

Preparação e Exploração avançada de dados com KNIME

LEI/MiEI @ 2024/2025, 2º sem

- Preparação de Dados
 - o Join, Concatenation, Sorter, Filter and Aggregations
- Preparação e Exploração Avançada de Dados
 - Missing Values Treatment, Binning, Feature Scaling, Outlier Detection
 - Feature Selection, Nominal Value Discretization, Feature Engineering
- Experimentação (hands on)

A Machine Learning Pipeline

(https://towardsdatascience.com/architecting-a-machine-learning-pipeline-a847f094d1c7)

Fluxo de Trabalho Típico @ Knime

Uma operação JOIN combina dados de diferentes fontes:

No KNIME estão disponíveis diversas combinações no nodo JOINER:

Concatenação Concatenation

União de colunas: CONCATENATE

Ordenação Sorter

Column Resorter

Altera a ordem das colunas de input, com base na definição dos parâmetros;

→ #

Ordena as linhas com base na definição dos parâmetros;

Sorter

 Permite que as linhas sejam classificadas a partir da tabela da base de dados de entrada; DB Sorter

Filtros *Filter*

Filtro de Colunas Column Filter

Filtro de Linhas Row Filter

Filtro de Linhas de Valores Nominais Nominal Value Row Filter

Filtro de Linhas Baseado em Regras Rule-based Row Filter

Filtro de Linhas em JAVA *Snippet*JAVA *Snippet Row Filter*

Operações de Agregação Count and Percent

Operações de Agregação Unique Count, Missing Values Count and Mode

Operações de Agregação Concatenate

Operações de Agregação *Mean, Sum, Standard Deviation and Kurtosis*

Operações de Agregação Min/Max vs First/Last

Operações de Agregação Dates

Operações Avançadas de Agregação Pattern Based

Operações Avançadas de Agregação Data Type Based

Operações Avançadas de Agregação No Aggregation vs No Grouping

Preparação Avançada de Dados

- Redimensionamento de atributos/ Feature scaling
- Deteção de valores atípicos/ Outlier detection
- Seleção de atributos/ Feature selection
- Tratamento de valores em falta/ Missing values treatment
- Enumeração de valores nominais/ Nominal value discretization
- Divisão em intervalos/ Binning
- Engenharia de atributos/ Feature engineering

Redimensionamento de atributos Feature scaling

- Normalizar a gama de valores de atributos;
- Muitos classificadores usam métricas de distância (ex.: distância euclidiana) e, se um atributo tiver uma gama alargada de valores, a distância será definida por esse atributo em particular. Por isso, a gama de valores deve ser normalizada para que cada atributo possa contribuir proporcionalmente para a distância final.

Redimensionamento de atributos Feature scaling

- Normalizar a gama de valores de atributos:
 - Normalização:

Redimensionar os dados para que todos os valores caiam no intervalo de 0 e 1, por exemplo.

$$z = (b - a) \frac{x - \min(x)}{\max(x) - \min(x)} + a$$

Redimensionamento de atributos Feature scaling

- Normalizar a gama de valores de atributos:
 - Standardization (ou Z-score Normalization):
 Redimensionar a distribuição de valores para que a média dos valores observados seja 0 e o desvio padrão seja 1.
 Assume que os dados se ajustam a uma distribuição gaussiana com média e desvio padrão bem comportados, o que nem sempre é o caso.

$$z = \frac{x_i - \mu}{\sigma}$$

- Deteção de valores atípicos (outliers):
 - o Estratégias baseadas em estatística:
 - Box Plots
 - Z-Score (std. dev)

Box Plot

Estimated
Yearly Income

- Deteção de valores atípicos (outliers):
 - Estratégias baseadas em conhecimento

Rule-based Row Filter

- Deteção de valores atípicos (outliers):
 - Estratégias baseadas em conhecimento

Rule-based Row Filter

- Deteção de valores atípicos (outliers):
 - o Estratégias baseadas em modelos:
 - Isolation Forest
 - One-Class SVM
 - Minimum Covariance Determinant
 - ...

- Seleção de atributos:
 - O Que atributos devem ser usados para criar um modelo de previsão?
 - Selecionar um subconjunto de atributos mais importantes para reduzir a dimensionalidade;
 - A remoção de atributos pouco importantes:
 - Pode afetar significativamente o desempenho de um modelo;
 - Reduz o overfitting (menor probabilidade de tomar decisões com base em ruído);
 - Melhora a precisão;
 - Ajuda a reduzir a complexidade de um modelo (reduz o tempo de treino);
 - o 0 que podemos remover:
 - Atributos redundantes (duplicados);
 - Atributos irrelevantes e desnecessários (não úteis);
 - Métodos de seleção de atributos:
 - Métodos de filtro;
 - Métodos wrapper,
 - Métodos embebidos;

Métodos de Filtro:

o Remover uma *feature* se a percentagem de *missing values* for superior a um determinado valor estabelecido;

- O Usar o teste "chi-square" para medir o grau de dependência entre uma *feature* e o *target*.
 - Para cada feature calcular X²;
 - Normalizar X² e ordenar de forma decrescente;
 - Selecionar 'n' features com maior importância;
 (ou as que estão acima de um determinado limite)

Métodos de Filtro:

- 0 ...
- o Remover uma feature se o valor do desvio padrão for baixo;
- o Remover uma feature se o valor de skew for elevado;
- o Remover features com alta correlação;

Métodos de Filtro:

0 ...

- Principal Component Analysis (PCA):
 - Técnica usada para reduzir a dimensão do espaço de features;
 - O objetivo é reduzir o número de features sem perder (demasiado) conhecimento;
 - Uma aplicação comum de PCA é para visualização de dados de grande dimensão;

Scatter Plot PCA Analysis 1.0 0.8 0.6 0.4 0.2 Em 1 -0.2 -0.4 -0.6 -0.8 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 Reset Apply A Close A

- Métodos wrapper.
 - Utilizar técnicas de machine learning para selecionar as features mais importantes;
 - Selecionar um conjunto de *features* como um problema de pesquisa;
 - Preparar diferentes combinações;
 - Avaliar e comparar as diferentes combinações;
 - Medir a "utilidade" das features com base no desempenho do classificador;

Sequential Forward Selection

Seleção de Atributos Feature Selection

Métodos wrapper.

- o Utilizar técnicas de *machine learning* para selecionar as *features* mais importantes;
 - Selecionar um conjunto de features como um problema de pesquisa;
 - Preparar diferentes combinações;
 - Avaliar e comparar as diferentes combinações;
 - Medir a "utilidade" das features com base no desempenho do classificador;

Tratamento de Valores em Falta *Missing Values*

- Tratamento de valores em falta:
 - Analisar cada atributo em relação ao número e proporção de valores em falta;
 - Decidir o que fazer:
 - Remover;
 - Calcular a média;
 - Interpolação linear;
 - · Criar máscaras;
 - ...

- Enumeração de valores nominais:
 - Os dados categóricos/nominais contêm valores de "etiquetas" em vez de valores numéricos;
 - Podem ser aplicados vários métodos:
 - Label Encoding,
 - One-Hot Encoding,
 - Binary Encoding,

Movie	Genre
Jumanji	Adventure
American Pie	Comedy
Braveheart	Drama
	•••

Movie	Genre
Jumanji	Adventure
American Pie	Comedy
Braveheart	Drama
•••	

Label Encoded

Movie	Genre	Category
Jumanji	Adventure	0
American Pie	Comedy	1
Braveheart	Drama	2

Movie	Genre
Jumanji	Adventure
American Pie	Comedy
Braveheart	Drama

One-Hot Encoded

Movie	Adventure	Comedy	Drama
Jumanji	1	0	0
American Pie	0	1	0
Braveheart	0	0	1
•••	•••		

Movie	Genre
Jumanji	Adventure
American Pie	Comedy
Braveheart	Drama
	•••

Label Encoded

Movie	Genre	Category
Jumanji	Adventure	0
American Pie	Comedy	1
Braveheart	Drama	2

Integer values have a natural ordered relationship between each other. ML models may be able to understand such relationships.

One-Hot Encoded

Movie	Adventure	Comedy	Drama
Jumanji	1	0	0
American Pie	0	1	0
Braveheart	0	0	1
•••	•••		

Categorical features where no such ordinal relationship exists. However, for a huge number of categories...

Enumeração de valores nominais:

Enumeração de valores nominais:

Enumeração de Valores Nominais Nominal Value Discretization/Encoding

Divisão em Intervalos Binning

- Divisão em intervalos:
 - Transformação de valores contínuos em discretos (bins):
 - Torna o modelo mais robusto e evita o overfitting;
 - Penaliza o desempenho do modelo, uma vez que, sempre que se descartam dados, perde-se conhecimento;

Divisão em Intervalos Binning

- Divisão em intervalos:
 - o Transformação de valores contínuos em discretos (bins)
 - Torna o modelo mais robusto e evita o overfitting,
 - Penaliza o desempenho do modelo, uma vez que sempre que se descartam dados, perde-se conhecimento;

- Engenharia de atributos:
 - o Processo de criação de novos atributos (features);
 - Aumentar o conhecimento/aumentar o desempenho dos modelos;
- De um atributo do tipo "data", que conhecimento se pode extrair?
 - 0 2020/10/29 16:30

- Engenharia de atributos:
 - Processo de criação de novos atributos (features);
 - Aumentar o conhecimento/aumentar o desempenho dos modelos;
- De um atributo do tipo "data", que conhecimento se pode extrair?
 - 0 2020/10/29 16:30
 - · Ano, mês, dia
 - Horas, minutos, segundos
 - Dia da semana (quinta-feira)
 - Dia útil ou fim de semana?
 - Dia útil ou feriado?
 - ...

- Engenharia de atributos:
 - o Processo de criação de novos atributos (features);
 - Aumentar o conhecimento/aumentar o desempenho dos modelos;
- De um atributo do tipo "data", que conhecimento se pode extrair?
 - 0 2020/10/29 16:30

- Engenharia de atributos:
 - o Processo de criação de novos atributos (features);
 - Aumentar o conhecimento/aumentar o desempenho dos modelos;
- De um atributo com coordenadas geográficas?
 - o 41.561859, -8.397455
 - Localização urbana ou rural?
 - Terra ou mar?
 - Quais as ruas na vizinhança deste ponto?
 - Há escolas/mercados/serviços nas imediações?
 - ...

