0801_R19_Computer_C-Scheme_SEM3_CSC301_EM3_QP

Your email address (rajan.gupta@slrtce.in) will be recorded when you submit this form. Not you? Switch account

* Required

Q1. Choose the correct option for following questions. All the Questions are compulsory and carry equal marks

Time: 12.30PM TO 1.10 PM (40 MIN) Max. Marks: 40

В

If random variable X has the probability distribution as

X	-2	-1	0	1	2
P(X=x)	3k	2k	2k	k	0.2

Then $P(-2 \le X \le 2)$ is

OptOption A: 1

Option B: 0.7

Option C: 0.8

Option D: 0.5

Laplace transform of $\int_0^t \sin 2t \cosh 2t \ dt$ is

$$\frac{1}{s} \left[\frac{1}{(s-2)^2 - 4} - \frac{1}{(s+2)^2 - 4} \right] \qquad \frac{1}{s} \left[\frac{1}{(s-2)^2 - 4} + \frac{1}{(s+2)^2 - 4} \right]$$

$$\frac{1}{s} \left[\frac{1}{(s-2)^2 - 4} + \frac{1}{(s+2)^2 - 4} \right]$$

$$\frac{1}{s} \left[\frac{1}{(s-2)^2 + 4} - \frac{1}{(s+2)^2 + 4} \right]$$

С

D

Inverse Laplace transform of $\frac{s-1}{s^2}$ is

- A -1-t
- B -1+t
- C 1+t
- D 1-t

Laplace transform of $\cos(\sqrt{3} t)$ is *

2 points

В

D

C

!

If coefficients of correlation between variables x, y is 0.5 and coefficient of regression b_{xy} is 0.2 then coefficient of correlation b_{yx} is

- Option A: 1.25
- Option B: -1.25
- Option C: 2.5
- Option D: -2.5

* 2 points

A random variable X has probability distribution with E(X) = 1.5, $E(X^2) = 3$ then then variance is

- Option A: 0.75
- Option B: 1.5
- Option C: 3
- Option D: 5.25

* 2 points

Fourier coefficient a_0 in half range cosine series for $f(x) = e^x$, $x \in (0,1)$ is

- O e+1
- —e-1
- O -e+1
- •-1

В

If a straight line is y=ax+b is fitted to following data

X	0	1	2	3	4
у	1	2	3	4	5

Then values of a & b are

- Option A: a=1, b=0
- Option B: a=1, b=1
- Option C: a=0, b=1
- Option D: a=-1, b=1

* 2 points

Value of constant real number m such that $f(z) = f(x + iy) = e^{3mx + 2iy}$ is analytic function is

- 2/3
- -2/3
- 3/2
- -3/2

For f(z) = sinx cosh(y) + i cosx sinh(y), where z = x + iy, f'(z) is

- -sin z
- sinh z
- os z
- O cosh z

2 points The value of $\int_0^\infty e^{-3t} \left(\frac{\sinh t}{t} \right) dt$ is $\frac{1}{3} \ln 3$ $\frac{1}{3} ln \left(\frac{1}{3}\right)$ A В $\frac{1}{2}ln 2$ $\frac{1}{2} ln \left(\frac{1}{2}\right)$ C D

Laplace transform of $f(t) = t^2 e^{-t}$ is

 $\frac{2}{(s-1)^3}$

 $\frac{2}{(s+1)^3}$

(A

В

 $\frac{\Gamma(2)}{(s-1)^3}$

 $\frac{\Gamma(2)}{(s+1)^3}$

O c

() D

Fourier coefficient b_1 for f(x) = x. sinx, where $x \in (0, 2\pi)$ is

0

Ο π

- Option 4

Clear selection

The coefficient of rank correlation between two variables with unequal ranks is - 0.9 . If the number of pairs is 5 ,then the sum of squares of differences in ranks is *	ts
Option A: 37	
Option B: 36	
Option C: 39	
Option D: 38	
For real variables x, y function u(x,y)=2xy * 2 point	its
odoes not satisfy Laplacian equation.	
is not continuous.	
is harmonic.	
is continuous but not partially differentiable	
* 2 poir	its
Fourier coefficient a_2 for $f(x)=x$, x belongs to $(-1, 1)$ is	
O -1	
O 1	
0	
O 2	

A continuous random variable X has the probability law $f(x) = k^2 x^3$, $0 \le x \le 3$, k > 0 then value of k is

- Option A: 2/81
- Option B: 4/81
- Option C: 4/9
- Option D: 2/9

* 2 points

$$L^{-1}\left[\frac{s(2s^2-3)}{(s^2+1)(s^2-4)}\right]$$
 is

- cosh t+cosh 2t
- os t+cosh 2t
- Cos t+cos 2t
- Cosh t+cos 2t

Page 2 of 2

Back

Submit

Never submit passwords through Google Forms.

This form was created inside of SLRTCE. Report Abuse

Google Forms