Boolean Algebra and Sequential Logic

Digital Circuits: Two voltage levels

- High/true/1/asserted
- Signals in digital circuit
- Signals in analog circuit
- Low/false/0/deasserted
- Advantages of digital circuits over analog circuits
- More reliable (simpler circuits, less noise-prone)
- Specified accuracy (determinable)
- Abstraction can be applied using simple mathematical model
- Ease design, analysis and simplification of digital circuit

Precedence of Operators: Not (') > And (\cdot) > Or (+) Laws of Boolean Algebra

Identity laws					
$A + 0 = 0 + A = A$ $A \cdot 1 = 1 \cdot A = A$					
Inverse/complement laws					
$A + A' = A' + A = 1$ $A \cdot A' = A' \cdot A = 0$					
Commutative laws					
A + B = B + A	$A \cdot B = B \cdot A$				
Associative laws *					
A + (B + C) = (A + B) + C	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$				
Distributive laws					
$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$	$A + (B \cdot C) = (A + B) \cdot (A + C)$				

Idempotency					
X + X = X	$X \cdot X = X$				
One element / Zero element					
X + 1 = 1 + X = 1	$X \cdot 0 = 0 \cdot X = 0$				
Involution					
(X')' = X					
Absorption 1					
$X + X \cdot Y = X$ $X \cdot (X + Y) = X$					
Absorption 2					
$X + X' \cdot Y = X + Y$	$X \cdot (X' + Y) = X \cdot Y$				
De Morgans' (can be generalised to more than 2 variables)					
$(X + Y)' = X' \cdot Y'$ $(X \cdot Y)' = X' + Y'$					
Consensus					
$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$	$(X+Y)\cdot(X'+Z)\cdot(Y+Z) = (X+Y)\cdot(X'+Z)$				

Duality

- duality → if the AND/OR operators and identity elements 0/1 are interchanged in a boolean equation, it remains valid
- e.g. the dual equation of $a+(b\cdot c)=(a+b)\cdot (a+c)$ is $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$
- e.g. if x+1=1 is valid, then its dual $x\cdot 0=0$ is also valid.

Function

- boolean functions: e.g. $F1(x,y,z) = x \cdot y \cdot z'$ \circ to prove that F1 = F2: use truth table
- complement function → given boolean function F, the complement of F, denoted F', is obtained by interchanging 1 with 0 in the function's output values.

Standard Forms: Every Boolean expression can be expressed in SOP or POS form.

- Sum-of-Products (SOP)
- Product-of-Sums (POS)

Literals: A Boolean var. on its own or in its complemented form, i.e. x, x', y, y'

Product term: A single literal or a logical product (AND) of several literals

Examples: (1) x, (2) x·y·z', (3) A'·B, (4) A·B, (5) d·g'·v·w

Sum term: A single literal or a logical sum of several literals

Examples: (1) x, (2) x+y+z', (3) A'+B, (4) A+B

SOP expression: A product term or a logical sum of several product terms

Examples: (1) x, (2) x + y·z', (3) x·y' + x'·y·z, (4) $A \cdot B + A' \cdot B'$ POS expression: A sum term or a logical product (AND) of several sum terms

Examples: (1) x, (2) $x \cdot (y+z')$, (3) $(x+y') \cdot (x'+y+z)$

Conversion

$$F(x, y, z) = \Sigma m(1,4,5,6,7) = \Pi M(0,2,3)$$

In truth table: F' = m0 + m2 + m3

Therefore

$$F = (m0 + m2 + m3)' = m0' \cdot m2' \cdot m3'$$

= $M0 \cdot M2 \cdot M3$

Minterm and Maxterm: In general, with n variables we have up to 2^n minterms and 2^n maxterms.

Minterm of n variables is a product term that contains nliterals from all the variables.

Example: On 2 variables x and y, the minterms are: x'·y', x'·y, x·y' and x·y

Maxterm of *n* variables is a <u>sum term</u> that contains *n* literals from all the variables.

Example: On 2 variables x and y, the maxterms are: x'+y', x'+y, x+y' and x+y

Г	ху		Mint	erms	Maxterms	
ľ			Term	Notation	Term	Notation
	0	0	x'·y'	m0	x+y	M0
	0	1	x'·y	m1	x+y'	M1
	1	0	x·y'	m2	x'+y	M2
	1	1	x∙y	m3	x'+y'	МЗ

Min: NOT=0 Max: NOT=1

Canonical/normal form: a unique form of representation.

- Sum-of-minterms = Canonical sum-of-products
- Product-of-maxterms = Canonical product-of-sums

Gray Code

- Unweighted (not an arithmetic code)
- Only a single bit change from one code value to the next.
- Not restricted to decimal digits: n bits $\Rightarrow 2^n$ values.
- Good for error detection.

Decimal	Binary	Gray Code	Decimal	Binary	Gray code
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

Generate Gray Code

K-Map

- Each cell in *n*-variable K-map has *n* adjacent neighbours
- Arrangement ensures that minterms of adjacent cells differ by only ONE literal. [Gray Code]
- There is wrap-around in the K-map
- We can use K-map to simplify SOP and POS expression
 Group: each valid grouping of adjacent cells containing '1' corresponds to a simpler product term
- group must have size in powers of 2
- grouping 2ⁿ adjacent cells **eliminates** n variables
- Select as few groups as possible to cover all the cells (minterms) of the function

Implicant: a product term that could be used to cover minterms of the function

Prime implicant (PI): a product term obtained by combining the *maximum possible number of minterms* from *adjacent* squares in the map. (biggest grouping possible.)

• Note: Group consist of only X is <u>not</u> considered as PI **Essential prime implicant (EPI):** a prime implicant that includes at least one minterm that is not covered by any other prime implicant.

Don't-care conditions: In certain problems, some outputs are not specified or are invalid. Hence, these outputs can be either '1' or '0'⇒could be chosen to be <u>either</u> '1' or '0', depending on which choice results in a simpler expression.

 When select EPIs, if all the "not covered minterm" in the EPI are don't care condition, then we will not select it.

Tips

- larger group
 ⇔ fewer literals in the resulting product term
- fewer groups⇔fewer product terms in simplified SOP expression

Finding Simplified POS Expression

Simplified **POS** expression can be obtained by grouping the maxterms (i.e. 0s) of the given function.

$$F = \Sigma m(0,1,2,3,5,7,8,9,10,11)$$

$$F' = B \cdot D' + A \cdot B$$

 $F = (B \cdot D' + A \cdot B)' = (B \cdot D')' \cdot (A \cdot B)' = (B' + D) \cdot (A' + B')$

Two classes of logic circuits

- Combinational Circuit
 - Each output depends entirely on the immediate (present) inputs.

Sequential Circuit

Each output depends on both present inputs and state.

Memory element: a device which can remember value indefinitely, or change value on command from its inputs.

Command (at time t)	Q(t)	Q(t+1)	Q(t) or G
Set	Х	1	Q(t+1) o
Reset	Х	0	
Memorise /	0	0	
No Change	1	1	

Q(t) or Q: current state Q(t+1) or Q+: next state

Two types of triggering/activation

- Pulse-triggered
 - Latches
 - ON = 1, OFF = 0
- Positive edges Negative edges
- Edge-triggered
 - Flip-flops
 - Positive edge-triggered(ON = from 0 to 1; OFF = other time)
 - Negative edge-triggered
 (ON = from 1 to 0; OFF = other time)

S-R Latch

R	S	$Q(t+1) = S + R' \cdot Q$
High	Low	Low (R eset)
Low	High	High (S et)
Low	Low	Q(t) No change
High	High	Invalid, Outputs Q and Q' are both LOW

Gated S-R Latch: S-R latch + enable input (EN) and 2 NAND gates→gated S-R latch. (Outputs change when EN is high)

Gated D Latch: Changes when EN is high

EN	D	Q(t+1) = D
High (1)	High (1)	Low (0) Reset
High (1)	Low (0)	High (1) Set
Low (0)	X	$\mathit{Q}(t)$ No change

Flip-flops: synchronous bistable devices.

- Output changes state at a specified point on a triggering input called the clock.
- Change state either at the **positive (rising) edge**, or at the **negative (falling) edge** of the clock signal.

S-R flip-flop: On the triggering edge of the clock pulse

D flip-flop: Single input D (data). On the triggering edge of the clock pulse

J-K **flip-flop:** *Q* and *Q'* are fed back to the pulse-steering NAND gates. **[No invalid state]**

J	K	$Q(t+1) = J \cdot Q' + K' \cdot Q$	
High	Low	High (S et)	
Low	High	Low (R eset)	
Low	Low	Q(t) No change	
High	High	Q(t)' [Toggle]	

T flip-flop: Single input version of the *J-K* flip-flop, formed by tying both inputs together.

Т	$Q(t+1) = T \cdot Q' + T' \cdot Q$
Low	Q(t) No change
High	Q(t)' [Toggle]

Asynchronous Inputs: *S-R*, *D* and *J-K* inputs are **synchronous** inputs, as data on these inputs are transferred to the flip-flop's output only on the triggered edge of the clock pulse.

- Affect the state of the flip-flop independent of the clock; example: preset (PRE) and clear (CLR) [or direct set (SD) and direct reset (RD)].
- When PRE=HIGH, Q is immediately set to HIGH.
- When CLR=HIGH, Q is immediately cleared to LOW.
- Flip-flop in normal operation mode when both PRE and CLR are LOW.

[Example] A *J-K* flip-flop with active-low PRESET and CLEAR asynchronous inputs.

Sequential Circuit Analysis [Characteristic tables]

State Table: m flip-flops and n inputs $\rightarrow 2^{m+n}$ rows. **State diagram:** m flip-flops \rightarrow up to 2^m states

- Each state is denoted by a circle.
- Each arrow denotes a **transition** of the sequential circuit
- A label of the form a/b is attached to each arrow where
 a (if there is one) denotes the inputs while b (if there is
 one) denotes the outputs of the circuit in that transition.
 [Input/Output]

Present State	Next	State x=1	Out	tput x=1	0/0 0/1 10 1/0
AB	A ⁺ B ⁺	A [†] B [†]	У	У	
00	00	01	0	0	1/0 0/1 1/0
01	00	11	1	0	1/0 0/1 0/1 1/0
10	00	10	1	0	
11	00	10	1	0	1/0
					$(01) \xrightarrow{1/3} (11)$

Concept

- 1. A state is called a **sink** if once the circuit enters this state, it never moves out of that state
- 2. A circuit is **self-correcting** if for some reason the circuit enters into any unused (invalid) state, it is able to transit to a valid state after a finite number of transitions.

Sequential Circuit Design [Excitation tables]

- Description of circuit behavior [state diagram/ table]
- Derive the state table.
- Perform state reduction if necessary.
- Perform state assignment.
- Determine number of flip-flops and label them.
- Choose the type of flip-flop to be used.
- Derive circuit excitation and output tables from state table
- Derive circuit output functions and flip-flop input functions.
- Draw the logic diagram.

[Example]

• Circuit state/excitation table, using *JK* flip-flops.

Derive Flip-flop input functions

- $IA = B \cdot x'$
- JB = x
- $KA = B \cdot x$
- $KB = (A \oplus x)'$

Flip-flop Characteristic Tables

J	Κ	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q(t)'	Toggle

S	R	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	?	Unpredictable

D	Q(t+1)	
0	0	Reset
1	1	Set

T	Q(t+1)	
0	Q(t)	No change
1	Q(t)'	Toggle

Flip-flop Excitation Tables

Q	Q⁺	J	Κ
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

JK Flip-flop

Q^{\dagger}	D
0	0
1	1
0	0
1	1
	0 1 0

D Flip-flop

Q	Q^{\dagger}	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Х	0

SR Flip-flop

Q	\mathbf{Q}^{\dagger}	T
0	0	0
0	1	1
1	0	1
1	1	0

T Flip-flop