17.5 Normal and Other Special Matrices

First we consider real matrices. Recall the following definitions.

Definition 17.3. Given a real $m \times n$ matrix A, the transpose A^{\top} of A is the $n \times m$ matrix $A^{\top} = (a_{ij}^{\top})$ defined such that

$$a_{i\,j}^{\top}=a_{j\,i}$$

for all $i, j, 1 \le i \le m, 1 \le j \le n$. A real $n \times n$ matrix A is

• normal if

$$AA^{\top} = A^{\top}A,$$

• symmetric if

$$A^{\top} = A$$
,

• skew-symmetric if

$$A^{\top} = -A,$$

• orthogonal if

$$A A^{\top} = A^{\top} A = I_n.$$

Recall from Proposition 12.14 that when E is a Euclidean space and (e_1, \ldots, e_n) is an orthonormal basis for E, if A is the matrix of a linear map $f: E \to E$ w.r.t. the basis (e_1, \ldots, e_n) , then A^{\top} is the matrix of the adjoint f^* of f. Consequently, a normal linear map has a normal matrix, a self-adjoint linear map has a symmetric matrix, a skew-self-adjoint linear map has a skew-symmetric matrix, and an orthogonal linear map has an orthogonal matrix.

Furthermore, if (u_1, \ldots, u_n) is another orthonormal basis for E and P is the change of basis matrix whose columns are the components of the u_i w.r.t. the basis (e_1, \ldots, e_n) , then P is orthogonal, and for any linear map $f: E \to E$, if A is the matrix of f w.r.t (e_1, \ldots, e_n) and B is the matrix of f w.r.t. (u_1, \ldots, u_n) , then

$$B = P^{\top} A P.$$

As a consequence, Theorems 17.12 and 17.14–17.16 can be restated as follows.