

TEAM 43

Abhijeet Kumar Anurag Ghosh Vatika Harlalka

AUTOMATED ESSAY GRADING

Basic Idea

- Collection of Dataset from five sets of essays by American students from grade 7 to 10(150 to 550 words each).
- Extracting appropriate features (basis of concrete models) and filtering to reduce dimensionality.
- Various classifiers used to find grades having highest measure of Quadratic Weighted Kappa ie similarity with human grading scheme.

Technique

- We have used various techniques like Support Vector Regression, SVM and Kernel Ridge Regression.
- We have also used Graph Diffusion techniques for analysis.
- Testing using k-fold cross validation.

Citation:

Higgins, Derrick, Jill Burstein, Daniel Marcu, and Claudia Gentile. "Evaluating Multiple Aspects of Coherence in

Student Essays." In HLT-NAACL, pp. 185-192. 2004

Goal

The aim was to create a model which are able to make predictions closely matching with those by Human graders.

Find which features have greatest influence on the quality of the essay.

6 Workflow

Dataset

Dataset

- Kaggle Dataset
- 5 sets with approximately 8000 essays ranging from 150-550 words each

Feature Extraction

Features extracted from essays include:

- Numerical features: n-grams, average word counts, sentence counts, the number of words of different character lengths, number of sentences of different
- Maturity features: number of spelling errors, average age of acquisition of words, average beautiful word score
- Semantic features: Parts of Speech statistics like number of Nouns, Verbs, Adjectives, Bag of Words score, sentiment score, subjectivity score
- Punctuation based features

10 Algorithm(1)

Classification & Parameter Variation SVM

Classification & Parameter Variation

▷ SVR

Accuracy vs Parameter Variation for Support Vector Regression

Parameter - Gamma

Algorithm(3)

Classification & Parameter Variation Kernel Ridge Regression

Parameter

Algorithm(4)

Classification & Parameter Variation Heat Diffusion

Accuracy Vs Parameter Variation for Heat Diffusion (Dense)

Parameter

Performance Measure

Performance Measure

- Construct confusion matrix (C) by calculating number of times first grader gave grade i while second gave grade j.
- Find both p_o and p_e from C.
- Value can be between -1 and 1.
- Quadratic Weighted Kappa is given by

$$\kappa = (p_o - p_e)/(1 - p_e)$$

Results

Results

	Linear Regression	Heat Diffusion (Dense)	Support Vector Regression	Support Vector Machine	Kernel Ridge Regression	Heat Diffusion (Sparse)
1	0.79	0.77	0.78	0.75	0.81	0.74
2	0.69	0.69	0.66	0.68	0.64	0.71
3	0.64	0.59	0.64	0.62	0.64	0.64
4	0.75	0.75	0.76	0.75	0.76	0.76
5	0.69	0.50	0.69	0.66	0.70	0.72

Accuracy achieved using different Classifiers

Result Comparison

Observations

Notable Observations

- Heat Diffusion is significantly better with a proper graph construction, however robust to parameter variations.
- Linear Regression performs at par to SVM and SVR. Sometimes simple models work good enough.
- Kernel Ridge Regression performs slightly better than SVM and SVR with nearly equal variation.
- Heat Diffusion with Sparse Graph Construction shows the least variation with respect to other methods.

FEATURE EXTRACTION

Future Work

- Improve feature set using domain expertise of Natural Language Processing.
- Bigger dataset needed to better represent classes which were severely underrepresented.
- Exploring other sparsification methods than currently employed in Heat Diffusion Implementation.

TEATURE EXTRACTION

Acknowledgements

We would like to thank Dr. Avinash Sharma, Ajitesh Gupta and Gaurav Mishra for their guidance to shape the project to its conclusion.

THANKS!

- vatika.harlalka@research.iiit.ac.in
- halwai.abhijeet@gmail.com
- anurag.ghosh@research.iiit.ac.in