- Sabkha Dolomite as an Archive for the Magnesium Isotope
- 2 Composition of Seawater
- 4 Supplementary Information
- 6 Netta Shalev¹, Tomaso R.R. Bontognali¹²³, and Derek Vance¹
- 8 ¹Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich,
- 9 Clausiusstrasse 25, 8092 Zürich, Switzerland; netta.shalev@erdw.ethz.ch
- ² Space Exploration Institute, Fbg de l'Hopital 68, 2002 Neuchâtel, Switzerland
- ³Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, Basel,
- 12 Switzerland

5

7

13

SUPPLEMENTARY INFORMATION

Mg Isotope Measurements

XRD analyses were done using a Bruker AXS D8 Advance Diffractometer. There was no further preparation of the pore-water samples, except for the Mg column chemistry described below. Concentrations were measured on a Thermo Scientific Element XR ICP-MS. Mg was purified using 0.5M and 2.0M HCl on Bio-Rad AG® 50W-X12 (200–400 mesh) resin in 30 ml Savillex Microcolumns. A yield of close to 100% and a total matrix element/Mg ratio of <0.05 were measured for each sample. Magnesium isotope ratios were measured on a Thermo Scientific Neptune MC-ICP-MS using a standard-sample bracketing method. The δ^{26} Mg values are reported relative to DSM3. Results of pure Mg solutions and natural reference materials are identical within error to the values reported in the literature (Suppl. Table 2; e.g., Foster et al., 2010; Ling et al., 2011; An and Huang, 2014, Shalev et al., 2018a). The δ^{25} Mg versus δ^{26} Mg results determined in this study plot on a single line with a slope of 0.512 (Suppl. Figure 1), suggesting no major influence of isobaric interferences on the measured Mg isotope ratios.

Supplementary Fig. 1

Supplementary Figure 1. δ^{25} Mg versus δ^{26} Mg values of samples and reference materials measured in this study. Data from Supplementary Tables 2-4. Grey – reference materials; Blue – pore water samples from DFS; Yellow – sediment samples from DFS. Error bars are 2SD of each result. The data are in accordance with a regression line (dotted) that crosses close to the origin and has a slope of 0.512, typical of mass dependent fractionation of terrestrial material.

Supplementary Fig. 2

Supplementary Figure 2. Reconstructed $\delta^{26} \text{Mg}$ values of seawater as calculated from DFS dolomites. Colors: DFn1 – green; DF $_{BM}$ – orange; True seawater – blue line. An isotope fractionation of -1.67‰ (for 32°C, in equation 1; Li et al., 2015) was used. Boxes indicate the results within the 2SD on the $\delta^{26} \text{Mg}$ of the dolomite. Error bars show the further uncertainty results from the uncertainty on the temperature (±6°C).

45 Supplementary Tables

Supplementary Table 1: Core sampling sites location

Core	Latitude	Longitude
DFn1	25°38'13.4"N	50°57'31.9"E
DFn3	25°37'31.5"N	50°57'39.2"E
$\mathrm{DF}_{\mathrm{BM}}$	25°38'05.4"N	50°57'35.3"E

Supplementary Table 2: Mg isotope results of reference materials processed through the same Mg separation and instrumental procedures as the samples.

Material and replicate ^a	δ ²⁶ Mg (‰)	2SD (‰)	δ^{25} Mg (‰)	2SD (‰)	n
DSM3					
Pure Mg passed through column	0.00	0.06	0.01	0.04	4
Cambridge-1					
A	-2.60	0.21	-1.37	0.20	3
В	-2.59	0.08	-1.37	0.13	4
C	-2.52	0.08	-1.28	0.08	3
D	-2.54	0.05	-1.31	0.02	4
E	-2.61	0.18	-1.32	0.22	4
F	-2.58	0.09	-1.33	0.11	4
G	-2.60	0.21	-1.31	0.22	4
Н	-2.71	0.11	-1.37	0.02	4
I	-2.68	0.07	-1.39	0.02	3
Pure Mg passed through column	-2.59	0.10	-1.35	0.12	4
Average	-2.60	0.11	-1.34	0.07	10
Literature ^b	-2.61	0.05	-1.34	0.04	
<u>Seawater</u>					
A	-0.82	0.06	-0.41	0.03	4
В	-0.79	0.13	-0.43	0.13	4
C	-0.79	0.06	-0.41	0.09	4
D	-0.79	0.05	-0.40	0.05	4
E	-0.83	0.14	-0.42	0.18	4
F	-0.81	0.08	-0.43	0.14	8
G	-0.90	0.08	-0.44	0.02	4
Н	-0.88	0.11	-0.49	0.03	4
Average	-0.83	0.09	-0.43	0.06	8
Literature ^c	-0.83	0.09	-0.43	0.06	90
Jdo-1 Dolomite					
A	-2.28	0.06	-1.19	0.05	4
В	-2.34	0.09	-1.22	0.09	4
Literature ^d	-2.35	0.15	-1.23	0.09	11
CRM-512 dolomite					
A	-1.86	0.09	-0.92	0.11	4
В	-1.93	0.02	-1.01	0.02	4
Literature ^d	-2.03	0.17	-1.05	0.09	6
<u>DSW-1</u>					
Dead Sea brine	-0.50	0.08	-0.24	0.10	4
Literature ^d	-0.58	0.12	-0.30	0.07	8

^a Different column chemistry replicates are indicated by A-H, except for replicates A-I of the pure Mg Cambridge-1, which include the MC-ICP-MS measurements only; ^b An and Huang (2014), Shalev et al. (2018a); ^c Ling et al. (2011); ^d Shalev et al. (2018).

Supplementary Table 3: Major cations concentrations and Mg isotope results of pore water from DFS.

			Major o		Mg isotopes						
Location	Sampl. date	Depth	Na	Mg	K	Ca	$\delta^{26} Mg$	2SD	δ^{25} Mg	2SD	n
		cm	mM	mM	mM	mM	‰	‰	‰	‰	
Seawatera			460	55	11	11	-0.83	0.09	-0.43	0.06	8
Lagoon water	Mar-16	0	847	103	17	22	-0.83	0.04	-0.44	0.02	4
Lagoon water	Nov-17	0	731	86	15	18					
DFn1	Mar-16	5	4021	373	64	27					
DFn1	Mar-16	10	n.a.	382	67	25	-0.68	0.03	-0.37	0.01	4
DFn1	Mar-16	15	4051	377	64	28					
DFn1	Mar-16	20	4120	385	62	26	-0.68	0.07	-0.37	0.02	4
DFn1 ^b							-0.71	0.06	-0.39	0.01	4
DFn1	Mar-16	25	n.a.	386	69	24					
DFn1	Mar-16	30	3847	363	63	26	-0.64	0.07	-0.30	0.07	2
DFn1	Mar-16	35	n.a.	396	71	23					
DFn1	Mar-16	40	n.a.	392	69	23	-0.70	0.04	-0.38	0.01	4
DFn1	Mar-16	45	4138	378	62	26					
DFn1	Nov-16	8	4498	396	70	29					
DFn1	Nov-16	23	4392	388	72	28					
DFn1	Nov-16	33	4345	386	71	28					
DFn1	Nov-16	43	4159	366	70	30					
DFn1	Feb-17	10	3942	359	65	24					
DFn1	Feb-17	20	4137	380	68	24					
DFn1	Feb-17	30	4239	384	66	24					
DFn1 ^b	Feb-17	30	4323	394	68	24					
DFn1	Feb-17	40	4054	365	66	26	-0.65	0.01	-0.35	0.01	4
DFn1	Feb-17	50	3862	339	64	29	-0.59	0.04	-0.29	0.01	4
DFn1	Feb-17	60	3792	347	61	27	-0.69	0.13	-0.35	0.13	4
DF _{BM}	Nov-17	9	3384	529	79	15	-0.69	0.04	-0.36	0.02	4
$\mathrm{DF}_{\mathrm{BM}}$	Nov-17	19	3533	477	81	20	-0.58	0.04	-0.31	0.02	4
$\mathrm{DF}_{\mathrm{BM}}{}^{\mathrm{b}}$							-0.60	0.06	-0.36	0.01	3
DF _{BM}	Nov-17	29	3439	434	81	26	-0.47	0.05	-0.26	0.02	4
DF _{BM}	Nov-17	39	3308	394	73	31	-0.39	0.03	-0.22	0.02	4
DF _{BM}	Nov-17	49	3328	366	78	41	-0.23	0.05	-0.13	0.01	3
DF _{BM}	Nov-17	59	3479	359	80	50	-0.14	0.07	-0.08	0.02	3
$\mathrm{DF}_{\mathrm{BM}}{}^{\mathrm{b}}$	Nov-17	59	3348	351	74	52					
DFn3 (inside	Nov. 17	2	000	117	10	24					
mat) DFn3	Nov-17 Nov-17	2 8	988 2849	117 332	18 53	24 25	-0.69	0.07	-0.35	0.02	4
							-0.09	0.07	-0.33	0.02	4
DFn3 ^b	Nov-17	8	2785	328	53	24	0.63	0.00	0.00	0.01	
DFn3	Nov-17	18	2862	316	56	27	-0.63	0.08	-0.30	0.04	4
DFn3	Nov-17	28	2772	298	53	30	-0.49	0.04	-0.27	0.02	4
DFn3	Nov-17	38	2790	292	51	33	-0.48	0.05	-0.23	0.05	4
DFn3	Nov-17 d; ^a Seawater co	48	2588	271	52	34	-0.36	0.06	-0.19	0.01	4

n.a. not analyzed; ^a Seawater concentration data from Riley & Chester (1971); isotope data from current study; ^b Replicate.

Supplementary Table 4: Mineralogy and Mg isotope composition of sediments from DFS. Dol – dolomite, Ara – aragonite, Cal – calcite, Gyp – gypsum, Hal – halite, Q – quartz.

Mineralogy						Mg isotopes						
Location	Depth	Dol	Ara	Cal	Gyp	Hal ^a	Q	$\delta^{26}Mg$	2SD	$\delta^{25}Mg$	2SD	n
	cm	wt%	wt%	wt%	wt%	wt%	wt%	‰	‰	‰	‰	
DFn1	17	0	0	0	93	7	0					
$DFn1^b$	17	0	0	10	90	0	0					
DFn1	30	48	0	0	21	30	0	-2.56	0.13	-1.27	0.03	4
DFn1	33	78	0	0	9	12	0	-2.53	0.09	-1.28	0.10	4
DFn1	37	80	0	0	6	14	0	-2.40	0.06	-1.25	0.02	4
DFn1	43	68	0	0	8	18	6	-2.33	0.06	-1.21	0.01	4
DFn1	48	83	4	0	0	11	3	-2.39	0.04	-1.25	0.08	4
DFn1 ^b	48	79	6	0	0	16	0					
DFn1c	48	80	0	0	0	20	0					
$\mathrm{DF}_{\mathrm{BM}}$	10	0	0	16	47	37	0					
$\mathrm{DF}_{\mathrm{BM}}$	20	22	0	8	36	33	0	-1.46	0.06	-0.76	0.01	4
$\mathrm{DF}_{\mathrm{BM}}$	30	37	0	4	0	53	6	-2.03	0.10	-1.05	0.04	4
$\mathrm{DF}_{\mathrm{BM}}$	40	21	3	5	0	67	4	-2.05	0.06	-1.05	0.04	4
$\mathrm{DF}_{\mathrm{BM}}$	50	34	10	6	0	45	5	-2.21	0.04	-1.12	0.03	4
$\mathrm{DF}_{\mathrm{BM}}$	60	33	17	7	0	42	0	-2.10	0.11	-1.09	0.06	4
$DF_{BM}{}^{b} \\$	60	35	17	0	0	48	0					
DFn3	14	0	71	0	0	29	0					
DFn3	34	0	73	0	0	27	0					

^a Halite might be an artifact of the pore water evaporation that occurs in the laboratory.

^b Duplicate.

^c Replicate.

60

Supplementary References

65

84

An, Y., and Huang, F., 2014, A review of Mg isotope analytical methods by MC-ICP-MS: 66 Journal of Earth Science, v. 25, p. 822–840, doi: 10.1007/s12583-014-0477-8. 67 68 Foster, G.L., Pogge Von Strandmann, P.A.E., and Rae, J.W.B., 2010, Boron and magnesium isotopic composition of seawater: Geochemistry, Geophysics, Geosystems, v. 11, p. 69 1-10, doi: 10.1029/2010GC003201. 70 Li, W., Beard, B.L., Li, C., Xu, H., and Johnson, C.M., 2015, Experimental calibration of Mg 71 72 isotope fractionation between dolomite and aqueous solution and its geological 73 implications: Geochimica et Cosmochimica Acta, v. 157, p. 164–181, doi: 10.1016/j.gca.2015.02.024. 74 75 Ling, M.X., Sedaghatpour, F., Teng, F.Z., Hays, P.D., Strauss, J., and Sun, W., 2011, 76 Homogeneous magnesium isotopic composition of seawater: An excellent geostandard for Mg isotope analysis: Rapid Communications in Mass Spectrometry, 77 v. 25, p. 2828–2836, doi: 10.1002/rcm.5172. 78 79 Riley, J., and Chester, R., 1971, Introduction to marine chemistry: New York, Academic. Shalev, N., Farkaš, J., Fietzke, J., Novák, M., Schuessler, J.A., Pogge von Strandmann, 80 P.A.E., and Törber, P.B., 2018, Mg Isotope Interlaboratory Comparison of Reference 81 Materials from Earth-Surface Low-Temperature Environments: Geostandards and 82 Geoanalytical Research, v. 42, p. 205–221, doi: 10.1111/ggr.12208. 83