Questions à préparer sur le chapitre 2

- 1. Pour $x \in [0, 2\pi[$, résoudre les deux inéquations (i) et (ii) (graphiquement), et l'équation (iii) suivantes :
- (i) $\cos x < \frac{1}{2}$, (ii) $\sin x \ge \sin \left(-\frac{\pi}{6} \right)$, (iii) $\cos x = \frac{\sqrt{2 + \sqrt{2}}}{2}$.
- **2.** On considère la fonction f définie sur $[0,\pi]$ par $f(x) = \cos 2x + \cos x$. Déterminer la valeur (exacte) minimale prise par f.
- **3.** A partir des formules d'addition des fonctions sin et cos, établissez les deux formules suivantes valides pour tout réel $x \neq \pi/2 + k\pi$,

$$\sin 2x = \frac{2\tan x}{1 + \tan^2 x}$$
 et $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$.

4. En étudiant sur $]-\pi/2,\pi/2[$ la fonction définie par $f(x)=x+\frac{\pi}{4}-\ln(\cos x),$ montrer que pour tout $x\in]-\pi/2,\pi/2[,$

$$e^{x+\frac{\pi}{4}} \ge \sqrt{2}.\cos x.$$

5. On considère les deux fonctions f et g suivantes :

$$f: \mathbb{R} \longrightarrow \mathbb{R}^{+*}, \ x \longmapsto f(x) = e^{2x} + 2e^x,$$

$$g: \mathbb{R}^{+*} \longrightarrow \mathbb{R}, \ x \longmapsto g(x) = \ln\left(\sqrt{x+1} - 1\right).$$

Montrer que : $\forall x \in \mathbb{R}, \ g(f(x)) = x$ et $\forall x \in \mathbb{R}^{+*}, \ f(g(x)) = x$.

6. Soit la fonction f définie sur \mathbb{R} par $f(x) = (\sqrt{2})^x$. Résoudre les équations suivantes,

(i)
$$f(x) = 8$$
 et (ii) $f(f(x)) = 4$

- 7. On considère la fonction f définie sur \mathbb{R} par $f(x) = x.e^{\left(\frac{x}{x^2+1}\right)}$.
- 1) Rappeler pourquoi on peut affirmer que $\lim_{X\to 0}\frac{e^X-1}{X}=1$. 2) Montrer que la courbe représentative \mathcal{C}_f de f admet au voisinage de $+\infty$ une droite D
- 2) Montrer que la courbe représentative C_f de f admet au voisinage de $+\infty$ une droite D asymptote.