

Ceci n'est pas une pipe.

WORD VECTOR SPACE MODELS

The Treachery of Images

Artist René Magritte

Year 1929

Medium Oil on canvas

Movement Surrealism

Dimensions 60.33 cm × 81.12 cm (23.75 in

× 31.94 in)

Location Los Angeles County Museum of Art^[1]

Cosine Similarity
the angle \in [0,360], Cosine Similarity \in [-1, 1]

$$cosine(\mathbf{v}, \mathbf{w}) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

Figure 6.7 A (rough) graphical demonstration of cosine similarity, showing vectors for three words (*cherry*, *digital*, and *information*) in the two dimensional space defined by counts of the words *computer* and *pie* nearby. Note that the angle between *digital* and *information* is smaller than the angle between *cherry* and *information*. When two vectors are more similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1) when the angle between two vectors is smallest (0°) ; the cosine of all other angles is less than 1.

Minkowski Distance

$$\left(\sum_{i=1}^n \left|x_i-y_i
ight|^p
ight)^{1/p}$$

p = 1, Manhattan Distance

p = 2, Euclidean Distance

 $p = \infty$, Chebychev Distance

Euclidean distance

Manhattan distance

$$\left(\sum_{i=1}^n |x_i-y_i|^p
ight)^{1/p}$$

p = 1, Manhattan Distancep = 2, Euclidean Distance

Minkowski Distance

Blue lines show all points (x,y) with same distance to the center (0,0)

Does it matter? Why? How if yes?

Research Question (RQ)

Cosine Similarity
Minkowski Distance

Vector Semantics Sparse vs. Dense

Method	Size of word/token/term vector	Sparse/Dense
Word-Documents (TF)	Documents	Sparse (Integer)
Term-Term	Vocabs	Sparse (Integer)
TF-iDF	Vocabs	Sparse (Real)
PMI	Vocabs	Sparse (Real)
?	10, 100,	Dense (Real)

Vector Semantics Sparse vs. Dense

Dense vectors work better in every NLP task than sparse vectors. Why? We don't completely understand!

Some guesses:

- Dense vectors lead to a model with less parameter: 100-D vs. 50,000-D vectors for a simple binary classifier
 - Generalize better
 - Avoid overfitting
- Captures word semantic dependencies
 - Do a better job of capturing synonymy than sparse vectors.
 - In word space, each dimension is a word. However, these dimensions may not be independent!

Dimensionality Reduction

Drop less informative dimensions (columns)

- Stop-words
- Matrix Factorization (Decomposition)
- SVD (Eigenvalues, change of base to eigenvectors, ...)

Predictive Models Word2Vec

Predictive Models

Given a context: ... [tablespoon of apricot jam, a] ...

- Choose a word as target word t: apricot
- Choose others as context word $c_{i:}$ jam, tablespoon

Estimate d-dimensional vectors for t and all c_i

- Such that they are close to each other in d-dimensional space
- where d ≪ |Vocabs| or |Documents|

Word2Vec
$$\rightarrow$$
 close $\rightarrow \sigma(V_t \cdot V_{c_i}) = \frac{1}{1 + e^{-(V_w \cdot V_{c_i})}}$

Predictive Models

Given a context: ... [tablespoon of apricot jam, a] ...

- Choose a word as target word t: apricot
- Choose random word n_i from out of context: car, phone, ...

Estimate d-dimensional vectors for t and all ni

- Such that they are far from each other in d-dimensional space
- where d ≪ |Vocabs| or |Documents|

Word2Vec
$$\rightarrow$$
 distant $\rightarrow \sigma(V_t \cdot -V_{n_i}) = \frac{1}{1 + e^{+(V_w \cdot V_{n_i})}}$

Figure 6.12 The skip-gram model tries to shift embeddings so the target embeddings (here for *apricot*) are closer to (have a higher dot product with) context embeddings for nearby words (here *jam*) and further from (have a lower dot product with) context embeddings for words that don't occur nearby (here *aardvark*).

Is it possible to use only one matrix?

Figure 3.1: Learning architecture of the CBOW and Skip-gram models of Word2vec [Mikolov et al., 2013a].

$$P(+|t,c) = \frac{1}{1+e^{-t\cdot c}}$$

Independent Assumption: P(x,y) = p(x)p(y)

$$P(-|t,c) = 1 - P(+|t,c)$$

$$= \frac{e^{-t \cdot c}}{1 + e^{-t \cdot c}}$$

$$P(+|t,c_{1:k}) = \prod_{i=1}^{k} \frac{1}{1+e^{-t\cdot c_i}}$$

$$\log P(+|t,c_{1:k}) = \sum_{i=1}^{k} \log \frac{1}{1 + e^{-t \cdot c_i}}$$

$$L(\theta) = \sum_{(t,c)\in +} \log P(+|t,c) + \sum_{(t,c)\in -} \log P(-|t,c)$$

$$L(\theta) = \log P(+|t,c) + \sum_{i=1}^{k} \log P(-|t,n_i)$$

$$= \log \sigma(c \cdot t) + \sum_{i=1}^{k} \log \sigma(-n_i \cdot t)$$

$$= \log \frac{1}{1 + e^{-c \cdot t}} + \sum_{i=1}^{k} \log \frac{1}{1 + e^{n_i \cdot t}}$$

- Context Window? Longer vs. Shorter?
- **Deterministic?** Any runs of training ended with same set of vectors?
- Transformation? rotation, flips, shear (skew), ...
- Which signifier:
 - 1. [cat], [miu], [image_of_cat], [ascii_cat],
 - 2. Count-based: [tf], [tf-idf], ...
 - 3. Learning methods: [word2vec]

Pre-trained Word Vectors

Available in genism python libarary:

- conceptnet-numberbatch-17-06-300 (1917247 records): ConceptNet Numberbatch consists of state...
- fasttext-wiki-news-subwords-300 (999999 records): 1 million word vectors trained on Wikipe...
- glove-twitter-100 (1193514 records): Pre-trained vectors based on 2B tweets,...
- glove-twitter-<mark>200</mark> (1193514 records): Pre-trained vectors based on 2B tweets, ...
- glove-twitter-25 (1193514 records): Pre-trained vectors based on 2B tweets, ...
- glove-twitter-50 (1193514 records): Pre-trained vectors based on 2B tweets, ...
- glove-wiki-gigaword-100 (400000 records): Pre-trained vectors based on Wikipedia 2...
- glove-wiki-gigaword-200 (400000 records): Pre-trained vectors based on Wikipedia 2...
- glove-wiki-gigaword-<mark>300</mark> (400000 records): Pre-trained vectors based on Wikipedia 2...
- glove-wiki-gigaword-50 (400000 records): Pre-trained vectors based on Wikipedia 2...
- word2vec-google-news-<mark>300</mark> (3000000 records): Pre-trained vectors trained on a part of...
- word2vec-ruscorpora-300 (184973 records): Word2vec Continuous Skipgram vectors tra...

Vector Semantics Vector Space Transformation Linear Algebra

Hierarchy of mathematical spaces.

Normed vector spaces are a superset of inner product spaces and a subset of metric spaces, which in turn is a subset of topological vector space.

"ONE POINT OF VIEW DOES NOT SHOW THE WHOLE PICTURE"

HTTPS://FB.WATCH/3JPMMRXPDJ/

Visualization

Intuition, Geometry

Figure 6.13 Relational properties of the vector space, shown by projecting vectors onto two dimensions. (a) 'king' - 'man' + 'woman' is close to 'queen' (b) offsets seem to capture comparative and superlative morphology (Pennington et al., 2014).

Movement

Temporality (How?)

Figure 6.14 A t-SNE visualization of the semantic change of 3 words in English using word2vec vectors. The modern sense of each word, and the grey context words, are computed from the most recent (modern) time-point embedding space. Earlier points are computed from earlier historical embedding spaces. The visualizations show the changes in the word *gay* from meanings related to "cheerful" or "frolicsome" to referring to homosexuality, the development of the modern "transmission" sense of *broadcast* from its original sense of sowing seeds, and the pejoration of the word *awful* as it shifted from meaning "full of awe" to meaning "terrible or appalling" (Hamilton et al., 2016b).

Biases

Inherent/Latent/Hidden Distribution

- (sare, mom, nurse), (mr., ahmed, doctor, president)
- (drug, mexican), (education, usa, canada)
- (flowers, pleasant, {European-American}), (insects, ugly, {African-American})

Debiasing

- Gender-base: [he] remains masculine, [she] remains feminine, but [nurse], [doctor], [president] becomes neutral

Study of Bias in History

Evaluation

Intrinsic

- Golden Standards for Semantic Similarity/Distance
 - No Context: just pair of words
 - WordSim-353
 - SimLex-999
 - With Context:
 - Stanford Contextual Word Similarity (SCWS) (Huang et al., 2012) and the
 - Word-in-Context (WiC) (Pilehvar and Camacho-Collados, 2019)

Extrinsic:

- Improve the performance of underlying task
 - Information Retrieval (IR), Document Classification, Sentiment Analysis, ...

How to learn representation for sentence/paragraph/documents?

SPEECH and LANGUAGE PROCESSING

An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition

R|Vocabs|

N Vocabs

R|Vocabs|