GIMAP Gene Family Descriptive Statistics

Erin Roberts PhD Student Gomez-Chiarri Lab May 15, 2018

**Data was gathered by first searching (using grep command in bash) for all "GTP IMAP" genes in the GCA*rna.gz reference genome. Exons for each gene were found by searching the LOC GeneID in the .gff annotated reference genome for the eastern oyster.

Table 1: Total Genes	
GIMAP GENES	53
GIMAP4	42
GIMAP7	9
GIMAP8	2

Table 2: Genes				
per chromosome				
Chromosome	Number of Total	Number of	Number of	Number of
	Genes	GIMAP 4	GIMAP 7	GIMAP 8
CHR2	3	1	0	2
CHR4	5	5	0	0
CHR5	1	1	0	0
CHR6	1	1	0	0
CHR7	10	10	0	0
CHR8	25	18	7	0
CHR9	8	6	2	0

Table 3. Table 3. Exons Per GIMAP gene				
Per Chromosome (cont. on next page)				
Gene	Number	Chromosome		
LOC111120314	3	CHR2		
LOC111119582	48	CHR2		
LOC111119581	3	CHR2		
LOC111129932	9	CHR4		
LOC111129930	9	CHR4		
LOC111130155	9	CHR4		
LOC111130153	11	CHR4		
LOC111132212	2	CHR5		
LOC111100020	9	CHR6		
LOC111102552	4	CHR7		

LOC111103040	8	CHR7
LOC111105336	4	CHR7
LOC111105335	4	CHR7
LOC111105339	8	CHR7
LOC111105333	43	CHR7
LOC111103458	4	CHR7
LOC111103460	3	CHR7
LOC111104840	12	CHR7
LOC111103161	3	CHR7
LOC111108760	6	CHR8
LOC111106989	29	CHR8
LOC111110635	3	CHR8
LOC111106328	4	CHR8
LOC111106343	4	CHR8
LOC111109878	5	CHR8
LOC111105744	4	CHR8
LOC111108559	2	CHR8
LOC111109668	3	CHR8
LOC111109667	7	CHR8
LOC111108253	4	CHR8
LOC111110321	6	CHR8
LOC111109557	8	CHR8
LOC111108220	2	CHR8
LOC111105930	1	CHR8
LOC111109343	1	CHR8
LOC111109344	1	CHR8
LOC111106079	1	CHR8
LOC111106081	3	CHR8
LOC111109357	3	CHR8
LOC111109358	3	CHR8
LOC111109853	2	CHR8
LOC111109737	2	CHR8
LOC111108121	80	CHR8
LOC111107002	4	CHR8
LOC111110115	3	CHR8
LOC111111775	12	CHR9
LOC111113702	9	CHR9
LOC111115664	5	CHR9
LOC111112005	3	CHR9
LOC111111454	3	CHR9
LOC111115902	2	CHR9

LOC111110875	5	CHR9
LOC111111241	62	CHR9

Figure 1: Phylogenetic Tree of GIMAP Amino Acid Sequences. Amino acid sequences were gathered from the GCA*rna.gz file and were then aligned using ClustalW with default settings. Amino acid sequences from individual chromosomes, particularly 4,7 and 8 all tend to cluster together.

Figure 2: GIMAP Phylogenetic Tree of Amino Acid Sequences. This tree was generated in using using the program MSA. Default ClustalW parameters were used to generate the tree and a neighbor joining algorithm in MSA was employed to generate the distance matrix. No bootstrapping was performed. Currently RAxML is being run on the URI cluster to perform bootstrap replicates.