

Types of Statistics

Types of Statistical Studies

Statistical Study Siddhardhan Sample Study Observational Study Experimental Study

A **sample study** is a study which is carried out on a sample which represents the total population.

An **observational study** is a study where we simply collect and analyze data. We won't inject any changes. We just observe the correlation in the data.

An experimental study is a study in which conditions are controlled and manipulated by the

experimenter.

Types of Statistics

1. Descriptive Statistics:

Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample and the measures.

2. Inferential Statistics:

Inferential statistics takes data from a sample and makes inferences and predictions about the larger population from which the sample was drawn.

Descriptive Statistics

2 important measures of Descriptive Statistics:

- 1. Measure of Central Tendencies (Mean, Median, Mode)
- 2. Measure of Variability (Range, Standard Deviation, Variance)

Siddhardha

0

Descriptive Statistics of House Price Dataset

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	price
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	12.653063	22.532806
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	7.141062	9.197104
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	1.730000	5.000000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	6.950000	17.025000
50%	0.256510	0.000000	9,690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	11.360000	21.200000
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	16.955000	25.000000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	37.970000	50.000000

Inferential Statistics

Inferential statistics takes data from a sample and makes inferences and predictions about the larger population from which the sample was drawn.

Correlation of House Price Data

1. Sample Study

A **sample study** is a study which is carried out on a sample which represents the total population.

Siddhardhan

Average Blood Sugar Level = ?

2. Observational Study

An **observational study** is a study where we simply collect and analyze data. We won't inject any changes. We just observe the correlation in the data.

Relation between:

- 1. Blood Sugar Level
- 2. Physical Activity

Inference: Blood Sugar Level & Physical Activity are Negatively Correlated

Population & Sample - Sampling Techniques

1. Sample Study

A **sample study** is a study which is carried out on a sample which represents the total population.

Siddhardhan

Average Blood Sugar Level = ?

Types of Sampling Techniques

Sampling Techniques:

- → Simple Random Sampling
- → Systematic Sampling
- Stratified Random Sampling
- Cluster Sampling

(Probability Sampling Techniques)

(Non-Probability Sampling Techniques)

Simple Random Sampling

In **Simple Random Sampling**, the sample is randomly picked from a larger population. Hence, all the individual datapoints has an equal probability to be selected as sample data.

Example: Employee survey in a company

Siddhardhan

Pros:

- 1. No sample Bias
- 2. Balanced Sample
- 3. Simple Method of sampling
- 4. Requires less domain knowledge

Cons:

- 1. Population size should be high
- 2. Cannot represent the population well sometimes

Systematic Sampling

In **Systematic Sampling**, the sample is picked from the population at regular intervals. This type of sampling is carried out if the population is homogeneous and the data points are uniformly distributed

Example: Selecting every 10th member from a population of 10,000

Siddhardhan

Pros:

- 1. Quick & easy
- 2. Less bias
- 3. Even distribution of data

Cons:

- 1. Data manipulation risk
- 2. Requires randomness in data
- 3. Population should not have patterns.

Cluster Sampling

Cluster Sampling is carried out on population that has inherent groups. This population is subdivided into **clusters** and then random clusters are taken as sample.

Example: Smartphone sales in randomly selected states

Siddhardhar

Pros:

- 1. Requires only fewer resources
- 2. Reduced Variability
- Advantages of both Random sampling and Stratified Sampling

Cons:

- Cannot be performed on populations without natural groups
- 2. Overlapping data points
- 3. Can't provide a general insight for the entire population

Measure of Central Tendencies: Mean, Median & Mode

Central Tendency

Central Tendency:

A measure of **central tendency** is a value that represents the center point or typical value of a dataset. It is a value that summarizes the data.

Siddhardha

Central Tendencies

Mean

Mean or arithmetic mean is the sum of values divided by the number of values.

$$M = \frac{\sum_{X}}{N}$$

Heights

160	160+172+165+168 +174
172	
165	5
168	
174	Mean = 167.8

Median

The **median** is the **middle** value in the list of numbers. To find the median, the numbers have to be listed in numerical order from smallest to largest.

$$\frac{168+172}{2} = 170$$

Median = 170

Mode

The **mode** is the value that occurs most often. If no number in the list is repeated, then there is no mode for the list.

Siddhardhan

Heights

0.00		
160		
172		MI- 100
160		Mode = 160
168		
174	0	

Central Tendencies in Data Pre-Processing

Central Tendencies are very useful in handling the missing values in a dataset

Mean: Missing values in a dataset can be replaced with mean

value, if the data is uniformly distributed.

Siddhardhan

Median: Missing values in a dataset can be replaced with median

value, if the data is skewed.

Mode: Missing values in a dataset can be replaced with mode

value, if the data is skewed. Missing categorical values can

also be replaced with mode value.

Measure of Variability: Range, Variance & Standard Deviation

Measure of Variability

The **range** of a set of data is the difference between the largest and smallest values. It can give a rough idea about the distribution of our dataset.

Variance is a measure of how far each number in the set is from the mean and therefore from every other number in the dataset. **Standard Deviation** is the square root of Variance. Standard deviation looks at how spread out a group of numbers is from the mean.

Measure of Variability

The range of a set of data is the difference between the largest and smallest values. It can give a rough idea about the distribution of our dataset.

Range = Max value - Min Value

Variance is a measure of how far each number in the set is from the mean and therefore from every other number in the dataset.

$$\sigma^2 = \frac{\sum (\chi - \mu)^2}{N}$$

Standard Deviation is the square root of Variance. Standard deviation looks at how spread out a group of numbers is from the mean.

$$SD = \sqrt[2]{\sigma}$$

Range; Variance; Standard Deviation

-5, 0, 5, 10, 15,

$$Mean = \frac{-5+0+5+10+15}{5} = 5$$

Range = 15 - (-5) = 20

Variance =
$$\frac{(-5-5)^2 + (0-5)^2 + (5-5)^2 + (10-5)^2 + (15-5)^2}{5}$$

Variance = 50

Standard Deviation = 7.1

3, 4, 5, 6, 7

$$Mean = \frac{3+4+5+6+7}{5} = 5$$

Range = 7 - 3 = 4

Siddhardhan

Variance =
$$\frac{(3-5)^2 + (4-5)^2 + (5-5)^2 + (6-5)^2 + (7-5)^2}{5}$$

Variance = 2

Standard Deviation = 1.4

0

Percentiles & Quantiles

Percentiles

Percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it.

Dataset with Height of 15 people

Siddhardhan

Quantiles

Quantile is a measure that tells how many values in a dataset are above or below a certain limit. It divides the members of the dataset into equally-sized subgroups.

Dataset with Height of 15 people

Siddhardhan

Correlation & Causation

Siddhardhan

Correlation

Correlation is a measure that determines the extent to which two variables are related to each other in a dataset. But it doesn't mean that one event is the cause of the other event.

Negative Correlation

Siddhardhan

Causation

In statistics, Causation means that one event causes another event to occur. Thus, there is a cause and effect relationship between the two variables in a dataset.

Hypothesis Testing:

 Null Hypothesis & Alternative Hypothesis

Hypothesis

Hypothesis is an assumption that is made based on the observations of an experiment.

Siddhardhan

Null Hypothesis

Null Hypothesis (H_0) is the commonly accepted fact.

Example: Ptolemy proposed that sun, stars and other planets revolve around the earth.

Alternative Hypothesis

Alternative Hypothesis (H_a) is opposite to null hypothesis and it challenges the null hypothesis.

Example: Aryabhata proposed that earth and other planets revolve around the sun.

Hypothesis Testing

Hypothesis is an assumption that is made based on the observations of an experiment. Hypothesis Testing is a method carried out to tests the assumptions made in the experiment.

Drug A

Drug B

Headache

Siddhardhan

Hypothesis Testing

GROUP 1

[12, 8, 13, 10, 7]

(Time taken for recovery in minutes)

Average Time taken = 10 minutes

GROUP 2

[15, 12, 18, 16, 14]

Siddhardhan

(Time taken for recovery in minutes)

Average Time taken = 15 minutes

NULL HYPOTHESIS: Drug A takes 10 minutes on an average to cure headache; Drug B takes 15 minutes on an average to cure headache. Hence, Drug A is more quicker.

Hypothesis Testing

NULL HYPOTHESIS (H₀): Drug A is more quicker than Drug B.

ALTERNATIVE HYPOTHESIS (H_a): Drug B is more quicker than Drug A.

Siddhardhan

Possible Outcomes of Hypothesis Testing:

Drug B

- Reject the Null Hypothesis
- · Fail to reject the Null Hypothesis

Probability for Machine Learning

Probability

Siddhardhar

Probability for Machine Learning

Probability

Siddhardhan

What is Probability?

Probability is a branch of Mathematics that deals with calculating the likelihood of a given event to occur.

Siddhardhan

Simple Examples:

- 1. Roll a Dice
- 2. Toss a coin
- 3. Bag containing different coloured balls

Topics covered in this module:

- 1. Basics of Probability
- 2. Random Variables
- 3. Probability Distributions
- 4. Maximum Likelihood
- 5. Bayes Theorem

- 6. Information Theory
- 7. Cross Entropy
- 8. Information Gain

Siddhardhan

Basics of Probability

Probability of an event to occur

Number of ways an event can occur

Total number of outcomes

(H, T)

 $P(H) = \frac{1}{2}$

 $P(T) = \frac{1}{2}$

lead Tail

Possible Outcomes

(1, 2, 3, 4, 5, 6)

Possible Outcomes

 $P(5) = \frac{1}{6}$

 $P(even) = \frac{3}{8}$

P(5) = 0.16

Basics of Probability

Probability of an event to occur

Number of ways an event can occur

Total number of outcomes

(H,T)

Possible Outcomes

$$P(H) = \frac{1}{2}$$

$$P(T) = \frac{1}{2}$$

(1, 2, 3, 4, 5, 6)

Possible Outcomes

$$P(5) = \frac{1}{6}$$

$$P(even) = \frac{3}{8}$$

$$P(5) = 0.16$$

Random Variables; Types of Random Variables

Random Variables

A Random Variable is a numerical description of the outcomes of Random events.

In other words, a random variable maps the outcomes of random events to numerical values.

Consider Tossing a Coin

Random Variables

Few Examples of Random Variables:

P (Weight of a random person in a class is less than 60 kg)

Applications:

- > Turnover of a company in a given time period.
- > Price change of an asset over a given time period

Types of Data

Siddhardhan

A discrete random variable takes only discrete or distinct values.

Examples: Coin toss, Colour of the ball.

A continuous random variable can take any value in a given range.

Examples: weight of a random person in a class.

Probability Distribution for Random Variable

Probability Distributions

The **probability distribution** for a random variable describes how the probabilities are distributed over the values of the random variable.

Tossing 3 Coins

HHH = 3

Siddhardhan

X = Sum of number of Heads when 3 coins are tossed

TTT = 0 TTH = 1 HHT = 2 HTT = 1 HTH = 2 THT = 1

THH = 2

Probability Distributions

ННН	=	3	THH	=	2
TTT	=	0	TTH	=	1
ннт	=	2	нтт	=	1
нтн	=	2	THT	=	1

Siddhardhan

X (No. of Heads)	P(X = x)	P(X = x)
0	1/8	0.125
1	3/8	0.375
2	3/8	0.375
3	1/8	0.125

Discrete Probability Distributions

Normal Distribution & Skewness

Normal Distribution

A **normal distribution** is an arrangement of a data set in which most of the data points lie in the middle of the range and the rest taper off symmetrically toward either extreme.

Normal Distribution is also known as Gaussian Distribution.

Siddhardha

Bell Shaped Curve

Skewness

A data is considered **skewed** when the distribution curve appears distorted or skewed either to the left or to the right, in a statistical distribution.

Siddhardhan

Example: Average income of people in different cities

Poisson Distribution

Poisson Distribution

Poisson Distribution is a probability distribution that measures how many times an event is likely to occur within a specified period of time.

Poisson distribution is used to understand independent events that occur at a constant rate within a given interval of time.

Siddhardhan

Examples of Poisson Distribution

- Number of accidents occurring in a city from 6 pm to 10 pm
- Number of Patients arriving in an Emergency Room between 10 pm to 12 pm
- > How many views does your blog gets in a day

Poisson Distribution

$$p(x) = \frac{e^{-\lambda}\lambda^x}{x!}$$

0

- x --> Number of times the event occurs
- p(x) --> Probability
- λ --> Mean number of events
- x! --> Factorial of x Siddhardhan
- e --> Euler's Number (2.71828)

Poisson Distribution

