Lista de Exercícios sobre Junções Trigonométricas

$$Sen (75^{\circ})$$

$$Sen (45^{\circ} + 30^{\circ}) = Sen (50^{\circ}) = Sen (50^{\circ}) = Sen (60) = -Sen (60) = -Sen (60) = -\frac{30}{2}$$

$$\frac{30}{45} \frac{45}{60}$$

$$Sen (45^{\circ} + 30^{\circ}) = Sen (45^{\circ} \cdot ...) = Sen (60) = -Sen (60) = -\frac{3}{2}$$

$$\frac{30}{45} \frac{45}{60}$$

$$Sen (45^{\circ} + 30^{\circ}) = Sen (40^{\circ}) = -Sen (60^{\circ}) = -Sen (60^{\circ}) = -\frac{3}{2}$$

$$sen(5\frac{1}{3}) = sen(300^\circ) = sen(-60) = -sen(60) = -\frac{13}{2}$$

$$cos(130^\circ) = cos(50^\circ) = cos(30^\circ) = \frac{13}{2}$$

$$cos(130^\circ) = cos(60^\circ) = cos(60^\circ) = cos(60^\circ) = sen(60^\circ) = sen(60^\circ)$$

$$\frac{1}{2} = \frac{1}{2} = -\frac{1}{2} = -\frac{$$

$$t_0 g_1 g_2 g_3 g_4 g_5 = sen (g_1 g_2 g_3 g_4 g_5) = sen (g_1 g_3 g_4 g_5) = sen (g_1 g_3 g_4 g_5) = sen (g_1 g_3 g_5) = sen (g_1 g_5) = se$$

$$f(x) = \frac{1}{2} + \frac{1}{2}\cos(2x)$$

(a)
$$f(x) = 1 + \frac{1}{2} \cos(2x)$$
 $f(x) = \frac{1}{2} + \frac{1}{2} \cos(2x)$
 $f(x) =$

3.
$$f(x) = sen x$$
 $g(x) = 3sen (x + II)$

Periodo = g_{II} periodo = g_{II}
 $[a+b, a-b] = g_{II}$
 $[g] = [g] = [g]$
 $[g] = [g]$

X	Seu x	sen (x+ Tg)	3 sen (x+ TS)
0	0	1	3
134	52/2	79/g	3/2/2
1/ ₂	7	0	0
31/4	13/2	- 12/2	-3-19
T	Ó	$-\hat{\Delta}$	-3

```
(4) Simplifique as expressoes
                                                     a) (sen 12x) cossec(x)) (sen 3(x) + cos 2(x) + to 2(x))
                                                                                                                                                                                                                                                                                         tg(x), sec²(x). cos(x)
                                                                                                        \frac{|\operatorname{sen}(\lambda x).\operatorname{cossec}(x)|}{|\operatorname{tg}(x)|} = \frac{|\operatorname{sen}(\lambda x).\operatorname{cossec}(x)|}{|\operatorname{tg}(x)|.\operatorname{sec}^2(x)|} = \frac{|\operatorname{sen}(\lambda x).\operatorname{cossec}(x)|}{|\operatorname{tg}(x)|.\operatorname{sec}^2(x)|} = \frac{|\operatorname{sen}(\lambda x)|}{|\operatorname{tg}(x)|.\operatorname{sec}^2(x)|} = \frac{|\operatorname{sen}(\lambda x)|}{|\operatorname{tg}(x)|} = \frac{|\operatorname{tg}(x)|}{|\operatorname{tg}(x)|} = \frac{|\operatorname{tg}(x)|}{|\operatorname{
                                                     \frac{(\text{senflx}).\cos(x)}{\text{tg(x)}.\cos(x)} = 2.\cos(x)
\frac{1}{\text{senflx}} = 2\cos(x)
\frac{1}{\text{senflx}} = 2\cos(x)
                                                                  \frac{2\cos x}{tg(x).\cos(x)} \Rightarrow \frac{2\cos(x)}{sen(x)} \Rightarrow \frac{2\cos(x)}{sen(x)} \Rightarrow \frac{2\cos(x)}{sen(x)}
                                                   \frac{1}{2} \frac{1}
                                                                    \frac{(\operatorname{Sen} X)^2}{(1+\cos X)} + \cos X + \cos X + (\cos X)^2 \Rightarrow 2 + \cos X + \cos X}{(1+\cos X)} \cdot (\operatorname{sen} X)
                                                              \frac{2+2\cos x}{(1+\cos x).\sec x} = \frac{2(1+\cos x)}{(2\cos x)} = \frac{2}{2} = \frac{2}{3} = \frac{1}{2} = = \frac{1}{2} =
```

2. Cossec X 11

2cossec (x)

- 5. Considerando as funções $f(x) = \sin x$ e $g(x) = \cos x$, relacione a segunda coluna de acordo com a primeira, estabelecendo identidades trigonométricas:
 - (1) f(2x)
- (2) g(2x)
- (1) 2f(x)g(x)
- (3) $f^2(x) + g^2(x)$
- $(5) \left(\frac{f(x)}{g(x)}\right)^2$ $(2) g^2(x) f^2(x)$

(4) $f(x)^2$

- (5) $\frac{1}{a^2(x)} 1$
- 1 F(x1 = senx => f(9x1 => sen 2x

2 senx cosx => 2 F(x) q(x)

 $g(2x) = \cos 2x$

a cosx-senx

2 g(x) - F(x) 4

 $\frac{Q}{Q} \frac{1 - Q(Q_X)}{Q} = \frac{1 - \cos A_X}{Q}$

=> 1_ 2. cos x.-sen x

(3) F (x) + Q (x)

cos ? (x) + sen (x =)

4 = 3x+9 = 1=>-2 = 3x+2 = 2

=> -4 = x =0

(7a) r(x) = 2 sin (43) Q=0 ; D= 2

In=[0-2,0+2]=[-2,2]

b)
$$q(x) = 3 + 5 \cos x$$
 $a = 3$; $b = 5$
 $Im[a-b, a+b] \Rightarrow [-3, 7]$,

 $c) p(x) = 5 \cos((3x + 54)) \Rightarrow a \Rightarrow 0; b \Rightarrow 5$
 $Im[a] = [-5, 5]$
 $sen = 0 \Rightarrow -sen = 0$
 $cos(x) + 3(x)$
 $cos(x)$

$$d = d(x) = (05)(\frac{1}{2}) periodo = \frac{2\pi}{12} = \frac{3\pi}{49}$$

$$(\bigcirc Q) f(x) = cosse(x) = 2$$

Sen x

$$\iint f(x) = 1 - \sin^3 x$$

$$\frac{1}{1} = \frac{1 - sen^3 x}{1 + sen x} = 0$$

$$\frac{1}{1} + sen x$$

$$\frac{1}{1} = 0$$

$$\frac{1}{2} + sen x$$

$$\frac{1}{2} = 0$$

$$\frac{1}{2$$

a) Arcsen (-13/2) = 1/4,

Warcton (1) = 45 1/4

c) arccos (40) = 7/3

a) arcsec (-2) = 1 = -2

 $\cos(x)$ $\cos(x) \cdot -\beta = 1$

e) arcsen (sen $\frac{1}{7}$) = $\frac{1}{2}$ ou $\frac{1}{2}$ ou $\frac{1}{2}$

1) arctan (tan 4311) - 4506

(12) axctan (4/3) tanx = 4/3

 $+ ton\theta = \frac{4}{3}; + cotg\theta = \underline{1} \Rightarrow \underline{1} = \underline{3}$ $+ g\theta + \frac{1}{3} + \frac{3}{4}$

 $\frac{1}{1+490} = \sec^{2}0$ $\frac{1}{1+490} = \sec^{2}0$ $\cos^{2}0$ $\cos^{2}0$

> $5en^{2}\theta + (os^{2}\theta - 1)$ > $5en\theta = \pm \sqrt{496}$ $5en^{2}\theta = 1 - 9/35$ | $cossec\theta = 1 \cdot 9/41$ $5en^{2}\theta = 46/35$ | $5en\theta$

(B)
$$f(x) = \operatorname{arccos}(12 - x)$$
 $-1 \le 12 \times 1 \le 1$
 $-13 \le x \le -11 \times -9$
 $13 \ge x \ge 11$
 $x \ge 11$