RADIOACTIVE DECAY

Radioactive Isotopes

- two extremely interesting and important aspects of radioactive decay makes it so useful as a chronometer.
 - Unstable nuclei decay to stable ones at rates independent of all environmental influences.
 - Each nucleus has a fixed probability of decaying per unit time.
 Nothing affects this probability (e.g., temperature, pressure, bonding environment, etc.)

Radiogenic Isotopic variations is a function of:

- 1. Time (of decay since the system is closed)
- 2. Different parent/Daughters ratio

Radioactive Decay

 Basic equation of radioactive decay: first-order rate law: Curie-Rutherford-Soddy Law:

$$-\frac{dN}{dt} \propto N$$
 or $-\frac{dN}{dt} = \lambda N$ = Activity of radionuclide

The minus sign simply indicates N (present-day parent concentration) decreases.

 λ is the decay constant- probability of decay per unit time. Unit: time⁻¹.

Integrating the decay equation, we get:

$$N = N_0 e^{-\lambda t}$$

Half-life:
$$t_{1/2} = \frac{Ln2}{\lambda} = \frac{0.693}{\lambda}$$

The **mean life** τ of a parent nuclide:

(average life expectancy of a radioactive atom)

$$t\tau = -\frac{1}{N_0} \int_{t=0}^{t=\infty} t \cdot dN$$

$$\tau = \frac{N}{\lambda N} = \frac{1}{\lambda}$$

The decay of the parent produces a daughter (D*), or radiogenic nuclide.

$$D^* = N_o - N$$

$$= Ne^{\lambda t} - N = N (e^{\lambda t} - 1)$$

 However, there might be some daughter isotope present in the system (initial value) to begin with.

Therefore:
$$D = D_o + D^*$$

$$D = D_o + N(e^{\lambda t} - 1)$$

D = number of daughter atoms

N = number of existing parent atoms

 D_0 = number of initial daughter atoms

 λ = decay constant

t = time elapsed

$$D = D_o + N(e^{\lambda t} - 1)$$

Note that this equation is independent of N_0 .

solve the above equation for age of the system (t):

$$t = \frac{1}{\lambda} \ln \left[\frac{D - D_0}{N} + 1 \right]$$

Practical limitations on age range:

Very young rocks: cannot measure tiny amount of daughter accurately

Very old rocks: cannot measure tiny amounts of parent left accurately

Applicability of an Isotopic system depends on λ .

Geologically Useful Long-Lived Radioactive Decay Schemes

TABLE 2.1: Geologically Useful Long-Lived Radioactive Decay Schemes

Parent	Decay Mode	λ	Half-life	Daughter	Ratio
$^{40}\mathrm{K}$	β^- , e.c, β^+	$5.5492 \times 10^{-10} \text{y}^{-1*}$	$1.28 \times 10^9 \text{yr}$	⁴⁰ Ar, ⁴⁰ Ca	$^{40}\mathrm{Ar}/^{36}\mathrm{Ar}$
⁸⁷ Rb	β-	$1.42 \times 10^{-11} \text{y}^{-1£}$	$48.8 \times 10^{9} \text{yr}$	⁸⁷ Sr	87 Sr / 86 Sr
138 La	β-	$2.67 \times 10^{-12} \text{y}^{-1}$	$2.59 \times 10^{11} \text{yr}$	¹³⁸ Ce, ¹³⁸ Ba	¹³⁸ Ce/ ¹⁴² Ce, ¹³⁸ Ce/ ¹³⁶ Ce
¹⁴⁷ Sm	α	$6.54 \times 10^{-12} \text{y}^{-1}$	$1.06 \times 10^{11} \text{yr}$	^{143}Nd	143 Nd/ 144 Nd
176 Lu	β^-	$1.867^{\dagger} \times 10^{-11} \text{y}^{-1}$	$3.6 \times 10^{10} \text{yr}$	$^{176}{ m Hf}$	$^{176}\mathrm{Hf}/^{177}\mathrm{Hf}$
¹⁸⁷ Re	β-	$1.64 \times 10^{-11} \text{y}^{-1}$	$4.23 \times 10^{10} \text{yr}$	$^{187}\mathrm{Os}$	¹⁸⁷ Os/ ¹⁸⁸ Os, (¹⁸⁷ Os/ ¹⁸⁶ Os)
$^{190}\mathrm{Pt}$	α	$1.54 \times 10^{-12} \text{y}^{-1}$	$4.50 \times 10^{11} \text{yr}$	$^{186}\mathrm{Os}$	186 Os $/^{188}$ Os
²³² Th	α	$4.948 \times 10^{-11} \text{y}^{-1}$	$1.4 \times 10^{10} \text{yr}$	²⁰⁸ Pb, ⁴ He	²⁰⁸ Pb/ ²⁰⁴ Pb, ³ He/ ⁴ He
^{235}U	α	$9.8571 \times 10^{-10} \text{y}^{-1\ddagger}$	$7.07 \times 10^{8} \text{yr}$	²⁰⁷ Pb, ⁴ He	²⁰⁷ Pb/ ²⁰⁴ Pb, ³ He/ ⁴ He
^{238}U	α	$1.55125 \times 10^{-10} y^{-1}$	$4.47 \times 10^9 \text{yr}$	²⁰⁶ Pb, ⁴ He	²⁰⁶ Pb/ ²⁰⁴ Pb, ³ He/ ⁴ He

Note: the branching ratio, i.e. ratios of decays to ⁴⁰Ar to total decays of ⁴⁰K is 0.117. ¹⁴⁷Sm and ¹⁹⁰Pt also produce ⁴He, but a trivial amount compared to U and Th.

^{*}This is the value recently suggested by Renne et al. (2010). The conventional value is $5.543 \times 10^{\text{-}10} \text{y}^{\text{-}1}$

[£]The officially accepted decay constant for ⁸⁷Rb is that shown here. However, recent determinations of this constant range from $1.421 \times 10^{-11} \text{y}^{-1}$ by Rotenberg (2005) to $1.399 \times 10^{-11} \text{y}^{-1}$ by Nebel et al. (2006).

[†]This is the value recommended by Söderlund et al. (2004).

[†]Value suggested by Mattinson (2010). The conventional value is 9.8485 x 10⁻¹⁰y⁻¹.

Isochron Dating

$$^{87}\text{Rb}_{37} \rightarrow ^{87}\text{Sr}_{38} + \beta^{-} + \nu + 0.275 \text{ MeV}$$
($\lambda = 1.42 \times 10^{-11} \text{ yr}^{-1}$; $T_{1/2} = 48.8 \text{ Ga}$)

$$^{87}Sr = ^{87}Sr_0 + ^{87}Rb\big(e^{\lambda t} - 1\big)$$

As it turns out, it is generally much easier, and usually more meaningful, to measure ratio of two isotopes precisely than the absolute abundance of one. We, therefore, measure the ratio of ⁸⁷Sr to a non-radiogenic isotope, which by convention is ⁸⁶Sr. We can recast the above equation as:

Assumptions in age determination

- 1) System was closed between t = 0 and time t (usually the present time)

 no transfer of the parent or the daughter element into or out of the system
- 2) At t = 0, Concentration of parent must be different in different phases in the system, but concentration of initial daughter must be the same.
- 3) we must also know λ accurately

Violation of these conditions is the principal source of error in geochronology. Other errors arise from errors or uncertainties associated with the analysis.

Must satisfy: System is closed

Begin with 3 rocks plotting at a, b, c at time to

They must have same value of initial 87 Sr/ 86 Sr (87 Sr/ 86 Sr) = value at time t.

After some time increment ($t_0 \rightarrow t_1$) each sample loses some ⁸⁷Rb and gains an equivalent amount of ⁸⁷Sr (proportional to the amount of Rb present in the system)

At time t_2 each rock system has evolved \rightarrow new line. Again still linear and steeper line

All points on a single <u>isochron</u> line have same age.

Isochron technique produces 2 valuable things:

- 1. The age of the rocks (from the slope)
- 2. $(^{87}Sr/^{86}Sr)_o$ = the initial value of $^{87}Sr/^{86}Sr$, which we did not know beforehand

Rb-Sr Isochron, Eagle Peak Pluton, Sierra Nevada Batholith

Rb-Sr isochron for the Eagle Peak Pluton, central Sierra Nevada Batholith, California, USA. Filled circles are whole-rock analyses, open circles are hornblende separates. The regression equation for the data is also given. After Hill et al. (1988). Amer. J. Sci., 288-A, 213-241.