Simple operations

```
A = Int64[12, 3]
 • A=[12,3]
 print(A)
y = 3×1 LinearAlgebra.Adjoint{Int64,Array{Int64,2}}:
     4
     5
 • y = [3 \ 4 \ 5]'
X = 3×2 LinearAlgebra.Adjoint{Int64,Array{Int64,2}}:
     1
       6
     1
        7
 \cdot X = [1 1 1; 1 6 7]'
2×1 Array{Float64,2}:
 2.64516129032258
 0.29032258064516103
 • (X^{1}X)^{\wedge}(-1)*X^{1}y
f (generic function with 1 method)
 f(x) = 2x^3 + 3x^2 + 6
34
 • f(2)
```

Packages

```
begin
import Pkg
Pkg.add("RDatasets")
Pkg.add("Econometrics")
Pkg.add("GLM")
Pkg.add("CSV")
Pkg.add("Gadfly")
Pkg.add("LinearAlgebra")
Pkg.add("Plots")
Pkg.add("PyPlot")
end
```

```
beginPkg.add("DataFrames")end
```

```
beginPkg.add("CSV")end
```

Multiple definitions for CSV.

Combine all definitions into a single reactive cell using a `begin ... end` block.

```
using CSV
```

Multiple definitions for CSV.

Combine all definitions into a single reactive cell using a `begin ... end` block.

- using DataFrames, GLM, Statistics, CSV, Econometrics
- using RDatasets

```
Pkg.activate("Plots")
Pkg.add("Plots")
using Plots
end
```

First seminar

psid =

	IntNum	PersNum	Age	Educatn	Earnings	Hours	Kids	Marrie
	_							
1	4	4	39	12	77250	2940	2	CategoricalValue{Stri
2	4	6	35	12	12000	2040	2	CategoricalValue{Stri
3	4	7	33	12	8000	693	1	CategoricalValue{Stri
4	4	173	39	10	15000	1904	2	CategoricalValue{Stri
5	5	2	47	9	6500	1683	5	CategoricalValue{Stri
6	6	4	44	12	6500	2024	2	CategoricalValue{Stri
7	6	172	38	16	7000	1144	3	CategoricalValue{Stri
8	7	4	38	9	5000	2080	4	CategoricalValue{Stri
9	7	170	39	12	21000	2575	3	CategoricalValue{Stri
10	7	171	37	11	0	0	5	CategoricalValue{Stri
mo	re							

```
• psid = dataset("Ecdat", "PSID")
```

Int32[39, 35, 33, 39, 47, 44, 38, 38, 39, 37, 48, 47, 40, 38, 41, 43, 41, 36,

psid.Age

	variable	mean	min	median	I
1	:IntNum	4598.1	4	5464.0	9306
2	:PersNum	59.2136	1	4.0	205
3	:Age	38.4629	30	38.0	50
4	:Educatn	16.3771	0	12.0	99
5	:Earnings	14244.5	0	11000.0	240000
6	:Hours	1235.33	0	1517.0	5160
7	:Kids	4.48126	0	2.0	99
8	:Married	nothing	CategoricalValue{String,UInt8} "marrie	nothing	CategoricalValue{

describe(psid)

	IntNum	PersNum	Age	Educatn	Earnings	Hours	Kids	Married
1	4	4	39	12	77250	2940	2	CategoricalValue{String,
2	4	6	35	12	12000	2040	2	CategoricalValue{String,
3	4	7	33	12	8000	693	1	CategoricalValue{String,
4	4	173	39	10	15000	1904	2	CategoricalValue{String,
5	5	2	47	9	6500	1683	5	CategoricalValue{String,
6	6	4	44	12	6500	2024	2	CategoricalValue{String,
7	6	172	38	16	7000	1144	3	CategoricalValue{String,

first(psid, 7)

Model first seminar

model_a =

Continuous Response Model Number of observations: 4855 Null Loglikelihood: -13840.79

Loglikelihood: -13838.29

R-squared: 0.0010

LR Test: $5.01 \sim \chi^2(2) \Rightarrow \text{Pr} > \chi^2 = 0.0818$ Formula: $\log(1 + \text{Earnings}) \sim 1 + \text{Age} + \text{Educatn}$

Variance Covariance Estimator: OIM

	PE	SE	t-value	Pr > t	2.50%	97.50%
(Intercept)	6.15726	0.421631	14.6034	<1e-46	5.33068	6.98385
Age	0.024032	0.0107385	2.23793	0.0253	0.00297964	0.0450844
Educatn	0.000165885	0.00325684	0.0509343	0.9594	-0.006219	0.00655077

Second seminar

diamonds =

	Carat	Cut		Color	
1	0.23	CategoricalValue{String,UInt8}	"Ideal"	CategoricalValue{String,UInt8}	"
2	0.21	CategoricalValue{String,UInt8}	"Premiu	CategoricalValue{String,UInt8}	11
3	0.23	CategoricalValue{String,UInt8}	"Good"	CategoricalValue{String,UInt8}	11
4	0.29	CategoricalValue{String,UInt8}	"Premiu	CategoricalValue{String,UInt8}	11
5	0.31	CategoricalValue{String,UInt8}	"Good"	CategoricalValue{String,UInt8}	11
6	0.24	CategoricalValue{String,UInt8}	"Very G	CategoricalValue{String,UInt8}	11
7	0.24	CategoricalValue{String,UInt8}	"Very G	CategoricalValue{String,UInt8}	11
8	0.26	CategoricalValue{String,UInt8}	"Very G	CategoricalValue{String,UInt8}	11
9	0.22	CategoricalValue{String,UInt8}	"Fair"	CategoricalValue{String,UInt8}	11
10	0.23	CategoricalValue{String,UInt8}	"Very G	CategoricalValue{String,UInt8}	11
mor	·e				

```
diamonds = dataset("ggplot2", "diamonds")
```

cSV.write("diam.csv", diamonds)

	Cut		Table
1	CategoricalValue{String,UInt8}	"Ideal"	55.0
2	<pre>CategoricalValue{String,UInt8}</pre>	"Premiu	61.0
3	<pre>CategoricalValue{String,UInt8}</pre>	"Good"	65.0
4	<pre>CategoricalValue{String,UInt8}</pre>	"Premiu	58.0
5	<pre>CategoricalValue{String,UInt8}</pre>	"Good"	58.0
6	<pre>CategoricalValue{String,UInt8}</pre>	"Very G	57.0
7	<pre>CategoricalValue{String,UInt8}</pre>	"Very G	57.0
8	<pre>CategoricalValue{String,UInt8}</pre>	"Very G	55.0
9	<pre>CategoricalValue{String,UInt8}</pre>	"Fair"	61.0
10	CategoricalValue{String,UInt8}	"Very G	61.0

[&]quot;diam.csv"

diamonds[!, [:Cut,:Table]]

	Cut		Table
1	CategoricalValue{String,UInt8}	"Premiu	61.0
2	CategoricalValue{String,UInt8}	"Good"	65.0
3	CategoricalValue{String,UInt8}	"Premiu	58.0
4	<pre>CategoricalValue{String,UInt8}</pre>	"Good"	58.0

diamonds[2:5, [:Cut,:Table]]

CategoricalArrays.CategoricalArray{String,1,UInt8,String,CategoricalArrays.CategoricalVal

diamonds.Cut

CategoricalArrays.CategoricalArray{String,1,UInt8,String,CategoricalArrays.CategoricalVal

diamonds[!, :Cut]

	variable	mean	min	median	1
1	:Carat	0.79794	0.2	0.7	5.01
2	:Cut	nothing	CategoricalValue{String,UInt8} "Fair"	nothing	CategoricalValue{
3	:Color	nothing	CategoricalValue{String,UInt8} "D" (1/	nothing	CategoricalValue{
4	:Clarity	nothing	CategoricalValue{String,UInt8} "I1" (1	nothing	CategoricalValue{
5	:Depth	61.7494	43.0	61.8	79.0
6	:Table	57.4572	43.0	57.0	95.0
7	:Price	3932.8	326	2401.0	18823
8	: X	5.73116	0.0	5.7	10.74
9	: Y	5.73453	0.0	5.71	58.9
10	: Z	3.53873	0.0	3.53	31.8

describe(diamonds)

Cut

Cut

```
categoriteatvatue(String, Office)
2
     CategoricalValue{String,UInt8} "Fair"
      CategoricalValue{String,UInt8} "Ideal"
3
      CategoricalValue{String,UInt8} "Premiu
4
      CategoricalValue{String,UInt8} "Ideal"
5
      CategoricalValue{String,UInt8} "Premiu
      CategoricalValue{String,UInt8} "Fair"
7
      CategoricalValue{String,UInt8} "Fair"
8
      CategoricalValue{String,UInt8} "Very G
9
      CategoricalValue{String,UInt8} "Very G
10
```

```
diamonds[diamonds.X .>6, ["Cut"]] #отбор строк
```

Model

```
model = Continuous Response Model
     Number of observations: 53940
     Null Loglikelihood: -523775.49
     Loglikelihood: -471866.68
```

R-squared: 0.8541

LR Test: 103817.61 ~ $\chi^2(4) \Rightarrow Pr > \chi^2 = 0.0000$

Formula: Price ~ 1 + Carat + X + Y + Z Variance Covariance Estimator: OIM

	PE	SE	t-value	Pr > t	2.50%	97.50%
(Intercept) Carat X Y Z	1921.17 10233.9 -884.209 166.038 -576.203	25.8582		<1e-99 <1e-99	1716.6 10110.6 -963.531 115.356 -653.196	2125.74 10357.3 -804.887 216.721 -499.211

- model = fit(EconometricModel, @formula(Price~1+Carat+X+Y+Z), diamonds)

```
5×5 LinearAlgebra.Hermitian{Float64,Array{Float64,2}}:
10893.6
              6205.91
                          -2364.7
                                       -59.1365
                                                 -540.0
                                       -20.4162
 6205.91
              3960.95
                          -1422.2
                                                 -310.451
 -2364.7
             -1422.2
                           1637.83
                                      -589.677
                                                 -708.05
   -59.1365
                                                 -107.215
               -20.4162
                           -589.677
                                       668.645
 -540.0
              -310.451
                           -708.05
                                      -107.215
                                                 1543.07
```

vcov(model)

```
5×5 LinearAlgebra.Hermitian{Float64,Array{Float64,2}}:
100962.0
             67384.6
                          -4462.5
                                      1093.29
                                                 -38171.3
 67384.6
             45850.7
                          -5241.13
                                       982.147
                                                 -22377.8
                          41915.8
 -4462.5
             -5241.13
                                    -10874.8
                                                 -47866.5
   1093.29
               982.147
                        -10874.8
                                     15301.4
                                                  -7711.91
            -22377.8
                                                 105877.0
 -38171.3
                         -47866.5
                                     -7711.91
```

vcov(model, HC1)

```
5×5 LinearAlgebra.Hermitian{Float64,Array{Float64,2}}:
      1.00954e5
                  67379.6
                              -4462.17
                                          1093.21
                                                    -38168.5
 67379.6
                  45847.3
                              -5240.74
                                           982.074 -22376.1
 -4462.17
                  -5240.74
                              41912.7
                                                    -47863.0
                                        -10874.0
   1093.21
                    982.074
                             -10874.0
                                         15300.3
                                                     -7711.33
 -38168.5
                 -22376.1
                             -47863.0
                                         -7711.33
                                                         1.05869e5
 • vcov(model, HCO) #Уайта
 Float64[1921.17, 10233.9, -884.209, 166.038, -576.203]
 coef(model)
```

Float64[282.993, 388.72, 288.327, -28.2579, -58.9271, 213.943, 213.702, 129.117, 39

• residuals(model)

Float64[43.0065, -62.7202, 38.6735, 362.258, 393.927, 122.057, 122.298, 207.883, -50

fitted(model)

	PE	SE	t-value	Pr > t	2.50%	97.50%
(Intercept) Carat X Y Z	1921.17 10233.9 -884.209 166.038 -576.203	25.8582	-21.8485	<1e-74 <1e-99 <1e-99 <1e-9 <1e-47	1716.6 10110.6 -963.531 115.356 -653.196	2125.74 10357.3 -804.887 216.721 -499.211

coeftable(model)

UndefVarError: diag not defined

1. top-level scope @ [Local: 1

confint(model, level=0.9, se=sqrt.(diag(vcov(model, HC1))))

Tests

943745.3697994003

aic(model)

943798.7435649805

bic(model)

Int32[106276, 106276, 106929, 111556, 112225, 112896, 112896, 113569, 113569, 11424

diamonds[!, "plot2"] = diamonds[!, :Price] .^2

Float64[80085.3, 1.51103e5, 83132.2, 798.512, 3472.41, 45771.7, 45668.8, 16671.1, 1

diamonds[!, "resid2"] = residuals(model) .^2

aux_model =

Continuous Response Model
Number of observations: 53940
Null Loglikelihood: -938649.49

Loglikelihood: -930453.77

R-squared: 0.2621

LR Test: 16391.44 ~ $\chi^2(5) \Rightarrow Pr > \chi^2 = 0.0000$

Formula: resid2 ~ 1 + Carat + X + (Carat ^ 2) + (X ^ 2) + X & Carat

Variance Covariance Estimator: OIM

	PE	SE	t-value	Pr > t	2.50%	97.50%
(Intercept) Carat X Carat ^ 2 X ^ 2 X & Carat	-2.6743e7	1.50694e6	-17.7466	<1e-69	-2.96966e7	-2.37894e7
	2.76898e7	1.22161e6	22.6667	<1e-99	2.52954e7	3.00842e7
	3.50164e6	655055.0	5.34557	<1e-7	2.21773e6	4.78556e6
	3.18021e7	4.45418e5	71.3984	<1e-99	3.09291e7	3.26752e7
	9.90712e5	86860.2	11.4058	<1e-29	820465.0	1.16096e6
	-1.45887e7	2.84973e5	-51.1933	<1e-99	-1.51472e7	-1.40301e7

```
• aux_model = fit(EconometricModel,
    @formula(resid2~Carat+X+Carat^2+X^2+X*Carat),diamonds)
```

Graphics

iris =

	SepalLength	SepalWidth	PetalLength	PetalWidth	Species
1	5.1	3.5	1.4	0.2	CategoricalValue{String,UInt8} "
2	4.9	3.0	1.4	0.2	CategoricalValue{String,UInt8} "
3	4.7	3.2	1.3	0.2	CategoricalValue{String,UInt8} "
4	4.6	3.1	1.5	0.2	CategoricalValue{String,UInt8} "
5	5.0	3.6	1.4	0.2	CategoricalValue{String,UInt8} "
6	5.4	3.9	1.7	0.4	CategoricalValue{String,UInt8} "
7	4.6	3.4	1.4	0.3	CategoricalValue{String,UInt8} "
8	5.0	3.4	1.5	0.2	CategoricalValue{String,UInt8} "
9	4.4	2.9	1.4	0.2	CategoricalValue{String,UInt8} "
10	4.9	3.1	1.5	0.1	CategoricalValue{String,UInt8} "
m	ore				

• iris = dataset("datasets", "iris")

```
• let
• Pkg.activate("Plots")
• Pkg.add("Plots")
• using Plots
• end
```

using Plots

Plots.PlotlyBackend()

- plotly()

histogram(iris.SepalLength)

scatter(iris.SepalLength, iris.PetalLength)

• Enter cell code...