QUY TRÌNH PHÂN TÍCH VÀ GIẢI QUYẾT BÀI TOÁN TÍNH LƯƠNG NHÂN VIÊN

Người trình bày: Hoàng Đức Long

Gmai: hoangduclongg@gmail.com

SĐT: 0384856300

1.SƠ ĐỒ TỔNG QUAN

2.QUY TRÌNH THỰC HIỆN

2.1.Phát biểu bài toán

Tính tiền lương cho 1 nhân viên ở 1 công ty công nghệ

2.2.Thu thập dữ liệu

2.3.Phân tích dữ liệu

2.3.1.Cách tạo ra dữ liệu

2.3.1.1.Phân tích các trường dữ liệu:

• Thông tin cá nhân:

• Trình độ:

• Năng lực:

• Ý thức:

• Các yếu tô bên ngoài:

2.3.1.2. Giả sử các ràng buộc của dữ liệu:

- Giả sử trong vai trò của 1 công ty, dùng 5 thuộc tính dữ liệu để định mức lương:
 - 1. Mảng công việc.
 - 2. Bằng cấp.
 - 3. Số năm kinh nghiệm.
 - 4. Vị trí.
 - 5. Năng lực công việc.
- Cách thức tính lương dựa vào các thuộc tính :
 - 1. Mảng công việc:

2. Bằng cấp:

3. Số năm kinh nghiệm:

4. Vị trí:

5. Năng lực công việc:

2.3.2.Dữ liệu từ bảng lương của công ty.

2.3.2.1.Làm sạch dữ liệu.

- Loại bỏ các trường dữ liệu không cần thiết.
- Hiện tại vì chưa có dữ liệu đang dùng dữ liệu mô phỏng.

2.3.2.2. Thống kê và trực quan hóa dữ liệu.

- Vì chưa có dữ liệu thật nên bước này sẽ dùng dữ liệu mô phỏng.
- Thống kê các trường dữ liệu(số hàng mỗi trường,kiểu dữ liệu).

• Biểu đô thể hiện mức độ phân bố các trường dữ liệu.

Biểu đồ tương quan trường Lương với các trường khác.

```
plt.figure(figsize=(5, 5))
#sns.heatmap(rawdf.corr()[['Luong']], annot=True, vmin=-1, vmax=1)
sns.heatmap(rawdf.corr()[['Luong']], annot=True, vmin=-1, vmax=1)
```

<matplotlib.axes._subplots.AxesSubplot at 0x276f18e3e80>

• Biểu đồ tương quan giữa các trường với nhau.

```
plt.figure(figsize=(10, 8))
#sns.heatmap(rawdf.corr(), annot=True, square=True, vmin=-1, vmax=1)
sns.heatmap(rawdf.corr(), annot=True, square=True, vmin=-1, vmax=1)
```

<matplotlib.axes._subplots.AxesSubplot at 0x276f1965a20>

2.4.Tiền xử lí

2.4.1.Lựa chọn các trường dữ liệu.

- Giả sử trong vai trò của 1 công ty, dùng 5 thuộc tính dữ liệu để định mức lương:
 - 1. Mång công việc.
 - 2. Bằng cấp.
 - 3. Số năm kinh nghiệm.
 - 4. Vị trí.
 - 5. Năng lực công việc.

2.4.2.Chuẩn hóa dữ liệu

Chuyển đổi dữ liệu theo cách one-hot representation.

Năng lực làm việc		Α	В	С	D	
А		1	0	0	0	
В		0	1	0	0	
С	_	0	0	1	0	
D		0	0	0	1	

2.5.Giải quyết bài toán

2.5.1. Rút ra tri thức từ phân tích bài toán.

- ❖ Từ kết quả thống kê,trực quan hóa bằng biểu đồ ... Ta có thể rút ra được tri thức như sau:
 - 1. Ai là người lương cao nhất công ty, thông tin người đó
 - 2. Số người lương cao hơn mức N.
 - 3. Từ các biểu đồ ta có thể biết được số người lương trên 15 triệu chiếm bao nhiều %

.....

2.5.2. Xây dựng mô hình học máy để tính lương.

- Với bài toán này thì ta sẽ dựng mô hình học máy hồi quy để dự đoán lương.
- ❖ Mô hình thử nghiệm là mô hình hồi quy ANN với kiến trúc :

Input layer hidden layer output layer

- 1. Input layer : Dữ liệu được chuẩn hóa.
- 2. Hidden layer: Gồm 3 lớp:
 - Lớp 1 có 32 nodes.
 - Lớp 2 có 16 nodes.
 - Lớp 3 có 8 nodes.
- 3. Output layer : 1 nodes thể hiện lương dự đoán

2.5.3.Sử dụng model đã xây dựng để dự đoán.

❖ Đánh giá mô hình với tập test (tập test gồm 1000 dữ liệu) với độ chênh lệch giữa lương mô phỏng và dự đoán 1 triệu.

```
# Đánh giá độ chính xác với ngưỡng chênh < 1tr
accuracy = (abs(y_test - y_predict) <= 1.0).mean() * 100
print("Độ chính xác dự đoán lương = ", accuracy,"%")
```

Độ chính xác dự đoán lương = 96.3 %

2.5.4.Lương dự đoán.

Thử nghiệm model với dữ liệu.

```
for i in range(10):
    print("predict = ", y_predict[i])
print("label = ", y_test[i])
print('\n')
predict = [10.490693]
label = [11.1]
predict = [46.993397]
label = [47.]
predict = [8.446825]
label = [9.1]
predict = [16.19112]
label = [15.5]
predict = [18.863745]
label = [19.]
predict = [14.680143]
label = [15.]
predict = [8.618092]
label = [9.1]
predict = [11.959455]
label = [12.]
predict = [29.04948]
label = [30.2]
predict = [12.625004]
label = [12.]
```