

KCL AND KVL

CIRCUIT ANALYSIS METHOD

prepared by:

Gyro A. Madrona

Electronics Engineer

@gyromadrona

TOPIC OUTLINE

Circuit Convention

Kirchhoff's Current Law (KCL)

Kirchhoff's Voltage Law (KVL)

CIRCUIT CONVENTION

CONVENTION

A <u>convention</u> is a widely accepted practice, method, or behavior that is followed by common <u>agreement</u> or tradition, rather than by formal rules.

Example:

Color coding in Offices:

red – urgent documents blue – general files green – financial records

This is a common practice but not formally regulated.

STANDARD

A <u>standard</u> is a formal, established guideline, rule, or specification that is often <u>mandatory</u> and enforced by an authoritative body or organization.

Example:

IEC 60062 Resistor Color Code:

black – 0

brown – 1

red - 2

.

•

•

white – 9

Resistors have colored bands that represent specific digits, multipliers, and tolerance values.

LABELING VARIABLES

Steps in Labeling Variables:

1. Label the Reference Node (ground):

Select a reference node with the most connections or the negative (-) terminal of a voltage source.

2. <u>Label Node Voltages:</u>

Mark higher potentials as positive (+) relative to the reference node.

3. Label Currents:

Entering the positive (+) terminal of a component.

4. Create a voltage loop:

Follow the defined current directions.

CURRENT FLOW CONVENTION

Current Flow Convention:

- Current <u>entering</u> a node is negative (-)
- Current <u>leaving</u> a node is positive (+)

@**a**:

 $-i_1$

 $+i_2$

 $+i_3$

VOLTAGE LOOP CONVENTION

Voltage Loop Convention:

The <u>"sign"</u> of voltage of the element is the <u>first</u> <u>sign</u> the loop encounters.

$@L_1$:	$@L_2$
$-v_o$	$-v_2$
$+v_1$	$+v_{3}$
$+v_2$	

KIRCHHOFFIS CURRENT LAW AND VOLTAGE LAW

KCL

Kirchhoff's Current Law:

The summation of currents going-in and goingout a node is zero.

$$\sum i_j = 0$$

KCL @a:

$$-i_1 + i_2 + i_3 = 0$$

KVL

Kirchhoff's Voltage Law:

The summation of voltages in a closed-loop is zero.

$$\sum v_j = 0$$

KVL $@L_1$:

$$-v_0 + v_1 + v_2 = 0$$

KVL

Kirchhoff's Voltage Law:

The summation of voltages in a closed-loop is zero.

$$\sum v_j = 0$$

KVL $@L_2$:

$$-v_2+v_3=0$$

EXERCISE

Determine the <u>current</u> flowing through each resistor and the <u>voltage</u> drop across each resistor in the given circuit.

Solution:

EXERCISE

Determine the <u>current</u> flowing through each resistor and the <u>voltage</u> drop across each resistor in the given circuit.

Solution:

LABORATORY

