République Islamique de Mauritanie Ministère de l'Education Nationale Direction des Examens et de l'Evaluation Service des Examens

Baccalauréat 2016

Session Normale

Séries : Littéraires Epreuve: Mathématiques Durée: 2 heures Coefficient: 2

Exercice 1 (5 points)

- 1. Résoudre, dans \mathbb{R} , l'équation suivante : (\mathbf{E}) $x^2 - 9x + 14 = 0$
 - 2. En déduire les solutions des équations suivantes dans $\mathbb R$:
 - a) $(\ln x)^2 9\ln x + 14 = 0$;

b) $\ln(x-5) - \ln 2 = \ln(2x-7) - \ln x$;

c) $e^{2x} - 9e^x + 14 = 0$.

(1 pt) (1 pt)

(1 pt)

(1 pt)

(1 pt)

(1 pt)

(1 pt)

(1 pt)

(1 pt)

(1 pt)

(1 pt)

(1 pt)

(2 pt)

(1 pt)

Exercice 2 (5 points)

On considère les suites numériques (U_n) et (V_n) telles que pour tout entier naturel n :

$$\begin{cases} U_0 = 2 \\ U_{n+1} = 5U_n - 4 \end{cases}; \ V_n = U_n - 1. \qquad \text{On pose } S = V_0 + V_1 + \dots + V_{2016}$$

Pour chaque question, parmi les réponses proposées, une seule réponse est exacte.

	1 1 /1		1 1 /	
	Question	A	В	C
1	Calcul de termes	$U_1 = 1$	$\mathbf{U}_2 = 26$	$U_3 = 125$
2	La suite (V _n) est	géométrique	arithmétique	décroissante
3	Le terme général	$V_n = 5^n - 1$	$V_n = 5^n$	$V_n = 5^{n+1}$
4	Le terme général	$U_n = 5^n - 1$	$U_n = 5^n - 4$	$U_n = 5^n + 1$
5	Valeur de S	$S = 5^{2017} - 1$	$S = \frac{5^{2017} - 1}{4}$	$S = \frac{5^{2016} - 1}{1}$
			4	4

Recopie sur la feuille de réponse et complète le tableau ci-contre. Aucune justification n'est demandée.

Question N°	1	2	3	4	5
Réponse exacte					

Problème (10 points)

Soit f la fonction numérique définie par :

$$f(x) = \frac{3x^2 - 2x - 5}{x - 2}$$

et soit (C) sa courbe représentative dans un repère orthonormé (O;i,j).

- 1. Déterminer le domaine de définition D_f de la fonction f et l'écrire sous la forme d'une réunion d'intervalles.
- 2.a) Calculer les limites suivantes : $\lim_{x \to -\infty} f(x)$, $\lim_{x \to 1} f(x)$, $\lim_{x \to 2^+} f(x)$ et $\lim_{x \to 2^+} f(x)$.

b) En déduire que (C) admet une asymptote verticale (Δ) dont on précisera une équation. (1 pt)

- 3.a) Déterminer les réels a,b et c tels que pour tout x de D_f on a : $f(x) = ax + b + \frac{c}{x-2}$.
- b) Vérifier que la droite (D) d'équation y = 3x + 4 est une asymptote oblique à (C).
- 4.a) Calculer f'(x) où f' est la fonction dérivée de f. Vérifier que le signe de f'(x) est celui du produit (x-1)(x-3).
- b) Dresser le tableau de variation de f.
- (1 pt) 5.a) Déterminer les points d'intersections de (C) avec les axes. (1 pt)
- b) Donner l'équation de la tangente (T) à la courbe (C) au point A d'abscisse $x_0 = 1$ (1 pt)
- c) Construire la courbe (C) et ses asymptotes dans le repère (O; i, j). (1 pt)

Fin.