FELADATOK A z-TRANSZFORMÁCIÓ TÉMAKÖRÉBŐL

2018. окто́вет 15.—

Feladatok

- 1. Határozza meg az alábbi jelsorozatok z-transzformáltját, állapítsa meg a zérushelyeket, a pólusokat és a konvergenia területét.
 - 1. $x[n] = \left(\frac{1}{2}\right)^n (u[n] u[n-10]),$
 - 2. $x[n] = \left(\frac{1}{2}\right)^{|n|}$,
 - 3. $x[n] = (5)^{|n|}$,
 - 4. $x[n] = \left(\frac{1}{2}\right)^n \cos(\pi n/3)u[n]$.
- 2. Kauzális jelsorozatok z-transzformáltjára meghatározott kifejezés ellenőrzésére a filter() függvényt alkalmazhatjuk. Legyen a x[n] kauzális sorozat transzformáltja az alábbi racionális kifejezés X(z) = B(z)/A(z).
 - 1. Lássa be, hogy az octave formalizmusában felírt kódrészlet az x[n] első N+1 elemét generálja. Jelölje az A(z) illetve a B(z) polinom együtthatóinak vektorát a és b. x = filter(b, a, [1, zeros(1, N)])
 - 2. Határozza meg a $x[n] = \left[\left(\frac{1}{2} \right)^n + \left(-\frac{1}{3} \right)^n \right] u[n]$ sorozathoz X(z)-t.
 - 3. Ellenőrizze az eredményeket numerikusan.
- 3. Bizonyítsa be, hogy $x[n]=(r^n\sin\omega_0n)u[n]$ esetén $X(z)=\frac{r(\sin\omega_0)z^{-1}}{1-2(r\cos\omega_0)z^{-1}+r^2z^{-2}}$, és a konvergencia feltétele |z|>r.
- 4. Parciális törtekre bontás segítségével határozza meg az alábbi z-transzformáltakhoz tartozó jelsorozatokat:
 - 1. $X(z) = \frac{1 \frac{1}{3}z^{-1}}{(1 z^{-1})(1 + 2z^{-1})}$, minden lehetséges konvergenciaterület mellett.
 - 2. $X(z) = \frac{1-z^{-1}}{1-\frac{1}{4}z^{-1}}$ és x[n] kauzális.
 - 3. $X(z) = \frac{1}{(1-0.5z^{-1})(1-0.25z^{-1})}$ és x[n] abszolút felösszegezhető.
- 5. Jelölje X(z) a $x[n]=x_R[n]+jx_I[n]$ sorozat z-transzformáltját. Bizonyítsa be, hogy az alábbi transzformációk hatása:

1

- 1. $x^*[n]$: $X^*(z^*)$,
- 2. x[-n]: X(1/z),
- 3. $x_R[n]$: $\frac{1}{2}[X(z) + X^*(z^*)]$,
- 4. $x_I[n]$: $\frac{1}{2j}[X(z) X^*(z^*)]$.

6. Legyen x[n] valós értékű, abszolút felösszegezhető jelsorozat. Az autokorrelációs függvényt definiáljuk:

$$r_{xx}[l] = \sum_{n} x[n]x[n-l].$$

Legyen x[n] z-transzformáltja X(z) és a konvergenciatartomány $\alpha < |z| < \beta$. Lássa be, hogy

- 1. az autokorrelációs függvény z-transzformáltja: $R_{xx}(z) = X(z)X(z^{-1})$. Ez hol konvergens?
- 2. Legyen $x[n] = a^n u[n]$ és |a| < 1. Határozza meg $R_{xx}(z)$ -t és vázolja fel a zérushelyeket, pólusokat és a konvergenciatratományt.
- 3. Határozza meg $r_{xx}[l]$ -t is.
- 7. Egy lineáris időinvariáns rendszer x[n] = u[n]-re adott válasza $y[n] = 2(1/3)^n u[n]$.
 - 1. Határozza meg a rendszer súlyfüggvényét h[n]-t.
 - 2. Mi lesz az y[n] válasz, ha a bemenet $x[n] = (1/2)^n u[n]$.
 - 3. Ellenőrizze az eredményt a filter() függvény segítségével.
- 8. Írja le a rendszert az alábbi differencia egyenlet

$$y[n] = \frac{1}{2}y[n-1] + x[n] - \frac{1}{1024}x[n-10].$$

- 1. Határozza meg a rendszer H(z) transzfer függvényt.
- 2. Keressen a fentivel ekvivalens rendszert, más differencia egyenlettel.