Gravity Flow in Concrete Circular Pipe

Design Parameters

Symbol	Description	Units	
d_0	Pipe Diameter	in	
s	Average Bed Slope	$_{ m ft}/_{ m ft}$	

Given Constants

Symbol		Description	Value	Units	
	d/d_0	Flow Depth Ratio	0.813	in/in	
	ϕ	Manning's Unit Conversion	1.486	$\frac{\mathrm{ft}^{^{1/3}}}{\mathrm{s}}$	
	n	Manning's Roughness (Concrete)	0.013	$^{\mathrm{in}}/_{\mathrm{in}}$	
	g	Acceleration of Gravity	32.2	ft/s^2	

Other Variables

Symbol	Description	\mathbf{Units}	Symbol	Description	\mathbf{Units}
θ	Flow Angle	rad	Q_{cfs}	Average Flow	ft^3/s
A	Flow Area	ft^2	Q_{gpm}	Average Flow	$_{\rm gal/min}$
P	Wetted Perimeter	ft	v_c	Critical Velocity	ft/s
R	Hydraulic Radius	ft	$Q_{c, \text{ cfs}}$	Critical Discharge	$\mathrm{ft^3/s}$
D	Hydraulic Depth	ft	$Q_{c, \text{ gpm}}$	Critical Discharge	$_{ m gal/min}$
			s_c	Critical Bed Slope	$_{ m ft}/_{ m ft}$

Considering Average Flow

$$d = d_0 \left(\frac{d}{d_0}\right) \tag{1}$$

$$\theta = \pi + 2\sin^{-1}\left[2\left(\frac{d}{d_0} - \frac{1}{2}\right)\right] \tag{2}$$

$$A = \left[\frac{\theta - \sin(\theta)}{8}\right] \left[d_0 \left(\frac{1 \text{ ft}}{12 \text{ in}}\right)\right]^2 \tag{3}$$

$$P = \frac{\theta}{2} \left[d_0 \left(\frac{1 \text{ ft}}{12 \text{ in}} \right) \right] \tag{4}$$

$$R = \frac{1}{4} \left[1 - \frac{\sin(\theta)}{\theta} \right] \left[d_0 \left(\frac{1 \text{ ft}}{12 \text{ in}} \right) \right]$$
 (5)

$$D = \frac{1}{8} \left[\frac{\theta - \sin(\theta)}{\sin(\theta/2)} \right] \left[d_0 \left(\frac{1 \text{ ft}}{12 \text{ in}} \right) \right]$$
 (6)

$$v = \frac{\phi}{n} \left(R^{\frac{2}{3}} \right) \sqrt{s} \tag{7}$$

$$Q_{\rm cfs} = Av \tag{8}$$

$$Q_{\rm gpm} = Q_{\rm cfs} \left[\left(60 \, \frac{\rm s}{\rm min} \right) \left(7.481 \, \frac{\rm gal}{\rm ft^3} \right) \right] \tag{9}$$

(10)

Considering Critical Flow

$$v_c = g\sqrt{D} \tag{11}$$

$$Q_{c, \text{ cfs}} = (v_c) A \tag{12}$$

$$Q_{c, \text{gpm}} = Q_{c, \text{cfs}} \left[\left(60 \frac{\text{s}}{\text{min}} \right) \left(7.481 \frac{\text{gal}}{\text{ft}^3} \right) \right]$$
(13)

$$s_c = \left[\frac{nv_c}{\phi R^{2/3}}\right]^2 \tag{14}$$

Conditions

$$s < s_c \tag{15}$$

$$Q_{\rm gpm} > Q_{\rm required}$$
 (16)

$$v > 3 \text{ ft/s} \tag{17}$$