aufgabe3

January 24, 2019

1 Aufgabe 34: Ballon Experiment

1.1 Teilaufgabe a)

Der Fluss der kosmischen Strahlung soll konstant im Messzeitraum sein. Die Zahl der gemessenen Protonen kann mit einer Poissonverteilung modelliert werden. Daher ergibt sich die Maximum-Likelihood-Funktion als:

$$L(\lambda) = \prod_{i} P(X = x_i)$$

wobei wie oben beschrieben:

$$P(X) = \frac{\lambda^x}{x!} exp(-\lambda)$$

Es ergibt sich

$$\begin{split} L(\lambda) &= \frac{\lambda^{4135}}{4135!} exp(-\lambda) \frac{\lambda^{4202}}{4202!} exp(-\lambda) \frac{\lambda^{4203}}{4203!} exp(-\lambda) \frac{\lambda^{4218}}{4218!} exp(-\lambda) \frac{\lambda^{4227}}{4227!} exp(-\lambda) \frac{\lambda^{4231}}{4231!} exp(-\lambda) \frac{\lambda^{4310}}{4310!} exp(-\lambda) \\ &= \frac{\lambda^{29526}}{4135! \cdot 4202! \cdot 4203! \cdot 4218! \cdot 4227! \cdot 4231! \cdot 4310!} exp(-7\lambda) \end{split}$$

Logarithmieren:

$$l(\lambda) = ln(L(\lambda)) = 29526 \cdot ln(\lambda) - 7\lambda - ln(4135! \cdot 4202! \cdot 4203! \cdot 4218! \cdot 4227! \cdot 4231! \cdot 4310!)$$

 $\approx 29526 \cdot ln(\lambda) - 7\lambda - 216968, 51$

Ableiten:

$$\frac{l(\lambda)}{d\lambda} = 29526 \cdot \frac{1}{\lambda} - 7$$

Die Ableitung hat eine Nullstelle bei

$$\lambda = 4218$$

Die wahrscheinlichste Zählrate ist also N=4218. Es ergibt sich ein log-Likelihood-Wert von

$$l(4218) = -37,55$$

Und damit ein Likelihood-Wert von

$$L(4218) = e^{-37,55} = 4,92 \cdot 10^{-17}$$

1.2 Teilaufgabe b)

Der Fluss soll linear ansteigen. Also ändert sich der Mittelwert der Poissonverteilung jeweils linear während der 7 Tage. Die Maximum-Likelihood-Funktion lautet dann

$$L(\lambda) = \frac{\lambda^{4135}}{4135!} exp(-\lambda) \frac{(2\lambda)^{4202}}{4202!} exp(-2\lambda) \frac{(3\lambda)^{4203}}{4203!} exp(-3\lambda) \frac{(4\lambda)^{4218}}{4218!} exp(-4\lambda) \frac{(5\lambda)^{4227}}{4227!} exp(-5\lambda) \frac{(6\lambda)^{4231}}{4231!} exp(-6\lambda) \frac{(6\lambda)^{4231}}{4231!} exp($$

Logarithmieren:

$$l(\lambda) = 29526 \cdot ln(\lambda) - 28\lambda + 4202 \cdot ln(2) + 4203 \cdot ln(3) + 4218 \cdot ln(4) + 4227 \cdot ln(5) + 4231 \cdot ln(6) + 4310 \cdot ln(7) - 29526 \cdot ln(\lambda) - 28\lambda - 180820, 15$$

Ableiten:

$$\frac{l(\lambda)}{d\lambda} = 29526 \cdot \frac{1}{\lambda} - 28$$

Die Nullstelle lautet hier entsprechend

$$\lambda = 1054.5$$

Dieser Wert bezeichnet hier jedoch nicht den Mittelwert selbst, sondern den Flussparameter. Es ergibt sich ein log-Likelihood-Wert von

$$l(1054,5) = -4820,92$$

Und damit ein Likelihood-Wert von

$$L(1054,5) = e^{-4820,92} = \dots$$

1.3 Teilaufgabe c)

1.3.1 Konstanter Fluss

Es ergibt sich

$$\begin{split} L(\lambda) &= \frac{\lambda^{4135}}{4135!} exp(-\lambda) \frac{\lambda^{4202}}{4202!} exp(-\lambda) \frac{\lambda^{4203}}{4203!} exp(-\lambda) \frac{\lambda^{4218}}{4218!} exp(-\lambda) \frac{\lambda^{4227}}{4227!} exp(-\lambda) \frac{\lambda^{4231}}{4231!} exp(-\lambda) \frac{\lambda^{4310}}{4310!} exp(-\lambda) \frac{\lambda^{4418}}{4410!} exp(-\lambda) \frac{\lambda^{4218}}{4231!} exp(-\lambda) \frac{\lambda^{4218$$

Logarithmieren:

$$l(\lambda) = ln(L(\lambda)) = 33928 \cdot ln(\lambda) - 8\lambda - ln(4135! \cdot 4202! \cdot 4203! \cdot 4218! \cdot 4227! \cdot 4231! \cdot 4310! \cdot 4402!)$$

 $\approx 33928 \cdot ln(\lambda) - 8\lambda - 249503, 59$

Ableiten:

$$\frac{l(\lambda)}{d\lambda} = 33928 \cdot \frac{1}{\lambda} - 8$$

Die Ableitung hat eine Nullstelle bei

$$\lambda = 4241$$

Die wahrscheinlichste Zählrate ist also N=4241. Es ergibt sich ein log-Likelihood-Wert von

$$l(4241) = -46, 13$$

Und damit ein Likelihood-Wert von

$$L(4241) = e^{-46.13} = 9,25 \cdot 10^{-21}$$

1.3.2 Linear ansteigender Fluss

$$L(\lambda) = \frac{\lambda^{4135}}{4135!} exp(-\lambda) \frac{(2\lambda)^{4202}}{4202!} exp(-2\lambda) \frac{(3\lambda)^{4203}}{4203!} exp(-3\lambda) \frac{(4\lambda)^{4218}}{4218!} exp(-4\lambda) \frac{(5\lambda)^{4227}}{4227!} exp(-5\lambda) \frac{(6\lambda)^{4231}}{4231!} exp(-6\lambda) \frac{(5\lambda)^{4227}}{4227!} exp(-5\lambda) \frac{(6\lambda)^{4231}}{4231!} exp(-6\lambda) \frac{(6\lambda)^{4231}}{4231!} exp(-6\lambda) \frac{(6\lambda)^{4231}}{4231!} exp(-6\lambda) \frac{(6\lambda)^{4231}}{4227!} exp(-6\lambda) \frac{(6\lambda)^{4231}}{4231!} exp($$

Logarithmieren:

$$l(\lambda) = 33928 \cdot ln(\lambda) - 42\lambda + 4202 \cdot ln(2) + 4203 \cdot ln(3) + 4218 \cdot ln(4) + 4227 \cdot ln(5) + 4231 \cdot ln(6) + 4310 \cdot ln(7) - 23928 \cdot ln(\lambda) - 42\lambda - 201738,09$$

Ableiten:

$$\frac{l(\lambda)}{d\lambda} = 33928 \cdot \frac{1}{\lambda} - 42$$

Die Nullstelle lautet hier entsprechend

$$\lambda = 807, 81$$

Dieser Wert bezeichnet hier jedoch nicht den Mittelwert selbst, sondern den Flussparameter. Es ergibt sich ein log-Likelihood-Wert von

$$l(807,81) = -8540.99$$

Und damit ein Likelihood-Wert von

$$L(807,81) = e^{-8540.99} = \dots$$