ROTARY POSITION SESOR TEST DATA OF SV01 SERIES

SUMMARY OF TEST DATA

MODEL: SV01

RESISTANCE VALUE: 10k ohm

No.	Test Item	Specification		Test Data			
				n	Max.	Ave.	Min.
1	Temperature Coefficient of Resistance	-40°C	± 500 ppm/°C	10	-111.9	-116.57	-125.0
	(TCR)	+85°C		10	85.1	71.60	60.5
2	Temperature Cycle (Thermal Shock)	ΔTR	±20%	10	-3.27	-3.417	-3.59
		Linearity	±3%	10	1.54	1.109	0.55
3	Humidity Exposure	ΔTR	±20%	10	3.63	3.488	3.28
		Linearity	±3%	10	1.74	1.142	0.69
4	Vibration	ΔTR	±10%	10	-0.12	-0.168	-0.25
		Linearity	±3%	10	1.68	1.010	0.44
5	Shock	ΔTR	±10%	10	-0.01	-0.046	-0.07
		Linearity	±3%	10	1.71	0.957	0.58
6	Humidity Load Life	ΔTR	±20%	10	-1.94	-2.000	-2.10
		Linearity	±3%	10	1.73	1.165	0.76
7	High Temperature Exposure	ΔTR	+5/-30%	10	-4.48	-4.727	-5.01
		Linearity	±3%	10	1.65	1.150	0.73
8	Low Temperature Exposure	ΔTR	±20%	10	0.69	0.659	0.61
		Linearity	±3%	10	1.69	1.181	0.81
9	Rotational Life	ΔTR	±20%	10	-0.24	-0.348	-0.72
		Linearity	±3%	10	1.85	1.309	0.94
10	Resistance to Soldering Heat	ΔTR	±20%	10	-5.45	-5.965	-6.62
		Linearity	±3%	10	1.57	0.998	0.72

(Note)

• △TR : Total Resistance Change

Linearity

Independent linearity shall vary no more than ±2% within ±160° to 50% voltage ratio. Taper: linear, 100%/333.3° Measured with the circuit as below.

TEST METHOD

1. Temperature coefficient of resistance (TCR)

The rotary position sensor should be subjected to each of the following temperatures for 30~45 minutes.

[Table 1]

Sequence	*1	2	*3	4	Note* : Reference temperature
Temp. (°	25	-40	25	85	

Temperature coefficient of resistance should be applied to the following formula.

$$TCR = (R_2 - R_1) / (R_1 (T_2 - T_1)) \times 10^6 (ppm / ^{\circ}C)$$

T₁: Reference temperature in degrees celsius

T₂: Test temperature in degrees celsius

R₁: Resistance at reference temperature in ohm

R₂: Resistance at test temperature in ohm

2. Temperature cycle (Thermal shock)

The rotary position sensor should be subjected to Table 2 temperature for 5 cycles. Then, the rotary position sensor should be kept in the dry box for $1\sim2$ hours.

[Table 2]

Sequence	1	2	3	4	
Temp.(°C)	-40±3	+25±2	+85±3	+25±2	
Time	30	5 max.	30	5 max.	

3. Humidity Exposure

The rotary position sensor should be stored in a chamber at temperature of $60\pm2^{\circ}$ C and relative humidity of $90\sim95\%$ for 250 ± 8 hrs. After removing from the chamber, the rotary position sensor should be kept in the dry box for $5\pm1/6$ hours.

4. Vibration

The rotary position sensor should be tested under the condition of the amplitude of 1.5mm, the frequency range from 10 to 55Hz (should be traversed in approximately one minute) and 2 hours in each of 3 mutually perpendicular directions(total 6 hours). Then, the rotary position sensor should be kept in the dry box for 1~2 hours.

5. Shock

The rotary position sensor should be tested under the condition of the peak acceleration 20G max. in half-sine wave and 5 shocks in each of 3 mutually perpendicular directions(total 15 shocks). Then, the rotary position sensor should be kept in the dry box for 1~2 hours.

6. Humidity load life

Full rated continuous working voltage not exceeding 5Vdc should be applied intermittently between terminal #1 and terminal #3 of the rotary position sensor, 1.5 hours on and 0.5 hours off, for 96±4 hours in total in a chamber at a temperature of 40±2°C and the relative humidity of 90~95%. After removing from the chamber, the rotary position sensor should be kept in the dry box for 5±1/6 hours.

7. High temperature exposure

The rotary position sensor should be stored in a chamber at a temperature of 85±2°C without loading for 250±8 hours. After removing from the chamber, the rotary position sensor should be kept in the dry box for 1~2 hours.

8. Low temperature exposure

The rotary position sensor should be stored in a chamber at a temperature of -40±3°C without loading for 168±4 hours. After removing from the chamber, the rotary position sensor should be kept in the dry box for 1~2 hours.

9. Rotational life

The adjustment rotor should be continuously rotated within $\pm 160^{\circ}$ of effective electrical rotational angle, at the rate of one cycle for 6 seconds for 1 Million cycles under the condition of $25\pm 2^{\circ}$ C of temperature without loading. Then, the rotary position sensor should be kept in the dry box for 10 ± 5 minutes.

10. Resistance to soldering heat

The rotary position sensor should be soldered by reflow soldering method according to the standard soldering Condition(refer to the below table). Then, the rotary position sensor should be kept in the dry box for 24 +8/-0 hours.

Pre-h	eating	Hea	ating	Peak	Cycle of
Temp.(°C)	Time(sec.	Temp.(°C)	Time(sec.	Temp.(°C)	reflow
150~180	60~120	230	30~50	260 +5/-0	2