**Problem 1 [10 marks]** Find the natural angular frequency,  $\omega_n$ , for the system shown. The pulleys are frictionless and have negligible mass. Values are: m = 8 kg,





Rope has same tension (no stretch, friction less pulleys).

FBD pulley | 
$$(m=0)$$

TAT

 $F_{S_1} = -K_1 \times I_1$ 
 $F_{S_1} = K_1 \times I_2$ 

FSI

Movement of rope = 2

$$72T = k_1 x_1$$
move ment of rope =  $2x_1$ 

FBD pulley 2 
$$\Sigma F_x: 2T + F_{S_2} = 0$$
  
 $F_{S_2}$   $F_{S_2}: -k_z X_z$   
 $\Rightarrow 2T = k_z X_z$   
movement of rope =  $2X_z$ 

$$x = 2x_1 + 2x_2$$

$$x = 2\left(\frac{27}{k_1}\right) + 2\left(\frac{27}{k_2}\right)$$

$$k_{eq} = \frac{1}{4} \frac{k_1 k_2}{k_1 + k_2}$$

$$w_n = \frac{1}{4} \frac{k_1 k_2}{k_1 + k_2}$$

$$= \frac{1}{4} \frac{k_1 k_2}{k_1 + k_2}$$

$$w_n = 2.31 \text{ rad/s}$$

Page 2 of 12 pages