

Generalized Low Rank Models: Basics and Applications

Thursday, January 28, 2021 STARS Analytics and Artificial Intelligence Julio Cárdenas-Rodríguez, Ph.D.
Principal Data Scientist
jcardenasrdz@uhc.com

United Healthcare

Contents

Introduction to Generalized Linear Models:

some Linear Algebra and Optimization

Applications to the Penguins data set:

Clustering of features
Clustering of observations
Classification in the reduced space
Regression using features in the reduced space

The challenges of our data

age	gender	state	diabetic	prescriptions count	mbr type	•••
67	F	AZ	1	?	Α	• • •
67	F	NC	1	10	Α	• • •
?	M	WA	0	2	W	• • •
29	?	IN	0	1000	D	• • •
•	•	•	•	•	•	
•	•	•	•	•	•	

Structural

- Categorical features with very large dimensionality (zip code, prov NPI, gpi codes, etc)
- Missing value represent different things depending on the feature (age vs STAR measure)
- Mixed of data types: continuous, Boolean, categorical, ordinal, counts
- Large to very large data sets

Analytical

- Quantify the difference between to observations that differ only in their categorical data
- Avoid redundancy between features used for predictive / descriptive models
- How to impute missing entries

A general view of Low Rank Models

given: $A, k \ll m, n$

find: $X \in \mathbb{R}^{m \times k}$, $Y \in \mathbb{R}^{k \times n}$ for which

numeric
$$\begin{bmatrix} X \\ X \end{bmatrix} \begin{bmatrix} & \text{numeric} \\ Y & \end{bmatrix} \approx \begin{bmatrix} & A & \end{bmatrix}$$
 data table

i.e., $x_i y_j \approx A_{ij}$, where

$$\begin{bmatrix} X \\ X \end{bmatrix} = \begin{bmatrix} -x_1 - \\ \vdots \\ -x_m - \end{bmatrix} \qquad \begin{bmatrix} Y \\ Y \end{bmatrix} = \begin{bmatrix} | & & | \\ y_1 & \cdots & y_n \\ | & & | \end{bmatrix}$$

interpretation:

- X and Y are (compressed) representation of A
- $> x_i^T \in \mathbf{R}^k$ is a point associated with example i
- $y_i \in \mathbf{R}^k$ is a point associated with feature j
- ▶ inner product $x_i y_i$ approximates A_{ij}

A numerical example of Low Rank Models: PCA (seen as an optimization problem)

PCA:

This is a least squares solution, just like linear regression

minimize
$$||A - XY||_F^2 = \sum_{i=1}^m \sum_{j=1}^n (A_{ij} - x_i y_j)^2$$

with variables $X \in \mathbb{R}^{m \times k}$, $Y \in \mathbb{R}^{k \times n}$

• (analytical) solution via SVD of $A = U\Sigma V^T$:

$$X = U_k \Sigma_k^{1/2}$$
 $Y = \Sigma_k^{1/2} V_k^T$

(numerical) solution via alternating minimization

Generalized Low Rank Model (using alternating minimization)

MINIMIZE only for Ω (observed data)

$$\sum_{(i,j)\in\Omega} L_{j}(x_{i}y_{j},A_{ij}) + \sum_{i=1}^{m} r_{i}(x_{i}) + \sum_{j=1}^{n} \tilde{r}_{j}(y_{j})$$

Loss functions for each column

regularizer for X

regularizer for Y

Choose $L_j(x_iy_j, A_{ij})$ based on the data type:

Data type	possible loss functions		
real	quadratic, absolute value, huber		
boolean	logistic, hinge		
integer	poisson		
ordinal	small vs large, ordinal hinge		
categorical	logit multinomial, one-vs-all		

Regularizers

$$\sum_{(i,j)\in\Omega} L_{j}(x_{i}y_{j},A_{ij}) + \sum_{i=1}^{m} r_{i}(x_{i}) + \sum_{j=1}^{n} \tilde{r}_{j}(y_{j})$$

Loss functions for each column

regularizer for X

regularizer for Y

choose regularizers r, \tilde{r} to impose structure:

structure	r(x)	$\tilde{r}(y)$
small	$ x _2^2$	$ y _{2}^{2}$
sparse	$\ x\ _1$	$\ y\ _1$
nonnegative	$1(x \geq 0)$	$1(y\geq 0)$
clustered	$1(\mathbf{card}(x) = 1)$	0

Recovery of known matrix factorization methods

$$\sum_{(i,j)\in\Omega} L_{j}(x_{i}y_{j},A_{ij}) + \sum_{i=1}^{m} r_{i}(x_{i}) + \sum_{j=1}^{n} \tilde{r}_{j}(y_{j})$$

Loss functions for each column

regularizer for X

regularizer for Y

X loss	Y loss	X reg	Y reg	name
quadratic	quadratic	0	0	PCA
quadratic	quadratic	NonNegConstraint	Non Neg Constraint	NNMF
quadratic	quadratic	0	Unit One Sparse Constraint	K-means
huber	huber	quadratic	quadratic	robust PCA

Feature	Description		
species	categorical with 3 levels		
island	categorical with 3 levels		
bill_length_mm	numerical		
bill_depth_mm	numerical		
flipper_length_mm	numerical		
body_mass_g	numerical		
sex	boolean		

- Torgersen--Adelie
- Biscoe--Adelie
- Dream--Adelie
- Dream--Chinstrap
- Biscoe--Gentoo

Questions:

- Can we cluster <u>features</u> based on their similarity? → Y
- Can we cluster <u>penguins</u> based on their similarity? → X
- Can we classify with only two features ? -→ cols of X)

$$\begin{bmatrix} X \end{bmatrix} \begin{bmatrix} & Y & \end{bmatrix} \approx \begin{bmatrix} & A & \end{bmatrix}$$

Low Rank Model of the Penguins Data Set

Feature	Loss	hot encoded col size
species	MultinomialLoss	3
island	MultinomialLoss	3
bill_length_mm	QuadLoss	N/A
bill_depth_mm	QuadLoss	N/A
flipper_length_mm	QuadLoss	N/A
body_mass_g	QuadLoss	N/A
sex	LogisticLoss	N/A

cluster features based on their similarity

Click here for interactive plot

cluster penguins based on their similarity

2D projection of each penguins labeled Species and Island

Click here for interactive plot

cluster penguins based on their similarity cont'

Data and centroids in X space

cluster penguins based on their similarity cont'

I		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	male
1	centroid 01	2	1	48.0	15.0	217.0	5084	False
i	centroid 02	3	2	49.0	19.0	200.0	4226	True
ļ	centroid 03	1	3	40.0	18.0	191.0	3656	False

cluster penguins based on their similarity cont'

Classification with only two features

```
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.model selection import train test split
from sklearn import preprocessing
from sklearn import metrics
d = A raw.merge(X[['x1','x2']],left index=True, right index=True)
d = d.dropna()
le = preprocessing.LabelEncoder()
Y str = d.species
le.fit(Y str)
Ydata = le.transform(Y str)
Xdata = d[['x1', 'x2']]
X train, X test, y train, y test = train test split(Xdata, Ydata, test size=0.33, random state=42)
clf = RFC(n estimators=2, max depth=2)
clf.fit(X train, y train)
y1 = le.inverse transform( y test )
y2 = le.inverse transform(clf.predict(X_test) )
print( metrics.classification report(y1, y2) )
```

	precision	recall	f1-score	support
Adelie	0.96	0.94	0.95	52
Chinstrap	0.86	0.90	0.88	20
Gentoo	1.00	1.00	1.00	38
accuracy			0.95	110
macro avg	0.94	0.95	0.94	110
weighted avg	0.96	0.95	0.95	110

Linear Regression of bill_length_mm using x space matrix

```
# Xdata matrix with an intercept
Xdata = d[['x1','x2']].copy()
Xdata['c'] = 1

# outcome
Ydata = d['bill_length_mm']

# get coefficients of `b1 by pseudo inverse
b = np.linalg.pinv(Xdata) @ Ydata

pd.DataFrame(b,index=['x1 coeff','x2 coeffect','intercept'],columns=['linear model']).T
```

x1 coeff x2 coeffect intercept

linear model -2.304419 -2.480798 43.975264

```
# predict data
Yhat = Xdata @ b
sns.regplot(y=Ydata, x= Yhat)
plt.title('r2 = ' + str(metrics.r2_score(Ydata, Yhat))[0:4] );
plt.xlabel('\n predicted bill length in mm')
plt.ylabel('observed bill length in mm\n')
```

Text(0, 0.5, 'observed bill length in mm\n')

Applications to the Penguins data set:

Regression with only two features