(UN) BERECHENBARKEIT

- allgemein
- ausführbar
- eindeutig
- endlich

intuitiver präziser

Begriff des Algorithmuses

Turingmaschine

Begriff des Algorithmuses

Turingmachine ----

- allgemein
- ausführbar
- eindeutig
- endlich

Grenzen des Computers

= Grenzen der Turingmaschine

	1	2	3	4	5	6	
f ₁	1	2	3	4	5	6	
f ₂	2	4	6	8	10	12	
f ₃	1	4	8	16	32	64	
f ₄	12	8	4	0	4	8	
f ₅	5	34	3	9	55	2	
f ₆	0	0	0	1	2	0	
	$f_i(x) = y$						

	1	2	3	4	5	6	
f ₁	1	2	3	4	5	6	
f ₂	2	4	6	8	10	12	
f ₃	1	4	8	16	32	64	
f ₄	12	8	4	0	4	8	
f ₅	5	34	3	9	55	2	
f ₆	0	0	0	1	2	0	
f _n	1	4	8	0	55	0	

	1	2	3	4	5	6	•••
f ₁	1	2	3	4	5	6	
f ₂	2	4	6	8	10	12	
f ₃	1	4	8	16	32	64	
f ₄	12	8	4	0	4	8	
f ₅	5	34	3	9	55	2	
f ₆	0	0	0	1	2	0	
f _n	0	0	0	1	0	1	
$X \rightarrow 0$ $0 \rightarrow 1$ Neue Funktion							

U

- abzählbar ∞ viele Turingmaschinen
- überabzählbar ∞ viele Funktionen
 - mehr Funktionen als Algorithmen

DAS HALTEPROBLEM

Terminiert TM A bei Eingabe x?

- → TM **B(A)** antwortet mit [true | false]
- → TM C mit folgendem Verhalten
 - → if (B(A) == false) { C exit }
 else { C loop }
- \rightarrow C(B(C))?

C(B(C))?

- hält an \rightarrow B(C) == false \rightarrow C läuft noch
- hält nicht an → B(C) == true → C hat angehalten
- C(B(C)) hält, wenn es nicht hält.

