Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations
Combining Relations
Representing Relations
Closures of Relations

Types of Relations

Chapter 6

Relations

Discrete Structures for Computing

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le Faculty of Computer Science and Engineering University of Technology - VNUHCM {htnguyen;trtanh}@hcmut.edu.vn

Contents

Relations

Huvnh Tuong Nguyen Tran Tuan Anh. Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations

Types of Relations

Representing Relations

Closures of Relations

1 Properties of Relations

2 Combining Relations

3 Representing Relations

Closures of Relations

TÀI LIỀU SƯU TẬP

5 Types of Relations

BỞI HCMUT-CNCP

Course outcomes

	Course learning outcomes \(\lambda\)			
	Movell			
L.O.1	Understanding of logic and discrete structures			
	L.O.1.1 – Describe definition of propositional and predicate logic			
	L.O.1.2 – Define basic discrete structures: set, mapping, graphs			
L.O.2	Represent and model practical problems with discrete structures			
	L.O.2.1 – Logically describe some problems arising in Computing			
	L.O.2.2 – Use proving methods: direct, contrapositive, induction			
	L.O.2.3 – Explain problem modeling using discrete structures			
L.O.3	Understanding of basic probability and random variables			
	L.O.3.1 – Define basic probability theory			
	L.O.3.2 – Explain discrete random variables			
L.O.4	Compute quantities of discrete structures and probabilities			
	L.O.4.1 – Operate (compute/ optimize) on discrete structures			
	L.O.4.2 – Compute probabilities of various events, conditional			
	ones, Bayes theorem			

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer Ngoc Le

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Introduction

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations
Representing Relations

Closures of Relations

Relation

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Definition

Let A and B be sets. A **binary relation** (quan $h\hat{e}$ hai $ng\hat{o}i$) from a set A to a set B is a set

 $R \subseteq A \times B$

• Notations:

 $(a,b) \in R \longleftrightarrow aRb$

TÀI LIỆU SƯU TẬP

• n-ary relations?

(a1,a2,a3,...an) thuoc R

BACHKHOACNCP.COM

Contents

Properties of Relations
Combining Relations

Representing Relations

Closures of Relations

Example Let $A = \{a, b, c\}$ be the set of students, $B = \{l, c, s, d\}$ be the set BK of the available optional courses. We can have relation R that

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

consists of pairs (a, b), where a is a student enrolled in course b.

Functions as Relations

Yes!

• $f: A \rightarrow B$

Huynh Tuong Nguyen Tran Tuan Anh. Nguye Ngoc Le

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

TÀI LIÊU SƯU TẬP

BỞI HCMUT-CNCP

Functions as Relations

vi moi A co the co 2 anh tren B => vo ly vi ham chi dung khi moi A -> 1 B

Is a relation a function?

Relations are a generalization of functions NCP

BACHKHOACNCP.COM

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations
Combining Relations
Representing Relations
Closures of Relations

Relations on a Set

Definition

A relation on the set A is a relation from A to A.

Example

Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a,b)\mid a \text{ divides }b\}$ (a là ước số của b)?

Solution:

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

$-\lambda \overline{I}$?	1234 111 7 3 0
I ATI	L	XXX XUU IAP
2	2	X X X
3	3 🖣	BỞI ĤCMŰT-CNCP
4	1	X

BACHKHOACNCP.COM

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Properties of Relations

Relations

Huynh Tuong Nguyen Tran Tuan Anh. Nguye Ngoc Le

TP.	TP.HCM	

Contents

Combining Relations

Representing Relations

Closures of Relations

Properties of Relation

Types of Relations

	W' 1
Reflexive	$xRx, \forall x \in A$
(phản xạ)	4 11
Symmetric ($xRy \to yRx, \forall x, y \in A$
(đối xứng)	
Antisymmetric	$(xRy \land yRx) \rightarrow x = y, \forall x, y \in A$
(phản đối xứng)	
Transitive	$(xRy \land yRz) \rightarrow xRz, \forall x, y, z \in A$
(bắc cầu)	

bac cau co 2 cach cm : cm k co ele de bac cau V cm tung ele bac cau

BỞI HCMUT-CNCP

Relations

Huvnh Tuong Nguyen. Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relation

Combining Relations

Representing Relations Closures of Relations

Types of Relations

de xet co the tinh chat ko co 2 cach:

C1: ve hinh

C2: cm dk luon sai => P->Q dung

C3: cm dk dung, kl sai => sai C4: chi ra 1 VD dk dung, kl sai

Consider the following relations on $\{1, 2, 3, 4\}$:

$$R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\},\$$

 $R_2 = \{(1,1), (1,2), (2,1)\},\$

 $R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\},\$

 $R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\},\$

 $R_5 = \{(3,4)\}$

Solution:

Example

Example

Reflexive: R₃

• Symmetric: R_2 , R_3

• Antisymmetric: R_4 , R_5

• Transitive: R_4 , R_5

-ve hinh giong phan duoi de giai

-khi ve chi xet nhung ele co quan he

trong set de thoa man tinh chat thi tat ca cac

ele deu phai thoa man

R5 la bac cau vi:

P->Q voi P la xRy va yRx; Q là bac cau => P sai ne P->Q dung

Example

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Properties of Relation

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

LHOACNC

Example

What is the properties of the **divides** ($u\acute{\phi}c$ $s\acute{\phi}$) relation on the set of positive integers?

Solution:

- $\forall a \in \mathbb{Z}^+, a \mid a$: reflexive
- $1 \mid 2$, but $2 \nmid 1$: not symmetric
- $\exists a, b \in \mathbb{Z}^+, (a \mid b) \land (b \mid a) \rightarrow a = b$: antisymmetric
- $a \mid b \Rightarrow \exists k \in \mathbb{Z}^+, b = ak; b \mid c \Rightarrow \exists l \in \mathbb{Z}^+, c = bl$. Hence, $c = a(kl) \Rightarrow a \mid c$: transitive

BŐI HCMUT-CNCP

Relations

Huvnh Tuong Nguyen Tran Tuan Anh. Nguye Ngoc Le

Contents

Properties of Relation

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

Example

What are the properties of these relations on the set of integers:

$$R_1 = \{(a,b) \mid a \leq b\}$$
 px,pdx, bc
 $R_2 = \{(a,b) \mid a > b\}$ pdx,bc

$$b$$
} pdx,bc

$$b \text{ or } a = b$$

$$R_3 = \{(a,b) \mid a=b \text{ or } a=-b\} \text{ pdx,dx,px,bc}$$

TÀI LIÊU SƯU TẬP

BỞI HCMUT-CNCP

Combining Relations

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Relations

Contents

Properties of Relations

Combining Relations

Representing Relations Closures of Relations

Types of Relations

Because relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined.

Example

Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4\}$. List the combinations of relations $R_1 = \{(1,1), (2,2), (3,3)\}$ and $R_2 = \{(1,1), (1,2), (1,3), (1,4)\}.$

Solution: $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$ and $R_2 - R_1$.

Example

Let A and B be the set of all students and the set of all courses at school, respectively. Suppose $R_1 = \{(a,b) \mid a \text{ has taken the course}\}$ b) and $R_2 = \{(a, b) \mid a \text{ requires course } b \text{ to graduate}\}$. What are the relations $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 \oplus R_2$, $R_1 - R_2$, $R_2 - R_1$?

Composition of Relations

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Definition

Let R be **relations** from A to B and S be from B to C. Then the **composite** ($h \phi p \ th anh$) of S and R is

$$S \circ R = \{(a,c) \in A \times C \mid \exists b \in B \ (aRb \wedge bSc)\}\$$

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

Example

$$R = \{(0,0), (0,3), (1,2), (0,1)\}$$

$$S = \{(0,0), (1,0), (2,1), (3,1)\}$$

$$S \circ R = \{(0,0), (0,1), (1,1)\}$$

(0,0) thuoc R bac cau voi (0,0) thuoc

S => (0,0)

(0,3) thuoc R bac cau (3,1) thuoc S

вот немит-спе

Power of Relations

Relations

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations

Representing Relations

Types of Relations

Closures of Relations

Definition

Let R be a relation on the set A. The **powers** ($l\tilde{u}v$ thừa) $R^n, n = 1, 2, 3, \dots$ are defined recursively by

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$.

Example

Let $R = \{(1,1), (2,1), (3,2), (4,3)\}$. Find the powers $R^n, n = 2, 3, 4, \dots$

 $R^2 = \{(1,1), (2,1), (3,1), (4,2)\}$ U SUU TÂP $\begin{array}{l} R^3 = \{(1,1),(2,1),(3,1),(4,1)\} \\ R^4 = \{(1,1),(2,1),(3,1),(4,1)\} \\ \end{array} \\ \text{HCMUT-CNCP} \end{array}$

Representing Relations Using Matrices

Definition

Suppose R is a relation from $A = \{a_1, a_2, \dots, a_m\}$ to $B = \{b_1, b_2, \dots, b_n\}$, R can be represented by the **matrix**

 $\mathbf{M}_R = [m_{ij}]$, where

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R \\ 0 & \text{if } (a_i, b_j) \notin R \end{cases}$$

Example

R is relation from $A = \{1, 2, 3\}$ to $B = \{1, 2\}$. Let $R = \{(2, 1), (3, 1), (3, 2)\}$, the matrix for R is

TAILIÊ
$$0 0$$
 SUU TÂP
$$M_R = \begin{bmatrix} 1 & 0 \\ H_1 C & 1 \end{bmatrix}$$
T-CNCP

Determine whether the relation has certain properties (reflexive, symmetric, antisymmetric,...)

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations
Types of Relations

Representing Relations Using Digraphs

Relations

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations

Representing Relations Closures of Relations

Types of Relations

Definition

Suppose R is a relation in $A = \{a_1, a_2, \dots, a_m\}$, R can be represented by the **digraph** ($d\hat{o}$ thi có hướng) G = (V, E), where

$$V = A$$

$$(a_i, a_j) \in E \text{ if } (a_i, a_j) \in R$$

Example

Given a relation on $A = \{1, 2, 3, 4\}$, Given a relation on $A = \{1, 2, 3, 4\},\ R = \{(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)\}$ Draw corresponding digraph.

Resulting digraph

BACHKHOACNCP.COM

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Closure

Huvnh Tuong Nguyen Tran Tuan Anh. Nguye Ngoc Le

Contents

Definition

The closure (bao $d\acute{o}ng$) of relation R with respect to property Pis the relation S that

- i. contains R
- ii. has property P
- iii. is contained in any relation satisfying (i) and (ii).

S is the "smallest" relation satisfying (i) & (ii)

3 thuoc tinh da hoc o tren Combining Relations (ko bao gom phan doi xung presenting Relations

Closures of Relations

Properties of Relations

Types of Relations

BỞI HCMUT-CNCP

Reflexive Closure

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

MOACNO

Example

Let $R = \{(a, b), (a, c), (b, d), (d, c)\}$

The reflexive closure of R

$$\{(a,b),(a,c),(b,d),(d,c),(a,a),(b,b),(c,c),(d,d)\}$$

 $R \cup \Delta$

where

 $\mathsf{TA}_{\Delta} = \{(a,a) \mid a \in A\} \mathsf{U'U} \mathsf{TAP}$

diagonal relation (quan hệ đường chéo) J T - C N C P

Reflexive Closure

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Symmetric Closure

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations
Combining Relations

Representing Relations

Closures of Relations

Types of Relations

HOACN

Example

Let $R = \{(a, b), (a, c), (b, d), (c, a), (d, e)\}$

The symmetric closure of ${\it R}$

$$\{(a,b),(a,c),(b,d),(c,a),(d,e),(b,a),(d,b),(e,d)\}$$

 $R \cup R^{-1}$

where

$$T_{R^{-1}} = \{(b, a) \mid (a, b) \in R\} \cup T\widehat{AP}$$

inverse relation (quan hệ ngược)! CMUT-CNCP

Symmetric Closure

BACHKHOACNCP.COM

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Transitive Closure

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

MKHOACNCX

Example

Let $R = \{(a, b), (a, c), (b, d), (d, e)\}$

The transitive closure of R

 $\{(a,b),(a,c),(b,d),(d,e),(a,d),(b,e),(a,e)\}$

 $\cup_{n=1}^{\infty} R^n$

LIỆU SƯU TẬP

BỞI HCMUT-CNCP

BACHKHOACNCP

Transitive Closure

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

Equivalence Relations

Definition

A relation on a set A is called an **equivalence relation** (quan $h\hat{e}$ tương đương) if it is reflexive, symmetric and transitive.

Example (1)

The relation $R = \{(a,b)|a \text{ and } b \text{ are in the same provinces}\}$ is an equivalence relation. a is equivalent to b and vice versa, denoted $a \sim b$.

Example (2)

$$R = \{(a, b) \mid a = b \lor a = -b\}$$

R is an equivalence relation.

Example (3)

BOI HCMUT-CNCP

$$R = \{(x, y) \mid |x - y| \le 1\}_{\text{COM}}$$

Is R an equivalence relation? NO do ko co bc

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer Ngoc Le

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Example

Example (Congruence Modulo m - Dong du modulo m)

Let m be a positive integer with m>1. Show that the relation

$$R = \{(a,b) \mid a \equiv b \; (\mathbf{mod} \; m)\}$$

is an equivalence relation on the set of integers.

TÀI LIỆU SƯU TẬP

BACHKHOACNCP.COM

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Properties of Relations

Combining Relations
Representing Relations

Closures of Relations

osures of Relatio

Equivalence Classes

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

BK TP.HCM

Contents

Properties of Relations

Combining Relations

Representing Relations

Closures of Relations

Types of Relations

Definition

Let R be an **equivalence relation** on the set A. The set of all elements that are related to an element a of A is called the **equivalence class** ($l\acute{o}p$ tuong duong) of a, denoted by

$$[a]_R = \{s \mid (a,s) \in R\}$$

Example

The equivalence class of "Thủ Đức" for the equivalence relation "in the same provinces" is { "Thủ Đức", "Gò Vấp", "Bình Thạnh", "Quận 10",...}

Properties of Relations

Combining Relations Representing Relations

Closures of Relations

Types of Relations

Ngoc Le

Example

What are the equivalence classes of 0, 1, 2, 3 for congruence modulo 4?

Solution:

$$[0]_4 = \{..., -8, -4, 0, 4, 8, ...\}$$

$$[1]_4 = \{..., -7, -3, 1, 5, 9, ...\}$$

$$[2]_4 = {..., -6, -2, 2, 6, 10, ...}$$

$$[3]_4 = \{..., -5, -1, 3, 7, 11, ...\}$$

BỞI HCMUT-CNCP

Equivalence Relations and Partitions

Relations

Huynh Tuong Nguyen Tran Tuan Anh. Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations

Closures of Relations

Types of Relations

Representing Relations

Theorem

Let R be an equivalence relation on a set A. These statements for elements a and b of A are equivalent:

i aRb

[a] = [b] => co it nhat 2 pt giong nhau => giao khac rong

TÀI LIÊU SƯU TẬP

BỞI HCMUT-CNCP

Example 1

Relations

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations Representing Relations

Closures of Relations

Example

Suppose that $S = \{1, 2, 3, 4, 5, 6\}$. The collection of sets $A_1 = \{1, 2, 3\}, A_2 = \{4, 5\}, \text{ and } A_3 = \{6\} \text{ forms a partition of } S$ because these sets are disjoint and their union is S

The equivalence classes of an equivalence relation R on a set Sform a **partition** of S.

Every partition of a set can be used to form an equivalence relation. BỞI HCMUT-CNCP

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations

Representing Relations

Types of Relations

Example

Divides set of all cities and towns in Vietnam into set of 64 provinces. We know that:

- there are no provinces with no cities or towns
- no city is in more than one province
- every city is accounted for

Definition

A partition of a Vietnam is a collection of non-overlapping non-empty subsets of Vietnam (provinces) that, together, make up all of Vietnam.

Relation in a Partition

HOACNCA

We divided based on relation

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations

 $R = \{(a,b)|a \text{ and } b \text{ are in the same provinces}\}$

Representing Relations

Closures of Relations

Types of Relations

 "Thủ Đức" is related (equivalent) to "Gò Vấp"

 "Dà Lat" is not related (not equivalent) to "Long Xuyên"

Partial Order Relations

- Order words such that x comes before y in the dictionary
- Schedule projects such that x must be completed before y
- Order set of integers, where x < y

Definition

A relation R on a set S is called a **partial ordering** ($c\acute{o}$ thứ tự bộ phận) if it is reflexive, antisymmetric and transitive. A set S together with a partial ordering R is called a partially ordered set, or **poset** (tập $c\acute{o}$ thứ tự bộ phận), and is denoted by (S,R) or (S,\preccurlyeq) .

Example

- (\mathbb{Z}, \geq) is a poset $B \circ I H C M U T C N C P$
- Let S a set, $(P(S), \subseteq)$ is a poset

BACHKHOACNCP.COM

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations
Combining Relations

Representing Relations

Example

Relations

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Properties of Relations

Combining Relations Representing Relations

Closures of Relations

Totally Order Relations

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Properties of Relations

Combining Relations
Representing Relations

Closures of Relations

Types of Relations

Example

In the poset $(\mathbb{Z}^+,|)$, 3 and 9 are comparable (so sánh được), because $3\mid 9$, but 5 and 7 are not, because $5\nmid 7$ and $7\nmid 5$.

 \rightarrow That's why we call it **partially** ordering.

Definition

If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a **totally ordered** ($c\acute{o}$ $th\acute{u}$ $t\acute{u}$ $to\grave{a}n$ $ph\grave{a}n$). A totally ordered set is also called a **chain** ($d\^{a}y$ $x\acute{i}ch$).

Example

The poset (\mathbb{Z}, \leq) is totally ordered. CMUT-CNCP

Maximal & Minimal Elements

chi xet nhung ele co quan he R => ele lon nhat la max => trong 1 set co the co nhieu max

Definition

- a is maximal (cực đại) in the poset (S, \preceq) if there is no $b \in S$ such that $a \prec b$.
- a is minimal (cực tiểu) in the poset (S, \preceq) if there is no $b \in S$ such that $b \prec a$.

BACHKHOACNCP.COM

Relations

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Properties of Relations

Combining Relations
Representing Relations

Closures of Relations

iosures of Relatio

Ngoc Le

Greatest Element& Least Element

co quan he va lon nhat (ko nhat thiet phai co qhe R voi moi ele => chi co 1 greatest va 1 least \(\text{ } \alpha \)

Definition

- a is the greatest element (lón nhất) of the poset (S, \preccurlyeq) if $b \preccurlyeq a$ for all $b \in S$.
- a is the least element (nhỏ nhất) of the poset (S, ≼) if a ≼ b for all b ∈ S.

The greatest and least element are unique if it exists.

Example

Let S be a set. In the poset $(P(S),\subseteq)$, the least element is \emptyset and the greatest element is S.

BOI HCMUT-CNCP

BK TP.HCM

Contents

Properties of Relations

Combining Relations
Representing Relations

Closures of Relations

osures of Relation

Upper Bound & Lower Bound

Definition ngoai set && co qhe R voi moi ele trong set && lo Port Teory Anh, Nguyen Ngoc Le

Let $A \subseteq (S, \preccurlyeq)$.

- If u is an element of S such that $a \preccurlyeq u$ for all elements $a \in A$, then u is called an **upper bound** ($c\hat{a}n$ $tr\hat{e}n$) of A.
- If l is an element of S such that $l \preceq a$ for all elements $a \in A$, then l is called a **lower bound** $(c\hat{a}n \ du\acute{o}i)$ of A.

Contents

Properties of Relations
Combining Relations

Representing Relations

Closures of Relations