Basic Probability Rules

Addition Rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ Multiplication Rule: $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$

Conditional Probability: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

 $\textbf{Baye's Rule:} \quad P\big(\left.A_1\right|B\big) = \frac{P\big(\left.B\right|A_1\big)P\big(A_1\big)}{\sum P\big(\left.B\right|A_i\big)P\big(A_i\big)}$

DeMorgan's Laws: $P\Big[(A\cup B)'\Big] = P(A'\cap B')$ $P\Big[(A\cap B)'\Big] = P(A'\cup B')$

Law of Total Probability: $P(B) = P(B \cap A) + P(B \cap A')$

A and B are independent $(A \perp B)$ if & only if:

- $P(A \cap B) = P(A)P(B)$
- P(A|B) = P(A)
- P(B|A) = P(B)

Combinatorics

Multiplication Rule: The number of ways to make n choices, having k_i options for choice number i, is equal to $k_1 \cdot k_2 \cdot \ldots \cdot k_n$.

Permutations of n objects: n!

Permutations of k out of n objects: $nPk = \frac{n!}{(n-k)!}$

Partitions: The number of ways to partition n objects into k non-overlapping groups with sizes $n_1, n_2, ..., n_k$ is equal to:

$$\bullet \quad \binom{n}{n_1 n_2 \cdots n_t} = \frac{n!}{n_1 ! \cdot n_2 ! \cdot \dots \cdot n_t !}$$

Combinations: The number of ways to choosing *k* out of *n* objects:

•
$$nCk = \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Distribution and Density Functions

Discrete Distribution Functions

PMF: f(x) = P[X = x], $P[a \le x \le b] = \sum_{x=a}^{b} f(x)$

CDF: $F(x) = P[X \le x] = \sum_{x=a}^{b} f(x)$ **Survival Fn:** S(x) = P[X > x] = 1 - F(x)

Continuous Distribution Functions

PDF: $f(x) \approx \frac{1}{2\varepsilon} P[x - \varepsilon < x < x + \varepsilon]$, $P[a \le x \le b] = \int_a^b f(x) dx$

CDF: $F(x) = P[X \le x] = \int_{-\infty}^{x} f(t)dt$ Survival: S(x) = P[X > x] = 1 - F(x)Derivatives: F'(x) = -S'(x) = f(x)

Hazard Rate: $h(x) = \frac{f(x)}{1 - F(x)} = -\frac{d}{dx} \ln[1 - F(x)]$

Summation & Integration Formulas

The following formulas are useful to know:

•
$$1+2+3+...+n = \frac{n(n+1)}{2}$$

•
$$a + ar + ar^2 + ... + ar^{n-1} = \frac{a - ar^n}{1 - r}$$

•
$$a + ar + ar^2 + ar^3 + ... = \frac{a}{1 - r}$$
, $|r| < 1$

•
$$1+2r+3r^2+4r^3+...=\frac{1}{(1-r)^2}$$
, $|r|<1$

•
$$\int_0^\infty x^k e^{-ax} dx = \frac{k!}{a^{k+1}}$$

Moments and MGF's

Expected Value (Discrete): $E[X] = \sum x f(x)$

$$E[h(X)] = \sum h(x) f(x)$$

Expected Value (Continuous): $E[X] = \int_{-\infty}^{\infty} x f(x) dx$

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f(x) dx$$

Darth Vader Rule: If $X \ge 0$, then $E[X] = \int_0^\infty S(x) dx$

Variance: $Var[X] = E[(X-\mu)^2] = E[X^2] - (E[X])^2$

Algebraic Properties: E[aX + b] = aE[X] + b $Var[aX + b] = a^2 Var[X]$

Moments

• *n*-th Moment: $E[X^n]$

• *n*-th Central Moment: $E[(X - \mu)^n]$

Moment Generating Functions

MGF Definition: $M_X(t) = E[e^{tX}]$

MGF Properties:

- $M_X(0) = 1$
- $M'_X(0) = E[X]$ and $M_X^{(n)}(0) = E[X^n]$
- If X is discrete with $f(x_i) = p_i$, then $M_X(t) = \sum_i p_i e^{tx_i}$.

Conditional Expectations

- $E[X | a < X < b] = \frac{1}{F(b) F(a)} \int_{a}^{b} x f(x) dx$
- $E[X \mid X < k] = \frac{1}{F(k)} \int_{-\infty}^{k} x f(x) dx$
- $E[X \mid X > k] = \frac{1}{S(k)} \int_{k}^{\infty} x f(x) dx$

Miscellaneous Formulas

- Skewness: $\frac{E[(X-\mu)^3]}{\sigma^3}$
- Coefficient of Variation: $c_v = \sigma / \mu$
- 100p-th Percentile: $F(\pi_p) \ge p$
- Chebyshev's Ineq: $P[|X-\mu_X| > r \sigma_X] \le \frac{1}{\nu^2}$

Joint Distributions

Joint PDF and CDF

Discrete

• PMF: f(x,y) = P[X = x and Y = y]

• CDF: $F(x,y) = P[X \le x \text{ and } Y \le y] = \sum_{s \le x} \sum_{t \le y} f(s,t)$

Continuous

• PDF: f(x, y) = joint density function

• CDF: $F(x, y) = P[X \le x \text{ and } Y \le y] = \int_{-\infty}^{\infty} f(s, t) dt ds$

• $P[(X,Y) \in R] = \iint_R f(s,t) dt ds$

• $\frac{\partial^2}{\partial x \partial y} F(x, y) = f(x, y)$

Marginal Distributions

Discrete:

• Marginal PMF: $f_X(x) = P[X = x] = \sum_{y} f(x, y)$

• Marginal CDF: $F_X(x) = P[X \le x] = \sum_{t \le x} f_X(t)$

Continuous:

• Marginal PDF: $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$

• Marginal CDF: $F_X(x) = P[X \le x] = \int_{-\infty}^{x} f_X(t) dt$

Conditional Distributions

Shorthand Notation

• $g(x | y) = f_{X|Y}(x | Y = y)$

• $h(y|x) = f_{y|x}(y|X=x)$

Definition and Basic Properties

• $g(x|y) = \frac{f(x,y)}{f_y(y)}$

• $h(y \mid x) = \frac{f(x, y)}{f_X(x)}$

• $P[a \le X \le b \mid Y = k] = \int_a^b f(x \mid k) dx = \frac{1}{f_Y(k)} \int_a^b f(x, k) dx$

• $f(x,y) = g(x|y)f_{Y}(y) = h(y|x)f_{X}(x)$

Expected Values and Variance

Expected value of h(X, Y)

• Discrete: $E[h(X,Y)] = \sum_{x} \sum_{y} h(x,y) \cdot f(x,y)$

• Continuous: $E[h(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f(x,y) dx dy$

• E[X + Y] = E[X] + E[Y]

Marginal Expectation

 $\bullet \quad E[X] = \sum_{x} x \, f_X(x)$

• $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$

Conditional Expectation

• $E[X | Y=k] = \sum_{x} x g(x | k)$

• $E[X \mid Y = k] = \int_{-\infty}^{\infty} x g(x \mid k) dx$

• $E_Y[E_X[X|Y]] = E[X]$

Conditional Variance

• $Var[X | Y=k] = E[X^2 | k] + (E[X | k])^2$

Law of Total Variance

• $\operatorname{Var}[X] = E_{Y}[\operatorname{Var}[X|Y]] + \operatorname{Var}_{Y}[E[X|Y]]$

Joint Distributions (Continued)

Covariance

Definition: Cov[X, Y] = E[XY] - E[X]E[Y]

Properties of Covariance

• Cov[X, X] = Var[X]

• $\operatorname{Var}[X + Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2\operatorname{Cov}[X, Y]$

• Cov[aX, bY] = abCov[X, Y]

• Cov[X + a, Y + b] = Cov[X, Y]

Correlation Coefficient: $\rho_{X,Y} = \frac{\text{Cov}[X,Y]}{\sigma_X \sigma_Y}$

Independence of Random Variables

If one of the following statements are true, then they all are:

• X and Y are independent $(A \perp B)$.

• $f(x,y) = f_X(x) \cdot f_Y(y)$ and R is a (possibly infinite) rectangle.

• $F(x,y) = F_X(x) \cdot F_Y(y)$

• $g(x|y) = f_X(x)$ and $h(y|x) = f_Y(y)$

The following statements are true if *X* and *Y* are independent, but do not themselves imply independence:

• $E[XY] = E[X] \cdot E[Y]$

• $E[g(X)h(Y)] = E[g(X)] \cdot E[h(Y)]$

• E[X | Y = k] = E[X] and E[Y | X = k] = E[Y]

• $\operatorname{Cov}[X, Y] = 0$

• $\rho_{X,Y} = 0$

Joint Moment Generating Functions

 $\bullet \ M_{XY}(s,t) = E[e^{sX+tY}]$

• $E[X] = \frac{\partial}{\partial s} M_{X,Y}(s,t) \Big|_{s=t=0}$

• $E[Y] = \frac{\partial}{\partial t} M_{X,Y}(s,t) \Big|_{s=t=0}$

• $E[X^n Y^m] = \frac{\partial^{n+m}}{\partial^n s \partial^m t} M_{X,Y}(s,t) \Big|_{s=t=0}$

• $M_{X,Y}(t,t) = M_{X+Y}(t)$

Bivariate Normal Distribution

If X and Y have a bivariate normal distribution, then:

• X and Y are both normally distributed.

• The conditional variables $\ X\mid (Y=k)$ and $\ Y\mid (X=k)$ are normally distributed.

• $E[X | Y = y] = \mu_X + \rho_{XY} \frac{\sigma_X}{\sigma_Y} (y - \mu_Y) = \mu_X + \frac{\text{Cov}[X, Y]}{\text{Var}[Y]} (y - \mu_Y)$

• $\operatorname{Var}[X \mid Y = y] = \sigma_X^2 (1 - \rho_{XY}^2)$

Mixtures of Distributions

Assume $p_1 + p_2 = 1$ and X_1 and X_2 are random variables. Let X be defined as follows: $P[X = x_1] = p_1$ and $P[X = x_2] = p_2$. Then:

• $f(x) = p_1 f_1(x) + p_2 f_2(x)$

• $E[X] = p_1 E[X_1] + p_2 E[X_2]$

• $E[X^2] = p_1 E[X_1^2] + p_2 E[X_2^2]$

• $M_X(t) = p_1 M_X(t) + p_2 M_X(t)$

Note: $\operatorname{Var}[X] \neq p_1 \operatorname{Var}[X_1] + p_2 \operatorname{Var}[X_2]$. Instead, use $\operatorname{Var}[X] = E[X^2] - (E[X])^2$

Transformations

Single Variable

Suppose that X is a continuous random variable with density $f_X(x)$. Assume Y=u(X) is a one-to-one trans. with inverse X=v(Y).

- $\bullet \quad f_{Y}(y) = f_{X}(v(y)) \cdot |v'(y)|$
- If v(y) is increasing, then $F_{y}(y) = F_{x}(v(y))$

Multiple Variable

Suppose X and Y have joint density f(x,y) and that that U and V are functions of X and Y. Let x(u,v) and y(u,v) refer to expressions for x and y, written in terms of u and v. The joint pdf of U and V is given by:

- g(u,v) = f(x(u,v), y(u,v))|J|
- Note that $J = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix}$

Min/Max and Order Statistics

Minimum and Maximum

Suppose $X_1, ..., X_n$ are independent random variables with CDF's and survival functions given by $F_1(x), ..., F_n(x)$ and $S_1(x), ..., S_n(x)$.

- $F_{max}(x) = F_1(x) \cdot F_2(x) \cdot \dots \cdot F_n(x)$
- $S_{min}(x) = S_1(x) \cdot S_2(x) \cdot ... \cdot S_n(x)$
- $F_{min}(x) = 1 [1 F_1(x)] \cdot ... \cdot [1 F_n(x)]$

Order Statistics

Suppose X_1, \ldots, X_n are independent observations of a variable X, and Y_1, \ldots, Y_n are the associated order statistics. Let g be the joint pdf of the order statistics and let g_k be the marginal pdf of Y_k .

- $g(y_1, ..., y_n) = n! f(y_1) \cdot f(y_2) \cdot ... \cdot f(y_n)$, where $y_1 \le y_2 \le ... \le y_n$
- $g_k(t) = k \binom{n}{k} [F(t)]^{k-1} [S(t)]^{n-k} f(t)$

Insurance and Risk Management

Notation

- Let X = Loss associated with a claim.
- Let Y = Amount paid by insurer.

Deductible = d

- $Y = \begin{cases} 0 & \text{if } X \le d \\ x d & \text{if } X > d \end{cases}$
- $E[Y] = \int_{a}^{\infty} (x-d) f_X(x) dx = \int_{a}^{\infty} S_X(x) dx$

Policy Limit = u

- $Y = \begin{cases} X & \text{if } X \leq u \\ u & \text{if } X > u \end{cases}$
- $E[Y] = \int_0^u x f_X(x) dx + u S_X(u) = \int_0^u S_X(x) dx$

Deductible = d and Policy Limit = u

- $\bullet \quad Y = \begin{cases} 0 & \text{if} \quad X \le d \\ X d & \text{if} \quad d < X < d + u \\ u & \text{if} \quad X > d + u \end{cases}$
- $E[Y] = \int_{d}^{d+u} (x-d) f_X(x) dx + u S_X(d+u) = \int_{d}^{d+u} S_X(x) dx$

Sum of Random Variables

Expected Value and Variance

Assume $Y = \sum_{i=1}^{n} X_i$. Then:

- $E[Y] = E[X_1] + E[X_2] + ... + E[X_n]$
- $Var[Y] = \sum Var[X_i] + 2\sum \sum Cov[X_i, X_j]$
- Note: $(X \perp Y) \Rightarrow Cov[X, Y] = 0$

Covariance

Assume $X = \sum_{i=1}^{n} X_i$ and $Y = \sum_{i=1}^{m} Y_i$. Then:

•
$$Cov[X, Y] = \sum_{n} \sum_{m} Cov[X_i, Y_j]$$

Convolution Method (Discrete)

Let $Y = X_1 + X_2$, where $X_1, X_2 \ge 0$. Then $f_Y(y)$ is given by:

•
$$f_{y}(y) = \sum_{x_{1}=0}^{y} f(x_{1}, y - x_{1})$$

•
$$(X \perp Y) \Rightarrow f_{Y}(y) = \sum_{x=0}^{y} f_{1}(x_{1}) f_{2}(y - x_{1})$$

Convolution Method (Continuous)

Let $Y = X_1 + X_2$. Then $f_Y(y)$ is given by:

- $f_{Y}(y) = \int_{0}^{\infty} f(x_{1}, y x_{1}) d_{x_{1}}$
- $(X \perp Y) \Rightarrow f_Y(y) = \int_{-\infty}^{\infty} f_1(x_1) f_2(y x_1) d_{x_1}$
- $(X_1, X_2 \ge 0) \Rightarrow f_Y(y) = \int_0^y f(x_1, y x_1) d_{x_1}$

Moment Generating Functions

If $Y = \sum_{i=1}^{n} X_i$ and the X_i 's are pairwise independent, then:

•
$$M_{Y}(t) = M_{X}(t) \cdot M_{X}(t) \cdot \dots \cdot M_{X}(t)$$

Central Limit Theorem

- Assume X_1,\dots,X_n are independent and identically distributed (IID) with mean μ and variance σ^2 , and let $Y=\sum_{i=1}^n X_i$.
- Then $E[Y] = n\mu$ and $Var[Y] = n\sigma^2$.
- If n is large, then $Y \stackrel{\text{approx}}{\sim} N(n\mu, n\sigma^2)$.

Sums of Specific Distributions

Assume X_1,\ldots,X_k are independent random var's and $Y=\sum_{i=1}^k X_i$.

Distribution of X_i	Distribution of Y
Bernoulli, $BIN(1, p)$	Binomial, $BIN(k, p)$
Binomial, $BIN(n_i, p)$	Binomial, $BINig(\sum n_i, pig)$
Poisson, mean λ_i	Poisson, mean $\sum \lambda_i$
Geometric, p	Neg Binom, k , p
Neg Binom, r_i, p	Neg Binom, $\sum r_i$, p
Normal, $N(\mu_i, \sigma_i^2)$	Normal, $N(\sum \mu_i, \sum \sigma_i^2)$
Exp, mean μ	Gamma, $\alpha = k$, $\beta = 1/\mu$
Gamma, α_i , β	Gamma, $\sum \alpha = \alpha_i, \beta = \beta$
Chi-Square, k_i df	Chi-Square, $\sum k_i$ df

Discrete Distributions

	1				, ,	
Distribution	Parameters	f(x)	E[x]	Var [x]	$M_{x}(t)$	Description
Uniform $X \sim UNIF(N)$	N > 0 $N = 0$ $N = 0$	$\frac{1}{N}$ $x = 1, 2,, N$	$\frac{N+1}{2}$	$\frac{N^2-1}{12}$	$\frac{e^t(e^{Nt}-1)}{N(e^t-1)}$	Each outcome $x=1, 2,, N$ is equally likely.
Bernoulli $X \sim BIN(1, p)$	0 < p < 1	$\begin{cases} q & \text{if } x = 0 \\ p & \text{if } x = 1 \end{cases}$ $x = 0, 1$	p	p q	$q + pe^t$	X=0 indications "failure" $X=1$ indicates "success"
Binomial $X \sim BIN(n, p)$	n > 0 $n an integer$ 0	$\binom{n}{x} p^x q^{n-x}$ $x = 0, 1,, n$	n p	n p q	$(q + pe^t)^n$	X = number of successes in n trials
Poisson $X \sim POI(\lambda)$	λ > 0	$\frac{e^{-\lambda}\lambda^x}{x!}$ $x=0,1,2,$	λ	λ	$e^{\lambda(e^{'}-1)}$	X = number of times an event occurs in a unit of time or space
Geometric $X \sim GEO(p)$	0 < p < 1	$q^{x-1}p$ $x=1,2,3,$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{p e^t}{1 - q e^t}$	<i>X</i> = number of trials required to get first success.
Negative Binomial $X \sim NB(r, p)$	r > 0 0	$\binom{r+x-1}{x}p^rq^x$ $x=0,1,2,$	$\frac{r}{p}$	$\frac{rq}{p^2}$	$\left[\frac{pe^t}{1-qe^t}\right]^r$	X = number of trials required to get r successes.
Hyper- geometric $X \sim HYP(N, r, n)$	N > 0 $0 \le r \le N$ $1 \le n \le N$ All are integers	$\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$ $x \le \min[n, K]$	$n\left(\frac{r}{N}\right)$	$n\bigg(\frac{r}{N}\bigg)\bigg(\frac{N-r}{N}\bigg)\bigg(\frac{N-n}{N-1}\bigg)$		r objects of desired type T objects total n = sample size X = number of desired objects in sample

Continuous Distributions

Distribution	Parameters	f(x)	E[x]	Var [<i>x</i>]	$M_{x}(t)$	Comments
Uniform $X \sim UNIF(a,b)$	a < b	$\frac{1}{b-a}$ $a < x < b$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a) \cdot t}$	
Pareto $X \sim PAR(a, n)$	a > 0 $n > 1$	$\frac{na^n}{x^{n+1}}$	$\frac{na}{n-1}$	$\frac{n a^2}{(n-1)^2(n-2)}$ for $n > 2$	Not a simple function.	
Normal $X \sim N(\mu, \sigma^2)$	$\mu \in \mathbb{R}$ $\sigma^2 > 0$	$\frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $-\infty < x < \infty$	μ	σ^2	$\exp\left[\mu t + \frac{\sigma^2 t^2}{2}\right]$	
Exponential $X \sim EXP(\lambda)$	λ > 0	$\lambda e^{-\lambda x}$ $x > 0$ $F(x) = 1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$	No memory property: $P[X>x+y \mid X>x] = P[X>y]$ Used to model time between events.
Gamma $X \sim GAM(\alpha, \beta)$	$\alpha > 0$ $\beta > 0$	$\frac{x^{\alpha-1} \cdot e^{-x/\beta}}{\beta^{\alpha} \Gamma(\alpha)}$ $x > 0$	αβ	$\alpha\beta^2$	$(1-\beta t)^{-\alpha}$	If $X_i \sim EXP(\lambda)$ and $Y = X_1 + + X_n$ then $Y \sim GAM(n, 1/\lambda)$. It follows that $GAM(1, 1/\lambda) \sim EXP(\lambda)$.
Chi-Square $X \sim \chi^2(n)$	n = 1, 2,	$\frac{x^{n/2-1}e^{-x/2}}{2^{n/2}\Gamma(n/2)}$ $x > 0$	ν	2 v	$(1-2t)^{-n/2}$	$X \sim \chi^2(n) \iff X \sim GAM\left(\frac{n}{2}, 2\right)$

Additional comments:

- **Relationship between Poisson and Exponential:** Assume X = the time between successive events, and has an exponential distribution with mean $1/\lambda$.
- Let N = the number of events occurring in one unit of time. Then N has a Poisson distribution with mean λ . **Gamma CDF:** Assume $X \sim \text{GAM }(\alpha,\beta)$, where $\alpha \in \mathbb{Z}^+$. Let k>0, $\lambda=\beta\,k$, and $Y \sim POI(\lambda)$. Then $F_X(k)=1-F_Y(\alpha-1)$. **MIN of Exponential Variables:** Assume $Y_1, Y_2, ..., Y_n$ have exponential distributions with means $1/\lambda_1, 1/\lambda_2, ..., 1/\lambda_n$. Let $Y=\min[Y_1, Y_2, ..., Y_n]$. Then Y has an exponential distribution with mean $1/(\lambda_1+\lambda_2+...+\lambda_n)$.