Exam simulation

• The generic exam sheet will be as follows.

No. 1

- 1. (3 points) Theoretical subject.
- 2. (3 points) Exercise from Group Theory.
- 3. (3 points) Exercise from Ring Theory.

Plus 1 point for free and bonus points.

- You are invited to participate in an exam simulation on the Microsoft Teams platform. It will take place on Monday, May 24, 2021, starting at 14:00.
- For the exam simulation, choose one theoretical subject [1] and only one exercise (either from Group Theory [2] or from Ring Theory [3]) from the following sample list.
 - 1. Normal subgroup. Factor group.
 - 1. Polynomial rings.
 - **2.** Let $n \in \mathbb{N}^*$ and $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$. Show that U_n is a stable subset of the group (\mathbb{C}^*, \cdot) and (U_n, \cdot) is an abelian group.
 - **2.** Determine the subgroups of the group $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$, and then draw the Hasse diagram of its subgroup lattice.
 - **2.** Let $f: \mathbb{R} \to \mathbb{C}^*$ be defined by $f(x) = \cos x + i \sin x$. Show that f is a group homomorphism between $(\mathbb{R}, +)$ and (\mathbb{C}^*, \cdot) .
 - **2.** Determine the order of each element and the cyclic subgroups of the quaternion group (Q,\cdot) .
 - **2.** Let $n \in \mathbb{N}, n \geq 2$. Show the group isomorphism $(GL_n(\mathbb{R})/SL_n(\mathbb{R}), \cdot) \simeq (\mathbb{R}^*, \cdot)$ using the first isomorphism theorem.
 - **3.** Let $n \in \mathbb{N}$, $n \geq 2$ and $\widehat{0} \neq \widehat{a} \in \mathbb{Z}_n$. Show that \widehat{a} is invertible in the ring $(\mathbb{Z}_n, +, \cdot) \Leftrightarrow \gcd(a, n) = 1$.
 - **3.** Show that the ring $(M_2(\mathbb{R}), +, \cdot)$ has the center $Z(M_2(\mathbb{R}), +, \cdot) = \{a \cdot I_2 \mid a \in \mathbb{R}\}.$
 - **8.** Let $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$. Show that \mathcal{M} is a subring of the ring $(M_2(\mathbb{R}), +, \cdot)$.
 - 3. Let $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$. It is known that $(\mathbb{C}, +, \cdot)$ and $(\mathcal{M}, +, \cdot)$ are fields. Show that they are isomorphic.
 - **3.** Determine the ideals and the factor rings of the ring $(\mathbb{Z}_{12},+,\cdot)$.
- Prepare them in advance, and present them in about 5-10 minutes during our (public or private) audio-video meeting.