

Graph Visualization and Analysis

Using R

Canggih Puspo Wibowo

Data Science Mentor Sadasa Academy

Social Graph/Network

Graph vs Network

Graph Theory

7 Königsberg's bridges

Euler, Leonhard (1736). "Solutio problematis ad geometriam situs pertinentis". Comment. Acad. Sci. U. Petrop 8, 128–40.

Graph Challenges

Graph Visualization Graph Analysis

Graph Visualization

Graph Visualization

Graph Visualization (2)

Static Visualization Animated Visualization

1x layouting

continuous layouting

Static Visualization (1)

```
library(igraph)
set.seed(11)
g <- sample_gnp(200, 1/200)

co <- layout_with_mds(g)

plot(g, layout=co,vertex.size=5, edge.width=2, edge.color="blue", vertex.label = NA)</pre>
```


Multidimensional Scaling Layout Algorithm

Cox, T. F. and Cox, M. A. A. (2001) Multidimensional Scaling. Second edition. Chapman and Hall.

Static Visualization (2)

```
library(igraph)
set.seed(11)
g <- sample_gnp(200, 1/200)

co <- layout_with_lgl(g)

plot(g, layout=co,vertex.size=5, edge.width=2, edge.color="blue", vertex.label = NA)</pre>
```


Large Graph Layout Algorithm

Adai AT, Date SV, Wieland S, Marcotte EM. LGL: creating a map of protein function with an algorithm for visualizing very large biological networks. J Mol Biol. 2004 Jun 25;340(1):179-90.

Static Visualization (3)

```
library(igraph)
set.seed(11)
g <- sample_gnp(200, 1/200)

co <- layout_with_kk(g)

plot(g, layout=co,vertex.size=5, edge.width=2, edge.color="blue", vertex.label = NA)</pre>
```


Kamada-Kawaii Layout Algorithm

Kamada, T. and Kawai, S.: An Algorithm for Drawing General Undirected Graphs. Information Processing Letters, 31/1, 7–15, 1989.

Static Visualization (4)

```
library(igraph)
set.seed(11)
g <- sample_gnp(200, 1/200)

co <- layout_with_gem(g)

plot(g, layout=co,vertex.size=5, edge.width=2, edge.color="blue", vertex.label = NA)</pre>
```


Graph Embedder Layout Algorithm

Arne Frick, Andreas Ludwig, Heiko Mehldau: A Fast Adaptive Layout Algorithm for Undirected Graphs, *Proc. Graph Drawing 1994*, LNCS 894, pp. 388-403, 1995.

Static Visualization (5)

```
library(igraph)

set.seed(11)
g <- sample_gnp(200, 1/200)

co <- layout_with_fr(g)

plot(g, layout=co,vertex.size=5, edge.width=2, edge.color="blue", vertex.label = NA)
```


Fruchterman-Reingold Layout Algorithm

Fruchterman, T.M.J. and Reingold, E.M. (1991). Graph Drawing by Force-directed Placement. Software - Practice and Experience, 21(11): 1129-1164.

Static Visualization (6)

```
library(igraph)
set.seed(11)
g <- sample_gnp(200, 1/200)

co <- layout_with_dh(g)

plot(g, layout=co,vertex.size=5, edge.width=2, edge.color="blue", vertex.label = NA)</pre>
```


Davidson-Harel Layout Algorithm

Ron Davidson, David Harel: Drawing Graphs Nicely Using Simulated Annealing. ACM Transactions on Graphics 15(4), pp. 301-331, 1996.

Animated Visualization (1)

Animated Visualization (2)

library(networkD3)

```
src <- c("A", "A", "A", "A", "A",

"B", "B", "C", "C", "D")

target <- c("B", "C", "D", "J",

"E", "F", "G", "H", "I")
```

networkData <- data.frame(src, target)
simpleNetwork(networkData, nodeColour = "blue", opacity = 1)</pre>

Graph Analysis

Important Vertices

How to identify important vertices?

Four Classics Graph Centralities

Degree

Betweenness

Eigenvector

Closeness

Closeness Centrality

"The Hubs"

Betweenness Centrality

"The Bridges"

Degree Centrality

"The Celebrities"

Eigenvector Centrality

"The Gray Cardinals"

Kamada-Kawai with Betweenness

```
library(igraph)
set.seed(11)
g <- sample_gnp(200, 1/200)
co <- layout_with_kk(g)
plot(g, layout=co,vertex.size=betweenness(g)/3, edge.width=2, edge.color="blue", vertex.label = NA)</pre>
```

