HAI406 - Feuille de TD nr.4

N.B: Le symbole (ullet) signale les exercices à travailler en priorité et le symbole (\star) les exercices facultatifs.

Exercice 1. (•) On considère la matrice

$$A = \begin{bmatrix} 0 & 1 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

Calculer A^2 puis A^3 . Comment appelle-t-on une telle matrice? Montrer, de trois manières différentes, que A n'est pas inversible.

Exercice 2. (•) Dire si les matrices suivantes sont inversibles et calculer leurs inverses le cas échéant :

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 1-i \\ -3 & 2i \end{bmatrix}, \qquad \begin{bmatrix} 3 & -6i \\ 2+i & 2-4i \end{bmatrix}, \qquad \begin{bmatrix} \alpha-1 & 2 \\ 0 & \alpha+1 \end{bmatrix} \ (\alpha \in \mathbb{R}).$$

Exercice 3. (•) Soit
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 2 & 3 & 1 \end{bmatrix}$$
,

- 1. Montrer que A est inversible, puis calculer son inverse A^{-1} .
- 2. Résoudre (rapidement!) chacun des trois systèmes suivants:

$$AX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \qquad AX = \begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix}, \qquad \text{et} \qquad AX = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad (X \in \mathbb{R}^3).$$

Exercice 4. (•) On considère les matrices
$$A = \begin{bmatrix} 5 & 2 \\ -4 & -1 \end{bmatrix}$$
 et $U = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix}$.

- 1. Montrer que U est inversible, et calculer U^{-1} .
- 2. Calculer $D = U^{-1}AU$. Ecrire la matrice D^k . En déduire l'expression explicite de A^k .
- 3. Vérifier que D et A ont même trace et même déterminant. Ce résultat était-il prévisible ?

Exercice 5. On considère la matrice
$$A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & -2 & 1 \\ -2 & 3 & 0 \end{bmatrix}$$
.

- 1. Montrer que A est inversible, puis calculer A^{-1} .
- 2. Calculer la matrice $B = -A^3 2A^2 + 6A$.
- 3. A l'aide du résultat précédent, retrouver A^{-1} par une méthode plus rapide que celle de la double matrice.

1

Exercice 6. (•)

- 1. Vérifier sur les matrices carrées d'ordre 2 la validité de la formule : $\det(AB) = \det(A) \det(B)$.
- 2. Vérifier sur les matrices carrées d'ordre 3 la validité de la formule : $\det({}^tA) = \det(A)$.

Exercice 7. (\bullet) Soit A une matrice carrée d'ordre 2. On note δ son déterminant et τ sa trace.

- 1. Montrer que $A^2 \tau A + \delta I = 0$.
- 2. Retrouver le fait (admis en cours) que si $det(A) \neq 0$ alors A est inversible.
- 3. Retrouver à l'aide de (1) la formule vue en cours donnant l'inverse de A.

Exercice 8. (\bullet) Soit P une matrice idempotente¹.

- 1. Donner des exemples concrets de matrices P.
- 2. P peut-elle être inversible? Si oui, dans quel(s) cas?
- 3. Posons S := 2P I. Calculer S^2 . En déduire que S est inversible, puis donner son inverse.

Exercice 9. (\star) Soient A une matrice de taille $n \times p$ et B une matrice de taille $p \times n$. Montrer² que si $AB = I_n$ et $BA = I_p$, on a nécessairement n = p. Moralité ?

Exercice 10. (\star) Montrer³ que si A est une matrice antisymétrique, alors la matrice I+A est inversible.

Exercice 11. (\star) Choisissons dans \mathbb{R}^2 deux vecteurs

$$X = \begin{bmatrix} x \\ y \end{bmatrix} \qquad X' = \begin{bmatrix} x' \\ y' \end{bmatrix}.$$

On rappelle que l'expression $\langle X \mid X' \rangle$ désigne le produit scalaire euclidien et $\|X\| = \sqrt{\langle X \mid X \rangle}$ la norme euclidienne associée. On notera $\mathcal A$ l'aire du parallélogramme porté par ces deux vecteurs et θ l'angle qu'ils définissent. On définit enfin la matrice :

$$M = [X \mid X'] = \begin{bmatrix} x & x' \\ y & y' \end{bmatrix}.$$

- 1. Montrer que $A = ||X|| ||X'|| \sin(\theta)$.
- 2. Vérifier que

$${}^{t}M\ M = \begin{bmatrix} \|X\|^{2} & \langle X \mid X' \rangle \\ \langle X \mid X' \rangle & \|X'\|^{2} \end{bmatrix}.$$

3. En déduire que $|\det(M)| = A$.

 $^{^{1}}$ ie: on rappelle qu'une telle matrice P est une matrice carrée vérifiant la propriété $P^{2}=P$.

²Indice: penser à utiliser la trace.

³Indice: montrer d'abord que si A est antisymétrique d'ordre n et si $X \in \mathbb{R}^n$, alors $(I+A)X = \mathbf{0} \Rightarrow X = \mathbf{0}$.