Problem 1

You are studying the performance of a program executing on a CPU which features a cache memory to speed up the execution of instructions. Every time the CPU executes an instruction, it can result in a cache "hit" or a cache "miss". Having a cache hit is beneficial to the overall runtime of the program. After studying the cache system, you have measured that an instruction results in a cache hit 30% of the time. This quantity is called hit rate. Assume that the hit rate never changes.

The program under analysis begins at the entry point; it then executes exactly 10 instructions. After that the execution might follow path A with probability 80%; or path B with probability 20%. When the program executes path A, it will execute 4 more instructions. After these, it will further execute path C with 6 more instructions or path D with 3 more instructions. From path A, execution will continue to path C with probability 30% and to path D with probability 70%. On path B, the program will execute 10 more instructions. Regardless of the path taken, the program will terminate at the end of path C, D, or B.

- a) Provide the PMF for the total number of instructions that will be executed by the program, regardless of whether they result in cache hits or misses.
- b) How many instructions will be executed on average across many runs of the program?
- c) Assume that we want to observe one run in which the instructions on path are B being executed. How many times, on average, we should execute the program?
- d) What is the probability that out of 30 consecutive executions of the program, path D will be executed 5 or more times?
- e) What is the probability of observing exactly 10 cache hits in a generic run of the program?
- f) What is the average number of hits you expect to see throughout the execution of the entire program?

$$80\% C = \frac{6}{10}$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

(a).
$$P(x=10) = 0.8(0.3) + 0.2 = 0.44$$

 $P(x=17) = 0.8(0.7) = 0.56$.

$$p = \begin{cases} 0.44 & \times = 20 \\ 0.56 & \times = 17 \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{1-p} = \frac{1}{6.8} = 1.25$$

d).
$$P(C) = 0.8(0.7) = 0.44$$
 use binomial.
 $n = 30 \quad X = 50 \text{r More} \quad P(X = 0) = (\frac{30}{9}) \text{ o.44}^{9} (1 - 0.44)^{30} \quad f). \quad 18.37 \quad (30\%) = 5.496.$

$$P(X = 4) = (\frac{30}{4}) \text{ o.44}^{9} (1 - 0.44)^{26} = 0.0744 = 2.657$$

$$P(X = 3) = (\frac{30}{3}) \text{ o.44}^{9} (1 - 0.44)^{27} = 0.0346 = 2.657$$

$$P(X = 1) = (\frac{30}{3}) \text{ o.44}^{9} (1 - 0.44)^{27} = 0.0115$$

$$P(X = 1) = (\frac{30}{3}) \text{ o.44} (1 - 0.44)^{29} = 0.0025$$

$$P(X = 1) = (\frac{30}{3}) \text{ o.44} (1 - 0.44)^{29} = 0.0025$$

Problem 2.

d).
$$\frac{2.6}{3} = 0.8667$$
 e). $\frac{52}{3} = 17.73333$

 Little's Law assumes a stable system so the arrival rate and departure rate are identical.

We also assume that the workload can be perfectly balanced among the CPUs

	Problem 3.			
	a) -t			
4	2	_		
	$e^{-\frac{1}{2}} = 0.223$	$e^{-\frac{7}{5}} = 0.54^{\circ}$	$\frac{-3}{2}$	24 1
	0.223(0.96) = 0.214	0.549(0.90) = 0.49		
	so only Ma.			
	b). P=0,223	7 0	On 9 1119.	
	use Geometric D	istributin.		
	(1-p)/p = (1-0.214)/0.214		4 - 1 -	
2	C). h = 3 p = 0.21	14 Pr = 0.494	P3 = 0.630 X=	2
7	use Binomial Dis	tribution.		
	0.214 (1-0.494)(1-	0.630) + 0.494	(1-0.214)(1-0.630)	+ , 6
	0.630 (1-0.214)()	- 0.494) = 0.434	19, 4 %	
		. /		
調子	() throughput = 18 * 0.3		•	9.8496
		3 *0.223 + 18 * 0.2 * 0	.549 + 18 * 0.5 * 0.741 = 9	
	e) Yes, I think the method the individual machines, k	3 *0.223 + 18 * 0.2 * 0 I is better than executoecause it higher the t	ting a request entirely on a total prob of correctly proc	any of essed
	e) Yes, I think the method	3 *0.223 + 18 * 0.2 * 0 I is better than executoecause it higher the t	ting a request entirely on a total prob of correctly proc	any of essed
	e) Yes, I think the method the individual machines, k	3 *0.223 + 18 * 0.2 * 0 I is better than executoecause it higher the t	ting a request entirely on a total prob of correctly proc	any of essed
	e) Yes, I think the method the individual machines, k	3 *0.223 + 18 * 0.2 * 0 I is better than executoecause it higher the t	ting a request entirely on a total prob of correctly proc	any of essed
	e) Yes, I think the method the individual machines, k	3 *0.223 + 18 * 0.2 * 0 I is better than executoecause it higher the t	ting a request entirely on a total prob of correctly proc	any of essed
	e) Yes, I think the method the individual machines, k	3 *0.223 + 18 * 0.2 * 0 I is better than executoecause it higher the t	ting a request entirely on a total prob of correctly proc	any of essed
	e) Yes, I think the method the individual machines, k	3 *0.223 + 18 * 0.2 * 0 I is better than executoecause it higher the t	ting a request entirely on a total prob of correctly proc	any of essed
	e) Yes, I think the method the individual machines, k	3 *0.223 + 18 * 0.2 * 0 I is better than executoecause it higher the t	ting a request entirely on a total prob of correctly proc	any of essed
	e) Yes, I think the method the individual machines, k	3 *0.223 + 18 * 0.2 * 0 I is better than executoecause it higher the t	ting a request entirely on a total prob of correctly proc	any of essed
	e) Yes, I think the method the individual machines, k	3 *0.223 + 18 * 0.2 * 0 I is better than executoecause it higher the t	ting a request entirely on a total prob of correctly proc	any of essed