

Mihai PASCU

π în Analiză, Geometrie, ... și nu numai!

Email: anna.ferent@student.unitbv.ro

Facultatea de Matematică și informatică

Reprezentarea lui Isaac Newton

$$(1+x)^n = 1 + nx + \frac{n(n-1)x^2}{2!} + \frac{n(n-1)(n-2)x^2}{3!} + ..., n \in \mathbb{Z}^+$$

$$n = \frac{1}{2} \Longrightarrow (1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \dots$$

$$C((0,0),1) \Longrightarrow x^2 + y^2 = 1 \Longrightarrow y = (1-x^2)^{\frac{1}{2}}.$$

$$(1-x^2)^{\frac{1}{2}} = 1 - \frac{1}{2}x^2 - \frac{1}{8}x^4 - \dots$$

Integrând obţinem:

$$\pi = 12 \left[\frac{1}{2} - \frac{1}{2} \cdot \frac{1}{3} \cdot \left(\frac{1}{2} \right)^3 - \frac{1}{8} \cdot \frac{1}{5} \cdot \left(\frac{1}{2} \right)^5 - \frac{1}{16} \cdot \frac{1}{7} \cdot \left(\frac{1}{2} \right)^7 - \dots - \frac{\sqrt{3}}{8} \right].$$

Reprezentări probabiliste

Cazul I:

$$A_{D1} = \frac{\pi \cdot r^2}{4} = \frac{\pi}{4}, \ A_{ABCD} = 1$$

 $\pi \approx 4 \cdot \frac{\#\text{număr de puncte } p_i \in D1}{\#\text{număr total de puncte } p_i}$

Rezultatele numerice obținute în Python:

n puncte	Aproximarea lui π
100	3.1287113
200	3.164179
300	3.255814
400	3.17207
500	3.057884
600	3.207987
700	3.109843
1,000	3.068931
1,500	3.1339
2,500	3.15553
5,000	3.15376
7,500	3.13078
10,000	3.1520
23,000	3.1422

Cazul II:

$$A_{D2}=\pi\cdot r^2=\frac{\pi}{4},\ A_{ABCD}=1$$

 $\pi \approx 4 \cdot \frac{\#\text{număr de puncte } p_i \in D2}{\#\text{număr total de puncte } p_i}$

Rezultatele numerice obținute în Python:

n puncte	Aproximarea lui π
100	3.28
200	3.22673267
300	3.18407960
400	3.25581395
500	3.1620947
600	3.1696606
700	3.1680532
1,000	3.1387347
1500	3.18915060
2,500	3.093710
5,000	3.15200648
7500	3.15200648
10,000	3.15321684
23,000	3.143927

Aproximare prin folosirea unui ac

 $\pi pprox \frac{2 \cdot l \cdot \text{numărul total de ace}}{d \cdot \text{numărul de ace care intersectează liniile}}$

Rezultatele numerice obținute în Python:

n puncte	Aproximarea lui π
100	2.5641025
200	3.3333
300	3.84615
400	3.174603
500	2.840909
600	3.125
700	3.06748
1,000	3.021148
1,500	3.10558900
2,500	3.125
5,000	3.131479
7,500	3.205128
10,000	3.16957
23,000	3.152844

Aproximare prin aruncarea unei monede

Experimentul constă în aruncarea unei monede de M ori, M-par, repetăm acțiunea de N ori. No este numărul de apariții ale "stemei" de exact M/2 în N aruncări.

$$\pi pprox \left(rac{2}{M}
ight) \left(rac{N}{N_0}
ight)^2 e^{-rac{1}{2M}}$$

Exemplu: pentru M = 100, N = 1000, N0 = 79 avem:

 $\pi \approx 3$, 1886315629.

Aproximarea lui π			
Experimentul	No	valoarea lui π	
1	79954	3.11299291	
2	80200	3.093925035	
3	79318	3.163115231	
4	79697	3.133102303	
5	79264	3.167426555	
6	80134	3.099023574	
7	79391	3.157300938	
8	79782	3.126429824	
9	79093	3.181137388	
10	79483	3.149996141	
11	78929	3.194370763	
12	79352	3.160405208	
13	79300	3.16455136	
15	79652	3.136643442	
16	79504	3.148332296	
17	79895	3.117592307	
Aproximarea finală a lui π		3.141938982	

Pentru N=1000000, M=100