Time Series Analysis of Gold Price

Zakia Khanom Tisha

We will discuss:

- Gold Price Data Exploration
- Analysis of the Data
- Model Selection
- Model Fitting
- Residual Analysis
- Forecasting

Why Predict Gold Price:

- Gold is safest investment
- Economic Indicators
- Reserve Management
- Optimizing Returns
- Financial Stability

Gold Data Analysis

The data was taken from Business Standers Data Source from USA (1950 -2019)

Gold Data Analysis

ACF of Actual Data

Gold Data Analysis

Model Selection

```
Performing stepwise search to minimize aic
ARIMA(2,2,2)(0,0,0)[0] intercept : AIC=inf, Time=1.24 sec
                                  : AIC=8205.657, Time=0.08 sec
ARIMA(0,2,0)(0,0,0)[0] intercept
ARIMA(1,2,0)(0,0,0)[0] intercept
                                   : AIC=8108.773, Time=0.12 sec
ARIMA(0,2,1)(0,0,0)[0] intercept
                                  : AIC=7834.494, Time=0.31 sec
                                    : AIC=8203.672, Time=0.08 sec
ARIMA(0,2,0)(0,0,0)[0]
                                  : AIC=inf, Time=0.85 sec
ARIMA(1,2,1)(0,0,0)[0] intercept
ARIMA(0,2,2)(0,0,0)[0] intercept
                                   : AIC=inf, Time=0.72 sec
                                   : AIC=7788.411, Time=0.50 sec
ARIMA(1,2,2)(0,0,0)[0] intercept
ARIMA(1,2,3)(0,0,0)[0] intercept
                                   : AIC=inf, Time=1.20 sec
ARIMA(0,2,3)(0,0,0)[0] intercept
                                   : AIC=inf, Time=1.00 sec
                                   : AIC=inf, Time=0.79 sec
ARIMA(2,2,1)(0,0,0)[0] intercept
ARIMA(2,2,3)(0,0,0)[0] intercept
                                   : AIC=inf, Time=1.39 sec
ARIMA(1,2,2)(0,0,0)[0]
                                   : AIC=7786.785, Time=0.30 sec
ARIMA(0,2,2)(0,0,0)[0]
                                   : AIC=inf, Time=0.32 sec
ARIMA(1,2,1)(0,0,0)[0]
                                   : AIC=inf, Time=0.22 sec
ARIMA(2,2,2)(0,0,0)[0]
                                    : AIC=inf, Time=0.52 sec
                                    : AIC=inf, Time=0.94 sec
ARIMA(1,2,3)(0,0,0)[0]
ARIMA(0,2,1)(0,0,0)[0]
                                   : AIC=7832.826, Time=0.13 sec
ARIMA(0,2,3)(0,0,0)[0]
                                   : AIC=7793.301, Time=0.25 sec
                                    : AIC=7796.870, Time=0.37 sec
ARIMA(2,2,1)(0,0,0)[0]
                                    : AIC=inf, Time=0.68 sec
ARIMA(2,2,3)(0,0,0)[0]
```

Best model: ARIMA(1,2,2)(0,0,0)[0] Total fit time: 12.010 seconds

Optimal order for ARIMA model: (1, 2, 2)

Model Selection

- To Select Optimal Model Python Libraries are Used
- auto_arima function from pmdarima library used to find optimal ARIMA model
- Tested different combinations of ARIMA parameters (p, d, q)
- Optimal model was ARIMA (1,2,2)

Model Fitting and Residual Analysis

- ARIMA (1,2,2) was fitted to Gold Data
- Residuals behave like white noise

Residuals Analysis And Model Fitting

Residuals Analysis And Model Fitting

Residuals Analysis And Model Fitting

SARIMAX Results

Dep. Variab	ole:	P	rice No.	Observations:		847	
Model:		ARIMA(1, 2	, 2) Log	Likelihood		-3889.393	
Date:	Т	ue, 14 May	2024 AIC			7786.785	
Time:		10:5	5:35 BIC			7805.743	
Sample:		01-31-	1950 HQIC			7794.049	
		- 07-31-	2020				
Covariance	Type:		opg				
=======							
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	-0.6018	0.041	-14.786	0.000	-0.682	-0.522	
ma.L1	-0.1598	0.031	-5.173	0.000	-0.220	-0.099	
ma.L2	-0.7731	0.028	-27.501	0.000	-0.828	-0.718	
sigma2	581.0090	10.903	53.287	0.000	559.639	602.379	
Ljung-Box (L1) (Q):		=======	======= 0.57	Jarque-Bera	(JB):	5297.	12
Prob(Q):			0.45	Prob(JB):	(00).		00
Heteroskedasticity (H):		:	445.42	Skew:		0.	
Prob(H) (two-sided):		•		Kurtosis:		15.	
							==
	 _						

Forecasting

Conclusion

The ARIMA(1,2,2) model was identified as the optimal model for forecasting gold prices, successfully addressing both trend and autocorrelation in the data. Future work could focus on incorporating exogenous variables and testing seasonal ARIMA models to further enhance forecasting accuracy

Thank you!

