Laurent Perrinet

Researcher in Computational Neuroscience Institut de Neurosciences de la Timone UMR 7289, CNRS / Aix-Marseille Université 27, Bd. Jean Moulin, 13385 Marseille Cedex 5, France

URL: https://laurentperrinet.github.io

Research interests

I am interested in bridging the gap between the structure and the function of neural systems by showing how they optimally adapt to the statistics of natural environments.

Areas of specialization

Spatio-temporal inference in low-level sensory areas. Unsupervised learning in topographic maps. Predictive processes and active perception.

Education

2014 1999-2003 1993 - 1998 HDR Aix-Marseille Université

PhD in Cognitive Neuroscience, ONERA/DTIM, Toulouse (France)

MSC in Engineering Supaéro (Toulouse, France), one of the leading French Engineering Schools ("Grandes Ecoles"). Specialization in stochastic models for signal and image processing.

Selected publications

2020

Chloé Pasturel, Anna Montagnini et Laurent Perrinet. "Humans adapt their anticipatory eye movements to the volatility of visual motion properties." **PLoS Computational Biology**.

2019

Sandrine Chemla, Alexandre Reynaud, Matteo diVolo, Yann Zerlaut, Laurent Perrinet, Alain Destexhe et Frédéric Chavane. "Suppressive waves disambiguate the representation of long-range apparent motion in awake monkey V1." Journal of Neuroscience.

2012

Karl Friston, Rick A. Adams, Laurent Perrinet and Michael Breakspear, "Perceptions as Hypotheses: Saccades as Experiments", **Frontiers in Psychology**.

2012

Claudio Simoncini, Laurent Perrinet, Anna Montagnini, Pascal Mamassian and Guillaume S. Masson, "More is not always better: dissociation between perception and action explained by adaptive gain control", **Nature Neuroscience**.

2010

Laurent Perrinet, "Role of homeostasis in learning sparse representations", **Neural Computation**.

2004

Laurent Perrinet, Manuel Samuelides and Simon Thorpe, "Coding static natural images using spiking event times: do neurons cooperate?", **IEEE Transactions on Neural Networks**.