Investigation and Optimization of the Recyclability of Thermoplastics for Circular Economy

D. Myers, S. Singh, P. Hubert

Structures and Composite Materials Laboratory, Department of Mechanical Engineering, McGill University, Montréal QC

Materials and Methods

Figure 3 – Sandwich Board Material

Figure 4 – Recycling Method

Figure 5 – Compression Moulding Method

1 Heat moulding plate to the desired temperature

- 2 Melt sample for desired time 3 Compress the sample while cooling the mould
- **4** Remove the compressed sample

Analysis Methods

- Rheological
- Structural
- Thermal
- Mechanical

Туре	Size	Amount	Ratio	lemp	Pressure	Time
Polymer A & Sandwich	Shredded fine	30 grams	50:50	High: 285 °C Low: 265 °C	High: 17 bar Low: 3 bar	High: 23 Min Low: 17 Min

Figure 6 – BBD Experimental Conditions

Design of Experiment

Sandwich Panel

Recycled Panel

600

% Mass vs Temperature

Results and Discussion

Structural Results

Figure 7 – Sandwich Panel

Figure 8 – Optical Microscopy of **Sandwich Panel**

Figure 9 – Rheological Results

Figure 10 - Mechanical Results

Thermal Results

120

Figure 11 – Tg Comparison

Figure 12 – Degradation Comparison

- The recycled sample maintains the same thermal properties as its components
- Degradation of the sandwich panel and the recycled sample occurs at about 410°C

Optimization Results

- x= Temperature y= Pressure z= Time • Model: Flexural Strength = $29 - 4.98x - 16.7y + 7.77z + 5.06*x*y - 3.5*x*z + 6.54*y*z + 8.24x^2 + 5.01y^2 + 13.3z^2$
- R^2: 0.951
- Adjusted R^2: 0.864
- p-value: 0.00856 --> Statistically Significant

Figure 13 – 3D Scatter Plot Predicting **Flexural Strength**

Figure 14 - Model Coefficients Visualized

- A maximum strength of 87Mpa is predicted to occur at a temperature of 265°C, a pressure of 17 bar and 23 minutes of compression
- As seen in figure 13 pressure and time both significantly affect the strength

Conclusion and Future Work

- Two different ways of composing recycled samples were investigated, one with segregated polymers and another with the entire sandwich
- The sample that exhibited the best properties was created with segregated materials, with a 90:10 ratio of polymer A to B
- None of the samples exhibited significant change in their thermal properties when compared to pristine material
- An accurate mathematical model to determine mechanical properties based on compression moulding conditions was developed
- Future work includes creating a model that optimizes a variable based on composition as well as processing conditions

Acknowledgements

I would like to thank my supervisors, Shikha Singh and Prof. Pascal Hubert

I would also like to thank everybody in the SCML group at McGill, as well as my SURE peers

Lastly, I would like to thank the SURE program and the National Sciences and Engineering Research Council of Canada for funding this opportunity