ENME808B: APPLIED NONLINEAR CONTROLS

Homework #10

(Due November 19, 2018)

1. [Lemma 8.1] To prove Lemma 8.1, express $e(t) = H(p)[k\varphi^T(t)v(t)]$ into the following state-space model:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}[\mathbf{k}\boldsymbol{\varphi}^{T}(t)\mathbf{v}(t)]$$

$$\mathbf{e} = \mathbf{c}^{T}\mathbf{x}$$

Since H(p) is SPR, the Kalman-Yakubovich lemma indicates that given a P.D. symmetric Q there exists a P.D. symmetric P that satisfies the Lyapunov equation:

$$A^{T}P + PA = -Q$$

Consider the adaptation law $\dot{\phi}(t) = -sgn(k)\gamma e(t)v(t)$.

(1) Consider the following Lyapunov function candidate:

$$V(x, \phi) = x^{T}Px + \frac{|k|}{\gamma}\phi^{T}\phi$$

Show that the time derivative of $V(x, \phi)$ along the trajectory of the system with the given adaptation law is N.S.D., and e(t) and $\phi(t)$ are globally bounded.

- (2) Now assume that v(t) is bounded. Show that $\dot{x}(t)$ is bounded. Then, show that $\dot{V}(x,\varphi)$ is uniformly continuous. Then, show that e(t) converges to zero.
- 2. [Example 8.3] Consider the 1st-order system $\dot{y}=-a_p+b_p=y+3u$ and its reference model $\dot{y}_m=-4y_m+4r$. Simulate the system with the MRAC law:

$$\begin{aligned} u &= \hat{a}_r(t)r + \hat{a}_y(t)y, & & \dot{\hat{a}}_r &= -\text{sgn}\big(b_p\big)\gamma\text{er} = -2\text{er} \\ \dot{\hat{a}}_y &= -\text{sgn}\big(b_p\big)\gamma\text{ey} = -2\text{ey} \end{aligned}$$

Choose $\hat{a}_r(0)=\hat{a}_y(0)=0$ as well as $y(0)=y_m(0)=0.$

- (1) r(t) = 4
- (2) $r(t) = 4 \sin 3t$

Plot the time responses of y(t) and $y_m(t)$ as well as $\hat{a}_r(t)$ and $\hat{a}_y(t)$ in conjunction with a_r^* and a_v^* to assess the quality of on-line parameter estimation.