Висша Алгебра ТК2 Решения

Румен Димитров

April 2019

1. (Напишете определението за комутативен пръстен)

Пръстен, в който умножението е комутативно, с др. думи $\forall a,b \in R, \ ab = ba.$

2. Напишете определението за пръстен с единица

$$\exists 1 \in R : \forall a \in R, 1a = a1 = a.$$

3. Напишете определението за област на цялост

Нека R е (комутативен) пръстен (с единица). R наричаме област на цялост, ако в R няма делители на нулата.

4. Напишете определението за делител на нулата в пръстен

Нека R е пръстен. Елементът $a \in R$, $a \neq 0$ наричаме делител на нулата, ако $\exists b \in R, b \neq 0$: ab = 0.

5. Напишете определението за поле

Комутативен пръстен с единица $(1 \neq 0)$, който също е тяло (т.е ненулевите елементи имат обратен елемент относно умножение).

6. Напишете определението за тяло

Нека R е пръстен с единица $(1 \neq 0)$. R е тяло ако всеки ненулев елемент на R е обратим относно умножение.

7. Напишете определението за подпръстен

Нека R е пръстен. Множеството $S \subseteq R$, $S \neq \emptyset$ наричаме подпръстен на R, ако е затворено спрямо събиране, умножение и умножение, т.е $\forall a,b \in S$ е изп. $a \pm b,\ ab \in S$.

8. Напишете определението за мултипликативната група на пръстен

Нека R е пръстен с единица, а R^* е множеството от всички обратими елементи на R. Тогава R^* наричаме мултипликативна група на R.

9. Напишете определението за характеристика на поле

Най-малкото естествено число p със свойството p1=0.

10. Какво число може да бъде характеристиката на едно поле

0 или просто число.

11. Напишете определението за подполе

Нека F е подполе и $K \subseteq F$, K съдържа поне 2 елемента. Казваме, че K е подполе на F, ако за всеки два елемента a и b на K елементите $a \pm b$, ab и a^{-1} , $a \neq 0$ също са в K.

12. Напишете определението за разширение на поле

Ако K е подполе на F, то казваме, че F е разширение на K и бележим $K \leq F$ или K < F ако K се съдържа строго в F.

13. Напишете определението за просто поле

P е просто поле, ако няма собствени (тоест строго съдържащи се в P) подполета.

14. С точност до изоморфизъм, кое поле може да бъде просто подполе на едно поле

Сечението на всички подполета на дадено поле е негово (единствено!) просто подполе.

15. Напишете определението за хомоморфизъм на пръстени

Нека R и R' са пръстени и $\phi:R\to R'$ е изображение. Казваме, че ϕ е хомоморфизъм, ако $\forall\,a,b\,\in R$ е изпълнено

$$\phi(a+b) = \phi(a) + \phi(b)$$

$$\phi(ab) = \phi(a)\phi(b)$$

16. Напишете определението за образ на хомоморфизъм на пръстени

Нека $\phi:R\to R'$ е хомоморфизъм на пръстени. Образ на ϕ бележим по следния начин:

$$Im(\phi) = \{r' \in R' \mid r' = \phi(r), \ r \in R\}$$

17. Напишете определението за ядро на хомоморфизъм на пръстени

$$Ker(\phi) = \{ r \in R \mid \phi(r) = 0_{R'} \}$$

18. Напишете определението за изоморфизъм на пръстени

Хомоморфизъм, който е биекция

19. Напишете определението за ляв (десен) идеал на пръстен

Нека R е пръстен и $I\subseteq R,\ I\neq\emptyset$. Казваме, че I е ляв (десен) идеал, ако са изпълнени условията

$$a, b \in I \implies a - b \in I$$

 $r \in R, a \in I \implies ra \in I (ar \in I).$

Ако I е едновременно ляв и десен идеал, казваме, че I е двустранен идеал или просто идеал на R и бележим $I \leq R$ или $I \triangleleft R$ ако I се съдържа строго в R.

20. Напишете определението за сума на идеали

Ако I и J са идеали на R, то $I+J=\{i+j\mid i\in I,\ j\in J\}$ също е идеал на R, който се нарича сума на идеалите I и J.

21. Напишете определението за главен идеал, породен от елемент, в комутативен пръстен с единица

Нека R е комутативен пръстен с единица и $a \in R$. Тогава множеството $(a) = \{ar \mid r \in R\}$ се нарича главен идеал, породен от елемента a.

22. Какъв е видът на идеалите в пръстена на целите числа Z

Всеки идеал е главен, по-точно всеки идеал има вида $n\mathbb{Z}$, където n е цяло неотрицателно число.

23. Как се дефинира операцията събиране във факторпръстен

Нека R е пръстен и R/I е факторпръстен по идеала I. В множеството

R/I елементите са съседните класове $\overline{a}=a+I$. Събиране се дефинира по правилото $\overline{a}+\overline{b}=\overline{a+b}$.

24. Как се дефинира операцията умножение във факторпръстен

$$\overline{a}\overline{b} = \overline{ab} = ab + I.$$

25. Формулирайте теоремата за хомоморфизмите за пръстени

Нека $\phi:R\to R'$ е хомоморфизъм на пръстени и $I=Ker\phi$. Тогава $I\unlhd R$ и $R/I\cong Im\phi$.

26. Докажете, че ако P е поле, то P няма нетривиални идеали (т. е. различни от 0 и P

Нека P е поле, I е ненулев идеал, $I \neq P$. По дефиниция: $a \in I, p \in P \implies pa \in I$. Тогава за някакво фиксирано $a \in I, a \neq 0$ имаме $a^{-1}a \in I = 1$. (Защото $a^{-1} \in P$, тъй като P е поле)

Пак по дефиниция, $p.1 \in I$, тоест $p \in I$ за всички $p \in P, \implies I = P.$

27. Докажете, че ако един комутативен пръстен с единица Р няма нетривиални идеали (т. е. различни от 0 и Р), то Р е поле

Искаме да докажем, че всеки ненулев елемент $p \in P$ е обратим. Разглеждаме главния идеал $(p) = \{pr | r \in R\}$ за някакво ненулево $p \in P$. Тъй като P има само два идеала, значи (p) = 0 или (p) = P. Тъй като p е ненулево, изпълнен е вторият вариант, т.е (p) = P = (1). Сега можем да кажем, че съществува елемент p', за който pp' = 1. Така p' е обратен елемент на p, тоест всеки елемент p е обратим и P е поле.

28. Напишете определението за действие на група върху множество

Нека Ω е множество, а G е група. Казваме, че G действа върху Ω , ако на всеки елемент $g \in G$ и на всеки елемент $x \in \Omega$ е съпоставен елемент $gx \in \Omega$ като са изп. следните 2 условия:

- 1. $1x = x \quad \forall x \in \Omega$
- 2. $(g_1g_2)x = g_1(g_2x) \forall g_1, g_2 \in G, \forall x \in \Omega.$
- 29. Напишете определението за стабилизатор на елемент от множество при действието на група върху това множество

Нека $x \in \Omega$. Стабилизатор на x в групата G наричаме множеството $St_G(x) = \{g \in G \mid gx = x\}.$

30. Напишете определението за орбита на елемент от множество при действието на група върху това множество

Нека R е релация над Ω дефинирана по следния начин: $xRy \iff \exists g \in G: y = gx$. Тогава R е релация на еквивалентност и множеството Ω се разбива на непресичащи се класове на еквивалентност, които наричаме G-орбити (или само орбити). Орбитата, съдържаща елемент x бележим с O(x).

С други думи, орбита на елемент от множество бележим така: $O(x) = \{gx \mid g \in G\}$. Не съм сигурен дали само едното от тези неща стига (т.е дали са еквивалентни и еднакво мощни дефиниции).

31. (Напишете как се изразява дължината на орбитата на елемент от множество при действие на група върху това множество чрез редовете на групата и на стабилизатора на елемента

Нека
$$x \in \Omega$$
. Тогава $|O(x)| = |G: St_G(x)|$.

32. Напишете определението за клас спрегнати елементи на елемент от дадена група

Нека групата G действа върху себе си чрез спрягане. Тогава орбитата O(x) на елемент $x \in G$ се нарича клас спрегнати с x елементи и се бележи с C_x .

33. Напишете определението за централизатор на елемент от дадена група

Стабилизаторът $St_G(x)=\{g\in G\mid gxg^{-1}=x\}$ се нарича централизатор на x в G и се бележи с $C_G(x)$ или само с C(x).

34. Напишете определението за център на група

$$Z(G) = \{ x \in G \mid xg = gx \, \forall g \in G \}$$

35. Напишете формулата за класовете

$$|G| = |Z(G)| + \sum_{i=t+1}^{s} |G: C_G(x_i)|$$

36. Формулирайте теоремата на Кейли

Всяка крайна група от ред n е изоморфна на подгрупа на симетричната група S_n .