Projet de mathématiques financières

Février 2022

1 Description

On considère un projet industriel sur n=4 ans dont les flux monétaires sont symbolisés dans le tableau ci-dessous :

années	0	1	2	3	n = 4				
flux A	-I	B_1	B_2	B_3	B_4				

On admet que l'investissement I est strictement positif. B_i indique le bénéfice net réalisé en fin de l'année $i, i = 1, \dots n$. On pourra noter $B_0 = -I$ si besoin. Le matériel initialement acheté est revendu $V_f \in$ à la fin de l'année n.

Les données numériques à utiliser dans les questions suivantes sont dans le fichier associé à votre groupe.

- **1.1.** Écrire l'expression de la valeur actualisée nette pour un taux d'actualisation $t, t \ge 0$, notée VAN(t). On notera VAN cette fonction réelle.
- **1.2.** Énoncer les propriétés *mathématiques* de la fonction $t \mapsto VAN(t)$. Dresser son tableau de variation.
- 1.3. On s'intéresse dans cette question à l'équation

$$VAN(t) = 0. (1)$$

- **1.3.1.** Proposer une condition suffisante, générale et simple, utilisant les B_i , $0 \le i \le n$ et V_f , pour que (1) ait toujours une solution unique.
- 1.3.2. Avec vos valeurs numériques, démontrer que (1) admet une solution unique.

2 Algorithmique

Le travail demandé consiste à programmer la recherche d'un taux de rendement interne à partir d'un tableau décrivant un projet d'investissement. Le langage préconisé est python, ou VBA (pour ceux qui manipulent EXCEL).

On propose, à titre indicatif, les schémas algorithmiques ci-dessous. Une constante ϵ , par ex $\epsilon = 0.0001$, permettra de définir l'arrêt de la recherche dichotomique ¹.

Le rapport, au format pdf, contiendra la partie théorique, la description algorithmique des procédures programmées et le résultat obtenu sur les données.

A	lgorit	hm 1	Procéd	ure init	_var_	_glob
---	--------	------	--------	----------	-------	-------

Ensure: initialisation de toutes les variables globales (si besoin)

^{1.} Une version récursive pourra être éventuellement proposée

Algorithm 2 Procédure lecture_donnees

Require: un fichier où se trouvent la description de toutes les caractéristiques du projet

Ensure: *n*, la durée du projet

Ensure: le tableau des B_i , $i=0,\ldots n$, la valeur de revente finale V_f de l'équipement (0 par défaut)

Algorithm 3 Fonction calcul_VAN

```
Require: n, les B_i, i = 0, \dots, n, V_f

Require: t \geq 0, un taux d'actualisation

Ensure: la valeur de la VAN du projet pour le taux d'actualisation annuel t

Van = B_0

for i = 1, n do

VAN \leftarrow VAN + B_i/(1+t)^i

end for

VAN \leftarrow VAN + V_f/(1+t)^n
```

Algorithm 4 Procédure init_dicho

Require: les données du projet, la CS d'existence d'un tri est vérifiée; la VAN est décroissante **Ensure:** un taux $t_m \ge 0$ tel que VAN $(t_m) \ge \epsilon$; un taux $t_M > t_m$ tel que VAN $(t_m) < -\epsilon$

Algorithm 5 Procédure dichotomie

```
Require: t_m \ge 0 tel que VAN(t_m) \ge \epsilon; t_M \ge 0 tel que VAN(t_M) < -\epsilon et t_M \ge t_m
Ensure: t_{ri} \geq 0 tel que t_m \leq t_{ri} \leq t_M et -\epsilon \leq \text{VAN}(t_{ri}) \leq \epsilon
   arret \leftarrow false
   while not arret do
        t_c \leftarrow \frac{t_m + t_M}{2}
        VAN_c \leftarrow VAN(t_c)
        if VAN_c \geq \epsilon then
                                                                                                          ⊳ On est en retrait de la solution
              t_m \leftarrow t_c
        else
             if VAN_c \leq -\epsilon then
                                                                                                                  ⊳ On a dépassé la solution
                   t_M \leftarrow t_c
              else
                                                                                                                                \triangleright |VAN(t_c)| \le \epsilon
                   t_{ri} \leftarrow t_c
                   arret \leftarrow true
              end if
        end if
   end while
```

Algorithm 6 Procédure affichage_resultat

Require: t_{ri} , le taux de rentabilité interne du projet