# **Final Project Report**

## CovidVision: Advanced COVID-19 Detection from Lung X-rays with Deep Learning

Team ID: SWTID1720351492

Team Leader: Ishan Singh

Team member : Garvit Pathak

Team member : Dhaanya Yelleti

Team member: Anushka Deshmukh

#### 1. Introduction

- **1.1.** The COVID-19 pandemic has highlighted the need for rapid and accurate diagnostic tools to identify infected individuals. Chest X-rays are a widely available and cost-effective imaging modality that can provide valuable information for COVID-19 diagnosis.
- **1.2.** This project aims to develop a deep learning model to analyze chest X-rays and classify them as either COVID-19 positive or normal. The model will be trained on a large dataset of chest X-rays from patients with confirmed COVID-19 and normal controls.
- **1.3.** The model is deployed at HuggingFace Spaces. It can be accessed <u>here □</u>

## 2. Project Overview

## **Objectives:**

- To develop a deep learning model for the classification of COVID-19 from chest X-rays.
- To evaluate the performance of the model on a large dataset of chest X-rays.
- To make the model available to healthcare providers as a tool for COVID-19 diagnosis.

## 3. Project Initialization and Planning Phase

#### 3.1. Define Problem Statement

#### **Customer Problem Statement:**

- Healthcare providers are facing challenges in diagnosing COVID-19 due to limited resources, high patient volumes, and a lack of expert radiologists.
- Public health authorities need accurate data to monitor COVID-19 trends and allocate resources effectively.

#### 3.2. Project Proposal (Proposed Solution)

- Develop a deep learning model to analyze chest X-rays and classify them as either COVID-19 positive or normal.
- Integrate the model with hospital systems for expedited diagnosis.
- Deploy the model in rural clinics for enhanced screening.
- Utilize the model for real-time data analysis for public health monitoring and resource allocation.

## 3.3. Initial Project Planning

- **Sprint 1:** Registration, login, and data collection.
- **Sprint 2:** Image preprocessing, model development, and validation.
- **Sprint 3:** Model optimization and tuning.
- **Sprint 4:** Deployment, documentation, and user training.

## 4. Data Collection and Preprocessing Phase

#### 4.1. Data Collection Plan and Raw Data Sources Identified

• Data Source: COVID-19 Radiography Database

• **Size:** 806.84 MB

• Format: Image

• Number of Images: 7232 (3616 COVID-19, 3616 normal)

#### 4.2. Data Preprocessing

- Resized images to 224x224 pixels.
- Normalized pixel values between 0 and 255.
- Label encoded the classes (COVID, normal).
- Reshaped the processed images and class labels into NumPy arrays.

#### 4.3. Data Quality Report

- The dataset showed a significant class imbalance, with the COVID-19 class having substantially more data in the 'Normal' class.
- This imbalance may lead to increased variance and potential bias in the model, affecting the overall performance and reliability of the classification results.

#### **5. Model Development Phase**

#### **5.1. Model Selection Report**

• Model Architecture: VGG19

• Transfer Learning: Utilized pre-trained weights from the ImageNet dataset.

• Tuning: Adjusted the model's parameters to optimize performance for the COVID-19 classification task.

## 5.2. Initial Model Training Code, Model Validation and Evaluation Report

## **Training Code:**

```
model = build model()
```

model.compile(optimizer='adam', loss='binary\_crossentropy', metrics=['accuracy', 'precision', 'recall', 'auc', 'binary\_accuracy'])

model.fit(x\_train, y\_train, batch\_size=32, epochs=40, validation\_data=(x\_val, y\_val))

## Model Validation and Evaluation Report:

```
In [34]:
           y_pred = model.predict(x_test_scaled)
           y_predict = [1 if elem >= 0.5 else 0 for elem in y_pred]
           y_pred = y_predict
            acc = accuracy_score(y_test, y_pred)
           print("Accuracy: ", acc)
         19/19 -
                                      - 3s 153ms/step
         Accuracy: 0.9810017271157168
          The high accuracy of 0.9810017271157168 demonstrates the effectiveness of the VGG19 model with transfer learning in detecting COVID-
          19 from X-ray images. This reflects the successful application of data preprocessing, augmentation, and model training techniques.
In [35]: report = classification_report(y_test, y_pred, target_names=['covid', 'normal'])
Out[35]: ' precision recall f1-score support\n\n covid 0.96
1 1.00 0.96 0.98 295\n\n accuracy
0.98 0.98 579\nweighted avg 0.98 0.98 0.98 579\n'
```

1.00

0.98

0.98

579\n macro avg

284\n

norma

0.98

#### 6. Model Optimization and Tuning Phase

## **6.1. Tuning Documentation**

#### Tuning:

o Epochs: 40

Initial Learning Rate: 1e-5

Decay Steps: 10

Decay Rate: 1.0

Batch Size: 32

Patience: 5

## 6.2. Results

• Accuracy: 98.1%

• Precision: 96%

• Recall: 100%

• **AUC:** 0.99

• Binary Accuracy: 98%

#### 7. Final Model Selection Justification

- The VGG19-based CNN model was chosen due to its strong feature extraction capabilities, effective use of transfer learning, and balanced approach to handling the dataset.
- Its high accuracy on the test data, along with good performance on training and validation data, validated its effectiveness in classifying chest X-ray images into COVID-19 positive and normal categories.

## 8. Output Screenshots

- [Link to Image of model architecture]
- [Image of training and validation performance metrics]





[Image of confusion matrix]



#### 9. Advantages & Disadvantages

#### **Advantages:**

- High accuracy and reliability in classifying COVID-19 from chest X-rays.
- Can be integrated with hospital systems for expedited diagnosis.
- Can be deployed in rural clinics for enhanced screening.
- Can be used for real-time data analysis for public health monitoring and resource allocation.

## Disadvantages:

- Requires a large dataset for training.
- May be biased towards certain populations or imaging protocols.
- Requires specialized hardware for deployment.

### 10. Conclusion

This project has successfully developed a deep learning model for the classification of COVID-19 from chest X-rays. The model has achieved high accuracy and reliability, making it a valuable tool for healthcare providers and public health authorities.

#### 11. Future Scope

- Explore the use of other deep learning architectures for COVID-19 classification.
- Investigate the use of the model for the detection of other diseases from chest X-rays.

#### 12. Appendix

#### 12.1. Source Code

• [Link to GitHub repository]

# 12.2. GitHub & Project Demo Link

- [Link to GitHub repository]
- [Link to project demo]