#### Architecture des ordinateurs

#### Université de Tours

### Département informatique de Blois

Examen 2018 - Durée : 1h30 (une feuille A4 manuscrite autorisée)



### Question de cours (3 pts : 1.5 + 1.5)

- 1. Compléter le schéma synthétique du fonctionnement d'un ordinateur donné en annexe.
- Voir annexe.
- 2. Rappeler la pyramide de hiérarchie mémoire. Dans quelle classe se trouve l'accumulateur de l'UAL ? Expliquer en quelques lignes son utilité.



L'accumulateur est un registre. Il sert à stocker les calculs intermédiaires de l'unité arithmétique et logique afin d'éviter de les verser en mémoire principale puis de les recharger; on évite alors un ralentissement et un engorgement des bus.

#### **Problème 1** (5 pts : 1.5 + 1.5 + 2)

On considère le programme suivant permettant le calcul d'une suite  $(u_n)_{n\in\mathbb{N}}$ :

```
1. float u_n(int n) {
2.  return n == 0 ? (float) 1.0 / 3 : 4 * u_n(n-1) - 1;
3. }
```

- 1. Modélisation mathématique :
  - (a) Démontrer que :  $\forall n \in \mathbb{N}, u_n = \frac{1}{3}$ .

La suite modélisée par le programme est une suite récurrente  $(u_n)_{n\in\mathbb{N}}$  de la forme :

$$\begin{cases} u_0 &= \frac{1}{3} \\ u_{n+1} &= 4u_n - 1 \end{cases}$$

On veut montrer que la propriété  $P(n): u_n = \frac{1}{3}$  est vraie pour tout  $n \in \mathbb{N}$ .

- Initialisation (pour n = 0) Vraie par définition de la suite. P(0) est vraie.
- Hérédité

On suppose que  $\exists n \in \mathbb{N}$  telle que P(n) est vraie. On veut montrer que  $P(n) \Rightarrow P(n+1)$ .

$$u_{n+1} = 4u_n - 1$$
  
=  $4 \times \frac{1}{3} - 1$   
=  $\frac{4-3}{3} = \frac{1}{3}$   
 $P(n+1)$  est vraie.

La propriété P est initialisée pour n=0 et est héréditaire. Dès lors,  $\forall n \in \mathbb{N}, u_n=\frac{1}{3}$ .

(b) Démontrer que le nombre  $\frac{1}{3}$  ne peut être représenté de manière exacte sur n bits.

On utilise l'algorithme de représentation des nombres flottants en binaire pour n indéterminé. On précise que  $b=2, x=\frac{1}{3}$ .

Data: 
$$b > 1, x \in [0, 1[$$
Result:  $(x_1, ..., x_n)$ 
 $i \leftarrow 1$ ;
do
$$\begin{vmatrix} x \leftarrow x \times b \\ x_i \leftarrow |x| \end{cases}$$
;

On constate une boucle infinie au sein de l'algorithme. On voit que  $\frac{1}{3} = \langle 0101\ 0101\ 0101\ \dots \rangle_2$ 

$$\begin{array}{l} \textit{D\'{e}monstration} \\ \sum\limits_{n=0}^{\infty} \frac{1}{2^{2+2n}} = \frac{1}{4} \sum\limits_{n=0}^{\infty} \left(\frac{1}{4}\right)^{n} \\ = \frac{1}{4} \times \frac{1}{1-\frac{1}{4}} \\ = \frac{1}{4} \times \frac{4}{3} = \frac{1}{3} \end{array}$$

2. Donner la représentation IEEE 754 de  $\frac{1}{3}$  au sein du programme.

Au sein du programme,  $\frac{1}{3}$  est codé à l'aide d'un float, on utilise 32 bits, dont 1 pour le signe s, 8 pour l'exposant e et 23 pour la mantisse f.

On sait que  $\frac{1}{3} = (\langle 0 \rangle_2, \langle 0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101 \ \dots \rangle_2)$ 

- On décale la virgule 2 rangs vers la droite : E=-2. Dès lors  $e=E+\varepsilon=-2+127=125=\langle 0111\ 1101\rangle_2$ ,
- La mantisse  $f = \langle 0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101 \rangle_2$ ,
- Le signe s = 0.

Dès lors :

- 3. L'appel  $u_n(42)$  retourne la valeur  $1.9215359 \times 10^{17}$ . Expliquer la différence entre le résultat théorique et celui donné par le programme. Pouvez-vous estimer la croissance de cette erreur (linéaire, quadratique, exponentielle, autre)?
  - (a) Expliquer briévement la différence entre le résultat théorique et celui donné par le programme. Pouvez-vous estimer la croissance de cette erreur (logarithmique, linéaire, quadratique, exponentielle, autre)?

On a vu que la représentation de  $\frac{1}{3}$  au sein du programme est incomplète. En particulier, il faudrait une infinité de bits pour modéliser ce nombre. Ainsi, au sein du programme, on commet une erreur  $\delta > 0$  d'approximation de la valeur.

Cette erreur est positive et comme le coefficient multiplicateur de l'erreur est supérieur à 1 (Ici 4), alors l'erreur ne sera pas bornée et va diverger.

On constate aisément qu'elle est de nature exponentielle. (Voir quetion suivante).

(b) Sur la base d'une erreur d'approximation  $\delta > 0$ , déterminer l'expression de l'erreur  $\Delta_n$  commise pour un appel à la méthode u\_n() au rang n.

On a 
$$\Delta_0 = \delta$$
, 
$$\Delta_1 = 4\Delta_0 = 4\delta$$
, 
$$\Delta_2 = 4\Delta_1 = 4^2\Delta_0 = 4^2\delta$$
 ... 
$$Par récurrence, on obtient : \Delta_n = 4^n\delta$$
.

#### **Problème 2** (3.5 pts: 1.5 + 2)

L'opérateur N and noté  $\uparrow$  est un opérateur très utilisé en électronique et dans la réalisation des microprocesseurs car il forme un système complet de connecteurs à lui seul.

1. Montrer que  $x \oplus y = [(x \uparrow y) \uparrow x] \uparrow [y \uparrow (x \uparrow y)]$ . On rappelle que l'opérateur  $\oplus$  désigne le OU exclusif (ou Xor).

On rappelle que : 
$$x \uparrow y = \neg(x \land y)$$
  
On rappelle que :  $x \oplus y = (x \lor y) \land (\neg x \lor \neg y)$ 
$$= (x \lor y) \land \neg(x \land y)$$

$$= (x \lor y) \land (x \uparrow y)$$

$$= [x \land (x \uparrow y)] \lor [y \land (x \uparrow y)] \ Distributivit\acute{e}$$

$$= \neg (\neg [x \land (x \uparrow y)] \land \neg [y \land (x \uparrow y)]) \ Double \ n\acute{e}gation \ \text{et Loi de de Morgan}$$

$$= \neg ([x \uparrow (x \uparrow y)] \land [y \uparrow (x \uparrow y)])$$

$$= [x \uparrow (x \uparrow y)] \uparrow [y \uparrow (x \uparrow y)]$$

- 2. Sur la modélisation de  $\oplus$  :
  - (a) Proposer un circuit bien modélisé de l'opérateur  $\oplus$  à l'aide du système d'opérateurs  $\{\lor,\land,\lnot\}$ .

On utilise le fait que  $x \oplus y = (x \lor y) \land \neg (x \land y)$ 



- (b) Expliquer pourquoi la modélisation 2.(a) n'est pas satisfaisante. Proposer un circuit logique à l'aide de l'opérateur Nand. Pourquoi cette modélisation est meilleure?
  - Le circuit précédent n'est pas satisfaisant car il ne minimise pas le nombre de portes logiques différentes.

À l'aide du connecteur Nand, on obtient le circuit suivant :



Ce circuit est meilleur que le précédent car il contient le même nombre de portes logiques mais utilise uniquement le Nand qui est un système complet ; ceci permet des économies en terme de commande de composants ou en simplicité de gravure des wafers.

#### Problème 3 (3.5 pts)

Soient deux intervalles de nombres entiers  $[\![a,b]\!]$  et  $[\![c,d]\!]$ . On précise que  $a,b,c,d\in\mathbb{N}$  et on suppose que  $a\leq b$  et que  $c\leq d$ .

- 1. Écrire la forme linéaire de algorithme de calcul de l'intersection  $[a, b] \cap [c, d]$ .
  - On sait que si (b < c ou d < a) alors  $[\![a,b]\!] \cap [\![c,d]\!] = \emptyset$
  - Sinon,  $[\![a,b]\!] \cap [\![c,d]\!]$  s'obtient à l'aide du max et du min. En effet, l'intersection est l'opérateur qui contraint/restreint le plus l'ensemble, dès lors  $[\![a,b]\!] \cap [\![c,d]\!] = [\![\max(a,c),\min(b,d)]\!]$ .



2. Compléter l'annexe de programme en assembleur MIPS intersection.asm qui retourne " $\emptyset$ " si et seulement si  $[a,b] \cap [c,d] = \emptyset$  et qui retourne "[x,y]" avec  $[x,y] = [a,b] \cap [c,d]$  sinon.

On donne en annexe les mnémoniques communs utilisés en MIPS. De plus, le programme intersection.asm pré-défini certaines routines d'affichage, notamment la routine print\_intervalle qui permet l'impression des registres a1 et a2 tels que "a1, a2". On suppose que les registres a1, at a2, at a2, at a3, at a3, at a4, at

**Ex**: Si a = 1, b = 5, c = 3, d = 8, on retourne "[3,5]". Si a = 1, b = 3, c = 5, d = 8, on retourne " $\emptyset$ ".

Voir annexe.

## Problème 4 (5 pts : 1.5 + 2.5 + 1)

On rappelle que les caractères ASCII sont contenus dans des octets mais ne sont codés que sur 7 bits, pour qu'on puisse leur adjoindre une parité, ceci afin de sécuriser leur transmission et leur stockage en mémoire.

Si l'on groupe plusieurs caractères ensemble, il est possible d'appliquer une méthode de codage  $\varphi$  par parité longitudinale et transversale. Pour un texte x de n caractères, on associe X la forme matricielle de x de taille  $n \times 7$  où chaque ligne i correspond au codage binaire du caractère  $x_i$ .

Par exemple, le texte 
$$x =$$
 "chat" possède la matrice associée  $X = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$ .

Ainsi,  $\varphi(X)$  est la matrice de codage par parité longitudinale et transversale résultante de X. Sa taille est de  $(n+1)\times 8$ .

1. Soit le texte x = "texte x". Déterminer la matrice  $\varphi(X)$  associée à x. On pourra utiliser la table des caractères ASCII donnée en annexe.

L'annexe nous donne le code hexadécimal ASCII des caractères.

Comme  $\log_2(16) = 4$ , on sait que un chiffre en base 16 correspond à 4 bits. On va pouvoir coder x plus rapidement.

```
\begin{split} &t: 0x74 = \langle 74 \rangle_{16} = \langle 0111\ 0100 \rangle_2 \\ &e: 0x65 = \langle 65 \rangle_{16} = \langle 0110\ 0101 \rangle_2 \\ &x: 0x78 = \langle 78 \rangle_{16} = \langle 0111\ 1000 \rangle_2 \\ &(sp): 0x20\ = \langle 20 \rangle_{16} = \langle 0010\ 0000 \rangle_2 \end{split}
```

Le bit de tête des caractères est inutilisé (comme ils sont codés sur 7 bits). On le retire.

On met x sous forme matricielle puis on applique le codage par parité longitudinale et transversale.

$$\varphi(X) = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

2. Écrire un programme static int[] encodage(String x), en Java ou en C qui encode une suite de caractères ASCII selon la méthode par parité longitudinale et transversale et redonne un tableau d'octets tab où tab[i] correspond au codage décimal de la ligne i de  $\varphi(X)$ .

**Ex** : Pour x = "chat" la méthode redonne [198, 209, 195, 232, 60].

```
public static int[] encode(String x) {
    int[] M = new int[x.length() + 1];
    int parite_l = 0;
    for (int i = 0; i < x.length(); i++) {
        int parite_t = 0;
        for (char c = x.charAt(i); c != 0; c >>= 1) {
            parite_t ^= (c & 1);
        }
        M[i] = (x.charAt(i) << 1) | parite_t;
        parite_l ^= M[i];
    }
    M[x.length()] = parite_l;
    return M;
}</pre>
```

3. Soit un texte y stocké en mémoire. On donne la matrice  $\varphi(Y) = \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$ 

Que pouvez-vous déduire de cette matrice? Décoder le texte y correspondant, éventuellement corrigé.

En regardant la parité des lignes et des colonnes 1 et 2, on constate deux anomalies dans la matrice  $\varphi(Y)$ , notée en rouge.

$$\varphi(X) = \left( \begin{array}{ccccccccc} 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \end{array} \right).$$

Dès lors, on a :  $y = \langle 1010100\ 1101111\ 110001\ 1110011\ 1110100 \rangle_2$ 

 $=\langle (0101)(0100)\ (0110)(1111)\ (0110)(0001)\ (0111)(0011)\ (0111)(0100)\rangle_2$ 

 $= \langle 54\ 6F\ 61\ 73\ 74 \rangle_{16}$ 

= "Toast"

## Annexes

## Schéma à compléter : Question de cours



## Programme assembleur MIPS: Problème 3

```
##
# @author Clément Moreau
# File_name : intersection.asm
# Description : Calcul de \llbracket a,b \rrbracket \cap \llbracket c,d \rrbracket.
### Data section (Vous pouvez déclarer ici d'autres données et constantes) ###
.data
VIRGULE
         : .asciiz ","
EMPTY_SET : .asciiz "Ensemble vide"
CROCHET_G : .asciiz "["
CROCHET_D : .asciiz "]"
### Text section ###
.text
.globl _main_
### Début du programme (à compléter) ###
_main_ :
     li t0, a
     li $t1,\ b
     li $t2, \it c
     li $t3, d
```

```
# Si (b < c \text{ ou } d < a) alors [\![a,b]\!] \cap [\![c,d]\!] = \emptyset
      # Sinon [a, b] \cap [c, d] = [\max(a, c), \min(b, d)]
      blt $t1, $t2, empty
                                                          move $a2, $t3
      blt $t3, $t0, empty
                                                          j termine
      ## calcul de max(a,c)
                                                      min :
      bgt $t0, $t2, max
                                                          move $a2, $t1
      move $a1, $t2
                                                       termine :
      j suite
                                                          jal print_intervalle
      max :
                                                          j fin
         move $a1, $t0
                                                       empty :
                                                          la $a0, EMPTY_SET
      suite :
      ## calcul de min(b,d)
                                                          jal print_string
         blt $t1, $t3, min
### Sorti du programme ###
```

```
fin:
    li $v0, 10
    syscall
## Routines d'impression ##
# print_int et print_string impriment le contenu du registre $a0
# print_intervalle imprime "[$a1, $a2]"
##
print_int :
    li $v0, 1
    syscall
    jr $ra
print_string :
    li $v0, 4
    syscall
    jr $ra
print_intervalle :
    la $a0, CROCHET_G
    jal print_string
    move $a0, $a1
    jal print_int
    la $a0, VIRGULE
    jal print_string
    move $a0, $a2
    jal print_int
    la $a0, CROCHET_D
    jal print_string
    jr $ra
```

# $Mn\'emoniques\ communs\ MIPS: Probl\`eme\ 3$

Soient les registres  $r_{i\in\{0,1,2\}},$  le registre CO correspondant au compteur ordinal.

• li \$r0, n effectue  $r_0 \leftarrow$  n.

- 1b \$r0, n(\$r1) effectue  $r_0 \leftarrow RAM[r_1 + n]$ .
- sb \$r0, n(\$r1) effectue  $RAM[\$r_1 + n] \leftarrow \$r_0$ .
- move \$r0, \$r1 effectue  $r_0 \leftarrow r_1$ .
- Opérations logiques et arithmétiques. Avec  $Op \in \{and, or, xor, sll, srl, add, sub, mul, div\}$ . Op \$r0, \$r1, \$r2 effectue \$r\_0  $\leftarrow Op(\$r_1, \$r_2)$ , et Op \$r0, \$r1, n effectue \$r\_0  $\leftarrow Op(\$r_1, n)$ .
- j label effectue  $CO \leftarrow RAM[label]$
- Branchement conditionnel. Avec Op ∈ {beq, bne, blt, ble, bgt, bge}.
  - o beq \$r0, \$r1, label effectue \$CO  $\leftarrow RAM[label]$  si et seulement si \$ $r_0 = r_1$ , sinon, le programme se poursuit séquentiellement. (bne pour  $r_0 \neq r_1$ ).
  - o blt \$r0, \$r1 label effectue \$C0  $\leftarrow RAM[label]$  si et seulement si \$r\_0 < \$r\_1, sinon, le programme se poursuit séquentiellement. (ble est utilisée pour la relation  $\leq$ ).
  - o bgt \$r0, \$r1 label effectue \$C0  $\leftarrow RAM[label]$  si et seulement si \$r\_0 > \$r\_1, sinon, le programme se poursuit séquentiellement. (bge est utilisée pour la relation  $\geq$ ).

Ces opérations sont aussi valables pour la signature Op \$r0, n, label. Dans ce cas, \$r\_1 est substitué par  $n \in \mathbb{Z}$ . La sémantique de l'opération de branchement est conservée.

Table ASCII: Problème 4

| Char  | Dec | Oct  | Hex  | ١ | Char | Dec | Oct  | Hex  | ١ | Char | Dec | Oct  | Hex  | ١ | Char  | Dec | Oct  | Hex  |
|-------|-----|------|------|---|------|-----|------|------|---|------|-----|------|------|---|-------|-----|------|------|
| (nul) | 0   | 0000 | 0x00 | Ī | (sp) | 32  | 0040 | 0x20 | I | @    | 64  | 0100 | 0x40 | 1 | •     | 96  | 0140 | 0x60 |
| (soh) | 1   | 0001 | 0x01 | - | !    | 33  | 0041 | 0x21 | 1 | Α    | 65  | 0101 | 0x41 | 1 | a     | 97  | 0141 | 0x61 |
| (stx) | 2   | 0002 | 0x02 | - | "    | 34  | 0042 | 0x22 | 1 | В    | 66  | 0102 | 0x42 | 1 | b     | 98  | 0142 | 0x62 |
| (etx) | 3   | 0003 | 0x03 | - | #    | 35  | 0043 | 0x23 | 1 | C    | 67  | 0103 | 0x43 | 1 | С     | 99  | 0143 | 0x63 |
| (eot) | 4   | 0004 | 0x04 | - | \$   | 36  | 0044 | 0x24 | 1 | D    | 68  | 0104 | 0x44 | 1 | d     | 100 | 0144 | 0x64 |
| (enq) | 5   | 0005 | 0x05 | - | %    | 37  | 0045 | 0x25 | 1 | E    | 69  | 0105 | 0x45 | 1 | е     | 101 | 0145 | 0x65 |
| (ack) | 6   | 0006 | 0x06 | - | &    | 38  | 0046 | 0x26 | 1 | F    | 70  | 0106 | 0x46 | 1 | f     | 102 | 0146 | 0x66 |
| (bel) | 7   | 0007 | 0x07 | - | ,    | 39  | 0047 | 0x27 | 1 | G    | 71  | 0107 | 0x47 | 1 | g     | 103 | 0147 | 0x67 |
| (bs)  | 8   | 0010 | 80x0 | - | (    | 40  | 0050 | 0x28 | 1 | H    | 72  | 0110 | 0x48 | 1 | h     | 104 | 0150 | 0x68 |
| (ht)  | 9   | 0011 | 0x09 | - | )    | 41  | 0051 | 0x29 | 1 | I    | 73  | 0111 | 0x49 | 1 | i     | 105 | 0151 | 0x69 |
| (nl)  | 10  | 0012 | 0x0a | - | *    | 42  | 0052 | 0x2a | 1 | J    | 74  | 0112 | 0x4a | 1 | j     | 106 | 0152 | 0x6a |
| (vt)  | 11  | 0013 | 0x0b | - | +    | 43  | 0053 | 0x2b | 1 | K    | 75  | 0113 | 0x4b | 1 | k     | 107 | 0153 | 0x6b |
| (np)  | 12  | 0014 | 0x0c | - | ,    | 44  | 0054 | 0x2c | 1 | L    | 76  | 0114 | 0x4c | 1 | 1     | 108 | 0154 | 0x6c |
| (cr)  | 13  | 0015 | 0x0d | - | -    | 45  | 0055 | 0x2d | 1 | M    | 77  | 0115 | 0x4d | 1 | m     | 109 | 0155 | 0x6d |
| (so)  | 14  | 0016 | 0x0e | - |      | 46  | 0056 | 0x2e | 1 | N    | 78  | 0116 | 0x4e | 1 | n     | 110 | 0156 | 0x6e |
| (si)  | 15  | 0017 | 0x0f | - | /    | 47  | 0057 | 0x2f | 1 | 0    | 79  | 0117 | 0x4f | 1 | 0     | 111 | 0157 | 0x6f |
| (dle) | 16  | 0020 | 0x10 | - | 0    | 48  | 0060 | 0x30 | 1 | P    | 80  | 0120 | 0x50 | 1 | p     | 112 | 0160 | 0x70 |
| (dc1) | 17  | 0021 | 0x11 | - | 1    | 49  | 0061 | 0x31 | 1 | Q    | 81  | 0121 | 0x51 | 1 | q     | 113 | 0161 | 0x71 |
| (dc2) | 18  | 0022 | 0x12 | 1 | 2    | 50  | 0062 | 0x32 | ı | R    | 82  | 0122 | 0x52 | 1 | r     | 114 | 0162 | 0x72 |
| (dc3) | 19  | 0023 | 0x13 | 1 | 3    | 51  | 0063 | 0x33 | ı | S    | 83  | 0123 | 0x53 | 1 | s     | 115 | 0163 | 0x73 |
| (dc4) | 20  | 0024 | 0x14 | - | 4    | 52  | 0064 | 0x34 | 1 | T    | 84  | 0124 | 0x54 | 1 | t     | 116 | 0164 | 0x74 |
| (nak) | 21  | 0025 | 0x15 | - | 5    | 53  | 0065 | 0x35 | 1 | U    | 85  | 0125 | 0x55 | 1 | u     | 117 | 0165 | 0x75 |
| (syn) | 22  | 0026 | 0x16 | - | 6    | 54  | 0066 | 0x36 | 1 | V    | 86  | 0126 | 0x56 | 1 | v     | 118 | 0166 | 0x76 |
| (etb) | 23  | 0027 | 0x17 | - | 7    | 55  | 0067 | 0x37 | 1 | W    | 87  | 0127 | 0x57 | 1 | W     | 119 | 0167 | 0x77 |
| (can) | 24  | 0030 | 0x18 | - | 8    | 56  | 0070 | 0x38 | 1 | X    | 88  | 0130 | 0x58 | 1 | x     | 120 | 0170 | 0x78 |
| (em)  | 25  | 0031 | 0x19 | 1 | 9    | 57  | 0071 | 0x39 | ı | Y    | 89  | 0131 | 0x59 | 1 | у     | 121 | 0171 | 0x79 |
| (sub) | 26  | 0032 | 0x1a | 1 | :    | 58  | 0072 | 0x3a | ı | Z    | 90  | 0132 | 0x5a | 1 | z     | 122 | 0172 | 0x7a |
| (esc) | 27  | 0033 | 0x1b | 1 | ;    | 59  | 0073 | 0x3b | ı | [    | 91  | 0133 | 0x5b | 1 | {     | 123 | 0173 | 0x7b |
| (fs)  | 28  | 0034 | 0x1c | 1 | <    | 60  | 0074 | 0x3c | ı | \    | 92  | 0134 | 0x5c | 1 | 1     | 124 | 0174 | 0x7c |
| (gs)  | 29  | 0035 | 0x1d | 1 | =    | 61  | 0075 | 0x3d | Ī | ]    | 93  | 0135 | 0x5d | 1 | }     | 125 | 0175 | 0x7d |
| (rs)  | 30  | 0036 | 0x1e | 1 | >    | 62  | 0076 | 0x3e | I | ^    | 94  | 0136 | 0x5e | 1 | ~     | 126 | 0176 | 0x7e |
| (us)  | 31  | 0037 | 0x1f | 1 | ?    | 63  | 0077 | 0x3f | I | _    | 95  | 0137 | 0x5f | 1 | (del) | 127 | 0177 | 0x7f |