Uses of Information Theory in Medical Imaging

Wang Zhan, Ph.D.

Center for Imaging of Neurodegenerative Diseases

Tel: 415-221-4810x2454, Email: Wang.Zhan@ucsf.edu

Karl Young (UCSF) and M. Farmar (MSU)

Topics

- Image Registration
 - Information theory based image registration (JPW Pluim, et al, IEEE TMI 2003)
- Feature Selection
 - Information theory based feature selection for image classification optimization (M. Farmer, MSU, 2003)
- Image Classification
 - Complexity Based Image Classification (Karl Young, USF, 2007)

Image Registration

- Define a transform T that maps one image onto another image such that some measure of overlap is maximized (Colin's lecture).
 - Discuss information theory as means for generating measures to be maximized over sets of transforms

Three Interpretations of Entropy

- The amount of information an event provides
 - An infrequently occurring event provides more information than a frequently occurring event
- The uncertainty in the outcome of an event
 - Systems with one very common event have less entropy than systems with many equally probable events
- · The dispersion in the probability distribution
 - An image of a single amplitude has a less disperse histogram than an image of many greyscales
 - the lower dispersion implies lower entropy

Measures of Information

- Hartley defined the first information measure:
 - $-H = n \log s$
 - n is the length of the message and s is the number of possible values for each symbol in the message
 - Assumes all symbols equally likely to occur
- Shannon proposed variant (Shannon's Entropy)

$$H = \sum_{i} p_{i} \cdot \log \frac{1}{p_{i}}$$

- weighs the information based on the probability that an outcome will occur
- second term shows the amount of information an event provides is inversely proportional to its prob of occurring

Alternative Definitions of Entropy

 The following generating function can be used as an abstract definition of entropy:

$$H(P) = h \left(\frac{\sum_{i=1}^{M} v_i \cdot \varphi_1(p_i)}{\sum_{i=1}^{M} v_i \cdot \varphi_2(p_i)} \right)$$

- Various definitions of these parameters provide different definitions of entropy.
 - Actually found over 20 definitions of entropy

Measure	h(x)	$\varphi_1(x)$	$\varphi_2(x)$	v_i
1	x	$-x \log x$	x	v
2	$(1-r)^{-1}\log x$	x^r	x	v
3	x	$-x^r \log x$	x^r	v
4	$(s-r)^{-1}\log x$	x^r	x^s	v
5	$(1/s) \arctan x$	$x^r \sin(s \log x)$	$x^r \cos(s \log x)$	v
6	$(m-r)^{-1}\log x$	x^{r-m+1}	x	v
7	$(m(m-r))^{-1}\log x$	$x^{r/m}$	x	v
8	$(1-t)^{-1}\log x$	x^{t+s-1}	x^s	v
9	$(1-s)^{-1}(x-1)$	x^s	x	v
10	$(t-1)^{-1}(x^t-1)$	$x^{1/t}$	x	v
11	$(1-s)^{-1}(e^x-1)$	$(s-1)x\log x$	x	v
12	$(1-s)^{-1}(x^{\frac{s-1}{r-1}}-1)$	x^r	x	v

Measure	h(x)	$\varphi_1(x)$	$\varphi_2(x)$	v_i
13	x	$-x^r \log x$	x	\overline{v}
14	$(s-r)^{-1}x$	$x^r - x^s$	x	v
15	$(\sin s)^{-1}x$	$-x^r \sin(s \log x)$	x	v
16	$\left(1+\frac{1}{\lambda}\right)\log(1+\lambda)-\frac{x}{\lambda}$	$(1 + \lambda x)\log(1 + \lambda x)$	x	v
17	x	$-x\log\left(\frac{\sin(sx)}{2\sin(s/2)}\right)$	x	v
18	x	$-\frac{\sin(xs)}{2\sin(s/2)}\log\left(\frac{\sin(sx)}{2\sin(s/2)}\right)$	x	v
19	x	$-x \log x$	x	w_i
20	x	$-\log x$	1	v_i
21	$(1-r)^{-1}\log x$	x^{r-1}	1	v_i
22	$(1-s)^{-1}(e^x-1)$	$(s-1)\log x$	1	v_i
23	$(1-s)^{-1}(x^{\frac{r-1}{s-1}}-1)$	x^{r-1}	1	v_i

<u>#</u>	<u>Name</u>	<u>#</u>	<u>Name</u>	<u>#</u>	<u>Name</u>	<u>#</u>	<u>Name</u>
1	Shannon	7	Varma	13	Taneja	19	Belis- Guiasu,Gil
2	Renyi	8	Kapur	14	Sharma- Taneja	20	Picard
3	Aczel- Daroczy	9	Havdra- Charvat	15	Sharma- Taneja	21	Picard
4	Aczel- Daroczy	10	Arimoto	16	Ferreri	22	Picard
5	Aczel- Daroczy	11	Sharma- Mittal	17	Sant'anna- Taneja	23	Picard
6	Varma	12	Sharma- Mittal	18	Sant'anna- Taneja		

Note that only 1 and 2 satisfy simple uniqueness criteria (i.e. unique additive functionals of probability density functions)

Entropy for Image Registration

- Define estimate of joint probability distribution of images:
 - 2-D histogram where each axis designates the number of possible intensity values in corresponding image
 - each histogram cell is incremented each time a pair (I_1(x,y), I_2(x,y)) occurs in the pair of images ("co-occurrence")
 - if images are perfectly aligned then the histogram is highly focused; as the images mis-align the dispersion grows
 - recall one interpretation of entropy is as a measure of histogram dispersion

Entropy for Image Registration

Joint entropy (entropy of 2-D histogram):

$$H(A,B) = -\sum_{i,j} p(i,j) \cdot \log[p(i,j)]$$

 Consider images "registered" for transformation that minimizes joint entropy, i.e. dispersion in the joint histogram for images is minimized

Example

Joint Entropy of 2-D Histogram for rotation of image with respect to itself of 0, 2, 5, and 10 degrees

Mutual Information for Image Registration

- Recall definition(s):
 - I(A,B) = H(B) H(B|A) = H(A) H(A|B)
 - amount that uncertainty in B (or A) is reduced when A (or B) is known.
 - I(A,B) = H(A) + H(B) H(A,B)
 - maximizing is equivalent to minimizing joint entropy (last term)
- Advantage in using mutual info over joint entropy is it includes the individual input's entropy
- Works better than simply joint entropy in regions of image background (low contrast) where there will be high joint entropy but this is offset by high individual entropies as well - so the overall mutual information will be low
- Mutual information is maximized for registered images

Derivation of M. I. Definitions

$$H(A,B) = \sum_{a,b} p(a,b) \cdot \log(p(a,b)), \text{ where } p(a,b) = p(a \mid b) \cdot p(b)$$

$$H(A,B) = \sum_{b} [p(a|b) \cdot p(b)] \cdot \log[p(a|b) \cdot p(b)]$$

$$H(A,B) = \sum_{b} [p(a|b) \cdot p(b)] \cdot \{\log[p(a|b)] + \log[p(b)]\}$$

$$H(A,B) = \sum_{a,b} p(a \,|\, b) \cdot \log[p(a \,|\, b)] \cdot p(b) + \sum_{a,b} p(b) \cdot \log(p(b)) \cdot p(a \,|\, b)$$

$$H(A,B) = \sum_{a} p(a \mid b) \cdot \log[p(a \mid b)] \cdot \sum_{b} p(b) + \sum_{b} \sum_{a} p(a \mid b) \cdot p(b) \cdot \log(p(b))$$

$$H(A,B) = \sum_{a} p(a \mid b) \cdot \log[p(a \mid b)] + \sum_{b} p(b) \cdot \log(p(b))$$

$$H(A,B) = H(A|B) + H(B)$$

therefore I(A, B) = H(A) - H(B | A) = H(A) + H(B) - H(A, B)

Definitions of Mutual Information II

$$-3) I(A,B) = \sum_{a,b} p(a,b) \cdot \log \left(\frac{p(a,b)}{p(a)p(b)} \right)$$

- This definition is related to the Kullback-Leibler distance between two distributions
- Measures the dependence of the two distributions
- In image registration I(A,B) will be maximized when the images are aligned
- In feature selection choose the features that minimize I(A,B) to ensure they are not related.

Additional Definitions of Mutual Information

- Two definitions exist for normalizing Mutual information:
 - Normalized Mutual Information (Colin improved MR-CT, MR-PET):

$$NMI(A,B) = \frac{H(A) + H(B)}{H(A,B)}$$

– Entropy Correlation Coefficient:

$$ECC(A,B) = 2 - \frac{2}{NMI(A,B)}$$

Properties of Mutual Information

- MI is symmetric: I(A,B) = I(B,A)
- I(A,A) = H(A)
- I(A,B) <= H(A), I(A,B) <= H(B)
 - info each image contains about the other cannot be greater than the info they themselves contain
- I(A,B) >= 0
 - Cannot increase uncertainty in A by knowing B
- If A, B are independent then I(A,B) = 0
- If A, B are Gaussian then:

$$I(A,B) = -\frac{1}{2}\log(1-\rho^2)$$

Schema for Mutual Information Based Registration

M.I. Processing Flow for Image Registration

Probability Density Estimation

- Compute the joint histogram h(a,b) of images
 - Each entry is the number of times an intensity a in one image corresponds to an intensity b in the other
- Other method is to use Parzen Windows
 - The distribution is approximated by a weighted sum of sample points Sx and Sy
 - The weighting is a Gaussian window

$$P(x, y, Sx, Sy) = \frac{1}{N} \sum_{S} W(Dist(x, y; Sx, Sy))$$

M.I. Estimation

- Simply use one of the previously mentioned definitions for entropy
 - compute M.I. based on the computed distribution function

Optimization Schemes

- Any classic optimization algorithm suitable
 - computes the step sizes to be fed into the Transformation processing stage.

Image Transformations

General Affine Transformation defined by:

$$\mathbf{T}(x,y) = \begin{pmatrix} x \cdot s_{1,1} & y \cdot s_{1,2} & d_x \\ x \cdot s_{2,1} & y \cdot s_{2,2} & d_y \end{pmatrix}$$

- Special Cases:
 - -S = I (identity matrix) then translation only
 - S = orthonormal then translation plus rotation
 - rotation-only when D = 0 and S orthonormal.

Mutual Information based Feature Selection

- Tested using 2-class Occupant sensing problem
 - Classes are RFIS and everything else (children, adults, etc).
 - Use edge map of imagery and compute features
 - Legendre Moments to order 36
 - Generates 703 features, we select best 51 features.
- Tested 3 filter-based methods:
 - Mann-Whitney statistic
 - Kullback-Leibler statistic
 - Mutual Information criterion
 - Tested both single M.I., and Joint M.I. (JMI)

Mutual Information based Feature Selection Method

- M.I. tests a feature's ability to separate two classes.
 - Based on definition 3) for M.I.

$$I(A,B) = \sum_{a} \sum_{b} p(a,b) \cdot \log \left(\frac{p(a,b)}{p(a)p(b)} \right)$$

- Here A is the feature vector and B is the classification
 - Note that A is continuous but B is discrete
- By maximizing the M.I. We maximize the separability of the feature
 - Note this method only tests each feature individually

Joint Mutual Information based Feature Selection Method

 Joint M.I. tests a feature's independence from all other features:

$$I(A_1, A_2, ..., A_N; B) = \sum_{k=1,N} I(A_k; B \mid A_{k-1}, A_{k-2}, ..., A_1)$$

- Two implementations proposed:
 - 1) Compute all individual M.I.s and sort from high to low
 - Test the joint M.I of current feature with others kept
 - Keep the features with the lowest JMI (implies independence)
 - Implement by selecting features that maximize:

$$I(A_j, B) - \beta \cdot \sum_{k} I(A_k, A_j)$$

Joint Mutual Information based Feature Selection Method

- Two methods proposed (continued):
 - 2) Select features with the smallest Euclidean distance from:
 - The feature with the maximum: $I(A_i, B)$
 - And the minimum: $\sum_{k} I(A_k, A_j)$

Mutual Information Feature Selection Implementation Issue

- M.I tests are very sensitive to the number of bins used for the histograms
- Two methods used:
 - Fixed Bin Number (100)
 - Variable bin number based on Gaussianity of data

$$M_{bins} = \log N + 1 + \log(1 + \kappa \cdot \sqrt{N/6})$$

 where N is the number of points and k is the Kurtosis

$$\kappa = \frac{1}{\sigma^4 \sqrt{24N}} \cdot \sum_{k=1}^{\infty} (x_k - \overline{x})^4 - \sqrt{\frac{3N}{8}}$$

Image Classification

 Specifically: Application of Information Theory Based Complexity Measures to Classification of Neurodegenerative Disease

What Are Complexity Measures?

Complexity

Many <u>strongly</u> <u>interacting</u> components introduce an inherent element of uncertainty into observation of a complex (nonlinear) system

Good Reference:

W.W. Burggren, M. G. Monticino. Assessing physiological complexity. *J Exp Biol.* 208(17),3221-32 (2005).

Proposed Complexity Measures

(Time Series Based)

- Metric Entropy measures number, and uniformity of distribution over observed patterns
 - J. P. Crutchfield and N. H. Packard, Symbolic Dynamics of Noisy Chaos, Physica 7D (1983) 201.
- Statistical Complexity measures number and uniformity of restrictions in correlation of observed patterns
 - J. P. Crutchfield and K. Young, Inferring Statistical Complexity, Phys Rev Lett 63 (1989) 105.
- Excess Entropy measures convergence rate of metric entropy
 - D. P. Feldman and J. P. Crutchfield, <u>Structural Information in Two-Dimensional Patterns: Entropy</u> Convergence and Excess Entropy, Santa Fe Institute Working Paper 02-12-065

Proposed Complexity Measures

- Statistical Complexity is COMPLIMENTARY to Kolmogorov Complexity
- Kolmogorov complexity estimates complexity of algorithms the shorter the program the less complex the algorithm
- "random" string "typically" can be generated by no short program so is "complex" in the Kolmogorov sense = entropy
- But randomness as complexity doesn't jibe with visual assessment of images -> Statistical Complexity
- Yet another complimentary definition is standard Computational Complexity = run time

References

- J.P.W. Pluim, J.B.A. Maintz, M.A. Viergever, "Mutual Information Based Registration of Medical Images: A Survey", IEEE Trans on Medical Imaging, Vol X No Y, 2003
- G.A. Tourassi, E.D. Frederick, M.K. Markey, and C.E. Floyd, "Application of the Mutual Information Criterion for Feature Selection in Computer-aided Diagnosis", Medical Physics, Vol 28, No 12, Dec. 2001
- M.D. Esteban and D. Morales, "A Summary of Entropy Statistics", Kybernetika. Vol. 31, N.4, pp. 337-346. (1995)