Introduction (SNLP tutorial)

Vilém Zouhar

March 16, 2021

Overview

- Languages
- TODO

Languages

Language

 $L\subseteq \Sigma^*$ (all possible substrings by elements of alphabet Σ)

$$ullet$$
 $\Sigma_1 = \{a,b,\ldots,z,\ddot{u},\ddot{a},\ddot{o}\}$

•
$$\Sigma_2 = \{A,G,C,T\}$$

•
$$\Sigma_3 = \{ \text{def,True,:,print,...} \}$$

•
$$\Sigma_4 = \{ \text{SELECT}, \text{INSERT}, \text{DROP}, \dots \}$$

•
$$\Sigma_5 = \{\text{hallo,ja,nein,...}\}$$

•
$$\Sigma_6 = \{+,-,=,1,2,3...\}$$

•
$$\Sigma_7 = \{+,-,=,1,2,3...\}$$

$$ullet$$
 'Oberfläche' $\in L_1$ (German words)

• '..GATTCCAATCAG'
$$\in L_2$$
 (DNA)

• 'while True:
$$f()' \in L_3$$
 (Python)

• 'SELECT * FROM tbl;'
$$\in L_4$$
 (SQL)

$$ullet$$
 'Wie geht's dir?' $\in L_5$ (German)

• '4=5'
$$\in L_6$$
 (arithmetics)

• '1=2+=3333='
$$\in L_7$$
 (????)

Usually defined by the alphabet and production rules (Automata and Grammar).

Zipf's Law

- Sort words/entries by frequency f(x)
- r(x) = position in the sorted list
- Then $\exists \gamma : f(x) \propto \frac{1}{r(x)^{\gamma}}$
- **1** Most common entry m.
- Then $\exists \gamma : f(x) = \frac{\check{f}(m)}{r(x)^{\gamma}}$

Rank	Frequency	Predicted ($\gamma=0.7$)
4	606	$1507/4^{0.7} = 571$
5	490	$1507/5^{0.7} = 488$
11	261	$1507/11^{0.7} = 281$
12	252	$1507/12^{0.7} = 264$

Rank	Word [3]	Frequency
1	the	1507
2	and	714
3	to	703
4	а	606
5	of	490
6	she	484
7	said	416
8	it	346
9	in	345
10	was	328
11	1	261
12	you	252
13	as	237
14	Alice	221

We are plotting: $\log \left(\frac{C}{\exp(x)^{\gamma}}\right)$ $\log(C) - \gamma \log \exp(x)$ $\log(C) - \gamma x$

Figure 1: log-log plot of Zipf's Law applpied to natural languages [4]

└─Zipf's Law

Multiple ranks share same (low) frequency \rightarrow stairs at the end

Zipf's Law Notes

- Works beyond natural languages
- DNA subsequences of fixed lengths
- Code (programming languages)
- Population of cities (frequency is city population) [5]

Rank	City	Population
1	New York, N.Y.	8,491,079
2	Los Angeles, Calif.	3,928,864
3	Chicago, III.	2,722,389
4	Houston, Tex.	2,239,558
5	Philadelphia, Pa.	1,560,297
6	Phoenix, Ariz.	1,537,058
7	San Antonio, Tex.	1,436,697
8	San Diego, Calif.	1,381,069
9	Dallas, Tex.	1,381,069

Probability Theory

TODO

Word probability
TODO
Conditional probability
TODO

Marginalization Independent variables
TODO TODO

Probability Theory

TODO

Bayes rule/decomposition

Expected value

March 16, 2021

8 / 10

Homework

TBD

Resources

- UdS SNLP Class: https://teaching.lsv.uni-saarland.de/snlp/
- Tutorial repository: https://github.com/zouharvi/uds-snlp-tutorial
- Alice in Wonderland, Lewis Caroll
- SergioJimenez, CC BY-SA 4.0 https://commons.wikimedia.org/wiki/File:Zipf_30wiki_en_labels.png
- https://www.futurelearn.com/info/courses/maths-linear-quadratic/0/steps/12150