

Skilaverkefni 3

Brynjólfur Gauti Jónsson Þórarinn Jónmundsson

Dæmi 1

Ný aðferð til að mæla fosfór í jarðvegi er kynnt til sögunnar. Úrtak af 11 jarðvegssýnum úr jarðvegi með raunverugeu fosfórmagni 548mg/kg er greint með nýju aðferðinni. Úrtaksmeðaltalið reynist vera 587 og úrtaksstaðalfrávikið 10.

(1) Gefa gögnin til kynna að nýja aðferðin mæli fosfórmagnið rétt? Nota skal núlltilgátupróf með marktektarkröfu $\alpha=0.05$.

Lausn:

Við ætlum að prófa μ sem er hið sanna meðaltal þýðisins og gerum ráð fyrir því að meðaltalið komi úr normaldreifingunni (skv T3_Nulltilgatu.pdf). Tilgátuprófið er

$$H_0: \mu = 548$$
 v.s. $H_1: \mu \neq 548$.

Par sem hið sanna staðalfrávik er ekki gefið þurfum við að styðjast við t-próf. Prófstærðin er:

$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}.$$

Hér er \overline{x} úrtaksmeðaltalið, s úrtaksstaðalfrávikið, μ_0 núlltilgátugildið sem við viljum prófa og n fjöldi mælinga. Í okkar tilfelli verður því jafnan að ofan:

$$t = \frac{587 - 548}{10/\sqrt{11}} = \frac{39}{10/\sqrt{11}} \approx 12.935$$

Par sem gagntilgátuprófið okkar er tvíhliða þá höfnum við H_0 ef $|t|>t_{\alpha/2,n-1}$. Par sem $\alpha=0.05$ er $t_{0.025,10}=2.228$ og því ljóst að

$$|t| = |12.935| > 2.228 = t_{0.025,10}.$$

Við höfnum því núlltilgátunni H_0 undir marktektarkröfunni $\alpha=0.05$ og samþykkjum gagntilgátuna undir sömu marktektarkröfu.

(2) Hverju þurfum við að gera ráð fyrir til að núlltilgátuprófið í (1) verði viðeigandi?

Lausn:

Að gögnin komi úr normaldreifingunnni og fyrst úrtakið er lítið að gögnin séu án útlaga eða séu ekki skeif.

Dæmi 2

Framleiðslufyrirtæki þarf að velja á milli tveggja birgja sem selja örflögur í tölvur. Slembiúrtak af 200 örflögum frá birgi A eru kannaðar og 8 þeira reyndust vera gallaðar, á meðan 13 í slembiúrtaki af 250 örflögum frá brgi B voru gallaðar. Notið núltilgátu til að meta hvort þessi niðurstaða ætti aðhafa áhrif á val fyrirtækisins á birgi með marktektarkröfu $\alpha=0.01$.

Lausn:

Við leysum dæmið út frá tvíkosta (e. binomial) dreifingunni. Þar sem úrtakið er nægilega stórt notum við normaldreifinguna til að nálga prófstærð miðað vil núlltilgátuna $H_0: p_A = p_B$.

Höfum að $\hat{p}_A=\frac{8}{200},\,\hat{p}_B=\frac{13}{250},\,\hat{p}=\frac{8+13}{200+250}=\frac{21}{450}.$ Prófstærðin okkar verður

$$z = \frac{\hat{p}_A - \hat{p}_B}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}} = -0.6$$

Flettum upp p-gildi prófstærðar með R skipuninni 2 * dnorm(-0.6) og fáum p = 0.67. Við getum því ekki sagt að munur sé á birgjum og því ætti niðurstaðan ekki að hafa áhrif á val fyrirtækisins.

Dæmi 3

Í þessu dæmi á að skila R kóða ásamt svörum. Rannsókn var gerð til að ákvarða samband milli vikulegra útgjalda til auglýsinga og söluhagnaðs. Niðurstaðan var eftirfarandi:

Útgjöld til auglýsinga [mISK]	Söluhagnaður [mISK]
40	385
20	400
25	395
20	365
30	475
50	440
40	490
20	420
50	560
40	525
25	480
50	510

(a) Notið R til að gera línulega aðhvarfsgreiningu á gögnunum með því að nota formúlurnar í bókinni beint og ákvarðið þannig jöfnu matlínunnar fyrir $Y = \beta_0 + \beta_1 x$. Teiknið gögnin.

(b) Ákvarðið 95% öryggisbil fyrir β_1 með því að reikna sjálf í R.

			95% Öryggisbil	
Breyta	Stuðull	Staðalvilla	Neðri	Efri
Skurðpunktur x	343.706 3.221	44.766 1.240	246.168 0.520	441.243 5.922

(c) Notið fallið lm(y ~ x) og staðfestið reikningana í (a) og (b).

			95% Öryggisbil	
Breyta	Stuðull	Staðalvilla	Neðri	Efri
(Intercept)	343.706 3.221	44.766 1.240	246.168 0.520	441.243 5.922

(d) Spáið fyrir vikulegum söluhagnaði þegar útgjöld til auglýsinga eru 35 milljónir ISK.

(e) Á 5% prófsstigi, getum við dregið þá ályktun að auglýsingar hafi áhrif á sölur?

Þar sem öryggisbil fyrir hallastuðul við auglýsingar inniheldur ekki núll getum við ályktan með 95% vissu að áhrif auglýsinga á sölu séu ekki núll.

(Auka) Hvernig skal túlka β_0 og β_1 fyrir þessi gögn?

 β_0 er vænt sölumagn þegar engu fjármagni er varið í auglýsingar. Hafa ber varann á þar sem úrtak inniheldur ekki mælingar á sölu fyrir auglýsingaútgjöld minni en 20 mISK eða meiri en 50 mISK. Mælt er með að heimfæra ekki niðurstöður greiningar á auglýsingafjármagn langt utan þess bils.

 β_1 er vænt aukning í sölumagni þegar vikulegum útgjöldum til auglýsinga er aukið um 1 mISK.