

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14080067603

FCC REPORT (BLE)

Applicant: Worldex International Ltd

Address of Applicant: 3A-8A, Mont Orchid Riverlet, Gongye 3rd Rd, Nanshan,

Shenzhen, China

Equipment Under Test (EUT)

Product Name: Tablet PC

SP6601, MW6617, MID6617, MW6625, MID6625, MW6617D,

Model No.: MW6617Q, MW6625D, MW6625Q, MID6617Q, MID6617D,

MID6625Q, MID6625D

Trade mark: Touch+

FCC ID: 2ACZ2-MW6617

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 13 Aug., 2014

Date of Test: 14 Aug., to 27 Aug., 2014

Date of report issued: 27 Aug., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	27 Aug., 2014	Original

Prepared by: Date: 27 Aug., 2014

Report Clerk

Reviewed by: Date: 27 Aug., 2014

Project Engineer

3 Contents

			Page				
1	CO	VER PAGE					
2	VEF	VERSION					
3	COI	NTENTS	3				
4		ST SUMMARY					
	_						
5	GEN	NERAL INFORMATION	5				
	5.1	CLIENT INFORMATION	5				
	5.2	GENERAL DESCRIPTION OF E.U.T.	5				
	5.3	TEST ENVIRONMENT AND MODE	7				
	5.4	DESCRIPTION OF SUPPORT UNITS	7				
	5.5	LABORATORY FACILITY	7				
	5.6	LABORATORY LOCATION	7				
	5.7	TEST INSTRUMENTS LIST	8				
6	TES	ST RESULTS AND MEASUREMENT DATA	9				
	6.1	Antenna requirement:	9				
	6.2	CONDUCTED EMISSION					
	6.3	CONDUCTED OUTPUT POWER	13				
	6.4	OCCUPY BANDWIDTH	15				
	6.5	POWER SPECTRAL DENSITY	18				
	6.6	BAND EDGE					
	6.6.						
	6.6.	2 Radiated Emission Method	22				
	6.7	Spurious Emission	27				
	6.7.	Total de la constant					
	6.7.	2 Radiated Emission Method	30				
7	TES	ST SETUP PHOTO	37				
8	EU1	CONSTRUCTIONAL DETAILS	39				

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Worldex International Ltd
Address of Applicant:	3A-8A, Mont Orchid Riverlet, Gongye 3rd Rd, Nanshan, Shenzhen, China
Manufacturer:	Hena Digital Techonlogy (shenzhen)Co.Ltd.
Address of Manufacturer:	13F, BlockB,Tairan Building, Futian District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Tablet PC
Model No.:	SP6601,MW6617,MID6617,MW6625,MID6625,MW6617D,MW6617Q, MW6625D, MW6625Q, MID6617Q, MID6617D,MID6625Q, MID6625D
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1800mAh
AC adapter:	Model:STC-A515A-Z
	Input:100-240V AC,50/60Hz 0.3A
	Output:5.0V DC MAX1500mA
Remark:	Item No.: SP6601,MW6617, MID6617, MW6625, MID6625, MW6617D, MW6617Q,MW6625D, MW6625Q, MID6617Q, MID6617D, MID6625Q, MID6625D were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being color

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz		
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz		
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz		
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz		
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz		
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2014	June 08 2015		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 25 2014	May 24 2015		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 25 2014	May 24 2015		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015		
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015		
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015		
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2014	Mar. 31 2015		
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015		
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015		
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2014	June 08 2015		
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015		
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015		
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 25 2014	May. 24 2015		
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2014	Mar. 31 2015		
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2014	Aug. 11 2015		
19	Universal radio communication tester		CMU200	CCIS0069	May. 25 2014	May. 24 2015		
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	May. 25 2014	May. 24 2015		

Con	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2014	June 08 2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2014	May 24 2015				
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2014	Mar. 31 2015				
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0 dBi.

6.2 Conducted Emission

Test Requirement: Test Method:	FCC Part15 C Section 15.207							
T / F 5	ANSI C63.4: 2003							
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	Limit (dBuV)							
	Frequency range (MHz) Quasi-peak Average							
	0.15-0.5 66 to 56* 56 to 46*							
	0.5-5	56	46					
	5-30	60	50					
Test procedure	* Decreases with the logarithm1. The E.U.T and simulators							
	 a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 							
Test setup:		ence Plane						
	AUX Equipment E.U Test table/Insulation pla	U.T EMI Receiver	er — AC power					
	E.U.T: Equipment Under Test LISN: Line Impedence Stabilizatio Test table height=0.8m	nn Network						
	Refer to section 5.7 for details							
Test Instruments:	Refer to section 5.7 for details	; 						
Test Instruments: Test mode:	Refer to section 5.7 for details Refer to section 5.3 for details							

Measurement Data

Neutral:

Trace: 19

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 676RF Condition

Job No. EUT : Tablet PC : SP6601 Model Test Mode : BLE mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Wendell

Remark

Kemark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu∜	dB	
1	0.158	37.87	0.25	10.78	48.90	65.56	-16.66	QP
2	0.158	23.88	0.25	10.78	34.91	55.56	-20.65	Average
3	0.182	35.61	0.25	10.77	46.63	64.42	-17.79	QP
1 2 3 4 5 6 7 8 9	0.190	19.70	0.25	10.76	30.71	54.02	-23.31	Average
5	0.313	32.17	0.26	10.74	43.17	59.88	-16.71	QP
6	0.431	20.73	0.26	10.73	31.72	47.24	-15.52	Average
7	0.449	33.01	0.27	10.74	44.02	56.89	-12.87	QP
8	0.466	20.19	0.28	10.75	31.22	46.58	-15.36	Average
9	0.518	27.14	0.28	10.76	38.18	56.00	-17.82	QP
	0.611	11.68	0.22	10.77	22.67			Average
11	1.111	12.89	0.23	10.88	24.00			Average
12	1.810	22.29	0.28	10.95	33.52	56.00	-22.48	QP

Line:

Trace: 17

: CCIS Shielding Room

Site : FCC PART15 B QP LISN LINE Condition

Job No. : 676RF Tablet PC EUT Model SP6601 Test Mode : BLE mode

Power Rating: AC 120V/60Hz Environment: Temp: 23°C Huni:56% Atmos:101KPa

Test Engineer: Wendell

Remark

IXCMAIR	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
55.50	MHz	dBu∜	<u>dB</u>	₫B	dBu∜	dBu∜	<u>dB</u>		
1	0.152	21.83	0.27	10.78	32.88	55.91	-23.03	Average	
2	0.162	37.77	0.27	10.77	48.81	65.34	-16.53	QP	
3	0.182	36.06	0.28	10.77	47.11	64.42	-17.31	QP	
1 2 3 4 5 6 7 8 9	0.182	21.44	0.28	10.77	32.49	54.42	-21.93	Average	
5	0.310	19.58	0.26	10.74	30.58	49.97	-19.39	Average	
6	0.318	32.87	0.26	10.74	43.87	59.75	-15.88	QP	
7	0.435	34.14	0.28	10.73	45.15	57.15	-12.00	QP	
8	0.471	19.16	0.29	10.75	30.20	46.49	-16.29	Average	
9	0.598	13.38	0.25	10.77	24.40	46.00	-21.60	Average	
10	0.614	26.70	0.25	10.77	37.72	56.00	-18.28	QP	
11	0.817	12.31	0.23	10.82	23.36	46.00	-22.64	Average	
12	1.939	24.91	0.26	10.96	36.13	56.00	-19.87	QP	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2					

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-2.99		
Middle	-2.60	30.00	Pass
Highest	-2.85		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.75		
Middle	0.76	>500	Pass
Highest	0.76		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.04		
Middle	1.04	N/A	N/A
Highest	1.04		

Test plot as follows:

Highest channel

Date:

Center 2.48 GHz

15.AUG.2014 21:18:18

15.AUG.2014 21:23:22

Date:

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	8 dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-3.63		
Middle	-3.25	8.00	Pass
Highest	-3.42		

Test plots as follow:

-93.5

Date:

Center 2.48 GHz

01.SEP.2014 15:34:36

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table				
Toot Instruments	Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

Lowest channel Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.4: 20	03				
Test Frequency Range:	2.3GHz to 2.5G	Hz				
Test site:	Measurement D	istance: 3m				
Receiver setup:						
	Frequency	Detector	RBW	VBW	Remark	
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value	
Limit:		1 Can	1111112	10112	Average value	
	Freque	ency	Limit (dBuV	/m @3m)	Remark	
	Above 1	GHz	54.0		Average Value	
Test Procedure:	1. The EUT w	vas placed on t	74.0		Peak Value	
Test setup:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 					
Tool oolap.	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier Amplifier					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section	5.3 for details				
Test results:	Passed					

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

Job No. : 676RF
EUT : Tablet PC
Model : SP6601
Test mode : BLE-L mode
Power Rating : AC 120V/60Hz

Power Rating: AC 120V/60Hz Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Wendell

Remark

1 2

53 NS		Antenna Factor				Limit Line	Over Limit	
MHz	dBm	<u>dB</u> /m	dB	āB	_dBm/m	-dBm/m	dB	
2390.000 2390.000								Peak Average

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 676RF Job No. EUT : Tablet PC Model SP6601 Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Wendell

Remark

C.M.ar.					Preamp Factor		Limit Line		Remark
•	MHz	dBm	dB/m	<u>dB</u>	<u>dB</u>	_dBm/m	dBm/m	<u>dB</u>	
1 2	2390.000 2390.000								Peak Average

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

Job No. : 676RF
EUT : Tablet PC
Model : SP6601
Test mode : BLE-H mode
Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Wendell

Remark

	Freq		Antenna Factor						Remark
	MHz	dBm	dB/m	<u>dB</u>	<u>dB</u>	_dBm/m	dBm/m	<u>dB</u>	
1 2	2483.500 2483.500								

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 676RF Job No. EUT : Tablet PC Model : SP6601 Test mode : BLE-H mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Wendell

Remark

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
7	MHz	dBm		dB	<u>dB</u>	dBm/m	dBm/m	dB	
1	2483.500	27.81	27.52	5.70	0.00	61.03	74.00	-12.97	Peak
	2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.4:2003 and KDB558074								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 5.7 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Test plot as follows:

Test mode:

Lowest channel

Date: 21.AUG.2014 20:13:38

30MHz~25GHz

Middle channel

Date: 21.AUG.2014 20:14:16

30MHz~25GHz

Highest channel

Date: 21.AUG.2014 20:14:52

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205										
Test Method:	ANSI C63.4:2003										
Test Frequency Range:	9KHz to 25GHz										
Test site:	Measurement Distance: 3m										
Receiver setup:											
·	Frequency										
	30MHz-1GHz										
	Above 1GHz	Peak	1MHz	3MHz	Peak Value						
	Above IGIIZ	Peak	1MHz	10Hz	Average Value						
Limit:											
	Frequency		Limit (dBuV/m	@3m)	Remark						
	30MHz-88MHz		40.0		Quasi-peak Value						
	88MHz-216MHz		43.5		Quasi-peak Value						
	216MHz-960MH	Z	46.0		Quasi-peak Value						
	960MHz-1GHz		54.0		Quasi-peak Value						
	Above 1GHz	-	54.0 74.0		Average Value Peak Value						
Test Procedure:	1. The EUT w	as placed on		rotating tab	le 0.8 meters above						
rest roccure.	the ground to determin 2. The EUT santenna, we tower. 3. The antenre the ground Both horizon make the numbers and to find the restrict Specified E. 6. If the emission the limit specified EUT have 10 dE	at a 3 meter the the position was set 3 meter was set 3 meter was more to determine the anter the author that and verne as a suspected enter the anter the rota table maximum reas and width with sion level of the cified, then the would be resumed and would be resumed to the substitution of the cified, then the substitution of the cified of the	camber. The of the highest leters away funted on the trailed from one the maximutical polarizations on the Enna was turned ding. In Maximum How EUT in peresting could be corted. Other do be re-tested.	table was at radiation. From the in op of a variance meter to the important of the state of the	rotated 360 degrees						

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

Job No. : 676RF EUT : Tablet PC Model : SP6601 Test mode : BLE mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Wendell

Remark

CMAIK									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
77	MHz	dBu∜	dB/m	₫B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	58.407	47.25	12.81	0.68	29.78	30.96	40.00	-9.04	QP
2	93.440	41.81	12.58	0.92	29.56	25.75	43.50	-17.75	QP
2	125.886	45.28	9.51	1.16	29.35	26.60	43.50	-16.90	QP
4	210.786	50.04	10.90	1.44	28.76	33.62	43.50	-9.88	QP
4 5	292.058	47.26	12.89	1.75	28.46	33.44	46.00	-12.56	QP
6	403.250	50.56	15.14	2.13	28.79	39.04	46.00	-6.96	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: 676RF Job No. EUT Tablet PC : SP6601 Model Test mode : BLE mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Wendell

Remark

Freq						Limit Line	Over Limit	Remark
MHz	dBu∜	dB/m	d₿	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
37.945	48.02	13.06	0.50	29.92	31.66	40.00	-8.34	QP
58.407	51.22	12.81	0.68	29.78	34.93	40.00	-5.07	QP
116.950	50.95	11.00	1.10	29.41	33.64	43.50	-9.86	QP
210.786	51.36	10.90	1.44	28.76	34.94	43.50	-8.56	QP
292.058	49.10	12.89	1.75	28.46	35.28	46.00	-10.72	QP
515.437	46.75	16.89	2.45	29.00	37.09	46.00	-8.91	QP
	MHz 37.945 58.407 116.950 210.786 292.058	Freq Level MHz dBuV 37.945 48.02 58.407 51.22 116.950 50.95 210.786 51.36 292.058 49.10	Freq Level Factor MHz dBuV dB/m 37.945 48.02 13.06 58.407 51.22 12.81 116.950 50.95 11.00 210.786 51.36 10.90 292.058 49.10 12.89	Freq Level Factor Loss MHz dBuV dB/m dB 37.945 48.02 13.06 0.50 58.407 51.22 12.81 0.68 116.950 50.95 11.00 1.10 210.786 51.36 10.90 1.44 292.058 49.10 12.89 1.75	MHz dBuV dB/m dB dB 37.945 48.02 13.06 0.50 29.92 58.407 51.22 12.81 0.68 29.78 116.950 50.95 11.00 1.10 29.41 210.786 51.36 10.90 1.44 28.76 292.058 49.10 12.89 1.75 28.46	MHz dBuV dB/m dB dB dBuV/m 37.945 48.02 13.06 0.50 29.92 31.66 58.407 51.22 12.81 0.68 29.78 34.93 116.950 50.95 11.00 1.10 29.41 33.64 210.786 51.36 10.90 1.44 28.76 34.94 292.058 49.10 12.89 1.75 28.46 35.28	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 37.945 48.02 13.06 0.50 29.92 31.66 40.00 58.407 51.22 12.81 0.68 29.78 34.93 40.00 116.950 50.95 11.00 1.10 29.41 33.64 43.50 210.786 51.36 10.90 1.44 28.76 34.94 43.50 292.058 49.10 12.89 1.75 28.46 35.28 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 37.945 48.02 13.06 0.50 29.92 31.66 40.00 -8.34 58.407 51.22 12.81 0.68 29.78 34.93 40.00 -5.07 116.950 50.95 11.00 1.10 29.41 33.64 43.50 -9.86 210.786 51.36 10.90 1.44 28.76 34.94 43.50 -8.56 292.058 49.10 12.89 1.75 28.46 35.28 46.00 -10.72

Above 1GHz

Test channe	Test channel:				Level:		Peak	
			_					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	46.14	31.53	8.90	40.24	46.33	74.00	-27.67	Vertical
7206.00	46.16	36.47	10.59	41.24	51.98	74.00	-22.02	Vertical
4804.00	46.53	31.53	8.90	40.24	46.72	74.00	-27.28	Horizontal
7206.00	45.64	36.47	10.59	41.24	51.46	74.00	-22.54	Horizontal

Test channe	l:	L	owest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.54	31.53	8.90	40.24	36.73	54.00	-17.27	Vertical
7206.00	36.06	36.47	10.59	41.24	41.88	54.00	-12.12	Vertical
4804.00	36.53	31.53	8.90	40.24	36.72	54.00	-17.28	Horizontal
7206.00	35.90	36.47	10.59	41.24	41.72	54.00	-12.28	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channe	l:	N	liddle		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	45.71	31.58	8.98	40.15	46.12	74.00	-27.88	Vertical
7323.00	45.29	36.47	10.69	41.15	51.30	74.00	-22.70	Vertical
4882.00	46.15	31.58	8.98	40.15	46.56	74.00	-27.44	Horizontal
7323.00	45.70	36.47	10.69	41.15	51.71	74.00	-22.29	Horizontal

Test channe	Test channel:				Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	35.57	31.58	8.98	40.15	35.98	54.00	-18.02	Vertical
7323.00	35.05	36.47	10.69	41.15	41.06	54.00	-12.94	Vertical
4882.00	36.75	31.58	8.98	40.15	37.16	54.00	-16.84	Horizontal
7323.00	35.91	36.47	10.69	41.15	41.92	54.00	-12.08	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channe	l:	H	Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.30	31.69	9.08	40.03	46.04	74.00	-27.96	Vertical
7440.00	46.12	36.60	10.80	41.05	52.47	74.00	-21.53	Vertical
4960.00	46.54	31.69	9.08	40.03	47.28	74.00	-26.72	Horizontal
7440.00	45.53	36.60	10.80	41.05	51.88	74.00	-22.12	Horizontal

Test channe	Test channel:				Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.95	31.69	9.08	40.03	36.69	54.00	-17.31	Vertical
7440.00	36.88	36.60	10.80	41.05	43.23	54.00	-10.77	Vertical
4960.00	36.06	31.69	9.08	40.03	36.80	54.00	-17.20	Horizontal
7440.00	35.65	36.60	10.80	41.05	42.00	54.00	-12.00	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7 Test Setup Photo

Radiated Spurious Emission

8 EUT Constructional Details

Reference to the test report No. CCIS14080067601

----End of report-----