

- RoHs Compliant ①
- Lead-Free (Qualified up to 260°C Reflow)
- Application Specific MOSFETs
- Optimized for Synchronous Rectification for 5V to 12V outputs
- Low Conduction Losses
- · Ideal for 24V input Primary Side Forward Converters
- Low Profile (<0.7mm)
- Dual Sided Cooling Compatible ①
- Compatible with existing Surface Mount Techniques ①

DirectFET™ Power MOSFET ②
Typical values (unless otherwise specified)

$V_{ extsf{DSS}}$			V _{GS}		R _{DS(on)}		
60V m	nin	±2	20V max		5.5mΩ @		
Q _{g tot}	Q	gd	Q_{gs2}	Q_{rr}	Q _{oss}	$V_{gs(th)}$	
36nC	14	пC	2.7nC	37nC	11nC	4.0V	

Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) ①

SH SJ SP MZ	MN		
-------------	----	--	--

Description

The IRF6648PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET™ packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET™ package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET™ package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.

The IRF6648PbF is an optimized switch for use in synchronous rectification circuits with 5-12Vout, and is also ideal for use as a primary side switch in 24Vin forward converters. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance.

Page next number	Dookogo Type	Standard Pack		Orderable Bout Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
IRF6648TRPbF	DirectFET [™] Medium Can	Tape and Reel	4800	IRF6648TRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	60	\/
V_{GS}	Gate-to-Source Voltage	±20	V
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited) @	86	
$I_D @ T_C = 70^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited) @	69	Α
I _{DM}	Pulsed Drain Current®	260	
E _{AS}	Single Pulse Avalanche Energy ®	47	mJ
I _{AR}	Avalanche Current ®	34	Α

Fig 1. Typical On-Resistance vs. Gate Voltage Notes

- ① Click on this section to link to the appropriate technical paper.
- $\ensuremath{{@}}$ Click on this section to link to the DirectFET Website.
- 3 Surface mounted on 1 in. square Cu board, steady state.

Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage

- TC measured with thermocouple mounted to top (Drain) of part.
- ⑤ Repetitive rating; pulse width limited by max. junction temperature.
- © Starting $T_J = 25$ °C, L = 0.082mH, $R_G = 25Ω$, $I_{AS} = 34$ A.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	60			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.076		V/°C	Reference to 25°c, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		5.5	7.0	mΩ	V _{GS} = 10V, I _D = 17A
$V_{GS(th)}$	Gate Threshold Voltage	3.0	4.0	4.9	V	\/ -\/ -150uA
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Temp. Coefficient		-11		mV/°C	$V_{DS} = V_{GS}$, $I_D = 150 \mu A$
	Drain to Course Leakers Current			20		V _{DS} = 60 V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{V}, T_{J} = 125^{\circ}\text{C}$
ı	Gate-to-Source Forward Leakage			100	nΛ	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -20V$
gfs	Forward Transconductance	31			S	$V_{DS} = 10V, I_{D} = 17A$
Q_g	Total Gate Charge		36	50		
Q_{gs1}	Pre– Vth Gate-to-Source Charge		7.5			$V_{DS} = 30V$
Q_{gs2}	Post– Vth Gate-to-Source Charge		2.7		200	V _{GS} = 10V
Q_{gd}	Gate-to-Drain Charge		14	21	nC	I _D = 17A
Q_{godr}	Gate Charge Overdrive		12			See Fig 15
Q_{sw}	Switch Charge (Q _{gs2 +} Q _{gd)}		17			
Q_{oss}	Output Charge		21		nC	$V_{DS} = 16V, V_{GS} = 0V$
R _{G(Internal)}	Gate Resistance		1.0		Ω	
t _{d(on)}	Turn-On Delay Time		16			$V_{DD} = 30V, V_{GS} = 10V$
t _r	Rise Time		29			I _D = 17A
$t_{d(off)}$	Turn-Off Delay Time		28		ns	$R_G = 6.2\Omega$
t _f	Fall Time		13			See Fig 16 & 17
C _{iss}	Input Capacitance		2120			$V_{GS} = 0V$
Coss	Output Capacitance		600			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		170		pF	f = 1.0MHz
C _{oss}	Output Capacitance		2450			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		440			$V_{GS} = 0V, V_{DS} = 48V, f = 1.0MHz$

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			81		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ⑤			260		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 17A, V_{GS} = 0V ?$
t _{rr}	Reverse Recovery Time		31	47	ns	$T_J = 25^{\circ}C, I_F = 17A, V_{DD} = 30V$
Q_{rr}	Reverse Recovery Charge		37	56	nC	di/dt = 100A/µs ⑦ See Fig. 18

2017-04-06

Notes: $\ \$ Repetitive rating; pulse width limited by max. junction temperature. $\ \$ Pulse width $\ \ \le$ 400 μ s; duty cycle $\ \ \le$ 2%.

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units	
$P_D @ T_A = 25^{\circ}C$	Power Dissipation ③④	2.8		
$P_D @ T_A = 70^{\circ}C$	Power Dissipation ③④	1.8	W	
$P_D @ T_C = 25^{\circ}C$	Power Dissipation 4	89		
T_P	Peak Soldering Temperature 270			
T_J	Operating Junction and -40 to + 150		°C	
T _{STG}	Storage Temperature Range		°C	

Thermal Resistance

Symbol	Parameter Typ. Max.			
$R_{\theta JA}$	Junction-to-Ambient ③		45	
$R_{\theta JA}$	Junction-to-Ambient ® 12.5 —		°C/W	
$R_{\theta JC}$	Junction-to-Can 4 ®	1.4		
$R_{\theta JA-PCB}$	Junction-to-PCB Mounted	1.0 —		
	Linear Derating Factor ③	0.022		W/°C

Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Notes:

- ③ Surface mounted on 1 in. square Cu board, steady state.
- ④ T_C measured with thermocouple incontact with top (Drain) of part.
- ® Used double sided cooling, mounting pad with large heatsink.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- 1 R₀ is measured at T_J of approximately 90°C.

③ Surface mounted on 1 in. square Cu board (still air).

Mounted to a PCB with small clip heatsink (still air)

 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

Fig 4. Typical Output Characteristics

Fig 6. Typical Transfer Characteristics

Fig 8. Typical Capacitance vs. Drain-to-Source Voltage

Fig 5. Typical Output Characteristics

Fig 7. Normalized On-Resistance vs. Temperature

Fig 9. Normalized Typical On-Resistance vs. Drain Current and Gate Voltage

Fig 10. Typical Source-Drain Diode Forward Voltage

1000 OPERATION IN THIS AREA LIMITED BY R DS (on) 100µse Drain-to-Source Current (A) 100 10 1 ڡٞ $Tc = 25^{\circ}C$ Tj = 150°C Single Pulse 0.1 0 10 100 V_{DS}, Drain-to-Source Voltage (V)

Fig 11. Maximum Safe Operating Area

Fig 12. Maximum Drain Current vs. Case Temperature

Fig 13. Typical Threshold Voltage vs. Junction Temperature

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 15a. Gate Charge Test Circuit

Fig 15b. Gate Charge Waveform

Fig 16a. Unclamped Inductive Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17a. Switching Time Test Circuit

Fig 17b. Switching Time Waveforms

Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

DirectFET™ Substrate and PCB Layout, MN Outline ③ (Medium Size Can, N-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

DirectFET™ Outline Dimension, MN Outline (Medium Size Can, N-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

DirectFET[™] Part Marking

DirectFET[™] Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6648TRPBF). For 1000 parts on 7" reel, order IRF6648TR1PBF

	REEL DIMENSIONS							
S ⁻	TANDARI	OPTION	I (QTY 48	00)	TR	1 OPTION	(QTY 10	00)
	ME	TRIC	IMP	ERIAL	ME	TRIC	IMP	ERIAL
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C
Е	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C

LOADED TAPE FEED DIRECTION

DIMENSIONS					
	ME	TRIC	IMP	ERIAL	
CODE	MIN	MAX	MIN	MAX	
Α	7.90	8.10	0.311	0.319	
В	3.90	4.10	0.154	0.161	
С	11.90	12.30	0.469	0.484	
D	5.45	5.55	0.215	0.219	
E	5.10	5.30	0.201	0.209	
F	6.50	6.70	0.256	0.264	
G	1.50	N.C	0.059	N.C	
Н	1.50	1.60	0.059	0.063	

Qualification Information

Qualification Level	Consumer [†]			
Moisture Sensitivity Level	DirectFET [®] Medium Can	MSL1 (per JEDEC J-STD-020D ^{†)}		
RoHS Compliant	Yes			

† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comment
04/06/2017	 Changed datasheet with Infineon logo - all pages. Added Orderable table on page 1. Corrected PCB layout on page 7 Added Qualification table on page 10. Added disclaimer on last page.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.