PRISMS PhaseField Faceted Anisotropy (with Coupled CH-AC Dynamics)

This application is essentially a specialization of the CHAC_anisotropyRegarized application with a particular choice of interfacial energy anisotropy $\gamma(\mathbf{n})$. In this document, we repeat the formulation for that model for completeness and then describe the anisotropy used in this application. Consider a free energy expression of the form:

$$\Pi(c, \eta, \nabla \eta) = \int_{\Omega} \left(f_{\alpha}(1 - H) + f_{\beta}H \right) + \frac{1}{2} |\gamma(\mathbf{n})\nabla \eta|^2 + \frac{\delta^2}{2} (\Delta \eta)^2 dV$$
 (1)

where f_{α} and f_{β} are the free energy densities corresponding to α and β phases, respectively, and are functions of composition c. H is a function of the structural order parameter η . δ is a scalar regularization parameter. The interface normal vector \mathbf{n} is given by

$$\mathbf{n} = \frac{\nabla \eta}{|\nabla \eta|} \tag{2}$$

for $\nabla \eta \neq \mathbf{0}$, and $\mathbf{n} = \mathbf{0}$ when $\nabla \eta = \mathbf{0}$.

1 Variational treatment

Following standard variational arguments (see Cahn-Hilliard formulation), we obtain the chemical potentials:

$$\mu_c = (f_{\alpha,c}(1-H) + f_{\beta,c}H) \tag{3}$$

$$\mu_{\eta} = (f_{\beta,c} - f_{\alpha,c})H_{,\eta} - \nabla \cdot \mathbf{m} + \delta^2 \Delta(\Delta \eta)$$
(4)

The components of the anisotropic gradient \mathbf{m} are given by

$$m_i = \gamma(\mathbf{n}) \left(\nabla \eta + |\nabla \eta| (\delta_{ij} - n_i n_j) \frac{\partial \gamma(\mathbf{n})}{n_j} \right),$$
 (5)

where δ_{ij} is the Kronecker delta.

2 Kinetics

Now the PDE for Cahn-Hilliard dynamics is given by:

$$\frac{\partial c}{\partial t} = -\nabla \cdot (-M_c \nabla \mu_c) \tag{6}$$

$$= M_c \nabla \cdot (\nabla (f_{\alpha,c}(1-H) + f_{\beta,c}H)) \tag{7}$$

and the PDE for Allen-Cahn dynamics is given by:

$$\frac{\partial \eta}{\partial t} = -M_{\eta} \mu_{\eta} \tag{8}$$

$$= -M_{\eta} \left[(f_{\beta,c} - f_{\alpha,c}) H_{,\eta} - \nabla \cdot \mathbf{m} + \delta^2 \Delta(\Delta \eta) \right]$$
 (9)

where M_c and M_{η} are the constant mobilities. In order that the formulation only includes second order derivatives, an auxiliary field ϕ is introduced to break up the biharmonic term:

$$\phi = \Delta \eta \tag{10}$$

and the PDE for Allen-Cahn dynamics becomes

$$\frac{\partial \eta}{\partial t} = -M_{\eta} \left((f_{\beta,c} - f_{\alpha,c}) H_{,\eta} - \nabla \cdot \mathbf{m} \right) + \delta^2 \Delta \phi. \tag{11}$$

3 Time discretization

Considering forward Euler explicit time stepping, we have the time discretized kinetics equation:

$$\phi^{n+1} = \Delta \eta^n \tag{12}$$

$$\eta^{n+1} = \eta^n - \Delta t M_\eta \left((f_{\beta,c}^n - f_{\alpha,c}^n) H_{,\eta}^n - \nabla \cdot \mathbf{m}^n + \delta^2 \Delta \phi^n \right)$$
 (13)

$$c^{n+1} = c^n + \Delta t M_\eta \nabla \cdot (\nabla (f_{\alpha,c}^n (1 - H^n) + f_{\beta,c}^n H^n))$$

$$\tag{14}$$

4 Weak formulation

In the weak formulation, considering an arbitrary variation w, the above equations can be expressed as residual equations.

$$\int_{\Omega} w \phi^{n+1} \ dV = \int_{\Omega} \nabla w \cdot \underbrace{\nabla \eta^n}_{r_{\phi x}} \ dV \tag{15}$$

$$\int_{\Omega} w \eta^{n+1} \ dV = \int_{\Omega} w \eta^n - w \Delta t M_{\eta} \left((f_{\beta,c}^n - f_{\alpha,c}^n) H_{,\eta}^n - \kappa \Delta \eta^n \right) \ dV \tag{16}$$

$$= \int_{\Omega} w \left(\underbrace{\eta^n - \Delta t M_\eta \left((f_{\beta,c}^n - f_{\alpha,c}^n) H_{,\eta}^n \right)}_{r_n} \right) + \nabla w \cdot \underbrace{\left(-\Delta t M_\eta \right) (\mathbf{m}^n - \delta^2 \phi^n)}_{r_{\eta x}} dV \tag{17}$$

and

$$\int_{\Omega} wc^{n+1} dV = \int_{\Omega} wc^n + w\Delta t M_c \nabla \cdot (\nabla (f_{\alpha,c}^n (1 - H^n) + f_{\beta,c}^n H^n)) dV$$
(18)

$$= \int_{\Omega} w \underbrace{c^n}_{r_c} + \nabla w \underbrace{\left(-\Delta t M_c\right) \left[\left(f_{\alpha,cc}^n (1 - H^n) + f_{\beta,cc}^n H^n\right) \nabla c + \left(\left(f_{\beta,c}^n - f_{\alpha,c}^n\right) H_{,\eta}^n \nabla \eta^n\right)\right]}_{r_{cx}} dV$$

$$(19)$$

The above values of $r_{\phi x}$, r_{η} , $r_{\eta x}$, r_{c} and r_{cx} are used to define the residuals in the following equations file: applications/anisotropyFacet/equations.h

5 Anisotropy

The above formulation is generic to any $\gamma(\mathbf{n})$. In this application, we use an anisotropy of the form

$$\gamma(\mathbf{n}) = \gamma_0 \left(1 - \sum_{i=1} \alpha_i (\mathbf{m}_i \cdot \mathbf{n})^{w_i} \Theta(\mathbf{m}_i \cdot \mathbf{n}) \right), \tag{20}$$

where **m** is a unit vector corresponding to a crystallographic orientation, γ_0 is a scaling factor for interfacial energy, α_i and w_i are scalar parameters specific to each orientation, and $\Theta(\cdot)$ is the Heaviside function. The derivatives with respect to components of the normal are

$$\frac{\partial \gamma(\mathbf{n})}{\partial n_j} = -\gamma_0 \sum_{i=1} w_i \alpha_i m_{ij} (\mathbf{m}_i \cdot \mathbf{n})^{w_i - 1} \Theta(\mathbf{m}_i \cdot \mathbf{n}), \tag{21}$$

Calculation of $\gamma(\mathbf{n})$ and $\partial \gamma(\mathbf{n})/\partial n_j$ is performed in an application-specific function located in applications/anisotropyFacet/facet_anisotropy.h.

This anisotropy was developed by M. Salvalaglio et al. (doi: 10.1021/acs.cgd.5b00165), and is extensively documented in their paper. Briefly, we note that α_i determines the interfacial energy at the orientation \mathbf{m}_i , and w_i determines how localized the change interfacial energy is around \mathbf{m}_i . The Heaviside function $\Theta(\mathbf{m}_i \cdot \mathbf{n})$, which returns zero if $\mathbf{m}_i \cdot \mathbf{n} < 0$ and one otherwise, ensures that orientations are considered independently; i.e. there is no change in $\gamma(\mathbf{n})$ around $-\mathbf{m}_1$ unless that corresponds to another listed orientation \mathbf{m}_i . In its intended configuration, with $0 < \alpha_i < 1$ and high w_i (e.g. $w_i = 50$), this anisotropy results in nearly flat facets at the orientations \mathbf{m}_i .