Ch0. Tổng quan về điện tử Linh kiện - Mạch - Thiết bị

Tổng quan về Điện tử

- Điện tử là ngành học gồm phần lý thuyết và thực hành (kỹ thuật điện tử) nhằm khảo sát, thu nhận, sinh tạo và ứng dụng những sự biến đổi năng lượng.
- Điện tử sử dụng những thành tựu của các ngành khác để tạo nên các linh kiện , mạch điện, thiết bị hữu ích phục vụ trở lại cho các ngành khoa học - kỹ thuật khác → xã hội phát triển nhanh chóng.

Điện tử

Văn minh nhân loại

Cột mốc lịch sử Điện tử		
Năm	Sự kiện	
1895	Marconi thực hiện truyền sóng radio	
1904	Fleming phát minh đèn diod chân không	
1906	Pickard tạo nên diod tiếp xúc điểm bán dẫn	
	De Forest phát minh đèn triod chân không	
1910 -1911	Sản xuất các đèn điện tử chất lượng cao	
1912	Thành lập các Viện nghiên cứu kỹ thuật	
1907-1927	Radio	
1920	Các mạch Radio đầu tiên từ đèn diod và triod	
1925	Armstrong phát minh Radio	
	Biểu diễnTV	

Phát triển đèn nhiều cực
Armstrong phát minh điều chế FM
Heil nhận bằng sáng chế về ứng dụng FET
Radar phát triển trong suốt thế chiến thứ II TV sử dụng còn hạn chế
Bardeen, Brattain, và Schockley tại phòng thí nghiệm Bell phát minh transistor nối.
Lần đầu biểu diễn TV màu
Schockley mô tả transistor trường đơn cực
Sản xuất thương mại BJT Si tại công ty Texas Instruments
Bardeen, Brattain, và Schockley nhận giải Nobel về phát minh Transistor nối

	Phát minh IC đồng thời bởi Kilby tại Texas
	Instruments và Noyce và Moore tại Fairchild
	Semiconductor
1963	AIEE và IRE hợp nhất thành IEEE(Institute of
	Electrical and Electronic Engineers)
1967	RAM 64bits đầu tiên được thảo luận tại IEEE
	International Solid-State Circuits Conference
1968	IC Op.amp. thương mại đầu tiên –uA709- giới
	thiệu bởi Fairchild Semiconductor.
1970	Tế bào RAM động 1 transistor phát minh bởi
	Dennard tại IBM.
1971	Vi xử lý 4004 giới thiệu bởi Intel.
1973	Vi xử lý 8-bit đầu tiên- 8008-giới thiệu bởi Intel
1974	IC nhớ 1kbit đầu tiên được sản xuất thương mãi
	Giới thiệu vi xử lý 8080.

1984	Phát triển Vi xử lý 16-bit đầu tiên Giới thiệu chip nhớ Megabit Thí nghiệm chip nhớ gigabit được trình bày tại IEEE ISSCC		
Năm	Mức tích hợp IC	Phần tử/ chip	
1950	Linh kiện rời	1- 2	
1960	SSI – Small scale integration	< 100	
1966	MSI -Medium-sacle	100 – 1.000	
1969	LSI – Large – scale	1.000 -10.000	
1975	VLSI – Very large-Scale	10.000- 10 ⁹	
1990	ULSI – Ultra large- Scale	> 109	

Phân loại ứng dụng Điện tử

Phân loại theo:

- Dải điện thế
- · Dải dòng điện
- Dải tần số

II. Nhiệm vụ các linh kiện

- R: giới hạn dòng, giới hạn điện thế, cầu chia thế..
- C: tích trữ và hoàn trả năng lượng điện (nạp / xả) đưới dạng điện thế
- L: Tích trữ và hoàn trả năng lượng điện dưới dạng dòng điện.
- Biến thế: tăng hoặc giảm điện thế có sẵn
- Diod : chỉnh lưu dòng điện, tách sóng...
 ổn áp, xén, nâng thế.....

 BJT, FET, IC...: các linh kiện tích cực, có nhiệm vụ thu nhận, xử lý, biến đổi, sinh tạo... tín hiệu và ứng dụng trong thực tế và trong nghiên cứu ...

Để sử dụng, thiết kế mạch, thiết bị ĐT:

- > Nắm vững đặc tính, ứng dụng của linh kiện
- Hiểu rõ cấu trúc , chức năng , hoạt động của từng loại mạch
- Nắm vững qui tắc và áp dụng các kết quả đã có để sử dụng, thiết kế, sửa chửa các hệ thống thiết bi

Circuits Board

III. Các mạch điện tử căn bản

- ❖ Mạch chỉnh lưu và lọc
- ❖ Mạch ổn áp
- ❖Mạch khuếch đại dùng BJT
- ❖Mạch khuếch đại dùng FET
- ❖Mạch khuếch đại IC
- ❖Mạch khuếch đại công suất
- ❖ Mạch dao động
- ❖Mạch logic, mạch số

.

IV.Cấu trúc một số thiết bị

1. Bộ chỉnh lưu

Gồm các mạch sau:

- Chỉnh lưu
- Loc
- Ön áp
- Mạch bảo vệ

2.Máy tăng âm

- Khuếch đại nhiều tầng
- Khuếch đại công suất
- > Tải (loa, Động cơ...)
- 3. Máy tạo sóng
- Dao động (sin, vuông, tam giác..)

4. Thiết bị dân dụng khác

- · Máy chơi nhạc CD,VCD,DVD...,
- · Máy sưởi ấm, máy lạnh, tủ lạnh,
- Dụng cụ tập thể dục ...

5. Thiết bị y tế

- ✓ Máy siêu âm, máy chụp X quang, máy chụp ảnh quét..
- ✓ Máy nha khoa, Máy đo huyết áp...
- √ Máy đo lượng đường trong máu...

6. Máy phát / thu

- Bộ thu sóng, mạch trộn sóng, mạch khuếch đại trung tần, mạch tách sóng, khuếch đại điện thế, khuếch đại công suất
- Máy thu thanh(Radio), Máy thu hình (T.V.)
- Điện thoại di động
- Phát thu vệ tinh
- Radar
- Máy dò cá

7. Hệ thô	ng tính tóan và lưu trử	
UP, RO	M, RAM, ALU (CPU)	
Máy tín	ıh	
8. Hệ thố	ng đo	
□ Cảm b	iến (sensor)	
☐ Khuếc	h đại	
☐ Hiển tl	h <u>i</u>	
□ Bộ AD	C , DAC	
□ uP, PC		
·		

9. Hệ thống điều khiển

- Cảm biến
- Khuếch sai
- Khuếch đại
- Phát thu vô tuyến (điều khiển xa)
- Phát thu hồng ngoại (điều khiển gần)
- uC, uP, ROM, RAM
- PLC

10. Hệ thống phức tạp (gồm nhiều hệ thống)

- ❖ Hệ thống điện tử trên xe ô tô
- ❖ Hệ thống điện tử trong ngôi nhà thông minh

- Ngoài 1 số thiết bị, hệ thống thường gặp nói trên, còn có hàng trăm, hàng ngàn ý tưởng và phương cách thiết kế khác do người thiết kế quyết định.
- Các ý tưởng, phương cách thiết kế tạo ra thiết bị, hệ thống hoàn toàn mới và hiệu dụng >> tuỳ thuộc người sáng chế, sáng tạo đề xuất và thực hiện
- Các linh kiện, mô hình, các ý tưởng mới ngày càng nhiều và hữu ích,

V. Các hệ thống điện tử

- Hệ thống âm thanh
- Hệ thống phát thu
- Hệ thống đo (đạt)
- Hệ thống điều khiển tự động
- Hệ thống điều khiển từ xa
- Hệ thống tính toán và lưu trử
- Hệ thống điện tử công suất
- Hệ thống truyền dẫn quang
- **......**

Công việc sửa chữa Thiết bị Điện tử

1. Các yếu tố cần có:

- Nắm vững cấu trúc và cách hoạt động của thiết bị bị hư.
- Có kiến thức đầy đủ về chức năng và cấu tạo của các mạch thành phần.
- Có kiến thức đầy đủ về chức năng và cấu tạo của các linh kiện trong mạch.
- Có kỹ năng tháo ráp, dò mạch,hàn linh kiện.

2.Các bước sửa chữa Thiết bị Điện tử

- Quan sát hiện tượng
- Đoán nhận khối mạch hư
- Đo điện thế (DC), quan sát dạng sóng trên dao động nghiệm →xác định tầng hư
- Đo điện thế DC → xác định linh kiện hư
- Dùng OHM kế kiểm tra linh kiện hư
- Thay linh kiện hư bằng linh kiện tốt, mới
- Cho thiết bị hoạt động và theo dõi sự ổn định

VI. Tương lai ngành điện tử

- Những yêu cầu mới ngày càng lớn
- Những nhiên cứu mới càng ngày càng tăng và càng nhanh chóng đưa vào sử dụng
- Những linh kiện mới càng tăng do :
 - Có vật liệu mới
 - Giảm kích thước chip IC siêu nhỏ (nano)
 -
- Sự cạnh tranh khắc nghiệt của các hãng, các công ty

- Vị trí ngành điện tử của chúng ta ở đâu trong tương lai ?
- Môn học Điện tử quá dễ hay quá khó?
 Các bạn có thích môn học này không?

Chúc các bạn thành công