

Agenda

- 1. Defining the Problem
- 2. Overview of Kaggle Data and Data Manipulation
- 3. Model Selection and Methodology
- 4. Results of the Modeling process
- 5. Future Steps!

Overview of the Problem

- One of the most infamous shipwrecks in history
- 1502 out of 2224 passengers were killed when the Titanic sunk
- Some groups are more likely to survive eg women and children
- The Challenge: To predict passengers likelihood to survive

Overview of Kaggle Data and Data Manipulation

Overview of the Data

- Kaggle provides the data in the form of two csv's one training and one test set
- Both datasets contain the following variables:
 - Survival
 - Pclass Passenger Class
 - Name
 - Sex
 - Age
 - Sibsp
 - parch
 - Ticket
 - Fare
 - Cabin
 - Cabin Number
 - Port of Embarkation

Male vs Female Survival Rate

Male Survival Rate: 18%

Female Survival Rate: 75%

Cross - Section of the Titanic

Passenger Survival Rate by Class

Further Data Manipulation – Port of Embarkation

- The majority of passengers embarked at Southampton in England
- Two variables "Q_Port" and "C_Port" were created to indicate passengers who embarked at Cherbourg in Queenstown

Title Manipulation

- Split titles out from the names column in the data
- Mhh 5
 - To give more insight into the type of people on board
 - Some highborn people of many different titles
 - Using Title to try and improve average age is slightly more accurate
 - Allows the creation of some additional Categorical Variables

Final Modeling Dataset

Model Selection and Methodology

Model Selection

- What type of problem is it?
 - Binary Classification Problem
 - Dead (0) or Alive (1)
- Models Selected:
 - Logistic Regression
 - Random Forests
 - Boosting Trees

Methodology

- Logistic Regression showing poor results after initial testing
- Only optimize the parameters for Random Forest and Boosting Trees
- Used a combination of Recursive Feature Elimination and Grid Search to find the optimal parameters and features to be used in each model
- Random Forests:
 - Optimized for the best number of trees between a range of 10 and 750
 - 5 fold Cross-Validation
- Boosting Trees
 - Tuned the following parameters:
 - Learning Rate Range
 - Sub-Sampling Range
 - Number of Estimators Range

Modeling Results

Logistic Regression

Dep. Variable:		Survived No. Observations:		rvations:		891
Model:		Logit Df Residuals:		879		
Method:			Df Model: Pseudo R-squ.:		11 0.3584	
Date:	Thu,	•				
Time:		09:42:15	Log-Likelihood:		-380.68	
converged:	True				-593.33	
			LLR p-value:		2.596e-84	
	coef	std err	z	P> z	[95.0% Con	f. Int.
Intercept	-2.6686	0.199	-13.443	0.000	-3.058	-2.28
Master	2.8394	0.525	5.407	0.000	1.810	3.86
Highborn	0.1601	0.487	0.329	0.742	-0.795	1.11
Mrs	3.1331	0.279	11.221	0.000	2.586	3.68
Miss	2.9016	0.258	11.245	0.000	2.396	3.40
C_Port	0.5663	0.239	2.374	0.018	0.099	1.03
Q_Port	0.3454	0.339	1.020	0.308	-0.318	1.00
Elderly	-0.9860	0.461	-2.137	0.033	-1.890	-0.08
Children	-0.0662	0.394	-0.168	0.867	-0.839	0.70
_	2.1606	0.254	8.509	0.000	1.663	2.65
_	1.1181	0.246	4.545	0.000	0.636	1.60
large_family	-1.6210	0.590	-2.749	0.006	-2.777	-0.46

Random Forests vs Boosting Trees

Where I placed on Kaggle?

Future Steps and Key Takeaways

- Create further features using combinations of variables
 - Such as combining family size with surname
 - Look at using tickets and cabin numbers
 - Further explore the string variables to try and find other useful features
- Continue to optimize modeling parameters for Random Forests and Boosting Trees
- Get a faster computer!!

