

TP3 - R206

Résumé :	

Question 1 : Filtrage numérique	3
1.1 Filtre A	3
Réponse impulsionnelle	3
Réponse indicielle	3
Réponse harmonique	3
1.2 Filtre B	4
Réponse impulsionnelle	4
Réponse harmonique	4
1.3 Filtre C	5
Réponse impulsionnelle	5
Réponse indicielle	5
1.4 Filtre D	5
Réponse impulsionnelle	5
1.5 Conclure	5
Question 2 : Loi A - codec G711	6
2.1 Observation de l'effet de la compression de log	6
2.2 Observation de l'effet de compression + expansion log et comparaison	6
2.3 Vérification du codage	6
2.4 Conclure	6

Question 1 : Filtrage numérique

1.1 Filtre A

 $y_n = (x_n + x_{n-1})/2$

C'est un filtre non récursif puisque l'équation ne dépend pas de y_{n-x} , puisque le coefficient de y_{n-1} est égale à 0.

Réponse impulsionnelle

Ce filtre est un RIF car le nombre de coefficient dans la réponse impulsionnelle Hn est fini et est donc stable car elle revient à son état de repos.

Réponse indicielle

Cette réponse est stable car la réponse tend vers une valeur finie, ici 1.

Réponse harmonique

1.2 Filtre B

 $y_n = (x_n - x_{n-2})/2$

C'est un filtre non récursif puisque l'équation ne dépend pas de y_{n-x} , puisque les coefficients de y_{n-1} et de y_{n-2} sont égaux à 0.

Réponse impulsionnelle

Ce filtre est un RIF car le nombre de coefficient dans la réponse impulsionnelle Hn est fini et est donc stable car elle revient à son état de repos.

Réponse harmonique

Plus nous montons en fréquence, plus l'atténuation diminue puis augmente. l'atténuation est faible que sur une faible plage de fréquence. C'est donc un filtre passe-bande.

On change Te pour Te=200µs, donc Fe = 5 kHz. Pour respecter Shannon, la fréquence maximale d'entrée est Fe/2 soit 2.5kHz.

Le spectre est celui d'un signal carré.

Les fréquences de coupures a Te=100µs sont à 1220 Hz et 3770 Hz, celles pour Te=200µs sont à 615 Hz et à 1880 Hz les filtre a Te=200µs et Te=100µs sont de même type: passe-bande. Te est doublé donc Fe est divisé par deux, les fréquence de coupures sont donc divisé par deux pour Te=200µs.

1.3 Filtre C

$$y_n = (x_n + x_{n-1} + x_{n-2} + x_{n-3} + x_{n-4} + x_{n-5} + x_{n-6} + x_{n-7})/8$$

Réponse impulsionnelle

C'est un filtre non récursif puisque l'équation ne dépend pas de y_{n-x} , puisque les coefficients de y_{n-1} jusqu'à x_{n-7} sont égaux à 0.

Réponse indicielle

Les mesures avec la théorie sont similaires car il y a 8 marches d'environ 1/8V chacune comme trouvé théoriquement.

1.4 Filtre D

 $y_n = x_{n-0.9}y_{n-1}$

C'est un filtre récursif puisque l'équation dépend de y_{n-1} , puisque le coefficient de y_{n-1} est -0.9.

Réponse impulsionnelle

Pour une réponse impulsionnelle, nous prenons $x \in \mathbb{R}^*$. Nous nous retrouvons avec $y_n = x_n-0.9y_{n-1}$ avec x_n toujours nul. Donc $y_n = -0.9y_{n-1}$. On retrouve $y_n = y_1^*(-0.9)^{n-1}$. La réponse impulsionnelle est donc bien une suite géométrique. Le filtre est stable avec une raison r comprise entre -1 et 1 exclu.

Le filtre est un RIF car le nombre de coefficient dans la réponse impulsionnelle Hn est fini et est donc stable car elle revient à son état de repos.

1.5 Conclure

un

Question 2: Loi A - codec G711

- 2.1 Observation de l'effet de la compression de log
- 2.2 Observation de l'effet de compression + expansion log et comparaison
- 2.3 Vérification du codage
- 2.4 Conclure

