

Sample Capstone Project Template Course: Al Builder

Title: Prediction of Renal Diseases using Machine learning

Course: Al Builder

Course Code:

Mentor Name:

Date:

Presented by: List the Names

Name: <Name>

Regn. ID:<Regn. ID>

Overview

- 1. Introduction
- 2. Project Plan
- 3. Objectives
- 4. Methodology
- 5. Review of the Models used
- 6. Experimental Results
- 7. Conclusion
- 8. References

Introduction

- The role of kidneys in daily life
 - Responsible for purifying blood and removing toxins from the body
- Reasons for kidney malfunction or failure
 - Kidney tumours (renal tumours), which can be benign or malignant (renal cell carcinoma)
 - Renal cysts, fluid collections in or around the kidney, some of which can be cancerous or linked to polycystic kidney disease
 - Nephrolithiasis (kidney stone disease) caused by calcium deposits in the kidneys or urinary tract
- Symptoms and complications of kidney diseases
 - Abdominal pain and hematuria (blood in urine) may be indicative of kidney tumours
 - o Renal cysts and kidney stones can cause abdominal pain and difficulty in passing urine
- Challenges in diagnosing kidney diseases
 - Early stages of kidney diseases may not be clearly visible in CT scans, leading to missed diagnoses
 - Physicians rely on patient symptoms and CT scans, but additional tests like urinalysis and blood culture may be needed
 - Time-consuming process with potential for prolonged patient suffering
- Importance of early diagnosis for renal cell carcinoma
 - Rapid diagnosis crucial to prevent metastasis and improve treatment outcomes

Contribution by team members

Write Member Name and Work done

Project Plan

Project Schedule

Table 1. Project Schedule

			Start	Duration
SI. No.	Phase	Tasks	on Day	(Days)
а	Literature Survey	Identify relevant research	1	5
b		Read and analyse the papers	6	5
С		Summary of literature survey	11	5
d	Data collection and preprocessing	Data Collection	16	3
е		Data labelling, cleaning, augmentation	19	3
	Model training and evaluation (5-			
f	and 10-fold CV)	VGG16 (Pre-trained)	22	5
g		MobileNet	27	5
h		ResNet50 (Pre-trained)	32	5
i		InceptionV3 (Pre-trained)	37	5
j		SqueezeNet	42	5
k		Analysis of results	47	5

Project Schedule (Contd.)

I	Novel architecture development	Design and implement the novel architecture	52	7
m		Hyperparameter tuning	59	7
n	Documentation	Draft report preparation	66	10
О		Final report preparation	76	12
		Total Duration	88 days	

Gantt Chart

Fig 1. Gantt Chart

Objectives

- To Developing a deep learning architecture to classify whole abdominal CT images into various categories such as
 - Normal
 - Cysted
 - Tumourous
 - Calcified (Stone)
- Comparing the performance of the developed architecture with other legacy deep learning classifiers.
- Review the results for various hyperparameters.

Methodology

Data Collection

- Data publicly available was collected
- Dataset Details
 - Large image dataset with 12,446 CT scan images
 - Images are in DICOM format converted to lossless JPEG
 - Class distribution
 - Cysts 3,709 images
 - Kidney stones (various sizes and shapes) 1,377 images
 - Kidney tumours 2,283 images
 - Structurally-normal kidneys 5,077 images
 - Images include coronal and axial cuts
 - Data Source
 - Data collected from PACS (Picture Archiving and Communication System)
 - Patients were already diagnosed with kidney tumours, cysts, normal conditions, or kidney stones
- Only axial images were selected

Data Preprocessing and Augmentation

Image Preprocessing

- Images renamed with class labels as prefixes
- Resolution reduced to 512x512, maintaining data integrity
- Even class distribution ensured with 1,000 images per class randomly picked
- Stone class had only 848 images; image augmentation used to create 152 new images
- All images resized to 224x224 resolution
- Filters applied to enhance edges and increase contrast for better model identification of margins

Dataset Formation

Merged augmented images with 3,000 randomly picked images, creating a dataset of 4,000 images (224x224)

Data Normalisation

- Images converted to NumPy arrays and stored as binary files
- MinMax Scalar normalisation applied, reducing pixel values to the range of [-1, 1]
- Reduced memory usage for deep learning model implementation
- NumPy array shape (4000, 224, 224, 3) for images, (4000,) for class labels

External Validation Data

- 200 images randomly picked for each class, forming an external validation set
- Images normalised within the range of [-1, 1] and converted to NumPy arrays
- Resultant arrays shape (800, 224, 224, 3) for images, (800,) for class labels

Model Training and Evaluation

Binary files used directly during model training and evaluation

Sample Images

Fig 3. Sample Images (Clockwise from top left: Normal, Cyst, Stone, and Tumour

Model Training

Training Process

- Multiple models trained on the preprocessed dataset
- Two different training strategies used 5-fold and 10-fold stratified cross-validation

5-fold Stratified Cross-Validation

- For each iteration, models trained on four folds of training data
- Remaining fold split equally into testing and validation sets

10-fold Stratified Cross-Validation

- Dataset split into ten equal 'folds'
- Each iteration, models trained on nine folds, one fold split into validation and test sets

Training Details

- All models trained for 25 epochs per fold of training
- Random seed value set to 1 for result reproducibility
- Stratification ensured equal class distribution

Model Training (Contd.)

Data Preparation

- Label data converted into a 4x4 matrix using onehot encoding
- Onehot encoding represents categorical variables as numerical values

Model Evaluation

- Stratified k-fold cross-validation ensured robust training data
- Weights with highest validation accuracy stored in .h5 file during training

Optimizers and Learning Rates

- Different optimizers and learning rates used for different models
- All models trained with a batch size of 64

Loss Function

Models compiled using categorical cross-entropy as the loss function

Model Evaluation

- Model Performance Evaluation
 - Accuracy
 - Precision
 - Recall
 - o F1-Score
 - Area under ROC Curve
- Metrics evaluated during testing process in each fold

Review of the Models used

MobileNet

- MobileNet Overview
 - Lightweight and efficient deep learning model optimized for mobile and resource-constrained devices
 - Developed by Google to tackle challenges of limited computational power and memory
- Depthwise Separable Convolution (DSC)
 - Key innovation in MobileNet
 - Splits convolution into depthwise and pointwise steps
 - Depthwise convolution applies a single filter per input channel, reducing computational complexity
 - Pointwise convolution (1x1) linearly combines depthwise outputs to increase output channels
 - Efficiently captures spatial and channel-wise information
- Hyperparameters Width Multiplier (α) and Resolution Multiplier (ρ)
 - α scales input and output channels for device-specific model adjustments
 - o p scales down input image spatial resolution, reducing computational power requirements
 - Enables MobileNet optimization for different devices and applications

MobileNet (Contd.)

- Fully Convolutional Architecture
 - No traditional fully-connected layers; uses global average pooling instead
 - Global average pooling feeds directly into a softmax activation layer for classification
 - Enables the model to be suitable for transfer learning
- Modified MobileNet
 - Includes three fully-connected layers with dropout and L1 regularization
 - First fully-connected layer has 256 neurons with L1 regularization to prevent overfitting
 - Dropout layer with 50% dropout rate to improve generalization
 - Second fully-connected layer with 16 neurons using ReLU activation
 - Final classification layer with 4 neurons using softmax activation
- Model Parameters
 - Total parameters 3,495,444
 - o Trainable parameters 3,473,556
 - No pre-trained weights used
- Model Compilation
 - Compiled using Adam optimizer with initial learning rate of 0.0001

ResNet50

Overview

- Belongs to the family of residual networks
- Introduced by Microsoft Research in 2015 for computer vision tasks
- Total of 50 layers, with 48 two-dimensional convolution layers with residual connections
- Uses softmax activation for multi-class classification

Unique Design

- Learning of residual functions to address vanishing gradient problem
- o Captures underlying features effectively, leading to superior performance
- User re-parameterization allows independent learning of each residual block
- Pre-activation Residual Units enhance gradient flow during training

ResNet50 (Contd.)

- Pre-trained Weights
 - Convolutional layers use pre-trained weights
 - Only the classification layer is trained for specific problem
- Fully-Connected Layer
 - 4 neurons with softmax activation after global average pooling
- Optimization
 - Stochastic Gradient Descent (SGD) used as the optimizer
 - Initial learning rate set to 0.001
- Model Parameters
 - Total parameters 23,595,908
 - Trainable parameters 8,196

Proposed Architecture (Optional)

Overview

- Total of 19 layers
- Input tensor passed through 2D convolutional layer with 64 filters, 7x7 kernel, stride (2, 2), and ReLU activation
- MaxPooling2D layer with 3x3 kernel and stride (2, 2) for downsampling

Residual Blocks

- Three blocks with two 2D convolutional layers (3x3 kernel) and ReLU activation
- Shortcut connections to mitigate vanishing gradient problem

Depthwise Separable Convolution

- Applied with 128 filters, 3x3 kernel, and stride 1
- Decomposes standard convolution into depthwise and pointwise convolutions

Fire Modules

- Two modules (16, 64) and (32, 128)
- Each module 1x1 convolution (squeeze) followed by two branches (1x1 and 3x3 convolution)
- Outputs concatenated for next layer input

Proposed Architecture (Contd.)

- 2D Convolutional Layer
 - Applied with 256 filters, 3x3 kernel, and ReLU activation
 - MaxPooling2D layer (2x2 kernel, stride (2, 2)) for further downsampling
- GlobalAveragePooling2D
 - Used to pool spatial information and produce 1D vector
- Dense Layer
 - 4 neurons for final classification output (4 output classes) with softmax activation
- Performance Benefits
 - Utilizes residual connections, depthwise separable convolutions, and fire modules
 - Achieves high performance with efficient computational resource usage
 - Suitable for image classification tasks on resource-constrained devices
- Model Compilation
 - Compiled using Adam optimizer with an initial learning rate of 0.001
- Model Parameters
 - Total parameters 889,268
 - Trainable parameters 889,268
 - Non-trainable parameters 384

Experimental Results

Model Description

Table 3. Model Description

SI. No.	Model	Transfer Learning?	Optimis er	Learning Rate	Number of parameters	Number of trainable parameters
1	VGG16	Yes	SGD	0.001	14716740	2052
2	MobileNet	No	SGD	0.0001	3495444	3473556
3	ResNet50	Yes	SGD	0.001	23595908	8196
4	InceptionV3	Yes	Adam	0.001	21810980	8196
5	SqueezeNet	No	Adam	NA	726636	726636
6	Proposed Architecture	No	Adam	0.001	889652	889268

Model Description (Contd.)

Table 4. Training Time

SI. No.	Model	Training Time (Mins) (5-fold CV)	Training Time (Mins) (10-fold CV)
1	VGG16	50.94	72.4
2	MobileNet	35.69	45.3
3	ResNet50	39.09	50.2
4	InceptionV3	26.3	37.2
5	SqueezeNet	18.06	30
6	Proposed Architecture	37	49

5-fold Cross-Validation Results

Table 5. 5-fold CV Results

5	InceptionV3 SqueezeNet Proposed	0.9972 0.2514	0.9968 0.0628	0.997 0.25	0.9968 0.1004	0.9978 0.5
3	ResNet50	0.7248	0.7334	0.7248	0.7234	0.8162
2	MobileNet	0.9964	0.9966	0.9966	0.9966	0.9978
1	VGG16	0.9198	0.9228	0.9206	0.9192	0.947
SI. No.	Model	Average Accuracy	Average Precision	Average Recall	Average F1-Score	Average AUROC

10-fold Cross-Validation Results

Table 6. 10-fold CV Results

SI. No.	Model	Average Accuracy	Average Precision	Average Recall	Average F1- Score	Average AUROC
1	VGG16	0.9	0.9018	0.9006	0.8989	0.9338
2	MobileNet	0.995	0.995	0.9952	0.995	0.9967
3	ResNet50	0.7495	0.7565	0.7494	0.7479	0.8329
4	InceptionV3	0.9965	0.9963	0.9965	0.9964	0.9978
5	SqueezeNet	0.225	0.0566	0.25	0.0914	0.5
6	Proposed Architecture	0.997	0.9923	0.9867	0.99	0.998

ROC curves, Learning Curves

Use charts, line graphs, Learning curves, ROC curves, and interpret them.

Dec, 2023 29

Conclusion

- Compared and contrasted deep learning models for renal disease prediction and built novel architectures for improved accuracy
- Literature survey laid the foundation for model selection with state-of-the-art techniques
- 4800 CT scan images split into training (4000) and external validation sets (800)
- Utilized 5 and 10-fold cross-validation for rigorous training and evaluation
- Models demonstrated 4-class classification capabilities (Normal, Cyst, Stone, Tumour)
- A new architecture having 3 residual blocks, a DSC block, 2 fire modules, a convolution layer with max-pooling, and dense layer was proposed
- Accurate renal disease prediction improves patient outcomes and healthcare efficiency
- Early detection and precise classification lead to timely interventions and better treatment planning
- Potential benchmarks for future research and innovations in medical image analysis and deep learning
- Lasting positive impact on healthcare practices and inspiration for future medical deep learning research

References

- Patro, K. K., Prakash, A. J., Neelapu, B. C., Tadeusiewicz, R., Acharya, U. R., Hammad, M., Yildirim, O., & Pławiak, P. (2023).
 Application of Kronecker convolutions in deep learning technique for automated detection of kidney stones with coronal CT images. Information Sciences, 119005. https://doi.org/10.1016/j.ins.2023.119005
- Liu, Y.-Y.; Huang, Z.-H.; Huang, K.-W. Deep Learning Model for Computer-Aided Diagnosis of Urolithiasis Detection from Kidney–Ureter–Bladder Images. Bioengineering 2022, 9, 811. https://doi.org/10.3390/bioengineering9120811
- Chaitanya, S.M.K., Rajesh Kumar, P. (2019). Detection of Chronic Kidney Disease by Using Artificial Neural Networks and Gravitational Search Algorithm. In: Saini, H., Singh, R., Patel, V., Santhi, K., Ranganayakulu, S. (eds) Innovations in Electronics and Communication Engineering. Lecture Notes in Networks and Systems, vol 33. Springer, Singapore. https://doi.org/10.1007/978-981-10-8204-7_44
- Yang, E., Kim, C. K., Guan, Y., Koo, B., & Kim, J. (2022). 3D multi-scale residual fully convolutional neural network for segmentation of extremely large-sized kidney tumor. Computer Methods and Programs in Biomedicine, 215, 106616. https://doi.org/10.1016/j.cmpb.2022.106616
- Zhang, H., Botler, M., & Kooman, J. P. (2023). Deep Learning for Image Analysis in Kidney Care. Advances in Kidney Disease and Health, 30(1), 25-32. https://doi.org/10.1053/j.akdh.2022.11.003
- Uhm, KH., Jung, SW., Choi, M.H. et al. Deep learning for end-to-end kidney cancer diagnosis on multi-phase abdominal computed tomography. npj Precis. Onc. 5, 54 (2021). https://doi.org/10.1038/s41698-021-00195-y
- George, M., Anita, H.B. (2022). Analysis of Kidney Ultrasound Images Using Deep Learning and Machine Learning Techniques: A Review. In: Ranganathan, G., Bestak, R., Palanisamy, R., Rocha, Á. (eds) Pervasive Computing and Social Networking. Lecture Notes in Networks and Systems, vol 317. Springer, Singapore. https://doi.org/10.1007/978-981-16-5640-815