Predicting Discrete Outcomes

Paolo Perrotta
FREELANCE DEVELOPER
@nusco

A Marsupial Classifier

Regression vs. Classification

Regression

Predicts a number

Classification

Predicts a class

Reservations	Temperature	Tourists	Break-even
13	33	9	1
2	16	6	0
14	32	3	1
23	25	9	1
13	23	8	0
13	51	9	1
1	27	7	0
18	16	2	1
7	34	3	0
10	22	3	0
26	17	7	1
3	21	1	0
	10	1	0

Categorical Data

From Regression to Classification

Adding Another Function

Adding Another Function

The Sigmoid

$$\frac{1}{1+e^{-z}}$$

The Mean Squared Error Loss

The Log Loss

Summary

We shifted from regression to classification

- We wrapped a sigmoid around the output of regression
- We replaced the mean squared error with the log loss