Particle spectrograph

Wave operator and propagator

	$\Delta_{1}^{\#1}{}_{lphaeta}$	$\Delta_{1}^{\#2}_{+ lphaeta}$	$\Delta_{1}^{\#3}{}_{lphaeta}$	$\Delta_{1^{-}\alpha}^{\#1}$	$\Delta_{1^{-} \ lpha}^{$ #2}	$\Delta_1^{\#3}{}_{lpha}$	$\Delta_{1^{-}\alpha}^{\#4}$	$\Delta_{1^{-}\alpha}^{\#5}$	$\Delta_{1^{-}lpha}^{\#6}$ $\mathcal{T}_{1^{-}lpha}^{\#1}$
$\Delta_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{4}{3} \left(-\frac{1}{a_0 + 4a_1 - 4a_2} + \frac{2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9}{2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9)} \right)$	$\frac{2}{3} \sqrt{2} \left(-\frac{1}{a_0 + 4a_1 - 4a_2} - \frac{2(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9)}{2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9)} \right)$	$) - \frac{4(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	0	0	0	0 0
$\Delta_{1}^{\#2}$ † lphaeta	2/2	$-\frac{2}{3(a_0+4a_1-4a_2)}+\frac{8(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	0	0	0	0 0
$\Delta_1^{\#3}$ † lphaeta	$-\frac{4 (2 a_1+a_2+a_9)}{3 (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{4 \left(a_{0}-2 a_{1}-a_{2}\right)}{3 \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	0	0	0	0	0 0
$\Delta_{1}^{\#1} \uparrow^{\alpha}$	0	0	0	$\frac{4(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	$-\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$
$\Delta_1^{\#2}\dagger^{lpha}$	0	0	0	$\frac{4\sqrt{2}(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{8(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	$-\frac{8(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$
$\Delta_1^{#3} \dagger^{\alpha}$	0	0	0	0	0	$-\frac{10}{9(a_0+2a_5-6a_7)}-\frac{1}{6(3a_0-2(a_5-8a_6+5a_7-4a_{13}k^2))}$	$\frac{1}{18} \sqrt{5} \left(\frac{4}{a_0 + 2a_5 - 6a_7} - \frac{3}{3a_0 - 2a_5 + 16a_6 - 10a_7 + 8a_{13}k^2} \right)$	$-\frac{1}{\sqrt{2} (9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2))}$	$-\frac{1}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$
$\Delta_1^{\#4} \uparrow^{lpha}$	0	0	0	0	0	$\frac{1}{18} \sqrt{5} \left(\frac{4}{a_0 + 2a_5 - 6a_7} - \frac{3}{3a_0 - 2a_5 + 16a_6 - 10a_7 + 8a_{13}k^2} \right)$	$-\frac{2}{9(a_0+2a_5-6a_7)}-\frac{5}{6(3a_0-2(a_5-8a_6+5a_7-4a_{13}k^2))}$	$-\frac{\sqrt{\frac{5}{2}}}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	$-\frac{\sqrt{5}}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$
$\Delta_1^{\#5} \uparrow^{lpha}$	0	0	0	$-\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{8(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)}$	$-\frac{1}{\sqrt{2} (9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2))}$	$-\frac{\sqrt{\frac{5}{2}}}{9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)}$	$\frac{8(-a_0+2a_1+a_2)}{9(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))} - \frac{1}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	$(\sqrt{2} (12a_0^2 - 3a_9^2 - a_0 (30a_1 + 15a_2 + 2a_5 - 64a_6 + 22a_7 + 6a_9 - 32a_{13}k^2) + 2(2a_1 + a_2) (a_5 - 32a_6 + 11a_7 - 16a_{13}k^2)))/$ $(9 (2 (2a_1 + a_2) (a_5 + 3a_7) + a_9^2 + a_0 (2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))$ $(3a_0 - 2 (a_5 - 8a_6 + 5a_7 - 4a_{13}k^2)))$
$\Delta_1^{\#6} \dagger^{lpha}$	0	0	0	$\frac{4(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{1}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	$-\frac{\sqrt{5}}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	$(\sqrt{2} (12a_0^2 - 3a_9^2 - a_0 (30a_1 + 15a_2 + 2a_5 - 64a_6 + 22a_7 + 6a_9 - 32a_{13}k^2) + 2(2a_1 + a_2)(a_5 - 32a_6 + 11a_7 - 16a_{13}k^2)))/$ $(9(2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))$ $(3a_0 - 2(a_5 - 8a_6 + 5a_7 - 4a_{13}k^2)))$	$\frac{-4a_0 + 8a_1 + 4a_2}{9(2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))} - \frac{2}{9a_0 - 6(a_5 - 8a_6 + 5a_7 - 4a_{13}k^2)}$
${\mathcal T}_1^{\sharp 1} \! +^lpha$	0	0	0	0	0	0	0	0	0 0
	$\Gamma_{1^{+}\alpha\beta}^{\#1}$ $\Gamma_{1^{+}\alpha\beta}^{\#2}$ $\Gamma_{1^{+}\alpha\beta}^{\#3}$	$\Gamma_{1-\alpha}^{\sharp 1}$ $\Gamma_{1-\alpha}^{\sharp 2}$ $\Gamma_{1-\alpha}^{\sharp 3}$	$\Gamma_{1}^{\#4}{}_{\alpha}$	Γ ₁ ⁻⁵ α	Γ ₁ - α	$h_{1-\alpha}^{\#1}$	6 1 6 4 1 1 1 2 1	$ \Gamma_{0+}^{#1} \qquad \Gamma_{0+}^{#2} $	$\Gamma_{0+}^{#3}$ $\Gamma_{0+}^{#4}$ $h_{0+}^{#1}$ $h_{0+}^{#2}$ $\Gamma_{0-}^{#1}$
$\Gamma_{++}^{\#1} + \alpha\beta \stackrel{\underline{1}}{=} (-a_0)$	$-6a_1 + 5a_2$ $-\frac{a_0 + 2a_1 - 3a_2}{a_1}$ $\frac{1}{a_1} (-2a_1 - a_2 - a_3)$	0 0	0	0	0	0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 a ₀ 2 a ₀ 12 a	$\Gamma_0^{+1} + 0$	0 0 0 0

	$\Gamma_{1}^{\#1}{}_{lphaeta}$	$\Gamma_{1}^{\#2}{}_{\alpha\beta}$	$\Gamma_{1}^{\#3}_{\alpha\beta}$	$\Gamma_{1}^{\#1}{}_{\alpha}$	$\Gamma_{1}^{\#2}{}_{\alpha}$	Γ ₁ ^{#3} α	$\Gamma_{1}^{\#4}{}_{lpha}$	Γ ₁ ^{#5} α	$\Gamma_{1}^{\#6}{}_{lpha}$	$h_{1}^{\#1}\alpha$
$\Gamma_1^{\#1} \dagger^{lphaeta}$	$\frac{1}{4} \left(-a_0 - 6 a_1 + 5 a_2 \right)$	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	0	0	0	0	0	0	0
$\Gamma_{1}^{\#2} \dagger^{lphaeta}$	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{2} \left(-2 a_1 + a_2 \right)$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{2}}$	0	0	0	0	0	0	0
$\Gamma_1^{#3} \dagger^{lphaeta}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{2}}$	$-\frac{3}{4} (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)$	0	0	0	0	0	0	0
$\Gamma_{1}^{#1} \uparrow^{lpha}$	0	0	0	$\frac{1}{12}(a_0-2a_1-a_2)$	$\frac{a_0 - 2 a_1 - a_2}{6 \sqrt{2}}$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$	0
$\Gamma_{1}^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{a_0 - 2 a_1 - a_2}{6 \sqrt{2}}$	$\frac{1}{6}$ $(a_0 - 2a_1 - a_2)$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{6}}$	0
$\Gamma_{1}^{#3} \uparrow^{\alpha}$	0	0	0	0	0	$\frac{1}{12} \left(-9 a_0 - 14 a_5 - 8 a_6 + 50 a_7 - 4 a_{13} k^2 \right)$	$\frac{1}{3} \sqrt{5} (a_5 - 2 a_6 - a_7 - a_{13} k^2)$	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)}{12 \sqrt{2}}$	$-\frac{a_0}{4} + \frac{1}{6} (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)$	0
$\Gamma_{1}^{\#4} \uparrow^{\alpha}$	0	0	0	0	0	$\frac{1}{3} \sqrt{5} (a_5 - 2 a_6 - a_7 - a_{13} k^2)$	$\frac{1}{12} \left(-9 a_0 + 2 a_5 - 40 a_6 + 34 a_7 - 20 a_{13} k^2 \right)$	$\frac{1}{12} \sqrt{\frac{5}{2}} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	$\frac{1}{12} \sqrt{5} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	0
Γ ₁ -5 † ^α	0	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)}{12 \sqrt{2}}$	$\frac{1}{12} \sqrt{\frac{5}{2}} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	$\frac{1}{12} \left(-3 a_0 - 2 \left(6 a_1 + 3 a_2 - 7 a_5 + 8 a_6 - 23 a_7 + 6 a_9 + 4 a_{13} k^2 \right) \right)$	$-\frac{3 a_0 - 6 a_1 - 3 a_2 + 4 a_5 + 16 a_6 + 8 a_7 - 6 a_9 + 8 a_{13} k^2}{6 \sqrt{2}}$	0
$\Gamma_1^{\#6} \uparrow^{lpha}$	0	0	0	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$	$\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$-\frac{a_0}{4} + \frac{1}{6} (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)$	$\frac{1}{12} \sqrt{5} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	$-\frac{3 a_0 - 6 a_1 - 3 a_2 + 4 a_5 + 16 a_6 + 8 a_7 - 6 a_9 + 8 a_{13} k^2}{6 \sqrt{2}}$	$\frac{1}{12} \left(-6 a_0 - 6 a_1 - 3 a_2 + 10 a_5 - 32 a_6 + 38 a_7 - 6 a_9 - 16 a_{13} k^2 \right)$	0
$h_1^{\#1} \uparrow^{\alpha}$	0	0	0	0	0	0	0	0	0	0

	$\Delta_{2}^{\#1}{}_{lphaeta}$	$\Delta^{\#2}_{2^+ lphaeta}$	$\Delta^{\#3}_{2^+lphaeta}$	$\mathcal{T}^{\sharp 1}_{2^+lphaeta}$	$\Delta_{2}^{\#1}{}_{lphaeta\chi}$	$\Delta_{2}^{\#2}{}_{lphaeta\chi}$
$\dagger^{\alpha\beta}$	$\frac{4 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}{2 (2 a_1 + a_2) (a_5 + 3 a_7) + a_9^2 + a_0 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}$	0	$-\frac{4 \left(2 a_{1} + a_{2} + a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1} + a_{2}\right) \left(a_{5} + 3 a_{7}\right) + a_{9}^{2} + a_{0} \left(2 a_{1} + a_{2} - 2 a_{5} - 6 a_{7} + 2 a_{9}\right)\right)}$	0	0	0
$\dagger^{\alpha\beta}$	0	$-\frac{4}{3(a_0+2a_5-6a_7)}$	0	0	0	0
† ^{αβ} -	$\frac{4 \left(2 a_{1} + a_{2} + a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1} + a_{2}\right) \left(a_{5} + 3 a_{7}\right) + a_{9}^{2} + a_{0} \left(2 a_{1} + a_{2} - 2 a_{5} - 6 a_{7} + 2 a_{9}\right)\right)}$	0	$-\frac{4 \left(a_{0}-2 a_{1}-a_{2}\right)}{3 \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	0	0
$\dagger^{\alpha\beta}$	0	0	0	$-\frac{8}{a_0 k^2}$	0	0
αβχ	0	0	0	0	$\frac{4(2a_1+a_2-2a_5-6a_7+2a_9)}{2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)}$	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$
αβχ	0	0	0	0	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	$-\frac{4 \left(a_{0}-2 a_{1}-a_{2}\right)}{3 \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$

									0				(
Total constraints: 12	$\Delta_{1}^{\#1\alpha} = \Delta_{1}^{\#2\alpha} $	$2 \left(\Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#5\alpha} \right) == \Delta_{1}^{\#4\alpha} + \Delta_{1}^{\#3\alpha} \bigg 3$	$\mathcal{T}_{1}^{\#1\alpha} == 0 $ 3	$\Delta_{0+}^{\#1} == 0$ 1	$\Delta_{0+}^{#3} + 3 \Delta_{0+}^{#2} == 2 \Delta_{0+}^{#4}$ 1	$T_{0+}^{*2} == 0$ 1	SO(3) irreps Mult	Source constraints/gauge generators	$\Gamma_3^{#1} + \alpha \beta \chi$	$\Gamma_3^{\#,1}$ $-\frac{3}{4}(a_0+2)$	$a\beta\chi$ $a_5 - 6a_7$)	$\Delta_{3}^{#1} + \alpha \beta \chi = \frac{4}{3(a_0 + 2a_5 - 6a_7)}$	1 3
							Multiplicities	o'					

	0	
$6 a_0 h^{\alpha}_{\alpha} \partial_{\mu} \partial^{\mu} h^{\beta}_{\beta} - 6 a_0 \partial_{\beta} h_{\alpha\mu} \partial^{\mu} h^{\alpha\beta} + 3 a_0 \partial_{\mu} h_{\alpha\beta} \partial^{\mu} h^{\alpha\beta} + 12 a_0 h_{\beta\mu} \partial^{\mu} \Gamma^{\alpha}_{\alpha}{}^{\beta} + 24 a_{13} \partial_{\alpha} \Gamma^{\nu}_{\mu} \partial^{\mu} \Gamma^{\alpha\beta}_{\beta} - 24 a_{13} \partial_{\mu} \Gamma^{\nu}_{\alpha} \partial^{\mu} \Gamma^{\alpha\beta}_{\beta}))[t, x, y, z] dz dy dx dt$	$12 a_{0} \Gamma^{\alpha\beta\mu} \Gamma_{\beta\mu\alpha} + 24 a_{2} \Gamma^{\alpha\beta\mu} \Gamma_{\beta\mu\alpha} - 24 a_{5} \Gamma^{\alpha\beta\mu} \Gamma_{\beta\mu\alpha} + 12 a_{9} \Gamma^{\alpha\beta\mu} \Gamma_{\beta\mu\alpha} + \\ 2 a_{0} \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\beta} - 16 a_{1} \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\beta} - 8 a_{2} \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\beta} + 12 a_{5} \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\beta} + \\ 12 a_{7} \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\beta} - 12 a_{9} \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\beta} + 2 a_{0} \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta} + 12 a_{5} \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta} + \\ 12 a_{7} \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta} - 4 a_{9} \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta} + 24 a_{1} \Gamma^{\alpha\beta\mu} \Gamma_{\mu\beta\alpha} - 12 a_{5} \Gamma^{\alpha\beta\mu} \Gamma_{\mu\beta\alpha} + \\ 12 a_{9} \Gamma^{\alpha\beta\mu}_{\alpha} \Gamma^{\mu}_{\mu\beta\alpha} + 4 a_{0} \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\beta\mu} - 24 a_{7} \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\beta} + 4 a_{9} \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\beta} - \\ 12 a_{7} \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta\mu} + 8 a_{1} \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\mu\beta} + 4 a_{2} \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\mu\beta} - 12 a_{7} \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\mu\beta} + \\ 4 a_{9} \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\mu\beta} + 24 h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + 24 \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi} - 12 a_{0} \Gamma^{\alpha\beta\mu} \partial_{\beta}h_{\alpha\mu} - \\ 6 a_{0} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\beta}h^{\mu}_{\mu} + 6 a_{0} \Gamma^{\alpha\beta}_{\alpha} \partial_{\beta}h^{\mu}_{\mu} - 6 a_{0} h^{\mu}_{\mu} \partial_{\beta}\Gamma^{\alpha}_{\alpha} + 6 a_{0} h^{\mu}_{\mu} \partial_{\beta}\Gamma^{\alpha\beta}_{\alpha} - \\ 12 a_{0} h_{\alpha\mu} \partial_{\beta}\Gamma^{\alpha\beta\mu} + 6 a_{0} h^{\alpha\beta}_{\beta} \partial_{\beta}\partial_{\alpha}h^{\mu}_{\mu} - 3 a_{0} \partial_{\beta}h^{\mu}_{\mu} \partial^{\beta}h^{\beta\mu} + 6 a_{0} h^{\alpha\beta}_{\alpha} \partial_{\mu}h^{\mu}_{\beta} + \\ 6 a_{0} \partial^{\beta}h^{\alpha}_{\alpha} \partial_{\mu}h^{\mu}_{\beta} - 12 a_{0} h^{\alpha\beta}_{\beta} \partial_{\mu}\partial_{\beta}h^{\mu}_{\alpha} + 6 a_{0} h^{\alpha}_{\alpha} \partial_{\mu}\partial_{\beta}h^{\beta\mu}_{\alpha} + 6 a_{0} h^{\alpha\beta}_{\alpha} \partial_{\mu}\partial^{\mu}h_{\alpha\beta} - \\ 6 a_{0} \partial^{\beta}h^{\alpha}_{\alpha} \partial_{\mu}h^{\mu}_{\beta} - 12 a_{0} h^{\alpha\beta}_{\beta} \partial_{\mu}\partial_{\beta}h^{\mu}_{\alpha} + 6 a_{0} h^{\alpha}_{\alpha} \partial_{\mu}\partial_{\beta}h^{\mu}_{\alpha} + 6 a_{0} h^{\alpha\beta}_{\alpha} \partial_{\mu}\partial^{\mu}h_{\alpha\beta} - \\ 6 a_{0} \partial^{\beta}h^{\alpha}_{\alpha} \partial_{\mu}h^{\mu}_{\beta} - 12 a_{0} h^{\alpha\beta}_{\beta} \partial_{\mu}\partial_{\beta}h^{\mu}_{\alpha} + 6 a_{0} h^{\alpha}_{\alpha} \partial_{\mu}\partial_{\beta}h^{\mu}_{\alpha} - \\ 6 a_{0} \partial^{\beta}h^{\alpha}_{\alpha} \partial_{\mu}h^{\mu}_{\beta} - 12 a_{0} h^{\alpha\beta}_{\beta} \partial_{\mu}\partial_{\beta}h^{\mu}_{\alpha} + 6 a_{0} h^{\alpha\beta}_{\alpha} \partial_{\mu}\partial_{\mu}h^{\mu}_{\alpha} - \\ 6 a_{0} \partial^{\beta}h^{\alpha}_{\alpha} \partial_{\mu}h^{\mu}_{\beta} - 12 a_{0} h^{\alpha\beta}_{\beta}\partial_{\mu}\partial_{\mu}h^{\mu}_{\beta} - \\ 6 a_{0} \partial^{\beta}h^{\alpha}_{\alpha} \partial_{\mu}h^{\mu}_{\beta} - 12 a_{0} h^{\alpha\beta}_{\alpha} \partial_{\mu}\partial_{\mu}h^{\mu}_{\beta} - \\ 6 a_{0} \partial^{\beta}h^{\alpha}_{\alpha} \partial_{\mu}h^{\mu}_{\beta} - \\ 6 a_{0} \partial^{\beta}h^{\alpha}_{\alpha} \partial_{\mu}h^{\mu}_{\beta} - \\$	Quadratic (free) action $S = \frac{\int \int \int \int (\frac{1}{24} (4(-2a_0 + 2a_1 + a_2 - 12a_6 + 2a_9) \Gamma_{\alpha \mu}^{\ \mu} \Gamma^{\alpha\beta}_{\ \beta} - 3(a_0 + 8a_1 - 2a_5 - 18) + (a_7 + a_9) \Gamma_{\alpha\beta\mu}^{\ \alpha\beta\mu} \Gamma^{\alpha\beta\mu}_{\ \beta} - 3(a_0 + 8a_1 - 2a_5 - 18)}{a_7 + a_9 \Gamma_{\alpha\beta\mu}^{\ \alpha\beta\mu} - 3a_0 \Gamma_{\alpha\mu\beta}^{\ \alpha\beta\mu} \Gamma^{\alpha\beta\mu}_{\ \alpha\mu\beta} \Gamma^{\alpha\beta\mu}_{\ \beta\alpha\mu} + (a_5 \Gamma_{\alpha\mu\beta}^{\ \alpha\beta\mu} \Gamma^{\alpha\beta\mu}_{\ \beta\alpha\mu} - 12a_5 \Gamma^{\alpha\beta\mu}_{\ \beta\alpha\mu} - 12a_$

' 0 ∓ T	0	0		0		0	0		0	
Γ ₀ ^{#2} †	0	$\frac{1}{4}$ (-3 a_0 - 2 (a_5 + 4 a_6 - 7 a_7))		a ₅ -2a ₆ -a ₇	<u>-3 a</u>	$\frac{0+2(a_5-8a_6+5a_7)}{4\sqrt{2}}$	0	0		0
Γ ₀ ^{#3} †	0	a ₅ -2a ₆ -a ₇	$\frac{1}{4}$ (-3	$3a_0 - 2(a_5 + 4a_6 - 7a_7)$	<u>-3 a</u>	$\frac{0+2(a_5-8a_6+5a_7)}{4\sqrt{2}}$	0	0		0
Γ ₀ ^{#4} †	0	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}{4 \sqrt{2}}$		$\frac{-3a_0+2(a_5-8a_6+5a_7)}{4\sqrt{2}}$	$\frac{1}{4}$ (-3 a_0	$+2(a_5-8a_6+5a_7))$	0	0		0
$h_0^{#1}$ †	0	0		0		$\frac{a_0 k^2}{4}$	0		0	
$h_0^{\#2}$ †	0	0		0		0	0	0		0
Γ ₀ -1 †	0	0		0		0	0	$-\frac{a_0}{2}$	$\frac{9}{1}$ - 2 a_1 + 2 a_2	
	$\Delta_{0}^{#1}$	$\Delta_{0}^{\#2}$	$\Delta_{0^+}^{\#2}$			$\Delta_{0}^{\#4}$	${\mathcal T}_0^{\#}$	1 T	·#2 0 ⁺	$\Delta_0^{\#1}$
$\Delta_{0}^{\#1}$ †	0	0		0	0	0		0	0	
$\Delta_{0}^{\#2}$ †	0	$-\frac{2}{3(a_0+2a_5-6a_7)}-\frac{1}{6a_0-4(a_5-8a_6+6a_7)}$	+5 <i>a</i> ₇)	$\frac{2}{3(a_0+2a_5-6a_7)} - \frac{2}{6a_0-4(a_5-6a_7)}$	8a ₆ +5a ₇)	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	<u> </u>		0	0
$\Delta_{0}^{#3}$ †	0	$\frac{2}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+$	$\frac{2}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)}$			$-\frac{1}{\sqrt{2} (3a_0-2(a_5-8a_6+5a_7)^{-1})}$	<u></u> 0		0	0
$\Delta_{0}^{\#4}$ †	0	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$		$\frac{1}{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}$	0	(0	0	
${\cal T}_{0}^{\#1}\dagger$	0	0	0		0	$\frac{4}{a_0 k}$		0	0	
${\cal T}_{0}^{\#2}\dagger$	0	0	0		0			0	0	
$\Delta_0^{\#1}$ †	0	0		0		0			0	$-\frac{2}{a_0+4a_1-4a_2}$

	$\Gamma^{\#1}_{2^+ lphaeta}$	$\Gamma^{\#2}_{2}{}^{+}_{\alpha\beta}$	$\Gamma^{\#3}_{2}{}^{+}_{\alpha\beta}$	$h_2^{\#1}_{\alpha\beta}$	$\Gamma_{2}^{\#1}{}_{lphaeta\chi}$	$\Gamma_{2}^{\#2}_{\alpha\beta\chi}$		
$_{2}^{#1}$ † $^{\alpha \beta}$	$\frac{1}{4}(a_0-2a_1-a_2)$	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	0	0		
$_{2}^{\#2}+^{\alpha\beta}$	0	$-\frac{3}{4}(a_0+2a_5-6a_7)$	0	0 0		0		
$_{2}^{#3}$ † $^{\alpha\beta}$	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	$-\frac{3}{4}(2a_1+a_2-2a_5-6a_7+2a_9)$	0	0	0		
$_{2}^{\#1}+^{lphaeta}$	0	0	0	$-\frac{a_0 k^2}{8}$	0	0		
1 † $^{\alpha\beta\chi}$	0	0	0	0	$\frac{1}{4}(a_0 - 2a_1 - a_2)$	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$		
2 † $^{\alpha\beta\chi}$	0	0	0	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	$-\frac{3}{4}(2a_1+a_2-2a_5-6a_7+2a_9)$		

Massive and massless spectra

	Massive particle						
? /	Pole residue:	$\left \frac{1}{4a_{13}}>0\right $					
$J^P = 1$	Polarisations:	3					
$\frac{1}{k^{\mu}}$?	Square mass:	$\frac{{}^{-3a_0+2(a_5-8a_6+5a_7)}}{8a_{13}}>$					
?	Spin:	1					
	Parity:	Odd					

Unitarity conditions

 $a_0 < 0 \&\& a_7 > \frac{1}{10} (3 a_0 - 2 a_5 + 16 a_6) \&\& a_{13} > 0$