	Pract						
Aim-	To priepare using diff	price or	nd qua	ntity i	ndex 1	numbers	
Proble	n - Prupare p	ruce ana	quant	ity ina	ar nur	noou jo	1 2005
with	2000 as base	year jo	i the f	ullower	ig da	ta by us	ing
cis Las	peyre's ai,	Paasche!	s uu)	Marsha	U - Ed	gewort	h and
ais Fe	sher's metho						
Year	Article I			Article		Article	
	Pruce Qty.	Price	Qty:			Price	V
2002	5.00 5		6	9.63		12.50	
2005	6.50 7	8.80	10	7.75	6	12.75	9
The forguen (1) Lasp Poi	ond formula ormula's for by Deyre's metr a = Epijolo sche's metho Pa = Epijolo Epojolo Epojolo Sche's metho	price a	, Q ₀ ,	α = ε 9 ε 9	ij Poj	x no. a	
	shall - Edge E = Epij (90) E = Eqij (90) E = Eqij (90)						
i) Fisher	r's method (Poil x Poil	pa) 1/2	. 00	F = (O o i	× QoiPa) 1/2

ai

Antich	2	002	20	005				
Article		20			Pigo	Pogo	Pil:	Po 91
	5.00	5	6.50	7	32.50	25.00	45 50	35 00
IL	7.75	6	8 80	10	52-80	46 50	88.00	77 50
	9 63	4	7.75	6	31.00	38-52	46 50	51.78
TV	12.50	9	12 75	9	114 75	112.50	119-75	112.50.
otal					231.05	222.52	294 75	28278
Poila =	ε p ₀	j 90j	X100) = 2	231.05 XI	00 = 103	8 8	
Poi. La =	£90	ij Poj	×100	4	282.78 x			
Poi Pa =	EPI EPo	j 9 ij	- X10	0 =	294 75 282 78	×100 = 1	04.23	
loi Pa	: <u>29</u> 2)	ij Pij	×10	0 =	294.75	X100 =	127-57	
ME.	ε (f	Pojq	+ 120 oj +	j 2 ij) Poj 9 i	×100 =	231.05 222.52 525.0	+282-76	X 100
						525 d 505 3 = 104 C	56.	
OC ME	= 2	(90)	Poj +	901	(j) X100 Pij)	2 22	70 + 29 52 + 2 3×10	
						453	57 X 10	4

Results - Method Pruce Index no. Quartity Index no. Los peyre's 103 & 127.8 Paosche's 104 23 127.57 Morshall - 104 056 127.23. Edgeworth's 104.1 127.24	Poi = (Po	$\frac{31.05}{22.52} \times \frac{294.75}{282.78} \times 100$ $\frac{100}{22.52} \times \frac{100}{282.78} \times \frac{100}{282.78} \times \frac{100}{294.75} \times \frac{100}{22.52} \times \frac{100}{231.05} \times \frac{100}{231.05$	
Method Bruce Index no. Quartity Index no. Los peyre's 103 & 127.8 Paosche's 104 23 127.57 Morshall - 104 056 127.23. Edgworth's 104.1 Fishor's 127.24			
Los peyre's 103 & 127.8 Paosche's 104 23 127.57 Morshall - 104 0.56 Edgworth's 104.1 Fishur's 104.1	Method	Pruce Index no.	Quantity Index no
Paosche's 104 23 127.57 Morshall - 104 056 127 23. Edgeworth's 104.1 Fisher's 104.1	ospeyne's	103 8	127.8
Morshall - 104 056 127.23. Edgiworth's 104.1 127.24 Fishur's 104.1		10423	127.57
Fishor's 104.1 127.24	lorshall -	104 056	127.23.
			27.24

Aim- To verify that Factor Reversal test and time seversal test are satisfied by Fisher's formula Problem - By using data from practical-10, verify if the Fisher's formula satisfies Factor and Time Reversal test. Theory and formula-Fischer's price index no. - (& Pij 90j x & Pij 91j) 1/2 2 2 Poj 90j & Poj 90j x 100 Fisher's quantity endex no - (& qij Poj x & qij Pij) 1/2 × 100 Time Reversal Test -If the time script of any index formula be interchanged, then the rusulting indu should be reciprocal of original indus Pii = Pii × Pii = 1. > Poi x Pio = 1. Factor Revescal Test -The formula of endex no. should ought to permit the interchanging of price and quantitus without giving inconsistent results. Two results multiplied together should que true value ratio except for constant of proportionality Poi Y Ooi = \(\xi\) ij = \(\xi\) 21j \(\xi\) \(\xi\) poj 90j Calculation Poi Fx Pio = (Epij 90j x Epij 9ij) 2 (Epoj 9ij x Epoj 90j) /2 Epoj 90j × Epoj 90j × Epoj 90j × Epoj 90j

 $= \left(\frac{231.05}{222.52} \times \frac{294.75}{282.78} \times \frac{282.78}{294.75} \times \frac{222.52}{231.05}\right) \times \frac{1}{231.05}$

> Fisher's index no satisfies Time Reversal test

Poi Fx Qoi F = (EPij qoj x EPij qij) 1/2 x (Eqqui Poj x Eqij Rij) 1/2 x (Eqqui Poj x Eqij Rij) 1/2 x (Eqqui Poj x Eqqij Rij) 1/2

 $= \begin{pmatrix} 231.05 & \times & 294.75 & \times & 282.78 & \times & 294.75 \\ 222.52 & \times & 282.78 & \times & 222.52 & \times & 231.05 \end{pmatrix} 1/2$

 $= 294.75 = \xi Pij ?ij' = Voi$ $222.52 = \xi Poj ?ej$

=> Fishu's indix no satisfies Factor Reversal test

Result- Fisher's ideal ender no Satisfies both time recursal tests and factor reversal tests.

Aim	- To const	ruct cost	of luing in	dix number	
for	the year 2	DOS (Base	2001 = 100) H	he rost of live	ng indir
Pili	ce relative	(000	- (00) 0	sing method o	6 weighted
Ite	m Unit	Price (in Rs)		
		2001	2005	weight	
A	kg	50	75	10%	
B	litre	60	75	25%	
C	Dozen	200	240	20 1/.	
D	kg	80	100	40.7	
E	one pair	160	200	5.7.	
he co	st of live	ng under	modity in b	of weighted	pua relati
u gue	n by	11 - 8	W		
	ne, wi is	weight	of respecture	commodity	
ilaila			P. Active Duce	1 minht	Pw.
tem	2001 2	-005	Relative pura	weight	
A	50	75	75/50 ×100 = 15		1500
B		75	125	25	2400
		100	125	40	5000

IT \$ 1 BY KIND 34 = 12650 = 126.50 cost of wwng under no. = EPW Result -The cost of wing man by using method of weighted puel relation is 126.50

Aim - To construct the cost of Juning index no Problem - From the given data below, calculate the cost of living index no- for the coverent year by aggrigiate expenditure method -

			- 0	
Article	Quantity consumed in base year (quintals)	Unit	Price (in 10 Base year	o RS) per unit
Rica	5	Duintal		
Milet		Quintal	60	80
	5	Quintal	40	50
Wreat		Quintal	50	100
Guam	1/02	Quental	30	60
Arhar	У2	Quental	40	60
Other pulse	2	Quintal	30	40
Orhee	Ч	kg	12.5	20
Guu	2	Quintal	25	50
Salt	121/2	kg	40	50
04	24	kg	200	2.50
lothing	40	metre	2.5	5
in wood	10	Quintal	5	8
erosone	1 tin	Tin	40	60
ouse rent		-	120	150

Theory 1 Formula - In this data, we are guin quantity concurred in base year according to each commodities, so this quantity is considered as weighted and denote by 90 and also price of each commodities is given according to base and current year.

Aim - To gonal de la		
Aim - To construct the con current year and also required to maintain Problem - An enguisy into the	umer pruce in	ur too the
required to maintain	find out the	allowana
Problem 0 - 0 -	nus joamur stan	doord of living
Jamilie enguery into the	budgets tol th	a middle star
the percentucian cit	y revelead that	on average
Problem- An enquiry into the families of cutain cut bette percentage expentions	see on the diffe	rent groups were
food 45, sent 15, dotte mis all aneous 20. The current year of buse period were nes	ring 12, full .	light 8 and
tos the chias 20. T	he group index	group number
base period well new	us o compared	whith a fixed
Calada	pectively +10,15	0, 343, 248, 285
and Ri 43000 gette	ng Rs 24000 p	no in base period
year Mr. X was gette ond Rs 43000 in the he ought to have reco	and all year.	State how much
The assumed the	ente as ente	all bloance.
The ory and formula -		
For the gum data was have	Daycootic	
For the gruen data, we have different groups of commoditions that their group in	ties and was	senses on the
that I their Ogsoup in	ides no for all	en was guin
SO in their case CDT	0 9	grant 9
SO, in this case CPI is co	al allated by :	EIW
wille I II the asimula inclus	20 6 - h. 01.	
commoditus and wave	percentage Co.	X Denoce al
different commo ditus	1	1200
The above Orline CPT no sa	10 1 15 10 1	
The above gruin CPI no. ser current grai	real tru purcha	uing power of
To calculate the allowork. Illing as 17 the base year	to maintain;	the same stard
luing as 17 the base year	is quin en c	abulation part
Salculation -		
Casaula Rassula India (T)	1/ 0 / 0 -00 - 1	1 (7(2)
Geroup Geroup Index (I)	7. Expenses	$(I\omega)$
Food 410	45	18450
Rent 150	15	2250
aoth 343	12	4116
Full and light 248	8	1984
lu alla reoles 285	20	5700
1		
Consumer price index no. =	& IW = 32,5	700 = 325
	EW 10	0
bi l		

This say that purchasing power of Rs. 325 in the airrent year is equal to Rs 100 in bose year Thus, the person recieving Rs 24000 pm in autount year shows have 325 x 24000 = 78000 pm in autount year Mex to maintain the same std of leiling as in box year = Rs (78000 - 43000) = Rs, 35000pm Result -Consumer purce index no. = 325 Standard of living maintain Rs 35000 The CPI = 325 means that purchasing power of Rs 325 in current year is equal that of Rs 100 in base year To maintain same luing std. uguerid extra allowona Rs. 35000 per month

Aim - To some the question on double sampling Experiment - Plot ADD, ATI, ASN and OC curius for a ond c= 6 Using Poisson dist, where incoming quality b = 0 01,0.02,0.03,0.05,0.06,0.07,0.08,009,0.10, 0.15,0.2,0.25,0.30 Theory - $P_{a,(p)} = \sum_{x=0}^{c} e^{-\lambda_{1}x}, \lambda_{1} = n, p$ $P_{0_{2}}(p) = \sum_{k=0}^{C_{2}} c_{2} - x e^{-\frac{1}{2}i} \lambda_{1}^{2} e^{-\frac{1}{2}i} \lambda_{2}^{2}, \lambda_{2} = n_{1}p$ $P_{a}(p) = P_{a}(p) + P_{a}(p)$ $P_{G}(p) = e^{-\lambda_1^2 \lambda_2} \left[\frac{\lambda_1^3}{3!} \left(1 + \lambda_2 + \frac{\lambda_2^2}{2!} + \frac{\lambda_3^3}{3!} \right) + \frac{\lambda_4^4}{4!} \left(1 + \lambda_2 + \frac{\lambda_3^2}{2!} \right) \right]$ + 1,5 (1+12) + 1,6 7 51 $ASN = m, +m_2(1-p_1) = m, +n_2 = \frac{e^{-n_1} \lambda_1^{q_2}}{q_1^{q_2}}$ ATI = n,+n, (1-Pa,)+(N-n,-n,)(1-Pa) AOO = (N-n,)p. Pa,(p) + (N-n, -n2) p Po_(p) where. N = size of lot n, = size of the first sample na = size of the second sample p = Incoming quality of lot Pa,(p) = Probability of accepting the lot on basis of Paz (p) = Probability of accepting the let on bases of second samples a = no of defects in first sample = no of defects in second sample

P	y = 10 1 p	Pa. (p)	12	PO2 (b)			
0.01	0.5	0.985612322			ASN Palp	ATI	Aoq
0.02	1.0	0.9196986029	2	0.013969816	51 43.8667	51 50 50099	0 000 9 (8 299
0.03	1.5	0.8088468305	3		50 02101559	63 65192765	0.017453922
0.04	2.0	0.676676462	4		69.022717	99-5698103	0-024025811
0 05	2.5	0.543 6131159	5		01 87 8977	159-3664251	0.027250686
0.06	3.0	0.423900811	6	0.07619463	941999568	228-5159785	0.027138402
0.07	3.5	0.3206471989		0.046162979	104 33930	293. 4074223	0-02471109
0.08	4.0	0-238033056	7	0.029273992	111-306469	347122883	0 . 0 21402996
0.09	45			0.011473565	115-1222684	388 8377629	0.017735157
		0.1735780709	9	0.004990834129	115.7472476	420-1430802	0.014374245
)-1	50	0 1246520195	10	0.002031117057	1137531443	443 1957005	0.01360859
)-15	7.5	0.02025671506	15	0.0000116636245	85 7 89 779	490 8863962	0.00273503
) 2	10	0.0027693957	20	0 00000003462	62 7372052	490-75375	0.00043349
) -25	12.5	0.0003414545969	25	0.00000000070		499-8463454	0.000 76 8272
0.3	15	0.000037308448	30	0.000000000113	50.75925912	499.9823112	0.000010613

44 Practical No.-16 Aim. To plot the OC, ATI and AOQ curue 25 4 23 Problem - Plot OC, ATE and ADO were guier that -0 \$ = 0 01,002,003,004.006,008.0-1,0-2,03,0-4,05. (Ber Comp Theory - oc function the probability of acceptance for the 30 رالمسي different values of incoming quality level to 3 المسلة (i) Pacc = L(p) = & g(r, n, p) 20 10 as Lipius finite and N-00 and p is small LA $\therefore L(p) = \begin{cases} e^{-np} (np) \\ x = 0 \end{cases}$ 150 1 1 cis ATI = N+(n-N) Pace 1 10 A00 = p. Pacc (N-n) = p. (iii) 10 20 Calculations-LO $C = 3, n = 30, N = 1000, L(p) = e^{-np[1+np+(np)^{2}+(np)^{3}]}$ II) (10) p np L(b) ATI AOQ (العلا 0.3 0.9997341938 9.697421631X10-3 0.01 30.25783685 0.9966419311 0.6 0.02 33 - 25 73 2679 0.01933485346 0.03 0.9 0.9865 412794 43.0549 5902 0.02070 835123 0.9662310318 1.2 0.04 0.03748976403 6275589914 0.06 1.8 135 - 4471429 0.051 8 73 17143 0.08 2.4 0 - 778722911 244. 6307763 0.0604288971 0-1 3 0.6472 310,088 372.18 50679 0.06278149321 0.2 0.1512030820 6 858 - 3122337 0.02933355326 0.3 9 0.0212264863 979.4103083 0.0006 176907514 0.4 0.0022917912 12 997. 7769625 0.0008892149886 0.5 0-0002113785 999.7849629 15 0.0001025135742 0.0000009879527 999 7999042 0.0 24 7. 66513031×10-8

(4)

1	To plot the oc curve for given data
	The per allometric diet
Single	sampling plan with N=2000
0.02	Sampling plan with N=2000, n=20, c=0 and p=001,
Theory	003, 0.04, 0.03, 0.06, 0.07, 0.09, 01, 03, 0.4, 06, 08, 03
	DAOD 01 0((0 = +0 = +
- (p) = E g(n,n,p) where nb is finite N - is and his
1 (1	$ \begin{array}{c} $
- (P	$) = P_{acc} = \underbrace{s}_{i=0} f(\tau, n, \beta)$
	$= \underbrace{\mathbb{E}}_{N p \times N - N p C \times}$ $= \underbrace{\mathbb{E}}_{N p \times N - N p C \times}$
alul	ation -
	Pace = NPCO N-NPCn - 2000 2000 PC20
	N C n 2000 C20
P	Pacc
0.01	0.01711
0.02	0-666306
	0.5427
0.03	0.5427
0.03	0.3566
0.03	0.3566
0.03	0.3566 0.288 0.232 0.1871
0.03	0.3566
0.03 0.04 0.05 0.06 0.07 0.08 0.03 0.1	0.3566 0.232 0.1871 0.15021 0.1202 7.658
0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1	0.3566 0.288 0.232 0.1871 0.15021 0.1202
0.03 0.04 0.05 0.06 0.07 0.09 0.1 0.3 0.4 0.6	0.3566 0.288 0.232 0.1871 0.15021 0.1202 7.658 3.42907 9.5197 7.1649
0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1	0.3566 0.232 0.1871 0.15021 0.1202 7.658 3.42987 9.5197 7.1649 4.1182
0.03	0.3566 0.288 0.232 0.1871 0.15021 0.1202 7.658 3.42987 9.5197 7.1649 4.1182
0.03 0.04 0.05 0.06 0.07 0.09 0.1 0.3 0.4 0.6	0.3566 0.232 0.1871 0.15021 0.1202 7.658 3.42987 9.5197 7.1649 4.1182

0.06	13 50	0.27.72		1 . 0 720	Thur.	50
						969.0
0 00	18 00	0.791023	0 2000	0 16646	1569-09	17090
0.10	2230	0 968926	0.031074	0.03107	1913-62	213962
0.30	6750	100	0	0	1975-00	2200.0
0.80	180.00	1-00	0	0	197500	2200 0
(16)						

