

Bitcraze Workshop: GAP8 Architecture Overview

Lorenzo Lamberti, Hanna Müller, Vlad Niculescu, *Manuele Rusci*, **Daniele Palossi**

Greenwaves Technologies

GAP8: a RISC-V IoT Application Processor

ETH Zürich

GREENWAVES

GAP8: a RISC-V IoT Application Processor

GAP8: a RISC-V IoT Application Processor

Efficiently copying data from L2 memory to L1 memory

Parallel Processing for computeintensive tasks on sensor data Tightly-coupled On-chip memory with low-latency access

Enabling AI on the Edge

- Parallel Processing
 - Up to 9x faster than traditional single-core MCUs
 - Targeting highly-parallelizable AI workloads
- **■**Flexibility
 - General Purpose RISC-V Cores programmable via SW
- Energy-efficiency
 - Optimized for low-power: ~100mW at 200MHz clock frequency

ETH Zürich

Data Analytics at the edge with GAP8

Sensor Input

How to deploy it on a GAP8-based system?

7

1) Get your GAP8-based system (e.g. Aldeck)

1) Get your GAP8-based system (e.g. Aldeck)

2) Data Acquisition

- 1) Get your GAP8-based system (e.g. Aldeck)
- 2) Data Acquisition
- 3) Turn the cluster ON

- 1) Get your GAP8-based system (e.g. Aldeck)
- 2) Data Acquisition
- 3) Turn the cluster ON
- 4) Run Digital Processing on Sensor Data

GAP8 – A complete solution for embedded machine learning at the very edge

☐ GreenWaves-Technologies / gap_sdk

PMSIS API

RTOS FreeRTOS, PULPOS, Zephyr

SOC Simulator

RISC-V GCC

GAP AutoTiler

NNTool

- RISC-V 8 + 1 core MCU G
- ISA Extensions
- Fine grained parallelism
- Application Boards

- GCC Based toolchain
- **PC SoC Simulator**
- Variety of different RTOS's
- PMSIS API unifies API across RTOS's

 GAPflow toolchain for embedded ML development

GAP NN Menu

☐ GreenWaves-Technologies / nn_menu

The **Neural Network Menu** is a collection of software that implements Neural Networks on Greenwaves Application Processors (GAP). This repository contains common mobile and edge NN architecture examples, NN sample applications and full flagged reference designs.

ingredients

- mage Classification Networks (several versions of Mobilenet V1, V2, V3 minimalistic, full V3 to come)
- □kws (Google Keyword Spotting)
- ☐ Mobilenet V1 from Pytorch Model

starters

- □Body Detection (SSD w/ custom CNN backbone)
- Face Detection (SSD w/ custom CNN backbone)
- People Spotting (NN from MIT Visual Wakeup Words)
- □ Vehicle Spotting (Customization and embedding of a deep learning pipeline for visual object spotting)

main courses

- Full flagged applications (aka reference designs) running on GAPoC series boards.
- ☐ReID (on GAPoC A)
- Occupancy Management (on GAPoC B)

ETH Zürich

Bitcraze Workshop: GAP8 Architecture Overview

Thanks for listening

More about **GreenWaves Technolgies**:

https://greenwaves-technologies.com/

https://github.com/GreenWaves-Technologies/

