Лабораторная работа № 3

Вычислительный эксперимент

"Моделирование движения тела, брошенного под углом к горизонту"

Работу выполнили:

Стецук Максим

Сафин Рамаз

Оглавление:

- Отчет Стецук Максима: стр. 3-8;
- Отчет Сафина Рамаза: стр. 9-13;
- Ссылка на скринкаст: стр. 14.

Отчет по Лабораторной работе №3 Стецук Максима

Цель работы

Провести вычислительный эксперимент по исследованию движение тела, брошенного под углом к горизонту.

Используемое оборудование

ΠΚ, Microsoft Excel, Microsoft Word

Задание 1

Цель

Изучить движение тела под углом к горизонту в идеальных условиях.

Математическая модель

Изменение координат тела в осях YOX:

$$x = v_0 Cos\alpha * t (1)$$

$$y = tg\alpha * x - \frac{g}{2v_0^2 Cos^2 \alpha} * x^2$$
 (2)

Дальность полета:

$$S = \frac{v_0^2 Sin\alpha * Cos\alpha + v_0 Cos\alpha \sqrt{v_0^2 Sin^2 \alpha + 2gh}}{g}$$
(3)

Время полета:

$$t_1 = \frac{v_0 Sin\alpha + \sqrt{v_0^2 Sin\alpha + 2gh}}{g} \tag{4}$$

где

V0 - начальная скорость;

 α — угол наклона;

g – гравитационная постоянная;

h – начальная высота;

S – дальность полета;

t – время полета снаряда;

х – координата по оси ОХ в любой момент времени;

у – координата по оси ОУ в любой момент времени.

Решение задачи

Дано:

V0(m/c)	200
g(m/c^2)	9,8
h(M)	70
α(град)	58

Решение:

Используем формулу (4) и с помощью электронных таблиц найдем дальность полета снаряда.

угол α	S
58	3712

Значит при данных значениях, дальность полета снаряда будет равна 3712 метров.

"Зависимость дальности полета S от угла наклона ствола пушки к горизонту α "

43	4145,4
44	4150,4
45	4150,5
46	4145,7
47	4136

Вывод:

Из проведенного эксперимента мы выяснили, что дальность полета снаряда имеет параболическую зависимость от угла наклона орудия. После исследования полученных результатов мы выяснили, что в идеальных условиях максимальная дальность полёта достигается при начальном угле равном 45 градусам.

"Траектории движения при различных исходных данных"

	1							
α	V0							
25	125							
25	160							
25	200							
25	120							
t	x	у	х	у	х	у	х	у
1	113,288	47,9273	145,009	62,7189	181,262	79,6237	108,757	45,8142
2	226,577	86,0546	290,018	115,638	362,523	149,447	217,514	81,8284
3	339,865	114,382	435,028	158,757	543,785	209,471	326,271	108,043
4	453,154	132,909	580,037	192,076	725,046	259,695	435,028	124,457
5	566,442	141,636	725,046	215,595	906,308	300,118	543,785	131,071
6	679,731	140,564	870,055	229,314	1087,57	330,742	652,542	127,885
7	793,019	129,691	1015,06	233,232	1268,83	351,566	761,299	114,899
8	906,308	109,018	1160,07	227,351	1450,09	362,589	870,055	92,1135
9	1019,6	78,5455	1305,08	211,67	1631,35	363,813	978,812	59,5277
10	1132,88	38,2728	1450,09	186,189	1812,62	355,237	1087,57	17,1419

Вывод к заданию

Мы провели вычислительный эксперимент по исследованию движения тела, брошенного под углом к горизонту, в идеальных условиях. В ходе эксперимента мы сделали несколько выводов. Мы увидели зависимость дальности полета от начального угла и нашли при каком угле она будет максимальной. А также мы исследовали зависимость траектории от от начальной скорости при одинаковых начальных углах.

Задание 2

Цель

Изучить движение тела под углом к горизонту в воздушном пространстве.

Задача

Пуля вылетает под начальным углом α и с начальной скоростью 200 м/с. Найти зависимость траектории движения пули от начального угла при одинаковой начальной скорости. Сравнить полученные результаты с результатами, полученными при проведении вычислительного эксперимента в задании 1.

Математическая модель

Изменение координат тела в осях YOX:

$$x = \frac{V_0 \cos(\alpha)}{kg} (1 - e^{-kgt}) \tag{5}$$

$$y = \frac{1}{kg} \left(\frac{1}{k} + V_0 \sin(\alpha) \right) \left(1 - e^{-kgt} \right) - \frac{t}{k}$$

$$\tag{6}$$

Изменение координаты тела по оси ОҮ без использования времени:

$$y = xtg(\alpha) + \frac{x}{kV_0 \cos(\alpha)} + \frac{1}{k^2 g} \ln\left(1 - \frac{kgx}{V_0 \cos(\alpha)}\right)$$
(7)

где

V0 - начальная скорость;

 α — угол наклона;

g – гравитационная постоянная;

t – время полета тела;

х – координата по оси ОХ в любой момент времени;

у – координата по оси ОУ в любой момент времени.

k – коэффициент сопротивления.

"Траектории движения пули при различных начальных углах"

Начальные данные:

V0	200
g	9,8
k	0,1

Траектории:

Вывод к заданию

Мы провели вычислительный эксперимент по исследованию движения тела под углом к горизонту в воздушном пространстве. В качестве объекта исследования была выбрана пуля вылетающая со скоростью 200м/с. После построения графика траекторий мы выяснили, что в отличие от идеальных условий, которые были рассмотрены в задании 1, угол 45 градусов не будет являться оптимальным в связи с сопротивлением воздуха. Оптимальным углом в данной ситуации будет являться угол приблизительно равный 10-13 градусам.

Вывод

В процессе выполнения данной лабораторной работы, мы исследовали движение тела под углом к горизонту в двух случаях, а именно в идеальных условиях и в воздушном пространстве. В каждом из экспериментов мы построили графики траекторий, которые в дальнейшем были исследованы в каждом из заданий. Нами были обнаружены зависимости расстояния от начального угла и скорости. А также мы нашли оптимальные углы для броска(выстрела) в каждом из случаев, которые имели огромное отличие в связи с начальными(природными) условиями.

Отчет по Лабораторной работе №3 Сафина Рамаза

Цель работы

Провести вычислительный эксперимент по исследованию движение тела, брошенного под углом к горизонту.

Используемое оборудование

ΠΚ, Microsoft Excel, Microsoft Word

Задание 1

Цель

Изучить движение тела под углом к горизонту в идеальных условиях.

Математическая модель

Изменение координат тела в осях YOX:

$$x = v_0 Cos\alpha * t (1)$$

$$y = tg\alpha * x - \frac{g}{2v_0^2 Cos^2 \alpha} * x^2$$
 (2)

Дальность полета:

$$S = \frac{v_0^2 Sin\alpha * Cos\alpha + v_0 Cos\alpha \sqrt{v_0^2 Sin^2 \alpha + 2gh}}{g}$$
(3)

Время полета:

$$t_1 = \frac{v_0 Sin\alpha + \sqrt{v_0^2 Sin\alpha + 2gh}}{g} \tag{4}$$

где

V0 - начальная скорость;

 α — угол наклона;

g – гравитационная постоянная;

h – начальная высота;

S – дальность полета;

t – время полета снаряда;

х – координата по оси ОХ в любой момент времени;

у – координата по оси ОУ в любой момент времени.

Решение задачи

Дано:

V0(m/c)	200
g(m/c^2)	9,8
h(M)	70
α(град)	58

Решение:

Используем формулу (4) и с помощью электронных таблиц найдем дальность полета снаряда.

угол α	S
58	3712

Значит при данных значениях, дальность полета снаряда будет равна 3712 метров.

"Зависимость дальности полета S от угла наклона ствола пушки к горизонту α "

43	4145,4
44	4150,4
45	4150,5
46	4145,7
47	4136

"Траектории движения при различных исходных данных"

Вывод к заданию

Мы провели вычислительный эксперимент в идеальных условиях. Мы увидели зависимость дальности полета от начального угла и нашли при каком угле она будет максимальной. А также мы исследовали зависимость траектории от начальной скорости при одинаковых начальных углах. После исследования полученных результатов мы выяснили, что в идеальных условиях максимальная дальность полёта достигается при начальном угле равном 45 градусам.

Задание 2

Цель

Изучить движение тела под углом к горизонту в воздушном пространстве.

Задача

Пуля вылетает под начальным углом α и с начальной скоростью 200 м/с. Найти зависимость траектории движения пули от начального угла при одинаковой начальной скорости. Сравнить полученные результаты с результатами, полученными при проведении вычислительного эксперимента в задании 1.

Математическая модель

Изменение координат тела в осях YOX:

$$x = \frac{V_0 \cos(\alpha)}{kg} (1 - e^{-kgt}) \tag{5}$$

$$y = \frac{1}{kg} \left(\frac{1}{k} + V_0 \sin(\alpha) \right) \left(1 - e^{-kgt} \right) - \frac{t}{k}$$
(6)

Изменение координаты тела по оси ОУ без использования времени:

$$y = xtg(\alpha) + \frac{x}{kV_0 \cos(\alpha)} + \frac{1}{k^2 g} \ln\left(1 - \frac{kgx}{V_0 \cos(\alpha)}\right)$$
(7)

где

V0 - начальная скорость;

 α — угол наклона;

g – гравитационная постоянная;

t — время полета тела;

х – координата по оси ОХ в любой момент времени;

у – координата по оси ОУ в любой момент времени.

k – коэффициент сопротивления.

"Траектории движения пули при различных начальных углах"

Начальные данные:

V0	200
g	9,8
k	0,1

Траектории:

Вывод к заданию

Во время решения мы постоянно сравнивали и анализировали полученные графики в обеих задачах и поняли в отличие от идеальных условий, которые были рассмотрены в задании 1, угол 45 градусов не будет являться оптимальным в связи с сопротивлением воздуха. Оптимальным углом в данной ситуации будет являться угол приблизительно равный 10-13 градусам.

Вывод

В процессе выполнения данной лабораторной работы, мы поняли что нужно учитывать не только исходные данные, но и рассматриваемую среду.

Ссылка на скринкаст:

 $\underline{https://disk.yandex.ru/i/qUcuvoSoVMPXXw}$