This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

	4			Mary .	¥	TH. TH. WING.	Section (Artist	1 - 2 m 14 10 10		**
	T.				,		ž.	1144		3
		**		1, 2		4			1.	
	A		- a	***			,			
						* *	" transfer of the second	•		
			- y		1 1	* *	*			
	Corra									
	***			· 16 :		1 Si	· · · · · · · · · · · · · · · · · · ·	*		
							No. 10		(***	
, , , , , , , , , , , , , , , , , , ,		414	A							
	, c.	·	1.	1-2						
of j	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	3 × 3			1 4 200		= = Y			10
				<u>.</u>		**				
		*					* **			
				4.4			4. 2.		* •	
13					***				1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				· · · · · · · · · · · · · · · · · · ·				1 ⁶⁶		
				· 5	.1	. *	v			
			ž.		÷			· why -		
	AF C						, 17 i			Ē
			У							
				,				, A		
- 90 1 3			×							
			•			•	*			
Ē.				i.						
	Agents	,				÷				
			. E							• :
		W.,					1	* y		
					÷ .				1 31	
- 4						v 0.0		Ų		
				2						
			**			· 'a	, A			
				J 4	F-4	* * * :	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
									*	
	· ·	.*		*) (4) ·	e.				
			1 Karana			₩		*	4	
			2							
				E.						
	The second second		× 1	4171000	and the same of th		4		110	

4:

Esches Patenta

European Patent Office

Office européen des brevets

EP 0 816 380 A1 (11)

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 07.01.1998 Bulletin 1998/02

(21) Application number: 96902484.3

(22) Date of filing: 20.02.1996

(51) Int. Cl.⁶: **C07K 14/52**, C07K 16/24, C12N 15/19, C12N 15/06, C12N 5/08, C12N 5/10, C12N 5/20, C12P 21/02, C12P 21/08, G01N 33/577

(86) International application number: PCT/JP96/00374

(87) International publication number: WO 96/26217 (29.08.1996 Gazette 1996/39)

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 20.02.1995 JP 54977/95 21.07.1995 JP 207508/95

(71) Applicant: SNOW BRAND MILK PRODUCTS CO., LTD. Sapporo-shi, Hokkaido 065 (JP)

(72) Inventors:

 GOTO, Masaaki Tochigi 329-05 (JP)

 TSUDA, Eisuke Shimotsuga-gun, Tochigi 329-05 (JP)

· MOCHIZUKI, Shin' ichi Tochigi 329-04 (JP)

 YANO, Kazuki-Nishiura Heights 3-1 Tochigi 329-05 (JP)

KOBAYASHI, Fumie Tochigi 329-11 (JP)

 SHIMA, Nobuyuki Tochigi 329-04 (JP)

 YASUDA, Hisataka Kawachi-gun, Tochigi 329-04 (JP)

 NAKAGAWA, Nobuaki, Nishiura Heights 2-4 Shimotsuga-gun, Tochigi 329-05 (JP)

MORINAGA, Tomonori Tochigi 321-02 (JP)

 UEDA, Masatsugu Kawagoe-shi, Saitama 350-11 (JP)

HIGASHIO, Kanji Saitama 350 (JP)

(74) Representative: Wakerley, Helen Rachael Reddie & Grose, 16 Theobalds Road London WC1X 8PL (GB)

NOVEL PROTEIN AND METHODS FOR THE PRODUCTION OF THE SAME (54)

(57)A protein which inhibits osteoclast differentiation and/or maturation and a method of production of the protein. The protein is produced by human embryonic lung fibroblasts and has molecular weight of about 60 kD and about 120 kD under non-reducing conditions and about 60 kD under reducing conditions on SDSpolyacrylamide gel electrophoresis, respectively.

The protein can be isolated and purified from culture medium of the said fibroblasts. Furthermore, the protein can be produced by gene engineering.

The present invention includes cDNA for producing the protein by gene engineering, antibodies having specific affinity to the protein or a method for determination of the protein concentration using the antibodies.

1

Description

20

35

Field of the invention

This invention relates to a novel protein, osteoclastogenesis inhibitory factor (OCIF), and methods for producing the protein.

Background of the invention

Human bones are always remodelling by the repeated process of resorption and reconstitution. In the process, osteoblasts and osteoclasts are considered to be the cells mainly responsible for bone formation and bone resorption, respectively. A typical example of disease caused by the progression of abnormal bone metabolism is osteoporosis. The disease is known to be provoked by the condition in which bone resorption by osteoclasts exceeds bone formation by osteoblasts, but the mechanism of osteoporosis has not yet been completely elucidated. Osteoporosis causes pain in the bone and makes the bone fragile, leading to fracture. Since osteoporosis increases the number of bedridden old people, it has become a social issue with the increasing number of old people. Therefore, efficacious drugs for the treatment of the disease are expected to be developed. Bone mass reduction caused by the abnormal bone metabolism is thought to be prevented by inhibiting bone resorption, improving bone formation, or improving the balanced metabolism.

Bone formation is expected to be promoted by stimulating growth, differentiation, or activation of osteoblasts. Many cytokines are reported to stimulate growth or differentiation of osteoblasts, i.e. fibroblast growth factor (FGF) (Rodan S. B. et al., Endocrinology vol. 121, p1917, 1987), insulin-like growth factor-I (IGF-I) (Hock J.M. et al., Endocrinology vol. 122, p254, 1988), insulin-like growth factor-II (IGF-II) (McCarthy T. et al., Endocrinology vol. 124, p301, 1989), Activin A (Centrella M. et al., Mol, Cell, Biol. vol. 11, p250, 1991), Vasculotropin (Varonique M et al., Biochem. Biophys. Res. Commun. vol. 199, p380, 1994), and bone morphogenetic protein (BMP) (Yamaguchi, A et al., J. Cell Biol. vol. 113, p682, 1991, Sampath T.K. et al., J. Biol Chem. vol.267, p20532, 1992, and Knutsen R. et al., Biochem. Biophys. Res. Commun. vol.194, p1352, 1993.

On the other hand, cytokines which inhibits differentiation and/or maturation of osteoclasts <u>have been paid attention</u> and have been intensively studied. Transforming growth factor-β (Chenu C. et al., Proc. Natl. Acad. Sci. USA, vol.85, p5683, 1988) and interleukin-4 (Kasano K. et al., Bone-Miner., vol. 21, p179, 1993) are found to inhibit the differentiation of osteoclasts. Calcitonin (Bone-Miner., vol.17, p347, 1992), Macrophage colony-stimulating factor (Hattersley G. et al. J. Cell. Physiol. vol.137, p199, 1988), interleukin-4 (Watanabe, K. et al., Biochem. Biophys. Res. Commun. vol. 172, p1035, 1990), and interferon-γ (Gowen M. et al., J. Bone Miner. Res., vol.1, p469, 1986) are found to inhibit bone resorption by osteoclasts.

These cytokines are expected to be efficacious drugs for improving bone mass reduction by stimulating bone formation and/or by inhibiting bone resorption. The cytokines such as insulin like growth factor-I and bone morphogenetic proteins are now investigated in clinical trials for their effects in treatment of patients with bone diseases. Calcitonin is already used as a drug to care osteoporosis and to diminish pain in osteoporosis.

Examples of drugs now clinically utilized for the treatment of bone diseases and for shortening the treatment period are dihydroxyvitamine D_3 , vitamin K_2 , calcitonin and its derivatives, hormones such as estradiol, ipriflavon, and calcium preparations. However, these drugs do not provide satisfactory therapeutic effects, and novel drug substances have been expected to be developed. As mentioned, bone metabolism is controlled in the balance between bone resorption and bone formation. Therefore, cytokines which inhibit osteoclast differentiation and/or maturation are expected to be developed as drugs for the treatment of bone diseases such as osteoporosis.

Disclosure of Invention

This invention was initiated from the view point described above. The purpose of this invention is to offer both a novel factor termed osteoclastogenesis inhibitory factor (OCIF) and a procedure to produce the factor efficiently.

The inventors have intensively searched for osteoclastogenesis inhibitory factors in human embryonic fibloblast IMR-90 (ATCC CCL186) conditioned medium and have found a novel osteoclastogenesis inhibitory factor (OCIF) which inhibits differentiation and/or maturation of osteoclasts.

The inventors have established a method for accumulating the protein to a high concentration by culturing IMR-90 cells using alumina ceramic pieces as the cell adherence matrices.

The inventors have also established an efficient method for isolating the protein, OCIF, from the IMR-90 conditioned medium using the following sequential column chromatography, ion-exchange, heparin affinity, cibacron-blue affinity, and reverse phase.

The inventors, based on the amino acid sequence of the purified natural OCIF, successfully cloned a cDNA encod-

ing this protein. The inventors established also a procedure to produce this protein which inhibits differentiation of osteoclasts. This invention concerns a protein which is produced by human lung fibroblast cells, has molecular weights in SDS-PAGE of 60 KD in the reducing conditions and 120 KD under the non-reducing conditions, has affinity for both cation-exchange resins and heparin, reduces its activity to inhibit differentiation and maturation of osteoclasts if treated for 10 minutes at 70 °C or for 30 minutes at 56 °C, and lose its activity to inhibit differentiation and maturation of osteoclasts by the treatment for 10 minutes at 90 °C. The amino acid sequence of the protein OCIF which is described in the present invention is clearly different from any of know factors inhibiting formation of osteoclasts.

The invention includes a method to purify OCIF protein, comprising; (1) culturing human fibroblasts, (2) applying the conditioned medium to a heparin column to obtain the adsorbed fraction, (3) purifying the OCIF protein using a cation-exchange column, (4) purifying the OCIF protein using a heparin affinity column, (5) purifying the OCIF protein using a cibacron blue affinity column, (6) isolating the OCIF protein using reverse-phase column chromatography. Cibacron blue F3GA coupled to a carrier made of synthetic hydrophilic polymers is an example of materials used to prepare Cibacron blue columns. These columns are conventionally called "blue colomns".

The invention includes a method for accumulating the OCIF protein to a high concentration by culturing human fibroblasts using alumina ceramic pieces as the cell-adherence matrices.

Moreover, the inventors determined the amino acid sequences of the peptides derived from OCIF, designed the primers based on these amino acid sequences, and obtained cDNA fragments encoding OCIF from a cDNA library of IMR-90 cells.

Detailed description of the invention

20

25

40

The OCIF protein of the present invention can be isolated from human fibroblast conditioned medium with high yield. The procedure to isolate OCIF is based on ordinary techniques for purifying proteins from biomaterials, in accordance with the physical and chemical properties of OCIF protein. For example, concentrating procedure includes ordinary biochemical techniques such as ultrafiltration, lyophylization, and dialysis. Purifying procedure includes combinations of several chromatographic techniques for purifying proteins such as ion-exchange column chromatography, affinity column chromatography, gel filtration column chromatography, hydrophobic column chromatography, reverse phase column chromatography, and preparative gel electrophoresis. The human fibroblast used for production of the OCIF protein is preferably IMR-90. A method for producing the IMR-90 conditioned medium is preferably a process comprising, adhering human embryonic fibroblast IMR-90 cells to alumina ceramic pieces in roller-bottles, using DMEM medium supplemented with 5 % new born calf serum for the cell culture, and cultivating the cells in roller-bottles for 7 to 10 days by stand cultivation. CHAPS (3-[(3-cholamid opropyl)-dimethylammonio]-1-propanesulfonate) is prefarably added to the buffer as a detergent in the purification steps of OCIF protein.

OCIF protein of the instant invention can be initially obtained as a heparin binding basic OCIF fraction by applying the culture medium to a heparin column (Heparin-Sepharose CL-6B, Pharmacia), eluting with 10 mM Tris-HCI buffer, pH 7.5, containing 2 M NaCI, and then by applying the OCIF fraction to a Q • anion-exchange column (HiLoad-Q/FF, Pharmacia), and collecting non-adsorbed fraction. OCIF protein can be purified by subjecting the obtained OCIF fraction to purification on a S • cation-exchange column (HiLoad-S/FF, Pharmacia). a heparin column (Heparin-5PW, TOSOH), Cibacrone Blue column (Blue-5PW, TOSOH), and a reverse-phase column (BU-300 C4, Perkin Elmer) and the material is defined by the previously described properties.

The present invention relates to a method of cloning cDNA encoding the OCIF protein based on the amino acid sequence of natural OCIF and a method of obtaining recombinant OCIF protein that inhibits differentiation and/or maturation of osteoclasts. The OCIF protein is purified according to the method described in the present invention and is treated with endopeptidase (for example, lysylendopeptidase). The amino acid sequences of the peptides produced by the digestion are determined and the mixture of oligonucleotides that can encode each internal amino acid sequence was systhesized. The OCIF cDNA fragment is obtained by PCR (preferably RT-PCR, reverse transcriptase PCR) using the oligonucleotide mixtures described above as primers. The full length OCIF cDNA encoding the OCIF protein is cloned from a cDNA library using the obtained OCIF DNA fragment as a probe. The OCIF cDNA containing the entire coding region is inserted into an expression vector. The recombinant OCIF can be produced by expressing the OCIF cDNA containing the entire coding region in mammalian cells or bacteria.

The present invention relates to the novel proteins OCIF2, OCIF3, OCIF4, and OCIF5 that are variants of OCIF and have the activity described above. These OCIF variants are obtained from the cDNA library constructed with IMR-90 poly(A) + RNA by hybridization using the OCIF cDNA fragment as a probe. Each of the OCIF variant cDNAs containing the entire coding region is inserted into an expression vector. Each recombinant OCIF variant can be produced by expressing each of the OCIF variant cDNAs containing the entire coding region in the conventional hosts. Each recombinant OCIF variant can be purified according to the method described in this invention. Each recombinant OCIF variant has an ability to inhibit osteoclastogenesis.

The present invention further includes OCIF mutants. They are substitution mutants comprising replacement of one

cysteine residue possibly involved in dimer formation with serine residue, and various deletion mutants of OCIF. Substitutions or deletions are introduced into the OCIF cDNA using polymerase chain reaction (PCR) or by restriction enzyme digestion. Each of these mutated OCIF cDNAs is inserted into a vector containing an appropriate promoter for gene expression. The resultant expression vector for each of the OCIF mutants is transfected into eukaryotic cells such as mammalian cells. Each of OCIF mutants can be obtained and purified from the conditioned media of the transfected cells.

5

20

The present invention provides polyclonal antibodies and a method to quantitatively determine OCIF concentration using these polyclonal antibodies.

As antigens (immunogens), natural OCIF obtained from IMR-90 conditioned medium, recombinant OCIF produced by such hosts as microorganisms and eukaryotes using OCIF cDNA, synthetic peptides designed based on the amino acid sequence of OCIF, or peptides obtained from OCIF by partial digestion can be used. Anti-OCIF polyclonal antibodies are obtained by immunizing appropriate mammals with the antigens in combination with adjuvants for immunization if necessary, purifying from the serum by the ordinary purification methods. The anti-OCIF polyclonal antibodies which are labelled with rasioisotopes or enzymes can be used in radio-immunoassay (RIA) system or immunoassay (EIA) system. By using these assay systems, the concentrations of OCIF in biological materials such as blood and ascites and cells-culture medium can be easily determined.

The antibodies in the present invention can be used in radio immunoassay (RIA) or enzyme immunoassay (EIA). By using these assay systems, the concentration of OCIF in biological materials such as blood and ascites can be easily determined.

The present invention provides novel monoclonal antibodies and a method to quantitatively determine OCIF concentration using these monoclonal antibodies.

Anti-OCIF monoclonal antibodies can be produced by the conventional method using OCIF as an antigen. Native OCIF obtained from the culture medium of IMR-90 cells and recombinant OCIF produced by such hosts as microorganisms and eukaryotes using OCIF cDNA can be used as antigens. Alternatively, synthesized peptides designed based on the amino acid sequence of OCIF and peptides obtained from OCIF by partial digestion can be also used as antigens. Immunized lymphocytes obtained by immunization of mammals with the antigen or by an in vitro immunization method were fused with myeloma of mammals to obtain hybridoma. The hybridoma clones secreting antibody which recognizes OGIF were selected from the hybridomas obtained by the cell fusion. The desired antibodies can be obtained by cell culture of the selected hybridoma clones. In preparation of hybridoma, small animals such as mice or rats are generally used for immunization. To immunize, OCIF is suitably diluted with a saline solution (0.15 M NaCI), and is intravenously or intraperitoneally administered with an adjuvant to animals for 2 -5 times every 2 -20 days. The immunized animal was killed three days after final immunization, the spleen was taken out and the splenocytes were used as immunized B lymphocytes.

Mouse myeloma cell lines for cell fusion with the immunized B lymphocytes include, for example, p3/x63-Ag8, p3-U1, NS-1, MPC-11, SP-2/0, FO, p3x63 Ag8.653, and S194. Rat R-210 cell line may also be used. Human B lymphocytes are immunized by an in vitro immunization method and are fused with human myeloma cell line or EB virus transformed human B lymphocytes which are used as a parent cell line for cell fusion, to produce human type antibody.

Cell fusion of the immunized B lymphocytes and myeloma cell line is carried out principally by the conventional methods. For example, the method of Koehler G. et al. (Nature 256, 495-497, 1975) is generally used, and also an electric pulse method can be applied to cell fusion. The immunized B lymphocytes and transformed B cells are mixed at conventional ratios and a cell culture medium without FBS containing polyethylene glycol is generally used for cell fusion. The B lymphocytes fused with myeloma cell lines are cultured in HAT selection medium containing FBS to select hybridoma.

For screening of hybridoma producing anti-OCIF antibody, EIA, plaque assay, Ouchterlony, or agglutination assay can be principally used. Among them, EIA is simple and easy to operate with sufficient accuracy and is generally used. By EIA using purified OCIF, the desired antibody can be selected easily and accurately. Thus obtained hybridoma can be cultured by the conventional method of cell culture and frozen for stock if necessary. The antibody can be produced by culturing hybridoma using the ordinary cell culture method or by transplanting hybridoma intraperitoneally to animals. The antibody can be purified by the ordinary purification methods such as salt precipitation, gel filtration, and affinity chromatography. The obtained antibody specifically reacts with OCIF and can be used for determination of OCIF concentration and for purification of OCIF. The antibodies of the present invention recognize epitopes of OCIF and have high affinity to OCIF. Therefore, they can be used for the construction of EIA. By (using) this assay system, the concentration of OCIF in biological materials such as blood and ascites can be easily determined.

The agents used for treating bone diseases that contain OCIF as an effective ingredient are provided by the present invention. Rats were subjected to denervation of left forelimb. Test compounds were administered daily after surgery for 14 days. After 2 weeks treatment, the animals were sacrificed and their forelimbs were dissected. Thereafter bones were tested for mechanical strength by three point bending method. OCIF improved mechanical strength of bone in a dose dependent manner.

The OCIF protein of the invention is useful as a pharmaceutical ingredients for treating or improving decreased bone mass in such as osteoporosis, bone diseases such as rheumatism, osteoarthritis, and abnormal bone metabolism in multiple myeloma. The OCIF protein is also useful as an antigen to establish immunological diagnosis of the diseases. Pharmaceutical preparations containing the OCIF protein as an active ingredients are formulated and can be orally or parenterally administered. The preparation contains the OCIF protein of the present invention as an efficacious ingredient and is safely administered to human and animals. Examples of the pharmaceutical preparations include compositions for injection or intravenous drip, suppositories, nasal preparations; sublingual preparations, and tapes for percutaneous absorption. The pharmaceutical preparation for injection can be prepared by mixing the pharmacologically efficacious amount of OCIF protein and pharmaceutically acceptable carriers. The carriers are vehicles and/or activators, e.g. amino acids, saccharides, cellulose derivatives, and other organic and inorganic compounds which are generally added to active ingredients. When the OCIF protein is mixed with the vehicles and/or activators to prepare injections, pH adjuster, buffer, stabilizer, solubilizing agent, etc. can be added, if necessary.

Brief description of the figures

15

20

25

30

35

40

45

50

55

Figure 1 shows the elution pattern of crude OCIF protein (Hiload-Q/FF pass-through fraction; sample 3) from a Hiload-S/HP column.

Figure 2 shows the elution pattern of crude OCIF protein (heparin-5PW fraction; sample 5) from a blue-5PW column.

Figure 3 shows the elution pattern of OCIF protein (blue-5PW fraction 49 to 50) from a reverse-phase column. Figure 4 shows the SDS-PAGE of isolated OCIF proteins under reducing conditions or non-reducing conditions. Description of the lanes,

lane 1,4; molecular weight marker proteins

lane 2,5; OCIF protein of peak 6 in figure 3

lane 3,6; OCIF protein of peak 7 in figure 3

Figure 5 shows the elution pattern of peptides obtained by the digestion of pyridyl ethylated OCIF protein digested with lysylendopeptidase, on a reverse-phase column.

Figure 6 shows the SDS-PAGE of isolated natural(n) OCIF protein and recombinant(r) OCIF proteins under non-reducing conditions. rOCIF(E) and rOCIF(C) were produced in 293/EBNA cells and in CHO cells, respectively.

Description of the lanes,

lane 1; molecular weight marker proteins

lane 2; a monomer type nOCIF protein

lane 3; a dimer type nOCIF protein

lane 4; a monomer type rOCIF(E) protein

lane 5; a dimer type rOCIF(E) protein

lane 6; a monomer type rOCIF(C) protein

lane 7; a dimer type rOCIF(C) protein

Figure 7 shows the SDS-PAGE of isolated natural(n) OCIF proteins and recombinant (r) OCIF proteins under reducing conditions. rOCIF(E) and rOCIF(C) were produced in 293/EBNA cells and in CHO cells, respectively. Description of the lanes,

lane 8; molecular weight marker proteins

lane 9; a monomer type nOCIF protein

lane 10; a dimer type nOCIF protein

lane 11; a monomer type rOCIF(E) protein

lane 12; a dimer type rOCIF(E) protein

lane 13; a monomer type rOCIF(C) protein

lane 14; a dimer type rOCIF(C) protein

Figure 8 shows the SDS-PAGE of isolated natural(n) OCIF proteins and recombinant(r) OCIF proteins from which N-linked sugar chains were removed under reducing conditions. rOCIF(E) and rOCIF(C) are rOCIF protein produced in 293/EBNA cells and in CHO cells, respectively.

Description of the lanes,

lane 15; molecular weight marker proteins

lane 16; a monomer type nOCIF protein

lane 17; a dimer type nOCIF protein

lane 18; a monomer type rOCIF(E) protein

lane 19; a dimer type rOCIF(E) protein

lane 20; a monomer type rOCIF(C) protein

lane 21; a dimer type rOCIF(C) protein

Figure 9 shows comparison of amino acid sequences between OCIF and OCIF2.

Figure 10 shows comparison of amino acid sequences between OCIF and OCIF3.

Figure 11 shows comparison of amino acid sequences between OCIF and OCIF4.

Figure 12 shows comparison of amino acid sequences between OCIF and OCIF5.

Figure 13 shows standard curve for determination of OCIF protein concentration by an EIA employing anti-OCIF polyclonal antibodies.

Figure 14 shows standard curve for determination of OCIF protein concentration by an EIA employing anti-OCIF monoclonal antibodies.

Figure 15 shows the effect of rOCIF protein on osteoporosis.

Best Mode for Carrying Out the Invention

20

15

5

10

The present invention will be further explained by the following examples, however, the scope of the invention is not restricted to the examples.

EXAMPLE 1

25

Preparation of a conditioned medium of human fibroblast IMR-90

Human fetal lung fibroblast IMR-90 (ATCC-CCL186) cells were cultured on alumina ceramic pieces (80 g) (alumina: 99.5%, manufactured by Toshiba Ceramic K.K.) in DMEM medium (manufactured by Gibco BRL Co.) supplemented with 5% CS and 10mM HEPES buffer (500 ml/roller bottle) at 37°C under the presence of 5% CO₂ for 7 to 10 days using 60 roller bottles (490 cm², 110 x 171mm, manufactured by Coning Co.)in static culture. The conditioned medium was harvested, and a fresh medium was added to the roller bottles. About 30L of IMR-90 conditioned medium per batch culture was obtained. The conditioned medium was designated as sample 1.

EXAMPLE 2

Assay method for osteoclast development inhibitory activity

Osteoclast development inhibitory activity was assayed by measuring tartrate-resistant acid phosphatase(TRAP) activity according to the methods of M. Kumegawa et.al (Protein · Nucleic Acid · Enzyme, vol.34 p999, 1989) and N. Takahashi et.al (Endocrynology, vol.122, p1373, 1988) with modifications. Briefly, bone marrow cells obtained from 17 day-old mouse were suspended in α-MEM (manufactured by GIBCO BRL Co.) containing 10% FBS, 2x10⁻⁸M of activated vitamin D₃, and each test sample, and were inoculated to each well of 96-well plate at a cell density of 3x10⁻⁵ cells/0.2 ml/well. The plates were incubated for 7 days at 37°C in humidified 5%CO₂. Cultures were further continued by replacing 0.16 ml of old medium with the same volume of fresh medium on day 3 and day 5 after starting cultivation. On day 7, after washing the plates with phosphate buffered saline, cells were fixed with ethanol/acetone (1:1) for 1 min. at room temperature, and then osteoclast development was tested by determining for phosphatase activity using a kit (Acid Phosphatase, Leucocyte, Catalog No. 387-A, manufactured by Sigma Co.). The decrease of TRAP positive cells was taken as an indication of OCIF activity.

EXAMPLE 3

50

Purification of OCIF

i) Heparin Sepharose CL-6B column chromatography

The 90L of IMR-90 conditioned medium (sample 1) was filtrated with 0.22 μ membrane filter (hydrophilic Milidisk, 2000 cm², Milipore Co.), and was divided into three portions. Each portion (30 I) was applied to a heparin Sepharose

CL-6B column (5 x 4.1 cm, Pharmacia Co.) equilibrated with 10mM Tris-HCl containing 0.3M NaCl, pH 7.5. After washing the column with 10mM Tris-HCl, pH 7.5 at a flow rate of 500 ml/hr., heparin Sepharose CL-6B adsorbent protein fraction was eluted with 10mM Tris-HCl, pH 7.5, containing 2M NaCl. The fraction was designated as sample 2.

ii) HiLoad-Q/FF column chromatography

The heparin Sepharose-adsorbent fraction (sample 2) was dialyzed against 10mM Tris-HCl, pH 7.5, supplemented with CHAPS to a final concentration of 0.1%, incubated at 4 °C overnight, and divided into two portions. Each portion was then applied to an anion-exchange column (HiLoad-Q/FF, 2.6 x 10 cm, Pharmacia Co.) which was equilibrated with 50mM Tris-HCl, 0.1% CHAPS, pH 7.5 to obtain a non-adsorbent fraction (1000 ml). The fraction was designated as sample 3.

iii) HiLoad-S/HP column chromatography

The HiLoad-Q non-adsorbent fraction (sample 3) was applied to a cation-exchange column (HiLoad-S/HP, 2.6 x 10 cm, Pharmacia Co.) which was equilibrated with 50 mM Tris-HCl, 0.1% CHAPS, pH 7.5. After washing the column with 50 mM Tris-HCl, 0.1% CHAPS, pH 7.5, the adsorbed protein was eluted with linear gradient from 0 to 1 M NaCl at a flow rate of 8 ml/min for 100 min. and fractions (12 ml) were collected. Each ten fractions from number 1 to 40 was pooled to form one portion. Each 100 µl of the four portions was tested for OCIF activity. OCIF activity was observed in fractions from 11 to 30 (as shown in Figure 1). The fractions from 21 to 30 which had higher specific activity were collected and was designated as sample 4.

iv) Heparin-5PW affinity column chromatography

25 One hundred and twenty ml of HiLoad-S fraction from 21 to 30 (sample 4) was diluted with 240 ml of 50 mM Tris-HCl, 0.1% CHAPS, pH 7.5, and applied to heparin-5PW affinity column (0.8 x 7.5 cm, Tosoh Co.) which was equilibrated with 50mM Tris-HCl, 0.1% CHAPS, pH 7.5. After washing the column with 50mM Tris-HCl, 0.1% CHAPS, pH 7.5, the adsorbed protein was eluted with linear gradient from 0 to 2M NaCl at a flow rate of 0.5ml/min for 60 min. and fractions (0.5 ml) were collected. Fifty µl was removed from each fraction to test for OCIF activity. The active fractions, eluted with 0.7 to 1.3M NaCl was pooled and was designated as sample 5.

v) Blue 5PW affinity column chromatography

Ten ml of sample 5 was diluted with 190 ml of 50mM Tris-HCl, 0.1% CHAPS, pH 7.5 and applied to a blue-5PW affinity column, (0.5x5 cm, Tosoh Co.) which was equilibrated with 50mM Tris-HCl, 0.1% CHAPS, pH 7.5. After washing the column with 50mM Tris-HCl, 0.1% CHAPS, pH7.5, the adsorbed protein was eluted with a 30 ml linear gradient from 0 to 2M NaCl at a flow rate of 0.5 ml/min., and fractions (0.5 ml) were collected. Using 25 μ l of each fraction, OCIF activity was evaluated. The fractions number 49 to 70, eluted with 1.0-1.6M NaCl had OCIF activity.

vi) Reverse phase column chromatography

50

55

The blue 5PW fraction obtained by collecting fractions from 49 to 50 was acidified with 10µl of 25% TFA and applied to a reverse phase C4 column (BU-300, 2.1x220mm, manufactured by Perkin-Elmer) which was equilibrated with 0.1% of TFA and 25% of acetonitrile. The adsorbed protein was eluted with linear gradient from 25 to 55% acetonitrile at a flow rate of 0.2 ml/min. for 60 min., and each protein peak was collected (Fig.3). One hundred µl of each peak fraction was tested for OCIF activity, and peak 6 and the peak 7 had OCIF activity. The result was shown in Table 1.

Table 1

OCIF activity eluted from reverse phase C4 column						
Sample	Dilution					
	1/40	1/120	1/360	1/1080		
Peak 6	++	++	+	-		
Peak 7	++	+				

[++ means OCIF activity inhibiting osteoclast development more than 80%, + means OCIF activity inhibiting osteoclast development between 30% and 80%, and - means no OCIF activity.]

EXAMPLE 4

10

15

20

35

45

Molecular weight of OCIF protein

The two protein peaks (6 and 7) with OCIF activity were subjected to SDS-polyacrylamide gel electrophoresis under reducing and non-reducing conditions. Briefly, 20µl of each peak fraction was concentrated under vacuum and dissolved in 1.5µl of 10mM Tris-HCl, pH 8, 1mM EDTA, 2.5% SDS, 0.01% bromophenol blue, and incubated at 37°C overnight under non-reducing conditions or under reducing conditions (with 5% of 2-mercaptoethanol). Each 1.0 µl of sample was then analyzed by SDS-polyacrylamide gel electrophoresis with a gradient gel of 10-15% acrylamide (Pharmacia Co.) and an electrophoresis-device (Fast System, Pharmacia Co.). The following molecular weight marker proteins were used to calculate molecular weight : phosphorylase b (94 kD), bovine serum albumin (67 kD), ovalbumin (43 kD), carbonic anhydrase (30 kD), trypsin inhibitor (20.0 kD), and lactalbumin (14.4 kD). After electrophoresis, protein bands were visualized by silver stain using Phast Silver Stain Kit. The results were shown in Fig. 4.

A protein band with an apparent 60 KD was detected in the peak 6 protein under both reducing and non-reducing conditions. A protein band with an apparent 60 KD was detected under reducing conditions and a protein band with an apparent 120 KD was detected under non-reducing conditions in the peak 7 protein. Therefore, the protein of peak 7 was considered to be a homodimer of the protein of peak 6.

EXAMPLE 5

Thermostability of OCIF

Twenty μ I of sample from the blue-5PW fractions 51 and 52 was diluted to 30 μ I with 10 mM phosphate buffered saline, pH 7.2, and incubated for 10 min. at 70°C or 90 °C, or for 30 min. at 56°C. The heat-treated samples were tested for OCIF activity. The results were shown in Table 2.

Table 2

	TCL.	76 Z						
Thermostability of OCIF								
Sample	Dilution							
	1/300	1/900	1/2700					
untreated	++	+	-					
70°C, 10 min	+	-	•					
56°C, 30 min	+	-	- -					
90°C, 10 min	-		<u>-</u> ,					

[++ means OCIF activity inhibiting osteoclast development more than 80%, +means OCIF activity inhibiting osteoclast development between 30% and 80%, and - means no OCIF activity.]

EXAMPLE 6

Internal amino acid sequence of OCIF protein

Each 2 fractions (1 ml) from No. 51-70 of blue-5PW fraction was acidified with 10 µl of 25% TFA, and was applied to a reverse phase C4 column (BU-300, 2.1x220mm, manufactured by Perkin-Elmer Co.) equilibrated with 25% of acetonitrile containing 0.1 % TFA. The adsorbed protein was eluted with a 12 ml linear gradient of 25 to 55% acetonitrile at a flow rate of 0.2 ml/min, and the protein fractions corresponding to peak 6 and peak 7 were collected, respectively. The protein of each peak was applied to a protein sequencer (PROCISE 494, Perkin-Elmer Co.). However, the N-terminal sequence of the protein of each peak could not be analyzed. Therefore, N-terminal of the protein of each peak was considered to be blocked. So, internal amino acid sequences of these proteins were analyzed.

The protein of peak 6 or peak 7 purified by C4-HPLC was concentrated by centrifugation and pyridilethylated under reducing conditions. Briefly, 50 μl of 0.5 M Tris-HCl, pH 8.5, containing 100μg of dithiothreitol, 10mM EDTA, 7 M guanidine-HCl, and 1% CHAPS was added to each samples, and the mixture was incubated overnight in the dark at a room temperature. Each the mixture was acidified with 25% TFA (a final concentration 0.1%) and was applied to a reversed phase C4 column (BU-300, 2.1x30mm, Perkin-Elmer Co.) equilibrated with 20% acetonitrile containing 0.1% TFA. Th pyridil-ethylated OCIF protein was eluted with a 9 ml linear gradient from 20 to 50% acetonitrile at a flow rate of 0.3 ml/min, and each protein peak was collected. The pyridil-ethyrated OCIF protein was concentrated under vacuum, and dissolved in 25μl of 0.1 M Tris-HCl, pH 9, containing 8 M Urea, and 0.1% Tween 80. Seventy three μl of 0.1 M Tris-HCl, pH 9, and 0.02 μg of lysyl endopeptidase (Wako Pure Chemical, Japan) were added to the tube, and incubated at 37 °C for 15 hours. Each digest was acidified with 1 μl of 25% TFA and was applied to a reverse phase C8 column (RP-300, 2.1x220mm, Perkin-Elmer Co.) equilibrated with 0.1% TFA.

The peptide fragments were eluted from the column with linear gradient from 0 to 50 % acetonitrile at a flow rate of 0.2 ml/min for 70 min., and each peptide peak was collected. Each peptide fragment (P1 - P3) was applied to the protein sequencer. The sequences of the peptides were shown in Sequence Numbers 1 - 3, respectively.

EXAMPLE 7

30

35

45

50

55

Determination of nucleotide sequence of the OCIF cDNA

i) Isolation of poly(A) + RNA from IMR-90 cells

About 10 ug of poly(A) + RNA was isolated from $1x10^8$ cells of IMR-90 by using Fast Track mRNA isolation kit (Invitrogen) according to the manufacturer's instructions.

ii) Preparation of mixed primers

The following two mixed primers were synthesized based on the amino acid sequences of two peptides (peptide P2 and peptide P3, sequence numbers 2 and 3, respectively). All the oligonucleotides in the mixed primers No. 2F can code for the amino acid sequence from the sixth residue, glutamine (Gin) to the twelfth residue, leucine (Leu), in peptide P2. All the oligonucleotides in the mixed primers No. 3R can code for the amino acid sequence from the sixth residue, histidine (His), to the twelfth residue, lysine (Lys), in peptide P3. The sequences of the mixed primers No. 2F and No. 3R were shown in Table 3.

q

Table 3

No. 2F

10

15

20

25

30

45

50

5'-CAAGAACAAA CTTTTCAATT-3'

G G G C C GC

A

G

No. 3R

5'-TTTATACATT GTAAAAGAAT G-3'

C G C G GCTG

A C

G T

iii) Amplification of OCIF cDNA fragment by PCR (Polymerase chain reaction)

First strand cDNA was generated using Superscript II cDNA synthesis kit (Gibco BRL) and 1 ug of poly (A) + RNA obtained in the example 7-i) according to the manufacturer's instructions. The DNA fragment encoding OCIF was obtained by PCR using the cDNA template and the primers shown in EXAMPLE 7-ii).

PCR was performed with the conditions as follows;

10X Ex Taq Buffer (Takara Shuzo)	5 ul
2.5 mM solution of dNTPs	4 ui
cDNA solution	1 ul
Ex Taq (Takara Shuzo)	0.25 ul
sterile distilled water	29.75 ul
40 uM solution of primers No. 2F	5 ul
40 uM solution of primers No. 3R	5 ul

The components of the reaction were mixed in a microcentrifuge tube. An initial denaturation step at 95 °C for 3 min was followed by 30 cycles of denaturation at 95 °C for 30 sec annealing at 50 °C for 30 sec and extention at 70 °C for 2 min. After the amplification, final extention step was performed at 70 °C for 5 min. The size of PCR products were determined on a 1.5 % agarose gel electrophoresis. About 400 bp OCIF DNA fragment was obtained.

EXAMPLE 8

Cloning of the OCIF cDNA fragment amplified by PCR and determination of its DNA sequence

The OCIF cDNA fragment amplified by PCR in EXAMPLE 7-iii) was inserted in the plasmid, pBluescript II SK using DNA ligation kit ver. 2 (Takara Shuzo) according to the method by Marchuk, D. et al. (Nucleic Acids Res., vol 19, p1154, 1991). E.coli. DH5 α (Gibco BRL) was transformed with ligation mixture. The transformants were grown and a plasmid containing the OCIF cDNA (about 400 bp) was purified using the commonly used method. This plasmid was called pBSOCIF. The sequence of OCIF cDNA in pBSOCIF was determined using Taq Dye Deoxy Terminater Cycle Sequencing kit (Perkin Elmer). The size of the OCIF cDNA is 397 bp. The OCIF cDNA encodes an amino acid sequence containing 132 residues. The amino acid sequences of the internal peptides (peptide P2 and peptide P3, sequence number 2 and 3, respectively) that were used to design the primers were found at N- or C- terminal side in the amino acid sequence of the 132 amino acid polypeptide predicted by the 397 bp OCIF cDNA. In addition, the amino acid sequence of the internal peptide P1 (sequence number 1) was also found in the predicted amino acid sequence of the polypeptide. These data show that the 397 bp OCIF cDNA is a portion of the full length OCIF cDNA.

EXAMPLE 9

Preparation of the DNA probe

20

5

The 397 bp OCIF cDNA was prepared according to the conditions described in EXAMPLE 7-iii). The OCIF cDNA was subjected to a preparative agarose gel electrophoresis. The OCIF cDNA was purified from the gel using QIAEX gel extraction kit (QIAGEN), labeled with $[\alpha^{32}P]$ dCTP using Megaprime DNA labeling system (Amersham) and used to select a phage containing the full length OCIF cDNA.

25

30

EXAMPLE 10

Preparation of the cDNA library

cDNA was generated using Great Lengths cDNA synthesis kit (Clontech), oligo (dT) primer, $[\alpha^{32}P]dCTP$ and 2.5 ug of poly(A) + RNA obtained in the example 7-i) according to the manufacturer's instructions. EcoRI-Sall-NotI adaptor was ligated to the cDNA. The cDNA was separated from the free adaptor and unincorporated free $[\alpha^{32}P]dCTP$. The purified cDNA was precipitated with ethanol and dissolved in 10 ul of TE buffer (10 mMTris-HCl (pH8.0), 1 mM EDTA). The cDNA with the adaptor was inserted in λ ZAP EXPRESS vector (Stratagene) at EcoRI site. The recombinant λ ZAP EXPRESS phage DNA containing the cDNA was in vitro packaged using Gigapack gold II packaging extract (Stratagene) and recombinant λ ZAP EXPRESS phage library was prepared.

EXAMPLE 11

Screening of recombinant phage

Recombinant phages obtained in EXAMPLE 10 were infected to E. Coli, XL1-Blue MRF' (Stratagene) at 37 °C for 15 min.. The infected E.coli cells were added to NZY medium containing 0.7 % agar at 50°C and plated on the NZY agar plates. After the plates were incubated at 37 °C overnight, Hybond N (Amersham) were placed on the surface of plates containing plaques. The membranes were denatured in the alkali solution, neutralized, and washed in 2xSSC according to the standard protocol. The phage DNA was immobilized on the membranes using UV Crosslink (Stratagene). The membranes were incubated in the hybridization buffer (Amersham) containing 100 µg/ml salmon sperm DNA at 65°C for 4 hours and then incubated at 65 °C overnight in the same buffer containing 2x10⁵ cpm/ml denatured OCIF DNA probe. The membranes were washed twice with 2xSSC and twice with a solution containing 0.1xSSC and 0.1 % SDS at 65 °C for 10 min each time. The positive clones were purified by repeating the screening twice. The purified \(\lambda\)ZAP EXPRESS phage clone containing about 1.6 kb DNA insert was used in the experiments described below. This phage was called λOCIF. The purified λOCIF and the infected into E. Coli XL1-Blue MRF (Stratagene) according to a protocol of λZAP EXPRESS cloning kit (Stratagene). The culture broth of infected XL1-Blue MRF' was prepared. Purified 10CIF and ExAssist helper phage (Stratagene) were co-infected into E. coli strain XL-1 blue MRF according to the protocol supplied with the kit. The culture broth of the co-infected XL-1 blue MRF' was added to a culture of E. coli strain XLOR (Stratagene) to transform them. Thus we obtained a Kanamycin-resistant transformant harboring a plasmid designated pBKOCIF which is a pBKCMV (Stratagene) vector containing the 1.6 kb insert fragment. The transformant including the plasmid containing about 1.6 kb OCIF cDNA was obtained by picking up the kanamycin-

resistant colonies. The plasmid was called pBKOCIF. The transformant has been deposited to National Institute of Bioscience and Human-Technology (NIBH), Agency of Industrial Science and Tecnology as "FERM BP-5267" as pBK/O1F10. A national deposit (Accession number, FERM P-14998) was transferred to the international deposit, on October 25, 1995 according to the Budapest treaty. The transformant pBK/O1F10 was grown and the plasmid pBKOCIF was purified according to the standard protocol.

EXAMPLE 12

10

20

Determination of the nucleotide sequence of OCIF cDNA containing the full coding region.

The nucleotide sequence of OCIF cDNA obtained in EXAMPLE 11 was determined using Taq Dye Deoxy Terminater Cycle Sequencing kit (Perkin Elmer). The primers used were T3, T7 primers (Stratagene) and synthetic primers designed according to the OCIF cDNA sequence. The sequences of these primers are shown in sequence numbers 16 to 29. The nucleotide sequence of the OCIF cDNA is shown in sequence number 6 and the amino acid sequence predicted by the cDNA sequence is shown in sequence number 5.

EXAMPLE 13

Production of recombinant OCIF by 293/EBNA cells

i) Construction of the plasmid for expressing OCIF cDNA

pBKOCIF containing about 1.6 kb OCIF cDNA was prepared as described in EXAMPLE 11, and digested with restriction enzymes, BamHI and XhoI. The OCIF cDNA insert was cut out, separated by an agarose gel electrophoresis, and purified using QIAEX gel extraction kit (QIAGEN). The purified OCIF cDNA insert was ligated using DNA ligation kit ver. 2 (Takara Shuzo) to the expression vector pCEP4 (Invitrogen) digested with restriction enzymes, BamHI and XhoI. E.coli. DH5α (Gibco BRL) was transformed with the ligation mixture. The transformants were grown and the plasmid containing the OCIF cDNA (about 1.6 kb) was purified using QIAGEN column (QIAGEN). The expression plasmid pCEPOCIF was precipitated with ethanol, and dissolved in sterile distilled water was used in the expreriments described below.

ii) Transient expression of OCIF cDNA and analysis of the biological activity

Recombinant OCIF was produced using the expression plasmid, pCEPOCIF prepared in EXAMPLE 13-i) according to the method described below. 8x10⁵ cells of 293/EBNA (Invitrogen) were inoculated in each well of the 6-well plate using IMDM containing 10 % fetal calf serum (Gibco BRL). After the cells were incubated for 24 hours, the culture medium was removed and the cells were washed with serum free IMDM. The expression plasmid, pCEPOCIF and lipofectamine (Gibco BRL) were diluted with OPTI-MEM (Gibco BRL) and were mixed, and added to the cells in each well according to the manufacture's instructions. Three μg of pCEPOCIF and 12 μl of lipofectamine were used for each transfection. After the cells were incubated with pCEPOCIF and lipofectamine for 38 hours, the medium was replaced with 1 ml of OPTI-MEM. After the transfected cells were incubated for 30 hours, the conditioned medium was harvested and used for the biological assay. The biological activity of OCIF was analysed according to the method described below. Bone marrow cells obtained from mice, 17 days-old, were suspended in α -MEM (manufactured by GIBCO BRL Co.) containing 10% FBS, $2x10^{-8}M$ activated vitamin D_{3} , and each test sample, and were inoculated and cultured for 7 days at 37°C in humidified 5%CO₂ as described in EXAMPLE 2. During incubation, 160 µl of old medium in each well was replaced with the same volume of the fresh medium containing test sample diluted with 1x10⁻⁸M of activated vitamin D_3 and α -MEM containing FBS on day 3 and day 5. On day 7, after washing the wells with phosphate buffered saline, cells were fixed with ethanol/acetone (1:1) for 1 min. and then osteoclast development was tested using acid phosphatase activity mesuring kit (Acid Phosphatase, Leucocyte, Catalog No. 387-A, Sigma Co.). The decrease of the number of TRAP positive cells was taken as an OCIF activity. As result, the conditioned medium showed the same OCIF activity as natural OCIF protein from IMR-90 conditioned medium (Table 4).

Table 4

Cultured Cell	Dilution						
	1/20	1/40	1/80	1/160	1/320	1/640	1/1280
OCIF expression vector transfected	++	++	++	++	++	+	-
vector transfected	-	•	•		-	-	-
untreated	-	-	•	-	-	-	

[++; OCIF activity inhibiting osteoclast development more than 80%, +; OCIF activity inhibiting osteoclast development between 30% and 80%, and -; no OCIF activity.]

iii) Isolation of recombinant OCIF protein from 293/EBNA-conditioned medium

293/EBNA-conditioned medium (1.8 l) obtained by cultivating the cells described in example 13-ii) was supplemented with 0.1 % of CHAPS and filtrated with 0.22 μm membrane filter (Steribecs GS, Milipore Co.). The conditioned medium was applied to 50 ml of a heparin Sepharose CL-6B column (2.6 x 10 cm, Pharmacia Co.) equilibrated with 10mM Tris-HCl, pH 7.5. After washing the column with 10mM Tris-HCl, pH 7.5, the adsorbed protein was eluted from the column with linear gradient from 0 to 2 M NaCl at a flow rate of 4 ml/min for 100 min. and fractions (8 ml) were collected. Using 150 μl of each fraction, OCIF activity was assayed according to the method described in EXAMPLE 2. OCIF active fraction (112 ml) eluted with approximately 0.6 to 1.2 M NaCl was obtained.

One hundred twelve ml of the active fraction was diluted to 1000 ml with 10 mM Tris-HCl, 0.1% CHAPS, pH 7.5, and applied to a heparin affinity column (heparin-5PW, 0.8 x 7.5 cm, Tosoh Co.) equilibrated with 10mM Tris-HCl, 0.1% CHAPS, pH 7.5. After washing the column with 10mM Tris-HCl, 0.1% CHAPS, pH 7.5, the adsorbed protein was eluted from the column with linear gradient from 0 to 2 M NaCl at a flow rate of 0.5ml/min for 60 min., and fractions (0.5 ml) were collected. Four µl of each fraction was analyzed by SDS-polyacrylamide gel electrophoresis under reducing and non-reducing conditions as described in EXAMPLE 4. On SDS-PAGE under reducing conditions, a single band of rOCIF protein with an apparent 60 KD was detected in fractions from 30 to 32, under non-reducing conditions, bands of rOCIF protein with an apparent 60 KD and 120 KD were also detected in fractions from 30 to 32. The isolated rOCIF fraction from 30 to 32 was designated as recombinant OCIF derived from 293/EBNA (rOCIF(E)). 1.5 ml of the rOCIF(E) (535 µg/ml) was obtained when determined by the method of Lowry using bovine serum albumin as a standard protein.

tri Ar

EXAMPLE 14

40

5

10

15

Production of recombinant OCIF using CHO cells

i) Construction of the plasmid for expressing OCIF

pBKOCIF containing about 1.6 kb OCIF cDNA was prepared as described in EXAMPLE 11, and digested with restriction enzymes, Sall and EcoRV. About 1.4 kb OCIF cDNA insert was separated by an agarose gel electrophoresis, and purified from the gel using QIAEX gel extraction kit (QIAGEN). The expression vector, pcDL-SR α296 (Molecular and Cellular Biology, vol 8, p466, 1988) was digested with restriction enzymes, Pstl and Kpnl. About 3.4 kb of the expression vector fragment was cut out, separated by agarose gel electrophoresis, and purified from the gel using QIAEX gel extraction kit (QIAGEN). The ends of the purified OCIF cDNA insert and the expression vector fragment were blunted using DNA blunting kit (Takara Shuzo). The purified OCIF cDNA insert and the expression vector fragment were ligated using DNA ligation kit ver. 2 (Takara Shuzo). E.coli. DH5a α (Gibco BRL) was transformed with the ligation mixture. The transformant containing the OCIF expression plasmid, pSRαOCIF was obtained.

ii) Preparation of expression plasmid

The transformant containing the OCIF expression plasmid, pSR αOCIF preprared in the example 13-i) and the transformant containing the mouse DHFR expression plasmid, pBAdDSV shown in WO92/01053 were grown according to the standard method. Both plasmids were purified by alkali treatment, polyethylene glycol precipitation, and cesium chrolide density gradient ultra centrifugation according to method of Maniatis et al. (Molecular cloning, 2nd edition).

iii) Adaptation of CHOdhFr- cells to the protein free medium

CHOdhFr- cells (ATCC, CRL 9096) were cultured in IMDM containing 10 % fetal calf serum. The cells were adapted to EX-CELL 301 (JRH Biosciecnce) and then adapted to EX-CELL PF CHO (JRH Biosciecnce) according to the manufacture's instructions.

iv) Transfection of the OCIF expression plasmid, and the mouse DHFR expression plasmid, to CHOdhFr- cells.

CHOdhFr- cells prepared in EXAMPLE 14-iii) were transfected by electroporation with pSRαOCIF and pBAdDSV prepared in EXAMPLE 14-ii). 200 μg of pSRαOCIF and 20 μg of pBAdDSV were dissolved under sterile conditions in 0.8 ml of IMDM (Gibco BRL) containing 10 % fetal calf serum CG. 2x10⁷ cells of CHOdhFr- were suspended in 0.8 ml of this medium. The cell suspension was transferred to a cuvette (Bio Rad) and the cells were transfected by electroporation using gene pulser (Bio Rad) under condition of 360 V and 960 μF. The suspension of electroporated cells was transferred to T-flasks (Sumitomo Bakelite) containing 10 ml of EX-CELL PF-CHO, and incubated in the CO₂ incubator for 2 days. Then the transfected cells were inoculated in each well of a 96 well plate (Sumitomo Bakelite) at a density of 5000 cells/well and cultured for about 2 weeks. The transformants expressing DHFR are selected since EX-CELL PF-CHO does not contain nucleotides and the parental cell line CHO dhFr- can not grow in this medium. Most of the transformants expressing DHFR express OCIF since the OCIF expression plasmid was used ten times as much as the mouse DHFR expression plasmid. The transformants whose conditioned medium had high OCIF activity were selected among the transformants expressing DHFR according to the method described in EXAMPLE 2. The transformants that express large amounts of OCIF were cloned by limiting dilution. The clones whose conditioned medium had high OCIF activity were selected as described above and the transformant expressing large amount of OCIF, 5561, was obtained.

v) Production of recombinant OCIF

To produce recombinant OCIF (rOCIF), EX-CELL 301 medium (3 I) in a 3 I-spiner flask was inoculated with the clone (5561) at a cell-density of 1x10⁵ cells/ml. The 5561 cells were cultured in a spiner flask at 37°C for 4 to 5 days. When the concentration of the 5561 cells reached to 1x10⁶ cells/ml, about 2.7 I of the conditioned medium was harvested. Then about 2.7 I of EX-CELL 301 was added to the spiner flask and the 5561 cells were cultured repeatedly. About 20 I of the conditioned medium was harvested using the three spiner flasks.

vi) Isolation of recombinant OCIF protein from CHO cells-conditioned medium

CHOcells-conditioned medium (1.0 I) described in EXAMPL 14-v) was supplemented with 1.0 g of CHAPS and filtrated with 0.22 µm membrane filter (Steribecks GS, Milipore Co.). The conditioned medium was applied to a heparin Sepharose-FF column (2.6 x 10 cm, Pharmacia Co.) equilibrated with 10 mM Tris-HCl, pH 7.5. After washing the column with 10 mM Tris-HCl, 0.1 % CHAPS, pH 7.5, the adsorbed protein was eluted from the column with linear gradient from 0 to 2 M NaCl at a flow rate of 4 ml/min for 100 min. and fractions (8 ml) were collected. Using 150µl of each fraction, OCIF activity was assayed according to the method described in EXAMPLE 2. Active fraction (112 ml) eluted with approximately 0.6 to 1.2 M NaCl was obtained.

The 112 ml of active fraction was diluted to 1200 ml with 10 mM Tris-HCl, 0.1% CHAPS, pH 7.5, and applied to a affinity column (blue-5PW, 0.5 x 5.0 cm, Tosoh Co.) equilibrated with 10 mM Tris-HCl, 0.1% CHAPS, pH 7.5. After washing the column with 10 mM Tris-HCl, 0.1% CHAPS, pH 7.5, the adsorbed protein was eluted from the column with linear gradient from 0 to 3 M NaCl at a flow rate of 0.5ml/min for 60 min., and fractions (0.5 ml) were collected. Four μ l of each fraction was subjected to SDS-polyacrylamide gel electrophoresis under reducing and non-reducing conditions as described in EXAMPLE 4. On SDS-PAGE under reducing conditions, a single band of rOCIF protein with apparent 60 KD was detected in fractions 30 to 38, under non-reducing conditions, bands of rOCIF protein with apparent 60 KD and 120 KD were also detected in fractions 30 to 38. The isolated rOCIF fraction, 30 to 38, was designated as purified recombinant OCIF derived from CHO cells (rOCIF(C)). 4.5 ml of the rOCIF(C) (113 μ g/ml) was obtained when determined by the method of Lowry using bovine serum albumin as a standard protein.

EXAMPLE 15

55

Determination of N-terminal amino acid sequence of rOCIFs

Each 3 µg of the isolated rOCIF(E) and rOCIF(C) was adsorbed to polyvinylidene difluoride (PVDF) membranes with Prospin (PERKIN ELMER Co.). The membranes were washed with 20 % ethanol and the N-terminal amino acid sequences of the adsorbed proteins were analyzed by protein sequencer (PROCISE 492, PERKIN ELMER Co.). The

determined N-terminal amino acid sequence is shown in sequence No. 7.

The N-terminal amino acid of rOCIF(E) and rOCIF(C) was the 22th amino acid of glutamine from Met as translation starting point, as shown in sequence number 5. The 21 amino acids from Met to Gln were identified as a signal peptide. The N-terminal amino acid sequence of OCIF isolated from IMR-90 conditioned medium was undetectable. Accordingly, the N-terminal glutamine of OCIF may be blocked by converting from glutamine to pyroglutamine within culturing or purifing.

EXAMPLE 16

30

35

40

- Biological activity of recombinant(r) OCIF and natural(n) OCIF
 - i) Inhibition of vitamin D₃ induced osteoclast formation from murine bone marrow cells

Each the rOCIF(E) and nOCIF sample was diluted with α-MEM (GIBCO BRL Co.) containing 10% FBS and 2x10⁻⁸M of activated vitamin D₃ (a final concentration of 250 ng/ml). Each sample was serially diluted with the same medium, and 100 μl of each diluted sample was added to each well in 96-well plates. Bone marrow cells obtained from mice, 17 days-old, were inoculated at a cell density of 3x10⁻⁵ cells/100μ/ well to each well in 96-well plates and cultured for 7 days at 37°C in humidified 5%CO₂. On day 7, the cells were fixed and stained with a acid phosphatase mesuring kit (Acid Phosphatase, Leucocyte, No387-A, Sigma) according to the method described in EXAMPLE 2. The decrease of acid phosphatase activity (TRAP) was taken as OCIF activity. The decrease of acid phosphatase-positive cells was evaluated by solubilizing the pigment of dye and measuring absorbance. In detail, 100 μl of a mixture of 0.1 N NaOH and dimethylsulfoxide (1:1) was added to each well and the well was vibrated to solubilize the dye. After solubilizing the dye completely, an absorbance of each well was measured at 590 nm subtracting the absorbance at 490 nm using microplate reader (Immunoreader NJ-2000, InterMed). The microplate reader was adjusted to 0 absorbance using a well with monolayered bone marrow cells which was cultured in the medium without activated vitamin D₃. The decrease of TRAP activity was expressed as a percentage of the control absorbance value (=100%) of the solubilized dye from wells with bone marrow cells which were cultured in the absence of OCIF. The results are shown in Table 5.

Table 5

Inhibition of vitamin D3-induced osteoclast formation from murine bone marrow cells OCIF concentra-250 125 63 31 16 0 tion(ng/ml) rOCIF(E) 0 0 3 62 80 100 nOCIF 0 0 27 27 75 100 (%)

Both nOCIF and rOCIF(E) inhibited osteoclast formation in a dose dependent manner in the concentration of 16 ng/ml or higher

- ii) Inhibition of vitamin D3-induced osteoclast formation in co-cultures of stromal cells and mouse spleen cells.
- Effect of OCIF on osteoclast formation induced by Vitamin D₃ in co-cultures of stromal cells and mouse spleen cells was tested according to the method of N. Udagawa et al. (Endocrinology, vol. 125, p1805-1813, 1989). In detail, each of rOCIF(E), rOCIF(C), and nOCIF sample was serially diluted with α-MEM (GIBCO BRL Co.) containing 10% FBS, 2x10⁻⁸M of activated vitamin D₃, and 2x10⁻⁷M dexamethasone, and 100μl of each the diluted samples was added to each well in 96 well-microwell plates. Murine bone marrow-derived stromal ST2 cells (RIKEN Cell Bank RCB0224); 5x10⁻³ cells per 100μl of α-MEM containing 10% FBS, and spleen cells from ddy mice, 8 weeks-old, ; 1x10⁻⁵ cells per 100 μl in the same medium, were inoculated to each well in 96-well plates and cultured for 5 days at 37°C in humidified 5%CO₂. On day 5, the cells were fixed and stained with a kit for acid phosphatase (Acid Phosphatase, Leucocyte, No387-A, Sigma). The decrease of acid phosphatase-positive cells was taken as OCIF activity. The decrease of acid phosphatase-positive cells was taken as OCIF activity. The results are shown in Table 6; rOCIF(E) and rOCIF(C), and Table 7; rOCIF(E) and nOCIF.

Table 6

Inhibition of osteoclast formation in co-cultures of stromal cells and mouse spleen cells.							
OCIF concentra- tion(ng/ml)	50	25	13	6	0		
rOCIF(E)	3	22	83	80	100		
rOCIF(C)	13	´ 19	70	96	100 (%)		

Table 7

Inhibition of osteoclast formation in co-cultures of stromal cells and mouse spleen cells.							
OCIF concentra- tion(ng/ml)	250	63	16	0			
rOCIF(E)	7	27	37	100			
rOCIF(C)	13	23	40	100 (%)			
nOCIE, rOCIE(E) and rO	nOCIF, rOCIF(E) and rOCIF(C) inhibited osteoclast formation in a doca						

nOCIF, rOCIF(E) and rOCIF(C) inhibited osteoclast formation in a dose dependent manner in the concentration of 6 - 16 ng/ml or higher

iii) Inhibition of PTH-induced osteoclast formation from murine bone marrow cells.

Effect of OCIF on osteoclast formation induced by PTH was tested according to the method of N. Takahashi et al. (Endocrinology, vol. 122, p1373-1382, 1988). In detail, each the rOCIF(E) and nOCIF sample (125 ng/ml) was serially diluted with α -MEM (manufactured by GIBCO BRL Co.) containing 10% FBS and 2x10⁻⁸M PTH, and 100 μ l of each the diluted samples was added to 96 well-plates. Bone marrow cells from ddy mice, 17 days-old, at a cell density of $3x10^5$ cells per 100 μ l of α -MEM containing 10% FBS were inoculated to each well in 96-wells plates and cultured for 5 days at 37°C in humidified 5%CO2. On day 5, the cells were fixed with ethanol/aceton (1:1) for 1 min. at room temperature and stained with a kit for acid phosphatase (Acid Phosphatase, Leucocyte, No387-A, Sigma) according to the method described in EXAMPLE 2. The decrease of acid phosphatase-positive cells was taken as OCIF activity. The decrease of acid phosphatase-positive cells was taken as OCIF activity. The results are shown in Table 8.

Table 8

OCIF concentra- tion(ng/ml)	125	63	31	16	8	(
rOCIF(E)	6	58	58	53	88	100
nOCIF	18	47	53	56	91	100

nOCIF and rOCIF(E) inhibited osteoclast formation in a dose dependent manner in the concentration of 16 ng/ml or higher

iv) Inhibition of IL-11-induced osteoclast formation

15

25

30

50

Effect of OCIF on osteoclast formation induced by IL-11 was tested according to the method of T. Tamura et al. (Proc. Natl. Acad. Sci. USA, vol. 90, p11924-11928, 1993). In detail, each rOCIF(E) and nOCIF sample was serially

diluted with α -MEM (GIBCO BRL Co.) containing 10% FBS and 20 ng/ml IL-11 and 100 μ l of each the diluted sample was added to each well in 96-well plates. Newborn mouse calvaria-derived pre-adipocyte MC3T3-G2/PA6 cells (RIKEN Cell Bank RCB1127); $5x10^3$ cells per 100μ l of α -MEM containing 10% FBS, and spleen cells from ddy mouse, 8 weeks-old,; $1x10^5$ cells per 100μ l in the same medium, were inoculated to each well in 96-well plates and cultured for 5 days at 37 °C in humidified 5%CO $_2$. On day 5, the cells were fixed and stained with a kit for acid phosphatase (Acid Phosphatase, Leucocyte, No387-A, Sigma). Acid phosphatase positive cells were counted under microscope and a decrease of the cell numbers was taken as OCIF activity. The results are shown in Table 9.

Table 9

OCIF concentra- tion(ng/ml)	500	125	31	7.8	2.0	0.5	0
nOCIF	0	0	1	4	13	49	31
rOCIF(E)	0	0	. 1	3	10	37	31

Both nOCIF and rOCIF(E) inhibited osteoclast formation in a dose dependent manner in the concentration of 2 ng/ml or higher

The results shown in Table 4-8 indicated that OCIF inhibits all the vitamin D₃, PTH, and IL-11-induced osteoclast formations at almost the same doses. Accordingly, OCIF would be able to be used for treatment of the different types of bone disorders with decreased bone mass, which are caused by different substances which induce bone resorption.

EXAMPLE 17

10

15

20

25

35

50

5**5**

Isolation of monomer-type OCIF and dimer-type OCIF

Each rOCIF(E) and rOCIF(C) sample containing 100 μg of OCIF protein, was supplemented with 1/100 volume of 25 % trifluoro acetic acid and applied to a reverse phase column (PROTEIN-RP, 2.0x250 mm, YMC Co.) equilibrated with 30 % acetonitrile containing 0,1 % trifluoro acetic acid. OCIF protein was eluted from the column with linear gradient from 30 to 55 % acetonitrile at a flow rate of 0.2 ml/min for 50 min. and each OCIF peak was collected. Each the monomer-type OCIF peak fraction and dimer-type OCIF peak fraction was lyophilized, respectively.

EXAMPLE 18

Determination of molecular weight of recombinant OCIFs

Each 1 μ g of the isolated monomer-type and dimer-type nOCIF purified using reverse phase column according to EXAMPLE 3-iv) and each 1 μ g of monomer-type and dimer-type rOCIF described in EXAMPLE 17 was concentrated under vaccum, respectively. Each sample was incubated in the buffer for SDS-PAGE, subjected to SDS-polyacrylamide gel electrophoresis, and protein bands on the gel were stained with silver according to the method described in EXAMPLE 4. Results of electrophoresis under non-reducing conditions and reducing conditions are shown in Figure 6 and Figure 7.

A protein band with an apparent molecular weight of 60 KD was detected in each monomer-type OCIF sample, and a protein band with an apparent molecular weight of 120 KD was detected in each dimer-type OCIF sample in non-reducing conditions. A protein band with an apparent molecular weight of 60 KD was detected in each monomer-type OCIF sample under reducing conditions. Accordingly, molecular weights of monomer-type nOCIF from IMR-90 cells, rOCIF from 293/EBNA cells and rOCIF from CHO cells were almost the same. Molecular weights of dimer-type nOCIF from IMR-90 cells, rOCIF from 293/EBNA cells, and rOCIF from CHO cells were also the same.

EXAMPLE 19

Remove N-linked Oligosaccharide chain and Mesuring molecular weight of natural and recombinant OCIF

Each sample containing 5μg of the isolated monomer-type and dimer-type nOCIF purified using reverse phase column according to EXAMPLE 3-iv) and each sample containing 5 μg of monomer-type and dimer-type rOCIF described in EXAMPLE 17 were concentrated under vaccum. Each sample was dissolved in 9.5 μl of 50 mM sodium phosphate buffer, pH 8.6, containing 100 mM 2-mercaptoethanol, supplemented with 0.5 μl of 250 U/ml N-glycanase (Seikagaku

kogyo Co.) and incubated for one day at 37 °C. Each sample was supplemented with 10 μ l of 20 mM Tris-HCl, pH 8.0 containing 2 mM EDTA, 5 % SDS, and 0.02 % bromo-phenol blue and heated for 5 min at 100 °C. Each 1 μ l of the samples was subjected to SDS-polyacrylamide gel electrophoresis, and protein bands on the gel were stained with silver as described in EXAMPLE 4. The patterns of electrophoresis are shown in Figure 8.

An apparent molecular weight of each the deglycosylated nOCIF from IMR-90 cells, rOCIF from CHO cells, and rOCIF from 293/EBNA cells was 40 KD under reducing conditions. An apparent molecular weight of each untreated nOCIF from IMR-90 cells, rOCIF from 293/EBNA cells, and rOCIF from CHO cells was 60 KD under reducing conditions. Accordingly, the results indicate that the OCIF proteins are glycoproteins with N-linked sugar chains.

EXAMPLE 20

Cloning of OCIF variant cDNAs and determination of their DNA squences

The plasmid pBKOCIF, which is inserted OCIF cDNA to pBKCMV (Stratagene), was obtained from one of some purified positive phage as in example 10 and 11. And more, during the screening of the cDNA library with the 397 bp OCIF cDNA probe, the transformants containing plasmids whose insert sizes were different from that of pBKOCIF were obtained. These transformants containing the plasmids were grown and the plasmids were purified according to the standard method. The sequence of the insert DNA in each plasmid was determined using Taq Dye Deoxy Terminater Cycle Sequencing kit (Perkin Elmer). The used primers were T3, T7 primers (Stratagene) and synthetic primers prepared based on the nucleotide sequence of OCIF cDNA. There are four OCIF variants (OCIF2, 3, 4, and 5) in addition to OCIF. The nucleotide sequence of OCIF2 is shown in the sequence number 8 and the amino acid sequence of OCIF3 is shown in the sequence number 10 and the amino acid sequence of OCIF3 predicted by the nucleotide sequence is shown in the sequence number 11. The nucleotide sequence of OCIF4 is shown in the sequence number 12 and the amino acid sequence of OCIF5 is shown in the sequence number 13. The nucleotide sequence of OCIF5 is shown in the sequence number 14 and the amino acid sequence of OCIF5 predicted by the nucleotide sequence is shown in the sequence number 15. The structures of OCIF variants are shown in Figures 9 to 12 and are described in brief below. OCIF2

OCIF2 cDNA has a deletion of 21 bp from guanine at nucleotide number 265 to guanine at nucleotide number 285 in OCIF cDNA (sequence number 6), Accordingly OCIF2 has a deletion of 7 amino acids from glutamic acid (Glu) at amino acid number 68 to glutamine (Gln) at amino acid number 74 in OCIF (sequence number 5).

OCIF3

OCIF3 cDNA has a point mutation at nucleotide number 9 in OCIF cDNA (sequence number 6) where cytidine is replaced with guanine.

Accordingly OCIF3 has a mutation and asparagine (Asn) at amino acid number -19 in OCIF (sequence number 5) is replaced with lysine (Lys). The mutation seems to be located in the signal sequence and have no essential effect on the secreted OCIF3. OCIF3 cDNA has a deletion of 117 bp from guanine at nucleotide number 872 to cytidine at nucleotide number 988 in OCIF cDNA (sequence number 6).

Accordingly OCIF3 has a deletion of 39 amino acids from threonine (Thr) at amino acid number 270 to leucine (Leu) at amino acid number 308 in OCIF (sequence number 5).

OCIF4

45

OCIF4 cDNA has two point mutations in OCIF cDNA (sequence number 6). Cytidine at nucleotide number 9 is replaced with guanine and guanine at nucleotide number 22 is replaced with thymidine in OCIF cDNA (sequence number 6).

Accordingly OCIF4 has two mutations. Asparagine (Asn) at amino acid number -19 in OCIF (sequence number 5) is replaced with lysine (Lys), and alanine (Ala) at amino acid number -14 is replaced with serine (Ser). These mutations seem to be located in the signal sequence and have no essential effect on the secreted OCIF4.

OCIF4 cDNA has about 4 kb DNA, which is the intron 2 of OCIF gene, inserted between nucleotide number 400 and nucleotide number 401 in OCIF cDNA (sequence number 6). The open reading frame stops in intron 2.

Accordingly OCIF4 has an additional noveramino acid sequence containing 21 amino acids after alanine (Ala) at amino acid number 112 in OCIF (sequence number 5).

OCIF5

OCIF5 cDNA has a point mutation at nucleotide number 9 in OCIF cDNA (sequence number 6) where cytidine is replaced with quanine.

- Accordingly OCIF5 has a mutation and asparagine (Asn) at amino acid number -19 in OCIF (sequence number 5) is replaced with lysine (Lys). The mutation seems to be located in the signal sequence and have no essential effect on the secreted OCIF5.
 - OCIF5 cDNA has the latter portion (about 1.8 kb) of intron 2 between nucleotide number 400 and nucleotide number 401 in OCIF cDNA (sequence number 6). The open reading frame stops in the latter portion of intron 2.
- Accordingly OCIF5 has an additional novel amino acid sequence containing 12 amino acids after alanine (Ala) at amino acid number 112 in OCIF (sequence number 5).

EXAMPLE 21

- 5 Production of OCIF variants
 - i) Construction of the plasmid for expressing OCIF variants

The plasmid containing OCIF2 or OCIF3 cDNA was obtained as described in EXAMPLE 20 and called pBKOCIF2 and pBKOCIF3, respectively. pBKOCIF2 and pBKOCIF3 were digested with restriction enzymes, BamHI and XhoI. The OCIF2 and OCIF3 cDNA inserts were separated by agarose gel electrophoresis, and purified from the gel using QIAEX gel extraction kit (QIAGEN). The purified OCIF2 and OCIF3 cDNA inserts were individually ligated using DNA ligation kit ver. 2 (Takara Shuzo) to the expression vector pCEP4 (Invitrogen) that had been digested with restriction enzymes, BamHI and XhoI. E. coli. DH5 α (Gibco BRL) was transformed with the ligation mixture.

The plasmid containing OCIF4 cDNA was obtained as described in EXAMPLE 20 and called pBKOCIF4. pBKOCIF4 was digested with restriction enzymes, Spel and Xhol (Takara Shuzo). The OCIF4 cDNA insert was separated by an agarose gel electrophoresis, and purified from the gel using QIAEX gel extraction kit (QIAGEN). The purified OCIF4 cDNA insert was ligated using DNA ligation kit ver. 2 (Takara Shuzo) to the expression vector pCEP4 (Invitrogen) that had been digested with restriction enzymes, Nhel and Xhol (Takara Shuzo). E.coli. DH5 α (Gibco BRL) was transformed with the ligation mixture.

The plasmid containing OCIF5 cDNA was obtained as described in EXAMPLE 20 and was called pBKOCIF5. pBKOCIF5 was digested with restriction enzyme, HindIII (Takara Shuzo). The 5' portion of the coding region in the OCIF5 cDNA insert was separated by agarose gel electrophoresis, and purified from the gel using QIAEX gel extraction kit (QIAGEN). The OCIF expression plasmid, pCEPOCIF, obtained in EXAMPLE 13-i) was digested with restriction enzyme, HindIII (Takara Shuzo). The 5' portion of the coding region in the OCIF cDNA was removed. The rest of the plasmid that contains pCEP vector and the 3' portion of the coding region of OCIF cDNA was called pCEPOCIF-3'. pCEPOCIF-3' was separated by an agarose gel electrophoresis, and purified from the gel using QIAEX gel extraction kit (QIAGEN). The OCIF5 cDNA HindIII fragment and pCEPOCIF-3' were ligated using DNA ligation kit ver. 2 (Takara Shuzo). E.coli. DH5 α (Gibco BRL) was transformed with the ligation mixture.

- The obtained transformants were grown at 37 °C overnight and the OCIF variants expression plasmids (pCEPOCIF2, pCEPOCIF3, pCEPOCIF4, and pCEPOCIF5) were purified using QIAGEN column (QIAGEN). These OCIF-variants-expression plasmids were precipitated with ethanol, dissolved in sterile distilled water, and used in the expreriments described below.
- ii) Transient expression of OCIF variant cDNAs and analysis of the biological activity of recombinant OCIF variants.

Recombinant OCIF variants were produced using the expression plasmid, pCEPOCIF2, pCEPOCIF3, pCEPOCIF4, and pCEPOCIF5 prepared as described in EXAMPLE 21-i) according to the method described in EXAMPLE 13-ii). The biological activities of recombinant OCIF variants were analyzed. The results were that these OCIF variants (OCIF2, OCIF3, OCIF4, and OCIF5) had a weak activity.

EXAMPLE 22

55

Preparation of OCIF mutants

i) Construction of a plasmid vector for subdoning cDNAs encoding OCIF mutants

The plasmid vector (5 µg) described in EXAMPLE 11 was digested with restriction enzymes Bam HI and Xho I (

Takara Shuzo). The digested DNA was subjected to a preparative agarose gel electrophoresis. DNA fragment with an approximate size of 1.6 kilobase pairs (kb) that contained the entire coding sequence for OCIF was purified from the gel using QIAEX gel extraction kit (QIAGEN). The purified DNA was dissolved in 20 μ l of sterile distilled water. This solution was designated DNA solution 1. p Bluescript II SK + (3 μ g) (Stratagene) was digested with restriction enzymes Bam HI and Xho I (Takara Shuzo). The digested DNA was subjected to preparative agarose gel electrophoresis. DNA fragment with an approximate size of 3.0 kb was purified from the gel using QIAEX DNA extraction kit (QIAGEN). The purified DNA was dissolved in 20 μ l of sterile distilled water. The solution was designated DNA solution 2. One microliter of DNA solution 2, 4 μ l of DNA solution 1 and 5 μ l of ligation buffer I of DNA ligation kit ver. 2 (Takara Shuzo) were mixed and incubated at 16 °C for 30 min. (The ligation mixture was used for the transformation of E. coli in a manner described below). Conditions for transformation of E. coli were as follows. One hundred microliters of competent E. coli DH5 α cells (GIBCO BRL) and 5 μ l of the ligation mixture was mixed in a sterile 15-ml tube (IWAKI glass). The tube was kept on ice for 30 min. After incubation for 45 sec at 42°C, to the cells was added 250 μ l of L broth (1% Tryptone, 0.5% yeast extract, 1% NaCl). The cell suspension was then incubated for 1hr. at 37°C with shaking. Fifty microliters of the cell suspension was plated onto an L-agar plate containing 50 μ g/ml of ampicillin. The plate was incubated overnight at 37°C.

Six colonies which grew on the plate were individually incubated in 2 ml each of L-broth containing 50µg/ml of ampicillin overnight at 37°C with shaking. The structure of the plasmids in the colonies was analyzed. A plasmid in which the 1.6-kb DNA fragment containing the entire OCIF cDNA is inserted between the digestion sites of Bam HI and Xho I of pBluescript II SK + was obtained and designated as pSK + -OCIF.

- ii) Preparation of mutants in which one of the Cys residues in OCIF is replaced with Ser residue
- 1) Introduction of mutations into OCIF cDNA

35

45

50

OCIF mutants were prepared in which one of the five Cys residues present in OCIF at positions 174, 181, 256, 298 and 379 (in SEQUENCE NO 4) was replaced with Ser residue and were designated OCIF-C19S(174Cys to Ser), OCIF-C20S (181Cys to Ser), OCIF-C21S (256Cys to Ser), OCIF-C22S (298Cys to Ser) and OCIF-C23S (379Cys to Ser), respectively.

To prepare the mutants, nucleotides encoding the corresponding Cys residues were replaced with those encoding Ser. Mutagenesis was carried out by a two-step polymerase chain reaction (PCR). The first step of the PCRs consisted of two reactions, PCR 1 and PCR 2.

PCR 1	10X Ex Taq Buffer (Takara Shuzo)	10 µl
	2.5 mM solution of dNTPs	8 μ
	the plasmid vector described in EXAMPLE 11 (8ng/ml)	2 µJ
	sterile distilled water	لبر 73.5
	20 μM solution of primer 1	لبر 5
	100 μM solution of primer 2 (for mutagenesis)	1 μμ
	Ex Taq (Takara Shuzo)	0.5 μl
PCR 2	10X Ex Taq Buffer (Takara Shuzo)	10 µ
	2.5 mM solution of dNTPs	اس 8
	the plasmid vector described in EXAMPLE 11 (8ng/ml)	لبر 2
	sterile distilled water	73.5 µl
	20 μM solution of primer 3	5 µJ
	100 μM solution of primer 4 (for mutagenesis)	1 Д
	Ex Taq (Takara Shuzo)	0.5 µl

Specific sets of primers were used for each mutation and other components were unchanged. Primers used for the reactions are shown in Table 10. The nucleotide sequences of the primers are shown in SEQUENCE NO: 20,23,27 and 30-40. The PCRs were performed under the following conditions as follows. An initial denaturation step at 97°C for 3 min was followed by 25 cycles of denaturation at 95°C for 1 min annealing at 55°C for 1 min and extension at 72°C for

3 min. After these amplification cycles, final extension was performed at 70°C for 5 min. The size of the PCR prodcts was confirmed by agarose gel electrophoresis using reaction solution. After the first PCR, excess primers were removed using Amicon microcon (Amicon). The final volume of the solutions that contained the PCR products were made to 50µl with sterile distilled water. These purified PCR products were used for the second PCR (PCR 3).

5

10

15

25

30

PCR 3	10X Ex Taq Buffer (Takara Shuzo)	10 µl
	2.5 mM solution of dNTPs	8 μΙ
	solution containing DNA fragment obtained from PCR 1	5 µJ
	solution containing DNA fragment obtained from PCR 2	5 μl
	sterile distilled water	61.5 ய
	20 μM solution of primer 1	5 µl
	20 μM solution of primer 3	5 μl
	Ex Taq (Takara Shuzo)	0.5 யி

Table 10

mutants	primer-1	primer-2	primer-3	primer-4
OCIF-C19S	IF 10	C19SR	IF 3	C19SF
OCIF-C20S	IF 10	C20SR	IF 3	C20SF
OCIF-C21S	IF 10	C21SR	IF3	C21SF
OCIF-C22S	iF 10	C22SR	iF 14	C22SF
OCIF-C23S	IF 6	C23SR	IF 14	C23SF

The reaction conditions were exactly the same as those for PCR 1 or PCR 2. The size of the PCR prodcts was confirmed by 1.0 % or 1.5 % agarose gel electrophoresis. The DNA fragments were precipitated with ethanol, dried under vacuum and dissolved in 40 μ l of sterile distilled water. The solutions containing DNA fragments with mutation C19S, C20S, C21S, C22S and C23S were designated as DNA solution A, DNA solution B, DNA solution C, DNA solution D and DNA solution E, respectively.

The DNA fragment which is contained in solution A (20 μ l) was digested with restriction enzymes Nde I and Sph I (Takara Shuzo). A DNA fragment with an approximate size of 400 base pairs (bp) was extracted from a preparative agarose gel and dissolved in 20 μ l of sterile distilled water. This DNA solution was designated DNA solution 3. Two micrograms of pSK + -OCIF was digested with restriction enzymes Nde I and Sph I. A DNA fragment with an approximate size of 4.2 kb was purified from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ l of sterile distilled water. This DNA solution was designated as DNA solution 4. Two microliters of DNA solution 3, 3 μ l of DNA solution 4 and 5 μ l of ligation buffer I of DNA ligation kit ver. 2 were mixed and ligation reaction was carried out. Competent E. coli DH5 α cells were transformed with 5 μ l of the ligation mixture. Ampicillin-resistant transformants were screened for a clone containing a plasmid DNA. DNA structure was analyzed by restriction enzyme mapping and by DNA sequencing. The plasmid thus obtained was named pSK-OCIF-C19S.

The DNA fragment which is contained in solution B (20 μ l) was digested with restriction enzymes Nde I and Sph I. A DNA fragment with an approximate size of 400 bp was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ l of sterile distilled water. This DNA solution was designated DNA solution 5. Two microliters of DNA solution 5, 3 μ l of DNA solution 4 and 5 μ l of ligation buffer I of DNA ligation kit ver. 2 were mixed and ligation reaction was carried out. Competent E. coli DH5 α cells were transformed with 5 μ l of the ligation mixture. Ampicillin-resistant transformants were screened for a clone containing a plasmid DNA. DNA structure was analyzed by restriction enzyme mapping and by DNA sequencing. The plasmid thus obtained was named pSK-OCIF-C20S.

The DNA fragment which is contained in solution C (20 μ) was digested with restriction enzymes Nde I and Sph I. A DNA fragment with an approximate size of 400 bp was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ I of sterile distilled water. This DNA solution was designated as DNA solution 6. Two micro-

liters of DNA solution 6, 3 μ l of DNA solution 4 and 5 μ l of ligation buffer I of DNA ligation kit ver. 2 were mixed and ligation reaction was carried out. Competent E. coli DH5 α cells were transformed with 5 μ l of the ligation mixture. Ampicillin-resistant transformants were screened for a clone containing a plasmid DNA. DNA structure was analyzed by restriction enzyme mapping and by DNA sequencing. The plasmid thus obtained was named pSK-OCIF-C21S.

The DNA fragment which is contained in solution D (20 μ l) was digested with restriction enzymes Nde I and Bst PI. A DNA fragment with an approximate size of 600 bp was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ l of sterile distilled water. This DNA solution was designated as DNA solution 7. Two micrograms of pSK + -OCIF was digested with restriction enzymes Nde I and Bst PI. A DNA fragment with an approximate size of 4.0 kb was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ l of sterile distilled water. This DNA solution was designated as DNA solution 8. Two microliters of DNA solution 7, 3 μ l of DNA solution 8 and 5 μ l of ligation buffer I of DNA ligation kit ver. 2 were mixed and ligation reaction was carried out. Competent E. coli DH5 α cells were transformed with 5 μ l of the ligation mixture. Ampicillin-resistant transformants were screened for a clone containing a plasmid DNA in which the 600-bp Nde I-BstPI fragment with the mutation (the C22S mutation) is substituted for the 600-bp Nde I-Bst PI fragment of pSK+ -OCIF by analyzing the DNA structure. DNA structure was analyzed by restriction enzyme mapping and by DNA sequencing. The plasmid thus obtained was named pSK-OCIF-C22S.

The DNA fragment which is contained in solution E (20 μ I) was digested with restriction enzymes Bst PI and Eco RV. A DNA fragment with an approximate size of 120 bp was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ I of sterile distilled water. This DNA solution was designated as DNA solution 9. Two micrograms of pSK + -OCIF was digested with restriction enzymes Bst EII and Eco RV. A DNA fragment with an approximate size of 4.5 kb was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ I of sterile distilled water. This DNA solution was designated as DNA solution 10. Two microliters of DNA solution 9, 3 μ I of DNA solution 10 and 5 μ I of ligation buffer I of DNA ligation kit ver. 2 were mixed and ligation was carried out. Competent E. coli DH5 α cells were transformed with 5 μ I of the ligation mixture. Ampicillin-resistant transformants were screened for a clone containing a plasmid DNA. DNA structure was analyzed by restriction enzyme mapping and by DNA sequencing. The plasmid thus obtained was named pSK-OCIF-C23S.

2) Construction of vectors for expressing the OCIF mutants

pSK-OCIF-C19S, pSK-OCIF-C2QS, pSK-OCIF-C21S, pSK-OCIF-C22S and pSK-OCIF-C23S were digested with restriction enzymes Bam HI and Xho I. The 1.6 kb Bam HI-Xho I DNA fragment encoding each OCIF mutant was isolated and dissolved in 20 μ l of sterile distilled water. The DNA solutions that contain 1.6 kb cDNA fragments derived from pSK-OCIF-C19S, pSK-OCIF-C20S, pSK-OCIF-C21S, pSK-OCIF-C22S and pSK-OCIF-C23S were designated C19S DNA solution, C20S DNA solution, C21S DNA solution, C22S DNA solution and C23S DNA solution, respectively. Five micrograms of a expression vector pCEP 4 (Invitrogen) was digested with restriction enzymes Bam HI and Xho I. A DNA fragment with an approximate size of 10 kb was purified and dissolved in 40 μ l of sterile distilled water. This DNA solution was designated as pCEP 4 DNA solution. One microliter of pCEP 4 DNA solution and 6 μ l of either C19SDNA solution, C20S DNA solution, C21S DNA solution, C22S DNA solution or C23S DNA solution were independently mixed with 7 μ l of ligation buffer I of DNA ligation kit ver. 2 and ligation reactions were carried out. Competent E. coli DH5 α cells (100 μ l) were transformed with 7 μ l of each ligation mixture. Ampicillin-resistant transformants were screened for clones containing plasmid in which a 1.6-kb cDNA fragment is inserted between the recognition sites of Bam HI and Xho I of pCEP 4 by analyzing the DNA structure. The plasmide which were obtained containing the cDNA encoding OCIF-C19S, OCIF-C20S, OCIF-C21S, OCIF-C22S and OCIF-C23S, respectively.

ii) Preparation of domain-deletion mutants of OCIF

(1) deletion mutagenesis of OCIF cDNA

30

A series of OCIF mutants with deletions of from Thr 2 to Ala 42, from Pro 43 to Cys 84, from Glu 85 to Lys 122, from Arg 123 to Cys 164, from Asp 177 to Gln 251 and from Ile 252 to His 326 were prepared (positions of the amino acid residues are shown in SEQUENCE NO: 4). These mutants were designated as OCIF-DCR1, OCIF-DCR2, OCIF-DCR3, OCIF-DCR4, OCIF-DDD1 and OCIF-DDD2, respectively.

Mutagenesis was performed by two-step PCR as described in EXAMPLE 22-(ii). The primer sets for the reactions are shown in Table 11 and the nucleotide sequences of the primers are shown in SEQUENCE NO: 19, 25, 40-53, and 54.

Table 11

	mutants	primer-1	primer-2	primer-3	primer-4
	OCIF-DCR1	Xhol F	DCR1R	IF 2	DCR1F
	OCIF-DCR2	Xhol F	DCR2R	IF 2	DCR2F
	OCIF-DCR3	Xhoi F	DCR3R	IF 2	DCR3F
	OCIF-DCR4	Xhol F	DCR4R	IF 16	DCR4F
į	OCIF-DDD1	IF8	DDD1R	IF 14	DDD1F
	OCIF-DDD2	IF 8	DDD2R	IF 14	DDD2F

5

10

15

The final PCR products were precipitated with ethanol, dried under vacuum and dissolved in 40µl of sterile distilled water. Solutions of DNA fragment coding for portions of OCIF-DCR1, OCIF-DCR2, OCIF-DCR3, OCIF-DCR4, OCIF-DDD1 and OCIF-DDD2 were designated as DNA solutions F, G, H, I, J and K, respectively.

The DNA fragment which is contained in solution F (20 μ) was digested with restriction enzymes Nde I and Xho I. A DNA fragment with an approximate size of 500 bp was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ I of sterile distilled water. This DNA solution was designated DNA solution 11. Two micrograms of pSK+ -OCIF was digested with restriction enzymes Nde I and Xho I. A DNA fragment with an approximate size of 4.0 kb was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ I of sterile distilled water. This DNA solution was designated DNA solution 12. Two microliters of DNA solution 11, 3 μ I of DNA solution 12 and 5 μ I of ligation buffer I of DNA ligation kit ver. 2 were mixed and ligation was carried out. Competent E. coli DH5 α cells were transformed with 5 μ I of the ligation mixture. Ampicillin-resistant transformants were screened for a clone containing a plasmid DNA. DNA structure was analyzed by restriction enzyme mapping and by DNA sequencing. The plasmid thus obtained was named pSK-OCIF-DCR1.

The DNA fragment which is contained in solution G (20 μ) was digested with restriction enzymes Nde I and Xho I. A DNA fragment with an approximate size of 500 bp was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ I of sterile distilled water. This DNA solution was designated as DNA solution 13. Two microliters of DNA solution 13, 3 μ I of DNA solution 12 and 5 μ I of ligation buffer I of DNA ligation kit ver. 2 were mixed and ligation was carried out. Competent E. coli DH5a cells were transformed with 5 μ I of the ligation mixture. Ampicillin-resistant transformants were screened for a clone containing plasmid DNA. DNA structure was analyzed by restriction enzyme mapping and by DNA sequencing. The plasmid thus obtained was named pSK-OCIF-DCR2.

The DNA fragment which is contained in solution H (20 μ l) was digested with restriction enzymes Nde I and Xho I. A DNA fragment with an approximate size of 500 bp was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ l of sterile distilled water. This DNA solution was designated as DNA solution 14. Two microliters of DNA solution 14, 3 μ l of DNA solution 12 and 5 μ l of ligation buffer I of DNA ligation kit ver. 2 were mixed and ligation reaction was carried out. Competent E. coli DH5 α cells were transformed with 5 μ l of the ligation mixture. Ampicillin-resistant transformants were screened for a clone containing a plasmid DNA. DNA structure was analyzed by restriction enzyme mapping and by DNA sequencing. The plasmid thus obtained was named pSK-OCIF-DCR3.

\$

The DNA fragment which is contained in solution I (20 μ I) was digested with restriction enzymes Xho I and Sph I. A DNA fragment with an approximate size of 900 bp was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ I of sterile distilled water. This DNA solution was designated as DNA solution 15. Two micrograms of pSK+ -OCIF was digested with restriction enzymes Xho I and Sph I. A DNA fragment with an approximate size of 3.6 kb was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ I of sterile distilled water. This DNA solution was designated as DNA solution 16. Two microliters of DNA solution 15, 3 μ I of DNA solution 16 and 5 μ I of ligation buffer I of DNA ligation kit ver. 2 were mixed and ligation reaction was carried out. Competent E. coli DH5 α cells were transformed with 5 μ I of the ligation mixture. Ampicillin-resistant transformants were screened for a clone containing a plasmid DNA. DNA structure was analyzed by restriction enzyme mapping and by DNA sequencing. The plasmid thus obtained was named pSK-OCIF-DCR4.

The DNA fragment which is contained in solution J (20 μ l) was digested with restriction enzymes BstP I and Nde I. A DNA fragment with an approximate size of 400 bp was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20 μ l of sterile distilled water. This DNA solution was designated as DNA solution 17. Two microliters of DNA solution 17, 3 μ l of DNA solution 8 and 5 μ l of ligation buffer I of DNA ligation kit ver. 2 were mixed and ligation reaction was carried out. Competent E. coli DH5 α cells were transformed with 5 μ l of the ligation mixture. Ampicillin-resistant transformants were screened for a clone containing a plasmid DNA. DNA structure was analyzed by

restriction enzyme mapping and by DNA sequencing. The plasmid thus obtained was named pSK-OCIF-DDD1. The DNA fragment which is contained in solution K (20μ) was digested with restriction enzymes Nde I and BstP I. A DNA fragment with an approximate size of 400 bp was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20μ I of sterile distilled water. This DNA solution was designated as DNA solution 18. Two microliters of DNA solution 18, 3μ I of DNA solution 8 and 5μ I of ligation buffer I of DNA ligation kit ver. 2 were mixed and ligation reaction was carried out. Competent E. coli DH5 α cells were transformed with 5μ I of the ligation mixture. Ampicillin-resistant transformants were screened for a clone containing a plasmid DNA. DNA structure was analyzed by restriction enzyme mapping and by DNA sequencing. The plasmid thus obtained was named pSK-OCIF-DDD2.

2) Construction of vectors for expressing the OCIF mutants

pSK-OCIF-DCR1, pSK-OCIF-DCR2, pSK-OCIF-DCR3, pSK-OCIF-DCR4, pSK-OCIF-DDD1 and pSK-OCIF-DDD2 were digested with restriction enzymes Bam HI and Xho I. The Bam HI-Xho I DNA fragment containing entire coding sequence for each OCIF mutant was isolated and dissolved in 20 μI of sterile distilled water. These DNA solutions that contain the Bam HI-Xho I fragment derived from pSK-OCIF-DCR1, pSK-OCIF-DCR2, pSK-OCIF-DCR3, pSK-OCIF-DCR4, pSK-OCIF-DDD1 and pSK-OCIF-DDD2 were designated DCR1 DNA solution, DCR2 DNA solution, DCR3 DNA solution, DCR4 DNA solution, DDD1 DNA solution, DDD1 DNA solution, DDD1 DNA solution, DCR2 DNA solution, DCR3 DNA solution, DCR4 DNA solution, DDD1 DNA solution or DDD2 DNA solution were independently mixed with 7μI of ligation buffer I of DNA ligation kit ver. 2 and ligation reactions were carried out. Competent E. coli DH5α cells (100 μI) were transformed with 7 μI of each ligation mixture. Ampicillin-resistant transformants were screened for a clone containing a plasmid DNA in which the DNA fragment with deletions is inserted between the recognition sites of Bam HI and Xho I of pCEP 4 by analyzing the DNA structure. The plasmids containing the cDNA encoding OCIF-DCR1, OCIF-DCR2, OCIF-DCR3, OCIF-DCR4, OCIF-DDD1 and OCIF-DDD2 were designated as pCEP4-OCIF-DDD2, respectively.

- iii) Preparation of OCIF with C-terminal domain truncation
- (1) mutagenesis of OCIF cDNA

A series of OCIF mutants with deletions of from Cys at amino acid residue 379 to Leu 380, from Ser 331 to Leu 380, from Asp 252 to Leu 380, from Asp 177 to Leu 380, from Arg 123 to Leu 380 and from Cys 86 to Leu 380 was prepared. Positions of the amino acid residues are shown in SEQUENCE NO: 4. These mutants were designated as OCIF-CL, OCIF-CD, OCIF-CDD1, OCIF-CCR4 and OCIF-CCR3, respectively.

Mutagenesis for OCIF-CL was performed by the two-step PCR as described in EXAMPLE 22-(ii). The primer set for the reaction is shown in Table 12. The nucleotide sequences of the primers are shown in SEQUENCE NO:23, 40, 55, and 56. The final PCR products were precipitated with ethanol, dried under vacuum and dissolved in 40μ l of sterile distilled water. This DNA solution was designated as solution L.

The DNA fragment which is contained in solution L (20 μ l) was digested with restriction enzymes BstP I and EcoR V. A DNA fragment with an approximate size of 100 bp was extracted from a preparative agarose gel with QIAEX gel extraction kit and dissolved in 20μ l of sterile distilled water. This DNA solution was designated as DNA solution 19. Two microliters of DNA solution 19, 3 μ l of DNA solution 10 (described in EXAMPLE 22-(ii)) and 5μ l of ligation buffer I of DNA ligation kit ver. 2 were mixed and ligation reaction was carried out. Competent E. coli DH5 α cells were transformed with 5μ l of the ligation mixture. Ampicillin-resistant transformants were screened for a clone containing a plasmid DNA. DNA structure was analyzed by restriction enzyme mapping and by DNA sequencing. The plasmid thus obtained was named pSK-OCIF-CL Mutagenesis of OCIF cDNA to prepare OCIF-CC, OCIF-CDD2, OCIF-CDD1, OCIF-CCR4 and OCIF-CCR3 was performed by a one-step PCR.

PCR reactions for mutagenesis to prepare OCIF-CC, OCIF-CDD2, OCIF-CDD1, OCIF-CCR4 and OCIF-CCR3

-

10X Ex Taq Buffer (Takara Shuzo)	10 µІ
2.5 mM solution of dNTPs	لبر 8
the plasmid vector containing the entire OCIF cDNA described in EXAMPLE 11 (8ng/ml)	لبر 2
sterile distilled water	73.5 µl
20 μM solution of primer OCIF Xho F	انب 5
100 μM solution of primer (for mutagenesis)	1 ய
Ex Taq (Takara Shuzo)	الم 0.5

15

10

Table 12

20

mutants	primer-1	primer-2	primer-3	primer-4
OCIF-CL	IF 6	CL R	IF 14	CLF

Specific primers were used for each mutagenesis and other components were unchanged.

Primers used for the mutagenesis are shown in Table 13. Their nucleotide sequences are shown in SEQUENCE NO:57-61. The components of each PCR were mixed in a microcentrifuge tube and PCR was performed as follows. The microcentrifuge tubes were treated for 3 minutes at 97 °C and then incubated sequentially, for 30 seconds at 95 °C, 30 seconds at 50 °C and 3 minutes at 70 °C. This three-step incubation procedure was repeated 25 times, and after that, the tubes were incubated for 5 minutes at 70 °C. An aliquot of the reaction mixture was removed from each tube and analyzed by an agarose gel electrophoresis to confirm the size of each product.

The size of the PCR products was confirmed on an agarose gel. Excess primers in the PCRs were removed using Amicon microcon (Amicon) after completion of the reaction. The DNA fragments were precipitated with ethanol, dried under vacuum and dissolved in 40 µl of sterile distilled water. The DNA fragment in each DNA solution was digested with restriction enzymes Xho I and Bam HI. After the reactions, DNA was precipitated with ethanol, dried under vacuum and dissolved in 20µl of sterile distilled water.

The solutions containing DNA fragment with the CC deletion, the CDD2 deletion, the CDD1 deletion, the CCR4 deletion and the CCR3 deletion were designated as CC DNA solution, CDD2 DNA solution, CDD1 DNA solution, CCR4 DNA solution and CC R3 DNA solution, respectively. ...

40

35

45

50

Table 13

mutants	primers for the mutagenesis
OCIF-CC	CC R
OCIF-CDD2	CDD2 R
OCIF-CDD1	CDD1 R
OCIF-CCR4	CCR4 R
OCIF-CCR3	CCR3 R

(2) Construction of vectors for expressing the OCIF mutants

pSK-OCIF-CL was digested with restriction enzymes Bam HI and Xho I. The Bam HI-Xho I DNA fragment containing the entire coding sequence for OCIF-CL was isolated and dissolved in 20 μl of sterile distilled water. This DNA solution was designated as CL DNA solution. One microliter of pCEP 4 DNA solution and 6 µl of either of CL DNA solution, CC DNA solution, CDD2 DNA solution, CDD1 DNA solution, CCR4 DNA solution or CCR3 DNA solution were independently mixed with 7 µl of ligation buffer I of DNA ligation kit ver. 2 and ligation reactions were carried out. Competent

E. coli DH5α cells (100 μl) were transformed with 7 μl of each ligation mixture. Ampicillin-resistant transformants were screened for clones containing plasmids which have the desirable mutations in OCIF cDNA by analyzing the DNA structure. In each plasmid, OCIF cDNA fragment having a deletion were inserted between the recognition sites of Xho I and Bam HI of pCEP 4. The plasmids containing the cDNA encoding OCIF-CL, OCIF-CC, OCIF-CDD1, OCIF-CDD2, OCIF-CCR4 and OCIF-CCR3 were designated pCEP4-OCIF-CL, pCEP4-OCIF-CC, pCEP4-OCIF-CDD2, pCEP4-OCIF-CDD1, pCEP4-OCIF-CCR4 and pCEP4-OCIF-CCR3, respectively.

- iv) Preparation of OCIF mutants with C-terminal truncation
- (1) Introduction of C-terminal truncation to OCIF

A series of OCIF mutants with C-terminal truncation was prepared. OCIF mutant in which 10 residues of from Gln at 371 to Leu at 380 are replaced with 2 residues of Leu-Val was designated OCIF-CBst. OCIF mutant in which 83 residues of from Cys 298 to Leu 380 are replaced with 3 residues of Ser-Leu-Asp was designated OCIF-CSph. OCIF mutant in which 214 residues of from Asn 167 to Leu 380 are removed was designated OCIF-CBsp. OCIF mutant in which 319 residues of from Asp 62 to Leu 380 are replaced with 2 residues of Leu-Val was designated OCIF-CPst. Positions of the amino acid residues are shown in SEQUENCE NO: 4.

Two micrograms each of pSK + -OCIF was digested with one of the restriction enzymes, Bst PI, Sph I, PstI (Takara Shuzo), and Bsp EI (New England Biolabs), and followed by phenol extraction and ethanol precipitation. The precipitated DNA was dissolved in 10 μ I of sterile distilled water. Ends of the DNAs in 2 μ I of each solution were blunted using a DNA blunting kit in final volumes of 5 μ I. To the reaction mixtures, 1 μ g (1 μ I) of an Amber codon-containing Xba I linker (5'-CTAGTCTAGACTAG-3') and 6 μ I of ligation buffer I of DNA ligation kit ver. 2 were added.

After the ligation reactions, 6 µl each of the reaction mixtures was used to transform E. coli DH5α. Ampicillin-resistant transformants were screened for clones containing plasmids. DNA structure was analyzed by restriction enzyme mapping and by DNA sequencing. The plasmids thus obtained were named pSK-OCIF-CBst, pSK-OCIF-CSph, pSK-OCIF-CBsp and pSK-OCIF-CPst, respectively.

(2) Construction of vectors for expressing the OCIF mutants

30

50

- pSK-OCIF-CBst, pSK-OCIF-CSph, pSK-OCIF-CBsp and pSK-OCIF-CPst were digested with restriction enzymes Bam HI and Xho I. The 1.5 kb of DNA fragment containing entire coding sequence for each OCIF mutant was isolated and dissolved in 20 μl of sterile distilled water. These DNA solutions that contain the Bam HI-XhoI fragment derived from pSK-OCIF-CBst, pSK-OCIF-CSph, pSK-OCIF-CBsp and pSK-OCIF-CPst were designated as CBst DNA solution, CSph DNA solution, CBsp DNA solution and CPst DNA solution, respectively. One microliter of pCEP 4 DNA solution (described in EXAMPLE 22-ii)) and 6 μl of either CBst DNA solution, CSph DNA solution, CBsp DNA solution or CPst DNA solution were independently mixed with 7 μl of ligation buffer I of DNA ligation kit ver. 2 and ligation reactions were carried out. Competent E. coli DH5α cells (100 μl) were transformed with 7 μl of each ligation mixture. Ampicillinresistant transformants were screened for clones containing plasmids in which cDNA fragment is inserted between the recognition sites of Bam HI and Xho I of pCEP 4 by analyzing the DNA structure. The plasmids containing the cDNA encoding OCIF-CBst, OCIF-CSph, OCIF-CBsp and OCIF-CPst were designated as pCEP4-OCIF-CBst, pCEP4-OCIF-CSph, pCEP4-OCIF-CPst, respectively.
- v) Preparetion of vectors for expressing the OCIF mutants
- E. coli clones harboring the expression vectors for OCIF mutants (total of 21 clones) were grown and the vectors were purified by QIAGEN column (QIAGEN). All the expression vectors were precipitated with ethanol and dissolved in appropriate volumes of sterile distilled water and used for further manipupations shown below.
 - vi) Transient expression of the cDNAs for OCIF mutants and biological activities of the mutants

OCIF mutants were produced using the expression vectors prepared in EXAMPLE 22-v). The method was essentially the same as described in EXAMPLE.13. Only the modified points are described below. A 24-well plate was used for the DNA transfection. 2X10⁵ cells of 293/EBNA suspended in IMDM containing 10% fetal bovine serum were seeded into each well of the plate. One microgram of purified vector DNA and 4µl of lipofectamine were used for each transfection. Mixture of an expression vector and lipofectamine in OPTI-MEM (GIBCO BRL) in a final volume of 0.5 ml was added to the cells in a well. After the cells were incubated at 37°C for 24 hr in a CO₂ incubator, the medium was replaced with 0.5 ml of Ex-cell 301 medium (JSR). The cells were incubated at 37°C for 48 more hours in the CO₂ incubator. The conditioned medium was collected and used for assay for in vitro biological activity. The nucleotide

sequences of cDNAs for the OCIF mutants are shown in SEQUENCE NO:83-103. The deduced amino acid sequences for the OCIF mutants are shown in SEQUENCE NO: 62-82. The assay for in vitro biological activity was performed as described in EXAMPLE 13. Antigen concentration of each conditioned medium was determined by ELISA as described in EXAMPLE 24. Table 14 shows specific activity of the mutants relative to that of the unaltered OCIF.

Table 14

mutants	activity
the unaltered OIF	++
OCIF-C19S	+
OCIF-C20S	±
OCIF-C21S	±
OCIF-C22S	+
OCIF-C23S	++
OCIF-DCR1	±
OCIF-DCR2	· ±
OCIF-DCR3	±
OCIF-DCR4	±
OCIF-DDD1	+
OCIF-DDD2	±
OCIF-CL	++
OCIF-CC	++
OCIF-CDD2	++
OCIF-CDD1	+
OCIF-CCR4	±
OCIF-CCR3	±
OCIF-CBst	++
OCIF-CSph	++
OCIF-CBsp	±
OCIF-CPst	±

⁺⁺ indicates relative activity more than 50% of that of the unaltered OCIF

vii) western blot analysis

5

10

15

20

25

30

35

40

45

Ten microliters of the final conditioned medium was used for western blot analysis. Ten microliters of the sample were mixed with 10 μl of SDS-PAGE sample buffer (0.5 M Tris-HCl, 20% glycerol, 4% SDS, 20μg/ml bromo phenol blue, pH 6.8) boiled for 3 min. and subjected to a 10 % SDS polyacryl amide gel electrophoresis under non-reducing conditions. After the electrophoresis, the separated proteins were blotted to PVDF membrane (ProBlott^R, Perkin Elmer) using a semi-dry electroblotter (BIO-RAD). The membrane was incubated at 37°C with horseradish peroxidase labeled anti-OCIF antibodies for 2 hr. After the membrane was washed, protein bands which react with the labeled antibodies were detected using ECL system (Amersham). Two protein bands with approximate molecular masses of 60kD and 120kD were detected for the unaltered OCIF. On the other hand, almost exclusively 60kD protein band was detected for OCIF-C23S, OCIF-CL and OCIF CC. Protein bands with an approximate masses of 40kD-50kD and 30kD-40kD were the major ones for OCIF-CDD2 and OCIF-CDD1, respectively. These results indicate that Cys at 379 is responsible for the dimer formation, both the monomers and the dimers maintain the biological activity and a deletion of residues from Asp

⁺ indicates relative activity between 10% and 50% ± indicates relative activity less than 10%, or production level too low to determine the accurate biological activity

at 177 to Leu at 380 does not abolish the biological activity of OCIF (positions of the amino acid resare shown in SEQUENCE NO: 4).

EXAMPLE 23

Isolation of human genomic OCIF gene

i) Screening of a human genomic library

An amplified human placenta genomic library in Lambda FIX II vector purchased from STRATAGENE was screened for the gene encoding human OCIF using the human OCIF cDNA as a probe. Essentially, screening was done according to the instruction manual supplied with the genomic library. The basic protocols described in Molecular Cloning: A Laboratory Manual also were employed to manipulate phage, E. coli, and DNA.

The library was titered, and 1x10⁶ pfu of phage was mixed with XL1-Blue MRA host E. coli cells and plated on 20 plates (9 cm x 13 cm) with 9 ml per plate of top agarose. The plates were incubated overnight at 37°C. Filter plaque lifts were prepared using Hybond-N nylon membranes (Amersham). The membranes were processed by denaturation in a solution containing 1.5 M NaCl and 0.5 M NaOH for 1 minute at room temperature. The membranes were then neutralized by placing successively for one minute each in 1 M Tris-HCl (pH7.5) and a solution containing 1.5 M NaCl and 0.5 M Tris-HCl (pH 7.5). The membranes were then transferred onto a filter paper wet with 2xSSC. Phage DNA was fixed on the membranes with 1200µJoules of UV energy in STRATALINKER UV crosslinker 2400 (STRATAGENE) and the membranes were air dried. The membranes were immersed in Rapid Hybridization buffer (Amersham) and incubated for one hour at 65 °C before hybridization with ³²P-labeled cDNA probe in the same buffer overnight at 65°C. Screening probe was prepared by labeling the OCIF cDNA with ³²P using the Megaprime DNA labeling system (Amersham). Approximately, 5x10⁵cpm probe was used for each ml of hybridization buffer. After the hybridization, the membranes were rinsed in 2xSSC for five minutes at room temperature. The membranes were then washed four times, 20 minutes each time, in 0.5xSSC containing 0.1 % SDS at 65 °C. After the final wash, the membranes were dried and subjected to autoradiography at -80 °C with SUPER HR-H X-ray film (FUJI PFOTO FILM Co., Ltd.) and an intensifying screen. Upon examination of the autoradiograms, six positive signals were detected. Agar plugs were picked from the regions corresponded to these signals for phage purification. Each agar plug was soaked overnight in 0.5 ml of SM buffer containing 1% chloroform to extract phage. Each extract containing phage was diluted 1000 fold with SM buffer and an aliquot of 1 ml or 20 ml was mixed with host E. coli described above. The mixture was plated on agar plates with top agarose as described above. The plates were incubated overnight at 37 °C, and filter lifts were prepared, prehybridized, hybridized, washed and autoradiographed as described above. This process of phage purification was applied to all six positive signals initially detected on the autoradiograms and was repeated until all phage plaques on agar plates hybridize with the cDNA probe. After purification, agar plugs of each phage isolate were soaked in SM buffer containing 1% chloroform and stored at 4 °C. Six individual phage isolates were designated λΟΙF3, λΟΙF8, λΟΙF9, λΟΙF11, λΟΙF12 and λ OIF17, respectively.

ii) Analysis of the genomic clones by restriction enzyme digestion and Southern blot hybridization

DNA was prepared from each phage isolate by the plate lysate method as described in Molecular Cloning: A Laboratory Manual. DNA prepared from each phage was digested with restriction enzymes and the fragments derived from the digestion were separated on agarose gels. The fragments were then transferred to nylon membranes and subjected to Southern blot hybridization using OCIF cDNA as a probe. The results of the analysis revealed that the six phage isolates are individual clones. Among these fragments derived from the restriction enzyme digestion, those fragments which hybridized with the OCIF cDNA probe were subcloned into plasmid vectors and subjected to the nucleotide sequence analysis as described below.

iii) Subcloning restriction fragments derived from genomic clones into plasmid vectors and determination of the nucleotide sequence.

 λ OIF8 DNA was digested with restriction enzymes EcoRI and NotI, and the DNA fragments derived these from were separated on a 0.7% agarose gel. The 5.8 kilobase pairs (kb) EcoRI/NotI fragment was extracted from the gel using QIAEX II Gel Extraction Kit (QIAGEN) according to the procedure recommended by the manufacturer. The 5.8 kb EcoRI/NotI fragment was ligated with pBluescript II SK+ vector (STRATAGENE) which had been linearized with restriction enzymes EcoRI and NotI, using Ready-To-Go T4 DNA Ligase (Pharmacia) according to the procedure recommended by the manufacturer. Competent DH5 α E. coli cells (Amersham) were transformed with the recombinant plasmid and transformants were selected on L-plates containing 50 μ g/ml of ampicillin. A clone harboring the recom-

binant plasmid containing the 5.8 kb EcoRI/NotI fragment was isolated and this plasmid was termed pBSG8-5.8. pBSG8-5.8 was digested with HindIII and 0.9 kb of DNA fragment derived from this digestion was isolated in the same manner as described above. This 0.9 kb fragment was then cloned in pBluescript II SK- at the HindIII site as described above. This recombinant plasmid containing 0.9 kb HindIII fragment was denoted pBS8H0.9.

λOIF11 DNA was digested with EcoRI and 6 kb, 3.6 kb, 2.6 kb EcoRI fragments were isolated in the same manner as described above and cloned in pBluescript II SK+ vector at the EcoRI site as described above. These recombinant plasmids were termed pBSG11-6, pBSG11-3.6, and pBSG11-2.6, respectively. pBSG11-6 was digested with HindIII and the digest was applied on a 0.7 % agarose gel. Three fragments, 2.2 kb, 1.1 kb, and 1.05 kb in length, were extracted from the gel and cloned independently in pBluescript II SK- vector at the HindIII site in the same manner as described above. These recombinant plasmids were termed pBS6H2.2, pBS6 H1.1 and pBS6H1.05, respectively.

The nucleotide sequence of the cloned genomic DNA was determined using ABI Dyedeoxy Terminator Cycle Sequencing Ready Reaction Kit (PERKIN ELMER) and 373A DNA Sequencing system (Applied Biosystems). Plasmids pBSG8-5.8, pBS8H0.9, pBSG11-6, pBSG11-3.6, pBSG11-2.6, pBSGH2.2, pBS6H1.1 and pBS6H1.05 were prepared according to the alkaline-SDS procedure as described in Molecular Cloning: A Laboratory Manual and used as templates for the DNA sequence analysis. Nucleotide sequence of the human OCIF gene was presented in Sequence No 104 and Sequence No 105. The nucleotide sequence of the DNA, between exon 1 and exon 2 was not entirely determined. There is a stretch of approximately 17 kb of nucleotides between the sequences given in sequence No. 104 and sequence No. 105.

EXAMPLE 24

25

Quantitation of OCIF by EIA

i) Preparation of anti-OCIF antibody

Male JW rabbits (Kitayama LABES Co. ,LTD) weighing 2.5-3.0 kg were used for immunization for preparing antisera. Three male JW rabbits (Kitayama LABES Co., LTD) weighing 2.5-3.0 kg were used for immunization. For immunization, emulsion was prepared by mixing an equal volume of rOCIF (200 μg/ml) and complete Freund's adjuvant (Difco, Cat. 0638-60-7). The rabbits were immunized subcutaneously six times at the interval of one week with 1 ml of emulsion per injection. The rabbits were injected six times at the interval of seven days subcutaneously. Whole blood was obtained ten days after the final immunization and serum was separated. Antibody was purified from serum as follows. Antiserum was diluted two-fold with PBS. After adding ammonium sulfate at a final concentration of 40 w/v %, antiserum was allowed to stand at 4 °C for 1 hr.. Precipitate obtained by centrifugation at 8000 x g for 20 min. was dissolved in a small volume of PBS and was dialyzed against PBS. The resulting solution was loaded onto a Protein G-Sepharose column (Pharmacia). After washing with PBS, absorbed immunoglobulin G was eluted with 0.1 M glycine-HCL buffer (pH 3.0). Elutes were neutralized with 1.5 M Tris-HCL buffer (pH 8.7) immediately and were dialyzed against PBS. Protein concentration was determined by absorbance at 280nm (E^{1%} 13.5).

Horseradish peroxidase labeled antibody was prepared using ImmunoPure Maleimide Activated Horseradish Peroxidase Kit (Pierce, Cat. 31494). Briefly, one mg of IgG was incubated with 80 ug of N-succinimidyl-S-acetylthioacetate for 30 min. After deacetylation with 5 mg of hydroxylamine HCl, modified IgG was separeted by polyacrylamide desalting column. Protein pool mixed with one mg of maleimide activated horseradish peroxidase was incubated at room temperature for 1 hr.

ii) Quantitation of OCIF by sandwich EIA

Microtiter plates (Nunc MaxiSorp Immunoplate) were coated with rabbit anti-OCIF IgG by incubating 0.2 ug in 100 ul of 50 mM sodium bicarbonate buffer pH 9.6 at 4C overnight. After blocking the plates by incubating for 1 hour at 37°C with 300 ul of 25% BlockAce/PBS (Snow Brand Milk Products), 100ul of samples were incubated for 2 hours at room temperature. After washing the plates three times with PBST (PBS containing 0.05% Tween20), 100 ul of 1:10000 diluted horseradish peroxidase labeled anti-OCIF IgG was added and incubated for 2 hours at room temperture. The amount of OCIF was determined by incubation with 100 ul of a substrate solution (TMB, ScyTek Lab., Cat. TM4999) and measurement of the absorbance at 450 nm using an ImmunoReader (Nunc NJ2000). Purified recombinant OCIF was used as a standard protein and a typical standared curve was shown in Fig. 13.

EXAMPLE 25

Anti-OCIF monoclonal antibody

i) Preparation of hybridoma producing anti-OCIF monoclonal antibody.

OCIF was purified to homogeneity from culture medium of human fibroblasts, IMR-90 by the purification method described in Eample 11. Purified OCIF was dissolved in PBS at a concentration of 10 µg/100 µl. BALB/c mice were immunized by administrating this solution intraperitoneally three times every two weeks. In the first and the second immunizations, the emulsion composed of an equal volume of OCIF and Freund's complete adjuvant was administered. Three days after the final administration, the spleen was taken out, lymphocytes were isolated and fused with mouse myeloma p3x63-Ag8.653 cells according to the conventinal method using polyethyleneglycol. Then the fused cells were cultured in HAT medium to select hybridoma. Subsequently, to check whether the selected hybridomas produce anti-OCIF antibody, anti-OCIF antibody in each culture medium of hybridomas was determined by solid phase ELISA which was prepared by coating each well in 96-well immunoplates (Nunc) with 100µl of purified OCIF (10µg/ml in 0.1 M NaHCO₃) and by blocking each well with 50% BlockAce (Snow Brand Milk Products Co. Ltd.). The hybridoma clones secreting anti-OCIF antibody were established by cloning 3 - 5 times by limit dilution and by screening using the above solid phase ELISA. Among thus obtained hybridoma clones, several hybridoma clones with high production of anti-OCIF antibody were selected.

ii) Production of anti-OCIF monoclonal antibodies.

Each hybridoma clone secreting anti-OCIF antibody, which was obtained in EXAMPLE 25-i), was transplanted intraperitoneally to mice given Pristane (Aldrich) at a cell density of 1 x 10⁶ cells/mouse. The accumulated ascites was collected 10 - 14 days after the transplantation and the ascites containing anti-OCIF specific monoclonal antibody of the present invention was obtained. Purified antibodies were obtained by Affigel protein A Sepharose chromatography (BioRad) according to the maufacturer's manual. That is, the ascites was diluted with equal volume of a binding buffer (BioRad) and applied to protein A column. The column was washed with a sufficient volume of the binding buffer and eluted with an elution buffer (BioRad). After neutralizing, the obtained eluate was dialyzed in water and subsequently lyophilized. The purity of the obtained antibody was analyzed by SDS/PAGE and a homogenous band with a molecular weight of about 150,000 was detected.

iii) Selection of monoclonal antibody having high affinity to OCIF

Each antibody obtained in EXAMPLE 25-ii) was dissolved in PBS and the concentration of protein in the solution was determined by the method of Lowry. Each antibody solution with the same concentration was prepared and then serially diluted with PBS. Monoclonal antibodies, which can recognize OCIF even at highly diluted solution, were selected by solid phase ELISA described in EXAMPLE 25-ii). Thus three monoclonal antibodies A1G5, E3H8 and D2F4 can be selected.

iv) Determination of class and subclass of antibodies

The class and subclass of the antibodies of the present invention obtained in EXAMPLE 25-iii) were analyzed using an immunoglobulin class and subclass analysis kit (Amersham). The procedure was carried out according to the protocol disclosed in the directions. The results were shown in Table 15. The antibodies of the present invention, E3H8, A1G5 and D2F4 belong to IgG₁, IgG_{2a} and IgG_{2b}, respectively.

Table 15

Analysis	of class	and subc	lass of the	antibod	ies in t	ne pres	ent
Antibody	lgG₁	lgG _{2a}	lgG _{2b}	lgG ₃	lgA	lgM	κ
A1G5		+	-	-	-	-	+
E3H8	+	-	-	•	-	-	+
D2F4	•	-	+	-	•	•	+

40

. v) Determination of OCIF by ELISA

Three kinds of monoclonal antibodies, A1G5, E3H8 and D2F4, which were obtained in EXAMPLE 25-iv), were used as solid phase antibodies and enzyme-labeled antibodies, respectively. Sandwich ELISA was constructed by each combination of solid phase antibody and labeled antibody. The labeled antibody was prepared using Immuno Pure Maleimide Activated Horseradish Peroxidase Kit (Pierce, Cat. No. 31494). Each monoclonal antibody was dissolved in 0.1 M NaHCO₃ at a concentration of 10 μg/ml, and 100 μl of the solution was added to each well in 96-well immunoplates (Nunc, MaxiSorp Cat. No. 442404) followed by allowing to stand at room temperature overnight. Subsequently, each well in the plates was blocked with 50% Blockace (Snow Brand Milk Products, Co., Ltd.) at room temperature for 50 minutes, and then was washed three times with PBS containing 0.1% Tween 20 (washing buffer).

A series of concentrations of OCIF was prepared by diluting OCIF with 1st reaction buffer ($0.2\,\mathrm{M}$ Tris-HCI bufer, pH 7.4, containing 40% Blockace and 0.1% Tween 20). Each well in 96-well immunoplates was filled with 100 μ l of the prepared OCIF solution with each concentration, allowed to stand at 37 °C for 3 hours, and subsequently washed three times with the washing buffer. For dilution of POD-labeled antibody, 2nd reaction buffer (0.1 M Tris-HCI buffer, pH 7.4, containing 25% Blockace and 0.1% Tween 20) was used. POD-labeled antibody was diluted 400-fold with 2nd reaction buffer, and 100 μ l of the diluted solution was added to each well in the immunoplates. Each imunoplate was allowed to stand at 37 °CC for 2 hours, and subsequently washed three times with the washing buffer. After washing, 100 μ l of a substrate solution (0.1 M citrate-phosphate buffer, pH 4. 5, containing 0.4 mg/ml of o-phenylenediamine HCl and 0.006% H₂O₂) was added to each well in the immunoplates and the immunoplates were incubated at 37°C for 15 min. The enzyme reaction was terminated by adding 50 μ l of 6 N H₂SO₄ to each well. The optical density of each well was determined at 492 nm using an immunoreader (ImmunoReader NJ 2000, Nunc).

Using three kinds of monoclonal antibody in the present invention, each combination of solid phase and POD-labeled antibodies leads to a accurate determination of OCIF. Each monoclonal antibody in the present invention was confirmed to recognize a different epitope of OCIF. A typical standard curve of OCIF using a combination of solid phase antibody, A1G5 and POD-labeled antibody, E3H8 was shown in Fig. 14.

vi) Determination of OCIF in human serum

Concentration of OCIF in five samples of normal human serum was determined using an EIA system described in EXAMPLE 25-v). The immunoplates were coated with A1G5 as described in EXAMPLE 25-v), and 50 μ l of 1st. reaction buffer was added to each well in the immunoplates. Subsequently, 50 μ l of each human serum was added to each well in the immunoplates. The immunoplates were incubated at 37°C for 3 hours and then washed three times with the washing buffer. After washing, each well in the immunoplates was filled with 100 μ l of POD-E3H8 antibody diluted 400-fold with 2nd. reaction buffer and incubated at 37°C for 2 hours. After washing the immunoplates three times with the washing buffer, 100 μ l of the substrate solution described in EXAMPLE 25-v) was added to each well and incubated at 37°C for 15 min. The enzyme reaction was terminated by adding 50 μ l of 6 N H₂SO₄ to each well in the immunoplates. The optical density of each well was determined at 492 nm using an immunoreader (ImmunoReader NJ 2000, Nunc). 1st. reaction buffer containing the known amount of OCIF was treated in the same way and a standard curve of OCIF as shown in fig. 2 was obtained. Using the standard curve of OCIF, the amount of OCIF in human serum sample was determined. The results were shown in Table 14.

Table 14

The amount of OCIF in normal human serum		
Serum Sample	OCIF Concentration (ng/ml)	
1	5.0	
2	2.0	
3 `	1.0	
4	3.0	
5	1.5	

50

EXAMPLE 26

Therapeutic effect on osteoporosis

(1) Method

Male Fischer rats, 6 weeks-old, were subjected to denervation of left forelimb. These rats were assigned to four groups(10 rats/group) and treated as follows; group A, sham operated rats without administration; group B, denervated rats with intravenous administration of vehicle; group C, denervated rats administered OCIF intravenously at a dose of 5 µg/kg twice a day; group D, denervated rats administered OCIF intravenously at a dose of 50 µg/kg twice a day. After denervation, OCIF was administered daily for 14 days. After 2 weeks treatment, the animals were sacrificed and their forelimbs were dissected. Thereafter bones were tested for mechanical strength.

(2) Results

15

20

30

35

40

45

50

55

Name:

Decrease of bone strength was observed in the animals of control groups as compared to those animals of the normal groups while bone strength was increase in the groups of animal received 50 mg of OCIF per kg body weight.

Industrial availability

The present in

The present invention provides both a novel protein which inhibits formation of osteoclasts and a efficient procedure to produce the protein. The protein of the present invention has an activity to inhibit formation of osteoclasts. The protein will be useful for the treatment of many diseases accompanying bone loss, such as osteoporosis, and as an antigen to be used for the immunological diagnosis of such diseases.

Referring to the deposited the microorgainsm

Name and Address of the Depositary Authority

National Institute of Bioscience and Human-Technology Agency of Industrial Science and Technol-

ogy Ministry of International Trade and Industry

Address: 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken 305, JAPAN

Deposited date: June 21, 1995

(It was transferred from Bikkoken No. P-14998, which was deposited on June 21, 1995.

Transferred date: October 25, 1995)

Acession Number: FERM BP-5267

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
- (i) APPLICANT:
 - (A) NAME: SNOW BRANDS MILK PRODUCTS CO., LTD.
 - (B) STREET:
 - (C) CITY:

10

15

30

- (D) STATE:
- (E) COUNTRY:
- (F) POSTAL CODE (ZIP):
- (G) TELEPHONE:
- (H) TELEFAX:
- (I) TELEX:
- (ii) TITLE OF INVENTION: Novel proteins and methods for producing the proteins
- (iii) NUMBER OF SEQUENCES: 105
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER:
 - (C) OPERATING SYSTEM:
 - (D) SOFTWARE: Wordperfect windows
- (V) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: JP
 - (B) FILE REFERENCE:
 - (C) FILING DATE:

	(2) INFORMATION FOR SEQUENCE ID NO: 1:
	(i) SEQUENCE CHARACTERISTICS:
5	(A) LENGTH: 6
	(B) TYPE: amino acid
	(D) TOPOLOGY : linear
10	(ii) MOLECULE TYPE : peptide (an internal amino acid sequence of the
	protein)
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 1:
	Xaa Tyr His Phe Pro Lys
15	I 5
	(2) INFORMATION FOR SEQUENCE ID NO: 2:
20	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 14
	(B) TYPE : amino acid
	(D) TOPOLOGY : linear
25	(ii) MOLECULE TYPE: peptide (an internal amino acid sequence of the
	protein)
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO:2:
30	Xaa Gln His Ser Xaa Gln Glu Gln Thr Phe Gln Leu Xaa Lys
	1 5 10
	(2) INFORMATION FOR SEQUENCE ID NO: 3:
35	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 12
	(B) TYPE: amino acid
40	(D) TOPOLOGY : linear
	(ii) MOLECULE TYPE: peptide (an internal amino acid sequence of the
	protein)
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 3:
45	Xaa Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys
	1 5 10
	(2) INFORMATION FOR SEQUENCE ID NO: 4:
50	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 380
	(V) PERGIU - 900

		(B)	TYPE	· a	mino	acı	a								
		(D)	TOPO	LOGY	: 1	inea	r								
5	(ii)	MOLE	CULE	TYP	E :	prot	ein	(OCI	F pr	otei	n wi	thou	t si	gnal	peptide)
	(xi)	SEQU	JENCE	DES	CRIP	TION	:SE	Q ID	NO:	4:		÷			
	GI	u Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His	Tyr	Asp	Glu	Glu	Thr	Ser
10	1				· 5					10					15'
	Hi	s Glr	Leu	Leu	Cys	Asp	Lys	Cys	Pro	Pro	Gly	Thr	Tyr	Leu	Lys
					20					25					30
	G1	n His	Cys	Thr	Ala	Lys	Trp	Lys	Thr	Val	Cys	Ala	Pro	Cys	Pro
15					35					40					45 ·
	As	p His	Tyr	Tyr	Thr	Asp	Ser	Trp	His	Thr	Ser	Asp	Glu	Cys	Leu
			-		50					55					60
20	Ту	r Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu	Gln	Tyr	Val	Lys	Gln	Glu
					65					70		•			75
	Су	s Asn	Arg	Thr		Asn	Arg	Val	Cys	Glu	Cys	Lys	Glu	Gly	Arg
			٠.		80					85					90
2 5	Ту	r Leu	Glu	Ile		Phe	Cys	Leu	Lys		Arg	Ser	Cys	Pro	
					95					100					105
	~ G1	y Phe	Gly	Val		Gln	Ala	Gly	Thr		Glu	Arg	Asn	Thr	
30			4		110					115				_	120
	Су	s Lys	Arg	Cys		Asp	Gly	Phe	Phe		Asn	Glu	Thr	Ser	
	1	_ 41_	D	C	125		***	771	A	130	C	W . 1	DI.	C1	135
25	Ly	s Ala	Pro	Cys		Lys	HIS	inr	Asn		ser	vaı	Pne	GIA	
35	I o	1	The	C1-	140	C1	A	41-	Th-	145	۸		Tt.	C++=	150
	Le	u Leu	1171	GIII	155	GIY	ASII	MIA	Inr	160	ASP	ASII	116	Cys	165
	G1	y Asn	Ser	Glu		Thr	Gla	ive	Cve		114	Acn	Va 1	Thr	
40		, nsu	Ger	GIG	170	1111	OIII	Lys	Cys	175	116	пор	141	1111	180
	Cv	s Glu	Glu	Ala		Phe	Arø	Phe	Ala		Pro	Thr	Lvs	Phe	
	-,				185	0				190			٠,٠		195
45	Pr	o Asn	Tro	Leu		Val	Leu	Val	Asp		Leu	Pro	G1v	Thr	
	_				200					205			,		210
	· Va	l Asn	Ala	Glu		Val	Glu	Arg	Ile		Arg	Gln	His	Ser	
					215					220					225
50	G1	n Glu	Gln	Thr		Gln	Leu	Leu	Lys		Tro	Lys	His	Gln	
					230				•	235		-			240

		Lys	Asp	Gln	Asp		Val	Lys	Lys	Ile		Gln	Asp	Ile	Asp	
5 .		_			_	245	a 1			.,	250	,,,			,	255
		Cys	Glu	Asn	Ser		Gln	Arg	HIS	Ile		HIS	Ala	ASN	Leu	
		DI	G1 .	C1	r	260	C	1	V - +	C1	265	f	Dwa	C1	I	270
10		Pne	Glu	Gin	Leu		ser	Leu	me t	GIU	280	Leu	FIO	GLY	Lys	285
		V = 1	Gly	410	C1	275	T1.	G1	I we	Thr		l vec	ΔIa	Cve	lve	
		Val	Gry	Ala	Giu	290	116	GIU	Lys	1 11T	295	Lys	Ala	Cys	Lys	300
		Ser	Asp	Gln	He		Lvs	l.eu	Leu	Ser		Trp	Arg	Ile	Lvs	
15		CCI	пор	01		305	_,_				310				-,-	315
		Gly	Asp	Gln	Asp		Leu	Lys	Gly	Leu		His	Ala	Leu	Lys	
		•	•			320					325					330
20		Ser	Lys	Thr	Tyr	His	Phe	Pro	Lys	Thr	Val	Thr	Gln	Ser	Leu	Lys
						335					340					345
		Lys	Thr	Ile	Arg	Phe	Leu	His	Ser	Phe	Thr	Met	Tyr	Lys	Leu	Tyr
25						350					355					360
		G1n	Lys	Leu	Phe		Glu	Met	Ile	Gly		Gln	Val	Gln	Ser	
				_	_	365					370					375
		Lys	Ile	Ser	Cys											
30		(2) II	VFORM	4A T T C	ที่ ธด	380 S G	OUEN	ICE 1	א מ	1. 5.						
		(i) SI							ייין עלי	,. J.						
			(A) I													
35				TYPE			acio	i								
			(D) 1													
		(ii)	MOLE	CULE	TYPE	: ;	rote	ein ((OCII	pro	teir	wit	th si	ignal	per	tide)
40		(xi) S	SEQUI	ENCE	DESC	CRIP	CION	: SE	Q II	NO:	5:			*		
		Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
			-20					-15					-10	_	_	
45		Ile	Lys	Trp	Thr	Thr		_	Thr	Phe	Pro	_	Lys	Tyr	Leu	His
~		.	-5 •	61	61	T1 .	-1	1	C 1-	•		5 C	A	T	C	Dana
			Asp	Glu	Glu	ihr		nıs	GIN	Leu	Leu		Asp	Lys	Cys	Pro
		10 P=0	C1. -	TL-	Tu-	Lau	15	G1 m	и; -	Cva	Th-	20.	ī ve	Trn	Ive	Thr
50	•	25	Gly	Inr	TAT	Leu	30	GIII	1112	Cys	THE	35	בנט	ттЙ	בנט	****
			Cys	Ala	Pro	Cvs		Asp	His	Tvr	Tvr		Asp	Ser	Tro	His
		, 41	U, 3	.114		J, 3				• , •	• ; •	****				

	40			45					5Q				
,	Thr Ser	Asp Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
5	55			60					65				
	Gln Tyr	Val Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
()	70			75					80			-	
10	Glu Cys	Lys Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
	85			90					95		•		
	His Arg	Ser Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr
	100			105		1			110				
15	Pro Glu	Arg Asn	Thr	Val	Cys	Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe
	115		•	120			-		125				
	Ser Asn	Glu Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn
20	130			135					140				
	Cys Ser	Val Phe	Gly	Leu	Leu	Leu	Thr	Gln	Lys	Gly	Asn	Ala	Thr
	145			150			`		155				
	His Asp	Asn Ile	Cys	Ser	Gly	Asn	Ser	Glu	Ser	Thr	Gln	Lys	Cys
<i>25</i>	160			165					170				
	Gly Ile	Asp Val	Thr	Leu	Cys	Glu	Glu	Ala		Phe	Arg	Phe	Ala
.*	175			180					185				
30		Thr Lys	Phe		Pro	Asn	Trp	Leu		Val	Leu	Val	Asp
	190	,		195					200				
		Pro Gly	Thr		Val	Asn	Ala	Glu		Val	Glu	Arg	He
·	205		_	210					215	.			
<i>35</i>		Gln His	Ser		Gin	Glu	Gin	Inr		Gin	Leu	Leu	Lys
	220	T 172 -	C1-	225	T	A	C1-	A	230	V- I	·	Ī	T1.
		Lys His	GTÜ		Lys	Asp	GIU	ASP		Val	Lys	Lys	116
40	235	Ann Tin	A a.m.	240	C	C1	۸	S	245	C1-	A	u; c	T1a
		Asp Ile	ASP		Cys	GIU	ASII	Ser	260	GIH	ur g	1112	116
	250	Ala Asn	Lau	255	Dha	Glu	Gln	I au		Ser	Lau	Wat	Glu
45	265	via van	Leu	270	1 116	Giu	OIII	Leu	275	061	Lea	MC C	014
45		Pro Gly	Ive.		Val	Glv	Ala	Glu		Ile	Glu	Lve	Thr
	280	ilo diy	Lys	285	131	Oly	MIG	014	290	110	010	L , 3	
		Ala Cys	ī.ve		Ser	Asp	Gln	Πe		Lvs	Leu	Leu	Ser
50	295	1110 013	د ر ت	300	201		0111		305	_,0			
		Arg Ile	Lve		Glv	Asp	Gln	Asp		Leu	Lvs	Gl v	Leu
•	200 11p		2,3		,	٠.٠٠	~ 411	P			_,_	,	

310					315					320				•
Met	His	Ala	Leu	Lys	His	Ser	Lys	Thr	Tyr	His	Phe	Pro	Lys	Thr
325					330					335				
Val	Thr	Gln	Ser	Leu	Lys	Lys	Thr	Ile	Arg	Phe	Leu	His	Ser	Phe
340					345					350			-	
Thr	Met	Tyr	Lys	Leu	Tyr	Gln	Lys	Leu	Phe	Leu	Glu	Met	Ile	Gly
355					360					365				
Asn	Gln	Val	Gln	Ser	Val	Lys	Ile	Ser	Cys	Leu				
370					375					380				

- (2) INFORMATION FOR SEQUENCE ID NO: 6:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1206
- (B) TYPE : nucleic acid
 - (C) STRANDEDNESS : single
 - (D) TOPOLOGY : linear
- (ii) MOLECULE TYPE : cDNA (OCIF)

30

45

(xi) SEQUENCE DESCRIPTION : SEQ ID NO: 6:

ATGAACAACT	TGCTGTGCTG	CGCGCTCGTG	TTTCTGGACA	TCTCCATTAA	GTGGACCACC	60
CAGGAAACGT	TTCCTCCAAA	GTACCTTCAT	TATGACGAAG	AAACCTCTCA	TCAGCTGTTG	120
TGTGACAAAT	GTCCTCCTGG	TACCTACCTA	AAACAACACT	GTACAGCAAA	GTGGAAGACC	180
GTGTGCGCCC	CTTGCCCTGA	CCACTACTAC	ACAGACAGCT	GGCACACCAG	TGACGAGTGT	240
CTATACTGCA	GCCCCGTGTG	CAAGGAGCTG	CAGTACGTCA	AGCAGGAGTG	CAATCGCACC	300
CACAACCGCG	TGTGCGAATG	CAAGGAAGGG	CGCTACCTTG	AGATAGAGTT	CTGCTTGAAA	360
CATAGGAGCT	GCCCTCCTGG	ATTTGGAGTG	GTGCAAGCTG	GAACCCCAGA	GCGAAATACA	420
GTTTGCAAAA	GATGTCCAGA	TGGGTTCTTC	TCAAATGAGA	CGTCATCTAA	AGCACCCTGT	480
AGAAAACACA	CAAATTGCAG	TGTCTTTGGT	CTCCTGCTAA	CTCAGAAAGG	AAATGCAACA	540
CACGACAACA	TATGTTCCGG	AAACAGTGAA	TCAACTCAAA	AATGTGGAAT	AGATGTTACC	600
CTGTGTGAGG	AGGCATTCTT	CAGGTTTGCT	GTTCCTACAA	AGTTTACGCC	TAACTGGCTT	660
AGTGTCTTGG	TAGACAATTT	GCCTGGCACC	AAAGTAAACG	CAGAGAGTGT	AGAGAGGATA	720
AAACGGCAAC	ACAGCTCACA	AGAACAGACT	TTCCAGCTGC	TGAAGTTATG	GAAACATCAA	780
AACAAAGACC	AAGATATAGT	CAAGAAGATC	ATCCAAGATA	TTGACCTCTG	TGAAAACAGC	840
GTGCAGCGGC	ACATTGGACA	TGCTAACCTC	ACCTTCGAGC	AGCTTCGTAG	CTTGATGGAA	900
AGCTTACCGG	GAAAGAAAGT	GGGAGCAGAA	GACATTGAAA	AAACAATAAA	GGCATGCAAA	960
CCCAGTGACC	AGATCCTGAA	GCTGCTCAGT	TTGTGGCGAA	TAAAAAATGG	CGACCAAGAC	1020

ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080

GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140 TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTGC 1200 TTATAA 1206 (2) INFORMATION FOR SEQUENCE ID NO: 7: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 (B) TYPE: amino acid 15 (D) TOPOLOGY : linear (ii) MOLECULE TYPE: peptide (a N-terminal amino acid sequence of the protein) (xi) SEQUENCE DESCRIPTION :SEQ ID NO:7: 20 Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser 10 (2) INFORMATION FOR SEQUENCE NO ID NO: 8: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1185 (B) TYPE: nucleic acid 30 (C) STRANDEDNESS : single (D) TOPOLOGY : linear (ii) MOLECULE TYPE : cDNA (OCIF2) (xi) SEQUENCE DESCRIPTION :SEQ ID NO:8 35 ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 40 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGTGC AATCGCACCC ACAACCGCGT GTGCGAATGC 300 AAGGAAGGC GCTACCTTGA GATAGAGTTC TGCTTGAAAC ATAGGAGCTG CCCTCCTGGA 360 TTTGGAGTGG TGCAAGCTGG AACCCCAGAG CGAAATACAG TTTGCAAAAG ATGTCCAGAT 420 45 GGGTTCTTCT CAAATGAGAC GTCATCTAAA GCACCCTGTA GAAAACACAC AAATTGCAGT 480 GTCTTTGGTC TCCTGCTAAC TCAGAAAGGA AATGCAACAC ACGACAACAT ATGTTCCGGA 540 AACAGTGAAT CAACTCAAAA ATGTGGAATA GATGTTACCC TGTGTGAGGA GGCATTCTTC 600 50 AGGTTTGCTG TTCCTACAAA GTTTACGCCT AACTGGCTTA GTGTCTTGGT AGACAATTTG 660 CCTGGCACCA AAGTAAACGC AGAGAGTGTA GAGAGGATAA AACGGCAACA CAGCTCACAA 720

39

GAACA	GACT.	T TC	CAGC	TGCT	GAA	GTTA	\TGG	AAAC	CATCA	AAA A	ACAA/	AGAC(CA AC	GATATAGTC	780
AAGAA	GATC	A TO	CAAG	ATAT	TGA	CCTC	TGT	GAAA	ACAC	GCG 1	GCAC	CGGC	CA CA	ATTGGACAT	840
GCTAA	CCTC	A CC	TTCG	AGCA	GCT	TCGT	AGC	TTGA	LTGGA	AA C	CTTA	CCGC	G AA	AAGAAAGTG	900
GGAGC	AGAA	G AC	ATTG	AAAA	AAC	AATA	AAG	GCAT	GCAA	AC C	CAGT	GACC	CA GA	ATCCTGAAG	960
CTGCT	CAGT	T TG	TGGC	GAAT	AAA	AAAT	GGC	GACC	CAAGA	CA C	CTTC	AAGO	G CC	CTAATGCAC	1020
GCACT.	AAAG	C AC	TCAA	AGAC	GTA	CCAC	TTT	CCCA	AAAC	TG I	CACT	CAGA	G TC	TAAAGAAG	1080
ACCAT	CAGG	T TC	CTTC	ACAG	CTT	CACA	ATG	TACA	AATT	GT A	TCAG	AAGT	T AT	TTTTAGAA	1140
ATGAT.	AGGT.	A AC	CAGG	TCCA	ATC	AGTA	ĄĄĄ	ATAA	.GCTG	CT T	ATAA				1185
(2) I	NFOR	MATI	ON F	OR S	EQUE	NCE	ID N	0: 9	:						
(i) S	EQUE	NCE	CHAR	ACTE	RIST	ICS:									
	(A)	LENG	TH:	394			,								
	(B) '	TYPE	: aı	mino	aci	d									
	(D)	TOPO	LOGY	: 1:	inea	r									
(ii) l	MOLE	CULE	TYP	E : 1	prot	ein	(OCI	F2)							
(xi) S	SEQUI	ENCE	DES	CRIP	rion	: SE	Q ID	NO:	9:						
Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser	
	-20					-15					-10				
Il∙e		Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His	
_	-5				-1	1				5					
	Asp	Glu	Glu	Thr		His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro	
10		 1	_		15			_		20					
	Gly	Thr	Tyr	Leu		Gln	His	Cys	Thr		Lys	Trp	Lys	Thr	
25	C .	. 1	ъ		30				_	35		_	_	•••	
	Cys	Ala	Pro	Cys		Asp	HIS	lyr	lyr		Asp	Ser	Trp	His	
40	C	A	C1	C	45	Т	C	C	n	50	C		61		
55	Ser	ASP	Glu	Cys		lyr	Cys	ser	Pro		cys	Lys	GIU	Cys	•
	Ara	Thr	His	A cn	60	Va1	Cvi	C1	C++-	65	C1	C1	A	Т	
70	AL B	1111	1112	VSII	75	741	Cys	GIU	Cys		GIU	GIY	Arg	lyr	
	Glu	Tla	Glu	Pho		f our	I vo	Иic	A	08	C	Dana	D	Cl.	
85	oru.	116	ord	1 116	90	Leu	Lys	1113	vr 8	95	Cys	FIG	110	GLY	
	G1 v	Va1	Val	Gln		Gl _W	Thr	Pro	G1.,		4.50	The	Va1	Cva	
100	U1	, a1	191	2111	105	ary	HIL	110	GIU	110	nsii	III	191	. ys	
	Aro	Cve	Pro	Aen		Pho	Phe	Ser	Acn		Thr	Sar	Ser	Ive	
115	5	<i>-</i> , <i>-</i>		τομ	120		1 116	OGT.	USII	125	1111	2et.	J e I	Lys	•
110					120					140					

	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn	Cys	Ser	Val	Phe	Gly	Leu	Leu
	130					135					140				
5	Leu	Thr	Gln	Lys	Gly	Asn	Ala	Thr	His	Asp	Asn	Ile	Cys	Ser	Gly
	145					150					155				
	Asn	Ser	Glu	Ser	Thr		Lys	Cys	Gly	Ile		Val	Thr	Leu	Cys
10	160					165					170	_			_
		Glu	Ala	Phe	Phe		Phe	Ala	Val	Pro		Lys	Phe	Thr	Pro
•	175					180					185				
		Trp	Leu	Ser	Val		Val	Asp	Asn	Leu		Gly	ihr	Lys	Val
	190			_		195			•		200	,, .	C	_	C1
		Ala	Glu	Ser	Val		Arg	ile	Lys	Arg		HIS	Ser	Ser	Gin
	205	61	~ :	5.	61	210			T	т	215	17.2 -	C1-	A	T
20		Gin	Thr	Phe	GIn		Leu	Lys	Leu	irp			Gin	ASN	Lys
	220	C1-	A	T1.	V - 1	225	T	TIO	TIO		230	. , .	Acn	Lou	Cvc
		GIU	Asp	TTE	Vai	240	Lys	116	116	GIII	245	116	лэр	Leu	Cys
25	235	1 cp	Ser	Val	Gla		ніс	τla	Clv	Hie		Asn	I eu	Thr	Phe
	250	ASII	Sel	Val	GIII	255	1113	110	UI,	1113	260	11311	LCu		1110
÷-		G1n	Leu	Arg	Ser		Met	Glu	Ser	Leu		Glv	Lvs	Lvs	Val
	265	0211	-			270					275	,	-•-	_,_	
30		Ala	Glu	Asp	Ile		Lys	Thr	Ile	Lys		Cys	Lys	Pro	Ser
	280			•		285	•				290				
		Gln	Ile	Leu	Lys	Leu	Leu	Ser	Leu	Trp	Arg	Ile	Lys	Asn	Gly
35	295					300					305				
	Asp	Gln	Asp	Thr	Leu	Lys	Gly	Leu	Met	His	Ala	Leu	Lys	His	Ser
÷	310					315					320				
40	Lys	Thr	Tyr	His	Phe	Pro	Lys	Thr	Val	Thr	Gln	Ser	Leu	Lys	Lys
	325					330					335				
	Thr	Ile	Arg	Phe	Leu	His	Ser	Phe	Thr	Met	Tyr	Lys	Leu	Tyr	Gln
	340		•			345					350				
45	Lys	Leu	Phe	Leu	Glu	Met	Ile	Gly	Asn	Gln	Val	Gln	Ser	Val	Lys
	355			1	•	360					365				
	Ile	Ser	Cys	Leu											
50	370			373											
•															

(2) INFORMATION FOR SEQUENCE ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

(C) STRANDEDNESS : single(D) TOPOLOGY : linear

(ii) MOLECULE TYPE : protein (OCIF3)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

	(A) LENGTH: 1089	
5	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	
10	(ii) MOLECULE TYPE : cDNA (OCIF3)	
. •	(xi) SEQUENCE DESCRIPTION ID NO: 10:	
	ATGAACAAGT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC	6
	CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG	12
15	TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC	18
	GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT	24
	CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC	30
20	CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA	36
	CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA	42
	GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT	480
	AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA	540
5	CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC	600
	CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT	660
	AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA	720
o	AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA	780
•	AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC	840
	GTGCAGCGGC ACATTGGACA TGCTAACCTC AGTTTGTGGC GAATAAAAAA TGGCGACCAA	900
	GACACCTTGA AGGGCCTAAT GCACGCACTA AAGCACTCAA AGACGTACCA CTTTCCCAAA	960
5	ACTGTCACTC AGAGTCTAAA GAAGACCATC AGGTTCCTTC ACAGCTTCAC AATGTACAAA 1	.020
	TTGTATCAGA AGTTATTTTT AGAAATGATA GGTAACCAGG TCCAATCAGT AAAAATAAGC 1	.080
	TGCTTATAA 1	.089
2		
	(2) INFORMATION FOR SEQUENCE ID NO: 11:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 362	
5	(B) TYPE : amino acid	

Met Asn Lys Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser

	-20		-15	-10
	Ile Lys	Trp Thr Thr	Gln Glu Thr Phe	Pro Pro Lys Tyr Leu His
5	-5		-1 1	. 5
	Tyr Asp	Glu Glu Thr		Leu Cys Asp Lys Cys Pro
·	10		15	20
10		Thr Tyr Leu		Thr Ala Lys Trp Lys Thr
	25		30	35
		Ala Pro Cys		Tyr Thr Asp Ser Trp His
15	40	A	45	50 Dog Val Coo Loo Clark
15		Asp Giu Cys	60	Pro Val Cys Lys Glu Leu 65
	55 Gla Tvr	Val Ive Gla		Thr His Asn Arg Val Cys
	70	vai Lys Gin	75	80
20		Lvs Glu Glv		Ile Glu Phe Cys Leu Lys
	85		90	95
	His Arg	Ser Cys Pro	Pro Gly Phe Gly	Val Val Gln Ala Gly Thr
25	100		105	110
_e m.	Pro Glu	Arg Asn Thr	Val Cys Lys Arg	Cys Pro Asp Gly Phe Phe
× .	115		120	125
3 0		Glur Thr Ser		Cys Arg Lys His Thr Asn
	130		135	140
•		Val Phe Gly		Gln Lys Gly Asn Ala Thr
	145		150	155
35	His Asp	Asn Ile Cys		Glu Ser Thr Gln Lys Cys
		Acn Val Thr	165	170 Ala Phe Phe Arg Phe Ala
	175	ASP VAI III	180	185
40	-	Thr Lvs Phe		Leu Ser Val Leu Val Asp
	190		195	200
	Asn Leu	Pro Gly Thr	Lys Val Asn Ala	Glu Ser Val Glu Arg Ile
45	205		210	215
	Lys Arg	Gln His Ser	Ser Gln Glu Gln	Thr Phe Gln Leu Leu Lys
	220		225 .	230
50	Leu Trp	Lys His Gln	Asn Lys Asp Gln	Asp Ile Val Lys Lys Ile
50	235		240	245
	Ile Gln	Asp Ile Asp	Leu Cys Glu Asn	Ser Val Gln Arg His Ile

	250 255 260	
	Gly His Ala Asn Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln	
5	265 270 275	
	Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr	
	280 285 290	
10	Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile	
	295 300 305	
	Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu	
	310 315 320	
15	Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser	
	325 330 335	
	Cys Leu	
20	340 341	
	(2) INFORMATION FOR SEQUENCE ID NO: 12:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 465	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE : cDNA (OCIF4)	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 12:	^
3 5	ATGAACAAGT TGCTGCTG CTCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 6	
30	CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 12 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 18	
	TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 18 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 24	
	CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 30	
40	CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 36	
,	CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GTACGTGTCA ATGTGCAGCA 42	
	AAATTAATTA GGATCATGCA AAGTCAGATA GTTGTGACAG TTTAG 46	-
45		•
	(2) INFORMATION FOR SEQUENCE ID NO: 13:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 154	
	(B) TYPE: amino acid	

	(C) STRANDEDNESS : single										
	(D) TOPOLOGY : linear										
5	(ii) MOLECULE TYPE : protein (OCIF4)										
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:										
	Met Asn Lys Leu Leu Cys Cys Ser Leu Val Phe Leu Asp Ile Ser										
10	-20 -15 - 0										
	Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His										
	-5 -1 1 5										
	Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro										
1 5	10 15 20										
	Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr										
	25 30 35										
20 .	Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His										
	40 45 50										
	Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu										
25	55 60 65 Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys										
20	-70 75 80										
	Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys										
	85 90 95										
30	His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr										
	100 105 110										
	Cys Gln Cys Ala Ala Lys Leu Ile Arg Ile Met Gln Ser Gln Ile										
<i>35</i>	115 120 125										
	Val Val Thr Val										
	130 133										
40											
70	(2) INFORMATION FOR SEQUENCE ID NO: 14:										
	(i) SEQUENCE CHARACTERISTICS:										
	(A) LENGTH: 438										
45	(B) TYPE: nucleic acid										
	(C) STRANDEDNESS: single										
	(D) TOPOLOGY: linear										
50	(ii) MOLECULE TYPE : cDNA (OCIF5)										
•	(xi) SEQUENCE DESCRIPTION ID NO: 14: ATGAACAAGT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60										
	AIGMACANGI IGCIGIGCIG CGCGCICGIG IIICIGGACA ICICCATIAA GIGGACCACC 60										

5	CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GATGCAGGAG AAGACCCAAG CCACAGATAT GTATCTGA	120 180 240 300 360 420 438
	(2) INFORMATION FOR SEQUENCE ID NO: 15:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH : 140	
20	(B) TYPE : amino acid (C) STRANDEDNESS : single (D) TOPOLOGY : linear	
	(ii) MOLECULE TYPE : protein (OCIF5)	
25	(xi) SEQUENCE DESCRIPTION: ID NO: 15:	
	Met Asn Lys Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -20 -15 -10	
	He Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His	
30	-5 -1 1 5	
	Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro	
	10 15 20	
35	Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr 25 30 35	
	Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His	
	40 45 50	•
	Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu	
40	55 60 65	
	Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys	
	70 . 75 80	
45	Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys	
	85 90 95	
	His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Cys	
50	100 105 110	
50	Arg Arg Pro Lys Pro Gln Ile Cys Ile	
	115 120 124	

	(2) INFORMATION FOR SEQUENCE ID NO: 16:	
	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH : 20	
	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
10	(D) TOPOLOGY : linear	
,	(ii) MOLECULE TYPE : synthetic DNA (primer T3)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	,
	AATTAACCCT CACTAAAGGG	20
5		
	(2) INFORMATION FOR SEQUENCE ID NO: 17:	
	(i) SEQUENCE CHARACTERISTICS:	
20 .	(A) LENGTH : 22	
	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	
5	(ii) MOLECULE TYPE : synthetic DNA (primer T7)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
	GTAATACGAC TCACTATAGG GC	22
0		
	(2) INFORMATION FOR SEQUENCE ID NO: 18:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH : 20	
5	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY : linear	
0	(ii) MOLECULE TYPE : synthetic DNA (primer IF1)	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 18:	00
	ACATCAAAAC AAAGACCAAG	20
	(2) INFORMATION FOR SEQUENCE ID NO: 19:	
5		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH : 20	
o	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	

	(11) MOLECULE TYPE : synthetic DNA (primer 1F2)	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 19:	
5	TCTTGGTCTT TGTTTTGATG	20
	(2) INFORMATION FOR SEQUENCE ID NO: 20:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE : nucleic acid	
15	(C) STRANDEDNESS : single	
. •	(D) TOPOLOGY : linear	•
	(ii) MOLECULE TYPE : synthetic DNA (primer IF3)	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 20:	
20	TTATTCGCCA CAAACTGAGC	20
-	(2) INFORMATION FOR CEOUPINGS IN NO. 01.	
	(2) INFORMATION FOR SEQUENCE ID NO: 21: (i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 20	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	
30	(ii) MOLECULE TYPE : synthetic DNA (primer IF4)	
	(, , , , , , , , , , , , , , , , , , ,	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 21:	
5	TTGTGAAGCT GTGAAGGAAC	20
	(2) INFORMATION FOR SEQUENCE ID NO: 22:	,
o	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH : 20	
	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
5	(D) TOPOLOGY : linear	
	(ii) MOLECULE TYPE : synthetic DNA (primer IF5)	
	(xi) SEQUENCE DESCRIPTION : SEQ ID NO: 22:	
9	GCTCAGTTTG TGGCGAATAA	20
	(C) INTERPLATION FOR CHAIRMAN TO THE	
	(2) INFORMATION FOR SEQUENCE ID NO: 23:	

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: synthetic DNA (primer IF6) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23: GTGGGAGCAG AAGACATTGA	20
15	(2) INFORMATION FOR SEQUENCE ID NO: 24: (i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 20(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE : synthetic DNA (primer IF7) (xi) SEQUENCE DESCRIPTION :SEQ ID NO: 24: AATGAACAAC TTGCTGTGCT	20
30	(2) INFORMATION FOR SEQUENCE ID NO: 25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20	,
3 5	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: synthetic DNA (primer IF8)	
40	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 25: TGACAAATGT CCTCCTGGTA	20
45	(2) INFORMATION FOR SEQUENCE ID NO: 26: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 (B) TYPE: nucleic acid	
50	<pre>(C) STRANDEDNESS : single (D) TOPOLOGY : linear (ii) MOLECULE TYPE : synthetic DNA (primer IF9)</pre>	

. 55

	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 26:	
	AGGTAGGTAC CAGGAGGACA	20
5		
	(2) INFORMATION FOR SEQUENCE ID NO: 27:	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 20	
	(B) TYPE : nucleic acid	
•	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	
15	(ii) MOLECULE TYPE : synthetic DNA (primer IF10)	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 27:	
	GAGCTGCCCT CCTGGATTTG	20
20		
	(2) INFORMATION FOR SEQUENCE ID NO: 28:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
25	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: synthetic DNA (primer IF11)	
	(xi) SEQUENCE DESCRIPTION : SEQ ID NO: 28:	
	CAAACTGTAT TTCGCTCTGG	20
35	(2) INFORMATION FOR SEQUENCE ID NO: 29:	•
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE : nucleic acid	
ю	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	
	(ii) MOLECULE TYPE : synthetic DNA (primer IF12)	
5	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 29:	
	GTGTGAGGAG GCATTCTTCA	20
0	(2) INFORMATION FOR SEQUENCE ID NO: 30:	
-	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 32	

	(b) lift: nucleic acid		
	(C) STRANDEDNESS : single		
5	(D) TOPOLOGY : linear		
	(ii) MOLECULE TYPE : synthetic DNA (primer C19SF)		
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 30:		
10	GAATCAACTC AAAAAAGTGG AATAGATGTT AC	-	32
	(2) INFORMATION FOR SEQUENCE ID NO: 31:		
	(i) SEQUENCE CHARACTERISTICS:		
15	(A) LENGTH: 32		
	(B) TYPE : nucleic acid		
	(C) STRANDEDNESS : single		
20	(D) TOPOLOGY : linear		
20	(ii) MOLECULE TYPE : synthetic DNA (primer C19SR)		
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 31:		
	GTAACATCTA TTCCACTTTT TTGAGTTGAT TC		32
25			
	(2) INFORMATION FOR SEQUENCE ID NO: 32:		
•	(i) SEQUENCE CHARACTERISTICS:		
30	(A) LENGTH: 30		
30	(B) TYPE: hucleic acid		•
	(C) STRANDEDNESS : single		
	(D) TOPOLOGY : linear	,	V
35	(ii) MOLECULE TYPE : synthetic DNA (primer C20SF)		
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 32:		
	ATAGATGTTA CCCTGAGTGA GGAGGCATTC		30
40			
	(2) INFORMATION FOR SEQUENCE ID NO: 33:		
	(i) SEQUENCE CHARACTERISTICS:		
1 5	(A) LENGTH: 30		
	(B) TYPE : nucleic acid		
	(C) STRANDEDNESS : single	•	
	(D) TOPOLOGY : linear		•
50	(ii) MOLECULE TYPE : synthetic DNA (primer C20SR)		
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 33:		

•	GAATGCCTCC TCACTCAGGG TAACATCTAT	30
5	(2) INFORMATION FOR-SEQUENCE ID NO: 34:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 31	
10	(B) TYPE : nucleic acid	
10	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	
	(ii) MOLECULE TYPE : synthetic DNA (primer C21SF)	
15	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 34:	
	CAAGATATTG ACCTCAGTGA AAACAGCGTG C	31
20	(2) INFORMATION FOR SEQUENCE ID NO: 35:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 31	
	(B) TYPE : nucleic acid	
25	(C) STRANDEDNESS : single	
~	(D) TOPOLOGY : linear	
	(ii) MOLECULE TYPE : synthetic DNA (primer C21SR)	
30	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 35:	
	GCACGCTGTT TTCACTGAGG GCAATATCTT G	31
	(2) INFORMATION FOR SEQUENCE ID NO: 36:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 31	
	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
10	(D) TOPOLOGY : linear	
	(ii) MOLECULE TYPE : synthetic DNA (primer C22SF)	•
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 36:	
15	AAAACAATAA AGGCAAGCAA ACCCAGTGAC C	31
	(2) INFORMATION FOR SEQUENCE ID NO: 37:	
•	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 31	
	(B) TYPE : nucleic acid	

	(C) STRANDEDNESS : single		
	(D) TOPOLOGY : linear		
5	(ii) MOLECULE TYPE: synthetic DNA (primer C22SR)		
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 37:		
	GGTCACTGGG TTTGCTTGCC TTTATTGTTT T		31
10		-	
	(2) INFORMATION FOR SEQUENCE ID NO: 38:		
	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH : 31		
15	(B) TYPE : nucleic acid		
	(C) STRANDEDNESS : single		
	(D) TOPOLOGY : linear		
20	(ii) MOLECULE TYPE : synthetic DNA (primer C23SF)		
	(xi) SEQUENCE DESCRIPTION : SEQ ID NO: 38:		
	TCAGTAAAAA TAAGCAGCTT ATAACTGGCC A		31
05			
25	(2) INFORMATION FOR SEQUENCE ID NO: 39:		
	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH : 31	•	
30	(B) TYPE : nucleic acid		,
	(C) STRANDEDNESS : single		
	(D) TOPOLOGY : linear		
35	(ii) MOLECULE TYPE: synthetic DNA (primer C23SR)	•	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 39:		
	TGGCCAGTTA TAAGCTGCTT ATTTTTACTG A		31
10	(2) INFORMATION FOR SEQUENCE ID NO: 40:		
	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 22	•	
15	(B) TYPE : nucleic acid		
	(C) STRANDEDNESS : single		
	(D) TOPOLOGY : linear		
	(ii) MOLECULE TYPE : synthetic DNA (primer IF 14)		
50	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 40:		
	TTGGGGTTTA TTGGAGGAGA TG		22
	·		

	(2) IMPORMATION FOR SEQUENCE ID NO: 41:	
	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 36	
	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
10	(D) TOPOLOGY : linear	
,	(ii) MOLECULE TYPE : synthetic DNA (primer DCR1F)	
•	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 41:	
	ACCACCCAGG AACCTTGCCC TGACCACTAC TACACA	36
15		
*	(2) INFORMATION FOR SEQUENCE ID NO: 42:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 36	
	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	
?5	(ii) MOLECULE TYPE : synthetic DNA (primer DCR1R)	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 42:	
	GTCAGGGCAA GGTTCCTGGG TGGTCCACTT AATGGA	36
3 <i>0</i>	7	
	(2) INFORMATION FOR SEQUENCE ID NO: 43:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 36	
35	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	
ю.	(ii) MOLECULE TYPE : synthetic DNA (primer DCR2F)	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 43:	
	ACCGTGTGCG CCGAATGCAA GGAAGGGCGC TACCTT	36
5	(2) INCODMATION FOR SEQUENCE ID NO. 44.	
	(2) INFORMATION FOR SEQUENCE ID NO: 44: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 36	
	(B) TYPE : nucleic acid	
ro		
	(C) STRANDEDNESS : single (D) TOPOLOGY : linear	
	(D) IOLOFOGI · Illeal	

	(ii) MOLECULE TYPE: synthetic DNA (primer DCR2R)	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 44:	
5 .	TTCCTTGCAT TCGGCGCACA CGGTCTTCCA CTTTGC	36
	(2) INFORMATION FOR SEQUENCE ID NO: 45:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 36	
	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
15	(D) TOPOLOGY : linear	
	(ii) MOLECULE TYPE : synthetic DNA (primer DCR3F)	
	(xi) SEQUENCE DESCRIPTION : SEQ ID NO: 45:	
20	AACCGCGTGT GCAGATGTCC AGATGGGTTC TTCTCA	36
	(2) INFORMATION FOR SEQUENCE ID NO: 46:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 36	
•	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	•
3 <i>0</i>	(D) TOPOLOGY : linear	•
,,,	(ii) MOLECULE TYPE : synthetic DNA (primer DCR3R)	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 46:	
	ATCTGGACAT CTGCACACGC GGTTGTGGGT GCGATT	36
35		•
	(2) INFORMATION FOR SEQUENCE ID NO: 47:	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 36	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	-
15	(ii) MOLECULE TYPE : synthetic DNA (primer DCR4F)	•
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 47:	
	ACAGTTTGCA AATCCGGAAA CAGTGAATCA ACTCAA	36
50	(2) INFORMATION FOR SEQUENCE ID NO: 48:	
	(i) SEQUENCE CHARACTERISTICS:	

	(A) LENGTH: 36		
	(B) TYPE : nucleic acid		
5	(C) STRANDEDNESS : single		
	(D) TOPOLOGY : linear		
	(ii) MOLECULE TYPE : synthetic DNA (primer DCR4R)		•
10	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 48:	•	
10	ACTGTTTCCG GATTTGCAAA CTGTATTTCG CTCTGG		36
	(2) INFORMATION FOR SEQUENCE ID NO: 49:		
15	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 36		
	(B) TYPE : nucleic acid		
20	(C) STRANDEDNESS : single		
20	(D) TOPOLOGY : linear		
	(ii) MOLECULE TYPE : synthetic DNA (primer DDD1F)	•	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 49:		
25	AATGTGGAAT AGATATTGAC CTCTGTGAAA ACAGCG		36
	(2) INFORMATION FOR SEQUENCE ID NO: 50:		
	(i) SEQUENCE CHARACTERISTICS:		
30	(A) LENGTH: 36		v
	(B) TYPE : nucleic acid		
	(C) STRANDEDNESS : single		
35	(D) TOPOLOGY : linear		
	(ii) MOLECULE TYPE : synthetic DNA (primer DDD1R)		
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 50:		
	AGAGGTCAAT ATCTATTCCA CATTTTTGAG TTGATT		36
40			00
	(2) INFORMATION FOR SEQUENCE ID NO: 51:		-
	(i) SEQUENCE CHARACTERISTICS:		
45	(A) LENGTH: 36		
	(B) TYPE : nucleic acid		
	(C) STRANDEDNESS : single		
	(D) TOPOLOGY : linear		
50	(ii) MOLECULE TYPE : synthetic DNA (primer DDD2F)		
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 51:		
	•		

	AGATCATCCA AGACGCACTA AAGCACTCAA AGACGT	36	j
5	(2) INFORMATION FOR SEQUENCE ID NO: 52:(i) SEQUENCE CHARACTERISTICS:		
10	(A) LENGTH: 36(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
15	(ii) MOLECULE TYPE: synthetic DNA (primer DDD2R) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52: GCTTTAGTGC GTCTTGGATG ATCTTCTTGA CTATAT	36	
20	(2) INFORMATION FOR SEQUENCE ID NO: 53:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29		
25	(B) TYPE : nucleic acid(C) STRANDEDNESS : single(D) TOPOLOGY : linear		
30	(ii) MOLECULE TYPE : synthetic DNA (primer XhoI F) (xi) SEQUENCE DESCRIPTION :SEQ ID NO: 53: GGCTCGAGCG CCCAGCCGCC GCCTCCAAG	29	
35	(2) INFORMATION FOR SEQUENCE ID NO: 54:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20(B) TYPE: nucleic acid		
40	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: synthetic DNA (primer IF 16)		
45	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 54: TTTGAGTGCT TTAGTGCGTG	20	
50	(2) INFORMATION FOR SEQUENCE ID NO: 55:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30		
	(B) TYPE : nucleic acid		

	(C) STRANDEDNESS : single		
5	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: synthetic DNA (primer CL F) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:		
	TCAGTAAAAA TAAGCTAACT GGAAATGGCC		30
10		-	
	(2) INFORMATION FOR SEQUENCE ID NO: 56:		
-	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 30		
15	(B) TYPE : nucleic acid	•	
	(C) STRANDEDNESS : single		
	(D) TOPOLOGY : linear		
20	(ii) MOLECULE TYPE : synthetic DNA (primer CL R)		
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 56:		
	GGCCATTTCC AGTTAGCTTA TTTTTACTGA		30
25	(2) INFORMATION FOR SEQUENCE ID NO: 57:		
	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 29		
30	(B) TYPE : nucleic acid	•	
50	(C) STRANDEDNESS : single		
	(D) TOPOLOGY : linear		
	(ii) MOLECULE TYPE : synthetic DNA (primer CC R)		•
3 <i>5</i>	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 57:		
	CCGGATCCTC AGTGCTTTAG TGCGTGCAT		29
10	(2) INFORMATION FOR SEQUENCE ID NO: 58:		
	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 29		
	(B) TYPE : nucleic acid		
15	(C) STRANDEDNESS : single		
	(D) TOPOLOGY : linear		
	(ii) MOLECULE TYPE : synthetic DNA (primer CCD2 R)	•	
50	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 58:		
	CCGGATCCTC ATTGGATGAT CTTCTTGAC		29
	<u>-</u>		

	(2) IMPORMATION FOR SEQUENCE ID NO. 59.	
	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 29	
	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
10	(D) TOPOLOGY : linear	
	(ii) MOLECULE TYPE : synthetic DNA (primer CCD1 R)	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 59:	
	CCGGATCCTC ATATTCCACA TTTTTGAGT	29
15		
	(2) INFORMATION FOR SEQUENCE ID NO: 60:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 29	
20	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	
25	(ii) MOLECULE TYPE: synthetic DNA (primer CCR4 R)	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 60:	
	CEGGATCCTC ATTTGCAAAC TGTATTTCG	29
30	(2) INFORMATION FOR SEQUENCE ID NO: 61:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 29	
35	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	
	(ii) MOLECULE TYPE : synthetic DNA (primer CCR3 R)	
40	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 61:	
	CCGGATCCTC ATTCGCACAC GCGGTTGTG	29
4 5	(2) INFORMATION FOR SEQUENCE ID NO: 62:	
43	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 401	
	(B) TYPE : amino acid	
50	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	

		(ii)	MOLE	CULE	TYP	Ε:	Prot	ein	(OCI	F-C1	95)					
		(xi)	SEQU	ENCE	DES	CRIF	TION	:SE	Q ID	NO:	62:					
5		Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
			-20					-15					-10			
		Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
10			-5				-1	1				. 5		•		
			Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu		Asp	Lys	Cys	Pro
		10		 .	_		15			_		20		_	_	
15			Gly	lhr	lyr	Leu	Lys	Gln	His	Cys	Thr		Lys	Trp	Lys	Thr
		25 V-1	C	A 1 –	D	C	30	A	172 -	т	TT	35 T		_		
		40	Cys	мта	Pro	Cys	Pro	Asp	пıs	ıyr	lyr		Asp	Ser	lrp	His
			Ser	Asn	Glu	Cve	45 Leu	Tur	Cve	Sor	Pro	50 Val	Cvs	Lvc	Glu	1 011
20		55			o i u	0,3	60	.,.	0,3	001	110	65	Oy 3	Lys	Olu	Leu
			Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr		Asn	Arg	Val	Cvs
		70	•		•		75	• •				80		0		-,-
25		Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
		85					90					95			•	
	v	His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala	G1y	Thr
30		100					105					110				
			Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe
		115				_	120	_		_		125				
<i>35</i>			Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys		Lys	His	Thr	Asn
33		130	S	Va1	DL -	C1	135	1	I	TL	C1	140	C1		. 1	771
		145	Ser	val	rne	GIA	Leu 150	Leu	Leu	inr	Gin		Gly	Asn	Ala	Ihr
			Asp	Asn	Tle	Cve	Ser	G1 v	Asn	Ser	Glu	155	Thr	G1n	Ive	Sar
40		160				0,0	165	U 1,	11311	001	OI u	170	1111	GIH	LJS	261
			Ile	Asp	Val	Thr	Leu	Cys	Glu	Glu	Ala		Phe	Arg	Phe	Ala
		175					180	-				185		· · · · · · · · · ·		
45		Val	Pro	Thr	Lys	Phe	Thr	Pro	Asn	Trp	Leu	Ser	Val	Leu	Val	Asp
		190					195					200				
		Asn	Leu	Pro	Gly	Thr	Lys	Val	Asn	Ala	Glu	Ser	Val	Glu	Arg	Ile
50		205		•			210		,			215				
			Arg	Gln	His	Ser	Ser	Gln	Glu	Gln	Thr	Phe	Gln	Leu	Leu	Lys
		220					225					230				

		Leu	Trp	Lys	His	G1n	Asr	ı Lys	s Asp	Gln	Asp	Ile	Val	Lys	Lys	: Ile
		235					240)				245				
5		Ile	Gln	Asp	Ile	Asp	Leu	Cys	Glu	Asn	Ser	Val	Gln	Arg	His	Ile
		250					255	;				260				
		Gly	His	Ala	Asn	Leu	Thr	Phe	Glu	Gln	Leu	Arg	Ser	Leu	Met	Glu
10		265	,				270					275			-	
		Ser	Leu	Pro	Gly	Lys	Lys	Val	Gly	Ala	Glu	Asp	Ile	Glu	Lys	Thr
		280					285					290	•			
		Ile	Lys	Ala	Cys	Lys	Pro	Ser	Asp	Gln	Ile	Leu	Lys	Leu	Leu	Ser
15		295					300					305				
	•	Leu	Trp	Arg	Ile	Lys	Asn	Gly	Asp	Gln	Asp	Thr	Leu	Lys	Gly	Leu
		310					315					320				
20		Met	His	Ala	Leu	Lys	His	Ser	Lys	Thr	Tyr	His	Phe	Pro	Lys	Thr
		325					330					335				
		Val	Thr	Gln	Ser	Leu	Lys	Lys	Thr	Ile	Arg	Phe	Leu	His	Ser	Phe
		340					345					350				
25		Thr	Met	Tyr	Lys	Leu	Tyr	Gln	Lys	Leu	Phe	Leu	Glu	Met	Ile	Gly
		355					360					365			v	
	, was	Asn	Gln	Val	Gln	Ser	Val	Lys	Ile	Ser	Cys	Leu				
30		370	,				375					380				
• •				7												
		(2) IN							D NO	: 63	:					
		(i) SE	QUEN	CE C	HARA	CTER	ISTI	cs:			-					•
35					н : .											
					: am											
					DEDN											
40					OGY								•			
		(ii) M														
	((xi) S	EQUE	NCE I	DESCI	RIPT	ION	SEQ	ID I	NO: (63:				,	
		Met	Asn A	Asn l	Leu I	Leu (Cys	Cys ,	Alal	Leu '	Val F	he I	.eu /	Asp	Ile :	Ser
45		•	-20 .		•			-15				-	-10			
		Ile	Lys :	[rp]	Thr 1	Thr (Gln	Glu ′	Thr I	Phe I	Pro F	ro L	ys 1	[yr]	Leu l	lis
			-5			• -	-1	l				5	-			
50		Tyr A	Asp (Glu (Glu 1	Thr S	er l	His (Gln I	.eu I	.eu C	ys A	sp I	.ys (Cys I	Pro
		10					5					0				
		Pro (Gly 7	Thr 1	Tyr L	.eu l	ys (Gln H	lis (Cys 1	hr A	la L	ys 1	rp I	ys 1	Thr

	25 30 35	
	Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Ti	rp His
<i>5</i>	40 45 50	•
	Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys G	lu Leu
	55 60 65	
10	Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Va	l Cys
	70 75 80	
	Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Le	u Lys
15	85 90 95	
	His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gl 100 105 110	y Thr
	110	
	Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Ph	e Phe
20	Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Th	r Acn
	130 135 140	i ASII
	Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala	a Thr
<i>25</i>	145 150 155	
	His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys	Cys
	160 165 170	
30	Gly Ile Asp Val Thr Leu Ser Glu Glu Ala Phe Phe Arg Phe	Ala
•	175 f 180 185	
	Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val	Asp
	200	
<i>35</i>	Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg 205 210 215	Ile
	Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu	1
	220 225 230	Lys
40	Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys	Ile
	235 240 245	
	Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His	Ile
45	250 255 260	
	Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met	Glu
	265 270 275	
50	Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys	Thr
-	280 285 290	
	Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu	Ser

	· 295		300		305		
	Leu Trp	Arg Ile Lys	s Asn Gly	Asp Gln As	p Thr Leu	Lys Gly Le	eu
5	310		315		320		
	Met His	Ala Leu Lys	His Ser	Lys Thr Ty	r His Phe	Pro Lys Th	hr
	325		330		335		
10	Val Thr	GIn Ser Leu	Lys Lys	Thr Ile Ar	g Phe Leu	His Ser Ph	nе
	340		345		350		
	Thr Met	Tyr Lys Leu	Tyr Gln	Lys Leu Ph	e Leu Glu	Met Ile Gl	Lу
	355		360		365		
15	Asn Gln	Val Gln Ser	Val Lys	Ile Ser Cy	s Leu		
	370		375		.380		
20		ATION FOR S		ID NO: 64:			
		CE CHARACTE	RISTICS:				
		ENGTH: 401					
•		YPE : amino					
25		TRANDEDNESS	_	}			
		OPOLOGY : 1:		OCTE (010)			
		ULE TYPE : E NCE DESCRIPT					
30		Asm Leu Leu				Acm II. So	_
	-20	ton Lea Lea	-15	nia Leu vai	-10	wab ite ser	r
		(rp Thr Thr		Thr Phe Pro		Tur Lau Hi	_
25	-5		-1 1	1111 1110 110	5	ryr Leu IIIs	>
3 5		Glu Glu Thr		Gln Leu Leu	-	Lvs Cvs Pro	0
	10		15		20	2,0 0,0 110	
	Pro Gly	Thr Tyr Leu		His Cys Thr		Tro Lys Thr	_
40	25		30		35	,	
	Val Cys A	la Pro Cys	Pro Asp I	His Tyr Tyr	Thr Asp	Ser Trp His	s
	40		45	•	50		
45	Thr Ser A	lsp Glu Cys	Leu Tyr (Cys Ser Pro	Val Cys	Lys Glu Lev	1
	55		60		65		
	Gln Tyr V	al Lys Gln	Glu Cys A	Asn Arg Thr	His Asn	Arg Val Cys	3
	70		75		80		
50	Glu Cys I	ys Glu Gly	Arg Tyr I	Leu Glu Ile	Glu Phe	Cys Leu Lys	;
	85		90		95	•	

		His	s Ar	g Se	r Cy	s Pr			y Ph	e Gl	y Va	l Va	l Gl	n Al	a Gl	y Thr
5		100					10		_			110			•	
		115		ı Ar	g As	n in			s Lys	s Ar	g Cy.			p Gl	y Ph	e Phe
				. GI,	ı Thi	r Sa	120 500		- Al-	D	·	125		,,,	-	
40		130		1 010	1 1111	. Je.	135		s Ala	i rre	о суз			s Hi:	s Th.	r Asn
10				· Val	l Phe	e G1:			ılen	The	- C1r	140		- 1	- AT.	a Thr
		145					150		. 500		. 011	155		/ ASI	1 AT	a inr
		His	Asp	Asn	Ile	Cys	Ser	Gly	Asn	Ser	Glu			Glr	Lvs	s Cys
15		160	١				165					170			-,	, -
		Gly	Ile	Asp	Val	Thr	Leu	Cys	Glu	Glu	Ala	Phe	Phe	Arg	Phe	Ala
		175					180					185				
20		Val	Pro	Thr	Lys	Phe	Thr	Pro	Asn	Trp	Leu	Ser	Val	Leu	Val	Asp
		190					195					200				
				Pro	Gly	Thr		Val	Asn	Ala	Glu		Val	Glu	Arg	Ile
25		205		Gin	и; с	Sam.	210	C1-	C1	C1		215			-	
		220	nu g	GIII	1115	Ser	225	GIN	Glu	GIN	Inr	230	GIn	Leu	Leu	Lys
			Trp	Lys	His	Gln		Lvs	Asp	Gln	Asn		Va1	Ive	Lvo	T1a
		235		•			240	-,-		J111	nop	245	141	Lys	LYS	He
30		Ile	Gln	Asp	Ile	Asp		Ser	Glu	Asn	Ser		Gln	Arg	His	Ile
		250					255					260				110
		Gly	His	Ala	Asn	Leu	Thr	Phe	Glu	Gln	Leu	Arg	Ser	Leu	Met	Glu
<i>35</i>		265	_	_			270					275				
		Ser	Leu	Pro	Gly	Lys		Val	Gly	Ala	Glu	Asp	Ile	Glu	Lys	Thr
		280	T	A 1 -	C	•	285	_		_		290				
40		295	Lys	Ala	cys	Lys		Ser	Asp (Gln			Lys	Leu	Leu	Ser
			Trn	Aro	م ۱۱	lve	300 Asp	C1.,	A === 4	C1_		305 The s		,	٥,	
		Leu 310	р		110		315	GLY	nsp (GIN .		inr . 320	Leu	Lys	Gly	Leu
45	a.	Met 1	His.	Ala	Leu			Ser	Lvs 1	Thr ')he	Pro	1 170	The
		325					330		- ,-	• • • •		335	. 116	110	Lys	I III
		Val 1	Thr	Gln :	Ser			Lys	Thr]	[le /			Leu l	His :	Ser	Phe
		340					345					350	- - .			
50		Thr A	Met '	Tyr i	Lys	Leu	Tyr (Gln i	Lys I	.eu I			Glu !	Met :	Ile	Gly
		355					360					365				-

	Asn Gln Val Gln Ser		
5	370	375	380
5	(a) INTORNATION FOR G	COURNER ID NO. CT.	
	(2) INFORMATION FOR SE	•	
	(i) SEQUENCE CHARACTER	(151105)	
10	(A) LENGTH : 401	: 1	
	(B) TYPE : amino	•	
	(C) STRANDEDNESS		
15	(D) TOPOLOGY : li (ii) MOLECULE TYPE : F	rotein (OCIF-C22S)	
	(xi) SEQUENCE DESCRIPT		
	Met Asn Asn Leu Leu		Pha lau Asn Ila Sar
	-20	-15	-10
20	Ile Lys Trp Thr Thr		
	-5	-1 1	5
	Tyr Asp Glu Glu Thr		Cys Asp Lys Cys Pro
25	10	15	20
	Pro Gly Thr Tyr Leu	Lys Gln His Cys Thr	Ala Lys Trp Lys Thr
17	25	30	35
30	Val Cys Ala Pro Cys	Pro Asp His Tyr Tyr	Thr Asp Ser Trp His
	40	45	50
	Thr Ser Asp Glu Cys	Leu Tyr Cys Ser Pro	Val Cys Lys Glu Leu
	55	60	65
35	Gln Tyr Val Lys Gln		
			80
	Glu Cys Lys Glu Gly		
40			95
	His Arg Ser Cys Pro		
		105 Val Cua Lua Ana Cua	110
45	Pro Glu Arg Asn Thr 115	120	125
	Ser Asn Glu Thr Ser	•	
		135	140
	Cys Ser Val Phe Gly		
50		150	155
	His Asp Asn Ile Cys		
		,	

	160	l		165		1	70	
	Gly	Ile Asp	Val Thi	Leu Cy	s Glu Gl	lu Ala P	he Phe Ar	g Phe Ala
5	175			180		1	85	
	Val	Pro Thr	Lys Phe	Thr Pr	o Asn Tr	p Leu S	er Val Le	u Val Asp
	190			195		2	. 00	
10	Asn	Leu Pro	Gly Thr	Lys Va	l Asn Al	a Glu S	er Val Gl	u Arg Ile
	205			210		2	15	•
			His Ser		n Glu Gl	n Thr Pl	ne Gln Lei	u Leu Lys
15	220			225			30	
,5		Trp Lys	His Gin		s Asp Gl			s Lys Ile
	235	C1 A	T1 - A	240	- C1 A	24		
	250	GIN ASP	ile ASp	255	s GIU AS	n ser va 20		g His Ile
20 .		His Ala	Asn Leu		Glu Gli		g Ser Lei	Met Glu
	265			270	,010 01	27		. 1100 010
		Leu Pro	Gly Lys		Gly Ala		p Ile Glu	Lys Thr
25	280			285		29		
	Ile	Lys Ala	Ser Lys	Pro Ser	Asp Gl	n Ile Le	u Lys Leu	Leu Ser
	~ 295			300		30	5	
30		Trp Arg	Ile Lys		Asp Gl		r Leu Lys	Gly Leu
	310	,,,		315		32		
	мет 325	HIS Ala	Leu Lys		Lys Thi		s Phe Pro	Lys Thr
35		The Glo	Ser Leu	330	The Ile	33 Ara Ph	o e Leu His	Son Pho
<i>35</i>	340	1111 GIII	Der Lea	345	1111 116	35 ALG		Set the
		Met Tyr	Lys Leu		Lys Leu		u Glu Met	Ile Glv
	355			360	•	36		
40	Asn	Gln Val	Gln Ser	Val Lys	Ile Ser	Cys Le	u ·	
	370			375		38	0	•
45			ON FOR SI		ID NO: 6	66:		
			CHARACTE	RISTICS:				
		(A) LENG?	H: 401 : amino	: -				·
50			· amino VDEDNESS		•			
			LOGY : 1	_	e			
	(, IOLUI	2001 · 1	rucar		-		

		(ii)	MOLE	CULE	TYPI	$\Xi : E$	Prot	ein	(OCII	F-C2:	3S)					
_		(xi)	SEQUE	ENCE	DES	CRIP	TION	:SE	Q ID	NO:	66:					
5		Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Ĺeu	Asp	Ile	Ser
			-20					-15					-10			
		Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
10			-5				-1	1				. 5			-	
		Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
		10					15					20				
		Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
15		25					30					35				
		Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
	r	40					45					50				
20		Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
		5 5					60					65				
		Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
		70					75					80				
25		Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
		85					90					95			•	
		His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr
30		100					105					110				
	•	Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Cys		Asp	Gly	Phe	Phe
		115					120					125				
			Asn	Glu	Thr	Ser		Lys	Ala	Pro	Cys		Lys	His	Thr	Asn
35	•	130					135	_				140				~
			Ser	Val	Phe	Gly		Leu	Leu	Thr	Gin		Gly	Asn	Ala	lhr
		145		_		_	150			_	a 1	155	771	61		C
40			Asp	Asn	He	Cys,		Gly	Asn	Ser	GIU		ınr	GIN	Lys	Cys
		160			., 1	~ 1	165	C	C1	C1	A 1 -	170	DL.	A	Dho	۸İ۵
	•		Ile	Asp	Val	inr		Cys	GIU	GIU	Ala		rne	VT.R	rne	nia
		175		TL -		D1	180	D	A	т	1	185	Va1	Lau	Va1	Acn
45			.Pro	inr	Lys	rne		Pro	ASII	irp	Leu		Val	Leu	iar	изр
		190		D	C1	TL	195	Va I	A a.p.	41.	C1,,	200	Va1	Glu	Ara	11ء
			Leu	rro	GIA	inr		Val	กรถ	VIS	Grū	215	141	OIU	ın g	116
50		205		C1-	u: -	C	210	C1-	G1	C1=	Th-		G1 _n	[ev	Ī alī	Lve
			Arg	GIU	nis	ser		GIN	GIU	GIII	THE	230	OIN	Deu		<i></i> 3
	•	220	-				225					230				

Leu	Trp	Lys	His	Gln	Asn	Lys	Asp	Gin	Asp	Ile	Va!	Lys	Lys	lle
235					240					245	; .			
Ile 250		Asp	Ile	Asp	Leu 255		Gľu	Asn	Ser	Val 260		Arg	His	Ile
Gly		Ala	Asn	Leu			Glu	G1n	Leu			Leu	Met	Glu
265					270					275			•	
Ser 280	Leu	Pro	G1y	Lys	Lys 285	Val	Gly	Ala	Glu		Ile	Glu	Lys	Thr
	īve	Δ1a	Cve	Lve		Sar	Acn	C1n	T I a	290	t	ī	T	c
295	Lys	K13	Cys	Lys	300	Ser	ASP	GIN	11e	305	Lys	Leu	Leu	Ser
Leu	Trp	Arg	Ile	Lys	Asn	Gly	Asp	Gln	Asp	Thr	Leu	Lys	Gly	Leu
310					315					320				
	His	Ala	Leu	Lys		Ser	Lys	Thr	Tyr		Phe	Pro	Lys	Thr
325	TL	C1-	C	t	330		771	71		335				
340	mr	GIN	ser	Leu	345	Lys	ınr	116	Arg	350	Leu	His	Ser	Phe
	Met	Tyr	Lvs	Leu		G1n	ī.vs	Leu	Phe		Glu	Met	T1a	Gly
355		-,-	-,-		360	J	. , .	204	1 110	365	Ulu	Met	116	Gly
Asn	Gln	Val	Gln	Ser	Val	Lys	Ile	Ser	Ser					
370			τ		375					380			•	
(0) TV	mo ni													
(2) IN							D NO	: 67	:		,			
(i) SE		ENGT			1211	CS:								
		YPE			acid									
		TRAN												
		OPOL												
		ULE				in (OCIF	-DCR	1)					
(xi) S														
Met	Asn	Asn	Leu	Leu	Cys (Cys .	Ala	Leu	Val 1	Phe	Leu	Asp	Ile	Ser
	-20					-15					-10			
Ile		Trp	Thr	Thr	Gln (Glu 1	Pro (Cys 1	Pro /	Asp :	His	Tyr	Tyr	Thr
	-5 -					1				5				
Asp S	ser	Irp l	His '			Asp (Glu (Cys 1			Cys	Ser I	Pro	Val
10 Cvs. l		C1 1			15 1	7_1 1				20				
Cys I	Lys	ara i	Leu (atu .	iyr \	al l	_ys (ıın (slu (ys i	Asn .	Arg [hr	His

	25					30					35				
	Asn	Arg	, Val	Cys	Glu	Cys	Lys	Glu	ı Gly	Arg	Tyr	Leu	ı Glu	Ile	e-Glu
5	40					45					50				
	Phe	Cys	Leu	Lys	His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	G1y	Val	Val
	55					60					65				
10	Gln	Ala	Gly	Thr	Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Čys	Pro
•	70					75				•	80				
	Asp	Gly	Phe	Phe	Ser	Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg
	85					90					95				
15		His	Thr	Asn	Cys			Phe	Gly	Leu	Leu	Leu	Thr	Gln	Lys
	100					105					110				
		Asn	Ala	Thr	His		Asn	Ile	Cys	Ser		Asn	Ser	Glu	Ser
20	115	C1	T	_	61	120			71		125				
		GIN	Lys	Cys	GIÀ		Asp	vai	ınr	Leu		Glu	Glu	Ala	Phe
	130 Pho	Ara	Phe	410	Va1	135	The	1	Dha	The	140	A	Т	1	S
25	145	Λ1, g	THE	піа	141	150	1111	Lys	rne	Inr	155	ASII	IIp	Leu	ser
23		Leu	Val	Asp	Asn		Pro	Glv	Thr	Ĺvs		Asn	Ala	Glu	Ser
	160					165		,		_,_	170			014	501
•		Glu	Arg	Ile	Lys		G1n	His	Ser	Ser		Glu	Gln	Thr	Phe
30	175			Ť	-	180					185				
	Gln	Leu	Leu	Lys	Leu	Trp	Lys	His	Gln	Asn	Lys	Asp	Gln	Asp	Ile
* .	190					195					200				
35	Val	Lys	Lys	Ile	Ile	Gln	Asp	Ile	Asp	Leu	Cys	Glu	Asn	Ser	Val
	205					210					215				
· ~		Arg	His	Ile	Gly	His	Ala	Asn	Leu	Thr	Phe	Glu	Gln	Leu	Arg
40	220	_				225					230				
40		Leu	Met	Glu	Ser		Pro	Gly	Lys	Lys	Val	Gly	Ala	Glu	Asp
	235	C1	,	~		240		•	•	_	245				
	250	GIU	Lys	ihr	He		Ala	Cys	Lys			Asp	Gin	lle	Leu
45		l ou	Lau	S-=	1	255	A	T1.	1		260	A	C1_		
	265	Leu	Leu	Ser	reu	270	Arg	TTE	Lys			Asp	GIN	ASP	inr
		į,ve	Gly	Leu	Met		Ala	l en	Ive		275 Ser	Ive	The	Tv∽	Hic
	280	<i>, 5</i>	J.,	J. U	iac t	285	1174	₽6.fr	درد	-	290	Lys	1111	1 7 1	1112
	1	Pro	Lys	Thr	Val		G1n	Ser	Len			Thr	۵۱۱	Aro	Phe
			_, _		, 44		9111	JUL	Jeu	., J	درد	1 (11	116	ur R	1 11 C

298	5				300)				30	อี			
Let	ı His	s Sei	r Phe	e Thi	r Met	t Ty	r Ly:	s Le	u Ty:	r Gl	n Ly	s Le	u Ph	e Lei
310					315				,	320				
Glu	Me1	t Ile	e Gly	/ Ası	n Glr	a Val	l Gl	n Sei	r Vai	l Lys	s II	e Se	r Cy:	s Lei
325					330					338				
													-	
(2) I	NFOR	TAMS	ON F	OR S	SEQUE	NCE	ID N	١0: و	:88					
(i) S	EQUE	ENCE	CHAR	CACTE	ERIST	'ICS	:						-	
	(A)	LENC	: HT	359	•									
	(B)	TYPE	: a	mino	aci	d ·				-				
	(C)	STRA	NDED	NESS	; : s	ingl	.e							
					inea							•		
					Prot									
(xi)														
Met			Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
	-20					-15					-10			
Ile		Trp	Thr	Thr		Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
_	- 5				-1	1				5				
	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu		Asp	Lys	Cys	Pro
10	C1	T1	76	,	15	61	•••			20	_	_		
25	GIA	inr	lyr	Leu	Lys	Gin	His	Cys	Thr		Lys	Trp	Lys	Thr
	Cvc	410	GI	C	30	C1	C1	A	T	35	01	- 1	01	Di.
40	Cys	ліа	GIU	Cys	Lys 45	GIU	GIA	Arg	iyr	Leu 50	GIU	ile	Glu	Phe
	Leu	ĺve	Hic	Ara	Ser	Cvc	Pro	Dro	G1 w		CI	V-1	V-1	C1-
55	20,2	2,0	5		60	0,3	110	110	GIY	65	GLY	Val	Vai	GIN
	Glv	Thr	Pro	Glu	Arg	Asn	Thr	Val	Cvs		Ara	Cve	Pro	Asn
70	,				75		1112	, 61	ÇŢĞ	80	ur R	Cys	110	vəh
	Phe	Phe	Ser	Asn	Glu	Thr	Ser	Ser	Lvs		Pro	Cvs	Aro	Lve
85					90				-,-	95		-,-		5,0
His	Thr	Aşn	Cys	Ser	Val	Phe	Gly	Leu	Leu		Thr	Gln	Lvs	Glv
100					105		•			110			-,-	,
Asn	Ala	Thr	His	Asp	Asn	Ile	Cys	Ser	Gly		Ser	Glu	Ser	Thr
115					120				•	125				_
Gln	Lys	Cys	Gly	Ile	Asp	Val	Thr	Leu	Cys		Glu	Ala	Phe	Phe
130					135					140				

		Phe	Ala	Val	Pro		Lys	Phe	Thr	Pro		Trp	Leu	Ser	Val
	145					150					155			_	
5	Leu	Val	Asp	Asn	Leu	Pro	Gly	Thr	Lys	Val		Ala	Glu	Ser	Val
	160					165					170				
	Glu	Arg	Ile	Lys	Arg	Gln	His	Ser	Ser	Gln		Gln	Thr	Phe	Gln
10	175					180					185			-	
	Leu	Leu	Lys	Leu	Trp	Lys	His	Gln	Asn	Lys	Asp	Gln	Asp	Ile	Val
	.190					195					200				
	Lys	Lys	Ile	Ile	Gln	Asp	Ile	Asp	Leu	Cys	Glu	Asn	Ser	Val	Gln
15	205					210					215				
•	Arg	His	Ile	Gly	His	Ala	Asn	Leu	Thr	Phe	Glu	Gln	Leu	Arg	Ser
	220					225					230				
20	Leu	Met	Glu	Ser	Leu	Pro	Gly	Lys	Lys	Val	Gly	Ala	Glu	Asp	Ile
	235					240					245				
•	Glu	Lys	Thr	Ile	Lys	Ala	Cys	Lys	Pro	Ser	Asp	Gln	Ile	Leu	Lys
	250					255					260				
25 .	Leu	Leu	Ser	Leu	Trp	Arg	Ile	Lys	Asn	Gly	Asp	Gln	Asp	Thr	Leu
	265					270					275				
	Lys	Gly	Leu	Met	His	Ala	Leu	Lys	His	Ser	Lys	Thr	Tyr	His	Phe
<i>30</i>	280					285					290				
00	Pro	Lys	Thr	Val	Thr	Gln	Ser	Leu	Lys	Lys		Ile	Arg	Phe	Leu
	295					300					305				
	His	Ser	Phe	Thr	Met	Tyr	Lys	Leu	Tyr	Gln	Lys	Leu	Phe	Leu	Glu
35	310					315					320				
	Met	Ile	Gly	Asn	Gln	Val	Gln	Ser	Val	Lys	Ile	Ser	Cys	Leu	
	325					330					335				
40															
	(2) II							ID NO): 69) :					
	(i) SI					RIST	ics:								
			LENG?				_								
45			TYPE								-				
		(C) :	STRAI	NDEDI	VESS	∵ si	ingle	• .							

(D) TOPOLOGY : linear

(ii) MOLECULE TYPE : protein (OCIF-DCR3)

(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 69:

55

50

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser

		-20					-15					-10			
5	Ile	Lys -5	Trp	Thr	Thr	Gln -1	Glu 1	Thr	Phe	Pro	Pro 5	Lys	Tyr	Leu	His
	Tyr 10		Glu	Glu	Thr			Gln	Leu	Leu		Asp	Lys	Cys	Pro
10		Gly	Thr	Tyr	Leu		Gln	His	Cys	Thr		Lys	Trp	Ĺys	Thr
		Cys	Ala	Pro	Cys	Pro 45	Asp	His	Tyr	Tyr	Thr 50	Asp	Ser	Trp	His
15	Thr 55	Ser	Asp	Glu	Cys	Leu 60	Tyr	Cys	Ser	Pro	Val 65	Cys	Lys	Glu	Leu
20	Gln 70	Tyr	Val	Lys	Gln	Glu 75	Cys	Asn	Arg	Thr	His 80	Asn	Arg	Val	Cys
	Arg 85	Cys	Pro	Asp	Gly	Phe 90	Phe	Ser	Asn	Glu	Thr 95	Ser	Ser	Lys	Ala
25	Pro 100	Cys	Arg	Lys	His	Thr 105	Asn	Cys	Ser	Val	Phe 110	Gly	Leu	Leu	Leu
	Thr 115	Gln	Lys	Gly	Asn	Ala 120	Thr	His	Asp	Asn	Ile 125	Cys	Ser	Gly	Asn
30	Ser 130	Glu	Ser	Thr	Gln	Lys 135	Cys	Gly	Ile	Asp	Val 140	Thr	Leu	Cys	Glu
	Glu 145	Ala	Phe	Phe	Arg	Phe 150	Ala	Val	Pro	Thr	Lys 155	Phe	Thr	Pro	Asn
<i>35</i>	Trp 160	Leu	Ser	Val	Leu	Val 165	Asp	Asn	Leu	Pro	Gly 170	Thr	Lys	Val	Asn
40	Ala 175	Glu	Ser	Val	Glu	Arg 180	Ile	Lys	Arg	Gln	His 185	Ser	Ser	G1n	Glu
	Gln 190	Thr	Phe	Gln	Leu	Leu 195	Lys	Leu	Trp	Lys	His 200	G1n	Asn	Lys	Asp
45	Gln 205	Asp	Ile	Val	Lys	Lys 210	Ile	Ile	Gln	Asp	Ile 215	Asp	Leu	Cys	Glu
	Asn 220	Ser	Val	Gln	Arg	His 225	Ile	Gly	His	Ala	Asn 230	Leu	Thr	Phe	Glu
50	Gln 235	Leu	Arg	Ser	Leu	Met 240	Glu	Ser	Leu	Pro	Gly 245	Lys	Lys	Val	Gly
	Ala	Glu	Asp	Ile	Glu	Lys	Thr	Ile	Lys	Ala	Cys	Lys	Pro	Ser	Asp

	250					255					260				
		Ile	Leu	Lys	Leu	Leu	Ser	Leu	Trp	Arg	Ile	Lys	Asn	Gly	Asp
5	265					270				•	275				
	Gln	Asp	Thr	Leu	Lys	Gly	Leu	Met	His	Ala	Leu	Lys	His	Ser	Lys
	280					285					290				
10		Tyr	His	Phe	Pro		Thr	Val	Thr	Gln		Leu	Lys	Lys	Thr
	295					300					305		_		
		Arg	Phe	Leu	His		Phe	Thr	Met	Tyr		Leu	Tyr	Gln	Lys
15	310	Di-	T	C1	14-4	315	C1	A	C1-	V = 1	320	C	V - 1	1	T1 -
	325	Phe	Leu	GIU	Met	330	GIY	ASII	GIN	Val	335	Ser	AST	Lys	116
		Cys	l au			330					333				
	340	0,3	LCu												
20															
	(2) II	VFORM	MATI	ON FO	OR SE	QUE	VCE 1	D NO): 70):					
	(i) SI	EQUE	VCE (CHARA	ACTE	RIST	cs:								
25		(A) I	LENGT	: H	359										
		(B) 1													
		(C) S	STRAN	NDEDN	VESS	: si	ingle	;							
														•	
30		(D) 1											•	•	
30	(ii) }	OLEC	CULE	TYPE	: ;	rote	ein ((OCIF					•	•	
30	(ii) } (xi) S	MOLEC SEQUE	CULE ENCE	TYPE	E : p CRIP1	rote ION	in (OCIF	NO:	70:	Pha	Lau	Aen	Ila	Sar
<i>30</i>	(ii) } (xi) S	MOLEC SEQUE Asn	CULE ENCE	TYPE	E : p CRIP1	rote ION	ein (:SEC Cys	OCIF	NO:	70:	Phe		Asp	Ile	Ser
	(ii) } (xi) { Met	MOLEC SEQUE Asn -20	CULE ENCE Asn	TYPE DESC Leu	E : p CRIP1 Leu	rote ION Cys	ein (:SEC Cys -15	OCIF ID Ala	NO: Leu	70: Val		-10			
	(ii) } (xi) { Met	MOLEC SEQUE Asn	CULE ENCE Asn	TYPE DESC Leu	E : p CRIP1 Leu	rote ION Cys	ein (:SEC Cys -15	OCIF ID Ala	NO: Leu	70: Val		-10			
35	(ii) k (xi) S Met	MOLEC SEQUE Asn -20 Lys	CULE ENCE Asn Trp	TYPE DESC Leu Thr	E : r CRIPT Leu Thr	TION Cys Gln	ein (:SEG Cys -15 Glu	OCIF ID Ala Thr	NO: Leu Phe	70: Val Pro	Pro 5	-10 Lys	Tyr	Leu	His
	(ii) k (xi) S Met	MOLEC SEQUE Asn -20 Lys -5	CULE ENCE Asn Trp	TYPE DESC Leu Thr	E : r CRIPT Leu Thr	TION Cys Gln	ein (:SEG Cys -15 Glu	OCIF ID Ala Thr	NO: Leu Phe	70: Val Pro	Pro 5	-10 Lys	Tyr	Leu	His
35	(ii) Met Ile Tyr 10	MOLEC SEQUE Asn -20 Lys -5	CULE ENCE Asn Trp Glu	TYPE DESC Leu Thr	E: r CRIP1 Leu Thr	TION Cys Gln -1 Ser	ein (:SEC Cys -15 Glu l His	(OCIF) ID Ala Thr Gln	NO: Leu Phe Leu	70: Val Pro Leu	Pro 5 Cys 20	-10 Lys Asp	Tyr Lys	Leu Cys	His Pro
35	(ii) Met Ile Tyr 10 Pro 25	MOLEC SEQUE Asn -20 Lys -5 Asp	CULE ENCE Asn Trp Glu Thr	TYPE DESC Leu Thr Glu Tyr	CRIPT Leu Thr Thr	Cys Gln -1 Ser 15 Lys	ein (:SEC Cys -15 Glu l His	(OCIF) ID Ala Thr Gln His	NO: Leu Phe Leu Cys	70: Val Pro Leu Thr	Pro 5 Cys 20 Ala 35	-10 Lys Asp Lys	Tyr Lys Trp	Leu Cys Lys	His Pro Thr
35	(ii) Met Ile Tyr 10 Pro 25 Val	MOLEC SEQUE Asn -20 Lys -5 Asp	CULE ENCE Asn Trp Glu Thr	TYPE DESC Leu Thr Glu Tyr	CRIPT Leu Thr Thr	Gln -1 Ser 15 Lys 30 Pro	ein (:SEC Cys -15 Glu l His	(OCIF) ID Ala Thr Gln His	NO: Leu Phe Leu Cys	70: Val Pro Leu Thr	Pro 5 Cys 20 Ala 35 Thr	-10 Lys Asp Lys	Tyr Lys Trp	Leu Cys Lys	His Pro Thr
35 40	(ii) No (xi) Something Met Ile Tyr 10 Pro 25 Val 40	MOLEC SEQUE Asn -20 Lys -5 Asp Gly	CULE ENCE Asn Trp Glu Thr	TYPE DESC Leu Thr Glu Tyr Pro	CRIPT Leu Thr Thr Leu Cys	Gln -1 Ser 15 Lys 30 Pro	ein (:SEC Cys -15 Glu l His Gln	(OCIF) ID Ala Thr Gln His	NO: Leu Phe Leu Cys	70: Val Pro Leu Thr	Pro 5 Cys 20 Ala 35 Thr	-10 Lys Asp Lys	Tyr Lys Trp Ser	Leu Cys Lys Trp	His Pro Thr
35 40	(ii) Met (xi) S Met Ile Tyr 10 Pro 25 Val 40 Thr	MOLEC SEQUE Asn -20 Lys -5 Asp	CULE ENCE Asn Trp Glu Thr	TYPE DESC Leu Thr Glu Tyr Pro	CRIPT Leu Thr Thr Leu Cys	Gln -1 Ser 15 Lys 30 Pro 45	ein (:SEC Cys -15 Glu l His Gln	(OCIF) ID Ala Thr Gln His	NO: Leu Phe Leu Cys	70: Val Pro Leu Thr Tyr	Pro 5 Cys 20 Ala 35 Thr 50	-10 Lys Asp Lys	Tyr Lys Trp Ser	Leu Cys Lys Trp	His Pro Thr
35 40	(ii) Met (xi) S Met Ile Tyr 10 Pro 25 Val 40 Thr 55	MOLEC SEQUE Asn -20 Lys -5 Asp Gly Cys Ser	CULE ENCE Asn Trp Glu Thr Ala Asp	TYPE DESC Leu Thr Glu Tyr Pro Glu	CRIPT Leu Thr Thr Leu Cys	Gln -1 Ser 15 Lys 30 Pro 45 Leu 60	ein (:SEC Cys -15 Glu l His Gln Asp	(OCIF) ID Ala Thr Gln His Cys	NO: Leu Phe Leu Cys Tyr	70: Val Pro Leu Thr Tyr	Pro 5 Cys 20 Ala 35 Thr 50 Val	-10 Lys Asp Lys Asp	Tyr Lys Trp Ser Lys	Leu Cys Lys Trp Glu	His Pro Thr His Leu
35 40 45	(ii) Met (xi) S Met Ile Tyr 10 Pro 25 Val 40 Thr 55	MOLEC SEQUE Asn -20 Lys -5 Asp Gly	CULE ENCE Asn Trp Glu Thr Ala Asp	TYPE DESC Leu Thr Glu Tyr Pro Glu	CRIPT Leu Thr Thr Leu Cys	Gln -1 Ser 15 Lys 30 Pro 45 Leu 60	ein (:SEC Cys -15 Glu l His Gln Asp	(OCIF) ID Ala Thr Gln His Cys	NO: Leu Phe Leu Cys Tyr	70: Val Pro Leu Thr Tyr Pro	Pro 5 Cys 20 Ala 35 Thr 50 Val	-10 Lys Asp Lys Asp	Tyr Lys Trp Ser Lys	Leu Cys Lys Trp Glu	His Pro Thr His Leu

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly 100 105 110 Pro Glu Arg Asn Thr Val Cys Lys Ser Gly Asn Ser Glu Ser 1 115 120 125 Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe E 130 135 140 Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser V 145 150 155 Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser V	Thr Phe
100 105 110 Pro Glu Arg Asn Thr Val Cys Lys Ser Gly Asn Ser Glu Ser 10 115 120 125 Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Filand 130 135 140 Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Viland 145 150 155 Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Viland 150 155	Thr Phe
Pro Glu Arg Asn Thr Val Cys Lys Ser Gly Asn Ser Glu Ser 1115 120 125 Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe F 130 135 140 Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser V 145 150 155 Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser V	Phe Val
115 120 125 Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe E 130 135 140 Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser V 150 155 Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser V	Phe Val
Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Il 130 135 140 Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser V 145 150 155 Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser V	'al
130 135 140 Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser V 145 150 155 Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser V	'al
145 150 155 Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser V	
Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser V	
	al
160 165 170	
Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe G	ln
175 180 185	
Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile V 190 195 200	aı
Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val G	l n
205 210 215	
Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg S	er
³⁰ 220 225 230	
Leu Met Glu Sér Leu Pro Gly Lys Lys Val Gly Ala Glu Asp I	le
235 240 245	
Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Ly	/S
250 255 260	
Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Le 265 270 275	•u
Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Ph	
280 285 290	ie.
Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Le	eu
295 300 305	
His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Gl	u
310 315 320	
Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu	
325 330 335	

(2) INFORMATION FOR SEQUENCE ID NO: 71:

		(1)	2CAC	2'ACE	CITAL	CACII	5712	1103	•							
			(A)	LENG	GTH :	326	ŝ									
5			(B)	TYPE	: a	amino	ac:	id								
					INDEL				le							
					LOGY			_		-						
10		(ii)	MOLE	CULE	TYF	E :	prot	ein	(OC)	[F-DI	ODI)				-	
		(xi)										:				
													e Lei	ı Ası	5 Ile	e Ser
			-20					-15					-10			
15		Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tvi	Lei	ı His
			-5				-1	1				5	•			
		Tyr	Ásp	Glu	Glu	Thr	Ser	His	G1n	Leu	Leu	Cys	. Asp	Lys	Cys	Pro
20		10					15					20	_	·	•	
		Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
		25				^	30					35				
		Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
25		40					45					50				
		Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
		55					60					65				
30			Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
		70		•			75					80				
	•		Cys	Lys	Glu	Gly		Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
35		85					90					95				
			Arg	Ser	Cys	Pro		Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr
		100	61				105				_	110				
			GIU	Arg	Asn	ihr		Cys	Lys	Arg	Cys		Asp	Gly	Phe	Phe
40		115	A ==	C1	ፖ ե	C	120		. 1		0	125				
		130	ASII	GIU	inr	ser		Lys	Ala	Pro	Cys		Lys	H1S	Thr	Asn
			Sar	Va1	Dha	C1 v	135	Lau	1	TL_	C1-	140	C1	A	A1	771
45		145	Jei	141	riie	GIA	150	Leu	Leu	ınr	GIN		Gly	Asn	Ala	lhr
			Asn	Asn	Tla	Cve.		G1 _v	Acn	Sa=	C1	155	Thr	C1	1	C
		160	ПОР	11311	116	Cys	165	GIY	USII	361	GIG	170	THE	GIN	Lys	Cy.S
			Ile	Asn	Πρ	Asn		Cve	Glii	Acn	Sor		Gln	Ar-	u; ~	T1a
50		175	•	p		٦	180	<i>J</i> , <i>G</i>	JIU	. 13(1	061	185	3111	ur R	1117	116
			His	Ala	Asn	Leti		Phe	Glu	G1n	l en		Ser	Ī en	Vet	Glu
		,						-	514	O 111	Lou	, u. g	GeI	Leu	we r	GIU

	190					195	i .				200)			
	Ser	Leu	Pro	Gly	Lys	Lys	Val	Gly	Ala	Glu	Asp	Ile	Glu	Lys	Thr
5	205					210					215				
	Ile	Lys	Ala	Cys	Lys	Pro	Ser	Asp	Gln	Ile	Leu	Lys	Leu	Leu	Ser
	220					225					230				
10		Trp	Arg	Ile	Lys	Asn	Gly	Asp	Gln	Asp	Thr	Leu	Lys	Gly	Leu
	235					240					245				
		His	Ala	Leu	Lys			Lys	Thr	Tyr		Phe	Pro	Lys	Thr
15	250					255					260				
75		Thr	Gln	Ser	Leu		Lys	Thr	Ile	Arg	Phe	Leu	His	Ser	Phe
	265		_	_	_	270					275				
		Met	Tyr	Lys	Leu		Gln	Lys	Leu	Phe		Glu	Met	Ile	Gly
20	280	61	12 1	61	•	285			_	_	290				
		Gin	Vai	Gln	Ser		Lys	He	Ser	Cys					
	295					300					305				
25	(2) II	JEOP1	<i>ለ</i> ል ጥ ፐ <i>(</i>	N E	אם פו		UCE .	או חו	1. 70	, .					
	(i) SE							יון עו). 12	٠.					
				TH: 3											
				ami		acid									
30				(DEDN			ingle	.							
				.OGY											
	(ii) M							(OCIF	-DDD	2)					
15	(xi) S									,					
	Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
		-20			•		-15					-10			
ю	Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
	•	-5				-1	l				5				
	Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
	10					15					20				
5		Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
	25					30					35				
		Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
0	40					45		*			50				
		Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
	55			· ·		60					65			•	

		Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
		70					75					80				
5	·	Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
		85					90					95				
		His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr
10		100					105					.110			`-	
		Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe
		115					120					125				
		Ser	Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn
15		130					135					140				
		Cys	Ser	Val	Phe	Gly	Leu	Leu	Leu	Thr	Gln	Lys	Gly	Asn	Ala	Thr
		145					150				•	155				
20			Asp	Asn	Ile	Cys		Gly	Asn	Ser	Gľu	Ser	Thr	Gln	Lys	Cys
		160					165					170				
			Ile	Asp	Val	Thr		Cys	Glu	Glu	Ala		Phe	Arg	Phe	Ala
		175		~ 1			180	_				185	., 1		., .	
25			Pro	lhr	Lys	Phe		Pro	Asn	lrp	Leu		Val	Leu	Val	Asp
		190	1	D	C1'	TI	195	1/ - 1	A	41.	C1	200	17 - 1	C1	A	T1.
		205	Leu	Pro	G1y	inr	210	vai	ASn	AIA	GIU	215	AST	GIU	Arg.	ire
30		•	Δτσ	G1 of	His	Sor		G1n	G111	Gln	Thr		Gla	I au	I au	Ive
		220	m g		1113		225	UIII	GIG	GIM	1111	230	GIII	Leu	Leu	Lys
			Trp	Lvs	His	Gln		Lvs	Asp	Gln	Asp		Val.	Lvs	Lvs	Ile
35		235		_,_			240	-,-				245		-,-	-,-	
			Gln	Asp	Ala	Leu		His	Ser	Lys	Thr		His	Phe	Pro	Lys
		250					255					260				
		Thr	Val	Thr	Gļn	Ser	Leu	Lys	Lys	Thr	Ile	Arg	Phe	Leu	His	Ser
40		265					270					275				
		Phe	Thr	Met	Tyr	Lys	Leu	Tyr	Gln	Lys	Leu	Phe	Leu	Glu	Met	Ile
		280					285					290				
45	-	Gly	Asn	Gln	Val	Gln	Ser	Val	Lys	Ile	Ser	Cys	Leu			
		295					300					305				

- (2) INFORMATION FOR SEQUENCE ID NO: 73:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH : 399

		(B)	TYPE	: a	mino	aci	di .								
		(C)	STRA	NDED	NESS	: s	ingl	е							
		(D)	TOPO	LOGY	: 1	inea	r								
	(ii)	MOLE	CULE	TYP	E : :	prot	ein	(OCI	F-CL)					
	(xi)	SEQU	ENCE	DES	CRIP	TION	SE	Q ID	ΝО:	73:					
	Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ìle	Ser
		-20					-15					-10			
	Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
		-5				-1	1				5				
	Tyr	Asp	Glu	Glu	Thr	Ser	His	G1n	Leu	Leu	Cys	Asp	Lys	Cys	Pro
	10					15					20				
	Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
	25					30					35				
	Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
	40					45					50				
	Thr	Ser	Asp	${\tt Glu}$	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	${\tt Glu}$	Leu
	55					60					65				
	Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
-	70					75				,	80				
		Cys	Lys	Gļu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
•	85					90					95				
		Arg	Ser	Cys	Pro		Gly	Phe	Gly	Val		Gln	Ala	G1y	Thr
	100					105	_	_		_	110				
		Glu	Arg	Asn	Thr		Cys	Lys	Arg	Cys		Asp	Gly	Phe	Phe
	115		61	~1	_	120			_		125		***	7 01	
		Asn	GIU	inr	Ser		Lys	Ala	Pro	Cys		Lys	HIS	Ihr	Asn
	130	S	V - 1	nı.	C1	135	1	T	T1	C1	140	C1	A	41	TL
	145	Ser	vai	Pne	GIY		Leu	Leu	inr	GIN		GIY	Asn	Ala	ınr
		Asp	Acn	Tla	Cvc	150	Cl.	1 c p	50=	Clu	155	The	Gla	I vz c	Cvc
	160	Asp	ASII	116	Cys	165	GIY		261	GIU	170	1111	GIII	Lys	Cys
		Ile	Asn	Va1	Thr		Cve	Glu	GIn	Δ1a		Pha	Ara	Pho	41a
	175	1.0	p	, 41		180	Oy3	GIG	GIG	nia	185	1 116	nu g	1 110	MIG
		Pro	Thr	I.ve	Phe		Pro	Asn	Trn	I eu		Val	Len	Va1	Asn
•	190		2.11	2,3		195			111	Leu	200	,31	ي د د	197	برد
		Leu	Pro	Glv	Thr		Va1	Aen	Ala	Glin		Va1	Glu	Ara	T10
				51,		درد	1 47 7	11011	ALG.	a ru	061	141	OIU	TT B	116

	205			210					215				
	Lys Ar	g Gln H:	is Ser	Ser	Gln	Glu	Gln	Thr	Phe	Gln	Leu	Leu	Lys
5	220			225					230				
	Leu Tr	p Lys Hi	is Gln	Asn	Lys	Asp	Gln	Asp	Ile	Val	Lys	Lys	Ile
	235			240					245				
10	Ile Gl	n Asp Il	le Asp	Leu	Cys	Glu	Asn	Ser	Val	Gln	Arg	His	Ile
	250			255					260				
	Gly Hi	s Ala As	sn Leu	Thr	Phe	Glu	Gln	Leu	Arg	Ser	Leu	Met	Glu
	265			270					275				
15	Ser Le	u Pro Gl	ly Lys	Lys	Val	Gly	Ala	Glu	Asp	Ile	Glu	Lys	Thr
	280			285					290				
		s Ala Cy	s Lys		Ser	Asp	Gln	Ile		Lys	Leu	Leu	Ser
20	295		_	300					305			. .	
		Arg II	le Lys		Gly	Asp	GIn	Asp		Leu	Lys	GLy	Leu
	310	41 1		315	C	T	T1	Т	320	DL -	D	·	TL
25		s Ala Le	eu Lys		Ser	Lys	ınr	ıyr	335	rne	rro	Lys	Inr .
	325	r Gln Se		330	Lvč	The	ΤΙο	Ara		Lau	Hic	Sar	Pha
,	340	t GIN Se	i rea	345	Lys	1111	116	щg	350	Leu	1113	961	1110
		t Tyr Ly	75 A11		G1n	Lvs	Leu	Phe		Glu	Met	Ile	Glv
30	355	· 1,1,	.5 204	360	••••	2,0			365				,
		n Val Gl	ln Ser		Lys	Ile	Ser						
	370		_	375	•								
35													
	(2) INFO	RMATION	FOR SI	EQUEN	CE I	D NO): 74	:					
	(i) SEQU	ENCE CHA	RACTE	RISTI	cs:			-					
40	(A)	LENGTH	: 351										
***	(B)	TYPE :	amino	acid									
	(C)	STRANDE	EDNESS	: si	ngle	!							
	• •	TOPOLOG											
45	(ii) MOL			•									
	(xi) SEQ									_			
		n Asn Le	eu Leu			Ala	Leu	Val	Phe		Asp	lle	Ser
50	-2		۔ .		-15	æ.	D!	D		-10	т.	T	112
		s Trp Th	ır Thr	_		Ihr	Phe	rro	_	Lys	ıyr	Leu	nıs
	-5			-1	1			٠.	5				

5 -

		Tyr 10	Asp	Glu	Glu	Thr	Ser 15	His	Gln	Leu	Leu	Cys 20	Asp	Ĺys	Cys	Pro
5			Gly	Thr	Tyr	Leu		Gln	His	Cys	Thr		Lys	Trp	Lys	Thr
10			Cys	Ala	Pro	Cys	Pro 45	Asp	His	Tyr	Tyr	Thr 50	Asp	Ser	Trp	His
, ,		Thr 55	Ser	Asp	Glu	Cys	Leu 60	Tyr	Cys	Ser	Pro	Val 65	Cys	Lys	Glu	Leu
15		Gln 70	Tyr	Val	Lys	Gln	Glu 75	Cys	Asn	Arg	Thr	His 80	Asn	Arg	Val	Cys
		G1u 85	Cys	Lys	Glu	Gly	Arg 90	Tyr	Leu	Glu	Ile	Glu 95	Phe	Cys	Leu	Lys
20		His 100					105					110				
		115		Arg			120					125				
25		130		Glu			135					140				
30		145		Val Asn			150					155				
		160		Asp			165					170				
35		175		Thr			180					185				
		190		Pro			195					200				
40 .	•	205		Gln			210					215				
45		220 Leu	Trp	Lys	His	G1n	225 Asn	Lys	Asp	Gln	Asp	230 Ile	Val	Lys	Lys	Ile
		235 Ile	Gln	Asp	Ile	Asp	240 Leu	Cys	Glu	Asn	Ser	245 Val	Gln	Arg	His	Ile
<i>50</i> .		250 Gly	His	Ala	Asn	Leu	255 Thr	Phe	Glu	Gln	Leu	260 Arg	Ser	Leu	Met	Glu
		265	-				270					275				

	Ser 280		Pro	Gly	Lys	Lys 285		. Gly	Ala	Glu	Asp 290	1	e Glu	Lys	Thr
5	Ile 295		Ala	Cys	Lys	Pro 300		Asp	Gln	Ile	Leu 305		Leu	Leu	Ser
			Arg	Ile	Lys			Asp	Gln	Asp			Lys	Gly	Leu
10	310				•	315					320	•		-	
	Met	His	Ala	Leu	Lys	His									
	325					330									
	(2) I							ID N	0: 7	5:					
15	(i) S					RIST	ICS:								
		(A)				_	_								
					mino					1					
20		(C) S						е		-				•	
	(ii) !	(D)						(ncti	z_cnr	101					
	(xi)														
25											Phe	I est	Asp	۱۱۵	Ser
		-20				0,0	-15			,		-10	пор	110.	501
	Ile		Trp	Thr	Thr	Gln		Thr	Phe	Pro			Tyr	Leu	His
		-5				-1	1				5				
30	Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
	10					15					20				
	Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
<i>35</i>	25					30					35				
		Cys	Ala	Pro	Cys		Asp	His	Tyr	Tyr		Asp	Ser	Trp	His
•	40	C		01	<u>.</u>	45	т.	•	•	_	50	•		۵,	
40	55	ser	ASP	GIU			lyr	Cys	Ser	Pro		Cys	Lys	Glu	Leu
	0.2	Tvr	Va1	lve		60 Glu	Cvc	Acn	Ára	The	65 u:-	Acn	Arg	Va 1	Cva
	70	1 7 1	191	Lys		75	cys ′	USII	vr 8	IIII	80	A5II	vr. R	٧٩١	Cys
45		Cvs	Lvs	Glu			Tvr	Leu	Glu	Ile		Phe	Cys	Leu	I.vs
	85	•	_, _			90	-,-				95		-,-		_, -
	His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val		Gln	Ala	Gly	Thr
	100					105					110			•	
50	Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe
	115					120					125				

	Ser 130	Asn	Glu	Thr	Ser	Ser 135	Lys	Ala	Pro	Cys		Lys	His	Thr	Asn
5		Ser	Val	Phe	Gly		Leu	Leu	Thr	Gln	140 Lys	Gly	Asn	Ala	Thr
	145				2	150	41				155			_	_
	H1S 160	Asp	Asn	ile	Cys	Ser 165	Gly	Asn	Ser	Glu		Thr	Gln	Lys -	Cys
10		Ile	Asp	Val	Thr		Cvs	Glu	Glu	Ala	170 Phe	Phe	Ara	Pha	412
	175					180	,,-				185		5	1 110	nia.
	Val	Pro	Thr	Lys	Phe	Thr	Pro	Asn	Trp	Leu	Ser	Val	Leu	Val	Asp
15	190					195					200				
		Leu	Pro	Gly	Thr		Val	Asn	Ala	Glu		Val	Glu	Arg	IIe
	205	A	C1-	112 -	C	210	C1 -	CI.		met :	215	a 1	•		
20	Lys 220	Arg	Gin	nıs	Ser	Ser 225	GIN	Glu	Gin	inr	230	Gin	Leu	Leu	Lys
		Tro	Lvs	His	Gln		Lvs	Asp	Gln	Asp		Val	Lvs	Lvs	Ile
	235	•	•			240	_,_				245	-	_,-	_,_	,
25	Ile	Gln													
	250														
	(2) IN	FORM	ATIO	N FO	R SE	OHEN	CF I	D NO): 76	•					
<i>30</i>	(2) IN (i) SE							D NO): 76	:					
30	(i) SE	QUEN	CE C		CTER			D NO): 76	:					
30	(i) SE	QUEN A) L	CE C ENGT	HÁRA	CTER 197	ISTI	cs:	D NO): 76	:					
35	(i) SE(QUEN A) L B) T	CE C ENGT YPE	HÁRA H : : am	CTER 197 ino	ISTI acid	cs:): 76	:					÷
	(i) SE() (i) (i) (i) (i)	QUEN A) L B) T C) S D) T	CE C ENGT YPE TRAN OPOL	CHÁRA TH: am TDEDN OGY	CTER 197 ino ESS : li	ISTI acid : si near	CS: ngle								
	(i) SE() (i) (i) (ii) M()	QUEN A) L B) T C) S D) T OLEC	CE C ENGT YPE TRAN OPOL ULE	CHÁRA CH: CH: CH: CH: CH: CH: CH: CHARA CH	CTER 197 nino ESS : li	ISTI acid : si near rote	CS: ngle in (0CIF	-CDD	1)					r)
	(i) SE((i) (i) (ii) M((xi) SI	QUEN A) L B) T C) S D) T OLEC EQUE	CE C ENGT YPE TRAN OPOL ULE NCE	CHÁRA CH:	CTER 197 nino ESS : li : : P	ISTI acid : si near rote ION	ngle in (OCIF ID	-CDD NO:	1) 76:	Dh.a		A	T.I.o.	San.
35	(i) SE((i) (i) (ii) M((xi) SI Met A	QUEN A) L B) T C) S D) T OLEC EQUE	CE C ENGT YPE TRAN OPOL ULE NCE	CHÁRA CH:	CTER 197 nino ESS : li : : P	acid : si near rote ION Cys	ngle in (OCIF ID	-CDD NO:	1) 76:		Leu -10	Asp	Ile	Ser
35	(i) SE((i) (i) (ii) M((xi) SI Met A	QUEN A) L B) T C) S D) T OLEC EQUE Asn -20	CE C ENGT YPE TRAN OPOL ULE NCE Asn	CHÁRA CH : chára	CTER 197 ino ESS : li : P RIPT Leu	acid : si near rote ION Cys	ngle in (:SEQ Cys -15	OCIF ID Ala	-CDD NO: Leu	1) 76: Val		-10			
35	(i) SE((i) (i) (ii) M((xi) SI Met A	QUEN A) L B) T C) S D) T OLEC EQUE Asn -20	CE C ENGT YPE TRAN OPOL ULE NCE Asn	CHÁRA CH : chára	CTER 197 ino ESS : li : P RIPT Leu Thr	acid : si near rote ION Cys	ngle in (:SEQ Cys -15	OCIF ID Ala	-CDD NO: Leu	1) 76: Val		-10			
35 40	(i) SE((i) (i) (ii) M((xi) SI Met A	QUEN A) L B) T C) S D) T OLEC EQUE Asn -20 Lys	CE C ENGT YPE TRAN OPOL ULE NCE Asn	HÁRA H : am DEDN OGY TYPE DESC Leu Thr	CTER 197 ino ESS : li : P RIPT Leu Thr	acid : si near rote ION Cys	ngle in (:SEQ Cys -15 Glu 1	OCIF ID Ala Thr	CDD NO: Leu Phe	1) 76: Val Pro	Pro	-10 Lys	Tyr	Leu	His
35 40	(i) SE((i) (i) (ii) M((xi) SI Met I	QUEN A) L B) T C) S D) T OLEC EQUE Asn -20 Lys -5 Asp	CE C ENGT YPE TRAN OPOL ULE NCE Asn Trp	HÁRA H: am DEDN OGY TYPE DESC Leu Thr	CTER 197 ino ESS : li : P RIPT Leu Thr	acid : si near rote ION Cys Gln -1 Ser	ngle in (:SEQ Cys -15 Glu His	OCIF ID Ala Thr	CDD NO: Leu Phe Leu	1) 76: Val Pro Leu	Pro 5 Cys 2	-10 Lys Asp	Tyr Lys	Leu Cys	His Pro
35 40	(i) SE((i) (i) (ii) M((xi) SI Met A((xi) SI Tyr A((xi) SI	QUEN A) L B) T C) S D) T OLEC EQUE Asn -20 Lys -5 Asp	CE C ENGT YPE TRAN OPOL ULE NCE Asn Trp	HÁRA H: am DEDN OGY TYPE DESC Leu Thr	CTER 197 ino ESS : li : P RIPT Leu Thr	acid: sinear rote ION Cys Gln -1 Ser 15 Lys	ngle in (:SEQ Cys -15 Glu His	OCIF ID Ala Thr	CDD NO: Leu Phe Leu	1) 76: Val Pro Leu	Pro 5 Cys 2 20	-10 Lys Asp	Tyr Lys	Leu Cys	His Pro
35 40 45	(i) SE((i) (i) (ii) M((xi) SI Met I	QUEN A) L B) T C) S D) T OLEC EQUE Asn -20 Lys -5 Asp	CE CENGTYPE TRANOPOLULE NCE Asn Trp Glu Thr	HÁRA H: am DEDN OGY TYPE DESC Leu Thr Glu Tyr	CTER 197 ino ESS : li : P RIPT Leu Thr	acid : si near rote ION Cys Gln -1 Ser 15 Lys	ngle in (:SEQ Cys -15 Glu His	OCIF ID Ala Thr Gln His	-CDD NO: Leu Phe Leu Cys	1) 76: Val Pro Leu	Pro 5 Cys 2 20 Ala 3	-10 Lys Asp Lys	Tyr Lys Trp	Leu Cys Lys	His Pro Thr

	40	45	50	
	Thr Ser Asp Glu C	ys Leu Tyr Cys	Ser Pro Val Cys	s Lys Glu Leu
5	5 5	60	65	
	Gln Tyr Val Lys G	ln Glu Cys Asn	Arg Thr His Ass	n Arg Val Cys
	70	75	80	
10	Glu Cys Lys Glu G			e Cys Leu Lys
	85	90	95	
	His Arg Ser Cys P			n Ala Gly Thr
15	100 Pro Glu Arg Asn Tl	105	110	. Cl. Dha Dha
	115	120	125	oly rhe rhe
	Ser Asn Glu Thr Se			: His Thr Asn
	130	135	140	
20	Cys Ser Val Phe G	y Leu Leu Leu	Thr Gln Lys Gly	Asn Ala Thr
	145	150	155	
	His Asp Asn Ile Cy	s Ser Gly Asn	Ser Glu Ser Thr	Gln Lys Cys
25	160	165	170	
	Gly Ile		·	
	<u> </u>			
30	(2) INFORMATION FOR	SECHENCE ID NO	. 77.	
	(i) SEQUENCE CHARACT		. 11.	
	(A) LENGTH: 14			
35	(B) TYPE : amir			
	(C) STRANDEDNES	S : single		
	(D) TOPOLOGY :	linear		
40	(ii) MOLECULE TYPE :			
•	(xi) SEQUENCE DESCRI			
	Met Asn Asn Leu Le			Asp Ile Ser
45	-20	-15	-10	T 1 11.
45	Ile Lys Trp Thr Th	r Gin Giu inr i -1 1	ene Pro Pro Lys 5	lyr Leu His
•	Tyr Asp Glu Glu Th		-	Lys Cys Pro
	10	15	20	2,0 0,0 110
50	Pro Gly Thr Tyr Le		Cys Thr Ala Lys	Trp Lys Thr
	25	30	35	

	Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His 40 45 50
5	Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu
	Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys 70 75 80
	Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys 85 90 95
15	His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr 100 105 110
	Pro Glu Arg Asn Thr Val Cys Lys 115 120
20	(2) INFORMATION FOR SEQUENCE ID NO: 78:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 106
25	(B) TYPE : amino acid (C) STRANDEDNESS : single
30	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein (OCIF-CCR3) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78: Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser
35	-20 -15 -10 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His
. 40	Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro 10 15 20 Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr
45	Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His 40 45 50
	Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu 55 60 65
50	Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys 70 75 80 Glu

5	(2) I	NFOR	MATI	ON F	OR S	EQUE	NCE	ID N	0: 7	9:					
	(i) S	EQUE	NCE	CHAR	ACTE	RIST	ICS:								
		(A)	LENG	TH:	393										
10		(B)	TYPE	: a	mino	aci	d		*					•	,
		(D)	TOPO	LOGY	: 1	inea	r								
	(ii)	MOLE	CULE	TYP	E : :	Prot	ein	(OCI	F-CB	st)					
	(xi)	SEQU	ENCE	DES	CRIP	TION	:SE	Q ID	νо:	79:					
1 <i>5</i>	Met	Asn	Asn	Leu	Leu	Çys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
		-20					-15					-10			
	Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
20		-5				-1	1				5				
	Tyr	Asp	Glu	Glu	Thr		His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
·	10					15			•		20				
		Gly	Thr	Tyr	Leu		Gln	His	Cys	Thr		Lys	Trp	Lys	Thr
25	25	_		_	_	30			_	_	35		_		
		Cys	Ala	Pro	Cys		Asp	His	Tyr	Tyr		Asp	Ser	Trp	His
2m	40	C	A	C1	C	45	Τ	C		D	50 V-1	C	T	C1	,
30		Ser	Asp	GIU	Cys	60	iyr	Cys	Ser	Pro		Cys	Lys	Glu	Leu
	55 61 n	Tirm	Val	Luc	C1n		Cva	Aan	A	The	65 u; c	A = n	A ===	V-1	۲
	70	Tyr	Val	LyS	GIH	75	Cys	ASII	VI Š	1111	R1S	ASII	MIG	Val	Cys
25		Cys	Īve	Glu	Glv		Tvr	I an	G1 ₁₁	Πρ	-	Pha	Cve	Len	lve
35	85	0,3	2,3	014	UI,	90	1 , 1	P.C.G	014	110	95	1110	0,3	Leu	Lys
	-	Arg	Ser	Cvs	Pro		Glv	Phe	Glv	Val		Gln	Ala	Glv	Thr
	100			-,-		105	,		,		110	·		,	
40		Glu	Arg	Asn	Thr		Cys	Lys	Arg	Cys		Asp	Gly	Phe	Phe
	115					120	•	·	_	•	125	•	•		
	Ser	Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn
45	130					135					140				
	Cys	Ser	Val	Phe	Gly.	Leu	Leu	Leu	Thr	Gln	Lys	Gly	Asn	Ala	Thr
	145					150					155				
	His	Asp	Asn	Ile	Cys	Ser	Gly	Asn	Ser	Glu	Ser	Thr	Gln	Lys	Cys
50	160					165				•	170				•
	Gly	Ile	Asp	Val	Thr	Leu	Cys	Glu	Glu	Ala	Phe	Phe	Arg	Phe	Ala

	175				180					185				
	Val P	ro Thr	Lys	Phe	Thr	Pro	Asn	Trp	Leu	Ser	Val	Leu	Val	Asp
5	190		,	,	195					200				
,	Asn L	eu Pro	Gly	Thr	Lys	Val	Asn	Ala	Glu	Ser	Val	Glu	Arg	Ile
	205				210					215				
10	Lys A	rg Gln	His	Ser	Ser	Gln	Glu	Gln	Thr	Phe	Gln	Leu	Leu	Lys
	220				225					230				
	Leu T	rp Lys	His	Gln	Asn	Lys	Asp	Gln	Asp	Ile	Val	Lys	Lys	Ile
	235				240					245				
15	Ile G	ln Asp	Ile	Asp	Leu	Cys	Glu	Asn	Ser	Val	Gln	Arg	His	Ile
	250				255					260				
	Gly H	is Ala	Asn	Leu	Thr	Phe	Glu	Gln	Leu	Arg	Ser	Leu	Met	Glu
20	265				270					275				
		eu Pro	Gly	Lys		Val	Gly	Ala	Glu		Ile	Glu	Lys	Thr
	280	÷		2	285	_				290	_	_		_
25		ys Ala	Cys	Lys		Ser	Asp	GIn	Tle		Lys	Leu	Leu	Ser
23	295				300	a 1		a 1		305	,	,	6 1	,
	. •	rp Arg	He	Lys		Gly	Asp	Gin	Asp		Leu	Lys	Gly	Leu
	310	io Ala	I	1	315	S	T	The	T	320	Dha	Dimo	ſa	The
30	325	is Ala	rån	LyS	330	Set	Lys	1111	IYI	335	rne	110	LyS	1111
		hr Gln	Sor	Ī au		Ive	Thr	Tla	Ara		I eu	Hic	Sar	Pho
	340	0111	001	LCu	345	Lys	* * * * * * * * * * * * * * * * * * * *	110		350	LCu	1113	001	1 110
35		et Tyr	Lvs	Leu		Gln	Lvs	Leu	Phe		Glu	Met	Ile	Glv
	355	,-	_,_		360		_,_			365				,
		eu Val								•				
	370													
40														
	(2) INF	ORMATI	ON FO	OR SE	EQUEN	CE I	D NO): 80):					
	(i) SEQ	UENCE	CHARA	CTE	RIST	cs:								
45	(A)) LENG	TH:	321										
	(B) TYPE	: an	aino	acio	i								
	(D)) TOPO	LOGY	: 1	inear	.				,				
50 ·	(ii) MO	LECULE	TYPE	: F	rote	ein ((OCIF	-CSp	h)					
 /	(xi) SE	QUENCE	DESC	CRIPT	rion	:SEG	ID	ΝО:	80:					
	Met A	sn Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
	-													•

		-20					15					-10			
	Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
5		-5				-1	1.				5				
	Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
	10					15					20				
10	Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
	25		٠			30					35				
	Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
	40		i			45					50				
5	Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
	5 5					60					65				
	Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
20	70					75					80				
	Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
	85					90				•	95			•	
		Arg	Ser	Cys	Pro		Gly	Phe	Gly	Val		GIn	Ala	Gly	Thr
5	100					105					110				
		Glu	Arg	Asn	Thr		Cys	Lys	Arg	Cys		Asp	Gly	Phe	Phe
	115			-	_	120			_	_	125				
o		Asn	Glu	Thr	Ser		Lys	Ala	Pro	Cys		Lys	His	Thr	Asn
	130	C	V- 1	Die .	C1	135	·		T1	61	140	C1		41 -	T 1
		Ser	Val	Pne	GLY			Leu	ınr	GIN		GLY	ASN	Ala	inr
5	145	Acn	Acn	T-1 -	Cvc	150		Acn	502	G1	155	The	G1 n	1	Cva
5	160	лзр	Asn	116	Cys	165	Gly	nau	261	Glu	170	1111	GIII	Lys	Cys
		Πe	Asp	Val	Thr		Cve	Glu	Glu	Ala		Pho	Ara	Phe	Δ1a
	175	110	пор			180	0,3	Olu	014	1110	185	1 116	in 8	1 110	nia.
o	•	Pro	Thr	Lvs	Phe		Pro	Asn	Trp	Leu		Val	Leu	Val	Asp
	190			-,-		195					200				
		Leu	Pro	Gly	Thr	Lys	Val	Asn	Ala	Glu	Ser	Val	Glu	Arg	Ile
5	205			·		210					215				
-	Lys	Arg	Gln	His	Ser	Ser	Gln	Glu	Gln	Thr	Phe	Gln	Leu	Leu	Lys
	220					225					230				
	Leu	Trp	Lys	His	Gln	Asn	Lys	Asp	G1n	Asp	Ile	Val	Lys	Lys	Ile
0	235					240					245				
	Ile	Gln	Asp	Ile	Asp	Leu	Cys	Glu	Asn	Ser	Val	Gln	Arg	His	Ile

	250	255		260)	
			Phe Glu Gln			Met Glu
5	265	270		275		
			Val Gly Ala			Lys Thr
	280	285		290	l	
10		Ser Leu Asp				•
	295	300				
	(2) INFORMATION	ON FOR SEQUE	NCE ID NO: 8	1:		•
15	(i) SEQUENCE	CHARACTERIST	ICS:			
	(A) LENG	TH : 202				
	(B) TYPE	: amino acid	i			
20	(D) TOPOI	LOGY : linear	r			
20	(ii) MOLECULE	TYPE : Prote	ein (OCIF-CB:	sp)		
	(xi) SEQUENCE	DESCRIPTION	:SEQ ID NO:	81:		
	Met Asn Asn	Leu Leu Cys	Cys Ala Leu	Val Phe	Leu Asp	Ile Ser
25	-20		-15		-10	
	Ile Lys Trp	Thr Thr Gln	Glu Thr Phe	Pro Pro	Lys Tyr	Leu His
	·5	-1	1 .	5		
30	10	15		29	•	
		Clu Thr Ser	His Gln Leu		Asp Lys	Cys Pro
	2 5	30		35		
			Gln His Cys		Lys Trp	Lys Thr
35	40	45		50		
			Asp His Tyr		Asp Ser	Trp His
	55	60		5ã		a1 1
40			Tyr Cys Ser		Cys Lys	Glu Leu
	70	75		80 The U.S.	A A	V-1 C
			Cys Asn Arg		Asn Arg	val cys
	95.	99 Clar Clar Ama	Tum Law Class	95	Pho Cyc	Lou Ive
45	1 0 0	105	Tyr Leu Glu	110	The Cys	Leu Lys
			Gly Phe Gly		Gln Ala	Gly Thr
			dry File dry	125	din Ala	GIY III
50	115 Pro Glu Ara	120	Cys Lys Arg		Asp Clu	Phe Pha
	Fro Glu Arg	Asn inr vai	Cys Lys Arg	14C	wah ara	THE FIRE
	1.77.	1.13		140		

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AAAGTGGAAT AGATGTTACC 600 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960 CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020 ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080 GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140 TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTGC 1200 1206 TTATAA

- (2) INFORMATION FOR SEQUENCE ID NO: 84:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1206

10

15

20

25

30

35

40

45

50

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY : linear
- (ii) MOLECULE TYPE : cDNA (OCIF-C20S)
- (xi) SEQUENCE DESCRIPTION : SEQ ID NO: 84:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACAC GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGAGAGGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300

Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn 150 Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr 165 170 His Asp Asn Ile Cys Ser Gly 173 120 10 (2) INFORMATION FOR SEQUENCE ID NO: 82: (i) SEQUENCE CHARACTERISTICS: 15 (A) LENGTH: 84 (B) TYPE: amino acid (D) TOPOLOGY : linear 20 (ii) MOLECULE TYPE : Protein (OCIF-CPst) (xi) SEQUENCE DESCRIPTION :SEQ ID NO: 82: Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -15 25 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His -5 -1 I Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro 30 15 Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr 30 35 Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His 35 45 50 Thr Ser Asp Glu Cys Leu Tyr Leu Val 55 63 60 (2) INFORMATION FOR SEQUENCE ID NO: 83: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1206 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY : linear (ii) MOLECULE TYPE : cDNA (OCIF-C19S) (xi) SEQUENCE DESCRIPTION :SEQ ID NO: 83:

CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600 CTGAGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960 CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020 ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080 GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140 TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTGC 1200 1206 TTATAA

- (2) INFORMATION FOR SEQUENCE ID NO: 85:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1206
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS : single
 - (D) TOPOLOGY : linear
- (ii) MOLECULE TYPE : cDNA (OCIF-C21S)
- (xi) SEQUENCE DESCRIPTION :SEQ ID NO: 85:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600

55

10

15

20

25

30

35

40

45

CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660
AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCAG TGAAAACAGC 840
GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960
CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAAATGG CGACCAAGAC 1020
ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080
GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140
TATCAGAAGT TATTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTGC 1200
TTATAA

- (2) INFORMATION FOR SEQUENCE ID NO: 86:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1206

10

15

20

25

30

35

40

55

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY : linear
- (ii) MOLECULE TYPE : cDNA (OCIF-C22S)
- (xi) SEQUENCE DESCRIPTION : SEQ ID NO: 86:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660
AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840
GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900

AGCTTACCGG GAAAGAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCAAGCAAA 960 CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020 ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080 GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140 TATCAGAAGT TATTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTGC 1200 TTATAA

- (2) INFORMATION FOR SEQUENCE ID NO: 87:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1206

25

30

35

40

45

50

55

- (B) TYPE : nucleic acid(C) STRANDEDNESS : single
- (D) TOPOLOGY : linear
- (ii) MOLECULE TYPE : cDNA (OCIF-C23S)
- (xi) SEQUENCE DESCRIPTION : SEQ ID NO: 87:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960 CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAAATGG CGACCAAGAC 1020 ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080 GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140 TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCAGC 1200

TTATAA 1206 (2) INFORMATION FOR SEQUENCE ID NO: 88: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1083 (B) TYPE: nucleic acid 10 (C) STRANDEDNESS : single (D) TOPOLOGY : linear (ii) MOLECULE TYPE : cDNA (OCIF-DCR1) 15 (xi) SEQUENCE DESCRIPTION : SEQ ID NO: 88: ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAACCTT GCCCTGACCA CTACTACACA GACAGCTGGC ACACCAGTGA CGAGTGTCTA 120 20 TACTGCAGCC CCGTGTGCAA GGAGCTGCAG TACGTCAAGC AGGAGTGCAA TCGCACCCAC 180 AACCGCGTGT GCGAATGCAA GGAAGGGCGC TACCTTGAGA TAGAGTTCTG CTTGAAACAT 240 AGGAGCTGCC CTCCTGGATT TGGAGTGGTG CAAGCTGGAA CCCCAGAGCG AAATACAGTT 300 TGCAAAAGAT GTCCAGATGG GTTCTTCTCA AATGAGACGT CATCTAAAGC ACCCTGTAGA 360 25 AAACACACAA ATTGCAGTGT CTTTGGTCTC CTGCTAACTC AGAAAGGAAA TGCAACACAC 420 GACAACATAT GTTCCGGAAA CAGTGAATCA ACTCAAAAAT GTGGAATAGA TGTTACCCTG 480 TGTGAGGAGG CATTCTTCAG GTTTGCTGTT CCTACAAAGT TTACGCCTAA CTGGCTTAGT 540 30 GTCTTGGTAG ACAATTTGGC TGGCACCAAA GTAAACGCAG AGAGTGTAGA GAGGATAAAA 600 CGGCAACACA GCTCACAAGA ACAGACTTTC CAGCTGCTGA AGTTATGGAA ACATCAAAAC 660 AAAGACCAAG ATATAGTCAA GAAGATCATC CAAGATATTG ACCTCTGTGA AAACAGCGTG 720 CAGCGGCACA TTGGACATGC TAACCTCACC TTCGAGCAGC TTCGTAGCTT GATGGAAAGC 780 35 TTACCGGGAA AGAAAGTGGG AGCAGAAGAC ATTGAAAAAA CAATAAAGGC ATGCAAACCC 840 AGTGACCAGA TCCTGAAGCT GCTCAGTTTG TGGCGAATAA AAAATGGCGA CCAAGACACC 900 TTGAAGGGCC TAATGCACGC ACTAAAGCAC TCAAAGACGT ACCACTTTCC CAAAACTGTC 960 40 ACTCAGAGTC TAAAGAAGAC CATCAGGTTC CTTCACAGCT TCACAATGTA CAAATTGTAT 1020 CAGAAGTTAT TTTTAGAAAT GATAGGTAAC CAGGTCCAAT CAGTAAAAAT AAGCTGCTTA 1080 1083 TAA (2) INFORMATION FOR SEQUENCE ID NO: 89: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1080

50

55

(B) TYPE : nucleic acid(C) STRANDEDNESS : single

(D) TOPOLOGY : linear

10

15

20

25

30

35

40

45

55

(ii) MOLECULE TYPE : cDNA (OCIF-DCR2)

(xi) SEQUENCE DESCRIPTION : SEQ ID NO: 89:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCG AATGCAAGGA AGGGCGCTAC CTTGAGATAG AGTTCTGCTT GAAACATAGG 240 AGCTGCCCTC CTGGATTTGG AGTGGTGCAA GCTGGAACCC CAGAGCGAAA TACAGTTTGC 300 AAAAGATGTC CAGATGGGTT CTTCTCAAAT GAGACGTCAT CTAAAGCACC CTGTAGAAAA 360 CACACAAATT GCAGTGTCTT TGGTCTCCTG CTAACTCAGA AAGGAAATGC AACACACGAC 420 AACATATGTT CCGGAAACAG TGAATCAACT CAAAAATGTG GAATAGATGT TACCCTGTGT 480 GAGGAGGCAT TCTTCAGGTT TGCTGTTCCT ACAAAGTTTA CGCCTAACTG GCTTAGTGTC 540 TTGGTAGACA ATTTGCCTGG CACCAAAGTA AACGCAGAGA GTGTAGAGAG GATAAAACGG 600 CAACACAGCT CACAAGAACA GACTTTCCAG CTGCTGAAGT TATGGAAACA TCAAAACAAA 660 GACCAAGATA TAGTCAAGAA GATCATCCAA GATATTGACC TCTGTGAAAA CAGCGTGCAG 720 CGGCACATTG GACATGCTAA CCTCACCTTC GAGCAGCTTC GTAGCTTGAT GGAAAGCTTA 780 CCGGGAAAGA AAGTGGGAGC AGAAGACATT GAAAAAACAA TAAAGGCATG CAAACCCAGT 840 GACCAGATCC TGAAGCTGCT CAGTTTGTGG CGAATAAAAA ATGGCGACCA AGACACCTTG 900 AAGGGCCTAA TGCACGCACT AAAGCACTCA AAGACGTACC ACTTTCCCAA AACTGTCACT 960 CAGAGTCTAA AGAAGACCAT CAGGTTCCTT CACAGCTTCA CAATGTACAA ATTGTATCAG 1020 AAGTTATTTT TAGAAATGAT AGGTAACĆAG GTCCAATCAG TAAAAATAAG CTGCTTATAA 1080

- (2) INFORMATION FOR SEQUENCE ID NO: 90:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1092

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE : cDNA (OCIF-DCR3)

(xi) SEQUENCE DESCRIPTION : SEQ ID NO: 90:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240

CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCAGATG TCCAGATGGG TTCTTCTCAA ATGAGACGTC ATCTAAAGCA 360 CCCTGTAGAA AACACACAAA TTGCAGTGTC TTTGGTCTCC TGCTAACTCA GAAAGGAAAT 420 GCAACACACG ACAACATATG TTCCGGAAAC AGTGAATCAA CTCAAAAATG TGGAATAGAT 480 GTTACCCTGT GTGAGGAGGC ATTCTTCAGG TTTGCTGTTC CTACAAAGTT TACGCCTAAC 540 TGGCTTAGTG TCTTGGTAGA CAATTTGCCT GGCACCAAAG TAAACGCAGA GAGTGTAGAG 600 AGGATAAAAC GGCAACACAG CTCACAAGAA CAGACTTTCC AGCTGCTGAA GTTATGGAAA 660 CATCAAAACA AAGACCAAGA TATAGTCAAG AAGATCATCC AAGATATTGA CCTCTGTGAA 720 AACAGCGTGC AGCGGCACAT TGGACATGCT AACCTCACCT TCGAGCAGCT TCGTAGCTTG 780 ATGGAAAGCT TACCGGGAAA GAAAGTGGGA GCAGAAGACA TTGAAAAAAC AATAAAGGCA 840 TGCAAACCCA GTGACCAGAT CCTGAAGCTG CTCAGTTTGT GGCGAATAAA AAATGGCGAC 900 CAAGACACCT TGAAGGGCCT AATGCACGCA CTAAAGCACT CAAAGACGTA CCACTTTCCC 960 AAAACTGTCA CTCAGAGTCT AAAGAAGACC ATCAGGTTCC TTCACAGCTT CACAATGTAC 1020 AAATTGTATC AGAAGTTATT TTTAGAAATG ATAGGTAACC AGGTCCAATC AGTAAAAATA 1080 AGCTGCTTAT AA 1092

- (2) INFORMATION FOR SEQUENCE ID NO: 91:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1080
 - (B) TYPE : nucleic acid
 - (C) STRANDEDNESS : single
 - (D) TOPOLOGY : linear
- (ii) MOLECULE TYPE : cDNA (OCIF-DCR4)
- (xi) SEQUENCE DESCRIPTION :SEQ ID NO: 91:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAAGGC CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAT CCGGAAACAG TGAATCAACT CAAAAATGTG GAATAGATGT TACCCTGTGT 480
GAGGAGGCAT TCTTCAGGTT TGCTGTTCCT ACAAAATGTG GAATAGAGG GCTTAGTGTC 540
TTGGTAGACA ATTTGCCTGG CACCAAAGTA AACGCAGAGA GTGTAGAGAG GATAAAACGG 600
CAACACAGCT CACAAGAACA GACTTTCCAG CTGCTGAAGT TATGGAAACA TCAAAACAAA 660

5**5**

45

50

10

15

20

25

GACCAAGATA TAGTCAAGAA GATCATCCAA GATATTGACC TCTGTGAAAA CAGCGTGCAG 720
CGGCACATTG GACATGCTAA CCTCACCTTC GAGCAGCTTC GTAGCTTGAT GGAAAGCTTA 780
CCGGGAAAGA AAGTGGGAGC AGAAGACATT GAAAAAACAA TAAAGGCATG CAAACCCAGT 840
GACCAGATCC TGAAGCTGCT CAGTTTGTGG CGAATAAAAA ATGGCGACCA AGACACCTTG 900
AAGGGCCTAA TGCACGCACT AAAGCACTCA AAGACGTACC ACTTTCCCAA AACTGTCACT 960
CAGAGTCTAA AGAAGACCAT CAGGTTCCTT CACAGCTTCA CAATGTACAA ATTGTATCAG 1020
AAGTTATTTT TAGAAATGAT AGGTAACCAG GTCCAATCAG TAAAAATAAG CTGCTTATAA 1080

- (2) INFORMATION FOR SEQUENCE ID NO: 92:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 981

20

30

35

40

45

50

55

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS : single
- (D) TOPOLOGY : linear
- (ii) MOLECULE TYPE : cDNA (OCIF-DDD1)
- (xi) SEQUENCE DESCRIPTION : SEQ ID NO: 92:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATATTGAC 600 CTCTGTGAAA ACAGCGTGCA GCGGCACATT GGACATGCTA ACCTCACCTT CGAGCAGCTT 660 CGTAGCTTGA TGGAAAGCTT ACCGGGAAAG AAAGTGGGAG CAGAAGACAT TGAAAAAACA 720 ATAAAGGCAT GCAAACCCAG TGACCAGATC CTGAAGCTGC TCAGTTTGTG GCGAATAAAA 780 AATGGCGACC AAGACACCTT GAAGGGCCTA ATGCACGCAC TAAAGCACTC AAAGACGTAC 840 CACTTTCCCA AAACTGTCAC TCAGAGTCTA AAGAAGACCA TCAGGTTCCT TCACAGCTTC 900 ACAATGTACA AATTGTATCA GAAGTTATTT TTAGAAATGA TAGGTAACCA GGTCCAATCA 960 981 GTAAAAATAA GCTGCTTATA A

(2) INFORMATION FOR SEQUENCE ID NO: 93:

(i) SEQUENCE CHARACTERISTICS:

(C) STRANDEDNESS : single

(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 94:

(D) TOPOLOGY : linear

(ii) MOLECULE TYPE : cDNA (OCIF-CL)

45

(A) LENGTH: 984 5 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY : linear (ii) MOLECULE TYPE : cDNA (OCIF-DDD2) 10 (xi) SEQUENCE DESCRIPTION : SEQ ID NO: 93: ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 15 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 20 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 25 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGACG CACTAAAGCA CTCAAAGACG 840 TACCACTTTC CCAAAACTGT CACTCAGAGT CTAAAGAAGA CCATCAGGTT CCTTCACAGC 900 TTCACAATGT ACAAATTGTA TCAGAAGTTA TTTTTAGAAA TGATAGGTAA CCAGGTCCAA 960 35 TCAGTAAAAA TAAGCTGCTT ATAA 984 (2) INFORMATION FOR SEQUENCE ID NO: 94: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1200 (B) TYPE: nucleic acid

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60

CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAAACAGC 840 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960 CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020 ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080 GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140 TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTAA 1200

(2) INFORMATION FOR SEQUENCE ID NO: 95:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1056

(B) TYPE : nucleic acid(C) STRANDEDNESS : single

(D) TOPOLOGY : linear

- (ii) MOLECULE TYPE : cDNA (OCIF-CC)
- (xi) SEQUENCE DESCRIPTION :SEQ ID NO: 95:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420

55

5

10

25

30

35

40

45

GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660
AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840
GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960
CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020
ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTGA

- (2) INFORMATION FOR SEQUENCE ID NO: 96:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 819

10

15

20

25

30

40

45

50

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY : linear
- (ii) MOLECULE TYPE : cDNA (OCIF-CDD2)
- (xi) SEQUENCE DESCRIPTION : SEQ ID NO: 96:
- ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
- CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
- TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
- GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
- CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
- CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
- CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
- GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480
- officerating differences reconstruction for the first reconstruction for t
- AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
- CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600
- CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660
- AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
- AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780

- AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAATGA
- (2) INFORMATION FOR SEQUENCE ID NO: 97:

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 594	
5	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
	(D) TOPOLOGY : linear	
10	(ii) MOLECULE TYPE : cDNA (OCIF-CDD1)	
,,	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 97:	
	ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60	
15	CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120	
	TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180	
	GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240	
20	CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300	
	CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360	
	CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420	
	GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480	
25	AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540	
	CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT ATGA. 594	
30	(2) INFORMATION FOR SEQUENCE ID NO: 98:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 432	
	(B) TYPE : nucleic acid	
35	(C) STRANDEDNESS : single	
	(D) TOPOLOGY: linear	
•	(ii) MOLECULE TYPE : cDNA (OCIF-CCR4)	
40	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 98:	
	ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60	
	ATOMORNOT INCIDENCE CONTROL TITOTOMON TOTOMINIST CONTROL	
	CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120	
1 5	TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180	
	GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240	
	CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300	
50	CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360	
	CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420	
	GTTTGCAAAT GA 432	

- (2) INFORMATION FOR SEQUENCE ID NO: 99:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 321
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY : linear
- (ii) MOLECULE TYPE : cDNA (OCIF-CCR3)
- (xi) SEQUENCE DESCRIPTION :SEQ ID NO: 99:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG A 321

- (2) INFORMATION FOR SEQUENCE ID NO: 100:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1182
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNÉSS : single
 - (D) TOPOLOGY : linear
- (ii) MOLECULE TYPE : cDNA (OCIF-CBst)
- (xi) SEQUENCE DESCRIPTION :SEQ ID NO: 100:

ATGAACACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGGTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660

10

15

20

25

30

AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840
GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960
CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020
ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080
GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140
TATCAGAAGT TATTTTAGA AATGATAGGT AACCTAGTCT AG 1182

15

25

30

35

40

45

10

- (2) INFORMATION FOR SEQUENCE ID NO: 101:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 966
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS : single
 - (D) TOPOLOGY : linear
- (ii) MOLECULE TYPE : cDNA (OCIF-CSph)
- (xi) SEQUENCE DESCRIPTION :SEQ ID NO: 101:

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480 AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720 AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAAACAGC 840 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCTAGTCTA 960 GACTAG -966

55

	(2) INFORMATION FOR SEQUENCE ID NO: 102:	
	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH : 564	
	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
10	(D) TOPOLOGY : linear	
	(ii) MOLECULE TYPE : cDNA (OCIF-CBsp)	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 102:	
15	ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC	60
	CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG	120
	TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC	180
20	GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT	240
	CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC	300
	CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA	360
25	CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA	420
	GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT	480
	AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA	540
30	CACGACAACA TATGTTCCGG CTAG	564
30	₹	
	(2) INFORMATION FOR SEQUENCE ID NO: 103:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 255	
	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : single	
1 0	(D) TOPOLOGY : linear	
	(ii) MOLECULE TYPE : cDNA (OCIF-Pst)	
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 103:	
1 5	ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC	60
	CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG	
	TGTGACAAAT GTCCTCCTAG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC	
	TOTOROUGHT OTCCTCCTUG INCCTROCTA AMACANONCY GINCHUCAMA GIUGAMUNCC	TOO

CTATACCTAG TCTAG

GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240

	(2) INFORMATION FOR SEQUENCE ID NO: 104:		
	(i) SEQUENCE CHARACTERISTICS:		
5	(A) LENGTH: 1317		
	(B) TYPE : nucleic acid		
	(C) STRANDEDNESS : double		
10	(D) TOPOLOGY : linear		
10 ,	(ii) MOLECULE TYPE: human OCIF genomic DNA-1		
	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 104:		
15	CTGGAGACAT ATAACTTGAA CACTTGGCCC TGATGGGGAA GCAGCTCTGC AGGGACTTTT	60	
•	TCAGCCATCT GTAAACAATT TCAGTGGCAA CCCGCGAACT GTAATCCATG AATGGGACCA	120	
	CACTTTACAA GTCATCAAGT CTAACTTCTA GACCAGGGAA TTAATGGGGG AGACAGCGAA	180	
20	CCCTAGAGCA AAGTGCCAAA CTTCTGTCGA TAGCTTGAGG CTAGTGGAAA GACCTCGAGG	240	
	AGGCTACTCC AGAAGTTCAG CGCGTAGGAA GCTCCGATAC CAATAGCCCT TTGATGATGG	300	
	TGGGGTTGGT GAAGGGAACA GTGCTCCGCA AGGTTATCCC TGCCCCAGGC AGTCCAATTT	360	
	TCACTCTGCA GATTCTCTCT GGCTCTAACT ACCCCAGATA ACAAGGAGTG AATGCAGAAT	420	
25	AGCACGGGCT TTAGGGCCAA TCAGACATTA GTTAGAAAAA TTCCTACTAC ATGGTTTATG	480	
	TAAACTTGAA GATGAATGAT TGCGAACTCC CCGAAAAGGG CTCAGACAAT GCCATGCATA	540	
	AAGAGGGCC CTGTAATTTG AGGTTTCAGA ACCCGAAGTG AAGGGGTCAG GCAGCCGGGT	600	13:
30	ACGGCGGAAA CTCACAGCTT TCGCCCAGCG AGAGGACAAA GGTCTGGGAC ACACTCCAAC	660	•
-	TGCGTCCGGA TCTTGGCTGG ATCGGACTCT CAGGGTGGAG GAGACACAAG CACAGCAGCT	720	
	GCCCAGCGTG TGCCCAGCCC TCCCACCGCT GGTCCCGGCT GCCAGGAGGC TGGCCGCTGG	780	
	CGGGAAGGGG CCGGGAAACC TCAGAGCCCC GCGGAGACAG CAGCCGCCTT GTTCCTCAGC	840	
<i>35</i>	CCGGTGGCTT TTTTTCCCC TGCTCTCCCA GGGGACAGAC ACCACCGCCC CACCCCTCAC	900	
	GCCCCACCTC CCTGGGGGAT CCTTTCCGCC CCAGCCCTGA AAGCGTTAAT CCTGGAGCTT	960	
	TCTGCACACC CCCCGACCGC TCCCGCCCAA GCTTCCTAAA AAAGAAAGGT GCAAAGTTTG	1020	· · ·
40	GTCCAGGATA GAAAAATGAC TGATCAAAGG CAGGCGATAC TTCCTGTTGC CGGGACGCTA	1080	
40	TATATAACGT GATGAGCGCA CGGGCTGCGG AGACGCACCG GAGCGCTCGC CCAGCCGCCG	1140	
	CCTCCAAGCC CCTGAGGTTT CCGGGGACCA CA ATG AAC AAG TTG CTG TGC TGC	1193	
,	Met Asn Lys Leu Leu Cys Cys		
45	-20 - <u>1</u> 5		
•	GCG CTC GTG GTAAGTCCCT GGGCCAGCCG ACGGGTGCCC GGCGCCTGGG	1242	
50	Ala Leu Val		
	GAGGCTGCTG CCACCTGGTC TCCCAACCTC CCAGCGGACC GGCGGGGAAA AAGGCTCCAC	1302	

	TEGETECETE CEAAG	1317
5	(2) INFORMATION FOR SEQUENCE ID NO: 105:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH:	
10	(B) TYPE : nucleic acid	
	(C) STRANDEDNESS : double	
	(D) TOPOLOGY : linear (ii) MOLECULE TYPE : human OCIF genomic DNA-2	
15	(xi) SEQUENCE DESCRIPTION :SEQ ID NO: 105:	
	GCTTACTTTG TGCCAAATCT CATTAGGCTT AAGGTAATAC AGGACTTTGA GTCAAATGAT	@ 60
20	ACTGTTGCAC ATAAGAACAA ACCTATTTC ATGCTAAGAT GATGCCACTG TGTTCCTTTC TCCTTCTAG TTT CTG GAC ATC TCC ATT AAG TGG ACC ACC CAG GAA ACG TTT	120 171
	Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe	111
	-10 -5 -1 1	
25		
	CCT CCA AAG TAC CTT CAT TAT GAC GAA GAA ACC TCT CAT CAG CTG TTG	219
	Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu 5 10 15	
30	5 10 15	
	TGT GAC AAA TGT CCT CCT GGT ACC TAC CTA AAA CAA CAC TGT ACA GCA	267
	Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala	
35	20 25 30 35	
	AAG TGG AAG ACC GTG TGC GCC CCT TGC CCT GAC CAC TAC TAC ACA GAC	315
4 0	Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp	
	40 45 50	
	AGC TGG CAC ACC AGT GAC GAG TGT CTA TAC TGC AGC CCC GTG TGC AAG	363
15	Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys	
	55 60 65	
	GAG CTG CAG TAC GTC AAG CAG GAG TGC AAT CGC ACC CAC AAC CGC GTG	411
50	Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val	
	70 75 80	

	TGC GAA TGC AAG GA	A GGG CGC TAC	CTT GAG ATA	GAG TTC TGC TTG AAA	459
	Cys Glu Cys Lys Gl	ı Gly Arg Tyr	Leu Glu Ile	Glu Phe Cys Leu Lys	
5	85	90		95	
	CAT AGG AGC TGC CC	CCT GGA TTT	GGA GTG GTG	CAA GCT G GTACGTGTCA	509
10	His Arg Ser Cys Pr	Pro Gly Phe	Gly Val Val	Gln Ala	
1	100	105	110		
	ATGTGCAGCA AAATTAA	TTA GGATCATGCA	AAGTCAGATA	GTTGTGACAG TTTAGGAGAA	569
15	CACTTTTGTT CTGATGA	CAT TATAGGATAG	CAAATTGCAA	AGGTAATGAA ACCTGCCAGG	629
•	TAGGTACTAT GTGTCTG	GAG TGCTTCCAA	GGACCATTGC	TCAGAGGAAT ACTTTGCCAC	689
	TACAGGGCAA TTTAATG	ACA AATCTCAAA1	GCAGCAAATT	ATTCTCTCAT GAGATGCATG	749
20	ATGGTTTTTT TTTTTTT	TTT TAAAGAAACA	AACTCAAGTT	GCACTATTGA TAGTTGATCT	809
	ATACCTCTAT ATTTCAC	TTC AGCATGGACA	CCTTCAAACT	GCAGCACTTT TTGACAAACA	869
	TCAGAAATGT TAATTTA	TAC CAAGAGAGTA	ATTATGCTCA	TATTAATGAG ACTCTGGAGT	929
	GCTAACAATA AGCAGTT	TA ATTAATTATO	TAAAAAATGA	GAATGGTGAG GGGAATTGCA	989
25	TTTCATTATT AAAAACA	GG CTAGTTCTTC	CTTTAGCATG	GGAGCTGAGT GTTTGGGAGG	1049
	GTAAGGACTA TAGCAGA	ATC TCTTCAATGA	GCTTATTCTT	TATCTTAGAC AAAACAGATT	1109
	GTCAAGCCAA GAGCAAG	CAC TTGCCTATAA	ACCAAGTGCT	TTCTCTTTTG CATTTTGAAC	1169
30	AGCATTGGTC AGGGCTC	TG TGTATTGAAT	CTTTTAAACC	AGTAACCCAC GTTTTTTTC	1229
	TGCCACATTT GCGAAGC	TC AGTGCAGCCT	ATAACTTTTC	ATAGCTTGAG AAAATTAAGA	1289
	GTATCCACTT ACTTAGA	GG AAGAAGTAAT	CAGTATAGAT	TCTGATGACT CAGTTTGAAG	1349
-	CAGTGTTTCT CAACTGA	GC CCTGCTGATA	TTTTAAGAAA	TATCTGGATT CCTAGGCTGG	1409
35	ACTCCTTTTT GTGGGCA	ECT GTCCTGCGCA	TTGTAGAATT	TTGGCAGCAC CCCTGGACTC	1469
	TAGCCACTAG ATACCAA	AG CAGTECTTCO	CCCATGTGAC.	AGCCAAAAAT_GTCTTCAGAC	1529
	ACTGTCAAAT GTCGCCA	GT GGCAAAATCA	CTCCTGGTTG	AGAACAGGGT CATCAATGCT	1589
40	AAGTATCTGT AACTATT	TA ACTCTCAAAA	CTTGTGATAT	ACAAAGTCTA AATTATTAGA	1649
,,,	CGACCAATAC TTTAGGT	TA AAGGCATACA	AATGAAACAT	TCAAAAATCA AAATCTATTC	1709
	TGTTTCTCAA ATAGTGA	TC TTATAAAATT	AATCACAGAA	GATGCAAATT GCATCAGAGT	1769
	CCCTTAAAAT TCCTCTT	GT ATGAGTATTT	GAGGGAGGAA	TTGGTGATAG TTCCTACTTT	1829
45	CTATTGGATG GTACTTT	GAG ACTCAAAAGC	TAAGCTAAGT	TGTGTGTGTG TCAGGGTGCG	1889
	GGGTGTGGAA TCCCATC	IGA TAAAAGCAAA	TCCATGTAAT	TCATTCAGTA AGTTGTATAT	1949
	GTAGAAAAAT GAAAAGT	GGG CTATGCAGCT	TGGAAACTAG	AGAATTTTGA AAAATAATGG	2009
50	AAATCACAAG GATCTTT	CTT AAATAAGTAA	GAAAATCTGT	TTGTAGAATG AAGCAAGCAG	2069
50	GCAGCCAGAA GACTCAG	AC AAAAGTACAC	ATTTTACTCT	GTGTACACTG GCAGCACAGT	2129
	GGGATTTATT TACCTCT	CCC TCCCTAAAAA	CCCACACAGC	GGTTCCTCTT GGGAAATAAG	2189
				•	

	AGGTTTCCAG	CCCAAAGAGA	AGGAAAGACT	ATGTGGTGTT	ACTCTAAAAA	GTATTTAATA	2249
	ACCGTTTTGT	TGTTGCTGTT	GCTGTTTTGA	AATCAGATTG	TCTCCTCTCC	ATATTTTATT	2309
5	TACTTCATTC	TGTTAATTCC	TGTGGAATTA	CTTAGAGCAA	GCATGGTGAA	TTCTCAACTG	2369
	TAAAGCCAAA	TTTCTCCATC	ATTATAATTT	CACATTTTGC	CTGGCAGGTT	ATAATTTTTA	2429
	TATTTCCACT	GATAGTAATA	AGGTAAAATC	ATTACTTAGA	TGGATAGATC	TTTTTCATAA	2489
10	AAAGTACCAT	CAGTTATAGA	GGGAAGTCAT	GTTCATGTTC	AGGAAGGTCA	TTAGATAAAG	2549
	CTTCTGAATA	TATTATGAAA	CATTAGTTCT	GTCATTCTTA	GATTCTTTTT	GTTAAATAAC	2609
•	TTTAAAAGCT	AACTTACCTA	AAAGAAATAT	CTGACACATA	TGAACTTCTC	ATTAGGATGC	2669
	AGGAGAAGAC	CCAAGCCACA	GATATGTATC	TGAAGAATGA	ACAAGATTCT	TAGGCCCGGC	2729
15	ACGGTGGCTC	ACATCTGTAA	TCTCAAGAGT	TTGAGAGGTC	AAGGCGGGCA	GATCACCTGA	2789
	GGTCAGGAGT	TCAAGACCAG	CCTGGCCAAC	ATGATGAAAC	CCTGCCTCTA	CTAAAAATAC	2849
	AAAAATTAGC	AGGGCATGGT	GGTGCATGCC	TGCAACCCTA	GCTACTCAGG	AGGCTGAGAC	2909
20	AGGAGAATCT	CTTGAACCCT	CGAGGCGGAG	GTTGTGGTGA	GCTGAGATCC	CTCTACTGCA	2969
	CTCCAGCCTG	GGTGACAGAG	ATGAGACTCC	GTCCCTGCCG	CCGCCCCCGC	CTTCCCCCCC	3029
	AAAAAGATTC	TTCTTCATGC	AGAACATACG	GCAGTCAACA	AAGGGAGACC	TGGGTCCAGG	3089
	TGTCCAAGTC	ACTTATTTCG	AGTAAATTAG	CAATGAAAGA	ATGCCATGGA	ATCCCTGCCC	3149
25	AAATACCTCT	GCTTATGATA	TTGTAGAATT	TGATATAGAG	TTGTATCCCA	TTTAAGGAGT	3209
	AGGATGTAGT	AGGAAAGTAC	TAAAAACAAA	CACACAAACA	GAAAACCCTC	TTTGCTTTGT	3269
	AAGGTGGTTC	CTAAGATAAT	GTCAGTGCAA	TGCTGGAAAT	AATATTTAAT	ATGTGAAGGT	3329
30	TTTAGGCTGT						3389
•	GTCAATGAAT	CATGTAGAAA	GAGACAGGAG	ATGAAACTAG	AACCAGTCCA	TTTTGCCCCT	3449
	TTTTTTATTT						350 9
	GAAGTTTAAT					•	356 9
35	GCCAGAATTG						3629
	TTACACTAGA			•			3689
	GTAATATAGT						3749
40	TTCAAGTTTT					•	3809
	AAATGCCCTT						3869
	AGCAAATGGT						3929
	GTCAGCGGCC						3989
45	TCTCAAGGTT						4049
	CAGTAGGAAC						4109
	GATATTACAG						4169
50	ATGGCTGACA						4229
	CTTCTTTCCT						4289
-	CATTTGCATT	ACAAGGAGGA	GAAACTGGCA	AAGGGGATGA	TGGTGGAAGT	TTTGTTCTGT	4349

	CTAATGAAGT GAAAAATGAA AATGCTAGAG TTTTGTGCAA CATAATAGTA GCAGTAAAAA	4409
	CCAAGTGAAA AGTCTTTCCA AAACTGTGTT AAGAGGGCAT CTGCTGGGAA ACGATTTGAG	4469
5	GAGAAGGTAC TAAATTGCTT GGTATTTTCC GTAG GA ACC CCA GAG CGA AAT ACA	4523
	Gly Thr Pro Glu Arg Asn Thr	
	115	
10		
	GTT TGC AAA AGA TGT CCA GAT GGG TTC TTC TCA AAT GAG ACG TCA TCT	4571
	Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser	•
	120 125 130 135	
15		
. *	AAA GCA CCC TGT AGA AAA CAC ACA AAT TGC AGT GTC TTT GGT CTC CTG	4619
	Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu	
20	140 145 150	
	CTA ACT CAG AAA GGA AAT GCA ACA CAC GAC AAC ATA TGT TCC GGA AAC	4667
	Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn	
25	155 160 165	
		-
	AGT GAA TCA ACT CAA AAA TGT GGA ATA G GTAATTACAT TCCAAAATAC	4715
30	Ser Glu Ser Thr Gln Lys Cys Gly Ile	
	170 175	•
•		
	GTCTTTGTAC GATTTTGTAG TATCATCTCT CTCTCTGAGT TGAACACAAG GCCTCCAGCC	4775
35	ACATTCTTGG TCAAACTTAC ATTTTCCCTT TCTTGAATCT TAACCAGCTA AGGCTACTCT	4835
	CGATGCATTA CTGCTAAAGC TACCACTCAG AATCTCTCAA AAACTCATCT TCTCACAGAT	4895
	AACACCTCAA AGCTTGATTT TCTCTCCTTT CACACTGAAA TCAAATCTTG CCCATAGGCA	4955
40	AAGGGCAGTG TCAAGTTTGC CACTGAGATG AAATTAGGAG AGTCCAAACT GTAGAATTCA	5015
	CGTTGTGTGT TATTACTTTC ACGAATGTCT GTATTATTAA CTAAAGTATA TATTGGCAAC	5075
·	TAAGAAGCAA AGTGATATAA ACATGATGAC AAATTAGGCC AGGCATGGTG GCTTACTCCT	5135
	ATAATCCCAA CATTTTGGGG GGCCAAGGTA GGCAGATCAC TTGAGGTCAG GATTTCAAGA	5195
45	CCAGCCTGAC CAACATGGTG AAACCTTGTC TCTACTAAAA ATACAAAAAT TAGCTGGGCA	5255
	TGGTAGCAGG CACTTCTAGT ACCAGCTACT CAGGGCTGAG GCAGGAGAAT CGCTTGAACC	5315
	CAGGAGATGG AGGTTGCAGT GAGCTGAGAT TGTACCACTG CACTCCAGTC TGGGCAACAG	5375
50	AGCAAGATTT CATCACACAC ACACACACA ACACACACA ACACATTAGA AATGTGTACT	5435
•	TGGCTTTGTT ACCTATGGTA TTAGTGCATC TATTGCATGG AACTTCCAAG CTACTCTGGT	5495
	TGTGTTAAGC TCTTCATTGG GTACAGGTCA CTAGTATTAA GTTCAGGTTA TTCGGATGCA	5555

	TTCCACGGTA GTGATGACAA TTCATCAGGC TAGTGTGTGT GTTCACCTTG TCACTCCCAC 5	5615
	CACTAGACTA ATCTCAGACC TTCACTCAAA GACACATTAC ACTAAAGATG ATTTGCTTTT 5	5675
5	TTGTGTTTAA TCAAGCAATG GTATAAACCA GCTTGACTCT CCCCAAACAG TTTTTCGTAC 5	5735
	TACAAAGAAG TTTATGAAGC AGAGAAATGT GAATTGATAT ATATATGAGA TTCTAACCCA 5	5795
	GTTCCAGCAT TGTTTCATTG TGTAATTGAA ATCATAGACA AGCCATTTTA GCCTTTGCTT 5	855
10	TCTTATCTAA AAAAAAAAA AAAAAAATGA AGGAAGGGGT ATTAAAAGGA GTGATCAAAT 5	5915
	TTTAACATTC TCTTTAATTA ATTCATTTTT AATTTTACTT TTTTTCATTT ATTGTGCACT 5	5975
	TACTATGTGG TACTGTGCTA TAGAGGCTTT AACATTTATA AAAACACTGT GAAAGTTGCT 6	5035
	TCAGATGAAT ATAGGTAGTA GAACGGCAGA ACTAGTATTC AAAGCCAGGT CTGATGAATC 6	5095
15	CAAAAACAAA CACCCATTAC TCCCATTTTC TGGGACATAC TTACTCTACC CAGATGCTCT 6	3155
	GGGCTTTGTA ATGCCTATGT AAATAACATA GTTTTATGTT TGGTTATTTT CCTATGTAAT 6	5215
	GTCTACTTAT ATATCTGTAT CTATCTCTTG CTTTGTTTCC AAAGGTAAAC TATGTGTCTA 6	3275
20	AATGTGGGCA AAAAATAACA CACTATTCCA AATTACTGTT CAAATTCCTT TAAGTCAGTG 6	3335
20	ATAATTATTT GTTTTGACAT TAATCATGAA GTTCCCTGTG GGTACTAGGT AAACCTTTAA 6	395
	TAGAATGTTA ATGTTTGTAT TCATTATAAG AATTTTTGGC TGTTACTTAT TTACAACAAT 6	3455
	ATTTCACTCT AATTAGACAT TTACTAAACT TTCTCTTGAA AACAATGCCC AAAAAAGAAC 6	5515
25	ATTAGAAGAC ACGTAAGCTC AGTTGGTCTC TGCCACTAAG ACCAGCCAAC AGAAGCTTGA 6	5575
	TTTTATTCAA ACTTTGCATT TTAGCATATT TTATCTTGGA AAATTCAATT GTGTTGGTTT 6	635
	TTTGTTTTTG TTTGTATTGA ATAGACTCTC AGAAATCCAA TTGTTGAGTA AATCTTCTGG 6	695
30	GTTTTCTAAC CTTTCTTTAG AT GTT ACC CTG TGT GAG GAG GCA TTC TTC AGG 6	5747
30	Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg	
	180 185	
35	THE GOT GIT COT NOT AND THE NOT COT THE TOTAL THE COT	5795
	Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val	
	190 195 200	
40		
	ONE THE THE COL CON THE THE COLL THE	5843
	Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile	
	205 210 215	
45		5001
	THE COO CLE CHO HOU TON CLE CHE THE TEST OF THE COOK	58 9 1
	Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu	
50	220 225 230 235	
		6940

Trp Lys His G	ln Asn Lys	Asp Gln Asp	Ile Val Lys Lys	Ile Ile Gln
	240	`	245	250

	GTAATTACAT	TCCAAAATAC	GTCTTTGTAC	GATTTTGTAG	TATCATCTCT	CTCTCTGAGT	7000
	TGAACACAAG	GCCTCCAGCC	ACATTCTTGG	TCAAACTTAC	ATTTTCCCTT	TCTTGAATCT	7060
10	TAACCAGCTA	AGGCTACTCT	CGATGCATTA	CTGCTAAAGC	TACCACTCAG	AATCTCTCAA	7120
	AAACTCATCT	TCTCACAGAT	AACACCTCAA	AGCTTGATTT	TCTCTCCTTT	CACACTGAAA	7180
	TCAAATCTTG	CCCATAGGCA	AAGGGCAGTG	TCAAGTTTGC	CACTGAGATG	AAATTAGGAG	7240
	AGTCCAAACT	GTAGAATTCA	CGTTGTGTGT	TATTACTTTC	ACGAATGTCT	GTATTATTAA	7300
15	CTAAAGTATA	TATTGGCAAC	TAAGAAGCAA	AGTGATATAA	ACATGATGAC	AAATTAGGCC	7360
	AGGCATGGTG	GCTTACTCCT	ATAATCCCAA	CATTTTGGGG	GGCCAAGGTA	GGCAGATCAC	7420
	TTGAGGTCAG	GATTTCAAGA	CCAGCCTGAC	CAACATGGTG	AAACCTTGTC	TCTACTAAAA	7480
20	ATACAAAAAT	TAGCTGGGCA	TGGTAGCAGG	CACTTCTAGT	ACCAGCTACT	CAGGGCTGAG	7540
	GCAGGAGAAT	CGCTTGAACC	CAGGAGATGG	AGGTTGCAGT	GAGCTGAGAT	TGTACCACTG	7600
	CACTCCAGTC	TGGGCAACAG	AGCAAGATTT	CATCACACAC	ACACACACAC	ACACACACAC	7660
	ACACATTAGA	AATGTGTACT	TGGCTTTGTT	ACCTATGGTA	TTAGTGCATC	TATTGCATGG	7720
25	AACTTCCAAG	CTACTCTGGT	TGTGTTAAGC	TCTTCATTGG	GTACAGGTCA	CTAGTATTAA	7780
	GTTCAGGTTA	TTCGGATGCA	TTCCACGGTA	GTGATGACAA	TTCATCAGGC	TAGTGTGTGT	7840
	GTTCACCTTG	TCACTCCCAC	CACTAGACTA	ATCTCAGACC	TTCACTCAAA	GACACATTAC	7900
30	ACTAAAGATG	ATTTGCTTTT	TTGTGTTTAA	TCAAGCAATG	GTATAAACCA	GCTTGACTCT	7960
	CCCCAAACAG	TTTTTCGTAC	TACAAAGAAG	TTTATGAAGC	AGAGAAATGT	GAATTGATAT	8020
	ATATATGAGA	TTCTAACCCA	GTTCCAGCAT	TGTTTCATTG	TGTAATTGAA	ATCATAGACA	8080
	AGCCATTTTA	GCCTTTGCTT	TCTTATCTAA	AAAAAAAAA	AAAAAAATGA	AGGAAGGGGT	8140
35		GTGATCAAAT					8200
	TTTTTCATTT	ATTGTGCACT	TACTATGTGG	TACTGTGCTA	TAGAGGCTTT	AACATTTATA	8260
		GAAAGTTGCT					8320
40		CTGATGAATC					8380
		CAGATGCTCT					8440
		CCTATGTAAT					8500
		TATGTGTCTA					8560
45		TAAGTCAGTG					8620
	GGTACTAGGT	AAACCTTTAA	TAGAATGTTA	ATGTTTGTAT	TCATTATAAG	AATTTTTGGC	8680
	TGTTACTTAT	TTACAACAAT	ATTTCACTCT	AATTAGACAT	TTACTAAACT	TTCTCTTGAA	8740
50		AAAAAAGAAC					8800
		AGAAGCTTGA					8860
	AAATTCAATT	GTGTTGGTTT	TTTGTTTTTG	TTTGTATTGA	ATAGACTCTC	AGAAATCCAA	8920

5	TTG	TTGA	GTA A	AATC	TTCT(GG G	TTTT	CTAA	C CT	TTCT			Asp	CTC Leu 255	8974	1
10					CAG Gln		_							Phe	9022	2
15					TTG Leu										9070	,
20					AAA Lys										9118) I
<i>25</i>					AGT Ser										9166	
35					ATG Met 325										9214	
40					ACT Thr										9262	
45					TAC Tyr										9310	
50					CAA Gln							TAAC	CTGG#	NAA	9356	

	TGGCCATTGA	GCTGTTTCCT	CACAATTGGC	GAGATCCCAT	GGATGAGTAA	ACTGTTTCTC	9416
	AGGCACTTGA	GGCTTTCAGT	GATATCTTTC	TCATTACCAG	TGACTAATTT	TGCCACAGGG	9476
5	TACTAAAAGA	AACTATGATG	TGGAGAAAGG	ACTAACATCT	CCTCCAATAA	ACCCCAAATG	9536
	GTTAATCCAA	CTGTCAGATC	TGGATCGTTA	TCTACTGACT	ATATTTTCCC	TTATTACTGC	9596
	TTGCAGTAAT	TCAACTGGAA	ATTAAAAAAA	AAAAACTAGA	CTCCACTGGG	CCTTACTAAA	9656
10	TATGGGAATG	TCTAACTTAA	ATAGCTTTGG	GATTCCAGCT	ATGCTAGAGG	CTTTTATTAG	9716
	AAAGCCATAT	TTTTTTCTGT	AAAAGTTACT	AATATATCTG	TAACACTATT	ACAGTATTGC	9776
	TATTTATATT	CATTCAGATA	TAAGATTTGG	ACATATTATC	ATCCTATAAA	GAAACGGTAT	9836
15	GACTTAATTT	TAGAAAGAAA	ATTATATTCT	${\tt GTTTATTATG}$	ACAAATGAAA	GAGAAAATAT	9896
•	ATATTTTAA	TGGAAAGTTT	GTAGCATTTT	TCTAATAGGT	ACTGCCATAT	TTTTCTGTGT	9956
	GGAGTATTTT	TATAATTTTA	TCTGTATAAG	CTGTAATATC	ATTTTATAGA	AAATGCATTA	10016
20	TTTAGTCAAT	TGTTTAATGT	TGGAAAACAT	ATGAAATATA	AATTATCTGA	ATATTAGATG	10076
	CTCTGAGAAA	TTGAATGTAC	${\tt CTTATTTAAA}$	${\bf AGATTTTATG}$	GTTTTATAAC	TATATAAATG	10136
	ACATTATTAA	AGTTTTCAAA	TTATTTTTTA	TTGCTTTCTC	TGTTGCTTTT	ATTT	10190

25

35

40

Claims

- 1. A protein characterized by the following properties:
 - (a) molecular weights on SDS-polyacrylamide gel electrophoresis (SDS-PAGE)
 - ; approximately 60 kD under reducing conditions
 - ; approximately 60 kD and 120 kD under non-reducing conditions
 - (b) a high affinity to cation-exchange column and heparin column
 - (c) a biological activity to inhibit osteoclast differentiation and/or maturation
 - ; its activity is decreased by heating at 70°C for 10 min or at 56°C for 30 min.
 - ; its activity is lost by heating at 90 °C for 10 min
 - (d) internal amino acid sequences provided in sequence numbers 1, 2, and 3.
- 45 2. A protein of claim 1 having N-terminal amino acid sequences provided in sequence number 7.
 - 3. A protein of claim 1 produced in human fibroblasts.
- 4. A method of producing the protein of claim 1, 2, and 3 by the following process: cultivating human fibroblasts; purifying the protein by a combination of ion-exchange column, affinity-column and reverse phase-column chromatography.
 - 5. A method of producing the protein of claim 4 by cultivating human fibroblasts on alumina ceramic pieces.
- 55 6. A protein with amino acid sequence provided in sequence number 4.
 - 7. cDNAs encoding amino acid sequence provided in sequence number 4.

cDNA with nucleotide sequence provided in sequence number 6.

10

15

20

25

30

45

- cDNAs that hybridize to cDNA provided in sequence number 6 under moderately stringent conditions.
- 5 10. A protein expressed from cDNA encoding amino acid sequence provided in sequence number 4.
 - 11. A protein with a biological activity to inhibit osteoclast differentiation and/or maturation, that obtain as amino acid expressed cDNA sharing at least 80 % sequence identity with the amino acid sequence provided in sequence number 4.
 - 12. A method of production of the protein with the following properties and inhibit osteoclast differentiation and/or maturation by gene engineering using cDNA encoding amino acid sequence provided in sequence number 4:
 - (a) molecular weights on SDS-polyacrylamide gel electrophoresis (SDS-PAGE)
 - ; approximately 60 kD under reducing conditions
 - ; approximately 60 kD and 120 kD under non-reducing conditions
 - (b) a high affinity to cation-exchange column and heparin column
 - (c) ; inhibit osteoclast differentiation and/or maturation activity is decreased by heating at 70° C for 10 min or at 56° C for 30 min
 - ; its activity is lost by heating at 90 °C for 10 min
 - (d) internal amino acid sequence provided in sequence number 1-3.
 - 13. A method of producing the protein according to claim 10 by gene engineering using mammalian cells as host cells.
- 14. A method of producing the protein according to claim 13 by gene engineering using 293/EBNA cells or CHO cells as mammalian host cells.
 - 15. A cDNA with nucleotide sequence provided in sequence number 8.
 - 16. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 8.
- 17. cDNAs encoding amino acid sequence provided in sequence number 9.
- 18. A cDNA with nucleotide sequence provided in sequence number 10.
- 40 19. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 10.
 - 20. cDNAs encoding amino acid sequence provided in sequence number 11.
 - 21. A cDNA with nucleotide sequence provided in sequence number 12.
 - 22. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 12.
 - 23. cDNAs encoding amino acid sequence provided in sequence number 13.
- 24. A cDNA with nucleotide sequence provided in sequence number 14.
 - 25. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 14.
 - 26. cDNAs encoding amino acid sequence provided in sequence number 15.
 - 27. A cDNA with nucleotide sequence provided in sequence number 83.
 - 28. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 83.

- 29. cDNAs encoding amino acid sequence provided in sequence number 62.
- 30. A cDNA with nucleotide sequence provided in sequence number 84.
- 5 31. A protein encoded by a cDNA having a nucleotid sequence provided in sequence number 84.
 - 32. cDNAs encoding amino acid sequence provided in sequence number 63.
 - 33. A cDNA with nucleotide sequence provided in sequence number 85.

10

20

30

40

- 34. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 85.
- 35. cDNAs encoding amino acid sequence provided in sequence number 64.
- 5 36. A cDNA with nucleotide sequence provided in sequence number 86.
 - 37. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 86.
 - 38. cDNAs encoding amino acid sequence provided in sequence number 65.
 - 39. A cDNA with nucleotide sequence provided in sequence number 87.
 - 40. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 87.

, , , , ,

- 25 41. cDNAs encoding amino acid sequence provided in sequence number 66.
 - 42. A cDNA with nucleotide sequence provided in sequence number 88.
 - 43. A protein encoded by a cDNA having a sequence provided in sequence number 88.
 - 44. cDNAs encoding amino acid sequence provided in sequence number 67.
 - 45. A cDNA with nucleotide sequence provided in sequence number 89.
- 46. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 89.
 - 47. cDNAs encoding amino acid sequence provided in sequence number 68.
 - 48. A cDNA with nucleotide sequence provided in sequence number 90.
 - 49. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 90.
 - 50. cDNAs encoding amino acid sequence provided in sequence number 69.
- 45 51. A cDNA with nucleotide sequence provided in sequence number 91.
 - 52. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 91.
 - 53. cDNAs encoding amino acid sequence provided in sequence number 70.
 - 54. A cDNA with nucleotide sequence provided in sequence number 92.
 - 55. A protein encoded by a cDNA having a nucleotide sequence provided in number 92.
- 55 56. cDNAs encoding amino acid sequence provided in sequence number 71.
 - 57. A cDNA with nucleotide sequence provided in sequence number 93.

- 58. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 93.
- 59. cDNAs encoding amino acid sequence provided in sequence number 72.
- 60. A cDNA with nucleotide sequence provided in sequence number 94.
 - 61. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 94.
 - 62. cDNAs encoding amino acid sequence provided in sequence number 73.
 - 63. A cDNA with nucleotide sequence provided in sequence number 95.
 - 64. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 95.
- 15 65. cDNAs encoding amino acid sequence provided in sequence number 74.
 - 66. A cDNA with nucleotide sequence provided in sequence number 96.
 - 67. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 96.
 - 68. cDNAs encoding amino acid sequence provided in sequence number 75.
 - 69. A cDNA with nucleotide sequence provided in sequence number 97.
- 25 70. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 97.
 - 71. cDNAs encoding amino acid sequence provided in sequence number 76.
 - 72. A cDNA with nucleotide sequence provided in sequence number 98.
 - 73. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 98.
 - 74. cDNAs encoding amino acid sequence provided in sequence number 77.
- 35 75. A cDNA with nucleotide sequence provided in sequence number 99.
 - 76. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 99.
 - 77. cDNAs encoding amino acid sequence provided in sequence number 78.
 - 78. A cDNA with nucleotide sequence provided in sequence number 100.
 - 79. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 100.
- 45 80. cDNAs encoding amino acid sequence provided in sequence number 79.
 - 81. A cDNA with nucleotide sequence provided in sequence number 101.
 - 82. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 101.
 - 83. cDNAs encoding amino acid sequence provided in sequence number 80.
 - 84. A cDNA with nucleotide sequence provided in sequence number 102.
- 55 85. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 102.
 - 86. cDNAs encoding amino acid sequence provided in sequence number 81.

- 87. A cDNA with nucleotide sequence provided in sequence number 103.
- 88. A protein encoded by a cDNA having a nucleotide sequence provided in sequence number 103.
- 89. cDNAs encoding amino acid sequence provided in sequence number 82.
 - 90. Genomic DNAs encoding the amino acid sequence provided in sequence number 4.
 - 91. Genomic DNAs of Claim 90 with the nucleotide sequence provided in sequence number 104 or 105.
 - 92. An antibody having specific affinity to the OCIF

10

25

30

35

40

50

- 93. An antibody of Claim 92 that is polyclonal antibody.
- 15 94. An antibody of Claim 92 that is monoclonal antibody.
 - 95. A monoclonal antibody of Claim 94 being characterized by the following properties. Molecular weight of about 150,000, and of subclass IgG₁, IgG_{2a}, or IgG_{2b}.
- 20 96. A method of determining the concentration of the protein of the OCIF using the antibodies of Claim 92, 93, 94, and 95.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 9

1		
MNNLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLC	COKCPPGTYLKQHCTAKWKT	(OCIFI
MNNLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLC	DOKCPPGTYLKQHCTAKWKT	(OCIF2
61		
	************	•
VCAPCPOHYYTOSWHTSDECLYCSPVCKECNRTH	INRVCECKEGRYLEIEFCLK	(OCIF2
121	·	
HRSCPPGFGVVQAGTPERNTVCKRCPDGFFSNETSSKAPCR.	KHTNCSVFGLLLTQKGNAT	(OCIF1)
HRSCPPGFGVVQAGTPERNTVCKRCPDGFFSNETSSKAPCRI 114	KHTNCSVFGLLLTQKGNAT	(OCIF2)
181		
HDNICSGNSESTQKCGIDVTLCEEAFFRFAVPTKFTPNWLS\	VLVDNLPGTKVNAESVERI	(OCIF1)
HDNICSGNSESTQKCGIDVTLCEEAFFRFAVPTKFTPNWLSV 174	VLVDNLPGTKVNAESVERI	(OCIF2)
241		
<pre>KRQHSSQEQTFQLLKLWKHQNKDQDIVKKIIQDIDLCENSVC</pre>]RHIGHANLTFEQLRSLME ((OCIF1)
KRQHSSQEQTFQLLKLWKHQNKDQDIVKKIIQDIDLCENSVQ 234	QRHIGHANLTFEQLRSLME (OCIF2)
301		
LPGKKYGAEDIEKTIKACKPSDQILKLLSLWRIKNGDQDTL	.KGLMHALKHSXTYHFPKT (OCIF1)
SLPGKKYGAEDIEKTIKACKPSDQILKLLSLWRIKNGDQDTL 194	.KGLMHALKHSKTYHFPKT (OCIF2)
61		
TQSLKKTIRFLHSFTMYKLYQKLFLEMIGNQVQSVKISCL	(OCIF1)	
TQSLKKTIRFLHSFTMYKLYQKLFLEMIGNQVQSVKISCL 54	(OCIF2)	

Fig. 10

```
1
 MNNLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT (OCIF1)
 MNKLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT (OCIF3)
 VCAPCPOHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK (QCIF1)
VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK (OCIF3)
121
HRSCPPGFGVVOAGTPERNTVCKRCPOGFFSNETSSKAPCRKHTNCSVFGLLLTQKGNAT (OCIFI)
HRSCRPGFGVVQAGTPERNTVCKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTQKGNAT (OCIF3)
181
HDNICSGNSESTOKCGIDVTLCEEAFFRFAYPTKFTPNWLSYLVDNLPGTKYNAESVERI (OCIFI)
HDNICSGNSESTQKCGIOVTLCEEAFFRFAVPTKFTPNWLSVLVDNLPGTKVNAESVERI (OCIF3)
181
241
KRQHSSQEQTFQLLKLWKHQNKDQDIVKKIIQDIDLCENSVQRHIGHANLTFEQLRSLME (OCIF1)
KRQHSSQEQTFQLLKLWKHQNKDQDIVKKIIQDIDLCENSVQRHIGHANLS-
241
301
SLPGKKVGAEDIEKTIKACKPSDQILKLLSLWRIKNGDQOTLKGLMHALKHSKTYHFPKT (OCIF1)
                              LWRIKNGDQDTLKGLMHALKHSKTYHFPKT (OCIF3)
361
VTQSLKKTIRFLHSFTMYKLYQKLFLEMIGNQVQSVKISCL
                                           (OCIF1)
VTQSLKKTIRFLHSFTMYKLYQKLFLEMIGNQVQSVKISCL
                                          (OCIF3)
```

Fig. 11

I MNNLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT ** **** *****************************	•
61 VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK ************************************	
121 HRSCPPGFGVVQAGTPERNTVCKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTQKGNAT ************************************	(OCIF1)

Fig. 12

MNNLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT ** **********************************	. •
61 VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK ************************************	•
121 HRSCPPGFGVVQAGTPERNTYCKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTQKGNAT ************* HRSCPPGFGVVQAGCRRRPKPQICI 121	(OCIF1)

Fig. 13

Fig. 14

Fig. 15

A: Normal rat

8 : Denerved rat + Vehicle

C: Denerved rat +OCIF 10µg/kg/day

C: Denerved rat + OCIF 100 µg/kg/day

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/00374

A.	A. CLASSIFICATION OF SUBJECT MATTER Int. C1 ⁶ C07K14/52, C07K16/24, C12N15/19, C12N15/06, C12N5/08, C12N5/10, C12N5/20, C12P21/02, C12P21/08, G01N33/577 According to International Patent Classification (IPC) or to both national classification and IPC									
B.		DS SEARCHED								
Mio		cumentation searched (classification system followed by C16 C07K14/52, C07K16/24, C12N5/10, C12N5/20, C	, C12N15/19, C12N15/06	5, C12N5/08, G01N33/577						
Doc	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched									
Elec	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) BIOSIS PREVIEWS, CAS ONLINE, WPI, WPI/L									
c.	DOCU	MENTS CONSIDERED TO BE RELEVANT								
Cate	gory*	Citation of document, with indication, where ag	opropriate, of the relevant passages	Relevant to claim No.						
,	A	A Fawthrop, F.W. et al. "The effect of transforming growth factor beta on the plasminogen activator activity of normal human osteoblast-like cells and a human osteosacroma cell line MG-63", J. Bone. Miner. Res. (1992) Vol. 7, No. 12, p. 1363-1371								
	A	Fenton, A.J. et al. "Long-t disaggregated rat osteoclas bone resorption and reducti like cell number by calcito PTHrP107-139", J. Cell Phys Vol. 155, No. 1, p. 1-7	sts inhibition of on of osteoclast- onin and	1 - 96						
	Furthe	r documents are listed in the continuation of Box C.	See patent family annex.	,						
-A-	docume to be of	categories of cited documents: at defining the general state of the art which is not considered particular relevances occurrent but outhlished on or after the international filling date	"I" later document published after the inter- date and not in conflict with the applic the principle or theory underlying the "X" document of particular relevance: the	cation but cited to understand investion						
-Ľ-	"document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special remon (as specified) "Y" document of particular relevance; the claimed invention cannot be									
-p-	O" document referring to an oral disclosum, wee, exhibition or other means P" document published prior to the international filling date but later than									
•	the prior	rity date claimed	"A" document member of the same patent	family						
Date		14, 1996 (14. 05. 96)	Date of mailing of the international sea May 28, 1996 (28.	,						
Nam	e and m	sailing address of the ISA/	Authorized officer							
	Japa	anese Patent Office	•							
Face	csimile No. Telephone No.									

Form PCT/ISA/210 (second sheet) (July 1992)

THIS PAGE BLANK (USPTO)