There are many approaches to the Software development process. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Programs were mostly entered using punched cards or paper tape. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Whatever the approach to development may be, the final program must satisfy some fundamental properties. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Techniques like Code refactoring can enhance readability. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference.