1 Banach Algebras

Definition 1.1 Algebra, Subalgebra, Norm, Complete, Banach algebra, unital, homomorphisms

Theorem 1.2 Closed subspace of Banach is Banach.

Theorem 1.3 I closed ideal \Rightarrow A/I normed algebra with norm $||a + I|| = \inf_{b \in I} ||a + b||$.

2 Spectrum and Spectral Radius

Considering unital normed algebras.

Definition 2.1 Invertible elements, spectrum, spectral radius

Remark 2.2 1-ab invertible iff 1-ba invertible. $\sigma(ba)\setminus 0 = \sigma(ba)\setminus 0$.

Theorem 2.3 $\sigma(a)$ non-empty and $p \in \mathbb{C}[z] \Rightarrow \sigma(p(a)) = p(\sigma(a))$.

Theorem 2.4 $||a|| < 1 \Rightarrow 1 - a \in \text{inv}(A), (1 - a)^{-1} = \sum_{n=0}^{\infty} a^n$.

Theorem 2.5 inv(A) open and $a \mapsto a^{-1}$ differentiable.

Theorem 2.6 $\sigma(a)$ non-empty, closed and $\subseteq \overline{K_{\|a\|}(0)}$, $\mathbb{C} \setminus \sigma(a) \to A, \lambda \mapsto (a - \lambda)^{-1}$ differentiable.

Theorem 2.7 A unital, Banach and $inv(A) = A \setminus \{0\} \Rightarrow A = \mathbb{C}1$.

Theorem 2.8 $r(a) = \lim_{n \to \infty} ||a^n||^{1/n} = \inf_{n \ge 1} ||a^n||^{1/n}$.

Theorem 2.9 $1 \in B \leq A$ closed, A Banach. Then $inv(B) = B \cap inv(A)$ closed. $\sigma_A(b) \subseteq \sigma_B(b)$, also for boundaries. Equality if $\sigma_A(b)$ has no holes or both are C^* .

3 Gelfand Representation

Definition 3.1 *Ideal, characters, character space.*

Theorem 3.2 A Banach. Proper ideals have proper closure. Maximal ideals are closed. If A abelian, unital: Quotients of maximal ideals are fields.

Theorem 3.3 A Banach, abelian, unital. If $r \in \Omega(A) \Rightarrow ||r|| = 1$. $\Omega(A)$ non-empty and $r \mapsto \ker(r)$ is a bijection between $\Omega(A)$ and the maximal ideals in A.

Theorem 3.4 A Banach, abelian. A unital \Rightarrow $\sigma(a) = \Omega(A)(a)$. A non-unital \Rightarrow $\sigma(a) = \Omega(A)(a) \cup \{0\}$.

Theorem 3.5 A Banach, abelian $\Rightarrow \Omega(A)$ locally compact Hausdorff space. A unital $\Rightarrow \Omega(A)$ compact.

Theorem 3.6 A Banach, abelian, $\Omega(A) \neq \emptyset$.

$$\Phi: A \to C_0(\Omega(A)), a \mapsto (\hat{a}: \Omega(A) \to \mathbb{C}, r \mapsto r(a))$$

norm-decreasing homomorphism and $r(a) = \|\hat{a}\|_{\infty}$. A unital $\Rightarrow \sigma(a) = \hat{a}(\Omega(A))$. A non-unital $\Rightarrow \sigma(a) = \hat{a}(\Omega(A)) \cup \{0\}$. A Banach, $A = (1, a) \Rightarrow A$ abelian and \hat{a} homeomorphism. A $C^* \Rightarrow \Phi$ isometric isomorphism with weak-*-topology.

4 C^* -algebras

Definition 4.1 Involution, *-algebra, C*-algebra, self- adjoint, unital (isometry, co-isometry), normal, projection.

Theorem 4.2 $a = b + ic\frac{1}{2}(a + a^*) + i\frac{1}{2i}(a - a^*)$ with b, c self-adjoint.

From now on: C^* -algebras, so $||aa^*|| = ||a||^2$ (\geq enough).

Theorem 4.3 If A is self-adjoint then $\sigma(a) \subseteq \mathbb{R}$ and $r(a) = \|a\|$. On every *-algebra, there is at most one norm to make it C^* .

Theorem 4.4 Multiplier-algebra of C^* : Largest unitization, ||L|| = ||R||. Extension of norm of C^* makes \tilde{A} into C^* .

Theorem 4.5 *-hom between *-alg and C^* are norm-decreasing. *-hom between C^* are isometric if injective and the image is a C^* -subalgebra.

Theorem 4.6 Characters on C^* preserve adjoints.

Theorem 4.7 B C^* -subalgebra. $\sigma_B(b) = \sigma_A(a)$.

Theorem 4.8 a normal in unital C^* $A \Rightarrow exists \varphi : C(\sigma(a)) \rightarrow C^*(1,a)$ unital isometric *-iso with $\varphi(\mathrm{id}) = a$. Write $f(a) \in A$ for $\varphi(f)$.

Theorem 4.9 a normal, $f \in C(\sigma(a)) \Rightarrow f(\sigma(a)) = \sigma(f(a))$. If $g \in C(\sigma(f(a))) \Rightarrow (g \circ f)(a) = g(f(a))$.

Theorem 4.10 X compact Hausdorff. $X \simeq \Omega(C(X))$.

5 Positive Elements in C^*

Definition 5.1 Positive elements (hermitsch und $\sigma(a) \subseteq \mathbb{R}_0^+$), ordered elements

Theorem 5.2 $B^+ = A^+ \cap B$. $A^+ \subseteq A_{sa}$. $A^+ = \{a^*a \mid a \in A\}$. Conjugation self-adjoint elements keeps their order. $a \leq b \Rightarrow ||a|| \leq ||b||$ Inverting invertes order, square roots keep it (and square roots exist).

6 Ideals in C^*

Definition 6.1 Approximate units (increasing net of positive elements), essential ideals.

Theorem 6.2 C^* -algebras have approximate units (take A^+ with ||a|| < 1.)

Theorem 6.3 Quotients and approximate units. Quotient of closed ideal is C^* -algebra. If B is a C^* -subalgebra and I a closed ideal, then B+I is a C^* -subalgebra.

Theorem 6.4 I closed in $C^*A \Rightarrow \exists$ unique *-extension $A \rightarrow M(I)$ of $I \rightarrow M(I)$, injective if I essential.

7 Positive linear functionals

Definition 7.1 Positive maps, positive linear functionals, states

Theorem 7.2 *-homs are positive. $\varphi(A_{sa}) \subseteq \varphi(B_{sa})$ and $\varphi|_{A_{sa}}$ is increasing.

Theorem 7.3 PLFs are bounded and $r(a^*) = r(a)^-$ and $|r(a)|^2 \le ||r||r(a^*a)$. ||r+r'|| = ||r|| + ||r'||. $r(a^*a) = 0 \Leftrightarrow r(ba) = 0$ for all $b \in A$. $r(b^*a^*ab) \le ||a^*a||r(b^*b)$.

Theorem 7.4 For a bounded linear functional r, these are equivalent: r is positive for each/some approx. unit we have $||r|| = \lim_{\lambda} r(e_{\lambda})$. If A is unital, r is positive iff r(1) = ||r||

Theorem 7.5 There exists a state r of A such that ||a|| = |r(a)|.

Theorem 7.6 You can extend linear functionals on C^* -subalgebras to the whole algebra while keeping the norm.

Theorem 7.7 Self-adjoint bounded linear functionals can be decomposed to positive linear functionals with $r = r_+ = r_-$ and $||r|| = ||r_+|| + ||r_-||$.

8 Gelfand-Neymark-Representation