Estudo da Magnetização de Amostra Vibrante

Bruno Fernandes Laboratório de Física III Faculdade de Ciências, Universidade do Porto, Portugal

17 de novembro de 2021

Resumo

O presente trabalho experimental pretende caracterizar a magnetização de uma amostra ferromagnética vibrante à temperatura ambiente, através do registo do respetivo ciclo histerético. Para a concretização deste estudo, utilizar-se-á conhecimentos e técnicas do aparelho "Lock-in", que serão fucrais para a obtenção dos resultados experimentais. Recorrese, ainda, ao modelo discreto de Preisach como modelo auxiliar explicativo da histerese magnética, através de uma perspetiva sistemática.

1 Introdução Teórica

Frequentemente, o conhecimento experimental de certas quantidades físicas advém de medições indiretas, ou que possuem alguma dependência relativamente à variável em estudo. No caso dos fénomenos magnéticos sabemos que estes se mostram intimamente correlacionados com o movimento de cargas elétricas, e, portanto, a nível macroscópico, com a intensidade de corrente e diferença de potencial de um sistema.

Para o estudo da magnetização de uma amostra ferromagnética vibrante, faremos uso das noções de indução eletromagnética, fluxo magnético e momento dipolar magnético, pelo que poderão ser consultadas em [1].

1.1 Técnica VSM

A técnica VSM- Vibarting Sample Magnetometer- tem por base a determinação de campos magnéticos, com recurso à deteção de diferenças de potencial. Por outro lado, as propriedades ferromagnéticas da amostra ditam a existência de uma magnetização M, denunciada pela existência de uma campo magnético B_M no espaço envolvente. Ao forçarmos a vibração da amostra a uma dada frequência f, estaremos a criar uma variação temporal do fluxo originado por B_M . Desta forma, uma deteção prática dos processos físicos anteriormente relatados seria a leitura da tensão criada nos terminais de uma bobine próxima.

Por conseguinte, elaborou-se a montagem representada na fig.1. O princípio de funcionamento da montagem reside na criação de um campo magnético $\stackrel{\rightarrow}{H}=H\stackrel{\rightarrow}{ez}$, através da presença de corrente elétrica \mathbf{I} , em (5). Ao variar-se, gradualmente, a corrente \mathbf{I} , a alteração do vetor magnetização \mathbf{M} , devido ao campo $\stackrel{\rightarrow}{H}$, será assinalada pelas bobines de deteção, em (6), devido à modificação da tensão criada, estando conectadas ao lock-in.

Figura 1: 1 - amostra; 2 - barra porta-amostra; 3 - altifalante; 4 - estrutura de cartão; 5 - bobine de campo; 6 - bobines de detecção

Podemos traduzir estas relações ao definirmos o fluxo nas bobines de deteção como:

$$\Phi_M = K(z)m$$

Sendo \mathbf{m} dado por $\overrightarrow{m} = VM$ $\overrightarrow{u_z}$, V o volume da amostra e \mathbf{M} α \mathbf{B} . A função $\mathbf{K}(\mathbf{z})$ é uma função geométrica, condicionada pela posição, forma e número de espiras de cada bobine, encontrando-se definida na secção 6 deste relatório.

Também conseguimos definir a posição da amostra no eixo vertical, caso a mesma se encontre centrada em z=0:

$$z(t) = A\cos(wt)$$

Recorrendo à lei de Faraday-Henry [1], fazemos:

$$\varepsilon(t) = -\frac{d\Phi_M}{dt} = K'(0)\frac{dz}{dt}m$$

$$\varepsilon(t) = [K'(0)Awm]sin(wt)$$

Esta equação permite a determinação de \mathbf{M} , dado que \mathbf{M} α \mathbf{m} , a partir da medida experimental de ε . Contudo, este procedimento será limitado pelas constantes K'(0) e A, que poderiam ser calculadas através da análise de uma amostra padrão, sendo, por isso, os resultados obtidos apenas uma aproximação, a menos dum fator constante, do comportamento histerético ilustrado na fig.2 [2].

Figura 2: Ciclo histerético

1.2Técnica Lock-in

A técnica Lock-in foi introduzida neste procedimento experimental de modo a isolar o sinal sinusoidal a medir de qualquer tipo de "ruído" indesejado produzido pelos componentes da montagem, obtendo, assim, resultados mais precisos.

Este aparelho equivale a um filtro elétrico de largura de banda pequena, sintonizado numa frequência específica do sinal que se pretende medir, eliminando possíveis interferências.

Para além desta propriedade, o Lock-in funciona ainda como amplificador do sinal a medir, sendo o ganho traduzido por $A_{max}=\frac{V_{out}}{V_{singl}}\simeq 10^9$. Na medição do sinal pode configurar-se a disposição do Lock-in para fasores, de modo a

facilitar o manuseamento matemático destas quantidades:

$$R = \sqrt{{V_X}^2 + {V_Y}^2} = V_S$$
$$\phi = \arctan(\frac{V_Y}{V_X})$$

Sendo ϕ a diferença de fase entre a referência e o sinal pretendido e V_S o módulo das componentens sinusoidais em quadratura [2].

Procedimento Experimental 2

Na bancada de trabalho montou-se o circuito ilustrado na figura abaixo:

Figura 3: Circuito real montado

A corrente máxima disponibilizada pela fonte foi registada num curto período de tempo para evitar sobreaquecimento do aparelho $I \approx |5A|$. Definiu-se a frequência no oscilador para $\simeq 120 Hz$, comparando-a com a obtida no Lock-in, que, à partida, teria de ser semelhante para alcançarmos um bom isolamento do sinal. Ajustando a fase ϕ_0 , selecionou-se o modo (R,ϕ) para a leitura das medidas, sendo o formato já delineado, dado a maior facilidade de manobramento matemático de fasores.

Na obtenção do ciclo histerético, delinearam-se intervalos de variação, nos quais se modificou, discretamente, o valor da intensidade de corrente, presente nas bobinas criadoras de campo.

Intervalos de variação

$$A': 1A \Rightarrow 0A, \ B': 0A \Rightarrow -1A, \ C': -1A \Rightarrow 0A$$

$$D': 0A \Rightarrow 1A, E': 1A \Rightarrow 0A$$

Realizaram-se as mesmas medidas para um intervalo com $I \in [-5A, 5A]$, de forma a observar as disparidades gráficas relacionadas com a amplitude do intervalo escolhida.

2.1 Observações

As bobines de deteção encontram-se em oposição de série de forma a que o campo criado pelas mesmas seja anulado, para não interferir na magnetização da amostra.

A barra porta-amostra é não magnética, de modo a que as bobines de deteção registem apenas a magnetização da esfera.

Por fim, o Lock-in compara o sinal de entrada com o de referência, recorrendo a um multiplicador PSD que é sensível à fase, provocando um $\delta \phi$ entre sinal e referência [2].

3 Resultados Experimentais

Com a pretensão de estabelecer uma relação comparativa entre métodos de obtenção de dados, foram estabelecidos dois regimes:

A)
$$I \in [-5A, 5A]$$

B)
$$I < |1A|$$
.

Método A

Método B

Para a comparação do método B, com um referência teórica, recorreu-se à função de Langevin, dadas as condições experimentais que assim o permitem [3]:

$$L(x) = \coth(x) - \frac{1}{x}$$

Estimativa de H

Apesar dos resultados obtidos serem medidas indiretas das variáveis relacionadas com fenómenos magnéticos, conseguimos determinar o valor do campo aplicado H, através de uma estimativa. O campo dentro de um solenoide é dado por:

$$\stackrel{\rightarrow}{H_{max}} = \mu_{ar} n I_{max} \stackrel{\rightarrow}{z}$$

Sendo μ_{ar} , a constante de permabilidade magnética no ar, n o número de espiras de cabo de cobre por unidade de comprimento e I a corrente que percorre o solenoide. Admitindo que a bobine possui 25 espiras por centímetro, obtemos:

$$\overrightarrow{H_{max}} = \mu_0 \times 0, 25 \times 1 \stackrel{\rightarrow}{z}$$

$$\stackrel{\rightarrow}{H_{max}} = (\ 3, 14 \times 10^{-4} \stackrel{\rightarrow}{z}\)mT$$

Corrente de Saturação

Dos fundamentos teóricos já apresentados é possível observar que existem zonas em que o aumento da intensidade de H provoca uma variação quase nula em M, indicando a saturação do material. Paralelamente, existe um valor para a corrente I, a partir do qual a amostra atinge a saturação. Como a nossa gama de variação, no método B, se encontra dentro de $-1A \le I \le 1A$ julga-se que não é possível alcançar as zonas pretendidas, de modo a que podemos recorrer à função de Langevin como modelo aproximado:

Portanto, estima-se, segundo o modelo teórico, que a saturação deverá ocorrer para valores da corrente I>|5A|

Modelo Discreto de Preisach

Contudo, podemos fornecer uma perspetiva mais sistemática e intuitiva deste fenómeno físico, através do modelo de Preisach [4]. Neste modelo, consideramos um material magnético como a disposição paralela entre domínios independentes de "histerões", estando cada um com uma magnetização correspondente de b ou -b, por exemplo.

Em termos esquemáticos, podemos visualizar um operador $R_{\alpha,\beta}$, em que o valor α corresponde à subida do degrau unitário e o valor β à descida deste degrau, em que o "histerão" é a unidade básica do modelo.

Figura 4: Bloco unitário do modelo de Preisach

Quando $x < \alpha$, temos um output nulo até que x alcança β e há uma subida para um valor unitário, não nulo. Posteriormente, se voltarmos a diminuir x , apenas teremos y=0 quando x for menor ou igual a α . Por esta análise observamos que o operador $R_{\alpha,\beta}$ toma a forma de um loop, com a próxima etapa dependente da etapa anterior.

Matematicamente escremos:

$$y(x) = \begin{cases} 1 & \text{if } \beta \ge 0; \\ 0 & \text{if } x \le \alpha; \\ k & \text{if } \alpha < x < \beta \end{cases}$$

Sendo k=0 na região $\alpha < x < \beta$, se previamente se encontrava na região $x < \alpha$ e, por outro lado, k=1 se anteriormente $x > \beta$.

O modelo discreto de Preisach consiste, pois, na soma ponderada de cada um destes loops.

Figura 5: Diagrama de Blocos

Cada um destes loops tem um peso m na contribuição total para a magnetização da amostra. Ao aplicarmos estas noções com um número N de blocos infinito, estaremos a transformar este modelo discreto num modelo contínuo, com maior número de semalhanças ao processo de histerese magnética.

Figura 6: Ciclo Histerético com N blocos

Quanto maior for N, melhor será a nossa aproximação.

3.1 Observações

Os dados experimentais aqui demonstrados não foram, na sua totalidade, obtidos apenas pelo autor deste relatório, sendo que os registos do método B foram retirados por outro grupo de alunos da unidade curricular, de modo a poder estabelecer uma comparação entre metodologias.

4 Análise de Resultados

4.1 Comparação Gráfica entre Métodos

Os dois regimes foram construídos de forma a que um apresentasse uma forma mais abrangente dos pontos, contudo mais grosseira, e outro que retratasse um intervalor menor, mas com maior detalhe. Deste modo, observa-se que no gráfico A existe uma forma aproximada ao ciclo histerético, ainda que devido ao seu desvio da origem se julgue que os parâmetros no Lock-in foram mal calibrados. Para além disso, os pontos próximos de I=5A divergem, o que nos indica que algo não foi executado devidamente na realização da experiência, potencialmente no manuseamento do Lock-in. Contudo, para valores negativos temos uma convergência satisfatória dos pontos. Em contrapartida, o método B ilustra simetria em relação à origem, não estando muito afastado do modelo teórico de Langevin, sendo este também uma aproximação à função de Brillouin [3]. Neste regime optou-se por uma medição minuciosa de forma a alcançar valores com maior precisão e, por outro lado, ilustrar o comportamento ferromagnético num intervalo restrito.

Por fim, estas representações gráficas não evidenciam de forma completa e geral o ciclo histerético, como já mencionado, tratam-se de aproximações com fatores constantes não determinados, pelo que se julga que os resultados seriam ainda mais esclarecedores caso estivéssemos munidos de uma amostra padrão.

4.2 Interpretação dos Fenómenos Físicos

Inicialmente, quando aumentamos a corrente I, e, por conseguinte, a intensidade do campo \mathbf{H} , a magnetização da amostra, dada pela proporcionalidade com a tensão ε , aumenta até chegar a um ponto de saturação, não visível nos nossos gráficos, pois I teria de ser superior a 5A. Contudo, o aumento da magnetização pode ser explicado através do pressuposto de que os materiais ferromagnéticos possuem dipolos que tendem a dispôr-se paralelamente a dipolos vizinhos, em que cada orientação está agrupada em **domínios**. O aumento do vetor \mathbf{M} será à custa da expansão ou redução de certos domínios. Quando o campo é suficientemente forte a amostra é constituída apenas por um domínio predominante, causando a saturação do material. No entanto, quando reduzimos novamente a corrente e a tornamos nula é possível medir ainda alguma magnetização na amostra, evidenciando, deste modo, a confirmação de que se trata de um íman permanente pois não carece de um campo exterior para suster a sua magnetização.

Assim sendo, podemos estabelecer a relação com o modelo de Preisach e justificar a sua importância como modelo explicativo, visto que o bloco fundamental do mesmo pode ser equiparado aos domínios constutídos por dipolos magnéticos. A expansão/ redução de cada domínio pode ser traduzida pelo peso que se atribui a cada bloco na soma ponderada, para um determinado estágio do ciclo histerético. Deste modo, o modelo de Preisach oferece uma visão simplista e esquemática da magnetização de uma amostra ferromagnética.

5 Conclusões

- Com este estudo podemos afirmar que os materiais ferromagnéticos possuem a capacidade de conservar a sua magnetização, mesmo na ausência de estímulos.
- Apesar de não verificado experimentalmente, os resultados indicam, de acordo com o modelo teórico de Langevin, que é possível saturar a amostra para correntes superiores a |5A|.
- O modelo de Preisach revela-se um modelo intuitivo e sistemático para caracterizar o fenómeno de histerese magnética.
- O procedimento experimental desenvolvido mostra-se insuficiente para caracterizar de forma detalhada e precisa o ciclo histerético do material, providenciando apenas aproximações.

Referências

- [1] David J.Griffths 2017, Introduction to Eletrodynamics.
- [2] Docentes Laboratório de Física III
- [3] Brillouin and Lagevin functions, Wikipedia 2021
- [4] Preisach model of hysteresis, Wikipedia 2021

6 Anexo

Função K(z)

Se considerarmos as bobines de deteção centradas em $z=\pm\frac{h}{2},$ então o fluxo será dado por:

$$\Phi^{\pm} = \pm F(z \pm \frac{h}{2})$$

Sendo F uma função também geométrica que depende da posição $z\pm\frac{h}{2}$ da amostra em relação ao centro de cada bobine de deteção, número de espiras de cada bobine e configuração geométrica.

$$\Phi_M(z) = \Phi^+(z) + \Phi^-(z)$$

$$\Phi_M(z) = \left[F(z + \frac{h}{2}) - F(z - \frac{h}{2}) \right] m$$

$$\Phi_M(z) = K(z)m$$

Dados | Método A

	I (A)	V (mV)	phi (deg)					e.
	5,094	18,25	0		0	14	-0,9	
	4,894	18	0		-0,398	13,5	-1,4	
	4,393	17,75	0,2		-0,799	13,25	-1,5	
	3,894	17,37	-0,4		-1,199	12,87	-1,5	
	3,494	17	-0,4		-1,598	12,5	-1,5	
A	3,095	16,62	-0,4		-1,997	12,12	-1,6	
	2,696	16,12	-0,4	В	-2,397	11,87	-1,6	
	2,294	15,77	-0,5		-2,796	11,37	-1,7	
	1,895	15,62	-0,5		-3,195	11	-1,7	
	1,497	15,25	-0,5		-3,593	10,72	-1,8	
	1,098	15	-0,5		-4	10,25	-1,8	
	0,697	14,62	-0,9		-4,393	9,75	-1,9	
	0,299	14,25	-0,9		-4,793	9,37	-2	
	0,000	14	-0,9		-5,094	9,12	-2	20
		-5,094	9,12	-2			Incertezas	3/4
		-4,793	9,37	-2		(A)	V (mV)	phi (de
		-4	9,62	-1,9		0,001	0,01	ė.
		-3,992	9,87	-1,9				
		-3,593	10,2	-1,8				
		-3,195	10,5	-1,8				
		-2,796	10,81	-1,7				
	С	-2,397	11,12	-1,7				
	С	-2,397 -1,997						
	С	F. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	11,5	-1,7				
	С	-1,997	11,5 11,75	-1,7				
	С	-1,997 -1,598	11,5 11,75 12	-1,7 -2,1 -2,1				
	С	-1,997 -1,598 -1,199	11,5 11,75 12 12,37	-1,7 -2,1 -2,1				

	0	13	2		4,692	16,5	-2
	0,398	13,25	-2		4,294	16,12	-2
	0,799	13,5	-1,9		3,894	15,87	-2,1
	1,199	13,75	-1,9		3,494	15,5	-2,1
	1,598	14	-2,3		3,095	15,25	-2,1
	1,997	14,37	-2,3		2,696	14,87	-2,2
	2,397	14,62	-2,2	E	2,294	14,92	-2,2
D	2,796	14,95	-2,2		1,895	14,25	-2,3
	3,195	15,25	-2,1		1,497	14	-2,3
	3,593	15,5	-2,1		1,098	13,75	-2,3
	3,992	15,87	-2		0,697	13,37	-1,9
	4,393	16,12	-2		0,299	13,12	-2
	4,793	16,5	-2		0	12,87	-2
	5,094	16,75	-2			60	

Dados | Método B

			Incertezas					
- 3	Oscilador	Lock-in	1 (A)	RmV	phi deg			
	120,0 Hz	119,6 Hz	0,001	0,01	0,1			
	A'			В'			C'	
Ú.	R mV	phi deg	(A)	R mV	phi deg	I (A)	R mV	phi deg
0,961	26,75	-105,5	0	1,87	0	-0,903	-25,62	74,
0,945	26,37	-105,2	-0,049	-0,87	0	-0,895	-25,5	74,
0,895	25,12	-105,1	-0,099	-1,62	0	-0,846	-24,25	74,
0,847	23,75	-105,3	-0,151	-3	70,5	-0,798	-22,87	74,
0,798	22,5	-105,2	-0,199	-4,12	70,5	-0,747	-21,5	
0,747	21	-104,9	-0,249	-5,62	71,9	-0,695	-20,12	74,
0,695	19,62	-105,5	-0,299	-7,12	72,7	-0,646	-18,75	73,
0,646	18,37	-104,8	-0,347	-8,75	73,4	-0,597	-17,25	73,
0,597	16,87	-105,2	-0,399	-10,25		-0,547	-15,87	73,
0,548	15,5	-104,5	-0,447	-11,75	74	-0,497	-14,37	73,
0,497	14	-105	-0,497	-13,25	73,6	-0,447	-13	73,
0,447	12,62	-105	-0,548	-14,75	73,8	-0,399	-11,62	73,
0,399	11,37	-104,7	-0,597	-16,37	74,1	-0,347	-10,12	72,
0,347	9,87	-104	-0,646	-17,87	73,8	-0,299	-8,87	7.
0,299	8,62	-104,3	-0,695	-19,37	73,9	-0,249	-7,62	72,
0,249	7,37	-103,8	-0,747	-20,75	73,9	-0,199	-6,5	73,
0,199	6,25	-102,7	-0,798	-22,25	73,8	-0,151	-5,37	70,
0,151	5,25	-103,8	-0,847	-23,62	73,8	-0,099	-4,12	70,
0,099	4,12	-102,3	-0,895	-25,37	74	-0,049	-3,25	69,
0,049	3,25	-101,1	-0,929	-26,25	74,3	0	-2,12	69,
0	1,87	0	-0,915	-25,87	74			
			-0,911	-26,12	-104,1			
			-0,905	-25,75	73,9			

D'						
I (A)	R mV	phi deg				
0	-2,12	69,3				
0,049	1	0				
0,099	1,37	0				
0,151	2,75	-97,9				
0,199	4,25	-101,9				
0,249	5,62	-103,7				
0,299	7,25	-104				
0,359	9	-104,5				
0,399	10,25	-104,9				
0,447	11,87	-104				
0,497	13,25	-104,8				
0,548	14,87	-104,6				
0,597	16,37	-104,6				
0,646	18	-104,9				
0,695	19,5	-104,5				
0,747	21	-105				
0,798	22,5	-105,1				
0,846	23,87	-105,2				
0,895	25,5	-105,1				
0,907	25,87	-105,2				
0,903	25,62	-105,3				
0,907	26	-104,2				
0,902	25,87	-104,6				

E'						
(A)	RmV	phi deg				
0,895	25,75	-104,6				
0,846	24,5	-104,5				
0,798	23	-104,5				
0,747	21,87	-104,4				
0,695	20,73	-104,7				
0,646	19	-104,5				
0,597	17,5	-104,5				
0,547	15,87	-104,1				
0,497	14,5	-104,6				
0,447	13,12	-104,4				
0,399	11,75	-104,2				
0,347	10,25	-103,4				
0,299	8,87	-103,7				
0,249	7,62	-103,3				
0,199	6,37	-103,6				
0,151	5,37	-102,3				
0,099	4,12	-102,3				
0,049	3,25	-99,2				
0	1,87	0				