Lecture 22: Combining Different Models for Ensemble Learning – boosting approach

Dr. Huiping Cao

AdaBoost - Adaptive Boosting

- Adaptive Boosting (AdaBoost) is a common implementation of the boosting method.
- The original idea was formulated by Robert E. Schapire in 1990. *The strength of weak learnability, R. E. Schapire, Machine Learning, 5(2), 197-227, 1990.*

AdaBoost - idea

- The ensemble consists of very simple base classifiers (called **weak learners**). These weak learners are slightly better than random guessing. For example, a weak learner can be a decision stump.
 - A **decision stump** is a model consisting of a **one-level decision tree**. That is, it is a decision tree with one internal node which is immediately connected to the terminal nodes. A decision stump makes a prediction based on the value of just a single input feature.
- Focus on training samples that are hard to classify and let the weak learners subsequently learn from misclassified training samples to improve the performance.

General procedure of boosting

- Draw a random subset of training samples d_1 without replacement from training set to train a weak learner C_1 .
- Draw a second random training subset d_2 without replacement from training set and add 50 percent of the samples that were previously misclassified to train a weak learner C_2 .
- Find the training samples d_3 in training set D, which C_1 and C_2 disagree upon, to train a third weak learner C_3 .
- Combine the weak learners C_1 , C_2 , and C_3 via majority voting.

Discussions

- Theoretically, Boosting can decrease both bias and variance.
- Practically, AdaBoost still has high variance (leads to overfitting).

AdaBoost - idea

- AdaBoost uses the complete training dataset to train the weak learners.
- In each boosting round, we update the **weights** of all the instances. For the correctly predicted samples, their weights are reduced. For the wrongly predicted samples, their weights are increased.
- Combine the three weak learners by a weighted majority vote.

Algorithm pseudocode

- 1. Set the weight vector \mathbf{w} to uniform weights where $\sum_i w_i = 1$
- 2. For *j* in *m* boosting rounds, do the following
 - (a) Train a weighted weak learner: $C_i = train(\mathbf{X}, \mathbf{y}, \mathbf{w})$
 - (b) Predict class labels $\hat{\mathbf{y}} = predict(C_i, \mathbf{X})$
 - (c) Compute weighted error rate $\epsilon = \mathbf{w} \cdot (\hat{\mathbf{y}} \neq \mathbf{y})$ (dot product of w and $\hat{\mathbf{y}} \neq \mathbf{y}$)
 - (d) Compute coefficient: $\alpha_j = 0.5 \ln \frac{1-\epsilon}{\epsilon}$
 - (e) Update weights: $\mathbf{w} = \mathbf{w} \times \exp(-\alpha_i \times \hat{\mathbf{y}} \times \mathbf{y})$
 - (f) Normalize weights to sum to 1: $\mathbf{w} = \frac{\mathbf{w}}{\sum_i w_i}$
- 3. Compute the final predictions
 - $\hat{y} = (\sum_{j=1}^{m} (\alpha_j \times predict(C_j, X)) > 0)$

Example

sample indices	X	у	initial weights	ŷ	correct?	updated weights
1	1.0	1	0.1	1	Yes	0.072
2	2.0	1	0.1	1	Yes	0.072
3	3.0	1	0.1	1	Yes	0.072
4	4.0	-1	0.1	-1	Yes	0.072
5	5.0	-1	0.1	-1	Yes	0.072
6	6.0	-1	0.1	-1	Yes	0.072
7	7.0	1	0.1	-1	No	0.167
8	8.0	1	0.1	-1	No	0.167
9	9.0	1	0.1	-1	No	0.167
10	10.0	-1	0.1	-1	Yes	0.072

Steps

• 2(c) Compute weighted error rate $\epsilon = \mathbf{w} \cdot (\hat{\mathbf{y}} \neq \mathbf{y})$

• 2(d) Compute coefficient: $\alpha_j = 0.5 \ln \frac{1-\epsilon}{\epsilon}$

$$\alpha_j = 0.5 \ln \left(\frac{1 - \epsilon}{\epsilon} \right) \approx 0.424$$

Steps

- 2(e) Update weights: $\mathbf{w} = \mathbf{w} \times \exp(-\alpha_j \times \hat{\mathbf{y}} \times \mathbf{y})$
 - $\hat{\mathbf{y}} \times \mathbf{y}$ is an element-wide multiplication between the y and the $\hat{\mathbf{y}}$ vector.
 - If \hat{y}_i is correct, $\hat{y}_i \times y_i$ has positive sign, the weight value will be decreased
 - $0.1 \times \exp(-0.424 \times 1 \times 1) \approx 0.065$
 - $0.1 \times \exp(-0.424 \times (-1) \times (-1)) \approx 0.065$
 - If \hat{y}_i is incorrect, $\hat{y}_i \times y_i$ has negative sign, the weight value will be increased
 - $0.1 \times \exp(-0.424 \times 1 \times (-1)) \approx 0.153$
 - $0.1 \times \exp(-0.424 \times (-1) \times 1) \approx 0.153$
- 2(f) Normalize weights to sum to 1: $\mathbf{w} = \frac{\mathbf{w}}{\sum_i w_i}$
 - $\sum_{i} w_{i} = 7 \times 0.065 + 3 \times 0.153 = 0.914$
 - $0.065/0.914 \approx 0.072, 0.153/0.914 \approx 0.167$

Weight updates

error rate ϵ	0.2	0.3	0.5	0.7	0.9
$ \alpha_j $	0.693147181	0.42364893	0	-0.42364893	-1.0986123
w for correctly predicted instances	0.05	0.065465367	0.1	0.152752523	0.3
w for incorrectly predicted instances	0.2	0.152752523	0.1	0.065465367	0.03333333
w sum $\sum_i w_i$	0.95	0.916515139	1	0.916515139	1.13333333
Normalized w for correctly predicted					
instances	0.052631579	0.071428571	0.1	0.166666667	0.26470588
Normalized w for incorrectly					
predicted instances	0.210526316	0.166666667	0.1	0.071428571	0.02941176

- When there are more correctly predicted instances, the updated weights for incorrectly predicted instances are bigger and for correctly predicted instances are smaller.
- On the other hand (more incorrectly predicted instances), the weights are updated in opposite direction.

Use AdaBoost in scikit-learn library

```
from sklearn.ensemble import AdaBoostClassifier
tree = DecisionTreeClassifier(criterion='entropy',
                max depth=1,
                random state=1)
ada = AdaBoostClassifier(base estimator=tree,
             n estimators=500,
             learning rate=0.1,
             random state=1)
```

• learning_rate: Learning rate shrinks the contribution of each classifier. There is a trade-off between learning_rate and n_estimators.

Regression analysis

Random forest regressor

- A limitation of the **DecisionTreeRegressor** is that it does not capture the continuity and differentiability of the desired prediction.
- Random forest is an ensemble of multiple decision trees. It can be understood as the sum of piecewise linear functions, in contrast to the global linear and polynomial regression models.
- Compared with decision tree, it has the following advantages.
 - (1) It usually has a better generalization performance than an individual decision tree due to randomness.
 - (2) Random forests are less sensitive to outliers in the dataset.
 - (3) Do not require much parameter tuning. The only parameter we need is the number of decision trees in the ensemble.

Random Forest Regressor

class sklearn.ensemble.**RandomForestClassifier**(n_estimators=100, criterion='gini ', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_frac tion_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decre ase=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None)

class sklearn.ensemble.**RandomForestRegressor**(n_estimators=100, *, criterion='squared_error', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, ccp_alpha=0.0, max_samples=None)

Random forest regressor

```
from sklearn.ensemble import RandomForestRegressor

X = df[['MedInc', 'AveRooms']].values
y = df['MEDV'].values

forest = RandomForestRegressor(n_estimators=1000, criterion='squared_error', random_state=1, n_jobs=10)
forest.fit(X, y)
y_pred = forest.predict(X)

error = mean_squared_error(y, y_pred)
r2 = r2_score (y, y_pred)
print('MSE: %.3f, R2:%.3f' % (error, r2))
```

MSE: 0.048, R2:0.940

This is much better than other regression results.

AdaBoost regressor

class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, *, n_estimators =50, learning_rate=1.0, algorithm='SAMME.R', random_state=None)

class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, *, n_estimators =50, learning_rate=1.0, loss='linear', random_state=None)

References

- Chapter 7, Sebastian Raschka and Vahid Mirjalili: Python Machine Learning (Machine learning and deep learning with Python, scikit-learn, and TensorFlow), 3rd Edition.
- Other ensemble approaches: https://scikitlearn.org/stable/modules/ensemble.html