(12) (19) (CA) **Demande-Application**

CIPO
CANADIAN INTELLECTUAL
PROPERTY OFFICE

(21) (A1) **2,320,821**

(86) 1999/01/27 (87) 1999/08/19

- (72) ELBERG, JEAN-FRANCOIS, FR
- (71) DIMSO (DISTRIBUTION MEDICALE DU SUD-OUEST), FR
- (51) Int.Cl.⁶ A61B 17/70
- (30) 1998/02/10 (98/01528) FR
- (54) INTERSPINOUS STABILISER TO BE FIXED TO SPINOUS PROCESSES OF TWO VERTEBRAE
- (54) STABILISATEUR INTEREPINEUX A FIXER A DES APOPHYSES EPINEUSES DE DEUX VERTEBRES

(57) Le stabilisateur interépineux comporte deux organes d'ancrage (2) à des apophyses épineuses de deux vertèbres respectives (4), et un corps (6) s'étendant suivant une direction d'alignement (5) des organes (2), le corps (6) étant compressible suivant la direction d'alignement (5) sous l'effet d'une sollicitation à partir d'une configuration donnée, le corps étant adapté à recouvrer spontanément la configuration donnée après que la sollicitation a cessé, le corps comprenant un ressort à lame (17) ayant une génératrice géométrique (19). Les organes d'ancrage (2) sont aptes à fixer le stabilisateur aux apophyses de sorte que la génératrice (19) s'étend sensiblement d'avant en arrière par référence au corps du patient.

(57) The invention concerns an interspinous stabiliser comprising two members (2) anchoring it to spinous processes of two respective vertebrae (4), and a body (6) extending along a direction aligning (5) the members (2), the body (6) being compressible along the alignment direction (5) by the effect of stress based on a predetermined configuration, the body being adapted to recover spontaneously said predetermined configuration after the stress has ceased, the body comprising a leaf spring (17) with a geometrical generatrix (19). The anchoring members (2) are capable of fixing the stabiliser to the spinous processes such that the generatrix (19) extends substantially from the front to the rear relative to the patient's body.

PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6:

(11) Numéro de publication internationale:

WO 99/40866

A61B 17/70

A1

(43) Date de publication internationale:

19 août 1999 (19.08.99)

(21) Numéro de la demande internationale:

PCT/FR99/00154

(22) Date de dépôt international:

27 janvier 1999 (27.01.99)

(30) Données relatives à la priorité:

98/01528

10 février 1998 (10.02.98)

FR

(71) Déposant (pour tous les Etats désignés sauf US): DIMSO (DIS-TRIBUTION MEDICALE DU SUD-OUEST) [FR/FR]; ZI

de Marticot, F-33610 Cestas (FR).

(71)(72) Déposant et inventeur: ELBERG, Jean-François [FR/FR];

7, rue d'Héliopolis, F-75017 Paris (FR).

(72) Inventeur; et

(75) Inventeur/Déposant (US seulement): CLOIX, Erick [FR/FR]; 53, quai des Chartrons, F-33000 Bordeaux (FR).

(74) Mandataires: MARTIN, Jean-Jacques etc.; Cabinet Regimbeau, 26, avenue Kléber, F-75116 Paris (FR).

(81) Etats désignés: AU, CA, JP, KR, MX, US, brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Publiée

Avec rapport de recherche internationale.

(54) Title: INTERSPINOUS STABILISER TO BE FIXED TO SPINOUS PROCESSES OF TWO VERTEBRAE

(54) Titre: STABILISATEUR INTEREPINEUX A FIXER A DES APOPHYSES EPINEUSES DE DEUX VERTEBRES

(57) Abstract

The invention concerns an interspinous stabiliser comprising two members (2) anchoring it to spinous processes of two respective vertebrae (4), and a body (6) extending along a direction aligning (5) the members (2), the body (6) being compressible along the alignment direction (5) by the effect of stress based on a predetermined configuration, the body being adapted to recover spontaneously said predetermined configuration after the stress has ceased, the body comprising a leaf spring (17) with a geometrical generatrix (19). The anchoring members (2) are capable of fixing the stabiliser to the spinous processes such that the generatrix (19) extends substantially from the front to the rear relative to the patient's body.

(57) Abrégé

Le stabilisateur interépineux comporte deux organes d'ancrage (2) à des apophyses épineuses de deux vertèbres respectives (4), et un corps (6) s'étendant suivant une direction d'alignement (5) des organes (2), le corps (6) étant compressible suivant la direction d'alignement (5) sous l'effet d'une sollicitation à partir d'une configuration donnée, le corps étant adapté à recouvrer spontanément la configuration donnée après que la sollicitation a cessé, le corps comprenant un ressort à lame (17) ayant une génératrice géométrique (19). Les

19 5

organes d'ancrage (2) sont aptes à fixer le stabilisateur aux apophyses de sorte que la génératrice (19) s'étend sensiblement d'avant en arrière par référence au corps du patient.

WO 99/40866

20

REVENDICATIONS

- interépineux Stabilisateur comportant organes d'ancrage (2) à des apophyses épineuses de deux vertèbres respectives (4), et un corps (6) s'étendant suivant une direction d'alignement (5) des organes (2), le corps (6) étant compressible suivant la direction d'alignement (5) sous l'effet d'une sollicitation à partir d'une configuration donnée, le corps étant adapté à recouvrer spontanément la configuration donnée après 10 que la sollicitation a cessé, le corps comprenant un ressort à lame (17) ayant une génératrice géométrique (19), caractérisé en ce que les organes d'ancrage (2) sont aptes à fixer le stabilisateur aux apophyses de 15 sorte que la génératrice (19) s'étend sensiblement d'avant en arrière par référence au corps du patient.
 - 2. Stabilisateur selon la revendication 1, caractérisé en ce que le corps (6) comprend deux parties de ressort à lame (17a, 17b) s'étendant en parallèle l'une de l'autre suivant la direction d'alignement (5).
 - 3. Stabilisateur selon la revendication 2, caractérisé en ce que chaque partie (17a, 17b) forme au moins un « U » dans un plan perpendiculaire à la génératrice (19).
- 25 4 . Stabilisateur selon l'une quelconque revendications 1 à 3, caractérisé en ce que le corps (6) comprend au moins une partie de ressort à lame (17a, dans plan perpendiculaire 17b) formant, un la génératrice (19), au moins deux « U » successifs 30 orientés en sens contraires en alternance l'un par rapport à l'autre.

- 5. Stabilisateur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le ressort à lame (17) est conformé en une boucle fermée.
- Stabilisateur selon la revendication 5,
 caractérisé en ce que la boucle a une forme en ellipse.
 - 7. Stabilisateur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le corps (6) comporte au moins un élément (18) en matériau viscoélastique.
- 10 8. Stabilisateur selon l'une quelconque des revendications 1 à 4 ou selon la revendication 7, caractérisé en ce que le corps (6) comporte deux ressorts à lame (17) en appui l'un sur l'autre.
- 9. Stabilisateur selon l'une quelconque des 15 revendications 1 à 8, caractérisé en ce que le ressort (17) présente au moins deux tronçons d'épaisseurs différentes.
- organes d'ancrage (2) à des apophyses épineuses de deux vertèbres respectives (4), et un corps (6) s'étendant suivant une direction d'alignement (5) des organes (2), le corps (6) étant compressible suivant la direction d'alignement (5) sous l'effet d'une sollicitation à partir d'une configuration donnée, le corps étant adapté à recouvrer spontanément la configuration donnée après que la sollicitation a cessé, caractérisé en ce que le corps (6) présente des fentes (22) disposées pour rendre le corps compressible suivant la direction d'alignement (5).
- 30 11. Stabilisateur selon la revendication 10, caractérisé en ce que le corps (6) a une forme cylindrique évidée suivant un axe (5) du cylindre.
 - 12. Stabilisateur selon la revendication 11, caractérisé en ce que les fentes (22) forment au moins

une série de n fentes adjacentes symétriquement réparties autour d'un axe (5) du cylindre, chaque fente (22) s'étendant sur un secteur d'angle (a) autour de l'axe (5) supérieur à 180°.

- 13. Stabilisateur selon l'une quelconque des revendications 1 à 12, caractérisé en ce que le stabilisateur comporte au moins deux corps (6) disposés mutuellement en parallèle suivant la direction d'alignement (5).
- 14. Stabilisateur selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'au moins l'un des organes d'ancrage (2) comprend deux mors (23) dentés mobiles élastiquement en direction l'un de l'autre pour former une pince.

WO 99/40866

PCT/FR99/00154

1

"STABILISATEUR INTEREPINEUX A FIXER A DES APOPHYSES EPINEUSES DE DEUX VERTEBRES".

L'invention concerne les stabilisateurs interépineux à fixer à deux vertèbres respectives.

On connaît un stabilisateur de ce type, comportant deux organes d'ancrage à fixer aux pédicules vertébraux 5 de deux vertèbres, et un corps rigide reliant les deux organes l'un à l'autre. En cas de dégénérescence du disque, ce stabilisateur permet d'immobiliser rigidement les deux vertèbres l'une par rapport à l'autre et ainsi de soulager le disque intervertébral associé. Toutefois, ce stabilisateur ne donne pas entière satisfaction. En 10 effet, l'opération pour mettre en place ce stabilisateur nécessite d'atteindre les pédicules vertébraux, voire le disque. Il faut donc pénétrer profondément dans le corps du patient, ce qui alourdit l'opération. De plus, les deux vertèbres étant totalement immobilisées l'une par 15 rapport à l'autre, le disque n'est plus sollicité et sa dégénérescence se poursuit. En outre, les d'ancrage aux pédicules fragilisent ces derniers entraînent une modification partielle des apophyses 20 articulaires. Enfin, mise en place des la d'ancrage requiert une visée délicate dans les pédicules pour ne pas sortir de ceux-ci et par exemple toucher la dure-mère.

On connaît par ailleurs du document FR-2 722 980 un 25 stabilisateur interépineux ayant des organes d'ancrage aux apophyses épineuses reliées l'un à l'autre par un à lame en forme de « U » dans un plan perpendiculaire à la génératrice géométrique de la lame. e stabilisateur est apte à être fixé au rachis de sorte que la génératrice est parallèle à la direction droite-30 gauche par référence au corps du patient, la base du « U » s'étendant du côté des corps vertébraux en appui

contre l'une des vertèbres. Le stabilisateur est ainsi entièrement logé entre les apophyses. Il s'ensuit que le stabilisateur a nécessairement une très petite taille. Or, cela complique sa réalisation ou bien cela oblige à lui donner une forme très simple le rendant fortement rigide, ce qui génère de nouveaux risques de dégénérescence du disque comme précité.

Un but de l'invention est de fournir un stabilisateur d'un type différent, et notamment facile à fabriquer et pouvant avoir une faible rigidité.

10

30

En vue de la réalisation de ce but, on prévoit selon l'invention un stabilisateur interépineux comportant deux organes d'ancrage à des apophyses épineuses de deux vertèbres respectives, et un corps s'étendant suivant 15 direction d'alignement une des organes, le corps étant compressible suivant la direction d'alignement sous l'effet d'une sollicitation à partir d'une configuration donnée, le corps étant adapté à recouvrer spontanément la configuration donnée 20 après que la sollicitation a cessé, le corps comprenant un ressort à lame ayant une génératrice géométrique, dans lequel les organes d'ancrage sont aptes à fixer le stabilisateur aux apophyses de sorte que la génératrice s'étend sensiblement d'avant en arrière par référence au 25 corps du patient.

Ainsi, le stabilisateur autorise une certaine mobilité des deux vertèbres l'une par rapport à l'autre en reproduisant partiellement la biomécanique d'un disque intervertébral sain. De plus, le disque continue à être partiellement sollicité même si le stabilisateur le soulage d'une grande partie des sollicitations pesant d'ordinaire sur lui. On peut ainsi ralentir voire arrêter la dégénérescence du disque. Le stabilisateur permet de garder l'intégrité de l'articulation tripode

l'unité vertébrale : le disque de et les articulaires postérieures ainsi que les connexions associées au niveau d'une vertèbre que sont pédicules et les lames. La mise en place du stabilisateur sur les apophyses épineuses est simple à réaliser. En outre, on est assuré de conserver l'intégrité de la protection de la dure-mère.

De plus, l'orientation de la génératrice suivant la direction avant-arrière permet d'étendre le 10 stabilisateur latéralement au-delà des apophyses. On peut donc accroître son volume pour le rendre à la fois plus facile à fabriquer et si besoin moins rigide en vue de limiter les risques de dégénérescence du disque.

Le stabilisateur selon l'invention pourra en outre 15 présenter une ou plusieurs des caractéristiques suivantes :

- le corps comprend deux parties de ressort à lame s'étendant en parallèle l'une de l'autre suivant la direction d'alignement;
- 20 chaque partie forme au moins un « U » dans un plan perpendiculaire à la génératrice ;
 - le corps comprend au moins une partie de ressort à lame formant, dans un plan perpendiculaire à la génératrice, au moins deux « U » successifs orientés en
- 25 sens contraires en alternance l'un par rapport à l'autre;
 - le ressort présente au moins deux tronçons d'épaisseurs différentes ;
- le corps comporte deux ressorts à lame en appui l'un 30 sur l'autre ;
 - le corps comporte un ressort à lame conformé en une boucle fermée ;
 - la boucle a une forme en ellipse ;

- le ressort a une épaisseur plus grande au voisinage d'un grand axe de la boucle qu'au voisinage d'un petit axe de la boucle ;
- le corps comporte au moins un élément en matériau viscoélastique ;
 - l'élément est disposé à l'intérieur de la boucle ;
 - le corps comporte deux éléments en matériau viscoélastique disposés au voisinage de deux extrémités respectives d'un grand axe de la boucle ; et
- 10 le ou chaque élément a une face cylindrique en contact avec une face du ressort.

On prévoit également selon l'invention un stabilisateur interépineux comportant deux d'ancrage à des apophyses épineuses de deux vertèbres 15 respectives, et un corps s'étendant suivant une direction d'alignement des organes, le corps étant compressible suivant la direction d'alignement l'effet d'une sollicitation à partir d'une configuration donnée, le corps étant adapté à recouvrer spontanément 20 la configuration donnée après que la sollicitation a cessé, dans lequel le corps présente des fentes disposées pour rendre le corps compressible suivant la direction d'alignement.

Le stabilisateur selon l'invention pourra en outre 25 présenter une ou plusieurs des caractéristiques suivantes :

- le corps a une forme cylindrique évidée suivant un axe du cylindre ;
- les fentes forment au moins une série de n fentes 30 adjacentes symétriquement réparties autour d'un axe du cylindre, chaque fente s'étendant sur un secteur d'angle autour de l'axe supérieur à 180°;

- le stabilisateur comporte au moins deux corps disposés mutuellement en parallèle suivant la direction d'alignement ; et/ou
- au moins l'un des organes d'ancrage (2) comprend deux mors (23) dentés mobiles élastiquement en direction l'un de l'autre pour former une pince.

D'autres caractéristiques et avantages de l'invention apparaîtront encore dans la description suivante de trois modes préférés de réalisation et de variantes donnés à titre d'exemples non limitatifs. Aux dessins annexés :

10

- la figure 1 est une vue d'un premier mode préféré de réalisation du stabilisateur selon l'invention ;
- les figures 2 et 3 sont des vues respectives de deux 15 variantes de ce premier mode de réalisation ;
 - la figure 4 est une vue en élévation d'un deuxième mode préféré de réalisation du stabilisateur de l'invention;
- la figure 5 est une vue en perspective du 20 stabilisateur de la figure 4 une fois installé;
 - la figure 6 est une vue de face d'un troisième mode préféré de réalisation du stabilisateur selon l'invention;
- la figure 7 est une vue en perspective du corps du 25 troisième mode ; et
 - la figure 8 est une vue analogue à la figure 10 montrant une variante du corps.

En référence à la figure 1, dans un premier mode de réalisation, le stabilisateur selon l'invention comporte deux organes d'ancrage 2 d'un type connu en soi adaptés à être fixés rigidement aux apophyses épineuses de deux vertèbres adjacentes 4 respectives. Ces organes d'ancrage sont par exemple du type de ceux du document FR-2 722 980. Le stabilisateur comporte un corps 6

s'étendant suivant une direction d'alignement 5 des organes d'ancrage 2, entre ceux-ci, et reliant organes d'ancrage. Le corps 6 est compressible suivant la direction 5 sous l'effet d'une sollicitation tendant à rapprocher les deux apophyses l'une de l'autre. suppose que le corps 6 est compressé à partir d'une configuration de départ donnée. Lorsque cesse la sollicitation, le corps 6 recouvre spontanément sa configuration de départ. Les deux organes 2 également mobiles en rotation l'un par rapport à l'autre 10 autour d'un point de rotation passant par la direction 5. Sous l'effet d'une sollicitation adaptée, on peut ainsi leur donner momentanément une inclinaison relative, les organes 2 redevenant parallèles entre eux lorsque disparaît cette sollicitation. 15

comporte deux ressorts Le corps 6 à identiques entre eux, chacun de forme plate rectiligne allongée. Une partie médiane de chaque ressort 17 est fixée rigidement par une face à une extrémité de l'un des organes d'ancrage 2 respectifs. Les extrémités des 20 ressorts 17 sont fixées l'une à l'autre et sont en appui l'une sur l'autre. Les deux ressorts 17 présentent un pli à leur partie médiane de sorte qu'ils forment un Les ressorts à lames ont une losange. génératrice 25 géométrique 19. Les organes d'ancrage sont positionnés de sorte qu'une fois le stabilisateur en place sur le patient, la génératrice 19 s'étend d'avant en arrière par référence au corps du patient et perpendiculairement au plan de la feuille sur la figure 1. Seule la tranche des ressorts 17 est visible sur la figure 1. Lorsqu'une 30 sollicitation suivant la direction 5 tend à rapprocher les deux organes d'ancrage 2 l'un de l'autre, le losange déforme sensiblement élastiquement pour tendre s'aplatir. Lorsque la sollicitation cesse, grâce à la

raideur des ressorts 17, le corps 6 recouvre sa configuration de départ. Ce mode de réalisation autorise de modifier l'inclinaison relative des organes d'ancrage 2 sous l'effet d'une sollicitation adaptée, cette inclinaison disparaissant par élasticité en même temps que la sollicitation qui l'a fait naître.

Dans la variante de la figure 2, le corps comprend un unique ressort à lame 17 courbé sur lui-même pour être conformé en une boucle fermée ici en forme d'ellipse. Le ressort 17 est fixé rigidement aux organes d'ancrage 2, entre ceux-ci, de sorte que la direction 5 constitue le petit axe P de l'ellipse. La génératrice 19 est orientée de la même façon que dans le mode de réalisation de la figure 1. Ce stabilisateur fonctionne essentiellement de la même façon que celui de la figure Avantageusement, la lame du ressort 17 différentes en différents des épaisseurs présenter endroits de la lame. Par exemple, la lame aura une épaisseur plus importante au voisinage du grand axe G de l'ellipse qu'au voisinage du petit axe P de l'ellipse. 20 Ainsi, on paramètre la raideur du ressort 17 en fonction de la partie concernée de la lame. On obtient notamment une déformation non uniforme des différentes parties du ressort sous l'effet d'une sollicitation suivant direction 5. 25

Dans la variante de la figure 3, le corps 6 comporte un ressort 17 en ellipse et en outre deux noyaux 18 en un matériau viscoélastique tel que du polyuréthanne ou du silicone. Ces noyaux 18 ont chacun une forme cylindrique. Ils sont disposés à l'intérieur de l'ellipse, aux extrémités du grand axe G, avec leurs axes perpendiculaires aux axes P, G de l'ellipse et parallèles à la génératrice 19 du ressort et leur face cylindrique en contact avec la face interne de la lame.

30

Avantageusement, chaque noyau 18 a un rayon inférieur ou égal au plus petit rayon de courbure de la lame, au niveau du grand axe G. Les noyaux 18 modifient le comportement du corps 6 lors de sa compression et de sa détente.

Dans le deuxième mode de réalisation illustré aux figures 4 et 5, le corps 6 comporte une fois encore un ressort à lame 17 conformé en une boucle fermée d'un 2. d'ancrage les organes tenant avec en titane ou alliage est réalisé stabilisateur 10 titane. Comme dans les stabilisateurs des figures 1, 2 et 3, le ressort définit deux parties de ressort à lame 17b s'étendant en parallèle l'une de l'autre suivant la direction d'alignement 5. La génératrice 19, visible également sur la figure 5, s'étend encore 15 d'avant en arrière.

17b deux parties du ressort 17a, Les symétriques l'une de l'autre par rapport à un plan médian passant par l'axe 5. Chaque partie de ressort forme, dans un plan perpendiculaire à la génératrice 19, 20 plusieurs « U » successifs orientés en sens contraires les uns aux autres en alternance. Sur chaque partie 17a, 17b, les « U » sont ici au nombre de trois. Les « U » les plus proches des organes d'ancrage 2 ont leur base 21 située vers l'extérieur du stabilisateur, alors que 25 le « U » médian de chaque partie a sa base 21 vers l'intérieur du stabilisateur. Chaque partie 17a, 17b a donc la forme d'une ondulation ou d'un zigzag. Plus précisément, cette forme est ici généralement celle d'un « M » renversé. 30

Chacun des organes d'ancrage 2 comprend ici deux mors 23 symétriques l'un de l'autre par rapport au plan médian, de forme générale plate et ayant une génératrice parallèle à la génératrice 19. Les deux mors 23

s'étendent en regard l'un de l'autre. Leurs faces en regard présentent des dents profilées 25. Chaque mors présente un conduit 27 d'axe parallèle à la génératrice 19 pour l'introduction d'un outil de manoeuvre du mors. Les bases des mors s'étendent à distance l'une de l'autre à partir d'une extrémité du ressort 17. Les deux mors sont mobiles élastiquement l'un par rapport à l'autre. Au repos, ils s'étendent de façon divergente à partir de leur base.

L'ensemble du stabilisateur est profilé suivant un axe parallèle à la génératrice 19, le profil étant représenté à la figure 4.

Pour mettre en place le stabilisateur, on sollicite les mors 23 de chaque organe d'ancrage 2 en éloignement 15 l'un de l'autre, au moyen d'outils introduits dans les conduits 27. Puis on place le stabilisateur comme sur la figure 5 de sorte que chaque apophyse 29 est entre les mors 23 respectifs. Puis on relâche les mors pour qu'ils pincent les apophyses et s'ancrent à celles-ci au moyen de leurs dents 25.

De même que dans les précédents stabilisateurs des figures 1 à 3, les parties de ressort à lame 17a, 17b s'étendent latéralement au-delà des apophyses 29, comme illustré à la figure 5. On peut les configurer pour leur fabrication raideur. La faible une donner stabilisateur est effectuée par électro-érosion d'une masse de métal, cette fabrication étant particulièrement simple grâce à la forme profilée du stabilisateur. De même que les stabilisateurs des figures 1 stabilisateur offre une raideur assez faible pour des flexions latérales du corps c'est-à-dire autour d'un axe de flexion parallèle à la génératrice 19. Il offre une raideur importante pour des flexions du corps d'avant en arrière c'est-à-dire autour d'un axe perpendiculaire à

25

30

10

la direction 5 et à la génératrice 19. On peut facilement modifier la forme du ressort pour accroître ou réduire l'une au moins de ces raideurs, indépendamment du volume disponible entre les apophyses 29.

En référence aux figures 6 et 7, dans un troisième mode de réalisation, le stabilisateur comporte deux organes d'ancrage 2 et deux plateaux 8 respectifs fixés à ceux-ci. Le corps 6 a une forme cylindrique à section circulaire évidée suivant transversale direction ici confondu la cylindre qui est avec d'alignement 5. Le corps 6 présente deux extrémités axiales fixées rigidement aux plateaux 8 respectifs. Le corps 6 présente dans sa paroi des fentes 22, ici au chacune s'étendant dans 15 nombre de onze, perpendiculaire à la direction 5. Ici, chaque fente 22 s'étend sur un secteur d'angle a autour de l'axe 5 réparties fentes 22 sont 180°. Les à supérieur ici diamétralement deux groupes symétriquement en opposés de manière intercalée suivant la direction de 20 chaque groupe, fentes sont les 1'axe 5. Dans coïncidence et s'étendent d'un même côté de l'axe 5. Les fentes ont toutes la même largeur e parallèlement à l'axe 5. Dans les deux groupes, l'espacement d entre les fentes adjacentes d'un même groupe est constant. 25 constitue ainsi des séries de deux fentes chacune, les fentes de chaque série étant symétriquement réparties autour de l'axe 5.

Cette disposition des fentes donne au corps 6 la 30 fonction d'un ressort élastiquement compressible et extensible suivant l'axe 5, le corps étant réalisé dans un matériau adapté tel qu'un métal biocompatible. Ce corps autorise aussi la flexion du stabilisateur dans

une direction quelconque pour l'inclinaison relative des deux organes d'ancrage 2 telle que précitée.

Dans la variante de la figure 8, le corps 6 présente des fentes 22 réparties en quatre groupes. Dans 5 chaque groupe, les fentes sont en coîncidence autour de l'axe 5. Chaque fente s'étend encore sur un secteur d'angle supérieur à 180°. Les fentes des quatre groupes sont intercalées régulièrement. On forme ainsi deux séries (supérieure et médiane sur la figure 11) de 10 quatre fentes adjacentes. Dans chaque série, les fentes sont symétriquement réparties autour de l'axe 5.

Dans une autre variante, le stabilisateur pourra comprendre plusieurs corps 6 de ce type disposés mutuellement en parallèle à la direction 5.

Le corps cylindrique pourra avoir une section transversale non circulaire, par exemple en ellipse.

Les mors 23 décrits en référence au deuxième mode de réalisation pourront être incorporés à l'un quelconque des autres modes de réalisation.

FEUILLE DE REMPLACEMENT (REGLE 26)

2/6

FIG.4

3/6

FIG₅

FEUILLE DE REMPLACEMENT (REGLE 26)

FEUILLE DE REMPLACEMENT (REGLE 26)

WO 99/40866

FEUILLE DE REMPLACEMENT (REGLE 26)