Prácticas de Matemática Discreta: Introducción a la teoría de grafos

Sesión 8

Scilab

Grafos dirigidos eulerianos

2 Caminos y conexión

Grafos dirigidos eulerianos

Definición de grafo dirigido

Se llama grafo dirigido (o digrafo) a una terna (V, A, φ) donde:

Caminos y conexión

- 1. V es un conjunto finito no vacío cuyos elementos se denominan vértices.
- 2. A es un conjunto finito cuyos elementos se denominan aristas (o arcos).
- 3. $\varphi: A \to V \times V$ es una asignación (llamada aplicación de incidencia) que a cada arista de A le asigna un elemento de $V \times V$, es decir, un par ordenado de vértices.

Grafos dirigidos eulerianos

Ejemplo de grafo dirigido

Consideremos el grafo dado por la terna $G = (V, A, \varphi)$, donde

$$V = \{v_1, v_2, v_3, v_4, v_5\}, A = \{a, b, c, d, e, f\}$$

y la aplicación de incidencia φ está definida de la siguiente manera:

$$\varphi(a) = (1,2), \ \varphi(b) = (2,3), \ \varphi(c) = (5,3),$$

$$\varphi(d) = (5,4), \ \varphi(e) = (4,1), \ \varphi(f) = (2,4)$$

Este grafo puede representarse por medio del siguiente diagrama:

Conceptos básicos

- Si a una arista se le asigna el par de vértices (u, v), diremos que u es el extremo inicial (o cola) y que v es el extremo final (o cabeza) de esa arista. También diremos que la arista sale de u y llega a v o, simplemente, que va de u a v.
- Diremos que un grafo es simétrico si siempre que hay una arista del vértice u al vértice v, también hay una arista de v a u.
- El grafo (no dirigido) subyacente a un grafo dirigido es aquel que resulta si ignoramos la orientación de las aristas.

Ejemplo:

El grafo subyacente al grafo dirigido del ejemplo anterior es el siguiente:

•

- Se llama grado de salida de un vértice v al número de aristas que salen de v. Lo denotaremos por deg⁺(v).
- Se llama grado de entrada de un vértice v al número de aristas que llegan a v. Lo denotaremos por $deg^-(v)$.
- El grado de un vértice v, deg(v), es el número de aristas que inciden en v, es decir, deg(v) = deg⁺(v) + deg⁻(v).
- Un pozo (o sumidero) es un vértice con grado de salida 0 (es decir, no sale ninguna arista de él).
- Una fuente es un vértice con grado de entrada 0 (es decir, no llega ninguna arista a él).

Ejemplo

• Los grados de salida son: $deg^+(v_1) = 1$, $deg^+(v_2) = 2$, $deg^+(v_3) = 0$, $deg^+(v_4) = 1$, $deg^+(v_5) = 2$

Los grados de entrada son:
 deg⁻(v₁) = 1, deg⁻(v₂) = 1, deg⁻(v₃) = 2,
 deg⁻(v₄) = 2, deg⁻(v₅) = 0

- Los grados son:
 deg(v₁) = 2, deg(v₂) = 3, deg(v₃) = 2,
 deg(v₄) = 3, deg(v₅) = 2
- El vértice 3 es un pozo.
- El vértice 5 es una fuente.

Grados de entrada y salida

Propiedad

Si $G = (V, A, \varphi)$ es un grafo dirigido, entonces

$$\sum_{v \in V} deg^+(v) = \sum_{v \in V} deg^-(v) = \mathsf{n^0} \ \mathsf{de} \ \mathsf{aristas}$$

Ejemplo:

$$\sum_{v \in V} deg^+(v) = 1 + 2 + 0 + 1 + 2 = 6$$

$$\sum_{v \in V} deg^-(v) = 1 + 1 + 2 + 2 + 0 = 6$$

$$n^0 \text{ de aristas} = 6$$

Matriz de adyacencia de un grafo dirigido

Sea $G = (V, A, \varphi)$ un grafo dirigido cuyo conjunto de vértices es $V = \{v_1, v_2, \dots, v_n\}$. La matriz de adyacencia de G es la matriz cuadrada $M_A = (m_{ij})$ de tamaño $n \times n$ tal que m_{ij} es el número de aristas de v_i a v_j .

Ejemplo:

$$M_A = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{array}\right)$$

Matriz de incidencia de un grafo dirigido

Sea G un grafo dirigido sin bucles, con conjunto de vértices $V = \{v_1, v_2, \dots, v_m\}$ y conjunto de aristas $A = \{e_1, e_2, \dots, e_n\}$. La matriz de incidencia de G se define como la matriz $M_i = (m_{ij})$, de tamaño $m \times n$ dada por:

$$m_{ij} = egin{cases} 1 & ext{si } v_i ext{ es extremo inicial de } e_j \ -1 & ext{si } v_i ext{ es extremo final de } e_j, \ 0 & ext{en otro caso} \end{cases}$$

Ejemplo:

$$M_{l} = \left(\begin{array}{cccccc} 1 & 0 & 0 & 0 & -1 & 0 \\ -1 & 1 & 0 & 0 & 0 & 1 \\ 0 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & -1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{array}\right)$$

Grafos dirigidos: conceptos básico

2 Caminos y conexión

Grafos dirigidos eulerianos

Caminos y accesibilidad

Grafos dirigidos: conceptos básicos

 Un camino dirigido en un grafo dirigido es una sucesión finita de vértices v aristas

$$v_0 e_1 v_1 e_2 \ldots e_n v_n$$

donde cada arista e_i tiene como extremo inicial a v_{i-1} y como extremo final a v_i . Se dice que el camino va desde v_0 a v_n .

 Un vértice v se dice que es accesible desde un vértice u si existe un camino dirigido desde *u* hasta *v*.

Ejemplo:

En este grafo el vértice 3 es accesible desde el 4 ya que existe un camino dirigido de v_4 a v_3 :

Grafos dirigidos eulerianos

$$v_4 e v_1 a v_2 b v_3$$

pero el vértice 4 no es accesible desde el 3 ya que no existe ningún camino dirigido de 3 a 4.

- Un grafo dirigido se dice que es débilmente conexo si su grafo subyacente es conexo.
- Las componentes débilmente conexas de un grafo dirigido son las componentes conexas del grafo subyacente.
- En un grafo dirigido un vértice u está fuertemente conectado con un vértice v si u es accesible desde v y v es accesible desde u.
- Un grafo dirigido se dice que es fuertemente conexo si cualquier par de vértices del grafo están fuertemente conectados.
- Dado un vértice v de un grafo dirigido, los vértices que están fuertemente conectados con v determinan un subgrafo fuertemente conexo. Cada uno de estos subgrafos fuertemente conexos son las componentes fuertemente conexas del grafo.

El grafo del ejemplo anterior es débilmente conexo (ya que su grafo subyacente es conexo), pero no es fuertemente conexo (ya hemos visto que existe un camino dirigido del vértice 4 al 3,

determinados por los siguientes vértices: {1,2,4}, {3} y {5}. El siguiente grafo es débilmente conexo pero no es fuertemente conexo. Se han sombreado sus 3 componentes fuertemente

pero no del 3 al 4). Tiene 3 componentes fuertemente conexas que corresponden a los 3 subgrafos fuertemente conexos

conexas:

Scilab

Grafos dirigidos eulerianos

Un grafo dirigido es euleriano si contiene un camino dirigido euleriano cerrado, es decir, un camino dirigido simple, cerrado y que contiene a todas las aristas de grafo.

Teorema

Si G es un grafo dirigido débilmente conexo, entonces G es euleriano si v sólo si en todos los vértices coincide el grado de entrada y el de salida.

Corolario

Si G es un grafo dirigido débilmente conexo no euleriano, entonces entre dos vértices u y v hay un camino euleriano abierto si y sólo si en todos los vértices distintos de u y de v coincide el grado de entrada y el de salida, mientras que en u y en v se tiene que

$$deg^{+}(u) = deg^{-}(u) + 1$$
 y $deg^{+}(v) = deg^{-}(v) - 1$