# Soutenance SAE S2.02 - Exploration algorithmique d'un problème

Jeanne Lebeau et Manon Chaperon 1C1

## Sommaire:

- Introduction
  - Présentation du problème
  - Particularités et difficultés

- Description de la solution
  - La solution
  - Notre algorithme

- Comparaison avec un autre algorithme
  - Présentation
  - Similitudes
  - Différences
- Conclusion
  - Notre solution
  - Nos difficultés
  - Améliorations Possibles et solutions alternatives

# Présentation du problème :

Problème du postier chinois:

Objectif: Trouver le chemin le plus court dans un graphe connexe non orienté qui passe au moins une fois par chaque arête et revient à son point de départ.



Origine: Mathématicien qui étudiait la tournée d'un facteur qui devait effectuer le plus efficacement possible sa tournée en passant au moins une fois par chaque rue.

## Particularités et difficultés :

#### Particularités:

- Peut être résolu si le graphe est eulérien
- Le cycle le plus court est donc eulérien

#### Difficultés:

• Chaque sommet doit être de degré pair

## La solution:

- 1 Rendre eulérien le graphe
- 2 Chercher les isthmes ou ponts du graphe
- 3 Chercher un circuit eulérien en utilisant l'algorithme de fleury



# Notre algorithme:

#### Trois fichiers:

- L'algorithme principal
- L'algorithme de pile : Pour utiliser le système de Pile
- L'algorithme de test : Pour compiler le programme



#### Les méthodes de l'algorithme principal:

- Initialisent un objet graphe
- Ajoutent des sommets et des arêtes
- Récupèrent les arêtes
- Retournent:
  - La liste des arêtes d'un sommet
  - Les sommets du graphe
  - Le nombre d'arêtes
  - Le degré du sommet et le degré maximum
  - La liste des sommets isolés

#### Le reste des méthodes:

- Calculent les degré et renvoie un tuple de degré décroissant
- Testent si le graphe est eulérien
- Itèrent sur les sommets
- Trouvent des chemins élémentaire dans le graphe

# L'autre algorithme:

- Traverse les arêtes au hasard
- Trouve:
  - Soit un itinéraire sans issue
  - Soit un circuit



## Similitudes:

## Les deux programmes:

- Testent si le graphe est eulérien
- Le rendent eulérien si il ne l'est pas
- Cherchent un chemin eulérien

## Différences:

## Notre programme:

- Trouve le chemin le plus court d'un point à l'autre
- Ne passe pas par toutes les arêtes

## L'autre programme:

• Trouve le parcours le plus cours dans tout le graphe

## **Conclusion:**

#### Notre solution:

Notre programme parcours le graphe, si il est eurélien l'algorithme cherche le chemin le plus court.

#### Nos difficultés:

- Difficultés pour trouver le chemin
- Programme qui trouve le chemin le plus court points par points et non pas de tout le graphe

## Améliorations Possibles et solutions alternatives :



#### **Amélioration:**

- Programme qui résout entièrement le problème
- Passez par toutes les arêtes du graphe

#### Solutions alternatives:

• Utiliser l'algorithme de dijkstra