Section 6.1 Basic Theory of Linear Differential Equations

Definition: Linear Differential Equation of order n

Form:

(1) $a_n(x)y^n(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_0(x)y(x) = b(x)$,

Where $a_0(x), a_1(x), \dots, a_n(x)$ and b(x) depend only on x, not y.

- I. $a_0, a_1, ..., a_n$ are all constants, (1) is constant coefficients; otherwise it is variable coefficients.
- II. If b(x) = 0, (1) is called homogeneous; otherwise it is nonhomogeneous.

Standard form:

(2)
$$y^{n}(x) + p_{1}(x)y^{(n-1)}(x) + \dots + p_{n}(x)y(x) = g(x)$$

Theorem 1: Existence and Uniqueness

Suppose $p_1(x),...,p_n(x)$, and g(x) are each continuous on an interval (a,b) that contains the point x_0 . Then, for any choice of the initial values $\gamma_0, \gamma_1,...,\gamma_{n-1}$, there exists a unique solution y(x) on the whole interval (a,b) to the I.V.P.

$$y^{n}(x) + p_{1}(x)y^{(n-1)}(x) + \dots + p_{n}(x)y(x) = g(x), \quad y(x_{0}) = \gamma_{0}, \quad y'(x_{0}) = \gamma_{1}, \dots, \quad y^{(n-1)}(x_{0}) = \gamma_{n-1}.$$

Definition 1: Wronskian

Let f_1, \ldots, f_n be any n functions that are (n-1) times differentiable. The function

$$W[f_{1},...,f_{n}](x) := \begin{vmatrix} f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x) \\ f'_{1}(x) & f'_{2}(x) & \cdots & f'_{n}(x) \\ \vdots & \vdots & & \vdots \\ f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \cdots & f_{n}^{(n-1)}(x) \end{vmatrix}$$
 is called the Wronskian of $f_{1},...,f_{n}$.

Definition 2: Linear Dependence of Functions

The m functions f_1, f_2, \ldots, f_m are said to be **linearly dependent on an interval** I if at least one of them can be expressed as a linear combination of the others on I; equivalently, they are linearly dependent if there exist constants c_1, c_2, \ldots, c_m , not all zero, such that $c_1f_1(x) + c_2f_2(x) + \cdots + c_mf_m(x) = 0$ for all x in I. Otherwise, they are said to be **linearly independent on** I.

Theorem 3: Linear Dependence and the Wronskian

If $y_1, y_2, ..., y_n$ are n solutions to $y^n + p_1 y^{(n-1)} + ... + p_n y = 0$ on (a,b), with p_1 ,

 p_2, \ldots, p_n continuous on (a,b), then the following statements are equivalent:

- (i) $y_1, y_2,..., y_n$ are L.D. on (a,b).
- (ii) $\exists x_0 \in (a,b), W[y_1,...,y_n](x_0) = 0$
- (iii) $\forall x \in (a,b), W[y_1,...,y_n](x) = 0$

These statements are also equivalent:

- (iv) $y_1, y_2, ..., y_n$ are L.I. on (a,b).
- (v) $\exists x_0 \in (a,b), W[y_1,...,y_n](x_0) \neq 0$
- (vi) $\forall x \in (a,b), W[y_1,...,y_n](x) \neq 0$

Whenever (iv), (v), or (vi) is met, $\{y_1, y_2, ..., y_n\}$ is called a fundamental solution set for

$$y^{n} + p_{1}y^{(n-1)} + \cdots + p_{n}y = 0 \text{ on } (a,b).$$

- \Diamond Determine the largest interval (a,b) for which Theorem 1 guarantees the existence of a unique solution on (a,b) to the given initial value problem.
- 5. $x\sqrt{x+1}y''' y' + xy = 0$; y(1/2) = y'(1/2) = -1, y''(1/2) = 1

Sol.

$$x\sqrt{x+1}y''' - y' + xy = 0$$

$$\Rightarrow y''' - \frac{1}{x\sqrt{x+1}}y' + \frac{x}{x\sqrt{x+1}}y = 0$$

- (1) $p_1(x) = 0$ is continuous on $(-\infty, \infty)$
- (2) $p_2(x) = \frac{-1}{x\sqrt{x+1}}$ is continuous on $(-1,0) \cup (0,\infty)$
- (3) $p_3(x) = \frac{x}{x\sqrt{x+1}}$ is continuous on $(-1, \infty)$
- (4) g(x) = 0 is continuous on $(-\infty, \infty)$
- $\Rightarrow p_1(x), p_2(x), p_3(x), \text{ and } g(x) \text{ are continuous on } (-1,0) \cup (0,\infty) \text{ and } x_0 = \frac{1}{2} \in (0,\infty)$
- \therefore The largest interval is $(0,\infty)$.
- Determine whether the given functions are linearly dependent or linearly independent on the specified interval. Justify your decisions.
- 8. $\{x^2, x^2 1.5\}$ on $(-\infty, \infty)$

Sol.

Assume c_1 , c_2 , and c_3 are constants for which $c_1x^2 + c_2(x^2 - 1) + 5c_3 = 0$

Set x = 0, 1, and -1

$$\Rightarrow \begin{cases} -c_2 + 5c_3 = 0 \\ c_1 + 5c_3 = 0 \\ c_1 + 5c_3 = 0 \end{cases} \Rightarrow 5c_3 = c_2 = -c_1 \Rightarrow \begin{cases} c_3 = 1 \\ c_2 = 5 \\ c_1 = -5 \end{cases}$$

 $\Rightarrow \{x^2, x^2 - 1, 5\}$ are L.D. on $(-\infty, \infty)$.

12. $\{\cos 2x, \cos^2 x, \sin^2 x\}$ on $(-\infty, \infty)$

Sol.

Assume c_1 , c_2 , and c_3 are constants for which $c_1 \cos 2x + c_2 \cos^2 x + c_3 \sin^2 x = 0$

Set
$$x = 0, \frac{\pi}{2}$$
, and π

$$\Rightarrow \begin{cases} c_1 + c_2 = 0 \\ -c_1 + c_3 = 0 \Rightarrow c_1 = -c_2 = c_3 \Rightarrow \begin{cases} c_1 = 1 \\ c_2 = -1 \end{cases} \\ c_3 = 1 \end{cases}$$

 \Rightarrow { c o2x, c o \hat{s} x, s i \hat{n} x} are L.D. on $(-\infty, \infty)$.

13. $\{x, x^2, x^3, x^4\}$ on $(-\infty, \infty)$

Sol.

Assume c_1 , c_2 , c_3 , and c_4 are constants for which $c_1x + c_2x^2 + c_3x^3 + c_4x^4 = 0$

Set x = 1, -1, 2, and -2

$$\Rightarrow \begin{cases} c_1 + c_2 + c_3 + c_4 = 0 \\ -c_1 + c_2 - c_3 + c_4 = 0 \\ 2c_1 + 4c_2 + 8c_3 + 16c_4 = 0 \end{cases} \Rightarrow c_1 = c_2 = c_3 = c_4 = 0$$
$$-2c_1 + 4c_2 - 8c_3 + 16c_4 = 0$$

 $\Rightarrow \{x, x^2, x^3, x^4\}$ are L.I on $(-\infty, \infty)$.

♦ Using the Wronskian, verify that the given functions form a fundamental solution set for the given differential equation and find a general solution.

16.
$$y''' - y'' + 4y' - 4y = 0$$
; $\{e^x, \cos 2x, \sin 2x\}$

Sol.

$$W[e^{x}, \cos 2x, \sin 2x] = \begin{vmatrix} e^{x} & \cos 2x & \sin 2x \\ e^{x} & -2\sin 2x & 2\cos 2x \\ e^{x} & -4\cos 2x & -4\sin 2x \end{vmatrix}$$

$$= 8e^{x} \sin^{2} 2x + 2e^{x} \cos^{2} 2x - 4e^{x} \sin 2x \cos 2x - (-2e^{x} \sin^{2} 2x - 8e^{x} \cos^{2} 2x - 4e^{x} \sin 2x \cos 2x)$$

$$= 10e^{x} (\sin^{2} 2x + \cos^{2} 2x)$$

$$= 10e^{x} \neq 0$$

By Theorem3, $\{e^x, \cos 2x, \sin 2x\}$ is a fundamental solution set and hence the general solution is $y(x) = c_1 e^x + c_2 \cos 2x + c_3 \sin 2x$

- ♦ A particular solution and a fundamental solution set are given for a nonhomogeneous equation and its corresponding homogeneous equation.
- (a) Find a general solution to the nonhomogeneous equations.
- (b) Find the solution that satisfies the specified initial conditions.

19.
$$y''' + y'' + 3y' - 5y = 2 + 6x - 5x^2$$
; $y(0) = -1$, $y'(0) = 1$, $y''(0) = -3$; $y_p = x^2$; $\{e^x, e^{-x} \cos 2x, e^{-x} \sin 2x\}$

Sol.

(a)
$$y(x) = c_1 e^x + c_2 e^{-x} \cos 2x + c_3 e^{-x} \sin 2x + x^2$$

(b)

$$y'(x) = c_1 e^x + c_2 (-e^{-x} \cos 2x - 2e^{-x} \sin 2x) + c_3 (-e^{-x} \sin 2x + 2e^{-x} \cos 2x) + 2x$$

$$= c_1 e^x + (-c_2 + 2c_3) e^{-x} \cos 2x + (-2c_2 - c_3) e^{-x} \sin 2x + 2x$$

$$y''(x) = c_1 e^x + (-c_2 + 2c_3) (-e^{-x} \cos 2x - 2e^{-x} \sin 2x) + (-2c_2 - c_3) (-e^{-x} \sin 2x + 2e^{-x} \cos 2x) + 2$$

$$= c_1 e^x + (c_2 - 2c_3 - 4c_2 - 2c_3) e^{-x} \cos 2x + (2c_2 - 4c_3 + 2c_2 + c_3) e^{-x} \sin 2x + 2$$

$$= c_1 e^x + (-3c_2 - 4c_3) e^{-x} \cos 2x + (4c_2 - 3c_3) e^{-x} \sin 2x + 2$$

$$\vdots \quad y(0) = -1, \quad y'(0) = 1, \quad y''(0) = -3$$

$$\Rightarrow \begin{cases} c_1 + c_2 = -1 \\ c_1 - c_2 + 2c_3 = 1 \end{cases} \Rightarrow \begin{cases} c_1 = -1 \\ c_2 = 0 \\ c_3 = 1 \end{cases}$$

$$y(x) = -e^x + e^{-x} \sin 2x + x^2$$

25. Prove that L defined in (7) is a linear operator by verifying that properties (9) and (10) hold for any n-times differentiable functions $y, y_1, ..., y_m$ on (a,b).

(7)
$$L[y] := \frac{d^n y}{dx^n} + p_1 \frac{d^{n-1} y}{dx^{n-1}} + \dots + p_n y = (D^n + p_1 D^{n-1} + \dots + p_n)[y]$$

(9)
$$L[y_1 + y_2 + \dots + y_m] = L[y_1] + L[y_2] + \dots + L[y_m]$$

(10) L[cy] = cL[y] (c any constant)

Sol.

I.

$$L[y_1 + y_2] = \frac{d^n}{dx^n} (y_1 + y_2) + p_1 \frac{d^{n-1}}{dx^{n-1}} (y_1 + y_2) + \dots + p_n (y_1 + y_2)$$

$$= \frac{d^n}{dx^n} y_1 + \frac{d^n}{dx^n} y_2 + p_1 \frac{d^{n-1}}{dx^{n-1}} y_1 + p_1 \frac{d^{n-1}}{dx^{n-1}} y_1 + \dots + p_n y_1 + p_n y_2$$

$$= \left(\frac{d^n}{dx^n} y_1 + p_1 \frac{d^{n-1}}{dx^{n-1}} y_1 + \dots + p_n y_1 \right) + \left(\frac{d^n}{dx^n} y_2 + p_1 \frac{d^{n-1}}{dx^{n-1}} y_2 + \dots + p_n y_2 \right)$$

$$= L[y_1] + L[y_2]$$

II.

$$L[cy] = \frac{d^{n}}{dx^{n}}(cy) + p_{1}\frac{d^{n-1}}{dx^{n-1}}(cy) + \dots + p_{n}(cy)$$

$$= c \cdot \frac{d^{n}}{dx^{n}}y + c \cdot p_{1}\frac{d^{n-1}}{dx^{n-1}}y + \dots + c \cdot p_{n}y$$

$$= c\left(\frac{d^{n}}{dx^{n}}y + p_{1}\frac{d^{n-1}}{dx^{n-1}}y + \dots + p_{n}y\right)$$

$$= cL[y]$$

27. Show that the set of functions $\{1, x, x^2, ..., x^n\}$, where n is a positive integer, is linearly independent on every open interval (a,b). [Hint: Use the fact that a polynomial of degree at most n has no more than n zeros unless it is identically zero.]

Sol.

Assume $c_0, c_1, c_2, \dots, c_n$ are constants for

$$\begin{split} f(x) &= c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1} + c_n x^n = 0 \\ f'(x) &= c_1 + 2c_2 x + \dots + (n-1)c_{n-1} x^{n-2} + nc_n x^{n-1} = 0 \\ f''(x) &= 2c_2 + \dots + (n-1)(n-2)c_{n-1} x^{n-3} + n(n-1)c_n x^{n-2} = 0 \\ &\vdots \\ f^{(n-1)}(x) &= (n-1)!c_{n-1} + n!c_n x = 0 \\ f^{(n)}(x) &= n!c_n = 0 \\ \Rightarrow c_n &= 0 \quad \text{and by backward substitution} \;, \; c_{n-1} = c_{n-2} = \dots = c_1 = c_0 = 0 \\ \therefore \; \{1, x, x^2, \dots, x^n\} \; \text{ is L.I.} \end{split}$$

28. The set of functions $\{1, \cos x, \sin x, ..., \cos nx, \sin nx\}$, where n is a positive integer, is linearly independent on every interval (a,b). Prove this in the special case n=2 and $(a,b)=(-\infty,\infty)$.

Sol.

For n = 2, $\{1, \cos x, \sin x, ..., \cos nx, \sin nx\} = \{1, \cos x, \sin x, \cos 2x, \sin 2x\}$

Assume c_1, c_2, c_3, c_4 and c_5 are constants for which $c_1 + c_2 \cos x + c_3 \sin x + c_4 \cos 2x + c_5 \sin 2x = 0$

Set
$$x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, \text{ and } \frac{\pi}{4}$$

$$\Rightarrow \begin{cases} c_1 + c_2 + c_4 = 0 \\ c_1 + c_3 - c_4 = 0 \\ c_1 - c_2 + c_4 = 0 \\ c_1 - c_3 - c_4 = 0 \\ c_1 + \frac{\sqrt{2}}{2}c_2 + \frac{\sqrt{2}}{2}c_3 + c_5 = 0 \end{cases} \Rightarrow c_1 = c_2 = c_3 = c_4 = c_5 = 0$$

 \Rightarrow {1, c o x, s i x, c o 2x, s i 2x} is L.I.