_	1	2	3	4	5	Calificación
-						

Cálculo Avanzado

Segundo parcial - 03/12/2014

- 1) Sea (X, d) un espacio métrico conexo y sea $A \subseteq X$ conexo. Si C es una componente conexa de X A, probar que X C es conexo.
- 2) Sean X, Y espacios métricos y $f: X \to Y$ una función continua. Sean $E \subset X$ precompacto y $K \subset Y$ compacto tales que $d(E, f^{-1}(K)) > 0$. Probar que d(f(E), K) > 0.

(Recordar: $A \subseteq X$ se dice *precompacto* si \overline{A} es compacto).

- 3) Sea (X,d) un espacio métrico, y sea $K\subset X$ compacto. Si $f:K\to K$ es una función continua tal que $d(f(x),f(y))\geq d(x,y)$ para todo $x,y\in K$, probar que
 - a) f es inyectiva y $f^{-1}: f(K) \to K$ es continua.
 - b) f(K) = K. (Sug.: considerar $(f^n(x_0))_{n \in \mathbb{N}}$ para algún $x_0 \in K f(K)$).
- 4) Sean (X, d) un espacio métrico y d' una distancia en X topológicamente equivalente a d. En cada uno de los casos siguientes, analizar si es verdadero o falso que (X, d') cumple la misma propiedad que (X, d), dando una demostración o un contraejemplo según corresponda:
 - a) (X,d) es separable.
 - b) (X,d) es compacto.
 - c) (X, d) es totalmente acotado.
- 5) Sean $a := (a_n)_{n \in \mathbb{N}} \in \ell_{\infty}$ y sea

$$T_a: \ell_2 \to \ell_2$$

 $(x_n) \to (a_n.x_n)$

Probar que T_a está bien definido, que es un operador lineal y continuo y calcular su norma.

Justifique todas las respuestas