UNIVERSIDAD TECNICA

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

Pauta Ayudantía 2 Análisis Funcional

1 de septiembre de 2022

Problema 1. Considere X e.v.n y $M \subseteq$ subespacio vectorial cerrado.

- 1. Pruebe que si X es separable entonces X/M también.
- 2. Demuestre que si X/M y M son ambos separables, entonces X es separable.
- 3. Dé un ejemplo donde M y X/M sean separables pero X no lo sea.

Demostración.

1. Suponer que X es separable, i.e., tiene $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ denso. Sea $[x]\in X/M, \varepsilon>0$. Por densidad, existe $n\in\mathbb{N}$ tal que $||x-x_n||_X < \varepsilon$. Dado que M es subespacio, en particular $0 \in M$ y por lo tanto

$$||[x] - [x_n]||_{X/M}|| = ||[x - x_n]||_{X/M} \le ||x - x_n||_X < \varepsilon$$

2. Sea $\{[x_n]\}_{n\in\mathbb{N}}$ denso en X/M y $\{y_k\}_{k\in\mathbb{N}}$ denso en M. Probaremos que $\{x_n+y_k\}_{(n,k)\in\mathbb{N}^2}$ es denso en X, de lo cual se seguirá el resultado pues el conjunto anterior es numerable.

Sea $\varepsilon > 0, x \in X$. Como $\{[x_n]\}_{n \in \mathbb{N}}$ es denso existe $x_n \in X$ tal que $\|[x - x_n]\|_{X/M} = \inf_{m \in M} \|x - x_n\|_X < \varepsilon/2$. Por definición de ínfimo existe $m \in M$ tal que $||x - x_n - m||_X < \varepsilon/2$. Ahora, como $\{y_n\}_{n \in \mathbb{N}}$ es denso en M existirá $k \in \mathbb{N}$ tal que $||m - y_k|| < \varepsilon/2$. Luego vemos que

$$||x - x_n - y_k||_X = ||(x - x_n - m) + (m - y_k)||_X \le ||(x - x_n - m)||_X + ||m - y_k||_X < \varepsilon$$

3. Consideremos $X = \ell^{\infty}(\mathbb{R})$. Definimos la aplicación lineal sobreyectiva.

$$\varphi: \ell^{\infty}(\mathbb{R}) \hookrightarrow \mathbb{R}, \qquad \{x_n\}_{n \in \mathbb{N}} \mapsto x_1$$

Notemos que $\ker(\varphi) = \{\{x_n\}_{n \in \mathbb{N}} | x_1 = 0\}$ el cual es cerrado pues la convergencia en $\ell^1(\mathbb{R})$ es la convergencia uniforme que en particular implica convergencia puntual. Por teorema del isomorfismo de Noether tenemos un isomorfismo $\ell^{\infty}(\mathbb{R})/M \cong \mathbb{R}$ y \mathbb{R} es separable. Este ejemplo es válido pues en clases se vio que $\ell^{\infty}(\mathbb{R})$ no es separable.

Problema 2. Sea $(X, \|\cdot\|_X)$ un e.v.n. v sea $\sigma: X \to \mathbb{R}$ una función dada. Considere el conjunto

$$D = \{ \ell \in X^* \mid \ell(x) \le \sigma(x), \forall x \in X \}.$$

El objetivo del problema es demostrar que σ es sublineal y continua si y sólo si D es convexo, cerrado, no vacio y acotado, y que además satisface

$$\sigma(x) = \sup\{\ell(x) \mid \ell \in D\}, \quad \forall x \in X$$
 (1)

Considere lo siguientes pasos:

1. Asuma que σ viene dado por (1) y que D es un subconjunto convexo, cerrado, no vacío y acotado de X^* . Demuestre que σ es sublineal y continua en X.

Indicación: Demuestre primero que σ es continua en x=0, luego, usando argumentos similares al caso de funcionales lineales, obtenga la continuidad de σ en todo el espacio X.

De aquí en adelante suponer que σ es sublineal y continua en X.

MAT227 UTFSM

2. Demuestre que D es no vacío y que (1) se verifica.

Indicación: Fije $x_0 \in X \setminus \{0\}$. Considere el s.e.v. $X_0 = \langle \{x_0\} \rangle$ y la función $\ell_0 : X_0 \to \mathbb{R}$ dada por

$$\ell_0(tx_0) = t\sigma(x_0), \quad \forall t \in \mathbb{R}.$$

- 3. Pruebe que D es un subconjunto convexo y cerrado de X^* .
- 4. Usando la continuidad de σ , pruebe que $\exists c > 0$ tal que $|\sigma(x)| \le c$ para todo $x \in X$ con $||x||_X \le 1$. Concluya que D es acotado.

Demostración.

1. Sea $\lambda > 0, x \in X$ y veamos que σ es positivamente homogénea. En efecto,

$$\sigma(\lambda x) = \sup\{\ell(\lambda x) | \ell \in D\} = \sup\{\lambda \ell(x) | \ell \in D\} = \lambda \sup\{\ell(x) | \ell \in D\} = \lambda \sigma(x)$$

Considerando ahora $x, y \in X$ vemos que

$$\begin{split} \sigma(x+y) &= \sup\{\ell(x+y)|\ell \in D\} = \sup\{\ell(x) + \ell(y)|\ell \in D\} \\ &\leq \sup\{\ell(x)|\ell \in D\} + \sup\{\ell(y)|\ell \in D\} \\ &= \sigma(x) + \sigma(y) \quad \forall x,y \in X \end{split}$$

Demostraremos en primer lugar que σ es continua en x=0. Sea $\varepsilon>0$. Dado que D es acotado, existe L>0 tal que sup $\{\|\ell\|_{X^*}|\ell\in D\}\leq L$ y luego eligiendo $\delta=\varepsilon/L$ tenemos que para cada $x\in B_X(0,\delta)$

$$\begin{split} |\sigma(x)| &= |\sup\{\ell(x)|\ell \in D\}| \leq \sup\{|\ell(x)||\ell \in D\} \\ &\leq \sup\{\|\ell\|\|x\||\ell \in D\} \\ &= \|x\|\sup\{\ell(x)|\ell \in D\} \\ &= L\|x\| \leq \varepsilon \end{split}$$

Ahora, dado que $\sigma(0) = \lambda \sigma(0)$ para $\lambda > 0$ entonces $\sigma(0) = 0$ y lo anterior prueba la continuidad en x = 0. Ahora, si consideramos $x, y \in X$ entonces

$$\sigma(x) \le \sigma(x-y) + \sigma(y) \Rightarrow \sigma(x) - \sigma(y) \le \sigma(x-y) \le L ||x-y||_X$$
$$\Rightarrow |\sigma(x) - \sigma(y)| \le L ||x-y||_X$$

con lo cual se puede concluir la continuidad de σ .

2. Sea $x_0 \in X \setminus \{0\}$ fijo, $X_0 = \langle x_0 \rangle$ y $\ell_0 : X_0 \to \mathbb{R}$ definido como $\ell_0(tx_0) = t\sigma(x_0)$ $\forall t \in \mathbb{R}$. Si t > 0 es claro que $\ell_0(tx_0) \le \sigma(tx_0)$ por homogeneidad, y si t < 0 notamos que

$$\ell(tx_0) = t\sigma(x_0) = -\sigma(-tx_0)$$

$$\Rightarrow 0 = \sigma(tx_0 - tx_0) \le \sigma(tx_0) + \sigma(-tx_0)$$

$$\Rightarrow -\sigma(-tx_0) = \ell(tx_0) \le \sigma(tx_0)$$

de donde deducimos que $\ell_0 \leq \sigma$ en X_0 . Por el Teorema de extensión de Hahn-Banach existe $\ell \in X^*$ tal que $\ell|_{X_0} = \ell_0$ y $\ell \leq \sigma$ en todo X, así que $\ell \in D$ y por lo tanto dicho conjunto es no vacío. Además, por la misma definición de D tenemos que

$$\sup\{\ell(x)|\ell\in D\} \le \sigma(x) \quad \forall x\in X$$

y en particular el $\ell \in D$ que construimos verifica que $\ell(x_0) = \sigma(x_0)$, y dado que dicha construcción la podemos realizar para cada $x_0 \in X$ se alcanza la igualdad en todo punto.

3. Notemos que podemos reescribir D como

$$D = \bigcap_{x \in X} \underbrace{\{\ell \in X^* | \ell(x) \le \sigma(x)\}}_{=:D_x}$$

MAT227 UTFSM

Probaremos que cada D_x es convexo, cerrado y tendremos que D es cerrado. Sea $\{\ell_k\} \subseteq D_x$ tal que $\ell_k \to \ell$ en X^* . Notar que esto en particular implica que ℓ_k converge de manera puntual a ℓ , es decir, para cada $x \in X$ se tiene que $\ell_k(x) \to \ell(x)$. Tomando $k \to \infty$ en $\ell_k(x) \le \sigma(x)$ tenemos $\ell(x) \le \sigma(x) \Rightarrow \ell \in D_x$. Para ver que es convexo basta con tomar $\lambda \in (0,1), \ell_1, \ell_2 \in D_x$ y ver que

$$\lambda \ell_1(x) + (1-\lambda)\ell_2(x) \le \lambda \sigma(x) + (1-\lambda)\sigma(x) = \sigma(x) \Rightarrow \lambda \ell_1 + (1-\lambda)\ell_2 \in D_x$$

4. Dado que σ es continuo, en particular lo es en x=0, y por lo tanto $\forall \varepsilon>0, \exists \delta>0$ tal que $\|x\|\leq\delta\Rightarrow|\sigma(x)|\leq\varepsilon$ Tomando $\varepsilon=1$ tenemos que existe $\delta_1>0$ tal que $|\sigma(x)|\leq1$ $\forall x\in B_X[0,\delta_1]$. Luego tenemos que para $x\in B_X[0,1]\setminus\{0\}$ se verifica $\frac{\delta_1x}{\|x\|}\in B_X[0,\delta_1]$ y por lo tanto

$$\left| \sigma \left(\frac{\delta_1 x}{\|x\|_X} \right) \right| \le 1 \Rightarrow |\sigma(x)| \le \frac{\|x\|}{\delta_1} \le \frac{1}{\delta_1}$$

y para $c=1/\delta_1$ se tiene la propiedad del enunciado. Si $\ell\in D$ entonces

$$\ell(x) \le \sigma(x) \le c$$
 y $-\ell(x) = \ell(-x) \le \sigma(-x) \le c \Rightarrow |\ell(x)| \le c$ $\forall x \in B_X[0,1]$

Se sigue que $\|\ell\| \le c$ para todo $\ell \in D$, i.e., D es acotado.