Translate using an equation or an inequality. Do not solve.

29. The quotient of twice a number and 7 is 20.

$$\frac{2X}{7}$$
 = 20

30. Five less than the product of a number and 3 is 14.

31. Seven times the difference of a number and 4 is no more than 10.

32. The product of a number and four, increased by one, is at least 7.

Topic #6: Solving Equations

Solve each equation.

33.
$$18 = 3 - 3a$$

$$-3 - 3$$

$$15 = -3a$$

$$-3 - 3$$

34.
$$4 - \frac{1}{2}n = -12$$

$$\frac{-4^{2}-4}{-2\cdot -\frac{1}{2}n = -16\cdot -2}$$

35.
$$\frac{3}{4}x + 17 = 23$$

$$X = 8$$

36.
$$9y - 4(y+1) = 31$$

$$5y - 4 = 31$$

 $+4 + 4$
 $5y = 35$
 5

$$\frac{5\gamma = 35}{5}$$

37.
$$-6(w-4)+8w=2(w+9)$$

$$-6w+24+8w=2w+18$$

$$2W + 24 = 2W + 18$$

 $-2W$ $-2W$
 $24 \neq 18$

38.
$$3m - (7m + 12) = 2(m - 3)$$

$$3m-7m-12=2m-6$$

$$-4m - 12 = 2m - 6$$

 $+4m + 4m$

$$|\mathbf{m}=-1|$$

39.
$$2x - 2(4x - 3) = 6 - 6x$$

 $2x - 8x + 6 = 6 - 6x$
 $-6x + 6 = 6 - 6x$
 $+6x + 6 = 6 - 6x$
 $-6x + 6 = 6 - 6x$
 $+6x + 6 = 6 - 6x$
 $-6x + 6 = 6$
 $-6x + 6 =$

Topic #7: Solving & Graphing Inequalities

© Gina Wilson (All Things Algebra®, LLC), 2012-2018

Topic #1: Relations & Functions

- A relation is a set of ordered pairs
- The <u>domain</u> is the set of X Values and the <u>range</u> is the set of Y Values
- A <u>function</u> is a relation with no repeating X Values
- line

1.

x	-1	2	5	-1
у	7	3	0	2

Domain: 3-1,2,5]

Domain: \(\frac{-3,-2,-1,1,4}\)

24,6,7} Domain:

20,2,3,73 Range:

{-4,-1,0,2} Range:

7-1,2,3,5} Range:

Function? No Function?

Function? No

4.

5.

6.

Domain:

Domain: $\chi \ge -2$

Range: - 4 4 4 5

Range: -1 4 4 4 2

Range:

Function?

Function? Yes

Function? No

Topic #2: Function Notation & Evaluating Functions

7. If
$$f(x) = -x - 7$$
, find $f(-5)$.

$$f(-5)=-(-5)-7$$

= 5-7 = $\begin{bmatrix} -2 \end{bmatrix}$

8. If
$$g(x) = x^2 - 2x + 11$$
, find $g(-2)$.

$$g(-2) = (-2)^2 - 2(-2) + 11$$

= 4 + 4 + 11 = 19

9. If
$$f(x) = 2x^2 - x$$
, find $f(-4) - f(9)$.

$$f(-4) = 2(-4)^2 - (-4) = 36$$

 $f(9) = 2(9)^2 - 9 = 163$

6. If
$$g(x) = x^2 - 2x + 11$$
, find $g(-2)$.

$$g(-2) = (-2)^2 - 2(-2) + 11$$

= 4 + 4 + 11 = 1

10. If
$$h(x) = 1 - \frac{2}{3}x$$
, find $h(-6)$.

$$h(-6) = 1 - \frac{2}{3}(-6) = 1 + 4$$

11. Find the range of the function f(x) = 3x - 8if the domain is {-4, 2, 7}.

$$f(-4) = 3(-4) - 8 = -20$$

$$f(2) = 3(2) - 8 = -2$$

$$f(7) = 3(7) - 8 = 13$$

13. Given the graph of f(x) below, find f(3).

12. Find the range of the function $f(x) = -x^2 + 4x$ if the domain is {-2, 0, 1}.

$$f(-2) = -(-2)^2 + 4(-2) = -12$$

$$f(0) = -(0)^2 + 4(0) = 0$$

$$f(1) = -(1)^2 + 4(1) = 3$$

$$\sqrt{3-12,0,3}$$

14. Given $f(x) = \frac{5}{2}x + 7$, if f(x) = -13, find x.

$$-13 = \frac{5}{2} \times +7$$

$$\frac{-7}{5} = \frac{5}{2} \times \cdot \frac{2}{5}$$

Topic #3: Zeros of Functions

- The zeros of a function are where it passes through the $\underline{X} \underline{0} \times \underline{i} S$
- To find the zeros, set the equation equal to \mathcal{O}_{-} , and solve for x!

Find the zeros of each function graphed below.

15.

X=2

16.

X=-3

17.

18.
$$f(x) = 2x + 2$$

19.
$$f(x) = \frac{2}{5}x - 4$$

$$0 = \frac{2}{5} \times -4$$

 $X = \{-1, 4\}$ **20.** $f(x) = x^2 + 3x - 40$

$$0 = X^2 + 3x - 40$$

$$\frac{0 = (X+8)(X-5)}{X+8=0} \quad \begin{array}{c|c} X-5=0 \\ X=-8 & X=-5 \end{array}$$

© Ging Wilson (All Things Algebra®, LLC), 2012-2018

21.
$$f(x) = 2x^{2} - 72$$

 $Z \times^{2} - 72 = 0$
 $Z(X^{2} - 36) = 0$
 $Z(X + 6)(X - 6) = 0$
 $Z \neq 0 X + 6 = 0 X - 6 = 0$
 $X = -6 = 0$

22.
$$f(x) = x^2 - 10x + 25$$

 $X^2 - 10X + 25 = 0$
 $(X-5)(X-5) = 0$
 $X-5=0$
 $X=5$
 $X=5$
 $X=5$

2.
$$f(x) = x^2 - 10x + 25$$

 $X^2 - 10X + 25 = 0$
 $(X - 5)(X - 5) = 0$
 $X - 5 = 0$

Topic #4: Slope

There are $_ \Box$ __ types of slope. Sketch them below:

(zero)

Find the slope of each line graphed below.

To find the slope formula given two points (x_1, y_1) and (x_2, y_2) , use the SLOPE FORMULA:

$$M = \frac{y_2 - y_1}{x_2 - x_1}$$

Find the slope of the line passing through the given two points.

$$M = \frac{-4+1}{-3+12} = \frac{-3}{9} = \boxed{\frac{-1}{3}}$$

$$m = \frac{-2-7}{-11+11} = \frac{-9}{0}$$

$$m = \frac{-7+3}{11-9} = \frac{-4}{2} = \boxed{-2}$$

$$M = \frac{11-11}{-9-12} = \frac{0}{-21} = 0$$

Slope-Intercept Form:

AX+BY=C

32. Write a linear equation in slope-intercept form with a slope of -1 and a y-intercept of 4.

33. Write a linear equation in slope-intercept form with a slope of 34 and a y-intercept of -5.

Standard Form:

$$y = \frac{3}{4}x - 5$$

For each of the following equations, write the equation in slope-intercept form, then identify the slope and y-intercept.

34. x - y = 3

-4=	-X+	3
宁	-1	-

Slope-Intercept Form: $\frac{1}{\sqrt{1-x^2-x^2}}$

35. 4x + 10y = -10

$$\frac{104}{10} = \frac{-4x}{10} = \frac{10}{10}$$

Slope-Intercept Form: $\sqrt{\frac{2}{5}} \times -1$

36. 4x + y = 8

 $\frac{-3y}{-2} = \frac{-x}{-3} + \frac{6}{-3}$

Slope: y = -4x + 8Slope: y = -4x + 8

Slope-Intercept Form: $\sqrt{-\frac{1}{3}} \times -2$

Topic #6: x- and y-Intercepts

- To find the x-intercept of a line, set $\underline{\hspace{1cm}}$ equal to $\underline{\hspace{1cm}}$ and solve for $\underline{\hspace{1cm}}$
- To find the y-intercept of a line, set X equal to D and solve for Y.

Find the x-intercept and y-intercept of each linear equation.					
38. $y = 2x - 10$		x-intercept:	39. $y = -\frac{3}{2}x + 9$		x-intercept:
0=2X-10	y=210)-10	5; (5,0)	0=-3x+9	Y= -를(0)+9	6,01)
10=2X	4=0-10	y-intercept:	-9= -3x	Y=0+9	y-intercept:
5=X	y=-10	-10; (0,-10)		Y=9	9; (0,9)
40. $2x + y = -2$		x-intercept:	41. $3x - 4y = 24$		x-intercept:
2x+0=-2	2(0)+4=-2	-1; (-1,0)	3x-4(6)=24 3x-0=24	3(0)-4y=24 0-4y=24	8) (8,0)
2X=-2	0 + y = -2	y-intercept:	3X=24	-44=24	y-intercept:
X=-1	y=-2	-2; (0,-2)	X = 8	Y=-6	-6; LO,-6)

Graph each linear equation. Convert to slope-intercept form when necessary.

42. y = -3x + 7

43. y = 4x

44.
$$x - y = 5$$

45.
$$x + 2y = 4$$

$$y = -\frac{1}{2}x + 2$$

46.
$$-10x + 8y = -8$$

47.
$$3x - 2y = -6$$

48.
$$x = -5$$

49. y = 1

Determine which line best represents the line shown on the graph.

50

A.
$$x + 4y = -12$$

$$\mathbf{B.} \ x - 4y = 12$$

C.
$$4x + y = -3$$

D.
$$4x - y = 3$$

A.
$$x - y = 2$$

B.
$$x - y = -2$$

D.
$$x + y = -2$$

Name: _____

Algebra 1 Review: Packet #3

Topic #1: Writing Linear Equations Given a Point and a Slope

When given a point (x_1, y_1) and the slope, m, use the point-slope formula:

Write a linear equation in slope-intercept form using the given point and slope.

1.
$$(2, 7)$$
; slope = 3

$$y-7 = 3(x-2)$$

 $y-7 = 3x-6$
 $+7$
 $+7$
 $y = 3x+1$

2.
$$(1, 4)$$
; slope = -1

3. (4, -2); slope =
$$-\frac{1}{2}$$

$$y+2 = -\frac{1}{2}(x-4)$$

 $y+2 = -\frac{1}{2}x + 2$
 $-\frac{1}{2}x + 2$
 $y = -\frac{1}{2}x$

4. (6, -1); slope =
$$\frac{2}{3}$$

$$y+1 = \frac{2}{3}(x-6)$$

Topic #2: Writing Linear Equations Given Two Points

When given two ordered pairs (x_1, y_1) and (x_2, y_2) , use the slope formula followed by point-slope formula:

$$M = \frac{y_2 - y_1}{x_2 - x_1}$$

$$y-y_1=m(x-x_1)$$

Write a linear equation in slope-intercept form using the given two points.

5. (-1, 1) and (-3, -7)

$$M = \frac{-7 - 1}{-3 + 1}$$

$$M = \frac{-8}{-3}$$

$$M = \frac{1-3}{5-0}$$

$$y-3 = \frac{-2}{5}(x-0)$$

$$M = \frac{-2}{5}$$

$$y-3 = -\frac{2}{5}x$$

$$y = \frac{-2}{5}x + 3$$

$$M = \frac{2+3}{1+2}$$

 $M = \frac{5}{2}$

$$y^{-2} = \frac{5}{3}(x-1)$$

$$m = \frac{-4-1}{-6-4}$$

$$M = \frac{-5}{-10}$$

Topic #1: Systems of Equations

- 1. What is a system of equations? Two linear equations on the same graph
- 2. The possible solutions are one solution (X,y) for intersecting lines; MO solution (+) for parallel lines; infinite solutions (00) for identical lines

Topic #2: Solving Systems Graphically

Solve each system of equations by graphing.

6.
$$\begin{cases} x + 5y = -10 \\ 4x - 2y = -18 \end{cases}$$

$$5y = -x - 10$$

 $y = -\frac{1}{5}x - 2$

$$-2y = -4x - 18$$

 $y = 2x + 9$

Topic #3: Systems of Equations Algebraically

Use either substitution or elimination to solve each system of equations.

7.
$$\begin{cases} x + y = -4 \\ x - y = 2 \end{cases}$$

$$2X = -2$$

$$1+y=-4$$

$$y=-3$$

8.
$$\begin{cases} x + y = 4 \\ 2x - 5y = 15 \end{cases}$$

$$\frac{2x + 2y = 8}{-(2x - 5y = 15)}$$

$$\frac{-7}{-(2x - 5y = 15)}$$

$$X = -1$$

Topic #6: Systems of Linear Inequalities

8. Keesha bought 11 binders and notebooks from the store and spent \$45. Binders cost \$6 each and notebooks cost \$2.50 each. Which two equations can be used to find the number of binders, b, and notebooks, n, she purchased?

প্র	b+n=11		6b + 2.5n = 1	1
	b+n=45	Image: second control of the control	6b + 2.5n = 4	5

9. Which graph represents the solution to the -44 4 -X-12 inequality $x - 4y \le -12$?

10. Which inequality represents the graph?

F.
$$y \ge \frac{3}{2}x + 2$$

G.
$$y \le \frac{3}{2}x + 2$$

(H.)
$$y > \frac{3}{2}x + 2$$

J.
$$y < \frac{3}{2}x + 2$$

11. Which ordered pairs are solutions to the inequality 2x - y > -4? Check all that apply.

12. Which inequality represents the graph?

A.
$$x < -2$$

$$\mathbf{B}$$
, $x > -2$

$$C. y > -2$$

D.
$$y < -2$$

13. Which point on the graph below is included in the solution to the following system of equations?

$$\bigcirc$$
 D

14. Which graph represents the solution to the system of inequalities below?

Name:

Algebra 1 Review: Packet #5

Topic #1: Simplifying Monomials

PRODUCT RULE	QUOTIENT RULE	POWER RULE	NEGATIVE EXPONENT RULE
$x^a \cdot x^b = \chi^{a+b}$	$\frac{x^a}{x^b} = \chi^{\alpha - b}$	$(x^a)^b = \chi^{a \cdot b}$	$x^{-a} = \frac{1}{\chi a}$
Simplify each expression	n.		
1. $7m \cdot m^2 \cdot 8v^5$ $56 \text{m}^3 \text{V}^5$	2. $(4x^3y^5)^3$	3. $\frac{35k}{5k}$	7 K8
4. $(-2a^{6}bc^{3})^{2} \cdot -5ab^{2}$ $4a^{12}b^{2}c^{6} \cdot -4a^{13}b^{4}c$	$5. \frac{r^{16}s^2l^3}{r^4s^2l^8} \qquad r^{1}$	$\frac{2}{5}$ 6. $\frac{(-3)}{5k^3}$	$\frac{9k^{6})^{2}}{15k^{6}} = \frac{9k^{12}}{15k^{6}}$ =\frac{3k^{6}}{5}
7. $\left(\frac{4m^4n^2}{6m^5n}\right)^2 \qquad \left(\frac{2n}{3m}\right)^2$ $= \frac{4n^2}{9m^2}$	2 8. $(-2y^4) \cdot (xy^3)^2$ $(-2y^4) \cdot (x^2y^2) \cdot (-2x^2y^{10}2x^2y^{10}15x^2)$	$\frac{13x^2y^{10}}{13x^2y^{10}}$	$ \begin{bmatrix} \frac{p^2q^8}{p^{-1}q^2} \\ -\frac{\rho^3q^6}{4} \end{bmatrix} $
10. $\frac{a^{12}b^{-3}}{(ab)^{-4}}$ $\frac{a^{12}b^{-3}}{a^{-4}b^{-4}}$ = $a^{14}b^{-4}$	11. $(2v)^{-2} \cdot (6v^{-2})$	3	$\frac{c^{-7}d}{3c^{-2}d^{5}}\right)^{4} \frac{c^{-28}d^{4}}{8 c^{-8}d^{20}}$ $= \frac{1}{8 c^{20}d^{10}}$

Topic #2: Simplifying Polynomials

Simplify each expression.	
13. $(n^2 - 3n + 14) + (3n^2 + n - 25)$	14. $(2x^2 + 3x - 2) - (x^2 - 4x - 1)$
$4n^2-2n-11$	$X^2 + 7X - 1$
15. $(5-8k)-(8k-13+2k^2)$	16. $(6+m^3+m-3m^2)+(7m^3+11-6m+m^2)$
-2K2-16K+18	$8m^3 - 2m^2 - 5m + 17$
17. $3a^2b^3(2a^2-7ab+b^2)$	18. $8p(p^2+7p-2)-(9p^3-2p^2)$
6a4b3-21a3b4 + 3ab5	$8p^3 + 56p^2 - 16p - 9p^3 + 2p^2$
	-p3+58p2-16p

Topic #3: Simplifying Radicals (Square Roots and Cube Roots)

List the first 15 perfect square numbers: 1,4,9,16,25, 36,49,64,81,100, 121, 144, 169, 196, 225 Write each expression in simplest form. **32.** √75 **34.** √448 **33.** $\sqrt{40}$ **35.** √392 V4.10 125.13 V196. VZ V4.V7 List the first 10 perfect cube numbers: 1,8,27,64,125,216,343,512,729,1000 Write each expression in simplest form. **36.** √√48 **38.** ³√108 **29.** √√192 **37.** ³√250 ₹8.36 \$125.3/2 327. 34 364.33

Topic #4: Simplifying Monomial Square Roots

42. $\sqrt{72p^{16}}$ $\sqrt{36p^{16}}$ $\sqrt{2}$ $\sqrt{2}$
n 6p8 \[\frac{7}{2} \]
AF 700.14
45. $\sqrt{28ab^4}$
V464 J7a
$2b^2\sqrt{7a}$
48. $\sqrt{147c^{15}d^{20}}$
13rs 149014120 13c
V3rs 7c7d10 V3c

Klgebra 1 Review QUIZ 5

Name: _____

1. Which is equivalent to the expression below?

$$(3x^2-2x+5)-(2x^2-5x+1)$$

- **A.** $x^2 + 3x + 4$
 - **B.** $x^2 7x + 6$
 - **C.** $x^2 3x 6$
 - **D.** $x^2 7x + 4$
- 2. Which is equivalent to $(-2ab^3)(-3a^2b^5)$?
 - **F.** -5ab
 - **G.** $6a^2b^{15}$
 - H. $6a^3b^2$
 - (3.) $6a^3b^8$
- 3. Which is a simplified form of the following expression?

$$(xy^3)(xy)^4$$

- **A.** x^2y^7
- **B.** x^4y^{12}
- (c.) x^5y^7
 - **D.** x^5y^{12}

- 4. If $ab \neq 0$, which is equivalent to $\frac{-12a^3b^2}{6ab^2}$?
 - **F.** $2a^2b$
 - **(G.)** $-2a^2$
 - **H.** $-6a^{2}h$
 - **J.** $6a^4b^4$
- 5. Which is equivalent to $(2x^2y) \cdot (8x^3y^3)$?

16x-5y-2

- **B.** $\frac{16}{x^6y^2}$
- C. $\frac{10}{x^5 v^2}$
- **D.** $10x^6y^2$
- 6. Which is equivalent to $\left(\frac{-2m^2n^3}{m^2n^4}\right)^2$?
 - **F.** $\frac{-4m}{n^2}$

 $\left(\frac{-2}{n}\right)^2$

- **G.** $\frac{-4}{n^2}$
- **H.** $\frac{4m}{n^2}$
- $(\mathbf{J}.) \frac{4}{n^2}$
- 7. Fill in the boxes with values that make the statement true

$$\frac{p^5q^6}{p^{-3}q^3} = p^{3}q^3$$

Name: _____

Algebra 1 Review: Packet #6

@ Gina Wilson (All Things Algebra®, LLC), 2012-2018

Topic #1: Factoring Polynomials

· · · · · · · · · · · · · · · · · · ·	coring Polynomials			
Factor each p	· · · · · · · · · · · · · · · · · · ·			
Greatest	1. 21 <i>c</i> –12		2. $x^6y + 8x^2y$	3. $75a^2b^3c - 30ab^2$
Common Factor (GCF)	3(70-4)		$x^2y(x^4+8)$	15ab² (5abc - 2)
Difference	4. w ² - 64		5. $9k^2 - 1$	6. $4m^2 - 81n^2$
of Squares $(a^2 - b^2)$	(%+8)(%. - 8)		(3K+1)(3K-1)	(2m+9n)(2m-9n)
	7. $p^2 - 13p + 30$		8. $y^2 - 3y - 40$	9. $a^2 + 12a + 36$
Trinomial $(x^2 + bx + c)$	(p-3)(p-10	o)	(y-8)(y+5)	(a+b)(a+b) = $(a+b)^2$
	10. $3x^2 + 10x + 3$		11. $12c^2 + 5c - 2$	12. $4v^2 - 16v + 7$
	$\chi^2 + 10\chi + 9$		c2+5c-24	V2-16V +28
Trinomial $(\underline{a}x^2 + bx + c)$	(x+9)(x+1))	(c+8)(c-3)	(v-14)(v-2) 7 4
(at Tox To)	(x+3)(3x	+1)	(3c+2)(4c-1)	(24-7)(24-1)
	oolynomial complet			
13. $12x^2 - 12$	1	14. $n^3 - 4$	•	15. $8m^2 - 21$
, , , , , ,		nin	$\frac{2-4n-40)}{}$	Prime
12(X+1))(X-1)	Incr	n-10)(n+4)	Cannot be
				factored)
16. $5w^2 - 15w$	-20	17. 8v - 6	18 v ³	18. $4x^2 - 10x + 4$
5(W ² -3	3W-4)	2v(4	1-49v2)	212X2-5X +2)
15/W-4	((+W)(+		2+7v)(2-7v)	$2(X^2-5X+4)$
1000	77 (1 1 7)	20(2	2 7 10/(2 10)	l `
				$2(X-\frac{1}{2})(X-\frac{1}{2})$ $2(X-\frac{1}{2})(2X-1)$
19. 27 <i>ab</i> – 75 <i>a</i>	- \		-16y-16	21. $3h^2 - 6h + 3$
3ab (9	$-25b^2$)	I	42-44-4)	$3(h^2-2h+1)$
3ab (3+	5b)(3-5b)		12-44-12)	3(n-1)(h-1)
			1-6)(4+2)	3(h-1)2
		140	1-2)(34+2)	

Topic #2: Dividing Polynomials by a Binomial (using Factoring)

Find each quotient.

22.
$$\frac{x^{2}-12x+20}{x-10}$$

$$\frac{(X-10)(X-2)}{X-10}$$

$$= X-2$$

23.
$$\frac{3y^2 - 16y + 5}{3y - 1}$$

$$\frac{(3y - 1)(y - 5)}{3y - 1}$$

24.
$$(k^2-1)\div(k+1)$$

 $\frac{(k+1)(k-1)}{(k+1)}$
 $= k-1$

Topic #3: Graphing Quadratic Equations

A quadratic equation creates a U-shaped curve called a PARABOLA.

Standard Form:

$$y = ax^2 + bx + c$$

Axis of Symmetry: $x = \frac{-b}{2a}$

Vertex Form:

$$y = \alpha(x-h)^2 + K$$

Axis of Symmetry: x = h; Vertex: (h, k)

Graph each equation using a table of values. Identify all key characteristics.

25.
$$y = x^2 - 6x + 8$$

Domain: 1R

Range: y ≥ -1

Axis of Symmetry: $\chi = 3$

Vertex: (3,-1)

x-intercepts (zeros): $\chi = \{2, 4\}$

y-intercept: (0,8)

26.
$$y = -x^2 + 4x - 5$$

x	у
-1	-10
0	-5
	-2
2.	-1
3	-2
4	-5
5	-10

Domain: R

Range: 从 ∠ - 1

Axis of Symmetry: $\chi = 2$

Vertex: (2,-1)

x-intercepts (zeros):

y-intercept: (0,-6)

Topic #4: Transformations of the Quadratic Function

Reca	ll that vertex fo	rm des	cribes transforn	nations from the qu	ıadratic _l	parent function, $y = x^2$.
			Given	$y = a(x - h)^2 + k$:		
	Translat	ions (Sh	ifts)	Reflections	Dil	ations (compress/stretch)
+ /1	shifts left	+ k	shifts up	If a is negative,	a > 1	creates a vertical stretch
- h	shifts right	- k	shifts down	the graph reflects over the x-axis.	a < 1	creates a vertical compression

Given each equation, describes the transformations from the parent function $y=x^2$.

30.
$$y = (x+5)^2 + 3$$

Translated left 5 and up 3

Vertical stretch by 2; Reflected over x-axis; Compress by 1/3;

Translate left I and Translate right 4 down 4

Transformations from the function $y = x^2$ are described below. Write an equation to represent the new function.

33. translated 3 units right and 2 units up

 $y = (x-3)^2 + 2$

34. vertically stretched by a factor of 4, then translated 5 units

 $y = 4x^2 - 5$

35. reflected over the x-axis, then translated 7 units left and 1 unit up

 $u = -(X+7)^2 + 1$

Topic #5: Solving Quadratic Equations

- The solutions to a quadratic equation are the point(s) at which the parabola intersects the X - 0XiS
- Solutions are also referred to as **roots**, **zeros**, or x-**intercepts**.
- A quadratic equation can have two solutions, one solution, or no real solutions.

Methods to Solve a Quadratic Equation:

- Factoring
- Square Roots
- Completing the Square
- Quadratic Formula

Solve each equation. Simplify all irrational solutions.

36. $x^2 + 8x = 0$

x=0 x+8=0 x=-8

X= {-8,0}

37. $4x^2 = 10x$

 $4x^2 - 10X = 0$

2X=0 2X-5=0

X={0,至}

38.
$$2x^2 - 72 = 0$$

X={-6,6}

39. $4x^2 - 43 = 6$

 $4x^2 - 49 = 0$

(2x+7)(2x-7) = 0 2x+7=0 2x-7=0

40.
$$\frac{1}{2}x^2 - 30 = 10$$

$$2.\frac{1}{2}x^2 = 40.2$$

$$\sqrt{X^2} = 80$$

X= = 415

41. $9 - x^2 = 17$

$$-X^2 = 8$$

$$\sqrt{\chi^2} = \sqrt{-8}$$

42. $x^2 + 5x = 6$	43. $x^2 = 18x - 81$
$X^2 + 5x - 6 = 0$	$\chi^2 - 18\chi + 81 = 0$
(x+6)(x+1)=0	(x-9)(x-9)=0
X+6=0 X-1=0	X-9=0 X-9=0
X=-6 $X=1$	x=9 $x=9$
X= {-6,1}	X= {9}
44. $x^2 - 4x - 14 = 0$	45. $-x^2 - 14x = 37$
$X^2 - 4x = 14$	$\chi^2 + 14 \times = -37$
$(-2)^2 = 4$	(7)2=49
$X^2 - 4 \times +4 = 14 + 4$	x2 + 14x +49 = -37 +49
$\sqrt{(\chi-2)^2} = \sqrt{18}$	$\sqrt{(x+7)^2} = \sqrt{12}$
X-2 =±3 √2	•
$X = \{2 \pm 3\sqrt{2}\}$	X+7 = ± 2√3
x (2 - 3 \ 2)	$X = \{-7 \pm 2\sqrt{3}\}$
46. $3x^2 = 30 - 9x$	47. $6x^2 - x - 2 = 0$
3x2 + 9x -30 =0	$X^2 - X - 12 = 0$
$3(x^2+3x-10)=0$	(X-4)(X+3)=0
3(x+5)(x-2)=0	6 6
	(3x-2)(2x+1)=0
$3 \neq 0$ $X + 5 = 0$ $X - 2 = 0$ $X = 2$	$3 \times -2 = 0$ $2 \times +1 = 0$ $\chi = \frac{2}{3}$ $\chi = -\frac{1}{2}$
	X== X===
X={-5,2}	$\chi = \left\{ -\frac{1}{2}, \frac{2}{3} \right\}$
48. $2x^2 + 8x - 3 = 0$	49. $4x^2 - 10x = 5$
$\chi = -8 \pm \sqrt{8^2 - 4(2)(-3)}$	$4x^2 - 10x - 5 = 0$
2(2)	$X = \frac{10 \pm \sqrt{(-10)^2 - 4(4)(-5)}}{2(4)}$
$X = -8 \pm \sqrt{64 + 24}$	
4	$X = 10 \pm \sqrt{109 + 80}$

X= -8± 2√22

$$X = \frac{10^{\pm} \sqrt{100 + 80}}{8}$$

$$X = \frac{10^{\pm} \sqrt{180}}{8}$$

$$X = \frac{10^{\pm} \sqrt{180}}{8}$$

$$X = \frac{10^{\pm} \sqrt{5}}{8}$$

$$X = \frac{5^{\pm} \sqrt{5}}{4}$$

$$X = \frac{5^{\pm} \sqrt{5}}{4}$$

$$X = \frac{10^{\pm} \sqrt{5}}{8}$$

$$X = \frac{5^{\pm} \sqrt{5}}{4}$$

$$X = \frac{10^{\pm} \sqrt{5}}{8}$$

$$X = \frac{10^{\pm} \sqrt{5}}{8}$$

$$X = \frac{5^{\pm} \sqrt{5}}{4}$$

$$X = \frac{5^{\pm} \sqrt{5}}{4}$$

$$X = \frac{10^{\pm} \sqrt{5}}{8}$$

$$X = \frac{5^{\pm} \sqrt{5}}{4}$$

$$X$$

Klgebra 1 Review **QUIZ 6**

Name: _____

- 1. Which of the following binomials is a factor of $x^2 - 13x - 30$?
 - **A.** (x + 15)
- **C.** (x-10)
- **B.** (x-3)
- (D)(x+2)
- 2. If the polynomial below is completely factored, which expressions represent its factors? Check all that apply.

$$4x^{2}y (16x^{2}-9)$$

$$4x^{4} \quad \boxed{4}x-3 \quad \boxed{4}x-3y$$

$$\boxed{4}x^{2}y \quad \boxed{8}x-6 \quad \boxed{4}x+3$$

 $64x^4y - 36x^2y$

3. Given Polynomial A and Polynomial B below, which binomial factor do they have in common?

Polynomial A	Polynomial B
$2n^2+n-36$	$n^2 - 10n + 24$
(2N+9)(N-4)	(n-W(n-4)
F. $(n-4)$	H. $(n-12)$
G. $(n+2)$	J. $(n-2)$

4. If the area of a rectangle can be represented by the expression $x^2 + 10x - 24$, which two binomials could represent the length and width of the rectangle?

5. Which polynomials are prime? Check all that apply.

$x^2 - 10x - 35$	$25x^2 + 4$
	$2x^2 - 9x - 10$

6. Which polynomial is equivalent to the expression below if $w \neq 3$?

$$\frac{3w^2-w-24}{w-3}$$

A. $3w^2 - 8$

B. $3w^2 + 8$

C. 3w - 8**D.)** 3w + 8

7. Which quadratic equation has a vertex located at (4, -3)?

F.
$$v = 4x^2 + 3$$

G.
$$y = (x + 4)^2 - 3$$

(H)
$$y = x^2 - 8x + 13$$

J.
$$y = x^2 + 8x - 3$$

8. Which statement is false regarding the quadratic equation below?

$$y = -(x+1)^2 + 4$$

- **A.** The axis of symmetry is x = -1
- **B.** The range is $y \le 4$
- **C.** The x-intercepts are (1, 0) and (-3, 0).
- **D.)** The ν -intercept is (0, 4).
- 9. Which two transformations can be used to obtain the graph of $y = 3(x-5)^2$ from the graph of $v = x^2$?
 - F. A vertical compression and a translation 5 units left.
 - **G.** A vertical stretch and a translation 5 units left.
 - H. A vertical compression and a translation 5 units right.
 - J.) A vertical stretch and a translation 5 units right.