Домашнее задание 2. Определимость

- 1) Постройте модели минимальной арифметики, в которых
 - (а) Не выполняется коммутативность сложения,
 - (б) Бывает так, что $x \not< x + 1$.
- 2) Докажите, что вещественное число определимо в структуре

$$(\mathbb{R}; =, +, \cdot, 0, 1)$$

тогда и только тогда, когда оно алгебраическое. Охарактеризуйте вещественные числа, определимые в структуре

$$(\mathbb{R}; =, +, 0, 1).$$

3) Докажите, что комплексное число определимо в структуре

$$(\mathbb{C}; =, +, \cdot, 0, 1)$$

тогда и только тогда, когда оно рациональное.

- 4) Пусть A-k-буквенный алфавит, $k \geq 2$. Определим бинарные отношения $\leq_p, \leq_s, \leq_i, \preceq$ на A^* следующим образом:
 - $-u \leq_p v$, если ux = v для некоторого $x \in A^* (u npe \phi u \kappa c v);$
 - $-u \leq_s v$, если xu = v для некоторого $x \in A^*$ $(u cy \phi \phi u \kappa c v)$;
 - $-u \leq_i v$, если xuy = v для некоторых $x, y \in A^*$ (u nod cлово v);
 - $-u \leq v$, если u получается из v стиранием некоторых букв (u-nodnocnedo-вательность v).

Докажите, что:

- (a) отношение \leq_i определимо в A^* через отношения \leq_p и \leq_s ;
- (б) пустое слово определимо через любое из этих отношений;
- (в) множество всех слов фиксированной длины определимо через любое из этих отношений;
- (г) никакое фиксированное непустое слово не определимо через все эти отношения;
- (д) существует двухбуквенное слово, не определимое через все эти отношения и однобуквенные слова;
- (е) опишите двухбуквенные слова, не определимые как в предыдущем вопросе.
- 5) Докажите, что любой элемент структуры $(A^*; \leq_i)$, обогащенной константами для всех слов длины не более двух, определим. Охарактеризуйте группу автоморфизмов структуры $(A^*; \leq_i)$. Докажите аналогичные результаты для отношения \leq вместо \leq_i .