

Fig. 1. The cyber-physical management cycle of Smart Farming enhanced by cloud-based event and data management (Wolfert et al., 2014).

SMART FARMING Ing. Juan Felipe Restrepo Arias

ANTECEDENTES

• REVOLUCIÓN VERDE 1960 - 1980

• AGRÍCULTURA DE PRECISIÓN 1980 -2010

Teoría Malthusiana 1798

Población Alimentos

Solución para el desequilibrio

Control de natalidad

REVOLUCIÓN VERDE 1960-1980

Imágenes Fuente: Wikipedia.

Facultad de Minas Sede Medel ín

Source: FAO

La agricultura es una actividad insostenible en el tiempo

Food and climate change

The industrial food system is responsible for 44-57% of all global GHG emissions

Agricultural Production: 11-15%

Fuente: Agriculture beyond the Green Revolution: Shaping the Future We Want. http://www.i-sis.org.uk/Agriculture beyond the Green Revolution.php

1980.Agricultura de precisión

 Menos del 15% de la agricultura mundial a 2010.

Sostenibilidad

Productividad

¿De dónde vienen los productos que llegan a la mesa?

PROBLEMA CLARO

- ✓ Disminución de recursos.
- ✓ Impacto ambiental.
- ✓ Crecimiento de la población.
- ✓ Escasez de mano de obra.
- ✓ Calidad alimentaria Inocuidad.

Objetivos primordiales para alcanzar sostenibilidad

- Usar menos suelo.
- Usar menos agua.
- Usar menos fertilizantes.
- Usar menos pesticidas.
- Cubrir déficit de mano de obra.
- Producir más en la misma área.

Arquitectura

Principios IoT : "Todo se comunica, todo se identifica y todo interactúa"

Robótica

Figure 7. Herbicide application using intelligent boom spray in a wheat field

 Application of this robotic system in the field with a weed infestation of 3.24% saved approximately 96.65% of the liquid applied per hectare.

Mobile Application

Show Detail Plot

Set up to Control Watering

Turn on/ off

Status of Watering

Line notification

Set up Plot Detail

Fig. 9. An example of mobile application to control watering.

Fig. 1. The model for the first example village.

iGracias!

Ing. Juan Felipe Restrepo Arias

Estudiante Doctorado en Ingeniería de Sistemas e Informática

jfrestrepoa@unal.edu.co

