Lookahead Optimizer: k steps forward, 1 step back

Tao Shen

Zhejiang University

August 11, 2019

Overview

Authors

The Lookahead Algorithm

Visualize & Pseudocode

Features

Derived stochastic gradient descent

Advantages

Generalization

Convergence

Robustness

Conclusion

Discuss

Comparison

Authors

Department of Computer Science, University of Toronto, Vector Institute

Michael Zhang

James Lucas

Geoffrey Hinton

Jimmy Ba

The Lookahead Algorithm

Visualize

Algorithm 1 Lookahead Optimizer:

Require: Initial parameters ϕ_0 , objective function L Require: Synchronization period k, slow weights step size α , optimizer A for $t=1,2,\ldots$ do Synchronize parameters $\theta_{t,0} \leftarrow \phi_{t-1}$ for $i=1,2,\ldots,k$ do sample minibatch of data $d \sim \mathcal{D}$ $\theta_{t,i} \leftarrow \theta_{t,i-1} + A(L,\theta_{t,i-1},d)$ end for Perform outer update $\phi_t \leftarrow \phi_{t-1} + \alpha(\theta_{t,k} - \phi_{t-1})$ end for return parameters ϕ

Pseudocode

Features

Slow weights trajectory

$$\phi_{t+1} = \phi_t + \alpha (\theta_{t,k} - \phi_t)$$

= $\alpha [\theta_{t,k} + (1 - \alpha)\theta_{t-1,k} \dots + (1 - \alpha)^{t-1}\theta_{0,k}] + (1 - \alpha)^t \phi_0$

Fast weights trajectory

$$\theta_{t,i+1} = \theta_{t,i} + A(L, \theta_{t,i-1}, d)$$

Computational complexity

The number of operations is $\mathcal{O}\left(\frac{k+1}{k}\right)$ times that of the inner optimizer

Derived Stochastic Gradient Descent (SGD)

Adaptive learning rate schemes

AdaGrad, Adam

Accelerated schemes

Polyak heavy-ball, Nesterov momentum

- Make use of the accumulated past gradient information
- Costly hyperparameter tuning

Advantages

- 1. Generalization
 - Improve generalization performance
- 2. Convergence
 - Improve convergence over the inner optimizer
- Robustness
 - ► Be robust to hyperparameter changes
 - changes in the inner loop optimizer
 - changes in the outer loop

Generalization

Example (Model)

$$\begin{split} \hat{\mathcal{L}}(\mathbf{x}) &= \frac{1}{2}(\mathbf{x} - \mathbf{c})^T \mathbf{A}(\mathbf{x} - \mathbf{c}) \\ \mathbf{c} &\sim \mathcal{N}\left(\mathbf{x}^*, \boldsymbol{\Sigma}\right) \qquad \mathbf{x}^* = 0 \end{split}$$

SGD:

$$\mathbb{V}\left[\mathbf{x}^{(t+1)}\right] = (\mathbf{I} - \gamma \mathbf{A})^2 \mathbb{V}\left[\mathbf{x}^{(t)}\right] + \gamma^2 \mathbf{A}^2 \Sigma$$

Lookahead with SGD:

$$\mathbb{V}\left[\phi_{t+1}\right] = \left[1 - \alpha + \alpha(\mathbf{I} - \gamma \mathbf{A})^{k}\right]^{2} \mathbb{V}\left[\phi_{t}\right] + \alpha^{2} \sum_{i=0}^{k-1} (\mathbf{I} - \gamma \mathbf{A})^{2i} \gamma^{2} \mathbf{A}^{2} \Sigma$$

$$V_{SGD}^{*} = \frac{\gamma^{2} \mathbf{A}^{2} \Sigma^{2}}{\mathbf{I} - (\mathbf{I} - \gamma \mathbf{A})^{2}}$$

$$V_{LA}^{*} = \frac{\alpha^{2} \left(\mathbf{I} - (\mathbf{I} - \gamma \mathbf{A})^{2k}\right)}{\alpha^{2} \left(\mathbf{I} - (\mathbf{I} - \gamma \mathbf{A})^{2k}\right) + 2\alpha(1 - \alpha) \left(\mathbf{I} - (\mathbf{I} - \gamma \mathbf{A})^{k}\right)^{k}} V_{SGD}^{*}$$

Generalization

Within each inner loop the fast weights may lead to substantial degradation in task performance. The slow weights step recovers the outer loop variance and restores the test accuracy.

When oscillating in the high curvature direction, the fast weights updates make rapid progress along the low curvature direction. The slow weights help smooth out the oscillation through the parameter interpolation. The combination of fast weights and slow weights improves learning in high curvature directions, reduces variance, and enables Lookahead to converge rapidly in practice.

Example (Model)

$$\begin{split} \hat{\mathcal{L}}(\mathbf{x}) &= \frac{1}{2}(\mathbf{x} - \mathbf{c})^T \mathbf{A} (\mathbf{x} - \mathbf{c}) \\ \mathbf{c} &\sim \mathcal{N}\left(\mathbf{x}^*, \Sigma\right) \qquad \mathbf{x}^* = 0 \end{split}$$

SGD:

$$\mathbb{E}\left[\mathbf{x}^{(t+1)}\right] = (\mathbf{I} - \gamma \mathbf{A}) \mathbb{E}\left[\mathbf{x}^{(t)}\right]$$

Lookahead with SGD:

$$\mathbb{E} [\phi_{t+1}] \qquad (\mathbf{I} - \gamma \mathbf{A})^k < 1 - \alpha + \alpha (\mathbf{I} - \gamma \mathbf{A})^k$$

$$= (1 - \alpha) \mathbb{E} [\phi_t] + \alpha \mathbb{E} [\theta_{t,k}]$$

$$= (1 - \alpha) \mathbb{E} [\phi_t] + \alpha (\mathbf{I} - \gamma \mathbf{A})^k \mathbb{E} [\phi_t]$$

$$= \left[1 - \alpha + \alpha (\mathbf{I} - \gamma \mathbf{A})^k \right] \mathbb{E} [\phi_t]$$

Example (Model)

$$\hat{\mathcal{L}}(\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \mathbf{c})^{T} \mathbf{A}(\mathbf{x} - \mathbf{c})$$
$$\mathbf{c} \sim \mathcal{N}(\mathbf{x}^{*}, \Sigma) \qquad \mathbf{x}^{*} = 0$$

We speculate that the learning rate for the inner optimizer is set sufficiently high such that the variance reduction term is more important

$$\mathbb{E}\left[\hat{\mathcal{L}}\left(heta^{(t)}
ight)
ight] = rac{1}{2}\sum_{i}a_{i}\left(\mathbb{E}\left[heta_{i}^{(t)}
ight]^{2} + \mathbb{V}\left[heta_{i}^{(t)}
ight] + \sigma_{i}^{2}
ight)$$

OPTIMIZER	CIFAR-10	CIFAR-100
SGD	$95.23 \pm .19$	$78.24 \pm .18$
POLYAK	$95.26 \pm .04$	$77.99 \pm .42$
ADAM	$94.84 \pm .16$	$76.88 \pm .39$
LOOKAHEAD	$95.27 \pm .06$	$78.34 \pm .05$

Table 1: CIFAR Final Validation Accuracy.

CIFAR

OPTIMIZER	LA	SGD
ЕРОСН 50 - ТОР 1	75.13	74.43
EPOCH 50 - TOP 5	92.22	92.15
ЕРОСН 60 - ТОР 1	75.49	75.15
ЕРОСН 60 - ТОР 5	92.53	92.56

Table 2: Top-1 and Top-5 single crop validation accuracies on ImageNet.

ImageNet

Inner Robustness

(a) CIFAR-10 Train Loss: Different LR

(b) CIFAR-10 Train Loss: Different momentum

Outner Robustness

_	κ ^α	0.5	0.8
	5	$78.24 \pm .02$	$78.27 \pm .04$
	10	$78.19 \pm .22$	$77.94 \pm .22$

Table 5: All settings have higher validation accuracy than SGD (77.72%)

Conclusion

- 1. Generalization
 - Improve generalization performance
- 2. Convergence
 - Improve convergence over the inner optimizer
- Robustness
 - ► Be robust to hyperparameter changes
 - changes in the inner loop optimizer
 - changes in the outer loop

Discuss

Cascade Control

Comparison

- 1. Generalization
- 2. Robustness
- 3. Larger Learning Rate

- 1. Anti-disturbance
- 2. Robustness
- 3. Larger P

The End