	Цифровая обработка изображений Зачет выполнил: студент гр. 8303, Гришин К. И.
In [1]:	<pre>import numpy as np import pandas as pd from IPython.display import Image</pre>
In [2]:	Найти ху координаты монохроматического цвета 555 nm (отражающая способность 1.0) Источник освещения D65 Модель наблюдателя соответствует CIE 1931 (2 градуса) сie = pd.read_csv("cccie31.csv") cie
Out[2]:	wave x y z 0 360 0.175560 0.005294 0.819146 1 365 0.175161 0.005256 0.819582 2 370 0.174821 0.005221 0.819959
	3 375 0.174510 0.005182 0.820309 4 380 0.174112 0.004964 0.820924 90 810 0.734690 0.265310 0.000000 91 815 0.734690 0.265310 0.000000
	92 820 0.734690 0.265310 0.000000 93 825 0.734690 0.265310 0.000000 94 830 0.734690 0.265310 0.000000 95 rows × 4 columns
<pre>In [3]: Out[3]:</pre>	<pre>cie[cie.wave==555] wave x y z 39 555 0.337363 0.658848 0.003788</pre>
	2 Даны координаты в системе sRGB(0,75 0,5 0,25) (Гамма=2,2 ; источник освещения D65) Найти XYZ координаты
In [4]:	Найти XYZ координаты при изменении D65 на D50 по методу Бредфорда (Bradford) def getSRGBtoXYZ(xyYR, xyYG, xyYB, xyzW): def XYZ(xyY): return (xyY[0]/xyY[1], 1, (1 - xyY[0] - xyY[1]) / xyY[1])
	<pre>M = np.array([XYZ(xyYR), XYZ(xyYG), XYZ(xyYB)]).T M_inv = np.linalg.inv(M) S = M_inv.dot(xyzW) return M*S linearazie = lambda gamma: lambda v: np.power(v, gamma) # gamma correction</pre>
	<pre>sRGB = np.array([0.75, 0.5, 0.25]) # input values sRGB_lin = np.array(list(map(linearazie(2.2), sRGB))) # linearize with 2.2 gamma sRGBtoXYZ = getSRGBtoXYZ([0.6400, 0.3300, 0.212656], # \ [0.3000, 0.6000, 0.715158], # > gammut points [0.1500, 0.0600, 0.072186], # / [0.95047, 1.00000, 1.08883] # reference white</pre>
	<pre>print(f"{sRGBtoXYZ=}") print(f"{sRGB=}") print(f"{sRGB_lin=}\n") print(</pre>
	"XYZ:", sRGBtoXYZ.dot(sRGB_lin) sRGBtoXYZ=array([[0.41245644, 0.35757608, 0.18043748], [0.21267285, 0.71515216, 0.07217499], [0.0193339, 0.11919203, 0.95030408]]) sRGB=array([0.75, 0.5, 0.25])
In [5]:	<pre>sRGB_lin=array([0.53104923, 0.21763764, 0.04736614]) XYZ: [0.30540331 0.27200243 0.08122016] def getXYZtoXYZ(xyzWs, xyzWD): M_A = np.array([</pre>
	<pre>[0.0389000, -0.0685000, 1.0296000]]) M_A_inv = np.linalg.inv(M_A) s = M_A.dot(xyzWS) d = M_A.dot(xyzWD) diag = np.diag(d/s)</pre>
	<pre>return M_A_inv.dot(diag).dot(M_A) D65toD50 = getXYZtoXYZ([0.95047, 1.00000, 1.08883], # source reference white (D65) [0.96422, 1.00000, 0.82521] # destination reference white (D50)) print(f"{D65toD50=}\n")</pre>
	<pre>print("XYZ D50:", D65toD50.dot(sRGBtoXYZ.dot(sRGB_lin))) D65toD50=array([[1.04781124,</pre>
	[-0.00923449, 0.01504362, 0.75213164]]) ХУZ D50: [0.32215892 0.27705178 0.06235991] Ответ: $XYZ_{D65} = (0.30540331, 0.27200243, 0.08122016)$
	$XYZ_{D50} = (0.32215892, 0.27705178, 0.06235991)$ 3 Гистограмма изображения задана линией у=х.
	Постройте LUT для эквализации гистограммы. Постройте LUT для инверсии изображения. Эквализация Функция распределения, где H(j) - начальная гистограмма
	$H'(x) = \sum_{j=0}^{x-1} H(j)$ Тогда формула пикселя эквализированного изображения:
	equalized(x,y) = H'(I(x,y)) Инверсия $LUT[i] = 1 - i$ $i = y(x) = x$
	$LUT[i] = 1 - x \ inversion(x,y) = 255 - I(x,y)$
	4 Какие из ранговых фильтров являются сепарабельными? Доказать. Сепарабельный фильтр - фильтр, который можно представить ввиде произведения двух векторов $\begin{pmatrix} a_1b_1 & \dots & a_1b_n \end{pmatrix}$
	$egin{pmatrix} a_1 \\ \ldots \\ a_n \end{pmatrix} imes (b_1 & \ldots & b_n) = egin{pmatrix} a_1 b_1 & \ldots & a_1 b_n \\ \vdots & \ddots & \vdots \\ a_n b_1 & \ldots & a_n b_n \end{pmatrix}$ Каждая строка является линейной комбинацией любой другой строки
	Каждый столбец является линейной комбинацией любого другого столбца Следовательно ранг матрицы, полученной путем произведения двух векторов равен 1 Сепарабельными являются только одноранговые фильтры
	5 Преобразуйте цепной код 1527650432 так, чтобы он стал инвариантным по отношению к выбору начальной точки и к повороту. Исходный цепной код: 1527650432
	Инвариантность к выбору начальной точки достигается путем сдвига последовательности таким образом, что полученное число наименьшее 1527650432> 2152765043> 3215276504>
	4321527650> 0432152765> Код инвариантный к выбору начальной точки: 0432152765 Инвариантность к повороту достигается если рассматривать первую разность значений кода
	0 4 3 2 1 5 2 7 6 5 [0]
	6 Дано бинарное изображение равностороннего треугольника со стороной 6 Как будет выглядеть эрозия и дилатация этого изображения с квадратом стороной 2 Черный треугольник - исходный
Tn [6].	Синий треугольник - фигура после применения операции: • слева - дилатация • справа - эррозия
In [6]:	<pre>Image(filename="err_dill.drawio.png")</pre>
	7 Дано изображение шахматного поля с клетками размером пхп пикселей. Какие параметры сдвига будут порождать матрицу смежности (GLCM) диагонального вида?
	Матрица значений яркости $ \begin{pmatrix} 0 & 1 & 0 & \dots & 1 \\ 1 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix} $
	$egin{pmatrix} 1 & 0 & 1 & \dots & 0 \end{pmatrix}$ Используется всего два уровня яркости, следовательно матрица GLCM имеет размер $2 imes 2$ $ 0 & 1 \\ 0 & a_{00} & a_{01} \\ \end{pmatrix}$
	$1 a_{10} a_{11}$ Для построения данной матрицы необходимо опеределить соседний пиксель, который параметризуется направлением φ и расстоянием d . $ \qquad \qquad \cdot \varphi \text{ - угол (} 0^\circ, 45^\circ, 90^\circ, 135^\circ, 180^\circ, 225^\circ, 270^\circ, 315^\circ) $
	• d - расстояние в пикселях Из-за повторяемости шаблона изображение стоит рассматривать d как четное и нечетное, а углы 0° , 45° . Матрицы для нечетного расстояния: $\varphi=0^\circ\left(\begin{matrix}0&a_{01}\\a_{10}&0\end{matrix}\right);\;\varphi=45^\circ\left(\begin{matrix}a_{00}&0\\0&a_{11}\end{matrix}\right);$
	Матрицы для четного расстояния: $\varphi=0^\circ\left(\begin{array}{cc}a_{10}&0\end{array}\right);\;\varphi=45^\circ\left(\begin{array}{cc}a_{00}&0\\0&a_{11}\end{array}\right);$
	Т.е. в случае, когда d - нечетное, а φ - вертикальное или горизонтальное, матрица смежности не является диагональной. Во всех остальных случаях матрица смежности диагональна.
	 К каким трансформациям (2D) изображения не инвариантен детектор Харриса? Масштаб - при изменении масштаба изображениия, необходимо корректировать размер окна, поскольку линии, которые раньше образовавывали угол, теперь определяются детектором как сплошной контур.
	 Наличие шума - алгоритм допускает небольшое количество ошибок. Однако большое количество шумов рядом с контуром приводит к значительному изменению собственных чисел матрицы окна, что изменяет значения детектора. Интенсивость - алгоритм частично инвариантен к изменению интенсивности, необходимо изменять значения порогов детектора.
	9 Дано бинарное изображение прямоугольника 4x2 пикселя Посчитайте:
	 Компактность Эксцентриситет Центр масс Ориентацию главной оси инерции Первые 4-ре момента Ни
In [7]:	<pre>w = 4 h = 2 def m(p,q): return sum([(x**p)*(y**q) for x in range(w) for y in range(h)]) def cm(p, q):</pre>
In [8]:	<pre>return sum([((x-m(1,0)/m(0,0))**p)*((y-m(0,1)/m(0,0))**q) for x in range(w) for y in range(h)]) def eta(p, q): return cm(p,q)/np.power(cm(0,0), (p+q+2)/2) p = (w + h)*2 a = w*h</pre>
In [9]:	<pre>print("Compactness:", p**2/a) Compactness: 18.0 m_20 = cm(2,0) m_02 = cm(0,2) m_11 = cm(1,1)</pre>
	<pre>print("Elongation:", (m_20 + m_02 + np.sqrt((m_20 - m_02)**2 + 4*m_11**2))/ (m_20 + m_02 - np.sqrt((m_20 - m_02)**2 + 4*m_11**2))) Elongation: 5.0</pre>
<pre>In [10]: In [11]:</pre>	"Center:", (m(1,0)/m(0,0), m(0,1)/m(0,0))) Center: (1.5, 0.5)
In [12]:	<pre>"Principal inertia axis", 0.5*np.arctan(2*m_11/(m_20-m_02))) Principal inertia axis 0.0 hu_1 = eta(0,2) + eta(2,0)</pre>
	hu_2 = (eta(2,0) - eta(0,2))**2 + 4*eta(1,1)**2 hu_3 = (eta(3,0) - 3*eta(1,2))**2 + (3*eta(2,1) - cm(0,3))**2 hu_4 = (eta(3,0) - eta(1,2))**2 + (eta(2,1) + cm(0,3))**2 print(f"{hu_1=}") print(f"{hu_2=}")
	<pre>print(f"{hu_2=}") print(f"{hu_3=}") print(f"{hu_4=}") hu_1=0.1875 hu_2=0.015625 hu_3=0.0 hu_4=0.0</pre>
	Ответ:
	 Первые четыре момента Ху = (0.1875, 0.015625, 0.0, 0.0) 10 Чему равна сумма коэффициентов wavelet-фильтров? Скалирующей функции?
	Чему равна сумма коэффициентов wavelet-фильтров? Скалирующей функции? Какая связь с квадратурными зеркальными фильтрами? Сумма коэффициентов wavelet-фильтров равна 1 Сумма коэффициентов скалирующей функции равна $\sqrt{2}$
	Дискретное вейлвлет-преобразование получают путем применения набора фильтров. Сначала сигнал пропускается через низко-частотный фильтр, в результате чего получаются коэффициенты аппроксимации. Затем сигнал пропускается через высоко-частотный фильтр, в резлуьтате чего получаются коэффициенты детализации.
	Данные НЧ и ВЧ фильтры связаны и называются квадратурными зеркальными фильтрами (QMF). 11
	Есть камера с фокусным расстоянием 10 см, размером кадра 1920х1080, размер пикселя 10 микрон, центр проекции находится на пикселе с координатами 950,550, угол наклона матрицы равен 0. Запишите матрицу внутренней калибровки камеры (intrinsic parameters) Матрица внутренней калибровки имеет вид:
	$egin{pmatrix} lpha_x & \gamma & u_0 \ 0 & lpha_y & v_0 \ 0 & 0 & 1 \ \end{bmatrix}$ $lpha=f/px$, где f - фокусное расстояние, px - размер пикселя. $lpha_x=100/0.01=10000$
	$lpha_x=100/0.01=10000$ $lpha_y=100/0.01=10000$ $\gamma=lpha_x*tg(arphi)$, где $arphi$ - угол наклона матрицы $\gamma=10000*tg(0)=0$
	Тогда, матрица калибровки принимает вид: $\begin{bmatrix} 10000 & 0 & 950 \\ 0 & 10000 & 550 \\ 0 & 0 & 1 \end{bmatrix}$