Esquemas de Software

Foreground-Background


```
tarea1_Init();
tarea2 Init();
tarea3_Init();
                                              ISR (tarea2)
sei();
while(1)
                             Comunicación
                             por flags globales y
 if(evento tarea1)
   tarea1():
 if(evento_tarea2)
                                              ISR (tarea3)
   tarea2();
 if(evento tarea3)
   tarea3();
                                     Tareas en Foreground
```

Tareas en Background

Time-Triggering Temporización básica con Ticks

Scheduling básico

Temporización: Planificación-Despacho de Tareas

```
Volatile unsigned char Flag X=0,
                                               Variables públicas del planificador
Volatile unsigned char Flag_Y=0;
Volatile unsigned char Flag Z=0;
static unsigned char contX=0,
                                             Variables privadas del planificador
static unsigned char contY=0;
static unsigned char contZ=0;
---ISR TIMER: ocurre cada 1 ms
_interrupt void ISRrtc (void)
                                            void SEOS SCHTasks (void)
 SEOS SCHTasks();
                                             if (++contX==200) {
   Flag X=1; //Tarea programada cada 200 ms
   contX=0;
 RTCSC_RTIF=0;
                                             ,
if (++contY==50) {
Flag_Y=1; //Tarea programada cada 50 ms_contY=0;
                                              ,
f (++contZ==10) {
Flag_Z=1; //Tarea programada cada 10 ms
```

Interrupción Periódica

Planificador

Temporización de Tareas

Productor-Consumidor

Problema: El productor envía un dato cada vez, y el consumidor consume un dato cada vez. Si uno de los dos procesos no está listo, el otro debe esperar.

Solución: Es necesario introducir un buffer en el proceso de transmisión de datos

El buffer puede ser infinito. No obstante esto no es realista

Alternativa: Buffer acotado en cola circular

Productor-Consumidor

- Función Productor
 Almacena en Buffer
 e incrementa puntero de Escritura
- Función Consumidor
 Lee del buffer
 e incrementa puntero de Lectura

Productor-Consumidor

- ☐ En el contexto de una arquitectura Background/Foreground una tarea productora puede ser un handler de interrupción y la consumidora una tarea de segundo plano o viceversa.
- ☐ En el contexto de la planificación Time-Triggered las tareas que producen y consumen datos a diferentes ritmos se implementan como tareas multietapas (no bloqueantes).

Ejemplos Típicos a los que se pueden aplicar dichos modelos:

Productor

- Teclado matricial
- •Recepción UART
- •Mensajes de salida
- Muestreo analógico
- •Reconstrucción analógica

Consumidor

tarea que procesa texto
tarea que procesa comandos
tarea que transmite o imprime en display LCD
tarea que procesa muestras
tarea que controla el DAC

Máquinas de Estados Finitos

Máquinas de Moore y Mealy

Lógica de Estados Moore y Mealy

Flujo de Diseño

Dado un canal de datos serie, detectar una secuencia determinada.

Especificaciones:

Detectar la secuencia 1011 sin solapamiento en la recepción de un canal de datos serie.

Posible utilización práctica:

- -Detección de identidad en un protocolo de comunicación (ethernet, I2C, etc.)
- -Cerradura con combinación numérica.

Diagrama de Estados – Moore (sin solapamiento)

Diagrama de Estados – Otras opciones: Moore (con solapamiento)

Diagrama de Estados – Otras opciones: Mealy (sin solapamiento)

A => Estado

X => Entrada de 1 bit

S => Salida 1 bit (no asociada al estado)

Tablas de Verdad

EA	ES		
	X=0	X=1	
А	А	В	
В	С	В	
С	А	D	
D	С	Е	
E	А	В	
F	А	А	
G	А	А	
Н	А	А	

EA = Estado Actual

ES = Estado Siguiente

Estados no contemplados

5 estados = 3 ff 3 estados no contemplados

Codificación de Estados

E/		ES $D_{2}D_{1}D_{0} = Q'_{2}Q'_{1}Q'_{0}$		
Q_2Q	140	X = 0	X=1	
A = 0	000	000	001	
B = 0	001	010	001	
C = (010	000	011	
D = (011	010	100	
E = 1	100	000	000	
F = 1	L01	000	000	
G = :	110	000	000	
H = :	111	000	000	

Tablas de Verdad

Х	EA	ES	
^	$Q_2Q_1Q_0$	$D_2D_1D_0 = Q_2'Q_1'Q_0'$	
0	A = 000	000	
0	B = 001	010	
0	C = 010	000	
0	D = 011	010	
0	E = 100	000	
0	F = 101	000	
0	G = 110	000	
0	H = 111	000	
1	A = 000	001	
1	B = 001	001	
1	C = 010	011	
1	D = 011	100	
1	E = 100	000	
1	F = 101	000	
1	G = 110	000	
1	H = 111	000	

Otra manera de expresar la tabla de verdad

Tablas de Verdad

Х	$\begin{array}{c} EA \\ Q_2 Q_1 Q_0 \end{array}$	ES $D_2D_1D_0 = Q'_2Q'_1Q'_0$
0	A = 000	000
0	B = 001	010
0	C = 010	000
0	D = 011	010
0	E = 100	000
0	F = 101	000
0	G = 110	000
0	H = 111	000
1	A = 000	001
1	B = 001	001
1	C = 010	011
1	D = 011	100
1	E = 100	000
1	F = 101	000
1	G = 110	000
1	H = 111	000

Flip flop tipo D

D	Q	Q+1
0	0	0
0	1	0
1	0	1
1	1	1

Flip flop tipo JK

J	K	Q	Q + 1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Ejemplo práctico:

Detector de Secuencia

Karnaugh

Х	$\begin{array}{c c} EA \\ Q_2Q_1Q_0 \end{array}$	ES $D_2D_1D_0 = Q'_2Q'_1Q'_0$	S
0	A = 000	000	0
0	B = 001	010	0
0	C = 010	000	0
0	D = 011	010	0
0	E = 100	000	1
0	F = 101	000	0
0	G = 110	000	0
0	H = 111	000	0
1	A = 000	001	0
1	B = 001	001	0
1	C = 010	011	0
1	D = 011	100	0
1	E = 100	000	1
1	F = 101	000	0
1	G = 110	000	0
1	H = 111	000	0

D_2	0.0				
_	Q_1Q_0	00	01	11	10
	00				
	01				
	11				
	10			1	

$$D_2 = XQ'_2Q_1Q_0$$

1	Q_1Q_0	00	01	11	10
	00		1	1	
	01				
	11				
	10				1

$$D_1 = X'Q'_2Q_0 + XQ'_2Q_1Q'_0$$

$$D_0 = XQ'_2Q'_1 + XQ'_2Q'_0$$

$$S = Q_2 Q'_1 Q'_0$$

Implementación

Implementación

Ejemplo práctico:

Máquinas de Estados Finitos

MEF temporizadas

```
void main(void) {
  Iniciar MEF();
                                       Modificado x ISR() cada T seg.
  while (1) {
       if (FLAG TIMER)
                                                     Debe ser
              Actualizar MEF();
                                                   No-bloqueante
              FLAG TIMER=0;
                                                 Consumo de corriente Icc [mA]
       sleep();
                                          ICC RUN
     Similar a la implementación en Hardware
                                         Icc SLEEP
                           salida
         entrada
                  Sistema
                      clk
```