TD3B Montage potentiométrique d'une résistance thermométrique

On désire mesurer la température par une résistance thermométrique de nickel dont le comportement avec la température exprimée en degrés Celsius est donné par :

$$R_c(T) = (1 + AT + BT^2)R_0 \tag{1}$$

avec $R_0=100~\Omega$, $A=5,49999\times10^{-3}~^{\circ}\text{C}^{-1}$ et $B=6,66667\times10^{-6}~^{\circ}\text{C}^{-2}$. Cette résistance thermométrique est montée en série avec une résistance fixe R et alimentée par un générateur de tension réel ($V_g=1~\text{V}$ et $R_g=50~\Omega$). On choisit comme référence de température $T_0=0~^{\circ}\text{C}$ et on définit $R_{c0}=R_c(T=T_0)$. L'étendue de mesure est limitée à $\pm 10~^{\circ}\text{C}$.

1 Étude du montage

- 1. Faire un schéma du dispositif.
- 2. Exprimer la tension de mesure V_{mes} en fonction de R_c , R, R_q et V_q .

2 Étude de la fonction V_{mes} et de la sensibilité de la mesure S

- 1. Donner l'expression de la variation ΔT de la température en fonction de T et T_0 .
- 2. Donner l'expression littérale de la variation ΔR_c de la résistance thermométrique en fonction de T et R_0 .
- 3. Exprimer V_{mes} en fonction de R_0 , ΔR_c , R, R_q et V_q .
- 4. On définit $\Delta V_{mes} = V_{mes}(T) V_{mes}(T=0)$. Développer cette expression en termes des grandeurs électriques et conclure sur sa linéarité par rapport à ΔR_c .
- 5. Que devient ΔV_{mes} si on suppose que $\Delta R_c \ll R_g + R + R_0$? On notera ce résultat ΔV_{app} .
- 6. Prenant en compte l'approximation précédente, quelle est la condition pour R afin d'avoir un maximum de sensibilité pour la mesure ? Piste : calculer dans ces conditions le point critique de la fonction ΔV_{app} . À partir d'ici on remplacera R par son expression littérale.
- 7. On reprend l'expression de ΔV_{mes} de la question 4. Que devient ΔV_{mes} en fonction de A, B et T?
- 8. Donner l'expression littérale de la sensibilité $S=\frac{\Delta V_{mes}}{\Delta T}$ en fonction de A, B et T. Conclure sur sa linéarité.
- 9. Que devient l'expression de S lorsque $T \to 0$? Conclure sur sa linéarité et effectuer l'application numérique.

3 Application numérique

En utilisant les données numériques et l'outil logiciel de votre préférence :

- 1. Tracer sur un graphique $R_c(T)$ et $R_{c2}(T) = (1 + AT)R_0$. Commenter les courbes.
- 2. Tracer sur un graphique $\left|\frac{R_c-R_{c2}}{R_c}\right| \times 100$. Conclure sur la pertinence de R_{c2} .
- 3. Tracer sur un graphique V_{mes} et V_{app} . Commenter les courbes.
- 4. Tracer sur un graphique $\left| \frac{V_{mes} V_{app}}{V_{mes}} \right| \times 100$. Conclure sur la pertinence de V_{app} .
- 5. Tracer sur un graphique ΔV_{mes} et ΔV_{app} . Commenter les courbes.

N.B: Utiliser au moins 200 valeurs de T pour tracer les différentes fonctions.