AB schouder elleboog hoogte

December 26, 2020

```
[1]: import sys
     sys.path.append("../")
     import pandas as pd
     from ortho_lib import *
     import os
     import matplotlib.pyplot as plt
     import numpy as np
[2]: path_cats = ['..//transformed_data/Category_1/', '..//transformed_data/
     →Category_2/', '..//transformed_data/Category_3/', '..//transformed_data/

    Gategory_4/']

     exercise = '/AB1'
     df = pd.DataFrame()
     def schouderhoogte(path_cat, df = pd.DataFrame()): #bij het aanroepen van de_
      → functie het indexnummer voor de categorie uit path_cats
         global patientID
         patientID = os.listdir(path_cats[path_cat])
         for patient in patientID:
             path = path_cats[path_cat] + patient + exercise + '.txt'
             df_patient = exercise_to_df(path)
             df_patient['patientID'] = patient
             df = df.append([df_patient])
             del df['x']
             del df['y']
         shoulder_df = df [df ['sensor'] != '2'] #anker verwijderen uit de dataframe, ⊔
      → dit datapunt is nooit nodig
         shoulder_df = shoulder_df.set_index( ['patientID', 'frame'], drop=True, __
      →inplace=False, verify_integrity=False)
         shoulder_df = shoulder_df[shoulder_df['sensor'] != '3'] #sensoren_u
      →verwijderen die niet van belang zijn. Alleen de sensoren bewaren die⊔
      →vergeleken moeten worden.
         shoulder df = shoulder df[shoulder df['sensor'] != '6']
         shoulder_df = shoulder_df[shoulder_df['sensor'] != '9']
```

```
slechte_arm =[]
   schouder_links_list = []
   schouder_rechts_list=[]
  elleboog_links_list = []
  elleboog_rechts_list = []
  for patient in patientID:
       dfpatient = df[df['patientID'] == str(patient)]
       schouder_links = dfpatient[dfpatient['sensor'] == '4']
       z schouder links = list(schouder links['z'])
       schouder_links_list.append(z_schouder_links)
       schouder_rechts = dfpatient[dfpatient['sensor'] == '7']
       z_schouder_rechts = list(schouder_rechts['z'])
       schouder_rechts_list.append(z_schouder_rechts)
       elleboog_links = dfpatient[dfpatient['sensor'] == '5']
       z_elleboog_links = list(elleboog_links['z'])
       elleboog_links_list.append(z_elleboog_links)
       elleboog_rechts = dfpatient[dfpatient['sensor'] == '8']
       z_elleboog_rechts = list(elleboog_links['z'])
       elleboog_rechts_list.append(z_elleboog_rechts)
      max_s_l = max(schouder_links['z'])
      max_s_r = max(schouder_rechts['z'])
       if max_s_l > max_s_r: #als links hopere waarde heeft dan rechts, dan is_
→de linkerarm de slechte arm
           slechte_arm.append('links')
       else:
           slechte_arm.append('rechts')
  global shoulder_elbow_df
   shoulder_elbow_df = pd.DataFrame()
   shoulder_elbow_df['patientID'] = patientID
   shoulder_elbow_df.set_index(['patientID'], drop = True, inplace = True)
   shoulder_elbow_df['schouder links'] = schouder_links_list
   shoulder_elbow_df['schouder rechts'] = schouder_rechts_list
   shoulder_elbow_df['elleboog_links'] = elleboog_links_list
   shoulder_elbow_df['elleboog rechts'] = elleboog_rechts_list
   shoulder_elbow_df['slechte arm'] = slechte_arm
   shoulder_elbow_df['category'] = path_cat + 1
```

```
slechte_schouder = []
         slechte_elleboog = []
         for patient in patientID:
             if shoulder_elbow_df.loc[patient]['slechte arm'] == 'rechts':
                 slechte_schouder.append(shoulder_elbow_df.loc[patient]['schouder_
      →rechts'])
                 slechte_elleboog.append(shoulder_elbow_df.loc[patient]['elleboog_
      →rechts'])
             else:
                 slechte_schouder.append(shoulder_elbow_df.loc[patient]['schouder_u
      →links'])
                 slechte_elleboog.append(shoulder_elbow_df.loc[patient]['elleboog_
      →links'])
         shoulder_elbow_df['elleboog'] = slechte_elleboog
         shoulder_elbow_df['schouder'] = slechte_schouder
         shoulder_elbow_df = shoulder_elbow_df[['category', 'elleboog', 'schouder']]
         max elleboog = []
         max el schouder = []
         for patient in patientID:
             max_el = np.max(shoulder_elbow_df.loc[patient]['elleboog'])
             index = shoulder_elbow_df.loc[patient]['elleboog'].index(max_el)
             el_schouder = shoulder_elbow_df.loc[patient]['schouder'][index]
             max_elleboog.append(max_el)
             max_el_schouder.append(el_schouder)
         max_el_schouder_df = pd.DataFrame()
         max_el_schouder_df['category'] = shoulder_elbow_df['category']
         max_el_schouder_df['max ellebooghoogte'] = max_elleboog
         max_el_schouder_df['schouderhoogte'] = max_el_schouder
         #return shoulder_elbow_df
         return max_el_schouder_df
[3]: | schouderhoogte_df =pd.concat([schouderhoogte(0), schouderhoogte(1),

→schouderhoogte(2), schouderhoogte(3)])
[4]: schouderhoogte_df
[4]:
                category max ellebooghoogte schouderhoogte
    patientID
     8
                                    0.874375
                                                    0.309388
                       1
     3
                       1
                                    0.791086
                                                    0.307439
```

1	1	0.968847	0.358060
22	1	0.902799	0.386102
17	1	0.955169	0.383486
•••	•••	•••	•••
27	4	-0.112915	0.488138
5	4	-0.228941	0.657194
2	4	-0.060507	0.589145
4	4	0.224927	0.687858
24	4	0.884682	0.406214

[127 rows x 3 columns]

```
[5]: colors = {1:'red', 2:'green', 3:'blue', 4:'magenta'}

plt.scatter(schouderhoogte_df['schouderhoogte'], schouderhoogte_df['max_\]

→ellebooghoogte'], alpha = 0.7, c=schouderhoogte_df['category'].map(colors))

plt.title('schouderhoogte bij maximale ellebooghoogte')

# plt.yticks([1,2,3,4])

plt.xlabel('schouderhoogte')

plt.ylabel('ellebooghoogte')
```

[5]: Text(0, 0.5, 'ellebooghoogte')


```
[6]: plt.scatter(schouderhoogte_df['schouderhoogte'], schouderhoogte_df['category'],

→alpha=0.3, c='navy')

plt.title('schouderhoogte bij maximale ellebooghoogte')

plt.yticks([1,2,3,4])

plt.xlabel('schouderhoogte')

plt.ylabel('categorie')
```

[6]: Text(0, 0.5, 'categorie')


```
[7]: schouderhoogte_df_subset = schouderhoogte_df[(schouderhoogte_df['category'] == 

→1) | (schouderhoogte_df['category'] == 4)]
schouderhoogte_df_subset
```

```
[7]:
                 category
                            max ellebooghoogte schouderhoogte
     patientID
     8
                         1
                                       0.874375
                                                         0.309388
     3
                                       0.791086
                                                         0.307439
                         1
     1
                         1
                                       0.968847
                                                         0.358060
     22
                         1
                                       0.902799
                                                        0.386102
                                                        0.383486
     17
                         1
                                       0.955169
                         1
                                       0.939635
                                                        0.364358
     15
     6
                         1
                                       0.964969
                                                        0.353481
                         1
     11
                                       0.957720
                                                        0.343624
```

13	1	1.095390	0.420626
7	1	0.976534	0.319702
29	1	0.977238	0.455504
23	1	0.968325	0.415028
21	1	0.956031	0.362277
9	1	0.960043	0.331118
20	1	0.932946	0.239097
19	1	0.981771	0.443059
26	1	1.143378	0.381151
12	1	0.753785	0.263476
10	1	1.061813	0.461762
30	1	0.825390	0.288977
16	1	0.975518	0.382626
27	1	0.829090	0.323521
5	1	0.932510	0.336521
2	1	1.019917	0.442558
4	1	0.926292	0.352480
28	1	0.958440	0.374242
24	1	0.941978	0.399557
35	4	-0.156847	0.209408
8	4	-0.378071	0.475214
3	4	0.974471	0.531953
1	4	0.255151	0.933827
36	4	0.377861	0.289206
14	4	-0.173864	0.565777
34	4	0.731316	0.367777
22	4	0.882636	0.530356
33	4	-0.063890	0.561118
38	4	0.949839	0.383062
31	4	0.905426	0.416932
6	4	-0.074987	0.398668
41	4	-0.196054	0.504358
11	4	0.003941	0.499731
7	4	-0.446249	0.457002
		0.663402	
29	4		0.414295
23	4	0.499985	0.523077
21	4	0.830854	0.474490
9	4	0.979532	0.580697
25	4	-0.172479	0.452984
26	4	-0.298293	0.390977
39	4	0.522693	0.366249
12	4	0.956342	0.413487
10	4	0.476003	0.327305
30	4	0.026412	0.145721
27	4	-0.112915	0.488138
5	4	-0.228941	0.657194
2	4	-0.060507	0.589145

```
      4
      4
      0.224927
      0.687858

      24
      4
      0.884682
      0.406214
```

```
[8]: plt.scatter(schouderhoogte_df_subset['schouderhoogte'],__

⇒schouderhoogte_df_subset['category'], alpha=0.3, c='navy')

plt.title('schouderhoogte bij maximale ellebooghoogte')

plt.yticks([1,4])

plt.xlabel('schouderhoogte')

plt.ylabel('categorie')
```

[8]: Text(0, 0.5, 'categorie')


```
[9]: from sklearn.model_selection import train_test_split
    from sklearn.model_selection import StratifiedKFold
    import numpy as np
    from sklearn.linear_model import LogisticRegression

#splitten test en train set
X = np.asarray(schouderhoogte_df_subset[['schouderhoogte']])
y = np.asarray(schouderhoogte_df_subset[['category']])
scores=[]
```

```
skf = StratifiedKFold(n_splits=6)
for train, test in skf.split(X, y):
    X_train, X_test = X[train], X[test]
    y_train, y_test = y[train], y[test]
    logistic_reg = LogisticRegression()
    logistic_reg.fit(X_train,y_train)
    y_predict = logistic_reg.predict(X_test)
    score = logistic_reg.score(X_test, y_test)
    print(y predict, score)
    scores.append(score)
print(np.mean(scores))
[4 4 4 4 4 1 4 4 4 1] 0.3
[4 4 4 4 4 4 4 4 4 4] 0.5
[4 4 4 4 1 4 4 4 4 4] 0.6
[1 4 1 1 4 1 4 1 1] 0.555555555555556
[4 4 4 4 4 4 4 4 4] 0.555555555555556
0.5296296296296
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
 return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
  return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
 return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
  return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
  return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
```

y was passed when a 1d array was expected. Please change the shape of y to
(n_samples,), for example using ravel().
 return f(**kwargs)

```
[10]: # schouderhoogte(0)
# for patient in patientID:
#    if patient == '8':
#        plt.plot(shoulder_elbow_df.loc[patient]['elleboog'], u
--shoulder_elbow_df.loc[patient]['schouder'], alpha = 0.3, c = 'magenta')
#        plt.ylabel('hoogte van de elleboog')
#        plt.xlabel('hoogte van de schouder')
```

[]: