Importing the packages

```
from pyspark.sql.functions import sha2, concat
from pyspark.sql.functions import col,lit
from pyspark.sql.types import StructType, StructField, StringType,DateType,DecimalType,IntegerType,ArrayType,LongType,BooleanType,DoubleType,FloatType
from pyspark.sql.functions import to_date, to_timestamp
from datetime import datetime,date,timedelta
from pyspark.sql.functions import col
from pyspark.sql import functions as F
from pyspark.sql import timezone, utc
```

from pyspark.sql.functions import sha2, concat
from pyspark.sql.functions import col,lit
from pyspark.sql.types import StructType, StructField,
StringType,DateType,DecimalType,IntegerType,ArrayType,LongType,BooleanType,DoubleType,Float
Type
from pyspark.sql.functions import to_date, to_timestamp
from datetime import datetime,date,timedelta
from pyspark.sql.functions import col
from pyspark.sql import functions as F
from pyspark.sql import *
from pytz import timezone, utc

Initializing the Data types

```
### structField("Rest_Id",IntegerType(),True),
### structField("Rest_Id",IntegerType(),True),
### structField("Rest_Id",IntegerType(),True),
### structField("Rest_Id",IntegerType(),True),
### structField("Rest_Id",IntegerType(),True),
### structField("StringType(),True),
### structField("StringType(),True),
### structField("StringType(),True),
### structField("StringType(),True),
### structField("Longitude",FloatType(),True),
### structField("Unknown_values",StringType(),True),
### structField("Integertion_ID",StringType(),True),
### structField("Integertion_ID",StringType(),True),
### structField("Integertion_Id",StringType(),True),
### structField("Integertion_Id",StringType(),True),
### structField("Response_Id",StringType(),True),
#
```

	Rest_ld	Rest_Name	Address	City	State	Zipcode 🔺	Latitude 🔺	Longitude 🔺
1	2764	AL-HAMRA	3083 16th St	San Francisco	CA	94103	37.76491	-122.42135
2	1154	SUNFLOWER RESTAURANT	506 Valencia St	San Francisco	CA	94103	37.76468	-122.421906
3	69665	Shalimar Restaurant	532 Jones St	San Francisco	CA	94102	null	null
4	1154	SUNFLOWER RESTAURANT	506 Valencia St	San Francisco	CA	94103	37.76468	-122.421906
5	1154	SUNFLOWER RESTAURANT	506 Valencia St	San Francisco	CA	94103	37.76468	-122.421906
6	2749	TAQUERIA CANCUN	3211 MISSION St	San Francisco	CA	94110	37.745434	-122.419945
ıncate	2638 d results, showing t	SF BAGEL CO. (KATZ BAGELS) lirst 1000 rows.	3147 16th St	San Francisco	CA	94103	37.764812	-122.42309

```
#Initializing the datatypes
schema_response = StructType([
 StructField("Rest_Id",IntegerType(),True),
 StructField("Rest_Name", StringType(), True),
 StructField("Address",StringType(),True),
 StructField("City", StringType(), True),
 StructField("State", StringType(), True),
 StructField("Zipcode", StringType(), True),
 StructField("Latitude",FloatType(),True),
 StructField("Longitude",FloatType(),True),
 StructField("Unknown_values", StringType(), True),
 StructField("Inspection ID", StringType(), True),
 StructField("Inspection_date",StringType(),True),
 StructField("Inspection_Time",StringType(),True),
 StructField("Inspection Points",IntegerType(),True),
 StructField("Inspection_schedule",StringType(),True),
 StructField("Response_ID", StringType(), True),
 StructField("Response factor", StringType(), True),
 StructField("Risk_factor",StringType(),True)
])
#Merging the Resturant Datasets of 2016,2017 and 2018
df=spark.read.format("csv").option("Header","False").option("sep","\t").schema(schema_response).loa
d("dbfs:/FileStore/shared_uploads/akshaya6597@gmail.com/BDBA/*.txt")
display(df)
df.createOrReplaceTempView("ReviewDataSet")
Dropping Unknown values since it's junk
df = df.drop(df.Unknown_values)
```

```
display(df)
```

```
Cmd 3
 1
     df = df.drop(df.Unknown_values)
     display(df)
 2
```

▶ (1) Spark Jobs

	Rest_ld _	Rest_Name _	Address	City	State _	Zipcode 🔺	Latitude 🔺	Longitude 🔺
1	2764	AL-HAMRA	3083 16th St	San Francisco	CA	94103	37.76491	-122.42135
2	1154	SUNFLOWER RESTAURANT	506 Valencia St	San Francisco	CA	94103	37.76468	-122.421906
3	69665	Shalimar Restaurant	532 Jones St	San Francisco	CA	94102	null	null
4	1154	SUNFLOWER RESTAURANT	506 Valencia St	San Francisco	CA	94103	37.76468	-122.421906
5	1154	SUNFLOWER RESTAURANT	506 Valencia St	San Francisco	CA	94103	37.76468	-122.421906
6	2749	TAQUERIA CANCUN	3211 MISSION St	San Francisco	CA	94110	37.745434	-122.419945
7	2638	SF BAGEL CO. (KATZ BAGELS)	3147 16th St	San Francisco	CA	94103	37.764812	-122.42309
Truncated results, showing first 1000 rows.								

Creating a View for the all the merged dataset

```
%sql
```

```
CREATE OR REPLACE TEMPORARY VIEW ReviewDataSet_Format AS
SELECT
 Rest_Id,
  Rest_Name,
  Address,
  City,
  State,
  Zipcode,
  Latitude,
  Longitude,
  Inspection_ID,
 TO_DATE(RIGHT(Inspection_date, 8), "yyyyMMdd") AS Inspection_date,
  TO_TIMESTAMP(Inspection_Time) AS Inspection_Time,
  Inspection_Points,
  Inspection_schedule,
 RIGHT(Response_ID,CHARINDEX('_', (REVERSE(Response_ID))) - 1) AS Response_ID,
  Response_factor,
  Risk_factor
FROM
  Review Data Set \\
);
SELECT * FROM ReviewDataSet_Format;
```

```
%sql
1
2
3
    CREATE OR REPLACE TEMPORARY VIEW ReviewDataSet_Format AS
4
5
    SELECT
6
       Rest_Id,
7
       Rest_Name,
       Address,
8
9
       City,
10
       State,
11
       Zipcode,
12
       Latitude,
13
       Longitude,
14
       Inspection_ID,
       TO_DATE(RIGHT(Inspection_date, 8), "yyyyMMdd") AS Inspection_date,
15
       TO_TIMESTAMP(Inspection_Time) AS Inspection_Time,
16
17
        Points,
       Inspection_Category,
18
19
       RIGHT(Response_ID, CHARINDEX('_', (REVERSE(Response_ID))) - 1) AS Response_ID,
20
        Response_factor,
21
        Risk_factor
22
      FRÓM
23
        ReviewDataSet
     );
24
     SELECT * FROM ReviewDataSet_Format;
25
26
```

▶ (1) Spark Jobs

Displaying Descriptive Stats

df_RDformat =spark.sql("SELECT * FROM ReviewDataSet_Format")
display(df_RDformat.describe())

```
1     df_RDformat =spark.sql("SELECT * FROM ReviewDataSet_Format")
2     display(df_RDformat.describe())
```


Displaying summary

display(df_RDformat.summary())

▶ (2) Spark Jobs

	summary 🔺	Rest_ld	Rest_Name	Address	City	State _	Zipcode	Latitude	Longi
1	count	51731	51731	51731	51731	51731	50494	29189	29189
2	mean	50675.57279000986	1588.6	377.0	null	null	317792.5848043586	37.7434784244497	-122.3
3	stddev	35443.47046923853	383.26205134346395	0.0	null	null	1.4507252683961099E7	1.0368811054803597	3.3600
4	min	19	100% Dessert Cafe	001 WEST PORTAL Ave	San Francisco	CA	0	0.0	-122.5
5	25%	5855	1760.0	377.0	null	null	94107.0	37.755283	-122.4
6	50%	66191	1760.0	377.0	null	null	94111.0	37.78035	-122.4
7	75%	82218	1760.0	377.0	null	null	94121.0	37.789516	-122.4
Showing	all 8 rows.								
=	.dl -								4

Displaying the distinct counts

print('Count of rows: {0}'.format(df_RDformat.count()))
print('Count of distinct rows: {0}'.format(df_RDformat.distinct().count()))

```
print('Count of rows: {0}'.format(df_RDformat.count()))
print('Count of distinct rows: {0}'.format(df_RDformat.distinct().count()))
```

(5) Spark Jobs

Count of rows: 51731

Count of distinct rows: 51684

Removing the duplicates

```
df_RDformat = df_RDformat.dropDuplicates()
display(df_RDformat.select("Latitude").describe())
display(df_RDformat.select("Longitude").describe())
display(df_RDformat.select("Inspection_Points").describe())
```

```
Cmd 7
 1
      # Removing duplicate values and showing descriptive statistics for numerical columns.
     df_RDformat = df_RDformat.dropDuplicates()
 2
 3
    display(df_RDformat.select("Latitude").describe())
     display(df_RDformat.select("Longitude").describe())
 4
 5
     display(df_RDformat.select("Points").describe())
 6
           ▶ (9) Spark Jobs
                summary A Latitude
                         29168
                          37.74346717909281
            2
               mean
                          1.0372540154265812
                          0.0
               min
               max
                          37.824493
          Showing all 5 rows.
```


Showing all 5 rows.

Finding and displaying the Missing values

```
import pyspark.sql.functions as fn
df_RDformat.agg(*[
    (1 - (fn.count(c) / fn.count('*'))).alias(c + '_missing')
    for c in df_RDformat.columns
]).display()
```


Replacing missing values with mean

%sql

--- Finding mean for Latitude select mean(Latitude) from ReviewDataSet_Format

%sql

--Filling missing Latitude values with it's mean value select Rest_Id ,coalesce(Latitude ,(select avg(Latitude) from ReviewDataSet_Format)) from ReviewDataSet Format

Checking for skewness

```
df_RDformat.agg({'Latitude': 'skewness'}).show()
df_RDformat.agg({'Longitude': 'skewness'}).show()
df_RDformat.agg({'Inspection_Points': 'skewness'}).show()
```

```
#Checking for skewness

df_RDformat.agg({'Latitude': 'skewness'}).show()

df_RDformat.agg({'Longitude': 'skewness'}).show()

df_RDformat.agg({'Points': 'skewness'}).show()
```

Finding the Correlations between numerrical values

```
#Finding the Corelation

numcol = ['Latitude', 'Longitude', 'Inspection_Points']
desc = df_RDformat.describe(numcol)
desc.show()

n_numerical = len(numcol)

correlation = []

for i in range(0, n_numerical):
    temp = [None] * i

    for j in range(i, n_numerical):
        temp.append(df_RDformat.correlation(numcol[i], numcol[j]))
        correlation.append(temp)
```

correlation

```
Cmd 11
```

```
#Finding the Correlations between numerrical values

df_RDformat.corr('Latitude', 'Longitude')

#df_format.corr('Longitude', 'Latitude')
```

```
Cmd 12
```

```
1
    #Correlations matrix
2
    n_numerical = len(numcol)
3
4
    corr = []
5
6
    for i in range(0, n_numerical):
7
        temp = [None] * i
8
9
        for j in range(i, n_numerical):
10
            temp.append(df_RDformat.corr(numcol[i], numcol[j]))
        corr.append(temp)
11
12
13
    corr
```

▶ (15) Spark Jobs

[None, None, 1.0]]

Finding number of distinct restaurants in each zipcode.

%sql

--Find number of distinct restaurants in each zipcode. select count(distinct Rest_Id), Zipcode from ReviewDataSet_Format group by Zipcode;

%sql select distinct Zipcode , Rest_Name from ReviewDataSet_Format order by Zipcode , Rest_Name ;

