Lecture 25 Model Order Estimation

ECEN 5283 Computer Vision

Dr. Guoliang Fan School of Electrical and Computer Engineering Oklahoma State University

Goals

- ▶ To introduce the model order estimation problem.
- ▶ To discuss the minimum description length (MDL) criterion for model order estimation.
- To apply a prior probability for order model estimation.

Computer Vision

Basic idea

What is the objective function of the EM algorithm?

The objective function of the EM algorithm is the incomplete data log-likelihood defined as

$$\log p(Y \mid \Theta) = \sum_{j=1}^{N} \log \left(\sum_{i=1}^{K} p(y_j \mid x_j = i, \Theta) \alpha_i \right)$$

If we keep the same objective function for the case that the number of cluster K is unknown as, then we get

$$\log p(Y \mid K, \Theta) = \sum_{j=1}^{N} \log \left(\sum_{i=1}^{K} p(y_j \mid x_j = i, \Theta) \alpha_i \right)$$

Can we use this objective function to estimate the model order?

Can we use this objective function to estimate the model order?

 Can we use the maximum likelihood (ML) estimation to find the model order and parameters as

$$(\Theta^*, K^*) = \arg\max_{\Theta} \log p(Y \mid K, \Theta)$$

- Unfortunately, the ML estimation of the model order and parameters is not well defined here.
 - A larger number K can always make the likelihood larger (or better fitness with a higher order model).
 - There should be a penalty term to penalize a larger order.

Minimum Description Length (MDL)

The MDL estimator attempts to find the model order which minimizes the number of bits that would be required to code both the data samples Y and the parameter vector

$$\Theta = (\alpha_1, ..., \alpha_K, \mu_1, ..., \mu_K, \Sigma_1, ..., \Sigma_K,)$$

$$MDL(K,\Theta) = -\log p(Y \mid K,\Theta) + \frac{1}{2}L\log(NM)$$

L: the number of parameters in Θ

M: the dimension of the observation y

N: the size of data samples

Where is K?

https://engineering.purdue.edu/~bouman/software/cluster/manual.pdf

EM algorithm for MDL optimization

- ▶ Step I: Initialize the class number with the largest one $k=K_{max}$.
- ▶ Step 2: Initialize the parameters of k Gaussians.
- ▶ Step 3:Apply the EM algorithm until MDL(k, Θ) converges.
- ▶ Step 4: Record the corresponding Θ^* and MDL value.
- Step 5: If k>1, reduce the number of clusters, k=k-1 and go back to step 2.
- ▶ Step 6: Choose the value k^* and parameter Θ^* which minimize the value of MDL.

$$(k^*, \Theta^*) = \arg_{k=1,\dots,K} \min MDL(k, \Theta)$$

How to trim down the number of clusters?

In order to provide a good initialization for the lower-order model, we just need to merge to the two Gaussian components which are the closest.

http://cobweb.ecn.purdue.edu/~bouman/software/cluster/

How to compute the distance between

$$\alpha_l, \theta_l = \{\mu_l, \Sigma_l\}$$

$$\alpha_m, \theta_m = \{\mu_m, \Sigma_m\}$$

component if we merge the two

$$d(l,m) = \frac{N\alpha_l}{2} \log \left(\frac{\left| \Sigma_{(l,m)} \right|}{\left| \Sigma_l \right|} \right) + \frac{N\alpha_m}{2} \log \left(\frac{\left| \Sigma_{(l,m)} \right|}{\left| \Sigma_m \right|} \right)$$
It is the summettion of the similarity between each

It is the summation of the similarity between each individual component and the composite one.

A MDL Example

Shortcoming of MDL Estimation

▶ There are two major limitations of MDL estimation

- The optimal model order may not be semantically meaningful. That means the estimated cluster number may not necessary reveal the underlying structure in the data.
- The optimal model order estimated could depend on K_{max} that is the largest model order.

Another Alternative Approach for Model Order Estimation

If we assume a prior probability of models of different orders as a Poisson distribution as

$$P(K^* = k) = \frac{\lambda^k}{e^{\lambda} k!} \quad \text{mean } \lambda$$
 variance λ

A New Objective Function

• Given a prior probability of the model Θ_k , we can define a new joint posterior probability density to represent the solution

- ▶ Step I: Initialize k=1;
- Step 2: Optimize the model parameter Θ_k using EM;
- ▶ Step 3: Compute the data likelihood $p(Y|\Theta_k)$ and the prior probability of model order k, i.e., P(k);
- ▶ Step 4: k=k+1 and go to step 2, until $k=K_{max}$;
- Find the model order that has be the largest joint posterior probability.

$$\{k^*, \Theta^*\} = \arg_{\{k,\Theta\}} \max p(\Theta, k \mid Y)$$

$$= \arg_{\{k,\Theta\}} \max p(Y \mid \Theta) p(k)$$

$$= \arg_{\{k,\Theta\}} \max \left(\log p(Y \mid \Theta) + \log p(k)\right)$$

The Main Challenge

- The prior probability has to be carefully set in order to produce a meaningful result on model order estimation.
 - In practice, it is more desirable to set λ relative smaller. Why?

