TP: Simulation de processus stochastiques Master SSD (2019-2020)

Olivier Zahm*

Le but de ce TP est d'apprendre à simuler des processus Gaussiens ainsi que des processus ponctuels de Poisson. On apprendra aussi à simuler des processus Gaussiens conditioné à des observations. Pour simplifier, on supposera que le domaine d'étude $S = [0, 1]^2$ est un carré.

Figure 1: Exemples de résultats que l'on obtiendra aujourd'hui.

Consignes: Vous travaillerez en binôme en utilisant le langage de programmation de votre choix (R, Python, Matlab...). Les consignes sont assez ouvertes : n'hésitez pas à prendre des initiatives ! Les compte rendus de TP sont à envoyer au plus tard jeudi 9 janvier 23h59 à l'adresse olivier.zahm@inria.fr. N'envoyez qu'un seul document au format pdf avec le code en annexe.

^{*}olivier.zahm@inria.fr

1 Processus Gaussiens

On rappelle qu'un processus Gaussien est un champs aléatoire $\{X_s : s \in S\}$ tel que, pour tout entier $n \geq 1$ et pour tout $s_1, \ldots, s_n \in S$, le vecteur aléatoire $(X_{s_1}, \ldots, X_{s_n})$ est un vecteur Gaussien. En utilisant la moyenne et la fonction de covariance

$$\mathbb{E}[X_s] = m(s), \quad \operatorname{Cov}(X_s, X_t) = c(s, t),$$

on a $(X_{s_1}, \ldots, X_{s_n}) \sim \mathcal{N}(\mu, \Sigma)$ avec

$$\mu = \begin{pmatrix} m(s_1) \\ \vdots \\ m(s_n) \end{pmatrix}, \qquad \Sigma = \begin{pmatrix} c(s_1, s_1) & \dots & c(s_1, s_n) \\ \vdots & \ddots & \vdots \\ c(s_n, s_1) & \dots & c(s_n, s_n) \end{pmatrix}.$$

On suppose que X est stationnaire d'ordre 2 avec m(s) = 0 et c(s,t) = c(s-t,0) = c(s-t) pour tout $s,t \in S$. On s'intéressera aux fonctions de covariance suivantes :

Delta:

$$c_1(h) = \begin{cases} \sigma^2 & \text{si } h = 0\\ 0 & \text{sinon} \end{cases}$$

Sphérique:

$$c_2(h) = \begin{cases} \frac{2\sigma^2}{\pi} \left(\arccos\left(\frac{\|h\|}{a}\right) - \frac{\|h\|}{a} \sqrt{1 - \frac{\|h\|^2}{a^2}} \right) & \text{si } \|h\| \le a \\ 0 & \text{sinon} \end{cases}$$

Exponentiel:

$$c_3(h) = \sigma^2 \exp\left(-\frac{\|h\|}{a}\right)$$

Matérn-3/2:

$$c_4(h) = \sigma^2 \left(1 + \sqrt{3} \frac{\|h\|}{a} \right) \exp\left(-\sqrt{3} \frac{\|h\|}{a} \right)$$

Matérn-5/2:

$$c_5(h) = \sigma^2 \left(1 + \sqrt{5} \frac{\|h\|}{a} + \frac{5\|h\|^2}{3a^2} \right) \exp\left(-\sqrt{5} \frac{\|h\|^2}{a^2} \right)$$

Gaussien:

$$c_6(h) = \sigma^2 \exp\left(-\frac{\|h\|^2}{2a^2}\right)$$

Tâche 1 Pour chacune des 6 fonctions de covariance c_1, \ldots, c_6 , réaliser des tirages de X_s . En quoi le choix de la fonction de covariance et de ses paramètres σ et a influencent-ils le résultat ?

- Le plus simple serait de considérer une grille régulière de $S = [0, 1]^2$ comportant, par exemple, n = 32 points par coté.
- Après avoir assemblé la matrix de covariance Σ il ne restera plus qu'à faire des tirages de $\mathcal{N}(0,\Sigma)$: comment fait-on cela ? On pourra demander à Wikipedia.
- Que ce passe-t-il si on change n = 32 points par coté par n = 64 ou n = 124?

Tâche 2 Comment modifier les fonctions de covariance afin d'obtenir des réalisations comme celle de la Figure 2 ?

Figure 2: Réalisations obtenues avec un noyau Matérn-3/2 modifié.

2 Processus ponctuels de Poisson

Soit ρ une fonction positive et intégrable sur S. Un processus ponctuel de Poisson $X \sim \text{Poisson}(S, \rho)$ est un processus dont les réalisations sont des ensembles dénombrables de points $\{x_1, x_2, \ldots\} \subset S$. Un processus de Poisson se définit par :

- 1. Le nombre de point $\operatorname{card}\{X\} \sim P(\lambda)$ est une variable aléatoire qui suit une loi de Poisson de paramètre $\lambda = \int_S \rho(x) dx$.
- 2. Conditionellement à l'évènement $\operatorname{card}\{X\} = n$, les points de $X = \{x_1, \dots, x_n\}$ sont indépendants de loi

$$x_i \sim \frac{\rho(\cdot)}{\int_S \rho(x) dx}.$$

En d'autres termes, la probabilité que x_i tombe dans une partie $A \subset S$ est $\int_A \rho(x) dx / \int_S \rho(x) dx$.

Tâche 1 Réaliser des tirages de $X \sim \text{Poisson}(S, \rho)$ avec $\rho(x, y) = 10^3 \times xy$. On pourra aussi essayer avec $\rho = \exp(Y)$, où Y est une réalisation d'un processus Gaussien $\sim \mathcal{N}(0, c)$. On devrait arriver à simuler des processus comme dans la Figure 3.

Figure 3: Quelques réalisations de $X \sim \text{Poisson}(S, \rho)$

Tâche 2 Un arbre a été planté au milieu de la forêt (c'est à dire en x = (0.5, 0.5)). Cet arbre a produit $N_1 \sim P(3)$ graines qui se sont dispersées pour donner, l'année suivante, de nouveaux arbres. Quelle est la situation au bout de 5 ans ? Que se passe-t-il s'il y a du vent ?