Numerical pesign a MOSFET current source circuit to meet a set of specifications.

The bias voltages are V+=2.5 V and V-=0. Transistors are available with parameters k = 100 μ A/V², VT N = 0.4 V, and $\lambda = 0$. Design the circuit such that $I_{REF} = 100 \mu$ A. $I_{O} = 60 \mu$ A. and $V_{DS2(Sat)} = 0.4$ V We have $V_{DS2}(\text{sat}) = 0.4 = V_{GS2} - 0.4$, so that $V_{GS2} = V_{GS1} = 0.8 \text{ V}$ Then for transistor M_2 ,

$$\left(\frac{W}{L}\right)_2 = \frac{I_0}{\left(\frac{k'_n}{2}\right)(V_{GS2} - V_{TN})^2} = \frac{60}{\left(\frac{100}{2}\right)(0.8 - 0.4)^2} = 7.5$$

For transistor M_1 ,

$$\left(\frac{W}{L}\right)_1 = \frac{I_{\text{REF}}}{\left(\frac{k'_n}{2}\right)(V_{GS1} - V_{TN})^2} = \frac{100}{\left(\frac{100}{2}\right)(0.8 - 0.4)^2} = 12.5$$

WKT

From the circuit, we see that

$$V_{GS1} + V_{GS3} = V^+ - V^-$$

The value of V_{GS3} is found as

$$V_{GS3} = (V^+ - V^-) - V_{GS1} = 2.5 - 0.8 = 1.7 \text{ V}$$

Then for transistor M_3 we find

$$\left(\frac{W}{L}\right)_3 = \frac{I_{\text{REF}}}{\left(\frac{k'_n}{2}\right)(V_{GS3} - V_{TN})^2} = \frac{100}{\left(\frac{100}{2}\right)(1.7 - 0.4)^2} = 1.18$$

Problem Statement

Consider the MOSFET current-source circuit in Figure with $V^+ = +2.5 \text{ V}$ and $R = 15 \text{ k}\Omega$. The transistor parameters are $V_{TN} = 0.5 \text{ V}$, $k'_n = 80 \ \mu\text{A/V}^2$, W/L = 6, and $\lambda = 0$. Determine I_{REF} , I_O , and $V_{DS2}(\text{sat})$.

$$I_{REF} = \frac{2.5 - V_{GS}}{15} = \left(\frac{0.08}{2}\right) (6) (V_{GS} - 0.5)^{2}$$

$$2.5 - V_{GS} = 3.6 \left(V_{GS}^{2} - V_{GS} + 0.25\right)$$

$$3.6V_{GS}^{2} - 2.6V_{GS} - 1.6 = 0$$

$$V_{GS} = \frac{2.6 \pm \sqrt{6.76 + 23.04}}{2(3.6)}$$

$$V_{GS} = 1.12 \text{ V} (1.1193)$$

$$V_{GS} = 1.12 \text{ A} \left(1.1193\right)$$

$$I_{REF} = \frac{2.5 - 1.1193}{15} \Rightarrow I_{REF} = 92.0 \ \mu\text{A} \ (92.05)$$
 $I_o = 92.0 \ \mu\text{A}$

$$V_{DS2}$$
 (sat) = $V_{GS} - V_{TN} = 1.1193 - 0.5$
 V_{DS2} (sat) = 0.619 V

$$V_{DS2}\left(\mathrm{sat}\right) = 0.619 \mathrm{\ V}$$

MOSFET Current source circuit

$$V^+ = 2V$$

Parameters are $V_{TN} = 0.5V K_n = 80 \mu A / V^2, V_{DS2}(sat) = 0.25V \text{ and } \lambda = 0.015V^{-1}$

(a) Design the circuit such that $I_{REF} = 50 \mu A$ and normal bias current $I_0 = 100 \mu A$ (b) Find the output resis $\tan ce(R_a)$

(c) Deter min e the percentatge change in I_0 for a change in drian to source voltage $\Delta V_{DS2} = 1V$

1

$$\begin{split} I_{REF} &= 50 = \left(\frac{80}{2}\right) \left(\frac{W}{L}\right)_{1} \left(V_{GS} - 0.5\right)^{2} \\ I_{REF} &= 0.050 = \frac{2.0 - V_{GS}}{R} \end{split}$$

Design such that V_{DS2} (sat) = $0.25 = V_{GS} - 0.5$ $V_{GS} = 0.75$ V

$$0.050 = \frac{2 - 0.75}{R} \Rightarrow \underline{R = 25 \text{ K}}$$

$$50 = \left(\frac{80}{2}\right) \left(\frac{W}{L}\right)_{1} (0.75 - 0.5)^{2} \Rightarrow \left(\frac{W}{L}\right)_{1} = 20$$

$$\frac{\left(\frac{W}{L}\right)_{1}}{\left(\frac{W}{L}\right)_{2}} = \frac{I_{REF}}{I_{o}} \Rightarrow \frac{20}{\left(\frac{W}{L}\right)_{2}} = \frac{50}{100} \Rightarrow \left(\frac{W}{L}\right)_{2} = 40$$

$$\frac{\Gamma}{L}$$

2

$$R_O = \frac{1}{\lambda I_O} = \frac{1}{(0.015)(0.1)} \Rightarrow R_O = 667 \text{ K}$$

$$\Delta I_O = \frac{\Delta V}{R_O} = \frac{1}{666} \Rightarrow 1.5 \ \mu A$$

Ro 666

3

$$\Delta I_O = \frac{\Delta V}{R_O} = \frac{1}{666} \Rightarrow 1.5 \ \mu\text{A}$$
$$\frac{\Delta I_O}{I_O} \times 100\% = \left(\frac{1.5}{100}\right) \times 100\% \Rightarrow \underline{1.5\%}$$

 I_O (100)

Jesign a MOSFET current source circuit to meet a set of specifications.

The bias voltages are V+=5 V and V-=0. Transistors are available with parameters k n=20 $\mu A/V^2$, VT N=1 V, and $\lambda=0$. Design the circuit such that $I_{REF}=0.25$ mA, $I_{O}=0.1$ mA, and $V_{DS2(sat)}=0.85$ V

Calculate the dc characteristics of a MOSFET diffamp

Consider the diff – amp shown in Figure 11.20. The transistor parameters are $K_{n1} = K_{n2} = 0.1 \, \text{mA} / \text{V}^2$, $Kn_3 = Kn_4 = 0.3 \, \text{mA} / \text{V}^2$, and for all transistors $\lambda = 0$ and $V_{TN} = 1 \, \text{V}$

Determine the maximum range of common – mode input voltage, i.e. find $v_{\rm CM~(max)}$ and $v_{\rm CM~(min)}$

The reference current can be determined from:

$$I_1 = \frac{V^+ - V^- - V_{GS4}}{R_1} = \frac{20 - V_{GS4}}{R_1}$$
 Eq.

$$I_1 = K_{n3} (V_{GS4} - V_{TN})^2$$
 Eq.2

Comparing equation 1 and 2

$$\frac{20 - V_{GS4}}{30} = (0.3)(V_{GS4} - 1)^{2}$$

$$20 - V_{GS4} = 9(V_{GS4} + 1 - 2V_{GS4})$$

$$20 - V_{GS4} = 9V_{GS4}^{2} + 9 - 18V_{GS4}$$

$$9V_{GS4}^{2} - 17V_{GS4} - 11 = 0$$

$$V_{GS4} = 2.40 \text{ V}$$

Substitute
$$V_{GS4} = 2.40 \text{ V from Eq. 1}$$

$$I_1 = \frac{20 - 2.40}{30} = 0.587A$$

Since M3 and M4 are identical, we also find $I_Q = 0.587 \ mA$ The quiescent drain currents in M1 and M2 are

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $I_{D1} = I_{D2} = I_{O}/2$

Circuit Source: Donald A. Neamen

The gate-to-source voltages are then

$$V_{GS1} = V_{GS2} = \sqrt{\frac{I_{D1}}{K_{n1}}} + V_{TN} = \sqrt{\frac{0.293}{0.1}} + 1 = 2.71 \text{V}$$

The quiescent values of v_{O1} and v_{O2} are

$$v_{O1} = v_{O2} = 10 - I_D R_D = 10 - (0.293)(16) = 5.31 V$$

 $v_{CM (max)} = V_{S1 (max)} + V_{GS1}$ Therefore,

 $v_{CM (max)} = v_{O1} - V_{DS1 (sat)} + V_{GS1}$ = 5.31 - 1.71 + 2.71 = 6.31 V

The minimum common – mode input voltage is the value when M4 reaches the transition point, $V_{DS4} = V_{DS4 \, (sat)} = V_{GS4} - V_{TN} = 2.4 - 1 = 1.4 \, V$

Therefore,

$$v_{CM (min)} = V_S + V_{GS1}$$

 $v_{CM (min)} = V^{--} + V_{DS4 (sat)} + V_{GS1} = (-10) + 1.4 + 2.71 = -5.89 V$

For this circuit the maximum range for the common-mode input voltage is $-5.89 < v_{CM} < 6.31 \text{ V}$.

A:2

For the differential amplifier in Figure , the parameters are: V+=5 V, V-=-5 V, R1=80 k Ω , and RD=40 k Ω .

The transistor parameters are $\lambda = 0$ and VT N = 0.8 V for all transistors, and $Kn3 = Kn4 = 100 \ \mu\text{A/V2}$ and $Kn1 = Kn2 = 50 \ \mu\text{A/V2}$. Determine the range of the common-

mode input voltage.

a

