Noise

Geoffrey Matthews

Department of Computer Science Western Washington University

Fall 2012

Noise

- Idea is to define a function that looks like the randomness we find in nature.
- Dirt, clouds, waves on the ocean, skin, all exhibit randomness.
- However, it is not white noise, seen at upper right. It is much smoother, as seen at lower right.
- Real world noise exhibits smoothness, going from dark to light gradually, with dark and light patches randomly distributed.
- How can we simulate that? We will add up smoothed white noise at different wavelengths, with the amplitude of the noise proportional to its wavelength.
- This is called pink noise.

Adding up sin curves

Adding up sin curves

Adding up scaled sin curves

Adding up scaled sin curves

Defining a lattice over screen space.

- Optionally, flip the origin to lower left.

latticeNoise: A white noise value for lattice points

- We start with just a single dimension, x (scaled to lattice space).
- latticeNoise only defined at integers.
- White noise values between 0 and 1
- Our space is generally too big for an array for all those numbers, so we will find a function latticeNoise(x) that uses less memory but is still very fast.

latticeNoise: a Simple Implementation

- Pick a modest array size, normally n = 256
 ... but for illustration we use n = 8
- Create an array of *n* floats evenly spaced between 0 and 1, *e.g.*, noiseTable = (0.00,0.14,0.29,0.43,0.57,0.71,0.86,1.00)
- We could randomize this table, but instead we randomize the index into this table. We use a permutation of the first n integers, e.g., hashTable = (5,2,7,1,0,3,4,6)
- Our function becomes
 latticeNoise(x): return noiseTable[hashTable[x%n]],
- This will be very fast.
- Note: The sequence repeats every n integers, but that won't be as important when we move up to 2 and 3 dimensions.

latticeNoise: a Simple Implementation

- Pick a modest array size, normally n = 256 ... but for illustration we use n = 8
- Create an array of *n* floats evenly spaced between 0 and 1, *e.g.*, noiseTable = (0.00,0.14,0.29,0.43,0.57,0.71,0.86,1.00)
- We could randomize this table, but instead we randomize the index into this table. We use a permutation of the first n integers, e.g., hashTable = (5,2,7,1,0,3,4,6)
- Our function becomes
 latticeNoise(x): return noiseTable[hashTable[x%n]],
- This will be very fast.
- Note: The sequence repeats every n integers, but that won't be as important when we move up to 2 and 3 dimensions.
- Do noiseTable and hashTable have to be the same size?

latticeNoise: A white noise value for lattice points

- hashTable = (5,2,7,1,0,3,4,6)
- noiseTable = (0.00,0.14,0.29,0.43,0.57,0.71,0.86,1.00)
- latticeNoise(x): return noiseTable[hashTable[x%n]]

lerpNoise: filling in between the lattice points

- One option is to use linear interpolation.
- Better than white noise.
- Easy to compute: lerp(pct, a, b): a + pct*(b-a)
- However, makes for a spikey curve, not like the noise we find in nature.

smerpNoise: Smoothly Interpolate Between the Integers

- This looks more like what we want.
- There are many ways to compute smooth curves through a set of points. Look up B-splines, Hermite curves, and Bezier curves.
- Here we want a simpler approach: an easily computable **S-curve** between each pair of points.

S-curve

- There are many S-curves, such as the **logistic function**, or even the **cosine** function between 0 and π , but we can come up with our own easily enough. It would help if we could avoid transcendental functions, too. (Why?)
- The S-curve we need smoothly maps the 0-1 interval to itself, and is horizontal at both ends.
- What might be a good approach?

S-curve

- On the left we plot $1-x^2$. This is zero at ± 1 , which means any curve that has this as its derivative will be horizontal at ± 1
- On the right we plot $x \frac{x^3}{3}$. Shifting and scaling leads to: smerp(pct, a, b):

$$x = ???$$

return
$$a + (??? + ???*x - ???*x*x*x)*(b-a)$$

smerpNoise: Smoothly Interpolate Between the Integers

- The curve height is always between 0 and 1.
- The derivative of the curve is zero at lattice points.
- Highest and lowest points will always be at lattice points.
- Repeats after *n* lattice points.
- We would like the curve to have more detail at smaller scales, so we move on to pink noise.

Pink Noise

- Lattice distance is arbitrary, so we can scale the lattice frequency.
- We can also scale the maximum amplitude.
- Here we show curves for *i* from 0 to 5:
 - smerpNoise(x*2**i)/2**i
- Amplitude has a 1/f relationship to frequency.

Pink Noise

- Here we show the sum for i from 0 to 5 of: smerpNoise(x*2**i)/2**i
- Sum is divided by 2. Why?
- This is also an example of fractal Brownian motion (fBm).

Pink Noise

- If we look at a larger range, we can see that it still repeats after *n* integers. Why?
- Could we fix that? How?

Pink Noise without repeats

• We rescale each wavelength by a small amount, so they don't line up.

Pink Noise without repeats

- When we add them up they don't repeat for a long time.
- This would be even more effective with a larger *n*, *e.g.* 256.
- However, we won't do this because the problem will be solve itself in higher dimensions.

Lattice Noise in 2D

• For lattice noise in 2D we could use a two dimensional array of noise values, and a hashed lookup into that table:

```
latticeNoise(x,y):
 noiseTable[hashTable[x%n], hashTable[y%n]]
```

... but there's a better way.

Lattice Noise in 2D

 We hash both x and y to get a single lookup into the same one-dimensional noise table:

```
latticeNoise(x,y):
noiseTable[hashTable[(x + hashTable[y\n])\n]]
```

- This solves the repetition problem, too. Why?
- What would we do in 3D? 4D?

Smooth Noise in 2D

 Now that we have our random values at the corners, we need to smoothly interpolate the ones in between:

```
smerpNoise2(x, y):
 intx = floor(x)
 inty = floor(y)
 pctx = x - intx
 pcty = y - inty
 aa = latticeNoise2(intx, inty)
 ab = latticeNoise2(intx, inty+1)
 ba = latticeNoise2(intx+1, inty)
 bb = latticeNoise2(intx+1, inty+1)
 xa = smerp(pctx, aa, ba)
 xb = smerp(pctx, ab, bb)
 return smerp(pcty, xa, xb)
```


Smooth Noise in 2D

- What does the interpolation function look like in 3D?
- 4D?
- Do you see a problem?
- Look up simplex noise.

Smooth Noise in 2D

Doing this over the whole lattice gives us smooth noise in 2D.

Pink Noise in 2D

 If we add up many smooth noises of shorter wavelength and smaller amplitude we end up with 2D pink noise.

Pink Noise in 2D

• Smooth noises at diminishing wavelengths:

• The pink noise sum of the above, amplitude diminishing with wavelength:

Colorizing noise for different effects

Sky Terrain

Effects of starting wavelength and number of octaves

Tilable noise

• How can we do this?

Tilable noise

3D noise: solid textures and animations

Online Resources

Readings

- http://www.noisemachine.com/talk1/
- http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
- http://en.wikipedia.org/wiki/White_noise
- http://en.wikipedia.org/wiki/Pink_noise
- http://mrl.nyu.edu/~perlin/doc/oscar.html
- http://legakis.net/justin/MarbleApplet/
- http://www.planetside.co.uk/

Grad students:

• http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf