ACTIVITÉ 1

- 1. Dans les nombres positionnés ci-dessus, deux écritures sont interdites. Lesquelles?
- 2. Classer les nombres restants en cinq groupes.

ACTIVITÉ 2 📐

En latin, *ratio* signifie « compter ». Un nombre *rationnel* est donc un nombre « que l'on sait compter » : il est quotient de deux entiers dont l'écriture décimale peut être infinie (mais dans ce cas nécessairement périodique). Par exemple,

$$\frac{2}{7} = 0,285714285714285714...$$

est un nombre rationnel.

L'objectif de cette activité est de démontrer que $\sqrt{2}$ n'est pas un nombre rationnel. On rappelle pour cela que :

- n est un nombre entier pair si et seulement s'il est de la forme n=2k avec $k\in\mathbb{Z}$. Par exemple, $4=2\times 2$, $6=2\times 3$, ...
- n est un nombre entier impair si et seulement s'il est de la forme n=2k+1 avec $k\in\mathbb{Z}$. Par exemple, $7=2\times\frac{3}{k}+1,\,9=2\times\frac{3}{k}+1,\ldots$
- 1. a. Soit n un nombre. On suppose n impair. Démontrer que n^2 est impair.
 - b. Quelle est la contraposée de cette implication?
- 2. On suppose par l'absurde que $\sqrt{2} = \frac{p}{q}$ où $\frac{p}{q}$ est une fraction irréductible.
 - **a.** Démontrer que $2q^2 = p^2$.
 - **b.** Que peut-on dire de p^2 ? Et de p?
 - c. Démontrer que q^2 est pair.
 - **d.** Trouver un diviseur commun à p et q.
 - e. Conclure.

INFORMATION 4

Les grecs, et plus particulièrement l'école Pythagoricienne, voyaient en les nombres rationnels l'expression même de la beauté (visuelle comme musicale). Ceux-ci ont d'ailleurs basé leur philosophie dessus : « Tout est nombre ».

Hippase de Métaponte, disciple de Pythagore, montra que la diagonale d'un carré de côté 1 (qui vaut $\sqrt{2}$) ne peut pas s'écrire comme un quotient de deux entiers : il venait de divulguer l'existence des nombres **irrationnels**. La légende raconte que, pour avoir transgressé la doctrine Pythagoricienne, Hippase fut jeté par-dessus bord et noyé dans les eaux de la mer Méditerranée par les autres disciples...

ACTIVITÉ 3 📐

- 1. On note [−3;5] l'ensemble des nombres réels compris entre −3 inclus et 5 inclus. Il s'agit d'un **intervalle** et −3 et 5 sont ses **bornes**.
 - **a.** Surligner sur la droite graduée ci-dessous les nombres réels appartenant à [-3;5].

b. Parmi les nombres suivants, lesquels appartiennent à [-3;5]?

__ _3

— 10

-5,01

-2.99

 $-\sqrt{2}$

2. On note] −3;5] l'ensemble des nombres réels compris entre −3 exclu et 5 inclus. D'après vous, comme note-t-on l'ensemble des nombres compris entre 4 exclu et 5 inclus? Et l'ensemble des nombres compris entre 2 exclu et 6 exclu?

D'après Sésamath 2^{nde} 2023.

Pour opérer sur les intervalles, on dispose en mathématiques de trois opérateurs, qui sont les mêmes qu'en logique booléenne.

Soient *I* et *J* deux intervalles.

Opérateur	Nom	Symbole	Description
ET	Intersection	n	Un nombre appartient à $I \cap J$ s'il appartient à I et à J
OU	Union	U	Un nombre appartient à $I \cup J$ s'il appartient à I ou à J (ou aux deux)
NON	Complémentaire	_	Un nombre appartient à \overline{I} s'il n'appartient pas à I

L'objectif de cette activité est de découvrir le comportement de l'intersection et de l'union sur les intervalles.

1. a. Représenter en rouge les intervalles] – 3;5] et]1;7] sur la droite ci-dessous.

- **b.** Représenter en bleu l'intersection $]-3;5] \cap]1;7]$.
- **c.** À quelle intervalle correspond $]-3;5] \cap]1;7]$?

2. a. Représenter de nouveau en rouge les intervalles] – 3;5] et [1;7] sur la droite ci-dessous.

- **b.** Représenter en vert la réunion $]-3;5] \cup]1;7]$.
- **c.** À quelle intervalle correspond $]-3;5] \cup]1;7]$?

En France, le paiement de l'impôt sur le revenu est régi par un système par tranches. Selon leur montant, les revenus sont partagés sur une ou plusieurs tranches, chacune associée à un taux d'imposition précis. Sur le site du ministère de l'Économie, on peut voir apparaître le barème ci-dessous, applicable au début de l'année 2024.

Tranches pour 1 part de quotient familial*										
	- Revenu	annuel net in	nposable —							
Tranche 1	Tranche 1 Tranche 2 Tranche 3 Tranche 4 Tranche 5									
Jusqu'à 11 294 €	De 11 295 € à 28 797 €	De 28 798 € à 82 341 €	De 82 342 € à 177 106 €	Plus de 177 106 €						
0 %	11 %	30 %	41 %	45 %						

^{*} Le calcul dépend du nombre de parts fiscales.

En suivant ce barème, une personne qui a un revenu imposable R appartenant à l'intervalle [11 295; 28 797] paiera un impôt égal à

$$(R-11\ 295) \times 0, 11 = 0, 11R-1\ 129,5$$

En écrivant une suite d'inégalités, donner le montant minimal et le montant maximal de l'impôt d'une personne dont le revenu appartient à l'intervalle [12 000; 20 000].

ACTIVITÉ 6 📐

Un célèbre service de streaming met en avant deux abonnements : un qui comporte des publicités et un qui n'en comporte pas, mais qui coûte plus cher.

Abonnement standard avec publicité.

Abonnement standard.

L'objectif de cette activité est de déterminer à partir de combien de publicités visionnés un utilisateur ayant souscrit à l'abonnement *avec pub* devient plus rentable pour le service de streaming (ie. à partir de combien de publicité visionnées il lui rapporte plus d'argent qu'avec un abonnement *sans pub*).

On note *x* le nombre de publicités visionnées par un utilisateur ayant souscrit à l'abonnement *avec pub* au cours d'un mois.

- 1. En France, une publicité visionnée par un utilisateur rapporte environ $0,03 \in$ au diffuseur. Dire en fonction de x combien un utilisateur ayant souscrit à l'abonnement *avec pub* rapporte au site de streaming en un mois.
- **2.** À quel intervalle *x* doit-il appartenir pour qu'un utilisateur ayant souscrit à l'abonnement *avec pub* devienne plus rentable qu'un utilisateur ayant souscrit à l'abonnement *sans pub*?

ACTIVITÉ 7

1. Sur la droite graduée ci-dessous, placer les points A, B et C d'abscisses respectives 1, 3 et -4.

- a. Quelle est la distance entre A et B? Comment la calculer à partir des abscisses de A et de B?b. Même question pour la distance entre A et C.
- **3.** Soit M un point d'abscisse x. On suppose que la distance entre A et M est inférieure ou égale à 2. À quel intervalle appartient x?

INFORMATION | |

C'est le mathématicien français Augustin Louis Cauchy qui a introduit la notion de **valeur absolue** en 1821 dans son cours d'analyse de l'Ecole Royale Polytechnique. À l'époque, il avait fait la distinction entre *nombre* et *quantité* et avait utilisé le terme *valeur numérique* pour désigner la valeur absolue.

Nous prendrons toujours la dénomination de **nombres** dans le, sens où on l'emploie en Arithmétique, en faisant naître les nombres de la mesure absolue des grandeurs, et nous appliquerons uniquement la dénomination de **quantités** aux quantités réelles positives ou **négatives**, c'est-à-dire aux nombres précédés des signes + ou -. (...) Cela posé, le signe + ou - placé devant un nombre en modifiera la signification, à peu près comme un adjectif modifie celle du substantif. Nous appellerons **valeur numérique** d'une quantité le nombre qui en fait la base.

1. Pour chaque ligne du tableau, compléter la dernière case en résolvant l'inéquation demandée.

Numéro	Inéquation	Ensemble solution
1	$x-3 \ge 0$	
2	$x + 3 \le 0$	
3	x - 3 < 0	
4	$3x - 9 \le 0$	
5	-x < -3	
6	$\frac{x}{3} < 1$	
7	2x - 2 < 1 + x	
8	$-\frac{x}{9} \ge -\frac{1}{3}$	
9	$\frac{13}{3}x - 15 > -\frac{2}{3}x$	
10	$108 \le 36x$	
11	$2 \ge 5x - 13$	
12	$2x \le x - 3$	
13	3-x<0	
14	$3^{-12}x \le -3^{-11}$	
15	$\frac{26x}{14} \ge \frac{42-x}{7}$	

2. Au verso de la page, en se référant au tableau, colorier la grille de façon à obtenir un pixel art.

11	11	11	11	11	11	11	11	11	14	14	11	11	11	11	11	11	11	11	11	11	11	11	11
11	11	11	11	11	11	11	11	14	14	14	11	11	11	11	11	11	11	11	11	11	11	11	11
11	11	11	11	11	11	14	14	14	14	14	11	11	11	11	11	11	11	11	11	11	11	11	11
11	11	11	11	11	11	14	14	13	7	14	11	11	11	11	11	11	11	11	11	11	11	11	11
11	11	11	11	11	14	13	13	13	7	14	11	11	11	11	11	11	11	11	11	11	11	11	11
11	11	11	11	11	14	13	13	13	7	14	11	11	11	11	11	11	11	11	11	11	11	11	11
11	11	11	11	11	14	13	13	7	14	14	11	11	11	11	11	11	11	11	11	11	11	11	11
11	11	11	11	14	13	13	13	7	14	11	11	11	11	11	11	11	11	11	11	11	11	11	11
11	11	11	11	14	13	13	13	7	14	11	11	11	11	11	11	11	11	11	11	11	11	11	11
11	11	11	11	14	13	13	7	14	14	14	14	14	14	11	11	11	11	11	11	11	11	11	11
11	11	11	14	13	13	13	13	7	7	7	7	7	7	14	14	11	11	11	11	11	11	11	11
11	11	14	7	13	13	13	13	13	13	13	13	13	13	7	7	14	11	11	11	11	11	11	11
8	8	12	6	13	13	13	13	13	13	13	13	13	13	13	13	6	12	12	8	8	8	8	8
8	12	6	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	12	12	8	8	8
8	12	6	13	13	13	13	13	13	13	13	13	13	13	13	6	6	13	13	13	13	12	12	8
8	12	6	13	13	13	13	13	13	13	13	13	13	13	13	6	12	6	6	6	6	12	12	12
8	12	6	8	12	13	13	13	13	13	8	12	13	13	13	13	6	12	12	12	12	12	12	12
8	12	6	12	12	13	13	13	13	13	8	12	12	13	13	13	6	12	8	8	8	8	8	8
12	15	15	12	12	13	13	13	13	13	12	12	12	13	13	13	6	12	8	8	8	8	8	8
12	15	15	15	13	13	12	13	13	13	12	12	12	15	13	13	6	12	8	8	8	8	8	8
12	10	10	10	13	13	13	13	13	13	13	10	10	10	10	13	6	12	12	12	12	12	12	8
8	12	10	13	13	13	12	13	13	13	13	10	10	10	10	13	12	13	13	13	13	13	12	8
4	4	2	2	9	9	9	9	9	2	2	2	9	1	2	2	3	9	9	9	9	9	2	4
4	2	3	9	9	9	9	9	2	1	1	1	2	2	9	9	2	3	9	2	2	2	4	4
2	9	9	9	9	9	9	2	1	1	2	1	2	9	9	9	2	3	3	2	4	4	4	4
2	9	2	9	9	9	9	2	2	2	4	2	2	2	2	9	3	2	2	4	4	4	4	4
4	2	3	9	9	9	9	2	4	4	2	4	4	2	9	9	3	2	2	4	4	4	4	4
4	2	3	5	5	5	5	5	2	4	4	4	2	5	5	3	2	2	4	4	4	4	4	4
4	4	2	3	5	2	5	5	5	2	2	2	5	5	3	2	3	2	4	4	4	4	4	4
4	4	2	3	2	3	2	5	5	5	5	3	3	3	2	3	3	2	4	4	4	4	4	4
4	4	4	2	3	3	2	3	3	3	3	2	2	2	2	2	2	4	4	4	4	4	4	4
4	4	4	4	2	2	2	2	2	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4

Solution] - ∞; -3]]-∞;3]	[3;+∞[]-∞;3[]3;+∞[
Couleur	Noir	☐ Blanc	Rouge	Orange	Jaune

Dessin original:fr.pinterest.com.