FIM 548-001 HW-4

Yi-Siou Feng, Raiden Han, Tingyu Lei

April 12, 2022

Perface

All codes in this report are Python codes. To implement these methods, we need to import the NumPy package initially. Also, we include two GPU packages for acceleration.

```
import numpy as np
import cupy as cp
from cupyx.scipy.special import ndtr

np.random.seed(412)
```

Problem 1

First, we need to generate the correlated normal random variables. As described in the question,

$$(X_1,\ldots,X_{10})\sim N\left(\mathbf{0},\mathbf{\Sigma}\right),$$

where Σ is the covariance matrix with diagonal entries of 1 and all other entries of 0.2. We can use the Cholesky decomposition to derive the formulas from iid normal-distributed variables. For simplicity, we used the Python build-in function to generate. Under the assumption of exponential distribution with constant default intensity rates, bond i's default time τ_i is

$$\tau_i = F_i^{-1} \left(N(X_i) \right),\,$$

where $N(\cdot)$ is the cumulative probability function of the standard normal distribution, and

$$F_i(x) = 1 - e^{-\lambda_i x}.$$

Equivalently,

$$F_i^{-1}(u) = -\frac{\log(1-u)}{\lambda_i},$$

where λ_i is bond i's default intensity rate. Alternatively, we can also use the built-in function to implement. Then, we can manually adjust s so that the mean of $V(\tau_1, \ldots, \tau_{10})$ over $N = 10^8$ simulations is zero. For each simulation, we find the rank statistics $(\tau_{(1)}, \ldots, \tau_{(10)})$. Then, the value of the CDS is

$$V(\tau_{1},...,\tau_{10}) = V_{value}(\tau_{1},...,\tau_{10}) - V_{prot}(\tau_{1},...,\tau_{10}),$$

where

$$V_{value}(\tau_1, \dots, \tau_{10}) = (1 - R) e^{-r\tau_{(5)}} \mathbb{I}(\tau_{(5)} \le T)$$

with R the recovery rate of the fifth bond to default, and

$$V_{prot}\left(\tau_{1},\ldots,\tau_{10}\right) = \begin{cases} \sum_{i=1}^{j} se^{-rT_{i}} + se^{-r\tau_{(5)}} \frac{\tau_{(5)} - T_{j}}{T_{j+1} - T_{j}}, & T_{j} \leq \tau_{(5)} \leq T_{j+1}, \\ \sum_{i=1}^{5} se^{-rT_{i}}, & \tau_{(5)} > T, \end{cases}$$

with j = 0, 1, ..., 5 and $T_j = j$. The fair annual protection payment rate is 1.42%.

Problem 2

The cumulative distribution function of exit time T is

$$F_T(t) = \int_0^t f(u) du = \int_0^t \frac{1}{18} u du = \frac{t^2}{36}, \quad 0 \le t \le 6.$$

Therefore, for $0 \le t \le 6$, its inverse function is

$$F_T^{-1}(u) = 6\sqrt{u}, \quad 0 \le u \le 1.$$

Using the formula above, we can simulate T from the inverse method. Assume X(0) is given. In each simulation, we simulate $U \sim Unif(0,1)$ and $Z \sim N(0,1)$, and the exit time

$$T = 6\sqrt{U}$$
.

So the asset price at exit time T is

$$X(T) = X(0)e^{(r-\sigma^2/2)T + \sigma\sqrt{T}Z}.$$

The outcome to Series B investor is

$$f(X(T)) = \begin{cases} X(T) \frac{I_B}{P_B}, & X(T) \ge 1,000, \\ \max \left\{ \min \left\{ \frac{I_B}{I_A + I_B} X(T), I_B \right\}, X(T) \frac{I_B}{P_B} \right\}, & X(T) < 1,000. \end{cases}$$

Again, we manually adjusted X(0), such that the mean of $e^{-rT}f(X(T))$ over $N=10^{10}$ simulations equals to I_B . The value of X(0) is 672.5. And the overvaluation is

$$\frac{P_B - X(0)}{X(0)} = 48.70\%.$$

Appendix - Python Code

April 19, 2022

```
[1]: import numpy as np
     import cupy as cp
     from cupyx.scipy.special import ndtr
     cp.random.seed(412)
[2]: def reinforce_function(func, n, *args):
         """ Repeat a function with certain parameters several times and return the
         mean result
         Parameters
         _____
         func : function
             The function to be repeated
         n : int
             The repeating time
         args : tuple
             The parameters for the function
         Returns
         mean_value : float
             The mean value of n times running
         value = []
         for i in range(n):
            value.append(func(*args))
         value = cp.array(value)
         mean_value = cp.mean(value, axis=0).item()
         return mean_value
```

1 Problem 1

```
[3]: def basket cds(n, s):
         Parameters
         _____
         n: int or float
             The simulation size
         s : float
             The annual protection payment for the CDS
         Returns
         _____
         v : float
             The simulated present value of the CDS
         HHHH
         # Convert the simulation size into an integer
         n = int(n)
         # Initialize parameters of the contract and assets
         r, t = 0.03, 5
         default_int = cp.array([0.05, 0.01, 0.05, 0.05, 0.01, 0.1, 0.01, 0.09,
                                 0.1, 0.02).reshape(10, -1)
         recov_rate = cp.array([0.1, 0.1, 0.3, 0.1, 0.3, 0.1, 0.2, 0.2,
                                0.1, 0.1).reshape(10, -1)
         # Define parameters for the multivariate normal distribution
         cov = cp.full((10, 10), 0.2)
         cp.fill_diagonal(cov, 1)
         \# Use the Cholesky decomposition to derive the transformation matrix
         a = cp.linalg.cholesky(cov)
         # Generate the correlated normal random variables
         z = cp.random.normal(size=(10, n))
         x = cp.dot(a, z)
         # Use the antithetic method to reduce the variance
         x = cp.hstack((x, -x))
         # Calculate the default time
         tau = -cp.log(1 - ndtr(x)) / default_int.reshape((10, 1))
         # Select samples with the fifth default time less than 5 years
         tau_rank_ind = cp.argsort(tau, axis=0)
         tau_5 = tau[tau_rank_ind[4, :], range(2 * n)]
         tau_5_bool = tau_5 <= t</pre>
         # Calculate the possible income for CDS holders
         v_value = cp.zeros(2 * n)
         v_value[tau_5_bool] = ((1 - recov_rate[tau_rank_ind[4, tau_5_bool]]).T *
                                cp.exp(-r * tau 5[tau 5 bool])).ravel()
```

```
[4]: # Output the results
print("The fair value of the CDS is ${:.4f}.".format(
reinforce_function(basket_cds, 100, 1e6, .01421)))
```

The fair value of the CDS is \$0.0000.

2 Problem 2

```
[5]: def startup_valuation(n, x0):
         # Convert the simulation size into an integer
         n = int(n)
         # Initialize parameters of the asset
         pa, pb, ia, ib = 450, 1000, 50, 100
         r, sigma = 0.025, 0.9
         # Generate random variables
         u = cp.random.uniform(size=n)
         t = 6 * cp.sqrt(u)
         z = cp.random.normal(size=n)
         # Calculate the exit value
         xt = x0 * cp.exp((r - sigma ** 2 / 2) * t + sigma * cp.sqrt(t) * z)
         # Calculate the payout to Series B investors
         outcome = cp.where(xt < 1000,
                            cp.maximum(cp.minimum((ib / (ia + ib)) * xt, ib),
                                       xt * ib / pb),
                            xt * ib / pb)
         eo = cp.mean(cp.exp(-r * t) * outcome).item()
         return eo
```

[6]: # Output the results print("The fair investment for Series B investor is \$\{:.2f\}.".format(reinforce_function(startup_valuation, 1000, 1e7, 672.52))) print("The overvaluation is \{:.2\}.".format((1000 - 672.5) / 672.5))

The fair investment for Series B investor is \$100.00. The overvaluation is 48.70%.