

## Tetrakis(5,7-dimethylquinolin-8-olato- $\kappa^2 N,O$ )zirconium(IV) dimethylformamide disolvate

Maryke Steyn,\* Hendrik G. Visser and Andreas Roodt

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa

Correspondence e-mail: steynm@ufs.ac.za

Received 20 September 2012; accepted 8 October 2012

Key indicators: single-crystal X-ray study;  $T = 100\text{ K}$ ; mean  $\sigma(\text{C}-\text{C}) = 0.005\text{ \AA}$ ; disorder in solvent or counterion;  $R$  factor = 0.041;  $wR$  factor = 0.099; data-to-parameter ratio = 16.6.

In the title compound,  $[\text{Zr}(\text{C}_{11}\text{H}_{10}\text{NO})_4] \cdot 2\text{C}_3\text{H}_7\text{NO}$ , the  $\text{Zr}^{IV}$  ion is coordinated by four bidentate 5,7-dimethylquinolin-8-olate ligands in a slightly distorted square-antiprismatic coordination environment. The asymmetric unit also contains two  $N,N'$ -dimethylformamide (DMF) solvent molecules. In the crystal, a weak  $\text{C}-\text{H} \cdots \text{O}$  hydrogen bond links the complex molecule to a solvent molecule and weak  $\pi-\pi$  stacking interactions [centroid–centroid distance = 3.671 (3)  $\text{\AA}$ ] also occur. One of the DMF solvent molecules was refined as disordered over three sets of sites, with refined occupancies in the ratio of 0.391 (9):0.342 (10):0.267 (7).

### Related literature

For  $N,O$ - and  $O,O'$ -bidentate ligand complexes of zirconium and hafnium, see: Calderazzo *et al.* (1998); Demakopoulos *et al.* (1995); Steyn *et al.* (2008, 2011); Viljoen *et al.* (2008, 2009a,b; 2010a,b); Zherikova *et al.* (2005, 2006, 2008). For our ongoing research of structure reactivity relationships in catalysis, separation chemistry and other industrial reaction mechanisms, see: Roodt *et al.* (2011); Schutte *et al.* (2011); Brink *et al.* (2010); Ferreira *et al.* (2007); Haumann *et al.* (2004).



### Experimental

#### Crystal data

$[\text{Zr}(\text{C}_{11}\text{H}_{10}\text{NO})_4] \cdot 2\text{C}_3\text{H}_7\text{NO}$

$M_r = 926.21$

Orthorhombic,  $Pna2_1$

$a = 15.572 (5)\text{ \AA}$

$b = 18.706 (5)\text{ \AA}$

$c = 15.853 (5)\text{ \AA}$

$V = 4618 (2)\text{ \AA}^3$

$Z = 4$

Mo  $K\alpha$  radiation

$\mu = 0.29\text{ mm}^{-1}$

$T = 100\text{ K}$

$0.26 \times 0.14 \times 0.13\text{ mm}$

#### Data collection

Bruker APEXII CCD diffractometer

Absorption correction: multi-scan (*SADABS*; Bruker, 2004)

$T_{\min} = 0.928$ ,  $T_{\max} = 0.963$

61276 measured reflections

11142 independent reflections

8497 reflections with  $I > 2\sigma(I)$

$R_{\text{int}} = 0.064$

#### Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$

$wR(F^2) = 0.099$

$S = 1.02$

11142 reflections

671 parameters

299 restraints

H-atom parameters constrained

$\Delta\rho_{\max} = 0.42\text{ e \AA}^{-3}$

$\Delta\rho_{\min} = -0.39\text{ e \AA}^{-3}$

Absolute structure: Flack (1983),

5375 Friedel pairs

Flack parameter: -0.01 (3)

**Table 1**  
Hydrogen-bond geometry ( $\text{\AA}$ ,  $^\circ$ ).

| $D-\text{H} \cdots A$                                                     | $D-\text{H}$ | $\text{H} \cdots A$ | $D \cdots A$ | $D-\text{H} \cdots A$ |
|---------------------------------------------------------------------------|--------------|---------------------|--------------|-----------------------|
| C14A—H14E $\cdots$ O201 <sup>i</sup>                                      | 0.96         | 2.43                | 3.358 (7)    | 161                   |
| Symmetry code: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, z - \frac{1}{2}$ . |              |                     |              |                       |

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, as well as the New Metals Development Network (NMDN) and the South African Nuclear Energy Corporation Limited (Necsa), is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5537).

## References

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brink, A., Roodt, A., Steyl, G. & Visser, H. G. (2010). *Dalton Trans.* **39**, 5572–5578.
- Bruker (2004). *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). *APEX2*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calderazzo, F., Englert, U., Maichle-Mossmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strähle, J. & Triepel, G. (1998). *Inorg. Chim. Acta*, **270**, 177–188.
- Demakopoulos, I., Klouras, N., Raptopoulou, C. P. & Terzis, A. (1995). *Z. Anorg. Allg. Chem.* **621**, 1761–1766.
- Farrugia, L. J. (1999). *J. Appl. Cryst.* **32**, 837–838.
- Ferreira, A. C., Crous, R., Bennie, L., Meij, A. M. M., Blann, K., Bezuidenhoudt, B. C. B., Young, D. A., Green, M. J. & Roodt, A. (2007). *Angew. Chem. Int. Ed.* **46**, 2273–2275.
- Flack, H. D. (1983). *Acta Cryst. A* **39**, 876–881.
- Haumann, M., Meijboom, R., Moss, J. R. & Roodt, A. (2004). *Dalton Trans.* pp. 1679–1686.
- Roodt, A., Visser, H. G. & Brink, A. (2011). *Crystallogr. Rev.* **17**, 241–280.
- Schutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). *Inorg. Chem.* **50**, 12486–12498.
- Sheldrick, G. M. (2008). *Acta Cryst. A* **64**, 112–122.
- Steyn, M., Roodt, A. & Steyl, G. (2008). *Acta Cryst. E* **64**, m827.
- Steyn, M., Visser, H. G., Roodt, A. & Muller, T. J. (2011). *Acta Cryst. E* **67**, m1240–m1241.
- Viljoen, J. A., Muller, A. & Roodt, A. (2008). *Acta Cryst. E* **64**, m838–m839.
- Viljoen, J. A., Visser, H. G. & Roodt, A. (2010a). *Acta Cryst. E* **66**, m603–m604.
- Viljoen, J. A., Visser, H. G. & Roodt, A. (2010b). *Acta Cryst. E* **66**, m1053–m1054.
- Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). *Acta Cryst. E* **65**, m1514–m1515.
- Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). *Acta Cryst. E* **65**, m1367–m1368.
- Zherikova, K. V., Baidina, I. A., Morozova, N. B., Kurateva, N. V. & Igumenov, I. K. (2008). *J. Struct. Chem.* **49**, 1098–1103.
- Zherikova, K. V., Morozova, N. B., Baidina, I. A., Peresypkina, E. V. & Igumenov, I. K. (2006). *J. Struct. Chem.* **47**, 570–574.
- Zherikova, K. V., Morozova, N. B., Kurateva, N. V., Baidina, I. A., Stabnikov, P. A. & Igumenov, I. K. (2005). *J. Struct. Chem.* **46**, 1039–1046.

# supplementary materials

*Acta Cryst.* (2012). E68, m1344–m1345 [doi:10.1107/S1600536812042092]

## Tetrakis(5,7-dimethylquinolin-8-olato- $\kappa^2N,O$ )zirconium(IV) dimethylformamide disolvate

Maryke Steyn, Hendrik G. Visser and Andreas Roodt

### Comment

This study forms part of our ongoing research of structure reactivity relationships in catalysis, separation chemistry and other industrial reaction mechanisms including radio pharmacy (Roodt *et al.* 2011; Schutte *et al.* 2011; Brink *et al.* 2010; Ferreira *et al.* 2007; Haumann *et al.* 2004; Steyn *et al.* 2008, 2011; Viljoen *et al.* 2008, 2009a,b, 2010a,b).

The asymmetric unit of the title compound,  $[Zr(C_{10}H_{11}NO)_4] \cdot 2C_3H_7NO$ , with  $C_{10}H_{11}NO$  (diMeOx) = 5,7-Dimethyl-8-quinolinol, consists of a  $Zr^{IV}$  ion coordinated to four bidentate ligands (diMeOx), as well as two  $N,N'$ -dimethylformamide (DMF) solvent molecules. In the complex molecule (Fig. 1) the  $Zr^{IV}$  ion lies at the centre of an approximate square antiprismatic coordination polyhedron of the  $N,O$ -coordination ligand atoms, with a small distortion towards dodecahedral geometry. The  $Zr—N$  and  $Zr—O$  bond distances range from 2.094 (2) to 2.117 (2) Å and 2.398 (2) to 2.438 (2) Å, respectively. The  $N—Zr—O$  bite angles range from 69.70 (8)° to 70.55 (8)°.

In the crystal, a weak C—H···O hydrogen bond connects the complex molecule to a solvent molecule (Table 1). In addition, weak  $\pi—\pi$  interactions exist between the pyridine rings of the diMeOx ligand and symmetry related molecules (1 -  $x$ , 1 -  $y$ , 1/2 +  $z$ ), with interplanar and centroid-to-centroid distances of 3.433 (4) Å and 3.671 (3) Å, respectively (Figure 2).

### Experimental

Chemicals were purchased from Sigma-Aldrich and used as received.  $ZrCl_4$  (101.3 mg, 0.435 mmol) and 5,7-Dimethyl-8-quinolinol (diMeOxH) (228.2 mg, 1.317 mmol) was separately dissolved in DMF (2.5 ml ea) and heated to 60°C. The diMeOxH solution was added drop-wise to the zirconium solution and stirred at 333 K for 30 minutes. The reaction solution was removed from heating, covered and left to stand. Red cuboid crystals, suitable for single X-Ray diffraction, formed after 10 days. (Yield: 203 mg, 79%).

### Refinement

H atoms were placed in idealized positions ( $C—H = 0.93$ –0.96 Å) and constrained to ride on their parent atoms with  $U_{iso}(H) = 1.2$ –1.5  $U_{eq}(C)$ . The highest residual electron density was located 0.95 Å from O102. One of the DMF solvent molecules was refined as disordered over three sets of sites with refined occupancies in a ratio of 0.391 (9):0.342 (10):0.267 (7).

### Computing details

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for

publication: *WinGX* (Farrugia, 1999).



**Figure 1**

The molecular structure of the Zr complex of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms and the solvent molecules are omitted for clarity.

**Figure 2**

Part of the crystal structure with weak  $\pi-\pi$  interactions shown as dashed lines.

### Tetrakis(5,7-dimethylquinolin-8-olato- $\kappa^2N,O$ )zirconium(IV) dimethylformamide disolvate

#### Crystal data



$M_r = 926.21$

Orthorhombic,  $Pna2_1$

Hall symbol: P 2c -2n

$a = 15.572 (5)$  Å

$b = 18.706 (5)$  Å

$c = 15.853 (5)$  Å

$V = 4618 (2)$  Å<sup>3</sup>

$Z = 4$

$F(000) = 1936$

$D_x = 1.332$  Mg m<sup>-3</sup>

Mo  $K\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 9914 reflections

$\theta = 2.6\text{--}24.6^\circ$

$\mu = 0.29$  mm<sup>-1</sup>

$T = 100$  K

Cuboid, red

$0.26 \times 0.14 \times 0.13$  mm

#### Data collection

Bruker APEXII CCD

diffractometer

Radiation source: sealed tube

Graphite monochromator

$\varphi$  and  $\omega$  scans

Absorption correction: multi-scan  
(SADABS; Bruker, 2004)

$T_{\min} = 0.928$ ,  $T_{\max} = 0.963$

61276 measured reflections

11142 independent reflections

8497 reflections with  $I > 2\sigma(I)$

$R_{\text{int}} = 0.064$

$\theta_{\max} = 28^\circ$ ,  $\theta_{\min} = 2.1^\circ$

$h = -20 \rightarrow 20$

$k = -22 \rightarrow 24$

$l = -20 \rightarrow 20$

#### Refinement

Refinement on  $F^2$

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.041$

$wR(F^2) = 0.099$

$S = 1.02$

11142 reflections

671 parameters

299 restraints

Primary atom site location: structure-invariant  
direct methods

Secondary atom site location: difference Fourier  
map

Hydrogen site location: inferred from neighbouring sites  
 H-atom parameters constrained  
 $w = 1/[\sigma^2(F_o^2) + (0.0485P)^2 + 0.3005P]$   
 where  $P = (F_o^2 + 2F_c^2)/3$   
 $(\Delta/\sigma)_{\text{max}} = 0.002$

$\Delta\rho_{\text{max}} = 0.42 \text{ e } \text{\AA}^{-3}$   
 $\Delta\rho_{\text{min}} = -0.39 \text{ e } \text{\AA}^{-3}$   
 Absolute structure: Flack (1983), 5375 Friedel pairs  
 Flack parameter: -0.01 (3)

### Special details

**Geometry.** All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted  $R$ -factor  $wR$  and goodness of fit  $S$  are based on  $F^2$ , conventional  $R$ -factors  $R$  are based on  $F$ , with  $F$  set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating  $R$ -factors(gt) etc. and is not relevant to the choice of reflections for refinement.  $R$ -factors based on  $F^2$  are statistically about twice as large as those based on  $F$ , and  $R$ -factors based on ALL data will be even larger.

### Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\text{\AA}^2$ )

|      | $x$           | $y$           | $z$          | $U_{\text{iso}}^*/U_{\text{eq}}$ | Occ. (<1) |
|------|---------------|---------------|--------------|----------------------------------|-----------|
| Zr01 | 0.966490 (14) | 0.144904 (13) | 0.35471 (2)  | 0.02304 (7)                      |           |
| N102 | 0.96042 (15)  | 0.03648 (14)  | 0.43981 (17) | 0.0262 (6)                       |           |
| O101 | 0.89103 (13)  | 0.17184 (11)  | 0.46024 (13) | 0.0297 (5)                       |           |
| O104 | 1.02836 (11)  | 0.19244 (11)  | 0.24980 (13) | 0.0271 (5)                       |           |
| N104 | 0.87759 (15)  | 0.23775 (13)  | 0.29748 (17) | 0.0262 (6)                       |           |
| O103 | 0.85773 (12)  | 0.09319 (11)  | 0.30675 (14) | 0.0279 (5)                       |           |
| N101 | 1.01720 (16)  | 0.25663 (13)  | 0.41574 (17) | 0.0294 (6)                       |           |
| N103 | 1.01035 (15)  | 0.04558 (13)  | 0.26899 (16) | 0.0251 (6)                       |           |
| O102 | 1.08748 (12)  | 0.12297 (11)  | 0.40715 (14) | 0.0271 (5)                       |           |
| C116 | 1.1890 (2)    | 0.04673 (17)  | 0.4780 (2)   | 0.0326 (7)                       |           |
| C128 | 0.79960 (18)  | 0.25709 (16)  | 0.3227 (2)   | 0.0295 (7)                       |           |
| H128 | 0.7761        | 0.2349        | 0.3698       | 0.035*                           |           |
| C110 | 0.8931 (2)    | -0.00201 (18) | 0.4599 (2)   | 0.0339 (8)                       |           |
| H110 | 0.8392        | 0.0135        | 0.4427       | 0.041*                           |           |
| C122 | 0.95422 (19)  | -0.05997 (17) | 0.1978 (2)   | 0.0260 (7)                       |           |
| C107 | 0.8621 (2)    | 0.23826 (18)  | 0.5857 (2)   | 0.0352 (8)                       |           |
| C125 | 0.79013 (19)  | -0.00990 (18) | 0.2458 (2)   | 0.0363 (8)                       |           |
| C121 | 1.03962 (19)  | -0.07799 (19) | 0.1757 (2)   | 0.0320 (8)                       |           |
| H121 | 1.0504        | -0.1193       | 0.1448       | 0.038*                           |           |
| C118 | 1.03964 (18)  | 0.01552 (17)  | 0.46759 (19) | 0.0247 (6)                       |           |
| C111 | 0.8992 (2)    | -0.0659 (2)   | 0.5063 (2)   | 0.0423 (9)                       |           |
| H111 | 0.8502        | -0.0922       | 0.519        | 0.051*                           |           |
| C109 | 0.97617 (19)  | 0.27293 (17)  | 0.4900 (2)   | 0.0291 (7)                       |           |
| C120 | 1.1060 (2)    | -0.03520 (18) | 0.1995 (2)   | 0.0352 (8)                       |           |
| H120 | 1.1621        | -0.0464       | 0.1841       | 0.042*                           |           |
| C114 | 1.1373 (2)    | -0.06654 (18) | 0.5408 (2)   | 0.0332 (8)                       |           |
| C117 | 1.10771 (19)  | 0.06285 (17)  | 0.4490 (2)   | 0.0278 (7)                       |           |
| C129 | 0.75120 (19)  | 0.30983 (17)  | 0.2808 (2)   | 0.0348 (8)                       |           |
| H129 | 0.6965        | 0.3216        | 0.2997       | 0.042*                           |           |
| C119 | 1.0886 (2)    | 0.02635 (18)  | 0.2479 (2)   | 0.0307 (7)                       |           |
| H119 | 1.1344        | 0.0545        | 0.2657       | 0.037*                           |           |

|      |              |               |            |             |
|------|--------------|---------------|------------|-------------|
| C134 | 1.03493 (19) | 0.27832 (19)  | 0.1369 (2) | 0.0355 (8)  |
| C127 | 0.94307 (19) | 0.00394 (16)  | 0.2438 (2) | 0.0251 (7)  |
| C135 | 0.9944 (2)   | 0.24636 (17)  | 0.2046 (2) | 0.0270 (7)  |
| C131 | 0.8681 (2)   | 0.32476 (19)  | 0.1829 (2) | 0.0343 (7)  |
| C112 | 0.9788 (2)   | -0.0889 (2)   | 0.5328 (2) | 0.0389 (9)  |
| H112 | 0.9837       | -0.1313       | 0.563      | 0.047*      |
| C115 | 1.2008 (2)   | -0.01833 (18) | 0.5218 (2) | 0.0381 (8)  |
| H115 | 1.2562       | -0.0294       | 0.5391     | 0.046*      |
| C101 | 1.0838 (2)   | 0.29617 (16)  | 0.3917 (2) | 0.0341 (8)  |
| H101 | 1.1107       | 0.2859        | 0.3407     | 0.041*      |
| C113 | 1.0527 (2)   | -0.04862 (17) | 0.5143 (2) | 0.0296 (7)  |
| C102 | 1.1149 (2)   | 0.35297 (18)  | 0.4411 (3) | 0.0429 (9)  |
| H102 | 1.1621       | 0.3794        | 0.4231     | 0.051*      |
| C104 | 1.0026 (2)   | 0.32912 (19)  | 0.5431 (3) | 0.0400 (9)  |
| C136 | 0.91150 (19) | 0.27068 (17)  | 0.2282 (2) | 0.0294 (7)  |
| C14B | 1.1235 (2)   | 0.2566 (2)    | 0.1106 (2) | 0.0412 (9)  |
| H14A | 1.165        | 0.2818        | 0.1441     | 0.062*      |
| H14B | 1.1318       | 0.268         | 0.0521     | 0.062*      |
| H14C | 1.1304       | 0.2061        | 0.1187     | 0.062*      |
| C133 | 0.9898 (3)   | 0.3325 (2)    | 0.0928 (3) | 0.0465 (10) |
| H133 | 1.0169       | 0.3534        | 0.0467     | 0.056*      |
| C126 | 0.86090 (18) | 0.03010 (16)  | 0.2668 (2) | 0.0272 (7)  |
| C12A | 1.1540 (2)   | -0.13471 (18) | 0.5890 (2) | 0.0427 (9)  |
| H12A | 1.2146       | -0.1402       | 0.5978     | 0.064*      |
| H12B | 1.1327       | -0.1747       | 0.5572     | 0.064*      |
| H12C | 1.1252       | -0.1327       | 0.6425     | 0.064*      |
| C124 | 0.8028 (2)   | -0.07534 (18) | 0.2024 (2) | 0.0428 (9)  |
| H124 | 0.7545       | -0.1024       | 0.1897     | 0.051*      |
| C108 | 0.9078 (2)   | 0.22615 (17)  | 0.5113 (2) | 0.0302 (7)  |
| C103 | 1.0751 (2)   | 0.36913 (19)  | 0.5161 (3) | 0.0460 (10) |
| H103 | 1.0957       | 0.4064        | 0.5492     | 0.055*      |
| C13A | 0.8899 (2)   | -0.17105 (18) | 0.1312 (3) | 0.0425 (9)  |
| H13A | 0.8342       | -0.1914       | 0.1216     | 0.064*      |
| H13B | 0.924        | -0.2035       | 0.164      | 0.064*      |
| H13C | 0.9176       | -0.1625       | 0.078      | 0.064*      |
| C106 | 0.8905 (2)   | 0.2956 (2)    | 0.6375 (2) | 0.0469 (10) |
| H106 | 0.8612       | 0.303         | 0.6878     | 0.056*      |
| C11B | 0.7879 (2)   | 0.1918 (2)    | 0.6073 (2) | 0.0416 (9)  |
| H11A | 0.7388       | 0.206         | 0.5747     | 0.062*      |
| H11B | 0.775        | 0.1966        | 0.6663     | 0.062*      |
| H11C | 0.8018       | 0.143         | 0.595      | 0.062*      |
| C105 | 0.9568 (3)   | 0.3407 (2)    | 0.6200 (3) | 0.0506 (12) |
| C13B | 0.7013 (2)   | 0.0169 (2)    | 0.2666 (3) | 0.0574 (12) |
| H13D | 0.6854       | 0.001         | 0.322      | 0.086*      |
| H13E | 0.6611       | -0.0014       | 0.2261     | 0.086*      |
| H13F | 0.7008       | 0.0682        | 0.2649     | 0.086*      |
| C12B | 1.2621 (2)   | 0.09893 (19)  | 0.4674 (3) | 0.0428 (9)  |
| H12D | 1.2882       | 0.092         | 0.4131     | 0.064*      |
| H12E | 1.304        | 0.091         | 0.5108     | 0.064*      |

|      |             |               |             |                      |
|------|-------------|---------------|-------------|----------------------|
| H12F | 1.2406      | 0.1469        | 0.4714      | 0.064*               |
| C14A | 0.8651 (3)  | 0.4165 (3)    | 0.0639 (3)  | 0.0684 (14)          |
| H14D | 0.9045      | 0.4356        | 0.0231      | 0.103*               |
| H14E | 0.848       | 0.4536        | 0.1022      | 0.103*               |
| H14F | 0.8154      | 0.398         | 0.0356      | 0.103*               |
| C130 | 0.7850 (2)  | 0.34339 (18)  | 0.2126 (2)  | 0.0377 (8)           |
| H130 | 0.7536      | 0.3787        | 0.1852      | 0.045*               |
| C123 | 0.8805 (2)  | -0.10150 (17) | 0.1781 (2)  | 0.0328 (8)           |
| C132 | 0.9089 (3)  | 0.3563 (2)    | 0.1132 (3)  | 0.0496 (10)          |
| C11A | 0.9852 (3)  | 0.3981 (3)    | 0.6804 (3)  | 0.0790 (17)          |
| H11D | 0.976       | 0.4442        | 0.6553      | 0.119*               |
| H11E | 1.0451      | 0.3922        | 0.6929      | 0.119*               |
| H11F | 0.9525      | 0.3946        | 0.7316      | 0.119*               |
| N201 | 0.5982 (2)  | 0.0128 (2)    | 0.8446 (3)  | 0.0738 (11)          |
| C202 | 0.5442 (3)  | -0.0454 (3)   | 0.8137 (3)  | 0.0685 (13)          |
| H20A | 0.5562      | -0.0537       | 0.7551      | 0.103*               |
| H20B | 0.4848      | -0.0326       | 0.8202      | 0.103*               |
| H20C | 0.5559      | -0.088        | 0.8453      | 0.103*               |
| C203 | 0.5743 (5)  | 0.0405 (5)    | 0.9247 (5)  | 0.144 (3)            |
| H20D | 0.6092      | 0.0813        | 0.9377      | 0.216*               |
| H20E | 0.5824      | 0.0045        | 0.9671      | 0.216*               |
| H20F | 0.515       | 0.0545        | 0.9235      | 0.216*               |
| C201 | 0.6631 (3)  | 0.0338 (3)    | 0.7986 (5)  | 0.0925 (18)          |
| H201 | 0.696       | 0.0695        | 0.8237      | 0.111*               |
| O201 | 0.6878 (2)  | 0.0165 (2)    | 0.7320 (3)  | 0.0958 (13)          |
| N31  | 0.372 (2)   | 0.2574 (12)   | 0.8644 (9)  | 0.142 (6) 0.342 (10) |
| C31A | 0.464 (2)   | 0.2579 (16)   | 0.8591 (10) | 0.141 (8) 0.342 (10) |
| H31A | 0.485       | 0.2097        | 0.8564      | 0.211* 0.342 (10)    |
| H31B | 0.4875      | 0.2811        | 0.908       | 0.211* 0.342 (10)    |
| H31C | 0.4815      | 0.2833        | 0.8093      | 0.211* 0.342 (10)    |
| C31B | 0.331 (2)   | 0.3202 (14)   | 0.8686 (13) | 0.158 (9) 0.342 (10) |
| H31D | 0.3721      | 0.3585        | 0.8649      | 0.237* 0.342 (10)    |
| H31E | 0.3009      | 0.3234        | 0.9212      | 0.237* 0.342 (10)    |
| H31F | 0.2911      | 0.3237        | 0.8228      | 0.237* 0.342 (10)    |
| C31C | 0.3383 (19) | 0.1890 (12)   | 0.8670 (13) | 0.151 (6) 0.342 (10) |
| H31J | 0.2808      | 0.1767        | 0.874       | 0.181* 0.342 (10)    |
| O31  | 0.4022 (14) | 0.1459 (8)    | 0.8578 (11) | 0.169 (7) 0.342 (10) |
| N32  | 0.5527 (18) | 0.2747 (12)   | 0.8555 (18) | 0.163 (8) 0.267 (7)  |
| C32B | 0.476 (2)   | 0.3148 (16)   | 0.848 (3)   | 0.171 (10) 0.267 (7) |
| H32A | 0.489       | 0.3627        | 0.8307      | 0.257* 0.267 (7)     |
| H32B | 0.4464      | 0.3157        | 0.9011      | 0.257* 0.267 (7)     |
| H32C | 0.4392      | 0.2929        | 0.8062      | 0.257* 0.267 (7)     |
| C32C | 0.546 (2)   | 0.2060 (11)   | 0.8783 (12) | 0.169 (10) 0.267 (7) |
| H32D | 0.4869      | 0.1931        | 0.8826      | 0.253* 0.267 (7)     |
| H32E | 0.5738      | 0.1992        | 0.932       | 0.253* 0.267 (7)     |
| H32F | 0.5738      | 0.1765        | 0.8368      | 0.253* 0.267 (7)     |
| C32A | 0.6322 (19) | 0.3019 (16)   | 0.841 (2)   | 0.198 (11) 0.267 (7) |
| H32J | 0.6379      | 0.3497        | 0.8257      | 0.238* 0.267 (7)     |
| O32  | 0.6989 (19) | 0.2633 (15)   | 0.8475 (15) | 0.237 (12) 0.267 (7) |

|      |             |             |             |           |           |
|------|-------------|-------------|-------------|-----------|-----------|
| N33  | 0.3685 (14) | 0.2750 (9)  | 0.8788 (12) | 0.127 (5) | 0.391 (9) |
| C33A | 0.4579 (15) | 0.2793 (11) | 0.8624 (16) | 0.112 (6) | 0.391 (9) |
| H33A | 0.4857      | 0.2372      | 0.8836      | 0.167*    | 0.391 (9) |
| H33B | 0.4811      | 0.3207      | 0.8899      | 0.167*    | 0.391 (9) |
| H33C | 0.4672      | 0.2829      | 0.8027      | 0.167*    | 0.391 (9) |
| C33C | 0.3514 (15) | 0.2052 (7)  | 0.9044 (9)  | 0.122 (6) | 0.391 (9) |
| H33D | 0.4044      | 0.1812      | 0.9166      | 0.183*    | 0.391 (9) |
| H33E | 0.3217      | 0.1803      | 0.8603      | 0.183*    | 0.391 (9) |
| H33F | 0.3163      | 0.2061      | 0.9542      | 0.183*    | 0.391 (9) |
| C33B | 0.3106 (17) | 0.3250 (11) | 0.8571 (17) | 0.130 (6) | 0.391 (9) |
| H33J | 0.3285      | 0.3643      | 0.8258      | 0.156*    | 0.391 (9) |
| O33  | 0.2314 (12) | 0.3201 (7)  | 0.8785 (8)  | 0.142 (6) | 0.391 (9) |

*Atomic displacement parameters ( $\text{\AA}^2$ )*

|      | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$      | $U^{23}$      |
|------|--------------|--------------|--------------|--------------|---------------|---------------|
| Zr01 | 0.01669 (11) | 0.02212 (12) | 0.03031 (13) | 0.00031 (10) | -0.00125 (16) | -0.00248 (17) |
| N102 | 0.0214 (13)  | 0.0287 (15)  | 0.0285 (15)  | 0.0003 (11)  | 0.0024 (11)   | -0.0051 (12)  |
| O101 | 0.0275 (11)  | 0.0256 (11)  | 0.0360 (13)  | 0.0039 (9)   | 0.0014 (9)    | -0.0050 (10)  |
| O104 | 0.0177 (10)  | 0.0272 (11)  | 0.0365 (12)  | -0.0001 (8)  | -0.0009 (9)   | -0.0015 (10)  |
| N104 | 0.0174 (11)  | 0.0264 (13)  | 0.0347 (15)  | 0.0011 (10)  | -0.0020 (10)  | -0.0047 (12)  |
| O103 | 0.0164 (9)   | 0.0280 (11)  | 0.0393 (12)  | 0.0005 (8)   | -0.0008 (9)   | -0.0068 (10)  |
| N101 | 0.0253 (13)  | 0.0243 (13)  | 0.0387 (16)  | 0.0033 (10)  | -0.0082 (11)  | -0.0033 (12)  |
| N103 | 0.0167 (12)  | 0.0252 (14)  | 0.0335 (15)  | 0.0006 (10)  | 0.0018 (11)   | -0.0004 (12)  |
| O102 | 0.0196 (10)  | 0.0249 (11)  | 0.0370 (12)  | 0.0015 (8)   | -0.0035 (9)   | -0.0004 (10)  |
| C116 | 0.0258 (16)  | 0.0304 (18)  | 0.0415 (19)  | 0.0009 (13)  | -0.0038 (14)  | 0.0018 (15)   |
| C128 | 0.0205 (14)  | 0.0276 (16)  | 0.0403 (17)  | 0.0005 (12)  | 0.0012 (12)   | -0.0038 (13)  |
| C110 | 0.0227 (16)  | 0.042 (2)    | 0.0371 (19)  | 0.0007 (14)  | 0.0033 (14)   | 0.0016 (16)   |
| C122 | 0.0219 (15)  | 0.0226 (16)  | 0.0334 (17)  | 0.0000 (12)  | -0.0004 (13)  | -0.0030 (14)  |
| C107 | 0.0315 (17)  | 0.041 (2)    | 0.0326 (18)  | 0.0204 (15)  | -0.0063 (14)  | -0.0057 (16)  |
| C125 | 0.0208 (15)  | 0.0357 (19)  | 0.052 (2)    | -0.0039 (13) | 0.0038 (14)   | -0.0126 (17)  |
| C121 | 0.0267 (17)  | 0.032 (2)    | 0.037 (2)    | 0.0015 (14)  | 0.0043 (14)   | -0.0106 (16)  |
| C118 | 0.0213 (15)  | 0.0269 (16)  | 0.0258 (16)  | 0.0031 (12)  | 0.0046 (13)   | -0.0007 (13)  |
| C111 | 0.0301 (18)  | 0.044 (2)    | 0.053 (2)    | -0.0066 (16) | 0.0078 (17)   | 0.0118 (19)   |
| C109 | 0.0299 (17)  | 0.0240 (17)  | 0.0334 (18)  | 0.0102 (13)  | -0.0109 (14)  | -0.0072 (14)  |
| C120 | 0.0206 (15)  | 0.040 (2)    | 0.045 (2)    | 0.0000 (14)  | 0.0039 (14)   | -0.0122 (17)  |
| C114 | 0.0279 (16)  | 0.0340 (19)  | 0.0377 (19)  | 0.0061 (14)  | -0.0001 (14)  | 0.0048 (16)   |
| C117 | 0.0276 (15)  | 0.0256 (17)  | 0.0300 (16)  | 0.0041 (13)  | 0.0012 (13)   | -0.0007 (14)  |
| C129 | 0.0192 (15)  | 0.0328 (18)  | 0.053 (2)    | 0.0029 (13)  | -0.0028 (15)  | -0.0011 (17)  |
| C119 | 0.0221 (15)  | 0.0333 (19)  | 0.0368 (19)  | -0.0022 (13) | 0.0018 (14)   | -0.0028 (15)  |
| C134 | 0.0251 (16)  | 0.044 (2)    | 0.0375 (18)  | -0.0005 (15) | -0.0014 (14)  | 0.0034 (16)   |
| C127 | 0.0203 (14)  | 0.0277 (17)  | 0.0274 (17)  | -0.0025 (13) | 0.0007 (12)   | -0.0033 (14)  |
| C135 | 0.0213 (14)  | 0.0269 (18)  | 0.0328 (17)  | 0.0000 (13)  | -0.0055 (13)  | -0.0013 (14)  |
| C131 | 0.0293 (16)  | 0.0392 (19)  | 0.0346 (19)  | 0.0025 (14)  | -0.0048 (14)  | 0.0047 (16)   |
| C112 | 0.0347 (19)  | 0.034 (2)    | 0.048 (2)    | 0.0044 (15)  | 0.0082 (16)   | 0.0074 (17)   |
| C115 | 0.0284 (16)  | 0.038 (2)    | 0.048 (2)    | 0.0093 (15)  | -0.0040 (15)  | 0.0039 (17)   |
| C101 | 0.0267 (16)  | 0.0250 (16)  | 0.050 (2)    | 0.0008 (13)  | -0.0088 (14)  | -0.0022 (15)  |
| C113 | 0.0319 (17)  | 0.0268 (18)  | 0.0302 (18)  | 0.0027 (14)  | 0.0051 (14)   | -0.0002 (15)  |
| C102 | 0.0318 (17)  | 0.0267 (18)  | 0.070 (3)    | 0.0012 (14)  | -0.0184 (18)  | -0.0057 (18)  |

|      |             |             |             |              |              |              |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| C104 | 0.0320 (17) | 0.0313 (18) | 0.057 (2)   | 0.0131 (16)  | -0.0177 (17) | -0.0137 (18) |
| C136 | 0.0231 (15) | 0.0304 (18) | 0.0346 (18) | -0.0037 (13) | -0.0023 (13) | -0.0026 (15) |
| C14B | 0.0279 (16) | 0.052 (2)   | 0.043 (2)   | 0.0004 (15)  | 0.0011 (15)  | 0.0115 (18)  |
| C133 | 0.041 (2)   | 0.060 (3)   | 0.039 (2)   | 0.008 (2)    | 0.0059 (19)  | 0.019 (2)    |
| C126 | 0.0219 (14) | 0.0234 (16) | 0.0363 (18) | -0.0006 (12) | 0.0017 (13)  | -0.0039 (14) |
| C12A | 0.0377 (19) | 0.039 (2)   | 0.052 (2)   | 0.0090 (16)  | -0.0012 (17) | 0.0084 (18)  |
| C124 | 0.0273 (17) | 0.038 (2)   | 0.063 (2)   | -0.0136 (15) | -0.0015 (16) | -0.0142 (19) |
| C108 | 0.0289 (16) | 0.0291 (17) | 0.0324 (17) | 0.0119 (13)  | -0.0084 (14) | -0.0044 (15) |
| C103 | 0.0329 (19) | 0.034 (2)   | 0.071 (3)   | 0.0071 (15)  | -0.0234 (19) | -0.0204 (19) |
| C13A | 0.0358 (19) | 0.0308 (18) | 0.061 (2)   | -0.0058 (15) | -0.0002 (17) | -0.0134 (18) |
| C106 | 0.041 (2)   | 0.062 (3)   | 0.037 (2)   | 0.029 (2)    | -0.0102 (16) | -0.0189 (19) |
| C11B | 0.0334 (18) | 0.056 (2)   | 0.0352 (19) | 0.0199 (17)  | -0.0002 (15) | -0.0069 (18) |
| C105 | 0.044 (2)   | 0.054 (3)   | 0.054 (3)   | 0.0193 (19)  | -0.020 (2)   | -0.031 (2)   |
| C13B | 0.0236 (17) | 0.056 (2)   | 0.093 (3)   | -0.0054 (16) | -0.0032 (19) | -0.030 (2)   |
| C12B | 0.0256 (16) | 0.043 (2)   | 0.060 (2)   | -0.0029 (15) | -0.0115 (16) | 0.0133 (19)  |
| C14A | 0.056 (3)   | 0.089 (4)   | 0.061 (3)   | 0.032 (2)    | 0.006 (2)    | 0.033 (3)    |
| C130 | 0.0277 (16) | 0.040 (2)   | 0.045 (2)   | 0.0102 (14)  | -0.0068 (15) | 0.0014 (17)  |
| C123 | 0.0296 (16) | 0.0275 (18) | 0.041 (2)   | -0.0038 (14) | 0.0031 (14)  | -0.0047 (15) |
| C132 | 0.041 (2)   | 0.062 (3)   | 0.046 (2)   | 0.0135 (19)  | 0.0007 (18)  | 0.017 (2)    |
| C11A | 0.056 (3)   | 0.092 (4)   | 0.089 (4)   | 0.020 (3)    | -0.021 (3)   | -0.064 (3)   |
| N201 | 0.0424 (18) | 0.081 (2)   | 0.098 (3)   | 0.0171 (18)  | 0.001 (2)    | 0.007 (3)    |
| C202 | 0.041 (2)   | 0.080 (3)   | 0.084 (3)   | 0.003 (2)    | -0.001 (2)   | 0.010 (3)    |
| C203 | 0.094 (5)   | 0.185 (8)   | 0.154 (7)   | 0.070 (5)    | -0.007 (5)   | -0.073 (6)   |
| C201 | 0.049 (3)   | 0.090 (4)   | 0.138 (5)   | 0.010 (3)    | 0.004 (3)    | 0.013 (4)    |
| O201 | 0.0446 (19) | 0.112 (3)   | 0.131 (4)   | 0.0012 (19)  | 0.018 (2)    | 0.028 (3)    |
| N31  | 0.285 (12)  | 0.108 (10)  | 0.034 (7)   | 0.057 (10)   | 0.031 (9)    | -0.024 (9)   |
| C31A | 0.296 (17)  | 0.070 (15)  | 0.055 (11)  | -0.019 (14)  | 0.002 (15)   | 0.018 (12)   |
| C31B | 0.310 (19)  | 0.106 (14)  | 0.058 (13)  | 0.036 (16)   | -0.054 (15)  | -0.004 (12)  |
| C31C | 0.301 (14)  | 0.100 (11)  | 0.052 (10)  | 0.057 (11)   | 0.030 (12)   | 0.010 (11)   |
| O31  | 0.293 (19)  | 0.149 (12)  | 0.064 (7)   | 0.061 (12)   | 0.002 (15)   | 0.001 (10)   |
| N32  | 0.31 (2)    | 0.136 (15)  | 0.047 (9)   | 0.014 (16)   | 0.053 (16)   | 0.010 (12)   |
| C32B | 0.34 (2)    | 0.13 (2)    | 0.045 (13)  | -0.03 (2)    | 0.010 (19)   | -0.013 (18)  |
| C32C | 0.38 (3)    | 0.095 (15)  | 0.032 (11)  | 0.051 (19)   | 0.061 (15)   | 0.000 (10)   |
| C32A | 0.35 (2)    | 0.17 (2)    | 0.071 (15)  | 0.027 (19)   | 0.043 (19)   | 0.029 (15)   |
| O32  | 0.39 (3)    | 0.26 (3)    | 0.061 (11)  | 0.14 (2)     | -0.011 (18)  | 0.060 (16)   |
| N33  | 0.261 (11)  | 0.078 (8)   | 0.043 (7)   | 0.057 (9)    | 0.005 (8)    | -0.020 (7)   |
| C33A | 0.243 (15)  | 0.049 (12)  | 0.043 (10)  | -0.032 (11)  | 0.019 (12)   | -0.018 (9)   |
| C33C | 0.307 (17)  | 0.030 (7)   | 0.029 (7)   | 0.007 (9)    | -0.020 (10)  | -0.005 (6)   |
| C33B | 0.267 (14)  | 0.083 (9)   | 0.040 (7)   | 0.059 (11)   | -0.025 (11)  | -0.009 (9)   |
| O33  | 0.236 (15)  | 0.097 (8)   | 0.094 (10)  | 0.040 (11)   | -0.001 (10)  | 0.003 (7)    |

Geometric parameters ( $\text{\AA}$ ,  $^\circ$ )

|           |           |           |           |
|-----------|-----------|-----------|-----------|
| Zr01—O103 | 2.093 (2) | C12A—H12A | 0.96      |
| Zr01—O102 | 2.100 (2) | C12A—H12B | 0.96      |
| Zr01—O101 | 2.106 (2) | C12A—H12C | 0.96      |
| Zr01—O104 | 2.118 (2) | C124—C123 | 1.360 (4) |
| Zr01—N104 | 2.399 (2) | C124—H124 | 0.93      |
| Zr01—N103 | 2.401 (3) | C103—H103 | 0.93      |
| Zr01—N101 | 2.435 (3) | C13A—C123 | 1.505 (5) |

|           |           |           |            |
|-----------|-----------|-----------|------------|
| Zr01—N102 | 2.438 (3) | C13A—H13A | 0.96       |
| N102—C110 | 1.310 (4) | C13A—H13B | 0.96       |
| N102—C118 | 1.367 (4) | C13A—H13C | 0.96       |
| O101—C108 | 1.325 (4) | C106—C105 | 1.361 (6)  |
| O104—C135 | 1.345 (4) | C106—H106 | 0.93       |
| N104—C128 | 1.329 (4) | C11B—H11A | 0.96       |
| N104—C136 | 1.365 (4) | C11B—H11B | 0.96       |
| O103—C126 | 1.340 (4) | C11B—H11C | 0.96       |
| N101—C101 | 1.330 (4) | C105—C11A | 1.506 (6)  |
| N101—C109 | 1.374 (4) | C13B—H13D | 0.96       |
| N103—C119 | 1.314 (4) | C13B—H13E | 0.96       |
| N103—C127 | 1.365 (4) | C13B—H13F | 0.96       |
| O102—C117 | 1.343 (4) | C12B—H12D | 0.96       |
| C116—C117 | 1.380 (4) | C12B—H12E | 0.96       |
| C116—C115 | 1.413 (5) | C12B—H12F | 0.96       |
| C116—C12B | 1.510 (4) | C14A—C132 | 1.531 (5)  |
| C128—C129 | 1.408 (4) | C14A—H14D | 0.96       |
| C128—H128 | 0.93      | C14A—H14E | 0.96       |
| C110—C111 | 1.407 (5) | C14A—H14F | 0.96       |
| C110—H110 | 0.93      | C130—H130 | 0.93       |
| C122—C127 | 1.412 (4) | C11A—H11D | 0.96       |
| C122—C121 | 1.416 (4) | C11A—H11E | 0.96       |
| C122—C123 | 1.421 (4) | C11A—H11F | 0.96       |
| C107—C108 | 1.395 (5) | N201—C201 | 1.307 (7)  |
| C107—C106 | 1.422 (5) | N201—C203 | 1.422 (8)  |
| C107—C11B | 1.486 (5) | N201—C202 | 1.461 (6)  |
| C125—C126 | 1.373 (4) | C202—H20A | 0.96       |
| C125—C124 | 1.418 (5) | C202—H20B | 0.96       |
| C125—C13B | 1.508 (4) | C202—H20C | 0.96       |
| C121—C120 | 1.361 (4) | C203—H20D | 0.96       |
| C121—H121 | 0.93      | C203—H20E | 0.96       |
| C118—C117 | 1.412 (4) | C203—H20F | 0.96       |
| C118—C113 | 1.424 (5) | C201—O201 | 1.169 (7)  |
| C111—C112 | 1.377 (5) | C201—H201 | 0.93       |
| C111—H111 | 0.93      | N31—C31B  | 1.341 (17) |
| C109—C104 | 1.408 (5) | N31—C31C  | 1.387 (17) |
| C109—C108 | 1.419 (5) | N31—C31A  | 1.430 (16) |
| C120—C119 | 1.410 (5) | C31A—H31A | 0.96       |
| C120—H120 | 0.93      | C31A—H31B | 0.96       |
| C114—C115 | 1.372 (4) | C31A—H31C | 0.96       |
| C114—C113 | 1.424 (4) | C31B—H31D | 0.96       |
| C114—C12A | 1.509 (5) | C31B—H31E | 0.96       |
| C129—C130 | 1.356 (5) | C31B—H31F | 0.96       |
| C129—H129 | 0.93      | C31C—O31  | 1.29 (2)   |
| C119—H119 | 0.93      | C31C—H31J | 0.93       |
| C134—C135 | 1.381 (5) | N32—C32C  | 1.338 (17) |
| C134—C133 | 1.417 (5) | N32—C32A  | 1.359 (18) |
| C134—C14B | 1.497 (4) | N32—C32B  | 1.422 (18) |
| C127—C126 | 1.417 (4) | C32B—H32A | 0.96       |

|                |            |                |            |
|----------------|------------|----------------|------------|
| C135—C136      | 1.419 (4)  | C32B—H32B      | 0.96       |
| C131—C132      | 1.405 (5)  | C32B—H32C      | 0.96       |
| C131—C136      | 1.413 (4)  | C32C—H32D      | 0.96       |
| C131—C130      | 1.421 (4)  | C32C—H32E      | 0.96       |
| C112—C113      | 1.406 (5)  | C32C—H32F      | 0.96       |
| C112—H112      | 0.93       | C32A—O32       | 1.27 (2)   |
| C115—H115      | 0.93       | C32A—H32J      | 0.93       |
| C101—C102      | 1.406 (5)  | N33—C33B       | 1.343 (16) |
| C101—H101      | 0.93       | N33—C33C       | 1.392 (15) |
| C102—C103      | 1.375 (6)  | N33—C33A       | 1.418 (15) |
| C102—H102      | 0.93       | C33A—H33A      | 0.96       |
| C104—C103      | 1.421 (6)  | C33A—H33B      | 0.96       |
| C104—C105      | 1.428 (6)  | C33A—H33C      | 0.96       |
| C14B—H14A      | 0.96       | C33C—H33D      | 0.96       |
| C14B—H14B      | 0.96       | C33C—H33E      | 0.96       |
| C14B—H14C      | 0.96       | C33C—H33F      | 0.96       |
| C133—C132      | 1.374 (5)  | C33B—O33       | 1.28 (2)   |
| C133—H133      | 0.93       | C33B—H33J      | 0.93       |
| <br>           |            |                |            |
| O103—Zr01—O102 | 141.21 (8) | H12A—C12A—H12B | 109.5      |
| O103—Zr01—O101 | 87.00 (8)  | C114—C12A—H12C | 109.5      |
| O102—Zr01—O101 | 103.47 (9) | H12A—C12A—H12C | 109.5      |
| O103—Zr01—O104 | 106.07 (8) | H12B—C12A—H12C | 109.5      |
| O102—Zr01—O104 | 89.13 (8)  | C123—C124—C125 | 124.9 (3)  |
| O101—Zr01—O104 | 141.02 (8) | C123—C124—H124 | 117.5      |
| O103—Zr01—N104 | 74.36 (8)  | C125—C124—H124 | 117.5      |
| O102—Zr01—N104 | 143.99 (8) | O101—C108—C107 | 122.7 (3)  |
| O101—Zr01—N104 | 78.77 (9)  | O101—C108—C109 | 118.3 (3)  |
| O104—Zr01—N104 | 70.22 (8)  | C107—C108—C109 | 118.9 (3)  |
| O103—Zr01—N103 | 70.55 (8)  | C102—C103—C104 | 120.3 (3)  |
| O102—Zr01—N103 | 79.49 (8)  | C102—C103—H103 | 119.9      |
| O101—Zr01—N103 | 142.52 (8) | C104—C103—H103 | 119.9      |
| O104—Zr01—N103 | 75.58 (8)  | C123—C13A—H13A | 109.5      |
| N104—Zr01—N103 | 120.68 (9) | C123—C13A—H13B | 109.5      |
| O103—Zr01—N101 | 143.46 (8) | H13A—C13A—H13B | 109.5      |
| O102—Zr01—N101 | 73.70 (8)  | C123—C13A—H13C | 109.5      |
| O101—Zr01—N101 | 70.11 (9)  | H13A—C13A—H13C | 109.5      |
| O104—Zr01—N101 | 78.70 (9)  | H13B—C13A—H13C | 109.5      |
| N104—Zr01—N101 | 73.50 (8)  | C105—C106—C107 | 125.9 (4)  |
| N103—Zr01—N101 | 142.84 (8) | C105—C106—H106 | 117.1      |
| O103—Zr01—N102 | 77.60 (8)  | C107—C106—H106 | 117.1      |
| O102—Zr01—N102 | 69.70 (8)  | C107—C11B—H11A | 109.5      |
| O101—Zr01—N102 | 74.80 (8)  | C107—C11B—H11B | 109.5      |
| O104—Zr01—N102 | 143.28 (8) | H11A—C11B—H11B | 109.5      |
| N104—Zr01—N102 | 142.11 (8) | C107—C11B—H11C | 109.5      |
| N103—Zr01—N102 | 71.36 (8)  | H11A—C11B—H11C | 109.5      |
| N101—Zr01—N102 | 120.46 (9) | H11B—C11B—H11C | 109.5      |
| C110—N102—C118 | 119.1 (3)  | C106—C105—C104 | 117.3 (4)  |
| C110—N102—Zr01 | 128.5 (2)  | C106—C105—C11A | 122.3 (4)  |

|                |             |                |           |
|----------------|-------------|----------------|-----------|
| C118—N102—Zr01 | 112.45 (19) | C104—C105—C11A | 120.3 (4) |
| C108—O101—Zr01 | 124.0 (2)   | C125—C13B—H13D | 109.5     |
| C135—O104—Zr01 | 123.64 (18) | C125—C13B—H13E | 109.5     |
| C128—N104—C136 | 118.2 (3)   | H13D—C13B—H13E | 109.5     |
| C128—N104—Zr01 | 127.7 (2)   | C125—C13B—H13F | 109.5     |
| C136—N104—Zr01 | 114.05 (18) | H13D—C13B—H13F | 109.5     |
| C126—O103—Zr01 | 123.28 (17) | H13E—C13B—H13F | 109.5     |
| C101—N101—C109 | 119.0 (3)   | C116—C12B—H12D | 109.5     |
| C101—N101—Zr01 | 128.1 (2)   | C116—C12B—H12E | 109.5     |
| C109—N101—Zr01 | 112.3 (2)   | H12D—C12B—H12E | 109.5     |
| C119—N103—C127 | 118.8 (3)   | C116—C12B—H12F | 109.5     |
| C119—N103—Zr01 | 128.3 (2)   | H12D—C12B—H12F | 109.5     |
| C127—N103—Zr01 | 112.86 (19) | H12E—C12B—H12F | 109.5     |
| C117—O102—Zr01 | 124.72 (18) | C132—C14A—H14D | 109.5     |
| C117—C116—C115 | 118.1 (3)   | C132—C14A—H14E | 109.5     |
| C117—C116—C12B | 120.9 (3)   | H14D—C14A—H14E | 109.5     |
| C115—C116—C12B | 120.9 (3)   | C132—C14A—H14F | 109.5     |
| N104—C128—C129 | 122.6 (3)   | H14D—C14A—H14F | 109.5     |
| N104—C128—H128 | 118.7       | H14E—C14A—H14F | 109.5     |
| C129—C128—H128 | 118.7       | C129—C130—C131 | 120.3 (3) |
| N102—C110—C111 | 122.7 (3)   | C129—C130—H130 | 119.9     |
| N102—C110—H110 | 118.7       | C131—C130—H130 | 119.9     |
| C111—C110—H110 | 118.7       | C124—C123—C122 | 117.3 (3) |
| C127—C122—C121 | 116.4 (3)   | C124—C123—C13A | 122.5 (3) |
| C127—C122—C123 | 118.5 (3)   | C122—C123—C13A | 120.1 (3) |
| C121—C122—C123 | 125.1 (3)   | C133—C132—C131 | 117.6 (3) |
| C108—C107—C106 | 116.8 (3)   | C133—C132—C14A | 121.8 (4) |
| C108—C107—C11B | 119.8 (3)   | C131—C132—C14A | 120.6 (3) |
| C106—C107—C11B | 123.4 (3)   | C105—C11A—H11D | 109.5     |
| C126—C125—C124 | 118.4 (3)   | C105—C11A—H11E | 109.5     |
| C126—C125—C13B | 120.1 (3)   | H11D—C11A—H11E | 109.5     |
| C124—C125—C13B | 121.4 (3)   | C105—C11A—H11F | 109.5     |
| C120—C121—C122 | 120.3 (3)   | H11D—C11A—H11F | 109.5     |
| C120—C121—H121 | 119.8       | H11E—C11A—H11F | 109.5     |
| C122—C121—H121 | 119.8       | C201—N201—C203 | 126.3 (6) |
| N102—C118—C117 | 115.5 (3)   | C201—N201—C202 | 118.9 (5) |
| N102—C118—C113 | 122.5 (3)   | C203—N201—C202 | 114.9 (5) |
| C117—C118—C113 | 122.0 (3)   | N201—C202—H20A | 109.5     |
| C112—C111—C110 | 119.0 (3)   | N201—C202—H20B | 109.5     |
| C112—C111—H111 | 120.5       | H20A—C202—H20B | 109.5     |
| C110—C111—H111 | 120.5       | N201—C202—H20C | 109.5     |
| N101—C109—C104 | 122.8 (3)   | H20A—C202—H20C | 109.5     |
| N101—C109—C108 | 114.6 (3)   | H20B—C202—H20C | 109.5     |
| C104—C109—C108 | 122.5 (3)   | N201—C203—H20D | 109.5     |
| C121—C120—C119 | 119.0 (3)   | N201—C203—H20E | 109.5     |
| C121—C120—H120 | 120.5       | H20D—C203—H20E | 109.5     |
| C119—C120—H120 | 120.5       | N201—C203—H20F | 109.5     |
| C115—C114—C113 | 116.5 (3)   | H20D—C203—H20F | 109.5     |
| C115—C114—C12A | 122.9 (3)   | H20E—C203—H20F | 109.5     |

|                |           |                |            |
|----------------|-----------|----------------|------------|
| C113—C114—C12A | 120.5 (3) | O201—C201—N201 | 132.4 (7)  |
| O102—C117—C116 | 124.3 (3) | O201—C201—H201 | 113.8      |
| O102—C117—C118 | 116.9 (3) | N201—C201—H201 | 113.8      |
| C116—C117—C118 | 118.8 (3) | C31B—N31—C31C  | 129 (2)    |
| C130—C129—C128 | 119.5 (3) | C31B—N31—C31A  | 118.4 (19) |
| C130—C129—H129 | 120.2     | C31C—N31—C31A  | 113.1 (16) |
| C128—C129—H129 | 120.2     | N31—C31A—H31A  | 109.5      |
| N103—C119—C120 | 122.7 (3) | N31—C31A—H31B  | 109.5      |
| N103—C119—H119 | 118.6     | H31A—C31A—H31B | 109.5      |
| C120—C119—H119 | 118.6     | N31—C31A—H31C  | 109.5      |
| C135—C134—C133 | 117.8 (3) | H31A—C31A—H31C | 109.5      |
| C135—C134—C14B | 121.3 (3) | H31B—C31A—H31C | 109.5      |
| C133—C134—C14B | 120.9 (3) | N31—C31B—H31D  | 109.5      |
| N103—C127—C122 | 122.7 (3) | N31—C31B—H31E  | 109.5      |
| N103—C127—C126 | 114.9 (3) | H31D—C31B—H31E | 109.5      |
| C122—C127—C126 | 122.4 (3) | N31—C31B—H31F  | 109.5      |
| O104—C135—C134 | 124.0 (3) | H31D—C31B—H31F | 109.5      |
| O104—C135—C136 | 117.2 (3) | H31E—C31B—H31F | 109.5      |
| C134—C135—C136 | 118.8 (3) | O31—C31C—N31   | 106.0 (18) |
| C132—C131—C136 | 119.0 (3) | O31—C31C—H31J  | 127        |
| C132—C131—C130 | 124.7 (3) | N31—C31C—H31J  | 127        |
| C136—C131—C130 | 116.3 (3) | C32C—N32—C32A  | 118.3 (18) |
| C111—C112—C113 | 120.4 (4) | C32C—N32—C32B  | 117.8 (19) |
| C111—C112—H112 | 119.8     | C32A—N32—C32B  | 123.9 (19) |
| C113—C112—H112 | 119.8     | N32—C32B—H32A  | 109.5      |
| C114—C115—C116 | 125.5 (3) | N32—C32B—H32B  | 109.5      |
| C114—C115—H115 | 117.2     | H32A—C32B—H32B | 109.5      |
| C116—C115—H115 | 117.2     | N32—C32B—H32C  | 109.5      |
| N101—C101—C102 | 122.0 (3) | H32A—C32B—H32C | 109.5      |
| N101—C101—H101 | 119       | H32B—C32B—H32C | 109.5      |
| C102—C101—H101 | 119       | N32—C32C—H32D  | 109.5      |
| C112—C113—C114 | 124.7 (3) | N32—C32C—H32E  | 109.5      |
| C112—C113—C118 | 116.3 (3) | H32D—C32C—H32E | 109.5      |
| C114—C113—C118 | 118.9 (3) | N32—C32C—H32F  | 109.5      |
| C103—C102—C101 | 119.5 (3) | H32D—C32C—H32F | 109.5      |
| C103—C102—H102 | 120.3     | H32E—C32C—H32F | 109.5      |
| C101—C102—H102 | 120.3     | O32—C32A—N32   | 121 (3)    |
| C109—C104—C103 | 116.4 (3) | O32—C32A—H32J  | 119.4      |
| C109—C104—C105 | 118.5 (4) | N32—C32A—H32J  | 119.4      |
| C103—C104—C105 | 125.1 (3) | C33B—N33—C33C  | 126.8 (17) |
| N104—C136—C131 | 123.2 (3) | C33B—N33—C33A  | 124.9 (17) |
| N104—C136—C135 | 114.8 (3) | C33C—N33—C33A  | 107.1 (14) |
| C131—C136—C135 | 122.0 (3) | N33—C33A—H33A  | 109.5      |
| C134—C14B—H14A | 109.5     | N33—C33A—H33B  | 109.5      |
| C134—C14B—H14B | 109.5     | H33A—C33A—H33B | 109.5      |
| H14A—C14B—H14B | 109.5     | N33—C33A—H33C  | 109.5      |
| C134—C14B—H14C | 109.5     | H33A—C33A—H33C | 109.5      |
| H14A—C14B—H14C | 109.5     | H33B—C33A—H33C | 109.5      |
| H14B—C14B—H14C | 109.5     | N33—C33C—H33D  | 109.5      |

|                |           |                |         |
|----------------|-----------|----------------|---------|
| C132—C133—C134 | 124.8 (4) | N33—C33C—H33E  | 109.5   |
| C132—C133—H133 | 117.6     | H33D—C33C—H33E | 109.5   |
| C134—C133—H133 | 117.6     | N33—C33C—H33F  | 109.5   |
| O103—C126—C125 | 124.4 (3) | H33D—C33C—H33F | 109.5   |
| O103—C126—C127 | 117.3 (2) | H33E—C33C—H33F | 109.5   |
| C125—C126—C127 | 118.3 (3) | O33—C33B—N33   | 122 (2) |
| C114—C12A—H12A | 109.5     | O33—C33B—H33J  | 119.1   |
| C114—C12A—H12B | 109.5     | N33—C33B—H33J  | 119.1   |

*Hydrogen-bond geometry (Å, °)*

| D—H···A                       | D—H  | H···A | D···A     | D—H···A |
|-------------------------------|------|-------|-----------|---------|
| C14A—H14E···O201 <sup>i</sup> | 0.96 | 2.43  | 3.358 (7) | 161     |

Symmetry code: (i)  $-x+3/2, y+1/2, z-1/2$ .