# Singular Value Decomposition (SVD) Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) Machine Learning for Finance (FIN 570)

Instructor: Jaehyuk Choi

Peking University HSBC Business School, Shenzhen, China

2023-24 Module 3 (Spring 2024)

### Eigen(spectral) decomposition

For a matrix  $oldsymbol{A}$ , eigenvalue  $\lambda_k$  and eigenvector  $oldsymbol{v}_k$  satisfy

$$Av_k = \lambda_k v_k.$$

The matrix A can be decomposed into

$$A = Q\Lambda Q^{-1},$$

where  $\Lambda$  is a diagonal matrix with values  $\lambda_k$  and  $Q=(v_1\cdots v_n)$ , i.e.,  $Q_{*j}=v_j$ . When A is real and symmetric, Q is an orthonormal matrix,  $QQ^T=I$ ,

$$\boldsymbol{A} = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^T,$$

# Singular Value Decomposition (SVD)

The single most useful practical concept in linear algebra:

- Any matrix (even rectangular) has a SVD.
- SVD tells everything on a matrix.

For any  $m \times n$  matrix A, there is a unique decomposition:

$$A = USV^T$$
,

### where

- U ( $m \times m$ ): orthonormal ( $UU^T = U^TU = I$ )
- S  $(m \times n)$ : diagonal. The singular values,  $s_k$  for  $1 \le k \le m \land n$ , are positive and in a decreasing order.
- V  $(n \times n)$ : orthonormal  $(VV^T = V^TV = I)$



### **SVD: Intuition**

### Linear transformation A is decomposed into

- $\bullet \ \ {\rm a \ rotation \ by} \ V^T$
- ullet a scaling by S
- ullet a rotation by U



# SVD: Compact Form, Low Rank Approximation



- For a non-square matrix, a compact form is enough:  $U(m \times r)$ ,  $S(r \times r)$ ,  $V(n \times r)$  where  $r = \min(m, n)$ .
- If the rank is  $k (\leq r)$ ,  $s_{j>k} = 0$ :  $U(m \times k)$ ,  $S(k \times k)$ ,  $V(n \times k)$
- Using the first  $j (\leq k)$  biggest singular values,

$$A_j = U_j S_j V_j^T = \sum_{i=1}^j \mathbf{u}_i s_i \mathbf{v}_i^T, \quad U_j (m \times j), \ S_j (j \times j), \ V_j (n \times j)$$

is the best approximation with rank j minimizing the norm  $\|A-A_j\|_F$ 

### SVD: Image Compression

An image file is nothing but a matrix, so the low-rank approximation of SVD works as an image compression method. The storage is reduced from mn to (m+n+1)k.



## Principal Component Analysis (PCA)

If X is a matrix of n samples of p features  $(n \times p)$ , the covariance matrix is

$$oldsymbol{\Sigma} = rac{1}{n} oldsymbol{X}^T oldsymbol{X} : (p imes p)$$
 symmetric matrix

The covariance matrix of the transformed space  $oldsymbol{Z} = oldsymbol{X} oldsymbol{W}$  is

$$\mathsf{Cov}(\boldsymbol{Z}) = \frac{1}{n}(\boldsymbol{X}\boldsymbol{W})^T(\boldsymbol{X}\boldsymbol{W}) = \frac{1}{n}\boldsymbol{W}^T(\boldsymbol{X}^T\boldsymbol{X})\boldsymbol{W} = \boldsymbol{W}^T\boldsymbol{\Sigma}\boldsymbol{W}$$

If we pick  $m{W}$  to be the orthogonal transformation of SVD, i.e.,  $m{\Sigma} = m{W} m{S} m{W}^T$ ,

$$\mathsf{Cov}(\boldsymbol{Z}) = \boldsymbol{S} = \mathsf{diag}(S_{11}, \cdots, S_{pp}).$$

Notice that  $\text{Cov}(Z_i, Z_j) = \boldsymbol{W}_{*i}^T \boldsymbol{\Sigma} \boldsymbol{W}_{*j} = S_{ij}$  is zero if  $i \neq j$ , so the extracted features are orthogonal.

Jaehyuk Choi (PHBS)

### Process of finding $oldsymbol{W}$

Let  $W = (W_{*1} \ W_{*2} \ \cdots W_{*p}).$ 

- Find  $m{W}_{*1}$  such that  $|m{W}_{*1}|=1$  and  $|m{W}_{*1}^T m{\Sigma} m{W}_{*1}|$  is maximized.
- Find  $m{W}_{*2}$  such that  $|m{W}_{*2}|=1$ ,  $|m{W}_{*2}^T m{\Sigma} m{W}_{*2}|$  is maximized and  $m{W}_{*1}^T m{W}_{*2}=0$ .
- ..
- Find  $W_{*k}$  such that  $|W_{*k}| = 1$ ,  $|W_{*k}^T \Sigma W_{*k}|$  is maximized and  $W_{*k}$  is orthogonal to  $\{W_{*j}\}$  for j < k.



### Total and Explained Variance

The total variance is the variance of all original features. Under PCA,

$$\sum_{k=1}^{p} \mathsf{Var}(X_k) = \sum_{k=1}^{p} S_{kk}.$$

Therefore the ratio

$$\frac{\sum_{j=1}^k S_{jj}}{\sum_{j=1}^p S_{jj}}$$

indicates how much of the total variance is *explained* by the first k PCA factors. Extracting features from PCA is an unsupervised learning, NOT supervised learning, because the response variable is not associated.

# PCA vs Simple Linear Regression for (x, y)

PCA is not same as Simple Linear regression (OLS)!

- Linear Regression minimize the the (squared) distance in y-axis.
- PCA (1st component) minimize the (squared) shortest distance.



### Linear Discriminant Analysis (LDA) as a classifier

 Assume the samples in each class is distributed by a multivariate normal distribution:

$$f_k(\boldsymbol{x}) = n(\boldsymbol{x}|\hat{\boldsymbol{m}}_k, \hat{\boldsymbol{\Sigma}}_k)$$

- Estimate mean  $\hat{m}_k$  and variance  $\hat{\Sigma}_k$  of from the samples in the class k.
- Assume that the covariance  $\Sigma_k$  is assume to be the average of  $\Sigma_k$  (within covariance):

$$\Sigma_W = \frac{1}{N_{\mathsf{total}}} \sum_{k=1}^K N_k \Sigma_k$$

- A test sample x is classified to the class k for which  $f_k(x)$  is largest.
- In quadratic discriminant analysis (QDA), different  $\Sigma_k$  are assumed for each k, but the estimation is more complicated.



### LDA as a dimensionality reduction tool

- ullet In the LDA assumption (shared within covariance), which direction w best separates the classes?
- $m{w} \propto (m{m}_2 m{m}_1)^T$ ? Probably not the best.
- If  $(m_{1,2}, \sigma_{1,2}^2)$  is the mean and variance pair of the samples projected on the w direction  $(y_i = x_i w \text{ with } |w| = 1)$ , we want to maximize the Fisher criterion:

$$J(w) = \frac{N_{\mathsf{total}}(m_2 - m_1)^2}{N_1 \sigma_1^2 + N_2 \sigma_2^2} = \frac{w^T (m_2 - m_1)^T (m_2 - m_1) w}{w^T (N_1 \Sigma_1 + N_2 \Sigma_2) w} = \frac{w^T S_B w}{w^T S_W w},$$

where  $S_W$  and  $S_B$  are within- and between-class variance matrices

$$oldsymbol{S}_W = \sum_{k=1}^{} N_k \, oldsymbol{\Sigma}_k, \quad oldsymbol{S}_B = N_{\mathsf{total}} (oldsymbol{m}_2 - oldsymbol{m}_1)^T (oldsymbol{m}_2 - oldsymbol{m}_1)$$

## LDA as a dimensionality reduction



ullet The direction maximizing is  $J(oldsymbol{w})$  is given by

$$\boldsymbol{w} \propto \boldsymbol{S}_W^{-1}(\boldsymbol{m}_2 - \boldsymbol{m}_1).$$

- In general, the PCA components of  $S_W^{-1}S_B$ , W, are the best directions to separate the classes.
- ullet Similar in PCA, the first few components of  $oldsymbol{W}$  are chosen to form  $\hat{oldsymbol{W}}.$
- ullet The transformation  $z=x\hat{W}$  is the extracted factors with reduced dimension can be used as inputs to other ML methods.

### PCA versus LDA

- LDA is a supervised method (using y) whereas PCA is an unsupervised method (not using y).
- LDA is not necessarily better than PCA. The performance depends on the classification problem.
- Both are the dimensionality reduction tool. The transformed data is used as inputs to other ML method.
- Both are based on PCA: the whole covariance matrix (PCA) versus  ${m S}_W^{-1} {m S}_B$  (LDA).
- They may not work well on nonlinear data.

15 / 1

Jaehyuk Choi (PHBS) MLF: SVD, PCA, LDA, KPCA