Candidate's Name:	Index No:
Signature	School
P525/3	
CHEMISTRY	
Paper 3	
July/August, 2019	
3 ¹ / ₄ hours	

BUGANDA EXAMINATION COUNCIL MOCKS – 2019

CHEMISTRY
PRACTICAL
Paper 3
3 hours 15minutes

INSTRUCTIONS TO CANDIDATES

- ✓ Answer **ALL** questions. Use **blue** or **black** ball point pen. Any work done in pencil will **not** be marked except drawings.
- ✓ Record your answers on this question paper in the spaces provided.
- \checkmark Mathematical tables and silent non-programmable calculators may be used.
- ✓ Reference books (i.e. text books, Books on qualitative analysis, etc) should **not** be used.
- ✓ Candidates are **not** allowed to start working with the apparatus for the first **15 minutes**. This time is to enable candidates to read the question paper and make sure they have all the apparatus and chemicals that they may need.

For Examiners' Use Only			
Q.1	Q.2	Q.3	Total

Turn Over

 You are provided with the following FA1; which is a solution containing. 	•	gl^{-1} of iron(II) ions	5.			
•	FA2 ; which is a solution of potassium manganate(VII) of unknown concentration. Solid R , which is a salt containing persulphate ions.					
You are required to standardize FA2 ions in FA1 and solid R .	and use it t	o determine the read	etion ratio between iron(II)			
In acidic medium, potassium mangan	ate(VII) rea	acts with iron(II) ion	ns in the ratio of 1:5			
(a) Pipette 25.0 (or 20.0) cm ³ of FA1 using a clean measuring cylinder. Shake the mixture and titrate the r Repeat the titration until you obta (i) Record your results in the RESULTS: Volume of pipette used =	mixture wit in consister Table I be	th FA2 . nt results. low.	0 cm ³ of 1 M sulphuric acid (½ mark)			
Experiment	1	2	3			
Final burette reading (cm ³)						
Initial burette reading (cm ³)						
Volume FA2 used (cm ³)						
(ii) Volumes of FA2 used for						

	$(2\frac{1}{2} \text{ marks})$
Questions:	
(b) Calculate the molar concentration of potassium manganate(VII) in FA2 . $(Fe = 56)$	(4½ marks)

P	R	a	C	F)	N	T	21	Γ	
г	\mathbf{r}	.,	•	Π,			•	Π,	-

(c) Weigh accurately about 0.5 g of **R**. Add about 50 cm³ of distilled water, carefully shake to dissolve and transfer the solution into a 250 cm³ volumetric flask. Using a clean measuring cylinder, add exactly 150 cm³ of FA1 to the solution in the volumetric flask. Make the solution up to the mark with distilled water, shake well and label it FA3. Pipette 25.0 (or 20.0) cm³ of **FA3** into a conical flask add 10 cm³ of 1 M sulphuric acid using a measuring cylinder. Shake the mixture and titrate the mixture with **FA2**. Repeat the titration until you obtain consistent results. Record your results in the **Table II** below. R

RESULTS:		
Mass of weighing container $+ \mathbf{R} =$	gg	(½ mark)
Mass of empty weighing bottle	= §	g (½ mark)
Mass of R used	=g	(½ mark)
Volume of pipette used	cm ³	(½ mark)
Гable II		
Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of FA2 used (cm ³)		
		(4½ marks)
(v) Volumes of FA2 used for calcu	ulating the average volume	
	cm ³	(½ mark)
(vi) Average volume of FA2 used.	сı	m^3
		(2½ marks)
Questions		
d) Calculate the number of moles of		
(v) iron(II) ions that reacted mangana	te(VII) ions in FA2.	(2½ marks)

	(vi)	iron(II) ions in 250 cm 3 of FA3 . (1 $\frac{1}{2}$	marks)
••••	•••••		
	(vii)	iron(II) ions that reacted with solid R.	(02 marks)
(e)	Deteri	mine the reaction ratio between iron(II) ions in FA1 and solid R . of $R = 270$)	(02 marks)
••••			
••••	•••••		•••••
2.	requir Ident	re provided with substance Z , which contains two cations and two are ed to carry out tests below on Z and identify the cations and anions in ify any gas(es) evolved. In the table below.	

(32 marks)

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Heat two spatula end- fuls of Z strongly in a dry test tube until there is no further change.	OBSERVATIONS	DEDUCTIONS

(b) To about 6 cm ³ of water, add 2 spatula end-fuls of Z and shake well. Filter the mixture and keep both filtrate and residue.	
 (c) Divide the filtrate into five parts. (i) To the first part of the filtrate, add dilute sodium hydroxide solution dropwise until in excess. 	
(ii) To the second part of the filtrate, add dilute ammonia solution dropwise until in excess.	
(iii)Use the third part of the filtrate, to carry out a test of your own choice so as to confirm the first cation in Z .	
(iv) To the fourth part of the filtrate, add 2-3 drops of lead(II) nitrate solution and heat the mixture.	
(v) Use the fifth part of the filtrate, to carry out a test of your own choice so as to confirm the first anion in Z .	

(d) Wash the residue from (b) with distilled water and	
then add dilute	
hydrochloric acid until	
there is no further change.	
Divide the acidic solution	
into three parts.	
(i) To the first part of the	
acidic solution, add dilute sodium	
hydroxide solution drop wise until in	
excess.	
CACCSS.	
(ii) To the second part of	
the acidic solution,	
add dilute ammonia	
solution drop wise	
until in excess.	
(iii) Use the third part of	
the acidic solution, to	
carry out a test of your own choice so as to	
confirm the second	
cation in Z .	
cation in 2.	
Questions:	
(e) Identify the	
(ii) anions in \mathbb{Z}	

3. You are provided with an organic compound **W**.

You are required to carry out tests below on **W** and describe the nature of **W**. Record your observations and deductions in the table below. (18 marks)

Tests	Observations	Deductions
(a) Burn a small amount of W on a spatula end or in a dry porcelain dish.		
(b) To about 1 cm ³ of W , add 2 cm ³ of water, shake and test with a litmus paper. Divide the mixture into three parts.		
(i) To the first part of the mixture, add 3-4 drops of sodium hydrogencarbonate solution.		
(ii) To the second part of the mixture, add 4-5 drops of neutral iron(III) chloride solution.		
(iii) To the third part of the mixture add 3-4 drops of 2,4-dinitrophenylhydrazine		
(c) To about 0.5 cm ³ of W , add about 1 cm ³ of acidified potassium dichromate(VI) solution. Then add 5 drops of 2,4-dinitrophenylhydrazine and shake. Leave it stand for about 1 minute.		

(d) To about 0.5 cm ³ of W , add about 1 cm ³ of ethanoic acid followed by 2-3 drops of concentrated sulphuric acid. Heat the mixture and the pour in a small beaker of cold water.	
(e) To about 0.5 cm ³ of W , add 4 drops of Lucas reagent.	
(f) To about 0.5 cm ³ of W , add 4 cm ³ of iodine solution followed by sodium hydroxide solution until the solution is pale yellow. Warm the mixture gently and allow it to cool under cold water.	
(f) Describe the nature of W .	

END