台州市 2018 学年第二学期高三年级一模评估试题

数学参考答案

2019.04

一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。在每小题给出的四个选项中。只 有一项是符合题目要求的。

1—5 DCCBA 6—10DABAB

二、填空题: 本大题共7小题, 多空题每题6分, 单空题每题4分, 共36分。

12.5; -9 13. 4; 16; 14.
$$\frac{6}{5}$$
; $\frac{7}{6}$

15.
$$\frac{\sqrt{13}}{2}$$
 16. $\frac{\pi}{3}$; $\sqrt{3}$ 17. $\frac{23}{41}$

$$\frac{1}{3}$$
; $\sqrt{3}$ 17. $\frac{2}{3}$

三、解答题: 本大题共 5 小题, 共 74 分. 解答应写出文字说明、证明过程或演算步骤。

18. **A**: (I) $f(x) = \sqrt{3} \sin 2x - \cos 2x$

$$=2\sin(2x-\frac{\pi}{6}).$$

$$-\frac{\pi}{2} + 2k\pi < 2x - \frac{\pi}{6} < \frac{\pi}{2} + 2k\pi$$
, $\# = -\frac{\pi}{6} + k\pi < x < \frac{\pi}{3} + k\pi$, $k \in \mathbb{Z}$.

19. (I) 取 AB 的中点 O, 连接 OD, OP, 由题意知, $\triangle ABD$ 为等边三角形, 所以 $AB \perp OD$, $\triangle PAB$ 是等边三角形, 所以 $AB \perp OP$, 又由 $OP \cap OB = O$, 所以 $AB \perp P$ 面

(II)解:如图,以O为原点,建立空间直角坐标系,则

$$P(0,0,\sqrt{3}), B(1,0,0), C(2,\sqrt{3},0), D(0,\sqrt{3},0), \dots 9$$

$$\overrightarrow{BD} = (-1, \sqrt{3}, 0), \overrightarrow{PD} = (0, \sqrt{3}, -\sqrt{3}), \overrightarrow{PC} = (2, \sqrt{3}, -\sqrt{3})$$

平面 PBD 的一个法向量为 n = (x, v, z)

$$\begin{cases} \vec{n} \cdot \overrightarrow{BD} = 0, \\ -x + \sqrt{3}y = 0, \\ \vec{n} \cdot \overrightarrow{PD} = 0, \\ \sqrt{3}y - \sqrt{3}z = 0, \end{cases} \quad \text{if } y = 1, \quad \text{if } x = \sqrt{3}, z = 1, \quad \text{if } n = (\sqrt{3}, 1, 1) \dots 13 \text{ fb}$$

设直线 PC 与平面 PBD 所成角为 θ ,则 $\sin \theta = |\cos \langle n, \overrightarrow{PC} \rangle = \frac{2\sqrt{3}}{\sqrt{10}\sqrt{5}} = \frac{\sqrt{6}}{5}$.

因为平面 PAB \bot 平面 ABCD , PO \bot AB , 所以 PO \bot 平面 ABCD ,

$$PD = \sqrt{PO^2 + DO^2} = \sqrt{6}$$
, $\oplus PD \perp AB$, $\partial PD \perp CD$, $PC = \sqrt{PD^2 + CD^2} = \sqrt{10}$

由
$$V_{C-PBD} = V_{P-BCD}$$
,即 $\frac{1}{3}S_{\Delta PBD} \cdot h = \frac{1}{3}S_{\Delta BCD} \cdot PO$.

20. **解:** (I) 由 $S_n = 2a_n - n$.

$$n \ge 2$$
 时, $S_{n-1} = 2a_{n-1} - n - 1$.

$$a_n + 1 = 2(a_{n-1} + 1)$$
, $ext{the } S_1 = 2a_1 - 1$, $ext{the } a_1 = 1$,

所以所以 $\{a_n+1\}$ 是首项为 2,公比为 2 的等比数列.4 分

(II) $\boxplus \lambda a_n \leq S_n + n - n^2$,

得
$$\lambda(2^n-1) \le 2^{n+1}-2-n+n-n^2$$
 , $\lambda \le 2-\frac{n^2}{2^n-1}$, $\lambda \le \left(2-\frac{n^2}{2^n-1}\right)$ 9 分

设
$$f(n) = \frac{n^2}{2^n - 1}$$
,

$$n=1 \text{ if, } f(n+1)-f(n)>0, n\geq 2 \text{ if, } f(n+1)-f(n)<0.$$

所以
$$f(1) < f(2) > ... > f(n)$$
..., $f(n)$ 的最大值为 $f(2) = \frac{4}{3}$.

21. 解: (I) 直线
$$l$$
 的方程为 $y=x+m$,代入椭圆方程 $x^2+4y^2=4$,得

$$5x^2 + 8mx + 4(m^2 - 1) = 0$$
, $\colone{1}{c} A(x_1, y_1), B(x_2, y_2)$,

$$\Delta = 64m^2 - 80(m^2 - 1) = 16(5 - m^2) > 0$$
, $m \in (-\sqrt{5}, \sqrt{5})$

$$x_1 + x_2 = -\frac{8m}{5}, x_1 x_2 = \frac{4(m^2 - 1)}{5}$$
.

由
$$A$$
 是 MB 的中点,知 $x_2 = 2x_1$,代入上式得 $x_1 = -\frac{8}{15}m$, $x_2 = -\frac{16}{15}m$,

$$\frac{8\cdot 16}{15^2}m^2 = \frac{4(m^2-1)}{5}, \quad \text{if } m = \pm \frac{3\sqrt{65}}{13}.$$

(II) 设直线 l 的方程为 y = kx + m ,代入椭圆方程 $x^2 + 4y^2 = 4$,得

$$\Delta = 64k^2m^2 - 16(4k^2 + 1)(m^2 - 1) = 16(1 + 4k^2 - m^2) > 0.$$

$$x_1 + x_2 = -\frac{8km}{1 + 4k^2}, x_1x_2 = \frac{4(m^2 - 1)}{1 + 4k^2}.$$

$$|AB| = \sqrt{1 + k^2} |x_1 - x_2| = \sqrt{1 + k^2} \sqrt{(x_1 + x_2)^2 - 4x_1 x_2} = \frac{4\sqrt{1 + k^2} \sqrt{1 + 4k^2 - m^2}}{1 + 4k^2} \dots 9$$

设
$$t = 1 + 4k^2, t \in [1, +\infty)$$
,

$$|AB|^2 = \frac{(t+3)(t-m^2)}{t^2} = \frac{t^2 - (m^2 - 3)t - 3m^2}{t^2} = -3m^2 \left(\frac{1}{t}\right)^2 - (m^2 - 3)\frac{1}{t} + 1 \dots 12$$

设
$$u = \frac{1}{t}, u \in (0,1]$$
,

由题意可知,函数 $y = -3m^2u^2 - (m^2 - 3)u + 1$ 在 (0,1] 上为减函数.

当m=0时,函数(0,1]上为增函数,不符合.

当 $m \neq 0$ 时, $-\frac{m^2-3}{6m^2} \leq 0$, $m^2 \geq 3$, $m \leq -\sqrt{3}$ 或 $m \geq \sqrt{3}$. 22.解: (I) 因为 $f'(x) = e^x(x^2 + 2x)$. 所以当 $x \in [0,+\infty)$,或 $x \in (-\infty,-2]$, $f'(x) \ge 0$,即函数f(x)在 $[0,+\infty)$, $(-\infty,-2]$ 上单调 递增. 所以当 $x \in [-2,0]$, $f'(x) \le 0$, 即函数 f(x) 在[-2,0] 上单调递减. 所以 f(x) 在 x = -2 处取极大值 $f(-2) = \frac{4}{a^2}$, 在 x = 0 处取极小值 f(0) = 0. 又x趋向于 $-\infty$ 时,f(x)趋向于0; x趋向于 $+\infty$ 时,f(x)趋向于 $+\infty$. 所以当 $a \in (0, \frac{4}{a^2})$ 时,关于x的方程f(x) = a有三个不同的解. (II) $\exists g(x) = f(-2) - f(-2 - x)$, $x \ge -2$. $\exists \exists g(x) > g(x)$. -----8分 $\Rightarrow h(x) = f(x) - g(x) = f(x) + f(-2 - x) - f(-2)$. $\iiint h'(x) = f'(x) - f'(-2 - x) = \frac{x(x+2)(e^{2x+2} - 1)}{e^{x+2}}$ 当 $x \in [-2,-1]$ 时, $h'(x) \ge 0$,h(x) 递增;当 $x \in [-1,0]$ 时, $h'(x) \le 0$,h(x) 递减;当 $x \in [0,+\infty)$ 时, $h'(x) \ge 0$, h(x) 递增. -----11 分 又 h(-2) = h(0) = 0 , 所以 $h(x) \ge 0$, 即 f(x) > g(x) . 不妨设 $x_1 < -2 < x_2 < 0$, $-2 < x_3 < 0 < x_4$,则有: $g(-2-x_1) = f(-2) - f(x_1) = n = f(x_4) < f(-2-x_1)$. 又 x_4 , $-2-x_1 \in (0,+\infty)$, f(x)在 $(0,+\infty)$ 上递增. -----13 分 所以 $x_4 < -2 - x_1$. 同理, $g(-2-x_2) = n = f(x_2) < f(-2-x_2)$. 又 x_2 , $-2-x_2 \in (-2,0)$, f(x)在(-2,0)上递减. 所以 $x_3 > -2 - x_2$. 所以 $x_3 - x_1 > x_4 - x_3$. 命题成立.

……15分