

8-CHANNEL MULTIPLEXER (3-STATE)

- HIGH SPEED : t_{PD} = 17 ns (TYP.) at V_{CC} = 6V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A = 25$ °C
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 251

The M74HC251 is an high speed CMOS 8-CHANNEL MULTIPLEXER (3-STATE) fabricated with silicon gate C^2MOS technology. This Multiplexer features both true $\underline{(Y)}$ and complement $\underline{(W)}$ outputs as well as STROBE input. When the STROBE is high, both outputs are

ORDER CODES

PACKAGE	TUBE	T & R
DIP	M74HC251B1R	
SOP	M74HC251M1R	M74HC251RM13TR
TSSOP		M74HC251TTR

in the high impedance state. When enabled, address information on the data select inputs determines which data input is routed to Y and W. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

July 2001 1/11

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION			
4, 3, 2, 1, 15, 14, 13, 12	D0 to D7	Multiplexer Inputs			
5	Υ	Multiplexer Output			
6	W	Complementary Multi- plexer Output			
7	STROBE	3 State Output Enable Input			
11, 10, 9	A, B, C	Select Inputs			
8	GND	Ground (0V)			
16	Vcc	Positive Supply Voltage			

TRUTH TABLE

	INP	OUTPUTS				
			STROBE	v	14/	
С	В	Α	s	- T	W	
Х	X	X	Н	Z	Z	
L	L	L	L	D0	D0	
L	L	Н	L	D1	D1	
L	Н	L	L	D2	D2	
L	Н	Н	L	D3	D3	
Н	L	L	L	D4	D4	
Н	L	Н	L	D5	D5	
Н	Н	L	L	D6	D6	
Н	Н	Н	L	D7	D7	

X : Don't Care Z : High Impedance

LOGIC DIAGRAM

This logic diagram has not be used to estimate propagation delays

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _I	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
ΙO	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t_r , t_f		$V_{CC} = 4.5V$	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

DC SPECIFICATIONS

		7	Test Condition	Value							
Symbol	Parameter	v _{cc}		Т	A = 25°	С	-40 to 85°C		-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
V _{OH}	High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		V	
	6.0	I _O =-20 μA	5.9	6.0		5.9		5.9			
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40	
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{OZ}	High Impedance Output Leakage Current	6.0	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			± 0.5		± 5		± 10	μΑ
Icc	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

		1	est Condition	Value							
Symbol	Parameter	v _{cc}		Т	A = 25°	С	-40 to 85°C		-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0			30	75		95		115	
	Time	4.5			8	15		19		23	ns
		6.0			7	13		16		20	
t _{PLH} t _{PHL}	Propagation Delay	2.0			64	130		165		195	
	Time	4.5			16	26		33		39	ns
	(D - Y, W)	6.0			14	22		28		33	
t _{PHL}	Propagation Delay	2.0			80	160		200		240	
	Time	4.5			20	32		40		48	ns
	(A, B, C -Y, W)	6.0			17	27		34		41	
t _{PZL} t _{PZH}	High Impedance	2.0			36	90		115		135	
	Output Enable	4.5	$R_L = 1 K\Omega$		11	18		23		27	ns
Time	Time	6.0			9	15		20		23	
t _{PLZ} t _{PHZ}	t _{PLZ} t _{PHZ} High Impedance Output Disable	2.0			26	85		105		130	
		4.5	$R_L = 1 K\Omega$		13	17		21		26	ns
	Time	6.0			11	14		18		22	

CAPACITIVE CHARACTERISTICS

			Test Condition		Value						
Symbol	Parameter	er V _{CC}	T _A = 25		_A = 25°	°C -40 to 85°C			-55 to 125°C		Unit
	V _{CC} (V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.			
C _{IN}	Input Capacitance	5.0			5	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			62						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. I_{CC(opr)} = C_{PD} x V_{CC} x f_{IN} + I_{CC}

57

TEST CIRCUIT

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

 C_L = 50pF/150pF or equivalent (includes jig and probe capacitance) R_1 = 1KΩ or equivalent R_T = Z_{OUT} of pulse generator (typically 50Ω)

WAVEFORM 1: PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)

47/ 6/11

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME (f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
Е		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

SO-16 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)	•	
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (max.)	•	•

TSSOP16 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			1.2			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.9	5	5.1	0.193	0.197	0.201	
E	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

