NUCLEOTIDE ANALOG, PRODUCTION THEREOF AND ANTIVIRAL AGENT

Publication number: JP63010787 (A)

Publication date:

1988-01-18

Inventor(s):

YAMAMOTO NAOKI; TANIYAMA YOSHIHISA; HAMANA

TAKUMI; MARUMOTO RYUJI +

TAKEDA CHEMICAL INDUSTRIES LTD + Applicant(s):

Classification:

A61K31/52; A61K31/522; A61P31/12; A61P43/00; - international:

C07D471/04; C07D473/06; C07D473/18; C07D473/30; C07D473/34; C07H19/16; C12N9/99; A61K31/519; A61P31/00; A61P43/00; C07D471/00; C07D473/00; C07H19/00; C12N9/99; (IPC1-7): A61K31/52; C07D473/18; C07D473/30; C07D473/34;

C12N9/99

- European:

Application number: JP19870025074 19870205 Priority number(s): JP19860049395 19860306

Abstract of JP 63010787 (A)

NEW MATERIAL:A compound expressed by formula I (R is OH which may be protected; Y is a purine base which may be protected) or a salt thereof. EXAMPLE:N<6>-Benzoyl-6'-0'-(4, 4'dimethoxytrityl)-3'-0-[(imidazo-1-yl)-thiocarbonyl] -2'-deoxyaristeromycin. USE:Antiviral agent. PREPARATION:OH group in the 2'- or 3'-position of a compound expressed by formula II (either one of R1 and R2 is OH and the other is H) is thiocarbonylated, preferably at room temperature. Then, the compound is reduced in the presence of an equivalent or excessive amount of alpha, alpha'- azobisisobutyronitrile at 0-100 deg.C for 30min-2hr, using tributyltin hydride to give a compound dideoxylated in the 2'- and 3'-positions.

Also published as:

DD255351 (A5) DD255351 (A5)
DD255351 (A5)
DD255351 (A3)

CS264290 (B2)

Data supplied from the *espacenet* database — Worldwide

19 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭63-10787

@Int_Cl_4	識別記号	庁内整理番号		49公開	昭和63年(1988)1月18日	
C 07 D 473/18 A 61 K 31/52	ADY	7430-4C 7252-4C				
C 07 D 473/30 473/34	AED	7252-4C 7430-4C 7430-4C				
C 12 N 9/99	•	7430-4C 7421-4B	審査請求	未請求	発明の数 3 (全11頁)	

⑤発明の名称 ヌクレオシド類緑体、その製造法および抗ウイルス剤

②特 願 昭62-25074

塑出 願 昭62(1987)2月5日

②発 明 者 山 本 直 樹 山口県宇部市東小羽山町1-7-12 ②発 明 者 谷 山 佳 央 大阪府大阪市東淀川区瑞光1丁目67

⑩発 明 者 谷 山 佳 央 大阪府大阪市東淀川区瑞光1丁目6番31号 ⑪発 明 者 浜 名 巧 兵庫県西宮市神垣町5番21号 武田薬品夙川寮内

①出 願 人 武田薬品工業株式会社 大阪府大阪市東区道修町2丁目27番地

邳代 理 人 弁理士 岩 田 弘

明 和 音

1. 発明の名称

ヌクレオシド類縁体、その製造法および抗ウイル ス剤

- 2. 特許請求の範囲
 - (1) 一般式

(式中、Rは保護されていてもよい水放基を、Y は保護されていてもよいプリン塩基を表す)で示 される化合物またはその塩

(2) 一般式

(武中、Rは保護されていてもよい水酸基を、R)またはR。はいずれか一方が水酸基で他方は水素を、Yは保護されていてもよいプリン塩基を表す)

で示される化合物を還元反応に付して2′,3′ - ジデオキシ化することを特徴とする一般式

(式中、RおよびYは前記と同意義を有する)で示される化合物またはその塩の製造法

(3) 一般式

$$R \xrightarrow{6' 5'} 1'$$

(式中、Rは保護されていてもよい水酸基を、Y は保護されていてもよいプリン塩基を表す)で示 される化合物またはその塩を含有してなる抗ウィ ルス剤。

3. 発明の詳細な説明

産業上の利用分野

本発明は生物学、医学あるいは遺伝子操作上に おいてプリンヌクレオシドに代えて使用すること ができ、また抗ウイルス剤として有用なシクロペ ンタン母を有するヌクレオシド類緑体を提供する ものである。

従来の技術

プリンヌクレオシドのジデオキシアナログの例 として、次式

(式中、Yはグアニン-9-イル、アデニン-9-イルを表す)で示される化合物の誘導体がDNA 塩基配列決定法において使用されている [プロシーディングス・ナチュラル・アカデミー・オブ・ サイエンス (Proc. Nat. Acad. Sci. USA)、74、4563(1977)]。しかし、 ブリンヌクレオシドの2′、3′ージデオキシア ナログは極めて酸に敏感で、容易にグリコシル結 合の開裂を起こし、合成上多大の困難がある。

$$R \longrightarrow (1)$$

(式中、Rは保護されていてもよい水酸基を、Yは保護されていてもよいプリン塩基を表す)で示される化合物またはその塩、

(2) 一般式([])

(式中、Rは保護されていてもよい水酸基を、R」またはR。はいずれが一方が水酸基で他方は水素を、Yは保護されていてもよいブリン塩基を表す)で示される化合物を選元反応に付して2′.3′ージデオキシ化することを特徴とする一般式(1)の化合物またはその塩の製造法、および(3)一般式(1)の化合物またはその塩を含有して

なる抗ウイルス剤である。 一般式(1)および(1)の化合物においてながっ

一般式(1)および(I)の化合物においてRが水 酸基保護基であるときの該保護基としては、通常、 られ、RNAウイルスの化学療法剤として注目されている[ケミカル・アンド・エンジニャリング・ニュース(Chen. Eng. News).1月27日号.28(1986)]。

発明が解決しようとする問題点

上記のように、ジデオキシヌクレオシドあるいはそのカルポサイクリックアナログについては、ある程度の研究はなされているものの、まだ未検討の分野も多く、さらに各種アナログを合成し、評価することが重要な課題となっている。本発明は、新規で抗ウイルス剤等として利用し得るカルポサイクリック2′、3′ージデオキシヌクレオシドを提供しようとするものである。

問題を解決するための手段

本発明者らは、上記のような状況下で、新規でかつ有用なプリンヌクレオシドアナログを得るために種々検討し、本発明を完成したものである。 すなわち本発明は、

(1) 一般式(1)

ヌクレオシド化学において水酸基の保護基として 用いられるものであれば特に限定されない。本発 明では、アルカリ性条件下で比較的安定なものが 好ましく用いられ、たとえば、炭素数3~10の アルキルシリル(例、t-ブチルジメチルシリルな ど)、炭条数4~10のアルキルまたはアルコキ シサイクリックエーテル〔例、テトラヒドロフラ ニルおよび炭素数1~7のテトラヒドロフラニル 誘導体、テトラヒドロピラニルおよび炭素数5~ 8のテトラヒドロピラニル誘導体(例、メトキシ テトラヒドロピラニルなど)]、皮紫数3~10 のアルコキシアルキル(例、エトキシメチル.メト キシエチルなど)、トリチルおよびそのアルコキ シ置換体(例、モノメトキシトリチル,ジメトキシ トリチルなど)等が例示される。保護基がアシル 基の場合は、脂肪酸エステル(例、炭素数1~10 の額状または分枝状)や芳香族カルボン酸エステ ル(例、炭素数5~30)として保護することがで きる。

Yで示されるプリン塩基としては、通常、核酸

V

化学の分野でいうブリン環を骨格とする各種の塩 基が挙げられる。たとえば、アデニン、ヒポキサ ンチン、グアニン、イソグアニン、キサンチン、3 ー デアザアデニン、7 ーデアザアデニン、8 ーアザア デニン、2、6 ージアミノブリンなどが挙げられ、 一般式(1)および(1)の化合物においてこれら塩 基はブリン環の9位の窒素原子を介して結合する。

次に一般式(1)および(I)の化合物においてプリン塩基の保護基、すなわち2位あるいは6位のアミノ基保護基としては、通常ヌクレオシド化学の領域で用いられるものすべてが適用できる。たとえば、アデニンの保護基としてはベンゾイルなどの芳香族カルボン酸残据(炭素数5~30)がグアニンの保護基としては脂肪族カルボン酸残基(炭素数2~10の鎖状または分枝状)が費用される。

一般式(II)の化合物から一般式(I)の化合物を 得るには、一般式(II)の化合物の 2′または 3′ 位水酸基を 0~80℃, 望ましくは室温下でチオ カルボニル化したのちα, α′-アゾビスイソブ チロニトリルの当量ないし過剰の存在下にトリブ

2 6 2 4 (1 9 7 6) Jあるいは「ヌクレイック・ア シズ・シンポジウム・シリーズ(Nucleic Acids Symposium Series. No 16.141 (1985))」に記載の方法によって得られる。 たとえば、特朗昭50-62992号、あるいは Chemical Pharmaceutical Bulletin 24. 2624(1976)に記載の方法により、原料化 合物としてアリステロマイシンを用いることによ り.一般式(Ⅱ)においてYがアデニン-9-イルで、 R」またはR」の一方が水酸基で他方が水業であり、 R が水酸基である化合物が得られ、また一般式([[) においてYがN°-ベンゾイル-アデニン-9-イル.Rが1.4′-ジメトキシトリチルで保護さ れた水酸器であり、R」が水素、R。が水酸基であ る化合物は上記の「ヌクレイック・アシズ・シン ポジウム・シリーズ」に記載の方法で得られる。 さらに、一般式(目)において、Yが保護されてい てもよいグアニン・9-イル.またほヒポキサン チン-9-イル.Rが保護されていてもよい水酸 基、2′位が水浆、3′位が水酸基である化合物

チル錫ヒドリドを用いて0~100℃で、30分~2時間還元し、一般式(1)で示される2′3′一ジデオキシ体を得る。チオカルボニル化はチオカルボニルジイミグゾールを用いるチオカルボニルクロロチオノカーボネートを用いるフェノキシチオカルボニルルがあるいは二酸化炭素とヨウ化メチルの反応物を用いるSーメチルジチオカルボニル化などにより好いるSーメチルジチオカルボニル化などにより好いるSーメチルジチオカルボニル化などにより好いない。この還元後、酸性条件下(例、作酸、1 N塩酸で窒温下処理)で容易に4、4′ージメトキシトリチル基は除去され、さらにアルカリ性条件下(例、濃アンモニア水、1 Nー水酸化ナトリウム、1 Mーナトリウムエチラートなど)でブリン塩基の保護基を脱離し得る。

一般式(I)の化合物は、たとえば次の方法によって製造される。 一般式(II)において、Yが保護されていてもよいアデニン-9-イルである化合物は、特開昭50-62992号、「ケミカル・アンド・ファーマシュテイカル・プレティン(Chemical & Pharmaccutical Bulletin)24.

は、特類四 6 0 - 2 3 6 8 5 8 号に記載の方法(後 述の参考例 1 ~ 8 参照)によって得られる。

一方、Yが保護されていてもよい2.6-ジアミノブリン-9-イル、R.が水楽、R.が水酸基である化合物は次のようにして合成される。Yがアデニン-9-イルである対応化合物の水酸基を保護したのち、過酸化水素やメタクロル過安息香酸によって脱アミノしたのち、6位のアミノ基を亜硝酸によって脱アミノしたのち、特公昭42-4347号記載の方法によりオキシ塩化リンと加熱して2.6-ジクロルブリン-9-イル体とする。次いで、6位のクロルをアミノ化すると2・クロルー6-ヒドロキシブリン-9-イル体となる。この化合物の2位をアミノ化することによって目的物が得られる。

本発明の一般式(I)の化合物の塩としては、プリン塩基のアミノ基と鉱酸(例、塩酸,硫酸,硝酸)、
有機カルポン酸(例、酢酸,乳酸,酒石酸,マレイン

酸,コハク酸)あるいは有機スルホン酸(例、メタンスルホン酸,エタンスルホン酸,ベンゼンスルホン酸)で形成される塩が挙げられる。

本発明の一般式[1]の化合物は各種のDNAウイルスあるいはRNAウイルスに対し抗ウイルス作用を示す。DNAウイルスの例としてはヘルペスウイルス(例、ヘルペスシンブレツクスウイルス1型あるいは「型、サイトメガロウイルス(Cytonegalovirus)、エブシュタインーバァールウイルス(Epstein-Barr virus))、アデノウイルス(例、type国)、B型肝炎ウイルスあるいはポツクスウイルスなどがあげられる。またRNAウイルスとしては、ヒト免疫不全症ウイルス(ヒトT細胞リンパ塩向性ウイルス・HTLV~町)、水疱性口内炎ウイルス、ネコ白血病ウイルスあるいはウマ感染性貧血性ウイルス、などが挙げられる。

とりわけ、本発明の化合物は逆転写酵素の阻害 剤としてRNAウイルス、特にHTLV-II (AIDS)ウイルスに対する生育抑制効果を顕著

与経路は摂取者の病状および年令、感染の性質などにより適宜に選択される。

本化合物は単独で投与することもできるが、好ましくは医薬製剤として投与する。本発明の医薬製剤は一般式(1)の化合物を少なくとも一種と生理的に許容されうる担体の一種または二種以上および必要によりその他の治療剤を含有せしめてもよい。

本製剤は単位投与形で提供すると好ましく、調剤技術で良く知られているいづれかの方法により 調製できる。

本発明の化合物を含有する経口投与の製剤としてはカプセル、または錠剤のような分離単位:粉 末または顆粒:水性または非水性液体中の溶液ま たは懸調液:あるいは水中油型液体エマルジョン または油中水型液体エマルジョンなどの削型があ けられる。

錠剤は必要により一種または二種以上の補助成分とともに圧縮または成型することにより調製できる。圧縮錠剤は必要により結合剤(例、ポビド

に示す。

本発明の化合物は上記のような各種ウイルスの 感染症の治療に用いることができる。たとえば、 免疫機能の低下した患者に発症した単純疱疹、水 痘、帯状疱疹、角膜炎、結膜炎ならびに急性肝炎や、 種々の日和見感染症と悪性腫瘍の好発症、中枢神 経系症状などがあげられる。

従って、本化合物は、抗ウイルス剤として、動物とりわけ哺乳動物(たとえば、ウサギ、ラット、マウスなどの実験動物:イヌ、ネコなどの愛玩動物:ヒト:牛.馬.羊.豚などの家畜)のウイルス病の治療に使用することができる。

一般に、適当な投与型は一日当りで摂取者の体 重 Kg 当り30~500 mgの範囲、好ましくは 100~300 mg/体重 Kg/日である。通常は、 一日の適当な間隔で2回、3回または4回以上の 分割投与量で投与する。

投与は経口、直腸、鼻、局所(例、舌下および口 腔内)、腔および非経腸(例、皮下、筋肉内、静脈 内および皮内)などの経路により投与できる。投

ン、ゼラチン、ヒドロキシプロピルメチルセルロース)、潤滑剤、不活性希釈剤、保存剤、加壊剤、 表面活性剤または分散剤と混合して、粉末または 類粒状にした後、適当な機械で圧縮することによ り調製できる。

整口内に局所投与の製剤は、本発明の化合物を 風味を付与した基材、たとえばショ朝およびアラ

1

ビヤゴムまたはトラガカントゴム中に含有せじめるトローチ剤: ゼラチンおよびグリセリン、またはシヨ的およびアラビヤゴムのような不活性基材中に含有せしめる紙剤:および適当な液体担体中に含有せしめる含物剤として利用し得る。

直脳投与用製剤は、たとえばカカオ脂のような 適当な基材とともに坐薬として利用し得る。

腔投与用製剤は公知方法により担体を含有せしめてペッサリー、タンポン、クリーム、ゲル、ペースト、フォームまたはスプレーとして利用し得る。

本発明の一般式(1)の化合物のうち、とりわけ 2′.3′-ジデオキシアリステロマイシン(実施 例3)および9-((1S.4R)-4-ヒドロキシ メチルシクロペンタン-1-イル)グアニン(実 施例4)はAIDSウイルスに対する生育抑制作 用が強く、有用性の高い化合物である。

実施例

以下に、参考例、実施例および試験例を示し本 発明をさらに具体的に説明する。

9-[(1R,2S,3R,4R)-4-メチル-2 -ベンゾイルチオカルボニルオキシ-3.6-(テトライソプロピルジシロキサニル)ジオキシシクロペンタン-1-イル]ヒポキサンチンの合成

参考例 L で得た化合物 (11.2g. 22.3mmol)を300 mlの ((1.2g. 22.3mmol)を300 mloの ((1.2g. 22.3m

N M R (60 MHz, CDCl₂) δ ppm: 1.0-1.23(28H,m).

2.13-2.43(3H,m,H4',H5'), 3.93-4.10(2H,m,Ha'), 4.80-5.20(2H,m,Ha',H₂'), 6.00-6.20(1H,m,H₂'), 7.03-7.50(5H,m), 7.87(1H,s), 8.13

参考例1

9-[(IR.2S.3R.4R)-4-メチル-2-ドロキシ-3.6-(テトライソプロピルジシロキサニル)ジオキシーシクロペンタン-1-イル]ヒポキサンチンの合成

イノシンのカルボサイクリックアナログ(10g.
37.5mmol)を200mlの無水DMFに溶かし、1、3
-ジクロロー1、1、3、3 ーテトライソプロピル
ジシロキサン(13ml、41mmol)とイミダゾール(11.
3g、165mmol)とを加えた後、室温下2.5hrかくは
んした。反応液を水2ℓに減下し生じた沈澱をろ
取し、水洗した後、さらに素早くジエチルエーテ
ルで洗浄し、乾燥後、白色粉末状の化合物(17.2g)
を得た。さらに一部をジクロロメタンから再結品
し結晶を得た。mp 135-138℃。

なお、上記において用いたイノシンのカルボサイクリックアナログは「(Chemical & Pharma-ceutical Bulletin) 21.2624(1976)」に記載の公知化合物である。

参考例 2

(111.3)

谷考例3

9 - [(IR,3S,4R)- 4 - メチル-3,6 - (テトライソプロピルジシロキサニル)ジオキシーシクロペンタン-1-イル]ヒポキサンチンの合

成

参考例 2 で得た化合物 (13.0g, 20mnol)に 30mlの個水トルエンを加え、減圧濃縮した。次いで 300mlの個水トルエンに溶かし、チッ葉ガスを 20分間パップリングした。トリプチル錫ヒドリド(11ml, 40mnol)を加えた後、80℃に加温しながら、途中、4回に分けて15分おきに α, α′-アゾビスイソプチロニトリルの結晶 (820mg)を加えた。3 hr 加温かくはんした後、減圧下に溶媒を除き得られた油状物をシリカゲルクロマトグラフィー(80g, 溶媒: CIIC1。および CIIC1。/NeON = 60/1~30/1)で精製し価色ガラス状の化合物 (10.4g)を得た。さらに一部をエクノールから再結晶し、価色針状晶を得た。mp 200-202℃。

N M R (60 MII z, CDCl₃) δ ppm: 0.93 - 1.20(2811.

s), 1.97 - 2.53(5H, m.H₂', H₄', H₅'), 3.80 - 4.07(2H, m.H₆'), 4.43 - 5.27(2H, m.H₁', H₅'), 7.87(1H.s), 8.20(1H.s)

公考例 4

9-[(1R,3S,4R)-4-(モノメトキシトリチロキシ)メチル-3-ヒドロキシル-シクロペンタン-1-イル]-(1-メトキシーメチルヒポキサンチン)の合成

参考例3で得た化合物 (9.8g. 19.8mmol)を240 mlの無水ジオキサンに溶かし氷冷かくはん下、素早く水紫化ナトリウム(880mg, 21.8mmol)を加え、室温にもどし1.5hrかくはんした。続いて、氷冷下、 架早くメトキシメチルクロリド(2ml, 21.8mmol)を加え、室温下 3 hrかくはんを続けた。

は圧下に溶媒を除いたのち得られた油状物を200mlのクロロホルムに溶かし0.1Mのトリエチルビカルボナート(TEAB)級衝液(pll 7.5, 100ml×2).さらに水洗(200ml).乾燥(無水硫酸ナトリウム)後は圧濃縮しシロップ状物質を得た。これに C₁・シリカゲルクロマトグラフィー (φ5.3×

メトキシトリチル化されなかった化合物を回収した。この化合物を設縮後、HP-20樹脂上(190ml、溶媒:水および30%エタノール水)で精製し、設縮後、ピリジン共沸を行ないモノメトキシトリチル化を上記と同様の操作で行なつた。この様にして得られた本参考例の目的化合物の精製は、両者をあわせてシリカゲルクロマトグラフィー(80g,溶媒;CHCla/NeOll=100/1,60/1,50/1)で行ない、無色ガラス状の化合物(6.1g)を得た。さらに一部はジクロロメタンに溶かしαーヘキサン中に適下することにより白色粉末状とした。

N M R (60 MIZ, CDC1₃) δ ppm: 1.87 - 2.70(5H, m. H₂', H₂', H₃'). 3.20 - 3.40(2H, m, H₆'). 3.43(3H, s.CH₃OCH₂). 3.80(3H, s). 4.30 - 4.57(1H, m, H₃'). 4.87 - 5.10(1H, m, H₁'). 5.47(2H, s.CH₃OCH₂ - N). 6.73 - 6.97(2H, m). 7.17 - 7.53(12H, m). 7.73(1H, s). 7.98(1H, s)

参考例5

1-[(1R,3S,4R)-4-(モノメトキシトリチルオキシ)メチル-3-ヒドロキシルーシク 7.0cm, 溶媒:アセトン水.55%~80%)で精製し無 色ガラス状の化合物(8.5g)を得た。

本化合物(8.0g)を32mlのテトラヒドロフラン (THF)に溶かしテトラブチルアンモニウムフル オリドの3水塩(TBAF・3HiO)(10g)を加え、 窒温で0.5hrかくはんした。溶媒を放圧下に除い て得られる油状物を100mlの水に溶かし、ジエチ エーテル(100ml×2)で洗浄後、Dovex-50(ピリ ジン型.60al)樹脂上で、テトラブチルアンモニウ ム塩を除いた。この通過液と樹脂の水洗液(240ml) とをあわせ蹑幅したのち、残留物をピリジン共派 3回行ない脱水した。これを100mlのピリジンに溶 かしモノメトキシトリチルクロリド(MMTrCI) (5.4g)を加え、37℃で4hrかくはんした。溶媒 を試圧下に除いて得られる油状物を0.1M -TEAB級衝液(50ml)とCNCl₂(100ml)で分配し、 有機層をさらに水洗(100ml)し、乾燥後(無水硫酸 ナトリウム)減圧恐縮し、トルエンで共沸を行な い無色シロップ状物質を得た。一方、0.1M -TEAB級衝液と水洗液をあわせて恐縮し、モノ

ロペンタン-!-イル]-(4-カルバモイル-5--アミノイミダゾール)の合成

M 521.616

計算值:C; 69.08, H; 6.38, N; 10.74 実測值:C; 69.14, H; 6.09, N; 10.54

4

N M R (100 MHz. CDCl₃) δ ppm: 1.36 - 2.52(5H.m). 3.00 - 3.40(3H.m.H. (.0H). 3.77(3H,s). 4.12 - 4.60(2H.m.H. (.H. (.)). 4.80 - 5.28(2H.br. MH.).5.64 - 6.44(2H.br. MH.). 6.76 - 6.94(3H.m). 7.14 - 7.48(12H.m)

经考例 6

1-[(1R,3S,4R)-4-(モノメトキシトリチルオキシ)メチル-3-ヒドロキシル-シクロペンタン-1-イル]-[4-カルバモイル-5-(N-ベンゾイル-S-メチルィソチオーカルバモイル)アミノイミダゾール]の合成

参考例 5 で得られた化合物 (0.88g, 1.7amol)を25mlの低水アセトンに溶かし加熱湿流しながらベンゾイルイソチオシアネート (260μl, 1.9amol)のアセトン溶液 (8 ml)を10分間で滴下し、続いて50分間湿流した。減圧下に溶媒を除き得られる淡黄色ガラス状物質をシリカゲルクロマトグラフィー(15g,溶媒: CIIC1。/MeOII=50/1~30/1)で精製し、淡黄色ガラス状の化合物 (0.87g)を得た。この化合物 (0.84g, 1.2amol)に少量のアセトンを加えシ

6.94(311, m). 7.12-7.52(1511, m). 7.80-7.96(211, m). 11.35(111, bs, NII)

参考例7

9-[1R,3S,4R]-4-モノメトキシトリ チルオキシメチル-3-ヒドロキシル-シクロペ ンタン-1-イル]グアニンの合成

実施例1で得られた化合物(360mg, 0.53mmo1)を加温した18mlの6N水酸化ナトリウムに加え、1hr加熱遠流した。反応液からCIIC1。で生成物を抽出し、0.1M-TEAB緩衝液(30ml),次いで飽和食塩水(30ml)で洗浄後、乾燥(無水硫酸ナトリウム)し、シリカゲルクロマトグラフィー(8g, 冷媒:CIIC1。/MeOH=40/1~6/1)で精製した。得られたガラス状物質に少量のアセトンを加え、ペンタン中に満下して生成する沈馥を遠沈、乾燥して目的とする化合物の粉末210mgを得た。

元素分析値(%) C_{3.}H_{3.}N₃O₄・1.0H₃O₃分子 型555.633として

計算值: C; 67.01, H; 5.69, N; 12.60 実測值: C: 67.01, H; 5.69, N; 12.42 ロップ状としたのち、12.5mlの0.2N - NaOiiを加え超音波処理により均一な溶液とした。かくはん下ジメチル硫酸(130μℓ、1.4mmol)を加え窒温で 1 hrはけしくかくはんを続けた。反応液とCIICI。(15ml×2)で分配し有機層を0.1M - TEAB級 街液(15ml×3)、続いて飽和食塩水(20ml)で洗浄し、乾燥後(無水硫酸ナトリウム)減圧濃縮し、シリカゲルクロマトグラフィー(15g、溶媒:CIICI。/NeOii=100/1~60/1)で精製した。得られたガラス状物質に少量のジクロロメタンを加え、ヘキサン中に海下して生成する沈澱を違沈、乾燥し本実施 例で目的とする化合物の粉末400mgを得た。

元素分析值(%) C38H3.N5O5S1.分子量689.

835として

計算值: C: 67.90、H: 5.70、N: 10.15

実測值: C: 67.45、H: 5.45、N: 9.89

NMR(100MHz.CDCl₃).δppm: 1.34-2.60(5H.m). 2.52(3H.s.SCH₃). 3.04-3.44(2H.m.H₆′).
3.79(3H.s.OCH₃). 4.08-4.44(1H.m.H₃′). 4.60
-5.00(1H.m.H₃′). 5.64(1H.bs.NH₃), 6.72-

NMR (100MHz.DMSO-d。) & ppm: 1.50-2.60(5 H.m), 3.01(2川,bs), 3.98-4.20(1川,m), 4.70-4.96(2川,m), 6.37(2川,bs,NH₂), 6.82-7.46(14H,m), 7.68(1川,s,川₄), 10.80(1川,bs,NH)

9 - [(1 R, 3 S, 4 R) - 4 - ヒドロキシメチル-3 - ヒドロキシル-シクロペンタン-1 - イル]グアニンの合成

参考例7で得られた化合物(180mg, 0.33mmo1) を10m1の80%酢酸に溶かし、40℃で4.5hrかくは んした。減圧下溶媒を除き、さらに2度,水と共 沸をおこなった。10mlの水を加え、エーテル(10 ml×2)で洗浄後、減圧下、水を除き、目的とす る化合物の無色結晶41mgを得た。mp 246-248℃

λ max (nm): (11.0): 255, 278(sh)

 (11^+) ; 257, 282

 (011^-) : 256(sh), 273

元类分析位(%) C 1.1H 1.3N 3O 3 · 0.511 1O ·

0.10.18.0日.分子至278.886として

計算值:C: 48.24, H: 6.00, N: 25.11

実測質: C: 48.51, H: 6.41, N: 25.40 実施例 L

 $N^{\circ} - \vec{x} \rightarrow \vec{y} + \vec{y} +$

N°-ベンゾイル-6′-〇-(4,4′-ジメトキシトリチル)-2′ーデオキシアリステロマイシン(2.5g)を10元の乾燥ジクロルメタンに溶かし、チオカルボニルジイミグゾール(8.0g)を加え、室温下20時間攪拌した。
反応液を設解乾固後、シリカゲルクロマトグラフィー(Kieselgel 60.メルク社.50g.溶媒:酢酸エチル)で精製し、淡質色ガラス状の化合物を得た。(収量2.2g)。

NMR (90MHZ,CDCl₃) δ ppm: 3.80(6H,s,2CH₃0 -). 8.35(H,s,H₄), 8.76(H,s,H₄)。 実施例 2

 $N^{\circ} - \langle v \rangle / \langle v \rangle / \langle v \rangle - \langle v \rangle / \langle v$

を図したのち、80%酢酸(100元)を加え60 ℃.2時間加熱し、減圧下に濃縮乾固した。暖留 物を水(100元)に溶かし、エーテル(50元)で 2回洗浄した。水層を濃縮乾固し、暖留物をエー テル中で粉末とし2′.3′-ジデオキシアリス テロマイシン (0.23g)を得た。

 $UV\lambda_{\max}^{\text{II}_{\bullet}0} \quad (na) : 260$

元業分析値(%) C1.H1.8N.0・H.0 (分子量 251.29として)

計算值: C; 52.57, II; 6.82, N; 27.87 実測值: C; 52.83, II; 6.95, N; 27.54

かくして得られた 2′, 3′ - ジデオキシアリステロマイシンに当風の 1 N塩酸を加え、溶解せしめたのち、濃縮し、エタノールを加えて数回濃縮乾固を繰返し、熱エタノールで再結品すると塩酸塩の結晶が得られた。 mp 1 7 3 - 1 7 5℃元素分析値(%) C - 1 H - 1 N - O · H C 1 ·

1 / 2 11 . 0

(分子型 218.73として)

テロマイシン

実施例1で得た3′ーチオカルボニル体(2.0 g)を20 ddの乾燥ジオキサンに溶かし、加熱湿流しながらトリプチル錫ヒドリド(4.5 g)の乾燥ジオキサン溶液(10 dd)を滴下した。 途中 a. a′ーアゾビスイソプチロニトリルの結晶(500 mg)を少しづつ加えた。20分で滴下を終え、さらに2時間湿流させた。減圧下に溶媒を除き、得られた油状物質をシリカゲルクロマトグラフィー(40 g.溶媒: CHC ls.)で精製し無色粉末状物質(1.1 g)を得た。

N M R (90MHz.CDC1₃) δ ppm: 3.80(6H.s.2CH₂ 0-). 4.80-5.20(1H.m.H.'). 3.15(2H.d.2H.') .8.76(1H.s.H₂). 9.10(1H.s.-NH-C-).

実施例3

2′,3′-ジデオキシアリステロマイシン 実施例2で得た化合物(I.0g)を少量のピリジンに溶解し、濃アンモニア水50 Wを加え、耐圧 管中で60℃,5時間加熱した。 反応液を設縮

計算值: C; 47.40. H; 6.15. N; 25.12.

C1: 12.72

実測值: C; 47.98, H; 6.06, N; 24.87.

C1 ; 12.71

 $(\alpha)^{\frac{25}{D}} = -6.79(c = 0.61.H_{\pm}0)$

実施例4

参考例 8 で得られた化合物(2,5g)を実施例 1,2,3 と同様にして処理し、9-[(1S,4R) -4-ヒドロキシメチルシクロペンタン-1-イ ル]グアニンの結晶状粉末(0,3g)を得た。

m.p. 269°C

UV $\lambda_{\text{max}}^{\text{pH 2}}$ (nm): 255.280(肩):

 $UV\lambda \frac{11.0}{max}(nm): 253,270(月):$

UV pH10 (nm): 258(周).270

元素分析值(%) CillisOiNs

(分子量 249.27として)

計 环焰 : C; 53.00, H; 6.07, N; 28.10

実測値: C: 52.81、II: 5.86、N: 27.83 $(\alpha)^{25}_{D} = -4.74(c = 0.57, DMF)$

実施例 | の原料化合物において N・ - ベンゾイル - 6′ - 0 - (4 , 4′ - ジメトキシトリチル) - 3′ - 0 - [(イミグゾー | - イル) - チオカルボニル] - 2′ - デオキシアリステロマイシンに代えてヒポキサン体を用いて、実施例 | - 3の方法に準じて 9 - [(1 S , 4 R) - 4 - ヒドロキシメチルシクロペンタン - 1 - イル]ヒポキサンチンが得られる。

元 架 分 折 值 (%) C .. H .. N . O .

(分子瓜 234.25として)

計算值: C; 56.40, H; 6.02, N; 23.92 実測值: C; 56.81, H; 6.33, N; 24.25 実施例5

クロペンタン-1-イル〕グアニン
(1) 9- ((1 R.3 S.4 R)-4-ヒドロキシメ チル-3-ヒドロキシル-シクロペンタン-1-

9 - [(1 S, 4 R) - 4 - ヒドロキシメチルシ

- (8 0 g. 溶媒: CIICI: / MeOII = 4 0 / 1 ~ 6 / 1) で特製し、粉末状の目的物 4 . 3 gを得た。この一部分をクロロホルムージエチルエーテル混液で再結晶すると結晶が得られた。

mp 2 4 4 − 2 4 6 ℃

元杂分折值(%) C 111,0N,O,· H,O

(分子量 531.60として)

計算値: C: 70.04. H; 5.88. N; 10.54 実測値: C: 70.39. H; 5.77. N; 10.38 (3) 9- [(IS, 1R)-1-モノメトキシトリ チルオキシメチルーシクロペンタン-1-イル) ヒポキサンチンの合成

上記(2)で得られた化合物(4.328.8.27 mmo1)をトルエン(70元)に落かし、チオカルボニルジイミグゾール(2.28.12.4 mmo1)を加えて室温下5時間投作した。反応液を設縮乾固し、残留物をシリカゲルクロマトグラフィー(80g. 溶媒:CIC1s/NeOII=100/1~60/1)で精製し淡黄色粉末5.2gを得た。これをトルエン(90元)に溶かし、トリブチル錫ヒドリド(3.4

イル】ヒポキサンチンの合成

参考例3で得た化合物(12.48.20mmol)をトルエン(200元)に溶かし、フツ化テトラブチルアンモニウム(10.468.40mmol)を加え、75℃で2時間加熱した。反応液を設縮花間し、投留物を水に溶かし、活性炭末(30g)を用いて脱塩処理し、相生成物をメタノールとエチルエー、テルとの混液で再結晶し、無色結晶(4.6g)を得た。 a.p. 170℃

元素分析値(%) C 1.11 1.N 20 3・H 20 (分子型 268.27として)

計算値: C: 49.25、II: 6.01、II: 20.88
実測値: C: 49.08、II: 5.86、II: 20.81

(2) 9-((1 R.3 S.4 R)-4-モノメトキシトリチルオキシメチル-3-ヒドロキシルーシクロペンタン-1-イル)ヒポキサンチンの合成上記(1)で得られた結晶(2.3 g, 9.2 mmol)をピリジン(1 0 0 元)に溶かし、塩化モノメトキシトリチル(3.1 g, 1 0 mmol)を加え室温にて5時

間投作した。反応液をシリカゲルクロマトグラフィ

配・1 2 . 4 mmo1)とα、α′-アゾピスイソブチロニトリン(2 7 0 mg、1 . 6 mmo1)を用いて参考例3と同様に反応させ、シリカゲルクロマトグラフィー(1 0 0 g、溶媒:酢酸エチル/メタノール= 9 / 1)で精製し、目的物 1 . 6 3 gを得た。さらに一部をメタノールーエチルエーテル混液で再結品し、結晶を得た。 mp 1 7 5 - 1 7 7℃。

元条分析值(%) C3,H30N,O3·1/211,O

(分子型 515.60として)

計算値: C; 72.21、II; 6.06、N; 10.87 実測値: C; 72.69、II; 5.88、N; 10.92 (4) 9-[(1 S.4 R)-4-ヒドロキシメチルシクロペンタン-1-イル] グアニン

上記(3)で得られた化合物を参考例1~8の方法に準じてヒポキサン扇を開烈せしめ、再びグアニン扇に閉扇させることによって目的物を得ることができる。

実施例 6

経口用錠剂

2′.3′-ジデオキシアリステロ

マイシン 2 0 0 mg

71 3 0 0 mg

デンプン 5 0 mg

ステアリン酸マグネシウム 2 mg をメタノール中で混和し、加熱下メタノールを除 去し、錠剤機によって成型する。

実施例7

注射剂

2′.3′-ジデオキシアリステロマイシン・ 塩酸塩500mgを殺菌水10配に溶解し、pHを 水酸化ナトリウム水溶液を用いて 6.0 に調製し、 段階フィルターでろ過し、バイアル版中に封入す る。

試験例上

材料と方法。

* アンチミクロバイアル・エージエンツ・ケモ セラピー(Antimicrob. Agents Chemother) 30,933(1986)

御胞:HTレV-1持続感染細胞株MT-4と HTLV-Ⅲ産生細胞株Molt-4/HTLV-

胞変性効果は生細胞数の減少を測定することによっ て検討した。生細胞はトリパンブルー色素排除法 によって計数した。

<u>HTLV-II/LAV</u> 抗原発現の検討:ウイルス 特段抗原をもったHTLV-皿感染MT-4細胞 は間接免疫蛍光法によって計数した。メタノール 固定した細胞に、希釈した抗HTLV-田抗体陽 性のヒト血液を加えて37℃で30分間反応させ た。この標本をリン酸塩級衝化生型食塩水中で I 5 分間洗った。その後、細胞にフルオレセイン イソチオシアネートを結合した抗ヒト免疫グロブ リンG ウサギ免疫グロブリン G (Dakoppatts A /S.Copenhagen. Denmark)を加えて37℃、 3 0 分間反応させ、再びリン酸塩級街化生理食塩 水で洗った。蛍光顕微鏡下で500個以上の細胞 を計数し、免疫蛍光陽性細胞の比率を計算した。

この結果、本発明の化合物に明らかな抗 HTLV-用/LAV活性が認められた。2′。 3~~ジデオキシアリステロマイシンを例にとる と、その段低行効器度は50~100μMであっ

■をこの研究に使用した。細胞は、10%のウシ 胎児血潜、1001U/竝のペニシリンと 1 0 0 μ.8/心のストレプトマイシンを添加した R РМІ 1640培養液中、37℃でСО1インキュ ベーター内に維持した。

ウイルスとウイルス感染:HTLV-IIはMolt-4/HTLV-Ⅱの培発上滑から得た

(Virology 144,272(1985)). co ウイルス原品の力価は6×10 PPU/心であっ た。IITLV-IIのMT-4細胞への感染はa.o. i. (細胞1個当たりの感染ウイルス数)0.002 で行なった。 細胞をウイルス液と混合し、37℃ で1時間培養した。ウイルス吸着後、感染細胞を 洗浄し、新鮮な培養液中に3×10°個/旭の憑 度に再び懸顔した。種々の濃度の検体の存在下、 非存在下の両条件とも、この細胞設定で37℃で COzインキュベーター内にG日間培養した。 HTLV-Ⅱ/LAVによって引き起こされた細

胞変性効果の検討:

HTLV-□/LAVによって引き起こされた細

観察された。

発明の効果

本苑卯の一般式[1]で示される化合物は、各種 DNAウイルスたとえばヘルペスウイルスなどに 対し生育抑制作用を有すると共に、逆転写酵素の 阻害剤としてRNAウイルス、特にエイズウイル ス(LAV/HTLV-Ⅱウイルス)に対して生育 抑制作用を育するものである。 また本化合物の ヌクレオチドアナログは遺伝子クローニングにおり いて有用な手段を提供するものである。すなわち、 本発明の化合物はシクロペンタン環を有するアナ ログはプリン-2′,3′-ジデオキシヌクレオ チドのカルボサイクリックアナログであり、グリ コシル結合を有しないため、合成が容易であり、 そのトリリン酸誘導体はDNAの配列決定法にお けるDNA類仲長反応の停止剤として使用され得 るものである。

手統補正醬(自発)

昭和62年 3月30日

刮

•

- 1. 事件の表示 昭和62年特許願第25074号
- 2. 発明の名称 ヌクレオシド類縁体。その製造法および抗ウイルス剤
- 3. 船正をする者 事件との関係 特許出願人 住所 大阪市東区道修町2丁目27番地 名称 (293) 武田薬品工業株式会社 代表者 梅 本 純 正
- 4. 代 理 人

住 所 大阪市淀川区十三本町2丁目17番85号 武田薬品工業株式会社大阪工場内

東京連絡先(特許法規課)電話 278-2218·2219

5. 補 正 の 対 象 ・明和普の発明の詳細な説明の個

紡正する。

- 7) 同費第12頁第6行の「の好発症」を削除する。
- 8) 同豊郊 2 5 頁郊 7 行の「実施例 1 」を「参考 例 6 」に訂正する。
- 10) 同書第36頁第6行、第36頁第7行。第36頁第10行。第37頁第5行および第37頁第7行の「HTLV-II」を

「HIVIITLY-III」」にそれぞれ桁正する。

- 11) 同曹第36頁第18行、第36頁段終行、第37頁第4行および第37頁第18行の「HTLV III / LA V] を「HIV | ITLY III | 」にそれぞれ が正する。
- 12) 同音第38頁第7~8行の「エイズウイルス (LAV/HTLV-IIウイルス)」を「AIDS

6. 補正の内容

- I) 明細曹第11頁第13行の「としては、」と「ヒト免疫不全ウイルス」との間に「後天性免疫不全症候群(Acquired Immune Deficiency Syndrome, AIDS)の病原体である」を挿入する。
- 2) 同音第11頁第13~14行の「(ヒトT細胞リンパ塩向性ウイルス、HTLV-四)」を「(Human Immunodeficiency Virus、 HIV)」と紺正する。
- 3) 同書第11頁第16行の「感染性」を「伝染性」 に補正する。
- 4) 同書第11頁下から第2行の「特に」と 「HTLV-II」との間に「HIVの一つである」 を挿入する。
- 5) 同音第1 | 頁最終行の「(A I D S)ウイルス」を「[ヒトT細胞リンパ趨向性ウイルス (Human T-cell Lymophotropic Virus type II).
 H [V NTLY-II] 」と補正する。
- 6)同書第12頁第4行の「発症」を「発生」に

の病原体であるHIV」に補正する。

以上