Unique Games

Lucas Daher

2018

1 Definição do problema

1.1 Definição informal

O problema dos jogos únicos (unique games problem) é um problema de satisfação de restrições (constraints) em que cada restrição é binária, ou seja, cada restrição pode ser entendida como uma função que recebe dois argumentos e retorna 0 ou 1. Além disso, para cada restrição, dado um dos argumentos, existe exatamente um valor para o outro argumento que satisfaz a restrição.

Um problema que faz parte da família do unique games é o maxcut: dado um grafo G, encontrar um conjunto de vértices tal que a quantidade de arestas entre o conjunto e seu complementar seja máximo. Podemos modelá-lo como cada vértice sendo uma variável e cada aresta, uma restrição, que só é satisfeita se os dois vértices adjacentes a ela pertencerem a partições diferentes. A solução é a partição que maximiza o número de restrições satisfeitas.

1.2 Definição formal

Uma instância do problema (U, V, C) pode ser definida como:

- * U, universo finito de valores possíveis para as variáveis
- * $V := \{x_1, x_2, \dots, x_n\}$, conjunto de n variáveis em que $x_i \in U$, para $1 \le i \le n$
- * $C := \{c_1, c_2, \ldots, c_n\}$, conjunto de m restrições (funções) $U^2 \to \{0, 1\}$

Para cada $c_i \in C$, lhs, $rhs \in U$, existem $lcomp \in U$ e $rcomp \in U$ tais que:

 $* c_i(lhs, rcomp) = 1$

```
* c_i(lhs, u) = 0, se u \neq rcomp
```

- $* c_i(lcomp, rhs) = 1$
- * $c_i(u, rhs) = 0$, se $u \neq lcomp$

1.3 Problema de decisão

A versão de decisão dos problemas da família do *unique games* consiste em encontrar uma solução que satisfaz todas as restrições. Essa versão do problema pode ser resolvida em tempo polinomial, ou seja, é "fácil".

Vamos modelar uma instância do problema como um grafo: sejam G um grafo e (U, V, C) uma instância do UGP tais que para cada $x_i \in V$ corresponde um $v_i \in V(G)$ e para cada restrição $c_i(x_j, x_k)$ corresponda $u_j u_k \in E(G)$.

Para resolver o problema, supomos sem perda de generalidade que G seja conexo. Se não for, basta dividí-lo em subgrafos conexos. Escolhemos um vértice qualquer de G, digamos v_i e para cada $u \in U$, fazemos $x_i = u$. Para cada vértice v_j adjacente a v_i , há apenas um valor em U para x_j que satisfaz $c(x_i, x_j)$. Assim, "propagamos" os valores a partir de u_i até completar o grafo ou chegar em uma contradição quanto ao valor de um vértice. Esse algoritmo pode ser executado em $\mathcal{O}((|V| + |C|) * |U|)$

Por exemplo, a versão de decisão do *maxcut* é encontrar um corte que cubra todas as arestas, ou seja, saber se um grafo é bipartido.

1.4 Problema de otimização

A versão de otimização consiste em encontrar uma solução que maximize o número de restrições satisfeitas e é NP-difícil. Veremos uma aproximação que, dado uma instância em que uma fração de pelo menos $1-\epsilon$ das clausulas é satisfazível, retorna uma solução que satisfaz pelo menos $1-O(\sqrt{\epsilon \log n})$

2 Algoritmo de aproximação

2.1 Modelagem

Vamos utilizar a definição do problema como um grafo para essa sessão: a cada variável corresponde um vértice, a cada restrição, uma aresta. Definiremos também a permutação $\pi_{uv}(i) = j$, em que $i, j \in U$ e $uv \in E(G)$, tal que, se r(u) = i, uv é satisfeito apenas se r(v) = j.

Começaremos modelando uma instância como um programa quadrático inteiro. Para cada vértice $u \in V$ e cada rótulo $i \in U$, definimos uma variável $u_i \in \{0, 1\}$, em que:

$$u_i = \begin{cases} 1, & \text{se } u \text{ recebe o r\'otulo } i \\ 0, & \text{caso contr\'ario} \end{cases}$$

Como cada vértice recebe apenas um rótulo, temos que $\sum_{i=1}^k u_i^2 = 1$ e $u_i u_i = 0$ para $i \neq j$.

Para cada aresta uv temos que:

$$\Sigma_{i=1}^{k} u_{i} v_{\pi_{uv}(i)} = \begin{cases} 1, & \text{se } uv \text{ \'e satisfeita} \\ 0, & \text{caso contr\'ario} \end{cases}$$

Resultando o seguinte programa:

$$\begin{aligned} \max \, \Sigma_{uv \in E(G)} \Sigma_{i=1}^k u_i v_{\pi_{uv}(i)} \\ \text{sujeito a: } \, \Sigma_{i=1}^k u_i^2 = 1, & u \in V(G), \\ u_i u_j &= 0, & u \in V(G), i, j \in U, i \neq j, \\ u_i \in \{0, \ 1\}, & u \in V(G), i \in U \end{aligned}$$

Adicionaremos algumas restrições redundantes, mas úteis aos se relaxar o programa.

Para todo $u, v \in V(G)$ e $i, j \in U$, vale que $(v_j - u_i)^2 \ge v_j^2 - u_i^2$. E para todo $u, v, w \in V(G)$ e $i, j, h \in U$, vale que $(w_h - u_i)^2 \le (w_h - v_j)^2 + (v_j - u_i)^2$. Prova: basta verificar todos os valores possíveis para as variáveis.

Adicionando essas restrições, obtemos o seguinte programa:

$$\begin{aligned} \max \ & \Sigma_{uv \in E(G)} \Sigma_{i=1}^k u_i v_{\pi_{uv}(i)} \\ \text{sujeito a:} \ & \Sigma_{i=1}^k u_i^2 = 1, & u \in V(G), \\ & u_i u_j = 0, & u \in V(G), i, j \in U, i \neq j, \\ & (v_j - u_i)^2 \geq v_j^2 - u_i^2, & u, \ v \in V(G), i, \ j \in U, \\ & (w_h - u_i)^2 \leq (w_h - v_j)^2 + (v_j - u_i)^2, & u, \ v, \ w \in V(G), i, \ j, \ h \in U \\ & u_i \in \{0, \ 1\}, & u \in V(G), i \in U \end{aligned}$$

Relaxamos o programa para um programa vetorial substituindo cada variável escalar u_i por um vetor u_i e cada operação de multiplicação por produto interno.

Ainda, temos que $u_i \cdot u_i = ||u_i||^2$ e $(v_j - u_i) \cdot (v_j - u_i) = ||v_j - u_i||^2$. Finalmente, obtemos o seguinte programa:

$$\begin{aligned} \max \ & \Sigma_{uv \in E(G)} \Sigma_{i=1}^k u_i \cdot v_{\pi_{uv}(i)} \\ \text{sujeito a:} \ & \Sigma_{i=1}^k ||u_i||^2 = 1, & u \in V(G), \\ & u_i \cdot u_j = 0, & u \in V(G), i, j \in U, i \neq j, \\ & ||v_j - u_i||^2 \geq ||v_j||^2 - ||u_i||^2, & u, \ v \in V(G), i, \ j \in U, \\ & ||w_h - u_i||^2 \leq ||w_h - v_j||^2 + ||v_j - u_i||^2, & u, \ v, \ w \in V(G), i, \ j, \ h \in U \\ & u_i \in \mathcal{R}^{kn}, & u \in V(G), i \in U \end{aligned}$$

É claro que esse programa é uma relaxação do anterior e, portanto, um *upper bound* do valor ótimo.

2.2 Intuição do algoritmo

O primeiro passo do algoritmo é resolver a relaxação vetorial. A partir desse resultado, iremos podar arestas de G, que serão ignoradas pelo resto da execução. O objetivo da poda é remover arestas que contribuem pouco para o resultado e quebrar o grafo em esferas de raio pequeno. Para o centro u de cada esfera, escolheremos aleatoriamente um rótulo, dando probabilidade $||u_i||^2$ para cada rótulo i (é válido, pois $\sum_{i=1}^k ||u_i||^2 = 1$). Para cada outro vértice na esfera, escolheremos o rótulo j que minimiza $||w_i - v_j||^2$. Para uma aresta xy com ambas as pontas em uma mesma esfera, teremos alta probabilidade de satisfazê-la.

2.3 Notação

Precisamos de notação adicional:

- $* \ \delta := \sqrt{\epsilon \, \ln(n+1)}$
- * seja Z^* a solução ótima da relaxação linear. Então: $Z^* \geq opt \geq (1-\epsilon) * |E(G)|$
- * seja uvuma aresta, definiremos seu comprimento $l(uv)=\tfrac{1}{2}\Sigma_{i=1}^k||u_i-v_{\pi_{uv}(i)}||^2$

O comprimento de uma aresta uv representa quão longe os vetores de u estão

dos vetores de v que satisfazem uv. Temos que:

$$l(u, v) = \frac{1}{2} \sum_{i=1}^{k} ||u_i - v_{\pi_{uv}(i)}||^2$$

$$= \frac{1}{2} \sum_{i=1}^{k} (||u_i||^2 + ||v_{\pi_{uv}(i)}||^2 - 2u_i \cdot v_{\pi_{uv}(i)})$$

$$= \frac{1}{2} \left(2 - 2\sum_{i=1}^{k} u_i \cdot v_{\pi_{uv}(i)} \right)$$

$$= 1 - \sum_{i=1}^{k} u_i \cdot v_{\pi_{uv}(i)}$$

Ou seja, l(uv) é um menos a contribuição de uv para Z^* . Seja L^* a soma do comprimento de todas as arestas, então:

$$L^* = \Sigma_{uv \in E(G)} l(uv) = |E(G)| - Z^* \le |E(G)| - (1 - \epsilon)|E(G)| = \epsilon |E(G)|$$

2.4 Algoritmo

Primeiramente, devemos descartar toda aresta uv tal que $l(uv) \ge \delta/4$. Como $L^* \le \epsilon |E(G)|$, descartamos no máximo:

$$\frac{4\epsilon |E(G)|}{\delta} = \frac{4\epsilon |E(G)|}{\sqrt{\epsilon \ln(n+1)}} = \frac{4|E(G)|\sqrt{\epsilon \ln(n+1)}}{\ln(n+1)} = \frac{4|E(G)|\delta}{\ln(n+1)}$$

arestas dessa maneira.

Agora, devemos dividir o grafo em esferas de raio menor ou igual a $\delta/4$. Utilizaremos o lema 2.1, que será provado na sub sessão seguinte.

Lema 2.1 Existe um algoritmo polinomial que remove no máximo $8|E(G)|\delta$ arestas do grafo G e divide os vértices em t esferas B_1, \ldots, B_t , tais que cada bola B é centrada em algum vértice $c \in V(G)$ e possui raio menor ou igual a $\delta/4$.

Agora, para cada esfera $B \in G$, seja $c \in V(G)$ o centro de B. Atribuimos a cada rótulo $i \in U$ probabilidade $||c_i||^2$ e escolhemos aleatoriamente um rótulo para c. Para todos os outros vértices $u \in B$, atribuimos o rótulo j tal que $||c_i i u_j||^2$ seja mínimo. O lema 2.2 garante que para toda aresta $uv \in E(G)$ com $u, v \in B$, uv é satisfeito com probabilidade maior ou igual a $1-3\delta$.

Lema 2.2 Para toda bola B com centro em c e toda aresta uv com u, $v \in B$, a probabilidade do algoritmo atribuir rótulos que satisfazem uv é de pelo menos $1-3\delta$.

Ao remover as arestas longas, removemos no máximo $4|E(G)|\delta/\ln(n+1) \le 4|E(G)|\delta$ arestas. Ao dividir o grafo em esferas, removemos no máximo $8|E(G)|\delta$ arestas e ao atribuir rótulos, deixamos de satisfazer no máximo $3|E(G)|\delta$ arestas. Assim, deixamos de satisfazer no máximo $(4+8+3)|E(G)|\delta=15|E(G)|\delta$ arestas.

Concluimos que o algoritmo satisfaz uma fração de pelo menos $1-15\delta=1-\mathcal{O}(\sqrt{\epsilon \ln(n+1)})$ das restrições.

2.5 Provas adicionais

Provaremos lema 2.1 e lema 2.2 a seguir.

2.6 Resultados adicionais

Existem aproximações melhores, que também utilizam a mesma relaxação vetorial vista acima, como a enuncia no lema 2.3:

Lema 2.3 Dado uma instância do UGP em que pelo menos $1 - \epsilon$ das restrições é satisfazível, existe um algoritmo polinomial que satisfaz pelo menos $1 - \mathcal{O}(\sqrt{\epsilon log(k)})$.

Assumindo que a conjectura dos jogos únicos é verdade, lema 2.3 é assinoticamente o melhor resultado possível.