Infinite Factorial Infinite Hidden Markov Model

Isabel Valera, Francisco J. R. Ruiz, Fernando Perez-Cruz

University Carlos III in Madrid

- Introduction
- Nonbinary Infinite Factorial HMM
- Gaussian Observation Model
- Prior on the Number of States
- Experiments
- **6** Conclusions

- Introduction
- 2 Nonbinary Infinite Factorial HMM
- Gaussian Observation Model
- Prior on the Number of States
- Experiments
- Conclusions

Introduction (1/2)

- Real-world time series analysis:
 - Trading in financial markets (many agents buying or selling shares, operating at different frequencies).
 - Psyquiatric patients (several mood/personality disorders evolving with time).
- Hidden Markov models (HMM) broadly applied to deal with time series.
- Limitations:
 - Not considering the complexity of the model.
 - Needing to prespecificate the model structure.
- Solutions:
 - Reversible jump MCMC.
 - Bayesian nonparametric (BNP) models, which allow an open-ended number of degrees of freedom.

Introduction (2/2)

• Our objective model takes the form of a factorial HMM.

- Both Q and M are unknown.
 - M is inferred from standard BNP inference methods.
 - Q is inferred from techniques similar to reversible jump MCMC methods.

- Introduction
- Nonbinary Infinite Factorial HMM
- Gaussian Observation Model
- Prior on the Number of States
- Experiments
- 6 Conclusions

Nonbinary Infinite Factorial HMM (1/2)

• Finite version of the model (with a fixed number of states Q):

$$s_{tm}|s_{(t-1)m}, \mathbf{A}^m \sim \mathbf{a}^m_{s_{(t-1)m}}$$

$$\mathbf{a}_q^m | Q, \beta_0, \beta \sim \text{Dirichlet}(\beta_0, \beta, \dots, \beta)$$

$$\mathbf{a}_0^m = egin{bmatrix} \mathbf{a}_0^m & (1 - \mathbf{a}^m) p_1^m & \dots & (1 - \mathbf{a}^m) p_{Q-1}^m \end{bmatrix}$$

$$a^m | \alpha \sim \operatorname{Beta}\left(1, \frac{\alpha}{M}\right),$$

$$\mathbf{a}^m | \alpha \sim \operatorname{Beta}\left(1, \frac{\alpha}{M}\right), \qquad \mathbf{p}^m | Q, \gamma \sim \operatorname{Dirichlet}(\gamma)$$

Nonbinary Infinite Factorial HMM (2/2)

- This model is reproducible when we make $M \to \infty$.
- We can compute $p([S]|Q, \alpha, \beta_0, \beta, \gamma)$.
- Properties:
 - The columns of **S** (Markov chains) are exchangeable.
 - ullet Elements in ullet (labels $\in \{0,1,\ldots,Q-1\}$) are exchangeable.
 - Markov-exchangeable in the rows.
- Culinary metaphor:
 - T customers enter sequentially a restaurant.
 - Each of them can either take q units from dish m or not take dish m, with probabilities based on the previous customer's choice.
 - After that, the *t*-th customer tries $M_{new} \sim \text{Poisson}(\alpha/T)$ new dishes.

- Introduction
- Nonbinary Infinite Factorial HMM
- Gaussian Observation Model
- Prior on the Number of States
- Experiments
- Conclusions

oduction Nonbinary Infinite Factorial HMM Gaussian Observation Model Prior on the Number of States Experiments Conclusions

Gaussian Observation Model (1/2)

- μ_a is a Gaussian $1 \times D$ vector.
- ullet $oldsymbol{\Phi}_q$ is a Gaussian $M_+ imes D$ matrix, each row with mean $oldsymbol{\mu}_q.$
- Observations \mathbf{x}_t are Gaussian, with mean value depending on the additive contribution of all the active chains at instant t.

Gaussian Observation Model: Inference (2/2)

Gibbs sampling

- For t = 1, ..., T:
 - Sequentially sample each element stm from

$$p(s_{tm} = k | \mathbf{X}, \mathbf{S}_{\neg tm}, \mathcal{H}) \propto p(s_{tm} = k | \mathbf{S}_{\neg tm}, \mathcal{H}) p(\mathbf{X} | \mathbf{S}, \mathcal{H})$$

• Draw M_{new} columns of **S** with states s_{tm} from a distribution where the prior is $\operatorname{Poisson}(M_{new}|\frac{\alpha}{T}) \times \frac{1}{(Q-1)^{M_{new}}}$.

Variational inference

- Valid for a finite (and large enough) number of chains *M*.
- Propose a distribution $q(\cdot)$ to approximate $p_M(\cdot|\mathbf{X},\mathcal{H})$.
- Minimize the KL divergence from $q(\cdot)$ to $p_M(\cdot|\mathbf{X},\mathcal{H})$.
- Optimize by iteratively applying a fixed-point set of equations.
 Involves a forward-backward algorithm for each chain.
- Approximate method, but much faster than sampling.

- Introduction
- 2 Nonbinary Infinite Factorial HMM
- Gaussian Observation Model
- Prior on the Number of States
- 5 Experiments
- Conclusions

Prior on the Number of States

• The number of states Q is Poisson distributed:

$$Q|\lambda \sim 2 + \text{Poisson}(\lambda)$$

Inference

- Update matrix S via Gibbs sampling for a fixed value of Q.
- Split a component into two or merge two into one, then accept or reject the change.
- Birth of a new state or death of an empty one, then accept or reject the change.
 - M (number of chains) is updated in step 1.
- Q (number of states) is updated in steps 2-3.

- Introduction
- 2 Nonbinary Infinite Factorial HMM
- Gaussian Observation Model
- Prior on the Number of States
- 5 Experiments
- Conclusions

Toy example

FHMM with 3 states and 2 chains:

Transition probabilities:

TO FROM	State 0	State 1	State 2
State 0	0.5964	0.1530	0.2506
State 1	0.2973	0.6738	0.0289
State 2	0.2463	0.2208	0.5329

TO FROM	State 0	State 1	State 2
State 0	0.6321	0.0466	0.3213
State 1	0.3205	0.4947	0.1848
State 2	0.2413	0.1262	0.6325

(a) Chain 1

(b) Chain 2

Observation model parameters (Φ_a) :

Observation examples:

- Model selection based on the Gibbs sampler with fixed number of states (Q).
- The maximum of the log posterior $p(\mathbf{S}, Q|\mathbf{X})$ is the model with Q=3 and $M_+=2$.

State 2

State 1

(a) The four base images.

Chain 1

Chain 2

(b) Mean of the base image inferred posterior probability.

- Introduction
- 2 Nonbinary Infinite Factorial HMM
- Gaussian Observation Model
- Prior on the Number of States
- Experiments
- 6 Conclusions

Conclusions

- The binary infinite factorial HMM has been extended to its nonbinary version.
- We have developed a Gibbs sampling and a variational inference algorithm.
- We have developed an inference algorithm to learn both the number of chains M and the number of states Q of the factorial HMM.
- Two illustrative experiments have been included.