离散数学作业 Solution set 18

Problem 1

对以下各小题给定的群 G_1 和 G_2 ,以及 $f:G_1 \to G_2$,说明 f 是否为群 G_1 到 G_2 的同态,如果是,说明是否为单同态、满同态和同构。求同态像 $f(G_1)$ 。

(1) $G_1 = \langle Z, + \rangle$, $G_2 = \langle R^*, \cdot \rangle$, 其中 R^* 为非零实数集合,+ 和·分别表示数的加法和乘法。

$$f:Z \to R^*, f(x) = \left\{egin{array}{ll} 1 & x$$
 是偶数
$$-1 & x$$
 是奇数

(2) $G_1 = \langle Z, + \rangle$, $G_2 = \langle A, \cdot \rangle$, 其中 + 和 · 分别表示数的加法和乘法, $A = \{x | x \in C \land |x| = 1\}$, 其中 C 为复数集合。

$$f: Z \to A, f(x) = \cos x + i \sin x$$

解:

- (1) 是同态,不是单同态,也不是满同态。 $f(G_1) = \{-1,1\}$
- (2) 是同态, 是单同态, 不是满同态。 $f(G_1) = \{\cos x + i \sin x | x \in \mathbb{Z}\}$

Problem 2

令 G, G' 为群,函数 $f: G \to G'$ 是一个群同态。证明:

- (1) ker $f = \{x \in G | f(x) = e\}$ 是 G 的子群
- (2) $img\ f = \{x \in G' | \exists g \in G, f(g) = x\}$ 是 G' 的子群

解:

- (1) 首先 $e \in \ker f$, $\ker f$ 非空。任取 $a, b \in \ker f$, 我们有 $f(ab^{-1}) = f(a)f(b)^{-1} = e \in \ker f$, 所以 $\ker f = \{x \in G | f(x) = e\}$ 是 G 的子群
- (2) 首先 $e \in \text{img } f$, img f 非空。任取 $a, b \in \text{img } f$, 则存在 $g, h \in G$, 使 得 f(g) = a, f(h) = b。则 $ab^{-1} = f(g)f(h^{-1}) = f(gh^{-1}) \in \text{img } f$,所以 $\text{img } f = \{x \in G' | \exists g \in G, f(g) = x\}$ 是 G' 的子群

Problem 3

设 G_1 为循环群,f 是群 G_1 到 G_2 的同态,证明 $f(G_1)$ 也是循环群。解:

设 $G_1 = \langle a \rangle$, $f: G_1 \to G_2$ 为群同态。 易见 $f(G_1)$ 为群, 对任意 $y \in f(G_1)$, 存在 $a^i \in G_1$, 使得

$$y = f(a^i) = (f(a))^i$$

故 $f(G_1) = < f(a) >$.

Problem 4

设 ϕ 是群 G 到 $G^{'}$ 的同构映射, $a \in G$,证明: a 的阶和 $\phi(a)$ 的阶相等。解:

注意到 $\phi(a)^{|a|} = \phi(a^a) = \phi(e) = e$,则有 $|\phi(a)| \mid |a|$ 。因为 ϕ 为同构,故 ϕ^{-1} 为 G' 到 G 的同构,因此 $|a| \mid |\phi(a)|$ 。得证。

Problem 5

证明: 三阶群必为循环群.

证明:

任意不为单位元的元素阶均不等于 1 且整除 3,故只能为 3。因此任意不为单位元的元素均生成整个群,故为循环群。

Problem 6

我们记 n 阶循环群为 C_n ,欧拉函数 $\phi(m)$ 定义为与 m 互素且不大于 m 的正整数的个数,考虑以下三个事实

对正整数 m, 欧拉函数的结果 $\phi(m)$ 为 C_m 的生成元的个数

 C_n 的每个元素均生成 C_n 的一个子群

 C_n 的每个子群均是一个循环群 C_m , 且 $m \mid n$

证明著名的公式

$$\sum_{m>0,m|n}\phi(m)=n$$

证明: 左边为 C_n 的所有子群的生成元的数量,右边为 C_n 中元素的数量。 我们知道 C_n 中每个元素均能生成一个循环子群,故得证。

严格地,对任意 $m \mid n$, C_n 中恰好存在 $\phi(m)$ 个可以生成 m 阶循环子群的元素。因为 $m \mid n$, $C_n = < a >$ 恰有一个 m 阶子群 $< a^{n/m} >$ 。其有 $\phi(m)$ 个生成元,均属于 C_n 。故 $\sum_{m>0,m\mid n} \phi(m) \le n \land \sum_{m>0,m\mid n} \phi(m) \ge n$ 。得证。

Problem 7

设 p 是素数,证明每一个 p 阶群都是循环群,且以每一个非单位元的元素作为它的生成元。

证明:

设 G 为 p 阶群,可知 $|G| \ge 2$ 。对任意 $m \ne e \in G$ 我们有 $|m| \mid p$,即 |m| = p。则 G = < m >。得证。

Problem 8

证明:循环群一定是阿贝尔群。

证明:

设 G = <a> 是循环群. $\forall a^i, a^j \in <a>$,有 $a^ia^j=a^{i+j}=a^{j+i}=a^ja^i$,得证。

Problem 9

设 G 为群, a 是 G 中给定元素, a 的正规化子 N(a) 表示 G 中与 a 可交换的元素构成的集合,即 $N(a)=\{x|x\in G\land xa=ax\}$. 证明: N(a) 是 G 的子群.

证明:

- 1. $ea = ae, e \in N(a) \neq \emptyset$,
- 2. $\forall x, y \in N(a)$, 则 ax = xa, ay = ya.
- 3. a(xy) = (ax)y = (xa)y = x(ay) = x(ya) = (xy)a, 所以 $xy \in N(a)$ 由 ax = xa, 得 $x^{-1}axx^{-1} = x^{-1}xax^{-1}$, $x^{-1}ae = eax^{-1}$, 即 $x^{-1}a = ax^{-1}$, 所以 $x^{-1} \in N(a)$ 。根据判定定理,N(a) 是 G 的子群.