

Congruence Ex 16.3 Q1

Answer:

1) We have OA = OC and OB = OD and \angle AOB = \angle COD which are vertically opposite angles. Therefore by SAS condition, \triangle AOC \cong \triangle BOD.

2) We have BD = DC \angle ADB = \angle ADC = 90° and AD = AD Therefore by SAS condition, \triangle ADB \cong \triangle ADC.

3) We have AB = DC \angle ABD = \angle CDB and BD = DB Therefore by SAS condition, \triangle ABD \cong \triangle CBD.

4) We have BC = QR $\angle ABC = \angle PQR = 90^{\circ}$ and AB = PQ Therefore by SAS condition, $\triangle ABC \cong \triangle PQR$.

Congruence Ex 16.3 Q2

Answer:

1) AB = AD

BC = CD

and AC = CA

Therefore by SSS condition, \triangle $ABC \cong \triangle$ ADC.

2) AC = BD

AD = BC and AB = BA

Therefore by SSS condition, \triangle $ABD \cong \triangle$ BAC.

3) AB = AD

 $\angle BAC = \angle DAC$

and AC = AC

Therefore by SAS condition, \triangle $BAC \cong \triangle$ DAC.

4) AD = BC

Z DAC = ZBCA

and AC = CA

Therefore by SAS condition, \triangle $ABC \cong \triangle$ ADC.

Congruence Ex 16.3 Q3

Answer:

We have AO = OB. And CO = OD

Also $\angle AOC = \angle BOD$ Therefore by SAS condition, $\triangle AOC \cong \triangle BOD$.

Therefore, statement (ii) is true.

Congruence Ex 16.3 Q4

Answer:

We have AO = OB and CO = OD since AB and CD bisect each other at O.

Also $\angle AOC = \angle BOD$ since they are opposite angles on the same vertex. Therefore by SAS congruence condition, $\triangle AOC \cong \triangle BOD$.

********* END *******