Analysis 2

Manuel Strenge

Gebiet	Problemstellung	math. Grundlagen
Simlulationen	Haare	Differentialgleichungen
Comp. Grafik	2D render Tasse	Integralrechnung
Scientific Computing	Daten ana	Taylor-Reihen

Integrationsmethoden

Einsatzgebiet: modelieren: z.B. $v(t) = t^2$

Im Allgemeinen: $\int u(x) \cdot v(x) dx \neq \int u(x) dx \cdot \int v(x) dx$

Repetition:

Produktregel: $(u(x) \cdot v(x))' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$

Kettenregel: $(F(u(x)))' = F'(x) \cdot u'(x)$

Integration durch Substitution

Diese Integrationsmethode beruht auf der Kettenregel für die Ableitung:

$$(F(u(x))) = \int (F(u(x)))' dx = \int F'(x) \cdot u'(x) dx$$

1. Schritt: Substitutionsgleichung für x : u = g(x)

 $u(x) = x^2$

2. Schritt: Substitutionsgleichung für dx:

2. Schritt: Substitutionsgleichung für dx: $\frac{\mathrm{d}u}{\mathrm{d}x} = g'(x) \Rightarrow \mathrm{d}x = \frac{\mathrm{d}u}{g'(x)}$

Dabei tun wir so, als ob die Ableitung $\frac{\mathrm{d}u}{\mathrm{d}x}$ ein Bruch wäre. ¹

• Beispiele (a) und (b):
$$\frac{dy}{dx} = y'(x) = Zx = 1$$
 $\frac{dy}{2x} = \frac{dy}{2x}$

3. Schritt: Integralsubstitution: $\int f(x) dx = \int \varphi(u) du$

Wir ersetzen nun im Integral g(x) und dx gemäss den Substitutionsgleichungen. In dem resultierenden Integral kommen dann beide Variablen x und u vor; es ist somit streng genommen gar nicht wohldefiniert. Die Variable x muss nun durch Kürzen zum Verschwinden gebracht werden! Ist dies nicht möglich, so haben wir den falschen Ansatz gewählt.

$$\int \cos(x^2) \cdot x dx - \int \cos(u) \cdot x \frac{du}{2x} = \int \frac{1}{2} \cos(u) du$$

1