Homework 5

Solutions

- 1. (Short questions)
 - (a) True. In the notes we showed that

$$E(\tilde{a}^2) - E^2(\tilde{a}) = E((\tilde{a} - E(\tilde{a}))^2). \tag{1}$$

For discrete random variables this equals the sum of a nonnegative quantity multiplied by a nonnegative quantity:

$$E\left((\tilde{a} - E(\tilde{a}))^2\right) = \sum_{a \in R_{\tilde{a}}} (a - E(\tilde{a}))^2 p_{\tilde{a}}(a), \tag{2}$$

so the result must be nonnegative, which implies $E(\tilde{a}^2) - E^2(\tilde{a}) \ge 0$. For continuous random variables the argument is exactly the same with integrals instead of sums. (A more straightforward solution): Let \tilde{a} take values $\{-1,0,1\}$ with equal probability. $E(\tilde{a}) = 0$ but $E(\tilde{a}^2) > 0$. That is $E^2(\tilde{a})$ can be less than $E(\tilde{a}^2)$

(b) True. Let m denote the median of \tilde{a} , we have

$$F_{\tilde{a}+b}(m+b) = P\left(\tilde{a}+b \le m+b\right) \tag{3}$$

$$= P(\tilde{a} \le m) \tag{4}$$

$$=\frac{1}{2}\tag{5}$$

so m + b is the median of $\tilde{a} + b$.

- (c) True. Since \tilde{a} and \tilde{b} have the same distribution $E(\tilde{a}) = E(\tilde{b})$ (since the expectation operator only depends on the pmf or pdf). By independence $E(\tilde{a}\tilde{b}) = E(\tilde{a})E(\tilde{b}) = E^2(\tilde{a})$.
- (d) The probability of the event occurring is 1/n so

$$p_{I_i}(0) = 1 - \frac{1}{n},\tag{6}$$

$$p_{I_i}(1) = \frac{1}{n}. (7)$$

By linearity of expectation

E (Number of kids that get their own present) = E
$$\left(\sum_{i=1}^{n} I_i\right)$$
 (8)

$$=\sum_{i=1}^{n} \mathrm{E}\left(I_{i}\right) \tag{9}$$

$$=\sum_{i=1}^{n}p_{I_{i}}\left(1\right)\tag{10}$$

$$=1. (11)$$

On average one kid gets their parents' own present.

2. (Paste and Rice)

(a) The constraints are $100 \le \max{\{\tilde{x}, \tilde{r}\}} \le 300$. The joint pdf is constant over that region. Figure 1 contains the diagram.

Figure 1: Joint pdf of r and x.

(b) We compute

$$E(\tilde{r}\tilde{x}) = \int_{x=100}^{300} \int_{r=0}^{300} \frac{rx}{80000} dx dr + \int_{x=0}^{100} \int_{r=100}^{300} \frac{rx}{80000} dx dr$$
 (12)

$$= \frac{1}{80000} \left(\frac{x^2}{2} \right]_{100}^{300} \frac{r^2}{2} \right]_0^{300} + \frac{x^2}{2} \right]_0^{100} \frac{r^2}{2} \right]_{100}^{300}$$
 (13)

$$=25000.$$
 (14)

$$E(\tilde{x}) = \int_{x=100}^{300} \int_{r=0}^{300} \frac{x}{80000} dx dr + \int_{x=0}^{100} \int_{r=100}^{300} \frac{x}{80000} dx dr$$
 (15)

$$= \frac{1}{80000} \left(300 \frac{x^2}{2} \right]_{100}^{300} + 200 \frac{x^2}{2} \right]_{0}^{100} \frac{r^2}{2} \right]_{100}^{300}$$
 (16)

$$= 162.5.$$
 (17)

By symmetry $E(\tilde{r}) = 162.5$. The covariance $Cov(\tilde{r}, \tilde{x}) = E(\tilde{r}\tilde{x}) - E(\tilde{r})E(\tilde{x}) = -1406.25$ so \tilde{r} and \tilde{x} are negatively correlated.

- (c) The variables are correlated, which implies they cannot be independent.
- 3. (Law of conditional variance)
 - (a) Given $\tilde{a} = a$, \tilde{a} is constant, and its value is x, therefore once x is fixed $Var(\tilde{b}|\tilde{a} = a)$ is a **number**. It represents the variance of the random variable \tilde{b} given the information

 $\tilde{a} = a$. In other words, given two random variables \tilde{a} and \tilde{b} , look at their joint density, condition \tilde{a} to the value x. This slice gives rise to a new distribution of the random variable $\tilde{b}|(\tilde{a} = a)$, $\text{Var}(\tilde{b}|\tilde{a} = a)$ is precisely the variance of this random variable.

$$\operatorname{Var}(\tilde{b}|\tilde{a}=a) = E((\tilde{b} - E(\tilde{b}|\tilde{a}=a))^2|\tilde{a}=a)$$
(18)

- (b) Now we don't keep x fixed but rather we treat it as a variable, for any x we assign a value $\operatorname{Var}(\tilde{b}|\tilde{a}=a)$, this is a function from the range of \tilde{a} to real numbers, which we call by h, so $h(x) = \operatorname{Var}(\tilde{b}|\tilde{a}=a)$. Since this function is defined on a probability space we can regard it as a **random variable** by $h(\tilde{a}) = \operatorname{Var}(\tilde{b}|\tilde{a})$.
- (c) Using iterated expectations we get:

$$E(\operatorname{Var}(\tilde{b}|\tilde{a})) = E(E(\tilde{b}^2|\tilde{a})) - E(E(\tilde{b}|\tilde{a})^2)$$
(19)

$$= E(\tilde{b}^2) - E(E(\tilde{b}|\tilde{a})^2) \tag{20}$$

$$Var(E(\tilde{b}|\tilde{a})) = E(E(\tilde{b}|\tilde{a})^2) - E(E(\tilde{b}|\tilde{a}))^2$$
(21)

$$= E(E(\tilde{b}|\tilde{a})^2) - E(\tilde{b})^2 \tag{22}$$

$$\implies E(\operatorname{Var}(\tilde{b}|\tilde{a})) + \operatorname{Var}(E(\tilde{b}|\tilde{a})) = E(\tilde{b}^2) - E(\tilde{b})^2 = \operatorname{Var}(\tilde{b})$$
 (23)

Average of the variance of \tilde{b} given \tilde{a} , plus the variance of the average of \tilde{b} given \tilde{a} .

(d) Let \tilde{t} be the time at which a runner gets injured. And let \tilde{a} be the random variable that describes the age group: $\tilde{a}=1$ be the group of runners below 30, and $\tilde{a}=2$ be the group above 30. So that $\tilde{t}|\{\tilde{a}=1\}\sim exp(1)$ and $\tilde{t}|\{\tilde{a}=2\}\sim exp(2)$. We are also given that $P(\tilde{a}=2)=0.2$. Also note that if $\tilde{a}\sim exp(\lambda)$ then $E(\tilde{a}^2)=Var(\tilde{a})+E(\tilde{a})^2=1/\lambda^2+1/\lambda^2=2/\lambda^2$.

$$E(\tilde{t}) = E(E(\tilde{t}|\tilde{a})) = E(\tilde{t}|\tilde{a} = 1)P(\tilde{a} = 1) + E(\tilde{t}|\tilde{a} = 2)P(\tilde{a} = 2)$$
(24)

$$=1 \cdot 0.8 + \frac{1}{2} \cdot 0.2 = 0.9 \tag{25}$$

$$E(\tilde{t}^2) = E(E(\tilde{t}^2|\tilde{a})) = E(\tilde{t}^2|\tilde{a} = 1)P(\tilde{a} = 1) + E(\tilde{t}^2|\tilde{a} = 2)P(\tilde{a} = 2)$$
 (26)

$$=2/1^2 \cdot 0.8 + 2/2^2 \cdot 0.2 = 1.7 \tag{27}$$

$$\implies \operatorname{Var}(\tilde{t}) = 1.7 - (0.9)^2 = 0.89$$
 (28)

- 4. (Water salinity and temperature)
 - (a) Please refer to Fig 2. The linear estimate has a negative slope, implying that the salinity decreases with temperature.
 - (b) Please refer to Fig 2. According to the conditional means, the salinity decreases with temperature and then increases again.
 - (c) The reliability of the conditional mean estimator depends on the number of data points that fell into the bin. In Fig 2 the conditional mean estimates to the left and more reliable that the one on the right, as each bin have more data points.
 - (d) I have no idea!

Figure 2