YEESI 104: Machine Vision in Agriculture Deep Learning for Image Classification

YEESI Innovation Lab

Sokoine University of Agriculture

June 17, 2022

Introduction

This lesson covers the basics of deep learning and also a practical example on image classification.

Lesson Objectives: At the end of the lesson, students should be able to: -

- Explain different Deep Learning concepts
- Install and use Deep Learning frameworks such as Tensorflow
- Perform Data Preprocessing
- Train and Optimize Deep Learning models

Lesson Contents

The following will be covered in this lesson:

- Basics of Deep Learning and Neural Networks
- Environment Setup (tensorflow)
- 3 Deep Learning with deep neural networks.
- 4 Model design with tensorflow/keras.
- **5** Model training testing.

Basics of AI, ML, ANN and DL

Deep Learning Vs Traditional Machine Learning

MACHINE LEARNING

DEEP LEARNING

Artificial Neural Networks

What is a Neural Net?

■ Also known as perceptron. The simplest form of ANN is the Perceptron, a model with one layer only, very similar to the linear regression model.

A Simplified mathematical model of how the neurons operate

From: http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/

continuation

Inp	Input		Weights
x1	0.5	X	w1
x2	0.2	X	w2
x3	0	X	w3

Target	
1	
0	

In	put		Weights	*	0.5*1=0.5
x1	0.5	X	1		
x2	0.2	X	1		0.2*1=0.2
x3	0	X	1		0*1=0

Target					
	1				
	0				

continuation

Weights and Bias

- Inside each neuron, the linear combination of inputs and weights includes also a bias, similar to the constant in a linear equation
- Weights control the signal (or the strength of the connection) between two neurons. In other words, a weight decides how much influence the input will have on the output.
- The bias unit guarantees that even when all the inputs are zeros there will still be an activation in the neuron.
- Without these spare bias weights, our model has quite limited "movement" while searching through solution space.

Weights and Biases

Activation Functions

- The activation function defines the output of that node.
- They decide whether a neuron should be activated or not and introduce non-linear transformation to a neural network
- The activation function is a mathematical "gate" in between the input feeding the current neuron and its output going to the next layer.
- Activation functions in output layers of ML models mostly squash the value between a bounded range like 0 to 1.
- Activation used in hidden layers of neural networks provide non-linearity

Activation Functions

- Examples of Output layer Activation functions
 - Sigmoid binary classification
 - Softmax multiclass classification
- Examples of Hidden layer Activation functions
 - Rectified Linear Unit (ReLu)
 - Exponential Linear Unit
- This link gives a detailed description of commonly used activation functions.
- Another link

Tensorflow

- TensorFlow is a software library or framework, designed by Google to implement machine learning and deep learning concepts in the easiest manner.
- In this tutorial TensorFlow and Keras will be used.

Tensorflow

- Tensors are used as the basic data structures in TensorFlow language.
- Tensors are defined as multidimensional array or list.
- Install TensorFlow through the terminal: pip install tensorflow
- OR In Anaconda you can create a new environment and add tensorflow, keras and matplotlib packages

tf.data: Fast, flexible, and easy-to-use input pipelines

tf.data API

Model

YEESI Innovation Lab SUA

Shuffle examples Create mini-hatches

Consume data (from memory, local disk, GCS, S3...etc)

Dataset