ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2008 Διδάσκων: Αντώνης Αργυρός Λύσεις θεμάτων τελικού διαγωνίσματος Ιουνίου

Θέμα 1°: [10 μονάδες, προτασιακός λογισμός]

- (α) [5] Δείξτε κατά πόσον η πρόταση $((p \land q) \rightarrow r) \leftrightarrow ((p \rightarrow q) \land (q \rightarrow r))$ αποτελεί ή όχι ταυτολογία.
- (β) [5] Κάποιος ιδιόρρυθμος δικαστής ρωτήθηκε κατά πόσον ο κατηγορούμενος Α είναι ένοχος. Εκείνος απάντησε ότι και οι τρεις παρακάτω προτάσεις είναι αληθείς:
- (i) Ο Α είναι αθώος ή ο Β είναι ένοχος
- (ii) Ο Β είναι αθώος ή ο Γ είναι αθώος.
- (iii) Εάν ο Α είναι ένοχος, τότε οι Β και Γ είναι και οι δύο ένοχοι

Θεωρώντας δεδομένο ότι ο δικαστής λέει την αλήθεια, ο Α είναι τελικά αθώος ή ένοχος; Δικαιολογείστε την απάντησή σας.

Λύση

(α) Όπως φαίνεται από τον παρακάτω πίνακα αληθείας, η συγκεκριμένη πρόταση δεν αποτελεί ταυτολογία, δεδομένου ότι δεν είναι αληθής για κάθε συνδυασμό τιμών των επιμέρους προτάσεων p, q και r. Αυτό μπορεί να αποδειχτεί και μέσω χρήσης ταυτοτήτων.

p	q	r	$(p \land q) \rightarrow r$	$(p\rightarrow q) \land (q\rightarrow r)$	$((p \land q) \rightarrow r) \leftrightarrow ((p \rightarrow q) \land (q \rightarrow r))$
T	T	T	T	Т	Т
T	T	F	F	F	Т
T	F	T	Т	F	F
T	F	F	Т	F	F
F	T	T	Т	Т	T
F	T	F	Т	F	F
F	F	T	T	Т	Т
F	F	F	T	Т	T

(β) Έστω α η πρόταση «Ο Α είναι ένοχος», β η πρόταση «Ο Β είναι ένοχος» και γ η πρόταση «ο Γ είναι ένοχος». Τότε ο δικαστής μας διαβεβαιώνει ότι και οι τρεις παρακάτω προτάσεις είναι αληθείς:

1. $\neg \alpha \lor \beta$

2, $\neg \beta \lor \neg \gamma$ 3. $\alpha \to \beta \land \gamma$. Από την (3) προκύπτει ότι η $\neg \alpha \lor (\beta \land \gamma)$ είναι αληθής Άρα η $\neg \alpha \lor \neg (\neg \beta \lor \neg \gamma)$ είναι αληθής Άρα εξαιτίας της (2) η $\neg \alpha \lor \neg T$ είναι αληθής Άρα η $\neg \alpha \lor F$ είναι αληθής Άρα η $\neg \alpha$ είναι φευδής. Άρα η α είναι ψευδής. Άρα ο Α είναι αθώος.

Θέμα 2°: [15 μονάδες, αρχή εγκλεισμού-αποκλεισμού]

- (a) [8] Έστω τρία σύνολα A, B και Γ , υποσύνολα ενός συνόλου Σ . Δώστε τη σχέση που μας δίνει τον πληθικό αριθμό $|\overline{A} \cap \overline{B} \cap \overline{\Gamma}|$ του συνόλου $\overline{A} \cap \overline{B} \cap \overline{\Gamma}$. (**Βοήθεια:** ίσως βοηθάει να χρησιμοποιήσετε τον κανόνα De Morgan...)
- (β) [7] Χρησιμοποιείστε το παραπάνω για να υπολογίσετε το πλήθος των ακεραίων από το 1 έως το 1000 που δεν είναι πολλαπλάσιο του 10, του 4 και του 15.

Λύση

$$(\alpha) \ \overline{A} \cap \overline{B} \cap \overline{\Gamma} = \left(\overline{A \cup B \cup \Gamma}\right) = \Sigma - (A \cup B \cup \Gamma)$$

Επομένως,

$$\begin{split} &|\overline{A} \cap \overline{B} \cap \overline{\Gamma}| = |\Sigma| - |A \cup B \cup \Gamma| \\ &= |\Sigma| - (|A| + |B| + |\Gamma| - |A \cap B| - |A \cap \Gamma| - |B \cap \Gamma| + |A \cap B \cap \Gamma|) \\ &= |\Sigma| - (|A| + |B| + |\Gamma|) + (|A \cap B| + |A \cap \Gamma| + |B \cap \Gamma|) - |A \cap B \cap \Gamma| \end{split}$$

 (β)

Α= πολλαπλάσια του 10

Β= πολλαπλάσια του 4

Γ= πολλαπλάσια του 15

Α ΘΒ = πολλαπλάσια του 20

Α Γ = πολλαπλάσια του 30

Β∩Γ = πολλαπλάσια του 60

Α∩Β∩Γ = πολλαπλάσια του 60

Το ζητούμενο είναι

$$|\bar{A} \cap \bar{B} \cap \bar{\Gamma}| =$$

 $1000 - (\lfloor 1000/10 \rfloor + \lfloor 1000/4 \rfloor + \lfloor 1000/15 \rfloor) + (\lfloor 1000/20 \rfloor + \lfloor 1000/30 \rfloor + \lfloor 1000/60 \rfloor) - \lfloor 1000/60 \rfloor = 1000 - (100 + 250 + 66) + (50 + 33 + 16) - 16 = 667.$

Θέμα 3°: [10 μονάδες, αποδείξεις]

Δείξτε το κατά πόσον ισγύουν οι παρακάτω προτάσεις:

- (α) [2] Για κάθε φυσικό αριθμό n, ο n²+7n+12 είναι άρτιος.
- (β) [3] Για κάθε φυσικό αριθμό n, ο n²-n+3 είναι περιττός
- (γ) [2] Για οποιοδήποτε ζεύγος πραγματικών αριθμών x, y, αν (x+y)/2 > 10 τότε είτε x>10 είτε y>10
- (δ) [3] Για οποιοδήποτε πραγματικό αριθμό r, αν ο r είναι άρρητος τότε ο r^2 είναι άρρητος.

Λύση

- (α) Αν ο n είναι άρτιος, τότε ο n^2 είναι άρτιος, ο 7n είναι άρτιος, και το άθροισμα $n^2+7n+12$ είναι άρτιος. Αν ο n είναι περιττός, ο n^2 είναι περιττός, ο 7n είναι περιττός, και το άθροισμα $n^2+7n+12$ είναι άρτιος. Άρα, σε κάθε περίπτωση, ο $n^2+7n+12$ είναι άρτιος
- (β) Ανάλογα με το (α)
- (γ) Έστω ότι (x+y)/2 > 10 και ότι δεν ισχύει ότι x>10 είτε y>10. Αυτό σημαίνει ότι x<=10 και y<=10 και επομένως ότι x+y<=20, δηλαδή (x+y)/2 <= 10. Αυτό αντιβαίνει στην αρχική υπόθεση ότι (x+y)/2 > 10. Άρα για οποιοδήποτε ζεύγος πραγματικών αριθμών x, y, αν (x+y)/2 > 10 τότε είτε x>10 είτε y>10.
- (δ) Δεν ισχύει γιατί ο $\sqrt{2}$ είναι άρρητος αλλά το τετράγωνό του είναι ρητός.

Θέμα 4°: [10 μονάδες, αρχή του περιστεριώνα]

Ο Νίκος επέλεξε 52 διαφορετικούς ακεραίους από το σύνολο {100,101,102,103,...,199}. Αποδείξτε ότι μέσα στις επιλογές του υπάρχουν τουλάχιστον τρεις αριθμοί, καθένας από τους οποίους έχει το ίδιο άθροισμα ψηφίων με τους υπόλοιπους.

Λύση

Εφόσον θεωρούμε τους ακεραίους από το 100 έως το 199, το άθροισμα των ψηφίων του καθενός κυμαίνεται από το 1 (1+0+0) έως το 19 (1+9+9). Επομένως, οι 52 διαφορετικοί αριθμοί που επέλεξε ο Νίκος (περιστέρια) πρέπει να τοποθετηθούν σε 19 θέσεις (περιστεριώνες). Από την γενικευμένη αρχή του περιστεριώνα γνωρίζουμε ότι τουλάχιστον [52/19] = [2.73] = 3 περιστέρια που θα πρέπει να τοποθετηθούν στην ίδια θέση κι επομένως τουλάχιστον 3 ακέραιοι με ίσο άθροισμα ψηφίων.

Θέμα 5°: [12 μονάδες, σχέσεις]

Έστω μία σχέση R που ορίζεται στο σύνολο των ακεραίων ως εξής:

 $xRy \Leftrightarrow ((x-y) \mod 5 = 0)$. Απαντήστε τις παρακάτω ερωτήσεις δικαιολογώντας την απάντησή σας.

- (α) [2] Είναι η R ανακλαστική;
- (β) [2] Είναι η R συμμετρική;
- (γ) [2] Είναι η R μεταβατική;
- (δ) [2] Είναι η R αντισυμμετρική;
- (ε) [2] Είναι η R σχέση ισοδυναμίας;
- (στ) [2] Είναι η R σχέση μερικής διάταξης;

Λύση

- (a) Nai, giatí av xRx, $\forall x \in N$.
- (β) Ναι, γιατί $\forall x,y \in \mathbb{N}$, $xRy \Leftrightarrow yRx$
- (γ) Ναι, γιατί $\forall x,y,z \in N$, εάν xRy και yRz, τότε xRz
- (δ) Όχι, γιατί μπορεί xRy και yRx και x≠y.
- (ε) Ναι, γιατί είναι ανακλαστική, συμμετρική και μεταβατική.
- (στ) Όχι, γιατί δεν είναι αντισυμμετρική.

Θέμα 6°: [15 μονάδες, μαθηματική επαγωγή]

- (α) [7] Αποδείξτε ότι εάν $x \ne 1$, τότε $\forall n \ge 0$, $\sum_{i=0}^{n} x^{i} = \frac{x^{n+1} 1}{x 1}$
- (β) [8] Η φόρμουλα του Pascal λέει ότι $\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}$. Χρησιμοποιείστε τη προκειμένου να αποδείξετε ότι $\forall n \geq 5$, $\sum_{i=5}^{n} \binom{j}{5} = \binom{n+1}{6}$

Λύση

 (α)

- (1) Βασικό βήμα: Για n=0, ισχύει γιατί η σχέση δίνει 1=(x-1)/(x-1), το οποίο ισχύει.
- (11) Έστω ότι η πρόταση ισχύει για n-1, δηλαδή ότι ισχύει: $\sum_{i=0}^{n-1} x^i = \frac{x^n-1}{x-1}$
- (iii) Επαγωγικό βήμα: Θα δείξουμε ότι ισχύει για n. Πράγματι:

$$\sum_{i=0}^{n} x^{i} = \sum_{i=0}^{n-1} x^{i} + x^{n}$$

$$= \frac{x^{n} - 1}{x - 1} + x^{n}$$

$$= \frac{x^{n} - 1}{x - 1} + x^{n} \frac{x - 1}{x - 1}$$

$$= \frac{x^{n+1} - 1}{x - 1}$$

 (β)

(ι) Βασικό βήμα: Για n=5 ισχύει, εφόσον

$$\sum_{j=5}^{5} {j \choose 5} = {5 \choose 5} = 1 = {6 \choose 6} = {5+1 \choose 6}$$

(ιι) Έστω ότι ισχύει ότι:

$$\sum_{j=5}^{k} {j \choose 5} = {k+1 \choose 6}$$

(iii) Θα πρέπει να δείξουμε ότι:

$$\sum_{j=5}^{k+1} \binom{j}{5} = \binom{(k+1)+1}{6}$$

Πράγματι,

$$\sum_{j=5}^{k+1} {j \choose 5} = \sum_{j=5}^{k} {j \choose 5} + {k+1 \choose 5} = {k+1 \choose 6} + {k+1 \choose 5} = {k+2 \choose 6} = {(k+1)+1 \choose 6}$$

Θέμα 7°: [16 μονάδες, πιθανότητες]

- (α) [4] Έστω ένας χώρος δειγματοληψίας Ω ={0, 1, 2, 3} και έστω ότι η πιθανότητα κάθε δείγματος είναι ομοιόμορφη.
 - 1. Ποια είναι η πιθανότητα των γεγονότων $A=\{1,2\}$, $B=\{2,3\}$, $C=\{1,3\}$;
 - 2. Είναι τα Α και Β ασυμβίβαστα;
 - 3. Είναι τα Α και Β ανεξάρτητα;
 - 4. Υπολογίστε την πιθανότητα P(A|B\cup C).
- (β) [4] Ας υποθέσουμε ότι επιλέγω αμερόληπτα και τυχαία, τρεις από τους 170 εγγεγραμμένους φοιτητές του ΗΥ118 με σκοπό να βαθμολογήσω με 10 το τελικό τους διαγώνισμα. Ποια η πιθανότητα να είστε εσείς ο/η τυχερός/τυχερή;
- (γ) [4] Αποδείξτε ότι για οποιαδήποτε γεγονότα A και B, $P(A|B) + P(\neg A|B)=1$.
- (δ) [4] Αποδείξτε ότι για οποιαδήποτε ασυμβίβαστα γεγονότα X και Y, ισχύει ότι $P(X \cup Y|A) = P(X|A) + P(Y|A)$

Λύση

- (α)
- 1. P(A)=2/4, P(B)=2/4, $P(\Gamma)=2/4$
- 2. $A \cap B = \{1,2\} \cap \{2,3\} = \{2\} \neq \emptyset$, άρα τα A και B δεν είναι ασυμβίβαστα
- 3. $P(A \cap B) = 1/4 = 2/8 = (2/4)*(2/4) = P(A)*(P(B), επομένως τα Α και Β είναι ανεξάρτητα$
- 4. $P(A|B\cup C) = P(A\cap(B\cup C))/P(B\cup C) = P(\{1,2\}\cap\{1,2,3\})/P(\{1,2,3\}) = P(\{1,2\})/P(\{1,2,3\})=(1/2)/(3/4)=4/6=2/3.$
- (β) Προφανώς, 3/170...
- $(\gamma) P(A|B) + P(\neg A|B) = P(A \cap B)/P(B) + P(\neg A \cap B)/P(B) = (P(A \cap B)/P(B) + P(\neg A \cap B))/P(B) = P(B)/P(B) = 1.$
- $(\delta) P(X \cup Y | A) = P((X \cup Y) \cap A)/P(A) = P((X \cap A) \cup (Y \cap A))/P(A).$

Εφόσον τα X και Y είναι ασυμβίβαστα, τα $X \cap A$ και $Y \cap A$ είναι επίσης ασυμβίβαστα. Επομένως, $P((X \cap A) \cup)(Y \cap A))/P(A) = (P(X \cap A) + P(Y \cap A))/P(A) = P(X \cap A)/P(A) + P(Y \cap A)/P(A) = P(X \cap A) + P(Y \cap A)$.

Θέμα 8°: [14 μονάδες]

- (α) [6] Σε ένα παιχνίδι με χαρτιά, το bridge, τέσσερις παίκτες μοιράζονται τα 52 χαρτιά μιας τράπουλας. Όπως ξέρουμε, η τράπουλα αποτελείται από τέσσερα χρώματα (σπαθιά, καρό, μπαστούνια και κούπες) καθένα από τα οποία έχει 13 φιγούρες (1, 2, 3, ..., 10, βαλές, ντάμα, ρήγας).
- 1. Πόσες 13άδες μπορούν να οριστούν;
- 2. Πόσες 13άδες αποτελούνται από 5 κούπες, τέσσερα καρό και τέσσερα σπαθιά;
- 3. Πόσες 13άδες αποτελούνται αποκλειστικά από σπαθιά και μπαστούνια;
- (β) [4] Πόσες διαφορετικές λέξεις μπορούμε να δημιουργήσουμε με αναγραμματισμούς της λέξης «ΚΑΤΑΚΑΘΙ»;
- (γ) [4] Οι κάτοικοι έξι σπιτιών που είναι διαδοχικά σε ένα δρόμο αποφάσισαν να τα βάψουν σε αποχρώσεις του κόκκινου, πράσινου, μπλε και κίτρινου. Πόσες διαφορετικές επιλογές έχουν
- 1. εάν θέλουν να αποφύγουν να βάψουν δύο διαδοχικά σπίτια με το ίδιο χρώμα
- 2. εάν θέλουν ακριβώς τρία σπίτια να είναι κίτρινα αλλά κανένα άλλο χρώμα να μην επαναληφθεί.

Λύση

 (α)

1.
$$\binom{52}{13} = \frac{52!}{39!13!}$$
 (από τα 52 χαρτιά, διάλεξε 13)

- 2. $\binom{13}{5}\binom{13}{4}\binom{13}{4}$ (από τις 13 κούπες διάλεξε 5, από τα 13 καρό διάλεξε 4 και από τα 13 σπαθιά διάλεξε τέσσερα)
- 3. $\binom{26}{13}$ (διάλεξε 13 χαρτιά από το σύνολο των 26 χαρτιών που είναι σπαθιά ή μπαστούνια)
- (β) Το πλήθος δίνεται από τη σχέση P(n, k)/(q1!q2!...qt!) όπου n=8, k=8, t=5, q1=3, q2=2, q3=1, q4=1, q5=1. Αυτό γιατί θέλουμε να φτιάξουμε λέξεις μήκους n=8 γραμμάτων (όσο και το πλήθος των γραμμάτων της λέξης ΚΑΤΑΚΑΘΙ) και στη διάθεσή μας έχουμε k=5 διαφορετικά γράμματα (A, K, T, Θ, I) , καθένα από τα οποία επαναλαμβάνεται q1=3, q2=2, q3=1, q4=1 kai q5=1 φορές, αντίστοιχα. Άρα το πλήθος είναι

$$\frac{8!}{3!2!1!1!1!} = \frac{3!*4*5*6*7*8}{3!*2}$$
$$= 2*5*6*7*8 = 3,360$$

(γ)

2.
$$\binom{6}{3}\binom{3}{1}\binom{2}{1}\binom{1}{1} = \frac{6!}{3!3!} *3*2*1 = \frac{3!*4*5*6}{3!*2*3} *3*2*1 = 5*4*3*2*1 = 120$$

Θέμα 9°: [8 μονάδες, γράφοι]

Έχει ο πλήρης διμερής γράφος $K_{3,4}$

- (α) [2] μονοπάτι Euler;
- (β) [2] κύκλωμα Euler;
- (γ) [2] μονοπάτι Hamilton;
- (δ) [2] κύκλωμα Hamilton;

Σε κάθε περίπτωση, δικαιολογείστε την απάντησή σας.

Λύση

- (α) Όχι, γιατί ο $K_{3,4}$ δεν έχει ακριβώς δύο κορυφές περιττού βαθμού
- (β) Όχι, γιατί ο Κ_{3.4} περιλαμβάνει κορυφές με περιττό βαθμό.
- (γ) Ναι, π.χ. το μονοπάτι 4, 1, 5, 2, 6, 3, 7 στο παρακάτω σχήμα
- (δ) Ox1.

