- 1. Determinare, se esistono:
 - i. due matrici $A, B \in M_2(\mathbb{R})$ non nulle il cui prodotto sia la matrice nulla.
 - ii. Una matrice $C \in M_2(\mathbb{R})$ che sia di rango massimo e non diagonalizzabile.
 - iii. Due matrici $D, E \in M_2(\mathbb{R})$ con determinante 0 tali che la matrice D + E abbia determinante 23.
 - iv. Una matrice $F \in M_2(\mathbb{R})$ di rango 2 che possa essere la matrice di Gram associata (rispetto una base qualsiasi) a un prodotto interno che ammette vettori isotropi.
 - v. Una matrice $G \in M_2(\mathbb{R})$ tale $\det(G^3) = \pi$.
- **2.** Si consideri il sottoinsieme $X_t = \{(1, t, 3), (2, 1, 0), (3, 2, 3t)\} \subseteq \mathbb{R}^3$ definito al variare del parametro reale t, e sia $W_t = \operatorname{Span}(X_t)$.
 - i. Discutere la dimensione di W_t al variare di t.
 - ii. Determinare una rappresentazione cartesiana di $W_{-\frac{1}{2}}$.
 - iii. Si determini una base del complemento ortogonale di W_1 rispetto al prodotto scalare canonico.
 - iv. Si consideri l'applicazione lineare $T: \mathbb{R}^3 \to \mathbb{R}^3$ che a ogni vettore associa la sua proiezione ortogonale (rispetto al prodotto scalare canonico) sul sottospazio W_1 . Calcolare T((1,1,3)) e T((-3,6,-1)) e scrivere la matrice associata a T rispetto a una coppia di basi a scelta del candidato.
 - v. Stabilire se l'applicazione T definita in precedenza è diagonalizzabile.
- 3. Nello spazio euclideo tridimensionale, si consideri la quadrica Q di equazione

$$x^{2} + 2y^{2} + 3z^{2} + 3xy + 4xz + 5yz + x - z - 2 = 0.$$

- i. Si classifichi Q.
- ii. Si scelgano 3 punti non allineati su Q e si determini l'equazione del piano che li contiene.
- iii. Si classifichi la conica ottenuta intersecando Q con il piano di equazione z=0.