

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

Claims 1 through 20 (cancelled).

Claim 21 (New). A 3,4-alkylenedioxythiophene of the formula (I),

wherein

- A is a C₁-C₅-alkylene radical which is substituted at any point by a linker L and optionally bears further substituents,
- L is a methylene group,
- p is 0 or an integer from 1 to 6,
- M is an n-functional mesogenic group,
- n is an integer from 1 to 8 and
- B is a bridging group of the formula (B)

wherein

q is 0 or 1,
 r, s are each 0 or 1, with the proviso that when r is 1, s is 0 and vice versa or both are optionally 0,
 t is 0 or 1,
 Sp is a spacer selected from the group consisting of substituted and unsubstituted linear or cyclic C₁-C₂₀-alkylene groups, C₅-C₂₀-arylene groups, C₂-C₂₀-heteroarylene groups in which from one to three heteroatoms selected from the group consisting of N, O and S can additionally be present in the heteroaromatic ring or ring system, C₆-C₂₀-aralkylene groups, C₂-C₂₀₀-oligoether and -polyether groups,
 m is 0 or 1,
 Q is O, S or NH,

with the proviso that said 3,4-alkylenedioxythiophene is not

Claim 22 (New). The 3,4-alkylenedioxythiophene of Claim 21, wherein
 M is an n-functional group of the formula (II-a) or (II-b),

(II-a)

(II-b)

wherein

X^1, X^2, X^3 are substituted or unsubstituted structures selected independently from the group consisting of

Z^1, Z^2
of

are structures selected independently from the group consisting

wherein

R^x and R^y are each, independently of one another, H, substituted or unsubstituted C₁-C₂₂-alkyl, C₁-C₂₂-haloalkyl, C₁-C₂₂-alkenyl, C₁-C₂₂-alkoxy, C₁-C₂₂-thioalkyl, C₁-C₂₂-iminoalkyl, C₁-C₂₂-alkoxycarbonyl, C₁-C₂₂-alkoxycarbonyloxy, a radical of an aliphatic C₁-C₂₂-alkanecarboxylic acid or of acrylic acid, halogen, pseudohalogen, NO₂, a carboxyl group or a hydroxy group,

h is an integer from 1 to 10,

w is an integer from 1 to 5,

x, y, z are each, independently of one another, 0 or 1, and
n is 1 or 2, where when n is 1, the group of the formula (II-a) or (II-b) bears a terminal group F at the linkage points denoted by *,

wherein

F is H, substituted or unsubstituted C₁-C₂₂-alkyl, C₁-C₂₂-haloalkyl, C₁-C₂₂-alkenyl, C₁-C₂₂-alkoxy, C₁-C₂₂-thioalkyl, C₁-C₂₂-iminoalkyl, C₁-C₂₂-alkoxycarbonyl, C₁-C₂₂-alkoxycarbonyloxy, a radical of an aliphatic C₁-C₂₂-alkanecarboxylic acid or of acrylic acid, halogen, pseudohalogen, a nitro (NO₂) group, a carboxyl group, a sulphonic acid group or sulphonate group or a hydroxy group.

Claim 23 (New). The 3,4-alkylenedioxythiophene of Claim 21, wherein

M is an n-functional group selected from the group consisting of the formulae (II-c-1) to (II-c-6),

(II-c-1)

(II-c-2)

(II-c-3)

(II-c-4)

(II-c-5)

(II-c-6)

wherein

n is an integer from 1 to 8,

and wherein when n is an integer below 8, M is selected from the group consisting of the formulae (II-c-1) to (II-c-6) bearing a terminal group F on the remaining $8 - n$ linkage points denoted by *,

wherein

F is H, substituted or unsubstituted C₁-C₂₂-alkyl, C₁-C₂₂-haloalkyl, C₁-C₂₂-alkenyl, C₁-C₂₂-alkoxy, C₁-C₂₂-thioalkyl, C₁-C₂₂-iminoalkyl, C₁-C₂₂-alkoxycarbonyl, C₁-C₂₂-alkoxycarbonyloxy, a radical of an aliphatic C₁-C₂₂-alkanecarboxylic acid or of acrylic acid, halogen, pseudohalogen, a nitro (NO₂) group, a carboxyl group, a sulphonic acid group or sulphonate group or a hydroxy group.

Claim 24 (New). The 3,4-alkylenedioxythiophene of Claim 21, having the structure of the formulae (I-a) and/or (I-b),

Claim 25 (New). A mixture of 3,4-alkylenedioxythiophenes of Claim 21, having the structures of the formulae (I-a) and/or (I-b),

Claim 26 (New). A 3,4-alkylenedioxythiophene of the formula (I),

wherein

- A is a C₁-C₅-alkylene radical which is substituted at any point by a linker L and optionally bears further substituents,
- L is a methylene group,

p is 0 or an integer from 1 to 6,
M is an n-functional steroid radical or a derivative of a steroid radical
n is an integer from 1 to 8 and
B is a bridging group of the formula (B)

wherein

q is 0 or 1,

r, s are each 0 or 1, with the proviso that when r is 1, s is 0 and vice versa or both are optionally 0,

t is 0 or 1,

Sp is a spacer selected from the group consisting of substituted and unsubstituted linear or cyclic C₁-C₂₀-alkylene groups, C₅-C₂₀-arylene groups, C₂-C₂₀-heteroarylene groups in which from one to three heteroatoms selected from the group consisting of N, O and S can additionally be present in the heteroaromatic ring or ring system, C₆-C₂₀-aralkylene groups, C₂-C₂₀₀-oligoether and -polyether groups,

m is 0 or 1,

Q is O, S or NH.

with the proviso that said 3,4-alkylenedioxythiophene is not

Claim 27 (New). A 3,4-alkylenedioxythiophene of the formula (I),

wherein

- A is a C₁-C₅-alkylene radical which is substituted at any point by a linker L and optionally bears further substituents,
- L is a methylene group,
- p is 0 or an integer from 1 to 6,
- M is an n-functional cholesteryl radical or a derivative of the cholesteryl radical of the formula (III-a),

wherein R is H, substituted or unsubstituted C₁-C₂₂-alkyl, C₁-C₂₂-haloalkyl, C₁-C₂₂-alkenyl, C₁-C₂₂-alkoxy, C₁-C₂₂-thioalkyl, C₁-C₂₂-iminoalkyl, C₁-C₂₂-alkoxycarbonyl, C₁-C₂₂-alkoxycarbonyloxy, a radical of an aliphatic C₁-C₂₂-alkanecarboxylic acid or of acrylic acid, halogen, pseudohalogen, a nitro (NO₂) group, a carboxyl group, a sulphonate group or a hydroxy group,

- n is an integer from 1 to 8 and
- B is a bridging group of the formula (B)

wherein

q is 0 or 1,

r, s are each 0 or 1, with the proviso that when r is 1, s is 0 and vice versa or both are optionally 0,

t is 0 or 1,

Sp is a spacer selected from the group consisting of substituted and unsubstituted linear or cyclic C_1-C_{20} -alkylene groups, C_5-C_{20} -arylene groups, C_2-C_{20} -heteroarylene groups in which from one to three heteroatoms selected from the group consisting of N, O and S can additionally be present in the heteroaromatic ring or ring system, C_6-C_{20} -aralkylene groups, C_2-C_{200} -oligoether and -polyether groups,

m is 0 or 1,

Q is O, S or NH.

with the proviso that said 3,4-alkylenedioxythiophene is not

Claim 28 (New). A process for preparing a polythiophene comprising polymerizing a 3,4-alkylenedioxythiophene of the formula (I),

wherein

- A is a C₁-C₅-alkylene radical which is substituted at any point by a linker L and optionally bears further substituents,
- L is a methylene group,
- p is 0 or an integer from 1 to 6,
- M is an n-functional mesogenic group,
- n is an integer from 1 to 8 and
- B is a bridging group of the formula (B)

wherein

- q is 0 or 1,
- r, s are each 0 or 1, with the proviso that when r is 1, s is 0 and vice versa or both are optionally 0,
- t is 0 or 1,
- Sp is a spacer selected from the group consisting of substituted and unsubstituted linear or cyclic C₁-C₂₀-alkylene groups, C₅-C₂₀-arylene groups, C₂-C₂₀-heteroarylene groups in which from one to three heteroatoms selected from the group consisting of

N, O and S can additionally be present in the heteroaromatic ring or ring system, C₆-C₂₀-aralkylene groups, C₂-C₂₀₀-oligoether and -polyether groups,

m is 0 or 1,

Q is O, S or NH.

with the proviso that said 3,4-alkylenedioxythiophene is not

Claim 29 (New). The process of Claim 28 wherein a mixture of the 3,4-alkylenedioxythiophenes of are polymerized.

Claim 30 (New). Polythiophenes, characterized in that they comprise recurring units of the formula (IV),

wherein

- A is a C₁-C₅-alkylene radical which is substituted at any point by a linker L and optionally bears further substituents,
L is a methylene group,
p is 0 or an integer from 1 to 6,
M is an n-functional mesogenic group,

- n is an integer from 1 to 8 and
 B is a bridging group of the formula (B)

wherein

- q is 0 or 1,
 r, s are each 0 or 1, with the proviso that when r is 1, s is 0 and vice versa or both are optionally 0,
 t is 0 or 1,
 Sp is a spacer selected from the group consisting of substituted and unsubstituted linear or cyclic C₁-C₂₀-alkylene groups, C₅-C₂₀-arylene groups, C₂-C₂₀-heteroarylene groups in which from one to three heteroatoms selected from the group consisting of N, O and S can additionally be present in the heteroaromatic ring or ring system, C₆-C₂₀-aralkylene groups, C₂-C₂₀₀-oligoether and -polyether groups,
 m is 0 or 1,
 Q is O, S or NH

with the proviso that said polythiophenes do not contain recurring units of the formula (ii)

(ii).

Claim 31 (New). The polythiophene of Claim 30, characterized in that they comprise recurring units of the formulae (IV-a) and/or (IV-b),

Claim 32 (New). The polythiophene of Claim 30, wherein they are cationically and electrically conductive and contain bound anions as counterions to balance the positive charge.

Claim 33 (New). The polythiophene of Claim 32, wherein the counterions are polyanions of polymeric carboxylic acids or polymeric sulphonic acids.

Claim 34 (New). The polythiophene according to Claim 30, wherein they are uncharged and semiconducting.

Claim 35 (New). The process for preparing the polythiophenes of Claim 30, comprising oxidatively polymerizing electrochemically compounds of the formula (I),

Claim 36 (New). A process for preparing electrical or electronic components, light-emitting components, for antistatic coating, in optoelectronics or in solar energy technology comprising incorporating polythiophenes of Claim 30.

Claim 37 (New). A process for preparing conductive layers comprising incorporating the polythiophenes of Claim 30.

Claim 38 (New). Process for preparing polythiophenes, comprising oxidatively polymerizing electrochemically compounds of the formula (I),

where

A is a C₁-C₅-alkylene radical which is substituted at any point by a linker L and may bear further substituents,

L is a methylene group,

p is 0 or an integer from 1 to 6,

n is an integer from 1 to 8 and

B is a bridging group of the formula (B)

wherein

q is 0 or 1,

r, s are each 0 or 1, with the proviso that when r is 1, s is 0 and vice versa or both may be 0,

t is 0 or 1,

Sp is a spacer selected from the group consisting of substituted and unsubstituted linear or cyclic C₁-C₂₀-alkylene groups, C₅-C₂₀-arylene groups, C₂-C₂₀-heteroarylene groups in which from one to three heteroatoms selected from among N, O and S can additionally be present in the heteroaromatic ring or ring system, C₆-C₂₀-aralkylene groups, C₂-C₂₀₀-oligoether and -polyether groups,

m is 0 or 1,

Q is O, S or NH, and

M is an n-functional mesogenic group.

Claim 39 (New). Polythiophenes characterized in that they comprise recurring units of the formula (IV),

(IV)
produced according to the process of Claim 38.

Claim 40 (New). A process for preparing electrical or electronic components, light-emitting components, for antistatic coating, in optoelectronics or in solar energy technology comprising incorporating the polythiophenes of Claim 39.

Claim 41 (New). A process for preparing conductive layers comprising incorporating the polythiophenes of Claim 39.