Solving linear systems

The problem: given $\underline{b} \in \mathbb{R}^n$, and $A \in \mathbb{R}^n \times \mathbb{R}^n$, we look for $\underline{x} \in \mathbb{R}^n$ solution of

$$A\underline{x} = \underline{b} \tag{1}$$

Problem (1) has a unique solution *if and only if* the matrix A is non-singular (or invertible), i.e., $\exists A^{-1}$ such that $A^{-1}A = AA^{-1} = I$; necessary and sufficient condition for A being invertible is that $det(A) \neq 0$. Then the solution \underline{x} is formally given by $\underline{x} = A^{-1}\underline{b}$.

Beware: never invert a matrix unless really necessary, due to the costs, as we shall see later on. (Solving a system with a general full matrix is also expensive, but not nearly as expensive as matrix inversion).

Some example of linear systems

The simplest systems to deal with are diagonal systems:

$$Dx = b$$

$$D = \begin{bmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ 0 & \cdots & \ddots & 0 \\ 0 & \cdots & d_{nn} \end{bmatrix} \longrightarrow x_i = \frac{b_i}{d_{ii}} \quad i = 1, 2, \cdots, n$$

The cost in terms of number of operations is negligible, given by n division.

October 16, 2023

Lower Triangular matrices

Triangular matrices are also easy to handle. If A = L is lower triangular, the system can be solved "forward":

$$L = \begin{bmatrix} l_{11} & 0 & \cdots & 0 \\ l_{21} & l_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix} \longrightarrow \begin{cases} x_1 = \frac{b_1}{l_{11}} \\ x_2 = \frac{b_2 - l_{21}x_1}{l_{22}} \\ \vdots \\ x_n = \frac{b_n - \sum_{j=1}^{n-1} l_{nj}x_j}{l_{nn}} \end{cases}$$

Counting the operations: for x_1 we have 1 product and 0 sums; for x_2 2 products and 1 sum,, and for x_n n products and n-1 sums, that is, $1+2+\cdots+n=\frac{n(n+1)}{2}$ products, plus $1+2+\cdots+n-1=\frac{(n-1)n}{2}$ sums, for a total number of operations $=n^2$.

October 16, 2023

Forward Substitution

What follows is an algorithm, for solving $L\underline{x} = \underline{b}$, with L lower triangular.

forward substitution

```
Input: L \in \mathbb{R}^{n \times n}, lower t., and b \in \mathbb{R}^n for i = 1, \dots, n for j = 1, \dots, i-1 b_i = b_i - l_{i,j}b_j end b_i = \frac{b_i}{l_{ii}} end the solution is in \underline{b}, i.e., \underline{x} \leftarrow \underline{b}
```

Homework

Write the above algorithm in MATLAB

A special case of lower triangular matrix (useful later...)

Assume L has only 1 on the diagonal, e.g., $l_{ii} = 1$:

$$L = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ l_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ l_{n1} & l_{n2} & \cdots & 1 \end{bmatrix} \longrightarrow \begin{cases} x_1 = b_1 \\ x_2 = b_2 - l_{21}x_1 \\ \vdots \\ x_n = b_n - \sum_{j=1}^{n-1} l_{nj}x_j \end{cases}$$

Then the following two algorithms, for solving $L\underline{x} = \underline{b}$ are equivalent:

```
forward substitution as above Input: L \in \mathbb{R}^{n \times n}, lower t., and b \in \mathbb{R}^n for i = 1, \dots, n for j = 1, \dots, i - 1 b_i = b_i - l_{i,j}b_j end end the solution is in b_i i.e., x \leftarrow b
```

equivalent to forward substitution

Input:
$$L \in \mathbb{R}^{n \times n}$$
, lower t., and $b \in \mathbb{R}^n$ for $k = 1, \dots, n-1$ for $i = k+1, \dots, n$
$$b_i = b_i - l_{i,k}b_k$$
 end end

the solution is in \underline{b} , i.e., $\underline{x} \leftarrow \underline{b}$

October 16, 2023

Upper Triangular matrices

Upper triangular systems (if A = U is upper triangular) are also easy to deal with, and can be solved "backward" with the same costs as lower triangular systems:

$$U = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & & \cdots & u_{nn} \end{bmatrix} \longrightarrow \begin{cases} x_n = \frac{b_n}{u_{nn}} \\ x_{n-1} = \frac{b_{n-1} - u_{n-1n} x_n}{u_{n-1n-1}} \\ \vdots \\ x_1 = \frac{b_1 - \sum_{j=2}^n u_{1j} x_j}{u_{11}} \end{cases}$$

Backward Substitution

What follows is an algorithm, for solving $U\underline{x} = \underline{b}$, with U upper triangular.

backward substitution Input: $L \in \mathbb{R}^{n \times n}$, upper t., and $b \in \mathbb{R}^n$ for $i = n, \dots, 1$ for $j = i + 1, \dots, n$ $b_i = b_i - u_{i,j}b_j$ end $b_i = \frac{b_i}{u_{ii}}$

end

the solution is in \underline{b} , i.e., $\underline{x} \leftarrow \underline{b}$

Homework

Write the above algorithm in MATLAB

Costs for solving triangular systems

We saw that for solving the system we perform n^2 operations.

To have an idea of the time necessary to solve a triangular system, suppose that the number of equations is n=100.000, and the computer performance is a TERAFLOP = $10^{12}FLOPS$ (floating-point operations per second); the time in seconds is given by

$$t = \frac{\#operations}{\#flops} = \frac{10^{10}ops}{10^{12}flops} = \frac{1}{100}sec.$$

(pretty quick)

The next target of High Performance Computing is EXAFLOP $= 10^{18} FLOPS$