Linear Regression Analysis Report

Student Name: Daniel Muthama

Program: Machine Learning Regression

Course: DA1-2025

Date: July 1, 2025

1. Introduction

This report details the implementation of two simple linear regression models to predict:

Exam Scores based on study hours

House Prices based on property area

The analysis follows a complete machine learning workflow from data exploration to model evaluation.

2. Dataset Exploration

Dataset Overview

Records: 1,000

Variables:

Study Hours (float: 2.0-10.0 hours)

Exam Score (int: 50-100 points)

House Area sqft (int: 800-2,500 sq ft)

House_Price_USD (int: \$172,866-\$600,000)

Key Statistics				
Variable	Mean	Std Dev	Min	Max
Study_Hours	5.03	1.45	2.0	10.0
Exam_Score	75.23	10.36	50	100
House_Area_sqft	1,149	501	800	2,500
House_Price_USD	\$329,456	\$101,433	\$172,866	\$600,000

Visualization

Positive correlation visible between study hours and exam scores

3. Model Implementation

Data Splitting

Training Set: 800 records (80%)

Test Set: 200 records (20%)

Random State: 42 (for reproducibility)

Model 1: Exam Score Prediction

Regression Equation:

Exam Score = $4.61 \times \text{Study Hours} + 52.14$

Interpretation:

Baseline score (0 hours): 52 points

Each additional study hour \rightarrow +4.61 points

Model 2: House Price Prediction

Regression Equation:

Price = $$194.50 \times Area + $106,751.79$

Interpretation:

Base land value: \$106,752

Construction cost: \$194.50/sq ft

4. Model Evaluation

Exam Scor	Exam Score Model Metrics			
Metric	Value	Interpretation		
MAE	6.18 points	Average prediction error		
RMSE	7.84 points	Larger errors penalized		
R²	0.45	45% variance explained		

House Price	House Price Model Metrics			
Metric	Value	Interpretation		
MAE	\$20,526	Typical prediction error		
RMSE	\$26,429	Sensitive to large errors		
R²	0.94	94% variance explained		

5. Visualization Results

Exam Score Prediction

Exam Score Prediction (Study Hours vs Exam Score)

Regression line shows moderate predictive power

House Price Prediction

House Price Prediction (Area vs Price)

Tight fit indicates excellent predictive accuracy

6. Conclusion

Key Findings

Study hours moderately predict exam scores (R²=0.45)

House area strongly predicts prices (R²=0.94)

House price model shows professional-grade accuracy (MAE \pm \$20.5K)

Learnings

Simple linear regression works exceptionally well for clear linear relationships

Domain context matters (e.g., minimum house value reflects land costs)

Evaluation metrics should align with business needs (dollar errors vs points)

Recommendations

For exam predictions: Incorporate additional features (e.g., prior GPA)

For housing model: Explore location-based segmentation

7. Project Artifacts

Code Repository: Link

Notebook: Link

Dataset: exam house dataset.csv

All plots and metrics generated from reproducible code (see Appendix for full implementation)