0.1 直接求导法

例题 0.1

1. 设 $f ∈ C^1[0, 1], f(0) = 0, 0 ≤ f'(x) ≤ 1$, 证明

$$\left[\int_0^1 f(x) \mathrm{d}x \right]^2 \geqslant \int_0^1 f^3(x) \mathrm{d}x,$$

并判断取等条件.

2. 设 f 在 [0,a] 可导且 $f(0) = 0, 0 \le f'(x) \le \lambda, \lambda > 0$ 为常数,证明

$$\left[\int_0^a f(x) \mathrm{d}x\right]^m \geqslant \frac{m}{(2\lambda)^{m-1}} \int_0^a f^{2m-1}(x) \mathrm{d}x,\tag{1}$$

并判断取等条件.

证明

1. 由 0 < f'(x)(x > 0) 及 f(0) = 0 可知 $f(x) > 0(0 < x \le 1)$. 设

$$g(t) = \int_0^t f^3(x) dx - \left(\int_0^t f(x) dx \right)^2 \quad (t \in [0, 1]),$$

则

$$g'(t) = f(t) \left(f^2(t) - 2 \int_0^t f(x) dx \right).$$

令 $h(t) = f^2(t) - 2 \int_0^t f(x) dx$, 则由 $0 < f'(x) \le 1(x > 0)$ 可知

$$h'(t) = 2f(t)[f'(t) - 1] \le 0, \forall t \in [0, 1].$$

从而 $h(t) \leq h(0) = 0, \forall t \in [0,1]$. 于是 $g'(t) \leq 0, \forall t \in [0,1]$. 因而 g 在 [0,1] 上单调递减. 由 g(0) = 0 知 $g \leq 0$. 若

$$\int_0^1 f^3(x) dx = \left(\int_0^1 f(x) dx \right)^2,$$

则 g(1) = 0, 因而 $g(t) \equiv 0$. 所以

$$g'(t) = f(t) \left(f^2(t) - 2 \int_0^t f(x) dx \right) = 0.$$

这推出 $f \equiv 0$ 或 $f^2(t) = 2 \int_0^t f(x) dx$. 因而

$$2f(t)f'(t) = 2f(t) \quad (0 < t \le 1).$$

这推出 f'(t) = 1, 即 f(t) = t. 故当 $f(t) \equiv 0$ 或 f(t) = t 时等号成立.

2. 定义

$$g(x) = \left(\int_0^x f(t)dt\right)^m - \frac{m}{(2\lambda)^{m-1}} \int_0^x f^{2m-1}(t)dt.$$

求导得

$$g'(x) = mf(x) \left(\int_0^x f(t)dt \right)^{m-1} - \frac{m}{(2\lambda)^{m-1}} f^{2m-1}(x)$$
$$= mf(x) \left[\left(\int_0^x f(t)dt \right)^{m-1} - \frac{1}{(2\lambda)^{m-1}} f^{2m-2}(x) \right].$$

$$h'(x) = \left[\int_0^x f(t)dt - \frac{f^2(x)}{2\lambda}\right]' = f(x) - \frac{f(x)f'(x)}{\lambda} = \frac{f(x)}{\lambda}[\lambda - f'(x)] \geqslant 0,$$

从而 $h(x) \ge h(0) = 0$. 进而

$$h^{m-1}(x) \geqslant \left(\int_0^x f(t)dt\right)^{m-1} - \frac{1}{(2\lambda)^{m-1}} f^{2m-2}(x) \geqslant 0.$$

于是我们有

$$g'(x) \geqslant g'(0) = 0,$$

从而 g 递增且

$$g(a) \geqslant g(0) = 0,$$

这就是不等式(1). 要使得等号成立, 我们需要 g 为常数, 因此需要 $g' \equiv 0$, 故需要 $f \equiv 0$ 或者

$$\int_0^x f(t)dt - \frac{f^2(x)}{2\lambda} \equiv 0,$$

令 $y = \int_0^x f(t)dt$, 则上式等价于

$$y - \frac{(y')^2}{2\lambda} = 0$$

从而解上述微分方程得到取等条件是

$$f(x) = 0 \operatorname{\vec{u}} \operatorname{\vec{u}} f(x) = \lambda x.$$

例题 0.2 设 $f,g \in C[a,b]$ 使得 f 递增且 $0 \le g \le 1$, 证明

$$\int_{a}^{a+\int_{a}^{b}g(t)dt}f(x)\mathrm{d}x \leqslant \int_{a}^{b}f(x)g(x)\mathrm{d}x \leqslant \int_{b-\int_{a}^{b}g(t)dt}^{b}f(x)\mathrm{d}x. \tag{2}$$

证明 考虑

$$h(y) = \int_{a}^{a+\int_{a}^{y} g(t)dt} f(x)dx - \int_{a}^{y} f(x)g(x)dx.$$

则利用

$$a + \int_{a}^{y} g(x) dx \leqslant a + \int_{a}^{y} 1 dx = y,$$

再结合 f 递增, 我们有

$$h'(y) = g(y)f\left(a + \int_a^y g(t)dt\right) - f(y)g(y) \leqslant 0 \to h(b) \leqslant h(a) = 0,$$

故不等式(2)左侧得证. 另一侧不等式同理可得, 这就证明了不等式(2).

命题 0.1

设 f 是 [a,b] 上单调递增的连续函数. 求证

$$\int_{a}^{b} x f(x) dx \ge \frac{a+b}{2} \int_{a}^{b} f(x) dx.$$

笔记 许多有关连续函数积分的不等式可以通过变上限积分的性质来证明. 证明 令

$$F(t) = \int_{a}^{t} x f(x) dx - \frac{a+t}{2} \int_{a}^{t} f(x) dx.$$

只需证明 $F(b) \ge 0$. 由于 f 是连续函数, F 在 [a,b] 上可微, 且

$$F'(t) = tf(t) - \frac{1}{2} \int_{a}^{t} f(x) dx - \frac{a+t}{2} f(t)$$

$$= \frac{t-a}{2} f(t) - \frac{1}{2} \int_{a}^{t} f(x) dx$$

$$\geq \frac{t-a}{2} f(t) - \frac{1}{2} (t-a) f(t) = 0.$$

这说明 f 在 [a,b] 上单调递增. 因为 F(a) = 0, 所以 $F(b) \ge 0$.

例题 **0.3** 设 f 是区间 [0,1] 上的连续函数并满足 $0 \le f(x) \le x$. 求证:

$$\int_{0}^{1} f(x) dx - \left(\int_{0}^{1} f(x) dx \right)^{2} \ge \int_{0}^{1} x^{2} f(x) dx \ge \left(\int_{0}^{1} f(x) dx \right)^{2}.$$

并且上式成为等式当且仅当 f(x) = x.

证明 设 f 是连续函数满足所给的条件, $F(x) = \int_0^x f(t) dt$, 则 F' = f. 由 $0 < f(x) \le x$ 得 $F(x) \le \int_0^x t dt = \frac{1}{2}x^2$. 因而

$$\int_0^1 x^2 f(x) dx \ge \int_0^1 2F(x) F'(x) dx = F^2(x) \Big|_0^1 = \left(\int_0^1 f(x) dx \right)^2.$$

利用分部积分,得

$$\int_{0}^{1} x^{2} f(x) dx = x^{2} F(x) \Big|_{0}^{1} - \int_{0}^{1} 2x F(x) dx$$

$$= \int_{0}^{1} f(x) dx - \int_{0}^{1} 2x F(x) dx$$

$$\leq \int_{0}^{1} f(x) dx - \int_{0}^{1} 2f(x) F(x) dx$$

$$= \int_{0}^{1} f(x) dx - F^{2}(x) \Big|_{0}^{1}$$

$$= \int_{0}^{1} f(x) dx - \left(\int_{0}^{1} f(x) dx \right)^{2}.$$

由证明过程可知只有当f(x) = x时,所证不等式成为等式.