习题三

切尔诺夫界 (两题)

- 3.1 数值随机算法计算数值 a 的精度可以表示为置信区间 $\Pr[x \in [a-\delta, a-\delta]] > 1-\gamma$ 。试利用切尔诺夫界为第 2 章计算 π 的数值随机算法之一建立置信区间,使得我们可以根据置信水平和置信区间估计所需随机实验的次数。
- 3.2 QuickSort 排序过程可以视为算法的递归调用过程,因此整个算法的执行过程可以视为一棵递归调用树,算法的每次调用对应树中的一个结点,结点间的边表示直接嵌套的调用关系。在每次调用 QuickSort 时,首先从当前数据子集(记其大小为 s)中随机选择划分元素将当前子集划分为两个子集合;如果划分得到的两个子集的大小均不超过 2s/3,则称递归调用树中相应节点为 好结点,否则称之为 坏结点。(a)证明:在任意从树根到叶子的路径上,好结点的数量不超过 c₁log₂n,其中 c₁ 是一个常数;
 - (b)证明:任意从树根到叶子的路径上所含结点的数量不超过 $c_2\log_2 n$ 的概率至少为 $1-1/n^2$,其中 c_2 是一个常数;
 - (c) 从树根到叶子的最长路径上所含结点的数量不超过 $c_2\log_2 n$ 的概率至少为 1-1/n, 其中 c_2 是(b)中的常数;
 - (d)利用 a,b,c 的结论,证明: QuickSort 在 $O(n\log n)$ 时间内排序 n 个数据对象的概率至少为 1-1/n。

鞅(两题)

- 3.3 设 $X_0=0$,而 $X_{j+1}(j\geq 0)$ 是从[X_j , 1]均匀随机抽取的值,令 $Y_k=2^k(1-X_k)$ 。证明: 序列 $Y_0,Y_1,...$ 是一个鞅。
- 3.4 利用本章所学内容,分析如下随机排序算法的时间复杂性。

输入: n 个不同的值 $x_1, x_2, ..., x_n$

输出: $x_1, x_2, ..., x_n$ 排序后的结果

步骤: 1. 从 $x_1,x_2,...,x_n$ 均匀随机抽取 y_1

- 2. For k=2 To n
- 3. 从 $\{x_1,...,x_n\}\setminus\{y_1,y_2,...,y_{k-1}\}$ 中均匀随机抽取 y_k ;
- 4. If $y_k < y_{k-1}$ Then goto 1;
- 5. 输出 *y*₁,*y*₂,...,*y*_n;