Egzamin z Mikroekonomii II

prof. Łukasz Woźny, mgr Michał Chojnowski

20/06/2020

Czas na rozwiązanie zadań to 80 minut.

Całkowita liczba punktów do zdobycia: 35 pkt.

Pracę student wykonuje samodzielnie.

Proszę przesłać skany rozwiazań do godziny 11:30.

Prace przesłane po terminie oraz wykonane niesamodzielnie mogą zostać ocenione na 0 pkt.

adres: mc50335@doktorant.sgh.waw.pl

W temacie pracy proszę podać słowo 'egzamin'.

Zadanie 1. [2 pkt.]

Podaj definicję równowagi Nasha.

Zadanie 2. [10 pkt.]

W tym zadaniu przeanalizujesz międzyokresowy wybór konsumenta żyjącego dwa okresy. Załóżmy, ze w pierwszym okresie konsument posiada majątek w wysokości w, który moze przeznaczyć na konsumpcję (c_1) i oszczędności (s). W drugim okresie jego majątek jest równy oszczędnościom poczynionym w pierwszym okresie, powiększonym o stałą stopę procentową r, który w całości jest konsumowany. Użyteczność konsumenta ma postać $u(c_1, c_2) = \{c_1^{\rho} + c_2^{\rho}\}^{\frac{1}{\rho}}$, gdzie c_1 , c_2 oznaczają odpowiednio poziom konsumpcji w pierwszym i drugim okresie.

- (i) Zapisz problem konsumenta maksymalizującego użyteczność w całym życiu. Zapisz odpowiadającą mu funkcję Lagrangeá.
- (ii) Rozwiąż problem, okreslając optymalne poziomy konsumpcji (c_1, c_2) i oszczedności (s).
- (iii) Jakiego rodzaju dobrami jest konsumpcja w pierwszym i drugim okresie? Czym w tym przypadku jest stopa procentowa r? Jak od niej zależy decyzja odnośnie konsumpcji w obydwu okresach?

Zadanie 3. [5 pkt.]

Dla poniższej funkcji wyprowadź odpowiadającą jej funkcję kosztów długookresowych: $f(\mathbf{x}) = \{\alpha_1 x_1^{\rho} + \alpha_2 x_2^{\rho}\}^{\frac{1}{\rho}}, \rho < 1$ (funkcja produkcji CES).

Zadanie 4. [3 pkt.]

Narysuj macierz 2x2 z wypłatami przedstawiającycmi grę koordynacyjną. Znajdź równowagi Nasha oraz Pareto w strategiach czystych.

Zadanie 5. [15 pkt.]

Konsument 1 posiada preferencje opisane za pomocą $u_1(x_A, x_B) = max\{x_A + x_B\}$, a konsument 2 preferencje zadane przez $u_2(x_A, x_B) = \max\{x_A, x_B\}$. Początkowy zasób każdego z nich to $(\frac{1}{2}, \frac{1}{2})$.

(i) Naszkicuj powyższy przykład wykorzystując diagram Edgewortha.

- (ii) Jaka jest relacja cen p_A do p_B w równowadze Walrasowskiej?
- (iii) Jaka alokacja jest obrana w równowadze Walrasowskiej?