Metode avansate de programare

Informatică Română

Matematică - Informatică Română

2022-2023, Curs 1 (introductiv)

Principii de proiectare

Imaginati-va ca: o modificare minora pe care o faceti sistemului soft, aceasta propaga modificari in 33% din clase ...

- Cuplare scazuta
- Coeziune ridicata
- Complexitate gestionabila
- Abstractizare corespunzatoare

Referinte

"If builders built houses the way programmers built programs, first woodpecker to come along would destroy civilization."

E.W. Dijkstrathe

Concepte POO de bază

- Clasa:
- Obiect:
- Mesaj:
- Încapsularea:
- Moștenirea:
- Polimorfismul:

Concepte POO de bază

- *Clasa*: reprezintă un tip de dată
 - Corespunde implementării un TAD
- Obiect: este o instanță a unei clase.
 - Obiectele interacționează între ele prin mesaje.
- *Mesaj*: folosit de obiecte pt a comunica.
 - Un mesaj este un apel de metodă.
- Încapsularea (separarea reprezentării de interfață)
 - datelor (starea)
 - operațiilor (comportamentul, interfața, protocolul)
- *Moștenirea:* reutilizarea codului, definirea unei ierarhii de obiecte
- *Polimorfismul* capacitatea unei entități de a reacționa diferit în funcție de context

Conținut curs MAP

- Principii, euristici, reguli ale unei bune proiectări orientată obiect (aplicabilitate în limbajele Java si C#)
- -----
- Generics, Collections
- IO, XML, JSON, DB
- Lambda, streams
- GUI JavaFX
- Reflection
- Concurrency
- Prima parte, Sapt [1..n]: Java
- A doua parte, Sapt [n+1..14]: .NET, C#

De ce Java?

Probleme	Soluții
pointers	references ("safe" pointers)
memory leaks	garbage collection
error handling	exception handling
complexity	reusable code in APIs
platform dependent	portable code (Linux, Mac OS X, and Windows)

... plus

object oriented, security, networking, multithreading, web programming, mobile apps etc...

Java: Compilat si interpretat


```
D:\__MAP>javac HelloWordApp.java
D:\__MAP>java HelloWordApp
Hello Word
D:\__MAP>_
```

Introducere în limbajul Java

- language syntax
- primitive data types,
- arrays
- classes
- interfaces
- packages,
- enums
- overriding, overloading,
- exceptions

Sintaxa

- Similară cu C++;
- Cuvinte cheie

abstract	double	int	super
boolean	else	interface	switch
break	extends	long	synchronized
byte	final	native	this
case	finally	new	throw
catch	float	package	throws
char	for	private	transient
class	(goto)	protected	try
(const)	if	public	void
continue	implements	return	volatile
default	import	short	while
do	instanceof		

- Literali: "Hello World", 'J', 'a', 'v', 'a', 10, 010, 0xA, 0b11, 12.3, 12.3d,12.3f, 12e3, 123L, true, false, null;
- Separatori: () { } [];,...

Operatori:

```
Access, method call: ., [], ()

Postfix: expr++, expr-- (R to L)

Other unary: ++expr, --expr, +, -, ~, !, new, (aType)

Arithmetic: *, /, %

Additive: +, -

Shift: <<, >>, >>>

Relational: <, >, <=, >=, instanceof

Equality: ==, !=

Logical (L to R): &, ^, |, &&, ||

Ternary: condition ? (expr1): (expr2) (R to L)

Assignment: =, +=, -=, *=, /=, %=, &=, ^=, |=, <<=, >>=, >>=, >>=

Precedence: from top to bottom

Tip: don't rely too much on precedence rules: use parentheses
```

 http://docs.oracle.com/javase/tutorial/java/nutsa ndbolts/index.html

Sintaxa cont

Comentarii

- Codificarea caracterelor formatul UNICODE
 - Inlocuiește setul de caractere ASCII
 - Un caracter se reprezintă pe 2 octeți
 - 65536 caractere, \uxxxx (0x0041 A)
 - Compatibil ASCII: primele 256 caractere sunt cele din ASCII

Tipuri de date

- Primitive: Boolean(variabila), char(16), byte(8), short(16), int(32), long(64), float(32), double(64)
- Referință: clasa, interfața, []
- Observații:
 - void nu este tip in Java, este doar un cuvânt cheie pentru cazurile în care dorim să indicăm că ceea ce se returnează este nimic (cast to void not allow!)
 - null

Variabile și constante

```
byte a; //declarare
int valoare = 100; //declarare + initializare
final double PI = 3.14; //constanta
long numarElemente = 12345678L;
String bauturaMeaPreferata = "apa";
Constante - final
final int MAX=100;
final int MAX2;
MAX2=100;
MAX2=150; //eroare
• var (Java 10)
var str = "Java 10"; // infers String
var list = new ArrayList<String>(); // infers ArrayList<String>
var stream = list.stream(); // infers Stream<String>
```

Instrucțiuni

```
if (booleanExpr){
                                           for (Tip variable : collection) { //Java 5.0
  // do something
                                             // loop body
}else { // else is optional
                                           for(Student s: studentsList){
  // do something else
                                             System.out.println(s);
while (booleanExpr) {
                                           switch (Expr){
  // execute body
                                             case Value1: instructions;
  // until booleanExpr becomes false
                                               break;
                                             case Value2: instructions;
                                               break;
do {
                                             // ...
                                             default: instructions;
  // execute body (at least once)
  // until booleanExpr becomes false
}while (booleanExpr);
                                           Expr poate fi:
                                             byte, short, int, char (sau clase învelitoare)
for (int i=0; i < n; i++) {
                                             enum types
                                             String (equals) (new in Java 7)
  // execute loop body n times
```

Tablouri unidimensionale

Declarare:

Referirea unui element:

```
nume_tablou[index]
```

```
float[] vec;
vec=new float[10];
int[] sir=new int[3];
float tmp[];
tmp=vec //vec si tmp refera acelasi tablou
```

Tablouri unidimensionale

• Variabila *length*: returneaza dimensiunea (capacitatea) tabloului

```
int[] sir=new int[5];
int lung_sir=sir.length; //lung=5;
```

Creare si initializare

```
int[] dx=\{-1,0,1\};
```

Tablouri N-dimensionale

Rectangulare

```
int[][] a;
a=new int[5][5];
a[0][0]=2;
int x=a[2][2]; //x=?
```

Nerectangulare

Concepte de bază în programarea orientată obiect

- Clasa: reprezintă un tip de dată
 - Corespunde implementării un TAD
- Obiect: este o instanță a unei clase.
 - Obiectele interacționează între ele prin mesaje.
- *Mesaj*: folosit de obiecte pt a comunica.
 - Un mesaj este un apel de metodă.
- *Încapsularea* (separarea reprezentării de interfață)
 - datelor (starea)
 - Operațiilor (comportamentul, interfața, protocolul)
- *Moștenirea:* reutilizarea codului, definirea unei ierarhii de obiecte
- Polimorfismul capacitatea unei entități de a reacționa diferit în funcție de context

Declararea/definirea unei clase în Java

Observatii:

- 1. Daca clasa **NumeClasa** este declarata public, atunci clasa se salveaza intr-un fisier cu numele **NumeClasa.java.**
- 2. Intr-un fisier .java pot fi definite mai multe clase, insa cel mult una poate fi publica.
- 3. Diferente C++:
 - Nu sunt necesare 2 fisiere separate (.h, .cpp).
 - Metodele se implementeaza in locul declararii.
 - La sfarsitul clasei nu se pune ;

Declararea/definirea unei clase în Java

```
//Persoana.java
public class Persoana{
//...
// Complex.java
class Rational{
//...
class Natural{
//...
public class Complex{
//...
```

Declararea datelor membru

Observatii:

- 1. Modificatorul de acces trebuie precizat pentru fiecare atribut și are următoarea semnificație:
 - private: membru accesibil doar clasei
 - protected: membru accesibil doar clasei și subclaselor
 - public: membru accesibil tuturor
 - *implicit*: membru accesibil doar la nivel de pachet (Daca modificatorul de acces lipseste, atributul este vizibil in interiorul pachetului (directorului))

Declararea datelor membru. Exemple

```
//Persoana.java
public class Persoana{
    private String nume;
    private int varsta;
//...
 //Cerc.java
 public class Cerc{
     double raza;
     Punct centru;
     static final double PI=3.14;
```

```
//Punct.java
public class Punct{
    protected double x;
    protected double y;
//...
}
```

Inițializarea atributelor

- *La locul declarării:* private double x=0;
- În blocul special de initializare

```
public class Rational{
    private int numarator;
    private int numitor;
    {
        numarator=0;
        numitor=1;
    }
}
```

- În constructor.
- *Observatie*: Daca un atribut nu este explicit initializat, atunci el va avea valoarea implicită corespunzatoare tipului său.

Declararea/definirea metodei constructor

Constructorul precizeaza o secventa de instructiuni care se vor executa imediat dupa crearea unui obiect.

```
[...] class NumeClasa{
           [modificator_acces] NumeClasa([lista_parametrilor_formali]){
           //secventa de instructiuni
modificator_acces ∈ {public, protected, private}
lista parametrilor formali este de forma: Tip1 nume1[, Tip2 nume2[,...]]
 //Complex.java
 public class Complex{
     private double real, imag;
     public Complex(){
                                          public Complex(double real){
         real=0;
                                                  this.real=real;
         imag=0;
                                                  imag=0;
```

Supraîncărcarea constructorilor

```
//Complex.java
                                      Observatii:
public class Complex{
    private double real, imag;
                                      sensitive).
    public Complex(){
        real=0;
        imag=0;
    public Complex(double real){
                                      acces public.
        this.real=real;
        imag=0;
    public Complex(double real, double imag){ //...
    public Complex(Complex c){ //...
```

- 1. Constructorul trebuie sa aibă numele clasei (case sensitive).
- 2. Constructorul nu are tip returnat.
- 3. Daca intr-o clasa nu se defineste nici un constructor, compilatorul va genera automat un constructor implicit default constructor, având modificatorul de acces public.

Referința la obiectul curent

this: referință la obiectul curent (putem referi atributele sau metodele).

```
public class Complex{
   private double real, imag;
   Complex(double real){
      this.real=real;
      this.imag=0;
   Complex(double real, double imag){
      this.real=real;
      this.imag=imag;
   public Complex suma (Complex c){
      // compute the sum
      return this;
```

Apelul unui alt constructor

- Un anumit constructor poate să apeleze un alt constructor al aceleiași clase. Apelul unui alt constructor trebuie să fie prima instructiune din constructorul apelant.
- Nu pot fi apelati doi constructori diferiti.
- Un constructor nu poate fi apelat din interiorul altor metode!

```
public class Complex{
   private double real, imag;
   Complex(double real){
      this(real,0);
   Complex(double real, double imag){
      this.real=real;
      this.imag=imag;
   public Complex suma (Complex c){
      this(real+c.real,imag+c.imag);
      return this;
//erori?
```

Declararea si definirea metodelor

```
[...] class NumeClasa{
              [modificator_acces][atribute] TipR numeMetoda([lista_param_for]){
                     //secventa de instructiuni
                                               public class Circle {
                                                   private float radius; //instance variable
                                                   private Point center; //instance variable
   modificator acces ∈ {public, protected,
  private}
                                                   public float getRadius() { return radius; }
  lista_param_for este de forma Tip1 nume1[,
  Tip2 nume2[, ...]],

    TipR poate fi orice tip primitiv, clasa,

                                                    * set the radius of the circle to a new value
  tablou, sau void.
                                                    * @param newRadius
                                                   public void setRadius(float newRadius) {
                                                       radius = newRadius;
   Daca modificatorul de acces lipseste,
   metoda poate fi apelata din orice clasa
   definita in acelasi pachet (director)!
                                                   /**
                                                    * @return compute and return the area of the circle
                                                   public float computeArea() { /* implementation */ return 0; }
```

Metode cu număr variabil de parametri

Java 5.0 (Vararg)

```
public void setGrades(Student s, int ... grades){
   for (int g:grades)
   {
      //
   }
}
```

Vararg trebuie sa fie ultimul in lista de parametri!!!

Supraîncărcarea metodelor

- Intr-o clasa pot fi definte mai multe metode cu acelasi nume, dar care au signaturi diferite.
- Prin signatura se intelege numarul parametrilor formali, tipul parametrilor formali si ordinea lor.

```
public class Complex{
    private double real, imag;
    // constructors ...
    public void aduna (double real){
        this.real+=real;
    public void aduna(Complex c){
        this.real+=c.real;
        this.imag+=c.imag;
    public Complex aduna(Complex cc){
        this.real+=cc.real;
        this.imag+=cc.imag;
        return this;
//Erorrs?
```

Crearea obiectelor

la execuția programului, prin operatorul new și sunt alocate în heap

```
public class Urs {
   private String specie;
   private String nume;
   private int varsta;

public Urs(String specie, String nume, int varsta) {
     this.specie = specie;
     this.nume = nume;
     this.varsta = varsta;
   }
}
```

Referirea obiectelor

```
Urs ursPanda; //ursPanda referinta la obiect
ursPanda =new Urs("Panda","Domino",10);
Urs ursBrun =new Urs("Brun","Martin",15);
Urs polarel =new Urs("Polar","White",10);
```

```
Referirea obiectelor - null

Urs ursOarecare=null; //Varibila ursOarecare nu are asociat nici un obiect (ex. Telecomanda fara TV)

ursOarecare=ursPanda; Varibila ursOarecare si ursPanda refera acelasi obiect din memorie
```

Distrugerea obiectelor

Destructor:

• În Java nu exista destructor.

• Memoria este dealocată de garbage collector.

Transmiterea parametrilor

- Prin *Valoare*. Se copiaza valoarea lor pe stiva.
- Pentru parametri de tip obiect si pt tablouri, aceasta valoare este o referinta.
 Informatiile din obiect sau tablou pot fi modificate

```
public void initStudent(Student s, String nume,int varsta, int anStudiu)
{
    //s=new Student(nume,varsta,anStudiu); ??????????
    s.setNume(nume);
    s.setVarsta(varsta);
    s.setAnStudiu(anStudiu);
}

Student s=new Student();
initStudent(s);
System.out.println(s);
```

Vector de obiecte

```
Student [] studentsList=new Student [4];
studentsList[0]=new Student("Andrei",12,3);
studentsList[1]=new Student("Aprogramatoarei",18,1);
studentsList[2]=new Student("Dan",32,3);
studentsList[3]=new Student("Ion",22,3);

for(Student s: studentsList){
    System.out.println(s);
}
```

Clase învelitoare (wrapper classes)

Tip primitiv	Clasa învelitoare
boolean	Boolean
char	Character
byte	Byte
short	Short
int	Integer
long	Long
float	Float
double	Double

```
Integer intObject1 = new Integer(34);
Integer intObject2 = new Integer("35");

Boolean boolValue1 = new Boolean("true");

Integer intObject3 = Integer.valueOf("36");
Integer intObject4 = Integer.valueOf("1001", 2); // 9 in baza

Integer intObj1 = 23; //autoboxing
int intPrimitive = intObj1; //unboxing
intPrimitive++;
Integer intObj2 = intPrimitive; //autoboxing
```

Membri de tip clasă. Modificatorul static.

 Variabile statice (de clasă) – valori memorate la nivelul clasei și nu la nivelul fiecărei instanțe.

Exemplu: declararea eficientă a constantelor

static final double PI = 3.14;

Pot fi referite si prin numele clasei: System.out.println(Cerc.PI);

- Metode statice (de clasă) metode aplicabile la nivel de clasă și nu de instanță (pot opera doar pe variabile statice)
- Metodele statice se pot apela si doar cu numele clasei (nu e necesar sa cream o instanta): NumeClasa.numeMetodaStatica(listaParametri)

A se vedea si contextul in care apare modificatorul static la clase interne (cursul urmator)

Utilizarea membrilor statici

```
public class Exemplu {
    int x ; // Variabila de instanta
    static long n; // Variabila de clasa
    public void metodaDeInstanta() {
        n ++; // Corect
        x --; // Corect
    public static void metodaStatica() {
                                               Exemplu.metodaStatica(); // Corect
        n ++; // Corect
                                               Exemplu obj = new Exemplu();
        x --; // Eroare la compilare !
                                               obj.metodaStatica(); // Corect
                                               Exemplu.metodaDeInstanta(); // Eroare
                                               Exemplu obj = new Exemplu();
                                               obj.metodaDeInstanta(); // Corect
```

Mostenirea

```
class SuperClasa {
...
}
class SubClasa extends SuperClasa {
...
}
```


Mostenirea este o relație de tip **is - a**

• ... este o relație între clase prin care o clasă (superclasă / clasă de bază) pune la dispoziția altor clase (subclase / clase derivate) structura și comportamentul definite de ea.

O clasă poate extinde direct cel mult o clasă. NU există moștenire multiplă de clasă în Java.

Programarea orientată pe obiecte este o metodă de implementare a programelor în care acestea sunt organizate ca și colecții de obiecte ce cooperează între ele [...], fiecare obiect fiind o instanță a unei clase, și fiecare clasă fiind membră a unei ierarhii de clase [clase unite prin relații de moștenire].

Constructori în contextul moștenirii

Q: În contextul moștenirii, cine ar fi cel mai în măsură să inițializeze câmpurile moștenite de la o clasă de bază ?

A: Constructorul acelei superclase!

- Dacă în superclasă există un constructor fara parametri (default sau nu), compilatorul introduce automat un apel la acel constructor ca primă instrucțiune.
- Dacă nu avem constructor fara parametri în clasa de bază, în constructorul subclaselor trebuie apelat explicit un constructor cu parametri din superclasă.
- Prima instrucțiune dintr-un constructor e fie apel la alt constructor al aceleiași clase, fie apel la un constructor din superclasa directă.

Exemplu grila

```
class A{
    int i;
    public A(int i){
        System.out.print("A()");
class B extends A{
   float i = 3;
    public B(){
        System.out.print("B()");
public class AB extends B{
    public static void main(String argv[]){
        AB[] x= new AB[]{new AB(), new AB()};
        for (AB obj: x) {
            obj.testMethodCA("AB");
    public void testMethodCA(String s){
        System.out.println(s);
```

Constructori în contextul moștenirii. Exemplu

```
public class Student extends Persoana {
                                    private static final int COD_UNIVERSITATE = 15;
                                    private int anStudiu;
                                    public Student(String nume, byte varsta, int anStudiu)
                                        super(nume, varsta); //apelconstr cu param din clasa de baza
public class Persoana{
                                        this.anStudiu=anStudiu;
    protected String nume;
    protected byte varsta;
    public Persoana(){
        this("",(byte)0);
    public Persoana(String nume, byte varsta){
        this.nume=nume;
        this.varsta=varsta;
```

• Dacă în constructorul clasei Student prima instrucțiune nu ar fi fost super(nume, varsta);, s-ar fi apelat automat constructorul Persoana(). Dacă acesta nu exista, primeam eroare, deoarece nu avem constructor default in clasa Persoana.

Super în contextul moștenirii

public class Persoana{

```
protected String nume;
   protected byte varsta;
   public Persoana(String nume, byte varsta){
       this.nume=nume;
       this.varsta=varsta;
   public void socializeaza() {
       System.out.println(nume + " socializeaza ... ");
public class Student extends Persoana {
   public Student(String nume, byte varsta, int anStudiu)
            super(nume, varsta); //apel constr cu param din clasa de baza
            this.anStudiu=anStudiu;
   public void seDistreaza(){
       super.socializeaza(); //apel metoda din clasa de baza
       System.out.println("Si canta ....");
```

super

- Pentru a apela, din constructorul clasei derivate, un constructor al clasei de baza, apelul acestui constructor fiind prima instructiune din constructorul clasei derivate. super(nume, varsta)
- Pentru a referi un membru al clasei de baza in clasa derivata.
 super.membruClasaBaza

Object –Superclasă a tututor claselor

• În Java orice clasă este derivată din Object!

Metodele clasei Object

Toate obiectele, inclusiv tablourile, moștenesc metodele acestei clase:

- toString: returnează reprezentarea ca șir de caractere a unui obiect
- equals: testează egalitatea conținutului a două obiecte
- hashCode: returnează valoarea hash corespunzătoare unui obiect
- getClass: returnează clasa din care a fost instanțiat obiectul
- clone: creează o copie a obiectului (implicit: shallow copy)
- finalize : apelată de GC înainte de distrugerea obiectului
- •••

Redefinirea (overriding) unei metode

- Uneori, implementarea moștenită a unei operații nu e adecvată/suficientă pentru o subclasă
- Doar metodele de instanță se pot redefini!

```
Redefinirea, in clasa Persoana, a metodei toString() din clasa Object
@Override
public String toString() {
    return "nume='" + nume + '\'' + ", varsta=" + varsta;
}
Redefinirea, in clasa Student, a metodei toString() din clasa Persoana
@Override
public String toString() {
    return super.toString()+", "+ "an de studiu="+anStudiu;
}
```

Metoda redefinita in clasa derivate poate avea tipul returnat ca fiind un subtip al celui returnat de metoda in clasa de baza!

Legarea dinamică

```
Persoana stud=new Student("Andu",(byte)3,34);
stud.toString();
```

Ce metodă se apelează? toString() de la Persoană sau toString() de la Student?

În Java, orice metodă este implicit virtuală!

Overriding vs. overloading

- Suprascriere /redefinire / (overriding) același nume, aceeași semnătură
- Supraîncărcare (overloading) același nume, semnăruri diferite

Upcasting si downcasting

```
Persoana persoana;
Student student=new Student();
persoana=student; //upcasting (automat)
```

Student s2=(Student)persoana; //downcasting
explicit

Modificatori/Specificatori de acces în contextul moștenirii

- private respectivul membru al clasei (atribut/metodă) poate fi accesat doar în interiorul clasei
- public respectivul membru al clasei (atribut /metodă) poate fi accesat de oriunde
- protected respectivul membru al clasei (atribut /metodă) poate fi accesat din interiorul clasei, din subclasele sale (pe this) sau din același pachet (pe orice obiect).

Modificatorul final

- *Metodele final* nu mai pot fi redefinite (overriding) in clasele derivate
- Clasele final nu mai pot fi extinse (e frunza in arborele ierarhiei de clase)
 - final class A{}
 - class B extends A {} nu e posibil
- *Atributele, variabile locale, argumentele final* − constant
 - Constantele **static final** trebuie initializate la declarare;
 - static final double PI=2;

Moștenirea de clasă vs. compunerea obiectelor (object composition)

• Euristică importantă a Programării orientate pe obiecte: Nu folosiți moștenirea doar pentru a reutiliza codul unei superclase!

Favorizează compunerea obiectelor în locul moștenirii de clasă! (Favor composition instead of inheritance!)

Studiu de caz

Vector

...

+add(o : Object) : boolean +get(index : int) : Object +isEmpty() : boolean

+removeElementAt(index:int): void

...

Stack

+push(o:Object) : Object

+pop() : Object +peek() : Object +empty() : boolean

```
class Stack extends Vector {
    public Object push(Object o) {
        this.add(o);
        return o;
    }
    public Object pop() {
        Object r = this.get(this.size() - 1);
        this.removeElementAt(this.size() - 1);
        return r;
    }
    ...
}
```

Studiu de caz

Vector

+isEmpty() : boolean

+removeElementAt(index:int): void

...

?

Stack

+push(o:Object) : Object

+pop() : Object +peek() : Object +empty() : boolean

Aşa NU!

+add(o : Object) : boolean +get(index : int) : Object

+peek() : Object

-removeElementAt(index:int): void

Vector

stk.removeElementAt(0);

// adică cum (????)

// operatiile ce nu caracterizeaza notiunea de stivă pot fi
folosite pe o stiva?

Soluția

Compunerea de obiecte

Compunerea de obiecte

• În esență, definirea de variabile de instanță într-o clasă ca referințe la obiecte (inclusiv când referințele sunt într-o variabilă de instanță de tip tablou).

Asociere


```
class A{
    private B b;
    public A() {}

    public void setB(B b){
        this.b=b;
    }
}
```


A poate exista si fara B

Agregare

- Agregatul (A) <u>nu</u> poate exista fara una dintre componente
- B exista fara A
- Distrugerea agregatului nu conduce la distrugerea componentelor

Compoziție


```
class A{
    private B b=new B();
    public A()
    {
        // sau aici b=new B()//
    }
}
```

- B este creat de catre A
- Distrugerea agregatului presupune si distrugerea componentei

Stiva corectată


```
class Stack {
    Vector v = new Vector();
    public Object push(Object o) {
        v.add(o);
        return o;
    }
    public Object pop() {
        Object r = v.get(this.size() - 1);
        v.removeElementAt(this.size() - 1);
        return r;
    }
    ...
}
```

- Stiva are un vector si e numai si numai al ei!!!
- Prin urmare avem un alt mod de reutilizare a codului!!!!

Clase abstracte

- Definesc concepte abstracte: formă, animal, figură, task
- *O metodă* se numește abstractă dacă se declară, dar nu se definește în clasa în care a fost declarată. O metoda abstractă se declară folosind cuvantul abstract.

```
[modificator_acces] abstract TipReturnat nume([lista_param_formali]);
```

- *O clasă abstractă* este o clasă ce poate sa contina (dar nu e obligatoriu) metode abstracte.
- O clasa abstracta se defineste folosind cuvantul abstract.
- O clasa abstracta nu poate fi instantiata.
- Daca o clasa are cel putin o metoda abstracta atunci ea trebuie declarata abstracta.
- O clasa poate fi declarata abstracta fara a avea metode abstracte.
- Daca o clasa mosteneste o clasa abstracta si nu defineste toate metodele abstracte ale clasei de baza, trebuie declarata si ea abstracta.

Clase abstracte

```
public abstract class Task {
   private String taskId;
   private String desc;
   public Task(String taskId, String desc) {
       this.taskId = taskId;
       this.desc = desc;
       System.out.println("Creating a task...");
   public abstract void execute();
 public class MessageTask extends Task {
     public String message;
     public MessageTask(String taskId, String desc, String message) {
        super(taskId, desc);
        this.message=message;
     @Override
       public void execute() {
             System.out.println(message);
```


Interfețe

- DEX: (inform.) frontieră convențională între două sisteme sau unități, care permite schimburi de informații după anumite reguli.
- *Interfata* contract, protocol de comunicare
- Clasa implementeaza (adera la) acel contract

Definirea unei interfețe

```
[public] interface NumeInterfata [extends SuperInterf1,
SuperInterf2...] {
    /* Corpul interfetei:
    Declaratii de constante publice
    Declaratii de metode abstracte publice
    Metode definite (default) Java 8
    */
}
```

- O interfata contine declaratii de metode abstracte (nedefinite), default (definite) si statice si date membru.
- Orice data membru declarata in interfata este implicit public, static, final
- Toate metodele declarate intr-o interfata sunt implicit public
- O interfata poate sa nu contina nici o declaratie de metode sau date membru.
- O interfata poate mosteni alta interfata si poate adauga metode noi.
- Extinderea unei interfete: O interfata poate sa mosteneasca mai multe interfete (mostenire multipla de interfete) pot aparea coliziuni; Cuvant rezervat extends

Definirea unei interfețe

```
public interface Formula {
    double PI=3.14; // este implicit public, static, final
    double calculate(double a, double b); //metoda abstracta
   default double sqrt(double a) {
        return Math.sqrt(a);
    default double power(double a, double b) {
        return Math.pow(a, b);
   default double numarLaPatrat(double nr)
        return power(nr,2);
    default double numarLaCub(double nr)
        return power(nr,3);
```

Exemplu grila

• Care linii de cod din interfata *MyInterface* nu sunt corecte?

```
interface MyInterface {
    protected int X = 10;
    int y;
    int Z = 20;

    default int x() {
        return 0;
    }

    abstract void foo();

    final int f(int x);
}
```

Variante de raspuns:

- a)
- b)
- c)
- d)

Implementarea unei interfete

```
public interface Comparable{
    int compareTo(Object o);
}
public class Rational implements Comparable{
    private int numarator, numitor;
    //...
    public int compareTo(Object o){
        //...
    }
}
```


- Clasa se obliga sa defineasca toate metodele abstracte din interfata.
- Daca cel putin o metoda abstracta din interfata nu este definita in clasa, atunci clasa trebuie declarata abstracta!

Moștenire de clasă și implementarea de interfețe

• O clasa poate mosteni cel mult o clasa, dar poate implementa oricate interfete.

Good OO Design

- The following rules of thumb are essential to a good design:
 - "Program to an interface, not to an implementation."
 - "Hide and abstract as much as possible".
 - "Favor object composition over inheritance."
 - "Minimize relationships among objects and organize related objects in packages".