

James W. Kennington

 $2010\ Mathematics\ Subject\ Classification.\ Primary$

Contents

Chapter 1. Linear Algebra and Tensors	1
Summary of Exercises	1
Chapter 2. Vector Spaces	3
§2.1. Levels of structure	3
$\S 2.2. L^2\left([-a,a]\right) \text{ closed under addition}$	3
§2.3. [WIP] Spherical harmonics basis	4
§2.4. [WIP] Angular momentum generates rotations	4
§2.5. [WIP] Double dual space	4
§2.6. [WIP] Transpose of linear operator	4
§2.7. [WIP] Hermitian adjoint	4
§2.8. [WIP] Metric dual of the metric	4
§2.9. [WIP] Bases of $P(\mathbb{R})$	4
Bibliography	5

Chapter 1

Linear Algebra and Tensors

Summary of Exercises

There are no problems listed for chapter 1.

Vector Spaces

2.1. Levels of structure

For each of the below, V means all vector spaces, H means only those with non-degenerate Hermitian forms, and P means only those with inner products.

- (a) P unit vector \hat{x} requires the norm
- (b) V all vector spaces can have a basis (in fact, it is possible to prove that all vector spaces have a basis)
- (c) V
- (d) P norm requires positive-definite form, therefore inner products
- (e) V
- (f) H orthogonality
- (g) V any vector space has a least the inclusion linear operator $\iota:V\hookrightarrow V$ where $\iota(v)=v$ for all v in V.
- (h) P angle requires norm, norm requires inner product
- $(i)\ V$ though a hermitian form might offer a natural choice for the definition of a dual, all vector spaces have a dual space
- (j) P metric dual requires a metric

2.2. $L^{2}([-a,a])$ closed under addition

Given $f, g \in L^2([-a, a])$, we need to show that the addition of f and g also is in $L^2([-a, a])$. Specifically, we must show $h(x) = (f + g)(x) \in L^2([-a, a])$.

Begin by using the Triangle Inequality

$$\int_{-a}^{a} |h|^2 dx = \int_{-a}^{a} |f + g|^2 dx \le \int_{-a}^{a} (|f| + |g|)^2 dx$$

Using the given inequality $0 \leq \int_{-a}^{a} (|f| + \lambda |g|)^2 dx$ for all $\lambda \in \mathbb{R}$. If we expand the inequality and choose $\lambda = 1$, we obtain the fairly general result 2.1:

$$0 \le \int_{-a}^{a} (|f| + \lambda |g|)^2 dx = \int_{-a}^{a} |f|^2 dx + \lambda^2 \int_{-a}^{a} |g|^2 dx + 2\lambda \int_{-a}^{a} |f| |g| dx$$

(2.1)
$$2\int_{-a}^{a} |f| |g| dx \le \int_{-a}^{a} |f|^2 dx + \int_{-a}^{a} |g|^2 dx < \infty$$

Now that we've shown the cross-term is finite, we can establish our original objective:

$$\int_{-a}^{a} |h|^2 \, dx = \int_{-a}^{a} |f|^2 \, dx + \int_{-a}^{a} |g|^2 \, dx + 2 \int_{-a}^{a} |f| \, |g| \, dx < \infty$$

- 2.3. [WIP] Spherical harmonics basis
- 2.4. [WIP] Angular momentum generates rotations
- 2.5. [WIP] Double dual space
- 2.6. [WIP] Transpose of linear operator
- 2.7. [WIP] Hermitian adjoint
- 2.8. [WIP] Metric dual of the metric
- 2.9. [WIP] Bases of $P(\mathbb{R})$

Bibliography

[Jee15] Nadir Jeevanjee, An introduction to tensors and group theory for physicists, 2 ed., Birkhauser, 2015.