

Nanjing University

ACM-ICPC Codebook 2

Number Theory Linear Algebra Combinatorics

2 CONTENTS

Contents

1	Nun	nber Theory	4								
	1.1	Modulo operations	4								
		1.1.1 Modular exponentiation (fast power-mod)	4								
		1.1.2 Mathematical modulo operation	4								
		1.1.3 Modular multiplication on long long	4								
	1.2	Extended Euclidian algorithm	5								
		1.2.1 Modular multiplicative inverse	5								
	1.3										
	1.4	Sieve	7								
		1.4.1 of Eratosthenes	7								
		1.4.2 of Euler	7								
	1.5	Integer factorization (Pollard's rho algorithm)	8								
	1.6	Number theoretic transform	9								
	1.7	Fast Walsh-Hadamard transform	11								
	1.8	Pell's equation	12								
2	Line	ear Algebra	13								
	2.1	6	13								
	2.2	Linear basis	14								
			14								
3		Combinatorics									
	3.1	Möbius inversion	14								
	3.2	Permutations									
	3.3	Pólya enumeration theorem	16								
4	App	endix	17								
	4.1	Prime table	17								
		4.1.1 First primes	17								
		4.1.2 Arbitrary length primes	17								
		$4.1.3 \sim 1 \times 10^9 \dots$	18								
		$4.1.4 \sim 1 \times 10^{18}$	18								

CONTENTS

3

1 Number Theory

1.1 Modulo operations

1.1.1 Modular exponentiation (fast power-mod)

Calculate $b^e \mod m$.

Time complexity: $O(\log e)$

```
LL powmod(LL b, unsigned long long e, LL m){
1
2
       LL r = 1;
       while (e){
3
            if (e \& 1) r = r * b % m;
4
            b = b * b % m;
5
            e >>= 1;
6
7
8
       return r;
9
   }
```

1.1.2 Mathematical modulo operation

The result has the same sign as divisor.

```
inline LL mathmod(LL a, LL b){
   return (a % b + b) % b;
}
```

1.1.3 Modular multiplication on long long

Calculate $ab \mod m$, where a, b, m are long long integers.

 \triangle a, b, m must be non-negative.

Time complexity: $O(\log b)$

```
LL mulmod(LL a, LL b, LL m){
    LL r = 0;
    a %= m; b %= m;

while(b) {
    if(b & 1) r += a, r %= m;
    b >>= 1;
    if(a < m - a)</pre>
```

```
8
                 a <<= 1;
9
             else
                 a -= (m - a);
10
11
12
        return r;
    }
13
14
15
    LL mulmod(LL a, LL b) {
16
      LL tmp = (a * b - (LL)((long double)a/p*b + le-8)*p);
17
      return tmp < 0 ? tmp + p : tmp;</pre>
    }
18
```

1.2 Extended Euclidian algorithm

```
Solve ax + by = g = \gcd(a, b) w.r.t. x, y.
```

If (x_0, y_0) is an integer solution of $ax + by = g = \gcd(x, y)$, then every integer solution of it can be written as $(x_0 + kb', y_0 - ka')$, where a' = a/g, b' = b/g, and k is arbitrary integer.

 \triangle x and y must be positive.

Usage:

```
exgcd(a, b, g, x, y) Find a special solution to ax+by=g=\gcd(a,b).
```

Time complexity: $O(\log \min\{a, b\})$

```
void exgcd(int a, int b, int &g, int &x, int &y){
   if (!b) g = a, x = 1, y = 0;
   else {
       exgcd(b, a % b, g, y, x),
       y -= x * (a / b);
   }
}
```

1.2.1 Modular multiplicative inverse

An integer a has modular multiplicative inverse w.r.t. the modulus m, iff gcd(a, m) = 1. Assume the inverse is x, then

```
ax \equiv 1 \mod m.
```

Call exgcd(a, m, g, x, y), if g = 1, x + km is the modular multiplicative inverse of a w.r.t. the modulus m.

```
inline LL minv(LL a, LL m){
LL g, x, y;
exgcd(a, m, g, x, y);
return (x % m + m) % m;
}
```

Or, by Fermat's little theorem $(a^{p-1} \equiv 1 \mod p)$, when m = p is a prime, the multiplicative inverse can also be written as $a^{-1} = (a^{p-2} \mod p)$.

Also, the inverses of first n numbers can be precalculated in O(n) time.

```
LL inv[100005];
LL mod;

void init(){
   inv[1] = 1;
   for (int i = 2; i < n; i++)
        inv[i] = (mod - mod / i) * inv[mod % i] % mod;
}</pre>
```

1.3 Primality test (Miller-Rabin)

Test whether n is a prime.

 \triangle When n exceeds the range of int, the mul-mod and pow-mod operations should be rewritten.

Requirement:

1.1.1 Modular exponentiation (fast power-mod)

Time complexity: $O(\log n)$

```
bool test(LL n){
    if (n < 3) return n==2;
    // ! The array a[] should be modified if the range of x changes.

const LL a[] = {2LL, 7LL, 61LL, LLONG_MAX};

LL r = 0, d = n-1, x;

while (~d & 1) d >>= 1, r++;
```

```
for (int i=0; a[i] < n; i++){</pre>
 7
             x = powmod(a[i], d, n);
 8
             if (x == 1 | | x == n-1) goto next;
 9
             rep (i, r) {
10
                 x = (x * x) % n;
11
                 if (x == n-1) goto next;
12
13
14
             return false;
15
    next:;
16
         }
         return true;
17
18
    }
```

1.4 Sieve

1.4.1 of Eratosthenes

Usage:

```
sieve() Generate the table.

p[i] True if i is not a prime; otherwise false.
```

Time complexity: Approximately linear.

```
const int MAXX = 1e7+5;
bool p[MAXX];

void sieve(){
    p[0] = p[1] = 1;
    for (int i = 2; i*i < MAXX; i++) if (!p[i])
        for (int j = i*i; j < MAXX; j+=i) p[j] = true;
}</pre>
```

1.4.2 of Euler

Usage:

```
sieve() Generate the table.

p[i] True if i is not a prime; otherwise false.

prime[i] The ith prime number.
```

Time complexity: Linear.

```
const int MAXX = 1e7+5;
bool p[MAXX];
```

```
int prime[MAXX], sz;
3
4
    void sieve(){
5
        p[0] = p[1] = 1;
6
7
        for (int i = 2; i < MAXX; i++){
             if (!p[i]) prime[sz++] = i;
8
             for (int j = 0; j < sz && i*prime[j] < MAXX; j++){</pre>
9
                 p[i*prime[j]] = 1;
10
11
                 if (i % prime[j] == 0) break;
12
             }
        }
13
14
    }
```

This technique can also be used to compute multiplicative functions. For example, the following program computes the Euler's totient function.

```
const int MAXX = 1e7+5;
1
    int phi[MAXX];
 2
    int prime[MAXX], sz;
 3
 4
    void sieve(){
5
        phi[1] = 1;
 6
7
        for (int i = 2; i < MAXX; i++){</pre>
             if (!phi[i]) phi[i] = i-1, prime[sz++] = i;
8
             for (int j = 0; j < sz && i*prime[j] < MAXX; j++){</pre>
9
                 if (i % prime[j] == 0) {
10
                     phi[i*prime[j]] = phi[i]*prime[j];
11
12
                     break;
13
14
                 phi[i*prime[j]] = phi[i]*(prime[j] - 1);
             }
15
        }
16
    }
17
```

1.5 Integer factorization (Pollard's rho algorithm)

Find a nontrivial factor of a composite integer. One can recursively call this procedure to complete the factorization, by divide and conquer.

Time complexity: Believed to be $O(n^{1/4})$ in expectation.

```
ULL gcd(ULL a, ULL b) {return b ? gcd(b, a % b) : a;}

ULL PollardRho(ULL n){
    ULL c, x, y, d = n;
    if (~n&1) return 2;
```

```
6
        while (d == n){
7
            x = y = 2;
            d = 1;
8
            c = rand() % (n - 1) + 1;
9
            while (d == 1){
10
                 x = (mulmod(x, x, n) + c) \% n;
11
                 y = (mulmod(y, y, n) + c) % n;
12
                 y = (mulmod(y, y, n) + c) % n;
13
14
                 d = gcd(x-y>0 ? x-y : y-x, n);
15
            }
16
        return d;
17
18
```

1.6 Number theoretic transform

 \triangle The size of the sequence must be some power of 2.

 \triangle When performing convolution, the size of the sequence should be doubled. To compute k, one may call 32- builtin clz(a+b-1), where a and b are the lengths of two sequences.

Usage:

```
NTT(k) Initialize the structure with maximum sequence length 2^k.

ntt(a) Perform number theoretic transform on sequence a.

intt(a) Perform inverse number theoretic transform on sequence a.

conv(a, b) Convolve sequence a with b.
```

Time complexity: $O(n \log n)$.

```
const int NMAX = 1 << 21;
 1
 2
    /*
    prime
 3
           rr
                kk
                    gg
 4
    3
        1
             1
                 2
 5
    5
        1
             2
                 2
 6
    17
        1
             4
                 3
 7
    97 3
             5
                 5
                 5
 8
    193 3
             6
    257 1
             8
                 3
 9
                 9
    7681
             15
                     17
10
    12289
             3
                 12
                     11
11
    40961
             5
                 13
                     3
12
    65537
                     3
             1
                 16
13
                 18 10
14
    786433 3
                 19
                     3
15
    5767169 11
                     3
    7340033 7
                 20
16
                 11
                    21
                        3
17
    23068673
```

```
18
    104857601
                25
                    22
                        3
                        3
19
    167772161
                5
                     25
                     26
                        3
20
    469762049
                7
    1004535809 479 21
                        3
21
22
    2013265921
                15 27
                        31
23
    2281701377
                17
                    27
                         3
24
    3221225473 3
                    30
                         5
25
    75161927681 35
                    31
                        3
26
    77309411329 9
                    33
                        7
27
    206158430209
                     3
                         36
                            22
    2061584302081
                    15
                        37
                             7
28
29
    2748779069441
                     5
                         39
                             3
                     3
                            5
30
    6597069766657
                         41
                         42
                            5
31
    39582418599937 9
                         43
                            5
32
    79164837199873 9
                             7
33
    263882790666241 15
                        44
    1231453023109121
                         35
                            45
                                3
34
35
    1337006139375617
                         19
                             46
                                 3
    3799912185593857
                         27
                             47
                                 5
36
    4222124650659841
                         15
                             48
                                 19
37
38
    7881299347898369
                         7
                             50
                                6
39
    31525197391593473
                         7
                             52
                                 3
40
    180143985094819841 5
                             55
                                 6
    1945555039024054273 27
                                 5
41
                             56
42
    4179340454199820289 29 57
                                3
    */
43
44
    // 998244353 = 7*17*2^23+1, G = 3
    const int P = 1004535809, G = 3; // = 479*2^21+1
45
46
47
    struct NTT{
48
        int rev[NMAX];
        LL omega[NMAX], oinv[NMAX];
49
        int g, g_inv; // g: g_n = G^{((P-1)/n)}
50
        int K, N;
51
52
53
        LL powmod(LL b, LL e){
54
            LL r = 1;
            while (e){
55
                if (e\&1) r = r * b % P;
56
                b = b * b % P;
57
58
                e >>= 1;
59
60
            return r;
        }
61
62
        NTT(int k){
63
            K = k; N = 1 << k;
64
```

65

66

67

68

69 70

71 72

73

74

75 76

77

78

79 80

81 82

83

84 85

86

87

88 89

90

91

92 93

94 95

96

97 98

99

100

101 102

```
g = powmod(G, (P-1)/N);
        g inv = powmod(g, N-1);
        omega[0] = oinv[0] = 1;
        rep (i, N){
            rev[i] = (rev[i>1]>>1) | ((i&1)<<(K-1));
                omega[i] = omega[i-1] * g % P;
                oinv[i] = oinv[i-1] * g inv % P;
            }
        }
    }
    void ntt(LL* a, LL* w){
        rep (i, N) if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
        for (int 1 = 2; 1 <= N; 1 *= 2){
            int m = 1/2;
            for (LL* p = a; p != a + N; p += 1)
                rep (k, m){
                    LL t = w[N/1*k] * p[k+m] % P;
                    p[k+m] = (p[k] - t + P) \% P;
                    p[k] = (p[k] + t) \% P;
                }
        }
    }
    void ntt(LL* a){_ntt(a, omega);}
    void intt(LL* a){
        LL inv = powmod(N, P-2);
        _ntt(a, oinv);
        rep (i, N) a[i] = a[i] * inv % P;
    }
    void conv(LL* a, LL* b){
        ntt(a); ntt(b);
        rep (i, N) a[i] = a[i] * b[i] % P;
        intt(a);
    }
};
```

1.7 Fast Walsh-Hadamard transform

This is to compute

$$C[i] = \sum_{i=j \oplus k} A[j] \cdot B[k],$$

where \oplus is a binary bitwise operation.

Time complexity: $O(n \log n)$.

```
void fwt(int* a, int n){
 1
 2
        for (int d = 1; d < n; d <<= 1)
            for (int i = 0; i < n; i += d << 1)
 3
                 rep (j, d){
 4
 5
                     int x = a[i+j], y = a[i+j+d];
                     // a[i+j] = x+y, a[i+j+d] = x-y;
                                                           // xor
 6
 7
                     // a[i+j] = x+y;
                                                           // and
 8
                     // a[i+j+d] = x+y;
                                                           // or
                 }
 9
    }
10
11
    void ifwt(int* a, int n){
12
        for (int d = 1; d < n; d <<= 1)
13
            for (int i = 0; i < n; i += d << 1)
14
                 rep (j, d){
15
                     int x = a[i+j], y = a[i+j+d];
16
                     // a[i+j] = (x+y)/2, a[i+j+d] = (x-y)/2;
                                                                   // xor
17
                     // a[i+j] = x-y;
                                                                   // and
18
19
                     // a[i+j+d] = y-x;
                                                                   // or
20
                 }
21
    }
22
    void conv(int* a, int* b, int n){
23
24
        fwt(a, n);
25
        fwt(b, n);
26
        rep(i, n) a[i] *= b[i];
27
        ifwt(a, n);
28
    }
```

1.8 Pell's equation

 $x^2 - ny^2 = 1$, where n is a positive nonsquare integer.

Let (x_0, y_0) be the smallest positive solution of the equation, then the k-th solution is:

$$\begin{pmatrix} x_k \\ y_k \end{pmatrix} = \begin{pmatrix} x_1 & ny_1 \\ y_1 & x_1 \end{pmatrix}^k \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

2 Linear Algebra

2.1 Modular exponentiation of matrices

Calculate $b^e \mod modular$, where b is a matrix. The modulus is element-wise.

Usage:

```
n Order of matrices.

modular The divisor in modulo operations.

m_powmod(b, e) Calculate b^e \mod modular. The result is stored in r.
```

Time complexity: $O(n^3 \log e)$

```
const int MAXN = 105;
1
 2
    const LL modular = 1000000007;
 3
    int n; // order of matrices
4
5
    struct matrix{
        LL m[MAXN][MAXN];
6
7
        void operator *=(matrix& a){
8
            static LL t[MAXN][MAXN];
            Rep (i, n){
10
                 Rep (j, n){
11
                     t[i][j] = 0;
12
13
                     Rep (k, n){
                         t[i][j] += (m[i][k] * a.m[k][j]) % modular;
14
15
                         t[i][j] %= modular;
16
                     }
17
                 }
18
            memcpy(m, t, sizeof(t));
19
20
        }
21
    };
22
23
    matrix r;
24
    void m powmod(matrix& b, LL e){
        memset(r.m, 0, sizeof(r.m));
25
        Rep(i, n)
26
            r.m[i][i] = 1;
27
28
        while (e){
            if (e & 1) r *= b;
29
30
            b *= b;
            e >>= 1;
31
32
        }
33
    }
```

14 2.2 Linear basis

2.2 Linear basis

Compute the basis over \mathbb{F}_2 field.

Usage:

insert(v) Insert the vector. Return whether the vector is independent of the existing vectors.

Time complexity: O(d) per operation.

```
const int MAXD = 30;
1
    struct linearbasis {
 2
        ULL b[MAXD] = \{\};
 3
4
5
         bool insert(ll v) {
             for (int j = MAXD - 1; j >= 0; j--) {
6
                 if (!(v & (1ll << j))) continue;</pre>
7
8
                 if (b[i]) v ^= b[i]
9
                 else {
                      for (int k = 0; k < j; k++)
10
                          if (v & (111 << k)) v ^= b[k];
11
                      for (int k = j + 1; k < MAXD; k++)
12
                          if (b[k] & (111 << j)) b[k] ^= v;</pre>
13
14
                      b[i] = v;
                      return true;
15
                 }
16
17
             return false;
18
19
        }
20
    };
```

3 Combinatorics

3.1 Möbius inversion

Möbius function:

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } p_i{}^{a_i} \mid n \text{ where } a_i > 0 \\ (-1)^r & \text{if } n \text{ is the product of } r \text{ distinct primes} \end{cases}$$

If
$$S_f(n) = \sum_{d|n} f(d)$$
, then $f(n) = \sum_{d|n} \mu(d) S_f(n/d)$.

3 COMBINATORICS 15

3.2 Permutations

This provides operations of permutations of 0 to n-1.

Usage:

```
a*b Compute the composition of permutations a and b.

~a Compute the inverse permutation of a.

permutation(a) Factorize the permutation to disjoint cycles.
```

Time complexity: O(n)

```
typedef vector<int> perm;
1
 2
 3
    perm operator * (const perm lhs, const perm rhs){
        int sz;
 4
        assert((sz = lhs.size()) == rhs.size());
 5
 6
        perm res; res.resize(sz);
 7
        for (int i=0; i<sz; i++){</pre>
 8
             res[i] = rhs[lhs[i]];
9
10
        return res;
    }
11
12
13
    perm operator ~ (const perm lhs){
        int sz = lhs.size();
14
        perm res; res.resize(sz);
15
        for (int i=0; i<sz; i++){</pre>
16
             res[lhs[i]] = i;
17
18
19
        return res;
20
    }
21
22
    struct permutation{
23
        int size;
        vector<vector<int>> orbits;
24
25
        permutation(perm p){
26
27
             size = p.size();
             vector<bool> visited(size);
28
             for (int i=0; i<size; i++){</pre>
29
                 if (visited[i]) continue;
30
                 int cur = i;
31
                 vector<int> orbit;
32
                 while (!visited[cur]){
33
                     visited[cur] = true;
34
35
                     orbit.push_back(cur);
                     cur = p[cur];
36
                 }
37
```

```
38 | orbits.push_back(move(orbit));
39 | }
40 | }
41 |};
```

3.3 Pólya enumeration theorem

The Burnside's lemma says that

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

where G is a group acting on X, X^g is the set of elements in X that are fixed by g, i.e. $X^g = \{x \in X : gx = x\}.$

The unweighted version of Pólya enumeration theorem says that

$$|Y^X/G| = \frac{1}{|G|} \sum_{g \in G} m^{c_g}$$

where m=|X| is the number of colors, c_g is the number of the cycles of permutation g.

4 APPENDIX 17

4 Appendix

4.1 Prime table

4.1.1 First primes

p	g(p)								
2	1	3	2	5	2	7	3	11	2
13	2	17	3	19	2	23	5	29	2
31	3	37	2	41	6	43	3	47	5
53	2	59	2	61	2	67	2	71	7
73	5	79	3	83	2	89	3	97	5
101	2	103	5	107	2	109	6	113	3
127	3	131	2	137	3	139	2	149	2
151	6	157	5	163	2	167	5	173	2
179	2	181	2	191	19	193	5	197	2
199	3	211	2	223	3	227	2	229	6

4.1.2 Arbitrary length primes

$\lg p$	p	g(p)	p	g(p)
3	967	5	1031	14
4	9859	2	10273	10
5	96331	10	102931	3
6	958543	6	1031137	5
7	9594539	2	10169651	2
8	96243449	3	103211039	7
9	980483981	2	1042484357	2
10	9858935453	2	10261276009	7
11	95748666809	3	101759940101	2
12	950781833849	3	1012797784423	5
13	9739822952371	7	10037217092377	7
14	96181051140397	5	104974966380359	11
15	981030138360889	13	1029038416465403	2
16	9655206098080843	3	10116299875820773	2
17	97687777921994419	3	101506415998163437	2

18 4.1 Prime table

4.1.3 $\sim 1 \times 10^9$

p	g(p)	p	g(p)	p	g(p)
954854573	3	967607731	2	973215833	3
975831713	3	978949117	2	980766497	3
983879921	3	985918807	3	986608921	29
991136977	5	991752599	13	997137961	11
1003911991	3	1009775293	2	1012423549	6
1021000537	5	1023976897	7	1024153643	2
1037027287	3	1038812881	11	1044754639	3
1045125617	3	1047411427	3	1047753349	6

4.1.4 $\sim 1 \times 10^{18}$

p	g(p)	p	g(p)
951970612352230049	3	963284339889659609	3
967495386904694119	3	969751761517096213	2
983238274281901499	2	984647442475101409	23
989286107138674069	11	1002507954383424641	3
1006658951440146419	2	1020152326159075903	3
1034876265966119449	7	1042753851435034019	2
1043609016597371563	2	1045571042176595707	2
1048364250160580293	2	1049495624119026949	2