Mapping the notation of Méléard and Roelly (1992) to Week et al

Description	Méléard and Roelly 92	Week et al
Arbitrary finite measure	$\mu \in M_F(\mathbb{R}^d)$	NA
Bounded function	$f \in C_b(\mathbb{R}^d)$	$f \in C_b(\mathbb{R})$
Non-negative continuous integrable function	NA	$\nu(\cdot,t) \in C_1^+(\mathbb{R})$
"Spatial" location	$x \in \mathbb{R}^d$	$x \in \mathbb{R} \dots$ interpreted as trait value
Infinitesimal generator of spatial movement	$A(\mu)\dots$ satisfies (H_1) and (H_2) below	$\frac{\mu}{2}\Delta\dots$ Laplace operator with diffusion coefficient $\mu/2$
Superprocess	$X_t \in M_F(\mathbb{R}^d) \text{ for } t \in [0, \infty)$	NA
Density process	NA	$\left \begin{array}{c} u(x,t) \end{array} \right $
Duality bracket	$X_t \in M_F(\mathbb{R}^d), \ f \in C_b(\mathbb{R}^d)$	$ \int_{\mathbb{R}} \nu(x,t) f(x) dx \dots \\ \nu(\cdot,t) \in C_1^+(\mathbb{R}), \ f \in C_b(\mathbb{R}) $
Malthusian parameter	$b(\mu)(x) \dots b(\mu) \in C_b(\mathbb{R}^d)$ for $\mu \in M_F(\mathbb{R}^d)$	$m(\nu(x,t),x)\dots$ bounded above, but not below
Stochastic parameter	$c(\mu)(x) \dots c(\mu) \in C_b(\mathbb{R}^d)$ for $\mu \in M_F(\mathbb{R}^d)$	$V > 0 \dots$ constant
Reproductive law	$p_k(x,\mu)$	NA
Mean of reproductive law	$m(x,\mu) = \sum_{k \in \mathbb{N}} k p_k(x,\mu) \dots$ $\sup_{x,\mu} m(x,\mu) < \infty$	$ \left \begin{array}{c} \mathscr{W}(\nu,x) \dots & \text{introduced in} \\ \sup_{\nu,x} \mathscr{W}(\nu,x) < \infty & \text{appendix} \end{array} \right $
Unnamed	$v^{2}(x,\mu) = \sum_{k \in \mathbb{N}} (k-1)^{2} p_{k}(x,\mu)$	NA
Death rate	$\lambda(x,\mu)$	we assume constant "lifetimes"

- (H₁): For all $\mu \in M_F(\mathbb{R}^d)$ and all f in the domain of $A(\mu)$, there is a constant K > 0 such that $||A(\mu)f||_{\infty} \leq K\langle \mu, 1\rangle$.
- (H₂): For all f in the domain of $A(\mu)$, the map $\mu \to \langle \mu, A(\mu)f \rangle$ is continuous.
- In Week et al, spatial movement is interpreted as mutation. Hence, durations of spatial movement are not interpreted as lifetimes. Instead, we assume discrete non-overlapping generations for the branching diffusion process.