The Welkin Standard

Syntax

Terminals

- Logic
- Undefined notions:
 - Symbols: 0, 1
 - Successor S
 - Implication \Rightarrow
- Table of US-ASCII:

Symbol	Encoding
{	173
}	175

- Empty set: ε satisfies $\neg S(\varepsilon)$
- A word is recursively defined.
 - Base case: the empty set ε is a word.
 - Recursion: let w be a word.
 - *w*.0 is a word.
 - *w*.1 is a word.
- Concatenation
 - Base case: $w.\varepsilon = w$.
 - Recursion:
 - w.(u.0) = (w.u).0
 - w.(u.1) = (w.u).1

Atoms

- Strings are words with delimiters: d_1 .w. d_2 , where $d_1 \not\subset w$ and $d_2 \not\subset w$.
- Identifiers are strings without white space.
- Numbers are a subset of strings with an injective function $q: \text{NUMBER} \to \mathbb{Q}$.

Grammar

- LALR
- Welkin Grammar:

Semantics

Equality on Terms

- Two strings are equal if they contain the same strings, in order.
- Two numbers are equal if q(a) = q(b).

A Welkin Information Graph (WIG) is a structure G = (T, H, L) with:

- A tree *T*,
- A hypergraph H,
- A tree L isomorphic to T.

The **encoding** E(G) of the WIG G is the unique string where

- All nodes are listed in breadth-first order
- Leaves are terms ending with "#"
- Edges are enumerated, starting from 0. They are included in nodes:

- s means source,
- c means connector,
- ullet t means target.