1, 1, 3 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

CLAIMS

A session-state management method comprising:

generating an encoded session-state token, wherein the token incorporates a representation of session state of a client;

encrypting the encoded token using a one-way encryption scheme to produce an encrypted token; and

sending the encrypted token to the client.

- 2. A method as recited in claim 1, further comprising authenticating the user of the client.
- 3. A method as recited in claim 1, further comprising authenticating the user of the client, wherein the authenticating step comprises:

receiving a user identification indicator ("username") and a password; comparing the username to a database of authorized user records, each record containing a username and a username-associated password;

comparing the password received in the receiving step to a usernameassociated password of a record containing a matching username; and establishing a session for the user.

4. A method as recited in claim 1, wherein the generating step comprises forming a confirmation token that incorporates a representation of an incremental time block.

5.	A	me	thod	as	recited	in	claim	1,	wherein	the	generating	step
comprise	s fon	ning	ac	onfir	mation	toke	n that	inco	orporates	a rej	presentation	of a
current ir	ıcrem	ental	ltime	blo	ck.							

- 6. A method as recited in claim 1, wherein the generating step comprises forming a confirmation token that incorporates a representation of an incremental time block that is prior a current incremental time block.
- 7. A computer-readable storage medium having computer-executable instructions that, when executed by a computer, performs the method as recited in claim 1.
- 8. A session-state management method comprising:

 receiving a one-way encrypted, session-state token from a client, wherein
 the token incorporates a representation of session state of a client;

 generating a one-way encrypted, confirmation session-state token;

 comparing the confirmation token with the received token.
- 9. A method as recited in claim 8, wherein the generating step comprises forming a confirmation token that incorporates a representation of an incremental time block.

10.	Α	method	as rec	ited in	claim	8,	wherein	the	generating	step
comprises	formin	ıg a con	ıfirmatio	on toke	n that	inco	rporates	a rep	oresentation	of a
current inc	rement	al time t	olock.							
11.	A	method	as rec	ited in	claim	8,	wherein	the	generating	step

- 11. A method as recited in claim 8, wherein the generating step comprises forming a confirmation token that incorporates a representation of an incremental time block that is prior a current incremental time block.
 - 12. A method as recited in claim 8, further comprising: issuing a one-way encrypted, replacement session-state token; sending the replacement token to the client.
- 13. A method as recited in claim 12, wherein the issuing step comprises forming a replacement token that incorporates a representation of a current incremental time block.
- 14. A method as recited in claim 8, wherein the generating step comprises forming a confirmation token that incorporates a representation of an incremental time block, if confirmation and received tokens fail to match, the method further comprising:

generating a new one-way encrypted, confirmation session-state token, wherein the confirmation token incorporates a representation of a previous incremental time block;

comparing the new confirmation token with the received token.

15. A method as recited in claim 14, wherein the new-confirmation-token generating step comprises forming a confirmation token that incorporates a representation of an incremental time block, if confirmation and received tokens fail to match, the method further comprising:

repeating the steps of new-confirmation-token generating and comparing the new and received tokens, wherein each subsequent reiteration of such steps employs a representation of a previous incremental time block that is previous a previous reiteration of the same steps, for a specified number of times or until compared tokens match.

- 16. A computer-readable storage medium having computer-executable instructions that, when executed by a computer, performs the method as recited in claim 8.
 - 17. A session-state management method comprising:
 - (A) receiving a one-way encrypted, session-state token from a client;
- (B) generating a one-way encrypted, confirmation session-state token, wherein the confirmation token incorporates a representation of a current incremental time block;
 - (C) comparing the confirmation token with the received token;
 - (D) if the confirmation token and the received token match,
 - (1) issuing a one-way encrypted, replacement session-state token, wherein the replacement token incorporates a representation of a current incremental time block;
 - (2) sending the replacement token to the client.

AUTH, AUTH, BRITH BRITH, BRITH, AUTH, BRITH, AUTH, BRITH BRITH, AUTH, BRITH BRITH, AUTH, BRITH BRITH, BRITH

3

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

if the confirmation token and the received token fail to match,

- (3) generating a new one-way encrypted, confirmation session-state token using the one-way encryption scheme of the encryption step, wherein the token incorporates a representation of a previous incremental time block;
 - (4) comparing the new confirmation token with the received token;
- (5) if the new confirmation and received tokens fail to match, then further comprising:
 - (i) repeating the steps of new-confirmation-token generating and comparing the new and received tokens, wherein each subsequent reiteration of such steps employs a representation of a previous incremental time block that is previous a previous reiteration of the same steps, for a specified number of times;
 - (ii) it, during the repeating step, the confirmation token matches the received token,
 - (a) issuing a one-way encrypted, replacement sessionstate token, wherein the token incorporates a representation of a current incremental time block;
 - (b) sending the replacement token to the client.
- 18. A computer-readable storage medium having computer-executable instructions that, when executed by a computer, performs the method as recited in claim 17.

19. A session	n-state management method comprising:
authenticating	user of a client to establish a session with the user;
generating an	encoded session-state token, wherein the encoded token
incorporates a represe	ntation of session-state of the user's session;
sending the ses	sion-state token to the client.

20. A method as recited in claim 19, wherein the authenticating step comprises:

receiving a user identification indicator ("username") and a password; comparing the username to a database of authorized user records, each record containing a username and a username-associated password;

comparing the password received in the receiving step to a usernameassociated password of a record containing a matching username; and establishing a session for the user.

21. A method as recited in claim 19, wherein:
the user is identified by a user identification indicator (UserID);
the generating step comprises forming a session-state token at least partially based upon the UserID.

22. A method as recited in claim 19, wherein:
a time block is identified by a time block identification indicator (TimeID);
the generating step comprises forming a session-state token at least partially based upon the TimeID.

	23.	A metho	d as recited in claim 19, wherein:
	the use	r is ident	ified by a user identification indicator (UserID);
	a time	block is i	dentified by a time block identification indicator (TimeID);
	the ger	nerating s	tep comprises forming a session-state token at least partially
oased	upon th	e UserID	and the TimeID.

- 24. A method as recited in claim 19, further comprising encrypting the encoded token between the generating and the sending steps.
- 25. A method as recited in claim 19, further comprising one-way encrypting the encoded token between the generating and the sending steps
- 26. A method as recited in claim 19, wherein:
 the user is identified by a user identification indicator (UserID);
 a time block is identified by a time block identification indicator (TimeID);
 the generating step comprises combining UserID and TimeID to produce an encoded token.
- 27. A computer-readable storage medium having computer-executable instructions that, when executed by a computer, performs the method as recited in claim 19.

28.	A sessi	on-state	toke	n generat	ion metho	od, where	ein an a	uthe	nticated
user is identi	fied by	a user	ident	ification	indicator	(UserID) and a	tim	e block
identification	indicat	or (Tin	neID)	identifie	s a speci	fic time	block,	the	method
comprising:		<u> </u>							
1 *		ID	1 00'	ID.	1	1 1.	1		

combining UserID and TimeID to produce an encoded token; encrypting the encoded token.

- 29. A method as recited in claim 28, wherein the combining step comprises concatenating UserID and TimeID.
- 30. A method as recited in claim 28, wherein the combining step comprises concatenating UserID, TimeID, and a code key.
- 31. A method as recited in claim 28, wherein the encrypting steps comprises encrypting the encoded token using a one-way encryption scheme.
- 32. A method as recited in claim 28, wherein the encrypting steps comprises:

encrypting the encoded token using a one-way encryption scheme to produce an encrypted result; and

selecting a defined portion of the encrypted result to form a session-state token.

33. A computer-readable storage medium having computer-executable
nstructions that, when executed by a computer, performs the method as recited in
claim 28.
34. A session-state management method comprising:
receiving a user-associated, encoded session-state token from a client,
wherein the encoded token incorporates a representation of session-state of the
user's session;
generating an encoded, confirmation session-state token;
comparing the received token with the confirmation token.
35. A method as recited in claim 34, wherein the generating step
comprises forming a confirmation token that incorporates a representation of a
current incremental time block, if confirmation and received tokens fail to match,
Į.

generating step presentation of a ens fail to match, further comprising:

generating a new confirmation token using a representation of a incremental time block previous of the time block representation used for the previous generating step;

comparing the new confirmation token with the received token.

36. A method as recited in claim 35, if confirmation and received tokens fail to match, further comprising:

repeating the steps of generating a new confirmation token and comparing the new and received tokens, wherein each subsequent reiteration of these steps uses a representation of a previous incremental time block that is previous a previous reiteration of the same steps, for a specified number of times or until compared tokens match.

- 37. A method as recited in claim 34, wherein the user-associated session-state token is encrypted.
- 38. A method as recited in claim 34, wherein the user-associated session-state token is one-way encrypted.
- 39. A computer-readable storage medium having computer-executable instructions that, when executed by a computer, performs the method as recited in claim 34.
 - 40. A session-state management method comprising:

receiving a user-associated TimeID from a client, wherein the encoded token incorporates a representation of session-state of the user's session;

designating a first time block identification indicator (TimeID) for a first time block;

comparing the user-associated TimeID with the first TimeID.

41.	The meth	od of claim 40, further comprising:
design	ating a pri	or TimeID for a time block prior to the first time block
compa	ring the u	ser-associated TimeID with the prior TimeID.

- **42.** A server to communicate with a client over a communications network, the server comprising:
 - a processor;

a session-state manager executable on the processor to:

generate a session-state token, wherein the token incorporates a representation of session state of the client;

encrypt the token using a one-way encryption scheme to produce an encrypted token; and

send the encrypted token to the client.

43. A server to communicate with a client over a communications network, the server comprising:

a processor;

a session-state manager executable on the processor to:

receive a one-way encrypted, session-state token from the client, wherein the token incorporates a representation of session state of a client; generate a one-way encrypted, confirmation session-state token; compare the confirmation token and the received token.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

44	. A	server	to	communicate	with	a	client	over	a	communications
network,	the ser	ver ¢om	pris	sing:						

a processor;

a session-state manager executable on the processor to:

authenticate a user of the client;

generate an encoded session-state token, wherein the token incorporates a representation of session state of the client; and send the session-state token to the client.

- 45. A manager as recited in claim 44, wherein session-state manager executable on the processor to encrypt the encoded session-state token.
- 46. A manager as recited in claim 44, wherein session-state manager executable on the processor to one-way encrypt the encoded session-state token.
- 47. A server to communicate with a client over a communications network, wherein an authenticated user is identified by a user identification indicator (UserID) and a time block identification indicator (TimeID) identifies a specific time block, the server comprising:

a processor;

a session-state manager executable on the processor to:

combine UserID and TimeID to produce a encoded token; and
encrypt the encoded token.

1	48. A server to communicate with a client over a communications
2	network, the server comprising:
3	a processor;
4	a session-state manager executable on the processor to:
5	receive a user-associated, encoded session-state token from the
6	client;
7	generate an encoded, confirmation session-state token, wherein the
8	confirmation token incorporates a representation of session state of the
9	client;
10	compare the received token with the confirmation token.
11	
12	49. A computer-readable storage medium having computer-executable
13	instructions that, when executed by a computer, performs the method comprising:
14	generating an encoded session-state token, wherein the token incorporates a
15	representation of session state of a client;
16	encrypting the encoded token using a one-way encryption scheme;
17	sending the encrypted token to the client.
18	
19	50. A computer-readable storage medium having computer-executable
20	instructions that, when executed by a computer, performs the method comprising:
21	receiving a one-way encrypted, session-state token from a client, wherein
22	the token incorporates a representation of session state of a client;
23	generating a one-way encrypted, confirmation session-state token;
24	comparing the confirmation token with the received token.
25	