d) $\sum_{i=0}^{n} i^2 = \Theta(n^6)$ $\sum_{i=0}^{n} i^{2} = 0$ 07172737...+ n^{2} 1727 n^{2} 1...+ n^{2} 1727 n^{2} 1...+ n^{2} 1 :. Zivi in for all nio, neN $\sum_{i=0}^{n} i^2 = \frac{h(h+i)(2n+i)}{6}$ (Since the sufficient result) = $\frac{(h^2+i)(2n+i)}{6} = \frac{2h^2+3h^2+n}{6}$ Let, $\frac{n^2+n^2+n}{2}$ $\frac{n^2}{2}$ $\frac{n^2+n}{2}$ $\frac{n^2+n}{2}$ $\frac{n^2+n}{2}$ $\frac{n^2+n}{2}$ $\frac{h^{3}}{2}$ $\times \sum_{i=0}^{n} \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2$ $\begin{bmatrix} \vdots \\ \sum_{i=0}^{n} i^{2} = \theta(n^{3}) \end{bmatrix}$ e) $\sum_{i=0}^{n} i^{9} = \theta(n^{4})$ $\sum_{i=0}^{n} i^{9} = 0^{9} + 1^{9} + 2^{9} + \dots + h^{9} = (n^{2} + h^{2} + h^{2} + \dots + h^{9})$:. Zieo igna for all n/O, nEN. = non=na Gntimes $\sum_{i=0}^{n} \frac{3}{i} = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n(n+2n+1)}{6} = \frac{n^4 + 2n^2 + n^2}{6} \times \frac{n^4}{6} = \frac{n^4}{6} \times \frac{n^2}{6} \times \frac{n^4}{6} = \frac{n^4}{6} \times \frac{n^4}{6} \times \frac{n^4}{6} \times \frac{n^4}{6} = \frac{n^4}{6} \times \frac{n^4}{6} \times \frac{n^4}{6} \times \frac{n^4}{6} = \frac{n^4}{6} \times \frac{n^4}{6} \times \frac{n^4}{6} \times \frac{n^4}{6} \times \frac{n^4}{6} = \frac{n^4}{6} \times \frac{$ $\frac{n^4 \sqrt{2n}}{6} \frac{3}{\sqrt{n^4}} \frac{4}{\sqrt{5n}} \frac{1}{\sqrt{5n}} \frac{1}{\sqrt{5n}}$ $f) h^{2n} + 6 \cdot 2^n = \theta(h^2)$ Let, $h^2 + 6 \cdot 2^n < 2h^2 hold,$ or, 6.2ⁿ / n²". co. de 6 h 102 6 00 de 1 Claim: 6.2n < n2n for n/3, nEN Fros: Bue case: n=3, $6.2^3=48$ $n^2=3^2=38$ 48,738: base case holds II.H: h=K, 6.2KXK2K. Induction Step: 6.2K+1 = 2.(6.2K) 32K2K(ByÍ.H.)