Gaussian Processes Generated By Monotonically Modulated Stationary Gaussian Process Kernels

BY STEPHEN CROWLEY
January 3, 2025

Definition 1

Let \mathcal{F} denote the class of functions $f: \mathbb{R} \to \mathbb{R}$ which are:

- 1. piecewise continuous with piecewise continuous first derivative,
- 2. strictly monotonically increasing

$$f(t) < f(s) \forall -\infty \leqslant t < s \leqslant \infty \tag{1}$$

3. and have a finite limiting derivative at infinity

$$\lim_{t \to \infty} \dot{f}(t) < \infty \tag{2}$$

Theorem 2

(Eigenfunctions) For any stationary kernel K(t,s) = K(|t-s|), the eigenfunctions of the modulated kernel

$$K_f(s,t) = K(|f(t) - f(s)|)$$
 (3)

take the form:

$$\phi_n(t) = \psi_n(f(t))\sqrt{\dot{f}(t)} \tag{4}$$

where where $f \in \mathcal{F}$ and ψ_n are the normalized eigenfunctions of the original unmodulated kernel K(|t-s|).

Proof. The eigenfunction equation for the modulated kernel is:

$$\int_{-\infty}^{\infty} K(|f(t) - f(s)|) \,\phi_n(s) \, ds = \lambda_n \,\phi_n(t) \tag{5}$$

The variables can be changed by substituting u = f(s), v = f(t):

$$\int_{-\infty}^{\infty} K(|v-u|) \frac{\phi_n(f^{-1}(u))}{\dot{f}(f^{-1}(u))} du = \lambda_n \,\phi_n(f^{-1}(v)) \tag{6}$$

which is valid due to the strict monotonicity of f which assures its invertability. Let

$$\psi_n(u) = \frac{\phi_n(f^{-1}(u))}{\sqrt{\dot{f}(f^{-1}(u))}} \tag{7}$$

Then:

$$\int_{-\infty}^{\infty} K(|v-u|) \,\psi_n(u) \, du = \lambda_n \,\psi_n(v) \tag{8}$$

This is precisely the eigenfunction equation for the original kernel K(|t-s|). Therefore, if ψ_n are the eigenfunctions of the original kernel, then

$$\phi_n(t) = \psi_n(f(t))\sqrt{\dot{f}(t)} \tag{9}$$

are the eigenfunctions of the modulated kernel.

Theorem 3

(Normalization) If ψ_n are normalized eigenfunctions of the original kernel, then $\phi_n(t) = \psi_n(f(t))\sqrt{\dot{f}(t)}$ are automatically normalized eigenfunctions of the modulated kernel, requiring no additional normalization constants.

Proof. For normalized ψ_n :

$$\int_{-\infty}^{\infty} |\phi_n(t)|^2 dt = \int_{-\infty}^{\infty} |\psi_n(f(t))|^2 \dot{f}(t) dt$$
 (10)

Under the change of variables u = f(t):

$$\int_{-\infty}^{\infty} |\psi_n(u)|^2 du = 1 \tag{11}$$

Therefore the ϕ_n are already normalized without additional constants. \square

Corollary 4

(Eigenvalue Invariance) The eigenvalues $\{\lambda_n\}$ of the modulated kernel K_f are identical to those of the original kernel K.

Remark 5. This result demonstrates that monotonic modulation preserves the spectral structure of any stationary kernel through composition with the modulation function. The transformation operator

$$(T\phi)(t) = \sqrt{\dot{f}(t)} \ \phi(f(t)) \tag{12}$$

provides an explicit isometry between the original and modulated kernel Hilbert spaces, explaining why no additional normalization constants are needed.

Theorem 6

(Mean Zero-Counting Function) Let $f \in \mathcal{F}$ and let $K(\cdot)$ be any positivedefinite, stationary covariance function, twice differentiable at 0. Consider the centered Gaussian process with covariance

$$K_f(s,t) = K(|f(t) - f(s)|)$$
 (13)

Then the expected number of zeros in [0,T] is

$$\mathbb{E}[N([0,T])] = \sqrt{-K''(0)} \ (f(T) - f(0)) \tag{14}$$

Proof. By the Kac-Rice formula:

$$\mathbb{E}[N([0,T])] = \int_0^T \sqrt{-\lim_{s \to t} \frac{\partial^2}{\partial t \, \partial s} \, K_f(s,t)} \, dt \tag{15}$$

Computing the mixed partial derivative and taking the limit as $s \rightarrow t$:

$$\lim_{s \to t} \frac{\partial^2}{\partial t \,\partial s} K_f(s, t) = -\ddot{K}(0) \,\dot{f}(t)^2 \tag{16}$$

Therefore

$$\mathbb{E}[N([0,T])] = \sqrt{-\ddot{K}(0)} \int_0^T \dot{f}(t) \ dt = \sqrt{-\ddot{K}(0)} \ (f(T) - f(0)) \tag{17}$$

so that

$$\sqrt{-\ddot{K}(0)} (f(T) - f(0)) = \sqrt{-\ddot{K}(0)} \int_{0}^{T} \dot{f}(t) dt
= \int_{0}^{T} \sqrt{-\ddot{K}(0)\dot{f}(t)^{2}} dt
= \int_{0}^{T} \sqrt{-\lim_{s \to t} \frac{\partial^{2}}{\partial t \partial s} K(|f(t) - f(s)|)} dt$$
(18)

which is precisely the Kac-Rice formula for the expected zero-count. \Box