DATA LINK LAYER

Multiprotocol label switching (MPLS)

- initial goal: high-speed IP forwarding using fixed length label (instead of IP address)
 - fast lookup using fixed length identifier (rather than shortest prefix matching)
 - borrowing ideas from Virtual Circuit (VC) approach
 - but IP datagram still keeps IP address!

MPLS capable routers

- □ a.k.a. label-switched router
- forward packets to outgoing interface based only on label value (don't inspect IP address)
 - MPLS forwarding table distinct from IP forwarding tables
- flexibility: MPLS forwarding decisions can differ from those of IP
 - use destination and source addresses to route flows to same destination differently (traffic engineering)
 - re-route flows quickly if link fails: pre-computed backup paths (useful for VoIP)

MPLS versus IP paths

❖ IP routing: path to destination determined by destination address alone

MPLS versus IP paths

IP routing: path to destination determined by destination address alone

IP-only router

* MPLS routing: path to destination can be based on source and dest. address

MPLS and IP router

 fast reroute: precompute backup routes in case of link failure

MPLS signaling

- modify OSPF, IS-IS link-state flooding protocols to carry info used by MPLS routing,
- e.g., link bandwidth, amount of "reserved" link bandwidth entry MPLS router uses RSVP-TE signaling protocol to set up MPLS forwarding at downstream routers

MPLS forwarding tables

in label	out label	dest	out interface
10	6	Α	1
12	9	D	0

in label	out label	dest	out interface
8	6	Α	0

in	out	dest	out
label	label		interface
6	-	Α	0

Data Center Networks

- 10's to 100's of thousands of hosts, often closely coupled, in close proximity:
 - e-business (e.g. Amazon)
 - content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
 - search engines, data mining (e.g., Google)

challenges:

- multiple applications, each serving massive numbers of clients
- managing/balancing load, avoiding processing, networking, data bottlenecks

Inside a 40-ft Microsoft container, Chicago data center

Data Center Networks - Load

Data Center Networks - Layout

- rich interconnection among switches, racks:
 - increased throughput between racks (multiple routing paths possible)
 - increased reliability via redundancy

