1. Download the dataset

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import skew
%matplotlib inline
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_selection import SelectKBest
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.neighbors import KNeighborsRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear model import LinearRegression
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import Ridge
from sklearn.svm import SVR
import warnings
```

2. Load the dataset into the tool.

```
data = pd.read csv('/content/abalone.csv')
data['age'] = data['Rings']+1.5
data.drop('Rings', axis = 1, inplace = True)
print('This dataset has {} observations with {} features.'.format(data.shape[0], data.shap
    This dataset has 4177 observations with 9 features.
data.info()
     <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 4177 entries, 0 to 4176
    Data columns (total 9 columns):
        Column
                    Non-Null Count Dtype
     --- -----
                        _____
     0
                        4177 non-null
                                       object
         Sex
     1
       Length
                        4177 non-null float64
                        4177 non-null
                                       float64
     2
         Diameter
         Height
                        4177 non-null
                                        float64
                        4177 non-null
                                       float64
     4
         Whole weight
     5
         Shucked weight 4177 non-null
                                        float64
         Viscera weight 4177 non-null
                                        float64
```

7 Shell weight 4177 non-null float64 8 age 4177 non-null float64

dtypes: float64(8), object(1)
memory usage: 293.8+ KB

Perform Below Visualizations:Univariate Analysis, Bi-Variate Analysis, Multi-Variate Analysis


```
numerical_features = data.select_dtypes(include=[np.number]).columns
categorical_features = data.select_dtypes(include=[np.object]).columns
numerical_features
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/re

categorical_features

```
Index(['Sex'], dtype='object')
```

sns.countplot(x = 'Sex', data = data, palette="Set3")

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ccb5df250>


```
plt.figure(figsize = (20,7))
sns.swarmplot(x = 'Sex', y = 'age', data = data, hue = 'Sex')
sns.violinplot(x = 'Sex', y = 'age', data = data)
```

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 56.2 warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 52.2 warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 58.5 warnings.warn(msg, UserWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ccdf2abd0>

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age
Sex								
ı	0.427746	0.326494	0.107996	0.431363	0.191035	0.092010	0.128182	9.390462
M	0.561391	0.439287	0.151381	0.991459	0.432946	0.215545	0.281969	12.205497
F	0.579093	0.454732	0.158011	1.046532	0.446188	0.230689	0.302010	12.629304

sns.pairplot(data[numerical_features])

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ce4c80dd0>

pd.plotting.scatter_matrix(data.loc[:, 'Sex':'age'], diagonal="kde",figsize=(20,15))
plt.show()

4.Perform descriptive statistics on the dataset

Н	a	+	a		Ч	Д	<	c	r	i	h	e	(١	
u	а	L	а	٠	u	C	2	L		_	υ	C	(,	

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	41
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	
4							•

```
data['Sex'].describe()
```

count 4177
unique 3
top M
freq 1528

Name: Sex, dtype: object

data['Sex'].value_counts()

M 1528 I 1342 F 1307

Name: Sex, dtype: int64

data.kurtosis()

```
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:1: FutureWarning: Droppi
  """Entry point for launching an IPython kernel.
Length
                   0.064621
Diameter
                  -0.045476
Height
                  76.025509
Whole weight
                  -0.023644
Shucked weight
                  0.595124
Viscera weight
                   0.084012
Shell weight
                   0.531926
                   2.330687
age
dtype: float64
```

	Features	Skewness degree
2	Height	3.127694
7	age	1.113702
4	Shucked weight	0.718840
6	Shell weight	0.620704
5	Viscera weight	0.591640
3	Whole weight	0.530768
1	Diameter	-0.608979
0	Length	-0.639643

5.Check for Missing values and deal with them.

```
missing_values = data.isnull().sum().sort_values(ascending = False)
percentage_missing_values = (missing_values/len(data))*100
pd.concat([missing_values, percentage_missing_values], axis = 1, keys= ['Missing values',
```

	Missing values	% Missing	1
Sex	0	0.0	
Length	0	0.0	

data.head

<bound me<="" th=""><th>thod NDFran</th><th>ne.head</th><th>of</th><th>Sex</th><th>Length</th><th>Diameter</th><th>Height</th><th>Whole weight</th></bound>	thod NDFran	ne.head	of	Sex	Length	Diameter	Height	Whole weight
Shucked w	eight \							
0 M	0.455	0.365	0.095		0.514	.0	0.2245	
1 M	0.350	0.265	0.090		0.225	5	0.0995	
2 F	0.530	0.420	0.135		0.677	0	0.2565	
3 M	0.440	0.365	0.125		0.516	0	0.2155	
4 I	0.330	0.255	0.080		0.205	0	0.0895	
• • • • • • • • • • • • • • • • • • • •	• • •	• • •				•		
4172 F	0.565	0.450	0.165		0.887	0	0.3700	
4173 M	0.590	0.440	0.135		0.966	0	0.4390	
4174 M	0.600	0.475	0.205		1.176	0	0.5255	
4175 F	0.625	0.485	0.150		1.094	.5	0.5310	
4176 M	0.710	0.555	0.195		1.948	5	0.9455	
Vic	cera weight	- Shall	weight	200				
0	0.1010		0.1500	_				
1	0.1016		0.1300	8.5				
2	0.141		0.2100	10.5				
3	0.141		0.1550	11.5				
4								
	0.0395		0.0550	8.5				
4172	0.2200		0 2400	12 F				
4172	0.2396		0.2490	12.5				
4173	0.2145		0.2605	11.5				
4174	0.2875		0.3080	10.5				
4175	0.2616		0.2960	11.5				
4176	0.3765		0.4950	13.5				
[4177 rows	s x 9 colun	nns]>						
-	_	-						

→ 6.Find the outliers and replace them outliers

```
original_data = data.copy()
data = pd.get_dummies(data)
dummy_data = data.copy()
data.boxplot( rot = 90, figsize=(20,5))
```



```
var = 'Viscera weight'
plt.scatter(x = data[var], y = data['age'],)
plt.grid(True)
```


outliers removal

data.drop(data[(data['Viscera weight']> 0.5) & (data['age'] < 20)].index, inplace=True)
data.drop(data[(data['Viscera weight']<0.5) & (data['age'] > 25)].index, inplace=True)

```
var = 'Shell weight'
plt.scatter(x = data[var], y = data['age'],)
plt.grid(True)
```


data.drop(data[(data['Shell weight']> 0.6) & (data['age'] < 25)].index, inplace=True)</pre>

```
data.drop(data['Shell weight']<0.8) & (data['age'] > 25)].index, inplace=True)
```

```
var = 'Shucked weight'
plt.scatter(x = data[var], y = data['age'],)
plt.grid(True)
```


data.drop(data['Shucked weight']>= 1) & (data['age'] < 20)].index, inplace=True)
data.drop(data['Shucked weight']<1) & (data['age'] > 20)].index, inplace=True)

```
var = 'Whole weight'
plt.scatter(x = data[var], y = data['age'],)
plt.grid(True)
```


data.drop(data['Whole weight']>= 2.5) & (data['age'] < 25)].index, inplace=True)
data.drop(data['Whole weight']<2.5) & (data['age'] > 25)].index, inplace=True)

```
var = 'Diameter'
plt.scatter(x = data[var], y = data['age'],)
plt.grid(True)
```


data.drop(data['Diameter']<0.1) & (data['age'] < 5)].index, inplace=True)
data.drop(data[(data['Diameter']<0.6) & (data['age'] > 25)].index, inplace=True)
data.drop(data[(data['Diameter']>=0.6) & (data['age']< 25)].index, inplace=True)</pre>

```
var = 'Height'
plt.scatter(x = data[var], y = data['age'],)
plt.grid(True)
```


data.drop(data[(data['Height']>0.4) & (data['age'] < 15)].index, inplace=True)
data.drop(data[(data['Height']<0.4) & (data['age'] > 25)].index, inplace=True)

```
var = 'Length'
plt.scatter(x = data[var], y = data['age'],)
plt.grid(True)
```


data.drop(data['data['Length']<0.1) & (data['age'] < 5)].index, inplace=True)</pre>

```
data.drop(data['Length']<0.8) & (data['age'] > 25)].index, inplace=True)
data.drop(data['Length']>=0.8) & (data['age']< 25)].index, inplace=True)</pre>
```

→ 7. Check for Categorical columns and perform encoding.

```
from sklearn import preprocessing
label = preprocessing.LabelEncoder()
original_data['Sex']= label.fit_transform(original_data['Sex'])
original_data.head()
```

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

▼ 8. Split the data into dependent and independent variables.

```
X = original_data.drop('age', axis = 1)
y = original_data['age']
```

Χ

		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
	0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500
	1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700
у									
	0	16.5	5						
	1	8.5	5						
	2	10.5	5						
	3	11.5	5						
	4	8.5	5						
	4172	12.5	5						
	4173	11.5	5						
	4174	10.5	5						
	4175	11.5	5						
	4176	13.5	5						
	Name:	age, l	_ength:	4177, dtyp	e: floate	54			
	-								

→ 9. Scale the independent variables

```
# Normalized Y
from sklearn import preprocessing
Y=y.values.reshape(-1,1)
normalized_Y = preprocessing.normalize(Y)
print (normalized_Y)
     [[1.]
      [1.]
      [1.]
      [1.]
      [1.]
      [1.]]
# Standardized Y
standard_Y = Y.copy()
from sklearn import preprocessing
ss = preprocessing.StandardScaler()
ss.fit(standard_Y)
print (standard_Y)
```

```
[[16.5]
[ 8.5]
[10.5]
...
[10.5]
[11.5]
[13.5]]
```

10. Split the data into training and testing

```
X = data.drop('age', axis = 1)
y = data['age']

standardScale = StandardScaler()
standardScale.fit_transform(X)

selectkBest = SelectKBest()
X_new = selectkBest.fit_transform(X, y)

X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size = 0.25)
```

→ 11. Build the Model

12. Train the Model

```
np.random.seed(10)
def rmse_cv(model, X_train, y):
    rmse =- (cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5))
    return(rmse*100)
models = [LinearRegression(),
             Ridge(),
             SVR(),
             RandomForestRegressor(),
             GradientBoostingRegressor(),
             KNeighborsRegressor(n neighbors = 4),]
names = ['LR','Ridge','svm','GNB','RF','GB','KNN']
for model, name in zip(models, names):
    score = rmse_cv(model, X_train, y_train)
                : {:.6f}, {:4f}".format(name,score.mean(),score.std()))
        : 362.218315, 31.358517
     Ridge : 367.492321, 28.808135
     svm
            : 389.796574, 30.207738
            : 363.082453, 28.130258
     GNB
```

```
RF
        : 351.412403, 27.731600
           : 403.767053, 30.014933
def modelfit(alg, dtrain, predictors, performCV=True, printFeatureImportance=True, cv_fold
   #Fit the algorithm on the data
   alg.fit(dtrain[predictors], dtrain['age'])
   #Predict training set:
   dtrain_predictions = alg.predict(dtrain[predictors])
   #dtrain_predprob = alg.predict_proba(dtrain[predictors])[:,1]
   #Perform cross-validation:
   if performCV:
        cv_score = -cross_val_score(alg, dtrain[predictors], dtrain['age'], cv=cv_folds,
                                                    scoring='r2')
   #Print model report:
   print ("\nModel Report")
   print( "RMSE : %.4g" % mean_squared_error(dtrain['age'].values, dtrain_predictions))
   print( "R2 Score (Train): %f" % r2_score(dtrain['age'], dtrain_predictions))
   if performCV:
        print( "CV Score : Mean - %.7g | Std - %.7g | Min - %.7g | Max - %.7g" % (np.mean(
                                                                                 np.min(cv
   #Print Feature Importance:
   if printFeatureImportance:
        feat_imp = pd.Series(alg.coef_, predictors).sort_values(ascending=False)
        plt.figure(figsize=(20,4))
        feat_imp.plot(kind='bar', title='Feature Importances')
        plt.ylabel('Feature Importance Score')
```

→ 13. Test the Model

14. Measure the performance using Metrics

```
# Base Model
predictors = [x for x in data.columns if x not in ['age']]
lrm0 = Ridge(random_state=10)
modelfit(lrm0, data, predictors)
```

Model Report RMSE: 3.593

R2 Score (Train): 0.529894

CV Score: Mean - -0.4503433 | Std - 0.08079434 | Min - -0.514565 | Max - -0.3061263

Colab paid products - Cancel contracts here

✓ 0s completed at 10:57 AM

×