Predictive Analytics for NYC Taxi Trip Duration

DS-670: Capstone Bigdata & Data science

Veera Reddy

Sridivya Gorantla

Bhargavi

Karim

Saleem

Nikhil

Introduction

Objective:

- Overview of the NYC taxi industry and its significance
- Importance of accurate trip duration predictions for various stakeholders
- Dataset source: Kaggle competition "NYC Taxi Trip Duration"
- Project goal: Develop a machine learning model to predict taxi trip durations
- Potential impact: Improved service efficiency and customer satisfaction
- Challenges: Complex urban environment, traffic patterns, and external factors

Problem Statement

- Primary objective:
 - Predict the duration of taxi trips in New York City
 - Build predictive models to estimate trip durations accurately.
 - Analyze influential factors like weather, trip distance, and traffic patterns
- Key questions to address:
 - 1. What factors most significantly influence trip duration?
 - 2. How can we accurately model the relationship between these factors and trip time?
 - 3. Can we create a robust model that generalizes well to unseen data?
- Evaluation metric:

RMSE, R-squared, MAE

• Additional goals: Gain insights into NYC taxi operations and travel patterns

Dataset Overview

- Source: 2016 NYC Yellow Cab trip record data
- Features: id, vendor_id, pickup_datetime, dropoff_datetime, passenger_count, pickup_longitude, pickup_latitude, dropoff_longitude, dropoff_latitude, store_and_fwd_flag
- Target variable: trip_duration (in seconds)
- Dataset size: 1,458,644 trip records
- Time period covered: January 1 to June 30, 2016
- Geographical scope: New York City's five boroughs

_id	pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	store_and_fwd_flag	trip_duration
2	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.982155	40.767937	-73.964630	40.765602	N	455
1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.980415	40.738564	-73.999481	40.731152	N	663
2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.979027	40.763939	-74.005333	40.710087	N	2124
2	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040	40.719971	-74.012268	40.706718	N	429
2	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.973053	40.793209	-73.972923	40.782520	N	435

Flow Chat

Data Preprocessing

- Handling missing values and outliers
- Feature engineering: Extracting time-based features (hour, day, month, weekday)
- Calculating trip distance using Haversine formula
- Creating trip categories (short, medium, long) based on duration
- Coordinate transformation and normalization
- Encoding categorical variables (e.g., vendor_id, store_and_fwd_flag)
- Splitting data into training and validation sets (80/20 ratio)

dropoff_datetime	passenger_count	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	store_and_fwd_flag	trip_duration	trip_distance
2016-03-14 17:32:30	1	-73.982155	40.767937	-73.964630	40.765602	N	455	1.498523
2016-06-12 00:54:38	1	-73.980415	40.738564	-73.999481	40.731152	N	663	1.805510
2016-01-19 12:10:48	1	-73.979027	40.763939	-74.005333	40.710087	N	2124	6.385107
2016-04-06 19:39:40	1	-74.010040	40.719971	-74.012268	40.706718	N	429	1.485500
2016-03-26 13:38:10	1	-73.973053	40.793209	-73.972923	40.782520	N	435	1.188590

Exploratory Data Analysis (EDA)

- Distribution of trip durations and distances
- Temporal patterns: hourly, daily, and monthly trends
- Geographical analysis: popular pickup/dropoff locations
- Correlation analysis between features and trip duration
- Passenger count impact on trip duration
- Vendor comparison and performance analysis

Hourly Trend of Vendor Activity

Weekly Trend of Vendor Activity

Monthly Trend of Vendor Activity

Trip Duration Outliers

Feature Selection and Engineering

- Importance of relevant features for prediction
- Techniques used:
 - Correlation analysis with target variable
 - Feature importance from tree-based models (Random Forest)
 - Domain knowledge and intuition
- Selected features and rationale behind each
- Additional engineered features:
 - Time-based features (rush hour, weekend/weekday)
 - Geographical features (borough, neighborhood)

Model Selection

- Comparison of various machine learning algorithms:
 - Linear Regression (baseline model)
 - Random Forest Regressor
 - Gradient Boosting (XGBoost, LightGBM)
 - Neural Networks (if applicable)
- Evaluation metrics:
 - RMSE, R-squared, MAE
- Cross-validation strategy: Time-based splitting to prevent data leakage
- Hyperparameter tuning using GridSearchCV or RandomizedSearchCV

Model Training and Optimization

- Training process for each model type
- Hyperparameter optimization results
- Learning curves analysis
- Feature importance analysis from tree-based models
- Ensemble methods: Stacking top-performing models

Linear Regression

Mean Absolute Error (MAE): 352.4231

Mean Absolute Percentage Error (MAPE): 2.95%

Root Mean Squared Error (RMSE): 424.5169958502619

R-squared (R²): 0.8004161005121733

Decision Tree

Mean Absolute Error (MAE): 0.0000

Mean Absolute Percentage Error (MAPE): 0.00%

Root Mean Squared Error (RMSE): 0.0

R-squared (R^2): 1.0

Random Forest

Mean Absolute Error (MAE): 0.0000 Mean Absolute Percentage Error (MAPE): 0.00% Root Mean Squared Error (RMSE): 0.0

R-squared (R^2): 1.0

LightGBM

Mean Absolute Error (MAE): 7.1243

Mean Absolute Percentage Error (MAPE): 0.06%

Root Mean Squared Error (RMSE): 8.02819167353052

R-squared (R²): 0.9999286209432355

Results and Model Evaluation

- Performance comparison of different models
- Best model selection based on RMSE and other metrics
- Analysis of prediction errors and residuals
- Model interpretability: SHAP values or partial dependence plots

Future Work and Improvements

- Incorporating additional data sources (weather, events, traffic)
- Exploring advanced techniques (e.g., LSTM networks for time series)
- Developing a real-time prediction system
- Extending the model to other cities or transportation modes
- Potential for a production-ready application or API

Thank You