- La señal análoga x(t)=2sen(100πt)+0,8cos(178πt), en seg. Se muestrea con una frecuencia 13,5 veces mayor que la frecuencia de Nyquist.
 - Primero determine la frecuencia de Nyquist (F_N) y luego a 13,5xF_N:
 - ii) Determine la expresión de la señal digital.

Pregunta i)

Para calcular la frecuencia de Nyquist, debemos obtener la frecuencia mayor (Fm) de la señal x(t), pero como tenemos una señal conformada por 2 sinusoidales, debemos identificar cuál corresponde a esa frecuencia máxima. Entonces:

Recordar que una señal sinusoidal es de la forma:

A
$$\cos(2\pi F + \Theta)$$
 Puede ser $\cos \delta$ sen

Siendo F la frecuencia de la señal, A la amplitud y theta el desface Por tanto, en x(t) se deben observar ambas sinusoidales:

La pregunta ahora es: ¿Cuál de las dos frecuencias, F1 y F2, es mayor, es decir, nuestra frecuencia máxima Fm?

Claramente F2 > F1, por tanto Fm = 89 Hz

Luego, la frecuencia de Nyquist la definiremos como:

$$Fn = 2*Fm$$

Finalmente, la frecuencia de Nyquist será igual a:

OJO, indicar que el 178 que está en el coseno no está en Hz, sino que radianes, más específicamente, 178π radianes.

Finalmente, el resultado de i), cuando nos indican que se muestrea ahora con una frecuencia 13.5 veces mayor que Fn, sería sólo calcular:

Fs = 13.5*Fn Fs = 13.5*178 Fs = 2403 Hz

- La señal análoga x(t)=2sen(100πt)+0.8cos(178πt), en seg. Se muestrea con una frecuencia 13,5 veces mayor que la frecuencia de Nyquist.
 - Primero determine la frecuencia de Nyquist (F_N) y luego a 13,5xF_N:
 - ii) Determine la expresión de la señal digital.

Pregunta ii)

Teniendo que la nueva Frecuencia de Muestreo Fs es igual a 2403 Hz, se reescribe la señal x(t):

$$x(t) = 2 sen (100 \pi t) + 0.8 cor (178 \pi t)$$

 $\Rightarrow x(t) = 2 sen (2.50 \pi t) + 0.8 cor (2.89 \pi t)$

Luego, utilizando la siguiente expresión:

A cos
$$(2\pi \cdot F \cdot \ell + \Theta)$$

$$\frac{1}{F_s} + \frac{h}{F_s} = \frac{h}{F_s} = 2403 \, H_z$$
A cos $\left(\frac{2 \cdot \pi \cdot F \cdot h}{F_s} + \Theta\right)$

Reemplazando, tendríamos los valores de A, F y Fs, tendríamos la siguiente señal digital (notar que cambiamos de estar dependiendo de "t" a "n"):

$$X(n) = 2 \operatorname{Sen} \left(\frac{2 \cdot 50 \cdot \pi \cdot n}{2403} \right) + 0.8 \operatorname{cos} \left(\frac{2 \cdot 89 \cdot \pi \cdot n}{2403} \right)$$

$$= X(n) = 2 \operatorname{Sen} \left(2\pi \cdot \frac{50}{2403} \cdot n \right) + 0.8 \operatorname{cos} \left(2\pi \cdot \frac{1}{27} \cdot n \right)$$
Expression de señal digital