Bayesian calculus

Marie Etienne, Etienne Rivot

November 19, 2017

A posteriori distribution is defined by

$$[\theta|y] = \frac{[y|\theta][\theta]}{[y]}$$

with
$$[y] = \int_{\theta} [y|\theta][\theta] d\theta$$
.

A posteriori distribution is defined by

$$[\theta|y] = \frac{[y|\theta][\theta]}{[y]}$$

with $[y] = \int_{\theta} [y|\theta][\theta] d\theta$.

[y] is mostly unavailable.

A posteriori distribution is defined by

$$[\theta|y] = \frac{[y|\theta][\theta]}{[y]}$$

with $[y] = \int_{\theta} [y|\theta][\theta] d\theta$.

[y] is mostly unavailable.

But nothing can stop us !!

A posteriori distribution is defined by

$$[\theta|y] = \frac{[y|\theta][\theta]}{[y]}$$

with $[y] = \int_{\theta} [y|\theta][\theta] d\theta$.

[y] is mostly unavailable.

But nothing can stop us !!

$$[\theta|y] = ?$$

Analytical posterior determination

Binomial example

▶ Data model :

$$Y \sim \mathcal{B}(n, p), \quad n \text{ known}$$

▶ Prior uniform

$$p \sim \mathcal{U}(0,1)$$

$$[p|y] = ?$$

Normal example

- ▶ Model : $Y_k = \beta_0 + \beta_1 x_k + E_k$, $E_k \stackrel{ind}{\sim} \mathcal{N}(0, \sigma^2)$
- ▶ Normal prior on $\theta = (\beta_0, \beta_1)$, $(\sigma^2$ assumed to be known)

$$[\beta_0, \beta_1] = \mathcal{N}(\mu_{prior}, \Lambda_{prior}),$$

with Λ_{prior} denoting the precision matrix.

Posterior distribution

Normal example

- ▶ Model: $Y_k = \beta_0 + \beta_1 x_k + E_k$, $E_k \stackrel{ind}{\sim} \mathcal{N}(0, \sigma^2)$
- ▶ Normal prior on $\theta = (\beta_0, \beta_1)$, (σ^2 assumed to be known)

$$[\beta_0, \beta_1] = \mathcal{N}(\mu_{prior}, \Lambda_{prior}),$$

with Λ_{prior} denoting the precision matrix.

Posterior distribution

$$[\beta_0, \beta_1 | y] \sim \mathcal{N}(\mu_{post}, \Lambda_{post})$$

with

$$egin{aligned} oldsymbol{\Lambda}_{post} &= \left(rac{oldsymbol{\mathsf{X}}^{\mathrm{T}}oldsymbol{\mathsf{X}}}{\sigma^{2}} + oldsymbol{oldsymbol{\Lambda}}_{prior}
ight)^{-1} \left(rac{oldsymbol{\mathsf{X}}^{\mathrm{T}}oldsymbol{\mathsf{Y}}}{\sigma^{2}} + oldsymbol{oldsymbol{\Lambda}}_{prior}oldsymbol{\mu}_{prior}
ight) \end{aligned}$$

Vérifier le calcul pour la cas des beta non indépendats

Sampling from posterior distribution

Why a sample is mostly enough?

- E[p|y] =? CI_{0.95}(p) =?

Why a sample is mostly enough?

- E[p|y] ≈?
 Cl_{0.95}(p) ≈?

Why a sample is mostly enough?

- \blacktriangleright $E[p|y] \approx ?$
- ► $CI_{0.95}(p) \approx ?$

```
## Sum Theory MC100 MC1000
## Mean 0.3571429 0.3803773 0.3552553
## 5% CIInf 0.2166169 0.2270933 0.2133460
## 95% CISup 0.5094782 0.5550791 0.5037494
```


Importance sampling approach

Main idea :

$$E_{d_X}(h(X)) = \int_u h(u) d_X(u) du = \int_u h(u) \frac{d_X(u)}{d_Z(u)} d_Z(u) du$$
$$= \int_u h(u) \frac{d_X(u)}{d_Z(u)} d_Z(u) du = E_{d_Z} \left(h(Z) \frac{d_X(Z)}{d_Z(Z)} \right)$$

1. Sample from proposal distribution : $(z_i)_{i=1,...N}$.

- 1. Sample from proposal distribution : $(z_i)_{i=1,...N}$.
- 2. For every particle i, Compute weight

$$w_i = d_X z_i / d_Z(z_i)$$

- 1. Sample from proposal distribution : $(z_i)_{i=1,...N}$.
- 2. For every particle i, Compute weight

$$w_i = d_X z_i / d_Z(z_i)$$

3. Normalize weight

$$\tilde{w}_i = \frac{w_i}{\sum_{i=1}^N w_i}$$

- 1. Sample from proposal distribution : $(z_i)_{i=1,...N}$.
- 2. For every particle *i*, Compute weight

$$w_i = d_X z_i / d_Z(z_i)$$

3. Normalize weight

$$\tilde{w}_i = \frac{w_i}{\sum_{i=1}^N w_i}$$

 (z_i, \tilde{w}_i) is a weighted sample from d_X .

- 1. Sample from proposal distribution : $(z_i)_{i=1,...N}$.
- 2. For every particle *i*, Compute weight

$$w_i = d_X z_i / d_Z(z_i)$$

3. Normalize weight

$$\tilde{w}_i = \frac{w_i}{\sum_{i=1}^N w_i}$$

 (z_i, \tilde{w}_i) is a weighted sample from d_X .

4. Resample to get unweighted sample. \setminus Sample in (z_i) with replacement with a probability \tilde{w}_i to draw z_i .

1. Step 1 : sample from proposal (N = 100)

2. Step 2 : compute weight (N = 100)

3. Step 3 : Resample to get unweighted sample (N = 100)

3. Step 3 : Resample to get unweighted sample (N=100)

3. Step 3 : Resample to get unweighted sample (N=1000)

3. Step 3 : Resample to get unweighted sample (N = 1000)

Markov chain definition

A Markov chain is a sequence of random variables X_1, \ldots, X_n) verifying the Markov property.

Markov chain definition

A Markov chain is a sequence of random variables X_1, \ldots, X_n) verifying the Markov property.

$$[X_{i+1}|X_{1:i}] = [X_{i+1}|X_i].$$

Markov chain example

Random walk

$$X_{i+1} = X_i + E_{i+1}, \quad E_{i+1} \stackrel{ind}{\sim} \mathcal{U}(\{-1,1\})$$

 (X_i) is a Markov chain.

Markov chain example

Supremum of a random walk $Z_i = \max_{k=1}^i \max(X_k)$,

Markov chain example

Supremum of a random walk $Z_i = \max_{k=1}^i \max(X_k)$,

 (Z_i) is not a Markov chain.

Definition : ν is a stationnay distribution if and only if

$$X_i \sim \nu \Longrightarrow X_{i+1} \sim \nu$$

Example:

$$X_1 \sim \mathcal{B}(p_{init}), \quad X_{i+1}|X_i \sim \mathcal{B}(p_{X_i})$$

Definition : ν is a stationnay distribution if and only if

$$X_i \sim \nu \Longrightarrow X_{i+1} \sim \nu$$

Example:

$$X_1 \sim \mathcal{B}(p_{init}), \quad X_{i+1}|X_i \sim \mathcal{B}(p_{X_i})$$

Definition : ν is a stationnay distribution if and only if

$$X_i \sim \nu \Longrightarrow X_{i+1} \sim \nu$$

Example:

$$X_1 \sim \mathcal{B}(p_{init}), \quad X_{i+1}|X_i \sim \mathcal{B}(p_{X_i})$$

Definition : ν is a stationnay distribution if and only if

$$X_i \sim \nu \Longrightarrow X_{i+1} \sim \nu$$

Example:

$$X_1 \sim \mathcal{B}(p_{init}), \quad X_{i+1}|X_i \sim \mathcal{B}(p_{X_i})$$

Distribution of X_1, X_2, \dots ?

Ergodic property:

If a Markov chain (X_i) is irreducible, aperiodic and recurrent then there is exists a unique stationnary distribution π and

$$[X_n] \xrightarrow[n\to\infty]{} \pi.$$

If a Markov chain (X_i) is reversible $([X_i][X_{i+1}|X_i] = [X_{i+1}][X_i|X_{i+1}])$ then this markov chain has a stationnary distribution.

Consequences of the ergodic theorem

If (X_n) is a Markov chain with stationnary distribution, for any initial distribu $[X_1]$, $[X_n]$ is close to the stationnary distribution.

Consequences of the ergodic theorem

If (X_n) is a Markov chain with stationnary distribution, for any initial distribu $[X_1]$, $[X_n]$ is close to the stationnary distribution.

Back to the example : stationnary distribution is $\pi = (0.7, 0.3)$

```
freq = table(X)/n
print(freq)
```

```
## X
## 0 1
## 0.69 0.31
```

Metropolis Hastings algorithm

Key idea : building a reversible Markov chain with $[\theta|y]$ as stationnary distribution

Metropolis Hastings algorithm

Key idea : building a reversible Markov chain with $[\theta|y]$ as stationnary distribution

- 1. Initialization $\theta^{(0)}$ an admissible initial value
- 2. For i in 1:nlter
- ▶ Propose a new candidate value $\theta_c^{(i)}$ sampled from a proposal distribution $g(.|\theta^{(i-1)})$
- Compute Metropolis Hastings ratio

$$r_{i} = \frac{[y|\theta_{c}^{(i)}][\theta_{c}^{(i)}]}{[y|\theta^{(i-1)}][\theta^{(i-1)}]} \frac{g(\theta^{(i-1)}|\theta^{(i)})}{g(\theta_{c}^{(i)}|\theta^{(i-1)})}$$

Define

$$\theta^{(i)} = \left\{ \begin{array}{l} \theta_c^{(i)} \text{ with probablity } \textit{min}(r_i, 1) \\ \theta_c^{(i-1)} \text{ with probablity } 1 - \textit{min}(r_i, 1) \end{array} \right.$$