命題4.1 dim V=n(=dim V*) 2"

α1,..., αⁿ » " V*の基底であるとさ

α1,..., αⁿ » " V*の基底であるとさ

α1,..., αⁿ » " V*の基底であるとさ

は1,..., αⁿ » " V*の基底でよる。

(証明は略。)

注 k≥n+1のとえば Λ^k V*=0 2"ある。

命題4.2 \wedge は存合法則を対して、 せらに、 $\mu \in \Lambda^{k}V^{*}$ 、 $\mu' \in \Lambda^{k}V^{*}$ 、 $\mu'' \in \Lambda^{m}V^{*}$ に対し $\mu \wedge \mu' \wedge \mu''$ は 次で、与之られる: $(\mu \wedge \mu' \wedge \mu'') (\, \forall 1 \, , ..., \, \forall k + k + m \,)$ $= \frac{1}{k! \, l! \, m!} \sum_{\sigma \in S_{k+l+m}} (sgn \, \sigma) \, \mu (\, \forall \sigma (i) \, , ..., \, \forall \sigma (k + k + l) \,)$ $\times \, \mu' (\, \forall \sigma (k+l) \, , ..., \, \forall (k+k) \,) \, \mu'' (\, \forall \sigma (k+k+l) \, , ..., \, \forall \sigma (k+k+m) \,)$

注 x1,..., xk e V*12好し前12定数してこ x1,..., xk e V*12好し前12定数してこ x1,..., xk e V*12好し前12定数してこ 対別な場合である。 多様体上の物分k形式 定義 M上の物分k形式 とは $\omega = \{\omega_p\}_{p \in M}, \ \omega_p \in \Lambda^k T_p^* M \ \geq \omega_p \}$ $\omega : M \rightarrow \Lambda^k T^* M (:= \coprod \Lambda^k T_p^* M)$ $p \longmapsto \omega_p$ という写像とみによすことも多い。

庭敷 $M \circ + + - + (U; x^1, ..., x^n) (= \pi) (2\pi)$ $dx^i \wedge ... \wedge dx^i = \{ (dx^i) \wedge - \wedge (dx^i + p) \} p \in M$ $dx^i \wedge ... \wedge dx^i = \{ (dx^i) \wedge - \wedge (dx^i + p) \} p \in M$ $dx^i \wedge - \wedge (dx^i + p) \} \psi = \chi \psi$

<u>レ</u>製 wが<u>C[∞]級</u> 對 1±歳の午ート(2関する 高所座僚表示で、各 fi,…ik が C[∞]級。 Q^k(M):={M上の C[∞]級(級() k 形式)}。 注 これはよらに「メのある部() アトラス メニー属する各十一ト() 関する局的体際 表示で、各 fi,…ik が C[∞]級」とも同値。

それは次の変換則による。

命題 4.3 微分 k形式 wを 2つのチャート
(U; $x_1,...,x_n$), (\widetilde{U} ; $\widetilde{\chi}_1,...,\widetilde{\chi}_n$) (Σ)

 $\begin{array}{ll} \underline{13!} & R^2 = B = 2 \\ & \mathbb{R}^2 \setminus \left\{ (x,0) \mid x \leq 0 \right\} \leq B \neq 2 \\ & Y = \sqrt{x^2 + y^2} \cdot \theta = \operatorname{arctam} \frac{y}{x} \left(e(-\pi,\pi) \right) \\ & \mathbb{R}^2 \otimes \mathbb{R}^$

 $dy = \sin\theta \cdot dr + r\cos\theta \cdot d\theta.$ $(x, dx\wedge dy = \cos\theta \cdot r\cos\theta \, dr \wedge d\theta)$ $- r\sin\theta \cdot \sin\theta \, d\theta \wedge dr$ $= (r, dr \wedge d\theta).$ 命題 4.3 (こよるとこれを $\frac{2(x,y)}{2(r,\theta)}$ を計算する ことでも導ける。 (しかし冷くの場合、命題 4.3 を1欠うより 上記のよう(二直海計算して

しまりほうが実用的でごと思う。)

◎ ベクトル場を代入すること $\omega \in \Omega^k(M)$, $X_1,...,X_k \in \mathcal{X}(M)$, $\Sigma_1,...,X_k \in \mathcal{X}(M)$, Σ_2 は Σ_1 の Σ_2 の Σ_1 の Σ_2 の $\Sigma_$