

Introduction to **Machine Learning and Data Mining**

(Học máy và Khai phá dữ liệu)

Khoat Than

School of Information and Communication Technology
Hanoi University of Science and Technology

Contents

- Introduction to Machine Learning & Data Mining
- Unsupervised learning
- Supervised learning
 - Support Vector Machines
- Practical advice

Support Vector Machines (1)

- Support Vector Machines (SVM) (máy vecto hỗ trợ) was proposed by Vapnik and his colleages in 1970s. Then it became famous and popular in 1990s.
- Originally, SVM is a method for linear classification. It finds a hyperplane (also called linear classifier) to separate the two classes of data.
- For non-linear classification for which no hyperplane separates well the data, kernel functions (hàm nhân) will be used.
 - Kernel functions play the role to transform the data into another space, in which the data is linearly separable.
- Sometimes, we call linear SVM when no kernel function is used. (in fact, linear SVM uses a linear kernel)

Support Vector Machines (2)

- SVM has a strong theory that supports its performance.
- It can work well with very high dimensional problems.
- It is now one of the most popular and strong methods.
- For text categorization, linear SVM performs very well.

1. SVM: the linearly separable case

- Problem representation:
 - □ Training data $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_r, y_r)\}$ with r instances.
 - □ Each \mathbf{x}_i is a vector in an n-dimensional space, e.g., $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{in})^T$. Each dimension represents an attribute.
 - Bold characters denote vectors.
 - \Box y_i is a class label in {-1; 1}. '1' is possitive class, '-1' is negative class.
- Linear separability assumption: there exists a hyperplane (of linear form) that well separates the two classes

Linear SVM

SVM finds a hyperplane of the form:

$$f(\mathbf{x}) = \langle \mathbf{w} \cdot \mathbf{x} \rangle + b$$

[Eq.1]

- **w** is the weight vector; b is a real number (bias).
- $\neg \langle \mathbf{w} \cdot \mathbf{x} \rangle$ and $\langle \mathbf{w}, \mathbf{x} \rangle$ denote the inner product of two vectors
- Such that for each x_i:

$$y_i = \begin{cases} 1 & if & \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \ge 0 \\ -1 & if & \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b < 0 \end{cases}$$

[Eq.2]

Separating hyperplane

■ The hyperplane (H₀) which separates the possitive from negative class is of the form:

$$\langle \mathbf{w} \cdot \mathbf{x} \rangle + b = 0$$

- It is also known as the decision boundary/surface.
- But there might be infinitely many separating hyperplanes.
 Which one should we choose?

Hyperplane with max margin

- SVM selects the hyperplane with max margin.
- It is proven that the max-margin hyperplane has minimal errors among all possible hyperplanes.

Marginal hyperplanes

- Assume that the two classes in our data can be separated clearly by a hyperplane.
- Denote (\mathbf{x}^+ ,1) in possitive class and (\mathbf{x}^- ,-1) in negative class which are *closest* to the separating hyperplane H_0 ($\langle \mathbf{w} \cdot \mathbf{x} \rangle + b = 0$)
- We define two parallel marginal hyperplanes as follows:
 - \Box H₊ crosses **x**⁺ and is parallel with H₀: $\langle \mathbf{w} \cdot \mathbf{x}^{+} \rangle + b = 1$
 - □ H₋ crosses \mathbf{x} and is parallel with H₀: $\langle \mathbf{w} \cdot \mathbf{x} \rangle + b = -1$
 - No data point lies between these two marginal hyperplanes.
 And satisfying:

$$\langle \mathbf{w} \cdot \mathbf{x_i} \rangle + b \ge 1$$
, if $y_i = 1$
 $\langle \mathbf{w} \cdot \mathbf{x_i} \rangle + b \le -1$, if $y_i = -1$

[Eq.3]

The margin (1)

- Margin is defined as the distance between the two marginal hyperplanes.
 - □ Denote d₊ the distance from H₀ to H₊.
 - □ Denote d₋ the distance from H₀ to H₋.
 - \Box (d₊ + d₋) is the margin.
- Remember that the distance from a point $\mathbf{x_i}$ to the hyperplane H_0 ($\langle \mathbf{w} \cdot \mathbf{x} \rangle + b = 0$) is computed as:

$$\frac{|\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b|}{\|\mathbf{w}\|}$$
 [Eq.4]

Where:

$$||\mathbf{w}|| = \sqrt{\langle \mathbf{w} \cdot \mathbf{w} \rangle} = \sqrt{w_1^2 + w_1^2 + ... + w_1^2}$$
 [Eq.5]

The margin (2)

• So the distance d_+ from \mathbf{x}^+ to H_0 is

$$d_{+} = \frac{|\langle \mathbf{w} \cdot \mathbf{x}^{+} \rangle + b|}{\|\mathbf{w}\|} = \frac{|1|}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$$

[Eq.6]

■ Similarly, the distance d_1 from \mathbf{x}^- to H_0 is

$$d_{-} = \frac{|\langle \mathbf{w} \cdot \mathbf{x}^{-} \rangle + b|}{\|\mathbf{w}\|} = \frac{|-1|}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$$

[Eq.7]

As a result, the margin is:

$$margin = d_{+} + d_{-} = \frac{2}{\|\mathbf{w}\|}$$
 [Eq.8]

SVM: learning with max margin (1)

■ SVM learns a classifier H_0 with a maximum margin, i.e., the hyperplane that has the greatest margin among all possible hyperplanes.

- This learning principle can be formulated as the following quadratic optimization problem:
 - Find w and b that maximize the

$$margin = \frac{2}{\|\mathbf{w}\|}$$

 \Box And satisfy the below conditions for any training data \mathbf{x}_i :

$$\begin{cases} \langle \mathbf{w} \cdot \mathbf{x_i} \rangle + b \ge 1, & \text{if } \mathbf{y_i} = 1 \\ \langle \mathbf{w} \cdot \mathbf{x_i} \rangle + b \le -1, & \text{if } \mathbf{y_i} = -1 \end{cases}$$

SVM: learning with max margin (2)

- Learning SVM is equivalent to the following minimization problem:
 - Minimize

$$\frac{\langle \mathbf{w} \cdot \mathbf{w} \rangle}{2}$$

[Eq.9]

Conditioned on

$$\begin{cases} \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \ge 1, & if \ y_i = 1 \\ \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \le -1, & if \ y_i = -1 \end{cases}$$

- Note, it can be reformulated as:
 - Minimize

$$\frac{\langle \mathbf{w} \cdot \mathbf{w} \rangle}{2}$$

[Eq.10]

(P)

Conditioned on

$$y_i(\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b) \ge 1, \quad \forall i = 1..r$$

■ This is a constrained optimization problem.

Constrained optimization (1)

Consider the problem:

Minimize $f(\mathbf{x})$ conditioned on $g(\mathbf{x}) = 0$

■ Necessary condition: a solution \mathbf{x}_0 will satisfy

$$\begin{cases} \frac{\partial}{\partial \mathbf{x}} (f(\mathbf{x}) + \alpha g(\mathbf{x})) \Big|_{\mathbf{x} = \mathbf{x}_0} = 0; \\ g(\mathbf{x}) = 0 \end{cases}$$

Where a is a Lagrange multiplier.

■ In the cases of many constraints $(g_i(x)=0 \text{ for } i=1...r)$, a solution \mathbf{x}_0 will satisfy:

$$\begin{cases} \frac{\partial}{\partial \mathbf{x}} \left(f(\mathbf{x}) + \sum_{i=1}^{r} \alpha_{i} g_{i}(\mathbf{x}) \right) \Big|_{\mathbf{x} = \mathbf{x}_{0}} = 0; \\ g_{i}(\mathbf{x}) = 0 \end{cases}$$

Constrained optimization (2)

Consider the problem with inequality constraints:

Minimize $f(\mathbf{x})$ conditioned on $g_i(\mathbf{x}) \leq 0$

■ Necessary condition: a solution \mathbf{x}_0 will satisfy

$$\begin{cases}
\frac{\partial}{\partial \mathbf{x}} \left(f(\mathbf{x}) + \sum_{i=1}^{r} \alpha_{i} g_{i}(\mathbf{x}) \right) \Big|_{\mathbf{x} = \mathbf{x}_{0}} = 0; \\
g_{i}(\mathbf{x}) \leq 0
\end{cases}$$

- □ Where α ≥ 0 is a Lagrange multiplier.
- $L = f(\mathbf{x}) + \sum_{i=1}^{r} \alpha_i g_i(\mathbf{x})$ is known as the Lagrange function.
 - x is called primal variable.
 - α is called dual variable.

SVM: learning with max margin (3)

■ The Lagrange function for problem [Eq. 10] is

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \langle \mathbf{w} \cdot \mathbf{w} \rangle - \sum_{i=1}^{r} \alpha_i [y_i (\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b) - 1]$$
 [Eq.11a]

- □ Where each $\alpha_i \ge 0$ is a Lagrange multiplier.
- Solving [Eq. 10] is equivalent to the following minimax problem:

$$\underset{\mathbf{w},b}{\arg\min\max} L(\mathbf{w},b,\alpha)$$
 [Eq.11b]
$$= \arg\min_{\mathbf{w},b} \max_{\alpha \ge 0} \left(\frac{1}{2} \langle \mathbf{w} \cdot \mathbf{w} \rangle - \sum_{i=1}^{r} \alpha_{i} [y_{i} (\langle \mathbf{w} \cdot \mathbf{x}_{i} \rangle + b) - 1] \right)$$

SVM: learning with max margin (4)

■ The primal problem [Eq. 10] can be derived by solving:

$$\max_{\alpha \geq 0} L(\mathbf{w}, b, \alpha) = \max_{\alpha \geq 0} \left(\frac{1}{2} \langle \mathbf{w} \cdot \mathbf{w} \rangle - \sum_{i=1}^{r} \alpha_{i} [y_{i} (\langle \mathbf{w} \cdot \mathbf{x}_{i} \rangle + b) - 1] \right)$$

Its dual problem (đối ngẫu) can be derived by solving:

$$\min_{\mathbf{w},b} L(\mathbf{w},b,\alpha) = \min_{\mathbf{w},b} \left(\frac{1}{2} \langle \mathbf{w} \cdot \mathbf{w} \rangle - \sum_{i=1}^{r} \alpha_i [y_i (\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b) - 1] \right)$$

It is known that the optimal solution to [Eq. 10] will satisfy some conditions which is called the Karush-Kuhn-Tucker (KKT) conditions.

SVM: Karush-Kuhn-Tucker

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{r} \alpha_{i} y_{i} \mathbf{x}_{i} = 0$$

$$\frac{\partial L}{\partial b} = -\sum_{i=1}^{r} \alpha_{i} y_{i} = 0$$

$$y_{i} (\langle \mathbf{w} \cdot \mathbf{x}_{i} \rangle + b) - 1 \ge 0, \ \forall \mathbf{x}_{i} \ (i = 1..r)$$

$$\alpha_{i} \ge 0$$

$$[Eq. 14]$$

$$\alpha_{i} (y_{i} (\langle \mathbf{w} \cdot \mathbf{x}_{i} \rangle + b) - 1) = 0$$

$$[Eq. 16]$$

- The last equation [Eq. 16] comes from a nice result from the duality theory.
 - □ Note: any $\alpha_i > 0$ will imply that the associated point $\mathbf{x_i}$ lies in a boundary hyperplane (H₊ or H₋).
 - Such a boundary point is named as a support vector.
 - \Box A non-support vector will correspond to $\alpha_i=0$.

SVM: learning with max margin (5)

- In general, the KKT conditions do not guarantee the optimality of the solution.
- Fortunately, due to the convexity of the primal problem [Eq.10], the KKT conditions are both necessary and sufficient to assure the global optimality of the solution. It means a vector satisfying all KKT conditions is the globally optimal classifier.
 - Convex optimization is 'easy' in the sense that we always can find a good solution with a provable guarantee.
 - There are many algorithms in the literature, but most are iterative.
- In fact, problem [Eq.10] is pretty hard to derive an efficient algorithm. Therefore, its **dual problem** is more preferable.

SVM: the dual form (1)

Remember that the dual counterpart of [Eq.10] is

$$\min_{\mathbf{w},b} L(\mathbf{w},b,\alpha) = \min_{\mathbf{w},b} \left(\frac{1}{2} \langle \mathbf{w} \cdot \mathbf{w} \rangle - \sum_{i=1}^{r} \alpha_i [y_i (\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b) - 1] \right)$$

■ By taking the gradient of $L(\mathbf{w},b,\alpha)$ in variables (\mathbf{w},b) and zeroing it, we can find the following dual function:

$$L_D(\alpha) = \sum_{i=1}^r \alpha_i - \frac{1}{2} \sum_{i,j=1}^r \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i \cdot \mathbf{x}_j \rangle$$
 [Eq.17]

SVM: the dual form (2)

Solving problem [Eq.10] is equivalent to solving its dual problem below:

- The constraints in (D) is much more simpler than those of the primal problem. Therefore deriving an efficient method to solve this problem might be easier.
 - However, existing algorithms for this problem are iterative and complicated. Therefore, we will not discuss any algorithm in detail!

SVM: the optimal classifier

- Once the dual problem is solved for α , we can recover the optimal solution to problem [Eq.10] by using the KKT.
- Let SV be the set of all support vectors
 - SV is a subset of the training data.
 - $\alpha_i > 0$ suggests that $\mathbf{x_i}$ is a support vector.
- We can compute **w*** by using [Eq.12]. So:

$$\mathbf{w}^* = \sum_{i=1}^r \alpha_i y_i \mathbf{x}_i = \sum_{\mathbf{x}_i \in SV} \alpha_i y_i \mathbf{x}_i; \quad \text{(due to } \alpha_j = 0 \text{ for any } \mathbf{x}_j \text{ not in SV)}$$

- To find b*, we take an index k such that $\alpha_k > 0$:
 - □ It means $y_k(\langle \mathbf{w}^* \cdot \mathbf{x}_k \rangle + b^*)$ -1 = 0 due to [Eq.16].
 - □ Hence,

$$b^* = y_k - \langle \mathbf{w}^* \cdot \mathbf{x}_k \rangle$$

SVM: classifying new instances

The decision boundary is

$$f(\mathbf{x}) = \langle \mathbf{w}^* \cdot \mathbf{x} \rangle + b^* = \sum_{\mathbf{x_i} \in SV} \alpha_i y_i \langle \mathbf{x_i} \cdot \mathbf{x} \rangle + b^* = 0$$
 [Eq.19]

■ For a new instance **z**, we compute:

$$sign(\langle \mathbf{w}^* \cdot \mathbf{z} \rangle + b^*) = sign\left(\sum_{\mathbf{x_i} \in SV} \alpha_i y_i \langle \mathbf{x_i} \cdot \mathbf{z} \rangle + b^*\right)$$
 [Eq.20]

- If the result is 1, z will be assigned to the possitive class; otherwise z will be assigned to the negative class.
- Note that this classification principle
 - Just depends on the support vectors.
 - Just needs to compute some dot products.

2. Soft-margin SVM

- What if the two classes are not linearly separable?
 - Linear separability is ideal in practice.
 - Data are often noisy or erronous, making two classes overlapping.
- In the case of linear separability:

 - □ Conditioned on $y_i(\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b) \ge 1$, $\forall i = 1...r$
- In the cases of noises or overlapping, those constraints may never meet simutaneously.
 - \Box It means we cannot solve for \mathbf{w}^* and \mathbf{b}^* .

Example of inseparability

■ Noisy points \mathbf{x}_a and \mathbf{x}_b are mis-labeled.

Relaxing the constraints

■ To work with noises/errors, we need to relax the constraints about margin by using some slack variables ξ_i (≥ 0):

$$\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \ge 1 - \xi_i$$
 if $y_i = 1$
 $\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \le -1 + \xi_i$ if $y_i = -1$

- \Box For a noisy/erronous point $\mathbf{x_i}$, we have: $\xi_i > 1$
- \Box Otherwise $\xi_i = 0$.
- Therefore, we have the following conditions for the cases of nonlinear separability:

$$y_i(\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b) \ge 1 - \xi_i$$
 for all $i = 1...r$
 $\xi_i \ge 0$ for all $i = 1...r$

Penalty on noises/errors

- We should enclose some information on noises/errors into the objective function when learning.
 - Otherwise, the resulting classifier easily overfits the data.
- A penalty term will be used so that learning is to minimize

$$\frac{\langle \mathbf{W}, \mathbf{W} \rangle}{2} + C \sum_{i=1}^{r} \xi_i^k$$

- Where C (>0) is the penalty constant.
- The greater C, the heavier the penalty on noises/errors.
- k = 1 is often used in practice, due to simplicity for solving the optimization problem.

The new optimization problem

Minimize

$$\frac{\langle \mathbf{w} \cdot \mathbf{w} \rangle}{2} + C \sum_{i=1}^{r} \xi_i$$

|Eq.21|

Conditioned on
$$\begin{cases} y_i(\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b) \ge 1 - \xi_i, & \forall i = 1..r \\ \xi_i \ge 0, & \forall i = 1..r \end{cases}$$

- This problem is called Soft-margin SVM.
- It is equivalent to minimize the following function

$$\left[\frac{1}{r}\sum_{i=1}^{r}\max(0,1-y_i(\langle \boldsymbol{w}\cdot\boldsymbol{x}_i\rangle+b))\right]+\lambda\|\boldsymbol{w}\|_2^2$$

- \square max $(0,1-y_i(\langle w\cdot x_i\rangle+b))$ is called Hinge loss
- Some popular losses: squared error, cross entropy, hinge
- $_{\square} \lambda > 0$ is a constant

The new optimization problem

Its Lagrange function is

$$L = \frac{1}{2} \langle \mathbf{w} \cdot \mathbf{w} \rangle + C \sum_{i=1}^{r} \xi_i - \sum_{i=1}^{r} \alpha_i [y_i (\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b) - 1 + \xi_i] - \sum_{i=1}^{r} \mu_i \xi_i$$

□ Where α_i (≥0) and μ_i (≥0) are Lagrange multipliers.

[Eq.22]

Karush-Kuhn-Tucker conditions (1)

$$\frac{\partial L_P}{\partial \mathbf{W}} = \mathbf{W} - \sum_{i=1}^r \alpha_i y_i \mathbf{X_i} = 0$$

[Eq.23]

$$\frac{\partial L_P}{\partial b} = -\sum_{i=1}^r \alpha_i y_i = 0$$

[Eq.24]

$$\frac{\partial L_P}{\partial \xi_i} = C - \alpha_i - \mu_i = 0, \quad \forall i = 1..r$$

[Eq.25]

Karush-Kuhn-Tucker conditions (2)

$$y_i(\langle \mathbf{w} \cdot \mathbf{x_i} \rangle + b) - 1 + \xi_i \ge 0, \quad \forall i = 1..r$$

[Eq.26]

$$\xi_i \geq 0$$

[Eq.27]

$$\alpha_i \geq 0$$

[Eq.28]

$$\mu_i \geq 0$$

[Eq.29]

$$\alpha_i (y_i (\langle \mathbf{w} \cdot \mathbf{x_i} \rangle + b) - 1 + \xi_i) = 0$$

[Eq.30]

$$\mu_i \xi_i = 0$$

[Eq.31]

The dual problem

Maximize

$$L_D(\boldsymbol{\alpha}) = \sum_{i=1}^r \alpha_i - \frac{1}{2} \sum_{i,j=1}^r \alpha_i \alpha_j y_i y_j \langle \mathbf{x_i} \cdot \mathbf{x_j} \rangle$$

Such that

$$\begin{cases} \sum_{i=1}^{r} \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C, \quad \forall i = 1..r \end{cases}$$
 [Eq.32]

- Note that neither ξ nor μ_i appears in the dual problem.
- This problem is almost similar with that [Eq.18] in the case of linearly separable classification.
- The only difference is the constraint: $\alpha_i \leq C$

Soft-margin SVM: the optimal classifier

- Once the dual problem is solved for α , we can recover the optimal solution to problem [Eq.21].
- Let SV be the set of all support/noisy vectors
 - SV is a subset of the training data.
 - $\alpha_i > 0$ suggests that $\mathbf{x_i}$ is a support/noisy vector.
- We can compute **w*** by using [Eq.12]. So:

$$\mathbf{w}^* = \sum_{i=1}^r \alpha_i y_i \mathbf{x}_i = \sum_{\mathbf{x}_i \in SV} \alpha_i y_i \mathbf{x}_i; \quad \text{(due to } \alpha_j = 0 \text{ for any } \mathbf{x}_j \text{ not in SV)}$$

- To find b*, we take an index k such that $C > \alpha_k > 0$:
 - \Box It means $\xi_k = 0$ due to [Eq.25] and [Eq.31];
 - □ And $y_k((\mathbf{w}^* \cdot \mathbf{x}_k) + b^*) 1 = 0$ due to [Eq.30].
 - □ Hence, $b^* = y_k \langle \mathbf{w}^* \cdot \mathbf{x}_k \rangle$

Some notes

■ From [Eq.25-31] we conclude that

If
$$\alpha_{i} = 0$$
 then $y_{i}(\langle \mathbf{w} \cdot \mathbf{x_{i}} \rangle + b) \ge 1$, and $\xi_{i} = 0$
If $0 < \alpha_{i} < C$ then $y_{i}(\langle \mathbf{w} \cdot \mathbf{x_{i}} \rangle + b) = 1$, and $\xi_{i} = 0$
If $\alpha_{i} = C$ then $y_{i}(\langle \mathbf{w} \cdot \mathbf{x_{i}} \rangle + b) < 1$, and $\xi_{i} > 0$

- The classifier can be expressed as a linear combination of few training points.
 - \square Most training points lie outside the margin area: $\alpha_i = 0$
 - \Box The support vectors lie in the marginal hyperplanes: $0 < \alpha_i < C$
 - \Box The noisy/erronous points will associate with $\alpha_i = C$
- Hence the optimal classifier is a very sparse combination of the training data.

Soft-margin SVM: classifying new instances

The decision boundary is

$$f(\mathbf{x}) = \langle \mathbf{w} * \cdot \mathbf{x} \rangle + b^* = \sum_{\mathbf{x_i} \in SV} \alpha_i y_i \langle \mathbf{x_i} \cdot \mathbf{x} \rangle + b^* = 0$$
 [Eq.19]

■ For a new instance **z**, we compute:

$$sign(\langle \mathbf{w}^* \cdot \mathbf{z} \rangle + b^*) = sign\left(\sum_{\mathbf{x_i} \in SV} \alpha_i y_i \langle \mathbf{x_i} \cdot \mathbf{z} \rangle + b^*\right)$$
 [Eq.20]

- If the result is 1, z will be assigned to the possitive class; otherwise z will be assigned to the negative class.
- Note: it is important to choose a good value of C, since it significantly affects performance of SVM.
 - We often use a validation set to choose a value for C.

Linear SVM: summary

- Classification is based on a separating hyperplane.
- Such a hyperplane is represented as a combination of some support vectors.
- The determination of support vectors reduces to solve a quadratic programming problem.
- In the dual problem and the separating hyperplane, dot products can be used in place of the original training data.
 - This is the door for us to learn a nonlinear classifier.

3. Non-linear SVM

- Consider the case in which our data are not linearly separable
 - This may often happen in practice
- How about using a non-linear function?
- Idea of Non-linear SVM:
 - Step 1: transform the input into another space, which often has higher dimensions, so that the projection of data is linearly separable
 - Step 2: use linear SVM in the new space

Non-linear SVM

- Input space: initial representation of data
- Feature space: the new space after the transformation

Non-linear SVM: transformation

 Our idea is to map the input x to a new representation, using a non-linear mapping

$$\phi \colon X \to F$$
$$x \mapsto \phi(x)$$

In the feature space, the original training data $\{(x_1, y_1), (x_2, y_2), ..., (x_r, y_r)\}$ are represented by

$$\{(\phi(\mathbf{x_1}), y_1), (\phi(\mathbf{x_2}), y_2), \dots, (\phi(\mathbf{x_r}), y_r)\}$$

Non-linear SVM: transformation

 Consider the input space to be 2-dimensional, and we choose the following map

$$\phi \colon X \to F$$
$$(x_1, x_2) \mapsto (x_1^2, x_2^2, \sqrt{2}x_1 x_2)$$

So instance $\mathbf{x} = (2, 3)$ will have the representation in the feature space as

$$\phi(\mathbf{x}) = (4, 9, 8.49)$$

[Eq.34]

Non-linear SVM: learning & prediction

Training problem:

Minimize

$$\begin{split} L_{P} &= \frac{\langle \mathbf{w} \cdot \mathbf{w} \rangle}{2} + C \sum_{i=1}^{r} \xi_{i} \\ & \left\{ y_{i} \left(\langle \mathbf{w} \cdot \phi(\mathbf{x}_{i}) \rangle + b \right) \geq 1 - \xi_{i}, \quad \forall i = 1..r \\ \xi_{i} \geq 0, \quad \forall i = 1..r \right. \end{split}$$

Such that

The dual problem:

$$L_D = \sum_{i=1}^r \alpha_i - \frac{1}{2} \sum_{i,j=1}^r \alpha_i \alpha_j y_i y_j \langle \phi(\mathbf{x_i}) \cdot \phi(\mathbf{x_j}) \rangle$$

[Eq.35]

Such that

$$\begin{cases} \sum_{i=1}^{r} \alpha_{i} y_{i} = 0 \\ 0 \le \alpha_{i} \le C, \quad \forall i = 1..r \end{cases}$$

Classifier:

$$f(\mathbf{z}) = \langle \mathbf{w}^*, \phi(\mathbf{z}) \rangle + b^* = \sum_{\mathbf{z}} \alpha_i y_i \langle \phi(\mathbf{x}_i), \phi(\mathbf{z}) \rangle + b^*$$
 [Eq.36]

Non-linear SVM: difficulties

- How to find the mapping?
 - An intractable problem
- The curse of dimensionality
 - As the dimensionality increases, the volume of the space increases so fast that the available data become sparse.
 - This sparsity is problematic.
 - Increasing the dimensionality will require significantly more training data.

Dữ liệu dù thu thập được lớn đến đâu thì cũng là quá nhỏ so với không gian của chúng

Non-linear SVM: Kernel functions

- An explicit form of a tranformation is not necessary
- The dual problem:

Maximize
$$L_D = \sum_{i=1}^r \alpha_i - \frac{1}{2} \sum_{i,j=1}^r \alpha_i \alpha_j y_i y_j \langle \phi(\mathbf{x_i}) \cdot \phi(\mathbf{x_j}) \rangle$$
 Such that
$$\begin{cases} \sum_{i=1}^r \alpha_i y_i = 0 \\ 0 \leq \alpha_i \leq C, \ \forall i = 1..r \end{cases}$$

- Classifier: $f(z) = \langle w^*, \phi(z) \rangle + b^* = \sum_{x_i \in SV} \alpha_i y_i \langle \phi(x_i), \phi(z) \rangle + b^*$
- Both require only the inner product $\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$
- Kernel trick: Nonlinear SVM can be used by replacing those inner products by evaluations of some kernel function

$$K(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$$
 [Eq.37]

Kernel functions: example

Polynomial

$$K(\mathbf{x}, \mathbf{z}) = \langle \mathbf{x}, \mathbf{z} \rangle^d$$

Consider the polynomial with degree d=2. For any vectors $\mathbf{x}=(x_1,x_2)$ and $\mathbf{z}=(z_1,z_2)$

$$\langle \mathbf{x}, \mathbf{z} \rangle^{2} = (x_{1}z_{1} + x_{2}z_{2})^{2}$$

$$= x_{1}^{2}z_{1}^{2} + 2x_{1}z_{1}x_{2}z_{2} + x_{2}^{2}z_{2}^{2}$$

$$= \langle (x_{1}^{2}, x_{2}^{2}, \sqrt{2}x_{1}x_{2}), (z_{1}^{2}, z_{2}^{2}, \sqrt{2}z_{1}z_{2}) \rangle$$

$$= \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle = K(\mathbf{x}, \mathbf{z})$$

- \Box Where $\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2).$
- Therefore the polynomial is the product of two vectors $\phi(x)$ and $\phi(z)$.

Kernel functions: popular choices

Polynomial

$$K(\mathbf{x}, \mathbf{z}) = (\langle \mathbf{x} \cdot \mathbf{z} \rangle + \theta)^d$$
; trong đó: $\theta \in R, d \in N$

Gaussian radial basis function (RBF)

$$K(\mathbf{x}, \mathbf{z}) = e^{-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma}}; \text{ trong } \mathbf{d}\acute{o} : \sigma > 0$$

Sigmoid

$$K(\mathbf{x}, \mathbf{z}) = \tanh(\beta \langle \mathbf{x} \cdot \mathbf{z} \rangle - \lambda) = \frac{1}{1 + e^{-(\beta \langle \mathbf{x} \cdot \mathbf{z} \rangle - \lambda)}}; \text{ trong } \mathbf{d}\acute{o} : \beta, \lambda \in \mathbb{R}$$

What conditions ensure a kernel function?
Mercer's theorem

SVM: summary

- SVM works with real-value attributes
 - Any nominal attribute need to be transformed into a real one
- The learning formulation of SVM focuses on 2 classes
 - How about a classification problem with > 2 classes?
 - One-vs-the-rest, one-vs-one: a multiclass problem can be solved by reducing to many different problems with 2 classes
- The decision function is simple, but may be hard to interpret
 - It is more serious if we use some kernel functions

SVM: some packages

- LibSVM:
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Linear SVM for large datasets:
 - http://www.csie.ntu.edu.tw/~cjlin/liblinear/
 - http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html
- Scikit-learn in python:
 - http://scikit-learn.org/stable/modules/svm.html
- SVMlight:
 - http://www.cs.cornell.edu/people/tj/svm_light/index.html

References

- B. Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Springer, 2006.
- C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2): 121-167, 1998.
- Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks."
 Machine learning 20.3 (1995): 273-297.

Exercises

- What is the main difference between SVM and KNN?
- How many support vectors are there in the worst case? Why?
- The meaning of the constant C in SVM? Compare the role of C in SVM with that of λ in Ridge regression.