Question Bank 5

Question 1

Consider a pair of random variables X and Y. Let Y be distributed as a Binomial distribution Bin(n, X), where X has a beta distribution on [0, 1] with parameters a and b.

(i) Describe the probability mass function of
$$Y$$
. [4]

(ii) Evaluate
$$E[Y]$$
. [2]

(iii) Evaluate
$$Var(Y)$$
.

(iv) Specify the distribution of
$$Y$$
 if X is uniform. [2]

Question 2

(i) Derive expressions, in terms of a, b and c, for the principal components of a 2-dimensional random vector X with mean μ and covariance matrix:

$$S = \begin{bmatrix} a & c \\ c & b \end{bmatrix}$$

What are the variances of the first and second principal components? [6]

(ii) A p-dimensional random variable X has a $N_p(\mu, \Sigma)$ distribution if its characteristic function is given by

$$\phi_X(t) = e^{it'\mu - \frac{1}{2}t'\Sigma t}.$$

Derive the distribution of the vector Y = AX where A is a $q \times p$ matrix. [2]

(iii) Describe the distribution of the vector $Z = W^{-1}(X - \mu)$, where W is a symmetric matrix such that $W^2 = \Sigma$.

Question 3

Let Y_1, \ldots, Y_n be independently and identically distributed random variables, with $Y_i \sim \text{Poi}(\mu) \ \forall \ i$.

- (i) Derive the probability generating function $G_{Y_1}(t)$ and the moment generating function $M_{Y_1}(t)$ for Y_1 .
 - (ii) Let $S = \sum_{i=1}^{n} Y_i$. Show that S follows a Poisson distribution with parameter $n\mu$. [3]
- (iii) Let X have the Poisson distribution with parameter Y_1 , show that the probability generating function for $X + Y_1$ is

$$G_{X+Y_1}(t) = \exp\{\mu(te^{t-1} - 1)\}$$