

3.3 温度对化学反应速率的影响

Arrhenius方程式

1889年阿仑尼乌斯对反应速率常数k与温度T的关系提出了一个较准确的经验公式。

指数形式:
$$k = A \cdot e^{-\frac{E_a}{RT}}$$

A—指前因子 E_a —实验活化能,单位为 $kJ \cdot mol^{-1}$ 。

对数形式:
$$\ln k = \ln A - \frac{E_a}{RT}$$

$$\frac{\ln k - \frac{1}{T}}{T}$$
 线性关系

斜率为
$$-\frac{E_a}{R}$$
 , 截距为 $\ln A$ 。

例如:测得

 $2N_2O_5(CC1_4) \rightarrow N_2O_4(CC1_4) + O_2(g)$ 不同温度下的k值

		1 0	
T/K	k/s^{-1}	$\frac{1}{T}$	$\ln k$
293.15	0.235×10^{-4}	3.41×10^{-3}	-10.659
298.15	0.469×10^{-4}	3.35×10^{-3}	-9.967
303.15	0.933×10^{-4}	3.30×10^{-3}	-9.280
308.15	1.82×10^{-4}	3.25×10^{-3}	-8.612
313.15	3.62×10^{-4}	3.19×10^{-3}	-7.924
318.15	6.29×10^{-4}	3.14×10^{-3}	-7.371

① 在 $k = A \cdot e^{-\frac{L_a}{RT}}$ 中, E_a 处于方程的指数项中, 对k有显著影响,在室温下, E_a 每增加 $4 kJ \cdot mol^{-1}$, k值降低约80%;

②
$$\ln k = \ln A - \frac{E_a}{RT}$$
 温度升高, k 增大, 一般反应温

度每升高10℃, k将增大2~10倍;

ii. 由 T_1 、 k_1 、 E_a 计算 T_2 反应速率常数 k_2

例题: $2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g)$

己知: T_1 =298.15K, k_1 =0.469×10⁻⁴ s⁻¹

 T_2 =318.15K, k_2 =6.29×10⁻⁴ s⁻¹

求: E_a 及338.15K时的 k_3 。

解:
$$E_{\rm a} = R \frac{T_1 T_2}{T_2 - T_1} \ln \frac{k_2}{k_1}$$

$$=8.314 \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \times \frac{298.15 \text{K} \times 318.15 \text{K}}{318.15 \text{K} - 298.15 \text{K}} \times \ln \frac{6.29 \times 10^{-4} \text{s}^{-1}}{0.469 \times 10^{-4} \text{s}^{-1}}$$

 $=102 \text{ kJ} \cdot \text{mot}^1$

$$\ln \frac{k_3}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_3} \right)$$

$$\ln \frac{k_3}{0.469 \times 10^{-4} \,\mathrm{s}^{-1}} = \frac{102 \,\mathrm{kJ \cdot mol}^{-1}}{8.314 \,\mathrm{J \cdot mol}^{-1} \cdot \mathrm{K}^{-1}} \left(\frac{1}{298.15 \,\mathrm{K}} - \frac{1}{338.15 \,\mathrm{K}} \right)$$

$$k_3 = 6.12 \times 10^{-3} \text{ s}^{-1}$$