1 Polynomes

x une variable (element inconnu), $n \in N$ $a_0, a_1, a_2, \ldots a_n$ sont des nombres reels $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$ est l'expression d'un polynome a une variable reelle.

Pour ce polynome:

- * $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$ sont les termes du polynome.
- * $a_n, a_{n-1}, \ldots, a_2, a_1, a_0$ sont (n+1) reels appeles les coefficients du polynome.
- $* a_n$ est le coefficient principal du polynome (coefficient du terme de plus haut degre).
- * a_0 est le terme constant du polynome.
- * P(x) est le polynome donne ci-dessus, n
 est le degre du polynome (an#0) On note: der[P(x)] = n
- * P(x,y) est l'expression d'un polynome a 2 variables P(x,y,z) est l'expression d'un polynome a 3 variables.

Polynome Constant: $P(x = a_0)$ est le polynome constant. Son degre est 0. der[P(x)] = 0.

Polynome Nul: P(x) = 0 est le polynome nul. Son degre est.

	Function	Polynome?	Deure?	Coorricent principal	Terme Constant	Somme Des Coff
Ì	$f(x) = x^3 - x^2 + 2$	О	3	1	2	2
Ì	$f(x) = x^2 - 3x^3 + \frac{1}{2}$	O	3	-3	$\frac{1}{2}$	$-\frac{3}{2}$
	$f(x) = \frac{1}{x} + 2$	N	_	-	-	-
	$f(x) = x + x^2 - \sqrt{x}$	N	_	-	-	-
	$f(x) = \frac{2}{3}$	О	0	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$