List of Symbols

Version: December 6, 2022

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	Scalars
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A},\mathcal{B},\mathcal{C},\dots$	Tensors
$A, B, C, \ldots, A, B, C, \ldots$	Sets

2 Common symbols

$\mathbf{\nabla} f, \mathbf{g}$	Gradient vector
$\nabla_x f, \mathbf{g}_x$	Gradient vector with respect x
\mathbf{g} (or $\hat{\mathbf{g}}$ if the gradient vector is \mathbf{g})	Stochastic approximation of the gra-
0 (0 0	dient vector
$J(\cdot)$	Cost-function or objective function
$\Lambda(\cdot)$	Likelihood function
$\Lambda_l(\cdot)$	Log-likelihood function
$\mathcal{O}(\cdot), \mathcal{O}(\cdot)$	big-O notation
Q(x)	Q-function
μ_x, \mathbf{m}_x	Mean vector
$\hat{\boldsymbol{\mu}}_{x}^{'},\hat{\mathbf{m}}_{x}$	Sample mean vector
$r_x(au), R_x(au)$	Autocorrelation function of the sig-
	$\operatorname{nal} x(t) \text{ or } x[n]$
$\hat{r}_{\scriptscriptstyle X}(au),\hat{R}_{\scriptscriptstyle X}(au)$	Estimated autocorrelation function
	of the signal $x(t)$ or $x[n]$
R_x	(Auto)correlation matrix of \mathbf{x}
$\hat{\mathbf{R}}_{\mathbf{x}}$	Sample (auto)correlation matrix
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and
	d[n] or $x(t)$ and $d(t)$
$\hat{r}_{x,d}(au), \hat{R}_{x,d}(au)$	Estimated cross-correlation between
	x[n] and $d[n]$ or $x(t)$ and $d(t)$

$\mathbf{R}_{\mathbf{x}\mathbf{y}}$	Cross-correlation matrix of \mathbf{x} and \mathbf{y}
$\hat{\mathbf{R}}_{\mathbf{x}\mathbf{y}}$	Sample cross-correlation matrix of
n ,	R_{xy} Cross-correlation vector
$\mathbf{P}_{\mathbf{x}d}$ $\rho_{x,y}$	Pearson correlation coefficient be-
<i>PX</i> , <i>y</i>	tween x and y
$\hat{ ho}_{x,y}$	Estimated Pearson correlation coefficient between x and y
$c_X(\tau), C_X(\tau)$	Autocovariance function of the signal $x(t)$ or $x[n]$
$\hat{c}_x(au), \hat{C}_x(au)$	Estimated autocovariance function of the signal $x(t)$ or $x[n]$
C_x, K_x, Σ_x	(Auto)covariance matrix of \mathbf{x}
$\hat{\mathbf{C}}_{\mathbf{x}}, \hat{\mathbf{K}}_{\mathbf{x}}, \hat{\mathbf{\Sigma}}_{\mathbf{x}}$	Sample (auto)covariance matrix
$c_{xy}(\tau), C_{xy}(\tau)$	Cross-covariance function of the sig-
	$\operatorname{nal} x(t) \text{ or } x[n]$
$\hat{c}_{xy}(au), \hat{C}_{xy}(au)$	Estimated cross-covariance function
$\mathrm{C}_{\mathrm{xy}}, \mathrm{K}_{\mathrm{xy}}, \Sigma_{\mathrm{xy}}$	of the signal $x(t)$ or $x[n]$ Cross-covariance matrix of \mathbf{x}
$\hat{\mathbf{C}}_{\mathbf{xy}},\hat{\mathbf{K}}_{\mathbf{xy}},\mathbf{\Sigma}_{\mathbf{xy}}$ $\hat{\mathbf{C}}_{\mathbf{xy}},\hat{\mathbf{K}}_{\mathbf{xy}},\hat{\mathbf{\Sigma}}_{\mathbf{xy}}$	Sample cross-covariance matrix
$\delta(t)$	Delta function
$\delta[n]$	Kronecker function
h(t), h[n]	Impulse response (continuous and discrete time)
\mathbf{C}	Cofactor matrix
\mathbf{W}, \mathbf{D}	Diagonal matrix
$\mathbf{w}, \mathbf{\theta}$	Parameters, coefficients, or weights vector
$\mathbf{w}_{o}, \mathbf{w}^{\star}, \mathbf{\theta}_{o}, \mathbf{\theta}^{\star}$	Optimum value of the parameters,
	coefficients, or weights vector
\mathbf{W}	Matrix of the weights
P	Projection matrix; Permutation ma-
	trix
Λ L	Eigenvalue matrix
U	Lower matrix Upper matrix; Left singular vectors
\mathbf{U}_r	Left singular nondegenerated vectors
Σ	Singular value matrix
Σ_r	Singular value matrix with nonzero
	singular values in the main diagonal
Σ^+	Singular value matrix of the pseudoinverse
Σ_r^+	Singular value matrix of the pseudoinverse with nonzero singular values in the main diagonal

$egin{array}{c} {f V} \\ {f V}_r \end{array}$	Right singular vectors Right singular nondegenerated vectors
J	Jordan matrix; Jacobian matrix
\mathbf{S}	Symmetric matrix
Q	Orthogonal matrix
\mathbf{I}_N	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
0_N	N-dimensional null vector
0	Null matrix, vector, or tensor (di-
	mensionality understood by context)
$1_{M imes N}$	$M \times N$ -dimensional ones matrix
1_N	N-dimensional ones vector
1	Ones matrix, vector, or tensor (di-
	mensionality understood by context)
j	$\sqrt{-1}$

${\bf 3}\quad {\bf Linear~Algebra~operations}$

. 1	
\mathbf{A}^{-1}	Inverse matrix
$\mathbf{A}^+,\mathbf{A}^\dagger$	Moore-Penrose pseudoinverse
$\mathbf{A}^{ op}$	Transpose
\mathbf{A}^*	Complex conjugate
\mathbf{A}^H	Hermitian
$\ \mathbf{A}\ _{\mathrm{F}}$	Frobenius norm
$\ \mathbf{A}\ $	Matrix norm
$\ \mathbf{a}\ $	l_1 norm, 1-norm, or Manhatan norm
$\ \mathbf{a}\ , \ \mathbf{a}\ _2$	l_2 norm, 2-norm, or Euclidean norm
$\ \mathbf{a}\ _p$	l_p norm, p -norm, or Minkowski norm
$\ \mathbf{a}\ _{\infty}^{'}$	l_{∞} norm, ∞ -norm, or Chebyshev
	norm
$ \mathbf{A} , \det{(\mathbf{A})}$	Determinant
$\operatorname{diag}\left(\mathbf{a}\right),\operatorname{diag}\left(\mathbf{A}\right)$	Diagonalization: a square, diagonal
	matrix with entries given by the vec-
	tor a or the elements in the diagonal
	of ${f A}$
$\text{vec}(\mathbf{A})$	Vectorization: stacks the columns of
. ,	the matrix A into a long column vec-
	tor
$\operatorname{vec}_{\operatorname{d}}\left(\mathbf{A}\right)$	Extracts the diagonal elements of a
	square matrix and returns them in a
	column vector

(4)	
$\operatorname{vec}_{\operatorname{l}}\left(\mathbf{A}\right)$	Extracts the elements strictly below
	the main diagonal of a square matrix in a column-wise manner and returns
	them into a column vector

$\operatorname{vec}_{\mathrm{u}}\left(\mathbf{A}\right)$	Extracts the elements strictly above
	the main diagonal of a square matrix
	in a column-wise manner and returns
(A)	them into a column vector
$\mathrm{vec_{b}}\left(\mathbf{A} ight)$	Block vectorization operator: stacks
	square block matrices of the input
(4)	into a long block column matrix
$\operatorname{unvec}\left(\mathbf{A}\right)$	Reshapes a column vector into a ma-
	trix
$cof(\mathbf{A})$	Cofactor matrix of A
$\operatorname{eig}\left(\mathbf{A}\right)$	Set of the eigenvalues of A
$[\![\mathbf{A},\mathbf{B},\mathbf{C},\ldots]\!]$	CANDECOMP/PARAFAC (CP) de-
	composition of the tensor ${\cal X}$ from the
	outer product of column vectors of A ,
	B, C,
$[\![\boldsymbol{\lambda};\mathbf{A},\mathbf{B},\mathbf{C},\ldots]\!]$	Normalized CANDE-
	COMP/PARAFAC (CP) decom-
	position of the tensor \mathcal{X} from the
	outer product of column vectors of
	$\mathbf{A}, \mathbf{B}, \mathbf{C}, \dots$
$N(\mathbf{A})$, $nullspace(\mathbf{A})$, $kernel(\mathbf{A})$	Nullspace (or kernel)
$C(\mathbf{A})$, columnspace(\mathbf{A}), range(\mathbf{A})	Columnspace (or range), i.e., the
	space span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, where \mathbf{a}_i is
	the ith column vector of the matrix
	A
$\mathrm{span}\left(\mathbf{a}_{1},\mathbf{a}_{2},\ldots,\mathbf{a}_{n}\right)$	Vector space spanned by the argu-
	ment vectors
$\operatorname{span}\left(\mathbf{A}\right)$	Vector space spanned by the col-
	umn vectors of A , which gives the
1 (4)	columnspace of A
$\operatorname{rank}\left(\mathbf{A}\right)$	Rank, that is, $\dim(\operatorname{span}(\mathbf{A})) =$
74.	$\dim (C(\mathbf{A}))$
nullity (A)	Nullity of \mathbf{A} , i.e., dim $(N(\mathbf{A}))$
$\mathrm{tr}\left(\mathbf{A}\right)$	trace
$\mathbf{a} \perp \mathbf{b}$	a is orthogonal to b
a ≠ b	a is not orthogonal to b
$\langle \mathbf{a}, \mathbf{b} \rangle$	Inner product, i.e., $\mathbf{a}^{T}\mathbf{b}$
$\mathbf{a} \circ \mathbf{b}$	Outer product, i.e., $\mathbf{a}\mathbf{b}^{T}$
⊗ -	Kronecker product
⊙	Hadamard (elementwise) product
♦	Khatri-Rao product
\otimes	Kronecker Product

×	<i>n</i> -mode product
$egin{array}{c} X_{(n)} \end{array}$	<i>n</i> -mode product <i>n</i> -mode matricization of the tensor \mathcal{X}
$\mathcal{X}^{(n)} \leq 0$	Nonnegative tensor
$\mathbf{a} \leq \mathbf{b}$	Generalized inequality meaning that
$a \supseteq_K b$	$\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in
	the space \mathbb{R}^n
$\mathbf{a} \prec_K \mathbf{b}$	Strict generalized inequality meaning
$\mathbf{a} \prec_K \mathbf{b}$	that $\mathbf{b} - \mathbf{a}$ belongs to the interior of
	that $\mathbf{b} - \mathbf{a}$ belongs to the interior of the conic subset K in the space \mathbb{R}^n
$\mathbf{a} \leq \mathbf{b}$	
$a \leq b$	Generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the nonnegative or-
	thant conic subset, \mathbb{R}^n_+ , in the space \mathbb{R}^n
$\mathbf{a} \prec \mathbf{b}$	Strict generalized inequality meaning
a < b	that $\mathbf{b} - \mathbf{a}$ belongs to the positive or-
	that $\mathbf{b} = \mathbf{a}$ belongs to the positive of- thant conic subset, \mathbb{R}_{++}^n , in the space
	\mathbb{R}^n
$\mathbf{A} \leq_K \mathbf{B}$	Generalized inequality meaning that
$A \supseteq_K B$	$\mathbf{B} - \mathbf{A}$ belongs to the conic subset K
	in the space \mathbb{S}^n
$\mathbf{A} \prec_K \mathbf{B}$	Strict generalized inequality meaning
A \K B	that $\mathbf{B} - \mathbf{A}$ belongs to the interior of
	the conic subset K in the space \mathbb{S}^n
$A \leq B$	Generalized inequality meaning that
$\mathbf{A} \supseteq \mathbf{B}$	B-A belongs to the positive semidef-
	inite conic subset, \mathbb{S}_{+}^{n} , in the space \mathbb{S}^{n}
A < B	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the positive or-
	that $\mathbf{b} - \mathbf{k}$ belongs to the positive of than conic subset, \mathbb{S}_{++}^n , in the space
	\mathbb{S}^n
	\sim

3.1 Indexing

x_{i_1,i_2,\ldots,i_N}	Element in the position
	(i_1,i_2,\ldots,i_N) of the tensor $\boldsymbol{\mathcal{X}}$
$\mathcal{X}^{(n)}$	nth tensor in a nontemporal sequence
$[\mathcal{X}]_{i_1,i_2,,i_N}$	Element $x_{i_1,i_2,,i_N}$
$\mathbf{x}_n, \mathbf{x}_{:n}$	nth column of the matrix X
\mathbf{x}_{n} :	nth row of the matrix X
$\mathbf{x}_{i_1,,i_{n-1},:,i_{n+1},,i_N}$	Mode- n fiber of the tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{:,i_{2},i_{3}}$	Column fiber (mode-1 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
2 0	order tensor \mathcal{X}

$X_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the
	thrid-order tensor \mathcal{X}
$\mathbf{X}_{i_1,:,:}$	Horizontal slice of the thrid-order
	tensor ${\cal X}$
$X_{:,i_2,:}$	Lateral slices slice of the thrid-order
	tensor ${\cal X}$
$\mathbf{X}_{i_3}, \mathbf{X}_{:,:,i_3}$	Frontal slices slice of the thrid-order
	tensor \mathcal{X}

4 Sets

A + B	Set addition (Minkowski sum)
A - B	Minkowski difference
$A \setminus B, A - B$	Set difference or set subtraction,
	i.e., the set containing the elements
	of A that are not in B
$A \cup B$	Set of union
$A \cap B$	Set of intersection
$A \times B$	Cartesian product
A^{\perp}	Orthogonal complement of A , e.g.,
	$N(\mathbf{A}) = C(\mathbf{A}^{T})^{\perp}$
$A \oplus B$	Direct sum, e.g., $C(\mathbf{A}^{\top}) \oplus C(\mathbf{A}^{\top})^{\perp} =$
	\mathbb{R}^n
A^c, \bar{A}	Complement set
#A, A	Cardinality
$a \in A$	a is element of A
$a \notin A$	a is not element of A
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
	ements $1, 2, \ldots, n$
\mathbb{R}	Set of real numbers
\mathbb{C}	Set of complex numbers
$\mathbb Z$	Set of integer number
$\mathbb{B} = \{0, 1\}$	Boolean set
Ø	Empty set
\mathbb{N}	Set of natural numbers
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$???
$\mathbb{K}^{I_1 imes I_2 imes \cdots imes I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or
	complex) space
\mathbb{K}_{+}	Nonnegative real (or complex) space
\mathbb{K}_{++}	Positive real (or complex) space, i.e.,
	$\mathbb{K}_{++} = \mathbb{K}_+ \setminus \{0\}$
$\mathbb{S}^n,\mathcal{S}^n$	Conic set of the symmetric matrices
	in $\mathbb{R}^{n \times n}$

 $\mathbb{S}^n_+, \mathcal{S}^n_+$ Conic set of the symmetric positive semidefinite matrices in $\mathbb{R}^{n\times n}$ Conic set of the symmetric positive $\mathbb{S}_{++}^n, \mathcal{S}_{++}^n$ definite matrices in $\mathbb{R}^{n\times n}$, i.e., $\mathbb{S}^n_{++}=$ $\mathbb{S}^n_+ \setminus \{\mathbf{0}\}$ Set of all hermitian matrices in $\mathbb{C}^{n\times n}$ \mathbb{H}^n [a,b]Closed interval of a real set from a to (a,b)Opened interval of a real set from a [a, b), (a, b]Half-opened intervals of a real set from a to b

5 Signals and functions operations and indexing

 $f:A\to B$ A function f whose domain is A and codomain is \boldsymbol{B} $f^{(n)}$ nth derivative of the function f f^{-1} Inverse function of f $f \circ g$ Composition of the functions f and $\inf_{\mathbf{y}\in\mathcal{A}}g(\mathbf{x},\mathbf{y})$ Infimum $\sup_{\mathbf{y}\in\mathcal{A}}g(\mathbf{x},\mathbf{y})$ Supremum Convolution (N) Circular convolution Continuous-time tx(t) $x[n],x[k],x[m],x[i],\ldots$ Discrete-time n, k, m, i, \ldots Discrete-time n, k, m, i, \ldots (it should $x(n), x(k), x(m), x(i), \dots$ be used only if there are no continuous-time signals in the context to avoid ambiguity) Estimate of x(t) or x[n]; the Hilbert $\hat{x}(t)$ or $\hat{x}[n]$ transform of x(t) or x[n] $\tilde{x}[n]$ Periodic discrete-time signal $x\left[\left((n-m)\right)_{N}\right], x\left((n-m)\right)_{N}$ Circular shift in m samples within a N-samples window $x_I(t)$ or $x_I[n]$ Real or in-phase part of x(t) or x[n]Imaginary or quadrature part of x(t) $x_Q(t)$ or $x_Q[n]$ or x[n] $\mathcal{F}\left\{ \cdot \right\}$ Fourier transform $\mathcal{L}\left\{ \cdot \right\}$ Laplace transform $\mathcal{Z}\left\{ \cdot \right\}$ z-transform X(s)Laplace transform of x(t)

X(f)	Fourier transform (FT) (in linear fre-
	quency, Hz) of $x(t)$
$X(j\omega)$	Fourier transform (FT) (in angular
	frequency, rad/sec) of $x(t)$
$X(e^{j\omega})$	Discrete-time Fourier transform
	(DTFT) of $x[n]$
X[k], X(k)	Discrete Fourier transform (DFT) or
	fast Fourier transform (FFT) of $x[n]$,
	or even the Fourier series (FS) of the
	periodic signal $x(t)$
$\tilde{X}[k], \tilde{X}(k)$	Discrete Fourier series (DFS) of $\tilde{x}[n]$
X(z)	z-transform of $x[n]$
$S_x(f)$	Power spectral density of $x(t)$ in lin-
	ear frequency
$S_x(j\omega)$	Power spectral density of $x(t)$ in an-
	gular frequency

6 Probability and stochastic processes

$E\left[\cdot ight]$	Statistical expectation
$E_u\left[\cdot\right]$	Statistical expectation with respect
	to u
var(x)	Variance of the random variable x
$\operatorname{erfc}(\cdot)$	Complementary error function
P(A)	Probability of the event or set A
$p(\cdot)$	Probability density function
$p(x \mid A)$	Conditional probability density func-
	tion
$a \sim P$	Random variable a with distribution
	P
$\mathcal{N}(\mu,\sigma^2)$ $\mathcal{C}\mathcal{N}(\mu,\sigma^2)$	Gaussian distribution of a random
	variable with mean μ and variance σ^2
$\mathcal{CN}(\mu,\sigma^2)$	Complex Gaussian distribution of a
	random variable with mean μ and
	variance σ^2
$\mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$	Gaussian distribution of a vector ran-
	dom variable with mean μ and co-
	variance matrix Σ
$\mathcal{CN}(oldsymbol{\mu},oldsymbol{\Sigma})$	Complex Gaussian distribution of a
	vector random variable with mean μ
	and covariance matrix Σ
$\mathcal{U}(a,b)$	Uniform distribution from a to b

7 General notations

 $a \wedge b$ Logical AND of a and b $a \lor b$ Logical OR of a and bLogical negation of a $\neg a$ Э There exists ∄ There does not exist ∃! There exist an unique Α For all Such that Therefore Logical equivalence ≜ Equal by definition # Not equal Infinity ∞ Absolute value of a|a|Base-10 logarithm or decimal logalog rithm lnNatual logarithm $\text{Re}\left\{x\right\}$ Real part of x $\operatorname{Im}\left\{ x\right\}$ Imaginary part of x $\lceil \cdot \rceil$ Ceiling operation $\lfloor \cdot \rfloor$ Floor operation ∠. phase (complex argument) $x \mod y$ Remainder, i.e., x - y|x/y| ${\rm frac}\,(x)$ Fractional part, i.e., $x \mod 1$

8 Abbreviations

 $\begin{array}{ccc} \text{wrt.} & \text{With respect to} \\ \text{st.} & \text{Subject to} \\ \text{iff.} & \text{If and only if} \\ \text{EVD} & \text{Eigenvalue decomposition, or eigendecomposition} \\ \text{SVD} & \text{Singular value decomposition} \\ \text{CP} & \text{CANDECOMP/PARAFAC} \end{array}$