A space X is said to be weakly locally connected at x if for every neighborhood U of x is a connectedd subspace of X contained in U that contains a neighborhood of x.

Show that if X is weakly lacally connected at each of i connects points , then X is lacally connected.

p.162.#6

Let X be locally path connected. Show that every connected open set in X is path connected.

Show that A_n uncountable product of \mathbf{R} (real) with itself is not metrizable. $p.133\ 9/11\ note$

Hint; Show that there is a set $A \subset X := \prod_{\alpha \in J} \mathbf{R} \ (= \mathbf{R}^J)$ and a point $a \in X$ s.t. $a \in \overline{A}$ but there is no sequence in A converging to a.

Let Y be an ordered set in the order topology.

- Let $f, g: x \to Y$ be continuous. (a) Show that the set $\{x | f(x) \le g(x)\}$ ia closed in X.
- (b) Let $h: X \to Y$ be the function

$$h(x) = \min\{f(x), g(x)\}$$

Show that h is continuous. p.111 #8

```
Let A\subset X; let f:A\to Y be continuous; let Y be hausdorff. Show that if f may be extended to a continuous function g:\bar A\to Y, then g is uniquely determined by f. p.112 #13
```

Show that if Y is compact, then the projection $\pi_1: X \times Y \to X$ is a closed map. p.171 # 7.

Show that every compact subspace of a metric space is bounded in that metric and is closed.

Find a metric space in which not every closed bounded subspace is compact. p.171, ex4 $\,$

Show that every order topology is Hausdorff. p.101 ex 10 $\,$ Let $f:X\to Y;$ let Y be compact Hausdorff. Then f is continuous if and only if the graph of f,

$$G_f = \{x \times f(x) | x \in X\},\$$

is closed in $X \times Y$. p.171, ex8

Let X be a collection of closed connected subsets of X that is simply ordered by proper inclusion. Then

$$Y = \bigcap_{A \in \mathscr{A}} A$$

is connected.

Let Y be an ordered set in the order topology. Let $f,g:X\to Y$ be the function

$$h(x) = \min\{f(x), g(x)\}$$

Show that h is continuous. p.112 ex8

Let $p:X\to Y$ be a closed continuous surjective map such that $p^{-1}(\{y\})$ is compact. (Such a map is called a perfect map.) Show that if Y is compact, then X is compact. p.172 ex12 Let X be a metric space with metric d ; let $A\subset X$ be nonempty.

- (1) Show that if A is compact, d(x, A) = d(x, a) for some $a \in A$.
- (2) Assume that A is compact, u(x, A) = u(x, a) for some $u \in A$. (2) Assume that A is compact; let U be an open set containing A. Show that some ϵ -neighborhood of A is contained in U. ϵ -neighborhood of A, $U(A, \epsilon) = \{x | d(x, A) < \epsilon\}$. p.177 ex2

Let X be a compact Hausdorff space; let $\{A_n\}$ be a countable collection of closed sets of X.

Show that if each set A_n has empty interior in X , then the union $\cup A_n$ has empty interior in X.

 $p178~\mathrm{ex}5$

Is \mathbb{Q} locally compact?

p182example, Mimura p180ex
6

Let $\{X_\alpha\}$ be an indexed family of nonempty spaces. Show that if $\prod X_\alpha$ is locally compact, then each X_α is locally compact and X_α is compact for all but finitely many value of $\alpha.$ p.186 ex2 , Mimura p180 ex11

If $f:X_1\to X_2$ is a homeomorphism of locally compact Hausdorff spaces, show f extends to a homeomorphism of their one-point compactification. p186. ex5

Show that if X is a Haudorff space that is locally compact at the point x, then for each neighborhood U of x, there is a neighborhood V of x such that \bar{V} compact and $\bar{V} \subset U$.

p 186. ex 10 Let X be a compact Hausdorff space, let Y be a topological space , and let $p:X\to Y$ be a closed surjective continuous map.

Prove that Y is Hausdorff.

 ${\rm HW}$ due Oct23

Let x_0 and x_1 be points of the path-connected space X. Show that $\pi_1(X,x_0)$ is abelian if and only if for every pair α and β of paths from x_0 to x_1 , we have $\hat{\alpha}=\hat{\beta}$ p335 ex3

Show that if $h:S^1\to S^1$ is nulhomotopic, then h has a fixed point and h maps some point x to its antipode -x. p353 ex2

Show that if Y is locally compact Hausdorff, then composition of maps

$$C(X,Y) \times C(X,Y)$$

is continuous, provided the compact-open topology is used throughout. p289 ex7 $\,$

Let $\acute{C}(X,Y)$ denote the set C(X,Y) in some topology ${\mathscr T}$. Show that if the evaluation map

$$e: X \times \acute{C}(X,Y) \to Y$$

is continuous, then ${\mathcal T}$ contains the compact-open topology. p289 ex8

Theorem. If $p:A\to B$ is a quotient map and X is locally compact Hausdorff, then $i_X\times p:X\times A\to X\times B$ is a quotient map.

Proof.

- (a) Let Y be the quotient space induced by $i_X \times p$; let $q: X \times A \to Y$ be the quotient map. Show there is bijective continuous map $f: Y \to X \times B$ such that $f \circ q = i_X \times p$.
- (b) Let $g = f^{-1}$. Let $G: B \to C(X, Y)$ and $Q: A \to C(X, Y)$ be the maps induced by g and q , respectively. Show that $Q = G \circ p$.
- (c) Show that Q is continuous ; conclue that G is continuous, so that g is continuous.

p289 ex9

Given spaces X and Y, let [X,Y] denote the set of homotopy classes of maps of X into Y.

- (a) Let I = [0, 1]. Show that for any X, the set [X, I] had a single element.
- (b) Show that if Y is path connected, the set [I,Y] has a single element. p330 ex2

Let X be a compact space and suppose we are given a nested sequence of sets

$$C_1 \supset C_2 \supset \cdots$$

with all C_i closed. Let U be an open set containing $\cap C_i$. Prove that there is an i_0 with $C_{i_0} \subset U$. For midterm2 #5.

Let X be a compact space, and suppose there is a finite family of continuous functions $f_i: X \to \mathbb{R}, i=1,\cdots,n$, with the following property: give $x \neq y$ in X there is an i such that $f_i(x) \neq f_i(y)$.

Prove that X is homeomorphic to a subspace of \mathbb{R}^n . for midterm2 #6

Prove that the Lubesgue number lemma.

i.e

Let X be a compact metric space and let $\mathscr U$ be a covering of X by open sets. Prove that there is an $\epsilon>0$ such that, for each set $S\subset X$ with diameter $<\epsilon$, there is a $U\in\mathscr U$ with $S\subset U$.

for midterm 2, #7 Let S^1 denote the circle $\{x^2+y^2=1\}$ in \mathbb{R}^2 . Define an equivalence relation on S^1 by

$$(x,y) \sim (\acute{x}, \acute{y}) \Rightarrow (x,y) = (\acute{x}, \acute{y}) \text{ or } (x,y) = (-\acute{x}, -\acute{y})$$

(you do not have to prove that this is an equivalence relation). Prove that the quotient space S^1/\sim is homeomorphic to S^1 . for midterm2, #8

Let X be a locally compact Hausdorff. Explain how to construct the one-point compactification of X, and prove that the space you construct is really compact.

for midterm2 #9

Let X be a locally compact Hausdorff space, let Y be any space, and let the function ${\rm space} C(X,Y)$ have the compact-open topology.

Prove that the map

$$e: X \times C(X,Y) \to Y$$

defined by the equation e(x,f)=f(x) is continuous. forr midterm2 #11

Let I be the unit interval, and let Y be a path-connected space. Prove that any two maps (continuous?) from I to Y are homotopic. for midter m2 #12 Let X be a topological space and $f:[0,1]\to X$ any continuous function. Define $\bar f$ by $\bar f=f(1-t)$. Prove that $f*\bar f$ is path-homotopic to the constant path at f(0). for midterm2 #13.

Let A be a subspace of X; let $j:A\to X$ be the injection map, and let $f:X\to A$ be a continuous map. Suppose there is a homotopy $H:X\times I\to X$ between the map $j\circ f$ and the identity map of X.

- (a) Show that if f is a retraction, then j_* is an isomorphism.
- (b) show that if H maps $A \times I$ into A, then j_* is an isomorphism.
- (c) Gve an example in which j_* is not an isomorphism. HW due 11/20 ,p366 ex7.

We define the degree of a continuous map $h:S^1\to S^1$ as follows:

Let b_0 be the point (0,1) of S^1 , choose a path α in S^1 from b_0 to x_0 , and define $\gamma(x_0) = \hat{\alpha}(\gamma)$. Then $\gamma(x_0)$ generates $\pi_1(S^1, x_0)$. Show that the element $\gamma(x_0)$ is independent of the choice of the path α .

Now given $h: S^1 \to S^1$, choose $x_0 \in S^1$ and let $h(x_0) = x_1$. Consider the homomorphism

$$h_*: \pi_1(S^1, x_0) \to \pi_1(S^1, x_1).$$

Since both groups are infinite cyclic, we have

$$(*)h_*(\gamma(x_0)) = d \cdot \gamma(x_1)$$

for some integer d, if the group is written additively. The integer d is called the degree of h and is denoted by deg h.

The degree of h is independent of the choice of generator γ ; choosing the other generator would merely change the sign of both sides of (*).

- (a) Show that d is independent of the choice of x_0 .
- (b) Show that if $h, k: S^1 \to S^1$ are homotopic, they have the same degree.
- (c) Show that $deg(h \circ k) = (deg h) \cdot (deg k)$.

HW due 11/20, p366 ex9

Prove every path in an m-manifold is path-homotopic to a piecewise quasi-linear path. $\,$

HW due Nov 20 C)

Prove a piecewise quasi-linear path in an m-manifold with m>1 cannot be onto.

 $\mathrm{HW}\ \mathrm{due}\ \mathrm{Nov}\ 20\ \mathrm{D})$

If n>1, show that the fundamental group of the n-fold torus is not abelian. HW due Dec 11, p454 ex6

Let X be the quotient space obtained from B^2 by identifying each point x of S^1 with its antipode -x. Show that X is homeomorphic to the projective plane P^2 .

p375~ex2~HW~due~Dec2

Caluculate $H_1(P^2\#T)$. Assuming that the list of compact surfaces given in Theorem 75.5 is a complete list, to which of these surfaces is $P^2\#T$ homeomorphic?

 $p457~\mathrm{ex}1~\mathrm{HW}$ due Dec
11

IF K is the Klein bottle, calculate $H_1(K)$ (directly). p457 ex2 HW due Dec11

A topological space X is called homeogeneous if for everyy pair of points $x,y\in X$ there is a homeomorphism $\phi:X\to X$ with $\phi(x)=y$. Prove that every connected 2-manifold is homogeneous. HW due Dec11 A)

Prove that every m-manifold is regular. HW due Nov4 A)

let X_{α} be a family of topological spaces. For each α , let A_{α} be a subset of X_{α} . Prove that

$$\prod_{\alpha} \bar{A}_{\alpha} = \prod_{\alpha} \bar{A_{\alpha}}$$

 $1st\ mid\ term$

Let X and Y be topological spaces and let $f:X\to Y$ be a function with the property that

$$f(\bar{A})\subset \bar{f(A)}$$

for all subsets A of X. Prove that f is continuous. 1st mid term Let X and Y be topoloogical spaces and let $f: X \to Y$ be a continuous function. Let G_f (called the graph of f) be the subspace $\{(x, f(x)) | x \in X\}$ of $X \times Y$.

Prove that if Y is Hausdorff then G_f is closed. 1st mid term

Let X and Y be connected. Prove that $X\times Y$ is connected. 1st mid term