Lógica Computacional I fausto.david.hernandez.jasso@ciencias.unam.mx Semántica de la Lógica de Proposiciones

2024-02-11

Significado de los conectivos lógicos 1.

Negación 1.1.

- Símbolo utilizado: ¬
- Correspondencia con el español: No, no es cierto que, es falso que, etc.
- Otros símbolos: $\sim \varphi, \ \overline{\varphi}$.

1.1.1. Tabla de verdad

$$egin{array}{ccc} arphi & \neg arphi \ 1 & 0 \ 0 & 1 \ \end{array}$$

Disyunción 1.2.

1.2.1. Descripción

La **disyunción** de las fórmulas φ, ψ es la fórmula $\varphi \vee \psi$. Las fórmulas φ, ψ se llaman **disyuntos**.

- Símbolo utilizado: ∨
- Correspondencia con el español: ó.
- Otros símbolos: $\varphi + \psi, \varphi \mid \psi$.

1.2.2. Tabla de verdad

φ	ψ	$\varphi \vee \psi$
1	1	1
1	0	1
0	1	1
0	0	0

1.3. Conjunción

1.3.1. Descripción

La **conjunción** de las fórmulas φ, ψ es la fórmula $\varphi \wedge \psi$. Las fórmulas φ, ψ se llaman **conyuntos**.

- Símbolo utilizado: ∧
- Correspondencia con el español: y, pero
- Otros símbolos: $\varphi \wedge \psi$, $\varphi \cdot \psi$ ó $\varphi \psi$

1.3.2. Tabla de verdad

φ	ψ	$\varphi \wedge \psi$
1	1	1
1	0	0
0	1	0
0	0	0

1.4. Implicación

1.4.1. Descripción

La **implicación** o **condicional** de las fórmulas φ, ψ es la fórmula $\varphi \to \psi$. La fórmula φ es el *antecedente* y la fórmula ψ es el *consecuente* de la implicación.

- Símbolo utilizado: →
- Correspondencia con el español: $\varphi \to \psi$ significa: si φ entonces ψ ; ψ , si φ ; φ sólo si ψ ; φ es condición suficiente para ψ ; ψ es condición necesaria para φ .
- Otros símbolos: $\varphi \Rightarrow \psi, \varphi \supset \psi$

1.4.2. Tabla de verdad

φ	ψ	$\varphi \to \psi$
1	1	1
1	0	0
0	1	1
0	0	1

1.5. Doble implicación

1.5.1. Descripción

La equivalencia o bicondicional de las fórmulas φ, ψ es la fórmula $\varphi \leftrightarrow \psi$.

- Símbolo utilizado: ↔
- Correspondencia con el español: φ es equivalente a ψ ; φ si y sólo si ψ ; φ es condición necesaria y suficiente para ψ .
- Otros símbolos: $\varphi \Leftrightarrow \psi, \varphi \equiv \psi$

1.5.2. Tabla de verdad

φ	ψ	$\varphi \leftrightarrow \psi$
1	1	1
1	0	0
0	1	0
0	0	1

2. Semántica formal de los conectivos

2.1. Semántica formal de los conectivos lógicos

2.1.1. Tipo Bool

El tipo de valores booleanos denotado como Bool se define como Bool= $\{0,1\}$.

2.1.2. Estado

Un estado o asignación de las variables (proposicionales) es una función

$$\mathcal{I} \; : \; VarP o \mathtt{Bool}$$

Dadas n variables proposicionales existen 2^n estados distintos para estas variables. Lo anterior tiene justificación a través del **principio de la multiplicación**. Supongamos que tenemos una variable entonces por el **principio de tercero excluido**, sabemos que sólo puede tener dos valores \top o \bot . Sí tenemos dos variables cada una a su vez tendrá dos posibles valores los cuales serán \top o \bot , y tendremos cuatro posibles estados cuando ambas sean \top , cuando ambas sean \bot y cuando alguna sea \bot y cuando la otra sea \top . Y es por esa razón que cuando tenemos n variables proposicionales tenemos 2^n estados posibles.

2.1.3. Interpretación

Dado un estado de las variables $\mathcal{I}: VarP \to \mathsf{Bool}$, definimos la interpretación de las fórmulas con respecto a \mathcal{I} como la función $\mathcal{I}^\star: \mathsf{PROP} \to \mathsf{Bool}$ tal que:

- $\mathcal{I}^{\star}(p)=\mathcal{I}(p)$ para $p\in VarP$, es decir $\mathcal{I}^{\star}|_{VarP}=\mathcal{I}$
- $\mathcal{I}^{\star}(\top) = 1$
- $\mathcal{I}^*(\neg \varphi) = 1$ sí y solamente sí $\mathcal{I}^*(\varphi) = 0$.
- $\mathcal{I}^{\star}(\varphi \wedge \psi) = 1$ sí y solamente sí $\mathcal{I}^{\star}(\varphi) = \mathcal{I}^{\star}(\psi) = 1$.
- $\mathcal{I}^{\star}(\varphi \vee \psi) = 0$ sí y solamente sí $\mathcal{I}^{\star}(\varphi) = \mathcal{I}^{\star}(\psi) = 0$.
- $\mathcal{I}^{\star}(\varphi \to \psi) = 0$ sí y solamente sí $\mathcal{I}^{\star}(\varphi) = 1$ e $\mathcal{I}^{\star}(\psi) = 0$.
- $\mathcal{I}^*(\varphi \leftrightarrow \psi) = 1$ sí y solamente sí $\mathcal{I}^*(\varphi) = \mathcal{I}^*(\psi)$.

2.1.4. Sobrecarga de operadores

Obsérvese que dado un estado de las variables \mathcal{I} , la interpretación \mathcal{I}^* generada por \mathcal{I} está determinada de manera única por lo que de ahora en adelante escribiremos simplemente \mathcal{I} en lugar de \mathcal{I}^* .

2.2. Lema de coincidencia

Sean $\mathcal{I}_1, \mathcal{I}_2: VarP \to \mathsf{Bool}$ dos estados que coinciden en las variables proposicionales de la fórmula φ , es decir $\mathcal{I}_1(p) = \mathcal{I}_2(p)$ para toda $p \in vars(\varphi)$. Entonces $\mathcal{I}_1(\varphi) = \mathcal{I}_2(\varphi)$.

Demostración. La demostración se hará usando el Principio de Inducción Estructural

Caso Base

Sea $\varphi \in \mathtt{ATOM}$, notemos que solamente tenemos un caso ya que la hipótesis sólo aplica para variables proposicionales y por lo tanto descartamos a las constantes lógicas. Sean $\mathcal{I}_1, \mathcal{I}_2 : VarP \to \mathtt{Bool}$ dos estados, por tales que $\mathcal{I}_1(p) = \mathcal{I}_2(p)$ para toda $p \in vars(\varphi)$, como φ es una variable proposicional por suposición, entonces se sigue que $\mathcal{I}_1(\varphi) = \mathcal{I}_2(\varphi)$.

Hipótesis de Inducción

Sean $\gamma \in \mathtt{PROP} \ \mathtt{y} \ \mathcal{I}_1, \mathcal{I}_2 \ : \ VarP \to \mathtt{Bool} \ \mathrm{dos} \ \mathrm{estados} \ \mathrm{tales} \ \mathrm{que} \text{:}$

• $\mathcal{I}_1(p) = \mathcal{I}_2(p)$ para toda $p \in vars(\gamma)$

Entonces

Paso Inductivo

Caso (1)

Sea $\gamma \equiv \neg \varphi$ para alguna $\varphi \in PROP$. Sean $\mathcal{I}_1, \mathcal{I}_2 : VarP \to Bool$ dos estados tales que:

• $\mathcal{I}_1(p) = \mathcal{I}_2(p)$ para toda $p \in vars(\gamma)$

Definimos a las interpretaciones de la fórmula φ con respecto a \mathcal{I}_1 y \mathcal{I}_2 como \mathcal{I}_1^{\star} y como \mathcal{I}_2^{\star} respectivamente. Entonces por definición de **interpretación** tenemos que:

- $\mathcal{I}_1^{\star}(\varphi) = 0$ sí y sólo sí $\mathcal{I}_1^{\star}(\neg \varphi) = 1$
- $\mathcal{I}_{1}^{\star}(\varphi) = 1$ sí y sólo sí $\mathcal{I}_{1}^{\star}(\neg \varphi) = 0$
- $\mathcal{I}_2^{\star}(\varphi) = 0$ sí y sólo sí $\mathcal{I}_2^{\star}(\neg \varphi) = 1$
- $\mathcal{I}_2^{\star}(\varphi) = 1$ sí y sólo sí $\mathcal{I}_2^{\star}(\neg \varphi) = 0$

Aplicando hipótesis de inducción tenemos que:

$$\mathcal{I}_1(\varphi) = \mathcal{I}_2(\varphi)$$

Por la observación que se realizó acerca de la sobrecarga de operadores. Sabemos que

Así

•
$$\mathcal{I}_{1}^{\star}(\varphi) = 0 = \mathcal{I}_{1}(\varphi)$$
 sí y sólo sí $\mathcal{I}_{1}^{\star}(\neg \varphi) = 1$

•
$$\mathcal{I}_{1}^{\star}(\varphi) = 1 = \mathcal{I}_{1}(\varphi)$$
 sí y sólo sí $\mathcal{I}_{1}^{\star}(\neg \varphi) = 0$

•
$$\mathcal{I}_{2}^{\star}\left(\varphi\right)=0=\mathcal{I}_{2}\left(\varphi\right)$$
 sí y sólo sí $\mathcal{I}_{2}^{\star}\left(\neg\varphi\right)=1$

•
$$\mathcal{I}_{2}^{\star}(\varphi) = 1 = \mathcal{I}_{2}(\varphi)$$
 sí y sólo sí $\mathcal{I}_{2}^{\star}(\neg \varphi) = 0$

Independientemente del valor de $\neg \varphi$ y aplicando la observación hecha para la **sobrecarga de operadores** tenemos que:

$$\mathcal{I}_{1}\left(\neg\varphi\right) = \mathcal{I}_{1}^{\star}\left(\neg\varphi\right) = \mathcal{I}_{2}^{\star}\left(\neg\varphi\right) = \mathcal{I}_{2}\left(\neg\varphi\right)$$

Caso (2)

Sea $\gamma \equiv \varphi \star \psi \text{ con } \varphi, \psi \in PROP \text{ y } \star \in \{\land, \lor, \rightarrow, \leftrightarrow\}$. Sean $\mathcal{I}_1, \mathcal{I}_2 : VarP \to Bool \text{ dos estados tales que:}$

•
$$\mathcal{I}_1(p) = \mathcal{I}_2(p)$$
 para toda $p \in vars(\varphi)$

•
$$\mathcal{I}_1(q) = \mathcal{I}_2(q)$$
 para toda $q \in vars(\psi)$

Definimos a las interpretaciones de la fórmula φ con respecto a \mathcal{I}_1 y \mathcal{I}_2 como \mathcal{I}_1^{\star} y como \mathcal{I}_2^{\star} respectivamente. Conjunción (\wedge)

Entonces por definición de interpretación tenemos que:

•
$$\mathcal{I}_{1}^{\star}\left(\varphi\wedge\psi\right)=1$$
 sí y sólo sí $\mathcal{I}_{1}^{\star}\left(\varphi\right)=\mathcal{I}_{1}^{\star}\left(\psi\right)=1$

•
$$\mathcal{I}_{2}^{\star}\left(\varphi\wedge\psi\right)=1$$
 sí y sólo sí $\mathcal{I}_{2}^{\star}\left(\varphi\right)=\mathcal{I}_{2}^{\star}\left(\psi\right)=1$

•
$$\mathcal{I}_{1}^{\star}(\varphi \wedge \psi) = 0$$
 sí y sólo sí $\mathcal{I}_{1}^{\star}(\varphi) = 0$ ó $\mathcal{I}_{1}^{\star}(\psi) = 0$

•
$$\mathcal{I}_{2}^{\star}(\varphi \wedge \psi) = 0$$
 sí y sólo sí $\mathcal{I}_{2}^{\star}(\varphi) = 0$ ó $\mathcal{I}_{2}^{\star}(\psi) = 0$

Aplicando hipótesis de inducción tenemos que:

$$\mathcal{I}_1(\varphi) = \mathcal{I}_2(\varphi)$$

$$\mathcal{I}_1(\psi) = \mathcal{I}_2(\psi)$$

Por la observación que se realizó acerca de la sobrecarga de operadores. Sabemos que

Así

•
$$\mathcal{I}_{1}^{\star}\left(\varphi \wedge \psi\right)=1$$
 sí y sólo sí $\mathcal{I}_{1}^{\star}\left(\varphi\right)=\mathcal{I}_{1}\left(\varphi\right)=\mathcal{I}_{1}^{\star}\left(\psi\right)=\mathcal{I}_{1}\left(\psi\right)=1$

•
$$\mathcal{I}_{2}^{\star}\left(\varphi\wedge\psi\right)=1$$
 sí y sólo sí $\mathcal{I}_{2}^{\star}\left(\varphi\right)=\mathcal{I}_{2}\left(\varphi\right)=\mathcal{I}_{2}^{\star}\left(\psi\right)=\mathcal{I}_{2}\left(\psi\right)=1$

Independientemente del valor de $\varphi \wedge \psi$ y aplicando la observación hecha para la **sobrecarga de operadores** tenemos que:

$$\mathcal{I}_1(\varphi \wedge \psi) = \mathcal{I}_1^{\star}(\varphi \wedge \psi) = \mathcal{I}_2^{\star}(\varphi \wedge \psi) = \mathcal{I}_2(\varphi \wedge \psi)$$

Disyunción (∨)

Entonces por definición de interpretación tenemos que:

•
$$\mathcal{I}_{1}^{\star}(\varphi \vee \psi) = 0$$
 sí y sólo sí $\mathcal{I}_{1}^{\star}(\varphi) = \mathcal{I}_{1}^{\star}(\psi) = 0$

•
$$\mathcal{I}_{1}^{\star}\left(\varphi\vee\psi\right)=1$$
 sí y sólo sí $\mathcal{I}_{1}^{\star}\left(\varphi\right)=1$ ó $\mathcal{I}_{1}^{\star}\left(\psi\right)=1$

•
$$\mathcal{I}_{2}^{\star}\left(\varphi\vee\psi\right)=1$$
 sí y sólo sí $\mathcal{I}_{2}^{\star}\left(\varphi\right)=1$ ó $\mathcal{I}_{2}^{\star}\left(\psi\right)=1$

Aplicando hipótesis de inducción tenemos que:

$$\mathcal{I}_1(\varphi) = \mathcal{I}_2(\varphi)$$
$$\mathcal{I}_1(\psi) = \mathcal{I}_2(\psi)$$

Por la observación que se realizó acerca de la sobrecarga de operadores. Sabemos que

Así

- $\quad \blacksquare \ \, \mathcal{I}_{2}^{\star}\left(\varphi \vee \psi\right) = \mathcal{I}_{2}\left(\varphi \vee \psi\right) = 1 \text{ s\'i y s\'olo s\'i } \mathcal{I}_{2}^{\star}\left(\varphi\right) = \mathcal{I}_{2}\left(\varphi\right) = 1 \text{ \'o } \mathcal{I}_{2}^{\star}\left(\psi\right) = \mathcal{I}_{2}\left(\psi\right) = 1$

Independientemente del valor de $\varphi \lor \psi$ y aplicando la observación hecha para la **sobrecarga de operadores** tenemos que:

$$\mathcal{I}_{1}\left(\varphi \vee \psi\right) = \mathcal{I}_{1}^{\star}\left(\varphi \vee \psi\right) = \mathcal{I}_{2}^{\star}\left(\varphi \vee \psi\right) = \mathcal{I}_{2}\left(\varphi \vee \psi\right)$$

Implicación (\rightarrow)

Entonces por definición de interpretación tenemos que:

- $\mathcal{I}_{1}^{\star}(\varphi \to \psi) = 0$ sí y sólo sí $\mathcal{I}_{1}^{\star}(\varphi) = 1$ e $\mathcal{I}_{1}^{\star}(\psi) = 0$
- $\mathcal{I}_2^{\star}(\varphi \to \psi) = 0$ sí y sólo sí $\mathcal{I}_2^{\star}(\varphi) = 1$ e $\mathcal{I}_2^{\star}(\psi) = 0$
- $\blacksquare \ \mathcal{I}_{2}^{\star}\left(\varphi\rightarrow\psi\right)=1 \text{ s\'i y s\'olo s\'i } \mathcal{I}_{2}^{\star}\left(\varphi\right)=\mathcal{I}_{2}^{\star}\left(\psi\right)=1 \text{ \'o } \mathcal{I}_{2}^{\star}\left(\varphi\right)=\mathcal{I}_{2}^{\star}\left(\psi\right)=0 \text{ \'o } \mathcal{I}_{2}^{\star}\left(\varphi\right)=0 \text{ e } \mathcal{I}_{2}^{\star}\left(\psi\right)=1 \text{ s\'econdotion}$

Aplicando hipótesis de inducción tenemos que:

$$\mathcal{I}_1(\varphi) = \mathcal{I}_2(\varphi)$$
$$\mathcal{I}_1(\psi) = \mathcal{I}_2(\psi)$$

Por la observación que se realizó acerca de la sobrecarga de operadores. Sabemos que

Así

- $\mathcal{I}_{1}^{\star}(\varphi \to \psi) = 0$ sí y sólo sí $\mathcal{I}_{1}^{\star}(\varphi) = \mathcal{I}_{1}(\varphi) = 1$ e $\mathcal{I}_{1}^{\star}(\psi) = \mathcal{I}_{1}(\psi) = 0$
- $\bullet \ \mathcal{I}_{2}^{\star}\left(\varphi\rightarrow\psi\right)=0 \text{ s\'i y s\'olo s\'i } \mathcal{I}_{2}^{\star}\left(\varphi\right)=\mathcal{I}_{2}\left(\varphi\right)=1 \text{ e } \mathcal{I}_{2}^{\star}\left(\psi\right)=\mathcal{I}_{2}\left(\psi\right)=0$
- $\mathcal{I}_{1}^{\star}\left(\varphi \rightarrow \psi\right)=1$ sí y sólo sí $\mathcal{I}_{1}^{\star}\left(\varphi\right)=\mathcal{I}_{1}\left(\varphi\right)=\mathcal{I}_{1}^{\star}\left(\psi\right)=\mathcal{I}_{1}\left(\psi\right)=1$ ó $\mathcal{I}_{1}^{\star}\left(\varphi\right)=\mathcal{I}_{1}\left(\varphi\right)=\mathcal{I}_{1}^{\star}\left(\psi\right)=\mathcal{I}_{1}\left(\psi\right)=0$ ó $\mathcal{I}_{2}^{\star}\left(\varphi\right)=\mathcal{I}_{2}\left(\varphi\right)=0$ e $\mathcal{I}_{2}^{\star}\left(\psi\right)=\mathcal{I}_{2}\left(\psi\right)=1$
- $\mathcal{I}_{2}^{\star}\left(\varphi \rightarrow \psi\right)=1$ sí y sólo sí $\mathcal{I}_{2}^{\star}\left(\varphi\right)=\mathcal{I}_{2}\left(\varphi\right)=\mathcal{I}_{2}^{\star}\left(\psi\right)=\mathcal{I}_{2}\left(\psi\right)=1$ ó $\mathcal{I}_{2}^{\star}\left(\varphi\right)=\mathcal{I}_{2}\left(\varphi\right)=\mathcal{I}_{2}^{\star}\left(\psi\right)=\mathcal{I}_{2}\left(\psi\right)=0$ ó $\mathcal{I}_{2}^{\star}\left(\varphi\right)=\mathcal{I}_{2}\left(\varphi\right)=0$ e $\mathcal{I}_{2}^{\star}\left(\psi\right)=\mathcal{I}_{2}\left(\psi\right)=1$

Independientemente del valor de $\varphi \to \psi$ y aplicando la observación hecha para la **sobrecarga de operadores** tenemos que:

$$\mathcal{I}_1(\varphi \to \psi) = \mathcal{I}_1^{\star}(\varphi \to \psi) = \mathcal{I}_2^{\star}(\varphi \to \psi) = \mathcal{I}_2(\varphi \to \psi)$$

Doble Implicación (\leftrightarrow)

Entonces por definición de interpretación tenemos que:

- $\blacksquare \ \mathcal{I}_{1}^{\star}\left(\varphi\leftrightarrow\psi\right)=0 \text{ s\'i y s\'olo s\'i }\mathcal{I}_{1}^{\star}\left(\varphi\right)\neq\mathcal{I}_{1}^{\star}\left(\psi\right)$
- $\mathcal{I}_{2}^{\star}\left(\varphi\leftrightarrow\psi\right)=0$ sí y sólo sí $\mathcal{I}_{2}^{\star}\left(\varphi\right)\neq\mathcal{I}_{2}^{\star}\left(\psi\right)$

- $\mathcal{I}_{1}^{\star}\left(\varphi\leftrightarrow\psi\right)=1$ sí y sólo sí $\mathcal{I}_{1}^{\star}\left(\varphi\right)=\mathcal{I}_{1}^{\star}\left(\psi\right)$
- $\mathcal{I}_{2}^{\star}(\varphi \leftrightarrow \psi) = 1 \text{ sí y sólo sí } \mathcal{I}_{2}^{\star}(\varphi) = \mathcal{I}_{2}^{\star}(\psi)$

Aplicando hipótesis de inducción tenemos que:

$$\mathcal{I}_1(\varphi) = \mathcal{I}_2(\varphi)$$
$$\mathcal{I}_1(\psi) = \mathcal{I}_2(\psi)$$

Por la observación que se realizó acerca de la sobrecarga de operadores. Sabemos que

Así

- $\mathcal{I}_{1}^{\star}\left(\varphi\leftrightarrow\psi\right)=0$ sí y sólo sí $\mathcal{I}_{1}\left(\varphi\right)=\mathcal{I}_{1}^{\star}\left(\varphi\right)\neq\mathcal{I}_{1}^{\star}\left(\psi\right)=\mathcal{I}_{1}\left(\psi\right)$
- $\quad \blacksquare \ \, \mathcal{I}_{2}^{\star}\left(\varphi \leftrightarrow \psi\right)=0 \text{ s\'i y s\'olo s\'i } \mathcal{I}_{2}\left(\varphi\right)=\mathcal{I}_{2}^{\star}\left(\varphi\right)\neq\mathcal{I}_{2}^{\star}\left(\psi\right)=\mathcal{I}_{2}\left(\psi\right)$
- $\quad \blacksquare \ \, \mathcal{I}_{1}^{\star}\left(\varphi \leftrightarrow \psi\right)=1 \text{ sí y s\'olo s\'i } \mathcal{I}_{1}^{\star}\left(\varphi\right)=\mathcal{I}_{1}\left(\varphi\right)=\mathcal{I}_{1}^{\star}\left(\psi\right)=\mathcal{I}^{\star}\left(\psi\right)$
- $\mathcal{I}_{2}^{\star}(\varphi \leftrightarrow \psi) = 1 \text{ sí y sólo sí } \mathcal{I}_{2}^{\star}(\varphi) = \mathcal{I}_{2}(\varphi) = \mathcal{I}_{2}^{\star}(\psi) = \mathcal{I}^{\star}(\psi)$

Independientemente del valor de $\varphi \leftrightarrow \psi$ y aplicando la observación hecha para la **sobrecarga de operadores** tenemos que:

$$\mathcal{I}_{1}\left(\varphi \to \psi\right) = \mathcal{I}_{1}^{\star}\left(\varphi \to \psi\right) = \mathcal{I}_{2}^{\star}\left(\varphi \to \psi\right) = \mathcal{I}_{2}\left(\varphi \to \psi\right)$$

Por lo tanto, queda demostrado el lema.

2.3. Estado modificado o actualizado

Sean $\mathcal{I}: VarP \to \mathsf{Bool}$ un estado de las variables, p una variable proposicional y $v \in \mathsf{Bool}$. Definimos la actualización de \mathcal{I} en p por v, denotado $\mathcal{I}[p/v]$ como sigue:

$$\mathcal{I}[p/v](q) = \begin{cases} v & \text{si } q = p \\ q & \text{si } q \neq p \end{cases}$$

2.4. Lema de sustitución

Sean $\mathcal I$ una interpretación, p una variable proposicional y ψ una fórmula tal que $\mathcal I^\star(\psi)=v$. Entonces

$$\mathcal{I}\left(\varphi\left[p\;:=\;\psi\right]\right)=\mathcal{I}\left[p/v\right]\left(\varphi\right)$$

3. Conceptos Semánticos Básicos

3.1. Tautología

Si $\mathcal{I}(\varphi) = 1$ para toda interpretación \mathcal{I} decimos que φ es una tautología o fórmula válida y escribimos $\models \varphi$.

3.2. Satisfacible

Si $\mathcal{I}(\varphi)=1$ para alguna interpretación \mathcal{I} decimos que φ es satisfacible, que φ es verdadera en \mathcal{I} y escribimos $\mathcal{I}\models\varphi$.

3.3. Insatisfacible

Si $\mathcal{I}(\varphi) = 0$ para alguna interpretación \mathcal{I} decimos que φ es insatisfacible o es falsa en \mathcal{I} y escribimos $\mathcal{I} \nvDash \varphi$.

3.4. Contradicción

Si $\mathcal{I}(\varphi)=0$ para toda interpretación \mathcal{I} decimos que φ es una contradicción o una fórmula no satisfacible.

3.5. Conjunto de fórmulas

Sea Γ es un conjunto de fórmulas decimos que:

- Γ es satisfacible si tiene un modelo, es decir, si existe una interpretación $\mathcal I$ tal que $\mathcal I(\varphi)=1$ para toda $\varphi\in\Gamma$. Lo cual denotamos a veces, abusando de la notación, con $\mathcal I(\Gamma)=1$.
- Γ es insatisfacible o no satisfacible si no tiene un modelo, es decir, si no existe una interpretación \mathcal{I} tal que $\mathcal{I}(\varphi)=1$ para toda $\varphi\in\Gamma$.

3.6. Proposición

Sea Γ un conjunto de fórmulas, $\varphi \in \Gamma$, τ una tautología y χ una contradicción. Si Γ es satisfacible entonces

- 1. $\Gamma \setminus \{\varphi\}$ es satisfacible.
- 2. $\Gamma \cup \{\tau\}$ es satisfacible.
- 3. $\Gamma \cup \{\chi\}$ es insatisfacible.

Si Γ es insatisfacible, con $\tau \in \Gamma$ entonces

- 1. $\Gamma \cup \{\psi\}$ es insatisfacible, para cualquier $\psi \in PROP$.
- 2. $\Gamma \setminus \{\tau\}$ es insatisfacible.

Veamos (1)

Demostración. Definimos a Γ como sigue:

$$\Gamma = \{\psi_1, \psi_2, \dots, \psi_n, \varphi\}$$

Como Γ es satisfacible, entonces existe una interpretación \mathcal{I} tal que $\mathcal{I}(\kappa)=1$ para toda $\kappa\in\Gamma$. Sea $\Gamma'=\Gamma\setminus\{\varphi\}$, entonces definimos a \mathcal{I}' como

$$\mathcal{I}'\left(\kappa\right) = \mathcal{I}\left(\kappa\right)$$

Para toda $\kappa \in \Gamma'$. Por definición de $\mathcal I$ tenemos que

$$\mathcal{I}'(\kappa) = 1$$

Para toda $\kappa \in \mathcal{I}'$. Por lo tanto Γ' es satisfacible

Veamos (2)

Demostración. Definimos a Γ como sigue:

$$\Gamma = \{\psi_1, \psi_2, \dots, \psi_n, \varphi\}$$

Como Γ es satisfacible, entonces existe una interpretación $\mathcal I$ tal que $\mathcal I$ $(\kappa)=1$ para toda $\kappa\in\Gamma$. Sea $\Gamma'=\Gamma\cup\{\tau\}$, entonces como

$$\mathcal{I}(\tau) = 1$$

ya que τ es tautología. Por lo tanto Γ' es satisfacible bajo \mathcal{I} .

Veamos (3)

Demostración. Sea $\Gamma' = \Gamma \cup \{\chi\}$, entonces como

$$\mathcal{I}\left(\chi\right) = 0$$

para cualquier interpretación \mathcal{I} , entonces el conjunto Γ' no es satisfacible. Ya que en particular χ siempre se evaluará en 0.

3.7. Proposición

Sea $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ un conjunto de fórmulas.

- 1. Γ es satisfacible sí y sólo sí $\varphi_1 \wedge \ldots \wedge \varphi_n$ es satisfacible.
- 2. Γ es insatisfacible sí y sólo sí $\varphi_1 \wedge \ldots \wedge \varphi_n$ es una contradicción.

Veamos (1)

Demostración. (Ida)

Como Γ es satisfacible, entonces existe una interpretación \mathcal{I} tal que para toda $\varphi_i \in \Gamma$ con $1 \leq i \leq n$. Entonces tenemos que se cumple que:

- **...**

Entonces tenemos que

$$\mathcal{I}(\varphi_1) = \mathcal{I}(\varphi_2) = \ldots = \mathcal{I}(\varphi_n) = 1$$

Consecuentemente

$$\mathcal{I}\left(\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n\right) = 1$$

Por lo tanto

$$\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n$$

es satisfacible bajo \mathcal{I} .

(Vuelta)

Como

$$\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n$$

es satisfacible bajo \mathcal{I} . Entonces

$$\mathcal{I}\left(\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n\right) = 1$$

que implica que

$$\mathcal{I}(\varphi_1) = \mathcal{I}(\varphi_2) = \ldots = \mathcal{I}(\varphi_n) = 1$$

lo anterior es equivalente a lo siguiente:

- $\mathbf{I}(\varphi_1) = 1 \mathbf{y}$
- **...**

Por lo tanto tenemos que Γ es satisfacible.

4. Ejercicios

4.1. Ejercicio 1

Defina utilizando los conectivos lógicos vistos en clase el operador \oplus (ó exclusivo), cuya propiedad es:

$$\mathcal{I}\left(\varphi\oplus\psi\right)=1$$

sí y sólo sí

$$\mathcal{I}\left(\varphi\right)\neq\mathcal{I}\left(\psi\right)$$

4.1.1. Solución

Sabemos que

$$\mathcal{I}\left(\varphi\leftrightarrow\psi\right)=1$$
 sí y sólo sí
$$\mathcal{I}\left(\varphi\right)=\mathcal{I}\left(\varphi\right)$$

Entonces por contra-positiva tenemos que

$$\mathcal{I}\left(\varphi\leftrightarrow\psi\right)=0$$
 sí y sólo sí
$$\mathcal{I}\left(\varphi\right)\neq\mathcal{I}\left(\varphi\right)$$

Sabemos que

$$\mathcal{I}\left(\gamma
ight)=0$$
 sí y sólo sí
$$\mathcal{I}\left(\neg\gamma
ight)=1$$

Consecuentemente

$$\mathcal{I}\left(\varphi\leftrightarrow\psi\right)=0$$
 sí y sólo sí
$$\mathcal{I}\left(\neg\left(\varphi\leftrightarrow\psi\right)\right)=1$$

Por lo tanto

$$\mathcal{I}\left(\neg\left(\varphi\leftrightarrow\psi\right)\right)=1$$
 sí y sólo sí
$$\mathcal{I}\left(\varphi\right)\neq\mathcal{I}\left(\varphi\right)$$

Podemos concluir que:

$$\neg \left(\varphi \leftrightarrow \psi \right) \equiv \varphi \oplus \psi$$

Por equivalencias lógicas

$$\begin{array}{ll} \neg \left(\varphi \leftrightarrow \psi \right) \equiv \neg \left(\left(\varphi \rightarrow \psi \right) \land \left(\psi \rightarrow \varphi \right) \right) & \text{Eliminación de} \leftrightarrow \\ & \equiv \neg \left(\left(\neg \varphi \lor \psi \right) \land \left(\neg \psi \lor \varphi \right) \right) & \text{Eliminación de} \rightarrow \\ & \equiv \neg \left(\neg \varphi \lor \psi \right) \lor \neg \left(\neg \psi \lor \varphi \right) & \text{De Morgan} \\ & \equiv \left(\neg \neg \varphi \land \neg \psi \right) \lor \left(\neg \neg \psi \land \neg \varphi \right) & \text{Doble Negación} \\ & \equiv \left(\varphi \land \neg \psi \right) \lor \left(\neg \varphi \land \psi \right) & \text{Conmutatividad} \end{array}$$

Tenemos que

$$\varphi \oplus \psi \equiv \neg (\varphi \leftrightarrow \psi) \equiv (\varphi \land \neg \psi) \lor (\neg \varphi \land \psi)$$

Por transitividad podemos concluir que

$$\varphi \oplus \psi \equiv (\varphi \land \neg \psi) \lor (\neg \varphi \land \psi)$$

4.1.2. Tabla de verdad

4.2. Ejercicio 2

Demuestre que si Γ es insatisfacible, con $\tau \in \Gamma$ entonces

1. $\Gamma \cup \{\psi\}$ es insatisfacible, para cualquier $\psi \in PROP$.

 τ es una tautología.

Demostración. Sea $\Gamma' = \Gamma \cup \{\psi\}$, entonces como

$$\mathcal{I}(\chi) = 0$$

para alguna $\chi \in \Gamma$, entonces al agregar ψ , seguirá sin existir una interpretación $\mathcal I$ que haga verdadera tanto a χ como a ψ , por lo tanto Γ' es insatisfacible.

4.3. Ejercicio 3

Sea $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ un conjunto de fórmulas. Demuestra Γ es insatisfacible sí y sólo sí $\varphi_1 \wedge \dots \wedge \varphi_n$ es una contradicción.

Demostración. Se sigue de la proposición anterior.

4.4. Ejercicio 4

Decida si los siguientes conjuntos de proposiciones son satisfacibles por medio de interpretaciones:

1.
$$\Gamma = \{p \to q, (s \lor p) \land \neg q, \neg s\}$$

2.
$$\Gamma = \{(p \to r) \lor (\neg s \land p), s \to \neg (p \land r), r \lor \neg s\}$$

3.
$$\Gamma = \{p \lor (q \land s), (\neg r \lor s) \land (s \to t), \neg p \lor \neg t\}$$

4.4.1. Solución

Recordemos la siguiente equivalencia:

 Γ es satisfacible sí y sólo sí $\varphi_1 \wedge \ldots \wedge \varphi_n$ es satisfacible.

A su vez sabemos que Γ es satisfacible si tiene un modelo, es decir, si existe una interpretación tal que $\mathcal{I}(\varphi)=1$ para toda $\varphi\in\Gamma$.

Veamos (1)

Supongamos que $\mathcal{I}(\Gamma) = 1$, lo anterior implica que

$$\mathcal{I}(p \to q) = 1$$
$$\mathcal{I}((s \lor p) \land \neg q) = 1$$
$$\mathcal{I}(\neg s) = 1$$

Sabemos que $\mathcal{I}(\neg s) = 1$ sí y sólo sí

$$\mathcal{I}(s) = 0$$

Sabemos que $\mathcal{I}((s \lor p) \land \neg q) = 1$ sí y sólo sí

$$\mathcal{I}\left(s\vee p\right) = \mathcal{I}\left(\neg q\right) = 1$$

Sabemos que $\mathcal{I}(\neg q) = 1$ sí y sólo sí

$$\mathcal{I}\left(q\right) = 0$$

Sabemos que $\mathcal{I}(s \vee p) = 1$ sí y sólo sí

$$\mathcal{I}(s) = 1 \circ \mathcal{I}(p) = 1$$

Sin embargo como $\mathcal{I}(s) = 0$ entonces tenemos que

$$\mathcal{I}\left(p\right) = 1$$

Sabemos que $\mathcal{I}(p \to q) = 0$ sí y sólo sí

$$\mathcal{I}\left(p\right) = 1$$

$$\mathcal{I}\left(q\right) = 0$$

Que justamente son las interpretaciones que obtuvimos. Por lo tanto el conjunto Γ no es satisfacible. Notemos que mostramos que para cualquier estado (para aquellos que hace sentido tomar en cuenta por ejemplo no contamos que $\mathcal{I}(s)=1$ ya que automáticamente nos hace que Γ no es satisfacible) de las variables no se satisface a Γ .

Veamos (2)

Supongamos que $\mathcal{I}(\Gamma) = 1$, lo anterior implica que

$$\begin{split} \mathcal{I}\left((p \to r) \lor (\neg s \land p)\right) &= 1 \\ \mathcal{I}\left(s \to \neg (p \land r)\right) &= 1 \\ \mathcal{I}\left(r \lor \neg s\right) &= 1 \end{split}$$

Sabemos que $\mathcal{I}\left(r\vee\neg s\right)=1$ sí y sólo sí

$$\mathcal{I}(r) = 1 \circ \mathcal{I}(\neg s) = 1$$

Supongamos que $\mathcal{I}(r) = \mathcal{I}(\neg s) = 1$. Sabemos que $\mathcal{I}(\neg s) = 1$ sí y sólo sí

$$\mathcal{I}\left(s\right) = 0$$

Por lo anterior sabemos que $\mathcal{I}(\neg(p \land r)) = 1$ ó $\mathcal{I}(\neg(p \land r)) = 0$, supongamos que se cumple lo último. Sabemos que $\mathcal{I}(\neg(p \land r)) = 0$ sí y sólo sí

$$\mathcal{I}(p \wedge r) = 1$$

Sabemos que $\mathcal{I}(p \wedge r) = 1$ sí y sólo sí

$$\mathcal{I}\left(p\right) = \mathcal{I}\left(r\right) = 1$$

Notemos que no hemos entrado en ninguna contradicción, ya que anteriormente supusimos que $\mathcal{I}(r)=1$. Observemos que $\mathcal{I}(p\to r)=1$, ya que

$$\mathcal{I}\left(p\right)=1$$

$$\mathcal{I}\left(r\right) = 1$$

Observemos que $\mathcal{I}(\neg s \land p) = 1$, ya que

$$\mathcal{I}\left(p\right) = 1$$

$$\mathcal{I}\left(\neg s\right) = 1$$

Consecuentemente $\mathcal{I}((p \to r) \lor (\neg s \land p)) = 1$. Por lo tanto Γ es satisfacible bajo el siguiente modelo:

$$\mathcal{I}\left(p\right) = 1$$

$$\mathcal{I}\left(r\right) = 1$$

$$\mathcal{I}\left(s\right) = 0$$

Veamos (3)

Supongamos que $\mathcal{I}(\Gamma) = 1$, lo anterior implica que

$$\mathcal{I}\left(p \vee (q \wedge s)\right) = 1$$

$$\mathcal{I}\left(\left(\neg r \vee s\right) \wedge \left(s \to t\right)\right) = 1$$

$$\mathcal{I}\left(\neg p \vee \neg t\right) = 1$$

Sabemos que $\mathcal{I}\left((\neg r \lor s) \land (s \to t)\right) = 1$ sí y sólo sí

$$\mathcal{I}(\neg r \lor s) = \mathcal{I}(s \to t) = 1$$

Sabemos que $\mathcal{I}(\neg r \lor s) = 1$ sí y sólo sí

$$\mathcal{I}(\neg r) = 1 \circ \mathcal{I}(s) = 1$$

Supongamos que $\mathcal{I}\left(\neg r\right)=\mathcal{I}\left(s\right)=1.$ Sabemos que $\mathcal{I}\left(\neg r\right)=1$ sí y sólo sí

$$\mathcal{I}\left(r\right) = 0$$

Por suposición, tenemos que $\mathcal{I}(t) = 1$ ya que

$$\mathcal{I}\left(t\right) = 1$$

$$\mathcal{I}\left(s \to t\right) = 1$$

Sabemos que $\mathcal{I}(t) = 1$ sí y sólo sí

$$\mathcal{I}\left(\neg t\right) = 0$$

Como tenemos que

$$\mathcal{I}\left(\neg p \vee \neg t\right) = 1$$

Entonces

$$\mathcal{I}\left(\neg p\right) = 1$$

Lo anterior ocurre sí y sólo sí

$$\mathcal{I}(p) = 0$$

Notemos que $\mathcal{I}(q \wedge s) = 1$, ya que

$$\mathcal{I}(p) = 0$$

Sabemos que $\mathcal{I}(q \wedge s) = 1$ sí y sólo sí

$$\mathcal{I}\left(q\right) = \mathcal{I}\left(s\right) = 1$$

Por lo tanto Γ es satisfacible bajo el siguiente modelo:

$$\mathcal{I}(q) = 1$$

$$\mathcal{I}(s) = 1$$

$$\mathcal{I}(p) = 0$$

$$\mathcal{I}(t) = 1$$

$$\mathcal{I}(r) = 0$$

4.5. Ejercicio 5

Pruebe la correctud de los siguientes argumentos de la lógica proposicional. Resuelva por interpretaciones apoyándose del principio de refutación.

- 1. $p \lor q, \neg r \to \neg p$ entonces $q \to \neg r$
- 2. $p \rightarrow q \lor r, r \rightarrow \neg p, q \rightarrow \neg p \text{ entonces } \neg (p \land \neg s)$

4.5.1. Solución

Necesitamos tener presente la definiciones de:

- Consecuencia Lógica
- Principio de Refutación
- Correctud de Argumentos Lógicos

Las definiciones son las siguientes:

Consecuencia Lógica

Sean Γ un conjunto de fórmulas y φ una fórmula. Decimos que φ es consecuencia lógica de Γ si para toda interpretación $\mathcal I$ que sastisface a Γ se tiene $\mathcal I(\varphi)=1$. Es decir si se cumple que siempre que $\mathcal I$ satisface a Γ entonces necesariamente $\mathcal I$ satisface a φ . En tal caso escribimos $\Gamma \models \varphi$.

Principio de Refutación

 $\Gamma \models \varphi$ sí y sólo sí $\Gamma \cup \{\neg \varphi\}$

Correctud de Argumentos Lógicos

Un argumento lógico es una sucesión de fórmulas $\varphi_1, \dots, \varphi_n$ llamadas premisas y una fórmula ψ llamada conclusión.

Un argumento con premisas $\varphi_1, \dots, \varphi_n$ y conclusión ψ es lógicamente correcto si la conclusión se sigue lógicamente de las premisas, es decir si $\{\varphi_1, \dots, \varphi_n\} \models \psi$.

Las definiciones anteriores nos indican como demostrar de manera formal la **correctud de un argumento**. Sea $\Gamma = \{\varphi_1, \varphi_2, \dots, \varphi_n\}$, el conjunto que contiene a las hipótesis del argumento lógico y sea ψ la conclusión entonces para demostrar que el argumento es correcto, existen dos maneras

- Iniciamos suponiendo que $\mathcal{I}(\Gamma)=1$ y mediante la aplicación de las definiciones de **interpretación de fórmulas** llegamos a que se cumple $\mathcal{I}(\psi)=1$.
- Definimos a un conjunto Γ' el cual está dado por $\Gamma \cup \{\neg \psi\}$ y suponiendo que $\mathcal{I}(\Gamma') = 1$ llegar a una contradicción, es decir, es satisfacible Γ' pero sí una variable proposicional tiene que ser verdadera y falsa al mismo tiempo, lo cual sabemos que es imposible.

Específicamente el ejercicio nos pide utilizar **principio de refutación**, entonces utilizaremos la segunda forma. Veamos (1)

Sea $\Gamma = \{p \lor q, \neg r \to \neg p\}$. Tomemos la negación de $q \to \neg r$, es decir

Definimos a Γ' como sigue:

$$\Gamma \cup \{q \land r\} = \{p \lor q, \neg r \to \neg p\} \cup \{q \land r\}$$
$$= \{p \lor q, \neg r \to \neg p, q \land r\}$$

Supongamos que $\mathcal{I}(\Gamma') = 1$, es decir

$$\begin{split} \mathcal{I}\left(p\vee q\right) &= 1\\ \mathcal{I}\left(\neg r \to \neg p\right) &= 1\\ \mathcal{I}\left(q\wedge r\right) &= 1 \end{split}$$

Sabemos que $\mathcal{I}\left(q\wedge r\right)=1$ sí y sólo sí

$$\mathcal{I}\left(q\right)=\mathcal{I}\left(r\right)=1$$

Observamos que independientemente del valor que tome $\mathcal{I}(p)$, el conjunto es satisfacible, no llegamos a ninguna contradicción. Por lo tanto el argumento no es correcto. Veamos (2)

Sea $\Gamma = \{p \to q \lor r, r \to \neg p, q \to \neg p\}$. Tomemos la negación de $\neg (p \land \neg s)$, es decir

$$\neg \neg (p \land \neg s) \equiv p \land \neg s$$

Eliminación de \rightarrow

Definimos a Γ' como sigue:

$$\Gamma \cup \{p \land \neg s\} = \{p \to q \lor r, r \to \neg p, q \to \neg p\} \cup \{p \land \neg s\}$$
$$= \{p \to q \lor r, r \to \neg p, q \to \neg p, p \land \neg s\}$$

Supongamos que $\mathcal{I}(\Gamma') = 1$, es decir

$$\mathcal{I}(p \to q \lor r) = 1$$
$$\mathcal{I}(r \to \neg p) = 1$$
$$\mathcal{I}(q \to \neg p) = 1$$
$$\mathcal{I}(p \land \neg s) = 1$$

Sabemos que $\mathcal{I}\left(p \wedge \neg s\right) = 1$ sí y sólo sí

$$\mathcal{I}(p) = \mathcal{I}(\neg s) = 1$$

Sabemos que $\mathcal{I}\left(p\right)=1$ sí y sólo sí

$$\mathcal{I}\left(\neg p\right) = 0$$

Notemos que $\mathcal{I}\left(r\right)=0$ ya que

$$\mathcal{I}(r \to \neg p) = 1$$
$$\mathcal{I}(\neg p) = 0$$

Notemos que $\mathcal{I}(q) = 0$ ya que

$$\mathcal{I}(q \to \neg p) = 1$$
$$\mathcal{I}(\neg p) = 0$$

Notemos que $\mathcal{I}(p \to q \lor r) = 0$ ya que

$$\mathcal{I}(p) = 1$$
$$\mathcal{I}(q) = 0$$
$$\mathcal{I}(r) = 0$$

Notemos que para que el conjunto sea satisfacible se tiene que cumplir que

$$\mathcal{I}(p \to q \lor r) = 1$$
$$\mathcal{I}(p \to q \lor r) = 0$$

Por lo tanto Γ' no es satisfacible. Consecuentemente

$$\Gamma \models \neg(p \land \neg s)$$

Por lo tanto el argumento es correcto.

4.6. Ejercicio 6

Demuestre las siguientes propiedades de la consecuencia lógica:

- 1. Si $\Gamma, \phi \models \psi$ entonces $\Gamma, \neg \psi \models \neg \phi$.
- 2. Si $\Gamma, \phi \lor \psi \models \neg \phi$ entonces $\Gamma, \phi \lor \psi \models \psi$.
- 3. $\Gamma, \phi \land \psi \models \phi$
- 4. $\Gamma, \psi \models \psi \lor \phi$

4.6.1. Solución

Necesitamos tener presente la definición de:

Consecuencia Lógica

Consecuencia Lógica

Sean Γ un conjunto de fórmulas y φ una fórmula. Decimos que φ es consecuencia lógica de Γ si para toda interpretación $\mathcal I$ que sastisface a Γ se tiene $\mathcal I(\varphi)=1$. Es decir si se cumple que siempre que $\mathcal I$ satisface a Γ entonces necesariamente $\mathcal I$ satisface a φ . En tal caso escribimos $\Gamma \models \varphi$. Al igual que las siguientes equivalencias:

- $\Gamma \models \varphi \rightarrow \psi$ sí y sólo sí $\Gamma \cup \{\varphi\} \models \psi$.

Veamos (1)

Demostración. Supongamos que $\Gamma, \phi \models \psi$, sabemos que lo anterior es equivalente a

$$\Gamma \models \phi \rightarrow \psi$$

Por definición de consecuencia lógica tenemos que

$$\mathcal{I}(\Gamma) = 1 \to \mathcal{I}(\phi \to \psi) = 1$$

Sabemos que $\phi \rightarrow \psi \equiv \neg \psi \rightarrow \neg \phi$ así

$$\mathcal{I}\left(\neg\psi\to\neg\psi\right)=1$$

Reescribiendo

$$\mathcal{I}(\Gamma) = 1 \to \mathcal{I}(\neg \psi \to \neg \phi) = 1$$

por definición de consecuencia lógica tenemos que

$$\Gamma \models \neg \psi \rightarrow \neg \phi$$

Lo anterior es equivalente a

$$\Gamma, \neg \psi \models \neg \phi$$

Veamos (2)

Demostración. Supongamos que $\Gamma, \phi \lor \psi \models \neg \phi$. Por definición de **consecuencia lógica** tenemos que

$$\mathcal{I}\left(\Gamma \wedge (\phi \vee \psi)\right) = 1$$

Sabemos que $\mathcal{I}(\Gamma \wedge (\phi \vee \psi)) = 1$ sí y sólo sí

$$\mathcal{I}\left(\Gamma\right) = \mathcal{I}\left(\phi \lor \psi\right) = 1$$

Sabemos que como lo anterior se cumple (por suposición) entonces se cumple que

$$\mathcal{I}(\neg \phi) = 1$$

Sabemos que $\mathcal{I}(\neg \phi) = 1$ sí y sólo sí

$$\mathcal{I}(\phi) = 0$$

Sabemos que $\mathcal{I}\left(\phi\vee\psi\right)=1$ sí y sólo sí

$$\mathcal{I}(\phi) = 1 \ \text{\'o} \ \mathcal{I}(\psi) = 1$$

Sabemos que $\mathcal{I}\left(\phi\right)=0$ entonces

$$\mathcal{I}\left(\psi\right)=1$$

Ya que $\mathcal{I}(\phi \vee \psi) = 1$.

Así

$$\mathcal{I}\left(\Gamma \wedge (\phi \vee \psi)\right) = 1 \to \mathcal{I}\left(\psi\right) = 1$$

Consecuentemente, por la definición de consecuencia lógica

$$\Gamma, \phi \lor \psi \models \psi$$

Veamos (3)

Demostración. Supongamos que $\mathcal{I}(\Gamma \wedge (\phi \wedge \psi)) = 1$. Sabemos que $\mathcal{I}(\Gamma \wedge (\phi \wedge \psi)) = 1$ sí y sólo sí

$$\mathcal{I}(\Gamma) = \mathcal{I}(\phi \wedge \psi) = 1$$

Sabemos que $\mathcal{I}\left(\phi \wedge \psi\right) = 1$ sí y sólo sí

$$\mathcal{I}\left(\phi\right) = \mathcal{I}\left(\psi\right) = 1$$

Consecuentemente tenemos que

$$\mathcal{I}\left(\Gamma \wedge (\phi \wedge \psi)\right) = 1 \to \mathcal{I}\left(\phi\right) = 1$$

Por definición de consecuencia lógica

$$\Gamma, \phi \wedge \psi \models \phi$$

Veamos (4)

Demostración. Supongamos que $\mathcal{I}(\Gamma \wedge \psi) = 1$.

Sabemos que
$$\mathcal{I}\left(\Gamma \wedge \psi\right) = 1$$
 sí y sólo sí

$$\mathcal{I}(\Gamma) = \mathcal{I}(\psi) = 1$$

Sea $\phi \in PROP$ sabemos que

$$\mathcal{I}\left(\psi\vee\phi\right)=1$$

Ya que

$$\mathcal{I}\left(\psi\right)=1$$

Consecuentemente tenemos que

$$\mathcal{I}\left(\Gamma \wedge \psi\right) = 1 \to \mathcal{I}\left(\psi \vee \phi\right) = 1$$

Por definición de consecuencia lógica

$$\Gamma,\psi\models\psi\vee\phi$$