MLP Előrejelzések

Kovászna MLP (12, 12, 12,)	
Előrejelzés	Valódi adat
4.58	4.60
4.48	4.30
4.04	4.20
4.17	4.10
4.00	4.00
3.92	3.80
3.72	3.80
3.84	3.80
3.79	3.80
3.79	3.80
3.79	4.20
4.31	4.90

Hargita MLP (12, 12, 12,)	
Előrejelzés	Valódi adat
3.95	3.90
3.95	4.00
4.08	4.20
4.24	4.40
4.44	4.40
4.37	4.50
4.35	4.30
4.19	4.20
3.95	4.00
3.85	3.80
3.72	3.80
3.77	3.70

Maros MLP (12, 12, 12,)	
Előrejelzés	Valódi adat
2.68	2.80
2.82	2.90
2.93	3.10
3.22	3.20
3.24	3.20
3.15	3.10
2.97	3.10
3.02	3.00
2.87	2.70
2.67	2.70
2.64	2.70
2.66	2.70

Kovászna MLP (12, 12, 12,) Előrejelzés Valódi adat Distribution of Prediction Errors -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 Error Range Residuals Over Observations with Linear Fit

Reziduumok korrelációi (Ljung-box-teszt)

késleltetett érték	p-érték	statisztika
1	0.24	1.36
2	0.50	1.40
3	0.68	1.52

Hargita MLP (12, 12, 12,)

Előrejelzés Valódi adat

Reziduumok korrelációi (Ljung-box-teszt)

késleltetett érték	p-érték	statisztika
1	0.26	1.29
2	0.39	1.90
3	0.56	2.05

Maros MLP (12, 12, 12,)

Előrejelzés Valódi adat

Reziduumok korrelációi (Ljung-box-teszt)

késleltetett érték	p-érték	statisztika
1	0.66	0.20
2	0.48	1.46
3	0.67	1.57

Model	MSE	RRMSE	MAPE
Kovászna MLP ((12, 12, 12,), 5 réteg)	5.06 %	5.58 %	3.47 %
Hargita MLP ((12, 12, 12,), 5 réteg)	0.68 %	2.02 %	1.74 %
Maros MLP ((12, 12, 12,), 5 réteg)	0.89 %	3.25 %	2.70 %


```
Bemeneti neuronok száma:
                                                                                                 3
Kimeneti neuronok száma:
Legjobb random kezdőérték a súlyozásra:
                                                                                                 42
Rejtett rétegek és azok neuronjainak száma:
                                                                                                 (12, 12, 12,)
Normalizálási eljárás:
                                                                                                 standard
Optimalizálási Algoritmus:
                                                                                                 adam
Optimalizálási ciklus lépésszáma:
                                                                                                 614
Rejtett rétegek Aktivációs függvénye:
                                                                                                 relu
Kimeneti réteg Aktivációs függvénye:
                                                                                                 identity
                                                              Teszt párok (amiket meg kell jósoljon):
Tanító párok: (amiből megtanulta a súlyokat)
                                                              1. [4.7 4.4 4.5] --> 4.6
1. [12.2 12.5 12.3] --> 11.9
2. [12.5 12.3 11.9] --> 11.1
                                                              2. [4.4 4.5 4.6] --> 4.3
3. [12.3 11.9 11.1] --> 10.9
                                                              3. [4.5 4.6 4.3] --> 4.2
4. [11.9 11.1 10.9] --> 11.4
                                                              4. [4.6 4.3 4.2] --> 4.1
                                                            5. [4.3 4.2 4.1] --> 4.0
5. [11.1 10.9 11.4] --> 11.2
                                                              Rétegek súlyai:
ELtolási értékek vektora:
```

```
0.30863364]), array([ 0.33885559, 0.45586658,  0.70527043], [ 0.56540191, -0.24229922, -0.28917643, 0.0532907, 0.10512138, 0.38935204, 0.59407805, -0.44413906, -0.35267928, -0.04045828, -0.37017765,
```

Hargita MLP modell összefoglaló

Bemeneti neuronok száma:	3
Kimeneti neuronok száma:	1
Legjobb random kezdőérték a súlyozásra:	49
Rejtett rétegek és azok neuronjainak száma:	(12, 12, 12,)
Normalizálási eljárás:	standard
Optimalizálási Algoritmus:	adam
Optimalizálási ciklus lépésszáma:	471
Rejtett rétegek Aktivációs függvénye:	relu
Kimeneti réteg Aktivációs függvénye:	identity

Tanító párok: (amiből megtanulta a súlyokat)

- 1. [10.9 11.4 11.2] --> 10.7
- 2. [11.4 11.2 10.7] --> 9.6
- 3. [11.2 10.7 9.6] --> 9.3

Teszt párok (amiket meg kell jósoljon):

- 1. [3.7 3.8 3.8] --> 3.9
- 2. [3.8 3.8 3.9] --> 4.0
- 3. [3.8 3.9 4.] --> 4.2

```
4. [10.7 9.6 9.3] --> 8.6

A (3.9 4. 4.2] --> 4.4

ELtolási értékek vektora:

[array([ 0.66046074,  0.74408868,  0.23364627,  -0.17796939,  0.29868308,  -0.02014152,  0.21544622,  0.1319808 , -0.47894413,  0.69275519,  0.16331502,  -0.3687558 ,  0.31264881,  0.51199211,  0.27456317,  0.70641609]), array([-0.0047192 , -0.45390133,  -0.0153873 ], [-0.10879542,  0.3151579 ,  0.35909091,
```

0.03286661, 0.12103506, -0.05315666, 0.4449785 , -0.32316287, 0.54764852, -0.624234 , -0.37690164, -0.37690164

Maros MLP modell összefoglaló

Bemeneti neuronok száma:	3
Kimeneti neuronok száma:	1
Legjobb random kezdőérték a súlyozásra:	32
Rejtett rétegek és azok neuronjainak száma:	(12, 12, 12,)
Normalizálási eljárás:	standard
Optimalizálási Algoritmus:	adam
Optimalizálási ciklus lépésszáma:	764
Rejtett rétegek Aktivációs függvénye:	relu

Tanító párok: (amiből megtanulta a súlyokat)

- 1. [8.3 8.4 8.5] --> 8.2
- 2. [8.4 8.5 8.2] --> 7.9
- 3. [8.5 8.2 7.9] --> 7.8
- 4. [8.2 7.9 7.8] --> 7.9
- 5. [7.9 7.8 7.9] --> 8.3

Teszt párok (amiket meg kell jósoljon):

- 1. [2.6 2.7 2.7] --> 2.8
- 2. [2.7 2.7 2.8] --> 2.9
- 3. [2.7 2.8 2.9] --> 3.1
- 4. [2.8 2.9 3.1] --> 3.2
- **▼** 5. [2.9 3.1 3.2] --> 3.2

ELtolási értékek vektora:

```
[array([ 0.39470099, 0.21167392, 0.21290493,
-0.21332934, 0.21428441, -0.32971957, -0.30176489, \checkmark 0.16151269, 0.2134184 , -0.66921105, 0.12167618, \checkmark
```

Rétegek súlyai:

```
[array([[ 0.50194644, -0.21362554, 0.02824819,
-0.31386528, 0.16297585, -0.06648881, -0.26635765, 0.51584967, 0.36150282, 0.2963776 , -0.45974597,
0.12392262, 0.78773062, 0.03723353, -0.08436877, 0.57066175, 0.1576573 , 0.05274642, -0.51580295,
0.48178175), array([-0.28277348, -0.31177193, -0.32415789], [0.30856873, -0.14729983, 0.0072048]
```