

DS-UA 112 Introduction to Data Science

Week 9: Lecture 1

Models - Working with Loss Functions

How can we fill in the missing pieces in a description of some population?

DS-UA 112 Introduction to Data Science

Week 9: Lecture 1

Models - Working with Loss Functions

Announcements

- ▶ Please check Week 9 agenda on NYU Classes
 - ► Lab 7
 - ► Due on Friday March 27 at 12PM
 - ► Project 1
 - ▶ Due on Monday April 6 at 12PM
 - **►** Survey

https://nyu.qualtrics.com/jfe/ form/SV_3DCWUa4yc08L0wt

Announcements

- ► Recordings
 - **▶**Lecture
 - **▶**Section
 - **▶**Office Hours
- ► Media Gallery
- **►** Zoom

Check @449 on Piazza for more information

- ► Text as Data
 - We studiedHuckleberry Finn byMark Twain andLittle Women byLouisa May Alcott
- We tried to understand aspects of the novels through numbers

Questions

► Can we make deductions about the characters or the relationships between characters by the occurrence of their name?

- ► Text as Data
 - We studiedHuckleberry Finn byMark Twain andLittle Women byLouisa May Alcott
- We tried to understand aspects of the novels through numbers

Questions

- ► Can we distinguish the novel by the length of sentences?
- ► Can we distinguish the novel by the length of words?

Zipf Rule

- ► Text as Data
 - We studiedHuckleberry Finn byMark Twain andLittle Women byLouisa May Alcott
- We tried to understand aspects of the novels through numbers

Questions

What is the relationship between the frequency of words and the rank of a words ordered by number of occurences?

- ▶ Define frequency to be the proportion of times a word appears in the text
- Define rank to be the ranking of words in descending order according to occurrence

Frequency =
$$\frac{1}{Rank}$$

- ► Zipf Rule
 - Proposed by linguist George Kingsley Zipf to describe patterns in language
 - ►The rule relates frequency and rank

- ▶ Define frequency to be the proportion of times a word appears in the text
- Define rank to be the ranking of words in descending order according to occurrence

Frequency =
$$\frac{1}{Rank}$$

► So if the most common word has frequency 0.2, then the second most common would have frequency 0.2 / 2, the third most common would have frequency 0.2 / 3, ...

► Zipf rule describes a power law meaning a relationship between two quantitative variables involves taking a power transformation

Dependent Variable = (Independent Variable) power

► Zipf rule describes a power law meaning a relationship between two quantitative variables involves taking a power transformation

Dependent Variable = (Independent Variable) power

- Power laws occur in many contexts to model
 - ► Population of Cities
 - ▶ Distribution of Wealth
 - ► Size of Companies

Agenda

- ► Modelling
 - **▶**Estimation
 - **▶** Prediction
 - **▶**Inference

15% of bill is customary amount for tip in US

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

- Tips for waiters and waitresses
- ► Estimation: Is 15% the average amount for a tip in US?
- Prediction: Could we use information like day and time to guess the tip?
- ▶ Inference: If the average is 15% then what is the chance that the tip exceeds 25%?

Exercise

Completing the Square

Show that the expression

$$x^2 + 6 x = -2$$

is equivalent to the expression

$$(x+3)^2 = 7$$

Suppose we have the expression

$$x^2 + b x = c$$

Find e and f such that

$$(x + e)^2 = f$$

15% of bill is customary amount for tip in US

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

- ► The mean tip percentage is 16.08%
- Most tips are between 10 and 20% with a few outlying large tips. Maximum of 70%.
- The tip percentage does not appear, however, to vary much with variables such as sex, smoker, day, time, and size.

- ▶ Since sex, smoker, day, time, and size can be thought of as qualitative variables, we can produce sideby-side boxplots to investigate the relationships
- ▶ If the range of values in the tips does not significantly differ between variables, then we do not have a relationship

- Removing outlier leads to a linear trend
- ► The slope estimates the percent tip

- We have different approaches to summarizing the tip as a percentage of the bill
- ► The mean captures the average value among the tips
- The median captures the middle value among the tips

- MSE stands for Mean Square Error
- MAE stands for Mean Absolute Error
- Note that MSE involves squaring numbers. Since we are squaring numbers between 0 and 1 in the tips dataset, MSE lies below MAE

Summary

- ► Power Law
 - ► Zipf Rule
- ► Models
 - **►** Estimation
 - **▶** Prediction
 - **▶**Inference
- ► Loss Functions

Goals

- ► What is square loss and absolute loss?
- ► How can derivatives help use to determine the parameters in loss functions?

Questions

- ▶ Questions on Piazza?
 - Please provide your feedback along with questions
- ▶ Question for You!

Where else can you find the Zipf Rule?

Questions

- ▶ Questions on Piazza?
 - Please provide your feedback along with questions
- ▶ Question for You!

Where else can you find the Zipf Rule?

