

Ohm's Law

- Defines the relationship between voltage, current and resistance in a electric circuit.
- Discovered by Georg Simon Ohm in 1827
- Ohm's Law states:

That current in a resistor varies in direct proportion to the voltage applied to it and is inversely proportional to the resistor's value.

■ Stated Mathematically: $I = \frac{V}{R}$

Where: I is the current; in Amperes

V is the potential difference; in Volts

R is the resistance; in Ohms

N

Voltage Sources & Voltage Drops

- The potential difference is sometimes designated by *E* instead of *V*.
- The symbol E applies to voltage sources.
- The symbol V applies to voltage drops across resistors.
- Both (E & V) are used interchangeably in the Ohm's Law equations

Ohm's Law Triangle

$$I = \frac{V}{R}$$
 (amperes, A)

$$R = \frac{V}{I}$$
 (ohms, Ω)

$$V = IR \text{ (volts, V)}$$

Ohm's Law Triangle

$$I = \frac{V}{R}$$
 (amperes, A)

$$R = \frac{V}{I}$$
 (ohms, Ω)

$$V = IR \text{ (volts, V)}$$

Ohm's Law Triangle

$$I = \frac{V}{R}$$
 (amperes, A)

$$R = \frac{V}{I}$$
 (ohms, Ω)

$$V = IR (volts, V)$$

Example – Ohm's Law

The flashlight shown uses a 6 volt battery and has a bulb with a resistance of 150 Ω . When on, how much current will be drawn from the battery?

Ŋ

Breakout Exercise #1

For each of the Ohm's law problems shown, find the unknown.

$$V = 25 \text{ mV}$$

$$I = 2.8 \text{ nA} \quad R = ?$$

Electrical Engineering Technology

Plotting Ohm's Law (I-V Characteristics)

Plotting Ohm's Law (I-V Characteristics)

Breakout Exercise #2

•Estimate the resistance of the diode at VD = 1.6V and VD = 1.7V, using the I-V characteristics shown.

•Bonus: What type of diode is this?

