

02 11.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 8月 4日

出 願 番 号 Application Number:

特願2003-285807

[ST. 10/C]:

[JP2003-285807]

出 願 人 Applicant(s):

松下電器産業株式会社

WIPO PCT

REC'D 2 3 DEC 2004

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月 9E


```
【書類名】
              特許願
【整理番号】
              2906753064
【提出日】
              平成15年 8月 4日
【あて先】
              特許庁長官 今井 康夫 殿
【国際特許分類】
              G01C 21/00
【発明者】
  【住所又は居所】
              大阪府門真市大字門真1006番地 松下電器産業株式会社内
  【氏名】
              足立 晋哉
【特許出願人】
  【識別番号】
              000005821
  【氏名又は名称】
              松下電器産業株式会社
【代理人】
  【識別番号】
              100099254
  【弁理士】
  【氏名又は名称】
              役 昌明
【選任した代理人】
  【識別番号】
              100100918
  【弁理士】
  【氏名又は名称】
              大橋 公治
【選任した代理人】
  【識別番号】
              100105485
  【弁理士】
  【氏名又は名称】
              平野 雅典
【選任した代理人】
  【識別番号】
              100108729
  【弁理士】
  【氏名又は名称】
              林 紘樹
【手数料の表示】
  【予納台帳番号】
              037419
  【納付金額】
              21,000円
【提出物件の目録】
  【物件名】
              特許請求の範囲 1
  【物件名】
              明細書 1
  【物件名】
              図面 1
  【物件名】
              要約書 1
  【包括委任状番号】
               9102150
  【包括委任状番号】
               9116348
  【包括委任状番号】
               9600935
  【包括委任状番号】
               9700485
```


【書類名】特許請求の範囲

【請求項1】

送信側が、伝えようとする対象道路の道路形状データと、前記対象道路に交差または分岐 する支線の支線形状データとを送信し、受信側が、前記支線を参考にして、前記対象道路 を自己のデジタル地図上で特定することを特徴とするデジタル地図の位置情報伝達方法。

【請求項2】

前記受信側は、前記道路形状データを用いて行う第1のマップマッチングで前記対象道路の対象道路候補を選出し、前記支線形状データを用い、前記対象道路候補を選出の対象から除外して行う第2のマップマッチングで、前記対象道路候補を対象道路と仮定したときの前記支線候補を選出し、前記支線候補を参酌して、前記対象道路とすべき前記対象道路候補を決定することを特徴とする請求項1に記載のデジタル地図の位置情報伝達方法。

【請求項3】

前記受信側は、前記対象道路候補及び支線候補の形状と、前記対象道路及び支線の元形状との相似性を識別し、識別結果に基づいて、前記対象道路とすべき前記対象道路候補を決定することを特徴とする請求項2に記載のデジタル地図の位置情報伝達方法。

【請求項4】

前記受信側は、前記第2のマップマッチングで、前記支線形状データにより前記対象道路 候補との相対位置が指定された前記支線の支線候補を選出し、前記対象道路候補の評価結果と前記支線候補の評価結果とを総合して前記対象道路とすべき前記対象道路候補を決定 することを特徴とする請求項2に記載のデジタル地図の位置情報伝達方法。

【請求項5】

前記送信側は、前記支線と前記対象道路との相対的な位置関係を表す前記支線形状データ を送信することを特徴とする請求項4に記載のデジタル地図の位置情報伝達方法。

【請求項6】

前記受信側は、前記道路形状データを用いて行うマップマッチングで前記対象道路の対象 道路候補を選出し、元形状の前記対象道路から前記支線に至る所定地点間のベクトルを前 記対象道路候補の該当地点に加算して、到達した地点から前記対象道路候補を除く最も近 い道路までの距離を前記支線の評価結果とし、前記対象道路候補の評価結果と前記支線の 評価結果とを総合して前記対象道路とすべき前記対象道路候補を決定することを特徴とす る請求項1に記載のデジタル地図の位置情報伝達方法。

【請求項7】

前記送信側は、前記支線及び対象道路の交点から同一距離離れた前記支線及び対象道路上の地点を複数設定し、前記交点から同一距離にある前記対象道路上の地点から前記支線上の地点に至るベクトルを前記支線形状データに含めて送信することを特徴とする請求項6に記載のデジタル地図の位置情報伝達方法。

【請求項8】

前記送信側は、前記対象道路に交差または分岐する道路と前記対象道路との成す角度が所 定角度以内であり、前記道路における交差または分岐位置から所定距離までの形状が前記 対象道路の形状と類似しているとき、前記道路を前記支線として設定することを特徴とす る請求項1から請求項7のいずれかに記載のデジタル地図の位置情報伝達方法。

【請求項9】

デジタル地図データを保持し、前記デジタル地図データを用いて、伝えようとする対象道路の道路形状データと、前記対象道路に交差または分岐する支線の支線形状データとを生成して提供する情報提供装置と、

デジタル地図データを保持し、前記情報提供装置から提供された前記道路形状データ及び支線形状データを用いてマップマッチングを行い、前記デジタル地図データから前記対象道路の対象道路候補と前記支線の支線候補とに該当する道路を選出し、前記支線候補を参考にして、前記対象道路とすべき道路を決定する情報活用装置と

を備えることを特徴とするデジタル地図の位置情報伝達システム。

【請求項10】

デジタル地図のデータベースと、前記データベースのデジタル地図データを用いて、伝えようとする対象道路の道路形状データを生成する道路形状データ生成手段と、前記データベースのデジタル地図データを用いて、前記対象道路に交差または分岐する支線の支線形状データを生成する支線形状データ生成手段と、前記道路形状データ及び支線形状データを提供する形状データ提供手段とを備えることを特徴とする情報提供装置。

【請求項11】

デジタル地図のデータベースと、対象道路の道路形状データと前記対象道路に交差または 分岐する支線の支線形状データとを受信する形状データ受信手段と、前記道路形状データ を用いてマップマッチングを行い、前記データベースのデジタル地図データから前記対象 道路の対象道路候補に該当する道路を選出する本線形状候補選出手段と、前記支線形状データを用いてマップマッチングを行い、前記データベースのデジタル地図データから前記 支線の支線候補に該当する道路を選出する支線形状候補選出手段と、前記支線候補を参考 にして、前記対象道路とすべき道路を決定する対象道路決定手段とを備えることを特徴と する情報活用装置。

【書類名】明細書

【発明の名称】デジタル地図の位置情報伝達方法とそれを実施するシステム及び装置 【技術分野】

[0001]

本発明は、交通情報の対象道路や目的地までの推奨経路など、デジタル地図上の道路位置を伝えるための位置情報伝達方法と、その方法を実施するシステム及び装置に関し、特に、道路位置の正確な伝達を可能にするものである。

【背景技術】

[0002]

従来から、VICS(道路交通情報通信システム)では、デジタル地図データベースを搭載する車両用ナビゲーション装置に対して、FM多重放送やビーコンを通じて、渋滞区間や旅行時間を示す道路交通情報の提供サービスを実施している。車両用ナビゲーション装置は、この道路交通情報を受信して、画面表示する地図に渋滞区間を色付けして表したり、目的地までの所用時間を算出して表示したりしている。

[0003]

このように、道路交通情報を提供する場合は、デジタル地図上の道路の位置情報を伝えることが必要になる。また、現在地及び目的地の情報を受信して、最短時間で目的地に到達できる推奨経路の情報を提供するサービスや、近年、研究が進められている、走行中の車両(プローブカー)から軌跡情報及び速度情報等を収集して交通情報の生成に活用する道路交通情報収集システム(プローブ情報収集システム)においても、デジタル地図上の推奨経路や走行軌跡を相手方に正しく伝えることが必要となる。

VICSでは、道路に付したリンク番号や、交差点などのノードを表すノード番号を使用して道路区間を特定している。

[0004]

デジタル地図データは、それを制作した制作会社によってデータ内容に違いがあり、縮尺地図の宿命として道路位置を示すデータに差異があり、また、幹線道路を上り路線及び下り路線の二条線で表現している地図もあれば、一本の一条線で表現している地図もある。ただ、VICSで使用されるリンク番号及びノード番号の情報は、各制作元のデジタル地図データに共通して含まれているため、VICSでは、デジタル地図データの制作元の違いに関わらず、道路区間を正確に伝達することができる。

しかし、道路網に定義したノード番号やリンク番号は、道路の新設や変更に伴って新しい番号に付け替える必要があり、それに応じて、各社のデジタル地図データも更新しなければならないため、ノード番号やリンク番号を用いる方式は、メンテナンスに多大な社会的コストが掛かることになる。

[0005]

こうした点を改善するため、下記特許文献1では、共通のノード番号やリンク番号を用いずに、デジタル地図上の道路位置を伝える方法を提案している。この方法では、送信側が、図23(a)に示すように、送信側のデジタル地図上で伝送しようとする道路区間に複数のノードp1、p2、・・pNを設定する。このノードとして、送信側のデジタル地図データにおいて設定されているノードや補間点を用いることができる。そして、図23(b)に示すように、この複数のノードp1、p2、・・pNの位置データを配列した「道路形状データ」を受信側に伝送する。一方、受信側は、道路形状データに含まれる各ノード位置を自己のデジタル地図上に対応付けるマップマッチングを行い、道路区間を特定する。

また、下記特許文献 2 では、この場合に、受信側でのマップマッチングを容易にするため、送信側は、図 2 4 (a) に示すように、道路区間に設定したノードの中に交差点のノード p 6 が含まれる場合、そのノード p 6 に接続するリンクの数や接続角度 α 1、 α 2の情報を付加情報(図 2 4 (b))として、図 2 3 (b)の送信データと合わせて伝送することを提案している。

[0006]

また、下記特許文献 3 では、この道路形状データを圧縮符号化してデータ量を削減する方法を提案している。この方法では、伝えようとする道路区間上に一定距離間隔でサンプリング点を再設定し(これを「等距離リサンプル」と言う)、始端を除く各サンプリング点の位置データを隣接サンプリング点からの偏角 θ jまたは偏角統計予測値差分 Δ θ j(サンプリング点の偏角 θ jをそれ以前のサンプリング点の偏角(θ j-1、 θ j-2・・)を用いて予測した予測値と、実際の偏角 θ jとの差分)で表わし、これを可変長符号化する。そして、受信側に、その符号化データと、始端の緯度・経度データとを送信する。受信側は、符号化されたデータを復号化して各サンプリング点の位置データを復元し、マップマッチングを行って道路区間を特定する。

【特許文献1】特開平2001-41757号公報

【特許文献2】特開平2001-66146号公報

【特許文献3】特開平2003-23357号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

しかし、送信側が道路形状データを送信し、受信側がマップマッチングを行って道路区間を特定する位置情報伝達方法では、受信側において、並走路や、角度の浅い分岐部で、誤った場所を特定する誤マッチングが発生しやすい。特に、高速道路と一般道路とが多層構造となっている場所や、インターチェンジ、連絡路・連結路等の本線からの分岐部では、誤マッチングが発生する確率が高くなる。前記多層構造の道路に対する対策としては、前記特許文献2に記載された「道路種別コード」を参照すれば、多層道路が同一道路であることはまず無いため、誤マッチングの発生確率を大幅に削減することができる。しかし、これは、インターチェンジ、連絡路・連結路等の本線からの分岐部では、同一道路を別の本線が隣接して並走していることが多いため、有効な手立てとはならない。特に、一方の地図が道路を上り下り別の二条線表現で表し、もう一方が双方向走行可能な一条線表現としている場合には、その間で位置情報を伝達する際に、誤マッチングが顕著に発生する。

[0008]

これは次のような理由による。

幹線道路を二条線で表現するデジタル地図では、この立体交差周辺の道路が、図25 (a) に示すように、上り路線101と下り路線102との二条線から成る本線道路10と、立体交差地点で本線道路10の下を通る道路11と、本線道路10及び道路11を接続する連絡路12a、12b、12c、12dとで表示され、あるいは、図25 (b) のように表示される。

一方、道路を一条線で表現するデジタル地図では、本線道路10'、本線道路10'の下を通る道路11'及び連絡路12a'、12b'、12c'、12d'が図26のように表現される。

[0009]

いま、図25(a)または(b)のように表現されたデジタル地図を有する送信側が、図26のように表現されたデジタル地図を有する受信側に本線道路10の上り路線101または下り路線102の道路形状データを送信したとする。

図27(a)、(b)は、このときに受信側で行われるマップマッチングを模式的に示している。図27(a)は、図26に示す受信側のデジタル地図上に図25(a)の本線道路10の上り路線101及び下り路線102を重ねたものであり、マップマッチングでは、図26のデジタル地図に含まれる道路から本線道路10に近い道路が選択されるため、本線道路10の上り路線101または下り路線102のいずれの道路形状データが送信された場合でも、図28に示すように、連絡路12a'、12c'、または連絡路12b'、12d'に誤マッチングされる。また、図27(b)は、図26に示す受信側のデジタル地図上に図25(b)の本線道路10の上り路線101及び下り路線102を重ねたものであり、この場合も同様に、本線道路10'よりも本線道路10に近い連絡路12a

'、12b'、12c'、12d'に誤マッチングされる。

[0010]

本発明は、こうした問題点を解決するものであり、対象道路の道路形状データが送られ た受信側での誤マッチングを防ぐことができるデジタル地図の位置情報伝達方法を提供し 、また、それを実施するシステム及び装置を提供することを目的としている。

【課題を解決するための手段】

[0011]

そこで、本発明のデジタル地図の位置情報伝達方法では、送信側が、伝えようとする対 象道路の道路形状データと、対象道路に交差または分岐する支線の支線形状データとを送 信し、受信側が、この支線を参考にして、対象道路を自己のデジタル地図上で特定するよ うにしている。

この位置情報伝達方法では、誤マッチングし易い分岐路や交差路の形状を示す情報が支 線形状データとして受信側に与えられるため、受信側は、それらへの誤マッチングを避け ることができる。送信側が二条線の道路表現形式のデジタル地図データを保持し、受信側 が一条線の道路表現形式のデジタル地図データを保持している場合でも、誤マッチングを 防止できる。また、支線形状は、対象道路と並行路との識別を可能にし、さらには、対象 道路の長さ方向へのずれの識別を可能にする。そのため、並行路への誤マッチングや、対 象道路の長さ方向への誤マッチングを防ぐこともできる。

[0012]

また、本発明のデジタル地図の位置情報伝達システムでは、デジタル地図データを保持 し、このデジタル地図データを用いて、伝えようとする対象道路の道路形状データと、対 象道路に交差または分岐する支線の支線形状データとを生成して提供する情報提供装置と ,デジタル地図データを保持し、情報提供装置から提供された道路形状データ及び支線形 状データを用いてマップマッチングを行い、自己のデジタル地図データから対象道路の対 象道路候補と支線の支線候補とに該当する道路を選出し、この支線候補を参考にして、対 象道路とすべき道路を決定する情報活用装置とを設けている。

このシステムでは、本発明のデジタル地図の位置情報伝達方法を実行して、対象道路を 正確に伝えることができる。

[0013]

また、本発明では、情報提供装置に、デジタル地図のデータベースと、このデータベー スのデジタル地図データを用いて、伝えようとする対象道路の道路形状データを生成する 道路形状データ生成手段と、データベースのデジタル地図データを用いて、対象道路に交 差または分岐する支線の支線形状データを生成する支線形状データ生成手段と、道路形状 データ及び支線形状データを提供する形状データ提供手段とを設けている。

この情報提供装置は、異なる道路表現形式のデジタル地図を有する情報提供先に対して も、対象道路を正確に伝えることができる。

[0014]

また、本発明では、情報活用装置に、デジタル地図のデータベースと、対象道路の道路 形状データとこの対象道路に交差または分岐する支線の支線形状データとを受信する形状 データ受信手段と、道路形状データを用いてマップマッチングを行い、データベースのデ ジタル地図データから対象道路の対象道路候補に該当する道路を選出する本線形状候補選 出手段と、支線形状データを用いてマップマッチングを行い、データベースのデジタル地 図データから支線の支線候補に該当する道路を選出する支線形状候補選出手段と、支線候 補を参考にして、対象道路とすべき道路を決定する対象道路決定手段とを設けている。

この情報活用装置は、受信した対象道路を自己のデジタル地図上で間違わずに特定する ことができる。

【発明の効果】

[0015]

本発明のデジタル地図の位置情報伝達方法では、受信側における、分岐路や交差路、並 行路への誤マッチング、あるいは、対象道路の長さ方向への誤マッチングを防ぐことがで

き、デジタル地図の位置情報を正確に伝えることができる。また、送信側と受信側とが異 なる道路表現形式のデジタル地図データを保持している場合でも、誤マッチングを防止で きる。

また、本発明のシステム及び装置は、この位置情報伝達方法の実行が可能である。 【発明を実施するための最良の形態】

[0016]

本発明の実施形態の位置情報伝達方法では、送信側が、対象道路の道路形状データとと もに、参考情報として、誤マッチングし易い、浅い角度で分岐する道路の分岐部分(この 分岐部分を「支線」と言うことにする) の形状データ (支線形状データ) を送信する。受 信側は、マップマッチングの際に、支線形状を参考にして対象道路を特定する。

送信側が二条線の表現形式を採るデジタル地図を有している場合、送信側は、例えば図 1 (a) に示す立体交差点周辺の上り路線101の道路形状データを受信側に送信すると き、図1(b)に示すように、誤マッチングし易い連絡路12dを支線20として、上り 路線101の道路形状データとともに、支線20の形状を表す支線形状データを送信する 。なお、この上り路線101の道路形状データでは、上流側のノードから順に各ノードの 位置データが配列されているものとする。この場合、上り路線101のデータ配列の向き に対して浅い角度で分岐しているのは連絡路12 dであるため、連絡路12 dを支線20 としている。上り路線101の道路形状データにおいて、下流側のノードから順に各ノー ドの位置データが配列されている場合は、連絡路12cが支線になる。

[0 0 1 7]

また、図2(b)は、図2(a)のデジタル地図を有する送信側が、上り路線101を 対象路線とするときに、受信側に送信する道路形状データ及び支線形状データを示してい

一方、この道路形状データ及び支線形状データを受信した受信側は、次のような方法で 対象道路を特定する。

受信側が一条線の表現形式を採る図26のデジタル地図を有している場合、図3に示す ように、このデジタル地図に、道路形状データが表す対象道路101と、支線形状データ が表す支線20とを重ねて、先ず、対象道路101に対するマップマッチングを行い、対 象道路の候補となる道路を選択する。次に、それぞれの候補道路を対象道路と仮定したと きの支線20の候補を、その対象道路の候補路線を対象から除いて支線20に対するマッ プマッチングを行うことにより求める。

[0018]

対象道路101に対するマップマッチングでは、図4に示すように、対象道路101に 最も近い連絡路12d'及び12c'が候補1として選択され(図4(a))、次に対象 道路101に近い本線道路10′が候補2として選択される(図4(b))。

支線20に対するマップマッチングでは、図5 (a)に示すように、対象道路の候補1 の路線を除いて、候補1を対象道路と仮定したときの支線20の候補を求め、また、図5 (b) に示すように、対象道路の候補2の路線を除いて、候補2を対象道路と仮定したと きの支線20の候補を求める。その結果、図6に示すように、連絡路12d'、12c' が対象道路の候補となる場合は、本線道路10'が支線候補となり(図6 (a))、本線 道路10'が対象道路の候補となる場合は、連絡路12d'が支線候補となる(図6 (b))。図7 (a)、(b)は、対象道路101及び支線20に対するマップマッチングの 結果を抜き出して示している。

[0019]

次に、図8に示すように、このマップマッチング結果(b)、(c)と、元の対象道路 101及び支線20の形状 (a) とを比較し、図9に示すように、それらの相似性が高い 候補2を対象道路として選択する。この相似性の評価方法に関する詳細は後述する。

このように、送信側が、対象道路の道路形状データと、誤マッチングし易い分岐路の支 線形状データとを送ることにより、受信側は、送信側と異なる一条線の表現形式を採るデ ジタル地図を有している場合でも、自己のデジタル地図上で対象道路を正確に特定するこ

とが可能になる。

なお、誤マッチングは、立体交差の連絡路だけでなく、並行する道路を浅い交差角度で 連結する連結路や、インターチェンジの入口及び出口等 (本線同士でも一部存在するが) 、浅い角度(凡そ10゜以下の角度)で分岐または交差して、しばらく並走する箇所で発 生し易い。この実施形態の位置情報伝達方法は、こうした箇所での誤マッチング防止に極 めて有効である。

[0020]

なお、分岐路の分岐直後における本線との分岐角度が大きくても、分岐路がその先でカ ーブし、その後の分岐路と本線との成す角度が小さければ、この分岐路への誤マッチング も発生しやすい(これは間隔を空けて設定されたノードやサンプリング点のマップマッチ ングで対象道路を特定するためである)。そのため、この明細書では、分岐等の「角度」 と言う場合、分岐地点から所定長さの分岐路の内、相当部分の長さを占める分岐路部分と 本線との角度を指すものとする。

また、分岐点から分岐する支線は、1つに限るわけではなく、図10に示すように、複 数設定しても良い。

また、支線形状データには、支線と目される分岐路の他の道路に達するまでの全形状を 含める必要は無く、その分岐路の途中までの形状を表すデータを含めるだけでも良い。

[0021]

図11は、この位置情報伝達方法を実施するシステムの構成を示している。

このシステムは、対象道路の道路形状データと支線形状データとを送信する情報送信装 置30と、この情報を受信して対象道路を再現する情報活用装置40とから成る。情報送 信装置30は、対象道路区間の情報を含む交通情報や目的地までの推奨経路情報を提供す るセンターであり、情報活用装置40は、それらの情報を利用して活用するカーナビゲー ション装置である。あるいは、情報送信装置30は、走行軌跡情報を速度等の計測情報と ともに提供するプローブカー車載機であり、情報活用装置40は、各プローブカーから情 報を集めて交通情報の生成に活用するプローブ情報収集センターである。

[0022]

情報送信装置30は、デジタル地図データベースA32と、渋滞情報や交通事故情報な どが入力される事象情報入力部31と、デジタル地図データベースA32から対象道路区 間の道路形状データを抽出する形状データ抽出部33と、対象道路区間内の支線を選出し 、デジタル地図データベースA32から支線形状データを抽出する支線形状データ抽出部 34と、必要に応じて道路形状データ及び支線形状データを圧縮符号化する可変長符号化 処理部35と、道路形状データ及び支線形状データを蓄積して外部メディア37に蓄積デ ータを提供するデータ蓄積部36と、道路形状データ及び支線形状データを送信する形状 データ送信部38とを備えている。

[0023]

一方、情報活用装置40は、デジタル地図データベースB46と、提供された道路形状 データ及び支線形状データを受信する形状データ受信部41と、データが圧縮符号化され ている場合に復号化する符号化データ復号部42と、道路形状データ及び支線形状データ に含まれるノードやサンプリング点の位置データを復元する形状データ復元部43と、復 元したデータから対象道路のノードやサンプリング点の位置データを抽出する本線形状デ ータ抽出部44と、復元したデータから支線のノードやサンプリング点の位置データを抽 出する支線形状データ抽出部45と、本線形状データ抽出部44が抽出したデータを用い てマップマッチングを行い、デジタル地図データベースB46の地図データから対象道路 の候補を選出する本線候補選出部47と、支線形状データ抽出部45が抽出したデータを 用いてマップマッチングを行い、デジタル地図データベースB46の地図データから支線 の候補を選出する支線形状候補抽出部48と、元形状との相似性を表す評価値に基づいて 対象道路を決定する評価値算出・対象道路決定部49と、対象道路に関する情報を活用す る情報活用部50とを備えている。

[0024]

図12のフロー図は、情報送信装置30の形状データ抽出部33及び支線形状データ抽出部34の動作手順を示している。いま、図13に示すように、道路10のノードP1からP9までが対象道路であり、並行する道路110への連結路21が対象道路10のノードP5から分岐しているとする。

形状データ抽出部33は、対象道路10のP1から連結路21が分岐するP5までのノードの位置データをデジタル地図データベースA32から抽出して道路形状データを作成する(ステップ1)。支線形状データ抽出部34は、分岐点P5から分岐している連結路21を支線とする必要があるか否かを判定する(ステップ2)。この判定では、分岐点P5から伸びる連結路21の形状が次の(1)及び(2)の条件に合致するか否かをチェックし、合致する場合に支線とする。

[0025]

- (1)対象道路との分岐相対角度が±θ以内である。
- (2) 分岐点から、あらかじめ定めた距離しまでの形状が対象道路と類似している。

支線形状データ抽出部34は、分岐する連結路21を支線とする必要がある場合に、連結路21上に設定したノードp1、p2、p3、p4、p5の位置データをデジタル地図データベースA32から抽出して支線形状データを作成する(ステップ3)。連結路21を支線とする必要が無ければ支線形状データは作成しない。

分岐点P5が対象道路の終端で無ければ(ステップ4)、ステップ1に戻って、形状データ抽出部33は、次の分岐点までの道路形状データを作成し、対象道路の終端P9に達するまで、ステップ1~ステップ3の動作を繰り返す。

[0026]

こうした処理により、図14に示すように、対象道路の道路形状データと、この道路形状データを参照する支線形状データとを含む形状データが生成される。 情報送信装置30の形状データ送信部38は、この形状データを送信する。

なお、ここでは、ノードの位置データを絶対座標及び相対座標で表しているが、距離及 び角度の成分で表したり、符号化して表したりすることもできる。

また、誤マッチングしやすい箇所は、前述するように、浅い角度で分岐して暫く並走する連絡路、連結路、インターチェンジ入口・出口等であり、その箇所はあらかじめ分かるので、支線形状の送信が必要な箇所や、送るべき支線形状、それに対応する本線形状等を事前に定義し、この路線の位置情報を伝送する場合には、定義した支線を必ず入れるようにしても良い。

[0027]

一方、図15のフロー図は、情報活用装置40の動作手順を示している。情報活用装置40の本線形状データ抽出部44は、復元された形状データ(図14)から対象道路の道路形状データを抽出し、本線候補選出部47は、この道路形状データをデジタル地図データベースB46の地図データに対応付けるマップマッチングを行い、対象道路の候補となる道路を選出し、各候補道路の評価値を算出する(ステップ10)。復元された形状データに支線形状データが含まれている場合(ステップ11でYesの場合)は、支線形状データ抽出部45が、この支線形状データを抽出する。支線形状候補選出部48は、本線候補選出部47で選出された各候補道路を対象道路と仮定したときの支線候補を求めるため、その候補道路を支線候補の対象外路線に設定し(ステップ12)、支線形状データを用いたマップマッチングで、それぞれの候補道路に対する支線候補を選出する(ステップ13)。

[0028]

評価値算出・対象道路決定部49は、対象道路候補と支線候補との両方から各対象道路候補の総合的な評価値を算出し(ステップ14)、最も評価値が良い対象道路の候補道路を選出する(ステップ15)。なお、形状データに支線形状データが含まれていない場合(ステップ11でNoの場合)は、ステップ14に移行して、ステップ10で求めた評価値の最も良い対象道路候補を選出する。

評価値算出・対象道路決定部49は、対象道路候補の総合的な評価値を算出するに当た

って、道路形状データと支線形状データとを用いて対象道路及び支線の元形状を再現し、 元形状に対する対象道路候補及び支線候補の相似性を示す評価値を、例えば次のような方 法で算出する。

[0029]

ここでは、図16に示すように、図8(b)、(c)で得た対象道路の候補道路及び支線候補道路を例に、元の形状(図8(a))との相似性を表す評価値の算出方法について説明する。

(1) 支線または支線候補道路の分岐点を中心とする半径nの円と、元形状の対象道路との交点をPn(Xn, Yn) とし、この円と対象道路候補kとの交点をPkn(Xkn, Yn) とする。

また、半径nの円と、元形状の支線との交点をQn(Vn,Wn)とし、この円と、対象道路候補kに対応する支線候補との交点をQkn(Vkn,Wkn)とする。

(2) Pn-Qn間ベクトル Δn と、Pkn-Qkn間ベクトル Δkn とを次式によって算出する。

 $\Delta n = (\Delta X n, \Delta Y n) = (X n - V n, Y n - W n)$

 $\Delta k n = (\Delta X k n, \Delta Y k n) = (X k n - V k n, Y k n - W k n)$

(3)ベクトル△nと△knとの差の大きさ∂knを例えば次式によって算出する。

 $\delta k n = | \Delta n - \Delta k n |$

 $= \sqrt{((\Delta X n - \Delta X k n)^{2} + (\Delta Y n - \Delta Y k n)^{2})}$

(4) δ k n の値が小さいほど、元形状との相似性が高いことになる。半径 n の値を変えた幾つかの円を用いて δ k n を算出し、 Σ δ k n の値を元形状(図 8 (a))との相似性を表す評価値として算出する。この評価値が小さい程、元形状との相似性が高い。

評価値算出・対象道路決定部49は、こうして得た元形状との相似性を表す評価値と、ステップ10で求めた対象道路候補の評価値とに基づいて、対象道路候補の総合的な評価値を算出する。

こうした評価を行って対象道路の候補を選択することにより、対象道路から浅い角度で 分岐する道路が存在する場合でも、この道路への誤マッチングが防止できる。

[0030]

(第2の実施形態)

本発明の第2の実施形態では、元形状に対する対象道路候補及び支線候補の相似性を表 す評価値の他の求め方について説明する。

この方法では、

- (1) 図17 (a) に示すように、支線の分岐点Onから、元形状の対象道路を道なりにLn進んだ点の座標をPn (Xn, Yn) とし、元形状の支線を道なりにLn進んだ点の座標をQn (Vn, Wn) とする。また、支線候補道路の分岐点Oknから、対象道路候補kを道なりにLn進んだ点の座標をPkn (Xkn, Ykn) とし、支線候補を道なりにLn進んだ点の座標をQkn (Vkn, Wkn) とする。
- (2) 図17 (b) に示すように、 $P n \rightarrow O n \rightarrow Q n$ のなす角 θn (正負符号付) と、 $P k n \rightarrow O k n \rightarrow Q k n$ のなす角 $\theta k n$ とを算出する。
- (3) 角 θ nと角 θ knとの差の大きさ δ knを次式によって算出する。

 $\delta k n = |\theta n - \theta k n|$

- (4) δ k n の値が小さいほど、元形状との相似性が高いことになる。L n の値を変えて幾つか δ k n を算出し、 Σ δ k n の値を元形状との相似性を表す評価値として算出する。この評価値が小さい程、元形状との相似性が高い。
 - こうした方法で元形状との相似性を表す評価値を得ることができる。

[0031]

(第3の実施形態)

本発明の第3の実施形態では、対象道路候補の総合的な評価値を算出する他の方法について説明する。

この方法では、

- (1) 図18 (a) に示すように、元形状の支線の分岐点を中心Oとする半径Rnの円と 対象道路との交点Pn、及び、この円と支線との交点Qnを算出する。
- (2) Pn→Qn間ベクトルを算出する。このベクトルは、第1の実施形態で示したよう に相対座標 Δ X n、 Δ Y n で表現したり、または P n \rightarrow O \rightarrow Q n 間のなす角 θ n δ R n δ で表現したりすることができる。
- (3) 次に、図18(b)、(c)に示すように、支線候補道路の分岐点を中心Oとする - 半径Rnの円と対象道路候補kとの交点Pknから、ベクトルPn→Qnを用いてQkn ,を設定する。
- (4)対象道路候補 k を除く道路網から、Q k n'の近隣に道路があるか否かを判定し、 最も近い道路までの距離Lknを算出する。
- (5) 上記(1) \sim (4) をRnを変えて幾つか実施し、 Σ Lknを支線の評価値として 算出する。この支線の評価値と、対象道路候補の評価値(図15のフロー図のステップ1 0で算出した評価値)とを加算(ないしは、加重平均等)して、対象道路候補の総合的な 評価値を算出する。
- 図19(b)は、この方法を採る場合に、送信側から受信側に送る形状データを示して いる。この形状データには、図19 (a)に示すように、元形状における複数の半径Rn に対応するPn→Qn間ベクトルが支線形状データとして含まれているため、受信側での マップマッチングの効率化が可能になる。

[0032]

(第4の実施形態)

本発明の第4の実施形態では、対象道路候補の総合的な評価値を算出する別の方法につ いて説明する。

この方法では、

- (1) 送信側が、図20 (a)、(b) に示すように、支線21のノードp1位置を対象 道路10との角度差 θ と、分岐点P5(支線21の始端)からの距離とで表し、以降のノ ードp2、p3、p4、p5を隣接ノードからの偏角と距離とで表す。
- (2) この形状データ(図20 (b)) を受信した受信側は、道路形状データを用いてマ ップマッチングを行い、対象道路の候補となる道路を選出し、各候補道路の評価値を算出 する。また、形状データに含まれる支線形状データから、各対象道路候補に対して相対的 な位置にある支線形状を再現する。図21(a)には、元形状の対象道路と支線とを表し 、図21(b)には、対象道路候補1(太線)に対して相対的な位置に再現された支線形 状(点線)を表し、図21(c)には、対象道路候補2(太線)に対して相対的な位置に 再現された支線形状(点線)を表している。
- (3) 対象道路候補の道路を支線候補の対象外路線に設定して、支線に対するマップマッ チングを行い、支線候補を選出して、その評価値を算出する。図21(b)、(c)では 、それぞれ支線候補として細線で示す道路が選択される。そのため、図21(c)の支線 候補の評価結果は、図21(b)の支線候補の評価結果より良くなる。
- (4) 支線候補の評価値を、対象道路候補の評価値に加算して、評価結果の良い方の対象 道路候補を選択する。その結果、対象道路候補2(図21 (c))が選択される。

この方法を採る場合は、形状データ(図20(b))に含まれる支線形状データが角度 と距離とで表されるため、データ量が少なくて済む。

[0033]

(第5の実施形態)

本発明の第5の実施形態では、伝送する形状データのデータ量を圧縮するための方法に ついて説明する。

形状データのデータ量の圧縮は、前記特許文献3に記載されているように、対象道路及 び支線に対して等距離リサンプルを行い、始端を除く各サンプリング点の位置データを隣 接サンプリング点からの偏角 θ jまたは偏角統計予測値差分 Δ θ jで表わし、これを可変長 符号化する。

[0034]

図22(a)には、対象道路10に等距離リサンプルで設定したサンプリング点P1、P2、・・、P9と、支線21に等距離リサンプルで設定したサンプリング点p1、p2、・・、p6とを示している。点p1は、支線21が対象道路10から分岐する点であり、対象道路10のサンプリング点と一致するとは限らない。そこで、支線21を対象道路10のサンプリング点と関連付けるため、点p1の上流側で点p1に最も近い対象道路10上のサンプリング点P4を支線21の始端(開始基準点)として定義する。

[0035]

図22(b)には、圧縮符号化した対象道路10の道路形状データと、始端を定義し直した支線21の圧縮符号化した支線形状データとが含まれた形状データを示している。この支線形状データにおいて、「参照する形状データの始端からのノード個数」として、支線21の始端に定義した点P4の点P1から数えた個数が記述され、「基準点から支線開始位置までの距離」として、点P4から点p1までの距離が記述される。

こうして形状データのデータ量を圧縮することで、データ伝送時の負担が軽減される。 このように、本発明のデジタル地図の位置情報伝達方法では、送信側が、伝えようとす る対象道路の形状に、交差または分岐する道路を支線形状として追加して送り、受信側は 、支線形状を参考にして対象道路を特定する。こうすることで受信側の誤マッチングを防 ぐことができる。

[0036]

対象道路の道路形状データに、接続リンクのリンク数やリンク角度などの情報を付加するだけでは、送信側及び受信側で保持されているデジタル地図の道路表現形式(一条線/二条線)が異なる場合に発生する誤マッチングを防ぐことができないが、支線形状を参考情報として付加する本発明の位置情報伝達方法では、送信側及び受信側のデジタル地図の道路表現形式が異なる場合でも誤マッチングを回避することができる。

また、受信側では、支線形状を参考にすることで、例えば図13の対象道路10と並走路110とを区別することが可能になり、並走路への誤マッチングを回避することができる。

また、受信側では、支線形状を参考にすることで、マップマッチングにおける対象道路の長さ方向のずれが解消できる。そのため、この支線位置を交通情報表現の基準点として使用し、渋滞位置や事故発生位置等を、この基準点からの距離で表すことにより、交通情報を正確に伝えることができる。

[0037]

このように、対象道路の道路形状とともに支線形状を伝えることは、送信側、受信側に大きな効果を齎す。そのため、送信側は、分岐や交差の角度に拘らずに、幅広く、支線形状を伝えるようにしても良い。その場合、受信側は、図15のフロー図のステップ10で求めた対象道路候補の評価値に基づいて、支線形状を参考にするか否かを決める(評価値が極めて良い値を示しているときは支線形状データを参照しない)ようにすれば、大きな負担を伴わずに支線形状データを活用することができる。

【産業上の利用可能性】

[0038]

本発明の位置情報伝達方法、その方法を実施するシステム及び装置は、交通情報の対象 道路、プロープカーの走行軌跡、目的地までの経路情報など、デジタル地図上の道路位置 を伝達する場合に広く適用することが可能であり、正確な道路位置の伝達が実現できる。 【図面の簡単な説明】

[0039]

- 【図1】本発明の第1の実施形態における位置情報伝達方法で伝送する対象道路及び 支線を説明する図
- 【図2】本発明の第1の実施形態における位置情報伝達方法で伝送する対象道路及び 支線の他の例を説明する図
 - 【図3】本発明の第1の実施形態でのマップマッチングを説明する図
 - 【図4】本発明の第1の実施形態におけるマップマッチングで得られる対象道路候補

を示す図

- 【図5】本発明の第1の実施形態における支線のマップマッチングで対象から除外する対象道路候補を示す図
- 【図 6 】本発明の第 1 の実施形態における支線のマップマッチングで得られる支線候補を示す図
- 【図7】本発明の第1の実施形態におけるマップマッチングで得られる対象道路候補 と支線候補とを示す図
- 【図8】本発明の第1の実施形態におけるマップマッチングで対象道路候補を特定する方法を説明する図
- 【図9】本発明の第1の実施形態におけるマップマッチングで特定した対象道路候補と元形状とを示す図
- 【図10】本発明の第1の実施形態における位置情報伝達方法で伝送する支線を示す図
- 【図11】本発明の第1の実施形態における位置情報伝達システムの構成を示すプロック図
- 【図12】本発明の第1の実施形態における位置情報伝達システムの送信側の動作を 示すフロー図
- 【図13】本発明の第1の実施形態における位置情報伝達システムで伝送される対象 道路及び支線を説明する図
- 【図14】本発明の第1の実施形態における位置情報伝達システムで伝送される形状 データを示す図
- 【図15】本発明の第1の実施形態における位置情報伝達システムの受信側の動作を 示すフロー図
- 【図16】本発明の第1の実施形態における位置情報伝達システムの受信側でのマッチング結果の評価方法を説明する図
 - 【図17】本発明の第2の実施形態におけるマッチング結果の評価方法を説明する図
 - 【図18】本発明の第3の実施形態におけるマッチング結果の評価方法を説明する図
 - 【図19】本発明の第3の実施形態における形状データを示す図
 - 【図20】本発明の第4の実施形態における形状データを示す図
 - 【図21】本発明の第4の実施形態におけるマッチング方法を説明する図
 - 【図22】本発明の第5の実施形態における形状データを示す図
 - 【図23】従来の位置情報伝達方法で伝送される形状データを示す図
 - 【図24】従来の位置情報伝達方法で伝送される形状データの他の例を示す図
 - 【図25】二条線表現形式で立体交差道路を表した地図を説明する図
 - 【図26】一条線表現形式で立体交差道路を表した地図を説明する図
 - 【図27】表現形式が異なる地図でのマップマッチングを説明する図
 - 【図28】誤マッチング結果を示す図

【符号の説明】

- [0040]
- 10 本線道路
- 10' 本線道路
- 11 道路
- 11' 道路
- 12a、12b、12c、12d 連絡路
- 12 a'、12 b'、12 c'、12 d' 連絡路
- 20 支線
- 2 1 連結路
- 30 情報送信装置
- 31 事象情報入力部
- 32 デジタル地図データベースA

- 33 形状データ抽出部
- 3 4 支線形状データ抽出部
- 3 5 可変長符号化処理部
- 36 データ蓄積部
- 37 外部メディア
- 38 形状データ送信部
- 40 情報活用装置
- 41 形状データ受信部
- 42 符号化データ復号部
- 43 形状データ復元部
- 44 本線形状データ抽出部
- 45 支線形状データ抽出部
- 46 デジタル地図データベースB
- 47 本線候補選出部
- 48 支線形状候補抽出部
- 4 9 評価値算出·対象道路決定部
- 50 情報活用部
- 101 上り路線
- 102 下り路線

【書類名】図面【図1】

【図2】

【図3】

【図4】

(a) (b)

【図6】

(a) (b)

【図7】

(b)

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

	_
ベクトルデータ種別(=道路)]
形状データ番号 (#1)	D
本線・支線の識別 (本線)	1
ノード総数 9	
ノード1X方向絶対座標(経度)	参照
ノード1 Y方向絶対座標(緯度)	される
ノード2X方向相対座標	┃
ノード 2 Y方向相対座標	(本線)
	1
ノード9X方向相対座標]
ノード9Y方向相対座標	\mathcal{V}
形状データ番号 (#2)	1
本線・支線の識別 (支線)	1
参照する形状データ番号(#1)	1
参照する形状データの 始端からのノード個数 5	支線
ノード総数 5	大塚 形状
ノード1X方向相対座標	データ
ノード1Y方向相対座標	
₹	1
ノード5X方向相対座標]
ノード5Y方向相対座標] ノ

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

(b)

【図23】

形状ペプトルデータ列 形状ペクトル列離別番号=1 ペクトルデータ種別(=道路)

ベクトルデータ組別(-道路)	データ種別(=道路)
脚ユーン	- k番号p 1
ノードp 1 X方向	ド p 1 X方向絶対座標(経度)
ノードp 1 Y方向	ドp 1 Y方向絶対座標(緯度)
神バーへ	— ド番号 p 2
ノードp 2 X方向相対座標	l対座標 (x2)
ノードP2Y方向相対座標	対座標(y 2)
~	
ノード	一ド番号pN
ノードpNX方向相	·ドpNX方向相対座標(x n)
ノードpNY方向相対座標))	相対座標(yn

 $\alpha \mathbf{l}$

ードp6の接続リンク角度

 \mathcal{Z}

ノードp6の接続リンク角度

【図24】

付加情報道路種別コード道路番号交差点情報数 1ノード番号 p6ノード p6 の接続リンク数 2

(p)

【図25】

【図26】

【図27】

【図28】

【曹類名】要約書

【要約】

【課題】 対象道路の道路形状データが送られた受信側での誤マッチングを防ぐことができるデジタル地図の位置情報伝達方法を提供する。

【解決手段】 送信側は、伝えようとする対象道路101の道路形状データと、対象道路101に交差または分岐する支線20の支線形状データとを送信する。受信側は、この支線20を参考にして、対象道路101を自己のデジタル地図上で特定する。この方法では、誤マッチングし易い分岐路や交差路の形状を示す情報が支線形状データとして受信側に与えられるため、受信側は、それらへの誤マッチングを避けることができる。支線形状れの識別を可能にするため、並行路との識別を可能にし、対象道路101の長さ方向へのずれの識別を可能にするため、並行路への誤マッチングや、対象道路101の長さ方向への誤マッチングを防ぐこともできる。

【選択図】図1

特願2003-285807

出 願 人 履 歴 情 報

識別番号

[000005821]

1. 変更年月日 [変更理由]

1990年 8月28日 新規登録

住所

大阪府門真市大字門真1006番地

松下電器産業株式会社