SWE223: Digital Electronics Fall 2015

Lecture 1+2 Tanjila Farah

Textbooks

Mano and Kime, "Logic & Computer Design Fundamentals", Prentice Hall. Digital Electronics is also known as Digital Logic Design

Digital

Analog and Digital Signal

Analog system

The physical quantities or signals may vary continuously over a specified range.

Digital system

- ▶ The physical quantities or signals can assume only discrete values.
- Greater accuracy

Binary Digital Signal

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
 - Two level, or binary values are the most prevalent values.
- Binary values are represented abstractly by:
 - Digits 0 and I
 - Words (symbols) False (F) and True (T)
 - Words (symbols) Low (L) and High (H)
 - And words On and Off
- Binary values are represented by values or ranges of values of physical quantities.

Decimal Number System

- Base (also called radix) = 10
 - ▶ 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
- Digit Position
 - Integer & fraction
- Digit Weight
 - Weight = (Base) Position
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

Octal Number System

- ▶ Base = 8
 - 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }
- Weights
 - Weight = (Base) Position
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

Binary Number System

- \blacktriangleright Base = 2
 - 2 digits { 0, 1 }, called binary digits or "bits"
- Weights
 - ▶ Weight = (Base) Position
- Magnitude
 - Sum of "Bit x Weight"
- Formal Notation
- Groups of bits 4 bits = Nibble 8 bits = Byte

Hexadecimal Number System

- ▶ Base = 16
 - ▶ 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }
- Weights
 - ▶ Weight = (Base) Position
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

Decimal, Binary, Octal and Hexadecimal

Decimal	Binary	Octal	Hex
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Number Base Conversions

Logic Design

Binary Logic

Definition of Binary Logic

- Binary logic consists of binary variables and a set of logical operations.
- The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc, with each variable having two and only two distinct possible values: I and 0,
- ▶ Three basic logical operations: AND, OR, and NOT.
- AND: This operation is represented by a dot or by the absence of an operator. For example, x · y = z or xy = z is read "x AND y is equal to z," The logical operation AND is interpreted to mean that z = 1 if only x = 1 and y = 1; otherwise z = 0. (Remember that x, y, and z are binary variables and can be equal either to 1 or 0, and nothing else.)
- OR: This operation is represented by a plus sign. For example, x + y = z is read "x OR y is equal to z," meaning that z = 1 if x = 1 or y = 1 or if both x = 1 and y = 1. If both x = 0 and y = 0, then z = 0.
- 3. NOT: This operation is represented by a prime (sometimes by an overbar). For example, x' = z (or z = z) is read "not x is equal to z," meaning that z is what z is not. In other words, if x = 1, then z = 0, but if x = 0, then z = 1, The NOT operation is also referred to as the complement operation, since it changes a 1 to 0 and a 0 to 1.

Binary Logic: Basic gates

▶ Truth Tables, Boolean Expressions, and Logic Gates

AND

\boldsymbol{x}	y	Z
0	0	0
0	1	0
1	0	0
1	1	1

OR

\mathcal{X}	У	Z
0	0	0
0	1	1
1	0	1
1	1	1

NOT

\boldsymbol{x}	Z	
0	1	
1	0	

$$z = x \cdot y = x y$$

$$z = x + y$$

$$y \rightarrow z$$

$$z = \overline{x} = x'$$

$$X \longrightarrow Z$$

Logic Gates & Symbols

AND
$$b$$
 $f(a, b) = ab$

OR b
 $f(a, b) = a + b$

NOT a
 $f(a, b) = a + b$

NAND a
 $f(a, b) = ab$

NAND a
 $f(a, b) = ab$

NOR a
 $f(a, b) = ab$
 $f(a, b) = ab$

EXCLUSIVE a
 $f(a, b) = a + b$

Symbol set 1

COMBINATI ONAL GATES

Name	Symbol	Function	Truth Table
AND	А X	X = A • B or X = AB	A B X 0 0 0 0 1 0 1 0 0 1 1 1
OR	<u>А</u>	X = A + B	A B X 0 0 0 0 1 1 1 0 1
1	д — Х	X = A'	A X 0 1 1 0
Buffer	x — X	X = A	A X 0 0 1
NAND	А X	X = (AB)'	A B X 0 0 1 0 1 1 1 0 1
NOR	А	X = (A + B)	A B X 0 0 I 0 I 0 I 0 0 I I 0
XOR Exclusive OR	$\stackrel{A}{=} \longrightarrow -x$	X = A ⊕ B or X = A'B + AB'	A B X 0 0 0 0 1 1 1 0 1 1 0
XNOR Exclusive NOR or Equivalence	А X	X = (A ⊕ B) or X = A'B'+ AB	A B X 0 0 I 0 I 0 I 0 I I I I

Building circuit with logic gates

F = ABC + ABC' + A'C

Universal gate: NAND

Universal gate: NOR

OR gate

NOT gate

AND gate