EmpowerAction: Economia Descentralizada

El documento presenta un marco integral para nuestra economía descentralizada "EmpowerAction." Se enfoca en la estructuración y regulación de precios por oferta y demanda, balances, emisiones, y circulación de tokens, así como en la gestión de créditos dentro del sistema.

1. Precio del Producto o Servicio

- Definido por oferta y demanda, cotizado en múltiples criptoactivos
- ullet Precio del producto o servicio en USD: P

2. Balance del Ecosistema

a. Ingresos

- Comisiones por transacción (a definir): Posibles comisiones: $A \in [0.002, 0.04]$. Estas comisiones representan los cargos aplicados a las transacciones dentro del sistema.
- Comisión por niveles (A definir): Niveles de Lealtad: $N: f(x_1, \ldots, x_4)$. Los niveles de lealtad pueden influir en las comisiones, ofreciendo incentivos para los usuarios frecuentes.
- Comisión por transacciones $C_m = P \times A \times N$. Comisión basada en el precio y niveles de lealtad.
- Comisión por transacciones abonadas con EMP(Token nativo): $C_{me} = P \times A \times N \times 0.5$.
- Ingresos totales en USD: ING = $\sum C_m + C_{me}$. Suma de todas las comisiones para calcular los ingresos totales.

b. Egresos

- $M_f \in [0.001, 0.48]$: Factor que representa el margen de gastos.
- Gastos USD de Mantenimiento G_m (De mayor a menor, con objetivo de en 1%): $G_m = \text{ING} \times M_f$. Calcula los gastos de mantenimiento basados en los ingresos y el margen.
- Gastos en USD Asignados a la inyección de liquidez: $R_y q = ING$ G_m . Esto determina la cantidad de dinero destinada a aumentar la liquidez en el sistema.
- \bullet EMP: Token nativo. VALOR DOLAR: $\mathrm{EMP}_v.$ Define el valor en dólares del token nativo.

- Cantidad de EMP a recomprar y quemar $(EM)_q$: $EM_q = R_y q / EMP_v$. Calcula la cantidad de tokens a recomprar y eliminar.
- Si $R_y q$ Absorbe la oferta total de tokens, el resto se convierte en R. Esta condición asegura que la oferta y la demanda de tokens estén equilibradas.
- Reservas en USD (R): $R = R_y q (\text{EM}_q \times \text{EMP}_v)$.
- R es utilizado para vigorizar la liquidez a través de diversos mecanismos decididos en consenso y basados en datos. Esto permite que el sistema mantenga una operación fluida y eficiente.

3. Emisión y Circulación de Tokens basada en créditos (EMP y DEUS)

El Crédito se emite cuando un usuario tenga fondos insuficientes para abonar servicios de una denominación menor al 40% de su crédito en USD total en la plataforma, Se liberará directamente en la cuenta del proveedor. (EMPe). Esto permite una mayor flexibilidad en las transacciones dentro del sistema.

a. Emisión por Crédito Utilizado

Créditos Mutuos

 $CR_d \in \{x1, \dots, x150\}$, donde x Representa el rango de créditos disponibles. Crédito Total en USD (CRDt): Vinculado a las Reservas, Crédito total disponible en el sistema.

CRusuario = CRDu × factor de comportamiento, podría estar en el rango [0.5, 1.5]

EMP

Se emite la cantidad de tokens representativa por valor nominal del servicio contratado (Definido entre partes). Esto vincula los tokens con el valor real de los servicios.

Articulación

 E_i = Cantidad inicial de tokens en circulación.

Emisión de deuda ejecutada por Crédito Utilizado: $CR_e = P$. Basada en el precio del servicio.

Emisión de token EMP x Credito utilizado: $\text{EMP}_e = \text{EMP}_v \times \text{CR}_e$

Emisión total EMP: $\text{EMP}_e t = E_{\text{inicial}} + \sum \text{EMP}_e - \text{EMP}_q$.

El prestatario recibirá "DUS" wrapped intransferible y eliminable por parte de la misma plataforma. Instrumento de Deuda.

DUS

El Pago se realiza en EMP o USD o ETH, libera su cupo de deuda DUS y permite Eliminar DUS de su wallet. Permitiendo utilizar nuevamente la plataforma. Esto proporciona un mecanismo para gestionar y liquidar deudas dentro del sistema.

Articulación

Crédito total en USD inicialmente (CD): 10 Dólar por cuenta, basado en las reservas. Valor de Wrapped DUS: 1 Dólar Emisión Total DUS: $\mathrm{DUS}_e = \mathrm{DUS}_v \times \mathrm{CR}_e$. Emisión de deuda.

Emisión total deuda a usuario $(DUS)_u : DUS_u = \sum DUS_e < D$.

Tokens DUS a Quemar: $\mathrm{DES}_q = \mathrm{D}pago$. Define los tokens a eliminar.

Emisión total de deuda en dólares de la plataforma $(DUS)_t : DUS_t = \sum DUS_u$

4. Política de Recomprar y Quemar

- Tokens Quemados $EMq = \frac{Ryq}{EMPv}$
- Si R_yq Absorbe la oferta Total de Tokens:
- Si $EM_q > \text{EMPtotal}$, entonces $R = R + R_y q (EM_q \times EMP_v)$.
- Si $EM_q < \text{EMPtotal}$, entonces R = R + 0.
- Actualización de la oferta de tokens:
- $EMPtotal_nuevo = EMPtotal-EMq$. Actualiza la oferta total de tokens en circulación.

En resumen:

EmpowerAction propone un sistema económico descentralizado robusto y flexible, con mecanismos claros y transparentes para la gestión de precios, comisiones, tokens, y créditos. La estructura presentada busca garantizar una operación fluida y eficiente, incentivando la lealtad y permitiendo la adaptabilidad a las condiciones cambiantes del mercado. La implementación de este sistema podría representar un gran paso hacia una economía digital más transparente, justa, y resiliente.