(6)	
Ů	Tepunhayu91
	AIL ONLOPHIBLET BURILWAGO?
C	еғ: Фунцирана Репадия
	чостична наредбо в множество X, ТАКАВА че всямо непразно
	ТАКАВА ЧЕ ВСЯМО НЕПРАЗИО
	подмнониество на Х има мин. елемент
(∀ 5	EX) [5≠Ø->(3mES)(¥sES)7(SRM
	$\langle N, \leq \rangle$
	∠ Z , ≤ > ×
	· Bob фундирано м-во няма
	Във фундирано м-во няма
	0 > 6 > 6 > 6 > 6 > 6 > 6 > 6 > 6 > 6 >

He!

· even Count Терминауияти е очевидна! · Łusk Mystery t e unsigned < IN, <> by ngu pano Ште поканем, че апгоритамот Терминира MONYCKAME RPOTUBHOTO. Heka тязи безкрыйна редина са посленова-телните с-ти на t.

Защото допусныхме,

че не терминира

терминира

терминира

терминира

терминира Да разгледаме две постедователни стийности на t. th u + K+1 1 cs. Ex+1 = E/3 . Ex+1 < Ex

· B) 42x => Horan(x,y) = Horan(x,y-x)

Инварианта : За всяка проверка за край на цикъла НОД (a,b) = НОД (x,y)	
При първата проверка за край:	
x = a u y = b НОД $(a,b) = $ НОД (x,y) ОК !	
Поддръжка:	
Допускаме, че инвариантата е изпълнена за някоя проверка за край, която не е последна	
НОД (a,b) = НОД (x,y)	
1 сл у >= х.	
Нека с у' означим новата стойност на у. у' = y - x	
Вярно ли е, че НОД (a,b) = НОД (x, y') ?	
HOД(x,y') = HOД(x,y-x) (от тв 3) = $HOД(x,y)$ (от допускането) = $HOД(a,b)$ OK!	
2 сл у < х.	
Нека с x' и y' означим новите стойности на x и y. x' = y и y' = x;	
Вярно ли е, че НОД (a, b) = НОД (x',y') ?	
HOД(x', y') = HOД(y, x) (от тв 1) = $HOД(x,y)$ (от допускането) = $HOД(a,b)$ OK!	
Терминация:	
Цикълът приключва при x = 0.	
HOД(a,b) (от инвариантата) = $HOД(x,y) = HOД(0, y)$ (от $tb2$) = y	
На ред 17 връщаме точно у! ОК!	

MARIA GOD TEPMUHUPA ? < IN, <> by ngu paro 14 ПОКАНЕМ, ЧЕ ОЛІ ВРИТВИЗТ ТЕРМИНИРО MONYCKAME RPOTUBHOTO: Нека тязи безкрыйна редина са поспецива-телните с-ти на X X' X'' X''' X''' X'''' \cdots Да разгледаме две постедователни стийности на х. к к+ **4** AKO YZX, TO XK+1 = X (XK)XX) He momen go 20 gukannem Taka <u>г Руг</u> начин $(IN \times IN, \leq)$

(a,b) = (a',b') (-> (a=a' > b = b')

Допуснахме, че слгорит выбт не терминира =) редицата е безкрайно спускане Ho < INxIN, <> e фундирано npota Bope 44 e!

=> GCD TEPMUHUPA

- · dy dz.. dn 95 10 = dn
- · B1 B2 ... Bn #10 + di= B1 ... Brdi
- · 41 ... dp-1 dn /10 = d1 ... dn-1

$$x_0 y = \begin{cases} y & x = 0 \\ xy & y \neq 0 \end{cases}$$

Supporte.

За всяка проверка за край на цикъла е изпълнено:

n = temp o (result)^rev

База: При първата проверка за край:

temp = n, result = 0.

Вярно ли e, че temp o (result)^rev = n?

n o 0^rev = n o 0 (от дефиницията на операцията) = n **OK**!

Поддръжка: Допускаме, че инвариантата е изпълнена за някоя проверка за край, която **не е последна**. Следователно **temp > 0**.

Допуснали сме: n = temp o (result)^rev

result =
$$b_1 b_2 ... b_{r-1} b_r$$
 (b_i in {0...9})

Тогава от допускането: : n = temp o (result)^rev = a_1 a_2 ... a_k-1 a_k b_r b_r-1 ... b_1

Нека с temp' и result' означим новите стойности на temp и result.

temp' = a 1 a 2 ... a k-1

result' = b_1 b_2 ... b_r a_k

result' != 0 (съдържа сме поне 1 цифра)

Вярно ли e, че n = temp' o (result')^rev ??

temp' o (result')^rev = a 1 a 2 ... a k-1 o (b 1 b 2 ... b r a k)^rev =

= a_1 a_2 ... a_k-1 a_k b_r b_r-1 ... b_1 = (от допускането) = n **OK!**

Терминация:

Последната проверка е при temp = 0.

От инвариантата знаем:

n = temp o (result)^rev

Но **temp** = 0. От дефиницията на операцията следва че:

n = (result)^rev, но тогава: n^rev = result

На ред 19 връщаме точно result. OK!

Терминачияти е очевидна!