中南大学考试试卷

2019 -- 2020 学年_二_学期 时间 100 分钟 2020 年 6月 22 日 运筹学 课程 32 学时 2 学分 考试形式: 开 卷 专业年级: 智能 18级 总分 100分, 占总评成绩 60% 注:此页不作答题纸,请将答案写在答题纸上 一、单选题(本题 30 分,每小题 3 分) 25 分钟 (1) 如果一个线性规划问题有 n 个变量, m 个约束方程 (m < n), 系数矩阵的秩为 m, 则基可 行解的个数最多为 CA. $m \uparrow$ B. $n \uparrow$ C. $C_n^m \uparrow$ D. $C_m^n \uparrow$ (2) 下列关于可行解,基本解,基可行解的说法错误的是 B. A. 可行解中包含基可行解 B. 可行解与基本解之间无交集 C. 线性规划问题有可行解必有基可行解 D. 满足非负约束条件的基本解为基可行解 (3) 单纯形法当中,入基变量的确定应选择检验数 CA. 绝对值最大 B. 绝对值最小 C. 正值最大 D. 负值最小 (4) 在约束方程中引入人工变量的目的是 D B. 变不等式为等式 A. 体现变量的多样性 C. 使目标函数为最优 D. 形成一个单位阵 (5) 对偶单纯形法的迭代是从 A 开始的。 C. 可行解 D. 基本解 A. 正则解 B. 最优解 (6) 在线性规划的各项灵敏度分析中,一定会引起最优目标函数值发生变化的是 B 。 A. 目标系数 c_i 的变化 B. 约束常数项 b_i 变化 D. 增加新约束 C. 增加新的变量 (7) 求目标函数为极大的线性规划问题时, 若全部非基变量的检验数≤0, 且基变量中有人工

(7) 求目标函数为极大的线性规划问题时,若全部非基变量的检验数≤0,且基变量中有人工 变量时该问题有<u>B</u>。

A. 无界解

B. 无可行解

C. 唯一最优解

D. 无穷多最优解

(8) 设 \overline{X} 、 \overline{Y} 分别是标准形式的原问题与对偶问题的可行解,则 C 。

A. $C\overline{X} \ge \overline{Y}B$

B. $C\overline{X} = \overline{Y}B$

C. $C\overline{X} \leq \overline{Y}B$

D. $C\overline{X} \neq \overline{Y}B$

(9) 若线性规划问题最优基中某个基变量	的价值系数发生变化,则 <u>C</u> 。
A. 该基变量的检验数发生变化	B. 其他基变量的检验数发生变化
C. 所有非基变量的检验数发生变化	D. 所有变量的检验数都发生变化
(10) 对于标准型的线性规划问题,下列记	总法错误的是则 $_{C}$ 。
A. 在新增变量的灵敏度分析中, 若新	f变量可以进入基底,则目标函数将得到进一步改善。
B. 在增加新约束条件的灵敏度分析。	中,新的最优目标函数值不可能增加。
C . 当某个右端常数 b_k 增加时,目标	函数值一定增加。
D. 某基变量的价值系数增大,目标的	函数值将得到改善。
(11) 在运输问题中,可以作为表上作业法	去的初始基可行解的调运方案应满足的条件是则 <u>D</u> 。
A. 含有 m+n-1 个基变量。	
B. 基变量不构成闭回路。	
C. 含有 m+n-1 个基变量且不构成闭	可路。
D. 含有 m+n-1 个非零的基变量且不	构成闭回路。
(12) 运输问题的初始方案中,没有分配过	运量的格所对应的变量为 <u>B</u> 。
A. 基变量	B. 非基变量
C. 松弛变量	D. 剩余变量
(13) 表上作业法中初始方案均为 <u>A</u> 。	
A. 可行解	B. 非可行解
C. 待改进解	D. 最优解
(14) 闭回路是一条封闭折线,每一条边都	'是 <u>D</u> 。
A. 水平	B. 垂直
C. 水平+垂直	D. 水平或垂直
(15)一般讲,在给出的初始调运方案中,	最接近最优解的是 $_{C}$ 。
A. 西北角法	B. 最小元素法
C. 差值法	D. 位势法
(16)表上作业法的基本思想和步骤与单纯	也形法类似,因而初始调运方案的给出就相当于找到
↑ <u>- C</u> _∘	
A. 基本解	B. 可行解
C. 初始基本可行解	D. 最优解

A. 整数	B. 0或1
C. 大于 0 的非整数	D. 以上三种都有可能
(18)在下列整数规划问题中,	分枝定界法和割平面法都可以采用的是 A 。

- A. 纯整数规划 B. 混合整数规划
- C. 0-1 规划 D. 线性规划
- (19)下列方法中用于求解分配问题的是<u>D</u>。

(17)整数规划问题中,变量的取值可能是_D_。

- A. 单纯性表B. 分枝定界法C. 表上作业法D. 匈牙利法
- (20)关于动态规划的描述,不正确的是<u>B</u>。
 - A. 动态规划是解决多阶段决策过程最优化的一种常用算法思想。
 - B. 动态规划的实质是分治思想和解决冗余,与分治法和溯回法类似。
 - C. 在处理离散型问题时,动态规划比线性规划效果更好。
 - D. 一个标准的动态规划算法包括划分阶段和选择状态两个步骤。

1、某厂生产 A_1 , A_2 , A_3 三种产品,需要消耗 B_1 、 B_2 两种原材料,每件产品对原材料的消耗、每件产品的成本及原材料的现有存量如下,要求制定生产计划,依次满足下列目标:

原料

 \mathbf{B}_1

9

3

5

1200

 B_2

4

7

8

1500

单位

成本

25

20

30

需要量

≥60

≥80

≥100

消耗

产品

 A_1

 A_2

 A_3

现有量

P₁: A₁、A₂、A₃的产量最少为60、80、100,并依单位成本确定权系数;

P2: 原材料 B1 的现有量可以超过;

P3: 原材料 B2 的现有量不得超过;

P4: 总成本限制在 6000 元以下。

[解:]设生产 A_1 , A_2 , A_3 三种产品的数量分别为 x_1 , x_2 , x_3 , 依题意建立目标规划模型如下:

min $Z=P_1(5d_1^2+4d_2^2+6d_3^2)+P_2d_4^2+P_3d_5^2+P_4d_6^2$

s.t. $x_1+d_1^--d_1^+=60$ $x_2+d_2^--d_2^+=80$ $x_3+d_3^--d_3^+=100$

 $9x_1+3x_2+5x_3+d_4-d_4+=1200$

 $4x_1+7x_2+8x_3+d_5$ $-d_5$ +=1500

 $25x_1+20x_2+30x_3+d_6-d_6^+=6000$

 $x_1, x_2, x_3 \ge 0, d_i, d_i^+ \ge 0 (i=1,2,3,4,5,6)$

2、某厂生产 A_1 , A_2 , A_3 三种产品,三种产品分别经 B_1 、 B_2 、 B_3 三种设备加工的情况如下,试制定一个最优的生产计划。

产品	机器生	产率(件/	小时)	原料成本	产品单价
	\mathbf{B}_1	\mathbf{B}_2	B_3	(元/件)	(元)
A_1	20	10		15	55
A_2	10		25	25	90
A_3		20	20	10	50
成本(元/小时)	200	100	200		
可用机时	1100	1000	1300		

[解:] 设生产 A_1 , A_2 , A_3 三种产品的数量分别为 x_1 , x_2 , x_3 , 按利润最大为生产目标建立模型有:

生产 A_1 产品成本为: $(15+200/20+100/10)x_1=35x_1$

生产 A2 产品成本为: (25+200/10+200/25)x2=53x2

生产 A3 产品成本为: $(10+100/20+200/20)x_3=25x_3$

则有 max Z= $(55-35)x_1+(90-53)x_2+(50-25)x_3=20x_1+37x_2+25x_3$

s.t. $2x_1+x_2 \le 110$

 $x_1 + 2x_3 \le 100$

 $5x_2+4x_3 \le 260$

 $x_1, x_2, x_3 \ge 0$

三、计算题(本题 15 分)30 分钟

已知线性规划问题 $\max Z = 6x_1 - x_2 + 8x_3$,

s.t. $x_2 + 2x_3 \le b_1$

 $3x_1-x_2+x_3 \le b_2$

 $x_1, x_2, x_3 \ge 0$

对于给定的非负常数 b₁ 和 b₂, 最优单纯形表如下:

	С						
C_B	X_{B}	b	x_1	x_2	x_3	χ_4	<i>X</i> ₅
	<i>x</i> ₃	4		•	•		
	x_1	2					

- (1) 完成上述最优单纯形表(6分), 并求 b_1 和 b_2 (2分);
- (2) 写出该问题的对偶问题(3分);
- (3) 给出原问题和对偶问题的最优解和最优值(4分)。

$$\max Z = 6x_1 - x_2 + 8x_3$$
s.t.
$$\begin{cases} x_2 + 2x_3 + x_4 &= b_1 \\ 3x_1 - x_2 + x_3 &+ x_5 = b_2 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

	С		6	-1	8	0	0
C _B	X_B	b	x_1	x_2	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅
8	<i>X</i> 3	4	0	1/2	1	1/2	0
6	x_1	2	1	-1/2	0	-1/6	1/3
Z		-44	0	-2	0	-3	-2

初始单纯形表

4717-174							
	C		6	-1	8	0	0
C _B	X _B	b	x_1	x_2	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅
0	<i>X</i> 4	b_1	0	1	2	1	0
0	<i>x</i> ₅	b_2	3	-1	1	0	1
Z		0	6	-1	8	0	0

$$Q\begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ Q = \begin{bmatrix} 1/2 & 0 \\ -1/6 & 1/3 \end{bmatrix}, \ \begin{bmatrix} 1/2 & 0 \\ -1/6 & 1/3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ -1/2 & -1/6 & 1/3 \end{bmatrix}$$

$$\begin{bmatrix} 1/2 & 0 \\ -1/6 & 1/3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, \quad \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 8 \\ 10 \end{bmatrix}$$

(2) 对偶问题

$$\min W = 8y_1 + 10y_2$$

$$3y_2 \ge 6$$

$$-y_1 + y_2 \le 1$$

$$2y_1 + y_2 \ge 8$$

$$y_1, y_2 \ge 0$$

(3) 原问题:最优解 $X=[2,0,4]^T$,最优值为 44 对偶问题: $Y=[3,2]^T$,最优值为 44

四、计算题(本题15分)

已知运输问题的产销平衡表与单位运价表如下,试用伏格尔法确定初始调运方案 $(4 \, \mathcal{G})$;给出相应的总运价 $(3 \, \mathcal{G})$;用闭回路法计算 x_{31} 的检验数(在表格中绘出闭回路) $(6 \, \mathcal{G})$;根据 x_{31} 的检验数判断是否需要调整调运方案,若需要,针对 x_{31} 确定新的调运方案 $(2 \, \mathcal{G})$ 。

销地产地	B1		В	B2 B3		B4		产量			行差额				
A1									7						
		9		5		4		8	'						
A2									٦						
		2		8		3		6	5						
А3									0						
		7		3		5		4	8						
销量		2	(3	(6	6	3							
T-1 ->->>-															
列差额															

解: 伏格尔法确定初始方案 (4分):

第一列差值最大,确定 $x_{21}=2$,划去第一列。

销地 产地	B1		B2	ВЗ	B4	产量	行差额
A1		19	5	4	8	7	1
A2	2	(2)	8	3	6	5	1
A3		7	3	5	4	8	1
销量		2	6	6	6		
列差额		5	2	1	2		

第二行差值最大,确定 $x_{23}=3$,划去第二行。

销地 产地	B1	B2	ВЗ	В4	产量	行差额
A1	9	5	4	8	7	1
A2	2 (2)	-8	3 (3)	6	3	3
А3	7	3	5	4	8	1
销量	0	6	6	6		
列差额	_	2	1	2		

第四列差值最大,确定 $x_{34}=6$,划去第四列。

销地 产地	B1	В2	В3	B4	产量	行差额
A1	9	5	4	8	7	1
A2	2 (2)	8	3 (3)	6	0	-
A3	7	3	5	4 (6)	8	1
销量	0	6	3	6		
列差额	-	2	1	4		

第三行差值最大,确定 $x_{32}=2$,划去第三行,剩余基变量自然确定 $x_{12}=4$, $x_{13}=3$ 。

销地 产地	B1	B2	В3	B4	产量	行差额
A1	9	5 (4)	4 (3)	8	7	1
A2	2 (2)	8	3 (3)	6	0	-
А3	7	3 (2)	5	4 (6)	2	2
销量	0	6	3	0		
列差额	_	2	1	_		

则伏格尔法确定初始调运方案为 $x_{12}=4, x_{13}=3, x_{21}=2, x_{23}=3, x_{32}=2, x_{34}=6$ 。

相应总运价费为 $(3 \, \text{分})$: $5 \times 4 + 4 \times 3 + 2 \times 2 + 3 \times 3 + 3 \times 2 + 4 \times 6 = 75$ 。 闭回路法计算 x_{31} 的检验数 $(6 \, \text{分})$:

销地 产地	B1	B2	ВЗ	В4	产量	行差额
A1	9	5 (4)	14 (3)	8	7	1
A2	2 (2)	8	3 (3)	6	5	_
А3	7	3 (2)	5	4 (6)	8	2
销量	2	6	6	6		
列差额	-	2	1	_		

闭回路如上图所示,检验数

$$\sigma_{31} = (c_{31} + c_{12} + c_{23}) - (c_{32} + c_{13} + c_{21}) = (7 + 5 + 3) - (3 + 4 + 2) = 6$$

由于 x_{31} 的检验数大于 0,因此不需要针对 x_{31} 调整调运方案。(2分)

五、计算题(本题 12 分)30 分钟

某部门需要为 4 位员工分配 4 项工作,他们的综合考评得分如下表,每位员工只需要做一项

工作,每项工作只需要一个人完成,请确定出总得分最大工作分配方案。

工作	A	В	С	D
员工				
甲	84	87	86	90
乙	88	91	90	88
丙	92	89	89	90
丁	85	92	90	93

- (1) 写出原始效益矩阵,将最大化指派问题转化为最小化指派问题。
- (2) 试用匈牙利法在总得分最大的条件下确定各员工的工作分配方案。
- (3) 写出工作分配方案, 计算出总得分。

解:

问题(1)

$$C = \begin{bmatrix} 84 & 87 & 86 & 90 \\ 88 & 91 & 90 & 88 \\ 92 & 89 & 89 & 90 \\ 85 & 92 & 90 & 93 \end{bmatrix}$$

 \Leftrightarrow M=93, $C'=93-c_{ij}$

$$C' = \begin{bmatrix} 9 & 6 & 7 & 3 \\ 5 & 2 & 3 & 5 \\ 1 & 4 & 4 & 3 \\ 8 & 1 & 3 & 0 \end{bmatrix}$$

问题(2)

1) 变换系数矩阵,增加0元素

$$(c'_{ij}) = \begin{bmatrix} 9 & 6 & 7 & 3 \\ 5 & 2 & 3 & 5 \\ 1 & 4 & 4 & 3 \\ 8 & 1 & 3 & 0 \end{bmatrix} \stackrel{-3}{-2} \longrightarrow \begin{bmatrix} 6 & 3 & 4 & 0 \\ 3 & 0 & 1 & 3 \\ 0 & 3 & 3 & 2 \\ 8 & 1 & 3 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 6 & 3 & 3 & 0 \\ 3 & 0 & 0 & 3 \\ 0 & 3 & 2 & 2 \\ 8 & 1 & 2 & 0 \end{bmatrix}$$

2) 试指派

$$\begin{bmatrix} 6 & 3 & 3 & \Delta \\ 3 & \times & \Delta & 3 \\ \Delta & 3 & 2 & 2 \\ 8 & 1 & 2 & \times \end{bmatrix}$$

3) 作最少的直线覆盖所有 0 元素

$$\begin{bmatrix} 6 & 3 & 3 & \Delta \\ 3 & \times & \Delta & 3 \\ \Delta & 3 & 2 & 2 \\ 8 & 1 & 2 & \times \end{bmatrix} \checkmark \longrightarrow \begin{bmatrix} 6 & 3 & 3 & \Delta \\ \hline 3 & \times & \Delta & 3 \\ \hline \Delta & 3 & 2 & 2 \\ \hline 8 & 1 & 2 & \times \end{bmatrix} \checkmark$$

4)没有被直线通过的元素中选择最小值为 1,变换系数矩阵,将没有被直线通过的所有元素减去这个最小元素,直线交点处的元素加上这个最小值,得到新的矩阵。

$$\begin{bmatrix} 5 & 2 & 2 & 0 \\ 3 & 0 & 0 & 4 \\ 0 & 3 & 2 & 3 \\ 7 & 0 & 1 & 0 \end{bmatrix}$$

5) 得出最优解

$$\begin{bmatrix} 5 & 2 & 2 & \Delta \\ 3 & \times & \Delta & 4 \\ \Delta & 3 & 2 & 3 \\ 7 & \Delta & 1 & \times \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

问题(3)

安排甲做 D 工作, 乙做 C 工作, 丙做 A 工作, 丁做 B 工作, 最大得分为 90+90+92+92=364

六、计算题(本题12分)

已知救护车需要将疑似新冠肺炎感染病人从小区 A 运到医院 E,他有如下多条路径可以选择,请帮救护车选择一条捷径(10 分),并给出需要行驶的最短距离是多少(假定距离单位为 km)(2 分)。

解:

最短路径: AB₂C₂D₁E, 最短距离: 8km