Amendments to the Claims:

This listing of the claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-3. (Canceled)

- 4. (Currently Amended) The method according to claim 31, wherein the resulting microparticles have an average particle diameter of 0.01[[.]]
 µm to 150 µm.
- 5. (Previously Presented) The method according to claim 31, wherein the resulting microparticle is a drug carrier.
- 6. (Previously Presented) The method according to claim 31, wherein the resulting microparticle is a sustainedrelease drug carrier.
- 7. (Previously Presented) The method according to claim 31, wherein the dilute solution before the crosslinking reaction contains a drug, and the drug is held in microparticles obtained after the crosslinking reaction.

- 2 -

8. (Original) The method according to claim 7, wherein the crosslinking reaction does not cause drug denaturation even in the presence of the drug.

9-10. (Canceled)

11. (Withdrawn) The method according to claim 1, wherein the crosslinking reaction is a reaction in which crosslinkages are formed by reaction between hydrazide group and an activated carboxylic acid ester.

12-19. (Canceled)

20. (Withdrawn - Currently Amended) The microparticle according to claim 1231, wherein the erosslinkage crosslinkable functional group is a mercapto group, and the crosslinking reaction is a reaction in which crosslinkages are formed by disulfide formation.

21. (Canceled)

22. (Withdrawn - Currently Amended) The microparticle according to claim 1231, wherein the crosslinking reaction is a reaction in which crosslinkages are

- 3 -

formed by reaction between a hydrazide group and an activated carboxylic acid ester.

23. (Canceled)

- 24. (Previously Presented) The method according to claim 4, wherein the resulting microparticle is a drug carrier.
- 25. (Previously Presented) The method according to claim 24, wherein the resulting microparticle is a sustainedrelease drug carrier.
- 26. (Currently Amended) the method according to claim 25, wherein the dilute solution before the crosslinking reaction contains a drug, and the dug drug is held in the microparticles obtained after the crosslinking reaction.
- 27. (Previously Presented) The method according to claim 26, wherein the crosslinking reaction does not cause drug denaturation even in the presence of the drug.

28-30. (Canceled)

- 4 -

- 31. (Currently Amended) A method for preparing crosslinked polysaccharide microparticles, which eemprise comprises the following steps:
- a) preparing a dilute solution containing (1) a polysaccharide derivative having at least one erosslinkage crosslinkable functional group in a range of 0.1 to 5% (w/v) and (2) a crosslinking agent;
- b) dispersing the solution by spraying to form microparticulate droplets; and
- c) concentrating the solution contained in the droplets to facilitate a crosslinking addition reaction of the polysaccharide derivative between a mercapto group and a <u>an</u> unsaturated C-C bond;

wherein steps b) and c) are carried $\underline{\text{out}}$ in a spray drying procedure;

wherein the polysaccharide derivative is a hyaluronic acid derivative comprising at least one repeating unit represented by Formula (I);

[Formula I]

 R_1 represents a hydrogen atom, a linear or branched C_{2-10} alkyl group, a linear or branched C_{1-10} hydroxyalkyl group, a polyalkylene oxide group, a polypeptide group or a polyester group,

 R_{a2} , R_{a3} , R_{a4} , R_{a5} and R_{a6} each independently represent a hydrogen atom, a linear or branched C_{1-6} alkyl group, a linear or branched C_{2-6} alkenyl group, a linear or branched C_{2-6} alkynyl group, a linear or branched C_{1-16} alkylcarbonyl group, a linear or branched C_{1-16} alkylcarbonyl group, a linear or branched C_{2-6} alkenylcarbonyl group, a linear or branched C_{2-6} alkenylcarbonyl group, a linear or branched C_{2-16} alkynylcarbonyl group or - SO₂OH,

 $Y_1 \text{ represents a single bond, } -N\left(-R_3\right)CO-, \ -N\left(-R_3\right)-, \ -CO- \text{ or } -CH_2CO-,$

 Y_2 represents a single bond, $-CON(-R_4)$ - or $-N(-R_4)$ -,

 Q_1 represents a linear or branched C_{1-10} alkylene group, a linear or branched C_{1-10} hydroxyalkylene group, a polyalkylene oxide group, a polyapeptide group or a polyester group,

 R_2 , R_3 and R_4 each independently represent a hydrogen atom, a <u>linear_linear_or</u> branched C_{1-10} alkyl group, a linear or branched C_{1-10} hydroxyalkyl group, a polyalkylene oxide group, a polypeptide group or a polyester group,

 $Y_3 \mbox{ represents a single bond, -CO-, -CO_2-, -CH_2-} \label{eq:Y3}$ CH(OH)- or -CONH-, and

 \mathbb{Q}_2 represents a linear or branched $\mathbb{C}_{1\cdot 10}$ alkylene group, a linear or branched $\mathbb{C}_{1\cdot 10}$ hydroxyalkylene group, a polyalkylene oxide group, a polyapeptide group or a polyester group,

and the crosslinking agent is a compound having two or more unsaturated C-C bond-containing groups; or

the polysaccharide derivative is a hyaluronic acid derivative comprising at least one repeating unit represent by Formula (II):

[Formula 2]

wherein X_3 represents $-Y_1-Q_1-Y_2-N(-R_2)-Y_3-Q_4$ or $-n\cdot(-R_2)-Y_3-Q_4$ -N(-R₂)-Y₃-Q₄,

 R_1 represents a hydrogen atom, a linear or branched $C_{1\cdot 10}$ alkyl group, a linear or branched $C_{1\cdot 10}$ hydroxyalkyl group, a polyalkylene oxide group, a polypeptide group or a polyester group,

 $R_{a2},\ R_{a3},\ R_{a4},\ R_{a5}\ and\ R_{a6}\ each\ independently\ represent$ a hydrogen atom, a linear or branched C_{1-6} alkyl group, a linear or branched C_{1-6} —alkenyl C_{2-6} alkenyl group, a linear or branched C_{1-6} —alkynyl C_{2-6} alkynyl group, a linear or branched C_{1-36} —alkylearbenyl C_{2-6} alkylearbenyl group, a linear or branched C_{2-6} —alkenylearbenyl C_{2-6} alkenylearbenyl group, a linear or branched C_{2-16} —alkynylearbenyl C_{2-6} alkynylearbenyl group or $-SO_2OH$,

 $Y_1 \mbox{ represents a single bond, } -N(-R_3)CO-, \mbox{ } -N(-R_3)-, \mbox{ } -CO- \mbox{ or } -CH_2CO-,$

 Y_2 represents a single bond, $-CON(-R_4)$ - or $-N(-R_4)$ -,

- Y3 represents a single bond, -CO- or -CH2CO-,
- Q_1 represents a linear or branched C_{1-10} alkylene group, a linear or branched C_{1-10} hydroxyalkylene group, a polyalkylene oxide group, a polypeptide group or a polyester group,
- R_2 , R_3 and R_4 each independently represent a hydrogen atom, a <u>Hiner linear</u> or branched C_{1-10} alkyl group, a linear or branched C_{1-10} hydroxyalkyl group, a polyalkylene oxide group, a polypeptide group or a polyester group,
- Q_4 represents a linear or branched $C_{2\text{-}10}$ alkenyl group, a linear or branched $C_{2\text{-}10}$ alkynyl group, and the crosslinking agent is a compound having two or more mercapto groups.
- 32. (Previously Presented) The method according to claim 5, wherein the crosslinked polysaccharide microparticles are injectable.
- 33. (Previously Presented) The method according to claim 5, wherein the drug is a protein.
- 34. (Previously Presented) The method according to claim 6, wherein the sustained release period of the carrier is 24 hours or more.

- 35. (Previously Presented) The method according to claim 6, wherein the sustained release period of the carrier is 5 days or more.
- 36. (Previously Presented) The method according to claim 6, wherein the drug is released upon enzymatic digestion.

- 10 -