IRR: Internal Rate Return

ตัวชี้วัดประสิทธิผลการลงทุนตัวหนึ่งคือ Internal Rate of Return (IRR) มีสูตรดังนี้

$$\sum_{y=0}^{M} \frac{c_y}{(1+IRR)^y} = 0$$

- ullet M คือจำนวนปีของการลงทุน (เริ่มปีที่ 0 ถึงปีที่ M)
- ullet c_y คือเงินที่ได้ในปีที่ y (ถ้าค่านี้ติดลบ แปลว่า เราต้องจ่ายเงินออก แต่ถ้าเป็นบวก แปลว่าเราได้เงินเข้า)

เช่น M=4 และ c_0 , c_1 , c_2 , c_3 , $c_4=-100$, 20, 30, 40, 50 ตีความว่า เริ่มลงทุนครั้งแรก 100 (ให้สังเกตว่าเป็นจำนวนลบ) พอปีถัดไปเราได้เงินกลับมา 20, 30, 40 และ 50 ตามลำดับ อยากรู้ว่า IRR มีค่าเท่าใด

ต้องบอกก่อนว่า ไม่มีสูตรสำเร็จในหาค่าของ IRR จาก $c_0,\,c_1,\,...,\,c_M$ (คือไม่มีสูตร IRR=...)

วิธีคำนวณหา IRR จึงเป็นการลองแทน IRR ด้วยค่าต่าง ๆ จนได้ค่าที่ทำให้สมการข้างบนเป็นจริง คือได้ผลรวมทางซ้ายเท่ากับ ศูนย์ หรือใกล้เคียงศูนย์มาก ๆ

จงเขียนโปรแกรมรับค่า M และ $c_0, c_1, ..., c_M$ เพื่อหาค่า IRR

ข้อมูลนำเข้า

บรรทัดแรกเป็นจำนวนเต็มบวก M (มีค่าไม่เกิน 30)

บรรทัดที่สอง เป็นรายการของจำนวนจริง $c_0, c_1, ..., c_M$ แต่ละจำนวนคั่นด้วยช่องว่าง ข้อมูลที่ใช้ทดสอบ มีค่า IRR ที่เป็นไปได้ในช่วง (-1.0, 1.0] เท่านั้น ไม่อยู่นอกช่วงนี้แน่ ๆ

ข้อมูลส่งออก

ค่า IRR ของข้อมูลการลงทุนที่รับทางอินพุต ที่ทำให้ผลรวม $\sum_{y=0}^{M} \frac{c_y}{(1+IRR)^y}$ มีค่าเป็น 0 หรือต่างจาก 0 ไม่เกิน 10^{-8} ให้แสดงค่าที่หาได้ ด้วยคำสั่ง cout << setprecision(8) << irr << endl; (ต้อง #include <iomanip> ด้วย)

ตัวอย่าง	
input (จากแป้นพิมพ์)	output (ทางจอภาพ)
4 -100 20 30 40 50.0	0.12825727
4 -150.0 -150 100 150 100	0.063862946
5 -100.0 10 20 30 20 10.0	-0.034250022

ข้อแนะนำ

- ควรใช้วิธี bisection ในการหา IRR
 - \bigcirc ถ้า $\sum_{y=0}^{M} \frac{c_y}{(1+IRR)^y}$ มีค่า<mark>มากกว่า 0</mark> ก็ควรเพิ่มค่า IRR เพื่อให้ค่า $\sum_{y=0}^{M} \frac{c_y}{(1+IRR)^y}$ ลดลง ใกล้ 0 มากขึ้น และในทางกลับกัน ถ้า $\sum_{y=0}^{M} \frac{c_y}{(1+IRR)^y}$ น้อยกว่า 0 ก็ควรลดค่า IRR

ตัวอย่างการประมาณค่า \sqrt{a} ด้วยวิธี Bisection

- 1. ให้ L = 0, U = a
- 2. เริ่มให้คำตอบอยูในช่วง [L, U]
- x =จุดกึ่งกลางของช่วง
- 4. ทำข้างล่างนี้ซ้ำ ถ้า x^2 ยังมีค่า<u>ไม่ใกล้</u>กับ a ("ใกล้" เมื่อ $|a-x^2| \leq 10^{-8} \max{(a,x^2)}$)
 - ถ้า $x^2 > a$ ก็เปลี่ยนช่วงเป็น [L, x]
 - ถ้า $x^2 < a$ ก็เปลี่ยนช่วงเป็น [x, U]
- 5. x คือค่าประมาณของ \sqrt{a} เมื่อออกจากวงวน