Implementation of SecJudge($[g_i]$)

For an encrypted local gradient $\llbracket g_i \rrbracket = \{\llbracket x_1' \rrbracket, \llbracket x_2' \rrbracket, ..., \llbracket x_m' \rrbracket\}$ submitted to \mathcal{S}_1 $(i \in [1, n])$:

• @ S_1 : To protect data privacy, S_1 first chooses m random noises $r_{k \in [1,m]} \leftarrow \mathbb{Z}_N^*$, and blinds r_k to $[\![x_k']\!]$ using Eq. 5 such that

$$[\![\overline{x}_k]\!] = [\![x'_k]\!] \cdot [\![r_k]\!] = [\![x'_k + r_k]\!].$$
 (14)

Then, S_1 implements the partial decryption by calling $[\overline{x}_k]_1 \leftarrow \mathsf{PartDec}_{sk_1}([\![\overline{x}_k]\!])$, and sends $\{[\![\overline{x}_1]\!],...,[\![\overline{x}_m]\!]\}$ and $\{[\![\overline{x}_1]\!]_1,...,[\![\overline{x}_m]\!]_1\}$ to S_2 $(k \in [1,m])$.

- @ \mathcal{S}_2 : To decrypt the blinded number \overline{x}_k , \mathcal{S}_2 calls $[\overline{x}_k]_2 \leftarrow \mathsf{PartDec}_{sk_2}([\![\overline{x}_k]\!])$ and $\overline{x}_k \leftarrow \mathsf{FullDec}([\![\overline{x}_k]\!]_1, [\![\overline{x}_k]\!]_2)$. Then, \mathcal{S}_2 returns $[\![\Sigma \overline{x}_k^2]\!]$ to \mathcal{S}_1 $(k \in [1, m])$ such that $[\![\Sigma \overline{x}_k^2]\!] \leftarrow \mathsf{Enc}_{pk}([\![\overline{x}_1^2]\!]^2 + ..., +[\![\overline{x}_m^2]\!])$.
- $@S_1$: To remove the random noises $r_{k \in [1,m]}$, S_1 implements

$$\begin{aligned}
&[sum] = [x'_{1}^{2} + \dots + x'_{m}^{2}] \\
&= [\Sigma(x'_{k} + r_{k})^{2}] \cdot ([x'_{1}]^{2r_{1}} \cdot, \dots, \cdot [x'_{m}]^{2r_{m}} \cdot [\Sigma r_{k}^{2}])^{N-1} \\
&= [\Sigma \overline{x}_{k}^{2}] \cdot [\Sigma(2r_{k}x_{k} + r_{k}^{2})]^{N-1},
\end{aligned} \tag{15}$$

and sends $\llbracket sum \rrbracket$ to \mathcal{S}_2 .

- $@S_2$: $[sum]_2 \leftarrow \mathsf{PartDec}_{sk_2}([sum])$ is executed to return S_1 .
- @ S_1 : To obtain the final result sum, S_1 uses PartDec and FullDec. Note that the precise degree of sum is expanded as deg^2 after HE.Mul. If $sum/deg^2 = 1$, it means the local gradient g_i is normalized. S_1 accepts g_i for further training. Otherwise, g_i is aborted without gradients normalization as

$$g_i = \begin{cases} \text{Accept,} & \text{If } sum/deg^2 = 1, \\ \text{Abort,} & \text{Otherwise.} \end{cases}$$