CS2842 Computer Systems – Lecture 1

Introduction to Computer Systems

Dr. Sapumal Ahangama Department of Computer Science and Engineering

EXAMPLES FOR COMPUTER SYSTEMS

MAJOR COMPONENTS OF A COMPUTER SYSTEM

- ▶ All computer systems, no matter how complex, consists of:
 - At least one CPU
 - Memory to hold programs and data
 - ▶ I/O devices
 - Long-term storage

WHY STUDY COMPUTER SYSTEMS?

User

- Understand system capabilities and limitations
- Make informed decisions
- Improve communications with information technology professionals

Programmer

Create efficient application software for specific processing needs

Systems Architect or Systems Analyst

- Specify computer systems and architecture to meet application requirements
- Make intelligent decisions about system strategy

WHY STUDY COMPUTER SYSTEMS?

System Administrator / Manager

- Install, configure, maintain, and upgrade computer systems
- Maximize system availability and efficiency
- Optimize system performance
- Ensure system security

Web Services Designer

- Optimize customer accessibility to Web services
- Optimize web system configurations
- Select appropriate data formats, page designs and scripting languages
- Design efficient Web pages

LEVELS OF ABSTRACTION

Image Source: William Stallings, Operating Systems: Internals and Design Principles, Sixth Edition. New Delhi, India

LEVELS OF ABSTRACTION - High Level View

Image Source: http://pluspng.com/input-and-output-devices-png-2844.html

LEVELS OF ABSTRACTION – Detailed View

LEVELS OF ABSTRACTION - Inside View

Image Source: William Stallings, Operating Systems: Internals and Design Principles, Sixth Edition. New Delhi, India

LEVELS OF ABSTRACTION - Instruction Set Level

- Details the instruction set the computer supports
- Abstraction for an assembly language programmer

Image Source: Computer Architecture: A Quantitative Approach, J. L. Hennessy & D.A. Patterson, 3rd Edition

LEVELS OF ABSTRACTION - Hardware Design Level

- Known as microarchitecture / computer organization
- Concentrates on how the instruction set is implemented using hardware

Image Source: http://www.learnitwithmrc.co.uk/KS5/BTEC_CS/Year12CS/Unit2/B2/

OUR SCOPE

- Instruction set level view of computer systems
- ▶ Role of operating system in computer systems
 - As an extended machine
 - As a resource manager
- Interfacing I/O devices to computer systems

OUR SCOPE

- Operating System As An Extended Machine
 - Program development
 - Program execution
 - Access to I/O devices
 - Controlled access to files
 - System access
 - Error detection and response
 - Accounting
- Operating System As An Resource Manager
 - Processor
 - Memory
 - I/O

INPUT-PROCESS-OUTPUT (IPO) MODEL

- Input: Resources to input data to a system
- Processing: Steps that lead to a result
- Output: Results that comes out of the system
- Storage: Place to store the results of the processing step
- Feedback: Compare results to the original need and adjustments

IPO MODEL EXAMPLES

- Burglar Alarm System
- Cruise Controller

COMPONENTS OF A COMPUTER SYSTEM

Hardware

- Processes data by executing instructions
- Provides input and output
- Electronically control input, output and storage components

Software

- Applications and system software
- Provide instructions tell hardware exactly what tasks to perform and in what order

Data

Fundamental representation of facts and observations

Communications

Sharing data and processing among different systems

HARDWARE

HARDWARE COMPONENTS

- Input Output devices
- Storage Devices
- Memory
 - Short term storage for CPU calculations
- CPU Central Processing Unit
 - ▶ ALU: arithmetic/logic unit
 - ► CU: control unit
 - Interface unit

HARDWARE COMPONENTS

CENTRAL PROCESSING UNIT-CPU

THANK YOU

