CHAPTER 5 - COUNTING

- Choose a quiz password: ***
- * can be chosen from {a, b, c, d}
- How many possible passwords?

Product rule

Task = task 1 AND task 2

2

Task 1: choose one

Task 2: choose one

Product rule

THE PRODUCT RULE

```
Task = task1 → task 2 → task 3 → ... → task k
task 1: n1 ways
task 2: n2 ways
...
Task k: nk ways
```

Product rule: n1.n2...nk ways to do the task

Product rule

Example 1. A new company with just two employees, A and B, rents a floor of a building with 12 offices.

How many ways are there to assign different offices to these two employees?

→ 2 tasks: 12. 11

Example 2. How many different bit strings of length seven are there?

 \rightarrow 7 tasks: 2.2.2.2.2.2 = 2^7

How many functions are there from {a, b, c} to {1, 2, 3, 4, 5} ?

function Input \longrightarrow Output $A \bullet$ $\bullet 1$ $B \bullet$ $\bullet 2$ $C \bullet$ $\bullet 3$ $\bullet 4$ $\bullet 5$

Example – counting passwords

- Each user on a computer system has a password, which has properties:
 - six to eight characters long
 - character is an uppercase letter or a digit
 - contain at least one digit
- How many possible passwords are there?

Exercises

1/ If there are **5 multiple-choice** questions on an exam, each having four possible answers, how many different sequences of answers are there?

2/ In how many ways can a teacher seat 5 girls and 3 boys in a row seats if a boy must be seated in the first and a girl in the last seat?

Exercises

1/ How many **positive divisors** does 120 have?

- $2/A = \{1, 2, 3, 4, 5, 6\}$
- a. How many *subsets* of A can be constructed?
- b. How many *subsets* of A that contain
- c. How many *subsets* neither contain 3 nor 4?

How many integers between 10 and 30 inclusive are divisible by 3 or 7?

The principle of Inclusionexclusion

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|A \cup B| = |A| + |B| - |A \cap B| = 4 + 3 - 1$$

The principle of Inclusionexclusion

 How many bit strings of length eight either start with a 1 bit or end with the two bits 00?

• Result = $2^7 + 2^6 - 2^5$

Advanced counting techniques

- P₀: initial deposit
- r: interest rate per year
- P_n: amount of money after n years
- $P_n = (1+r)P_{n-1}$
- $P_n = (1+r)^n P_0$

Advanced counting techniques

Readings:

- Tower of Hanoi problem:
- **Q1.** How many moves if n = 5?
- Q2. How to move?
- Solution of a recurrence relation:
- **Q3.** is $a_n = 3n$ a **solution** of $a_n = 2a_{n-1} a_{n-2}$?
- Divide and conquer algorithm:
- **Q4.** How to estimate complexity of a divide and conquer algorithm?
- **Q5.** If $f(n) = 2f(n/2) + 1 \rightarrow f(n)$ is O(?)

The Tower of Hanoi Problem- Ex5, page 452

How many steps this problem is solved if there is n disks on the peg 1?

Tower of Hanoi – 3 disks

3 disks → 7 steps

Tower of Hanoi problem

- $n = 1 \text{ disk} \Rightarrow H_1 = 1 \text{ step}$
- n = 2 disks:

$$\Rightarrow$$
 H₂ = 3 steps

- $n = 3 \text{ disks} \Rightarrow H_3 = 7 \text{ steps}$
- n disks \Rightarrow H_n = ? // number of steps for n disks

Tower of Hanoi problem - How many steps for n = 4 and more?

1 disk: 1 step

3 disks: $H_3 = 7$ steps

Number of steps for 4 disks:

$$H_4 = 2H_3 + 1 = 15$$

Tower of Hanoi problem with n disks

- $H_n = 2H_{n-1} + 1$ // recurrence relation
- $H_1 = 1 // initial condition$
- \Rightarrow $H_n = 2^n 1$, $n \ge 1$ // solution
- $n = 64 \rightarrow H_{64} = 2^{64}-1$ (=18 446 744 073 709 551 615)
- 1 move/sec → more than 500 billion years.
- Complexity O(2ⁿ)

How many bit strings of length n that not have two consecutive 0s

- n:length of bit string
- a_n: number of such bit strings of length n

n	all 2 ⁿ bit strings of length n	a_n
1	0, 1	$a_1 = 2$
2	00, 01, 10, 11	$a_2 = 3$
3	000, 001, 010, 011, 100, 101, 111	$a_3 = 5$
4	0000, 0001, 0010, 0011, 0100, 01 01, 01 10, 01 11, 1000, 1001, 1010, 1011, 1100, 1101, 1110	$a_4 = 8$
• • •	•••	•••
n	a_{n-2} : number of such strings begin with 0 (in fact, 01) a_{n-1} : number of such strings begin with 1	$a_n = a_{n-2} + a_{n-1}$ (Fibonacci)

Recurrence Relations

Recurrence relation:

- $H_n = 2H_{n-1} + 1$
- $a_n = a_{n-1} + a_{n-2}$

Initial conditions:

- H₁=1
- $a_1=2$, $a_2=3$

Recurrence Relations

 Example: Determine whether {a_n} = 3n is a solution of the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2}, n \ge 2$$
?

- $a_n = 2a_{n-1} a_{n-2}, \ n \ge 2?$ $a_n = 3n \Rightarrow a_{n-1} = 3(n-1)$ and $a_{n-2} = 3(n-2)$
- The right-hand side = $2a_{n-1} a_{n-2} = 2.3(n-1) 3(n-2)$
- The right-hand side = $3n = a_n$
- Left-hand side = Right-hand side
- \Rightarrow a_n is a solution of the recurrence relation

Divide-and-Conquer Algorithms and recurrence Relations

- Divide: Dividing a problem into one or more instances of the same problem of smaller size
- Conquer: Using the solutions of the smaller problems to find a solution of the original problem, perhaps with some additional work.

Recurrence Relations for Binary Search

```
procedure bsearch(x, i, j)
                                             need f(n)
                                             comparisons
if i > j
        return 0
else
        m = \lfloor (i+j)/2 \rfloor
        if x = a_m
                 return m
        else if x<a_m
                 bsearch(x, i, m-1)
                                                need f(n/2)
        else
                                                comparisons
                 bsearch(x, m+1,
```

$$f(n) = f(n/2)^{3} + 2$$

Recurrence Relations for Finding Maximum of a sequence

```
need f(n)
procedure findmax(i,j): integer ,a_i,a_{2+1},...,a_i:
                                                           comparisons
integers)
if i=i
         return (a<sub>i</sub>)
                                         f(n) = 2f(n/2) + 1
else
        m := \lfloor (i+j)/2 \rfloor
                                                          need f(n/2)
         \max 1 := findmax (i, m, a_i, a_{i+1}, ..., a_m)
                                                           comparisons
                                                             need f(n/2)
         \max 2 := find_{max}(m+1,j,a_{m+1},a_{m+2},...,a_{j})
                                                             comparisons
         if max1 > max2
                  return max1
         else
                  return max2
```

Theorem. [...] f(n)= af(n/b) + c \rightarrow f(n) is $\begin{cases} O(n^{\log_b a}) \text{ if } a>1 \\ O(\log n) \text{ if } a=1 \end{cases}$ a=1c=2b=2Ex. f(n) = f(n/2) + 2

$$\rightarrow$$
 f(n) is O(logn)

$$\begin{cases} O(n^{\log_b a}) \text{ if } a>1\\ O(\log n) \text{ if } a=1 \end{cases}$$

Recurrence Relations for Binary Search

```
procedure bsearch(x, i, j)
                                             need f(n)
                                             comparisons
if i > j
        return 0
else
        m = \lfloor (i+j)/2 \rfloor
        if x = a_m
                return m
        else if x < a_m
                 bsearch(x, i, m-1)
                                                need f(n/2)
        else
                                                comparisons
                 bsearch(x, m+1, j
```

$$f(n) = f(n/2) + 2$$

O(logn) time complexity

Theorem. [...]
$$f(n) = af(n/b) + c \rightarrow f(n) is \begin{cases} O(n^{\log_b a}) & \text{if } a > 1 \\ O(\log n) & \text{if } a = 1 \end{cases}$$

Recurrence Relations for Finding Maximum of a sequence

```
procedure findmax(i,j): integer ,a_i,a_{2+1},...,a_j:
                                                           need f(n)
                                                           comparisons
integers)
if i=i
                                         f(n) = 2f(n/2) + 1
        return (a<sub>i</sub>)
else
         m := \lfloor (i+j)/2 \rfloor
                                                           need f(n/2)
        \max 1 := \underline{findmax}(i, m, a_i, a_{i+1}, ..., a_m)
                                                           comparisons
                                                              need f(n/2)
         \max 2 := findmax (m+1,j,a_{m+1},a_{m+2},...,a_i)
                                                              comparisons
         if max1 > max2
                  return max1
         else
                  return max2
```

What is big-O time complexity of the *findmax* algorithm?

Complexity of merge sort

Master Theorem. [...]

f(n) = af(n/b) + cn^d

$$O(n^d) \text{ if } a < b^d$$

$$O(n^d \log n) \text{ if } a = b^d$$

$$O(n^{\log_b a}) \text{ if } a > b^d$$

 $a = b^d$: f(n) is $O(n^1 \log n)$

A Demonstration: Closest-Pair Problem

- n points in the plane. How to determine the closest-pair of points?
- (1) Determine the distance of every pair of points.
- (2) Determine the pair of points that have minimum distance.
- \rightarrow C(n,2)= n(n-1)/2= O(n²)
- Michal Samos proposed an approach that is O(nlogn) only.
- Michal Samos's approach
- (1) Sorting points in order of increasing x coordinates \rightarrow O(nlog(n))
- (2) Sorting points in order of increasing y coordinates \rightarrow O(nlog(n))

An Demonstration: Closest-Pair Problem

- (3) Using recursive approach to divide the problem into 2 subproblem with n/2 points (left and right points based on x coordinates). Let *l* is the line that partitions two subproblems. If there is any point on this dividing line, we decide these points among the two parts if necessary)
- (4) Finding out closest-pair of points in two side (d_L , d_R)
- (5) Let $d=min(d_L, d_R)$

An Demonstration: Closest-Pair Problem

- (6) Studying area [I-d,I+d]. This area may be contains the result.
- (7) Because we sorted points by their y coordinate. We examine for points p in the strip of width 2d that has the line I as its center with upward direction.

An Demonstration: Closest-Pair Problem

Total number of points in the strip does not exceed n and there are at most 8 points, including p, can lie in or on the 2dxd rectangle.

- → A point will be computed with 7 others.
- →At most 7n distances need to be compare with d to find the minimum distance between points.
- The increasing function f(n) satisfies the recurrence relation: f(n) = 2f(n/2) + 7n
- → By the Master Theorem, it follows that f(n) is **O(nlogn)**

Summary

- Basic counting rules:
 - The Product rule
 - The Sum rule
- Inclusion-exclusion principle
- Advanced counting technique: recurrence relations
 - Tower of Hanoi
 - Count bit strings of length n that satisfy some properties
- Complexity of Divide and conquer algorithms
 - Finding max, binary search in a recursive version
 - Merge sort

THANKS