以下での (*) とは、次のもの: X :: integral noetherian separated (over \mathbb{Z}) scheme which is regular in codimension one.

Ex6.1 If X Satisfies (*), $Cl(X \times \mathbb{P}^n) \cong Cl(X) \times \mathbb{Z}$.

 $X' = X \times_{\mathbb{Z}} \mathbb{P}^n_{\mathbb{Z}} = \mathbb{P}^n_X$ とおく、また、 $S = \mathbb{Z}[t_0, \dots, t_n]$ とし、 $\mathbb{P}^n = \operatorname{Proj} S$ とみなす、

- ■X':: integral noetherian separated. X の affine open cover を $\{\operatorname{Spec} A_i\}_{i=0}^r$ とすると, A_i :: integral noetherian \mathbb{Z} -algebra. \mathbb{P}^n の affine open cover は $\{\operatorname{Spec} S_{(x_j)}\}_{j=0}^n$ で与えられる. $S_{(x_j)}$ も integral noetherian \mathbb{Z} -algebra. したがって $R_{ij} = A_i \otimes_{\mathbb{Z}} S_{(x_j)}$ とおくと,X' は $\operatorname{Spec} R_{ij}$ の張り合わせ であり (Thm3.3), R_{ij} :: integral noetherian \mathbb{Z} -algebra. 任意の (i,j),(i',j') について $R_{ij},R_{i'j'}$ が交 わることから,X' 全体でも irreducible. よって X':: integral noetherian scheme. being separated:: stable under base extension より,X':: separated.
- ■X':: regular in codimension one. $x=\mathfrak{p}\in\operatorname{Spec} R_{ij}$ とする. $A_i\otimes\mathbb{Z}[t_0,\ldots,t_n]_{(t_j)}\cong A_i[t_0,\ldots,t_n]_{(t_j)}$ を,簡単のため $A[T]_{(t)}$ を書くことにする.Ati-Mac Prop3.1 より, $\mathfrak{p}\subset A[T]_{(t)}$ に対応する height =1 の素イデアル $\tilde{\mathfrak{p}}\subset A[T]$ がただひとつ存在し, $\mathfrak{p}=\tilde{\mathfrak{p}}_{(t)}$ となる.これを使って計算すると,以下のようになる.

$$\mathcal{O}_{X',x} = (A[T]_{(t)})_{\mathfrak{p}} \cong A[T]_{(\tilde{\mathfrak{p}})}.$$

さて、A の素イデアル $\mathfrak q$ であって height $\mathfrak q=1$ を満たすものについて、局所化 $A_{\mathfrak q}$ は dim $A_{\mathfrak q}=1$ を満たす regular local ring である。したがって ch I, Thm6.3 より $A_{\mathfrak q}$ は integrally closed であり、Thm6.

Ex6.2 Varieties in Projective Space.

Ex6.3 Cones.

Ex6.4
$$A = k[x_1, \ldots, x_n, z]/(z^2 - f)$$
 :: integrally closed.

char $k \neq 2$ とする. x_1, \ldots, x_n を \vec{x} と略す. $f \in k[\vec{x}]$:: square-free とし, $A = k[\vec{x}, z]/(z^2 - f)$ とおく. また, $\bar{z} = z + (z^2 - f)$ とする. $(\bar{z} = \sqrt{f}, A = k[\vec{x}, \sqrt{f}]$ と考えて良い.) f :: square-free より $z^2 - f$:: irreducible, A :: integral domain.

- **■**K の同定. この時, $K = \mathrm{Quot}(A)$ は $k(\vec{x})[z]/(z^2-f)$ である.実際,K の元は $g,h \in A$ の元に よって g/h と表されるが, $z^2 = f$ なので,g/h は分母の「有理化」によって $k(\vec{x})[z]/(z^2-f)$ に属すことが分かる.したがって $k(\vec{x})[z]/(z^2-f) \subseteq K$ であり,逆の包含関係は明らか.
- $\blacksquare K/k(\vec{x})$. K は $k(\vec{x})$ 上の 2 次式 \bar{z}^2-f の最小分解体だから, $K/k(\vec{x})$ は 2 次のガロア拡大である. $\mathrm{Gal}(K/k(\vec{x}))$ は, $\sigma: \bar{z} \mapsto -\bar{z}$ で生成される位数 2 の群.
- $\blacksquare A$:: integral closure of $k[\vec{x}]$ in K. $\alpha \in K$ をとると,これは $g,h \in k(\vec{x})$ を用いて $g+h\bar{z}$ と書ける. α の最小多項式は,

$$(X - \alpha)(X - \sigma(\alpha)) = X^2 - 2gX + (g^2 - h^2 f).$$

この多項式の各係数が $k[\vec{x}]$ に属しているとしよう。すると,まず明らかに $g \in k[\vec{x}]$ である。また f :: square-free より, $h \not\in k[\vec{x}]$ ならば h^2 の分母は f の因子で打ち消されず, $h^2f, g^2 - h^2f \not\in k[\vec{x}]$ となる。よって α :: integral $/k[\vec{x}]$ ならば $\alpha \in k[\vec{x}]$. 逆に $\alpha \in k[\vec{x}]$ ならば $g, h \in k[\vec{x}]$ だから α の最小多項式は $k[\vec{x}]$ 係数多項式になる。以上をまとめて A :: integrally closed が分かる。

■系. 以上から, $z^2-f=0$ で定まる hypersurface は affine variety として normal である. 特に, $f(x) \in k[x]$ が重根を持たない 3 次多項式であるとき,楕円曲線 $y^2=f(x)$ は normal curve である.

- Ex6.5 Quadric Hypersurfaces.
- Ex6.6 Consider $X = \mathcal{Z}_p(y^2z x^3 + xz^2)$.

Ex6.7 For
$$X = \mathcal{Z}_p(y^2z - x^3 - x^2z)$$
, $CaCl^{\circ}(X) \cong \mathbf{G}_m$.

- Ex6.8 Morphism of Schemes Induces Homomorphism of ${\rm Pic}$ / ${\rm Cl.}$ $_{\rm TODO}$
- Ex6.9 (Culating the Picard Groups of) Singular Curves. $_{\rm TODO}$
- Ex6.10 The Grothendieck Group K(X).
- Ex6.11 The Grothendieck Group of a Nonsingular Curve.
- Ex6.12 The Degree of Coherent Sheaf.

TODO

TODO