# 标志寄存器

贺利坚 主讲



### 标志寄存器

### □8086CPU有14个寄存器:

⚠ 通用寄存器:AX、BX、CX、DX

⑪ 变址寄存器:SI、DI

← 指针寄存器:SP、BP

← 指令指针寄存器:IP

⚠ 段寄存器: CS、SS、DS、ES

┈ 标志(flag)寄存器: PSW/FLAGS

别称:程序状态字



### 认识标志寄存器的特殊之处

#### □标志寄存器的结构

- flag寄存器是按位起作用的,也就是说,它的每一位都有专门的含义,记录特定的信息。
- № 8086CPU中没有使用flag的1、3、5、12、13、14、15位,这些位不具有任何含义。

### □标志寄存器的作用

- 用来存储相关指令的某些执行结果
- ─ 用来为CPU执行相关指令提供行为依据
- ⋒ 用来控制CPU的相关工作方式

### ⊒观察寄存器的值

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000 DS=\*\*\* ES=\*\*\*\* SS=\*\*\*\* CS=\*\*\*\*\* IP=0100 NU UP EI PL NZ NA PO NC



### □直接访问标志寄存器的方法

- nushf:将标志寄存器的值压栈;
- popf:从栈中弹出数据,送入标志寄存器中。

| 15 14 13 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5 | 4  | 3 | 2  | 1 | 0  |
|-------------|----|----|----|----|----|----|---|----|---|----|---|----|
|             | OF | DF | IF | TF | SF | ZF |   | AF |   | PF |   | CF |

|           | 标志 | 值为1 | 值为0 | 意义 |                    |
|-----------|----|-----|-----|----|--------------------|
| Overflow  | OF | OV  | NV  | 溢出 |                    |
| Direction | DF | DN  | UP  | 方向 | Danitiva           |
| Sign      | SF | NG  | PL  | 符号 | Positive /negative |
| Zero      | ZF | ZR  | NZ  | 零值 | THEBUTIVE          |
| Parity    | PF | PE  | РО  | 奇偶 | odd/even           |
| Carry     | CF | CY  | NC  | 进位 |                    |
|           |    |     |     |    |                    |

### ZF-零标志(Zero Flag)



- □ ZF标记相关指令的计算结果是否为0
  - ② ZF=1,表示"结果是0",1表示"逻辑真"
  - ② ZF=0 ,表示 "结果不是0" , 0表示"逻辑假"

#### 显示例

| 指令       | 执行结果     |
|----------|----------|
| mov ax,1 | ZF=1 ,   |
| and ax,0 | 表示"结果是0" |
| mov ax,1 | ZF=O ,   |
| or ax,0  | 表示"结果非0" |

- □在8086CPU的指令集中,有的指令的执行是影响标志寄存器的,比如:add、sub、mul、div、inc、or、and等,它们大都是运算指令,进行逻辑或算术运算;
- □有的指令的执行对标志寄存器没有影响,比如:mov、push、pop等,它们大都是传送指令。
- □使用一条指令的时候,要注意这条指令的全部功能, 其中包括执行结果对标记寄存器的哪些标志位造成 影响。

### PF-奇偶标志(Parity Flag)



- □ PF记录指令执行后,结果的所有二进制位中1的个数:
  - ⑩ 1的个数为偶数, PF = 1;
  - ⁴ 1的个数为奇数, PF = 0。

### □示例

| 指令        | 执行结果                                    |
|-----------|-----------------------------------------|
| mov al,1  | 结果为0000 1011B = 0000 0001B + 0000 1010B |
| add al,10 | 其中有3(奇数)个1,则PF=0;                       |
| mov al,1  | 结果为00000011B = 0000 0001B or 0000 0010B |
| or al,2   | 其中有2(偶数)个1,则PF=1;                       |

### SF-符号标志(Sign Flag)

- 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

  OF DF IF TF SF ZF AF PF CF
- □ SF记录指令执行后,将结果视为有符号数
  - ⁴ 结果为负, SF = 1;
  - ⁴ 结果为非负, SF = 0。

见机行事

#### □示例

| 指令                           | 执行结果                               |
|------------------------------|------------------------------------|
| mov al,10000001B<br>add al,1 | 结果al 为10000010B ,<br>为负数 , 则SF=1 ; |
| sub ax, ax                   | 结果ax为0,为非负数,<br>故SF=0;             |

1000 0010B作为有符号数对应-111 1110B,即-126D 1000 0010B作为无符号数对应+1000 0010B,即+130D

1000 0010B究竟算正数还是负数?

- 基础:有符号数与补码
- □计算机中有符号数一律用补码来表示和存储。
- □正整数的补码是其二进制表示,与原码相同
  - ⑩ 例:+9的补码是00001001
- □负整数的补码,将其对应正数二进制的所有位取 反(包括符号位,0变1,1变0)后加1
  - ⑩例:-5的补码
    - □ -5对应正数5(00000101)→所有位取反 (11111010)→加1(11111011)
    - 所以-5的补码是11111011。

SF 标志是CPU对有符号数运算结果的一种记录。 将数据当作有符号数来运算的时候,通过SF可知结果的正负;将数据当作无符号数来运算,SF的值则没有意义,虽然相关的指令影响了它的值。

### CF-进位标志(Carry Flag)

- 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

  OF DF IF TF SF ZF AF PF CF
- □在进行<u>无符号数运算</u>的时候, CF记录了运算结果的最高有效位向更高位的进位值, 或从更高位的借位值。
- □CF记录指令执行后,
  - 有进位或借位 , CF = 1
  - ← 无进位或借位, CF = 0

#### 显示例

| 指令                      | 执行结果                                 |
|-------------------------|--------------------------------------|
| mov al,98H<br>add al,al | (al)=30H,CF=1,CF记录了最<br>高有效位向更高位的进位值 |
| add al,al               | (al)=60H,CF=0,CF记录了最<br>高有效位向更高位的进位值 |
| sub al,98H              | (al)=C8H,CF=1,CF记录了向<br>更高位的借位值      |

- □对于位数为N的无符号数来说,其对应的二进制信息的最高位即第N-1位,是最高有效位
- □假想存在的第N位,就是相对最高有效位的更高位。



### OF-溢出标志(Overflow Flag)



- □在进行<u>有符号数运算</u>的时候,如结果超过了机器所能表示的范围称为**溢出**。
- ■OF记录有符号数操作指令执行后,
  - <sup>♠</sup> 有溢出, OF = 1
  - <sup>↑</sup> 无溢出, OF = 0

### □示例

| 指令          | 执行结果                      |
|-------------|---------------------------|
| mov al,98   | (al)=197,超出了8位有符号数        |
| add al,99   | 的范围(-128~127),OF=1        |
| mov al,0F0H | (al)=(-16)+(-120)=-136,有溢 |
| add al,88H  | 出,OF=1                    |

### 旦机器所能表达的范围

- 以8位运算为例,结果用8位寄存器或内存单元来存放,机器所能表示的范围就是-128~127。
- 同理,对于16 位有符号数,机器所能表示的范围是-32768~32767。
- □注意,此处溢出只是对有符号数运算而言。

#### **□CF和OF的区别**

- ₾ CF是对无符号数运算有意义的进/借位标志位
- ① OF是对有符号数运算有意义的溢出标志位

#### □应用

| 指令                        | 执行结果                             |
|---------------------------|----------------------------------|
| mov al,0F0H<br>add al,88H | CF=1, OF=1,当无符号数运算有进位,当有符号数运算有溢出 |

## 综合: 一条指令会带来多个标志寄存器的变化

| 指令           | CF | OF                                                                           | SF                  | Z                | F                      | P        | F |
|--------------|----|------------------------------------------------------------------------------|---------------------|------------------|------------------------|----------|---|
| sub al, al   |    |                                                                              |                     |                  |                        |          |   |
| mov al, 10h  |    | BB DOSBox 0.74,                                                              | Cpu speed: 3000 cyc | es, Frameskip 0, | Program: [             | DEB 🗆    | X |
| add al, 90h  |    | C:\>debug<br>−a<br>073F:0100 sub al                                          | , al                |                  |                        |          |   |
| mov al, 80h  |    | 073F:0102 mov al<br>073F:0104 add al<br>073F:0106 mov al                     | ,10<br>,90<br>,80   | 志 值为1<br>DF OV   | 值为0<br>NV              | 意义<br>溢出 |   |
| add al, 80h  |    | 073F:0108 add al<br>073F:010A mov al<br>073F:010C add al<br>073F:010E mov al | , fc<br>, 5         | OF DN<br>SF NG   | UP<br>PL               | 方向<br>符号 |   |
| mov al, 0FCh |    | 073F:0110 add al<br>073F:0112<br>-r<br>6X=0000 BX=0000                       | •                   | ZF ZR<br>PF PE   | NZ<br>PO               | 零值 奇偶    |   |
| add al, 05h  |    |                                                                              | 00-0725 00-072      | CF CY            | NC                     | 进位       |   |
| mov al, 7Dh  |    | AX=0000 BX=0000<br>DS=073F ES=073F<br>073F:0102 B010                         |                     | P=0102 NV UP     | SI=0000<br>EI PL ZR NA |          |   |
| add al, OBh  |    |                                                                              |                     |                  |                        |          |   |

# 综合: 一条指令会带来多个标志寄存器的变化

| 指令           | CF | OF | SF | ZF | PF |
|--------------|----|----|----|----|----|
| sub al, al   | 0  | 0  | 0  | 1  | 1  |
| mov al, 10h  |    |    |    |    |    |
| add al,90h   |    |    |    |    |    |
| mov al, 80h  |    |    |    |    |    |
| add al, 80h  |    |    |    |    |    |
| mov al, 0FCh |    |    |    |    |    |
| add al, 05h  |    |    |    |    |    |
| mov al 7Dh   |    |    |    |    |    |
| add al, 0Bh  |    |    |    |    |    |