TRANSIENT HEAT CONDUCTION

he temperature of a body, in general, varies with time as well as position. In rectangular coordinates, this variation is expressed as T(x, y, z, t), where (x, y, z) indicate variation in the x-, y-, and z-directions, respectively, and t indicates variation with time. In the preceding chapter, we considered heat conduction under *steady* conditions, for which the temperature of a body at any point does not change with time. This certainly simplified the analysis, especially when the temperature varied in one direction only, and we were able to obtain analytical solutions. In this chapter, we consider the variation of temperature with *time* as well as *position* in one- and multidimensional systems.

We start this chapter with the analysis of *lumped systems* in which the temperature of a solid varies with time but remains uniform throughout the solid at any time. Then we consider the variation of temperature with time as well as position for one-dimensional heat conduction problems such as those associated with a large plane wall, a long cylinder, a sphere, and a semi-infinite medium using *transient temperature charts* and analytical solutions. Finally, we consider transient heat conduction in multidimensional systems by utilizing the *product solution*.

CHAPTER

18

CONTENTS

1 1		o .		010
∠	lumnad	Systems	Nnalveie	810
)=1		SVSICILIS	Milaivaia	OIU

18–2 Transient Heat Conduction in Large Plane Walls, Long Cylinders, and Spheres with Spatial Effects 816

18–3 Transient Heat Conduction in Semi-Infinite Solids 828

18–4 Transient Heat Conduction in Multidimensional Systems 831

Summary 839

References and Suggested

Readings 840 Problems 840

(a) Copper ball

(b) Roast beef

FIGURE 18-1

A small copper ball can be modeled as a lumped system, but a roast beef cannot.

FIGURE 18-2

The geometry and parameters involved in the lumped system analysis.

18-1 - LUMPED SYSTEM ANALYSIS

In heat transfer analysis, some bodies are observed to behave like a "lump" whose interior temperature remains essentially uniform at all times during a heat transfer process. The temperature of such bodies can be taken to be a function of time only, T(t). Heat transfer analysis that utilizes this idealization is known as **lumped system analysis**, which provides great simplification in certain classes of heat transfer problems without much sacrifice from accuracy.

Consider a small hot copper ball coming out of an oven (Fig. 18–1). Measurements indicate that the temperature of the copper ball changes with time, but it does not change much with position at any given time. Thus the temperature of the ball remains uniform at all times, and we can talk about the temperature of the ball with no reference to a specific location.

Now let us go to the other extreme and consider a large roast in an oven. If you have done any roasting, you must have noticed that the temperature distribution within the roast is not even close to being uniform. You can easily verify this by taking the roast out before it is completely done and cutting it in half. You will see that the outer parts of the roast are well done while the center part is barely warm. Thus, lumped system analysis is not applicable in this case. Before presenting a criterion about applicability of lumped system analysis, we develop the formulation associated with it.

Consider a body of arbitrary shape of mass m, volume V, surface area A_s , density ρ , and specific heat C_p initially at a uniform temperature T_i (Fig. 18–2). At time t=0, the body is placed into a medium at temperature T_{∞} , and heat transfer takes place between the body and its environment, with a heat transfer coefficient h. For the sake of discussion, we will assume that $T_{\infty} > T_i$, but the analysis is equally valid for the opposite case. We assume lumped system analysis to be applicable, so that the temperature remains uniform within the body at all times and changes with time only, T=T(t).

During a differential time interval dt, the temperature of the body rises by a differential amount dT. An energy balance of the solid for the time interval dt can be expressed as

$$\begin{pmatrix}
\text{Heat transfer into the body} \\
\text{during } dt
\end{pmatrix} = \begin{pmatrix}
\text{The increase in the energy of the body} \\
\text{during } dt
\end{pmatrix}$$

or

$$hA_s(T_{\infty} - T) dt = mC_p dT$$
 (18–1)

Noting that $m = \rho V$ and $dT = d(T - T_{\infty})$ since $T_{\infty} = \text{constant}$, Eq. 18–1 can be rearranged as

$$\frac{d(T-T_{\infty})}{T-T_{\infty}} = -\frac{hA_s}{\rho VC_p} dt$$
 (18–2)

Integrating from t = 0, at which $T = T_i$, to any time t, at which T = T(t), gives

$$\ln \frac{T(t) - T_{\infty}}{T_i - T_{\infty}} = -\frac{hA_s}{\rho V C_p} t$$
 (18–3)

Taking the exponential of both sides and rearranging, we obtain

$$\frac{T(t) - T_{\infty}}{T_i - T_{\infty}} = e^{-bt}$$
 (18–4)

where

$$b = \frac{hA_s}{\rho VC_p} \tag{1/s}$$

is a positive quantity whose dimension is $(time)^{-1}$. The reciprocal of b has time unit (usually s), and is called the **time constant.** Equation 18–4 is plotted in Fig. 18–3 for different values of b. There are two observations that can be made from this figure and the relation above:

- 1. Equation 18–4 enables us to determine the temperature T(t) of a body at time t, or alternatively, the time t required for the temperature to reach a specified value T(t).
- 2. The temperature of a body approaches the ambient temperature T_{∞} exponentially. The temperature of the body changes rapidly at the beginning, but rather slowly later on. A large value of b indicates that the body will approach the environment temperature in a short time. The larger the value of the exponent b, the higher the rate of decay in temperature. Note that b is proportional to the surface area, but inversely proportional to the mass and the specific heat of the body. This is not surprising since it takes longer to heat or cool a larger mass, especially when it has a large specific heat.

Once the temperature T(t) at time t is available from Eq. 18–4, the *rate* of convection heat transfer between the body and its environment at that time can be determined from Newton's law of cooling as

$$\dot{Q}(t) = hA_s[T(t) - T_{\infty}] \tag{W}$$

The *total amount* of heat transfer between the body and the surrounding medium over the time interval t = 0 to t is simply the change in the energy content of the body:

$$Q = mC_n[T(t) - T_i]$$
 (kJ) (18–7)

The amount of heat transfer reaches its *upper limit* when the body reaches the surrounding temperature T_{∞} . Therefore, the *maximum* heat transfer between the body and its surroundings is (Fig. 18–4)

$$Q_{\text{max}} = mC_n(T_\infty - T_i) \tag{kJ}$$

We could also obtain this equation by substituting the T(t) relation from Eq. 18–4 into the $\dot{Q}(t)$ relation in Eq. 18–6 and integrating it from t = 0 to $t \to \infty$.

Criteria for Lumped System Analysis

The lumped system analysis certainly provides great convenience in heat transfer analysis, and naturally we would like to know when it is appropriate

811 CHAPTER 1

FIGURE 18–3

The temperature of a lumped system approaches the environment temperature as time gets larger.

FIGURE 18–4

Heat transfer to or from a body reaches its maximum value when the body reaches the environment temperature.

FIGURE 18-5

The Biot number can be viewed as the ratio of the convection at the surface to conduction within the body.

to use it. The first step in establishing a criterion for the applicability of the lumped system analysis is to define a **characteristic length** as

$$L_c = \frac{V}{A_s}$$

and a **Biot number** Bi as

$$Bi = \frac{hL_c}{k}$$
 (18–9)

It can also be expressed as (Fig. 18–5)

Bi =
$$\frac{h}{k/L_c} \frac{\Delta T}{\Delta T} = \frac{\text{Convection at the surface of the body}}{\text{Conduction within the body}}$$

or

Bi =
$$\frac{L_c/k}{1/h}$$
 = $\frac{\text{Conduction resistance within the body}}{\text{Convection resistance at the surface of the body}}$

When a solid body is being heated by the hotter fluid surrounding it (such as a potato being baked in an oven), heat is first *convected* to the body and subsequently *conducted* within the body. The Biot number is the *ratio* of the internal resistance of a body to *heat conduction* to its external resistance to *heat convection*. Therefore, a small Biot number represents small resistance to heat conduction, and thus small temperature gradients within the body.

Lumped system analysis assumes a *uniform* temperature distribution throughout the body, which will be the case only when the thermal resistance of the body to heat conduction (the *conduction resistance*) is zero. Thus, lumped system analysis is *exact* when Bi = 0 and *approximate* when Bi > 0. Of course, the smaller the Bi number, the more accurate the lumped system analysis. Then the question we must answer is, How much accuracy are we willing to sacrifice for the convenience of the lumped system analysis?

Before answering this question, we should mention that a 20 percent uncertainty in the convection heat transfer coefficient h in most cases is considered "normal" and "expected." Assuming h to be *constant* and *uniform* is also an approximation of questionable validity, especially for irregular geometries. Therefore, in the absence of sufficient experimental data for the specific geometry under consideration, we cannot claim our results to be better than ± 20 percent, even when Bi = 0. This being the case, introducing another source of uncertainty in the problem will hardly have any effect on the overall uncertainty, provided that it is minor. It is generally accepted that lumped system analysis is *applicable* if

$$Bi \le 0.1$$

When this criterion is satisfied, the temperatures within the body relative to the surroundings (i.e., $T - T_{\infty}$) remain within 5 percent of each other even for well-rounded geometries such as a spherical ball. Thus, when Bi < 0.1, the variation of temperature with location within the body will be slight and can reasonably be approximated as being uniform.

The first step in the application of lumped system analysis is the calculation of the *Biot number*, and the assessment of the applicability of this approach. One may still wish to use lumped system analysis even when the criterion Bi < 0.1 is not satisfied, if high accuracy is not a major concern.

Note that the Biot number is the ratio of the *convection* at the surface to *conduction* within the body, and this number should be as small as possible for lumped system analysis to be applicable. Therefore, *small bodies* with *high thermal conductivity* are good candidates for lumped system analysis, especially when they are in a medium that is a poor conductor of heat (such as air or another gas) and motionless. Thus, the hot small copper ball placed in quiescent air, discussed earlier, is most likely to satisfy the criterion for lumped system analysis (Fig. 18–6).

Some Remarks on Heat Transfer in Lumped Systems

To understand the heat transfer mechanism during the heating or cooling of a solid by the fluid surrounding it, and the criterion for lumped system analysis, consider this analogy (Fig. 18–7). People from the mainland are to go by boat to an island whose entire shore is a harbor, and from the harbor to their destinations on the island by bus. The overcrowding of people at the harbor depends on the boat traffic to the island and the ground transportation system on the island. If there is an excellent ground transportation system with plenty of buses, there will be no overcrowding at the harbor, especially when the boat traffic is light. But when the opposite is true, there will be a huge overcrowding at the harbor, creating a large difference between the populations at the harbor and inland. The chance of overcrowding is much lower in a small island with plenty of fast buses.

In heat transfer, a poor ground transportation system corresponds to poor heat conduction in a body, and overcrowding at the harbor to the accumulation of heat and the subsequent rise in temperature near the surface of the body relative to its inner parts. Lumped system analysis is obviously not applicable when there is overcrowding at the surface. Of course, we have disregarded radiation in this analogy and thus the air traffic to the island. Like passengers at the harbor, heat changes *vehicles* at the surface from *convection* to *conduction*. Noting that a surface has zero thickness and thus cannot store any energy, heat reaching the surface of a body by convection must continue its journey within the body by conduction.

Consider heat transfer from a hot body to its cooler surroundings. Heat will be transferred from the body to the surrounding fluid as a result of a temperature difference. But this energy will come from the region near the surface, and thus the temperature of the body near the surface will drop. This creates a *temperature gradient* between the inner and outer regions of the body and initiates heat flow by conduction from the interior of the body toward the outer surface.

When the convection heat transfer coefficient h and thus convection heat transfer from the body are high, the temperature of the body near the surface will drop quickly (Fig. 18–8). This will create a larger temperature difference between the inner and outer regions unless the body is able to transfer heat from the inner to the outer regions just as fast. Thus, the magnitude of the maximum temperature difference within the body depends strongly on the ability of a body to conduct heat toward its surface relative to the ability of

813 CHAPTER 18

$$\begin{split} L_c &= \frac{V}{A_s} = \frac{\frac{1}{6} \ \pi D^3}{\pi D^2} = \frac{1}{6} D = 0.02 \text{ m} \\ \text{Bi} &= \frac{hL_c}{k} = \frac{15 \times 0.02}{401} = 0.00075 < 0.1 \end{split}$$

FIGURE 18-6

Small bodies with high thermal conductivities and low convection coefficients are most likely to satisfy the criterion for lumped system analysis.

FIGURE 18-7

Analogy between heat transfer to a solid and passenger traffic to an island.

 $h=2000~\text{W/m}^2.^\circ\text{C}$

FIGURE 18–8

When the convection coefficient *h* is high and *k* is low, large temperature differences occur between the inner and outer regions of a large solid.

FUNDAMENTALS OF THERMAL-FLUID SCIENCES

the surrounding medium to convect this heat away from the surface. The Biot number is a measure of the relative magnitudes of these two competing effects.

Recall that heat conduction in a specified direction n per unit surface area is expressed as $\dot{q} = -k \, \partial T/\partial n$, where $\partial T/\partial n$ is the temperature gradient and k is the thermal conductivity of the solid. Thus, the temperature distribution in the body will be *uniform* only when its thermal conductivity is *infinite*, and no such material is known to exist. Therefore, temperature gradients and thus temperature differences must exist within the body, no matter how small, in order for heat conduction to take place. Of course, the temperature gradient and the thermal conductivity are inversely proportional for a given heat flux. Therefore, the larger the thermal conductivity, the smaller the temperature gradient.

EXAMPLE 18-1 Temperature Measurement by Thermocouples

The temperature of a gas stream is to be measured by a thermocouple whose junction can be approximated as a 1-mm-diameter sphere, as shown in Fig. 18–9. The properties of the junction are k=35 W/m \cdot °C, $\rho=8500$ kg/m³, and $C_p=320$ J/kg \cdot °C, and the convection heat transfer coefficient between the junction and the gas is h=210 W/m² \cdot °C. Determine how long it will take for the thermocouple to read 99 percent of the initial temperature difference.

SOLUTION The temperature of a gas stream is to be measured by a thermocouple. The time it takes to register 99 percent of the initial ΔT is to be determined.

Assumptions 1 The junction is spherical in shape with a diameter of D = 0.001 m. 2 The thermal properties of the junction and the heat transfer coefficient are constant. 3 Radiation effects are negligible.

Properties The properties of the junction are given in the problem statement. **Analysis** The characteristic length of the junction is

$$L_c = \frac{V}{A_s} = \frac{\frac{1}{6}\pi D^3}{\pi D^2} = \frac{1}{6}D = \frac{1}{6}(0.001 \text{ m}) = 1.67 \times 10^{-4} \text{ m}$$

Then the Biot number becomes

Bi =
$$\frac{hL_c}{k}$$
 = $\frac{(210 \text{ W/m}^2 \cdot {}^{\circ}\text{C})(1.67 \times 10^{-4} \text{ m})}{35 \text{ W/m} \cdot {}^{\circ}\text{C}}$ = 0.001 < 0.1

Therefore, lumped system analysis is applicable, and the error involved in this approximation is negligible.

In order to read 99 percent of the initial temperature difference $T_i - T_{\infty}$ between the junction and the gas, we must have

$$\frac{T(t) - T_{\infty}}{T_i - T_{\infty}} = 0.01$$

For example, when $T_i = 0^{\circ}\text{C}$ and $T_{\infty} = 100^{\circ}\text{C}$, a thermocouple is considered to have read 99 percent of this applied temperature difference when its reading indicates $T(t) = 99^{\circ}\text{C}$.

FIGURE 18–9 Schematic for Example 18–1.

The value of the exponent b is

$$b = \frac{hA_s}{\rho C_p V} = \frac{h}{\rho C_p L_c} = \frac{210 \text{ W/m}^2 \cdot ^{\circ}\text{C}}{(8500 \text{ kg/m}^3)(320 \text{ J/kg} \cdot ^{\circ}\text{C})(1.67 \times 10^{-4} \text{ m})} = 0.462 \text{ s}^{-1}$$

We now substitute these values into Eq. 18-4 and obtain

$$\frac{T(t) - T_{\infty}}{T_{-} - T_{-}} = e^{-bt} \longrightarrow 0.01 = e^{-(0.462 \text{ s}^{-1})t}$$

which yields

$$t = 10 \text{ s}$$

Therefore, we must wait at least 10 s for the temperature of the thermocouple junction to approach within 1 percent of the initial junction-gas temperature difference.

Discussion Note that conduction through the wires and radiation exchange with the surrounding surfaces will affect the result, and should be considered in a more refined analysis.

EXAMPLE 18-2 Predicting the Time of Death

A person is found dead at 5 pm in a room whose temperature is 20°C. The temperature of the body is measured to be 25°C when found, and the heat transfer coefficient is estimated to be $h=8~\text{W/m}^2\cdot\text{°C}$. Modeling the body as a 30-cm-diameter, 1.70-m-long cylinder, estimate the time of death of that person (Fig. 18–10).

SOLUTION A body is found while still warm. The time of death is to be estimated.

Assumptions 1 The body can be modeled as a 30-cm-diameter, 1.70-m-long cylinder. 2 The thermal properties of the body and the heat transfer coefficient are constant. 3 The radiation effects are negligible. 4 The person was healthy(!) when he or she died with a body temperature of 37°C.

Properties The average human body is 72 percent water by mass, and thus we can assume the body to have the properties of water at the average temperature of $(37 + 25)/2 = 31^{\circ}\text{C}$; $k = 0.617 \text{ W/m} \cdot {^{\circ}\text{C}}$, $\rho = 996 \text{ kg/m}^3$, and $C_{\rho} = 4178 \text{ J/kg} \cdot {^{\circ}\text{C}}$ (Table A-15).

Analysis The characteristic length of the body is

$$L_c = \frac{V}{A_s} = \frac{\pi r_o^2 L}{2\pi r_o L + 2\pi r_o^2} = \frac{\pi (0.15 \text{ m})^2 (1.7 \text{ m})}{2\pi (0.15 \text{ m}) (1.7 \text{ m}) + 2\pi (0.15 \text{ m})^2} = 0.0689 \text{ m}$$

Then the Biot number becomes

Bi =
$$\frac{hL_c}{k}$$
 = $\frac{(8 \text{ W/m}^2 \cdot {}^{\circ}\text{C})(0.0689 \text{ m})}{0.617 \text{ W/m} \cdot {}^{\circ}\text{C}}$ = 0.89 > 0.1

FIGURE 18–10 Schematic for Example 18–2.

816 Fundamentals of Thermal-Fluid Sciences

Therefore, lumped system analysis is *not* applicable. However, we can still use it to get a "rough" estimate of the time of death. The exponent *b* in this case is

$$b = \frac{hA_s}{\rho C_p V} = \frac{h}{\rho C_p L_c} = \frac{8 \text{ W/m}^2 \cdot ^{\circ}\text{C}}{(996 \text{ kg/m}^3)(4178 \text{ J/kg} \cdot ^{\circ}\text{C})(0.0689 \text{ m})}$$
$$= 2.79 \times 10^{-5} \text{ s}^{-1}$$

We now substitute these values into Eq. 18-4,

$$\frac{T(t) - T_{\infty}}{T_i - T_{\infty}} = e^{-bt} \longrightarrow \frac{25 - 20}{37 - 20} = e^{-(2.79 \times 10^{-5} \text{ s}^{-1})t}$$

which yields

$$t = 43,860 \text{ s} = 12.2 \text{ h}$$

Therefore, as a rough estimate, the person died about 12 h before the body was found, and thus the time of death is 5 AM. This example demonstrates how to obtain "ball park" values using a simple analysis.

18-2 • TRANSIENT HEAT CONDUCTION IN LARGE PLANE WALLS, LONG CYLINDERS, AND SPHERES WITH SPATIAL EFFECTS

In Section 18–1, we considered bodies in which the variation of temperature within the body was negligible; that is, bodies that remain nearly *isothermal* during a process. Relatively *small* bodies of *highly conductive* materials approximate this behavior. In general, however, the temperature within a body will change from point to point as well as with time. In this section, we consider the variation of temperature with *time* and *position* in one-dimensional problems such as those associated with a large plane wall, a long cylinder, and a sphere.

Consider a plane wall of thickness 2L, a long cylinder of radius r_o , and a sphere of radius r_o initially at a *uniform temperature* T_i , as shown in Fig. 18–11. At time t=0, each geometry is placed in a large medium that is at a constant temperature T_{∞} and kept in that medium for t>0. Heat transfer takes place between these bodies and their environments by convection with a *uniform* and *constant* heat transfer coefficient h. Note that all three cases possess geometric and thermal symmetry: the plane wall is symmetric about its *center plane* (x=0), the cylinder is symmetric about its *centerline* (r=0), and the sphere is symmetric about its *center point* (r=0). We neglect *radiation* heat transfer between these bodies and their surrounding surfaces, or incorporate the radiation effect into the convection heat transfer coefficient h.

The variation of the temperature profile with *time* in the plane wall is illustrated in Fig. 18–12. When the wall is first exposed to the surrounding medium at $T_{\infty} < T_i$ at t = 0, the entire wall is at its initial temperature T_i . But the wall temperature at and near the surfaces starts to drop as a result of heat transfer from the wall to the surrounding medium. This creates a *temperature*

(a) A large plane wall

cylinder or sphere.

(b) A long cylinder

(c) A sphere

FIGURE 18-11

Schematic of the simple geometries in which heat transfer is one-dimensional.

The formulation of the problems for the determination of the onedimensional transient temperature distribution T(x, t) in a wall results in a partial differential equation, which can be solved using advanced mathematical techniques. The solution, however, normally involves infinite series, which are inconvenient and time-consuming to evaluate. Therefore, there is clear motivation to present the solution in tabular or graphical form. However, the solution involves the parameters x, L, t, k, α , h, T_i , and T_{∞} , which are too many to make any graphical presentation of the results practical. In order to reduce the number of parameters, we nondimensionalize the problem by defining the following dimensionless quantities:

Dimensionless temperature:
$$\theta(x,t) = \frac{T(x,t) - T_{\infty}}{T_i - T_{\infty}}$$

Dimensionless distance from the center:

Bi = $\frac{hL}{k}$ (Biot number) Dimensionless heat transfer coefficient:

 $\tau = \frac{\alpha t}{L^2}$ Dimensionless time: (Fourier number)

The nondimensionalization enables us to present the temperature in terms of three parameters only: X, Bi, and τ . This makes it practical to present the solution in graphical form. The dimensionless quantities defined above for a plane wall can also be used for a cylinder or sphere by replacing the space variable x by r and the half-thickness L by the outer radius r_o . Note that the characteristic length in the definition of the Biot number is taken to be the

Transient temperature profiles in a

plane wall exposed to convection from its surfaces for $T_i > T_{\infty}$.

half-thickness L for the plane wall, and the *radius* r_o for the long cylinder and sphere instead of V/A used in lumped system analysis.

The one-dimensional transient heat conduction problem just described can be solved exactly for any of the three geometries, but the solution involves infinite series, which are difficult to deal with. However, the terms in the solutions converge rapidly with increasing time, and for $\tau > 0.2$, keeping the first term and neglecting all the remaining terms in the series results in an error under 2 percent. We are usually interested in the solution for times with $\tau > 0.2$, and thus it is very convenient to express the solution using this **one-term approximation**, given as

Plane wall:
$$\theta(x, t)_{\text{wall}} = \frac{T(x, t) - T_{\infty}}{T_i - T_{\infty}} = A_1 e^{-\lambda_1^2 \tau} \cos{(\lambda_1 x/L)}, \quad \tau > 0.2$$
 (18–10)

Cylinder:
$$\theta(r,t)_{\rm cyl} = \frac{T(r,t) - T_{\infty}}{T_i - T_{\infty}} = A_1 e^{-\lambda_1^2 \tau} J_0(\lambda_1 r / r_o), \quad \tau > 0.2 \tag{18-11}$$

Sphere:
$$\theta(r, t)_{\text{sph}} = \frac{T(r, t) - T_{\infty}}{T_i - T_{\infty}} = A_1 e^{-\lambda_1^2 \tau} \frac{\sin(\lambda_1 r / r_o)}{\lambda_1 r / r_o}, \quad \tau > 0.2$$
 (18–12)

where the constants A_1 and λ_1 are functions of the Bi number only, and their values are listed in Table 18–1 against the Bi number for all three geometries. The function J_0 is the zeroth-order Bessel function of the first kind, whose value can be determined from Table 18–2. Noting that $\cos(0) = J_0(0) = 1$ and the limit of $(\sin x)/x$ is also 1, these relations simplify to the next ones at the center of a plane wall, cylinder, or sphere:

Center of plane wall
$$(x = 0)$$
: $\theta_{0, \text{wall}} = \frac{T_o - T_{\infty}}{T_c - T_{\infty}} = A_1 e^{-\lambda_1^2 \tau}$ (18–13)

Center of cylinder
$$(r=0)$$
:
$$\theta_{0, \text{ cyl}} = \frac{T_o - T_\infty}{T_i - T_\infty} = A_1 e^{-\lambda_1^2 \tau}$$
 (18–14)

Center of sphere
$$(r = 0)$$
: $\theta_{0, \text{sph}} = \frac{T_o - T_{\infty}}{T_i - T_{\infty}} = A_1 e^{-\lambda_1^2 \tau}$ (18–15)

Once the Bi number is known, these relations can be used to determine the temperature anywhere in the medium. The determination of the constants A_1 and λ_1 usually requires interpolation. For those who prefer reading charts to interpolating, these relations are plotted and the one-term approximation solutions are presented in graphical form, known as the *transient temperature charts*. Note that the charts are sometimes difficult to read, and they are subject to reading errors. Therefore, the relations above should be preferred to the charts.

The transient temperature charts in Figs. 18–13, 18–14, and 18–15 for a large plane wall, long cylinder, and sphere were presented by M. P. Heisler in 1947 and are called **Heisler charts**. They were supplemented in 1961 with transient heat transfer charts by H. Gröber. There are *three* charts associated with each geometry: the first chart is to determine the temperature T_o at the *center* of the geometry at a given time t. The second chart is to determine the temperature at *other locations* at the same time in terms of T_o . The third chart is to determine the total amount of *heat transfer* up to the time t. These plots are valid for $\tau > 0.2$.

819 CHAPTER 1

TABLE 18-1

Coefficients used in the one-term approximate solution of transient one-dimensional heat conduction in plane walls, cylinders, and spheres (Bi = hL/k for a plane wall of thickness 2L, and Bi = hr_o/k for a cylinder or sphere of radius r_o)

	Plane Wall		Cyli	Cylinder		Sphere		
Bi	λ_1	A_1	λ_1	A_1	λ_1	A_1		
0.01	0.0998	1.0017	0.1412	1.0025	0.1730	1.0030		
0.02	0.1410	1.0033	0.1995	1.0050	0.2445	1.0060		
0.04	0.1987	1.0066	0.2814	1.0099	0.3450	1.0120		
0.06	0.2425	1.0098	0.3438	1.0148	0.4217	1.0179		
0.08	0.2791	1.0130	0.3960	1.0197	0.4860	1.0239		
0.1	0.3111	1.0161	0.4417	1.0246	0.5423	1.0298		
0.2	0.4328	1.0311	0.6170	1.0483	0.7593	1.0592		
0.3	0.5218	1.0450	0.7465	1.0712	0.9208	1.0880		
0.4	0.5932	1.0580	0.8516	1.0931	1.0528	1.1164		
0.5	0.6533	1.0701	0.9408	1.1143	1.1656	1.1441		
0.6	0.7051	1.0814	1.0184	1.1345	1.2644	1.1713		
0.7	0.7506	1.0918	1.0873	1.1539	1.3525	1.1978		
0.8	0.7910	1.1016	1.1490	1.1724	1.4320	1.2236		
0.9	0.8274	1.1107	1.2048	1.1902	1.5044	1.2488		
1.0	0.8603	1.1191	1.2558	1.2071	1.5708	1.2732		
2.0	1.0769	1.1785	1.5995	1.3384	2.0288	1.4793		
3.0	1.1925	1.2102	1.7887	1.4191	2.2889	1.6227		
4.0	1.2646	1.2287	1.9081	1.4698	2.4556	1.7202		
5.0	1.3138	1.2403	1.9898	1.5029	2.5704	1.7870		
6.0	1.3496	1.2479	2.0490	1.5253	2.6537	1.8338		
7.0	1.3766	1.2532	2.0937	1.5411	2.7165	1.8673		
8.0	1.3978	1.2570	2.1286	1.5526	2.7654	1.8920		
9.0	1.4149	1.2598	2.1566	1.5611	2.8044	1.9106		
10.0	1.4289	1.2620	2.1795	1.5677	2.8363	1.9249		
20.0	1.4961	1.2699	2.2880	1.5919	2.9857	1.9781		
30.0	1.5202	1.2717	2.3261	1.5973	3.0372	1.9898		
40.0	1.5325	1.2723	2.3455	1.5993	3.0632	1.9942		
50.0	1.5400	1.2727	2.3572	1.6002	3.0788	1.9962		
100.0	1.5552	1.2731	2.3809	1.6015	3.1102	1.9990		
∞	1.5708	1.2732	2.4048	1.6021	3.1416	2.0000		

TABLE 18–2The zeroth- and first-order Bessel

functions of the first kind							
ξ	$J_o(\xi)$	$J_1(\xi)$					
0.0	1.0000	0.0000					
0.1	0.9975	0.0499					
0.2	0.9900	0.0995					
0.3	0.9776	0.1483					
0.4	0.9604	0.1960					
0.5	0.9385	0.2423					
0.6	0.9120	0.2867					
0.7	0.8812	0.3290					
0.8	0.8463	0.3688					
0.9	0.8075	0.4059					
1.0	0.7652	0.4400					
1.1	0.7196	0.4709					
1.2	0.6711	0.4983					
1.3	0.6201	0.5220					
1.4	0.5669	0.5419					
1.5	0.5118	0.5579					
1.6	0.4554	0.5699					
1.7	0.3980	0.5778					
1.8	0.3400	0.5815					
1.9	0.2818	0.5812					
2.0	0.2239	0.5767					
2.1	0.1666	0.5683					
2.2	0.1104	0.5560					
2.3	0.0555	0.5399					
2.4	0.0025	0.5202					
2.6	-0.0968	-0.4708					
2.8	-0.1850	-0.4097					
3.0	-0.2601	-0.3391					
3.2	-0.3202	-0.2613					

Note that the case 1/Bi = k/hL = 0 corresponds to $h \to \infty$, which corresponds to the case of *specified surface temperature* T_{∞} . That is, the case in which the surfaces of the body are suddenly brought to the temperature T_{∞} at t = 0 and kept at T_{∞} at all times can be handled by setting h to infinity (Fig. 18–16).

The temperature of the body changes from the initial temperature T_i to the temperature of the surroundings T_{∞} at the end of the transient heat conduction process. Thus, the *maximum* amount of heat that a body can gain (or lose if $T_i > T_{\infty}$) is simply the *change* in the *energy content* of the body. That is,

$$Q_{\text{max}} = mC_p(T_{\infty} - T_i) = \rho VC_p(T_{\infty} - T_i)$$
 (kJ) (18–16)

(a) Midplane temperature (from M. P. Heisler, "Temperature Charts for Induction and Constant Temperature Heating," *Trans. ASME 69*, 1947, pp. 227-36. Reprinted by permission of ASME International.)

- (b) Temperature distribution (from M. P. Heisler, "Temperature Charts for Induction and Constant Temperature Heating," *Trans. ASME 69*, 1947, pp. 227-36. Reprinted by permission of ASME International.)
- (c) Heat transfer (from H. Gröber et al.)

FIGURE 18-13

Transient temperature and heat transfer charts for a plane wall of thickness 2L initially at a uniform temperature T_i subjected to convection from both sides to an environment at temperature T_{∞} with a convection coefficient of h.

h

(a) Centerline temperature (from M. P. Heisler, "Temperature Charts for Induction and Constant Temperature Heating," *Trans. ASME 69*, 1947, pp. 227-36. Reprinted by permission of ASME International.)

(b) Temperature distribution (from M. P. Heisler, "Temperature Charts for Induction and Constant Temperature Heating," *Trans. ASME 69*, 1947, pp. 227-36. Reprinted by permission of ASME International.)

(c) Heat transfer (from H. Gröber et al.)

FIGURE 18–14

Transient temperature and heat transfer charts for a long cylinder of radius r_o initially at a uniform temperature T_i subjected to convection from all sides to an environment at temperature T_∞ with a convection coefficient of h.

(a) Midpoint temperature (from M. P. Heisler, "Temperature Charts for Induction and Constant Temperature Heating," *Trans. ASME 69*, 1947, pp. 227-36. Reprinted by permission of ASME International.)

- (b) Temperature distribution (from M. P. Heisler, "Temperature Charts for Induction and Constant Temperature Heating," *Trans. ASME 69*, 1947, pp. 227-36. Reprinted by permission of ASME International.)
- (c) Heat transfer (from H. Gröber et al.)

FIGURE 18-15

Transient temperature and heat transfer charts for a sphere of radius r_o initially at a uniform temperature T_i subjected to convection from all sides to an environment at temperature T_∞ with a convection coefficient of h.

where m is the mass, V is the volume, ρ is the density, and C_p is the specific heat of the body. Thus, Q_{\max} represents the amount of heat transfer for $t \to \infty$. The amount of heat transfer Q at a finite time t will obviously be less than this maximum. The ratio Q/Q_{\max} is plotted in Figures 18–13c, 18–14c, and 18–15c against the variables Bi and $h^2\alpha t/k^2$ for the large plane wall, long cylinder, and sphere, respectively. Note that once the *fraction* of heat transfer Q/Q_{\max} has been determined from these charts for the given t, the actual amount of heat transfer by that time can be evaluated by multiplying this fraction by Q_{\max} . A *negative* sign for Q_{\max} indicates that heat is *leaving* the body (Fig. 18–17).

The fraction of heat transfer can also be determined from these relations, which are based on the one-term approximations already discussed:

Plane wall:
$$\left(\frac{Q}{Q_{\text{max}}}\right)_{\text{wall}} = 1 - \theta_{0, \text{wall}} \frac{\sin \lambda_1}{\lambda_1}$$
 (18–17)

Cylinder:
$$\left(\frac{Q}{Q_{\text{max}}}\right)_{\text{cyl}} = 1 - 2\theta_{0, \text{ cyl}} \frac{J_1(\lambda_1)}{\lambda_1}$$
 (18–18)

Sphere:
$$\left(\frac{Q}{Q_{\text{max}}}\right)_{\text{sph}} = 1 - 3\theta_{0, \text{ sph}} \frac{\sin \lambda_1 - \lambda_1 \cos \lambda_1}{\lambda_1^3}$$
 (18–19)

The use of the Heisler/Gröber charts and the one-term solutions already discussed is limited to the conditions specified at the beginning of this section: the body is initially at a *uniform* temperature, the temperature of the medium surrounding the body and the convection heat transfer coefficient are *constant* and *uniform*, and there is no *energy generation* in the body.

We discussed the physical significance of the *Biot number* earlier and indicated that it is a measure of the relative magnitudes of the two heat transfer mechanisms: *convection* at the surface and *conduction* through the solid. A *small* value of Bi indicates that the inner resistance of the body to heat conduction is *small* relative to the resistance to convection between the surface and the fluid. As a result, the temperature distribution within the solid becomes fairly uniform, and lumped system analysis becomes applicable. Recall that when Bi < 0.1, the error in assuming the temperature within the body to be *uniform* is negligible.

To understand the physical significance of the *Fourier number* τ , we express it as (Fig. 18–18)

$$\tau = \frac{\alpha t}{L^2} = \frac{kL^2 (1/L)}{\rho C_p L^3 / t} \frac{\Delta T}{\Delta T} = \frac{\text{The rate at which heat is } conducted}{\text{across } L \text{ of a body of volume } L^3}$$

$$\text{The rate at which heat is } stored$$
in a body of volume L^3

Therefore, the Fourier number is a measure of *heat conducted* through a body relative to *heat stored*. Thus, a large value of the Fourier number indicates faster propagation of heat through a body.

Perhaps you are wondering about what constitutes an infinitely large plate or an infinitely long cylinder. After all, nothing in this world is infinite. A plate whose thickness is small relative to the other dimensions can be modeled as an infinitely large plate, except very near the outer edges. But the edge effects on large bodies are usually negligible, and thus a large plane wall such as the

823 CHAPTER 18

(a) Finite convection coefficient

(b) Infinite convection coefficient

FIGURE 18-16

The specified surface temperature corresponds to the case of convection to an environment at T_{∞} with a convection coefficient h that is *infinite*.

(a) Maximum heat transfer $(t \to \infty)$

Bi = ...
$$\frac{h^2 \alpha t}{k^2} = \text{Bi}^2 \tau = \cdots$$

$$Q_{\text{max}} = \cdots$$
(Gröber char

(b) Actual heat transfer for time t

FIGURE 18–17

The fraction of total heat transfer Q/Q_{max} up to a specified time t is determined using the Gröber charts.

Fourier number: $\tau = \frac{\alpha t}{L^2} = \frac{\dot{Q}_{\text{conducted}}}{\dot{Q}_{\text{stored}}}$

FIGURE 18–18

Fourier number at time *t* can be viewed as the ratio of the rate of heat conducted to the rate of heat stored at that time.

wall of a house can be modeled as an infinitely large wall for heat transfer purposes. Similarly, a long cylinder whose diameter is small relative to its length can be analyzed as an infinitely long cylinder. The use of the transient temperature charts and the one-term solutions is illustrated in Examples 18–3, 18–4, and 18–5.

EXAMPLE 18-3 Boiling Eggs

An ordinary egg can be approximated as a 5-cm-diameter sphere (Fig. 18–19). The egg is initially at a uniform temperature of 5°C and is dropped into boiling water at 95°C. Taking the convection heat transfer coefficient to be $h=1200~{\rm W/m^2\cdot °C}$, determine how long it will take for the center of the egg to reach 70°C.

SOLUTION An egg is cooked in boiling water. The cooking time of the egg is to be determined

Assumptions 1 The egg is spherical in shape with a radius of $r_0 = 2.5$ cm. 2 Heat conduction in the egg is one-dimensional because of thermal symmetry about the midpoint. 3 The thermal properties of the egg and the heat transfer coefficient are constant. 4 The Fourier number is $\tau > 0.2$ so that the one-term approximate solutions are applicable.

Properties The water content of eggs is about 74 percent, and thus the thermal conductivity and diffusivity of eggs can be approximated by those of water at the average temperature of (5 + 70)/2 = 37.5°C; k = 0.627 W/m·°C and $\alpha = k/\rho C_p = 0.151 \times 10^{-6}$ m²/s (Table A-15).

Analysis The temperature within the egg varies with radial distance as well as time, and the temperature at a specified location at a given time can be determined from the Heisler charts or the one-term solutions. Here we will use the latter to demonstrate their use. The Biot number for this problem is

Bi =
$$\frac{hr_0}{k}$$
 = $\frac{(1200 \text{ W/m}^2 \cdot ^{\circ}\text{C})(0.025 \text{ m})}{0.627 \text{ W/m} \cdot ^{\circ}\text{C}}$ = 47.8

which is much greater than 0.1, and thus the lumped system analysis is not applicable. The coefficients λ_1 and A_1 for a sphere corresponding to this Bi are, from Table 18–1,

$$\lambda_1 = 3.0753, \qquad A_1 = 1.9958$$

Substituting these and other values into Eq. 18–15 and solving for τ gives

$$\frac{T_o - T_\infty}{T_i - T_\infty} = A_1 e^{-\lambda_1^2 \tau} \longrightarrow \frac{70 - 95}{5 - 95} = 1.9958 e^{-(3.0753)^2 \tau} \longrightarrow \tau = 0.209$$

which is greater than 0.2, and thus the one-term solution is applicable with an error of less than 2 percent. Then the cooking time is determined from the definition of the Fourier number to be

$$t = \frac{\tau r_o^2}{\alpha} = \frac{(0.209)(0.025 \text{ m})^2}{0.151 \times 10^{-6} \text{ m}^2/\text{s}} = 865 \text{ s} \approx 14.4 \text{ min}$$

Therefore, it will take about 15 min for the center of the egg to be heated from 5° C to 70° C.

Discussion Note that the Biot number in lumped system analysis was defined differently as Bi = $hL_c/k = h(r/3)/k$. However, either definition can be used in determining the applicability of the lumped system analysis unless Bi ≈ 0.1 .

EXAMPLE 18-4 Heating of Large Brass Plates in an Oven

In a production facility, large brass plates of 4-cm thickness that are initially at a uniform temperature of 20°C are heated by passing them through an oven that is maintained at 500°C (Fig. 18–20). The plates remain in the oven for a period of 7 min. Taking the combined convection and radiation heat transfer coefficient to be $h=120~{\rm W/m^2\cdot ^{\circ}C}$, determine the surface temperature of the plates when they come out of the oven.

SOLUTION Large brass plates are heated in an oven. The surface temperature of the plates leaving the oven is to be determined.

Assumptions 1 Heat conduction in the plate is one-dimensional since the plate is large relative to its thickness and there is thermal symmetry about the center plane. 2 The thermal properties of the plate and the heat transfer coefficient are constant. 3 The Fourier number is $\tau > 0.2$ so that the one-term approximate solutions are applicable.

Properties The properties of brass at room temperature are k=110 W/m \cdot °C, $\rho=8530$ kg/m³, $C_p=380$ J/kg \cdot °C, and $\alpha=33.9\times10^{-6}$ m²/s (Table A-25). More accurate results are obtained by using properties at average temperature. **Analysis** The temperature at a specified location at a given time can be determined from the Heisler charts or one-term solutions. Here we will use the charts to demonstrate their use. Noting that the half-thickness of the plate is L=0.02 m, from Fig. 18–13 we have

$$\frac{1}{\text{Bi}} = \frac{k}{hL} = \frac{100 \text{ W/m} \cdot {}^{\circ}\text{C}}{(120 \text{ W/m}^{2} \cdot {}^{\circ}\text{C})(0.02 \text{ m})} = 45.8$$

$$\tau = \frac{\alpha t}{L^{2}} = \frac{(33.9 \times 10^{-6} \text{ m}^{2}/\text{s})(7 \times 60 \text{ s})}{(0.02 \text{ m})^{2}} = 35.6$$

Also,

$$\frac{1}{\text{Bi}} = \frac{k}{hL} = 45.8 \frac{x}{L} = \frac{L}{L} = 1$$

$$\frac{T - T_{\infty}}{T_o - T_{\infty}} = 0.99$$

Therefore,

$$\frac{T - T_{\infty}}{T_i - T_{\infty}} = \frac{T - T_{\infty}}{T_o - T_{\infty}} \frac{T_o - T_{\infty}}{T_i - T_{\infty}} = 0.46 \times 0.99 = 0.455$$

and

$$T = T_{\infty} + 0.455(T_i - T_{\infty}) = 500 + 0.455(20 - 500) = 282^{\circ}C$$

Therefore, the surface temperature of the plates will be 282°C when they leave the oven.

825 CHAPTER 1

FIGURE 18–19 Schematic for Example 18–3.

FIGURE 18–20 Schematic for Example 18–4.

FUNDAMENTALS OF THERMAL-FLUID SCIENCES

Discussion We notice that the Biot number in this case is Bi = 1/45.8 = 0.022, which is much less than 0.1. Therefore, we expect the lumped system analysis to be applicable. This is also evident from $(T - T_{\infty})/(T_{o} - T_{\infty}) = 0.99$, which indicates that the temperatures at the center and the surface of the plate relative to the surrounding temperature are within 1 percent of each other. Noting that the error involved in reading the Heisler charts is typically at least a few percent, the lumped system analysis in this case may yield just as accurate results with less effort.

The heat transfer surface area of the plate is 2A, where A is the face area of the plate (the plate transfers heat through both of its surfaces), and the volume of the plate is V = (2L)A, where L is the half-thickness of the plate. The exponent b used in the lumped system analysis is determined to be

$$b = \frac{hA_s}{\rho C_p V} = \frac{h(2A)}{\rho C_p (2LA)} = \frac{h}{\rho C_p L}$$
$$= \frac{120 \text{ W/m}^2 \cdot {}^{\circ}\text{C}}{(8530 \text{ kg/m}^3)(380 \text{ J/kg} \cdot {}^{\circ}\text{C})(0.02 \text{ m})} = 0.00185 \text{ s}^{-1}$$

Then the temperature of the plate at t = 7 min = 420 s is determined from

$$\frac{T(t) - T_{\infty}}{T_i - T_{\infty}} = e^{-bt} \longrightarrow \frac{T(t) - 500}{20 - 500} = e^{-(0.00185 \, s^{-1})(420 \, s)}$$

It yields

$$T(t) = 279^{\circ} \text{C}$$

which is practically identical to the result obtained above using the Heisler charts. Therefore, we can use lumped system analysis with confidence when the Biot number is sufficiently small.

EXAMPLE 18-5 Cooling of a Long Stainless Steel Cylindrical Shaft

A long 20-cm-diameter cylindrical shaft made of stainless steel 304 comes out of an oven at a uniform temperature of 600°C (Fig. 18–21). The shaft is then allowed to cool slowly in an environment chamber at 200°C with an average heat transfer coefficient of $h=80~\text{W/m}^2\cdot$ °C. Determine the temperature at the center of the shaft 45 min after the start of the cooling process. Also, determine the heat transfer per unit length of the shaft during this time period.

SOLUTION A long cylindrical shaft at 600°C is allowed to cool slowly. The center temperature and the heat transfer per unit length are to be determined.

Assumptions 1 Heat conduction in the shaft is one-dimensional since it is long and it has thermal symmetry about the centerline. 2 The thermal properties of the shaft and the heat transfer coefficient are constant. 3 The Fourier number is $\tau > 0.2$ so that the one-term approximate solutions are applicable.

Properties The properties of stainless steel 304 at room temperature are $k=14.9~\rm W/m\cdot ^{\circ}C$, $\rho=7900~\rm kg/m^{3}$, $C_{p}=477~\rm J/kg\cdot ^{\circ}C$, and $\alpha=3.95\times 10^{-6}~\rm m^{2}/s$ (Table A–25). More accurate results can be obtained by using properties at average temperature.

FIGURE 18–21 Schematic for Example 18–5.

Analysis The temperature within the shaft may vary with the radial distance r as well as time, and the temperature at a specified location at a given time can be determined from the Heisler charts. Noting that the radius of the shaft is $r_0 = 0.1$ m, from Fig. 18–14 we have

$$\frac{1}{\text{Bi}} = \frac{k}{hr_o} = \frac{14.9 \text{ W/m} \cdot {^{\circ}\text{C}}}{(80 \text{ W/m}^2 \cdot {^{\circ}\text{C}})(0.1 \text{ m})} = 1.86$$

$$\tau = \frac{\alpha t}{r_o^2} = \frac{(3.95 \times 10^{-6} \text{ m}^2/\text{s})(45 \times 60 \text{ s})}{(0.1 \text{ m})^2} = 1.07$$

and

$$T_o = T_{\infty} + 0.4(T_i - T_{\infty}) = 200 + 0.4(600 - 200) = 360^{\circ}$$
C

Therefore, the center temperature of the shaft will drop from 600°C to 360°C in 45 min.

To determine the actual heat transfer, we first need to calculate the maximum heat that can be transferred from the cylinder, which is the sensible energy of the cylinder relative to its environment. Taking $L=1\,\mathrm{m}$,

$$m = \rho V = \rho \pi r_o^2 L = (7900 \text{ kg/m}^3) \pi (0.1 \text{ m})^2 (1 \text{ m}) = 248.2 \text{ kg}$$

$$Q_{\text{max}} = m C_p (T_{\infty} - T_i) = (248.2 \text{ kg}) (0.477 \text{ kJ/kg} \cdot ^{\circ}\text{C}) (600 - 200)^{\circ}\text{C}$$

$$= 47.354 \text{ kJ}$$

The dimensionless heat transfer ratio is determined from Fig. 18-14c for a long cylinder to be

Bi =
$$\frac{1}{1/\text{Bi}} = \frac{1}{1.86} = 0.537$$

 $\frac{h^2 \alpha t}{k^2} = \text{Bi}^2 \tau = (0.537)^2 (1.07) = 0.309$ $\left. \frac{Q}{Q_{\text{max}}} = 0.62 \right.$

Therefore,

$$Q = 0.62Q_{\text{max}} = 0.62 \times (47,354 \text{ kJ}) = 29,360 \text{ kJ}$$

which is the total heat transfer from the shaft during the first 45 min of the cooling.

ALTERNATIVE SOLUTION We could also solve this problem using the one-term solution relation instead of the transient charts. First we find the Biot number

Bi =
$$\frac{hr_o}{k}$$
 = $\frac{(80 \text{ W/m}^2 \cdot ^{\circ}\text{C})(0.1 \text{ m})}{14.9 \text{ W/m} \cdot ^{\circ}\text{C}}$ = 0.537

The coefficients λ_1 and A_1 for a cylinder corresponding to this Bi are determined from Table 18–1 to be

$$\lambda_1 = 0.970, \qquad A_1 = 1.122$$

Substituting these values into Eq. 18-14 gives

$$\theta_0 = \frac{T_o - T_\infty}{T_i - T_\infty} = A_1 e^{-\lambda_1^2 \tau} = 1.122 e^{-(0.970)^2(1.07)} = 0.41$$

FUNDAMENTALS OF THERMAL-FLUID SCIENCES

and thus

$$T_o = T_\infty + 0.41(T_i - T_\infty) = 200 + 0.41(600 - 200) = 364^{\circ}C$$

The value of $J_1(\lambda_1)$ for $\lambda_1=0.970$ is determined from Table 18–2 to be 0.430. Then the fractional heat transfer is determined from Eq. 18–18 to be

$$\frac{Q}{Q_{\text{max}}} = 1 - 2\theta_0 \frac{J_1(\lambda_1)}{\lambda_1} = 1 - 2 \times 0.41 \frac{0.430}{0.970} = 0.636$$

and thus

$$Q = 0.636Q_{\text{max}} = 0.636 \times (47,354 \text{ kJ}) = 30,120 \text{ kJ}$$

Discussion The slight difference between the two results is due to the reading error of the charts.

18-3 • TRANSIENT HEAT CONDUCTION IN SEMI-INFINITE SOLIDS

A semi-infinite solid is an idealized body that has a *single plane surface* and extends to infinity in all directions, as shown in Fig. 18–22. This idealized body is used to indicate that the temperature change in the part of the body in which we are interested (the region close to the surface) is due to the thermal conditions on a single surface. The earth, for example, can be considered to be a semi-infinite medium in determining the variation of temperature near its surface. Also, a thick wall can be modeled as a semi-infinite medium if all we are interested in is the variation of temperature in the region near one of the surfaces, and the other surface is too far to have any impact on the region of interest during the time of observation.

Consider a semi-infinite solid that is at a uniform temperature T_i . At time t=0, the surface of the solid at x=0 is exposed to convection by a fluid at a constant temperature T_{∞} , with a heat transfer coefficient h. This problem can be formulated as a partial differential equation, which can be solved analytically for the transient temperature distribution T(x, t). The solution obtained is presented in Fig. 18–23 graphically for the *nondimensionalized temperature* defined as

$$1 - \theta(x, t) = 1 - \frac{T(x, t) - T_{\infty}}{T_i - T_{\infty}} = \frac{T(x, t) - T_i}{T_{\infty} - T_i}$$
 (18-21)

against the dimensionless variable $x/(2\sqrt{\alpha t})$ for various values of the parameter $h\sqrt{\alpha t}/k$.

Note that the values on the vertical axis correspond to x = 0, and thus represent the surface temperature. The curve $h\sqrt{\alpha t/k} = \infty$ corresponds to $h \to \infty$, which corresponds to the case of *specified temperature* T_{∞} at the surface at x = 0. That is, the case in which the surface of the semi-infinite body is suddenly brought to temperature T_{∞} at t = 0 and kept at T_{∞} at all times can be handled by setting h to infinity. The specified surface temperature case is closely

FIGURE 18–22 Schematic of a semi-infinite body.

FIGURE 18-23

Variation of temperature with position and time in a semi-infinite solid initially at T_i subjected to convection to an environment at T_{∞} with a convection heat transfer coefficient of h (from P. J. Schneider).

approximated in practice when condensation or boiling takes place on the surface. For a *finite* heat transfer coefficient h, the surface temperature approaches the fluid temperature T_{∞} as the time t approaches infinity.

The exact solution of the transient one-dimensional heat conduction problem in a semi-infinite medium that is initially at a uniform temperature of T_i and is suddenly subjected to convection at time t = 0 has been obtained, and is expressed as

$$\frac{T(x,t) - T_i}{T_{\infty} - T_i} = \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right) - \exp\left(\frac{hx}{k} + \frac{h^2\alpha t}{k^2}\right) \left[\operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}} + \frac{h\sqrt{\alpha t}}{k}\right)\right]$$
 (18–22)

where the quantity erfc (ξ) is the **complementary error function**, defined as

erfc
$$(\xi) = 1 - \frac{2}{\sqrt{\pi}} \int_0^{\xi} e^{-u^2} du$$
 (18–23)

Despite its simple appearance, the integral that appears in the above relation cannot be performed analytically. Therefore, it is evaluated numerically for different values of ξ , and the results are listed in Table 18–3. For the special case of $h \to \infty$, the surface temperature T_s becomes equal to the fluid temperature T_∞ , and Eq. 18–22 reduces to

$$\frac{T(x,t) - T_i}{T_s - T_i} = \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right)$$
 (18-24)

TABLE 18-3

The complementary error function

	1										
ξ	$erfc(\xi)$	ξ	erfc (ξ)	ξ	erfc (ξ)	ξ	$erfc(\xi)$	ξ	$erfc(\xi)$	ξ	erfc (ξ)
0.00	1.00000	0.38	0.5910	0.76	0.2825	1.14	0.1069	1.52	0.03159	1.90	0.00721
0.02	0.9774	0.40	0.5716	0.78	0.2700	1.16	0.10090	1.54	0.02941	1.92	0.00662
0.04	0.9549	0.42	0.5525	0.80	0.2579	1.18	0.09516	1.56	0.02737	1.94	0.00608
0.06	0.9324	0.44	0.5338	0.82	0.2462	1.20	0.08969	1.58	0.02545	1.96	0.00557
0.08	0.9099	0.46	0.5153	0.84	0.2349	1.22	0.08447	1.60	0.02365	1.98	0.00511
0.10	0.8875	0.48	0.4973	0.86	0.2239	1.24	0.07950	1.62	0.02196	2.00	0.00468
0.12	0.8652	0.50	0.4795	0.88	0.2133	1.26	0.07476	1.64	0.02038	2.10	0.00298
0.14	0.8431	0.52	0.4621	0.90	0.2031	1.28	0.07027	1.66	0.01890	2.20	0.00186
0.16	0.8210	0.54	0.4451	0.92	0.1932	1.30	0.06599	1.68	0.01751	2.30	0.00114
0.18	0.7991	0.56	0.4284	0.94	0.1837	1.32	0.06194	1.70	0.01612	2.40	0.00069
0.20	0.7773	0.58	0.4121	0.96	0.1746	1.34	0.05809	1.72	0.01500	2.50	0.00041
0.22	0.7557	0.60	0.3961	0.98	0.1658	1.36	0.05444	1.74	0.01387	2.60	0.00024
0.24	0.7343	0.62	0.3806	1.00	0.1573	1.38	0.05098	1.76	0.01281	2.70	0.00013
0.26	0.7131	0.64	0.3654	1.02	0.1492	1.40	0.04772	1.78	0.01183	2.80	0.00008
0.28	0.6921	0.66	0.3506	1.04	0.1413	1.42	0.04462	1.80	0.01091	2.90	0.00004
0.30	0.6714	0.68	0.3362	1.06	0.1339	1.44	0.04170	1.82	0.01006	3.00	0.00002
0.32	0.6509	0.70	0.3222	1.08	0.1267	1.46	0.03895	1.84	0.00926	3.20	0.00001
0.34	0.6306	0.72	0.3086	1.10	0.1198	1.48	0.03635	1.86	0.00853	3.40	0.00000
0.36	0.6107	0.74	0.2953	1.12	0.1132	1.50	0.03390	1.88	0.00784	3.60	0.00000

This solution corresponds to the case when the temperature of the exposed surface of the medium is suddenly raised (or lowered) to T_s at t=0 and is maintained at that value at all times. Although the graphical solution given in Fig. 18–23 is a plot of the exact analytical solution given by Eq. 18–23, it is subject to reading errors, and thus is of limited accuracy.

EXAMPLE 18–6 Minimum Burial Depth of Water Pipes to Avoid Freezing

In areas where the air temperature remains below 0° C for prolonged periods of time, the freezing of water in underground pipes is a major concern. Fortunately, the soil remains relatively warm during those periods, and it takes weeks for the subfreezing temperatures to reach the water mains in the ground. Thus, the soil effectively serves as an insulation to protect the water from subfreezing temperatures in winter.

The ground at a particular location is covered with snow pack at -10°C for a continuous period of three months, and the average soil properties at that location are k=0.4 W/m · °C and $\alpha=0.15\times10^{-6}$ m²/s (Fig. 18–24). Assuming an initial uniform temperature of 15°C for the ground, determine the minimum burial depth to prevent the water pipes from freezing.

SOLUTION The water pipes are buried in the ground to prevent freezing. The minimum burial depth at a particular location is to be determined.

Assumptions 1 The temperature in the soil is affected by the thermal conditions at one surface only, and thus the soil can be considered to be a semi-infinite medium with a specified surface temperature of -10° C. 2 The thermal properties of the soil are constant.

FIGURE 18–24

Schematic for Example 18-6.

Properties The properties of the soil are as given in the problem statement. **Analysis** The temperature of the soil surrounding the pipes will be 0° C after three months in the case of minimum burial depth. Therefore, from Fig. 18–23, we have

$$\frac{h\sqrt{\alpha t}}{k} = \infty \quad \text{(since } h \to \infty\text{)}$$

$$1 - \frac{T(x, t) - T_{\infty}}{T_i - T_{\infty}} = 1 - \frac{0 - (-10)}{15 - (-10)} = 0.6$$

$$\xi = \frac{x}{2\sqrt{\alpha t}} = 0.36$$

We note that

$$t = (90 \text{ days})(24 \text{ h/day})(3600 \text{ s/h}) = 7.78 \times 10^6 \text{ s}$$

and thus

$$x = 2\xi \sqrt{\alpha t} = 2 \times 0.36 \sqrt{(0.15 \times 10^{-6} \text{ m}^2/\text{s})(7.78 \times 10^6 \text{ s})} = 0.77 \text{ m}$$

Therefore, the water pipes must be buried to a depth of at least 77 cm to avoid freezing under the specified harsh winter conditions.

ALTERNATIVE SOLUTION The solution of this problem could also be determined from Eq. 18–24:

$$\frac{T(x,t) - T_i}{T_s - T_i} = \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right) \longrightarrow \frac{0 - 15}{-10 - 15} = \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right) = 0.60$$

The argument that corresponds to this value of the complementary error function is determined from Table 18–3 to be $\xi = 0.37$. Therefore,

$$x = 2\xi \sqrt{\alpha t} = 2 \times 0.37 \sqrt{(0.15 \times 10^{-6} \text{ m}^2/\text{s})(7.78 \times 10^6 \text{ s})} = 0.80 \text{ m}$$

Again, the slight difference is due to the reading error of the chart.

T_{∞} h T(r,t) T_{∞} hHeat transfer

(a) Long cylinder

18-4 • TRANSIENT HEAT CONDUCTION IN MULTIDIMENSIONAL SYSTEMS

The transient temperature charts presented earlier can be used to determine the temperature distribution and heat transfer in *one-dimensional* heat conduction problems associated with a large plane wall, a long cylinder, a sphere, and a semi-infinite medium. Using a superposition approach called the **product solution**, these charts can also be used to construct solutions for the *two-dimensional* transient heat conduction problems encountered in geometries such as a short cylinder, a long rectangular bar, or a semi-infinite cylinder or plate, and even *three-dimensional* problems associated with geometries such as a rectangular prism or a semi-infinite rectangular bar, provided that *all* surfaces of the solid are subjected to convection to the *same* fluid at temperature

(b) Short cylinder (two-dimensional)

FIGURE 18-25

The temperature in a short cylinder exposed to convection from all surfaces varies in both the radial and axial directions, and thus heat is transferred in both directions.

FIGURE 18–26

A short cylinder of radius r_o and height a is the *intersection* of a long cylinder of radius r_o and a plane wall of thickness a.

FIGURE 18–27

A long solid bar of rectangular profile $a \times b$ is the *intersection* of two plane walls of thicknesses a and b.

 T_{∞} , with the *same* heat transfer coefficient h, and the body involves no heat generation (Fig. 18–25). The solution in such multidimensional geometries can be expressed as the *product* of the solutions for the one-dimensional geometries whose intersection is the multidimensional geometry.

Consider a *short cylinder* of height a and radius r_o initially at a uniform temperature T_i . There is no heat generation in the cylinder. At time t=0, the cylinder is subjected to convection from all surfaces to a medium at temperature T_∞ with a heat transfer coefficient h. The temperature within the cylinder will change with x as well as r and time t since heat transfer will occur from the top and bottom of the cylinder as well as its side surfaces. That is, T=T(r,x,t) and thus this is a two-dimensional transient heat conduction problem. When the properties are assumed to be constant, it can be shown that the solution of this two-dimensional problem can be expressed as

$$\left(\frac{T(r, x, t) - T_{\infty}}{T_i - T_{\infty}}\right)_{\text{short cylinder}} = \left(\frac{T(x, t) - T_{\infty}}{T_i - T_{\infty}}\right)_{\text{plane}} \left(\frac{T(r, t) - T_{\infty}}{T_i - T_{\infty}}\right)_{\text{infinite cylinder}}$$
(18–25)

That is, the solution for the two-dimensional short cylinder of height a and radius r_o is equal to the *product* of the nondimensionalized solutions for the one-dimensional plane wall of thickness a and the long cylinder of radius r_o , which are the two geometries whose intersection is the short cylinder, as shown in Fig. 18–26. We generalize this as follows: the solution for a multi-dimensional geometry is the product of the solutions of the one-dimensional geometries whose intersection is the multidimensional body.

For convenience, the one-dimensional solutions are denoted by

$$\theta_{\text{wall}}(x, t) = \left(\frac{T(x, t) - T_{\infty}}{T_i - T_{\infty}}\right)_{\text{plane wall}}$$

$$\theta_{\text{cyl}}(r, t) = \left(\frac{T(r, t) - T_{\infty}}{T_i - T_{\infty}}\right)_{\substack{\text{infinite cylinder}}}$$

$$\theta_{\text{semi-inf}}(x, t) = \left(\frac{T(x, t) - T_{\infty}}{T_i - T_{\infty}}\right)_{\substack{\text{semi-infinite solid}}}$$
(18–26)

For example, the solution for a long solid bar whose cross section is an $a \times b$ rectangle is the intersection of the two infinite plane walls of thicknesses a and b, as shown in Fig. 18–27, and thus the transient temperature distribution for this rectangular bar can be expressed as

$$\left(\frac{T(x, y, t) - T_{\infty}}{T_i - T_{\infty}}\right)_{\text{rectangular}} = \theta_{\text{wall}}(x, t)\theta_{\text{wall}}(y, t)$$
(18–27)

The proper forms of the product solutions for some other geometries are given in Table 18–4. It is important to note that the x-coordinate is measured from the surface in a semi-infinite solid, and from the midplane in a plane wall. The radial distance r is always measured from the centerline.

Note that the solution of a *two-dimensional* problem involves the product of *two* one-dimensional solutions, whereas the solution of a *three-dimensional* problem involves the product of *three* one-dimensional solutions.

A modified form of the product solution can also be used to determine the total transient heat transfer to or from a multidimensional geometry by using the one-dimensional values, as shown by L. S. Langston in 1982. The

TABLE 18-4

Multidimensional solutions expressed as products of one-dimensional solutions for bodies that are initially at a uniform temperature T_i and exposed to convection from all surfaces to a medium at T_{∞}

FUNDAMENTALS OF THERMAL-FLUID SCIENCES

transient heat transfer for a two-dimensional geometry formed by the intersection of two one-dimensional geometries 1 and 2 is

$$\left(\frac{Q}{Q_{\text{max}}}\right)_{\text{total 2D}} = \left(\frac{Q}{Q_{\text{max}}}\right) + \left(\frac{Q}{Q_{\text{max}}}\right)_{1} \left[1 - \left(\frac{Q}{Q_{\text{max}}}\right)_{1}\right]$$
(18-28)

Transient heat transfer for a three-dimensional body formed by the intersection of three one-dimensional bodies 1, 2, and 3 is given by

$$\left(\frac{Q}{Q_{\text{max}}}\right)_{\text{total, 3D}} = \left(\frac{Q}{Q_{\text{max}}}\right)_{1} + \left(\frac{Q}{Q_{\text{max}}}\right)_{2} \left[1 - \left(\frac{Q}{Q_{\text{max}}}\right)_{1}\right] + \left(\frac{Q}{Q_{\text{max}}}\right)_{3} \left[1 - \left(\frac{Q}{Q_{\text{max}}}\right)_{1}\right] \left[1 - \left(\frac{Q}{Q_{\text{max}}}\right)_{2}\right]$$
(18-29)

The use of the product solution in transient two- and three-dimensional heat conduction problems is illustrated in the following examples.

EXAMPLE 18-7 Cooling of a Short Brass Cylinder

A short brass cylinder of diameter D=10 cm and height H=12 cm is initially at a uniform temperature $T_i=120^{\circ}\mathrm{C}$. The cylinder is now placed in atmospheric air at 25°C, where heat transfer takes place by convection, with a heat transfer coefficient of $h=60~\mathrm{W/m^2}\cdot{^{\circ}\mathrm{C}}$. Calculate the temperature at (a) the center of the cylinder and (b) the center of the top surface of the cylinder 15 min after the start of the cooling.

SOLUTION A short cylinder is allowed to cool in atmospheric air. The temperatures at the centers of the cylinder and the top surface are to be determined.

Assumptions 1 Heat conduction in the short cylinder is two-dimensional, and thus the temperature varies in both the axial x- and the radial r-directions. 2 The thermal properties of the cylinder and the heat transfer coefficient are constant. 3 The Fourier number is $\tau > 0.2$ so that the one-term approximate solutions are applicable.

Properties The properties of brass at room temperature are $k=110 \text{ W/m} \cdot ^{\circ}\text{C}$ and $\alpha=33.9 \times 10^{-6} \text{ m}^2\text{/s}$ (Table A–25). More accurate results can be obtained by using properties at average temperature.

Analysis (a) This short cylinder can physically be formed by the intersection of a long cylinder of radius $r_o = 5$ cm and a plane wall of thickness 2L = 12 cm, as shown in Fig. 18–28. The dimensionless temperature at the center of the plane wall is determined from Fig. 18–13a to be

$$\tau = \frac{\alpha t}{L^2} = \frac{(3.39 \times 10^{-5} \text{ m}^2/\text{s})(900 \text{ s})}{(0.06 \text{ m})^2} = 8.48$$

$$\frac{1}{\text{Bi}} = \frac{k}{hL} = \frac{110 \text{ W/m} \cdot ^{\circ}\text{C}}{(60 \text{ W/m}^2 \cdot ^{\circ}\text{C})(0.06 \text{ m})} = 30.6$$

$$\theta_{\text{wall}}(0, t) = \frac{T(0, t) - T_{\infty}}{T_i - T_{\infty}} = 0.8$$

FIGURE 18–28 Schematic for Example 18–7.

Similarly, at the center of the cylinder, we have

$$\tau = \frac{\alpha t}{r_o^2} = \frac{(3.39 \times 10^{-5} \text{ m}^2/\text{s})(900 \text{ s})}{(0.05 \text{ m})^2} = 12.2$$

$$\frac{1}{\text{Bi}} = \frac{k}{hr_o} = \frac{110 \text{ W/m} \cdot {}^{\circ}\text{C}}{(60 \text{ W/m}^2 \cdot {}^{\circ}\text{C})(0.05 \text{ m})} = 36.7$$

$$\theta_{\text{cyl}}(0, t) = \frac{T(0, t) - T_{\infty}}{T_i - T_{\infty}} = 0.5$$

Therefore,

$$\left(\frac{T(0,0,t)-T_{\infty}}{T_{i}-T_{\infty}}\right)_{\text{short cylinder}}^{\text{short}} = \theta_{\text{wall}}(0,t) \times \theta_{\text{cyl}}(0,t) = 0.8 \times 0.5 = 0.4$$

and

$$T(0, 0, t) = T_{\infty} + 0.4(T_i - T_{\infty}) = 25 + 0.4(120 - 25) = 63^{\circ}C$$

This is the temperature at the center of the short cylinder, which is also the center of both the long cylinder and the plate.

(b) The center of the top surface of the cylinder is still at the center of the long cylinder (r = 0), but at the outer surface of the plane wall (x = L). Therefore, we first need to find the surface temperature of the wall. Noting that x = L = 0.06 m,

$$\frac{x}{L} = \frac{0.06 \text{ m}}{0.06 \text{ m}} = 1$$

$$\frac{1}{\text{Bi}} = \frac{k}{hL} = \frac{110 \text{ W/m} \cdot ^{\circ}\text{C}}{(60 \text{ W/m}^{2} \cdot ^{\circ}\text{C})(0.06 \text{ m})} = 30.6$$

$$\frac{T(L, t) - T_{\infty}}{T_{o} - T_{\infty}} = 0.98$$

Then

$$\theta_{\text{wall}}(L, t) = \frac{T(L, t) - T_{\infty}}{T_i - T_{\infty}} = \left(\frac{T(L, t) - T_{\infty}}{T_o - T_{\infty}}\right) \left(\frac{T_o - T_{\infty}}{T_i - T_{\infty}}\right) = 0.98 \times 0.8 = 0.784$$

Therefore,

$$\left(\frac{T(L, 0, t) - T_{\infty}}{T_i - T_{\infty}}\right)_{\text{short cylinder}} = \theta_{\text{wall}}(L, t)\theta_{\text{cyl}}(0, t) = 0.784 \times 0.5 = 0.392$$

and

$$T(L, 0, t) = T_{\infty} + 0.392(T_i - T_{\infty}) = 25 + 0.392(120 - 25) = 62.2^{\circ}C$$

which is the temperature at the center of the top surface of the cylinder.

EXAMPLE 18-8 Heat Transfer from a Short Cylinder

Determine the total heat transfer from the short brass cylinder ($\rho=8530$ kg/m³, $C_{p}=0.380$ kJ/kg · °C) discussed in Example 18–7.

FUNDAMENTALS OF THERMAL-FLUID SCIENCES

SOLUTION We first determine the maximum heat that can be transferred from the cylinder, which is the sensible energy content of the cylinder relative to its environment:

$$m = \rho V = \rho \pi r_o^2 L = (8530 \text{ kg/m}^3) \pi (0.05 \text{ m})^2 (0.06 \text{ m}) = 4.02 \text{ kg}$$

 $Q_{\text{max}} = mC_p(T_i - T_{\infty}) = (4.02 \text{ kg})(0.380 \text{ kJ/kg} \cdot ^{\circ}\text{C})(120 - 25)^{\circ}\text{C} = 145.1 \text{ kJ}$

Then we determine the dimensionless heat transfer ratios for both geometries. For the plane wall, it is determined from Fig. 18-13c to be

Bi =
$$\frac{1}{1/\text{Bi}} = \frac{1}{30.6} = 0.0327$$

$$\frac{h^2 \alpha t}{k^2} = \text{Bi}^2 \tau = (0.0327)^2 (8.48) = 0.0091$$

$$\left\{ \frac{Q}{Q_{\text{max}}} \right\}_{\text{wall}}^{\text{plane}} = 0.23$$

Similarly, for the cylinder, we have

$$\operatorname{Bi} = \frac{1}{1/\operatorname{Bi}} = \frac{1}{36.7} = 0.0272$$

$$\frac{h^2 \alpha t}{k^2} = \operatorname{Bi}^2 \tau = (0.0272)^2 (12.2) = 0.0090$$

$$\left\{ \frac{Q}{Q_{\text{max}}} \right\}_{\text{infinite cylinder}}^{\text{infinite}} = 0.47$$

Then the heat transfer ratio for the short cylinder is, from Eq. 18–28,

$$\left(\frac{Q}{Q_{\text{max}}} \right)_{\text{short cyl}} = \left(\frac{Q}{Q_{\text{max}}} \right)_{1} + \left(\frac{Q}{Q_{\text{max}}} \right)_{2} \left[1 - \left(\frac{Q}{Q_{\text{max}}} \right)_{1} \right]$$

$$= 0.23 + 0.47(1 - 0.23) = 0.592$$

Therefore, the total heat transfer from the cylinder during the first 15 min of cooling is

$$Q = 0.592Q_{\text{max}} = 0.592 \times (145.1 \text{ kJ}) = 85.9 \text{ kJ}$$

EXAMPLE 18-9 Cooling of a Long Cylinder by Water

A semi-infinite aluminum cylinder of diameter D=20 cm is initially at a uniform temperature $T_i=200^{\circ}\text{C}$. The cylinder is now placed in water at 15°C where heat transfer takes place by convection, with a heat transfer coefficient of $h=120 \text{ W/m}^2 \cdot {^{\circ}\text{C}}$. Determine the temperature at the center of the cylinder 15 cm from the end surface 5 min after the start of the cooling.

SOLUTION A semi-infinite aluminum cylinder is cooled by water. The temperature at the center of the cylinder 15 cm from the end surface is to be determined.

Assumptions 1 Heat conduction in the semi-infinite cylinder is two-dimensional, and thus the temperature varies in both the axial x- and the radial r-directions. 2 The thermal properties of the cylinder and the heat transfer coefficient are constant. 3 The Fourier number is $\tau > 0.2$ so that the one-term approximate solutions are applicable.

Properties The properties of aluminum at room temperature are k=237 W/m·°C and $\alpha=9.71\times10^{-6}$ m²/s (Table A-25). More accurate results can be obtained by using properties at average temperature.

Analysis This semi-infinite cylinder can physically be formed by the intersection of an infinite cylinder of radius $r_o = 10$ cm and a semi-infinite medium, as shown in Fig. 18–29.

We will solve this problem using the one-term solution relation for the cylinder and the analytic solution for the semi-infinite medium. First we consider the infinitely long cylinder and evaluate the Biot number:

Bi =
$$\frac{hr_o}{k}$$
 = $\frac{(120 \text{ W/m}^2 \cdot {}^{\circ}\text{C})(0.1 \text{ m})}{237 \text{ W/m} \cdot {}^{\circ}\text{C}}$ = 0.05

The coefficients λ_1 and A_1 for a cylinder corresponding to this Bi are determined from Table 18–1 to be $\lambda_1=0.3126$ and $A_1=1.0124$. The Fourier number in this case is

$$\tau = \frac{\alpha t}{r_o^2} = \frac{(9.71 \times 10^{-5} \text{ m}^2/\text{s})(5 \times 60 \text{ s})}{(0.1 \text{ m})^2} = 2.91 > 0.2$$

and thus the one-term approximation is applicable. Substituting these values into Eq. 18–14 gives

$$\theta_0 = \theta_{\text{cyl}}(0, t) = A_1 e^{-\lambda_1^2 \tau} = 1.0124 e^{-(0.3126)^2(2.91)} = 0.762$$

The solution for the semi-infinite solid can be determined from

$$1 - \theta_{\text{semi-inf}}(x, t) = \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right) - \exp\left(\frac{hx}{k} + \frac{h^2\alpha t}{k^2}\right) \left[\operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}} + \frac{h\sqrt{\alpha t}}{k}\right)\right]$$

First we determine the various quantities in parentheses:

$$\xi = \frac{x}{2\sqrt{\alpha t}} = \frac{0.15 \text{ m}}{2\sqrt{(9.71 \times 10^{-5} \text{ m}^2/\text{s})(5 \times 60 \text{ s})}} = 0.44$$

$$\frac{h\sqrt{\alpha t}}{k} = \frac{(120 \text{ W/m}^2 \cdot {}^{\circ}\text{C})\sqrt{(9.71 - 10^{-5} \text{m}^2/\text{s})(300 \text{ s})}}{237 \text{ W/m} \cdot {}^{\circ}\text{C}} = 0.086$$

$$\frac{hx}{k} = \frac{(120 \text{ W/m}^2 \cdot {}^{\circ}\text{C})(0.15 \text{ m})}{237 \text{ W/m} \cdot {}^{\circ}\text{C}} = 0.0759$$

$$\frac{h^2\alpha t}{k^2} = \left(\frac{h\sqrt{\alpha t}}{k}\right)^2 = (0.086)^2 = 0.0074$$

Substituting and evaluating the complementary error functions from Table 18-3,

$$\theta_{\text{semi-inf}}(x, t) = 1 - \text{erfc } (0.44) + \exp(0.0759 + 0.0074) \text{ erfc } (0.44 + 0.086)$$

= 1 - 0.5338 + exp (0.0833) × 0.457
= 0.963

Now we apply the product solution to get

$$\left(\frac{T(x,0,t)-T_{\infty}}{T_{i}-T_{\infty}}\right)_{\text{semi-infinite}\atop\text{cylinder}} = \theta_{\text{semi-inf}}(x,t)\theta_{\text{cyl}}(0,t) = 0.963 \times 0.762 = 0.734$$

837 CHAPTER 18

FIGURE 18–29

Schematic for Example 18–9.

FUNDAMENTALS OF THERMAL-FLUID SCIENCES

and

$$T(x, 0, t) = T_{\infty} + 0.734(T_i - T_{\infty}) = 15 + 0.734(200 - 15) = 151^{\circ}C$$

which is the temperature at the center of the cylinder 15 cm from the exposed bottom surface.

FIGURE 18–30 Schematic for Example 18–10.

EXAMPLE 18-10 Refrigerating Steaks while Avoiding Frostbite

In a meat processing plant, 1-in-thick steaks initially at $75^{\circ}F$ are to be cooled in the racks of a large refrigerator that is maintained at $5^{\circ}F$ (Fig. 18–30). The steaks are placed close to each other, so that heat transfer from the 1-in-thick edges is negligible. The entire steak is to be cooled below $45^{\circ}F$, but its temperature is not to drop below $35^{\circ}F$ at any point during refrigeration to avoid "frost-bite." The convection heat transfer coefficient and thus the rate of heat transfer from the steak can be controlled by varying the speed of a circulating fan inside. Determine the heat transfer coefficient h that will enable us to meet both temperature constraints while keeping the refrigeration time to a minimum. The steak can be treated as a homogeneous layer having the properties $\rho = 74.9$ lbm/ft³, $C_p = 0.98$ Btu/lbm · °F, k = 0.26 Btu/h · ft · °F, and $\alpha = 0.0035$ ft²/h.

SOLUTION Steaks are to be cooled in a refrigerator maintained at 5°F. The heat transfer coefficient that will allow cooling the steaks below 45°F while avoiding frostbite is to be determined.

Assumptions 1 Heat conduction through the steaks is one-dimensional since the steaks form a large layer relative to their thickness and there is thermal symmetry about the center plane. 2 The thermal properties of the steaks and the heat transfer coefficient are constant. 3 The Fourier number is $\tau > 0.2$ so that the one-term approximate solutions are applicable.

Properties The properties of the steaks are as given in the problem statement. **Analysis** The lowest temperature in the steak will occur at the surfaces and the highest temperature at the center at a given time, since the inner part will be the last place to be cooled. In the limiting case, the surface temperature at x = L = 0.5 in from the center will be 35° F, while the midplane temperature is 45° F in an environment at 5° F. Then, from Fig. 18-13b, we obtain

$$\frac{x}{L} = \frac{0.5 \text{ in}}{0.5 \text{ in}} = 1$$

$$\frac{T(L, t) - T_{\infty}}{T_o - T_{\infty}} = \frac{35 - 5}{45 - 5} = 0.75$$

$$\frac{1}{\text{Bi}} = \frac{k}{hL} = 1.5$$

which gives

$$h = \frac{1}{1.5} \frac{k}{L} = \frac{0.26 \text{ Btu/h} \cdot \text{ft} \cdot {}^{\circ}\text{F}}{1.5(0.5/12 \text{ ft})} = 4.16 \text{ Btu/h} \cdot \text{ft}^2 \cdot {}^{\circ}\text{F}$$

Discussion The convection heat transfer coefficient should be kept below this value to satisfy the constraints on the temperature of the steak during refrigeration. We can also meet the constraints by using a lower heat transfer coefficient, but doing so would extend the refrigeration time unnecessarily.

The restrictions that are inherent in the use of Heisler charts and the oneterm solutions (or any other analytical solutions) can be lifted by using the numerical methods discussed in Chap. 5.

SUMMARY

In this chapter we considered the variation of temperature with time as well as position in one- or multidimensional systems. We first considered the *lumped systems* in which the temperature varies with time but remains uniform throughout the system at any time. The temperature of a lumped body of arbitrary shape of mass m, volume V, surface area A_s , density ρ , and specific heat C_p initially at a uniform temperature T_i that is exposed to convection at time t=0 in a medium at temperature T_∞ with a heat transfer coefficient h is expressed as

$$\frac{T(t) - T_{\infty}}{T_i - T_{\infty}} = e^{-bt}$$

where

$$b = \frac{hA_s}{\rho C_p V} = \frac{h}{\rho C_p L_c}$$
 (1/s)

is a positive quantity whose dimension is $(time)^{-1}$. This relation can be used to determine the temperature T(t) of a body at time t or, alternatively, the time t required for the temperature to reach a specified value T(t). Once the temperature T(t) at time t is available, the t of convection heat transfer between the body and its environment at that time can be determined from Newton's law of cooling as

$$\dot{Q}(t) = hA_s [T(t) - T_{\infty}] \tag{W}$$

The *total amount* of heat transfer between the body and the surrounding medium over the time interval t = 0 to t is simply the change in the energy content of the body,

$$Q = mC_p[T(t) - T_i]$$
 (kJ)

The amount of heat transfer reaches its upper limit when the body reaches the surrounding temperature T_{∞} . Therefore, the *maximum* heat transfer between the body and its surroundings is

$$Q_{\text{max}} = mC_p \left(T_{\infty} - T_i \right) \tag{kJ}$$

The error involved in lumped system analysis is negligible when

$$Bi = \frac{hL_c}{k} < 0.1$$

where Bi is the *Biot number* and $L_c = V/A_s$ is the *characteristic length*.

When the lumped system analysis is not applicable, the variation of temperature with position as well as time can be determined using the *transient temperature charts* given in Figs. 18–13, 18–14, 18–15, and 18–23 for a large plane wall, a long cylinder, a sphere, and a semi-infinite medium, respectively. These charts are applicable for one-dimensional heat transfer in those geometries. Therefore, their use is limited to situations in which the body is initially at a uniform temperature, all surfaces are subjected to the same thermal conditions, and the body does not involve any heat generation. These charts can also be used to determine the total heat transfer from the body up to a specified time *t*.

Using a *one-term approximation*, the solutions of onedimensional transient heat conduction problems are expressed analytically as

$$\begin{array}{ll} \text{Plane wall:} & \theta(x,t)_{\text{wall}} = \frac{T(x,t) - T_{\infty}}{T_i - T_{\infty}} \\ & = A_1 e^{-\lambda_1^2 \tau} \cos{(\lambda_1 x/L)}, \quad \tau > 0.2 \\ \text{Cylinder:} & \theta(r,t)_{\text{cyl}} = \frac{T(r,t) - T_{\infty}}{T_i - T_{\infty}} \\ & = A_1 e^{-\lambda_1^2 \tau} J_0(\lambda_1 r/r_o), \quad \tau > 0.2 \\ \text{Sphere:} & \theta(r,t)_{\text{sph}} = \frac{T(r,t) - T_{\infty}}{T_i - T_{\infty}} \\ & = A_1 e^{-\lambda_1^2 \tau} \frac{\sin(\lambda_1 r/r_o)}{\lambda_1 r/r_o}, \quad \tau > 0.2 \end{array}$$

where the constants A_1 and λ_1 are functions of the Bi number only, and their values are listed in Table 18–1 against the Bi number for all three geometries. The error involved in one-term solutions is less than 2 percent when $\tau > 0.2$.

Using the one-term solutions, the fractional heat transfers in different geometries are expressed as

FUNDAMENTALS OF THERMAL-FLUID SCIENCES

The analytic solution for one-dimensional transient heat conduction in a semi-infinite solid subjected to convection is given by

$$\frac{T(x,t) - T_i}{T_{\infty} - T_i} = \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right) - \exp\left(\frac{hx}{k} + \frac{h^2\alpha t}{k^2}\right)$$
$$\left[\operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}} + \frac{h\sqrt{\alpha t}}{k}\right)\right]$$

where the quantity erfc (ξ) is the *complementary error function*. For the special case of $h \to \infty$, the surface temperature T_s becomes equal to the fluid temperature T_{∞} , and the above equation reduces to

$$\frac{T(x,t) - T_i}{T_s - T_i} = \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right) \qquad (T_s = \text{constant})$$

Using a clever superposition principle called the *product solution* these charts can also be used to construct solutions for the *two-dimensional* transient heat conduction problems encountered in geometries such as a short cylinder, a long rectangular bar, or a semi-infinite cylinder or plate, and even *three-dimensional* problems associated with geometries such as a rectangular prism or a semi-infinite rectangular bar, pro-

vided that all surfaces of the solid are subjected to convection to the same fluid at temperature T_{∞} , with the same convection heat transfer coefficient h, and the body involves no heat generation. The solution in such multidimensional geometries can be expressed as the product of the solutions for the one-dimensional geometries whose intersection is the multidimensional geometry.

The total heat transfer to or from a multidimensional geometry can also be determined by using the one-dimensional values. The transient heat transfer for a two-dimensional geometry formed by the intersection of two one-dimensional geometries 1 and 2 is

$$\left(\frac{Q}{Q_{\text{max}}}\right)_{\text{total. 2D}} = \left(\frac{Q}{Q_{\text{max}}}\right)_{1} + \left(\frac{Q}{Q_{\text{max}}}\right)_{2} \left[1 - \left(\frac{Q}{Q_{\text{max}}}\right)_{1}\right]$$

Transient heat transfer for a three-dimensional body formed by the intersection of three one-dimensional bodies 1, 2, and 3 is given by

$$\left(\frac{Q}{Q_{\text{max}}}\right)_{\text{total, 3D}} = \left(\frac{Q}{Q_{\text{max}}}\right)_{1} + \left(\frac{Q}{Q_{\text{max}}}\right)_{2} \left[1 - \left(\frac{Q}{Q_{\text{max}}}\right)_{1}\right] + \left(\frac{Q}{Q_{\text{max}}}\right)_{2} \left[1 - \left(\frac{Q}{Q_{\text{max}}}\right)_{1}\right] \left[1 - \left(\frac{Q}{Q_{\text{max}}}\right)_{2}\right]$$

REFERENCES AND SUGGESTED READINGS

- H. S. Carslaw and J. C. Jaeger. Conduction of Heat in Solids. 2nd ed. London: Oxford University Press, 1959.
- **2.** H. Gröber, S. Erk, and U. Grigull. *Fundamentals of Heat Transfer*. New York: McGraw-Hill, 1961.
- **3.** M. P. Heisler. "Temperature Charts for Induction and Constant Temperature Heating." *ASME Transactions* 69 (1947), pp. 227–36.
- **4.** F. P. Incropera and D. P. DeWitt. *Introduction to Heat Transfer.* 4th ed. New York: John Wiley & Sons, 2002.
- **5.** L. S. Langston. "Heat Transfer from Multidimensional Objects Using One-Dimensional Solutions for Heat Loss." *International Journal of Heat and Mass Transfer* 25 (1982), pp. 149–50.
- M. N. Özişik. Heat Transfer—A Basic Approach. New York; McGraw-Hill, 1985.
- **7.** P. J. Schneider. *Conduction Heat Transfer.* Reading, MA: Addison-Wesley, 1955.

PROBLEMS*

Lumped System Analysis

18–1C What is lumped system analysis? When is it applicable?

*Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an "E" are in English units, and the SI users can ignore them. Problems with a CD-EES icon are solved using EES, and complete solutions together with parametric studies are included on the enclosed CD. Problems with a computer-EES icon are comprehensive in nature, and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

18–2C Consider heat transfer between two identical hot solid bodies and the air surrounding them. The first solid is being cooled by a fan while the second one is allowed to cool naturally. For which solid is the lumped system analysis more likely to be applicable? Why?

18–3C Consider heat transfer between two identical hot solid bodies and their environments. The first solid is dropped in a large container filled with water, while the second one is allowed to cool naturally in the air. For which solid is the lumped system analysis more likely to be applicable? Why?

18–4C Consider a hot baked potato on a plate. The temperature of the potato is observed to drop by 4°C during the first

841 CHAPTER 18

minute. Will the temperature drop during the second minute be less than, equal to, or more than 4°C? Why?

FIGURE P18-4C

18–5C Consider a potato being baked in an oven that is maintained at a constant temperature. The temperature of the potato is observed to rise by 5°C during the first minute. Will the temperature rise during the second minute be less than, equal to, or more than 5°C? Why?

18–6C What is the physical significance of the Biot number? Is the Biot number more likely to be larger for highly conducting solids or poorly conducting ones?

18–7C Consider two identical 18-kg pieces of roast beef. The first piece is baked as a whole, while the second is baked after being cut into two equal pieces in the same oven. Will there be any difference between the cooking times of the whole and cut roasts? Why?

18–8C Consider a sphere and a cylinder of equal volume made of copper. Both the sphere and the cylinder are initially at the same temperature and are exposed to convection in the same environment. Which do you think will cool faster, the cylinder or the sphere? Why?

18–9C In what medium is the lumped system analysis more likely to be applicable: in water or in air? Why?

18–10C For which solid is the lumped system analysis more likely to be applicable: an actual apple or a golden apple of the same size? Why?

18–11C For which kind of bodies made of the same material is the lumped system analysis more likely to be applicable: slender ones or well-rounded ones of the same volume? Why?

18–12 Obtain relations for the characteristic lengths of a large plane wall of thickness 2L, a very long cylinder of radius r_o , and a sphere of radius r_o .

18–13 Obtain a relation for the time required for a lumped system to reach the average temperature $\frac{1}{2}(T_i + T_{\infty})$, where T_i is the initial temperature and T_{∞} is the temperature of the environment.

18–14 The temperature of a gas stream is to be measured by a thermocouple whose junction can be approximated as a 1.2-mm-diameter sphere. The properties of the junction are $k = 35 \text{ W/m} \cdot {}^{\circ}\text{C}$, $\rho = 8500 \text{ kg/m}^3$, and $C_p = 320 \text{ J/kg} \cdot {}^{\circ}\text{C}$, and the heat transfer coefficient between the junction and the gas is $h = 65 \text{ W/m}^2 \cdot {}^{\circ}\text{C}$. Determine how long it will take for the thermocouple to read 99 percent of the initial temperature difference. *Answer:* 38.5 s

18–15E In a manufacturing facility, 2-in-diameter brass balls $(k = 64.1 \text{ Btu/h} \cdot \text{ft} \cdot \text{°F}, \rho = 532 \text{ lbm/ft}^3, \text{ and } C_p = 0.092 \text{ Btu/lbm} \cdot \text{°F})$ initially at 250°F are quenched in a water bath at 120°F for a period of 2 min at a rate of 120 balls per minute. If the convection heat transfer coefficient is 42 Btu/h $\cdot \text{ft}^2 \cdot \text{°F}$, determine (a) the temperature of the balls after quenching and (b) the rate at which heat needs to be removed from the water in order to keep its temperature constant at 120°F.

FIGURE P18-15E

18–16E Repeat Prob. 18–15E for aluminum balls.

18–17 To warm up some milk for a baby, a mother pours milk into a thin-walled glass whose diameter is 6 cm. The height of the milk in the glass is 7 cm. She then places the glass into a large pan filled with hot water at 60°C. The milk is stirred constantly, so that its temperature is uniform at all times. If the heat transfer coefficient between the water and the glass is 120 W/m² · °C, determine how long it will take for the milk to warm up from 3°C to 38°C. Take the properties of the milk to be the same as those of water. Can the milk in this case be treated as a lumped system? Why?

Answer: 5.8 min

18–18 Repeat Prob. 18–17 for the case of water also being stirred, so that the heat transfer coefficient is doubled to $240 \text{ W/m}^2 \cdot {}^{\circ}\text{C}$.

18–19E During a picnic on a hot summer day, all the cold drinks disappeared quickly, and the only available drinks were those at the ambient temperature of 80°F. In an effort to cool a 12-fluid-oz drink in a can, which is 5 in high and has a diameter of 2.5 in, a person grabs the can and starts shaking it in the iced water of the chest at 32°F. The temperature of the drink

FIGURE P18-19E

can be assumed to be uniform at all times, and the heat transfer coefficient between the iced water and the aluminum can is 30 Btu/h \cdot ft² \cdot °F. Using the properties of water for the drink, estimate how long it will take for the canned drink to cool to 45°F.

18–20 Consider a 1000-W iron whose base plate is made of 0.5-cm-thick aluminum alloy 20218–T6 ($\rho=2770~{\rm kg/m^3},~C_p=875~{\rm J/kg}\cdot{}^{\circ}{\rm C},~\alpha=7.3\times10^{-5}~{\rm m^2/s}$). The base plate has a surface area of 0.03 m². Initially, the iron is in thermal equilibrium with the ambient air at 22°C. Taking the heat transfer coefficient at the surface of the base plate to be 12 W/m² · °C and assuming 85 percent of the heat generated in the resistance wires is transferred to the plate, determine how long it will take for the plate temperature to reach 140°C. Is it realistic to assume the plate temperature to be uniform at all times?

FIGURE P18–20

18–21 Reconsider Prob. 18–20. Using EES (or other) software, investigate the effects of the heat transfer coefficient and the final plate temperature on the time it will take for the plate to reach this temperature. Let the heat transfer coefficient vary from 5 W/m²·°C to 25 W/m²·°C and the temperature from 30°C to 200°C. Plot the time as functions of the heat transfer coefficient and the temperature, and discuss the results.

18–22 Stainless steel ball bearings ($\rho = 8085 \text{ kg/m}^3, k = 15.1 \text{ W/m} \cdot ^\circ\text{C}, C_p = 0.480 \text{ kJ/kg} \cdot ^\circ\text{C}, \text{ and } \alpha = 3.91 \times 10^{-6} \text{ m}^2/\text{s})$ having a diameter of 1.2 cm are to be quenched in water. The balls leave the oven at a uniform temperature of 900°C and are exposed to air at 30°C for a while before they are dropped into the water. If the temperature of the balls is not to fall below 850°C prior to quenching and the heat transfer coefficient in the air is 125 W/m² · °C, determine how long they can stand in the air before being dropped into the water. *Answer:* 3.7 s

18–23 Carbon steel balls ($\rho = 7833 \text{ kg/m}^3$, $k = 54 \text{ W/m} \cdot ^{\circ}\text{C}$, $C_p = 0.465 \text{ kJ/kg} \cdot ^{\circ}\text{C}$, and $\alpha = 1.474 \times 10^{-6} \text{ m}^2\text{/s}$) 8 mm in diameter are annealed by heating them first to 900°C in a furnace and then allowing them to cool slowly to 100°C in am-

bient air at 35°C. If the average heat transfer coefficient is 75 W/m 2 · °C, determine how long the annealing process will take. If 2500 balls are to be annealed per hour, determine the total rate of heat transfer from the balls to the ambient air.

FIGURE P18-23

18–24 Reconsider Prob. 18–23. Using EES (or other) software, investigate the effect of the initial temperature of the balls on the annealing time and the total rate of heat transfer. Let the temperature vary from 500°C to 1000°C. Plot the time and the total rate of heat transfer as a function of the initial temperature, and discuss the results.

18–25 An electronic device dissipating 30 W has a mass of 20 g, a specific heat of 850 J/kg · °C, and a surface area of 5 cm². The device is lightly used, and it is on for 5 min and then off for several hours, during which it cools to the ambient temperature of 25°C. Taking the heat transfer coefficient to be 12 W/m² · °C, determine the temperature of the device at the end of the 5-min operating period. What would your answer be if the device were attached to an aluminum heat sink having a mass of 200 g and a surface area of 80 cm²? Assume the device and the heat sink to be nearly isothermal.

Transient Heat Conduction in Large Plane Walls, Long Cylinders, and Spheres with Spatial Effects

18–26C What is an infinitely long cylinder? When is it proper to treat an actual cylinder as being infinitely long, and when is it not? For example, is it proper to use this model when finding the temperatures near the bottom or top surfaces of a cylinder? Explain.

18–27C Can the transient temperature charts in Fig. 18–13 for a plane wall exposed to convection on both sides be used for a plane wall with one side exposed to convection while the other side is insulated? Explain.

18–28C Why are the transient temperature charts prepared using nondimensionalized quantities such as the Biot and Fourier numbers instead of the actual variables such as thermal conductivity and time?

18–29C What is the physical significance of the Fourier number? Will the Fourier number for a specified heat transfer problem double when the time is doubled?

18–30C How can we use the transient temperature charts when the surface temperature of the geometry is specified instead of the temperature of the surrounding medium and the convection heat transfer coefficient?

18–31C A body at an initial temperature of T_i is brought into a medium at a constant temperature of T_{∞} . How can you determine the maximum possible amount of heat transfer between the body and the surrounding medium?

18–32C The Biot number during a heat transfer process between a sphere and its surroundings is determined to be 0.02. Would you use lumped system analysis or the transient temperature charts when determining the midpoint temperature of the sphere? Why?

18–33 A student calculates that the total heat transfer from a spherical copper ball of diameter 15 cm initially at 200°C and its environment at a constant temperature of 25°C during the first 20 min of cooling is 4520 kJ. Is this result reasonable? Why?

18–34 An ordinary egg can be approximated as a 5.5-cm-diameter sphere whose properties are roughly k=0.6 W/m $^{\circ}$ C and $\alpha=0.14\times10^{-6}$ m²/s. The egg is initially at a uniform temperature of 8°C and is dropped into boiling water at 97°C. Taking the convection heat transfer coefficient to be h=1400 W/m² $^{\circ}$ C, determine how long it will take for the center of the egg to reach 70°C.

FIGURE P18-34

18–35 Reconsider Prob. 18–34. Using EES (or other) software, investigate the effect of the final center temperature of the egg on the time it will take for the center to reach this temperature. Let the temperature vary from 50°C to 95°C. Plot the time versus the temperature, and discuss the results.

18–36 In a production facility, 3-cm-thick large brass plates $(k = 110 \text{ W/m} \cdot {}^{\circ}\text{C}, \rho = 8530 \text{ kg/m}^3, C_p = 380 \text{ J/kg} \cdot {}^{\circ}\text{C}, \text{ and}$

 $\alpha = 33.9 \times 10^{-6}$ m²/s) that are initially at a uniform temperature of 25°C are heated by passing them through an oven maintained at 700°C. The plates remain in the oven for a period of 10 min. Taking the convection heat transfer coefficient to be h = 80 W/m² · °C, determine the surface temperature of the plates when they come out of the oven.

18–37 Reconsider Prob. 18–36. Using EES (or other) software, investigate the effects of the temperature of the oven and the heating time on the final surface temperature of the plates. Let the oven temperature vary from 500°C to 900°C and the time from 2 min to 30 min. Plot the surface temperature as the functions of the oven temperature and the time, and discuss the results.

18–38 A long 35-cm-diameter cylindrical shaft made of stainless steel 304 ($k = 14.9 \text{ W/m} \cdot ^{\circ}\text{C}$, $\rho = 7900 \text{ kg/m}^{3}$, $C_{p} = 477 \text{ J/kg} \cdot ^{\circ}\text{C}$, and $\alpha = 3.95 \times 10^{-6} \text{ m}^{2}\text{/s}$) comes out of an oven at a uniform temperature of 400°C. The shaft is then allowed to cool slowly in a chamber at 150°C with an average convection heat transfer coefficient of $h = 60 \text{ W/m}^{2} \cdot ^{\circ}\text{C}$. Determine the temperature at the center of the shaft 20 min after the start of the cooling process. Also, determine the heat transfer per unit length of the shaft during this time period.

Answers: 390°C, 16,015 kJ/m

18–39 Reconsider Prob. 18–38. Using EES (or other) software, investigate the effect of the cooling time on the final center temperature of the shaft and the amount of heat transfer. Let the time vary from 5 min to 60 min. Plot the center temperature and the heat transfer as a function of the time, and discuss the results.

18–40E Long cylindrical AISI stainless steel rods (k = 7.74 Btu/h · ft · °F and $\alpha = 0.135$ ft²/h) of 18-in-diameter are heat-treated by drawing them at a velocity of 10 ft/min through a 30-ft-long oven maintained at 1700°F. The heat transfer coefficient in the oven is 20 Btu/h · ft² · °F. If the rods enter the oven at 85°F, determine their centerline temperature when they leave.

FIGURE P18-40E

18–41 In a meat processing plant, 2-cm-thick steaks $(k = 0.45 \text{ W/m} \cdot ^{\circ}\text{C} \text{ and } \alpha = 0.91 \times 10^{-7} \text{ m}^2/\text{s})$ that are initially at 25°C are to be cooled by passing them through a refrigeration room at -11°C . The heat transfer coefficient on both sides of the steaks is $9 \text{ W/m}^2 \cdot ^{\circ}\text{C}$. If both surfaces of the

FUNDAMENTALS OF THERMAL-FLUID SCIENCES

steaks are to be cooled to 2°C, determine how long the steaks should be kept in the refrigeration room.

18–42 A long cylindrical wood log ($k = 0.17 \text{ W/m} \cdot ^{\circ}\text{C}$ and $\alpha = 1.28 \times 10^{-7} \text{ m}^2/\text{s}$) is 10 cm in diameter and is initially at a uniform temperature of 10°C. It is exposed to hot gases at 500°C in a fireplace with a heat transfer coefficient of 13.6 W/m² · °C on the surface. If the ignition temperature of the wood is 420°C, determine how long it will be before the log ignites.

18–43 In *Betty Crocker's Cookbook*, it is stated that it takes 2 h 45 min to roast a 3.2-kg rib initially at 4.5°C "rare" in an oven maintained at 163°C. It is recommended that a meat thermometer be used to monitor the cooking, and the rib is considered rare done when the thermometer inserted into the center of the thickest part of the meat registers 60°C. The rib can be treated as a homogeneous spherical object with the properties $\rho = 1200 \text{ kg/m}^3$, $C_p = 4.1 \text{ kJ/kg} \cdot ^{\circ}\text{C}$, $k = 0.45 \text{ W/m} \cdot ^{\circ}\text{C}$, and $\alpha = 0.91 \times 10^{-7} \text{ m}^2/\text{s}$. Determine (a) the heat transfer coefficient at the surface of the rib; (b) the temperature of the outer surface of the rib when it is done; and (c) the amount of heat transferred to the rib. (d) Using the values obtained, predict how long it will take to roast this rib to "medium" level, which occurs when the innermost temperature of the rib reaches 71°C. Compare your result to the listed value of 3 h 20 min.

If the roast rib is to be set on the counter for about 15 min before it is sliced, it is recommended that the rib be taken out of the oven when the thermometer registers about 4°C below the indicated value because the rib will continue cooking even after it is taken out of the oven. Do you agree with this recommendation?

Answers: (a) 156.9 W/m² · °C, (b) 159.5°C, (c) 1629 kJ, (d) 3.0 h

FIGURE P18-43

18–44 Repeat Prob. 18–43 for a roast rib that is to be "well-done" instead of "rare." A rib is considered to be well-done when its center temperature reaches 77°C, and the roasting in this case takes about 4 h 15 min.

18–45 For heat transfer purposes, an egg can be considered to be a 5.5-cm-diameter sphere having the properties of water. An egg that is initially at 8°C is dropped into the boiling water

at 100° C. The heat transfer coefficient at the surface of the egg is estimated to be $800 \text{ W/m}^2 \cdot {}^{\circ}$ C. If the egg is considered cooked when its center temperature reaches 60° C, determine how long the egg should be kept in the boiling water.

18–46 Repeat Prob. 18–45 for a location at 1610-m elevation such as Denver, Colorado, where the boiling temperature of water is 94.4°C.

18–47 The author and his 6-year-old son have conducted the following experiment to determine the thermal conductivity of a hot dog. They first boiled water in a large pan and measured the temperature of the boiling water to be 94°C, which is not surprising, since they live at an elevation of about 1650 m in Reno, Nevada. They then took a hot dog that is 12.5 cm long and 2.2 cm in diameter and inserted a thermocouple into the midpoint of the hot dog and another thermocouple just under the skin. They waited until both thermocouples read 20°C, which is the ambient temperature. They then dropped the hot dog into boiling water and observed the changes in both temperatures. Exactly 2 min after the hot dog was dropped into the boiling water, they recorded the center and the surface temperatures to be 59°C and 88°C, respectively. The density of the hot dog can be taken to be 980 kg/m³, which is slightly less than the density of water, since the hot dog was observed to be floating in water while being almost completely immersed. The specific heat of a hot dog can be taken to be 3900 J/kg · °C, which is slightly less than that of water, since a hot dog is mostly water. Using transient temperature charts, determine (a) the thermal diffusivity of the hot dog; (b) the thermal conductivity of the hot dog; and (c) the convection heat transfer coefficient.

Answers: (a) 2.02×10^{-7} m²/s, (b) 0.771 W/m · °C, (c) 467 W/m² · °C.

FIGURE P18-47

18–48 Using the data and the answers given in Prob. 18–47, determine the center and the surface temperatures of the hot dog 4 min after the start of the cooking. Also determine the amount of heat transferred to the hot dog.

18–49E In a chicken processing plant, whole chickens averaging 5 lb each and initially at 72°F are to be cooled in the racks of a large refrigerator that is maintained at 5°F. The entire chicken is to be cooled below 45°F, but the temperature of the chicken is not to drop below 35°F at any point during refrigeration. The convection heat transfer coefficient and thus the rate of heat transfer from the chicken can be controlled by varying the

845 CHAPTER 18

speed of a circulating fan inside. Determine the heat transfer coefficient that will enable us to meet both temperature constraints while keeping the refrigeration time to a minimum. The chicken can be treated as a homogeneous spherical object having the properties $\rho=74.9$ lbm/ft³, $C_p=0.98$ Btu/lbm · °F, k=0.26 Btu/h · ft · °F, and $\alpha=0.0035$ ft²/h.

FIGURE P18-49E

18–50 A person puts a few apples into the freezer at -15° C to cool them quickly for guests who are about to arrive. Initially, the apples are at a uniform temperature of 20°C, and the heat transfer coefficient on the surfaces is $8 \text{ W/m}^2 \cdot {}^{\circ}\text{C}$. Treating the apples as 9-cm-diameter spheres and taking their properties to be $\rho = 840 \text{ kg/m}^3$, $C_p = 3.81 \text{ kJ/kg} \cdot {}^{\circ}\text{C}$, $k = 0.418 \text{ W/m} \cdot {}^{\circ}\text{C}$, and $\alpha = 1.3 \times 10^{-7} \text{ m}^2/\text{s}$, determine the center and surface temperatures of the apples in 1 h. Also, determine the amount of heat transfer from each apple.

18–51 Reconsider Prob. 18–50. Using EES (or other) software, investigate the effect of the initial temperature of the apples on the final center and surface temperatures and the amount of heat transfer. Let the initial temperature vary from 2°C to 30°C. Plot the center temperature, the surface temperature, and the amount of heat transfer as a function of the initial temperature, and discuss the results.

18–52 Citrus fruits are very susceptible to cold weather, and extended exposure to subfreezing temperatures can destroy

FIGURE P18-52

them. Consider an 8-cm-diameter orange that is initially at 15°C. A cold front moves in one night, and the ambient temperature suddenly drops to -6°C, with a heat transfer coefficient of 15 W/m² · °C. Using the properties of water for the orange and assuming the ambient conditions to remain constant for 4 h before the cold front moves out, determine if any part of the orange will freeze that night.

18–53 An 8-cm-diameter potato ($\rho = 1100 \text{ kg/m}^3$, $C_p = 3900 \text{ J/kg} \cdot ^{\circ}\text{C}$, $k = 0.6 \text{ W/m} \cdot ^{\circ}\text{C}$, and $\alpha = 1.4 \times 10^{-7} \text{ m}^2\text{/s}$) that is initially at a uniform temperature of 25°C is baked in an oven at 170°C until a temperature sensor inserted to the center of the potato indicates a reading of 70°C. The potato is then taken out of the oven and wrapped in thick towels so that almost no heat is lost from the baked potato. Assuming the heat transfer coefficient in the oven to be 25 W/m² · °C, determine (a) how long the potato is baked in the oven and (b) the final equilibrium temperature of the potato after it is wrapped.

18–54 White potatoes (k = 0.50 W/m \cdot °C and $\alpha = 0.13 \times 10^{-6}$ m²/s) that are initially at a uniform temperature of 25°C and have an average diameter of 6 cm are to be cooled by refrigerated air at 2°C flowing at a velocity of 4 m/s. The average heat transfer coefficient between the potatoes and the air is experimentally determined to be 19 W/m² \cdot °C. Determine how long it will take for the center temperature of the potatoes to drop to 6°C. Also, determine if any part of the potatoes will experience chilling injury during this process.

FIGURE P18-54

18–55E Oranges of 2.5-in-diameter (k = 0.26 Btu/h · ft · °F and $\alpha = 1.4 \times 10^{-6}$ ft²/s) initially at a uniform temperature of 78°F are to be cooled by refrigerated air at 25°F flowing at a velocity of 1 ft/s. The average heat transfer coefficient between the oranges and the air is experimentally determined to be 4.6 Btu/h · ft² · °F. Determine how long it will take for the center temperature of the oranges to drop to 40°F. Also, determine if any part of the oranges will freeze during this process.

18–56 A 65-kg beef carcass ($k = 0.47 \text{ W/m} \cdot ^{\circ}\text{C}$ and $\alpha = 0.13 \times 10^{-6} \text{ m}^2/\text{s}$) initially at a uniform temperature of 37°C is to be cooled by refrigerated air at -6°C flowing at a velocity of 1.8 m/s. The average heat transfer coefficient between the carcass and the air is 22 W/m² · °C. Treating the carcass as a cylinder of diameter 24 cm and height 1.4 m and disregarding heat transfer from the base and top surfaces, determine how long it will take for the center temperature of the carcass to drop to 4°C. Also, determine if any part of the carcass will freeze during this process. *Answer:* 14.0 h

FIGURE P18-56

18–57 Layers of 23-cm-thick meat slabs ($k = 0.47 \text{ W/m} \cdot ^{\circ}\text{C}$ and $\alpha = 0.13 \times 10^{-6} \text{ m}^2/\text{s}$) initially at a uniform temperature of 7°C are to be frozen by refrigerated air at -30°C flowing at a velocity of 1.4 m/s. The average heat transfer coefficient between the meat and the air is $20 \text{ W/m}^2 \cdot ^{\circ}\text{C}$. Assuming the size of the meat slabs to be large relative to their thickness, determine how long it will take for the center temperature of the slabs to drop to -18°C . Also, determine the surface temperature of the meat slab at that time.

18–58E Layers of 6-in-thick meat slabs (k = 0.26 Btu/h·ft·°F and $\alpha = 1.4 \times 10^{-6}$ ft²/s) initially at a uniform temperature of 50°F are cooled by refrigerated air at 23°F to a temperature of 36°F at their center in 12 h. Estimate the average heat transfer coefficient during this cooling process.

Answer: 1.5 Btu/h · ft² · °F

18–59 Chickens with an average mass of 1.7 kg (k=0.45 W/m·°C and $\alpha=0.13\times 10^{-6}$ m²/s) initially at a uniform temperature of 15°C are to be chilled in agitated brine at -10°C. The average heat transfer coefficient between the chicken and the brine is determined experimentally to be 440 W/m²·°C. Taking the average density of the chicken to be 0.95 g/cm³ and treating the chicken as a spherical lump, determine the center and the surface temperatures of the chicken in 2 h and 30 min. Also, determine if any part of the chicken will freeze during this process.

FIGURE P18-59

Transient Heat Conduction in Semi-Infinite Solids

18–60C What is a semi-infinite medium? Give examples of solid bodies that can be treated as semi-infinite mediums for heat transfer purposes.

18–61C Under what conditions can a plane wall be treated as a semi-infinite medium?

18–62C Consider a hot semi-infinite solid at an initial temperature of T_i that is exposed to convection to a cooler medium at a constant temperature of T_{∞} , with a heat transfer coefficient of h. Explain how you can determine the total amount of heat transfer from the solid up to a specified time t_o .

18–63 In areas where the air temperature remains below 0° C for prolonged periods of time, the freezing of water in underground pipes is a major concern. Fortunately, the soil remains relatively warm during those periods, and it takes weeks for the subfreezing temperatures to reach the water mains in the ground. Thus, the soil effectively serves as an insulation to protect the water from the freezing atmospheric temperatures in winter.

The ground at a particular location is covered with snow pack at -8° C for a continuous period of 60 days, and the average soil properties at that location are k=0.35 W/m \cdot °C and $\alpha=0.15\times80^{-6}$ m²/s. Assuming an initial uniform temperature of 8°C for the ground, determine the minimum burial depth to prevent the water pipes from freezing.

18–64 The soil temperature in the upper layers of the earth varies with the variations in the atmospheric conditions. Before a cold front moves in, the earth at a location is initially at a uniform temperature of 10°C. Then the area is subjected to a temperature of -10° C and high winds that resulted in a convection heat transfer coefficient of $40 \text{ W/m}^2 \cdot ^{\circ}$ C on the earth's surface for a period of 10 h. Taking the properties of the soil at that location to be $k = 0.9 \text{ W/m} \cdot ^{\circ}$ C and $\alpha = 1.6 \times 10^{-5} \text{ m}^2/\text{s}$, determine the soil temperature at distances 0, 10, 20, and 50 cm from the earth's surface at the end of this 10-h period.

FIGURE P18-64

Reconsider Prob. 18–64. Using EES (or other) software, plot the soil temperature as a function of the distance from the earth's surface as the distance varies from 0 m to 1m, and discuss the results.

18–66E The walls of a furnace are made of 1.5-ft-thick concrete (k = 0.64 Btu/h · ft · °F and $\alpha = 0.023$ ft²/h). Initially, the

847 CHAPTER 18

furnace and the surrounding air are in thermal equilibrium at 70°F. The furnace is then fired, and the inner surfaces of the furnace are subjected to hot gases at 1800°F with a very large heat transfer coefficient. Determine how long it will take for the temperature of the outer surface of the furnace walls to rise to 70.1°F.

Answer: 181 min

18–67 A thick wood slab ($k = 0.17 \text{ W/m} \cdot ^{\circ}\text{C}$ and $\alpha = 1.28 \times 10^{-7} \text{ m}^2/\text{s}$) that is initially at a uniform temperature of 25°C is exposed to hot gases at 550°C for a period of 5 min. The heat transfer coefficient between the gases and the wood slab is 35 W/m² · °C. If the ignition temperature of the wood is 450°C, determine if the wood will ignite.

18–68 A large cast iron container ($k = 52 \text{ W/m} \cdot ^{\circ}\text{C}$ and $\alpha = 1.70 \times 10^{-5} \text{ m}^2/\text{s}$) with 5-cm-thick walls is initially at a uniform temperature of 0°C and is filled with ice at 0°C. Now the outer surfaces of the container are exposed to hot water at 60°C with a very large heat transfer coefficient. Determine how long it will be before the ice inside the container starts melting. Also, taking the heat transfer coefficient on the inner surface of the container to be 250 W/m² · °C, determine the rate of heat transfer to the ice through a 1.2-m-wide and 2-m-high section of the wall when steady operating conditions are reached. Assume the ice starts melting when its inner surface temperature rises to 0.1°C.

FIGURE P18–68

Transient Heat Conduction in Multidimensional Systems

18–69C What is the product solution method? How is it used to determine the transient temperature distribution in a two-dimensional system?

18–70C How is the product solution used to determine the variation of temperature with time and position in three-dimensional systems?

18–71C A short cylinder initially at a uniform temperature T_i is subjected to convection from all of its surfaces to a medium at temperature T_{∞} . Explain how you can determine the temperature of the midpoint of the cylinder at a specified time t.

18–72C Consider a short cylinder whose top and bottom surfaces are insulated. The cylinder is initially at a uniform temperature T_i and is subjected to convection from its side surface to a medium at temperature T_{∞} with a heat transfer coefficient

of h. Is the heat transfer in this short cylinder one- or two-dimensional? Explain.

18–73 A short brass cylinder ($\rho = 8530 \text{ kg/m}^3$, $C_p = 0.389 \text{ kJ/kg} \cdot ^{\circ}\text{C}$, $k = 110 \text{ W/m} \cdot ^{\circ}\text{C}$, and $\alpha = 3.39 \times 10^{-5} \text{ m}^2\text{/s}$) of diameter D = 8 cm and height H = 15 cm is initially at a uniform temperature of $T_i = 150^{\circ}\text{C}$. The cylinder is now placed in atmospheric air at 20°C, where heat transfer takes place by convection with a heat transfer coefficient of $h = 40 \text{ W/m}^2 \cdot ^{\circ}\text{C}$. Calculate (a) the center temperature of the cylinder; (b) the center temperature of the top surface of the cylinder; and (c) the total heat transfer from the cylinder 15 min after the start of the cooling.

FIGURE P18–73

18–74 Reconsider Prob. 18–73. Using EES (or other) software, investigate the effect of the cooling time on the center temperature of the cylinder, the center temperature of the top surface of the cylinder, and the total heat transfer. Let the time vary from 5 min to 60 min. Plot the center temperature of the cylinder, the center temperature of the top surface, and the total heat transfer as a function of the time, and discuss the results.

18–75 A semi-infinite aluminum cylinder ($k = 237 \text{ W/m} \cdot ^{\circ}\text{C}$, $\alpha = 9.71 \times 10^{-5} \text{ m}^2\text{/s}$) of diameter D = 15 cm is initially at a uniform temperature of $T_i = 150 ^{\circ}\text{C}$. The cylinder is now placed in water at $10 ^{\circ}\text{C}$, where heat transfer takes place by convection with a heat transfer coefficient of $h = 140 \text{ W/m}^2 \cdot ^{\circ}\text{C}$. Determine the temperature at the center of the cylinder 5 cm from the end surface 8 min after the start of cooling.

18–76E A hot dog can be considered to be a cylinder 5 in long and 0.8 in in diameter whose properties are $\rho = 61.2$ lbm/ft³, $C_p = 0.93$ Btu/lbm·°F, k = 0.44 Btu/h·ft·°F, and $\alpha = 0.0077$ ft²/h. A hot dog initially at 40°F is dropped into boiling water at 212°F. If the heat transfer coefficient at the surface of the hot dog is estimated to be 120 Btu/h·ft²·°F, determine the center temperature of the hot dog after 5, 10, and 15 min by treating the hot dog as (a) a finite cylinder and (b) an infinitely long cylinder.

18-77E Repeat Prob. 18-76E for a location at 5300-ft elevation such as Denver, Colorado, where the boiling temperature of water is 202°F.

18–78 A 5-cm-high rectangular ice block ($k = 2.22 \text{ W/m} \cdot {}^{\circ}\text{C}$ and $\alpha = 0.124 \times 10^{-7} \text{ m}^2/\text{s}$) initially at -20°C is placed on a table on its square base $4 \text{ cm} \times 4 \text{ cm}$ in size in a room at 18°C . The heat transfer coefficient on the exposed surfaces of the ice block is 12 W/m² · °C. Disregarding any heat transfer from the base to the table, determine how long it will be before the ice block starts melting. Where on the ice block will the first liquid droplets appear?

Reconsider Prob. 18–78. Using EES (or other) software, investigate the effect of the initial temperature of the ice block on the time period before the ice block starts melting. Let the initial temperature vary from -26° C to -4°C. Plot the time versus the initial temperature, and discuss

the results.

18–80 A 2-cm-high cylindrical ice block ($k = 2.22 \text{ W/m} \cdot ^{\circ}\text{C}$ and $\alpha = 0.124 \times 10^{-7}$ m²/s) is placed on a table on its base of diameter 2 cm in a room at 20°C. The heat transfer coefficient on the exposed surfaces of the ice block is 13 W/m² · °C, and heat transfer from the base of the ice block to the table is negligible. If the ice block is not to start melting at any point for at least 2 h, determine what the initial temperature of the ice block should be.

18–81 Consider a cubic block whose sides are 5 cm long and a cylindrical block whose height and diameter are also 5 cm.

Both blocks are initially at 20°C and are made of granite $(k = 2.5 \text{ W/m} \cdot {}^{\circ}\text{C} \text{ and } \alpha = 1.15 \times 10^{-6} \text{ m}^{2}\text{/s}). \text{ Now both}$ blocks are exposed to hot gases at 500°C in a furnace on all of their surfaces with a heat transfer coefficient of 40 W/m² · °C. Determine the center temperature of each geometry after 10, 20, and 60 min.

18–82 Repeat Prob. 18–81 with the heat transfer coefficient at the top and the bottom surfaces of each block being doubled to 80 W/m² · °C.

18–83 A 20-cm-long cylindrical aluminum block ($\rho = 2702$ kg/m³, $C_p = 0.896$ kJ/kg · °C, k = 236 W/m · °C, and $\alpha = 9.75 \times 10^{-5}$ m²/s), 15 cm in diameter, is initially at a uniform temperature of 20°C. The block is to be heated in a furnace at 1200°C until its center temperature rises to 300°C. If the heat transfer coefficient on all surfaces of the block is 80 $W/m^2 \cdot {}^{\circ}C$, determine how long the block should be kept in the furnace. Also, determine the amount of heat transfer from the aluminum block if it is allowed to cool in the room until its temperature drops to 20°C throughout.

18–84 Repeat Prob. 18–83 for the case where the aluminum block is inserted into the furnace on a low-conductivity material so that the heat transfer to or from the bottom surface of the block is negligible.

Reconsider Prob. 18–83. Using EES (or other) software, investigate the effect of the final cen-18-85 ter temperature of the block on the heating time and the amount of heat transfer. Let the final center temperature vary from 50°C to 1000°C. Plot the time and the heat transfer as a function of the final center temperature, and discuss the results.

18–86 Chickens with an average mass of 2.2 kg and average specific heat of 3.54 kJ/kg · °C are to be cooled by chilled water that enters a continuous-flow-type immersion chiller at 0.5°C. Chickens are dropped into the chiller at a uniform temperature of 15°C at a rate of 500 chickens per hour and are cooled to an average temperature of 3°C before they are taken out. The chiller gains heat from the surroundings at a rate of 210 kJ/min. Determine (a) the rate of heat removal from the chicken, in kW, and (b) the mass flow rate of water, in kg/s, if the temperature rise of water is not to exceed 2°C.

18–87 In a meat processing plant, 10-cm-thick beef slabs $(\rho = 1090 \text{ kg/m}^3, C_p = 3.54 \text{ kJ/kg} \cdot ^{\circ}\text{C}, k = 0.47 \text{ W/m} \cdot ^{\circ}\text{C}, \text{ and}$ $\alpha = 0.13 \times 10^{-6} \text{ m}^2/\text{s}$) initially at 15°C are to be cooled in the racks of a large freezer that is maintained at -12° C. The meat

FIGURE P18-87

849 CHAPTER 18

slabs are placed close to each other so that heat transfer from the 10-cm-thick edges is negligible. The entire slab is to be cooled below 5°C, but the temperature of the steak is not to drop below -1°C anywhere during refrigeration to avoid "frostbite." The convection heat transfer coefficient and thus the rate of heat transfer from the steak can be controlled by varying the speed of a circulating fan inside. Determine the heat transfer coefficient h that will enable us to meet both temperature constraints while keeping the refrigeration time to a minimum.

Answer: 9.9 W/m²·°C

Review Problems

18–88 Consider two 2-cm-thick large steel plates (k=43 W/m·°C and $\alpha=1.17\times10^{-5}$ m²/s) that were put on top of each other while wet and left outside during a cold winter night at -15°C. The next day, a worker needs one of the plates, but the plates are stuck together because the freezing of the water between the two plates has bonded them together. In an effort to melt the ice between the plates and separate them, the worker takes a large hair dryer and blows hot air at 50°C all over the exposed surface of the plate on the top. The convection heat transfer coefficient at the top surface is estimated to be 40 W/m²·°C. Determine how long the worker must keep blowing hot air before the two plates separate.

Answer: 482 s

18–89 Consider a curing kiln whose walls are made of 30-cm-thick concrete whose properties are k=0.9 W/m·°C and $\alpha=0.23\times10^{-5}$ m²/s. Initially, the kiln and its walls are in equilibrium with the surroundings at 2°C. Then all the doors are closed and the kiln is heated by steam so that the temperature of the inner surface of the walls is raised to 42°C and is maintained at that level for 3 h. The curing kiln is then opened and exposed to the atmospheric air after the stream flow is turned off. If the outer surfaces of the walls of the kiln were insulated, would it save any energy that day during the period the kiln was used for curing for 3 h only, or would it make no difference? Base your answer on calculations.

18–90 The water main in the cities must be placed at sufficient depth below the earth's surface to avoid freezing during extended periods of subfreezing temperatures. Determine the

minimum depth at which the water main must be placed at a location where the soil is initially at 15°C and the earth's surface temperature under the worst conditions is expected to remain at -10°C for a period of 75 days. Take the properties of soil at that location to be k=0.7 W/m · °C and $\alpha=1.4\times10^{-5}$ m²/s. Answer: 7.05 m

18–91 A hot dog can be considered to be a 12-cm-long cylinder whose diameter is 2 cm and whose properties are $\rho = 980$ kg/m³, $C_p = 3.9$ kJ/kg · °C, k = 0.76 W/m · °C, and $\alpha = 2 \times 10^{-7}$ m²/s. A hot dog initially at 5°C is dropped into boiling water at 100°C. The heat transfer coefficient at the surface of the hot dog is estimated to be 600 W/m² · °C. If the hot dog is considered cooked when its center temperature reaches 80°C, determine how long it will take to cook it in the boiling water.

FIGURE P18-91

18–92 A long roll of 2-m-wide and 0.5-cm-thick 1-Mn manganese steel plate coming off a furnace at 820°C is to be quenched in an oil bath ($C_p = 2.0 \text{ kJ/kg} \cdot ^{\circ}\text{C}$) at 45°C. The metal sheet is moving at a steady velocity of 10 m/min, and the oil bath is 5 m long. Taking the convection heat transfer coefficient on both sides of the plate to be 860 W/m² · °C, determine the temperature of the sheet metal when it leaves the oil bath. Also, determine the required rate of heat removal from the oil to keep its temperature constant at 45°C.

FIGURE P18-92

18–93E In *Betty Crocker's Cookbook*, it is stated that it takes 5 h to roast an 18-lb stuffed turkey initially at 40°F in an oven maintained at 325°F. It is recommended that a meat thermometer be used to monitor the cooking, and the turkey is considered done when the thermometer inserted deep into the thickest part of the breast or thigh without touching the bone registers 185°F. The turkey can be treated as a homogeneous spherical object with the properties $\rho = 75$ lbm/ft³, $C_p = 0.98$ Btu/lbm · °F, k = 0.26 Btu/h · ft · °F, and $\alpha = 0.0035$ ft²/h. Assuming the tip of the thermometer is at one-third radial distance from the center of the turkey, determine (a) the average

FUNDAMENTALS OF THERMAL-FLUID SCIENCES

heat transfer coefficient at the surface of the turkey; (b) the temperature of the skin of the turkey when it is done; and (c) the total amount of heat transferred to the turkey in the oven. Will the reading of the thermometer be more or less than 185°F 5 min after the turkey is taken out of the oven?

FIGURE P18-93E

During a fire, the trunks of some dry oak trees $(k = 0.17 \text{ W/m} \cdot ^{\circ}\text{C} \text{ and } \alpha = 1.28 \times 10^{-7} \text{ m}^2/\text{s})$ that are initially at a uniform temperature of 30°C are exposed to hot gases at 520°C for a period of 5 h, with a heat transfer coefficient of 65 W/m² · °C on the surface. The ignition temperature of the trees is 410°C. Treating the trunks of the trees as long cylindrical rods of diameter 20 cm, determine if these dry trees will ignite as the fire sweeps through them.

18–95 We often cut a watermelon in half and put it into the freezer to cool it quickly. But usually we forget to check on it and end up having a watermelon with a frozen layer on the top. To avoid this potential problem a person wants to set the timer such that it will go off when the temperature of the exposed surface of the watermelon drops to 3°C.

Consider a 30-cm-diameter spherical watermelon that is cut into two equal parts and put into a freezer at -12° C. Initially, the entire watermelon is at a uniform temperature of 25°C, and the heat transfer coefficient on the surfaces is 30 W/m² · °C. Assuming the watermelon to have the properties of water, determine how long it will take for the center of the exposed cut surfaces of the watermelon to drop to 3°C.

18–96 The thermal conductivity of a solid whose density and specific heat are known can be determined from the relation $k = \alpha/\rho C_n$ after evaluating the thermal diffusivity α .

Consider a 2-cm-diameter cylindrical rod made of a sample material whose density and specific heat are 3700 kg/m³ and 920 J/kg · °C, respectively. The sample is initially at a uniform temperature of 25°C. In order to measure the temperatures of the sample at its surface and its center, a thermocouple is inserted to the center of the sample along the centerline, and another thermocouple is welded into a small hole drilled on the surface. The sample is dropped into boiling water at 100°C. After 3 min, the surface and the center temperatures are recorded to be 93°C and 75°C, respectively. Determine the thermal diffusivity and the thermal conductivity of the material.

FIGURE P18-96

18–97 In desert climates, rainfall is not a common occurrence since the rain droplets formed in the upper layer of the atmosphere often evaporate before they reach the ground. Consider a raindrop that is initially at a temperature of 5°C and has a diameter of 5 mm. Determine how long it will take for the diameter of the raindrop to reduce to 3 mm as it falls through ambient air at 18°C with a heat transfer coefficient of 400 W/m 2 ·°C. The water temperature can be assumed to remain constant and uniform at 5°C at all times.

18–98E Consider a plate of thickness 1 in, a long cylinder of diameter 1 in, and a sphere of diameter 1 in, all initially at 400°F and all made of bronze ($k = 15.0 \text{ Btu/h} \cdot \text{ft} \cdot \text{°F}$ and $\alpha = 0.333 \text{ ft}^2\text{/h}$). Now all three of these geometries are exposed

to cool air at 75°F on all of their surfaces, with a heat transfer coefficient of 7 Btu/h \cdot ft² \cdot °F. Determine the center temperature of each geometry after 5, 10, and 30 min. Explain why the center temperature of the sphere is always the lowest.

18–99E Repeat Prob. 18–98E for cast iron geometries $(k = 29 \text{ Btu/h} \cdot \text{ft} \cdot \text{°F} \text{ and } \alpha = 0.61 \text{ ft}^2/\text{h}).$

18–100E Reconsider Prob. 18–98E. Using EES (or other) software, plot the center temperature of each geometry as a function of the cooling time as the time varies from 5 min to 60 min, and discuss the results.

18–101 Engine valves ($k = 48 \text{ W/m} \cdot ^{\circ}\text{C}$, $C_p = 440 \text{ J/kg} \cdot ^{\circ}\text{C}$, and $\rho = 7840 \text{ kg/m}^3$) are heated to 800°C in the heat treatment section of a valve manufacturing facility. The valves are then quenched in a large oil bath at an average temperature of 45°C. The heat transfer coefficient in the oil bath is 650 W/m² · °C. The valves have a cylindrical stem with a diameter of 8 mm and a length of 10 cm. The valve head and the stem may be assumed to be of equal surface area, and the volume of the valve head can be taken to be 80 percent of the volume of steam. Determine how long it will take for the valve temperature to drop to (a) 400°C, (b) 200°C, and (c) 46°C, and (d) the maximum heat transfer from a single valve.

18–102 A watermelon initially at 35°C is to be cooled by dropping it into a lake at 15°C. After 4 h and 40 min of cooling, the center temperature of watermelon is measured to be 20°C. Treating the watermelon as a 20-cm-diameter sphere and using the properties k = 0.618 W/m · °C, $\alpha = 0.15 \times 10^{-6}$ m²/s, $\rho = 995$ kg/m³, and $C_p = 4.18$ kJ/kg · °C, determine the average heat transfer coefficient and the surface temperature of watermelon at the end of the cooling period.

18–103 10-cm-thick large food slabs tightly wrapped by thin paper are to be cooled in a refrigeration room maintained at 0°C. The heat transfer coefficient on the box surfaces is 25 W/m² · °C and the boxes are to be kept in the refrigeration room for a period of 6 h. If the initial temperature of the boxes is 30°C determine the center temperature of the boxes if the boxes contain (a) margarine (k = 0.233 W/m · °C and $\alpha = 0.11 \times 10^{-6}$ m²/s); (b) white cake (k = 0.082 W/m · °C and $\alpha = 0.10 \times 10^{-6}$ m²/s); and (c) chocolate cake (k = 0.106 W/m · °C and $\alpha = 0.12 \times 10^{-6}$ m²/s).

18–104 A 30-cm-diameter, 3.5-m-high cylindrical column of a house made of concrete ($k=0.79~\rm W/m\cdot ^{\circ}C$, $\alpha=5.94\times 10^{-7}~\rm m^2/s$, $\rho=1600~\rm kg/m^3$, and $C_p=0.84~\rm kJ/kg\cdot ^{\circ}C$) cooled to $16^{\circ}\rm C$ during a cold night is heated again during the day by being exposed to ambient air at an average temperature of $28^{\circ}\rm C$ with an average heat transfer coefficient of $14~\rm W/m^2\cdot ^{\circ}\rm C$. Determine (a) how long it will take for the column surface temperature to rise to $27^{\circ}\rm C$; (b) the amount of heat transfer until the center temperature reaches to $28^{\circ}\rm C$; and (c) the amount of heat transfer until the surface temperature reaches to $27^{\circ}\rm C$.

18–105 Long aluminum wires of diameter 3 mm ($\rho = 2702$ kg/m³, $C_p = 0.896$ kJ/kg · °C, k = 236 W/m · °C, and $\alpha = 9.75 \times 10^{-5}$ m²/s) are extruded at a temperature of 350°C

and exposed to atmospheric air at 30°C with a heat transfer coefficient of 35 W/m²·°C. (a) Determine how long it will take for the wire temperature to drop to 50°C. (b) If the wire is extruded at a velocity of 10 m/min, determine how far the wire travels after extrusion by the time its temperature drops to 50°C. What change in the cooling process would you propose to shorten this distance? (c) Assuming the aluminum wire leaves the extrusion room at 50°C, determine the rate of heat transfer from the wire to the extrusion room.

Answers: (a) 144 s, (b) 24 m, (c) 856 W

FIGURE P18–105

18–106 Repeat Prob. 18–105 for a copper wire $(\rho = 8950 \text{ kg/m}^3, C_p = 0.383 \text{ kJ/kg} \cdot ^{\circ}\text{C}, k = 386 \text{ W/m} \cdot ^{\circ}\text{C},$ and $\alpha = 1.13 \times 10^{-4} \text{ m}^2/\text{s}).$

18–107 Consider a brick house (k = 0.72 W/m · °C and $\alpha = 0.45 \times 10^{-6}$ m²/s) whose walls are 10 m long, 3 m high, and 0.3 m thick. The heater of the house broke down one night, and the entire house, including its walls, was observed to be 5°C throughout in the morning. The outdoors warmed up as the day progressed, but no change was felt in the house, which was tightly sealed. Assuming the outer surface temperature of the house to remain constant at 15°C, determine how long it would take for the temperature of the inner surfaces of the walls to rise to 5.1°C.

FIGURE P18-107

18–108 A 40-cm-thick brick wall ($k = 0.72 \text{ W/m} \cdot {}^{\circ}\text{C}$, and $\alpha = 1.6 \times 10^{-7} \text{ m}^2/\text{s}$) is heated to an average temperature of 18°C by the heating system and the solar radiation incident on it during the day. During the night, the outer surface of the wall is exposed to cold air at 2°C with an average heat transfer coefficient of 20 W/m² · °C, determine the wall temperatures at distances 15, 30, and 40 cm from the outer surface for a period of 2 h.

18–109 Consider the engine block of a car made of cast iron $(k = 52 \text{ W/m} \cdot ^{\circ}\text{C} \text{ and } \alpha = 1.7 \times 10^{-5} \text{ m}^{2}/\text{s})$. The engine can be considered to be a rectangular block whose sides are 80 cm, 40 cm, and 40 cm. The engine is at a temperature of 150°C

FUNDAMENTALS OF THERMAL-FLUID SCIENCES

when it is turned off. The engine is then exposed to atmospheric air at 17°C with a heat transfer coefficient of 6 W/m² · °C. Determine (a) the center temperature of the top surface whose sides are 80 cm and 40 cm and (b) the corner temperature after 45 min of cooling.

18–110 A man is found dead in a room at 16°C. The surface temperature on his waist is measured to be 23°C and the heat transfer coefficient is estimated to be 9 W/m² · °C. Modeling the body as 28-cm diameter, 1.80-m-long cylinder, estimate how long it has been since he died. Take the properties of the body to be k = 0.62 W/m · °C and $\alpha = 0.15 \times 10^{-6}$ m²/s, and assume the initial temperature of the body to be 36°C.

Computer, Design, and Essay Problems

18–111 Conduct the following experiment at home to determine the combined convection and radiation heat transfer coefficient at the surface of an apple exposed to the room air. You will need two thermometers and a clock.

First, weigh the apple and measure its diameter. You can measure its volume by placing it in a large measuring cup halfway filled with water, and measuring the change in volume when it is completely immersed in the water. Refrigerate the apple overnight so that it is at a uniform temperature in the morning and measure the air temperature in the kitchen. Then take the apple out and stick one of the thermometers to its middle and the other just under the skin. Record both temperatures every 5 min for an hour. Using these two temperatures, calculate the heat transfer coefficient for each interval and take their average. The result is the combined convection and radiation heat transfer coefficient for this heat transfer process. Using

your experimental data, also calculate the thermal conductivity and thermal diffusivity of the apple and compare them to the values given above.

18–112 Repeat Prob. 18–111 using a banana instead of an apple. The thermal properties of bananas are practically the same as those of apples.

18–113 Conduct the following experiment to determine the time constant for a can of soda and then predict the temperature of the soda at different times. Leave the soda in the refrigerator overnight. Measure the air temperature in the kitchen and the temperature of the soda while it is still in the refrigerator by taping the sensor of the thermometer to the outer surface of the can. Then take the soda out and measure its temperature again in 5 min. Using these values, calculate the exponent *b*. Using this *b*-value, predict the temperatures of the soda in 10, 15, 20, 30, and 60 min and compare the results with the actual temperature measurements. Do you think the lumped system analysis is valid in this case?

18–114 Citrus trees are very susceptible to cold weather, and extended exposure to subfreezing temperatures can destroy the crop. In order to protect the trees from occasional cold fronts with subfreezing temperatures, tree growers in Florida usually install water sprinklers on the trees. When the temperature drops below a certain level, the sprinklers spray water on the trees and their fruits to protect them against the damage the subfreezing temperatures can cause. Explain the basic mechanism behind this protection measure and write an essay on how the system works in practice.