ППОВОЙ ПРОЕКТ 902-3-32.84

УСТАНОВКА ОЧИСТКИ СТОЧНЫХ ВОД ОТ ОДЛЮКВАРТИРНОГО ЖИЛОГО ДОМА СЕЛЬСКОЙ УСАДЕБНОЙ ЗАСТРОЙКИ

AJILBOM I

пояснительная записка

<u> 19690-01</u> цена 0-34

UENTPAALMER HEICTHTYT THTOBOTO TEVORATHEORAIHER FOCCTPOR CCCP

Morron, A-419, Cynamene yn., 22 Capes y sower VII 993 4 s. Swan 10 9522 Tegen 420

типовой проект 902-3-32.84

УСТАНОВКА ОЧИСТКИ СТОЧНЫХ ВОД ОТ ОДНОКВАРТИРНОГО жилого дома сельской усадебной застройки

Состав проекта:

Альбом I. Пояснительная записка

Альбом П. Технологическая, строительная и электротехническая части

Альбом Ш. Строительные изделия

Альбом IУ. Ведомости потребности в материалах

Альбом У. Сметы

Альбом I

Разработан Проектным институтом ЦНИИЭП инженерного оборудования

> Главный инженер института Главный инженер проекта

Утвержден Госгражданстроем Приказ ₩305 от 12.10.83 Введен в действие ЦНИИЭП инженерного оборудования

Приказ № 24 от 06. 03. 84

(III) А.Г.Кетаов

М.Н.Сирота

ОГЛАВЛЕНИЕ

			стр.
I.	Общая часть		4
2.	Технологическая часть		8
3.	Строительная часть		II
4.	Электротехническая часть		15
5.	Указания по монтажу, пуску и эксплуатации установок		16
6.	Указания по привязке		17
7.	Приложение		18
	Записка составлена		
	Общая и технологическая части Строительная часть Электротехническая часть Жест	Машинская Л.И. Стронгин С.А. Мосеенко Т.И.	

Типовой проект разработан в соответствии с действующими нормами и правилами и предусматривает мероприятия, обеспечивающие взрывную, взрывопожарную и пожарную безопасность при эксплуатации сооружения.

Главный инженер проекта С М.Сирота

19690-01

902-3-32.84 (1)

I. OHIIAH YACTL

І.І.Введение

Рабочий проект разработан по плану бюджетных проектных работ Госгражданстроя на 1983 г. (типовое проектирование - раздел Т-С/ІУ) в соответствии с заданием Управления инженерного оборудования Комитета (см. приложение).

Разработка проекта вызвана острой потребностью в новых решениях по очистке сточных вод от одного сельского дома усадебного типа в связи с резким увеличением объема строительства таких домов, полностью оборудованных в инженерном отношении (водопровод и ванны с местными водонагревателями или централизованное горячее водоснабжение).

Проект разработан с учетом обобщения зарубежного опыта строительства индивидуальных систем водоотведения, требований главы СНиП П-32-74 "Канализация. Наружные сети и сооружения".

Установки предназначены для полной биологической очистки и обеззараживания бытовых сточных вод от жилого дома при количестве членов семьи 3 и 6 человек и норме водоотведения I6O л/сутки, что соответствует их производительности 0,5 и I м3/сутки.

1.2. Обоснование проектных решений

В настоящее время очистку сточных вод от одного благоустроенного дома осуществляют в сооружениях по типовым проектам 902-03-23 (902-4-24, 902-4-25), в которых предусмотрены септики и сооружения фильтрующие траншеи.

В большинстве случаев Ш и IУ климатической зоны и в 30-40% случаев во П климатической зоне этим проектом решвется очистка сточной воды. Однако при неблагоприятных грунтовых условиях эти проекты неприемлемы. К таким условиям относятся высокий уровень грунтовых вод (разность между ним и

(I)

уровнем пола в канализуемом здании менее 0,5 м), расстояние между очистными сооружениями и водозабором (шахтные колодцы, каптаж ключей и т.п.) менее 50 м и др.

Исключив связь процесса очистки с почвой, удается преодолеть указанные недостатки сооружений, которые в других отношениях обладают преимуществом по сравнению с методами искусственной очистки: отсутствием механизмов, простотой устройства.

Исследования зарубежного опыта показывают, что в подавляющем большинстве применяются сооружения, аналогичные предусмотренным в т.п. 902-03-23; 902-4-24; 902-4-25. Модификации основаны на применении различных форм обустройства фильтрующего сооружения (прямоугольные, квадратные, круглые, объединенные и секционированные и т.п.) материалов фильтров и т.п.

Анализ зарубежных решений показывает, что в условиях нашей страны целесообразно применять процессы фильтрации осветленной сточной воды через естественный песчаный или супесчаный грунт в устройствах, изолированных от почвы.

При такой схеме очистки возникает вопрос об удалении или использовании очищенной воды в условиях, когда невозможно самотечное отведение воды в водоем, овраг, расположенные вблизи очистной установки (в пределах 50 м).

В этих особых случаях целесообразно отводить очищенную воду в пруд-накопитель и по мере необ-ходимости использовать для полива.

При использовании сточной воды для полива необходимо после очистки предусмотреть дополнительную насосную установку, которую расположить в зависимости от местных условий до или после пруда.

(I)

5

І.3. Технико-экономические показатели

 $ext{Технико-экономические}$ показатели определены по сметам, нормативным амортизационным отчислениям и ценникам на реагенты и электроэнергию и даны в таблице $ext{I}$.

Таблица 1

Показатель	— — — — — — Единица измерения	Производительность Пр установки, м3/сутки 0,5 I		Примочения
I		3	4	5
Годовой расход сточных вод	м3/год	183	365	
Объем блока септика и фильтра Объем резервуара очищенной воды	Ем	8,5 2,9	I6,9 5,I	
Стоимость общая	руб.	810 720	$\frac{1420}{1330}$	
в том числе: строительных работ	11	760	1370	
оборудования	11	670 50	1270 50	
Трудоемкость возведения на площадке	чөл/дн.	3	3	
Годовой расход дезинфектанта (1% концентр.) Годовой расход электроэнергии	л кВт.ч	55 30	110 60	При перекачке очищенной воды

6

		3	4	5
Годовые эксплуатационные расходы	pyő.	85	139	
в том числе: стонмость реагентов	Ħ	27	55	<u>0,5руб</u> . л
стоимость электроэнергии	11	2	4	<u>6 коп.</u> кВт.ч
стоимость обслуживания (0,02 шт. единицы)	H	20	20	
амортизационные отчисления	Ħ	30	50	
отчисления на текущий ремонт	n	6	10	
Себестоимость очистки І мЗ сточных вод	коп	47	38	
Годовые приведенные затраты	pyd.	I82	309	

I.4. Основные проектные решения

Установка включает блок септика и фильтра и резервуар очищенной воды.При производительности до I м3/сутки устанавливаются два блока.

Прямоугольный блок септика и фильтра имеет размеры в плане I,24x4,74 м, общую высоту I,8 м. В фильтрующей части предусмотрены две оросительные и две дренажные трубы, заканчивающиеся

902-3-32.84 (I) 7

вентиляционными стояками. Вентиляционный стояк имеется и в септике.

Резервуары очищенной воды для установок производительностью 0,5 и I м3/оутки имеют квадратную форму в плане размерами соответственно I,24xI,24xI,8 (H) м и I,64xI,64xI,8 (H) м. В резервувренного расположено устройство для хранения и дозирования дезинфектанта, которое может работать периодически в зависимости от режима использования сточной воды , а при сбросе без использования работает постоянно.

При необходимости напорного отведения очищенной сточной воды в резервуаре предусмотрен насос, управляемый из канализуемого дома,

2. TEXHOJOTMYECKAR YACTL

2.1. Схема работы установок

Сточная вода из дома отводится в септическую часть блока, где происходит ее осветление и перегнивание органических веществ. Затем вода перепускается в оросительные дырчатые трубы фильтрующей части блока. При фильтровании в результате биологических процессов вода очищается и отводится через дырчатые дренажные трубы в резервуар очищенной воды.

В тройник подводящего трубопровода резервуара вводится раствор дезинфектанта из дозатора постоянного расхода.

При наполнении резервуара в течение суток происходит обеззараживание воды. При заполнении отводящего трубопровода, выполненного в виде сифона, последний срабатывает и резервуар опорожняется.

Сточная вода самотеком отводится в водоем или водоток. Указанное срабатывание происходит один раз в двое суток.

При необходимости напорного отвода сточной воды дозирование реагента производится аналогично, откачка воды осуществляется ехесуточно в течение 0,5 - I ч насосом "Кама". Включение насоса принято местное от кнопки, установленной в помещении канализуемого здания.

При использовании очищенной воды для полива стоки нескольких установок отводятся в пруднакопитель, из которого по мере необходимости подаются насосами, установленными в дополнительно предусматриваемом резервуаре очищенной воды.

2.2. Расчет сооружений

Paguan	сооружений	приводоц	ъ	modruma	2	
гасчет	сооружении	приведен	В	тволице	٨.	

		Теблица 2 ———————————————————————————————————		
Наименование	Единица измерения			
		0,5	1,0	
	2	3	4	
Блок септика и фильтра Фактический объем септика	мЗ	1,2	2,4	
Время пребывания (при допустимом 3-0,2 x3= =2,4 ч, см. СНиП П-32-74, п.7.255, примеч.2)	сут.	2,4	2,4	

902-3 / 32.84	(I)	9	19690-01				
<u>I</u>			2	3			
Требуемая длина о при нагрузке 80 л загрузки 900 мм	росительной трубы Ум сутки и высоте		м	6,2		12,4	
Фактическая длина			М	6,2		12,4	
Количество блоков			шт	I		2	
Доза дезинфектант	а по активному хлору		мг/л	3		3	
Расход хлора			г/сутки	1,5		3	
Расход дезинфекта	нта при 1% концентрации		л/сутки	0,15		0,3	
Объем бачка для р	еагента		л	20		20	
Длительность хран	ения реагента		сутки	150		75	
Объем резервуара	очищенной воды		Ем	I		1,9	
Пруд-накопит	ель						
Продолжительность	пребывания		сутки	150		I 50	
Объем		!	мЗ	75		I50	
Глубина воды		1	и	I		I	
Площадь пруда		1	м2	75		I50	
Объем осадка, уда	ляемого ежегодно из септика	Ī	мЗ	2,4		4,8	

(I)

IO

3. СТРОИТЕЛЬНАЯ ЧАСТЬ

3.I. Природные условия строительства и технические условия на проектирование

Природные условия и исходные данные для проектирования приняты в соответствии с Инструкцией по типовому проектированию CH 227-82.

Расчетная зимняя температура наружного воздуха - минус 30°C.

скоростной напор ветра — для I географического района, вес снегового покрова — для II географического района, рельеф территории — спокойный,

грунтовые воды - не выше отметки верха днища блока емкостей.

Грунты непучинистые, непросадочные со следующими нормативными характеристиками: нормативный угол внутреннего трения – $\int_{-\pi}^{\pi} 0.49$ раз или 28° , нормативное удельное сцепление $C^{H}=2$ кПа (0,02 кгс/см2), модуль деформации нескальных грунтов E=14.7 МПа (150 кгс/см2), плотность грунта $\chi=1.8$ т/м3, коэффициент безопасности по грунту Кгр = 1.

Проектом не предусмотрены особенности строительства в районах вечной мерзлоты, на макропористых грунтах, в условиях оползней, осыпей, карстовых явлений и т. п.

При строительстве в слабофильтрующих грунтах необходимо предусмотреть мероприятия для отвода верховодки и фильтруемой из сооружения воды.

3.2. Объемно-планировочные решения

В составе проекта разработан блок емкостей и резервуары очищенной воды #1 и #2.

Блок емкостей - прямоугольное сооружение с размерами в плане 4,74 х 1,24 м и глубиной 1,5 м, разделенное на два отсека.

Резервуары очищенной воды — квадратные сооружения с размерами в плане $1.24 \times 1.24 \times 1.64 \times$

3.3. Конструктивные решения

Изготовление сооружений предусмотрено в заводских условиях из лотковых элементов и плоских плит по серии 3.900-3 вып.8.

Соединение элементов между собой производится на сварке через закладные детали. Для заделки стыков применяется раствор на напрягающем цементе H_{20} (по ТУ 2I-20-18-80) состава I:I,5 ($H_{1}:I=0$) по массе при B/I=0, 45.

Подача раствора в стых производится под давлением с применением смесителя С-868.

Приготовление раствора для замоноличивания стыков производится в соответствии с "Рекомендациями по замоноличиванию цементно-песчаным раствором стыков шпоночного типа в сборных железобетонных емисстных сооружениях", приведенных в серии 3.900-3, вып.2.

Крышки блока емкостей - железобетонные, выполняются в опалубочной форме плит покрытия лотков по серии 3.900-3, вып.8.

Крышки резервуаров очищенной воды - деревянные.

Рабочая арматура принята по ГОСТ 578I-82 класса АШ из стали марки 25Г2С с расчетным сопротивлением 3750 кгс/см2.

12

Распределительная арматура - по ГОСТ 5781-82 класса AI из стали марки 25Ст3 кп 2.

Железобетонные конструкции выполнены из бетона М200, МР3150, В4.

Требования к бетону по прочности, водонепроницаемости и виду цемента для его приготовления уточняются при привязке проекта по серии 3.900-3 выпуск I, СНиП П-31-74 "Водоснабжение. Наружные сети и сооружения" п.13.22, СНиП П-21-75 " Бетонные и железобетонные конструкции" табл.8 в зависимости от расчетной зимней температуры наружного воздуха.

3.4. Отделка и мероприятия по защите от коррозии

Все закладные и соединительные детали оцинковываются.

Наружные поверхности сооружений ниже планировочных отметок земли окрашиваются горячим битумом за 2 раза по огрунтовке холодным битумом, разведенном в бензине.

3.5. Расчетные положения

Расчёт железобетонных конструкций выполнен в соответствии с требованием главы СНиП П-21-75.

Стены рассчитаны на гидростатическое давление воды и боковое давление грунта с учётом полезной нагрузки на поверхности грунта.

При расчете условно принято, что стены сооружений обвалованы грунтом до верха.

НАГРУЗКИ ДАНЫ В ТОННАХ НА 1 ПОГОННЫЙ МЕТР.

3.5. Транспортирование

Для подъема сооружений следует применять инвентарные приспособления (траверса), не допускающие передачи распора на стенки.

Перевозить изделия следует в соответствии с "Руководством по перевозке унифицированных сборных железобетонных деталей и конструкций промышленного строительства автомобильным транспортом" ЦНИИОМТП. Стройиздат. 1973 г.

4. DJEKTPOTEXHMYECKAR YACTL

В электротехнической части проекта установки для очистки сточных вод от одного жилого доми предусмотрено питание и управление насоса.

Внешнее электроснабжение в состав проекта не входит и проектируется при привязке проекта.

Питание электронасоса предусмотрено от трехфазного переменного тока напряжением 220 В или 380 В.

Включение и отключение насоса осуществляется автоматическим выключателем, который устанавливается в доме. Кабель для питания электронасоса поставляется комплектно с насосом. При расстоянии между автоматическим выключателем и насосом, превышающем длину комплектно поставляемого кабеля, предусмотрена клеммная коробка и 4-х жильный кабель.

Если на приусадебном участке, электропитание осуществляется воздушной линией, то линию питания от выключателя к электронасосу проложить аналогично.

Зануление электрооборудования осуществить присоединением токоведущих частей оборудования к четвертой (нулевой) жиле кабеля.

5. УКАЗАНИЯ ПО МОНТАЖУ ПУСКУ И ЭКСПЛУАТАЦИИ УСТАНОВОК

Очистная установка должна располагаться в пониженном месте усадебного участка.

Блок септика и фильтра, а также резервуар очищенной воды поставляются на участок строительства автотранспортом и автокраном устанавливаются в предварительно открытый котлован.

Фильтрующая часть заполняется послойно материалами по чертежам технологической части, устанавливаются перекрытия и вентиляционные трубы.

Производится установка насоса, дозирующего бачка в резервуаре очищенной воды.

Прокладываются сети канализации и электронабелей.

Дозирующий бачок заполняется раствором дезинфектанта и налаживается на подачу равномерно в течение суток необходимого расхода.

Резервуар очищенной воды заполняется речной водой до сработки сифона, положение которого уточ-

После четырехсуточной эксплуатации на сточной воде производится проверка работы уэлов установки. Включение насоса прсизводится с помощью кнопки ежесуточно или один раз в двое суток.

По мере накопления осадка в септической части не реже I раза в год должно производиться опорожнение и очистка септика. Осадок может удаляться с помощью ассенизационной цистерны и использоваться в качестве удобрения, при этом целесообразно произвести предварительное компостирование выгруженного осадка в траншее или яме.

Периодически (не реже I раза в три года) должна производиться промывка загрузки, для этого в вентиляционные стояки оросительных и дренажных труб подается речная вода, при этом загрязненная вода откачивается насосом в септическую часть до ее заполнения.

902-3-32.84 (1)

(16)

19690-01

6. УКАЗАНИЯ ПО ПРИВЯЗКЕ

6. І. Строительная часть

При привязке типового проекта к конкретным климатическим и инженерно-геологическим условиям площадки необходимо:

произвести контрольную проверку прочности стен на измененные физико-механические свой ства грунта (высоту обсыпки, объемный вес , угол внутреннего трения);

в зависимости от климатического района строительства произвести корректировку марки бетона по прочности, морозостойкости, водонепроницаемости.

6.2. Электротехническая часть

Уточнить тип электропитания, определить требуемую длину и тип кабеля.