Image Enhancement (Spatial Filtering)

Image Enhancement Revisited

- Spatial domain methods:
 - Operate directly on pixels
- Frequency domain methods:
 - Operate on the transform of an image

Neighbourhood Operations

 Operate on a neighbourhood of pixels

Processing of pixels at the edges

Approaches to process pixels at the edges

- Add pixels at corners with either all white or all black pixels
- Replicate border pixels
- > Truncate the image
- > Allow pixels wrap around the image

Examples: modified image at the edges

Neighbourhood Operations Example

2-D Convolution for Enhancement

Image is convolved with filter Convolution

Convolution

For convolution, swap filter and multiply it with image

Z	у	X
W	v	и
t	S	r

Swapped Filter

Pixels

Original Image Pixels

Z	у	X
W	v	и
t	S	r

Swapped Filter

convolu				
$= (\mathbf{v} \times$	e) +	$(z \times a$	(1) + (1)	$(\mathbf{y} \times \mathbf{b}) + (\mathbf{x} \times \mathbf{c}) + (\mathbf{w} \times \mathbf{d})$
+ (u	×e)	+ (t >	(f) +	$(s \times g) + (r \times h)$
	\boldsymbol{a}	h	C	

 $\begin{array}{c|cccc}
a & b & c \\
d & e_{con} & e \\
f & g & h
\end{array}$

Filtered Image Pixels

The Spatial Filtering Process

Procedure is repeated for every pixel in the original image to generate the filtered image

- ➤ Averages all of the pixels in a neighbourhood around a central value
- ➤ Useful in reducing noise from images and for highlighting gross detail

Averaging filter

A=(1/9)

1	1	1
1	1	1
1	1	1

54	100	208		
49	106	198	*	1/9
45	90	185		

	1	1	1
9	1	1	1
	1	1	1

Original Image Pixels

Filter 3*3 Smoothing Filter

$$e = \frac{1}{9}[106 + 54 + 100 + 208 + 49 + 198 + 45 + 90 + 185]$$

= 115

23	42	86		1/9	1/9	1/9
54	100	208	*	1/9	1/9	1/9
49	106	185		1/9	1/9	1/9

3*3 Smoothing Filter

$$100 \rightarrow 94.77 \rightarrow 95$$

23	42	86		1/9	1/9	1/9
54	100	208	*	1/9	1/9	1/9
49	106	185		1/9	1/9	1/9

3*3 Smoothing Filter

$$e = 94.77 \rightarrow 95$$

Gaussian Averaging/Low Pass Filter

• Gaussian function with mean 0 and standard deviation, $\boldsymbol{\sigma}$ is

$$G(x,y) = rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$

 3×3 filter with $\sigma=1$

 1
 2
 1

 (1/16)
 2
 4
 2

 1
 2
 1

 5×5 filter with $\sigma = 1$

	1	4	7	4	1
<u>1</u> 273	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

Original Image

3x3 mask

5x5 mask

9x9 mask

15x15 mask

35x35 mask

Image Smoothing Example

Gaussian Averaging/Low Pass Filter

- The effect of Gaussian smoothing is to blur an image, in a similar fashion to the average filter
- The degree of smoothing is determined by the standard deviation of the Gaussian
- Larger standard deviation Gaussians, more is blurring
- Center pixel is given more weight than neighboring pixels
- This is in contrast to the average filter's uniformly weighted average
- Because of this, a Gaussian provides gentler smoothing and preserves edges better than a similarly sized mean filter

Weighted Average Filters

A = (1/16)

- Gaussian filters are also called weighted average filters
- Elements of mask have different weights
- Provides more effective smoothing
- Pixels closer to the central pixel are more important
- Often referred to as a weighted averaging

1	2	1
2	4	2
1	2	1

Weighted averaging filter

Image filtered with Gaussian filter

Filtered images

 $\sigma = 1$

 $\sigma = 2$

 $\sigma = 4$

Gaussian filter to denoise image

Image corrupted by Gaussian noise with $\sigma = 8$

Smoothing with 5×5 Gaussian filter, $\sigma = 1$

Smoothing with 5 × 5 average filter

Limitations of averaging filter

- Leads to blurring of image
- Attenuates impulse noise
- Does not remove impulse noise

Application of average filter (smoothening & thresholding)

Original Image

Application of average filter (smoothening & thresholding)

Original Image

Smoothed Image

Application of average filter (smoothening & thresholding)

Original Image

Smoothed Image 5 × 5 mask

Thresholded Image G(x,y) = 255, if f(x,y)>120=0, otherwise

- Removes finer details
- Thresholding separates gross details

Simple Neighbourhood Operations

- Min: minimum in the neighbourhood
- Max: maximum in the neighbourhood
- Median: midpoint value of the set

Minimum and Maximum Filter

2	3	6
1	2	8
7	4	5

Image Before filter

2	3	6
1	1	8
7	4	5

Image after minimum filter

2	3	6
1	8	8
7	4	5

Image after Maximum filter

Median filter

2	3	6
1	2	8
7	4	5

Image Before filter

→ [2 3 6 1 2 8 7 4 5]

Sort it in ascending

[1 2 2 3 <u>4</u> 5 6 7 8]

2	3	6
1	4	8
7	4	5

After median filter

Image with salt and pepper /impulse noise

After Averaging Filter (blurs)

After Median Filter

Averaging Filter Vs. Median Filter

Original Image With Noise

Image After Averaging Filter

Image After Median Filter

Median filter works better than an averaging filter for salt and pepper noise

Image matrix is given below. Determine the effect of

- 1. 3x3 and 5x5 averaging filters
- 2. 3x3 weighted averaging filter
- 3. 3x3 Minimum, maximum and median filters

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

Image matrix is given below. Determine the effect of

- 1. 3x3 and 5x5 averaging filters
- 2. 3x3 weighted averaging filter
- 3. 3x3 Minimum, maximum and median filters

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

First location of filter for 3x3 filter

Next location of mask for 3x3 filter

Image matrix is given below. Determine the effect of 1. 3x3 and 5x5 averaging filters and minimum filter

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

	1	1	1	
* (1/9)	1	1	1	
()	1	1	1	

45	56	42	63	54
20	46	46	45	53
63	44	41	42	47
67	44	42	43	51
43	36	42	65	43

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

*	1	1	1	1	1
^ (1/25)	1	1	1	1	1
	1	1	1	1	1
	1	1	1	1	1

	Ī			
45	56	42	63	54
20	47	56	28	53
63	59	46	38	47
67	36	27	48	51
43	36	42	65	43

Image matrix is given below. Determine the effect of

1. 3x3 weighted averaging filters

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

* (1/16)	1	2	1
	2	4	2
	1	2	1

45	56	42	63	54
20	47	45	44	53
63	47	39	40	47
67	43	38	44	51
43	36	42	65	43

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

45	56	42	63	54
20	20	26	26	53
63	20	26	26	47
67	26	26	26	51
43	36	42	65	43

Image matrix is given below. Determine the effect of

1. 3x3 weighted averaging filters

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

$$\rightarrow$$
max(3x3)

45	56	42	63	54
20	63	63	63	53
63	67	59	56	47
67	67	65	65	51
43	36	42	65	43

45	56	42	63	54
20	47	56	28	53
63	59	26	38	47
67	36	27	48	51
43	36	42	65	43

$$\rightarrow$$
median(3x3) =

45	56	42	63	54
20	47	47	47	53
63	47	38	47	47
67	42	38	43	51
43	36	42	65	43

Sharpening Spatial Filters

- Remove blurring in images
- Highlight transition in intensity (edges)
- Used in electronic printing, medical imaging, industrial inspection etc.
- Uses spatial differentiation
- Differentiation measures the rate of change of a function
- Differentiation are also called derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

- f(x) is pixel value at location, x
- Difference between consecutive values
- Measures the rate of change of the function

- Non zero at the start and during ramp
- Non zero at the start and zero during the step

Second Derivative

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1) + f(x-1) - 2f(x)$$

Considers values both before and after the current value

Second Derivative

Sign changes at onset of step

Non zero at the onset and end of ramp and step Zero in the middle

1st and 2nd Derivatives

better than first derivative

-10

Example derivatives

- Intensity of pixels along a line in an image is
 f(x)=[1 4 1 0 0 7 7 7 7 0 0 0 1 2 3 4 5 4 3 2 1]
 Compute first order derivative
- f'(x) = f(x+1)-f(x)
- f'(x) = [3,-3,-1,0,7,0,0,0,-7,0,0,1,1,1,1,1,-1,-1,-1]
- Compute second order derivative
- f''(x) = f(x+1)+f(x-1)-2f(x)
- f''(x) = [2,-6,2,1,7,-7,0,0,-7,7,0,1,0,0,0,-2,0,0,0,0]

First Derivative(Gradient) of image

- Gradient is first order derivative
- Gradient of f(x,y)

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Gradient

Magnitude of gradient (gradient image)

$$M(x,y) = mag(\nabla f)$$

$$= \left[G_x^2 + G_y^2\right]^{1/2}$$

$$= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{1/2}$$

• Size of M(x,y) is same as image.

$$M(x,y) \approx |G_x| + |G_y|$$

Gradient using 3 × 3 filter

Z ₁	Z ₂	z_3
Z_4	Z ₅	z ₆
Z ₇	Z ₈	Z ₉

$$M(x,y) \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)|$$

$$+|(z_3+2z_6+z_9)-(z_1+2z_4+z_7)|$$

Sobel Operators

$$M(x,y) \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)|$$

 $+|(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|$

Sobel Example

Sobel filters are typically used for edge detection

An image of a contact lens which is enhanced in order to make defects more obvious

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

where the partial 2^{nd} order derivative in the x and y direction is defined as

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial^2 y} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

- Laplacian filters are derivative filters used to extract the vertical as well as horizontal edges from an image
- Sobel filters are single derivative filters, they can only find edges in a single dimension

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

or

$$\nabla^2 f = -[f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) + 4f(x,y)]$$

Image

а	b	d
е	f	g
h	i	j

$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

Negative Laplacian

or

$$\nabla^2 f = -[f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) + 4f(x,y)]$$
 Positive Laplacian

Image

а	Ь	d
е	f	g
h	i	j

Negative Laplacian

0	1	0
1	-4	1
0	1	0

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

$$\nabla^2 f = -[-f(x+1,y) - f(x-1,y) - f(x,y+1) - f(x,y-1) + 4f(x,y)]$$

Image

а	b	d
е	f	g
h	i	j

Negative Laplacian

0	1	0
1	-4	1
0	1	0

Positive Laplacian

0	-1	0
-1	4	-1
0	-1	0

or

The Laplacian

Highlights edges and other discontinuities

Original Image

The Laplacian

Highlights edges and other discontinuities

The Laplacian

Highlights edges and other discontinuities

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

$$\nabla^2 f = -[-f(x+1,y) - f(x-1,y) - f(x,y+1) - f(x,y-1) + 4f(x,y)]$$

- Laplacian detects the edges
- For sharpening the images
- If negative Laplacian is applied on the image, subtract the resultant image from the original image
- If positive Laplacian is applied then add the resultant image to original image

Image Enhancement using Laplacian

Sharpened image has enhanced edges and fine details

Image Enhancement using Laplacian

Simplified Image Enhancement

The entire enhancement can be combined into a single filtering operation

$$g(x,y) = f(x,y) - \nabla^2 f$$

$$= f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

$$= 5f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)]$$

Image Enhancement using the Lapacian

$$g(x,y) = 5f(x,y) - f(x+1,y) - f(x-1,y) - f(x,y-1) - f(x,y+1)$$

Simplified Image Enhancement

original enhanced

Variants of Laplacian

0	1	0
1	-4	1
0	1	0

Simple Laplacian

1	1	1
1	-8	1
1	1	1

Variant of Laplacian

Example Variant of Laplacian

1	4	5	2	7
0	4	0	6	2
3	2	1	0	2
7	5	2	3	1
4	3	2	5	1

-1	-1	-1
-1	8	-1
-1	-1	-1

Laplacian for Edge Detection

- Edge detection is an important part of image processing and computer vision applications
- It is used to detect objects, locate boundaries, and extract features
- Edge detection is about identifying sudden, local changes in the intensity values of the pixels in an image
- Edge detection algorithms like the Sobel Operator work on the first derivative of an image
- It checks where the slope of the graph of the intensity reaches a peak, and that peak is marked as an edge

First Derivative for Edge Detection

- Limitation: first derivative of an image might be subject to noise
- Local peaks in the slope of the intensity values might be due to shadows or tiny color changes that are not edges

Second Derivative for Edge Detection

- Second derivative is the slope of the first derivative curve
- An edge occurs where the graph of the second derivative crosses zero
- Second derivative-based method is called the Laplacian algorithm
- The Laplacian algorithm is also subject to noise

- Defined as the Laplace operator applied to a Gaussian kernel
- Laplace operator is

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

- Since second order derivatives are sensitive to noise.
- Image is blurred using Gaussian filter before applying Laplace operator
- Laplace operator is

$$\Delta(I*G) = I*\Delta G$$

- I is image, G is Gaussian filter and * is convolution operator
- Laplacian of the image smoothed by a Gaussian kernel is identical to the image convolved with the Laplacian of the Gaussian kernel

- Detects edges at zero crossings unlike first derivative which detects edges at maxima/minima
- Can be used to construct an edge detector

Original image

LoG of image

LoG of image

- Strong (negative) response along the thin line and on the small dots
- It also has medium responses around the edges of the wider objects (negative inside the edge, positive outside)
- Zero crossings are close to where the edges are

Threshold (t1) LoG of image

Threshold (t2, t2<t1) LoG of image

- If size of Gaussian filter is too small image may remain noisy
- If size is too large image be blurry and edge detection may not be effective
- Points of zero crossing are edge points

Example of a LoG approximation

- On filtered image-
 - Set a threshold for zero crossings and retain only those zero crossings that exceed the threshold
 - Strong zero crossings are ones that have a big difference between the positive maximum and the negative minimum on either size of the zero crossing
 - Weak zero crossings are most likely noise, so they are ignored due to the optimum thresholding

0	1	1	2	2	2	1	1	0
1	2	4	5	5	5	4	2	1
1	4	5	3	0	3	5	4	1
2	5	3	-12	-24	-12	3	5	2
2	5	0	-24	-40	-24	0	5	2
2	5	3	-12	-24	-12	3	5	2
1	4	5	3	0	3	5	4	1
1	2	4	5	5	5	4	2	1
0	1	1	2	2	2	1	1	0

LoG filter for $\sigma = 1.4$

Difference of Gaussians (DoG)

- Useful for enhancing edges in noisy digital images
- Is difference between two smoothed versions of an image obtained by applying two Gaussian kernels of different standard deviations (sigma) on that image
- DoG transformation of an image requires subtracting one highly blurred version of an original image from another less blurred version
- Acts as a band-pass filter that preserves a specific spatial frequency
- Generally serves as an edge enhancement algorithm that delineates the high-frequency content of the image free from noise

Difference of Gaussian (DoG)

- Is similar to the LoG in its uses.
- Can be considered an approximation to the LoG
- DoG is a tunable band-pass filter where both the center frequency and the bandwidth can be tuned separately
- Whereas the LoG has a single parameter that affects both the center frequency and the bandwidth simultaneously
- DoG of image, I is

$$I * G_1 - I * G_2 = I * (G_1 - G_2)$$

Difference of Gaussian (DoG)

Unsharp (smoothed) Masking and Highboost Filtering

- Apply averaging mask to blur the original image
- Subtract the blurred image from the original image
- Difference is called the mask
- Add weighted mask to the original

Steps for image sharpening

- $g_{mask}(x,y) = f(x,y) f_b(x,y)$ f_b represents blurred image
- g(x,y) = f(x,y) + k*g_{mask}(x,y), where, k ≥ 0
 k=1, unsharp masking
 k>1, highboost filtering
 k<1, reduces effect of unsharp mask
- Pixels of g(x,y) can be <0 or >255
- Scale it accordingly

 $f(x,y)^*$

h(x,y)

