Roll No.:							
-----------	--	--	--	--	--	--	--

MIT School of Engineering, Pune Term Assessment: 2 (2020-21)

Branch Code: BTIS Class: T. Y. B. Tech Semester: V

Branch: Computer Science and Engineering

Subject Code: 18BTIS502/18BTCS502: System Programming and Operating Systems

Date : 07-12-2020 Max. Marks: 20

Time : 10:30 am to 11:30 am

Instructions

- 1. Attempt the Que 1 OR Que 2 and Que 3 OR Que 4.
- 2. Neat diagrams must be drawn, wherever necessary.
- 3. Use of logarithmic tables, slide rule, Mollier chart, electronic scientific calculator and steam tables are allowed.
- 4. Figures to right indicate the marks allotted to the questions.
- **Q1.** Attempt the following questions:

5 M

- a) Explain the following points with respect to threads and processes:
 - 1. What is a thread? Explain difference between process and threads.
 - 2. Draw process state diagram stating the transition between various process states.
- a. How OS processing is benefit with the process pre-emption in OS? For the table given **5 M** below; draw the Gantt chart illustrating the process execution based on the round robin with a time quantum of 4. Solve it for calculating the average waiting time and average turnaround time.

Data for RR with time quantum 4				
	Arrival time	Burst time		
Α	0	8		
В	3	6		
С	5	7		
D	8	4		
Е	10	5		

OR

Q2. a) Present producer-consumer problem. Explain how to solve it.

4 M

b) Find out the safe sequence for the execution of the following processes using Banker's **6 M** algorithm. Maximum resources $R_1 = 13$, $R_2 = 7$, $R_3 = 10$ units

Allocation Matrix				
	R_1	R_2	R_3	
P ₁	2	1	1	
P ₂	7	2	3	
P_3	3	2	2	
P ₄	1	1	3	

Maximum Required				
	R_1	R_2	R_3	
P ₁	4	3	3	
P ₂	7	2	4	
P_3	4	2	5	
P ₄	5	3	3	

Q3. a) Organize given page reference string with 3 frames for FIFO and LRU. Calculate number 6 M of page faults and page hits.

A, B, C, D, E, C, D, A, F, G, H, G, H, I, E, D

b) Which memory partitioning method results in external fragmentation? Explain allocation **4 M** strategies – first fit and next fit to reduce the fragmentation.

OR

Q4. Attempt the following questions

4 M

- a. What is TLB? Explain the model of paging system making use of TLB operations.
- b. Consider the reference string: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 2, 1, 2, 0, 1, 7, 0, 1 for a memory with **6 M** four frames. Trace optimal, and LRU page replacement algorithms
