```
Q1
```

```
Probability of not finding a carcass given it is in surveyed area (P0):
Uniform entry rate Pulsed entry rate SE(unif) SE(pulse)
Type1 0.3178 0.3174 0.0991 0.0991
                0.3178
                                  0.3174 0.0991 0.0991
Type2
OK, this one I think I understand, with P0 having same meaning as in our paper, right?
==Yes.
\mathbf{Q2}
Maximum number of fatalities (with risk threshold 0.05 )
     Uniform entry rate Pulsed entry rate SE(unif) SE(pulse)
Type1 2.6135 2.6103 0.8234 0.8219
Type2 2.6135 2.6103 0.8234 0.8219
labeling causes me to interpret this as follows:
Pr(number of fatalities > 2.6135) < 0.05.
Is my interpretation correct?
Also, is this conditional on the observed number of carcasses?
So if you really observed 1 carcass, would I rewrite above as:
Pr(number of fatalities > 2.6135 | 1 carcass observed) < 0.05
== Here, knowing that x carcasses have been observed, I compute Nmax that verifies
Pr(number \ of \ fatalities = Nmax \mid x) = 0.05
So in the example,
Pr(number of fatalities = 2.6135 | 1 carcass observed) = 0.05
Q3
```

```
Ad-hoc estimate of the number of fatalities

Uniform entry rate Pulsed entry rate SE(unif) SE(pulse)

Type1 0.6504 0.6487 0.5938 0.5918

Type2 0.6504 0.6487 0.5938 0.5918
```

I don't know what the above labeling means: "ad-hoc estimate of the number of fatalities". I guess if 1 carcass had been observed and you then divided this 1 by (1-P0),

I would understand, but this does not seem to be what was done. In addition, how would you compute this if no carcasses were observed? Bottom line is that I would appreciate an explanation of what this is, thanks.

==Sorry about the text. Throughout, if any of you can think of better labels and text, feel free to change.

This "ad hoc" estimate is the sum over n of $[n * Pr(number of fatalities = n \mid x \ carcasses \ observed)]$ I stopped the sum at a finite maximum n, so divided the whole thing by sum over n of $[Pr(number \ of fatalities = n \mid x \ carcasses \ observed)]$

I realize I should have run this by you, let me know if clarifications are needed

Q4

Extrapolations to whole wind	farm
Maximum number of fatalities (with risk threshold 0.05)	
Uniform entry rate Pulsed entry rate SE(unif) SE(pulse)	
Type1 2.6135	2.6103 0.8234 0.8219
Type2 2.6135	2.6103 0.8234 0.8219

I assume this is based on simple area expansion. Is variance computed by treating area searched as a known constant, I assume? So if you searched 50% of turbines, then var for entire area estimate would be 4*var(number fatalities in searched area)?

==Yes.

this is a simple multiplication by a correction factor that is derived from the proportion of turbine searched and the proportion of the death zone around each turbine that is searched.