Items	Pizza	Noodles	Burger	Rice	Chopsuey	Cuban sandwich	Chimchnga	Fajitas
Data	65	20	10	55	32	12	50	99

25. a. Using prims algorithm, find the cost of Minimum Spanning Tree (MST) of the ⁸ ³ ³ ¹ given graph.

(OR)

b. Yazhini wants to visit all the nodes in a tree in post order manner. But instead of tree to traverse, she has the list of nodes in preorder traversal. From the pre order traversal list, construct the tree and perform post order traversal. Pre order traversal: 30, 20, 10, 15, 25, 23, 39, 35, 42.

$$PART - C (1 \times 15 = 15 Marks)$$

Answer ANY ONE Question

26. The following algorithm using count variable method and table method Algorithm sum (a, n)

{

s: = 0.0;

for (i = 1 to n do),

s: = s + a[i];

s:=s+a[i]; return s;

27. Apply the backtracking sequence for the 4-queen problem and solve it.

15 3 3 1

Marks BL CO PO

15 -3 1 1

* * * *

Page 4 of 4 30MA4-21CSC204J

								10
Reg. No.								

B.Tech/ M.Tech (Integrated) DEGREE EXAMINATION, MAY 2023

Fourth Semester

	Note:				NALYSIS OF ALGORITHMS academic year 2022-2023 onwards)			
	(i)		rt - A should be answered in OMR shall invigilator at the end of 40 th min		in first 40 minutes and OMR sheet she	ould be	hanc	led ov
	(ii)		rt - B and Part - C should be answe		wer booklet.			
£	Time:	3 Hou	rs =		И	⁄Iax. M	arks	s: 75
			PART – A (20 ×	1 = 20M	Iarks)	Marks	BL	со
			Answer ALI					
	1.	The r	orithm are	1	1	1		
		(A)	Time and space complexity	(B)				
		(C)	Processor and memory	(D)	Complexity and capacity			
	2.	What	is the time complexity of the bir	nary sear	ch algorithm?	1	1	1
		(A)	O (n)	(B)	O(1)			
		(C)	$O(\log_2 n)$	(D)	$O(n^2)$			
	3.		ify the sorting technique which hes whenever necessary?	compar	es adjacent elements in a list and	d ¹	1	1
		(A)	Merge sort	(B)	Quick sort			
		(C)	Bubble sort	(D)	Selection sort			
	4.	Whic	h of the following is incorrect?	Algorithn	ns can be represented:	1	1	1
		(A)	As programs	(B)	As flow charts			
		(C)	As syntax	(D)	As pseudo codes			
	5.		measure of the longest amoun	t of tim	e possibly taken to complete a	n ¹	1	2
		(A)	Little – o	(B)	Little – omega			
		(C)	Big – omega	(D)	Big – O.			
-	6.		many comparisons are needed fin best case?	or linear	search array when elements are i	n ¹	1	2
		(A)	1	(B)	n			
		(C)	n + 1	(D)	n-1			

7. Identify the best-case time complexity of selection sort?

(A) $O(n \log n)$ (B) $O(n^2)$

(A) $O(n \log n)$

(B) $O(n^2)$

(C) O (n)

(D) O(1)

8. How many number of comparisons is required in insertion sort to sort a file if ¹ the file is sorted in reverse order?

(A) N²

(B) N

(C) N-1

Page 1 of 4

(D) N/2

30MA4-21CSC204J

1 1 2 2

9.	What	approach is being followed in Floy	d War	rshall algorithm?	1	1	2	2	19. Minimum number of unique colors required for vertex coloring of a graph is	1 5	5 2
	(A)		(B)	Greedy technique					called?		
	(C)	Linear programming	(D)	Back tracking					(A) Vertex matching (B) Chromatic index		
10	Whic	h of the following algorithm can	he uc	ed to solve the Hamiltonian nath	1	1	3	2	(C) Chromatic number (D) Color number		
10,		em efficiently?	DC usi	ed to solve the Hammonian path					20. Hamiltonian path problem is	1 5	5 2
	(A)	Iterative improvement	(B)	Branch and bound					(A) NP problem (B) N class problem		
	(C)		(D)	Greedy algorithm					(C) P class problem (D) NP complete problem		
	(-)		(2)	crocky argorium.					(b) The complete problem		
11.	What	is the objective of the knapsack pro	blem'	?	1	1	3	2			
	(A)	To get maximum weight in the	(B)	To get minimum total value in					$PART - B (5 \times 8 = 40 \text{ Marks})$ Marks	BL CO) PO
		knapsack		the knapsack					Answer ALL Questions		
	(C)	To get maximum total value in	(D)	To get minimum weight in the							
	7	the knapsack		knapsack					21. a. Discuss the ways of selecting the design paradigms for the problem.	3 1	1
12.	Whic	h of the following is false about the	krusk	al's algorithm?	1	1	3 :	2	(OR)		
	(A)		(B)	It constructs MST by selecting					b. Ram has six different sets of pencils. He arranges pencils by comparing its ⁸	3 1	. 1
	` /			edges in the increasing order of					length with the next immediate pencil. Suggest the suitable comparison sorting		
				their weights					algorithm to Ram. A list of unsorted pencils are: 5 14 2 8. Also find the best and		
	(C)	It can accept cycles in the MST	(D)	It uses union-find data structure					worst case of the scenario.		
70										2 4	L 2
13.	The r	problem of finding a subset of pos	itive i	integers whose sum is equal to a	1	1	4 :	2	22. a. Compare back tracking with branch and bound algorithm with example.	2 7	2
		positive integer is called as	11110	micgers whose sain is equal to u					(OR)		
	(A)		(B)	Subset sum problem					b. Apply breadth first and depth first search for the given graph with necessary ⁸	3 4	. 2
	·(C)	Knapsack problem	(D)	Hamiltonian circuit problem					steps start from 'A'.	10	
1 /	Daalr	tuo alcin o al conitlana io incultana anta d	1		1	1	4 :	2	\triangle		
14.	as?	tracking algorithm is implemented	by co	instructing a tree of choices called	1	1		2			
	(A)	State-space tree	(B)	State-chart tree					(B)———(C)		
	(C)	2	(D)	Back tracking tree							
	()	3	(-)								
15.	In hov	w many directions do queens attack	each o	other	1	1	4	2			
	(A)	1	(B)	2							
	(C)	3	(D)	4					F		
16	When	e is the N-queens problem impleme	nted?	9	1	1	4 :	2			
10.	(A)	Carom	(B)	Chess					23. a. Explain the approximation algorithm for the Travelling Salesman Problem ⁸	3 5	5 2
	(C)		(D)	Cards					(TSP).		
	` /		,						(OR)		
17.			that c	an be solved by non-deterministic	1	1	4 :	2	b. State NP hard and NP complete and differentiate both. 8	3 5	5 2
	polyn	omial algorithms							o. State 141 hard and 141 complete and differentiate both.		
	(A)		(B)	P					24. a. Apply quick sort algorithm and arrange the following with correct order. Also ⁸	3 2	2 1
12	(C)	Hard	(D)	Complete					find the time complexity analysis.		
10	W75-1-1		1		1	1	5 2	2	24 9 29 14 19 27		- 5
18.		of the following is incorrect about		-	1	1	, ر	_			
	(A)	It has the same time complexity as standard quicksort	(D)	It has the same space complexity as standard quick sort					(OR)		
	(C)	It is an in-place sorting	(D)	It cannot have a time complexity					5. In a restaurant one of the easterner wants to search the real earlier Casan	3 3	1
	(~)	algorithm	(1)	of O (n^2) in any case					sandwich" in the list. Prescribe a suitable sequential search algorithm for the		
				or of the many output					customer to select their choice and also give the best and worst case analysis of		
									the algorithm. The food items are		
age 2	of 4			30	MA4-2	1CSC2	04J		Page 3 of 4 30MA4-210	CSC20	4J