

Geometria

Lic. Ciências da Computação

16/06/2017

Exame de Recurso

Todas as respostas devem ser justificadas e os cálculos devem ser apresentados.

- 1. Sejam $\mathcal{R} = \{O, (\vec{v}_1, \vec{v}_2)\}$ e $\mathcal{R}' = \{O', (\vec{v}_1', \vec{v}_2')\}$ dois referenciais num plano afim \mathcal{A} tais que:
 - $O = (0,2)_{R'}$
 - $\bullet \left\{ \begin{array}{lcl} \vec{v}_1' & = & \vec{v}_1 \vec{v}_2 \\ \vec{v}_2' & = & \vec{v}_1 + \vec{v}_2 \end{array} \right.$
 - (a) Determine uma expressão matricial para a mudança de coordenadas entre os referenciais \mathcal{R} e \mathcal{R}' e as coordenadas do ponto $M = (2,1)_{\mathcal{R}}$ no referencial \mathcal{R}' .
 - (b) Suponha que \mathcal{R} é um referencial ortonormado.
 - i. Será também \mathcal{R}' um referencial ortonormado? E ortogonal?
 - ii. Determine a distância entre O e O'.
- 2. Seja \mathcal{A} um espaço euclidiano tridimensional munido de um referencial ortonormado.
 - (a) Seja r a reta que passa pelos pontos A=(0,-1,2) e B=(3,2,1). Determine a equação cartesiana do plano π perpendicular a r que passa pelo ponto M=(1,1,0).
 - (b) Seja π' o plano definido pela equação cartesiana -y+z-1=0. Determine as equações paramétricas da reta r' perpendicular a π' que passa pelo ponto M'=(1,2,3).
- 3. Seja \mathcal{A} uma espaço afim de dimensão 4. Considere os subespaços afins:

$$\pi_1 = (2, 0, 0, 1) + \langle (1, 2, 0, 1), (-1, 0, 1, 0) \rangle$$

 $\pi_2 = \{(x, y, z, t) \in \mathcal{A} : x + z + t = 1, \ x - 2y - z + t = 3\}$

- (a) Apresente um sistema de equações cartesianas de π_1 .
- (b) Apresente uma equação vetorial de π_2 .
- (c) Determine o subespespaço afim $\pi_1 + \pi_2$ e indique a sua dimensão.
- 4. Seja \mathcal{A} um espaço afim tridimensional. Considere o plano π definido pela equação cartesiana 2x-2y-z-1=0.
 - (a) Determine a projeção ortogonal de um ponto M = (x, y, z) no plano π .
 - (b) Determine a representação matricial da reflexão no plano π .

- 5. Seja \mathcal{A} um espaço afim tridimensional. Considere a reta $r=\langle (1,-1,0)\rangle$ e o plano $\pi=\langle (1,1,1),(0,0,1)\rangle$.
 - (a) Determine a projeção paralela no plano π dirigida por r.
 - (b) Determine a projeção paralela na reta r dirigida por π .
- 6. Seja \mathcal{A} um espaço afim tridimensional.
 - (a) Determine a expressão analítica da rotação de ângulo π segundo o eixo que incide na origem e está dirigido pelo vetor $\vec{v} = (1, 0, -1)$.
 - (b) Determine a expressão analítica da rotação de ângulo π segundo o eixo que incide em A = (0, 1, 0) e está dirigido pelo vetor $\vec{v} = (1, 0, -1)$.
- 7. Seja \mathcal{A} um plano afim. Considere o ponto $\Omega = (2, -1)$ e a reta r definida pela equação cartesiana y + x = 0. Seja f a projeção perspetiva desde o ponto Ω à reta r.
 - (a) Determine a reta excecional desta projeção perspetiva.
 - (b) Determine a expressão analítica de f.

```
Cotações: 1. (a) 1 valor, (b) 1 valor;
```

- 2. (a) 1 valor, (b) 1 valor;
- 3. (a) 1.5 valores, (b) 1.5 valores, (c) 2 valores;
- 4. (a) 1.5 valores, (b) 1.5 valores;
- 5. (a) 1.5 valores, (b) 1.5 valores;
- 6. (a) 1.5 valores, (b) 1 valor;
- 7. (a) 1 valor, (b) 1.5 valores.