Linear regression

Evaluation and interpretation

Herman Kamper

http://www.kamperh.com/

Regression evaluation metrics

Squared loss:

$$J = \sum_{n=1}^{N} \left(y^{(n)} - f(\mathbf{x}^{(n)}; \mathbf{w}) \right)^{2}$$

Mean squared error (MSE):

$$MSE = \frac{1}{N} \sum_{n=1}^{N} \left(y^{(n)} - f(\mathbf{x}^{(n)}; \mathbf{w}) \right)^{2}$$

Root-mean-square error (RMSE):

RMSE =
$$\sqrt{\frac{1}{N} \sum_{n=1}^{N} (y^{(n)} - f(\mathbf{x}^{(n)}; \mathbf{w}))^2}$$

Interpretation of linear regression Shark attacks What does we tell us in this case! = wa + w, se Temperature on day

Could potentially solve this problem by using multiple regression:

Tere cream sales

f(x) = wo + W1x, + w2x2

Temperature

Shark attacks

This might not solve all your problems, and you will still not know whether temperature causes ice cream sales or the other way around.

Interpretation of linear regression

Another example: I have this cool (and actually useful) idea of using Li regularitation to pick the 5 most meaningful features

in a problem where ≈ ∈ IR100. We vary I

until we have only 5 non-zero W's.

Fre these 5 values the things that most

"cause the output y? No, they are the best 5 values for predicting y, given a number of assumpt

(e.g. we are using a linear nodel).

Takeaway: Be careful about making statements based on linear regression coefficients. Linear models can be very useful since they can be more interpretible. But they won't always give a complete picture - they are often most useful in conjunction with some other model/hypothesis of the real world (domain knowledge). Sometimes the most you will be able to say is: These features are the most important) useful for predicting the output given that we use a linear model. (And maybe that

Further reading:

The Book of Why - Mackenzie & Pearl

is already useful erough!)