Homework 1

Due 01/31/25

January 22, 2025

Definition 1. $a \mid b$ ("a divides b") if and only if there exists some integer k such that b = ak. Equivalently, $a \mid b$ if and only if b has a remainder of 0 when divided by a (see question 2).

- 1. Using the formal definition of divisibility above, prove that there exist positive integers a, b, and c such that $a \mid bc$, but $a \nmid b$ and $a \nmid c$.
 - **Theorem 1.** The Division Algorithm. For any integers a and b where $b \neq 0$, there exist a unique pair of integers q and r such that a = qb + r and $0 \leq r < b$. The integers q and r are known as the quotient and remainder of $a \div b$, respectively.
- 2. Using the formal definition of the remainder above, prove that if n and m are positive integers such that n has a remainder of r when divided by m and $r < \sqrt{m}$, n^2 has a remainder of r^2 when divided by m.
- 3. Use the formal definition of Big-Oh to prove that if $f(n) = n^x + an^y$, where a, x, and y are positive integers such that x > y, $f(n) = O(n^x)$.
- 4. Use the formal definition of Big-Omega to prove that if $f_1(n)$, $f_2(n)$, $g_1(n)$, and $g_2(n)$ are functions such that $f_1(n) = \Omega(g_1(n))$ and $f_2(n) = \Omega(g_2(n))$, then $f_1(n) + f_2(n) = \Omega(g_1(n) + g_2(n))$.

2025S CS 590 A – Algorithms Homework 1

Name: Tanishq Harit CWID: 20031876

Ans.1

Integers a, b and c that bc is multiple of a, but neither b nor c

$$a = 6, b = 2, c = 3$$

$$bc = 2 * 3 = 6$$
 (multiple of a i.e. 6)

2 is not multiple of 6

3 is not multiple of 6

a, b and c satisfy the conditions.

Ans.2

Let n = qm + r (integers q and r, $0 \le r \le m$)

Now,
$$n^2 = (qm + r)^2$$

$$n^2 = q^2m^2 + 2qmr + r^2$$

Since,
$$r < \sqrt{m}$$
 and $r^2 < m$

Therefore, n² has a remainder of r² when divided by m.

Ans.3

Finding a constant C > 0 such that for all $n \ge 1$, $f(n) \le C * n^x$

Since x > y, we have $n^x \ge n^y$ for all $n \ge 1$

Therefore,
$$f(n) = n^x + an^y \le n^x + an^x = (1 + a)n^x$$

Putting
$$C = 1 + a$$
, we have $f(n) \le C * n^x$ for all $n \ge 1$

Thus, $f(n) = O(n^x)$

Finding a constant C > 0 and an integer $N \ge 1$ such that for all $n \ge N$, $f1(n) \ge C * g1(n)$ and

$$f2(n) \ge C * g2(n)$$

Adding both inequalities, then $f1(n) + f2(n) \ge C * (g1(n) + g2(n))$

So,
$$f1(n) + f2(n) = \Omega(g1(n) + g2(n))$$
.