Analisi Matematica 2 – agosto 2023 – Ing. Informatica Proff. Garrione - Gazzola - Noris - Piovano

Cognome:	Nome:	Nome:		Iatricola:
	Parte A Es.1	Es.2 Es.3	Totale]

Per superare l'esame devono essere raggiunte le seguenti soglie: parte $A \ge 4$, parte $B \ge 12$, totale ≥ 18 . Tempo di svolgimento complessivo delle parti A + B = 100 minuti.

PARTE A. Teoria (4 punti). Enunciare e dimostrare il criterio della matrice Hessiana.

Domande a risposta multipla $(4 \times 1 = 4 \text{ punti})$: una sola è corretta.

- (1) Sia $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ una serie di potenze reale e si denoti con R il suo raggio di convergenza. Si ha:
- (a) se R=0, la serie non converge puntualmente in nessun punto
- (b) se $R = +\infty$, la serie converge totalmente in ogni sottointervallo chiuso e limitato di \mathbb{R}
- (c) $R = \lim_{n \to +\infty} \sqrt[n]{|a_n|}$, se tale limite esiste
- (d) nessuna delle altre
- (2) Sia $\Omega = \{(x, y) \in \mathbb{R}^2 : \log(xy) \le 1\}$. Allora
- (a) nessuna delle altre affermazioni è corretta
- (b) Ω è aperto
- (c) Ω è chiuso
- (d) Ω è limitato

(3) Sia
$$\Omega = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4, \ y \le x + 2, \ x \le 0 \right\}$$
e sia f continua in Ω . Allora $\int_{\Omega} f(x,y) \, dx \, dy = \int_{\Omega} f(x,y) \, dx \, dy = \int_{\Omega} f(x,y) \, dx \, dy = \int_{\Omega} f(x,y) \, dx \, dy$

(a)
$$\int_{-2}^{0} \int_{-\sqrt{4-x^2}}^{x+2} f(x,y) dy dx$$

(b)
$$\int_{\pi/2}^{3/2\pi} \int_{0}^{2} f(\rho \cos \theta, \rho \sin \theta) d\rho d\theta$$

(c)
$$\int_{-\sqrt{4-y^2}}^{0} \int_{-2}^{2} f(x,y) dy dx$$

(d)
$$\int_{-2}^{0} \int_{0}^{x+2} f(x,y) dy dx$$

- (4) Data una serie di funzioni $\sum_n f_n$ con $f_n: I \subset \mathbb{R} \to \mathbb{R}$, I non vuoto, si ha (a) se $f_n(x) \to 0$ per ogni $x \in I$, allora la serie data converge puntualmente in I
- (b) se esiste $x_0 \in I$ tale che $f_n(x_0) \not\to 0$, allora la serie data non converge totalmente in I
- (c) se la serie data converge puntualmente su I, allora è integrabile termine a termine su I
- (d) se $|f_n(x)| \leq 1/n$ per ogni $x \in I$ ed ogni n, allora la serie data converge totalmente in I

PARTE B. Esercizi $(3 \times 8 = 24 \text{ punti})$

Esercizio 1 (i) (6 punti) Determinare l'integrale generale del sistema omogeneo $\underline{y}'(t) = A\underline{y}(t)$, dove

$$A = \left(\begin{array}{cc} 2 & 3 \\ -1 & 0 \end{array}\right).$$

(ii) (2 punti) Determinare la soluzione $\underline{y}(t)=(y_1(t),y_2(t))$ di tale sistema che soddisfa $y_1(0)=1,\ y_2(0)=-1.$

Esercizio 2 Sia f la funzione 2π -periodica, pari, definita in $[0,\pi]$ da f(x)=x.

- (i) (1 punto) Rappresentare f sull'intervallo $[-2\pi, 2\pi]$.
- (ii) (4 punti) Calcolare la serie di Fourier di f.
- (iii) (3 punti) Relativamente a tale serie: determinare l'insieme di convergenza puntuale e la funzione somma della serie; stabilire se la convergenza sia totale in tutto \mathbb{R} ; discutere la convergenza in media quadratica.

Esercizio 3 Sia f la funzione di due variabili definita da

$$f(x,y) = -\frac{x^2}{9} - \frac{y^2}{4} + 2.$$

- (i) (3 punti) Motivando la risposta, dire se f è differenziabile in \mathbb{R}^2 . Detto I_1 l'insieme di livello 1 di f, determinare un vettore ortogonale ad I_1 nel punto $P_0 = \left(1, \frac{4\sqrt{2}}{3}\right)$.
- (ii) (2 punti) Immaginando che la regione $M = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le f(x, y)\}$ rappresenti una montagna, calcolare la direzione di minima pendenza (crescita) della montagna nel punto P_0 ,
- (iii) (3 punti) Considerare l'insieme $\gamma = \{(x,y,1) \in \mathbb{R}^3 : (x,y) \in I_1\}$ come sostegno di una curva in \mathbb{R}^3 e, immaginando che si scavi un fossato sulle pendici della montagna lungo γ , calcolare la massa totale del materiale rimosso per lo scavo nel caso in cui la densità di massa $\delta : M \to \mathbb{R}$ sia definita per ogni $(x,y,z) \in M$ da

$$\delta(x, y, z) = \frac{x^2|y|}{\sqrt{\frac{4}{9}x^2 + \frac{9}{4}y^2}}.$$