B Matemática Discreta 1 1er Apellido: 3 de noviembre de 2016 Primer parcial 2º Apellido: Tiempo 2 h 30 min. Dpto. Matematica Aplicada TIC Nombre: Nombre: Nota: Universidad Politécnica de Madrid Número de matrícula: Nota:

Ejercicio 1 (3 puntos)

En el conjunto \mathbb{N} se define la relación aRb, con $a, b \in \mathbb{N}$, si y sólo si 3|(a-b). Averigua si se trata de una relación de equivalencia en \mathbb{N} y, de ser cierto, encuentra la clase de equivalencia del elemento 5.

Solución:

1. Reflexiva: $\forall a \in \mathbb{N}$, se tiene que aRa

$$a = a + 3 \cdot 0 \Rightarrow 3 | (a - a) \Rightarrow aRa$$

2. Simétrica: $\forall a, b \in \mathbb{N}$, si aRb, entonces bRa

$$aRb \Rightarrow 3|(a-b) \Rightarrow a=b+3n, \ n \in \mathbb{Z} \Rightarrow b=a+3(-n) \Rightarrow 3|(b-a) \Rightarrow bRa$$

3. Transitiva: $\forall a, b, c \in \mathbb{N}$, si aRb y bRc, entonces aRc

$$\begin{aligned}
aRb &\Rightarrow 3|(a-b) \Rightarrow a = b + 3n_1, \ n_1 \in \mathbb{Z} \\
bRc &\Rightarrow 3|(b-c) \Rightarrow b = c + 3n_2, \ n_2 \in \mathbb{Z}
\end{aligned} \Rightarrow a = c + 3(n_1 + n_2), \ n_1 + n_2 \in \mathbb{Z} \Rightarrow aRc$$

La clase de equivalencia del 5 es

$$[5] = \{n \in \mathbb{N} \mid 3 \mid (5-n)\} = \{n \in \mathbb{N} \mid \exists t \in \mathbb{Z}, n = 5 + 3t\} = \{2, 5, 8, 11, \ldots\}.$$

Ejercicio 2 (12 puntos)

Considera el conjunto ordenado A de la figura 1.

- a) Sea $B = \{g, d, b\}$, encuentra todos los elementos notables de B (cotas superiores e inferiores, supremo e ínfimo, máximo y mínimo, maximales y minimales, si los hay).
 - b) Encuentra, si existen, todos los elementos complementarios de f y de e.
 - c) Razona si A es Álgebra de Boole.

Sean $(\mathscr{P}(X), \subseteq)$ y (Y, \leq) dos conjuntos ordenados, con $X = \{a, b\}, Y = \{0, 1\},$ y donde $\mathscr{P}(X)$ es el conjunto de las partes de X.

- d) Calcula el cardinal del producto cartesiano $\mathscr{P}(X) \times Y$.
- e) Dibuja el diagrama de Hasse del conjunto ordenado $(\mathscr{P}(X) \times Y, \leq_{Prod})$, donde \leq_{Prod} es la relación "orden producto".

Figura 1: A

Solución:

a)

Cotas superiores: $\{1, g\}$

Cotas inferiores: $\{0\}$

Supremo: g Ínfimo: 0

Maximales: $\{g\}$ Minimales: $\{d, b\}$

Máximo: g Mínimo: no hay

- b) El elemento f tiene dos elementos complementarios a y b, mientras que el elemento e tiene como único complementario el elemento c.
- c) No es Álgebra de Boole ya que A no es retículo complementario. Por ejemplo, el elemento d no tiene complementario.

d)
$$\mathscr{P}(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}, |\mathscr{P}(X) \times Y| = 8.$$

e)

Ejercicio 3 (10 puntos)

Utilizando el método de Quine McCluskey, obtén una expresión booleana en forma de "mínima suma de productos" para la función booleana cuyo conjunto de verdad es

$$S(f) = \{0001, 0011, 0110, 1001, 1010, 0111, 1011\}.$$

Solución: f(x, y, z, t) = y't + x'yz + xy'z

	0001	0011	0110	1001	1010	0111	1111
0-11		X				X	
011-			X			X	
101-					X		X
-0-1	X	X		X			X

Ejercicio 4 (3 puntos)

Demuestra, aplicando el Principio de Inducción, que

$$\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}, \quad \forall n \in \mathbb{N}.$$

Solución:

1. Comprobamos que se cumple para n=1.

$$\sum_{k=1}^{1} \frac{1}{(2k-1)(2k+1)} = \frac{1}{(2\cdot 1-1)(2\cdot 1+1)} = \frac{1}{3} = \frac{1}{2\cdot 1+1} = \frac{1}{3}$$

2. Asumimos que se cumple para n, y comprobamos que también se cumple para n+1.

$$\sum_{k=1}^{n+1} \frac{1}{(2k-1)(2k+1)} = \left(\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)}\right) + \frac{1}{(2n+1)(2n+3)}$$

$$= \frac{n}{2n+1} + \frac{1}{(2n+1)(2n+3)} = \frac{1}{2n+1} \cdot \left(\frac{2n^2+3n+1}{2n+3}\right)$$

$$= \frac{1}{2n+1} \cdot \frac{(2n+1)(n+1)}{2n+3} = \frac{n+1}{2n+3}$$

Ejercicio 5 (12 puntos)

Jaime desea renovar el mobiliario de su cafetería, para ello adquiere 78 sillas y 24 mesas. Cuando llega a su casa no recuerda si el coste total de la compra ha sido de 9045 € o de 9540 €, pero si recuerda que cada silla costó una cantidad exacta de euros, mayor que 80 € y cada mesa una cantidad exacta de euros, mayor que 120 €.

- a) ¿Cuánto dinero ha invertido exactamente?
- b) Averigua cuánto costó cada mesa y cada silla.

Solución:

a) Sean x el precio de cada silla, e y el precio de cada mesa, para encontrar cuando dinero se ha invertido tenemos que resolver alguna de las siguientes ecuaciones diofánticas

$$78x + 24y = 9045$$
, $78x + 24y = 9540$.

Calculamos entonces el máximo común dividor de los coeficientes (utilizando el algoritmo de Euclides) y comprobamos si las ecuaciones anteriores tienen solución:

$$78 = 3 \cdot 24 + 6$$

$$24 = 4 \cdot 6$$

$$\Rightarrow mcd(78, 24) = mcd(24, 6) = 6$$

Comprobamos que 6 no divide a 9045 luego la ecuación 78x + 24y = 9045 no tiene solución en \mathbb{Z} . Por otro lado, sí se cumple que 6|9540 por lo que la ecuación 78x + 24y = 9540 sí tiene soluciones enteras. El dinero invertido es $9540 \in$.

b) Obtenemos una solución particular de la ecuación 78x + 24y = 9540 utilizando el algoritmo extendido de Euclides:

$$6 = 78 - 24 \cdot 3 \Rightarrow 9540 = 78 \cdot \frac{9540}{6} - 24 \cdot 3 \cdot \frac{9540}{6} \Rightarrow 9540 = 78 \cdot 1590 + 24 \cdot (-4770)$$

Luego $x_0 = 1590, y_0 = -4770, y$ el resto de soluciones son:

$$\begin{cases} x = 1590 + 4t \\ y = -4770 - 13t \end{cases} \quad \forall t \in \mathbb{Z}$$

Como también debe cumplirse que x > 80, y > 120, tenemos que

$$\begin{cases} x = 1590 + 4t > 80 \\ y = -4770 - 13t > 120 \end{cases} \Rightarrow \begin{cases} t > -377.5 \\ t < -376.1 \end{cases} \Rightarrow t = -377 \Rightarrow \begin{cases} x = 82 \\ y = 131 \end{cases}$$

Luego cada silla cuesta $82 \in y$ cada mesa $131 \in .$