboard Physics Mechanics Dynamics Gravitational, Elastic and Kinetic Energy 2.2

Gravitational, Elastic and Kinetic Energy 2.2

Figure 1: Objects suspended from a spring exchange stores of kinetic, elastic potential and kinetic energy as they move up and down.

Using the diagram above, calculate the energies $E_{\rm GP}$, $E_{\rm EP}$, $E_{\rm K}$ and $E_{\rm T}$ for a $2.5\,{\rm kg}$ mass when $x=0.055\,{\rm m}$ and speed $v=0.25\,{\rm m\,s^{-1}}$ if $k=600\,{\rm N\,m^{-1}}$.

Part A Calculate E_{GP}

Calculate the gravitational potential energy $E_{\rm GP}$ for a $2.5\,{
m kg}$ mass when $x=0.055\,{
m m}$ and $v=0.25\,{
m m\,s^{-1}}$ if $k=600\,{
m N\,m^{-1}}$.

Part B Calculate E_{EP}

Calculate the elastic potential energy $E_{\rm EP}$ for a $2.5\,{
m kg}$ mass when $x=0.055\,{
m m}$ and $v=0.25\,{
m m\,s^{-1}}$ if $k=600\,{
m N\,m^{-1}}$.

Part C Calculate E_{K}

Calculate the kinetic energy $E_{\rm K}$ for a $2.5\,{\rm kg}$ mass when $x=0.055\,{\rm m}$ and $v=0.25\,{\rm m\,s^{-1}}$ if $k=600\,{\rm N\,m^{-1}}$.

Part D Calculate E_{T}

Calculate the total energy $E_{\rm T}$ for a $2.5\,{
m kg}$ mass when $x=0.055\,{
m m}$ and $v=0.25\,{
m m\,s^{-1}}$ if $k=600\,{
m N\,m^{-1}}$.

Gameboard:

STEM SMART Physics 22 - Combining Energies

<u>Home</u> <u>Gameboard</u> Physics Mechanics Dynamics Gravitational, Elastic and Kinetic Energy 2.3

Gravitational, Elastic and Kinetic Energy 2.3

Figure 1: Objects suspended from a spring exchange stores of kinetic, elastic potential and kinetic energy as they move up and down.

Using the diagram above, calculate $x_{\rm B}$ (the extension of the spring at the <u>equilibrium</u> point) for a $100\,{\rm N}$ weight hanging from a $k=5.0\,{\rm kN\,m^{-1}}$ spring.

Gameboard:

STEM SMART Physics 22 - Combining Energies

<u>Gameboard</u>

Physics

Mechanics Dynamics

Gravitational, Elastic and Kinetic Energy 2.4

Gravitational, Elastic and Kinetic Energy 2.4

(This question is about the system shown in the Example in the <u>notes page</u>, which is shown below.)

A $60 \, \mathrm{kg}$ bungee jumper falls $12 \, \mathrm{m}$ before their bungee is <u>taut</u>. The <u>spring constant</u> $k = 200 \, \mathrm{N \, m^{-1}}$.

Part A The bungee has stretched $5.0\,\mathrm{m}$

Calculate the speed of bungee jumper when the bungee has stretched $5.0\,\mathrm{m}$.

Part B The bungee becomes slack on the way up

Calculate the speed of bungee jumper when the bungee becomes <u>slack</u> on the way up.

Gameboard:

STEM SMART Physics 22 - Combining Energies

<u>Gameboard</u>

Physics

Mechanics

Dynamics

Gravitational, Elastic and Kinetic Energy 2.6

Gravitational, Elastic and Kinetic Energy 2.6

Consider the motion of a $100 \,\mathrm{N}$ weight ($m=10.2 \,\mathrm{kg}$), hanging from a $k=5000 \,\mathrm{N} \,\mathrm{m}^{-1}$ spring, which is released from rest at extension x=0. (The same system as in <u>question 2.5</u>)

Part A x where the total potential energy is at a minimum

Calculate the value of x where the total potential energy is at a minimum.

Part B The minimum total potential energy

Calculate the minimum total potential energy.

Part C The total potential energy

Calculate the total potential energy *relative to the minimum* when $y=2.0\,\mathrm{cm}$.

Part D The energy required to stretch $2.0\,\mathrm{cm}$

Calculate the energy required to stretch a $k=5000\,\mathrm{N\,m^{-1}}$ spring by $2.0\,\mathrm{cm}$.

Gameboard:

STEM SMART Physics 22 - Combining Energies

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Gameboard</u>

Physics

Mechanics Dynamics

Gravitational, Elastic and Kinetic Energy 2.7

Gravitational, Elastic and Kinetic Energy 2.7

(This question is about the system shown in the Example in the notes page, which is shown below.)

A $60 \, \mathrm{kg}$ bungee jumper falls $12 \, \mathrm{m}$ before their bungee is <u>taut</u>. The <u>spring constant</u> $k = 200 \, \mathrm{N \ m^{-1}}$.

Calculate how far the bungee jumper falls before they first come to rest. You may assume that the *total* potential energy of the jumper relative to the <u>equilibrium</u> position is given by $\frac{1}{2}ky^2$.

Gameboard:

STEM SMART Physics 22 - Combining Energies

Home Gameboard Physics Mechanics Dynamics Pop-up Toy

Pop-up Toy

A pop-up toy consists of a head and sucker of combined mass m stuck to the top of a <u>light</u> spring of <u>natural length</u> l_0 and <u>spring constant</u> k. The spring is compressed to length l_1 when the pop-up is stuck to the ground.

To what height above the ground does the bottom of the unstretched spring jump to when it is smoothly released?

The following symbols may be useful: g, k, 1_0, 1_1, \mbox{m}