Question 18 (20 marks)

Three light sources are used to determine the photoelectric properties of an elemental material surface; ultraviolet (338 nm), violet (386 nm) and yellow (585 nm). These light sources can be used to help determine the work functions given in the following table.

| Element   | Symbol | Work function (eV) |
|-----------|--------|--------------------|
| Potassium | K      | 2.29               |
| Calcium   | Ca     | 2.87               |
| Scandium  | Sc     | 3.50               |
| Titanium  | Ti     | 4.33               |
| Chromium  | Сг     | 4.50               |
| Cobalt    | Co     | 5.00               |

|     | e:1  |                                                                       |
|-----|------|-----------------------------------------------------------------------|
|     | 10.0 |                                                                       |
|     | 4    |                                                                       |
|     |      |                                                                       |
|     |      |                                                                       |
| (b) | (i)  | Calculate the maximum kinetic energy, in electron volts of an ejected |

photoelectron when ultraviolet light is used on a scandium surface.

Explain what is meant by the term 'work function' as it relates to the photoelectric effect.

(2 marks)

(4 marks)

(a)

 (ii) Sketch a graph of the kinetic energies of photoelectrons versus the energy of light incident on a scandium surface. (2 marks)



- (c) When the violet light is used on an unknown material, a stopping potential difference of 0.350 V reduces the photocurrent to zero.
  - (i) Calculate the work function of this material. (4 marks)

Answer \_\_\_\_\_\_ eV

(ii) From the table on page 26, determine the possible element in the material.

(1 mark)

Answer \_\_\_\_

| (                      | iii)   | Explain what happens when the yellow (585 nm) light is incident on the unknown surface. Include a calculation to support your answer.  (4 marks) |
|------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |        |                                                                                                                                                  |
|                        |        |                                                                                                                                                  |
|                        |        |                                                                                                                                                  |
|                        |        |                                                                                                                                                  |
|                        |        |                                                                                                                                                  |
|                        |        |                                                                                                                                                  |
|                        |        |                                                                                                                                                  |
|                        |        |                                                                                                                                                  |
| i) E                   | Explai | n how the photoelectric effect demonstrates one of the properties of light. (3 marks                                                             |
| 92                     |        |                                                                                                                                                  |
| -                      |        |                                                                                                                                                  |
| 187<br>18 <del>5</del> |        |                                                                                                                                                  |
| 8.2                    |        |                                                                                                                                                  |
|                        |        |                                                                                                                                                  |