INE5403 - Fundamentos de Matemática Discreta para a Computação

- 4) Relações
 - 4.1) Relações e Dígrafos
 - 4.2) Caminhos em Relações e Dígrafos
 - 4.3) Propriedades de Relações
 - 4.4) Relações de Equivalência
 - 4.5) Manipulação e Fecho de Relações

Combinação de relações

• Exemplo: Seja A= $\{1,2,3\}$ e B= $\{1,2,3,4\}$. As relações R_1 = $\{(1,1),(2,2),(3,3)\}$ e R_2 = $\{(1,1),(1,2),(1,3),(1,4)\}$ podem ser combinadas para obter:

$$R_1 \cup R_2 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\}$$

$$R_1 \cap R_2 = \{(1,1)\}$$

$$R_1 - R_2 = \{(2,2),(3,3)\}$$

$$R_2 - R_1 = \{(1,2),(1,3),(1,4)\}$$

Manipulação de relações (operações)

- Da mesma forma que nós podemos manipular números usando as regras da álgebra, podemos também definir operações que nos permitam operar com relações.
- Com estas operações nós podemos modificar, combinar e refinar relações existentes para produzir relações novas.
- Note que, uma vez que relações de A para B são subconjuntos de A×B, duas relações de A para B podem ser combinadas de todos os modos em que se puder combinar dois conjuntos.

- <u>Definição</u>: Sejam R e S duas relações de A em B. Então as seguintes relações são definidas:
- 1) R: a *relação complementar* de R é definida como:

$$(a,b)\in \overline{R} \Leftrightarrow (a,b)\notin R$$

Nota: A matriz da relação R é obtida a partir da matriz de R trocando-se todos os 0's por 1's e vice-versa:

$$M_{\overline{R}} = \overline{M}_{R}$$

2) R∩S: a *relação intersecção* de R com S é definida como:

$$(a,b) \in R \cap S \iff (a,b) \in R \land (a,b) \in S$$

- Nota: $M_{R \cap S} = M_R \wedge M_S$ (operação matricial lógica "∧" sobre as matrizes booleanas M_R e M_S).

3) R∪S: a *relação união* de R com S é definida como:

$$(a,b) \in R \cup S \iff (a,b) \in R \lor (a,b) \in S$$

- Nota: $M_{R \cup S} = M_R \vee M_S$ (operação matricial lógica " \vee " sobre as matrizes booleanas M_R e M_S).

4) R⁻¹: a *relação inversa* de R é definida por:

$$(a,b) \in R^{-1} \Leftrightarrow (b,a) \in R$$

- Nota: $M_{R-1} = (M_R)^T$ (transposta da matriz M_R)

Exemplo: Sejam $A=\{1,2,3,4\}$, $B=\{a,b,c\}$ e R e S de A em B definidas por:

$$R = \{(1,a),(1,b),(2,b),(2,c),(3,b),(4,a)\}\$$

 $S = \{(1,b),(2,c),(3,b),(4,b)\}\$

Computar a) R b) $R \cap S$ c) $R \cup S$

- d) R⁻¹

Solução:

a)
$$A \times B = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c),(3,a),(3,b),(3,c),(4,a),(4,b),(4,c)\}$$

 $\Rightarrow R = \{(1,c),(2,a),(3,a),(3,c),(4,b),(4,c)\}$

- b) $R \cap S = \{(1,b),(2,c),(3,b)\}$
- c) $R \cup S = \{(1,a),(1,b),(2,b),(2,c),(3,b),(4,a),(4,b)\}$
- d) $R^{-1} = \{(a,1),(b,1),(b,2),(c,2),(b,3),(a,4)\}$

• Exemplo: Sejam A={1,2,3,4}, B={a,b,c} e R e S de A em B definidas por:

$$R = \{(1,a),(1,b),(2,b),(2,c),(3,b),(4,a)\}\$$

 $S = \{(1,b),(2,c),(3,b),(4,b)\}$

Calcular: a)
$$M_R$$
 b) M_S c) $M_{\overline{R}}$ d) $M_{R^{-1}}$ e) $M_{R \cap S}$ f) $M_{R \cup S}$

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad \mathbf{M}_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

c)
$$\overline{R} = \{(1,c),(2,a),(3,a),(3,c),(4,b),(4,c)\} \Rightarrow M_{\overline{R}} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

 <u>Exemplo</u>: Sejam A={1,2,3,4}, B={a,b,c} e R e S de A em B definidas por:

$$R = \{(1,a),(1,b),(2,b),(2,c),(3,b),(4,a)\}\$$

 $S = \{(1,b),(2,c),(3,b),(4,b)\}$

(Continuação):

d) $R^{-1} = \{(a,1),(b,1),(b,2),(c,2),(b,3),(a,4)\}$

$$\Rightarrow M_{R^{-1}} = (M_R)^T = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

e) $R \cap S = \{(1,b),(2,c),(3,b)\}$

$$\mathbf{M}_{R \cap S} = \mathbf{M}_{R} \wedge \mathbf{M}_{S} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \wedge \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 <u>Exemplo</u>: Sejam A={1,2,3,4}, B={a,b,c} e R e S de A em B definidas por:

$$R = \{(1,a),(1,b),(2,b),(2,c),(3,b),(4,a)\}\$$

 $S = \{(1,b),(2,c),(3,b),(4,b)\}$

(Continuação):

f)
$$R \cup S = \{(1,a),(1,b),(2,b),(2,c),(3,b),(4,a),(4,b)\}$$

$$\mathbf{M}_{R \cup S} = \mathbf{M}_{R} \vee \mathbf{M}_{S} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \vee \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

Teorema: Suponha que R e S são relações de A em B.

- (a) Se R \subseteq S, então R $^{-1}\subseteq$ S $^{-1}$
- (b) Se R \subseteq S, então S \subseteq R
- (c) $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$ e $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$
- (d) $(\overline{R} \cap S) = \overline{R} \cup \overline{S}$ e $(\overline{R} \cup S) = \overline{R} \cap \overline{S}$

Prova: os itens (b) e (d) são casos particulares de propriedades gerais de conjuntos.

- (a) Suponha que $R \subseteq S$ e seja $(a,b) \in R^{-1}$,
 - então (b,a)∈R (definição de R-1)
 - segue que, como $R \subseteq S$, $(b,a) \in S$
 - como (b,a)∈S, segue que (a,b)∈S⁻¹ (definição de S⁻¹)
 - portanto, $R^{-1} \subseteq S^{-1}$

Prova da 1ra parte do item (c):

- (c) $(R \cap S)^{-1} = R^{-1} \cap S^{-1} \rightarrow \text{temos que provar que:}$
 - i) $(R \cap S)^{-1} \subseteq R^{-1} \cap S^{-1}$
 - ii) $R^{-1} \cap S^{-1} \subseteq (R \cap S)^{-1}$
 - i) $(R \cap S)^{-1} \subseteq R^{-1} \cap S^{-1}$
 - suponha que (a,b) \in (R \cap S)⁻¹.
 - então $(b,a) \in R \cap S \implies (b,a) \in R \in (b,a) \in S$
 - isto significa que $(a,b) \in R^{-1}$ e $(a,b) \in S^{-1}$
 - de modo que (a,b) \in R⁻¹ \cap S⁻¹
 - ii) $R^{-1} \cap S^{-1} \subseteq (R \cap S)^{-1}$ (converso)
 - basta reverter os passos acima.

• <u>Exercício</u>: Seja A=B={1,2,3} e

$$S=\{(1,2),(2,3),(3,1),(3,2),(3,3)\}\$$

 $T=\{(2,1),(2,3),(3,2),(3,3)\}$

- Verifique o item (c) do teorema com S e T
- Verifique o item (d) do teorema com S e T
- NOTA:

(c)
$$(R \cap S)^{-1} = R^{-1} \cap S^{-1}$$
 e $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$

(d)
$$(\overline{R} \cap S) = \overline{R} \cup \overline{S}$$
 e $(\overline{R} \cup S) = \overline{R} \cap \overline{S}$

 Os teoremas a seguir mostram o efeito que as operações têm sobre algumas das propriedades vistas.

Teorema: Sejam R e S relações sobre A. Então:

- (a) Se R é reflexiva, então R-1 também o é;
- (b) R é reflexiva se e somente se R é irreflexiva;
- (c) Se R e S são reflexivas, então R∩S e R∪S também o são.

Exemplo: Seja A=
$$\{1,2,3\}$$
 e sejam: R= $\{(1,1),(1,2),(1,3),(2,2),(3,3)\}$ S= $\{(1,1),(1,2),(2,2),(3,2),(3,3)\}$

- (a) $R^{-1} = \{(1,1),(2,1),(3,1),(2,2),(3,3)\} \Rightarrow R \in R^{-1} \text{ são ambas reflexivas;}$
- (b) $\overline{R} = \{(2,1),(2,3),(3,1),(3,2)\}$ é irreflexiva enquanto que R é reflexiva;
- (c) $R \cap S = \{(1,1),(1,2),(2,2),(3,3)\}$ e $R \cup S = \{(1,1),(1,2),(1,3),(2,2),(3,2),(3,3)\}$ são ambas reflexivas.

Teorema: Seja R uma relação sobre A. Então:

- (a) R é simétrica se e somente se R=R-1;
- (b) R é antissimétrica se e somente se $R \cap R^{-1} \subseteq \Delta$ (Δ : rel. de igualdade);
- (c) R é assimétrica se e somente se $R \cap R^{-1} = \emptyset$.

Teorema: Sejam R e S relações sobre A.

- (a) Se R é simétrica, então R-1 e R também o são;
- (b) Se R e S são simétricas, então R∩S e R∪S também o são.

Exemplo: Seja A={1,2,3} e considere as relações simétricas:

$$R = \{(1,1),(1,2),(2,1),(1,3),(3,1)\}\$$

 $S = \{(1,1),(1,2),(2,1),(2,2),(3,3)\}$

- (a) $R^{-1} = \{(1,1),(2,1),(1,2),(3,1),(1,3)\}\$ $R = \{(2,2),(2,3),(3,2),(3,3)\}\$ \rightarrow ambas simétricas
- (b) $R \cap S = \{(1,1),(1,2),(2,1)\}$ $R \cup S = \{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),(3,3)\}$ \rightarrow ambas simétricas

• <u>Exercício</u>: Seja A={1,2,3,4,5,6} e sejam as relações de equivalência sobre A seguintes:

$$R = \{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4),(5,5),(5,6),(6,5),(6,6)\}$$

$$S = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,4),(4,6),(5,5),(6,4),(6,6)\}$$

Compute a partição correspondente a R∩S.

Definição:

- Suponha que A, B e C são conjuntos, que R é uma relação de A em B e que S é uma relação de B em C.
- Então define-se a relação de <u>composição</u> de R e S, escrita como S o R, como segue:
 - Se a∈ A e c∈ C, então (a,c)∈ S∘R se e somente se existir algum b∈ B tal que (a,b)∈R e (b,c)∈S.
 - "S em seguida a R" (primeiro R, depois S).

 <u>Exemplo</u>: Sejam A={1,2,3,4} e as relações R e S sobre A definidas por:

$$R = \{(1,2),(1,1),(1,3),(2,4),(3,2)\}$$

$$S = \{(1,4),(1,3),(2,3),(3,1),(4,1)\}$$

- Como (1,2)∈R e (2,3)∈S, então temos que (1,3)∈ S∘R.
- Também (1,1)∈R e (1,4)∈S, assim (1,4)∈S∘R.
- Continuando com este processo, encontra-se que:

$$S \circ R = \{(1,4),(1,1),(1,3),(2,1),(3,3)\}$$

- O resultado a seguir mostra como computar conjuntos relativos para a composição de duas relações.
- Teorema: Sejam R uma relação de A em B e S uma relação de B em C. Então, se A₁⊆A, temos que

$$(S \circ R)(A_1) = S(R(A_1))$$

Ver prova no livro: teorema 6, pág. 138.

 <u>Teorema</u>: Se R é uma relação de A em B e S é uma relação de B em C, então:

$$M_{S \circ R} = M_R \otimes M_S$$

- Além disto, se |A|=m, |B|=n e |C|=p:
 - M_R tem ordem mxn
 - M_S tem ordem nxp
 - M_{SoR} tem ordem mxp

 <u>Exemplo</u>: Seja A={a,b,c} e sejam R e S relações sobre A com matrizes: _

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \mathbf{M}_{S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow$$
 R = {(a,a),(a,c),(b,a),(b,b),(b,c),(c,b)}

$$\Rightarrow$$
 S = {(a,a),(b,b),(b,c),(c,a),(c,c)}

$$\Rightarrow$$
 S \circ R = {(a,a),(a,c),(b,a),(b,b),(b,c),(c,b),(c,c)}

– E a matriz da relação composta S∘R é:

$$\mathbf{M}_{S \circ R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \mathbf{M}_{R} \otimes \mathbf{M}_{S}$$

• Exercício: Refazer com matrizes o exemplo:

```
Sejam A=\{1,2,3,4\} e as relações R e S sobre A definidas por: R=\{(1,2),(1,1),(1,3),(2,4),(3,2)\} S=\{(1,4),(1,3),(2,3),(3,1),(4,1)\} o que leva a: S \circ R=\{(1,1),(1,3),(1,4),(2,1),(3,3)\}
```

- <u>Teorema</u>: Sejam A, B, C e D conjuntos e:
 - R uma relação de A em B,
 - S uma relação de B em C, e
 - T uma relação de C em D.

Então:

$$T \circ (S \circ R) = (T \circ S) \circ R$$

Prova no livro: teorema 7, pág. 140, usando matrizes.

- Em geral: $S \circ R \neq R \circ S$
- Exemplo: Sejam:

Então:

$$S \circ R = \{(a,b),(b,a),(b,b)\}$$

enquanto que:

$$R \circ S = \{(a,a),(a,b),(b,a),(b,b)\}$$

 <u>Teorema</u>: Sejam A, B e C conjuntos, R uma relação de A em B e S uma relação de B em C. Então:

$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$$

- Prova: seja c∈ C e a∈ A.
 - Então (c,a)∈ $(S \circ R)^{-1} \Leftrightarrow (a,c)$ ∈ $S \circ R$;
 - ou seja, se e somente se existe b∈ B com (a,b)∈ R e (b,c)∈S;
 - isto é equivalente a ter (b,a)∈ R^{-1} e (c,b)∈ S^{-1}
 - o que, pela definição de composição, significa que (c,a) ∈ R⁻¹ ∘ S⁻¹

• Exercício: Seja A={1,2,3,4} e sejam

$$R = \{(1,1),(1,2),(2,3),(2,4),(3,4),(4,1),(4,2)\}$$

$$S = \{(3,1),(4,4),(2,3),(2,4),(1,1),(1,4)\}$$

- Calcule R∘R.
- Calcule S · R.
- Calcule R · S.
- Calcule SoS.

- Se R é uma relação sobre A, pode acontecer que R não possua algumas propriedades importantes, tais como reflexividade, simetria e transitividade.
- Se R n\u00e3o possui uma propriedade particular, pode-se querer <u>adicionar</u> os pares relacionados em R at\u00e9 que ela adquira a propriedade desejada.
- Naturalmente, deseja-se adicionar o menor número de pares possível, de modo a obter <u>a menor relação R₁ sobre A que possui a</u> <u>propriedade desejada</u>.
- Eventualmente R₁ pode não existir → se a relação R₁ existe, ela é chamada de o "<u>fecho de R com respeito à propriedade em questão</u>".

• Exemplo1: Seja A={a,b,c} e R sobre A definida por

$$R = \{(a,a),(a,b),(a,c),(b,b),(c,c)\}$$

R não é simétrica pois (b,a) e (c,a) não pertencem a R.
 Então o fecho simétrico de R é a relação R₁ a seguir:

$$R_1 = R \cup \{(b,a),(c,a)\}$$

- <u>Exemplo2 (reflexividade)</u>: Suponha que R é uma relação nãoreflexiva sobre um conjunto A.
 - Isto somente pode acontecer quando alguns pares da relação diagonal ∆={(a,a)|a∈A} não estão em R.
 - Assim, R₁=R∪∆ é a menor relação reflexiva sobre A que contém R.
 - Em outras palavras, R \cup ∆ é o *fecho reflexivo* de R.

- <u>Exemplo3 (simetria)</u>: Suponha que R é uma relação sobre um conjunto A e que R não é simétrica.
 - Desta forma, deve existir pares (x,y)∈ R tais que (y,x)∉ R
 - Por outro lado, (y,x)∈ R⁻¹
 - Portanto, para R se tornar simétrica, deve-se adicionar todos os pares de R⁻¹ ⇒ R deve ser aumentada para R∪R⁻¹
 - R∪R⁻¹ é a menor relação simétrica que contém R, ou seja, R∪R⁻¹ é o <u>fecho simétrico</u> de R.
 - Assim, se A={a,b,c,d} e R={(a,b),(b,c),(a,c),(d,c)} \Rightarrow R⁻¹={(b,a),(c,b),(c,a),(c,d)}
 - ⇒ o *fecho simétrico* de R é:

$$R \cup R^{-1} = \{(a,b),(b,c),(a,c),(d,c),(b,a),(c,b),(c,a),(c,d)\}$$

Fecho transitivo:

- Será que o fecho transitivo de uma relação pode ser produzido pela adição de todos os pares da forma (a,c), onde (a,b) e (b,c) já estão na relação?
- Considere a relação R={(1,3),(1,4),(2,1),(3,2)} sobre o conjunto {1,2,3,4}.
 - Ela não é transitiva, pois não contém todos os pares (a,c)
 onde (a,b) e (b,c) estão em R → falta (1,2),(2,3),(2,4),(3,1)
 - Adicionando o que falta: $R=\{(1,3),(1,4),(2,1),(3,2),(1,2),(2,3),(2,4),(3,1)\}$
 - Relação resultante contém (3,1) e (1,4) mas não (3,4) !
- <u>Fechos transitivos dependem de algoritmos especiais.</u>