

تشخیص علائم راهنمایی و رانندگی در تصاویر مات شده ناشی از حرکت خودرو

اعضای گروه:

حسین پرتو هفشجانی، علی صفرپور دهکردی، محمد مظفری، زهرا یوسفی

تدریسیار همراه: آرش چایچی

استاد درس: دکتر شهره کسائی

فهرست

- مقدمه
- استخراج تابلوها
- نمونه/نتایج
- چالشها و خطاهای روشد
 - دستهبندی تابلوها
 - نتایج
 - مات شدگی و رفع آن
 - روشها
 - معيارها
 - نتایج

مقدمه

• هدف این پروژه طراحی و پیادهسازی یک سامانه است که باید توانایی دریافت و پردازش مجموعهای از تصاویر ورودی جهت استخراج و تشخیص تابلوهای راهنمایی و رانندگی را داشته باشد.

استخراج تابلوها

- مرحله ۱: بدست آوردن پیکسلهای قرمز و آبی در تصویر با استفاده از فضای رنگی HSV
 - مرحله ۲: اعمال بستن مورفولوجيكال و تشخيص لبه با استفاده از الگوريتم Canny
 - مرحله ۳: تشخیص تابلوها با توجه به شکل آنها (تابلوهای دایرهای و مثلثی)
 - برای تشخیص تابلوهای دایرهای از cv2.HoughCircle استفاده می شود.
- برای تشخیص تابلوهای مثلثی از متد findContours در پکیج OpenCV استفاده می شود. با شمردن تعداد گوشههای چندضلعی می توانیم به مثلث بودن آن پی ببریم. (متد ApproxPolyDP)
 - با توجه به تراکم پیکسلهای قرمز، آبی و سفید در نواحی غیر تابلو را فیلتر می کنیم.

چند نمونه از نتایج

چالشهای و خطاهای روش

- استفاده از عملیات Morphological Closing سبب می شود تابلوهای کنارهم به درستی تشخیص داده نشوند.
 - ممکن است قسمتهایی از تصویر که تابلو نیستند ولی قرمز رنگ یا آبی رنگ هستند تابلو تشخیص داده شوند.

دستهبندی تابلوها

- نمونههای غیر تابلو ← مقاومت بیشتر در برابر خطای احتمالی
 - تبدیل به فضای HSV و سپس استخراج ویژگیها
 - ویژگیهای حوزه فرکانسی
 - ویژگیهای رنگی تصویر
 - تقسیم تصویر به ۱۶ ناحیه به صورت ۴ × ۴
 - تقسیم تصویر به ۴ ناحیه به صورت ۲ × ۲
 - تقسیم تصویر به ۴ ناحیه به صورت ۱ × ۴
 - تقسیم تصویر به ۴ ناحیه به صورت ۴ × ۱
 - خروجي اكتشاف لبههاي افقي
 - خروجی اکتشاف لبههای عمودی
 - خروجی اکتشاف لبههای کج چپ
 - خروجی اکتشاف لبههای کج راست

	Frequency features HSV	Frequency features	HSV features	Hog features	accuracy
Method 1					0.66
Method 2					0.66
Method 3					0.86
Method 4					0.73
Method 5					0.93

KNN

Frequency Frequency HSV features Hog features features features accuracy HSV Method 1 0.73 Method 2 0.73 Method 3 0.78Method 4 0.87 Method 5 0.87

Deep •

مات شدگی و رفع مات شدگی

- سخت افزار
- حرکت اجسام و دوربین نسبت به هم
 - تغییرمیزان زوم کردن بر تصویر

چشمباز و چشمبسته

```
I = FFT(i) تفاوت B = FFT(b)
```

$$K = FFT(k)$$

 $assume \circledast = convolution_function$

$$b = i \circledast k$$

$$\Rightarrow B = I * K$$

$$\Rightarrow I = K^{-1} * B$$

$$\begin{split} b &= i \circledast k + \eta \\ \Lambda &= FFT(\eta) \\ \Rightarrow B &= I * K + \Lambda \\ \Rightarrow I &= K^{-1} * (B - \Lambda) \\ \Rightarrow \begin{cases} kernel \text{ inverse estimation} : \tilde{K} = K^{-1} = I * (B - \Lambda)^{-1} \simeq I * B^{-1} \\ restored \text{ image} : \tilde{I} \simeq \tilde{K} * B \end{split}$$

$$\mathbf{A} = \mathbf{U}\Sigma\mathbf{U}^{T} = \sum_{i=1}^{p} \mathbf{u}_{i} \sigma_{i} \mathbf{v}_{i}^{T}$$

$$\mathbf{K} = \mathbf{A}$$

$$\hat{\mathbf{f}} = \mathbf{K}^{-1} \mathbf{g} = \sum_{i=1}^{p} \frac{\mathbf{u}_{i}^{T} \mathbf{g}}{\sigma_{i}} \mathbf{v}_{i}$$

روشها

- فیلتر شارپ کننده
 - فيلتر وينر
 - تقویت لبه
- ترکیب این موارد
- روشهای تکرارکننده
- ترکیب با روشهای قبلی
- روشهای مبتنی بر یادگیری عمیق

معیارهای ارزیابی

- واريانس
- واریانس پیکسلهای تصویر
- واریانس پیکسلهای خروجی مرزها
 - شباهت
 - شباهت خود تصاویر
 - شباهت مرزها
- محاسبه امتیاز کلی برای بهترین روش

نتايج

متياز		بیشترین شباهت با تصویر اولیه			بیشتر بودن مقادیر		معیار برتری	
امتیاز کلی ضرب (نرمالایز شده)	امتیاز کلی جمع	نسبت	واریانس لاپلاسین تصویر(میزان شباهت)	در صد معادل	واریانس تصویر(میزان شباهت)	شباهت خود تصویرها با تصویر اولیه	شباهت مرزها با تصویر اولیه	معيار
			14		٠.١٣١			تصوير اوليه
۵۵.۰	4 9.۵	۷/۱ برابر	٠.٠٠٢	<u> </u>	٠.١٣	%1.40	% 9 5. Y	مات بدون وينر
46.9	* Y	۳/۱ برابر	٠.٠٠۵	% ۲ ۴	٠.٠٣٢	%1 V.+ Y	%98.40	مات با وینر
7.77	44	۵/۱ برابر	٠.٠٠٣	%9	٠.٠٠٨	%ra.1vr	%9 <i>0</i> .9	فیلتر شارپ کننده
41	۵۵	۵ برابر	٠.٠٧٢	.//٩۵	٠.١٣٧	1.781	%9 <i>0.</i> \$	ادغام وینر و کنی
1.4	۶۱	۳ برابر	٠.٠۴۵	% 9 γ.γ	٠.١٣۴	%1.·Ya	%9 <i>0.</i> ٧٣۴	ادغام وینر با کنی با ضریب ۰.۵

نتايج

٣	۲.۶	۱۴/۱ برابر	٠.٠٠١	7.4	۰.۰۰۵	•.149	4.590	روش مکرر
	۳.۷	۷/۱ برابر	٠.٠٠٢	·/.A	•.•1	٠.۱۴	4.91	روش مکرر + لبه در هر مرحلخ
۵.۲	۲.۳	۱۴/۱ برابر	•.••1	7. ۴	٠.٠٠۵	•.14	4.1	روش مکرر + وینر به عنوان اولیه
۲.۵	۲.۳	۱۴/۱ برابر	•.••1	% *	•.••	٠.١٠٨	۴	روش مکرر + افزودن مرز به تصویر اولیه با ضریب کم
17	<u> </u>		•.•14	7. \ \$.11	7.799	94.77	عمیق تک لایه ضرب پیچشی
٧٣٠	٧٠	۱۴/۱۱ برابر	•.•11	% ૧ ٣	١٢١.٠	7.40	91.754	عمیق دو لایه ضرب پیچشی

