Problem 1:

For a projectile fired from $\vec{r} = (0,0)$ with velocity $\vec{v} = (1,45^{\circ})$

For a projectile fired from $\vec{r} = (0,0)$ with velocity $\vec{v} = (1.03, 225^{\circ})$

Problem 4:

Implementing the fourth order FR algorithm with $\vec{r}_0 = (0, 0.058)$ and velocity $\vec{v}_0 = (0.49, 0)$ for the restricted three-body problem, we find:

For the second-order Position-Verlet algorithm, using the same initial conditions, we find:

Problem 5:

In the co-rotating frame, our FR algorithm is presented as follows:

Choosing $\vec{r}_0 = (0.02, 0.058)$ and velocity $\vec{v}_0 = (0.46, 0.02)$ as our new initial conditions in an attempt to witness chaotic behavior reveals the following in the co-rotating frame:

