1 Introduzione Analisi Complessa

Definizione

Una funzione di variabile complessa è una funzione $f:\Omega\subseteq\mathbb{C}\to\mathbb{C}$

Numero complesso: z = x + iy dove $x, y \in \mathbb{R}$ $i^2 = -1$

$$f(z) = u(z) + iv(z) = u(x,y) + iv(x,y)$$

Dunque ad ogni funzione complessa è possibile associare due funzioni reali in due variabili

$$f \leftrightarrow u, v : \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}$$

Esempi di funzioni elementari

$$f(z) = z_0 \in \mathbb{C}, \ z_0 = x_0 + iy_0, \ u = x_0, \ v = y_0$$

$$f(z) = Rez, \ z = x + iy, \ u(x, y) = x, \ v(x, y) = 0$$

$$f(z) = Imz, \ z = x + iy \implies f(z) = y$$

$$f(z) = |z|, \ f(z) = \sqrt{x^2 + y^2} \implies u(x, y) = \sqrt{x^2 + y^2}, \ v(x, y) = 0$$

$$f(z) = P(z) = a_n z^n + \dots + a_1 z + a_0$$

In questo ultimo caso è necessario calcolare manualmente le funzioni u,v associate

$$f(z) = \frac{P(z)}{Q(z)}$$
 con P, Q funzioni polinomiali

Quest'ultima funzione non è definita $\forall z \in \mathbb{C}$

$$f(z) = e^z, \sin z, \cos z, \sinh z, \cosh z$$

Funzione Esponenziale

È l'estensione della funzione esponenziale nel campo dei reali

$$z = x + iy \implies e^z := e^x \cdot e^{iy} := e^x \cdot (\cos y + i \sin y)$$

Se $z=x\in R\implies e^z=e^x\implies$ è estensione della funzione reale $u(x,y)=e^x\cos y,\ v(x,y)=e^x\sin y$

$$e^{z+2\pi i} = e^{x+iy+2\pi i} = e^{x+i(y+2\pi)} = e^x(\cos(y+2\pi) + i\sin(y+2\pi)) = e^z$$

Questo implica che la funzione esponenziale nel campo complesso è periodica di periodo $T=2\pi i$ Inoltre,

$$e^{z_1 + z_2} = e^{z_1} e^{z_2}$$

$$e^z = 0 \iff |e^z| = 0$$

$$|e^{x}(\cos y + i\sin y)| = |e^{x}||\cos y + i\sin y| = e^{x} = 0$$
 $\forall z$

Funzioni coseno, seno

$$\cos z := \frac{1}{2}(e^{iz} + e^{-iz})$$

$$\sin z := \frac{1}{2i} (e^{iz} - e^{-iz})$$

Sono funzioni definite $\forall z \in \mathbb{C}$

Come per la funzione esponenziale sono estensioni delle funzioni reali Dunque se $z=x\in R\implies \cos z=\cos x$

$$\cos(z + 2\pi) = \cos z$$

 $\implies \cos z$ è periodica sia nel campo dei reali sia nel campo dei complessi Inoltre

$$\cos z = 0 \iff z = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$

Per le altre funzioni valgono proprietà analoghe essendo definite come estensioni **Formule alternative**

2 Limiti

Definizione:

$$f:\Omega\subseteq\mathbb{C}\to\mathbb{C}, z_0\in\mathrm{acc}(\Omega), l\in\mathbb{C}$$

$$\lim_{z\to z_0}f(z)=l\iff \forall V(l)\exists u(z_0)\ \mathrm{tc}\ \forall z\in(u(z_0)\cap\Omega\setminus\{z_0\}), f(z)\in V(l)$$

Definizione di continuità

$$f:\Omega\subseteq\mathbb{C}\to\mathbb{C}, z_0\in a(\Omega)\cap\Omega,\ f\ \mathrm{continua}\ z_0\iff\exists\lim_{z\to z_0}f(z)=f(z_0)$$

Osservazioni

$$z = x + iy, z_0 = x_0 + iy_0, l = l_1 + il_2, f = u + iv$$

$$\lim_{z \to z_0} f(z) = l \iff \begin{cases} \lim_{(x,y) \to (x_0,y_0)} u(x,y) = l_1 \\ \lim_{(x,y) \to (x_0,y_0)} v(x,y) = l_2 \end{cases}$$

Con le stesse notazioni

$$f$$
 continua in $z_0 \iff u, v$ continue in (x_0, y_0)

Sono continue (sul loro dominio di definizione) tutte le funzioni elementari introdotte nella lezione scorsa

Vale l'algebra dei limite e il teorema del limite della funzione composta (\Longrightarrow composizione di continue rimane continua)

Vale il teorema di unicità del limite

2.0.1 Infinito nei complessi

Un intorno di ∞ nei complessi è il complementare di un qualsiasi disco

$$z \to \infty \iff z \in u(\infty) \iff |z| > R \iff |z| \to +\infty$$

$$f(z) \to \infty \iff f(z) \in u(\infty) \iff |f(z)| > R \iff |f(z)| \to +\infty$$

2.1 Derivabilità

Definizione:

$$f: \Omega \subset \mathbb{C} \to \mathbb{C}, z_0 \in \mathrm{acc}(\Omega) \cap \Omega$$

 $f \text{ derivabile (in senso complesso) in } z_0 \iff \exists \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} (\in \mathbb{C})$

e tale limite si dice $f'(z_0)$

Definizioni alternative:

$$\exists \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} \dots$$

$$f(z_0 + h) = f(z_0) + \lambda \cdot h + o(h) \quad \frac{o(h)}{h} \to 0$$

Dove λ è la derivata prima della funzione nel punto z_0

Quest'ultima è la definizione di differenziabilità

Attenzione Se u, v sono differenziabili ciò non implica la differenziabilità/derivabilità di f (Un esempio è f(z) = Imz)

Teorema (caratterizzazione della derivaibilità)

$$f: \Omega \subseteq \mathbb{C} \to \mathbb{C}, z_0 \in \Omega \cap \mathrm{acc}(\Omega), \ z_0 = x_0 + iy_0, \ f = u + iv_0$$

f derivabile in $z_0 \iff u, v$ differenziabile in (x_0, y_0) ,

Inoltre
$$\begin{cases} u_x(x_0, y_0) = v_y(x_0, y_0) \\ u_y(x_0, y_0) = -v_x(x_0, y_0) \end{cases}$$

(sistema, condizione di cauchy riemann) Inoltre, in tal caso

$$f'(z_0) = u_x(x_0, y_0) - iu_y(x_0, y_0)$$

$$f'(z_0) = v_y(x_0, y_0) + iv_x(x_0, y_0)$$

Dimostrazione

$$(\Longrightarrow)$$
Per Hp $\exists f'(z_0) = \alpha + i\beta \in \mathbb{C} \implies f(z_0 + h) = f(z_0) + f'(z_0)h + g, g = o(h)$

$$u(x_0+h_1,y_0+h_1)+iv(x_0+h_1,y_0+h_2) = u(x_0,y_0)+iv(x_0,y_0)+(\alpha+i\beta)(h_1+ih_2)+g_1+ig_2$$
$$u(x_0+h_1+h_1,y_0+h_2) = u(x_0,y_0)+(\alpha h_1-\beta h_2)+g_1$$

$$v(x_0 + h_1, y_0 + h_2) = v(x_0, y_0) + (\beta h_1 + \alpha h_2) + g_2$$

Queste due equazioni indicanon che u, v sono differenziabili in (x_0, y_0) , con

$$\begin{cases} \nabla u(x_0, y_0) = (\alpha, -\beta) \\ \nabla v(x_0, y_0) = (\beta, \alpha) \end{cases}$$

Questo dimostra inoltre che $f'(z_0) = \alpha + i\beta$

 (\longleftarrow) Procedere al contrario

Funzioni olomorfe 3

Definizione

f si dice olomorfa su Ω se è derivabile in $z_0 \forall z_0 \in \Omega$

3.1 Invertibilità locale

Teorema

Sia $f:\Omega\subseteq\mathbb{C}\to\mathbb{C}$ olomorfa in $\Omega,$ e sia $z_0\in\Omega$ tale che $f'(z_0)\neq0$ allora f è "localmente invertibile in z_0 "

 $(\exists u(z_0)$ tale che $f|_{u(z_0)}$ invertibile) E la funzione inversa f^{-1} è derivabile in senso complesso in $f(z_0)$ e

$$(f^{-1})'|_{z_0} = \frac{1}{f'(z_0)}$$

Dimostrazione

 $\Phi(u,v)$ definito su $\Omega \subseteq \mathbb{R}^2 \to \mathbb{R}^2, (x_0,y_0) \in \Omega$, se $det J\Phi(x_0,y_0) \neq 0 \implies \Phi$ "localmente invertibile" e

$$J\Phi^{-1}(\Phi(x_0, y_0)) = (J\Phi(x_0, y_0))^{-1}$$

Dunque se f = u + iv si riformula il teorema con $\Phi = (u, v)$

$$J\Phi(x_0, y_0) = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \implies det J\Phi(x_0, y_0) = \alpha^2 + \beta^2 = |f'(z_0)|^2$$

Poiché $f' = \alpha + i\beta$ e l'ipotesi del teorema è che $|f'(z_0)|^2 \neq 0$

$$J\Phi^{-1}(\Phi(x_0, y_0)) = \frac{1}{\alpha^2 + \beta^2} \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$

$$\implies (f^{-1})'(f(z_0)) = \frac{\alpha}{\alpha^2 + \beta^2} - i\frac{\beta}{\alpha^2 + \beta^2} = \frac{\overline{f'(z_0)}}{|f'(z_0)|^2} = \frac{1}{f'(z_0)}$$

Ricerca delle primitive - antiderivazione

Problema: Data $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$ esiste? unica? $F: \Omega \subseteq \mathbb{C}$ olomorfa in Ω tale

$$F'(z) = f(z)$$

Una tale F si dice **primitiva** di f.

Richiamo - Teorema fondamentale del calcolo: Data $f:(a,b)\in\mathbb{R}\to\mathbb{R}$ continua, allora una primitiva di f è data da

$$F(x) = \int_{a}^{x} f$$

E tutte le altre primitive si ottengono aggiungendo una costante reale

Unicità: una primitiva, se esiste, è univocamente determinata a meno di costante additiva.

- F primitiva di f, $\lambda \in \mathbb{C} \implies F + \lambda$ primitiva di f poiché $(F + \lambda)' = F' + \lambda' = f$
- F_1, F_2 primitive di f $\implies \exists \lambda \in \mathbb{C} : F_1 F_2 = \lambda$

 $G := F_1 - F_2$, Tesi: G è costante, Dim:

$$G' = (F_1 - F_2)' = f - f = 0$$

 $G = u + iv G' = u_x - iu_y = v_y + iv_x G' = 0 \implies \nabla u(x_0, y_0) = \nabla v(x_0, y_0) = \underline{0}$ $\implies u \text{ costante}, v \text{ costante}$

N.B vale se Ω è connesso

Esistenza

 $f=u+iv,\,F=U+iV$ (f data, F incognita) $F'=U_x-iU_y=V_y+iV_x=f=u+iv$

$$\implies \begin{cases} U_x = u \\ U_y = -v \end{cases} \begin{cases} V_x = v \\ V_y = u \end{cases}$$

ovvero U potenziale per $w_1 := udx - vdy$

e V potenziale per $w_2 := vdx + udy$

Concludiamo che dire f ammette primitive $\iff \omega_1, \omega_2$ esatte $\implies \omega_1, \omega_2$ chiuse

Ovvero se la funzione f soddisfa le condizioni di Cauchy-Riemann dunque se folomorfa

f ammette primitive $\iff \omega_i$ esatte $\implies f$ olomorfa $\iff w_i$ chiuse

L'implicazione inversa è vera se Ω è semplicemente connesso

Dunque F = U + iV dove U potenziale per ω_1 , V potenziale per ω_2

Nota: ω chiusa $\Longrightarrow \oint_{\gamma} \omega$ non cambia se sostituisco γ con un circuito omotopo.

Definizione

Data $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$, dato γ cammino in Ω parametrizzata da una funzione $r: [a,b] \to \Omega, \ r(t) = r_1(t) + ir_2(t)$

$$\int_{\gamma} f(z)dz := \int_{a}^{b} f(r(t))r'(t)dt$$

$$= \int_{a}^{b} (u+iv)(r'_{1}+ir'_{2})dt = \int_{a}^{b} (ur'_{1}-vr'_{2})+i\int_{a}^{b} vr'_{1}+ur'_{2})$$
$$= \int_{\gamma} \omega_{1}+i\int_{\gamma} \omega_{2}$$

Riformulazione del calcolo di F

$$F(z) = \int_{\gamma: z_0 \to z} f$$

Questo implica che

$$\oint_{\gamma} f = 0$$

Teorema di Morera

 $\oint_{\gamma} f = 0 \ \forall \gamma \ {\rm circuito} \subseteq \Omega \implies f \ {\rm olomorfa}$

Teorema di Cauchy

f olomorfa su $\Omega \Longrightarrow \oint f$ non cambia se sostituisco un circuito $\gamma \subseteq \Omega$ con uno ad omotopo (In particolare, se γ omotopa ad un punto $\oint_{\gamma} f = 0$)

4 Funzioni analitiche in campo complesso

Definizione

 $f:\Omega$ aperto
 $\subset \mathbb{C} \to \mathbb{C}$ si dice analitica su Ω se
 $\forall z_0 \in \Omega, \ \exists \ u(z_0)$ tale che

$$f(z) = \sum_{k \ge 0} c_k (z - z_0)^k \ \forall z \in u(z_0)$$

4.1 Serie di potenze in \mathbb{C}

$$\sum_{k>0} c_k (z-z_0)^k$$

$$S_N(z) := \sum_{k=0}^{N} c_k (z - z_0)^k$$

Tipi di convergenza

La serie conv. puntualmente in $z \in \mathbb{C}$ se

$$\lim_{N\to+\infty} S_N(z) \in \mathbb{C}$$

La serie conv. uniformemente in Ω a S(z) se

$$\exists \lim_{N \to +\infty} \sup_{z \in \Omega} |S_N - S(z)| = 0$$

La serie conv. assolutamente in $z \in \mathbb{C}$ se converge

$$\sum_{k>0} |c_k| |z-z_0|^k$$

Dominio di convergenza della serie

 $\mathcal{D}:=\{z\in\mathbb{C}: \text{ la serie converge puntualmente in }z\}$

Proprietà

1. $\operatorname{int}(\mathcal{D}) = \{z \in \mathbb{C} : |z - z_0| < R\}$ dove $R := \operatorname{raggio} \operatorname{di} \operatorname{convergenza}$

 \Longrightarrow La serie converge assolutamente in $int(\mathcal{D})$

 \implies La serie converge uniformemente su $\{|z - z_0| \le \rho, \forall \rho < R\}$

2. $R = \frac{1}{L}$ dove

$$L = \lim_{k \to +\infty} (\sup) \sqrt{|c_k|}$$

Con la convenzione $\frac{1}{0} = +\infty$, $\frac{1}{+\infty} = 0$

3. La serie delle derivate n-esime

$$\sum_{k\geq 0} D^n(c_k(z-z_0)^k)$$

ha lo stesso raggio di convergenza della serie di partenza

Calcolo dei coefficienti c_k

$$f(z) = \sum_{k>0} c_k (z - z_0)^k = c_0 + c_1 (z - z_0) + c_2 (z - z_0)^2 + \dots$$

$$f'(z) = \sum_{k>1} kc_k(z-z_0)^{k-1} = c_1 + 2c_2(z-z_0) + \dots$$

$$f^{(n)}(z) = \sum_{k \ge n} k(k-1) \dots (k-n+1) c_k (z-z_0)^{k-n}$$

Si ottiene infine

$$f(z_0) = c_0, \ f'(z_0) = c_1, \ f''(z_0) = 2c_2$$
$$f^{(n)}(z_0) = n!c_n$$
$$\implies c_n = \frac{f^{(n)}(z_0)}{n!}$$

4.2 Un altro modo di calcolare i coefficienti c_k

Sia f analitica in Ω , sia $z_0 \in \Omega$, R := raggio di conv.Fissato $r \in (0, R)$, e fissato $k \ge 0$, calcoliamo

$$I_k := \int_{C_r(z_0)} \frac{f(z)}{(z - z_0)^{k+1}} dz$$

Dove $C_r(z_0)$ è una circonferenza centrata in z_0 di raggio r percorso una volta in senso antiorario parametrizzato $r(t)=z_0+re^{it}$ $t\in[0,2\pi]$, scrivibile anche come $(x_0+r\cos t)+i(y_0+r\sin t)$

$$I_k = \int_{C_r(z_0)} \frac{\sum_{n \ge 0} c_n (z - z_0)^n}{(z - z_0)^{k+1}} dz = \sum_{n > 0} c_n \int_{C_r(z_0)} (z - z_0)^{n-k-1} dz$$

È permesso per la convergenza uniforme della serie.

$$\int_{C_r(z_0)} (z - z_0)^n dz = \begin{cases} 0 & m \neq -1 \\ 2\pi i & m = -1 \end{cases}$$

Dunque tutti gli integrali nella somma si annullano tranne per $n-k-1=-1 \implies n=k$

$$= c_k \cdot 2\pi i \implies c_k = \frac{I_k}{2\pi i} = \frac{1}{2\pi i} \int_{C_{\sigma}(z_0)} \frac{f(z)}{(z - z_0)^{k+1}} dz$$

Formula di Cauchy per la derivata k-esima:

$$f^{(k)}(z) = \frac{k!}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{(z - z_0)^{k+1}} dz$$

In particolare con k = 0

$$f(z_0) = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{z - z_0} dz$$

Dove r è un qualsiasi raggio appartenente all'intervallo (0, R)

Osservazione:

$$z \mapsto \frac{f(z)}{(z-z_0)^{k+1}}$$
è olomorfa su $D \setminus \{z_0\}$

$$\implies \int_{C_r(z_0)} \frac{f(z)}{(z-z_0)^{k+1}} dz$$
 è indipendente dalla scelta di $r \in (0,R)$

Per k=0 vale in realtà una proprietà più forte

Formula di Cauchy

f olomorfa su Ω contenente $\overline{B_r(z_0)}$, allora $\forall z \in B_r(z_0)$

$$f(z) = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(\xi)}{\xi - z} d\xi$$

Precisazione: $B_r(z_0) := \{ z \in \mathbb{C} : |z - z_0| < r \}$

Questa formula è estremamente forte e generica poiché vale per tutte le funzioni olomorfe, non è necessaria l'ipotesi di funzione analitica.

Osservazione:

$$z \mapsto \frac{f(\xi)}{\xi - z}$$

è somma della serie di potenze generica

$$\frac{1}{1-z} = \sum_{k} z^k$$

È dunque una funzione analitica.

Analiticità e olomorfia

Teorema di analiticità delle funzioni olomorfe

Sia folomorfa su $\Omega \implies f$ analitica su Ω

Osservazioni

- \Leftarrow (implicazione inversa) è ovvia
- Differenza rispetto al caso reale

Valgono gli sviluppi già noti dall'analisi reale.

5 Singolarità isolate e loro classificazione

Sia $f: \Omega \setminus \{z_0\} \subseteq \mathbb{C} \to \mathbb{C}$, si dice che z_0 è una **singolarità isolata** per f se $\exists u(z_0) \subseteq \Omega$ tale che f sia olomorfa se $u(z_0) \setminus \{z_0\}$

Sia z_0 una singolarità isolata per f.

5.0.1Singolarità eliminabile

Si dice che z_0 è una **singolarità eliminabile** se

$$\exists u(z_0), \exists \tilde{f}: u(z_0) \to \mathbb{C}$$
tale che $\tilde{f}|_{u(z_0)\backslash \{z_0\}} = f$

e \tilde{f} sia olomorfa in $u(z_0)$.

Esempio: $f(z) = \frac{\sin z}{z}$

Osservazione: Se $\exists \tilde{f}, \tilde{f} \in \text{unica.}$

Se una g è olomorfa è anche continua:

$$\lim_{z \to z_0} [g(z) - g(z_0)] = \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} (z - z_0) = g'(z_0) \cdot 0 = 0$$

Ne consegue che il valore che assumera \tilde{f} in z_0 è

$$\tilde{f}(z_0) = \lim_{z \to z_0} f(z)$$

Osservazione 2: z_0 singolarià eliminabile per $f \implies f$ limitata (in modulo) vicino a z_0 .

$$\exists u(z_0), \exists M > 0 \text{ tale che } ||f(z)|| \le M \forall u(z_0) - \{z_0\}$$

Infatti, se z_0 singolarità eliminabile per $f \implies \exists \lim_{z \to z_0} f(z) \in \mathbb{C}$

Teorema di rimozione della singolarità

Se f olomorfa e limitata in $u(z_0) \setminus \{z_0\} \implies z_0$ è singolarità eliminabile

Quindi, in conclusione, se f è olomorfa su $u(z_0) \setminus \{z_0\}$, z_0 singolarità eliminabile di $f \iff f$ limitata in $u(z_0) \setminus \{z_0\}$

5.0.2 Polo

Si dice che z_0 è un **polo** per f se

$$\lim_{z \to z_0} f(z) = \infty$$

Esempio: $f(z) = \frac{1}{sz^m m}$ con $m \in \mathbb{N} \setminus \{0\}$

5.0.3 Singolarità essenziale

Si dice che z_0 è una singolarità essenziale per f se è una singolarità isolata e non è né eliminabile né polo.

Esempio: $f(z) = e^{\frac{1}{z}}$

Teorema di Picard: z_0 singolarità essenziale per $f \implies \forall u(z_0), f(u(z_0))$ (ovvero l'immagine di f) è data da \mathbb{C} oppure $\mathbb{C} \setminus \{1 \text{ punto}\}.$

5.1 Sviluppabilità in serie di Laurent

Teorema f olomorfa su $\Omega \setminus \{z_0\}$ aperto di \mathbb{C} , allora f è "sviluppabile in serie di Laurent di centro z_0 ", ovvero

$$\exists u(z_0) \subseteq \Omega \text{ tale che } \forall x \in u(z_0) \setminus \{z_0\}$$

$$f(z) = \sum_{k=-\infty}^{+\infty} c_k (z - z_0)^k$$

$$= \sum_{k\geq 0} c_k (z - z_0)^k + \sum_{k<0} c_k (z - z_0)^k$$

Ovvero parte regolare dello sviluppo + parte singolare dello sviluppo Inoltre, il calcolo dei coefficienti:

$$c_k = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{(z - z_0)^{k+1}} dz$$

In particolare:

$$c_{-1} = \frac{1}{2\pi i} \int_{C_r(z_0)} f(z) dz$$

C'è una relazione tra c_{-1} e gli integrali sui circoli. Esempio: $f(z) = \frac{1}{z}$ Tramite serie di Laurent è possibile riconoscere le singolarità z_0 è singolarità eliminabile \iff parte singolare dello sviluppo = 0.

6 Riconoscere le singolarità

- z_0 eliminabile \iff parte singolare dello sviluppo = 0
- z_0 polo
- z_0 sing. essenziale

Idea: z_0 è un polo per $f \iff z_0$ è zero per la funzione 1/f

$$\lim_{z \to z_0} \frac{1}{f} = 0$$

6.0.1 Principio di identità

Sia $f:\Omega\subseteq\mathbb{C}\to\mathbb{C}$ olomorfa e supposto Ω connesso Sia $Z(f)=\{z\in\Omega:f(z)=0\}$, sono equivalenti i seguenti fatti

- 1. $z_0 \in \operatorname{acc}(Z(f))$
- $2. \ f^{(n)}(z_0) = 0 \ \forall n \in \mathbb{N}$
- 3. Z(f) contiene un intorno di z_0
- 4. $Z(f) \equiv \Omega$

In conclusione: Z(f)

- È fatto da punti isolati, oppure
- $\bullet\,$ Coincide con tutto Ω

6.0.2 Ordine di zeri

Sia f olomorfa su Ω connesso, $f\neq 0$ su Ω , sia $z_0\in Z(f)$, Per il principio di identità, z_0 è uno zero isolato.

La (2) è quindi falsa $\implies \{n \in \mathbb{N} : f^{(n)}(z_0) \neq 0\} \neq 0$. Per il principio di buon ordinamento $\nu := \min\{n \in \mathbb{N} : f^{(n)}(z_0) \neq 0\}$: Ordine dello zero.

Osservazione: ν è anche caratterizzato da:

$$f(z) = \sum_{n \ge \nu} c_n (z - z_0)^n = c_\nu (z - z_0)^\nu + o(z - z_0)^\nu$$

Inoltre

$$\exists \lim_{z \to z_0} \frac{f(z)}{(z - z_0)^{\nu}} \in \mathbb{C} \setminus \{0\}$$

6.1 Ordine dei poli

 z_0 polo per $f \iff z_0$ zero per 1/f

Definizione: Sia z_0 polo per f. Chiamiamo ordine del polo z_0 l'ordine di z_0 come z_0 per 1/f

Definizione: In particolare si dice polo semplice un polo di ordine 1. **Osservazione:** L'ordine di un polo è caratterizzato anche:

• z_0 polo di ordine ν per $f \iff z_0$ zero di ordine ν per $1/f \iff$

$$\exists \lim_{z \to z_0} \frac{1}{f(z)} \cdot \frac{1}{(z - z_0)^{\nu}} \in \mathbb{C} \setminus \{0\}$$

$$\implies \exists \lim_{z \to z_0} (z - z_0)^{\nu} f(z) \in \mathbb{C} \setminus \{0\} \quad (*)$$

• z_0 polo di ordine ν per $f \iff$

$$f(z) = \sum_{n=-\nu}^{+\infty} c_n (z - z_0)^n$$
, con $c_{-\nu} \neq 0$

Infatti

$$f(z) = \sum_{n = -\infty}^{+\infty} c_n (z - z_0)^n \implies (z - z_0)^{\nu} f(z) = \sum_{n = -\infty}^{+\infty} c_n (z - z_0)^{n + \nu}$$

(*) \iff tutti i coefficienti c_n con $n + \nu < 0$ e il coefficiente $c_{-\nu} \neq 0$.

Dunque, lo sviluppo di Laurent di una funzione che ha un polo ha parte singolare composta da un numero finito di termini.

È quindi possibile classificare le singolarità guardando lo sviluppo in serie di Laurent, guardando la parte singolare

- p. singolare nulla: ELIMINABILE
- p. singolare con numero finito di termini: POLO
- p. singolare con infiniti termini: ESSENZIALE

Osservazioni su zeri e poli

1. Se f,g hanno entrambe uno zero in z_0 o entrambe un polo, allora

$$\exists \lim_{z \to z_0} \frac{f}{g} = \lim_{z \to z_0} \frac{f'}{g'}$$

Cenno di dim (Primo caso):

$$f(z) = c_{\nu}(z-z_0)^{\nu} + o(z-z_0)^{\nu}, q(z) = c_{\nu}(z-z_0)^{\eta} + o(x-x_0)^{\eta}$$

Sono possibili solo tre casi: $\eta = \nu \implies$ limite finito, $\nu > \eta$ limite 0, $\nu < \eta$ limite infinito.

2. z_0 zero di ordine ν per $f \iff \lim_{z \to z_0} \frac{(z-z_0)}{f(z)} = \nu$

Questa è una modalità per calcolare l'ordine. Dim: $f(z) = c_{\nu}(z-z_0)^{\nu} + \ldots$, $f'(z) = \nu c_{\nu}(z-z_0)^{(\nu-1)} + \ldots$

$$\implies \frac{(z-z_0)f'(z)}{f(z)} = \frac{\nu c_n u(z-z_0)^{\nu} + o(z-z_0)^{\nu}}{c_{\nu}(z-z_0)^{\nu} + o(z-z_0)^{\nu}} \to_{z-z_0} \nu$$

3. z_0 zero di ordine ν per f, con $\nu \ge 1 \implies z_0$ zero di ordine $\nu - 1$ per f'. z_0 polo di ordine ν per f, con $\nu \ge -1 \implies z_0$ polo di ordine $\nu + 1$ per f. Controllare su libro.

6.1.1 Unicità del prolungamento analitico

Sia $\Omega \subseteq \mathbb{C}$ connesso, sia $S \subseteq \Omega$ tale che $\mathrm{acc}(S) \cap \Omega \neq 0$. Data $f: S \to \mathbb{C}$, esiste al più una $\tilde{f}: \Omega \to \mathbb{C}$ olomorfa tale che $\tilde{f}|_S = f$

Dimostrazione: Supponiamo $\tilde{f}_1, \tilde{f}_2: \Omega \to \mathbb{C}$ siano prolungamenti di f. Tesi: $\tilde{f}_1 \equiv \tilde{f}_2$

Considerando $g := \tilde{f}_1 - \tilde{f}_2$. Tesi: $g \equiv 0$.

gè olomorfa, $S\subseteq Z(g)\implies Z(g)$ ha punti di accumulazione in $\Omega,$ quindi $Z(g)\equiv \Omega$

7 Teorema dei residui

Motivazione dello studio del teorema: è il calcolo di integrali in campo complesso e anche in campo reale.

Se f è olomorfa su $\Omega \subseteq \mathbb{C} \implies \int_{\gamma} f(z)dz = 0$ dove γ è un circuito omotopo a un punto. Se f è olomorfa su Ω tranne che in un numero finito di punti, come si calcola $\int_{\gamma} f(z)dz$?

Definizione

Se z_0 è una singolarità isolata per f si dice residuo di f in z_0 il coefficiente c_{-1} dello sviluppo in serie di Laurent di f di centro z_0 .

7.1 Calcolo dei residui

- Se z_0 è una singolarità eliminabile: Res $(f,z_0)=0$ poiché la parte singolare dello sviluppo $\equiv 0$
- $\bullet \ z_0$ singolarità essenziale: non c'è modo diretto di calcolare il residuo (serve calcolare lo sviluppo)
- Se z_0 è un polo di ordine ν

$$\operatorname{Res}(f, z_0) = \lim_{z \to z_0} \frac{1}{(\nu - 1)!} D^{(\nu - 1)} [(z - z_0)^{\nu} f(z)]$$

In particolare se z_0 è un polo semplice

$$\operatorname{Res}(f, z_0) = \lim_{z \to z_0} [(z - z_0)f(z)]$$

Dimostrazione polo semplice

 z_0 polo semplice $\implies f(z) = \sum_{n \ge -1} c_n (z - z_0)^n$, con $c_{-1} \ne 0$

$$(z - z_0)f(z) = \sum_{n \ge -1} c_n(z - z_0)^{n+1} = c_{-1} + c_0(z - z_0) + c_1(z - z_0)^2 + o(z - z_0)^2$$

$$\lim_{z \to z_0} [(z - z_0)f(z)] = c_{-1}$$

Osservazione: Res $(\frac{g}{h}, z_0) = \frac{g(z_0)}{h'(z_0)}$ con g olomorfa, h con uno zero di ordine 1 in z_0 .

Dimostrazione

Caso $g(z_0) \neq 0 \implies z_0$ polo semplice

$$(z-z_0)\frac{g(z)}{h(z)} = \frac{g(z_0)(z-z_0) + o(z-z_0)}{h'(z_0)(z-z_0) + o(z-z_0)} \to \frac{g(z_0)}{h'(z_0)}$$

Tramite la formula per il residuo del polo semplice

$$\operatorname{Res}(\frac{g}{h}, z_0) = \frac{g(z_0)}{h'(z_0)}$$

Caso G(z0)=0 Dico che z_0 è una singolarità eliminabile

$$\frac{g}{h} = \frac{g'(z_0)(z - z_0) + o(z - z_0)}{h'(z_0(z - z_0) + o(z - z_0))} \to \frac{g'(z_0)}{h'(z_0)} \in \mathbb{C}$$

7.2 Definizione e calcolo dell'indice di avvolgimento

Definizione (intuitivia)

Sia γ circuito $\subseteq \mathbb{C}$ e sia $z_0 \notin \gamma$.

Si dice indice di avvolgimento di γ rispetto a z_0 è il numero di volte che γ gira attorno a z_0 , contate con segno + nel caso di verso antiorario

Definizione (formale)

Sia $r(t):[a,b]\to\mathbb{C}$ parametrizzazione di γ (γ) circuito $\subseteq \mathbb{C},\ z_0\not\in\mathbb{C}$. Sia $\rho(t):=|r(t)-z_0|$. Allora $\exists \theta:[a,b]\to\mathbb{C}$ tale che $r(t)=z_0+\rho(t)e^{i\theta(t)}$.

$$\operatorname{Ind}(\gamma, z_0) := \frac{\theta(b) - \theta(a)}{2\pi} \in \mathbb{Z}$$

L'indice è un numero $\in \mathbb{Z}$ poiché $r(a)=r(b) \implies \rho(a)=|r(a)-z_0|=|r(b)-z_0|=\rho(b)$

$$r(a) = \rho(a) + e^{i\theta(a)}$$

$$r(b) = \rho(b) + e^{i\theta(b)}$$

$$\implies e^{i\theta(a)} = e^{i\theta(b)}$$

$$\implies i\theta(a) - i\theta(b) = 2k\pi i = \theta(a) - \theta(b) = 2k\pi$$

Osservazioni

- 1. L'indice non cambia per parametrizzazioni equivalenti (dello stesso circuito)
- 2. L'indice di avvolgimento non cambia sostituendo γ con un circuito omotopo a γ in $\mathbb{C}\setminus\{z_0\}$

7.2.1 Modalità analitica per calcolare l'indice

$$\operatorname{Ind}(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz$$

Dimostrazione

 $r(t) = z_0 + \rho(t)e^{i\theta(t)}, \ t \in [a, b].$

$$\begin{split} &\int_{\gamma} \frac{1}{z - z_0} dz = \int_a^b \frac{\rho'(t)e^{i\theta(t)} + \rho(t)i\theta'(t)e^{i\theta(t)}}{z_0 + \rho(t)e^{i\theta(t)} - z_0} dt \\ &= \int_a^b \frac{\rho'(t)etsi\theta(t)}{\rho(t)e^{i\theta(t)}} dt + i \int_a^b \frac{\rho(t)\theta'(t)e^{i\theta(t)}}{\rho(t)e^{i\theta(t)}} dt \\ &= \log \rho(t)|_a^b + i[\theta(b) - \theta(a)] = i[\theta(b) - \theta(a)] \end{split}$$

Dunque dividendo

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz = \frac{\theta(b) - \theta(a)}{2\pi}$$

7.3 Teorema dei residui

Sia Ω aperto $\subseteq \mathbb{C}$ e sia $\gamma \subseteq \mathbb{C}$ circuito omotopo a un punto (in Ω). Sia $f: \Omega \setminus S \to \mathbb{C}$ olomorfa, dove S "insieme singolare" soddisfa

- $\gamma \subseteq \Omega \setminus S$
- $acc(S) \cap \Omega = \emptyset$

Allora:

 $\operatorname{Ind}(\gamma,z_0)\neq 0$ per al più un numero finito di punti e vale

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{z_0 \in S} \operatorname{Res}(f, z_0) \operatorname{Ind}(\gamma, z_0)$$

8 Applicazioni del teorema dei residui in campo reale

8.1 Primo tipo

$$\int_0^{2\pi} f(\cos t, \sin t) dt$$

$$\cos t = \frac{e^{it} + e^{-it}}{2}$$

$$\sin t = \frac{e^{it} - e^{-it}}{2}$$

Dunque

$$\int_0^{2\pi} f(\cos t, \sin t) dt = \int_0^{2\pi} g(e^{it}) i e^{it} dt$$
$$\int_{C_1(0)} g(z) dz$$

Se g soddisfa le ipotesi del teorema dei residui su $C_1(0) \subseteq \Omega$, con $\gamma = C_1(0)$

$$=2\pi i \sum_{|z_0|<1} \operatorname{Res}(g, z_0)$$

Esempio: $\int_0^{2\pi} \frac{1}{2+\sin t} dt$

8.2 Secondo tipo

V.P.
$$\int_{\mathbb{R}} f(x) dx := \lim_{R \to +\infty} \int_{-R}^{R} f(x) dx$$

La definizione cambia leggermente nel caso sia presente una singolarità su $\mathbb{R}.$ Se f è integrabile (secondo Riemann) allora

$$\int_{\mathbb{R}} f(x)dx = \lim_{R \to +\infty} \int_{-R}^{R} f(x)dx$$

In generale può accadere che il V.P. $\int_{\mathbb{R}} f(x) dx \in \mathbb{R}$ ma f non è integrabile **Esempio:**

$$f(x) = \begin{cases} \frac{1}{x} & x \ge 1\\ 1 & x \in [0, 1]\\ -1 & x \in [-1, 0]\\ \frac{1}{x} & x < -1 \end{cases}$$

f non è integrabile secondo Riemann, ma il V.P. è uguale a 0.

Ipotesi: f = f(z) abbia un numero finito di singolarità nel semipiano $\{\text{Im}z > 0\}$ (e nessuna singolarità sull'asse reale)+ (*) ipotesi di decadimento.

$$I = \lim_{R \to +\infty} \int_{-R}^{-R} f(x)dx + \int_{C_R^+(0)} f(z)dz - \int_{C_R^+(0)} f(z)dz$$

$$I = \lim_{R \to +\infty} \int_{\gamma_R} f(z)dz - \lim_{R \to +\infty} \int_{C_R(0)^+} f(z)dz$$

Dove $\gamma_R = [-R, R] + C_R^+(0)$

Per il teorema dei residui

$$I = 2\pi i \sum_{\substack{z_0 \in S, \\ \operatorname{Im} z_0 > 0}} \operatorname{Res}(f, z_0)$$

L'indice di avvolgimento è uguale a 1.

Figura 1: Semicirconferenza

8.2.1 Lemma tecnico di decadimento

Se $\exists \alpha > 1$ tale che $|f(z)| \leq \frac{c}{|z|^{\alpha}}$ (per |z| abbastanza grande) (*), allora

$$\lim_{R \to +\infty} \int_{C_p^+(0)} f(z) dz = 0$$

Aggiungendo l'ipotesi di decadimento all'integrale precedente si avrà il risultato scritto

Si ha un calcolo analogo per il semipiano $\{Im < 0\}$

8.3 Terzo tipo

$$I = \text{V.P. } \int_{\mathbb{R}} f(x)e^{i\omega x}dx = 2\pi i \sum_{\substack{z_0 \in S \\ \text{Im}z_0 > 0}}^{\infty} \text{Res}(f(z)e^{i\omega z}, z_0)$$

Dove $\omega \in \mathbb{R}^+$

Ipotesi: $f(z)e^{i\omega x}$ abbia un numero finito di singolarità nel semipiano $\{\text{Im}z>0\}$ (e nessuna singolarità sull'asse reale) + (**) lemma di Jordan.

$$I = \lim_{R \to +\infty} \int_{-R}^{-R} f(z)e^{i\omega z}dz + \int_{C_R(0)^+} f(z)e^{i\omega z}dz - \int_{C_R(0)^+} f(z)e^{i\omega z}dz$$
$$I = \lim_{R \to +\infty} \int_{\gamma_R} f(z)e^{i\omega z}dz - \lim_{R \to +\infty} \int_{C_R(0)^+} f(z)e^{i\omega z}dz$$

Dove $\gamma_R = [-R, R] + C_R^+(0)$

Per il teorema dei residui

$$I = 2\pi i \sum_{\substack{z_0 \in S, \\ \operatorname{Im}(z_0) > 0}} \operatorname{Res}(f(z)e^{i\omega x}, z_0)$$

Figura 2: Semicirconferenza

L'indice di avvolgimento è uguale a 1. Il secondo termine dell'integrale si elide grazie a il

8.3.1 Lemma di Jordan

Sotto l'ipotesi

$$\begin{split} &\lim_{R\to +\infty} \sup_{z\in c_R^+(0)} |f(z)| = 0 \quad (**) \\ &\lim_{R\to +\infty} \int_{C_R^+(0)} f(z) e^{i\omega x} dz = 0 \end{split}$$

Osservazione: Variante analoga nel semipiano $\{\operatorname{Im} z < 0\}$ quando $\omega \in \mathbb{R}^-$ Jordan vale anche per $\omega \in \mathbb{R}^-$ in $C_R^-(0)$ Esempio: $I = \operatorname{V.P.} \int_{\mathbb{R}} \frac{\cos x}{1+x^2} dx$

8.4 Quarto tipo

$$I = V.P. \int_{\mathbb{R}} f(x) dx$$

Ipotesi: f(z) abbia un numero finito di singolarità su $\{\text{Im}>0\}$, $\lim_{R\to+\infty}\int_{C_R^+(0)}f(z)dz=0$ (***) e abbia un numero finito di poli semplici su $\mathbb R$.

$$\gamma_{R,\varepsilon} = [-R, x_0 - \varepsilon] - C_{\varepsilon}^+(x_0) + [x_0 + \varepsilon, R] + C_R^+(0)$$

$$I = \lim_{R \to +\infty} \int_{\gamma_{R,\varepsilon}} f(z)dz + \lim_{\varepsilon \to 0} \int_{C_{\varepsilon}^+(x_0)} f(z)dz - \lim_{R \to +\infty} \int_{C_R^+(0)} f(z)dz$$

8.4.1 Lemma del polo semplice

Se x_0 è un polo semplice

$$\lim_{\varepsilon \to 0} \int_{C_{\varepsilon}^{+}(x_{0})} f(z) dz = \pi i \mathrm{Res}(f, x_{0})$$

Esempio: $I = (V.P.) \int_{\mathbb{R}} \frac{1-\cos 2x}{x^2} dx$

Figura 3: Quarto tipo

9 Cenni aggiuntivi sull'analisi complessa

9.1 Residuo all'infinito

Definizione: Diciamo che ∞ è una singolarità isolata per f se f olomorfa nel complementare di una palla

In modo equivalente: $g(z)=f(\frac{1}{z})$ ha una singolarità isolata nell'origine.

Olomorfa su
$$\left| \frac{1}{z} \right| > R \iff |z| < R$$

$$\mathrm{Res}(f,\infty) := \mathrm{Res}\bigg(-\frac{1}{z^2}f\bigg(\frac{1}{z}\bigg),0\bigg)$$

Teorema: La somma di tutti i residui di una funzione olomorfa su $\mathbb{C} \setminus \{n. \text{ finito di punti}\}$ è zero. (compreso il punto all'infinito).

Da utilizzare quando si deve calcolare la somma di tanti residui al finito. (stesso indice di avvolgimento)

9.2 Funzioni polidrome

 $z = |z|e^{i\operatorname{Arg}z}$, $\operatorname{Arg}z := \{\operatorname{arg} + 2k\pi : k \in \mathbb{Z}\}$, $\operatorname{arg}z$ argomento principale $\in [0, 2\pi]$.

$$\sqrt[n]{z} = \{\sqrt[n]{|z|}e^{i\frac{\text{Arg}\,z}{n}}\} = \{\sqrt[n]{|z|}e^{i(\frac{\text{arg}\,z}{n} + \frac{2k\pi}{n})} : k = 0, \dots, n-1\}$$

$$\log z = \{\log |z| + i \operatorname{Arg} z\}$$

Alla radice sono associati n
 valori, al logaritmo ∞ valori.

 $z \mapsto \sqrt[n]{z}, \log z$ non sono funzioni!

Per definire una radice n-esima funzione si può specificare l'intervallo di variabilità di Argz. $z \in \mathbb{C} \mapsto \sqrt[n]{|z|} e^{i\frac{\text{Arg}z}{n}}$ con Arg $z \in [\overline{\theta}, \overline{\theta} + 2\pi]$: Branca della radice n-esima.

Osservazione: Una branca della radice n-esima non è continua su \mathbb{C} . (è continua su $\mathbb{C} - \{\theta = \overline{\theta}\}$

Non è possibile incollare due branche diverse ottenendo una funzione olomrofa su $\mathbb{C}.$

9.3 Funzioni armoniche

Definizione: $u: \mathbb{R}^2 \to \mathbb{R}$ si dice armonica se

$$\nabla^2 u = 0 = u_{xx} + u_{yy}$$

Osservazione: f = f(z) olomorfa, $f = u + iv \implies u, v$ armoniche.

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \begin{cases} u_{xx} = v_{yx} \\ u_{yy} = -v_{xy} \end{cases}$$

Sommando le due equazioni

$$u_{xx} + u_{yy} = 0$$

(Analogamente per $\nabla^2 v = 0$

Osservazione 2: u armonica su Ω , con Ω semplicemente connesso $\Longrightarrow \exists v$ armonica coniugata di u t.c. f = u + iv olomorfa.

10 Analisi funzionale

Uno spazio vettoriale (su \mathbb{R}) è un insieme (V) su cui sono definite due operazioni:

 $\mathbf{Somma} + : V \times V \to V$

Prodotto per scalare $\cdot : \mathbb{R} \times \to V$

Tali operazioni godono delle seguenti proprietà

Per la somma

- $\bullet \ u+v=v+u$
- u + (v + w) = (u + v) + w
- u + 0 = u
- u + (-u) = 0

Per il prodotto per scalare

- (ts)u = t(su)
- t(u+v) = tu+tv
- $\bullet \ (t+s)u = tu + su$
- $\bullet \ 1 \cdot u = u$

10.0.1 Norma

Sia V uno spazio vettoriale su \mathbb{R} .

Una norma su V è una funzione $\|.\|: V \to \mathbb{R}^+$ tale che:

- $||v|| > 0 \forall v \in V \{\underline{0}\}$ (positività)
- $||tv|| = |t|||v|| \forall t \in \mathbb{R}, \forall v \in V$ (omogeneità)
- $||u+v|| \le ||u|| + ||v|| \forall u, v \in V$ (dis. triangolare)

 $(V, \|.\|)$ si dice spazio vettoriale normato.

Seguono le seguenti proprietà (resettare counter)

- 1. $\|\underline{0}\| = 0$
- 2. $|||u|| ||v||| \le ||u v|| \forall u, v \in V(dim)$

Norma euclidea:

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sum_{i=1}^n (x_i^2)^{\frac{1}{2}}$$
$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$
$$||x||_p = (\sum_{i=1}^n (|x|^p)^{\frac{1}{p}}$$

La disuguaglianza triangolare per la norma p, ovvero disuguaglianza di Minkowski, richiede l'ipotesi $p \geq 1$.

10.0.2 Norma su uno spazio funzionale di dimensione infinita

$$V = C^0([a, b])$$

$$||f||_{\infty} := \max_{x \in [a, b]} |f(x)|$$

$$||f||_1 := \int_a^b |f(x)| dx$$

Definizione: Sia $(V,\|.\|)$ sp. vettoriale normato. Allora $d(u,v):=\|\underline{u}-\underline{v}\|$ definisce una distanza su V, ovvero

$$d: V \times V \mapsto \mathbb{R}$$

tale che

- 1. $d(u,v) \geq 0$ con = 0 $\iff u=v$ positività
- 2. d(u,v) = d(v,u) simmetria
- 3. $d(u,v) \leq d(u,w) + d(w,v)$ disuguaglianza triangolare

$$d_p(x,y) = ||x - y||_p = \left(\sum_{i=1}^n ||x_i - y_i||^p\right)^{\frac{1}{p}}$$
$$d_{\infty}(f,g) = \max_{x \in [a,b]} |f(x) - g(x)|$$
$$d_1(f,g) = \int_a^b |f(x) - g(x)|$$

Definizione: (V, d) si dice spazio metrico

Osservazione: In uno spazio metrico possiamo definire le sfere: dato $r \geq 0, v_0 \in V$

$$B_r(v_0) := \{ v \in V : d(v, v_0) < r \}$$

Si dice sfera chiusa se la disuguaglianza non è stretta.

Definizione: Se $\{v_n\} \subseteq (V, \|.\|)$, si dice che $v_n \to v$ in V se

$$d(v_n, v) \to 0$$
, oppure $||v_n - v|| \to 0$

$$(\forall \varepsilon > 0 \exists \nu \in \mathbb{N} : d(v_n, v) = ||v_n - v|| < \varepsilon \forall n \ge \nu)$$

Alcuni fatti veri in dimensione finita ma falsi in dimensione infinita:

- 1. Tutte le norme sono "equivalenti" fra loro
- 2. Tutte le successioni di Cauchy convergono
- 3. Tutti i sottospazi vettoriali sono chiusi
- 1) Norme equivalenti

Definizione: Sia V uno spazio vettoriale (su \mathbb{R}), consideriamo su V due possibili norme $\|.\|,\|.\||$.

Queste due norme si dicono **equivalenti** se:

- 1. $\exists c > 0 : \forall v \in V, ||v|| \le c|||v|||$
- 2. $\exists c' > 0 : \forall v \in V, |||v||| < c||v||$

Le successioni convergenti nelle due norme sono le stesse. Interpretazione geometrica:

$$||.||_{\infty} \le ||.||_1 \iff B_1^1(0) \subseteq B_1^{\infty}(0)$$

Teorema: Se $\mathrm{dim} V < +\infty \implies$ tutte le norme su V sono tra loro equivalenti

In uno spazio a dimensione infinita non è generalmente vero, ad esempio nello spazio delle funzioni continue su [a,b]

Definizione: Sia $(V, \|.\|)$ uno spazio vettoriale normato. Una successione $\{v_n\} \subseteq V$ si dice successione di cauchy se

$$\forall \varepsilon > 0 \exists \nu \in \mathbb{N} : d(v_n, v_m) < \varepsilon \ \forall n, m \ge \nu$$

Osservazione: Vale sempre che se $\{v_n\}$ converge allora è di Cauchy.

$$(\|v_n - v_m\| = \|v_n - v + v - v_m\| \le \|v_n - v\| + \|v_m - v\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Teorema: Se $\dim V < +\infty$ vale anche il viceversa, ovvero

$$\{v_n\}$$
 converge $\iff \{v_n\}$ di Cauchy

Questo teorema è falso se $\dim V = +\infty$ Prendendo lo spazio delle funzioni $V = C^0([a,b])$ con norma 1, si può costruire una successione di Cauchy che non converge.

$$f_n(x) = \begin{cases} -1 & x \le -\frac{1}{n} \\ \frac{1}{n} & -\frac{1}{n} < x < \frac{1}{n} \\ 1 & x \ge \frac{1}{n} \end{cases}$$

$$||f_n - f_m||_1 < \varepsilon, \ \int_a^b |f_n - f_m| = \int_a^b f_m - f_n$$

10.1 Spazio di Banach

Definizione: Uno spazio vettoriale normato (V, ||.||) si dice completo o di Banach se tutte le successioni di Cauchy convergono.

Teorema/osservazione: $V = (C^0([a, b], ||.||_{\infty})$ è di Banach Generalizzazione:

$$V = C^k([a, b]) \|f\|_{C^k} := \sum_{|\alpha| \le k} \|D^{\alpha} f\|_{\infty}$$

 Teorema Sia $(V, \|.\|)$ spazio vettoriale normato. Se $\dim V < +\infty \implies$ tutti i sottospazi vettoriali W sono **chiusi**.

$$\{v_n\} \subseteq W, v_n \to v \text{ in } V \implies v \in W$$

Il teorema diventa falso se $\dim V = +\infty$, ad esempio $V = (C^0([a, b]), \|.\|_{\infty}).$

Integrazione secondo Lebesgue 11

- 1. Misure e funzioni misurabili
- 2. Definizione di integrale di Lebesgue
- 3. Confronto con Riemann
- 4. Teoremi principali

Figura 4: Integrale secondo Lebesgue, intuizione geometrica

$$\int_a^b f = \lim_{N \to +\infty} \sum_{k=1}^N l(f^{-1}(j_k)) \cdot y_k$$

Misure e funzioni misurabili 11.0.1

Definizione: Sia X insieme, e sia $F \subseteq P(X)$ una famiglia di sottoinsie-

- F si dice una σ -algebra se: (i) $\varnothing \in F$ (ii) $A \in F \implies X \setminus A \in F$ (iii) $\{A_n\}_{n \in \mathbb{N}} \subseteq F \implies \bigcup_n A_n \in F$

Osservazione: $\{A_n\}_{n\in\mathbb{N}}\subseteq F \implies \bigcap_n A_n\in F$ Esempi

- X qualsiasi, F = P(X) = parti di X
- $X = \mathbb{R}^n$, $F = \text{la pià piccola } \sigma\text{-algebra contenente gli aperti } (\sigma \text{ di Borell})$

Definizione: la coppia (X, F) si dice spazio misurabile

Definizione: Sia (X, F) spazio misurabile, una misura positiva su (X, F) è una funzione

$$\mu: F \to \mathbb{R} \cup \{+\infty\}$$

tale che

- 1. $\mu(A) \ge 0 \forall A \in F \text{ (positività)}$
- 2. Se $\{A_n\}$ è una famiglia al più numerabile di insiemi di F 2 a 2 disgiunti allora

$$\mu(\cup_n A_n) = \sum_{n \ge 1} \mu(A_n)$$

(additività, eventualmente $+\infty = +\infty$)

Esempi:

- $(X, P(X)), \mu(A) = \operatorname{card} A$
- (X, P(X)) fissato $x_0 \in X$

$$\mu(A) = \begin{cases} 1 \text{ se } x_0 \in A \\ 0 \text{ se } x_0 \notin A \end{cases}$$

Osservazione: Seguono da 1), 2)

3.
$$A_1 \subseteq A_2 \subseteq \ldots, A \in F$$

$$\implies \mu(\cup_n A_n) = \lim_{n \to \infty} \mu(A_n)$$

4.
$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots, A_i \in F, \mu(A_1) < +\infty$$

$$\implies \mu(\cap_n A_n) = \lim_{n \to \infty} \mu(A_n)$$

Teorema: Esistono su \mathbb{R}^n una σ -algebra M (misurabile secondo lebesgue) e una misura positiva m (misura di Lebesgue in \mathbb{R}^n) tali che:

- \bullet Tutti gli insiemi aperti appartengono a M
- $A \in M$ e $m(A) = 0 \implies \forall B \subseteq A, B \in M$ e m(B) = 0 (completezza)
- $A = \{x \in \mathbb{R}^n : a_i < x_i < b_i \ i = 1, \dots, n\}$

$$\implies m(A) = \prod_{i=1}^{n} (b_i - a_i) = (b_1 - a_1)(b_2 - a_2) \dots (b_n - a_n)$$

 $[\dots]$

Osservazione: Non tutti i sottoinsiemi di \mathbb{R}^n sono misurabili secondo Lebesgue.

Osservazione: La misura di Lebesgue in \mathbb{R}^n estende il concetto di volume n-dimensionale

Osservazione: Gli insiemi di misura nulla sono importanti

Definizione: Una funzione $f:\mathbb{R}^n\to\mathbb{R}$ si dice misurabile secondo Lebesgue se

 $\forall A \subseteq \mathbb{R}$ aperto, $f^{-1}(A)$ misurabile secondo Lebesgue

 $\forall C \subseteq \mathbb{R}$ chiuso, $f^{-1}(C)$ misurabile secondo Lebesgue

Osservazione: f continua \Longrightarrow f misurabile secondo Lebesgue (f continua $\Longrightarrow \forall A$ aperto $f^{-1}(A)$ aperto $\Longrightarrow \forall A$ aperto $f^{-1}(A)$ misurabili

Osservazione 2: Sono misurabili anche limiti, inferiore, superiore di funzinoni continue (di funzioni misurabili)

Più in generale se

$$f: E \to \mathbb{R}$$

con E misurabile, f si dice misurabile secondo Lebesgue se $\forall A\subseteq\mathbb{R}$ aperto $E\cap f^{-1}(A)$ misraubile secondo Lebesgue

11.0.2 Definzione di integrale secondo Lebesgue

Sia f: E misurabile $\subseteq \mathbb{R}^n \to \mathbb{R}$ misurabile.

Funzioni semplici

S funzione semplice è una funzione (misurabile) che assume un numero finito di valori (ciascuno su un insieme misurabile).

$$S = \sum_{k=1}^{N} \alpha_k \chi_{E_i}, \ \chi_E = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

Dove gli E_i sono insiemi misurabili 2 a 2 disgiunti

$$\int_{E} S := \sum_{k=1}^{N} \alpha_{k} m(E_{k})$$

Precisazione: con la convenzione $0 \cdot \infty = 0$

Funzioni misurabili $f \ge 0$

$$\int_E f := \sup_{\substack{S \text{ semplici} \\ S \geq f}} \int_E S \quad \bigg(= \inf_{\substack{S \text{ semplici} \\ S \geq f}} \int_E^S \bigg)$$

Funzioni misurabili di segno qualsiasi

Data f misurabile su E misurabile, scriviamo:

$$f = f^+ - f^- \text{ con } f^+, f^- \ge 0, f^+ := \max\{f, 0\}, f^- := -\min\{f, 0\}$$

Figura 5: Funzioni di segno qualsiasi

$$\int_E f := \int_E f^+ - \int_E f^-$$

A patto che almeno uno tra i due integrali sia finito, (eventualmente l'integrale vale $\pm\infty$

Definizione: $f:E\to\mathbb{R}$ misurabile si dice integrabile secondo Lebesgue se

$$\int_{E} f \in \mathbb{R}$$

Osservazione: f è integrabile secondo Lebesgue $\iff \int_E f^\pm \in \mathbb{R}$ Quindi f integrabile secondo Lebesgue $\iff |f|$ integrabile secondo Lebesgue, infatti

$$|f| = f^+ + f^-$$

11.0.3 Proprietà principali dell'integrale di Lebesgue

1) Linearità: f,g Lebesgue integrabili, $\alpha,\beta\in\mathbb{R}\implies \alpha f+\beta g$ Lebesgue integrabile e

 $\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g$

2) Monotonia: f, g Lebesgue integrabili, $f \leq g$ q.o. su E

$$\implies \int_{E}^{f} \leq \int_{E} g$$

3) Maggiorazione del modulo: f Lebesgue integrabile

$$\implies \left| \int_E f \right| \leq \int_E |f|$$

Segue da 2), $-|f| \le f \le |f| \implies -\int_E |f| \le \int_E f \le \int_E |f|$

4) L'integrale di Lebesgue "non vede" gli insiemi di misura nulla. Si
aSsemplice, $E\to\mathbb{R}$

$$S(x) = \begin{cases} 0 \text{ su } E \setminus N \\ 1 \text{ su } N \end{cases} \qquad m(N) = 0$$

$$\int_{E} S = m(E \setminus N) \cdot 0 + m(N) \cdot 1 = 0$$

Più in generale, se f misurabile: $E \to \mathbb{R}$ se f si annulla su E tranne che su un insieme di misura nulla

$$\int_{E} f = 0$$

Conseguenza: se f,gmisurabili: $E\to\mathbb{R}$ se f=g su E tranne che su un insieme di misura nulla

$$\int_E f = \int_E g$$

Definizione: Si dice che una proprietà P(x) vale per q.o. $x \in E$ se P(x) vale $\forall x \in E \setminus N$, con m(N) = 0

Quindi

- f = 0 q.o. su $E \implies \int_E = 0$
- f = g q.o. su $E \implies \int_E f = \int_E g$

11.1 Confronto Riemann-Lebesgue

11.1.1 Integrali propri

f R-integrabile $\implies f$ L-integrabile, in caso affermativo, i valori degli integrali coincidono, in generale non vale il viceversa.

 (\implies) Le funzioni semplici seconodo Lebesgue S_L sono una classe più ampia delle funzinoi semplici secondo Riemann S_R

$$\sup_{\substack{s \in S_R \\ s < f}} \int_E s \le \sup_{\substack{s \in S_L \\ s < f}} \int_E s \le \inf_{\substack{s \in S_L \\ s \ge f}} \int_E s \le \inf_{\substack{s \in S_R \\ s \ge f}} \int_E s$$

Controesempio: $\exists f$ L-integrabile ma non R-integrabile.

$$f(x) = \begin{cases} 1 \text{ se } x \in \mathbb{Q} \\ 0 \text{ se } x \in \mathbb{R} - \mathbb{Q} \end{cases}$$

Non R-integrabile poiché approssimando da sotto e da sopra non si trova lo stesso valore

$$s \in S_R, s \ge f \implies s \ge 1 \text{ su } (0,1) \implies \int_0^1 s \ge 1$$

$$s \in S_R, s \le f \implies s \le 0 \text{ su } (0,1) \implies \int_0^1 s \le 0$$

fè però L-integrabile, $\int_0^1 f = 0$

$$\int_0^1 f = 1 \cdot m(0,1) \cap \mathbb{Q} + 0 \cdot m((0,1) \cap (\mathbb{R} \setminus \mathbb{Q})) = 0$$

11.1.2 Integrali impropri

In \mathbb{R} , supponiamo che f limitata, sia R-integrabile su $[-L, L] \forall L > 0$.

Allora: f L-integrabile su $\mathbb{R} \iff |f|$ R-integrabile (in senso improprio su \mathbb{R}). E in tal caso l'integrale di Lebesgue di f coincide con l'integrale improprio di f. Analogamente se f non è limitata.

Controesempio: una funazione R-integrabile ma non R-integrabile in modulo e quindi non L-integrabile.

$$f(x) = \frac{\sin x}{x} \text{ su } (0, +\infty)$$

Riemann integrabile su $(0, +\infty)$ (tramite analisi complessa) Ma non è Riemann integrabile in modulo

$$\int_0^{+\infty} \frac{|\sin x|}{x} = +\infty$$

(Tramite serie)

12 Spazi di Lebesgue

Definizione: Sia E misurabile $\subseteq \mathbb{R}^n$

$$L^1(E) := \{ f : E \to \mathbb{R} \text{L-integrabili} \} /_{\sim}$$

Tale insieme è uno spazio vettoriale per la linearità dell'integrale.

Definizione: Data $f \in L^1(E)$

$$||f||_1 := \int_E |f|$$

Tale norma rispetta le tre proprietà necessarie. C'è un problema, $\int_E |f|=0 \implies f=0$ su $E,\implies f=0$ q.o. su E.

Definizione: Date $f,g\in L^1(E)$ diciamo che f è equivalente a g se f=g q.o. su E.

Proprietà di una relazione di equivalenza:

- \bullet $f \sim f$
- $f \sim g \iff g \sim f$
- $f \sim q \in q \sim h \implies f \sim h$

Dunque identifichiamo le funzioni equivalenti secondo l'ultima definizione.

Teorema: $(L^1(E), \|.\|)$ è uno spazio di Banach

Definizione:

$$\{f_n\} \subseteq L^1(E), f_n \to f \text{ in } L^1(E) \iff \lim_{n \to +\infty} \|f_n - f\| = 0$$

ovvero

$$\lim_{n \to +\infty} \int_{E} |f_n - f| dx = 0$$

Consideriamo per semplicità f=0

Q: $f_n \to 0$ puntualmente q.o. su E , allora $\int_E f_n = 0$? Controesempio 1

$$\exists f_n \subseteq L^1(\mathbb{R}) : \begin{cases} f_n \to 0 \text{ q.o. su } \mathbb{R} \\ f_n \not\to \text{ in } L^1(\mathbb{R}) \end{cases}$$

$$f_n = \chi_{n,n+1} = \begin{cases} 1 & x \in (n, n+1) \\ 0 & x \notin (n, n+1) \end{cases} \quad n \in \mathbb{N}$$

Fissato $x_0 \in \mathbb{R}, f(x_0) = 0$ definitivamente (per $n \gg 1$)

$$\int_{\mathbb{R}} \|f_n\|_{L^1(\mathbb{R})} = \int_{\mathbb{R}} \chi_{(n,n+1)} = 1 \forall n \in \mathbb{N}$$

Controesempio 2

$$\exists f_n \subseteq L^1(0,1) : \begin{cases} f_n \to 0 \text{ in } L^1(0,1) \\ f_n \neq 0 \text{ q.o. su } (0,1) \end{cases}$$

Figura 6: Successione

$$f_n \to 0 \text{ in } L^1(0,1), \ \|f_n\|_{L^1(0,1)} = \int_0^1 |f_n| \to 0$$

 $f_n \not\to 0 \forall x_0 \in (0,1)$
Fissato $x_0 \in (0,1), \exists K(n): f_{K(n)}(x_0) = 1$

Proposizione: Se $f_n \to 0$ in $L^1(E)$, allora $\exists f_{K(n)} \to 0$ q.o. su E.

Osservazioni:

- $\bullet\,$ Si può mettere f al posto di 0.
- Nell'esempio è vero
- Conseguenza: Se una successione f_n ammette limite in $L^1(E)$ allora questo limite deve coincidere col limite puntuale q.o.

Infatti, $f_n \to f$ q.o. su E finire Quindi se $f_n \to g$ q.o. su E. ($\Longrightarrow f_{K(n)} \to g$ q.o. su E, per l'unicità del limite puntuale quasi ovunque, f = g q.o. su E)

Teorema di convergenza dominata (di Lebesgue)

Sia $\{f_n\}\subseteq L^1(E)$ e sia $f_n\to f$ q.o. su ESupponiamo che $\exists g\in L^1(E)$ indipendente da n tale che

(*)
$$|f_n(x)| \le g(x)$$
 q.o. $x \in E, \forall n \in \mathbb{N}$ (definitivamente)

Allora $f_n \to f$ in $L^1(E)$

Osservazioni

- La (*) è un'ipotesi molto più debole della convergenza uniforme
- In particolare per $f_n(x) = x^n$ su (0,1) la (*) è verificata, prendendo $g \equiv 1$

- Invece nel controesempio 1, se $|f_n(x)| \leq g$ q.o. su $\mathbb{R}, g \notin L^1(\mathbb{R})$
- È un teorema di passaggio al limite sotto integrale.

$$|f_n - f| \to 0 \text{ su } E \implies \int_E |f_n - f| \to 0$$

 \implies il limite degli integrali \equiv l'integrale del limite.

Teorema di convergenza monotona (di Beppo Levi)

Sia $\{f_n\} \subseteq L^1(E)$, supponiamo che:

(**)
$$f_n \ge 0$$
 q.o. su E , $f_{n+1} \ge f_n$ q.o. su E

Allora

$$\int_{E} \lim_{n \to +\infty} f_n dx = \lim_{n \to +\infty} \int_{E} f_n$$

Osservazioni

• Il teorema si applica anche se $f_n \leq 0$ decrescente, basta considerare $g_n = -f_n \geq 0$

B.L. a
$$g_n \implies \int_E \lim g_n = \lim \int_E g_n = \int_E \lim (-f_n) = \lim \int_E (-f_n)$$

 $\bullet\,$ Può valere come uguaglianza $+\infty = +\infty$

12.0.1 Integrali multipli

Teorema di Fubini

Sia f integrabile secondo Lebesgue, su $I = I_1 \times I_2$ $(I_1 \subseteq \mathbb{R}^m, I_2 \subseteq \mathbb{R}^n)$ Allora:

- 1. Per q.o. $x_1 \in I_1, \ x_2 \mapsto f(x_1, x_2)$ è L-integrabile su I_2
- 2. $x_1 \mapsto \int_{I_2} f(x_1,x_2) dx_2$ L-integrabile su I_1
- 3. $\int_I f(x_1, x_2) dx_1 dx_2 = \int_{I_1} (\int_{I_2} f(x_1, x_2) dx_2) dx_1$

Osservazione: Si può scambiare il ruolo delle variabili.

$$\int_I f(x_1,x_2) dx_1 dx_2 = \int_{I_1} \bigg(\int_{I_2} f(x_1,x_2) dx_2 \bigg) dx_1 = \int_{I_2} \bigg(\int_{I_1} f(x_1,x_2) dx_1 \bigg) dx_2$$

Teorema di Tonelli

Sia $f \ge 0$ misurabile sul precedente $I = I_1 \times I_2$. Supponiamo che:

- Per q.o. $x_1 \in I_1, \ x_2 \mapsto f(x_1, x_2)$ è L-integrabile su I_2
- $x_1 \mapsto \int_{I_2} f(x_1, x_2) dx_2$ L-integrabile su I_1

Allora: f L-integrabile su $I_1\times I_2$ (e quindi per Fubini $\int_I f=\int_{I_1}\int_{I_2}f)$

Osservazione: Se ho una f che cambia segno, posso provare ad applicare Tonelli a |f|: se |f| soddisfa 1) 2), Tonelli $\implies |f|$ L-integrabile \implies posso applicare Fubini.

12.0.2 Spazi di Lebesgue (o spazi L^p)

Definizione: $p \in [1, +\infty)$, $L^p(E) = \{f : E \to \mathbb{R} : |f|^p \text{ L-integrabile}\}/_{\sim}$, anch'esso risulta essere uno spazio vettoriale normato (di Banach)

$$||f||_p := \left(\int_E |f(x)|^p dx \right)^{\frac{1}{p}}$$

Teorema: $(L^p, \|.\|_p)$ è uno spazio di Banach.

- Caso particolarmente importante: p=2
- Caso limite: $p = +\infty$
- Definizione e teoremi di completezza
- Criteri di convergenza
- Risultati di confronto
- Approssimazione con funzioni regolari (prodotto di convoluzione)
- Teorema di differenziazione (funzioni assolutamente continue)

Appartenenza a L^p : verifica dell'integrale

$$f \in L^p(E) \iff \int_E |f|^p < +\infty$$

Convergenza in L^p

$$\{f_n\} \subseteq L^p(E), \ f \in L^p(E), \ \left(\int_E |f_n - f|^p\right)^{\frac{1}{p}} \to 0$$

Candidato limite: f limite puntuale q.o.

$$\lim_{n} \int_{E} |f_n - f|^p = \int_{E} \lim |f_n - f|^p ?$$

12.0.3 Caso limite L infinito

Definizione:

$$L^{\infty}:=\{f:E\rightarrow\mathbb{R} \text{ misurabili}: \text{ ess-}\sup_{x\in E}|f(x)|<+\infty\}/_{\sim}$$

$$\sup_{x\in E}|f(x)|:=\min\{M:|f(x)|\leq M\ \forall x\in E\}$$
ess-
$$\sup_{x\in E}|f(x)|:=\min\{M:|f(x)|\leq M\ \text{q.o.}\ x\in E\}$$

Teorema: $(L^{\infty}(E), \|.\|_{\infty})$ è uno spazio di Banach

Osservazioni

$$f \in L^{\infty}(E) \iff \operatorname{ess-sup}_{x \in E} |f(x)| < +\infty$$

Convergenza

$$\{f_n\} \subseteq L^{\infty}(E), \ f \in L^{\infty}(E) : \operatorname{ess-sup}_{x \in E} |f_n(x) - f(z)| \to 0$$

Dunque convergenza uniforme a meno di un insieme di misura nulla. **Esempi** di funzioni in $L^{\infty}(\mathbb{R})$

$$f(x) = c > 0, ||f||_{\infty} = c$$

$$f(x) = \begin{cases} 1 & x \notin \mathbb{N} \\ n & x = n \in \mathbb{N} \end{cases}$$

Osservazione: Se $f \in L^p(E), \ \forall p \in [1, +\infty]$

$$\implies \lim_{p \to +\infty} ||f||_{L^p(E)} = ||f||_{L^\infty(E)}$$

Analogo in \mathbb{R}^2

$$\lim_{p \to +\infty} ||x||_p = \lim_{p \to +\infty} (|x_1|^p + |x_2|^p)^{\frac{1}{p}} = \max\{|x_1|, |x_2|\}$$

12.1 Risultati di confronto

 $p \leq q \ p, q \in [1, +\infty] \implies L^p(E) \subseteq \text{ oppure } \supseteq L^q(E)$?

In generale no

Controesempio 1: $L^1(0,+\infty), L^2(o,+\infty), L^\infty(0,+\infty)$

$$f(x)=1, \text{ ess-sup}_{x\in\mathbb{R}}|f(x)|=1, \ \int_{\mathbb{R}_+}|f|=\int_{\mathbb{R}_+}|f|^2=+\infty$$

$$f \in L^{\infty}(\mathbb{R}_+) \text{ ma } f \notin L^1(\mathbb{R}_+), f \notin L^2(\mathbb{R}_+)$$

Controesempio 2:

$$\int_0^{+\infty} |f| = \int_0^1 \frac{1}{\sqrt{x}} < +\infty, \text{ ess-sup}_{x \in \mathbb{R}_+} |f(x)| = +\infty = \int_0^{+\infty} |f|^2$$

$$f \in L^1(\mathbb{R}_+)$$
 ma $f \notin L^\infty(\mathbb{R}_+)$, $f \notin L^2(\mathbb{R}_+)$

Controesempio 3: Si ricava in modo immediato che

$$f \in L^2(\mathbb{R}_+)$$
 ma $f \notin L^\infty(\mathbb{R}_+)$, $f \notin L^1(\mathbb{R}_+)$

Figura 7: Controesempio 2

12.1.1 Disuguaglianza di Holder

Sia E misurabile $\subseteq \mathbb{R}^n$ qualsiasi, e $p \in [1, +\infty]$. Siano $f \in L^p(E)$, $g \in L^{p'}(E)$, con p' := esponente coniugato di p

$$\frac{1}{p} + \frac{1}{p'} = 1$$

Con la convenzione $\frac{1}{\infty}=0$

Disuguaglianza di Holder: Sia $f \in L^p(E), \ g \in L^{p'}(E)$

$$||f \cdot g||_1 \le ||f||_p ||g||_{p'}$$

12.1.2 Conseguenze di Holder sul confronto tra i vari spazi

Proprietà di immersione (1)

Sia $E \subseteq \mathbb{R}^n$ con $m(E) < +\infty$ e sia $q \ge p$, allora $L^q(E) \subseteq L^p(E)$, e

$$||f||_{L^p(E)} \le m(E)^{\frac{q-p}{qp}} ||f||_{L^q(E)} \ \forall f \in L^q(E)$$

In particolare se $q=+\infty$ ho che $\forall p\in [1,+\infty), L^\infty(E)\subseteq L^p(E)$

$$||f||_{L^p(E)} \le m(E)^{1/p} ||f||_{L^\infty(E)}$$

Infatti

$$\int_E |f|^p \le \int_E \operatorname{ess-sup}_{x \in E} |f|^p = m(E) \cdot (\operatorname{ess-sup}_{x \in E} |f|)^p$$

$$\underline{1}$$

Elevando a $\frac{1}{p}$

$$||f||_p = \left(\int_E |f|^p\right)^{\frac{1}{p}} \le (m(E))^{\frac{1}{p}} \operatorname{ess-sup}_{x \in E} |f| = m(E)^{1/p} ||f||_{L^{\infty}(E)}$$

Figura 8: Controesempio 3

Dimostrazione di (*) a partire da Holder

Suppongo $f \in L^q(E), \implies f \in L^{\frac{q}{p}}$

$$\int_E |f|^p = \int_E |f|^p \chi_E \le \|f^p\|_{L^{\frac{q}{p}}} \cdot \|\chi_E\|_{L^{(q/p)'}}$$

- $f \in L^{q/p}$ infatti
- $\chi_E \in L^{q/p)'}$ infatti

$$\int_{E} |\chi_{E}|^{(q/p)'} = \left(\frac{q}{p}\right)' = \frac{q}{q-p}$$

$$\||f|^{p}\|_{L^{q/p}} = \left(\int_{E} |f|^{q}\right)^{\frac{p}{q}}$$

$$\|\chi_{E}\|_{L^{(q/p)'}} = \left(\int_{E} |\chi_{E}|^{(\frac{q}{p})'}\right)^{\frac{1}{\frac{q}{p}})'} = m(E)^{\frac{q-p}{q}}$$

Quindi

$$\int_{E} |f|^{p} \le m(E)^{\frac{q-p}{q}} \cdot \left(\int_{E} |f|^{q}\right)^{\frac{p}{q}}$$

Elevando tutto alla $\frac{1}{n}$

$$||f||_{L^p(E)} \le m(E)^{\frac{q-p}{pq}} \cdot ||f||_{L^q(E)}$$

Proprietà di interpolazione (2)

Se $f \in L^p(E) \cap L^q(E)$, con $p \leq q \implies f \in L^r(E) \ \forall r \in [p,q]$ e

$$||f||_{L^r(E)} \le ||f||_{L^p(E)}^{\alpha} \cdot ||f||_{L^q(E)}^{1-\alpha}$$

Dove $\alpha \in (0,1)$ tale che $\frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}$ Esempio: Se $f \in L^1(E) \cap L^{\infty}(E) \implies f \in L^r(E) \forall r \in [1,+\infty]$

12.2Approssimazione con funzioni regolari

Teorema di approssimazione con funzioni regolari

Sia $p \in [1, +\infty)$, e sia E misurabile in \mathbb{R}^n

 $C_o^\infty(E)$ è un sottospazio denso in $L^p(E)$ $C_o^\infty(E) := \{ f: E \to \mathbb{R} \text{ di classe } C^\infty \text{ e aventi supporto compatto in } E \}$

Ovvero

$$\forall f \in L^p(E) \exists \{f_n\} \subseteq C_0^{\infty}(E) \text{ tale che } ||f_n - f||_{L^p} \to_{n \to +\infty} 0$$

$$\forall f \in L^p(E), \ \forall \varepsilon > 0 \exists \varphi \in C_0^{\infty}(E) \text{ tale che } \|\varphi - f\|_{L^p} < \varepsilon$$

Osservazione: Falso nel caso $p = +\infty$

12.3Supporto e Classe C_0

Ovvero:

$$\forall f \in L^p(E) \ \exists \{\varphi_n\} \subseteq C_0^{\infty}(E) \ \text{tale che } \|\varphi_n - \varphi\| \to_{n \to +\infty} 0$$

$$\forall f \in L^p(E), \forall \varepsilon > 0 \ \exists \varphi \in C_0^\infty(E) \ \text{tale che} \ \|f - \varphi\|_{L^p} < \varepsilon$$

Falso nel caso $p=\infty$

Definizione: Data $\varphi \in C^{\infty}(E)$ il supporto di φ è

$$\overline{\{x \in E : \varphi(x) \neq 0\}}$$

Un insieme $K \subseteq \mathbb{R}^n$ è compatto se e solo se è limitato e chiuso

 $C_0^{\infty}(E) := \{ \varphi : E \to \mathbb{R} \text{ derivabili infinite volte tali che } \operatorname{supp}(\varphi) \ \text{è un}$ sottoinsieme compatto di E}

12.4 Prodotto di convoluzione

Osservazione: $f, g \in L^1(E) \implies f \cdot g \in L^1(E)$

Nel caso $E = \mathbb{R}$ si può definire un prodotto che rimanga interno a $L^1(\mathbb{R})$

Proposizione 1

Siano $f, g(x) \in L^1(\mathbb{R})$ Si definisce prodotto di convoluzione

$$f * g := \int_{\mathbb{R}_y} f(x - y)g(y)dy$$

- 1. f * g esiste finito per q.o. $x \in \mathbb{R}$, ovvero q.o. $x \in \mathbb{R}$, $y \mapsto f(x-y)g(y)$ è integrabile su \mathbb{R}
- 2. $f * g \in L^1(\mathbb{R})$

3. $||f * g||_{L^1} \le ||f||_{L^1} ||g||_{L^1}$

Dimostrazione

Consideriamo H(x,y) := f(x-y)g(y), a priori non sappiamo se $H \in L^1(\mathbb{R}_x \times \mathbb{R}_x)$, dunque non è possibile applicare direttamente fubini.

Quindi consideriamo $|H| \ge 0$ e applichiamo il teorema di Tonelli.

Verificando le ipotesi:

• Integro prima in dx

$$\int_{\mathbb{R}_x} |H(x,y)| dx = |g(y)| \int_{\mathbb{R}_x} |f(x,y)| dx$$

Con la sostituzione z = x - y

$$=|g(y)|\int_{\mathbb{R}_z}|f(z)|dz=|g(y)|\cdot\|f\|_1<+\infty$$

• Integro in dy

$$\int_{\mathbb{R}_{y}} \left[\int_{\mathbb{R}_{x}} |H(x,y)| dx \right] dy = \|f\|_{L^{1}} \int_{\mathbb{R}_{y}} |g(y)| dy = \|f\|_{L^{1}} \|g\|_{L^{1}} < +\infty$$

Dunque per Tonelli $|H| \in L^1(\mathbb{R}_x \times \mathbb{R}_y) \implies H \in L^1(\mathbb{R}_x \times \mathbb{R}_y)$

A questo punto posso applicare Fubini ad H

Dunque per q.o. $x, y \mapsto H(x,y) = f(x,y)g(y) \in L^1(\mathbb{R}_y)$

Dimostrazione 3 (che implica 2)

$$\begin{split} &\|f*g\|_1 = \int_{\mathbb{R}_x} |f*g(x)| dx = \int_{\mathbb{R}_x} \bigg| \int_{\mathbb{R}_y} f(x-y)g(y) dy \bigg| dx \leq \\ &\leq \int_{\mathbb{R}_x} \int_{\mathbb{R}_x} |f(x-y)| |g(y)| dy dx \leq \int_{\mathbb{R}_x} \int_{\mathbb{R}_x} |f(x-y)| |g(y)| dy dx \end{split}$$

(Per Fubini)

$$= \int_{\mathbb{R}_y} |g(y)| \int_{\mathbb{R}_x} |f(x-y) dx dy = \|f\|_1 \int_{\mathbb{R}_y} |g(y)| dy = \|f\|_1 \cdot \|g\|_1$$

Osservazione

- vale la proposizione 1 anche su \mathbb{R}^n
- $\bullet \ f * g = g * f$
- le funzioni devono essere deinite su tutto lo spazio

Estensione: $f \in L^1(\mathbb{R}), g \in L^p(\mathbb{R}) \implies$

- 1. f * g(x) esiste per q.o. x
- 2. $f * g \in L^p(\mathbb{R})$
- 3. $||f * g||_p \le ||f||_1 ||g||_p$

$$H(x,y) = |f(x-y)|^p |g(y)|^p$$

Proposizione 2

Siano $f \in C_0^{\infty}(\mathbb{R})(\subseteq L^1(\mathbb{R})), g \in L^1(\mathbb{R}),$ allora:

1.
$$f * g \in C^{\infty}(\mathbb{R})$$

2.
$$(f * g)^{(k)} = f^{(k)} * g \ \forall k$$

Idea della dimostrazione:

$$f * g(x) = \int_{\mathbb{R}_y} f(x - y)g(y)dy$$

$$(f*g)'(x) = \int_{\mathbb{R}_y} f'(x-y)g(y)dy$$

Osservazione 1: Vale con k al posto di ∞

Osservazione 2: In generale nelle ip. della Prop.2 f * g non è a supporto compatto.

Idea della dim. del teorema di approssimazione di funzioni L^p con funzini regolari

Prendiamo p=1, data $f\in L^1(\mathbb{R})$, vogliamo costruire $\varphi_n\subseteq C_0^\infty(\mathbb{R})$ tale che $\varphi_n\to f$ in $L^1(\mathbb{R})$. Prendiamo

$$f_n := f * \rho_n$$

Dove ρ_n successione di mollificatori

 $\rho_n(x) = n\rho(nx)$ dove ρ è un nucleo di convoluzione

•
$$\rho \in C_0^{\infty}(\mathbb{R}), \ \rho \geq 0, \ \operatorname{supp}(\rho) \subseteq [-1, 1], \ \int_{\mathbb{R}} \rho(x) dx = 1$$

•
$$\rho_n \in C_0^{\infty}(\mathbb{R}), \ \rho_n \ge 0, \ \operatorname{supp}(\rho_n) \subseteq [-\frac{1}{n}, \frac{1}{n}], \ \int_{\mathbb{R}} \rho_n(x) dx = 1$$

Si può dimostrare usando i teoremi di convergenza dominata che $\varphi_n \to f$ in $L^1(\mathbb{R})$.

Osservazione: Per guadagnare anche il supporto compatto, occorre prima "trovare" f, cioè considerare

$$f_k = f \cdot \chi_{[-k,k]} = \begin{cases} f & \text{se } x \in [-k,k] \\ 0 & \text{se } x \notin [-k,k] \end{cases}$$

Approssimo f per convoluzione:

$$f_k * \rho_n \in C_o^\infty \to_{n \to +\infty} f_k$$

$$\varphi_n = f_{k(n)} * \rho_n$$

12.5 Teorema fondamentale del calcolo

Teorema di differenziazione nella teoria di Lebesgue Sia $f\in L^1([a,b]),$ sia $F(x):=\int_a^x f(t)dt,$ essa è derivabile q.o. su [a,b] e

$$F'(x) = f(x)$$
 per q.o. $x \in (a.b)$

Esempio: $f(x) = \operatorname{sign}(x), x \in [-1, 1].$

Definizione: Diciamo che $F \in A.C.([a,b])$, ovvero lo spazio delle funzioni assolutamente continue su [a,b] se $\exists f \in L^1([a,b])$ tale che

$$F(x) = \int_{a}^{x} f(t)dt + c \text{ con } c \in \mathbb{R}$$

Osservazione 1: Tale spazio è vettoriale (per la linearità della derivata e dell'integrale).

Osservazione 2: $F \in AC([a,b]) \implies$

$$F(b) - F(a) = \left[\int_a^b f(t)dt + c \right] - \left[\int_a^a f(t)dt + c \right] = \int_a^b f(t)dt$$

Osservazione 3: $F \in AC([a,b]), F' = 0$ q.o. su $[a,b] \implies F = c \ \forall x \in [a,b]$ Questa implicazione è falsa se togliamo l'ipotesi che $F \in AC([a, b])$

Esistono funzioni (non in AC([a, b]) che sono derivabili q.o. con derivata prima nulla q.o. ma non costanti.

Esempio: una funzione derivabile f continua con f' = 0 q.o. su (0,1) ma fnon costante (scala di Cantor).

Figura 9: Scala di Cantor

La successione $\{f_n\} \subseteq C^0([0,1])$ risulta di Cauchy in $\|.\|_{\infty}$.

Poiché $(C^0([0,1]),\|.\|_{\infty}$) è uno spazio di Banach:

$$\exists f = \lim_{n \to +\infty} f_n \in C^0([0,1])$$

$$f(0) = 0, f(1) = 1, \text{ con } f' = 0 \text{ q.o. su } (0, 1)$$

Proposizione (caratterizzazione puntuale di AC)

 $F\in \mathrm{AC}([a,b])\iff \forall \varepsilon>0 \exists\ \delta>0$ tale che \forall famiglia $\{(x_i,y_i)\}_{i=1,...,N}$

di intervalli a 2 a 2 disgiunti $\subseteq (a,b)$ con

$$\sum_{k=1}^{N} |y_k - x_k| < \delta, \text{ si ha } \sum_{k=1}^{N} |F(x_k) - F(y_i)| < \varepsilon$$

Osservazione: Per N=1 si ha continuità uniforme \Longrightarrow $AC([a,b])\subseteq \{$ funzioni uniformemente continue su $[a,b]\}$ Conseguenze della proposizione

- $F, G \in AC([a, b]) \implies F, G \in AC([a, b])$
- $F, G \in AC([a, b]) \implies$

$$F(b)G(b) = F(a)G(a) = \int_a^b (F \cdot G)'(t)dt = \int_a^b (F'G + FG')dt$$

Ovvero

$$\int_a^b fG = -\int_a^b Fg + F\cdot G|_a^b$$

 \implies vale in AC la formula di integrazione per parti.

13 Operatori lineari tra spazi vettoriali normati

Definizione: Siano $(V, ||.||_V)$ e $(W, ||.||_W)$ due spazi vettoriali normati. Un operatore lineare da V in W è una funzione $T: V \to W$ tale che

$$T(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 T(v_1) + \lambda_2 T(v_2) \ \forall v_1, v_2 \in V, \ \forall \lambda_1, \lambda_2 \in \mathbb{R}$$

Esempi

1) $V = W = \mathbb{R}^n, T : \mathbb{R}^n \to \mathbb{R}^n$

$$T(v) = A \cdot v$$
, con $A \in \mathcal{M}(n \times n, \mathbb{R})$

2) $V = C^0([a, b])$, fisso $x_0 \in (a, b)$, W = R

$$T: V \to W$$
 definita da $T(f) = f(x_0)$

3)
$$V = C^1([a, b]), W = C^0([a, b])$$

$$T:V\to W$$
 definita da $T(f)=f'$

Osservazione: T operatore lineare $\implies T(0) = 0$

Definizione: $T: V \to W$ op. lineare, si dice *continuo* se, $\forall v \in V, T$ è continuo in v, ovvero:

$$v_n \to v \implies T(v_n) \to T(v)$$

Rispettivamente nella norma di $V \in W$.

Osservazione: Sia $T: V \to W$ op. lineare, allora T è continuo su $V \iff$ T è continuo in v=0.

Dimostrazione

 (\Longrightarrow) è immediata

(\Leftarrow) Verifichiamo che se la proprietà vale per v=0, vale per v qualsiasi.

Sia v qualsiasi, e sia $v_n \to v$; considero $v_n - v \to 0$, quindi, per ipotesi $T(v_n - v)$

Ovvero $T(v_n) - T(v) \to 0$, cioè $T(v_n) \to T(v)$.

Definizione: Sia T op. lineare: $(V, ||.||_V) \to (W, ||.||_W)$. Si dice che T è limitato se:

$$\exists M > 0 \text{ tale che } ||T(v)||_W \leq M||v||_V \ \forall v \in V$$

$$\exists M>0 \text{ tale che } \frac{\|T(v)\|_W}{\|v\|_V} \leq M \ \forall v \in V \setminus \{0\}.$$

$$\exists M>0 \text{ tale che } \sup_{v\in V\setminus\{0\}}\frac{\|T(v)\|_W}{\|v\|_V}\leq M$$

Esempi:

1) $T: (\mathbb{R}^2, ||.||_2) \to (\mathbb{R}, |.|)$ definito da $T(v) = v_0 \cdot v$ operatore lineare.

T è limitato, $M = ||v_0||$

2) $T: (C^1([a,b]), \|.\|_{C^1}) \to (C^0([a,b]), \|.\|_{C^0}), T(f) = f' \text{ op. lineare.}$

Tè limitato con la scelta M=1

3) $T:(L^2(0,1),\|.\|_2)\to (\mathbb{R},|.|),$ $T(f)=\int_0^1 f_0\cdot f dx$ dove $f_0\in L^2(0,1)$ T è limitato con la scelta $M=\|f_0\|_2$ (Tramite disuguaglianza di Holder)

Osservazione: Considerando $T:(L^p(0,1),\|.\|_p)\to (\mathbb{R},|.|)$ definito da T(f)= $\int_0^1 f_0 f dx$ questo è lineare continuo prendendo $f_0 \in L^{p'}(0,1)$.

Proposizione: Sia $T:(V,\|.\|_V) \to (W,\|.\|_W)$ lineare. Allora

$$T$$
 continuo $\iff T$ limitato

Dimostrazione

 (\Leftarrow) Supposto T limitato, basta mostrare che T è continuo in 0, ovvero: se

$$v_n \to 0$$
, allora $T(v_n) \to T(0) = 0$

$$||T(v_n)||_W \le M||v_n||_V \to 0$$

(\Longrightarrow) Supposto T non limitato mostriamo T non continuo

$$\sup_{v \in V \setminus \{0\}} \frac{\|T\|_W}{\|v\|_V} = +\infty \implies \exists \{v_n\} \subseteq V \setminus \{0\} : \frac{\|T(v_n)\|_W}{\|v_n\|_V} \to +\infty$$

ovvero, siccome T è lineare:

$$\left\| T\left(\frac{v_n}{\|v_n\|_V}\right) \right\|_W \to +\infty$$

Quindi se considero $u_n := \frac{v_n}{\|v_n\|_V}$, ha che

$$\begin{cases} ||u_n||_V = 1\\ ||T(u_n)||_W \to +\infty \end{cases}$$

Posso costruire una successione y_n tale che $y_n \to 0$ ma $T(y_n) \not\to 0$ Ponendo $y_n = \frac{u_n}{\|T(u_n)\|_W}$

• $y_n \to 0$ poiché

$$||y_n||_V = \left\| \frac{u_n}{||T(u_n)_W||} \right\|_V \to 0$$

• $T(y_n) = 1$ perché

$$T(y_n) = T\left(\frac{u_n}{\|T(u_n)\|_W}\right) = \frac{T(u_n)}{\|T(u_n)\|_W} \not\to 0$$

Definizione: Dati $(V, ||.||_V), (W, ||.||_W)$ spazi normati

$$\mathcal{L}(V, W) := \{ \text{op. lineari limitati da } V \text{ in } W \}$$

È uno spazio vettoriale munito delle operazioni naturali

È possibile introdurre su questo spazio una norma, ponendo

$$||T||_{\mathcal{L}(V,W)} := \sup_{v \in V \setminus \{0\}} \frac{||T(v)||_W}{||v||_V}$$

ovvero, per definizione, la più piccola costante M tale che $||T(v)||_W \leq M||v||_V \ \forall v \in V$.

Osservazione: Si può verificare che quella definita sopra è effettivamente una norma.

In particolare

Definizione: Quando $W = (\mathbb{R}, |.|)$

$$\mathcal{L}(V, W) = V'$$
 spazio duale di V

$$||T||_{V'} := \sup_{v \in V \setminus \{0\}} \frac{|T(v)|_{\mathbb{R}}}{||v||_{V}}$$

Esempi: Vedere i casi 1) e 3)

14 Distribuzioni

Definizione: Sia Ω aperto di \mathbb{R}^n

 $C_0^{\infty}(\Omega) = \{ \text{funzioni } C^{\infty} \text{ su } \Omega \text{ con supporto compatto in } \Omega \}$

È uno spazio vettoriale

Muniamo C_0^{∞} di una **convergenza**

Definizione: Sia $\{\varphi_h\} \subseteq C_0^{\infty}(\Omega)$. Diciamo che

$$\varphi_h \to 0$$
 in $C_0^{\infty}(\Omega)$ se

- 1. $\exists K$ compatto, indipendente da h, tale che supp $(\varphi_h) \subseteq K \ \forall h >> \nu$
- 2. $\varphi_h \to 0$ uniformemente su K con tutte le derivate $\forall \alpha$ multiindice $D^{\alpha}\varphi_h \to 0$ unif. su K

Definizione: Lo spazio $C_0^{\infty}(\Omega)$ munito della convergenza definita sopra si indica con $\mathcal{D}(\Omega)$ e si chiama spazio delle funzioni test

Definizione: Lo spazio delle distribuzioni su Ω , che si indica con $\mathcal{D}'(\Omega)$ è lo spazio degli operatori $T: \mathcal{D}(\Omega) \to \mathbb{R}$ lineari e continui rispetto alla convergenza introdotta su $\mathcal{D}(\Omega)$.

Ovvero, una distribuzione è un operatore $T: \mathcal{D}(\Omega) \to \mathbb{R}$ tale che

- T lineare
- T continuo $(\varphi_h \to 0 \text{ in } \mathcal{D}(\Omega) \implies T(\varphi_h) \to 0 \text{ in } \mathbb{R})$

Esempi

1. Sia $u \in L^1(\Omega)$, ad u posso associare una distribuzione $T_u \in \mathcal{D}'(\Omega)$

$$T_u(\varphi) := \int_{\Omega} u\varphi \ \forall \varphi \in \mathcal{D}(\Omega)$$

È ben definito:

$$\bigg| \int_{\Omega} u \varphi \bigg| \leq \int_{\Omega} |u \varphi| \leq \int_{K} \max |\varphi| |u| \leq \max_{k} |\varphi| \int_{K} |u|$$

È lineare:

$$T_u(\alpha\varphi + \beta\psi) = \int_{\Omega} u(\alpha\varphi + \beta\psi) = \alpha \int_{\Omega} u\varphi + \beta \int_{\Omega} u\psi = \alpha T_u(\varphi) + \beta T_u(\psi)$$

È continuo:

$$\{\varphi_h\} \to 0 \text{ in } \mathcal{D}(\Omega) \implies T_u(\varphi_h) \to 0$$

Poiché, sia $\{\varphi_h\} \to 0$ in $\mathcal{D}(\Omega)$

$$|T_u(\varphi_h)| = \left| \int_{\Omega} u\varphi_h \right| \le \max_K |\varphi_h| \cdot \int_K |u| \to 0$$

Osservazioni sull'esempio

L'associazione tra u, T_u è iniettiva su $L^1(\Omega)$

Se
$$u_1 = u_2$$
 q.o. su $\Omega \implies T_{u_1} = T_{u_2}$ in $\mathcal{D}'(\Omega)$ poiché $T_{u_1}(\varphi) = T_{u_2}(\varphi)$
Si può dimostrare che $T_{u_1} = T_{u_2}$ in $\mathcal{D}'(\Omega) \implies u_1 = u_2$ q.o. su Ω (*)

Si può dimostrare che
$$T_{u_1} = T_{u_2}$$
 in $\mathcal{D}'(\Omega) \implies u_1 = u_2$ q.o. su Ω (*)

$$\int_{\Omega} u_1 \varphi = \int_{\Omega} u_2 \varphi \ \forall \varphi \in \mathcal{D}(\Omega) \implies u_1 = u_2 \text{ q.o. su } \Omega$$

$$\int_{\Omega} (u_1 - u_2) \varphi = 0 \forall \varphi \in \mathcal{D}(\Omega) \implies u_1 = u_2 \text{ q.o. su } \Omega$$

Notazione: Invece di $T_u(\varphi)$ si scrive spesso $\langle u, \varphi \rangle_{(\mathcal{D}'(\Omega), \mathcal{D}(\Omega))}$

Per definire T_u , basta una condizione più debole:

$$u \in L^1_{\mathrm{loc}}(\Omega) := \{u : \Omega \to \mathbb{R} : \int_K |u| < +\infty \ \forall K \ \mathrm{compatto} \ \subseteq \Omega\}$$

Esempio: $\Omega=(0,1),\ u(x)=\frac{1}{x}\not\in L^1(\Omega)$ ma $u\in L^1_{\mathrm{loc}}(\Omega)$ In particolare, possiamo associare una distribuzione a qualsiasi $u\in L^p(\Omega)$ con $p\in$

Infatti $L^p(\Omega) \not\subseteq L^1(\Omega)$, ma

$$L^p(\Omega) \subseteq L^p_{loc}(\Omega), \ \forall p \in [1, +\infty]:$$

$$u \in L^p(\Omega) \implies u \in L^p(K) \ \forall K \subset\subset \Omega$$

Poiché $|K| < +\infty$.

$$\implies u \in L^1(K) \ \forall K \subset\subset \Omega \implies u \in L^1_{loc}(\Omega)$$

Tutte le funzioni $u \in L^p(\Omega)$ possono essere viste come distribuzioni.

$$u \in L^p(\Omega) \mapsto T_u$$

$$\langle u, \varphi \rangle_{\mathcal{D}'(\Omega), \mathcal{D}(\Omega)} := \int_{\Omega} u \varphi dx$$

Essendo \mathcal{D}' vettoriale

$$(T_1 + T_2)(\varphi) := T_1(\varphi) + T_2(\varphi) \ \forall \varphi \in \mathcal{D}(\Omega)$$

$$(\lambda T) := \lambda T(\varphi) \ \forall \varphi \in \mathcal{D}(\Omega)$$

14.1 Convergenza

Definizione:

$$\{T_h\}\subseteq \mathcal{D}'(\Omega),\ T_h\to^{\mathrm{in}\ \mathcal{D}'(\Omega)} 0 \text{ se } T_h(\varphi)\to 0\ \forall \varphi\in \mathcal{D}(\Omega)$$

$$T_h \to T \text{ se } T_h(\varphi) \to T(\varphi) \ \forall \varphi \in \mathcal{D}(\Omega)$$

Esempio: $T_h = T_{u_h}$, con $u_h \subseteq L^1(\Omega)$

$$u_h \to 0 \text{ in } L^1(\Omega) \implies T_{u_h} \to 0 \text{ in } \mathcal{D}'(\Omega)$$

Dato che

$$|T_{u_h}(\varphi)| = \left| \int_{\Omega} u_h \varphi \right| \le \int_{K = \operatorname{supp} \varphi} |u_h| |\varphi| \le \max_K |\varphi| \cdot \int_K |u_h| \to 0$$

14.2 Delta di Dirac

$$\{u_h\}\subseteq L^1(\mathbb{R})$$

Questa successione non converge in $L^1(\mathbb{R})$

Figura 10: Delta di Dirac

 $u_h \to 0$ q.o. su $\mathbb{R} \implies$ se $\exists \lim_{h \to +\infty} u_h$ in $L^1(\mathbb{R})$ allora $\lim_{h \to +\infty} u_h = 0$. Ma $\lim_{h \to +\infty} u_h \neq 0$ in $L^1(\mathbb{R})$ perché

$$||u_h||_{L^1(\mathbb{R})} = \int_{-\frac{1}{2h}}^{\frac{1}{2h}} h = 1$$

Converge però in $\mathcal{D}'(\mathbb{R})$

$$\langle u_h, \varphi \rangle = T_{u_h}(\varphi) = \int_{\mathbb{R}} u_h \varphi = h \int_{-\frac{1}{2h}}^{\frac{1}{2h}} \varphi \to \varphi(0)$$

Definizione: δ_0 delta di Dirach in 0

$$<\delta_0, \varphi>:=\varphi(0)$$

Osservazioni:

- Se $u_h = h \cdot \chi_{\left[-\frac{1}{2h}, \frac{1}{2h}\right]}$, allora $u_h \to \delta_0$ in $\mathcal{D}'(\mathbb{R})$
- Verifica che $\delta_0 \in \mathcal{D}'(\mathbb{R})$
- (i) lineare: $\delta_0(\alpha\varphi + \beta\psi) = \alpha\delta_0(\varphi) + \beta\delta_0(\psi)$?

$$(\alpha \varphi + \beta \psi)(0) = \alpha \varphi(0) + \beta \psi(0)$$

(ii) continuo: $\varphi_h \to 0$ in $\mathcal{D}(\mathbb{R}) \implies \delta_0(\varphi_h) \to 0$ vero per la definizione di convergenza in $\mathcal{D}(\mathbb{R})$, supp $(\varphi_h) \subseteq K$ compatto, $\varphi_h \to 0$ uniformemente.

14.2.1 Ovvie generalizzazioni

Punto generico x_0

$$\delta_{x_0}(\varphi) = \varphi(x_0)$$

Caso n-dimensionale, $x_0 \in \mathbb{R}^n$

$$\delta_{x_0}(\varphi) := \varphi(x_0), \ \delta_{x_0} \in \mathcal{D}'(\mathbb{R}^n)$$

14.2.2 idk

 δ_0 non è associata ad alcuna funzione di $u \in L^1_{\mathrm{loc}}(\Omega)$

Dimostrazione

Supponiamo per assurdo $\delta_0 = T_u$, con $u \in L^1 loc(R)$

$$\int_{\mathbb{R}} u\varphi dx = \varphi(0) \ \forall \varphi \in \mathcal{D}(\mathbb{R})$$

In particolare, posso prendere $\varphi \in \mathcal{D}(\mathbb{R} \setminus \{0\})$

$$\int_{\mathbb{R}} u\varphi = \varphi(0) = 0 \ \forall \varphi \in \mathcal{D}(\mathbb{R} \setminus \{0\})$$

Ricordando l'osservazione sull'esempio

$$0 = \int_{\mathbb{R}} 0 \cdot \varphi$$

Applicando tale proprietà si avrà

$$u = 0$$
 q.o. su $\mathbb{R} - \setminus \{0\} \implies u = 0$ q.o. su \mathbb{R}

$$\implies \int_{\mathbb{R}} u\varphi dx = 0 \ \forall \varphi \in \mathcal{D}(\mathbb{R})$$

Assurdo.

14.2.3 Derivazione di distribuzioni

Definizione: $\Omega \subseteq \mathbb{R}$

Data $T \in \mathcal{D}'(\Omega)$, definisco $T' \in \mathcal{D}'(\Omega)$ come:

$$< T', \varphi > := - < T, \varphi' > \quad \forall \varphi \in \mathcal{D}(\Omega)$$

T' è una distribuzione

(i) è lineare:

(ii) è continuo

$$\varphi_h \to 0 \text{ in } \mathcal{D}(\Omega) \implies \langle T', \varphi_h \rangle \to 0$$

Infatti $\varphi_h \to 0$ in $\mathcal{D}(\Omega) \Longrightarrow \varphi'_h \to 0$ in $\mathcal{D}(\Omega)$. Questo perché $\exists K$ tale che supp $\varphi'_h \subset K \forall h$ e $\varphi'_h \to 0$ uniformemente su K con tutte le derivate.

Quindi $\langle T, \varphi_h' \rangle \to 0$ perché $T \in \mathcal{D}'(\Omega)$

14.2.4 Motivo della definizione di derivata

Considerando il caso $T = T_u$ con $u \in C^1(\Omega) \subseteq L^1_{loc}(\Omega)$ Si avrà in $\mathcal{D}'(\Omega)$ che $(T_u)' = T_{u'}$

Dimostrazione

$$\langle (T_u)', \varphi \rangle = -\langle T_u, \varphi' \rangle = -\int_{\Omega} u \varphi'$$

 $\langle T_{u'}, \varphi \rangle = \int_{\Omega} u' \varphi$

Integrando per parti si avrà

$$\int_{\Omega} u' \varphi = u \varphi - \int_{\Omega} u \varphi'$$

Essendo $\varphi \in \mathcal{D}(\Omega) \implies u\varphi|_a^b = 0$ (dove a,b estremi di Ω) Si avrà:

$$\int_{\Omega} u' \varphi = -\int_{\Omega} u \varphi'$$

15 Esempi di distribuzioni

1.
$$T = T_u \text{ con } u \in C^1(\Omega) \implies (T_u)' = T_{u'}$$

2.
$$T = T_u \operatorname{con} u(x) = |x| \operatorname{su} \Omega = (-1, 1)$$

$$\langle (T_u)', \varphi \rangle = -\langle T_u, \varphi' \rangle = -\int_{-1}^1 |x| \varphi'(x) dx$$
$$= \int_0^1 \varphi(x) dx + x \varphi \Big|_0^1 - \int_{-1}^0 \varphi(x) dx + x \varphi(x) \Big|_{-1}^0 = \int_{-1}^1 \varphi(x) \cdot \operatorname{sign}(x) dx$$

$$\implies (T_{|x|})' = T_{\operatorname{sign}(x)} \text{ in } \mathcal{D}'(\Omega)$$

Notazione: (|x|)' = sign(x) in $\mathcal{D}'(\Omega)$

Più in generale: se $u \in L^1_{loc}(\Omega), v \in L^1_{loc}(\Omega)$ u' = v in $\mathcal{D}'(\Omega)$, significa $(T_u)' = T_v$ ovvero

$$\forall \varphi \in \mathcal{D}(\Omega) \ \langle (T_u)', \varphi \rangle = -\langle T_u, \varphi' \rangle = \langle T_v, \varphi \rangle$$
$$-\int_{\Omega} u\varphi' = \int_{\Omega} v\varphi \ \forall \varphi \in \mathcal{D}(\Omega)$$

3. u(x) = sign(x), u' = ?

$$-\int_{\Omega} \operatorname{sign}(x)\varphi'(x)dx = -\int_{0}^{1} \varphi' + \int_{-1}^{0} \varphi' = -\varphi(1) + 2\varphi(0) - \varphi(-1) = 2\varphi(0)$$
$$= 2\langle \delta_{0}, \varphi \rangle$$

4. $T = \delta_0 T' = ?$

$$\langle T', \varphi \rangle = -\langle T, \varphi' \rangle = -\langle \delta_0, \varphi' \rangle = -\varphi'(0) \ \forall \varphi \in \mathcal{D}(\Omega)$$

Generalizzazione

• n = 1 Data $T \in \mathcal{D}'(\Omega), \ \forall k \in \mathbb{N} \ T^{(k)} \in \mathcal{D}'(\Omega)$

$$\left\langle T^{(k)}, \varphi \right\rangle := (-1)^k \left\langle T, \varphi^k \right\rangle$$

Osservazione: $T^{(k)}$ definisce una distribuzione, lineare e continua, infatti se $\varphi_h \to 0 \text{ in } \mathcal{D}(\Omega), \ \varphi_h^{(k)} \to 0 \text{ in } \mathcal{D}(\Omega) \implies \left\langle T, \varphi_h^{(k)} \right\rangle \to 0.$ Osservazione 2: se $T = T_u \text{ con } u \in C^k(\Omega) \subseteq L^1_{\text{loc}}(\Omega) \implies (T_u)^{(k)} = T_{u^{(k)}}$

Esempio: $u(x) = |x| \implies u'' = 2\delta_0$

• $n \geq 1$ Data $T \in \mathcal{D}'(\Omega) \ \forall \alpha$ multiindice

$$\langle D^{\alpha}T, \varphi \rangle = (-1)^{|\alpha|} \langle T, D^{\alpha}\varphi \rangle \ \forall \varphi \in \mathcal{D}(\Omega)$$

Osservazione: $D^{\alpha}T$ definiscono delle distribuzioni $\forall \alpha$

Osservazione: Si possono calcolare le derivate di tutti gli ordini, di qualsiasi

Osservazione: Il risultato non dipende dall'ordine di derivazione

15.1.1 Operatori differenziali

Data $T \in \mathcal{D}'(\Omega)$, si possono definire $\nabla T, \nabla^2 T, \operatorname{rot} T, \dots$

16 Spazi di Sobolev

Sono gli spazi dove si trovano le soluzioni di problemi al contorno per P.D.E. Esempio Equazione di Poisson

$$\begin{cases} -\nabla^2 u = f \text{ su } \Omega \\ u = 0 \text{ su } \partial \Omega \end{cases}$$

Definizione: Fissato Ω aperto $\subseteq \mathbb{R}^n, \ p \in [1, +\infty]$

$$W^{1,p}(\Omega) := \{ u \in L^p(\Omega) : \frac{\partial u}{\partial x_i} \in L^p(\Omega) \ \forall i = 1, \dots, n \}$$

Con $\frac{\partial}{\partial x_i}$ intesa nel senso delle distribuzioni

$$\frac{\partial u}{\partial x_i} \in L^p(\Omega) \iff \exists v_i \in L^p(\Omega) \text{ tali che}$$
$$\int_{\Omega} \frac{\partial u}{\partial x_i} \cdot \varphi = \int_{\Omega} v_i \varphi \ \forall \varphi \in \mathcal{D}(\Omega)$$

Esempi $(n = 1, \ \Omega = (-1, 1))$

 $\bullet \ u \in C^1_0(\Omega) \implies u \in W^{1,p}(\Omega)$

(1)
$$p < +\infty$$
 $\int_{\Omega} |u|^p < +\infty$; $\int_{\Omega} |u'|^p < +\infty$

(2)
$$p = +\infty$$
 ess-sup $|u| < +\infty$; ess-sup $|u'| < +\infty$

• $u(x) = \operatorname{sign}(x) \ u \notin W^{1,2}(\Omega)$

$$\int_{\Omega} |u|^2 = \int_{-1}^{1} |\operatorname{sign} x|^2 < +\infty \implies u \in L^2(\Omega)$$

MA: $u'(x) = 2\delta_0 \notin L^2(\Omega)$

Definizione: Fissato Ω aperto $\subseteq \mathbb{R}^n$, $p \in [1, +\infty]$, $k \in \mathbb{N}$

$$W^{k,p}(\Omega) := \{ u \in L^p(\Omega) : D^{\alpha}u \in L^p(\Omega) \ \forall \alpha \text{ multiindice con } |\alpha| \le k \}$$

Caso particolare p=2

$$W^{k,2}(\Omega) = H^k(\Omega)$$

Osservazione: $W^{k,p}(\Omega)$ sono spazi vettoriali

Definizione: Norma su $W^{1,p}(\Omega)$ sia $u \in W^{1,p}(\Omega)$

$$||u||_{1,p} := ||u||_p + \sum_{k=1}^n \left\| \frac{\partial u}{\partial x_i} \right\|_p$$

Definizione: Norma su $W^{k,p}(\Omega)$ sia $u \in W^{k,p}(\Omega)$

$$||u||_{k,p} := ||u||_p + \sum_{|\alpha| \le k} ||D^{\alpha}||_p$$

Teorema: Per ogni $p\in[1,+\infty],\,W^{1,p}(\Omega)$ sono spazi di Banach

Osservazione: $u_h \to u$ in $W^{1,p}(\Omega)$ se

$$||u_h - u||_{1,p} \to 0$$

$$= ||u_h - u||_p + \left\| \frac{\partial u_h}{\partial x_i} - \frac{\partial u}{\partial x_i} \right\|_p$$

ovvero

$$\begin{cases} u_h \to u \text{ in } L^p(\Omega) \\ \frac{\partial u_h}{\partial x_i} \to \frac{\partial u}{\partial x_i} \text{ in } L^p(\Omega) \end{cases}$$

Definizione

$$W_0^{1,p}(\Omega) := \text{chiusura di } \mathcal{D}(\Omega) \text{ in } W^{1,p}(\Omega)$$

ovvero

$$= \{ u \in W^{1,p}(\Omega) : \exists \{ \varphi_n \} \subseteq \mathcal{D}(\Omega) \text{ tale } \operatorname{che} \varphi_n \to u \text{ in } W^{1,p} \}$$

$$=\{u\in W^{1,p}(\Omega):\exists\{\varphi_n\}\subseteq\mathcal{D}(\Omega)\text{ tale che }\varphi_n\to u\text{ in }L^p\text{ e }\frac{\partial\varphi_n}{\partial x_i}\to u\text{ in }L^p\}$$

Osservazione Se $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$ allora

$$u \in W_o^{1,p}(\Omega) \iff u = 0 \text{ su } \Omega$$

16.0.1 Disuguaglianza di Poincaré

Teorema Sia Ω aperto, limitato di \mathbb{R}^n . Allora esiste una costante $C_p = C_p(\Omega)$ tale che, per ogni $u \in W_0^{1,p}(\Omega)$

$$||u||_{L^p(\Omega)} \le C_p(\Omega) \cdot ||\nabla u||_{L^p(\Omega)}$$

Dunque, su $W_0^{1,p}(\Omega)$

$$\begin{cases} \|u\|_{1,p} = \|u\|_p + \|\nabla u\|_p \text{ norma su } W^{1,p}(\Omega) \\ \|\nabla u\|_p \text{ norma equivalente} \end{cases}$$

Falso su $W_0^{1,p}(\Omega)$, verificabile prendendo u=1

Osservazione per n=1

$$u(x) = u(0) + \int_0^x u'(t)dt \implies |u(x)| \le \int_0^x |u'| \le \int_0^1 |u'| \le \left(\int_0^1 |u'|^2\right)^{1/2}$$

Integrando

$$||u||_{L^1(0,1)} \le ||u'||_{L^2(0,1)}$$
$$W_0^{1,p}(\Omega)$$

17 Spazi di Hilbert

Definizione: Sia H uno spazio vettoriale su \mathbb{R} Un prodotto scalare su H è un'applicazione $(\ ,): H \times H \to \mathbb{R}$ tale che

1.
$$(x,x) \ge 0 \ \forall x \in H \ \text{con} \ (x,x) = 0 \iff x = 0 \ \textit{positivit} \ \grave{a}$$

2.
$$(x,y) = (y,x) \ \forall x,y \in H \ simmetria$$

3.
$$(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1(x_1, y) + \alpha_2(x_2, y)$$
 bilinearità

Definizione: $||x|| := \sqrt{(x,x)}$ è detta norma associata (o indotta) dal prodotto scalare

Esempi

- $H = \mathbb{R}^n$; $(x,y) = \sum_{k=1}^n x_k y_k$; $\sqrt{(x,x)} = \sqrt{\sum_{k=1}^n x_k^2} = \|x\|_2$; ovvero la norma euclidea
- $H = L^2(\Omega)$ $(f,g) = \int_{\Omega} fg$; $\sqrt{(f,f)} = (\int_{\Omega} f^2)^{1/2} = ||f||_2$
- $H=W^{1,2}(\Omega)$; $(f,g):=\int_{\Omega}fg+\sum_{k=1}^{n}rac{\partial f}{\partial x_{i}}rac{\partial g}{\partial x_{i}}=\int_{\Omega}fg+\nabla f\cdot\nabla g$

$$\sqrt{(f,f)} = \left(\int_{\Omega} f^2 + |\nabla f|^2\right)^{1/2} \simeq \|f\|_{H^1}$$

norma equivalente alla norma di H^1

17.1 Disuguaglianza di Cauchy Schwartz

Se (,) è un prodotto scalare su H, allora

$$|(x,y)| \le ||x|| \cdot ||y|| \ \forall x, y \in H$$

Inoltre vale = $\iff x = \lambda y \text{ con } \lambda \in \mathbb{R}$

Dimostrazione

$$\forall t \in \mathbb{R} \ 0 \le (x - ty, x - ty) = (x, x) - 2t(x, y) + t^2(y, y)$$
 Dunque
$$0 \le ||x||^2 - 2t(x, y) + t^2||y||^2 \longrightarrow \Delta$$

$$0 \le ||x||^2 - 2t(x,y) + t^2 ||y||^2 \implies \Delta \le 0$$
$$\Delta = 4(x,y)^2 - 4||x||^2 ||y||^2 \le 0$$
$$\implies |(x,y)| \le ||x|| ||y||$$

Se vale =, $\Delta=0 \implies \exists \lambda \in \mathbb{R}: (x-\lambda y, x-\lambda y)=0 \implies x-\lambda y=0$ (Viceversa se $x=\lambda y$)

Proposizione: Se $(,): H \times H \to \mathbb{R}$ è un prodotto scalare,

$$||x|| := \sqrt{(x,x)}$$
 è una norma

Dimostrazione

- $||x|| \ge 0$ con $= \iff x = 0$ vera per la prop. (1)
- $\bullet \ \|\lambda x\| = \sqrt{(\lambda x, \lambda x} = |\lambda| \sqrt{(x, x)} = \lambda \|x\|$
- $||x + y|| = \sqrt{(x + y, x + y)} = \sqrt{||x||^2 + 2(x, y) + ||y||^2}$

$$\leq \sqrt{\|x\|^2 + 2\|x\|\|y\| + \|y\|^2} = \|x\| + \|y\|$$

17.1.1 Legge del parallelogramma

Teorema: Sia H uno spazione vettoriale con prodotto scalare (,) e sia $\|.\|$ la norma indotta da esso. Allora

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2 \ \forall x, y \in H$$

Figura 11: Legge del parallelogramma in \mathbb{R}^2

Dimostrazione

$$\|x+y\|^2 + \|x-y\|^2 = (x+y,x+y) + (x-y,x-y) = \|x\|^2 + 2(x-y) + \|y\|^2 + \|x\|^2 - 2(x,y) + \|y\|^2 = 2\|x\|^2 + 2\|y\|^2 + \|x-y\|^2 + \|x$$

Osservazione: Può servire a verificare se una norma proviene o meno da un prodotto scalare.

Le norme di $\mathbb{R}^n, L^p(\Omega), W^{1,p}(\Omega)$ con $p \neq 2$ non provengono da un prodotto scalare.

Esempio: $\Omega=(0,1)$ in $L^p(0,1)$ con $p\neq 2$, la norma non proviene da un prodotto scalare

Fisso $t \in (0,1)$, considero le funzioni

- $\bullet \ f = \chi_{(0,t)}$
- $g = \chi_{(t,1)}$

$$||f||_{p} = \left(\int_{0}^{1} |f|^{p}\right)^{\frac{1}{p}} = \left(\int_{0}^{t} 1\right)^{\frac{1}{p}} = t^{\frac{1}{p}}$$

$$||g||_{p} = \left(\int_{0}^{1} |g|^{p}\right)^{\frac{1}{p}} = \left(\int_{t}^{1} 1\right)^{\frac{1}{p}} = (1-t)^{\frac{1}{p}}$$

$$||f+g||_{p} = 1$$

$$||f-g||_{p} = 1$$

L'identità del parallelogramma diventa:

$$2 = 2t^{\frac{2}{p}} + 2(1-t)^{\frac{2}{p}}$$
$$1 = t^{\frac{2}{p}} + (1-t)^{\frac{2}{p}}$$

Valida $\iff p = 2$

Definizione: Uno *spazio di Hilbert* è uno spazio di Banach in cui la norma proviene da un prodotto scalare.

Esempi: sono spazi di Hilbert

- $(\mathbb{R}^n, \|.\|_2)$
- $L^2(\Omega)$
- $H^1(\Omega)$

Non sono di Hilbert

- $(\mathbb{R}^n, \|.\|_p \operatorname{con} p \neq 2$
- $L^p(\Omega)$ con $p \neq 2$
- $W^{1,p}(\Omega)$ con $p \neq 2$
- $C^0([a,b]), \ \|f\|_2=(\int_a^b|f|^2)^{1/2}$ la norma viene da un prodotto scalare MA non è uno spazio di Banach, dunque non è uno spazio di Hilbert

17.1.2 Teorema di proiezione su un convesso chiuso

Un insieme K si dice convesso se $\forall x,y \in K, \ \forall \lambda \in (0,1) \implies \lambda x + (1-\lambda)y \in K$ Un insieme K si dice chiuso se $\ \forall \{x_n\} \subseteq K: x_n \to x \in H \implies x \in K$

Teorema: Sia H uno spazio di Hilbert, e sia $K \subseteq H$ un convesso chiuso Allora $\forall f \in H$ esiste unico $u \in K$ tale che

$$||f-u|| = \min_{v \in K} ||f-v||$$

Inoltre: $u = P_k f \iff (f - u, v - u) \le 0 \ \forall v \in K$

Figura 12: Rappresentazione grafica della proiezione su convesso

Corollario, Teorema di proiezione su un sottospazio chiuso

Sia H uno spazio di Hilbert e M un sottospazio vettoriale chiuso. (M è convesso, non è necessariamente chiuso senza ipotesi)

Allora: $\forall f \in H \exists \text{ unico } u = P_M f \text{ tale che}$

$$||f-u|| = \min_{v \in M} ||f-v||$$

Inoltre

$$u = P_M f \iff (f - u, v) = 0 \ \forall v \in M$$

Definizione: Se (,) è un prodotto scalare su H

- $x \perp y \iff (x,y) = 0$ (definizione)
- $\bullet \ M^{\perp} := \{x \in H : (x,y) = 0 \ \forall y \in M\}$

Figura 13: Rappresentazione grafica della proiezione su un sottospazio chiuso

Osservazione: $f \perp g$ in $L^2(0,1)$ se $\int_0^1 fg = 0$ Esempio: $M = \{\text{funzioni costanti in } L^2(0,1)\}$

$$M^{\perp} = \{ f \in L^2(0,1) : \int_0^1 fc = 0 \ \forall c \in \mathbb{R} \}$$
$$= \{ f \in L^2(0,1) : \int_0^1 f = 0 \}$$

Osservazione:

$$x \perp y \implies ||x + y||^2 = ||x||^2 + ||y||^2$$

Dimostrazione

$$||x + y||^2 = (x + y, x + y) = ||x||^2 + 2(x, y) + ||y||^2 = ||x||^2 + ||y||^2$$

Osservazione: $M \cap M^{\perp} = \{0\}$. Infatti $x \in M \cap M^{\perp} \implies (x, x) = 0$ valido $\iff x = 0$

Teorema delle proiezioni

Sia H insieme di Hilbert e M un sottospazio chiuso. Allora $\forall x \in H \exists$ un'unica rappresentazione di x come:

$$x = y + z \text{ con } y \in M \text{ e } z \in M^{\perp}$$

Inoltre, le applicazioni $x \mapsto y = P_M(x), x \mapsto z = P_{M^{\perp}}(x)$, sono operatori lineari, limitati, di norma 1.

Dimostrazione

Basta prendere come $y=P_M(x)$ (che esiste dal teorema precedente): sappiamo che $(x-P_M(x),v)=0 \ \forall v\in M \implies x-P_M(x)\in M^\perp$, ovvero $z:=x-y\in M^\perp$ L'unicità è data da $x=y_1+z_1=y_2+z_2 \implies y_1-y_2\in M,\ z_2-z_1\in M^\perp$ ma

 $y_1-y_2=z_2-z_1,$ dunque per queste ultime due condizioni si avrà $y_1-y_2=z_2-z_1=0$

Dimostrazione Linearità

 $x_1 = y_1 + z_1$

 $x_2 = y_2 + z_2$

Dunque $x_1+x_2=y_1+y_2+z_1+z_2$, con $y_k\in M,\ z_k\in M^\perp$, per l'unicità $y_1+y_2=P_M(x_1+x_2),\ z_1+z_2=P_{M^\perp}(x_1+x_2)$

Limitatezza

 P_m limitato: $x = y + y = P_M(x) + P_{M^{\perp}}(x)$

$$||x||^2 = ||P_M(x)||^2 + ||P_{M^{\perp}}(x)||^2$$

$$\implies \|P_m(x)\| \le \|x\|^2 \implies P_M \text{ limitato con norma } \le 1$$

 $\|P_M\|=1$: basta prendere $x\in M\implies x=P_M(x)\implies$ vale l'uguaglianza $\|P_M(x)\|=\|x\|$

17.2 Teoremi di Rappresenzatione

17.2.1 Teorema di Reisz

Problema: Dato H di Hilbert, caratterizzare H' (duale di H).

$$H' = \{ \varphi : H \to \mathbb{R} \text{ lineari e continui} \} = \mathcal{L}(H, \mathbb{R})$$

Osservazione: Fissato $u \in H$ possiamo associare ad u un elemento $\varphi_u \in H'$

$$\varphi_u(v): H \to \mathbb{R}, \ \varphi_u(v) = (u, v) \ \forall v \in H$$

Verifica che $\varphi_u \in H'$:

- lineare: $\varphi_u(\alpha v_1 + \alpha_2 v_2) = (u, \alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 \varphi_u(v_1) + \alpha_2 \varphi_u(v_2)$
- continuo (limitato): $|\varphi_u(v)| \le M \|v\|$ valida con $M = \|u\|$ per la disuguaglianza di Cauchy Scwhartz

Inoltre:

$$\|\varphi_u\|_{H'} = \|u\|_H$$

cio
é $M=\|u\|$ è la costante migliore possibile (v=u)
 In conclusione, $H\subseteq H'$ (immersione isometrica), ovvero la norma si conserva.
 Esempi:

- $H = \mathbb{R}^n \ (u, v) = \sum_{k=1}^n u_k v_k \ \varphi_u(v) = \sum_{k=1}^n u_k v_k$
- $H = L^2(\Omega), (u, v) = \int_{\Omega} uv, \varphi_u(v) = \int_{\Omega} uv \ \forall v \in L^2(\Omega)$
- $H = H^1(\Omega), (u, v) = \int_{\Omega} uv + \nabla u \cdot \nabla v$

$$\varphi_u(v) = \int_{\Omega} uv + \nabla u \cdot \nabla v \ \forall v \in H^1(\Omega)$$

Teorema di Riesz

Sia H spazio di Hilbert e sia $\varphi \in H'$.

Allora, esiste unico $u \in H$ tale che $\varphi = \varphi_u$ ovvero

$$\varphi(v) = (u, v) \ \forall v \in H$$

Inoltre

$$\|\varphi\|_{H'} = \|u\|_H$$

Dunque H" = "H'.

17.2.2 Forme bilineari

Definizione: Sia H di Hilbert. Una forma bilineare su H è per definizione un'applicazione

$$a: H \times H \to \mathbb{R}$$

tale che:

• $a(\alpha_1 u_1 + \alpha_2 u_2, v) = \alpha_1 a(u_1, v) + \alpha_2 a(u_2, v)$

Esempi:

- In H Hilbert qualsiasi a(u, v) = (u, v)
- $H = H^1(\Omega), \ a(u,v) = \int_{\Omega} uv + \nabla u \cdot \nabla v, \ a(u,v) = \int_{\Omega} uv, \ a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v$

Definizione: Sia $a: H \times H \to \mathbb{R}$ una forma bilineare

 \bullet a simmetrica se

$$a(u, v) = a(v, u) \ \forall u, v \in H$$

• a continua se

$$\exists C>0 \text{ tale che } |a(u,v)| \leq C\|u\|\|v\| \ \forall u,v \in H$$

• a coerciva se

$$\exists \alpha > 0$$
tale che $a(u,v) \geq \alpha \|u\|^2 \ \forall u \in H$

Esempi:

- 1) In H di Hilbert qualsiasi, a(u,v)=(u,v) è
 - simmetrica (per definizione di prodotto scalare
 - continua (limitata per Cauchy Schwartz)
 - coerciva $((u, u) = 1 \cdot ||u||^2)$
- 2) In $H = H^1_0(\Omega), \, a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v.$

- simmetrica
- continua: (tramite Holder)

$$|a(u,v)| = \left| \int_{\Omega} \nabla u \cdot \nabla v \right| \le \int_{\Omega} |\nabla u \cdot \nabla v| \le ||\nabla v||_2 ||\nabla v||_2$$
$$\le ||u||_{H^1} ||v||_{H^1} \ \forall u, v \in H^1(\Omega)$$

• coerciva: (per Poincaré)

$$a(u,u) = \int_{\Omega} |\nabla u|^2 \ge \alpha ||u||_{H^1}^2$$

Osservazione: a(u,v) non sarebbe coerciva su $H^1(\Omega)$ poiché non vale la disuguaglianza di Poicaré (verificabile con $u=\cos t>0$

17.2.3 Teorema di Lax Milgram

Teorema di Lax-Milgram

Sia H Hilbert, e sia $\varphi' \in H'$

Sia $a:H\times H\to \mathbb{R}$ forma bilineare simmetrica, continua e coerciva. Allora esiste unico $u\in H$ tale che

$$\varphi(v) = a(u, v) \ \forall v \in H$$

Inoltre u è caratterizzata dalla seguente proprietà:

$$E(v) := \frac{1}{2}a(v,v) = \varphi(v) \ \forall v \in H$$

si ha

$$\min_{v \in H} E(v) = E(u)$$

Esempio (Ω limitato)

$$H = H_0^1(\Omega), \ a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v, \ \varphi(v) = \int_{\Omega} fv \ \text{dove} \ f \in L^2(\Omega)$$

$$\varphi \in H': \left| \int_{\Omega} fv \right| \leq \int_{\Omega} |fv| \leq \|f\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)} \leq \|f\|_{L^2(\Omega)} \|v\|_{H^1}$$

Per Lax-Milgram: $\exists u$ unico $u \in H^1_0(\Omega)$ tale che $\varphi(v) = a(u,v) \ \forall v \in H^1_0(\Omega)$

$$\int_{\Omega} fv dx = \int_{\Omega} \nabla u \cdot \nabla v dx \ \forall v \in H_0^1(\Omega)$$

Quest'ultima è una formulazione debole del seguente problema:

$$\begin{cases} -\nabla u = f & \text{in } \Omega \\ u = 0 & \text{su } \partial \Omega \end{cases}$$

Inoltre il teorema dice che u risolve

$$\min_{v \in H_0^1(\Omega)} E(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 - \int_{\Omega} fv$$

17.2.4 Commenti sulla proprietà variazionale di u

$$\begin{split} E(u+\varepsilon v) &= \tfrac{1}{2}a(u+\varepsilon v, u+\varepsilon v) - \varphi(u+\varepsilon v) \\ &= \tfrac{1}{2}[a(u,u) + 2\varepsilon a(u,v) + \varepsilon^2 a(v,v)] - \varphi(u) - \varepsilon \varphi(v) \\ &= [\tfrac{1}{2}a(u,u) - \varphi(u)] + \varepsilon[a(u,v) - \varphi(v)] + \tfrac{\varepsilon^2}{2}a(u,v) \\ &\Longrightarrow E(u+\varepsilon v) - E(u) = \varepsilon[a(u,v) - \varphi(v)] + o(\varepsilon) \\ &\Longrightarrow \lim_{\varepsilon \to 0} \frac{E(u+\varepsilon v) - E(u)}{\varepsilon} = a(u,v) - \varphi(v) = 0 \end{split}$$

Se $a(u, v) = \varphi(v) \ \forall v \in H$,

$$E(u + \varepsilon v) - E(u) = \frac{\varepsilon^2}{2}a(v, v) \ge 0$$

Quindi u minimizza E.

Viceversa, se u minimizza E:

$$E(u + \varepsilon v) \ge E(u) \ \forall v \in H \ \forall \varepsilon \in \mathbb{R}$$

 $\implies a(u, v) - \varphi(v) = 0 \ \forall v \in H$

18 Equazioni alle derivate parziali

18.1 Formulazione variazionali di problemi ellittici

 $-a\Delta u + cu = f$ in $\Omega \subseteq \mathbb{R}^n$ aperto, limitato e regolare, $u = u(x_1, \dots, x_n)$

Ipotesi

- *a* > 0
- $c \in L^{\infty}(\Omega)$
- $f(x) \in L^2(\Omega)$

Se c = 0, $a = 1 \implies -\nabla^2 u = f$ (Equazione di Poisson)

Condizione di Dirichlet (omogenea): u = 0 su $\partial\Omega$

Condizione di Neumann (omogenea): $\frac{\partial u}{\partial \nu} = 0$ su $\partial \Omega$

18.1.1 PDE ellittiche del secondo ordine

ODE lineare del 2° ordine

$$au'' + bu' + cu = f$$

Alle derivate parziali (PDE del 2° ordine), $u = u(x), x \in \mathbb{R}^n$

$$-A(x) \cdot \nabla^2 u(x) + b(x) \cdot \nabla u(x) + cu = f$$

si dice ellittica se A è definita positiva

$$\sum_{i,j=1}^{n} A_{i,j}(x)\xi_i \xi_j \ge 0 \ \forall \xi \in \mathbb{R}^n$$

In particolare se A(x) = I

$$\sum_{i,j=1}^{n} A_{i,j}(x) u_{x_i,x_j} = \sum_{i=1}^{n} u_{x_i,x_j} = \Delta u$$

18.1.2 Formulazione variazionale del problema di Dirichlet

 $(D)_c$ Trovare $u \in C^2(\overline{\Omega})$ tale che:

$$\begin{cases} -a\Delta u + cu = f & \text{in } \Omega \\ u = 0 & \text{su } \partial\Omega \end{cases}$$

 $(D)_v$ Trovare $u \in H_0^1(\Omega)$ tale che:

$$\int_{\Omega}a\nabla u\cdot\nabla v+cuv=\int_{\Omega}fv\ \forall v\in H^1_0(\Omega)$$

Proposizione (D): Nelle ipotesi sopra:

- 1. u sol. classica \implies u sol. variazionale
- 2. u sol. variazionale, c, f continue, $u \in C^2(\overline{\Omega}) \implies u$ sol. classica

18.1.3 Formulazione variazionale del problema di Neumann

 $(N)_c$ Trovare $u \in C^2(\overline{\Omega})$ tale che:

$$\begin{cases} -a\Delta u + cu = f & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{su } \partial \Omega \end{cases}$$

 $(N)_v$ Trovare $u \in H^1(\Omega)$ tale che:

$$\int_{\Omega}a\nabla u\cdot\nabla v+cuv=\int_{\Omega}fv\ \forall v\in H^1(\Omega)$$

Proposizione (N): Nelle ipotesi sopra:

- 1. u sol. classica \implies u sol. variazionale
- 2. u sol. variazionale, c, f continue, $u \in C^2(\overline{\Omega}) \implies u$ sol. classica

18.1.4 Esistenza delle soluzioni

Teorema: Nelle ip. sopra definite, il problema $(D)_v$: trovare $u \in H_0^1(\Omega)$ tale che

$$\int_{\Omega} a\nabla u \cdot \nabla v + cuv = \int_{\Omega} fv \ \forall v \in H_0^1(\Omega)$$

Ammette una e una sola soluzione. Inoltre u è caratterizzata nel modo seguente:

$$\min_{v \in H_0^1(\Omega)} E(v) := \frac{1}{2} \int_{\Omega} (a|\nabla v|^2 + cv^2) - \int_{\Omega} fv$$

Dimostrazione

Considero $H = H_0^1(\Omega)$, munito di $\|\nabla u\|_{L^2(\Omega)} = \|\nabla u\|_2$

•
$$\varphi(v) = \int_{\Omega} fv \ \forall v \in H$$

•
$$b(u,v) = \int_{\Omega} a\nabla u \cdot \nabla v + cuv$$

 φ è lineare continuo, b(u,v) è bilineare simmetrica, continua, coerciva Per Lax-Milgram \exists unico $u\in H$ tale che

$$\varphi(v) = b(u, v) \ \forall v \in H$$

ovvero:

$$\int_{\Omega} a \nabla u \cdot \nabla v + c u v = \int_{\Omega} f v \ \forall v \in H$$

Inoltre u risolve

$$\min_{H} E(v) := \frac{1}{2}b(u, v) - \varphi(v)$$

Verifica ip. Lax-Milgram:

• φ (lineare) continuo: $\exists M : |\varphi(v)| \leq M||v||_H$

$$\int_{\Omega} fv| \le \int_{\Omega} |fv| \le_H \|f\|_2 \|v\|_2 \le_P C_p(\Omega) \|f\|_2 \|\nabla v\|_2$$

Si avrà dunque $M = C_p(\Omega) \|f\|_2$ e $\|\nabla v\|_2 = \|v\|_2$

- b(u, v) è bilineare simmetrica (dimostrazione semplice)
- b(u, v) continua

$$|b(u,v)| = \left| \int_{\Omega} a \nabla u \cdot \nabla v + cuv \right| \le \int_{\Omega} |a \nabla u \cdot \nabla v + cuv| \le \int_{\Omega} a |\nabla u \cdot \nabla v| + c|uv|$$

$$\le \int_{\Omega} a |\nabla u \cdot \nabla v| + ||c||_{\infty} \int_{\Omega} |uv| \le a ||\nabla u||_{2} ||\nabla u||_{2} + ||c||_{\infty} ||u||_{2} ||v||_{2}$$

$$\le a ||\nabla u||_{2} ||\nabla v||_{2} + ||c||_{\infty} C_{p}^{2}(\Omega) ||\nabla u||_{2} ||\nabla v||_{2}$$

$$= (a + ||c||_{\infty} C_{p}^{2}(\Omega)) ||\nabla u||_{2} ||\nabla v||_{2} = (a + ||c||_{\infty} C_{p}^{2}(\Omega)) ||u||_{H} ||v||_{H}$$

• b(u, v) coerciva

$$b(u,v) = \int_{\Omega} a|\nabla u|^2 + cu^2 \ge \int_{\Omega} a|\nabla u|^2 = a\|\nabla u\|_2^2 = \alpha\|u\|_H^2$$

18.1.5 Esistenza delle soluzioni per Neumann

Teorema: Nelle ip. sopra definite, supponiamo anche c(x) > 0 il problema $(D)_v$: trovare $u \in H^1(\Omega)$ tale che

$$\int_{\Omega} a\nabla u \cdot \nabla v + cuv = \int_{\Omega} fv \ \forall v \in H^{1}(\Omega)$$

Ammette una e una sola soluzione. Inoltre u è caratterizzata nel modo seguente:

$$\min_{v \in H^1_0(\Omega)} E(v) := \frac{1}{2} \int_{\Omega} (a |\nabla v|^2 + c v^2) - \int_{\Omega} f v$$

Dimostrazione

Analoga al caso di Dirichlet lavorando su $H=H^1(\Omega)$ munito di $\|u\|_{H^1}=\|u\|_{L^2(\Omega)}+\|\nabla u\|_{L^2(\Omega)}$

Tranne che per la coercività di b:

$$b(u, u) = \int_{\Omega} a|\nabla u|^2 + cu^2 \ge \alpha ||u||_{H^1}^2?$$

$$\ge \int_{\Omega} a|\nabla u|^2 + c_0 u^2 \ge \min\{a, c_0\} \int_{\Omega} |\nabla u|^2 + |u|^2$$

18.1.6 Richiamo di Analisi Vettoriale

$$\int_{\Omega} \operatorname{div} X = \int_{\partial \Omega} X \cdot \nu \ \forall X \in C^{1}(\Omega)$$

 $X = v \nabla u, v \in C^1, u \in C^2$

$$\operatorname{div}(v\nabla u) = \sum_{k=1}^{n} \frac{\partial}{\partial x_{k}} \left(v \frac{\partial u}{\partial x_{k}} \right)$$

$$=\sum_{k=1}^{n}\frac{\partial v}{\partial x_{k}}\frac{\partial u}{\partial x_{k}}+v\frac{\partial^{2} u}{\partial x_{k}^{2}}=\nabla u\cdot\nabla v+v\Delta u$$

Formula di Gauss-Green

$$\int_{\Omega} \nabla u \cdot \nabla v + v \nabla u = \int_{\partial \Omega} v \frac{\partial u}{\partial \nu} \ v \in C^1, u \in C^2$$

Lemma di DuBois-Raymond

Se $u \in C(\overline{\Omega})$ è tale che:

$$\int_{\Omega} u\varphi = 0 \ \forall \varphi \in C_0^{\infty}(\Omega) \implies u \equiv 0 \text{ in } \Omega$$

Per dimostrarlo si procede per assurdo

18.1.7 Dimostrazione proposizione di Dirichlet

1. Sia u sol. di $(D)_c$

Allora $u \in H^1_0(\Omega)$ $(u, v\nabla u \in C(\overline{\Omega}) \subseteq L^2(\Omega), u = 0$ su $\partial\Omega$) Moltiplico l'equazione per $v \in C_0^{\infty}(\Omega)$

$$-a\Delta u \cdot v + cuv = fv \text{ in } \Omega$$

Integrando

$$\int_{\Omega} -a\Delta u \cdot v + cuv = \int_{\Omega} fv$$

Per Gauss Green

$$\int_{\Omega} av \frac{\partial u}{\partial \nu} = 0$$

$$\int_{\Omega} a\nabla u \cdot \nabla v_n + cuv_n = \int_{\Omega} fv_n \ \forall v \in C_0^{\infty}(\Omega)$$

Data $v \in H^1_0(\Omega), \exists \{v_n\} \subseteq C_0^\infty(\Omega) : v_n \xrightarrow{H^1} v$ (per definizione di $H^1_0(\Omega)$ Passando al limite

$$\int_{\Omega} a \nabla u \cdot \nabla v + c u v = \int_{\Omega} f v \ \forall v \in H_0^1(\Omega)$$

Tale limite si dimostra

$$\left| \int_{\Omega} f v_n - f v \right| \le \int_{\Omega} |f(v_n - v)| \le_H ||f||_2 ||v_n - v||_2 \to 0$$

In modo analogo si verificano le altre convergenze

2. Sia $u \in H^1_0(\Omega)$ sol. variazionale, supponendo $u \in C^2(\overline{\Omega}),$ (c,f continue)

 $u = 0 \text{ su } \partial \Omega$

Sappiamo che

$$\int_{\Omega} a \nabla v \cdot \nabla u + cuv = \int_{\Omega} fv \ \forall v \in H^1_0(\Omega) \text{ in particolare } \ \forall v \in C_0^{\infty}(\Omega)$$

Tramite Gauss Green

$$\int_{\Omega} -a\Delta u \cdot v + cuv - fv = 0 \ \forall v \in C_0^{\infty}(\Omega)$$

$$\implies \int_{\Omega} (-a\Delta u + cu - f)v = 0 \ \forall v \in C_0^{\infty}(\Omega)$$

La funzione nelle parentesi è continua su $\overline{\Omega}$ Per il lemma di DBR

$$\implies -a\Delta u + cu - f = 0 \text{ in } \Omega$$

19 Serie di Fourier in spazi di Hilbert

Definizione: Sia H di Hilbert. Una famiglia di vettori $\{u_n\} \subseteq H$ si dice sistema ortogonale se $(u_n, u_m) = 0 \ \forall n \neq m$. Si dice poi sistema ortonormale se è ortogonale e $(u_n, u_n) = 1 \ \forall n$

Esempi:

- $H = \mathbb{R}^3$: $e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)$
- $H=l^2=\{(x_n)_{n\in\mathbb{N}}:x_n\in\mathbb{R} \text{ tali che }\sum_{n\geq 0}x_n^2<+\infty\}$ è uno spazio vettoriale

$$||x||_{l^2} = \left(\sum_{n>0} x_n^2\right)^{\frac{1}{2}}$$

è di Hilbert poiché $((x_n), (y_n)) = \sum x_n y_n$ $e_n = (0, \dots, 1, \dots, 0)$

Definizione: Sia H di Hilbert e sia (u_n) sistema ortonormale. Dato $u \in H$

- $(u, u_n) \in \mathbb{R}$ coefficienti di Fourier di u (rispetto a (u_n))
- $\sum_{n}(u,u_n)u_n$ serie di Fourier di u (rispetto a (u_n))

Esempi

- $H = \mathbb{R}^3$, $\{e_1\}$, $(u, e_1)e_1 = P(u)$ su $\langle e_1 \rangle$
- "", $\{e_1, e_2\}$, $(u, e_1)e_1 + (u, e_2)e_2 = P(u)$ su $\langle e_1, e_2 \rangle$
- "", $\{e_1, e_2, e_3\}$, $(u, e_1)e_1 + \ldots = P(u)$ su $\langle e_1, e_2, e_3 \rangle$
- $H = l^2$, $\{e_1\} = \{(1, 0, \dots, 0)\}$, $(u, e_1)e_1 = P_{\langle e_1 \rangle}(u)$ "" $\{e_i\}$ pari $\sum_k (u, e_{2k})e_{2k}$ "" $\{e_n\}$ con n qualsiasi $\sum_k (u, e_k)e_k = u$

Teorema di convergenza per serie di Fourier

Sia H Hilbert, sia $\{u_n\}$ sistema ortonormale fissato. Dato $u \in H$, la serie di Fourier di u converge in H e

$$\sum_{n} (u, u_n) u_n = u'$$

Dove u' è la proiezione ortogonale di u su M, dove M è la chiusura del sottospazio generato dal sistema.

19.0.1 Convergenza in H

$$\sum_{n} (u, u_n) u_n$$
 corrisponde a $S_N(u) = \sum_{n=0}^N (u, u_n) u_n$, converge a u' se
$$\exists \lim_{N \to +\infty} S_N(u) = u' \iff \lim_{N \to +\infty} \|S_N(u) - u'\| = 0$$

19.0.2 Sottospazio generato

Il sottospazio generato, indicato con $\langle u_n \rangle$ è definito come

$$\langle u_n \rangle := \{ \text{combinazioni lineari degli } u_n \}$$

$$M = \overline{\langle u_n \rangle} := \{ \text{limiti di comb. lineari degli } u_n \}$$

M è un sottospazio chiuso.

19.0.3 Disuguaglianza di Bessel

Teorema: Sia H Hilbert, e sia (u_n) sistema ortonormale, dato $u \in H$, vale

$$\sum_{n} (u, u_n)^2 \le ||u||^2$$

Dimostrazione

Fisso $N \in \mathbb{N}$ e mostriamo

$$\sum_{n=0}^{N} (u, u_n)^2 \le ||u||^2$$

la tesi è dimostrata passando al limite, dunque:

$$0 \le \|u - \sum_{n \le N} (u, u_n) u_n\|^2 = (u - \sum_{n \le N} (u, u_n) u_n, u - \sum_{n \le N} (u, u_n) u_n) =$$

$$= \|u\|^2 - 2 \sum_{n \le N} (u, u_n)^2 + \sum_{n \le N} (u, u_n)^2$$

$$= \|u\|^2 - \sum_{n \le N} (u, u_n)^2$$

L'ultima somma vale poiché siamo in un sistema ortonormale:

$$((u, u_1)u_1 + (u, u_2)u_2, ((u, u_1)u_1 + (u, u_2)u_2) = (u, u_1)^2 + (u, u_2)^2$$

19.0.4 Dimostrazione teorema di convergenza delle serie di Fourier

Per dimostrare la convergenza della serie, basta mostrare che $S_N(u)$ è di Cauchy:

$$\forall \varepsilon \exists \nu : ||S_N - S_M(u)||^2 < \varepsilon \ \forall N, M \ge \nu$$

ovvero: (supposto N > M)

$$||S_n(u) - S_M(u)||^2 = (S_N(u) - S_M(u), S_N(u) - S_M(u)) =$$

$$\left(\sum_{n=M+1}^N (u, u_n) u_n, \sum_{n=M+1}^N (u, u_n) u_n\right)$$

$$= \sum_{n=M+1}^N (u, u_n)^2 = |T_N(u) - T_M(u)|$$

dove $T_N = \sum_{n \leq N} (u, u_n)^2$ Bessel $\implies \{T_N(u)\}$ è di Cauchy Essendo in un Hilbert $S_N(u)$ converge Sia ora $u' := \sum_{n} (u, u_n) u_n$ Per dimostrare $u' = P_M(u)$ basta mostrare che

- 1. $u' \in M$
- $2. u u' \in M^{\perp}$

Per l'unicità nel teorema delle proiezioni, $u' = P_M(u), u - u' = P_{M^{\perp}}(u)$ Infatti

1. $u' \in M$ vale per costruzione:

$$u'=\lim_{N\to+\infty}S_N(u)\in\overline{\langle u_n\rangle},\ u'$$
è limite di comb. lineari degli u_n

$$S_N(u) = \sum_{n < N} (u, u_n) u_n \in \langle u_n \rangle$$
sono comb. lineari degli u_n

2. Per mostrare che $u - u' \in M^{\perp}$ basta far vedere che $(u - u', u_n) = 0 \, \forall n$, questo assicura che $u-u^\prime$ sarà ortogonale a tutti i limiti delle combinazioni lineari degli u_n , ovvero a tutti gli elementi di M.

$$(u - u', u_m) = (u - \sum_n (u, u_n)u_m, u_m) = (u, u_m) - (u, u_m)(u_m, u_m) = 0$$

Definizione: Sia H di Hilbert e sia (u_n) sistema ortonormale. Si dice che (u_n) è sistema completo se è massimale rispetto all'inclusione. Ovvero: $\not\exists (v_n)$ sistema ortonormale che che contenga propriamente (u_n)

Proposizione di caratterizzazione di sistemi ortonormali com-

Sia (u_n) ortonormale in un Hilbert. Sono equivalenti:

- 1. (u_n) è completo
- $2. \ u \in H: (u, u_n) = 0 \ \forall n \implies u = 0$
- 3. Posto $M := \overline{\langle u_n \rangle}$, si ha $M \equiv H$ 4. $\sum_n (u, u_n) u_n = u \ \forall u \in H$
- 5. $\sum_{n} (u, u_n)(v, u_n) = (u, v) \ \forall u, v \in H$ (identità di Parseval)
- 6. $\sum_{n} (u, u_n)^2 = ||u||^2 \ \forall u \in H \ (identtà di Bessel)$

Dimostrazione

$$(1) \iff (2) \implies (3) \implies (4) \implies (5) \implies (6) \implies (2)$$

Dimostrazione 1 se e solo se 2

Se è falsa la 2 implica che è falsa la 1

$$\exists u \in H : (u, u_n) = 0 \ \forall n \ \mathrm{MA} \ u \neq 0$$

Allora (u_n) non è massimale. Se è falsa la 1 implica che è falsa la 2 se (u_n) non è massimale, posso aggiungere almeno un elemento $\implies \exists u \in H$ per cui la 2 è falsa.

Dimostrazione 2 implica 3

Per mostrare $M \equiv H$, basta mostrare $M^{\perp} = \{0\}$, vero per la 2

se
$$u \in M^{\perp}$$
 allora $u = 0$

Dimostrazione 3 implica 4

Se M coincide con H, allora $u' = P_M(u) = u$

Dimostrazione 4 implica 5 Per la quattro ogni elemento è la sua serie di Fourier, dunque

$$(u,v) = (\sum (u,u_n)u_n, \sum (v,u_n)u_n) = \sum (u,u_n)(v,u_n)$$

Dimostrazione 5 implica 6

Prendere u = v in Parseval

Dimostrazione 6 implica 2

Se
$$(u, u_n) = 0 \ \forall n, \sum 0 = 0$$

20 Serie di Fourier in L^2

Si considera $L^2(I)$ dove $I=(-\frac{T}{2},\frac{T}{2})$, e il prodotto scalare è definito come

$$(f,g) = \int_{T} f(x)g(x)dx$$

Sistema ortonormale dei polinomi trigonometrici

$$p_0 = \frac{1}{\sqrt{T}}, \ p_k = \cos\frac{\xi_k x}{\sqrt{\frac{T}{2}}}, \ q_k = \frac{\sin(\xi_k x)}{\sqrt{\frac{T}{2}}}, \ k \ge 1$$

dove

$$\xi_k = \left(\frac{2\pi}{T}\right)^k \text{ (se } T = 2\pi, \ \xi_k = k\text{)}$$

formano un sistema ortonormale

Dunque, data $f \in L^2(I)$ la sua serie di Fourier rispetto a questo sistema è la serie

$$(f, p_0)p_0 + \sum_{k>1} (f, p_k)p_k + (f, q_k)q_k \quad (*)$$

Modi equivalenti di scrivere (*)

$$\frac{a_0}{2} + \sum_{k \ge 1} a_k \cos(\xi_k x) + b_k \sin(\xi_k x) \quad (**)$$
$$a_k = \frac{2}{T} \int_I f(x) \cos(\xi_k x) dx \quad k \ge 0$$
$$b_k = \frac{2}{T} \int_I f(x) \sin(\xi_k x) dx \quad k \ge 1$$

Oppure

$$\sum_{k=-\infty}^{+\infty} \hat{f}_k e^{i\xi_k x} \quad (***)$$

$$\hat{f}_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) e^{-i\xi_k x} dx \quad z \in \mathbb{Z}$$

$$\hat{f}_k = \frac{a_k - ib_k}{2} \quad k \in \mathbb{N}$$

$$\hat{f}_{-k} = \frac{a_k + ibk}{2}$$

Teorema: Il sistema (p_0, p_k, q_k) è ortonormale completo in $L^2(I)$

Dimostrazione usando la (3) delle equivalenze

 $\overline{\langle p_0, p_k, q_k \rangle} \equiv L^2(I)$

 \subseteq sempre vero $(\overline{M} \subseteq H)$

 $\supseteq \forall f \in L^2(I), \ f$ può essere approssimata con elementi di $\langle p_0, p_k, q_k \rangle$

Passo 1 Mostriamo che quanto sopra è vero se $f = \varphi \in C_0^{\infty}(I)$.

Infatti, posso estendere φ a $\tilde{\varphi} \in C_{\text{per}}^{\infty}(\mathbb{R})$.

Sappiamo (Analisi 2) che la serie di Fourier di $\tilde{\varphi}$ converge uniformemente su $\left[-\frac{T}{2}, \frac{T}{2}\right] \Longrightarrow$ converge uniformemente in $L^2(-\frac{T}{2}, \frac{T}{2})$. \Longrightarrow La successione delle somme parziali della serie di Fourier di $\tilde{\varphi}$ fornisce una

successione in $\langle p_0, p_k, q_k \rangle$, che converge a $\tilde{\varphi} = \varphi$ in $L^2(-\frac{T}{2}, \frac{T}{2})$

Passo 2 Data $f \in L^2(I)$ posso approssimarla con una successione $\varphi_k \subset C_0^{\infty}(I)$.

$$\varphi_k \xrightarrow{L^2(I)} f$$

Concludo prendendo una successione diagonale.

Oppure:

$$||f - S|| \le ||f - \varphi|| + ||\varphi - S|| < \varepsilon$$

S somma parziale della serie di Fourier di φ

Osservazioni

• Data $f \in L^2(I)$, per il teorema sopra:

$$f = (f, p_0)p_0 + \sum_{k>1} (f, p_k)p_k + (f, q_k)q_k$$

• Data $f \in L^2(I)$, vale l'id. di Bessel:

$$||f||_{L^2(I)}^2 = (f, p_0)^2 + \sum_{k>1} (f, p_k)^2 + (f, q_k)^2$$

Dunque $f \in L^2(I) \iff$ i suoi coefficienti di Fourier $\in \ell^2$

• Possiamo sostituire $L^2(-\frac{T}{2},\frac{T}{2})$ con

$$L_T^2(\mathbb{R}) = \{ f \in L_{loc}^2(\mathbb{R}) : \text{T-periodiche} \}$$

è uno spazio di Hilbert, con $(f,g)=\int_{-T/2}^{T/2}fg$

• I coefficienti di Fourier hanno senso anche per $f \in L^1(-\frac{T}{2}, \frac{T}{2})$

$$|a_k| = \frac{2}{T} \left| \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \cos(\xi_k x) dx \right| \le \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x)| < +\infty$$

lo stesso per i b_k

• Se $f \in A.C.([-\frac{T}{2}, \frac{T}{2}])$ e $f(-\frac{T}{2}) = f(\frac{T}{2})$ posso estenderla a una funzione continua periodica su \mathbb{R} . (l'estensione f appartiene a $L_T^2(\mathbb{R})$) Ha senso calcolare i coefficienti di Fourier sia di f che di f'.

 a_k, b_k siano i coefficienti di Fourier di f

 a_k^\prime, b_k^\prime siano i coefficienti di Fourier di f^\prime

$$a'_{k} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f'(x) \cos(\xi_{k}x) dx = 0 + \frac{2}{T} \xi_{k} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \sin(\xi_{k}x) dx$$
$$= \xi_{k} b_{k}$$

Analogamente

$$b_k' = -\xi_k a_k$$

Dunque

$$\hat{f}_k' = i\xi_k \hat{f}_k \ \forall k \in \mathbb{Z}$$

21 Applicazioni delle serie di Fourier alle equazioni differenziali

Ricerca di soluzioni periodiche di ODE lineari (tramite serie di Fourier) Consideriamo un'ODE su $\mathbb R$ della forma

$$\sum_{j=0}^{n} a_j u^{(j)} = f \in L_T^2(\mathbb{R}) \quad x \in \mathbb{R}$$

Problema: esistono soluzioni T-periodiche (in $L_T^2(\mathbb{R})$)? La seguente equazione differenziale equivale a chiedere:

$$\sum_{j=0}^{n} a_j \widehat{u^{(j)}}_k = \hat{f}_k \ \forall k \in \mathbb{Z}$$

$$\sum_{j=0}^{n} a_j (i\xi_k)^{(j)} \hat{u}_k = \hat{f}_k \ \forall k \in \mathbb{Z}$$

Sistema di infinite eq. algebriche.

$$P(i\xi_k)\hat{u_k} = \hat{f_k}$$

(forma equivalente)

Ciascuna eq. è un'equazione lineare di 1° grado in $\hat{u_k}!!!$

• Caso 1: $P(i\xi_k) \neq 0 \ \forall k \in \mathbb{Z}$

$$\implies \hat{u_k} = \frac{\hat{f_k}}{P(i\xi_k)}$$

• Caso 2: $P(i\xi_k) = 0$ per $k = k_1^*, \dots, k_p^*$, allora $\hat{f}_k = 0$ per $k = k_1^*, \dots, k_p^* \implies$ infinite soluzioni, ovvero

$$\hat{u_k} = \begin{cases} \frac{\hat{f_k}}{P(i\xi_k)} k \neq k_1^*, \dots, k_p^* \\ \text{arbitrario} & k = k_1^*, \dots, k_p^* \end{cases}$$

Se però $\hat{f}_k \neq 0$ per qualche $k \in \{k_1^*, \dots, k_p^*\} \implies$ no soluzioni

Osservazione: Ci sono altri sistemi ortonormali completi in $L^2(I)$.

$$1, x, x^2, x3, \dots$$

 \rightarrow polinomi di Legendre

Esempio in $L^2(-1,1)$

$$\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}x, \sqrt{\frac{5}{2}}\left(-\frac{1}{3}+x^2\right)$$

Data $f \in L^2(I)$, per minimizzare la distanza in $L^2(I)$ da un polinomio di grado ≤ 3 , dovrò considerare la somma delle serie di Fourier di f fatta rispetto ai polinomio di Legendre

22 Trasformata di Fourier

Definizione: Sia $u \in L^1(\mathbb{R})$. La sua *Trasformata di Fourier* è la funzione definita per $\xi \in \mathbb{R}$ da:

$$\hat{u}(\xi) := \int_{\mathbb{R}} u(x)e^{-i\xi x}dx \ \xi \in \mathbb{R}$$

Osservazioni

• La dipendenza da ξ appare in $e^{-i\xi x} \implies \hat{u}(\xi)$ è un integrale dipendenta dal parametro

• Formalmente c'è analogia con i coefficienti di Fourier

$$\hat{u}_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} u(x) e^{-i\xi_k x} dx \quad k \in \mathbb{Z}$$

• La definizione di $\hat{u}(\xi)$ è "ben posta" grazie all'ipotesi $u \in L^1(\mathbb{R})$

$$|\hat{u}(\xi)| \le \int_{\mathbb{R}} |u(x)| |e^{-i\xi x}| dx \le \int_{\mathbb{R}} |u(x)| dx < +\infty$$

• $e^{-i\xi x} = \cos(\xi x) - i\sin(\xi x) \implies \hat{u}(\xi)$ è a valori in $\mathbb C$

$$\hat{u}(\xi) = \int_{\mathbb{R}} u(x)\cos(\xi x) - i \int_{\mathbb{R}} u(x)\sin(\xi x)dx$$

- \bullet Generalizzazioni: si può partire da $u:\mathbb{R}\to\mathbb{C}$
- Da $u: \mathbb{R}^n \to \mathbb{R} \ (u \in L^1(\mathbb{R}^n))$

$$\hat{u}(\xi) := \int_{\mathbb{R}} u(x)e^{-i\xi \cdot x} dx \ \xi \in \mathbb{R}^n$$

- $u: \mathbb{R}^n \to \mathbb{C}$
- Non si trasformano mai funzioni definite su sottoinsiemi propri di \mathbb{R} o \mathbb{R}^n

22.1 Varianti in letteratura

 $e^{-i\xi x}$ rimpiazzato da $e^{i\xi x}$, oppure $e^{i2\pi\xi x}$

22.2 Operatore Trasformata

La trasformata \mathcal{F} di Fourier è l'operatore che manda u in \hat{u}

$$\mathcal{F}: u \to \hat{u}$$

Osservazioni

• \mathcal{F} è lineare:

$$\mathcal{F}(\alpha u + \beta v) = \alpha \mathcal{F}(u) + \beta \mathcal{F}(v)$$

22.3 Trasformate notevoli

1. $u(x) = \chi_{(a,b)}(x)$

$$\hat{u}(\xi) = \frac{\sin(\xi b) - \sin(\xi a)}{\xi} + i \frac{\cos(\xi b) - \cos(\xi a)}{\xi}$$

2. $u(x) = e^{-|x|}$

$$\hat{u}(\xi) = \frac{2}{1 + \xi^2}$$

Diversamente dal caso precedente, la trasformata è sempre reale, e \hat{u} è di nuovo $L^1(\mathbb{R}).$

3.
$$u(x) = \frac{1}{1+x^2}$$

$$\hat{u}(\xi) = \pi e^{-|\xi|}$$

Partendo da $u(x) = e^{-|x|}$ trasformando due volte si ottiene $\hat{u}(x) = 2\pi e^{-|x|} = 2\pi u(x)$

22.4 Teorema di Riemann-Lebesgue

Teorema: Sia $u \in L^1(\mathbb{R})$. Allora \hat{u} ha le seguenti proprietà:

1.
$$\hat{u} \in L^{\infty}(\mathbb{R})$$

2. \hat{u} è continua

3. \hat{u} è infinitesima all'infinito

$$\lim_{\xi \to +\infty} \hat{u}(\xi) = 0$$

Dimostrazione

1. $|\hat{u}(x)| \leq ||u||_1$, passo all'ess-sup al variare di ξ

$$\|\hat{u}\|_{L^{\infty}(\mathbb{R})} \leq \|u\|_{L^{1}(\mathbb{R})}$$

$$\|\mathcal{F}(u)\|_{L^{\infty}(\mathbb{R})} \le \|u\|_{L^{1}(\mathbb{R})}$$

Ne consegue che (con M = 1, da dimostrare)

$$\mathcal{F}: L^1(\mathbb{R}) \to L^\infty(\mathbb{R})$$
 lineare continuo

2. Facciamo vedere che $\hat{u}(\xi)$ è continua in ξ fissato in \mathbb{R} , ovvero

$$\xi_n \to \xi \implies \hat{u}(\xi_n) \to \hat{u}(\xi)$$

$$\hat{u}(\xi_n) = \int_{\mathbb{R}} u(x)e^{-i\xi_n x} dx$$

$$d^{c}etare\hat{u}(\xi_{n}) = \int_{\mathbb{R}} u(x)e^{-i\xi_{n}x}dx$$

$$f_n(x) = u(x)e^{-i\xi_n x} \to u(x)e^{-i\xi x} = f(x)$$

Si può passare sotto il segno di integrale per conv. dominata, perché

$$|f_n(x) = |u(x)||e^{-i\xi_n x}| = |u(x)| \in L^1(\mathbb{R})$$

3. Vero se $u=\chi_{(a,b)}$ (vedere esempio sopra)

Vero se u è "a scalino", $u = \sum_{k=0}^{N} c_k \chi_{I_k}$ poiché l'operatore trasf. è lineare

$$\hat{u} = \sum_{k=1}^{N} c_k \hat{\chi}_{I_k}$$

Vero $\forall u \in L^1(\mathbb{R}) : \exists \varphi_n \text{ "a scalino"} \xrightarrow{L^1(\mathbb{R})} u$

Sappiamo che $\mathcal{F}: L^1 \to L^\infty$ op.continuo: $\varphi_n \xrightarrow{L^1(\mathbb{R})} u \implies \hat{\varphi_n} \xrightarrow{L^\infty(\mathbb{R})} \hat{u}$ So che $\hat{\varphi}_n$ sono "infinitesime all'infinito", dunque anche \hat{u} ha la stessa proprietà.

22.5 Proprietà algebriche

Sia $u \in L^1(\mathbb{R})$

- $v(x) = u(x-a), \ a \in \mathbb{R} \implies \hat{v}(x) = e^{-i\xi a}\hat{u}(\xi)$
- $v(x) = e^{iax}u(x) \implies \hat{\xi} = \hat{u}(\xi a)$ Esempio: è possibile calcolare $u(x)\cos(ax)$ (Definizione complessa del coseno)
- v(x)=u(x/a) $a\in\mathbb{R}-\{0\}$ \implies $\hat{v}(\xi)=|a|\hat{u}(a\xi)$ In particolare, con a=-1, si ha

$$\begin{cases} u \text{ pari } \implies \hat{u} \text{ pari (reale)} \\ u \text{ dispari } \implies \hat{u} \text{ dipari (puramente immaginaria)} \end{cases}$$

Queste proprietà sono dimostrabili tramite cambi di variabili negli integrali

22.6 Proprietà differenziali

Proposizione 1: Sia $u \in L^1(\mathbb{R}) \cap A.C.(\mathbb{R})$ (con tali ipotesi u derivabile q.o. su \mathbb{R} , con $u' \in L^1(\mathbb{R})$). Allora

$$\widehat{u}'(\xi) = i\xi \widehat{u}(\xi) \ \forall \xi \in \mathbb{R}$$

In particolare, nelle ipotesi della proposizione

$$u' \in L^1(\mathbb{R}) \implies \lim_{\xi \to \pm \infty} \widehat{u'}(\xi) = 0$$

ovvero

$$\lim_{\xi \to \pm \infty} \xi \hat{u}(\xi) = 0$$

ovvero

$$\hat{u}(\xi) = o\left(\frac{1}{x}\right)$$

Iterando:

$$u \in L^{1}(\mathbb{R}) \cap AC(\mathbb{R}), \ u' \in AC(\mathbb{R})$$
$$\widehat{u''}(\xi) = (i\xi)^{2} \hat{u}(\xi) = -\xi^{2} \hat{u}(\xi)$$
$$e \ \hat{u}(\xi) = o\left(\frac{1}{\xi^{2}}\right)$$

Morale: maggior regolarità di uimplica maggior rapidità di convergenza a 0 all'infinito di \hat{u}

Dimostrazione

$$\hat{u}'(\xi) = \int_{\mathbb{R}} u'e^{-i\xi x} dx = \lim_{L \to +\infty} \int_{-L}^{L} u'(x)e^{-i\xi x} dx$$
$$= \lim_{L \to +\infty} u(x)e^{-i\xi x} \Big|_{-L}^{L} + i\xi \int_{-L}^{L} u(x)e^{-i\xi x} dx$$

$$= i \xi \hat{u}(\xi)$$

$$u(\pm L) e^{i \xi \pm L} \ \mathrm{per} \ L \to +\infty$$

Infatti, per $u \in L^1(\mathbb{R}) \cap A.C.(\mathbb{R}), \ u(L) \xrightarrow{L \to +\infty} 0$

$$u(L) = u(0) + \int_0^L u'(t)dt$$

= $u(0) + \int_0^{+\infty} u'(t)\chi_{(0,L)}(t)dt$
= $u(0) + \int_0^{+\infty} u'(t)dt$

Poiché $f_L(t) = u'(t)\chi_{(0,L)}(t)$.

Proposizione 2: Sia $u \in L^1(\mathbb{R})$ tale che $xu \in L^1(\mathbb{R})$

Allora:

$$(\hat{u})'(\xi) = -i\widehat{x}\widehat{u}(\xi) \ \forall \xi \in \mathbb{R}$$

In particolare, siccome la trasformata di xu è continua (per RL), allora $(\hat{u})'$ continua, cioè $\hat{u} \in C^1(\mathbb{R})$

Iterando: $u \in L^1(\mathbb{R}): xu \in L^1(\mathbb{R}), x^2u \in L^1(\mathbb{R}) \implies \hat{u} \in C^2(\mathbb{R})$

$$u \sim \frac{M}{x^{\alpha}} \text{ per } x \to \pm \infty \text{ con } \alpha > k \implies x^{k-1} u(x) \sim \frac{M}{x^{\alpha-k+1}} \left(\alpha - k + 1 > 1\right) \implies$$

$$x^{k-1}u\in L^1(\mathbb{R}) \implies \hat{u}\in C^{k-1}(\mathbb{R})$$

Morale: maggior rapidità di decrescenza a 0 per u implica maggior regolarità di \hat{u}

Dimostrazione (cenno)

$$\hat{u}(\xi) = \int_{\mathbb{R}} u(x)e^{-i\xi x}dx$$

Posso derivare sotto \int :

$$(\hat{u}(\xi))' = \int_{\mathbb{R}} (u(x)e^{-i\xi x})' dx = -i\int_{\mathbb{R}} xu(x)e^{-i\xi x} dx = -i\widehat{xu(x)}(\xi)$$