The Classifying Space of a Small Category

David Zhu

July 13, 2024

1 The Simplex Category Δ

Definition 1.0.1. Let Δ be the category of finite, totally ordered sets, where each object is represented by a class [n] := (0 < 1 < ... < n), and the morphisms are non-decreasing functions. The category Δ is also called the **simplex category**.

By elementary combinatorics, we have the following fact:

Proposition 1.0.1. Given $i, n \ge 0$, there are $\binom{n+1+i}{i+1}$ morphisms from [i] to [n].

Similar to cycles in symmetric groups, we can break down each morphism in Δ into compositions of building blocks called face/degeneracy maps.

Proposition 1.0.2. Fix $n \ge 0$. There are n+1 injective maps of the form $\epsilon^k : [n-1] \to [n]$, whose image miss k in [n]. Similarly, there are n+1 surjective maps of the form $\eta^k : [n+1] \to [n]$, with two elements mapping to k in [n]. The explicit formular are given by:

$$\epsilon^{k}(j) = \begin{cases} j & j < k \\ j+1 & j \ge k \end{cases}$$

$$\eta^{k}(j) = \begin{cases} j & j \le k \\ j-1 & j > k \end{cases}$$

Definition 1.0.2. The maps ϵ^* are called **coface maps** and η^* are called **codegeneracy maps**.

Lemma 1.1. Every morphism $[n] \to [m]$ can be uniquely decomposed as $\epsilon \circ \eta$, where η and ϵ are compositions of degeneracy maps and face maps, respectively.

Proof. Suppose the image of $[n] \to [m]$ consists of k+1 elements, such that $k \leq m, n$. Then, the map will factor as

$$[n] \xrightarrow{\eta} [k] \xrightarrow{\epsilon} [m]$$

and the construction of η and ϵ is obvious.

It is easy to verify the following composition identities for face maps and degeneracy maps:

Proposition 1.1.1. (Simplicial identities) The following hold:

$$\begin{cases} \epsilon^{i} \epsilon^{j} = \epsilon^{j-1} \epsilon^{i} & i < j \\ \eta^{i} \eta^{j} = \eta^{j+1} \eta^{i} & i \leq j \end{cases}$$

$$\eta^{j} \epsilon^{i} = \begin{cases} \operatorname{Id} & i = j, j + 1 \\ \epsilon^{i} \eta^{j-1} & i < j \\ \epsilon^{i-1} \eta^{j} & i > j + 1 \end{cases}$$

The lemma and the proposition shows that the data of the morphisms in Δ can be completely recovered from the face maps and degeneracy maps alone.

2 Simplicial Sets

Definition 2.0.1. Let \mathcal{C} be any category. A <u>simplicial object</u> in \mathcal{C} is a functor $X : \Delta^{\mathrm{op}} \to \mathcal{C}$. In particular, a functor $X : \Delta^{\mathrm{op}} \to \mathbf{Set}$ is called a <u>simplicial set</u>. The elements in the set $X_n := X[n]$ are called n-simplices.

If we dualize the above definition, we get the cosimplicial objects/sets, and here is an important example:

Example 2.0.1. (Topological n-simplex) For each [n], we associate the standard topological n-simplex

$$|\Delta^n| := \{(x_0, ..., x_n) \in \mathbb{R}^{n+1} : \sum_{i=0}^n x_i = 1, x_i \ge 0\}$$

with vertices $\{v_i\}$ being points with ith coordinate 1 and 0 on all other coordinates. Each morphism $\alpha: [n] \to [m]$ induces a morphism $\alpha_*: |\Delta^n| \to |\Delta^m|$ by first sending vertices $v_i \mapsto v_{\alpha(i)}$, then extending linearly onto all Δ^n . This defines a functor $\Delta \to \mathbf{Top}$, which is a cosimplicial object. Topological, the coface map ϵ_*

By the discussion of the previous section, we may package the data of a simplicial object in the following form:

Theorem 2.1. The data of a simplicial object in C is equivalent to a collection of objects X_n for $n \geq 0$, together with <u>degeneracy maps</u> $d_i: X_n \to X_{n+1}$ and <u>face maps</u> $s_i: X_n \to X_{n-1}$ for $0 \leq i \leq n$ satisfying the composition laws dual to that of proposition 1.1.1.

Example 2.1.1. (The standard n-simplex) We recognize the category of simplicial sets, denoted \mathbf{sSet} , as the functor category $\mathbf{Set}^{\Delta^{\mathrm{op}}}$. By the Yoneda lemma, the contravariant functor $h: \Delta \to \mathbf{sSet}$ given by $h([n]) := \mathrm{Hom}(\cdot,[n])$ is full and faithfull, and represents a simplicial set. The object h([n]) is called the $\mathbf{standard}$ \mathbf{n} -simplex.

Combinatorially, the k-simplices in the standard n-simplicies are maps in Hom([k], [n]). Geometricially, each morphism $[k] \to [n]$ is understood as the inclusion of the k-dimensional faces into the geometric n-simplex. The face map is precisely taking a k-face to a k-1 face by deleting a vertex.

Example 2.1.2. (The nerve of a category) Given a small category C, we define the nerve of C, denoted NC, as the simplicial set consisting of the following data: the objects are

$$NC_n := \{\text{string of n-composable arrows in } C\}$$

, where $NC_0 = \text{Ob } C$ and $NC_1 = \text{Mor } C$. The face map $s_i : NC_n \to NC_{n-1}$ is given by composing the *i*th and i + 1th morphism into one if 0 < i < n, and leaves out the first or last morphism when i = 0, n; the degeneracy map $d_i : NC_n \to NC_{n+1}$ is inserting the identity map at the *i*th spot.

3 Total Singular Complex and Geometric Realization

The goal of simplicial sets is to capture topological information categorically: the fundamental groupoid is able to capture π_0 and π_1 , but fails to see any higher homotopy groups; the more powerful simplicial set is able to capture all homotopy groups and their interrelations (under mild assumptions). We now describe the two functors, **Sing** and |*| that bridges the topological side and simplicial side.

$$\mathbf{Top} \underbrace{\overset{\mathbf{Sing}}{\underset{|*|}{\smile}}} \mathbf{sSet}$$

Definition 3.0.1. We define the <u>total singular complex</u> functor $\mathbf{Sing} : \mathbf{Top} \to \mathbf{sSet}$ as follows: For X a topological space, we associate the simplicial set $\mathbf{Sing}_{\bullet}(X) : \Delta \to \mathbf{Set}$ defined by

$$\mathbf{Sing}_n(X) := \mathrm{Hom}(|\Delta^n|, X)$$

Given a morphism $\alpha : [n] \to [m]$, we have the induced morphism $\alpha^* : \mathbf{Sing}_m(X) \to \mathbf{Sing}_n(X)$ by precomosition with the map α_* defined in example 2.0.1.