Première vache

M. Rambaud (notes de B. Smith)

28/11/2014

Ce qu'on veut faire:

- Parametrer une famille des surfaces abéliennes avec multiplication par une algèbre de quaternions...
- 2. ...par une "courbe de Shimura"...
- 3. ...dont on veut calculer l'équation (mod p).

1 Partie I

(a) nos quaternions

Soit B une algèbre de quaternions sur \mathbb{Q} : c'est à dire, B est une algèbre de dimension 4 sur \mathbb{Q} , telle que il existe a et $b \in \mathbb{Q}$, tels que

$$B = \mathbb{Q}\langle i, j \rangle$$
, avec $i^2 = a$, $j^2 = b$, $ij = -ji$.

On impose les conditions suivantes:

- *B* est un corps non commutatif.
- B est "indéfinie": ie $B \otimes_{\mathbb{Q}} \mathbb{R} \cong M_2(\mathbb{R})$.
- B est de discriminant D, où $D = \prod_p p$ avec les premiers p tels que $B \otimes_{\mathbb{Q}} \mathbb{Q}_p$ est un corps non commutatif (et pas $\cong M_2(\mathbb{Q}_p)$, etc).

Soit $\mathcal O$ un "ordre maximal" dans B: c'est à dire, un réseau de rang 4 dans B, constituté d'éléments entiers sur $\mathbb Z$, et tel que $\mathcal O$ est un anneau. On met

$$\mathcal{O}^{(1)} := \{ \epsilon \in \mathcal{O} : \operatorname{nrd}(\epsilon) = 1 \}$$
.

(b) construction des variétés abeliennes

On fixe, une fois pour toutes, un isomorphisme

$$\psi: B \hookrightarrow B \otimes_{\mathbb{Q}} \mathbb{R} \cong M_2(\mathbb{R}) \ .$$

On a une action de $M_2(\mathbb{R})$ sur \mathbb{C}^2 :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} aw_1 + bw_2 \\ cw_2 + dw_2 \end{pmatrix}$$

Soit $u = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \in \mathbb{C}^2$ tel que $w_1/w_2 \notin \mathbb{R}$. Propriété: l'orbite de u sous l'image de \mathcal{O} , qu'on note

$$\Lambda_u := \psi(\mathcal{O})u$$
,

est un réseau de \mathbb{C}^2 . Alors, on a un tore complexe associé à u:

$$A_u := \mathbb{C}^2/\Lambda_u$$
.

(c) construction d'une "forme de Riemann"

Soit $\mu \in B$ tel que $\mu^2 = -1/D$ (cf. exposés). On peut même choisir $\mu^{-1} \in \mathcal{O}$. Soit

$$E: \Lambda_u \times \Lambda_u \longrightarrow \mathbb{Z} ,$$

$$(\psi(\alpha)u, \psi(\beta)u) \longmapsto \operatorname{trd}(\mu\alpha\bar{\beta})$$

(où, pour $\alpha = x + iy + jz + ijw$, on a $\bar{\alpha} := x - iy - jz - ijw$ et $\operatorname{trd}(\alpha) = 2x$). Soit $E_{\mathbb{R}}$ la forme \mathbb{R} -bilinéaire alternée E étendue à \mathbb{C}^2 ; alors

- $E(\sqrt{-1}\cdot,\sqrt{-1}\cdot)=E(\cdot,\cdot),$
- $E_{\mathbb{R}}$ est entière sur le réseau Λ_u , et
- "la forme hermitienne associée à $E_{\mathbb{R}}$ est symétrique définite positive";
- $\iff E(\sqrt{-1}\cdot,\cdot) > 0$, ce qui implique que A_u est une variété algébrique.

(d) isomorphismes

Soit ψ et μ fixés.

À quelle condition (A_u, E_u, ψ) est isomorphe à (A_v, E_v, ψ) ? Notons que après $u = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \mapsto \begin{pmatrix} w_1/w_2 \\ 1 \end{pmatrix}$, on peut supposer que $u = \begin{pmatrix} \tau \\ 1 \end{pmatrix}$. Alors: (A_τ, E_τ, ψ) isomorphe à $(A_{\tau'}, E_{\tau'}, \psi)$ ssi $\psi(\epsilon)\tau = \tau'$ pour un inversible $\epsilon \in \mathcal{O}^{(1)}$, où comme d'habitude $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau = \frac{a\tau + b}{c\tau + d}$.

2 Partie II

(a) courbes de Shimura

Le quotient $X = \psi(\mathcal{O}^{(1)}) \setminus \mathcal{H}$, une surface de Riemann compacte, paramètre les surfaces abéliennes A_{τ} que l'on vient de construire.

(b) l'anneau d'endomorphismes

Théoreme: si A est une surface abélienne simple, alors $\operatorname{End}(A) \otimes \mathbb{Q}$ est l'un des suivants:

	$\operatorname{End}(A) \otimes \mathbb{Q}$	dimension
(i)	Q	3
(ii)	K corps quadratique imaginaire	2
(iii)	B quaternions	1
(iv)	"corps quadratique CM"	0
(v)	$M_2(K)$, K quadratique imaginaire	0

(Ici, "dimension" parle du sous-espace de l'espace de modules correspondant.) Nous sommes dans le cas (iii).

3 Partie III