README.md 2025-10-08

Random Forest Penguin Classification Project

Project Overview

This project aims to build classification models to identify penguin species based on physical measurements from the Palmer Penguins dataset. It supports both Random Forest and Decision Tree classifiers, allowing for comparison between ensemble and interpretable single-tree approaches.

Contents

- Data Description
- Data Preprocessing
- Modular Project Structure
- Machine Learning Workflow
- Classifier Options
- Model Performance
- Visualization
- Installation and Requirements

Data Description

The dataset includes the following features:

- species: Target variable representing the penguin species (Adelie, Gentoo, Chinstrap)
- island: The island the penguin inhabits (Biscoe, Dream, Torgersen)
- culmen_length_mm: Culmen length in millimeters
- culmen_depth_mm: Culmen depth in millimeters
- flipper_length_mm: Flipper length in millimeters
- **body_mass_g**: Body mass in grams
- sex: Gender of the penguin

Data Preprocessing

- Missing values are removed.
- Categorical variables island and sex are converted to numerical features using one-hot encoding.
- Original data files remain unchanged; preprocessing is handled in a dedicated function within the one_hot_encoder.py module.

Original data:

species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
Adelie	Torgersen	39.1	18.7	181.0	3750.0	MALE
Adelie	Torgersen	39.5	17.4	186.0	3800.0	FEMALE
Adelie	Torgersen	40.3	18.0	195.0	3250.0	FEMALE
Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
Adelie	Torgersen	36.7	19.3	193.0	3450.0	FEMALE

Cleaned and encoded data:

Feature table:

Index	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	island_Biscoe	island_Dream	island_Torgersen	sex	sex_FEN
0	39.1	18.7	181.0	3750.0	False	False	True	False	False
1	39.5	17.4	186.0	3800.0	False	False	True	False	True
2	40.3	18.0	195.0	3250.0	False	False	True	False	True
4	36.7	19.3	193.0	3450.0	False	False	True	False	True
5	39.3	20.6	190.0	3650.0	False	False	True	False	False

Target table:

Index	species
0	Adelie
1	Adelie
2	Adelie
4	Adelie

README.md 2025-10-08

Index	species
5	Adelie

Modular Project Structure

- one_hot_encoder.py: Contains the preprocess_penguin_data(filepath) function which loads, cleans, and encodes the dataset.
- data_inspector.py: Loads the processed data using the encoder and provides utilities for data inspection (e.g., displaying the first rows).
- random_forest.py: Implements model training, prediction, evaluation, and visualization using Random Forest.
- decision_tree.py: Implements model training, prediction, evaluation, and visualization using Decision Tree.

Machine Learning Workflow

- 1. Load and preprocess data using preprocess_penguin_data.
- 2. Split data into training and testing sets.
- 3. Train a classifier (Random Forest or Decision Tree) using the dedicated script.
- 4. Predict on test data.
- 5. Evaluate performance using accuracy, precision, recall, F1-score, and visualize results with a confusion matrix.

Classifier Options

- Random Forest (random_forest.py): An ensemble method that improves predictive accuracy and robustness.
- Decision Tree (decision_tree.py): A simple, interpretable model using a single tree structure.

Both classifiers are supported; select which to train and evaluate by running the corresponding script.

Model Performance

- Random Forest achieves high accuracy (~99%).
- Decision Tree offers interpretable results with slightly lower accuracy.
- Balanced classification performance across penguin species in both models.

Visualization

Confusion matrix visualization using sklearn.metrics.ConfusionMatrixDisplay to show true vs. predicted classifications.

README.md 2025-10-08

Chinstrap

Predicted label

Gentoo

Installation and Requirements

Adelie

• Python 3.12.4 (recommended)

Required Python libraries (installation via pip):

- pandas
- numpy
- scikit-learn
- matplotlib