## RASCAL Intro Meeting 2026

#### Schedule and Deadlines

Deadlines:

10/13/25: Notice of Intent submission

10/17/25: Deadline to submit questions

10/27/25: Q&A

2/23/26: Proposal deadline

#### Phase 1 Full Schedule

| Description               | Date     |
|---------------------------|----------|
| First Meeting             | 09/12/25 |
| Faculty Advisor Search    |          |
| Conops                    | 10/02/25 |
| Requirements              | 10/06/25 |
| Notice of intent          | 10/11/25 |
| Q&A                       | 10/27/25 |
| Preliminary Design Review | 11/14/25 |
| Critical Design Review    | 12/4/25  |
| Final Design Package      | 01/09/26 |
| Proposal Rough draft      | 02/01/26 |
| Full Video completion     | 02/16/26 |
| Proposal Final Draft      | 02/16/26 |
| Final Review              | 02/20/26 |

### Themes:

# Theme 1: Communications, Position, Navigation, and Timing (CPNT) Architectures for Mars Surface Operations

- Develop architecture for future infrastructure on Mars
- Accommodate personnel, rovers, habitats, etc on Mars
- Address communications back to Earth
- Prove capabilities on the lunar surface

# Theme 2: Lunar Surface Power and Power Management and Distribution (PMAD) Architectures

- Develop Power distribution infrastructure on the moon
- Integrate power management, and energy storage and generation for future technologies (rovers and human settlements) for lunar day and night
- Extra focus on connectivity and user interface
- Outline how this can translate to Mars exploration

### Theme 3: Lunar Sample Return Concept

- Adherence to NASA's Moon to Mars Architecture Definition Document
- Deliver payloads up to 100 kg and in different conditions (frozen, unconditioned, refrigerated)
- CONOPS focus: identifying sample type, their storage, treatment, and transport on lunar surface
- Delivery back to Earth

## Theme 4: Lunar Technology Demonstrations Leveraging Common Infrastructure

- Use Commercial Lunar Payload Services (CLPS) class payloads (<1000 kg).</li>
- Address at least 3 M2M Lunar Infrastructure capabilities.
- Show how concepts enable industrial operations and/or a lunar economy.
- Define common and evolvable infrastructure needs

#### **Initial Subteams**

- Mechanical
  - Structures
  - Thermal Systems
  - Mechanisms
  - Human Infrastructure
- Electrical/Software
  - Power Generation and Distribution
  - Programming
- Mission Operations
- Budget
- Systems Engineering
  - Risk Matrix/management
  - Quality control officers
  - Technology Readiness Levels (TRLs)
  - o V chart and conops

- Mechanical
- # human-systems
- # mechanical
- # mechanisms
- # structures
  - # thermal-systems
- ▼ Electronics
- # avionics
- # power-systems
  # programming
- ▼ General Info
- # all-rascal-2026
- # general
- # qa-questions
- # rascal2026-info
- # technical-theme-que...
- Channels
- # budget-forms
- # mission-ops
- # systems-engineering

#### Collaboration and Associated Software

#### Mech

- Solidworks/Fusion
- Ansys Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA)
- Matlab
- Lucidcharts P&IDs, Systems
- LabView (if we advance)

#### Electrical/Software

- Github
- o C++
- KiCAD

### Expectations

- Innovation, innovation!
- Strict adherence to NASA frameworks
- No Shortcuts





#### 2026 RASC-AL PHASE 1 SCORING MATRIX - PROPOSAL PACKAGE

| Proposal Package Evaluation Criteria (Max 100 Points)                                                                                                                                          |           |              |      |      |      |         |     |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|------|------|------|---------|-----|--|--|
| Criteria                                                                                                                                                                                       | Excellent | Very<br>Good | Good | Fair | Poor | Missing | Max |  |  |
| Synergistic application of innovative approaches capabilities and/or new technologies for evolutionary architecture development to enable future missions, reduce cost, or improve safety      | 35        | 28           | 21   | 14   | 7    | 0       | 35  |  |  |
| Sound technical / scientific / engineering<br>analysis, evaluation, and rationale of<br>mission concept, including evidence of<br>thorough and proper research conducted                       | 30        | 24           | 18   | 12   | 6    | 0       | 30  |  |  |
| Realistic technology assumptions,<br>including realistic Technology Readiness<br>Levels (TRLs) and justification                                                                               | 15        | 12           | 9    | 6    | 3    | 0       | 15  |  |  |
| Adherence to chosen RASC-AL Theme, mission objectives, and guidelines as stated in the relevant theme description and proposal formatting guidelines (including appropriate use of appendices) | 10        | 8            | 6    | 4    | 2    | 0       | 10  |  |  |
| Appropriate preliminary budget assessments, including an assessment of cost margin                                                                                                             | 5         | 4            | 3    | 2    | 1    | 0       | 5   |  |  |
| Utilization of excellent English language,<br>grammar, and composition to effectively<br>convey concepts                                                                                       | 5         | 4            | 3    | 2    | 1    | 0       | 5   |  |  |
| Total Possible Points for Proposal Package                                                                                                                                                     |           |              |      |      |      |         |     |  |  |

### Previous projects - Review for some inspiration

https://rascal.nianet.org/2022-teams/

#### Introduction to CONOPS

- A description of how our systems will be operated
  - Data architecture
  - Critical events
  - Operational timeline
  - Logistics
- Creation of diagrams for visual aid
- Video Explanation: https://www.youtube.com/watch?v=VmwWslWMNGU

