

VND5E025BK-E

Double channel high-side driver with analog current sense for automotive applications

Features

Max transient supply voltage	V _{CC}	41 V
Operating voltage range	V _{CC}	4.5 to 28 V
Max on-state resistance (per ch.)	R _{ON}	25 mΩ
Current limitation (typ)	I _{LIMH}	60 A
Off-state supply current	I _S	2 μA ⁽¹⁾

1. Typical value with all loads connected.

General

- Inrush current active management by power limitation
- Very low standby current
- 3.0V CMOS compatible inputs
- Diagnostic functions
 - High current sense precision for wide currents range
 - Current sense ratio drift for single point calibration
 - Current sense disable
 - Overload and short to ground (power limitation) indication
 - Thermal shutdown indication

■ Protections

- Undervoltage shutdown
- Overvoltage clamp
- Load current limitation
- Self limiting of fast thermal transients
- $-\,$ Protection against loss of ground and loss of V_{CC}
- Overtemperature shutdown with auto restart (thermal shutdown)
- Reverse battery protected
- Electrostatic discharge protection

Applications

■ Especially intended for blinkers

 All types of resistive, inductive and capacitive loads and suitable as LED driver

Description

The VND5E025BK-E is a double channel highside driver manufactured in the ST proprietary VIPower™ M0-5 technology and housed in the tiny PowerSSO-24 package. The VND5E025BK-E is designed to drive 12V automotive grounded loads delivering protection, diagnostics and easy 3V and 5V CMOS compatible interface with any microcontroller.

The device integrates advanced protective functions such as load current limitation, inrush and overload active management by power limitation, overtemperature shut-off with auto restart and overvoltage active clamp.

A dedicated analog current sense pin is associated with every output channel in order to provide Enhanced diagnostic functions including fast detection of overload and short circuit to ground through power limitation indication and overtemperature indication.

An improved current sense circuitry and the introduction of a new current sense ratio drift, dK/K(tot), allow the "single-point" calibration and ensure a very high accuracy in case of "double-point" calibration.

The current sensing and diagnostic feedback of the whole device can be disabled by pulling the CS_DIS pin high to allow sharing of the external sense resistor with other similar devices. Contents VND5E025BK-E

Contents

1	Bloc	ck diagram and pin description	5
2	Elec	ctrical specification	7
	2.1	Absolute maximum ratings	7
	2.2	Thermal data	8
	2.3	Electrical characteristics	9
	2.4	Waveforms	. 17
	2.5	Electrical characteristics curves	. 19
3	Арр	olication information	. 22
	3.1	GND protection network against reverse battery	. 22
		3.1.1 Solution 1: resistor in the ground line (RGND only)	22
		3.1.2 Solution 2: diode (DGND) in the ground line	23
	3.2	Load dump protection	. 23
	3.3	MCU I/Os protection	. 23
	3.4	Current sense and diagnostic	. 24
	3.5	Maximum demagnetization energy (VCC = 13.5V)	. 25
4	Pacl	kage and thermal data	. 26
	4.1	PowerSSO-24 thermal data	. 26
5	Pacl	kage and packing information	. 29
	5.1	ECOPACK®	. 29
	5.2	Package mechanical data	. 29
	5.3	Packing information	. 30
6	Orde	er codes	. 32
7	Revi	ision history	. 33

VND5E025BK-E List of tables

List of tables

Table 1.	Pin functions	5
Table 2.	Suggested connections for unused and not connected pins	
Table 3.	Absolute maximum ratings	7
Table 4.	Thermal data	8
Table 5.	Power section	9
Table 6.	Switching (VCC = 13V; Tj = 25°C)	9
Table 7.	Logic inputs	. 10
Table 8.	Protections and diagnostics	. 10
Table 9.	Current sense (8V < VCC < 18V)	. 11
Table 10.	Truth table	. 15
Table 11.	Electrical transient requirements (part 1/3)	. 16
Table 12.	Electrical transient requirements (part 2/3)	. 16
Table 13.	Electrical transient requirements (part 3/3)	. 16
Table 14.	Thermal parameters	. 28
Table 15.	PowerSSO-24 mechanical data	. 30
Table 16.	Device summary	. 32
Table 17.	Document revision history	. 33

List of figures VND5E025BK-E

List of figures

Figure 1.	Block diagram	
Figure 2.	Configuration diagram (top view)	6
Figure 3.	Current and voltage conventions	
Figure 4.	Current sense delay characteristics	. 13
Figure 5.	Switching characteristics	. 13
Figure 6.	Output voltage drop limitation	
Figure 7.	Delay response time between rising edge of output current and rising edge of current se	ense
	(CS enabled)	
Figure 8.	I _{OUT} /I _{SENSE} vs I _{OUT}	. 14
Figure 9.	Maximum current sense ratio drift vs load current	. 15
Figure 10.	Normal operation	
Figure 11.	Overload or short to GND	. 17
Figure 12.	Intermittent overload	
Figure 13.	T _J evolution in overload or short to GND	
Figure 14.	Off-state output current	
Figure 15.	High level input current	. 19
Figure 16.	Input clamp voltage	. 19
Figure 17.	Input high level	. 19
Figure 18.	Input low level	
Figure 19.	Input hysteresis voltage	
Figure 20.	On-state resistance vs Tcase	
Figure 21.	On-state resistance vs VCC	. 20
Figure 22.	Undervoltage shutdown	
Figure 23.	ILIMH vs Tcase	
Figure 24.	Turn-on voltage slope	. 20
Figure 25.	Turn-off voltage slope	
Figure 26.	CS_DIS high level voltage	
Figure 27.	CS_DIS low level voltage	
Figure 28.	CS_DIS clamp voltage	
Figure 29.	Application schematic	
Figure 30.	Current sense and diagnostic	
Figure 31.	Maximum turn-off current versus inductance (for each channel)	
Figure 32.	PowerSSO-24 PC board	
Figure 33.	Rthj-amb vs PCB copper area in open box free air condition (one channel on)	
Figure 34.	PowerSSO-24 thermal impedance junction to ambient single pulse (one channel on)	
Figure 35.	Thermal fitting model of a double channel HSD in PowerSSO-24	
Figure 36.	PowerSSO-24 package dimensions	. 29
Figure 37.	PowerSSO-24 tube shipment (no suffix)	
Figure 38.	PowerSSO-24 tape and reel shipment (suffix "TR")	. 31

577

1 Block diagram and pin description

Figure 1. Block diagram

Table 1. Pin functions

Name	Function
V _{CC}	Battery connection.
OUTPUT _{1,2}	Power output.
GND	Ground connection. Must be reverse battery protected by an external diode / resistor network.
INPUT _{1,2}	Voltage controlled input pin with hysteresis, CMOS compatible. Controls output switch state.
CURRENT SENSE _{1,2}	Analog current sense pin; delivers a current proportional to the load current.
CS_DIS	Active high CMOS compatible pin to disable the current sense pin.

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

abie 2.								
Connection / pin	Current sense	N.C.	Output	Input	CS_DIS			
Floating	Not allowed	Х	X	X	Х			
To ground	Through 1 kΩ resistor	Х	Through 22 kΩ resistor	Through 10 kΩ resistor	Through 10 kΩ resistor			

2 Electrical specification

Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality document.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	41	V
-V _{CC}	Reverse DC supply voltage	0.3	V
-I _{GND}	DC reverse ground pin current	200	mA
I _{OUT}	DC output current	Internally limited	Α
- I _{OUT}	Reverse DC output current	24	
I _{IN}	DC input current	-1 to 10	
I _{CSD}	OC current sense disable input current		mA
-I _{CSENSE}	DC reverse CS pin current	200	
V _{CSENSE}	Current sense maximum voltage	V_{CC} - 41 to + V_{CC}	V

Table 3. Absolute maximum ratings (continued)

Symbol	Parameter	Value	Unit
E _{MAX}	Maximum switching energy (single pulse) $(L = 0.8 \text{ mH}; R_L = 0 \ \Omega; V_{bat} = 13.5 \ V; T_{jstart} = 150 \ ^{\circ}\text{C}; \\ I_{OUT} = I_{limL}(Typ.))$	140	mJ
V _{ESD}	Electrostatic discharge (Human Body Model: R = 1.5 kΩ; C = 100 pF) – Input – Current sense – CS_DIS – Output – V _{CC}	4000 2000 4000 5000	V V V V
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
T _j	Junction operating temperature	- 40 to 150	°C
T _{stg}	Storage temperature	- 55 to 150	

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Max. value	Unit
R _{thj-case}	Thermal resistance junction-case (with one channel on)	1.35	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	See Figure 33	C/VV

2.3 Electrical characteristics

Values specified in this section are for 8V<V $_{\rm CC}$ <28V; -40°C <T $_{\rm j}$ <150°C, unless otherwise stated.

Table 5. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4.5	13	28	
V _{USD}	Undervoltage shutdown			3.5	4.5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.5		
		I _{OUT} = 3A; T _j = 25°C			25	
R _{ON}	On-state resistance (1)	$I_{OUT} = 3A; T_j = 150^{\circ}C$			50	$m\Omega$
		$I_{OUT} = 3A; V_{CC} = 5V; T_j = 25^{\circ}C$			35	
V _{clamp}	Clamp voltage	I _S = 20 mA	41	46	52	V
I _S	Supply current	Off-state; $V_{CC} = 13V$; $T_j = 25^{\circ}C$; $V_{IN} = V_{OUT} = V_{SENSE} = V_{CSD} = 0V$ Off-state; $V_{CC} = 13V$; $T_j = 125^{\circ}C$; $V_{IN} = V_{OUT} = V_{SENSE} = V_{CSD} = 0V$		2 (2)	5 ⁽²⁾	μΑ
		On-state; $V_{CC} = 13V$; $V_{IN} = 5V$; $I_{OUT} = 0A$		3	6	mA
1 .	Off-state output	$V_{IN} = V_{OUT} = 0V; V_{CC} = 13V;$ $T_j = 25^{\circ}C$	0	0.01	3	
I _{L(off1)}	current (1)	$V_{IN} = V_{OUT} = 0V; V_{CC} = 13V;$ $T_j = 125^{\circ}C$	0		5	μА
V _F	Output - V _{CC} diode voltage ⁽¹⁾	-l _{OUT} = 4 A; T _j = 150°C			0.7	V

^{1.} For each channel.

Table 6. Switching ($V_{CC} = 13V$; $T_j = 25$ °C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$R_L = 4.3 \Omega$	-	20	-	116
t _{d(off)}	Turn-off delay time	(see <i>Figure 5</i>)	-	30	-	μs
(dV _{OUT} /dt) _{on}	Turn-on voltage slope	D 420	-	See Figure 24	-	V/µs
(dV _{OUT} /dt) _{off}	Turn-off voltage slope	$R_L = 4.3 \Omega$	-	See Figure 25	-	ν/μ5
W _{ON}	Switching energy losses during t _{WON}	$R_L = 4.3 \Omega$ (see <i>Figure 5</i>)	-	0.6	-	mJ
W _{OFF}	Switching energy losses during t _{WOFF}		-	0.35	-	110

^{2.} PowerMOS leakage included.

Table 7. Logic inputs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input low level voltage				0.9	V
I _{IL}	Low level input current	V _{IN} = 0.9V	1			μA
V _{IH}	Input high level voltage		2.1			V
I _{IH}	High level input current	V _{IN} = 2.1V			10	μΑ
V _{I(hyst)}	Input hysteresis voltage		0.25			
\/	Input clamp valtage	I _{IN} = 1mA	5.5		7	V
V _{ICL}	Input clamp voltage	I _{IN} = -1mA		-0.7		V
V _{CSDL}	CS_DIS low level voltage				0.9	
I _{CSDL}	Low level CS_DIS current	V _{CSD} = 0.9V	1			μA
V _{CSDH}	CS_DIS high level voltage		2.1			V
I _{CSDH}	High level CS_DIS current	V _{CSD} = 2.1V			10	μA
V _{CSD(hyst)}	CS_DIS hysteresis voltage		0.25			
V	CS DIS clamp voltage	I _{CSD} = 1mA	5.5		7	V
V _{CSCL}	CS_DIS clamp voltage	I _{CSD} = -1mA		-0.7		

Table 8. Protections and diagnostics ⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	DC short circuit current	V _{CC} = 13V	43	60	85	
ILIMH		5V < V _{CC} < 28V				Α
I _{LIML}	Short circuit current during thermal cycling	$V_{CC} = 13V;$ $T_R < T_j < T_{TSD}$		15		
T _{TSD}	Shutdown temperature		150	175	200	
T _R	Reset temperature		T _{RS} + 1	T _{RS} + 5		
T _{RS}	Thermal reset of STATUS		135			°C
T _{HYST}	Thermal hysteresis (T _{TSD} -T _R)			7		
V_{DEMAG}	Turn-Off output voltage clamp	I _{OUT} = 2A; V _{IN} = 0; L = 6 mH	V _{CC} - 41	V _{CC} - 46	V _{CC} - 52	V
V _{ON}	Output voltage drop limitation	$I_{OUT} = 0.1A;$ $T_j = -40^{\circ}\text{C to } +150^{\circ}\text{C}$ (see <i>Figure 6</i>)		25		mV

To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.

Table 9. Current sense (8V < V_{CC} < 18V)

Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{OUT} /I _{SENSE}	$I_{OUT} = 0.05A; V_{SENSE} = 0.5V; V_{CSD} = 0V;$ $T_{j} = -40$ °C to 150°C	1922	5046	9218	
I _{OUT} /I _{SENSE}	$I_{OUT} = 1.5 \text{ A}; V_{SENSE} = 4 \text{ V};$ $V_{CSD} = 0 \text{ V};$ $T_j = -40 ^{\circ}\text{C} \text{ to } 150 ^{\circ}\text{C}$	2460	3363	4050	
Current sense ratio drift	$I_{OUT} = 1.5 \text{ A}; V_{SENSE} = 4 \text{ V};$ $V_{CSD} = 0 \text{ V};$ $T_j = -40 ^{\circ}\text{C} \text{ to } 150 ^{\circ}\text{C}$	-9		9	%
I _{OUT} /I _{SENSE}	$I_{OUT} = 2 \text{ A}; V_{SENSE} = 4V;$ $V_{CSD} = 0V;$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	2550	3405	4108	
Current sense ratio drift	$I_{OUT} = 2 \text{ A}; V_{SENSE} = 4V; V_{CSD} = 0V;$ $T_j = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-7		7	%
I _{OUT} /I _{SENSE}	$I_{OUT} = 2.4 \text{ A}; V_{SENSE} = 4V;$ $V_{CSD} = 0V;$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	2635	3384	4117	
Current sense ratio drift	$I_{OUT} = 2.4 \text{ A}; V_{SENSE} = 4V; V_{CSD} = 0V;$ $T_j = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-6		+6	%
I _{OUT} /I _{SENSE}	$I_{OUT} = 3 \text{ A}; V_{SENSE} = 4V;$ $V_{CSD} = 0V;$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	2752	3368	3975	
Current sense ratio drift	$I_{OUT} = 3 \text{ A}; V_{SENSE} = 4V; V_{CSD} = 0V;$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-5		5	%
I _{OUT} /I _{SENSE}	$I_{OUT} = 4 \text{ A}; V_{SENSE} = 4V;$ $V_{CSD} = 0V;$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	2860	3341	3805	
Current sense ratio drift	$I_{OUT} = 4 \text{ A}; V_{SENSE} = 4V; V_{CSD} = 0V;$ $T_j = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-4		4	%
I _{OUT} /I _{SENSE}	I_{OUT} = 10 A; V_{SENSE} = 4V; V_{CSD} = 0V; T_j = -40°C to 150°C	2965	3307	3570	
Current sense ratio drift	$I_{OUT} = 10 \text{ A; } V_{SENSE} = 4V; V_{CSD} = 0V;$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-3		3	%
0	Measurement point: $I_{OUT} = 2.4 \text{ A}$; $T_j = 25^{\circ}\text{C}$; $V_{CC} = 13.5\text{V}$				
ratio drift for single point calibration	$I_{OUT} = 1.5 A$ $I_{OUT} = 2.0 A$ $I_{OUT} = 2.4 A$ $I_{OUT} = 3.0 A$	-9.5 -7 -6 -7		9.5 7 6 7	% % % %
	IOUT/ISENSE Current sense ratio drift Current sense ratio drift IOUT/ISENSE Current sense ratio drift Current sense ratio drift	$\begin{split} & l_{OUT} / l_{SENSE} Course $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Table 9. Current sense (8V < V_{CC} < 18V) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SENSE0}	Analog sense leakage current	$\begin{split} &I_{OUT} = 0\text{A; V}_{SENSE} = 0\text{V;} \\ &V_{CSD} = 5\text{V; V}_{IN} = 0\text{V; T}_j = -40^{\circ}\text{C to } 150^{\circ}\text{C} \\ &V_{CSD} = 0\text{V; V}_{IN} = 5\text{V; T}_j = -40^{\circ}\text{C to } 150^{\circ}\text{C} \end{split}$	0		1 2	μA μA
		$I_{OUT} = 2A; V_{SENSE} = 0V;$ $V_{CSD} = 5V; V_{IN} = 5V; T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	0		1	μA
l _{OL}	Openload on- state current detection threshold	V _{IN} = 5V, 8V <v<sub>CC<18V I_{SENSE}= 5 μA</v<sub>	5		70	mA
V _{SENSE}	Max analog sense output voltage	I _{OUT} = 3 A; V _{CSD} = 0V	5			V
V _{SENSEH}	Analog sense output voltage in fault condition ⁽⁴⁾	V_{CC} = 13V; R_{SENSE} = 3.9k Ω		8		V
I _{SENSEH}	Analog sense output current in fault condition ⁽²⁾	V _{CC} = 13V; V _{SENSE} = 5V	6	9	12	mA
t _{DSENSE1H}	Delay response time from falling edge of CS_DIS pin	V _{SENSE} < 4V, 0.5 < I _{OUT} < 10A I _{SENSE} = 90% of I _{SENSEMAX} (see <i>Figure 4</i>)		30	100	
t _{DSENSE1L}	Delay response time from rising edge of CS_DIS pin	V _{SENSE} < 4V, 0.5 < I _{OUT} < 10A I _{SENSE} = 10% of I _{SENSEMAX} (see <i>Figure 4</i>)		5	20	
t _{DSENSE2H}	Delay response time from rising edge of INPUT pin	V _{SENSE} < 4V, 0.5 < I _{OUT} < 10A I _{SENSE} = 90% of I _{SENSEMAX} (see <i>Figure 4</i>)		80	300	μs
Δt _{DSENSE2} H	Delay response time between rising edge of output current and rising edge of current sense	V _{SENSE} < 4V, I _{SENSE} = 90% of I _{SENSEMAX} , I _{OUT} = 90% of I _{OUTMAX} , I _{OUTMAX} = 3A (see <i>Figure 7</i>)			110	
t _{DSENSE2L}	Delay response time from falling edge of INPUT pin	V _{SENSE} < 4V, 0.5 < I _{OUT} < 10A I _{SENSE} = 10% of I _{SENSEMAX} (see <i>Figure 4</i>)		5	20	

^{1.} Parameter guaranteed by design; it is not tested.

^{2.} Analog sense current drift (dK/K) is deviation of factor K for a given device over (-40 $^{\circ}$ C to 150 $^{\circ}$ C, Vbatt: 8 V...16 V) with respect to its value measured at Tj = 25 $^{\circ}$ C, V_{CC} = 13 V.

^{3.} Total current drift over -40 °C to 150 °C, Vbatt: 8 V...16 V and output current variation, respect to a calibration point measured at Tj = 25 °C and V_{CC} = 13.5 V.

^{4.} Fault condition includes: power limitation and overtemperature.

INPUT

CS_DIS

LOAD CURRENT

SENSE CURRENT

tosense2h tosense1l tosense1h tosense2l

Figure 4. Current sense delay characteristics

Figure 6. Output voltage drop limitation

577

 $\Delta t_{\text{DSENSE2H}}$ **♠** I_{OUT} I_{OUTMAX} 90% I_{OUTMAX} ♣ I_{SENSE} I_{SENSEMAX} 1 90% I_{SENSEMAX}

Figure 7. Delay response time between rising edge of output current and rising edge of current sense (CS enabled)

Figure 9. Maximum current sense ratio drift vs load current

Table 10. Truth table

Conditions	Input	Output	Sense (V _{CSD} =0V) ⁽¹⁾
Normal aparation	L	L	0
Normal operation	Н	Н	Nominal
Overtemperature	L	L	0
Overtemperature	Н	L	V _{SENSEH}
Lindomioltogo	L	L	0
Undervoltage	Н	L	0
	Н	X	Nominal
Overload	н	(no power limitation) Cycling (power limitation)	V _{SENSEH}
Short circuit to GND	L	L	0
(Power limitation)	Н	L	V _{SENSEH}
Negative output voltage clamp	L	L	0

^{1.} If the V_{CSD} is high, the SENSE output is at a high impedance, its potential depends on leakage currents and external circuit.

Table 11. Electrical transient requirements (part 1/3)

ISO 7637-2: 2004(E) Test	Test le	vels ⁽¹⁾	Number of pulses or Burst cycle / pul repetition time		•	Delays and Impedance	
pulse	III	IV	test times	Min.	Max.	inipedance	
1	-75V	-100V	5000 pulses	0.5s	5s	2 ms, 10Ω	
2a	+37V	+50V	5000 pulses	0.2s	5s	50μs, 2Ω	
3a	-100V	-150V	1h	90ms	100ms	0.1μs, 50Ω	
3b	+75V	+100V	1h	90ms	100ms	0.1μs, 50Ω	
4	-6V	-7V	1 pulse			100ms, 0.01Ω	
5b ⁽²⁾	+65V	+87V	1 pulse			400ms, 2Ω	

^{1.} The above test levels must be considered referred to V_{CC} = 13.5V except for pulse 5b.

Table 12. Electrical transient requirements (part 2/3)

ISO 7637-2: 2004E	Test leve	el results
Test pulse	III	VI
1	С	С
2a	С	С
3a	С	С
3b	С	С
4	С	С
5b ⁽¹⁾	С	С

^{1.} Valid in case of external load dump clamp: 40V maximum referred to ground.

Table 13. Electrical transient requirements (part 3/3)

Class	Contents
С	All functions of the device performed as designed after exposure to disturbance.
Е	One or more functions of the device did not perform as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

^{2.} Valid in case of external load dump clamp: 40V maximum referred to ground.

2.4 Waveforms

Figure 10. Normal operation

Figure 11. Overload or short to GND

Intermittent Overload

Figure 12. Intermittent overload INPUT Overload $I_{LimH} >$ Nominal load I_{OUT} V_{SENSEH}> $V_{\text{SENSE}} \\$ $V_{\text{CS_DIS}}$

2.5 Electrical characteristics curves

Figure 14. Off-state output current

Figure 15. High level input current

Figure 16. Input clamp voltage

Figure 17. Input high level

Figure 18. Input low level

Figure 19. Input hysteresis voltage

477

Figure 20. On-state resistance vs T_{case} Figure 21. On-state resistance vs V_{CC}

Figure 22. Undervoltage shutdown

Figure 23. I_{LIMH} vs T_{case}

Figure 24. Turn-on voltage slope

Figure 25. Turn-off voltage slope

20/34

Doc ID 16273 Rev 8

Figure 26. CS_DIS high level voltage

Figure 27. CS_DIS low level voltage

Figure 28. CS_DIS clamp voltage

3 Application information

Figure 29. Application schematic

3.1 GND protection network against reverse battery

This section provides two solutions for implementing a ground protection network against reverse battery.

3.1.1 Solution 1: resistor in the ground line (R_{GND} only)

This can be used with any type of load.

The following is an indication on how to dimension the R_{GND} resistor.

- 1. $R_{GND} \le 600 \text{ mV} / (I_{S(on)max})$
- 2. $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where -I_{GND} is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet.

Power dissipation in R_{GND} (when V_{CC}<0: during reverse battery situations) is:

$$P_{D} = (-V_{CC})^2 / R_{GND}$$

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum On-state currents of the different devices.

Please note that if the microprocessor ground is not shared by the device ground then the R_{GND} will produce a shift ($I_{S(on)max} * R_{GND}$) in the input thresholds and the status output

values. This shift will vary depending on how many devices are On in the case of several high-side drivers sharing the same R_{GND}.

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests to utilize Solution 2 (see below).

3.1.2 Solution 2: diode (D_{GND}) in the ground line

A resistor (R_{GND} =1 $k\Omega$) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network will produce a shift (≈600mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.

3.2 Load dump protection

 D_{ld} is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the V_{CC} max DC rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than the ones shown in the ISO 7637-2: 2004(E) table.

3.3 MCU I/Os protection

If a ground protection network is used and negative transient are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the MCU I/Os pins to latch-up.

The value of these resistors is a compromise between the leakage current of MCU and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of MCU I/Os:

 $-V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$

Calculation example:

For V_{CCpeak} = - 100 V and $I_{latchup} \ge 20$ mA; $V_{OH\mu C} \ge 4.5$ V

 $5 \text{ k}\Omega \le R_{prot} \le 180 \text{ k}\Omega$

Recommended values: $R_{prot} = 10 \text{ k}\Omega$, $C_{EXT} = 10 \text{ nF}$.

3.4 Current sense and diagnostic

The current sense pin performs a double function (see *Figure 30: Current sense and diagnostic*):

- Current mirror of the load current in normal operation, delivering a current proportional to the load one according to a known ratio K_X.
 The current I_{SENSE} can be easily converted to a voltage V_{SENSE} by means of an external resistor R_{SENSE}. Linearity between I_{OUT} and V_{SENSE} is ensured up to 5V minimum (see parameter V_{SENSE} in *Table 9: Current sense (8V < VCC < 18V)*). The current sense accuracy depends on the output current (refer to current sense electrical characteristics *Table 9: Current sense (8V < VCC < 18V)*).
- Diagnostic flag in fault conditions, delivering a fixed voltage V_{SENSEH} up to a maximum current I_{SENSEH} in case of the following fault conditions (refer to *Truth table*):
 - Power limitation activation
 - Overtemperature

A logic level high on CS_DIS pin sets at the same time all the current sense pins of the device in a high impedance state, thus disabling the current monitoring and diagnostic detection. This feature allows multiplexing of the microcontroller analog inputs by sharing of sense resistance and ADC line among different devices.

Figure 30. Current sense and diagnostic

577

Maximum demagnetization energy ($V_{CC} = 13.5V$) 3.5

Figure 31. Maximum turn-off current versus inductance (for each channel)

A: T_{jstart} = 150°C single pulse

B: T_{jstart} = 100°C repetitive pulse

C: T_{istart} = 125°C repetitive pulse

Values are generated with $R_L = 0~\Omega$. In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

4 Package and thermal data

4.1 PowerSSO-24 thermal data

Figure 32. PowerSSO-24 PC board

Figure 33. R_{thj-amb} vs PCB copper area in open box free air condition (one channel on)

26/34 Doc ID 16273 Rev 8

PowerSSO-24 thermal impedance junction to ambient single pulse (one channel on)

Equation 1: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$
 where $\delta = t_P/T$

C2 PdCh1 C1 C5 C6 R1 R2 R6 0.7 C8 PdCh2 The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Table 14. Thermal parameters

Area/Island (cm ²)	Footprint	2	8
R1 (°C/W)	0.28		
R2 (°C/W)	0.9		
R3 (°C/W)	6		
R4 (°C/W)	7.7		
R5 (°C/W)	9	9	8
R6 (°C/W)	28	17	10
R7 (°C/W)	0.28		
R8 (°C/W)	0.9		
C1 (W.s/°C)	0.001		
C2 (W.s/°C)	0.003		
C3 (W.s/°C)	0.025		
C4 (W.s/°C)	0.75		
C5 (W.s/°C)	1	4	9
C6 (W.s/°C)	2.2	5	17
C7 (W.s/°C)	0.001		
C8 (W.s/°C)	0.003		

5 Package and packing information

5.1 ECOPACK[®]

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

5.2 Package mechanical data

Figure 36. PowerSSO-24 package dimensions

Table 15. PowerSSO-24 mechanical data

Symbol	Millimeters		
Symbol	Min.	Тур.	Max.
А	2.15		2.47
A2	2.15		2.40
a1	0		0.075
b	0.33		0.51
С	0.23		0.32
D	10.10		10.50
Е	7.4		7.6
е		0.8	
e3		8.8	
G			0.1
G1			0.06
Н	10.1		10.5
h			0.4
k		5°	
L	0.55		0.85
N			10°
Х	4.1		4.7
Υ	6.5		7.1

5.3 Packing information

Figure 37. PowerSSO-24 tube shipment (no suffix)

Base Qty	49
Bulk Qty	1225
Tube length (±0.5)	532
Α	3.5
В	13.8
C (±0.1)	0.6

All dimensions are in mm.

Figure 38. PowerSSO-24 tape and reel shipment (suffix "TR")

Order codes VND5E025BK-E

6 Order codes

Table 16. Device summary

Package	Order codes		
rackaye	Tube	Tape and reel	
PowerSSO-24	VND5E025BK-E	VND5E025BKTR-E	

VND5E025BK-E Revision history

7 Revision history

Table 17. Document revision history

Date	Revision	Changes
17-Sep-2009	1	Initial release.
02-Nov-2009	2	Updated Table 5: Power section.
30-Nov-2009	3	Updated <i>Table 9: Current sense (8V < VCC < 18V).</i> Updated <i>Figure 9: Maximum current sense ratio drift vs load current</i>
21-Jan-2010	4	Updated Table 9: Current sense (8V < VCC < 18V)
03-Feb-2010	5	Updated following tables: - Table 6: Switching (VCC = 13V; Tj = 25°C) - Table 9: Current sense (8V < VCC < 18V) Updated following figures: - Figure 8: I _{OUT} /I _{SENSE} vs I _{OUT} - Figure 9: Maximum current sense ratio drift vs load current
19-Feb-2010	6	Updated Table 6: Switching (VCC = 13V; Tj = 25°C).
11-Oct-2010	7	Changed document status from target specification to datasheet.
19-Sep-2013	8	Updated Disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

34/34 Doc ID 16273 Rev 8