Chern-Weil Construction of Chern Classes

Yifeng Huang

Feb. 04, 2015

Abstract

This is a study note under the guideline of an exercise for the course *MATH5230*: Differential Topology taught by Prof. Guowu Meng. In this article we are aimed at giving a definition of Chern classes of smooth complex vector bundles over smooth manifolds and proving the definition is a topological invariant.

1 Introduction

Let $\xi: E \to M$ denote a smooth complex vector bundle (simply called *bundle* throughout the article). Given a bundle $\xi: E \to M$ and a smooth map $f: M' \to M$, the **pullback** bundle $f^*\xi$ of ξ via f is defined as $\xi': E' \to M'$, where E is the categorical pullback of the diagram $E, M' \to M$. It can be verified that ξ' has a local trivialization and transition functions naturally given by those of ξ via f, and is thus a smooth (complex) vector bundle.

A characteristic class with coefficient ring R is a pullback preserving way to assign to each isomorphic class of bundles $\xi : E \to M$ an element in $H^*(M; R)$, the cohomology ring of M with coefficients in R. In other words, if χ is a characteristic class, then $\chi(f^*\xi) = f^*(\chi(\xi))$.

Choosing $R = \mathbb{R}$, the cohomology ring $H^*(M; \mathbb{R})$ is isomorphic to the de Rham cohomology ring $H^*_{dR}(M)$. In the next section we will construct Chern classes for a given bundle ξ as cohomology classes of real differential forms. Then in Section 3 we will prove basic properties of Chern classes.

2 Construction

2.1 The curvature form

Suppose we are given a \mathbb{C} -linear connection $\nabla : \Gamma(\xi) \to \Gamma(\xi \otimes_{\mathbb{R}} T^*M)$ on ξ (Hereafter we simply write \otimes for $\otimes_{\mathbb{R}}$). We are going to define the curvature form $F_{\nabla} \in \Gamma(\operatorname{End}_{\mathbb{C}}(\xi) \otimes \Lambda^2 T^*M)$ associated to the connection ∇ .

Definition 2.1. Given a bundle $\xi: E \to M$, write $\Omega^k(\xi) = \Omega^k(M; E) := \Gamma(\xi \otimes \Lambda^k T^*M)$, whose elements are called *E*-valued differential *k*-forms on *M*. The wedge product of an

ordinary differential form with an E-valued differential form is defined as

$$(s \otimes \omega) \wedge \rho = \omega \wedge (s \otimes \rho) := s \otimes (\omega \wedge \rho), \ \omega, \rho \in \Omega(M), s \in \Gamma(\xi).$$

We clearly have the graded commutative law inherited from that of ordinary differential forms. In particular, noting that $\Gamma(\xi)$ is just $\Omega^0(\xi)$, a section s of ξ is of even degree, so $s \otimes \omega = s \wedge \omega = \omega \wedge s$.

There is no canonical exterior derivative for E-valued differential forms. However if a connection on ξ is given, then we can define the **exterior derivative associated to the connection** ∇ :

$$d_{\nabla}: \Omega^{k}(\xi) \to \Omega^{k+1}(\xi)$$
$$s \otimes \omega \mapsto \nabla s \wedge \omega + s \wedge d\omega$$

When k = 0 above, we can set $\omega = 1$ and see that d_{∇} is just ∇ .

Proposition 2.2. The exterior derivative associated to a connection is well-defined, \mathbb{C} -linear and it satisfies the graded Leibniz rule:

$$d_{\nabla}(\omega \wedge \rho) = d_{\nabla}\omega \wedge \rho + (-1)^{\deg \omega}\omega \wedge d_{\nabla}\rho$$

where ω is homogeneous, and exactly one of ω and ρ is an E-valued form while the other is an ordinary form. Here d_{∇} of an ordinary form is just its exterior derivative.

Proof. Let us verify that d_{∇} is well defined. By a lemma in manifold theory, $\Gamma(\xi \otimes_{\mathbb{R}} \Lambda^k T^*M) \cong \Gamma(\xi) \otimes_{C^{\infty}(M)} \Gamma(\Lambda^k T^*M)$. By the Leibniz rule of the ordinary exterior derivative and ∇ , we have $d_{\nabla}(fs \otimes \omega) - d_{\nabla}(s \otimes f\omega) = (s \otimes df) \wedge \omega - s \wedge (df \wedge \omega) = 0$, where $f \in C^{\infty}(M)$. Hence d_{∇} is $C^{\infty}(M)$ -balanced, and thus well-defined by the universal properties of tensor products.

The lemma above also show that pure tensors $s \otimes \omega$ generates $\Omega^k(\xi)$ as an abelian group. The remaining properties of d_{∇} can be therefore proved by direct computation on pure tensors.

Unlike the exterior derivative of ordinary forms, the derivative of E-valued forms does not square to 0. This is exactly because there may not exist a local trivialization of E where ∇ is the usual differentiation of vector-valued function. In other words, the connection ∇ may not be **flat**. This motivates us to use d^2_{∇} as a measure of *curvature*.

Proposition 2.3. d^2_{∇} is $C^{\infty}(M)$ linear on ξ -sections, and thus define a tensor field F_{∇} in $\Gamma(\operatorname{End}_{\mathbb{C}}(\xi) \otimes \Lambda^2 T^*M)$, called the **curvature form** of ∇ .

Proof. Let $f \in C^{\infty}(M)$, $s \in \Gamma(\xi)$. We have

$$d_{\nabla}^{2}(fs) = d_{\nabla}(f\nabla s + s \otimes df)$$

$$= df \wedge \nabla s + f d_{\nabla}^{2} s + \nabla s \wedge df + s \otimes d^{2} f$$

$$= f d_{\nabla}^{2} s$$

2.2 Local computations

On a local trivialization, sections of ξ can be represented by a \mathbb{C} -vector-valued function $s = [f_i]$, and E-valued k-forms by $\omega = [\omega_i]$, where f_i are complex-valued functions and ω_i are complex k-forms. The componentwise derivative $d: [f_i] \mapsto [df_i]$ is a connection. Recall that the difference of any two connections on ξ is tensorial, so $\nabla - d \in \Gamma(\operatorname{End}_{\mathbb{C}}(\xi) \otimes T^*M)$ and we can locally write $\nabla = d + A$ where $A = [A_{ij}]$ is a complex one-form valued matrix. We have $\nabla([f_i]) = [df_i + A_{ij}f_j]$. Writing $s_i = [\delta_{ij}]_j$, the standard frame of the local trivialization, we have $\nabla s_i = s_j \otimes A_{ji}$.

Lemma 2.4. On a trivial bundle ξ with a connection $\nabla = d + A$, we have

(a)
$$d_{\nabla} = d + A \wedge$$
, i.e. $d_{\nabla}([\omega_i]) = [d\omega_i + A_{ij} \wedge \omega_j]_i$ for any E-valued k-form $[\omega_i]$.

(b)
$$F_{\nabla} = dA + A \wedge A$$
, i.e. as a matrix of 2-forms, $F_{\nabla} = [dA_{ij} + A_{ik} \wedge A_{kj}]_{ij}$.

Proof. (a) Given an E-valued k-form $[\omega_i]$, we have

$$d_{\nabla}([\omega_i]) = d_{\nabla}(s_i \otimes \omega_i)$$

$$= \nabla s_i \wedge \omega_i + s_i \otimes d\omega_i = s_j \otimes A_{ji} \wedge \omega_i + s_i \otimes d\omega_i$$

$$= s_i \otimes (A_{ij} \wedge \omega_j + d\omega_i) = [d\omega_i + A_{ij} \wedge \omega_j]_i.$$

(b) Given a section $s = [f_i]$ of ξ , we have

$$F_{\nabla}s := d_{\nabla}^2 s$$

$$= (d + A \wedge)((d + A)s) = d^2 s + d(As) + A \wedge As + A \wedge ds$$

$$= dA \wedge s - A \wedge ds + A \wedge As + A \wedge ds$$

$$= (dA + A \wedge A)s$$

By a standard facts about tensor fields, the connection ∇ on ξ extends naturally to connections (still written ∇) on all **tensor bundles** $\xi^{\otimes k} \otimes \xi^{*\otimes l}$ (whose sections are called **tensor fields**), which satisfy the Leibniz rule with respect to tensor products and commute with contractions. Applying Proposition 2.2, we get bundle-valued exterior derivatives d_{∇} for all tensor bundles of ξ . The operator d_{∇} satisfies the graded Leibniz rule and commutes with contraction, which can be proved by examining tensors of the form $A \otimes \omega$, where A is a tensor fields of ξ and ω is an ordinary differential form.

In particular, $\operatorname{End}(\xi) \cong \xi \otimes \xi^*$ is a tensor bundle, so we can talk about the exterior derivative of its bundle-valued forms. Under this identification, the matrix multiplication is exactly a tensor product followed by a contraction, so the Leibniz rule applies.

Lemma 2.5. Let $F \in \Omega^k(\operatorname{End}(\xi))$. Using the local setting as before, F can be expressed by a k-form-valued matrix. Then

$$d_{\nabla}F = dF + A \wedge F - (-1)^k F \wedge A,$$

where $\nabla = d + A$.

Proof. Let $s \in \Gamma(\xi)$. By the graded Leibniz rule, we have

$$(d_{\nabla}F)s = d_{\nabla}(Fs) - (-1)^k F \wedge \nabla s$$

$$= (d + A \wedge)(Fs) - (-1)^k F \wedge (d + A)s$$

$$= (dF)s + (-1)^k F \wedge ds + A \wedge Fs - (-1)^k (F \wedge ds + F \wedge As)$$

$$= (dF + A \wedge F - (-1)^k F \wedge A)s$$

We are ready to end this section with a global result as a consequence of the local computations above:

Proposition 2.6. The curvature form satisfies $d_{\nabla}F_{\nabla}=0$.

Proof. Noting that F_{∇} has degree 2, we have

$$d_{\nabla}F_{\nabla} = dF_{\nabla} + [A, F_{\nabla}] = d(dA + A \wedge A) + [A, dA + A \wedge A]$$
$$= d(A \wedge A) + [A, dA] + A \wedge A \wedge A - A \wedge A \wedge A$$
$$= dA \wedge A - A \wedge dA + A \wedge dA - dA \wedge A = 0$$

2.3 Definition of Chern classes

Note that the space of two-forms lies in the commutative ring $\Omega^{2*}(M)$ of even-degree differential forms. Pointwise, $F_{\nabla}(p) \in \operatorname{End}_{\mathbb{C}}(\xi|_p) \otimes_{\mathbb{R}} \Omega_p^{2*}(M) \cong \operatorname{End}_{\mathbb{C} \otimes \Omega_p^{2*}(M)}(\xi|_p \otimes \Omega_p^{2*}(M))$, so its trace, determinant and characteristic polynomial make sense and lie in the ring of complex-valued even-degree differential forms. The Chern classes are almost the coefficients of the characteristic polynomial of F_{∇} , up to some normalization.

Definition 2.7. Given a complex vector bundle ξ of rank k and a connection ∇ over ξ , write

$$\det(I + \frac{it}{2\pi}F_{\nabla}) = \sum_{0}^{\infty} (t^{i}c_{i}) = 1 + tc_{1} + \dots + t^{k}c_{k}.$$

We call c_i the *i*-th Chern form of ∇ . Note that $c_0 = 1, c_{k+1} = c_{k+2} = \dots = 0$.

Recall the linear algebra fact that given a $k \times k$ matrix A, $\det(I + A)$ is a rational polynomial in $\operatorname{tr}(A^m), m = 1, ..., k$. Hence c_i is an 2i-form and is a real polynomial of $\operatorname{tr}((iF_{\nabla})^m), m = 1, ..., i$.

Lemma 2.8. The 2*m*-form $\operatorname{tr}(F_{\nabla}^m)$ is closed, and if ∇' is another connection on ξ , then $\operatorname{tr}(F_{\nabla'}^m) - \operatorname{tr}(F_{\nabla'}^m)$ is an exact complex form.

Proof. First we show closedness. Viewing $\operatorname{End}(\xi)$ as $\xi \otimes \xi^*$, the trace operator is just the contraction, so it commutes with d_{∇} . Therefore it suffices to show $d_{\nabla}(F_{\nabla}^m) = 0$. As the commutative Leibniz rule holds for degree reason, we have the usual power rule

$$d_{\nabla}(F_{\nabla}^{m}) = mF_{\nabla}^{m-1} \wedge d_{\nabla}F_{\nabla},$$

which vanishes as $d_{\nabla}F_{\nabla}=0$.

Now suppose $\nabla = d + A$, $\nabla' = d + A'$ on a local trivialization. Write $B := \nabla' - \nabla \in \Omega^1(\text{End}(\xi))$, locally represented by a matrix of one-forms, also denoted by B. Writing $\nabla_t = \nabla + tB$, represented by the matrix A_t , we have

$$\operatorname{tr}(F_{\nabla'}^{m}) - \operatorname{tr}(F_{\nabla}^{m}) = \int_{0}^{1} \frac{d}{dt} \operatorname{tr}(F_{\nabla_{t}}^{m}) dt$$
$$= \int_{0}^{1} \operatorname{tr}(mF_{\nabla_{t}}^{m-1} \frac{d}{dt} F_{\nabla_{t}}) dt$$

Using the local expression,

$$\frac{d}{dt}F_{\nabla_t} = \frac{d}{dt}(dA_t + A_t \wedge A_t)$$

$$= d(\frac{d}{dt}A_t) + \frac{d}{dt}(A_t \wedge A_t)$$

$$= dB + B \wedge A_t + A_t \wedge B$$

$$= d_{\nabla_t}B$$

as B is of degree 1.

As $d_{\nabla_t} F_{\nabla_t} = 0$, we have

$$\operatorname{tr}(mF_{\nabla_t}^{m-1}\mathrm{d}_{\nabla_t}B) = \operatorname{tr}(\mathrm{d}_{\nabla_t}(mF_{\nabla_t}^{m-1}B)) = \operatorname{d}\operatorname{tr}(mF_{\nabla_t}^{m-1}B).$$

Hence,

$$\operatorname{tr}(F_{\nabla'}^m) - \operatorname{tr}(F_{\nabla}^m) = \operatorname{d} \int_0^1 \operatorname{tr}(mF_{\nabla_t}^{m-1}B) dt,$$

which is globally exact.

Corollary 2.9. The *i*-th Chern form represents a cohomology class $[c_i] \in H^{2i}_{dR}(M; \mathbb{C})$, which is independent of the connection ∇ . We call $[c_i]$, often written as $c_i(\xi)$, the *i*-th Chern class of ξ .

Proof. The lemma exactly shows that the differential form $\operatorname{tr}(F_{\nabla}^m)$ represents a connection-independent cohomology class, for m=0,1,...,k. Since the wedge product of de Rham cohomology classes is well-defined, $[c_i]$ can be expressed as a (complex) polynomial of $[\operatorname{tr}(F_{\nabla}^m)]$ and is thus also a connection-independent cohomology class.

Now it remains to identify $[c_i]$ as a *real* cohomology class. Note that $H^*_{dR}(M;\mathbb{R})$ is a subset of $H^*_{dR}(M;\mathbb{C})$, since a real form is closed (exact) as a real form if and only if it is closed (exact) as a complex form. (We just verify one of the implications. Suppose ω is a real form such that $\omega = d\alpha$ where α is a complex form. Then taking α' to be the real part of α , we get $\omega = d\alpha'$, so that ω is exact as a real form.)

We claim that $[c_i] \in H^*_{dR}(M; \mathbb{R})$. As $[c_i]$ is a real polynomial in $[\operatorname{tr}((iF_{\nabla})^m)], m = 0, 1, ..., k$, all we need is to show $[\operatorname{tr}((iF_{\nabla})^m)]$ is real. In fact, there is ∇ where the form $\operatorname{tr}((iF_{\nabla})^m)$ is real.

Definition 2.10. Suppose we are given an Hermitian structure $\langle \cdot, \cdot \rangle$ on ξ , with the convention $\langle \lambda v, w \rangle = \bar{\lambda} \langle v, w \rangle$. Then a connection ∇ is called an **Hermitian connection** if $d\langle s, s' \rangle = \langle \nabla s, s' \rangle + \langle s, \nabla s' \rangle$ for all ξ -sections s and s'.

If we locally trivialize ξ by using an orthonormal local frame, then d is an Hermitian connection. Using the partition of unity, a global Hermitian connection always exists on ξ .

Proposition 2.11. If ∇ is an Hermitian connection on an Hermitian bundle ξ , then $\operatorname{tr}((iF_{\nabla})^m)$ is real.

Proof. The question is local. Using the orthonormal trivialization described above, we may write $\nabla = d + A$. As both d and ∇ are Hermitian connections, we have

$$d\langle s, s' \rangle = \langle ds, s' \rangle + \langle s, ds' \rangle$$

and

$$d\langle s, s' \rangle = \langle (d + A)s, s' \rangle + \langle s, (d + A)s' \rangle.$$

By subtraction, we get $\langle As, s' \rangle + \langle s, As' \rangle = 0$. Hence A is a skew-Hermitian matrix, i.e. $A^* + A = 0$.

We claim F_{∇} is also skew-Hermitian. Indeed,

$$F_{\nabla}^* = (dA + A \wedge A)^* = dA^* - A^* \wedge A^*$$

= $-dA - (-A) \wedge (-A) = -F_{\nabla}$,

where the minus sign after the second equality is because the formula $(AB)^* = B^*A^*$ reverses the order of multiplication.

As a consequence, iF_{∇} is Hermitian. Since iF_{∇} commutes with itself, its powers are also Hermitian. Hence $\operatorname{tr}((iF_{\nabla})^m)$ is real.

Corollary 2.12. Any Hermitian connection with respect to any Hermitian structure on ξ gives by its i-th Chern form a real representative of $c_i(\xi)$. In particular, $c_i(\xi) \in H^{2i}_{dR}(M)$.

3 Properties

Proposition 3.1. (Whitney sum formula) Define the **total Chern class** of a bundle to be $c(\xi) := c_0 + c_1 + c_2 + ... = \det(I + \frac{i}{2\pi}F_{\nabla})$. Given two bundles ξ_1 and ξ_2 on a manifold M, we have

$$c(\xi_1 \oplus \xi_2) = c(\xi_1)c(\xi_2)$$

Proof. Suppose we are given connections ∇_i on ξ_i . Define a connection ∇ on $\xi := \xi_1 + \xi_2$ by

$$\nabla(s_1 \oplus s_2) := \nabla_1 s_1 \oplus \nabla_2 s_2.$$

It is easy to check that ∇ is a connection. Choosing a local trivialization and writing $\nabla_i = d + A_i$, we can also verify that $\nabla = d + A_1 \oplus A_2$, where $A_1 \oplus A_2$ is the block diagonal matrix given by

$$\begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}.$$

As the matrix multiplication can be computed block by block, $F_{\nabla} = dA + A \wedge A = F_{\nabla_1} \oplus F_{\nabla_2}$. Evaluating determinants in blocks, we get $c(\xi) = c(\xi_1)c(\xi_2)$.

Remark. Comparing terms of degree 2k, we get a more explicit though less elegant form of the Whitney sum formula:

$$c_k(\xi) = \sum_{i=1}^k c_i(\xi_1) c_{k-i}(\xi_2)$$

Proposition 3.2. Let ℓ_1 and ℓ_2 be two complex line bundles (i.e. complex vector bundles of rank 1), and $\ell := \ell_1 \otimes \ell_2$. Then

$$c_1(\ell) = c_1(\ell_1) + c_1(\ell_2)$$

Proof. Let ∇_i be a connection on ℓ_i . Define a connection ∇ on ℓ by

$$\nabla(s_1 \otimes s_2) = \nabla_1 s_1 \otimes s_2 + s_1 \otimes \nabla_2 s_2$$

To see ∇ is indeed a well-defined connection, note that the formal map $\nabla(\cdot \otimes \cdot)$ satisfies

$$\nabla (fs_1 \otimes s_2) = df \otimes s_1 \otimes s_2 + f \nabla_1 s_1 \otimes s_2 + f s_1 \otimes \nabla_2 s_2 = \nabla (s_1 \otimes f s_2)$$

for any $f \in C^{\infty}(M)$. Being $C^{\infty}(M)$ -balanced, ∇ is well defined. The computation also proves the Leibniz rule.

Now under a local trivialization, ∇_i is written $d + A_i$, where A_i is just a 1-form. Given a section s, locally represented by a function f, we have

$$\nabla(f) = \nabla(1 \cdot f) = (d(1) + A_1)f + 1 \cdot (df + A_2f) = df + (A_1 + A_2)f$$

Hence ∇ is represented by $A = A_1 + A_2$. As $F_{\nabla} = dA + A \wedge A = dA$, linear in A, we get $F_{\nabla} = F_{\nabla_1} + F_{\nabla_2}$. Notice that $c_1(\nabla)$ is simply $\frac{\mathrm{i}}{2\pi} F_{\nabla}$, so it is linear in F_{∇} . Thus $c_1(\xi) = c_1(\xi_1) + c_1(\xi_2)$.

Proposition 3.3. Chern classes are characteristic classes, i.e. if $\xi : E \to M$ is a bundle, $\phi : M' \to M$ is a smooth map and $\xi' : E' \to M'$ is the pullback of ξ via ϕ , then $c_i(\xi') = \phi^*(\xi)$.

Proof. Let ∇ be a connection on ξ . Let $\nabla' := \phi^* \nabla$, the pullback of ∇ via ϕ , which is defined as follows:

On an open set $U \subseteq M$ where ξ is trivial, write $\nabla = d + A$, where $A = [A_{ij}]$ is a matrix of one-forms on U. Let $U' = \phi^{-1}(U)$. Then there is a trivialization on U' given by the pullback. We define $\nabla' = d + [\phi^* A_{ij}]$ on U'.

To check it is globally defined, we shall give it a coordinate independent characterization. Define the pullback of E-valued k-forms by $\phi^*: \Omega^k(U;\xi) \to \Omega^k(U';\xi'), s \otimes \omega \mapsto \phi^*s \otimes \phi^*\omega$. We claim that on any trivial bundle U, the connection ∇' we have defined is the unique connection ∇' on U' such that for any section s of $\xi|_U$, we have

$$\nabla'(\phi^*s) = \phi^*(\nabla s). \quad (*)$$

Write $\nabla' = d + A'$ on U'. We have

$$\nabla'(\phi^*s) = \phi^*(\nabla s) = \phi^* ds + \phi^*(As) = (d + \phi^*A)(\phi^*s).$$

On the other hand,

$$\nabla'(\phi^* s) = (d + A')(\phi^* s).$$

Hence $\nabla' = d + A'$ satisfies (*). To show the uniqueness, let s_i be represented by the constant vector $e_i = [\delta_{ij}]_j$, then $s_i' = \phi^* s_i$ is also represented by e_i . Thus $(\phi^* A)e_i = A'e_i$, i.e. the *i*-th column of A' and $\phi^* A$ is the same.

Now $F_{\nabla} = dA + A \wedge A$ and $F_{\nabla'} = dA' + A' \wedge A' = \phi^* F_{\nabla}$. Taking characteristic polynomials, we get $c_i(\xi') = \phi^*(c_i(\xi))$.