1. 第一题:

期	١.

6. 令 A、B 和 C 是任意正规式,证明以下关系成立:

$(A|B)^* = (A^*B^*)^* = (A^*|B^*)^*$

解答:

(1) 先证明 (A|B)* = (A*B*)*

首先我们知道 $\varepsilon \in (A|B)*$,并且 $\varepsilon \in (A*B*)*$ 。所以两者在空语句上没有问题。 之后我们采用数学归纳的思想进行证明:

对于任意语句 r, 我们假定上述两个集合它都满足。那么我们在往后面加字符的时候, 应该都满足上面两个的集合。

对于 $r \in (A|B)^{|r|}$ 那么 $ra \in (A|B)^{|r|}A$ $rb \in (A|B)^{|r|}B$ 所以在后面添加字符依旧 满足 (A|B)*

对于 $\mathbf{r} \in (A*B*)^{|\mathbf{n}|}$ 那么 $\mathbf{ra} \in (A*B*)^{|\mathbf{n}|} (A^{\mathbf{l}}B^{0})$ rb $\in (A*B*)^{|\mathbf{n}|} (A^{0}B^{\mathbf{l}})$ 所以在后面添加字符满足 $\mathbf{r} \in (A*B*)*$

综上我们可知,对于任意的子串 r,我们在后面添加字符,都满足上面两个集合,所以可证 (A|B)*=(A*B*)*

(2) 先证明 (A|B)* = (A*|B*)*

首先我们知道 $\varepsilon \in (A|B)*$,并且 $\varepsilon \in (A*|B*)*$ 。所以两者在空语句上没有问题。 之后我们采用数学归纳的思想进行证明:

对于任意语句 r, 我们假定上述两个集合它都满足。那么我们在往后面加字符的时候, 应该都满足上面两个的集合。

对于 $r \in (A|B)^{|r|}$ 那么 $ra \in (A|B)^{|r|}A$ $rb \in (A|B)^{|r|}B$ 所以在后面添加字符依旧 满足 (A|B)*

对于 $r \in (A*|B*)^{|n|}$ 那么 $ra \in (A*|B*)^{|n|}(A^1)$ rb $\in (A*B*)^{|n|}(B^1)$ 所以在后面添加字符满足 $r \in (A*|B*)*$

综上我们可知,对于任意的子串 r,我们在后面添加字符,都满足上面两个集合,所以可证 (A|B)*=(A*|B*)*

(3) 经过上面两个证明, 我们可知: (A|B)* = (A*B*)* = (A*|B*)*

2. 第二题:

- 8. 给出下面正规表达式:
- (1) 以 01 结尾的二进制数串;
- (2) 能被 5 整除的十进制整数;
- (1) 以01结尾的二进制数串:

答:可以为(0|1)*(01)

- (2) 能被5整除的十进制整数:
- $0 \mid 5 \mid (1|2|3|4|5|6|7|8|9) + (0|1|2|3|4|5|6|7|8|9) * (0|5)$
- 3. 第三题:
 - 12. 将图 3.18 的(a)和(b)分别确定化和最少化。

图 3.18 有限自动机

(1) 初始的自动机:

确定化:

1947-218:		
	a	b
{0}	{0, 1}	{1}
{0, 1}	{0, 1}	{1}
{1}	{0}	Φ
Ф	Φ	Φ

对上面进行编号:

	a	b
0	1	2
1	1	2
2	0	3
3	3	3

DFA 图像:

最少化:

首先可以根据是否为终结集,分为 $\{0,1\}$ 和 $\{2,3\}$ 然后 $\{0,1\}$ a = $\{1\}$ $\{0,1\}$ b = $\{2\}$ 所以不需要进一步的划分了对于 $\{2,3\}$ a = $\{0,3\}$ $\{2,3\}$ b = $\{3\}$ 所以需要进一步的划分,分为 $\{2\}$ $\{3\}$ 综上可知划分为 $\{0,1\}$ $\{2\}$ $\{3\}$ 分别标号为 $\{0,1,2\}$

所以最小化 DFA 应该为下面:

(2) 初始的自动机:

确定化:

我们观察到上面的自动机没有空转换,也没有对同一字符有多种转换的结果,所以上面的自动机并不是 NFA,已经是确定化的 DFA 了。

最少化:

首先可以根据是否为终结集,分为{0,1}和{2,3,4,5}

然后 $\{0,1\}$ a = $\{1\}$ $\{0,1\}$ b = $\{2,4\}$ 所以不需要进一步的划分了 对于 $\{2,2,4,5\}$ 。 = $\{0,1\}$ b = $\{2,4\}$ 所以不需要进一步的划分了

对于 $\{2, 3, 4, 5\}$ a = $\{0, 1, 3, 5\}$ $\{2, 3, 4, 5\}$ b = $\{2, 3, 4, 5\}$ 所以需要进一步的划分,首先分为 $\{2, 4\}$ $\{3, 5\}$

 $\{2, 4\}$ a = $\{0, 1\}$ $\{2, 4\}$ b = $\{3, 5\}$

 $\{3, 5\}a = \{3, 5\} \{3, 5\}b = \{2, 4\}$

综上可知划分为{0,1}{2,4}{3,5}分别标号为 0,1,2

