# Financial Constraints and Price Rigidities

Yang Liu

Boston College

Brown Econ PhD Conference (May 02, 2025) Slides available at yangliu-95.github.io



#### Research Question

Introduction

0000

- Vast evidence that financial constraints affect prices since Chevalier and Scharfstein (1996)
  - While prices are important, price rigidities are at least equally important to the New Keynesian framework
- This paper: Financial constraints weaken price rigidities both in theory and in the data

Introduction

0000

- Why should financial constraints affect price rigidities, after all?
  - Financially constrained firms want to maximize today's internal cash flows



Introduction

0000

- Why should financial constraints affect price rigidities, after all?
  - Financially constrained firms want to maximize today's internal cash flows
  - In the textbook model, internal cash flows are maximized alone the flexible-price path

- Why should financial constraints affect price rigidities, after all?
  - Financially constrained firms want to maximize today's internal cash flows
  - In the textbook model, internal cash flows are maximized alone the flexible-price path
  - Constrained firms move closer to the flexible-price path despite nominal rigidities



- Why should financial constraints affect price rigidities, after all?
  - Financially constrained firms want to maximize today's internal cash flows
  - In the textbook model, internal cash flows are maximized alone the flexible-price path
  - Constrained firms move closer to the flexible-price path despite nominal rigidities
- The channel only requires financial frictions and nominal rigidities



- Why should financial constraints affect price rigidities, after all?
  - Financially constrained firms want to maximize today's internal cash flows
  - In the textbook model, internal cash flows are maximized alone the flexible-price path
  - Constrained firms move closer to the flexible-price path despite nominal rigidities
- The channel only requires financial frictions and nominal rigidities
- Significant empirical evidence + Quantitative importance
  - Product-level input/output prices + firm-level balance sheet from India
  - Large magnitude for financially constrained firms: 30-50% amplification



# Nonlinear NKPC (not today)

- Embed financial constraints into a textbook New Keynesian model
- Occasionally binding financial constraints generate non-linearity in the NKPC:
  - Large negative shocks squeeze profit margins and tighten financial constraints
  - More firms behave like flexible-price firms
  - Steeper NKPC and amplified inflation responses
- Higher price flexibility during large shocks is likely destabilizing (Bhattarai et al., 2018)



#### Literature

- Finance-pricing: New evidence focusing on cost-price relationships using granular data
  - Chevalier and Scharfstein, 1996, Strasser, 2013, Montero and Urtasun, 2014, Gilchrist et al., 2017, Lenzu et al., 2021, Kim, 2021, Balduzzi et al., 2024, Renkin and Züllig, 2024 ...
- Nonlinear NKPC: New theory on the nonlinear effects of financial constraints
  - Blanco et al., 2024, Gagliardone et al., 2024, Harding et al., 2023, Forbes et al., 2022, Ball et al., 2022, Benigno and Eggertsson, 2023, Schmitt-Grohé and Uribe, 2022 ...
- Pass-through estimation: New heterogeneity along the financial dimension
  - Amiti et al., 2019, Gagliardone et al., 2023 ...



- Introduction
- Theory
- Empirical Analysis
- Nonlinear Phillips Curve (Appendix)

Theory

#### Firm's Problem

• Firm i faces (i) nominal rigidities and (ii) financial constraints



#### Firm's Problem

- Firm i faces (i) nominal rigidities and (ii) financial constraints
- Production side:
  - Standard production function:  $Y_{i,t} = A_{i,t}L_{i,t}^{1-\gamma} \omega$ ,
  - subject to idiosyncratic productivity shocks.
  - Internal cash flows/EBITDA defined as: EBITDA $_{i,t} = P_{i,t}Y_{i,t} W_tL_{i,t}$ .
- Rotemberg adj. cost:  $C_{i,t} = \frac{\tau_p}{2} \pi_{i,t}^2 P_t Y_t$ , where  $\pi_{i,t} = \ln P_{i,t} / P_{i,t-1}$ 
  - ullet  $\mathcal{C}_{i,t}$  is not an accounting expense (non-monetary)
  - Why? (i) More realistic, e.g., customers dislike price volatility. (ii) Ensures equivalence with Calvo pricing (in progress)



#### Financial Frictions

• Profits and dividends: Some accounting definitions

$$Profit_{i,t} = EBITDA_{i,t} - Interest_{i,t};$$
 (1)

$$Div_{i,t} = Profit_{i,t} + (D_{i,t} - D_{i,t-1}).$$
 (2)

• Earnings-based borrowing constraint: One-period debt  $D_{i,t}$  subject to:

$$D_{i,t} \le \phi_i \max(\mathsf{EBITDA}_{i,t}, \ 0). \tag{3}$$

• Liquidity constraint: Penalty term  $\mathcal{E}_{i,t}$  is also non-monetary (e.g., raising equity takes time)

$$\mathcal{E}_{i,t} = -\tau_{\mathsf{e}} \min(0, \mathsf{Div}_{i,t}). \tag{4}$$



#### **Objective Function**

 Recall that the Rotemberg cost and negative dividend penalty are non-monetary and do not enter Div<sub>i t</sub>:

$$\max_{\{P_{i,t},D_{i,t}\}} \mathsf{E}_t \sum_{h=0}^{\infty} \mathsf{\Lambda}_{t,t+h} \frac{1}{P_{t+h}} \left[ \mathsf{Div}_{i,t+h} - (\mathcal{C}_{i,t+h} + \mathcal{E}_{i,t+h}) \right], \tag{5}$$

subject to

Nominal rigidities: 
$$C_{i,t} = \frac{\tau_p}{2} \pi_{i,t}^2 P_t Y_t;$$
 (6)

Borrowing constraint: 
$$\phi_i \max(\mathsf{EBITDA}_{i,t}, \ 0) - D_{i,t} \ge 0;$$
 (7)

Equity/liquidity constraint: 
$$\mathcal{E}_{i,t} = -\tau_e \min(0, \text{Div}_{i,t}).$$
 (8)

(9)



## **Optimal Prices**

• Optimal prices are more sensitive to marginal costs when  $\xi_{i,t}$  is higher:

$$\pi_{i,t} = \left(1 + \underbrace{\xi_{i,t}^{\text{div}} + \xi_{i,t}^{\text{ebc}} \phi_i}_{\xi_{i,t}}\right) \underbrace{\frac{\epsilon_{i,t} - 1}{\tau_p} \frac{P_{i,t} Y_{i,t}}{P_t Y_t}}_{\kappa} \left[ \mathcal{M}_{i,t} \mathcal{M} C_{i,t} \frac{P_t}{P_{i,t}} - 1 \right] + \mathsf{E}_t \Lambda_{t,t+1} \frac{Y_{t+1}}{Y_t} \pi_{i,t+1}, \tag{10}$$

- $\mathcal{M}_{i,t} = \frac{\epsilon_{i,t}}{\epsilon_{i,t}-1}$ , and  $MC_{i,t} = \frac{\partial L_{i,t}}{\partial Y_{i,t}} \frac{W_t}{P_t}$  (real marginal cost),
- $\bullet$   $\xi_{i,t}^{div}$  and  $\xi_{i,t}^{ebc}$  are the Lagrangian multipliers on the liquidity and borrowing constraints

## **Optimal Prices**

• Optimal prices are more sensitive to marginal costs when  $\xi_{i,t}$  is higher:

$$\pi_{i,t} = \left(1 + \underbrace{\xi_{i,t}^{div} + \xi_{i,t}^{ebc} \phi_i}_{\xi_{i,t}}\right) \underbrace{\frac{\epsilon_{i,t} - 1}{\tau_p} \frac{P_{i,t} Y_{i,t}}{P_t Y_t}}_{\kappa} \left[ \mathcal{M}_{i,t} \mathcal{M} C_{i,t} \frac{P_t}{P_{i,t}} - 1 \right] + \mathsf{E}_t \Lambda_{t,t+1} \frac{Y_{t+1}}{Y_t} \pi_{i,t+1}, \tag{10}$$

- $\mathcal{M}_{i,t} = \frac{\epsilon_{i,t}}{\epsilon_{i,t}-1}$ , and  $MC_{i,t} = \frac{\partial L_{i,t}}{\partial Y_{i,t}} \frac{W_t}{P_t}$  (real marginal cost),
- ullet  $\xi_{i,t}^{div}$  and  $\xi_{i,t}^{ebc}$  are the Lagrangian multipliers on the liquidity and borrowing constraints
- But it's still messy... It is more useful to examine the limiting case.



#### Nominal Rigidities in the Limiting Case

• Let  $P_{i,t}^f$  be the optimal flexible price that satisfies:  $P_{i,t} = \mathcal{M}_{i,t} MC_{i,t} P_t$ 



# Nominal Rigidities in the Limiting Case

• Let  $P_{i,t}^f$  be the optimal flexible price that satisfies:  $P_{i,t} = \mathcal{M}_{i,t} M C_{i,t} P_t$ 

#### Proposition (Nominal Rigidities and Financial Frictions)

In the limiting case where (i)  $\xi_{i,t} \to \infty$  and (ii)  $\forall h, \frac{\xi_{i,t}}{\xi_{i,t+h}} \to \infty$ , the optimal sticky price  $P_{i,t}^*$  converges to the optimal flexible price  $P_{i,t}^f$ . Hence, tight financial constraints weaken nominal rigidities.

$$\lim_{\xi_{i,t}\to\infty} P_{i,t}^* = P_{i,t}^f. \tag{11}$$

ullet In the special case of CES + CRS, the limiting case features complete cost pass-through.



## Real Rigidities in the Limiting Case

- Strategic complementarities depend on how  $P_{-i,t}$  affects  $\mathcal{M}_{i,t}$ :
  - E.g., constrained firms may care less if customers take time to switch to competitors



## Real Rigidities in the Limiting Case

- Strategic complementarities depend on how  $P_{-i,t}$  affects  $\mathcal{M}_{i,t}$ :
  - E.g., constrained firms may care less if customers take time to switch to competitors

# Proposition (Strategic Complementarities and Financial Frictions)

#### Holding marginal costs constant:

- If  $\frac{\partial \epsilon_{i,t}}{\partial p_{-i,t}} > 0$ , strategic complementarities strengthen in the limiting case, i.e., tight financial constraints amplify strategic complementarities.
- If (i)  $\frac{\partial \epsilon_{i,t}}{\partial p_{-i,t}} = 0$  and (ii)  $\frac{\partial \epsilon_{i,t+h}}{\partial p_{-i,t}} > 0$  for some  $h \ge 1$ , strategic complementarities vanish in the limiting case, i.e., tight financial constraints weaken strategic complementarities.



Empirical
•0000000000

- Introduction
- Theory
- Empirical Analysis
- Nonlinear Phillips Curve (Appendix)

# **Empirical Analysis**

- Propositions 1 and 2 are empirically testable predictions.
- More importantly, Are the mechanisms quantitatively important? How often do we see the limiting case in the data?
- > Pass-through regressions to examine the two propositions
  - à la Amiti et al. (2019)

#### Data

- Indian CMIE Prowess database
  - Details: Goldberg et al. (2010a), Goldberg et al. (2010b), De Loecker et al. (2016) ...
  - Data cleaning: Amiti et al. (2019)
- Annual panel of Indian manufacturing firms:
  - Balance sheet data: financial information
  - Product-level prices/quantities for both outputs and material inputs
    - Output prices highly correlated with aggregate PPI
  - 1992-2011: Include both high- and stable-inflation periods
- Ideal to test how finance interacts with cost-price relationships



# Baseline Specification

• Double-interaction pass-through regressions: Tight  $\xi_{i,t} \times \text{Marginal costs}$ 

$$\Delta p_{i,t} = \beta_0 \Delta m c_{i,t} + \beta_1 \mathbf{1}_{i,t}^{\mathsf{Tight}} \Delta m c_{i,t} \qquad \cdots \quad \mathsf{Cost pass-through}$$

$$+ \gamma_0 \Delta p_{-i,t} + \gamma_1 \mathbf{1}_{i,t}^{\mathsf{Tight}} \Delta p_{-i,t} \qquad \cdots \quad \mathsf{Strategic comp.}$$

$$+ \zeta \ \mathbf{1}_{i,t}^{\mathsf{Tight}} + \mathsf{Fixed Effects} + \varepsilon_{i,t}. \tag{12}$$

•  $\beta_1$ ,  $\gamma_1$ , and  $\zeta$  are the effects of financial constraints on pricing



Introduction

# Baseline Specification (cont.)

- Pre-determined  $\mathbf{1}_{i,t}^{\mathsf{Tight}}$ : Dummy = 1 if below 25<sup>th</sup>, lagged by 2 years
  - EBITDA-to-sales: Internal cash flows, more comparable across firms
  - ICR: Interest coverage ratio
  - DSCR: Debt service coverage ratio (current portion of debt obligations)

Within-firm variation Density plot

•  $\Delta mc_{i,t}$ : Use average variable cost (COGS) to measure MC Amiti et al. (2019), Gagliardone et al. (2023)

$$\Delta m c_{i,t} = \Delta \ln \frac{\mathsf{COGS}_{i,t}}{Y_{i,t}}.$$
 (13)



# Identification Challenges: $\Delta mc_{i,t}$

- By definition:  $d \ mc_{i,t} = d \ \text{input price}_{i,t} + d \ \frac{\partial \text{input}_{i,t}}{\partial Y_{i,t}}$ 
  - Textbook model where firms are price takers: Any input price can be an IV
- Unfortunately we don't live in the textbook model:
  - ullet Financially constrained firms may negotiate harder for lower input prices, which biases  $eta_1$

# Identification Challenges: $\Delta mc_{i,t}$

- By definition:  $d \ mc_{i,t} = d \ \text{input price}_{i,t} + d \ \frac{\partial \text{input}_{i,t}}{\partial Y_{i,t}}$ 
  - Textbook model where firms are price takers: Any input price can be an IV
- Unfortunately we don't live in the textbook model:
  - ullet Financially constrained firms may negotiate harder for lower input prices, which biases  $eta_1$
- **Solution:** Assume that firms are closer to price takers in domestic major input markets
  - ullet Top 10% 6-digit product codes ranked by the # of unique buyers (> 152 in Prowess)
  - Price changes are assumed exogenous for various idiosyncratic reasons



# Identification Challenges: $\Delta mc_{i,t}$

- By definition:  $d \ mc_{i,t} = d \ \text{input price}_{i,t} + d \ \frac{\partial \text{input}_{i,t}}{\partial Y_{i,t}}$ 
  - Textbook model where firms are price takers: Any input price can be an IV
- Unfortunately we don't live in the textbook model:
  - ullet Financially constrained firms may negotiate harder for lower input prices, which biases  $eta_1$
- Solution: Assume that firms are closer to price takers in domestic major input markets
  - ullet Top 10% 6-digit product codes ranked by the # of unique buyers (> 152 in Prowess)
  - Price changes are assumed exogenous for various idiosyncratic reasons
- Main IV: Price changes of major inputs  $\times$  Input cost share  $=(x^{mj}\Delta\rho^{mj})_{i,t}$ 
  - Sanity check  $(\beta_0)$ : Estimates highly consistent with the literature
  - Sanity check  $(\beta_1)$ : Financial constraints not correlated with lower input prices





## Identification Challenges: $\Delta p_{-i,t}$

- ullet Need idiosyncratic variation in competitors' marginal costs to identify  $\gamma$ 's
- Main IV: Similar to  $\Delta mc_{i,t}$ 
  - For each competitor j, calculate cost contribution by major inputs: Price changes of major inputs  $\times$  Cost share  $=(x^{mj}\Delta\rho^{mj})_{j,t}$
  - Averaged across competitors, weighted by market share  $=(x^{mj}\Delta\rho^{mj})_{-i,t}$



# Identification Challenges: $\Delta p_{-i,t}$

- Need idiosyncratic variation in competitors' marginal costs to identify  $\gamma$ 's
- Main IV: Similar to  $\Delta mc_{i,t}$ 
  - For each competitor j, calculate cost contribution by major inputs: Price changes of major inputs  $\times$  Cost share  $=(x^{mj}\Delta\rho^{mj})_{j,t}$
  - Averaged across competitors, weighted by market share  $=(x^{\mathsf{mj}}\Delta 
    ho^{\mathsf{mj}})_{-i,t}$
- Is there enough idiosyncratic variation?
  - Concern: Firms still source in the same domestic market even if they have different suppliers, especially true for major input markets
  - ullet Strongly pass the underidentification test (Kleibergen-Paap rk LM statistic pprox 40)
- (All IVs are interacted with the dummy to avoid the "forbidden regression")



Appendix

# Effects of Financial Constraints on Pricing (Tight = Low EBITDA)

| Dep. variable: $\Delta p_{i,t}$                   | (1)                   | (2)                   | (3)                   | (4)      |
|---------------------------------------------------|-----------------------|-----------------------|-----------------------|----------|
| $\Delta mc_{i,t} (\hat{\beta}_0)$                 | 0.64***               | 0.64***               | 0.63***               | 0.62***  |
| 1,1 0                                             | (0.05)                | (0.06)                | (0.05)                | (0.05)   |
| Tight $\times \Delta mc_{i,t} (\hat{\beta}_1)$    | 0.23***               | 0.20**                | 0.24***               | 0.27***  |
| 7,1 0 17                                          | (80.0)                | (0.09)                | (80.0)                | (0.08)   |
| $\Delta p_{-i,t} (\hat{\gamma}_0)$                | 0.35***               | 0.35***               | 0.29***               | 0.36***  |
| 7 – 1,6 1707                                      | (80.0)                | (0.09)                | (0.09)                | (0.13)   |
| Tight $\times \Delta p_{-i,t}$ $(\hat{\gamma}_1)$ | -0.26* <sup>*</sup> * | -0.24* <sup>*</sup> * | -0.26* <sup>*</sup> * | -0.29*** |
| - ',' ','-'                                       | (0.10)                | (0.11)                | (0.10)                | (0.11)   |
| Tight                                             | 0.02***               | 0.02***               | 0.02***               | 0.02***  |
|                                                   | (0.00)                | (0.00)                | (0.00)                | (0.00)   |
| Firm + Year + Sector FE (Industry FE)             | Υ                     | Υ                     |                       |          |
| Firm + Sector-Year FE (Industry-Year FE)          |                       |                       | Υ                     | Υ        |
| $R^2$                                             | 0.729                 | 0.732                 | 0.688                 | 0.671    |
| N                                                 | 9,738                 | 9,065                 | 9,738                 | 9,065    |
| Firms                                             | 826                   | 797                   | 826                   | 797      |
| Two-digit Sectors (Four-digit Industries)         | 9                     | 25                    | 9                     | 25       |
| Weak IV F-test (Cragg-Donald)                     | 64.65                 | 59.32                 | 65.63                 | 58.30    |
| Weak IV F-test (Kleibergen-Paap)                  | 15.05                 | 14.11                 | 15.09                 | 10.00    |
| Hansen J-test p-value                             | 0.575                 | 0.654                 | 0.248                 | 0.559    |
| Financial Amplification                           |                       |                       |                       |          |
| $\hat{\beta}_0 + \hat{\beta}_1$                   | 0.88***               | 0.85***               | 0.87***               | 0.88***  |
| $\hat{\gamma}_0 + \hat{\gamma}_1$                 | 0.09                  | 0.11                  | 0.03                  | 0.07     |

Notes: Weighted by average PPI-deflated sales. Standard errors are clustered by firm and sector/industry-year.



# Dynamic Effects on Pricing



(a) Cumulative Price Change w.r.t.  $\Delta mc_{i,t}$ 



(b) Major Input Price Persistence  $(\rho_{i:t+h}^{\text{mj}} - \rho_{i:t-1}^{\text{mj}})$ 



#### (b) Effects on the EBITDA Margin

|                                                 | (1)        | (2)        | (3)      | (4)      | (5)      | (6)        | (7)      | (8)      | (9)      | (10)     | (11)     | (12)    |
|-------------------------------------------------|------------|------------|----------|----------|----------|------------|----------|----------|----------|----------|----------|---------|
|                                                 |            | x = EBITDA |          |          |          | x = ICR    |          |          | x = DSCR |          |          |         |
| $\Delta mc_{i,t} (\hat{\beta}_0)$               | -0.20***   | -0.20***   | -0.18*** | -0.18*** | -0.22*** | -0.21***   | -0.19*** | -0.20*** | -0.22*** | -0.23*** | -0.19*** | -0.21** |
| 1,1                                             | (0.05)     | (0.05)     | (0.03)   | (0.04)   | (0.04)   | (0.04)     | (0.03)   | (0.03)   | (0.04)   | (0.04)   | (0.04)   | (0.04)  |
| Tight $\times \Delta mc_{i,t} (\hat{\beta}_1)$  | 0.14       | 0.17       | 0.16*    | 0.14*    | 0.28*    | 0.28*      | 0.21*    | 0.24*    | 0.23*    | 0.27**   | 0.19*    | 0.21**  |
| .,.                                             | (0.14)     | (0.13)     | (0.09)   | (80.0)   | (0.16)   | (0.15)     | (0.12)   | (0.12)   | (0.12)   | (0.12)   | (0.10)   | (0.10)  |
| $\Delta p_{-i,t} (\hat{\gamma}_0)$              | 0.20**     | 0.13       |          |          | 0.22***  | 0.09       |          |          | 0.22**   | 0.13     |          |         |
| -,-                                             | (0.09)     | (0.12)     |          |          | (80.0)   | (0.11)     |          |          | (0.09)   | (0.11)   |          |         |
| Tight $\times \Delta p_{-i,t} (\hat{\gamma}_1)$ | -0.13      | -0.19      |          |          | -0.28    | -0.28      |          |          | -0.25*   | -0.30**  |          |         |
| -,-                                             | (0.18)     | (0.16)     |          |          | (0.20)   | (0.19)     |          |          | (0.14)   | (0.13)   |          |         |
| Tight                                           | 0.01 * * * | 0.01 * * * | 0.01     | 0.01     | 0.01 * * | 0.01 * * * | 0.00     | 0.00     | 0.01 * * | 0.01 * * | 0.00     | -0.00   |
|                                                 | (0.00)     | (0.00)     | (0.01)   | (0.01)   | (0.00)   | (0.00)     | (0.01)   | (0.01)   | (0.00)   | (0.00)   | (0.01)   | (0.01)  |
| Firm FE                                         | Y          | Y          | Y        | Y        | Y        | Y          | Y        | Y        | Y        | Y        | Y        | Y       |
| Sector-Year FE                                  | Y          |            | Y        |          | Y        |            | Y        |          | Y        |          | Y        |         |
| Industry-Year FE                                |            | Y          |          | Y        |          | Y          |          | Y        |          | Y        |          | Y       |
| $\mathbb{R}^2$                                  | 0.021      | 0.017      | 0.013    | 0.018    | -0.017   | -0.015     | -0.004   | -0.003   | -0.017   | -0.024   | -0.009   | -0.009  |
| N                                               | 9,702      | 9,030      | 9,702    | 9,030    | 9,702    | 9,030      | 9,702    | 9,030    | 9,702    | 9,030    | 9,702    | 9,030   |
| Firms                                           | 826        | 797        | 826      | 797      | 826      | 797        | 826      | 797      | 826      | 797      | 826      | 797     |
| Two-digit Sectors                               | 9          |            | 9        |          | 9        |            | 9        |          | 9        |          | 9        |         |
| Four-digit Industries                           |            | 25         |          | 25       |          | 25         |          | 25       |          | 25       |          | 25      |
|                                                 |            |            |          |          |          |            |          |          |          |          |          |         |



#### Additional Results (in the paper)

Leverage:

- Constrained firms moderately deleverage; Unconstrained firms unaffected
- Total intermediate goods costs (not just major inputs):
  - Constrained firms do not have higher present/future input costs
- Non-linear effects of  $\Delta mc_{i,t}$ : Stronger during large cost increases (3.5%)
- Non-binary dummy: One-sided effects of financial constraints
- Output (noisy)
- ..



#### Summary

- EBITDA, ICR, DSCR give nearly identical results
- Financial constraints weaken both nominal rigidities and real rigidities
  - Proportion 1:  $\beta_1 \gg 0$ ; Cost pass-through  $\uparrow$ ; Nominal rigidities  $\downarrow$
  - Proportion 2:  $\gamma_1 \ll$  0; Strategic complementarities  $\downarrow$ ; Real rigidities  $\downarrow$
- Quantitatively important:
  - ullet On average,  $(\hat{eta}_0+\hat{eta}_1)pprox 0.85$  is >30% higher than  $\hat{eta}_0pprox 0.64$
  - $(\hat{eta}_0+\hat{eta}_1)pprox 1$  (50% higher) during large cost shocks (> 70th percentile, or > 3.5%)
  - Recall that the "Tight" dummy covers 25% of observations



# Appendix

 ${\sf Appendix}$ 



- Introduction
- Theory
- Empirical Analysis
- Nonlinear Phillips Curve

# New Keynesian Model

- Adding financial constraints to a textbook NK model
  - Heterogeneous firm block
    - With financial constraints & idio. productivity shocks
    - (No strategic complementarities in the textbook model)
  - Representative households
  - Flexible wages
  - Taylor rule MP



#### Small A Shock

- $\pi_t$  upon impact: Small amplification
- Cumulative  $\pi_t$  in 4Q: No amplification at all



#### A Larger Shock

- $\pi_t$  upon impact: 18.2% higher
- Cumulative  $\pi_t$  in 4Q: 16.5% higher



#### **Even Larger**

- $\pi_t$  upon impact: 24.4% higher
- Cumulative  $\pi_t$  in 4Q: 19.2% higher



## Aggregate Trends







(a) Output Prices

(b) Input Prices



#### Within-Firm Variation

- A firm is classified as a low-EBITDA firm at t if its EBITDA ratio (after removing medians) at t-2 is below the 25th percentile in the final regression sample.
- 65% are considered low-EBITDA for at least once. 19% of firms are considered low-EBITDA for over 50% of the time, and 7.5% of firms for over 80% of the time. Only 2.7% of firms are always low-EBITDA. Low-EBITDA firms account for around 18% of sales in the regression sample.
- For the low-ICR dummy, the statistics are 73%, 14%, 3.6%, 0.5% (of firms), and 18% (of sales). For the low-DSCR dummy: 71%, 14%, 4.6%, 1.3% (of firms), and 20% (of sales).





Appendix

oduction Theory Empirical Conclusions NKPC (Appendix) Appendix Oo ●O

#### Financial Variables







# Major Inputs

| Code | Name                              | Code | Name                                     |
|------|-----------------------------------|------|------------------------------------------|
| 2404 | Foodgrain                         | 5008 | Organic chemicals                        |
| 2408 | Non-grain food crops              | 5012 | Drugs, medicines & allied products       |
| 2412 | Non-food agricultural crops       | 5024 | Paints & dyes, etc.                      |
| 2704 | Non-metallic minerals             | 5028 | Cosmetics, toilet preparations, soap &   |
| 2708 | Metallic ores, slag, ash          | 5056 | Plastics & rubbers                       |
| 2712 | Mineral fuels                     | 5406 | Cement, asbestos, abrasives, etc.        |
| 3008 | Vegetable oils                    | 5424 | Pearls and precious stones               |
| 3024 | Oil cakes, meals and animal feeds | 5704 | Ferrous metals & products                |
| 3316 | Sugar and allied products         | 5708 | Non-ferrous metals & products            |
| 3368 | Tea incl. instant tea             | 6006 | Coke & semi-coke of coal, lignite or pea |
| 3612 | Cotton textiles                   | 6036 | Petroleum products                       |
| 3620 | Man-made textiles                 | 6304 | Non-electrical machinery                 |
| 4606 | Pulp, waste, etc.                 | 6308 | Electrical machinery other than electro  |
| 4612 | Paper, newsprint & paper board    | 6312 | Electronics                              |
| 5000 | Chemicals & chemical products     | 7048 | Miscellaneous items in electronics       |
| 5004 | Inorganic chemicals               |      |                                          |



