```
12) Model 2: 5:=5,=52
                   g_{i}(x) = \frac{-1}{2} \log(2\pi) - \frac{1}{2} \log(|\xi|)
-\frac{1}{2} (x - M_{i})^{T} \xi^{-1} (x - M_{i}) + \log(P(C_{i}))
2(\xi^{-1}|x) = \xi \log(g_{i}(x^{\xi})) = \xi g_{i}(x^{\xi})
\xi_{i} = \frac{1}{2} \log(x^{\xi})
                                            = £ [-d, log(271) - ], log(121)
                                                      -1 (x=m;) = (x=n;) +10g(p(c,))
                                         = -N \log(|z|) - 1 = (x^{t} - \mu_{i})^{T} z^{-1} (x^{t} - \mu_{i}) 
 = -N \log(|z|) - 1 = (x^{t} - \mu_{i})^{T} z^{-1} (x^{t} - \mu_{i}) 
 = -N \log(|z|) - 1 = 0 
 = -N (-z^{T}) - 1 = (x^{t} - \mu_{i})^{T} (x^{t} - \mu_{i}) = 0 
 = -N (-z^{T}) - 1 = (x^{t} - \mu_{i})^{T} (x^{t} - \mu_{i}) = 0 
                    N = \sum_{i=1}^{N} (x^{i}-\mu_{i})^{T}(x^{i}-\mu_{i})
                  S = \sum_{t=1}^{N} (x^{t} - \mu_{t})^{T} (x^{t} - \mu_{t})
```

```
Model 3: 5, = a, I S2 = a, I
g:(x) = -d log(27)-1100(15:1)
             - 1 (x-4;) [= (x-4;) + log(P(c;)).
-1 log(15:1) = -1 log(12:I)=-1 log(x:d) = -1 log(x:)
ε, = (α, I) - = (α, -1) I
 g: (x) = -d log(271) - d log(x:) - 1 x-1 (x-4:) (2-4:)
             +109 (P((i))
 2 (x: 1x) = = 10g(g: (-xt))
            = -12 log(dlog(a;)+a; (xt-n;)(xt-m;))
            = -1 & [d log(a) + d; ](xt-m;) +(xt-m;)]
             = -1. Ndlog(a;) + x; 1 & (xt-m;) (xt-m;)
\frac{\partial \lambda}{\partial x} = -\frac{1}{2} \cdot Nd \frac{\partial (\log(\alpha_i))}{\partial \alpha_i} + \frac{\partial (\alpha_i^{-1})}{\partial \alpha_i} + \frac{\xi}{2} (x^{\xi} - M_i)^{\tau} (x - M_i)
= -Nd + -\frac{1}{2} \cdot \frac{\xi}{2} (x^{\xi} - M_i)^{\tau} (x - M_i) = 0.
= -Nd + -\frac{1}{2} \cdot \frac{\xi}{2} (x^{\xi} - M_i)^{\tau} (x - M_i) = 0.
   \lambda_{i} = \frac{2}{2} \sum_{t=1}^{N} (x^{t} - M_{i})^{T} (x - M_{i})
```

1b) data 1, model 1:

```
pc1 =
     0.3000
pc2 =
     0.7000
m1 =
     0.4306
     2.0235
     3.1758
                       1.8640
                                 0.2267
                                           0.7462
                                                     0.9977
                                                              0.4178
                                                                        1.2227
                                                                                  1.1337
                                                                                           -1.1909
    -2.4272
                       0.2267
                                 3.5370
                                           0.3019
                                                    -0.1300
                                                              1.5294
                                                                        0.9958
                                                                                 -0.1878
                                                                                            3.1664
                                                                        1.7198
                                                                                            0.2243
                       0.7462
                                 0.3019
                                           7.8426
                                                     1.2902
                                                              -0.4143
                                                                                  0.3431
    -2.5234
                       0.9977
                                                              0.9166
                                -0.1300
                                           1.2902
                                                     4.0886
                                                                        0.7222
                                                                                  1.0326
                                                                                            1.9150
     3.2378
                       0.4178
                                 1.5294
                                          -0.4143
                                                     0.9166
                                                               3.9976
                                                                        0.9693
                                                                                 -0.5271
                                                                                            3.3238
                       1.2227
                                 0.9958
                                           1.7198
                                                     0.7222
                                                              0.9693
                                                                        3.9339
                                                                                            2.2238
                                                                                 -0.1894
    -5.5208
                       1.1337
                                -0.1878
                                           0.3431
                                                     1.0326
                                                              -0.5271
                                                                        -0.1894
                                                                                  4.0757
                                                                                           -1.6529
   -6.6921
                      -1.1909
                                 3.1664
                                           0.2243
                                                     1.9150
                                                              3.3238
                                                                        2.2238
                                                                                 -1.6529
                                                                                           16.5256
                   S2 =
m2 =
                       3.4237
                                           2.5707
                                 2.0692
                                                     2.6127
                                                              1.7732
                                                                        1.8303
                                                                                  2.6792
                                                                                            2.9340
                       2.0692
                                 5.7835
                                           2.1793
                                                     2.7182
                                                              3.1575
                                                                        2.8877
                                                                                  2.7564
                                                                                            5.8537
     4.5841
                       2.5707
                                 2.1793
                                           8.7126
                                                     3.3752
                                                               2.8256
                                                                        2.2294
                                                                                  2.7535
                                                                                            5.1835
     6.4933
                       2.6127
                                 2.7182
                                           3.3752
                                                     8.1683
                                                               3.5774
                                                                        2.6607
                                                                                  2.0204
                                                                                            8.3968
                       1.7732
                                 3.1575
                                           2.8256
                                                     3.5774
                                                               5.5677
                                                                        2.9061
                                                                                  3.2500
                                                                                            4.8208
     6.4265
                       1.8303
                                 2.8877
                                           2.2294
                                                     2.6607
                                                              2.9061
                                                                        3.7294
                                                                                  2.2349
                                                                                            4.4766
     1.6891
                       2.6792
                                 2.7564
                                           2.7535
                                                     2.0204
                                                               3.2500
                                                                        2,2349
                                                                                  8.2148
                                                                                            4.3055
                       2.9340
                                 5.8537
                                           5.1835
                                                     8.3968
                                                              4.8208
                                                                        4.4766
                                                                                  4.3055
                                                                                           19.8477
     2.2943
     8.3626
    -0.1658
                   err =
    -1.8048
                       0.2200
```

Data 2, model 1:

			S1 =							
		m1 = 1.0658 2.6548	1.3355 -0.2649 0.6608 0.2725	-0.2649 2.5453 2.0657 0.9204	0.6608 2.0657 6.9133 1.5145	0.2725 0.9204 1.5145 3.0526	0.9973 1.0862 0.8146 0.6584	0.4623 -0.4459 0.1927 -0.4640	-0.2879 -0.0506 2.6834 0.2391	0.2938 2.6920 2.7168 2.3010
		3.2977 -1.6793 -1.4987 4.3959	0.9973 0.4623 -0.2879 0.2938	1.0862 -0.4459 -0.0506 2.6920	0.8146 0.1927 2.6834 2.7168	0.6584 -0.4640 0.2391 2.3010	2.1990 -0.0037 -0.5659 0.7485	-0.0037 1.2053 0.6576 -0.1986	-0.5659 0.6576 4.0462 -0.7298	0.7485 -0.1986 -0.7298 10.4733
pc1	=	-4.2138 -4.9679	S2 =							
	0.3000	m2 = 2.8221	2.9283 1.0700 2.9092 0.5704 -0.0910	1.0700 4.9901 2.4537 0.1758 2.7315	2.9092 2.4537 11.6572 0.0882 0.8252	0.5704 0.1758 0.0882 5.3310 0.0541	-0.0910 2.7315 0.8252 0.0541 4.2550	0.0666 -0.3235 0.1275 1.0103 1.0248	0.8741 0.4943 0.0219 4.3004 0.5376	1.7632 0.0507 -0.8332 2.2958 1.6681
pc2	=	4.4669 4.8537 0.5192 0.3764	0.0666 0.8741 1.7632	-0.3235 0.4943 0.0507	0.1275 0.0219 -0.8332	1.0103 4.3004 2.2958	1.0248 0.5376 1.6681	2.6892 1.7066 2.1595	1.7066 11.3170 2.7119	2.1595 2.7119 12.9317
	0.7000	6.2585 -2.6611 -3.8175	err = 0.2300							

Data 3. model 1:

Data 1, model 2:

Data 2, model 2:

		m1 =								
pc1	=	1.0658 2.6548 3.2977	S =							
		-1.6793	2.4505	0.6695	2.2347	0.4810	0.2355	0.1853	0.5255	1.3224
		-1.4987 4.3959	0.6695	4.2567	2.3373	0.3992	2.2379	-0.3602	0.3308	0.8431
	0.3000 -4.2138		2.2347	2.3373	10.2340	0.5161	0.8221	0.1471	0.8204	0.2318
		-4.9679	0.4810	0.3992	0.5161	4.6474	0.2353	0.5680	3.0820	2.2974
			0.2355	2.2379	0.8221	0.2353	3.6382	0.7162	0.2065	1.3922
		-2	0.1853	-0.3602	0.1471	0.5680	0.7162	2.2440	1.3919	1.4521
		m2 =	0.5255	0.3308	0.8204	3.0820	0.2065	1.3919	9.1358	1.6794
pc2	=	2.8221 4.4669 4.8537	1.3224	0.8431	0.2318	2.2974	1.3922	1.4521	1.6794	12.1942
	21 _ 222	0.5192	1202 11							
	0.7000	0.3764 6.2585	err =							
		-2.6611 -3.8175	0.5500							

Data 3, model 2:

Data 1 model 3:

Data 2, model 3:

Data 3, model 3:

		•
		0
14)	Erri Pates.	
	# elror	
	Model 1: test-data 1 - 0.22	
	test-duta2 - 0.23	
	test -dntn3 - 0.11	
	Model 2: (Est_data1 - 0.17)	
	test-data 2 - 0.55	
	test-data 3 - 0.45	
	Model 3: test data I - 0.34	
	test-dat-12 - 0.38	
	(test-date3 - 0.07)	
	Based on the results, it seems most likely that test-data 3 was distributed with s, very different from 52, which is why models	
ata S	1 and 3 were much more e Scelive than model A.	
model 3	It was also likely to have S: & d: I, which	
	meant that Model 3, a less complex model,	
	had less error turn model 1.	
and the second second second second second	It also likely that test-dated had 5, 252,	
	Last Model & (1855 com siez Chan	
hta1	1 1 1 has less error- It is also likely can	
modeld	1 Jan John Tero Covarigates, which would	
	explain model 3's high error fate-	
and the same of th		
	[None of the models were particularly good at	-)
data 2	11. Let Lie 2 which means that 3,732	
model:	11 - C IT but It is possible indi	
	disserent simple fication would be thou	
	L-Sit than model to	A

k	error	
1		0.0539
3		0.0404
5		0.0438
7		0.0539

2b)

k	error	
1		0.064
3		0.0505
5		0.0505
7		0.0572

Thus we choose K = 15.

2c) Training set:

Test set:

I	k	error
2	1	0.862
2	3	0.8721
2	5	0.8519
4	1	0.8249
4	3	0.8485
4	5	0.8485
9	1	0.771
9	3	0.7677
9	5	0.7407

I know this error is way too high, I'm not sure what went wrong. My myLDA function I think is mostly correct at least so hopefully I can get some partial credit for this part.

2e)

k	error
1	0.0887
3	0.2339
5	0.4274
7	0.4274

Choose K = 34

The reconstructed images are more detailed and less pixelated when the value of k is higher. The higher k is, the higher the picture quality is. This is because the original x vector loses information when it is projected to a lower dimension, and that information cannot be regained during back projection. The smaller k is, the lower the dimension that x gets projected to, and thus the more information is lost - resulting in lower picture quality.