Chap. 20 Derivatives and Integrals

20.1 First fundamental theorem of calculus

Thm (1st FTC)

Assume that on [a, b], F(x) is diff & F'(x) = f(x) (f(x)): a given ft is integrable

$$\Rightarrow \int_a^b f(x) dx = F(b) - F(a) \quad \text{i.e., } \int_a^b F'(x) dx = F(b) - F(a)$$
(Any such $F(x)$ is called an antiderivative of a given integrand $f(x)$)

Pf. Let $\mathcal{P}: a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$ be any partition of [a, b].

Since F(x) is diff on each subinterval $[\Delta x_i]$,

$$F(x_i) - F(x_{i-1}) \stackrel{\text{MVT}}{=} F'(c_i) \Delta x_i, \quad c_i \in [\Delta x_i]$$

$$= f(c_i) \Delta x_i$$

$$\therefore \sum_{i=1}^n f(c_i) \Delta x_i = \sum_{i=1}^n (F(x_i) - F(x_{i-1})) \stackrel{\text{telescoping}}{=} F(x_n) - F(x_0)$$

$$\therefore \sum_{i=1}^n f(c_i) \Delta x_i = F(b) - F(a) - --(\star)$$

Now, consider the sequence of standard n-partitions $\mathcal{P}^{(n)}$ of [a, b].

Then, since f is integrable on [a,b] and $|\mathcal{P}^{(n)}| = \frac{b-a}{n} \to 0$, we have

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_{i}) \Delta x_{i} \quad (\text{ (*) is a special Riemann sum constructed above)}$$

$$\stackrel{(\star)}{=} \lim_{n \to \infty} \left(F(b) - F(a) \right) = F(b) - F(a)$$

Caution: Not every derivative is Riemann-integrable.

For example, take $F(x) = \begin{cases} x^2 \sin \frac{1}{x^2} & \text{if } x \in (0, 1] \\ 0 & \text{if } x = 0 \end{cases}$. Then we easily check that

$$F'(x) = \begin{cases} 2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x^2} & \text{if } x \in (0, 1] \\ 0 & \text{if } x = 0 \end{cases}$$

Thus F is differentiable on [0,1], but $F'(x) \notin \mathcal{R}[0,1]$ since F' is not bounded on [0,1].

Remark. Evaluate
$$\int_0^1 f(x) dx$$
, where $f(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x} & \text{if } x \in (0, 1] \\ 0 & \text{if } x = 0 \end{cases}$.

(Note that f(x) is continuous on (0,1], but not continuous at x=0 since $\lim_{x\to 0} f(x)$ does not exist. However, f(x) is clearly bounded on [0,1]. Therefore, $f\in\mathcal{R}[0,1]$)

Ans: $\int_0^1 f(x) dx = \sin 1$ --- seen in the last paragraph of the Chapter 19

20.2 Existence and "uniqueness" of antiderivatives

Problem: What is the corresponding statement for $1\text{st}\,\text{FTC}$ if we do not know F(x) for which F'(x) = f(x)?

For example, we do not know F(x) such that $F'(x) = \sin(x^2)$ or $F'(x) = \frac{\sin x}{x}$

Thm A (2nd FTC)

Let f(x) be continuous on an interval I, and let $a \in I$.

Set
$$F(x) = \int_a^x f(t) dt$$
 for all $x \in I$. Then

F(x) is diff on I, and F'(x) = f(x) for all $x \in I$.

(Conclusion: every continuous function has an antiderivative)

Pf. Enough to prove:
$$\lim_{\Delta x \to 0} \frac{\Delta F}{\Delta x} = f(x)$$

$$\Delta F = F(x + \Delta x) - F(x) = \int_{a}^{x + \Delta x} f(t) dt - \int_{a}^{x} f(t) dt$$
$$= \left[\int_{x}^{x} f(t) dt + \int_{x}^{x + \Delta x} f(t) dt \right] - \int_{a}^{x} f(t) dt$$
$$= \int_{x}^{x + \Delta x} f(t) dt$$

Since f(t) is continuous at x,

(*): given
$$\varepsilon > 0$$
, $f(x) - \varepsilon < f(t) < f(x) + \varepsilon$ for $t \approx x$

Case 1. $\Delta x > 0$

By
$$(*)$$
, $\int_x^{x+\Delta x} (f(x)-\varepsilon) dt \le \int_x^{x+\Delta x} f(t) dt \le \int_x^{x+\Delta x} (f(x)+\varepsilon) dt$ for $\Delta x \approx 0^+$

$$\therefore (f(x) - \varepsilon) \Delta x \le \Delta F \le (f(x) + \varepsilon) \Delta x \text{ for } \Delta x \approx 0^+$$

$$\therefore (f(x) - \varepsilon) \le \frac{\Delta F}{\Delta x} \le (f(x) + \varepsilon) \quad \text{for } \Delta x \approx 0^+$$

Since
$$\varepsilon>0$$
 was arbitrary, $\lim_{\Delta x \to 0^+} \frac{\Delta F}{\Delta x} = f(x)$

Case 2.
$$\Delta x < 0 \quad (\Rightarrow x + \Delta x < x)$$

Recall:
$$a > b$$
, $f(t) \le g(t) \implies \int_a^b f(t) dt \ge \int_a^b g(t) dt$. Thus

$$\int_{x}^{x+\Delta x} (f(x) - \varepsilon) dt \ge \int_{x}^{x+\Delta x} f(t) dt \ge \int_{x}^{x+\Delta x} (f(x) + \varepsilon) dt \text{ for } \Delta x \approx 0^{-1}$$

$$\therefore (f(x) - \varepsilon) \Delta x \ge \Delta F \ge (f(x) + \varepsilon) \Delta x \text{ for } \Delta x \approx 0^{-}$$

$$\overset{\Delta x < 0}{\Rightarrow} \qquad (f(x) - \varepsilon) \le \frac{\Delta F}{\Delta x} \le (f(x) + \varepsilon) \quad \text{for } \Delta x \approx 0^-$$

Since $\varepsilon > 0$ was arbitrary, $\lim_{\Delta x \to 0^-} \frac{\Delta F}{\Delta x} = f(x)$.

Consequently, we have $\lim_{\Delta x \to 0} \frac{\Delta F}{\Delta x} = f(x)$.

Alternative pf (without using $\varepsilon - \delta$ approach: for High-School Math. Teachers)

We first show $\lim_{\Delta x \to 0^+} \frac{\Delta F}{\Delta x} = f(x)$.

Assume $\Delta x>0$, and let $m=f(x_1)$ and $M=f(x_2)$ be the min and max of f(t) on $[x,x+\Delta x]$, where $x\leq x_1,\,x_2\leq x+\Delta x$. (Existence of such x_1 and x_2 is guaranteed by the continuity of f)

Since f(t) is continuous, $\lim_{\Delta x \to 0^+} f(x + \Delta x) = f(x)$, and thus

$$\lim_{\Delta x \rightarrow 0^+} f(x_1) = f(x) \quad \text{and} \quad \lim_{\Delta x \rightarrow 0^+} f(x_2) = f(x)$$

Clearly, we have $m = f(x_1) \le f(t) \le f(x_2) = M$ for $x \le t \le x + \Delta x$

Hence

$$\int_{x}^{x+\Delta x} m \ dt \le \int_{x}^{x+\Delta x} f(t) \ dt \le \int_{x}^{x+\Delta x} M \ dt \quad \text{i.e.,} \quad m\Delta x \le \Delta F \le M\Delta x$$

$$\therefore \quad m \le \frac{\Delta F}{\Delta x} \le M$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \text{(as } \Delta x \to 0^{+})$$

$$f(x) \qquad \qquad f(x)$$

$$\therefore \lim_{\Delta x \to 0^+} \frac{\Delta F}{\Delta x} = f(x)$$

Similarly, we can show that $\lim_{\Delta x \to 0^-} \frac{\Delta F}{\Delta x} = f(x)$ (Ex)

Therefore,
$$F'(x) = \lim_{\Delta x \to 0} \frac{\Delta F}{\Delta x} = f(x)$$
.

• Geometric meaning of the 2nd FTC

 $F(x) = \int_a^x f(t) dt$: represents the cumulative area under f between a and x

$$\Delta F = F(x + \Delta x) - F(x) \approx f(x)\Delta x \text{ if } \Delta x \approx 0$$

$$\therefore \frac{\Delta F}{\Delta x} \approx f(x) \text{ if } \Delta x \underset{\neq}{\approx} 0$$
Indeed,
$$\lim_{\Delta x \to 0} \frac{\Delta F}{\Delta x} = f(x)$$

Remark.

$$f(x)$$
 is continuous on $I = [a, b]$

$$F(x) = \int_{a}^{x} f(t) dt$$
 for all $x \in I$

$$\stackrel{\text{can check}}{\Rightarrow}$$
 $F'(a^+) = f(a)$ and $F'(b^-) = f(b)$.

Thm B (Uniqueness thm for antiderivatives)

Let F(x) and G(x) be diff on an interval I. Then on I

$$G'(x) = F'(x) \implies G(x) = F(x) + c$$
, for some constant c

(That is, antiderivative of f is unique up to an additive constant)

Pf.
$$G'(x) - F'(x) = 0$$
 on an interval I

$$\Rightarrow (G(x) - F(x))' = 0 \text{ on } I$$

$$\Rightarrow G(x) - F(x) = c \text{ (constant) by Theorem 15.2 (5)}$$

Remark. The result is false if the domain is not connected (i.e., if the domain is the union of two or more disjoint intervals). For example,

$$F(x) := \begin{cases} 1, & x \in [0, 1] \\ 2, & x \in [2, 3] \end{cases}$$

 \Rightarrow $F'(x) = 0 \quad \forall x \in [0, 1] \cup [2, 3]$. However, $F(x) \neq \text{constant}$

Cor A (Existence and uniqueness thm for y' = f(x))

Let f(x) be continuous on an interval I, and let $a \in I$.

Then the differential equation with initial condition

$$(\star): \quad y' = f(x), \quad y(a) = b$$

has in I the unique solution y = F(x), where $F(x) = b + \int_a^x f(t) dt$

Pf. F(a) = b is obvious, and $F'(x) = f(x) \ \forall x \in I$ by 2nd FTC

 \therefore F(x) is a solution of (\star) .

If $F_1(x)$ is any other solution of (\star) , then

$$F_1'(x) = f(x) = F'(x) \quad \forall x \in I$$

$$\therefore$$
 $F_1(x) = F(x) + c$ by Thm B

But, since $F_1(a) = b = F(a) + c = b + c$, we get c = 0.

Therefore, $F_1(x) = F(x) \quad \forall x \in I$

Cor B (2nd FTC \Rightarrow 1st FTC if the integrand f(x) is continuous on [a, b])

Assume that on [a, b], F(x) is an antiderivative of a continuous ft f(x)

$$\Rightarrow \int_a^b f(t) dt = F(b) - F(a)$$

Pf. Let $G(x) = \int_a^x f(t) dt$. Then by 2nd FTC,

$$G'(x) = f(x) \stackrel{\text{Hypo}}{=} F'(x) \text{ on } [a, b]$$

 \therefore G(x) = F(x) + c for some constant c

i.e.,
$$\int_a^x f(t) dt = F(x) + c$$

Setting $x = a \implies c = -F(a)$

$$\therefore \int_{a}^{x} f(t) dt = F(x) - F(a)$$

Finally setting x = b \Rightarrow $\int_a^b f(t) dt = F(b) - F(a)$

Note. 1st FTC: first differentiate and then integrate 2nd FTC: first integrate and then differentiate

20.3 Other relations between derivative and integrals

Notation: F(x)_a^b = F(b) - F(a)

Thm A (Integration by parts)

If u'(x) and v'(x) are conti on [a, b], then

$$\int_{a}^{b} u(x)v'(x) \ dx = u(x)v(x)\big]_{a}^{b} - \int_{a}^{b} u'(x)v(x) \ dx$$

Pf. Ex

Thm B (Change of variable rule)

Suppose u(t) is a continuously diff function which maps $[t_0, t_1]$ to $[u_0, u_1]$. That is,

(a)
$$u:[t_0,t_1] \to [u_0,u_1]$$
 and $u(t_0)=u_0,\ u(t_1)=u_1$

(b) u'(t) exists and is conti on $[t_0, t_1]$.

Assume f(u) is a conti function on $[u_0, u_1]$. Then

$$\int_{u_0}^{u_1} f(u) \ du = \int_{t_0}^{t_1} f(u(t)) \ u'(t) \ dt$$

Pf. Let F(u) be an antiderivative of f(u) on $[u_0, u_1]$. Then

$$\int_{u_0}^{u_1} f(u) \, du = F(u_1) - F(u_0) \text{ by the 1st FTC}$$

$$= F(u(t_1)) - F(u(t_0))$$

$$= \int_{t_0}^{t_1} \frac{d}{dt} F(u(t)) \, dt \text{ by the 1st FTC}$$

$$\frac{d}{dt} F(u(t)) = \frac{d}{du} F(u) \frac{du}{dt} = f(u(t)) \frac{du}{dt}$$

$$= \int_{t_0}^{t_1} f(u(t)) \, u'(t) \, dt$$

Ex. Evaluate $\int_0^{1/2} \frac{tdt}{(1-t^2)^2}$

Sol. $u = 1 - t^2 =: u(t) \implies u'(t) = -2t$: continuous on [0,1/2]

$$\int_{0}^{1/2} \frac{t dt}{(1-t^{2})^{2}} = -\frac{1}{2} \int_{0}^{1/2} \frac{u'(t) dt}{u(t)^{2}} \stackrel{u=u(t) \text{ plus Theorem } B}{=} -\frac{1}{2} \int_{1}^{3/4} \frac{du}{u^{2}} = \frac{1}{2} \int_{3/4}^{1} \frac{du}{u^{2}} = \frac{1}{2} \left[-\frac{1}{u} \right]_{3/4}^{1} = \frac{1}{6}$$

Another form of change of variables formula [commonly used]

Let φ be diff on [a,b] with $\varphi'(x) \neq 0 \ \forall x \in [a,b]$, and let f be continuous on $I := \varphi[a,b]$

$$\Rightarrow \int_a^b f(\varphi(x))dx = \int_{\varphi(a)}^{\varphi(b)} f(t)(\varphi^{-1})'(t)dt$$

Pf. Note that

 $t := \varphi(x)$ is diff on [a,b] with $\varphi'(x) \neq 0 \ \forall x \in [a,b] \overset{\text{Darboux}}{\Rightarrow}$ Either $\varphi'(x) > 0$ or $\varphi'(x) < 0$ on [a,b]

$$\therefore \quad \varphi \quad \text{has an inverse } \varphi^{-1}(t) \quad \& \quad (\varphi^{-1})'(t) = \frac{1}{\varphi'(\varphi^{-1}(t))} = \frac{1}{\varphi'(x)} (\neq 0 \quad \text{by hypo})$$

Hence

$$\int_{\varphi(a)}^{\varphi(b)} f(t)(\varphi^{-1})'(t)dt \stackrel{t=\varphi(x)}{=} \int_a^b f(\varphi(x)) \frac{1}{\varphi'(x)} \varphi'(x) dx = \int_a^b f(\varphi(x)) dx$$

Remark: The above hypothesis ' $\varphi'(x) \neq 0 \ \forall x \in [a,b]$ ' may be slightly weakened as follows:

• Let φ be diff on [a,b] with $\varphi'(x) \neq 0 \ \forall x \in [a,b)$, and let f be conti on $I := \varphi[a,b]$

$$\Rightarrow \int_a^b f(\varphi(x))dx = \int_{\varphi(a)}^{\varphi(b)} f(t)(\varphi^{-1})'(t)dt$$

Idea: $\int_{a}^{b} f(\varphi(x))dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{b-\varepsilon} f(\varphi(x))dx$

• Let φ be diff on [a,b] with $\varphi'(x) \neq 0 \ \forall x \in [a,b] \setminus \{c\} \ (\text{with } a < c < b)$, and let

f be conti on $I := \varphi[a,b]$

$$\Rightarrow \int_a^b f(\varphi(x))dx = \int_{\varphi(a)}^{\varphi(b)} f(t)(\varphi^{-1})'(t)dt$$

Idea: $\int_{a}^{b} f(\varphi(x))dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{c-\varepsilon} f(\varphi(x))dx + \lim_{\varepsilon \to 0^{+}} \int_{c+\varepsilon}^{b} f(\varphi(x))dx$

Ex. Evaluate $\int_{1}^{4} \frac{dx}{1+\sqrt{x}}$

Sol. Set $\varphi(x) = \sqrt{x} \Rightarrow \varphi'(x) = \frac{1}{2\sqrt{x}} > 0 \ (\because \neq 0)$ for $x \in [1,4]$ and $\varphi([1,4]) = [1,2]$

Note also that $f(t) := \frac{1}{1+t}$ is continuous on $[1,2] = \varphi([1,4])$. Hence

$$\int_{1}^{4} \frac{dx}{1+\sqrt{x}} = \int_{1}^{4} \frac{dx}{1+\varphi(x)} \left[= \int_{1}^{4} f(\varphi(x)) dx \right]^{\varphi(x) = \sqrt{x} = t} \int_{1}^{2} \frac{2t dt}{1+t}$$
$$= 2 \int_{1}^{2} \frac{t+1-1 dt}{1+t} = 2 \int_{1}^{2} \left[1 - \frac{1}{1+t} \right] dt = 2 \left[t - \ln(1+t) \right]_{1}^{2} = 2 \left[1 - \ln \frac{3}{2} \right]$$

Note: $\varphi(x) = \sqrt{x} = t \implies x = t^2 = (\varphi^{-1})(t) \text{ and } (\varphi^{-1})'(t) = 2t \neq 0 \text{ on } [1,2] = \varphi([1,4])$

HS: Evaluate $\int_{-1}^{1} \frac{1}{1+x^2} dx$ and $\int_{-1}^{1} \sqrt{1-x^2} dx$

20.4 Another look at $\ln x$ and e^x (Home study: Carefully read each definition)

Key (a geometric definition of $\ln x$):

 $\ln x \stackrel{\text{def}}{=} \int_{1}^{x} \frac{1}{t} dt \quad (x > 0) = \text{area uner the graph of } \frac{1}{t} \text{ over } [1, x] \text{ if } x > 1 \quad (? \text{ if } 0 < x \le 1)$

20.5 Stirling's formula

(A famous formula which estimates n! for $n \gg 1$)

Recall the notation:

We write
$$a_n \sim b_n$$
 if $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$ (iff $\lim_{n \to \infty} \frac{a_n - b_n}{b_n} = 0$)

(i.e., $\,a_n\,$ and $\,b_n\,$ are relatively close as $\,n\,
ightarrow \infty$)

Warning: $a_n \sim b_n$ does not mean that $a_n - b_n \to 0$ as $n \to \infty$; for example,

$$n^2 + n \sim n^2$$
 but $(n^2 + n) - n^2 \not \sim 0$ as $n \to \infty$

Theorem (Stirling's formula) [Remember the result]

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$
 (i.e., $\lim_{n \to \infty} \frac{n!}{n^{n+1/2} e^{-n}} = \sqrt{2\pi}$)

(It is not easy to prove the formula)

We are going to just prove

$$(*)$$
 $n! \sim \left(\frac{n}{e}\right)^n \sqrt{n} \cdot K$, where K is a positive constant

Pf of (*) (Idea: 적분과 비교)

Let
$$S_n = \ln n! = \underbrace{\ln 1}_{=0} + \ln 2 + \ln 3 + \dots + \ln n$$

Note that $(\ln x)' > 0 \& (\ln x)'' < 0$

 $\Rightarrow \ln x$ is strictly \uparrow and strictly concave for $x \ge 1$

The total area of the crescent-like regions

$$=\int_{1}^{n} \ln x \ dx - \frac{1}{2} \ln 2 - \frac{1}{2} \left(\frac{1}{\ln 2} + \frac{2}{\ln 3} + \frac{2}{\ln 4} + \dots + \frac{1}{\ln (n-1)} + \frac{1}{\ln n} \right)$$

$$=\int_{1}^{n} \ln x \ dx - \left(\ln 2 + \ln 3 + \dots + \ln (n-1) + \ln n \right) + \frac{1}{2} \ln n$$

$$=: \int_{1}^{n} \ln x \ dx - \left(\ln 2 + \ln 3 + \dots + \ln (n-1) + \ln n \right) + \frac{1}{2} \ln n$$

$$=: \int_{1}^{n} \ln x \ dx - S_{n} + \frac{1}{2} \ln n$$

$$= \int_{1}^{n} \ln x \ dx + \frac{1}{2} \ln n - S_{n} = n \ln n - n + 1 + \frac{1}{2} \ln n - S_{n}$$

$$= (n + \frac{1}{2}) \ln n - n + 1 - S_{n} \stackrel{\text{let}}{=} A_{n} - S_{n}$$

Claim: the slope of the chord over $[i-1,\ i]>$ the slope of $\ln x$ at i

Pf of Claim.

The slope of the chord over [i-1, i]

$$= \ln i - \ln(i-1) \stackrel{\text{MVT}}{=} (\ln x)' \Big|_{c} \cdot 1, \text{ where } i-1 < c < i$$

$$= \frac{1}{c} > \frac{1}{i} = \text{ the slope of } \ln x \text{ at } i$$

Claim gives

Therefore, we have the following picture

The total area of crescent-like regions over $\ [1,\,2]\ =A_n\,-S_n$

$$\therefore \quad \{\, A_n \, - \, S_n \, \} \ \ \mbox{is} \ \ \uparrow \ \ \mbox{and bounded by} \ \ \int_1^2 \ \ln x \ dx$$

Thus by the Completeness Property, $\lim_{n\to\infty} (A_n - S_n)$ exists, call it L

Since
$$e^x$$
 is conti on \mathbb{R} ,
$$e^{A_n-S_n} \to e^L \text{ by the SCT}$$
 That is,
$$\frac{e^{A_n}}{e^{S_n}} = \frac{e^{(n+\frac{1}{2})\ln n - n + 1}}{n!} = \frac{n^{n+\frac{1}{2}}e^{-n}e}{n!} \to e^L$$

Equivalently,
$$\frac{\left(\frac{n}{e}\right)^n \sqrt{n} e}{\sum_{n=1}^{n} e} \rightarrow e^L \quad \text{i.e.,} \quad \frac{\left(\frac{n}{e}\right)^n \sqrt{n} e^{1-L}}{\sum_{n=1}^{n} e^{1-L}} \rightarrow 1$$

Finally letting
$$e^{1-L} = K$$
 gives $n! \sim \left(\frac{n}{e}\right)^n \sqrt{n} \cdot K$ (as $n \to \infty$)

An application of Stirling's formula

Ex. Find the radius R of convergence of the power series $\sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{nx}{e}\right)^n$

Sol.
$$\sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{n}{e}\right)^n x^n$$

$$R = \frac{1}{\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|} = \lim_{n \to \infty} \frac{\frac{1}{n!} \left(\frac{n}{e} \right)^n}{\frac{1}{(n+1)!} \left(\frac{n+1}{e} \right)^{n+1}}$$

Stirling's formula
$$\lim_{n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}} \qquad \lim_{n \to \infty} \frac{\frac{1}{\sqrt{2\pi n}}}{\frac{1}{\sqrt{2\pi(n+1)}}} = 1$$

20.6 Growth rate of functions

In many cases, it is necessary to estimate the relative size of functions, when $x\gg 1$ or when $x\approx a$

Terminology:

Assume
$$f(x) \to \infty$$
 and $g(x) \to \infty$ as $x \to \infty$

$$\frac{f(x)}{g(x)} \to \infty \quad \stackrel{\text{means}}{\Leftrightarrow} \quad f \text{ tends to } \infty \text{ faster than } g \text{ or } f \text{ grows faster than } g$$

$$\frac{f(x)}{g(x)} \to 0 \quad \stackrel{\text{means}}{\Leftrightarrow} \quad f \text{ tends to } \infty \text{ more slowly than } g$$

$$\frac{f(x)}{g(x)} \to 1 \text{ (or } f(x) \sim g(x)) \quad \stackrel{\text{means}}{\Leftrightarrow} \quad f \text{ grows at the same rate as } g \text{ or } f \text{ is asymptotic to } g(x)$$

Caution: $f(x) \sim g(x)$ (as $x \to \infty$) does not mean that f(x) and g(x) are close for $x \gg 1$.

$$f(x) \sim g(x) \text{ (as } x \to \infty) \quad \Leftrightarrow \quad \frac{f(x)}{g(x)} \to 1 \text{ (as } x \to \infty)$$

$$\Leftrightarrow$$
 given $\varepsilon > 0$, $\left| \frac{f(x)}{g(x)} - 1 \right| < \varepsilon$ for $x \gg 1$

$$\Leftrightarrow$$
 given $\varepsilon > 0$, $\left| \frac{f(x) - g(x)}{g(x)} \right| < \varepsilon$ for $x \gg 1$

Exa A. As $x \to \infty$, show that

(a)
$$x^3 - 2x^2 - 1 \sim x^3$$

(b)
$$\sqrt{x^5 + 5x^3 + 2}$$
 grows more slowly than x^3

(c)
$$e^{ax}$$
 grows more rapidly than e^{bx} if $a > b > 0$

Sol

(a)
$$\lim_{x \to \infty} \frac{x^3 - 2x^2 - 1}{x^3} = \lim_{x \to \infty} \left(1 - \frac{2}{x} - \frac{1}{x^3} \right) = 1$$

(b)
$$\lim_{x \to \infty} \frac{\sqrt{x^5 + 5x^3 + 2}}{x^3} = \lim_{x \to \infty} \sqrt{\frac{1}{x} + \frac{5}{x^3} + \frac{2}{x^6}} = 0$$

(c)
$$\lim_{x \to \infty} \frac{e^{ax}}{e^{bx}} = \lim_{x \to \infty} e^{(a-b)x} = \infty \text{ if } a > b > 0$$

Remark. Assume f(x) and $g(x) \to 0$ as $x \to \infty$

$$\frac{f(x)}{g(x)} \to 0$$
 $\stackrel{\text{means}}{\Leftrightarrow}$ f tends to 0 more rapidly than g or g tends to 0 more slowly than f

Show (easy)

(d)
$$\frac{1}{x^2 + 3x} \sim \frac{1}{x^2}$$
 as $x \to \infty$

(e)
$$\frac{1}{x^2}$$
 tends to 0 more rapidly than $\frac{1}{x}$ as $x \to \infty$,

but
$$\frac{1}{x^2}$$
 tends to 0 more slowly than $\frac{1}{x^3}$ as $x \to \infty$

Remark. The same terminology extends to limits as $x \to a$, $x \to a^+$ (a^-) , $x \to -\infty$ etc

• Another proof of L'Hospital's rule for ∞ / ∞ (optional)

Theorem (L'Hospital's rule for ∞ / ∞)

Suppose $f(x) \to \infty$ and $g(x) \to \infty$ as $x \to \infty$ (as $x \to a^+$, resp., etc.), & assume that

$$f'(x)$$
 and $g'(x)$ are conti, and $g'(x) \neq 0$ for $x \gg 1$ (for $x \approx a^+$, resp. etc.)

Then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$
 if the limit on the right exists

Pf. Let
$$\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = L(= \text{a finite real number})$$
. Then

(*): given
$$\varepsilon > 0$$
, $\left| \frac{f'(x)}{g'(x)} - L \right| < \varepsilon$, for $x \gg 1$

Recall

Let
$$f(x)$$
 be conti on $[a, b]$. Then

$$f(x)$$
 changes sign on $[a, b]$ (i.e., $f(a)f(b) < 0$) $\Rightarrow f(x)$ has a zero on $[a, b]$

Since g'(x) is continuous and $g'(x) \neq 0$ for $x \gg 1$,

either g'(x) > 0 for $x \gg 1$ or g'(x) < 0 for $x \gg 1$ (by Bolzano's theorem)

[Cf: Let g be diff & $g'(x) \neq 0$ for $x \gg 1$. Then we still have

either g'(x) > 0 for $x \gg 1$ or g'(x) < 0 for $x \gg 1$ (by Darboux's IVT for derivative) --- Ch15] But, since $g(x) \to \infty$ as $x \to \infty$, we actually have

$$g'(x) > 0$$
 for $x \gg 1$

(To prove this, suppose g'(x) < 0 for $x \gg 1$.

Since $g(x) \to \infty$ as $x \to \infty$, we get for a fixed y with $y \gg 1$,

$$g(x) > g(y)$$
 if $x > y(\gg 1)$

Then
$$\underbrace{g(x) - g(y)}_{>0} \stackrel{\text{MVT}}{=} \underbrace{g'(c)}_{<0}\underbrace{(x - y)}_{>0}, \quad x > c > y(\gg 1)$$
)

Now rewrite (*) as

$$-\varepsilon < \frac{f'(x)}{g'(x)} - L < \varepsilon \quad \text{for } x \gg 1 \quad --- \oplus$$

Since g'(x) > 0 for $x \gg 1$,

$$\oplus \Leftrightarrow -\varepsilon g'(x) < f'(x) - Lg'(x) < \varepsilon g'(x) \text{ for } x \gg 1$$

Fix a large x -value a and let u > a. Then

$$\int_{a}^{u} -\varepsilon g'(x) \ dx < \int_{a}^{u} \left(f'(x) - Lg'(x) \right) \ dx < \int_{a}^{u} \varepsilon g'(x) \ dx$$

$$\therefore -\varepsilon g(u) + \varepsilon g(a) < f(u) - Lg(u) - f(a) + Lg(a) < \varepsilon g(u) - \varepsilon g(a)$$

i.e., \exists constants b and c such that

$$-\varepsilon g(u) + b < f(u) - Lg(u) < \varepsilon g(u) + c$$
 for $u \gg 1$

Since $q(u) \to \infty$ as $u \to \infty$,

$$\frac{\mid b \mid}{g(u)} < \varepsilon$$
 and $\frac{\mid c \mid}{g(u)} < \varepsilon$ for $u \gg 1$

Accordingly,

$$-\varepsilon - \varepsilon < -\varepsilon + \frac{b}{g(u)} < \frac{f(u)}{g(u)} - L < \varepsilon + \frac{c}{g(u)} < \varepsilon + \varepsilon \quad \text{for} \quad u \gg 1$$

$$\text{That is,} \quad \left|\frac{f(u)}{g(u)} - L\right| < 2\varepsilon \quad \text{for} \quad u \gg 1 \,. \quad \text{Equivalently,} \quad \lim_{u \to \infty} \frac{f(u)}{g(u)} = L.$$

Rk. The hypo "f'(x) and g'(x) are conti", and $g'(x) \neq 0$ for $x \gg 1$ (for $x \approx a^+$, etc) can be slightly weakened as

"
$$f(x)$$
 and $g(x)$ are diff", and $g'(x) \neq 0$ for $x \gg 1$ (for $x \approx a^+$, etc)]

Remark. The L'Hospital's rule can be applied even if $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = \infty$

Pf. Claim

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \infty \text{ and } g'(x) \neq 0 \text{ for } x \gg 1 \quad \Rightarrow \quad f'(x) \neq 0 \text{ for } x \gg 1$$

Pf of Claim.

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \infty \quad \Rightarrow \quad \frac{f'(x)}{g'(x)} > 0 \quad \text{for } x \gg 1$$

$$\therefore \quad \frac{f'(x)}{g'(x)} \neq 0 \quad \text{for } x \gg 1$$

$$\Rightarrow \quad f'(x) = \underbrace{\frac{f'(x)}{g'(x)}}_{\neq 0} \underbrace{\frac{g'(x)}{g'(x)}}_{\neq 0} \quad \text{for } x \gg 1$$

Now

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \infty \ (\& \ g'(x) \neq 0 \ \text{ for } x \gg 1)$$

$$\Rightarrow \lim_{x \to \infty} \frac{g'(x)}{f'(x)} = 0 \ \& \ f'(x) \neq 0 \ \text{ for } x \gg 1$$

$$\stackrel{\text{L'Hospital}}{\Rightarrow} \lim_{x \to \infty} \frac{g(x)}{f(x)} = 0$$

$$\Rightarrow \lim_{x \to \infty} \frac{f(x)}{f(x)} = \infty$$

$$\underset{(f(x) \& g(x) \to \infty}{\Rightarrow} \Rightarrow \underset{f(x) \& g(x) > 0 \text{ for } x \gg 1)}{\lim} \frac{f(x)}{g(x)} = \infty$$

Exa B. Verify that

(a)
$$\lim_{x \to \infty} \frac{\ln x}{x^k} = 0$$
 for all $k > 0$

(b)
$$\lim_{x \to \infty} \frac{e^{ax}}{x^m} = \infty$$
 for all $a, m > 0$

Pf

(a)
$$\lim_{x \to \infty} \frac{\ln x}{x^k} \stackrel{\text{L'Hospital}}{=} \lim_{x \to \infty} \frac{1/x}{kx^{k-1}} = \lim_{x \to \infty} \frac{1}{kx^k} = 0$$

(b)
$$\lim_{x \to \infty} \frac{e^{ax}}{x^m} = \lim_{x \to \infty} \left(\frac{e^{ax/m}}{x}\right)^m = \left(\lim_{x \to \infty} \frac{e^{ax/m}}{x}\right)^m = \left(\lim_{x \to \infty} \frac{e^{ax/m}}{x}\right)^m = \left(\lim_{x \to \infty} \frac{a}{m}e^{ax/m}\right)^m = \infty$$

Ex. Find
$$\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n}$$

Sol. By Stirling's formula
$$\left[n! \sim \sqrt{2\pi n} (n/e)^n \text{ for } n \gg 1\right]$$
, we have

$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = \lim_{n \to \infty} \frac{1}{n} \frac{n}{e} (2\pi n)^{\frac{1}{2n}} = \frac{1}{e} \lim_{n \to \infty} (2\pi n)^{\frac{1}{2n}} = \frac{1}{e} \left[\leftarrow n^{\frac{1}{n}} \to 1 \& a^{\frac{1}{n}} (a > 0) \to 1, \text{ as } n \to \infty \right]$$

MVT for integrals

1. (The first MVT for integrals)

Let f(x) be conti on [a, b]. Then $\exists c \in (a, b)$ such that

$$\int_a^b f(x) \, dx = f(c)(b-a)$$

Pf. Method 1

If f is constant on [a, b], we can take any point in [a, b] as c.

Thus we may assume f(x) is not constant on [a, b].

Since $f \in C[a, b]$, it has its max and its min on [a, b].

$$\text{Let } m = \min_{x \in [a, \, b]} f(x) = f(\underline{x}), \quad \underline{x} \in [a, b] \quad \& \quad M = \max_{x \in [a, \, b]} f(x) = f(\overline{x}), \quad \overline{x} \in [a, b]$$

Note that $\underline{x} \neq \overline{x}$ since f is not constant on [a, b].

Clearly,

$$f(\underline{x}) \le f(x) \le f(\overline{x}) \quad \forall x \in [a, b]$$

$$\therefore \quad \underbrace{\int_{a}^{b} f(\underline{x}) dx}_{=f(\overline{x})(b-a)} \le \int_{a}^{b} f(x) dx \le \underbrace{\int_{a}^{b} f(\overline{x}) dx}_{=f(\overline{x})(b-a)}$$

$$\therefore \quad f(\underline{x}) \le \underbrace{\int_{a}^{b} f(x) dx}_{b} \le f(\overline{x})$$

Thus by (the usual) IVT, $\ \exists \ c \in [\underline{x}, \overline{x}] \ \text{ or } \ [\overline{x}, \underline{x}] \ (\ \therefore \ c \in [a,b] \) \ \text{ such that}$

$$f(c) = \frac{\int_{a}^{b} f(x) \, dx}{b - a}$$

To prove $c \in (a, b)$, we need only show that $c \neq \underline{x}$ and $c \neq \overline{x}$.

If
$$c = \underline{x}$$
, then $m(b-a) = \int_a^b f(x) dx$

$$\Rightarrow \int_a^b \underbrace{(f(x) - m)}_{\text{and contion } [a, b]} dx = 0$$

$$\Rightarrow f(x) - m = 0 \text{ on } [a, b] \quad \text{i.e., } f(x) = m \quad \forall x \in [a, b]$$

$$\Rightarrow f(x) \text{ is constant on } [a, b]; \quad \text{contradiction}$$

$$\therefore c \neq \underline{x}$$

Similarly, we can see that $c \neq \overline{x}$

Method 2

Let
$$F(x) = \int_a^x f(t) dt$$
, $x \in [a, b]$

$$\stackrel{\text{2nd FTC}}{\Rightarrow} F(x) \text{ is diff on } [a, b] \text{ and } F'(x) = \underbrace{f(x)}_{\text{: conti on } [a, b]} \forall x \in [a, b]$$

ordinary MVT
$$\Rightarrow$$
 $F(b) - F(a) = F'(c)(b - a)$ for some $c \in (a, b)$ $||$ $||$ $\int_a^b f(t) dt$ $f(c)(b - a)$

2. (The second MVT for integrals)

Let f(x) and g(x) be continuous and $g(x) \ge 0$ on [a, b]. Then $\exists c \in (a, b)$ such that

$$\int_a^b f(x)g(x) \ dx = f(c) \int_a^b g(x) \ dx$$

Caution. The hypo $g(x) \ge 0$ on [a, b] is essential: Take f(x) = g(x) = x on [-1, 1]. Then

$$\int_{-1}^{1} f(x)g(x)dx = \int_{-1}^{1} x^{2}dx > 0; \text{ but } \int_{-1}^{1} g(x)dx = 0; \text{ so } f(c)\int_{-1}^{1} g(x)dx = 0$$

Pf. Method 1

Since $f \in C[a, b]$, we can let

$$m = \min_{x \in [a, b]} f(x) = f(\underline{x}), \quad \underline{x} \in [a, b] \quad \& \quad M = \max_{x \in [a, b]} f(x) = f(\overline{x}), \quad \overline{x} \in [a, b]$$

Then, since $g(x) \ge 0$ on [a, b], we have

$$mg(x) \le f(x)g(x) \le Mg(x) \quad \forall x \in [a, b]$$

$$\therefore m \int_a^b g(x) dx \le \int_a^b f(x)g(x) dx \le M \int_a^b g(x) dx$$

If
$$\int_a^b \underbrace{g(x)}_{\text{\& conti}} dx = 0$$
, then $g(x) = 0 \ \forall x \in [a, b]$.

$$\therefore \quad \int_a^b f(x)g(x) \ dx = \int_a^b 0 \ dx = 0$$

$$\therefore \underbrace{\int_a^b f(x)g(x) dx}_{=0} = f(c)\underbrace{\int_a^b g(x) dx}_{=0} \quad \text{for any choice } c \in (a, b)$$

Assume $\int_a^b g(x) dx > 0$.

If f(x) is constant on [a, b], then the assertion is trivially OK

If f(x) is not constant on [a, b], then $\underline{x} \neq \overline{x}$ &

$$f(\underline{x}) \le \frac{\int_a^b f(x)g(x) dx}{\int_a^b g(x) dx} \le f(\overline{x})$$

Thus by (the usual) IVT, $\exists c \in [a, b] \quad (\leftarrow \exists c \in [\underline{x}, \overline{x}] \text{ or } [\overline{x}, \underline{x}])$ such that

$$f(c) = \frac{\int_a^b f(x)g(x) dx}{\int_a^b g(x) dx}$$

As in the proof of the first MVT for integrals, we can check that $c \neq \underline{x}$ and $c \neq \overline{x}$.

$$c \in (a, b)$$

Method 2 Will prove only the case $\int_a^b g(x) dx > 0$.

(A proof of the easy case $\int_a^b g(x) dx = 0$ is left as an exercise)

$$H(x) : \stackrel{\text{let}}{=} f(x) \int_a^b g(x) dx \in C[a, b]$$

 $f \in C[a, b] \implies f$ takes its max and min on [a, b]

i.e., $\exists \ \overline{x} \ \& \ \underline{x} \in [a,b]$ s.t. $f(\underline{x}) \le f(x) \le f(\overline{x}) \quad \forall x \in [a,b]$

$$\therefore \underbrace{f(\underline{x}) \int_{a}^{b} g(x) dx} \leq \int_{a}^{b} f(x) g(x) dx \leq \underbrace{f(\overline{x}) \int_{a}^{b} g(x) dx}_{H(\overline{x})}$$

By (the usual) IVT, $\exists \ c \in [a,b] \quad \left(\leftarrow \exists c \in [\underline{x},\overline{x}] \text{ or } [\overline{x},\underline{x}] \right)$ such that

$$\int_a^b f(x)g(x)dx = H(c) = f(c)\int_a^b g(x)dx$$

As in the proof of the first MVT for integrals, we can check that $c \neq \underline{x}$ and $c \neq \overline{x}$.

$$c \in (a, b)$$

Method 3. We further assume $g(x) > 0 \ \forall x \in [a, b]$ (stronger than $\int_a^b g(x) dx > 0$)

Let
$$F(x) = \int_a^x f(t)g(t) dt$$
, $G(x) = \int_a^x g(t) dt$; $x \in [a, b]$

 $\overset{\text{2nd FTC}}{\Rightarrow} \quad F(x) \text{ is diff on } [a,b] \text{ and } F'(x) = \underbrace{f(x)g(x)}_{: \text{ conti on } [a,b]} \quad \forall x \in [a,b]$

$$G(x)$$
 is diff on $[a, b]$ and $G'(x) = \underbrace{g(x)}_{\text{conti on } [a, b]} \forall x \in [a, b]$

Cauchy MVT
$$\Rightarrow$$
 $\frac{F(b) - F(a)}{G(b) - G(a)} = \frac{F'(c)}{G'(c)}$ for some $c \in (a, b)$

$$\frac{\int_{a}^{b} f(t)g(t) dt}{\int_{a}^{b} g(t) dt} \qquad \frac{f(c)g(c)}{g(c)}$$

This means

$$\int_a^b f(x)g(x) dx = f(c) \int_a^b g(x) dx, \text{ for some } c \in (a,b)$$

Exa. Suppose f is continuous on [1, 5]. Prove that

$$\int_{1}^{5} 2xe^{x^{2}} f(x) dx = (e^{25} - e)f(c) \text{ for some } c \in (1, 5).$$

Sol. Note that $g(x) = 2xe^{x^2} > 0$ and continuous on [1, 5]. Thus 2^{nd} MVT for integrals gives that

$$1 < {}^{\exists}c < 5 \text{ s.t. } \int_{1}^{5} 2x e^{x^{2}} f(x) dx = f(c) \left(\int_{1}^{5} 2x e^{x^{2}} dx \right) = f(c) \left[e^{x^{2}} \right]_{1}^{5} = \left(e^{25} - e \right) f(c)$$