Лабораторная работа №3. "Разреженные матрицы"

Студент Ивахненко Дмитрий - ИУ7-36Б

Описание условия задачи

Разреженная (содержащая много нулей) матрица хранится в форме 3-х объектов:

- вектор А содержит значения ненулевых элементов;
- вектор ЈА содержит номера столбцов для элементов вектора А;
- связный список IA, в элементе Nk которого находится номер компонент в A и JA, с которых начинается описание строки Nk матрицы A.
- 1. Смоделировать операцию умножения вектора-строки и матрицы, хранящихся в этой форме, с получением результата в той же форме.
- 2. Произвести операцию умножения, применяя стандартный алгоритм работы с матрицами.
- 3. Сравнить время выполнения операций и объем памяти при использовании этих 2-х алгоритмов при различном проценте заполнения матриц.

Техническое задание

Входные данные:

- 1. Целое число в диапазоне [0; 8], представляющее собой номер команды программы.
- 2. Командно-зависимые данные:
 - Ввод матрицы
 - количество строк/столбцов матрицы (натуральные числа)
 - количество ненулевых элементов матрицы (натуральное число, не превышающее общее кол-во элементов)
 - элементы матрицы в формате

индекс_строки; индекс_столбца=значение_элемента, где

- индекс целое число в диапазоне [1; количество_столбцов(строк)]
- значение целое число.
- Ввод вектора
 - длина вектора (натуральное число)
 - количество ненулевых элементов вектора (натуральное число, не превышающее длину вектора)
 - элементы вектора в формате индекс_элемента=значение_элемента, где
 - индекс целое число в диапазоне [1; количество_элементов]
 - значение целое число.
- Генерация матрицы
 - количество строк/столбцов матрицы (натуральные числа)
 - процент ненулевых элементов матрицы (целое числов диапазоне [0;100])
- Генерация вектора
 - длина вектора (натуральное число)

■ процент ненулевых элементов вектора (целое число в диапазоне [0; 100])

Выходные данные:

- 1. Напечатать матрицу/вектор
 - исходная матрица/вектор
- 2. Умножить вектор на матрицу
 - исходная матрица
 - исходный и результирующий вектора в стандартном и разреженном видах.
- 3. Произвести сравнительный анализ вариантов умножения вектора на матрицу
 - Количественная характеристика сравнения вариантов умножения вектора на матрицу, представленная в виде таблицы

Команды программы

Работа с матрицей

- 1. Ввести матрицу
- 2. Сгенерировать случайную матрицу
- 3. Напечатать матрицу

Работа с вектором

- 4. Ввести вектор
- 5. Сгенерировать случайный вектор
- 6. Напечатать вектор

Операция умножения

- 7. Умножить вектор на матрицу
- 8. Провести сравнение разных преставлений матриц

Обращение к программе:

запускается из терминала при помощи комманды ./bin/app.

Аварийные ситуации:

1. Некорректный ввод номера команды в меню.

На входе: символ, отличный от целого числа из диапазона, указанного в ТЗ.

На выходе: сообщение о некорректном вводе номера команды.

2. Некорректный ввод количества строк или столбцов матрицы (длины вектора).

На входе: символ, не являющийся целым числом, принадлежащим диапазону, указанному в ТЗ.

На выходе: сообщение некорректном вводе кол-ва строк/столбцов матрицы (длины вектора).

3. Некорректный ввод индекса строки или столбца матрицы (элемента вектора).

На входе: символ, не являющийся целым числом, принадлежащим диапазону, указанному в Т3.

На выходе: сообщение о некорректном вводе индекса строки/столбца матрицы (элемента вектора).

4. Некорректный ввод значения элемента матрицы/вектора.

На входе: символ, не являющийся числом.

На выходе: сообщение о некорректном вводе элемента матрицы/вектора.

Структуры данных

Для хранение элементов матриц используется тип mtype_t, который является псевдонимом long

```
typedef long mtype_t;
```

За стандартное хранение матрицы отвечает именованная структура $matrix_t$:

За хранение матрицы в разреженном виде отвечает именованная структура sp_matrix_t :

```
typedef struct
{
    size_t rows; // кол-во строк
    size_t cols; // кол-во столбцов
    size_t count; // кол-во ненулевых элементов

    mtype_t *values; // массив значений
    size_t *col_indexes; // массив индексов столбцов
    size_t *start_rows; // массив индексов начал строк

} sp_matrix_t;
```

Вектор представляется в виде вырожденной матрицы, имеющей одну строку.

Алгоритм

- Общий алгоритм
- 1. Пользователю на экран выводится меню с доступными командами.
- 2. Пользователь вводит число номер команды.
- 3. Выполняется команда, которую выбрал пользователь.
- Алгоритм случайной генерации матрицы/вектора N элементами
 - 1. Первые № элементов матрицы, при просмотре по строкам заполняются случайными элементами
 - 2. Матрица перемешиваетсяы
 - При просмотре матрицы по строкам текущий элемент меняется со случайным элементом, следующим за текущим
- Стандартный алгоритм умножения вектора-строки на матрицу
 - 1. Создается результирующий вектор, длиной равной кол-ву столбцов в матрице.
 - 2. Каждый элемент **K_n** нового вектора является суммой произведений каждого элемента **J_m** старого вектора на каждый элемент **I_m**, находящийся в **n-м** столбце матрицы.
- Алгоритм умножения разреженного вектора и на матрицу
 - 1. Создается результирующий вектор, длиной равной кол-ву столбцов в матрице.
 - 2. Матрица просматривается по строкам
 - 3. Каждый элемент **i**-й строки умножается на элемент вектора с индексом **i**-й, если он существует, и данная сумма добавляется к **j**-му элементу результируещего вектора, где **j**-столбец текущего элемента в матрице. После чего, в случае, если какие-то элементы результирующего вектора остались не заполнены, данный вектор "ужимается".

Описание основных функций

- matrix_t *matrix_create(size_t rows, size_t cols);
 - принимает кол-во строк и столбцов
 - инициализирует матрицу
 - возвращает созданную матрицу
- void del_matrix(matrix_t *matrix);
 - принимает матрицу
 - освобождает матрицу
- sp_matrix_t *sp_matrix_create(size_t rows, size_t cols, size_t count)
 - принимает кол-во строк, столбцов и ненулевых элементов матрицы
 - инициализирует разреженную матрицу
- void del_sp_matrix(sp_matrix_t *matrix);
 - принимает разреженную матрицу
 - освобождает разреженную матрицу
- matrix_t *multiply(const matrix_t *left, const matrix_t *right, clock_t *time);
 - принимает две матрицы

- умножает две матрицы
- возвращает результат и время выполнения
- sp_matrix_t *sp_multiply(const sp_matrix_t *vec, const sp_matrix_t *m, clock_t *time);
 - принимает разреженные вектор-строку и матрицу
 - умножает разреженные вектор-строку и матрицу
 - возвращает результат и время выолнения
- sp_matrix_t *m_to_sparse(matrix_t *m);
 - принимает стандартную матрицу
 - конвертирует принятую матрицу в разреженный формат
 - возвращает разреженную матрицу
- matrix_t *sp_to_matrix(sp_matrix_t *sparse);
 - принимает разреженную матрицу
 - конвертирует принятую матрицу в стандартный формат
 - возвращает стандартную матрицу

Тесты

Описание теста	Вввод	Вывод
Неправильный номер команды	-1	Сообщение об ошибке
Неправильный номер команды	11	Сообщение об ошибке
Неправильный размер матрицы	100	Сообщение об ошибке
Неправильный номер элемента	1 1 1 1 0;0=1	Сообщение об ошибке
Неправильный номер элемента	1 1 1 1 2;2=1	Сообщение об ошибке
Неправильный размер вектора	4 0	Сообщение об ошибке
Неправильный номер элемента вектора	4 1 1 0=1	Сообщение об ошибке
Неправильный номер элемента вектора	4 1 1 2=1	Сообщение об ошибке
Неправильная заполненность матрицы	2 1 1 101	Сообщение об ошибке
Неправильная заполненность вектора	5 1 101	Сообщение об ошибке
Неправильные размеры для умножения	21105207	Сообщение об ошибке
Удачный ввод матрицы	1 10 10 1 2;2=5	Матрица размером 10x10 с одним элементом
Удачный ввод вектора	4 10 1 2=8	Вектор длиной 10 с одним элементом

Описание теста	Вввод	Вывод
Удачное перемножение	1 2 2 2 1;1=4 2;2=5 4 2 1 2=55 7	вектор 1x2 с одним элементом 275

Оценка эффективности

Для каждого измерения взято среднее значение по времени для **100** разных случайных пар матрицавектор.

- Время работы указано в микросекундах (µs)
- Объём матриц указан в байтах.
- Заполненность указана в процентах

Размер матрицы	Заполненость матриц	Время умножения стандарных матриц	Время умножения разреженных матриц	Объём стандартных матриц	Объём разреженных матриц
16X16	0	3	2	2224	272
16X16	10	4	3	2224	688
16X16	20	4	4	2224	1136
16X16	30	3	4	2224	1552
16X16	40	4	4	2224	2000
16X16	50	4	5	2224	2448
16X16	60	3	6	2224	2864
16X16	70	3	6	2224	3312
16X16	80	3	6	2224	3728
16X16	90	3	6	2224	4176
16X16	100	4	6	2224	4624
32X32	0	11	2	8496	528
32X32	10	12	4	8496	2208
32X32	20	9	7	8496	3888
32X32	30	8	9	8496	5584
32X32	40	11	12	8496	7264
32X32	50	13	12	8496	8976
32X32	60	12	14	8496	10656
32X32	70	11	13	8496	12336

Размер матрицы	Заполненость матриц	Время умножения стандарных матриц	Время умножения разреженных матриц	Объём стандартных матриц	Объём разреженных матриц
32X32	80	10	15	8496	14032
32X32	90	9	15	8496	15712
32X32	100	10	16	8496	17424
64X64	0	27	2	33328	1040
64X64	10	24	7	33328	7680
64X64	20	24	8	33328	14336
64X64	30	22	26	33328	20992
64X64	40	26	28	33328	27648
64X64	50	27	31	33328	34320
64X64	60	30	34	33328	40960
64X64	70	29	38	33328	47616
64X64	80	27	39	33328	54272
64X64	90	28	42	33328	60928
64X64	100	31	49	33328	67600
128X128	0	119	3	132144	2064
128X128	10	117	17	132144	28464
128X128	20	116	34	132144	54880
128X128	30	114	116	132144	81312
128X128	40	117	121	132144	107728
128X128	50	114	127	132144	134160
128X128	60	113	132	132144	160560
128X128	70	117	139	132144	186976
128X128	80	119	147	132144	213408
128X128	90	123	156	132144	239824
128X128	100	129	161	132144	266256
256X256	0	450	5	526384	4112
256X256	10	464	51	526384	109360
256X256	20	497	124	526384	214640
		<u> </u>			<u> </u>

Размер матрицы	Заполненость матриц	Время умножения стандарных матриц	Время умножения разреженных матриц	Объём стандартных матриц	Объём разреженных матриц
256X256	30	461	217	526384	319888
256X256	40	452	459	526384	425168
256X256	50	471	496	526384	530448
256X256	60	478	548	526384	635696
256X256	70	467	563	526384	740976
256X256	80	482	574	526384	846224
256X256	90	449	581	526384	951504
256X256	100	440	591	526384	1056784
512X512	0	1736	6	2101296	8208
512X512	10	1757	181	2101296	428448
512X512	20	1704	445	2101296	848688
512X512	30	1691	780	2101296	1268944
512X512	40	1704	1382	2101296	1689184
512X512	50	1696	1795	2101296	2109456
512X512	60	1745	2117	2101296	2529696
512X512	70	1859	2180	2101296	2949936
512X512	80	1707	2097	2101296	3370192
512X512	90	1748	2134	2101296	3790432
512X512	100	1708	2191	2101296	4210704
1024X1024	0	6785	10	8396848	16400
1024X1024	10	6617	694	8396848	1695744
1024X1024	20	6605	1773	8396848	3375104
1024X1024	30	6701	3091	8396848	5054464
1024X1024	40	6656	4832	8396848	6733824
1024X1024	50	6763	6884	8396848	8413200
1024X1024	60	6721	7743	8396848	10092544
1024X1024	70	6618	8158	8396848	11771904
1024X1024	80	6856	8479	8396848	13451264

Размер матрицы	Заполненость матриц	Время умножения стандарных матриц	Время умножения разреженных матриц	Объём стандартных матриц	Объём разреженных матриц
1024X1024	90	6959	8465	8396848	15130624
1024X1024	100	6824	8557	8396848	16810000
2048X2048	0	26720	18	33570864	32784
2048X2048	10	26521	2752	33570864	6746928
2048X2048	20	26564	6821	33570864	13461088
2048X2048	30	26956	12441	33570864	20175264
2048X2048	40	26838	19748	33570864	26889424
2048X2048	50	27086	27452	33570864	33603600
2048X2048	60	26908	31340	33570864	40317744
2048X2048	70	27034	31369	33570864	47031904
2048X2048	80	26989	31387	33570864	53746080
2048X2048	90	27013	31510	33570864	60460240
2048X2048	100	27049	32923	33570864	67174416

Контрольные вопросы

1. Что такое разреженная матрица, какие способы хранения вы знаете?

Разреженная матрица – это матрица, содержащая большое количество нулей. Способы хранения: связная схема хранения в строчном либо столбцовом формате, линейный связный список, кольцевой связный список, двунаправленные стеки и очереди.

- 2. Каким образом и сколько памяти выделяется под хранение разреженной и обычной матрицы?
 - Под обычную матрицу выделяется N^* М ячеек памяти, где N- строки, а M- столбцы. Для разреженной матрицы зависит от способа. В моем случае требуется 2^* К + (N+ 1) ячеек памяти, где K- количество ненулевых элементов.
- 3. Каков принцип обработки разреженной матрицы?

Алгоритмы обработки разреженных матриц предусматривают действия только с ненулевыми элементами, и, таким образом, количество операций будет пропорционально количеству ненулевых элементов.

4. В каком случае для матриц эффективнее применять стандартные алгоритмы обработки матриц? От чего это зависит?

Стандартные алгоритмы обработки матриц эффективнее применять при большом количестве ненулевых элементов (при разреженности ниже 40 - 50%).

Вывод

Проанализировав таблицу, можно заметить, что, например, для заполнености 20% матрицы 2048×2048 разреженный формат выполняется на 257% быстрее и при этом объём требуемой памяти на 149% меньше. А для процента 50% заполненности разреженный формат сравним с обычным форматом по времени работы и по объёму занимаемой памяти. Для процента заполненности 100% обычный метод быстрее на 18%, и объём требуемой памяти памяти меньше в 2 раза.

Таким образом, можно сделать вывод, что при заполненности матрицы менее 50% для задачи умножения вектора строки на матрицу целосообразненнее использовать метод хранения разреженных матриц, в ином случае следует использовать стандартное хранение матриц.