Poznámka

Toto nejsou úplné zápisky z přednášky, toto je jen moje příprava k zápočtovému testu a později ke zkoušce.

1 Markovovy řetězce

Definice 1.1 (Markovův řetězec)

Nechť S je nejvýše spočetná množina. Posloupnost $(X_t)_{t=0}^{\infty}$ náhodných veličin s oborem hodnot v S je Markovův řetězec (s diskrétním časem, s diskrétním prostorem a časově homogenní) pokud pro každé $t \ge 0$ a každé $a_0, \ldots, a_{t+1} \in S$ platí

$$P(X_{t+1} = a_{t+1} | X_t = a_t \land \dots \land X_0 = a_0) = P(X_{t+1} = a_{t+1} | X_t = a_t) = p_{a_t, a_{t+1}},$$

pokaždé, když $P(X_t = a_t \wedge \ldots \wedge X_0 = a_0) > 0.$

Množině S se říká stavy, budeme předpokládat, že jsou nějak (pevně) očíslované přirozenými čísly (resp. přirozenými čísly s0). $p_{a_t,a_{t+1}}$ je pravděpodobnost přechodu ze stavu a_t do stavu a_{t+1}

1.1 Přechody

Definice 1.2 (Přechodová matice)

Matice P, jejíž prvek $p_{i,j}$ vyjadřuje pravděpodobnost přechodu ze stavu i do stavu j.

Důsledek

Každý řádek přechodové matice má součet jeho prvků roven 1. Tj. $P \cdot (1, \dots, 1)^T = (1, \dots, 1)^T$.

Definice 1.3 (Přechodový graf/diagram)

Přechodový graf je ohodnocený orientovaný graf se smyčkami, jehož množina vrcholů je S. Hrana mezi vrcholy $i, j \in S$ vede právě tehdy, když $p_{i,j} > 0$ a má váhu $p_{i,j}$.

Definice 1.4 (Pravděpodobnostní rozdělení X)

Nechť $(X_t)_{t=0}$ je Markovův řetězec. Pravděpodobnostní rozdělení X_t budeme značit $\pi_i^{(t)} = P(X_t = i)$ pro každý stav $i \in S$, $t \in \mathbb{N}_0$. $\pi^{(t)}$ pak značí řádkový vektor hodnot $\pi_i^{(t)}$.

Věta 1.1

Pro libovolný Markovův řetězec s pravděpodobnostním rozdělením π a přechodovou maticí P a libovolné $k \geqslant 0$

$$\pi^{(k)} = \pi^{(0)} \cdot P^k.$$

Dokonce obecněji $\pi^{(t+k)} = \pi^{(t)} P^k$.

 $D\mathring{u}kaz$

$$\forall m \in \mathbb{N} : P(X_m = j) = \sum_{i \in S} P(X_{m-1} = i) \cdot P(X_m = j | X_{m-1} = i),$$

$$\pi_j^{(m)} = \sum_{i \in S} \pi_i^{(m-1)} \cdot P_{i,j},$$

$$\pi^{(m)} = \pi^{(m-1)} \cdot P.$$

Definice 1.5 (k-krokový přechod)

$$r_{i,j}(k) = P(\text{přechod z}\ i\ \text{do}\ j\ \text{za}\ k\ \text{kroků}) = P(X_k = j|X_0 = i).$$

Dusledek

$$r_{i,j}(k) = P(X_{t+k} = j | X_t = i).$$

Věta 1.2 (Chapman-Kolmogorov)

Pro libovolný Markovův řetězec a libovolné $k, l \in \mathbb{N}_0$ platí

- $r_{i,j}(k) = (P^{(k)})_{i,j};$
- $r_{i,j}(k+l) = \sum_{u \in S} r_{i,u}(k) r_{u,j}(l);$
- $r_{i,j}(k+1) = \sum_{u \in S} r_{i,u}(k) p_{u,j}$

1.2 Klasifikace stavů

Definice 1.6 (Dosažitelný stav)

Pro stavy i,j Markovova řetězce říkáme, že j je dosažitelný z i (píšeme $j \in A(i)$ nebo $i \to j$), pokud je nenulová pravděpodobnost, že začínaje v i dosáhneme j v konečném čase. Tedy

$$j \in A(i) \equiv \exists t \in \mathbb{N}_0 : P(X_t = j | X_0 = i) > 0.$$

Poznámka

Nevím, jestli na přednášce bylo $\exists t:P\dots$ nebo $P(\exists t:\dots)>0$. Pokud se nepletu, je to ekvivalentní.

Důsledek

 $j \in A(i)$ odpovídá existenci orientované cesty z i do j v přechodovém grafu.

Definice 1.7 (Komutující stavy)

Říkáme, že stavy i, j Markovova řetězce komutují, pokud $i \in A(j)$ a $j \in A(i)$. Píšeme $i \leftrightarrow j$.

Věta 1.3

Pro libovolný Markovův řetězec je relace \leftrightarrow (na S) ekvivalence.

Definice 1.8 (Ireducibilní Markovův řetězec)

Markovův řetězec se nazývá ireducibilní, pokud $\forall i, j \in S : i \leftrightarrow j$.

Definice 1.9 (Rekurentní stav)

Stav $i \in S$ Markovova řetězce se nazývá rekurentní, pokud $\forall j \in A(i) : i \in A(j)$.

Definice 1.10 (Transientní stav)

Stav $i \in S$ Markovova řetězce se nazývá transientní (význam: dočasný, přechodný, pomíjivý), pokud není rekurentní.

Věta 1.4

Pro stav $i \in S$ Markovova řetězce označme $f_{ii} = P(\exists t \in \mathbb{N} : X_t = i | X_0 = i)$. At $|S| < \infty$. Potom, když $f_{ii} = 1$, tak je stav rekurentní, pokud $f_{ii} < 1$, tak je transientní.

Důkaz (Transientní)

Označme j to $j \in A(i)$, pro které $i \notin A(j)$. Potom $P(\exists t \in \mathbb{N} : X_t = j | X_0 = i) \neq 0$ a zřejmě $P(\exists t \in \mathbb{N} \ \forall 0 < t_1 < t : X_t = j \land X_{t_1} \neq i | X_0 = i) \neq 0$ a $P(\exists t_2 > t : X_{t_2} = i | X_t = j) = 0$, tedy $f_{ii} \neq 1$.

 $D\mathring{u}kaz$ (Rekurentní, na přednášce nebyl celý, moje vize:)

Nechť $m = \min_{j \in A(i)} P(\exists \tilde{t} < t : X_{\tilde{t}} = i | X_0 = j)$. Pro dostatečně velké t (maximum přes všechny časy z definice rekurentního stavu) je m > 0. To znamená, že $\sum_{j \in A(i), j \neq i} \pi_j^{(t)} \le (1 - m) \cdot \sum_{j \in A(i), j \neq i} \pi_j^{(0)}$ (předpokládaje, že $p_{i,i} = 1$, protože při libovolném navštívení i jsme vyhráli). Tedy (stále předpokládaje $p_{i,i} = 1$)

$$\lim_{n \to \infty} \sum_{j \in A(i), j \neq i} \pi^{(n \cdot t)} \le \lim_{n \to \infty} (1 - m)^n \cdot \sum_{j \in A(i), j \neq i} \pi^{(0)} = 0 \cdot \ldots = 0.$$

Ale pokud jsme začínali uvnitř A(i) (což po rozutečení se z i rozhodně), tak $\sum_{j \in S \setminus A(i)} \pi_j^{(\cdot)} = 0$, tedy $\pi_1^{(\cdot)} \to 1$.

Definice 1.11 (Počet návštěv)

Pro stav $i \in S$ Markovova řetězce označme náhodnou veličinu V_i s oborem hodnot v \mathbb{N}_0^* počet návštěv i, tedy $V_i = |\{t|X_t = i\}|$.

Věta 1.5

Stav $i \in S$ Markovova řetězce je rekurentní $\Longrightarrow P(V_i = \infty | X_0 = i) = 1$. i je transientní, pokud $V_i|_{X_0=i} \sim Geo(1-f_{ii})$.

Definice 1.12 (Stacionární rozložení)

Nechť π je pravděpodobnostní rozložení na stavech S Markovova řetězce. Řekneme, že π je stacionární rozložení, pokud $\pi \cdot P = \pi$, kde π považujeme za řádkový vektor.

Důsledek

Pokud $\pi^{(0)}$ je stacionární rozložení, pak $\forall k \in \mathbb{N}_0 : \pi^{(k)} = \pi^{(0)}$.

Definice 1.13 (Periodický stav, periodický Markovův řetězec, aperiodický ...)

Stav $i \in S$ Markovova řetězce je periodický, pokud $\exists \Delta \in \mathbb{N} \setminus \{1\}$:

$$P(X_t = i | X_0 = i) > 0 \implies \Delta | t.$$

Markovův řetězec se nazývá periodický, pokud jsou všechny jeho stavy periodické.

Stav nebo Markovův řetězec se nazývá aperiodický, pokud není periodický.

Věta 1.6

Buď $(X_t)_{t=0}^{\infty}$ Markovův řetězec, který je ireducibilní, aperiodický a $|S|<\infty$. Potom $\exists \pi$ stacionární rozložení a

$$\forall j \ \forall i \lim_{k \to \infty} r_{i,j}(k) = \pi_j;$$

navíc π je jednoznačné řešení $\pi\cdot P=\pi$ a $\pi\cdot (1,\dots,1)^T=1.$

Definice 1.14 (Absorbující stav)

Stav $a \in S$ Markovova řetězce je absorbující, pokud $p_{a,a} = 1.$

Definice 1.15 (Čas absorbování)

Předpokládejme $A \subseteq S$ neprázdnou množinu absorbujících stavů Markovova řetězce a BÚNO $0 \in A$. Pro každý stav $i \in S$ definujeme μ_i jako střední hodnotu času absorbování z i, tedy

$$\mu_i = \mathbb{E}(T|X_0=i), \qquad T = \min\left\{t: X_t \in A\right\}.$$

Dále a_i buď pravděpodobnost, že začínaje ve stavu i skončíme v stavu 0.

$$a_i = P(\exists t : X_t = 0 | X_0 = i).$$

Věta 1.7

Pravděpodobnosti a, jsou jednoznačné řešení

$$a_0 = 1,$$
 $a_i = 0,$ $0 \neq i \in A,$ $a_i = \sum_{j \in S} p_{i,j} a_j,$ $i \in (S \setminus A) \cup \{0\}.$

 $D\mathring{u}kaz$

TODO? Jednoduchý, větou o úplné pravděpodobnosti.

Věta 1.8

Střední hodnoty času (μ_i) jsou jednoznačné řešení

$$\mu_i = 0, \quad i \in A, \qquad \mu_i = 1 + \sum_{j \in S} p_{i,j} \mu_j, \quad i \in S \backslash A.$$

Důkaz

TODO? Jednoduchý, větou o úplné střední hodnotě.

2 SAT

Definice 2.1 (k-SAT)

Je konjukce (φ) l klauzulí (= disjunkce nejvýše k literálů = proměnná nebo její negace) splnitelná (vhodným dosazením ano/ne za proměnné)? (Proměnné označme x_1, \ldots, x_n .)

Definice 2.2 (Algoritmus řešení 2-SAT)

Začneme z libovolně přiřazenými proměnnými (např. všechny ne). Následně $2 \cdot m \cdot n^2$ -krát (pro zvolené $m \in \mathbb{N}$) zopakujeme: pokud je vše splněno, vyhráli jsme; jinak zvolíme libovolně nesplněnou klauzuli a z ní změníme náhodně proměnnou a znegujeme jí (tím jsme danou klauzuli splnili). Pokud po $2 \cdot m \cdot n^2$ krocích není hotovo, pak vrátíme ne.

Tvrzení 2.1

 $Pravděpodobnost špatného výsledku je menší než <math>\frac{1}{nm}$.

 $D\mathring{u}kaz$

Předpokládejme, že $\varphi(s_1,\ldots,s_n)$ je pravdivá a položme $X_t=|\{x_i^t=s_i\}$. Tedy pokud $X_t=n$, tak jsme našli splnění φ .

Pokud $X_t = 0$, pak $X_{t+1} = 1$. Pokud $0 < X_t < n$, pak ve vybrané klauzuli máme minimálně jednu ze dvou proměnných špatně $(x_i \neq s_i)$. Když změníme správnou, tak $X_{t+1} = X_t + 1$. Pokud zvolíme druhou, tak ona mohla být také správně, takže $X_{t+1} = X_t \pm 1$.

Tím dostáváme Markovův řetězec tvaru n+1 dlouhé cesty, kde pravděpodobnost cesty doprava je alespoň 1/2. Tento řetězec jsme (prý) už analyzovali, vyjde nám, že střední hodnota příchodu do posledního vrcholu je menší než n^2 .

Tím nám z Markovovy nerovnosti vychází, že $P(T>2mn^2) \leqslant \frac{1}{2m}$, kde T je nejmenší tak, že $X_T=n$.

Tvrzení 2.2

Pravděpodobnost špatného výsledku je menší než $\frac{1}{2^m}$.

Důkaz

m-krát zopakujeme postup pro "m=1" (začátek volíme libovolně, takže je nám jedno, že předchozí iterace nám dala nějaký stav, ze kterého pokračujeme).

Poznámka

Když toto aplikujeme na 3-SAT, tak budeme mít problém s tím, že pravděpodobněji půjdeme doleva místo doprava. Tudíž musíme něco zlepšit.

Definice 2.3 (Algoritmus pro řešení 3-SAT)

Zopakujeme $2 \cdot 2 \cdot 3^{n/2}$ krát: náhodně zvolíme začátek a n/2-krát zopakujeme krok z 2-SATu.

Tvrzení 2.3

 $\check{S}patnou\ odpov\check{e}d\ d\acute{a}\ tento\ algoritmus\ s\ pravd\check{e}podobnosti\ \frac{1}{2}.$

 $D\mathring{u}kaz$

V každém z $2\cdot 2\cdot 3^{n/2}$ kroků (začínáme náhodně, tedy X_0 má binomické rozdělení)

$$P(win) = P(X_0 \ge n/2) \cdot P(win|X_0 \ge n/2) \ge \frac{1}{2}3^{-n/2}.$$

Tedy střední hodnota opakování vnějšího cyklu je $\frac{1}{p}=2\cdot 3^{n/2}$. A my víme, že $P(T>2\cdot 2\cdot 3^n)\leqslant \frac{\mathbb{E}T}{2\cdot 2\cdot 3^n}\leqslant \frac{1}{2}$.

3 Bayesovská statistika

3.1 Postup

Definice 3.1 (Parametr hledaného rozdělení)

Hledáme rozdělení s parametrem Θ , který budeme považovat za náhodnou veličinu.

Definice 3.2 (Apriorní rozdělení)

Nejprve vybereme apriorní rozdělení s pmf (probability mass function) $p_{\Theta}(\vartheta)$ nebo pdf (probability density function) $f_{\Theta}(\vartheta)$ náhodné veličiny Θ nezávisle na datech.

Definice 3.3 (Statistický model)

Potom zvolíme statistický model $p_{X|\Theta}(x|\vartheta)$ (nebo $f_{X|\Theta}(x|\vartheta)$), který popisuje jak jsou (věříme, že jsou) rozděleny data, pokud je Θ rovno nějakému konkrétnímu ϑ .

Definice 3.4 (Posteriorní rozdělení)

Poté, co pozorujeme X=x (více měření považujeme za pozorování jednoho X=x z vícedimenzionálního rozdělení) spočítáme posteriorní rozdělení $f_{\Theta|X}(\vartheta|x)$.

Poznámka

Nakonec najdeme, co potřebujeme vědět, například a,b tak, aby $P(a \le \Theta \le b|X=x) = \int_a^b f_{(\Theta|X)}(\vartheta|x)d\vartheta \ge 1-\alpha$.

3.2 Bayesova věta

Věta 3.1 (Bayesova pro obě diskrétní)

Nechť X, \O jsou diskrétní náhodné veličiny, pak

$$p_{\Theta|X}(\vartheta|x) = \frac{p_{X|\Theta}(x|\vartheta)p_{\Theta}(\vartheta)}{\sum_{\vartheta' \in \operatorname{Im}\Theta \setminus \{p_{\Theta}(\vartheta')=0\}} p_{X|\Theta}(x|\vartheta')p_{\Theta}(\vartheta')}.$$

Věta 3.2 (Bayesova pro obě spojitá)

Nechť X, Θ jsou spojité náhodné veličiny, pak

$$f_{\Theta|X}(\vartheta|x) = \frac{f_{X|\Theta}(x|\vartheta)f_{\Theta}(\vartheta)}{\int_{\vartheta' \in \operatorname{Im}\Theta \setminus \{f_{\Theta}(\vartheta')=0\}} f_{X|\Theta}(x|\vartheta')f_{\Theta}(\vartheta')}.$$

Věta 3.3 (Bayesova pro diskrétní a spojité)

Nechť X je diskrétní a Θ spojitá náhodná veličina, pak

$$f_{\Theta|X}(\vartheta|x) = \frac{p_{X|\Theta}(x|\vartheta)f_{\Theta}(\vartheta)}{\int_{\vartheta' \in \operatorname{Im}\Theta \setminus \{f_{\Theta}(\vartheta')=0\}} p_{X|\Theta}(x|\vartheta')f_{\Theta}(\vartheta')}.$$

3.3 Bodové odhady

Definice 3.5 (MAP – maximum a-posteriori)

Zvolíme modus Θ .

Poznámka

Tj. maximum $p_{\Theta|X}(\vartheta|x)$, resp $f_{\Theta|X}(\vartheta|x)$.

Definice 3.6 (LMS – least mean square)

Zvolíme střední hodnotu Θ , tedy $\mathbb{E}(\Theta|X=x)$.

Poznámka

Dostaneme nestranný bodový odhad, který minimalizuje $\mathbb{E}((\Theta - \cdot)^2 | X = x)$.

Poznámka (Medián)

Obdobně, když vezmeme medián (tj. m tak, že $P(\Theta \le m|X=x) = \frac{1}{2}$), tak minimalizujeme $\mathbb{E}((\Theta - \cdot)|X=x)$, tento přístup však nebudeme dále používat.

TODO? (Zbytek B. statistiky, speciálně Bayesův klasifikátor.)

4 Stochastické procesy

Poznámka

I Markovovy řetězce jsou vlastně stochastický proces.

4.1 Bernoulliho proces

Definice 4.1 (Bernoulliho proces)

Bernoulliho proces (s parametrem p), píšeme Bp(p), je posloupnost nezávislých náhodných veličin $(X_t)_{t=1}^{\infty}$, kde $X_t \sim Ber(p)$, tedy $p(X_t = 1) = p$ a $p(X_t = 0) = 1 - p$, $\forall t \in \mathbb{N}$.

Dusledek

$$\{X_t\}_{t=1}^{\infty} \sim Bp(p) \implies \{X_t\}_{t=k}^{\infty} \sim Bp(p), \forall k \in \mathbb{N}.$$

$$\{X_t\}_{t=1}^{\infty} \sim Bp(p) \implies \{X_t\}_{t=N}^{\infty} \sim Bp(p),$$

kde N je náhodná veličina závisející pouze na minulosti.

Definice 4.2 (Čas prvního úspěchu, čas k-tého)

$$T := \min \left\{ t | X_t = 1 \right\}, \qquad T_k := \min \left\{ t \left| \sum_{s=1}^t X_s = k \right. \right\}.$$

Důsledek

$$T \sim Geom(p), \qquad \mathbb{E}[T] = \frac{1}{p}, \qquad \text{var}\, T = \frac{1-p}{p^2}.$$

Definice 4.3 (Doba čekání)

$$L_k := T_k - T_{k-1}, \qquad (T_0 = 0).$$

Důsledek

$$L_k \sim T \sim Geom(p)$$
.

 $D\mathring{u}kaz$

Restartujeme Bernoulliho proces v T_{k-1} .

Důsledek

$$T_k = \sum_{i=1}^k L_i.$$

$$\mathbb{E}[T_k] = \sum_{i=1}^k \mathbb{E}L_i = \frac{k}{p}, \quad \operatorname{var} T_k = \sum_{i=1}^k \operatorname{var} L_i = k \cdot \frac{1-p}{p^2}.$$

$$p(T_k = t) = \binom{t-1}{k-1} \cdot p^k \cdot (1-p)^{t-k}, \quad \chi(T_k = t) \sim \operatorname{Pas}(p, k),$$

kde Pas(p,k) je tzv. Pascalovo rozdělení (definované právě $p(T_k=t)=\ldots$ výše), také nazývané negativní binomické.

Věta 4.1 (Spojování Bernoulliho procesů)

 $\overline{\text{M\'ejme } \{X_t\}_{t=1}^{\infty} \sim Bp(p) \ a \ \{Y_t\}_{t=1}^{\infty} \sim Bp(q), \ pak \ \{X_t \vee Y_t\}_{t=1}^{\infty} \sim Bp(p+q-pq).}$

Věta 4.2 (Rozdělování Bernoulliho procesů)

Mějme $\{Z_t\}_{t=1}^{\infty} \sim Bp(p)$. Potom $\{Z_t \cdot Y_t\}_{t=1}^{\infty} \sim Bp(p \cdot q)$, kde $Y_t \sim Ber(q)$ jsou navzájem nezávislé (a nezávislé na Z_t).

4.2 Poissonův proces

Definice 4.4 (Poissonův proces)

Definujme časy příchodů jako reálná čísla: $0 < T_1 < T_2 < T_3 < \dots$ Po Poissonově procesu požadujeme:

- 1. Pro každou délku intervalu τ chceme, aby pravděpodobnost k příchodů v tomto intervalu byla stejná, označme ji $p(k,\tau)$.
- 2. Počet příchodů v intervalu [a, b] je nezávislý na počtu příchodů v [0, a].
- 3. $p(0,\tau) = 1 \lambda \tau + o(\tau), p(1,\tau) = \lambda \tau + o(\tau) \iff p(k,\tau) = o(\tau), \forall k \ge 2$.

Poissonův proces je tedy posloupnost náhodných reálných veličin $0 < T_1 < T_2 < T_3 < \dots$, která splňuje tyto 3 body.

Definice 4.5 (Počet příchodů do času t)

$$N_t := \max k | T_k \leqslant t$$

Věta 4.3

$$N_t \sim Pois(\lambda \cdot t), \qquad p(N_t = k) = e^{-\lambda \cdot t} \frac{(\lambda \cdot t)^k}{k!}.$$

Důkaz

Rozdělme si interval[0,t] na l intervalů pro nějaké l velké. Pak délka jednoho intervalu je $\frac{t}{l},\,p\left(1,\frac{t}{l}\right)=\frac{\lambda\cdot t}{l}+o\left(\frac{t}{l}\right)$ a $p\left(k,\frac{t}{l}\right)=o\left(\frac{t}{l}\right).$ o $\left(\frac{t}{l}\right)$ zanedbáme, tedy máme Binomické rozdělení s parametry l a $\frac{\lambda\cdot t}{l},$ což pro rostoucí l vede k Poissonovu rozdělení s parametrem $\lambda\cdot t.$ Tedy

$$p(N_t = k) = e^{-\lambda \cdot t} \frac{(\lambda \cdot t)^k}{k!}.$$

Definice 4.6 (Čekání na další příchod)

$$L_k := T_k - T_{k-1}.$$

Důsledek

$$p(L_k \ge t) = p(0, t) = e^{-\lambda \cdot t}, \qquad p(L_k \le t) = 1 - p(L_k \ge t) = 1 - e^{-\lambda \cdot t}.$$

$$L_k \sim Exp(\lambda).$$

Dusledek

$$\mathbb{E}T_k = \sum_{i=1}^k \mathbb{E}L_i = k \cdot \frac{1}{\lambda}.$$

$$\operatorname{var}T_k = \sum_{i=1}^k \operatorname{var}L_i = k \cdot \frac{1}{\lambda^2}.$$

$$f_{T_k}(t) = \frac{\lambda^k t^{k-1} e^{-\lambda \cdot t}}{(k-1)!}$$

Věta 4.4 (Rozdělování Poissonových procesů)

Mějme $0 < T_1 < T_2 < \dots$ Poissonův proces s parametrem λ a každý příchod nezávisle s pravděpodobností p ponechejme. Pak nová $0 < T_1' < T_2' < \dots$ jsou Poissonův proces s parametrem $\lambda \cdot p$. Odstraněné $0 < \tilde{T}_1 < \tilde{T}_2 < \dots$ jsou Poissonův proces s parametrem $\lambda \cdot (1-p)$. A tyto procesy jsou na sobě nezávislé.

Důkaz

$$p_p(k,\tau) = \sum_{n=k}^{\infty} p(n,\tau) \cdot P(Bin(n,p) = k).$$

Následně se ověří podmínky Poissonova procesu (na přednášce ukázán trochu zjednodušený výpočet).

Nezávislé $\Leftrightarrow P(X=k \wedge Y=l) = P(X=k) \cdot P(Y=l).$ Následně jsme ověřili dosazením. \Box

Věta 4.5 (Spojování Poissonových procesů)

Nechť $0 < T_1 < T_2 < \dots$ a $0 < S_1 < S_2 < \dots$ jsou Poissonovy procesy s parametry λ , \varkappa . Potom jejich sjednocením získáme Poissonův proces $0 < R_1 < R_2 < \dots$ s parametrem $\lambda + \varkappa$. (Případně můžeme spojovat i libovolně mnoho Poissonových procesů do Poissonova procesu s parametrem rovným součtu parametrů původních.)

Důkaz

$$p(R_1 > t) = P(T_1 > t \land S_1 > t) = P(T_1 > t) \cdot P(S_1 > t) = e^{-\lambda t} \cdot e^{-\kappa t} = e^{-(\lambda + \kappa)t}$$

Následně restartujeme procesy v R_1 a začínáme nanovo :)

5 Balls and bins

Definice 5.1 (Narozeninový paradox)

k lidí, jaká je pravděpodobnost, že dva lidé mají narozeniny ve stejný den?

Poznámka

Řešení:

$$P(\text{každý v jiný den}) = \left(1 - \frac{1}{365}\right) \cdot \left(1 - \frac{2}{365}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{365}\right) \approx$$

$$(e^{-x} \approx 1 - x) \qquad \approx \prod_{i=1}^{k-1} e^{-\frac{i}{365}} = e^{-\sum_{i=1}^{k-1} \frac{i}{365}} = e^{-\frac{k \cdot (k-1)}{2 \cdot 365}}.$$

Definice 5.2 (Balls and bins)

Máme m kuliček, které rozdělíme do n příhrádek.

Například

Můžeme se ptát na:

- narozeninový paradox;
- # kuliček v první příhrádce (~ Bin(m, 1/n));
- první příhrádka prázdná $((1-1/n)^m \approx e^{-m/n});$
- # prázdných příhrádek ($\mathbb{E} = n \cdot (1 1/n)^m \approx n \cdot e^{-m/n}$);
- průměrný počet kuliček v příhrádce (m/n);
- maximální počet kuliček v příhrádce (následující věta);

• ...

Věta 5.1

Pokud m = n je velké, $M := \frac{3 \log n}{\log \log n}$, pak

 $P(maximální počet kuliček \ge M) < \frac{1}{n}.$

 □ Důkaz

 $P(\text{počet kuliček v příhrádce } 1 \geqslant M) \leqslant P(Bin(n,1/n) = M) =$

$$= \binom{n}{M} \frac{1}{n^M} \left(1 - \frac{1}{n}\right)^{n-M} < \binom{n}{M} \frac{1}{n^M} = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-(M-1))}{M! \cdot n^M} < \frac{1}{M!} < \left(\frac{e}{M}\right)^M.$$

 $P(\# \text{ kuliček v nějaké příhrádce} \geqslant M) \leqslant \sum_{i=1}^m P(\# \text{ kuliček v příhrádce } i \geqslant M) = n \cdot \left(\frac{e}{M}\right)^M.$

Chtěli bychom $n \cdot \left(\frac{e}{M}\right)^M < \frac{1}{n}$. Tedy přidáme logaritmus:

$$\log n + M \cdot (1 - \log M) < -\log n$$

$$2\log n + \frac{3\log n}{\log\log n}(1 - \log 3 - \log\log n + \log\log\log n) < 0$$

$$-(\log n) \cdot \left(1 - 3\frac{1 - \log 3}{\log \log n} - 3 \cdot \frac{\log \log \log n}{\log \log n}\right) < 0.$$

A jelikož $\frac{\log x}{x} \to 0$ pro $x \to \infty$, tak pro dostatečně velká n nerovnost platí.

Důsledek (Bucketsort)

Chceme setřídit $n = 2^k$ l-bitových ("náhodných") čísel. Rozdělíme čísla na prvních k bitů (b(x)) a zbylých l - k bitů. Potom za prvé roztřídíme čísla podle b(x) do příhrádek $(1, \ldots, 2^k)$. Následně setřídíme každou příhrádku (např. bubblesortem) v kvadratickém čase. Nakonec slijeme příhrádky dohromady.

Střední hodnota složitosti tohoto algoritmu je lineární.

Důkaz

První krok je lineární v n, stejně tak třetí. Po prvním kroku bude # kuliček v i-té příhrádce $\sim Bin(n,1/n)$. Tedy složitost (ve střední hodnotě) kroku dva bude (c je konstanta z bubblesortu)

$$\mathbb{E}\sum_{i=1}^{n} c \cdot X_i^2 = \sum_{i=1}^{n} c \cdot \mathbb{E}(X_i^2) = n \cdot c \cdot \left(\operatorname{var} X_i + (\mathbb{E}X)^2\right) < 2n \cdot c.$$

Důsledek (Hešování)

Chceme n objektů (např. řetězců) ukládat tak, aby šlo rychle hledat. Předpokládáme, že máme hashovací funkci (zobrazení z objektů do $[0, m-1] \cap \mathbb{N}$), která je "náhodná".

Pokud je přibližně $n<\sqrt{m}$, potom pravděpodobnost kolize (2 objekty mají stejný hash) je přibližně $\frac{1}{2}$ z narozeninového paradoxu.

Pokud je m=n dostatečně velké, pak pravděpodobnost, že maximální počet objektů v příhrádce překoná $M:=\frac{3\log n}{\log\log n}$ je menší než $\frac{1}{n}$ z předchozí věty.

Očekávaný čas na nalezení prvku je ve všech případech $\frac{n}{m}$, neboť očekávaný počet objektů v příhrádce je $\frac{n}{m}$.

Maximální čas nalezení bude pro n=m dostatečně velká, nejvýše M s pravděpodobností větší než $1-\frac{1}{n}$. (Moc lépe to nejde kvůli následující větě.)

Věta 5.2

Za předpokladu dostatečně velkého m=n a $M_2=\frac{\log n}{\log\log n}$ je

$$P(maximální počet kuliček \ge M_2) < \frac{1}{n}.$$

Definice 5.3 (Značení)

$$X_i^{(m)} = \#$$
 kuliček v *i*-té příhrádce.

14

To znamená $(X_1^{(m)},\dots,X_n^{(m)})$ má multinomické rozdělení, tj. (pro $\sum k_i=m,\,0\leqslant k_i\leqslant m)$

$$P\left(X_1^{(m)} = k_1, \dots, X_n^{(m)} = k_n\right) = \binom{m}{k_1, \dots, k_n} \cdot \frac{1}{n^m} = \frac{m!}{k_1! \cdot \dots \cdot k_n!} \cdot \frac{1}{n^m}.$$

Také to znamená, že $X_i^{(m)}$ má rozdělení Bin(m,1/n), což je přibližně Pois(m/n).

Věta 5.3

Nechť $m,n\in\mathbb{N},\,Y_1^{(k)},\ldots,Y_n^{(k)}$ jsou nezávislé stejně rozdělené veličiny s rozdělením Pois(k/n) a $X_i^{(m)}$ jako v předchozím. Pak rozdělení $X_i^{(m)}$ je shodné s rozdělením $Y_i^{(k)}$, pokud $\sum_{i=1}^n Y_i^{(k)}=m$.

 $D\mathring{u}kaz$

Mějme $k_1 + \ldots + k_n = m$ a $0 \le k_i \le m$, potom chceme

$$P\left(X_1^{(m)} = k_1, \dots, X_n^{(m)} = k_n\right) = P_X = P_Y = P\left(Y_1^{(k)} = k_1, \dots, Y_n^{(k)} = k_n | \sum Y_i^{(k)} = m\right).$$

$$P_X = \binom{m}{k_1, \dots, k_n} \cdot \frac{1}{n^m}. \qquad P_Y = \frac{P(\dots|)}{P(|\dots|)} = \frac{A}{B}.$$

$$A = P(Y_1^{(k)} = k_1) \cdot \dots \cdot P(Y_n^{(k)} = k_n) = e^{-\frac{k}{n}} \cdot \frac{\left(\frac{k}{n}\right)^{k_1}}{k_1!} \cdot \dots \cdot e^{-\frac{k}{n}} \cdot \frac{\left(\frac{k}{n}\right)^{k_n}}{k_n!} = e^{-k} \cdot \left(\frac{k}{n}\right)^m \cdot \frac{1}{k_1! \cdot \dots \cdot k_n!}.$$

$$\sum_{i=1}^n Y_i^{(k)} \sim Pois\left(\frac{k}{n} + \dots + \frac{k}{n}\right) = Pois(k) \implies B = e^{-k} \frac{k^m}{m!}.$$

Věta 5.4

Budte X, Y jako v předchozí větě a $f(x_1, ..., x_n) \ge 0$. Potom $\mathbb{E}f(X_1^{(m)}, ..., X_n^{(m)}) \le \mathbb{E}f(Y_1^{(k)}, ..., Y_n^{(k)}) \cdot e \cdot \sqrt{k}$.

Navíc pokud je pravá strana monotónní v m, pak můžeme $e \cdot \sqrt{k}$ nahradit 2.

Důkaz

$$\begin{split} \mathbb{E}f(Y_{1}^{(k)},\ldots,Y_{n}^{(k)}) &= \sum_{i=0}^{\infty} \mathbb{E}\left(f(Y_{1}^{(k)},\ldots,Y_{n}^{(k)}) | \sum_{j=1}^{n} Y_{j}^{(k)} = i\right) \cdot P\left(\sum_{j=1}^{n} Y_{j}^{(k)} = i\right) \geqslant \\ &\geqslant \left(f(Y_{1}^{(k)},\ldots,Y_{n}^{(k)}) | \sum_{j=1}^{n} Y_{j}^{(k)} = m\right) \cdot P\left(\sum_{j=1}^{n} Y_{j}^{(k)} = m\right) = \\ &= \mathbb{E}f(X_{1}^{(m)},\ldots,X_{n}^{(m)}) \cdot P\left(\sum_{j=1}^{n} Y_{j}^{(k)} = m\right) = \mathbb{E}f(X_{1}^{(m)},\ldots,X_{n}^{(m)}) \cdot e^{-k} \frac{k^{m}}{m!} \geqslant \\ &\geqslant \mathbb{E}f(X_{1}^{(m)},\ldots,X_{n}^{(m)}) \cdot \frac{1}{e\sqrt{k}}. \end{split}$$

TODO!!!

Totéž provedeme pro monotónní pravou stranu, jen budeme odhadovat lepší pravdě-podobností? (TODO?)

Důkaz (Předpředchozí věty)

Z předchozí věty (aplikované na $f(x_1,\ldots,x_n)=(\max\{x_1,\ldots,x_n\}< M))$ nám stačí dokázat, že

$$P(\max\left\{Y_1^{(k)}, \dots, Y_n^{(k)}\right) \right\} < M) \leqslant \frac{1}{e \cdot \sqrt{k} \cdot n}.$$

$$\begin{split} P(\ldots) &= P(Y_1^{(k)} < M) \cdot \ldots \cdot P(Y_n^{(k)} < M) \leqslant (1 - P(Y_1^{(k)} = M)) \cdot \ldots \cdot (1 - P(Y_n^{(k)} = M)) = \\ &= \left(1 - e^{-1} \frac{1^M}{M!}\right)^n \approx \left(e^{-\frac{1}{e \cdot M!}}\right)^n \leqslant e^{-\frac{n}{e \cdot M!}} < \frac{1}{n^2}, \end{split}$$

neboť to je totéž jako

$$\frac{1}{e \cdot M!} > 2\log n,$$

což spočítáme pomocí odhadu $M! \leq M \cdot (M/e)^{M}$.

6 Neparametrická statistika

Definice 6.1 (Neparametrická statistika)

Nemáme model (rozdělení závisející na parametru).

TODO (Permutační test)

Definice 6.2 (Permutační test)

Mějme data x_1, \ldots, x_n a y_1, \ldots, y_m (např. testovací a kontrolní vzorek). Dále mějme f, které rozhoduje, zda dané z_1, \ldots, z_{m+n} splňuje nulovou hypotézu.

$$\mathcal{F} := \{ f(\pi(z)) \}_{\pi \in S_{n+m}}$$

p-hodnota je podíl prvků souboru \mathcal{F} , které splňují nulovou hypotézu. Nulovou hypotézu zamítneme, pokud je tento podíl menší než α .

(Požadujeme, aby za nulové hypotézy byla pravděpodobnost každého prvku F stejná.)

Definice 6.3 (Permutační test ++)

Pokud nemůžeme počítat f pro všechny $\pi \in S_{n+m}$, nasamplujeme $\mathcal{F}^* \subset \overline{\mathcal{F}}$.

Definice 6.4 (Znamínkový test)

 X_1, \ldots, X_n nezávislé náhodné veličiny z neznámého spojitého rozdělení symetrické podle střední hodnoty. Nulová hypotéza je, že střední hodnota je 0.

Nechť $Y_i = \operatorname{sgn}(X_i) = +1$ nebo 0 (pozor, ne -1). Potom při předpokladu nulové hypotézy $Y = \sum_{i=1}^n Y_i \sim Binom(n, \frac{1}{2})$. Tedy nulovou hypotézu zamítneme, pokud $Y \leqslant Y_{\alpha/2}$ nebo $Y > Y_{1-\alpha/2}$, kde $P(Binom(n, \frac{1}{2}) < Y_x) = x$.

Definice 6.5 (Pair test)

Mějme data, která jsou přirozeně v párech (např. hodnota před a po vylepšení algoritmu) a mějme nějakou hypotézu, kterou můžeme testovat po prvcích (např. jestli se průměr nových a starých hodnot shoduje, což můžeme testovat jako "jestli je průměr rozdílů hodnot 0"). Potom se můžeme na pár dívat jako na jeden prvek.

Definice 6.6 (Wilcoxonův test znamínka hodnosti)

 X_1, \ldots, X_n nezávislé náhodné veličiny z neznámého spojitého rozdělení symetrické podle střední hodnoty. Nulová hypotéza je, že střední hodnota je 0.

Hodnost (rank, r_i) je pořadí v seřazení $|X_i|$ (místo sdíleného pořadí vezmeme průměr sdílených míst, to se ve skutečnosti v spojitém rozdělení nemůže stát). Definujeme

$$T := (W :=) \sum_{i=1}^{n} r_i \cdot \operatorname{sgn}(X_i) = T^+ - T^-.$$

Zamítneme nulovou hypotézu, pokud T je moc velké nebo moc malé, tj. $T < Y_{\alpha/2}$ nebo $T > Y_{1-\alpha/2}$ ve správném (TODO?) rozdělení.

Definice 6.7 (Mannův–Whitneyho U-test)

Máme dvě množiny X_1, \ldots, X_n a Y_1, \ldots, Y_m .

$$U := \sum_{i=1}^{n} \sum_{j=1}^{m} S(X_i, Y_i), \qquad S(X, Y) := \begin{cases} 0, & X > Y, \\ \frac{1}{2}, & X = Y, \\ 1, & X < Y. \end{cases}$$

Nulová hypotéza je P(X < Y) = P(Y < X).

TODO!!! (Simpson paradox)

7 Moment generating function

Definice 7.1 (Moment generating function (MGF))

Pokud X je náhodná veličina a $s \in \mathbb{R}$, potom $M_X(s) := \mathbb{E}(e^{sX})$.

Věta 7.1

$$M_X(s) = \sum_{k=0}^{\infty} \mathbb{E}(X^k) \frac{s^k}{k!}.$$
 (Pro s z intervalu, kde je $M_X(s)$ definováno.)

 $D\mathring{u}kaz$

$$\mathbb{E}(e^{s \cdot X}) = \mathbb{E}\left(\sum_{k=0}^{\infty} \frac{(s \cdot X)^k}{k!}\right) = \sum_{k=0}^{\infty} \mathbb{E}(X^k) \frac{s^k}{k!}.$$

Věta 7.2

$$M_{a \cdot X + b} = e^{b \cdot s} M_X(a \cdot s).$$

 $D\mathring{u}kaz$

$$\mathbb{E}\left(e^{s\cdot(a\cdot X+b)}\right) = \mathbb{E}\left(e^{a\cdot s\cdot X}\cdot e^{b\cdot s}\right) = e^{b\cdot s}M_X(a\cdot s).$$

Věta 7.3

 $X \ a \ Y \ nezávislé \implies M_{X+Y} = M_X \cdot M_Y.$

 $D\mathring{u}kaz$

$$M_{X+Y}(s) = \mathbb{E}\left(e^{s \cdot (X+Y)}\right) = \mathbb{E}\left(e^{s \cdot X} \cdot e^{s \cdot Y}\right) = \mathbb{E}\left(e^{s \cdot X}\right) \cdot \mathbb{E}\left(e^{s \cdot Y}\right) = M_X(s) \cdot M_Y(s).$$

-

Věta 7.4

 $Pokud \ \exists \varepsilon > 0 \ \forall s \in (-\varepsilon, \varepsilon) : M_X(s) = M_Y(s) \in \mathbb{R}, \ pak \ F_X(t) = F_Y(t) \ \forall t \in \mathbb{R}.$

 $D\mathring{u}kaz$

Bez důkazu.

Věta 7.5

Pokud $\exists \varepsilon > 0 \ \forall s \in (-\varepsilon, \varepsilon) : M_{Y_n}(s) \to M_Z(s) \in \mathbb{R} \ a \ F_Z \ je \ spojité, \ pak \ F_{Y_n}(t) \to F_Z(t)$ $\forall t \in \mathbb{R} \ (Y_n \xrightarrow{D} Z).$

 $D\mathring{u}kaz$

Bez důkazu.

Věta 7.6 (Centrální limitní věta)

 X_1, X_2, \dots nezávislé stejně rozdělené veličiny, $\mathbb{E} X_i = \mu$, var $X_i = \sigma^2$, potom

$$Y_n = \frac{X_1 + \ldots + X_n - n \cdot \mu}{\sigma \sqrt{n}}.$$

Potom $Y_n \stackrel{D}{\to} N(0,1)$.

Důkaz

Použijeme předchozí větu, kde $Z \sim N(0,1), M_Z = e^{\frac{s^2}{2}}$, zřejmě F_Z je spojitá. Můžeme předpokládat, že $\mu = 0$. Také předpokládejme, že $M_{X_i}(s)$ existuje. Potom $Y_n = \frac{X_1 + \ldots + X_n}{\sigma \sqrt{n}}$. Tedy

$$M_{Y_n}(s) = M_{X_1 + \dots + X_n} \left(\frac{s}{\sigma \sqrt{n}} \right) = \left(M_{X_1} \left(\frac{s}{\sigma \sqrt{n}} \right) \right)^n = \left(1 + \sigma^2 \frac{s^2}{2\sigma^2 \cdot n} + o\left(\frac{s^2}{\sigma^2 \cdot n} \right) \right)^n \approx \left(1 + \frac{s^2}{2n} \right)^n \to e^{s^2/2} = M_Z(s).$$

 $_{\perp} \approx$ je trochu podvod, ale dokáže se jednoduše zlogaritmováním.

Věta 7.7 (Chernoffova)

 $X_1,\ldots,X_n\sim 1-2\cdot Ber\left(\frac{1}{2}\right)$ jsou nezávislé stejně rozdělené veličiny, $X=X_1+\ldots+X_n,$ $\sigma^2=\mathrm{var}\,X=n,\ t>0,\ potom$

$$P(X \leqslant t) = P(X \geqslant t) \leqslant e^{-\frac{t^2}{2n}}.$$

Důkaz

Pro libovolné s máme

$$P(X \ge t) = P(e^{s \cdot X} \ge e^{s \cdot t}) \le \frac{\mathbb{E}e^{s \cdot X}}{e^{s \cdot t}} = \frac{M_X(s)}{e^{s \cdot t}} = \frac{(M_{X_1}(s))^n}{e^{s \cdot t}} = \frac{(e^s + e^{-s})^n}{2 \cdot e^{s \cdot t}} = \frac{\left(\sum_{k=0}^{\infty} \frac{s^{2k}}{(2k)!}\right)^n}{e^{s \cdot t}} \le \frac{\left(\sum_{k=0}^{\infty} \frac{(s^2/2)^k}{k!}\right)^n}{e^{s \cdot t}} = \frac{e^{n \cdot s^2/2}}{e^{s \cdot t}} = e^{\frac{n \cdot s^2}{2} - s \cdot t}.$$

Následně dosadíme $s = \frac{t}{n}$.

TODO(Shannon's coding theorem)