Viterbi Algorithm for Intrusion Type Identification in Anomaly Detection System

january 14th 2019

Context

Intrusion Type

- . Buffer overflow
 - . xlock vulnerability
 - . Ipset vulnerability
 - . kcms_sparc vulnerability
- . S/W security vulnerability
- . Setup vulnerability
- . Denial of service

A markov Chain is defined by :

- . S, A finite set of N states
- . π , A vector of initial probabilities over S :

$$\pi_i = P(S_1 = i), 1 \le i \le N$$

. A, A matrix of probabilities of transitions over *SxS* :

$$a_{ij} = P(S_t = j | S_{t-1} = i), 1 \le i \le N$$

. Markov assumption : $P(S_t|S_{t-1},S_{t-2},\ldots,S_1) = P(S_t|S_{t-1})$

$$A = \begin{pmatrix} 0.6 & 0.4 \\ 0.9 & 0.1 \end{pmatrix}$$

Figure: Simple example of Markov Chain

HMM - Hidden Markov Model

 Hidden Markov Model is a statistical model in which the modeled system is supposed to be a Markovian process of unknown parameters.

HMM - Hidden Markov Model

- Hidden Markov Model is a statistical model in which the modeled system is supposed to be a Markovian process of unknown parameters.
- Hidden Markov Model can be viewed as a Bayesian Network

HMM - Hidden Markov Model

- Hidden Markov Model is a statistical model in which the modeled system is supposed to be a Markovian process of unknown parameters.
- Hidden Markov Model can be viewed as a Bayesian Network
- We define a HMM including :
 - V, A finite set of M observations
 - B, A a matrix of probabilities of observations over state :

$$b_i(k) = P(0_t = V_k | S_t = i)$$

HMM - Forward Algorithm

input : λ The model, O Observed sequence

output : $P(0|\lambda)$

Step 1, Initialization : $\forall i, \alpha_1(i) = \pi_i b_i(0_1)$

Step 2, Induction:

for $t \leftarrow 2 : T$ do

 $orall inlpha_t(i) = \left[\sum\limits_{i=1}^N lpha_{t-1}(i) a_{ij}
ight] b_j(O_t)$

end

Step 3, Termination : $P(0|\lambda) = \sum_{t=0}^{N} \alpha_t(t)$

¹L. R. Rabiner (1989). "A tutorial on hidden Markov models and selected applications in speech recognition". In: Proceedings of the IEEE 77.2,

HMM - Viterbi Algorithm

```
input : O Observed sequence
output: arg max P(0|\lambda)
Step 1, Initialization :
for i \leftarrow 1 : N do
      \delta_1(i) = \pi_i b_i(0_1)
      \psi_1(i) = 0
end
Step 2. Recursion:
for t \leftarrow 2 \cdot T do
      for j \leftarrow 1 : N do
          \begin{split} & \delta_t(j) = \max_i [\delta_{t-1}(i)a_{ij}]b_j(0_t) \\ & \psi_t(j) = \arg\max_i [\delta_{t-1}(i)a_{ij}]b_j(0_t) \end{split}
                                                                                                           2
      end
 end
Step 3, Termination:
P^* = \max_{s \in S} [\delta_T(s)]
S_T^* = \arg\max_{s \in S} [\delta_T(s)]
Step 4. Backtracking:
for t \leftarrow T - 1:1 do
  S_t^* = \psi_{t+1}(s_{t+1}^*)
end
return S*
```

²A. Viterbi (1967). "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm". In: IEEE Transactions on Information Theory 13.2, pp. 260-269

Normal Behaviour Modeling

Normal Behaviour is modelised by a left-to-right HMM λ .

The forward allgorithm is used to decide whether normal or not with a threshold.

Intrusion Detection Initialization

Intrusion Detection Induction

Intrusion Detection Termination

```
if log(P(0|\lambda)) > thresold then
    return Normal Behaviour
else
    return Intrusion
end
Show Example
```

Intrusion Detection

Results

Table: The performance of HMM-based IDS. Best results are in bold

Length	Thresold	Detection Rate	F-P Error	
10	-9.43	100%	2.626	
15	-9.43	100%	3.614	
10	-14.42	100%	1.366	
15	-14.42	100%	2.718	
10	-16.94	100%	0.789	
15	-16.94	100%	2.618	
10	-18.35	100%	0.553	
15	-18.35	100%	2.535	
10	-19.63	100%	0.476	
15	-19.63	100%	2.508	
10	-20.83	100%	0.372	
15	-20.83	100%	2.473	

Intrusion Type Identification

Process in two steps:

Viterbi algorithm used to find the optimal state sequence Euclidiant distance to identify the intrusion type with the optimal state sequence

Intrusion Type Identification

000000

Intrusion Type Identification Recursion

0000000

Intrusion Type Identification Termination

0000000

Intrusion Type Identification Backtracking

0000000

Intrusion Type Identification Decision

0000000

Intrusion Type Identification Results

Table: The performance of Viterbi-based Intrusion Type Identification

Attack	Trial	Correct	Incorrect	Rate
Buffer Overflow	20	18	2	90%
Denial of Service	25	9	16	36%
Buffer Overflow	45	27	18	60%

Limitations & Remarks

Try other distance metrics for Intrusion Type Identification: Ja-Min Koo and Sung-Bae Cho (2005). "Effective Intrusion Type Identification with Edit Distance for HMM-Based Anomaly Detection System". In: *Pattern Recognition and Machine Intelligence*. Ed. by Sankar K. Pal, Sanghamitra Bandyopadhyay, and Sambhunath Biswas. Springer Berlin Heidelberg

Limitations & Remarks

Try other distance metrics for Intrusion Type Identification: Ja-Min Koo and Sung-Bae Cho (2005). "Effective Intrusion Type Identification with Edit Distance for HMM-Based Anomaly Detection System". In: *Pattern Recognition and Machine Intelligence*. Ed. by Sankar K. Pal, Sanghamitra Bandyopadhyay, and Sambhunath Biswas. Springer Berlin Heidelberg

Bad results for Denial of Service: W. Bongiovanni et al. (2015). "Viterbi algorithm for detecting DDoS attacks". In: 2015 IEEE 40th Conference on Local Computer Networks (LCN)

Limitations & Remarks

Try other distance metrics for Intrusion Type Identification: Ja-Min Koo and Sung-Bae Cho (2005). "Effective Intrusion Type Identification with Edit Distance for HMM-Based Anomaly Detection System". In: *Pattern Recognition and Machine Intelligence*. Ed. by Sankar K. Pal, Sanghamitra Bandyopadhyay, and Sambhunath Biswas. Springer Berlin Heidelberg

Bad results for Denial of Service: W. Bongiovanni et al. (2015). "Viterbi algorithm for detecting DDoS attacks". In: 2015 IEEE 40th Conference on Local Computer Networks (LCN)

No baseline to compare results with other methods

Limitations & Remarks Baseline