ECON61001: **Econometric Methods**

Solutions to Problem Set for Tutorial 6

1.(a) If both equations (1) and (2) on the Problem set hold then $v_g = \bar{u}_g = n_g^{-1} \sum_{i=N_{g-1}+1}^{N_g} u_i$. Define $H_g = \{h_i; i = N_{g-1} + 1, N_{g-1} + 2, \dots, N_g\}$. Using the LIE-II in the hint, we have:

$$E[v_q|\bar{h}_q] = E[\bar{u}_q|\bar{h}_q] = E[E[\bar{u}_q|H_q,\bar{h}_q]|\bar{h}_q], \qquad (1)$$

Using the hint, it follows that

$$E[\bar{u}_g|H_g, \bar{h}_g] = E[\bar{u}_g|H_g] = E[\sum_{i=N_{g-1}+1}^{N_g} u_i/n_g|H_g] = \sum_{i=N_{g-1}+1}^{N_g} E[u_i|H_g]/n_g.$$
 (2)

From Assumption CS2, we have that u_i and h_j are independent for all $i \neq j$ and so $E[u_i|H_q] = E[u_i|h_i]$ which equals zero via Assumption CS4. Therefore, it follows from (2) that $E[v_q|H_q] = 0$, which in turn implies $E[v_q|\bar{h}_q] = 0$ via (1).

Now consider $Var[v_g|\bar{h}_g]$. Since $E[v_g|\bar{h}_g]=0$, it follows that $Var[v_g|\bar{h}_g]=E[v_g^2|\bar{h}_g]$. Using LIE-Aasisteen telling of Exam Help

$$E[v_g^2|\bar{h}_g] = E\left[E[v_g^2|H_g]|\bar{h}_g\right]. \tag{3}$$

Multiplying ouhttps://powcoder.com
$$E[v_g^2|H_g] = E[\sum_{N_g} \sum_{i=1}^{N_g} u_i u_j / n_g^2 | H_g] = n_i^{-2} \sum_{i=1}^{N_g} \sum_{N_g=1}^{N_g} E[u_i u_j | H_g]. \quad (4)$$

$$A^i dd^{+1} W^g e Chat powcode^{-N_g} de^{-N_g-1+1}$$

Assumption CS2 states that (u_i, h_i) and (u_i, h_i) are independent for all $i \neq j$. Therefore, if $i \neq j$ then $E[u_i u_j | H_i] = E[u_i | h_i] E[u_j | h_j] = 0$ from Assumption CS4. From Assumptions CS2 and CS5, it follows that $E[u_i^2|H_i] = E[u_i^2|h_i] = \sigma_0^2$. Using these results in (4), we obtain:

$$E[v_i^2|H_g] = n_g^{-2} \sum_{i=N_{g-1}+1}^{N_g} E[u_i^2|H_g] = n_g^{-2} \sum_{i=N_{g-1}+1}^{N_g} E[u_i^2|h_i] = \sigma_0^2/n_g.$$

1.(b) Assumption CS2 states that (u_i, h_i) is independent of (u_j, h_j) for all $i \neq j$. So $E[v_g|\bar{X}] =$ $E[v_q|h_q] = 0$, from part (a). Since this holds for all i, we obtain E[v|X] = 0.

Similarly, $Var[v_g|\bar{X}] = Var[v_g|\bar{h}_g] = \sigma_0^2/n_g$. Assumption CS2 states that (u_i, h_i) is independent of (u_j, h_j) and so (v_g, \bar{h}'_g) is independent of $(v_\ell, \bar{h}'_\ell)'$ which implies $Cov[v_g, v_\ell | \bar{h}_g, \bar{h}_\ell] = 0$ for all $g \neq \ell$. Again using Assumption CS2, it follows that $Cov[v_q, v_\ell | \bar{X}] = 0$. Combining these results, we obtain:

$$Var[v|\bar{X}] = \sigma_0^2 \begin{bmatrix} n_1^{-1} & 0 & 0 & \dots & 0 \\ 0 & n_2^{-1} & 0 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & \dots & 0 & n_{\mathcal{G}}^{-1} \end{bmatrix}.$$

- 1.(c) If $n_g \neq n$, say, for all g then $\{v_g\}$ are heteroscedastic. This means that the OLS estimator based on equation (1) in the question is unbiased but inefficient.
- 1.(d) Let β_{GLS} be the GLS estimator of β . From (a), it follows that the regression model can be written as

$$\bar{y} = \bar{X}\beta + v$$

where \bar{y} is the $\mathcal{G} \times 1$ vector with g^{th} element \bar{y}_g , \bar{X} is the $\mathcal{G} \times 2$ matrix with g^{th} row $[1, \bar{h}_g]$ and v is the $\mathcal{G} \times 1$ vector with g^{th} element v_g . From part (a) it follows that $Var[v] = \Sigma = \sigma_0^2 V$ where $V = diag[n_1^{-1}, n_2^{-1}, \dots n_{\mathcal{G}}^{-1}]$. From Lecture 5, it can be recalled that the GLS estimator

 $\hat{\beta}_{GLS} = (\bar{X}'\Sigma^{-1}\bar{X})^{-1}\bar{X}'\Sigma^{-1}\bar{y} = (\bar{X}'V^{-1}\bar{X})^{-1}\bar{X}'V^{-1}\bar{y},$ as the angular calculation of the form to the form to the form of the same terms of the form of the same terms of the form of t

2. If $\beta_i|x_i \sim N(\beta_0, \sigma_0^2 I_K)$ then we can write $\beta_i = \beta_0 + v_i$ where $v_i|x_i \sim N(0, \sigma_0^2 I_K)$. This means that the model of v_i as by wide WCOCCT.COM

$$y_i = x_i'(\beta_0 + v_i) = x_i'\beta_0 + u_i$$

 $y_i = x_i'(\beta_0 + v_i) = x_i'\beta_0 + u_i$ where $u_i = x_i'A$ (letter with u_i) at $E(u_i)$ at $E(u_i)$ where $u_i = x_i'A$ (letter u_i) at $E(u_i)$ at $E(u_i)$ at $E(u_i)$ and $E(u_i)$ at $E(u_i)$ and $E(u_i)$ are $E(u_i)$ are $E(u_i)$ model is parameter variation in the mean of a linear model.

3.(a) Substituting for y, we obtain:

$$\hat{\beta}_W = (X'W_2X)^{-1}X'W_2(X\beta_0 + u) = \beta_0 + (X'W_2X)^{-1}X'W_2u.$$

3.(b) Using part (a), we have

$$E\left[\,\hat{\beta}_W\,\right] = \beta_0 + E\left[\,(X'W_2X)^{-1}X'W_2u\,\right].$$

Since X and W_2 are constants, it follows that:

$$E\left[(X'W_2X)^{-1}X'W_2u\right] = (X'W_2X)^{-1}X'W_2E[u] = 0 \text{ using } CA4.$$

3.(c) Using parts (a) and (b), we have:

$$Var[\hat{\beta}_{W}] = E\left[(\hat{\beta}_{W} - \beta_{0})(\hat{\beta}_{W} - \beta_{0})'\right]$$

$$= E\left[(X'W_{2}X)^{-1}X'W_{2}uu'W_{2}X(X'W_{2}X)^{-1}\right]$$

$$= (X'W_{2}X)^{-1}X'W_{2}E[uu']W_{2}X(X'W_{2}X)^{-1}, \text{ as both } X \text{ and } W_{2} \text{ are constants,}$$

$$= (X'W_{2}X)^{-1}X'W_{2}\Sigma W_{2}X(X'W_{2}X)^{-1}, \text{ as } Var[u] = \Sigma.$$

- 3.(d) Using part(a), CA6, and X and W_2 constant, $\hat{\beta}_W$ is a linear combination of $u \sim N(0, \Sigma)$. Therefore, it follows from Lemma 2.1 in the Lecture Notes that $\hat{\beta}_W \sim N\left(\beta_0, Var[\hat{\beta}_W]\right)$.
- 3.(e) Using the LIE, we have:

$$E \left[\hat{\beta}_W \right] = \beta_0 + E \left[E \left[(X'W_2X)^{-1}X'W_2u \,|\, X \right] \right]$$

Since W_2 is constant, we have

$$E\left[E\left[(X'W_2X)^{-1}X'W_2u\,|\,X\right]\right] \ = \ E\left[(X'W_2X)^{-1}X'W_2\,E\,[u\,|\,X]\right] \ = \ 0 \text{ using } SR4.$$

Therefore, we have $E\left[\hat{\beta}_W\right] = \beta_0$ and so $\hat{\beta}_W$ is an unbiased estimator of β_0 .

- 4.(a) This follows directly because the WLS estimator is OLS applied to the regression model (w_i * 1) SSI₂ * 10 Project Exam Help
- 4.(b) Since $\{(x'_i, u_i)\}_{i=1}^N$ is an i.i.d. sequence and $\{w_i\}_{i=1}^N$ are constants, it follows that $(\check{x}'_i, \check{u}_i)$ and $(\check{x}'_j, \check{u}_j)$ are independent for all $i \neq j$. However, $(\check{x}'_i, \check{u}_i)$ and $(\check{x}'_i, \check{u}_j)$ are not identically distributed: to sad this not other than 10 keV $\in V$ \cap V \cap

$$\overset{4.(c)(i) \text{ Using Question 3(a)}}{\text{Add}} \overset{\text{we have:}}{\underset{\hat{\beta}_{W}}{\text{we have:}}} \underbrace{\text{echat. pow. oder}}_{\text{v. 2.}}$$

We are given in the question that,

 $N^{-1}X'W_2X \stackrel{p}{\to} Q_w$, a positive definite matrix,

and so via Slutsky's Theorem,

$$(N^{-1}X'W_2X)^{-1} \stackrel{p}{\to} Q_w^{-1}.$$
 (6)

We are also given that

$$N^{-1/2}X'W_2u \stackrel{d}{\to} N(0,\Omega_w),$$

form which it follows that

$$N^{-1}X'W_2u = N^{-1/2} \left\{ N^{-1/2}X'W_2u \right\} \stackrel{p}{\to} 0.$$
 (7)

Combining (5)-(7) and using Slutsky's Theorem, we obtain:

$$\hat{\beta}_W \stackrel{p}{\to} \beta_0 + Q_w^{-1} \times 0 = \beta_0,$$

and so $\hat{\beta}_W$ is a consistent estimator for β_0 .

4.(ii) Using Question 3(a), we have:

$$N^{1/2}(\hat{\beta}_W - \beta_0) = (N^{-1}X'W_2X)^{-1}N^{-1/2}X'W_2u.$$
 (8)

Using the limit theorems given in the question, it then follows from Lemma 3.5 in the Lecture Notes (in Section 3.1) that:

$$N^{1/2}(\hat{\beta}_W - \beta_0) \xrightarrow{d} N(0, Q_w^{-1}\Omega_w Q_w^{-1}).$$

4.(c)(iii) A suitable test statistic is:

$$S_N = N(R\hat{\beta}_W - r)'[R\hat{V}_W R']^{-1}(R\hat{\beta}_W - r),$$

where $\hat{V}_W = \hat{Q}_w^{-1} \hat{\Omega}_w \hat{Q}_w^{-1}$, $\hat{Q}_w = N^{-1} X' W_2 X$, $\hat{\Omega}_w = N^{-1} X' \hat{M}_w X$ and $\hat{M}_w = diag(\hat{u}_1^2 w_1^4, \hat{u}_2^2 w_2^4, \dots, \hat{u}_N^2 w_N^4)$ and $\hat{u}_i = y_i - x_i' \hat{\beta}_W$. It can be shown under the conditions here that $\hat{V}_W \stackrel{p}{\to} V_W = Q_w^{-1} \Omega_w Q_w^{-1}$ and so it follows from Lemma 3.6 in the Lecture Notes (in Section 1918) and 1918 and 1919 and 1919 and 1919 are the conditions of the condi

https://powcoder.com

Add WeChat powcoder