UNCLASSIFIED

AD 412482

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

TECHNICAL REPORT 3091

TRUE AVERAGE SIZE

OF A

FRAGMENT BETWEEN ANY CHOSEN LIMITS

SIDNEY KRAVITZ LOUIS WIESENFELD

AMCMS 5522.11.556X01

COPY NO. 48 OF 58

JULY 1963

PICATINNY ARSENAL DOVER, NEW JERSEY

The findings in this report are not to be construed as an official Department of the Army Position.

DISPOSITION

Destroy this report when it is no longer needed. Do not return.

ASTIA AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from ASTIA.

TECHNICAL REPORT 3091

TRUE AVERAGE SIZE OF A FRAGMENT BETWEEN ANY CHOSEN LIMITS

BY

SIDNEY KRAVITZ LOUIS WIESENFELD

AMCMS 5522.11.556x01

JULY 1963

SUBMITTED BY: /

A. BERMAN

Chief, Special

Ammunition &

Analysis Section

APPROVED BY

E.H. BUCHANAN

Chief, Artillery

Ammunition Laboratory

AMMUNITION ENGINEERING DIRECTORATE PICATINNY ARSENAL DOVER, NEW JERSEY

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	1
II	SUMMARY	2
III	CONCLUSION	3
IV	RECOMMENDATION	3
v	STUDY	4
	REFERENCES	7
	APPENDIX	
	A. Tables	8
-	ABSTRACT DATA	17
	TABLE OF DISTRIBUTION	18

SECTION I

INTRODUCTION

It is customary to group various fragment weights into discrete ranges such as 1-2 grains, 2-5 grains and 5-10 grains when evaluating lethal effectiveness. Then it is assumed that the average fragment weight in each grouping is the arithmetic average of the upper and lower limits of the group. For example, the average for the range 2-5 grains, would be taken as 3-1/2 grains. Now it is known that the distribution of fragment weights for an exploding shell follows Mott's distribution in which the smaller the fragment the greater is their number. Consequently, the true average in each grouping is somewhat less than the arithmetic average, due to the excess number of fragments in the lower half of the grouping.

The purpose of this report is to develop a method for finding the correct μ average in each grouping assuming Mott's distribution is correct.

SECTION II

SUMMARY

The objective of this study was to develop a method for determining the correct average fragment size, between any chosen limits, of a range of sizes. Ordinarily, the arithmetic average of the lower and upper limits of a grouping is assumed to be the average fragment weight of that group. According to Mott's distribution, the smaller the fragment, the greater is the number of fragments. Therefore the arithmetic average of any grouping of fragment sizes would be larger than the true average. By writing an expression for the average size of a fragment in an interval between \underline{m} and $\underline{m} + \underline{\Delta} \underline{m}$ (where $\underline{\Delta} \underline{m}$ is small), allowing $\underline{\Delta} \underline{m}$ to approach a limit of zero, and substituting Mott's equation in the resulting differential and integrating, we get a generalized expression for the true average size of a fragment between any chosen limits. A numerical example is illustrated in Table 1. A listing of values in Table 2 readily solves the derived equation.

SECTION III

CONCLUSION

Where fragments are distributed according to Mott's Law, the arithmetic average of the high and low fragment sizes of a group is higher than the true average for the group. An equation is derived from which the true average can be calculated.

SECTION IV

RECOMMENDATION

Taking an arithmetic average of the high and low fragment sizes of a group should be discontinued. Instead, the average fragment size should be found from the equation derived in this study.

SECTION V

STUDY

DERIVATION OF THE EQUATIONS

Mott's equation (Reference 1) for the distribution of fragment weights in an exploding shell is:

$$N(m) = \left(\frac{M}{2\mu}\right) e^{-\left(\frac{m}{\mu}\right)^{1/2}}$$
(1)

where N(m) is the number of fragments greater than fragment weight m. M is the total weight of fragmenting metal. 2 μ is the average fragment weight.

the total weight is $[N (m) - N(m + \Delta m)][m + \Delta m]$, and in a range from m = A to m = B, the true average fragment size is:

$$m_{AV} = \frac{\sum_{m=A}^{m=B} \left[N(m) - N(m + \Delta m) \right] \left[m + \frac{\Delta m}{2} \right]}{N(A) - N(B)}$$
(2)

A numerical example illustrating the use of this equation is in Table I. Here the average in an interval between A = 2 grains to B = 5 grains is found to be 3.30 grains. The average fragment for the entire shell is $2 \mu = 9.834$ grains. Δm is chosen as 0.2 grains in this example.

Equation (2) may be rewritten as:

$$m_{AV} = \frac{\sum_{m=A}^{m=B} - \left[\frac{N(m+\Delta m)-N(m)}{\Delta m}\right] \left[m + \frac{\Delta m}{2}\right] \Delta m_{(3)}}{N(A)-N(B)}$$

If we allow \triangle m to approach a limit of zero then:

$$\frac{m_{AV}}{dm} = \int_{-\infty}^{B} \left(\frac{dN(m)}{dm}\right) \left(m\right) dm / \left[N(A) - N(B)\right]$$

$$\frac{dN(m)}{dm} = \frac{d\left(\frac{M}{2\mu}\right) e^{-\left(\frac{m}{\mu}\right)^{2}}}{dm} = -\left(\frac{M}{2\mu}\right) \left(\frac{1}{a}\right) \left(\frac{m}{\mu}\right)^{-\frac{1}{2}} \frac{1}{\mu}$$
(4)

$$m_{AV} = \int_{A}^{B} \left(\frac{1}{a}\right) \left(\frac{M}{a\mu}\right) \left(\frac{m}{\mu}\right)^{2} e^{-\left(\frac{m}{\mu}\right)^{2}a} dm / [N(A) - N(B)]_{(5)}$$

Let
$$\left(\frac{m}{\mu}\right) = \lambda^{2}$$

$$dm = 2\mu \lambda d\lambda$$

$$\left(\frac{m}{\mu}\right)^{2} = \lambda$$

$$m_{AV} = \int_{(A)^{2}}^{(B)^{2}} \left(\frac{1}{2}\right) \left(\frac{M}{2\mu}\right) \lambda e^{-\lambda} 2\mu \lambda d\lambda / [N(A) - N(B)]$$

$$= \frac{M}{2} \int_{(A)^{2}}^{(B)^{2}} \chi^{2} e^{-\lambda} d\lambda / [N(A) - N(B)]$$

$$= \frac{\mu \left[e^{-\left(\frac{A}{\mu}\right)^{\frac{1}{2}}} \left(\left(\frac{A}{\mu}\right) + 2\left(\frac{A}{\mu}\right)^{\frac{1}{2}} + 2 \right) - e^{-\left(\frac{B}{\mu}\right)^{\frac{1}{2}}} \left(\left(\frac{B}{\mu}\right) + 2\left(\frac{B}{\mu}\right)^{\frac{1}{2}} + 2 \right) \right]}{e^{-\left(\frac{B}{\mu}\right)^{\frac{1}{2}}} - e^{-\left(\frac{B}{\mu}\right)^{\frac{1}{2}}}}$$
(6)

Using A = 2, B = 5 and $\mu = \frac{9.834}{2} = 4.917$ grains gives m = AV 3.30 grains, which verifies the numerical calculation in Table I.

$$f(x) \equiv e^{-x/2} \tag{7}$$

And
$$g(x) \equiv f(x) \left[x + 2x^{1/2} + 2 \right]$$
 (8)

Then

$$m_{AV} = \frac{\mu \left[g\left(\frac{A}{\mu}\right) - g\left(\frac{B}{\mu}\right) \right]}{\left[f\left(\frac{B}{\mu}\right) - f\left(\frac{A}{\mu}\right) \right]}$$
(9)

Table II gives f and g as functions of x.

REFERENCES

1. Ordnance Engineering Design Handbook, Artillery Ammunition Series ORDP 20-245 Section 2, Design For Terminal Effects, May 1957.

APPENDIX

APPENDIX A TABLES

TABLE I

NUMERICAL SOLUTION OF EQUATION (2) BETWEEN

	A rithmetic Avg. In Interval	2.1	2,3	2.5	2.7	2.9	3.1	3,3	3,5	3.7
RAINS	No. Of Fragments In Interval	47	43	41	38	36	33	32	30	29
2 AND 5 G	(m) N	1534	1487	1444	1403	1365	1329	1296	1264	1234
THE LIMITS OF 2 AND 5 GRAINS	e-(m/h)/2	0.52846	0.51227	0.49728	0.48326	0.47024	0.45790	0.44632	0.43539	0.42499
표	(m/m)	0.63777	0.66890	0.69864	0.72717	0.75462	0.78111	0.80672	0,83155	0.85566
	m/m (m/m)2	0.40675	0.44743	0.48810	0.52878	0.56945	0.61013	0,65080	0.69148	0.73215
	æ	2.0	2.2	2.4	2.6	2.8	3.0	3.2	3,4	3.6

TABLE I (CONT'D)

No. Of Fragments Arithmetic In Interval Avg. In Interval	3.9	26 4.1	25 4.3	23 4.5	23 4.7	22 4.9	ins = 1566.1 = 3.3 grain 475
	1205	1178	1152	1127	1104	1081	1059 sen 2 and 5 gra etween 2 and 5
$m/\mu)^{1/2} = (m/\mu)^{1/2} N(m)$	0,41516	0.40580	0.39685	0.38829	0.38014	0,37232	10840 0.36480 1059 total fragment wt. between 2 and 5 grains total No. of fragments between 2 and 5 grain
$\frac{2}{3}(\frac{1}{3})m$	0.87911	0.90194	0.92422	0.94597	0.96723	0,98803	- "
m/m	0.77283	0.81350	0.85418	0.89485	0.93553	0.97621	1.01688 Avg. fragment size
8	3,8	4.0	4.2	4.	-3- 4.	4 .	5.0 Avg

= fragment wt, in grains = 9.834 grains = average fragment size for entire shell

= the number of fragments greater than fragment wt. m = 28,548 grains = total wt. of fragmenting metal = base of natural logarithm e X (m)

f AND g AS FUNCTIONS OF x FOR m/µ FROM 0.01 TO 5.00

m/μ f g m/μ <u>i</u>	g
0.01 0.90484 1.99969 0.41 0.52	713 1.94543
0.01	
0.02	
	· · · · · · · · · · · · · · · · · · ·
0.05 0.79963 1.99685 0.45 0.51 0.06 0.78274 1.99592 0.46 0.50	
0.00	
	· · · · · · · · · · · · · · · · · · ·
0.08 0.75364 1.99389	
0.10 0.72889 1.99167 0.50 0.49	
0.11 0.71773 1.99050 0.51 0.48	
0.12 0.70722 1.98929 0.52 0.48	
0.16 0.10/55 24/5/5/	3287 1.92472
	7958 1.92296
	7634 1.92120
	7316 1.91943
	7002 1.91766
	6693 1.91588
	6389 1.91410
	6089 1.91232
	5794 1.91053
	5503 1.90874
	5216 1.90695
0.24 0.61269 1.97273 0.64 0.44	4933 1.90515
	4654 1.90336
0.26 0.60055 1.96970 0.66 0.44	4379 1.90155
	4108 1.89975
***	3840 1.89754
0.5	3576 1.89614
4	3315 1.89432
	3058 1.89251
0.55	2804 1.89070
	2554 1.88888
	2306 1.88706
	2062 1.88524
0.30	1821 1.88342
	1582 1.88159
0.50	1347 1.87977
	1114 1.87794 0884 1.87612
0.40 0.53129 1.94711 0.80 0.4	0884 1.87612

f AND g AS FUNCTIONS OF x FOR m/µ FROM 0.01 TO 5,00

<u>m/µ</u>	f	g	<u>m/µ</u>	<u>f</u>	<u>g</u> .
0.81	0.40657	1.87429	1.21		1.80083
0.82	0.40432	1.87246	1.22		1.79900
0.83	0.40210	1.87062	1.23		1.79717
0.84	0.39991	1.86879	1.24		1.79534
0.85	0.39774	1.86696	1.25		1.79352
0.86	0.39560	1.86513	1.26		1.79169
0.87	0.39347	1.86329	1.27		1.78986
0.88	0.39138	1.86146	1.28		1.788C4
0.89	0.38930	1.85962	1.29		1.78621
0.90	0.38725	1.85778	1.30		1.78439
0.91	0.38522	1.85595	1.31		1.78257
0.92	0.38321	1.85411	1.32		1.78075
0.93	0.38123	1.85227	1.33		1.77893
0.94	0.37926	1.85043	1.34		1.77711
0.95	0.37731	1.84859	1.35		1.77529
0.96	0.37539	1.84675	1.36		1.77347
0.97	0.37348	1.84492	1.37		1.77165
0.98	0.37160	1.84308	1.38		1.76984
0.99	0.36973	1.84124	1.39		1.76803
1.00	0.36788	1.83940	1-40		1.76621
1.01	0.36605	1.83756	1.41		1.76440
1.02	0.36424	1.83572	1.42		1.76259
1.03	0.36244	1.83388	1.43		1.76078 1.75897
1.04	0.36067	1.83204	1.44		1.75717
1.05	0.35891	1.83020	1.45		1.75536
1.06	0.35716	1.82836	1.46		1.75356
1.07	0.35544	1.82652	1.47		1.75176
1.08	0.35373	1.82469	1.48		1.74995
1.09	0.35203	1.82285	1.49		1.74815
1.10	0.35035	1.82101	1.50 1.51		1.74636
1.11	0.34869	1.81917	1.52		1.74456
1.12	0.34705	1.81734	1.53		1.74276
1.13	0.34541	1.81550	1.54		1.74097
1.14	0.34380	1.81367	1.55		1.73917
1.15	0.34219	1.81000	1.50		1.73738
1.16	0.34060	1.80816	1.57		1.73559
1.17	0.33903	1.80633	1.58		1.73380
1.18	0.33747	1.80450	1.59		1.73202
1.19	0.33592 0.33439	1.80266	1.60		1.73023
1.20	ひょうかやうが	1.00200	1.00	,	

f AND g AS FUNCTIONS OF x FOR m/μ FROM 0.01 TO 5.00

			,	c.	
m/μ	f	g	m/p	f	g
1.61	0.28115	1.72845	2.0		1.65839
1.62	0.28005	1.72666	2.0		1.65667
1.63	0.27895	1.72488	2.0		1.65496
1.64	0.27786	1.72310	2.0		1.65324
1.65	0.27678	1.72132	2.09		1.65153
1.66	0.27571	1.71955	2.00		1.64982
1.67	0.27464	1.71777	2.0		1.64812
1.68	0.27358	1.71600	2.00		1.64641
1.69	0.27253	1.71423	2.01		1.64471
1.70	0.27149	1.71245	2.10		1.643CO
1.71	0.27045	1.71069	2.1		1.64130
1.72	0.26942	1.70892	2.13		1.63961
1.73	0.26840	1.70715	2.1		1.63791
1.74	0.26738	1.70539	2.14		1.63621
1.75	0.26637	1.70363	2.1!		1.63452
1.76	0.26536	1.70186	2.10		1.63283
1.77	0.26437	1.70010	2.1		1.63114
1.78	0.26338	1.69835	2.10		1.62945
1.79	0.26239	1.69659	2.19	9 0.22767	1.62777
1.80	0.26142	1.69484	2.20	0.22690	1.62608
1.81	0.26045	1.69308	2.21	0.22614	1.62440
1.82	0.25948	1.69133	2.22	2 0.22538	1.62272
1.83	0.25852	1.68958	2.23	3 0.22463	1.62104
1.84	0.25757	1.68784	2.24	4 0.22388	1.61937
1.85	0.25662	1.68609	2.25	5 0.22313	1.61769
1.86	0.25568	1.68434	2.20	0.22239	1.61602
1.87	0.25475	1.68260	2.27	7 0.22165	1.61435
1.88	0.25382	1.68086	2.28	0.22092	1.61268
1.89	0.25290	1.67912	2.29	9 0.22019	1.61101
1.90	0.25198	1.67738	2.30	0.21946	1.60935
1.91	0.25107	1.67565	2.3	0.21874	1.60769
1.92	0.25016	1.67391	2.32	2 0.21802	1.606C3
1.93	0.24926	1.67218	2.33	3 0.21731	1.60437
1.94	0.24837	1.67045	2.34	0.21660	1.60271
1.95	0.24748	1.66872	2.35	0.21589	1.60105
1.96	0.24660	1.66700	2.36		1.59940
1.97	0.24572	1.66527	2.37		1.59775
1.98	0.24485	1.66355	2.38		1.59610
1.99	0.24398	1.66183	2.39		1.59445
2.00	0.24312	1.66011	2.40		1.59280

f AND g AS FUNCTIONS OF \times FOR m/ μ FROM 0.01 TO 500

m/µ	f	g	m/µ	f	g
			2.81	0.18706	1.52693
2.41	0.21174	1.59116	2.82	0.18651	1.52536
2.42	0.21106	1.58951 1.58787	2.83	0.18595	1.52380
2.43	0.21038	1.58624	2.84	0.18540	1.52223
2.44	0.20971	1.58460	2.85	0.18485	1.52067
2.45	0.20904	1.58296	2.86	0.18431	1.51911
2.46	0.20837	1.58133	2.87	0.18376	1.51756
2.47	0.20771	1.57970	2.88	0.18322	1.51600
2.48	0.20705	1.57807	2.89	0.18268	1.51445
2.49	0.20639	1.57644	2.90	0.18215	1.51289
2.50	0.20574	1.57482	2.91	0.18161	1.51134
2.51	0.20509 0.20445	1.57319	2.92	0.18108	1.50980
2.52	0.20380	1.57157	2.93	0.18055	1.50825
2.53	0.20316	1.56995	2.94	0.18003	1.50671
2.54	0.20253	1.56833	2.95	0.17950	1.50516
2.55	0.20190	1.56672	2.96	0.17898	1.50362
2.56	0.20127	1.56510	2.97	0.17846	1.50208.
2.57	0.20064	1.56349	2.98	0.17795	1.50055
2.58	0.20002	1.56188	2 .9 9	0.17743	1.49901
2.59	0.19940	1.56027	3.00	0.17692	1.49748
2.60	0.19878	1.55867	3.01	0.17641	1.49595
2.61	0.19817	1.55706	3.02	0.17590	1.49442
2.62	0.19756	1.55546	3.03	0.17540	1.49289
2.63 2.64	0.19695	1.55386	3.04	0.17490	1.49137
2.65	0.19635	1.55226	3.05	0.17440	1.48984
2.66	0.19574	1.55066	3.06	0.17390	1.48832
2.67	0.19514	1.54906	3.07	0.17340	1.48680
2.68	0.19455	1.54747	3.08	0.17291	1.48528
2.69	0.19396	1.54588	3.09	0.17242	1.48377
2.70	0.19337	1.54429	3.10	0.17193	1.48225
2.71	0.19278	1.54270	3.11	0.17144	1.48074
2.72	0.19220	1.54112	3.12	0.17096	1.47923
2.73	0.19161	1.53953	3.13	0.17047	1.47772
2.74	0.19104	1.53795	3.14	0.16999	1.47621
2.75	0.19046	1.53637	3.15	0.16951	1.47471
2.76	0.18989	1.53479	3.16	0.16904	1.47320
2.77	0.18932	1.53322	3.17	0.16856	1.47170
2.78	0.18875	1.53164	3.18	0.16809	1.47020
2.79	0.18819	1.53007	3.19	0.16762	1.46870 1.46721
2.80	0.18762	1.52850	3.20	0.16715	1.40/21

f AND g AS FUNCTIONS OF x FOR m/µ FROM 0.01 TO 5.00

m/µ	f	g	m/µ	f	g
					
			3.61	0.14957	1.40744
3.21	0.16669	1.46571	3.62	0.14918	1.406C2
3.22	0.16622	1.46422	3.63	0.14878	1.40460
3.23	0.16576	1.46273	3.64	0.14839	1.40319
3.24	0.16530	1.46124	3.65	0.14801	1.40177
3.25	0.16484	1.45976	3.66	0.14762	1.40036
3.26	0.16438	1.45827	3.67	0.14724	1.39895
3.27	0.16393	1.45679 1.45531	3.68	0.14685	1.39754
3.28	0.16348	1.45383	3.69	0.14647	1.39613
3.29	0.16303	1.45235	3.70	0.14609	1.39472
3.30	0.16258	1.45087	3.71	0.14571	1.39332
3.31	0.16213	1.44940	3.72	0.14533	1.39192
3.32	0.16169 0.16125	1.44793	3.73	0.14496	1.39052
3.33	0.16030	1.44646	3.74	0.14458	1.38912
3.34	0.16037	1.44499	3.75	0.14421	1.38772
3.35	0.15993	1.44352	3.76	0.14384	1.38633
3.36	0.15949	1.44266	3.77	0.14347	1.38493
3.37	0.15906	1.44059	3.78	0.14310	1.38354
3.38	0.15863	1.43913	3.79	0.14273	1.38215
3.39	0.15820	1.43767	3.80	0.14237	1.38076
3.40	0.15777	1.43622	3.81	0.14200	1.37937
3.41	0.15734	1.43476	3.82	0.14164	1.37799
3.42	0.15692	1.43331	3.83	0.14128	1.37661
3.43 3.44	0.15650	1.43185	3.84	0.14092	1.37522
3.45	0.15608	1.43040	3.85	0.14056	1.37385
3.46	0.15566	1.42895	3.86	0.14020	1.37247
3.47	0.15524	1.42751	3.87	0.13984	1.371C9
3.48	0.15482	1.42606	3.88	0.13949	1.36972
3.49	0.15441	1.42462	3.89	0.13914	1.36834
3.50	0.15400	1.42318	3.90	0.13878	1.36697
3.51	0.15359	1.42174	3.91	0.13843	1.36560
3.52	0.15318	1.42030	3.92	0.13808	1.36423
3.53	0.15277	1.41887	3.93	0.13774	1.36287
3.54	0.15236	1.41743	3.94		1.36150
3.55	0.15196	1.41600	3.95		1.36014
3.56	0.15156	1.41457	3.96		1.35878
3.57	0.15116	1.41314	3.97		1.35742
3.58	0.15076	1.41171	3.98	0.13601	1.35606
3.59	0.15036	1.41029	3.99		1.35471
3.60	0.14996	1.40886	4.00	0.13534	1.35335
J • UU	0.14//0				

f AND g AS FUNCTIONS OF x FOR m/p FROM 0.01 TO 500

m/µ	f	g	m/ <u>µ</u>	<u>f</u>	g
4.01 4.02	0.13500 0.13466	1.352CO 1.35065	4.41 4.42	0.12246	1.29926 1.29798
4.03	0.13433	1.34930	4.43	0.12138	1.29669
4.04	0.13399	1.34795	4.44	0.12159	1.29541
4.05	0.13366	1.34661	4.45	0.12130	1.29413
4.06 4.07	0.13333 0.13300	1.34526 1.34392	4.46 4.47	0.12101 0.12073	1.29158
4.08	0.13267	1.34258	4.48	0.12044	1.29030
4.09	0.13234	1.34124	4.49	0.12016	1.28903
4.10	0.13201	1.33990	4.50	0.11987	1.28776
4.11	0.13169	1.33857	4.51	0.11959	1.28649
4.12	0.13136	1.33723	4.52	0.11931	1.28522
4.13	0.13104	1.33590	4.53	0.11903	1.28395
4.14	0.13072	1.33457	4.54	0.11875	1.28268
4.15	0.13040	1.33324	4.55	0.11847	1.28142
4.16	0.13008	1.33191	4.56	0.11820	1.28016
4.17	0.12976	1.33059	4.57	0.11792	1.27889
4.18	0.12944	1.32926	4.58	0.11764	1.27763
4.19	0.12913	1.32794	4.59 4.60	0.11737 0.11710	1.27638 1.27512
4.20 4.21	0.12881 9.12850	1.32662	4.61	0.11682	1.27387
4.22	0.12819	1.32399	4.62	0.11655	1.27261
4.23	0.12788	1.32267	4.63	0.11628	
4.24	0.12757	1.32136	4.64	0.11601	1.27011
4.25	0.12726	1.32004	4.65	0.11574	1.26886
4.26	0.12695	1.31873	4.66	0.11547	1.26761
4.27	0.12664	1.31742	4.67	0.11521	1.26637
4.28	0.12634	1.31611	4.68	0.11494	1.26512
4.29	0.12603	1.31481	4.69	0.11468	1.26388
4.30	0.12573	1.31350	4.70	0.11441	1.26264
4.31	0.12542	1.31220	4.71	0.11415	1.26140
4.32	0.12512	1.31090	4.72	0.11389	1.26016
4.33	0.12482		4.73 4.74	0.11362 0.11336	1.25893 1.25769
4.34 4.35	0.12452 0.12422	1.30830 1.307C1	4.75	0.11310	1.25646
4.35	0.12393	1.30701	4.76	0.11284	1.25523
4.37	0.12363	1.30442	4.77	0.11259	1.25400
4.38	0.12334	1.30313	4.78	0.11233	1.25277
4.39	0.12304	1.30184	4.79	0.11207	1.25154
4.40	0.12275	1.30055	4.80	0.11182	1.25032

f AND g AS FUNCTIONS OF \times FOR m/ μ FROM 0.01 TO 500

m/µ	f	g
4.81	0.11156	1.24909
4.82	0.11131	1.24787
4.83	0.11106	1.24665
4.84	0.11080	1.24543
4.85	0.11055	1.24421
4.86	0.11030	1.24299
4.87	0.11005	1.24178
4.88	0.10980	1.24056
4.89	0.10955	1.23935
4.90	0.10931	1.23814
4.91	0.10906	1.23693
4.92	0.10881	1.23573
4.93	0.10857	1.23452
4.94	0.10833	1.23331
4.95	0.10808	1.23211
4.96	0.10784	1.23091
4.97	0.10760	1.22971
4.98	0.10736	1.22851
4.99	0.10712	1.22731
5.00	0.10688	1.22612

ABSTRACT DATA

Accession	No.	AD	

Picatinny Arsenal, Dover, New Jersey

TRUE AVERAGE SIZE OF A FRAGMENT BETWEEN ANY CHOSEN LIMITS

Sidney Kravitz, Louis Wiesenfeld

Technical Report 3091, July 1963, 18pp, tables. Unclassified report from the Artillery Ammunition Laboratory, Ammunition Engineering Directorate.

A method was developed for determining the correct average fragment size, between any chosen limits, of a range of sizes when evaluating lethal effectiveness.

When fragments are distributed according to Mott's Law, the arithmetic average of the high and low fragment sizes of a group is higher than the true average for the group. The true average can be calculated from the derived equation.

UNCLASSIFIED

- 1. Ammunition Fragments
- I. Kravitz, Sidney
- II. Wiesenfeld, Louis
- III. Average fragment size

UNITERMS

Size
Determination
Calculation
Kravitz, Sidney
Wiesenfeld, Louis

Technical Report 3091, July 1963, 18 pp. tables. Unclas-TRUE AVERAGE SIZE OF A FRACMENT BETWEEN sified report from the Artillery Ammunition Laboratory, AT) Picatinny Arsenal, Dover, New Jersey Ammunition Engineering Director 'e. Sidney Kravitz, Louis Wiesenfeld ANY CHOSEN LIMITS Accession No.

erage fragment size, between any chosen limits, of a range A method was developed for determining the correct apof sizes when evaluating lethal effectiveness.

the arithmetic average of the high and low fragment sizes of a group is higher than the true average for the group. When fragments are distributed according to Mott's Law, The true average can be calculated from the derived equaUNCLASSIFIED

Wiesenfeld, Louis

Kravitz, Sidney

Determination

Calculation

Technical Report 3091, July 1963, 18 pp, tables. Unclas-TRUE AVERAGE SIZE OF A FRACMENT BETWEEN A method was developed for determining the correct apsified report from the Artillery Ammunition Laboratory, A) Picatinny Arsenal, Dover, New Jersey Ammunition Engineering Directorate. Sidney Kravitz, Louis Wiesenfeld ANY CHOSEN LIMITS Accession No.

erage fragment size, between any chosen limits, of a range the arithmetic average of the high and low fragment sizes When fragments are distributed according to Mott's Law, of a group is higher than the true average for the group. The true average can be calculated from the derived equaof sizes when evaluating lethal effectiveness.

Accession No. UNCLASSIFIED

1. Ammunition Frag-

ments

***** ** ** ** ** ** **

Picatinny Arsenal, Dover, New Jersey

TRUE AVERAGE SIZE OF A FRACMENT BETWEEN ANY CHOSEN LIMITS 11. Wiesenfeld, Louis Kravitz, Sidney

Technical Report 3091, July 1963, 18 pp, tables. Unclassified report from the Artillery Ammunition Laboratory, Sidney Kravitz, Louis Wiesenfeld

III. Average fragment

size

UNITERMS

Ammunition Engineering Directorate.

A method was developed for determining the correct ap-

erage fragment size, between any chosen limits, of a range of sizes when evaluating lethal offectiveness.

the arithmetic average of the high and low fragment sizes of a group is higher than the true average for the group The true average can be calculated from the derived equa-When fragments are distributed according to Mott's Law,

AD Picatinny Arsenal, Dover, New Jersey Accession No. ---

TRUE AVERACE SIZE OF A FRAGMENT BETWEEN ANY CHOSEN LIMITS

1. Ammunition Frag-

ments

UNCL.ASSIFIED

Sidney Kravitz, Louis Wiesenfeld

 Wiesenfeld, Louis III. Average fragment

UNITERMS

size

I. Kravitz, Sidney

Technical Report 3091, July 1963, 18 pp, tables. Unclas-

sified report from the Artillery Ammunition Laboratory,

erage fragment size, between any chosen limits, of a range A method was developed for determining the correct apof sizes when evaluating lethal effectiveness. Ammunition Engineering Directorate.

the arithmetic average of the high and low fragment sizes When fragments are distributed according to Mott's Law, of a group is higher than the true average for the group. The true average can be calculated from the derived equa-

UNCLASSIFIED

Wiesenfeld, Louis

Kravitz, Sidney

Determination Calculation

UNCLASSIFIED

1. Ammunition Frag-

ments

"这是这是是是一年中人的生命的最后的人,如果的现在分词的原因的原因的原因的原因的原因的原因的原因的现在时间的现在分词形式的现在分词形式,

I. Kravitz, Sidney

II. Wiesenfeld, Louis III. Average fragment size

UNITERMS

Determination

Wiesenfeld, Louis Kravitz, Sidney Calculation

UNCLASSIFIED

UNCI.ASSIFIED

1. Ammunition Frag-

ments

I. Kravitz, Sidney

II. Wiesenfeld, Louis III. Average fragment

UNITERMS Determination

Wiesenfeld, Louis Kravitz, Sidney Calculation

UNCLASSIFIED

TABLE OF DISTRIBUTION

TABLE OF DISTRIBUTION

		Copy Number
1.	Commanding Officer	
	Picatinny Arsenal	
	Dover, New Jersey	
	ATTN: SMUPA-DR	1-25
	SMUPA-VA6	26-30
	SMUPA-DW6	31-32
	SMUPA-DX1	33-34
	SMUPA-VC4 (Leonard Nichols)	35-36
	SMUPA-VC4 (Sherman Gerhard)	37 - 38
2.	Armed Services Technical Information Agency	
	Arlington Hall Station	
	Arlington 12, Virginia	39-48
3.	Commanding Officer	•
	U.S. Army Ballistics Research Laboratories	
	Aberdeen Proving Ground, Maryland	
	ATTN: AMXBR (Keith Meyers)	49-50
4.	Commanding Officer	
	Harry Diamond Laboratories	
	Washington 25, D.C.	50-51

UNCLASSIFIED

UNCLASSIFIED