01204211 Discrete Mathematics Lecture 7a: Languages and regular expressions¹

Jittat Fakcharoenphol

August 22, 2023

Models of computations grammars _ context-free grammar 2-colonlus (functional pro)

Languages = specifications language I formal language. set va strings nigraining IN IN HAMINITUSO } { p | p 104 ammiams. 18ch w m m - } 1 p 1 p un palindrome } (15 | 5134 2000 2) Money (')' ADMOUNTER }

Formal definition: strings

Intuitively, a string is a *finite* sequence of symbols. However, to be able to formally prove properties of strings we need a precise definition.

Let a finite set Σ be the **alphabet**. (E.g., for bit strings, $\Sigma = \{0, 1\}$; for digits, $\Sigma = \{0, 1, \dots, 9\}$; for English string $\Sigma = \{a, b, \dots, z\}$.) The following is a recursive definition of strings.

Recursive definition of strings

A **string** w over alphabet Σ is either

- ▶ the empty string ε , or
- $lackbox{a} \cdot x$ where $a \in \Sigma$ and x is a string.

The set of all strings over alphabet Σ is denoted by Σ^* .

Review: more recursive definitions

Lengths

For a string w, let |w| be the length of w defined as

$$|w| = \left\{ \begin{array}{ll} 0 & \text{when } w = \underline{\varepsilon} \\ 1 + |x| & \text{when } w = \underline{a \cdot x} \end{array} \right.$$

Concatenation

For strings w and z, the concatenation $w \cdot z$ is defiend recursively as

$$\underline{w} \cdot z = \left\{ \begin{array}{l} z & \text{when } w = \varepsilon \\ a \cdot (\underline{x \cdot z}) & \text{when } w = \underline{a \cdot x} \end{array} \right.$$

pase rafe

Review: proving facts about strings

Lemma 1

For strings w and \mathbf{x} $|w \cdot x| = |w| + |x|$.

```
Proof.
Proof.

7: 4 And [nome vav. " find thing s n' | 5 | < | W |

Induction Hypothesis (IH): n'n string s n' | 5 | < | W |

[50 x | = | 5 | + | x |."
                                WOX = IX marin
 Case 1: W = &
                                            = 0+ |x|
= |W|+ |x| mmulu bugtn
Cuse 2: W = a.y
           650 a & E. ... | w. x | = | (a.y) . x | = | a.(y.x) |
                                             = 1 + | y · x | 2/1 2/1 2/1 = 1 + | y | + | x | 970 IH
```

Formal languages

A **formal language** is a set of strings over some finite alphabet Σ .

Examples:

Examples:

$$\begin{aligned}
& \{ \omega \in \mathcal{L}^* \mid \omega \text{ give mustry } 1 \} & \text{ex. } \{ 1,10,1011,\dots \} \\
& \{ \omega \in \mathcal{L}^* \mid \omega \text{ Justium / Jawn: } \} & \text{ex. } \{ 1,0,1011,\dots \} \\
& \{ \omega \in \mathcal{L}^* \mid \omega \text{ Justium / Jawn: } \} & \text{ex. } \{ 1,0,1011,101,\dots \} \\
& \{ \omega \in \mathcal{L}^* \mid \omega \text{ Justium / Jawn: } \} & \text{ex. } \{ 1,0,1011,101,\dots \} \\
& \{ \omega \in \mathcal{L}^* \mid \omega \text{ Justium / Jawn: } \} & \text{ex. } \{ 1,0,1011,101,\dots \} \\
& \{ \omega \in \mathcal{L}^* \mid \omega \text{ Justium / Jawn: } \} & \text{ex. } \{ 1,0,1011,101,\dots \} \\
& \{ 1,0,1011,\dots \} \\
& \{ 1,011,\dots \} \\
& \{ 1,01$$

Careful...

These are different languages: \emptyset , $\{\underline{\varepsilon}\}$ And $\underline{\varepsilon}$ is not a language.

How to describe languages?

Siy is on 1 Siy is in + mathematical notating

William of the mathematical notating

And I siy is in the mathematical notating

And I siy is in the mathematical notating

And I siy is in the mathematical notating in the mathematical notation in the

6 {0,01,11,10013 72 minor

Composition

Combining languages

If \underline{A} and \underline{B} are languages over alphabet $\Sigma.$

- ▶ Basic set operations: $\underline{A \cup B}$, $\underline{A} \cap B$, $\bar{A} = \Sigma^* \setminus A$.
- ightharpoonup Concatenation: $A \cdot B$.

▶ Kleene closure or Kleene star: A^* .

$$\begin{bmatrix} w \in A^* & \text{iff} \\ 0 & \omega = \varepsilon \\ 0 & \omega = x \cdot y \end{bmatrix} \quad \text{Wo } x \in A \text{ boo}; y \in A^*$$

set minus

Examples

Definition: regular languages

A language L is regular if and only if it satisfies one of the following conditions:

- L is empty; ϕ
 - \rightarrow L contains one string (can be the empty string ε); **[here]**
 - L is a union of two regular languages;
 - lacksquare L is the concatenation of two regular languages; or
 - lackbox L is the Kleene closure of a regular language.

Examples $\sum_{i=1}^{n} \{o_{i}\}$ {E}, {0}, {010}, {100}, {00013, {1001}, {0111 113 Φυξο), {010}υ (10), {00013 υ (ξ010) υ (10)) {04 · {010}, φ · {100}, {ε} · {100}, ({010} υ {10}) · ({100} υ {10})

(100) υ (10) {0610} [({0130 {103}) • {13}}*-{03-({0130 {103})}]

Regular expressions

Let $\Sigma = \{0, 1\}$. Consider

Regular expressions

Regular language

$$((\{01\} \cup (\{1\} \boldsymbol{\cdot} (\{0\} \cup \{10\}))) \cup (\{00\} \boldsymbol{\cdot} (\{1\})^*)) \boldsymbol{\cdot} ((\{0\} \boldsymbol{\cdot} \{0\}) \boldsymbol{\cdot} \{1\})$$

is represented as

$$(01 + 1(0 + 10) + 00(1)^*)001$$

Regular expressions

- omit braces around one-string sets
- ightharpoonup use + instead of \cup
- ▶ omit •
- ▶ follow the precedence: Kleene star operator *, (implicitly), and +.

Remark: + and \bullet are associative, i.e., (A+B)+C=A+(B+C) and $(A\bullet B)\bullet C=A\bullet (B\bullet C).$

$$0 + 1(0+1)^{*}0$$

$$(0+1)^{*}$$

$$00^{*} \quad 000^{*} \quad 00;000$$

$$0,00,00$$

Regular expressions: examples 2

2

1010

All strings over $\{0,1\}$ except 010.

$$\frac{\varepsilon + 1(0+1)^* + 0(\varepsilon + 0(0+1)^*)}{+0.1(\varepsilon + 1(0+1)^*)} + \frac{1}{0.10(0+1)(0+1)^*}$$

- N 010 +

ε, ab, abab, ababc, abcab, ccc, abccabccab,
(10+0)* 0,ε, 00010, 0010100010,

Subexpressions

Regex is everywhere

Proofs about regular expressions - structural induction

R

(asc 1: R = \$ V

[5.50 [,

Cuse 7: R = 5

(165 3:

(R)-DHI

case 4: R=501

case 5: R = 5*

(I.H.) [-] als du no 1 supexpr

120 S & T it reg ex.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

 \rightarrow Let \underline{R} be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Case 1: R = 0. x contradiction vollagent 100 LTV Sumu in R Trip &

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Case 1: $R = \emptyset$.

Case 2: R is a single string.

R WW nm-empty language mw visor

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Case 1:
$$R = \emptyset$$
.

Case 2: R is a single string.

$$L(R) \neq \emptyset$$

Proof. (cont.2/4)Case 3: R = S + T for some regular expressions S and T. 6260000 R 72 85 symbol & , S 662: 7 4: 72 B & One INST: S&T IN Subexpression 900 R. fotilis S represent non-empty language bor: T represent non-empty language 100 Z.H of the language risk R of represent non-emple land of sv. unión vo non-emple! L(R)≠0

L(S) = 0 L(T) = 0 **Proof.** (cont.3/4)Case 4: $R = S \cdot T$ for some regular expressions S and T. Inu non-enty lamquage; Bun language Aunum \$ 11 A. }
Then language Allnum 74 T is B. or R Billard language A.B JX LLOS DOWN A Tienty of XEA y TULCT) B Trong & yEB only xoye A.B (molly 0) X.y & LCD. LCT Audi language Alongo R A: To ampty L(R) + \$

Proof. (cont.4/4)

Case 5: $R = S^*$ for some regular expression S.

n L(P) + Ø **Proof.** (cont.4/4) Case 5: $R = S^*$ for some regular expression S.

2 SIWV Vegex D Gos lut L(R) 66 n4 language is'
represent for R 1 L(1) = {1} 1(0+1) L(1(0+1))= {10,11}

In every case, the language L(R) is non-empty.

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

$$\frac{1}{L} = \frac{Q(L)}{R} \Rightarrow \frac{P(L)}{R}$$

$$\frac{1}{R} \left[L(R) = L \quad 160: R \quad 7009 \text{ symbol } \phi \right]$$

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

Let R be a regular expression.

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset . Proof regular language L log L Let R be a regular expression. We prove that if $L(R) \neq \emptyset$, then there exists a regular

expression R' such that L(R) = L(R') and R' does not contain \emptyset .

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

Let R be a regular expression. We prove that if $L(R) \neq \emptyset$, then there exists a regular expression R' such that L(R) = L(R') and R' does not contain \emptyset . We prove by induction. What should the induction hypothesis be?

I.H.: For every subexpression S of R, if $L(S) \neq \emptyset$, there exists an \emptyset -free regular expression S' such that L(S) = L(S').

I.H.: For every subexpression S of R, if $L(S) \neq \emptyset$, there exists an \emptyset -free regular expression S' such that L(S) = L(S').

What are the cases that we have to consider?

Cose 1:
$$R = \emptyset$$

(ase 2: $R \neq \emptyset$ sing sh sh.
Call 3: $R = S + T$ $\forall M$ vegex $S \otimes T$
(ase 4: $R = S \cdot T$ $\forall M$ us resex $S \cdot T$
(as 5: $R = S^*$ $\forall M$ us reger S'

I.H.: For every subexpression S of R, if $L(S) \neq \emptyset$, there exists an \emptyset -free regular expression S' such that L(S) = L(S').

1.0

What are the cases that we have to consider?

$$ightharpoonup R = \emptyset$$
 , $L(R) = \emptyset$

$$ightharpoonup R$$
 is a single string. \checkmark

$$R = S + T$$
 for some regular expressions S and T .

 $R = S \cdot T$ for some regular expressions S and T .

$$R = S^*$$
 for some regular expression S .

$$\alpha = 1:L(S) = \emptyset \rightarrow h^{\perp} R' = \varepsilon$$

HENDO B= OLLEH

(E-ex1-6) For string w, the reversal w^R is defined recursively as follows: $\int_{0}^{2} o \int_{0}^{\infty} e^{-y} dy$

$$w^R = \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ x^R \cdot a & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x \end{cases} = \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ x & \text{or } i \end{cases}$$

For a language L, the reversal of L is defined as

$$L^R = \{ w^R \mid w \in L \}.$$

You may assume the following facts.

$$ightharpoonup L^* \cdot L^* = L^*$$
 for every language L .

$$(w^R)^R = w$$
 for every string w .

$$(w') = w' \text{ for every string } w.$$

$$(x \cdot v)^R = v^R \cdot x^R \text{ for all strings } x \text{ and } y.$$

AT L 12 regular language

 $(x \cdot y)^R = y^R \cdot x^R$ for all strings x and y.

wor language in represent now ve jular expression R. Albaroin LR Wir regular language L(S)=LR

Prove that $(L^R)^* \subseteq (L^*)^R$.