Метрические методы классификации и регрессии

Содержание

- 🚺 Определение расстояний между объектами
 - Гипотезы компактности или непрерывности
 - Векторные меры близости
 - Беспризнаковые способы вычисления расстояний
- Метрические методы классификации
 - Обобщённый метрический классификатор
 - Метод ближайших соседей
 - Окно Парзена и потенциальные функции
- (Непара)метрические методы регрессии
 - Формула Надарая–Ватсона
 - Выбор ядра К и ширины окна h
 - Отсев выбросов

Гипотезы непрерывности и компактности

Задачи классификации и регрессии:

$$X$$
 — объекты, Y — ответы; $X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$ — обучающая выборка;

Гипотеза непрерывности (для регрессии): близким объектам соответствуют близкие ответы.

выполнена:

не выполнена:

Гипотеза компактности (для классификации): близкие объекты, как правило, лежат в одном классе.

не выполнена:

Пример: задача классификации цветков ириса [Фишер, 1936]

Привычная мера близости — евклидова метрика в \mathbb{R}^2 .

Формализация понятия «близости»

Евклидова метрика и обобщённая метрика Минковского:

$$\rho(x,x_i) = \left(\sum_{j=1}^n |x^j - x_i^j|^2\right)^{1/2} \quad \rho(x,x_i) = \left(\sum_{j=1}^n w_j |x^j - x_i^j|^p\right)^{1/p}$$

$$x = (x^1, ..., x^n)$$
 — вектор признаков объекта x_i
 $x_i = (x_i^1, ..., x_i^n)$ — вектор признаков объекта x_i

 w_1, \ldots, w_n — веса признаков, которые можно обучать.

Расстояния между строками / сигналами

Для строк — редакторское расстояние Левенштейна:

CTGGGCTAAAAGGTCCCTTAGCC..TTTAGAAAAA.GGGCCATTAGGAAATTGC CTGGGACTAAA....CCTTAGCCTATTTACAAAAATGGGCCATTAGG...TTGC

Для сигналов — энергия сжатий и растяжений:

Расстояния между изображениями

Расстояние между изображениями на основе выравнивания:

Оценивается энергия растяжения прямоугольной сетки

Обобщённый метрический классификатор

Для произвольного $x \in X$ отранжируем объекты x_1, \dots, x_ℓ :

$$\rho(x,x^{(1)}) \leqslant \rho(x,x^{(2)}) \leqslant \cdots \leqslant \rho(x,x^{(\ell)}),$$

 $x^{(i)} - i$ -й сосед объекта x среди x_1, \ldots, x_ℓ ; $y^{(i)} -$ ответ на i-м соседе объекта x.

Метрический алгоритм классификации:

$$a(x; X^{\ell}) = \arg \max_{y \in Y} \underbrace{\sum_{i=1}^{\ell} \left[y^{(i)} = y \right] w(i, x)}_{\Gamma_{V}(x)},$$

w(i,x) — вес (степень важности) i-го соседа объекта x, неотрицателен, не возрастает по i.

 $\Gamma_{\nu}(x)$ — оценка близости объекта x к классу y.

Метод k ближайших соседей (k nearest neighbors, kNN)

$$w(i,x)=[i\leqslant 1]$$
 — метод ближайшего соседа $w(i,x)=[i\leqslant k]$ — метод k ближайших соседей

Преимущества:

- простота реализации (lazy learning);
- параметр k можно оптимизировать по критерию скользящего контроля (leave-one-out):

$$\mathsf{LOO}(k, X^\ell) = \sum_{i=1}^\ell \Bigl[\mathsf{a} \bigl(x_i; X^\ell \backslash \{ x_i \}, k \bigr)
eq y_i \Bigr] o \min_k.$$

Недостатки:

- ullet неоднозначность классификации при $\Gamma_{v}(x)=\Gamma_{s}(x),\ y
 eq s.$
- не учитываются значения расстояний

Зависимость LOO от числа соседей

Пример. Задача UCI: Iris.

- смещённое число ошибок, когда объект учитывается как сосед самого себя
- несмещённое число ошибок LOO

Метод k взвешенных ближайших соседей

$$w(i,x)=[i\leqslant k]w_i$$
,
где w_i — вес, зависящий только от номера соседа;

Возможные эвристики:

$$w_i = rac{k+1-i}{k}$$
 — линейное убывающие веса; $w_i = q^i$ — экспоненциально убывающие веса, $0 < q < 1$;

Проблемы:

- как более обоснованно задать веса?
- возможно, было бы лучше, если бы вес w(i,x) зависел не от порядкового номера соседа i, а от расстояния до него $\rho(x,x^{(i)})$.

Метод окна Парзена

$$w(i,x)=K\Big(rac{
ho(x,x^{(i)})}{h}\Big)$$
, где h — ширина окна, $K(r)$ — ядро, не возрастает и положительно на $[0,1]$.

Метод парзеновского окна фиксированной ширины:

$$a(x; X^{\ell}, h, K) = \arg \max_{y \in Y} \sum_{i=1}^{\ell} [y_i = y] K\left(\frac{\rho(x, x_i)}{h}\right)$$

Метод парзеновского окна переменной ширины:

$$a(x; X^{\ell}, \mathbf{k}, K) = \arg\max_{y \in Y} \sum_{i=1}^{\ell} [y_i = y] K\left(\frac{\rho(x, x_i)}{\rho(x, x^{(k+1)})}\right)$$

Оптимизация параметров — по критерию LOO:

- выбор ширины окна *h* или числа соседей *k*
- выбор ядра К

Пример: двумерная выборка, два класса $Y = \{-1, +1\}$.

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

h = 0.05

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

$$h = 0.2$$

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

$$h = 0.3$$

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

$$h = 0.5$$

Пример: двумерная выборка, два класса $Y = \{-1, +1\}$.

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

h = 1.0

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x) = \operatorname{sign}(\underbrace{\Gamma_{+1}(x) - \Gamma_{-1}(x)})$$

$$h = 5.0$$

Метод потенциальных функций

$$w(i,x) = \gamma^{(i)} K\left(\frac{\rho(x,x^{(i)})}{h^{(i)}}\right)$$

Более простая запись (здесь можно не ранжировать объекты):

$$a(x; X^{\ell}) = \arg \max_{y \in Y} \sum_{i=1}^{\ell} [y_i = y] \gamma_i K\left(\frac{\rho(x, x_i)}{h_i}\right),$$

где γ_i — веса объектов, $\gamma_i \geqslant 0$, $h_i > 0$.

Физическая аналогия из электростатики:

 γ_i — величина «заряда» в точке x_i ;

 h_i — «радиус действия» потенциала с центром в точке x_i ;

 y_i — знак «заряда» (в случае двух классов $Y = \{-1, +1\}$);

$$K(r) = \frac{1}{r}$$
 или $\frac{1}{r+a}$

В задачах классификации нет ограничений ни на K, ни на |Y|.

Метод потенциальных функций = линейный классификатор

Два класса:
$$Y = \{-1, +1\}$$
.
$$a(x; X^{\ell}) = \arg\max_{y \in Y} \Gamma_y(x) = \operatorname{sign} \left(\Gamma_{+1}(x) - \Gamma_{-1}(x)\right) =$$

$$= \operatorname{sign} \sum_{i=1}^{\ell} \gamma_i y_i \ K\left(\frac{\rho(x, x_i)}{h_i}\right).$$

Сравним с линейной моделью классификации:

$$a(x) = \operatorname{sign} \sum_{i=1}^{n} \gamma_{i} f_{j}(x).$$

- $f_j(x) = y_j K\left(\frac{1}{h_i}\rho(x,x_j)\right)$ новые признаки объекта x
- ullet γ_i веса линейного классификатора
- ullet $n=\ell$ число признаков равно числу объектов обучения

Резюме

- Метрические классификаторы одни из самых простых.
 Качество классификации определяется качеством метрики.
- Что можно обучать:
 - число ближайших соседей k или ширину окна h;
 - веса объектов;
 - набор эталонов (prototype selection);
 - метрику (distance learning, similarity learning);
 - в частности, веса признаков в метрике;
 - функцию ядра K(r).

Задачи регрессии и метод наименьших квадратов

- X объекты (часто \mathbb{R}^n); Y ответы (часто \mathbb{R} , реже \mathbb{R}^m); $X^\ell = (x_i, y_i)_{i=1}^\ell$ обучающая выборка; $y_i = y(x_i), \ y: X \to Y$ неизвестная зависимость;
- $a(x) = f(x, \alpha)$ параметрическая модель зависимости, $\alpha \in \mathbb{R}^p$ вектор параметров модели.
- Метод наименьших квадратов (МНК):

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} w_i (f(x_i, \alpha) - y_i)^2 \to \min_{\alpha},$$

где w_i — вес, степень важности i-го объекта.

• **Недостаток**: надо иметь хорошую параметрическую модель $f(x, \alpha)$

Непараметрическая регрессия, формула Надарая-Ватсона

Приближение константой $f(x,\alpha)=\alpha$ в окрестности $x\in X$:

$$Q(\alpha; X^{\ell}) = \sum_{i=1}^{\ell} w_i(x) (\alpha - y_i)^2 \to \min_{\alpha \in \mathbb{R}};$$

где $w_i(x) = K\left(\frac{\rho(x,x_i)}{h}\right)$ — веса объектов x_i относительно x; K(r) — sдро, невозрастающее, ограниченное, гладкое; h — ширина окна сглаживания.

Формула ядерного сглаживания Надарая-Ватсона:

$$a_h(x; X^{\ell}) = \frac{\sum_{i=1}^{\ell} y_i w_i(x)}{\sum_{i=1}^{\ell} w_i(x)} = \frac{\sum_{i=1}^{\ell} y_i K\left(\frac{\rho(x, x_i)}{h}\right)}{\sum_{i=1}^{\ell} K\left(\frac{\rho(x, x_i)}{h}\right)}.$$

Часто используемые ядра K(r)

$$\Pi(r) = \left[|r| \leqslant 1 \right]$$
 — прямоугольное $T(r) = \left(1 - |r| \right) \left[|r| \leqslant 1 \right]$ — треугольное $E(r) = (1-r^2) \left[|r| \leqslant 1 \right]$ — квадратичное (Епанечникова) $Q(r) = (1-r^2)^2 \left[|r| \leqslant 1 \right]$ — квартическое $G(r) = \exp(-2r^2)$ — гауссовское

$$h \in \{0.1, 1.0, 3.0\}$$
, гауссовское ядро $K(r) = \exp(-2r^2)$

Гауссовское ядро \Rightarrow гладкая аппроксимация Ширина окна существенно влияет на точность аппроксимации

$$h \in \{0.1, 1.0, 3.0\}$$
, треугольное ядро $K(r) = (1-|r|) [|r| \leqslant 1]$

Треугольное ядро \Rightarrow кусочно-линейная аппроксимация Аппроксимация не определена, если в окне нет точек выборки

$$h \in \{0.1, 1.0, 3.0\}$$
, прямоугольное ядро $K(r) = [|r| \leqslant 1]$

Прямоугольное ядро \Rightarrow кусочно-постоянная аппроксимация Выбор ядра слабо влияет на точность аппроксимации

- Ядро K(r)
 - существенно влияет на гладкость функции $a_h(x)$,
 - слабо влияет на качество аппроксимации.
- Ширина окна h
 - существенно влияет на качество аппроксимации.
- ullet Переменная ширина окна по k ближайшим соседям:

$$w_i(x) = K\left(\frac{\rho(x, x_i)}{h(x)}\right), \qquad h(x) = \rho(x, x^{(k+1)})$$

где $x^{(k)} - k$ -й сосед объекта x.

• Оптимизация ширины окна по скользящему контролю:

$$\mathsf{LOO}(h, X^{\ell}) = \sum_{i=1}^{\ell} \left(a_h \big(x_i; X^{\ell} \setminus \{ x_i \} \big) - y_i \right)^2 \to \min_{h}.$$

Проблема выбросов (эксперимент на синтетических данных)

$$\ell=100,\;\;h=1.0,\;\;$$
 гауссовское ядро $K(r)=\exp\left(-2r^2\right)$ Две из 100 точек — выбросы с ординатами $y_i=40$ и -40 Синяя кривая — выбросов нет

Проблема выбросов и локально взвешенное сглаживание

Проблема выбросов: точки с большими случайными ошибками y_i сильно искажают функцию $a_h(x)$

Основная идея:

чем больше величина ошибки $\varepsilon_i = |a_h(x_i; X^{\ell} \setminus \{x_i\}) - y_i|$, тем больше прецедент (x_i, y_i) похож на выброс, тем меньше должен быть его вес $w_i(x)$.

Эвристика:

домножить веса $w_i(x)$ на коэффициенты $\gamma_i = \tilde{K}(\varepsilon_i)$, где \tilde{K} — ещё одно ядро, вообще говоря, отличное от K(r).

Рекомендация:

квартическое ядро $\tilde{K}(\varepsilon)=K_Q\big(\frac{\varepsilon}{6\,\mathrm{med}\{\varepsilon_i\}}\big)$, где $\mathrm{med}\{\varepsilon_i\}$ — медиана вариационного ряда ошибок.

Алгоритм LOWESS (LOcally WEighted Scatter plot Smoothing)

Вход: X^{ℓ} — обучающая выборка; **Выход:** коэффициенты $\gamma_i, \ i=1,\dots,\ell;$

- 1: инициализация: $\gamma_i := 1, i = 1, \ldots, \ell$;
- 2: повторять
- 3: для всех объектов $i = 1, ..., \ell$
- 4: вычислить оценки скользящего контроля:

$$a_i := a_h(x_i; X^{\ell} \setminus \{x_i\}) = \frac{\sum_{j=1, j \neq i}^{\ell} y_j \gamma_j K\left(\frac{\rho(x_i, x_j)}{h(x_i)}\right)}{\sum_{j=1, j \neq i}^{\ell} \gamma_j K\left(\frac{\rho(x_i, x_j)}{h(x_i)}\right)};$$

- 5: для всех объектов $i = 1, ..., \ell$
- 6: $\gamma_i := \tilde{K}(|a_i y_i|);$
- 7: **пока** коэффициенты γ_i не стабилизируются;

Пример работы LOWESS на синтетических данных

 $\ell=100,\;\;h=1.0,\;\;$ гауссовское ядро $K(r)=\exp\left(-2r^2\right)$ Две из 100 точек — выбросы с ординатами $y_i=40$ и -40 В данном случае LOWESS сходится за несколько итераций:

Резюме

- Непараметрическая регрессия обходится без явного задания параметрической модели зависимости $f(x, \alpha)$.
- Однако неявно модельные предположения закладываются в функцию расстояния $\rho(x,x_i)$ между объектами.
- Что можно обучать:
 - число ближайших соседей k или ширину окна h;
 - веса объектов (обнаруживать выбросы);
 - метрику (distance learning, similarity learning);
 - в частности, веса признаков в метрике.
- Непараметрическая регрессия часто используется как инструмент предварительной обработки данных для сглаживания шумов в данных.