

统计学习理论与方法

2019-2020 秋

完成人: xx 019xxxxxxxxx

目录

摘要	- 1 -
一,	问题描述1-
_,	模型介绍1-
	2.1、支持向量机(SVM)1-
	2.2、卷积神经网络(CNN)
	2.3、深度残差网络(ResNet)4-
	2.4、VGG165 -
三、	实验操作及结果分析5 -
	3.1、数据集处理5 -
	3.1.1、原始数据集5 -
	3.1.2、扩充数据集6-
	3.1.1、数据增强后的数据集6
	3.2、模型在原始数据集上的性能分析7-
	3.3、模型在扩充数据集上的性能分析8-
	3.4、模型在数据增强后数据集上的性能分析9-
	3.5、投票机制9-
四、	结论10-
五、	参考文献
六、	附录 11 -

摘要

本次课程设计的任务是处理 Kaggle 上发布的一个图像分类的问题,利用给定的训练集,使用不同的方法完成对发布测试集中图像的分类。在本次的课程设计中,我先使用 SVM、CNN 和 ResNet18 模型对原始数据进行训练,获得初步的得分。接着对同学建立的数据集进行预处理,去除噪声数据,并使用 SVM、CNN 和 ResNet18 模型对扩充后的数据进行训练,将结果与原始数据训练得到的结果进行比较,发现扩充的数据有助于实验结果的提升。然后,再使用数据增强的方法继续扩大数据集,并使用 CNN、ResNet18、ResNet101 和 VGG16 模型对数据增强后的数据集进行训练,比较后发现实验结果获得了较大的提升。最后,再采用一种对实验结果投票的方法,进一步提升了测试集上的得分。在 Kaggle 上任务截止后,我在 public leaderboard 上的得分为 0.91651,排名第 4,在 private leaderboard 上的得分为 0.91977,也是排名第 4。

一、问题描述

利用给定的训练集,使用不同方法完成对发布测试集中每张图像的分类。并利用同学自己建立的数据集,进一步提升实验结果。

二、模型介绍

本次课程设计中,主要使用了 SVM、CNN、ResNet、VGG16 等常用于图像 分类任务的模型,下面对这些模型做一些简单的介绍。

2.1、支持向量机(SVM)

支持向量机(Support Vector Machine, SVM)是一类按监督学习的方式对数据进行二元分类的广义线性分类器,随着最大边距决策边界、核方法等理论的研究发展, SVM 衍生出一系列改进和扩展算法, 在人像识别、文本分类等模式识别问题中得到广泛应用。

给定训练集样本 $D = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}, y_i \in \{-1, +1\}$,分类学习最基本的想法就是基于训练集 D 在样本空间中找到一个划分超平面,将不同类别的样本分开。但能将训练样本分开的划分超平面可能有很多,如图 1.1 所示。直观上看,应当选择使分类结果最鲁棒的划分超平面,如图 2.1 中的加粗直线,该划分超平面对训练样本局部扰动的容忍性最好,对未见示例的泛化能力最强。

图 2.1 存在多个划分超平面将两类训练样本分开[1]

在样本空间中,划分超平面可通过如下线性方程来描述:

$$\mathbf{w}^T \mathbf{x} + b = 0 \tag{2.1}$$

将其记为(w,b),样本空间中任一点x超平面(w,b)的距离可写为

$$r = \frac{|\mathbf{w}^T \mathbf{x} + \mathbf{b}|}{||\mathbf{w}||} \tag{2.2}$$

假设超平面(w,b)能将训练样本正确分类,即对于(x_i , y_i) $\in D$,若 $y_i = +1$,则 有 $w^T x_i + b > 0$,若 $y_i = -1$,则有 $w^T x_i + b < 0$,所以有:

$$\begin{cases} w^T x_i + b \ge +1, \ y_i = +1 \\ w^T x_i + b \le +1, \ y_i = -1 \end{cases}$$
 (2.3)

如图 2.2 所示, 距离超平面最近的几个训练样本点使等号成立, 这些点被称为 "支持向量"(support vector)。两个异类支持向量到超平面的距离之和为

$$\gamma = \frac{2}{||w||} \tag{2.4}$$

 γ 就被成为"间隔"(margin)。要找到具有最大间隔的划分超平面,就是要找能满足(1.3)约束的参数 \mathbf{w} 和 \mathbf{b} ,使得 γ 最大,即:

$$\max_{w,b} \frac{2}{||w||} \tag{2.5}$$

s.t.
$$y_i(\mathbf{w}^T x_i + b) \ge 1$$
, $i = 1, 2, ..., m$.

图 2.2 支持向量与间隔[1]

将最大化问题转换为最小化问题,可以得到:

$$\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||^2 \tag{2.6}$$

s.t.
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$$
, $i = 1, 2, ..., m$.

式(1.6)就是支持向量机(Support Vector Machine, SVM)的基本型。

注意到支持向量机是一个有约束问题,可以采用拉格朗日乘子法将其转换为对偶问题(dual problem),对式(2.6)的每条约束添加拉格朗日乘子 $\alpha_i \geq 0$,则该问题的拉格朗日函数可以写为:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i=1}^{m} \alpha_i (1 - y_i (\mathbf{w}^T \mathbf{x}_i + b))$$
 (2.7)

其中, $\alpha = (\alpha_1; \alpha_2; ...; \alpha_m). \diamondsuit L(\mathbf{w}, b, \boldsymbol{\alpha}) \forall \mathbf{w} n b$ 的偏导为 0,可得:

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i \tag{2.8}$$

$$0 = \sum_{i=1}^{m} \alpha_i y_i \tag{2.9}$$

将式(2.8)代入式(2.7),即可将 $L(w,b,\alpha)$ 中的w和b 消去,再考虑式(2.9)的约束,就得到式(2.6)的对偶问题:

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x_i^T} \boldsymbol{x_j}$$
 (2.10)

s. t.
$$\sum_{i=1}^{m} \alpha_i y_i = 0,$$

$$\alpha_i \ge 0$$
, i = 1,2, ..., m.

解出 α 后,求出w和b即可得到模型:

$$f(x) = \mathbf{w}^T x + b = \sum_{i=1}^{m} \alpha_i y_i x_i^T x + b$$
 (2.11)

在训练样本线性可分的情况下,很容易找到一个划分超平面可以讲训练样本正确分类。然而在现实任务中,原始样本空间内也许不存在一个能正确划分两类样本的超平面,对于这种问题,可以将样本从原始空间映射到一个更高维的特征空间,使得样本在这个特征空间内线性可分,通常使用的是径向基函数核(Radial

Basis Function, RBF),其公式可表示为
$$k(x_i, x_j) = \exp(\frac{-||x_i - x_j||^2}{2\sigma^2})$$
。

2.2、卷积神经网络(CNN)

卷积神经网络(Convolutional Neural Network) 是由具有可学习的权重和偏置常量的神经元组成。通常包含卷积层、线性整流层、池化层和全连接层。

图 2.3 卷积神经网络的一般结构

卷积层(Convolutional layer)由若干卷积单元组成,每个卷积单元的参数都是

通过反向传播算法优化得到的。卷积运算的目的是提取输入的不同特征,第一层 卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网络能 从低级特征中迭代提取更复杂的特征。

线性整流层通常使用 Rectified Linear Units (ReLU)作为激活函数。

池化层(Pooling layer)是将卷积层之后得到的维度较大的特征,将特征切成几个区域,取其最大值或平均值,得到新的、维度较小的特征。通常使用最大池化或者平均池化的方法进行降维。

全连接层(Fully-Connected layer)就是把所有局部特征结合变成全局特征,用来计算最后每一类的得分。

2.3、深度残差网络(ResNet)

残差网络(Residual Network)是用来解决网络加深带来梯度消失等问题的一种有效途径。随着网络深度增加,网络的准确度应该同步增加,但是网络深度增加的一个问题在于这些增加的层是参数更新的信号,因为梯度是从后向前传播的,增加网络深度后,比较靠前的层梯度会很小。这意味着这些层基本上学习停滞了,也就是梯度消失问题。深度网络的第二个问题在于训练,当网络更深时意味着参数空间更大,优化问题变得更难,因此简单地去增加网络深度反而出现更高的训练误差。

ResNet 提出了一个残差模块可以帮助训练更深的网络,残差模块的结构如图 2.4 所示。深度网络的训练问题称为退化问题,残差单元可以解决退化问题的背后逻辑在于此:想象一个网络 A,其训练误差为 x。现在通过在 A 上面堆积更多的层来构建网络 B,这些新增的层什么也不做,仅仅复制前面 A 的输出。这些新增的层称为 C。这意味着网络 B 应该和 A 的训练误差一样。那么,如果训练网络 B 其训练误差应该不会差于 A。但是实际上却是更差,唯一的原因是让增加的层 C 学习恒等映射并不容易。为了解决这个退化问题,残差模块在输入和输出之间建立了一个直接连接,这样新增的层 C 仅仅需要在原来的输入层基础上学习新的特征,即学习残差,会比较容易。

图 2.4 残差单元

2.4, VGG16

VGG16 是由牛津大学 VGG 组提出的,采用连续的几个 3*3 的卷积核代替 AlexNet 中较大的卷积核。对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加 网络深度来保证学习更复杂的模式,而且代价还比较小。VGG16 的网络结构如图 2.5 所示

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
200	i	nput (224×2	24 RGB imag	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
		max	pool	•	
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
		max	pool		N
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
		_			conv3-256
		max	pool		100
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
WHI TO WAY	7		pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
	8			2	conv3-512
		1,10,10,000	pool		
			4096		
			4096		
		FC-	1000		
		soft-	-max		

图 2.5 VGG16 的网络结构

三、实验操作及结果分析

3.1、数据集处理

3.1.1、原始数据集

在 Kaggle 发布的数据集中,训练集共包含 15 个图像类别,每个类别中包含 400 张大小为 28*28 的 QuickDraw 图像,所以原始训练集中共包含 6000 张图像。 而在发布的测试集中,共包含了未添加标签的 45000 张图像。

首先,为了在训练和测试中完成对图像的归一化,就要先获得数据集的均值和方差,附件中代码 mean_std.py 实现了该功能。最终得到原始训练集的均值为0.164436,标准差为0.323920,而测试集的均值为0.164597,标准差为0.324155。

然后,因为要观察训练过程中的训练效果,所以需要建立验证集。我对原始

的训练集进行划分,每一个图像类别中随机选取了30%作为验证集,剩下的70%作为训练集,附件中代码 datasplit.py 实现了该功能。最终完成了对原始数据集的划分,划分后得到的训练集共包含4200张图像,每个类别包含280张图像,而验证集共包含1800张图像,每个类别包含120张图像。

3.1.2、扩充数据集

本次的课程设计中还使用了同学自己建立的数据集,用来提高训练模型的泛化能力。在发布的额外数据集中,每个图像类别都包含了 300 张左右的图像,但是通过观察发现,有些图像并不符合训练集的格式要求,比如有的图像的大小不是 28*28,有的图像是白底黑字,这些图像都是噪声图像,要想性能得到提升,首先要对这个额外数据集进行 data clean 操作。

在 data clean 操作中,我首先将图像格式全部转为 PNG 格式,并将大小不是 28*28 或者 28*28*3 的图像全部剔除。接着用之前 CNN 在原始训练集中训练获得的模型对剩下的图像进行测试,每张图像都获得一个 loss 值,我舍弃了 loss 最大的 20%的图像,将其视为噪声图像。然后将剩下的图像与原始数据集进行合并,得到扩充后的数据集,附件中代码 dataclean.py 实现了该功能。

同样,需要对扩充后的数据集计算其均值和标准差,使用 mean_std.py 计算得到扩充后的数据集的均值为 0.154208,标准差为 0.308720。然后将扩充后的数据集按照 70%-30%的比例进行划分,得到训练集和验证集,训练集中每个图像类别包含约 400 张图像,验证集中每个图像类别包含 180 张左右的图像。

3.1.1、数据增强后的数据集

由于训练集中一共只包含 6000 张左右的图像,而测试集中就包含了 45000 张图像,训练集过小,使用神经网络进行训练很容易出现过拟合的现象,从在原始数据集和扩充后的数据集上的训练效果可以看出,即便加入了 Dropout 等操作也难免出现过拟合。于是需要进一步扩大训练集的大小。

在本次课程设计中,我对使用 extra data 扩充后的数据集进行了数据增强,对数据集中的每张图片进行平移、旋转、翻转等操作,将数据集的大小扩大了 15 倍。对数据集中每张图片进行如下 15 种变换,可以获得数据增强后的数据集:①无变化。

- ②向下移动3个像素。
- ③向右移动2个像素。
- ④向右移动1个像素,再向下移动1个像素。
- ⑤顺时针旋转 12°。
- ⑥逆时针旋转 12°。
- ⑦左右翻转。

- ⑧向上平移1个像素。
- ⑨向左平移1个像素。
- ⑩向右平移1个像素,再顺时针旋转8°。
- ⑩向下平移 1 个像素,再逆时针旋转 8°。
- ⑫旋转 8°, 再左右翻转。
- ◎向左平移1个像素,再向下平移1个像素。
- 母向右平移1个像素,再向上平移1个像素,再顺时针旋转6°。
- ⑤向左平移1个像素,再向上平移1个像素,再左右翻转。

数据增强之后的数据集变得十分庞大,仍需要计算其均值和标准差,利用mean_std.py 代码计算得到数据增强后数据集的均值为 0.153998,标准差为 0.308592。同样按照 70%训练集,30%验证集的比例进行划分,划分后训练集每个图像类别大约包含了 6000 张图像,验证集中每个图像类别大约包含了 2700 张图像,即将之前扩充的数据集又扩大了 15 倍。

3.2、模型在原始数据集上的性能分析

对原始数据集的训练,我采用了SVM、CNN和ResNet18三种模型。

SVM 的参数设置中,采用的是 RBF 核函数, gamma 值设为 0.001,惩罚参数 C设为 100。对原始数据训练后,再对测试集进行预测,得到预测分数为 0.69681。

CNN 的参数设置中,构建了 3 个卷积层的 CNN 模型,第 1 个卷积层滤波器大小为 3*3,步长为 1,padding 设为 1,滤波器个数为 16,第 2 个卷积层的滤波器个数为 32,其余参数和第一个一样,第 3 个滤波器的滤波器个数是 64,其余参数也和第一个一样。在每个卷积层后都加了一个窗口大小为 2,步长为 2 的最大池化层进行特征降维。并加入了 dropout,设为 0.5,然后通过两个全连接层和softmax 层得到图像属于每个类别的概率。训练过程中,batch size 大小设为 16,初始的 learning rate 设为 0.0005,每训练 10 个 epoch 进行一次调整,将其降为原来的 0.8 倍。一共训练了 150 个 epoch,训练过程中保存在验证集上表现最好的epoch 模型,然后用该模型对测试集进行预测,得到预测分数为 0.81355。

ResNet18 参数设置中,采用的是标准的 ResNet18 模型,模型的输出是 15 维概率向量。Dropout 设为 0.5,初始 learning rate 设为 0.0005,同样每训练 10 个epoch 进行将其降为原来的 0.8 倍。在原始数据集上一共训练了 50 个 epoch,保存验证集表现最好的 epoch,预测得分为 0.82022。

表 3-1 展现了 SVM、CNN、ResNet18 三种模型在原始数据集上训练,在测试集上的预测得分(public、private),可见 SVM 的分类效果明显不如其他两个模型,而 ResNet18 的表现要稍好于 CNN 模型。虽然 ResNet18 的得分已经由于给出的 baseline 得分(0.79228),但是从训练过程的输出可看出,训练集的准确率很

快就达到了 99%以上,而在测试集上的表现仅有 82%左右,这是训练集过小而 出现了过拟合的现象,于是需要扩大训练集来进一步提高模型的泛化能力。

模型 SVM CNN ResNet18
预测得分(public) 0.69681 0.81355 **0.82022**预测得分(private) 0.68653 0.81428 **0.82047**

表 3-1 模型在原始数据集上训练后的预测得分

3.3、模型在扩充数据集上的性能分析

加入了同学自己建立的数据集后,训练集的数目变大了,并且有更加风格多异的训练数据,可以帮助模型得到更好的泛化性能。对扩充后的数据集训练,我仍采用了 SVM、CNN 和 ResNet18 三种模型。

SVM 的参数设置中,仍然采用的是 RBF 核函数, gamma 值设为 0.001, 惩罚参数 C 设为 100。对原始数据训练后,再对测试集进行预测,得到预测分数为 0.69540。

CNN 的参数设置中,仍然使用上述相同的模型,参数设置也相同。训练了150 个 epoch,保存在验证集上表现最好的 epoch 模型,最后对测试集进行预测的得分是 0.82251。

ResNet18 参数设置中,也和在原始数据集上训练的设置一样。在扩展的数据集上一共训练了 50 个 epoch,保存验证集表现最好的 epoch,预测得分为 0.84096。

表 3-2 展现了 SVM、CNN、ResNet18 三种模型在扩展后的数据集上训练,在测试集上的预测得分(public、private)。从表中可以看出 ResNet18 和 CNN 的预测结果仍然明显由于 SVM,并且 CNN 与 ResNet18 预测效果的差距进一步拉大。和表 3-1 中三种模型在原始数据集上训练得到的预测效果相比,发现 SVM 的预测效果略微下滑,可能是惩罚参数 C 设置的较大导致的。而用 CNN 和 ResNet18 训练得到的预测效果都得到了一定程度的提高,可见经过预处理的扩充数据集起到了积极的作用。但是在训练过程中,仍然出现了训练集的准确率早早达到 99%以上的现象,过拟合仍然存在,说明仍需要继续扩大训练集,增强模型的泛化能力。

模型 SVM CNN ResNet18
预测得分(public) 0.69540 0.82251 **0.84096**预测得分(private) 0.68546 0.82533 **0.84409**

表 3-2 模型在扩充数据集上训练后的预测得分

3.4、模型在数据增强后数据集上的性能分析

为了获得更加庞大的训练集,我采用了数据增强的方法,对加入 extra data 的数据集中的每张图像进行平移、旋转、翻转等一系列操作,将数据集的大小扩大了 15 倍,这样就有足够的训练数据来使模型获得更好的泛化能力。由于之前 SVM 的表现一直不理想,于是对于数据增强后的数据集训练,我采用了 CNN、ResNet18、ResNet101、VGG16 四种模型。

CNN 的参数设置中,仍然使用之前相同的模型,参数设置也相同。训练了 150 个 epoch,保存在验证集上表现最好的 epoch 模型,最后对测试集进行预测 的得分是 0.87288。

ResNet18 参数设置中,也和在原始数据集上训练的设置一样。由于数据量的扩大,我在数据增强后的数据集上一共训练了 150 个 epoch,保存验证集表现最好的 epoch,预测得分为 0.90481。、

之后我又使用了 ResNet101 进行训练,batch size 设为 64,其余训练参数与 ResNet18 设置的一样,最后的预测得分为 0.90755。

最后,我还使用了 VGG16 对数据增强后的数据集进行训练,同样使用的是逐渐降低的 learning rate,batch size 设为 64,训练了 150 个 epoch 后得到的预测得分为 0.90081。

表 3-3 展现了 CNN、ResNet18、ResNet101、VGG16 四种模型在数据增强后的数据集上训练,在测试集上的预测得分(public、private)。从表中可以看出 CNN的预测结果不如其余三个模型,而 ResNet18、ResNet101 和 VGG16 模型的预测得分接近,其中 ResNet101 模型表现最佳。和表 3-2 中模型在扩充后的数据集上训练得到的预测效果相比,发现 CNN 和 ResNet18 训练得到的预测得分都有了显著的提高,可见数据增强对于提高模型的泛化能力起到了很大的作用。其中ResNet101 的得分已经达到了 0.90755,并且 ResNet18 和 VGG16 都获得相接近的效果,进一步使用数据增强的方法扩大训练集可能只有微乎其微的提高。于是想要进一步提高预测得分只能寻找其他的技巧。

	5.4			
模型	CNN	ResNet18	ResNet101	VGG16
预测得分(public)	0.87288	0.90481	0.90755	0.90081
预测得分(private)	0.87511	0.90803	0.91425	0.90088

表 3-3 模型在数据增强后的数据集上训练后的预测得分

3.5、投票机制

Voting ensembles 这种投票机制经常用于图像分类中,用来提高模型的分类

效果。从之前的实验中,已经分别获得了 SVM、CNN、ResNet18 在原始数据集与扩充数据集上训练然后进行预测的结果,以及 CNN、ResNet18、ResNet101 与 VGG16 在数据增强后的数据集上训练然后进行预测的结果,共有 10 个已有预测结果。投票机制就是对多个已有的结果进行投票,对于每一张测试图片,将其归类到投票得分最高的那一类中。由于每一种模型在不同训练集上训练后得到的预测结果不同,对多个模型进行投票有可能结果得到提升,也有可能得到下滑,这些预测结果的相关性越弱,就可以和得到越不一样的投票结果。

在本次课程设计中,我分别对在数据增强后的数据集上训练的 4 个模型进行投票,以及对除了 SVM 之外的其余 8 个已有预测结果进行投票,将测试图像归类于投票结果较高的那一类,如果有投票得分相同的情况,则按照 ResNet101 的预测结果进行分类,预测得分如表 3-4 所示。从表中结果可以看出,基于在数据增强后数据集上训练得到的预测结果进行投票,得到的结果有明显的提升,而基于 8 个预测结果的投票,结果却略微下滑。其原因可能是基于 4 个预测结果的投票,这 4 个结果是用不同模型在同一个训练集上训练得到的结果,且这 4 个模型原本的预测性能也相近,而使用的 8 个预测结果彼此之间性能却相差较大,可能会影响原本性能较好模型,导致分类错误。

于是我将基于 4 个预测结果投票后的结果作为最后的预测结果进行提交,在任务截止后,在 private 预测得分上获得了 0.91977 的高分,位列 Leaderboard 的 第 4 名。

模型	ResNet101	Vote based 4 models	Vote based 8 models
预测得分(public)	0.90755	0.91651	0.90762
预测得分(private)	0.91425	0.91977	0.91000

表 3-4 使用投票机制的预测得分

四、结论

在本次的课程设计当中,我先使用 SVM、CNN 和 ResNet18 对原始数据进行了训练,发现训练集过小,出现了过拟合的现象。然后使用预处理后的自建数据对原始数据集进行扩充,并仍使用 SVM、CNN 和 ResNet18 对扩充后的数据进行训练,发现效果得到了提升,但是仍存在过拟合现象。于是采用数据增强的方法进一步扩大数据集,将数据集扩大了 15 倍,并分别使用 CNN、ResNet18、ResNet101 和 VGG16 对数据进行训练,发现预测结果得到了显著提升,其中ResNet101 的预测结果最好,public 预测得分为 0.90755,private 预测得分为 0.91425。最后,我还使用了投票机制,对数据增强后的 4 个预测结果进行了投

票,进一步提升了预测效果,最终的 public 预测得分为 0.91651,private 的预测得分为 0.91977,在 Leaderboard 上排名第 4。

五、参考文献

[1] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 121-132.

六、附录

附提交记录截图:

Result.csv 13 days ago by Huntersx	0.68653	0.69681	
SVM trained on Raw_data			
Result.csv 14 days ago by Huntersx CNN trained on Raw_data	0.81428	0.81355	
Result.csv 14 days ago by Huntersx Resnet trained on Raw_data	0.82047	0.82022	
Result.csv 11 days ago by Huntersx	0.68546	0.69540	
SVM trained on extra data			
Result.csv 12 days ago by Huntersx	0.82533	0.82251	
CNN trained on extra data			
Result.csv 12 days ago by Huntersx	0.84409	0.84096	
Resnet18 trained on extra data			
Result.csv 11 days ago by Huntersx	0.87511	0.87288	
CNN trained on more data			
Result.csv 11 days ago by Huntersx	0.90803	0.90481	
Resnet18 trained on more data			
Result101F.csv 8 days ago by Huntersx	0.91425	0.90755	
Resnet101 trained on more data			
VoteResult.csv 4 days ago by Huntersx	0.91977	0.91651	
Vote 4 models			

VoteResult2.csv	
O davis and builtings	

Vote 8 models

0.91000 0.90762