BASIC PHD WRITTEN EXAMINATION IN BIOSTATISTICS

THEORY, SECTION 2

(9:00 AM- 1:00 PM Friday, August 12, 2011)

INSTRUCTIONS:

- a) This is a **CLOSED-BOOK** examination.
- b) The time limit for this Examination is four hours.
- c) Answer any TWO (2) (BUT ONLY TWO) of the THREE (3) questions that follow.
- d) Put the answers to different questions on separate sets of paper.
- e) Put your code letter, **NOT YOUR NAME**, on each page. The same code will be used for Section 1 and Section 2 of the PhD Theory Exam. Please keep the code confidential and do not share this information with any students or faculty.
- f) Return the examination with a signed statement of the UNC honor pledge, separately from your answers. The pledge statement is given on the last page of the exam handout.
- g) In the questions to follow, you are required to answer only what is asked, and not to tell all you know about the topics involved.

- 1. For a given $i=1,\ldots,n$, let X_i and Y_i be independent exponential random variables with means $1/(\psi\lambda_i)$ and $1/\lambda_i$, respectively. Assume further that the bivariate random vectors (X_i,Y_i) are independent, for $i=1,\cdots,n$. The parameter of interest is ψ , with the λ_i 's being unknown parameters which may vary for $i=1,\ldots,n$. Note: in this problem, asymptotics refers to $n\to\infty$.
 - (a) Write the log-likelihood function $L_1(\psi, \lambda_1, \dots, \lambda_n)$ based on $(X_i, Y_i), i = 1, \dots, n$. Derive the score equation that defines the maximum likelihood estimator for ψ based on L_1 . Denote that equation by $U_1(\psi) = 0$.
 - (b) Are the standard regularity conditions for the consistency and asymptotic normality of the maximum likelihood estimators for $\psi, \lambda_1, \dots, \lambda_n$, based on $L_1(\psi, \lambda_1, \dots, \lambda_n)$ satisfied in this problem? Explain.
 - (c) Assuming the regularity conditions for the maximum likelihood estimators from L_1 are satisfied, derive an explicit expression for the asymptotic variance of $\hat{\psi}$ via the Fisher information matrix from L_1 .
 - (d) Show that $U_1(\psi)$ depends on the data only through the ratios $T_i = X_i/Y_i$. Derive the pdf of T_i and show that it does not depend on λ_i .
 - (e) Use the density of T_1, \dots, T_n to obtain a likelihood function, $L_2(\psi)$. Compare the score equation derived for ψ from L_2 with the function $U_1(\psi)$ derived in part (a). Is the maximum likelihood estimator for ψ from L_2 identical to that from L_1 ? Derive the asymptotic variance for the maximum likelihood estimator based on L_2 using standard asymptotic calculations and compare with that in part (c). Discuss.
 - (f) Let $g_i(\psi) = Y_i \psi X_i$, i = 1, ..., n and consider estimation of ψ by solving

$$\sum_{i=1}^{n} w_i g_i(\psi) = 0$$

for ψ , where w_i , i = 1, ..., n are finite constants. Determine the asymptotic variance of the estimator thus obtained and find the optimal w_i 's (up to a proportionality constant). Compare the efficiency of this optimal estimator to that based on $w_i = 1, i = 1, ..., n$ and to that from $U_1(\psi)$. Is the optimal estimator usable in practice?

2. In this problem, we consider the univariate density

$$p(y; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha - 1} (1 - y)^{\beta - 1}, \qquad 0 < y < 1, \tag{1}$$

where $\Gamma(\cdot)$ is the gamma function, and $\alpha > 0$ and $\beta > 0$. One may reparameterize (1) in terms of (μ, ϕ) , such that

$$p(y; \mu, \phi) = \frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)} y^{\mu\phi-1} (1-y)^{(1-\mu)\phi-1}, \qquad 0 < y < 1, \tag{2}$$

where $0 < \mu < 1$, $\phi > 0$, $E(y) = \mu$ and $Var(y) = \mu(1 - \mu)(1 + \phi)^{-1}$.

- (a) Find explicit expressions for (μ, ϕ) in terms of (α, β) .
- (b) Let Y_1, \ldots, Y_n be a random sample from the density (2). Show that the joint density for Y_1, \ldots, Y_n belongs to the multivariate exponential family of distributions, identify the canonical statistics and parameters, determine its rank, and find the joint complete sufficient statistics for (μ, ϕ) .
- (c) Now, suppose that Y_1, \ldots, Y_n are independent random variables, where each Y_i , $i = 1, \ldots, n$, follows the density in (2) with unknown mean μ_i and unknown precision ϕ . Suppose that X_i is a $p \times 1$ vector of covariates, with $g(\mu_i) = \beta^T X_i$, where β is a $p \times 1$ vector of unknown regression coefficients and $g(\cdot)$ is an arbitrary known link function. Define $\xi = (\beta, \phi)$.
 - (i) Derive the score function for ξ and show that the expectation of the score function equals 0 at the true value of ξ .
 - (ii) Show that the Fisher information matrix of ξ is given by

$$I(\xi) = \begin{pmatrix} I_{\beta\beta} & I_{\beta\phi} \\ I_{\phi\beta} & I_{\phi\phi} \end{pmatrix},$$

where $I_{\beta\beta} = \phi X^T W X$, $I_{\beta\phi} = I_{\phi\beta}^T = X^T T c$, $I_{\phi\phi} = \text{tr}(D)$, $c = (c_1, \dots, c_n)^T$ with $c_j = \phi \{ \psi'(\mu_j \phi) \mu_j - \psi'((1 - \mu_j) \phi)(1 - \mu_j) \}$, $T = \text{diag}\left(\frac{1}{g'(\mu_1)}, \dots, \frac{1}{g'(\mu_n)}\right)$, $g'(z) = \frac{d}{dz} g(z)$, $\psi(z) = \frac{d}{dz} \log \Gamma(z)$, $\psi'(z) = \frac{d}{dz} \psi(z)$, $D = \text{diag}(d_1, \dots, d_n)$ with $d_j = \psi'(\mu_j \phi) \mu_j^2 + \psi'((1 - \mu_j) \phi)(1 - \mu_j)^2 - \psi'(\phi)$, and $W = \text{diag}(w_1, \dots, w_n)$ with

$$w_j = \phi \left\{ \psi'(\mu_j \phi) + \psi'((1 - \mu_j) \phi) \right\} \frac{1}{\left\{ g'(\mu_j) \right\}^2}.$$

(d) Let $\hat{\xi} = (\hat{\beta}, \hat{\phi})$ denote the maximum likelihood estimator of ξ . Derive from first principles the asymptotic distribution of $\hat{\xi}$, properly normalized.

(e) The multivariate generalization of the distribution in (2) is called the Dirichlet distribution, which may be defined as as follows. Let r_1, \ldots, r_k be independent random variables, with $r_j \sim \operatorname{gamma}(\alpha_j, 1)$, $j = 1, \ldots k$. The $\operatorname{gamma}(a, b)$ density is given by $f(r) = \frac{\Gamma(a)}{b^a} r^{a-1} \exp(-br)$ for r > 0, a > 0, b > 0. Define $s = \sum_{j=1}^k r_j$ and $q_j = \frac{r_j}{s}$, $j = 1, \ldots, k$. The joint density of (q_1, \ldots, q_{k-1}) is called the Dirichlet density. Derive the joint density of (q_1, \ldots, q_{k-1}) .

3. Consider the linear model

$$Y = X\beta + \epsilon, \tag{1}$$

where X is a $n \times p$ covariate matrix, β is a $p \times 1$ vector of regression coefficients, and $\epsilon = (\epsilon_1, \ldots, \epsilon_n)^T$, where the ϵ_i 's are i.i.d. $N(0, \sigma^2), i = 1, \ldots, n$. In this problem, both β and σ^2 are unknown.

(a) Suppose that $rank(X) = r \le p$ and we wish to test

$$H_0: \ell^T \beta = \theta_0 \quad \text{versus} \quad H_1: \ell^T \beta \neq \theta_0,$$
 (2)

where $\ell \in C(X)$, C(X) denotes the column space of X, and θ_0 is a specified constant. Derive a UMPU size α test for the hypotheses in (2). Determine the exact distribution of the test statistic under H_0 and H_1 as well as an explicit expression of the critical value to make the test size α .

- (b) Consider the model in (1) and the hypothesis in (2).
 - (i) Derive an explicit closed-form expression for the asymptotic power function of the UMPU test in part (a)
 - (ii) Suppose that p = 2, X is $n \times 2$ where the first column consists of a vector of ones, $\beta = (\beta_0, \beta_1)^T$, $\ell = (0, 1)$, $\operatorname{rank}(X) = 2$, and $\sum_{i=1}^n x_i = n/2$, where $(x_1, \dots, x_n)^T$ denotes the second column of X. Use the asymptotic power function of part (i) to derive an explicit closed form sample size formula for an α level test with prespecified power.
- (c) Consider the model in (1) and suppose that rank(X) = p. We wish to test

$$H_0: R\beta = b_0 \quad \text{versus} \quad H_1: R\beta \neq b_0,$$
 (3)

where R is an $s \times p$ specified matrix of constants of rank $s \leq p$ and b_0 is a specified $s \times 1$ vector. Derive the size α likelihood ratio test for this hypothesis and determine the exact distribution of the likelihood ratio statistic (or a monotonic function of it) under H_0 and H_1 . In carrying out this derivation, you need to derive all relevant estimates under H_0 and H_1 .

- (d) Derive the score test for the hypothesis and setup of part (c), and state its asymptotic distribution under H_0 .
- (e) Consider the model in (1) and suppose that $\operatorname{rank}(X) = r \leq p$. Derive an exact 95% confidence region for $R\beta$, where R is an $s \times p$ matrix of constants of rank $s \leq r$, and all rows of R are contained in C(X).

(f) Consider the model in (1) and suppose that $\operatorname{rank}(X) = r \leq p$. Derive a UMPU size α test for testing $H_0: \sigma^2 \leq \sigma_0^2$ versus $H_1: \sigma^2 > \sigma_0^2$, where σ_0^2 is a specified constant. Determine the exact distribution of the test statistic under H_0 and determine an explicit expression of the critical value to make the test size α .

2011 PhD Theory Exam, Section 2

eived aid on this examination an	d that I will report all Honor Code violations observed by r
(Signed)	NAME
(Printed)	

NAME

Statement of the UNC honor pledge: