# FAST FOURIER TRANSFORM (FFT) IMPLEMENTATION WITH SOFTWARE AND HARDWARE

2024-06-20

JONG WAN KO (JONGWANKO@GMAIL.COM)

SHIN DONGHO (DHOOYA99@DAUM.NET)

AHN DONGRIN (AHNDONGRING13@GMAIL.COM)



### **Contents**

- Overview
- Project Timeline
- Project Progress
- > Further Improvements
- > Q & A



### **Overview**



Overall Project Diagram



# Project Timeline

| TIMELINE                                  |         |                  |                       |                       |               |               |               |               |
|-------------------------------------------|---------|------------------|-----------------------|-----------------------|---------------|---------------|---------------|---------------|
| Phase                                     | Details | 2024<br>03/29    | 2024<br>04/05         | 2024<br>04/12         | 2024<br>04/19 | 2024<br>04/26 | 2024<br>05/03 | 2024<br>05/10 |
| <phase3><br/>H/W<br/>Development</phase3> | 고종완     | 예비캡스톤<br>진행사항 리뷰 | ADC<br>Part-1<br>선행조사 | ADC Part-2<br>개발 및 분석 |               |               |               |               |
|                                           | 신동호     |                  |                       |                       | Mid -         | Term          | FFT 개발        |               |
|                                           | 안동린     |                  |                       |                       |               |               |               |               |
|                                           | 기타      |                  |                       |                       |               |               |               |               |

| TIMELINE                  |         |                          |       |               |               |               |  |
|---------------------------|---------|--------------------------|-------|---------------|---------------|---------------|--|
| Phase                     | Details | 2024 2024<br>05/17 05/24 |       | 2024<br>05/31 | 2024<br>06/07 | 2024<br>06/20 |  |
|                           | 고종완     |                          |       | 통합 및 검증       | Final Exams   | Final         |  |
| <phase3><br/>H/W</phase3> | 신동호     | Display 출 <sup>략</sup>   | 력부 개발 |               |               |               |  |
| Development               | 안동린     |                          |       |               |               | Presentation  |  |
|                           | 기타      |                          |       |               |               |               |  |



### Project Progress - ADC Controller



LTC2308

Low Noise, 500ksps, 8-Channel, 12-Bit ADC

#### **FEATURES**

- 12-Bit Resolution
- 500ksps Sampling Rate
- Low Noise: SINAD = 73.3dB
- Guaranteed No Missing Codes
- Single 5V Supply
- Auto-Shutdown Scales Supply Current with Sample Rate
- Low Power: 17.5mW at 500ksps 0.9mW Nap Mode 35µW Sleep Mode
- Internal Reference
- Internal 8-Channel Multiplexer
- Internal Conversion Clock
- SPI/MICROWIRE™ Compatible Serial Interface
- Unipolar or Bipolar Input Ranges (Software Selectable)
- Separate Output Supply OV<sub>DD</sub> (2.7V to 5.25V)
- 24-Pin 4mm × 4mm QFN Package

#### **APPLICATIONS**

- High Speed Data Acquisition
- Industrial Process Control
- Motor Control
- Accelerometer Measurements
- Battery Operated Instruments
- Isolated and/or Remote Data Acquisition

#### DESCRIPTION

The LTC®2308 is a low noise, 500ksps, 8-channel, 12-bit ADC with an SPI/MICROWIRE compatible serial interface. This ADC includes an internal reference and a fully differential sample-and-hold circuit to reduce common mode noise. The internal conversion clock allows the external serial output data clock (SCK) to operate at any frequency up to 40MHz.

The LTC2308 operates from a single 5V supply and draws just 3.5mA at a sample rate of 500ksps. The auto-shutdown feature reduces the supply current to  $200\mu A$  at a sample rate of 1ksps.

The LTC2308 is packaged in a small 24-pin 4mm × 4mm QFN. The internal 2.5V reference and 8-channel multiplexer further reduce PCB board space requirements.

The low power consumption and small size make the LTC2308 ideal for battery operated and portable applications, while the 4-wire SPI compatible serial interface makes this ADC a good match for isolated or remote data acquisition systems.

LT, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.
All other trademarks are the property of their respective owners.



ADC Datasheet Summary



| S/D 0/S | S1 | S0 | UNI | SLP |  |
|---------|----|----|-----|-----|--|
|---------|----|----|-----|-----|--|





Figure 2. Driving COM in UNIPOLAR and BIPOLAR Modes

#### Analog Input Multiplexer

Table 1. Channel Configuration

The analog input MUX is programmed by the S/D, O/S, S1 and S0 bits of the  $D_{\text{IN}}$  word. Table 1 lists the MUX configurations for all combinations of the configuration bits. Figure 1a shows several possible MUX configurations and Figure 1b shows how the MUX can be reconfigured from one conversion to the next.

| S/D | 0/\$ | <b>S1</b> | SO | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | COM |
|-----|------|-----------|----|---|---|---|---|---|---|---|---|-----|
| 0   | 0    | 0         | 0  | + | - |   |   |   |   |   |   |     |
| 0   | 0    | 0         | 1  |   |   | + | - |   |   |   |   |     |
| 0   | 0    | 1         | 0  |   |   |   |   | + | - |   |   |     |
| 0   | 0    | 1         | 1  |   |   |   |   |   |   | + | - |     |
| 0   | 1    | 0         | 0  | - | + |   |   |   |   |   |   |     |
| 0   | 1    | 0         | 1  |   |   | - | + |   |   |   |   |     |
| 0   | 1    | 1         | 0  |   |   |   |   | - | + |   |   |     |
| 0   | 1    | 1         | 1  |   |   |   |   |   |   | - | + |     |
| 1   | 0    | 0         | 0  | + |   |   |   |   |   |   |   | -   |
| 1   | 0    | 0         | 1  |   |   | + |   |   |   |   |   | _   |
| 1   | 0    | 1         | 0  |   |   |   |   | + |   |   |   | _   |
| 1   | 0    | 1         | 1  |   |   |   |   |   |   | + |   | -   |
| 1   | 1    | 0         | 0  |   | + |   |   |   |   |   |   | -   |
| 1   | 1    | 0         | 1  |   |   |   | + |   |   |   |   | _   |
| 1   | 1    | 1         | n  |   |   |   |   |   | _ |   |   |     |

#### Combinations of Differential and Single-Ended



Figure 1a. Example MUX Configurations



Figure 1b. Changing the MUX Assignment "On the Fly"

ADC Datasheet Configuration





Figure 9. LTC2308 Timing with a Short CONVST Pulse

ADC Datasheet Timing Diagram



```
62
                                             Structural coding
                                 63
                                                CLOCK
                                 64
65
                                 66
                                 67
                                      □always @ (posedge CLOCK_40, negedge nrst) begin
                                 68
                                              begin
                                 69
                                                  if(!nrst)
                                 70
                                                       counter <= 7'b00_0000;
                                 71
                                                else if(counter == 7'd79)
                                 72
                                                   counter <= 7'b00_0000;
                                 73
74
75
                                                else
                                                    counter <= counter + 1'b1;
                                 76
                                        end
 93
           Structural coding
                                                                               122
                                                                                            Structural coding
 94
             ADC_SCLK
 95
                                                                               123
                                                                                              DIN Signal
 96
                ADC_SCLK_EN:
                                                                               124
 97
                ADC_SCLK_EN_N;
                                                                               125
                                                                                        always @ (posedge CLOCK_40, negedge nrst)
 98
                                                                               126
                                                                                      □begin
 99
       always @ (posedge CLOCK_40, negedge nrst)
                                                                               127
                                                                                           if(!nrst)
100
                                                                               128
                                                                                                 ADC_DIN \le 1'b0;
101
          if(!nrst)
                                                                               129
                                                                                           else if(counter == 7'd66)
102
             ADC_SCLK_EN <= 1'b0;
103
          else if(counter > 7'd65 && counter < 7'd78)
   ADC_SCLK_EN <= 1'b1;</pre>
                                                                               130
                                                                                               ADC_DIN \le 1'b1;
                                                                                           else if(counter == 7'd67)
104
                                                                               131
105
                                                                               132
                                                                                               ADC_DIN \le 1'b1;
106
             ADC_SCLK_EN \le 1'b0;
                                                                               133
                                                                                           else if(counter == 7'd68)
107
                                                                               134
                                                                                               ADC_DIN \le 1'b1;
108
                                                                               135
                                                                                           else if(counter == 7'd69)
109
       always @ (negedge CLOCK_40, negedge nrst)
                                                                                               ADC_DIN \le 1'b1;
                                                                               136
110
      □begin
                                                                               137
                                                                                           else if(counter == 7'd70)
111
          if(!nrst)
112
                                                                               138
                                                                                               ADC_DIN \le 1'b0;
113
          else if(counter > 7'd65 && counter < 7'd78
                                                                               139
                                                                                           else if(counter == 7'd71)
114
             ADC_SCLK_EN_N <= 1 D1;
                                                                               140
                                                                                              ADC_DIN \le 1'b0;
115
          else
                                                                               141
                                                                                           else
116
             ADC_SCLK_EN_N <= 1'b0;
                                                                               142
                                                                                               ADC_DIN \le 1'b0;
117
       end
                                                                               143
118
       assign ADC_SCLK = ADC_SCLK_EN & CLOCK_40 & ADC_SCLK_EN_N;
```

ADC Datasheet Timing HDL





ADC Simulation and Datasheet Comparison



| Flow Status                     | Successful - Sun Apr 28 22:53:07 2024           |
|---------------------------------|-------------------------------------------------|
| Quartus Prime Version           | 16.1.0 Build 196 10/24/2016 SJ Standard Edition |
| Revision Name                   | sa_v1                                           |
| Top-level Entity Name           | sa_v1                                           |
| Family                          | Cyclone V                                       |
| Device                          | 5CSEMA5F31C6                                    |
| Timing Models                   | Final                                           |
| Logic utilization (in ALMs)     | 284 / 32,070 ( < 1 % )                          |
| Total registers                 | 564                                             |
| Total pins                      | 16 / 457 ( 4 % )                                |
| Total virtual pins              | 0                                               |
| Total block memory bits         | 9,728 / 4,065,280 ( < 1 % )                     |
| Total DSP Blocks                | 0/87(0%)                                        |
| Total HSSI RX PCSs              | 0                                               |
| Total HSSI PMA RX Deserializers | 0                                               |
| Total HSSI TX PCSs              | 0                                               |
| Total HSSI PMA TX Serializers   | 0                                               |
| Total PLLs                      | 1 / 6 ( 17 % )                                  |
| Total DLLs                      | 0 / 4 ( 0 % )                                   |
|                                 |                                                 |

➤ ADC Synthesis Result





Matlab ADC Verification



### Project Progress – FFT Computation

Concept of FFT computation 문제 1. 문제 1. 문제 2. 문제 3. 문제 2. 문제 4. 문제 3. 문제 5. 문제 6. Cooley Cooley Tukey Tukey 문제 1 – 1 문제 2 - 1 문제 1 – 2 문제 2 - 2 답안 문제 1. 답 1 문제 2. 답 2 문제 3. 답 3 Cooley Cooley 문제 3 - 1 문제 4 - 1 문제 5 - 1 문제 6 - 1 Tukey Tukey

2024 Capstone Design

### Project Progress – FFT

```
module FFT #(
                WIDTH = 16
    parameter
)(
    input
                         clock.
                                     Master Clock
    input
                         reset.
                                      Active High Asynchronous Reset
    input
                         di en.
                                      Input Data Enable
    input
            [WIDTH-1:0] di re.
                                     Input Data (Real)
            [WIDTH-1:0] di im,
    input
                                     Input Data (Imag)
    output
                         do en.
                                      Output Data Enable
    output
            [WIDTH-1:0] do re,
                                      Output Data (Real)
            [WIDTH-1:0] do im
                                      Output Data (Imag)
    output
```

```
assign wn_im[ 0] = 16'h0000;
                                                                  0 1.000 -0.000
assign wn_re[ 0] = 16'h0000;
assign wn_re[ 1] = 16'h7F62;
                               assign wn_im[ 1] = 16'hF374;
       wn_re[2] = 16'h7D8A;
                               assign wn_im[ 2] = 16'hE707;
assign
       wn_re[ 3] = 16'h7A7D;
                               assign wn_im[ 3] = 16'hDAD8;
assign
assign
       wn_re[ 4] = 16'h7642;
                               assign wn_im[ 4] = 16'hCF04;
assign wn_re[ 5] = 16'h70E3;
                               assign wn_im[ 5] = 16'hC3A9;
                                                               // 5 0.882 -0.471
assign wn_re[ 6] = 16'h6A6E;
                               assign wn_im[ 6] = 16'hB8E3;
                                                              // 6 0.831 -0.556
       wn_re[ 7] = 16'h62F2;
                               assign wn_im[ 7] = 16'hAECC;
                                                              // 7 0.773 -0.634
assign
                               assign wn_im[ 8] = 16'hA57E;
       wn_re[ 8] = 16'h5A82;
                                                              // 8 0.707 -0.707
assign
assign wn_re[ 9] = 16'h5134;
                               assign wn_im[ 9] = 16'h9D0E;
assign wn_re[10] = 16'h471D;
                               assign wn im[10] = 16'h9592;
                                                              // 10 0.556 -0.831
assign wn_re[11] = 16'h3C57;
                               assign wn im[11] = 16'h8F1D;
                                                              // 11 0.471 -0.882
assign wn re[12] = 16'h30FC;
                               assign wn im[12] = 16'h89BE;
                                                              // 12 0.383 -0.924
assign wn re[13] = 16'h2528;
                               assign wn im[13] = 16'h8583;
                                                               // 13 0.290 -0.957
assign wn_re[14] = 16'h18F9;
                               assign wn_im[14] = 16'h8276;
                                                              // 14 0.195 -0.981
                               assign wn_im[15] = 16'h809E;
assign wn_re[15] = 16'h0C8C;
                                                               // 15 0.098 -0.995
                               assign wn_im[16] = 16'h8000;
assign wn_re[16] = 16'h0000;
                                                              // 16 0.000 -1.000
assign wn_re[17] = 16'hxxxx;
                               assign wn_im[17] = 16'hxxxx;
                                                               // 17 -0.098 -0.995
assign wn_re[18] = 16'hE707;
                               assign wn_im[18] = 16'h8276;
assign wn_re[19] = 16'hxxxx;
                               assign wn_im[19] = 16'hxxxx;
assign wn re[20] = 16'hCF04:
                               assign wn im[20] = 16'h89BE:
                                                               // 20 -0.383 -0.924
```

```
module Butterfly #(
   parameter
               WIDTH = 16.
               RH = 0 // Round Half Up
   parameter
           signed
                   [WIDTH-1:0] x0_re, // Input Data #0 (Real)
   input
                                         Input Data #0 (Imag)
           signed
                   [WIDTH-1:0] x0_im, //
   input
           signed
                   [WIDTH-1:0] x1_re, //
                                         Input Data #1 (Real)
   input
           signed
                   [WIDTH-1:0] x1_im,
                                          Input Data #1 (Imag)
   output
          signed
                   [WIDTH-1:0] y0_re,
                                         Output Data #0 (Real)
   output
          signed
                   [WIDTH-1:0] y0_im,
                                         Output Data #0 (Imag)
                   [WIDTH-1:0] y1_re, // Output Data #1 (Real)
   output
          signed
                   [WIDTH-1:0] y1_im
   output signed
                                      // Output Data #1 (Imag)
wire signed [WIDTH:0]
                      add_re, add_im, sub_re, sub_im;
// Add/Sub
assign add_im = x0_im + x1_im;
assign sub_re = x0_re - x1_re;
assign sub_im = x0_im - x1_im;
assign y0_re = (add_re + RH) >>> 1;
assign y0_im = (add_im + RH) >>> 1;
assign y1_re = (sub_re + RH) >>> 1;
assign y1_im = (sub_im + RH) >>> 1;
```

```
// Signed Multiplication
assign arbr = a_re * b_re;
assign arbi = a_re * b_im;
assign aibr = a_im * b_re;
assign aibi = a_im * b_im;

// Scaling
assign sc_arbr = arbr >>> (WIDTH-1);
assign sc_arbi = arbi >>> (WIDTH-1);
assign sc_aibr = aibr >>> (WIDTH-1);
assign sc_aibi = aibi >>> (WIDTH-1);
assign sc_aibi = aibi >>> (WIDTH-1);

// Sub/Add
// These sub/add may overflow if unnormalized data is input.
assign m_re = sc_arbr - sc_aibi;
assign m_im = sc_arbi + sc_aibr;
```



### Project Progress – FFT (Cont.)



FFT Simulation



### Project Progress – FFT (Cont.)



FFT Result on Excel



### Project Progress – FFT (Cont.)

Flow Status Successful - Mon May 13 02:54:40 2024

Quartus Prime Version 16.1.0 Build 196 10/24/2016 SJ Standard Edition

Revision Name top

Top-level Entity Name top

Family Cyclone V

Device 5CSEMA5F31C6

Timing Models Final

Logic utilization (in ALMs) 1,370 / 32,070 ( 4 % )

Total registers 2213

Total pins 47 / 457 ( 10 % )

Total virtual pins 0

Total block memory bits 12,158 / 4,065,280 ( < 1 % )

Total DSP Blocks 10 / 87 (11 %)

Total HSSI RX PCSs 0

Total HSSI PMA RX Deserializers 0

Total HSSI TX PCSs 0

Total HSSI PMA TX Serializers 0

Total PLLs 1 / 6 (17 %)
Total DLLs 0 / 4 (0 %)

ADC and FFT Synthesis



# Project Progress – VGA





#### VGA Signal 640 x 480 @ 60 Hz Industry standard timing

#### **General timing**

| Screen refresh rate | 60 Hz        |
|---------------------|--------------|
| Vertical refresh    | 31.46875 kHz |
| Pixel freq.         | 25.175 MHz   |

#### Horizontal timing (line)

Polarity of horizontal sync pulse is negative.

| Scanline part | Pixels | Time [µs]        |
|---------------|--------|------------------|
| Visible area  | 640    | 25.422045680238  |
| Front porch   | 16     | 0.63555114200596 |
| Sync pulse    | 96     | 3.8133068520357  |
| Back porch    | 48     | 1.9066534260179  |
| Whole line    | 800    | 31.777557100298  |

#### Vertical timing (frame)

Polarity of vertical sync pulse is negative.

| Frame part   | Lines | Time [ms]         |  |  |  |  |
|--------------|-------|-------------------|--|--|--|--|
| Visible area | 480   | 15.253227408143   |  |  |  |  |
| Front porch  | 10    | 0.31777557100298  |  |  |  |  |
| Sync pulse   | 2     | 0.063555114200596 |  |  |  |  |
| Back porch   | 33    | 1.0486593843098   |  |  |  |  |
| Whole frame  | 525   | 16.683217477656   |  |  |  |  |





| Horizontal timing (Line) |        |           |  |  |  |  |  |
|--------------------------|--------|-----------|--|--|--|--|--|
| Scanline part            | Pixels | Time [us] |  |  |  |  |  |
| Visible area             | 640    | 25.42     |  |  |  |  |  |
| Front porch              | 16     | 0.63      |  |  |  |  |  |
| Sync pulse               | 96     | 3.81      |  |  |  |  |  |
| Back porch               | 48     | 1.90      |  |  |  |  |  |
| Whole line               | 800    | 31.77     |  |  |  |  |  |





| Vertical timing (Frame) |       |           |  |  |  |  |  |  |
|-------------------------|-------|-----------|--|--|--|--|--|--|
| Frame part              | Lines | Time [ms] |  |  |  |  |  |  |
| Visible area            | 480   | 15.25     |  |  |  |  |  |  |
| Front porch             | 10    | 0.31      |  |  |  |  |  |  |
| Sync pulse              | 2     | 0.06      |  |  |  |  |  |  |
| Back porch              | 33    | 1.04      |  |  |  |  |  |  |
| Whole frame             | 525   | 16.68     |  |  |  |  |  |  |

Vertical VGA Speciation



#### FUNCTIONAL BLOCK DIAGRAM





Figure 3-22 Connections between the FPGA and VGA

VGA Manual Speciation

00215-001





Table 3-14 VGA Horizontal Timing Specification

| VGA mode        | Horizontal Timing Spec |       |       |       |       |                  |
|-----------------|------------------------|-------|-------|-------|-------|------------------|
| Configuration   | Resolution(HxV)        | a(us) | b(us) | c(us) | d(us) | Pixel clock(MHz) |
| VGA(60Hz)       | 640x480                | 3.8   | 1.9   | 25.4  | 0.6   | 25               |
| VGA(85Hz)       | 640x480                | 1.6   | 2.2   | 17.8  | 1.6   | 36               |
| SVGA(60Hz)      | 800x600                | 3.2   | 2.2   | 20    | 1     | 40               |
| SVGA(75Hz)      | 800x600                | 1.6   | 3.2   | 16.2  | 0.3   | 49               |
| SVGA(85Hz)      | 800x600                | 1.1   | 2.7   | 14.2  | 0.6   | 56               |
| XGA(60Hz)       | 1024x768               | 2.1   | 2.5   | 15.8  | 0.4   | 65               |
| XGA(70Hz)       | 1024x768               | 1.8   | 1.9   | 13.7  | 0.3   | 75               |
| XGA(85Hz)       | 1024x768               | 1.0   | 2.2   | 10.8  | 0.5   | 95               |
| 1280x1024(60Hz) | 1280x1024              | 1.0   | 2.3   | 11.9  | 0.4   | 108              |

Table 3-15 VGA Vertical Timing Specification

| VGA mode        |                 | Vertical Timing Spec |          |          |          |                  |  |  |
|-----------------|-----------------|----------------------|----------|----------|----------|------------------|--|--|
| Configuration   | Resolution(HxV) | a(lines)             | b(lines) | c(lines) | d(lines) | Pixel clock(MHz) |  |  |
| VGA(60Hz)       | 640x480         | 2                    | 33       | 480      | 10       | 25               |  |  |
| VGA(85Hz)       | 640x480         | 3                    | 25       | 480      | 1        | 36               |  |  |
| SVGA(60Hz)      | 800x600         | 4                    | 23       | 600      | 1        | 40               |  |  |
| SVGA(75Hz)      | 800x600         | 3                    | 21       | 600      | 1        | 49               |  |  |
| SVGA(85Hz)      | 800x600         | 3                    | 27       | 600      | 1        | 56               |  |  |
| XGA(60Hz)       | 1024x768        | 6                    | 29       | 768      | 3        | 65               |  |  |
| XGA(70Hz)       | 1024x768        | 6                    | 29       | 768      | 3        | 75               |  |  |
| XGA(85Hz)       | 1024x768        | 3                    | 36       | 768      | 1        | 95               |  |  |
| 1280x1024(60Hz) | 1280x1024       | 3                    | 38       | 1024     | 1        | 108              |  |  |

VGA Manual Speciation



```
□module clk_div(
                 clk.
                 reset.
                 h_c1k
          clk;
                   //50MHz clock from FPGA
 input wire reset;
                   //Half Divided Clock 25MHz
 output h_clk;
 reg h_clk;
 always @ (posedge clk, negedge reset)
⊟begin
    if (!reset)
       h_clk <= 1'b0;
    else
       h_clk <= ~ h_clk: //Half clock
 endmodule
```

```
640 * 480 @ 60Hz Clock Pixel is 25.175Mhz
□module vga_ctl(
                 ired.
                 igreen,
                 iblue.
                 ocurrent_x,
                 ocurrent_y,
                 oaddress,
                 orequest,
                 ovga_r,
                 ovga_g,
                 ovga_b,
                 ovga_hs,
                 ovga_vs,
                 ovga_sync,
                 ovga_bĺank,
                 ovga_clock,
                 icĺk,
                 irst
```

VGA HDL Top



```
//Parameters
53
      //Horizontal Parameters
54
      parameter H_FRONT = 16:
                                     //Horizontal Front Porch has 16 pixels
55
      parameter H_SYNC = 96;
                                     //Horizontal Sync signal has 96 pixels
56
                                     //Horizontal Back Porch has 48 pixels
      parameter H_BACK = 48;
57
                                     //Horizontal signal when valid pixels are printed has 640 pixels
      parameter H_ACT = 640;
58
      parameter H_BLANK = H_FRONT + H_SYNC + H_BACK;
                                                                //when valid signal does not come out (front porch
59
      parameter H_TOTAL = H_FRONT + H_SYNC + H_BACK + H_ACT; //total signal timing with active signal
60
      //Vertical Parameters
61
      parameter V_FRONT = 10;
                                     //Vertical Front Porch has 10 pixels
62
      parameter V_SYNC = 2;
                                     //Vertical Sync signal has 2 pixels
63
                                     //Vertical Back Porch has 33 pixels
      parameter V_BACK = 33:
64
      parameter V_ACT = 480;
                                     //Vertical signal when valid lines are printed has 480 lines
65
      parameter V_BLANK = V_FRONT + V_SYNC + V_BACK;
                                                                //this is the interval where the signal does not c
66
      parameter V_TOTAL = V_FRONT + V_SYNC + V_BACK + V_ACT;
                                                                // total signal timing active signal
67
68
      assign ovga_sync = 1'b1; //pin is unused
69
      assign ovga_blank = ~((h_count < H_BLANK) || (v_count < V_BLANK));//Blank Signal, check data sheet
70
      assign ovga_clock = ~iclk;
71
                                 // print red on screen
      assign ovga_r = ired;
72
      assign ovga_g = igreen;
                                 // print green on screen
73
      assign ovga_b = iblue;
                                 // print blue on screen
      assign oaddress = ocurrent_y * H_ACT + ocurrent_x; //coordinate of visable data is printed
74
75
      assign orequest = ((h_count >= H_BLANK && h_count < H_TOTAL) && (v_count >= V_BLANK && v_count < V_TOTAL));
76
      assign ocurrent_x = (h_count >= H_BLANK) ? h_count - H_BLANK : 11'h0; //finding visable area column
      assign ocurrent_y = (v_count >= V_BLANK) ? v_count - v_BLANK : 11'h0; //finding visable area of row
```

VGA HDL Timing parameters





Horizontal VGA Timing Simulation



Vertical VGA Timing Simulation



VGA HDL Timing Simulation



Flow Status Successful - Fri May 10 21:57:50 2024

Quartus Prime Version 16.1.0 Build 196 10/24/2016 SJ Standard Edition

Revision Name top
Top-level Entity Name top

Family Cyclone V

Device 5CSEMA5F31C6

Timing Models Final

Logic utilization (in ALMs) 433 / 32,070 ( 1 % )

Total registers 1098

Total pins 52 / 457 (11 %)

Total virtual pins 0

Total block memory bits 10,752 / 4,065,280 ( < 1 % )

Total DSP Blocks 0 / 87 (0%)

Total HSSI RX PCSs 0

Total HSSI PMA RX Deserializers 0

Total HSSI TX PCSs 0

Total HSSI PMA TX Serializers

Total PLLs 1 / 6 (17 %)
Total DLLs 0 / 4 (0 %)

VGA Synthesis





VGA Test











20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 500 520 540 560 580 600 620 640

| _            | 0 .0 | , 00 | 00     | -00 | 120    |        | -      | 0 10   |        | JU 2   | 20 2   | - 10   | 200    | 200    | 500    | <i>.</i> | 0 0     | .00     | 00 5    | ,00     |         |         |         | , ,,    | 0 32    | .0 0    | .0 5    | 00.     | ,,,,    | 000     | 020     | 0.0     |
|--------------|------|------|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 7FFF<br>7000 | 0    | 0    | 0<br>2 | 0   | 0<br>4 | 0<br>5 | 0<br>6 | 0<br>7 | 0<br>8 | 0<br>9 | 0<br>A | 0<br>B | 0<br>C | O<br>D | 0<br>E | 0<br>F   | 0<br>10 | 0<br>11 | 0<br>12 | 0<br>13 | 0<br>14 | 0<br>15 | 0<br>16 | 0<br>17 | 0<br>18 | 0<br>19 | 0<br>1A | 0<br>1B | 0<br>1C | 0<br>1D | 0<br>1E | 0<br>1F |
| 6FFF         | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 6000         | 20   | 21   | 22     | 23  | 24     | 25     | 26     | 27     | 28     | 29     | 2A     | 2B     | 2C     | 2D     | 2E     | 2F       | 30      | 31      | 32      | 33      | 34      | 35      | 36      | 37      | 38      | 39      | 3A      | 3B      | 3C      | 3D      | 3E      | 3F      |
| 5FFF         | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 5000         | 40   | 41   | 42     | 23  | 44     | 45     | 46     | 47     | 48     | 49     | 4A     | 4B     | 4C     | 4D     | 4E     | 4F       | 50      | 51      | 52      | 53      | 54      | 55      | 56      | 57      | 58      | 59      | 5A      | 5B      | 5C      | 5D      | 5E      | 5F      |
| 4FFF         | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 4000         | 60   | 61   | 62     | 63  | 64     | 65     | 66     | 67     | 68     | 69     | 6A     | 6B     | 6C     | 6D     | 6E     | 6F       | 70      | 71      | 72      | 73      | 74      | 75      | 76      | 77      | 78      | 79      | 7A      | 7B      | 7C      | 7D      | 7E      | 7F      |
| 3FFF         | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 3000         | 80   | 81   | 82     | 83  | 84     | 85     | 86     | 87     | 88     | 89     | 8A     | 8B     | 8C     | 8D     | 8E     | 8F       | 90      | 91      | 92      | 93      | 94      | 95      | 96      | 97      | 98      | 99      | 9A      | 9B      | 9C      | 9D      | 9E      | 9F      |
| 2FFF         | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | O      | O      | 0      | O      | O      | 0        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | O       | O       | O       | O       | O       | O       |
| 2000         | A0   | A1   | A2     | A3  | A4     | A5     | A6     | A7     | A8     | A9     | AA     | AB     | AC     | AD     | AE     | AF       | B0      | B1      | B2      | B3      | B4      | B5      | B6      | B7      | B8      | B9      | BA      | BB      | BC      | BD      | BE      | BF      |
| 1FFF         | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | O      | O      | O      | O      | O        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | O       | O       | O       | O       | O       | 0       |
| 1000         | C0   | C1   | C2     | C3  | C4     | C5     | C6     | C7     | C8     | C9     | CA     | CB     | CC     | CD     | CE     | CF       | D0      | D1      | D2      | D3      | D4      | D5      | D6      | D7      | D8      | D9      | DA      | DB      | DC      | DD      | DE      | DF      |
| 0FFF         | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | O      | 0      | 0      | O      | O        | O       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | O       | 0       | 0       | 0       | 0       |
| 0800         | E0   | E1   | E2     | E3  | E4     | E5     | E6     | E7     | E8     | E9     | EA     | EB     | EC     | ED     | EE     | EF       | FO      | F1      | F2      | F3      | F4      | F5      | F6      | F7      | F8      | F9      | FA      | FB      | FC      | FD      | FE      | FF      |
| 07FF         | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 0400         | 100  | 101  | 102    | 103 | 104    | 105    | 106    | 107    | 108    | 109    | 10A    | 10B    | 10C    | 10D    | 10E    | 10F      | 110     | 111     | 112     | 113     | 114     | 115     | 116     | 117     | 118     | 119     | 11A     | 11B     | 11C     | 11D     | 11E     | 11F     |
| 03FF         | 0    | 255  | 255    | 255 | 255    | 255    | 255    | 255    | 255    | 255    | 255    | 255    | 255    | 255    | 255    | 255      | 255     | 255     | 255     | 255     | 255     | 255     | 255     | 255     | 255     | 255     | 255     | 255     | 255     | 255     | 255     | 255     |
| 0000         | 120  | 121  | 122    | 123 | 124    | 125    | 126    | 127    | 128    | 129    | 12A    | 12B    | 12C    | 12D    | 12E    | 12F      | 130     | 131     | 132     | 133     | 134     | 135     | 136     | 137     | 138     | 139     | 13A     | 13B     | 13C     | 13D     | 13E     | 13F     |
|              |      |      |        |     |        |        |        |        |        |        |        |        |        |        |        |          |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |

Defined each Pixel





Defined each Pixel



### Project Progress – Dual Port RAM





Dual Port RAM IP



### Project Progress – Top Synthesis

Flow Status Successful - Mon May 13 02:54:40 2024

Quartus Prime Version 16.1.0 Build 196 10/24/2016 SJ Standard Edition

Revision Name top

Top-level Entity Name top

Family Cyclone V

Device 5CSEMA5F31C6

Timing Models Final

Logic utilization (in ALMs) 1,370 / 32,070 ( 4 % )

Total registers 2213

Total pins 47 / 457 ( 10 % )

Total virtual pins 0

Total block memory bits 12,158 / 4,065,280 ( < 1 % )

Total DSP Blocks 10 / 87 (11 %)

Total HSSI RX PCSs 0

Total HSSI PMA RX Deserializers 0

Total HSSI TX PCSs 0

Total HSSI PMA TX Serializers 0

Total PLLs 1 / 6 (17 %)
Total DLLs 0 / 4 (0 %)

Top Synthesis



### Project Progress – Top Synthesis



Result : 4Vp-p Sine wave @100Khz



### Further Improvements

- ▶ 디스플레이 출력 오류.
- 프레임이 너무 빠르게 업데이트 됨.
- ▶ 스펙트럼 분석기의 화면의 분해능과 해상도 개선.



# **Q&A**

