$$\vec{u}_{1}\vec{v} = \langle u_{1}^{\dagger} \nabla_{1}^{\dagger} U_{1}^{\dagger} \nabla_{2}^{\dagger}, u_{3}^{\dagger} \nabla_{3}^{\dagger} \rangle$$
is
$$\vec{a} \vec{u} = \langle a_{1}, a_{1}, a_{2}, a_{3} \rangle$$

13.3: Dot Products

Definition. (Dot Product)

Given two nonzero vectors \mathbf{u} and \mathbf{v} in two or three dimensions, their **dot product** is

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta, = \mathbf{v} \cdot \mathbf{u}$$

where θ is the angle between \mathbf{u} and \mathbf{v} with $0 \le \theta \le \pi$. If $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$, and θ is undefined.

Represents how much they have in common

A physical example of the dot product is the amount of work done when a force is applied at an angle θ as shown in figure 13.43:

Note: The result of the dot product is a scalar!

$\vec{\lambda} \cdot \vec{\delta} = |\vec{u}| |\vec{\delta}| \cos \theta = 0$

Definition. (Orthogonal Vectors)

Two vectors \mathbf{u} and \mathbf{v} are **orthogonal** if and only if $\mathbf{u} \cdot \mathbf{v} = 0$. The zero vector is orthogonal to all vectors. In two or three dimensions, two nonzero orthogonal vectors are perpendicular to each other.

- **u** and **v** are parallel $(\theta = 0 \text{ or } \theta = \pi)$ if and only if $\mathbf{u} \cdot \mathbf{v} = \pm |\mathbf{u}||\mathbf{v}|$.
- **u** and **v** are perpendicular $(\theta = \frac{\pi}{2})$ if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

Example. Given $|\mathbf{u}| = 2$ and $|\mathbf{v}| = \sqrt{3}$, compute $\mathbf{u} \cdot \mathbf{v}$ when

$$\bullet \ \theta = \frac{\pi}{4}$$

$$\bullet \ \theta = \frac{\pi}{3}$$

$$\bullet \ \theta = \frac{5\pi}{6}$$

$$U \cdot v = |u||v|\cos(\frac{\pi}{4})$$

$$= 2 \cdot \sqrt{3}\left(\frac{\sqrt{2}}{2}\right) = \sqrt{6}$$

Theorem 31.1: Dot Product

Given two vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$,

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3. = \left| \overrightarrow{\mathcal{U}} \right| \left| \overrightarrow{\mathcal{F}} \right| \cos \mathcal{D}$$

Example. Given vectors $\mathbf{u} = \langle \sqrt{3}, 1, 0 \rangle$ and $\mathbf{v} = \langle 1, \sqrt{3}, 0 \rangle$, compute $\mathbf{u} \cdot \mathbf{v}$ and find θ . 14 = J(53)2 +12 +02 = 54= 5

$$U \cdot V = |u||V| \cos \theta \rightarrow \cos \theta = \frac{u \cdot V}{|u||V|} = \frac{2\sqrt{3}}{2 \cdot 2} = \frac{13}{2}$$

13.3: Dot Products

Math 2060 Class notes Spring 2021

$$|U| = \left(u_1^2 + u_2^2 + u_3^2\right) = \left(u_1 \cdot u_1 + u_2 \cdot u_2 + u_3 \cdot u_3\right)$$

$$U \cdot U = |u|^2$$

$$U \cdot U = |u| |u| \cos(0) = |u|^2$$

Properties of Dot Products

Theorem 13.2: Properties of the Dot Product

Suppose \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors and let c be a scalar.

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

Commutative property

2.
$$c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$$

Associative property

2.
$$c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$$

3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

Distributive property

Orthogonal Projections

Given vectors \mathbf{u} and \mathbf{v} , the projection of \mathbf{u} onto \mathbf{v} produces a vector parallel to \mathbf{v} using the "shadow" of \mathbf{u} cast onto \mathbf{v} .

$$\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|} \left(\frac{\vec{v}}{|\vec{v}|} \right) = \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \right) \vec{v}$$

Definition. ((Orthogonal) Projection of u onto v)

The orthogonal projection of u onto \mathbf{v} , denoted $\operatorname{proj}_{\mathbf{v}}\mathbf{u}$, where $\mathbf{v} \neq \mathbf{0}$, is

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \underbrace{|\mathbf{u}| \cos \theta}_{\text{length}} \underbrace{\left(\frac{\mathbf{v}}{|\mathbf{v}|}\right)}_{\text{direction}}.$$

The orthogonal projection may also be computed with the formulas

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \operatorname{scal}_{\mathbf{v}}\mathbf{u} \left(\frac{\mathbf{v}}{|\mathbf{v}|} \right) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \right) \mathbf{v},$$

where the scalar component of u in the direction of v is

length of
$$\rho$$
 roj \vec{u} $\operatorname{scal}_{\mathbf{v}}\mathbf{u} = |\mathbf{u}|\cos\theta = \frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{v}|}$

$$\operatorname{scal}_{\mathbf{v}} \mathbf{u} = |\mathbf{u}| \cos \theta = \underbrace{\mathbf{u} \cdot \mathbf{v}}_{|\mathbf{v}|}$$

Example. Find $\text{proj}_{\mathbf{v}} \mathbf{u}$ and $\text{scal}_{\mathbf{v}} \mathbf{u}$ for the following:

•
$$\mathbf{u} = \langle 1, 1 \rangle, \, \mathbf{v} = \langle -2, 1 \rangle$$

$$P(0) \neq \vec{u} = \left(\frac{\langle 1, 1 \rangle \cdot \langle -2, 1 \rangle}{\langle -2, 1 \rangle \cdot \langle -2, 1 \rangle}\right) \langle -2, 1 \rangle = \frac{-2+1}{4+1} \langle -2, 1 \rangle = \frac{-1}{5} \langle -2, 1 \rangle = \left\langle \frac{2}{5}, -\frac{1}{5} \right\rangle$$

$$Scalar$$

$$Scalar$$

•
$$\mathbf{u} = \langle 7, 1, 7 \rangle, \, \mathbf{v} = \langle 5, 7, 0 \rangle$$

$$Proj_{\vec{v}}\vec{u} = \frac{35+7}{25+49} \langle 5,7,0 \rangle = \frac{42}{74} \langle 5,7,0 \rangle = \frac{21}{37} \langle 5,7,0 \rangle$$

$$S_{Ca}|_{\vec{V}} \vec{u} = \frac{3517}{\sqrt{74}} = \frac{42}{\sqrt{74}}$$

Applications of Dot Products

Definition. (Work)

Let a constant force \mathbf{F} be applied to an object, producing a displacement \mathbf{d} . If the angle between \mathbf{F} and \mathbf{d} is θ , then the **work** done by the force is

$$W = |\mathbf{F}||\mathbf{d}|\cos\theta = \mathbf{F} \cdot \mathbf{d}$$

Example. A force $\mathbf{F} = \langle 3, 3, 2 \rangle$ (in newtons) moves an object along a line segment from P(1, 1, 0) to Q(6, 6, 0) (in meters). What is the work done by the force?

$$W = \vec{-} \cdot \vec{d} = \langle 3, 3, 2 \rangle \cdot \langle 5, 5, 0 \rangle$$

$$= 15 + 15 + 6 = 30 \text{ Nm}$$

Parallel and Normal Forces:

Example. A 10-lb block rests on a plane that is inclined at 30° above the horizontal. Find the components of the gravitational force parallel to and normal (perpendicular) to the plane.

$$\operatorname{proj}_{\vec{v}} \vec{F} = \left(\frac{\vec{F} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}\right) \vec{v} = 5 \left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

$$\vec{F} = \rho r \sigma j \vec{r} \vec{F} + \vec{N} \rightarrow \vec{N} = \vec{F} - \rho r \sigma j \vec{r} \vec{F} = (0, -10) - 5(-\frac{53}{2}, -\frac{1}{2}) = (\frac{553}{2}, -\frac{15}{2})$$