Earned Value Management & Risk Matrices

Jamal Madni

CECS 445

Lecture 8: February 23rd, 2021

Congratulations! Well Done Team AXIOM!

This Week ... Development!

Earned Value Management

- **BAC** = Budget at Completion
- **BCWP** = Budget Cost of Work Performed
- **BCWS** = Budget Cost of Work Scheduled
- <u>ACWP</u> = Actual Cost of Work Performed

 $BAC = \sum (BCWS_k)$ for all tasks k

Schedule performance index, SPI = $\frac{BCWP}{BCWS}$

Schedule variance, SV = BCWP - BCWS

Percent scheduled for completion = $\frac{BCWS}{BAC}$

Percent complete = $\frac{BCWP}{BAC}$

Cost performance index, $CPI = \frac{BCWP}{ACWP}$

Cost variance, CV = BCWP - ACWP

Earned Value Example

• BCWP = Requirement Length * Budgeted Proportion of Time for Lead on Requirement * (Lead Hours Per Month)

• ACWP = Actual Hours Spent on Requirement

• Ex: Budgeted for 0.2 time for 2 weeks at 40 Hours Per Month; Really Spent 22 Hours

• CPI = BCWP / ACWP = ((0.2 * 40 * (2/4)) / 22) = 0.18

Risk Matrix

Components					
Category		Performance	Support	Cost	Schedule
Catastrophic	1	Failure to meet the requirement would result in mission failure		Failure results in increased costs and schedule delays with expected values in excess of \$500K	
	2	Significant degradation to nonachievement of technical performance	Nonresponsive or unsupportable software	Significant financial shortages, budget overrun likely	Unachievable IOC
Critical	1	Failure to meet the requirement would degrade system performance to a point where mission success is questionable		Failure results in operational delays and/or increased costs with expected value of \$100K to \$500K	
	2	Some reduction in technical performance	Minor delays in software modifications	Some shortage of financial resources, possible overruns	Possible slippage in IOC
Marginal	1	Failure to meet the requirement would result in degradation of secondary mission		Costs, impacts, and/or recoverable schedule slips with expected value of \$1K to \$100K	
	2	Minimal to small reduction in technical performance	Responsive software support	Sufficient financial resources	Realistic, achievable schedule
Negligible	1	Failure to meet the requirement would create inconvenience or nonoperational impact		Error results in minor cost and/or schedule impact with expected value of less than \$1K	
	2	No reduction in technical performance	Easily supportable software	Possible budget underrun	Early achievable IOC

Risk Equation

$$RE = P \times C$$

RE = Risk Exposure

P = Probability of Risk

<u>C</u> = Cost of Risk