question (5)

Перестановки. Число перестановок п элементов. Инверсия. Четность. Транспозиция и четность. Список перестановок, в котором каждая последующая получается одной транспозицией предыдущей.

Перестановки

Перестановка множества из n элементов - это упорядочение этих элементов, полученное перестановкой этих мест. Формально, перестановка множества $S=\{1,\ 2,\ \dots,\ n\}$ - это биекция $\sigma:S\to S.$

Число перестановок п элементов

Общее число перестановок n-элементного множества равно n!.

Инверсия

Инверсия в перестановке $\sigma=[\sigma(1),\ \sigma(2),\ \dots,\ \sigma(n)]$ - это пара индексов, таких что $i< j,\ \sigma(i)>\sigma(j).$

Пример: $\sigma = [3, 1, 2]$

Инверсии:
$$(3>1),\ (3>2),\ (1\not>2)$$

Общее число $I(\sigma)=2$

Четность перестановки

Четность перестановки определяется количеством инверсий: если $I(\sigma)$ четно, то перестановка четная, и если нет, то нечетная.

Транспозиция и четность

Транспозиция - это перестановка, которая меняет местами два элемента, оставляя остальные элементы неизменными, другими словами это цикл длины 2. Обозначается как $(i\ j)$, где $i,\ j$ - индексы переставляемых элементов.

Свойства четности транспозиции:

- 1. Транспозиция $(i\ j)$ всегда меняет четность перестановки (если перестановка была четной, она становится нечетной и наоборот).
- 2. Любая перестановка может быть представлена как произведение транспозиций. Если число транспозиций нечетное, перестановка нечетная и наоборот.

Список перестановок, в котором каждая последующая получается одной транспозицией предыдущей

Такой список можно получить, используя **обход перестановок в соседях** (например, алгоритм Джонсона-Троттера). Идея в том, чтобы менять только два соседних элемента в каждой следующей перестановке.

$$[1,\ 2,\ 3] \rightarrow [2,\ 1,\ 3] \rightarrow [2,\ 3,\ 1] \rightarrow [3,\ 2,\ 1] \rightarrow [3,\ 1,\ 2] \rightarrow [1,\ 3,\ 2] \rightarrow [1,\ 2,\ 3]$$