Example 1 (Propositional Logic)

 $The\ Problem$

Axioms: $P \vee \neg P$ (1)

$$\neg \neg P \Rightarrow P \tag{2}$$

$$[P \wedge Q] \Rightarrow P$$
 (3)

$$[P \land Q] \Rightarrow Q \tag{4}$$

Inference Rules: Modus Ponens R_1

Substitution R_2

 $S = \{ (\text{Pat is a student}) \, \land \, (\text{Pat is a girl}), (\text{Pat is a girl}) \Rightarrow (\text{Pat is human}) \}$

Infer: (Pat is human)

I. By R_2 and S_1 on (4) (Pat is a student) \wedge (Pat is a girl) \Rightarrow (Pat is a girl)

II. Using S_1 , M.P. and I (Pat is a girl)

III. Using S_2 , M.P. and II (Pat is human)

Example 2 (Predicate Logic)

 $The\ Problem$

Given:

- 1. $\forall X \forall Y (horse(X) \land dog(Y) => faster(X, Y))$
- 2. $\exists Y (greyhound(Y) \land (\forall Zrabbit(Z) => faster(Y, Z)))$
- 3. $\forall Y (greyhound(Y) => dog(Y))$
- 4. $\forall X \forall Y \forall Z ((faster(X, Y) \land faster(Y, Z)) => faster(X, Z))$ (The transitivity of the 'faster' relation)
- 5. horse(harry)
- 6. rabbit(ralph)

Using: Existential Instantiation (EI)
Universal Instantiation (UI)
Modus Ponens (MP)
And Introduction (AI)
And Elimination (AE)

Prove: faster(harry, ralph)

The Solution

1.	$\forall V \forall V (honse(V) \land deg(V) \rightarrow factor(V, V))$	Λ
	$\forall X \forall Y (horse(X) \land dog(Y) => faster(X, Y))$	<u>Δ</u>
2.	$\exists Y (greyhound(Y) \land (\forall Zrabbit(Z) => faster(Y, Z)))$	Δ
3.	$\forall Y (greyhound(Y) => dog(Y))$	Δ
4.	$\forall X \forall Y \forall Z ((faster(X, Y) \land faster(Y, Z)) => faster(X, Z))$	Δ
5.	horse(harry)	Δ
6.	rabbit(ralph)	Δ
7.	$greyhound(greg) \land (\forall Zrabbit(Z) => faster(greg, Z))$	2, EI
8.	greyhound(greg)	7, AE
9.	$\forall Z(rabbit(Z) => faster(greg, Z))$	7, AE
10.	rabbit(ralph) => faster(greg, ralph)	9, UI
11.	faster(greg, ralph)	10, 6, MP
12.	greyhound(greg) => dog(greg)	3, UI
13.	dog(greg)	12, 8, MP
14.	$horse(harry) \land dog(greg) => faster(harry, greg)$	1, UI
15.	$horse(harry) \wedge dog(greg)$	5, 13, AI
16.	faster(harry, greg)	14, 15, MP
17.	$faster(harry, greg) \land faster(greg, ralph) => faster(harry, ralph)$	4, UI
18.	$faster(harry, greg) \land faster(greg, ralph)$	16, 11, AI
19.	faster(harry, ralph)	17, 18, MP

QED

In the above solution the symbol ' Δ ' is used to represent an axiom.