CPSC 420 Lecture 30: Today's announcements:

- Examlet 4 is OPTIONAL.
 I will use the best 3 examlet marks for grading.
- Examlet 4 on April 5 in class. Closed book & no notes
- ► Reading: Cuckoo Hashing for Undergraduates [by Pagh]
- Reading: RSA public-key cryptosystem [Intro to Algs 4th Ed. by Cormen, Leiserson, Rivest, Stein Ch.31.7]

Today's Plan

- Cuckoo Hashing
- RSA cryptosystem

Cuckoo Rehash

insert(x)

- 1. if $T[h_1(x)] = x$ or $T[h_2(x)] = x$ return
- 2. $i \leftarrow h_1(x)$
- 3. repeat n times
- 4. $y \leftarrow T[i]$
- 5. $T[i] \leftarrow x$
- 6. if y = NULL return
- 7. if $i = h_1(y)$ then $i \leftarrow h_2(y)$ else $i \leftarrow h_1(y)$
- 8. $x \leftarrow y$
- 9. rehash; insert(x)

Lemma 3: If $m \ge 2cn$ then the probability of a cycle in the cuckoo graph after n insertions is at most $\frac{1}{c-1}$.

Proof: Slot i is involved in a cycle iff there is a path from i to itself of length $\ell \geq 1$. By Lemma 1, this happens with probability $\leq \sum_{\ell=1}^{\infty} \frac{1}{c^{\ell}m} = \frac{1}{(c-1)m}$. Summing over all m slots, gives probability

$$\leq \frac{1}{c-1}$$
 for a cycle.

Cuckoo Rehash

Lemma 3: If $m \ge 2cn$ then the probability of a cycle in the cuckoo graph after n insertions is at most $\frac{1}{c-1}$.

Proof: Slot i is involved in a cycle iff there is a path from i to itself of length $\ell \geq 1$. By Lemma 1, this happens with probability $\leq \sum_{\ell=1}^{\infty} \frac{1}{c^{\ell}m} = \frac{1}{(c-1)m}$. Summing over all m slots, gives probability $\leq \frac{1}{c-1}$ for a cycle.

Each rehash takes O(n) time.

By Lemma 3, for c>3, the prob. that one rehash occurs after n insertions is $\leq 1/2$, that two rehashes occur $\leq 1/4$, etc. So expected amortized cost of rehash is O(1).

Note: A rehash triggers k > 0 consecutive rehashes with prob. $\leq 1/2^k$. So the expected cost is still $O(n) \cdot \sum_{k=1}^{\infty} 1/2^k = O(n)$.

Cryptography

Alice **encrypts** her message M and sends encrypted version to Bob. Bob **decrypts** to get original message.

Possible cryptosystems

One-time pad Alice and Bob agree beforehand on a $random\ n$ -bit string P (the pad).

Alice sends $M \oplus P$ (bitwise exclusive or) to Bob.

Bob decrypts $(M \oplus P) \oplus P = M$

Alice **encrypts** her message M and sends encrypted version to Bob. Bob **decrypts** to get original message.

Possible cryptosystems

One-time pad Alice and Bob agree beforehand on a $random\ n$ -bit string P (the pad).

Alice sends $M \oplus P$ (bitwise exclusive or) to Bob. Bob decrypts $(M \oplus P) \oplus P = M$

Good: Information theoretically secure. Eve gets no information about M. Given $M \oplus P$, any message M is equally likely.

Bad: Can use just once. $(M_1 \oplus P) \oplus (M_2 \oplus P) \neq M_1 \oplus M_2$

RSA public/private key cryptosystem [Rivest, Shamir, Adleman '77]

Bob has two functions: secret $S_B()$ and public $P_B()$

Properties:

- 1. $S_B(P_B(M)) = M$ and $P_B(S_B(M)) = M$
- 2. Hard to find M given $P_B(M)$ without $S_B()$

Alice sends
$$P_B(M)$$
 to Bob.
Bob decrypts: $S_B(P_B(M)) = M$

Good: Use again and again

Bad: No one knows if it's secure.

factoring easy \Rightarrow RSA breakable. factoring hard \Rightarrow RSA secure? (unknown)

Digital Signatures:

RSA public/private key cryptosystem [Rivest, Shamir, Adleman '77]

Bob has two functions: secret $S_B()$ and public $P_B()$

Properties:

- 1. $S_B(P_B(M)) = M$ and $P_B(S_B(M)) = M$
- 2. Hard to find M given $P_B(M)$ without $S_B()$

Alice sends
$$P_B(M)$$
 to Bob.
Bob decrypts: $S_B(P_B(M)) = M$

Good: Use again and again

Bad: No one knows if it's secure.

factoring easy \Rightarrow RSA breakable. factoring hard \Rightarrow RSA secure? (unknown)

Digital Signatures: Alice sends
$$(M, \sigma = S_A(M))$$
 to Bob Bob can check that $P_A(\sigma) = M$.

Constructing public/private keys

1. Select two large (> 2048 bits) prime numbers p and q.

$$p = 31 \ q = 17$$

2. Compute $n = p \cdot q$

- n = 527
- 3. Select a small odd integer *e* relatively prime to $(A \cap A) = (A \cap A) =$

$$\phi(n) \triangleq (p-1)(q-1)$$
 i.e. $\gcd(e,\phi(n)) = 1$.

$$\phi(n) = 30 \cdot 15 = 480$$

 $e = 7 (\gcd(7, 480) = 1)$

4. Compute $d = e^{-1} \pmod{\phi(n)}$ i.e. $ed = 1 \pmod{\phi(n)}$

$$\frac{\text{solve } 7d = 1 \pmod{480}}{7d + 480c} = 1 \pmod{0 \le d < 480}$$

 \rightarrow extended gcd given a,b finds x,y with

$$ax + by = \gcd(a, b)$$

7 $\cdot (343) + 480 \cdot (-5) = 1$

- 5. Public key P = (e, n)
- $6. P(M) = M^e \pmod{n}$

Private key
$$S \stackrel{=}{=} (d, n)$$
 C
$$P = (7, 527) S = (343, 527)$$

$$S(C) = C^{d} \pmod{n}$$

How does this work?

Theorem

For all
$$M < n$$
, $P(S(M)) = S(P(M)) = M$

Proof.

$$P(S(M)) = S(P(M)) = M^{ed} \pmod{n}. \text{ Since } ed = 1 \pmod{\phi(n)},$$

$$e \cdot d = 1 + k(p-1)(q-1) \text{ for integer } k.$$

$$P(S(M)) = S(P(M)) = M^{ed} \pmod{n}.$$

$$P(S(M)) = M^{ed} \pmod{\phi(n)},$$

$$M^{ed} = M(M^{p-1})^{k(q-1)} \pmod{p}$$

$$= M(1)^{k(q-1)} \pmod{p}$$
Fermat's little thm
$$= M \pmod{p}$$

If
$$M=0\pmod{\phi(n)}$$
 then $M^{ed}=M\pmod{p}$ as well. Similarly, $M^{ed}=M\pmod{q}$. By Chinese Remainder Thm, $M^{ed}=M\pmod{n}$ for all $M< n$. \square

Chinese Remainder Theorem [Sun-Tzu 300AD]

"Looks like the army has between 400 and 500 soldiers."

Please fill out course evaluations

I read them.

I change.

Future students thank you.