编号	方法	适用数据	适用问题	模型类型	模型特点	学习策略	目标(损失)函 数	正则项 (惩罚函	学习算法	缺失值 敏感性	异常值 敏感性	数据处理	模型实现(R)	模型实现 (python)	方法特点	方法优点	方法缺点
1	线性回归	y服从正 态分布, X与y线性 相关	连续值预 测问题	判别模型	可以对样 本非线 性,只要 对参数θ 线性	最小二乘 (OLS)	平方和损失	L1范式/L2 范式	参数解析 /SGD(随机 梯度下降)	敏感	敏感	去除多重 共线性, y正态性 转换	MASS包glm函数族	sklearn库, sklearn.linear_mo del import LinearRegression	自动特征 选择/特 征相关性	1. 可用于较小 样本量; 2. 实 现简单	1. 局限性大
2	Logistic回 归	y服从二 项分布或 k分类	二分类或 有序(无 序)多分 类问题	사기 다시 4상 표비	特征条件 下类州的 条件概,分 分 发线性模 型	极大似然估计	Logistic损失		改进的迭 代尺度算 法,SGD, 拟牛顿法	不敏感	不敏感		MASS包glm函数 族, glm(y_train ~ ., data = x,family='binom ial')	sklearn库, sklearn.linear_mo del import LogisticRegressio n, model = LogisticRegressio n()	特征选择 /危险因 素评价	1. 易解释; 2. 可用于危险因 素评价; 3. 特 征选择	1. 需要较大样 本量
3	决策树	任意分布 数据或不 平衡数据	分类或回 归	判别模型	应用信息 熵下降最 快选择特 征作为结 点	正则化的极大 似然估计		树节点个数 及树的深 度,树剪枝	C4.5\CART \Gini系 数,递归 生成,剪 枝	不敏感	不敏感		rpart包rpart函数, rpart(y_train~,, data = x,method="class ")	sklearn库, from sklearn import tree, tree.DecisionTree Classifier(criter ion='gini') /tree.DecisionTre eRegressor()	特征选择 /特征重 要性排序	1. 易于理解, 解释直观; 2. 适用于数据探 索阶段; 3. 对 数据缺失 常不敏感; 4. 对数据类型不 敏感	1. 易产生过拟 合; 2. 连续变 量截断分类, 易丢失信息
4	随机森林	任意分布数据或不平衡数据	分类或回 归	判别模型	集想集回样介, 票科 成样有复取类 依结分 器投入。	booststrap抽 样,bagging 集成投票获得 分类			Bagging集 成提升算 法	不敏感	不敏感		randomForest包 , randomForest(Sp ecies~., x,ntree=500)	sklearn库, from sklearn.ensemble import RandomForestClass ifier, RandomForestClass ifier()	特征选择 /特征重序 /特性排, /降性水 /通过 / / / / / / / / / / / / / / / / / /	1. 同可数据 完工数据: 完工数据: 完工数据: 完工数据: 完工数据: 完工的, 是工程, 是工程, 是工程, 是工程, 是工程, 是工程, 是工程, 是工程	1. 同决策树; 2. 不易于解 释,黑箱效应

5	提升方法 (GBDT, XGBoost)	数据无缺失,进行 one-hot 编码,转值 型向量	分类或回 归	判别模型	弱的合测加加步损的向类性弱型累色依函度行		使用线性搜索计算 学习率,最小化损 失函数	决策村的数据, 校点子的数据, 大多节点, 大多节,是一个的数据, 大多数。 大多数。 大多数。 大多数。 大多数。 大多数。 大多数。 大多数。	SGD,二阶 Taylor展 开 (XGBoost)	敏感	敏感	数据缺失填补,进行one-hot编码,转值型阵	gbm包或xgboost 包或caret包, fitControl (- trainControl() method = "repeatedcv", number = 4, repeats = 4), fit <- train(y ~, data = x, method = "gbm", trControl = fitControl, verb ose = FALSE), predicted= predict(fit, x_t est, type= "prob")[,2]	sklearn库, from sklearn.ensemble import GradientBoostingC lassifier, clf = GradientBoostingC lassifier()/impor t xgboost as xgb, xgb.train(param, data_train, num_boost_round=n _round, evals=watchlist)	通过减少差提高性能	主要指XGBoost 优点:1.以 有正 则 化 项合:3. 内 项。 3. 内 理 及 方 :4. 以 型 产。4. 故 大 便 型 , 数 使 更 快 步、速度 更 快 步、速度 更 快	1. 需要大量调 参
6	提升方法 (主要是 AdaBoost)	数值型或 二分类数 据	二分类	判别模型		对训练练员 外班 计	极小化加法模型的 指数损失		前向分步加法算法	敏感	敏感	数据缺失 填补,分 类标签修 改为1或-	boost包, adaboost (xlearn, ylearn, xtest, presel = 200, mfinal = 100)或 adabag 包	创建弱分类器, AdaBoost 的训练函 数,创建分类函 数,分类加权		1. 属于高精度 分类器; 2. 不 用做特征筛 选; 3. 不易过 拟合	1. 对异常值敏感
7	SVM	数值型无 缺失	二分类	判别模型		极小化正则化 合页损失,软 间隔最大化	对特征空间划分的 最优超平面是SVM 的目标,最大化分 类边际的思想是 SVM方法的核心	L2范式,加 入松弛因 子,惩罚因 子	序列最小 最优化算 法(SMO), 约束条最优 下的问题 (拉格图) 日对偶	敏感	不敏感		e1071包, svm(y_train~ ., data = x)	sklearn库, from sklearn import svm, svm.svc(kernel='1 inear', c=1, gamma=1)		1. 可以與解決 與解解 與解解 與解之 之能够 之能够 至之能 等 在 致 性 特 用 : 3. 能 數 至 之 性 特 用 : 3. 能 , 3. 他 , 3. 他 , 3. 他 , 3. 他 , 4. 他 , 5. 他 5. 他 , 5. 他 5. — 5. — 5. — 5. — 5. — 5. — 5. — 5.	
8	朴素贝叶斯		二/多分 类问题	生成模型	斯定理和 特征条件	基于特征条件 独立假设学习 输入输出联合 概率,利用贝 叶斯定理求后 验概率最大			概率计,然法, 供公式似法, 以可以 以可以 以可以 。 位 。 。 。 。 。 。 。 。 。 。 。 。 。	不敏感	不敏感	1. 提取特性 分析; 2. 手动选; 3. 连续高高 分布	e1071包, naiveBayes(y_tr ain~., data = x)	sklearn库, from sklearn.naive_bay es import GaussianNB		1. 算法简单, 易于实现; 2. 算法稳定, 健 壮性好; 3. 计 算速度快	1. 特征条件独 立假设现(阿用 贝叶斯网络);2提选时,等征选防止 进种等。3. 第一部 进种等。3. 第一部 进入的。2. 第一部 为0

ć	9	K近邻法		分类或多 回归问题	判别模型	量,k值 选择和分	首先确定输入 实例点的k个 最近邻训练实 例点,利用这 k个训练实例			多数表决	不敏感	不敏感	归一化处理	knn包, knn(y_train ~ ., data = x,k=5)	sklearn库, from sklearn.neighbors import KNeighborsClassif ier,		1. 可用于非线性分类;时间复杂度低	1. 样本不平衡 问题; 2. 消耗 内存 (用kd树 优化); 3. k 值难以确定,
1		人工神经网络(深度学习)		分类/预测/识别	判别模型	由大量节 点(神经 元)连接 的运算模 型	模拟生物神经 信号传递网络		正则化或 dropout	BP算法, SGD算法等	需要填补	不敏感	去均值; 归一化; PCA/白化 等	Mxnet包等	caffe、Mxnet、 tensorFlow等开源 框架	可用于语、语、语、则是一种,则是一种,则是一种,则是一种,则是一种,则是一种,则是一种,则是一种,	1.度分强学3.有性力近性备功能并能储强神色。2.理存强力,现实不能唤强容能的。记克不分,对较和能杂系想。记忆的"社会"。记忆的"社会"。	1. 需要大量的 参数: 2. 不能 观察之间的学 习过程, 输出 结果难以解释
1	.1	ЕМ	可损数尾 据噪完参数 居 票 数 有 不 据 计	概率模型参数估计	生成模型	含隐变量概率模型	极大似然估 计,极大后验 概率估计	对数似然损失		迭代算法	不敏感	不敏感		mclust包实现高 斯混合模型GMM聚 类分析	构建EM算法函数	应理据数有不据计用用缺,据噪完参,于聚于损截,声全数也数类 少数尾带等数估可据	1. 简单和稳定	1. 容易陷入局 部最优
1	2	kmean聚类	数值类型 数据	聚类问题	非监督学习		按数据内在相似性处数据相似性性, 别,使类别内数据相似性大,而据相似别似性。 大,数据,一个,				敏感	敏感	归一化处 理	library (cluster) fit ⟨- kmeans(X, 3)	sklearn库,from sklearn.cluster import KMeans, KMeans(n_clusters =3, random_state=0)		1. 经典、简单 、快速; 2. 简单 簇接近高斯分 布时效果较好	1.局在上2.以初敏合面或很对和敏该对可部大收K选值感于形者大于孤感类平极较较较3.心不非簇差。声数量能产响。立,数均大、大大大的。立,数均大影响,立,据;难对值适凸,别5."据的够生

降维第 13 (PCA, 分析	因子 据,数值	维度规约	判别模型		把原来有多个 指标转化表少 数几个代表性 好的综合指 标,以反部原 来指标大部分 信息				敏感	敏感	数据填 补,数值 归一化	<pre>pca <- princomp(train,</pre>		、大方差 对应主结构 、主成结成分 之间正交	易于实现; 2. 消除评价指标 见的相关性; 3.	1. 主成分难以解释; 2. 当样本具有非降性质时,还是成为不够。 在是有非。 生质时,还是不是, 是是无法, 是是是是一个。 是是是是一个。 是是是是一个。 是是是是一个。 是是是是是一个。 是是是是是是是是是是
-----------------------	---------	------	------	--	---	--	--	--	----	----	--------------------	--------------------------------------	--	---------------------------------	------------------------------------	--