

* Continuous uniform PDF

ies between a adb and nothing else.

=> Generalization: piece aise constant PDF

Expectation of a continuous sandamivariable

$$E[x] = \int \alpha f_{x}(\alpha) d\alpha$$

 $E[g(x)] = \int_{-\infty}^{\infty} g(x) f_{x}(x) dx$

[Expected value sule]

Date	OM
Page	 Station Nationals

* Variance

$$Van(x) = E[(x-\mu)^2]$$

Juhane, M=E[x]

* Mean and Variance of Continuous Idnifu under Variable

 $E[x] = \int df_{x}(x)dx = \frac{a+b}{2}$

 $\frac{V_{cn}(x) = (b-a)^2}{12}$

* Exponential orandom variable

 $f_{x}(x) = \begin{cases} \lambda e^{-\lambda x} & x > 6 \\ 0 & x < 0 \end{cases}$

E[x] = /x van(x) = /x2

* Camulative distribution function (CDF)

 $F_{\times}(x) = P(\times \mathcal{I} \leq x)$

> Valid for both continuous to discrete
sandom variable.

> Most impartant productily donsity furtion
is probability throng.

-> Most common model for radon noise

-> Standard normal IV(0,1)

$$\int_{X} (\alpha) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

=> General normal N(M, 02)

$$f_{X}(x) = \frac{1}{6\sqrt{2\pi}} e^{\left(-\frac{1}{2} \frac{(x-\mu)^{2}}{6x^{2}}\right)}$$

* Linear function of a normal random variable

=> Let X~ N(Mo2) [xis distributed number 2]

=> If Y=ax+b

Y~N(all+b, a262)