

Motivation

- Distributed System challenges
- Common notion

Techniques (Real)

- Challenges
- Precision Time Protocol
 - Timestamp

Techniques (Logical)

- Challenges
- Lamport time-stamps
- Vector Clocks

$$e_1 \rightarrow e_2 \Rightarrow C(e_1) < C(e_2)$$

thus, if $C(e_1) \not< C(e_2)$ then $e_1 \not\rightarrow e_2$

$$e_1 \to e_2 \Leftrightarrow C(e_1) < C(e_2)$$

$$C(e_1) < C(e_2)$$
 even if $(e_1 \not\rightarrow e_2 \land e_2 \not\rightarrow e_1)$ (concur. events)

Perspectivation

RAFT

Motivation

- Leader Election
 - Data & Div./Conq.
- Consistency
 - Replication → Troubles

Partial replication in DBMS

[FI, F2, F3 are the different fragments of the main database]

Leader Election

- Prerequisites
- When?
- Approach
- Technique Comparison

Techniques

- Bully
- Ring-based: Chang and Roberts
- RAFT

Consistency

CAP

Consistency models

- Strong Consistency
- Weak Consistency
- Eventual Consistency

Casual/read-writes....

Motivation

- Fault Tolerance
 - Failures?
- Consensus
 - Coherency

Terminology

- Failures:
 - Crash, Arbitrary...
- Fault consequences

Consensus

- What?
 - Fault consequences
- **Approaches**
 - State machine replication
 - Limited processes

Paxos, Zoo Keeper, RAFT

RAFT

Basics

Leader Election

RAFT

Log Replication

Election Restriction (Safety)

Motivation

- Navigation
- Tracking/locating
- Firefighters

Challenges

- Technologies
- Privacy
- Interoperability

Concepts

- Position
 - Absolute/Relative
- Location
- **Location Service**
- Location Based Service

Absolute Positioning

- Triangulation (ToTal)
- Trilateration

Relative Positioning

Dead Reckoning

Hybrid Positioning

- Sensor Fusion
- Kalman filters
 - Guassian multiplication
 - Predict and correct

Perspectivation

Pervasive systems

5. Pervasive computing (background, methods, enabling tech.)

Background

- Weiser XEROC PARC
- → Cloud, Crowd and Shroud

Ubicomp Technologies Tabs, Pads, Boards

Properties

- Ubiquitous
- Transparent
- Openness

Pervasive Computing Concepts

Awareness

Interaction

Smart X

Calm Tech.

Human Environments

(Cooperate)

UbiComp System

Intelligent

CPI (Sense, HCI

Distributed

implicit HCI

v Context-

Methods

• ???

Enabling Technologies

6. Context awareness using smart devices, smart environments and smart interaction (towards intelligent environments)

Context Aware System

- Situation
- What, Where, When, How, Who and Why
- Sensor Fusion

Challenges

- User Context
- Environment Context
- Privacy
- Accuracy vs. Cost

Lifecycle

Example

Fact Object Subject Relation

Smart X

 Combination → Intelligent Environment

Intelligent Env. Example

- Distributed
- Smart Environment
- Smart Interaction
- Zero Conf.

