Seletor Fuzzy de Slice para Rede 5G

Raciocínio Probabilístico em IA

Marco Antonio Firmino de Sousa

Escola Politécnica da Universidade de São Paulo

23/06/2022

Roteiro

- 1 Introdução
- Análise de Dados
- **3** Lógica Nebulosa
- 4 Conclusão

Introdução

Redes 5G

- Ambiente Virtualizado
- Compartilhamento de recursos
- Orquestração
- Demandas conflitantes
- Network Slicing

Figure 1: Cenário de simulação definido em Chagas.

Introdução - Cenário de simulação

SIMULAÇÃO: PRODUÇÃO DE DADOS

- Slice 01: Remote Driving
 - E2E Latency (5ms) → máxima
 - Reability (99.999%) → mínima
 - Data rate
 - $* \; (UL: \, 25Mbps) \rightarrow m \acute{n} ima$
 - * (DL: 1 Mbps) \rightarrow mínima

- Slice 02: Rural Macro
 - E2E Latency (Não especifica)
 - Reability (Superior a 80%)
 - Data rate
 - * (UL: 50Mbps)
 - * (DL: 25Mbps)
- Slice 03: Wireless Road-Side Infrastructure Backhaual (ITS)
 - E2E Latency (30ms) → máxima
 - Reability (99.999%)
 - Data rate: 10Mbps

Figure 2: Cenário de simulação

Análise de Dados - Dataset

Dataset original - amostra

Latency	Jitter	Loss	Protocol	Bandwidth	Transfer	UE	Test	Distance	Reliability
0.791	0.478568	1	TCP	2005.33	71600	5	5	58.4645	99.9857
0.846	0.475625	0	UDP	6939.03	250000	3	1	70.8526	99.9923
0.877	0.552609	2	TCP	9008	322000	4	1	45.6483	99.9934
1.467	0.104945	14	TCP	32.8357	543	5	6	54.3426	99.9942
1.406	0.127431	5	TCP	264.194	9450	4	4	64.6599	99.9956

Análise de Dados - Análise exploratória

Figure 3: Visão geral do dataset: análise exploratória

Análise de Dados - Dataset

Dataset normalizado - amostra

Latency	Jitter	Loss	${\sf Bandwidth}$	Transfer	Distance	Reliability
0.422205	0.169569	0.032258	0.356844	0.357136	0.656077	0.444722
0.268882	0.237994	0.032258	0.285382	0.285618	0.456209	0.511168
0.640483	0.022175	0.129032	0.199628	0.200115	0.164611	0.789599
0.668429	0.005486	0.161290	0.000986	0.001302	0.202038	0.784126
0.379909	0.145783	0.032258	0.070997	0.071462	0.805840	0.404022

Análise de Dados - Dataset

Análise de Dados - Agrupamento

Figure 5: Agrupamento de dados utilizando K-Means.

Lógica Nebulosa - Caracterização do Slice 1

Figure 6: Características dos agrupamentos para construção de regras Fuzzy.

Lógica Nebulosa - Caracterização do Slice 2

Figure 7: Características dos agrupamentos para construção de regras Fuzzy.

Lógica Nebulosa - Caracterização do Slice 3

Figure 8: Características dos agrupamentos para construção de regras Fuzzy.

Lógica Nebulosa - Limites das variáveis

Atributo	Limite inferior	Limite superior	Valor médio
Latency	0.5539999999999999	1.87800000000000001	1.0677720020586747
Jitter	0.104944827586	2.14846710526	0.4147523657066549
Loss	0	31	4.115285640761709
Bandwidth	32.50769230769231	70000.0	18443.50519945193
Transfer	139.0	2503000.0	658836.0941842512
Distance	6.025443608093389	97.92975995607313	53.44939016741711
Reliability	99.98402061129444	99.99897206790564	99.9921602162676

Lógica Nebulosa - Intervalos das variáveis linguísticas

Figure 9: VL Latência.

Figure 10: VL Jitter.

Lógica Nebulosa - Intervalos das variáveis linguísticas

Figure 11: VL Bandwidth.

Figure 12: VL Transfer.

Lógica Nebulosa - Intervalos das variáveis linguísticas

Figure 13: VL Loss.

Figure 14: VL Distance.

Lógica Nebulosa - Saída

Lógica Nebulosa - Conjunto de regras para capturar o tráfego para o Slice 1

- R1: SE loss é baixa E latency é alta ENTÃO saída é slice 1
- R2: SE bandwidth é baixa E transfer é baixa E jitter é baixa ENTÃO saída é slice 1
- R3: **SE** distance é média **E** jitter é baixa **ENTÃO** saída é slice 1
- R4: **SE** loss é alta **E** latency é alta **ENTÃO** saída é slice 1

Lógica Nebulosa - Conjunto de regras para capturar o tráfego para o Slice 2

- R5: **SE** bandwidth é alta **E** transfer é alta **ENTÃO** saída é slice 2
- R6: **SE** jitter é baixa **E** transfer é alta **ENTÃO** saída é slice 2
- R7: SE jitter é baixa E bandwidth é alta ENTÃO saída é slice 2
- R8: **SE** latency é média **E** jitter é baixa **ENTÃO** saída é slice 2

Lógica Nebulosa - Conjunto de regras para capturar o tráfego para o Slice 3

- R9: SE loss é baixa E latency é baixa ENTÃO saída é slice 3
- R10: SE bandwidth é baixa E loss é baixa ENTÃO saída é slice 3
- R11: SE bandwidth é baixa E transfer é alta ENTÃO saída é slice 3
- R12: **SE** jitter é média **E** loss é baixa **ENTÃO** saída é slice 3

Lógica Nebulosa - Resultado de um processamento

Figure 16: Resultado do processamento antes da defuzzificação

Atributos	Valores
Latency	0.598
Jitter	0.473480263158
Loss	0
${\sf Bandwidth}$	15010.0
Transfer	536000.0
Distance	85.62687504501605

Conclusão

- Pro
 - Potencial de uso e facilidade de interpretação
 - Evita o processo normalização
 - Robusto quanto a ruído

- Contra
 - Quantidade de regras
 - Avaliar se as regras são suficientes

Referências

Chagas da Silva, D., Bressan, G., Firmino de Sousa, M. A., and Silveira, R. M. 5G network slice selector in IoT services scenarios with QoS requirements guarantee. In 2022 IEEE Wireless communications and Networking Conference (WCNC) (IEEE WCNC 2022) (Austin, USA, Apr. 2022).

lacovos Ioannou, Christophoros Christophorou, Vasos Vassiliou, Andreas Pitsillides. A novel Distributed AI framework with ML for D2D communication in 5G/6G networks. Computer Networks, Volume 211, 2022. ISSN 1389-1286