Variable aleatoria univariante: teorema central del límite

Teorema central del limite de Lindeberg-Levy.

Sean las v.a. X_1 , X_2 , ..., X_n independientes entre si y con la misma distribución $X_i \in D(\mu, \sigma^2) \ \forall i$. Se verifica que la v.a.:

$$X = \sum_{i=1}^{n} X_{i} \rightarrow N(n\mu, n\sigma^{2})$$

o bien:

$$\frac{X - n\mu}{\sqrt{n\sigma^2}} \rightarrow N(0,1)$$

M

Relación de convergencia entre b (n,p), P (λ) y N(0,1):

•
$$X \in \mathcal{B}(n,p) \rightarrow \mathcal{P}(\lambda)$$
 $(n \ge 20, p \le 0.05; n \ge 50, p \le 0.1; \lambda = np < 18)$

• $X \in \mathcal{b}(n,p) \rightarrow N(np,npq)$ (Teorema de DeMoivre, 1738)

$$X \in \mathcal{B}(n,p) \Rightarrow \frac{X - np}{\sqrt{npq}} \rightarrow N(0,1) \quad (n \ge 30, \min(p,q) \ge 0.1)$$

•
$$X \in \mathcal{P}(\lambda) \rightarrow N(\lambda, \lambda)$$
 ($\lambda \ge 18$) o bien $\frac{X - \lambda}{\sqrt{\lambda}} \rightarrow N(0, 1)$

Corrección de continuidad de Yates:

Si se quiere aproximar una distribución discreta por una continua, hay que aplicar una corrección de continuidad consistente en considerar un intervalo en torno al punto que se desea estudiar.

Discreta	Continua
x = a	$a-0.5 \le y \le a+0.5$
a < x < b	$a+0.5 \le y \le b-0.5$
$a \le x \le b$	$a-0.5 \le y \le b+0.5$
$a \le x < b$	$a-0.5 \le y \le b-0.5$
$a < x \le b$	$a+0.5 \le y \le b+0.5$

$$P(X = a)$$

$$\approx P(a - 0.5 \le Y \le a + 0.5)$$

$$P(X \ge a) \approx P(Y \ge a - 0.5)$$

$$P(X > a) \approx P(Y \ge a + 0.5)$$

10

Relación de convergencia entre las distribuciones continuas

√ t de Student a la Normal

$$t_{(n)} \xrightarrow[n \to \infty]{} N(0,1)$$

✓ Chi-Cuadrado a la Normal

$$X \in \chi^2_{(n)} \xrightarrow{n>30} N(\mu=n;\sigma^2=2n)$$

$$X \in \chi^2_{(n)} \text{ si } n > 30 \Rightarrow Y = \sqrt{2X} - \sqrt{2n-1} \rightarrow N(0;1)$$

✓ F de Fisher-Snedecor a la Chi-Cuadrado y a la Normal

$$X \in F_{(n_1;n_2)} \xrightarrow{n_2 \to \infty} X^* \in \chi^2_{(n_1)}$$

$$X^* \in \chi^2_{(n_1)} \xrightarrow{n_1 > 30} N(\mu = n_1; \sigma^2 = 2n_1)$$

Un camión de reparto de 4 Tm. de capacidad, transporta cajas cuyo peso en Kg. es una variable aleatoria Normal de media 80 Kg. con varianza de 25 Kg². Si se cargan 55 cajas, ¿cuál será la probabilidad de que la carga transportada no supere el máximo permitido?.

Sea X_i la variable aleatoria que nos mide "el peso de la caja número i",

$$X_i \in N(\mu_i = 80; \sigma_i^2 = 25) \equiv N(80; 25)$$

Al cargar 55 cajas, el peso total que transportará el camión, es: $X = \sum_{i=1}^{55} X_i$

es decir la suma de 55 variable Normales, y por tanto seguirá una distribución Normal (al ser la distribución Normal reproductiva)

$$X \in N(\mu; \sigma^2)$$

de media:
$$E[X] = E[\sum_{i=1}^{55} X_i] = \sum_{i=1}^{55} E[X_i] = 55 \times \mu_i = 55 \times 80 = 4400$$

de varianza:
$$V(X) = V\left(\sum_{i=1}^{55} X_i\right) = 1^2 \times V(X_1) + 1^2 \times V(X_2) + ... + 1^2 \times V(X_{55}) = 55 \times 25 = \underline{1375}$$

$$X = \sum_{i=1}^{55} X_i \in N\left(\mu = 4400 \; ; \; \sigma^2 = 1375\right) \quad \text{En Kilogramos}$$

Nota: Aún cuando la distribución del peso de las cajas no sea normal, o incluso desconocida, la distribución del peso total es normal por aplicación directa del T.C.L.

luego la probabilidad de no exceder la carga total permitida, (4 Tm. = 4000 kgs), es:

$$P(X \le 4000) = P\left(Z \le \frac{4000 - 4400}{\sqrt{1375}}\right) = P(Z \le -10.78) = \boxed{0}$$

$$X = \sum_{i=1}^{55} X_i \in N(\mu = 4.4; \sigma^2 = 0.001375)$$
 En Toneladas métricas

$$P(X \le 4) = P\left(Z \le \frac{4 - 4.4}{\sqrt{0.001375}}\right) = P(Z \le -10.78) = \boxed{0}$$

¿Cuántas cajas pueden transportarse de forma que la probabilidad de que la carga total exceda de la permitida sea igual a 0.01?

El peso total que transportará el camión, es: $X = \sum_{i=1}^{n} X_i \in N(\mu; \sigma^2)$

de media:
$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = n \times \mu_i = 80 \text{ n}$$

de varianza:
$$V(X) = V(\sum_{i=1}^{n} X_i) = 1^2 \times V(X_1) + 1^2 \times V(X_2) + ... + 1^2 \times V(X_n) = \underline{25n}$$

$$X = \sum_{i=1}^{n} X_i \in N(\mu = 80 \text{ n}; \sigma^2 = 25 \text{ n})$$

En Kilogramos

$$P(X > 4000) = 0.01 \Rightarrow P\left(Z > \frac{4000 - 80 \text{ n}}{\sqrt{25 \text{ n}}}\right) = 0.01$$

Mirando en las tablas de la N(0,1) se obtiene el valor de $z\approx2.33$

$$\frac{4000-80\,\mathrm{n}}{\sqrt{25\,\mathrm{n}}}$$

luego
$$\frac{4000 - 80 \,\mathrm{n}}{\sqrt{25 \,\mathrm{n}}} = 2.33$$

$$4000-80 \text{ n}=2.33\sqrt{25 \text{ n}} \implies (4000-80 \text{ n})^2=2.33^2\times 25 \text{ n}$$

Resolviendo la ecuación de segundo grado planteada, se obtienen como dos es el número pedido:

Variable aleatoria univariante: teorema central del límite

