APM 263 Sample Test 1 Instructor: Eddie Cheng

Important:

- Recall that the word if in a definition means if and only if.
- To receive full credit for a question, you should provide all logical steps.
- \bullet Recall that $\mathbb N$ is the set of natural numbers, that is, the set of positive integers.
- Recall that \mathbb{Z} is the set of integers.
- ullet Recall that $\mathbb Q$ is the set of rational numbers.
- ullet Recall that $\mathbb R$ is the set of real numbers.
- This test is worth 120 marks. If you receive x marks, your grade will be $\min\{x, 100\}\%$.

- (1) Let $X = \{1, 2, 3\}.$
 - (a) What is the cardinality of X? [5 marks]
 - (b) Is $\{1,2\}$ a subset of X? [5 marks]
- (2) Define an injective function. (You may assume the definition of a function.) [10 marks]
- (3) Answer each of the following:
 - (a) Disprove: If n^2 is a multiple of 9, then n is a multiple of 9. [5 marks]
 - (b) Prove: If n^2 is a multiple of 3, then n is a multiple of 3. [5 marks] (Hint: Recall that if $a \in \mathbb{Z}$ is not a multiple of 3, then a = 3b + 1 or a = 3b + 2 for some $b \in \mathbb{Z}$.)
- (4) Prove that $\sqrt{3}$ is irrational. [10 marks]
- (5) Explain why the following statement is not true: For every positive integer x,

$$f(x) = 2001x^5 + 7801x^4 + 19197x^3 + 2011917x^2 + 287777x + 2567811111111$$

produces a prime number.

(Recall the following definition: An integer p > 1 is *prime* if the only divisors of p are 1, -1, p, -p.) [5 marks]

- (6) Let $A = \{(-1,2), (4,5), (0,0), (6,-5), (5,1), (4,3)\}$. List the elements in each of the following sets.
 - (a) $\{a + b \mid (a, b) \in A\}$ [3 marks]
 - (b) $\{a \mid a > 0 \text{ and } (a, b) \in A \text{ for some } b\}$ [3 marks]
 - (c) $\{b \mid b=k^2 \text{ for some } k \in \mathbb{Z} \text{ and } (a,b) \in A \text{ for some } a\}$ [4 marks]
- (7) Let A, B, C be subsets of some universal set U.
 - (a) Prove that

$$A \cap B \subseteq A \cap C$$
 and $\overline{A} \cap B \subseteq \overline{A} \cap C \Longrightarrow B \subseteq C$. [10 marks]

(b) Is the following true? Explain.

$$A\cap B\subseteq A\cap C$$
 and $\overline{A}\cap B\subseteq \overline{A}\cap C\Longrightarrow B=C.$ [5 marks]

- (8) Define $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ by $f(x) = x^2 5x + 5$. Determine whether or not f is one-to-one and/or onto. [10 marks]
- (9) Suppose $f:A\longrightarrow B$ and $g:B\longrightarrow C$ are functions. Prove that if $g\circ f$ is one-to-one and f is onto, then g is one-to-one. [10 marks]
- (10) For (x, y) and (u, v) in \mathbb{R}^2 , define $(x, y) \sim (u, v)$ if $x^2 + y^2 = u^2 + v^2$. Prove that \sim defines an equivalence relation on \mathbb{R}^2 and interpret the equivalence classes geometrically. [15 marks]
- (11) Prove that the product of any five consecutive positive integers (such as 17·18·19·20·21) must be divisible by 120. [15 marks]

Solutions

- (1) (a) 3.
 - (b) Yes.
- (2) Let $f: A \longrightarrow B$ be a function. It is *injective* if $x_1 = x_2$ whenever $f(x_1) = f(x_2)$.
- (3) (a) Let n = 3. Then $n^2 = 9$ is a multiple of 9 but n = 3 is not.
 - (b) Suppose the result is not true. Then n = 3b + 1 or n = 3b + 2 for some $b \in \mathbb{Z}$. We consider two cases.
 - (i) n = 3b + 1: Then $n^2 = 9b^2 + 6b + 1 = 3(3b^2 + 2b) + 1$. So n^2 is not a multiple of 3, contradiction.
 - (ii) n = 3b + 2: Then $n^2 = 9b^2 + 12b + 4 = 3(3b^2 + 4b + 1) + 1$. So n^2 is not a multiple of 3, contradiction.
- (4) Suppose $\sqrt{3}$ is rational. Let $\sqrt{3} = m/n$. $(m \neq 0 \text{ and } n \neq 0.)$ Without loss of generality, we may assume m and n has no common multiple, in particular, we may assume at most one of m and n is a multiple of 3. Now, $\sqrt{3} = m/n$ implies $n\sqrt{3} = m$ which implies $n^23 = m^2$. Since n^23 is a multiple of 3, m^2 is a multiple of 3. Therefore, m is a multiple of 3. (We did this in the previous question.) Since m is a multiple of 3, m = 3a for some $a \in \mathbb{Z}$. So $n^23 = 9a^2$ which implies $n^2 = 3a^2$. Since $3a^2$ is a multiple of 3, n^2 is a multiple of 3. Therefore n is a multiple of 3. So both m and n are multiples of 3, a contradiction.
- (5) f(2567811111111) is a multiple of 2567811111111. Since 2567811111111 \neq 1 and 2567811111111 \neq f(2567811111111), f(2567811111111) is not prime.
- (6) (a) $\{-1+2, 4+5, 0+0, 6-5, 5+1, 4+3\} = \{1, 9, 0, 6, 7\}$
 - (b) $\{4,6,5\}$
 - (c) $\{0,1\}$
- (7) (a) Let $b \in B$. We want to prove $b \in C$. We consider two cases.
 - (i) $b \in A$: Then $b \in A \cap B$. Since $A \cap B \subseteq A \cap C$, $b \in A \cap C$. Therefore $b \in C$.
 - (ii) $b \in \overline{A}$: Then $b \in \overline{A} \cap B$. Since $\overline{A} \cap B \subseteq \overline{A} \cap C$, $b \in \overline{A} \cap C$. Therefore $b \in C$. Hence $b \in C$.
 - (b) Not true since if we let $U = \{a\}$, $A = \{a\}$, $C = \{a\}$ and $B = \emptyset$, then the hypothesis are satisfied but $B \neq C$.

- (8) We claim that f is neither one-to-one nor onto. By completing the square, we have $f(x) = (x \frac{5}{2})^2 \frac{5}{4}$. (Drawing the graph may help.) By picking $x_1 = 0 \in \mathbb{Z}$ and $x_2 = 5 \in \mathbb{Z}$, we have $f(x_1) = f(x_2) = 5 \in \mathbb{Z}$. Hence f is not one-to-one. We claim that it is not onto. Since $f(x) = (x \frac{5}{2})^2 \frac{5}{4}$, f(x) > -2 for all $x \in \mathbb{Z}$. Hence there is no $x \in \mathbb{Z}$ that will give $f(x) = -2 \in \mathbb{Z}$. So f is not onto.
- (9) Suppose $b_1, b_2 \in B$ and $g(b_1) = g(b_2)$. We want to prove $b_1 = b_2$. Since f is onto and $b_1, b_2 \in B$, there is $a_1, a_2 \in A$ such that $f(a_1) = b_1$ and $f(a_2) = b_2$. Hence $g(f(a_1)) = g(b_1)$ and $g(f(a_2)) = g(b_2)$. Since $g(b_1) = g(b_2)$, $g(f(a_1)) = g(f(a_2))$. Now $g \circ f(a_1) = g \circ f(a_2)$ implies $a_1 = a_2$ since $g \circ f$ is one-to-one. Since f is a function, we have $f(a_1) = f(a_2)$. Hence $b_1 = b_2$.
- (10) (a) Let $(x,y) \in \mathbb{R}^2$. Since $x^2 + y^2 = x^2 + y^2$, $(x,y) \sim (x,y)$. Hence \sim is reflexive.
 - (b) Let $(x,y), (u,v) \in \mathbb{R}^2$ such that $(x,y) \sim (u,v)$. Then $x^2 + y^2 = u^2 + v^2$. Hence $u^2 + v^2 = x^2 + y^2$. Therefore $(u,v) \sim (x,y)$. Hence \sim is symmetric.
 - (c) Let $(x, y), (u, v), (w, z) \in \mathbb{R}^2$ such that $(x, y) \sim (u, v)$ and $(u, v) \sim (w, z)$. Then $x^2 + y^2 = u^2 + v^2$ and $u^2 + v^2 = w^2 + z^2$. Therefore $x^2 + y^2 = w^2 + z^2$. Hence \sim is transitive.

Hence \sim is an equivalence relation on \mathbb{R}^2 .

Let $(x,y) \in \mathbb{R}^2$. Then

$$[(x,y)] = \{(u,v) \mid x^2 + y^2 = u^2 + v^2\}.$$

Since $(x, y) \in \mathbb{R}^2$ is fixed, $x^2 + y^2$ is just a nonnegative real number. So [(x, y)] is a circle centered at (0, 0). So the equivalence classes are circles centered at (0, 0).

(11) Let $a \in \mathbb{N}$. We want to prove a(a+1)(a+2)(a+3)(a+4) is divisible 120. Since $120 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5$, it is enough to show a(a+1)(a+2)(a+3)(a+4) has three factors of 2, one factor of 3 and one factor of 5. Since exactly one of five consecutive integers has a factor of 5 and at least one of five consecutive integers has a factor of 3, it is enough to show a(a+1)(a+2)(a+3)(a+4) has a factor of 8. We consider two cases. (a) a=2b for some $b \in \mathbb{N}$. Then

$$a(a+1)(a+2)(a+3)(a+4) = 2b(2b+1)(2b+2)(2b+3)(2b+4)$$
$$= 8b(2b+1)(b+1)(2b+3)(b+2)$$

which has a factor of 8.

(b) a = 2b + 1 for some $b \in \mathbb{N} \cup \{0\}$. Then

$$a(a+1)(a+2)(a+3)(a+4) = (2b+1)(2b+2)(2b+3)(2b+4)(2b+5)$$
$$= 4(2b+1)(b+1)(2b+3)(b+2)(2b+5).$$

Now either b+1 is even or b+2 is even. Hence a(a+1)(a+2)(a+3)(a+4) has a factor of 8.