

Momentum Provably Improves Error Feedback!

Ilyas Fatkhullin (ETH Zurich & ETH Al Center) Alexander Tyurin (KAUST) Peter Richtárik (KAUST)

Distributed stochastic optimization

$$\min_{x \in \mathbb{R}^d} \left[f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right], \qquad f_i(x) := \mathbb{E}_{\xi_i \sim \mathcal{D}_i} \left[f_i(x, \xi_i) \right]$$

- $f_i(\cdot)$ are nonconvex, n is the number of nodes,
- \mathcal{D}_i are arbitrary distributions of data.

Goal: find x with $\mathbb{E}[\|\nabla f(x)\|] \leq \varepsilon$.

Assumptions

Assumption 1 (Lipschitz gradient). $f^* := \inf_{x \in \mathbb{R}^d} f(x) > -\infty$, $f(\cdot)$ and all $f_i(\cdot)$ have Lipschitz continuous gradient, i.e., $\forall x, y \in \mathbb{R}^d$

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|,$$

$$\|\nabla f_i(x) - \nabla f_i(y)\| \le L_i\|x - y\|, \qquad \widetilde{L}^2 := \frac{1}{n} \sum_{i=1}^n L_i^2.$$

Assumption 2 (Bounded variance). Unbiased stochastic gradients: $\mathbb{E}\left[\nabla f_i(x,\xi_i)\right] = \nabla f_i(x)$. There exists $\sigma > 0$ such that

$$\mathbb{E}\left[\left\|\nabla f_i(x,\xi_i) - \nabla f_i(x)\right\|^2\right] \le \sigma^2.$$

Contractive compressors

A map $\mathcal{C}: \mathbb{R}^d \to \mathbb{R}^d$ is a **contractive compressor** if $\exists \alpha \in (0,1]$:

$$\mathbb{E}\left[\|\mathcal{C}(x) - x\|^2\right] \le (1 - \alpha) \|x\|^2, \qquad \forall x \in \mathbb{R}^d.$$

Example: Top K (greedy) sparsification keeps the $K \leq d$ largest entries of x in absolute value, and zeros out the rest. It is biased and contractive with $\alpha \geq \frac{K}{d}$.

Compressed gradient methods

Distributed first-order method

$$x^{t+1} = x^t - \frac{\gamma}{n} \sum_{i=1}^n g_i^t,$$

where $\gamma > 0$ is the step-size, and g_i^t is an easy-to-communicate (i.e., compressed) approximation of $\nabla f_i(x^t)$. How to construct g_i^t ?

1. Naive method: Compressed SGD $g_i^t = \mathcal{C}(\nabla f_i(x^t, \xi_i^t))$.

- Advantages: Conceptually easy.
- Problem:
- Diverges even for $\sigma = 0$ (if n > 1).

2. Error feedback (2014): EF14-SGD [1, 2]

$$e_i^{t+1} = e_i^t + \gamma \nabla f_i(x^t, \xi_i^t) - g_i^t,$$

 $g_i^{t+1} = \mathcal{C}(e_i^{t+1} + \gamma \nabla f_i(x^{t+1}, \xi_i^{t+1})).$

Advantages:

• Converges (if \mathcal{D}_i are similar) [2].

Problems:

- Not optimal even if $\sigma = 0$.
- Similarity of \mathcal{D}_i is needed for analysis.

3. Modern error feedback (2021): EF21-SGD [3, 4]

$$g_i^{t+1} = g_i^t + C(\nabla f_i(x^{t+1}, \xi_i^{t+1}) - g_i^t).$$

Advantages:

- Converges if $\sigma = 0$ [3].
- Optimal iteration complexity if $\sigma = 0$.

Problems:

- Requires mega-batch: $B = \mathcal{O}(\frac{1}{\alpha^2 \varepsilon^2})$.
- Poor dependence on α .
- No improvement with n.

EF21 and stochastic gradients

Assume we know $\nabla f_i(x^{t+1})$. Replace g_i^t with $\nabla f_i(x^{t+1})$.

EF21-SGD-ideal:
$$g_i^{t+1} = \nabla f_i(x^{t+1}) + \mathcal{C}\left(\nabla f_i(x^{t+1}, \xi_i^{t+1}) - \nabla f_i(x^{t+1})\right)$$
.

Divergence of EF21-SGD and EF21-SGD-ideal on $f(x) = \frac{1}{2} ||x||^2$. No improvement when increasing n (right).

Divergence of EF21-SGD-ideal

Theorem 1. EF21-SGD-ideal may diverge for any $n \ge 1$:

$$\mathbb{E}\left[\|\nabla f(x^t)\|^2\right] \ge \frac{1}{60} \min\left\{\sigma^2, \|\nabla f(x^0)\|^2\right\}.$$

Conceptual fix

Apply damping of the noise with $\eta \in (0,1)$. EF21-SGDM-ideal:

$$v_i^{t+1} = \nabla f_i(x^{t+1}) + \eta(\nabla f_i(x^{t+1}, \xi_i^{t+1}) - \nabla f_i(x^{t+1})),$$

$$g_i^{t+1} = \nabla f_i(x^{t+1}) + \mathcal{C}(v_i^{t+1} - \nabla f_i(x^{t+1})).$$

Advantages:

- Fast convergence for small η .
- If $\eta = 0$, method recovers GD.

Problems:

• Not implementable without $\nabla f(x^{t+1})$.

Implementable method

Replace $\nabla f_i(x^{t+1})$ with v_i^t and $\nabla f_i(x^{t+1})$ with g_i^t . EF21-SGDM:

$$v_i^{t+1} = v_i^t + \eta(\nabla f_i(x^{t+1}, \xi_i^{t+1}) - v_i^t), g_i^{t+1} = g_i^t + \mathcal{C}(v_i^{t+1} - g_i^t).$$

Advantages:

- Easy to implement.
- Works with stochastic gradients.
- Fast convergence in theory and practice.

Algorithm 1: EF21-SGDM

Error Feedback 2021 Enhanced with Polyak Momentum

Input: $x^0, v_i^0, g_i^0 \in \mathbb{R}^d$; $\gamma > 0$; $\eta \in (0, 1]$, initial batch size B_{init} for t = 0, 1, ..., T - 1 do

Master computes $x^{t+1} = x^t - \gamma g^t$ and broadcasts x^{t+1} to all nodes for all nodes i = 1, ..., n in parallel do

Compute momentum estimator $v_i^{t+1} = (1 - \eta)v_i^t + \eta \nabla f_i(x^{t+1}, \xi_i^{t+1})$

Compress $c_i^t = \mathcal{C}(v_i^{t+1} - g_i^t)$ and send c_i^t to the master Update local state $g_i^{t+1} = g_i^t + \mathcal{C}(v_i^{t+1} - g_i^t)$

Master computes $g^{t+1} = \frac{1}{n} \sum_{i=1}^{n} g_i^{t+1}$ via $g^{t+1} = g^t + \frac{1}{n} \sum_{i=1}^{n} c_i^t$ end

Summary of complexity results

Method	Communication complexity with $Top K$	Asymptotic sample complexity	No batch?	No extra assump.?
EF14-SGD [2]	$rac{KG}{lphaarepsilon^3}$	$rac{\sigma^2}{narepsilon^4}$		x (a)
NEOLITHIC	$\frac{K}{\alpha \varepsilon^2} \log \left(\frac{G}{\varepsilon} \right)$	$rac{\sigma^2}{narepsilon^4}$	X	X (b)
EF21-SGD [4]	$rac{K}{lphaarepsilon^2}$	$rac{\sigma^2}{lpha^3arepsilon^4}$	X	
BEER	$rac{K}{lphaarepsilon^2}$	$rac{\sigma^2}{lpha^2arepsilon^4}$	X	
EF21-SGDM	K	σ^2		
EF21-SGD2M	$\overline{lpha arepsilon^2}$	$\overline{narepsilon^4}$		

(a) Extra assumption (BG): $\mathbb{E}\left[\|\nabla f_i(x,\xi_i)\|^2\right] \leq G^2$. (b) Extra assumption (BGS) $\frac{1}{n}\sum_{i=1}^n \|\nabla f_i(x) - \nabla f(x)\|^2 \leq G^2$.

Convergence theory

Denote $\delta_t := f(x^t) - f^*$, $v^t := \frac{1}{n} \sum_{i=1}^n v_i^t$. The Lyapunov function is Λ_t :

$$\delta_t + \frac{\gamma}{\alpha n} \sum_{i=1}^n \|g_i^t - v_i^t\|^2 + \frac{\gamma \eta}{\alpha^2 n} \sum_{i=1}^n \|v_i^t - \nabla f_i(x^t)\|^2 + \frac{\gamma}{\eta} \|v^t - \nabla f(x^t)\|^2.$$

EF21-SGDM

Theorem 2. Under Assumptions 1, 2 and small enough stepsize we have for EF21-SGDM

$$\mathbb{E}\left[\left\|\nabla f(\hat{x}^T)\right\|^2\right] = \mathcal{O}\left(\frac{\Lambda_0}{\gamma T} + \frac{\eta^3 \sigma^2}{\alpha^2} + \frac{\eta^2 \sigma^2}{\alpha} + \frac{\eta \sigma^2}{n}\right).$$

Choosing appropriate γ , η and B_{init} , we have for the RHS

$$\mathcal{O}\left(\frac{\widetilde{L}\delta_0}{\alpha T} + \left(\frac{L\delta_0\sigma^{2/3}}{\alpha^{2/3}T}\right)^{3/4} + \left(\frac{L\delta_0\sigma}{\sqrt{\alpha}T}\right)^{2/3} + \left(\frac{L\delta_0\sigma^2}{nT}\right)^{1/2}\right).$$

The sample complexity:

$$\#grad = T = \mathcal{O}\left(\frac{\widetilde{L}}{\alpha\varepsilon^2} + \frac{L\sigma^{2/3}}{\alpha^{2/3}\varepsilon^{8/3}} + \frac{L\sigma}{\alpha^{1/2}\varepsilon^3} + \frac{L\sigma^2}{n\varepsilon^4}\right).$$

Advantages:

- Better than EF14-SGD: $\#grad = \mathcal{O}\left(\frac{G}{\alpha\varepsilon^3} + \frac{\sigma^2}{n\varepsilon^4}\right)$
- Better than EF21-SGD: $\#grad = \mathcal{O}\left(\frac{1}{\alpha\varepsilon^2} + \frac{\sigma^2}{\alpha^3\varepsilon^4}\right)$
- Weaker assumptions than for **EF14-SGD**, and batch-free!
- Optimal communication complexity when used with $B \geq 1$.
- Asymptotically optimal sample complexity $(\varepsilon \to 0)$.

Further improvement with double momentum!

Use momentum **twice** before compression. **EF21-SGD2M**:

$$v_i^{t+1} = (1 - \eta)v_i^t + \eta \nabla f_i(x^{t+1}, \xi_i^{t+1}),$$
 $u_i^{t+1} = (1 - \eta)u_i^t + \eta v_i^{t+1},$
 $g_i^{t+1} = g_i^t + \mathcal{C}(u_i^{t+1} - g_i^t).$

EF21-SGD2M

Theorem 3. The sample complexity of EF21-SGD2M:

$$T = \mathcal{O}\left(\frac{\widetilde{L}}{\alpha\varepsilon^2} + \frac{L\sigma^{2/3}}{\alpha^{2/3}\varepsilon^{8/3}} + \frac{L\sigma^2}{n\varepsilon^4}\right).$$

Experiments

Logistic regression problem with a non-convex regularizer,

$$f_i(x_1, \dots, x_c) = -\frac{1}{m} \sum_{j=1}^m \log \left(\frac{\exp(a_{ij}^\top x_{y_{ij}})}{\sum_{y=1}^c \exp(a_{ij}^\top x_y)} \right) + \lambda \sum_{y=1}^c \sum_{k=1}^l \frac{[x_y]_k^2}{1 + [x_y]_k^2},$$

where $\lambda > 0, x_1, \ldots, x_c \in \mathbb{R}^l$, $[\cdot]_k$ is an indexing operation of a vector, $c \geq 2$ is the number of classes, l is the number of features, m is the size of a dataset, $a_{ij} \in \mathbb{R}^l$ and $y_{ij} \in \{1, \ldots, c\}$ are features and labels.

Experiment 1: increasing batch-size. Dataset: MNIST.

Experiment 2: improving with n. Dataset: real-sim.

Stepsizes were fine-tuned in all experiments.

References

[1] F. Seide, H. Fu, J. Droppo, G. Li, D. Yu. 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs. Interspeach 2014.

[2] A. Koloskova, T. Lin, S. Stich, and M. Jaggi. Decentralized deep learning with arbitrary communication compression. ICLR 2020.

[3] P. Richtárik, I. Sokolov, I. Fatkhullin. EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback. NeurIPS 2021.

[4] I. Fatkhullin, I. Sokolov, E. Gorbunov, Z. Li, P. Richtárik. EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback. arXiv:2110.03294. 2021.