離散數學 107-2

Homework 01

姓名: 葉子瑄。學號: 107590041

截止收件: 2019.03.20 (Wednesday) 23:59 pm Week-05

Homework 01 題目

```
(Prob. 1) page 16, chapter 1.1 Exercise 34(e) 小題
(Prob. 2) page 24, chapter 1.2 Exercise 8
```

(Prob. 3) page 38, chapter 1.3 Exercise 10(c) 小題

(Prob. 4) page 58, chapter 1.4 Exercise 28

```
(Prob. 5) page 69, chapter 1.5 Exercise 10
```

(Prob. 6) page 82, chapter 1.6 Exercise 6

(Prob. 7) page 96, chapter 1.7 Exercise 30

(Prob. 8) page 113, chapter 1.8 Exercise 6

注意事項

- (a) 要熟悉 LaTeX 請翻閱 Ishort。
- (b) 記得在最後一頁,回報完成作業小時數(估算,取整數)。
- (c) 將檔案夾命名為 hw01_107820xxx,將檔案夾壓縮成 hw01_107820xxx.zip,上傳到網路學園。
- (d) LaTeX 數學符號請查此表: List of LaTeX mathematical symbols。
- (e) 作業抄襲,以零分計。作業提供給他人抄襲,以零分計。
- (f) 作業遲交一週內成績打五折,作業遲交超過一週以零分計。

Problem 1 (1.1 Exercise 34(e) 小題)

Table: Truth Table for the Compound Propositions

p	q	$\neg p$	$(q \rightarrow \neg p)$	$(p \leftrightarrow q)$	$(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$
Т	Т	F	F	T	F
Т	F	F	Т	F	F
F	Т	Т	Т	F	F
F	F	Т	Т	Т	Т

Problem 2 (1.2 Exercise 8)

- (a) $r \wedge \neg p$
- (b) $q \rightarrow (p \land r)$
- (c) $\neg q \rightarrow \neg r$
- (d) $(\neg p \land r) \rightarrow q$

Problem 3 (1.3 Exercise 10(c) 小題)

Proof.

$$(p \to \neg q) \to (\neg p \to q) \equiv \neg(p \to \neg q) \lor (\neg p \to q)$$

$$\equiv \neg(\neg p \lor \neg q) \lor (\neg p \to q)$$

$$\equiv (p \land q) \lor (p \lor q)$$

$$\equiv (p \lor q)$$

$$\equiv \neg p \to q$$

Problem 4 (1.4 Exercise 28)

```
let R(x) be "x is in the correct place," let E(x) be "x is in excellent condition," let T(x) be "x is a [or your] tool," and let the domain of discourse be all things.
```

- (a) $\exists x \neg R(x)$
- (b) $\forall x (R(x) \land E(x))$
- (c) $\forall x \ T(x)(R(x) \land E(x))$
- (d) $\exists x (\neg (R(x) \land E(x)))$
- (e) $\neg \exists x \ T(x)(R(x) \land \neg E(x))$

Problem 5 (1.5 Exercise 10)

- (a) $\forall x \ F(x, \text{Fred})$
- (b) $\forall y \ F(\text{Evelyn}, y)$
- (c) $\forall x \exists y \ F(x, y)$
- (d) $\neg \exists x \ \forall y \ F(x,y)$
- (e) $\exists x \ \forall y \ F(x,y)$
- (f) $\neg \exists x \ (F(x, \text{Fred}) \land F(x, \text{Jerry}))$
- (g) $\exists y \ \exists z \ (F(\operatorname{Nancy}, y) \land (F(\operatorname{Nancy}, z) \land x \neq y \land \forall w \ (F(\operatorname{Nancy}, w) \rightarrow (w = y \lor w = z)))$
- (h) $\exists y \ (\forall x \ F(x,y) \land (\forall z \ ((\forall w \ F(w,z)) \rightarrow z = y))$
 - (i) $\forall x \neg F(x, x)$
- (j) $\exists x \exists y \ (F(x,y) \land (forallz \ (F(x,z) \rightarrow z = y \lor z = x))$

Problem 6 (1.6 Exercise 6)

```
let r be the proposition "It rains," let f be the proposition "It is foggy," let s be the proposition "The sailing race will be held," let t be the proposition "The life saving demonstration will go on," and let t be the proposition "The trophy will be awarded."
```

Step	推導	Reason
1	$\neg t$	Hypothesis
2	$s \to t$	Hypothesis
3		Modus tollens using (1) and (2)
4	$(\neg r \lor \neg f) \to (s \land l)$	Hypothesis
5	$\neg (s \land l) \rightarrow \neg (\neg r \lor \neg f)$	Contrapositive of (4)
6	$negs \lor \neg l) \to (r \land f)$	De Morgan's law and double negative
7	$\neg s \lor \neg l)$	Addition, using (3)
8	$r \wedge f$)	Modus ponens using (6) and (7)
9	•	Simplification using (8)

Problem 7 (1.7 Exercise 30)

For the "if" part, there are two cases.

If
$$m = n$$

 $m - n = 0$

If
$$m = -n$$

$$m+n=0$$

For the "only if" part, we suppose that $m^2=n^2$. (m-n)(m+n)=0

Problem 8 (1.8 Exercise 6)

題目: Use a proof by cases to show that $\min(a,\min(b,c)) = \min(\min(a,b),c)$ whenever a, b, and c are real numbers.

Proof.

```
Case 1: If a is smallest. a \leq \min(b,c), a \leq b, a \leq c \min(a,b=a) a=\min(\min(a,b),c)=\min(a,c)=a Case 2: If a is smallest. b \leq \min(b,c), b \leq b, b \leq c \min(a,b=b) Ease 3: If c is smallest. c \leq \min(b,c), c \leq b, c \leq c \leq \min(a,b) c = \min(\min(a,b),c)=c
```

完成作業小時數

完成作業小時數:共5 小時(估算,取整數)