Math 314. Week 4 worksheet (§2.1, §2.2, §2.3).

A. REVIEW. Decide if the following statements are TRUE or FALSE.

- (1) It's possible for $A\mathbf{x} = \mathbf{b}$ to have a solution and $A\mathbf{x} = \mathbf{c}$ to have no solution (for the same matrix A, different vectors \mathbf{b} , \mathbf{c}).
- (2) Whether the system $A\mathbf{x} = \mathbf{b}$ is consistent or not depends only on A and not on b.
- (3) It's possible for $A\mathbf{x} = \mathbf{b}$ to have exactly one solution and $A\mathbf{x} = \mathbf{c}$ to have infinitely many solutions (for the same matrix A, different vectors \mathbf{b} , \mathbf{c}).
- (4) Whether the system $A\mathbf{x} = \mathbf{b}$ has a free variable or not depends only on A and not on b.
- (5) It's possible for the system Ax = b to have a free variable and to not have a solution.
- (6) No matter what A is, there's always some b such that Ax = b has a solution.
- (7) If **p** is a solution to $A\mathbf{x} = \mathbf{b}$, then the solution set of $A\mathbf{x} = \mathbf{b}$ is $\{\mathbf{p} + \mathbf{q} \mid \mathbf{q} \text{ is a solution of } A\mathbf{x} = \mathbf{0}\}$
- (8) There is a 5×3 matrix A such that $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} .
- (9) If A is any 5×3 matrix, then $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} .
- (10) There is a 3×5 matrix A such that $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} .

B. REVIEW. Without computing anything, fill in the blanks: for some numbers a, b, c,

$$\begin{cases} 7x - 6y + z &= a \\ 3x + 6y - 5z &= b \text{ is consistent} \iff \begin{bmatrix} a \\ b \\ c \end{bmatrix} \text{ is in } \underline{\qquad} \begin{cases} \begin{bmatrix} 7 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} -6 \\ 6 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -5 \\ -3 \end{bmatrix} \end{cases}$$

$$\iff \begin{bmatrix} a \\ b \\ c \end{bmatrix} \text{ is in the } \underline{\qquad} \text{ of the function } T(\mathbf{x}) = \begin{bmatrix} 7 & -6 & 1 \\ 3 & 6 & -5 \\ 6 & -2 & -3 \end{bmatrix} \mathbf{x}.$$

DEFINITION: The product of the matrices A and $B = [\mathbf{b_1} \cdots \mathbf{b_n}]$, is $AB = [A\mathbf{b_1} \cdots A\mathbf{b_n}]$, whenever $A\mathbf{b_1}, \dots, A\mathbf{b_n}$ are valid products. Otherwise, we cannot take the product AB.

C. MATRIX MULTIPLICATION. Let

$$A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 3 & -3 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 1 & -2 \end{bmatrix}.$$

- (1) Is AB a valid product? What size is it? Compute AB by computing $A\mathbf{b_1}$, $A\mathbf{b_2}$, $A\mathbf{b_3}$ as in the definition above.
- (2) What are the domain and codomain of the transformation $T(\mathbf{x}) = A\mathbf{x}$? What are the domain and codomain of the transformation $U(\mathbf{x}) = B\mathbf{x}$?
- (3) The composition $T \circ U$ is the function "first apply U, then apply T." What is the domain of this composition?¹ What is the codomain of this composition?²
- (4) Explain why $(T \circ U)(\mathbf{x}) = AB\mathbf{x}$. Explain why the standard matrix of $(T \circ U)$ is AB.

¹Hint: To input into $T \circ U$, you start by inputting into U.

²Hint: The outputs of $T \circ U$ come out as outputs of T.

- D. TRANSFORMATIONS IN \mathbb{R}^2 . Let $T:\mathbb{R}^2\to\mathbb{R}^2$ be the linear transformation "rotate 90 degrees counterclockwise," and $U:\mathbb{R}^2\to\mathbb{R}^2$ be the linear transformation "reflect over the x-axis."
 - (1) Draw the image of the picture from the first page under the composition $T \circ U$. Can you describe the transformation $T \circ U$?
 - (2) Based on your description of $T \circ U$ from the previous part, compute its standard matrix.
 - (3) Compute the standard matrix of T and of U. Call then A and B respectively.
 - (4) Compute AB. Compare to part (2).
 - (5) Now draw the image of the picture from the first page under the composition $U \circ T$. Describe this map as a single reflection, and find its standard matrix.
 - (6) Compute BA.

DEFINITION: The $n \times n$ identity matrix is the $n \times n$ matrix with 1's on the diagonal, and 0's in every other entry:

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}.$$

DEFINITION: Let A be an $n \times n$ matrix. A matrix B is the **inverse matrix** of A if $AB = BA = I_n$. If B is the inverse of A, we write A^{-1} for B.

DEFINITION: An $n \times n$ matrix is **invertible** if it has an inverse. Otherwise, it is **singular**.

E. INVERSE MATRICES AND TRANSFORMATIONS.

- (1) Use the definition to check that $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ is the inverse of $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
 (2) Explain geometrically what the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(\mathbf{x}) = A\mathbf{x}$ does
- (2) Explain geometrically what the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(\mathbf{x}) = A\mathbf{x}$ does when $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ for some numbers a, b. What would you do to undo this transformation? When is A invertible, and what is its inverse?
- When is A invertible, and what is its inverse. (3) Explain geometrically what the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$? for some numbers a, b, c. What would you do to undo this transformation? When is A invertible, and what is its inverse?

F. INVERTING 2×2 MATRICES. Use the formula to determine if the following 2×2 matrices are invertible, and find their inverses:

$$(1) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$(2) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$(3) \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$$

$$(4) \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}$$

³Hint: You can consider it as a single reflection.

G. COMPUTING INVERSES. Compute the inverse of the matrix
$$\begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$
.

H. INVERTIBLE MATRICES. Determine if each of the following matrices are invertible:

(1)
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2) $B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ -1 & -3 & -6 & -9 \end{bmatrix}$
(3) $C = \text{some } 5 \times 7 \text{ matrix.}$

- (4) $D = \text{some } 7 \times 7$ matrix where the last column is the sum of the two before it.

I*. INVERSE FUNCTIONS.

- (1) Show that if A is invertible, then $(A^{-1})^T$ is the inverse of A^T .
- (2) Show that A is invertible if and only if A^T is invertible.
- (3) If A, B, C are $n \times n$ matrices, when is ABC invertible (in terms of A, B, C)? If so, find a formula for its inverse.

J*. INVERSE FUNCTIONS.

- (1) Explain why, if $T: \mathbb{R}^n \to \mathbb{R}^n$ is any function, then T has an inverse function if and only if $T(\mathbf{x}) = \mathbf{y}$ has a unique solution for every \mathbf{y} .
- (2) Explain why, if $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation, and T has an inverse function, then the inverse function to T is a linear transformation.⁴
- (3) Explain why if $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, and T is invertible, then m = n.
- (4) Can there be an invertible function $T: \mathbb{R}^n \to \mathbb{R}^m$ for $m \neq n$?⁵

⁴Challenge: do this without using the inverse matrix theorem!

⁵This function must NOT be a linear transformation, based on the previous part.