Physik Cheatsheet

Physik Cheatsheet

Wärme

Wärme aus Reibung

Mechanik

Kräfte

Kräftegleichgewicht

Drehmoment

Reibung

Abhang & Reibung

Geschwindigkeit

Beschleunigung

Strecke

Zeit

2. Newtonsches Axiom

Arbeit

Energie

Leistung

Wirkungsgrad

Hubarbeit/Potentielle Energie

Spannarbeit/Federenergie

Beschleunigungsarbeit/Kinetische Energie

Horizontaler Wurf

Bezugssystem nach unten

Bezugssystem nach oben

Kreisbewegung

Acknowledgements

Wärme

 Q : Wärmeenergie $[\mathit{J}]$

$$\Delta Q = mc \cdot \Delta T$$

Wärme aus Reibung

$$F_R \cdot s = mc \cdot \Delta T$$

Mechanik

Kräfte

Einheit: [N]

Formelzeichen: F

Kräftegleichgewicht

$$ec{F}_{res} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = 0$$

Drehmoment

Einheit: [Nm] Formelzeichen: M

 M_r = Drehmoment nach rechts

 M_l = Drehmoment nach links

$$M_r = M_l \ M_r = F_1 * l_1 + F_2 * l_2 \cdots \ M_l = F_3 * l_3 + F_4 * l_4 \cdots$$

Reibung

 F_R : (maximal mögliche) Reibungskraft [N]

 F_N : Normalkraft [N] (Reaktionskraft)

 μ : Reibungskoeffizient

Solange keine Kraft auf den Körper drückt, gilt $F_N=F_G$

$$\mu = rac{F_R}{F} \ F_R = \mu \cdot F_N$$

Abhang & Reibung

 F_H : Hangabtriebskraft [N]

 $F_{G\perp}$: Kraft senkrecht zur Ablage [N]

$$F_H = F_G \cdot \sin(lpha)$$

 $F_N = F_{G\perp} = F_G \cdot \cos(lpha)$
 $F_R = \mu \cdot F_N$
 $F_R = \mu \cdot F_G \cdot \cos(lpha)$

Wenn $F_h=F_R$ gilt, gilt auch

$$FG \cdot \sin(\alpha) = \mu \cdot F_G \cdot \cos(\alpha)$$
$$\sin(\alpha) = \mu \cdot \cos(\alpha)$$
$$\mu = \frac{\sin(\alpha)}{\cos(\alpha)}$$
$$\mu = \tan(\alpha)$$

Geschwindigkeit

a: Beschleunigung $\left[\frac{m}{s^2}\right]$

v: Geschwindigkeit $[\frac{m}{s}]$

t: Zeit [*s*]

s: Strecke [m]

Mit Anfangsgeschwindigkeit

 v_0 : Anfangsgeschwindigkeit $[\frac{m}{s}]$

$$v=\sqrt{v_0^2+2as} \ v(t)=at+v_0$$

Ohne Anfangsgeschwindigkeit

$$egin{aligned} v &= at \ v &= \sqrt{2as} \ v &= \sqrt{v_0^2 + 2as} \ v &= at \end{aligned}$$

Beschleunigung

$$a = \frac{\Delta v}{\Delta t}$$

Strecke

$$s=v\cdot t \ s=rac{1}{2}at^2 \ s(t)=s_0+v_0\cdot t+rac{1}{2}at^2$$

Zeit

$$t=rac{s}{v}$$

$$t=rac{s}{\overline{v}}=rac{2s}{v1+v2}$$

2. Newtonsches Axiom

$$F_{Res}=ma$$

Arbeit

W: Arbeit [Nm/J/Ws]

Arbeit = Kraft (in Wegrichtung) * Strecke

$$W = F \cdot s$$

Energie

E: Energie [J]

Leistung

P: Leistung [W]

Leistung = Kraft (in Wegrichtung) * Geschwindigkeit (* Reibungskoeffizient)

$$P = \frac{\Delta W}{\Delta t}$$

$$P = F \cdot v$$

$$P = F \cdot v \cdot \mu$$

Wirkungsgrad

Der Wirkungsgrad stellt die Übersetzung von aufgewandter Energie zu gebrauchter Energie dar. Er ist ein Mass der Effizienz.

$$\eta = rac{E_{Nutzen}}{E_{Aufwand}}$$

Hubarbeit/Potentielle Energie

$$W_H = F \cdot s = m \cdot g \cdot s = E_{pot}$$

Spannarbeit/Federenergie

D: Federkonstante $[\frac{N}{m}]$

$$F_F = D \cdot \Delta x$$
 $W_S = rac{1}{2} D \cdot \Delta x^2 = E_F$

Beschleunigungsarbeit/Kinetische Energie

$$W_B = rac{1}{2} m \cdot v^2 = E_{kin}$$

Horizontaler Wurf

OHNE Berücksichtigung des Luftwiderstandes.

 t_F : Fallzeit [s]

$$h=rac{1}{2}g\cdot t^2=>t_F=\sqrt{rac{2h}{g}}
onumber$$
 $x_W=v_0\cdot t_F
onumber \ v=\sqrt{v_0^2+v_Z^2}$

Bezugssystem nach unten

$$h(t)=rac{1}{2}gt^2 \ h(t)=v_0t+rac{1}{2}gt^2 \ v=\sqrt{2gh} \ v=\sqrt{v_0^2+2gh} \ h=\overline{v}t \ t_F=\sqrt{rac{2h}{g}}$$

Bezugssystem nach oben

$$z(t) = z_0 - rac{1}{2}gt^2 \ z(t) = z_0 + v_0t - rac{1}{2}gt^2 \ v = \sqrt{2gh} \ v = \sqrt{v_0^2 - 2gh}$$

$$v(t) = -gt$$
$$v(t) = v_0 - gt$$

Kreisbewegung

 ω : Winkelgeschwindigkeit/Kreisfrequenz $\left[\frac{1}{s}\right]$

v: Bahngeschwindigkeit $\left[\frac{m}{s}\right]$

r: Bahnradius

U: Umfang [m]

T: Periodendauer [s]

f: Frequenz der Umdrehung $\left[\frac{1}{s}\right]$

$$\omega = rac{\Delta \phi}{\Delta t} = rac{2\pi}{T} = 2\pi \cdot f$$
 $v = rac{U}{T} = rac{2\pi \cdot r}{T} = \omega \cdot r$

 a_z : Anzugsbeschleunigung zum Zentrum

 F_z : Anzugskraft zum Zentrum (= F_R)

$$a_z = rac{2\pi \cdot v}{T} = \omega \cdot v = \omega^2 \cdot r = rac{v^2}{r}$$
 $F_z = m \cdot a_z$

Acknowledgements

Author(s): d20cay

Last updated: See changelog