3.1

Solve $x^{73} = 714 \pmod{1159}$

✓ Answer ✓ $1159 = 19 \times 61$ $x = 11 \pmod{19}$ $x^{13} = 43 \pmod{61}$

 $13^{-1} \pmod{60}$

Total	a	b
60	1	0
13	0	1
8	1	-4
5	-1	5
3	2	-9
2	-3	14
1	5	-23=37

$$x = 43^{37} \pmod{61}$$

 $x = 59 \pmod{61}$

$$x=11 \pmod{19}$$

$$x=59 \pmod{61}$$

$$x=11+19k$$

$$11 + 19k = 59 \pmod{61}$$

$$19k = 48 \pmod{61}$$

Total	a	b
61	1	0
19	0	1
4	1	-3

$19^{-1} = 45 \pmod{61}$
$19^{-1} = 45 \pmod{61}$
$k=25\pmod{61}$
x=11+19(25+61m)
$x = 486 \pmod{1159}$

3.7

Alice has RSA public key N=2038667 and exponent e=103.

a

Bob wants to send Alice the message m=892383 What ciphertext does Bob send to Alice?

```
egin{aligned} \checkmark & \mathsf{Answer} \ c = m^e \pmod{N} \ c = 45293 \pmod{N} \end{aligned}
```

b

Alice knows that her modulus factors into a product of two primes, one of which is 1301 Find a decryption exponent d for Alice.

```
	extstyle 	extstyle 	extstyle 	extstyle Answer \ N = 1301 	imes 1567 \ \phi(N) = 1300 	imes 1566 = 2035800 \ d = e^{-1} \pmod{2035800} \ d = 810367
```

C

Alice receives the ciphertext 317730 from Bob. Decrypt the message.

```
✓ Answer
```

Trevor Nichols 2 / 3 9

$$m=c^d \pmod N$$

 $m=514407$