Обработка множеств логических закономерностей с помощью дисперсионного критерия

Выпускная квалификационная работа

Выполнил: Лисяной А. Е. Руководитель: д.ф.-м.н., проф. Рязанов В. В.

Факультет Вычислительной Математики и Кибернетики Кафедра Математических Методов Прогнозирования МГУ им. М.В. Ломоносова

19 мая 2015 г.

Задача классификации

Определение задачи классификации

Пусть имеется пространство объектов X и конечное множество имен классов $Y=\{1,\ldots,M\}$. Пусть также имеется обучающая выборка $X^l=(x_i,y_i)_{i=1}^l$, в которой для каждого объекта x_i известен его класс $y_i\in Y$. Для восстановления целевой зависимости $y^*(x_i)=y_i$ построим алгоритм классификации $a\colon X\to Y$, аппроксимирующий y^* на всём пространстве объектов X.

Алгоритмы решения задачи классификации

- Метод логистической регрессии
- Метод опорных векторов
- Решающие деревья
- Нейронные сети
- Логические алгоритмы классификации

Методы поиска логических закономерностей

Определение логической закономерности

Пусть каждый объект выборки $x \in X^l$ имеет размерность D и пусть $\Omega \subseteq \{1,2,\ldots,D\}$. Предикат

$$\varphi(x) = P^{\Omega, \mathbf{c_1}, \mathbf{c_2}}(x) = \bigwedge_{j \in \Omega} P^{c_1^j, c_2^j}(f_j(x))$$

называется логической закономерностью класса K, если выполнено:

- $\exists x \in K \colon \varphi(x) = 1$
- $\forall x \notin K \colon \varphi(x) = 0$
- $oldsymbol{\circ}$ $\varphi(x)$ максимизирует некоторый критерий качества $\Phi.$

Обработка множества логических закономерностей

Построенное множество логических закономерностей:

- может содержать большое количество правил
- может содержать похожие правила

Это приводит к тому, что:

- логические закономерности сложно интерпретировать
- по похожим правилам плохо проводить классификацию

Задача обработки множества логических закономерностей

- По исходному множеству логических закономерностей построить множество меньшей мощности, что должно упростить пользователю задачу интерпретации полученных правил.
- Построенное множество логических закономерностей меньшей мощности должно иметь качество классификации, сравнимое с исходным множеством.

Обработка множества логических закономерностей

- f 0 Для каждого из t правил составить признаковое описание
 - Вектор левых и правых границ
 - Внаризованное описание правил
- ② Кластеризовать на $k \leq t$ кластеров, найти их центры
- lacktriangle По центрам кластеров построить k новых правил
 - Выбрать центры кластеров в качестве новых правил
 - 2 Центры кластеров + критерий качества \to новые правила

Выборка	Всего объектов	Объекты по классам	Признаки
Iris	150	50/50/50	4
Wine	178	59/71/48	13
Climate	540	46/494	11
Ionosphere	351	126/255	34

Таблица: Сводная таблица по использованным данным

Выборка Iris. Классификация методом простого голосования

Выборка Wine. Классификация методом простого голосования

Список результатов

- Реализован метод обработки множеств логических закономерностей с помощью кластеризации на основе дисперсионного критерия.
- Проведено сравнение метода обработки, использующего вектор левых и правых границ, и метода обработки, использующего бинаризованное описание логических закономерностей.
- Экспериментально показано, что удается получить обработанное множество логических закономерностей с меньшим числом элементов и сравнимым с исходным множеством качеством классификации.