МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА «СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ И ПОИСКОВОГО КОНСТРУИРОВАНИЯ»

Т. А. Яновский

ЧИСЛЕННЫЕ МЕТОДЫ ОПТИМИЗАЦИИ. ОДНОМЕРНАЯ И МНОГОМЕРНАЯ БЕЗУСЛОВНАЯ МИНИМИЗАЦИЯ

Методические указания

Рецензент

канд. техн. наук доцент И. Г. Жукова

Печатается по решению редакционно-издательского совета Волгоградского государственного технического университета

Численные методы оптимизации. Одномерная и многомерная безусловная минимизация : метод. указания / сост. Т. А. Яновский. – Волгоград : ИУНЛ ВолгГТУ, 2011. – 16 с.

Приведены алгоритмы численных методов одномерной и многомерной безусловной оптимизации и задачи для лабораторных работ по курсу «Методы оптимизации». Представленные задачи оптимизации подразделяются на тестовые и учебные. Тестовые задачи достаточно простые и предназначены для машинной проверки корректности программ. Учебные задачи более сложны — некоторые из представленных целевых функций были изначально разработаны для оценки качества сложных алгоритмов оптимизации, поэтому учебные задачи дополнены графиками целевых функций, а также точными или приближенными координатами точек их минимума, позволяющими оценить достоинства и недостатки используемых методов, и характеристики полученных решений.

Предназначены для студентов высших технических учебных заведений, изучающих дисциплину «Методы оптимизации».

© Волгоградский государственный технический университет, 2011

Учебное издание

Тимур Александрович Яновский

ЧИСЛЕННЫЕ МЕТОДЫ ОПТИМИЗАЦИИ. ОДНОМЕРНАЯ И МНОГОМЕРНАЯ БЕЗУСЛОВНАЯ МИНИМИЗАЦИЯ

Методические указания

Темплан 2011 г. (учебно-методическая литература). Поз. № 65 Подписано в печать 23.12.2011 г. Формат 60×84 1/16. Бумага офсетная. Гарнитура Times. Печать офсетная. Усл. печ. л. 0,93. Тираж 10 экз. Заказ .

Волгоградский государственный технический университет. 400005, г. Волгоград, пр. Ленина, 28, корп. 1.

Отпечатано в типографии ИУНЛ ВолгГТУ 400005, г. Волгоград, пр. Ленина, 28, корп. 7.

Введение

Пусть на некотором множестве D определена функция f(x). Под **минимизацией функции** f(x) будем понимать задачу отыскания такой точки $x^* \in D$, что:

$$f(x^*) = \min_{x \in D} f(x).$$

При этом функцию f(x) будем называть **целевой функцией**.

При $D=R^1$ эта задача называется задачей безусловной одномерной минимизации, а при $D=R^n$ — задачей безусловной многомерной минимизации.

Лабораторная работа №1: Методы одномерной минимизации Среди численных методов одномерной минимизации

$$f(x) \rightarrow \min, x \in \mathbb{R}^1$$

рассмотрим ряд наиболее часто используемых на практике **прямых мето-** дов. В них используется информация только о значениях целевой функции f(x), которая во всех случаях, кроме оговоренного отдельно, полагается униминимальной, т.е. имеющей единственный минимум.

1.1. Поиск отрезка локализации минимума [a,b]

Осуществляется эвристическими методами. Наиболее часто используется **метод Дэвиса-Свенна-Кэмпи**, требующий априорного задания начальной точки x^0 и шага h>0.

Алгоритм 1.1

Шаг 1. Вычислить $f(x^0)$ и $f(x^0 + h)$.

Шаг 2. Сравнить $f(x^0)$ и $f(x^0 + h)$:

если
$$f(x^0) > f(x^0+h)$$
 то, учитывая униминимальность $f(x)$, имеем $x^*>x^0$; тогда положить $a=x^0$, $x^1=x^0+h$, $f(x^1)=f(x^0+h)$, $k=2$ и перейти на шаг 4;

иначе вычислить $f(x^0 - h)$.

Шаг 3. Сравнить $f(x^0 - h)$, $f(x^0)$:

если
$$f(x^0 - h) \ge f(x^0)$$
, то, учитывая униминимальность $f(x)$, имеем $x^* \in [x^0 - h, x^0 + h]$; тогда положить $a = x^0 - h$, $b = x^0 + h$ и перейти на шаг 6;

иначе, учитывая униминимальность
$$f(x)$$
, имеем $x^* < x^0$; тогда положить $b = x^0$, $x^1 = x^0 - h$, $f(x^1) = f(x^0 - h)$, $h = -h$ и $k = 2$.

Шаг 4. Вычислить $x^k = x^0 + 2^{k-1}h$ и $f(x^k)$.

Шаг 5. Сравнить $f(x^k)$ и $f(x^{k-1})$:

если $f(x^{k-1}) \le f(x^k)$, то если h > 0, то положить $b = x^k$,

иначе положить $a = x^k$;

иначе, если h > 0, то положить $a = x^{k-1}$,

иначе положить $b = x^{k-1}$,

положить k = k + 1 и перейти на шаг 4.

Шаг 6. Закончить поиск.

1.2. Поиск точки минимума на отрезке [a, b]

1.2.1. Метод пассивного поиска

Реализует пассивную стратегию поиска. Рассмотрим простой алгоритм, в котором число N вычислений целевой функции f(x), не полагаемой униминимальной, задаётся априори и производится равномерное разбиением отрезка локализации минимума [a,b] на N-1 отрезков.

Алгоритм 1.2.1

Шаг 1. Вычислить N точек $x^i = a + i \frac{b-a}{N-1}, i = \overline{0, N-1}$.

Шаг 2. Вычислить N значений функции $f(x^i)$, $\forall i$.

Шаг 3. Среди точек $x^0,...,x^{N-1}$ найти точку x^k , такую что

$$f(x^k) = \min_{0 \le i \le N-1} f(x^i).$$

Шаг 4. Положить $x^* \cong x^k$ и закончить поиск.

Замечания.

- 1.Точка минимума $x^* \in (x^{k-1}, x^{k+1})$.
- 2. Приведённый алгоритм позволяет определить глобальный минимум многоэкстремальной целевой функции на заданном отрезке.
- 3.Метод пассивного поиска может использоваться и для отыскания **мно-жества локальных точек минимума** многоэкстремальной функции. В этом случае вместо шага 3 следует использовать шаг 3*:

Шаг 3*. Среди точек $x^0,...,x^{N-1}$ найти точки $x^k, k = \overline{1,s}$, такие что

$$f(x^{k-1}) > f(x^k) < f(x^{k+1})$$

Тогда можно считать, что найденные точки x^k являются локальными минимумами, определёнными с точностью $\varepsilon = \frac{b-a}{N-1}$, и принадлежащими множеству точек минимума функции f(x).

1.2.2. Метод деления отрезка пополам (дихотомии)

Для любой униминимальной на отрезке [a,b] целевой функции f(x) метод реализует последовательную стратегию, позволяющую построить последовательность вложенных отрезков

$$[a,b]\supset [a_1,b_1]\supset ...\supset [a_n,b_n],$$

каждый из которых содержит точку минимума x^* целевой функции f(x). Наряду с начальным отрезком локализации минимума [a,b], алгоритм метода требует априорного задания параметра точности поиска $\varepsilon > 0$ и малой константы "различимости" $\delta > 0$ ($\delta < \varepsilon$: например, $\delta = \varepsilon/10$).

Алгоритм 1.2.2

Шаг 1. Положить
$$x^1 = \frac{1}{2}(a+b) - \delta$$
, $x^2 = \frac{1}{2}(a+b) + \delta$.

Шаг 2. Вычислить $f(x^1)$ и $f(x^2)$.

Шаг 3. Сравнить
$$f(x^1)$$
 и $f(x^2)$: если $f(x^1) \le f(x^2)$, то положить $b = x^2$; иначе положить $a = x^1$.

Шаг 4. Проверить выполнение критерия останова:

если
$$\frac{b-a}{2} < \varepsilon$$
, то перейти на шаг 5;

иначе перейти на шаг 1.

Шаг 5. Положить $x^* \cong \frac{a+b}{2}$ и закончить поиск.

1.2.3. Метод Фибоначчи

Для любой униминимальной на отрезке [a,b] целевой функции f(x) реализует последовательную стратегию на основе чисел Фибоначчи: $F_0 = F_1 = 1, F_k = F_{k-1} + F_{k-2}, k = 2, 3, ...$

Наряду с начальным отрезком локализации минимума [a,b], алгоритм метода требует априорного задания параметра точности поиска $\varepsilon > 0$ и малой константы "различимости" $\delta > 0$ ($\delta < \varepsilon$: например, $\delta = \varepsilon/10$).

Алгоритм 1.2.3

Шаг 1. Вычислить количество N вычислений функции как наименьшее целое, при котором $F_N \ge (b-a)/(2\varepsilon)$, а также числа $F_0, F_1, ..., F_N$.

Шаг 2. Положить k=0.

Шаг 3. Вычислить
$$x^1 = a + \frac{F_{N-2}}{F_N}(b-a), \ x^2 = a + \frac{F_{N-1}}{F_N}(b-a).$$

Шаг 4. Вычислить $f(x^1)$, $f(x^2)$.

Шаг 5. Сравнить $f(x^1)$ и $f(x^2)$:

если
$$f(x^1) \le f(x^2)$$
, положить $b=x^2$, $x^2=x^1$, $x^1=a+\frac{F_{N-k-3}}{F_{N-k-1}}(b-a)$; иначе положить $a=x^1$, $x^1=x^2$, $x^2=a+\frac{F_{N-k-2}}{F_{N-k-1}}(b-a)$.

Шаг 6. Проверить выполнение критерия останова:

если
$$k=N-3$$
, то, положив $x^2=x^1+\delta$, вычислить $f(x^1)$, $f(x^2)$ и если $f(x^1) \le f(x^2)$, то положить $b=x^2$; иначе положить $a=x^1$; перейти на шаг 7; иначе положить $k=k+1$ и перейти к шагу 4;

Шаг 7. Положить $x^* \cong \frac{a+b}{2}$ и закончить поиск.

1.2.4. Метод золотого сечения

Для любой униминимальной на отрезке [a,b] целевой функции f(x) реализует последовательную стратегию, циклически производя деление или, иначе, "золотое" сечение отрезка локализации так, чтобы отношение длины всего отрезка [a,b] к большей его части $[a,x^2]$ было равно отношению

большей его части
$$[a, x^2]$$
 к меньшей $[a, x^1]$ или, иначе, $\frac{[a, b]}{[a, x^2]} = \frac{[a, x^2]}{[a, x^1]}$.

Такое отношение обозначается $\tau = \frac{\sqrt{5} + 1}{2} \cong 1.618...$

Наряду с начальным отрезком локализации минимума [a,b], алгоритм метода требует априорного задания параметра точности поиска $\varepsilon > 0$.

Алгоритм 1.2.4

Шаг 1. Вычислить $\tau = \frac{\sqrt{5} + 1}{2}$.

Шаг 2. Вычислить $x^1 = a + (b-a)/\tau^2$ и $x^2 = a + (b-a)/\tau$.

Шаг 3. Вычислить значения функции $f(x^1)$ и $f(x^2)$.

Шаг 4. Сравнить $f(x^1)$ и $f(x^2)$: если $f(x^1) \le f(x^2)$, то положить $b = x^2$, $x^2 = x^1$, $x^1 = a + b - x^2$; иначе положить $a = x^1$, $x^1 = x^2$, $x^2 = a + b - x^1$.

Шаг 5. Проверить выполнение критерия останова:

если
$$\frac{b-a}{2} < \varepsilon$$
 , то перейти на шаг 6; иначе перейти на шаг 3.

Шаг 6.Положить $x^* \cong \frac{1}{2}(a+b)$ и закончить поиск.

1.2.5. Метод параболической аппроксимации Пауэлла

Для любой униминимальной на отрезке [a,b] целевой функции f(x) реализует последовательную стратегию, циклически производя квадратичные аппроксимации (приближения) целевой функции.

Наряду с начальным отрезком локализации минимума [a,b], алгоритм метода требует априорного задания параметра точности поиска $\varepsilon > 0$.

Алгоритм 1.2.5

Шаг 1. Положить $x_1 = a$, $x_2 = \frac{1}{2}(a+b)$, $x_3 = b$.

Шаг 2. Оценить $\hat{x} = \arg\min_{\{x_1, x_2, x_3\}} f(x)$.

Шаг 3. Вычислить x_4 по формуле

$$x_4 = \frac{1}{2} \frac{(x_2^2 - x_3^2) f(x_1) + (x_3^2 - x_1^2) f(x_2) + (x_1^2 - x_2^2) f(x_3)}{(x_2 - x_3) f(x_1) + (x_3 - x_1) f(x_2) + (x_1 - x_2) f(x_3)}$$

Шаг 4. Проверить выполнение критерия останова: если $|x_4 - \hat{x}| \le \varepsilon$, то перейти на шаг 7.

Шаг 5. Перенумеровать точки слева направо, так чтобы $x_1 < x_2 < x_3 < x_4$.

Шаг 6. Из набора $\{x_1, x_2, x_3, x_4\}$ выбрать три с наименьшими значениями функции и перенумеровать их так, чтобы x_1 и x_3 служили концами нового отрезка локализации, а x_2 была внутренней точкой этого отрезка, затем перейти на шаг 2.

Шаг 7. Положить $x^* \cong x_4$ и закончить поиск.

1. Задачи численной одномерной минимизации

1.1. Тестовая задача

Минимизировать функцию $f(x) = (x-1)^2$.

Метод поиска отрезка локализации минимума

Начальные данные: $x^0 = -4$ и $x^0 = 6$, шаг h = 1.

Ожидаемый результат: [a, b] = [-2, 4].

Метод пассивного поиска

Начальные данные: [a, b] = [0, 10], n = 9.

Ожидаемый результат: $x^* = 1$, $f^* = 0$ (точное решение).

Методы деления пополам(дихотомии), Фибоначчи, золотого сечения и параболической аппроксимации

Начальные данные: $[a, b] = [0, 10], \varepsilon = 0.01.$

Ожидаемый результат: $x^* \approx 1$, $f^* \approx 0$ (приближенное решение).

1.2. Учебные задачи

1.2.1. Минимизировать в окрестности x = 1 функции

$$f(x) = 4x^3 - 8x^2 - 11x + 5$$
 (рис. 1, a)); $f(x) = x + \frac{3}{x^2}$ (рис. 1, б)).

 δ

 \tilde{o})

Рис. 1

a)

1.2.2. Минимизировать в окрестности x = 0 функцию $f(x) = \frac{x + 2.5}{4 - x^2}$ (рис. 2).

Рис. 2

1.2.3. Найти точки локального минимума функций

$$f(x) = -\sin(x) - \frac{\sin(3x)}{3}$$
 (рис. 3, a));

$$f(x) = -2\sin(x) - \sin(2x) - \frac{2\sin(3x)}{3}$$
 (рис. 3, б)).

a) Рис. 3

Лабораторная работа №2. Методы многомерной безусловной минимизации

2.1. Методы прямого поиска

Среди численных методов безусловной многомерной минимизации

$$f(x) \to \min, x \in \mathbb{R}^n$$
,

рассмотрим наиболее часто используемые на практике **прямые методы.** Поскольку в них используется информация только о значениях целевой функции f(x), то эти методы часто также называются методами нулевого порядка.

2.1.1. Метод покоординатного спуска (метод Гаусса - Зейделя)

Простейший метод прямого поиска. Его алгоритм состоит из последовательности циклов, заключающихся в поочередном изменении каждой переменной при фиксированных значениях остальных.

Наряду с начальной точкой $x^0 = (x_1^0, ..., x_n^0)^T$ и вектором положительных приращений координат $h = (h_1, ..., h_n)^T$, алгоритм метода требует априорного задания параметра точности поиска $\varepsilon > 0$.

Алгоритм 2.1.1

Шаг 1. Положить k=0.

Шаг 2. Положить i = 1.

Шаг 3. Найти целое α_k :

$$\alpha_k = \arg\min_{\alpha \in \mathbb{Z}} f(x_1^{k+1}, ..., x_{i-1}^{k+1}, x_i^k + \alpha h_i, x_{i+1}^k, ..., x_n^k)$$

Шаг 4. Вычислить $x_i^{k+1} = x_i^k + \alpha_k h_i$.

Шаг 5. Если i = n, то перейти на шаг 7.

Шаг 6. Положить i = i + 1 и перейти на шаг 3.

Шаг 7. Если $x^{k+1} \neq x^k$, то положить k = k+1 и перейти на шаг 2.

Шаг 8. Проверить выполнение критерия останова:

если $\parallel h \parallel \leq \varepsilon$, то перейти на шаг 10.

Шаг 9. Положить $h_1 = zh_1, ..., h_n = zh_n$ и перейти на шаг 2.

Шаг 10. Положить $x^* \cong x^{k+1}$ и закончить поиск.

Замечания.

1. На шаге 8 целесообразно использовать *евклидову норму* $\parallel h \parallel_2 = \sqrt{h_1^2 + ... + h_n^2}$.

2.Коэффициент дробления шага поиска z обычно равен 0.1 или 0.5.

2.1.2. Метод конфигураций Хука-Дживса

Основная идея этого эвристического метода заключается в определении направления убывания целевой функции в текущей точке (исследующий поиск вокруг базисной точки) с дальнейшим движением вдоль найденного направления (поиск по образцу)

Рис. 4

Наряду с начальной базисной точкой $b^1=(b_1^1,...,b_n^1)^T$ и вектором положительных приращений координат $h=(h_1,...,h_n)^T$, алгоритм метода требует априорного задания параметра точности поиска $\varepsilon>0$.

Алгоритм 2.1.2.1

Шаг 1. Положить $xk = b^1$.

Шаг 2. Выполнив исследующий поиск (см. алгоритм 2.1.2.2) вокруг точки xk, получить базисную точку b^2 .

Шаг 3. Выполнить шаг по образцу и получить вершину конфигурации

$$xk = b^1 + 2(b^2 - b^1)$$
.

Шаг 4. Выполнив исследующий поиск (см. алгоритм 2.1.2.2) вокруг точки xk, получить точку x.

Шаг 5. Положить $b^1 = b^2$.

Шаг 6. Если $f(x) < f(b^1)$, то положить $b^2 = x$ и перейти на шаг 3.

Шаг 7. Если $f(x) > f(b^1)$, то перейти на шаг 1.

Шаг 8. Проверить выполнение критерия останова: если $\parallel h \parallel_2 \le \varepsilon$, то перейти на шаг 10.

Шаг 9. Положить $h_1=zh_1,...,h_n=zh_n$ и перейти на шаг 1.

Шаг 10. Положить $x^* \cong b^1$ и закончить поиск.

Замечания.

1.Коэффициент дробления шага поиска z обычно равен 0.1.

2.На шагах 2 и 4 алгоритма, приведённого выше, реализуется процедура исследующего поиска. В предположении, что базисная точка b задана, эта процедура представлена как

Алгоритм 2.1.2.2

Шаг 1. Вычислить fb = f(b).

Шаг 2. Положить i = 1.

Шаг 3. Вычислить $f = f(b + h_i e_i)$, где e_i — единичный вектор в направлении оси x_i .

Шаг 4. Если f < fb, то положить $b = b + h_i e_i$, fb = f и перейти на шаг 7.

Шаг 5. Вычислить $f = f(b - h_i e_i)$.

Шаг 6. Если f < fb, то положить $b = b - h_i e_i$, fb = f.

Шаг 7. Проверить выполнение критерия останова: если i = n, то перейти на шаг 10.

Шаг 8. Положить i = i + 1 и перейти на шаг 3.

Шаг 10. Принять b результатом исследующего поиска и его закончить.

2.2. Градиентные методы

Градиентные методы (методы первого порядка) используют точные или приближенные значения первых частных производных целевой функции.

2.2.1. Оптимальный градиентный метод (метод наискорейшего спуска)

Метод строит последовательность приближений $\{x^k\}$ к точке минимума x^* по правилу:

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k), \quad k = 0, 1, ...$$

Называемое длиной шага (шагом) число α_k определяется из условия

$$\alpha_k = \arg\min_{\alpha \ge 0} f(x^k - \alpha \nabla f(x^k)),$$

что гарантирует сильную и монотонную сходимость последовательности приближений $\{x^k\}$ к точке минимума x^* .

Рис. 5

Рассмотрим алгоритм обобщенного градиентного метода.

Наряду с начальной точкой $x^0 = (x_1^0, ..., x_n^0)^T$, алгоритм метода требует априорного задания параметра точности поиска $\varepsilon > 0$.

Алгоритм 2.2.1

Шаг 1. Положить k=0.

Шаг 2. Вычислить градиент $\nabla f(x^k)$.

Шаг 3. Проверить выполнение критерия останова: если $\|\nabla f(x^k)\|_2 \le \varepsilon$, то перейти на шаг 7.

Шаг 4. Методом одномерной минимизации оценить шаг поиска

$$\alpha_k = \arg\min_{\alpha \ge 0} f(x^k - \alpha \nabla f(x^k))$$

Шаг 5. Вычислить $x^{k+1} = x^k - \alpha_k \nabla f(x^k)$.

Шаг 6. Положить k = k + 1 и перейти на шаг 2.

Шаг 7. Положить $x^* \cong x^k$ и закончить поиск.

2.2.2. Метод сопряженных градиентов (метод Флетчера-Ривса)

В основе метода лежит построение направлений поиска минимума $p^k \in R^n$, являющихся линейными комбинациями градиента $\nabla f(x^k) \in R^n$ и предыдущих направлений поиска p^{k-1} . При этом весовые коэффициенты $\beta_k \in R^1$ выбираются так, чтобы сделать направления сопряженными относительно матрицы Гессе $H \in R^{n \times n}$. Для повышения скорости сходимости метода, в случае неквадратичной f(x) используется **рестарт**: через каждые n циклов направление поиска p^n заменяется на $-\nabla f(x^n)$).

Наряду с начальной точкой $x^0=(x_1^0,...,x_n^0)^T$ и вектором положительных приращений координат $h=(h_1,...,h_n)^T$, алгоритм метода требует априорного задания параметра точности поиска $\varepsilon>0$.

Алгоритм 2.2.2

Шаг $\hat{1}$. Положить k=0.

Шаг 2. Вычислить градиент $\nabla f(x^k)$.

Шаг 3. Проверить выполнение критерия останова: если $\|\nabla f(x^k)\|_2 \le \varepsilon$, то перейти на шаг 10.

Шаг 4. Если k=0 или k+1 кратно n , то положить $p^k=-\nabla f(x^k)$ и перейти на шаг 6.

Шаг 5. Вычислить весовой коэффициент

$$\beta_{k-1} = \frac{(\nabla f(x^k))^T \nabla f(x^k)}{(\nabla f(x^{k-1}))^T \nabla f(x^{k-1})}.$$

Шаг 6. Вычислить сопряжённое направлению p^{k-1} направление поиска

$$p^{k} = -\nabla f(x^{k}) + \beta_{k-1} p^{k-1}$$
.

Шаг 7. Методом одномерной минимизации оценить шаг поиска

$$\alpha_k = \arg\min_{\alpha>0} f(x^k + \alpha p^k).$$

Шаг 8. Вычислить $x^{k+1} = x^k + \alpha_k p^k$.

Шаг 9. Положить k = k + 1 и перейти на шаг 2.

Шаг 10. Положить $x^* \cong x^k$ и закончить поиск.

2.2.3. Метод переменной метрики Дэвидона-Флетчера-Пауэлла

Оценивая изменение градиента $\nabla f(x) \in R^n$ во время итераций спуска, метод накапливает в квазиньютоновской матрице $\hat{H}_k \in R^{n \times n}$ информацию о кривизне нелинейной функции f(x) и использует её при оценке квазиньютоновского направления поиска $p^k \in R^n$.

Наряду с начальной точкой $x^0=(x_1^0,...,x_n^0)^T$ и единичной начальной квазиньютоновской матрицей $\hat{H}_0=I$, алгоритм метода требует априорного задания параметра точности поиска $\varepsilon>0$.

Алгоритм 2.2.3

Шаг 1. Положить k=0.

Шаг 2. Вычислить градиент $\nabla f(x^k)$.

Шаг 3. Проверить выполнение критерия останова: если $\|\nabla f(x^k)\|_2 \le \varepsilon$, то перейти на шаг 12.

Шаг 4. Если k = 0, то перейти на шаг 8.

Шаг 5. Вычислить вспомогательный вектор $s^k = x^k - x^{k-1}$.

Шаг 6. Вычислить вспомогательный вектор $y^k = \nabla f(x^k) - \nabla f(x^{k-1})$.

Шаг 7. Пересчитать квазиньютоновскую матрицу

$$\hat{H}_{k} = \hat{H}_{k-1} - \frac{\hat{H}_{k-1} y^{k} (y^{k})^{T} \hat{H}_{k-1}}{(y^{k})^{T} \hat{H}_{k-1} y^{k}} + \frac{s^{k} (s^{k})^{T}}{(y^{k})^{T} s^{k}}.$$

Шаг 8. Вычислить квазиньютоновское направление поиска

$$p^k = -\hat{H}_k \nabla f(x^k).$$

шаг 9. Методом одномерной минимизации оценить шаг поиска

$$\alpha_k = \arg\min_{\alpha \ge 0} f(x^k + \alpha p^k).$$

Шаг 10. Вычислить $x^{k+1} = x^k + \alpha_k p^k$.

Шаг 11. Положить k = k + 1 и перейти на шаг 2.

Шаг 12. Положить $x^* \cong x^k$ и закончить поиск.

2.3. Ньютоновские методы

Ньютоновские методы (методы второго порядка) используют точные или приближенные значения вторых частных производных целевой функции.

2.3.1. Метод Ньютона-Рафсона

Метод Ньютона-Рафсона представляет собой оптимальный градиентный

метод, в котором градиент $\nabla f(x^k) \in R^n$ модифицирован обратной матрицей Гессе $H^{-1}(x^k) \in R^{n \times n}$:

$$x^{k+1} = x^k - \alpha_k H^{-1}(x^k) \nabla f(x^k), \quad k = 0, 1, ...$$

Наряду с начальной точкой $x^0 = (x_1^0, ..., x_n^0)^T$, алгоритм метода требует априорного задания параметра точности поиска $\varepsilon > 0$.

Алгоритм 2.3.1

Шаг 1. Положить k=0.

Шаг 2. Вычислить градиент $\nabla f(x^k)$.

Шаг 3. Проверить выполнение критерия останова: если $\|\nabla f(x^k)\|_2 \le \varepsilon$, то перейти на шаг 10.

Шаг 4. Вычислить матрицу Гессе $H(x^k)$.

Шаг 5. Вычислить обратную матрицу Гессе $H^{-1}(x^k)$.

Шаг 6. Вычислить ньютоновское направление поиска

$$p^k = -H^{-1}(x^k)\nabla f(x^k).$$

Шаг 7. Методом одномерной минимизации оценить шаг поиска

$$\alpha_k = \arg\min_{\alpha \ge 0} f(x^k + \alpha p^k).$$

Шаг 8. Вычислить $x^{k+1} = x^k + \alpha_k p^k$.

Шаг 9. Положить k = k + 1 и перейти на шаг 2.

Шаг 10. Положить $x^* \cong x^k$ и закончить поиск.

2. Задачи численной многомерной безусловной минимизации

2.1. Тестовая задача

Минимизировать функцию Химмельблау №1 $f(x) = 4(x_1 - 5)^2 + (x_2 - 6)^2$. (3D графики функции с различными углами вращения и наклона осей переменных приведены на рис. 6).

Начальные данные: $x^0 = (0, 0)^T$ и $\varepsilon = 0.01$, шаги (для методов прямого поиска) $h_1 = h_2 = 1$.

Ожидаемый результат: $x^* \approx (1, 1)^T$, $f^* \approx 0$ (приближенное решение).

Рис. 6

2.2. Учебные задачи

2.1.1. Минимизировать функцию Химмельблау № 2 (рис. 7)

$$f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$
.

 $x^* \approx (3.58, -1.85)^T$ — одна из точек локального минимума.

Рис. 7

2.1.2. Минимизировать функцию Вуда

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2 + 90(x_4 - x_3^2)^2 + (1 - x_3)^2 + 10.1[(x_2 - 1)^2 + (x_4 - 1)^2] + 19.8(x_2 - 1)(x_4 - 1).$$

Имеет квазистационарную точку $(-1.07, 1.16, -0.86, 0.76)^T$, $f \approx +7.89$.

Начальные точки: $x_0 = (-3, -1, -3, -1)^T$, $x_0 = (2, -1, -3, -1)^T$

Точное решение: $x^* = (1, 1, 1, 1)^T$, $f^* = 0$.

3D графики функции для фиксированных значений $x_3 = x_4 = 1$ и $x_1 = x_2 = 1$ приведены на рис. 8 – случаи а) и б) соответственно.

2.1.3. Минимизировать функцию Пауэлла

$$f(x) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4.$$

Особенность – вырожденность матрицы Гессе в точке минимума.

Начальные точки: $x_0 = (3, -1, 0, 1)^T$, $x_0 = (1, 1, 1, 1)^T$

Точное решение: $x^* = (0,0,0,0)^T$, $f^* = 0$.

3D графики функции для фиксированных значений $x_3 = x_4 = 0$ и $x_1 = x_2 = 0$ приведены на рис. 9 – случаи a) и δ) соответственно.

15

Список использованной литературы

- 1. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация М.: Мир, 1985.-509с., ил.
- 2. Дэннис Дж., Шнабель Р. Численные методы безусловной оптимизации и решения нелинейных уравнений. М.: Мир, 1988. 440с., ил.
- 3. Камаев В.А. Методы нелинейного программирования в транспортном машиностроении. Учебное пособие. Волгоград: Изд-во Волгоградского политехнического института, 1984. 102 с., ил.
- 4. Камаев В.А. Введение в экстремальные задачи транспортного машиностроения. Учебное пособие. Волгоград: Изд-во Волгоградского политехнического института, 1984. —102с., ил.
- 5. Пантелеев А.В., Летова Т.А. Методы оптимизации в примерах и задачах. М.: Высш. шк., 2002. 544с.: ил.
- 6. Сухарев А.Г., Тимохов А.В., Федоров В.В. Курс методов оптимизации. М.: ФИЗМАТЛИТ, 2005. 368с.
- 7. Яновский Т., Яновский А. Прикладная квазиньютоновская оптимизация высокой точности, LAP LAMBERT Academic Publishing, Саарбрюккен, 2011. 292с.: ил.