VC GENERALIZATION BOUND

Matthieu Bloch February 19, 2019

RECAP: DICHOTOMIES AND GROWTH FUNCTION

Definition (Dichotomy)

For a dataset $\mathcal{D} riangleq \{\mathbf{x}_i\}_{i=1}^N$ and set of hypotheses \mathcal{H} , the set of <u>dichotomies</u> generated by \mathcal{H} on \mathcal{D} is $\mathcal{H}(\{\mathbf{x}_i\}_{i=1}^N) riangleq \{\{h(\mathbf{x}_i)\}_{i=1}^N: h \in \mathcal{H}\}$

By definition $|\mathcal{H}(\{\mathbf{x}_i\}_{i=1}^N)| \leq 2^N$ and in general $|\mathcal{H}(\{\mathbf{x}_i\}_{i=1}^N)| \ll |\mathcal{H}|$

Definition (Growth function)

For a set of hypotheses \mathcal{H} , the growth function of \mathcal{H} is

$$m_{\mathcal{H}}(N) riangleq \max_{\{\mathbf{x}_i\}_{i=1}^N} |\mathcal{H}(\{\mathbf{x}_i\}_{i=1}^N)|$$

The growth function does ${\it not}$ depend on the datapoints $\{{f x}_i\}_{i=1}^N$

The growth function in bounded $m_{\mathcal{H}}(N) \leq 2^N$

LOGISTICS

Lecture slides and notes

Report typos and errors on Piazza (thank you!)

If you are considering dropping the class, please send an email to Dr. Bloch

Problem set #1

- Solutions released, check it out
- Grading in progress

Problem set #2

■ Be a bit more patient, it's coming asap

Midterm

- March 5, 2019 (Withdrawal deadline on March 13, 2019)
- 75 minutes, in class
- Two/three problems testing understanding and applications of concepts
- Open notes

RECAP: BREAK POINT

2

Linear classifiers: $\mathcal{H} \triangleq \{h : \mathbb{R}^2 \to \{\pm 1\} : \mathbf{x} \mapsto \operatorname{sgn}(\mathbf{w}^\intercal \mathbf{x} + b) | \mathbf{w} \in \mathbb{R}^2, b \in \mathbb{R}\}$

- $m_{\mathcal{H}}(3) = 8$
- $m_{\mathcal{H}}(4) = 14 < 2^4$

Definition (Shattering)

If ${\cal H}$ can generate all dichotomies on $\{{f x}_i\}_{i=1}^N$, we say that ${\cal H}$ shatters $\{{f x}_i\}_{i=1}^N$

Definition (Break point)

If no data set of size k can be shattered by ${\mathcal H}$, then k is a break point for ${\mathcal H}$

The break point for linear classifiers is 4

Proposition.

3

If there exists any break point for ${\mathcal H},$ then $m_{{\mathcal H}}(N)$ is polynomial in N

If there is no break point for ${\mathcal H},$ then $m_{{\mathcal H}}(N)=2^N$

VC GENERALIZATION BOUND

Consider our learning problem from Lecture 2

Proposition (VC bound)

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R(h)-\widehat{R}_N(h)
ight|>\epsilon
ight)\leq 4m_{\mathcal{H}}(2N)e^{-rac{1}{8}\epsilon^2N}$$

Compare this with our previous generalization bound that assumed $|\mathcal{H}| < \infty$

$$\mathbb{P}\left(\max_{h\in\mathcal{H}}\left|R(h)-\widehat{R}_N(h)
ight|>\epsilon
ight)\leq 2|\mathcal{H}|e^{-2\epsilon^2N}$$

- ullet We replace the \max by \sup and $|\mathcal{H}|$ by $m_{\mathcal{H}}(2N)$
- We can now handle *infinite* hypothesis classes!

With probability at least $1-\delta$

$$R(h^*) \leq \widehat{R}_N(h^*) + \sqrt{rac{8}{N}igg(\log m_{\mathcal{H}}(2N) + \lograc{4}{\delta}igg)}$$

Key insight behind proof is how to relate $\sup_{h\in\mathcal{H}}$ to $\max_{h\in\mathcal{H}'}$ with $\mathcal{H}'\subset\mathcal{H}$ and $|\mathcal{H}'|<\infty$ Approach developed by Vapnik and Chervonenkis in 1971

INTUITION

Assume that X, X' be i.i.d. random variables with symmetric distribution around their mean μ

- lacksquare Let $\mathcal{A} \triangleq \{|X \mu| > \epsilon\}$
- \blacksquare Let $\mathcal{B} \triangleq \{|X X'| > \epsilon\}$

Lemma (Symmetric bound)

$$\mathbb{P}\left(\mathcal{A}
ight)\leq2\mathbb{P}\left(\mathcal{B}
ight)$$

If $X \triangleq \widehat{R}_N(h)$ and $X' \triangleq \widehat{R}'_N(h)$ had symmetric distributions, we would obtain $\mathbb{P}\left(\left|R(h)-\widehat{R}_N(h)
ight|>\epsilon
ight)\leq 2\mathbb{P}\left(\left|\widehat{R}_N(h)-\widehat{R}_N'(h)
ight|>\epsilon
ight)$

Not quite true, but close

KEY INSIGHTS OF VC BOUND

The growth function $m_{\mathcal{H}}$ plays a role

- ullet There may be infinitely many $h\in\mathcal{H}$, but they generate a finite number of unique dichotomies
- Hence, $\{\widehat{R}_N(h): h \in \mathcal{H}\}$ is finite
- Unfortunately $\hat{R}(h)$ still potentialy takes infinitely many different values

Key insight: use a second *ghost* dataset of size N with empirical risk $\widehat{R}'_N(h)$

• Hope that we can squeeze R(h) between $\widehat{R}'_N(h)$ and $\widehat{R}_N(h)$

We will try to relate $\mathbb{P}\left(\left|R(h)-\widehat{R}_N(h)\right|>\epsilon
ight)$ to $\mathbb{P}\left(\left|\widehat{R}_N'(h)-\widehat{R}_N(h)\right|>\epsilon'
ight)$ with $\epsilon'=f(\epsilon)$

ullet $\mathbb{P}\left(\left|\widehat{R}_N(h)-\widehat{R}_N'(h)
ight|>\epsilon
ight)$ only depends on the finite number of unique dichotomies

PROOF OF VC BOUND

5

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R(h)-\widehat{R}_N(h)\right|>\epsilon\right)\leq 2\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|\widehat{R}_N'(h)-\widehat{R}_N(h)\right|>\frac{\epsilon}{2}\right)$$

Let $\mathcal{S} riangleq \{(\mathbf{x}_i,y_i)\}_{i=1}^{2N}$ be a dataset partitioned into two subsets \mathcal{S}_1 and \mathcal{S}_2 of N points. Assume that

$$\begin{aligned} &\widehat{R}_N(h) \text{ is computed on } \mathcal{S}_1 \text{ while } \widehat{R}'_N(h) \text{ is computed on } \mathcal{S}_2. \\ &\mathbb{P}\left(\sup_{h \in \mathcal{H}}\left|\widehat{R}'_N(h) - \widehat{R}_N(h)\right| > \frac{\epsilon}{2}\right) \leq m_{\mathcal{H}}(2N) \sup_{\mathcal{S}_1,\mathcal{S}_2} \sup_{h \in \mathcal{H}}\mathbb{P}\left(\left|\widehat{R}'_N(h) - \widehat{R}_N(h)\right| | \mathcal{S}_1,\mathcal{S}_2\right) \end{aligned}$$

Lemma. For any $h \in \mathcal{H}$ and any partition $\mathcal{S}_1, \mathcal{S}_2$, we have

$$\mathbb{P}\left(\left|\widehat{R}_N'(h)-\widehat{R}_N(h)
ight||\mathcal{S}_1,\mathcal{S}_2
ight)\leq 2e^{-rac{1}{8}\epsilon^2N}$$

8