

31st International Conference on Neural Information Processing

December 2-6, 2024 · Auckland, New Zealand iconip2024.org

DynaTGNet: Enhanced Transformer-Based Spatiotemporal Dynamic Graph Neural Network for Multivariate Time Series Classification

Zijun Dou¹, Xiaosong Han¹, Zhelun Peng¹, Heng Li¹, Bingyi Xiang¹, Yanchun Liang^{1,2}

1 Jilin University 2 Zhuhai College of Science and Technology

Presenter Email: douzijunabc@gmail.com

Background

Design

Experiment

Conclusion

Time Series Classification

Wide Applications

Stock trading

Industry manufacture

December 2-6, 2024 - Auckland, New Zealand Iconip2024.org

Disease diagnosis

Weather estimation

Electroencephalogram Analysis

Time Series classification tasks exist in various domains and affect human life.

Approaches of TSC

High Dimension

Data

High Dimension Data

Handcrafted **Feature Design**

Deep learning based classifiers

CHaracteristics

December 2-6, 2024 - Auckland, New Zooland Iconip2024.org

MINERS////-CHINA

Improving Neural Network Structure

Challenge 1: Address the limitations in modeling long-range dependencies in time series.

THERS///

Transformer-Based Methods

Challenge 2: Ensure the capture of local features with reduced training time.

Shape-Based Methods

Challenge 3: Multivariate time series modeling.

MERS/// 1946 CHINA 48

Challenges

Address the limitations in modeling long-range dependencies in time series.

✓ Long-range dependencies often contain patterns that are stable over time.

Ensure the capture of local features with reduced training time.

- ✓ Local features, such as short-term patterns, often carry critical information for accurate classifications.
- ✓ Faster model training makes the real-time applications more efficient.

Multivariate time series modeling.

✓ The model can lead better performance and insights by modeling multiple variables together.

Design

Experiment

Conclusion

ICONIP

THE RS/7/CHINA

DynaTGNet Design Overview

December 2-6, 2024 - Auckland, New Zooland Iconip2024.org

THE RS/77

THE RS/THE CHIEF

MERS/// 1946 CHINA 1946 CHINA

THERS/THE CHIEF

Capturing Global Dependencies in TS

Enhanced Transformer

Transformer

✓ Capture long-range dependencies in time series.

Convolution attention

- $\checkmark Q_h = Conv_h^Q(X), K_h = Conv_h^K(X), V_h = Conv_h^V(X).$
- $\checkmark P = Q_h K_h^T / \sqrt{d_k}.$
- Balance the use of convolution to extract local features.

Top-k strategy

- Retain the top k largest weights of attention matrix.
- Reduce computational cost.

Multiple Variables Modeling

Multiple variables

- ✓ The variable represent the entity in real world.
- ✓ Multivariate time series record the changes of different entities over time.
- ✓ Complex relationships exist between different variables.

Step *T* - 1

Multiple Variables Modeling

Multiple variables

- ✓ The variable represent the entity in real world.
- ✓ Multivariate time series record the changes of different entities over time.
- ✓ Complex relationships exist between different variables.
- ✓ As time moves forward, the relationships between variables change.

Capture dynamic relationships

Step T

THE RS/THE CHIEF

Dynamic Graph Constructor

- ✓ Automatically learn the relationship.
- ✓ Sparsification: reduce computational cost.

Connect two time slot's graph

- ✓ The latter graph aggregates information from previous one.
- ✓ The foundation of Graph Isomorphism Network.

Step T

Graph Isomorphism Network

Message Passing

Unidirectional passing

Bidirectional passing

Passing a node's **historical state** and **current** neighbor information.

Feature Aggregation

Step T

Step T

Node 2 aggregates the feature from nodes 0, 1, 3, 4, and itself.

Ensure the capture of local features.

Design

Experiment

Conclusion

December 2-6, 2024 - Auckland, New Zooland Iconip2024.org

Experiment Setup

Dataset

- ✓ 26 multivariate datasets, each with distinct characteristics and challenges.
- ✓ Each dataset contains between 2 and 1,345 variables.
- ✓ Time series lengths vary from 8 up to over 17,984 time points.
- ✓ Each dataset typically has between 2 and 39 classes for classification purposes.

#Datasets	#Variables	#Time Points	#Classes
26	2 - 1345	8 - 17984	2 - 39

Datasets	Code	Classes	Dims	Length	Test Size	Train Size
Articulary Word Recognition	AWR	25	9	144	300	275
AtrialFibrillation	AF	3	2	640	15	15
BasicMotions	$_{\rm BM}$	4	6	100	40	40
Cricket	CR	12	6	1197	72	108
DuckDuckGeese	DDG	5	1345	270	50	50
EigenWorms	EW	5	6	17984	131	128
Epilepsy	EP	4	3	206	138	137
EthanolConcentration	EC	4	3	1751	263	261
ERing	ER	6	4	65	270	30
FaceDetection	FD	2	144	62	3524	5890
FingerMovements	FM	2	28	50	100	316
HandMovementDirection	HMD	4	10	400	74	160
Handwriting	HW	26	3	152	850	150
Heartbeat	$^{\mathrm{HB}}$	2	61	405	205	204
Libras	LIB	15	2	45	180	180
LSST	LSST	14	6	36	2466	2459
MotorImagery	MI	2	64	3000	100	278
NATOPS	NATO	6	24	51	180	180
PenDigits	PD	10	2	8	3498	7494
PEMS-SF	PEMS	7	963	144	173	267
PhonemeSpectra	PS	39	11	217	3353	3315
RacketSports	RS	4	6	30	152	151
SelfRegulationSCP1	SRS1	2	6	896	293	268
SelfRegulationSCP2	SRS2	4 2 2 3 8	7	1152	180	200
StandWalkJump	SWJ	3	4	2500	15	12
UWaveGestureLibrary	UW	8	3	315	320	120

Metric

✓ Accuracy = $\frac{Number\ of\ Correct\ Classifications}{-}$ Total Number of Samples

Experiment Environment

- ✓ PyTorch 1.11.0 with Python 3.9.12.
- ✓ Training continue for 2000 epohs.
- ✓ Xeon(R) Platinum 8352V CPU, an RTX 4090 GPU, and 24GB memory.

Accuracy Evaluation

Dataset	CIF	ROCKET	IT	нс	MOS -CNN	ShapeNet	TapNet	WEASEL +MUSE	DynaTGNet
AWR	0.978	0.995	0.991	0.979	0.991	0.987	0.971	0.990	0.983
AF	0.251	0.248	0.220	0.293	0.183	0.400	0.302	0.333	0.487
BM	0.997	0.990	1.000	1.000	1.000	1.000	0.991	1.000	1.000
CR	0.982	1.000	0.994	0.992	0.990	0.986	0.975	1.000	1.000
DDG	0.560	0.461	0.634	0.476	0.615	0.725	0.582	0.575	0.711
EW	0.903	0.862	N/A	0.781	0.508	0.878	N/A	0.890	0.880
EP	0.983	0.990	0.986	1.000	0.996	0.987	0.960	1.000	0.997
EC	0.728	0.446	0.279	0.806	0.382	0.312	0.289	0.133	0.393
ER	0.956	0.980	0.921	0.942	0.915	0.133	0.894	0.430	0.895
FD	0.688	0.694	0.772	0.691	0.568	0.589	0.528	0.490	0.782
FM	0.539	0.552	0.561	0.537	0.568	0.589	0.513	0.490	0.625
HMD	0.522	0.445	0.423	0.377	0.361	0.338	0.323	0.365	0.448
HW	0.351	0.566	0.657	0.504	0.667	0.451	0.329	0.605	0.454
HB	0.765	0.717	0.732	0.721	0.604	0.756	0.739	0.727	0.756
LIB	0.916	0.906	0.887	0.902	0.965	0.856	0.836	0.878	0.859
LSST	0.561	0.631	0.339	0.538	0.521	0.590	0.463	0.590	0.615
MI	0.518	0.531	0.511	0.521	0.515	0.610	N/A	0.500	0.640
NATO	0.844	0.885	0.966	0.828	0.951	0.883	0.903	0.870	0.968
PD	0.989	0.995	0.996	0.971	0.983	0.977	0.936	0.948	0.997
PEMS	0.998	0.856	0.828	0.979	0.764	0.751	0.792	N/A	0.780
PS	0.265	0.283	0.367	0.328	0.295	0.298	N/A	0.190	0.263
RS	0.893	0.927	0.916	0.906	0.929	0.882	0.858	0.934	0.934
SRS1	0.859	0.865	0.846	0.860	0.829	0.782	0.956	0.710	0.925
SRS2	0.488	0.513	0.520	0.516	0.510	0.578	0.534	0.460	0.579
SWJ	0.451	0.455	0.420	0.406	0.383	0.553	0.351	0.333	0.467
UW	0.924	0.944	0.912	0.913	0.926	0.906	0.883	0.916	0.800
Avg.	0.727	0.721	0.707	0.722	0.689	0.685	0.692	0.654	0.740
Fotal best accuracy	4	4	2	3	3	3	1	4	9

The performance improvement is particularly significant for long sequences or small sample datasets, such as MI, HB and SWJ.

Compared with baseline methods, DynaTGNet has the best performance of 0.740.

It achieves the highest classification accuracy on 9 datasets.

Ablation Study

Without Enhanced Transformer

Without Global Pooling

Each component has its impact, while Enhanced Transformer and GNN are the most significant.

INERS//T/- CHINA

Hyperparameter Stability

- \checkmark The number of dynamic graphs (n_G)
- ✓ Top-k in the Dynamic Graph Constructor (k)
- \checkmark The convolution kernel size in the self-attention (cks)
- ✓ Learning rate (lr)
- \checkmark 13 randomly selected datasets.

 $cks \uparrow \longrightarrow Accuracy \uparrow first and then$

The best	performance:
----------	--------------

#k	#lr	$\#n_G$	#cks
0.8	10^{-4}	5	5

Design

Experiment

Conclusion

DynaTGNet

- ✓ A novel end-to-end framework for multivariate time series classification.
- ✓ Effectively capture global correlations, local hidden information and spatiotemporal dynamics.

Key Designs of DynaTGNet

- \checkmark Enhanced Transformer: convolutional self-attention mechanism and top k selection strategy.
- Multiple Variables Modeling: Dynamic Graph Constructor and connect two time slot's graph.
- ✓ Graph Isomorphism Network: message passing and feature aggregation.

Springer

December 2-6, 2024 - Auckland, New Zoaland, Iconip2024.on

Thank You! Q&A

DynaTGNet: Enhanced Transformer-Based Spatiotemporal Dynamic Graph Neural Network for Multivariate Time Series Classification

29

