ORCS 4529: Reinforcement Learning

Shipra Agrawal

Columbia University Industrial Engineering and Operations Research

MDP

Dynamic Programming (DP) based algorithms for RL

Policy Gradient Methods

Actor-critic methods

MDP

Dynamic Programming (DP) based algorithms for RL

Policy Gradient Methods

Actor-critic methods

MDP

Dynamic Programming (DP) based algorithms for RL

Policy Gradient Methods

Actor-critic methods

Parameterizing the Policy space

 $\pi_{\theta}: S \to \Delta^A$ with parameter vector $\theta \in \mathbb{R}^d$:

 $\pi_{\theta}(s)$ denotes a probability vector of dimension A with each component being the probability of taking the corresponding action.

Or, $\pi_{\theta}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$,

 $\pi_{\theta}(s, a)$ being the probability of taking action a, and $\sum_{a} \pi_{\theta}(s, a) = 1$.

For a scalable formulation, we want d << |S|.

Examples

Let x_s denote the features of state s.

Softmax policy (N discrete actions): Parameters $\theta = (\theta_1, \dots, \theta_N)$ for N actions. Probability of playing action a in state s

$$\pi_{\theta}(s,a) = \frac{e^{f_{\theta_a}(x_s)}}{\sum_{a' \in A} e^{f_{\theta_{a'}}(x_s)}}$$

where $f_{\theta}(x)$ is a function e.g., the outcome of a neural network

► Gaussian policy (continuous unrestricted action space): Distribution over actions given state *s*

$$\pi_{\theta}(s) = \mathcal{N}(f_{\theta}(s), \sigma^2)$$

(Single mode distribution centered at one action)

Policy Optimization

Let Π_{θ} is a collection of all policies in a given parameteric class with parameter θ . Then, among all policies in the given parametric class, the policy that optimizes infinite horizon discounted value:

$$\max_{\theta} V^{\pi_{\theta}}(s_1)$$

Similarly for the average reward objective:

$$\max_{\theta} \rho^{\pi_{\theta}}(s_1)$$

Similarly for the Finite reward objective:

$$\max_{\theta} V_H^{\pi_{\theta}}(s_1)$$

Can we compute/estimate the gradient $\nabla_{\theta} V^{\pi_{\theta}}(s_1)$? (Or $\nabla_{\theta} V_{H}^{\pi_{\theta}}(s_1)$, $\nabla_{\theta} \rho^{\pi_{\theta}}(s_1)$ etc.)

Finite horizon MDP

Theorem

For finite horizon MDP (S, A, s_1, P, R, H) , for a policy π_{θ} ,

$$abla_{ heta}V_{H}^{\pi_{ heta}}(s_{1}) = \mathbb{E}_{ au}\left[R(au)\sum_{t=1}^{H}
abla_{ heta}\log(\pi_{ heta}(s_{t},a_{t}))|s_{1}
ight]$$

where au denotes a random sample trajectory of states-actions

$$\tau = (s_1, a_1, s_2, a_2, \dots, s_H, a_H)$$

on starting from state s_1 and following policy π_θ and $R(\tau)$ is the total expected discounted reward $R(\tau) = \sum_{t=1}^{T} \gamma^{t-1} R(s_t, a_t)$ on the given trajectory.

Vanilla Policy gradient algorithm

aka REINFORCE [Williams 1988, Williams 1992

Initialize policy parameter θ_1 , In each iteration k = 1, 2, ...,

Execute current policy π^{θ} to obtain several sample trajectories τ^{i} , $i=1,\ldots,m$ where

$$\tau^{i} = (s_{1}, a_{1}^{i}, s_{2}^{i}, \dots, s_{H}^{i}, a_{H}^{i}), \hat{R}(\tau^{i}) = r_{1}^{i} + \gamma r_{2}^{i} + \dots + \gamma^{H-1} r_{H}^{i}$$

► Use these sample trajectories and chosen baseline to compute an unbiased gradient estimator **ĝ** using Policy gradient theorem

$$\hat{\mathbf{g}}_k = \frac{1}{m} \sum_{i=1}^m \hat{R}(\tau^i) \sum_{t=1}^H \nabla_{\theta} \log(\pi_{\theta}(s_t^i, a_t^i))$$

- ▶ Update $\theta_{k+1} \leftarrow \theta_k + \alpha_k \ \hat{\mathbf{g}}_k$
- Update baseline as required.

Vanilla Policy gradient algorithm

aka REINFORCE [Williams 1988, Williams 1992

Initialize policy parameter θ_1 , and baseline. In each iteration k = 1, 2, ...,

Execute current policy π^{θ} to obtain several sample trajectories τ^{i} , $i=1,\ldots,m$ where

$$\tau^{i} = (s_{1}, a_{1}^{i}, s_{2}^{i}, \dots, s_{H}^{i}, a_{H}^{i}), \hat{R}(\tau^{i}) = r_{1}^{i} + \gamma r_{2}^{i} + \dots + \gamma^{H-1} r_{H}^{i}$$

 Use these sample trajectories and chosen baseline to compute an unbiased gradient estimator ĝ using Policy gradient theorem

$$\hat{\mathbf{g}}_k = \frac{1}{m} \sum_{i=1}^m \sum_{t=1}^H (\hat{R}(\tau^i) - \mathbf{b_t}(\mathbf{s_t^i})) \nabla_{\theta} \log(\pi_{\theta}(\mathbf{s_t^i}, \mathbf{a_t^i}))$$

- ▶ Update $\theta_{k+1} \leftarrow \theta_k + \alpha_k \ \hat{\mathbf{g}}_k$
- Update baseline as required.

Baseline

Introducing a baseline does not change the expectation of gradient, but may improve variance if selected carefully.

An example of a good state-dependent baseline

$$b_t(s) = V_{H-t}^{\pi_\theta}(s)$$

i.e., the (Estimated) value of policy π_{θ} , starting from state s at time t. (Some more insights into this later)

Infinite horizon discounted rewards

The Policy optimization problem

$$\max_{\theta} V_{\gamma}^{\pi_{\theta}}(s_1)$$

where

$$V^{\pi_{ heta}}_{\gamma}(s_1) = \lim_{T o \infty} \mathbb{E}[\sum_{t=1}^{I} \gamma^{t-1} r_t | s_1; a_t \sim \pi_{ heta}(s_t)]$$

Equivalently

$$V_{\gamma}^{\pi_{\theta}}(s_1) = \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(s, a) R(s, a)$$

where $d^{\pi}(s) = \lim_{T \to \infty} \sum_{t=1}^{T} \gamma^{t-1} \Pr(s_t = s | s_1, \pi)$, the total discounted probability of being in state s under policy π .

Policy Gradient Theorem [Sutton, 1999]

Theorem

For infinite horizon MDP discounted reward case,

$$egin{aligned}
abla_{ heta} V_{\gamma}^{\pi_{ heta}}(s_1) &= \sum_{s} d^{\pi_{ heta}}(s) \sum_{a} Q_{\gamma}^{\pi_{ heta}}(s,a)
abla_{ heta} \pi_{ heta}(s,a) \\ &= rac{1}{(1-\gamma)} \mathbb{E}_{s \sim (1-\gamma)d^{\pi_{ heta}}, a \sim \pi_{ heta}(s)} \left[Q_{\gamma}^{\pi_{ heta}}(s,a)
abla_{ heta} \log(\pi_{ heta}(s,a))
ight] \end{aligned}$$

That is gradient of gain with respect to θ can be expressed in terms of gradient of (log of) policy function with respect to θ .

Remark: $(1-\gamma)d^\pi$ is a distribution over states, in particular $\sum_s (1-\gamma)d^\pi(s)=1$

Remarks on Policy Gradient Theorem

- The key aspect of the expression for the policy gradient is that there are no terms of the form $\nabla_{\theta} d^{\pi_{\theta}}(s)$: the effect of policy changes on the (unknown) distribution over states does not appear.
- ► The distribution over actions given a state s is known, and its gradient $\nabla_{\theta} \log \pi_{\theta}(s, a)$ can be conveniently calculated e.g., by autodiff.
- ► The expectation is over the trajectories collected from the current policy which is convenient for approximating the gradient by sampling (on-policy).
- ▶ A difficulty compared to the finite horizon case is that current policy's Q-value $Q^{\pi_{\theta}}(s,a)$ is also not normally known, but it can be estimated e.g., by Monte Carlo or TD-learning.

Policy gradient estimation

Run policy π several times starting from s_1 to observe sample trajectories $\{\tau^i\}$ of length T for some large T (small γ^T)

▶ Q-value estimation using Monte Carlo method: at each time step t in a trajectory τ , set

$$\hat{Q}_t := \sum_{t'=t}^T \gamma^{t'-t} r_{t'}$$

 Estimate of policy gradient from single trajectory (using Policy Gradient Theorem)

$$\hat{\mathbf{g}} = \sum_{t=1}^{T} \gamma^{t-1} \hat{Q}_t \nabla_{\theta} \log(\pi_{\theta}(s_t, a_t))$$

Can add a baseline without introducing bias

$$\hat{\mathbf{g}} = \sum_{t=1}^{I} \gamma^{t-1} (\hat{Q}_t - b_t(s_t)) \nabla_{\theta} \log(\pi_{\theta}(s_t, a_t))$$

REINFORCE algorithm

Vanilla Policy gradient algorithm

Initialize policy parameter θ , In each iteration k,

- 1. Execute current policy π^{θ} to obtain several sample trajectories τ^{i} , $i=1,\ldots,m$.
 - For any given sample trajectory i, use observed rewards r_1, r_2, \ldots , to compute $\hat{Q}_t^i := \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}$.
- 2. Use \hat{Q}_t^i and baseline function $b_t(s)$ to compute a gradient estimator $\hat{\mathbf{g}}_k$ using Policy gradient theorem.

$$\hat{\mathbf{g}} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \hat{Q}_t^i \nabla_{\theta} \log(\pi_{\theta}(s_t^i, a_t^i))$$
 (1)

Update $\theta_{k+1} \leftarrow \theta_k + \alpha \hat{\mathbf{g}}_k$.

REINFORCE algorithm

Vanilla Policy gradient algorithm

Initialize policy parameter θ , and baseline function $b_t(s)$, $\forall s$. In each iteration k,

- 1. Execute current policy π^{θ} to obtain several sample trajectories τ^{i} , $i=1,\ldots,m$.
 - For any given sample trajectory i, use observed rewards r_1, r_2, \ldots , to compute $\hat{Q}_t^i := \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}$.
- 2. Use \hat{Q}_t^i and baseline function $b_t(s)$ to compute a gradient estimator $\hat{\mathbf{g}}_k$ using Policy gradient theorem.

$$\hat{\mathbf{g}} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} (\hat{Q}_t^i - b_t(s_t^i)) \nabla_{\theta} \log(\pi_{\theta}(s_t^i, a_t^i))$$
 (1)

Update $\theta_{k+1} \leftarrow \theta_k + \alpha \hat{\mathbf{g}}_k$.

Re-optimize baseline.

REINFORCE algorithm

Vanilla Policy gradient algorithm

Initialize policy parameter θ , and baseline function $b_t(s)$, $\forall s$. In each iteration k,

- 1. Policy (π_{θ}) evaluation Execute current policy π^{θ} to obtain several sample trajectories τ^{i} , $i=1,\ldots,m$.
 - For any given sample trajectory i, use observed rewards r_1, r_2, \ldots , to compute $\hat{Q}_t^i := \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}$.
- 2. Policy Improvement Use \hat{Q}_t^i and baseline function $b_t(s)$ to compute a gradient estimator $\hat{\mathbf{g}}_k$ using Policy gradient theorem.

$$\hat{\mathbf{g}} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} (\hat{Q}_t^i - b_t(s_t^i)) \nabla_{\theta} \log(\pi_{\theta}(s_t^i, a_t^i))$$
 (1)

Update $\theta_{k+1} \leftarrow \theta_k + \alpha \hat{\mathbf{g}}_k$.

Re-optimize baseline.

Variance reduction using baseline

Theorem

Let

$$A_t = (\hat{Q}_t - b_t(s_t))\nabla_{\theta}\log(\pi_{\theta}(s_t, a_t)).$$

the estimator of policy gradient Then, $Var(A_t|s_t)$ is mimimized by base line:

$$b_t(s_t) = \frac{\mathbb{E}\left(Q^{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \log(\pi_{\theta}(s_t, a_t))^2 | s_t\right)}{\mathbb{E}\left(\log(\pi_{\theta}(s_t, a_t))^2 | s_t\right)}$$

The value function $V^{\pi_{\theta}}(s) = \mathbb{E}(Q^{\pi_{\theta}}(s_t, a_t)|s_t)$ is an approximation of the above optimal baseline.

Baseline optimization

We use the following lemma:

Lemma

For any two random variables A, B, such that for some filtration \mathcal{F} , $\mathbb{E}[B|\mathcal{F}]=B$, $\mathbb{E}[A|\mathcal{F}]=B$, almost surely,

$$Var(A) = \mathbb{E}[(A-B)^2] + Var(B)$$

MDP

Dynamic Programming (DP) based algorithms for RL

Policy Gradient Methods

Actor-critic methods

Actor critic methods

- Actor-only methods (REINFORCE vanilla policy gradient) work with a parameterized family of policies. The gradient of the performance, with respect to the actor parameters, is directly estimated by simulation, and the parameters are updated in a direction of improvement. Maintain Policy Network.
- ▶ Critic-only methods (e.g., Q-learning, TD-learning) use TD-updates with function approximation to estimate optimal Q-values Q^* or Q-value of a given policy Q^{π} . Maintain Deep Q-network

Actor-critic algorithm

Maintain two networks: a policy network π_{θ} , and Q-network f_{ω} that estimates Q-value $Q^{\pi_{\theta}}$ of the current policy.

In iteration $k = 1, 2, 3, \ldots$,

- Policy evaluation (train a critic network): Use TD-learning (Q-learning with fixed policy) or Monte-Carlo to fit parameters ω such that $f_{\omega}(s, a) \approx Q^{\pi_{\theta_k}}(s, a)$
- Policy improvement (Update the actor network):

$$\theta_{k+1} \leftarrow \theta_k + \alpha_k \,\, \hat{\mathbb{E}}_{s \sim (1-\gamma)d^{\pi_k}, a \sim \pi_k(s)} \left[f_{\omega}(s, a) \nabla_{\theta} \log(\pi_{\theta_k}(s, a)) \right]$$

Q-network can also be used to estimate the current baseline (value function).

MDP

Dynamic Programming (DP) based algorithms for RL

Policy Gradient Methods

Actor-critic methods

Provably efficient Policy gradient methods

Conservative greedy policy improvement Trust Region Policy Optimization (TRPO)

▶ $\theta \in \mathbb{R}^{S \times A}$ (Scores) Arg max policy:

$$\pi_{\theta}(s, a) = \frac{e^{\theta_{s,a}}}{\sum_{a'} e^{\theta_{s,a'}}}$$

$$\frac{\partial}{\partial \theta_{s',a'}} \log(\pi_{\theta}(s, a)) = \begin{cases} 1 - \pi_{\theta}(s, a), & s, a = s', a', \\ -\pi_{\theta}(s, a'), & s = s', a \neq a' \\ 0 & otherwise \end{cases}$$

▶ $\theta \in \mathbb{R}^{S \times A}$ (Scores) Arg max policy:

$$\pi_{\theta}(s, a) = \frac{e^{\theta_{s, a}}}{\sum_{a'} e^{\theta_{s, a'}}}$$

$$\frac{\partial}{\partial \theta_{s', a'}} \log(\pi_{\theta}(s, a)) = \begin{cases} 1 - \pi_{\theta}(s, a), & s, a = s', a', \\ -\pi_{\theta}(s, a'), & s = s', a \neq a' \\ 0 & otherwise \end{cases}$$

Policy evaluation step in REINFORCE: Estimate $\hat{Q}^{\pi_{\theta}}(s, a)$ using Monte Carlo method

▶ $\theta \in \mathbb{R}^{S \times A}$ (Scores) Arg max policy:

$$\pi_{\theta}(s, a) = \frac{e^{\theta_{s,a}}}{\sum_{a'} e^{\theta_{s,a'}}}$$

$$\frac{\partial}{\partial \theta_{s',a'}} \log(\pi_{\theta}(s, a)) = \begin{cases} 1 - \pi_{\theta}(s, a), & s, a = s', a', \\ -\pi_{\theta}(s, a'), & s = s', a \neq a' \\ 0 & otherwise \end{cases}$$

- Policy evaluation step in REINFORCE: Estimate $\hat{Q}^{\pi_{\theta}}(s, a)$ using Monte Carlo method
- Policy improvement step in REINFORCE:

$$\theta_{k+1} \leftarrow \theta_k + \alpha_k \hat{\mathbb{E}}_{s,a \sim \pi_{\theta}} \left[\hat{Q}^{\pi_{\theta}}(s,a) \nabla_{\theta} \log(\pi_{\theta}(s,a)) \right]$$

Which is same as (approximate greedy policy improvement)

$$\theta_{k+1}(s,a) \approx \theta_k(s,a) + \alpha_k d^{\pi_{\theta}}(s) \pi_{\theta}(s,a) (Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s))$$

▶ $\theta \in \mathbb{R}^{S \times A}$ (Scores) Arg max policy:

$$\pi_{\theta}(s,a) = \frac{e^{\sigma_{s,a}}}{\sum_{a'} e^{\theta_{s,a'}}}$$

$$\frac{\partial}{\partial \theta_{s',a'}} \log(\pi_{\theta}(s,a)) = \begin{cases} 1 - \pi_{\theta}(s,a), & s,a = s',a', \\ -\pi_{\theta}(s,a'), & s = s',a \neq a' \\ 0 & otherwise \end{cases}$$

- Policy evaluation step in REINFORCE: Estimate $\hat{Q}^{\pi_{\theta}}(s,a)$ using Monte Carlo method
- ▶ Policy improvement step in REINFORCE:

$$\theta_{k+1} \leftarrow \theta_k + \alpha_k \hat{\mathbb{E}}_{s,a \sim \pi_{\theta}} \left[\hat{Q}^{\pi_{\theta}}(s,a) \nabla_{\theta} \log(\pi_{\theta}(s,a)) \right]$$

Which is same as (approximate greedy policy improvement)

$$\theta_{k+1}(s,a) \approx \theta_k(s,a) + \alpha_k d^{\pi_{\theta}}(s) \pi_{\theta}(s,a) (Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s))$$

Connection to tabular policy iteration method

$$\theta_{k+1}(s,a) \approx \theta_k(s,a) + \alpha_k d^{\pi_{\theta}}(s) \pi_{\theta}(s,a) (Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s))$$

Moving towards but not jumping to

$$\operatorname{arg\,max}_{a} Q^{\pi_{\theta}}(s, a)$$

Why not jump? Note that we only have estimates of $Q^{\pi_{\theta}}(s, a)$ for states and actions visited often under current policy.

Example illustrating difficulty in convergence

Kakade and Langford 2002

Assume initial policy is

$$\pi(i, a_1) = 0.8, \pi(i, a_2) = 0.2, \pi(j, a_1) = 0.2, \pi(j, a_2) = 0.8.$$

with stationary distribution p(i) = 0.8, p(j) = 0.2.

Optimal policy
$$\pi^*(i, a_2) = 1, \pi^*(j, a_1) = 1.$$

Example cont.

Figure from Kakade and Langford, 2002

Figure: Stationary probability of state j under policy gradient algorithm

$$\theta_{k+1}(s,a) \approx \theta_k(s,a) + \alpha_k d^{\pi_{\theta}}(s) \pi_{\theta}(s,a) (Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s))$$

Suppose the current policy favors a_1 on state i and a_2 on state j (like the initial policy),

$$\theta_{k+1}(s,a) \approx \theta_k(s,a) + \alpha_k d^{\pi_{\theta}}(s) \pi_{\theta}(s,a) (Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s))$$

- Suppose the current policy favors a_1 on state i and a_2 on state j (like the initial policy),
- For both states $Q^{\pi_{\theta}}(s, a_1)$ is more than $Q^{\pi_{\theta}}(s, a_2)$ (because immediate reward is 0 for a_2).

$$\theta_{k+1}(s,a) \approx \theta_k(s,a) + \alpha_k d^{\pi_{\theta}}(s) \pi_{\theta}(s,a) (Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s))$$

- Suppose the current policy favors a_1 on state i and a_2 on state j (like the initial policy),
- For both states $Q^{\pi_{\theta}}(s, a_1)$ is more than $Q^{\pi_{\theta}}(s, a_2)$ (because immediate reward is 0 for a_2).
- For state i, $\pi_{\theta}(i, a_1)$ is also more than a_2 , so $\theta(i, a_1)$ increases more than a_2 (goes farther from optimal)

$$\theta_{k+1}(s,a) \approx \theta_k(s,a) + \alpha_k d^{\pi_{\theta}}(s) \pi_{\theta}(s,a) (Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s))$$

- Suppose the current policy favors a_1 on state i and a_2 on state j (like the initial policy),
- For both states $Q^{\pi_{\theta}}(s, a_1)$ is more than $Q^{\pi_{\theta}}(s, a_2)$ (because immediate reward is 0 for a_2).
- For state i, $\pi_{\theta}(i, a_1)$ is also more than a_2 , so $\theta(i, a_1)$ increases more than a_2 (goes farther from optimal)
- For state j, even though $Q^{\pi_{\theta}}(s, a_1)$ favors a_1 , $\pi_{\theta}(j, a_2)$ is more. So there might be no or small improvement in favor of a_1 .

$$\theta_{k+1}(s,a) \approx \theta_k(s,a) + \alpha_k d^{\pi_{\theta}}(s) \pi_{\theta}(s,a) (Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s))$$

- Suppose the current policy favors a_1 on state i and a_2 on state j (like the initial policy),
- For both states $Q^{\pi_{\theta}}(s, a_1)$ is more than $Q^{\pi_{\theta}}(s, a_2)$ (because immediate reward is 0 for a_2).
- For state i, $\pi_{\theta}(i, a_1)$ is also more than a_2 , so $\theta(i, a_1)$ increases more than a_2 (goes farther from optimal)
- For state j, even though $Q^{\pi_{\theta}}(s, a_1)$ favors a_1 , $\pi_{\theta}(j, a_2)$ is more. So there might be no or small improvement in favor of a_1 .
- Also $d^{\pi}(j) < d^{\pi}(i)$, so any improvement for state j may be overshadowed by the decline for state i.

How does it compare to the greedy policy improvement?

Greedy policy improvement

$$\pi(s) = \arg\max_{a} Q^{\pi_{\theta}}(s, a)$$

(Not necessarily a good idea if we don't have good estimates of $Q^{\pi_{\theta}}(s, a)$ for s, a not visited)

- ▶ In the given example, $\pi(j, a_1) = 1, \pi(j, a_2) = 0$ after the first iteration.
- And, for the new policy $Q^{\pi}(i, a_2) > Q^{\pi}(i, a_1)$, so that $\pi(i, a_2) = 1, \pi(i, a_1) = 0$ in second iteration.

Optimal policy in two iterations.

Approximately Optimal Approximate RL [Kakade and Langford 2002]

Can we design an algorithm that is guaranteed to improve some performance measure at every step?

Conservative Greedy policy improvement algorithm

Main idea: Move to the greedy policy but not fully: New policy and old policy are same with probability α .

If current policy is π_k , conservative policy improvement:

$$\pi^{k+1} \leftarrow (1 - \alpha)\pi^k + \alpha \pi_*^{k+1}$$

where π_*^{k+1} is the greedy policy

$$\pi^{k+1}_*(s) = \arg\max_a Q^{\pi_k}(s, a)$$

Regular policy iteration has $\alpha = 1$.

Conservative Greedy policy improvement algorithm

Main idea: Move to the greedy policy but not fully: New policy and old policy are same with probability α .

If current policy is π_k , conservative policy improvement:

$$\pi^{k+1} \leftarrow (1 - \alpha)\pi^k + \alpha \pi_*^{k+1}$$

where π_*^{k+1} is the greedy policy

$$\pi^{k+1}_*(s) == rg \max_{a} \underbrace{Q^{\pi_k}(s,a) - V^{\pi_k}(s)}_{Advantage \ function \ A^{\pi_k}(s,a)}$$

Regular policy iteration has $\alpha = 1$.

Generalizing this idea to large state space

If current policy parameter is θ_k , conservative greedy policy improvement:

$$\pi^{k+1} \leftarrow (1-\alpha)\pi^k + \alpha\pi_{\theta_{k+1}^*}$$

where

$$\theta_{k+1}^*(s) = \arg\max_{\theta} \mathbb{E}_{s \sim (1-\gamma)d^{\pi_k}} [\sum_{a} \pi_{\theta}(s, a) A^{\pi_k}(s, a)]$$

That is, $\pi_{\theta_{k+1}^*}$ is an approximate greedy policy – close to greedy in expectation over states.

Generalizing this idea to large state space

If current policy parameter is θ_k , conservative greedy policy improvement:

$$\pi^{k+1} \leftarrow (1-\alpha)\pi^k + \alpha\pi_{\theta_{k+1}^*}$$

where

$$\theta_{k+1}^*(s) = \arg\max_{\theta} \mathbb{E}_{s \sim (1-\gamma)d^{\pi_k}} [\sum_{a} \pi_{\theta}(s, a) A^{\pi_k}(s, a)]$$

That is, $\pi_{\theta_{k+1}^*}$ is an approximate greedy policy – close to greedy in expectation over states.

After k iterations, the policy π^k is a randomized policy which plays policy π^i with probability $(1-\alpha)^{i-1}\alpha$.

Trust Region Policy Optimization (TRPO)

(To be disucssed later)

Fit a θ so that π_{θ} is close to greedy in expectation over states, and is not too far from the current policy.

$$\theta_{k+1} = \begin{array}{c} \arg\max_{\theta} & \mathbb{E}_{s \sim (1-\gamma)d^{\pi_{\theta_k}}}[\sum_{a} \pi_{\theta}(s, a) A^{\pi_{\theta_k}}(s, a)] \\ s.t. & \max_{s} \mathit{KL}(\pi_{\theta}(s) \| \pi_{\theta_k}(s)) \leq \alpha \end{array}$$

This is the popular TRPO (Trust Region Policy Optimization algorithm) [Schulman et al. 2015]

Conservative Greedy Policy Improvement

Lemma 4.1 of Kakade and Langford, 2002

Let π be the current policy, π' be the greedy policy,

$$\pi' = rg \max_{\hat{\pi} \in \Pi} A_{\pi}(\hat{\pi}) := \mathbb{E}_{s \sim (1-\gamma)d^{\pi}}[\sum_{a} \hat{\pi}(s,a)A^{\pi}(s,a)]$$

and $\pi^{n\mathrm{e}w}$ is conservative greedy policy which is same as π with probability $1-\alpha.$

Theorem (Policy improvement theorem)

$$V^{\pi^{\mathsf{new}}}(s_1) - V^{\pi}(s_1) \geq rac{lpha}{1-\gamma} A_{\pi}(\pi') - rac{lpha^2}{(1-\gamma)^2} 2\gamma A_{\pi}^{\mathsf{max}}$$

where A_{π}^{max} is the maximum advantage over all states:

$$A_{\pi}^{\max} = \max_{s} \left| \sum_{a} \pi'(s, a) A^{\pi}(s, a) \right|$$

Intuitive proof sketch for policy improvement theorem

using policy gradient theorem

Given π, π' , consider the set of policies

$$\pi_{\alpha} = (1 - \alpha)\pi + \alpha\pi'$$

for all $\alpha \in (0,1)$.

Note that $\pi^{new} = \pi_{\alpha}, \pi = \pi_{0}, \pi' = \pi_{1}$.

How much does the value of policy $V^{\pi_{\alpha}}$ change if we change the policy parameter from 0 to α ? Policy gradient theorem!!

Intuitive proof through policy gradient

By policy gradient theorem, policy gradient at $\alpha = 0$

$$\left. \nabla_{\alpha} V^{\pi_{\alpha}}(s_1) \right|_{\alpha=0} = \left. \sum_{s} d^{\pi_{\alpha}}(s) \sum_{a} \left(\nabla_{\alpha} \pi_{\alpha}(s,a) \right) A^{\pi_{\alpha}}(s,a) \right|_{\alpha=0}$$

where $\pi_0 = \pi$, and

$$\nabla_{\alpha}\pi_{\alpha}(s,a) = \pi'(s,a) - \pi(s,a)$$

Intuitive proof through policy gradient

By policy gradient theorem, policy gradient at $\alpha = 0$

$$\left. \nabla_{\alpha} V^{\pi_{\alpha}}(s_1) \right|_{\alpha=0} = \left. \sum_{s} d^{\pi_{\alpha}}(s) \sum_{a} \left(\nabla_{\alpha} \pi_{\alpha}(s,a) \right) A^{\pi_{\alpha}}(s,a) \right|_{\alpha=0}$$

where $\pi_0 = \pi$, and

$$\nabla_{\alpha}\pi_{\alpha}(s,a) = \pi'(s,a) - \pi(s,a)$$

$$\nabla_{\alpha} V^{\pi_{\alpha}}(s_1)\bigg|_{\alpha=0} = \sum_{s} d^{\pi}(s) \sum_{a} (\pi'(s,a) - \pi(s,a)) A^{\pi}(s,a)$$
$$= \sum_{s} d^{\pi}(s) \sum_{a} \pi'(s,a) A^{\pi}(s,a) =: \frac{A_{\pi}(\pi')}{1-\gamma}$$

Intuitive proof through policy gradient

By policy gradient theorem, policy gradient at $\alpha = 0$

$$\left. \nabla_{\alpha} V^{\pi_{\alpha}}(s_1) \right|_{\alpha=0} = \left. \sum_{s} d^{\pi_{\alpha}}(s) \sum_{a} \left(\nabla_{\alpha} \pi_{\alpha}(s,a) \right) A^{\pi_{\alpha}}(s,a) \right|_{\alpha=0}$$

where $\pi_0 = \pi$, and

$$\nabla_{\alpha}\pi_{\alpha}(s,a) = \pi'(s,a) - \pi(s,a)$$

$$\left. \nabla_{\alpha} V^{\pi_{\alpha}}(s_{1}) \right|_{\alpha=0} = \sum_{s} d^{\pi}(s) \sum_{a} \left(\pi'(s, a) - \pi(s, a) \right) A^{\pi}(s, a)$$

$$= \sum_{s} d^{\pi}(s) \sum_{a} \pi'(s, a) A^{\pi}(s, a) =: \frac{A_{\pi}(\pi')}{1 - \gamma}$$

Then, for small enough α , the lemma we want to prove follows (roughly) from Taylor approximation ($\pi_{\alpha} = \pi_{new}, \pi_{0} = \pi$).

$$V^{\pi_{\mathsf{new}}}(s_1) - V^{\pi}(s_1) \geq lpha \; rac{A_{\pi}(\pi')}{1-\gamma} \subset O(lpha^2)$$

Proof of Policy improvement lemma

Lemma (Policy improvement lemma)

$$V^{\pi^{new}}(s_1) - V^{\pi}(s_1) \geq \frac{\alpha}{(1-\gamma)} A_{\pi}(\pi') - \frac{\alpha^2}{(1-\gamma)^2} 2\gamma A_{\pi}^{\mathsf{max}}$$

$$A_{\pi}(\pi') = \mathbb{E}_{s \sim (1-\gamma)d^{\pi}}[\sum_{s} \pi'(s, a)A^{\pi}(s, a)]$$

Proof of Policy improvement lemma

Lemma (Policy improvement lemma)

$$V^{\pi^{new}}(s_1) - V^{\pi}(s_1) \geq rac{lpha}{(1-\gamma)} A_{\pi}(\pi') - rac{lpha^2}{(1-\gamma)^2} 2\gamma A_{\pi}^{\mathsf{max}}$$

$$A_{\pi}(\pi') = \mathbb{E}_{s \sim (1-\gamma)d^{\pi}}\left[\sum_{a} \pi'(s, a)A^{\pi}(s, a)\right]$$

Proof Outline:

- ▶ A "Performance Difference Lemma" characterizes the exact difference in in the two value functions, but involves new state distribution $d^{\pi_{new}}$.
- Proof of "policy improvement lemma" is by showing that new state distribution $d^{\pi_{new}}$ is close to the old state distribution d^{π} .

Performance difference Lemma

Lemma 6.1 of Kakade and Langford 2002

Following characterizes the exact change in value of policy

Lemma (Performance difference Lemma)

For any two policies π^{new} , π ,

$$V^{\pi^{new}}(s_1) - V^{\pi}(s_1) = \sum_{s} d^{\pi^{new}}(s) \sum_{a} \pi^{new}(s, a) A^{\pi}(s, a)$$
$$= \frac{\alpha}{(1 - \gamma)} \mathbb{E}_{s \sim (1 - \gamma)d^{\pi^{new}}} \left[\sum_{a} \pi'(s, a) A^{\pi}(s, a) \right]$$

Policy improvement lemma proof is by comparing the distribution over states under the new and old policies: $d^{\pi^{new}}$ and d^{π} .

How is the policy improvement lemma useful?

Algorithm Design

Important: $A_{\pi}(\pi')$ can be estimated by simulation/sampling from current policy!

We can select a step size to always have a positive improvement as long as $A_{\pi}(\pi') > 0$. Let R be an upper bound on rewards, so that $A_{\pi}(\pi') \leq A_{\pi}^{\max} \leq \frac{R}{1-\gamma}$. Then, setting

$$\alpha = \frac{A_{\pi}(\pi')(1-\gamma)^2}{4R},$$

and substituting in policy improvement lemma 6, we get

$$V(\pi^{new}) - V(\pi) \ge \frac{\alpha}{(1-\gamma)} A_{\pi}(\pi') - \frac{2\alpha^2 A_{\pi}^{max}}{(1-\gamma)^2} \ge \frac{A_{\pi}(\pi')^2 (1-\gamma)}{8R}$$
 (2)

Conservative policy improvement algorithm

Initialize π . Repeat:

- 1. (Policy evaluation) Play policy π from starting state distribution μ to generate sample trajectories.
- 2. Estimate advantage function $\hat{A}^{\pi}(s,a)$, e.g., by Monte Carlo or TD-learning. Compute

$$\hat{A} := \max_{\pi' \in \Pi} \hat{\mathbb{E}}_{s \sim (1-\gamma)d^{\pi,\mu}} \left[\sum_{a} \pi'(s,a) \hat{A}^{\pi}(s,a) \right]$$

with π' be the arg max policy in the above.

- 3. If \hat{A} is very small , STOP.
- 4. (Policy improvement) Update policy:

$$\pi \leftarrow (1 - \alpha)\pi + \alpha\pi'$$
 where $\alpha = (\hat{A})\frac{(1 - \gamma)^2}{4R}$

Conservative policy improvement algorithm

Initialize π . Repeat:

- 1. (Policy evaluation) Play policy π from starting state distribution μ to generate sample trajectories.
- 2. Estimate advantage function $\hat{A}^{\pi}(s, a)$, e.g., by Monte Carlo or TD-learning. Compute

$$\hat{A} := \max_{\pi' \in \Pi} \hat{\mathbb{E}}_{s \sim (1-\gamma)d^{\pi,\mu}} \left[\sum_{a} \pi'(s,a) \hat{A}^{\pi}(s,a)
ight]$$

with π' be the arg max policy in the above. Assume guarantee $\hat{A} \geq A_{\pi}(\pi') - \frac{\delta}{2}$

- 3. If \hat{A} is very small $(\hat{A} < \frac{2\delta}{3})$, STOP.
- 4. (Policy improvement) Update policy:

$$\pi \leftarrow (1 - \alpha)\pi + \alpha\pi'$$
 where $\alpha = \left(\hat{A} - \frac{\delta}{3}\right) \frac{(1 - \gamma)^2}{4R}$

Conservative policy improvement algorithm

Lemma

The conservative greedy policy improvement algorithm terminates in at most $\frac{72R^2}{\delta^2(1-\gamma)^3}$ iterations to find a policy π such that

$$\max_{\pi'} A_{\pi}(\pi') \leq \delta$$

How good is the policy? local improvement vs. optimality

Theorem (Theorem 6.2 of Kakade and Langford 2002)

Let $(1-\gamma)d^{\pi,\mu}$ denote the discounted state distribution for policy π when starting state distribution is μ . We run our algorithm using starting state distribution μ and obtain a policy π with

$$\max_{\pi'} A_{\pi,\mu}(\pi') \le \delta$$

where $A_{\pi}(\pi') = \mathbb{E}_{s \sim (1-\gamma)d^{\pi,\mu}(s)}[\sum_{a} \pi'(s,a)A^{\pi}(s,a)]$. Then, for any policy π^* and starting state distribution μ^* ,

$$egin{array}{lll} \mathbb{E}_{s\sim\mu^*}[V^{\pi^*}(s)-V^{\pi}(s)] & \leq & rac{\delta}{1-\gamma}igg\|rac{d^{\pi^*,\mu^*}}{d^{\pi,\mu}}igg\|_{\infty} \ & \leq & rac{\delta}{(1-\gamma)}igg\|rac{d^{\pi^*,\mu^*}}{\mu}igg\|_{\infty} \end{array}$$

TRPO [Schulman et al., ICML 2015]

- Provides policy improvement guarantees similar to the Conservative greedy method
- Gets rid of unwieldy mixture policies
- In every iteration moves to a new policy within α distance of the old policy.

Some definitions

Distance between two distributions p, q:

$$D_{TV}(p||q) = \frac{1}{2}\sum_{i}|p_i - q_i|$$

$$D_{KL}(p||q) = \sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}$$

Known result:

$$D_{TV}(p||q)^2 \leq D_{KL}(p||q)$$

Distance between two policies π^{new} , π^{old} :

$$D_{TV}^{\max}(\pi^{old}, \pi^{new}) = \max_{s} D_{TV}(\pi^{old}(\cdot|s), \pi^{new}(\cdot|s))$$

$$D_{\mathit{KL}}^{\mathsf{max}}(\pi^{\mathit{old}}, \pi^{\mathit{new}}) = \max_{\mathit{s}} D_{\mathit{KL}}(\pi^{\mathit{old}}(\cdot|\mathit{s}), \pi^{\mathit{new}}(\cdot|\mathit{s}))$$

New theorem for bounding policy improvement

[Schulman eta al. 2015]

Theorem

Let $\alpha = D_{TV}^{\text{max}}(\pi, \tilde{\pi})$. Then, the following bound holds for any starting state s_1 :

$$V^{\tilde{\pi}}(s_1) - V^{\pi}(s_1) \geq \frac{1}{(1-\gamma)} A_{\pi}(\tilde{\pi}) - \frac{\alpha^2}{(1-\gamma)^2} 4\gamma\epsilon$$

where

$$A_{\pi}(\tilde{\pi}) = \mathbb{E}_{s \sim (1-\gamma)d^{\pi}}[\sum_{a} \tilde{\pi}(s, a)A^{\pi}(s, a)]$$

$$\epsilon = \max_{s, a} |A^{\pi}(s, a)|$$

TRPO algorithm design

In each iteration k+1:

$$\theta_{k+1} = \begin{array}{c} \arg\max_{\theta} & \mathbb{E}_{s \sim \pi_{\theta_k}}[\sum_{a} \pi_{\theta}(s, a) A^{\pi_{\theta_k}}(s, a)] \\ s.t. & \mathbb{E}_{s \sim \pi_{\theta_k}}\left[D_{\mathit{KL}}(\pi_{\theta}(\cdot|s), \pi_{\theta_k}(\cdot|s))] \leq \delta \end{array}$$

▶ Relaxes D_{KL}^{max} to expected KL divergence over states sampled from old policy.

Some implementation details

Monte Carlo estimates of $A^{\pi_{\theta_k}}(s, a)$ or $Q^{\pi_{\theta_k}}(s, a)$, and expectation terms from sample trajectories generated from π_{θ} .

Some implementation details

- Monte Carlo estimates of $A^{\pi_{\theta_k}}(s, a)$ or $Q^{\pi_{\theta_k}}(s, a)$, and expectation terms from sample trajectories generated from π_{θ} .
- 'Vine" simulation and Importance sampling
 - multiple alternate actions can be tried from the observed states in simulation settings.
 - objective replaced by

$$\mathbb{E}_{s \sim \pi_{\theta_k}, a \sim q} \left[\frac{\pi_{\theta}(s, a)}{q(s, a)} A^{\pi_{\theta_k}}(s, a) \right]$$

Some implementation details

- Monte Carlo estimates of $A^{\pi_{\theta_k}}(s,a)$ or $Q^{\pi_{\theta_k}}(s,a)$, and expectation terms from sample trajectories generated from π_{θ} .
- 'Vine" simulation and Importance sampling
 - multiple alternate actions can be tried from the observed states in simulation settings.
 - objective replaced by

$$\mathbb{E}_{s \sim \pi_{\theta_k}, a \sim q} \left[\frac{\pi_{\theta}(s, a)}{q(s, a)} A^{\pi_{\theta_k}}(s, a) \right]$$

- Conjugate gradient method for constrained optimization
 - Requires computing Hessian of the KL divergence term.
 - Several approximations proposed for making it efficient.

Proximal Policy Optimization (PPO)

Schulman et al 2017

Recall TRPO:

$$\theta_{k+1} = \begin{array}{c} \arg\max_{\theta} & \mathbb{E}_{s \sim \pi_{\theta_k}}[\sum_{a} \pi_{\theta}(s, a) A^{\pi_{\theta_k}}(s, a)] \\ s.t. & \mathbb{E}_{s \sim \pi_{\theta_k}}\left[D_{\mathit{KL}}(\pi_{\theta}(\cdot|s), \pi_{\theta_k}(\cdot|s))] \leq \delta \end{array}$$

Proximal Policy Optimization (PPO)

Schulman et al 2017

Recall TRPO:

$$\theta_{k+1} = \begin{array}{c} \arg\max_{\theta} & \mathbb{E}_{s \sim \pi_{\theta_k}}[\sum_{a} \pi_{\theta}(s, a) A^{\pi_{\theta_k}}(s, a)] \\ s.t. & \mathbb{E}_{s \sim \pi_{\theta_k}}\left[D_{\mathit{KL}}(\pi_{\theta}(\cdot|s), \pi_{\theta_k}(\cdot|s))] \leq \delta \end{array}$$

Equivalently

$$heta_{k+1} = egin{array}{ll} \arg\max_{ heta} & \mathbb{E}_{s,a \sim \pi_{ heta_k}} [rac{\pi_{ heta}(s,a)}{\pi_{ heta_k}(s,a)} \mathcal{A}^{\pi_{ heta_k}}(s,a)] \ & s.t. & \mathbb{E}_{s,a \sim \pi_{ heta_k}} \left[rac{\pi_{ heta}(s,a)}{\pi_{ heta_k}(s,a)} \log (rac{\pi_{ heta}(s,a)}{\pi_{ heta_k}(s,a)})
ight] \leq \delta \ & \end{array}$$

PPO algorithm design

For a sample state action pair s^i , a^i , let ratio

$$r_i(\theta) := \frac{\pi_{\theta}(s^i, a^i)}{\pi_{\theta_k}(s^i, a^i)}$$

PPO replaces the trust region constrained by clipped ratio in the objective and solve the unconstrained problem:

$$\theta_{k+1} = \max_{\theta} \hat{E}_i \left[\min \left(r_i(\theta) \hat{A}_i, \text{clip}(r_i(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_i \right) \right]$$

where \hat{E} is expectation over state and action pairs s^i , a^i generated from policy π_{θ_k} , and \hat{A}^i is a Monte Carlo estimate of $A^{\pi_{\theta_k}}(s_i, a_i)$.

PPO algorithm

Initialize θ^1 . In iteration k

- Generate sample trajectories from π_{θ_k} .
- For each sample s^i , a^i in the trajectories, construct Monte Carlo estimate \hat{A}^i for $A^{\pi_{\theta_k}}(s_i, a_i)$.
- $\blacktriangleright \text{ Let } r_i(\theta) := \frac{\pi_{\theta}(s^i, a^i)}{\pi_{\theta_{\nu}}(s^i, a^i)}.$
- Solve

$$\theta_{k+1} = \max_{\theta} \hat{E}_i \left[\min \left(r_i(\theta) \hat{A}_i, \operatorname{clip}(r_i(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_i \right) \right]$$

Comparisons on MuJoCo

Figure from [Schulman et al. 2017]

PPO used with $\epsilon = 0.2$

Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million timesteps.

Other related methods

➤ Soft policy iteration: softmax instead of greedy policy update. Project back to policy space using KL divergence

$$\pi^{soft-greedy}(\cdot|s^i) \propto \exp(\hat{Q}^i)$$

 \hat{Q}^i is a Monte Carlo estimate of $Q^{\pi_{
m old}}(s^i,a^i)$

$$\pi^{\textit{new}} = \arg\min_{\pi' \in \Pi} \hat{\mathbb{E}}_{s^i \sim \pi^{\textit{old}}} \left[D_{\textit{KL}}(\pi'(\cdot|s^i) \parallel \pi^{\textit{soft-greedy}}(\cdot|s^i)) \right]$$

➤ Soft actor-critic [Harnooja et al. 2018]: (Deep) Q-learning/TD learning to estimate *Q*-values

$$\pi^{new} = \arg\min_{\pi' \in \Pi} \hat{\mathbb{E}}_{s^i \sim \pi^{old}} \left[D_{\mathit{KL}}(\pi'(\cdot|s^i) \parallel \frac{\exp(Q_{ heta}(s^i,a^i)}{Z_{ heta}})
ight]$$

Gradient descent methods for optimizing the above objective. Removes the need to estimate normalization constant Z_{θ} .