Part 2, Solid Geometry: Volume & Density

- 18. The line l has the equation $y = \frac{2}{3}x + 7$. To each line below, circle whether l is parallel, perpendicular, or neither.
 - (a) parallel perpendicular neither $y = \frac{2}{3}x 2$
 - (b) parallel perpendicular neither $y = \frac{3}{2}x + 7$
 - (c) parallel perpendicular neither $y = -\frac{2}{3}x + 5$
 - (d) parallel perpendicular neither 3x + 2y = 6

- 19. Write an equation of the line that is parallel to the line whose equation is $y = \frac{1}{3}x + 4$ and passes through the point (4, -1).
- 20. Given $m \angle R = 30$ and $m \angle U = 70$. Find $m \angle UST$.

- 21. Write down the center and radius of each circle.
 - (a) $(x+1)^2 + (y+3)^2 = 1$
- (b) $x^2 + (y-4)^2 = 25$

22. In the diagram below, \overline{AC} has endpoints with coordinates A(-3,1) and C(6,4).

If B is a point on \overline{AC} and AB:BC=2:1, what are the coordinates of B?

23. Triangle ABC is dilated with a scale factor of k centered at A, yielding $\triangle ADE$, as shown. Given AB=8, BC=10, AC=12, and DE=15.

Find BD, AE, and k (the scale factor).

24. What is the smallest non-zero angle of rotation about its center that would map the pentagon onto itself?

25. A translation maps $A(-1,4) \to A'(-2,14)$. What is the image of B(-4,-7) under the same translation?

26. What transformation maps $\triangle ABC$ onto $\triangle DEF$, shown below? Fully specify the transformation.

27. Reflect $\triangle PQR$ across the x-axis, drawing its image $\triangle P'Q'R'$ and labeling its vertices.

28. In a right triangle, the acute angles have the relationship $\sin x = \cos 30$. Find x.

29. If $\sin(2x-8)^{\circ} = \cos 42^{\circ}$, what is the value of x?

30. Find the distance between (0,5) and (6,-3).

31. Given circle O with inscribed $\triangle AOB$. $m \angle O = 110$. Find $m \angle A$.

- 32. Given circle P with $m \angle APB = 74^{\circ}$.
 - (a) Write down the \widehat{mAB} .
 - (b) Find the $m \angle AQB$.

33. The secants \overline{ABC} and \overline{ADE} intersect the circle O, as shown in the diagram. Given $\widehat{mBD}=40^\circ$ and $\widehat{mCE}=160^\circ$. Find the $m\angle A$.

34. On the set of axes below, $\triangle ABC$, altitude \overline{GC} , and median \overline{MC} are drawn.

Determine which equations represent the area of the triangle, circling True or False.

(a) T F
$$Area_{\triangle} = \frac{(CG)(AB)}{2}$$
 (c) T F $Area_{\triangle} = \frac{(AC)(AB)}{2}$

(c) T F
$$Area_{\triangle} = \frac{(AC)(AB)}{2}$$

(b) T F
$$Area_{\triangle} = \frac{(CM)(AB)}{2}$$

(b) T F
$$Area_{\triangle} = \frac{(CM)(AB)}{2}$$
 (d) T F $Area_{\triangle} = \frac{(CG)(BC)}{2}$

35. The point M(3,7) is the midpoint of \overline{AB} . If the coordinates of A are (2,10), find B.

36. A monument in the shape of a pyramid with a square base has a volume of 128 cubic feet. If its height measures 6 feet, what is the length of the side of the base?

Early finishers

- 37. A staircase riser is cut as a series of congruent triangles with each step's "rise" equal to 6.75 inches, and the "run" of each step is 8.25 inches, as shown below. (AB=6.75 and BC=8.25)
 - (a) What is the angle of inclination of the staircase, x, rounded to the nearest degree?

(b) Find the diagonal length of the two-step riser, the distance AE, to the nearest tenth of an inch.

- 38. Given circle O with chords \overline{AD} and \overline{BE} intersecting at C, as shown in the diagram. Given $\widehat{mAB} = 86^{\circ}$, $\widehat{mBD} = 75^{\circ}$, and $\widehat{mDE} = 50^{\circ}$.
 - (a) Find the $m \angle ACB$.

(b) Find the measure of the minor arc, \widehat{mAE} .