10)

Griven, the light should be on if it goes below 20 Lux (at dusk).

1.

2014x= 2V

0 lux = 1v

80 lux = 3V

4-12V

4=11

V->2V

V_ = 2V

It is an inverting adder.

II Rin IF RF

Void

Vi II Ain IV

Void

Vi IV,
$$V_2 = 2V$$
 and $V_3 = 1.5V$

Vi IV, $V_2 = 2V$ and $V_3 = 1.5V$

Vi IV, $V_1 = 10 \text{ kg}$

Let, $R_{10} = R_1 = 10 \text{ kg}$
 $V_0 = -\left(\frac{R_1}{R_{10}} \times 1 + \frac{R_1}{R_{10}} \times 2 + \frac{10}{10} \times 1.5\right)$
 $= -\left(1 + 2 + 1.5\right)$
 $= -4.5 \text{ V}$

- Ar In =

.,)

(i)
$$Z = \int x dt - 2 \frac{dt}{dt} - u$$

= $-(\int x dt) + 2 \frac{dt}{dt} + u)$
= $-(1)(-\int x dt) + 2(-\frac{dt}{dt})(-1) + (1)(u)$

$$\frac{-1}{RxCx} = -1$$

Ajoin,
$$\frac{R}{R_1}=1$$
, $\frac{R}{R_2}=2$, $\frac{R}{R_3}=1$.

(ii)
$$y = 12x$$

$$= -42x$$

$$x = -12x$$

$$y = 12x$$

$$y = 12x$$

$$y = 12x$$

here,
$$-\frac{R^2}{P_1} = -12$$

Let, $R_1 = 1 \text{ k.s.}$
 $R_2 = 12 \text{ k.s.}$

Given,
$$I \circ R = 1$$
 and $A = 1$

$$Q = -I \circ R \exp\left(\frac{x}{x}\right)$$

$$\Rightarrow a = -\exp(x)$$

$$\Rightarrow d = -Rc \cdot \frac{d}{dt} \left(-e^{x}\right)$$

$$= Rc \cdot \frac{d}{dt} \left(-e^{x}\right)$$

Answer to the austion No! 2 200 (ATB) C AB+CD = AB+CD

$$f = AB + A + cD \quad (with simplification)$$

$$= A(B+1) + cD$$

$$= A + cD \quad (without simplification)$$

$$A + CD \quad (without simplification)$$

$$AB + A + cD \quad (without simplification)$$

$$AB + A + cD \quad (without simplification)$$

$$AB + A + cD \quad (without simplification)$$