GLOSSARY OF TERMS

FOR THE

ASCE STANDARDIZED REFERENCE EVAPOTRANSPIRATION EQUATION

C_d	denominator constant that changes with reference type and calculation
Cd	time step (s m ⁻¹)
C_n	numerator constant that changes with reference type and calculation
	time step (K mm s ³ Mg ⁻¹ d ⁻¹ or K mm s ³ Mg ⁻¹ h ⁻¹)
D_{M}	day of the month (1-31)
ET	Evapotranspiration (mm d ⁻¹ or mm h ⁻¹)
ET_c	Crop evapotranspiration
ETos	Reference ET for a <i>short</i> crop with an approximate height of 0.12 m (similar to clipped grass) (mm d ⁻¹ or mm h ⁻¹)
ET_{ref}	Reference Evapotranspiration (mm d ⁻¹ or mm h ⁻¹)
ET _{rs}	Reference ET for a <i>tall</i> crop with an approximate height of 0.50 m (similar to full-cover alfalfa) (mm d ⁻¹ or mm h ⁻¹)
ET_{sz}	Standardized Reference Evapotranspiration Equation
G	soil heat flux density at the soil surface (MJ m ⁻² d ⁻¹ for daily time steps or MJ m ⁻² h ⁻¹ for hourly time steps)
G _{day}	daily soil heat flux density (MJ m ⁻² d ⁻¹)
Ghr daytime	hourly soil heat flux density during daytime (MJ m ⁻² h ⁻¹)
G _{hr nighttime}	hourly soil heat flux density during nighttime (MJ m ⁻² h ⁻¹)
G_{month}	monthly soil heat flux density (MJ m ⁻² d ⁻¹)
G_{sc}	solar constant (4.92 MJ m ⁻² h ⁻¹)
J	day of the year $(1-365)$
J_{month}	month of the year $(1-12)$
K _{ab}	coefficient derived from the a _s and b _s coefficients of the Angstrom formula (unitless)
K_{B}	the clearness index for direct beam radiation (unitless)
K_c	crop coefficient
K _{co}	crop coefficient for use with ET _{os}
K _{cr}	crop coefficient for use with ET _{rs}
KD	the transmissivity index for diffuse radiation (unitless)
K_G	coefficient used to calculate hourly soil heat flux (unitless)
K_{t}	atmospheric turbidity coefficient (unitless)
K _{time}	units conversion, equal to 86,400 s d ⁻¹ for ET in mm d ⁻¹ and equal to 3600 s h ⁻¹ for ET in mm h ⁻¹
K _o	average difference between T_{min} and mean daily T_{dew} (°C)

ASCE-EWRI Task Committee Report, January, 2005

LAI leaf area index = area (one-sided) of leaves per unit area of ground surface (m² m⁻²) LAI_{active} active (sunlit) leaf area index, m² (leaf area) m⁻² (soil surface) longitude of the measurement site (expressed as positive degrees west L_{m} of Greenwich, England) longitude of the center of the local time zone (expressed as positive $L_{\mathbf{z}}$ degrees west of Greenwich, England) number of the month (1-12) M maximum duration of sunshine or daylight hours (h) N P atmospheric pressure at station elevation z (kPa) atmospheric pressure at sea level = 101.3 (kPa) P_{o} specific gas constant = $287 \text{ (J kg}^{-1} \text{ K}^{-1})$ R extraterrestrial radiation (MJ m⁻² d⁻¹) or (MJ m⁻² h⁻¹) R_a RH relative humidity (%) daily maximum relative humidity (%) RH_{max} mean daily relative humidity RH_{mean} RH_{min} daily minimum relative humidity (%) long-wave radiation emitted from the surface R_{lu} long-wave radiation emitted from the atmosphere R_{ld} net radiation at the crop surface (MJ m⁻² d⁻¹ or MJ m⁻² h⁻¹) R_n net long-wave radiation (MJ m⁻² d⁻¹ or MJ m⁻² h⁻¹), defined as being R_{n1} positive upwards and negative downwards net short-wave radiation (MJ m⁻² d⁻¹ or MJ m⁻² h⁻¹), defined as being R_{ns} positive downwards and negative upwards measured or calculated solar radiation (MJ m⁻² d⁻¹) or (MJ m⁻² h⁻¹) R_{s} clear-sky radiation (MJ m⁻² d⁻¹) or (MJ m⁻² h⁻¹) R_{so} seasonal correction for solar time (h) S_{c} mean daily or hourly air temperature at 1.5 to 2.5-m height (°C) Τ T_{dew} dew point temperature (°C) dry bulb temperature (°C) T_{dry} mean hourly air temperature (°C) T_{hr} T_{K} mean absolute temperature (K) mean absolute temperature during the hour (K) TK hr reference temperature at elevation z_0 (K) T_{Ko} maximum absolute temperature during the 24-hour period (K) $T_{K \text{ max}}$ minimum absolute temperature during the 24-hour period (K) $T_{K \min}$ mean virtual temperature for period (K) T_{Kv} mean hourly air temperature (°C) T_{hr} daily maximum air temperature (°C) T_{max} T_{mean} mean air temperature for the time period of calculation (°C) daily minimum air temperature (°C) T_{min} monthly mean air temperature (°C) T_{month} wet bulb temperature (°C) T_{wet} W precipitable water in the atmosphere (mm)

```
Y
                number of the year (for example 1996 or 96)
                coefficient depending on the type of ventilation of the wet bulb of a
a_{psy}
                    psychrometer (°C-1)
                coefficient of the Angstrom formula (unitless)
a_{s}
                coefficient of the Angstrom formula (unitless)
b_{s}
                specific heat of the air, (MJ kg<sup>-1</sup> oC<sup>-1</sup>)
                zero plane displacement height, (m)
                hourly or shorter period when R_n \ge 0
daytime
d_{r}
                inverse relative distance earth-sun (unitless)
                mean actual vapor pressure at 1.5 to 2.5-m height (kPa)
e^{\delta}_{e}(T)
                saturation vapor pressure function (kPa)
                saturation vapor pressure at 1.5 to 2.5-m height (kPa)
e_s
                cloudiness function (unitless)
f_{cd}
                cloudiness function for the time period prior to when sun angle \beta (in
f_{cd \beta > 0.3}
                   the afternoon or evening) falls below 0.3 radians (unitless)
                gravitational acceleration = 9.807 \text{ (m s}^{-2})
g
                reference vegetation height (m)
h
                von Karman's constant, 0.41, (dimensionless)
k
                adjustment coefficient for predicting R_s from air temperature (°C-0.5)
k_{Rs}
                recorded duration of sunshine during a day (h)
nighttime
                hourly or shorter period when R_n < 0
                aerodynamic resistance (s m<sup>-1</sup>)
r_a
                bulk stomatal resistance of a well-illuminated leaf (s m<sup>-1</sup>)
r_{l}
                surface resistance (s m<sup>-1</sup>)
r_s
                standard clock time at the midpoint of the period
t
                length of the calculation period (h)
t_1
                mean daily or hourly wind speed at 2-m height (m s<sup>-1</sup>)
u_2
                wind speed at height z (m s<sup>-1</sup>)
\mathbf{u}_{\mathbf{z}}
                weather site elevation above mean sea level (m)
\mathbf{Z}
                height of air temperature and humidity measurements (m)
z_h
                elevation at reference level (i.e., sea level) (m)
Z_0
                roughness length governing momentum transfer (m)
Zom
                roughness length for transfer of heat and vapor (m)
Zoh
                height corresponding to wind speed (m)
Z_W
                "alpha" = albedo or canopy reflection coefficient (unitless)
α
                constant lapse rate moist air = 0.0065 (K m<sup>-1</sup>)
\alpha_1
                "beta" = angle of the sun above the horizon (radians)
β
                "gamma" = psychrometric constant (kPa °C-1)
γ
                psychrometric constant for the psychrometer (kPa °C<sup>-1</sup>)
\gamma_{psy}
                "delta" = slope of the saturation vapor pressure-temperature curve
Δ
                    (kPa °C-1)
                "delta" = solar declination (radians)
δ
```

```
"epsilon" = ratio of the molecular weight of water vapor to dry air
3
                     (unitless) (\varepsilon = 0.622)
                 "lambda" = latent heat of vaporization (MJ/kg)
λ
                 "phi" = latitude (radians)
φ
                 "rho" = air density (Kg m^{-3})
\rho_a
                  water density (Mg m<sup>-3</sup>) (taken as 1.0 Mg m<sup>-3</sup>)
\rho_{\rm w}
                 "sigma" = Stefan-Boltzmann constant (4.901\ 10^{-9}\ MJ\ K^{-4}\ m^{-2}\ d^{-1})
σ
                 "omega" solar time angle (radians), solar noon = 0.
ω
                 sunset hour angle (radians)
\omega_{\rm s}
                 solar time angle at beginning of hourly or shorter period (radians)
\omega_1
                 solar time angle at end of hourly or shorter period (radians)
\omega_2
```