Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose to double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Ans: The Optimal value of the alpha for Ridge is 1.0 and for the Lasso is 0.00001 with these alphas the R2 of the model was approx. 0.78, After doubling the alpha value the model accuracy was remains same.

Since the alpha value was quite small, doubling it does not do any significant change in both the models and the R2 and MSE remains almost the same. The most important predictor variables also remain the same, but the Evaluates the height of the basement - Excellent attribute gains higher importance than Alley in the Ridge Model.

Ridge Regression Model

	Ridge Doubled Alp	ha Co-Efficient	
TotRmsAbvGrd		0.208272	11.
GarageArea		0.173356	
LotArea		0.132928	
OverallCond		0.068787	
LotFrontage		0.057228	
OpenPorchSF		0.054851	
CentralAir_Y		0.051812	
Neighborhood_StoneBr		0.048193	
BsmtQual_Ex		0.046360	
Alley_Pave		0.043235	

	Lasso	Doubled	Alpha	Co-Efficient	
TotRmsAbvGrd				0.223099	11.
GarageArea				0.191003	
LotArea				0.165313	
OverallCond				0.076941	
SaleType_Con				0.057506	
OpenPorchSF				0.053775	
Neighborhood_StoneBr				0.053233	
LotFrontage				0.051198	
Sale Type_CWD				0.051091	
CentralAir_Y				0.049670	

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Both Ridge and Lasso values for this dataset seems to be similar and there is little bit significant change in the lambda value. And Mean Square Error also seems to be aprrox same for both the models.

To choose the best one for this prediction, we can go for the Lasso. Since Lasso helps in feature elimination.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Initially, when we build the model, we found that we have few important predictor variables as below:

- 1. Total Rooms above grade
- 2. Total Garage Area
- 3. Lot Area
- 4. Overall condition
- 5. Sale Type

If we remove those features and rebuild the model with the same dataset, we will obtain the below top 5 predictor features from the model.

	Lasso Co-Efficient	
LotFrontage	0.268143	11.
OpenPorchSF	0.114755	
BsmtQual_Ex	0.067629	
CentralAir_Y	0.063115	
KitchenQual_Ex	0.061314	

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

The two model which we created shows similar performances in the training and test data set, to pick the best one, if we go for the Occam's Razor method.

Based on the Occam's Razor theorem, we must choose the simpler model, since usually simpler model is more 'generic' and more robust and easier to train the model as well.

Therefore, to make the model more robust and generalisable, make the model simple but not simpler which will not be any use.

One more technique to make the model robust and generalisable adding the penalty to the cost function by using the method called regularization. Also, making a model simple leads to Bias-Variance Trade-Off.