Preliminares

A lo largo de este curso consideraremos \mathbb{R}^n definido de la siguiente forma

$$\mathbb{R}^n := \{(x_1, \dots, x_n) \colon \forall j \in \{1, \dots, n\}, \ x_j \in \mathbb{R}\}.$$

Cada elemento de \mathbb{R}^n es una n-tupla de números reales. Si $a \in \mathbb{R}^n$, denotaremos sus componentes (o entradas) con el mismo símbolo y subíndices, es decir

$$a = (a_1, \dots, a_n)$$

Dos tuplas son iguales si cada una de sus entradas son iguales entre sí, es decir,

$$\forall x, y \in \mathbb{R}^n, \ x = y \iff \forall j \in \{1, \dots, n\}, \ x_j = y_j.$$

Definición 1. Sean $x, y \in \mathbb{R}^n$ y $\lambda \in \mathbb{R}$. La suma de n-tuplas se define entrada por entrada:

$$x + y := (x_1 + y_1, \dots, x_n + y_n) = (x_k + y_k)_{k=1}^n$$
.

La multiplicación de n-tuplas por escalares se define entrada por entrada:

$$\lambda x := (\lambda x_1, \dots, \lambda x_n) = (\lambda x_j)_{j=1}^n.$$

Con estas operaciones, \mathbb{R}^n es un espacio vectorial.

Producto interno

Definición 2. Sea V un espacio vectorial real. Una función $p: V \times V \to \mathbb{R}$ se llama producto interno en V si satisface las siguientes propiedades:

a) p es lineal respecto al primer argumento:

$$p(\lambda x + y, z) = \lambda p(x, z) + p(y, z), \quad \forall x, y, z \in V, \quad \forall \lambda \in \mathbb{R}.$$

b) p es simétrica:

$$p(x,y) = p(y,x), \quad \forall x, y \in V.$$

c) p es definida positiva:

$$p(x,x) > 0, \quad \forall x \in V \setminus \{0\}.$$

Con estas propiedades es posible concluir propiedades adicionales de los productos internos.

Proposición 3. Sea V un espacio vectorial real $y p: V \times V \to \mathbb{R}$. Entonces, p es lineal respecto al segundo argumento, es decir,

$$p(x, \lambda y + z) = \lambda p(x, y) + p(x, z), \quad \forall x, y, z \in V, \quad \forall \lambda \in \mathbb{R}.$$

Un espacio vectorial puede tener varios productos internos. Cuando el producto interno está fijo, una notación habitual para él es $\langle \cdot, \cdot \rangle$. Así, en lugar de escribir p(x, y), escribimos $\langle x, y \rangle$.

Proposición 4 (Desigualdad de Cauchy–Schwarz). Sean $x, y \in \mathbb{R}^n$. Entonces,

$$(\langle x, y \rangle)^2 \le \langle x, x \rangle \langle y, y \rangle.$$

Demostración. Si x = 0, se tiene la igualdad.

Si $x \neq 0$, hacemos $\lambda \coloneqq \frac{\langle x,y \rangle}{\langle x,x \rangle}$ y $z \coloneqq y - \lambda x$. Utilizando la linealidad del producto interno, observamos que $\langle x,z \rangle = 0$. Luego, $\langle z,z \rangle = \langle y,y \rangle - \frac{(\langle x,y \rangle)^2}{\langle a,a \rangle}$. Como el producto interno es definido positivo, se cumple la desigualdad deseada.

Definición 5 (Producto interno canónico). *Definimos* $\langle \cdot, \cdot \rangle \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$,

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j.$$

 $\langle \cdot, \cdot \rangle$ se llama producto interno canónico en \mathbb{R}^n .

En adelante, consideraremos \mathbb{R}^n con el producto interno canónico, a menos que se especifique de otro modo.

Norma

Definición 6 (Norma en un espacio vectorial). Sea V un espacio vectorial real. Una función $\|\cdot\|:V\to\mathbb{R}$ se llama norma si satisface las siguientes propiedades:

a) $\|\cdot\|$ es subaditiva:

$$||x + y|| \le ||x|| + ||y||, \quad \forall x, y \in V.$$

b) $\|\cdot\|$ es absolutamente homogénea:

$$\|\lambda x\| = |\lambda| \|x\|, \quad \forall x \in \mathbb{R}, \quad \forall \lambda \in \mathbb{R}.$$

c) $\|\cdot\|$ es definida positiva:

$$||x|| > 0, \quad \forall x \in V \setminus \{0\}.$$

 $Si \parallel \cdot \parallel es \ una \ norma, \ (V, \parallel \cdot \parallel) \ se \ llama \ espacio \ normado.$

Un espacio vectorial puede tener varias normas. En \mathbb{R}^n , por ejemplo, tenemos

a) La norma 1, definida como $\|\cdot\|_1 \colon \mathbb{R}^n \to \mathbb{R}$,

$$||x||_1 \coloneqq \sum_{j=1}^n |x_j|.$$

b) La norma 2, definida como $\|\cdot\|_2 \colon \mathbb{R}^n \to \mathbb{R}$,

$$||x||_2 \coloneqq \sqrt{\sum_{j=1}^n x_j^2}.$$

c) La norma infinito, definida como $\|\cdot\|_{\infty} \colon \mathbb{R}^n \to \mathbb{R}$,

$$||x||_{\infty} := \max_{j \in \{1, \dots, n\}} |x_j|.$$

Proposición 7. Sea V un espacio vectorial real con producto interno $\langle \cdot, \cdot \rangle$. Entonces $N \colon V \to \mathbb{R}$, definida como

$$N(x) \coloneqq \sqrt{\langle x, x \rangle},$$

es una norma en V.

Demostración. Las propiedades absolutamente homogénea y definida positiva, se siguen de las propiedades del producto interno. La propiedad absolutamente homogénea se sigue de la linealidad del producto interno y de la proposición 4.

En lo siguiente, siempre consideraremos \mathbb{R}^n con la norma inducida por el producto interno canónico (la norma 2, $\|\cdot\|_2$) a menos que se especifique de otro modo. Denotaremos esta norma simplemente por $\|\cdot\|$.

La siguiente definición y el lema que sigue de ella son importantes para demostrar la proposición 10.

Definición 8. Sea $g : \mathbb{R} \to \mathbb{R}$. Se dice que g es una función cóncava si para cada $a, b \in \mathbb{R}$ y para cada $\lambda \in [0, 1]$ se satisface

$$(1 - \lambda)f(a) + \lambda f(b) \le f((1 - \lambda)a + \lambda b).$$

Lema 9. Sea $g: [0, +\infty) \to [0, +\infty)$ una función creciente, cóncava y tal que $g(0) \ge 0$. Entonces, g es subaditiva, esto es, para cada $a, b \ge 0$ se cumple la designaldad

$$g(a+b) \le g(a) + g(b).$$

Demostración. Sean $a, b \in [0, +\infty)$. Si a = b = 0, el resultado se tiene inmediatamente. Supongamos que $a \neq 0$. Entonces por la concavidad de g se obtienen las siguientes desigualdades:

$$\frac{a}{a+b}g(a+b) \le \frac{b}{a+b}g(0) + \frac{a}{a+b}g(a+b) \le g\left(\frac{b}{a+b}0 + \frac{a}{a+b}(a+b)\right) = g(a),$$

$$\frac{b}{a+b}g(a+b) \le \frac{a}{a+b}g(0) + \frac{b}{a+b}g(a+b) \le g\left(\frac{a}{a+b}0 + \frac{b}{a+b}(a+b)\right) = g(b).$$

Sumando los extremos de estas desigualdades tenemos el resultado.

Proposición 10. Sea $x \in \mathbb{R}^n$. Entonces, para cada $j \in \{1, ..., n\}$,

$$|x_j| \le ||x|| \le ||x||_1.$$

Demostración. Sea $j \in \{1, ..., n\}$. Para cada $k \in \{1, ..., n\}$, $x_k^2 \ge 0$. Como la función raíz cuadrada es creciente,

$$|x_j| = \sqrt{x_j^2} \le \sqrt{\sum_{k=1}^n x_k^2} = ||x||.$$

Por otro lado, es fácil ver que la raíz cuadrada satisface la definición 8 y las hipótesis del lema 9. Entonces, aplicando el lema 9 a cada entrada del vector x, tenemos

$$||x|| \le \sum_{k=1}^{n} |x_k|.$$

Corolario 11. Para cada $x \in \mathbb{R}^n$,

$$||x||_{\infty} \le ||x|| \le ||x||_1.$$

Distancia

Definición 12. Sea X un conjunto. Una función $d: X \times X \to \mathbb{R}$ se llama distancia en X si satisface las siguientes propiedades:

- a) $d(x,y) \ge 0$ para todos $x,y \in X$.
- b) Si $x, y \in X$ satisfacen d(x, y) = 0, entonces x = y.
- c) d(x,y) = d(y,x) para todos $x, y \in X$.
- d) Para todos $x, y, z \in X$, $d(x, z) \le d(x, y) + d(y, z)$.

Si d es una distancia en X, entonces (X, d) es un espacio métrico.

Definición 13. Sea V un espacio vectorial con norma $\|\cdot\|$. Entonces la distancia inducida por la norma, $d_{\|\cdot\|}: V \times V \to \mathbb{R}$, se define como

$$d_{\|\cdot\|}(x,y) \coloneqq \|x - y\|.$$

Proposición 14. Sea $(V, \|\cdot\|)$ un espacio normado. Entonces, $(V, d_{\|\cdot\|})$ es un espacio métrico, es decir, $d_{\|\cdot\|}$ es una distancia en V.

Demostración. Se sigue de las propiedades de la norma.

En \mathbb{R}^n , la distancia inducida por la norma 2 se llama distancia euclidiana. En adelante consideraremos siempre \mathbb{R}^n con esta distancia a menos que se especifique de otro modo.

Ejercicios

- 1. Verifique que \mathbb{R}^n es un espacio vectorial con las operaciones definidas al inicio de la sección.
- 2. Verifique que el producto interno canónico en \mathbb{R}^n es un producto interno.
- 3. Sea V un espacio vectorial real y $p \in \mathbb{N}$. Sean $u_1, \ldots, u_p, v_1, \ldots, v_p \in V$ y sean $\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_p \in \mathbb{R}$. Demuestre la igualdad:

$$\left\langle \sum_{j=1}^{p} \alpha_j u_j, \sum_{k=0}^{p} \beta_k v_k \right\rangle = \sum_{j=1}^{p} \sum_{k=1}^{p} \alpha_j \beta_k \langle u_j, v_k \rangle.$$

4. En \mathbb{R}^2 considere la función $p \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ donde,

$$p(x,y) \coloneqq x_1 y_1 + 3x_1 y_2 + 5x_2 y_1 + 2x_2 y_2.$$

Verifique que p es un producto interno en \mathbb{R}^2 .

- 5. Escriba de manera detallada la demostración de la proposición 4.
- 6. De una condición necesaria y suficiente para tener la igualdad en la proposición 4. Demuestre su afirmación.
- 7. Demuestre que $\|\cdot\|_1$, $\|\cdot\|_2$ y $\|\cdot\|_\infty$ son normas en \mathbb{R}^n .
- 8. Sean $x, y \in \mathbb{R}^n$. Decimos que x y y son ortogonales si $\langle x, y \rangle = 0$. Demuestre que si x y y son ortogonales, entonces

$$||x + y||^2 = ||x||^2 + ||y||^2$$

9. Sea V un espacio vectorial con producto interno $\langle \cdot, \cdot \rangle$ y sean $a, b \in V$. Demuestre que

$$||a|| - ||b|| \le ||a - b||.$$

- 10. Sea V un espacio vectorial con producto interno $\langle \cdot, \cdot \rangle$ y considere su norma inducida. Determine cuándo se cumple la igualdad ||x+y|| = ||x|| + ||y||
- 11. Sean $x, y \in \mathbb{R}^n$. Demuestre la identidad del paralelogramo:

$$||x + y|| + ||x - y|| = 2(||x|| + ||y||)^2.$$

- 12. Verifique que la función raíz cuadrada satisface las condiciones de la definición 8 y las hipótesis del lema 9.
- 13. Escriba de manera explícita la norma inducida por el producto interno y la distancia inducida por la norma del ejercicio 4.
- 14. Demuestre el corolario 11 y redacte una interpretación geométrica.
- 15. De una demostración detallada de la proposición 14.