COMPITO B

LT FISICA (Fioresi)

7 Gennaio, 2019

NOME:

Cerchiare **a penna** una ed una sola delle seguenti voci:

RECUPERO 1
RECUPERO 2
TOTALE

Esercizio 1 (50 punti)

- a) Si consideri lo spazio vettoriale $V = M_{2,2}(\mathbf{C})$.
- 1) Si determini per quale valore di k (se esiste):

$$\begin{pmatrix} k & -1 \\ a & a \end{pmatrix} \in W = \operatorname{span} \left\{ \begin{pmatrix} a & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} a & -1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ b & b \end{pmatrix} \right\} \subset M_{2,2}(\mathbf{C})$$

- 2) Si determini inoltre una base per W e la si completi ad una base di $M_{2,2}(\mathbb{C})$.
- 3) Si stabilisca (se possibile) un isomorfismo tra W e $\mathbf{C}_d[x]$ per un opportuno d.
- b) Determinare, al variare di k, una base per il nucleo e una base per l'immagine dell'applicazione lineare $T: \mathbf{R}^2 \longrightarrow \mathbf{R}^4$, T(x,y) = (ax+by,x-y,ax+by,x-ky). Si determinino inoltre i valori di k (se esistono) per i quali T e' iniettiva, suriettiva, biettiva.

Esercizio 2 (50 punti)

a) Date in ${\bf R}^3$ le rette r,s di equazioni

$$\vec{r}$$
: $x - az - 1 = 0$, $y - bz = 0$

$$s: y - bz = a, 2x + z = 0$$

- i) Trovare (se esiste) un vettore v perpendicolare ai vettori direzione delle due rette.
- ii) Trovare l'equazione del piano π contenente r e parallelo a s.
- iii) Trovare una retta r_1 perpendicolare a π e che interseca s e una retta r_2 perpendicolare a π che non interseca s.
- b) Si consideri l'insieme delle matrici $n \times n$ a coefficienti reali con determinante nullo. E' un sottospazio vettoriale di $M_{n,n}(\mathbf{R})$?

Esercizio 3 (50 punti)

- a) Si risponda vero o falso motivando chiaramente la risposta con una dimostrazione oppure con un controesempio. Se si vuole utilizzare un risultato e' necessario enunciarlo chiaramente.
- I) Sia $f: V \longrightarrow W$ una applicazione lineare, con V e W spazi vettoriali arbitrari sullo stesso campo K (anche di dimensione non finita). Sia U un sottospazio vettoriale di V. Si definisca $f(U) := \{f(\mathbf{u}) \mid \mathbf{u} \in U\}$. f(U) e' sottospazio vettoriale di Im(f)?
- II) Sia $f: V \longrightarrow W$ applicazione lineare iniettiva tra spazi vettoriali sullo stesso campo K, dim(V) = dim(W), e sia v_1, \ldots, v_n base di $V. f(v_1), \ldots, f(v_n)$ e' base di W?
- b) Sia V uno spazio vettoriale finitamente generato su un campo K. Siano U e W due sottospazi di V. Si dimostri che se una base di V si ottiene come unione disgiunta di una base di U e una base di W allora $V=U\oplus W$.
- CREDITO EXTRA (15 punti). Siano A e B matrici reali $n \times n$, con B invertibile. Si dimostri che $tr(B^{-1}AB) = tr(A)$. Se si vuole citare qualche risultato e' necessario dimostrarlo.

Esercizio 4 (50 punti)

- a) Sia V uno spazio vettoriale reale con un prodotto scalare definito positivo e $\mathcal{B} = \{v_1, \ldots, v_n\}$ una sua base. Si dimostri che A matrice reale e' ortogonale se e solo se le sue colonne/righe formano una base ortonormale rispetto al prodotto scalare dato.
- b) Si risponda vero o falso alle seguenti domande motivando accuratamente la risposta.
- I) Sia A una matrice reale simmetrica $n \times n$. Allora A ammette almeno un autovalore reale.
- II) Sia \langle , \rangle un prodotto hermitiano non degenere in uno spazio vettoriale complesso V di dimensione finita. Allora se v_1, \ldots, v_n sono ortogonali tra loro, v_1, \ldots, v_n sono linearmente indipendenti.
- III) Sia V uno spazio vettoriale finitamente generato. Allora $\dim(V) = \dim(V^*)$.

CREDITO EXTRA (15 punti). Si dimostri che una trasformazione ortogonale del piano con determinante uguale a 1 e' una rotazione del piano.

Esercizio 5 (50 punti)

a) Data la conica di equazione:

$$x^2 + y^2 - 4axy + 2 - 4a = 0$$

trovarne la forma canonica e darne un disegno di massima.

- b) Sia $W = \text{span}\{(a, 1, -1, 0), (a, 0, -1, 0)\}$. Determinare una base ortonormale per W rispetto al prodotto euclideo in \mathbb{R}^4 .
- c) Si determini una base per W^\perp rispetto al prodotto euclideo.
- d) Si determini una base per W^\vee e l'isomorfismo tra W^\perp e W^\vee indotto dal prodotto euclideo.

Esercizio 6 (50 punti)

Data la matrice:

$$A = \left(\begin{array}{ccc} -b & -b & -1 \\ 0 & 0 & 1 \\ b & b - 1 & 2 \end{array}\right)$$

Trovare la forma normale di Jordan di A, e una base di Jordan per la trasformazione lineare rappresentata da A.