Содержание

1	Инт	егралы, зависящие от параметра	2
	1.1	Интегралы, зависящие от параметра. Принцип равномерной сходимости	2
	1.2	Теорема о коммутировании двух предельных переходов. Предельный переход под знаком интеграла	3
	1.3	Теорема о непрерывности интеграла, зависящего от параметра	3
	1.4	Дифференцирование под знаком интеграла. Правило Лейбница	5
	1.5	Интегрирование под знаком интеграла	5
	1.6	Непрерывность и дифференцируемость интеграла с переменными пределами интегрирования	5
	1.7	Равномерная сходимость интегралов. Достаточные признаки равномерной сходимости	5
	1.8	Предельный переход в несобственном интеграле, зависящем от параметра	5
	1.9	Дифференцирование по параметру несобственного интеграла	5
	1.10	Интегрирование по параметру несобственного интеграла	5
2	Kpa	тные интегралы	5
	2.1	Двоичные разбиения. Двоичные интервалы, полуинтревалы, кубы. Свойства двоичных инервалов,	
		кубов	5
	2.2	Ступенчатые функции. Интеграл от ступенчатой функции (естественное и индуктивное определе-	
		ния). Теорема о совпадении определений	5
	2.3	Свойства интеграла от ступенчатой функции (линейность интеграла, положительность, оценка ин-	
		теграла)	5
	2.4	Теорема о пределе интегралов убывающей последовательности функций, поточечно сходящейся к	_
		нулю	5
	2.5	Теорема о пределе интегралов убывающей последовательности ступенчатых функций, поточечно	_
		сходящейся к нулю	5
	2.6	Системы с интегрированием. Основной пример. Свойства систем с интегрирование	5
	2.7	L1 норма. Множество L1*(Σ). L1-норма как интеграл от модуля функции	5
	2.8	Свойства L1 нормы ("линейность норма функции равной нулю почти всюду и т.д.)	5
	2.9	Субаддитивность L1-нормы	5
	2.10	Сходимость в смысле L1	5
	2.11	Определение понятие интеграла и интегрируемой функции	5
	2.12	Свойства интеграла и интегрируемых функций	5
	2.13	Множества меры ноль. Свойства функций совпадающих почти всюду	5
	2.14	Нормально сходящиеся ряды. Теорема о нормально сходящихся рядах	5
	2.15	Теоремы Леви для функциональных рядов и последовательностей	5
	2.16	Огибающие для последовательности интегрируемых функций. Нижний и верхний предел последо-	J
	0.15	вательности	5
	2.17	Теорема Фату о предельном переходе. Следствие из теоермы Фату	5
	2.18	Теорема Лебега о предельном переходе	5
		Лемма о приближении стпенчатой функции с помощью непрерывных финитных	5
	2.20	Теорема о приближении интегрируемой функции с помощью непрерывных финитных	5
	2.21	Измеримые функции. Свойства пространства измеримых функций. Измеримые множества	5
	2.22	Теорема об интегрируемости измеримой функции	5
	2.23	Теорема об измеримости предела измеримых функций	5
	2.24	Теорема об интегрируемости предела возрастающей последовательности положительных измеримых	۲
	ຄຸດຮ	функций	5
	2.20	Обобщенно измеримые функции. Измеримые множества, мера множества. Теорема об измеримости	E
	2 26	объединения и пересечения измеримых множеств	5
	2.26	Счетная аддитивность интеграла и меры	5
	2.27		E
	2.28	ства как объединения кубов. Теорема об измеримости открытых и замкнутых множеств в Rn	5
			5
	2.29	Лемма о приближении неотрицательной вещественной функции ступенчатыми функциями. След-	E
	9 90	ствие об измеримости непрерывной почти всюду функции	5
	2.30 2.31	Теорема о совпадении интералов Римана и Лебега	5 5
	$\frac{2.31}{2.32}$		5 5
		Теорема Тонелли и следствия из нее	5 5
	$\frac{2.33}{2.34}$		5 5
	2.34	Лемма о замене переменной при композиции диффеоморфизмов	5

2.35	Лемма о сведении замены переменной в общем случае к случаю индикатора двоичного куба	5
2.36	Лемма о представлении диффеоморфизма в виде композиции диффеоморфизмов специального вида	5
2.37	Теорема о замене переменной в кратном интеграле	5

1 Интегралы, зависящие от параметра

1.1 Интегралы, зависящие от параметра. Принцип равномерной сходимости

Определение. $X \times Y \subset \mathbb{R}^2, f(x,y)$ определена на $X \times Y,$ пусть y_0 - предельная точка Y

- 1. пусть $\forall x \in X \quad \exists \lim_{y \to y_0} f(x, y) := \phi(x)$
- 2. пусть $\forall \epsilon > 0 \exists \delta(\epsilon)$ такая что $|y-y_0| < \delta |f(x,y)-\phi(x)| < \epsilon$ для $\forall x \implies$ тогда говорят, что f(x,y) равномерно сходится к $\phi(x)$

Теорема 1.1 (Свойства равномерной сходимости). $f: X \times Y \longrightarrow \mathbb{R}, y_0$ - предельная точка Y

- 1. f(x,y) равномерно на X сходится κ $\phi(x)$ тогда и только тогда, если $\forall \epsilon > 0$ $\exists \delta(\epsilon): \forall x \in X \forall y', y'' \in Y$ $|f(x,y') f(x,y'')| < \epsilon$ [Критерий Коши]
- 2. f(x,y) равномерно по X стремится κ $\phi(x)$ тогда и только тогда, если для $\forall \{y_n\}$ так что $y_n \longrightarrow y_0$ последовательность $\{f(x,y_n)\}$ равномерно сходится κ $\phi(x)$ [сходимость по Гейне]
- 3. Если при $\forall y$ функция f(x,y) непрерывна по x (интегрируема) и f(x,y) равномерно сходится κ $\phi(x)$, то $\phi(x)$ непрерывна и интегрируема
- 4. $\exists x_0, y_0$ предельные точки X и Y, f(x,y) равномерно по x сходится κ $\phi(x)$, $\exists \forall y \in Y \exists \lim_{x \to x_0} f(x,y) =: \psi(y)$, тогда $\exists \lim_{x \to x_0} \phi(x) = \lim_{y \to y_0} \psi(y) [= \lim_{x \to x_0} \lim_{y \to y_0} f(x,y)]$

Доказательство. 1.
$$\lhd\Rightarrow \lim_{y\to y_0} f(x,y)=:\phi(y)$$

$$|f(x,y')-f(x,y'')|=|f(x,y')-\phi(x)-f(x,y'')+\phi(x)|\leq |f(x,y')-\phi(x)|+|f(x,y'')-\phi(x)|$$
 $\Leftarrow x\in X|f(x,y')-f(x,y'')|<\epsilon$ при $|y_0-y''|<\delta$ \Leftarrow при $\forall x\exists \lim_{y\to y_0} f(x,y)=:\phi(x)$ $|f(x,y')-f(x,y'')|<\epsilon$, $y''\to y_0$ $|f(x,y')-\phi(x)|\leq \epsilon$, $f(x,y)\Rightarrow \phi(x)$

2. Необходимость очевидна

Достаточность:
$$\{y_n\} \to y_0$$

 $\{f(x,y_n)\} \to \phi(x)$, пусть $|y_0-y_n| < \delta = \frac{1}{n} \implies y_n \to y_0$
и $|f(x,y_n) - \phi(x)| > \epsilon$; $f(x,y_n) \nrightarrow \phi(x)$ противоречие

3. $\exists \{y_n\} \to y_0, f_n(x) = f(x, y_n)$

 $f_n(x)$ равномерно сходится к $\phi(x)$ по 2

Далее $\phi(x)$ равномерный предел хороших функий $\implies \phi(x)$ хорошая

Попа дробнее... (для последовательности функций от одной переменной)

$$|s(x_0 + h) - s(x_0)| = |s(x_0 + h) + s_n(x_0 + h) - s_n(x_0) - s_n(x_0 + h) + s_n(x_0) - s(x_0)|$$

$$\leq |s(x_0 + h) - s_n(x_0 + h)| + |s_n(x_0 + h) - s_n(x_0)| + |s_n(x_0) - s(x_0)|$$

Каждое из этих слагаемых меньше $\epsilon/3$ (среднее по причине непрерывности $s_n(x)$, остальные по причине равномерной сходимости)

4. $f(x,y) \Rightarrow \phi(x), \exists \epsilon > 0$, выберем $\delta > 0$ такое что: $|y_0 - y'| < \delta$ и $|y_0 - y''| < \delta \Longrightarrow$ $|f(x,y')-f(x,y'')|<\epsilon$ по к. Коши $x \to x_0 : |\psi(y') - \psi(y'')| \le \epsilon \implies$ для $\psi(y)$ верен критерий Коши \Longrightarrow $\exists \lim_{y \to y_0} \psi(y) = A = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$ $|f(x,y)-\phi(x)|<\epsilon, |\psi(y)-A|<\epsilon$ если $|y-y_0|<\delta$ $|\phi(x) - A| \leq |\phi(x) - f(x,y)|_{<\epsilon} + |f(x,y) - \psi(y)|_{<\epsilon, \text{t.k дельты}} + |\psi(y) - A|_{<\epsilon} \leq 3\epsilon + |\phi(x) - A| \leq \epsilon + |\phi(x) - \phi(x)|_{<\epsilon} \leq 3\epsilon + |\phi(x) - A| \leq \epsilon + |\phi(x) - \phi(x)|_{<\epsilon} + |\phi(x) - \phi(x)|_{<\epsilon} \leq 3\epsilon + |\phi(x) - \phi(x)|_{<\epsilon} + |\phi(x) - \phi(x)|_{<\epsilon} + |\phi(x) - \phi(x)|_{<\epsilon} + |\phi(x) - \phi(x)|_{<\epsilon} \leq 3\epsilon + |\phi(x) - \phi(x)|_{<\epsilon} + |\phi(x) - \phi(x)|_{<\epsilon} + |\phi(x) - \phi(x)|_{<\epsilon} + |\phi(x) - \phi(x)|_{<\epsilon} \leq 3\epsilon + |\phi(x) - \phi(x)|_{<\epsilon} + |\phi($ при $x \to x_0 \implies \lim_{x \to x_0} \phi(x) = A$

1.2Теорема о коммутировании двух предельных переходов. Предельный переход под знаком интеграла

$$f(x,y):[a,b] imes Y o \mathbb{R},y_0$$
 - предельная точка Y и $f_y(x)=f(x,y)$ - интегрируема на $[a,b]$ $F(y)=\int_a^b f(x,y)dx$

Теорема 1.2 (О предельном переходе). Если кроме того, что f(x,y) равномерно на [a,b] стремится κ $\phi(x)$ при $y \to y_0, \ mo \lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx$

 $f_y(x) \implies \phi(x)$ - интегрируема, $\exists \epsilon > 0 \quad \delta(\epsilon) > 0$ выбрано из определения равномерной сходимости $|\int_a^b f(x,y) dx - \int_a^b \phi(x) dx| = |\int_a^b (f(x,y) - \phi(x)) dx| \le \int_a^b |f(x,y) - \phi(x)| dx \le \epsilon (b-a)$ если $|y-y_0| < \epsilon$ $\lim_{y \to y_0} \int_a^b f(x,y) dx = \int_a^b \phi(x) dx$

1.3Теорема о непрерывности интеграла, зависящего от параметра

Теорема 1.3 (Непрерывность). f(x,y)-непрерывна, $f:[a,b]\times[c,d]\to\mathbb{R}$ $f(y) = \int_a^b f(x,y)dx$ непрерывна на [c,d]

Доказатель ство.
$$\lhd[a,b] \times [c,d]$$
 компакт $\Longrightarrow f(x,y)$ равномерно непрерывна на компакте $\forall \epsilon > 0: \begin{array}{c} |x-x'| < \delta \\ |y-y'| < \delta \end{array} \Longrightarrow |f(x,y) - f(x',y')| < \epsilon \end{array}$

 $x' = x, y' = y_0$

 $|f(x,y)-f(x,y_0)|<\epsilon$ при $|y-y_0|<\delta(\epsilon)$

 $f(x,y) \rightrightarrows f(x,y_0) = \phi(x)$ равномерный предел не зависит от х

по теореме о предельном переходе: $\lim_{y\to y_0} F(y) = \lim_{y\to y_0} \int_a^b f(x,y) dx = \int_a^b \phi(x) dx = \int_a^b f(x,y_0) dx = F(y_0) \implies F \text{ непрерывна в } y_0 \in [c,d] \implies F$ непрерывна на [c,d]

- 1.4 Дифференцирование под знаком интеграла. Правило Лейбница
- 1.5 Интегрирование под знаком интеграла
- 1.6 Непрерывность и дифференцируемость интеграла с переменными пределами интегрирования
- 1.7 Равномерная сходимость интегралов. Достаточные признаки равномерной сходимости
- 1.8 Предельный переход в несобственном интеграле, зависящем от параметра
- 1.9 Дифференцирование по параметру несобственного интеграла
- 1.10 Интегрирование по параметру несобственного интеграла
- 2 Кратные интегралы
- 2.1 Двоичные разбиения. Двоичные интервалы, полуинтревалы, кубы. Свойства двоичных инервалов, кубов
- 2.2 Ступенчатые функции. Интеграл от ступенчатой функции (естественное и индуктивное определения). Теорема о совпадении определений
- 2.3 Свойства интеграла от ступенчатой функции (линейность интеграла, положительность, оценка интеграла)
- 2.4 Теорема о пределе интегралов убывающей последовательности функций, поточечно сходящейся к нулю
- 2.5 Теорема о пределе интегралов убывающей последовательности ступенчатых функций, поточечно сходящейся к нулю
- 2.6 Системы с интегрированием. Основной пример. Свойства систем с интегрирование
- 2.7 L1 норма. Множество L1*(Σ). L1-норма как интеграл от модуля функции
- 2.8 Свойства L1 нормы ("линейность норма функции равной нулю почти всюду и т.д.)
- 2.9 Субаддитивность L1-нормы
- 2.10 Сходимость в смысле L1
- 2.11 Определение понятие интеграла и интегрируемой функции
- 2.12 Свойства интеграла и интегрируемых функций
- 2.13 Множества меры ноль. Свойства функций совпадающих почти всюду
- 2.14 Нормально сходящиеся ряды. Теорема о нормально сходящихся рядах
- 2.15 Теоремы Леви для функциональных рядов и последовательностей
- 2.16 Огибающие для последовательности интегрируемых функций. Нижний и верхний предел последовательности
- 2.17 Теорема Фату о предельном переходе. Следствие из теоермы Фату
- 2.18 Теорема Лебега о предельном переходе
- 2.19 Лемма о приближении стпенчатой функции с помощью непрерывных финитных
- 2.20 Теорема о приближении интегрируемой функции с помощью непрерывных финитных $_5$
- 2.21 Измеримые функции. Свойства пространства измеримых функций. Измеримые мно множоства