

hypothesis restin

Lecture 18

Confidence Intervals & Hypothesis Testing

STAT 8010 Statistical Methods I October 2, 2019

Whitney Huang Clemson University

Last Lecture: Confidence Intervals for μ

Confidence Intervals & Hypothesis Testing

Confidence Intervals

Example: Average Height

We measure the heights of 40 randomly chosen men, and get a mean height of 5'9" (\approx 175cm). Suppose we know the standard deviation of men's heights is 4" (\approx 10cm). Find the 95% confidence interval of the true mean height of ALL men.

Confidence Intervals Hypothesis Testing

- Operation Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- **2** Population standard deviation: $\sigma = 4$ inches

- Operation Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- **2** Population standard deviation: $\sigma = 4$ inches

- Operation Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Population standard deviation: $\sigma = 4$ inches
- Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches

- Operation Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Population standard deviation: $\sigma = 4$ inches
- Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- **2** Population standard deviation: $\sigma = 4$ inches
- Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches
- **95%CI**: Need to find $z_{0.05/2} = 1.96$ from the Z-table

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- **2** Population standard deviation: $\sigma = 4$ inches
- Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches
- **95%CI**: Need to find $z_{0.05/2} = 1.96$ from the Z-table

- Operation Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- **②** Population standard deviation: $\sigma = 4$ inches
- **3** Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches
- **95%CI**: Need to find $z_{0.05/2} = 1.96$ from the Z-table
- **95%** CI for μ_X is:

$$[69 - 1.96 \times 0.63, 69 + 1.96 \times 0.63]$$

= [67.77, 70.23]

Properties of Confidence Intervals

• In contrast with the point estimate, \bar{X}_n , a $(1 - \alpha)\%$ CI is an interval estimate, where the **length of CI** reflects our estimation uncertainty

• Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1 - \alpha)\%$ of these confidence intervals will contain the true μ

The length of a CI depends on

• Population Standard Deviation: σ

• Confidence Level: $1 - \alpha$

Sample Size: n

Confidence Intervals

Sample Size Calculation

UNIVERSIT

- We may want to estimate μ with a confidence interval with a predetermined margin of error (i.e. $z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$)
- For example, in estimating the true mean height of All men we may want our CI to be just 0.5 inches in width
- The question is then, "how many observations do we need to take so that we have the desired margin of error?"

Sample Size Calculation Cont'd

Confidence Intervals

ypothesis Testing

To compute the sample size needed to get a CI for μ with a specified margin of error, we use the formula below

$$n = \left(\frac{z_{\alpha/2} \times \sigma}{\text{Margin of error}}\right)^2$$

Exercise: Derive this formula using margin of error $= z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

Average Height Example Revisited

Confidence Intervals & Hypothesis Testing

Confidence Intervals

lypothesis Testing

Compute the sample size needed in order to estimate the true mean height of All men such that the 95% CI to be 0.5 inches in width

Average Height Example Revisited

Confidence Intervals

othesis Testing

Compute the sample size needed in order to estimate the true mean height of All men such that the 95% CI to be 0.5 inches in width

- Length of CI: $2 \times z_{0.025} \frac{\sigma}{\sqrt{n}} = 2 \times$ margin of error
- **2** Want to find *n* s.t. $z_{0.025} \frac{\sigma}{\sqrt{n}} = 0.25$
- **3** We have $n = \left(\frac{1.96 \times 4}{0.25}\right)^2 = 983.4496$

Therefore, the required sample size is 984

Confidence Intervals When σ Unknown

Confidence Intervals

- ullet In practice, it is unlikely that σ is available to us
- One reasonable option is to replace σ with s, the sample standard deviation
- We need to account for this added uncertainty with a (slightly) different sampling distribution that has fatter tails

⇒ Student t Distribution (William Gosset, 1908)

Student t Distribution

- Recall the standardize sampling distribution $\frac{\bar{\Lambda}_n \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$
- Similarly , the studentized sampling distribution $\frac{\bar{X}_n-\mu}{\frac{\bar{X}_n}{2}}\sim \mathrm{t}(df=n-1)$

• $(1-\alpha) \times 100\%$ Cl for μ :

$$\left[\bar{X}_n - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}, \bar{X}_n + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}\right],\,$$

where $t_{\frac{\alpha}{2},n-1}$ is the $1-\frac{\alpha}{2}$ percentile of a student t distribution with the degrees of freedom =n-1

ullet is an estimate of the standard error of \bar{X}_n

Average Height Example Revisited

Confidence Intervals

lypothesis Testing

We measure the heights of 40 randomly chosen men, and get a mean height of 5'9" (\approx 175cm), and a standard deviation of 4.5" (\approx 11.4cm). Find the 95% confidence interval of the true mean height of ALL men.

vpothesis Testina

vpothesis Testina

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Sample standard deviation: s = 4.5 inches

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Sample standard deviation: s = 4.5 inches

- Operation Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches

- Operation Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches
- 95%CI: Need to find $t_{0.05/2,39} = 2.02$ from a t-table (or using a statistical software)

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches
- 95%CI: Need to find $t_{0.05/2,39} = 2.02$ from a t-table (or using a statistical software)

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{A0} = 69$ inches
- Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches
- 95%CI: Need to find $t_{0.05/2,39} = 2.02$ from a t-table (or using a statistical software)
- 95% CI for μ_X is:

$$[69 - 2.02 \times 0.71, 69 + 2.02 \times 0.71]$$

= [67.57, 70.43]

Hypothesis Testing

Confidence Intervals

 Hypothesis Testing: A method for using sample data to decide between two competing claims (hypotheses) about a population characteristic (a parameter. e.g. μ)

Examples:

- The true mean starting salary for graduates of four-year business schools is \$4,500 per month $\Rightarrow \mu = 4,500$
- The true mean monthly income for systems analysts is at least $6,000 \Rightarrow \mu \geq 6,000$

Hypotheses

• **Null Hypothesis**: A claim about a population characteristic that is initially assumed to be true. We use H_0 to denote a null hypothesis

- Confidence Inter
- Alternative Hypothesis: The competing claim, denoted by H_a
- In carrying out a test of H_0 versus H_a , the hypothesis H_0 will be rejected in favor of H_a only if sample evidence strongly suggests that H_0 is false. If the sample data does not contain such evidence, H_0 will not be rejected
- Therefore, the two possible decisions in a hypothesis test are:
 - Reject H_0 (and go with H_a)
 - Fail to Reject Ho

Courtroom Analogy

 In a criminal trial, we use the rule "innocent until proven guilty" Confidence Intervals

Therefore, our hypotheses are:

• H₀: Innocent

• H_a : Guilty

- If we have strong evidence that the accused is not innocent, we reject H₀ (innocent) and conclude H_a (guilty)
- If we do not have enough evidence to say that the accused is guilty, we do not say that the accused is "innocent".
 Instead, we say that the accused is "not guilty"

Hypotheses

Confidence Interval

Hypothesis Testing

Be careful setting up hypotheses:

- A statistical hypothesis test is only capable of demonstrating strong support for the alternative hypothesis H_a (by rejecting the null hypothesis H_0)
- Failing to reject H₀ does not show strong support for the null hypothesis – only a lack of strong evidence against H₀, the null hypothesis

The 2×2 Decision Paradigm for Hypothesis Testing

	"							9
01		-			Α.			Ψ.
\mathbb{C}		н	Λ	л١	S	4	SD	VI.
UN	1	٧	E	R	S	- 1	T	Υ

Confidence Interval

Hypothesis Testing

	Decision				
True State	Reject H_0	Fail to reject H_0			
H_0 is true	Incorrect:	Correct			
	Type I error				
H_0 is false	Correct	Incorrect:			
		Type II error			

Errors in Hypothesis Testing

- ullet The probability of a type I error is denoted by lpha
- The probability of a type II error is denoted by β