	ial Equation)
Types of variables:	
There are two tyles	of variable.
(i) Defendent variable.	William Standard Co
in Indefendent variab	le.
Differential equation:	containing
	n equation involving derina
	w.r.t one or more
	called differential education.
e9	
$\frac{dy}{dx} + y \sin x = 0$	
where y is a defender	nt variable and x is
indefendent variable.	na techniquessis to retain as
Types of differential en	Mustion.
in Ordinary diff eat.	
vii Partial diff eq.	
(iii) Order of diff eal.	6,9
(iv) Degree of diff ear.	
(v) Ordinary linear diff	
in Admin diff. It	1 and the same
	L equation.
	involving derivative of
	t Single independent

	$\frac{d^2y}{dx^2} + 2x\left(\frac{dy}{dx}\right)^2 = 0$	
	The above equation has degree 1.	-
	(v) Ordinary linear differential en.	
	An ordinary eq. of the form	-
	F(x, y, dy, d'y, d'y) is said to be	
	linear if F is a linear function of (x, dy,)	
	Condition for linear diff-cal.	
(i)	A diff-cal is said to be linear if the	
	degree of defendent variable or degree of all	
	its derivation is one otherwise its non-linear.	
	$y^2 \frac{dy}{dx} + 5x = 0 \Rightarrow \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{dy}{dx} + \frac{1}{\sqrt{2}} \frac{dy}{dx} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{dy}{dx} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{dy}{dx} + \frac{1}{\sqrt{2}} \frac{dy}{dx} +$	
	$\frac{x^2 dy}{dx} + 5x = 0$ Linear	
_(ii)	There should not be Product of defendent variable	
	with its own derivative or with itself.	
	$y^2 dy + 5x = 0$ \rightarrow Non_linear	
	$y \frac{d^2y}{dx^2} + Sinx = 0 \rightarrow Non-Linear$	-
	$\frac{xdy}{dx} + 5x = 0 \longrightarrow linear$	
		-

9.7) Definition. A solution (or integral) of a differential equation is a relation etween the variables, not containing derivatives, such that this relation and the erivatives obtained from it satisfy the given differential equation identically. For example,

The equation

$$\frac{dy}{dx} = -\lambda y$$
 has a solution
 $y = c e^{-\lambda x}$, where c is an arbitrary constant.

$$y = c e^{-\lambda x}$$
, where c is an arbitrary constant.

The equation

$$\frac{d^2y}{dx^2} + y = 0 has solutions$$

$$y = A \cos x$$
, $y = B \sin x$ and $y = A \cos x + B \sin x$,

where A and B are arbitrary constants.

A solution of a differential equation which contains as many arbitrary constant as the order of the equation is called general solution (or integral) of the different set equation. A solution obtained from the general solution by giving particular values to the constants is called a particular solution (or integral). The graph of a particular integral is called an integral curve of the differential equation.

ousses I between Gassakl) distill

INITIAL AND BOUNDARY CONDITIONS

We have observed that general solution of a differential equation contains the number of arbitrary constants as is the order of the equation. Sometimes we need to the solutions of differential equations subject to supplementary conditions. Two moes of conditions will be often encountered.

- Definition. (Initial Conditions). It is often required to find the solution of a differential equation subject to certain conditions. If the conditions relate to one value of the independent variable such as $y = y_0$ at $x = x_0$ (written as $y(x_0) = y_0$) and $\frac{dy}{dx} = y'(x_0)$
- where x_0 belongs to some interval] α , β [then they are called **initial conditions** for one-point boundary conditions) and x_0 is called the **initial point**. An **initial value** problem consists of a differential equation (of any order) together with a collection of mitial conditions that must be satisfied by the solution of the differential equation and derivatives at the initial point.
 - (9.10) Definition. (Boundary Conditions). The problem of finding the solution of a afferential equation such that all the associated constraints relate to two different values of the independent variable is called a two-point boundary value problem (or simply a boundary value problem). The associated supplementary boundary conditions are called two-point boundary conditions.

SEPARABLE EQUATIONS

(9.11) Definition. A differential equation of the type

$$F(x) G(y) dx + f(x) g(y) dy = 0$$

(1)

is called an equation with separable variables or simply a separable equation (1) may be written as

$$\frac{F(x)}{f(x)}dx + \frac{g(y)}{G(y)}dy = 0$$

which can be easily integrated.

du vi

HOMOGENEOUS EQUATIONS

(9.12) Definition. A function f(x, y) is called homogeneous of degree n if $f(tx, ty) = t^n f(x, y)$,

where t is a nonzero real number. Thus \sqrt{xy} , $\frac{x^{10} + y^{10}}{x^2 + y^2}$ and $\sin\left(\frac{x}{y}\right)$ are homogeneous function of degree 1, 8 and 0 respectively. (Check!)

A first order differential equation

$$\frac{dy}{dx} = f(x, y) \tag{1}$$

is said to be homogeneous if f is a homogeneous function of any degree. If (1) is written the form

$$M(x, y) dx + N(x, y) dy = 0$$

then it is called homogeneous if M(x, y) and N(x, y) are homogeneous functions of the same degree.

The equation

$$\frac{dy}{dx} = \ln x - \ln y + \frac{x+y}{x-y} = \ln \frac{1}{y/x} + \frac{1+y/x}{1-y/x}$$

is homogeneous, but

$$\frac{dy}{dx} = \frac{y^3 + 2xy}{x^2} = y\left(\frac{y}{x}\right)^2 + 2\left(\frac{y}{x}\right)$$

Is not homogeneous.

EXACT EQUATIONS

(9.15) Definition. The expression

$$M(x, y) dx + N(x, y) dy$$
 (1)

is called an exact differential if there exists a continuously differentiable function f(x, y) of two real variables x and y such that the expression equals the total differential df. We know from calculus that

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy.$$

Thus, if (1) is exact then

$$M(x, y) = \frac{\partial f}{\partial x} = f_x$$
 and $N(x, y) = \frac{\partial f}{\partial y} = f_y$.

If (1) is an exact differential then the differential equation

$$M(x, y) dx + N(x, y) dy = 0$$

is called an exact equation.

16) Theorem.

The differential equation

$$M(x, y) dx + N(x, y) dy = 0$$

(1)

is an exact equation if and only if

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x},$$

here the functions M(x, y) and N(x, y) have continuous first order partial derivatives.

roof. Suppose that the equation (1) is exact so that M dx + N dy is an exact differential. definition, there exists a function f(x, y) such that

$$M(x, y) = \frac{\partial f}{\partial x} = f_x \text{ and } N(x, y) = \frac{\partial f}{\partial y} = f_y.$$

$$M_y = \frac{\partial M}{\partial y} = f_{xy} = \frac{\partial^2 f}{\partial y \partial x}$$

Then

and
$$N_x = \frac{\partial N}{\partial x} = f_{yx} = \frac{\partial^2 f}{\partial x \partial y}$$

Since M and N possess continuous first order partial derivatives, we have $f_{xy} = f_{yx}$ d. therefore

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
 as desired.

The proof of the converse is omitted since it is beyond our scope.

(Another Method To Solve Eact ex)

If D.E is Exact then we apply this formula

If Mdx + Schen of N free of x) dy = 6

INTEGRATING FACTORS

(9.18) Definition. If the differential equation

$$M(x, y) dx + N(x, y) dy = 0$$

is not exact but when it is multiplied by a function $\mu(x, y)$ and the resulting equation

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$$

then $\mu(x, y)$ is called an integrating factor (I.F.) of the differential equation (1).

which then of integrating factors of an equation may be infinite. then μ (x, y) of the state of integrating factors of an equation may be infinite.

when the first below (without proofs) some rule.

We list below (without proofs) some rule.

mber of intes (without proofs) some rules to find the integrating factors of we capecial types. arions of special types. when M(x, y) dx + N(x, y) dy = 0 $M_{y} - N$

is not exact and $\frac{M_y - N_x}{N} = P$, where P is a function of x only, then (1) has an integrating factor μ (x) which also depends on x. μ (x) is solution of the differential equation $\frac{d\mu}{dx} = P\mu$

$$\frac{d\mu}{dx} = P\mu$$

i.e.,
$$\mu(x) = \exp \int P dx.$$

Note that
$$M_y = \frac{\partial M}{\partial y}, \qquad N_x = \frac{\partial N}{\partial x}.$$

Rule II. If $\frac{N_x - M_y}{M} = Q$, where Q is a function of y only, then the differential equation M dx + N dy = 0 has an integrating factor

$$\mu(y) = \exp \int Q \, dy.$$

Rule III. If
$$M dx + N dy = 0$$
 (1)

is homogeneous and $xM + yN \neq 0$, then

$$\frac{1}{xM + yN}$$
 is an I.F. of (1).

M dx + N dy = 0 is of the form yf(xy) dx + xg(xy) dy = 0Rule IV. If

$$yf(xy) dx + xg(xy) dy = 0$$

 $xM-yN \neq 0$, and

$$\frac{1}{xM-vN}$$
 is an I.F. of (1).

(Integrating Factors)
9f differential equation.
M(x,y)dx + M(x,y)dy = 0
is not exact but when it multiplied by a function
u(xx) and the resulting equation
M(x,y) M(x,y) dx + M(x,y) M(x,y) dy = 0
is exat, then $\mu(x,y)$ is called an integrating factors(I.F)
1 the differential equation,
=> The number of integrating factors of an equation may
be infinite.
Rull_(i)
$My - N_{12} = p(x)$ $My = \frac{\partial M}{\partial y}$
Here "9" should be only function of 'x'. Nx = ON
Then, Rule (i) is Tome.
$I.F = e^{IPdx}$
Then multiply I.F with Given D.E 8 given D.E
will become Exact.
Rule (ii)
Nx-My=Q(y)
Nx-My = Q(y) Here "Q" should be only function of 'g'
Then Rule (II) is true
$I.F = e^{\int Qdy}$

Rule_(iii) Rule_III is afflicable to only homogenious of I.F = 1 xM+yN
Rule-(in) if O.E is of the form y (f(x)) dx + x (8w) dy-0 Then
I.F = 1 xM-yN
Solve it by I.F

LINEAR EQUATIONS

(9.19) Definition. A first order ordinary differential equation is linear in the dependent variable y and the independent variable x if it is or can be written in the form

$$\frac{dy}{dx} + P(x)y = Q(x),$$

where P and Q are functions of x.

Scanned with CamScanner

Exercise # 9-6 Linear Differential Equation. A Differential Egheation of the form dy + P(x)-y = Q(x) -> called linear D.E. Then it's I.F will be I.F = e Then It's solution can be obtained by solving this eg/u d(J.I.F) = I.F.O(x)

Another form of linear Differential Exhation. $\frac{dx}{dy} + P(y), x = Q(y)$ Then it's I.F will be $I.F = e^{\int P(y) dy}$

THE BERNOULLI EQUATION1

(9.21) Definition. An equation of the form

$$\frac{dy}{dx} + P(x)y = Q(x)y^n$$

is called the Bernoulli differential equation. This equation is linear if n = 0 or 1. If not zero or 1, then (1) is reducible to a linear equation. Dividing by y^n , (1) becomes

altistying the given equation by sec & we have

$$y^{-n}\frac{dy}{dx} + P(x)y^{1-n} = Q(x).$$

In (2), put $v = y^{1-n}$ then it reduces to

$$\frac{dv}{dx} + (1-n)P(x)v = (1-n)Q(x)$$

which is linear in v.

Note. Consider the equation

$$f'(y)\frac{dy}{dx} + P(x)f(y) = Q(x)$$

Letting v = f(y), this equation becomes

$$\frac{dv}{dx} + P(x)v = Q(x)$$

which is linear in v.

ORTHOGONAL TRAJECTORIES

(9.22) (Rectangular Coordinates) Definition. It has been observed that the general solution of a first order differential equation contains one arbitrary constant. When this constant is assigned different values, one obtains a one-parameter family of curves. Each of these curves represents a particular solution of the given differential equation.

On the other hand, given a one-parameter family of curves

$$f(x,y,c) = 0,$$

c being parameter, then each member of the family is a particular solution of some differential equation. In fact, this differential equation is obtained by elimination of the parameter c between (1) and the relation obtained by differentiating (1) w.r.t x.

Let f(x, y, c) = 0 and F(x, y, k) = 0 be two families of curves with parameters c and c. If each curve in either family is intersected orthogonally by every curve in the other family, then each family is said to be **orthogonal trajectory** of the other. Recall that two curves are said to be orthogonal (intersect orthogonally) if their tangents at the point of intersection are perpendicular to each other.

For example, the families of curves given by

$$x^{2} + y^{2} = c^{2} \implies f(x, y, c) \equiv x^{2} + y^{2} - c^{2} = 0$$
and
$$y = kx \implies F(x, y, k) \equiv y - kx = 0$$

are orthogonal as illustrated graphically below: