1 Use Θ notation to express the statement

$$4n^6 < 17n^6 - 45n^3 + 2n + 8 < 30n^6, n > 3$$

Let A = 4, B = 30 and k = 3 then the statement translates to

$$An^6 \le 17n^6 - 45n^3 + 2n + 8 \le Bn^6, n \ge k$$

hence by the definition of Θ notation $17n^6 - 45n^3 + 2n + 8$ is $\Theta(n^6)$.

- **2** Use Ω notation to express the statement
 - 1. Use Ω notation to expres the statement

$$\frac{11}{4}n^2 \leq 3 \cdot (\lfloor \frac{n}{4} \rfloor)^2 + 5n^2, n \geq 2$$

Let $A=\frac{11}{4}$ and k=2 then $An^2\leq 3\cdot (\lfloor\frac{n}{4}\rfloor)^2+5n^2, n\geq 2$ then the statement translates to

$$An^2 \le 3 \cdot (\lfloor \frac{n}{4} \rfloor)^2 + 5n^2, n \ge k$$

which by the definition of Ω notation, $3 \cdot (\lfloor \frac{n}{4} \rfloor)^2 + 5n^2$ is $\Omega(n^2)$.

2. Use O notation to express the statement

$$0 \leq 3 \cdot (\lfloor \frac{n}{4} \rfloor)^2 + 5n^2 \leq 6n^2, n \geq 1$$

Let A=6 and k=1 then the statement translates to

$$0 \leq 3 \cdot (\lfloor \frac{n}{4} \rfloor)^2 + 5n^2 \leq An^2, n \geq k$$

which by the definition of O notation, $3 \cdot (\lfloor \frac{n}{4} \rfloor)^2 + 5n^2$ is $O(n^2)$.

3. Justify the statement: $3 \cdot (\lfloor \frac{n}{4} \rfloor)^2 + 5n^2$ is $\Theta(n^2)$. Let $A = \frac{11}{4}, B = 6$ and k = 2 then $A \cdot n^2 \leq 3 \cdot (\lfloor \frac{n}{4} \rfloor)^2 + 5n^2 \leq Bn^2, n \geq k$ which by the definition of Θ notation, $3 \cdot (\lfloor \frac{n}{4} \rfloor)^2 + 5n^2$ is $\Theta(n^2)$.

- 3. Given the function $15n^3 + 11n^2 + 9$
 - 1. Show that the function is $\Omega(n^3)$.

$$15n^3 \le 15n^3 + 11n^2 + 9, n \ge 1$$

Let A=15 and k=1 then the statements translates to $An^3 \leq 15n^3 + 11n^2 + 9, n \geq k$ which by the definition of Ω notation, $15n^3 + 11n^2 + 9$ is $\Omega(n^3)$.

2. Show that the function is $O(n^3)$.

$$15n^{3} + 11n^{2} + 9 \le 15n^{3} + 11n^{3} + 9n^{3}$$

$$\le 35n^{3}, n \ge 1$$

Let A=35 and k=1 then the statement translates to $15n^3+11n^2+9\leq An^3, n\geq k$ which by the definition of O notation, $15n^3+11n^2+9$ is $O(n^3)$.

- **4.** Given the function $n^4 5n 8$
 - 1. Show that the function is $\Omega(n^4)$.

Let
$$A = \frac{1}{2}$$
 and $a = (|-5| + |-8|)$

$$n \geq \frac{2}{1} \cdot (|-5|+|-8|)$$

$$\frac{1}{2}n^4 \geq 5n^3 + 8n^3$$

$$\frac{1}{2}n^4 \geq 5n + 8$$

$$n^4 - 5n - 8 \geq \frac{1}{2}n^4, n \geq a$$

Hence by the definition of Ω notation, $n^4 - 5n - 8$ is $\Omega(n^4)$.

2. Show that the function is $O(n^4)$.

$$n^{4} - 5n - 8 \leq n^{4} + 5n + 8$$

$$\leq n^{4} + 5n^{4} + 8n4$$

$$= 14n^{4}, n > 1$$

Let A=14 and k=1 then the statement translates to $n^4-5n-8 \le An^4, n \ge k$ which by teh definition of O notation translates, n^4-5n-8 is $O(n^4)$.

5. Show that $15n^3 + 11n^2 + 9$ is $\Theta(n^3)$.

Since we have $\Omega(n^3)$ and $O(n^3)$ we have that there exists real positive number constants A and B such that $Ag(n) \leq f(n) \leq Bg(n), k \geq n$ where $k = \max(k', k'')$ obtained from the previous inequalities. By definition of Θ , $15n^3 + 11n^2 + 9$ is $\Theta(n^3)$.