Machine Learning and Credit Risk

KPMG Challenge 2021/2022

A Decision Tree Model for Predicting Defaults

Team 5

Team

Antonio Cozzolino

antoniocozzolino9991@gmail.com

(+39 33172696797

in shorturl.at/dorC1

Ciro Rivieccio

crivieccio97@gmail.com

+39 3474820304

Giovanna Del Giudice

vaniadelgiudice99@gmail.com

+39 3319793345

Alessandra Vincenza Sartore

alessartore.uni@gmail.com

+39 3512097333

in shorturl.at/uIW01

Roadmap

The Problem

ML in Finance

The Model

Conclusions

O1The Problem

An introduction to Credit Risk

Credit Risk

Credit Risk can be defined as the likelihood of a loss, for a bank, resulting from the impossibility of a borrower to repay a loan.

02ML in Finance

How Machine Learning can be used to solve this problems?

What is Machine Learning?

Machine learning (ML) is the use of computer algorithms that can improve automatically through experience and by the use of data.

Machine Learning Lifecycle

How is it used in Finance?

- Credit and Individual Ratings
- Credit Risk Scoring
- Fraud Detection on Credit Cards

Fintech

- Algorithmic Trading/High Frequency Trading
- Portfolio Management

A Little Example

Can I open a Mortgage? I would like to buy a new House Based on my experience, you will not be able to repay it. Sorry but we cannot accept the request.

- 22 Years Old
- Earns 1000€ per Month
- Rents a house
- Recently bought a Car with a Loan

03 The Model

Comparison Between Logistic Regression and Two State of Art ML Technique: Decision Tree and Neural Network

Coding is Cool

Features and Model

Logistic Regression

	Precision	Recall	F1-Score	Support
0	0,81	0,98	0,89	5132
1	0,69	0,15	0,24	1385
Accuracy			0,80	6517
Macro AVG	0,75	0,57	0,57	6517
Weighted AVG	0,78	0,80	0,75	6517

What is a Decision Tree?

Our Decision Tree Model

Boosting is Awesome

24% Increase of Precision in Predicting the **Default** with Gradient Boosting applied to Decision Tree.

	Precision	Recall	F1-Score	Support
0	0,93	0,99	0,96	5132
1	0,93	0,73	0,82	1385
Accuracy			0,93	6517
Macro AVG	0,93	0,86	0,89	6517
Weighted AVG	0,93	0,93	0,93	6517

^{**} The model has been trained and evaluated on the same Train/Test dataset

Our Neural Network Model

Input Layer

15 Features

112 Neurons

Output Layer

Hidden Layers

Sigmoid Activation In the Output Layer

Neural Network Performance

16% Increase of Precision in Predicting the **Default**

	Precision	Recall	F1-Score	Support
0	0,80	1	0,89	5132
1	0,85	0,08	0,15	1385
Accuracy			0,80	6517
Macro AVG	0,82	0,54	0,52	6517
Weighted AVG	0,81	0,80	0,73	6517

K Keras

^{**} The model has been trained and evaluated on the same Train/Test dataset

Final Comparison

04 Conclusions

To sum up.

From the Problem to the Solution

Problem Machine Learning Solution

- Credit Risk
- Predicting

- Wide use in Financial Industry
- Better Prediction
 Performance

- Logistic Regression
- Decision Tree with XGBoost
- Neural Network

SWOT Analysis of the Model

Strengths

- High Performance
- Easy to Implement
- Easy to Interpret

Opportunities

- HyperParameter Tuning
- Better Model Specification

Weaknesses

- Little Features Number
- Numerical Instability

Threats

- Overfitting
- Errors in Prediction

Thank You for your Attention

Feel free to ask any question.

Team 5

«Computers are able to see, hear and learn. Welcome to the future.»

- Dave Waters