Aalto University

Problem set 3

Department of Mathematics and Systems Analysis MS-C1541 — Metric spaces, 2021/III

K Kytölä & D Adame-Carrillo

(Exercise sessions: 28.-29.1.2021) Hand-in due: Tue 2.2.2021 at 23:59

Fill-in-the-blanks 1. Let (X, d) be a metric space. Complete the proof of the following claim.

Claim. Every finite subset

$$\{x_1,\ldots,x_n\}\subset X$$

in X is closed.

Proof. We seek to prove that $F = \{x_1, \ldots, x_n\} \subset X$ is closed. By definition this means that its complement $X \setminus F$ is

Therefore, let $y \in X \setminus F$. Then for all k = 1, ..., n we have $y \neq x_k$, and thus

$$r_k = \mathsf{d}(y, x_k) >$$
_____.

With the choice

$$r =$$

we have r > 0 and $r \le r_k$ for all k = 1, 2, ..., n. We then get

$$\mathcal{B}_r(y) = \mathcal{B}_{r_k}(y) \subset \mathcal{B}_{r_k}(y)$$

where the latter inclusion holds by the choice of r_k . Then we have also $\mathcal{B}_r(y) \subset X \setminus \{x_1, \ldots, x_n\}$.

The above reasoning shows that the set $X \setminus F$ is open. This proves the claim.

Fill-in-the-blanks 2. For $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$, denote

$$||x||_p = \left(\sum_{k=1}^d |x_k|^p\right)^{1/p}$$
 and $||x||_\infty = \max\{|x_1|, \dots, |x_d|\}.$

Complete the proof of the following result pertaining to the above norms on the n-dimensional space \mathbb{R}^d .

Claim. For all
$$x = (x_1, \dots, x_d) \in \mathbb{R}^d$$
, we have
$$\lim_{p \to \infty} ||x||_p = ||x||_{\infty}.$$

Proof. Consider a fixed $x \in \mathbb{R}^d$. (The parameter p, on the other hand, is thought of as a variable here.) Our goal is to prove that for all $p \ge 1$ we have

$$||x||_{\infty} \le ||x||_p \le d^{1/p} ||x||_{\infty}.$$

In view of

$$\lim_{p \to \infty} d^{1/p} = \underline{\hspace{1cm}},$$

the claim then follows from

(i) Let us first prove the left inequality in (\star) . From the definition of the norm $||x||_{\infty}$ it follows that there exists an index $m \in \{1, \ldots, d\}$ such that $|x_m| = ||x||_{\infty}$. Since the function $u \mapsto u^{1/p}$, $u \geq 0$, is increasing, we have

$$||x||_{\infty} = |x_m| = (|x_m|^p)^{1/p} \le \left(\underline{\hspace{1cm}} \right)^{1/p}$$

This proves the left inequality in (\star) .

(ii) Let us then prove the right inequality in (\star) . Choose the index m as above. Since the function $u \mapsto u^p$, $u \ge 0$, is increasing, for all indices $k = 1, \ldots, d$ we have $|x_k|^p \le |x_m|^p$, so we get

$$||x||_p = (|x_1|^p + \dots + |x_d|^p)^{1/p} \le \left(\underline{} \right)^{1/p}$$

$$= \underline{}$$

$$= \underline{} .$$

The right inequality in (\star) is thus also proven. \square