DUAL SELECTION GAMES

STEVEN CLONTZ

ABSTRACT. (an investigation of dual selection games)

1. Introduction

Definition 1. The selection game $G_1(\mathcal{A}, \mathcal{B})$ is an ω -length game involving Players I and II. During round n, I chooses $A_n \in \mathcal{A}$, followed by II choosing $B_n \in A_n$. Player II wins in the case that $\{B_n : n < \omega\} \in \mathcal{B}$, and Player I wins otherwise.

For brevity, let

$$G_1(\mathcal{A}, \neg \mathcal{B}) = G_1(\mathcal{A}, \mathcal{P}\left(\bigcup \mathcal{A}\right) \setminus \mathcal{B}).$$

That is, II wins in the case that $\{B_n : n < \omega\} \notin \mathcal{B}$, and I wins otherwise.

Definition 2. For a set X, let C(X) be the collection of all choice functions on X, functions $f: X \to \bigcup X$ such that $f(x) \in x$ for all $x \in X$.

Definition 3. The set \mathcal{R} is said to be a reflection of the set \mathcal{A} if

$$\mathcal{A} = \{ \operatorname{range}(f) : f \in \mathbf{C}(\mathcal{R}) \}.$$

For example, a reflection of the collection \mathcal{O}_X of basic open covers of X would be $\mathcal{P}_X = \{\mathcal{T}_{X,x} : x \in X\}$, where $\mathcal{T}_{X,x}$ is the corresponding point-base at $x \in X$. Likewise for the collection $\Omega_{X,x}$ of sets with $x \in X$ as a limit point, $\mathcal{T}_{X,x}$ is itself a reflection.

Lemma 4. Let \mathcal{R} be a reflection of \mathcal{A} . Then $\bigcup \mathcal{R} = \bigcup \mathcal{A}$.

Proof. If $x \in \bigcup A$, then $x \in \text{range}(f)$ for some $f \in \mathbf{C}(\mathcal{R})$. Thus $x = f(R) \in R$ for some $R \in \mathcal{R}$, showing $x \in \bigcup \mathcal{R}$.

Likewise if $x \in \bigcup \mathcal{R}$, so $x \in R$ for some $R \in \mathcal{R}$. Let $f \in \mathbf{C}(\mathcal{R})$ satisfy f(R) = x, so $x \in \text{range}(f)$, showing $x \in \bigcup A$.

Theorem 5. Let
$$\mathcal{R}$$
 be a reflection of \mathcal{A} .
Then $I \uparrow_{pre} G_1(\mathcal{A}, \mathcal{B})$ if and only if $II \uparrow_{mark} G_1(\mathcal{R}, \neg \mathcal{B})$.

Proof. Let σ witness $I \uparrow_{\text{pre}} G_1(\mathcal{A}, \mathcal{B})$. Since $\sigma(n) \in \mathcal{A} = \{\text{range}(f) : f \in \mathbf{C}(\mathcal{R})\},$ $\sigma(n) = \text{range}(f_n)$ for some $f_n \in \mathbf{C}(\mathcal{R})$. So let $\tau(R,n) = f_n(R)$ for all $R \in \mathcal{R}$ and $n < \omega$. Suppose $R_n \in \mathcal{R}$ for all $n < \omega$. Note that since σ is winning and $\tau(R_n, n) = f_n(R_n) \in \text{range}(f_n) = \sigma(n), \{\tau(R_n, n) : n < \omega\} \notin \mathcal{B}.$ Thus τ witnesses II \uparrow $G_1(\mathcal{R}, \neg \mathcal{B}).$

²⁰¹⁰ Mathematics Subject Classification. 54C30, 54D20, 54D45, 91A44.

Key words and phrases. Selection principle, selection game, limited information strategies.

Now let σ witness II \uparrow $G_1(\mathcal{R}, \neg \mathcal{B})$. Let $f_n \in \mathbf{C}(\mathcal{R})$ be defined by $f_n(R) = \sigma(R, n)$. Since $\tau(n) \in \mathcal{A} = \{\text{range}(f) : f \in \mathbf{C}(\mathcal{R})\}$, let $\tau(n) = \text{range}(f_n)$. Suppose that $B_n \in \tau(n) = \text{range}(f_n)$ for all $n < \omega$. Choose $R_n \in \mathcal{R}$ such that $B_n = f_n(R_n) = \sigma(R_n, n)$. Since σ is winning, $\{B_n : n < \omega\} \notin \mathcal{B}$. Thus τ witnesses I \uparrow $G_1(\mathcal{A}, \mathcal{B})$.

Theorem 6. Let \mathcal{R} be a reflection of \mathcal{A} .

Then II $\uparrow_{mark} G_1(\mathcal{A}, \mathcal{B})$ if and only if I $\uparrow_{pre} G_1(\mathcal{R}, \neg \mathcal{B})$.

Proof. Let σ witness II $\uparrow \atop \text{mark} \atop \text{mark} \atop \text{mark} \atop \text{or all } A \in \mathcal{A}, \ \sigma(A,n) \neq g(R)$. Let $n < \omega$. Suppose that for each $R \in \mathcal{R}$, there was $g(R) \in R$ such that for all $A \in \mathcal{A}, \ \sigma(A,n) \neq g(R)$. Then $g \in \mathbf{C}(\mathcal{R})$, and $\sigma(\text{range}(g), n) \neq g(R)$ for all $R \in \mathcal{R}$, a contradiction.

So choose $\tau(n) \in \mathcal{R}$ such that for all $r \in \tau(n)$ there exists $A_{r,n} \in \mathcal{A}$ such that $\sigma(A_{r,n},n) = r$. It follows that when $r_n \in \tau(n)$ for $n < \omega$, $\{r_n : n < \omega\} = \{\sigma(A_{r_n,n} : n < \omega)\} \in \mathcal{B}$, so τ witnesses $I \uparrow G_1(\mathcal{R}, \neg \mathcal{B})$.

 $n < \omega \} \in B$, so τ witnesses I $\uparrow_{\text{pre}} G_1(\mathcal{R}, \neg \mathcal{B})$. Now let σ witness I $\uparrow_{\text{pre}} G_1(\mathcal{R}, \neg \mathcal{B})$. Then $\sigma(n) \in \mathcal{R}$, so for $A \in \mathcal{A}$, let $f_A \in \mathbf{C}(\mathcal{R})$ satisfy $A = \text{range}(f_A)$, and let $\tau(A, n) = f_A(\sigma(n))$. Then if $A_n \in \mathcal{A}$ for $n < \omega$, $\tau(A_n, n) \in \sigma(n)$, so $\{\tau(A_n, n) : n < \omega\} \in \mathcal{B}$. Thus τ witnesses II $\uparrow_{\text{mark}} G_1(\mathcal{A}, \mathcal{B})$. \square

Theorem 7. Let \mathcal{R} be a reflection of \mathcal{A} . Then $I \uparrow G_1(\mathcal{A}, \mathcal{B})$ if and only if $II \uparrow G_1(\mathcal{R}, \neg \mathcal{B})$.

Proof. Let σ witness $I \uparrow G_1(\mathcal{A}, \mathcal{B})$. Let $c(\emptyset) = \emptyset$. Suppose $c(s) \in (\bigcup A)^{<\omega} = (\bigcup R)^{<\omega}$ is defined for $s \in \mathcal{R}^{<\omega}$. Since $\sigma(c(s)) \in \mathcal{A}$, let $f_s \in \mathbf{C}(\mathcal{R})$ satisfy $\sigma(c(s)) = \operatorname{range}(f_s)$, and let $c(s \cap \langle R \rangle) = c(s) \cap \langle f_s(R) \rangle$. Then let $c(\alpha) = \bigcup \{c(\alpha \upharpoonright n) : n < \omega\}$ for $\alpha \in \mathcal{R}^{\omega}$, so

$$c(\alpha)(n) = f_{\alpha \upharpoonright n}(\alpha(n)) \in \text{range}(f_{\alpha \upharpoonright n}) = \sigma(c(\alpha \upharpoonright n))$$

demonstrating that $c(\alpha)$ is a legal attack against σ .

Let $\tau(s \cap \langle R \rangle) = f_s(R)$. Consider the attack $\alpha \in \mathcal{R}^{\omega}$ against τ . Then since σ is winning and $\tau(\alpha \upharpoonright n+1) = f_{\alpha \upharpoonright n}(\alpha(n)) \in \operatorname{range}(f_{\alpha \upharpoonright n}) = \sigma(c(\alpha \upharpoonright n))$, it follows that $\{\tau(\alpha \upharpoonright n+1) : n < \omega\} \notin \mathcal{B}$. Thus τ witnesses II $\uparrow G_1(\mathcal{R}, \neg \mathcal{B})$.

References

Department of Mathematics and Statistics, The University of South Alabama, Mobile, AL 36688

E-mail address: sclontz@southalabama.edu