Calculus of parametric equations example problems*

Dr Juan H Klopper

Contents

1	Parametric curve differentiation	1
2	Parametric curve integration	2

1 Parametric curve differentiation

Problem 1.1. Derive the equation for the first derivative of a parametric equation.

Problem 1.2. Derive the equation for the second derivative of a parametric equation.

Problem 1.3. Find the first derivative of the parametric equations $x = r \cos t$ and $y = r \sin t$.

Problem 1.4. Find the second derivative of the parametric equations $x = r \cos t$ and $y = r \sin t$.

Problem 1.5. Find the first derivative of the parametric equations $x = t^3 + t$ and $y = t^7 + t + 1$.

Problem 1.6. Find the second derivative of the parametric equations $x = t^3 + t$ and $y = t^7 + t + 1$.

Problem 1.7. Find the first derivative of the parametric equations x = x(t) and y = y(t) using time derivative dot notation.

Problem 1.8. Find the second derivative of the parametric equations x = x(t) and y = y(t) using time derivative dot notation.

Problem 1.9. Find the angle at witch the cycloid $(x,y)=(at-a\sin t,a-a\cos t)$ meets the x axis at the origin.

Hint: Use the limit as $t \to 0^+$.

Problem 1.10. Find the slope of the parametric curve $(x,y)=(t^5+\sin 2\pi t, t+e^t)$

^{*}A course in vector calculus

Problem 1.11. Find the slope of the curve $(x,y) = (t^2 + e^t, t + e^t)$ at the point (1,1).

Hint: Find the value of t at the point.

Problem 1.12. Find the point(s) on the parametric curve $(x,y) = (2\cos t + \sin 2t, 2\sin t + \cos 2t)$ where there is a horizontal tangent line.

Hint: This is the point where the numerator of the first derivative is 0, but the denominator is not.

Problem 1.13. Find the point(s) on the parametric curve $(x,y) = (2\cos t + \sin 2t, 2\sin t + \cos 2t)$ where there is a vertical tangent line.

Hint: A vertical tangent line to a parametric curve is where the numerator of the first derivative not 0, while the denominator is 0.

Problem 1.14. Find the points on the parametric curve $(x,y)=(\cos 2t,\sin 3t)$, where there are horizontal tangent lines.

Hint: This is the point where the numerator of the first derivative is 0, but the denominator is not.

Problem 1.15. Find the points on the parametric curve $(x,y)=(\cos 2t,\sin 3t)$, where there are vertical tangent lines.

Hint: A vertical tangent line to a parametric curve is where the numerator of the first derivative not 0, while the denominator is 0.

2 Parametric curve integration

Problem 2.1. Consider a single variable function, f, continuous on an interval $a \le x \le b$. Derive an equation for the area enclosed by the parametric curve of this function, given $c \le t \le d$ (with no intersection of the curve on this interval, except perhaps for a coincident start and end position and a clockwise traversal on the interval).

Problem 2.2. Find the area enclosed by the parametric curve $(x,y)=(2\cos t+\sin 2t, 2\sin t+\cos 2t)$ for $0\leq t\leq 2\pi$.

Hint: Use $\int_{c}^{d}y'\left(t\right)x\left(t\right)\,dt$ or $-\int_{c}^{d}y\left(t\right)x'\left(t\right)\,dt$

Problem 2.3. Find the area enclosed by the ellipse in (3).

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \tag{1}$$

Hint: Use a trigonometric identity.

Problem 2.4. Find the area enclosed by the parametric equations given in (4).

$$(x,y) = \left(\frac{1}{2}\cos t - \frac{1}{4}\cos 2t, \frac{1}{2}\sin t - \frac{1}{4}\sin 2t\right)$$
 (2)

Problem 2.5. Find the area enclosed by the parametric curve $(x,y)=(\cos t,\sin 2t)$ on the interval $\frac{\pi}{2}\leq t\leq \frac{3\pi}{2}$

Problem 2.6. Find the area enclosed by the parametric equation $(x,y)=\left(t^3-4t,t^4-1\right)$ on the interval $-2\leq t\leq 2$.