I. Techniques fondamentales de calcul différentiel et intégral

A. Fonctions d'une variable réelle et à valeurs réelles ou complexes

b) Dérivation, étude d'une fonction

23 septembre 2022

Table des matières

1	Dor	naine de définition, domaine d'étude	2
	1.1	Domaine de définition	2
	1.2		
2	Dor	naine de continuité	2
	2.1	Limite d'une fonction en un point	2
	2.2		
3	Dor	naine de dérivabilité et tableau de variations	3
	3.1	Dérivée d'une fonction en un point	3
	3.2	Domaine de dérivabilité	4
	3.3	Dérivation des opérations	4
4	Etu	Etude des bornes infinies 5	
5	Représentation graphique de la fonction		6
6	Dér	Dérivée d'ordre supérieur	
	6.1	Définition	6
	6.2	Exemples usuels	7
	6.3	Fonction de classe C^n , C^{∞}	
		Propriétés	7

1 Domaine de définition, domaine d'étude

1.1 Domaine de définition

Afin de déterminer un domaine de définition \mathcal{D}_f d'une fonction f, nous écrivons :

 $x \in \mathcal{D}_f \iff \left\{ \begin{array}{ll} \dots \\ \dots \end{array} \right. \iff \dots$

1.2 Domaine d'étude

Remarque:

Avec des considérations de périodicité, parité / imparité

2 Domaine de continuité

2.1 Limite d'une fonction en un point

2.2 Continuité en un point, continuité sur un intervalle

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$, a un point de \mathbb{I}

On dit que f est **continue en** a si et seulement si :

$$f(x) \xrightarrow[x \to a]{} f(a)$$

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$.

On dit que f est <u>continue sur \mathbb{I} si et seulement si</u> pour tout $a \in \mathbb{I}$, f est continue en a.

L'ensemble des fonctions continues sur \mathbb{I} à valeurs dans \mathbb{R} se note $\mathcal{C}(\mathbb{I},\mathbb{R})$

EXEMPLES USUELS:

- (i) Les fonctions polynômiales sont continues sur $\mathbb R$
- (ii) La fonction \sqrt{x} est continue sur \mathbb{R}_+
- (iii) La fonction \exp est continue sur $\mathbb R$
- (iv) La fonction ln est continue sur \mathbb{R}_+^*
- (v) Les fonctions sin et cos sont continues sur \mathbb{R}

Propriété:

Soit $f, g : \mathbb{I} \to \mathbb{R}$ continues sur \mathbb{I} , $\lambda \in \mathbb{R}$, alors :

- $f+g, \lambda \cdot f, f \times g$ sont continues sur \mathbb{I} en supposant que g ne s'annule pas sur $\mathbb{I}, \frac{f}{g}$ est continue sur \mathbb{I}

Propriété:

Soit $f: \mathbb{I} \to \mathbb{R}$ continue sur \mathbb{I} , $g: \mathbb{J} \to \mathbb{R}$ continue sur \mathbb{J} tel que $f(\mathbb{I}) = \mathbb{J}$ Alors $g \circ f$ est continue sur \mathbb{I}

Domaine de dérivabilité et tableau de variations

Dérivée d'une fonction en un point

Soit $f: \mathbb{I} \to \mathbb{R}$, a un point de \mathbb{I}

Le taux d'accroissement est donné par :

$$\frac{f(x) - f(a)}{x - a}$$

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$, a un point de \mathbb{I} , on dit que f est <u>dérivable en a</u> \underline{si} et seulement \underline{si} l'application à une limite :

$$\tau_q: \mathbb{I} - \{a\} \to \mathbb{R}, \ x \mapsto \frac{f(x) - f(a)}{x - a}$$

Cette limite est appelée <u>nombre dérivé</u> de f en a et se note f'(a)

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$, a un point de \mathbb{I} en lequel f est dérivable.

Alors la droite d'équation y = f'(a)(x-a) + f(a) est appelée la **tangante** à \mathcal{C}_f au point d'abscisse a

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$, on dit que f est <u>dérivable sur \mathbb{I} si et seulement si</u> fest dérivable en tout point de \mathbb{I} . L'ensemble des fonctions dérivables sur \mathbb{I} à valeurs dans \mathbb{R} se note $\mathcal{D}(\mathbb{I}, \mathbb{R})$

EXEMPLES USUELS:

- (i) Les fonctions polynômiales sont dérivables sur $\mathbb R$
- (ii) La fonction \sqrt{x} est dérivable sur \mathbb{R}_+^*
- (iii) La fonction exp est dérivable sur \mathbb{R}^* (iv) La fonction ln est dérivable sur \mathbb{R}^*_+
- (v) Les fonctions \sin et \cos sont dérivables sur $\mathbb R$

Propriété:

- (i) f + g est dérivable sur I et (f + g)' = f' + g'
 (ii) λ · f est dérivable sur I et (λ · f)' = λ · f'
 (iii) f × g est dérivable sur I et (f × g)' = f'g + g'f
 (iv) en supposant que g ne s'annule pas sur I, f/g est dérivable sur I et

Propriété:

Soit $f: \mathbb{I} \to \mathbb{R}$ dérivable sur \mathbb{I} , $g: \mathbb{J} \to \mathbb{R}$ dérivable sur \mathbb{J} tel que $f(\mathbb{I}) \subset \mathbb{J}$ Alors $g \circ f$ est dérivable sur \mathbb{I} et $(g \circ f)' = (g' \circ f) \times f'$

3.2 Domaine de dérivabilité

Nous avons une fonction f d'une variable réelle et nous avons déterminé son domaine de définition \mathcal{D}_f . Nous voulons maintenant étudier sa dérivabilité.

Remarque:

Etant donnée une fonction f:

(i) Lors de la recherche du domaine de définition :

"
$$x \in \mathcal{D}_f \iff \dots \text{ donc } \mathcal{D}_f = \dots$$
"

 $\mbox{"}\ x\in\mathcal{D}_f\iff\dots\mbox{donc}\ \mathcal{D}_f=\dots\mbox{"}$ (ii) Lors de la recherche du domaine de continuité ou de dérivabilité :

" f est dérivable sur x tel que ... donc f est dérivable sur ...

Retenons que les propriétés générales donnent des conditions suffisantes de continuité ou de dérivation et non pas des conditions nécéssaires

Dérivation des opérations

Propriétés:

Soit $f, g : \mathbb{I} \to \mathbb{K}$ dérivables sur $\mathbb{I}, \alpha, \beta \in \mathbb{K}$:

(i) La dérivée d'une combinaison linéaire est donnée par :

$$(\alpha f + \beta f)' = \alpha f' + \beta f'$$

(ii) La dérivée d'un produit est donnée par :

$$(f \times g)' = f'g + g'f$$

(iii) La dérivée d'un quotient est donnée par :

$$\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}$$

(iv) La dérivée d'une composée est donnée par :

$$(g \circ f)' = f' \times (g' \circ f)$$

Soit $f: \mathbb{I} \to \mathbb{J}$ bijective et f^{-1} sa bijection réciproque, alors

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Soit $n \in \mathbb{N}^*$, $f_i : \mathbb{I} \to \mathbb{K}$ dérivable sur \mathbb{I} , alors :

$$\left(\prod_{i=0}^{n} f_i\right)' = \sum_{i=1}^{n} \left(\left(\prod_{\substack{k=1\\k\neq i}}^{n} f_k\right) \times f_i'\right)$$

4 Etude des bornes infinies

Plusieurs situations se présentent :

- $-lim f(x) = \pm \infty, \ a \in \mathbb{R}$
 - Admet la droite d'équation $\Delta : x = a$ comme asymptote verticale
- $\lim_{x \to \pm \infty} = b, \ b \in \mathbb{R}$

Admet une droite d'équation y = b comme asymptote horizontale

DÉFINITION

Soit f, g deux fonctions d'une variable réelle

Nous disons que les courbes représentatives de f et g sont asymptotes au voisinage de $\pm \infty$ si et seulement si $f(x) - g(x) \underset{x \to \pm \infty}{\longrightarrow} 0$

$$-f(x) - (ax+b) \underset{x \to +\infty}{\longrightarrow} 0$$

— $f(x) - (ax + b) \underset{x \to \pm \infty}{\longrightarrow} 0$ Admet une droite d'équation y = ax + b comme <u>asymptote oblique</u>

La recherche d'une asymptote oblique admet que $f(x) \underset{x \to \infty}{\longrightarrow} \pm \infty$

En supposant qu'il existe a, b non nuls tels que :

$$f(x) - (ax + b) \underset{x \to +\infty}{\longrightarrow} 0$$

Soit x variant au voisinage de $\pm \infty$

$$\frac{f(x)}{x} = \frac{f(x) - (ax+b) + ax + b}{x} = \frac{f(x) - (ax+b)}{x} + a + \frac{b}{x} \underset{x \to \infty}{\longrightarrow} a$$

En connaissant a:

$$f(x) - ax = f(x) - (ax + b) + b \underset{x \to \pm \infty}{\longrightarrow} b$$

Completons les différentes situations :

$$-\lim_{x\to\pm\infty}=\pm\infty$$

Nous étudions alors $\lim_{x\to\pm\infty}\frac{f(x)}{x}$:

- (i) $\lim_{x\to\pm\infty}\frac{f(x)}{x}=\pm\infty$, présence d'une **branche parabolique d'axe** (Oy)
- (ii) $\lim_{x\to\pm\infty}\frac{f(x)}{x}=0$, présence d'une branche parabolique d'axe (Ox)
- (iii) $\lim_{x \to \pm \infty} \frac{f(x)}{x} = a \in \mathbb{R}^*$

Nous étudions alors $\lim_{x \to \pm \infty} f(x) = ax$:

- (a) $\lim_{x\to\pm\infty}f(x)-ax=\pm\infty,$ branche parabolique d'axe $\Delta:y=ax$
- (b) $\lim_{x\to\pm\infty} f(x) ax = b \in \mathbb{R}$, présence d'une **droite asymptote d'équation** y = ax + b

5 Représentation graphique de la fonction

La courbe en rouge, les tangantes en vert, les asymptotes en bleu

6 Dérivée d'ordre supérieur

6.1 Définition

DÉFINITION:

Soit
$$f: \mathbb{I} \to \mathbb{K}$$

- (i) Par définition, f est 0-fois dérivable sur $\mathbb I$ et nous définissons sa dérivée 0-ième par $f^{(0)}=f$
- (ii) Soit $n \in \mathbb{N}$, nous supposons avoir défini la dérivabilité même de f sur \mathbb{I} notée $f^{(n)}$

6.2 Exemples usuels

- (i) $\forall n \in \mathbb{N}, exp \text{ } n\text{-fois dérivable et } exp^{(n)} = exp$
- (ii) Soit $p\in\mathbb{N},$ notons $f:x\mapsto x^p,$ alors f indéfiniment dérivable sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, f^{(n)}(x) = \frac{p!}{(p-n)!} x^{p-n}$$

$$\forall x \in \mathbb{R}^*, f^{(n)}(x) = \frac{n!(-1)^n}{x^{n+1}}$$

(iii)
$$f: x \mapsto \frac{1}{x}:$$

$$\forall x \in \mathbb{R}^*, f^{(n)}(x) = \frac{n!(-1)^n}{x^{n+1}}$$
(iv) $f: x \mapsto sin(x)$

$$\forall k \in \mathbb{N}, \begin{cases} sin^{(2k)} = (-1)^k sin \\ sin^{(2k+1)} = (-1)^k cos \end{cases}$$

Fonction de classe \mathcal{C}^n , \mathcal{C}^{∞}

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{K}$

(i) On dit que f est de classe \mathcal{C}^n sur \mathbb{I} si et seulement si :

$$\left\{ \begin{array}{l} f \text{ est } n \text{ fois d\'erivable sur } \mathbb{I} \\ f^{(n)} \text{ est continue sur } \mathbb{I} \end{array} \right.$$

(ii) On dit que f est de classe \mathcal{C}^{∞} si et seulement si $\forall n \in \mathbb{N}, f$ est de classe

EXEMPLES USUELS:

- (i) Les fonctions polynômiales sont de classe $C^{\infty}sur\mathbb{R}$
- (ii) La fonction \sqrt{x} est continue sur \mathbb{R}_+ et de classe \mathcal{C}^{∞} sur \mathbb{R}_+^* (iii) La fonction $\frac{1}{x}$ est de classe \mathcal{C}^{∞} sur \mathbb{R}_-^* et sur \mathbb{R}_+^* (iv) La fonction exp est de classe \mathcal{C}^{∞} sur \mathbb{R} (v) La fonction ln est de classe \mathcal{C}^{∞} sur \mathbb{R}_+^*

- (vi) Les fonctions \cos et \sin sont de classe \mathcal{C}^{∞} sur $\mathbb R$

6.4 Propriétés

Propriété:

Soit $n \in \mathbb{N}$, $f, g : \mathbb{I} \to \mathbb{K}$ de classe \mathcal{C}^n sur \mathbb{I} , $\alpha, \beta \in \mathbb{K}$, alors

- $-\alpha f + \beta g \text{ est de classe } \mathcal{C}^n \text{ sur } \mathbb{I} \text{ et } (\alpha f + \beta g)^{(n)} = \alpha f^{(n)} + \beta g^{(n)}$ $-f \times g \text{ est de classe } \mathcal{C}^n \text{ sur } \mathbb{I}$ $-\frac{f}{g} \text{ est de classe } \mathcal{C}^n \text{ (avec } g \text{ qui ne s'annule pas sur } \mathbb{I})$

Soit $n \in \mathbb{N}, f : \mathbb{I} \to \mathbb{K}$ de classe C^n sur $\mathbb{I}, g : \mathbb{J} \to \mathbb{K}$ de classe C^n sur \mathbb{J} tel que $f(\mathbb{I}) \subset \mathbb{J}$, alors $(g \circ f)$ est de classe \mathcal{C}^n sur \mathbb{I}