CS546 "Parallel and Distributed Processing"

Homework 5

First name: Guillermo Last Name: de la Puente

CWID: A20314328 Due date: 4/28/2014

Problem 1

(a) a(2,:)=d

D:

d1 d2 d3 d4 d5

A:

a11	a12	a13	a14	a15
d1	d2	d3	d4	d5
a31	a32	a33	a34	a35
a41	a42	a43	a44	a45
a51	a52	a53	a54	a55

(b) a(1:3,:)=b(2:4,:)

B:

b11	b12	b13	b14	b15
b21	b22	b23	b24	b25
b31	b32	b33	b34	b35
b41	b42	b43	b44	b45
b51	b52	b53	b54	b55

A:

b11	b12	b13	b14	b15
b21	b22	b23	b24	b25
b31	b32	b33	b34	b35
a41	a42	a43	a44	a45
a51	a52	a53	a54	a55

(c) where (b.eq.c) a=c

Imagine that the values \boldsymbol{x} are those who are equal between b and c. They have been placed randomly.

B:

b11	b12	b13	b14	b15
b21	x1	b23	x2	b25
b31	b32	b33	b34	b35
b41	b42	хЗ	b44	b45
b51	b52	b53	b54	x4

C:

٠.				
c11	c12	c13	c14	c15
c21	x1	c23	x2	c25
c31	c32	c33	c34	c35
c41	c42	х3	c44	c45
c51	c52	c53	c54	x4

A:

a11	a12	a13	a14	a15
a21	x1	a23	x2	a25
a31	a32	a33	a34	a35
a41	a42	х3	a44	a45
a51	a52	a53	a54	x4

(d) for all (i=2:4,j=2:5) a(i,j)=b(i-1,j-1)+c(i+1,j)

The result of adding the orange part of b and the orange part of c is placed in the green part of a.

(e) for all (i=1:5,j=1:5) b(i,j)=(i+j-1)

There might be a typo in this part of the assignment. However, the result of this operation is:

B:

1	2	3	4	5
2	3	4	5	6
3	4	5	6	7
4	5	6	7	8
5	6	7	8	9

(f) for all (j=1:5) d(j)=sum(c(1:4,j),dim=1)

Each of the colored columns in c is summed and assigned in d.

	7	
L	۰	

c11	c12	c13	c14	c15
c21	c22	c23	c24	c25
c31	c32	c33	c34	c35
c41	c42	c43	c44	c45
c51	c52	c53	c54	c55

c11+	c12+	c13+	c14+	c15+
c21+	c22+	c23+	c24+	c25+
c31+	c32+	c33+	c34+	c35+
c41	c42	c43	c44	c45

(g) a=spread(d,dim=2,ncopies=5)

A:

d1	d1	d1	d1	d1
d2	d2	d2	d2	d2
d3	d3	d3	d3	d3
d4	d4	d4	d4	d4
d5	d5	d5	d5	d5

(h) b=spread(d,dim=1,ncopies=5)

B:

d1	d2	d3	d4	d5
d1	d2	d3	d4	d5
d1	d2	d3	d4	d5
d1	d2	d3	d4	d5
d1	d2	d3	d4	d5

(i) a=cshift(b,dim=1,shift=3)

A:

b41	b42	b43	b44	b45
b51	b52	b53	b54	b55
b11	b12	b13	b14	b15
b21	b22	b23	b24	b25
b31	b32	b33	b34	b35

(j) d=sum(spread(d,dim=1,ncopies=5),dim=2)

spread(d,dim=1,ncopies=5):

D:

d1	d2	d3	d4	d5
d1	d2	d3	d4	d5
d1	d2	d3	d4	d5
d1	d2	d3	d4	d5
d1	d2	d3	d4	d5

d1+d2+	d1+d2+	d1+d2+	d1+d2+	d1+d2+
d3+d4+	d3+d4+	d3+d4+	d3+d4+	d3+d4+
d5	d5	d5	d5	d5

Problem 2

(a) given a 2-dimensional matrix a(100,100), zero out the upper diagonal elements

```
forall(i=1:100, j=1:100, i.gt.j) a(i,j)=0
```

(b) given a 2-dimensional matrix a(100,100), transpose it and assign to matrix b(100,100)

```
real b(100,100)
b = transpose (a)
```

(c) given a 1-dimensional array a(100), assign it to a two dimensional array b(100,5) by replicating a() column-wise 5 times

```
real b(100,5)
b = spread(a, dim=2, ncopies=5)
```

(d) given a 2-dimensional array a(100,100), assign it to an array b(100,100) such that each element is circularly shifted left by two columns and down by 1 row in the result matrix

```
real b(100,100)
b = cshift( cshift(a, dim=1, shift=1) , dim=2, shift=-2)
```

(e) perform the following data transfer between arrays a(8) and b(4)

```
forall(i=1:4) b(i)=a(2*i)
```

Problem 3

(a) array a(18) distributed across four processors P1,...,P4 ...

```
!HPF$ PROCESSORS PR(4)
!HPF$ DISTRIBUTE a(BLOCK) ONTO (PR)
```

(b) partition array a(12) across four processors in a blocked distribution, and...

```
!HPF$ PROCESSORS PR(4)
!HPF$ ALIGN a(:) WITH b(*,:)
!HPF$ DISTRIBUTE a(BLOCK), b(*,BLOCK)
```

Problem 4

Just like in the previous assignments, the loop to be parallelized is the second one. The row distribution is made in a cyclic way.

What we do is simply parallelize the loop where every processor will calculate the multiplying factor and affect the whole row with it.

There could be a faster way using temporary arrays that are aligned with A, but that might bring new delays of data transfer.

```
Gauss Elimination without pivoting
   program gauss
   integer n,row,col,norm
   parameter (n=256)
   real X(n),B(n),A(n,n),multiplier
   real*8 elapsed1, elapsed2, rtc, elapsedp1, elapsedp2
! We are going to define 4 processors for example
!HPF$ PROCESSORS PR(4)
!HPF$ ALIGN B(I) WITH A(I,*)
!HPF$ DISTRIBUTE A(CICLYC,*) ONTO PR
   elapsed1 = rtc()
! ----- Initialize all elements to Random Values.
   do row = 1,n
      do col = 1, n
         A(row,col) = (1.0 * irand())/32768.0
      enddo
      B(row) = (1.0 * irand())/32768.0
   enddo
```

```
! This loop is parallelized
   elapsedp1 = rtc()
   do norm = 1 , n-1
! The forall is the loop that we parallelized
      forall (row= norm+1:n)
         multiplier=A(row,norm)/A(norm,norm)
         forall (col= norm:n)
            A(row,col) = A(row,col) - A(norm,col)* multiplier
         end forall
         B(row) = B(row) - B(norm) * multiplier
      end forall
   enddo
   elapsedp2 = rtc()
! ----- backsubstitute
   do row=n-1, 1, -1
      X(row) = B(row)
      do col = n-1, row+1, -1
         X(row) = X(row) - A(row, col) * X(col)
      enddo
      X(row) = X(row) / A(row, row)
   enddo
   elapsed2 = rtc()
! -----Check correctness of code
   do row=1,n
      do col=1, row -1
         if ( A(row,col) .GT. 1e-3 ) print *, "Error in", row,col, A(row,col)
      enddo
   enddo
   print *,"Elapsed Time", elapsed2 - elapsed1
   print *, "Elapsed Time in elimination phase", elapsedp2 - elapsedp1
   stop
   end
```