PS07-04

February 19, 2018

Proof. by contradiction Suppose for the sake of contradiction that f is computable and the machine F takes [D,M] and returns D' such that L(D')=L(D)/L(M)

Let D be an all-accept DFA.

If $L(M) = \emptyset$, then $L(D') = \emptyset$

If $L(M) \neq \emptyset$, then $L(D') = \Sigma^*$

I will try to solve E_{TM} using a new machine N.

On input [M]:

- 1. Run F on [D, M]
- 2. Run resulting DFA through $M_{\rm DFA}\dagger$
- 3. accept if $M_{\rm DFA}$ accepts, reject if $M_{\rm DFA}$ rejects

† This machine was proven recursive in class.

$$[M] \in \mathcal{E}_{TM} \Leftrightarrow M \in L(N)$$

 $\Leftrightarrow L(M) = \varnothing$

$$[M] \notin \mathcal{E}_{TM} \Leftrightarrow M \notin L(N)$$

 $\Leftrightarrow L(M) \neq \varnothing$

This decides E_{TM} , which is a provably non-recursive language, thus a Contradiction! \Box