

Lesion and tissue segmentation in Magnetic Resonance Imaging

Gaia Vettori & Filippo Castellani

Medical images and MRI

Descriptions

- Images are defined as functions in either 2 or 3 dimensions, where every point in space is associated to an **intensity value** [0, 255].
- Nuclear magnetic resonance imaging associates to every pixel the average magnetic resonance characteristic value.
- "Image segmentation" discretizes between tissues, groups together and labels homogenous ones.
- Pre-processing: bias field removal, non-brain tissue removal, image registration

Image segmentation

Methods

- Manual
- Intensity-based
 - Threshold
 - Region growing
 - Classification
 - Clustering
- Atlas-based
- Surface-based
- Hybrid methods
 - Otsu's method

Volume Exploration (2D and 3D exploration of data)

Providing a seed for segmentation Two-step seed [Crop&Click]

Automatic segmentation (Segmentation loop)

After slides enhancement

Decreasing y

Increasing y

After binarization + automatic* «click»

Results & Conclusions (Segmentation and lesion volume estimate)

Voxels classified as lesioned 14427

Volume estimate 17.8 cm³

Noise effect (Salt&Pepper and Gaussian, varying parameters)

Performances after noise

Increasing noise

• Voxels = 14391

Thank you for your attention

Gaia Vettori & Filippo Castellani

[EXTRA] Enhancement (Point Operator Transformation)

Original Image

Transformation

Enhanced Image

$$y = \frac{\left(1+g\right)}{1+e^{\left(k\cdot\frac{1}{2}-k\cdot x\right)}} - \frac{g}{2}$$

Otsu's method will be applied on this image in order to binarize it.

[EXTRA] Automatic seeding (Weighted average of previous centers)

[EXTRA] Results using axial slices (Segmentation performed with the same logic)

Voxels classified as lesioned 23860 *Volume estimate* 29. 35*cm*³

Issues with imfill() function: Actually not working as good as sagittal slices

