Tout savoir sur le kernel trick

Partie 4

Présenté par Morgan Gautherot

Problème linéaire et non linéaire

$$f(x,l) = x_3$$

Si $x \approx l$:

 $x_3 \approx 1$

Si x est loin de l:

 $x_3 \approx 0$

$$y = w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3$$

$$f(x,l) = x_3$$

Si $x \approx l$:

 $x_3 \approx 1$

Si x est loin de l:

$$x_3 \approx 0$$

$$y = w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3$$

Noyau gaussien ou RBF

$$f(x,l) = \exp\left(-\frac{\|x - l\|^2}{2\sigma^2}\right)$$

Il faut définir σ

Les données doivent être normalisées avant l'utilisation du noyau

Noyau polynomial

$$f(x, l) = (x^T l + constante)^{degree}$$

Il faut définir :

- le degré
- la constante

Noyau Sigmoïd

$$f(x, l) = tanh(\alpha x^T l + constante)$$

Il faut définir :

- la pente α
- la constante