

Master in Computer Vision Barcelona

Project Module 4 Coordination

Week 3: Tasks Description Academic year 2015/2016

Video Surveillance for Road Traffic Monitoring J. Ruiz-Hidalgo / X. Giró

j.ruiz@upc.edu/xavier.giro@upc.edu

Project Schedule

Goals Week 3

- Implement a robust foreground segmentation algorithm.
- Two basic post-filtering strategies:
 - Hole filling
 - Area filtering
- A strategy to remove shadows.

Tasks

Mandatory

- Task 1: Hole fillings.
- Task 2: Area filtering.
- Task 3: Precision-Recall (PR) and Area Under the Curve (AUC).

Optional

- Task 4: Other solutions.
- Task 5: Shadow removal.
- Task 6: Improved Evaluation of Foreground Maps

Sequences

ID	FRAME RANGE	TYPE
Highway	1050 - 1350	Baseline
Fall	1460 - 1560	Dynamic background
Traffic	950 - 1050	Camera jitter

Task 1: Hole filling

- Post-process the configuration from week 2 with the best AUC.
- Apply Matlab's <u>imfill</u>.
- Experiment with 4 and 8 connectivity.
- Results report with absolute AUC & gain (in brackets), per sequence and averaged.

	4-CONNECTIVITY	8-CONNECTIVITY
Highway	xx.xx (+yy.yy)	xx.xx (+yy.yy)
Fall	xx.xx (+yy.yy)	xx.xx (+yy.yy)
Traffic	xx.xx (+yy.yy)	xx.xx (+yy.yy)
Average	xx.xx (+yy.yy)	xx.xx (+yy.yy)

Task 2: Area filtering

- Post-process best configuration (in average) from Task 1.
- Apply Matlab's <u>bwareaopen(BW,P)</u>.
- Plot a graph of averaged AUC vs #pixels (P).

Task 3: PR curve & AUC

• Update your best PR curve and AUC according to the best settings obtained in Tasks 1 and 2.

Task 4: Other solutions (optional)

- Explore with other morphological filters to improve AUC for foreground pixels.
 - Closing
 - Opening
 - Dilation
 - Erosion
 - o (...)

Task 5: Shadow removal (optional)

- Search for existing techniques.
- Suggested readings:
 - [1] Elgammal, Ahmed, David Harwood, and Larry Davis. "Non-parametric model for background subtraction." Computer Vision—ECCV 2000. Springer Berlin Heidelberg, 2000. 751-767.
 - [2] Cucchiara, Rita, et al. "Improving shadow suppression in moving object detection with HSV color information." Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE. IEEE, 2001.
 - [3] Sanin, Andres, Conrad Sanderson, and Brian C. Lovell. "Shadow detection: A survey and comparative evaluation of recent methods." Pattern recognition 45.4 (2012): 1684-1695. [Arxiv]

Task 6: Improved Evaluation of Foreground Maps

• Substitute the classic F-measure by the proposal in this paper:

R. Margolin, L. Zelnik-Manor and A. Tal, "How to Evaluate Foreground Maps?" (CVPR 2014)

Scoring Rubric

Grade is assigned based on the satisfactory accomplishment of...

Grade	Common meaning	Succesfully completed tasks
9-10	Excellent	All mandatory and two optional tasks
7-9	Very good	All mandatory and one optional tasks
5-7	Average	All mandatory tasks
3-5	Difficulties	All mandatory tasks but one
0-3	Fail	All mandatory tasks but two or more

Deliverables

- Google drive with slides per tasks
- Code used for the week assignment

- 13th January
 - Upload link to GitHub
 - Fill the intra-group evaluation