Computación Aplicada - Homework 04 Simulation - Basics & Integrals

Bruno González Soria (A01169284) Antonio Osamu Katagiri Tanaka (A01212611)

February 25, 2019

Contents

1	Problem I	4
	1.1 Function 1	4
	1.2 Function 2	5
	1.3 Let's plot the approximations	5
2	Problem II	8
3	Problem III	11
4	Problem IV	14
\mathbf{A}	$integral Plot \ { m function}$	17
В	Full R Script	18
\mathbf{C}	Full Output Log	25

List of Figures

1	Problem 1 instructions
2	Taylor series until the 6th term of Function 1
3	Taylor series until the 6th term of Function 2
4	Listing 3 output; $f(x) = Sin(x)$ approximations, centered in 0
5	Listing 3 output; $f(x) = e^{ix}$ approximations, centered in 1
6	Problem 2 instructions
7	Listing 5 output; $\int_{-2}^{2} e^{x+x^2} dx$
8	Problem 3 instructions
9	Problem 4 instructions
Listin	ıgs
1	"The taylorPlot function"
2	"Define $f0$ and $f1$ "
3	"Implement taylorPlot"
4	"The Riemann function"
5	"Define the function and implement riemann_sum"
6	"Listing 5 output"
7	"The $Riemann\ 2D$ function"
8	"Define the function and implement riemann_sum_2d"
9	"Listing 8 output"
10	"The Riemann 2D function"
11	"Define the function and implement $riemann_sum_2d$ "
12	"Listing 8 output"

1 Problem I

Figure 1: Problem 1 instructions.

1.1 Function 1

Figure 2 shows the "hadwritten" procedure to find the first six terms of the Taylor series of f(x) = Sin(x), centered at 0.

$$T(f_{(x)}) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} ; \text{ where } c = 0$$

$$T(f_{(x)}) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} ; \text{ where } c = 0$$

$$= f(o) + f'(o)x + \frac{1}{2!} f''(o)x^{2} + \frac{1}{3!} f'''(o)x^{3} + \frac{1}{4!} f'''(o)x^{4} + \frac{1}{5!} f''(o)x^{5} + \frac{1}{6!} f'^{(6)}(o)x^{6}$$

$$= \int_{a}^{b} f(o) + \int_{a}^{b} f(o)x - \frac{1}{2} \int_{a}^{b} f(o)x^{2} - \frac{1}{6} \int_{a}^{b} f(o)x^{3} + \frac{1}{24} \int_{a}^{b} f(o)x^{4} + \frac{1}{120} \int_{a}^{b} f(o)x^{5} - \frac{1}{720} \int_{a}^{b} f(o)x^{5}$$

$$= x - \frac{1}{6} x^{3} + \frac{1}{120} x^{5}$$

$$= x - \frac{1}{6} x^{3} + \frac{1}{120} x^{5}$$

Figure 2: Taylor series until the 6th term of Function 1.

1.2 Function 2

Figure 3 shows the "hadwritten" procedure to find the first six terms of the Taylor series of $f(x) = e^{ix}$, centered at 1.

Figure 3: Taylor series until the 6th term of Function 2.

1.3 Let's plot the approximations

In Listing 1, function taylorPlot is implemented to plot the Taylor approximations up to the 2nd, 4th, 6th and 8th terms. With the following properties:

Parameters:

- **f** : function Vectorized function of one variable
- ullet c: numeric point where the series expansion will take place
- from, to: numeric
 Interval of points to be ploted

Returns:

• void

Listing 1: "The taylorPlot function"

```
library(pracma)
1
2
   taylorPlot <- function(f, c, from, to) {</pre>
3
      x \leftarrow seq(from, to, length.out = 100)
4
      yf < -f(x)
5
6
      yp2 <- polyval(taylor(f, c, 2), x)</pre>
7
      yp4 <- polyval(taylor(f, c, 4), x)</pre>
9
      yp6 <- polyval(taylor(f, c, 6), x)</pre>
      yp8 <- polyval(taylor(f, c, 8), x)</pre>
10
11
      plot(
12
13
14
        yf,
        xlab = "x",
15
        ylab = "f(x)",
16
```

```
type = "1",
17
                                           main = ' \sqcup Taylor \sqcup Series \sqcup Approximation \sqcup of \sqcup f(x) \sqcup ',
18
                                            col = "black",
19
20
                                           lwd = 2
21
22
                                lines(x, yp2, col = "#c8e6c9")
23
                                lines(x, yp4, col = "\#81c784")
24
                                lines(x, yp6, col = "\#4caf50")
25
                                lines(x, yp8, col = \#388e3c)
26
27
                                legend(
28
                                            'topleft',
29
                                            inset = .05,
30
                                            \texttt{legend} = \texttt{c("TS}_{\square} 8_{\square} \texttt{terms"}, \ "TS_{\square} 6_{\square} \texttt{terms"}, \ "TS_{\square} 4_{\square} \texttt{terms"}, \ "TS_{\square} 2_{\square} \texttt{terms"}, \ "for all terms" and the second secon
31
                                            col = c('#388e3c', '#4caf50', '#81c784', '#c8e6c9', 'black'),
32
                                            lwd = c(1),
33
                                           bty = 'n',
34
                                            cex = .75
35
36
                  }
37
```

f(x) = Sin(x) is defined as f0 and $f(x) = e^{ix}$ is defined as f1 in Listing 2

Listing 2: "Define f0 and f1"

```
f0 <- function(x) {
1
2
     res = sin(x)
3
4
      return(res)
5
6
7
   f1 <- function(x) {</pre>
      res = exp(complex(real = 0, imaginary = 1)*x)
9
10
      return(res)
11
12
13
```

Listing 3 shows the use of function taylorPlot to plot the Taylor approximations of f0 and f1. This Listing output-plots are represented within Figures 4 and 5

Listing 3: "Implement taylorPlot"

```
taylorPlot(f0, 0, -6.6, 6.6)
taylorPlot(f1, 1, -2*pi, 2*pi)
```

Taylor Series Approximation of f(x) TS 8 teyris TS 6 fems TS 2 terms Tg 2 terms To 60 42 0 42 0 43 44 45 45 45 45 46 X

Figure 4: Listing 3 output; f(x) = Sin(x) approximations, centered in 0.

Figure 5: Listing 3 output; $f(x) = e^{ix}$ approximations, centered in 1.

2 Problem II

Figure 6: Problem 2 instructions.

In Listing 4, function $riemann_sum$ is implemented to compute the Riemann sum of a given function f(x) over an interval [a, b]. With the following properties:

Parameters:

- **f** : function Vectorized function of one variable
- a, b : numeric Endpoints of the interval [a,b]
- n : numeric Number of subintervals of equal length in the partition of [a,b]

Returns:

numeric
 Underestimate and overestimate approximations of the integral given by the Riemann sum.

Listing 4: "The Riemann function"

```
riemann_sum <- function(f, a, b, n) {
    # initialize values
    lower.sum <- 0
    upper.sum <- 0
    h <- (b - a) / n</pre>
```

```
8
9
10
      # riemann right sum
11
      for (i in n:1) {
         x \leftarrow a + i * h
12
13
         lower.sum <- lower.sum + f(x)</pre>
14
15
16
      lower.sum <- h * lower.sum</pre>
17
18
19
      # riemann left sum
20
      for (i in 1:n) {
21
         x \leftarrow b - i * h
22
23
         upper.sum <- upper.sum + f(x)
^{24}
25
26
      upper.sum <- h * upper.sum
27
28
29
      # let's plot the curve
30
      integralPlot(
31
         f = f,
32
33
         a = a,
         b = b,
34
         title = expression(f(x))
35
36
37
      # print/get riemann sum
38
      cat(sprintf(
39
         "The \sqcup true \sqcup value \sqcup is \sqcup between \sqcup %f \sqcup and \sqcup %f . \n",
40
41
         as.double(lower.sum),
42
         as.double(upper.sum)
43
44
      return(c(lower.sum, upper.sum))
45
46
47
```

Let's solve the following integral using $riemann_sum$. Listing 5 shows the required commands.

 $\int_{-2}^{2} e^{x+x^2} dx$

Listing 5: "Define the function and implement riemann_sum"

```
f4 <- function(x) {
1
     res = exp(x + x^2)
2
3
4
     return(res)
5
6
7
   \# compute riemann_sum for f4
8
   riemann_sum(f4, -2, 2, 100000)
9
10
   # let's verify our calualtion using R's function
```

```
12 \parallel \text{integrate}(f4, \text{lower} = -2, \text{upper} = 2)
```

Listing 6: "Listing 5 output"

```
> # compute riemann_sum for f4
> riemann_sum(f4, -2, 2, 100000)
The true value is between 93.170674 and 93.154833.
[1] 93.17067 93.15483

> # let's verify our calualtion using R's function
> integrate(f4, lower = -2, upper = 2)
93.16275 with absolute error < 0.00062</pre>
```


Figure 7: Listing 5 output; $\int_{-2}^{2} e^{x+x^2} dx$.

* Appendix A implements the R function to generate plots similar to Figure 7 (, which is used within $riemann_sum$).

3 Problem III

Figure 8: Problem 3 instructions.

In Listing 7, function $riemann_sum_2d$ is implemented to compute the Riemann sum of a given function f(x,y) over the intervals [a,b] and [c,d]. With the following properties:

Parameters:

• **f** : function Vectorized function of one variable

• **a**, **b**: numeric Endpoints of the interval [a,b] (inner integral)

• c, d : numeric Endpoints of the interval [c,d] (outer integral)

• nx : numeric Number of subintervals of equal length in the partition of [a,b]

• ny : numeric Number of subintervals of equal length in the partition of [c,d]

Returns:

• numeric Approximations of the integral given by the Riemann 2D sum.

Listing 7: "The Riemann 2D function"

```
riemann_sum_2d <- function(f, a, b, c, d, nx, ny) {</pre>
1
      # initialize values
2
      dx = (b - a) / nx
3
      s = 0.0
4
5
6
      dy = (d - c) / ny
7
8
      y = c
9
      # riemann 2D sum
10
      for (i in 1:nx) {
11
        for (j in 1:ny) {
12
           x = a + dx / 2 + i * dx
13
           y = c + dy / 2 + j * dy
14
           f_i = f(x, y)
15
           s = s + f_i * dx * dy
16
17
        }
      }
18
19
      # print/get riemann sum
20
      cat(sprintf("The_{\sqcup}true_{\sqcup}value_{\sqcup}is_{\sqcup}around_{\sqcup}\%f.\n",
21
                     as.double(s)))
22
23
      return(s)
24
25
26
```

Let's solve the following integral using *riemann_sum_2d*. Listing 8 shows the required commands.

 $\int_0^1 \int_0^1 e^{(x+y)^2} \ dy \ dx$

Listing 8: "Define the function and implement riemann_sum_2d"

```
f5 <- function(x, y) {
1
     res = exp((x + y)^2 - 2)
2
3
     return(res)
4
5
6
7
   # compute riemann_sum_2d for f5
8
   riemann_sum_2d(f5, 0, 1, 0, 1, 1000, 1000)
10
   # let's verify our calualtion using R's function
11
   integral2(f5, 0,1, 0,1)
```

Listing 9: "Listing 8 output"

4 Problem IV

Figure 9: Problem 4 instructions.

In Listing 10, function *derivative* is implemented to compute the derivative of a function. With the following properties:

Parameters:

- \mathbf{f} : function f(x)Vectorized function of one variable
- \mathbf{h} : numeric Let x now change by an amount h. h is the variable that approaches 0

Returns:

• function
Approximation of the derivative of f, given a step h.

Listing 10: "The Riemann 2D function"

```
derivative <- function(f, h) {
    return(function(x) {
        (f(x + h) - f(x)) / (h)
    })
}</pre>
```

Let's solve the following double derivative to test our function using *derivative*. Listing 11 shows the required commands.

$$\frac{d^2}{dy^2}x^4Sin(x)$$

Listing 11: "Define the function and implement derivative"

```
f6 <- function(x) {</pre>
1
2
     res = x^4*sin(x)
3
     return(res)
4
5
6
7
   # df1 = d/dx(x^4 sin(x))
8
        = x^3 (4 \sin(x) + x \cos(x))
   df1 <- derivative(f6, 0.0001)
10
11
   \# df2 = d/dx(x^3 (4 sin(x) + x cos(x)))
12
         = x^2 (8 x \cos(x) - (x^2 - 12) \sin(x))
13
   df2 <- derivative(df1, 0.0001)
14
   # Let's evaluate x=pi in the second derivative df2
16
   df2(pi)
17
18
   # Let's use the eval() funtion to verify our solution. The value should
19
       be around df2(pi)
   eval({x \leftarrow pi; x^2*(8*x*cos(x) - (x^2 - 12)*sin(x))})
20
```

Listing 12: "Listing 11 output"

A integralPlot function

```
integralPlot <- function(f,</pre>
3
4
                             b,
                             from = a,
5
6
                             to = b,
                             title = NULL) {
     # Plot the area under a function over the interval [a,b] between [from,
         to].
9
     # Parameters
10
11
     # f : function
12
     # funtion to be ploted
13
     #a, b: numeric
14
15
     # Endpoints of the integral interval [a, b]
16
     # from , to : numeric (optional)
     # Endpoints of the plot in the x-axis [x min, x max]
17
     \# title : expression
     # title of the plot
19
20
     # Returns
21
     # -----
22
     # void
23
24
     x <- seq(from, to, length.out = 100) # input continuum
25
26
     y \leftarrow f(x) # output
27
28
     # plot the curve
29
     plot(
30
       х,
31
       у,
       xlim = c(from, to),
32
       ylim = c(ifelse(min(y) < 0, min(y), 0), max(y)),
33
       xlab = "x",
34
       ylab = "f(x)",
35
       main = title,
36
       col.main = "#86B875",
37
       type = "1",
       lwd = 3,
39
       col = "#86B875"
40
41
42
     # area under the curve
43
     x \leftarrow seq(a, b, length.out = 100)
44
     y \leftarrow f(x)
45
     polygon(
46
47
       c(x, b, a, a),
       c(y, 0, 0, f(a)),
       border = adjustcolor("#7DBODD", alpha.f = 0.3),
49
       col = adjustcolor("#7DBODD", alpha.f = 0.3)
50
51
   }
52
```

B Full R Script

```
#*****************************
1
   #* AUTHOR(S) :
2
         Bruno Gonzalez Soria
                                      (A01169284)
3
   #*
         Antonio Osamu Kataqiri Tanaka (A01212611)
   #* FILENAME :
   #*
         Homework4.R
   #*
   ** DESCRIPTION :
9
   #*
         Simulations (Ene 19 Gpo 1)
10
   #*
         Homework 4
11
   #*
12
   #* NOTES :
13
   #*
         - https://www.math.ubc.ca/~pwalls/math-python/integration/riemann-
14
      sums/
15
   #*
         - https://activecalculus.org/multi/S-11-1-Double-Integrals-
      Rectangles.html
         -\ http://math.colgate.edu/faculty/valente/math113/supplements/
16
   #*
      section 151 handout.pdf
         - http://hplgit.github.io/Programming-for-Computations/pub/p4c/p4c
17
   #*
      -sphinx-Python/._pylight004.html
         - https://rstudio-pubs-static.s3.amazonaws.com/131664_1858
18
      eec97df54c9b8d5edcd8b22e5818.html
19
   ** START DATE :
20
         21 Feb 2019
21
   #*********************************
22
23
   # Install required libraries
24
25
   #install.packages('pracma', dependencies=TRUE);
26
   27
   integralPlot <- function(f,</pre>
28
29
                           a,
                           b,
30
                           from = a,
31
                           to = b,
32
                           title = NULL) {
33
     # Plot the area under a function over the interval [a,b] between [from,
34
        to 7.
35
     # Parameters
36
37
     # f : function
38
     # funtion to be ploted
39
     # a , b : numeric
40
     # Endpoints of the integral interval [a, b]
41
     # from , to : numeric (optional)
     # Endpoints of the plot in the x-axis [x min, x max]
     # title : expression
44
     # title of the plot
45
46
     # Returns
47
48
     # void
49
50
    x <- seq(from, to, length.out = 100) # input continuum
51
```

```
y \leftarrow f(x) # output
52
53
     # plot the curve
54
     plot(
55
56
       х,
57
       у,
       xlim = c(from, to),
58
       ylim = c(ifelse(min(y) < 0, min(y), 0), max(y)),
59
       xlab = "x",
60
       ylab = "f(x)",
61
       main = title,
62
       col.main = "#86B875",
63
       type = "1",
64
       lwd = 3,
65
        col = "#86B875"
66
67
68
     # area under the curve
69
     x \leftarrow seq(a, b, length.out = 100)
70
     y \leftarrow f(x)
71
     polygon(
72
73
       c(x, b, a, a),
       c(y, 0, 0, f(a)),
74
       border = adjustcolor("#7DBODD", alpha.f = 0.3),
75
        col = adjustcolor("#7DBODD", alpha.f = 0.3)
76
77
     )
78
79
   80
    81
    # TAYLOR SERIES
82
83
   library(pracma)
84
85
86
   taylorPlot <- function(f, c, from, to) {</pre>
     # Plot the Taylor approximations up to the 2nd, 4th, 6th and 8th terms
87
     # Parameters
89
90
     \# f : function
91
     # Vectorized function of one variable
92
     # c : numeric
93
     # point where the series expansion will take place
94
     # from, to : numeric
95
     # Interval of points to be ploted
96
97
98
     \# Returns
99
     # ----
100
     # void
101
     x \leftarrow seq(from, to, length.out = 100)
102
     yf < -f(x)
103
104
     yp2 <- polyval(taylor(f, c, 2), x)</pre>
105
     yp4 <- polyval(taylor(f, c, 4), x)</pre>
106
     yp6 <- polyval(taylor(f, c, 6), x)</pre>
107
     yp8 <- polyval(taylor(f, c, 8), x)</pre>
108
109
     plot(
110
111
       х,
```

```
112
        yf,
        xlab = "x",
113
        ylab = "f(x)",
114
        type = "1",
115
        \verb|main = '_{\sqcup} Taylor_{\sqcup} Series_{\sqcup} Approximation_{\sqcup} of_{\sqcup} f(x)_{\sqcup}',
116
        col = "black",
117
        lwd = 2
118
119
120
      lines(x, yp2, col = "#c8e6c9")
121
      lines(x, yp4, col = "\#81c784")
122
      lines(x, yp6, col = "#4caf50")
123
      lines(x, yp8, col = \#388e3c)
124
125
126
      legend(
        'topleft',
127
        inset = .05,
128
        \texttt{legend = c("TS} \_ 8 \_ \texttt{terms", "TS} \_ 6 \_ \texttt{terms", "TS} \_ 4 \_ \texttt{terms", "TS} \_ 2 \_ \texttt{terms", "f}
129
        col = c('#388e3c', '#4caf50', '#81c784', '#c8e6c9', 'black'),
130
        lwd = c(1),
131
        bty = 'n',
132
        cex = .75
133
      )
134
135
136
    # ----
137
138
    f0 <- function(x) {
139
      res = sin(x)
140
141
      return(res)
142
143
144
145
146
    f1 <- function(x) {
      res = exp(complex(real = 0, imaginary = 1)*x)
147
148
      return(res)
149
150
151
152
    # ----
153
154
    taylorPlot(f0, 0, -6.6, 6.6)
155
    taylorPlot(f1, 1, -2*pi, 2*pi)
156
157
158
    159
    160
    # RIEMANN SUMS FUNCTION
161
162
    riemann_sum <- function(f, a, b, n) {
163
      # Compute the Riemann sum of f(x) over the interval [a,b].
164
165
      # Parameters
166
167
      \# f : function
168
      # Vectorized function of one variable
169
      \# a , b : numeric
170
```

```
# Endpoints of the interval [a,b]
171
       \# n : numeric
172
       # Number of subintervals of equal length in the partition of [a,b]
173
174
       # Returns
175
176
       # numeric
177
         Underestimate and overestimate approximations of the integral given
178
           by the
       # Riemann sum.
179
180
       # initialize values
181
       lower.sum <- 0
182
183
       upper.sum <- 0
184
185
       h < - (b - a) / n
186
187
188
       # riemann right sum
189
       for (i in n:1) {
190
         x \leftarrow a + i * h
191
192
         lower.sum <- lower.sum + f(x)</pre>
193
194
195
       lower.sum <- h * lower.sum</pre>
196
197
198
       # riemann left sum
199
       for (i in 1:n) {
200
         x \leftarrow b - i * h
201
202
203
         upper.sum <- upper.sum + f(x)
204
205
       upper.sum <- h * upper.sum
206
207
208
       # let's plot the curve
209
       integralPlot(
210
         f = f,
211
         a = a,
212
         b = b,
213
214
         title = expression(f(x))
215
^{216}
       # print/get riemann sum
217
218
       cat(sprintf(
          "The _{\sqcup} true _{\sqcup} value _{\sqcup} is _{\sqcup} between _{\sqcup}\% f _{\sqcup} and _{\sqcup}\% f . \n" ,
219
         as.double(lower.sum),
220
         as.double(upper.sum)
221
222
223
       return(c(lower.sum, upper.sum))
^{224}
225
226
227
       ----
228
229
```

```
# let's generate some functions to test our algorithm
   f2 <- function(x) {
231
     res = x
232
233
     return(res)
234
^{235}
236
237
   f3 <- function(x) {
238
     res = 4 / (1 + x^2)
239
240
     return(res)
241
242
243
244
245
246
   riemann_sum(f0, 0, pi / 2, 10)
247
   riemann_sum(f2, 0, 1, 10000) # should be 0.5
248
   riemann_sum(f3, 0, 1, 10000) # should be PI
249
250
251
   252
   253
   # Integrate the function f(x)=\exp{(x+x\hat{\ }2)} from -2 to 2, using Rieman sums.
254
   f4 <- function(x) {
255
    res = exp(x + x^2)
256
257
     return(res)
258
259
260
261
   # plot Taylor approximations
262
263
   taylorPlot(f4, 0, -2.3, 1.3)
   # compute riemann_sum for f4
   riemann_sum(f4, -2, 2, 100000)
266
   # let's verify our calualtion using R's function
267
   integrate(f4, lower = -2, upper = 2)
268
269
270
   271
   272
   # RIEMANN SUMS 2D FUNCTION
273
274
   riemann_sum_2d <- function(f, a, b, c, d, nx, ny) {
275
276
     # Compute the Riemann sum of f(x,y) over the intervals [a,b] and [c,d].
277
278
     # Parameters
279
     # f : function
280
     # Vectorized function of one variable
281
     \# a , b : numeric
282
     # Endpoints of the interval [a,b] (inner integral)
283
     \# c , d : numeric
284
     # Endpoints of the interval [c,d] (outer integral)
285
     # nx : numeric
286
     \# Number of subintervals of equal length in the partition of [a,b]
287
288
     # ny : numeric
     \# Number of subintervals of equal length in the partition of [c,d]
289
```

```
290
      # Returns
291
      # -----
292
293
      # numeric
      # Approximations of the integral given by the Riemann 2D sum.
294
295
      # initialize values
296
      dx = (b - a) / nx
297
      s = 0.0
298
299
300
      dy = (d - c) / ny
301
     y = c
302
303
      # riemann 2D sum
304
      for (i in 1:nx) {
305
       for (j in 1:ny) {
306
         x = a + dx / 2 + i * dx
307
         y = c + dy / 2 + j * dy
308
         f_i = f(x, y)
309
         s = s + f_i * dx * dy
310
       }
311
     }
312
313
314
      # print/get riemann sum
      cat(sprintf("The\sqcuptrue\sqcupvalue\sqcupis\sqcuparound\sqcup%f.\n",
315
                 as.double(s)))
316
317
     return(s)
318
319
320
321
322
323
   f5 \leftarrow function(x, y) {
324
     res = exp((x + y) ^2)
325
326
      return(res)
327
328
329
330
    # ----
331
332
    # compute riemann_sum_2d for f5
333
   riemann_sum_2d(f5, 0, 1, 0, 1, 1000, 1000)
334
    # let's verify our calualtion using R's function
335
336
    integral2(f5, 0,1, 0,1)
337
338
    339
    340
    # 2ND DERIVATIVE APPROXIMATION
341
342
    derivative <- function(f, h) {</pre>
343
      # Compute the Riemann sum of f(x,y) over the intervals [a,b] and [c,d].
344
345
346
      # Parameters
347
      # -----
      # f : function f(x)
348
      # Vectorized function of one variable
349
```

```
\# h : numeric
350
      # Let x now change by an amount h. h is the variable that approaches O
351
352
      # Returns
353
      # -----
354
      # function
355
      \# Approximations of the derivative of f, given a step h.
356
357
      return(function(x) {
358
        (f(x + h) - f(x)) / (h)
359
      })
360
361
362
    f6 <- function(x) {</pre>
363
      res = x^4*sin(x)
364
365
      return(res)
366
367
368
369
    # df1 = d/dx(x^4 sin(x))
370
         = x^3 (4 \sin(x) + x \cos(x))
371
    df1 <- derivative(f6, 0.0001)
372
373
    \# df2 = d/dx(x^3 (4 sin(x) + x cos(x)))
374
         = x^2 (8 x \cos(x) - (x^2 - 12) \sin(x))
375
    df2 <- derivative(df1, 0.0001)</pre>
376
377
    # Let's evaluate x=pi in the second derivative df2
378
    df2(pi)
379
380
    # Let's use the eval() funtion to verify our solution. The value should
381
       be around df2(pi)
    eval({ x \leftarrow pi; x^2*(8*x*cos(x) - (x^2 - 12)*sin(x))})
```

C Full Output Log

```
> #* AUTHOR(S) :
  > #*
           Bruno Gonzalez Soria
                                      (A01169284)
           Antonio Osamu Kataqiri Tanaka (A01212611)
  > #*
  > #*
  > #* FILENAME :
  > #*
          Homework4.R
  > #*
  > #* DESCRIPTION :
9
  > #*
           Simulations (Ene 19 Gpo 1)
10
           Homework 4
  > #*
11
  > #*
12
  > #* NOTES :
13
          - https://www.math.ubc.ca/~pwalls/math-python/integration/
14
      riemann-sums/
          - https://activecalculus.org/multi/S-11-1-Double-Integrals-
15
     Rectangles.html
         - http://math.colgate.edu/faculty/valente/math113/supplements/
16
      section 151 handout.pdf
  > #*
          - http://hplgit.github.io/Programming-for-Computations/pub/p4c/
17
      p4c-sphinx-Python/._pylight004.html
          - https://rstudio-pubs-static.s3.amazonaws.com/131664_1858
18
      eec97df54c9b8d5edcd8b22e5818.html
  > #*
19
  > #* START DATE :
20
  > #*
          21 Feb 2019
21
  > #******************************
22
23
  > # Install required libraries
24
25
  > #install.packages('pracma', dependencies=TRUE);
26
  27
  > integralPlot <- function(f,</pre>
28
29
                           a,
                           b,
30
31
                            from = a,
                           to = b,
32
                           title = NULL) {
33
      # Plot the area under a function over the interval [a,b] between [
34
      from, to].
35
      # Parameters
36
37
      # f : function
38
      # funtion to be ploted
39
      # a , b : numeric
40
      # Endpoints of the integral interval [a, b]
41
      # from , to : numeric (optional)
      # Endpoints of the plot in the x-axis [x min, x max]
      # title : expression
      # title of the plot
45
46
      # Returns
47
48
      # void
49
50
      x <- seq(from, to, length.out = 100) # input continuum
51
```

```
y \leftarrow f(x) # output
52
53
       # plot the curve
54
       plot(
55
56
         x,
57
         xlim = c(from, to),
58
         ylim = c(ifelse(min(y) < 0, min(y), 0), max(y)),
59
         xlab = "x",
60
         ylab = "f(x)",
61
         main = title,
62
         col.main = "#86B875",
63
         type = "1",
64
65
         lwd = 3,
         col = "#86B875"
66
67
68
       # area under the curve
69
       x \leftarrow seq(a, b, length.out = 100)
70
       y <- f(x)
71
       polygon(
72
73
         c(x, b, a, a),
         c(y, 0, 0, f(a)),
74
         border = adjustcolor("#7DBODD", alpha.f = 0.3),
75
         col = adjustcolor("#7DBODD", alpha.f = 0.3)
76
       )
77
   + }
78
79
80
   81
   82
   > # TAYLOR SERIES
83
84
85
   > library(pracma)
86
87
     taylorPlot <- function(f, c, from, to) {</pre>
       # Plot the Taylor approximations up to the 2nd, 4th, 6th and 8th
88
       terms
89
       # Parameters
90
91
       # f : function
92
       # Vectorized function of one variable
93
94
       # c : numeric
       # point where the series expansion will take place
95
        # from, to : numeric
96
97
       # Interval of points to be ploted
98
       # Returns
99
100
       # void
101
102
       x \leftarrow seq(from, to, length.out = 100)
103
       yf < -f(x)
104
105
       yp2 <- polyval(taylor(f, c, 2), x)</pre>
106
       yp4 <- polyval(taylor(f, c, 4), x)</pre>
107
       yp6 <- polyval(taylor(f, c, 6), x)</pre>
108
       yp8 <- polyval(taylor(f, c, 8), x)</pre>
109
110
```

```
plot(
111
112
          х,
          yf,
113
          xlab = "x",
114
          ylab = "f(x)",
115
          type = "1",
116
          main = ' \sqcup Taylor \sqcup Series \sqcup Approximation \sqcup of \sqcup f(x) \sqcup ',
117
          col = "black",
118
          lwd = 2
119
120
121
        lines(x, yp2, col = \#c8e6c9")
122
        lines(x, yp4, col = "\#81c784")
123
        lines(x, yp6, col = "\#4caf50")
124
        lines(x, yp8, col = \#388e3c)
125
126
        legend(
127
          'topleft',
128
          inset = .05,
129
          legend = c("TS_{\square}8_{\square}terms", "TS_{\square}6_{\square}terms", "TS_{\square}4_{\square}terms", "TS_{\square}2_{\square}terms",
130
       "f(x)"),
          col = c('#388e3c', '#4caf50', '#81c784', '#c8e6c9', 'black'),
131
          lwd = c(1),
132
          bty = 'n',
133
          cex = .75
134
135
        )
    + }
136
137
138
139
    > f0 <- function(x) {
140
        res = sin(x)
141
142
143
        return(res)
144
     }
145
146
    > f1 <- function(x) {
147
        res = exp(complex(real = 0, imaginary = 1)*x)
148
149
        return(res)
150
151
     }
152
153
      # ----
154
155
    > taylorPlot(f0, 0, -6.6, 6.6)
156
157
    > taylorPlot(f1, 1, -2*pi, 2*pi)
158
    Warning messages:
159
    1: In xy.coords(x, y, xlabel, ylabel, log):
      imaginary parts discarded in coercion
160
    2: In xy.coords(x, y): imaginary parts discarded in coercion
161
    3: In xy.coords(x, y): imaginary parts discarded in coercion
162
    4: In xy.coords(x, y): imaginary parts discarded in coercion
163
    5: In xy.coords(x, y) : imaginary parts discarded in coercion
164
165
166
    167
   168
   > # RIEMANN SUMS FUNCTION
169
```

```
170
      riemann_sum <- function(f, a, b, n) {</pre>
171
172
         # Compute the Riemann sum of f(x) over the interval [a,b].
173
         # Parameters
174
         # -----
175
         \# f : function
176
         # Vectorized function of one variable
177
         \# a , b : numeric
178
         # Endpoints of the interval [a,b]
179
         \# n : numeric
180
         # Number of subintervals of equal length in the partition of [a,b]
181
182
183
         # Returns
184
         # -----
185
         # numeric
         # Underestimate and overestimate approximations of the integral given
186
          bu the
         # Riemann sum.
187
188
         # initialize values
189
         lower.sum <- 0
190
191
         upper.sum <- 0
192
193
         h < - (b - a) / n
194
195
196
         # riemann right sum
197
         for (i in n:1) {
198
            x \leftarrow a + i * h
199
200
201
            lower.sum <- lower.sum + f(x)</pre>
202
203
204
         lower.sum <- h * lower.sum</pre>
205
206
         # riemann left sum
207
         for (i in 1:n) {
208
           x < -b - i * h
209
210
            upper.sum <- upper.sum + f(x)
211
212
213
214
         upper.sum <- h * upper.sum
215
216
         # let's plot the curve
217
         integralPlot(
218
           f = f,
219
           a = a,
220
           b = b,
221
            title = expression(f(x))
222
223
224
225
         # print/get riemann sum
^{226}
         cat(sprintf(
            "The _{\sqcup} true _{\sqcup} value _{\sqcup} is _{\sqcup} between _{\sqcup}\% f _{\sqcup} and _{\sqcup}\% f . \n" ,
227
            as.double(lower.sum),
228
```

```
as.double(upper.sum)
229
       ))
230
231
232
       return(c(lower.sum, upper.sum))
233
   + }
^{234}
235
   >
236
237
   > # let's generate some functions to test our algorithm
238
   > f2 <- function(x) {
239
       res = x
240
^{241}
       return(res)
242
243
   + }
^{244}
245
   > f3 <- function(x) {
246
       res = 4 / (1 + x^2)
247
248
       return(res)
249
250
   + }
251
252
   > # ----
253
254
   > riemann_sum(f0, 0, pi / 2, 10)
255
   The true value is between 1.076483 and 0.919403.
256
    [1] 1.0764828 0.9194032
257
   > riemann_sum(f2, 0, 1, 10000) # should be 0.5
258
   The true value is between 0.500050 and 0.499950.
259
    [1] 0.50005 0.49995
260
    > riemann_sum(f3, 0, 1, 10000) # should be PI
261
262
   The true value is between 3.141493 and 3.141693.
    [1] 3.141493 3.141693
263
264
265
   266
   267
   > # Integrate the function f(x) = exp(x+x^2) from -2 to 2, using Rieman
268
       sums.
   > f4 \leftarrow function(x) {
269
       res = exp(x + x^2)
270
271
       return(res)
272
273
274
   + }
275
276
   > # plot Taylor approximations
   > taylorPlot(f4, 0, -2.3, 1.3)
277
278
   > # compute riemann_sum for f4
279
   > riemann_sum(f4, -2, 2, 100000)
280
   The true value is between 93.170674 and 93.154833.
281
    [1] 93.17067 93.15483
282
   > # let's verify our calualtion using R's function
283
   > integrate(f4, lower = -2, upper = 2)
   93.16275 with absolute error < 0.00062
285
^{286}
287 || >
```

```
289
   > # RIEMANN SUMS 2D FUNCTION
290
291
   > riemann_sum_2d <- function(f, a, b, c, d, nx, ny) {</pre>
292
       # Compute the derivative of a function.
293
294
       # Parameters
295
       # -----
296
       # f : function
297
       # Vectorized function of one variable
298
       \# a , b : numeric
299
       # Endpoints of the interval [a,b] (inner integral)
300
       \# c , d : numeric
301
       # Endpoints of the interval [c,d] (outer integral)
302
303
       \# nx : numeric
       # Number of subintervals of equal length in the partition of [a,b]
304
       # ny : numeric
305
       \# Number of subintervals of equal length in the partition of [c,d]
306
307
       # Returns
308
309
310
       # numeric
       # Approximations of the integral given by the Riemann 2D sum.
311
312
       # initialize values
313
       dx = (b - a) / nx
314
       s = 0.0
315
       x = a
316
317
       dy = (d - c) / ny
318
       y = c
319
320
321
       # riemann 2D sum
322
       for (i in 1:nx) {
323
         for (j in 1:ny) {
           x = a + dx / 2 + i * dx
324
           y = c + dy / 2 + j * dy
325
           f_i = f(x, y)
326
           s = s + f_i * dx * dy
327
         }
328
       }
329
330
       # print/get riemann sum
331
       cat(sprintf("The true value is around %f. \n",
332
                   as.double(s)))
333
334
       return(s)
335
336
   + }
337
338
     # ----
339
340
   > f5 <- function(x, y) {
341
       res = exp((x + y)^2)
342
343
       return(res)
344
345
   + }
346
   >
347
```

```
348 || > # -----
349
   > # compute riemann_sum_2d for f5
   > riemann_sum_2d(f5, 0, 1, 0, 1, 1000, 1000)
   The true value is around 4.926310.
352
   [1] 4.92631
353
   > # let's verify our calualtion using R's function
354
   > integral2(f5, 0,1, 0,1)
355
   $ Q
356
   [1] 4.899159
357
358
   $error
359
   [1] 9.974762e-16
360
361
362
363
   364
   365
   > # 2ND DERIVATIVE APPROXIMATION
366
367
     derivative <- function(f, h) {</pre>
368
       # Compute the derivative of a function.
369
370
       # Parameters
371
372
       \# f : function f(x)
373
       # Vectorized function of one variable
374
       \# h : numeric
375
       # Let x now change by an amount h. h is the variable that approaches
376
377
378
379
       # Returns
380
       # function
       # Approximations of the derivative of f, given a step h.
383
       # return(function(x) {
384
       # (f(x + h) - f(x - h)) / (2 * h)
385
386
387
       return(function(x) {
388
         (f(x + h) - f(x)) / (h)
389
       })
390
   + }
391
392
393
   > f6 <- function(x) {
394
       res = x^4*sin(x)
395
       return(res)
396
397
   + }
398
399
   > # df1 = d/dx(x^4 sin(x))
400
   > #
           = x^3 (4 \sin(x) + x \cos(x))
401
   > df1 <- derivative(f6, 0.0001)</pre>
402
403
   > # df2 = d/dx(x^3 (4 sin(x) + x cos(x)))
404
   > #
           = x^2 (8 x \cos(x) - (x^2 - 12) \sin(x))
405
   > df2 <- derivative(df1, 0.0001)</pre>
406
```

```
407 || >
    > # Let's evaluate x=pi in the second derivative df2
408
    > df2(pi)
409
   [1] -248.076
410
411
    > # Let's use the eval() funtion to verify our solution. The value should
412
        be around df2(pi)
    > eval({ x \leftarrow pi; x^2*(8*x*cos(x) - (x^2 - 12)*sin(x))})
413
    [1] -248.0502
414
    >
415
```