Forstrengstré

Bergur Snorrason

13. apríl 2022

▶ Við segjum að ekki tómt rótartré T = (V, E) ásamt vörpun $\tau \colon E \to \Sigma$, þar sem Σ er eitthvað stafróf, sé *forstrengstré* (e. *prefix tree*) ef fyrir leggi e_1 og e_2 gildir $\tau(e_1) \neq \tau(e_2)$ ef leggirnir liggja úr sama hnút.

- ▶ Við segjum að ekki tómt rótartré T = (V, E) ásamt vörpun $\tau \colon E \to \Sigma$, þar sem Σ er eitthvað stafróf, sé forstrengstré (e. prefix tree) ef fyrir leggi e_1 og e_2 gildir $\tau(e_1) \neq \tau(e_2)$ ef leggirnir liggja úr sama hnút.
- Með orðum er τ átæk úr hverjum hnút, eða engir leggir úr sama hnút geta verið merktir með sama bókstak.

- Við segjum að ekki tómt rótartré T=(V,E) ásamt vörpun $\tau\colon E\to \Sigma$, þar sem Σ er eitthvað stafróf, sé forstrengstré (e. prefix tree) ef fyrir leggi e_1 og e_2 gildir $\tau(e_1)\neq \tau(e_2)$ ef leggirnir liggja úr sama hnút.
- Með orðum er τ átæk úr hverjum hnút, eða engir leggir úr sama hnút geta verið merktir með sama bókstak.
- Forstrengstré eru oft kölluð Trie.

- Við segjum að ekki tómt rótartré T=(V,E) ásamt vörpun $\tau\colon E\to \Sigma$, þar sem Σ er eitthvað stafróf, sé forstrengstré (e. prefix tree) ef fyrir leggi e_1 og e_2 gildir $\tau(e_1)\neq \tau(e_2)$ ef leggirnir liggja úr sama hnút.
- Með orðum er τ átæk úr hverjum hnút, eða engir leggir úr sama hnút geta verið merktir með sama bókstak.
- Forstrengstré eru oft kölluð Trie.
- Við segjum að strengur s sé í trénu ef það er til hnútur v í trénu þannig að

$$s = \tau(e_1) \dots \tau(e_k)$$

þar sem $e_1, \dots e_k$ eru leggirnir á einfalda veginum frá rót til v, í réttri röð.

- Við segjum að ekki tómt rótartré T=(V,E) ásamt vörpun $\tau\colon E\to \Sigma$, þar sem Σ er eitthvað stafróf, sé forstrengstré (e. prefix tree) ef fyrir leggi e_1 og e_2 gildir $\tau(e_1)\neq \tau(e_2)$ ef leggirnir liggja úr sama hnút.
- Með orðum er τ átæk úr hverjum hnút, eða engir leggir úr sama hnút geta verið merktir með sama bókstak.
- Forstrengstré eru oft kölluð Trie.
- Við segjum að strengur s sé í trénu ef það er til hnútur v í trénu þannig að

$$s = \tau(e_1) \dots \tau(e_k)$$

þar sem $e_1, \dots e_k$ eru leggirnir á einfalda veginum frá rót til v, í réttri röð.

▶ Það er mjög algengt að geyma aukagögn í hnútunum í trénu.

- Við segjum að ekki tómt rótartré T=(V,E) ásamt vörpun $\tau\colon E\to \Sigma$, þar sem Σ er eitthvað stafróf, sé forstrengstré (e. prefix tree) ef fyrir leggi e_1 og e_2 gildir $\tau(e_1)\neq \tau(e_2)$ ef leggirnir liggja úr sama hnút.
- Með orðum er τ átæk úr hverjum hnút, eða engir leggir úr sama hnút geta verið merktir með sama bókstak.
- Forstrengstré eru oft kölluð Trie.
- Við segjum að strengur s sé í trénu ef það er til hnútur v í trénu þannig að

$$s = \tau(e_1) \dots \tau(e_k)$$

bar sem $e_1, \dots e_k$ eru leggirnir á einfalda veginum frá rót til v, í réttri röð.

- Það er mjög algengt að geyma aukagögn í hnútunum í trénu.
- Skoðum dæmi um forstrengstré sem hefur engin aukagögn í hnútunum.

Dæmi um strengi í trénu eru:

- Dæmi um strengi í trénu eru:
 - ,,sandra",

- Dæmi um strengi í trénu eru:
 - ,,sandra",
 - ,,nala",

- Dæmi um strengi í trénu eru:
 - ,,sandra",
 - ,,nala",
 - "bergur",

- Dæmi um strengi í trénu eru:
 - ,,sandra",
 - ,,nala",
 - "bergur",
 - "bergþór",

- Dæmi um strengi í trénu eru:
 - ,,sandra",
 - ,,nala",
 - "bergur",
 - "bergþór",
 - ,,san" og

- Dæmi um strengi í trénu eru:
 - ,,sandra",
 - ,,nala",
 - "bergur",
 - "bergþór",
 - ,,san" og
 - "" (tómi strengurinn)

► Algengt er að merkjar suma hnúta sem *lokahnúta*.

- ► Algengt er að merkjar suma hnúta sem *lokahnúta*.
- ▶ Þetta eru dæmi um aukagögn sem við geymum í hnútum.

- Algengt er að merkjar suma hnúta sem lokahnúta.
- Þetta eru dæmi um aukagögn sem við geymum í hnútum.
- Við segjum að strengur s sé í trénu ef það er til lokahnútur v í trénu þannig að

$$s = \tau(e_1) \dots \tau(e_k)$$

þar sem $e_1, \ldots e_k$ eru leggirnir á einfalda veginum frá rót til v, í réttri röð.

► Strengirnir í trénu eru:

- ► Strengirnir í trénu eru:
 - "sandra",

- ► Strengirnir í trénu eru:
 - "sandra",
 - ,,nala",

- ► Strengirnir í trénu eru:
 - "sandra",
 - ,,nala",
 - "bergur",

- ► Strengirnir í trénu eru:
 - "sandra",
 - ,,nala",
 - "bergur",
 - "bergþór" og

- ► Strengirnir í trénu eru:
 - "sandra",
 - ,,nala",
 - "bergur",
 - "bergþór" og
 - ,,n"

► Hvað gerum við ef við viljum bæta streng við forstrengstré?

- Hvað gerum við ef við viljum bæta streng við forstrengstré?
- ▶ Ef við viljum setja strenginn $s = s_1 s_2 \dots s_n$ í tréð T þá setjum við strenginn $s' = s_2 s_3 \dots s_n$ í hluttré T sem við lendum í ef við flygjum leggnum merktum s_1 .

- Hvað gerum við ef við viljum bæta streng við forstrengstré?
- ▶ Ef við viljum setja strenginn $s = s_1 s_2 \dots s_n$ í tréð T þá setjum við strenginn $s' = s_2 s_3 \dots s_n$ í hluttré T sem við lendum í ef við flygjum leggnum merktum s_1 .
- ► Takið eftir að það hluttré má vera tómt (með öðrum orðum er ekki leggur merktur s₁).

- Hvað gerum við ef við viljum bæta streng við forstrengstré?
- ▶ Ef við viljum setja strenginn $s = s_1 s_2 \dots s_n$ í tréð T þá setjum við strenginn $s' = s_2 s_3 \dots s_n$ í hluttré T sem við lendum í ef við flygjum leggnum merktum s_1 .
- Takið eftir að það hluttré má vera tómt (með öðrum orðum er ekki leggur merktur s₁).
- Í því tilfelli stækkar tréð.

"api"

"api"

"pi"

,,i"

,,

"apar"

"apar"

"par"

"ar"

"apaköttur"

"apaköttur"

"paköttur"

"aköttur"

"köttur"

"öttur"

"ttur"

"tur"

"ur"

"altari"

"altari"

"Itari"

"tari"

"ari"

"apaspil"

"apaspil"

"paspil"

"aspil"

"il"

"altaristafla"

"altaristafla"

"ltaristafla"

"taristafla"

"aristafla"

"ristafla"

"istafla"

"stafla"

"tafla"

"altarisganga"

"altarisganga"

"ltarisganga"

"tarisganga"

"arisganga"

"risganga"

"isganga"

"sganga"

"ganga"

"anga"

"nga"

,,

► Til að útfæra forstrengstré munum við taka frá fylki af hnútum og úthluta þeim eftir þörf.

- Til að útfæra forstrengstré munum við taka frá fylki af hnútum og úthluta þeim eftir þörf.
- Með þessa aðferð í huga er gott að vita hvað munum þurfa marga hnúta í heildina.

- Til að útfæra forstrengstré munum við taka frá fylki af hnútum og úthluta þeim eftir þörf.
- Með þessa aðferð í huga er gott að vita hvað munum þurfa marga hnúta í heildina.
- Fyrir tómt forstrengstré þurfum við einn hnút.

- Til að útfæra forstrengstré munum við taka frá fylki af hnútum og úthluta þeim eftir þörf.
- Með þessa aðferð í huga er gott að vita hvað munum þurfa marga hnúta í heildina.
- Fyrir tómt forstrengstré þurfum við einn hnút.
- ► Ef við viljum bæta við streng þá þurfum við aldrei fleiri hnúta en lengd strengsins.

- Til að útfæra forstrengstré munum við taka frá fylki af hnútum og úthluta þeim eftir þörf.
- Með þessa aðferð í huga er gott að vita hvað munum þurfa marga hnúta í heildina.
- Fyrir tómt forstrengstré þurfum við einn hnút.
- Ef við viljum bæta við streng þá þurfum við aldrei fleiri hnúta en lengd strengsins.
- Svo heildarfjöldi hnúta þarf að vera einum meira en samtals lengd allra strengjanna sem við setjum í forstrengstréð.

```
6 #define ALPHABET 26
 7 #define MAXN 1000000
 8 typedef struct { int t[ALPHABET], v; } trienode;
 9 typedef struct { int s, r; trienode m[MAXN + 1]; } trie;
10 int trie val(char c) { return c - 'a'; }
11 int trie node(trie *t, int v)
12 {
13
        int i:
       for (i = 0; i < ALPHABET; i++) t->m[t->s].t[i] = -1;
14
15
       t\rightarrow m[t\rightarrow s].v = v;
16
        return t->s++:
17 }
18 void trie init(trie *t) { t->s = 0, t->r = trie node(t, 0); }
19
20 void trie insert (trie *t, char *s, int x)
21
   {
22
        int h:
23
        for (h = t - > r; *s; h = t - > m[h].t[trie val(*s++)])
24
            if (t\rightarrow m[h].t[trie val(*s)] = -\overline{1}
                 t\rightarrow m[h].t[trie\_val(*s)] = trie\_node(t, 0);
25
26
       t \rightarrow m[h]. v = 1;
27 }
```

▶ Ef við viljum setja streng af lengd n inn í forstrengstréð þá tekur það $\mathcal{O}($).

▶ Ef við viljum setja streng af lengd n inn í forstrengstréð þá tekur það $\mathcal{O}(n)$.