

Indian Institute of Teণ্ডাপ্ট logy - Delhi

Brief history of Biosensors

O 1916	First report on immobilization of proteins: adsorption of invertase on activated charcoal
O 1922	First glass pH electrode
O 1956	Clark published his definitive paper on the oxygen electrode.
O 1962	First description of a biosensor: an amperometric enzyme electrodre for glucose (Clark)
O 1969	Guilbault and Montalvo – First potentiometric biosensor:urease immobilized on an ammonia electrode to detect urea
O 1970	Bergveld – ion selective Field Effect Transistor (ISFET)
O 1975	Lubbers and Opitz described a fibre-optic sensor with immobilised indicator to measure carbon dioxide or oxygen.

Structure of a Biosensor

A biosensor is an analytical device which is used to determine the presence and concentration of a specific substance in a biological analyte

http://dx.doi.org/10.15226/2471-3627/4/1/00116

What are different types of Biomarker?

Samples:

- 1. Blood
- 2. Urine
- 3. Fecal
- 4. Nasal swab
- 5. Body fluids
- 6. Tissue samples
- 7. Environmental sample
- 8. Breath
- 9. Food

What could be biomarkers??

- 1. Protein
- 2. DNA/RNA
- 3. Lipids
- 4. Metabolites
- 5. Ions/metals

Recognizing element

Bioreceptor: Antibody

Bioreceptor: Monoclonal Antibody

https://microbenotes.com/monoclonal-antibodies-types-uses-and-limitations/

Bioreceptor: Aptamers

https://doi.org/10.1523/JNEUROSCI.1969-16.2017

https://doi.org/10.1007/s00216-007-1346-4

Course evaluation plan

So far....

Minor 1 - 20 marks

Quiz - 10 marks

Lab components - 10 marks

Lecture plan:

Biosensor complete – 13th June

Bio fuels complete - 20th June (2 lectures)

Techno-commercial – 27th June (2 lectures)

For graduating students

Do it from home Minor 2 – 15 marks

Oral viva - 10 marks

Lab notebook - 10 marks

Business plan/Term paper – 25 marks

All lecture components will be completed before 30th June!

Request all the graduating students to complete submission by 5th July

Request all the others students to complete submission by 15th July

Optical transducer: Absorption

Color reaction

$$I_1/I_0 = e^{-\alpha lc}$$

l is the pass length

C is the concentration of absorbing material

 α is the absorption coefficient

Optical transducer: Fluorescence

An optical system for Florescence measurement

Optical transducer: Fluorescence

Optical transducer: Fluorescence probes

Fig. 3. (a) Ethidium bromide; (b) the process of intercalation, illustrating the lengthening and untwisting of the DNA helix.

Figure 10.2.15 Principle of coupled enzymatic assays using our Amplex® Red reagent. Oxidation of glucose by glucose oxidase results in generation of H₂O₂, which is coupled to conversion of the Amplex® Red reagent to fluorescent resorufin by HRP. The detection scheme shown here is used in our Amplex® Red Glucose/Glucose Oxidase Assay Kit (A22189).

Optical transducer: Fluorescence probes

Figure 10.1.16 Principle of the fluorogenic response to protease cleavage exhibited by HIV protease substrate 1 (H2930). Quenching of the EDANS fluorophore (F) by distance-dependent resonance energy transfer to the dabcyl quencher (Q) is eliminated upon cleavage of the intervening peptide linker.

FRET pairs: Peptide FRET pairs: Taqman probe

Reference: Thermofisher.com

https://www.abcam.com/kits/elisa-principle

Types of ELISA

COVID Virus Dx test Simultaneous absorbtion

COVID Antibody test

COVID Virus Dx test

COVID Virus Dx test, Sites have competitor molecules

- the antibodies fixed to a solid surface, such as the inner surface of a test tube;
- a preparation of the same antibodies coupled to an enzyme.

Amplification effect of Enzyme in biosensing

High sensitivity: K_{cat} >100 s⁻¹: results are amplified!

High specificity: Enzyme have high selectivity

Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics

Andrew D. Warren^{a,b,1}, Gabriel A. Kwong^{a,b,1}, David K. Wood^{c,1}, Kevin Y. Lin^{b,d}, and Sangeeta N. Bhatia^{a,b,e,f,g,h,2}

^aHarvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139; ^bDavid H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; ^cDepartment of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455; ^dChemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; ^eElectrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139; ^fDepartment of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; ^gBroad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139; and ^hHoward Hughes Medical Institute, Cambridge, MA 02139

Edited by Stephen R. Quake, Stanford University, Stanford, CA, and approved January 21, 2014 (received for review August 1, 2013)

Case study 1: Enzyme sensor for cancer detection

Case study 1: Enzyme sensor for cancer detection

ARTICLES

PUBLISHED ONLINE: 2 SEPTEMBER 2012 | DOI: 10.1038/NCHEM.1435

natur

Rapid point-of-care detection of the tubercontent pathogen using a BlaC-specific fluorogenic

Hexin Xie^{1†}, Joseph Mire^{2†}, Ying Kong^{3†}, MiHee Chang³, Hany A. Hassounah³, Chris N. T James C. Sacchettini², Jeffrey D. Cirillo³ and Jianghong Rao^{1*}

These probes showed an enhancement by 100–200 times in fluorescence emission on BlaC activation and a greater than 1,000-fold selectivity for BlaC over TEM-1 b-lactamase

CDC-1:
$$R^1 = Bn$$
, $R^2 = H$, $n = 0$
CDC-2: $R^1 = Bn$, $R^2 = H$, $n = 1$
CDC-5: $R^1 = Me$, $R^2 = H$, $n = 0$
CDC-0Me: $R^1 = Bn$, $R^2 = OMe$, $n = 0$
CDC-0Et: $R^1 = Bn$, $R^2 = OEt$, $n = 0$
CDC-3: $R^1 = EtN$

Figure 1 | General structures of blue fluorescent probes and their hydrolysis by β -lactamase (Bla), which triggers the release of umbelliferone and turns on fluorescence.

Case study 2: Enzyme sensor for TB detection

Thank you