ASSIGNMENT 11

1

d) $16 - 5\pi$

EE24BTECH11034 - K Teja Vardhan

I. JEE PYQ 2023 JANUARY 31, SHIFT 1 1) If $\sin^{-1}\left(\frac{\alpha}{17}\right) + \cos^{-1}\left(\frac{4}{5}\right) - \tan^{-1}\left(\frac{77}{36}\right) = 0$, $0 < \alpha < 13$, then $\sin^{-1}\left(\sin\alpha\right) + \cos^{-1}\left(\cos\alpha\right)$ is equal to:

2) Let a circle C_1 be obtained on rolling the circle $x^2 + y^2 - 4x - 6y + 11 = 0$ upwards 4 units on the tangent T to it at the point (3,2). Let C_2 be the image of C_1 in T. Let A and B be the centers of circles C_1 and C_2 respectively, and M and N be respectively the feet of perpendiculars drawn from A and B on the x-axis. Then the

a) $2(2+\sqrt{2})$ b) $4(1+\sqrt{2})$ c) $3+2\sqrt{2}$ d) $2(1+\sqrt{2})$

c) 0

b) 16

area of the trapezium AMNB is:

a) π

3) S1: $(p \Rightarrow q) \lor (p \land (\neg q))$ is a tautology. S2: $((\neg p) \Rightarrow (\neg q)) \land ((\neg p) \lor q)$ is a contradiction. Then				
a) only $(S2)$ is correct				
b) both $(S1)$ and $(S2)$ are correct				
c) both $(S1)$ and $(S2)$ are wrong				
d) only $(S1)$ is correct				
4) The value of $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3\sin x)}{\sin x(1+\cos x)} dx$ is equal to:				
a) $\frac{7}{2} - \sqrt{3} - \log_e \sqrt{3}$				
b) $-2 + 3\sqrt{3} + \log_e \sqrt{3}$				
c) $\frac{10}{3} - \sqrt{3} + \log_e \sqrt{3}$				
d) $\frac{10}{3} - \sqrt{3} - \log_e \sqrt{3}$				
5) A bag contains 6 balls. Two balls are drawn from it at random and both are found				
to be black. The probability that the bag contains at least 5 black balls is:				
5	9	-		
a) $\frac{5}{7}$ b) $\frac{2}{7}$	c) $\frac{3}{7}$	d) $\frac{5}{6}$		
6) Let 5 digit numbers be constructed using the digits $0, 2, 3, 4, 7, 9$ with repetition allowed, and are arranged in ascending order with serial numbers. Then the serial number of the number 42923 is:				

d) 6

	$\vec{r} \cdot \left(2\hat{i} - \hat{j} + \hat{k}\right) = 15$. Let L be the line that meets P_2 at the point $(4, -2, 5)$ and makes an angle θ with the normal of P_2 . If α is the angle between L and P_2 , then $\left(\tan^2\theta\right)\left(\cot^2\alpha\right)$ is equal to:					
	a) 9	b) 3	c) $\frac{9}{16}$	d) $\frac{16}{9}$		
9)	9) Let $\alpha > 0$ be the smallest number such that the expansion of $\left(x^{\frac{2}{3}} + \frac{2}{x^3}\right)^{30}$ has a term $\beta x^{-\alpha}$, $\beta \in \mathbb{N}$. Then α is equal to:					
	a) 10	b) 2	c) 14	d) 16		
10) Let \vec{a} and \vec{b} be two vectors such that $ \vec{a} = \sqrt{14}$, $ \vec{b} = \sqrt{6}$, and $ \vec{a} \times \vec{b} = \sqrt{48}$. Then $(\vec{a} \cdot \vec{b})^2$ is equal to:						
	a) 16	b) 25	c) 36	d) 49		
11)	11) Let the line $L: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{1}$ intersect the plane $2x + y + 3z = 16$ at the point P . Let the point Q be the foot of perpendicular from the point $R(1, -1, -3)$ on the line L . If α is the area of triangle PQR , then α^2 is equal to:					
	a) $\frac{16}{3}$	b) $\frac{25}{3}$	c) $\frac{36}{3}$	d) $\frac{49}{3}$		
12) The remainder on dividing 5^{99} by 11 is:						
	a) 1	b) 2	c) 3	d) 4		
13)		variance of 3 4 5 6 7 6 16 α 9 5	the frequence 8 is 2.5, then α is	cy distribution sequal to:		
	a) 7	b) 8	c) 9	d) 10		
14)	Let for $x \in \mathbb{R}$ $f(x)$ the curve $y = (f \circ g)$	$=rac{x+ x }{2}$ and $g\left(x ight) =$ $g\left(x ight)$ and the lines y	$\begin{cases} x, & x < 0 \\ x^2, & x \ge 0 \end{cases}$. Then $= 0, 2y - x = 15 \text{ is } e$	the area bounded by equal to:		

a) 2997 b) 2998 c) 2999 d) 2996

b) 4

a) 3

7) Let a_1, a_2, \dots, a_n be in A.P. If $a_5 = 2a_7$ and $a_{11} = 18$, then $12\left(\frac{1}{\sqrt{a_{10}} + \sqrt{a_{11}}} + \frac{1}{\sqrt{a_{11}} + \sqrt{a_{12}}} + \dots + \frac{1}{\sqrt{a_{17}} + \sqrt{a_{18}}}\right)$ is equal to:

c) 8

8) Let heta be the angle between the planes $P_1=\vec{r}\cdot\left(\hat{i}+\hat{j}+2\hat{k}\right)=9$ and $P_2=$

a)	$\frac{225}{1}$	
и,	4	

b) $\frac{425}{4}$ c) $\frac{325}{4}$ d) $\frac{525}{4}$

15) Number of 4-digit numbers that are less than or equal to 2800 and either divisible by 3 or by 11, is equal to:

a) 780

b) 781

c) 782

d) 783