Bases Conversion (23)

Your professor has just introduced you to the different bases in which a number can be written and wants to test your understanding. His favourite number is 23 (this should not surprise you too much... it is a prime number!) and for this reason his favourite bases are 2 and 3.

Figure 1: A professor figuring out how to keep students busy.

A number is called **special** if and only if the sum of the digits of its base *two* representation is the same as the sum of the digits of its base *three* representation.

Consider the number $6_{(10)}$ (the subscript denotes the basis) = $110_{(2)} = 20_{(3)}$. The sum of the digits in base two is 1 + 1 + 0 = 2, which is exactly the sum of the digits in base three: 2 + 0 = 2. Thus, number $6_{(10)}$ is special. On the contrary, the number $9_{(10)} = 1001_{(2)} = 100_{(3)}$ is not special (the sums of digits are 2 and 1, respectively).

In order to keep the class busy without much work on his side, your professor has come up with a boring homework assignment. He has given you a list of T numbers N_1, \ldots, N_T and for each of those he wants you to compute the number of special numbers from 1 to N_i (extremes included). Automate this tedious task by writing a program!

Among the attachments of this task you may find a template file 23.* with a sample incomplete implementation.

Input

The first line contains the integer T. The second line contains T integers N_i .

Output

You need to write a single line with T integers, where the i-th indicates the amount of special numbers in the range between 1 and N_i .

23 Page 1 of 2

Constraints

- $1 \le T \le 10000$.
- $1 \le N_i \le 100\,000\,000$ for each $i = 0 \dots T 1$.

Scoring

Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases.

- Subtask 1 (0 points) Examples.

- Subtask 2 (30 points) The sum of all N_i does not exceed 1 000 000.

- Subtask 3 (35 points) $N_i \le 1\,000\,000$ for each $i = 0\dots T-1$.

- Subtask 4 (35 points) No additional limitations.

Examples

input	output
4 1 5 6 2	1 1 2 1
1 10	4

Explanation

The representations in base two and three of the numbers between 1 and 10 are contained in the following table. Special numbers have been highlighted in yellow.

Base 10	Base 2	Base 3	Sum in base 2	Sum in base 3
1	1	1	1	1
2	10	2	1	2
3	11	10	2	1
4	100	11	1	2
5	101	12	2	3
6	110	20	2	2
7	111	21	3	3
8	1000	22	1	4
9	1001	100	2	1
10	1010	101	2	2

In the first sample case for the ranges up to 1, 2 and 5 there is only a single special number $(1_{(10)})$. If we consider numbers up to 6, there are two special numbers $(1_{(10)})$ and $6_{(10)}$.

In the **second sample case**, in the range up to $10_{(10)}$ there are four special numbers (the ones highlighted in the table above).

23 Page 2 of 2