

Pandas en 10 minutes

Farah AIT SALAHT farah.ait-salaht@ensai.fr

janvier 2017

- Python Data Analysis Library, similar to:
 - R
 - MATLAB
 - ► SAS
- Combined with the IPython toolkit
- Built on top of NumPy, SciPy, to some extent matplotlib
- Panel Data System
- Open source, BSD-licensed
- Key Components
 - Series
 - DataFrame

Pandas

La richesse des fonctionnalités de la librairie pandas est une des raisons, si ce n'est la principale, d'utiliser Python pour extraire, préparer, éventuellement analyser, des données.

Objet : les classes Series et DataFrame ou table de données.

Lire, écrire : création et exportation de tables de données à partir de fichiers textes (séparateurs, .csv, format fixe, compressés), HTML, XML, SQL...

Gestion d'une table : sélection des lignes, colonnes, transformations, réorganisation par niveau d'un facteur, exclusion ou imputation élémentaire de données manquantes...

Statistiques élémentaires, bivariées, tri à plat (nombre de valeurs nulles, valeurs manquantes...), graphiques, statistiques par groupe...

Structures de données : Series

► La classe Series est l'association de deux tableaux unidimensionnels. Le premier est un ensemble de valeurs

indexées par le 2ème qui est souvent une série temporelle.

▶ Plusieures façons de construire une série

```
In []: import pandas as pd
       s=pd.Series(list('abcdef'))
  []: s
Ιn
Out []:
   []: s=pd.Series([2,4,6,8])
In []: s
Out []:
```

Series - Travailler avec les indices

- Les index de série peuvent être spécifiés
- ► Les valeurs individuelles peuvent être sélectionnées par index
- Plusieurs valeurs peuvent être sélectionnées avec plusieurs index

Opérations

- ► Filtrage
- Opérations sur les données avec Numpy

```
In []: s
Out []:
In []: s[s>4]
Out[]:
In []: s>4
                               In []: s*2
Out[]:
                               Out []:
     False
f
     False
     True
                                    12
      True
                                     16
```

Séries - Données incomplètes

Pandas s'accommode avec les données incomplètes

```
In []: sdata={'b':100, 'c':150, 'd':200}
In []: s=pd.Series(sdata)
In []: s
Out[]:
 100
 150
 200
In []: s=pd.Series(sdata, list('abcd'))
In []: s
Out[]:
     NaN
 100.0
 150.0
 200.0
In []: s*2
Out[]:
      NaN
 200.0
 300.0
С
    400.0
```

Séries - alignement automatique

▶ Les données sont automatiquement alignées

```
In []: s2=pd.Series([1,2,3],index=['c','b','a'])
Out[]: s2
In []: s
Out[]:
       NaN
    100.0
  150.0
     200.0
In []: s*s2
Out[]:
       NaN
а
     200.0
    150.0
С
       NaN
```

Structure de données : DataFrame

- ▶ Proche de celle du même nom dans le langage R
- ► Permet d'associer avec le même index de lignes des colonnes ou variables de types différents (entier, réel, booléen, caractère).
- DataFrame est un tableau bi-dimensionnel avec des index de lignes et de colonnes (peut également être vu comme une liste de Series partageant le même index).
- L'index de colonne (noms des variables) est un objet de type dict (dictionnaire).

Création avec dict de listes de longueur égale

Création avec dict de dicts

- Les colonnes peuvent être récupérées comme la série
 - notation dict
 - notation d'attribut
- ► Les lignes peuvent être récupérées par position ou par nom (En utilisant l'attribut ix)

```
In []: frame['state'] # ou In []: frame.state
Out []:
  FL
  G A
  G A
    GΑ
Name: state
In []: frame.describe
Out [12]:
Shound method NDFrame describe
of pop state year
 18.8 FL 2010
 19.1 FL 2011
 9.7 GA 2008
 9.7 GA 2010
   9.8
         GA 2011>
```


 De nouvelles colonnes peuvent être ajoutées (par un calcul ou par une affectation directe). Les colonnes qui ne sont pas présentes dans la série de données sont NaN

```
In []: frame['other'] = NaN
In []: frame
Out []:
   pop state year
                other
 18.8 FI.
           2010
                   NaN
  19.1 FL 2011 NaN
 9.7 GA 2008 NaN
 9.7 GA 2010
                NaN
 9.8
         GA 2011
                  NaN
  []:frame['calc']=frame['pop']*2
In []: frame
Out[]:
   pop state
           year other calc
 18.8
         FL 2010 NaN 37.6
  19.1 FL 2011
                NaN 38.2
  9.7 GA 2008 NaN 19.4
                NaN 19.4
  9.7
       GA 2010
   9.8
         G A
            2011
                   NaN
                      19.6
```

DataFrame - réindexation

 Création d'un nouvel objet avec les données conformes à un nouvel index

```
In []: obj=pd.Series(['blue','purple', 'red'],index=[0,2,4])
In []: obi
Out[]:
              blue
             purple
                red
In []: obj.reindex(range(4))
Out[]:
               blue
               NaN
             purple
                NaN
In []: obj.reindex(range(5),fill_value='black')
Out[]:
              blue
              black
             purple
             black
               red
In []: obj.reindex(range(5), method='ffill')
Out[]:
               blue
              blue
             purple
             purple
                red
```

Fonctionnalité

Synthèse et Statistiques descriptives

```
In []: pop
Out[]:
       FI.
          G A
2008 NaN 9.7
2010 18.8 9.7
2011 19.1 9.8
In []: pop.sum()
Out[]:
F L
     37.9
GA 29.2
In []: pop.mean()
                                  In []: pop.describe()
Out[]:
                                  Out []:
FL 18.950000
                                               F L
                                                         G A
GA 9.733333
                                  count 2.000000 3.000000
                                  mean 18.950000 9.733333
                                  std 0.212132 0.057735
                                  min 18.800000 9.700000
                                  25%
                                              NaN 9.700000
                                  50%
                                            NaN 9.700000
                                  75%
                                              NaN 9.750000
                                         19.100000 9.800000
                                  max
```

Fonctionnalité

▶ indexation Boolean

```
In []: pop
Out[]:
       FL
           G A
2008 NaN 9.7
2010 18.8 9.7
2011 19.1 9.8
In []: pop < 9.8
Out[]:
         FL
            G A
2008 False True
2010 False True
2011 False False
In []: pop[pop < 9.8] = 0
In []: pop
Out[]:
       FL
           G A
2008 NaN 0.0
2010 18.8 0.0
2011 19.1 9.8
```

Chargement des données

- pandas permet de gérer le chargement de données de différentes façons
- des données en fichier texte
 - read_csv
 - read_table
- Des données structurées (JSON, XML, HTML)
 - fonctionne bien avec les bibliothèques existantes
- Excel (dépend des packages) xlrd et openpyxl)
- ► Base de données
 - module pandas.io.sql (read_frame)

Chargement des données

Lire, écrire des tables de données.

Syntaxe

Exemple:

```
# importation
import pandas as pd
data=pd.read_csv("fichier.csv")
# ou encore de facon equivalente
data=pd.read_table("fichier.csv", sep=",")
# qui utilise la tabulation comme
# separateur par defaut
```

Liste des principales options : (lien à la liste complète ici)

path chemin ou nom du fichier ou URL

sep délimiter comme , ; $| \t ou \s +$ pour un nombre variable d'espaces

header défaut 0, la première ligne contient le nom des variables ; si None les noms sont générés.

index_col noms ou numéros de colonnes définissant les index de

Chargement des données

Liste des principales options : (Suite)

names si header=None, liste des noms des variables nrows utile pour tester et limiter le nombre de lignes à lire usecols sélectionne une liste des variables à lire pour éviter de lire des champs ou variables volumineuses et inutiles.

skip_blank_lines à True pour sauter les lignes blanches converters appliquer une fonction à une colonne ou variable chunksize taille des morceaux à lire itérativement

Remarques:

- De nombreuses options de gestion des dates et séries ne sont pas citées ici
- chunksize provoque la lecture d'un gros fichier par morceaux de même taille (nombre de lignes). Des fonctions (comptage, dénombrement...) peuvent ensuite s'appliquer itérativement sur les morceaux

Exemple

Considérons à présent des données réelles C'est plus parlant!!!

- Les données choisies pour illustrer cet exemple sont issues d'une compétition du site Kaggle: Titanic:Machine learnic from Disaster. Le concours est terminé, mais les données sont toujours disponibles sur le site.
- Ces données vont illustrer l'utilisation de pandas. Elles sont directement lues à partir de leur URL. Ou sinon sur Moodle, voir le Cours "Python pour la programmation scientifique" pour les charger vers le répertoire de travail de Python.

Récupérer les données

Charger en mémoire le jeu de données avec la librairie pandas :

```
# Importations
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# tester la lecture
df = pd.read_csv("titanic-train.csv",nrows=5)
print (df)
df.tail()
# tout lire
df = pd.read_csv("titanic-train.csv")
df.head()
type (df)
df.dtypes
# visualiser les 10 premieres lignes
df.head(10)
```


Colonnes

Description des variables :

- survival : indique la mort ou la survie du passager pour (0 ou 1)
- ▶ pclass : classe des chambres du navire, à 3 niveaux (1 ; 2 ou 3)
- ▶ name : nom de la personne
- sex : sexe du passager
- age : âge du passager
- sibsp (Sibling and Spouse): nombre de membres de la famille du passager de type frère, soeur, demi-frère, demi-soeur, époux, épouse
- parch (Parent and Child) : nombre de membres de la famille du passager du type père, mère, fils, fille, beau-fils, belle-fille
- ► ticket : numéro du ticket
- ► fare : prix du ticket
- ► cabin : numéro de cabine
- embarked : port d'embarquement du passager (C = Cherbourg;Q = Queenstown; S = Southampton)

Résumé des données

Les commandes **dtype** et **count** vont nous donner des informations utiles pour disposer d'une vue d'ensemble du problème et définir les candidats pour notre premier modèle.

```
In[] : df.dtypes
Out[]:
PassengerId
              int.64
Survived
               int64
Pclass
               int64
Name
               obiect
Sex
                object
Age
              float64
SibSp
               int64
Parch
               int64
             obiect
Ticket
Fare
              float64
Cabin
                object
Embarked
                obiect
dtype: object
```

```
In []: df.count()
Out []:
PassengerId
                891
Survived
                891
Pclass
                891
Name
                891
Sex
                891
Age
                714
SibSp
                891
Parch
                891
Ticket
                891
Fare
                891
Cahin
                204
Embarked
                889
dtype: int64
```

Sélectionner et renommer les colonnes qu'on veut utiliser

```
# Selectionner et renommer les colonnes qu'on veut utiliser
df = pd . read_csv ("titanic - train . csv", skiprows = 1,
    header = None, usecols = [1,2,4,5,9,11], names = ["Surv", "Classe",
    "Genre", "Age", "Prix", "Port"], dtype={"Surv": object,
"Classe": object, "Genre": object, "Port": object)
df.head()
  Surv Classe Genre Age Prix Port
           3 male 22.0 7.2500
  1 1 female 38.0 71.2833
           3 female 26.0 7.9250
        1 female 35.0 53.1000 S
           3 male 35.0 8.0500
df.dtypes
Surv
          obiect
Classe object
Genre objects
Age float64
Prix float64
Port
         object
dtvpe: object
```


Statistiques descriptives élémentaires

```
# description univariee
df.describe()
df["Age"].hist()
                     # figure 1
plt.show()
df.boxplot("Age")
                  # figure 2
plt.show()
# qualitatif
In []: df["Surv"].value counts()
Out []:
     549
     342
Name: Surv, dtype: int64
In []: df["Classe"].value_counts()
Out []:
     491
     216
    184
Name: Classe, dtype: int64
In []: df["Genre"].value_counts()
In []: df["Port"].value_counts()
```


Figure: Figure 1

Figure: Figure 2

Statistiques descriptives élémentaires

```
# description bivariee
# Correlationdf.corr()
 Nuage
df.plot(kind="scatter", x="Age", y="Prix")
plt.show() # figure 3
# afficher une selection
df [df ["Age"] > 60] [["Genre", "Classe",
                     "Age", "Surv "]]
Out []:
      Genre Classe Age Surv
33
       male
                    66.0
54
       male
                    65.0
96
       male
                 1 71.0
                 3 70.5
116
       male
745
       male
                 1 70.0
851
       male
                 3 74.0
# parallele boxplots
df.boxplot(column="Age",by="Classe")
plt.show() # figure 4
df.boxplot(column="Prix",by="Surv")
plt.show()
```


Figure: Figure 3

Figure: Figure 4

Statistiques descriptives élémentaires

```
# table de contingence
table=pd.crosstab(df["Surv"],df["Classe"])
print(table)
# Mosaics plots
from statsmodels.graphics.mosaicplot
    import mosaic
mosaic(df,["Classe","Genre"]) # figure 5
plt.show()
mosaic(df,["Surv","Classe"]) # figure 6
plt.show()
```


Figure: Figure 5

Figure: Figure 6

Imputation de données manquantes : Point souvent délicat.

- De nombreuses stratégies. Nous décrivons ici que les plus élémentaires :
 - Supprimer toutes les observations présentant des données manquantes

```
In []: df.count()
Out[]:
Surv 891
Classe 891
Genre 891
Age 714
Prix 891
Port 889
dtype: int64
```

```
# les individus ou lignes
In []: df1 = df.dropna(axis=0)
Out []:
Surv
       712
Classe 712
Genre 712
Age 712
Prix 712
Port. 712
dtype: int64
# les variables ou colonnes
In []: df2=df.dropna(axis=1)
In []: df2.count()
Out []:
Surv
         891
Classe 891
Genre 891
Prix 891
dtype: int64
```


Imputation de données manquantes :

Autres stratégies :

Cas quantitatif : une valeur manquante est imputée par la moyenne ou la médiane.

```
# Remplacement par la mediane d'une variable
# quantitative
df = df .fillna(df .median())
df .describe()
# par la modalite "mediane" de AgeQ
    #Discretisation d'une variable quantitative
df ["AgeQ"] = pd .qcut(df .Age ,3 ,labels = ["Ag1", "Ag2", "Ag3"])
df .info()
df .AgeQ = df ["AgeQ"] .fillna("Ag2")
# par le port le plus frequent
df ["Port"] .value_counts()
df .Port = df ["Port"] .fillna("Ps")
df .info()
```


Imputation de données manquantes :

Autres stratégies :

 Cas qualitatif : modalité la plus fréquente ou répartition aléatoire selon les fréquences observées des modalités

```
# par le port le plus frequent
df["Port"].value_counts()
S     644
C     168
Q     77
Name: Port, dtype: int64
df.Port=df["Port"].fillna("S")
df.info()
```

Cas d'une série chronologique : imputation par la valeur précédente ou suivante ou par interpolation linéaire, polynomiale ou lissage spline.

Place au TP À vous de jouer!!!