Beaufort Gyre
Structure and
Dynamics

 $\begin{tabular}{ll} Mary-Louise Timmermans \\ Yale \end{tabular}$

Arctic Ocean Stratification

Arctic Ocean Temperature Profile

Interleaving warm layers in the Arctic halocline

The Beaufort Gyre Halocline

The Beaufort Gyre Halocline

Warm Halocline Heat Content

Total heat content in the warm halocline layer:

near doubling in ocean heat content over the past 3 decades

The capacity for sea ice melt of the additional heat content:

$$h = \frac{2 \times 10^8 \text{ [J m}^{-2}\text{]}}{L \text{ [J kg}^{-1}]\rho_{\text{ice}} \text{ [kg m}^{-3}\text{]}} \approx 0.8 \text{ m}$$

Source of Halocline Heat

Summer 2003-2013

Ice Speed and Surface Geostrophic Currents: 2003-14

Meneghello, Marshall, Timmermans, Scott (2018)

Annual Average Ekman Pumping (m yr⁻¹)

computed from wind stress, sea-ice drift, ocean geostrophic currents

Meneghello, Marshall, Timmermans, Scott (2018)

Northern Chukchi Sea: Entryway for Halocline Waters

Timmermans, Marshall, Scott & Proshutinsky (2017)

Ventilation of the Halocline: Trapping the Heat

Timmermans, Marshall, Scott & Proshutinsky (2017)

Sea ice in the Chukchi Sea

Serreze et al. (2016)

Median ice conditions in the Chukchi Sea: 1979–2014

Sea ice in the Chukchi Sea

Serreze et al. (2016)

Time series in the Chukchi Sea Region

2014-2017

Chukchi Sea Region

160°W

140°W

120°W

180°V

 \sim 400 MJ m⁻² heat input increase primarily due to sea ice loss.

Surface Arctic Ocean: Sea Surface Temperature

1982-2018
Linear Trend
August
Sea-Surface
Temperature

SST is increasing at rates of 0.5°C per decade over large sectors that are icefree in summer.

Time series in the Chukchi Sea Region

Late summer SSTs should be ~ 5°C warmer in recent years compared to three decades ago.

$$\frac{\partial T}{\partial t} = \frac{F}{\rho c_p D}$$

$$D \approx 20 \text{ m}$$

Heat Entering the Halocline

heat entering halocline = energy density in Chukchi × volume flux into halocline

Energy density: $ho c_p \left[\mathrm{SST} - T_f \right]$

Heat content/volume relative to freezing

Area averaged summer SST time series yields cumulative heat input to halocline: 4×10^{20} J.

Increased heat in the Chukchi region can account for interior basin halocline warming.

Fate of the Halocline Heat

Range of estimated diffusivities: $\sim 10^{-7} - 10^{-6} \text{ m}^2 \text{ s}^{-1}$

 \Rightarrow upward heat fluxes: 0.03 to 0.3 W m⁻²

These fluxes ⇒ diffusive removal of heat would take 40-400 years

Eddy fluxes also transport heat laterally out of the region in a dynamical response to the wind-energy input.

Summary and needs for viable decadal projections

- Heat content increases in Beaufort Gyre interior due to sea ice losses at the basin margins
- Effects of ice-albedo feedback have consequences far beyond the summer season
- How will mixing change as sea ice cover declines? Will stratification continue to suppress turbulent mixing?
- How do episodic mixing events and their timing influence the system?
- Will we see a shift to α conditions, or will freshwater dominate?
- How does/will the Beaufort Gyre/Freshwater equilibrate?