

Association Rules: Advanced Topics

Data Mining and Toyt Mining (UTC 583 @ Politocnics di Milano

Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

- □ Frequent patterns without candidate generation
- Multilevel association rules
- Correlation rules
- Sequential rules

Is Apriori Fast Enough? Performance Bottlenecks

- The core of the Apriori algorithm
 - ▶ Use frequent (k-1)-itemsets to generate candidate frequent k-itemsets
 - Use database scan and pattern matching to collect counts for the candidate itemsets
- The bottleneck of Apriori: candidate generation
- Huge candidate sets:
 - ▶ 10⁴ frequent 1-itemset will generate 10⁷ candidate 2-itemsets
 - ▶ To discover a frequent pattern of size 100, e.g., $\{a_1, a_2, ..., a_{100}\}$, needs to generate $2^{100} \approx 10^{30}$ candidates.
- Needs multiple (n+1) scans of database with n is the length of the longest pattern

- How to generate candidates?
 - ▶ Step 1: self-joining L_k
 - Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
- Example:
 - ► L3={abc, abd, acd, ace, bcd}
 - Self-joining: L3*L3 generates abcd from abc and abd
 - Generates also acde from acd and ace
 - ▶ Pruning: acde is removed because ade is not in L₃
 - $ightharpoonup C_4 = \{abcd\}$

How to Generate Candidates?

- Suppose the items in Lk-1 are listed in an order
- ☐ Step 1: self-join Lk-1
 - ▶ INSERT INTO Ck
 - SELECT p.item1, p.item2, ..., p.itemk-1, q.itemk-1
 - ▶ FROM Lk-1 p, Lk-1 q
 - ▶ WHERE p.item1=q.item1, ..., p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-1</p>
- Step 2: pruning
 - ▶ For each itemset c in Ck do
 - For each (k-1)-subsets s of c do if (s is not in Lk-1) then delete c from Ck

Mining Frequent Patterns Without Candidate Generation

- Compress a large database into a compact,
 Frequent-Pattern tree (FP-tree) structure
 - Highly condensed, but complete for frequent pattern mining
 - Avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
- □ A divide-and-conquer methodology: decompose mining tasks into smaller ones
- Avoid candidate generation: sub-database test only

FP-growth...

- Leave the generate-and-test paradigm of Apriori
- □ Data sets are encoded using a compact structure, the FP-tree
- Frequent itemsets are extracted directly from the FP-tree
- Major Steps to mine FP-tree
 - Construct conditional pattern base for each node in the FP-tree
 - Construct conditional FP-tree from each conditional pattern-base
 - Recursively mine conditional FP-trees and grow frequent patterns obtained so far
 - ▶ If the conditional FP-tree contains a single path, simply enumerate all the patterns

Building the FP-tree: First Scan to Compute Frequent Items

TID	Items
1	{A,B}
2	{B,C,D}
3	{A,C,D,E}
4	{A,D,E}
5	{A,B,C}
6	{A,B,C,D}
7	{A}
8	{A,B,C}
9	{A,B,D}
10	{B,C,E}

Item	Count
Α	8
В	7
С	6
D	5
Е	3

minsup=2

Building the FP-tree: Second Scan to Build the Tree

TID	Items
1	{A,B}
2	{B,C,D}
3	{A,C,D,E}
4	{A,D,E}
5	{A,B,C}
6	{A,B,C,D}
7	{A}
8	{A,B,C}
9	{A,B,D}
10	{B,C,E}

After reading TID=1:

After reading TID=2:

Items are sorted in decreasing support counts

TID	Items
1	{A,B}
2	{B,C,D}
3	{A,C,D,E}
4	{A,D,E}
5	{A,B,C}
6	{A,B,C,D}
7	{A}
8	{A,B,C}
9	{A,B,D}
10	{B,C,E}

After reading TID=3:

B:2

TID	Items
1	{A,B}
2	{B,C,D}
3	{A,C,D,E}
4	{A,D,E}
5	{A,B,C}
6	{A,B,C,D}
7	{A}
8	{A,B,C}
9	{A,B,D}
10	{B,C,E}

Pointers are used to assist
frequent itemset generation

■ The FP-tree is typically smaller than the data

A:8

Decompose the frequent item generation into multiple subproblems

Start backward

Find frequent itemsets ending in E Find frequent itemsets ending in D

. . .

- Start from the bottom, from E
- Compute the support count, by adding the counts associated to E

(a) Paths containing node e

(b) Paths containing node d

(c) Paths containing node c

(d) Paths containing node b

(e) Paths containing node a

Considers the path to E, it is frequent

minsup=2

Extracts the conditional pattern base

- □ From the conditional pattern base {(ACD:1),(AD:1),(BC:1)}
 - build the conditional FP-tree
- Delete unfrequent items

minsup=2

■ Use the conditional FP-tree to extract the frequent itemsets ending with DE, CE, and AE

minsup=2

Conditional FP-tree for E

Prefix paths ending in DE

- Consider the suffix DE, it is frequent
- Build the conditional FP-tree for DE
- The last tree contains only A which is frequent
- So far we have obtained three frequent itemsets, {E, DE, ADE}

minsup=2

C is unfrequent so it is deleted

Prefix paths ending in de

Conditional FP-tree for de

- ☐ After DE, the suffix CE is considered
- □ CE is frequent and thus added to the frequent itemsets
- ☐ Then, we search for the itemsets ending with AE
- At the end the frequent itemsets ending with E are {E, DE, ADE, CE, AE}

minsup=2

Prefix paths ending in CE

Prefix paths ending in AE

- □ General idea (divide-and-conquer)
 - Recursively grow frequent pattern path using the FP-tree
- Method
 - For each item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - ▶ Until the resulting FP-tree is empty, or it contains only one path (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)

- ☐ FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection
- Why?
 - ▶ No candidate generation, no candidate test
 - Use compact data structure
 - Eliminate repeated database scan
 - Basic operation is counting and FP-tree building

- Start at the last item in the table
- Find all paths containing item
 - Follow the node-links
- Identify conditional patterns
 - Patterns in paths with required frequency
- Build conditional FP-tree C
- Append item to all paths in C, generating frequent patterns
- Mine C recursively (appending item)
- Remove item from table and tree

FP-growth vs. Apriori: Scalability With the Support Threshold

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - ▶ Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count node-links and the count field)
 - ► For Connect-4 DB, compression ratio could be over 100

- Divide-and-conquer:
 - Decompose both the mining task and DB according to the frequent patterns obtained so far
 - Leads to focused search of smaller databases
- Other factors
 - ▶ No candidate generation, no candidate test
 - Compressed database: FP-tree structure
 - No repeated scan of entire database
 - Basic ops—counting local freq items and building sub FP-tree, no pattern search and matching

Multi-level Association Rules

- ☐ Items often form hierarchy
- ☐ Items at the lower level are expected to have lower support
- Rules regarding itemsets at appropriate levels could be quite useful
- Transaction database can be encoded based on dimensions and levels
- We can explore shared multi-level mining

- □ Rules at lower levels may not have enough support to appear in any frequent itemsets
- Rules at lower levels of the hierarchy are overly specific,

 $\{2\% \text{ milk}\} \Rightarrow \{\text{wheat bread}\}\$

is indicative of association between milk and bread

- How do support and confidence vary as we traverse the concept hierarchy?
 - ▶ If X is the parent item for both X1 and X2, then $\sigma(X) \le \sigma(X1) + \sigma(X2)$
 - If σ(X1 ∪ Y1) ≥ minsup,and X is parent of X1, Y is parent of Y1 then σ(X ∪ Y1) ≥ minsup, σ(X1 ∪ Y) ≥ minsupσ(X ∪ Y) ≥ minsup
 - ▶ If $conf(X1 \Rightarrow Y1) \ge minconf$, then $conf(X1 \Rightarrow Y) \ge minconf$

☐ Approach 1:

- Extend current association rule formulation by augmenting each transaction with higher level items
- Original Transaction: {skim milk, wheat bread}
- Augmented Transaction: {skim milk, wheat bread, milk, bread, food}

Issues:

- Items that reside at higher levels have much higher support counts
- If support threshold is low, too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data

- ☐ Approach 2:
 - Generate frequent patterns at highest level first
 - Then, generate frequent patterns at the next highest level, and so on
- ☐ Issues:
 - ▶ I/O requirements will increase dramatically because we need to perform more passes over the data
 - May miss some potentially interesting cross-level association patterns

- A top down, progressive deepening approach
- First find high-level strong rules:

$$\{\text{milk}\} \Rightarrow \{\text{bread}\} [20\%, 60\%]$$

■ Then find their lower-level "weaker" rules:

 $\{2\% \text{ milk}\} \Rightarrow \{\text{wheat bread}\} [6\%, 50\%]$

Multi-level Association: Redundancy Filtering

- Some rules may be redundant due to "ancestor" relationships between items
- □ A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor.
- Example
 - milk ⇒ wheat bread [support = 8%, confidence = 71.5%]
 - ▶ 2% milk ⇒ wheat bread [support = 7.5%, confidence = 72%]
- The first rule is an ancestor of the second rule.
- One of the two rules is redundant: both rules provide the same information, in fact, they have similar support and confidence

Level 2 min_sup = 5%

Level 2 min_sup = 3%

Multi-level Association: Uniform Support vs. Reduced Support

- Uniform Support: the same minimum support for all levels
 - ► + One minimum support threshold. No need to examine itemsets containing any item whose ancestors do not have minimum support.
 - Lower level items do not occur as frequently. If support threshold
 - too high ⇒ miss low level associations
 - too low ⇒ generate too many high level associations
- Reduced Support: reduced minimum support at lower levels
 - ▶ There are 4 search strategies:
 - Level-by-level independent
 - Level-cross filtering by k-itemset
 - Level-cross filtering by single item
 - Controlled level-cross filtering by single item

Multi-Level Mining: Progressive Deepening

- ☐ A top-down, progressive deepening approach
- □ First mine high-level frequent items: milk (15%), bread (10%)
- □ Then mine their lower-level "weaker" frequent itemsets: 2% milk (5%), wheat bread (4%)
- Different min support threshold across multi-levels lead to different algorithms:
 - ▶ If adopting the same min_support across multi-levels then toss t if any of t's ancestors is infrequent.
 - ▶ If adopting reduced min_support at lower levels then examine only those descendents whose ancestor's support is frequent/non-negligible.

Correlation Rules

Suppose perform association rule mining

	С	Not c	row
t	20	5	25
Not t	70	5	75
col	90	10	100

$$\{\text{tea}\} \Rightarrow \{\text{coffee}\} [20\% 80\%]$$

- But the 90% of the customers buy coffee anyway!
- □ A customer who buys tea is less likely (10% less) to buy coffee than a customer about whom we have no information

$$A \Rightarrow B$$
 [support, confidence, correlation]

- One measure is to calculate correlation
- If two random variables A and B are independent,

$$lift(A,B) = \frac{P(A \land B)}{P(A)P(B)} = 1$$

■ For tea and coffee,

$$\frac{P(t \wedge c)}{P(t)P(c)} = 0.89$$

this means that the presence of tea is negatively correlated with the presence of coffee

44

Correlation Rules Using χ^2

 \square The χ^2 statistic is defined as

$$\chi^2 = \sum_{r \in R} \frac{(O(r) - E[r])^2}{E[r]}$$

- Look up for significance value in a statistical textbook
 - ▶ There are k-1 degrees of freedom
 - ▶ If test fails cannot reject independence, otherwise contingency table represents dependence.

Correlation Rules Using χ^2

- \square Use the χ^2 statistical test for testing independence
- Let n be the number of baskets
- Let k be the number of items considered
- Let r be a rule consisting of item values (i_i, i_i)
- Let O(r) represent the number of baskets containing rule r (i.e. frequency)
- Let $E[i_i] = O(i_i)$ for a single item (negation is $n E[i_i]$)
- \blacksquare E[r] = n * E[r₁]/n * ... * E[r_k] / n

Example

Back to tea and coffee

	С	Not c	row
t	20	5	25
Not t	70	5	75
col	90	10	100

- \blacksquare E[t] = 25, E[Not t]=75, E[c]=90, E[Not c]=10
- E[tc]=100 * 25/100 * 90 /100=22.5
- \bigcirc O(tc) = 20
- \square Contrib. to $\chi^2 = (20 22.5)^2 / 22.5 = 0.278$
- □ Calculate for the rest to get χ^2 =2.204
- \square Not significant at 95% level (3.84 for k=2)
- Cannot reject independence assumption

- \square If χ^2 test shows significance, then want to find most interesting cell(s) in table
- $\Box I(r) = O(r)/E[r]$
 - Look for values far away from 1
 - I(t c) = 20/22.5 = 0.89
 - I(t not c) = 5/2.5 = 2
 - I(not t c) = 70/67.5 = 1.04
 - I(not t not c) = 5/7.5 = 0.66

- Upward closed
 - ▶ If a k-itemset is correlated, so are all it's supersets
 - Look for minimal correlated itemsets, no subset is correlated
- \Box Can combine a-priori and $\chi 2$ statistic efficiently
 - ▶ No generate and prune as in support-confidence

Sequential Rules

- Association rule mining does not consider the order of transactions
- ☐ In many applications such orderings are significant
- In market basket analysis, it is interesting to know whether people buy some items in sequence
- Example: buying bed first and then bed sheets later
- ☐ In Web usage mining,
 - it is useful to find navigational patterns of users in a Web site from sequences of page visits of users

- Web sequence
 - < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island: <{clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:
 - <{Fellowship of the Ring} {The Two Towers} {Return of the King}>

- \square Let $I = \{i_1, i_2, ..., i_m\}$ be a set of items.
- A sequence is an ordered list of itemsets.
- We denote a sequence s by $\langle a_1, a_2, ..., a_r \rangle$, where a_i is an itemset, also called an element of s.
- □ An element (or an itemset) of a sequence is denoted by $\{x_1, x_2, ..., x_k\}$, where $x_i \in I$ is an item.
- We assume without loss of generality that items in an element of a sequence are in lexicographic order

- Size
 - ► The size of a sequence is the number of elements (or itemsets) in the sequence
- Length
 - ► The length of a sequence is the number of items in the sequence
 - ▶ A sequence of length k is called k-sequence
- \Box Given two sequences, $s_1 = \langle a_1 a_2 \dots a_r \rangle$ and $s_2 = \langle b_1 b_2 \dots b_v \rangle$
- \square s_1 is a subsequence of s_2 if there exist integers $1 \le j_1 < j_2 < ... < j_{r\square -1} < j_r \le v$ such that $a_1 \subseteq b_{j1}$, $a_2 \subseteq b_{j2}$, ..., $a_r \subseteq b_{jr}$
- □ A sequence $s_1 = \langle a_1 a_2 \dots a_r \rangle$ is a subsequence of another sequence $s_2 = \langle b_1 b_2 \dots b_v \rangle$, or s2 is a supersequence of s_1 , if there exist integers $1 \le j_1 < j_2 < \dots < j_\{r-1\} < jr \le v$ such that $a_1 \subseteq bj1$, $a2 \subseteq bj2$, ..., $ar \subseteq bjr$. We also say that s2 contains s1.

- \square Let I = {1, 2, 3, 4, 5, 6, 7, 8, 9}.
- □ The sequence $\langle \{3\}\{4, 5\}\{8\} \rangle$ is contained in (or is a subsequence of) $\langle \{6\} \{3, 7\}\{9\}\{4, 5, 8\}\{3, 8\} \rangle$
- □ In fact, $\{3\} \subseteq \{3, 7\}$, $\{4, 5\} \subseteq \{4, 5, 8\}$, and $\{8\} \subseteq \{3, 8\}$
- \square However, $\langle \{3\}\{8\} \rangle$ is not contained in $\langle \{3, 8\} \rangle$ or vice versa
- The size of the sequence $\langle \{3\}\{4, 5\}\{8\} \rangle$ is 3, and the length of the sequence is 4.

- ☐ The input is a set S of input data sequences (or sequence database)
- □ The problem of mining sequential patterns is to find all the sequences that have a user-specified minimum support
- Each such sequence is called a frequent sequence, or a sequential pattern
- The support for a sequence is the fraction of total data sequences in S that contains this sequence

- Itemset
 - Non-empty set of items
 - Each itemset is mapped to an integer
- Sequence
 - Ordered list of itemsets
- Support for a Sequence
 - Fraction of total customers that support a sequence.
- Maximal Sequence
 - ▶ A sequence that is not contained in any other sequence
- Large Sequence
 - Sequence that meets minisup

Customer ID	Transaction Time	Items Bought
1	June 25 '93	30
1	June 30 '93	90
2	June 10 '93	10,20
2	June 15 '93	30
2	June 20 '93	40,60,70
3	June 25 '93	30,50,70
4	June 25 '93	30
4	June 30 '93	40,70
4	July 25 '93	90
5	June 12 '93	90

Customer ID	Customer Sequence
1	< (30) (90) >
2	< (10 20) (30) (40 60 70) >
3	< (30) (50) (70) >
4	< (30) (40 70) (90) >
5	< (90) >

Maximal seq with support > 40%		
< (30) (90) >		
< (30) (40 70) >		

Note: Use Minisup of 40%, no less than two customers must support the sequence $< (10\ 20) (30) >$ Does not have enough support (Only by Customer #2) < (30) >, < (70) >, < (30) (40) > ... are not maximal.

- Apriori-based Approaches
 - ▶ GSP
 - ► SPADE
- Pattern-Growth-based Approaches
 - ▶ FreeSpan
 - PrefixSpan

The Generalized Sequential Pattern (GSP) Mining Algorithm

- The Apriori property for sequential patterns
 - ▶ If a sequence S is not frequent, then none of the super-sequences of S is frequent
 - For instance, if <hb> is infrequent so do <hab> and <(ah)b>
- GSP (Generalized Sequential Pattern) mining algorithm
 - Initially, every item in DB is a candidate of length-1
 - for each level (i.e., sequences of length-k) do
 - scan database to collect support count for each candidate sequence
 - generate candidate length-(k+1) sequences from length-k frequent sequences using Apriori
 - repeat until no frequent sequence or no candidate can be found
- Major strength: Candidate pruning by Apriori

- Step 1:
 - Make the first pass over the sequence database D to yield all the 1-element frequent sequences
- ☐ Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
 - Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
 - Prune candidate k-sequences that contain infrequent (k-1)-subsequences
- Support Counting:
 - Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
 - Eliminate candidate k-sequences whose actual support is less than minsup

x_g: max-gap

n_g: min-gap

m_s: maximum span

$$x_g = 2$$
, $n_g = 0$, $m_s = 4$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

Mining Sequential Patterns with Timing Constraints

- ☐ Approach 1:
 - Mine sequential patterns without timing constraints
 - Postprocess the discovered patterns
- Approach 2:
 - Modify GSP to directly prune candidates that violate timing constraints

Sequential Rules

- ☐ FP-growth
- Multi-level association rules
- Correlation rules
- Sequential pattern mining