Priority Encoder


```
//Verilog code for priority encoder
module priority_encoder(D, A, B);
input [3:0]D;
output A, B;
assign A = (D[2] &~D[3]) | D[3];
```

assign B = $(D[1] \& \sim D[2]) \mid D[3];$

endmodule

Synthesis Schematic:

Figure 1: Synthesis schematic

RTL analysis schematic:

Figure 2: RTL analysis schematic

Look Up Table:

Cell Properties				
A_OBUF_inst_i_1				
11	10	O=I0 + I1		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

Table 1: LUT for A

Cell Properties				
B_OBUF_inst_i_1				
12	11	10	O=!10 & I1 + I2	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Table 2: LUT for B