From Boolean states to ODEs using logic approximations

Boolean networks representation

$$Y(t+1) = f_b(X_1(t), X_2(t), ...)$$

Logic approximation representation

$$\frac{dY}{dt} = \beta \Theta(f_b(X_1, X_2, \dots)) - \alpha Y$$

$$\Theta(f_b) = \begin{cases}
0, & \text{if } f_b = \text{True;} \\
1, & \text{otherwise.}
\end{cases}$$

Logic approximation, example

Simple activation

$$\frac{dY}{dt} = \beta \Theta(X_1 > K_x) - \alpha Y$$

Constant input, X

Pulsed input, X

Let's implement this in Python

Simple activation

$$\frac{dY}{dt} = \beta \Theta(X_1 > K_x) - \alpha Y$$

Logic approximation, example

Two inputs

$$\frac{dZ}{dt} = \beta \Theta(X > K_x \land Y < K_y) - \alpha Z$$

A coherent feed-forward loop (FFL)

$$\frac{dY}{dt} = \beta_y \Theta(X > K_{x,y}) - \alpha_y Y$$

$$\frac{dZ}{dt} = \beta_z \Theta(X > K_{x,z} \land Y > K_{y,z}) - \alpha_z Z$$