Numerical methods

Author: Daria Shutina

Numerical methods

```
23-02-02
    Org stuff
   Now the lecture starts
   Taylor series
   Taylor theorem
       version 1
       version 2
23-02-03
   Mean value theorem
    f = e^x
    f = \ln(1+x) \todo
    Counting \cos(0,1)
23-02-09
    Base representation
        Example
    Euclid's algorithm
        Example
    Horner's scheme
```

23-02-02

Org stuff

Grade:

- 100% exam
- bonus 10% via homeworks

Now the lecture starts

Approaches to solving a problem:

- iteration: $x_0 = c$; $x_n = f(x_{n-1})$
- interpolation -- choose a function which is the closest to the initial function
- integration -- use integrals

Taylor series

Given a function f:R o R, which is infinitely differentiable at $c\in R$. The Taylor series of f at c is:

$$f(x) = \sum_{n=0}^{+\infty} rac{f^{(n)}(x_0)}{n!} (x-c)^n$$

If c=0, then it is called **the Maclaurin series**.

Note: A power series have an interval/radius of convergence. $f^{(n)} \in \operatorname{radius}$ of conv .

Given a function
$$f=\sum a_n x^n$$
. Then a radius of convergence of f is $R=rac{1}{\lim\limits_{n o\infty}\sup\sqrt[n]{|a_n|}}$

Note: The smaller the difference between x and c, the faster the Taylor series converge.

Taylor theorem

version 1

 $f\in C^{n+1}([a,b])$ (n+1 times continuously differentiable in [a, b])

Then for
$$\forall c \in [a,b]$$
 we have that $f = \sum\limits_{k=0}^n rac{f^{(k)}(c)}{k!} (x-c)^k + \underbrace{rac{f^{(n+1)}(\xi_x)}{(n+1)!} (x-c)^{n+1}}_{E_n(x)-remainder}$, where ξ_x is

between x and c and depends on x.

version 2

$$f\in C^{n+1}([a,b])$$

For
$$x,x+h \in [a,b]$$
 $f(x+h) = \sum\limits_{k=0}^n rac{f^{(k)}(x)}{k!} h^k + rac{f^{(n+1)}(\xi_x)}{(n+1)!} h^{n+1}$, where $E_n(x) = O(h^{n+1})$

23-02-03

Mean value theorem

For
$$n=0$$
 $f(x)=f(c)+f'(\xi_x)(x-c)$

$$x := b, \; c := a \; \Rightarrow \; f(b) = f(a) + f'(\xi_x)(b-a) \; \Rightarrow \; f'(\xi_x) = rac{f(b) - f(a)}{b-a}$$

Definition: The Taylor series represents f at (.)x iff the Taylor series converge at (.)x.

$$f = e^x$$

$$c=0, \ e^x=\sum\limits_{0}^{n}rac{x^k}{k!}+rac{e^{\xi x}}{(n+1)!}x^{n+1}(*)$$

For
$$\forall x \in R \ \exists s \in R_0^+ \ : \ |x| \leqslant s \ \land \ |\xi_x| \leqslant s$$

 $e^x \text{ is monotone increasing} \Rightarrow e^{\xi_x} \leqslant e^s \ \Rightarrow \ \lim_{n \to \infty} |\tfrac{e^{\xi_x}}{(n+1)!} x^{n+1}| \leqslant e^s \cdot \lim_{n \to \infty} |\tfrac{s^{n+1}}{(n+1)!}| = 0 \ \Rightarrow \ (*)$ represents e^x at x.

$$f=\ln(1+x)$$
 \todo

$$c = 0$$

$$f^{(k)}(x) = (-1)^{k-1}(k-1)! \frac{1}{(1+x)^k}$$

$$g(x) = \sum\limits_{0}^{n} rac{(-1)^{k-1}}{k} x^k + rac{(-1)^n}{n+1} \cdot rac{1}{(1+\xi_x)^{n+1}} \cdot x^{n+1}$$

$$\lim_{n o\infty} E_n(x) = arprojlim_{n o0} rac{(-1)^n}{n+1} \cdot \lim_{n o\infty} (rac{x}{\xi_x+1})^{n+1} = 0 \ \Rightarrow \ 0 < rac{x}{\xi_x+1} < 1$$

$$\Rightarrow x \leqslant 1, \ if \ \xi_x \in [0,x] \ ext{and} \ x > -1, \ if \ \xi_x \in [x,0] \ \Rightarrow \ g \ ext{represents} \ f \ ext{at} \ x \in (-1,1).$$

Counting $\cos(0,1)$

$$f = \cos x$$

$$g(x) = \sum\limits_{0}^{n} (-1)^k rac{x^{2k}}{(2k)!} + (-1)^{n+1} \cos \xi_x rac{x^{2(n+1)}}{(2(n+1))!}, \; c = 0$$

$$|(-1)^{n+1}\underbrace{\cos\xi_x}_{<1}\cdot\frac{x^{2(n+1)}}{(2(n+1))!}|\leqslant |\frac{x^{2(n+1)}}{(2(n+1))!}|$$

$$|rac{0,1^{2(n+1)}}{(2(n+1))!}| \ \mathop{
ightarrow}_{n o\infty} \ 0 \ \Rightarrow \ g$$
 represents f at $(\,.\,)0,1.$

23-02-09

Base representation

Every number $x \in N$ can be written in the following form as a unique expansion with the resect to the base b, where $b \in N/\{0\}$, using digits a_i :

$$x = \sum_{i=0}^n a_i b^i$$
.

For a real number
$$x \in R$$
 we can write: $x = \sum\limits_{i=1}^{+\infty} a_{-i} b^{-i}.$

General remarks:

• A number with simple representation in one base may be complicated to represent in another base:

$$0.1_{10} = (0.0001100110011...)_2$$

- ullet b=2 is binary, b=8 is octal, b=16 is hexadecimal
- $\bullet\,\,$ To convert from base b to base 10 , we perform the dolowwing computation:

$$y_b=\overline{a_n\ldots a_0}_b=\sum\limits_{i=0}^n a_nb^n=x_{10}$$

Example

$$b=2;\ 1011_2=1\cdot 2^0+1\cdot 2^1+0\cdot 2^2+1\cdot 2^3=11_{10}$$

Euclid's algorithm

Euclid's algorithm converts x_{10} to y_b .

- 1. Input x_{10}
- 2. Determine $\min n \,:\, x < b^{n+1}$
- 3. for i:=n to 0 do:

$$a_i = x$$
 div b^i

$$x=x \mod b^i$$

4. Output result $\overline{a_n a_{n-1} \dots a_0} = y_b$.

Problems:

- 1. Step 2 is inefficient
- 2. Division by large numbers can be problematic

Example

1.
$$13_{10} \longrightarrow y_2$$

2.
$$\min n = 3 : 13 < 2^4$$

$$3. i = 3; \ a_3 = 1, \ x = 5$$

$$i=2; \ a_2=1, \ x=1$$

$$i = 1; \ a_1 = 0, \ x = 1$$

$$i=0; \ a_0=1, \ x=$$
 4. $\overline{a_3a_2a_1a_0}=1101_2$

Horner's scheme

- no division by large number
- ullet no need in finding the amount of digits for y_b (aka n in euclid's algorithm)

```
1. Input x_{10}. i := 0.
```

```
2. 1 while (x > 0) {
    a[i++] = x % b;
    x /= b;
4 }
```

3.
$$\overline{a_n a_{n-1} \dots a_0} = y_b$$