NRO. PRÁCTICA: 2 ESTUDIANTE: Doménica Merchán García

CARRERA: Computación1

ASIGNATURA: Simulación

TÍTULO PRÁCTICA: Regresión casos COVID

comportamiento de la pandemia en tres etapas:

**1. Generar un modelo de regresión de los casos confirmados de COVID en el Ecuador. Deberá predecir el

ACTIVIDADES DESARROLLADAS

- Confinamiento - Toques de queda - Feriados**

Se importan las librerías a utilizar

- import pandas as pd import numpy as np from matplotlib import pyplot as plt

from sklearn.model selection import train test split as tts from sklearn.linear model import LinearRegression #from sklearn.pipeline import Pipeline

22303 Ecuador 2020-03-03

22304 Ecuador 2020-03-04

 $\begin{tabular}{ll} \textbf{from} & \texttt{datetime} & \textbf{import} & \texttt{datetime}, \texttt{timedelta} \\ \end{tabular}$

```
from sklearn.metrics import mean absolute error
         Cargamos el dataset creado por Our World in Data: https://github.com/CSSEGISandData/COVID-19 el día
         29 de abril de 2021. Del data set owi-covi-data.csv se filtra la información de Ecuador, los casos nuevos y el
         total de casos de contagio confirmados en el país.
In [32]: df = pd.read csv('owid-covid-data.csv')
           df = df.loc[:, ['location', 'date', 'total_cases', 'new_cases']]
           df = df[df['location'] == 'Ecuador']
           df = df[df['new cases']>0]
```

FMT = '%Y-%m-%d' date = df['date'] df['date number'] = date.map(lambda x : (datetime.strptime(x, FMT) - datetime.strptime(x))location date total_cases new_cases date_number 22301 Ecuador 2020-03-01 61 6.0 6.0

63

64

1.0

3.0

7.0

10.0

150000

plt.grid(True)

400000

300000

200000

100000

0

4000

2000

Error Lineal

 $Ppred_y = p(pred_x)$

plt.grid(True)

plt.show()

520000

500000

480000

460000

440000

420000

400000

380000

date = df_vac['date']

2021-

01-21

location

95 rows × 7 columns

plt.grid(True)

plt.figure(figsize=(13,5))

#plt.plot(df['date'], df['new cases'])

3811 Ecuador

df vac

In [48]:

Out[48]:

plt.figure(figsize=(13,5))

plt.legend(loc='upper left')

Regresión polinómica

Predicción del número de contagios

Como se aprecia en la gráfica, el número de contagios seguirá aumentando.

plt.plot(pred_x, Ppred_y, 'g-', label='Regresión polinómica')

-- Regresión lineal --- Regresión polinómica

In [33]: plt.figure(figsize=(13,5)) plt.grid(True)

plt.show()

350000

300000

250000

200000

100000

50000

plt.plot(df['date_number'], df['total_cases'])

#plt.plot(df['date'], df['new_cases'])

plt.legend(loc='upper left') plt.show() 500000 Datos reales

plt.plot(df['date_number'], df['total_cases'], '.-', label='Datos reales')

plt.plot(pred_x, Lpred_y, '--', label='Regresión lineal') plt.plot(pred_x, Ppred_y, '--', label='Regresión polinómica')

que el modelo de regresión lineal. Se calcula el Error Absoluto Medio de ambos modelos para determinar la diferencia de certeza de ambos modelos. Para esto se usa el set de test. error lineal = mean absolute error(ytest, model.predict(np.array(xtest).reshape(-1, 1) error polinomial = mean absolute error(ytest, p(xtest)) plt.bar(['Error Lineal', 'Error Polinomial'], [error lineal, error polinomial]) In [24]: plt.show <function matplotlib.pyplot.show(close=None, block=None)> Out[24]: 10000 8000 6000

Error Polinomial

Evidentemente el modelo polinomial logra predecir de mejor manera el comportamiento de los datos.

Se realiza una gráfica para predecir el número de contagios en el Ecuador para los siguientes dos meses.

pred x = list(range(max(df['date number']), max(df['date number'])+60)) # Predecir 50

300

Como se puede apreciar en la gráfica, el modelo polinómico se asemeja de mejor manera a los datos reales

df vac.fillna(method='ffill', inplace=True)

0.0

personas vacunadas completamente.	dosis y ei	numero a	e
<pre>df_vac = pd.read_csv('vaccinations.csv').loc[:,['location', df_vac = df_vac[df_vac['location'] == 'Ecuador'] df_vac.fillna(0)</pre>	'date',	'total_	vaccination

 $df_vac['date_number'] = date.map(lambda x : (datetime.strptime(x, FMT) - datetime.strptime(x) - datetime(x) - datetime(x)$

0.0

date total_vaccinations people_vaccinated people_fully_vaccinated daily_vaccinations date_nu

NaN

NaN

3812	Ecuador	2021- 01-22	108.0	108.0	NaN	108.0
3813	Ecuador	2021- 01-23	108.0	108.0	NaN	341.0
3814	Ecuador	2021- 01-24	108.0	108.0	NaN	419.0
3815	Ecuador	2021- 01-25	108.0	108.0	NaN	458.0
•••						
3901	Ecuador	2021- 04-21	643702.0	457403.0	186299.0	23249.0
3902	Ecuador	2021- 04-22	675510.0	486524.0	188986.0	27197.0
3903	Ecuador	2021- 04-23	711204.0	514854.0	196350.0	28150.0
3904	Ecuador	2021- 04-24	732717.0	532367.0	200350.0	26798.0
3905	Ecuador	2021- 04-25	743937.0	541420.0	202517.0	27081.0

-	Contagios confirmados				1 2
500000	 Predicción para los siguie Personas vacunadas por 	lo menos una dosis			- Jane
400000	 Personas completamente Inicio de campaña de va 				
400000	de campand de va				Jan 1
300000					
300000					ال
200000					
				<i>f</i>	
100000					لم ا
				کی ک <u>ے</u>	
0	***************************************				
	100	200	300	400	500