HW3

Kevin Chang

October 13, 2025

1

Recall that for a vector $w \in \mathbb{R}^d$, $\mathcal{H}_w := \{z : \langle w, z \rangle = 0\}$. Let $S = \{(x_i, y_i)\}$ be a set of linearly separable data in \mathbb{R}^d (i.e., $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$). Define the set \mathcal{M}_S to be the set of all vectors which separate the data with large dot product:

$$\mathcal{M}_S = \{w : y_i < w, x_i \ge 1 \text{ for } i = 1, ..., n\}.$$

• Let w^* denote the element of \mathcal{M}_S with smallest norm. Show that for any other w that separates the data

$$\min dist_{1 \le i \le n}(x_i, \mathcal{H}_w) \le \min_{1 \le i \le n} dist(x_i, \mathcal{H}_{w^*}).$$

Recall that for any nonzero vector $w \in \mathbb{R}^d$, the distance from a point x to the hyperplane $\mathcal{H}_w := \{z : \langle w, z \rangle = 0\}$ is given by

$$\operatorname{dist}(x, \mathcal{H}_w) = \frac{|\langle w, x \rangle|}{\|w\|}.$$

If w separates the data, then $y_i\langle w, x_i\rangle > 0$ for all i, hence

$$\min_{i} \operatorname{dist}(x_{i}, \mathcal{H}_{w}) = \frac{\min_{i} y_{i} \langle w, x_{i} \rangle}{\|w\|}.$$

Define

$$\mathcal{M}_S = \{ w \in \mathbb{R}^d : y_i \langle w, x_i \rangle \ge 1, \ i = 1, \dots, n \}.$$

Let $w^* \in \mathcal{M}_S$ be the element of smallest norm. For any separating w, define

$$\gamma := \min_{i} y_i \langle w, x_i \rangle > 0$$
, and $\tilde{w} := \frac{w}{\gamma}$.

Then $\tilde{w} \in \mathcal{M}_S$, since

$$y_i \langle \tilde{w}, x_i \rangle = \frac{y_i \langle w, x_i \rangle}{\gamma} \ge 1.$$

Hence

$$\min_{i} \operatorname{dist}(x_{i}, \mathcal{H}_{w}) = \frac{\gamma}{\|w\|} = \frac{1}{\|\tilde{w}\|}.$$

Because w^* minimizes ||w|| over \mathcal{M}_S ,

$$||w^*|| \le ||\tilde{w}||,$$

which implies

$$\min_{i} \operatorname{dist}(x_{i}, \mathcal{H}_{w}) \leq \min_{i} \operatorname{dist}(x_{i}, \mathcal{H}_{w^{*}}).$$

Thus, w^* achieves the maximum margin among all separating hyperplanes.

• Show that there are real numbers α_i such that $w^* = \sum_{i=1}^n \alpha_i x_i$. Consider the convex optimization problem:

$$\min_{w} \frac{1}{2} ||w||^2 \quad \text{subject to} \quad y_i \langle w, x_i \rangle \ge 1, \ i = 1, \dots, n.$$

The Lagrangian is

$$\mathcal{L}(w,\alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^n \alpha_i (y_i \langle w, x_i \rangle - 1), \quad \alpha_i \ge 0.$$

Setting the derivative with respect to w to zero (stationarity condition) yields:

$$\nabla_w \mathcal{L} = w - \sum_{i=1}^n \alpha_i y_i x_i = 0 \quad \Rightarrow \quad w^* = \sum_{i=1}^n \alpha_i y_i x_i.$$

Thus, w^* lies in the span of the training examples $\{x_i\}$.

• Show that the α_i can be chosen so that $y_i\alpha_i$ are all nonnegative. Define $\tilde{\alpha}_i := \alpha_i y_i$. Then

$$w^* = \sum_{i=1}^n \tilde{\alpha}_i x_i$$
, and $y_i \tilde{\alpha}_i = y_i^2 \alpha_i = \alpha_i \ge 0$.

Hence, the coefficients can be chosen so that $y_i \alpha_i \geq 0$ for all i.

 $\mathbf{2}$

Let u and v be D-dimensional unit vectors. Let M be a random matrix of dimension $d \times D$. Each entry of M is generated iid from a normal distribution with mean 0 and variance 1/d.

- 1. Show that $\mathbb{E}[\langle Mu, Mv \rangle] = \langle u, v \rangle$.
- 2. Suppose $d \geq \frac{8}{\epsilon^2}$. Show that with probability at least $1 e^{-1} e^{-2}$,

$$\langle Mu, Mv \rangle > \langle u, v \rangle - \epsilon.$$

3. Now let's apply this to machine learning. Consider a set of n examples in D dimensional space that is linearly separable with margin y. That is, there are n examples, (x_i, y_i) with $y_i \in \{-1, 1\}$ and $||x_i|| \leq R$, and there is a unit vetor w so that $y_i \langle w, x_i \rangle \geq y$ for all i. Suppose that

$$d \ge 32 \frac{R^2}{\gamma^2} \log(4n).$$

Show that with probability at least 1/2, $y_i\langle Mw, Mx_i\rangle \geq \frac{\gamma}{2}$ for all i. We can think of the vectors Mx_i as embeddings of the original data set in a lower dimensional space. This problem shows a random embedding already preserves much of the linear separability of data. An optimized embedding can do only better.

4. For parts 2 and 3, you can use the following fact about Gaussian random variables. If g_1, \ldots, g_k are independent Gaussian random variables with mean zero and variance 1, then

$$Pr\left[\frac{1}{m}\sum_{i=1}^{m}g_{i}^{2}\geq1+\epsilon\right]\leq\exp\left(-\frac{m\epsilon^{2}}{8}\right)$$

$$Pr\left[\frac{1}{m}\sum_{i=1}^{m}g_{i}^{2}\geq1-\epsilon\right]\leq exp\left(-\frac{m\epsilon^{2}}{4}\right)$$

3

Consider the function $k:(0,1)\times(0,1)\to\mathbb{R}$ defined by $k(x_1,x_2)=\min\{x_1,x_2\}$.

- 1. Prove that k is a valid kernel (Hint: write k as the integral of a product of two simple functions and then prove that its Gram matrices are positive semi-definite).
- 2. Now, consider a training set $\{(x_i, y_i)\}_{i=1,\dots,n}$ with $y_i \in \mathbb{R}$ and distinct points x_i in (0,1). Show that if we ran kernel regression without regularization on this data set, we would obtain zero training error. More precisely, find explicit coefficients α_j , in terms of the training data, such that for all points (x_i, y_i) in the training set we have

$$\sum_{j=1}^{n} \alpha_j \min\{x_j, x_i\} = y_i.$$