

K. Wiegand, T. Stalljohann, T. Witt Sommersemester 2025 Heidelberg, 15. April 2025

Grundlagen der Geometrie und Topologie

ÜBUNGSBLATT 1

Stichworte: Mengentheoretische Topologie, Topologische und glatte Mannigfaltigkeiten

Zusatzaufgabe 0 Nützliche Fakten aus der Topologie I (1+1+1 Bonuspunkte)

a) Für einen topologischen Raum (X, \mathcal{O}) und eine Teilmenge $Y \subseteq X$ bezeichne $\mathcal{O}|_Y := \{U \cap Y \mid U \in \mathcal{O}\}$ die Teilraumtopologie von Y bzgl. (X, \mathcal{O}) . Zeigen Sie, dass für Teilmengen $Z \subseteq Y \subseteq X$ gilt

$$\mathcal{O}|_Z = (\mathcal{O}|_Y)|_Z$$
.

Zeigen Sie ebenfalls, dass für eine Abbildung $f: \Omega \to X$ von einem topologischen Raum (Ω, \mathcal{T}) nach X mit $f(\Omega) \subseteq Y$ gilt:

$$f:(\Omega,\mathcal{T})\to (X,\mathcal{O}) \text{ stetig} \iff f|_Y:(\Omega,\mathcal{T})\to (Y,\mathcal{O}|_Y) \text{ stetig}$$
.

b) Sei (X, d) ein metrischer Raum. Sei \mathcal{O}_d die zugehörige metrische Topologie definiert über

$$\mathcal{O}_d := \{ U \subseteq X \mid \forall x \in U : \exists r > 0 : B_r^d(x) \subseteq U \} .$$

Zeigen Sie, dass für eine Teilmenge $Y \subseteq X$ gilt:

$$\mathcal{O}_{d|_{Y\times Y}}=\mathcal{O}_d|_Y$$
.

- c) Sei $f:X\to Y$ eine stetige Abbildung zwischen topologischen Räumen. Zeigen Sie
 - (i) $X \text{ kompakt} \Longrightarrow f(X) \text{ kompakt}$
 - (ii) X zusammenhängend $\implies f(X)$ zusammenhängend
 - (iii) X wegzusammenhängend $\Longrightarrow f(X)$ wegzusammenhängend

Aufgabe 1 Nützliche Fakten aus der Topologie II (2+2 Punkte)

a) Sei $f: X \to Y$ eine stetige Abbildung von einem kompakten Raum X in den Hausdorff-Raum Y. Zeigen Sie, dass f eine abgeschlossene Abbildung¹ ist. Folgern Sie, dass, wenn f zusätzlich injektiv ist, f eine topologische Einbettung² ist.

Hinweis: Benutzen Sie Zusatzaufgabe 0 c) und Aufgabe 2 der Präsenzaufgaben.

 $^{^{1}\}mathrm{d.h.}$ für jede abgeschlossene Teilmenge $A\subseteq X$ ist $f(A)\subseteq Y$ abgeschlossen

 $^{^2}$ d.h. die Einschränkung von f auf sein Bild ist ein Homöomorphismus, wobei das Bild von f mit der Unterraumtopologie von Y versehen ist

b) Beweisen Sie Lemma 1.5 aus der Vorlesung:

X wegzusammenhängend $\Longrightarrow X$ zusammenhängend X zusammenhängend und lokal-euklidisch $\Longrightarrow X$ wegzusammenhängend

Aufgabe 2 *Produkte* (1+1+1+1+1+1+1+1) Punkte)

a) Seien (X_1, \mathcal{O}_1) und (X_2, \mathcal{O}_2) topologische Räume. Zeigen Sie, dass es eine eindeutige Topologie auf $X_1 \times X_2$ gibt, sodass

$$\{U_1 \times U_2 \mid U_1 \in \mathcal{O}_1, U_2 \in \mathcal{O}_2\}$$

eine Basis dieser Topologie ist. Wir nennen die so definierte Topologie die *Produkttopologie* von (X_1, \mathcal{O}_1) und (X_2, \mathcal{O}_2) .

Zeigen Sie weiterhin

- b) Die Projektionen $\pi_i: X_1 \times X_2 \to X_i$ sind stetig und offene Abbildungen³.
- c) (Universelle Eigenschaft) Für jeden topologischen Raum Z und beliebige Abbildungen $f_i: Z \to X_i$, i = 1, 2, gilt:

$$f_1$$
 und f_2 sind stetig $\iff f_1 \times f_2 : Z \to X_1 \times X_2$ ist stetig

wobei
$$(f_1 \times f_2)(z) := (f_1(z), f_2(z))$$
 für $z \in Z$.

- d) Sind M_1 und M_2 topologische Mannigfaltigkeiten, so ist $M_1 \times M_2$ mit der Produkttopologie ebenfalls eine topologische Mannigfaltigkeit der Dimension $\dim(M_1) + \dim(M_2)$.
- e) Sind (M_1, \mathcal{A}_1) und (M_2, \mathcal{A}_2) differenzierbare Mannigfaltigkeiten, so ist

$$\mathcal{A} := \{ (U_1 \times U_2, (\varphi_1, \varphi_2)) \mid (U_1, \varphi_1) \in \mathcal{A}_1, (U_2, \varphi_2) \in \mathcal{A}_2 \}$$

ein Atlas. Das Produkt $M_1 \times M_2$ zusammen mit dem eindeutigen maximalen Atlas, der \mathcal{A} enthält (siehe Lemma 1.11 aus der VL), heißt *Produktmannigfaltigkeit*.

Gegeben seien nun differenzierbare Mannigfaltigkeiten (M_1, A_1) und (M_2, A_2) . Im Folgenden betrachten wir die Produktmannigfaltigkeit $M_1 \times M_2$:

- f) Man zeige, dass die Projektionen $\pi_i: M_1 \times M_2 \to M_i$ Submersionen⁴ sind.
- g) Man zeige, dass für einen beliebigen Punkt $p_2 \in M_2$ die Teilmenge $M_1 \times \{p_2\}$ eine Untermannigfaltigkeit von $M_1 \times M_2$ ist.

Aufgabe 3 *Sphäre* (1+1+2+2+1 Punkte)

Für die n-Sphäre $\mathbb{S}^n \subseteq \mathbb{R}^{n+1}$ bezeichne $N := (0, \dots, 0, 1)$ den Nordpol und $S := (0, \dots, 0, -1)$ den Südpol. Es sei $p_N : U_N := \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$ die stereografische Projektion vom Nordpol, die $x \in \mathbb{S}^n \setminus \{N\}$ abbildet auf den eindeutigen Punkt $y \in \mathbb{R}^n$ mit der Eigenschaft, dass (y, 0) auf der Gerade liegt, die N mit x verbindet.

a) Zeigen Sie, dass (wie in der VL behauptet) p_N gegeben ist durch

$$p_N(x) = p_N(x_1, \dots, x_{n+1}) = \frac{1}{1 - x_{n+1}} (x_1, \dots, x_n)$$

und beweisen Sie die analoge Formel für die stereografische Projetion p_S vom Südpol. Folgern Sie $p_S(x) = -p_N(-x)$ für $x \in U_S := \mathbb{S}^n \setminus \{S\}$.

³d.h. Bilder offener Mengen sind offen

⁴Eine Submersion ist eine glatte Abbildung, für die jeder Punkt regulär ist, siehe Def. 1.15.

- b) Verifizieren Sie, dass $\mathcal{A} := \{(U_N, p_N), (U_S, p_S)\}$ ein Atlas für \mathbb{S}^n ist.
- c) Für i = 1, ..., n + 1 betrachte man

$$f_i^{\pm}: \mathbb{R}^n \supseteq B_1(0) \to \mathbb{S}^n$$

 $y = (y_1, \dots, y_n) \mapsto (y_1, \dots, y_{i-1}, \pm \sqrt{1 - |y|^2}, y_{i+1}, \dots, y_n)$.

Sei $U_i^{\pm} := f_i^{\pm}(B_1(0))$ das Bild von f_i . Zeigen Sie, dass U_i offen ist (in der Teilraumtopologie von \mathbb{S}^n bzgl. der Standardtopologie von \mathbb{R}^{n+1}) und dass

$$\mathcal{A}_1 := \{(U_i, (f_i^+)^{-1})\}_{i=1,\dots,n+1} \cup \{(U_i, (f_i^-)^{-1})\}_{i=1,\dots,n+1}$$

ein Atlas für \mathbb{S}^n ist. Zeigen Sie weiterhin, dass \mathcal{A} und \mathcal{A}_1 im selben Maximalatlas liegen. (Also sind die induzierten differenzierbaren Strukturen auf \mathbb{S}^n gleich.)

- d) \mathbb{S}^n ist eine Untermannigfaltigkeit von \mathbb{R}^{n+1} und die differenzierbare Struktur von \mathbb{S}^n , die es als Untermannigfaltigkeit erbt, stimmt mit der von \mathcal{A} (bzw. \mathcal{A}_1) induzierten differenzierbaren Struktur überein.
- e) Die antipodale Abbildung $\mathbb{S}^n \to \mathbb{S}^n$, $x \mapsto -x$ ist ein Diffeomorphismus.

Zusatzaufgabe 4 Torus (4 Bonuspunkte)

Geben Sie eine endliche Familie an Karten an, die den Torus $\mathbb{T}^n = \mathbb{S}^1 \times \ldots \times \mathbb{S}^1$ überdecken. Versuchen Sie die Anzahl zu minimieren. Ist es möglich, dass eine einzige Karte den Torus überdeckt?

Abgabe bis Dienstag, 22. April 2025, 13:00 Uhr im MaMpf in Zweiergruppen. Abgabe zu dritt ist erlaubt.