

Measuring Planet Mass, Radius, & Density

Jenna Bittner, Nathan Holty, Hannah Eggenschwiler

Motivation

- Understanding a planet's mass, radius, and density can tell us about
 - Composition
 - Evolution
 - Habitability

 By calculating these values for exoplanets, we contribute to improving models of planetary systems, improve our understanding of planetary formation, and assess the habitability of exoplanets.

Methods

1. Radial Velocity – Determining Mass

 Use RV data to extract semiamplitude, K

$$K = \frac{Mp}{M*} \sqrt{\frac{GM*}{a}} \sin i$$

- Assume inclination angle to be 90°
- Use RV equation to solve for planetary mass, M_p

Methods

2. Transit – Determining Radius

• Use transit data to extract transit depth, δ

$$\delta = \left(\frac{R_p}{R_*}\right)^2$$

 Use transit equation to solve for planetary radius, R_p

Methods

Density is then calculated using mass and radius

$$\rho = \frac{Mp}{V} = \frac{Mp}{\frac{4}{3}\pi Rp^3}$$

 Data retrieved from the NASA Exoplanet Archive, and for this project we focused on the exoplanet HD 189733b

Results

 $M_p = 1.2914 \pm 0.0058 M_J$

Results

$$R_p = 1.3303 \pm 0.1625 R_J$$

Conclusion

The determined density
suggests that HD
189733 is a gas giant.

$$\rho = 0.681 \pm 0.249 \, \text{g}/\text{cm}^3$$