

유전자 알고리즘을 이용한 음식 배달 최적화 기법

숙명여자대학교

빅데이터분석융합학(협동과정)

양소연

CONTENTS

- 1. 서론
- 2. 시스템 모델
- 3. 연구 방법
- 4. 연구 결과
- 5. 결론

1. 서론

• 연구 배경 및 문제 제기

배달 대행 업체들 간의 과열된 경쟁 완화 배달 업무의 고른 분배를 통해 일정한 수입 보장 속도 경쟁으로 인한 인명사고의 위험 및 업무의 과중 최소화

1. 서론

• 관련 연구 및 차별성

기존 연구

- 음식점 인근의 복수 라이더에게 주문을 노출
- 먼저 주문을 잡는 라이더가 수행
- 경쟁 배차 방식

기존 연구와의 차별성

- 배달 대행업체들 간의 과열된 경쟁 완화
- 배달원들 간 배달 업무를 고르게 분배
- 전체 배달 시스템의 처리량과 신뢰도향상

유전 알고리즘의 무작위성을 활용하여 배달원들에게 배달 업무를 고르게 분배

2. 시스템 모델

• 데이터 및 변수 설명

음식점(Restaurants)

- 음식점 116 개
- r∈R
- r 의 위치 좌표 (r_x, r_y)

배달원(Couriers)

- 배달원 113 명
- $c \in C$
- c 의 출퇴근 시각 (a_c, e_c)
- 시간 t에서 c의 위치 (c_x^t, c_y^t)

주문 건(Orders)

- 주문 505 건
- o∈0
- 음식 주문 시각 a_o
- 음식 준비 완료 시각 *e*_o
- 배달지 위치정보 (o_x, o_y)

유전인자(Genes)

- 주문 *o* 가 발생
- 근무시간 e_c a_c 에 해당하는 배달원의 정보
- 배달원별 기 배달 건수 d_c^t
- 배달원의 현재 위치 (c_x^t, c_y^t)
- 배달원의 근무 시작 및 종료시각 (a_c, e_c)
- 배달원의 신뢰도 f_c

염색체(Chromosome)

2. 시스템 모델

• 초기화 및 적합도 함수 설정

Initialization

- 배달원당 하루 배달 건 수 d_c 는 최대 30 건 이내 에서 무작위로 부여
- 신뢰도 *f*는 0.95 에서 1 사이의 값으로 랜덤하게 설정

Fitness Function

- 배달원 간의 배달 건수 표준편차 : $S_d = \sqrt{\frac{\sum_{c=1}^{C_t} (d_c^t \overline{d^t})^2}{|C_t|}}$
- 배달원 c 의 신뢰도 : $F_c = \frac{d_c}{e_c a_c}$
- **적합도** 함수 : $Fitness = \alpha \frac{1}{S_d} + (1 \alpha) \cdot F_c$
- 표준편차 S_d 는 작을수록 신뢰도 F 는 클수록 Fitness 값 증가

3. 연구 방법

공개 데이터셋을 기반으로 주문 o 을 발생

4. 연구 결과

배달 업무의 배분이 잘 되었는가?

가중치 α 값 변화에 따른 표준편차

4. 연구 결과

- no generic: 단순히 배달원과 식당 간의 거리가 가까운 배달원을 배치 한 경우
- generic(distance): 유전 알고리즘의 적합도 함수를 이용하여 배달원과 식당 간의 거리가 가까운 배달원을 배치한 경우
- generic(proposed): 유전 알고리즘의 적합도 함수를 이용하여 표준편차와 신뢰도를 고려한 경우

세대수에 따른 표준편차

no generic 평균 0.54건 generic(distance) 평균 0.30건 generic(proposed) 평균 0.51건

표준편차가 가장 낮음

no generic 평균 3.73 generic(distance) 평균 3.23 generic(proposed) 평균 0.02

4. 연구 결과

세대수에 따른 신뢰도

no generic 약 0.3 generic(distance) 약 0.17 generic(proposed) 약 0.3

신뢰도의 변화폭이 비교적 작음

no generic 0.61 generic(distance) 0.32 generic(proposed) 0.10

5. 결론

- 적합도 함수에서 배달원 간의 배달 건수 표준편차 고려
- 제안 알고리즘을 사용하였을 때 고른 업무 배분이 이루어졌다는 것을 확인
- 신뢰도 면에서도 제안 기법이 상대적으로 일정한 신뢰도를 유지하고 있음을 확인

향후 연구계획

- 배달원의 신뢰도 향상
- 3~5건 이상의 묶음배달 고려
- 음식점에서 배달원의 대기시간 최소화

감사합니다