16 въпрос. Електричен ток. Закон на Ом за част от веригата.

Електричен ток се нарича всяко насочено движение на електрични заряди. При това се има в предвид движение на зарядите в някаква среда, наречена *проводник*. Проводниците на електричен ток могат да бъдат всякакви среди – течности, твърди тела или газове.

В този раздел на физиката ние ще разглеждаме електричен ток в метали, тъй като те са най-добри проводници на тока. Високата електрична проводимост на металите се дължи на огромния брой носители на тока в тях (електроните на проводимост), който е от порядъка на 10^{28} електрони в 1 m^3 .

Когато към краищата на проводник се приложи постоянна потенциална разлика $\Delta \varphi$, то в него се създава електрично поле с интензитет \vec{E} , чиято посока е успоредна на страничната повърхност на проводника. В това поле на електроните ще действа електрична сила $\vec{F}_{\rm en}$, под действието на която те ще започнат да се движат насочено в посока противоположна на \vec{E} .

За количествена характеристика на електричния ток се въвежда величината *големина на тока*. Това е скаларна величина (I), равна на отношението на безкрайно малкия заряд dq, преминал през напречното сечение на проводника за безкрайно малък интервал от време dt, към големината на този интервал:

$$I = \frac{dq}{dt}$$

В системата СИ единицата за големина на тока е ампер [А].

Ако големината на тока не се променя с времето, то

$$I = \frac{q}{t} = const$$

където q е заряда, преминал през напречното сечение на проводника за време t. Такъв ток се нарича *постоянен* (или *прав*) *ток*.

Въпреки че големината на тока е скаларна величина, във физиката и електротехниката се въвежда *условна положителна посока* на електричния ток – това е посоката на движение на положителните заряди.

Големината на тока е макроскопична величина, т.е. тя се отнася за проводника като цяло. За да можем да характеризираме посоката и големината на електричния ток във всяка отделна точка на проводника, т.е. потока на заряда през безкрайно малка площ от напречното сечение, се въвежда величината *плътиност на електричния ток* — това е векторна величина \vec{j} с посока, съвпадаща с посоката на движение на положителен пробен заряд, разположен в разглежданата точка от проводника. Големината на вектора на плътността на тока се дава чрез израза

$$j = \frac{dI}{dS_{\perp}}$$

където dI е големината на тока през безкрайно малкия елемент dS_{\perp} от повърхност, перпендикулярна на посоката на движение на положителния заряд.

За постоянен електричен ток

$$j = \frac{I}{S_{\perp}}$$

В системата СИ единицата за плътност на тока е [A/m²].

Немският физик Ом е установил опитно, че при увеличаване на потенциалната разлика в краищата на проводника се увеличава и големината на тока по него. При това отношението

$$R = \frac{\Delta \varphi}{I}$$

за даден проводник остава постоянна величина. Величината R се нарича електрично съпротивление (или само съпротивление) на проводника, а изразът (3) – закон на Ом за част от електричната верига.

В практиката обикновено се измерва напрежението U в двата края на проводника. Но $|\Delta \varphi| = U$ и следователно закона на Ом може да се запише и чрез напрежението

$$R = \frac{U}{I}$$

$$I$$

Опитно е показано, че съпротивлението на даден проводник зависи от неговите размери и от материала, от който е направен. Тази зависимост се дава с израза

$$R = \rho \frac{l}{S}$$

където ρ е специфичното електрично съпротивление, характеризиращо материала, от който е направен проводника, l е дължината на проводника, S – неговото напречно сечение.

Законът на Ом може да се запише и в друга форма. Разглеждаме проводник с дължина l и напречно сечение S. Нека в двата края на проводника е приложено напрежение U. Но U = El и I = jS.

Заместваме двете равенства в закона на Ом

$$R = \frac{U}{I} = \frac{El}{jS}$$
 \Rightarrow $j = \frac{El}{RS} = \sigma E$

където

$$\sigma = \frac{l}{RS} = \frac{1}{\rho}$$

е специфичната електрична проводимост на проводника.

Този израз е в сила и във векторна форма

$$\vec{j} = \sigma \vec{E}$$

и се нарича закон на Ом в диференциална форма.

Пример 1: Колко електрона ще преминат през напречното сечение на проводник за 0,5 ns при големина на тока през проводника 64 mA?

Дадено: $t = 0.5 \text{ ns} = 0.5 \times 10^{-9} \text{ s}$, $I = 64 \text{ mA} = 64 \times 10^{-3} \text{ A}$ N = ? Решение: $q = It = 64 \times 10^{-3} \times 0.5 \times 10^{-9} = 32 \times 10^{-12} \text{ C}$

$$q=\textit{Ne}$$
 Следователно $N=rac{q}{e}=rac{32 imes 10^{-12}}{1.6 imes 10^{-19}}=2 imes 10^8$

Пример 2: На колко е равна големината на тока в проводник със специфично електрично съпротивление $12.10^{-8}~\Omega$.m, ако дължината на проводника е 2 m, а напречното му сечение е 1,5 mm²? В краищата на проводника е подадено напрежение 24 mV.

Дадено: $\rho=12\times 10^{-8}~\Omega$.m , $l=2~\mathrm{m}$, $S=1.5~\mathrm{mm}^2=1.5\times 10^{-6}~\mathrm{m}^2$ $U=24~\mathrm{mV}=24\times 10^{-3}~\mathrm{V}$

I = ?Решение: $I = \frac{U}{R}$

$$R = \rho \frac{l}{S}$$
 Следователно $I = \frac{U}{R} = \frac{US}{\rho l} = \frac{24 \times 10^{-3} \times 1.5 \times 10^{-6}}{12 \times 10^{-8} \times 2} = 0.15 \,\text{A}$