Report for milestone2: AI System Reproducibility

Introduction:

The purpose of this milestone is to make sure that our chosen model is reproducible through ensuring these following requirements:

Requirements	Tool recommendation
Setting the project structure	Cookiecutter data science
Code and data versioning	Git with GitHub Flow or DVC
Experiment tracking	MLFlow, TensorFlow Extended (TFX)
Setting up a meta store for metadata	Depending on your experiment tracking choice, either MLFlow tracking or TFX metadata store

In this report I will be showcasing my progress on each of these requirements with proof of them working.

Setting up the project structure with Cookiecutter:

in .dvc	2/28/2024 9:22 PM	File folder	
adata	2/28/2024 9:22 PM	File folder	
docs	2/27/2024 11:02 AM	File folder	
experiments	3/4/2024 2:41 PM	File folder	
models	3/2/2024 1:38 PM	File folder	
notebooks	2/27/2024 11:02 AM	File folder	
references	2/27/2024 1:51 PM	File folder	
reports	2/27/2024 11:02 AM	File folder	
src src	2/27/2024 11:02 AM	File folder	
• venv	2/28/2024 4:38 PM	File folder	
dvcignore .dvcignore	2/27/2024 12:21 PM	DVCIGNORE File	1 KB
in .env	2/27/2024 11:02 AM	ENV File	1 KB
gitattributes	2/28/2024 9:56 PM	Fichier source Git	1 KB
gitignore	3/7/2024 2:38 PM	Fichier source Git I	2 KB
LICENSE	2/27/2024 11:02 AM	File	1 KB
Makefile	2/27/2024 11:02 AM	File	5 KB
README	2/27/2024 11:02 AM	Fichier source Mar	3 KB
requirements	2/27/2024 11:02 AM	Text Document	1 KB
₫ setup	2/27/2024 11:02 AM	Fichier source Pyth	1 KB

This is the project structure proposed by the cookiecutter datascience to organize the project.

Code and Data Versioning:

For code versioning I opted for GitHub as it is the most used platform for code versioning.

Regarding data versioning on the other hand, I opted for DVC and chose as a remote storage for my datasets' versions google drive.

This is the config file of my ".dvc" folder, it contains the path to the remotes storage (My personal google drive storage).

```
[core]
remote = mygdrive
['remote "mygdrive"']
url = https://drive.google.com/drive/folders/1c_QwvUk4kq5tFTifWWvIB1vceFl6f7q6?usp=sharing
```

Experiment tracking using MLFlow:

The goal for experiment tracking is making sure that our chosen model is the one with better performance among our available models, and that is done according to 4 metrics which are accuracy, precision, F1-score, and recall.

The models taken into consideration are 3:

- -distilbert/distilbert-base-uncased-finetuned-sst-2-english
- -cardiffnlp/twitter-roberta-base-sentiment-latest(Our most performant one)
- -lxyuan/distilbert-base-multilingual-cased-sentiments-student

Since the 3 models were tested using the same experiments, I will be only showcasing the one that we are interested in which is "cardiffnlp/twitter-roberta-base-sentiment-latest".

The load data function:

This function reads lines from 2 .txt files, the one containing the tweets and the other the labels and returns them concatenated.

```
def load_data(texts_file_path, labels_file_path):
    with open(texts_file_path, 'r', encoding='utf-8') as texts_file, \
    open(labels_file_path, 'r', encoding='utf-8') as labels_file:
        texts = texts_file.readlines()
        labels = labels_file.readlines()
        labels = [int(label.strip()) for label in labels]
        data = [{"text": text.strip(), "label": label} for text, label in zip(texts, labels)]
    return data
```

The evaluation function:

This function evaluates the performance of the model and extracts the 4 metrics discussed earlier for each model.

```
def evaluate_model(model, tokenizer, data):
   model.eval()
   predictions, true_labels = [], []
    for item in data:
       inputs = tokenizer(item['text'], padding=True, truncation=True, return_tensors="pt", max_length=512)
       with torch.no_grad():
           outputs = model(**inputs)
       logits = outputs.logits
       preds = torch.argmax(logits, dim=-1).numpy()
       predictions.extend(preds)
       true_labels.append(item['label'])
   accuracy = accuracy_score(true_labels, predictions)
   precision = precision_score(true_labels, predictions, average='weighted', zero_division=0)
   recall = recall_score(true_labels, predictions, average='weighted', zero_division=0)
   f1 = f1_score(true_labels, predictions, average='weighted', zero_division=0)
   return accuracy, precision, recall, f1
```

The experiment tracking using MLFlow:

This is the part that takes the model from Huggingface and applies the evaluation function to it and finally logs the output to MLflow:

```
mlflow.set_experiment("experiment_twitter-roberta-base")
with mlflow.start_run(run_name="cardiffnlp/twitter-roberta-base-sentiment-latest"):
    model_name = "cardiffnlp/twitter-roberta-base-sentiment-latest"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(model_name)

mlflow.log_param("model_name", model_name)

accuracy, precision, recall, f1 = evaluate_model(model, tokenizer, data)

mlflow.log_metric("accuracy", accuracy)
    mlflow.log_metric("precision", precision)
    mlflow.log_metric("recall", recall)
    mlflow.log_metric("f1_score", f1)
```

The experiment:

The experiment is done using 3 different models and 2 different datasets with 2000 samples each, resulting in this comparison:

trash .trash	2/28/2024 8:37 PM	File folder
<u> </u>	2/27/2024 7:18 PM	File folder
151993197236072141	2/28/2024 9:18 PM	File folder
425982977278780971	2/28/2024 9:02 PM	File folder
726531946978964768	2/28/2024 9:03 PM	File folder
models	2/28/2024 6:17 PM	File folder

Conclusion:

Following this comparison, it is safe to say that our chosen model is our best performing one.

Metadata store for our metadata:

MLFlow provides a built in metadata store that automatically stores the metadata for our data and model samples.

artifacts	2/28/2024 8:41 PM	File folder	
metrics	2/28/2024 8:43 PM	File folder	
params	2/28/2024 8:41 PM	File folder	
tags	2/28/2024 8:41 PM	File folder	
<u>I</u> meta	2/28/2024 8:43 PM	Fichier source Yaml	1 KB