01 - Введение в искусственный интеллект и машинное обучение

Искусственный интеллект (ИИ): область компьютерных наук, направленных на создание систем, способных выполнить задачи, традиционно требующие человеческого интеллекта

Машинное обучение (ML): подмножество ИИ, фокусирующееся на разработке моделей для решения конкретной задачи, обучающихся на данных, без явного программирования решения

Принцип машинного обучения:

Традиционное моделирование (Traditional modeling):

- 1. На вход подаются данные (Data)
- 2. Создается **вручную разработанная модель** (Handcrafted model), часто это математические формулы или программный код
- 3. Компьютер выполняет обработку данных с помощью модели
- 4. На выходе получается **результат** (Result)

Машинное обучение (Machine Learning):

- 1. Обучение (Learning):
 - На вход подаются обучающие данные (Sample Data) и ожидаемые результаты (Expected Result)
 - Компьютер создает модель с коэффициентами, которые вычисляются автоматически
- 2. Предсказание (Prediction):
 - На вход подаются новые данные (New Data)
 - Модель применяет полученные параметры для обработки данных
- 3. Результат:
 - На выходе получается предсказание (Result)
 - Модель может обновляться, улучшая свои параметры на основе новых данных

Принцип машинного обучения

Traditional modeling:

История развития ИИ:

История развития ИИ (1)

1. 1943-1980 (Golden Age):

- 1943: Создан "Electronic Brain"
- 1950: Тест Тьюринга
- 1958–1969: Разработка перцептрона, MADALINE, решение задачи XOR

2. 1980 (First Al Winter):

• Снижение интереса к ИИ из-за ограниченных возможностей

3. 1982-1990:

- 1982: Hopfield Networks
- 1986: Метод обратного распространения (Backpropagation)
- 1989: Q-Learning, CNN

4. 1990-2000 (Second Al Winter):

- 1992–1993: Первая глубокая модель (First Deep Learner)
- 1995: SVM
- 1997: LSTM

5. 2000-2010 (Возрождение ИИ):

- 2006–2007: Pretraining DBN, RBM, Autoencoder
- 2009: ImageNet

6. 2010-2016 (Deep Learning Explosion):

- 2011: ReLU
- 2012: AlexNet

- 2014: GAN, DeepFace

- 2016: AlphaGo

История развития ИИ (2)

История развития ИИ (2)

7. 2012-2014:

- 2012: AlexNet революция в компьютерном зрении с использованием нейронных сетей
- Внедрение **VAE** (Вариационные автоэнкодеры)
- Разработка Residual Nets, RNNs, и LSTMs

8. 2014-2016:

- 2014: **GANs** (Генеративно-состязательные сети)
- 2016: AlphaGo значительный успех в играх с искусственным интеллектом

9. 2017-2019:

- 2017: Разработка архитектуры Transformer
- 2018: **GPT-1**, **BERT**, и графовые нейронные сети
- 2019: GPT-2 и улучшенные генеративные модели

10. 2020-2021:

- 2020: **GPT-3** и самообучение (Self-Supervised Learning)
- 2021: AlphaFold 2, DALL·E, и GitHub Copilot

11. 2022-2023:

- 2022: Появление ChatGPT и Stable Diffusion.
- 2023: Эпоха Generative AI широкое применение генеративных моделей

Кейс: Оптическое распознавание символов и сортировка почты

Кейс: оптическое распознавание символов и сортировка почты

- 1965 год: разработка и внедрение оптических сканеров для чтения почтовых индексов.
- Создание машины для предварительной сортировки писем перед ОСR-обработкой.
- Машина для чтения Почтового департамента США стала первой в мире, используемой почтовой службой.
- 30 ноября 1965 года: Запуск первой машины для обработки реальной почты в Детройте.
- Производительность машины в Детройте: 36 000 писем с почтовыми индексами в час.

You	Cassifer	Distortion	Preprocessing	Error rate (%)
Neural Network +	Gradient Descent Tunneling +	None +	None +	g24 s
tree Constan	Parwise Inear classifier	None	Deskewing	7.65 ^{mg}
C Nadional Navgittons	KAN with rigid transformations	None	None	0.96
C Neurod Neighbors	K.NN with non-linear deformation (P2CHMCM)	None	Shultable edges	0.5200
Soosted Stumps	Product of stumps on Hear features	None	Hear feetures	0.870%
Non-linear classifier	40 PCA = quadratic classifier	None	None	2 3/pd
Randon Forest	Fast Unified Random Forests for Sunvival, Regression, and Classification (RF-SRC) $^{\rm ISS}$	None	Simple statistical pixel importance	5 Hzzd
Support exclor machine (SVM)	Virtual SVM, deg-9 poly; 2-pixel jiftered	None	Deskewing	0.56
Seural network	2-layer 764-806-10	None	None	1.670
Neural referrit	2 layer 764-800-10	Elastic distortors	None	0 308
Deep neural network (CNN)	6-layer 764-2500-2000-1506-1000-500-10	Elastic distortions	None	0.35
Convolutional neural network (CNN)	6 layer 764 40 80 530 1000 2000 10	None	Expension of the training data	0.36
Convolutional neural network	6-layer 764-50-100-500-1000-10-10	None	Expension of the training data	0.3100
Convolutional neural network (CNN)	13-layer 64 128(5x)-258(3x)-512-2048-258-256-10	None	None	0.25
Convolutional neural network	Committee of 35 CMHs, 1-20-P-40-P-150-10	Elestic distortions	Width normalizations	0.23 (10)
Convolutional neural network	Committee of 5 CNNs, 6-layer 754-50-100-500-1000-10-10	None	Expansion of the training data	0.34Delta
Convolutional neural network	Committee of 20 CNNS with Squeeze and Excitation Networks ²⁴⁸	None	Data augmentation	0.17(40)
Convolutional resural redwork	Ensemble of 3 CNNs with varying learnel sizes	None	Data augmentation consisting of rotation and translation	0.09[87]

12. 1965 год:

• Разработка и внедрение оптических сканеров для чтения почтовых индексов

13. Создание системы:

 Машины для предварительной сортировки писем перед ОСR-обработкой (распознавание символов)

14. Первая машина:

- Машина для чтения, разработанная для Почтового департамента США, стала первой в мире, используемой почтовой службой
- 30 ноября 1965 года: Запуск первой машины для обработки реальной почты в Детройте

15. Производительность:

- Производительность машины в Детройте достигала **36,000 писем с почтовыми индексами в час Кейс: ImageNet** → **AlexNet**

Кейс: ImageNet -> AlexNet

16. Соревнования по распознаванию образов:

- Проводятся ежегодно в рамках конкурса ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
- Задача: улучшение алгоритмов классификации изображений

17. Динамика ошибок классификации:

- 2010: Ошибка 28% (ручные алгоритмы)
- 2011: Ошибка 26%
- **2012:** Появление **AlexNet**, снижение ошибки до 16% начало использования глубоких нейронных сетей
- 2013-2014: Постепенное снижение ошибок благодаря улучшенным архитектурам
- 2015–2017: Резкое снижение ошибок:
 - 2015: 3.6%.
 - 2016: 3.0%.
 - 2017: 2.3% ниже человеческой точности

18. Революция AlexNet (2012):

- AlexNet заложил основу глубокого обучения в задачах классификации
- Благодаря архитектуре с использованием **сверточных нейронных сетей** (CNN), результаты конкурсов улучшились до уровня, который сделал традиционные методы **устаревшими** (obsolete)

Итог: ImageNet стал ключевым этапом в развитии глубокого обучения. Успех AlexNet и последующих моделей открыл путь для использования ИИ в широком спектре визуальных задач

Причины второй весны искусственного интеллекта и её интерпретация в бизнес-приложениях

Причины второй весны искусственного интеллекта и ее интерпретация в бизнес приложениях

- 1. Создание новых моделей машинного обучения:
 - Появление многослойных нейронных сетей, которые стали основой современных АІ-технологий
- 2. Быстрое накопление массивов данных:
 - Интенсивное развитие интернета и информатизации позволило собирать и использовать огромные объемы данных для обучения моделей
- 3. Рост производительности:
 - Достижения в аппаратном обеспечении, включая Закон Мура и специализированные процессоры (например, GPU и TPU), обеспечили возможность обработки сложных моделей

Основой всех решений в ML является сбор и подготовка данных

Основой всех решений в ML является сбор и подготовка данных

Иерархия потребностей Data Science (The Data Science Hierarchy of Needs):

1. Collect (Сбор):

• Сбор данных из различных источников: датчики, логирование, внешние данные, пользовательский контент

2. Move/Store (Хранение и передача):

 Надежная инфраструктура для передачи данных, пайплайны, ETL-процессы, структурированные и неструктурированные хранилища данных

3. Explore/Transform (Изучение и преобразование):

• Очистка данных, обнаружение аномалий, подготовка данных для анализа

4. Aggregate/Label (Агрегация и маркировка):

• Анализ, метрики, сегментация, агрегирование, создание признаков, формирование обучающих выборок

5. Learn/Optimize (Обучение и оптимизация):

• Применение простых алгоритмов ML, проведение A/B тестов, экспериментов.

6. Al/Deep Learning (Искусственный интеллект и глубокое обучение):

Использование продвинутых методов глубокого обучения и ИИ для решения сложных задач

Циклы процесса создания и использования моделей в ML

Циклы процесса создания и использования моделей в ML

1. Training (Обучение модели):

- Raw Data Collection (Сбор данных):
 - Сбор необработанных данных, которые будут использоваться для обучения
- Data Preparation (Подготовка данных):
 - Очистка, нормализация и преобразование данных для использования в модели
- Split (Разделение данных):
 - Разделение данных на три подмножества:
 - Training Data Set: для обучения модели
 - Validation Data Set: для проверки качества и настройки модели
 - Test Data Set: для финального тестирования
- Model Training (Обучение модели):
 - Обучение модели на тренировочном наборе данных
- Model Validation (Валидация модели):
 - Оценка и оптимизация модели с использованием валидационного набора данных
- Model Testing (Тестирование модели):
 - Финальное тестирование модели для проверки её качества
- Final Model (Финальная модель):

• Итоговая модель после всех циклов обучения, валидации и тестирования

2. Application (Использование модели):

- Problem Input (Входные данные):
 - Ввод реальных данных, на которых модель будет применять свои знания
- Final Model (Финальная модель):
 - Использование обученной и протестированной модели для обработки входных данных
- Output (Выходные результаты):
 - Генерация предсказаний или классификаций на основе входных данных

Задача машинного обучения: задача оптимизации ошибки модели

Описание графиков:

Задача машинного обучения: задача оптимизации ошибки модели

- Какую функцию ошибки выбрать?
- Как минимизировать функцию ошибки?

1. True line (blue):

 Синяя линия представляет истинную зависимость между признаками (features) и целевой переменной (target)

2. Observed data points:

• Наблюдаемые точки данных (синие точки) показывают реальные значения, которые содержат шум или отклонения от истинной линии

3. Predicted line (red):

• Красная линия — это предсказанная моделью зависимость, которая пытается приблизиться к истинной линии

4. Error of predicted line:

 Вертикальные линии между наблюдаемыми точками и предсказанной линией показывают величину ошибки предсказания модели

Основные вопросы:

1. Какую функцию ошибки выбрать?

- Выбор функции ошибки зависит от задачи:
 - MSE (Mean Squared Error): для регрессии, штрафует большие отклонения
 - MAE (Mean Absolute Error): для устойчивости к выбросам
 - Cross-Entropy Loss: для классификации
 - Hinge Loss: для задач SVM

2. Как минимизировать функцию ошибки?

- Используются методы оптимизации:
 - Градиентный спуск (Gradient Descent): постепенное снижение значения функции ошибки
 - Стохастический градиентный спуск (SGD): обновление параметров модели на основе случайных подвыборок данных
 - **Адаптивные методы (Adam, RMSProp):** улучшенные алгоритмы для более быстрой сходимости

Оптимизация для нетривиальных задач машинного обучения

Оптимизация для нетривиальных задач машинного обучения

Описание графика:

- График показывает поверхность функции потерь (**Loss**) в зависимости от двух параметров модели (**m** и **b**)
- Цветовая шкала указывает значения функции потерь: чем светлее цвет, тем выше значение ошибки (Loss)
- Черные стрелки показывают путь оптимизации, который модель проходит для нахождения минимального значения ошибки

Ключевые аспекты оптимизации:

- 1. Многомерная поверхность ошибки:
 - Задачи машинного обучения имеют сложные, нелинейные функции потерь с множеством локальных минимумов
- 2. Цель оптимизации:
 - Найти глобальный минимум, где ошибка модели минимальна
- 3. Методы решения:
 - Градиентный спуск (Gradient Descent):
 - Итеративное обновление параметров модели в направлении уменьшения функции потерь
 - Стохастический градиентный спуск (SGD):
 - Быстрее для больших данных, обновляет параметры на основе случайных выборок
 - Адаптивные алгоритмы (Adam, RMSProp):
 - Автоматически регулируют шаг обучения для ускорения сходимости

Проблемы оптимизации:

• Локальные минимумы:

- Модель может застрять в точке, которая не является глобальным минимумом
- Седловые точки:
 - Области, где градиент близок к нулю, но это не минимум
- Высокая размерность:
 - Усложняет визуализацию и поиск оптимального решения

Гиперпараметры в моделях машинного обучения

Гиперпараметры в моделях машинного обучения

Гиперпараметры в ML — настройки модели, которые определяют её общую структуру и способ обучения.

Гиперпараметры устанавливаются до начала процесса обучения и не изменяются в процессе обучения, в отличие от параметров модели, которые вычисляются в процессе обучения (минимизации ошибки модели).

Выбор гиперпараметра: шага метода оптимизации – градиентного спуска

Определение:

- Гиперпараметры в ML настройки модели, которые определяют её общую структуру и способ обучения
- Устанавливаются **до начала обучения** и остаются неизменными в процессе обучения (в отличие от параметров модели, которые вычисляются во время оптимизации)

Пример гиперпараметра: Learning Rate (шаг обучения):

 Шаг обучения определяет, насколько сильно изменяются параметры модели на каждом этапе оптимизации (градиентного спуска)

Сравнение:

- 1. Big Learning Rate (Большой шаг обучения):
 - Быстрое изменение параметров
 - Риск перескочить минимум и застрять в колебаниях
 - Менее точный результат
- 2. Small Learning Rate (Малый шаг обучения):
 - Медленное, плавное приближение к минимуму
 - Более высокая точность, но увеличивается время обучения

Ключевые аспекты:

- 1. Почему важны гиперпараметры?
 - Они сильно влияют на производительность модели, её точность и скорость обучения
- 2. Как их выбирать?
 - Grid Search: поиск комбинаций гиперпараметров по заданной сетке
 - Random Search: случайный выбор комбинаций
 - Bayesian Optimization: адаптивный поиск для уменьшения числа проб

Проблема переобучения

Проблема переобучения

1. Недообучение (Underfitting):

- Характеристики:
 - Модель слишком проста, чтобы уловить зависимости в данных
 - Высокая ошибка на обучающей и тестовой выборках
 - **Причина:** модель имеет высокое смещение (*high bias*), что приводит к плохой производительности
- Пример:
 - Линейная зависимость для сложных данных

2. Хорошо обученная модель (Optimum):

- Характеристики:
 - Модель сбалансирована, хорошо описывает данные
 - Низкая ошибка на обучающей и тестовой выборках
 - Хорошо улавливает закономерности без перенасыщения деталями
- Пример:
 - Модель точно предсказывает целевые значения, сохраняя обобщающую способность

3. Переобучение (Overfitting):

- Характеристики:
 - Модель слишком сложная, подстраивается под шум и незначительные детали
 - Низкая ошибка на обучающей выборке, но высокая на тестовой
 - Причина: модель имеет высокую дисперсию (high variance), что приводит к плохой генерализации
- Пример:
 - Избыточное совпадение с обучающими данными, потеря обобщающей способности

Решения:

- 1. Для недообучения:
 - Увеличить сложность модели (например, добавить больше признаков)
 - Больше эпох обучения
 - Уменьшить регуляризацию
- 2. Для переобучения:

- Применить регуляризацию (L1, L2).
- Уменьшить сложность модели
- Использовать больше данных для обучения
- Применить раннюю остановку (early stopping)

Идентификация переобучения с помощью валидационного датасета

Идентификация переобучения с помощью валидационного датасета

Описание графика:

- Training Error (Ошибка на обучающей выборке):
 - Уменьшается по мере увеличения количества эпох обучения
 - Указывает на то, насколько модель подстраивается под обучающие данные
- Validation Error (Ошибка на валидационной выборке):
 - Сначала уменьшается, затем начинает расти после определённого количества эпох
 - Указывает на качество обобщения модели на новых данных

Фазы обучения:

1. Недообучение (Underfitting):

- Обе ошибки (обучающая и валидационная) высоки
- Модель ещё не успела обучиться и уловить закономерности
- Решения: увеличить сложность модели или число эпох обучения

2. Оптимальная модель:

- Минимальная ошибка на валидационной выборке
- Модель хорошо обобщает данные
- Цель: остановить обучение на этой точке

3. Переобучение (Overfitting):

- Ошибка на обучающей выборке продолжает уменьшаться, но ошибка на валидационной выборке растёт
- Модель подстраивается под шум и специфические детали обучающей выборки, теряя обобщающую способность
- Решения: использовать регуляризацию, раннюю остановку, или увеличить объём данных

Ключевые аспекты:

- Increasing Bias (Возрастающее смещение):
 - Характерно для недообучения.
 - Модель недостаточно сложная для адекватного представления данных.
- Increasing Variance (Возрастающая дисперсия):
 - Характерно для переобучения.
 - Модель слишком сложная и слишком подстраивается под данные

Итог: для предотвращения переобучения и выбора оптимальной модели важно отслеживать ошибки на валидационном наборе данных и останавливать обучение до момента, когда ошибка начинает расти

Регуляризация — метод борьбы с переобучением

Регуляризация - метод борьбы с переобучением

Описание графика:

- Графики показывают влияние коэффициента регуляризации (alpha) на поведение модели:
 - Слева: Красная линия предсказание модели, синяя линия истинные данные, точки обучающие данные
 - Справа: Величина коэффициентов модели при разном уровне регуляризации

Влияние регуляризации:

- 1. Без регуляризации (alpha = 0):
 - Модель слишком подстраивается под обучающие данные
 - Выраженное переобучение, так как модель пытается идеально описать шум
 - Коэффициенты модели имеют большие значения
- 2. Слабая регуляризация (alpha = 1e-05):
 - Модель становится более гладкой, уменьшается подстройка под шум
 - Коэффициенты уменьшаются, но всё ещё заметна тенденция к переобучению
- 3. Средняя регуляризация (alpha = 1e-03):
 - Оптимальный уровень регуляризации:
 - Модель хорошо описывает основные закономерности данных
 - Коэффициенты становятся более сбалансированными и стабильными
- 4. Сильная регуляризация (alpha = 0.1):
 - Модель становится слишком простой, начинает недообучаться
 - Коэффициенты стремятся к нулю, теряя способность описывать сложные зависимости

Методы регуляризации:

1. L1-регуляризация (Lasso):

- Добавляет штраф за сумму абсолютных значений коэффициентов
- Способствует занулению некоторых коэффициентов, что помогает в выборе признаков

2. L2-регуляризация (Ridge):

- Добавляет штраф за сумму квадратов коэффициентов
- Уменьшает значения коэффициентов, делая модель более гладкой

3. Elastic Net:

• Комбинация L1 и L2-регуляризаций

Вывод:

Регуляризация помогает справиться с переобучением, контролируя сложность модели и предотвращая излишнюю подстройку под данные. Выбор оптимального значения **alpha** имеет решающее значение для достижения баланса между переобучением и недообучением

Построение признаков (Feature Engineering)

Что такое Feature Engineering?

- Feature Engineering это процесс создания новых признаков или преобразования существующих для улучшения производительности модели.
- Цель: лучше структурировать входные данные, чтобы алгоритм смог более эффективно выявлять закономерности

Методы Feature Engineering:

1. Извлечение признаков:

- Преобразование данных из исходного формата в вид, понятный модели.
- Пример: извлечение временных признаков из даты (год, месяц, день)

2. Преобразование признаков:

- Модификация данных для улучшения точности модели
- Пример: логарифмирование для уменьшения влияния выбросов, масштабирование

3. Отбор признаков:

- Исключение нерелевантных или избыточных признаков.
- Пример: использование методов корреляции или алгоритмов отбора (Lasso, Recursive Feature Elimination)

Пример на графике:

- 1. Исходные данные (Input data):
 - Два признака (х1, х2), представленные точками
 - Разделение классов плохо выражено в текущем пространстве признаков

2. Создание новых признаков:

- Перевод данных в новое пространство с помощью комбинации признаков (например, произведение или квадраты координат)
- Результат: более четкая разделимость классов, что повышает точность модели

Итог:

Feature Engineering является важным этапом машинного обучения, который позволяет преобразовать необработанные данные в вид, обеспечивающий максимальную производительность модели. Этот процесс требует как знания предметной области, так и владения инструментами анализа данных

Глубокое обучение (Deep Learning) и отличие от машинного обучения (Machine Learning)

Глубокое обучение

Machine Learning (Машинное обучение):

1. Input (Вход):

• На вход подаются данные, например, изображения автомобиля

2. Feature Extraction (Извлечение признаков):

- Признаки (особенности изображения) извлекаются вручную человеком или с помощью алгоритмов
- Этот этап требует знаний предметной области

3. Classification (Классификация):

• Алгоритм машинного обучения использует извлечённые признаки для классификации объекта (например, "Машина" или "Не машина")

4. Output (Выход):

• Результат классификации

Deep Learning (Глубокое обучение):

- 1. Input (Вход):
 - На вход также подаются данные, например, изображения автомобиля
- 2. Feature Extraction + Classification (Извлечение признаков и классификация):

- Эти этапы объединены
- Глубокая нейронная сеть автоматически извлекает признаки и выполняет классификацию в одном процессе
- Используются многослойные архитектуры, такие как сверточные нейронные сети (CNN)

3. Output (Выход):

• Результат классификации ("Машина" или "Не машина")

Ключевые отличия:

Machine Learning:

- Требует ручного извлечения признаков.
- Менее автоматизировано, больше зависит от человека.

Deep Learning:

- Автоматически выполняет извлечение признаков и классификацию.
- Обрабатывает большие объемы данных и сложные задачи благодаря многослойным нейронным сетям.

Итог: глубокое обучение упрощает процесс обработки данных и может справляться с более сложными задачами без ручного этапа извлечения признаков, делая его мощным инструментом для современных приложений ИИ

Глубокая архитектура сверточной нейросети (CNN)

Глубокая архитектура сверточной нейросети

Свёрточная Нейросеть (CNN)

Принципы работы сверточной нейросети:

1. Входные данные:

• На вход подается изображение, например, фотографии кота.

2. Свертка (Convolution):

- Применяется **ядро свертки** (kernel) небольшой фильтр, который проходит по изображению и выделяет ключевые особенности:
 - Линии.
 - Углы.
 - Текстуры.

3. Иерархия признаков:

- На первом уровне сеть выделяет простые элементы (линии, углы).
- На следующих слоях признаки становятся более сложными, например, форма глаз, ушей.

4. Сверточные и объединяющие слои:

• Свертки сочетаются с **пулингом** (Pooling) для уменьшения размерности и выделения наиболее значимых признаков.

5. Полносвязные слои:

• На выходе признаки преобразуются в одномерный вектор, который передается в **перцептрон** (полносвязную нейросеть) для классификации.

Выход:

 Модель выдает вероятность того, что на изображении присутствует определенный объект (например, "Котик")

Ключевые особенности CNN:

- Автоматическое извлечение признаков:
 - Сеть сама учится находить значимые признаки изображения без ручного вмешательства
- Обработка изображений:
 - Особенно эффективна для работы с данными, представленными в виде матриц (изображения, видео)
- Устойчивость к трансформациям:
 - Модель устойчива к масштабированию, сдвигам и другим изменениям входных данных

Итог: сверточные нейросети (CNN) — основа современных методов работы с изображениями. Они позволяют выделять сложные иерархические признаки, обеспечивая высокую точность классификации

Построение признаков (Feature Engineering) в глубоких нейросетях

Построение признаков (Feature Engineering)

Описание визуализации:

1. Классы объектов:

 Изображения из разных категорий: лиц (Faces), автомобилей (Cars), слонов (Elephants) и стульев (Chairs)

2. Иерархия признаков:

- Нижний уровень (нижний ряд):
 - Простые геометрические элементы: линии, углы, текстуры.
 - Эти примитивы используются для построения более сложных признаков
- Средний уровень (средний ряд):
 - Признаки средней сложности: контуры, формы, комбинации простых элементов
- Верхний уровень (верхний ряд):

- Высокоуровневые признаки: части объектов (глаза, окна, уши, ножки стула)
- Используются для классификации целых объектов

Процесс построения признаков в глубоких сетях:

- 1. Автоматическое извлечение признаков:
 - Глубокие нейросети автоматически выделяют признаки из входных данных, начиная с простых и переходя к более сложным
- 2. Иерархическая структура:
 - Каждый последующий слой сети изучает иерархию признаков, постепенно усложняя их
- 3. Специализация слоёв:
 - Разные слои сети "отвечают" за разные уровни абстракции:
 - Первые слои: базовые элементы (линии, текстуры)
 - Средние слои: части объекта
 - Последние слои: полное представление объекта

Ключевые аспекты:

- Особенность глубоких сетей:
 - Они учатся на данных, избегая ручного извлечения признаков
- Универсальность:
 - Схожий подход используется для разных типов объектов, например, лиц, автомобилей, животных и мебели

Итог: глубокие нейросети обеспечивают мощное автоматическое извлечение признаков, что делает их незаменимыми для анализа сложных данных, таких как изображения и видео

Предобученные модели (Pretrained Models)

DL (Deep Learning):

- 1. Описание процесса:
 - Вход: Подразумевает подачу данных (например, изображения автомобиля)
 - Автоматическое извлечение признаков и классификация с помощью глубокой нейронной сети
 - Выход: Результат, например, классификация ("Машина" или "Не машина")

2. Плюсы:

- Высокая выразительность модели: Подходит для сложных задач.
- Не требует участия эксперта: Признаки выделяются автоматически

3. Минус:

• Требует большого объема данных для обучения модели с нуля

DL: Pretrained Models (Предобученные модели):

1. Описание процесса:

- Используется предобученная нейронная сеть, обученная на большом наборе данных
- Переход (Transfer Learning): Части модели замораживаются (frozen), а небольшая часть (последние слои) дообучается (fine-tune) на новой задаче с использованием небольшого датасета

2. Пример этапов:

- Использование базовой сети (например, ResNet, VGG), предобученной на ImageNet
- Заморозка сверточных слоев, чтобы сохранить ранее изученные признаки
- Дообучение на небольшом специализированном наборе данных (например, классификация редких объектов)

3. Плюсы:

- Высокая выразительность модели: Сохраняет преимущества глубокой сети
- Не требует эксперта: Модель уже предобучена
- Экономия данных: Нужен только небольшой датасет для дообучения

Ключевые аспекты:

- Предобученные модели сокращают время и ресурсы, необходимые для обучения
- Переход обучения позволяет адаптировать мощные глубокие сети к новым задачам, где объем данных ограничен

Итог: Использование предобученных моделей идеально подходит для задач, где доступ к большим датасетам ограничен. Это делает их популярным инструментом для широкого спектра прикладных задач в машинном обучении

Типы задач машинного обучения

Типы задач машинного обучения • Обучения с учителем (Supervised Learning) - обучаются на размеченных данных, предсказывая правильные ответы для новых примеров. Обучения без учителя (Unsupervised Learning) — анализируют Классическое Обучение неразмеченные данные, пытаясь выявить скрытые структуры или закономерности. D Semi-Supervised Learning – подход сочетает небольшое количество размеченных данных с большим объемом неразмеченных. • Самообучения (Self-Supervised Learning) - обучаются полезным представлениям информации создавая собственные обучающие сигналы на неразмеченных данных. Transfer Learning – знания, полученные при решении одной задачи, переносятся для улучшения обучения в другой, связанной задаче. Обучения с подкреплением (Reinforcement Learning) - Агент взаимодействует с окружающей средой обучается выбирать оптимальные стратегии получая награды или штрафы за действия

1. Обучение с учителем (Supervised Learning):

• Описание:

- Модель обучается на размеченных данных, где каждому входу соответствует известный выход
- Используется для предсказания правильных ответов для новых примеров

• Примеры задач:

- Классификация: Определение класса объекта (например, "Кот" или "Собака")
- Регрессия: Предсказание числового значения (например, цены дома)

2. Обучение без учителя (Unsupervised Learning):

• Описание:

 Модель анализирует неразмеченные данные, пытаясь выявить скрытые структуры или закономерности

• Примеры задач:

- Кластеризация: Группировка данных (например, сегментация клиентов)
- **Ассоциация:** Выявление зависимостей между переменными (например, "если покупают хлеб, то покупают молоко")

3. Полуобучение (Semi-Supervised Learning):

• Описание:

- Используется небольшое количество размеченных данных и большой объем неразмеченных
- Эффективно, когда разметка данных трудоемка

4. Самообучение (Self-Supervised Learning):

• Описание:

- Модель обучается на основе собственных данных, создавая метки самостоятельно
- Применяется в задачах обработки текста и изображений

5. Перенос обучения (Transfer Learning):

• Описание:

- Знания, полученные в одной задаче, переносятся для решения другой задачи
- Экономит время и ресурсы, особенно при работе с малыми данными

6. Обучение с подкреплением (Reinforcement Learning):

• Описание:

- Агент взаимодействует с окружающей средой, учась выбирать оптимальные действия для максимизации награды
- Применяется в играх, робототехнике, управлении

Схема:

• С учителем:

• Классификация, Регрессия

• Без учителя:

Кластеризация, Ассоциация

Итог: каждый тип обучения решает определённые задачи, а выбор подхода зависит от наличия данных, их разметки и цели анализа

Пример задачи самообучения: Autoencoders

Пример задачи самообучения

- + Очень высокая выразительность модели
- + Очень большой неразмеченный датасет
- Очень большие затраты на обучение

Autoencoders:

- Автоэнкодеры это архитектура нейронной сети, которая обучается кодировать входные данные в компактное представление (**Latent Space Representation**) и затем восстанавливать их обратно
- Используются для обучения на неразмеченных данных

Процесс:

- 1. Encoder (Энкодер):
 - Кодирует входное изображение (например, "Мона Лиза") в сжатое латентное представление
 - Выявляет основные признаки, которые минимально описывают данные
- 2. Latent Space Representation (Латентное пространство):
 - Сжатое представление данных
 - Используется для анализа и хранения ключевых характеристик объекта
- 3. Decoder (Декодер):
 - Восстанавливает данные из латентного представления
 - Результат: изображение, максимально близкое к исходному

Преимущества:

Очень высокая выразительность модели

- Подходит для сложных данных
 Очень большой неразмеченный датасет
- Не требуется разметка данных, что экономит ресурсы

Недостатки:

Очень большие затраты на обучение

• Требуется значительное количество вычислительных ресурсов и времени для обучения модели

Применение:

- Сжатие данных (компрессия)
- Удаление шума из изображений
- Выявление аномалий в данных

Итог: Autoencoders демонстрируют мощный подход к самообучению, обеспечивая эффективную работу с неразмеченными данными и решая широкий спектр задач

Большие языковые модели (Large Language Models)

Большие языковые модели (Large Language Models)

- + Тривиальное обучение во время инференса
- + Крайне высокая выразительность модели
- Огромные затраты на первичное обучение
- Дорогой инференс

Ключевые особенности:

- 1. Тривиальное обучение во время инференса:
 - Модель уже обучена и может быть легко адаптирована для новых задач без значительных изменений
- 2. Крайне высокая выразительность модели:
 - Может обрабатывать сложные текстовые задачи, включая классификацию, генерацию текста, перевод и др
- 3. Огромные затраты на первичное обучение:
 - Требуется большое количество вычислительных ресурсов (GPU, TPU) и данных для начального обучения
- 4. Дорогой инференс:
 - Использование модели для предсказаний требует значительных вычислительных мощностей

Сравнение подходов:

- 1. Regular classification (Обычная классификация):
 - Входной текст обрабатывается моделью для определения класса
 - Используется стандартная архитектура для конкретной задачи
- 2. Proposed method (Предложенный метод с использованием LLM, например, GPT-2):
 - Модель обучена на универсальных задачах
 - На этапе инференса отвечает на вопросы о принадлежности текста к определённым категориям
 - Адаптация для задачи выполняется без значительного переобучения

Преимущества LLM:

Гибкость:

- Подходит для широкого спектра задач, без необходимости создания новой модели
 Мощность:
- Способна работать с огромными объёмами данных и сложными языковыми структурами

Недостатки LLM:

• Затраты на обучение:

• Огромные вычислительные мощности для первичного обучения

• Инференс:

• Высокая стоимость вычислений при реальном применение

Применение:

- Классификация текста
- Генерация текстов (статьи, истории, программный код)
- Перевод и обработка естественного языка

Итог: Большие языковые модели, такие как GPT, представляют собой мощный инструмент, который, несмотря на высокую стоимость, позволяет решать широкий спектр задач, связанных с обработкой текста

Качественный скачок LLM (Large Language Models)

Основная идея:

Переход к большим языковым моделям (LLM) с большим количеством параметров привел к значительному улучшению их возможностей. Эти модели способны решать задачи, которые не встречались им во время обучения, благодаря обучению на контексте

Ключевые аспекты:

1. Обучение на контексте:

- Модель может решать новые задачи на основе текстовой инструкции, содержащей примеры
- Пример: если в инструкции указано, как классифицировать текст, модель применяет этот контекст для выполнения задачи, без изменения своих весов

2. Гибкость:

- LLM способны решать разнообразные задачи, такие как:
 - Ответы на вопросы
 - Переводы
 - Понимание текста
 - Решение математических задач
 - Генерация кода и резюме текста

3. Отсутствие необходимости переобучения:

 Дополнительное обучение для новых задач не требуется — модель адаптируется на основе текстового ввода

Рост параметров и возможностей:

- 8 billion parameters: Базовые задачи, такие как понимание языка и простая арифметика
- **62 billion parameters:** Добавляются задачи более высокого уровня, например, резюмирование текста и перевод
- **540 billion parameters:** Углубленное понимание языка, логические цепочки рассуждений, решение физических задач и объяснение шуток

Ключевые преимущества:

- *Широкий спектр задач:охватывает множество доменов
- Интуитивность: решение новых задач возможно без дополнительного обучения
- Масштабируемость: повышение числа параметров ведет к улучшению производительности

Итог:

Большие языковые модели открыли новые горизонты в области ИИ, позволяя решать сложные задачи, которые раньше считались невозможными, без значительных изменений или дообучения. Их развитие продолжает расширять возможности приложений искусственного интеллекта

Zero-shot, One-shot и Few-shot Learning

Основные подходы:

Zero-shot Learning:

- Модель выполняет задачу без предоставления примеров
- Использует лишь текстовый инструктаж (prompt) для понимания задачи
- Подходит для универсальных задач, требующих обобщённых знаний

One-shot Learning:

- Модель выполняет задачу на основе одного примера.
- Один пример в контексте позволяет модели лучше понять требования задачи.

Few-shot Learning:

- Модель обучается или адаптируется на небольшом количестве примеров (обычно несколько).
- Позволяет значительно повысить точность по сравнению с zero-shot.

График:

• Оси:

- X (Number of Examples in Context): количество предоставленных примеров
- Y (Accuracy): точность выполнения задачи
- Модели (по количеству параметров):
 - 1.3B Params: модель с малым количеством параметров, низкая точность
 - 138B Params: модель средней сложности, точность увеличивается с количеством примеров
 - 175B Params: крупная языковая модель, обеспечивает высокую точность, даже в условиях zeroshot

• Сравнение:

- Без текста-подсказки (No Prompt) результаты хуже
- С текстовой инструкцией (**Natural Language Prompt**) точность значительно выше, особенно для больших моделей

Выводы:

Эффективность масштабирования:

- Увеличение числа параметров модели (например, до 175B) улучшает точность и позволяет лучше справляться с задачами в zero-shot, one-shot и few-shot режимах

Важность контекста:

- Контекстные примеры (даже единичные) помогают модели лучше понять задачу, повышая точность **Zero-shot для универсальности:**
- Большие модели (например, GPT) могут решать задачи без обучения на них, что делает их универсальными для широкого спектра применений

Итог: подходы zero-shot, one-shot и few-shot learning демонстрируют силу современных больших языковых моделей, позволяя адаптироваться к новым задачам с минимальным количеством примеров или даже без них