Advanced topics on Algorithms

Luciano Gualà www.mat.uniroma2.it/~guala/

Parameterized algorithms Episode IV

Toolbox (to show a problem is FPT)

bounded-search trees

treewidth

Lower bounds

tools and theory of the parameterized intractability

What kind of negative results we can prove?

- Can we show that a problem (e.g., k-Clique) is not FPT?
- Can we show that a problem (e.g., k-Vertex Cover) does not have an algorithm running in time $2^{o(k)}n^{O(1)}$?

obs: we have to assume $P \neq NP$ (if P = NP, k-Clique can be solved in polynomial time, and hence is FPT)

idea: develop a theory that provides evidence that a parameterized problem is hard (e.g., not FPT)

Parameterized complexity

To build a complexity theory for parameterized problems, we need two ingredients:

- An appropriate notion of reduction
- An appropriate (hardness) hypothesis

obs: Polynomial-time reductions are not good for our purposes

Example: G has an Independent Set of size k iff has a Vertex Cover of size n-k

NP-complete

NP-complete

Complexity:

no n^{o(k)}-time algorithm is known a $O(2^k n^{O(1)})$ algorithm exists

Parameterized reduction

Parameterized reduction from problem P to problem Q: a function ϕ mapping an instance (x,k) of P into an instance $(x',k')=\phi(x,k)$ of Q, such that

- (x,k) is a YES-instance of P iff (x',k') is a YES-instance of Q;
- (x',k') can be computed in time $f(k)n^{O(1)}$;
- $k' \le g(k)$ for some function g.

Note: if Q is FPT then P is also FPT.

Equivalently: if P is not FPT then Q is not FPT.

Non-example: from Independent Set to Vertex Cover

$$(G,k) \longrightarrow (G,n-k)$$

Example: from Independent Set to Clique

$$(G,k) \longrightarrow (\overline{G},k)$$

Multicolored Clique

Input:

- a graph G=(V,E), vertices are colored with k colors
- a nonnegative integer k

question:

is there a clique of size k containing one vertex for each color

parameter: k

Theorem

There is a parameterized reduction form Clique to Multicolored Clique. proof

- for each vertex v of G, G' has k vertices $v_1,...v_k$, one for each color
- if u and v are adjacent in G, connect all copies of u with all copies of v

G has a k-clique

G' has a multicolored k-clique

Similarly: reduction from k-Clique to multicolored k-Independent Set

k-Dominating Set

Input:

- a graph G=(V,E)
- a nonnegative integer k

question:

is there a set U of vertices of size $|U| \le k$ such that each $v \in V \setminus U$ is adjacent to a vertex $u \in U$

parameter: k

Theorem

There is a parameterized reduction form Multicolored Independent Set to Dominating Set.

proof

- G' has all vertices of G plus vertices x_i , y_i , for each color i
- for each edge (u,v) in G with $u \in V_i$ and $v \in V_j$, add a vertex w_e to G' adjacent to every vertex of $(V_i \cup V_i) \setminus \{u,v\}$

Claim: a k-DS must choose a vertex from each V_i and such vertices must form and independent set in G.

Theorem

There is a parameterized reduction form Multicolored Independent Set to Dominating Set.

proof

- G' has all vertices of G plus vertices x_i , y_i , for each color i
- for each edge (u,v) in G with $u \in V_i$ and $v \in V_j$, add a vertex w_e to G' adjacent to every vertex of $(V_i \cup V_i) \setminus \{u,v\}$

Claim: a k-DS must choose a vertex from each V_i and such vertices must form and independent set in G.

Hard problems

Hundreds of parameterized problems are known to be at least as hard as Clique:

- Independent Set
- Dominating Set (even in bipartite graphs)
- Set Cover
- Hitting Set
- Connected Dominating Set
- Partial Vertex Cover (parameterized by the size of the cover)

- ...

We believe that none of these problems are FPT

Basic Hypotesis

It seems we have to assume something stronger that $P \neq NP$ Let's choose a basic hypothesis:

Engineers' Hypothesis

k-Clique cannot be solved in time f(k) $n^{O(1)}$.

Theorists' Hypothesis

k-Step Halting Problem (is there a path of a give Nondeterministic Turing Machine that stops in k steps?) cannot be solved in time f(k) $n^{O(1)}$.

Exponential Time Hypothesis (ETH)

n-variable 3-SAT cannot be solved in time $2^{o(n)}$.

which hypothesis is most plausible?

Some observations

- k-Clique and k-Step Halting problem can be reduced to each other
 - Engineers' Hypothesis and Theorists' Hypothesis are equivalent!
- k-Clique and k-Step Halting problem can be reduced to k-Dominating Set
- Is there a parameterized reduction from k-Dominating Set to k-Clique?
- Probably not. Unlike in NP-completeness, where most problems are equivalent, here we have a hierarchy of hard problems.
 - Independent Set is W[1]-complete
 - Dominating Set is W[2]-complete
- Does not matter if we only care about whether a problem is FPT or not!

a Boolean circuit consists of input gates, negation gates, AND gates, OR gates, and a single output gate

Circuit Satisfiability

Given a Boolean circuit C, decide if there is an assignment on the inputs of C making the output true

weight of an assignment: number of true variables

Weighted Circuit Satisfiability

Given a Boolean circuit ${\color{red} c}$ and an integer ${\color{red} k}$, decide if there is an assignment of weight ${\color{red} k}$ making the output true

Both k-Independent Set and k-Dominating Set can be reduced to Weighted Circuit Satisfiability

k-Independent Set

k-Dominating Set

idea: DS is harder than IS because we need a more complicated circuit

depth of a circuit: the maximum length of an input-output path a gate is large if it has more than 2 inputs

weft of a circuit: the maximum number of large gates in an input-output path

k-Independent Set

k-Dominating Set

The W-hierarchy

Let C[t; d] be the set of all circuits having weft at most t and depth at most d

Definition

A problem P is in the class W[t] if there is a constant d and a parameterized reduction from P to Weighted Circuit Satisfiability of C[t;d]

Independent Set is in W[1] and Dominating Set is in W[2]

fact: Independent Set is W[1]-complete

fact: Dominating Set is W[2]-complete

a problem is complete for a given class if every other problem in the class can be reduced to it

a reduction from DS to IS would imply W[1]=W[2]

ETH and some cool consequences

Exponential Time Hypothesis (ETH)

There is no $2^{o(n)}$ -time algorithm for n-variable 3-SAT

Note: current best algorithm is 1.30704ⁿ [Hertli 2011].

Note: an n-variable 3-SAT formula can have $\Omega(n^3)$ clauses.

Sparsification lemma [Impagliazzo, Paturi, Zane 2001]

There is no $2^{o(n)}$ -time algorithm for n-variable 3-SAT

There is no $2^{o(m)}$ -time algorithm for m-clause 3-SAT

Transferring lower bounds: an example

Exponential Time Hypothesis (ETH)

There is no $2^{o(m)}$ -time algorithm for m-clause 3-SAT

The textbook reduction from 3-SAT to 3-Coloring:

3-SAT formula F n variables m clauses

a graph G O(n+m) vertices O(n+m) edges

Transferring lower bounds: an example

Exponential Time Hypothesis (ETH)

There is no $2^{o(m)}$ -time algorithm for m-clause 3-SAT

The textbook reduction from 3-SAT to 3-Coloring:

3-SAT formula F n variables m clauses

a graph G O(m) vertices O(m) edges

Corollary

Assuming ETH, there is no $2^{o(n)}$ -time algorithm for 3-coloring on an n-vertex graph

Transferring lower bounds

There are many similar reductions from 3-SAT to other graph problems.

Consequence:

Assuming ETH, there is no $2^{o(n)}$ -time algorithm on an n-vertex graph for:

- Independent Set
- Clique
- Dominating Set
- Vertex Cover
- Longest Path
- ...

Transferring lower bounds

There are many similar reductions from 3-SAT to other graph problems.

Consequence on the f(k) game:

Consequence:

Assuming ETH, there is no $2^{o(k)}n^{O(1)}$ time algorithm on an n-vertex graph for:

```
    k-Independent Set
```

- k-Clique
- k-Dominating Set
- k-Vertex Cover 7 roughly tights since they
- k-Path

can be solved in time

 $20(k)_{n}O(1)$

Engineers' Hypothesis

k-Clique cannot be solved in time f(k) $n^{O(1)}$.

Theorists' Hypothesis

k-Step Halting Problem (is there a path of a give Nondeterministic Turing Machine that stops in k steps?) cannot be solved in time f(k) $n^{O(1)}$.

Exponential Time Hypothesis (ETH)

n-variable 3-SAT cannot be solved in time $2^{o(n)}$.

Assuming ETH we can prove that k-Clique is not FPT.

Indeed, we can prove a much stronger and interesting result:

Theorem [Chen et al. 2004]

k-Clique cannot be solved in time f(k) $n^{o(k)}$ for any computable function f

proof

assume you can find a k-clique on a graph H in time $f(k) |V(H)|^{k/s(k)}$, s(k): (positive) nondecreasing unbounded function

we show you can find a 3-coloring of G in $2^{o(n)}$ time (contradicting ETH)

technical assumption:

$$f(k) \ge \max\{k, k^{k/s(1)}\} \qquad \text{otherwise set } f'(k) = \max\{f(k), k, k^{k/s(1)}\}$$

partition the n vertices of G into k groups of at most $\lceil n/k \rceil$ vertices each

build H as follows:

- each vertex corresponds to a proper 3-coloring of one of the groups
- two vertices of H are connected iff the corresponding colorings are compatible

$$|V(H)| \le k 3^{\lceil n/k \rceil}$$

Claim: there is a k-clique in H iff G admits a proper 3-coloring now, we suitably choose k...

for a given n, let k be the largest integer such that $f(k) \le n$ k:=g(n) nondecreasing unbounded function on n (satisfying g(n) \le n)

time to compute a 3-coloring of G:

$$\begin{split} f(k) \; |V(H)|^{k/s(k)} & \leq \; f(k) \Big[k \; 3^{\lceil n/k \rceil} \Big]^{k/s(k)} & \text{using } f(k) \leq n \\ & \leq \; \; n \; \Big[k \; 3^{\lceil n/k \rceil} \Big]^{k/s(k)} & \text{using } k = g(n) \leq n \\ & \leq \; \; n \; \Big[k \; 3^{2n/k} \Big]^{k/s(k)} & \text{using } s(k) \; \text{nondecreasing} \\ & \leq \; \; n \; k^{k/s(1)} \; 3^{2n/s(k)} & \text{using } k^{k/s(1)} \leq f(k) \leq n \\ & \leq \; \; n^2 \; 3^{2n/s(g(n))} & \text{function } s(g(n)) \; \text{is} \\ & = \; \; 2^{o(n)} & \text{nondecreasing \& unbounded} \end{split}$$

Strong ETH

k-Dominating Set

Input:

- a graph G=(V,E)
- a nonnegative integer k

question:

is there a set U of vertices of size $|U| \le k$ such that each $v \in V \setminus U$ is adjacent to a vertex $u \in U$

parameter: k

naive: n^{k+1}

n^{k/10}?

smarter: nk+o(1)

n^{k-1} ?

assuming ETH: no f(k) no(k)

Exponential Time Hypothesis (ETH)

There is no $2^{o(n)}$ -time algorithm for n-variable 3-SAT

Note: current best algorithm is 1.30704ⁿ [Hertli 2011].

Strong ETH (SETH)

There is no $(2-\epsilon)^n$ -time algorithm for CNF-SAT

```
for any fixed k, a n^{k-0.01} time algorithm for k-DS would violate SETH
```

```
assuming SETH:
```

no $n^{2.99}$ time algorithm for 3-DS

no $n^{3.99}$ time algorithm for 4-DS

no $n^{4.99}$ time algorithm for 5-DS

•••