## **SERIES - PARALLEL NETWORKS**

### Reduce and return approach



FIG. 7.1

Introducing the reduce and return approach.

### Block diagram approach



FIG. 7.2
Introducing the block diagram approach.

In Fig. 7.2, blocks B and C are in parallel (points b and c in common), and the voltage source E is in series with block A (point a in common). The parallel combination of B and C is also in series with A and the voltage source E due to the common points b and c, respectively.



FIG. 7.13

Find the indicated currents and voltages for the network of Fig. 7.13



$$R_{1\parallel 2} = \frac{R}{N} = \frac{6 \Omega}{2} = 3 \Omega$$

$$R_{A} = R_{1\parallel 2\parallel 3} = \frac{(3 \Omega)(2 \Omega)}{3 \Omega + 2 \Omega} = \frac{6 \Omega}{5} = 1.2 \Omega$$

$$R_{B} = R_{4\parallel 5} = \frac{(8 \Omega)(12 \Omega)}{8 \Omega + 12 \Omega} = \frac{96 \Omega}{20} = 4.8 \Omega$$

The reduced form of Fig. 7.13 will then appear as shown in Fig. 7.15, and

$$R_T = R_{1||2||3} + R_{4||5} = 1.2 \Omega + 4.8 \Omega = 6 \Omega$$

$$I_s = \frac{E}{R_T} = \frac{24 \text{ V}}{6 \Omega} = 4 \text{ A}$$

$$V_1 = I_s R_{1||2||3} = (4 \text{ A})(1.2 \Omega) = 4.8 \text{ V}$$

$$V_5 = I_s R_{4||5} = (4 \text{ A})(4.8 \Omega) = 19.2 \text{ V}$$

with

Applying Ohm's law,

$$I_4 = \frac{V_5}{R_4} = \frac{19.2 \text{ V}}{8 \Omega} = 2.4 \text{ A}$$

$$I_2 = \frac{V_2}{R_2} = \frac{V_1}{R_2} = \frac{4.8 \text{ V}}{6 \Omega} = 0.8 \text{ A}$$



Calculate the indicated currents and voltage of the following network.



$$I_5 = \frac{E}{R_{(1,2,3)\parallel 4} + R_5} = \frac{72 \text{ V}}{12 \text{ k}\Omega + 12 \text{ k}\Omega} = \frac{72 \text{ V}}{24 \text{ k}\Omega} = 3 \text{ mA}$$

with

$$V_7 = \frac{R_{7||(8,9)}E}{R_{7||(8,9)} + R_6} = \frac{(4.5 \text{ k}\Omega)(72 \text{ V})}{4.5 \text{ k}\Omega + 12 \text{ k}\Omega} = \frac{324 \text{ V}}{16.5} = 19.6 \text{ V}$$

$$I_6 = \frac{V_7}{R_{7||(8,9)}} = \frac{19.6 \text{ V}}{4.5 \text{ k}\Omega} = 4.35 \text{ mA}$$

and

$$I_s = I_5 + I_6 = 3 \text{ mA} + 4.35 \text{ mA} = 7.35 \text{ mA}$$

### LADDER NETWORKS



#### **SOLVING APPROACH**

- Calculate the total resistance
- Calculate the resulting source current
- Work back through the ladder



Prepared by Mohd Azfar Nazim: Lecturer, ECE Dept. NSU



FIG. 7.73

For the network of Fig. 7.73:

- a. Find the currents I and  $I_6$ .
- b. Find the voltages  $V_1$  and  $V_5$ .
- c. Find the power delivered to the  $6-k\Omega$  resistor.

a. 
$$R_T = (R_1 \parallel R_2 \parallel R_3) \parallel (R_6 + R_4 \parallel R_5)$$
  
 $= (12 \text{ k}\Omega \parallel 12 \text{ k}\Omega \parallel 3 \text{ k}\Omega) \parallel (10.4 \text{ k}\Omega + 9 \text{ k}\Omega \parallel 6 \text{ k}\Omega)$   
 $= (6 \text{ k}\Omega \parallel 3 \text{ k}\Omega) \parallel (10.4 \text{ k}\Omega + 3.6 \text{ k}\Omega)$   
 $= 2 \text{ k}\Omega \parallel 14 \text{ k}\Omega = 1.75 \text{ k}\Omega$   
 $I_s = \frac{E}{R_T} = \frac{28 \text{ V}}{1.75 \text{ k}\Omega} = 16 \text{ mA}, \quad I_2 = \frac{E}{R_2} = \frac{28 \text{ V}}{12 \text{ k}\Omega} = 2.33 \text{ mA}$   
 $R' = R_1 \parallel R_2 \parallel R_3 = 2 \text{ k}\Omega$   
 $R'' = R_6 + R_4 \parallel R_5 = 14 \text{ k}\Omega$   
 $I_6 = \frac{R'(I_5)}{R' + R''} = \frac{2 \text{ k}\Omega(16 \text{ mA})}{2 \text{ k}\Omega + 14 \text{ k}\Omega} = 2 \text{ mA}$   
b.  $V_s = E = 28 \text{ V}$ 

b. 
$$V_1 = E = 28 \text{ V}$$
  
 $R' = R_4 \parallel R_5 = 6 \text{ k}\Omega \parallel 9 \text{ k}\Omega = 3.6 \text{ k}\Omega$   
 $V_5 = I_6 R' = (2 \text{ mA})(3.6 \text{ k}\Omega) = 7.2 \text{ V}$ 



a. 
$$R_{10} + R_{11} \parallel R_{12} = 1 \Omega + 2 \Omega \parallel 2 \Omega = 2 \Omega$$
  
 $R_4 \parallel (R_5 + R_6) = 10 \Omega \parallel 10 \Omega = 5 \Omega$   
 $R_1 + R_2 \parallel (R_3 + 5 \Omega) = 3 \Omega + 6 \Omega \parallel 6 \Omega = 6 \Omega$   
 $R_T = 2 \Omega \parallel 3 \Omega \parallel 6 \Omega = 2 \Omega \parallel 2 \Omega = 1 \Omega$   
 $I = 12 \text{ V/1 } \Omega = 12 \text{ A}$ 

b. 
$$I_1 = 12 \text{ V/6 } \Omega = 2 \text{ A}$$

$$I_3 = \frac{6 \Omega (2 \text{ A})}{6 \Omega + 6 \Omega} = 1 \text{ A}$$

$$I_4 = \frac{1 \text{ A}}{2} = 0.5 \text{ A}$$

c. 
$$I_6 = I_4 = 0.5 \text{ A}$$

d. 
$$I_{10} = \frac{12 \text{ A}}{2} = 6 \text{ A}$$

# Voltage divider supply Unloaded



**FIG. 7.34** *Voltage divider supply.* 

# Voltage divider supply Loaded

Voltage-divider supply



FIG. 7.35

The voltage  $V_a$  is unaffected by the load  $R_{L_1}$  since the load is in parallel with the supply voltage E. The result is  $V_a = 120$  V, which is the  $V_a = 120$  V same as the no-load level. To determine  $V_b$ , we must first note that  $R_3$  and  $R_{L_3}$  are in parallel and  $R'_3 = R_3 \mid \mid R_{L_3} = 30 \Omega \mid \mid 20 \Omega = 12 \Omega$ . The parallel combination  $R'_2 = (R_2 + R'_3) \mid \mid R_{L_2} = (20 \Omega + 12 \Omega) \mid \mid 20 \Omega = 32 \Omega \mid \mid 20 \Omega = 12.31 \Omega$ . Applying the voltage divider rule gives

$$V_b = \frac{(12.31 \Omega)(120 \text{ V})}{12.31 \Omega + 10.\Omega} = 66.21 \text{ V}$$

versus 100 V under no-load conditions.

The voltage  $V_c$  is

$$V_c = \frac{(12 \Omega)(66.21 \text{ V})}{12 \Omega + 20 \Omega} = 24.83 \text{ V}$$

versus 60 V under no-load conditions.

The effect of load resistors close in value to the resistor employed in the voltage divider network is, therefore, to decrease significantly some of the terminal voltages.

#### PRACTICE PROBLEMS

#### **BOYLESTAD**

- TOPIC: 7.1, 7.2, 7.3
- Associated Exercise Problems