Experiment # 1- Clock and Periodic Signal Generation

Nesa Abbasi 810199457

1.1 1.10 ns

$$2.2 * N * Delay_{inv} = 20ns$$

N = 5

$$2 * N = 10$$

 $Delay_{inv} = 2ns$

1.2

Fig. 3 LM555

Fig. 4 wave form of the output

1. Clock frequency: 1 / T

$$T = T_1 + T_2 = 0.693 * (R_1 + 2R_2) * C$$

$$= 0.693 * (101000) * 10 * 10^{-9} = 0.699930 * 10 s$$

Clock frequency: $1/(0.699930 * 10^{-3})$

= 1428.714

Duty cycle: $(R_1 + R_2) / (R_1 + 2R_2) = 51 / 101$

= 50.49%

2. If $R_2 = 1k\Omega$:

 $T = 0.693 * (3000) * 10 * 10^{-9} = 0.2079 * 10^{-4}s$ Clock frequency: 1 / (0.2079 * 10⁻⁴) = 48100.04

Duty cycle: 2 / 3 = 66.67%

Fig. 5 $R_2 = 1k\Omega$

If $R_2 = 10k\Omega$:

T = 0.693 * (21000) * $10 * 10^{-9} = 0.14553 * 10^{-3}$ s Clock frequency: 1 / (0.14553 * 10^{-3} s) = 6871.435 Duty cycle: 11 / 21 = 52.38%

Fig. 6 $R_2 = 10k\Omega$

If $R_2 = 200k\Omega$:

 $T = 0.693 * (401000) * 10 * 10^{-9} = 0.277893 * 10^{-2}s$ Clock frequency: $1 / (0.277893 * 10^{-2}s) = 359.850$ Duty cycle: 201 / 401 = 50.12%

T = $3.6 \times 10^{-6} \rightarrow f = 10^{6}/3.6 = 2.7 \times 10^{5}$ a = $f \times RC = 2.7 \times 10^{5} \times 470 \times 10 \times 10^{-9} = 1.3$

Fig. 9 R = 1000Ω T = 7.2×10^{-6} \rightarrow f = $10^{6}/7.2 = 1.4 \times 10^{5}$

 $a = f \times RC = 1.4 \times 10^{5} \times 1000 \times 10^{-9} = 1.4$

Fig. $10 R = 2000 \Omega$

 $T = 14 \times 10^{-6} \Rightarrow f = 10^{6}/14 = 7.1 \times 10^{4}$ $a = f \times RC = 7.1 \times 10^{4} \times 2000 \times 10 \times 10^{-9} = 1.4$

2.1

 $T = 2 * 5 * Delay_{inv} = 20ns$ Ring oscillator frequency = 1 / T = 1 / (20 * 10⁻⁹) = 5 * 10⁷

Fig. 11 waveforms of inputs and outputs

Fig. 12 waveforms of inputs and outputs

Fig. 13 frequency divider

Fig. 14 output waveform

Fig. 15 circuit with T flip flop

Fig. 16 output waveform

Fig. 17 Final circuit