Package 'psav'

June 20, 2021

Title Pliable regression spline model using B-splines and auxiliary

Type Package

Version 1.0.0

variables

Author Jae-Kwon Oh and	Tae-riwan Inong
Maintainer Jae-Kwon Ol	n <cort0048@gmail.com></cort0048@gmail.com>
Description We conducted a study on a regression spline estimator with a few prespecified auxiliary variables. For the implementation of the proposed estimators, we adapted a coordinate descent algorithm. This was implemented by considering a structure of the sum of the residuals squared objective function determined by the B-spline and the auxiliary coefficients. We also considered an efficient stepwise knot selection algorithm based on the Bayesian information criterion.	
License 4.0.2	
Encoding UTF-8	
LazyData true	
RoxygenNote 7.1.1	
NeedsCompilation no	
R topics documen	nted:
fit_model Forward	
Index	7
Backward	Knot elimination via Backward
Description	

knot is removed and a new knot is selected again.

Backward is used as a function to remove knots in stepwise. Among the selected knots, the oldest

2 fit_model

Usage

Arguments

x $n \times 1$ predictor vector. n is a sample size.

z $n \times K$ auxiliary binary variable matrix. K is the number of levels for auxiliary

variable.

y $n \times 1$ response vector.

inter_knots interior knots

left_knots left boundary knots
right_knots right boundary knots
add_knot knots selected by forward

existing_knot existing knots excluding newly selected knot (add_knot)

order of B-splines. 1 fits constant, 2 fits linear, 3 fits quadratic, 4 fits cubic

splines.

criter criter has a numeric of 8 or 9. 8 indicates "BIC" and 9 indicates "AIC"

selection_number

indicates the numberth of knots selected.

fit_model Pilable Regression Spline model using B-splines and auxiliary variables

Description

Fit a pilable regression spline model

Usage

```
fit_model(x, z, y, knots, order, max_iter = 1000, epsilon = 1e-5)
```

Arguments

x $n \times 1$ predictor vector. n is a sample size.

z $n \times K$ auxiliary binary variable matrix. K is the number of levels for auxiliary

variable.

y $n \times 1$ response vector.

knots selected knots among the quantiles of x

order of B-splines. 1 fits constant, 2 fits linear, 3 fits quadratic, 4 fits cubic

splines.

max_iter maximum iteration of Coodinate Descent Algorithm

epsilon stopping criteria of Coodinate Descent Algorithm. If the difference in the resid-

ual sum of squares is less than epsilon, the algorithm is stopped.

Forward 3

Details

We conduct a study on a statistical learning for modeling and analysis of data with another auxiliary variable in addition to the response and predictor variables. The estimation is expressed as a linear combination of B-splines. Coefficients are estimated by minimizing the residual sum of squares via Coordinate Descent Algorithm. For more details, see Oh and Jhong (0000).

Value

The results are output as a list. The list consists of the following:

beta coefficient vectors for predictor terms

gamma coefficient matrix for auxiliary variable terms residuals the residuals, that is response minus fitted values.

fitted_values the fitted values
iter number of iteration
inter_knots interior knots

n sample size

BIC Bayesian Information Criterion
AIC Akaike Information Criterion

Author(s)

Jae-Kwon Oh and Jae-Hwan Jhong

Description

Choose a knot from the knots other than the knot in pre_fit

Usage

Arguments

x $n \times 1$ predictor vector. n is a sample size.

z $n \times K$ auxiliary binary variable matrix. K is the number of levels for auxiliary

variable.

y $n \times 1$ response vector.

inter_knots interior knots
left_knots left boundary knots
right_knots right boundary knots

 4 StepWise

order of B-splines. 1 fits constant, 2 fits linear, 3 fits quadratic, 4 fits cubic

splines.

criter criter has a numeric of 8 or 9. 8 indicates "BIC" and 9 indicates "AIC"

selection_number

indicates the numberth of knots selected.

StepWise Knot Selection via Stepwise Method

Description

StepWise is used for knot selection. At every step, the model fits with the fit_model function.

Usage

Arguments

x $n \times 1$ predictor vector. n is a sample size.

z $n \times K$ auxiliary binary variable matrix. K is the number of levels for auxiliary

variable.

y $n \times 1$ response vector.

max_knots the number of initial knots. should specify as the number of that can be divided

into small enough segments.

order of B-splines. 1 fits constant, 2 fits linear, 3 fits quadratic, 4 fits cubic

splines.

criterion scale used as a criterion for knot selection. Criteria can be selected as "BIC" or

"AIC".

max_iter maximum iteration of Coodinate Descent Algorithm

epsilon stopping criteria of Coodinate Descent Algorithm. If the difference in the resid-

ual sum of squares is less than epsilon, the algorithm is stopped.

Details

Starting from the NULL model, the optimal model is calculated by repeating the selection and removal of knot. Backward is performed when there are more than two knots.

Author(s)

Jae-Kwon Oh and Jae-Hwan Jhong

StepWise 5

Examples

```
# Example for Bone Mineral Density Data
library(psav)
library(loon.data)
data("bone")
# When the auxiliary variable is sex
par(mfrow = c(1,2))
x = bone age
y = bone$rspnbmd
z = bone\$sex
tz = transform(z,
               class1 = ifelse(z == "male", 1, \emptyset),
               class2 = ifelse(z == "female", 1, 0))[,2:3]
x_m = x[z == "male"]
x_f = x[z == "female"]
fit = StepWise(x, tz, y, max_knots = 50, order = 4,
               criterion = "BIC", max_iter = 1000, epsilon = 1e-5)
fit_m = fit$fitted_values[z == "male"]
fit_f = fit$fitted_values[z == "female"]
plot(x, y, bty = "n", type = "n", xlab = "age",
     ylab = "Relative spinal bone mineral density",
     cex.lab = 1.3, cex.axis = 1.2)
points(x, y, col = "grey")
lines(sort(x_m), fit_m[order(x_m)], lty = 1, lwd = 2)
lines(sort(x_f), fit_f[order(x_f)], lty = 3, lwd = 2)
abline(v = fit$knots, col = "grey", lty = 2)
legend("topright", c("male", "female"),
       col = "black",
       lty = c(1, 3), lwd = 2,
       bty = "n", cex = 1.1)
# When the auxiliary variable is ethnic
bone_ethnic <- na.omit(bone)</pre>
x <- bone_ethnic$age
y <- bone_ethnic$rspnbmd
z <- bone_ethnic$ethnic</pre>
tz = transform(z,
               class1 = ifelse(z == "White", 1, 0),
               class2 = ifelse(z == "Hispanic", 1, 0),
               class3 = ifelse(z == "Asian", 1, 0),
               class4 = ifelse(z == "Black", 1, \emptyset))[, 2:5]
x_w = x[z == "White"]
x_h = x[z == "Hispanic"]
x_a = x[z == "Asian"]
x_b = x[z == "Black"]
fit = StepWise(x, tz, y, max_knots = 50, order = 4,
               criterion = "BIC", max_iter = 1000, epsilon = 1e-5)
fit_w = fit$fitted_values[z == "White"]
```

StepWise Step Wise

```
fit_h = fit$fitted_values[z == "Hispanic"]
fit_a = fit$fitted_values[z == "Asian"]
fit_b = fit$fitted_values[z == "Black"]
plot(x, y, bty = "n", type = "n", xlab = "age",
     ylab = "Relative spinal bone mineral density",
     cex.lab = 1.3, cex.axis = 1.2)
points(x, y, col = "grey")
lines(sort(x_w), fit_w[order(x_w)], lty = 1, lwd = 2)
lines(sort(x_h), fit_h[order(x_h)], lty = 3, lwd = 2)
lines(sort(x_a), fit_a[order(x_a)], lty = 4, lwd = 2)
lines(sort(x_b), fit_b[order(x_b)], lty = 5, lwd = 2)
abline(v = fit$knots, col = "grey", lty = 2)
legend("topright", c("White", "Hispanic", "Asian", "Black"),
       col = "black",
       bty = "n", cex = 1.1, lwd = 2,
       lty = c(1,3,4,5)
```

Index

Backward, 1

fit_model, 2
Forward, 3

StepWise, 4