Exploring Large Language Models in Financial Argument Relation Identification

Yasser Otiefy, Alaa Alhamzeh

University Of Passau yasser.otiefy@uni-passau.de, alaa.alhamzeh@uni-passau.de

Motivation

Reasoning by arguments

Alaa Alhamzeh

Computational argumentation tasks

The global market for power transmission and distribution infrastructure is expected to remain buoyant in 2023

Demand is forecast **to be driven** in Europe and North America **by the need** for equipment replacement, improved grid reliability and efficiency and further grid interconnections.

Is the argument persuasive? Well-supported?

...

- Argument
- Non-argument

- Premise(s)
- Claim (conclusion)

- Premise(s)
- Claim
- Relation (support/attack)
- Quality assessment
- Stance detection
-

- Argument summarization
- Argument synthesis
- Claim synthesis
-

Argument Mining (AM)

Financial Argumentation Data

- Earnings conference calls for major tech companies
- Annotated on the sentence level to cover the argument structure, and argument quality:

Argument structure corpus - FinArg

Alaa Alhamzeh et al. It's Time to Reason: Annotating Argumentation Structures in Financial Earnings Calls: The FinArg Dataset, Financial NLP workshop FinNLP@EMNLP 2022.

Download: Github - Alaa-Ah/The-FinArg-Dataset-Argument-Mining-in-Financial-Earnings-Calls.

Argument quality corpus - FinArg Quality

Alaa Alhamzeh Argument Quality Assessment in Financial Earnings Conference Calls – International Conference on Database and Expert Systems Applications DEXA 2023.

Download: GitHub - Alaa-Ah/The-FinArgQuality-dataset-Quality-of-managers-arguments-in-Eearnings-Conference-Calls.

Problem statement

Argument Relation Identification

- Claim [SEP] Premise
- Negative sampling
- 10K samples
- Binary classification task on balanced data
- Poorly studied task in the literature
- FinArg-1 shared task

The global market for power transmission and distribution infrastructure is expected to remain buoyant in 2023

Demand is forecast **to be driven** in Europe and North America **by the need** for equipment replacement, improved grid reliability and efficiency and further grid interconnections.

Claim Support

Experimental Setup

General-purpose models

- Vicuna
- Bloom
- Llama
- ...

Financial-fine-tuned models

- FinBert
- Deberta-finetuned-finance-text-classification
-

Debate-fine-tuned models

- ArgumentMining- EN-ARI-Debate
- Roberta-argument
-

GPT -4 Zero shot learning

Experimental Setup

Figure: Workflow of open-source models' experiments

- Maximum length of the tokenizer (64, 128, 256)
- Number of epochs (2 to 5)
- 5-fold cross validation
- Weight&Bias platform

Results - Open Source models

Model	Accuracy	F1-score	Precision	Recall	Model Type	
Vicuna-13b_rm_oasst-hh	0.764 ± 0.05	0.751 ± 0.05	0.767 ± 0.05	0.764 ± 0.05		
Vicuna-13b-v1.5	0.762 ± 0.05	0.750 ± 0.05	0.762 ± 0.05	0.762 ± 0.05		
Bloom-7b1	0.675 ± 0.04	0.659 ± 0.06	0.677 ± 0.04	0.674 ± 0.04		
meta-llama/Meta-Llama-3-8B	0.642 ± 0.02	0.638 ± 0.02	0.643 ± 0.02	0.642 ± 0.02		
Bloom-1b1	0.567 ± 0.04	0.549 ± 0.05	0.572 ± 0.04	0.567 ± 0.04		
Bloomz-7b1	0.567 ± 0.02	0.534 ± 0.03	0.573 ± 0.02	0.567 ± 0.02	General-Purpose Models	
Bloom-560m	0.531 ± 0.02	0.507 ± 0.03	0.530 ± 0.02	0.531 ± 0.02		
Bert-base-uncased	0.532 ± 0.01	0.503 ± 0.03	0.541 ± 0.02	0.532 ± 0.01		
GPT4-x-Alpaca	0.558 ± 0.04	0.536 ± 0.04	0.561 ± 0.04	0.558 ± 0.04		
LLaMa-2-7B-Guanaco-QLoRA-GPTQ	0.517 ± 0.01	0.468 ± 0.06	0.504 ± 0.09	0.517 ± 0.01		
Roberta-base	0.547 ± 0.03	0.479 ± 0.09	0.563 ± 0.13	0.547 ± 0.03		
ArgumentMining-EN-ARI-Debate ArgumentMining-EN-AC-Essay-Fin	0.753 ± 0.02 0.622 ± 0.04	0.751 ± 0.02 0.615 ± 0.04	0.753 ± 0.01 0.627 ± 0.02	0.753 ± 0.02 0.622 ± 0.02	Debate-fine-tuned Models	
Roberta-base-150T-argumentative-sentence-detector	0.578 ± 0.01	0.569 ± 0.01	0.584 ± 0.02	0.578 ± 0.02		
ArgumentMining-EN-CN-ARI-Essay-Fin	0.532 ± 0.01	0.492 ± 0.07	0.540 ± 0.06	0.532 ± 0.01		
ArgumentMining-EN-AC-Financial	0.530 ± 0.02	0.480 ± 0.08	0.536 ± 0.09	0.530 ± 0.02		
FinancialBERT-Sentiment-Analysis	0.518 ± 0.02	0.514 ± 0.02	0.518 ± 0.02	0.518 ± 0.02		
Roberta-Earning-Call-Transcript-Classification	0.503 ± 0.01	0.371 ± 0.07	0.359 ± 0.14	0.503 ± 0.01	Financial-fine-tuned Models	
Finbert	0.516 ± 0.02	0.507 ± 0.03	0.517 ± 0.02	0.516 ± 0.02		
	0.554 ± 0.01	0.505 ± 0.03	0.589 ± 0.02	0.554 ± 0.01		

Table: Argument relation identification using 5-fold cross-validation. All models are fine-tuned using Lr=5e-5, and 5 epochs, except Bloomz-7b1, for 2 epochs

Alaa Alhamzeh

Results - GPT-4

Our prompt:

"

You are a helpful assistant. Given the following claim and premise, please classify the relation between them as either Related or Unrelated. Please only generate one of the two labels:

Claim:

Premise:

"

Class	Precision	Recall	F1-score	Support
Related	0.85	0.75	0.79	4899
Unrelated	0.77	0.87	0.82	4899
Accuracy			0.81	9798
Macro Avg	0.81	0.81	0.81	9798
Weighted Avg	0.81	0.81	0.81	9798

Table: Performance of GPT4 zero shot learning

Discussions - Model category

Figure: Mean performance by model category

Discussions – Impact of model size

Figure: Mean performance by model size

Discussions - Hyperparameters

Figure: Model performance by hyperparameters settings and runtime

Conclusion & Future work

- GPT-4 achieved the highest F1-score (0.81) in zero-shot learning
- Significance of zero-shot learning for complex language tasks in finance
- Applications: include into a RAG framework, real-time analysis of financial text, and assist decision-making
- Interpretation tools like Google Patchscopes
- Model merging

Thank you for your attention

Alaa Alhamzeh 14