

Lineáris egyenletrendszerek

Összeállította: dr. Leitold Adrien egyetemi docens

1

Lineáris egyenletrendszerek általános alakja

Altalános (részletes) alak:

$$a_{11} \cdot x_1 + \dots + a_{1n} \cdot x_n = b_1$$

 $a_{21} \cdot x_1 + \dots + a_{2n} \cdot x_n = b_2$
 \vdots
 $a_{m1} \cdot x_1 + \dots + a_{mn} \cdot x_n = b_m$

m egyenlet n ismeretlen: x_1, \ldots, x_n

Jelölések:

$$\underline{a}_{1} = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \ \underline{a}_{2} = \begin{pmatrix} a_{12} \\ \vdots \\ a_{m2} \end{pmatrix}, \dots, \underline{a}_{n} = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}, \qquad \underline{b} = \begin{pmatrix} b_{1} \\ \vdots \\ b_{m} \end{pmatrix}$$

Lin. egyenletrendszerek általános alakja (folyt.)

■ Tömörebb alak:

$$\underline{a}_1 \cdot x_1 + \underline{a}_2 \cdot x_2 + \dots + \underline{a}_n \cdot x_n = \underline{b}$$

Jelölések:

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}_{m \times n}$$
együtthatómátrix, $\underline{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

Tömör alak:

$$A \cdot \underline{x} = \underline{b}$$

4

Homogén és inhomogén egyenletrendszerek

Homogén egyenletrendszer:

Az $A \cdot \underline{x} = \underline{b}$ lineáris egyenletrendszert homogénnek nevezzük, ha $\underline{b} = \underline{o}$.

Inhomogén egyenletrendszer:

Az $A \cdot \underline{x} = \underline{b}$ lineáris egyenletrendszert inhomogénnek nevezzük, ha $\underline{b} \neq \underline{o}$.

Megjegyzés:

Az $A \cdot \underline{x} = \underline{o}$ homogén lineáris egyenletrendszer mindig megoldható, az $\underline{x} = \underline{o}$ megoldásvektort triviális megoldásnak nevezzük.

A megoldhatóság feltétele

 Lineáris egyenletrendszerek megoldhatóságának szükséges és elégséges feltétele:

Az $A \cdot \underline{x} = \underline{b}$ lin. egyenletrendszer megoldható \Leftrightarrow $r(A) = r([A,\underline{b}]),$

ahol [A,b] az egyenletrendszer kibővített mátrixa:

$$[A,\underline{b}] = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}_{m \times (n+1)}.$$

Lin. egyenletrendszer "megoldó képlete"

$$\underline{x}_B = \underline{d} - \underline{D} \cdot \underline{x}_R$$
 "megoldó képlet"

- \underline{x}_B : a kötött ismeretlenek vektora
- \underline{x}_R : a szabad ismeretlenek vektora

Megoldásvektorok száma

- Homogén lin. egyenletrendszer megoldásvektorainak számára vonatkozó állítások:
- 1. Az $A \cdot \underline{x} = \underline{o}$ homogén lin. egyenletrendszernek csak triviális megoldása van $\Leftrightarrow r(A) = n$, ahol n az ismeretlenek száma.
- 2. Az $A \cdot \underline{x} = \underline{o}$ homogén lin. egyenletrendszernek van triviálistól különböző megoldása is $\Leftrightarrow r(A) < n$, ahol n az ismeretlenek száma.

Megjegyzés: ebben az esetben az egyenletrendszernek végtelen sok megoldásvektora van.

Homogén-inhomogén egyenletrendszer-pár

 Homogén-inhomogén egyenletrendszer megoldáshalmazai közötti kapcsolat:

Tekintsük az $A \cdot \underline{x} = \underline{o}$ és $A \cdot \underline{x} = \underline{b}$ homogén-inhomogén egyenletrendszer-párt. Jelölje

- M₀ a homogén egyenletrendszer megoldáshalmazát,
- M az inhomogén egyenletrendszer megoldáshalmazát,
- <u>x</u>₀ az inhomogén egyenletrendszer egy rögzített megoldásvektorát.

Ekkor: $M = M_0 + \{\underline{x}_0\}$.

Lineáris egyenletrendszerek: összefoglalás

Megoldásvektorok száma	Homogén lin. e.r. $A_{m \times n} \cdot \underline{x} = \underline{o}$	Inhomogén lin. e.r. $A_{m \times n} \cdot \underline{x} = \underline{b}$
Nincs megoldás (Az e. r. nem oldható meg.)		$r(A) < r([A, \underline{b}])$ $M = \emptyset$
1 db. megoldásvektor (Az e.r. egyértelműen megoldható.)	$\mathbf{r}(A) = n$ $M_0 = \{\underline{o}\}$	$r(A) = r([A, \underline{b}]) = n$ $M = \{\underline{x}_0\}$
Végtelen sok megoldásvektor	$r(A) < n$ M_0	$r(A) = r([A, \underline{b}]) < n$ $M = M_0 + \{\underline{x}_0\}$