KUBIG 25-S 여름방학 BASIC STUDY SESSION

NLP SESSION WEEK1

CONTENTS

Session 중에는 모두 캠을 켜주시기 바랍니다 :)

01 NLP SESSION 소개

02 Theoretical Background of Deep Learning

03 Factors of Deep Learning

04 과제 및 팀 빌딩 안내

01 NLP SESSION 소개

잘 부탁 드립니다!!

분반장 19기 최주희

- 관심 분야: 미디어/커뮤니케이션 & AI/데이터
- 대전에서 석사과정 훈련중 ...
- 문과 베이스로 AI, 데이터 연구하고 싶다면 상담 대환영입니다 ..^^ (잡아가는 거 아니에요 그냥 그렇다고요 ...ㅎ)

분반장 20기 기광민

- 관심 분야: LLM & BioNLP
- 마곡에서 인턴 하고 있어요!
- 인턴십 관련해서 물어볼거 있으시면 언제든지 오세요~

분반장 19기 최주희

분반장 20기 기광민

주차	복습과제	학습내용	예습과제
1주차		OT & DL Preview	
2주차	- 해당 주차에 배운 내용에 대한 코드 실습 과제 부여	텍스트 전처리, 워드 임베딩 (Word2Vec, GloVe)	- - 다음 주차에 배울 내용에 대한 코드 실 - 습 과제 부여
3주차	- ex) week1 복습과제: deep learning reminder(pytorch	순환신경망: RNN, LSTM, GRU, ELMo	- ex) week1 예습과제: 텍스트 전처리
4주차	basic) - session 시작 초반부에 우수 코드 선정자가 5분 가량 코드 구현 과정 발 표(별도 발표자료 없이 코드를 화면공	Attention, Transformer	pipeline 구현 코드 - week1 예습과제라 함은, week1 session이 끝나고 부여되는, week2 내 용에 대한 예습과제를 의미합니다!
5주차		BERT/GPT	
6주차	유하여 발표) - <mark>마감기한: 수요일 오후 6시</mark>	LLM 기초 (Fine-tuning, 프롬프트, 경량화)	- <mark>마감기한: 수요일 오후 6시</mark>
7주차		RAG, 최신 논문 흐름 (에이전트, RL, 앙상블)	

매주 목 19:00~21:00 총 2시간 진행

* 모든 문의(과제, 강의, 출결 등)는 분반장 최주희/기광민에게 슬랙 디엠 부탁드립니다

밑바닥부터 시작하는 딥러닝2

딥러닝을 이용한 자연어 처리 입문 위키독스에서 무료 이용 가능(부분 유료)

고려대학교 DSBA 연구실 유튜브 채널에서 paper review 영상 참고

방학동안 함께 하실 분들!

강서연

강준석

김동욱

김수환

김종현

백서현

신지민

원아현

윤채영

은지현

여러분을 소개해주세요!

기수, 이름, 학과, 나이, 취미 NLP 경험, NLP 선택 이유, 원하는 방향성

02 Theoretical Background of Deep Learning

2-0. What is Deep Learning?

출처: 딥러닝을 위한 통계적 모델링(STAT433)

2-0. What is Deep Learning?

출처: 딥러닝을 위한 통계적 모델링(STAT433)

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

Deep Learning = Deep Neural Network

single-layer perceptron

입력층(input layer) 출력층(output layer)

2-1. Single-Layer Perceptron

입력층(input layer) 출력층(output layer)

When activation function is step function..

$$if\sum_{i}^{n}w_{i}x_{i}+b\geq0
ightarrow y=1$$
 $if\sum_{i}^{n}w_{i}x_{i}+b<0
ightarrow y=0$

$$if\sum_{i}^{n}w_{i}x_{i}+b<0
ightarrow y=0$$

2-2. The XOR Gate Problem

Separate B/W by a single line (in 2-dimension space)

(1,0) \bullet (1,1) (0,0) (0,1) x_1

OR GATE

NAND GATE

<i>x</i> ₁	<i>x</i> ₂	у
0	0	1
0	1	1
1	0	1
1	1	0

XOR problem

Can you separate B/W by a single line (in 2-dimension space)?

<i>x</i> ₁	<i>x</i> ₂	у
0	0	0
0	1	1
1	0	1
1	1	0

Linearly Non-Separable

(in 2-dimension space)

Linearly Non-Separable

(in 2-dimension space)

2-3. Dimensional transform

<i>x</i> ₁	<i>x</i> ₂	у
0	0	0
0	1	1
1	0	1
1	1	0

Manifold Hypothesis

- Hypothesis: High-dimensional data tend to lie in the vicinity of a low-dimensional manifold
- We can map data to a high-dimensional space through a smooth representation if the manifold hypothesis holds

Multi-Layer Perceptron

(More Layers, much more parameters)

Universal Approximation Theorem

Why deep learning is powerful

Universal approximation theorem — Let $C(X,\mathbb{R}^m)$ denote the set of continuous functions from a subset X of a Euclidean \mathbb{R}^n space to a Euclidean space \mathbb{R}^m . Let $\sigma \in C(\mathbb{R},\mathbb{R})$. Note that $(\sigma \circ x)_i = \sigma(x_i)$, so $\sigma \circ x$ denotes σ applied to each component of x.

Then σ is not polynomial if and only if for every $n\in\mathbb{N}$, $m\in\mathbb{N}$, compact $K\subseteq\mathbb{R}^n$, $f\in C(K,\mathbb{R}^m), \varepsilon>0$ there exist $k\in\mathbb{N}$, $A\in\mathbb{R}^{k\times n}$, $b\in\mathbb{R}^k$, $C\in\mathbb{R}^{m\times k}$ such that

$$\sup_{x \in K} \|f(x) - g(x)\| < \varepsilon$$

where
$$g(x) = C \cdot (\sigma \circ (A \cdot x + b))$$

(Universal Approximation Theorem) For a given arbitrary continuous function on a bounded domain and an error bound, there always exists a one-hidden-layer neural network that can approximate the given continuous function within the error bound.

Universal Approximation Theorem

Why deep learning is powerful

Increase in # of hidden units -> increase in # of parameters -> increase in # of regions -> increase in # of patterns a function can represent

03 Factors of Deep Learning

3-1. Deep Learning Training Cycle

Forward pass through NN, get predictions

Updatethe network
parameters

Backpropagation of the total cost

3-2, Forward Pass

Forward Pass computation

$$\sigma\left(\begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$
$$= \sigma\left(\begin{bmatrix} 4 \\ -2 \end{bmatrix}\right) = \begin{bmatrix} 0.98 \\ 0.12 \end{bmatrix}$$

sigmoid function
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

activation function

3-3. Cost Function

Total Cost

Total cost를 minimize하는 network parameter 찾기

3-4. Gradient Descent

Batch Gradient Descent

Mini-Batch Gradient Descent

Stochastic Gradient Descent

3-5. Backpropagation

$$w_{i}(t+1) = w_{i}(t) - \eta \frac{\partial C}{\partial w_{i}}$$

$$x_{1} \downarrow \qquad \qquad \downarrow$$

04과제 및 팀 빌딩 안내

4-1. 예습과제, 복습과제

코드과제의 파일형식은 ipynb로, KUBIG 25-2 Github repo에 업로드 될 예정입니다! Colab 환경에서 제작된 과제들이므로 google colab에서 실행하시는 것을 권장드립니다.

4-2. Team Building

KUBIG Contest Team Build

21기 강서연 강준석 김동욱 김수환 원아현 윤채영 은지현 22기 김종현 백서현 신지민

금일 세션이 종료된 후, <mark>관심 분야 투표 공지</mark> 예정. 구글 폼으로 수요 조사 후 관심분야에 따라 팀 분할.

WEEK2 세션 시간에 팀 빌딩 결과 공지 예정.

수고하셨습니다!