Isometry, Unitary and Orthogonal

Zexi Sun

August 2021

1 Introduction

Isometry: iff preserves IP iff $U^*U = I$

• Norm-preserving

Unitary $(U:X\to Y)$:

- $\dim X = \dim Y$
- $\bullet \ U^*U = I$
- Invertible

2 Isometry

An operator $U: X \to Y$ is an isometry, if it preserves the norm ||Ux|| = ||x||, $\forall x \in X$.

3 Thm 6.1

An operator U is an isometry iff it preserves the inner product

$$(x,y) = (Ux, Uy), \forall x, y \in X$$

This is proved from the polarization identity, using the def of isometry

4 Lem 6.2

An operator $U: X \to Y$ is an isometry iff $U^*U = I$.

$$(x,x) = (U^*Ux,x) = (Ux,Ux), \forall x \in X$$

. Therefore ||x|| = ||Ux||, and so U is an isometry.

This lemma implies that an isometry is always left invertible (U^* being a left inverse). Also note that a left invertible square matrix is invertible.

5 Unitary operator

An isometry $U: X \to Y$ is called an unitary operator if it is invertible.

6 Prep 6.3

An isometry U is an unitary iff dim X = dim Y.

7 Unitary matrix

A square matrix U is unitary if $U^*U = I$

i.e, a unitary matrix is a matrix of a unitary operator acting in F^n .

8 Orthogonal matrix

A unitary matrix with real entries is called an orthogonal matrix.

9 Properties of unitary operators

- 1. $U^{-1} = U^*$
- 2. If U unitary, $U^* = U^{-1}$ also unitary
- 3. If U is an isometry, and v_i is an orthonormal basis, then Uv_i is an orthonormal system. Moreover, if U is unitary, Uv_i is an orthonormal basis. $(1 \le i \le n)$.
- 4. A product of unitary operators is a unitary operator as well.
- 5. |detU| = 1. In particular, for an orthogonal matrix $detU = \pm 1$
- 6. If λ is an eigenvalue of U, the $|\lambda| = 1$.

10 Unitarily equivalent

Operators A and b are unitarily equivalent if there exists a unitary operator U st $A = UBU^*$.

Funce for a unitary U we have $U^{-1} = U^*$, any two unitary equivalent matrices are similar as well.

11 Prep 6.5

A matrix A is unitarily equivalent to a diagonal one iff it has an orthogonal (orthonormal) basis of eigenvectors.