Ayudantía Data Science - Fundamentos de Data Science

Wilson Mejías Caballero

```
import pandas as pd
import numpy as np
import scipy as scy
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
plt.style.use('ggplot')
```

Accidentes de Transito y clima

Para esta actividad deberá utilizar la base de datos "BD_Actividad2.txt" la cual contiene datos ficticios de variables registradas para días de tormenta. El objetivo de esta actividad es poder trabajar con distintos tipos de variables y determinar el nivel de asociación que existe entre estas, mediante índices de correlación. Una vez definidas las variables con mayor parentesco, se realizará un modelo lineal con estas.

Listado de Variables:

- temperatura: Temperatura media (°C) registrada durante día controlado
- precipitación: Precipitación total (mm) registrada durante día controlado
- velocidad_viento: Velocidad media (km/hra) registrada durante día controlado
- Caudal: Caudadl medio (m3/seg) del curso de agua de la avinda principal durante día controlado
- N accidentes: Número de aacidentes registrados durante día controlado

```
In [2]: #Importación de base de datos

df1=pd.read_table("BD_Actividad2.txt", decimal=",", encoding="latin-1")
```

```
0
             11
                           17
                                              28
                                                    21.33
                                                                           1
1
             7
                            6
                                               8
                                                    14.00
                                                                           1
2
            16
                           33
                                              30
                                                    32.00
                                                                           8
                                               9
                                                                           2
3
            28
                            0
                                                    10.00
             11
                           21
                                               9
                                                    24.00
                                                                           8
```

```
In [4]: df1.shape
Out[4]: (29, 5)
```

```
In [5]: #Analisis preliminar de las variabless

df1.describe()
```

Out[5]:

	temperatura	precipitación	velocidad_viento	Caudal	N_de_accidentes
count	29.000000	29.000000	29.000000	29.000000	29.000000
mean	17.689655	12.034483	16.551724	16.916207	4.931034
std	7.649012	18.605842	7.716338	9.124622	3.069796
min	3.000000	0.000000	8.000000	10.000000	1.000000
25%	11.000000	2.000000	10.000000	12.000000	2.000000
50%	20.000000	4.000000	15.000000	12.670000	5.000000
75%	23.000000	13.000000	22.000000	19.330000	8.000000
max	28.000000	69.000000	30.000000	51.330000	10.000000

```
In [6]: #Función para graficar variables en un Data Frame
        def explor (df):
            for n, i in enumerate(df):
                 plt.subplot((len(list(df.columns))/3)+1,3,n+1)
                 if df[i].dtypes ==float:
                     sns.distplot(df[i])
                     plt.title(i)
                     plt.xlabel("")
                elif df[i].dtypes =="object":
                     sns.countplot(df[i])
                     plt.title(i)
                     plt.xlabel("")
                else:
                     sns.distplot(df[i],kde=False)
                     plt.title(i)
                     plt.xlabel("")
            plt.tight_layout()
```

In [7]: #Graficar Variables

plt.rcParams['figure.figsize'] = (10, 6)
 explor(df1)

In [8]: #Nivel de Asoción entre variables
sns.heatmap(df1.corr(method='pearson'), annot=True, cmap="Blues")

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x1ad7b5c7e80>

Al parecer la relación más importante para el número de accidentes, sería la cantidad de precipitación que cae durante el día.

Al parecer la relación entre el número de accidentes y la precipitación sería del tipo lineal, ya que el valor de la correlación de pearson de ajusta de mejor manera que el de spearman

velocidad_viento

Caudal

N_de_accidentes

precipitación

temperatura

```
In [10]: #Grafico de Dispersión entre variables
sns.regplot(y="N_de_accidentes",x= "precipitación", data=df1)
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1ad7b8081d0>

Se aprecia una cierta relación lineal, pero los puntos aún tienen mucha dispersión.

```
In [11]: sns.regplot(y="N_de_accidentes",x= "precipitación", data=df1,lowess=True)
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x1ad7b86ebe0>

Tampoco se aprecia una relación que sea no lineal enre las variables

Crecimiento de plantas

Para esta actividad deberá utilizar la base de datos "BD_Actividad3.csv" la cual contiene datos ficticios de crecimiento de plantas. El Objetivo de esta actividad es verificar las diferencias exixtentes entre los sitios y ttratamientos. variables:

- Crecimiento_altura: Crecimiento en altura (cm) de plantas al momento de ser evaluadas
- Crecimiento_diametro: Crecimiento en diametro (mm) de plantas al momento de ser evaluadas
- Tratamiento: Tipo de Fertilizante aplicado a la planta
- · Zona: Sitio en donde esta creciendo la plata

```
In [13]: df2=pd.read_csv("BD _Actividad3.csv")
```

```
In [14]:
          df2.head()
Out[14]:
               Crecimiento_altura;Crecimiento_diametro;Tratamiento;Zona
           0
                                                        34;39;Tr1;Z1
            1
                                                        29;50;Tr1;Z1
            2
                                                        33;56;Tr1;Z1
            3
                                                        28;48;Tr1;Z1
                                                        39;34;Tr1;Z1
In [15]: #Corregir problema del separador
           df2=pd.read_csv("BD _Actividad3.csv", sep=";")
In [16]:
          df2.head()
Out[16]:
              Crecimiento_altura Crecimiento_diametro Tratamiento Zona
            0
                             34
                                                  39
                                                              Tr1
                                                                    Z1
                             29
                                                  50
                                                                    Z1
                                                              Tr1
            2
                             33
                                                  56
                                                              Tr1
                                                                    Z1
            3
                             28
                                                                    Z1
                                                  48
                                                              Tr1
                             39
                                                  34
                                                              Tr1
                                                                    Z1
In [17]: df2.shape
```

Out[17]: (45, 4)

In [18]: explor(df2)

#Realizamos graficos pla ver diferencias entre valores In [19]: def df_boxplot (df): categorica=[] numerica=[] for n, i in enumerate(df): if (df[i].dtypes =="object"): categorica.append(i) else: numerica.append(i) print("Las variables numericas son {}".format(numerica)) print("Las variables cateroricas son {}".format(categorica)) n=1for i in categorica: for j in numerica: plt.subplot((len(list(df.columns))/3)+1,3,n) ax=sns.boxplot(x=i, y=j ,data=df) n+=1 plt.tight_layout()

Las variables numericas son ['Crecimiento_altura', 'Crecimiento_diametro'] Las variables cateroricas son ['Tratamiento', 'Zona']

Se pueden apreciar diferencias entre el crecimiento en altura de los diferentes tratamiento y el crecimiento en diametro de las distintas zonas.

En ANOVA se plantean las siguientes hipotesis

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$

H₁: Al menos una igualdad no es cierta

```
In [22]: model = ols('Crecimiento_altura ~ Tratamiento', data=df2).fit()
model.summary()
```

Out[22]:

OLS Regression Results

Dep. Variable:	Crecimiento_altura	0.900	
Model:	OLS	Adj. R-squared:	0.895
Method:	Least Squares	F-statistic:	188.2
Date:	Tue, 13 Aug 2019	Prob (F-statistic):	1.08e-21
Time:	01:51:07	Log-Likelihood:	-135.97
No. Observations:	45	AIC:	277.9
Df Residuals:	42	BIC:	283.4
Df Model:	2		
Covariance Type:	nonrobust		
	coef std err	t P> t [0	0.025 0.975

	coef	std err	t	P> t	[0.025	0.975]
Intercept	30.3333	1.327	22.856	0.000	27.655	33.012
Tratamiento[T.Tr2]	-17.4000	1.877	-9.271	0.000	-21.188	-13.612
Tratamiento[T.Tr3]	19.0000	1.877	10.123	0.000	15.212	22.788

Omnibus: 7.451 Durbin-Watson: 2.021

Prob(Omnibus): 0.024 Jarque-Bera (JB): 7.406

 Skew:
 -0.605
 Prob(JB):
 0.0246

 Kurtosis:
 4.577
 Cond. No.
 3.73

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Los coeficientes de de los tratamiento 2 y tratamiento3 son menores que 0.05, por lo que se asume que existe un efecto significativo sobre el crecimiento en altura

```
In [23]: model = ols('Crecimiento_diametro ~ Zona', data=df2).fit()
model.summary()
```

Out[23]:

OLS Regression Results

Dep. Variable:	Crecimiento_diametro	R-squared:	0.578
Model:	OLS	Adj. R-squared:	0.558
Method:	Least Squares	F-statistic:	28.74
Date:	Tue, 13 Aug 2019	Prob (F-statistic):	1.37e-08
Time:	01:51:07	Log-Likelihood:	-165.31
No. Observations:	45	AIC:	336.6
Df Residuals:	42	BIC:	342.0
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	48.3333	2.547	18.975	0.000	43.193	53.474
Zona[T.Z2]	-27.2667	3.602	-7.569	0.000	-34.536	-19.997
Zona[T.Z3]	-15.0000	3.602	-4.164	0.000	-22.270	-7.730

 Omnibus:
 1.953
 Durbin-Watson:
 1.663

 Prob(Omnibus):
 0.377
 Jarque-Bera (JB):
 1.430

 Skew:
 0.436
 Prob(JB):
 0.489

 Kurtosis:
 3.038
 Cond. No.
 3.73

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Los coeficientes de de las Zona 2 y Zona 3 son menores que 0.05, por lo que se asume que existe un efecto significativo sobre el crecimiento en diametro

```
In [24]: model = ols('Crecimiento_diametro ~ Tratamiento', data=df2).fit()
model.summary()
```

Out[24]:

OLS Regression Results

Dep. Variable:	Crecimiento_diametro			R-so	quared:	0.022	
Model:	OLS			Adj. R-so	quared:	-0.025	
Method:	Least Squares			F-st	tatistic:	0.4642	
Date:	Tue, 13 Aug 2019			ob (F-st	atistic):	0.632	
Time:	01:51:07			.og-Like	lihood:	-184.22	
No. Observations:	45				AIC:	374.4	
Df Residuals:	42			BIC : 379.9			
Df Model:			2				
Covariance Type:		nonrob	oust				
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	34.0000	3.878	8.768	0.000	26.175	41.825	
Tratamiento[T.Tr2]	-2.2667	5.484	-0.413	0.681	-13.334	8.800	
Tratamiento[T.Tr3]	3.0000	5.484	0.547	0.587	-8.067	14.067	

Omnibus: 0.209 Durbin-Watson: 1.026

Prob(Omnibus): 0.901 Jarque-Bera (JB): 0.319

Skew: 0.147 **Prob(JB):** 0.853

Kurtosis: 2.711 **Cond. No.** 3.73

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Los coeficientes son mayores a 0.05, no existiría efecto