BSCCS2001: Practice Solutions Week 5

1. Consider the following

$$X = \{A \to BC, B \to A, C \to A\}$$

$$Y = \{A \to B, B \to C, C \to A\}$$

- $\bigcirc X \text{ covers } Y$
- $\bigcirc Y \text{ covers } X$
- \bigcirc X and Y are equivalent
- $\sqrt{\text{All the above}}$

Solution: Let us check X covers Y, every functional dependency in Y logically implies in X.

[MCQ: 2 points]

FDs in $Y: A \to B, B \to C, C \to A$

check for $A \to B$,

 $A^+ \to ABC \{A \to BC \text{ in } X\}$

Check for $B \to C$

 $B^+ \to BAC, \{A \to BC, B \to A \text{ in } X\}$

Check for $C \to A$

 $C^+ \to CAB \ \{C \to A, A \to BC \ \text{in} \ X\}$

Therefore, X covers Y

Let us now check, If Y covers X

FDs in X: $A \to BC$, $B \to A$, $C \to A$

Check for $A \to BC$

 $A^+ \to ABC \ \{A \to B, \ B \to C \ \text{in} \ Y\}$

Check for $B \to A$

 $B^+ \to BCA \ \{B \to C, C \to A \text{ in } Y\}$

Check for $C \to A$

 $C^+ \to A \ \{C \to A \ \text{in} \ X\}$

Therefore, Y covers X

Since, both X & Y covers each other, so they are equivalent $X \equiv Y$

2. Consider relation $\mathbf{R}(A,B,C,D,E,F)$ with the following functional dependencies:

$$\mathcal{F} = \{AB \to C, AC \to E, EF \to D, AB \to F\}$$

[MSQ: 2 points]

Which among the following is true about R?

- \bigcirc R1(D, E, F), R2(A, B, C, E, F) is a lossy decomposition of R.
- $\sqrt{R1(A, B, D)}$, R2(C, E, F) is a lossy decomposition of R.
- \bigcirc R1(A, D, E, C), R2(B, E, C) is a lossless decomposition of R.
- $\sqrt{R1(D, E, A, B)}$, R2(C, F, B) is a lossy decomposition of R.

Solution:

This problem will be solved in the Solve With the Instructor session.

3. Consider relation $\mathbf{T20WC}$ defined as $\mathbf{W}(\textit{Team}, \textit{Ranking}, \textit{Captain}, \textit{Points}, \textit{Players})$ with the following functional dependencies:

 $\mathcal{F} = \{Team, Ranking \rightarrow Captain, Ranking \rightarrow Players, Captain \rightarrow Points\}$

Then, which of the following is true?

[MCQ:2points]

- W1(Team, Ranking, Captain), W2(Captain, Points) is a lossless-join decomposition.
- $\sqrt{W1(Team, Ranking, Captain)}$, W2(Points, Players) is a lossy-join decomposition
- W1(Team, Ranking, Captain), W2(Ranking, Points, Players) is a lossless-join decomposition.
- O None of the above

Solution:

Option 1: W1(Team, Ranking, Captain), W2(Captain, Points)

 $W1 \cup W2 \neq W$

Thus, it is lossy join decomposition.

Option 2: W1(Team, Ranking, Captain), W2(Points, Players)

 $W1 \cup W2 = W$

 $W1 \cap W2 = \phi$

Thus, it is lossy join decomposition. So, option 2 is correct

Option 3: W1(Team, Ranking, Captain), W2(Ranking, Points, Players)

 $W1 \cup W2 = W$

 $W1 \cap W2 = Ranking$

 $Ranking^+ \rightarrow Ranking, Players$

Ranking is not superkey for any relation. Hence, we can't determine W1 and W2 from it. So it is leavy decomposition

from it. So, it is lossy decomposition.

Numerical Answer Type

4. Consider the relation **Book**(Author, Publisher, Pages, Ratings, Type) having the following functional dependencies: [NAT: 2 points]

 $\mathcal{F} = \{ Author \rightarrow Publisher, Pages \}$

 $Publisher \rightarrow Ratings$

 $Pages, Ratings \rightarrow Type$

 $Type \rightarrow Author \}$

What is the maximum number of candidate keys for **Book**?

Ans:4

Solution: By estimating the closure of all combination of attributes, it can be observed that the closure of the following attributes produces all other attributes: *Author*, *Type*, (*Publisher*, *Pages*), (*Pages*, *Ratings*).

Hence, these 4 are the candidate keys.

5. In a relation $\mathbf{R}(A, B, C, D, E)$, each attribute is a candidate key. Then, what is the maximum number of super keys possible for \mathbf{R} ?

[NAT: 2 points]

Ans: 31

Solution: Consider a relation $R(A_1, A_2, A_3, ..., A_n)$, then maximum number of super keys are 2^n -1. (If Each attribute of a relation is candidate key)

Here, n = 5, so, the number of super keys for a given relation R is 31.

6.	Which among the following is/are the use(s) of finding closure of attributes? [MSQ: 2 points]
	○ Find if an attribute or set of attributes is a superkey.
	Ompute the canonical cover of a given set of functional dependencies
	Test if a specific functional dependency holds
	Occupite the closure of a given set of functional dependencies
	$\sqrt{\text{ All the above}}$
	Solution: The solution follows from the lectures.

7. Let $\mathbf{R}(A, B, C, D, E)$ be a relation with the following functional dependencies:

$$\mathcal{F} = \{A \to C, A \to B, C \to D, BC \to E\}$$

[MCQ: 2 points]

Then,

$$\bigcirc \mathcal{F}^{+} = \{A \to C, A \to B, C \to D, BC \to E\}$$

$$\bigcirc \mathcal{F}^{+} = \{A \to C, A \to B, C \to D, A \to D, BC \to E\}$$

$$\bigcirc \mathcal{F}^{+} = \{A \to BC, C \to D, BC \to E\}$$

$$\checkmark \mathcal{F}^{+} = \{C \to D, BC \to E, A \to BCDE\}$$

Solution: This problem will be solved in the Solve With the Instructor session.

8. Let $\mathbf{R}(A, B, C, D, E)$ be a relation with the following functional dependencies:

[MCQ: 2 points]

$$\mathcal{F} = \{A \to B, C \to D, BD \to E\}$$

Then, which of the following functional dependencies can be derived from \mathcal{F} using Armstrong's Axioms?

$$\sqrt{AC \to E}$$

$$\bigcirc BE \to D$$

$$\bigcirc B \to A$$

$$\bigcirc C \to E$$

Solution: $A \to B$ $AC \to BC$ {Augmentation} $C \to D$ $BC \to BD$ {Augmentation} $BD \to E$ $AC \to E$ {Transitivity}

9. Choose the correct canonical cover of the set of functional dependencies \mathcal{F} that occur in a relation $\mathbf{R}(A,B,C,D)$, where

$$\mathcal{F} = \{A \to BC, AB \to C, A \to D, D \to C\}$$

[MCQ: 2 points]

$$\bigcirc A \rightarrow BC, AB \rightarrow C$$

$$\bigcirc A \rightarrow BC, AB \rightarrow C, A \rightarrow D$$

$$\sqrt{A \rightarrow B, A \rightarrow D, D \rightarrow C}$$

$$\bigcap A \to B, B \to C, A \to D$$

Solution: Given $A \to BC$, $AB \to C$, $A \to D$, $D \to C$.

$$A \to D, D \to C \Rightarrow A \to C$$

That is, in the FD $A \to BC$, $A \to C$ is redundant.

Hence we can remove $A \to C$ from $A \to BC$.

$$\mathcal{F} = \{A \to B, AB \to C, A \to D, D \to C\}$$

Since $A \to C$ is a stronger constraint than $AB \to C$ and since $A \to C$ can be derived from $A \to D, D \to C$, we can remove $AB \to C$ from \mathcal{F} .

Therefore

$$\mathcal{F} = \{A \to B, A \to D, D \to C\}$$

10. Choose the set of FDs equivalent to:

$$A \to BC, B \to CE, C \to ED$$

[MSQ: 2 points]

$$\begin{array}{l} \sqrt{A \rightarrow BE, B \rightarrow CD, C \rightarrow ED} \\ \bigcirc A \rightarrow B, B \rightarrow D, C \rightarrow E \\ \sqrt{A \rightarrow B, B \rightarrow C, C \rightarrow ED} \\ \bigcirc A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A \end{array}$$

Solution:

This problem will be solved in the Solve With the Instructor session.

11. Given the relation **hospital** and its decomposition into **hosp1** and **hosp2** as shown in Figure 1, choose the correct set of options. [MCQ: 2 points]

hospital		
hospitalNum	patientNum	doctorID
H0001	P0001	D0001
H0002	P0002	D0002
H0003	P0001	D0003

hosp1		hosp2	
hospitalNum	patientNum	patientNum	doctorID
H0001	P0001	P0001	D0001
H0002	P0002	P0002	D0002
H0003	P0001	P0001	D0003

Figure 1: Decomposition of hospital relation

- O The given decompostion is lossless and the natural join of **hosp1** and **hosp2** has 5 rows.
- The given decomposition is lossless and the natural join of **hosp1** and **hosp2** has 3 rows.
- $\sqrt{\ }$ The given decomposition is lossy and the natural join of **hosp1** and **hosp2** has 5 rows.
- O The given decomposition is lossy and the natural join of **hosp1** and **hosp2** has 3 rows.

Solution:

	,	
hospital		
hospitalNum	patientNum	doctorID
H0001	P0001	D0001
H0002	P0002	D0002
H0003	P0001	D0003
H0001	P0001	D0003
H0003	P0001	D0001

Figure 2: Natural join of hosp1 and hosp2

12. Consider a relation R(A, B, C, D, E) having the following functional dependencies:

$$\mathcal{F} = \{A \to BCD, D \to E, C \to D\}$$

Which among the following are lossy decompositions?

[MSQ: 2 points]

- $\bigcirc R_1(A, B, C), R_2(B, C, D), R_3(C, D, E)$
- $\bigcirc R_1(A, B, C), R_2(A, C, D), R_3(A, D, E)$
- $\sqrt{R_1(A, B, C), R_2(A, C), R_3(A, D)}$
- $\bigcirc R_1(A,B,C,D), R_2(A,C,D,E)$

Solution:

This problem will be solved in the Solve With the Instructor session.