Lista 8: Cálculo I

A. Ramos *

June 11, 2018

Abstract

Lista em constante atualização.

- 1. Técnicas de integração;
- 2. Integral imprópria;
- 3. Aplicações da integral.

1 Exercícios

Faça do livro texto, os exercícios correspondentes aos temas desenvolvidos em aula.

2 Exercícios adicionais

- 1. Considere a função $F(x) := \int_0^x \frac{dt}{\sqrt{1+t^4}}, \, x \in \mathbb{R}.$
 - (a) Prove que F é crescente e impar;
 - (b) Mostre que $F(x) + x^{-1} \le F(1) + 1$, para todo $x \ge 1$;
 - (c) Prove que $\lim_{x\to} F(x)$ existe e é positivo;
 - (d) Calcule o ponto de inflexão de F(x).
- 2. Calcule o volume do sólido de revolução obtido pela rotação em torno do eixo x de:
 - (a) $A = \{(x,y) \in \mathbb{R}^2 : y \ge \sqrt{x}, (x-1)^2 \le 1 y^2\}; Rpta: \pi/6.$
 - (b) $A = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2], e^{-x} \le y \le e^x\}; Rpta: \pi(e^2 e^{-2})^2/2.$
 - (c) $A = \{(x, y) \in \mathbb{R}^2 : x > 0, y \le 1, 1 \le xy \le 4/x\}; Rpta: 5\pi/6.$
- 3. Determine o volume do sólido de revolução obtido pela rotação do disco $x^2 + y^2 \le a^2$ ao girar em torno da reta x = b (b > a).
- 4. Calcule o volume do sólido de revolução obtido pela rotação em torno da reta y=3 da região limitada pelas parábolas $y=2-x^2$ e $y=x^2$. Rpta: $32\pi/3$. Esse sólido é chamado de toro. Rpta: $2\pi^2ba^2$.
- 5. Calcule o volume de uma calota esférica de altura H com $H \leq R$, onde R é a raio da esfera. Rpta: $\pi H^2(R-\frac{H}{3})$.
- 6. Mostre que

$$\int \frac{dx}{(1+x^4)\{(1+x^4)^{1/2}-x^2\}^{1/2}} = \frac{1}{2}\arcsin\left(\frac{2x^2}{\sqrt{1+x^4}}-1\right) + C.$$

Dica: Use $tan(\theta) = x^2$.

- 7. Calcule as seguintes integrais indefinidas:
 - (a) $\int \frac{4x^2 1 + 9x}{x^3 + 2x^2 x 2} dx = \ln \frac{|(x+1)^3 (x-1)^2|}{|x+2|} + C$
 - (b) $\int \frac{5x-7}{(x-3)(x^2-x-2)} dx = \ln \frac{|(x-3)^2|}{|(x+1)(x-2)|} + C$
 - (c) $\int \frac{x}{x^4 3x^2 + 2} dx = \frac{1}{2} \ln \frac{|x^2 2|}{|x^2 1|} + C$
 - (d) $\int \frac{x^3 + x^2 2x 3}{(x+1)^2 (x-2)^2} dx = \frac{1}{9(x+1)} + \frac{5}{9(x-2)} \frac{5}{27} \ln|x+1| + \frac{32}{37} \ln|x-2| + C$
 - (e) $\int \frac{x^2+3x+5}{x^3+8} dx = \frac{11}{4\sqrt{3}} \arctan(\frac{x-1}{\sqrt{3}}) + \frac{1}{4} \ln|x+2| + \frac{3}{8} \ln|x^2-2x+4| + C$

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

(f)
$$\int \frac{1}{x^4 + x^2 + 1} dx = \frac{2}{\sqrt{3}} \arctan(\frac{2x^2 + 1}{\sqrt{3}}) + C$$

8. Calcule

$$\int \frac{dx}{5 - 4\sin x + 3\cos x} = \frac{1}{2 - \tan(x/2)} + C.$$

Dica: Faça $u = \tan(x/2)$. Assim, $\sin x = 2u/(1+u^2)$, $\cos x = (1-u^2)/(1+u^2)$.

- 9. Calcule $\int \frac{dx}{1+\sin^2 x} = \frac{1}{\sqrt{2}}\arctan(\sqrt{2}\tan x) + C$.
- 10. Calcule $\int \frac{dx}{1+\sin x} = \tan x \sec x + C$.
- 11. Qual é a área limitada por as curvas $y = \ln x$ e $y = \ln^2 x$? Rpta: A = (3 e).
- 12. Calcule a maior área limitada por as curvas $x^2 2y^3 = 0$, y = 3 e $8y = x^2$. Rpta: $A = 5\sqrt{2} + \frac{16}{5}$.
- 13. Qual é a área limitada por as curvas $4yx = \ln x$ e $y = x \ln x$? Rpta: $A = \frac{3 2 \ln^2 2 2 \ln 2}{16}$.
- 14. Calcule a área limitada por as curvas:
 - (a) $x = e^y$, x = 0, y = 0, y = ln4. Rpta: 3
 - (b) $y = x^2$, $x = y^3$, y + x = 2. Rpta: $\frac{49}{12}$.
 - (c) $y(x^2+4) = 4(2-x)$, x = 0, y = 0. Rpta: $-\ln 4 + \pi/2$.
 - (d) $y = \sec^2 x$, $y = \tan^2 x$, x = 0. Rpta: $(\pi 2)/2$
 - (e) $y = x^2$, $y = 8 x^2$, y = 12 + 4x. Rpta: 64
 - (f) $y = 3x^{5/4} x^{4/3}$, x = 0, y = 0, x = -1. Rpta: $\frac{18}{7}$.
 - (g) y = |x 5| |x + 3|, x + y = 2. Rpta: 34
- 15. Encontre a área da região limitada por o gráfico da curva y = f(x), o eixo x e as retas verticais x = -3 e x = 7, onde

$$f(x) = \begin{cases} \sqrt{|x-1|} & \text{, se } x \in (-\infty, 5] \\ (x-3)^2 - 2 & \text{, se } x \in (3, \infty) \end{cases}$$

Rpta: 76/3.

- 16. Dado $n \in \mathbb{N}$. Mostre que $\int_a^b x^n dx + \int_{a^n}^{b^n} \sqrt[n]{y} dy = b^{n+1} a^{n+1}$.
- 17. Determine a convergência ou divergência das seguintes integrais impróprias. Se for possível calcule dita integral.
 - (a) $\int_0^\infty xe^{-x}dx \ Rpta$: converge, 1.
 - (b) $\int_0^\infty \ln x dx \ Rpta$: diverge.
 - (c) $\int_0^\infty \frac{dx}{x(x+1)} Rpta$: converge, $\ln 2$.
 - (d) $\int_{-\infty}^{0} xe^{-x} dx$ Rpta: converge, -1.
 - (e) $\int_{-\infty}^{0} xe^{-x^2} dx$ Rpta: converge, -1/2.
 - (f) $\int_0^\infty xe^{-x^{1/2}}dx$ Rpta: converge, 2.
 - (g) $\int_0^\infty e^{-ax} \sin bx dx \ Rpta$: converge, $\frac{b}{a^2+b^2}$
 - (h) $\int_{-\infty}^{\infty} x^2 e^{-x^3} dx \ Rpta$: diverge.
 - (i) $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)^2} Rpta$: converge, $\pi/2$.
 - (j) $\int_0^4 \frac{dx}{\sqrt{4x-x^2}} Rpta$: converge, π .
 - (k) $\int_{-2}^{2} \frac{dx}{x^3} Rpta$: diverge.
 - (l) $\int_0^1 \frac{dx}{x\sqrt{4-x^2}} Rpta$: diverge.
 - (m) $\int_a^b \frac{dx}{\sqrt{x-a}\sqrt{b-x}}$, b > a Rpta: converge, π .
 - (n) $\int_{-\pi/2}^{\pi/2} \sec x dx \ Rpta$: diverge.
 - (o) $\int_{1}^{\infty} \frac{x^2 2}{x^3 \sqrt{x^2 1}} dx \ Rpta$: converge, 0.
 - (p) $\int_0^1 x \sin^2(\frac{1}{x}) dx$ Rpta: converge.
- 18. Seja a>0. Encontre a área limitada por $y^2=\frac{x^3}{2a-x}$ e sua assíntota x=2a. Rpta: $3a^2\pi$

- 19. Encontre a área limitada pelas curvas $yx=1,\ y=\frac{x}{x^2+1}$ à direita da reta x=1. $Rpta: \ \frac{1}{2}\ln 2.$
- 20. Calcule o volume do sólido obtido ao girar a curva $y = x + xy^2$ ao redor da sua assíntota vertical. Rpta: $\pi^2/2$.
- 21. Defina a função~Gamma

$$\Gamma(x):=\int_0^\infty u^{x-1}e^{-u}du, \text{ para } x>0.$$

- (a) Mostre que $\Gamma(x)$ está bem definida para x > 0;
- (b) Use integração por partes para mostrar que $\Gamma(x+1)=x\Gamma(x),\,x>0.$
- (c) Use indução para ver que $\Gamma(n+1)=n!,$ para todo $n\in\mathbb{N}.$
- (d) Prove que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.