$\frac{\partial f}{\partial p_1} = 0 \Rightarrow 2p_1 + p_2 = 1$ $\frac{\partial L}{\partial p_2} = 0 \Rightarrow p_1 + 2p_2 = 1$ (1) (2) (2) (2) (3) (3) (4) (4) (4) (5) (5) (5) (5) (7)Ne can see that this is a minimum of ((pipp) by examining, eg g(p) = f(p, 1/3) = $g'(p_1) = \frac{\partial f}{\partial p_1} = 2[2p_1 + (\frac{1}{2}) - 1].$ $= 2 (2p, -\frac{2}{3})$ <0 P1 < 13 2 minimum of

of flaspa)

37	Induction
32.1 LVP	
	Sugar in hour some amounty about positive
	compose we have so finding that in knows that!
	mumber suppose further than the races than
	I has this property (base case)
2.	Suppose we have some property about positive numbers. Suppose further that we know that: I has this property (base case) whenever n-1 has this property, 80 does n (n>1)
	Then the principle of induction says that
	Then the principle of induction says that every positive in has this property:
EV	2 20 - 2ntl 1
LX	$\frac{5}{5}2^{j} = 2^{n+1} - 1$
PC	check this for a base case, eg n=0
1	
	$2^{\circ} = 2^{\circ + 1} - 1$
	Suppose true for n. This is often called the induction hypothes is use this to prove a
	induction hypothesis Use this to prove a
e ^r	for ntl.
	$\sum_{i=1}^{n+1} 2i = \sum_{i=1}^{n} 2i + 2^{n+1}$
	J=0 j=0
	$2^{n+1}-1+2^{n+1}$
	$= 2 \cdot 2^{n+1} - 1$
	$=2^{n+2}-1$
	$= 2^{(c+1)+1} - 1$

which is as with n replaced by nt EX $\sum_{j=1}^{\infty} j = \frac{N(n+1)}{2}$ (Adx) Check for n=1' = I(1+1)
Induction hypothesis. ?. Prove for no $\frac{\sum_{j=1}^{n+1} j = \sum_{j=1}^{n} j + (n+1) = \frac{n(n+1)}{2} + (n+1)}{\sum_{j=1}^{n} j = \sum_{j=1}^{n} j + (n+1)}$ =(n+1)[n+2]=(n+1)((n+1)+1)which B (bx) W n>n+1. EX 2,2 = n(n+1)(2n+1) 多种的 Check for n=1: $1^2 = 1(1+1)(2.1+1)$ /
Induction hypothesis: $\frac{1}{2} = \frac{1}{2} = \frac{$ Prove for nt $\frac{1}{2} \int_{-1}^{1} \frac{1}{2} \int_{$ 2n+1) + 6(n+1)] = (1) (A1) [342+

= ntl [2n2+7n+6] = ntl (n+2)(2n+3) which 13 (bpd) for not Recall: $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$ Another way to establish this is to View both sides as counting the same thing in two different ways $RHS = \frac{(n+1)n}{2} = \frac{(n+1)}{2}$ thways to choose a items from (1,2,...,nt)} $= \# \{(1,2),(1,3),(1,4),\dots,(1,n+1)\}$ + # { (2,3), (2,4), ..., (2, n+1)} $\# \{(3,4),\ldots,(3,n+1)\}$ $\# \{(n_1n+1)\}.$ $= n + (n-1) + (n-2) + \cdots + 1$

	In L5, we proved that the number of
-	In L5, we proved that the number of (Strong) compositions of no 18 2n-1 We now
. (1)	present an inductive proof.
	1 20 21-1
BASE :	$n=1$: # composition = $1 = 2^{\circ} = 2^{1-1}$.
MDuction	
HYPOTHES	is: # compositions of m is a mail Km sn.
NDUTIVE .	Prove: # compositions of n+1 B 2 = 2.
STEP:	We do this by answering a number
	Ne do this by answering a number of questions:

Take that part away and get a composition of reduction) Thus there are 2nd compositions of not by 1 as night-most part. How many have k as the right-most Take that part away and get a composition of n+1-k, which he and 2n-k compositions (induction mypothe d n indusive? compositions of not except itself mary condude that = 2" compositions

	Pascals Triangle
3.5 LVP	30000
	Recall!
	$\binom{M}{P} = \frac{M}{(2 + 1)!}$
	C. (U-K) K.
5 1 1	= binomial coefficient
	RT IN .
	$(n-k) = \frac{n!}{(n-k)!(n-k)!} = \frac{n!}{(n-k)!k!}$
	Thus:
	$\binom{n}{k} = \binom{n}{k}$
	Ne arrange all binormal coefficients
	into a tranqular scheme:
	$\binom{2}{0}\binom{2}{1}\binom{2}{2}$
	$\begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix}$ etc.
	(o) (1) (2) (3) etc.
	The second Development 1 2 1:
	end land rascals mange keplacing
	This is called Pascal's Triangle Replacing each binomial coeff by its value, me get.
	1 2
	1 3 5
	14641

	Pascals Trignale is symmetric about the
	Pascals Trignole is symmetric about the vertical line through it's apex because
-	$\binom{n}{R} = \binom{n}{n-R}$ (See above).
	If you examine the numbers in the triangle, then it appears that
	triangle, then it appears that
3.6 LVP	$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
	(R) (R-1)
PLI	MS: M = (N-1)!
	ms: n! (n-1)! (n-1)! (n-1)!
	Divide both sides by
	Divide both sides by
	(n-1-k)! (k-1)!
	The geo!
	(n-k)k - n-k +
3-	But:
	RHS = R + (n-R).
	(n-k)k
19 1-	N 1110
	m-kik = LHS
	KG)

BCs	Show that both sides count the same thing in the different ways.
	thing in two different ways.
(a)	(n) = # ways of choosing k elements from
	21,2,, n?
(6)	(R-1) = # ways of choosing the element n (R-1) and R-1 other elements of
	and k-1 other elements of
	£1,2,000, n-13.
(()	m-1) = #ways of choosing & elements from
	(h) = #ways of choosing & elements from
	Since any set counted in (a) is either
	Since any set counted in (a) is either one of the sets counted in (b) or (d),
	we have
	$\left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$
	(R) (R) TO