Introducción a la Lógica y la Computación — Estructuras de orden Práctico 5: Álgebras de Boole, Decrecientes e Irreducibles.

- 1. Probar que todo átomo es irreducible.
- 2. Sea L un reticulado. Demostrar que si $x \in L$ es irreducible y $x_1, \ldots, x_n \in L$ son todos distintos de x, entonces $x \neq \sup\{x_1, \ldots, x_n\}$.
- 3. Determine si se cumplen las siguientes relaciones de isomorfismo.
 - a) $D_{2310} \cong \mathcal{P}(\{a, b, c, d, e\}).$
 - b) $D_{90} \cong \mathcal{P}(\{a, b, c, d\}).$
- 4. Probar que \emptyset es decreciente y que si D_1 y D_2 son decrecientes entonces $D_1 \cup D_2$ también lo es.
- 5. Considere los reticulados L_3 , L_6 y L_7 dibujados en el Práctico 4.
 - a) Halle en cada caso At(L).
 - b) Dibuje en cada caso el diagrama de Hasse de $\mathcal{P}(At(L))$.
 - c) Ahora usando esta información, determine cuáles de ellos eran álgebras de Boole.
- 6. a) Defina de manera explícita el mapa F del Teorema de Representación de Álgebras de Boole finitas para el Álgebra de Boole D_{30} .
 - b) Dé una caracterización de dicho mapa F para los D_n con n un producto de primos distintos.
- 7. Para los reticulados L_4 , L_6 y L_{10} dibujados en el Práctico 4:
 - a) Señale en el diagrama los elementos irreducibles.
 - b) En cada caso, dibujar el diagrama de Hasse de los irreducibles con el orden heredado.