

## Indice

- 1. Contesto
  - 1.1. Azienda
  - 1.2. Problema di Business
  - 1.3. Dati a disposizione
- 2. Obiettivi dell'analisi
- 3. Tecnologie e Architettura di Bl adottate
- 4. Fasi dell'analisi dei dati
  - 4.1. Data Ingestion
  - 4.2. Data Cleaning
  - 4.3. Statistiche Descrittive
  - 4.4. Algoritmo
  - 4.5. Risultati
- 5. Visualizzazioni a supporto delle evidenze
- 6. Possibili sviluppi futuri

## **Contesto aziendale**

#### Azienda del settore Retail Fashion Luxury

- Fatturato medio annuo: circa 1,3 miliardi €; utili intorno ai 14,0 milioni €;
- 300 negozi monomarca: Boutique (Retail e Travel Retail) ed Outlet, oltre a sito E-commerce
  - di gestione e proprietà diretta
  - distribuiti su tutti i continenti ad eccezione di alcune aree, come East Europa e Medio Oriente, dove sono presenti negozi Franchising (punti vendita monomarca con licenza di vendita);
- Collezioni Uomo, Donna e Bambino; 3 principali linee di produzione:
  - Ready To Wear: abbigliamento costituito da abiti realizzati e venduti finiti in taglie standard;
  - Sartoriale o Made To Measure: abiti maschili realizzati su misura del cliente con personalizzazioni;
  - Alta Moda: abito realizzato a mano, interamente artigianale e dai materiali pregiati;
- Tramite accordi licenziatari, l'azienda commercializza una linea occhiali, profumi e makeup;
- Negli ultimi tempi è stata creata una linea food ed una collezione home.









## **Problema di Business**

Tra i diversi punti di un'ampia strategia di **revenue generation**, impostata dalla direzione Retail e da guella Commerciale, vi è guello di sviluppare e migliorare l'up-sell e il cross-sell di vendita

#### **UP-SELLING**

tecnica di vendita che mira ad offrire al consumatore qualcosa di maggior valore rispetto alla sua scelta d'acquisto iniziale, per farlo spendere di più.





#### **CROSS-SELLING**

consiste nell'aumentare il valore dello scambio mettendo a disposizione prodotti in qualche modo collegati con la scelta d'acquisto iniziale, per rendere l'offerta più ricca e completa.





Esempio di campagna marketing di cross/up sell dopo un acquisto, per completare il look

Acquisto effettuato

Suggerimento di prodotti post acquisto













1. Contesto

**Problema** 

## **Problema di Business**

Perché?

Analizzando i basket d'acquisto è emerso che nella maggior parte dei ticket è presente **una sola** categoria di prodotto o classe commerciale

Come?

Sviluppando di un sistema di **Product Recommendation** che restituisca i più probabili pattern d'acquisto

Per chi?

- → **Ufficio Merchandising**: miglioramento dello sviluppo della collezione;
- → **Ufficio Visual Merchandising**: miglioramento dell'esposizione del prodotto in negozio;
- → **Ufficio Buyer**: ottimizzazione dei processi di acquisto dei negozi;
- → **Ufficio CRM**: fornire contenuti di comunicazione rilevanti sugli acquisti passati per guidare cross sell o riattivazioni clienti;
- → Forza vendita: supporto agli store manager e sales associati nella predisposizione dei look da proporre alla clientela.

# Dati a disposizione

Dati consuntivi delle vendite estratti dal CRM aziendale ( > 5 mln righe)

KPI CRM

Finestra temporale considerata: 2015-2021



- Clienti: 1,3 mln circa
- Prodotti/sku : 127 k circa





## **Obiettivi dell'analisi**

- supportare la forza vendita durante la cerimonia di vendita
- migliorare l'efficacia delle campagne di direct marketing
- supportare le strategie di product merchandising
- migliorare il processo di Demand Planning

## **Tecnologie e Architetture di BI utilizzate**

La scelta "Tecnologica" è ricaduta nella piattaforma cloud Microsoft Azure

**Azure** offre un'ampia selezione di servizi che vanno dall'elaborazione e archiviazione dei dati, fino all'analisi degli stessi attraverso strumenti di Business Intelligence e Business Analytics, tutti estremamente interconnessi.

Questa soluzione "all-in-one" che ci ha permesso di:

- creare e condividere la nostra base dati in Cloud
- sfruttare la **scalabilità** di calcolo utilizzando i notebook Databricks
- analizzare i dati ed i risultati ottenuti in Power Bl



1. Contesto

2. Obiettivi

3. Tecnologie

# Fasi di analisi e rispettive tecnologie





DB relazionale in Cloud (Azure)

condivisione dei dati

#### **DATA PROFILING**



Studio dei dati e identificazione delle problematiche presenti

**DATA CLEANING** 



Normalizzazione, rimozione e/o riclassificazione di alcune variabili creazione tabella **OLAP** 



Unione tabella dei fatti con le tabelle delle dimensioni

STATISTICHE DESCRITTIVE



Comprensione e rappresentazione delle relazioni tra variabili





Sottomissione di diverse configurazioni dello stesso algoritmo

valutazione dei risultati



Valutazione congiunta della qualità delle metriche e contestualizzazione

**DATA VISUALIZATION** 



Dashboard a supporto delle raccomandazioni fornite

1. Contesto

2. Obiettivi

3. Tecnologie

4. Fasi dell'analisi

1) Estrazione CSV dal gestionale CRM (SAP)



- Negozi: 357

- Clienti: 1,30 mln

- Prodotti: 127,4 mila

- Righe scontrini: 5,86 mln

riconducibile a tipico **schema a stella** con la tabella dei fatti e le tabelle delle dimensioni

#### ANAGRAFICA NEGOZI

Store Code Store Desc.

Region Code Region Desc.

Sub Region Code Sub Region Desc. Country Code

Country Desc.

#### **ANAGRAFICA CLIENTI**

CRM Code

Nationality Group (CRM) Residence Country Desc.

Birth Date

Customer Gender Code

#### TRANSAZIONI

CRM Code

Date

Ticket Prefix+Number Model Part Color Code

Sold Oty

Sold SellOut Net (ExR SO)

#### **ANAGRAFICA PRODOTTI**

Brand Desc. Brand Code

Retail Line Group

Line Desc.

Line Code

Commercial Class Desc. (It)

Commercial Class Code

Model Desc. Model Code

Model Code

Color Desc.

Model Part Color Code

Article Desc.

2) Storage CSV nel Database in Cloud (Azure SQL Server)







**Condivisione** del Database in Cloud, impostando gli accessi consentiti



Stringa di **connessione JDBC**, per collegare il Database in Cloud a Azure Databricks





**Data Ingestion** 

**Data Cleaning** 

Istanza Databricks



**Data Cleaning** 

Istanza Databricks

Creazione Notebook in **Azure Databricks** e connessione via

JDBC da **Azure SQL Server** 

## Step 1: Load Data

Cmd 5

#### Connessione JDBC da Azure SQL Server

```
driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"
url = "jdbc:sqlserver://projectbibda.database.windows.net;DatabaseName=Project"
table = "dbo.Anagrafica_Store"
user = "projectbibda"
password = """

Client = spark.read.format("jdbc")\
option("driver", driver)\
option("url", url)\
option("dbtable", table)\
option("user", user)\
option("password", password)\
load()
```

## **Transaction rows (Sales)**

- → Eliminazione delle "quotes"
- → Estrazione dell'informazione "Store", ls "DG820948" "06/04 estrapolando l'attributo dalla colonna scontrino (Ticket)
- → Eliminazione degli importi negativi (n scontrini=104.985)

```
sales_view = sales_view.withColumn('ticket', regexp_replace('ticket', ' ', ''))
sales_view = sales_view.withColumn('substr_store', substring('ticket',0,2))

#case when: store from ticket
sales_view = sales_view.withColumn('store', when(sales_view.substr_store == "10", substring('ticket',2,6))
.when(sales_view.substr_store == "10", substring('ticket',3,6))
.when(sales_view.substr_store == "10", substring('ticket',3,6))
.when(sales_view.substr_store == "1R", substring('ticket',3,6))
.otherwise("0000000"))
```

"DG820948"

01000101A 201800002081"

01000101A 201800002081

01000101A 201800002081"

Sales

"-1" "-995" "-1" "-3.450"

"-1" "-1.650"

"-1" "-1.350"

"-1" "-1.450"

"F68H8THS1RQHAM64

"F68P5TFS57MHCM58

"F69O9TFSFGGHNM62 "F69P1TFSEGIHAP58"

#### **Product / SKU**

- → Eliminazione caratteri e spazi indesiderati
- → Sostituzione descrizioni non consistenti
- → Eliminazione righe del campo "Commercial Class Desc." pari a "NO VALUE", "NON DEFINITO", "NON DEFINITA", "OBJECTS", "OTHERS"
- → Eliminazione righe del campo "**Line Desc.**" pari a "FOOD&BEVERAGE", "PUBBLICAZIONI", "LICENZIATARI", "LICENZE VARIE"
- → Eliminazione righe del campo "Model Desc." pari a "CANDELA"

E' stata inoltre creata una tabella di raccordo utile alla riclassificazione della singola SKU per determinare un livello di aggregazione idoneo per l'algoritmo.

#### Customer

Gen Z

Creazione del campo "**Generation**", compilato calcolando la generazione di appartenenza del cliente ottenuta a partire dalla data di nascita:

| $\rightarrow$ | Builders     | <b>'30 - '45</b> |      |
|---------------|--------------|------------------|------|
| $\rightarrow$ | Baby Boomers | ′46 - ′65        |      |
| $\rightarrow$ | Gen X        | '66 - '80        | 1, 1 |
| <b>→</b>      | Gen Y        | ′81 – ′96        |      |

Altri record sono stati riclassificati come "**Undefined**" a seconda se la Birth Date fosse pari a 01/01/01, data fittizia utilizzata per i clienti non disposti a fornire la propria data di nascita, o riferiti ad anni recenti (2021, 2020, 2019 ecc..)

**'97 - '03** 

#### **Store**

Estrazione di altri dettagli di carattere qualitativo dal campo "Store Description"

- → Channel : Boutique / Outlet
- → Target: Woman / Man / Kids
- → Stato : Chiuso / Aperto

```
"Store Code"
                 "Store Desc."
                                  "Region Code"
                                                   "Region Desc."
                                                                    "Sub Re
"010044"
             "FORTE DEI MARMI KIDS
                                                        "Europe"
                                                                    "SE"
"010045"
                                                   "Europe"
             "ROMA RINASCENTE UOMO
"010046"
             "ROMA RINASCENTE DONNA TEMP"
                                               "EU"
                                                       "Europe"
                                                                    "SE"
"010047"
                                                       "SE"
                                                                "Southern E
             "FORTE DEI MARMI"
                                           "Europe"
"010048"
             "ROMA SPAGNA"
                                      "Europe"
                                                            "Southern Europ
"010049"
             "MILANO SPIGA DONNA"
                                      "EU"
                                               "Europe"
                                                            "SE"
                                                                    "Southe
```

## Tabella OLAP









#### CLIENTI





## **Totale clienti** nel dataset: **1.30 mln**

- di cui Maschi: 46.97 %
- di cui Femmine: 52,46%
- altro: 0,57%

#### Legenda generazioni

- '30 '45: Builder
- '46 '65: Baby Boomer
- '66 '80: Gen X
- '81 '95: Gen Y
- '96 '03: Gen Z

## Undefined:

- anno di nascita missing o non plausibile
- ➤ In media i "Builders"

  hanno importi di spesa più
  alti rispetto alle altre
  generazioni; tuttavia è la
  generazione meno
  rappresentata tra i clienti.
- Le donne hanno un target di acquisto misto mentre l'uomo acquista per lo più capi maschili.

**Data Ingestion** 

Data Cleaning

Tabella OLAP

**Descrittive** 

Clienti

#### **PRODOTTI**



- L'abbigliamento
  femminile costituisce la
  principale fonte di
  fatturato.
- Le maglie e a seguire gli abiti e le borse rappresentano le classi commerciali più presenti per fatturato.

#### Totali

Linee prodotto: 28 Classi Commerciali: 124 Prodotti: 2.2 k

Prodotti: 2,2 k Articoli: 127,2 k

#### Legenda generazioni

'30 - '45: Builder

'46 - '65: Baby Boomer

'66 - '80: Gen X '81 - '95: Gen Y

'96 - '03: Gen Z

#### <u>Undefined:</u>

anno di nascita *missing* o non plausibile

**Data Ingestion** 

**Data Cleaning** 

Tabella OLAP

**Descrittive** 

Prodotti

#### **SCONTRINI / NEGOZI**



- Il 55% degli scontrini contiene **un solo item.**
- contiene **un solo item**
- L'importo medio di uno scontrino è pari a 660€; all'aumentare del numero degli item contenuti l'importo medio aumenta proporzionalmente.
- In Europa è presente la maggior parte dei negozi (circa il 40% del totale) seguito dalla **Cina** (25%).
- Le sneakers e gli occhiali da sole si presentano più frequentemente negli scontrini composti da un solo item (prodotti stand-alone).

#### **ASSE TEMPORALE**



- La distribuzione temporale dei ticket risente della stagionalità: numero di ticket più elevato nei mesi estivi (sconti, capi meno costosi...).
- Marzo 2020: riduzione del numero di scontrini in tutte le Region.
- Numero di scontrini in **Europa** ampiamente maggiori di quelli registrati in altre Region. La maggior parte dei negozi sono, infatti, in Europa.
- Vendite concentrate nel weekend (soprattutto Sabato) ma con un importo medio di scontrino costante.
- Fatturato Outlet < Fatturato Boutique: coerente con i prezzi medi Outlet inferiori ai prezzi medi in Boutique.

**Data Ingestion** 

**Data Cleaning** 

Tabella OLAP

**Descrittive** 

Asse temporale

Obiettivi

- estrarre informazioni sul comportamento d'acquisto dei clienti
- attivare diverse azioni di marketing a seconda dei risultati, quali:

cross-selling proattivo

la vendita di prodotti o servizi aggiuntivi <u>correlati</u> al prodotto acquistato dal cliente o per il quale il cliente ha espresso interesse

ottimizzazione delle promozioni

"effetto leva" : promozione di un prodotto legato a molti altri

organizzazione della disposizione dei prodotti nel punto vendita

gestione del magazzino

Definizioni

- ITEM: singolo elemento presente nello scontrino
- TRANSAZIONI: scontrini
- REGOLA: siano A e B due itemset definiti da una partizione di un insieme di item I.
   Se vale la seguente regola associativa: A ⇒ B
   allora A è detto antecedente della regola e B conseguente della regola.

**NB!**: Non viene considerata la quantità acquistata di questi prodotti, ma solo la loro presenza/assenza nello scontrino.

**Data Ingestion** 

**Data Cleaning** 

**Tabella OLAP** 

**Descrittive** 

**Algoritmo: MBA** 

Definizioni

Metriche principali (1)

#### **SUPPORT** $\in$ [0,1]

- di un item A : frequenza relativa ovvero (n. transazioni contenenti A)/ (n. transazioni totali)
- di una regola A ⇒ B : frequenza relativa della regola nell'insieme delle transazioni, cioè la frequenza relativa delle transazioni che contengono A e B .

| Scontrino | Itemset          |
|-----------|------------------|
| #1        | Sneaker          |
| #2        | Abito            |
| #3        | Sneaker, T-Shirt |

| Item             | Support    |
|------------------|------------|
| Sneaker          | 2/3 = 0,66 |
| Abito            | 1/3 = 0,33 |
| T-shirt          | 1/3 = 0,33 |
| Sneaker, T-Shirt | 1/3 = 0,33 |

Valori soglia tipici: min Support € [0.02, 0.1]



alta: pochi frequent itemsets e poche regole, che però accadono spesso bassa: molti frequent itemset e molte regole, che perlopiù accadono raramente Il support è l'indice più semplice in quanto è la percentuale di transazioni che include due specifici prodotti

**Data Ingestion** 

**Data Cleaning** 

Tabella OLAP

**Descrittive** 

**Algoritmo: MBA** 

Metriche

Metriche principali (2)

#### **CONFIDENCE** $\in$ [0,1]

- rappresenta la proporzione di transazioni contenenti A che contengono anche B
- stima di una probabilità condizionata: support (A U B) /support (A)

| Scontrino | Itemset          |
|-----------|------------------|
| #1        | Sneaker          |
| #2        | Abito            |
| #3        | Sneaker, T-Shirt |

| Regola           | Confidence          |
|------------------|---------------------|
| Sneaker ⇒T-Shirt | (1/3) / (2/3) = 0,5 |
| T-Shirt⇒ Sneaker | (1/3) / (1/3) = 1   |

### Valori soglia tipici: min Confidence ∈ [0.7, 0.9]



alta: poche regole, molto forti

bassa: molte regole, di cui molte incerte

La confidence esprime l'accuratezza della regola e aiuta a comprendere la direzione del cross selling.

#### Regola valida

Support(regola) > **min Supp** and Confidence(regola) > **min Conf** 

**Data Ingestion** 

**Data Cleaning** 

Tabella OLAP

**Descrittive** 

**Algoritmo: MBA** 

Metriche

Metriche principali (3)

**LIFT**  $\in$   $[0,+\infty)$ 

confronto tra la probabilità di trovare A e B insieme nel carrello e la probabilità di trovarli nel carrello nell'ipotesi di indipendenza: confidence ( $A \Rightarrow B$ ) / support (B)



>1: associazione **positiva** (A e B si verificano assieme più spesso di quanto non si verificherebbero se fossero associati casualmente)

=1: associazione casuale (A e B indipendenti)

<1: associazione **negativa** (A e B si sostituiscono, l'acquisto dell'uno con ogni probabilità fa evitare l'acquisto dell'altro)

| Scontrino | Itemset          |  |
|-----------|------------------|--|
| #1        | Sneaker          |  |
| #2        | Abito            |  |
| #3        | Sneaker, T-Shirt |  |

| Regola           | Lift            |
|------------------|-----------------|
| Sneaker ⇒T-Shirt | 0,5/0,33 = 1,51 |
| T-Shirt⇒ Sneaker | 0,5/0,66 = 0,75 |

**Data Ingestion** 

**Data Cleaning** 

Tabella OLAP

**Descrittive** 

**Algoritmo: MBA** 

Metriche

## Algoritmo Apriori

#### Approccio per livelli per generare le regole di associazione:

- estrazione di regole con Supp > minSupp e Conf > minConf e con conseguente composto di un solo elemento;
- queste regole vengono poi usate per generare nuove regole candidate.

#### 1. Identificazione Frequent Itemset

{a,b} è superset di {a}; {a,b} è subset di {a,b,d}

- Se un itemset {a,b} è frequente allora anche tutti i suoi subset lo sono {a}
- $\Rightarrow$  supp({a})  $\geq$  supp({a,b}).
- Se un itemset {a,b} non è frequente allora anche tutti i suoi superset {a,b,d} non lo sono.

# 

#### 2. Generazione Regole Associative

- Risultato: regole che sopravvivono alle condizioni ⇒ regole valide (alto support e alta confidence)
- Risparmio di tempo e risorse ⇒ algoritmo "sgrava" il computer con una computazione intelligente

**NB**: La regola, inoltre, deve essere interessante per l'utilizzatore.

ES: "se partorisce è femmina" ⇒ ha confidence 1 ma non dice nulla di interessante!!

Data Ingestion

**Data Cleaning** 

Tabella OLAP

**Descrittive** 

**Algoritmo: MBA** 

principio Apriori

Fasi operative

1. Ristrutturazione del dataset : record = scontrino {itemset}

```
id;Ticket;items;
1;000000DG38809962018-06-12;['PROFUMI UNISEX', 'PANTALONE MAN'];
2;00000DG14428422019-05-17;['CAMICIA WOMAN', 'ABITO WOMAN'];
```

- 2. Eliminazione degli scontrini con 1 solo item
- **3.** Settaggio soglie minime (arbitrarie, molto basse)
  - min Supp = 0,1 %
  - min Conf = 1.0 %



- 4. Algoritmo eseguito per granularità crescente di "item" (Pyspark.ml.fpm)
- 5. Estrazione regole e valutazione congiunta delle metriche

```
classe commerciale

prodotto

prodotto + genere
```

```
## Unità: scontrino (cliente-giorno-negozio) , item : model desc 3 (prodotto riclassificato + MAN/WOM/BABY/)
#raggruppo
groups_model_3 = sales_dg.groupby(['Ticket']).agg(F.collect_set('prod_model_desc_3').alias('items'))
#tolgo i record con solo 1 item
groups_model_3= groups_model_3.select('*',size('items').alias('n_items'))
groups_model_3_no_singoli = groups_model_3.filter(groups_model_3.n_items > 1)
```

eliminazione degli scontrini con 1 solo item

## Risultati



vengono estratte più regole in quanto mediamente i Support si alzano e quindi le regole candidate ad essere valide sono maggiori



from pyspark.ml.fpm import FPGrowth

fpGrowth = FPGrowth(itemsCol="items", minSupport=0.001, minConfidence=0.01)

model = fpGrowth.fit(groups)

# Display frequent itemsets. fp = model.freqItemsets

prova 1: dataset completo

#fp.sort(fp.freq.desc()).show(n=20)

#! salvare questi output in csv ! regole=model.associationRules

#### regole con dataset filtrato : item > 1 ####

fpGrowth = FPGrowth(itemsCol="items", minSupport=0.001, minConfidence=0.01) model = fpGrowth.fit(groups\_no\_singoli)

# Display frequent itemsets.

prova 2: dataset itemset > 1

fp = model.freqItemsets #fp.sort(fp.freq.desc()).show(n=20)

#! salvare questi output in csv !

regole\_no\_singoli=model.associationRules #regole.sort(regole.support.desc()).show()

| 80,0% | •                                    |    |
|-------|--------------------------------------|----|
| 70,0% | •                                    |    |
| 60,0% |                                      |    |
| 50,0% | -                                    |    |
| 40,0% |                                      |    |
| 30,0% |                                      |    |
| 20,0% |                                      |    |
| 10,0% |                                      |    |
| 0,0%  |                                      |    |
|       | ■ Dataset completo ■ Dataset itemset | >1 |

| Confidence |       |       |         |        |        |  |  |
|------------|-------|-------|---------|--------|--------|--|--|
| dataset    | Min   | 10    | Mediana | 30     | Max    |  |  |
| completo   | 1,00% | 4,60% | 9,61%   | 22,92% | 79,54% |  |  |
| itemset>1  | 1,00% | 5,16% | 11,20%  | 27,92% | 79,54% |  |  |

| Lift      |      |      |         |      |        |
|-----------|------|------|---------|------|--------|
| dataset   | Min  | 10   | Mediana | 30   | Max    |
| completo  | 0,23 | 1,56 | 2,88    | 5,23 | 116,40 |
| itemset>1 | 0,16 | 1,45 | 2,37    | 4,05 | 63,41  |

■ Dataset completo ■ Dataset itemset>1

| Supp      |       |       |         |       |       |  |
|-----------|-------|-------|---------|-------|-------|--|
| dataset   | Min   | 10    | Mediana | 30    | Max   |  |
| completo  | 0,10% | 0,12% | 0,16%   | 0,25% | 3,86% |  |
| itemset>1 | 0,10% | 0,12% | 0,16%   | 0,27% | 9,75% |  |

**Data Ingestion** 

**Data Cleaning** 

Tabella OLAP

**Descrittive** 

**Algoritmo: MBA** 

Risultati

## Top 5 Regole Woman

|   | antecedente                                   | conseguente         | confidence | lift   | support |
|---|-----------------------------------------------|---------------------|------------|--------|---------|
| 1 | FELPA CON ZIP WOMAN                           | PANTALONE WOMAN     | 66,5%      | 14,793 | 0,25%   |
| 2 | POLO MAN, T-SHIRT M/CORTA WOMAN               | T-SHIRT M/CORTA MAN | 57,2%      | 2,420  | 0,12%   |
| 3 | T-SHIRT M/CORTA WOMAN,<br>PANTALONE MAN       | T-SHIRT M/CORTA MAN | 55,9%      | 2,366  | 0,44%   |
| 4 | TOP WOMAN, PANTALONE WOMAN,<br>GONNA WOMAN    | ABITO WOMAN         | 54,9%      | 4,869  | 0,11%   |
| 5 | BLOUSE WOMAN, PANTALONE WOMAN,<br>GONNA WOMAN | ABITO WOMAN         | 54,5%      | 4,828  | 0,10%   |

|   | antecedente                | conseguente              | confidence | lift   | support |
|---|----------------------------|--------------------------|------------|--------|---------|
| 1 | COLLANA WOMAN              | ORECCHINI WOMAN          | 37,4%      | 28,292 | 0,22%   |
| 2 | ORECCHINI WOMAN            | COLLANA WOMAN            | 16,7%      | 28,292 | 0,22%   |
| 3 | FELPA CON ZIP WOMAN        | PANTALONE WOMAN          | 66,5%      | 14,793 | 0,25%   |
| 4 | PANTALONE WOMAN            | FELPA CON ZIP WOMAN      | 5,5%       | 14,793 | 0,25%   |
| 5 | CANOTTA WOMAN, GONNA WOMAN | CARDIGAN C/BOTTONI WOMAN | 31,2%      | 13,020 | 0,14%   |

- ➤ Le regole con confidence oltre al 50% rappresentano un subset di item con support molto basso, quindi raramente questi item si trovano tutti su un unico scontrino
- Le clienti che acquistano collana e orecchini rispetto a quelle che acquistano almeno la collana rappresentano il 37,4%.
- Le clienti che acquistano acquistano orecchini e collana su quelle che acquistano almeno gli orecchini sono il 16,7%.

E' ragionevole ritenere più adeguato raccomandare orecchini a chi sta acquistando una colonna che viceversa.

**Data Ingestion** 

**Data Cleaning** 

Tabella OLAP

**Descrittive** 

Algoritmo: MBA

Regole Woman

Top 5 Regole Woman

|   | antecedente           | conseguente         | confidence | lift  | support |
|---|-----------------------|---------------------|------------|-------|---------|
| 1 | GONNA WOMAN           | ABITO WOMAN         | 30,9%      | 2,740 | 2,11%   |
| 2 | ABITO WOMAN           | GONNA WOMAN         | 18,7%      | 2,740 | 2,11%   |
| 3 | T-SHIRT M/CORTA WOMAN | T-SHIRT M/CORTA MAN | 22,1%      | 0,937 | 1,64%   |
| 4 | DECOLLETE WOMAN       | ABITO WOMAN         | 34,6%      | 3,068 | 1,55%   |
| 5 | ABITO WOMAN           | DECOLLETE WOMAN     | 13,8%      | 3,068 | 1,55%   |

Ogni 100 transazioni effettuate, 2 contengono una gonna ed un abito.

Rappresentando la solidità della regola ci da indicazioni sul potenziale economico delle regole che coinvolgono la Gonna e l'Abito.

## Top 5 Regole Man

|   | antecedente                                               | conseguente         | confidence | lift  | support |
|---|-----------------------------------------------------------|---------------------|------------|-------|---------|
| 1 | GIACCA MAN, CAMICIA MAN, T-SHIRT<br>M/CORTA MAN           | PANTALONE MAN       | 74,4%      | 3,414 | 0,14%   |
| 2 | GIUBBOTTO MAN, CAMICIA MAN,<br>T-SHIRT M/CORTA MAN        | PANTALONE MAN       | 71,9%      | 3,298 | 0,11%   |
| 3 | PULL OVER MAN, SNEAKERS BASSA<br>MAN, T-SHIRT M/CORTA MAN | PANTALONE MAN       | 71,1%      | 3,265 | 0,10%   |
| 4 | FELPA CAPPUCCIO MAN, CAMICIA MAN,<br>T-SHIRT M/CORTA MAN  | PANTALONE MAN       | 70,9%      | 3,253 | 0,13%   |
| 5 | FELPA CAPPUCCIO MAN, POLO MAN,<br>PANTALONE MAN           | T-SHIRT M/CORTA MAN | 70,6%      | 2,989 | 0,11%   |

|   | 7 5 6 6 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | The Management  |            |        | EAST HEAT AND A |
|---|-----------------------------------------|-----------------|------------|--------|-----------------|
|   | antecedente                             | conseguente     | confidence | lift   | support         |
| 1 | SLIP MEDIO MAN                          | SLIP BRANDO MAN | 61,9%      | 63,409 | 0,30%           |
| 2 | SLIP BRANDO MAN                         | SLIP MEDIO MAN  | 31,1%      | 63,409 | 0,30%           |
| 3 | PAPILLON MAN, CAMICIA MAN               | ABITO MAN       | 55,2%      | 23,385 | 0,23%           |
| 4 | POCHETTE MAN                            | CRAVATTA MAN    | 34,0%      | 22,855 | 0,20%           |
| 5 | CRAVATTA MAN                            | POCHETTE MAN    | 13,4%      | 22,855 | 0,20%           |

- ➤ Le regole riportate di seguito risultano poco frequenti (Support bassi) ma molto accurate (Confidence alta) e con un forte legame tra i prodotti (lift>1).
- Risultano regole **complesse** con combinazioni di quattro prodotti, che compongono quasi un *total look*; questo spiega anche i bassi livelli di Support.
- Osservando le prime due regole per ordinamento di Lift, sembra più probabile che acquistando uno Slip Medio si acquisti uno Brand che non viceversa. I due prodotti vengono acquistati insieme circa 63 volte di più di quanto accadrebbe nell'ipotesi di indipendenza.

**Data Ingestion** 

Data Cleaning

Tabella OLAP

**Descrittive** 

**Algoritmo: MBA** 

Regole Man

Top 5 Regole Man

|   | antecedente         | conseguente         | confidence | lift  | support |
|---|---------------------|---------------------|------------|-------|---------|
| 1 | PANTALONE MAN       | T-SHIRT M/CORTA MAN | 44,7%      | 1,894 | 9,75%   |
| 2 | T-SHIRT M/CORTA MAN | PANTALONE MAN       | 41,3%      | 1,894 | 9,75%   |
| 3 | SNEAKERS BASSA MAN  | T-SHIRT M/CORTA MAN | 38,1%      | 1,612 | 3,87%   |
| 4 | T-SHIRT M/CORTA MAN | SNEAKERS BASSA MAN  | 16,4%      | 1,612 | 3,87%   |
| 5 | CAMICIA MAN         | PANTALONE MAN       | 41,7%      | 1,916 | 3,37%   |

Un lift di 1,89 significa che i consumatori acquistano i prodotti insieme circa 2 volte di più di quanto accadrebbe se ci fosse indipendenza tra i due prodotti.

## Top 5 Regole Baby

|   | antecedente                                               | conseguente               | confidence | lift  | support |
|---|-----------------------------------------------------------|---------------------------|------------|-------|---------|
| 1 | BERMUDA BABY MALE, PANTALONE<br>BABY MALE                 | T-SHIRT M/CORTA BABY MALE | 79,54%     | 18,72 | 0,27%   |
| 2 | BERMUDA BABY MALE, T-SHIRT<br>M/CORTA BABY FEMALE         | T-SHIRT M/CORTA BABY MALE | 78,57%     | 18,49 | 0,13%   |
| 3 | BERMUDA BABY MALE, ABITO BABY FEMALE                      | T-SHIRT M/CORTA BABY MALE | 75,23%     | 17,70 | 0,10%   |
| 4 | BERMUDA BABY MALE, CAPPUCCIO<br>CON ZIP BABY MALE         | T-SHIRT M/CORTA BABY MALE | 75,05%     | 17,66 | 0,14%   |
| 5 | T-SHIRT M/LUNGA BABY MALE,<br>CAPPUCCIO CON ZIP BABY MALE | PANTALONE BABY MALE       | 74,33%     | 21,75 | 0,13%   |

Anche qui come visto precedentemente regole complesse, o con molti item, sono accompagnate da livelli di support relativamente bassi. Ma gli indicatori di accuratezza (confidence) e legame (lift) suggeriscono una bontà della relazione dei prodotti.

| 1// | antecedente                   | conseguente               | confidence | lift  | support |
|-----|-------------------------------|---------------------------|------------|-------|---------|
| 1   | FELPA CON ZIP BABY FEMALE     | PANTALONE BABY FEMALE     | 65,09%     | 36,81 | 0,22%   |
| 2   | PANTALONE BABY FEMALE         | FELPA CON ZIP BABY FEMALE | 12,46%     | 36,81 | 0,22%   |
| 3   | BLOUSE BABY FEMALE            | GONNA BABY FEMALE         | 35,42%     | 30,46 | 0,14%   |
| 4   | GONNA BABY FEMALE             | BLOUSE BABY FEMALE        | 12,02%     | 30,46 | 0,14%   |
| 5   | CAPPUCCIO CON ZIP BABY FEMALE | PANTALONE BABY FEMALE     | 53,16%     | 30,07 | 0,24%   |

Importante osservare che livelli di Lift alti possono essere causati da un livello basso di Support del conseguente e/o da una confidence dei due prodotti alta (e.g 65,09%).

**Data Ingestion** 

**Data Cleaning** 

Tabella OLAP

**Descrittive** 

**Algoritmo: MBA** 

Regole Baby

Top 5 Regole Baby

|   | antecedente                 | conseguente               | confidence | lift   | support |
|---|-----------------------------|---------------------------|------------|--------|---------|
| 1 | PANTALONE BABY MALE         | T-SHIRT M/CORTA BABY MALE | 43,3%      | 10,191 | 1,48%   |
| 2 | T-SHIRT M/CORTA BABY MALE   | PANTALONE BABY MALE       | 34,8%      | 10,191 | 1,48%   |
| 3 | BERMUDA BABY MALE           | T-SHIRT M/CORTA BABY MALE | 74,3%      | 17,486 | 0,80%   |
| 4 | T-SHIRT M/CORTA BABY MALE   | BERMUDA BABY MALE         | 18,8%      | 17,486 | 0,80%   |
| 5 | CAPPUCCIO CON ZIP BABY MALE | PANTALONE BABY MALE       | 62,5%      | 18,278 | 0,78%   |

Tranne che per la regola 5 siamo di fronte a combinazioni inverse degli stessi prodotti.

Sembrerebbe più probabile che all'acquisto di un Pantalone o di un Bermuda segua l'acquisto di una T-Shirt, e che ad una Felpa con Zip segua un Pantalone.

L'acquisto congiunto di questi prodotti avviene tra le 11 e le 18 volte di più di quanto non accadrebbe per caso.

**Data Ingestion** 

**Data Cleaning** 

Tabella OLAP

**Descrittive** 

**Algoritmo: MBA** 

Regole Baby

## **Ulteriori Insight**

## Focus su prodotto stand-alone : Sneakers







#### Report Tabellare combinazione dei prodotti e relative misure di Confidence e Support

#### Grafo

- nodo: prodotto
- dimensione nodo:
   Confidence





1. Contesto

2. Obiettivi

I'SNEAKERS BASSA MAN'I

3. Tecnologie

I'BERMUDA MAN'I

4. Fasi dell'analisi

0.20%

2.0%

5. Visualizzazioni

# **Ulteriori Insight**

Collegamento del prodotto "Sneakers", in qualità di antecedente, con i conseguenti.

**Nodi rossi**: conseguenti con più alta Confidence

- T-shirt manica corta uomo
- Pantalone man

La Sneaker bassa con t-shirt manica corta Man è a sua volta legata a sneaker alta man



1. Contesto

2. Obiettivi

3. Tecnologie

4. Fasi dell'analisi

5. Visualizzazioni

# Possibili sviluppi futuri

- Possibilità di integrazione degli insight risultanti dalla MBA con algoritmi facenti parte della famiglia dei Collaborative Filter, che utilizzano quale metrica la distanza tra i prodotti.
- Calcolo computazionale molto più complesso
- Sempre da considerare il trade-off costi-benefici



P.IVA 02298700010

DOCUMENTO COMMERCIALE di vendita o prestazione

DESCRIZ. IVA Prezzo(€)

TOT. COMPLESSIVO 100,00 di cui IVA 18,03

| Francesco Tirinato | € | 1.000 |
|--------------------|---|-------|
| Fabio Bragato      |   |       |
| Diego Carrettoni   |   |       |
| Redaelli Valeria   |   |       |
| Perticarà Sophia   |   |       |

GRAZIE E ARRIVEDERCI

