Applications of Perron-Frobenius
Theory
to Population Dynamics
Hans Schneider
based on joint work with
Chi-Kwong Li
Jack Todd Symposium
Cal Tech

HAPPY 90th JACK

May 2001

Research supported by the U.S. Social Security Administration and the Wisconsin Department of Employee Trust Funds

POPULATION DEMOGRAPHY

Demography is the study of population in terms of its growth and decay, fertility and mortality,

John Impagliazzo, 1984

Models:

Continuous Alfred J. Lotka [1880 -]

Discrete and Linear
P.H. Leslie, Econmetrica, (1945, 1948)
E.G. Lewis (1941)
H.Bernadelli (1941)
Single sex

(St)age distribution

Age distribution - Leslie Matrix transition (mortality) matrix, t_j prob of survival from j to j+1 $0 \le t_j \le 1$

$$T=egin{pmatrix} 0&\cdots&0&0\t_1&\cdots&0&0\ dots&\cdots&dots&dots\0&\cdots&t_{n-1}&0 \end{pmatrix}$$

the fertility matrix f_j no of exp newbrns indiv age j

$$F=egin{pmatrix} f_1 & \cdots & f_{n-1} & f_n \ 0 & \cdots & 0 & 0 \ dashed{i} & \cdots & dashed{i} & dots \ 0 & \cdots & 0 & 0 \end{pmatrix}$$

projection matrix.

$$P=T+F=egin{pmatrix} f_1&\cdots&f_{n-1}&f_n\ t_1&\cdots&0&0\ dots&\cdots&dots&dots\ 0&\cdots&t_{n-1}&0 \end{pmatrix}$$

$$Px=egin{pmatrix} f_1x_1+\cdots f_nx_n\ t_1x_1\ dots\ t_{n-1}x_{n-1} \end{pmatrix}$$

Standard model of population demography:

$$x^0 \geq 0$$
 $x^k = Px^{k-1}, \ k = 1, 2, \dots$

"stable solution"

$$Px = rx, \ x \ge 0, r > 0$$

 $\det(\lambda I - P) = \lambda^n - (c_1 f_1 \lambda^{n-1} + \cdots c_n f_n)$ $c_1 = 1, \ c_i = t_1 t_2 \cdots t_{i-1} \geq 0$ survival prob from age 1 to age i+1 $1 = c_1 f_1 / \lambda^{-1} + \cdots + c_n f_n / \lambda^{-n} =: p(\lambda)$ $p(\lambda)$ is mon decr from ∞ to 0
has unique positive root rall other roots \leq in modulus

$$1=c_1f_1/r\cdots+c_nf_nr$$
 corresp eigenvector $x=(c_1,c_2/\lambda,\ldots,c_n\lambda^{n-1})^t$ $p(1)=c_1f_1+\cdots+c_nf_n=:R_0$ no. newborns from one indiv. in lifetime net reproductive rate

$$R_0 > = <1 \iff r > = <1$$

GENERAL CASE

$$T \geq 0, \qquad \Sigma_j t_{ij} \leq 1 \ t_{ij} \quad ext{prob trans } (j) o (i) \ \lim_k T^k x = 0, orall x \Longleftrightarrow
ho(T) < 1 \ F \geq 0 \ f_{ij} \quad ext{av. new by } (j) ext{ in } (i) \ P = T + F$$

VERY IMPORTANT MODEL

Population = All mathematicians Classified by no. of papers in year kDeath = leaving the profession

 t_{ij} prob that math with j papers in year k has i papers in year k+1

 f_{ij} prob that in year k math with j papers produces Ph.D. with i papers in year k+1

PERRON-FROBENIUS THEORY

P irreducible:

not in form by permutation similarity

$$egin{pmatrix} A_{11} & A_{12} \ 0 & A_{22} \end{pmatrix}$$

 A_{11} and A_{22} nontrivial

 $P \ primitive: P^k > 0$

- P-F Theorem for irreducible matrices Let P be an irreducible nonnegative matrix. Then
- (a) The spectral radius $\rho(P)$ of P is positive and it is an algebraically simple eigenvalue of P (the $Perron\ root$) with corresponding left and right positive eigenvectors (the $Perron\ vectors$), which are unique up to scalar multiples.
- (b) The spectral radius of P is the unique eigenvalue with a nonnegative eigenvector.
- (c) The spectral radius of the matrix P increases (strictly), resp. decreases, if any entry of it increases, resp. decreases.

Fundamental Theorem of Demography: Let P be the projection matrix of a standard population model $x^k = P^k x^0$, $k = 0, 1, \ldots$ Suppose that P is primitive with spectral radius $\rho(P) = r$ and has left and right Perron vectors v^t and u resp. normalized so that $v^t u = 1$. Then $(\lim_{k \to \infty} (P/r)^k = uv^t)$

$$\lim_{k o \infty} x^0/r^k = (v^t x^0)u.$$

Consequently, if $|x^k|$ denotes the total population at time k then

$$\lim_{k o \infty} |x^k| = egin{cases} 0 & \text{if } r < 1, \\ |(v^t x^0) u| & \text{if } r = 1, \\ \infty & \text{if } r > 1. \end{cases}$$

NET REPRODUCTIVE RATE R_0

$$\rho(T) < 1$$

$$I + T + T^2 + \dots = (I - T)^{-1}$$

dist of newborns from init dist over lifetime

$$Fx + FTx + FT^2x + \dots = F(I - T)^{-1}x$$
 $Q := F(I - T)^{-1}$

Next Generation matrix

$$R_0 := \rho(Q)$$

Model:

 q_{ij} lifetime Ph.D's born with i papers to math born with j papers

Stability and comparison theorem: Assume that a projection matrix P = T + F is irreducible with T and F nonzero. Denote the growth rate $\rho(P)$ by r and the net reproductive rate $\rho(Q)$ by R_0 . Then

$$R_0 > 0,$$

$$\rho(T + F/R_0) = 1,$$

and one of the following holds:

$$1 < r < R_0, \ r = 1 = R_0, \ 0 < R_0 < r < 1.$$

cf. Stein-Rosenberg

SOME PROOFS

$R_0 > 0$ follows from

Proposition: Let T and F be nonnegative matrices with $\rho(T) < 1$ and $F \neq 0$. Suppose T + F is irreducible and $Q = F(I - T)^{-1}$. Then, after a permutation similarity,

$$Q=egin{pmatrix} Q_{11} & Q_{12} \ 0 & 0 \end{pmatrix},$$

where Q_{11} is a nontrivial irreducible nonnegative matrix, Q_{12} is a nonnegative matrix every column of which has a positive entry, and the 0 rows of Qcorrespond to the 0 rows of F, if any.

$$y^t \gneq 0, \quad R_0 y^t = y^t Q = y^t F (I-T)^{-1}$$
 $y^t (T+F/R_0) = y^t$
Hence
 $ho(T+F/R_0) = 1$
 $ext{Case } R_0 > 1$
 $ext{} T+F/R_0 \between T+F \between R_0 T+F$
Hence
 $ext{} 1 =
ho(T+F/R_0) <
ho(T+F) = r$
 $ext{} r <
ho(R_0 T+F) = R_0$

INTUITIVE CONTENT

$$egin{aligned} ext{Suppose} \ r =
ho(P) =
ho(T+F) > 1 \ P^r x_0
ightarrow \infty \end{aligned}$$

Aim: Stationary Population Birth/death control

$$T+F \longrightarrow (T+F)/r$$

Birth control ↑↓

$$T+F\longrightarrow T+F/R_0$$

Intuitive: Second more radical

$$R_0 > r$$

A GENERALIZATION

Achieving a given growth rate s by scaling F

THEOREM: Let P,T and F satisfy the previous conditions. For $s>\rho(T)$ define

$$q(s) = \rho(F(I - T/s)^{-1})/s.$$

Then q(s) > 0. Let P(s) = T + F/q(s). Then its growth rate, $\rho(P(s))$, is s, and its net reproductive rate is

$$R_0(s) = R_0/q(s).$$

Further, one of the following holds:

$$egin{aligned} 1 &= s = R_0(s), \ 1 &< s < R_0(s), \ 0 &< R_0(s) < s < 1. \end{aligned}$$

Previous Theorem: s = r, q(s) = 1