Esame scritto di Geometria 2

24 luglio 2013

Esercizio 1. Sia $\mathbb{P}^3_{\mathbb{C}}$ lo spazio proiettivo complesso tridimensionale dotato del riferimento proiettivo standard $[x_0, x_1, x_2, x_3]$. Siano r(k), s(k) le rette di equazioni

$$r(k): \begin{cases} x_0 + kx_1 = 0 \\ x_2 - x_3 = 0 \end{cases} \quad s(k): \begin{cases} (k-1)x_0 - x_1 + x_2 = 0 \\ x_0 - x_3 = 0 \end{cases}$$

- 1. Si determinino i valori di $k \in \mathbb{C}$ per cui r(k) ed s(k) sono complanari. Per tali valori di k si scrivano le equazioni cartesiane di un piano che contiene r(k) ed s(k) e si trovi il punto di intersezione fra r(k) ed s(k).
- 2. Sia P = [1, 1, 1, 0]. Per i valori di $k \in \mathbb{C}$ tali che r(k) e s(k) sono sghembe si determini la retta t(k) passante per P ed incidente a r(k) e s(k).

Esercizio 2. Sia $\mathbb{A}^3_{\mathbb{R}}$ lo spazio affine reale tridimensionale dotato del riferimento affine standard (x, y, z). Consideriamo la quadrica $\mathcal{C}(k)$ definita come

$$C(k)$$
: $x^2 + (k-1)y^2 - 2kxz + 2x + 2y - 1 = 0$.

- 1. Al variare di $k \in \mathbb{R}$ si determini il tipo affine della quadrica C(k).
- 2. Nel caso k=2 si determini una affinità $T: \mathbb{A}^3_{\mathbb{R}} \to \mathbb{A}^3_{\mathbb{R}}$ tale che $T(\mathcal{C}(2)) = \mathcal{D}(2)$.

Esercizio 3. Sia $X = \mathbb{Q} \subset \mathbb{R}$ il sottospazio dei numeri razionali con la topologia euclidea indotta τ_{ε} . Sia ∞ un punto formale $(\infty \notin X)$ e si ponga $X^* = X \cup \{\infty\}$. Si consideri su X^* la seguente famiglia

$$\tau^* = \{ U \subset \mathbb{Q} \subset X^* : U \in \tau_{\varepsilon} \} \cup \{ U \subset X^* : (X^* \setminus U) \ \hat{e} \ un \ sottoinsime \ compatto \ di \ X \}.$$

- 1. Si dimostri che τ^* è una topologia.
- 2. Si dimostri che (X^*, τ^*) è compatto, connesso e T_1 .
- 3. Sia $f: \mathbb{R} \to X^*$ una mappa continua tale che $\infty \notin f(\mathbb{R})$. Si dimostri che $f \in costante$.

Esercizio 4. In \mathbb{R}^2 dotato della topologia euclidea si consideri il seguente insieme:

$$X = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 4, x \neq 0\} \cup \{(x,y) \in \mathbb{R}^2 : y = 2\}.$$

- 1. Si determinino chiusura, interno, derivato e frontiera di X.
- 2. Si determinino le componenti connesse di X, \bar{X} e \hat{X} .
- 3. Si dica se X e \bar{X} sono omeomorfi.

Soluzioni

Soluzione esercizio 1.

1. Le rette r(k) e s(k) sono complanari se e solo se sono incidenti, cioè se e solo se

$$\det \begin{pmatrix} 1 & k & 0 & 0 \\ 0 & 0 & 1 & -1 \\ k - 1 & -1 & 1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} = -(k^2 + 1) = 0$$

da cui $k = \pm i$ sono i valori richiesti. Sia P(k) l'intersezione fra r(k) ed s(k). Abbiamo

$$P(\pm i): \begin{cases} x_0 \pm ix_1 = 0\\ x_2 - x_3 = 0\\ (\pm i - 1)x_0 - x_1 + x_2 = 0\\ x_0 - x_3 = 0. \end{cases}$$

e quindi P(i) = [1, i, 1, 1] e P(-i) = [1, -i, 1, 1].

Notiamo che $[0,0,1,1] \in r(k)$ e $[0,1,1,0] \in s(k)$ e quindi troviamo le equazioni dei piani richiesti calcolando

$$\det \begin{pmatrix} x_0, & x_1 & x_2 & x_3 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & \pm i & 1 & 1 \end{pmatrix} = \pm ix_0 - x_1 + x_2 - x_3 = 0.$$

2. Assumiamo $k \neq \pm i$. Calcoliamo il piano $\pi(k)$ passante per P e contenente r(k). Il fascio dei piani contenenti r(k) è dato da

$$\lambda(x_0 + kx_1) + \mu(x_2 - x_3) = 0$$

per $(\lambda, \mu) \neq (0, 0)$. Imponendo il passaggio per P otteniamo

$$\pi(k)$$
: $(x_0 + kx_1) - (1+k)(x_2 - x_3) = 0$.

Il fascio dei piani contenenti s(k) è dato da

$$\lambda((k-1)x_0 - x_1 + x_2) + \mu(x_0 - x_3) = 0$$

per $(\lambda, \mu) \neq (0, 0)$. Imponendo il passaggio per P otteniamo

$$\pi(k)$$
: $((k-1)x_0 - x_1 + x_2) + (1-k)(x_0 - x_3) = 0$.

La retta t(k) è dunque

$$t(k): \begin{cases} x_0 + kx_1 - (1+k)(x_2 - x_3) = 0\\ -x_1 + x_2 - (1-k)x_3 = 0. \end{cases}$$

Notiamo che $t(k) \cap r(k) = [-k^2, k, 1, 1]$ e $t(k) \cap s(k) = [1, k^2 + k + 1, k^2 + 2, 1]$.

Soluzione esercizio 2.

1. Consideriamo le matrici associate a C(k)

$$A(k) = \begin{pmatrix} -1 & 1 & 1 & 0 \\ 1 & 1 & 0 & -k \\ 1 & 0 & k - 1 & 0 \\ 0 & -k & 0 & 0 \end{pmatrix} \quad A_0(k) = \begin{pmatrix} 1 & 0 & -k \\ 0 & k - 1 & 0 \\ -k & 0 & 0 \end{pmatrix}.$$

Notiamo che det $A(k) = k^3$ e det $A_0(k) = k^2(1-k)$. Inoltre il polinomio caratteristico di $A_0(k)$ è

$$\det \begin{pmatrix} 1-\lambda & 0 & -k \\ 0 & k-1-\lambda & 0 \\ -k & 0 & -\lambda \end{pmatrix} = -(\lambda^2 - \lambda - k^2)(\lambda - k + 1).$$

Siano λ_1, λ_2 gli autovalori che vengono dal fattore di grado 2 e $\lambda_3 = k-1$ il terzo autovalore. Abbiamo i seguenti casi.

- Se k = 0 la quadrica è degenere, $\operatorname{rk} A(0) = 3$ e $\det A_0(0) = 0$, da cui deduciamo che $\mathcal{C}(0)$ è un cilindro.
- Se k = 1 allora $\det A(1) > 0$ e $\det A_0(1) = 0$, quindi $\mathcal{C}(1)$ è un paraboloide iperbolico.
- Se k > 1 allora det A(k) > 0, $\lambda_3 > 0$ e gli autovalori di $A_0(k)$ sono discordi, dunque C(k) è un iperboloide iperbolico.

- Se 0 < k < 1 allora det A(k) > 0, $\lambda_3 < 0$ e gli autovalori di $A_0(k)$ sono discordi, da cui evinciamo che C(k) è un ellissoide a punti reali.
- Se k < 0 allora det A(k) < 0 e gli autovalori di $A_0(k)$ sono discordi e quindi C(k) è un ellissoide a punti non reali.
- 2. Applichiamo il metodo del completamento dei quadrati.

$$x^{2} + y^{2} - 4xz + 2x + 2y - 1$$

$$= (x - 2z + 1)^{2} - 4z^{2} + 4z - 1 + y^{2} + 2y - 1$$

$$= (x - 2z + 1)^{2} + (y + 1)^{2} - 1 - (2z - 1)^{2} + 1 - 2.$$

Possiamo dunque definire la affinità

$$T: (x, y, z) \mapsto (X, Y, Z) = \frac{1}{\sqrt{2}}(x - 2z + 1, y + 1, 2z - 1)$$

così che $T(\mathcal{C}(2)) = \mathcal{D}(2)$, dove

$$\mathcal{D}(2): \quad X^2 + Y^2 - Z^2 = 1.$$

Soluzione esercizio 3.

1. Chiaramente \emptyset e X^* sono elementi di τ^* .

Sia σ la famiglia degli insiemi compatti di $(\mathbb{Q}, \tau_{\varepsilon})$. Siano $\{U_i\}_{i\in I}$ elementi di τ^* . Dividiamo I in due insiemi I_1 ed I_2 tali che per ogni $i \in I_1$ abbiamo che $U_i \in \tau$ e per ogni $j \in I_2$, $X^* \setminus U_j \in \sigma$. Allora posto $V_1 = \bigcup_{i \in I_1} U_i$ e $V_2 = \bigcup_{j \in I_2} U_j$, abbiamo che $V_1 \in \tau_{\varepsilon}$ (in quanto τ_{ε} è una topologia) e $X^* \setminus V_2 \in \sigma$ in quanto $X^* \setminus V_2 = \bigcap_{j \in I_2} (X^* \setminus U_j)$ è intersezione di compatti di X e dunque compatto in X.

Se
$$V_2 = \emptyset$$
 allora $\cup U_i = V_1 \in \tau_{\varepsilon}$. Se $V_2 \neq \emptyset$ allora $X^* \setminus (V_1 \cup V_2) = (X^* \setminus V_1) \cap (X^* \setminus V_2) \in \sigma$.

Supponiamo ora che I sia finito. Per induzione possiamo assumere che $I=\{1,2\}$. Se $U_1,U_2\in\tau_{\varepsilon}$, allora e $U_1\cap U_2\in\tau_{\varepsilon}\subset\tau$. Se $X^*\backslash U_1\in\sigma$ e $X^*\backslash U_2\in\sigma$, allora $X^*\backslash (U_1\cap U_2)=(X^*\backslash U_1)\cup(X^*\backslash U_2)$ è unione di compatti in (X,τ_{ε}) e dunque compatto. Possiamo quindi assumere, per simmetria, che $X^*\backslash U_1\in\sigma$ e $U_1\in\tau_{\varepsilon}$. Allora $U_1\cap U_2\in\tau_{\varepsilon}$.

2. Sia $X^* = U_1 \cup U_2$ con U_1, U_2 aperti disgiunti, tale che $\infty \in U_1$. Allora $X^* \setminus U_1 = U_2$ è un aperto compatto di \mathbb{Q} , cioè $U_2 = \emptyset$.

Sia $\{U_i\}_{i\in I}$ un ricoprimento aperto di X^* . Sia $k\in I$ tale che $\infty\in U_k$; allora $X^*\setminus U_k$ è compatto in (X,τ_{ε}) e $\{U_i\cap (X^*\setminus U_k)\}_{i\in I}$ è un ricoprimento aperto di $X^*\setminus U_k$, possiamo dunque estrarne un sottoricoprimento finito e poi ottenere un sottoricoprimento finito di X^* .

E' facile controllare che ogni punto di X^* è chiuso e quindi X^* è T_1 .

3. Dato che in $X^*\setminus\{\infty\}$ ogni punto è una componente connessa, l'immagine di f (che è un sottoinsieme di $X^*\setminus\{\infty\}$ per ipotesi) non può che essere un punto.

Soluzione esercizio 4. 1. Abbiamo

$$\bar{X} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\} \cup \{(x,y) \in \mathbb{R}^2 : y = 2\},$$

$$\mathring{X} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 4, x \ne 0\},$$

$$D(X) = \bar{X}$$

е

$$\partial X = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 4\} \cup \{(x,y) \in \mathbb{R}^2 : x = 0, y^2 < 4\} \cup \{(x,y) \in \mathbb{R}^2 : y = 2\}.$$

2. X e \bar{X} sono chiaramente connessi, mentre $\overset{\circ}{X}$ si decompone in due componenti connesse nel seguente modo

$$\overset{\circ}{X} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 4, x < 0\} \cup \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 4, x > 0\}.$$

3. X e \bar{X} non sono omeomorfi in quanto il punto (0,2) disconnette X in quattro componenti connesse, mentre non esiste nessun punto che disconnette \bar{X} in quattro componenti.