LFC 2021, sessione 1 bis

Nel seguito, dato lo stato P di un automa deterministico A, si indica con $P[Y_1 ... Y_n]$ lo stato di A che si raggiunge da P tramite il cammino $Y_1 ... Y_n$.

Si assumono inoltre le seguenti definizioni.

 \mathcal{N}_1 : Sia \mathcal{N}_1 lo NFA con stato iniziale A, stato finale E e con la seguente funzione di transizione

	ϵ	a	b
\overline{A}	$\{B,E\}$	Ø	Ø
B	$\{C\}$	Ø	$\{E\}$
C	Ø	$\{D\}$	Ø
\overline{D}	$\{E\}$	Ø	$\{B\}$
\overline{E}	Ø	$\{E\}$	$\{A\}$

 \mathcal{D}_1 : Sia \mathcal{D}_1 il DFA con stato iniziale A, insieme di stati finali $\{A, B, C\}$ e con la seguente funzione di transizione

	a	b
\overline{A}	D	B
B	E	
C		F
\overline{D}	F	E
E	B	
F	F	C

 \mathcal{G}_1 : Sia \mathcal{G}_1 la seguente grammatica:

$$\begin{array}{ccc} S & \rightarrow & AB \mid b \\ A & \rightarrow & ABaS \mid \epsilon \\ B & \rightarrow & b \mid \epsilon \end{array}$$

 \mathcal{V}_1 : Sia \mathcal{V}_1 il seguente SDD:

$$\begin{array}{cccc} S & \to & A & & \{S.v = A.v; \, A.n = 1; \, \} \\ A & \to & a \, A_1 & & \{A_1.n = A.n + 1; \, A.v = A_1.v; \, \} \\ A & \to & a & \{A.v = A.n + 1; \, \} \end{array}$$

Esercizio 1

Data una stringa w si indica con w^R il reverse di w. Ad esempio, se w = abc allora $w^R = cba$. Se $\{ww^R \mid w \in \mathcal{L}((a \mid b)^*)\}$ è un linguaggio regolare rispondere "SI", altrimenti rispondere "NO".

Esercizio 2

Data una stringa w si indica con w^R il reverse di w. Ad esempio, se w = abc allora $w^R = cba$. Se $\{ww^R \mid w \in \mathcal{L}((a \mid b)^*)\}$ è un linguaggio libero rispondere "SI", altrimenti rispondere "NO".

Esercizio 3

Sia \mathcal{G} la grammatica con insieme di produzioni $\{S \to ABC, A \to aA \mid \epsilon, B \to b \mid \epsilon, C \to a\}$. Se \mathcal{G} è ambigua scrivere "AMBIGUA" altrimenti scrivere "NON AMBIGUA".

Esercizio 4

Sia $r = \epsilon \mid b \mid (\epsilon \mid b)(a \mid \epsilon \mid b)^*(a \mid \epsilon \mid b)$ e sia \mathcal{D} il DFA minimo per il riconoscimento di $\mathcal{L}(r)$. Dire quanti stati ha \mathcal{D} e quanti di questi stati sono finali.

Esercizio 5

Chiamiamo \mathcal{D} il DFA ottenuto da \mathcal{N}_1 per subset construction e Q lo stato iniziale di \mathcal{D} . Dire a quale sottoinsieme degli stati di \mathcal{N}_1 corrisponde Q[aaa].

Esercizio 6

Se \mathcal{D}_1 è minimo, rispondere "SI". Altrimenti dire quanti stati ha il DFA ottenuto dalla minimizzazione di \mathcal{D}_1 .

Esercizio 7

Scrivere l'intera riga della tabella di parsing LL(1) per \mathcal{G}_1 relativa al non-terminale S.

Esercizio 8

Chiamiamo \mathcal{A} l'automa caratteristico per il parsing LR(1) di \mathcal{G}_1 e I lo stato iniziale di \mathcal{A} . Elencare gli item che appartengono a $I[\![Ab]\!]$.

Esercizio 9

Chiamiamo \mathcal{A} l'automa caratteristico per il parsing LR(1) di \mathcal{G}_1 , J lo stato iniziale di \mathcal{A} , T la tabella di parsing LR(1) per \mathcal{G}_1 . Se T non contiene alcun conflitto nello stato J[ABa], rispondere "NO CONFLICT". Altrimenti, per ciascuna X tale che T[J[ABa], X] contiene un conflitto, dire, specificando a quale X si fa riferimento: (i) di che tipo di conflitto si tratta; (ii) quale/i riduzione/i sono coinvolte.

Esercizio 10

Chiamiamo \mathcal{A} l'automa caratteristico per il parsing LALR(1) di \mathcal{G}_1 , H lo stato iniziale di \mathcal{A} , T la tabella di parsing LALR(1) per \mathcal{G}_1 . Se non ci sono conflitti nello stato H[A] di T, rispondere "NO CONFLICT". Altrimenti, per ciascuna X tale che T[H[A], X] contiene un conflitto, dire, specificando a quale X si fa riferimento: (i) di che tipo di conflitto si tratta; (ii) quale/i riduzione/i sono coinvolte.

Esercizio 11

Scrivere l'intera riga della tabella di parsing LL(1) per \mathcal{G}_1 relativa al non-terminale A.

Esercizio 12

Se non esiste alcun ordine di valutazione per lo SDD V_1 su input aaaa, rispondere "NO EVAL". Altrimenti dire quale valore viene valutato per S.v su tale input.

Esercizio 13

Sia \mathcal{G} la seguente grammatica per espressioni regolari sull'alfabeto $\{a,b\}$ con operatore di alternativa (operatore +), concatenazione (resa tramite giustapposizione di espressioni regolari), Kleene star (operatore *) e parentesi:

$$R \rightarrow R + R \mid RR \mid R* \mid (R) \mid a \mid b$$

- 1. Fornire una grammatica LALR(1) \mathcal{G}' per la generazione di $\mathcal{L}(\mathcal{G})$ che risolve l'ambiguità di \mathcal{G} secondo le seguenti usuali convenzioni di precedenza degli operatori e di associatività degli operatori binari: alternativa e concatenazione associano a sinistra; la Kleene star ha precedenza massima (cioè ha precedenza sia su concatenazione che su alternativa); la concatenazione ha precedenza sull'alternativa.
- 2. Mostrare l'albero di derivazione di a + b * a ottenuto utilizzando \mathcal{G}' .
- 3. Progettare un SDD S-attribuito basato su \mathcal{G}' per la generazione, in fase di analisi dell'espressione regolare r, di un automa a stati finiti per il riconoscimento di $\mathcal{L}(r)$.