占卜学: 作业 2

截止时间: 1919 年 8 月 10 日

计算机 1919 班 李田所 学号: 114514

2020年2月22日

求一个合适的整数 c, 使得 $f(n) \le c \cdot g(n)$ 对 n > 1 恒成立.

1.
$$f(n) = n^2 + n + 1$$
, $g(n) = 2n^3$

2.
$$f(n) = n\sqrt{n} + n^2$$
, $g(n) = n^2$

3.
$$f(n) = n^2 - n + 1$$
, $g(n) = n^2/2$

解:

显然地, 我们可以通过占卜法来解 c 的值 c.

1.

$$n^{2} + n + 1 =$$

$$\leq n^{2} + n^{2} + n^{2}$$

$$= 3n^{2}$$

$$\leq c \cdot 2n^{3}$$

故 c=2 满足要求.

2.

$$n^{2} + n\sqrt{n} =$$

$$= n^{2} + n^{3/2}$$

$$\leq n^{2} + n^{4/2}$$

$$= n^{2} + n^{2}$$

$$= 2n^{2}$$

$$\leq c \cdot n^{2}$$

故 c=2 满足要求.

3.

$$n^{2} - n + 1 =$$

$$\leq n^{2}$$

$$\leq c \cdot n^{2}/2$$

故 c=2 满足要求.

令 $\Sigma = \{0,1\}$. 建立一个有限状态自动机 A 来识别可以被 5 整除的二进制串.

令状态 q_k 表示 k 被 5 除的余数. 例如,7 对应 q_2 (因为 7 mod 5=2).

图 1: DFA A 真好看, 是不是?

解释

给出一个二进制表示的数, x. 由于我们的状态机只接受两种输入, x can either become x0 or x1. When a 0 comes into the state machine, it is the same as taking the binary number and multiplying it by two. When a 1 comes into the machine, it is the same as multiplying by two and adding one.

通过这一点, 我们就可以建立出一个转移表:

	$\parallel x \mod 5 = 0$	$x \mod 5 = 1$	$x \mod 5 = 2$	$x \mod 5 = 3$	$x \mod 5 = 4$
x_0	0	2	4	1	3
x1	1	3	0	2	4

Therefore on state q_0 or $(x \mod 5 = 0)$, a transition line should go to state q_0 for the input 0 and a line should go to state q_1 for input 1. Continuing this gives us the Figure 1.

题目 3

写出快速排序算法的一部分 Quick-Sort(list, start, end)

- 1: **function** QUICK-SORT(list, start, end)
- 2: **if** $start \ge end$ **then**
- 3: return
- 4: end if
- 5: $mid \leftarrow PARTITION(list, start, end)$
- 6: QUICK-SORT(list, start, mid 1)
- 7: QUICK-SORT(list, mid + 1, end)
- 8: end function

算法 1: 快速排序的开始部分

假设我们想要拟合一条过原点的直线, 如, $Y_i = \beta_1 x_i + e_i$ 其中 $i=1,\ldots,n,$ $\mathrm{E}[e_i]=0,$ $\mathrm{Var}[e_i]=\sigma_e^2$ 且 $\mathrm{Cov}[e_i,e_j]=0, \forall i\neq j.$

Part A

Find the least squares esimator for $\hat{\beta}_1$ for the slope β_1 .

解:

To find the least squares estimator, we should minimize our Residual Sum of Squares, RSS:

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (Y_i - \hat{\beta}_1 x_i)^2$$

By taking the partial derivative in respect to $\hat{\beta}_1$, we get:

$$\frac{\partial}{\partial \hat{\beta}_1}(RSS) = -2\sum_{i=1}^n x_i(Y_i - \hat{\beta}_1 x_i) = 0$$

This gives us:

$$\sum_{i=1}^{n} x_i (Y_i - \hat{\beta}_1 x_i) = \sum_{i=1}^{n} x_i Y_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2$$
$$= \sum_{i=1}^{n} x_i Y_i - \hat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

Solving for $\hat{\beta}_1$ gives the final estimator for β_1 :

$$\hat{\beta_1} = \frac{\sum x_i Y_i}{\sum x_i^2}$$

Part B

Calculate the bias and the variance for the estimated slope $\hat{\beta}_1$.

解:

For the bias, we need to calculate the expected value $E[\hat{\beta}_1]$:

$$E[\hat{\beta}_1] = E\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right]$$

$$= \frac{\sum x_i E[Y_i]}{\sum x_i^2}$$

$$= \frac{\sum x_i (\beta_1 x_i)}{\sum x_i^2}$$

$$= \frac{\sum x_i^2 \beta_1}{\sum x_i^2}$$

$$= \beta_1 \frac{\sum x_i^2 \beta_1}{\sum x_i^2}$$

$$= \beta_1$$

Thus since our estimator's expected value is β_1 , we can conclude that the bias of our estimator is 0.

For the variance:

$$\operatorname{Var}[\hat{\beta}_{1}] = \operatorname{Var}\left[\frac{\sum x_{i}Y_{i}}{\sum x_{i}^{2}}\right]$$

$$= \frac{\sum x_{i}^{2}}{\sum x_{i}^{2}\sum x_{i}^{2}}\operatorname{Var}[Y_{i}]$$

$$= \frac{\sum x_{i}^{2}}{\sum x_{i}^{2}\sum x_{i}^{2}}\operatorname{Var}[Y_{i}]$$

$$= \frac{1}{\sum x_{i}^{2}}\operatorname{Var}[Y_{i}]$$

$$= \frac{1}{\sum x_{i}^{2}}\sigma^{2}$$

$$= \frac{\sigma^{2}}{\sum x_{i}^{2}}$$

题目 5

证明一个 k 阶的多项式, $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ 是 $\Theta(n^k)$ 的, 其中 $a_k \ldots a_0$ 都是非负常数. **证明** 为了证明 $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$, 只需证明:

$$\exists c_1 \exists c_2 \forall n \ge n_0, \ c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

对于第一个不等式, 显然它是成立的. 因为无论常数是何值, $n^k \leq a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ even if $c_1=1$ and $n_0=1$. 这是因为又 $n^k \leq c_1 \cdot a_k n^k$ 对任意的常数 c_1 和 a_k .

对于第二个不等式, 我们可以这样证明: 记 $A = \sum_{i=0}^{k} a_i$, 则有,

$$a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0 =$$

$$\leq (a_k + a_{k-1} \ldots a_1 + a_0) \cdot n^k$$

$$= A \cdot n^k$$

$$\leq c_2 \cdot n^k$$

其中 $n_0 = 1$ 和 $c_2 = A$. c_2 是常数. 这就证明了结论.

比较 $\sum_{k=1}^{5} k^2$ 和 $\sum_{k=1}^{5} (k-1)^2$.

题目 19

求 $f(x) = x^4 + 3x^2 - 2$ 的导数.

题目 6

计算定积分 $\int_0^1 (1-x^2) dx$ 和 $\int_1^\infty \frac{1}{x^2} dx$.