Experiment 8 – Decision Tree Write-up

Name: Ashish Nanda

Roll No.: J041

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_wei ght_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, ccp_alpha=0.0)

Parameters

- 1. criterion: {"gini", "entropy"}, default="gini"
- 2. splitter: {"best", "random"}, default="best"
- 3. max_depth: int, default=None
- 4. min_samples_split: int or float, default=2
- 5. min_samples_leaf: int or float, default=1
- 6. min_weight_fraction_leaf: float, default=0.0
- 7. max_features: int, float or {"auto", "sqrt", "log2"}, default=None
- 8. random_state: int, RandomState instance or None, default=None
- 9. max_leaf_nodes: int, default=None
- 10. min_impurity_decrease: float, default=0.0
- 11. min_impurity_split: float, default=0
- 12. class weight: dict, list of dict or "balanced", default=None
- 13. ccp_alpha: non-negative float, default=0.0

Attributes

- 1. classes_ndarray of shape (n_classes,) or list of ndarray
- 2. feature_importances_ndarray of shape (n_features,)
- 3. max_features_int
- 4. n_classes_int or list of int
- 5. n_features_int
- 6. n_outputs_int
- 7. tree_Tree instance

Advantages

- 1. Simple to understand and to interpret. Trees can be visualised.
- 2. Requires little data preparation.
- 3. The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points used to train the tree.
- 4. Able to handle both numerical and categorical data.
- 5. Able to handle multi-output problems.
- 6. Possible to validate a model using statistical tests. That makes it possible to account for the reliability of the model.
- 7. Performs well even if its assumptions are somewhat violated by the true model from which the data were generated.

Disadvantages

- 1. Decision-tree learners can create over-complex trees that do not generalise the data well. This is called overfitting.
- Decision trees can be unstable because small variations in the data might result in a completely different tree being generated. This problem is mitigated by using decision trees within an ensemble.
- Predictions of decision trees are neither smooth nor continuous, but piecewise constant approximations as seen in the above figure. Therefore, they are not good at extrapolation.
- Decision tree learners create biased trees if some classes dominate. It is therefore recommended to balance the dataset prior to fitting with the decision tree.