for 220]: (b) 20]: (c) 2	tyle #4: 1901e Departure angle for pole w/ 1			
RULE \$15: LOCUS COSSER JUN axis where Rath shows roots from left > right helf of place. todistion: K:0 or START @ poles. it pole @ organ, also on lin exis axia a 0 in 1" colorin of govent table. for other K \$0, 5-dire 1 tk: L(s) = 0 assume this 5= jul. RULE \$16: Locus has multiple hoods @ lada = a dd = 0 180+320(R-1) assume this place broader recet A 1 decomposer broaders [approach] a point of a roots @ argles sequence by decomposes [approach] decompose with the same sequence. 1.7 where to find a thingh? Course \$112: Assume withple K gains: H(s) = (a(s)+KaBO)+KyZ(s) Also sequence to 14Kj (20) a(s) 4Ks (a)	9 de = 2 4	- Z 4; - 180	360(2-1)	
transition KED = 0 START @ poles. It just @ only in, also on him axis also a O in 1th column of Poursh table. Aur. oster K +0, solve 1+K Lls =0 assume alone 5= just. RULE #6: Does has multiple roots @ lada = a dl =0 180 +3 to (8-1) Assume multiple roots @ agles separed by Alone to find a stangle? Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent angle pole Compute K ysing a single pole All poles bout agent angle pole Compute K ysing a single pole All poles bout agent angle pole Compute K ysing a single pole All poles Compute K ysing a si	for zeos: 6 4, or 5 6;	- Z 4 + 160	-360 (l-1) l=1,7g	
transition KED = 0 START @ poles. It just @ only in, also on him axis also a O in 1th column of Poursh table. Aur. oster K +0, solve 1+K Lls =0 assume alone 5= just. RULE #6: Does has multiple roots @ lada = a dl =0 180 +3 to (8-1) Assume multiple roots @ agles separed by Alone to find a stangle? Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent as K? Lls Compute K ysing a single pole (angle) All poles bout agent angle pole Compute K ysing a single pole All poles bout agent angle pole Compute K ysing a single pole All poles bout agent angle pole Compute K ysing a single pole All poles Compute K ysing a si	Rule #5: Lows cosses ju axis when	Raih shows noots	from left is right helf	of place.
it joke @ only in, also on lin axis axis a O in 1^{th} column of governing that $S=1$ in. RULE #6: Locus has multiple roots @ bda = add = 0				
it joke @ only in, also on lin axis axis a O in 1^{th} column of governing that $S=1$ in. RULE #6: Locus has multiple roots @ bda = add = 0	KID = D START @ poles		1	
Assume multiple K gains: $H(l) = \frac{180 \cdot 1360(R-1)}{65}$ Compute K using a single pole (eng). All poles hours separation as K? Compute K using a single pole (eng). All poles hours separation as K? Control K using a single pole (eng). All poles hours separation as K? Control K using a single pole (eng). All poles hours separation as K? Control K using a single pole (eng). All poles hours separation as K? Control K using a single pole (eng). All poles hours separation as K? Control K using a single pole (eng). All poles hours separation as K? Control K using a single pole (eng). All poles hours separation as K? Control K using a single pole (eng). All poles hours separation as K? Control K using a single pole (eng). All poles hours separation as K? Control N (control K using a single pole (eng). All poles hours separation as K? Control N (control K using a single pole (eng). All poles hours separation as K? Control N (control K using a single pole (eng). All poles hours separation as K? Control N (control K using a single pole (eng). All poles hours separation as K? Control N (control N (con		exis	aka a 0 in 199	Column of
Assume multiple K gains: H(s) = \frac{\lambda}{\lambda} \frac \frac{\lambda}{\lambda} \frac{\lambda}{\lambda} \frac{\lambda}{\			Routh table.	
RULE #6: Locus has multiple roots @ $\frac{1}{4}$ = a $\frac{1}{4}$ = 0. $\frac{180+3+0(l-1)}{9}$ is numerated multiple broades meete $\frac{1}{4}$ = 1 $\frac{1}{9}$ Countries Expensed a point of $\frac{1}{9}$ note @ angles separated by $\frac{1}{9}$ Assume multiple K gains: $\frac{1}{9}$ = \frac	for other K+O. So	ve 1+k. L(s) =0		
PULLE #6: Locus has multiple roots @ bodia = a dis = 0 180+300(l-1) is numericle multiple broades greet l-1 a is numericle multiple broades greet locardus [exproach] a point of a roots @ argles sequenced by digori @ argles with the same sequenced by digori @ argles with the same sequenced by CTURE #12: Assume multiple K gains: $H(s) = \frac{n(s)}{\alpha(s) + K_B B(s) + K_B B(s)} + \frac{n(s)}{\alpha(s)}$ Compare K using a sample pole (ang). All poles hours sequence as K? L(s) $\frac{1}{\alpha(s)}$ $\frac{1}{\alpha(s)}$ Control $\frac{1}{\alpha(s)}$ $\frac{1}{\alpha(s)}$ $\frac{1}{\alpha(s)}$ Control $\frac{1}{\alpha(s)}$			Sajwi.	
Lows has multiple horses @ $\frac{60.4}{65}$ = $\frac{180 + 360(1-1)}{9}$ is number multiple broades there? $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$				
branches [approach] a point of a roots @ argles segment by digori @ argles with the same separation 1, ? where to find a though? There #12: Assume multiple K gains: $H(s) = \frac{n(s)}{\alpha(s)} + K_B B(s) + K_B B(s) + K_B B(s)$ Compare K using a sangle pole (ang). All poles hove segment as K? L(s) $L(s)$	RULE #6: Locus has multiple mots Q	bda - adb =0.	182+360(l	-0
branches [approach] a point of a roots @ angles segment by direct @ angles with the same separation 1, ? where to find a though? CTURE #12: Assume multiple K gains: $H(s) = \frac{n(s)}{\alpha(s)} + K_R B(s) + K_R B(s) + K_R B(s)$ Compare K using a sangle pole (ang). All poles hour segment as K? L(s) L(s) CONTRUE K using a sangle pole (ang). All poles hour segment as K? L(s) CONTRUE K using a sangle pole (ang). All poles hour segment as K? L(s) CONTRUE K using a sangle pole (ang). All poles hour segment as K? L(s) CONTRUE K using a sangle pole (ang). All poles hour segment as K? L(s) CONTRUE HOOK EXAMPLE H		ds ds		
directors (appendix) a point of a roots (a) larges sequented by director find a though? CTURE #12: Assume multiple K gains: $H(s) = \frac{n(s)}{\alpha(s) + K_R B(s) + K_R 7(s)}$ Compute K using a sayle pole (any). All poles move togeth as K? List List Control (a) Control (b) (control (c) (c) (control (c) (control (c) (c) (control (c) (c) (control (c) (c) (control (c) (c) (c) (c) (c) (c) (c) (c)			المتعيرة والأناب	l=1q
CTURE #12: Assume multiple K gains: $H(s) = \frac{n(s)}{\alpha(s) + K_R \beta(s) + K_R \beta(s)} \frac{n(s)/a_{10}}{a(s)}$ Compute K using a single pole (any). All poles move togeth as k 1 L(s). Ls* $\Rightarrow 1 + K(L(s^a)) = 0$ CONTRUSTING	branches (FDONACH) à mi	t of g noots @ a	ales segment by	
TURE #12: Assume multiple K gains: $H(s) = \frac{n(s)}{\alpha(s) + K_R \beta(s) + K_R \beta(s)}$ Compute K using a single pole (any). All poles hove togeth as K 1 L(s). L(s). $K = -\frac{1}{\alpha(s)}$ $K = -\frac{1}{\alpha(s)}$ Captions in G. Capt	Ainai (a)			
Assume multiple K gains: $H(s) = \frac{n(s) + K_R B(s) + K_R B(s)}{\alpha(s) + K_R B(s) + K_R B(s)}$ Compute K using a single pole (any). All poles hour tigeth as $K \uparrow$ L(s). Ls* $\Rightarrow 1 + K(L(s^a)) = 0$ CONTRUSING	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	so wan the seme	segments	
Assume multiple K gains: H(s) = $\frac{\alpha(s) + K_R \beta(s) + K_R \beta(s)}{\alpha(s)} + \frac{\alpha(s) + K_R \beta(s) + K_R \beta(s)}{\alpha(s)}$ Compute K using a single pole (any). All poles move sogeth as K? L(s). L(s) L(s) $\frac{1}{1}$ $\frac{1}$ $\frac{1}{1}$	C C WHOLE O THINK & FLOUGH !			
Assume multiple K gains: H(s) = $\frac{\alpha(s) + K_R \beta(s) + K_R \beta(s)}{\alpha(s)} + \frac{\alpha(s) + K_R \beta(s) + K_R \beta(s)}{\alpha(s)}$ Compute K using a single pole (any). All poles move sogeth as K? L(s). L(s) L(s) $\frac{1}{1}$ $\frac{1}$ $\frac{1}{1}$. ,	
Compute K using a single pole (any). All poles move exert as K? L(s) $ks^* \rightarrow 1+k(L(s^*))=0$ $k = -d(s^*)$ (CONTEUSING		[[n(3)]] []	n(3)/a13)	
Compute K using a single pole (any). All poles hove isgeth as K? L(s). L(s) $\frac{1}{1}$	Assume multiple K gains: 1-(s) = -	((s)+ Kg B(s)+ Kz 7(5)	
Compute K using a single pole (any). All poles move regards as $k \uparrow$ L(s). Ls* > 1+K(L(s*))=0 $K = -\frac{d(s^*)}{h(s^*)}$ Conjugate K using a single pole (any). All poles move regards as $k \uparrow$ L(s). $K = -\frac{d(s^*)}{h(s^*)}$		90		
$ks^* > 1+k(L(s^*))=0$ $k = -\frac{d(s^*)}{h(s^*)}$ Conjugate k)
CONTUSING # DOOK EXAMPLE# (CONTUSING		All ada in the other	ank? Lls).	
CONTUSING # DOOK EXAMPLE# (CONTUSING	compute K using a single pole (any).	the poles work the		
CONFUSING	1			
CONTUSING		.s*))=0 · · · · ·	# DOOK EXAMPLE #	
& B		s*))=0	# DOOK EXAMUE#	
AA	CONFUSING	s*))=0	# DOOK EXAMUE#	