

Lectures >> Lec02: Number Systems

Labs >> Lab02: Programming Environment Setup

Quantization

DISCRETE SYSTEMS

Digital System"

UNARY SYSTEM

aka. Base-1

Roman Numerals Originated in Ancient Rome 8th Century BC ~150 million km \div ~13,000 km = ~12,000 Earth paper = ~3,000 positions 12,000 \div 3,000 = 4 pages!

NUMBER SYSTEMS

Hossein's Number System

~150 million km \div ~13,000 km = ~12,000 Earth N = 12,000 n = (N+1) \div 4 = (12,000+1) \div 4 = ~3,000 positions paper = ~3,000 positions 3,000 \div 3,000 = 1 pages

QUATERNARY SYSTEM aka. Base-4, Radix-4

 $(0,1,2,3)_4$

Hindu-Arabic Numerals
Originated in India
7th Century AD

More Significant Position

#Symbols=4 Radix-4 Base-4

More Significant Position

47	46	45	44	43	42	41	40) \ \ \
3	0	3	0	2	1	3	1	
3×4^7	0×4 ⁶	3×4^5	0×4^4	2×4^3	1×4^2	3×4^{1}	1 (40)	\sum

65,437

More Significant Position

			<u> </u>	\rightarrow \tag{\rightarrow}						Base-4	Hossein's Number System
		3	0	3	0	2	1	3	1	65,437	
					3	3	3	3	1	1,021	17
				3	3	3	3	3	2	4,094	22
		3	0	0	3	3	3	3	\bigcirc	50,172	-
3	3	3	3	3	3	3	3	3	3	1,048,575	39
							0/	K			V /.

Powers4

1

× 4

$$N = 3 \times 4^{n-1} + 3 \times 4^{n-2} + \dots + 3 \times 4^2 + 3 \times 4^1 + 3 \times 4^0$$

$$N = 3 \times (4^{n-1} + 4^{n-2} + \dots + 4^2 + 4^1 + 4^0)$$

$$N = 3 \times \left(\frac{4^n - 1}{4 - 1}\right)$$

$$N = 4^n - 1$$

4n − 1 Hossein's System

n positions

Max

4n-1	4n-2		42	41	40	
3	3	• • •	3	3	ω	Z

$$4^{n} - 1 = N$$

$$4^{n} = N + 1$$

$$\log_{4} 4^{n} = \log(N + 1)$$

$$n = \log_{4}(N + 1)$$

? positions

Max

3 3

• •

3

3 /

~150 million km \div ~13,000 km = ~12,000 Earth N = 12,000 n = Log₄ (12,000+1) = Log₁₀ 12,001 \div Log₁₀ 4 = 4 \div 0.6 = 6.79 \sim 7 positions

COMMON NUMBER SYSTEMS

Base-4

BINARY | BASE-2 | RADIX-2 (0,1)₂

27	26	2 ⁵	24	23	22	21	20
1	0	1	0	1	1	0	1

27	26	25	24	23	2 ²	21	20	X
	0							
1×2^7	0×2 ⁶	1×2 ⁵	0×2 ⁴	1×2^3	1×2^2	0×2^{1}	1×2 ⁰	

X	20	21	22	23	24	2 ⁵	26	27
	1	0	1	1	0	1	0	1
$\sum_{}$	1×2 ⁰	0×2 ¹	1×2 ²	1×2 ³	0×2 ⁴	1×2 ⁵	0×2 ⁶	1×2 ⁷
(170)					•			

X	20	21	22	23	24	25	26	27
	1	3	1	2	0	3	0	\mathcal{C}
\sum								
		•			•	•		

27	26	25	24	23	22	21	20	X
3	0	3	0	2	1	3)	1	
-	0×2 ⁶	_	0×2 ⁴	_	1×2^2	-	1×2 ⁰	\sum

Not Valid

LET'S COUNT IN BINARY

0000, 0001, 0010, 00011, ..., 1101, 1110, 1111

	8+2+1	=	3 2 7	ا ح ح	2	2 1
+			1	0	1	1
Base-2			0	0	0	1
	12					

				15	
+		1	0	1	1
Base-2		0	0	0	1
					2→0

$$\frac{2}{2} = 1 r 0$$

3,4,5,6,7

OCTAL | BASE-8 | RADIX-8 (0,1,2,3,4,5,6,7)₈

3	0	3	0	2	1	3	1	

	86						
3	0	3	0	2	1	3	1

87	86	85	84	83	82	81	80	X
3	0	3	0	2	1	3	1	
3×8^7	0×8 ⁶	3×8^5	0×8 ⁴	2×8 ³	1×8 ²	3×8^{1}	1×8 ⁰	

87	86	8 ⁵	84	83	82	81	80	X
3	0	3	0	2	1	3	1	
3×8^7	0×8 ⁶	3×8^5	0×8 ⁴	2×8^3	1×8 ²	3×8^{1}	1×8 ⁰	\sum

6,390,873

87	86	8 ⁵	84	8 ³	82	81	80	X
3	0	Α	0	8	1	3	1	
								\sum

87	86	8 ⁵	84	83	82	81	80	X
3	0	A	0	8) 1	3	1	
3×8^7	0×8 ⁶	-	0×8 ⁴	_	1×8 ²	3×8^{1}	1×8 ⁰	\sum

Not Valid

87	86	8 ⁵	84	83	82	81	80	\\
1	0	1	0	1	1	0	1	
1×8^7	0×8 ⁶	1×8 ⁵	0×8 ⁴	1×8^3	1×8 ²	0×8^{1}	1×8 ⁰	\sum

2,130,497

87	86	85	84	83	82	81	80	
1	0	1	0	1	1	0	1	
1×8^7	0×8^6	1×8 ⁵	0×8 ⁴	1×8^3	1×8 ²	0×8 ¹	1×8 ⁰	
								2,130,497
			F	Radix- <u>8</u> vs.				
			F	Radix-2				
27	26	2^5	24	23	22	21	20	
1	0	1	0	1	1	0	1	
1×2^7	0×2 ⁶	1×2 ⁵	0×2 ⁴	1×2^3	1×2 ²	0×2 ¹	1×2 ⁰	
'	1				1	'	<u>'</u>	(173)

LET'S COUNT IN OCTAL

LET'S COUNT IN OCTAL

0000, 0001, 0002, ..., 0007, 0010, ..., 7775, 7776, 7777

				\bigvee	
+		(5	2	7	7
Base-8		0	0	0	1

				1 4	
+		5	2	7	/7
Base-8		0	0	0	1
					8→0
					8

			15	1	
+		5	2	75	7
Base-8		0	0	0	1
				<u>8</u> →0	0

$$\frac{8}{8} = 1 r 0$$

			1	1	
+		5	2 4	7	7
Base-8		0 4	0 2	0	1
		5	3	0	0)

DECIMAL BASE-10 RADIX-10 (0,1,2,3,4,5,6,7,9)₁₀

Arabic → 0123456789 PNVF03771· Eastern Arabic - III III IV V VI VII IX X Roman _০১২৩৪৫৬৭৮৯ Bengali–Assamese <u>→</u> ം ഫെൻ്യരുന്നു Malayalam Thai **೦**ಅ೯೩೯೩೨೩೪೩ Chinese → 〇一二三四五六七八九

Arabic Eastern Arabic

→ 0123456789 → ·IT™£07V19

"the hand makes the two complementary aspects of integers entirely intuitive. It serves as an instrument permitting natural movement between cardinal and ordinal numbering. If you need to show that a set contains three, four, seven or ten elements, you raise or bend simultaneously three, four, seven or ten fingers, using your hand as cardinal mapping. If you want to count out the same things, then you bend or raise three, four, seven or ten fingers in succession, using the hand as an ordinal counting tool."

- Georges Ifrah The Universal History of Numbers (Wiley, 2000, pp. 21-22)

Thanks Cecelia Nydam and Giavi Tran for the hint!

 3 0 3 0 2 1 3 1

107	106	105	104	10 ³	10 ²	10 ¹	10 ⁰
3	0	3	0	2	1	3	1

107	106	105	104	10 ³	102	101	10 ⁰	X
3	0	3	0	2	1	3	1	
3×10^{7}	0×10 ⁶	3×10^{5}	0×10 ⁴	2×10^3	1×10^{2}	3×10^{1}	1×10 ⁰	

107	106	10 ⁵	104	10 ³	10 ²	101	10 ⁰	×
3	0	3	0	2	1	3	1	
3×10 ⁷	0×10 ⁶	3×10^{5}	0×10 ⁴	2×10 ³	1×10^{2}	3×10^{1}	1×10 ⁰	\sum

30,302,131

107	106	105	104	10 ³	10 ²	10 ¹	10 ⁰	×
3	0	3	0	2	1	3	1	
3×10 ⁷	0×10 ⁶	3×10^5	0×10 ⁴	2×10 ³	1×10^2	3×10^{1}	1×10 ⁰	\sum

30,302,131

107	106	10 ⁵	104	103	102	101	10 ⁰	X
1	0	1	0	1	1	0	1	
1×10 ⁷	0×10 ⁶	1×10 ⁵	0×10 ⁴	1×10 ³	1×10^2	0×10^{1}	1×10 ⁰	\sum

> 10,101,101

107	106	10 ⁵	104	10 ³	10 ²	10 ¹	100	
1	0	1	0	1	1	0	1	
1×10 ⁷	0×10 ⁶	1×10^{5}	0×10^{4}	1×10 ³	1×10 ²	0×10 ¹	1×10 ⁰	
								10,101,101
87	86	8 ⁵	84	83	82	8 ¹	80	
1	0	1	0	1	1	0	1 <	
1×8 ⁷	0×8 ⁶	1×8 ⁵	0×8 ⁴	1×8 ³	1×8 ²	0×8 ¹	1×8 ⁰	
								2,130,497
27	26	2 ⁵	24	2 ³	2 ²	21	20	
1	0	1	0	1	1	0	1 ←	
1×2 ⁷	0×2 ⁶	1×2 ⁵	0×2 ⁴	1×2 ³	1×2 ²	0×2 ¹	1×2 ⁰	
					•	•	•	173

107	106	10 ⁵	104	10 ³	10 ²	10 ¹	100	X
3	0	A	0	8	1	3	1	
								\sum

107	106	105	104	10 ³	102	101	100	X
3	0	\bigcirc	0	8	1	3	1	
3×10^7	0×10 ⁶	-	0×10 ⁴	8×10 ³	1×10^2	3×10^{1}	1×10 ⁰	\sum

Not Valid

YOU KNOW HOW TO COUNT IN DECIMAL!

Weird NUMBER SYSTEMS

HEXADECIMAL | BASE-16 | RADIX-16 (0,1,2,3,4,5,6,7,9,A,B,C,D,E,F)₁₆

16 ⁷	16 ⁶	16 ⁵	164	16 ³	16 ²	16 ¹	16 ⁰	X
3	0	A	0	9	1	3	1 🛨	
								\sum

167	166	16 ⁵	164	16 ³	16 ²	16 ¹	16 ⁰	X
ω	0	\triangleright	0	9	1	3	1	
3×16^7	0×16 ⁶	<u>A×16</u> ⁵	0×16 ⁴	9×16 ³	1×16 ²	3×16 ¹	1×160	\sum

16 ⁷	16 ⁶	16 ⁵	164	16 ³	16 ²	16 ¹	16 ⁰	X
3	0	А	0	9	1	3	1	
3×16 ⁷	0×16 ⁶	A×16 ⁵	0×16 ⁴	9×16 ³	1×16 ²	3×16 ¹	1×16 ⁰	\sum

$$A = (9 + 1) = (10)_{10}$$

16 ⁷	166	16 ⁵	164	16 ³	16 ²	16 ¹	16 ⁰	X
3	0	A	0	9	1	3	1	
3×16 ⁷	0×16 ⁶	A×16 ⁵	, ,	9×16 ³	1×16 ²	3×16 ¹	1×16 ⁰	\sum
	815,829,297							

 $A = (9 + 1) = (10)_{10}$

$$1,2,3,4,5,6,7,8,9,A = 9 + 1 = (10)_{10}$$

$$B = A + 1 = (11)_{10}$$

$$C = B + 1 = (12)_{10}$$

$$D = C + 1 = (13)_{10}$$

$$E = D + 1 = (14)_{10}$$

$$F = E + 1 = (15)_{10}$$

1 0 1 0 1 1 0 1 1 0 1 $\times 16^7$ 0×16 ⁶ 1×16 ⁵ 0×16 ⁴ 1×16 ³ 1×16 ² 0×16 ¹ 1×16 ⁰ Σ	16 ⁷	16 ⁶	16 ⁵	164	16 ³	16 ²	16 ¹	16 ⁰	X
1×167 0×166 1×165 0×164 1×163 1×162 0×161 1×160 ∇	1	0	1	0	1	1	0	1 <	
1×10, 0×10, 1×10, 0×10, 1×10, 1×10, 1×10, 1×10,	1×16 ⁷	0×16 ⁶	1×16 ⁵	0×16 ⁴	1×16 ³	1×16 ²	0×16 ¹	1×16 ⁰	\sum

(269)488,385

16 ⁷	16 ⁶	16 ⁵	16 ⁴	16 ³	16 ²	16 ¹	<u>160</u>	
1	0	1	0	1	1	0	1	
1×16 ⁷	0×16 ⁶	1×16 ⁵	0×16 ⁴	1×16 ³	1×16 ²	0×16 ¹	1×16 ⁰	
								269,488,385
10 ⁷	10 ⁶	10 ⁵	104	10 ³	10 ²	10 ¹	10 ⁰	
1	0	1	0	1	1	0	1 -	
1×10 ⁷	0×10 ⁶	1×10 ⁵	0×10 ⁴	1×10 ³	1×10 ²	0×10 ¹	1×10 ⁰	
								10,101,101
87	86	8 ⁵	84	83	82	8 ¹	80	
1	0	1	0	1	1	0	1	
1×8 ⁷	0×8 ⁶	1×8 ⁵	0×8 ⁴	1×8 ³	1×8 ²	0×8 ¹	1×8 ⁰	
								2,130,497
27	26	2 ⁵	24	23	2 ²	2 ¹	20	
1	0	1	0	1	1	0	1	
1×2 ⁷	0×2 ⁶	1×2 ⁵	0×2 ⁴	1×2 ³	1×2 ²	0×2 ¹	1×2 ⁰	
					•	•	•	173

LET'S COUNT IN BASE-16

00001

(FFFF)

LET'S COUNT IN BASE-16

0000, 0001, 0002, ..., 000F, 0010, ..., FFFD, FFFE, FFFF

+		5	C	A	F
Base-16		0	0	0	1

+		5	C	A=10	F=15
Base-16		0	0	0 🖒	1
				11→ <u>B</u>	0

				1	
+		5	C	A=10	F=15
Base-16		0 4	0 <	0	1
		5	C	В	0
					_

1992: RFC 1341

MIME (MULTIPURPOSE INTERNET MAIL EXTENSIONS)

Mechanisms For Specifying And Describing The Format Of Internet Message Bodies

Digit	Value		Digit	Value		Digit	Value		Digit	Value
А	0		Q	16		g	32		W	48
В	1		R	17		h	33		X	49
C	2		S	18		j	34		У	50
D	3		Т	19		j	35		Z	51
Е	4		U	20		k	36			52
F	5		V	21			37		1	53
G	6		W	22		m	38		2	54
Н	7	→	Χ	23	→	n	39	→	3	55
I	8		Υ	24		0	40		4	56
J	9		Z	25		р	41		5	57
K	10		а	26		q	42		6	58
L	11		b	27		r	43		7	59
М	12		С	28		S	44		8	60
N	13		d	29		t	45		(9)	61
0	14		е	30		U	46		+	62
Р	15		f	31		V	47			63

|--|

64 ⁷	64 ⁶	64 ⁵	644	64 ³	64 ²	64 ¹	(64°)	X
3	а	A	/	d	1	Н	+	
								\sum

Digit	Value		Digit	Value		Digit	Value		Digit	Value
A	0		Q	16		g	32		W	48
В	1		R	17		h	33		Χ	49
C	2		S	18		i	34		У	50
D	3		Т	19		j	35		Z	51
Е	4		U	20		k	36		0	52
F	5		V	21			37		1	53
G	6		W	22		m	38		2	54
\Box	_7	→	Χ	23	→	n	39	→	3	55
) —	8		Υ	24		0	40		4	56
J	9		Z	25		р	41		5	57
K	10		<u>a</u>	26		q	42		6	58
L	11		b	27		r	43		7	59
М	12		С	28		S	44		8	60
Ν	13		(d)	29		t	45		9	61
0	14		е	30		U	46		+	62
Р	15		f	31		V	47		/	63

647	64 ⁶	64 ⁵	644	64 ³	64 ²	641	64 ⁰	X
3	a	А	/	d	1	Н	+	
55	26			29	53	7	62	\sum
$\times 64^{7}$	×64 ⁶	$\times 64^{5}$	×64 ⁴	$\times 64^{3}$	$\times 64^2$	×64 ¹	×64 ⁰	

647	64 ⁶	64 ⁵	64 ⁴	64 ³	64 ²	641	64 ⁰	X
ω	а	\forall	/	d	1	Н	+	
55			63				62	\sum
$\times 64^7$	×64 ⁶	$\times 64^{5}$	×64 ⁴	$\times 64^{3}$	$\times 64^{2}$	×64 ¹	×64 ⁰	

243,680,329, 7 290,238

LET'S COUNT IN BASE-64

LET'S COUNT IN BASE-64

AAAA, AAAB, AAAC, ..., AAA/, AABA, ..., ///9, ///+, ////

+		а	+	Z	
Base-64		A=0	A=0	A=0	B=1

+		a =26	+=62	Z =25	=63
Base-64		A=0	A=0	A=0	B=1

				B=1	
+		a= <u>26</u>	_ =62	Z=25	/=63
Base-64		A = 0	A=0	A=0	B=1
		a	+	a=26	A =0

U

Christina Reynolds-Badder

Maya cities developed ~750 BC, and by 500 BC these cities possessed monumental architecture.

A vigesimal (/vɪˈdʒɛsɪməl/) or base-20 (base-score) numeral system

RADIX-R NUMBER SYSTEM aka. Base-r Number System

Hossein's humber system is not a Radix-r number system!

Let (N) be a radix-r (base-r) number in a positional weighting number system, then

$$(N)_{r} = (d_{n-1}(r^{n-1}) + d_{n-2}r^{n-2} + \dots + d_{i}r^{i} + \dots + d_{2}(r^{2}) + d_{1}(r^{1}) + d_{0}(r^{0})_{10}$$

where:

```
f = radix (base)

d_i = digit at position i, 0 \le d_i \le r - 1

f^i = weight (significance) of position i

f^i = number of digits in N
```

Let $(N)_r$ be a radix-r (base-r) number in a positional weighting number system, then

$$(N)_{r} = (d_{n-1}^{n-1} r^{n-1} + d_{n-2} r^{n-2} + \dots + d_{i} r^{i} + \dots + d_{2} r^{2} + d_{1} r^{1} + d_{0} r^{0})_{10}^{10}$$

where:

```
r = radix (base)

d_i = digit at position i, 0 \le d_i \le r - 1

r<sup>i</sup> = weight (significance) of position i

n = number of digits in N
```

Let $(N)_r$ be a radix-r (base-r) number in a positional weighting number system, then

```
Min  = (0_{n-1}0_{n-2} \cdots 0_10_0)_r = (0)_{10} 
 = ((r-1)_{n-1}(r-1)_{n-2} \cdots (r-1)_1(r-1)_0)_r = (r-1)_{10} 
 = (0_{n-1}0_{n-2} \cdots 0_11_0)_r = (1)_{10}
```

where:

```
r = radix (base)
r<sup>i</sup> = weight of position i
```

n = number of digits in N

FRACTION

1 Earth

Fraction Point

Radix-4 (Base-4) =
$$1/4$$
 Earth = 4^{-1} Earth = $(1)_4$

Radix-4 (Base-4) = $2 \times 1/4$ Earth = 2×4^{-1} Earth=(.2)₄

Radix-4 (Base-4) = $3 \times 1/4$ Earth = $3 \times 4 - 1$ Earth= $(.3)_4$

Radix-4 (Base-4) = $4 \times 1/4$ Earth = 4×4^{-1} Earth= $(1)_4$

MORE PRECISION

Radix-4 (Base-4) = 1/4 Earth = 4^{-1} Earth = $(.1)_4$

Radix-4 (Base-4) = (1/4)(4)Earth = 1/16 Earth = 4^{-2} Earth

Radix-4 (Base-4) =
$$\frac{1}{16}$$
 = 4^{-2} Earth = $(.01)_4$

Radix-4 (Base-4) = $2 \times 1/16 = 2 \times 4^{-2}$ Earth = $(.02)_4$

Radix-4 (Base-4) = $3 \times 1/16 = 3 \times 4^{-2}$ Earth = $(.03)_4$

Radix-4 (Base-4) = $4 \times 1/16 = 4 \times 4^{-2}$ Earth = $(.1)_4$

We don't waste a position for the fraction point. It's location is defined already.

47	46	45	44	43	42	41	40
1	0	1	0	2	3	0	1

Fraction Part

4-1	4-2	4-3	4-4	4-5
2	0	1	0	1

Fraction Part

47	46	4 ⁵	44	43	42	41	(40)
1	0	1	0	2	3	0	1
1 ×16,384	0	1 ×1,024	0	2 ×64	3 ×16	0	1

7	4-1	4-2	4-3	4-4	4-5
	2	0	1	0	1
	$\frac{2}{4}$	0	$\frac{1}{64}$	0	1 1,024

Fraction Part

47	46	45	44	43	42	41	40
1	0	1	0	2	3	0	1
1 ×16,384	0	1 ×1,024	0	2 ×64	3 ×16	0	1
						47	

7	4-1	4-2	4-3	4-4	4-5
	2	0	1	0	1
	$\frac{2}{4}$	0	$\frac{1}{64}$	0	$\frac{1}{1,024}$

Fraction Part

47	46	4 ⁵	44	43	42	41	40
1	0	1	0	2	3	0	1
1 ×16,384	0	1 ×1,024	0	2 ×64	3 ×16	0	1
						17,	584

7	4-1	4-2	4-3	4-4	4-5
	2	0	1	0	1
	$\frac{2}{4}$	0	$\frac{1}{64}$	0	1 1,024

5166015625

Let $(N)_r$ be a radix-r (base-r) number in a positional weighting number system, then

$$(N)_{r} = (d_{n-1}(r^{n-1}) + \cdots + d_{0}r^{0}) d_{-1}(r^{-1}) + d_{-2}(r^{-2} + \cdots + d_{-m}(r^{-m})_{10})$$

where:

Fraction Point

```
r = radix (base)
```

$$d_i$$
 = digit at position i, $0 \le d_i \le r - 1$

Let $(N)_r$ be a radix-r (base-r) number in a positional weighting number system, then

Min =
$$(0_{n-1} \cdots 0_1 0_0 \cdot 0_{-1} 0_{-2} \cdots 0_{-m-1} 0_{-m})_r$$
 $r = (0 \cdot 0)_{10}$ $r = (r-1)_{n-1} \cdots (r-1)_0 \cdot (r-1)_{-1} (r-1)_{-2} \cdots (r-1)_{-m-1} (r-1)_{-m})_r = (r^n-1) \cdot ?$ $r = radix (base)$ Lecture Assignment $r^i = weight of position i$

n = number of digits in integer part of Nm = number of digits in fraction part of N

PRACTICE RADIX-2

0000.00

What is the max in this system with these spaces?

			Kau	IIX-Z					\
Int	eger ((n=4)		Fract	ion (m	า=3)	Radix-10	٧
2 ³	2 ²	2 ¹	2 ⁰		2-1	2-2	2-3		S
0	0	0	0	•	0	0	0	0	(
0	0	0	0	•	0	0	1	$1*2^{-3} = 1/8 = 0.125$	7
0	0	0	0	•	0	1	0	$1*2^{-2} + 0*2^{-3} = 1/4 = 0.25$	7
0	0	0	0	•	0	1	1	$1*2^{-2} + 1*2^{-3} = 1/4 + 1/8 = 3/8 = 0.375$	
0	0	0	0	•	1	0	0	$1*2^{-1} + 0*2^{-2} + 0*2^{-3} = \frac{1}{2} = 0.5$	
0	0	0	0	•	1	0	1	$1*2^{-1} + 0*2^{-2} + 1*2^{-3} = 1/2 + 1/8 = 5/8 = 0.625$	
0	0	0	0	•	1	1	0	$1*2^{-1} + 1*2^{-2} + 0*2^{-3} = 1/2 + 1/4 = 3/4 = 0.75$	
0	0	0	0	•	1	1	1	$1*2^{-1} + 1*2^{-2} + 1*2^{-3} = 1/2 + 1/4 + 1/8 = 0.875$	
0	0	0	1	•	0	0	0	$1*2^{0} + 0*2^{-1} + 0*2^{-2} + 0*2^{-3} = 1$	
0	0	0	1	•	0	0	1	1.125	
0	0	0	1	•	0	1	0	1.25	
0	0	0	1	•	0	1	1	1.375	
0	0	0	1	•	1	0	0	1.5	
0	0	0	1	•	1	0	1	1.625	
0	0	0	1	•	1	1	0	1.75	
0	0	0	1	•	1	1	1	1.875	
0	0	1	0	•	0	0	0	2	

Radix-2

What is the max in this system with these spaces? $(1111.111)_2 = (15.875)_{10}$

Is it possible to show the number (1.02)₁₀ in this system with these spaces?

Int	eger	(n=4			Fract	ion (m	า=3)	Radix-10
2 ³	2 ²	2 ¹	2 ⁰		2-1	2-2	2-3	
0	0	0	0		0	0	0	0
0	0	0	0	•	0	0	1	$1*2^{-3} = 1/8 = 0.125$
0	0	0	0		0	1	0	$1*2^{-2} + 0*2^{-3} = 1/4 = 0.25$
0	0	0	0		0	1	1	$1*2^{-2} + 1*2^{-3} = 1/4 + 1/8 = 3/8 = 0.375$
0	0	0	0	•	1	0	0	$1*2^{-1} + 0*2^{-2} + 0*2^{-3} = \frac{1}{2} = 0.5$
0	0	0	0	•	1	0	1	$1*2^{-1} + 0*2^{-2} + 1*2^{-3} = 1/2 + 1/8 = 5/8 = 0.625$
0	0	0	0		1	1	0	$1*2^{-1} + 1*2^{-2} + 0*2^{-3} = 1/2 + 1/4 = 3/4 = 0.75$
0	0	0	0		1	1	1	$1*2^{-1} + 1*2^{-2} + 1*2^{-3} = 1/2 + 1/4 + 1/8 = 0.875$
0	0	0	1	•	0	0	0	$1*2^{0} + 0*2^{-1} + 0*2^{-2} + 0*2^{-3} = 1$
0	0	0	1	•	0	0	1	1.125
0	0	0	1	•	0	1	0	1.25
0	0	0	1	•	0	1	1	1.375
0	0	0	1		1	0	0	1.5
0	0	0	1		1	0	1	1.625
0	0	0	1		1	1	0	1.75
0	0	0	1	•	1	1	1	1.875
0	0	1	0	•	0	0	0	2

Radix-2

Is it possible to show the number $(1.02)_{10}$ in this system with these spaces?

No! The numbers in this system increments by 0.125 unit.

Kadix-∠									
	Int	eger	n=4			Fract	ion (m	1=3)	Radix-10
	2 ³	2 ²	2 ¹	2 ⁰		2-1	2-2	2-3	
	0	0	0	0		0	0	0	0
	0	0	0	0	•	0	0	1	$1*2^{-3} = 1/8 = 0.125$
	0	0	0	0	•	0	1	0	$1*2^{-2} + 0*2^{-3} = 1/4 = 0.25$
	0	0	0	0	•	0	1	1	$1*2^{-2} + 1*2^{-3} = 1/4 + 1/8 = 3/8 = 0.375$
	0	0	0	0	•	1	0	0	$1*2^{-1} + 0*2^{-2} + 0*2^{-3} = \frac{1}{2} = 0.5$
	0	0	0	0	•	1	0	1	$1*2^{-1} + 0*2^{-2} + 1*2^{-3} = 1/2 + 1/8 = 5/8 = 0.625$
	0	0	0	0	•	1	1	0	$1*2^{-1} + 1*2^{-2} + 0*2^{-3} = 1/2 + 1/4 = 3/4 = 0.75$
	0	0	0	0	•	1	1	1	$1*2^{-1} + 1*2^{-2} + 1*2^{-3} = 1/2 + 1/4 + 1/8 = 0.875$
	0	0	0	1	•	0	0	0	$1*2^{0} + 0*2^{-1} + 0*2^{-2} + 0*2^{-3} = 1$
	0	0	0	1	•	0	0	1	1.125
	0	0	0	1	•	0	1	0	1.25
	0	0	0	1	•	0	1	1	1.375
	0	0	0	1	•	1	0	0	1.5
	0	0	0	1	•	1	0	1	1.625
	0	0	0	1	•	1	1	0	1.75
	0	0	0	1	•	1	1	1	1.875
	0	0	1	0	•	0	0	0	2

Is it possible to show the number $(1.02)_{10}$ in this system with these spaces?

No! The numbers in this system increments by 0.125 unit.

Solution?

Is it possible to show the number $(1.02)_{10}$ in this system with these spaces?

No! The numbers in this system increments by 0.125 unit.

Solution?

A. More precision.

			Rac	lix-2					Is it possible to sh
Int	eger ((n=4)		Fract	tion (m	า=3)	Radix-10	'
2 ³	2 ²	2 ¹	2 ⁰		2-1	2-2	2-3		number (1.02) ₁₀ ir
0	0	0	0	•	0	0	0	0	system with these
0	0	0	0	•	0	0	1	$1*2^{-3} = 1/8 = 0.125$	System with these
0	0	0	0	•	0	1	0	$1*2^{-2} + 0*2^{-3} = 1/4 = 0.25$	
0	0	0	0	•	0	1	1	$1*2^{-2} + 1*2^{-3} = 1/4 + 1/8 = 3/8 = 0.375$	Nal The purphar
0	0	0	0	•	1	0	0	$1*2^{-1} + 0*2^{-2} + 0*2^{-3} = \frac{1}{2} = 0.5$	No! The numbers
0	0	0	0	•	1	0	1	$1*2^{-1} + 0*2^{-2} + 1*2^{-3} = 1/2 + 1/8 = 5/8 = 0.625$	system increment
0	0	0	0	•	1	1	0	$1*2^{-1} + 1*2^{-2} + 0*2^{-3} = 1/2 + 1/4 = 3/4 = 0.75$	
0	0	0	0	•	1	1	1	$1*2^{-1} + 1*2^{-2} + 1*2^{-3} = 1/2 + 1/4 + 1/8 = 0.875$	0.125 unit.
0	0	0	1	•	0	0	0	$1*2^{0} + 0*2^{-1} + 0*2^{-2} + 0*2^{-3} = 1$	
0	0	0	1	•	0	0	1	1.125	
0	0	0	1	•	0	1	0	1.25	Solution?
0	0	0	1	•	0	1	1	1.375	
0	0	0	1	•	1	0	0	1.5	A. More precision
0	0	0	1	•	1	0	1	1.625	A. More fraction
0	0	0	1	•	1	1	0	1.75	A. MOLE HACHOH
0	0	0	1	•	1	1	1	1.875	
0	0	1	0		0	0	0	2	

how the n this se spaces?

rs in this nts by

positions.

			Rad	lix-2					Is it possible to show the	
Int	Integer (n=4) Fraction (m=3)						า=3)	Radix-10	•	
2 ³	2 ²	2 ¹	2 ⁰		2-1	2-2	2-3		number (1.02) ₁₀ in this	
0	0	0	0	•	0	0	0	0	system with these spaces?	
0	0	0	0	•	0	0	1	$1*2^{-3} = 1/8 = 0.125$	system with these spaces.	
0	0	0	0	•	0	1	0	$1*2^{-2} + 0*2^{-3} = 1/4 = 0.25$		
0	0	0	0	•	0	1	1	$1*2^{-2} + 1*2^{-3} = 1/4 + 1/8 = 3/8 = 0.375$	Nol The numbers in this	
0	0	0	0	•	1	0	0	$1*2^{-1} + 0*2^{-2} + 0*2^{-3} = \frac{1}{2} = 0.5$	No! The numbers in this	
0	0	0	0	•	1	0	1	$1*2^{-1} + 0*2^{-2} + 1*2^{-3} = 1/2 + 1/8 = 5/8 = 0.625$	system increments by	
0	0	0	0	•	1	1	0	$1*2^{-1} + 1*2^{-2} + 0*2^{-3} = 1/2 + 1/4 = 3/4 = 0.75$		
0	0	0	0	•	1	1	1	$1*2^{-1} + 1*2^{-2} + 1*2^{-3} = 1/2 + 1/4 + 1/8 = 0.875$	0.125 unit.	
0	0	0	1	•	0	0	0	$1*2^{0} + 0*2^{-1} + 0*2^{-2} + 0*2^{-3} = 1$		
0	0	0	1	•	0	0	1	1.125		
0	0	0	1	•	0	1	0	1.25	Solution?	
0	0	0	1	•	0	1	1	1.375		
0	0	0	1	•	1	0	0	1.5	A. More precision.	
0	0	0	1	•	1	0	1	1.625	A. More fraction positions.	
0	0	0	1	•	1	1	0	1.75	· ·	
0	0	0	1	•	1	1	1	1.875	A. More in m!	
0	0	1	0	•	0	0	0	2		

			Rad	lix-2					Is it
Int	eger	 (n=4)		Fract	ion (m	า=3)	Radix-10	13 16
2 ³	2 ²	2 ¹	2 ⁰		2-1	2-2	2-3		nur
0	0	0	0	•	0	0	0	0	cvct
0	0	0	0	•	0	0	1	$1*2^{-3} = 1/8 = 0.125$	3 y 3 t
0	0	0	0	•	0	1	0	$1*2^{-2} + 0*2^{-3} = 1/4 = 0.25$	
0	0	0	0	•	0	1	1	$1*2^{-2} + 1*2^{-3} = 1/4 + 1/8 = 3/8 = 0.375$	NIOI
0	0	0	0	•	1	0	0	$1*2^{-1} + 0*2^{-2} + 0*2^{-3} = \frac{1}{2} = 0.5$	INO!
0	0	0	0	•	1	0	1	$1*2^{-1} + 0*2^{-2} + 1*2^{-3} = 1/2 + 1/8 = 5/8 = 0.625$	svst
0	0	0	0	•	1	1	0	$1*2^{-1} + 1*2^{-2} + 0*2^{-3} = 1/2 + 1/4 = 3/4 = 0.75$	5 y 5 t
0	0	0	0	•	1	1	1	$1*2^{-1} + 1*2^{-2} + 1*2^{-3} = 1/2 + 1/4 + 1/8 = 0.875$	0.12
0	0	0	1	•	0	0	0	$1*2^{0} + 0*2^{-1} + 0*2^{-2} + 0*2^{-3} = 1$	
0	0	0	1	•	0	0	1	1.125	
0	0	0	1	•	0	1	0	1.25	Solu
0	0	0	1	•	0	1	1	1.375	ם ר
0	0	0	1	•	1	0	0	1.5	B. F
0	0	0	1	•	1	0	1	1.625	
0	0	0	1	•	1	1	0	1.75	
0	0	0	1	•	1	1	1	1.875	
0	0	1	0	•	0	0	0	2	

s it possible to show the number (1.02)₁₀ in this system with these spaces?

No! The numbers in this system increments by 0.125 unit.

Solution?

B. Find the closest number

			Rac	lix-2					Is it possible to show the		
Int	Integer (n=4) Fraction (m=3)						า=3)	Radix-10	'		
2 ³	2 ²	2 ¹	2 ⁰		2-1	2-2	2-3		number (1.02) ₁₀ in this		
0	0	0	0	•	0	0	0	0	system with these spaces?		
0	0	0	0	•	0	0	1	$1*2^{-3} = 1/8 = 0.125$	system with these spaces.		
0	0	0	0	•	0	1	0	$1*2^{-2} + 0*2^{-3} = 1/4 = 0.25$			
0	0	0	0	•	0	1	1	$1*2^{-2} + 1*2^{-3} = 1/4 + 1/8 = 3/8 = 0.375$	Nal The numbers in this		
0	0	0	0	•	1	0	0	$1*2^{-1} + 0*2^{-2} + 0*2^{-3} = \frac{1}{2} = 0.5$	No! The numbers in this		
0	0	0	0	•	1	0	1	$1*2^{-1} + 0*2^{-2} + 1*2^{-3} = 1/2 + 1/8 = 5/8 = 0.625$	system increments by		
0	0	0	0	•	1	1	0	$1*2^{-1} + 1*2^{-2} + 0*2^{-3} = 1/2 + 1/4 = 3/4 = 0.75$			
0	0	0	0	•	1	1	1	$1*2^{-1} + 1*2^{-2} + 1*2^{-3} = 1/2 + 1/4 + 1/8 = 0.875$	0.125 unit.		
0	0	0	1		0	0	0	$1*2^{0} + 0*2^{-1} + 0*2^{-2} + 0*2^{-3} \stackrel{\checkmark}{=} 1$			
0	0	0	1		0	0	1	1.125			
0	0	0	1	•	0	1	0	1.25	Solution?		
0	0	0	1	•	0	1	1	1.375			
0	0	0	1	•	1	0	0	1.5	B. Find the closest number		
0	0	0	1	•	1	0	1	1.625	$(1.000)_{2} = (1)_{10} = > Error = (0.02)_{10}$		
0	0	0	1	•	1	1	0	1.75	$(1.000)_2 = (1)_{10} = > Error = (0.02)_6$ $(1.001)_2 = (1.125)_{10} = > Error = (0.105)_6$		
0	0	0	1	•	1	1	1	1.875	$\frac{1.001}{2} - \frac{1.123}{10} - \frac{1.001}{0.103}$		
0	0	1	0	•	0	0	0	2			

			Rac	lix-2					Is it possible to show the		
Int	Integer (n=4) Fraction (m=				Fract	ion (n	า=3)	Radix-10	IX-IU		
2 ³	2 ²	2 ¹	2 ⁰		2-1	2-2	2-3		number (1.02) ₁₀ in this		
0	0	0	0	•	0	0	0	0	system with these spaces?		
0	0	0	0	•	0	0	1	$1*2^{-3} = 1/8 = 0.125$	system with these spaces.		
0	0	0	0	•	0	1	0	$1*2^{-2} + 0*2^{-3} = 1/4 = 0.25$			
0	0	0	0	•	0	1	1	$1*2^{-2} + 1*2^{-3} = 1/4 + 1/8 = 3/8 = 0.375$	Nol The numbers in this		
0	0	0	0	•	1	0	0	$1*2^{-1} + 0*2^{-2} + 0*2^{-3} = \frac{1}{2} = 0.5$	No! The numbers in this		
0	0	0	0	•	1	0	1	$1*2^{-1} + 0*2^{-2} + 1*2^{-3} = 1/2 + 1/8 = 5/8 = 0.625$	system increments by		
0	0	0	0	•	1	1	0	$1*2^{-1} + 1*2^{-2} + 0*2^{-3} = 1/2 + 1/4 = 3/4 = 0.75$			
0	0	0	0	•	1	1	1	$1*2^{-1} + 1*2^{-2} + 1*2^{-3} = 1/2 + 1/4 + 1/8 = 0.875$	0.125 unit.		
0	0	0	1		0	0	0	$1*2^{0} + 0*2^{-1} + 0*2^{-2} + 0*2^{-3} = 1$			
0	0	0	1	•	0	0	1	1.125			
0	0	0	1	•	0	1	0	1.25	Solution?		
0	0	0	1	•	0	1	1	1.375			
0	0	0	1	•	1	0	0	1.5	B. Find the closest number		
0	0	0	1	•	1	0	1	1.625	$(1.000)_2 = (1)_{10} = > Error = 0.02$		
0	0	0	1	•	1	1	0	1.75	$(1.001)_2 = (1.125)_{10} = > Error = 0.105$		
0	0	0	1	•	1	1	1	1.875	$(1.001)_2 - (1.123)_{10} - 2 = 1101 - 0.103$		
0	0	1	0	•	0	0	0	2			

PRACTICE RADIX-4

Is it possible to show the number (1.02)₁₀ in this system with these spaces?

Int	eger	(n=4			Fract	ion (m	า=3)	Radix-10	
43	4 ²	41	40		4-1	4-2	4-3		•
0	0	0	0		0	0	0	0	
0	0	0	0		0	0	1	1*4 ⁻³ = 1/64 = 0.015625	
0	0	0	0		0	0	2	$2*4^{-3} = 2/64 = 0.03125$	
0	0	0	0	•	0	0	3	3*4 ⁻³ = 3/64 = 0.046875	
0	0	0	0	•	0	1	0	1*4 ⁻² + 0*4 ⁻² = 1/16 = 0.0625	
0	0	0	0	•	0	1	1	1*4 ⁻² + 1*4 ⁻² = 1/16 + 1/64 = 0.078125	
0	0	0	0	•	0	1	2	1*4 ⁻² + 2*4 ⁻² = 1/16 + 2/64 = 0.09375	
0	0	0	0	•	0	1	3	1*4 ⁻² + 3*4 ⁻² = 1/16 + 3/64 = 0.109375	
0	0	0	0	•	0	2	0	2*4 ⁻² + 0*4 ⁻² = 2/16 = 0.125	
0	0	0	0	•	3	3	3	$3*4^{-1} + 3*4^{-2} + 3*4^{-3} = 0.984375$	
0	0	0	1	•	0	0	0	1	
3	3	3	3	•	3	3	0	$3*4^3 + 3*4^2 + 3*4^1 + 3*4^0 + 3*4^{-1} + 3*4^{-2} + 0*4^{-3} = ?$	
3	3	3	3	•	3	3	1	$3*4^3 + 3*4^2 + 3*4^1 + 3*4^0 + 3*4^{-1} + 3*4^{-2} + 1*4^{-3} = ?$	
3	3	3	3	•	3	3	2	$3*4^3 + 3*4^2 + 3*4^1 + 3*4^0 + 3*4^{-1} + 3*4^{-2} + 2*4^{-3} = ?$	
3	3	3	3	٠	3	3	3	255.984375	

Radix-4

Is it possible to show the number $(1.02)_{10}$ in this system with these spaces?

No! Why?

Is it possible to show the number (1.02)₁₀ in this system with these spaces?

No! Why?

Solution:

A. More in m

B. Find the closest number

Is it possible to show the number (1.02)₁₀ in this system with these spaces?

No! Why?

Solution:

A. More in m

B. Find the closest number $(1.001)_4 = (1.015625)_{10} = > Error = 0.004375$

 $(1.001)_4 - (1.013023)_{10} - Error - 0.004373$ $(1.002)_4 = (1.03125)_{10} = Error = 0.01125$

Radix-4

PRACTICE RADIX-[8,10,16] At Home

CONVERSION From Base-r to Base-r'