Mathematics for Machine Learning

— Linear Algebra: Singular Value Decomposition

&

Matrix Approximation

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

- Singular Value Decomposition (SVD)
 - Construction of the SVD
 - Example

Matrix Approximation

Outline

- Singular Value Decomposition (SVD)
 - Construction of the SVD
 - Example

Matrix Approximation

Why Singular Value Decomposition?

- It can be applied to all matrices (not only to square matrices).
- It always exists.

Illustration

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$
, rank $(\mathbf{A}) = r \leq \min(m, n)$:

- $U \in \mathbb{R}^{m \times m}$ with orthogonal columns vectors u_i , $i = 1, \dots, m$.
- $V \in \mathbb{R}^{n \times n}$ with orthogonal columns vectors v_j , $j = 1, \dots, n$.
- $\Sigma \in \mathbb{R}^{m \times n}$ with $\Sigma_{ii} = \sigma_i \geq 0$ and $\Sigma_{ij} = 0$ for $i \neq j$.
 - σ_i : singular values; $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r \geq 0$.
 - u_i: left-singular vectors;
 v_i: right-singular vectors;

Illustration & Example

$$\mathbf{A} = \begin{bmatrix} 1 & -0.8 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \\
= \begin{bmatrix} -0.79 & 0 & -0.62 \\ 0.38 & -0.78 & -0.49 \\ -0.48 & -0.62 & 0.62 \end{bmatrix} \begin{bmatrix} 1.62 & 0 \\ 0 & 1.0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -0.78 & 0.62 \\ -0.62 & -0.78 \end{bmatrix}$$

Exercise

Exercise

Prove that for an $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{A} \mathbf{A}^{\top}$ and $\mathbf{A}^{\top} \mathbf{A}$ have the same nonzero eigenvalues.

Construction of the SVD

Outline

- Singular Value Decomposition (SVD)
 - Construction of the SVD
 - Example

Matrix Approximation

SVD & Eigendecomposition

• Recall the eigendecomposition of a symmetric positive definite matrix

$$S = S^{\top} = PDP^{\top}.$$

SVD & Eigendecomposition

• Recall the eigendecomposition of a symmetric positive definite matrix

$$S = S^{\top} = PDP^{\top}.$$

with the corresponding SVD

$$oldsymbol{S} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^{ op}$$

so
$$oldsymbol{U} = oldsymbol{P} = oldsymbol{V}$$
 , $oldsymbol{D} = oldsymbol{\Sigma}$.

The Overall Idea

- Computing the SVD of $\mathbf{A} \in \mathbb{R}^{m \times n} \Leftrightarrow \text{Finding two sets of orthonormal}$ bases $U = (\mathbf{u}_1, \dots, \mathbf{u}_m)$ and $V = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ respectively.
- Images of Av_i's form a set of orthogonal vectors.

The first step: Constructing the right-singular vectors

- **Recall:** Eigenvectors of a *symmetric* matrix form an orthonormal basis (The Spectral theorem).
- Also, we can always construct a symmetric, positive semidefinite matrix $\mathbf{A}^{\top} \mathbf{A} \in \mathbb{R}^{n \times n}$ from any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$.
- Thus,

$$\mathbf{A}^{\top}\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{\top} = \mathbf{P} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \mathbf{P}^{\top},$$

where P is orthogonal and composed of orthonormal eigenbasis.

* $\lambda_i \geq 0$ are the eigenvalues of $\mathbf{A}^{\top} \mathbf{A}$.

Assume the SVD of A exists.

$$\mathbf{A}^{\top}\mathbf{A} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})^{\top}(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}) = \mathbf{V}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}$$

where $\boldsymbol{U}, \boldsymbol{V}$ are orthonormal matrices

Assume the SVD of A exists.

$$\mathbf{A}^{\top}\mathbf{A} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})^{\top}(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}) = \mathbf{V}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}$$

where U, V are orthonormal matrices (: $U^{T}U = I$).

Assume the SVD of A exists.

$$\mathbf{A}^{\top}\mathbf{A} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})^{\top}(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}) = \mathbf{V}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}$$

where U, V are orthonormal matrices $(:: U^{\top}U = I)$. So,

Assume the SVD of A exists.

$$\mathbf{A}^{\top}\mathbf{A} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})^{\top}(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}) = \mathbf{V}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}$$

where U, V are orthonormal matrices $(:: U^{\top}U = I)$. So,

$$m{A}^{ op}m{A} = m{V}m{\Sigma}^{ op}m{\Sigma}m{V}^{ op} = m{V} egin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_n^2 \end{bmatrix} m{V}^{ op}$$

• Hence, we identify $V^{\top} = P^{\top}$ (right-singular vectors) and $\sigma_i^2 = \lambda_i$.

The second step: Constructing the left-singular vectors

- Similarly, we can always construct a symmetric, positive semidefinite matrix $\mathbf{A}\mathbf{A}^{\top} \in \mathbb{R}^{m \times m}$ from any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$.
- Thus, by assuming the SVD of **A** exists, we have

$$\mathbf{A}\mathbf{A}^{\top} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})^{\top} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{V}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top}$$
$$= \mathbf{U}\begin{bmatrix} \sigma_{1}^{2} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_{m}^{2} \end{bmatrix} \mathbf{U}^{\top}$$

Note: AA^{\top} and $A^{\top}A$ have the same eigenvalues.

The second step: Constructing the left-singular vectors

- Similarly, we can always construct a symmetric, positive semidefinite matrix $\mathbf{A}\mathbf{A}^{\top} \in \mathbb{R}^{m \times m}$ from any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$.
- Thus, by assuming the SVD of **A** exists, we have

$$\mathbf{A}\mathbf{A}^{\top} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})^{\top} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{V}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top}$$
$$= \mathbf{U}\begin{bmatrix} \sigma_{1}^{2} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_{m}^{2} \end{bmatrix} \mathbf{U}^{\top}$$

Note: AA^{\top} and $A^{\top}A$ have the same eigenvalues.

 \Rightarrow The nonzero entries of Σ in the SVD for both steps must be the same.

Images of the v_i under A must be orthogonal.

$$(\mathbf{A}\mathbf{v}_i)^{\top}(\mathbf{A}\mathbf{v}_i) = \mathbf{v}_i^{\top}(\mathbf{A}^{\top}\mathbf{A})\mathbf{v}_i = \mathbf{v}_i^{\top}(\lambda_i\mathbf{v}_i) = \lambda_i\mathbf{v}_i^{\top}\mathbf{v}_i = 0.$$

(For $m \ge r$) We observe that $\{A\mathbf{v}_1, \dots, A\mathbf{v}_r\}$ is a basis of an r-dimensional subspace of \mathbb{R}^m .

Images of the v_i under A must be orthogonal.

$$(\mathbf{A}\mathbf{v}_i)^{\top}(\mathbf{A}\mathbf{v}_j) = \mathbf{v}_i^{\top}(\mathbf{A}^{\top}\mathbf{A})\mathbf{v}_j = \mathbf{v}_i^{\top}(\lambda_j\mathbf{v}_j) = \lambda_j\mathbf{v}_i^{\top}\mathbf{v}_j = 0.$$

(For $m \ge r$) We observe that $\{A\mathbf{v}_1, \dots, A\mathbf{v}_r\}$ is a basis of an r-dimensional subspace of \mathbb{R}^m .

Normalize the images of these right-singular vectors:

$$\mathbf{u}_i := \frac{\mathbf{A}\mathbf{v}_i}{\|\mathbf{A}\mathbf{v}_i\|} = \frac{1}{\sqrt{\lambda_i}}\mathbf{A}\mathbf{v}_i = \frac{1}{\sigma_i}\mathbf{A}\mathbf{v}_i.$$

• That is, $\mathbf{A}\mathbf{v}_i = \sigma_i \mathbf{u}_i$, for $i = 1, \dots, r$.

- Concatenate the \mathbf{v}_i 's as the columns of \mathbf{V} ;
- Concatenate the \mathbf{u}_i 's as the columns of \mathbf{U} ;

- Concatenate the \mathbf{v}_i 's as the columns of \mathbf{V} ;
- Concatenate the \mathbf{u}_i 's as the columns of \mathbf{U} ;
- Then,

$$AV = U\Sigma \in \mathbb{R}^{m \times n}$$
.

- Concatenate the \mathbf{v}_i 's as the columns of \mathbf{V} ;
- Concatenate the \mathbf{u}_i 's as the columns of \mathbf{U} ;
- Then,

$$AV = U\Sigma \in \mathbb{R}^{m \times n}$$
.

Thus,

$$AVV^{\top} = U\Sigma V^{\top}$$

- Concatenate the \mathbf{v}_i 's as the columns of \mathbf{V} ;
- Concatenate the \mathbf{u}_i 's as the columns of \mathbf{U} ;
- Then,

$$AV = U\Sigma \in \mathbb{R}^{m \times n}$$
.

Thus,

$$A = AVV^{\top} = U\Sigma V^{\top}$$

Exercise

Why do we have $\mathbf{A} = \mathbf{A}\mathbf{V}\mathbf{V}^{\top}$?

Example

Outline

- Singular Value Decomposition (SVD)
 - Construction of the SVD
 - Example

2 Matrix Approximation

Example

Example

Find the singular value decomposition of

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 0 & 1 \\ -2 & 1 & 0 \end{array} \right]$$

Example

SVD Example (step 1/2)

Find $A = U\Sigma V^{\top}$.

Perform eigendecomposition of $\mathbf{A}^{\top}\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{\top}$:

SVD Example (step 1/2)

Find $A = U\Sigma V^{\top}$.

Perform eigendecomposition of $\mathbf{A}^{\top}\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{\top}$:

$$\mathbf{A}^{\top}\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5/\sqrt{30} & -2/\sqrt{30} & 1/\sqrt{30} \\ 0 & 1/\sqrt{5} & 2/\sqrt{5} \\ -1/\sqrt{30} & 2/\sqrt{5} & 1/\sqrt{6} \end{bmatrix}$$

SVD Example (step 1/2)

Find $A = U\Sigma V^{\top}$.

Perform eigendecomposition of $\mathbf{A}^{\top}\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{\top}$:

$$\mathbf{A}^{\top}\mathbf{A} = \left[\begin{array}{ccc} 1 & -2 \\ 0 & 1 \\ 1 & 0 \end{array} \right] \left[\begin{array}{ccc} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \left[\begin{array}{ccc} 5/\sqrt{30} & -2/\sqrt{30} & 1/\sqrt{30} \\ 0 & 1/\sqrt{5} & 2/\sqrt{5} \\ -1/\sqrt{30} & 2/\sqrt{5} & 1/\sqrt{6} \end{array} \right]$$

So,

$$m{V} = m{P} = \left[egin{array}{ccc} 5/\sqrt{30} & -2/\sqrt{30} & 1/\sqrt{30} \\ 0 & 1/\sqrt{5} & 2/\sqrt{5} \\ -1/\sqrt{30} & 2/\sqrt{5} & 1/\sqrt{6} \end{array}
ight], \; m{\Sigma} = \left[egin{array}{ccc} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{array}
ight]$$

where $\sigma^2 = 6$, $\sigma_2^2 = 1 \Rightarrow \sigma_1 = \sqrt{6}$, $\sigma_2 = 1$.

4 T > 4 A > 4 B > 4 B > B 9 9 9

Singular Value Decomposition (SVD)

Example

SVD Example (step 2/2)

Left-singular vectors:

SVD Example (step 2/2)

Left-singular vectors:

$$\mathbf{u}_1 = \frac{1}{\sigma_1} \mathbf{A} \mathbf{v}_1 = \frac{1}{\sqrt{6}} \left[\begin{array}{ccc} 1 & 0 & 1 \\ -2 & 1 & 0 \end{array} \right] \left[\begin{array}{c} 5/\sqrt{30} \\ -2/\sqrt{30} \\ 1/\sqrt{30} \end{array} \right] = \left[\begin{array}{c} 1/\sqrt{5} \\ -2/\sqrt{5} \end{array} \right],$$

$$\mathbf{u}_2 = \frac{1}{\sigma_2} \mathbf{A} \mathbf{v}_2 = \frac{1}{1} \left[\begin{array}{cc} 1 & 0 & 1 \\ -2 & 1 & 0 \end{array} \right] \left[\begin{array}{c} 0 \\ 1/\sqrt{5} \\ 2/\sqrt{5} \end{array} \right] = \left[\begin{array}{c} 2/\sqrt{5} \\ 1/\sqrt{5} \end{array} \right].$$

Then, we derive
$$\boldsymbol{\mathit{U}} = [\mathbf{u}_1, \mathbf{u}_2] = \frac{1}{\sqrt{5}} \left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array} \right].$$

Outline

- Singular Value Decomposition (SVD)
 - Construction of the SVD
 - Example

Matrix Approximation

Motivation

- Represent a matrix \boldsymbol{A} as a sum of simpler low-rank matrices \boldsymbol{A}_i .
- Cheaper than computing the full SVD.
- Rank-1 matrix $\mathbf{A}_i \in \mathbb{R}^{m \times n}$:

$$\mathbf{A}_i = \mathbf{u}_i \mathbf{v}_i^{\top}$$
. (outer product)

Motivation

- Represent a matrix A as a sum of simpler low-rank matrices A_i .
- Cheaper than computing the full SVD.
- Rank-1 matrix $\mathbf{A}_i \in \mathbb{R}^{m \times n}$:

$$\mathbf{A}_i = \mathbf{u}_i \mathbf{v}_i^{\top}$$
. (outer product)

In fact, we can derive

$$\mathbf{A} = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top} = \sum_{i=1}^{r} \sigma_{i} \mathbf{A}_{i}.$$

• Outer-product matrices \mathbf{A}_i weighted by the *i*th singular value σ_i .

Rank-k Approximation

Up to an intermediate value k < r,

$$\hat{\mathbf{A}}(k) := \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top} = \sum_{i=1}^k \sigma_i \mathbf{A}_i$$

Illustrating example

(a) Original image A.

(b) Rank-1 approximation $\widehat{\mathbf{A}}(1)$.(c) Rank-2 approximation $\widehat{\mathbf{A}}(2)$.

(d) Rank-3 approximation $\widehat{\boldsymbol{A}}(3)$.(e) Rank-4 approximation $\widehat{\boldsymbol{A}}(4)$.(f) Rank-5 approximation $\widehat{\boldsymbol{A}}(5)$.

Measure the difference b/w \boldsymbol{A} and $\hat{\boldsymbol{A}}$

Spectral Norm

For $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$, the spectral norm of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is

$$\|\mathbf{A}\|_2 = \max_{\mathbf{x}} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$$

Measure the difference b/w \boldsymbol{A} and $\hat{\boldsymbol{A}}$

Spectral Norm

For $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$, the spectral norm of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is

$$\|\boldsymbol{A}\|_2 = \max_{\mathbf{x}} \frac{\|\boldsymbol{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$$

• Think about why we need to divide the norm $\|\mathbf{x}\|_2$.

Theorem & Exercise

Theorem (4.24)

The spectral norm of \boldsymbol{A} is its largest singular value σ_1 .

Eckart-Young Theorem

Theorem [Eckart & Young 1936]

Consider $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank r and let $\mathbf{B} \in \mathbb{R}^{m \times n}$ be a matrix of rank k.

Then for any $k \leq r$ with $\hat{\mathbf{A}}(k) = \sum_{i=1}^k \sigma_1 \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$, it holds that

$$\hat{\mathbf{A}}(k) = \underset{\mathsf{rank}(\mathbf{B})=k}{\mathsf{arg\,min}} \|\mathbf{A} - \mathbf{B}\|_2,$$

$$\|\mathbf{A} - \hat{\mathbf{A}}(k)\|_2 = \sigma_{k+1}.$$

Physical meaning:

- We can view the rank-k approximation as a projection of the matrix
 A onto a lower-dimensional space of rank-at-most-k matrices.
- The approximation error: the next singular value (i.e., σ_{k+1})!

Note that

$$\mathbf{A} - \hat{\mathbf{A}}(k) = \sum_{i=k+1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}.$$

By Theorem 4.24, we have $\|\mathbf{A} - \hat{\mathbf{A}}(k)\|_2 = \sigma_{k+1}$ (spectral norm).

Note that

$$\mathbf{A} - \hat{\mathbf{A}}(k) = \sum_{i=k+1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}.$$

By Theorem 4.24, we have $\|\mathbf{A} - \hat{\mathbf{A}}(k)\|_2 = \sigma_{k+1}$ (spectral norm).

But why \hat{A} is the *best* approximation in some sense?

Note that

$$\mathbf{A} - \hat{\mathbf{A}}(k) = \sum_{i=k+1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}.$$

By Theorem 4.24, we have $\|\mathbf{A} - \hat{\mathbf{A}}(k)\|_2 = \sigma_{k+1}$ (spectral norm).

But why $\hat{\mathbf{A}}$ is the *best* approximation in some sense?

Assume that r > k and there is another **B** with rank(**B**) $\leq k$, such that

$$\|\mathbf{A} - \mathbf{B}\|_2 < \|\mathbf{A} - \hat{\mathbf{A}}(k)\|_2.$$

Note that $\dim(\operatorname{null}(\boldsymbol{B})) \geq n - k$.

Note that $\dim(\operatorname{null}(\boldsymbol{B})) \geq n - k$.

There exists an $\geq (n-k)$ -dimensional null space $Z \subseteq \mathbb{R}^n$ such that

$$x \in Z, Bx = 0.$$

Note that $\dim(\operatorname{null}(\boldsymbol{B})) \geq n - k$.

There exists an $\geq (n-k)$ -dimensional null space $Z\subseteq \mathbb{R}^n$ such that

$$x \in Z, Bx = 0.$$

$$\Rightarrow \|\mathbf{A}\mathbf{x}\|_2 = \|(\mathbf{A} - \mathbf{B})\mathbf{x}\|_2$$

Note that $\dim(\operatorname{null}(\boldsymbol{B})) \geq n - k$.

There exists an $\geq (n-k)$ -dimensional null space $Z\subseteq \mathbb{R}^n$ such that

$$x \in Z, Bx = 0.$$

$$\Rightarrow \|\mathbf{A}\mathbf{x}\|_{2} = \|(\mathbf{A} - \mathbf{B})\mathbf{x}\|_{2} \le \|\mathbf{A} - \mathbf{B}\|_{2}\|\mathbf{x}\|_{2}$$

Note that $\dim(\operatorname{null}(\boldsymbol{B})) \geq n - k$.

There exists an $\geq (n-k)$ -dimensional null space $Z\subseteq \mathbb{R}^n$ such that

$$x \in Z, Bx = 0.$$

$$\Rightarrow \|\mathbf{A}\mathbf{x}\|_{2} = \|(\mathbf{A} - \mathbf{B})\mathbf{x}\|_{2} \le \|\mathbf{A} - \mathbf{B}\|_{2}\|\mathbf{x}\|_{2} < \sigma_{k+1}\|\mathbf{x}\|_{2}. \quad \cdots (\dagger)$$

Note that $\dim(\operatorname{null}(\boldsymbol{B})) \geq n - k$.

There exists an $\geq (n-k)$ -dimensional null space $Z\subseteq \mathbb{R}^n$ such that

$$x \in Z, Bx = 0.$$

$$\Rightarrow \|\mathbf{A}\mathbf{x}\|_{2} = \|(\mathbf{A} - \mathbf{B})\mathbf{x}\|_{2} \leq \|\mathbf{A} - \mathbf{B}\|_{2}\|\mathbf{x}\|_{2} < \sigma_{k+1}\|\mathbf{x}\|_{2}. \quad \cdots (\dagger)$$

However, there exists a (k+1)-dimensional subspace Y spanned by $\mathbf{v}_1, \dots, \mathbf{v}_{k+1}$.

Note that $\dim(\operatorname{null}(\boldsymbol{B})) \geq n - k$.

There exists an $\geq (n-k)$ -dimensional null space $Z\subseteq \mathbb{R}^n$ such that

$$x \in Z, Bx = 0.$$

$$\Rightarrow \|\mathbf{A}\mathbf{x}\|_{2} = \|(\mathbf{A} - \mathbf{B})\mathbf{x}\|_{2} \leq \|\mathbf{A} - \mathbf{B}\|_{2}\|\mathbf{x}\|_{2} < \sigma_{k+1}\|\mathbf{x}\|_{2}. \quad \cdots (\dagger)$$

However, there exists a (k+1)-dimensional subspace Y spanned by $\mathbf{v}_1, \dots, \mathbf{v}_{k+1}$.

Note that for $\mathbf{x} \in Y$, $\|\mathbf{A}\mathbf{x}\|_2 \ge \sigma_{k+1}\|\mathbf{x}\|_2$. \cdots (‡) (Exercise!)

Note that $\dim(\operatorname{null}(\boldsymbol{B})) \geq n - k$.

There exists an $\geq (n-k)$ -dimensional null space $Z \subseteq \mathbb{R}^n$ such that

$$x \in Z, Bx = 0.$$

$$\Rightarrow \|\mathbf{A}\mathbf{x}\|_{2} = \|(\mathbf{A} - \mathbf{B})\mathbf{x}\|_{2} \leq \|\mathbf{A} - \mathbf{B}\|_{2}\|\mathbf{x}\|_{2} < \sigma_{k+1}\|\mathbf{x}\|_{2}. \quad \cdots (\dagger)$$

However, there exists a (k+1)-dimensional subspace Y spanned by $\mathbf{v}_1, \dots, \mathbf{v}_{k+1}$.

Note that for
$$\mathbf{x} \in Y$$
, $\|\mathbf{A}\mathbf{x}\|_2 \ge \sigma_{k+1}\|\mathbf{x}\|_2$. \cdots (‡) (Exercise!)

But by the Dimension Theorem (rank-nullity theorem), there must be $x \in Y \cap Z$. ($\Rightarrow \Leftarrow$)

Discussions