1 ECIS

ECIS - программа, созданная для решения задачи о связанных каналах с наименьшим количеством вычилений. Ее принцип работы заключается в получении нескольких решений, необходимых в конкретном случае без обработки всех решений системы уравнений. В программе реализованы расчеты в деформированном оптическом потенциале, колебательных и вращательных возбуждений, компаунд-процессов в подходе Хаузера-Фешбаха.

1.1 Создание входных файлов ECIS

ECIS-6 встроен непосредственно в код TALYS-1.9 как подпрограмма ecist(ecisinp,ecisout,eciscs,ecisin,ecistr,ecisang,ecisleg), отличия которой от оригинального ECIS-6, по-видимому (это не проверялось) сводятся к возможности задания имен входных и выходных файлов. Для создания входных файлов и чтения результатов расчета в TALYS присутствуют специальные подпрограммы. Созданные входные файлы совместимы с ECIS-12, за исключением ключевого слова fin, которое должно быть набрано в верхнем регистре для ECIS-12. Перечень таких подпрограмм и их назначение приведен в таблице 1. Перечень подпрограмм с создаваемыми файлами при-

Подпрограмма	Назначение		
raynalcomp	создает входной файл для расчетов в рамках сост. ядра		
inverseecis создает файл для выходных каналов			
incidentecis создает файл для входного канала			
endfecis	создает входной файл с энергиями из ENDF-6		
directecis	создает файл для расчета прямых раекций (только DWBA)		
dwbaecis	создает файл для DWBA MSD		

Таблица 1: Перечень подпрограмм, осуществляющих создание входных файлов для ECIS

веден в таблице 2. Для записи сгенерированных перечисленными подпрограммами параметров во входной файл используются подпрограммы ecisinput (для inverseecis,

endfecis, incidentecis, directecis) и eciscompound (только для raynalcomp). Следует отметить, что результаты расчета для составного ядра не считываются (подпрограмма raynalcomp, это явно упоминается в коде), также в коде не было обнаружено считывания файлов для DWBA MSD. (подпрограмма dwbaecis).

Подпрограмма	вх. файл	файлы с результатами расчета		
raynalcomp	eciscomp.inp	ecis.comcs, ecis.comin, ecis.comang, ecis.comleg, eciscomp.out		
inverseecis	ecisinv.inp	ecisinv.out, csZZZAAA, ecis.invin, trZZZAAA		
incidentecis	ecisinc.inp	ecisinc.out, ecis.inces, ecis.inctr, ecis.incang, ecis.incleg		
endfecis	ecisendf.inp	ecisendf.out, ecis.endfcs, ecis.endfin		
directecis	ecisdisc.inp	ecisdisc.out, ecis.dircs, ecis.dirin, ecis.dirang, ecis.dirleg		
dwbaecis ecisdwba.inp		ecisinc.out, ecis.inces, ecis.inctr, ecis.incang, ecis.incleg		

Таблица 2: Перечень подпрограмм и создаваемых ими входных файлов, а так же файлов с результатами расчета

1.2 Считывание результатов расчета

1.2.1 inverseread

Считываются сечения реакции, полное сечение из оптической модели(?), упругое сечение из файла сsZZZAAA, проницаемости из trZZZAAA, в данной подпрограмме для ротаторов проницаемости пересчитываются к сферическим эквивалентам, для состояний с большими спинами j=l+s принимаются значения проницаемостей для j=l+s, что связано с особенностями есів. Как я понимаю, все это нужно исключительно для получения проницаемостей для продуктов, т.е., по сути, рассматривается распад составного ядра.

1.2.2 endfread

Чтение информации аналогично inverseread, добавляется сечение shape elastic.

1.2.3 directread

Читаются сечения образования дискретных состояний, их происхождение (предравновесное или прямое), угловые распределения, параметры гигантских резонансов, путем интегрирования угловых распределений вычисляется сечение неупругих процессов.

1.2.4 incidentread

Считываются параметры входного канала, сечения total, inelastic, total elastic, проницаемости, угловые распределения.

1.3 Структура .def файла

В файлах .def описываются деформации ядер и типы коллективных возбуждений в рассматриваемых ядрах, существует возможность задать тип возбуждения для конкретных уровней. Схема формата этих файлов приведена на Рис. 1, типы возбуж-

Рис. 1: Структура .def файла

Файлы деформаций считываются подпрограммой deformpar. Для уровней вращательной полосы, в случае, если параметры деформации не заданы, то они берутся из переменных beta2,beta4, *с. 143-144, происхождение этих переменных пока не выяснено*. В случаях, когда деформации не заданы и выполнено одно из условий, приведенных в списке ниже:

- 1. тип коллективных возбуждений (первая строка файла) вибрации (V), тип уровня любой
- 2. тип коллективных возбуждений (первая строка файла) сферический (S), тип уровня не V
- 3. тип коллективных возбуждений (первая строка файла) любой(?) (A), тип уровня не R

деформации задаются с использованием следующих систематик:

- 1. Уровень 2^+ : $\beta = 0.4e^{-0.012A} + 0.025*d$
- 2. Уровень 3^- , не ротационный: $\beta = 0.35e^{-0.008A}$
- 3. Уровень 4^+ : $\beta = 0.2 * e^{-0.006A}$
- 4. Уровни $2^+_{gs}, 4^+_{gs}, 3^-_{gs}$: $\beta = 0.02$

здесь d-расстояние до ближайшего магического числа, в случае, если оно > 5, то в качестве d берется 5.

Тип возбуждения(стр.1.)	Описание	Тип возбуждения (уровень)	Описание
V	колебания	V	колебания
R	вращения	R	вращения
S	сфера (DWBA)	D	DWBA
A	любой?		

Таблица 3: Типы возбуждений

1.4 Описание входного файла ECIS

Общая структура входного файла ECIS приведена на Рис. 2.

Symmetric rotational optical model			
<u>TERFFRETERFTERFFFFFFFFFFFFFFFFFFFFFFFFF</u>	Набор флагов, управляющих вычислениями (50 шт)		
<u>FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF</u>	Набор флагов, управляющих выводом (50 шт)		
3 20 0 1	Параметры вычислений		
	и параметры ввода		
0.00000 0.00000 1.e-10 1.e-10 1.e-30	Параметры интегрирования		
0.00 0 1+ 1.036E-03	Параметры частицы и ядра-мишени		
2.00 0 1+ 1.77903			
4.00 0 1+ 4.61786	Параметры уровней		
4 8 0.0	Параметры полос		
-0.34000 0.13000	Параметры деформации		
53.70180 1.17000 0.66800	Опт. потенциал		
0.35545 1.17000 0.66800			
0.00000 1.29400 0.54000			
5.08507 1.29400 0.54000			
5.69982 1.00000 0.58000			
-0.01981 1.00000 0.58000			
0.00000 0.00000 0.00000			
0.00000 0.00000 0.00000			
0.00000 180.00000 180.00000	Параметры для печати		
	угловых распределений		

Рис. 2: Структура входного файла ECIS

В общем случае, входной файл всегда содержит имя файла "title которое впоследствии выводится в выходной файл, 2 набора логических параметров для управления вычислениями и выводом, каждый из которых содержит 50 значений true/false (T/F). Затем вводятся параметры вычислений: число дискретных состояний во входном файле, макс. число моментов начальной частицы, которые будут перебраны в ходе вычилений, число итераций, количество используемых опитических потенциалов (см. Рис. 3). На следующей строке записываются шаг интегрирования и радиус сходимости (Рис. 4). Затем, в случае, если нужен вывод коэффициентов при многочленах Лежандра для угловых распределений, вводится пустая строка. На следующей строке записываются параметры частицы-снаряда и ядра-мишени (Рис. 5), после чего последовательно выписываются параметры отдельных уровней (Рис. 6).

После параметров отдельных уровней выписываются параметры вращательных и колебательных полос (Рис. 7); затем, в случае, если при вычислениях модель ротатора использовалась как основная, выписываются параметры ротатора (Рис. 8). Оптический потенциал и коэффициенты для использования дисперсионной ОМ вводятся со-

гласно Рис. 9 и 9, при этом в Talys присутствуют систематики и для дисперсионных

Рис. 3: Ввод параметров вычислений

Строка 5: float10.5 float10.5 l0 пробелов, le-10 4 пробела le-10 4 пробела le-30

Рис. 4: Ввод параметров интегрирования

Информация о мишени и начальной частице:

Рис. 5: Ввод параметров начальной частицы и ядра-мишени Информация об отдельных уровнях:

Рис. 6: Ввод параметров отдельных уровней

Информация о полосах:

Рис. 7: Ввод информации о свойствах вращательной/колебательной полос Параметры ротатора:

Если ротационная модель:

след. строка: $\frac{[float 10.5][float 10.5$

Рис. 8: Ввод информации о свойствах ротатора

Феноменологическая ОМ

float 10.5 float 10.5 float 10.5 r_{v} float 10.5 float 10.5 float 10.5 W $r_{\rm w}$ $a_{\rm w}$ float10.5 float10.5 float10.5 $V_{\text{пов}}$ $r_{v(\Pi OB)}$ $a_{v(\Pi OB)}$ float10.5 float10.5 float 10.5 W_{IIOB} $r_{w(\Pi OB)}$ $a_{w(\Pi OB)}$ $\underline{float1}0.5$ float 10.5 float 10.5 V_{so} $r_{v(so)}$ $a_{v(so)}$ float10.5 float10.5 float 10.5 W_{so} $r_{w(so)}$ $a_{w(so)} \\$ float10.5 float10.5 float 10.5 0 $r_{\rm c}$ float10.5 float 10.5 float 10.5 0

Рис. 9: Ввод оптического потенциала

Дисперсионная ОМ

$$10$$
 пробелов $int2$ $int2$ 2

$\lfloor 10$ пробелов $\lfloor float 10.5 \rfloor$ $\lfloor 40$ пробелов $\lfloor float 10.5 \rfloor$

дисперсионный коэфф. w2

<u>20 пробелов</u> <u>float10.5</u> <u>float10.5</u>

дисперсионный	дисперсионный
коэфф. d3	коэфф. d2

Рис. 10: Ввод дополнительных параметров для дисп. оптической модели

1.5 Пример для 12 С

При расчете ¹²С "по умолчанию без деформаций, заданных вручную, (листинг 1

```
Листинг 1: Параметры оптической модели в файле n-C.omp

element C

mass 12

projectile n

energy 14.1

outgamdis y

ecissave y
```

входные файлы создаются подпрограммами *inverseecis, incidentecis, directecis*, при этом для входного канала (файл ecisinc.inp) деформация не записывается. Для расчета вклада прямых реакций в выходные каналы происходит неоднократный запуск ecis подпрограммой directecis, для каждого уровня по отдельности. Параметры расчетов

Е	J^P	J_{band}	K_{mag}	β_{vib}	происхождение β_{vib}	
4.44	2+	2	0	0.39636	$\beta = 0.4e^{-0.012A} + 0.025 * d$	
9.64	3-	3	0	0.31796	$\beta = 0.35e^{-0.008A}$	
10.84	1-	1	0	0.02	deformpar.f, ctp 325 ¹	
11.16	2+	2	0	0.02	deformpar.f, cTp 325	

Таблица 4: Параметры, используемые для расчетов прямых реакций на ¹²C

приведены в таблице 4: Информация о сечении упругих и неупругих процессов, выводимая Talys в файле output (см. листинг 2) точно совпадает с данными, выводимыми ecis12 в файле fort.58 и файле ecis.dircs (вывод подпрограммы ecis06, встроенной в Talys) (см. листинг 3):

```
Листинг 2: вывод Talys (информация о полных сечениях)
   ########## REACTION SUMMARY FOR E=
                                          14.10000 ##########
   Center of mass energy:
                             13.000
   1. Total (binary) cross sections
   Total
                   = 1.52361E+03
     Shape elastic
                     = 7.88869E+02
                     = 7.34736E+02
     Reaction
       Compound elastic = 7.48799E+01
10
       Non elastic
                       = 6.59856E+02
                         = 1.78340E+01
         Direct
         Pre equilibrium = 0.00000E+00
         Compound non e1 = 6.42022E+02
       Total elastic
                        = 8.63749E+02
```

7.88869D+02

Аналогично, "прямые" компоненты упругого и неупругого рассеяния полностью совпадают в выводе Talys (листинг 4) и выводе есіs (листинг 5, примеры приведены для упругого рассеяния и неупругого на первом возбужденном состоянии 4^+).

Листинг 4: вывод Talys (угловое распределение упруго и неупруго рассеянных нейтронов) 8a2. Elastic scattering angular distribution Total Compound Angle Direct 0.0 8.74180E+02 8.57399E+02 1.67811E+01 2.0 8.70508E+028.53781E+02 1.67273E+014.0 8.59581E+02 8.43014E+02 1.65672E+01 6.0 8.41656E+02 8.25351E+02 1.63048E+01 8b2. Inelastic angular distributions 11 Level 1 13 Angle Total Direct Compound 3.13793E+00 0.0 1.15132E+01 8.37524E+00 17 2.0 3.13047E+00 8.37731E+00 1.15078E+01 18 4.0 1.14917E+01 3.10834E+00 8.38340E+00 19 6.0 1.14654E+01 3.07222E+00 8.39322E+00

	Листинг 5: fort.66									
1	<ang.dis.></ang.dis.>	1.01 1.	.4100000D+01	12.00	0	2				
2	1 0.0+ 2	91								
3	0 0.0000D+00	8.57399D+02	cross	section						

```
2 0.00000D+00 0.00000D+00
                                      asym. or it11
    0 2.00000D+00 8.53781D+02
                                      cross section
   2 2.00000D+00 3.71004D 03
                                      asym. or it11
    0 4.00000D+00 8.43014D+02
                                      cross section
   2 4.00000D+00 7.45747D 03
                                      asym. or it11
    0 6.00000D+00 8.25351D+02
                                      cross section
   2 6.00000D+00 1.12804D 02
                                      asym. or it11
    0 8.00000D+00 8.01203D+02
                                      cross section
   2 2.0+
                  91
    0 0.00000D+00 3.13793D+00
                                      cross section
14
   2 0.00000D+00 0.00000D+00
                                      asym. or it11
   3 0.00000D+00 0.00000D+00
                                       vect. polar.
16
   12 0.00000D+00 2.84697D 03
                                          spin flip
    0 2.00000D+00 3.13047D+00
                                      cross section
18
   2 2.00000D+00 8.43975D 03
                                      asym. or it11
19
   3 2.00000D+00 7.63382D 03
                                       vect. polar.
   12 2.00000D+00 2.87767D 03
                                           spin flip
   0 4.00000D+00 3.10834D+00
                                      cross section
22
   2 4.00000D+00 1.69466D 02
                                      asym. or it11
   3 4.00000D+00 1.53273D 02
                                       vect. polar.
24
   12 4.00000D+00 2.97029D 03
                                           spin flip
    0 6.00000D+00 3.07222D+00
                                      cross section
26
   2 6.00000D+00 2.55852D 02
                                      asym. or it11
   3 6.00000D+00 2.31379D 02
                                       vect. polar.
```