Variational Inference

Jiali Lin

Virginia Tech

January 15, 2017

Outline

Introduction

Variational Inference

Variational Bayes

Variational Bayes EM

Motivation

- ▶ Variational inference: deterministic approximate inference.
- ▶ Pick an approximation q(y) that are tractable family, and make this approximation close to the true posterior, $p^*(y) = p(y|\mathcal{D})$.
- ▶ This reduces inference to an optimization problem.
- ▶ By approximating the objective, we can trade accuracy for speed.

► Pros:

- For small to medium problems, it is usually faster.
- It is deterministic.
- Is it easy to determine when to stop.
- It often provides a lower bound on the log likelihood.

Outline

Introduction

Variational Inference

Variational Bayes

Variational Bayes EM

Variational calculus

Variational inference is based on variational calculus.

Standard Calculus

- ▶ Functions $f: y \rightarrow f(y)$.
- ▶ Derivatives $\frac{df}{du}$.

Example: maximize the likelihood expression $p(y|\theta)$ w.r.t θ .

Variational Calculus

- ▶ Functionals $f : y \to F(f)$.
- ▶ Derivatives $\frac{dF}{df}$.

Example: maximize the entropy H[p] w.r.t a probability p(y).

Variational calculus and the free energy

By appropriate choice of $q(\theta)$, F(q, y) becomes tractable to compute and maximize. Hence we have both an analytical approximation $q(\theta)$ for the posterior $p(\theta|y)$ and a lower bound F(q, y) for the evidence $\log p(y)$.

Computing the free energy

- ▶ $\mathsf{KL}[q||p]$ divergence is unknown and free energy $F(q, \boldsymbol{y})$ is easy to evaluate for a given q.
- ▶ Maximizing F(q, y) is equivalent to minimizing $\mathsf{KL}[q||p]$ and tightening F(q, y) as a lower bound to (1).

We can decompose the free energy $F(q, \boldsymbol{y})$ as follows

$$F(q, \mathbf{y}) = \int q(\boldsymbol{\theta}) \ln \frac{p(\mathbf{y}, \boldsymbol{\theta})}{q(\boldsymbol{\theta})} d\boldsymbol{\theta}$$

$$= \int q(\boldsymbol{\theta}) \ln p(\mathbf{y}, \boldsymbol{\theta}) d\boldsymbol{\theta} - \int q(\boldsymbol{\theta}) \ln q(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$= \underbrace{\langle \ln p(\mathbf{y}, \boldsymbol{\theta}) \rangle_q}_{\text{expected log-joint}} + \underbrace{H[q]}_{\text{Shannon entropy}}$$
(2)

Forward or reverse KL?

KL divergence is not symmetric in its arguments, minimizing $\mathsf{KL}[q||p]$ wrt q will give different behavior than minimizing $\mathsf{KL}[q||p]$.

- ▶ Variational Bayes minimize $\mathsf{KL}[q(\boldsymbol{\theta})||p(\boldsymbol{\theta}|\boldsymbol{y})]$: $q(\boldsymbol{\theta})$ will tend to be zero where $p(\boldsymbol{\theta}|\boldsymbol{y})$ is zero.
- ▶ Expectation Propagation minimize $KL[p(\theta|y)||q(\theta)]$: $q(\theta)$ will tend to be nonzero where $p(\theta|y)$ is nonzero.

Figure: Comparison of the two alternative forms for the Kullback-Leibler divergence. (a) the Kullback-Leibler divergence $\mathsf{KL}(q||p)$, and (b) the reverse Kullback-Leibler divergence $\mathsf{KL}(p||q)$. Figure generated by KLpqGauss.

Forward or reverse KL? (cont'd)

Figure: Another comparison of the two alternative forms for the Kullback-Leibler divergence. (a) Averaging across modes may lead to poor predictive performance. (b) (c) Variational Bayes may lead to local minimum. Figure generated by KLfwdReverseMixGauss.

Mean field approximation

Mean field approximation assumes the posterior is a fully factorized approximation of the form

$$q(\boldsymbol{\theta}) = \prod_{i} q_i(\boldsymbol{\theta}_i) \tag{3}$$

Derivation of the mean field update equations

$$F(q, \mathbf{y}) = \int q(\boldsymbol{\theta}) \ln \frac{p(\mathbf{y}, \boldsymbol{\theta})}{q(\boldsymbol{\theta})} d\boldsymbol{\theta}$$

$$= \int \prod_{i} q_{i} \times (\ln p(\mathbf{y}, \boldsymbol{\theta}) - \sum_{i} \ln q_{i}) d\boldsymbol{\theta} \qquad \stackrel{\text{mean field assumption: } q(\boldsymbol{\theta}) = \prod_{i} q_{i}(\boldsymbol{\theta}_{i})}{}$$

$$= \int q_{j} \prod_{\backslash j} q_{i} (\ln p(\mathbf{y}, \boldsymbol{\theta}) - \ln q_{i}) d\boldsymbol{\theta} - \int q_{j} \prod_{\backslash j} q_{i} \sum_{\backslash j} \ln q_{i} d\boldsymbol{\theta}$$

$$= \int q_{j} \left(\int \prod_{\backslash j} q_{i} \ln p(\mathbf{y}, \boldsymbol{\theta}) d\boldsymbol{\theta}_{\backslash j} - \ln q_{i} \right) d\boldsymbol{\theta}_{j} - \int q_{j} \int \prod_{\backslash j} q_{i} \ln \prod_{\backslash j} q_{i} d\boldsymbol{\theta}_{\backslash j} d\boldsymbol{\theta}_{j}$$

$$= \int q_{j} \ln \frac{\exp(<\ln p(\mathbf{y}, \boldsymbol{\theta}) >_{q \backslash j})}{q_{j}} d\boldsymbol{\theta}_{j} + c \qquad \stackrel{\exp(<\ln p(\mathbf{y}, \boldsymbol{\theta}) >_{q \backslash j}) = E_{\backslash j} [\ln p(\mathbf{y}, \boldsymbol{\theta})]}{}$$

$$= -KL[q_{j}|| \exp(<\ln p(\mathbf{y}, \boldsymbol{\theta}) >_{q \backslash j})] + c \qquad (4)$$

Derivation of the mean field update equations(cont'd)

Suppose the densities $q_{\backslash j}=q(\pmb{\theta}_{\backslash j})$ are kept fixed. Then the approximate posterior $q(\pmb{\theta}_j)$ that maximizes $F(q,\pmb{y})$ is given by

$$q_{j}^{*} = \max_{q_{j}} F(q, \boldsymbol{y})$$

$$= \frac{1}{Z} \exp(\langle \ln p(\boldsymbol{y}, \boldsymbol{\theta}) \rangle_{q \setminus j})$$
(5)

Therefore:

$$\ln q_j^* = \langle \ln p(\boldsymbol{y}, \boldsymbol{\theta}) \rangle_{q \setminus j} - \ln Z \tag{6}$$

where $Z = \int \langle \ln p(\boldsymbol{y}, \boldsymbol{\theta}) \rangle_{q \setminus j} d\boldsymbol{\theta}_j$.

This implies a straightforward algorithm for variational inference:

- 1. Initialize all approximate posteriors $q(\boldsymbol{\theta}_i)$, e.g., by setting them to their priors.
- 2. Cycle over the parameters, revising each given the current estimates of the others.
- 3. Loop until convergence.

Outline

Introduction

Variational Inference

Variational Bayes

Variational Bayes EM

Introduction

- ▶ So far we are inferring latent variables z_i assuming the parameters θ of the model are known.
- ▶ Now infer the parameters themselves.
- ► Mean field approximation

$$p(\boldsymbol{\theta}|\mathcal{D}) \approx \prod_{i} q_i(\boldsymbol{\theta}_i)$$
 (7)

- ► This is variational Bayes or VB.
- ▶ If we want to infer both latent variables and parameters, then

$$p(\boldsymbol{\theta}, \boldsymbol{z}_{1:N} | \mathcal{D}) \approx q(\boldsymbol{\theta}) \prod_{i} q_{i}(\boldsymbol{z}_{i})$$
 (8)

Example: VB for a univariate Gaussian

- ► Assuming there are no latent variables.
- ► Consider applying VB to infer the posterior over the parameters for a 1d Gaussian, $p(\mu, \lambda | \mathcal{D})$, where $\lambda = 1/\sigma^2$ is the precision.
- ► For convenience, we will use a conjugate prior of the form.

$$p(\mu, \lambda) = p(\mu|\lambda)p(\lambda)$$

$$= N(\mu|\mu_0, (\kappa_0\lambda)^{-1})\mathsf{Ga}(\lambda|a_0, b_0)$$
(9)

Consider a factorized variational approximation

$$q(\mu, \lambda) = q_{\mu}(\mu)q_{\lambda}(\lambda) \tag{10}$$

Target distribution

The unnormalized log posterior has the form

$$\log \widetilde{p}(\mu, \lambda) = \log p(\mu, \lambda, D) = \log p(D|\mu, \lambda) + \log p(\mu|\lambda) + \log p(\lambda)$$

$$= \frac{N}{2} \log \lambda - \frac{\lambda}{2} \sum_{i=1}^{N} (x_i - \mu)^2 - \frac{1}{2} \log(\kappa_0 \lambda)$$

$$+ \frac{\kappa_0 \lambda}{2} (\mu - \mu_0)^2 + (a_0 - 1) \log \lambda - b_0 \lambda + \text{const}$$
(11)

(11)

Updating $q_{\mu}(\mu)$ (fix $q_{\lambda}(\lambda)$)

The optimal form for $q_{\mu}(\mu)$ is obtained by averaging over λ

$$\begin{split} \log q_{\mu}(\mu) &= E_{q_{\lambda}}[\log p(D|\mu,\lambda) + \log p(\mu|\lambda)] + \text{const} \\ &= -\frac{E_{q_{\lambda}}[\lambda]}{2} \{ \kappa_0 (\mu - \mu_0)^2 + \sum_{i=1}^2 (x_i - \mu)^2 \} + \text{const} \end{split} \tag{12}$$

By completing the square one can show that $q_{\mu}(\mu) = N(\mu|\mu_N, \kappa_N^{-1})$, where

$$\mu_N = \frac{\kappa_0 \mu_0 + N\bar{x}}{\kappa_0 + N}$$

$$\kappa_N = (\kappa_0 + N) E_{q_{\lambda}}[\lambda]$$
(13)

At this stage we don't know what $q_{\lambda}(\lambda)$ is, and hence we cannot compute $E[\lambda]$, but we will derive this below.

Updating $q_{\lambda}(\lambda)$ (fix $q_{\mu}(\mu)$)

The optimal form for $q_{\lambda}(\lambda)$ is given by

$$\log q_{\lambda}(\lambda) = E_{q_{\mu}}[\log p(D|\mu, \lambda) + \log p(\mu|\lambda) + \log p(\lambda)] + \text{const}$$

$$= (a_0 - 1)\log \lambda - b_0\lambda + \frac{1}{2}\log \lambda + \frac{N}{2}\log \lambda$$

$$- \frac{\lambda}{2}E_{q_{\mu}}[\kappa_0(\mu - \mu_0)^2 + \sum_{i=1}^{N}(x_i - \mu)^2] + \text{const}$$
(14)

We recognize this as the log of a Gamma distribution, hence $q_{\lambda}(\lambda) = \mathsf{Ga}(\lambda|a_N,b_N)$, where

$$a_N = a_0 + \frac{N+1}{2}$$

$$b_N = b_0 + \frac{1}{2} E_{q_\mu} \left[\kappa_0 (\mu - \mu_0)^2 + \sum_{i=1}^N (x_i - \mu)^2 \right]$$
(15)

Computing the expectations

Since $q(\mu) = N(\mu | \mu_N, \kappa_N^{-1})$, we have

$$E_{q(\mu)}[\mu] = \mu_N$$

 $E_{q(\mu)}[\mu^2] = \frac{1}{\kappa_N} + \mu_N^2$ (16)

Since $q(\lambda) = Ga(\lambda | a_N, b_N)$, we have

$$E_q(\lambda)[\lambda] = \frac{a_N}{b_N} \tag{17}$$

Explicit forms for the update equations for $q(\mu)$ we have

$$\mu_N = \frac{\kappa_0 \mu_0 + N\bar{x}}{\kappa_0 + N} \stackrel{\text{fixed!}}{\longleftarrow}$$

$$\kappa_N = (\kappa_0 + N) \frac{a_N}{b_N} \tag{18}$$

and for $q(\lambda)$ we have

$$a_N = a_0 + \frac{N+1}{2} \xleftarrow{\text{fixed!}}$$

$$b_N = b_0 + \kappa_0 (E[\mu^2] + \mu_0^2 - 2E[\mu]\mu_0) + \frac{1}{2} \sum_{i=1}^{N} (x_i^2 + E[\mu^2] - 2E[\mu] - x_i)$$

(19)

Illustration

In the Figure, the green contours represent the exact posterior, which is Gaussian-Gamma. The dotted red contours represent the variational approximation over several iterations.

Figure: Factored variational approximation (red) to the Gaussian-Gamma distribution (green). (a) Initial guess. (b) After updating q_{μ} . (c) After updating q_{λ} . (d) At convergence (after 5 iterations). Based on 10.4 of (Bishop 2006b). Figure generated by UnigaussVbDemo.

Outline

Introduction

Variational Inference

Variational Bayes

Variational Bayes EM

Introduction

- lacktriangle Now consider latent variable models of the form $m{z}_i o m{x}_i \leftarrow m{ heta}$.
- ▶ In EM, θ are informed by all N data cases, whereas z_i is only informed by x_i .
- **Variational Bayes EM** or **VBEM**: model uncertainty in θ and z_i .
- ▶ Computational cost is essentially the same as EM.
- ► Same idea

$$p(\boldsymbol{\theta}, \boldsymbol{z}_{1:N} | \mathcal{D}) \approx q(\boldsymbol{\theta}) \prod_{i} q_{i}(\boldsymbol{z}_{i})$$
 (20)

- ▶ **Pros:** marginalizing out the parameters, we can compute a lower bound on the marginal likelihood (useful for model selection).
- ▶ Goal: lower bound £.

The variational posterior

▶ The conditional distribution of Z, given the mixing coefficients π :

$$p(\boldsymbol{Z}|\boldsymbol{\pi}) = \prod_{k=1}^{N} \prod_{k=1}^{K} \pi_{k}^{z_{nk}}$$
 (21)

► The likelihood:

$$p(\boldsymbol{X}|\boldsymbol{Z},\boldsymbol{\mu},\boldsymbol{\Lambda}) = \prod_{k=1}^{N} \prod_{k=1}^{K} N(\boldsymbol{X}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}^{-1})^{z_{nk}}$$
(22)

- \blacktriangleright Priors over the parameters μ, Σ and π
 - Pick a Dirichlet distribution over the mixing coefficients π

$$p(\boldsymbol{\pi}) = \mathsf{Dir}(\boldsymbol{\pi}|\boldsymbol{\alpha}_0) = C(\boldsymbol{\alpha}_0) \prod_{k=1}^K \boldsymbol{\pi}_k^{\alpha_0 - 1}$$
 (23)

 Pick an independent Gaussian-Wishart prior for the mean and precision of each Gaussian component

$$p(\boldsymbol{\mu}, \boldsymbol{\Lambda}) = p(\boldsymbol{\mu}|\boldsymbol{\Lambda})p(\boldsymbol{\Lambda})$$

$$= \prod_{k=1}^{K} N(\boldsymbol{\mu}_{k}|\boldsymbol{m}_{0}, (\beta_{0}\boldsymbol{\Lambda}_{k})^{-1})W(\boldsymbol{\Lambda}_{k}|\boldsymbol{W}_{0}, \nu_{0})$$
(24)

The variational posterior (cont'd)

► The joint distribution of all of the random variables

$$p(X, Z, \pi, \mu, \Lambda) = p(X|Z, \mu, \Lambda)p(Z|\pi)p(\pi)p(\mu|\Lambda)p(\Lambda)$$
 (25)

► Consider a variational distribution

$$q(\mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = q(\mathbf{Z})q(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda})$$
 (26)

Factors q(Z) and $q(\pi, \mu, \Lambda)$ will be determined automatically by optimization of the variational distribution.

Figure: DAG of the Bayesian mixture of Gaussians model.

Derivation of q(z) (variational E step)

Update for the factor $q(\boldsymbol{Z})$

$$\ln q^*(\boldsymbol{Z}) = E_{\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Lambda}}[\ln p(\boldsymbol{X},\boldsymbol{Z},\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Lambda})] + \text{const}$$

$$= E_{\boldsymbol{\pi}}[\ln p(\boldsymbol{Z}|\boldsymbol{\pi})] + E_{\boldsymbol{\mu},\boldsymbol{\Lambda}}[\ln p(\boldsymbol{X}|\boldsymbol{Z},\boldsymbol{\mu},\boldsymbol{\Lambda})] + \text{const}$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \ln \rho_{nk} + \text{const}$$
(27)

where we have defined

$$\ln \rho_{nk} = E[\ln \pi_k] + \frac{1}{2} E[\ln |\mathbf{\Lambda}_k|] - \frac{D}{2} \ln(2\pi) - \frac{1}{2} E_{\boldsymbol{\mu}_k, \mathbf{\Lambda}_k} (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^T \mathbf{\Lambda}_k (\boldsymbol{x}_n - \boldsymbol{\mu}_k)]$$
(28)

Taking the exponential of both sides, we obtain

$$q^*(\mathbf{Z}) \propto \prod_{k=1}^{N} \prod_{n=1}^{K} \rho_{nk}^{z_{nk}}$$
 (29)

Derivation of q(z) (variational E step) (cont'd)

The factor q(Z)

► Requires be normalized

$$q^*(\mathbf{Z}) \propto \prod_{n=1}^{N} \prod_{n=1}^{K} r_{nk}^{z_{nk}} \tag{30}$$

where $r_{nk} = \frac{\rho_{nk}}{\sum_{i=1}^{K} \rho_{ni}}$.

- ▶ Takes the same functional form as the prior $p(Z|\pi)$.
- ▶ The discrete distribution $q(\mathbf{Z})$ have $E[z_{nk}] = r_{nk}$.
- ▶ The quantities r_{nk} are playing the role of responsibilities.
- ▶ Three statistics evaluated with respect to the responsibilities

$$N_k = \sum_{n=1}^{N} r_{nk}$$

$$\bar{\boldsymbol{x}}_k = \frac{1}{N_k} \sum_{n=1}^{N} r_{nk} \boldsymbol{x}_n$$

$$\boldsymbol{S}_k = \frac{1}{N_k} \sum_{n=1}^{N} r_{nk} (\boldsymbol{x}_n - \bar{\boldsymbol{x}}_k) (\boldsymbol{x}_n - \bar{\boldsymbol{x}}_k)^T$$
(31)

Derivation of $q(\theta)$ (variational M step)

Consider the factor $q(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda})$ in the variational posterior distribution

$$\ln q(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = \ln p(\boldsymbol{\pi}) + \sum_{k=1}^{K} \ln p(\boldsymbol{\mu}, \boldsymbol{\Lambda}) + E_{\boldsymbol{Z}}[\ln p(\boldsymbol{Z}|\boldsymbol{\pi})] + \sum_{k=1}^{N} \sum_{k=1}^{K} E[z_{nk}] \ln N(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{k}, \boldsymbol{\Lambda}_{k}^{-1}) + \text{const}$$
(32)

This decomposes into terms involving only π with only μ and Λ . Thus

$$q(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = q(\boldsymbol{\pi}) \prod_{k=1}^{K} q(\boldsymbol{\mu}_{k}, \boldsymbol{\Lambda}_{k})$$
(33)

Identifying the terms on the right-hand side of (32) that depend on π

$$\ln q^*(\pi) = (\alpha_0 - 1) \sum_{k=1}^K \ln \pi_k + \sum_{k=1}^K \sum_{k=1}^N r_{nk} \ln \pi_k + \text{const}$$
 (34)

Taking the exponential of both sides, $q^*(\pi)$ is a Dirichlet distribution

$$q^*(\boldsymbol{\pi}) = \mathsf{Dir}(\boldsymbol{\pi}|\alpha) \tag{35}$$

where α has components α_k given by $\alpha_k = \alpha_0 + N_k$.

Derivation of $q(\theta)$ (variational M step) (cont'd)

Recall:

$$q(\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k) = q(\boldsymbol{\mu}_k | \boldsymbol{\Lambda}_k) q(\boldsymbol{\Lambda}_k)$$

$$N(\boldsymbol{\mu}_k | \boldsymbol{m}_k, (\beta_k \boldsymbol{\Lambda}_k)^{-1}) W(\boldsymbol{\Lambda}_k | \boldsymbol{W}_k, \nu_k)$$
(36)

where we defined

$$\beta_k = \beta_0 + N_k$$

$$\boldsymbol{m}_k = \frac{1}{\beta_k} (\beta_0 \boldsymbol{m}_0 + N_k \bar{\boldsymbol{x}}_k)$$

$$\boldsymbol{W}_k^{-1} = \boldsymbol{W}_0^{-1} + N_k S_k + \frac{\beta_0 N_k}{\beta_0 + N_k} (\bar{\boldsymbol{x}}_k - \boldsymbol{m}_0) (\bar{\boldsymbol{x}}_k - \boldsymbol{m}_0)^T$$

$$\nu_k = \nu_0 + N_k$$
(37)

Expectations of the variational distributions of the parameters

$$E_{\boldsymbol{\mu}_{k},\boldsymbol{\Lambda}_{k}}[(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k})^{T}\boldsymbol{\Lambda}_{k}(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}) = D\boldsymbol{\beta}_{k}^{-1} + \nu_{k}(\boldsymbol{x}_{n}-\boldsymbol{m}_{k})^{T}\boldsymbol{W}_{k}(\boldsymbol{x}_{n}-\boldsymbol{m}_{k})]$$

$$\ln \tilde{\boldsymbol{\Lambda}}_{k} = E[\ln |\boldsymbol{\Lambda}_{k}|] = \sum_{i=1}^{D} \psi(\frac{\nu_{k}+1-i}{2}) + D\ln 2 + \ln |\boldsymbol{W}_{k}|$$

$$\ln \tilde{\boldsymbol{\pi}}_{k} = E[\ln \boldsymbol{\pi}_{k}] = \psi(\boldsymbol{\alpha}_{k}) - \psi(\hat{\boldsymbol{\alpha}})$$
(38)

where we define $\tilde{\Lambda}_k$ and $\tilde{\pi}_k$, $\psi(.)$ is a the diagram function, $\hat{\alpha} = \sum_k \alpha_k$.

Derivation of $q(\theta)$ (variational M step) (cont'd)

If we substitute (38) into $r_{nk} = \frac{\rho_{nk}}{\sum_{i=1}^K \rho_{nj}}$

$$r_{nk} \propto \tilde{\boldsymbol{\pi}}_k \tilde{\boldsymbol{\Lambda}}_k^{1/2} \exp\{-\frac{D}{2\beta_k} - \frac{\nu_k}{2} (\boldsymbol{x}_n - \boldsymbol{m}_k)^T \boldsymbol{W}_k (\boldsymbol{x}_n - \boldsymbol{m}_k)\}$$
 (39)

Notice the similarity to the responsibilities in maximum likelihood EM

$$r_{nk} \propto \boldsymbol{\pi}_k |\boldsymbol{\Lambda}_k|^{1/2} \exp\{-\frac{1}{2}(\boldsymbol{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Lambda}_k (\boldsymbol{x}_n - \boldsymbol{\mu}_k)\}$$
 (40)

Lower bound on the marginal likelihood

In VB, we are maximizing a lower bound on the log marginal likelihood. Why?

- ▶ To assess convergence of the algorithm.
- ► To assess the correctness of one's code: as with EM, if the bound does not increase monotonically, there must be a bug.
- ► To approximate to the marginal likelihood, which can be used for Bayesian model selection.

The algorithm is trying to maximize the following lower bound (i.e. ${\cal F}(q,y)$ free energy)

$$L = \sum_{\mathbf{Z}} \int \int \int q(\mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda})}{(Z, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda})} \right\} d\boldsymbol{\pi} d\boldsymbol{\mu} d\boldsymbol{\Lambda} \le \ln p(\mathbf{X})$$
(41)

This quantity increases monotonically with each iteration, in Figure. (Exercise)

Posterior predictive distribution

The predictive density is then given by

$$p(\boldsymbol{x}^*|\boldsymbol{X}) = \sum_{\boldsymbol{z}^*} \int \int \int p(\boldsymbol{x}^*|\boldsymbol{z}^*, \boldsymbol{\mu}, \boldsymbol{\Lambda}) p(\boldsymbol{z}^*|\boldsymbol{\pi}) p(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}|\boldsymbol{X}) d\boldsymbol{\pi} d\boldsymbol{\mu} d\boldsymbol{\Lambda}$$
(42)

Using (21) and (22) we can first perform the summation over z^*

$$p(\boldsymbol{x}^*|\boldsymbol{X}) = \sum_{k=1}^K \int \int \int \pi_k N(\boldsymbol{x}^*|\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k^{-1}) p(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}|\boldsymbol{X}) d\boldsymbol{\pi} d\boldsymbol{\mu} d\boldsymbol{\Lambda}$$
(43)

Because the remaining integrations are intractable, we approximate the predictive density with $q(\pi)q(\mu,\Lambda)$

$$p(\boldsymbol{x}^*|\boldsymbol{X}) = \sum_{k=1}^K \int \int \int \pi_k N(\boldsymbol{x}^*|\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k^{-1}) q(\boldsymbol{\pi}) q(\boldsymbol{\mu}, \boldsymbol{\Lambda}) d\boldsymbol{\pi} d\boldsymbol{\mu} d\boldsymbol{\Lambda}$$
(44)

where we have made use of the factorization (33).

Posterior predictive distribution (cont'd)

The remaining integrations can now be evaluated analytically giving a mixture of Student's t-distributions

$$p(\boldsymbol{x}^*|\boldsymbol{X}) = \frac{1}{\hat{\alpha}} \sum_{k=1}^{K} \alpha_k \mathsf{St}(\boldsymbol{x}^*|\boldsymbol{m}_k, \boldsymbol{L}_k, \nu + 1 - D)$$
 (45)

in which the k^{th} component has mean $m{m}_k$, and the precision is

$$L_k = \frac{(\nu_k + 1 - D)\beta_k}{1 + \beta_k} \mathbf{W}_k \tag{46}$$

in which ν_k is given by (37). When the size N of the data set is large the predictive distribution (45) reduces to a mixture of Gaussians.