Description of the "MF-tethersonde" fileset for BLLAST.

Météo-France CNRM/GMEI/TRAMM

December 2011

This document is a description of the format and the parameter list of the MF-tethersonde fileset, which contains in-situ meteorological measurements made with a Vaisala TTS111 probe under the tethered balloon operated by the 4M team (Meteo-France/CNRM).

1 Format

The files are in NASA-Ames 1001 format, which is a text format with a descriptive header. A presentation of the format is available at http://badc.nerc.ac.uk/help/formats/NASA-Ames/.

Conformance to standards has been checked by the online validator operated by BADC ¹.

2 File naming convention

The naming pattern is : MF-tethersonde_1Hz-full_2011 $\mbox{\it MMDD}$ _lt110 $\mbox{\it nnn}$.txt where :

- MM is the month number (06 or 07)
- DD is the number of the day in the month (see flight calendar)
- nnn is the number of the day in the year (see flight calendar)

3 Flights calendar

The table below gives the calendar of the flights, and, for each day, the take-off time of the first flight and the landing time of the last flight.

date	day of year	IOP num.	flight num.	take-off time	landing time
14 june	165	0	0	14h33m20s	14h55m47s
15 june	166	1	1	14h45m30s	
			3		19h27m50s
19 june	170	2	4	13h13m45s	
,			5		20h30m40s
20 june	171	3	6	12h51m10s	
,			7		20h04m40s
24 june	175	4	8	13h11m23s	
,			9		20h03m00s
25 june	176	5	10	12h25m40s	
,			11		20h00m45s
26 june	177	6	12	11h47m25s	
,			13		20h06m40s
27 june	178	7	14	13h11m20s	
, ====					on next page)

¹http://badc.nerc.ac.uk/cgi-bin/dataex_file.cgi.pl

date	day of year	IOP num.	flight num.	take-off time	landing time
			15		20h04m20s
30 june	181	8	16	12h16m20s	
Ź			17		20h19m50s
1 july	182	9	18	12h53m00s	
, ,			19		19h58m00s
2 july	183	10	20	12h13m20s	
, ,			21		20h01m45s
5 july	186	11	22	12h57m20s	
, ,			23		19h53m35s

4 Parameter description

The data part of the files contains 7 columns. The first one (the independent variable, in NASA-AMES parlance) is the time, expressed in linear scale (seconds since midnight).

The sampling rate is 1 Hz.

Most of the data are the exact copy of what was recorded by the Vaisala data acquisition software. A few corrections were made :

- the take-off altitude was adjusted to 593 m.
- all data recorded below 610 m ASL (17 m AGL) were removed.
- for altitude, pressure, temperature and humidity, spikes were removed and replaced by an interpolated value. A spike is defined as a sample whose differences to prior and following samples are above a certain threshold and of opposite sign. Threshold values for each parameter are listed in the table below. No more than ten spikes per flight were corrected.
- apparent wind measurements where both direction and speed are nul are considered as missing.
- samples of apparent wind speed of exact nul value are considered as missing (to filter out some cases of anemometer blocking).

Here follows a description of the six measured parameters:

	name	unit	description
1	altitude	meter	Computed by Vaisala data acquisi-
			tion software
			Threshold for spike detection : 20 <i>m</i>
2	air_pressure	hPa	From BAROCAP SILICON sensor
			Threshold for spike detection: $5hPa$
3	air_temperature	$^{\circ}C$	From F-THERMOCAP capacitive
			wire
			Threshold for spike detection : $2^{\circ}C$
4	relative_humidity	%	From H-HUMICAP thin film capa-
			citor
			Threshold for spike detection: 20%
5	relative_wind_from_direction	degree	From digital compass (degree)
6	relative_wind_speed	m/s	From 3-cup anemometer

5 Contacts

If you have further questions, you may contact:

- Dominique Legain (dominique.legain@meteo.fr), about operation, sensors and acquisition issues.
- Bruno Piguet (bruno.piguet@meteo.fr), about data processing and file format issues.