

United International University
School of Science and Engineering
Assignment-04, Spring 2024
Coordinate Geometry (MAT 2109)
Due: May 04 in Class

Solve all problems.

1. (a) What do the equations represent in spherical systems?

i.
$$\theta = \frac{\pi}{3}$$
 and $\rho = 1$ iii. $\theta = \frac{\pi}{3}$ and $\rho = \frac{\pi}{3}$ iii. $\rho = 1$ and $\phi = \frac{\pi}{3}$ iv. $\rho = 1$ and $\theta = \frac{\pi}{3}$ and $\phi = \frac{\pi}{3}$

- (b) Evaluate $\int \int \int_E y^2 dV$, where E is the solid hemisphere $x^2 + y^2 + z^2 < 9$, y > 0.
- (c) Evaluate $\int \int \int_E x e^{x^2+y^2+z^2} dV$, where E is the portion of the unit ball $x^2+y^2+z^2<1$ that lies in the first octant.
- (d) Evaluate $\int \int \int_E \sqrt{x^2 + y^2 + z^2} dV$, where E lies above the cone $z = \sqrt{x^2 + y^2}$ and between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$.
- 2. (a) Evaluate the line integral $\int_C (x^2y + \sin x)dy$, where C is the arc of the parabola $y = x^2$ from (0,0) to (π,π^2) .
 - (b) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = xz\mathbf{i} + z^3\mathbf{j} + y\mathbf{k}$ and C is given by the vector function $\mathbf{r}(t) = e^t\mathbf{i} + e^{2t}\mathbf{j} + e^{-t}\mathbf{k}$, $-1 \le t \le 1$.
- 3. (a) Determine whether or not $\mathbf{F}(x,y) = ye^x \mathbf{i} + (e^x + e^y) \mathbf{j}$ is a conservative vector field. If it is, find a function f such that $\mathbf{F} = \nabla f$.
 - (b) A vector field $\mathbf{F}(x,y) = (e^x + \sin y)\mathbf{i} + x\cos y\mathbf{j}$ and a curve $C: x = t, y = t(3-t), 0 \le t \le 3$ are given.
 - i. Show that **F** is conservative and find a potential function f.
 - ii. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, using the Fundamental Theorem for Line Integrals.
- 4. (a) Evaluate the line integral $\oint_C xydx + x^2y^3dy$, where C is the triangle with vertices (0,0), (1,0), and (1,2) by two methods: (i) directly and (ii) using Green's Theorem.
 - (b) Use Green's Theorem to evaluate the line integral $\int_C y^3 dx x^3 dy$, along the given positively oriented curve C is the circle $x^2 + y^2 = 4$.

- 5. (a) Find the curl and the divergence of the vector field $\mathbf{F}(x, y, z) = \sin yz \,\mathbf{i} + \sin zx \,\mathbf{j} + \sin xy \,\mathbf{k}$.
 - (b) Determine whether or not $\mathbf{F}(x, y, z) = yz \sin xy \,\mathbf{i} + zx \sin xy \,\mathbf{j} \cos xy \,\mathbf{k}$ is a conservative vector field. If it is, find a function f such that $\mathbf{F} = \nabla f$.