

XM-04-HID-S

蓝牙 HID 扫描枪模块规格书

一、简介

蓝牙HID扫描枪蓝牙模块(完整型号XM-04-HID-S,以下简称模块)实现了蓝牙HID规范,符合蓝牙 2.1+EDR标准,具有两种工作模式:命令模式和数据模式,在数据模式下,可以将扫描枪扫描到的条码数据,通过蓝牙HID协议传送给蓝牙主机(比如手机、PC等)。当模块处于命令模式时能执行下述所有 AT 指令,用户可向模块发送各种 AT 指令,为模块设定参数。

此模块兼容Android 3.0 以上手机系统及市面上所有苹果手机(iPhone/iPad/iPod), 支持Windows系统, 支持苹果MAC。

说明: 我们提供有插针形式的底板,可便于测试。

二、模块引脚定义

No.	Des						Des	No.
1	UART_TX					Р	1011	34
2	UART_RX			ΨЮ		Р	1O10	33
3	UART_CTS	3		_ `		F	PIO9	32
4	UART_RTS	1	\		4	F	PIO8	31
5	PCM_CLK		5	}	4	F	PI07	30
6	PCM_OUT		3			F	PI06	29
7	PCM_IN		5			F	PIO5	28
8	PCM_SYNC	;	3			F	PIO4	27
9	AIO0		2			F	PIO3	26
10	AIO1		5			F	PIO2	25
11	RESETB		3	\		F	PI01	24
12	VCC	1	з 🗦 🔼 🚬		2	F	PIO0	23
13	GND		لمممم			(GND	22
14	15	16	17	18	19		20	21
NC	USB_D-	SPI_CSB	SPI_MOSI	SPI_MISO	SPI_CL	K U	SB_D+	GND

Pin	NAME	I/O Type	DESCRIPTION
1	UART_TXD	0	UART data output
2	UART_RXD	I	UART data input
3	UART_CTS	I	UART clear to send active low
4	UART_RTS	0	UART request to send active low
5	PCM_CLK	I	Synchronous data clock
6	PCM_OUT	0	Synchronous data data out
7	PCM_IN	I	Synchronous data data in
8	PCM_SYNC	I	Synchronous data sync
9	AIO0	I/O	Programmable input/output line
10	AIO1	I/O	Programmable input/output line
11	RESETB	I	Integrated inside the RC reset circuit, Reset if low. Input debounced so must be low for >5ms to cause a reset
12	VCC	S	Power Supply
13	GND	S	Ground
14	NC		
15	USB_D-	I/O	USB data minus

16	SPI_CSB	I/O	Chip select for Synchronous Serial Interface active low	
17	SPI_MOSI	I/O	Serial Peripheral Interface data input	
18	SPI_MISO	I/O	Serial Peripheral Interface data output	
19	SPI_CLK	I/O	Serial Peripheral Interface clock	
20	USB_D+	I/O	USB data plus with selectable internal 1.5k. pull-up resistor	
21	GND		Ground	
22	GND		Ground	
23	PIO0	I/O	Programmable input/output line	
24	PIO1	I/O	Programmable input/output line	
25	PIO2	I/O	Programmable input/output line	
26	PIO3	I/O	Programmable input/output line	
27	PIO4	I/O	Programmable input/output line	
28	PIO5	I/O	Programmable input/output line	
29	PIO6	I/O	Programmable input/output line	
30	PIO7	I/O	Programmable input/output line	
31	PIO8	I/O	Programmable input/output line	
32	PIO9	I/O	Programmable input/output line	
33	PIO10	I/O	Programmable input/output line	
34	PIO11	I/O	Programmable input/output line	

三、模块封装

Α	В	С	D	E	F	G	Н	I	Unit
1063	511.8	285.4	59.1	68.9	31.5	55.1	20	32	mil
27	13	7.25	1.5	1.75	0.8	1.4	1.0	0.8	mm

四、命令模式与数据模式

在模块上电三秒之内(上电1秒之后再发送,也就是在1~3秒的时间之内),通过串口发送 0x1B 字符(一个字符),模块返回+0PEN之后,就进入了命令模式,否则启动后为数据模式,数据模块时,收到串口数据,会主动连接主机(手机或者 PC 等),然后将数据通过 HID 协议,送给主机。

在数据模式下,识别的数据为可视字符的 ASCII 码,比如条码 1234567890,则通过串口将 1234567890 的 ASCII 码发给模块即可,模块会将这些数字通过 HID 协议传输给主机,可以识别的字符包含 0° 9, a° z, A° Z 及! @ # \$ % $^\circ$ & * () 空格 - _ = + [{ }] \ | ; : ' " < . >/ ?

另外,我们还增加了对回车键的支持,可以自动添加回车键或者字符串后手动增加回车字符, 我们识别 Crlf (0x0D 0x0A 或者只有一个 0x0D) 为回车键, 另外也支持 <0x1B>ENTER. (ASCII 为 1B 45 4E 54 45 52 2E) 作为回车键。

五、PIO 说明

PIO	名称	方向	描述
PIO0	清除按键	输入	接按键,平时低电平,按下高电平,长按1
			秒清除记忆的主机,可以重新匹配新的主机。
			没有此按键时,可以配置参数
			AT+DMODE=2,这样在断开与主机的连接
			时,同样可以匹配新的主机,有这个按键时,
			请配置参数 AT+DMODE=1
PIO1	状态指示灯	输出	指示模块的不同工作状态:
			待机 (可连接): 100ms 高电平, 1000ms 低
			电平间隔输出
			待机(可匹配): 100ms 高电平, 100ms 低电
			平间隔输出
			正在连接: 500ms 高电平, 500ms 低电平间
			隔输出
			连接: 持续高电平
PIO2	连接指示灯	输出	指示是否连接了主机
			高电平:连接
			低电平: 未连接
PIO3	设置按键	输入	接按键,平时低电平,按下高电平,短按进
			入命令模式,可以通过 AT 指令配置参数。
PIO7	Num Lock 指示	输出	
PIO8	Caps Lock 指示	输出	
PIO9	Scroll Lock 指示	输出	
PIO11	休眠控制	输入	接高电平,唤醒蓝牙,低电平,休眠,给蓝
			牙串口发送数据前,要唤醒,否则会丢失数
			据。(此引脚功能在低功耗版本中有,不需要
			低功耗控制的,没有这个功能)

六、功耗

状态	测试条件	最大值	典型值	最小值
八心	例 风 宋 什	mA	mA	mA
	一级节能(数据传输)	8.7	6	5.7
\ * + \	二级节能	8.5	5.8	5.5
连接	三级节能	4.6	1.5	1.4
	四级节能	1.6	0.2	0.03
无连接		4	0.1	0.03

蓝牙模块有多级节能模式,会自动进行控制,在连接后进入一级节能模式,如果 1 秒钟没有传输数据,则自动进入二级节能模式,在此模式下,如果 10 秒钟没有进行数据传输,则进入三级节能模式,600 秒没有数据传输,进入四级节能模式。在任何一级节能模式下,如果有数据传输,模块都将自动进入一级节能(数据传输)模式。

七、PIO11 控制

为了让模块有更低的待机电流,模块在没有数据传输时,会进入更低的休眠,进入休眠后,外部处理器向蓝牙模块串口发送数据时,会丢失数据,所以在传输数据前,需要先激活蓝牙模块,具体步骤如下:

- 1. 外部处理器置 PIO11 高电平。
- 2. 置 PIO11 高电平后至少延时 10ms 后,外部处理器开始发送 UART 数据。

3. 外部处理器发送完数据后延时 10ms,置 PIO11 低电平。

注:没有数据发送时,一定要将 PIO11 置低电平,否则会增加蓝牙模组的功耗,从而缩短电池使用寿命。

八、AT 指令

所有指令都必须在命令模式(通过设置按键引脚)下才可以发送, 否则不会有任何响应。 所有 AT 指令都以回车换行符结束, 就是\r\n (0x0D 0x0A), 返回的应答也以回车换行符结束。

串口默认参数: 波特率 9600, 8位数据位, 1位停止位, 无校验, 无流控。

1、 测试指令

指令	响应	参数
AT	OK	无

2、 模块复位指令 (重启)

指令	响应	参数
AT+RESET	OK	无

3、 获取软件版本号

指令	响应	参数
AT+VERSION?	+VERSION: <ver></ver>	ver: 软件版本号
	OK	

举例说明:

AT+VERSION?\r\n(注意\r\n是回车换行,两个字符,也就是ASCII的0x0D和 0x0A)

+VERSION: V1. 2. 14. 1121\r\n

 $OK\r\n$

4、 恢复默认状态

指令	响应	参数
AT+DEFAULT	OK	无

5、 设置/查询模块设备名称

指令	响应	参数
AT+NAME= <devicename></devicename>	OK	deviceName: 模块设备名称
AT+NAME?	+NAME: <devicename></devicename>	
	OK	

设备名称如果要使用中文, 必须转换成 UTF-8 编码后进行设置, 否则手机等蓝牙设备将无法显示模块的正确名称, 英文字符直接输入即可。 如果名称中带有空格, 请使用引号将整个字符串引起来。例如:

AT+NAME=" Hello World"

OK

AT+NAME?

+NAME:Hello World

OK

AT+NAME=BT-Scanner

OK

AT+NAME?

+NAME:BT-Scanner

OK

6、 设置/查询一串口参数

指令	响应	参数
AT+BAUD= <nbaudrate></nbaudrate>	OK	nBaudRate: 波特率 (bits/s)
	+BAUD: <nbaudrate></nbaudrate>	取值如下(十进制):
	OK	1200
		2400
		4800
		9600
		19200
		38400
		57600
AT+BAUD?		115200
		默认设置: 9600

举例:设置串口波特率:115200

AT+BAUD=115200

OK

AT+BAUD?

+UART:115200

OK

7、 设置/查询—匹配模式

指令	响应	参数
AT+AUTH	OK	nPairMode: 匹配模式配对码
AT+AUTH?	+AUTH: <npairmode></npairmode>	0 - 不要求匹配
	OK	1 - 密码匹配
		2 - 简单配对,匹配时直接确认
		即可,不需要输入密码。
		默认: 2

8、 设置/查询一配对码

指令	响应	参数
AT+PSWD= <pincode></pincode>	OK	pinCode: 配对码
AT+PSWD?	+PSWD: <pincode></pincode>	默认密码: 0000

l OK	
I UK	
1	

当匹配模式使用1时使用的匹配密码。

9、 设置/查询一自动回车换行

指令	响应	参数
AT+AUTOCRLF= <benable></benable>	OK	bEnable:是否自动添加回车换行
AT+AUTOCRLF?	+AUTOCRLF: <benable></benable>	0 不添加
	OK	1 添加
		默认:0

扫描枪扫描到一串条码之后,自动在条码的后增加回车键,相当于键盘上多敲了一个回车键的效果。

10、设置/查询-断开连接模式

指令	响应	参数
AT+DMODE= <nmode></nmode>	OK	nMode:断开连接后的模式
AT+DMODE	+DMODE: <nmode></nmode>	1 - 可连接,也就是匹配后,只
	ОК	有已经匹配的主机才可以与模块
		通信。
		2 - 可发现,也就是匹配后,只
		要断开连接,就可以接受新主机进
		行匹配。
		默认:2

11、设置/查询一删除匹配

指令	响应	参数
AT+UNPLUG	OK	

模块会记忆已经匹配的主机,通过这个指令,清除匹配信息,这样模块就可以接受新的主机进行匹配。

12、设置/查询一设备类型

指令	响应	参数
AT+EXIT	OK	

13、设置/查询一升级 Firmware

指令	响应	参数
AT+DFU	OK	

14、进入匹配模式

指令	响应	参数
AT+PAIR	ОК	

模块在连接状态或者不可发现状态,通过这个指令,让模块进入允许匹配状态,这个指令不会删除之前的匹配信息,可用于多主机的匹配。

15、设置/查询一查询系统工作状态

指令	响应	参数
AT+STATE?	+STATE: <nstate></nstate>	nState: 状态
	OK	1 待机(可发现)
		2 待机(可连接)
		3 正在连接
		4 已连接
		5 正在断开连接

16、建立连接/断开连接

指令	响应	参数
AT+CONN= <bcom></bcom>	OK/ERROR	bConn:连接控制
		1 - 建立连接, 当前没有建立连
		接时,或者也没有处于正在连接状
		态时,可以发这个参数建立连接
		0 - 断开连接