Stochastik I - Formelsammlung

von Julian Merkert, Wintersemester 2005/06, Prof. Bäuerle

Ereignisse und Wahrscheinlichkeiten

Ereignis

- Ergebnisraum: Ω
- Ereignis: $A \subset \Omega$
- Elementarereignis: $\{\omega\}, \omega \in \Omega$
- $A \cap B := AB := \{ \omega \in \Omega | \omega \in A \text{ und } \omega \in B \}$
- $A \cup B := \{ \omega \in \Omega | \omega \in A \text{ oder } \omega \in B \}$ (Für disjunkte Mengen: A + B)
- $A \backslash B = \{ \omega \in \Omega | \omega \in A, \omega \notin B \}$
- $\bullet \ A^C = \Omega \backslash B$

Kartesisches Produkt: $\Omega_1 \times \Omega_2 \times ... \times \Omega_n = \{(a_1,...,a_n) | a_i \in \Omega_i, i = 1...n\}$

Potenzmenge: $\mathcal{P}(\Omega)$ (Menge aller Teilmengen von Ω)

DeMorgansche Regeln:

- $(A \cup B)^C = A^C \cap B^C$
- $(A \cap B)^C = A^C \cup B^C$

 σ -Algebra über Ω: $\mathcal{A} \subset \mathcal{P}(\Omega)$ mit...

- 1. $\Omega \in \mathcal{A}$
- 2. $A \in \mathcal{A} \Rightarrow A^C \in \mathcal{A}$
- 3. $A_1, A_2, \ldots \in A \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

Messraum: (Ω, A)

Folge von Ereignissen: $\{A_n\}$

- Limes superior: $\overline{\lim}_{n\to\infty} A_n = \limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$ ("unendlich viele der A_n s treten ein")
- Limes inferior: $\underline{\lim}_{n\to\infty}A_n=\liminf A_n=\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}A_n$ ("alle bis auf endlich viele der A_n s treten ein")
- Falls $\{A_n\}$ wach send $(A_1 \subset A_2 \subset ... = A_n \uparrow) \Rightarrow \overline{\lim}_{n \to \infty} A_n = \underline{\lim}_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$
- Falls $\{A_n\}$ fallend $(A_1 \supset A_2 \supset \dots = A_n \downarrow) \Rightarrow \overline{\lim}_{n \to \infty} A_n = \underline{\lim}_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n$

Wahrscheinlichkeitsmaß auf $A: P: A \to [0,1]$ im Messraum (Ω, A) mit...

- 1. Normiertheit: $P(\Omega) = 1$
- 2. σ -Additivität: $P(\sum_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}P(A_n)$ für alle paarweise disjunkten $A_1,A_2,\ldots\in\mathcal{A}$

Wahrscheinlichkeitsraum: (Ω, \mathcal{A}, P)

- $P(A^C) = 1 P(A)$
- $P(\emptyset) = 0$
- $A \subset B \Rightarrow P(A) \leq P(B)$
- $A \subset B \Rightarrow P(B \backslash A) = P(B) P(A)$
- $P(B \setminus A) = P(B \setminus (B \cap A)) = P(B) P(B \cap A)$

- Endliche Additivität: $P(\sum_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$ für alle paarweise disjunkten $A_1, ..., A_n$
- Boolsche Ungleichung: $P(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n P(A_i)$
- Siebformel: $P(\bigcup_{k=2}^{n} A_k) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < i_2 < ... < i_k \le n} P(A_{i_1} \cap ... \cap A_{i_k})$
 - $-P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - $-P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) P(A_1 \cap A_2) P(A_1 \cap A_3) P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3)$

Laplace'scher Wahrscheinlichkeitsraum: (Ω, \mathcal{A}, P) mit $\mathcal{A} = \mathcal{P}(\Omega)$ und $P(A) = \frac{|A|}{|\Omega|} \forall A \in \Omega$

 \bullet jedes Elementarereignis hat die gleiche Wahrscheinlichkeit $P(\omega)=\frac{1}{|\Omega|}$

Permutationen

- Die Anzahl der Permutationen von n verschiedenen Objekten ist $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n$
- Die Anzahl der Permutationen von n Objekten mit jeweils $n_1, n_2, ..., n_k$ gleichen Elementen ist $\frac{n!}{n_1! \cdot n_2! \cdot ... \cdot n_k!}$

Kombinatorik

# der Möglichkeiten bei Ziehung vom Umfang k aus $\{1n\}$	mit Zurücklegen	ohne Zurücklegen
mit Reihenfolge ohne Reihenfolge	$n^k $ $\binom{n+k-1}{k}$	$\frac{n!}{(n-k)!}$ $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

• $\binom{n+k-1}{k}$ kann auch als die Anzahl der Möglichkeiten, k (nicht unterscheidbare) Objekte auf n (unterscheidbare) Fächer aufzuteilen, angesehen werden (mit Mehrfachbelegungen).

Bedingte Wahrscheinlichkeit: $P(A|B) = \frac{P(AB)}{P(B)}$

Multiplikationssatz: $P(A_1 \cap ... \cap A_n) = \prod_{k=1}^n P(A_k | A_1 \cap ... \cap A_{k-1})$ mit $A_0 := \Omega$

• $P(AB) = P(A|B) \cdot P(B)$

Ereignispartition von Ω : $B_1, B_2, ... \in \mathcal{A}$ mit...

- 1. $B_i \cap B_j = \emptyset$ für $i \neq j$
- $2. \sum_{i=1}^{\infty} B_i = \Omega$
- 3. $P(B_i) > 0 \ \forall \ i \in \mathbb{N}$

Satz von der totalen Wahrscheinlichkeit: $\forall A \in \mathcal{A} : P(A) = \sum_{j=1}^{\infty} P(B_j) \cdot P(A|B_j)$

Formel von Bayes: $P(B_k|A) = \frac{P(B_k) \cdot P(A|B_k)}{\sum_{j=1}^{\infty} P(B_j) \cdot P(A|B_j)}$

Unabhängigkeit zweier Ereignisse: $P(AB) = P(A) \cdot P(B)$

Unabhängigkeit der Ereignisse $A_1, ..., A_n \in \mathcal{A}$: für alle k = 1...n und für alle k-Tupel $1 \le i_1 < i_2 < ... < i_k \le n$:

$$P(\bigcap_{j=1}^{k} A_{i_j}) = \prod_{j=1}^{k} P(A_{i_j})$$

Zufallsvariablen und Verteilungen

Von $\mathcal E$ erzeugte σ -Algebra: $\sigma(\mathcal E):=\bigcap_{\mathcal A\supset\mathcal E,\mathcal A \text{ ist } \sigma\text{-Algebra}}\mathcal A$

• $\mathcal{E} \subset \mathcal{P}(\Omega)$ heißt Erzeugendensystem

Borelsche σ -Algebra: $\mathcal{B} := \sigma(\mathcal{E})$ mit $\mathcal{E} = \{(a, b], -\infty < a < b < \infty\}$

Dynkin-System: $\mathcal{D} \subset \mathcal{P}(\Omega)$ mit..

- 1. $\Omega \in \mathcal{D}$
- 2. $A \in \mathcal{D} \Rightarrow A^C \in \mathcal{D}$
- 3. $A_1, A_2, \dots \in \mathcal{D}, A_i \cap A_j = \emptyset$ für $i \neq j \Rightarrow \sum_{i=1}^{\infty} A_i \in \mathcal{D}$

Durchschnittsstabiles (\cap -stabiles) Mengensystem $\mathcal{E}: A, B \in \mathcal{E} \Rightarrow A \cap B \in \mathcal{E}$

Zufallsvariable: $X: \Omega \to \mathbb{R}$

- : \Leftrightarrow X ist $(\mathcal{A}, \mathcal{B})$ -messbar
- : $\Leftrightarrow X^{-1}(B) = \{\omega | X(\omega) \in B\} \in \mathcal{A} \ \forall \ B \in \mathcal{B}$
- : $\Leftrightarrow X^{-1}((-\infty, a]) = \{\omega | X(\omega) \le a\} \in \mathcal{A} \ \forall \ a \in \mathbb{R}$
- \bullet : \Leftrightarrow X stetig oder (schwach) monoton wachsend oder fallend für (\mathbb{R},\mathcal{B})

Verkettung zweier Zufallsvariablen $X:\Omega\to\mathbb{R}$ und $Y:\mathbb{R}\to\mathbb{R}\Rightarrow Y\circ X:\Omega\to\mathbb{R}$ ist wieder ZV

Verteilung: $P_X : \mathcal{B} \to [0,1]$ mit $P_X(B) = P(\{\omega \in \Omega | X(\omega) \in B\}) \ \forall \ B \in \mathcal{B}$

ullet Die Verteilung ist ein Wahrscheinlichkeitsmaß auf dem Messraum (\mathbb{R},\mathcal{B})

Verteilungsfunktion: $F_X : \mathbb{R} \to [0,1]$ mit $F_X(x) = P(X \le x) = P\left(\{\omega \in \Omega | X(\omega) \le x\}\right) = P_X\left((-\infty,x]\right)$

- $\lim_{x \to -\infty} F_X(x) = 0$, $\lim_{x \to +\infty} F_X(x) = 1$
- F_X ist (schwach) monoton wachsend
- F_X ist rechtsseitig stetig

Quantilfunktion: $F^{-1}: [0,1] \to \mathbb{R}$ mit $F^{-1}(y) := \inf\{x \in \mathbb{R} | F(x) \ge y\}$ für eine Verteilungsfunktion $F: \mathbb{R} \to [0,1]$

• F stetig und streng monoton wachsend $\Rightarrow F^{-1}$ übliche Umkehrfunktion

Diskrete Verteilung

 $X: \Omega \to \mathbb{R}$ heißt **diskret**, falls es eine endliche oder abzählbare Menge $C \subseteq \mathbb{R}$ gibt, so dass $P(X \in C) = p_X(C) = 1$ ist.

OBdA: Sei $C = \{x_1, x_2, ...\}$

Zähldichte von X: $p_X(k) = P(X = x_k)$

- $p_X(k) \ge 0 \ \forall \ k \in \mathbb{N}$
- $\bullet \ \sum_{k=1}^{\infty} p_X(k) = 1$

Stetige Verteilung

 $X: \Omega \to \mathbb{R}$ heißt **absolutstetig**, falls die Verteilungsfunktion F_X von x folgende Darstellung besitzt:

$$F_X(x) = \int_{-\infty}^x f_X(y) \, \mathrm{d}y \, \forall \, x \in \mathbb{R}$$

Dichte von X: $f_X : \mathbb{R} \to [0, \infty)$

•
$$\int_{-\infty}^{\infty} f_X(y) \, \mathrm{d}y = 1$$

Diskrete Verteilungen:

 $\bullet \;$ Binomial verteilung:

$$p_X(k) = P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$$
$$(n \in \mathbb{N}, p \in [0, 1])$$

 $\bullet\,$ Hypergeometrische Verteilung:

$$P(X = k) = \frac{\binom{r}{k}\binom{n-r}{m-k}}{\binom{n}{m}}$$

• Geometrische Verteilung:

$$P(X = k) = (1 - p) \cdot p^{k-1}$$

 $(p \in [0, 1])$

• Poisson-Verteilung:

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

$$(\lambda > 0)$$

• Diskrete Gleichverteilung auf $\{x_1, ..., x_m\} \subset \mathbb{R}$:

$$P(X = x_i) = \frac{1}{m}$$
 für $i = 1...m$

Stetige Verteilungen:

• Gleichverteilung:

- Schreibweise:
$$X \sim U(a, b)$$

- $f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & sonst \end{cases}$
- $F_X(x) = \int_a^x \frac{1}{b-a} dy = \frac{x-a}{b-a}$ für $a < x < b$

- Exponential verteilung:
 - Schreibweise: $X \sim exp(\lambda)$

$$- f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & sonst \end{cases}$$
$$- F_X(x) = \int_0^x \lambda e^{-\lambda y} \, dy = 1 - e^{-\lambda x} \text{ für } x \ge 0$$

- Normalverteilung:
 - Schreibweise: $X \sim N(\mu, \sigma^2)$ – $f(x) = \varphi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right)$
- Standardnormalverteilung ($\mu = 0, \sigma^2 = 1$): $F_X(x) = \Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y^2\right) dy$

Elementare Zufallsvariable: $X(\omega) = \sum_{i=1}^{m} \alpha_i 1_{A_i}(\omega)$

- $A_i \in \mathcal{A}, \alpha_i \in \mathbb{R}_+, m \in \mathbb{N}$
- \bullet Menge aller elementaren Zufallsvariablen im Messraum: M^E

Erwartungswert von X: $EX = \int X dP = \sum_{i=1}^{m} \alpha_i P(A_i)$

- Erwartungswert existiert $\Leftrightarrow EX < \infty$
- Linearität: E(aX + bY) = aEX + bEY
- Monotonie: $X \leq Y$ $(d.h. \ X(\omega) \leq Y(\omega) \ \forall \ \omega \in \Omega) \Rightarrow EX \leq EY$
- Mit $g: \mathbb{R} \to \mathbb{R}$ messbar gilt für diskreten und absolutstetigen Fall:

$$-Eg(x) \text{ existiert } \Leftrightarrow \sum_{k=0}^{\infty} |g(x_k)| \cdot p_X(k) < \infty$$

$$-Eg(x) = \sum_{k=0}^{\infty} g(x_k) \cdot p_X(k)$$

$$-EX = \sum_{x \in \mathbb{R}: P(X=x) > 0} x \cdot P(X=x)$$

$$-Eg(x) \text{ existiert } \Leftrightarrow \int_{-\infty}^{\infty} |g(x)| \cdot f_X(x) \, dx < \infty$$

$$-Eg(x) \text{ existiert } \Leftrightarrow \int_{-\infty}^{\infty} |g(x)| \cdot f_X(x) \, dx < \infty$$

$$-Eg(x) \text{ existiert } \Leftrightarrow \int_{-\infty}^{\infty} |g(x)| \cdot f_X(x) \, dx < \infty$$

$$-EX = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx$$

4

k-tes Moment von X: EX^k

k-tes zentriertes Moment von X: $E(X - EX)^k$

Varianz (2-tes zentriertes Moment): $Var(X) = E(X - EX)^2$

- $Var(X) = EX^2 (EX)^2$
- $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X) \ \forall \ a, b \in \mathbb{R}$
- $\operatorname{Var}(X) \geq 0$ und $\operatorname{Var}(X) = 0 \Leftrightarrow P(X = c) = 1$ für ein $c \in \mathbb{R}$

Tschebyscheff-Ungleichung: $P(|X - EX| \ge \varepsilon) \le \frac{1}{\varepsilon^2} \text{Var}(X)$

Erwartungswert und Varianz diskreter Verteilungen

Verteilung	Zähldichte $P(X = k)$	Erwartungsw.	Varianz	Anschauliche Interpretation
Binomial verteilung $X \sim B(n, p)$	$\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$	$n \cdot p$	$n \cdot p \cdot (1-p)$	Münze wird n-mal geworfen, P(i-ter Wurf=Kopf)=p. Die Anzahl X der Kopfwürfe ist binomialverteilt.
Hypergeometrische Verteilung $X \sim H(r, n, m)$	$\frac{\binom{r}{k}\binom{n-r}{m-k}}{\binom{n}{m}}$	$r rac{m}{n}$	$r^{\frac{m}{n}} \left(1 - \frac{m}{n}\right) \cdot \left(\frac{n-r}{n-1}\right)$	Urne mit r roten und s schwarzen Kugeln, $r+s=n$. Zieht man m Kugeln ohne Zurücklegen, ist die Anzahl X der gezogenen roten Kugeln hypergeometrisch verteilt.
Geometrische Verteilung	$p \cdot (1-p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	Die Wahrscheinlichkeit, dass ein Ereignis zum Erfolg führt, sei p. Die Anzahl X der Versuche, die notwendig sind um einen ers- ten Erfolg zu haben, ist geometrisch ver- teilt.
Poisson-Verteilung	$e^{-\lambda} \cdot \frac{\lambda^k}{k!}$	λ	λ	Die Poisson-Verteilung ist eine Approximation der Binomialverteilung für große n und kleinem p.
Diskrete Gleichverteilung auf $\{x_1,, x_m\}$	$\frac{1}{m}$	$\frac{1}{m} \sum_{i=1}^{m} x_i$	berechnen!	Ein Würfel wird einmal geworfen. Der geworfene Wert X ist gleichverteilt und hat die möglichen Ausprägungen $x_1 = 1, x_2 = 2,, x_6 = 6$.

Erwartungswert und Varianz stetiger Verteilungen

Verteilung	Dichte $f(x)$	Erwartungsw.	Varianz	Verteilungsfunktion $F_X(x)$
Gleichverteilung $X \sim U(a, b)$	$ \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & sonst \end{cases} $	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$\int_{a}^{x} \frac{1}{b-a} \mathrm{dy} = \frac{x-a}{b-a} \text{ für } a < x < b$
Exponential- verteilung $X \sim exp(\lambda)$	$\begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & sonst \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\int_0^x \lambda e^{-\lambda y} \mathrm{d}y = 1 - e^{-\lambda x} \text{ für } x \ge 0$
Normal verteilung $X \sim N(\mu, \sigma^2)$	$\varphi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right)$	μ	σ^2	Integral nicht lösbar
Standard- Normalverteilung	$\mu = 0, \ \sigma^2 = 1$	0	1	$\int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y^{2}\right) dy = \Phi(x) [Tabelle]$

Zufallsvektoren

Produkt- σ -Algebra: $\mathcal{A} = \mathcal{A}_1 \otimes ... \otimes \mathcal{A}_n = \sigma \left(\{ A_1 \times ... \times A_n | A_i \in \mathcal{A}, i = i...n \} \right)$

Randverteilung: $Q_i(A_i) = P(\Omega_1 \times ... \times \Omega_{i-1} \times A_i \times \Omega_{i+1} \times ... \times \Omega_n)$

Zufallsvektor: $X = (X_1, ..., X_n) : \Omega \to \mathbb{R}^n$

Verteilung: $P_X : \mathcal{B}(\mathbb{R}^n) \to [0,1]$ mit $P_X(B) = P(\{\omega \in \Omega | X(\omega) \in B\}), B \in \mathcal{B}(\mathbb{R}^n)$

Verteilungsfunkton: $F_X(x_1,...,x_n) = P(X_1 \le x_1,...,X_n \le x_n)$

X heißt diskret, falls es eine endliche oder abzählbar unendliche Menge $C = \{x_1, x_2, ...\} \subset \mathbb{R}^n$ gibt, so dass

$$P(X \in C) = 1$$

Zähldichte: $p_X(k) = P(X = x_k)$

Randzähldichte: $P(X_i = y_i)$

- = $P(\{\omega | X(\omega) \in C, X_i(\omega) = y_i\})$
- $\bullet = \sum_{x \in C. x_i = y_i} P(X = x)$

X heißt absolutstetig, falls es eine integrierbare Funktion $f_X: \mathbb{R}^n \to [0, \infty)$ gibt mit

$$F_X(x_1,...,x_n) = \int_{-\infty}^{x_1} ... \int_{-\infty}^{x_n} f_X(y_1,...,y_n) dy_1...dy_n$$

Dichte: $f_X : \mathbb{R}^n \to [0, \infty)$

Randdichte: $f_{X_i}(x)$

$$\bullet = \underbrace{\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_X(y_1, \dots, y_{i-1}, x_i, y_{i+1}, \dots, y_n)}_{n-1 \ mal} dy_1 \dots dy_{i-1} dy_{i+1} dy_n$$

Verteilung: $P_X(B) = \int_B f_X(y) \, dy \, \forall \, B \in \mathcal{B}(\mathbb{R}^n)$

Multinomialverteilung:

- Experiment mit r möglichen Ausgängen $E_1, ..., E_r$ mit jeweiligen Wahrscheinlichkeiten $p_1, ..., p_r$ $(p_1 + ... + p_r = 1)$
- Der Versuch wird n-mal unabhängig wiederholt
- $X_i(\omega)$ sei die Anzahl der E_i -Ausgänge
- $\bullet \Rightarrow P(X_1 = k_1, ..., X_r = k_r) = p_1^{k_1} \cdot ... \cdot p_r^{k_r} \cdot \frac{n!}{k_1! \dots k_r!}$

Unabhängigkeit der Zufallsvariablen $X_1,...,X_n:\Omega\to\mathbb{R}:F_{X_1,...,X_n}(x_1,...,x_n)=\prod_{i=1}^nF_{X_i}(x_i)$

- $\Leftrightarrow P(X_1 < x_1, ..., X_n < x_n) = \prod_{i=1}^n P(X_i < x_i) \ \forall \ (x_1, ..., x_n) \in \mathbb{R}^n$
- $\Leftrightarrow P(X_1 \in B_1, ..., X_n \in B_n) = \prod_{i=1}^n P(X_i \in B_i) \ \forall \ B_1, ..., B_n \in \mathcal{B}$
- $\Leftrightarrow P(B_1 \times ... \times B_n) = \prod_{i=1}^n P_{X_i}(B_i) \ \forall \ B_1, ..., B_n \in \mathcal{B}$

Produkt-Maß: $P(A_1 \times ... \times A_n) = P_1(A_1) \cdot ... \cdot P_n(A_n)$

i-te Projektion: $X_i(\omega) = X_i((\omega_1,...,\omega_n) = \omega_i, i = 1...n$

 $X_1, ..., X_n$ unabhängig

•
$$\Leftrightarrow P(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1}^n P(X_i = x_i)$$

 $\forall (x_1, ..., x_n) \in \mathbb{R}^n$
• $\Leftrightarrow f_X(x_1, ..., x_n) = \prod_{i=1}^n f_{X_i}(x_i)$
 $\forall (x_1, ..., x_n) \in \mathbb{R}^n \setminus B$
• (B vom Lebesguemaß 0)

Addition zweier absolutstetiger Zufallsvariablen $(X = (X_1, X_2) : \Omega \to \mathbb{R}^2)$ mit gemeinsamer Dichte f_X :

6

• X_1+X_2 absoluts tetig mit Dichte $f_{X_1+X_2}(x)=\int_{-\infty}^{\infty}f_X(y,x-y)\;\mathrm{d}y\;\forall\;x\in\mathbb{R}$

Faltungsformel (Addition zweier unabhängiger absolutstetiger ZV):

•
$$f_{X_1+X_2}(x) = \int_{-\infty}^{\infty} f_{X_1}(y) f_{X_2}(x-y) \, \mathrm{d}y \, \forall \, x \in \mathbb{R}$$

Faltung: $P_X * P_Y = P_{X+Y}$ für X,Y unabhängig

Erwartungswert zweier unabhängiger Zufallsvariablen: $EX \cdot Y = EX \cdot EY$

• sonst:
$$EX \cdot Y = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y \cdot f_{X,Y}(x,y) \ d(x,y)$$

Cauchy-Schwarzsche Ungleichung: $(EXY)^2 \le EX^2 \cdot EY^2$

Kovarianz: Cov (X, Y) := E[(X - EX)(Y - EY)]

- $Cov(X,Y) = EXY EX \cdot EY$
- Cov(X, X) = Var(X)
- Cov(X, Y) = Cov(Y, X)

X und Y **unkorreliert** \Leftrightarrow Cov (X, Y) = 0

• X,Y unabhängig $\Rightarrow X,Y$ unkorreliert

Korrelationskoeffizient: $\varrho(X,Y) = \frac{\text{Cov }(X,Y)}{\sqrt{\text{Var }(X)\cdot \text{Var }(Y)}}$

- Ist $\varrho(X,Y)$ definiert, so gilt: $-1 \le \varrho(X,Y) \le 1$
- Der Korrelationskoeffizient ist ein Maß für die lineare Abhängigkeit der Zufallsvariable

Berechnung der Varianz: $\operatorname{Var}(X_1 + ... + X_n) = \sum_{i=1}^n \operatorname{Var}(X_i) + 2 \sum_{1 \le i \le j \le n} \operatorname{Cov}(X_i, X_j)$

• Für unkorrellierte X_i : Var $(X_1 + ... + X_n) = \sum_{i=1}^n \text{Var}(X_i)$

Erwartungsvektor: $EX = (EX_1, ..., EX_n)$

Kovarianzmatrix: Cov $(X) = (\text{Cov }(X_i, X_j))_{1 \le i, j \le n}$

Erzeugende Funktion: $g_X(s) = \sum_{k=0}^{\infty} p_X(k) \cdot s^k = Es^k$

- Nur für X diskret
- $g_X: [-1,1] \to \mathbb{R}$ ist wohldefiniert für $|s| \le 1$
- Zähldichte: $p_X(k) = \frac{g_X^{(k)}(0)}{k!}$
- Erwartungswert: $EX = g'_X(1-) = \lim_{s \uparrow 1} g'_X(s)$
- Varianz: Var $(X) = g_X''(1-) + g_X'(1-) (g_X'(1-))^2$
- Eindeutigkeit: $p_X(k) = p_Y(k) \ \forall \ k \in \mathbb{N} \Leftrightarrow g_X(s) = g_Y(s) \ \forall \ s \in [-1,1]$
- Addition von X, Y unabhängig: $g_{X+Y}(s) = g_X(s) \cdot g_Y(s) \ \forall \ s \in [-1,1]$
- $X_1, ..., X_n$ unabhängig $\Leftrightarrow g_{\sum_{i=1}^n X_i} = \prod_{i=1}^n g_{X_i}$

Konvergenz von Zufallsvariablen

p-fast-sichere Konvergenz: $P(\{\omega \in \Omega | \lim_{n \to \infty} X_n(\omega) - X(\omega)\}) = 1$

•
$$X_n \stackrel{f.s.}{\to} X \Leftrightarrow P(\lim_{n \to \infty} X_n = X) = 1$$

Konvergenz in Wahrscheinlichkeit: $\lim_{n\to\infty} P\left(\{\omega\in\Omega|\ |X_n(\omega)-X(\omega)|\geq\varepsilon\}\right)=0\ \forall\ \varepsilon>0$

•
$$X_n \stackrel{p}{\to} X \Leftrightarrow \lim_{n \to \infty} P(|X_n - X| \ge \varepsilon) = 0 \ \forall \ \varepsilon > 0$$

Konvergenz in Verteilung: $\lim_{n\to\infty} F_{X_n}(x) = F_X(x) \ \forall \ x\in\mathbb{R}$ an denen $F_X(x)$ stetig ist

•
$$X_n \xrightarrow{d} X \Leftrightarrow \lim_{n \to \infty} F_{X_n}(x) = F_X(x) \ \forall$$
 Stetigkeitsstellen x von X

Zusammenhang der Konvergenzen:

•
$$X_n \stackrel{f.s.}{\to} X \Rightarrow X_n \stackrel{p}{\to} X$$

$$\bullet \ X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{d} X$$

•
$$X_n \xrightarrow{d} c, c \in \mathbb{R} \Rightarrow X_n \xrightarrow{p} c$$

Charakteristische Funktion: $\varphi_X(t) := Ee^{itX} = E\cos(tX) + iE\sin(tX)$

•
$$\varphi_X : \mathbb{R} \to \mathbb{C}$$
 existiert immer $\forall t \in \mathbb{R}$

• X diskret
$$\Rightarrow \varphi_X(t) = g_X(e^{it})$$

• X absolutstetig
$$\Rightarrow \varphi_X(t) = \int_{-\infty}^{\infty} e^{itx} \cdot f_X(x) dx = \int_{-\infty}^{\infty} \cos(tx) \cdot f_X(x) dx + i \int_{-\infty}^{\infty} \sin(tx) \cdot f_X(x) dx$$

$$-\varphi_{X}(0)=1$$

$$-|\varphi_X(t)| \le 1 \ \forall \ t \in \mathbb{R}$$

$$-\varphi_{aX+b}(t) = e^{ibt} \cdot \varphi_X(at)$$

• Eindeutigkeit:
$$P_X = P_Y \Leftrightarrow \varphi_X = \varphi_Y$$

•
$$X_1,...,X_n$$
 unabhängig $\Leftrightarrow \varphi_{\sum_{i=1}^n X_i}(t) = \prod_{i=1}^n \varphi_{X_i}(t)$

• n-tes Moment:
$$\varphi_X^{(n)}(0) = i^n E X^n$$

• Stetigkeitssatz:
$$X_n \stackrel{d}{\to} X \Leftrightarrow \varphi_{X_n}(t) \stackrel{n \to \infty}{\to} \varphi(t) \; \forall \; t \in \mathbb{R} \text{ und } \varphi \text{ ist stetig in } 0$$

Schwaches Gesetz der großen Zahlen: $\frac{X_1+\ldots+X_n}{n} \xrightarrow{p} \mu$

• nur für
$$X_1, X_2, \dots$$
 u.i.v. (unabhängig und identisch verteilt)

•
$$\mu = EX_i$$

Starkes Gesetz der großen Zahlen: $\stackrel{X_1+\ldots+X_n}{\longrightarrow}\stackrel{f.s.}{\longrightarrow}\mu$

$$\bullet\,$$
nur für $X_1,X_2,...$ u.i.v. (unabhängig und identisch verteilt)

•
$$\mu = EX_i$$

Zentraler Grenzwertsatz: für X_1, X_2, \dots u.i.v. mit $EX_i = \mu$ und $0 < \text{Var}(X_i) = \sigma^2 < \infty$ gilt:

8

•
$$\frac{X_1 + \dots + X_n - n\mu}{\sqrt{n}\sigma} \stackrel{d}{\to} X \sim N(0,1)$$

•
$$P\left(\frac{X_1 + \dots + X_n - n\mu}{\sqrt{n}\sigma} \le x\right) \stackrel{n \to \infty}{\to} \Phi(x) \ \forall \ x \in \mathbb{R}$$

•
$$P\left(\alpha \leq \frac{X_1 + \dots + X_n - n\mu}{\sqrt{n}\sigma} \leq \beta\right) \stackrel{n \to \infty}{\to} \Phi(\beta) - \Phi(\alpha)$$

Parameterschätzung

Familie von Verteilungen: $\{P_{\theta} | \theta \in \Theta\}$ mit $\Theta \subset \mathbb{R}^m$

Stichprobenraum: \mathcal{X}

Zufallsstichprobe von u.i.v. Zufallsvariablen $X_1,...,X_n$ mit Verteilung P: $(X_1,...,X_n)$

Stichprobe: Realisierung $(x_1,...,x_n)$ einer Zufallsstichprobe

Schätzer von θ : messbare Abbildung $T: \mathcal{X}^n \to \tilde{\Theta}, \tilde{\Theta} \supset \Theta$

Stichprobenmittel: $T: \mathbb{R}^n \to \mathbb{R}$ mit $T(x) = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$

Stichprobenvarianz: $S^2: \mathbb{R}^n \to \mathbb{R}$ mit $S^2(x) = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$

Maximum-Likelihood-Methode

• Likelihood-Funktion der Stichprobe $x = (x_1, ..., x_n) \subset \mathcal{X}^n$:

$$L_x(\theta) = p(x_1, \theta) \cdot \dots \cdot p(x_n, \theta)$$

= $P_{\theta}(X_1 = x_1) \cdot \dots \cdot P_{\theta}(X_n = x_n) = P_{\theta}(X = x)$
$$L_x(\theta) = f(x_1, \theta) \cdot \dots \cdot f(x_n, \theta)$$

- Maximum-Likelihood-Schätzer (MLS): $\hat{\theta}_{ML}(x)$ mit $L_x(\hat{\theta}_{ML}(x)) = \sup_{\theta \in \Theta} L_x(\theta)$
- Ggf. kann der MLS durch Nullsetzen der Ableitung der Log-Likelihoodfunktion bestimmt werden: $\frac{\partial}{\partial \theta} \log \left(L_x(\theta) \right) = 0$

Momentenmethode

- k-tes theoretisches Moment von $X \sim P_{\theta}$: $\mu_k = \mu_k(\theta) = E_{\theta}X^k$, k = 1, 2, ...
- k-tes empirisches Moment einer Stichprobe $x=(x_1,...,x_n)$: $\overline{x}_k=\frac{1}{n}\sum_{i=1}^n x_i^k$
- Vorgehensweise:
 - Setze theoretische und empirische Momente gleich $\Rightarrow \mu_k(\theta) = \overline{x}_k, \ k = 1, ..., m$
 - Aufgelöst nach θ ergibt sich dann der Momentenschätzer $\hat{\theta}_{MM}(x) \in \Theta$

Erwartungstreuheit eines Schätzers T: $\forall \theta \in \Theta : E_{\theta}T(X_1,...,X_n) = \theta$

Verzerrung eines Schätzers T: $b_T(\theta) = E_{\theta}T(X_1,...,X_n) - \theta$

• Erwartungstreue Schätzer sind unverzerrt

Mittlerer quadratischer Fehler: $MSE(T) = E_{\theta} \left[(T(X_1, ..., X_n) - \theta)^2 \right] = \text{Var }_{\theta}(T) + b_T(\theta)^2$

• Für erwartungstreue Schätzer gilt: $MSE(T) = \text{Var}_{\theta}(T(X))$

Ungleichung von Cramér-Rao: $\operatorname{Var}_{\theta}(T(X)) \geq \frac{\left(1 + \frac{\partial}{\partial \theta} b_T(\theta)\right)^2}{E_{\theta}\left[\left(\frac{\partial}{\partial \theta} \log L_x(\theta)\right)^2\right]}$

- Fisher-Information: $I(\theta) = E_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log L_x(\theta) \right)^2 \right]$
- Für erwartungstreue Schätzer gilt: Var $_{\theta}(T(X)) \geq \frac{1}{I(\theta)}$

 $(1-\alpha)$ -Konfidenzintervall: [L(x), U(X)] mit...

- 1. $L, U: \mathcal{X}^n \to \Theta \subset \mathbb{R}$ messbare Funktionen
- 2. $L(x) \leq U(x) \ \forall \ x \in \mathcal{X}^n$
- 3. $P_{\theta}(L(X) \leq \theta \leq U(X)) = 1 \alpha$

Eigenschaften:

- Sowohl Lage als auch Länge des Konfidenzintervalls hängen von der konkreten Stichprobe ab
- ullet Ist z.B. lpha=0,05, dann enthält das Konfidenzintervall den wahren Parameter in 95% der Fälle

Testtheorie

Sei $\theta_0 \in \Theta$

Einseitiges Testproblem: $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$

Zweiseitiges Testproblem: $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$

Kritischer Bereich: $R \subset \mathbb{R}^n = \mathcal{X}^n$, so dass H_0 verworfen wird für $x \in R$

- $0 = H_0$ wird nicht verworfen
- $1 = H_0$ wird verworfen

Test / Testverfahren: $\varphi: \mathcal{X}^n \to \{0,1\}$

• $R = \{x \in \mathcal{X}^n | \varphi(x) = 1\}$

Gütefunktion: $\beta(\theta) = P_{\theta}(X \in R) = P_{\theta}(\varphi(x) = 1)$

- $\beta:\Theta \rightarrow [0,1]$
- Für $\theta \in \Theta_1$ heißt $\beta(\theta)$ die Macht des Tests

Niveau / Signifikanzniveau α eines Tests: $\beta(\theta) \leq \alpha$

ullet \Leftrightarrow Wahrscheinlichkeit für einen Fehler 1. Art ist gleich α

wahr Entscheidung	H_0	H_1
H_0	ok	Fehler 1. Art
H_1	Fehler 2. Art	ok

Gleichmäßig bester Test $\varphi^* \in D_\alpha$: $\beta^*(\theta) = P_\theta(\varphi^*(x) = 1) = \max_{\varphi \in D_\alpha} P_\theta(\varphi(x) = 1)$

• D_{α} Menge von Test zum Niveau α

Wahl der Nullhypothese: Möchte man sich für $\theta < \theta_0$ entscheiden, sollte man $H_0: \theta \ge \theta_0$ wählen

$$X_0, X_1, ..., X_r$$
 u.i.v. mit $X_i \sim N(0, 1), r \in \mathbb{N}$:

- χ^2 -Verteilung mit r Freiheitsgraden: $\sum_{i=1}^r X_i^2$
- t-Verteilung mit r Freiheitsgraden: $\frac{X_0}{\sqrt{\frac{1}{r}\sum_{i=1}^r X_i^2}}$
- Für Zufallsstichprobe $X = (X_1, ..., X_n)$ zur $N(\mu, \sigma^2)$ -Verteilung gilt:

$$-\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \ \overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

$$-S^{2}(X) = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}, \ \frac{(n-1) \cdot S^{2}(X)}{\sigma^{2}} \sim \chi_{n-1}^{2}$$

$$-\sqrt{n}\frac{\overline{X}-\mu}{S(X)}\sim t_{n-1}$$

Randomisierter Test: $\varphi: \mathcal{X}^n \to [0,1]$

- Gibt an, mit welcher Wahrscheinlichkeit $\varphi(x)$ H_0 abgelehnt wird
- Gütefunktion: $\beta(\theta) = E_{\theta}\varphi(X)$

 $\textbf{Neyman-Pearson-Test} : \text{randomisierter Test } \varphi^* : \mathcal{X}^n \to [0,1] \text{ mit } \varphi^*(x) = \left\{ \begin{array}{ll} 0 & falls & L_x(\theta_1) < c^* \cdot L_x(\theta_0) \\ \gamma(x) & falls & L_x(\theta_1) = c^* \cdot L_x(\theta_0) \\ 1 & falls & L_x(\theta_1) > c^* \cdot L_x(\theta_0) \end{array} \right.$

- $c^* \in [0, \infty)$ konstant
- $\gamma: \mathcal{X}^n \to [0,1]$ eine Funktion

Lemma von Neyman-Pearson:

- Ist φ^* ein NPT mit $\alpha = \beta_{\varphi^*}(\theta_0)$, dann ist φ^* gleichmässig bester Test unter allen Tests zum selben Niveau α
- Für jedes $\alpha \in (0,1)$ existiert ein NPT φ^* zum Niveau α . Dabei kann $\gamma(x) \equiv \gamma$ gewählt werden.

Familie von (Zähl-)Dichten mit monotonem Dichtequotienten: $\{f(x,\theta)|\theta\in\Theta\}$ bzw. $\{p(x,\theta)|\theta\in\Theta\}$ mit...

- 1. \exists messbare Funktion $T: \mathcal{X}^n \to \mathbb{R}$ so dass $q(x) = \frac{L_x(\theta_1)}{L_x(\theta_0)} = q^* \left(T(x_1, ..., x_n) \right)$
- 2. q^* monoton in $T(x_1,...,x_n)=T(x)$ für alle $\theta_0<\theta_1$
- Bei exp-Verteilungen: $T(x) = \overline{x}$ erfüllt die Bedingung
- $X \in \mathcal{X}^n$ Stichprobe zu einer Verteilung mit nicht monoton fallenden Dichtequotienten in T(x).

Jeder Test der Form
$$\begin{cases} 0 & falls & T(x) > t_0 \\ \gamma & falls & T(x) = t_0 \\ 1 & falls & T(x) < t_0 \end{cases}$$

$$H_0: \theta < \theta_0 \text{ vs. } H_1: \theta > \theta_0 \text{ zum Niveau } \alpha = E_{\theta_0} \varphi(X) = \sup_{\alpha \in \mathcal{A}} E_{\theta} \varphi(X)$$

$$H_0: \theta \leq \theta_0$$
 vs. $H_1: \theta > \theta_0$ zum Niveau $\alpha = E_{\theta_0} \varphi(X) = \sup_{\theta \leq \theta_0} E_{\theta} \varphi(X)$

$$\textbf{Likelihood-Quotient:} \ q(x) = \frac{\sup_{\theta \in \Theta_0} L_x(\theta)}{\sup_{\theta \in \Theta_1} L_x(\theta)}$$