

Утвърдил:

/ доц. д-р Е. Великова / Утвърден от Факултетен съвет с протокол № 2 / 24.02.2014 г.

СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

Факултет по Математика и Информатика

Специалност: Информатика

М И И 0 1 0 1 1 3

Kypc: 1

Учебна година: 2017/2018

Семестър: 2 (летен)

УЧЕБНА ПРОГРАМА

Дисциплина:

Е 1 0 6 Дискретни Структури

Discrete Structures

Тип: Задължителна дисциплината

Преподавател: доц. д-р Минко Марков

Асистенти: гл. ас. Емилия Живкова, гл. ас. Румяна Лесева

Учебна заетост	Форма	Хорариум
Аудиторна	Лекции	45
заетост	Семинарни упражнения	45
	Практически упражнения (хоспетиране)	-
Обща аудиторна заетост		90
Извънаудиторна	Подготовка на домашни работи	20
заетост	Контролни работи и подготовка за тях	20
	Учебен проект	
	Самостоятелна работа в библиотека или с интернет	60
	ресурси	
	Доклад/Презентация	
	Подготовка за изпит	20
Обща извънаудиторна заетост		120
ОБЩА ЗАЕТОСТ		210
Кредити аудиторна заетост		3
Кредити извънаудиторна заетост		4
ОБЩО ЕСТК		7

No	Формиране на оценката по дисциплината ¹	% от оценката
1.	Контролни работи	32%
2.	Участие в час	
3.	Домашни работи	8%
4.	Учебен проект	
5.	Тестова проверка	
6.	Текуша самостоятелна работа /контролно	
7.	Workshops {информационно търсене и колективно обсъждане на доклади и реферати)	
8.		
9.		
10.		
11.	Изпит – практика (решаване на задачи)	30%
12.	Изпит – теория	30%

Анотация на учебната дисциплина:

Курсът започва с въведение в основите на логиката – съждителното смятане. Следва въведение в теорията на множествата. Въз основа на него се въвеждат релации и функции, като ударението е поставено върху дискретните (крайни и изброимо безкрайни) примери. Въвеждат се принципите на изброителната комбинаторика, формулите за броя на основните комбинаторни конфигурации и техниката за намиране броя на елементите на крайно множество чрез разрешаване на рекурентни отношения. Въвеждат се основните понятия от теорията на крайните ориентирани/неориентирани мултиграфи и графи и основите на алгоритмиката в графи. Показва се ролята на булевите функции за изграждането на изчислителни устройства.

Предварителни изисквания:

Няма

Очаквани резултати:

Студентите да усвоят терминологията на дискретната математика – това е езикът, на който ще се изразяват и ще комуникират както в редица ключови дисциплини, така и след това в професията си. Освен това, студентите трябва да се научат да решават базисни задачи в теорията на множествата, комбинаториката и теорията на булевите функции. По отношение на графите, студентите трябва да се научат да свеждат задачи от различни области до графи и да могат да виждат зад някаква житейска задача, графова задача.

¹ В зависимост от спецификата на учебната дисциплина и изискванията на преподавателя е възможно да се добавят необходимите форми, или да се премахнат ненужните.

Учебно съдържание

No	Тема:	Хорариум
1	Въведение в логиката	3+3
2	Въведение в теорията на множествата	3+3
3	Функции и релации	3+6
4	Комбинаторика	12+9
5	Графи	15+15
6	Булеви функции	9+9

Конспект за изпит

№	Въпрос
1	Съждителна логика – прости съждения, логически съюзи, съставни
	съждения, таблици на истинност. Еквивалентност на съставни съждения.
	Табличен метод за доказателство на еквивалентност и метод с еквивалентни
	преобразувания. Основни свойства на логическите съюзи – свойства на
	константите, свойства на отрицанието, двойно отрицание, асоциативност,
	комутативност, идемпотентност, дистрибутивност, закони на Де Морган,
	поглъщане. Основи на предикатната логика – дефиниция на предикат,
	универсален и екзистенциален квантор. Свойства на отрицанието в
	предикатната логика.
2	Множества. Аксиома за обема. Аксиома за отделянето. Степенно множество.
	Операции върху множества. Свойства на операциите – комутативност,
	асоциативност, дистрибутивност, идемпотентност, свойства на константите и
2	допълнението, закони на Де Морган.
3	Индуктивни дефиниции и доказателства по индукция. Декартово
	произведение, наредени п-торки. Разбиване на множества. Покриване на
4	множества.
4	Релации. Двуместни релации над декартови квадрати и представяне чрез матрици и графи (диаграми). Свойства на тези релации: рефлексивност,
	антирефлексивност, симетричност, антисиметричност, силна
	антисиметричност, транзитивност. Рефлексивно, симетрично и транзитивно
	затваряне. Релации на еквивалентност. Теорема за класовете на
	еквивалентност.
5	Частични наредби (пълни и непълни). Вериги и контури. Теорема за
	контурите. Минималност и максималност по включване.
6	Функции – частични и тотални. Еднозначна функция, сюрекция, биекция,
	обратна функция. Крайни множества и брой на елементите. Безкрайни
	изброими множества. Теорема за съществуване на неизброимо (безкрайно)
	множество.
7	Теореми за: декартовото произведение на две изброимо безкрайни
	множества; за всички подмножества на изброимо безкрайно множество; за
	Min (Max) елементи на крайна частична наредба; за разширяване на крайна
	частична наредба до пълна.
8	Принципи на изброителната комбинаторика: принцип на Дирихле, принцип
	на биекцията, принципи на събирането (разбиването) и изваждането,

	(H
	принцип на умножението (Декартовото произведение) и делението. Принцип на включването и изключването.
9	Основни комбинаторни конфигурации. Формули за броя на елементите на
_	основните комбинаторни конфигурации – наредени и ненаредени, с
	повторение и без повторение. Биномен коефициент. Основни свойства на
1.0	биномния коефициент. Теорема на Нютон.
10	Рекурентни уравнения. Примери за броене в комбинаториката чрез
	рекурентни уравнения. Линейни рекурентни уравнения с крайна история –
	хомогенни и нехомогенни. Решаване на такива рекурентни отношения –
	примери.
11	Крайни мултиграфи и графи – ориентирани и неориентирани. Дефиниции.
	Маршрути и контури в ориентирани графи. Пътища и цикли в
	неориентирани графи. Теорема за броя на маршрутите със зададена дължина
	в крайни ориентирани мултиграфи.
12	Подграфи. Индуцирани подграфи. Свързаност и свързани компоненти в
	неориентирани графи. Силна и слаба свързаност, силно и слабо свързани
	компоненти в ориентирани графи. Оцветяване на графи. Двуделност –
	необходимо и достатъчн условие. Планарност на графи.
13	Дървета. Дефиниции. Връзка между двете дефиниции. Теореми за: броя на
	ребрата и върховете, за единственост на пътя, за добавянето на ребро.
	Височина и разклоненост на кореновите дървета. Представяния на дървета.
	Покриващо дърво. Теорема за съществуване на покриващо дърво.
14	Обхождане на графи – в дълбочина и ширина. Ойлерови цикли и Ойлерови
1.	пътища Теореми за съществуване на Ойлеров цикъл и Ойлеров път в
	неориентиран мултиграф. Хамилтонови пътища и цикли.
15	Минимално и максимално покриващо дърво на граф. МПД-свойство.
13	Алгоритми на Прим и Крускал. Коректност на тези алгоритми.
16	
16 17	Най-къс път в тегловен граф. Варианти на задачата. Алгоритъм на Дейкстра.
1/	Булеви функции. Формула над множество булеви функции. Булева функция,
	съответна на дадена формула. Съществени и несъществени променливи.
	Булеви функции на една и две променливи. Свойства на функциите на една и
10	две променливи.
18	Пълни множества БФ. Елементарни конюнкции. Теорема на Бул. Съвършена
	ДНФ. Пълнота на множество БФ чрез свеждане до известно пълно
	множество. Полиноми на Жегалкин – единственост и алгоритми за
	получаване.
19	Функционални елементи. Дефиниция на схема от ФЕ. Пълнота на множество
	от ФЕ. Построяване на СФЕ от Съвършената ДНФ. Пример с двоичен
	суматор.

Библиография

Основна:

- 1. Красимир Манев, *Увод в дискретната математика*, IV изд., *КЛМН*, София, 2005, ISBN 9545351365.
- 2. Kenneth Rosen, *Discrete mathematics and its applications*, VI изд., McGraw-Hill, 2007, ISBN 9780071244749.
- 3. Ralph Grimaldi, Discrete and combinatorial mathematics: an applied introduction, V изд., *Pearson Addison Wesley*, 2004, ISBN 9780201726343.

Допълнителна:	
Дата:	Съставил:
	доц. д-р Минко Марков

Прието на заседание на катедра "Изчислителни системи " – протокол № 50 от $26.02.2014~\Gamma$.