Question	Answer		Mark
Number			
19(a)(i)	Top line correct Bottom line correct	(1) (1)	(2)
	Example of calculation 40 t		
	$^{40}_{19}\text{K} \rightarrow ^{40}_{20}\text{Ca} + ^{0}_{-1}\beta^{-} + ^{0}_{0}\bar{\nu}_{e}$		
19(a)(ii)	Calculation of mass difference	(1)	
	Conversion from u to kg	(1)	
	Use of $\Delta E = c^2 \Delta m$	(1)	
	Use of 1.6×10^{-19} to convert energy to eV	(1)	
	$\Delta E = 0.80 \text{ (MeV)}$	(1)	(5)
	Example of calculation:		
	Mass difference = $39.963998 \text{ u} - 39.962591 \text{ u} - 0.00054858 \text{ u} = 8.584 \times 10^{-4} \text{ u}$		
	Mass difference = $8.584 \times 10^{-4} \text{ u} \times 1.66 \times 10^{-27} \text{ kg u}^{-1} = 1.425 \times 10^{-30} \text{ kg}$		
	$\Delta E = c^2 \Delta m = (3.00 \times 10^8 \text{ m s}^{-1})^2 \times 1.425 \times 10^{-30} \text{ kg} = 1.282 \times 10^{-13} \text{ J}$		
	$\Delta E = \frac{1.282 \times 10^{-13} \text{ J}}{1.60 \times 10^{-13} \text{ J MeV}^{-1}} = 0.802 \text{ MeV}$		
19(a)(iii)	Momentum/KE is given to 3 particles in the decay		
	Or (KE of Ca is negligible so) KE for the beta-neutrino pair was constant	(1)	
	The energy split between the beta particle and the neutrino is random		
	Or the momentum of the emitted beta particle varies		
	Or The (anti) neutrino energy varies	(1)	(2)

19(b)(i)	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$	(1)	
	$\iota_{1/2}$	(1)	
	Use of $\frac{\Delta N}{\Delta t} = (-)\lambda N$,	
		(1)	(3)
	$A = 1.94 \times 10^5 \text{ (Bq)}$	` '	,
	Example of calculation:		
	ln2 0.693		
	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{1.25 \times 10^9 \times 3.15 \times 10^7 \text{s}} = 1.76 \times 10^{-17} \text{ s}^{-1}$		
	$\frac{\Delta N}{\Delta t} = \lambda N = 1.76 \times 10^{-17} \text{ s}^{-1} \times 1.10 \times 10^{22} = 1.94 \times 10^{5} \text{ Bq}$		
	$ig \Delta t$		
19(b)(ii)	Use of $A = A_0 e^{-\lambda t}$	(1)	
	$t = 8.6 \times 10^7$ years, so claim is false.	74 5	(4)
	Or Activity after 50 years = 1.94×10^5 Bq so claim is false (valid calculation needed)	(1)	(2)
	(ecf activity from (i))		
	Example of calculation		
	$1.85 \times 10^5 = 1.94 \times 10^5 e^{-1.76 \times 10^{-17} t}$		
	$-1.76 \times 10^{-17} \text{ s}^{-1} \times t = \ln \left(\frac{1.85 \times 10^5 \text{ Bq}}{1.94 \times 10^5 \text{ Bq}} \right)$		
	$t = \frac{-0.0475}{-1.76 \times 10^{-17}} = 2.70 \times 10^{15} \text{ s} = 8.57 \times 10^{7} \text{ years}$		
19(b)(ii)	$t = 8.6 \times 10^{7}$ years, so claim is false. Or Activity after 50 years = 1.94×10^{5} Bq so claim is false (valid calculation needed) (ecf activity from (i)) <u>Example of calculation</u> $1.85 \times 10^{5} = 1.94 \times 10^{5} e^{-1.76 \times 10^{-17}} t$ -1.76×10^{-17} s ⁻¹ × $t = \ln \left(\frac{1.85 \times 10^{5} \text{ Bq}}{1.94 \times 10^{5} \text{ Bq}} \right)$	(1)	(

14

Total for question 19