EVALUACIÓN 1

Manuel Vicente Bolaños Quesada

Problema 1

Sean A y B conjuntos no vacíos y mayorados de números reales positivos. Prueba que el conjunto

$$C = \{ab - c^2 : a \in A, b \in B, c \in B\}$$

está mayorado y minorado y calcula su supremo y su ínfimo.

Como A y B están mayorados, tiene sentido considerar sus supremos. Así pues, $\alpha = sup(A), \beta = sup(B)$. Además, como los conjuntos están formados por números reales positivos, también están minorados y, por lo tanto, tiene sentido considerar sus ínfimos. Así pues, $\alpha' = inf(A), \beta' = inf(B)$.

Tenemos que $a \leq \alpha \ \forall a \in A, b \leq \beta \ \forall b \in B$. Como $a, b, \alpha, \beta > 0$, podemos multiplicar por cualquiera de ellos sin alterar el sentido de la desigualdad.

$$\left. \begin{array}{l} a \leq \alpha \ \forall a \in A \\ \\ b \leq \beta \ \forall b \in B \end{array} \right\} ab \leq \alpha\beta \ \forall a \in A, \forall b \in B.$$

Además, $\beta' \leq c \ \forall c \in B \implies \beta'^2 \leq \beta' c \leq c^2 \ \forall c \in B \implies -c^2 \leq -\beta'^2$. Por lo tanto, $ab-c^2 \leq \alpha\beta-\beta'^2$, por lo que $\alpha\beta-\beta'^2 \in Mayor(C)$, y C está mayorado. Entonces, cabe considerar su supremo, $\gamma = sup(C)$.

Como γ es el mínimo mayorante, tenemos que $\gamma \leq \alpha\beta - \beta'^2$.

Por otro lado, tenemos que $\gamma \geq ab-c^2 \ \forall a \in A, \ \forall b,c \in B \implies \gamma+c^2 \geq ab$. Como b>0, podemos dividir por b.

 $\frac{\gamma+c^2}{b} \geq a, \text{ luego } \frac{\gamma+c^2}{b} \in Mayor(A). \text{ Usando que } \alpha \text{ es el mínimo mayorante de } A, \text{ tenemos que } \frac{\gamma+c^2}{b} \geq \alpha. \text{ Como } \alpha > 0, \text{ podemos dividir por } \alpha \text{ y multiplicar por } b. \text{ Por lo tanto, } \frac{\gamma+c^2}{\alpha} \geq b, \text{ de donde } \frac{\gamma+c^2}{\alpha} \in Mayor(B). \text{ Usando que } \beta \text{ es el mínimo mayorante de } B, \text{ tenemos que } \frac{\gamma+c^2}{\alpha} \geq \beta \implies \gamma+c^2 \geq \alpha\beta \implies c^2 \geq \alpha\beta - \gamma \implies c \geq \sqrt{\alpha\beta-\gamma} \ \forall c \in B, \text{ lo que nos dice que } \sqrt{\alpha\beta-\gamma} \in Minor(B). \text{ Como } \beta' \text{ es el mayor minorante de } B, \text{ tenemos que } \sqrt{\alpha\beta-\gamma} \leq \beta' \implies \alpha\beta-\gamma \leq \beta'^2 \implies \gamma \geq \alpha\beta-\beta'^2. \text{ Por lo tanto, llegamos a una doble desigualdad, para concluir que } \gamma=\alpha\beta-\beta'^2.$

Demostremos ahora que C está minorado y calculemos su ínfimo.

Tenemos que $\alpha' \leq a \ \forall a \in A, \beta' \leq b \ \forall b \in B$. Como $a, b, \alpha', \beta' \geq 0$, podemos multiplicar por cualquiera de ellos sin alterar el sentido de la desigualdad.

$$\left. \begin{array}{l} \alpha' \leq a \ \forall a \in A \\ \\ \beta' \leq b \ \forall b \in B \end{array} \right\} \alpha' \beta' \leq ab \ \forall a \in A, \forall b \in B.$$

Además, $\beta \geq c \ \forall c \in B \implies \beta^2 \geq \beta c \geq c^2 \ \forall c \in B \implies -c^2 \geq -\beta^2$. Por lo tanto, $ab - c^2 \geq \alpha'\beta' - \beta^2$, por lo que $\alpha'\beta' - \beta^2 \in Minor(C)$, y C está minorado. Entonces, cabe considerar su ínfimo, $\gamma' = inf(C)$.

Como γ' es el máximo minorante, tenemos que

$$\gamma' \ge \alpha' \beta' - \beta^2. \tag{1}$$

Por otro lado, tenemos que $\gamma' \leq ab - c^2 \ \forall a \in A, \ \forall b, c \in B \implies \gamma' + c^2 \leq ab$. Como b > 0, podemos

 $\frac{\gamma'+c^2}{b} \leq a, \text{ luego } \frac{\gamma'+c^2}{b} \in Minor(A). \text{ Usando que } \alpha' \text{ es el máximo minorante de } A, \text{ tenemos que } \alpha'$

$$\frac{\gamma' + c^2}{b} \le \alpha'. \tag{2}$$

Distinguimos ahora dos casos:

Caso 1: $\alpha' = 0$

La desigualdad (1) queda como $\gamma' \geq -\beta^2$. La desigualdad (2) queda como $\frac{\gamma' + c^2}{b} \leq 0$. Como b > 0, tenemos que $\gamma' + c^2 \leq 0$, de donde $c \leq \sqrt{-\gamma'} \ \forall c \in B$, por lo que $\sqrt{-\gamma'} \in Mayor(B)$. Usando que β es el menor mayorante de B, obtenemos: $\sqrt{-\gamma'} \geq \beta \implies \beta^2 \leq -\gamma' \implies \gamma' \leq -\beta^2$. Así, obtenemos que

Caso 2: $\alpha' > 0$

Retormando (2), como $\alpha' > 0$, podemos dividir por α' y multiplicar por b. $\frac{\gamma' + c^2}{\alpha'} \leq b \implies \frac{\gamma' + c^2}{\alpha'} \in Minor(B). \text{ Usando que } \beta' \text{ es el mayor minorante de } B, \text{ tenemos que } \frac{\gamma' + c^2}{\alpha'} \leq \beta' \implies \gamma' + c^2 \leq \alpha'\beta' \implies c^2 \leq \alpha'\beta' - \gamma' \implies c \leq \sqrt{\alpha'\beta' - \gamma'} \,\,\forall c \in B, \text{ de donde } \sqrt{\alpha'\beta' - \gamma'} \in Mayor(B). \text{ Por lo tanto, usando que } \beta \text{ es el menor mayorante de } B, \text{ obtenemos que } \sqrt{\alpha'\beta' - \gamma'} \geq \beta \implies \alpha'\beta' - \gamma' \geq \beta^2 \implies \gamma' \leq \alpha'\beta' - \beta^2.$

Finalmente, concluimos que $\gamma' = \alpha'\beta' - \beta^2$.

Problema 2

Sean A y B conjuntos no vacíos de números reales tales que $B \subset \mathbb{R}^+$ y A está mayorado. Sea $\alpha = \sup(A)$ y $\beta = inf(B)$. Supongamos que $\alpha < \beta^2$. Definamos:

$$C = \{ \frac{1}{b^2 - a} : b \in B, a \in A \}$$

Prueba que $sup(C) = \frac{1}{\beta^2 - \alpha}$. ¿Qué puedes decir del ínfimo de C?

Se dan las siguientes desigualdades:

Se dan las signientes designatuades. $a \leq \alpha \ \forall a \in A \\ \beta \leq b \ \forall b \in B$. Como $b, \beta \geq 0$, podemos multiplicar por cualquiera de ellos sin alterar el sentido de $-\alpha \leq -a \ \forall a \in A \\ \text{la designaldad.}$ la designaldad. $\beta^2 \leq b\beta \leq b^2 \ \forall b \in B$ Sumando estas dos designaldades obtenemos: $b^2 - a \geq \beta^2 - \alpha.$ Podemos pasar a inversos, ya que los dos miembros son positivos ($b^2 - a \geq \beta^2 - \alpha > 0$), por hipótesis.

$$\frac{1}{\beta^2 - \alpha} \ge \frac{1}{b^2 - a} \ \forall a \in A, \forall b \in B.$$

Esto nos dice que $\frac{1}{\beta^2 - \alpha} \in Mayor(C)$, por lo tanto, C está mayorado y tiene sentido considerar su supremo. Sea $\gamma = sup(C)$. Como γ es el menor mayorante de C, tenemos que $\frac{1}{\beta^2 - \alpha} \geq \gamma$.

Además, tenemos que $\gamma \geq \frac{1}{b^2 - a} \ \forall a \in A, \forall b \in B$. Como $\gamma > 0$ y $\frac{1}{b^2 - a} > 0$, podemos pasar a inversos. $b^2 - a \geq \frac{1}{\gamma} \implies a \leq b^2 - \frac{1}{\gamma} \ \forall a \in A, \forall b \in B$. Por lo tanto, $b^2 - \frac{1}{\gamma} \in Mayor(A)$. Utilizando que α es el menor mayorante de A, tenemos que $b^2 - \frac{1}{\gamma} \geq \alpha \implies b^2 \geq \alpha + \frac{1}{\gamma} \implies b \geq \sqrt{\alpha + \frac{1}{\gamma}} \ \forall b \in B$. De esto último obtenemos que $\sqrt{\alpha + \frac{1}{\gamma}} \in Minor(B)$. Como β es el mayor minorante de B, deducimos que $\sqrt{\alpha + \frac{1}{\gamma}} \leq \beta \implies \alpha + \frac{1}{\gamma} \leq \beta^2 \implies \frac{1}{\gamma} \leq \beta^2 - \alpha$. Como ambos miembros son positivos, podemos pasar a inversos. $\gamma \geq \frac{1}{\beta^2 - \alpha}$.

Así, obtenemos una doble desigualdad, para concluir que $\gamma = \frac{1}{\beta^2 - \alpha}$.

Razonamos que el ínfimo del conjunto C es 0, pues, al no estar el conjunto B mayorado, podemos coger un elemento b de B tan grande como queramos. Del mismo modo, al no estar el conjunto A minorado, podemos coger un elemento a de A tan pequeño como queramos. De esta manera, $b^2 - a \to +\infty \implies \frac{1}{b^2 - a} \to 0$.