Bölüm 1: Giriş

Ders 1: Giriş

- İşletim sistemleri ne yapar?
- Bilgisayar sistem organizasyonu
- Bilgisayar sistem mimarisi
- İşletim sistemi yapısı
- İşletim sistemi işlemleri
- Süreç yönetimi
- Bellek yönetimi
- Depolama yönetimi
- Koruma ve güvenlik
- Çekirdek veri yapıları
- Bilişim ortamları
- Açık kaynak işletim sistemleri

Hedefler

- Bilgisayar sistemlerinin temel organizasyonunu açıklamak
- İşletim sistemlerinin ana bileşenlerini listelemek
- Çok çeşitli bilişim ortamlarına genel bir bakış sunmak
- Açık kaynaklı işletim sistemlerinden bazılarını incelemek

İşletim Sistemi Nedir?

- Bilgisayar kullanıcısı ile donanım arasında aracı rolü oynayan program
- İşletim sistemi hedefleri:
 - Kullanıcı programlarını çalıştırmak ve kullanıcı problemlerini çözmeyi kolaylaştırmak
 - Bilgisayar sistemini rahat kullanılır hale getirmek
 - Bilgisayar donanımını etkin kullanmak

Bilgisayar Sistem Yapısı

- Bilgisayar sistemi dört bileşene ayrılabilir:
 - Donanım temel hesaplama kaynaklarını sağlar.
 - CPU, bellek, I/O cihazları
 - İşletim sistemi
 - Donanımın çeşitli uygulama ve kullanıcılar arasında kullanımını denetler ve koordine eder.
 - Uygulama programları sistem kaynaklarının kullanıcı problemlerini çözmekte nasıl kullanılacağını tanımlar.
 - Kelime işlemcileri, derleyiciler, web tarayıcıları, veritabanı sistemleri, oyunlar vb.
 - Kullanıcılar
 - İnsanlar, makineler, diğer bilgisayarlar

Bilgisayar Sisteminin Dört Bileşeni

İşletim Sistemi Neler Yapar?

- Bakış açısına göre değişir.
- Kullanıcılar rahatlık, kullanım kolaylığı ve iyi performans ister.
 - Kaynak kullanımını önemsemezler.
- Ancak paylaşılan ana sistem veya mini bilgisayar bütün kullanıcıları memnun etmek zorundadır.
- İş istasyonları gibi ayrılmış sistemlerin kullanıcıları adanmış kaynaklara sahiptir fakat sıkça sunucuların paylaşılan kaynaklarını kullanırlar.
- Elde taşınabilir cihazlar daha az kaynağa sahiptir, kullanılabilirlik ve pil ömrü için optimize edilmişlerdir.
- Bazı bilgisayarların (elektronik cihazlarda ve araçlarda gömülü bilgisayarlar gibi) kullanıcı arayüzü yoktur/zayıftır.

İşletim Sistemi Tanımı

- OS bir kaynak paylaştırıcıdır.
 - Bütün kaynakları yönetir.
 - Etkin ve adil kaynak kullanımı arasında dengeyi sağlar, çelişen istekleri karara bağlar.
- OS bir kontrol programıdır.
 - Programların çalışmasını denetleyerek hataları ve uygun olmayan kullanımı önler.

İşletim Sistemi Tanımı

- Evrensel kabul görmüş tanım yoktur.
- "İşletim sistemi satın aldığınızda satıcıdan gelen her şey" diye genellenebilir.
 - Ancak bu çok fazla çeşitlilik gösterir.
- "Bilgisayarda sürekli çalışan tek programa" kernel (çekirdek) denir.
- Geriye kalan her şey ya
 - Sistem programı (işletim sistemi ile gelir), ya da
 - Uygulama programıdır.

Bilgisayar Başlangıcı

- Bootstrap programı ilk açılışta veya yeniden başlatma sonucunda yüklenir.
 - Genellikle ROM veya EPROM içinde saklanır ve firmware olarak bilinir,
 - Sistemi her yönüyle başlangıç durumuna getirir.
 - İşletim sistemi çekirdeğini yükler ve yürütmeye başlar.

Bilgisayar Sistem Organizasyonu

- Bilgisayar sistem operasyonu
 - Bir veya daha fazla CPU ve cihaz denetçileri, paylaşılan belleğe ortak bus ile bağlanarak erişir.
 - Bellek döngüleri için yarışan CPU ve cihazlar eş zamanlı olarak yürütülür.

Bilgisayar Sistem Operasyonu

- I/O cihazları ve CPU eşzamanlı çalışabilir.
- Her cihaz denetçisi belli bir cihaz türünden sorumludur.
- Her cihaz denetçisi yerel bir arabelleğe sahiptir.
- CPU veriyi bellekten yerel arabelleklere (ve ters yönde) taşır.
- Giriş/çıkış cihazdan cihaz denetçisinin yerel arabelleğine gerçekleşir.
- Cihaz denetçisi interrupt (kesme) oluşturarak CPU'ya işlemini bitirdiğini bildirir.

Kesmelerin İşlevleri

- Kesme, genellikle denetimi kesme servis rutinine aktarır. Bu aktarım, bütün servis rutinlerinin adreslerini içeren kesme vektörü (interrupt vector) yoluyla yapılır.
- Kesme mimarisi kesilen komutun adresini kaydetmelidir.
- Hata veya kullanıcı isteği sonucu yazılım tarafından üretilen kesmeye trap (tuzak) veya exception (istisna) denir.
- İşletim sistemi kesme yönlendirmelidir (interrupt driven)

Kesme Yönetimi

- İşletim sistemi, kayıt (register) ve program sayacı bilgilerinin kaydederek CPU'nun durumunu tutar.
- Hangi tür kesme oluştuğunu tespit eder:
 - Polling (yoklama)
 - Vektörlü kesme sistemi
- Her ayrı kesme türü için hangi eylemin gerçekleşeceğini ayrı kod parçaları belirler.

Kesme Zaman Akışı

Depolama Yapısı

- Ana bellek CPU'nun doğrudan erişebildiği tek büyük depolama ortamı
 - Rastgele erişimli
 - Genellikle uçucu (volatile)
- İkincil depolama Ana belleğin uzantısı olarak büyük kapasiteli kalıcı depolama sunar.
- Hard diskler manyetik kayıt yapılabilen maddeyle kaplı katı metal veya cam tablalar
 - Disk yüzeyi mantıksal tracklere (yollara) bölünmüştür, bunlar da sektörlere bölünmüştür.
 - Disk denetçisi cihazla bilgisayar arasındaki mantıksal etkileşimi belirler.
- Solid-state (Katı hal) diskler hard disklerden daha hızlı, kalıcı
 - Teknolojiler çeşitli
 - Popülerliği artıyor

Depolama Hiyerarşisi

- Depolama sistemleri hiyerarşi içerisinde düzenlenir
 - Hız
 - Maliyet
 - Uçuculuk/kalıcılık
- Caching bilgiyi daha hızlı depolama sistemine kopyalamak. Ana bellek ikincil depo için bir cache olarak görülebilir.
- Device Driver (cihaz sürücüsü) her cihaz denetçisinin
 I/O yönetimi için
 - Denetçi ve çekirdek arasında tek tip arayüz sağlar.

Depolama Cihazı Hiyerarşisi

Caching (Önbellek)

- Bilgisayarda birçok katmanda (donanım, OS, yazılım) uygulanan önemli bir prensip
- Kullanılan bilgi yavaş depolama aygıtından geçici olarak hızlıya kopyalanır.
- Bilgiyi ararken hızlı depoya (önbellek-cache) ilk olarak bakılır.
 - Oradaysa, bilgi doğrudan önbellekten alınır (hızlı).
 - Değilse, veri önbelleğe kopyalanır.
- Önbellek, kopyanın alındığı depodan daha küçüktür.
 - Önbellek yönetimi önemli bir tasarım problemidir.
 - Önbellek büyüklüğü ve yenisiyle değiştirme politikası

Doğrudan Bellek Erişim Yapısı

- Yüksek hızlı I/O cihazları için kullanılır.
- Bu cihazlar bellek hızına yakın hızlarda bilgi aktarabilir.
- Cihaz denetçisi veri bloklarını arabellekten ana belleğe doğrudan (CPU işe karışmadan) aktarır.
- Her blok için sadece bir kesme üretilir, her byte için değil.

Modern Bilgisayar Nasıl Çalışır?

von Neumann mimarisi

Bilgisayar Sistem Mimarisi

- Birçok sistem tek bir genel amaçlı işlemci kullanır
 - Çoğu sistem aynı zamanda özel amaçlı işlemcilere de sahiptir.
- Çok işlemcili sistemlerin kullanımı ve önemi artmaktadır.
 - Bunlara paralel sistem, sıkı bağlı sistemler de denir.
 - Avantajlar:
 - Daha fazla üretilen iş (throughput)
 - 2. Ölçek ekonomisi (sistem büyüdükçe birim maliyetin düşmesi)
 - Daha fazla güvenilirlik nazikçe bozulma veya hata toleransı
 - İki tür:
 - Asimetrik çokişlemcili mimari her işlemci özel bir işe atanır.
 - 2. Simetrik çokişlemcili mimari her işlemci bütün işleri yapar.

Simetrik Çokişlemcili Mimari

Çift Çekirdekli Tasarım

- Çok çipli ve çok çekirdekli (multicore)
- Bütün çipleri içeren sistemler
 - Şasi birden çok ayrı sistem barındırır.

Kümelenmiş Sistemler

- Çokişlemcili sitemlere benzer, ama birlikte çalışan birden fazla sistem vardır.
 - Genelde depo paylaşılır storage-area network (depo (SAN)
 - Yüksek erişilebilirlik özelliğine sahip bir servis sağlar, arızaları atlatır.
 - Asimetrik kümelemede bir makine sıcak yedek olarak bekler.
 - Simetrik kümelemede uygulama çalıştıran birden fazla düğüm vardır, bunlar birbirlerini izlerler.
 - Bazı kümeler yüksek performanslı hesaplama (high-performance computing, HPC) içindir.
 - Uygulamalar paralelleştirmeden faydalanacak biçimde yazılmalı.
 - Bazı sistemlerde dağıtık kilit yöneticisi (distributed lock manager, DLM) çatışan işlemleri önler.

Kümelenmiş Sistemler

İşletim Sistemi Yapısı

- Çoklu programlama (toplu komut sistemi) verimlilik için gereklidir.
 - Tek kullanıcı CPU ve I/O cihazlarını sürekli meşgul tutamaz.
 - Çoklu programlama, işleri (kodu ve veriyi) organize ederek CPU'nun her zaman yürütecek bir işi olmasını sağlar.
 - Sistemdeki işlerin bir alt kümesi bellekte tutulur.
 - Bir iş seçilir ve çalıştırılır job scheduling (iş planlama)
 - İşin beklemesi gerekirse (mesela I/O için), OS başka işe geçiş yapar.
- Zaman paylaşımı (çoklu görev multitasking) CPU'nun çok sıkça iş geçişi yaparak kullanıcıya çalışan her işle etkileşme imkanı verdiği durumdur, →interactive computing (etkileşimi hesaplama)
 - Yanıt zamanı (response time) < 1 saniye olmalı.
 - Her kullanıcının bellekte yürütülen en az bir programı bulunur ⇒ process
 - Aynı anda çalışmaya hazır birden çok iş varsa ⇒ CPU scheduling
 - Süreçler (processler) belleğe sığmazsa swapping (değiş-tokuş) ile girme-çıkma yönetilir.
 - Sanal bellek tümüyle bellekte olmayan süreçlerin yürütülmesini sağlar.

Çoklu Programlama Sistemi için Bellek Düzeni

0	
O	operating system
	job 1
	job 2
	job 3
512M	job 4

İşletim Sistemi Operasyonu

- Kesme yönlendirmeli (Interrupt driven) (donanım ve yazılım)
 - Bir cihazdan gelen donanım kesmesi
 - Yazılım kesmesi (istisna veya tuzak):
 - Yazılım hatası (örn. sıfıra bölme)
 - İşletim sistemi servisi için istek
 - Sonsuz döngü, birbirini veya işletim sistemini değiştiren süreçler gibi diğer süreç sorunları

İşletim Sistemi Operasyonu

- Çift modlu operasyon OS'in kendisini ve diğer sistem bileşenlerini korumasını sağlar.
 - Kullanıcı modu and çekirdek modu
 - Mode biti donanım tarafından sağlanır.
 - Sistemin kullanıcı kodu mu çekirdek kodu mu çalıştırdığını anlamayı sağlar.
 - Bazı privileged (ayrıcalıklı) komutlar yalnızca çekirdek modunda yürütülebilir.
 - Sistem çağrısı, modu çekirdek moduna değiştirir. Çağrıdan dönüş, modu kullanıcı moduna geri alır.
- CPU'lar çok modlu operasyonu gittikçe daha fazla desteklemektedir.
 - örn. sanal makine yöneticisi (virtual machine manager, VMM) modu konuk VM'ler içindir.

Kullanıcı-Çekirdek Modu Geçişi

- Sonsuz döngüyü / kaynakları tek başına tüketen süreçleri engellemek için zamanlayıcı (timer) vardır.
 - Zamanlayıcı belli bir süreden sonra bilgisayara kesme sinyali verir.
 - Fiziksel saat tarafından eksiltilen bir sayaç tutar.
 - OS sayacı kurar. (ayrıcalıklı komut)
 - Sayaç 0 olunca kesme oluşur.
 - Süreci planlamadan önce denetimi yeniden ele almak için hazırlık veya ayrılan süreyi aşan programı sonlandırmak gerekir.

Süreç Yönetimi

- Süreç, yürütülen bir programdır. Sistemdeki iş birimidir. Program pasif varlık, süreç ise aktif varlıktır.
- Süreç görevini tamamlamak için kaynaklara ihtiyaç duyar.
 - CPU, bellek, I/O, dosyalar
 - İlkleme verisi
- Süreç sonlandırma, yeniden kullanılabilir tüm kaynakların geri alınmasını gerektirir.
- Tek parçalı süreçte bir program counter (program sayacı) vardır ve yürütülecek bir sonraki komutun konumunu belirtir.
 - Süreç, komutları birer birer, sırayla ve tamamlanana kadar yürütür.
- Çok parçalı süreçte her iş parçası (thread) başına bir program sayacı bulunur.
- Sistemde birçok süreç vardır, bazıları kullanıcı, bazılarıysa bir veya birden fazla CPU'da çalışan OS süreçleridir.
 - Eşzamanlılık, CPU'ları süreçler/parçalar arasında çoklama (multiplexing) yoluyla sağlanır.

Süreç Yönetimi Etkinlikleri

İşletim sistemi aşağıdaki etkinliklerden sorumludur:

- Kullanıcı ve sistem süreçlerini oluşturmak ve silmek
- Süreçleri askıya almak ve yeniden devam ettirmek
- Süreç senkronizasyon için mekanizmalar sağlamak
- Süreç iletişimi için mekanizmalar sağlamak
- Deadlock yönetimi için mekanizmalar sağlamak

Bellek Yönetimi

- Programın yürütülmesi için komutlarının tümü veya bir kısmı bellekte olmalıdır.
- Programa gereken verinin tümü veya bir kısmı bellekte olmalıdır.
- Bellek yönetimi neyin ne zaman bellekte olacağına karar verir.
 - CPU kullanımını ve kullanıcıya yanıt zamanını optimize eder.
- Bellek yönetimi etkinlikleri
 - Belleğin hangi parçalarının kim tarafından kullanılmakta olduğunu takip etmek
 - Hangi süreçlerin ve verilerin belleğe girip bellekten çıkacağıa karar vermek
 - Bellek alanı tahsis etmek ve geri almak

Depo Yönetimi

- OS bilgi depolama için tek tip, mantıksal bir görüntü sunar.
 - Fiziksel özellikleri mantıksal birime (dosya) soyutlar.
 - Her ortam cihaz tarafından denetlenir (örn. disk sürücü, bant(tape) sürücü)
 - Erişim hızı, kapasite, veri transfer hızı, erişim yöntemi (sıralı veya rastgele) gibi özellikler çeşitlilik gösterir.
- Dosya sistemi yönetimi
 - Dosyalar genellikle dizinler içerisinde organize edilir.
 - Kimin neye erişebileceğini belirlemek için çoğu sistemde erişim denetimi vardır.
 - OS etkinlikleri:
 - Dosya ve dizinleri oluşturmak ve silmek
 - Dosya ve dizinleri değiştirmek için yollar sunmak
 - Dosyaları ikincil depoya eşlemek
 - Dosyaları kalıcı depo ortamlarını yedeklemek

Kitle-Depo Yönetimi

- Diskler belleğe sığmayan veya uzun süre saklanması gereken verileri tutmakta kullanılır.
- Doğru yönetim büyük öneme sahiptir.
- Bütün sistemin çalışma hızı disk altsistemi ve algoritmalarına bağlıdır.
- OS etkinlikleri
 - Boş alan yönetimi
 - Depo alanı ayırma
 - Disk planlama
- Bazı depoların hızlı olması şart değildir
 - Optik depo, manyetik bant
 - OS ve uygulamalar tarafından yönetilmelidir.
 - WORM (write-once, read-many-times) ve RW (read-write)

Depo Katmanlarının Performansı

Level	1	2	3	4	5
Name	registers	cache	main memory	solid state disk	magnetic disk
Typical size	< 1 KB	< 16MB	< 64GB	< 1 TB	< 10 TB
Implementation technology	custom memory with multiple ports CMOS	on-chip or off-chip CMOS SRAM	CMOS SRAM	flash memory	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 - 25	80 - 250	25,000 - 50,000	5,000,000
Bandwidth (MB/sec)	20,000 - 100,000	5,000 - 10,000	1,000 - 5,000	500	20 - 150
Managed by	compiler	hardware	operating system	operating system	operating system
Backed by	cache	main memory	disk	disk	disk or tape

Depo hiyerarşisinin katmanları arasındaki hareket açık veya örtülü olabilir.

"A" Verisinin Diskten Registera Göçü

Çoklu görev ortamları en güncel değeri (değer nerede olursa olsun) kullanmaya dikkat etmelidir.

- Çok işlemcili ortam donanımda cache tutarlılığı(coherency) sağlamalıdır ki bütün CPU'lar cache'lerine en güncel değere sahip olsunlar.
- Dağıtık ortamdaki durum daha da karmaşıktır.
 - Bir verinin çok sayıda kopyası bulunabilir.
 - Bölüm 17

I/O Altsistemi

- OS'in bir amacı donanım cihazlarının kendilerine has özelliklerini kullanıcıdan gizlemektir.
- I/O altsistemi şunlardan sorumludur:
 - I/O bellek yönetimi kapsamında buffering-arabelleğe kaydetme (veri aktarılırken geçici olarak saklama), caching (verinin parçalarını daha hızlı depoda saklama), spooling (bir işin çıktısının başka bir işin girdisiyle örtüşmesi)
 - Genel cihaz sürücü arayüzü
 - Özel donanım cihazları için sürücüler

Koruma ve Güvenlik

- Koruma OS'in süreç ve kullanıcıların kaynaklara erişimini denetlemek için tanımladığı mekanizmalar
- Güvenlik sistemin iç ve dış saldırılara karşı savunulması
 - Çok çeşitli saldırılar: hizmet engelleme (denial-of-service), solucanlar, virüsler, kimlik ve hizmet hırsızlığı vs.
- Sistemler öncelikle kullanıcıları ayırır ve kimin ne yapabileceğini belirler.
 - Kullanıcı kimlikleri (user IDs, security IDs) her kullanıcı için bir isim ve numara içerir.
 - User ID, erişim denetimi için o kullanıcının bütün dosya ve süreçleriyle ilişkilendirilir.
 - Grup kimliği (group ID) kullanıcı kümelerinin tanımlamasına, süreç ve dosyalarla ilişkilendirilerek denetimin yönetilmesine imkan verir.
 - Privilege escalation (yetki yükseltme) kullanıcının daha fazla hakka sahip ID'ye geçmesini sağlar.

Çekirdek Veri Yapıları

- Standart program veri yapılarına benzerdir.
- Singly linked list (tek bağlı liste)

Doubly linked list (çifte bağlı liste)

Circular linked list (dairesel bağlı liste)

Çekirdek Veri Yapıları

- Binary search tree (ikili arama ağacı) sol <= sağ
 - Arama performansı = O(n) (en kötü)
 - Dengeli BST = O(lg n)

Çekirdek Veri Yapıları

■ Hash (özet) fonksiyonu bir hash map (özet tablosu) oluşturur.

- Bitmap *n* öğenin durumunu temsil eden *n* bitlik dizi
- Linux veri yapıları:

```
include <linux/list.h>, <linux/kfifo.h>,
<linux/rbtree.h>
```


Hesaplama Ortamları - Geleneksel

- Tek çalışan genel amaçlı makineler
- Ama birçok sistem birbirine bağlıdır (Internet)
- Portallar iç sistemlere web erişimi sağlar.
- Ağ bilgisayarları (thin clients) web terminallerine benzer.
- Mobil bilgisayarlar kablosuz ağlar ile bağlanır.
- Networking artık her yerde ev sistemlerini dahi Internet saldırılarından korumak için firewall (güvenlik duvarı) kullanılır.

Hesaplama Ortamları - Mobil

- Akıllı telefonlar, tabletler, vb.
- Bunlarla laptoplar arasındaki işlevsel fark nedir?
- Fazladan özellikler daha çok OS özelliği (GPS, gyroscope)
- Yeni uygulama türleri (örn. augmented reality artırılmış gerçeklik)
- IEEE 802.11 kablosuz veya hücresel veri ağları ile bağlantı
- Apple iOS ve Google Android liderler

Hesaplama Ortamları - Dağıtık

- Dağıtık hesaplama
 - Ayrı ve heterojen olabilen birbirine ağla bağlı sistemler topluluğu
 - Ağ (network) bir veri yoludur, TCP/IP en yaygını
 - Local Area Network (LAN) Yerel alan ağı
 - Wide Area Network (WAN) Geniş alan ağı
 - Metropolitan Area Network (MAN)
 - Personal Area Network (PAN)
 - Ağ işletim sistemi (network operating system) ağdaki sistemler arasında özellikler sağlar.
 - Sistemlerin mesajlarla haberleşmesini sağlayan iletişim yolu
 - ▶ Tek sistem ilüzyonu

Hesaplama Ortamları – İstemci-Sunucu

- İstemci-sunucu yapısı
 - Akıllı PC'lerle desteklenen aptal terminaller
 - Sunucular, istemcilerden gelen isteklere cevap verir.
 - Hesaplama sunucusu sistemi istemciye servis isteyebileceği bir arayüz sunar.
 - Dosya sunucusu sistemi istemcilerin dosya saklayıp alabilmesi için bir arayüz sunar.

Hesaplama Ortamları – Eşler Arası

- Bir dağıtık sistem modeli
- P2P (peer-to-peer, eşler arası) istemcisunucu ayrımı yapmaz.
 - Bütün düğümler eş kabul edilir.
 - Her biri istemci, sunucu veya ikisi de olabilir.
 - Düğüm P2P ağa katılmalıdır.
 - Servisini ağdaki merkezi arama servisine kaydettirir, veya
 - Keşif protokolü ile servis isteğini broadcast yapar, servis isteklerine yanıt verir.
 - Bittorrent, Gnutella, Voice over IP (VoIP) uygulaması Skype

Hesaplama Ortamları – Sanallaştırma

- OS'lerin başka OS'ler içinde uygulama çalıştırmasına imkan verir.
 - Geniş ve gittikçe büyüyen bir iş
- Emülasyon kaynak CPU türü hedef CPU türünden farklı olduğunda (örn. PowerPC to Intel x86)
 - Yavaş yöntem
 - Bilgisayar dili makine diline derlenerek çevrilmediğinde Interpretation (yorumlama)
- Sanallaştırma OS, CPU için derlenir, çalışan konuk OS'ler de derlenir.
 - VMware Windows 7 evsahibi üzerinde Windows 7 konukları kendi uygulamalarını çalıştırabilir.
 - VMM (Virtual Machine Manager sanal makine yöneticisi) sanallaştırma servisleri sunar.

Hesaplama Ortamları – Sanallaştırma

- Kullanım alanı olarak bilgisayarlarda keşif veya uyumluluk için farklı OS'ler çalıştırılması gösterilebilir.
 - Apple laptop üzerinde Mac OS X evsahibi, Windows konuk
 - Tek sistem üzerinde birden çok OS için uygulama geliştirme ve kalite kontrol testlerini yapma
 - Veri merkezlerinde hesaplama ortamlarını yürütmek ve yönetmek

Hesaplama Ortamları – Sanallaştırma

Hesaplama Ortamları – Bulut Bilişim

- Hesaplama, depolama, uygulama vb. servisleri ağ üzerinden sunar.
- Sanallaştırmayı temel alarak işlevsellik sunduğu için sanallaştırmanın uzantısı olarak kabul edilebilir.
 - Amazon EC2 binlerce sunucu, milyonlarca sanal makine ve petabyte'larca depo sunar.
- Farklı türleri vardır.
 - Public cloud (açık bulut) Internet üzerinden parasını veren herkese açık
 - Private cloud (özel bulut) Şirketin kendi kullanımı için yönettiği
 - Hybrid cloud (melez bulut) hem açık hem özel bulut bileşenleri içerir.
 - Software as a Service (SaaS), Hizmet olarak Yazılım Internet üzerinden kullanılan uygulamalar (örn. ofis uygulamaları)
 - Platform as a Service (PaaS), Hizmet olarak Platform yazılım geliştirici veya uygulamalar tarafından kullanıma hazır (örn. veritabanı sunucusu)
 - Infrastructure as a Service (laas), Hizmet olarak Altyapı Internet üzerinden kullanıma açık sunucu ve depolar

Hesaplama Ortamları – Bulut Bilişim

- Bulut bilişim ortamları geleneksel OS'ler, VMM'ler ve bulut yönetim araçlarından oluşur.
 - Internet bağlantısı firewall gibi güvenlik önlemlerini gerektirir.
 - Yük dengeleyiciler birden çok uygulama arasında trafiği yayar.

Hesaplama Ortamları – Gerçek Zamanlı Gömülü Sistemler

- En yaygın bilgisayar türü
 - Özel ve kısıtlı amaçlı OS
- Gerçek zamanlı OS iyi tanımlı sabit zaman kısıtlarına tabidir.
 - İşlem kısıta uygun olarak yapılmalıdır.
 - Ancak kısıtlara uyulursa doğru işlem

Açık Kaynak İşletim Sistemleri

- OS açık kaynak koduyla birlikte gelir, sadece binary formatta gelmez.
- Örnekler: GNU/Linux ve BSD UNIX (Mac OS X çekirdeği dahil),
- VMware, Virtualbox gibi VMM'ler ile konuk OS'ler çalıştırılabilir.

Bölüm 1 Sonu

