## Cash-out User Detection based on Attributed Heterogeneous Information Network with a Hierarchical Attention Mechanism

Binbin Hu<sup>1</sup>, Zhiqiang Zhang<sup>2</sup>, Chuan Shi<sup>1</sup>, Jun Zhou<sup>2</sup>,



<sup>1</sup>Beijing University of Posts and Telecommunicatios <sup>2</sup>Al Department, Ant Financial Service Group





## **Credit Payment Services**

Offline credit card services in commercial banks and online credit payments in internet financial institutions

#### **Cash-out Fraud**

Pursue cash gains with illegal or insincere means, e.g., through buying pre-paid cards or other goods then reselling them.

#### **Cash-out User Detection**

Predict whether a user will do cash-out transactions or not in the future

## Rich Interaction Relations in the Scenario of **Credit Payment Service**

- ❖ Fund transfer relation among users
- Login relation between users and devices
- **Transaction relation between users and merchants.**

## Background



#### (a) Scenario of credit payment ser- (b) Network schema and meta-path examples vice

## **Traditional Methods**

- ❖ Feature engineer + Classifier
- ❖ Mainly based on the statistical features of a certain user
- seldom fully exploit the interaction relations between users

## **Attribute Heterogeneous Information Network** (AHIN)

- Contain attributes and multiple types of nodes and relations
- Meta-path : Semantic path between two nodes

#### Our work

- First to study the cash-out users detection problem
- ❖ Model the cash-out user detection problem as a classification problem in AHIN
- Propose a novel model HACUD with meta-path based neighbor and hierarchical attention mechanism

## **HACUD: The Proposed Model**





(a) UMU The lifting percentages of cash-out rate in users with different amount

# (b) UU

## of cash-out neighbors against users without any cash-out neighbor in two meta-paths.

## **Observations in Real Data**

- **Users** with higher cash-out rate tend to have more cash-out neighbors
  - Meta-path based Neighbors
- ❖ Different meta-path based neighbors have different impacts on users
  - Hierarchical Attention Mechanism





$$\mathbf{f}_{u}^{\rho} = \text{ReLU}(\mathbf{W}_{F}^{\rho}g(\mathbf{h}_{u},\mathbf{h}_{u}^{\rho}) + \mathbf{b}_{F}^{\rho})$$

$$\mathbf{f}_{u}^{\rho} = \text{ReLU}(\mathbf{W}_{F}^{\rho}g(\mathbf{h}_{u},\mathbf{h}_{u}^{\rho}) + \mathbf{b}_{F}^{\rho})$$

$$\boldsymbol{\sigma}_{u}^{\rho} = \text{ReLU}(\mathbf{W}_{f}^{1}[\mathbf{h}_{u};\mathbf{f}_{u}^{\rho}] + \mathbf{b}_{f}^{1}),$$

$$\boldsymbol{\sigma}_{u}^{\rho} = \text{ReLU}(\mathbf{W}_{f}^{2}\boldsymbol{v}_{u}^{\rho} + \mathbf{b}_{f}^{2}),$$

$$\boldsymbol{\beta}_{u,\rho} = \frac{\exp(\mathbf{z}^{\rho^{\mathrm{T}}} \cdot \widetilde{\mathbf{f}}_{u}^{C})}{\sum_{\rho' \in \mathcal{P}} \exp(\mathbf{z}^{\rho'^{\mathrm{T}}} \cdot \widetilde{\mathbf{f}}_{u}^{C})},$$

## **Experiments**

## **Dataset**

## **❖** Ten Days Dataset

1.99 million users (2018/03/21~2018/03/31)

## One Month Dataset

5.16 million users (2018/03/01~2018/03/31) **AHIN** 

\* #User : 56.75 millions \* #Merchants : 0.51millions

\* #Transfer relation : 77.40 millions

\* #Transaction : 20.64 millions

\* #Attribute : 123

## Metric

$$AUC = \frac{\sum_{u \in \mathcal{U}^+} rank_u - \frac{|\mathcal{U}^+| \times (|\mathcal{U}^+| + 1)}{2}}{|\mathcal{U}^+| \times |\mathcal{U}^-|}$$

## **Performance Comparison**

|                        | AUC              |        |        |                   |        |        |        |         |
|------------------------|------------------|--------|--------|-------------------|--------|--------|--------|---------|
| Algorithm              | Ten Days Dataset |        |        | One Month Dataset |        |        |        |         |
|                        | d = 16           | d = 32 | d = 64 | d = 128           | d = 16 | d = 32 | d = 64 | d = 128 |
| Node2vec               | 0.5893           | 0.5913 | 0.5926 | 0.5930            | 0.5980 | 0.6063 | 0.6009 | 0.6021  |
| Metapath2vec           | 0.5914           | 0.5903 | 0.5917 | 0.5920            | 0.6005 | 0.5976 | 0.5995 | 0.5983  |
| Node2vec + Feature     | 0.6455           | 0.6464 | 0.6510 | 0.6447            | 0.6541 | 0.6561 | 0.6607 | 0.6518  |
| Metapath2vec + Feature | 0.6456           | 0.6429 | 0.6469 | 0.6485            | 0.6550 | 0.6552 | 0.6523 | 0.6545  |
| Structure2vec          | 0.6537           | 0.6556 | 0.6598 | 0.6545            | 0.6641 | 0.6632 | 0.6657 | 0.6678  |
| GBDT                   | 0.6389           | 0.6389 | 0.6389 | 0.6389            | 0.6467 | 0.6467 | 0.6467 | 0.6467  |
| $GBDT_{Struct}$        | 0.6948           | 0.6948 | 0.6948 | 0.6948            | 0.6968 | 0.6968 | 0.6968 | 0.6968  |
| HACUD                  | 0.7066           | 0.7115 | 0.7056 | 0.7049            | 0.7132 | 0.7160 | 0.7109 | 0.7154  |

## **Effects of Hierarchical Attention**









**Impact of Different** 

**Meta-paths** 

**Parameter Tuning** 

