- 1. Write the following complex numbers in polar form $z = r(\cos(\theta) + i\sin(\theta))$ (or equivalently, $z = r\exp(i\theta)$):
 - (a) 1 + i
 - (b) -1+i
 - (c) $1 + i\sqrt{3}$
 - (d) $\frac{(1+i)^7}{(1+i\sqrt{3})^2}$
- 2. (a) For z = a + ib, express z^{-1} (i.e, $\frac{1}{z}$) in Cartesian form
 - (b) Write down the modulus and Principal Argument of z^{-1} in terms of |z| and $\operatorname{Arg}(z)$.
- 3. Express the following complex numbers in Cartesian form (that is to say, as a+ib for $a,b\in\mathbb{R}$)

$$\frac{i-1}{1-i}$$
 $\frac{1}{1+i}$ $\frac{3+4i}{1-2i}$.

- 4. Find the principal argument of the four points $\pm 1 \pm i\sqrt{3}$.
- 5. Calculate

$$\left. \operatorname{Arg} \left(\frac{1}{2} + \frac{1}{z^2} \right) \right|_{z=1+i}.$$

(The notation $f(z)|_{z=w}$ means f(z) evaluated at z=w, or in other words, f(w).)

6. Show that

$$2\left(\frac{z}{z+i}\right)\left.\frac{(z+i-z)}{(z+i)^2}\right|_{z=i} = \frac{-i}{4}.$$

- 7. Sketch the following regions of \mathbb{C} :
 - (a) 1 < |z| < 2 (This notation is shorthand for the set $\{z \in \mathbb{C} : 1 < |z| < 2\}$.)

- (b) 1 < |z+2| < 2
- (c) 1 < Im(z i) < 2

8. (a) Prove that for two nonzero complex numbers z_1 and z_2 we have

$$|z_1 z_2| = |z_1| \cdot |z_2|$$
 and $\arg(z_1 z_2) = \arg(z_1) \arg(z_2)$

(hint: write z_1 and z_2 in polar form). Is it always true that $Arg(z_1z_2) = Arg(z_2) + Arg(z_2)$?

- (b) Show that $\exp(z_1) \exp(z_2) = \exp(z_1 + z_2)$.
- 9. Write down the 3^{rd} roots of -8 in Cartesian form.
- 10. Find the values of z for which $z^2 + 4iz 1 = 0$. Which of these values lies inside the circle $C = \{z \in \mathbb{C} : |z| = 1\}$.
- 11. Show that $\operatorname{\mathsf{Re}}(z) \leq |\operatorname{\mathsf{Re}}(z)| \leq |z|$ and $|\operatorname{\mathsf{Re}}(z)| + |\operatorname{\mathsf{Im}}(z)| \leq \sqrt{2}\,|z|$.

1. Use the triangle inequality $|z_1 - z_2| \le |z_1| + |z_2|$ to prove the reverse triangle inequality:

$$|z_1 - z_2| \ge ||z_1| - |z_2||$$

2. Use the triangle and reverse triangle inequalities to show that for all z on the circle |z| = 2, we have

$$|z+2| \le 4$$
 and $|z-3+4i| \ge 3$.

Describe these inequalities geometrically.

3. Use the triangle and reverse triangle inequalities to show that for all z on the circle |z+3i|=3 we have

$$|z-4| \le 8$$
, $|z+5i| \ge 1$ and $\left|\frac{z-4}{z+5i}\right| \le 8$.

4. Let L be the line segment [0,h] where $h \in \mathbb{C}$ and |h| < r. Show that if $\beta \in \mathbb{C}$ with $|\beta| > 2r$ and $z \in L$ then

$$\left|\frac{h-z}{\beta-z}\right| < \frac{|h|}{r}.$$

Do this using the reverse triangle inequality. It can also be seen as follows. Draw L and two circles, both with centre 0, C_1 with radius r and C_2 with radius 2r. Why does L lie inside C_1 ? Where is β on your diagram? Why is $|\beta - z| > r$? If you can answer these three questions then the inequality should follow easily.

5. The function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by $\mathbf{f}(x,y) = (0,2y)$. Show that the corresponding complex function $f: \mathbb{C} \to \mathbb{C}$ is $f(z) = z - \overline{z}$, and that

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

does not exist at any point $z_0 \in \mathbb{C}$.

6. Same as question 5 but with

$$\mathbf{f}(x,y) = (x^2 - y^2 - x, 2xy + y + 1)$$
 and $f(z) = z^2 - \overline{z} + i$.

7. Let $f: \mathbb{C} \to \mathbb{C}$ be defined by $f(z) = |z|^2$. Show that f is differentiable at z = 0 and nowhere else.

- $8.\,$ Use the rules of differentiation to find the derivatives of the following functions:

 - (a) $f(z) = (z^2 + 4)^3$ (b) $g(z) = \frac{z+i}{z-i}$.

Find the values of f'(i) and g'(1).

1. For each function f below, write f in the form

$$f(z) = f(x+iy) = u(x,y) + iv(x,y)$$

and determine whether or not the Cauchy-Riemann equations are satisfied:

(a)
$$f(z) = \exp(i \overline{z})$$
 (b) $f(z) = z + \frac{1}{z}$ (c) $f(z) = z^3$.

In the cases where f is differentiable, find the derivative of f both using the rules of differentiation and using the Cauchy-Riemann equations.

2. Show that the Cauchy-Riemann equations are satisfied by the function f defined on the open upper half plane $H_+ = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by

$$f(x+iy) = u(x,y) + iv(x,y) = \log\left(\sqrt{x^2 + y^2}\right) + i\left(\frac{\pi}{2} - \arctan\left(\frac{x}{y}\right)\right).$$

Assuming that f is indeed holomorphic on H_+ , show that

$$f'(x+iy) = \frac{1}{x+iy}$$
 i.e., that $f'(z) = \frac{1}{z}$.

3. Describe the geometric effect of applying the functions:

- (a) $f(z) = \frac{1}{z}$ to a small disc centred at 1 i, and
- (b) $g(z) = \exp(2iz)$ to a small disc centred at $\frac{\pi}{4} + i$.

4. The set of points L = [0, 1-2i] is a line segment. It is also a path because we have a parametrisation given by $\gamma : [0,1] \to \mathbb{C}$, $\gamma(t) = (1-2i)t$. Use this parametrisation to evaluate the integral

$$\int_L \left(\mathsf{Im}(z) + 3i \right) \ dz.$$

5. Find the value of

$$\int_{\Gamma_1} f(z) dz$$
 and $\int_{\Gamma_2} f(z) dz$,

where $f(z) = 3\overline{z}$, Γ_1 is the straight line path from 0 to -i and Γ_2 is the straight line path from 1 - i to 1 + i.

6. Fix a point $z_0 \in \mathbb{C}$ and define a complex function f via

$$f(z) = (z - z_0)^n$$

where $n \in \mathbb{Z}$. Find the value of

$$\int_{\Gamma} f(z) \ dz,$$

where Γ is the circle with centre z_0 and radius r > 0, traversed in the anticlockwise direction (use the parametrisation $\gamma : [0, 2\pi] \to \mathbb{C}$, $\gamma(t) = z_0 + r(\cos(t) + i\sin(t))$). Do this separately for the cases n = -1 and $n \neq -1$.

(Hint: for the case $n \neq -1$, you need to show that

$$\frac{d}{dt} \left[(\cos(t) + i\sin(t))^{n+1} \right] = i(n+1) (\cos(t) + i\sin(t))^{n+1}$$

and then use the (real) Fundamental Theorem of Calculus).

7. Let $f, g: U \to \mathbb{C}$ be continuous, and let Γ be a smooth path contained in U parametrised by $\gamma: [a, b] \to \mathbb{C}$. Prove that

(a) for every constant
$$\alpha \in \mathbb{C}$$
 we have $\int_{\Gamma} (f + \alpha g) = \int_{\Gamma} f + \alpha \int_{\Gamma} g$, and

(b) if $\tilde{\Gamma}$ denotes the reverse of Γ , we have $\int_{\tilde{\Gamma}} f = -\int_{\Gamma} f$. As a hint, parametrise $\tilde{\Gamma}$ using $\tilde{\gamma}: [a,b] \to \mathbb{C}, \ \tilde{\gamma}(t) = (a+b-t)$, and use the substitution s=a+b-t.

1. Find antiderivatives for the following functions:

(a)
$$f(z) = \alpha + \beta(z - z_0)$$
,

(b)
$$f(z) = (z - z_0)^n$$
,

where α, β and $z_0 \in \mathbb{C}$ are constants and n is an integer, $n \neq -1$. Does $g(z) = (z - z_0)^{-1}$ have an antiderivative on $\mathbb{C} \setminus \{z_0\}$? Question 6 on Exercise Sheet 2 may help here.

2. Evaluate the following contour integrals:

$$\int_{\mathcal{C}} z^3$$
 and $\int_{\mathcal{C}} \frac{1}{z^2}$

along \mathcal{C} where \mathcal{C} is

- (a) any contour from i to -2, and
- (b) any closed contour.

For the second integral, you may assume that C does not contain 0.

- 3. Let U be a region in \mathbb{C} and let $f:U\to\mathbb{C}$ be holomorphic on U with f(z) real-valued for all $z\in U$. Prove that f is constant.
- 4. Find an upper estimate for

$$\int_{\mathcal{C}} \frac{1}{1+z^4},$$

where C is the upper semicircular contour from R to -R given by $\gamma:[0,\pi]\to\mathbb{C},\ \gamma(t)=R\cos(t)+iR\sin(t).$

5. Show that for all points z on the circle $\{z: |z| = 5\}$ we have

$$|z-7| \le 12$$
 and $|\overline{z}+8| \ge 3$,

and use this to find an upper estimate for the integral

$$\int_{S} \frac{z-7}{(\overline{z}+8)^2} dz$$

where S is the same circle oriented anticlockwise.

6. Let S_a be the anticlockwise square contour with corners at $\pm a(1+i), \pm a(1-i)$ where a>0. Show that if $z\in S_a$ then

$$\frac{1}{|z|} \le \frac{1}{a}$$

and hence

$$\left| \int_{S_a} \frac{1}{z} dz \right| \le 8,$$

for all a > 0.

- 7. Prove each of the following:
 - (a) For z_0 and h in $\mathbb C$ we have $\int_{[z_0,z_0+h]}1\ dz=h.$
 - (b) For $f: U \to \mathbb{C}$ and $z_0 \in U$, $f(z_0) = \frac{1}{h} \int_{[z_1, z_1 + h]} f(z_0) dz$.
 - (c) If α is a complex number and M a fixed real number with $|\alpha| \leq \epsilon M$ for all $\epsilon > 0$ then $\alpha = 0$.

- 1. Express each of the following complex numbers in Cartesian form a + ib:
 - (a) Log(i), (b) Log(ie) (c) $Log(-1 i\sqrt{3})$.
- 2. Express each of the following complex numbers in Cartesian form a + ib:

(a)
$$(1+i)^i$$
, (b) $(ie)^{i\pi}$, (c) $(-1-i\sqrt{3})^{1+i}$.

- 3. (a) Use the definition $z^{\alpha} = \exp(\alpha \operatorname{Log}(z))$ to show that $z^{3} = zzz$.
 - (b) Show that $Log(i^3) \neq 3Log(i)$
 - (c) Define $\sqrt{z} = z^{1/2} (= \exp(\frac{1}{2} \operatorname{Log}(z)))$ for $z \in \mathbb{C} \setminus \{0\}$. Where is the mistake in

$$-1 = i^2 = ii = \sqrt{-1}\sqrt{-1} = \sqrt{-1 \times -1} = \sqrt{1} = 1$$
?

- (d) Show that for all $\alpha, \beta \in \mathbb{C}$ and $z \in \mathbb{C} \setminus \{0\}$ we have $z^{\alpha}z^{\beta} = z^{\alpha+\beta}$. Is it true that $\text{Log}(\alpha\beta) = \text{Log}(\alpha) + \text{Log}(\beta)$?
- 4. Recall that the Principal Logarithm function Log is holomorphic on the region \mathbb{C}_{π} , where $\mathbb{C}_{\pi} = \{z \in \mathbb{C} : z \neq 0 \text{ and } \operatorname{Arg}(z) \neq \pi\}$. Let F be the function defined by

$$F(z) = \frac{1}{2i} \left(\text{Log}(z+i) - \text{Log}(z-i) \right).$$

- (a) Describe (or sketch) the region \mathcal{R} on which the function F is holomorphic.
- (b) Show that F is an antiderivative for the function $f: \mathbb{R} \to \mathbb{C}$ defined by

$$f(z) = \frac{1}{z^2 + 1}$$
 for all $z \in \mathcal{R}$.

5. Let U be a starlit region with star centre $z_* \in U$ and let $g: U \to \mathbb{C}$ be a holomorphic function.

- (a) Prove that if $g(z) \neq 0$ for all $z \in U$, then the function $\frac{g'}{g}$ has an antiderivative on U, stating any results used (you may assume that g holomorphic on U implies g' holomorphic on U).
- (b) Prove that if in addition $g(z) \in \mathbb{C}_{\pi}$ for all $z \in U$ then

$$\int_{[z_*,z]} \frac{g'(\zeta)}{g(\zeta)} \ d\zeta = \text{Log}(g(z)) + \alpha$$

for some constant α .

6. Evaluate the integral

$$\int_{\mathcal{C}} \frac{\exp(2z)}{4z + i\pi} \ dz$$

where C is (i) the anticlockwise contour whose points lie on the circle $\{z : |z| = 1\}$, and (ii) when C is the anticlockwise contour whose points lie on the circle $\{z : |z - 2i| = 2\}$. The use of any Theorems made to obtain the value of these integrals should be justified.

7. Evaluate the integral

$$\int_{\mathcal{C}} \frac{\cos(z^2)}{3i + 2z} \ dz,$$

where (i) \mathcal{C} is the anticlockwise contour whose points lie on the circle $\{z:|z|=1\}$, and (ii) \mathcal{C} is the anticlockwise contour whose points lie on the circle $\{z:|z|=5\}$. The use of any Theorems made to obtain the value of these integrals should be justified.

8. Evaluate the integral

$$\int_{-\infty}^{+\infty} \frac{1}{x^2 + 6x + 25} \ dx$$

in the following way (compare Example 5.8 in the notes):

- (a) Define the complex function f by $f(z) = \frac{1}{z^2 + 6z + 25}$ and find z_0 and z_1 so that $f(z) = \frac{1}{(z z_0)(z z_1)}$ (where z_0 lies in the upper half-plane and z_1 in the lower half-plane).
- (b) Choose a suitable function g, holomorphic on the simply connected region $\mathcal{R} = \{z \in \mathbb{C} : \operatorname{Im}(z) > \frac{1}{2}\operatorname{Im}(z_1)\}$, so that

$$f(z) = \frac{g(z)}{(z - z_0)}.$$

(c) Justify the use of Cauchy's Integral Formula to find

$$\int_{\mathcal{C}_R} f = \int_{\mathcal{C}_R} \frac{g(z)}{(z - z_0)} \ dz,$$

where $C_R = L_R + S_R$ with L_R the straight line path from -R to R and S_R a suitable semicircular contour from R to -R, with R sufficiently large to apply the Theorem.

- (d) Show that for large R and $z \in S_R$, we have $|z^2 + 6z + 25| \ge R^2 6R 25$.
- (e) Use the Estimation Lemma to show that

$$\left| \int_{S_R} f \right| \to 0 \text{ as } R \to \infty.$$

(f) Deduce the value of

$$\int_{-\infty}^{+\infty} \frac{1}{x^2 + 6x + 25} \ dx.$$

- 9. (Liouville's Theorem) Let $f: \mathbb{C} \to \mathbb{C}$ be holomorphic everywhere, and suppose that f is bounded, i.e. there exists M > 0 with $|f(z)| \leq M$ for all $z \in \mathbb{C}$. Show that f is constant on \mathbb{C} , in the following way:
 - (a) Let $z_1, z_2 \in \mathbb{C}$, and let R > 0 be sufficiently large so that z_1 and z_2 are enclosed by the countour \mathcal{C}_R consisting of the anticlockwise circle with centre 0 and radius R. Use Cauchy's Integral Formula to write $f(z_1) f(z_2)$ as a single integral along \mathcal{C}_R .
 - (b) Use the Estimation Lemma (and the backwards triangle inequality) to show that

$$|f(z_1) - f(z_2)| \le M \frac{|z_1 - z_2|}{(R - |z_1|)(R - |z_2|)} \cdot 2\pi R$$

for all (sufficiently large) R.

(c) Deduce that $f(z_1) = f(z_2)$.

1. Locate the poles of each of the following functions, and calculate the residues at these poles:

(a)
$$f(z) = \frac{1}{z(i-z)^3}$$

(b)
$$f(z) = \frac{z^2}{(z^2+1)^2}$$

(c)
$$f(z) = \frac{\text{Log}(z)}{(4z-i)^2}$$

(d)
$$f(z) = \frac{1}{\exp(z) - 1}$$
.

2. Evaluate

$$\int_{\mathcal{C}} \frac{1}{z(z-1)(z+2)} \ dz,$$

where C is the anticlockwise circle with centre 0 and radius 3/2.

3. Evaluate

$$\int_{\mathcal{C}} \frac{1}{(z^2+1)^3} \ dz$$

where C is the anticlockwise square with vertices 1, 1 + 2i, -1 + 2i and -1.

4. Use contour integration to evaluate each of the following real integrals:

(a)
$$\int_0^{2\pi} \frac{1}{5 + 4\sin\theta} \ d\theta$$

$$\int_0^\infty \frac{1}{x^4 + 1} \ dx$$

5. Use contour integration to evaluate the following real integrals:

(a)
$$\int_0^{2\pi} \frac{1}{16\cos^2(t) + 25\sin^2(t)} dt.$$

(b)
$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)(x^2+9)} \ dx.$$

(c)

$$\int_0^\infty \frac{\cos(5x)}{x^2 + 4}$$

(Hint: first use the usual method to evaluate $\int_{-\infty}^{+\infty} \frac{e^{i5x}}{x^2+4} \ dx$.)

- 6. (a) Let N be a natural number and let α_j be constants for $-N \leq j \leq N$. If $f(z) = \sum_{j=-N}^{N} \alpha_j z^j$, write down the value of $\operatorname{Res}(f;0)$.
 - (b) Write $\int_0^{2\pi} [\cos(t)]^8 dt$ as a contour integral, and use part (a) to evaluate it.