13) Logarithme et suite

On considère la fonction (E): $x + \ln(x) = 0$.

Le but de cet exercice est de prouver que l'équation (E) a une unique solution α dans $I =]0; +\infty[$ et d'utiliser une suite convergente pour obtenir un encadrement de α .

A. Existence et unicité de la solution :

f est la fonction définie sur I par $f(x) = x + \ln(x)$.

Etudiez les variations de la fonction f sur I et déduisez l'existence d'un nombre α unique de I tel que $f(\alpha) = 0$.

Vérifier que $\frac{1}{2} < \alpha < 1$.

B. Encadrement de α :

- 1. g est la fonction définie sur I par $g(x) = \frac{4x \ln(x)}{5}$,
 - a) Démontrez qu'un nombre x est solution de l'équation (E) si et seulement si, g(x) = x.
 - b) Étudiez les variations de g sur I et démontrez que pour tout x de l'intervalle $J = \left[\frac{1}{2}; 1\right], g(x)$ appartient à J.
- 2. La suite $(u_n)_{n\in\mathbb{N}}$ définie par :

 $u_0 = \frac{1}{2}$ et pour tout $n \in \mathbb{N}$ $u_{n+1} = g(u_n)$.

a) Démontrez par récurrence que pour tout $n \in \mathbb{N}$:

$$\frac{1}{2} \le u_n \le u_{n+1} \le 1$$

- b) Déduisez-en que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers α .
- 3. On donne $u_{10} \simeq 0.5671236$,

On admet que u_{10} est une valeur approchée de α .

Déduisez-en un encadrement de α sous la forme $u \le \alpha \le v$ où u et v sont des nombres décimaux écrits avec 3 décimales.