

Figure 4.2 Arrhenius plot of the *B* oxidation coefficient. The wet parameters depend on the H₂O concentration and therefore on the gas flows and pyrolysis conditions (after Deal and Grove).

Figure 4.3 Arrhenius plot of the ratio (*B/A*) of the oxidation parameters (*after Deal and Grove*).

Deal-Grove Model:
$$t_{ox}^2 + At_{ox} = B(t + \tau)$$
, $\tau = \frac{t_o^2 + At_o}{B}$

Table and Graphs from S. Campbell, Fabrication Engineering at the Micro- and Nanoscale, 3rd edition.

Table 4.1 Oxidation coefficien	s for silicon - For (111) silico	on
--------------------------------	----------------------------------	----

Temperature (°C)	Dry			Wet (640 torr)		
	A (μm)	$B (\mu m^2/hr)$	τ (hr)	A (μm)	$B (\mu m^2/hr)$	
800	0.370	0.0011	9	_	_	
920	0.235	0.0049	1.4	0.50	0.203	
1000	0.165	0.0117	0.37	0.226	0.287	
1100	0.090	0.027	0.076	0.11	0.510	
1200	0.040	0.045	0.027	0.05	0.720	

The τ parameter is used to compensate for the rapid growth regime for thin oxides. (After Deal and Grove.)

Table from S. Campbell, *Fabrication Engineering at the Micro- and Nanoscale*, 4th edition.

$$D = D^{o} + \frac{n}{n_{i}}D^{-} + \left[\frac{n}{n_{i}}\right]^{2}D^{2-} + \left[\frac{n}{n_{i}}\right]^{3}D^{3-} + \left[\frac{n}{n_{i}}\right]^{4}D^{4-}$$
$$+ \frac{p}{n_{i}}D^{+} + \left[\frac{p}{n_{i}}\right]^{2}D^{2+} + \left[\frac{p}{n_{i}}\right]^{3}D^{3+} + \left[\frac{p}{n_{i}}\right]^{4}D^{4+}$$

TABLE 3.2	/ DIF	DIFFUSION COEFFICIENTS OF COMMON IMPURITIES IN SILICON AND GALLIUM ARSENIDE							
			Donors					Acceptors	
Assessment of makes in the second		$D_o^=$	$E_a^=$	D_o^-	E_a^-	D_o	E_a	D_o^+	E_a^+
As in Si	D			12.0	4.05	0.066	3.44		
P in Si	D	44.0	4.37	4.4	4.0	3.9	3.66		
Sb in Si	D			15.0	4.08	0.21	3.65		
B in Si	A					0.037	3.46	0.41	3.46
Al in Si	A					1.39	3.41	2480	4.2
Ga in Si	A					0.37	3.39	28.5	3.92
S in GaAs	D					0.019	2.6		
Se in GaAs	D	,				3000	4.16		
Be in GaAs	A					7e - 6	1.2		
Ga in GaAs	I					0.1	3.2		
As in GaAs	I					0.7	5.6		
Si in GaN	D					6.5e-11	0.89		
Mg in GaN	A					2.8e-7	1.9		

Si and GaAs data taken from Runyan and Bean [3] and references quoted therein. GaN data is taken from Jakiela [4] and Benzarti [5]. Donors are labeled with a "D," acceptors with an "A," and self-interstitials with an "I." All preexponentials are in centimeters squared per second, and the activation energies are in electron-volts.

Figure 5.9 Projected range (solid lines and left axis) and standard deviation (dashed lines and right axis) for (A) n-type, (B) p-type, and (C) other species into a silicon substrate; (D) n-type and (E) p-type dopants into a GaAs substrate; and several implants into (F) SiO₂ and (G) AZ111 photoresist (data from Gibbons et al.).

Useful Constants

Avogadro Constant (N_A) 6.02204 X 10²³ mole⁻¹

Boltzmann Constant (*k*) 1.38066 X 10⁻²³ J/K

8.617 X 10⁻⁵ eV/K

1.3626 X 10⁻²² atm-cm³/K

Gas Constant (R) 1.987 cal/mole/K

Electric Charge (q) $1.60218 \times 10^{-19} \text{ C}$

Permittivity in vacuum (ε_o) 8.854 X 10^{-14} F/cm

Thermal voltage at 300 K (kT/q) 0.0259 V

Constants for silicon at 300 K:

Bandgap (E_a) 1.107 eV

Effective Density of States $N_c = 2.8 \times 10^{19} \text{ cm}^{-3}, N_v = 1.0 \times 10^{19} \text{ cm}^{-3}$

Carrier Mobility $\mu_0 = 1500 \text{ cm}^2/\text{Vs}, \ \mu_p = 450 \text{ cm}^2/\text{Vs}$

Relative Dielectric Constant (permittivity) 11.7

Density (ρ) 2.328 g/cm³

Atomic Density 5 X 10²² cm⁻³

Atomic Weight 28.09 g/mole

Intrinsic carrier concentration (n_i) 1.5 X 10¹⁰ cm⁻³

Unit Conversions

Pressure: 1 atm = 1.01325×10^5 Pa = 1.01325 bar = 760 torr = 14.696 psi

 $(1 \text{ Pa} = 1 \text{ kg/(m} \cdot \text{s}^2) = 1 \text{ N/m}^2)$

Energy: $1 \text{ J} = 1 \text{ kg m}^2/\text{s}^2 = 9.4782 \times 10^{-4} \text{ Btu} = 6.2415 \times 10^{16} \text{ eV} = 0.23901 \text{ cal} = 1 \text{ A V s} = 1 \text{ W s}$

Capacitance: $1 F = 1 A s/V = 1 C/V = 1 s/\Omega$