SENTIMENT ANALYSIS

Group 13

M11015802 Eng Tze Qian

M11015080 湯傑堯

M11015018 陳彦家

Outline

- Introduction
- Data Pre-processing
- Model
- Experiment
- Conclusion

Introduction

- Dataset and Explain

- Sentiment Labelled Sentences Data Set / ACL Imdb
 - It is the best movie I ever seen.
 - It is so boring.
- Dataset Split
 - Train: 80% | Val: 10% | Test: 10%
 - ACL IMDB / 50000
 - Amazon / 1000, IMDB / 1000, Yelp / 1000

Data Preprocessing

- Standard pre-processing techniques
 - Lowercasing
 - Stopwords Removal
 - Stemming and Lemmatization
 - Words embeddings (TF-IDF)
- Pre-processing Model
 - Tokenizer
 - Sequence Padding
 - Attention Mask

ULMFIT

Why Universal Language Model Fine-Tuning for Text Classification (ULMFiT)

- Transfer Learning technique used in various NLP tasks
 - Has been state-of-the-art in NLP technique
 - Perform well even on small and medium datasets

ULMFIT

- Fine-tuning the pretrained language model
 - The language model is trained on wikitext-103
 - Wikipedia English is slightly different from the IMDb English
 - Whole model is freezed except the word embeddings
- Fine-tuning the classifier
 - Discriminative learning rate
 - Gradual unfreezing

XLNet

- Why we use this model?
 - XLNet also incorporates the current optimal AR model
 Transformer-XL.
 - Overcome the shortcomings of BERT with its characteristics of AR.
 - Let the language model decompose sentences from sequential to random.

XLNet

Clean Text

Remove Punctuation, Numbers

Pre Trained Model

Load Model from Google

Tokenizer & Encode

'Hello' — [830]

Training & Fine-Tune

Train Accuracy

Train Loss

Output & Predict

Experiment

- Sentiment Labelled Analysis

	Amazon	IMDb	Yelp	Combined
SVM	81.9%	74.5%	78.5%	81.5%
Naive Bayes	78.9%	78.1%	80.0%	82.2%
CNN	71.0%	81.0%	74.0%	75.0%
ULMFIT	77.8%	74.2%	76.8%	84.4%
XLNet	89.5%	95.5%	89.3%	92.7%
				(Accuracy)

Experiment

- ACL IMDb

	Train	Val	Test
SVM	98.0%	87.0%	89.0%
LSTM	98.9%	80.9%	85.0%
NN	99.9%	86.2%	85.0%
CNN	98.1%	83.2%	84.0%
BERT	97.7%	93.9%	93.8%
ULMFIT	94.3%	94.1%	91.6%
XLNet	96.3%	94.1%	93.9%

(Accuracy)

Conclusion

- Transformer model (Bert, XLNet) is the current state-of-the-art approach
- XLNet has Best accuracy, but High cost.
 - For training 3000 datas with batch size 4 need up to 10 GB.
- Basic Neural Networks have serious over-fitting problem.
 - Epoch 1 has 61% accuracy and get 99% accuracy in Epoch 2.
- A well training model for IMDb may not be good in other environments.