

Universität Bayreuth 95447 Bayreuth

Anorganische Chemie III

Glassherstellung

Justus Friedrich Studiengang: B.Sc. Chemie 4. Fachsemester

Matrikelnummer: 1956010 E–Mail: bt725206@myubt.de

Inhaltsverzeichnis

1	Einleitung						
	1.1	Motivation	1				
2	Durchführung						
	2.1	Synthese der Verschieden Gläser	2				
	2.2	Gleichungen zur Berechnung	2				
3	Auswertung						
	3.1	XRD-Analyse von Glas	3				
		3.1.1 NMR-Analyse der Gläser	4				
4	Zusa	ammenfassung	7				
5	Lite	raturverzeichnis	8				

1 Einleitung

1.1 Motivation

Gläser besitzen in der Regel interessante physikalische und chemische Eigenschaften. Diese resultieren aus ihrer amorph strukturierten Anordnung, bei der keine langfristige, regelmäßige Kristallstruktur vorliegt. In diesem Experiment sollen Gläser mit unterschiedlichen Konzentrationen von Netzwerkbildnern und Netzwerkwandlern hergestellt werden. Anschließend wird der Verknüpfungsgrad der Netzwerkbildner analysiert, um Rückschlüsse auf die Struktur und Eigenschaften des Glases ziehen zu können. ¹

2 Durchführung

2.1 Synthese der Verschieden Gläser

Es werden sieben verschiedene Glaszusammensetzungen hergestellt. Die dafür benötigten Massen der Ausgangsstoffe, um 2 g Glass zu bekommen, werden der Tabelle 1 entnommen. Die jeweiligen Komponenten werden sorgfältig miteinander vermörsert und anschließend in Quarztiegel überführt. Die Proben werden zunächst über 2 Stunden auf 200 °C erhitzt und bei dieser Temperatur für weitere 2 Stunden gehalten. Danach erfolgt eine weitere Aufheizung auf 800 °C über 2 Stunden, gefolgt von einem Halten bei dieser Temperatur für weitere 2 Stunden. Anschließend werden die Gläser durch Abschrecken bei Raumtemperatur (Quenching) verfestigt. Dazu werden sie in einen Exsikkator unter Schutzglas überführt.

Tabelle 1: Zeigt die Mol Verhältnisse der Produkte im Glas, und die dafür nötigen Eduktmassen und deren Mol Anzahl. Die Berrechungen für die Mol-Anzahl sind in Gleichung (1) und (2) dargestellt.

Mol% Na ₂ O	30%	35%	40%	45%	50%	55%	60%	70%
Masse	0.54	0.66	0.77	0.90	1.04	1.19	1.35	1.73
$Na_2CO_3[g]$								
Mol Na ₂ CO ₃	5.09	6.23	7.26	8.49	9.81	11.2	12.7	16.3
[mmol]								
Mol% P ₂ O ₅	70%	65%	60%	55%	50%	45%	40%	30%
Masse	2.73	2.61	2.51	2.39	2.26	2.11	1.95	2.61
NH ₄ H ₂ PO ₄								
[g]								
Mol	23.7	22.7	21.8	20.8	19.6	18.34	16.9	13.9
NH ₄ H ₂ PO ₄								
[mmol]								

2.2 Gleichungen zur Berechnung

$$\frac{2g}{M(\mathsf{Na}_2\mathsf{O}) + \frac{mol\%(\mathsf{P}_2\mathsf{O}_5)}{mol\%(\mathsf{Na}_2\mathsf{O})} \cdot M(\mathsf{P}_2\mathsf{O}_5)} = n(\mathsf{Na}_2\mathsf{CO}_3) \tag{1}$$

$$n(\mathsf{NH_4H_2PO_4}) = 2 \cdot n(\mathsf{Na_2CO_3}) \tag{2}$$

3 Auswertung

3.1 XRD-Analyse von Glas

Zunächst werden die XRDs der verschiedenen Gläser betrachtet. Dabei liegt der Fokus auf dem Vergleich der Konzentrationen und den dazugehörigen XRD-Reflexen.

Abbildung 1: Zeigt die XRDs von den Verschieden mol % Na₂O

Abbildung 2: Zeigt das XRD von dem Glas mit 70 % Na₂O, mit der Referenzphase von Na₃PO₄ (Referenzcode 01-076-0201)

Bei den Na₂O-Konzentrationen von 30 mol % bis 60 mol % sind keine eindeutigen Reflexe erkennbar. Dies ist in Abbildung 1 deutlich zu sehen. Dieses Ergebnis stimmt mit der Theorie überein, da Gläser keine kristalline Struktur und somit keine Einheitszelle besitzen. Folglich können keine charakteristischen XRD-Reflexe auftreten.

Bei einer Konzentration von 70 mol % Na₂O sind eindeutige Reflexe im XRD erkennbar (siehe Abbildung 2). Dies ist auf den hohen Anteil an Netzwerkwandlern in der Verbindung zurückzuführen, wodurch eine kristalline Struktur leichter und schneller ausgebildet werden kann. Somit konnte der Stoff sogar während des quenchen auskristallisieren. Als Phase wurde von dem Programm *HighScore Plus* Na₃PO₄ identifiziert. Diese Referenzphase besitzt den Referenzcode 01-076-0201.

3.1.1 NMR-Analyse der Gläser

Aus den aufgenommenen 31 P-NMR-Spektren der Gläser sollen die Verknüpfungsgrade der PO_4 ³⁻ Anionen bestimmt werden. Hierzu werden die chemischen Verschiebungen herangezogen, die charakteristisch für die vier unterschiedlichen Verknüpfungsgrade sind. Diese chemischen Verschiebungen sind in Tabelle 2 dargestellt.

Tabelle 2: Zeigt die verschiedenen chemischen Verschiebungen im ³¹ P-NMR. ²				
Verknüpfungsgrad	chemische Verschiebung			

Verknüpfungsgrad	chemische Verschiebung
Q^0	12 bis 15 ppm
Q^1	-7 bis 6 ppm
Q^2	-33 bis -16 ppm
Q^3	-33 bis -55 ppm

Die in Abbildung 3 dargestellten 31 P-NMR-Spektren zeigen die verschiedenen Peaks, die den jeweiligen Verknüpfungsgraden der PO_4^{3-} -Einheiten zugeordnet werden können. Aus den Integralen dieser Peaks lässt sich der prozentuale Anteil der einzelnen Verknüpfungsarten quantitativ bestimmen.

Abbildung 3: Zeigt die NMR-Spektren der Verschieden Gläser

Die Integrale und Peak-Positionen sind in Tabelle 3 zusammengefasst.

Tabelle 3: Darstellung der unterschiedlichen Zusammensetzungen der Gläser in Kombination mit den jeweiligen ³¹P-NMR-Peaks und den entsprechenden Integralen.

	Pea	ak 1	Peak 2		
Glass type with Na ₂ O/P ₂ O5 ratio	³¹ P isotropic chemical shift: δ_{iso} / (ppm)	Integral (relative value)	31 P isotropic chemical shift: δ_{iso} / (ppm)	Integral (relative value)	
30/70	-23.5	40.0	-35.7	60.0	
35/65	-22.7	37.6	-34.7	62.4	
40/60	-21.6	54.1	-34.2	45.9	
45/55	-20.6	70.7	-33.6	29.3	
50/50	-19.7	96.1	-34.2	3.9	
55/45	1.4	16.2	-18.3	83.8	
60/40	1.6	19.6	-18.9	80.4	
70/30*	13.6	57.0	2.6	43.0	

^{*:} Crystalline phase (sharp peaks)

Die in Tabelle 3 aufgeführten Integrale dienen als Grundlage für die Berechnung der relativen Anteile der einzelnen Verknüpfungsgrade. Die Ergebnisse dieser Umrechnung sind in der Tabelle 4 zusammengefasst.

Tabelle 4: Zeigt den Anteil der Verknüpfungsgraden in Abhänigkeit der Zusammensetzung der Gläser.

Zusammensetzung Na ₂ O / P ₂ O ₅ [mol %]	Anteil Q^0 [%]	Anteil Q^1 [%]	Anteil Q^2 [%]	Anteil Q^3 [%]
30 / 70	-	-	40	60
35 / 65	-	-	37.6	62.4
40 / 60	-	-	54.1	45.9
45 / 55	-	-	70.7	29.3
50 / 50	-	-	96.1	3.9
55 / 45	-	16.2	83.8	-
60 / 40	-	19.6	80.4	-
70 / 30	57.0	43.0	-	-

Die Werte werden nun gegen den molaren Prozentanteil von Na₂O aufgetragen und mit den theoretischen Werten verglichen. Dies wird in der Abbildung 4 dargestellt.

Abbildung 4: Dargestellt sind die Anteile des Verknüpfungsgrad Q in den hergestellten Gläsern im Vergleich zu den theoretischen Werten.²

Aus Abbildung 4 lässt sich ablesen, dass die Zusammensetzung der hergestellten Gläser im Wesentlichen den theoretischen Werten entspricht. Allerdings treten Abweichungen auf, die vermutlich auf Wägefehler zurückzuführen sind. Diese könnten die tatsächliche Zusammensetzung der Gläser beeinflusst haben, sodass der molare Prozentanteil von Na_2O nicht exakt dem in der Abbildung verwendeten Wert entspricht. Zudem zeigt die Abbildung, dass der Anteil an Q^3 -Einheiten mit abnehmender Na_2O -Konzentration zunimmt. Bei reinem P_2O_5 sind laut der theoretischen Kurve ausschließlich Q^3 -Verknüpfungen zu erwarten, was mit der bekannten Struktur von P_2O_5 übereinstimmt.

4 Zusammenfassung

Im Experiment wurden Gläsermit verschieden Na₂O-Anteilen zu P₂O₅ hergestellt. Diese wurden dann mit NMR- und XRD-Messungen untersucht. Die XRD-Analyse zeigte für Gläser mit bis zu 60 mol % Na₂O keine signifikanten Reflexe, was auf eine amorphe Struktur hinweist. Bei 70 mol % Na₂O traten kristalline Reflexe auf, die der Phase Na₃PO₄ zugeordnet werden konnten.

Zur genaueren strukturellen Charakterisierung wurde 31 P-NMR-Spektroskopie eingesetzt. Die daraus bestimmten chemischen Verschiebungen ermöglichten die Identifikation der verschiedenen Verknüpfungstypen (Q^0 – Q^3) der PO₄³⁻-Einheiten. Die relativen Integrale der Peaks wurden ausgewertet, um den Anteil jedes Q-Typs in Abhängigkeit vom Na₂O-Gehalt zu berechnen.

Die experimentellen Ergebnisse zeigen insgesamt eine gute Übereinstimmung mit den theoretischen Erwartungen.² Kleinere Abweichungen sind vermutlich auf Wägeungenauigkeiten zurückzuführen.

5 Literaturverzeichnis

Literatur

- (1) Breu, J.; Senker, J., Praktikum Präparative Anorganische Chemie, 2025, S. 55–63, 82–88.
- (2) Kirkpatrick, R. J.; Brow, R. K. Solid state nuclear magnetic resonance 1995, 5, 9-21.