Lecture 8 – Simple Linear Regression

DSC 40A, Fall 2022 @ UC San Diego

Announcements

- Groupwork 2 is due Today at 23:59pm.
- ► HW 2 is due **Friday 10/14 at 2:00pm.**
- ► Midterm: 10/28 during class time.
 - Friday, 3-4PM, 4-5 PCYYNH 122.

Recap: Prediction Rule

Agenda

- Recap of gradient descent.
- ▶ Prediction rules.
- Minimizing mean squared error, again.

Finding the best prediction rule

- ▶ **Goal:** out of all functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean squared error.
- ▶ That is, H* should be the function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2 = 0$$

There's a problem.

Problem

- ► We can make mean squared error very small, even zero!
- But the function will be weird.
- This is called overfitting.
- Remember our real goal: make good predictions on data we haven't seen.

Solution

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:
 - Linear: $H(x) = W_0 + W_1 x$.
 - Quadratic: $H(x) = w_0 + w_1 x_1 + w_2 x^2$.
 - Exponential: $H(x) = w_0 e^{w_1 x}$.
 - Constant: $H(x) = W_0$.

Finding the best linear prediction rule

- ▶ **Goal:** out of all linear functions $\mathbb{R} \to \mathbb{R}$, find the function
 - H* with the smallest mean squared error.

 Linear functions are of the form $H(x) = W_0 + W_1 x$.

 y = Mx + b
 - ► They are defined by a slope (w_1) and intercept (w_0) .
- That is, H* should be the linear function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

- This problem is called **least squares regression**.
 - "Simple linear regression" refers to linear regression with a single predictor variable.

Minimizing mean squared error for the linear

prediction rule

Minimizing the mean squared error

► The MSE is a function R_{sq} of a function H.

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

But since H is linear, we know $H(x_i) = w_0 + w_1 x_i$.

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

$$R_{sq}(h) \rightarrow h$$

- Now R_{sq} is a function of w_0 and w_1 .
- ► We call w_0 and w_1 parameters. of our mode.
 - Parameters define our prediction rule.

Updated goal

Find the slope w_1^* and intercept w_0^* that minimize the MSE, $R_{sa}(w_0, w_1)$:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Strategy: multivariable calculus.

Recall: the gradient

K ;

If f(x, y) is a function of two variables, the gradient of f at the point (x_0, y_0) is a vector of partial derivatives:

$$\frac{f(x_0,y)}{\partial x} = x^3 + xy + y^2$$

$$\frac{\partial f}{\partial x} = 3x^2 + y + 0 = 0 \quad \nabla f(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix} \quad \frac{\partial f}{\partial y} = 0 + 2 + 2y$$

- ► **Key Fact #1**: The derivative is to the tangent line as the gradient is to the tangent plane.
- Key Fact #2: The gradient points in the direction of the biggest increase.
- Key Fact #3: The gradient is zero at critical points.

Strategy

To minimize $R(w_0, w_1)$: compute the gradient, set it equal to zero, and solve.

$$\frac{\partial R_{SQ}}{\partial w_0} = 0$$

$$\frac{\partial R_{SQ}}{\partial w_1} = 0$$

$$\frac{\partial R_{SQ}}{\partial w_1} = 0$$

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Discussion Question

Choose the expression that equals $\frac{\partial R_{sq}}{\partial w_0}$.

a)
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$$

b)
$$-\frac{1}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$$

c)
$$-\frac{2}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i$$

d)
$$-\frac{2}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$$

Go to menti.com and enter the code 4821 5997.

$$R_{sq}(w_{0}, w_{1}) = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$$

$$\frac{\partial R_{sq}}{\partial w_{0}} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{0}} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} 2 (y_{i} - (w_{0} + w_{1}x_{i}))^{2} (-1)$$

$$= \frac{1}{n} \sum_{i=1}^{n} 2 (y_{i} - (w_{0} + w_{1}x_{i}))^{2} (-1)$$

$$= \frac{1}{n} \sum_{i=1}^{n} 2 (y_{i} - (w_{0} + w_{1}x_{i}))^{2} (-1)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (w_{0} + w_{1}x_{i}))^{2} (-1)$$

$$R_{sq}(w_{0}, w_{1}) = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$$

$$\frac{\partial R_{sq}}{\partial w_{1}} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$$

$$= -\frac{2}{n} \sum_{i=1}^{n} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$$

$$= -\frac{2}{n} \sum_{i=1}^{n} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$$

Strategy

$$-\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)=0 \qquad -\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)x_{i}=0$$

- 1. Solve for \mathbf{w}_0 in first equation.
 - ▶ The result becomes w_0^* , since it is the "best intercept".
- 2. Plug w_0^* into second equation, solve for w_1 .
 - ▶ The result becomes w_1^* , since it is the "best slope".

Solve for
$$W_0^*$$

$$\sqrt{\frac{2}{n}} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) = 0 \implies years$$

$$\sqrt{\frac{2}{n}} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) = 0 \implies years$$

$$\sqrt{\frac{2}{n}} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) = 0 \implies years$$

$$\sqrt{\frac{2}{n}} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) = 0 \implies years$$

$$\sqrt{\frac{2}{n}} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) = 0 \implies years$$

$$\sqrt{\frac{2}{n}} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) = 0 \implies years$$

$$\sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} w_{0} - \sum_{i=1}^{n} x_{i} = 0$$

$$\sum_{i=1}^{n} y_{i} - n w_{0} - w_{1} \sum_{i=1}^{n} x_{i} = 0$$

$$\sum_{i=1}^{n} y_{i} - n w_{0} = \sum_{i=1}^{n} y_{i} - w_{1} \sum_{i=1}^{n} x_{i}$$

Solve for
$$W_1^*$$

$$\frac{1}{\sqrt{2}} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i = 0 \times (\frac{-N}{2})$$

$$\frac{N}{\sqrt{2}} (y_i^* - (y_i^* - w_1 x_i)) x_i^* = 0 \times (\frac{-N}{2})$$

$$\frac{1}{2} - \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_i))$$

$$\frac{1}{2} - \frac{1}{2} \sum_{i=1}^{n} (y_i - (w_0 +$$

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (y_i - (w_0))^{n}$$

$$\sqrt[n]{\frac{N}{2}} = \sqrt[n]{\frac{1}{N}} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i = 0 \times (-\frac{N}{2})$$

$$-\frac{1}{n}\sum_{i=1}^{n}(y_{i}-(w_{0}+w_{0}))$$

$$-\frac{1}{2}\sum_{i=1}^{n} (y_{i} - (w_{0} + w_{0}))^{n}$$

$$-\frac{1}{2}\sum_{i=1}^{n}(v_{i}-(w_{0}+w_{0}))$$

$$-\frac{1}{2}\sum_{n=1}^{\infty}(x-(w+w))$$

$$2 \stackrel{n}{\leq} 1$$

Solve for
$$W_1$$

Solve for
$$W_1$$

 $\sum_{i=1}^{n} \left[(y_i - \overline{y}) - \omega_i (x_i - \overline{x}) \right] x_i = 0$

 $\sum_{i=1}^{n} (y_i - \overline{y}) x_i = W_i \sum_{i=1}^{n} (\chi_i - \overline{\chi}) \chi_i$

Š (X' - X) X'

Least squares solutions

We've found that the values w_0^* and w_1^* that minimize the function $R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$ are

$$w_{1}^{*} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y})x_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})x_{i}}$$

$$w_{0}^{*} = \bar{y} - w_{1}^{*}\bar{x}$$
Shope

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

Let's re-write the slope w_1^* to be a bit more symmetric.

Key fact

The **sum of deviations from the mean** for any dataset is 0.

Proof:
$$\sum_{i=1}^{n} (x_{i} - \bar{x}) = 0$$

$$\sum_{i=1}^{n} (y_{i} - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x}) = \sum_{i=1}^{n} (y_{i} - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x}) = \sum_{i=1}^{n} (x_{i} - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x}) = \sum_{i=1}^{n} (x_{i} - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x}) = \sum_{i=1}^{n} (x_{i} - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x}) = \sum_{i=1}^{n} (x_{i} - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x}) = \sum_{i=1}^{n} (x_{i} - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x}) = \sum_{i=1}^{n} (x_{i} - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x}) = \sum_{i=1}^{n} (x_{i} - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x}) = \sum_{i=1}^{n} (x_{i} - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x}) = \sum_{i=1}^{n} (x_{i} - \bar{y}) = 0$$

Equivalent formula for w_1^*

Claim

$$W_{1}^{*} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y})x_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})x_{i}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

Proof:

Least squares solutions

► The least squares solutions for the slope w_1^* and intercept w_0^* are:

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$w_0^* = \bar{y} - w_1 \bar{x}$$

- We also say that w_0^* and w_1^* are optimal parameters.
- To make predictions about the future, we use the prediction rule

$$H^*(x) = W_0^* + W_1^* x$$

Example

$$\bar{x} = \frac{3 + 9776}{3} = 5$$

$$\bar{y} = 4$$

$$w_1^* = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{11}{12}$$

$$w_0^* = \bar{y} - w_1 \bar{x} = 4 - (\frac{-11}{12}) 5 - 70$$

$$x_i \quad y_i \quad (x_i - \bar{x}) \quad (y_i - \bar{y}) \quad (x_i - \bar{x})(y_i - \bar{y}) \quad (x_i - \bar{x})^2$$

$$3 \quad 7 \quad -2 \quad 3 \quad -6 \quad 4$$

$$4 \quad 3 \quad -1 \quad -1 \quad 1$$

$$8 \quad 2 \quad 3 \quad -1 \quad -6$$

$$9$$

Summary

- We introduced prediction rule framework to incorporate features in our predictions.
- ► We introduced the linear prediction rule, $H(x) = w_0 + w_1 x$.
- To determine the best choice of slope (w_1) and intercept (w_0) , we chose the squared loss function $(y_i H(x_i))^2$ and minimized empirical risk $R_{sq}(w_0, w_1)$:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

After solving for w_0^* and w_1^* through partial differentiation, we have a prediction rule $H^*(x) = w_0^* + w_1^*x$ that we can use to make predictions about the future.