Paper Review

Large Language Models Can Be Strong Differentially Private Learners

ICLR 2022

Xuechen Li¹, Florian Tramer², Percy Liang¹, Tatsunori Hashimoto¹

¹Stanford University ²Google Research

Privacy Preserving Deep Learning

- Data privacy guarantee for Large Language Models (LLM)
- Privacy leakage from training data

Ratios of pre-training data source for LLM

Privacy Attack

- Simulate the scenario of training data extraction attack
- Language model memorization

Training data extraction attack

Categorization of memorized training examples

Category	Count
US and international news	109
Log files and error reports	79
License, terms of use, copyright notices	54
Lists of named items (games, countries, etc.)	54
Forum or Wiki entry	53
Valid URLs	50
Named individuals (non-news samples only)	46
Promotional content (products, subscriptions, etc.)	45
High entropy (UUIDs, base64 data)	35
Contact info (address, email, phone, twitter, etc.)	32
Code	31
Configuration files	30
Religious texts	25
Pseudonyms	15
Donald Trump tweets and quotes	12
Web forms (menu items, instructions, etc.)	11
Tech news	11
Lists of numbers (dates, sequences, etc.)	10

Privacy Attack

- Attack
 - Generate 256 tokens by one of sampling
 - Sort generations by one of inference metrics
- Evaluation
 - Identify 604 unique memorized examples in total

Inference	Text Generation Strategy						
Strategy	Top-n	Temperature	Internet				
Perplexity	9	3	39				
Small	41	42	58				
Medium	38	33	45				
zlib	59	46	67				
Window	33	28	58				
Lowercase	53	22	60				
Total Unique	191	140	273				

Privacy Attack

- Training data extraction attack
- Language model memorization

Definition 1 (Model Knowledge Extraction) A string s is extractable⁴ from an LM f_{θ} if there exists a prefix c such that:

$$s \leftarrow \underset{s': |s'|=N}{\operatorname{arg\,max}} f_{\theta}(s' \mid c)$$

Definition 2 (k-Eidetic Memorization) A string s is k-eidetic memorized (for $k \ge 1$) by an LM f_{θ} if s is extractable from f_{θ} and s appears in at most k examples in the training data X: $|\{x \in X : s \subseteq x\}| \le k$.

Examples of k=1 eidetic memorized, high entropy content that we extract

Memorized	Sequence	Occurrences in Data		
String	Length	Docs	Total	
Y2y5	87	1	10	
7C	40	1	22	
WA	54	1	36	
2c	64	1	49	
ff	32	1	64	
C7	43	1	83	
0x	10	1	96	
76	17	1	122	
a74b	40	1	311	

String Format: UUID (Universally Unique Identifier)

- 32 Hexadecimal numbers
- 5 Group separated by hypen(-)

Membership Inference Attack

- Shadow training
- Baseline model provided by Machine Learning as a Service (MLaaS)

Experiment on Google-trained models

Model	Dataset	Training Accuracy	Testing Accuracy	Attack Precision	Model	Dataset	Training Accuracy	Testing Accuracy	Attack Precision
MLP	Adult	0.848	0.842	0.503		Purchase (20)	1.000	0.781	0.590
CNN	MNIST Location	0.984 1.000	0.928 0.673	0.517 0.678	MLP	Purchase (50)	1.000	0.693	0.860
MLP	Purchase (2)	0.999	0.073	0.505	IVIEI	Purchase (100)	0.999	0.659	0.935
	Purchase (10)	0.999	0.866	0.550		TX hospital stays	0.668	0.517	0.657

Differential Privacy (DP)

- Deep learning adopts DP algorithm for data privacy guarantee
- Quantify the amount of privacy
 - Privacy disclosed about individual records by the output of a valid computation
- Data analysis
 - Can mine aggregated personal data with provable guarantees of privacy for individuals

How to prevent the disclosure of private data

Measure	Purpose	Approach
Statistical Disclosure	Guarantee data privacy in	Data generalization and
Control (SDC)	statistical field	anonymization
Computational Disclosure	Data security and acess control	Encryption, access
Control (CDC)	in database system	control, data masking
Inference Control	Minimize disclosure of personal	Noising, query response
	information during data analysis	distortion, data sampling

Cynthia Dwork et al. Calibrating noise to sensitivity in private data analysis. In Theory of cryptography conference, 2006. Ross Anderson. Security Engineering — Third Edition. Wiley, 2020.

Case of Differential Privacy (DP)

- Google RAPPOR (Privacy-Preserving Aggregatable Randomized Response, 2014)
 - Learning about the actual client's value ${\mathcal U}$ is even harder for attacker because multiple values map to the same bits in the Bloom filter
 - Attack difficulty caused by uncertainty of RAPPOR's estimated counts
- Google uses better algorithm extending and strengthening previous work (e.g., RAPPOR)

Cynthia Dwork et al. Calibrating noise to sensitivity in private data analysis. In Theory of cryptography conference, 2006. Úlfar Erlingsson et al. RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response. ACM CCS, 2014 Andrea Bittau et al. Prochlo: Strong Privacy for Analytics in the Crowd. CoRR abs/1710.00901, 2017.

Differential Privacy (DP)

 $^{\circ}$ A mechanism A guarantees \mathcal{E} -differential privacy if for any pair of neighboring datasets X and X', A gives similar results t with probability

arepsilon -differential privacy

$$\left| \ln\left(\frac{\Pr[\mathcal{T}_{\mathcal{A}}(\mathbf{x}) = t]}{\Pr[\mathcal{T}_{\mathcal{A}}(\mathbf{x}') = t]} \right) \right| \le \epsilon.$$

- Privacy Budget
 - Attack Difficulty
 - · ε |
 - Noise Size

Neighboring Database

$$D=D'\pm t$$

Attack Target

Attacker 9

Differential Privacy (DP)

Controlled noising mechanism to private data

$$\frac{\Pr(z+Y=t)}{\Pr(z'+Y=t)} \in \exp(\pm \frac{\|z-z'\|_1}{\lambda}). \quad e^{\epsilon |f(\mathbf{x})-f(\mathbf{x}')|} \le e^{\epsilon}$$

- According to Laplace Distribution $Y \sim Lap(\frac{\Delta f}{\varepsilon})$
- Simplicity & Robustness

$$f(x \mid \mu, b) = \frac{1}{2b} e^{\left(\frac{|x-\mu|}{b}\right)}$$

$$\therefore \mu = 0, \ \sigma = \lambda, \ b = 2\left(\frac{\Delta f}{\varepsilon}\right)$$

Global Sensitivity

$$||f(\mathbf{x}) - f(\mathbf{x}')||_1 \le S(f) .$$

Deep Learning with DP

- Differentially Private Stochastic Gradient Descent (DP-SGD)
 - Add Gaussian noise to gradients for individual training examples

Algorithm 1 Differentially private SGD (Outline)

Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) = \frac{1}{N} \sum_i \mathcal{L}(\theta, x_i)$. Parameters: learning rate η_t , noise scale σ , group size L, gradient norm bound C.

Initialize θ_0 randomly

for $t \in [T]$ do

Take a random sample L_t with sampling probability L/N

Compute gradient

For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$

Clip gradient

$$\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$$

Add noise

$$\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$$

Descent

$$\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$$

Output θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

Noise clipping C

- \circ Clip each gradient in ℓ_2 norm
- \circ The number of Clipped batch $\,L\,$
- Add noise to several batches into a lot
- Then compute the average

Noise Level $\,arepsilon=0.5\,$

epoch

Model: LeNet-5

Dataset: MNIST

11

Y. LeCun et al. Gradient-based learning applied to document recognition. IEEE, 1998. Martin Abadi et al. Deep learning with differential privacy. ACM SIGSAC, 2021.

Large Language Model with DP-SGD

- DP optimization doesn't guarantee privacy-utility for large models' many parameters
- The noise being isotropic in the high dimension of gradients

Number of trainable parameters

	MNIST & Fashion-MNIST	CIFAR-10
ScatterNet+Linear	40K	155K
ScatterNet+CNN	33K	187K
CNN	26K	551K / 168K

Accuracy for Privacy Budget: $\varepsilon, \delta = 10^{-5}$

Accuracy on CIFAR-10

Model	Parameters	Accuracy
CNN		$60.7 \pm 0.3 \\ 59.2 \pm 0.1$

Privacy Budget: $\varepsilon=3, \delta=10^{-5}$

Overview of our results

- For sentence classification, DP fine-tuning can outperform TextHide with BERT-base
 - TextHide is text encryption method tuned by heuristic privacy notions
- For text generation, DP fine-tuning can outperform strong non-private baselines

Sentence classification on MNLI-matched

Natural language generation on E2E

DP Fine-tuning

- Hyperparameter Tuning
 - Large batches lead to good performance
 - Effective Noise Multiplier σ_{eff} decreases according to this hyperparameter tuning
- Ghost Clipping
 - This gradient norm can be computed efficiently for every example, since per-example gradients themselves need not be instantiated explicitly
- Full Fine-tune Large Language Model with DP-Adam
 - Sentence Classification
 - Full fine-tuning with the text infilling objective outperforms other models
 - Table-To-Text Generation
 - Larger models has better performance than method optimizing few parameters
 - Chit-Chat Dialog Generation
 - Full fine-tuning with DP-Adam yields high quality competitive models

DP Fine-tuning Task

- Sentence Classification
 - GLUE Benchmark
 - RGP (Reparametrized Gradient Perturbation)
 - Comparison DP-SGD Model
 - Reduce a mount of memory computing individual gradients

Table 1. Computation and memory costs of RGP (Algorithm 1) and DP-SGD (Abadi et al., 2016), where m is the size of minibatch, d is the model width, r is the reparametrization rank, and K is the number of power iterations.

Method Cost	DP-SGD	RGP
Computational cost	$\mathcal{O}(md^2)$	$\mathcal{O}(md^2 + Krd^2 + Kr^2d)$
Memory cost	$\mathcal{O}(md^2)$	$\mathcal{O}(mrd)$

Reparametrization scheme of RGP

DP Fine-tuning Task

- Table-To-Text Generation
 - BLEU & ROUGE-L
 - E2E Dataset
 - Crowdsourced dataset of 50k instances in the restaurant domain

	Flat MR	NL reference
Data format	name[Loch Fyne], eatType[restaurant], food[French],	Loch Fyne is a family-friendly restaurant providing wine and cheese at a low cost.
	priceRange[less than £20], familyFriendly[yes]	Loch Fyne is a French family friendly restaurant catering to a budget of below £20.
		Loch Fyne is a French restaurant with a family setting and perfect on the wallet.

DP Fine-tuning Task

- Chit-Chat Dialog Generation
 - Chit-Chat Dialogue Model
 - Human-like Daily Talk
 - GPT-2, DialoGPT (e.g., ChatGPT)
 - Persona-Chat dataset
 - Provide person profile
 - Consistent personality
 - Next dialogue utterance

Data format

Persona 1	Persona 2
I like to ski	I am an artist
My wife does not like me anymore	I have four children
I have went to Mexico 4 times this year	I recently got a cat
I hate Mexican food	I enjoy walking for exercise
I like to eat cheetos	I love watching Game of Thrones

- [PERSON 1:] Hi
- [PERSON 2:] Hello! How are you today?
- [PERSON 1:] I am good thank you, how are you.
- [PERSON 2:] Great, thanks! My children and I were just about to watch Game of Thrones.
- [PERSON 1:] Nice! How old are your children?
- [PERSON 2:] I have four that range in age from 10 to 21. You?
- [PERSON 1:] I do not have children at the moment.
- [PERSON 2:] That just means you get to keep all the popcorn for yourself.
- [PERSON 1:] And Cheetos at the moment!
- [PERSON 2:] Good choice. Do you watch Game of Thrones?
- [PERSON 1:] No, I do not have much time for TV.
- [PERSON 2:] I usually spend my time painting: but, I love the show.

Batch Size, Learning Rate

- Private Learning
 - Fine-tune GPT-2 on E2E for table-to-text generation with DP-Adam at $\,arepsilon=3\,$
 - Numbers are BLEU scores on the test split of E2Es
- General case of non-private Learning
 - LLM is typically fine-tuned with small batch sizes and learning rates with Adam

Batch Size, Learning Rate

- Linear scaling rule for private learning
 - This rule does not generalize to batch sizes that are too small
 - Square-root relationship underestimates the noise multiplier for small batch sizes

Linear Scaling Rule: When the minibatch size is multiplied by k, multiply the learning rate by k.

Batch Size, Learning Rate

- Increasing the batch size allows us to improve gradient-SNR
- Expanded initial SNR leads to faster convergence of DP training
- Effective Noise Multiplier $\sigma_{eff} = \frac{\sigma}{a} = \frac{\sigma N}{B}$
- \circ Signal-to-Noise Ratio $r = \|\widetilde{g}\|_2 / \|\bar{z}\|_2$
 - Privacy budget \bar{g} in DP-SGD/DP-Adam $\bar{g} = \tilde{g} + \bar{z}, \quad \tilde{g} = \frac{1}{B} \sum_{i \in \mathcal{B}} \operatorname{Clip}\left(\nabla \mathcal{L}_i, C\right), \quad \bar{z} \sim \mathcal{N}\left(0, C^2 \frac{\sigma^2}{B^2} I_p\right) = \mathcal{N}\left(0, C^2 \frac{\sigma^2}{N^2} I_p\right)$

Ghost Clipping

- Memory saving technique that allows clipping without per-example gradients
- Extend the Lee & Kifer (2020) by generalization of the Goodfellow (2015) trick

$$\|\nabla_W \mathcal{L}_i\|_{\mathrm{F}}^2 = \mathrm{vec}(a_i a_i^\top)^\top \mathrm{vec}(g_i g_i^\top).$$

Allows fitting batches almost as large as those in non-private training

Clipping process

- \circ Clip each gradient in ℓ_2 norm
- Add noise to several batches
- Then compute the average

Ghost Clipping

Extend the Lee & Kifer (2020) by generalization of the Goodfellow (2015) trick

$$\|\nabla_W \mathcal{L}_i\|_{\mathrm{F}}^2 = \text{vec}(a_i a_i^{\top})^{\top} \text{vec}(g_i g_i^{\top}) = \|a_i\|_2^2 \|g_i\|_2^2.$$

Efficient Per-Example Gradient Computations

Vanilla Gradient Norm

Loss function

$$L(\boldsymbol{z}^{(1)},\dots,\boldsymbol{z}^{(n)},\boldsymbol{h}^{(0)},\boldsymbol{y})$$

Gradient Norm

$$s_j^{(i)} = \sum_{k,l} \left(\frac{\partial}{\partial W_{k,l}^{(i)}} L^{(j)}\right)^2$$

Goodfellow (2015) trick

Neural Network

$$oldsymbol{z}^{(i)} = oldsymbol{h}^{(i-1) op} oldsymbol{W}^{(i)} \ oldsymbol{h}^{(i)} = \phi^{(i)}(oldsymbol{z}^{(i)}).$$

Gradient Norm

$$m{s}_{j}^{(i)} = \left(\sum_{k} (ar{Z}_{j,k}^{(i)})^{2}\right) \left(\sum_{k} (H_{j,k}^{(i-1)})^{2}\right).$$

Full Fine-tuning with DP-Adam

- Sentence Classification
- Fine-tuning with text infilling objective
 - Instead of predicting integer labels, we ask the model to predict textualized labels
- Per-update speed is 3 times slower than RGP

Dataset: GLUE

N/L-41 1	$\epsilon = 3$				$\epsilon = 8$			
Method	MNLI-(m/mm)	QQP	QNLI	SST-2	MNLI-(m/mm)	QQP	QNLI	SST-2
RGP (RoBERTa-base) RGP (RoBERTa-large)	-	-	-	-	80.5/79.6 86.1/86.0	85.5 86.7	87.2 90.0	91.6 93.0
full (RoBERTa-base) full (RoBERTa-large) full + infilling (RoBERTa-base) full + infilling (RoBERTa-large)	82.47/82.10 85.53/85.81 82.45/82.99 86.43/86.46	85.56	84.62 88.94 87.42 90.76	91.86	83.30/83.13 86.28/86.54 83.20/83.46 87.02/87.26		84.81 89.42 87.94 91.10	92.09
$\epsilon \approx (Gaussian DP + CLT)$	2.52	2.52	2.00	1.73	5.83	5.85	4.75	4.33
$\epsilon \approx$ (Compose tradeoff func.)	2.75	2.75	2.57	2.41	7.15	7.16	6.87	6.69

Full Fine-tuning with DP-Adam

- Table-To-Text Generation
- Full fine-tuning GPT-2 (125 million parameters)
- Compared with parameter-efficient approaches
 - LoRA, prefix-tuning, RGP, and fine-tuning the top 2 Transformer blocks

Dataset: E2E

Metric	DP Guarantee	Gaussian DP	Compose			Meth	od		
Metric	Dr Guarantee	+ CLT	tradeoff func.	full	LoRA	prefix	RGP	top2	retrain
	$\epsilon = 3$	$\epsilon \approx 2.68$	$\epsilon \approx 2.75$	61.519	58.153	47.772	58.482	25.920	15.457
BLEU	$\epsilon = 8$	$\epsilon pprox 6.77$	$\epsilon pprox 7.27$	63.189	63.389	49.263	58.455	26.885	24.247
	non-private	-	-	69.463	69.682	68.845	68.328	65.752	65.731
	$\epsilon = 3$	$\epsilon \approx 2.68$	$\epsilon \approx 2.75$	65.670	65.773	58.964	65.560	44.536	35.240
ROUGE-L	$\epsilon = 8$	$\epsilon pprox 6.77$	$\epsilon pprox 7.27$	66.429	67.525	60.730	65.030	46.421	39.951
	non-private	-	-	71.359	71.709	70.805	68.844	68.704	68.751

Full Fine-tuning with DP-Adam

- Chit-Chat Dialog Generation
 - Predict the response with the dialog history and persona description
 - Distinct challenge that the response space is intrinsically diverse, since human conversations can be informal and noise

Dataset: Persona-Chat

Model	DP Guarantee	Gaussian DP +CLT	Compose tradeoff func.	F1 ↑	Met Perplexity ↓	trics Quality (human) ↑
GPT-2	$\begin{array}{c} \epsilon = 3 \\ \epsilon = 8 \\ \text{non-private} \end{array}$	$\begin{array}{c} \epsilon \approx 2.54 \\ \epsilon \approx 6.00 \\ - \end{array}$	$\begin{array}{c} \epsilon \approx 2.73 \\ \epsilon \approx 7.13 \\ - \end{array}$	15.90 16.08 17.96	23.57	- - -
GPT-2-medium	$\begin{array}{c} \epsilon = 3 \\ \epsilon = 8 \\ \text{non-private} \end{array}$	$\begin{array}{l} \epsilon \approx 2.54 \\ \epsilon \approx 6.00 \end{array}$	$\begin{array}{l} \epsilon \approx 2.73 \\ \epsilon \approx 7.13 \end{array}$	15.99 16.53 18.64	20.68 19.25 15.40	- - -
DialoGPT-medium	$\begin{array}{c} \epsilon = 3 \\ \epsilon = 8 \\ \text{non-private} \end{array}$	$\begin{array}{c} \epsilon \approx 2.54 \\ \epsilon \approx 6.00 \end{array}$	$\begin{array}{c} \epsilon \approx 2.73 \\ \epsilon \approx 7.13 \\ - \end{array}$	17.37 17.56 19.28	17.64 16.79 14.28	2.82 (2.56, 3.09) 3.09 (2.83, 3.35) 3.26 (3.00, 3.51)
HuggingFace (ConvAI2 winner) HuggingFace (our implementation)	non-private non-private	- -	-	19.09 16.36	17.51 20.55	3.23 (2.98, 3.49)
Reference	-	-	-	-	-	3.74 (3.49, 4.00)

Conclusion

Full Fine-tuning Strategy with DP-Adam

 Larger models has competitive performance than method optimizing few parameters

Future Work

Since DP fine-tuning generally requires substantially less private datas,
 we hope this will motivate organizations (e.g., federated learning with DP)

Limitation

- Should consider and create more curated public corpora for pretraining
- Requires more transparency in reporting hyperparameter choices, analysis of hyperparameter transferability across tasks and architectures
- Unaware of how the dimensionality of models (and pretraining) generally affect private deep learning

Part 5. Appendix

TextHide

- Entry-wise mask is chosen from a randomly pre-generated pool and applied on the mixed representation
- Training directly takes place on encrypted data and no decryption is needed
- Attacker can't backpropagate the loss of batch through the secret mask of each client

Example of different representation schemes

```
Query1 (CoLA): Some people consider the noisy dogs dangerous. ($\sqrt{}$)

Baseline: Some people consider the noisy dogs dangerous. ($\sqrt{}$)

Mix-only: Some people consider the noisy dogs dangerous. ($\sqrt{}$)

TextHide: I know a man who hates myself. ($\times$)

Query2 (SST-2): otherwise excellent ($\exists{\omega}$)

Baseline: otherwise excellent ($\exists{\omega}$)

Mix-only: worthy ($\exists{\omega}$)

TextHide: passive-aggressive ($\exists{\omega}$)
```

Part 5. Appendix

DialoGPT (2020)

- Chit-Chat Dialogue Model (e.g., ChatGPT (2022))
- Model Architecture Based on GPT-2

$$p(T|S) = \prod_{n=m+1}^{N} p(x_n|x_1, \dots, x_{n-1})$$

- Objective for Multiturn dialogue session
- $\circ p(T_K, \cdots, T_2|T_1)$ can be perceived as optimizing all $p(T_i|T_1, \cdots, T_{i-1})$
- Maximum mutual information (MMI) scoring function
 - Open-domain text generation models are notorious for generating bland, uninformative samples
 - Generate a set of hypotheses using top-K sampling
 - Use P(Source|target) to rerank all hypotheses

Part 5. Appendix

DP-Adam

DP-Adam

Algorithm 1 DP-Adam

```
1: Input: Data \mathcal{D} = \{x_i\}_{i=1}^N, learning rate \eta, noise multiplier \sigma, batch size B, Euclidean norm threshold for gradients C, epochs E, initial parameter vector \theta_0 \in \mathbb{R}^p, initial moment estimates m_0, v_0 \in \mathbb{R}^p, exponential decay rates \beta_1, \beta_2 \in \mathbb{R}, avoid division-by-zero constant \gamma \in \mathbb{R}.
```

```
2: for t \in [E \cdot N/B] do
```

Draw a batch B_t via Poisson sampling; each element has probability B/N of being selected

```
for x_i \in B_t do
```

 $g_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(x_i), \quad \tilde{g}_t(x_i) \leftarrow g_t(x_i) \cdot \min(1, C/\|g_t(x_i)\|_2)$

6: **end for**

7: $z_t \sim \mathcal{N}(0, \sigma^2 C^2 I_n)$

8: $\bar{g}_t = \frac{1}{B} \left(\sum_{i=1}^N \tilde{g}_t(x_i) + z_t \right)$

9: $\theta_{t+1}, m_{t+1}, v_{t+1} \leftarrow \text{AdamUpdate}(\theta_t, m_t, v_t, \bar{g}_t, \beta_1, \beta_2, \gamma)$

10: **end for**

11: **return** $\theta_{TN/B}$

Algorithm 2 AdamUpdate

```
1: Input: \theta_{t}, m_{t}, v_{t}, \bar{g}_{t}, \beta_{1}, \beta_{2}, \gamma

2: m_{t+1} \leftarrow \beta_{1} \cdot m_{t} + (1 - \beta_{1}) \cdot \bar{g}_{t}, \quad v_{t+1} \leftarrow \beta_{2} \cdot v_{t} + (1 - \beta_{2}) \cdot \bar{g}_{t}^{2}

3: \widehat{m}_{t+1} \leftarrow m_{t+1} / (1 - \beta_{1}^{t}), \quad \widehat{v}_{t+1} \leftarrow v_{t+1} / (1 - \beta_{2}^{t})

4: \theta_{t+1} \leftarrow \theta_{t} - \alpha \cdot \widehat{m}_{t+1} / \left(\sqrt{\widehat{v}_{t+1}} + \gamma\right)

5: return \theta_{t+1}, m_{t+1}, v_{t+1}
```

Adam

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

Require: α : Stepsize

Require: $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates

Require: $f(\theta)$: Stochastic objective function with parameters θ

Require: θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged **do**

 $t \leftarrow t + 1$

 $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t)

 $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate)

 $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate)

 $\widehat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (Compute bias-corrected first moment estimate)

 $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate)

 $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters)

end while

return θ_t (Resulting parameters)