PRÁCTICA FINAL - SCI

Juan Casado Ballesteros Juan José Córdoba Zamora

TRABAJO REALIZADO

Controladores borroso Mamdani para controlar la velocidad angular

Para el mapa sin obstáculos y el mapa con obstáculos

TRABAJO REALIZADO

Controladores neuroborrosos Sugeno para controlar la velocidad angular

Para el mapa sin obstáculos y el mapa con obstáculos

TRABAJO REALIZADO

También controlamos la velocidad lineal :D

Se va más lento pero más seguro

Parejas de sensores

Centrarnos en la pista

Esquivar obstáculos

Funciones de pertenencia

- Tipo
- Cantidad
- Posición

CONTROLADOR SIN OBSTÁCULOS

- 1. If (e_sonar0 is negativo) then (W is negativo) (1)
- 2. If (e_sonar0 is positivo) then (W is positivo) (1)
- 3. If (e_sonar1 is negativo) then (W is negativo) (1)
- 4. If (e_sonar1 is positivo) then (W is positivo) (1)
- 5. If (e_sonar2 is negativo) then (W is positivo) (1)
- 6. If (e_sonar2 is positivo) then (W is negativo) (1)

CONTROLADOR CON OBSTÁCULOS

Datos de entrenamiento

- Obtención
- Cantidad
- División
- Calidad

CONTROLADOR SIN OBSTÁCULOS

Capturar datos

Obtenemos un controlador

gbellmf: derivable en todo el dominio

CONTROLADOR CON OBSTÁCULOS

CONTROL DE LA VELOCIDAD LINEAL

Lentos pero seguros

CONTROLADOR SIN OBSTÁCULOS

Si estamos centrados iremos rápido, si no, iremos más lento

CONTROLADOR CON OBSTÁCULOS

- 3. If (e_sonar1 is negativo) then (W is negativo) (1)
- 4. If (e_sonar1 is positivo) then (W is positivo) (1)
- 5. If (e_sonar2 is negativo) then (W is positivo) (1)
- 6. If (e_sonar2 is positivo) then (W is negativo) (1)
- 7. If (e_sonar_obs0 is positivo) then (W is muy_positivo) (1)
- 8. If (e_sonar_obs0 is negativo) then (W is muy_negativo) (1)
- 9. If (e_sonar_obs1 is positivo) then (W is muy_positivo) (1)

- 11. If (e_sonar_obs0 is cero) then (V is alta) (1) 12. If (e_sonar_obs0 is positivo) then (V is baja) (1)
- 13. If (e sonar obs0 is negativo) then (V is baia) (1)

En Sugeno tendremos dos controladores

- Uno para la velocidad angular
- Otro para la velocidad lineal

Si estamos cerca de los obstáculos iremos más lento

CONCLUSIONES

Diseñar controladores borrosos Mamdani es sencillo y aporta buenos resultados

Los controladores neuroborrosos Sugeno nos proporcionan un controlador borroso que actúa imitando los datos que le proporcionemos