Intermediate Goods and Misallocation in China's Manufacturing Sector

Wenya Wang

University of Western Ontario

January 25, 2017

Motivation

Evidence of substantial measured misallocation of inputs across firms for many developing countries

 gap between output, and potential output if marginal products of inputs equalized across firms [Hsieh and Klenow (2009)]

Intuition:

Introduction

- high productivity firms, too few inputs
- low productivity firms, too many

Introduction 00000000

Existing literature: value added (output) misallocation

- capital and labor re-allocated from low value-added productivity firms to high ones
- implicitly assume intermediate goods efficiently allocated

Potential problem: if intermediates are misallocated,

- ignore gain in re-allocating intermediate goods
- value added misallocation mis-measured
 - distortions on intermediates bias value-added productivity measure
 - e.g. underestimated for firms constrained in intermediates

Alternative starting point: gross output misallocation

Introduction

In China's Industrial Enterprise Survey (CIES) data,

- intermediates 74% of gross output revenue
- · more than twice the share of capital and labor combined

Intermediate good purchases need to be financed

- purchased long time before receiving sales revenue
 - 90 to 180 days in working capital management studies [e.g. Deloof (2003)]

This paper: borrowing constraints on intermediates & misallocation in China

· apply to other countries with under-developed financial system

What I Do: Data

Use China Industrial Enterprise Survey, 1998-2007

firm-level data for manufacturing sector

Compute gross output misallocation

Quantify contributions of

- 1. intermediate goods
- 2. capital
- 3. labor

Introduction

in measured gross output & value added misallocation

What I Find: Data

Misallocation of intermediate goods: large

1. gross output gain

Introduction 00000000

- 35% by re-allocating intermediates alone, fixing capital and labor as in data
- 6% for capital, 2% for labor
- 2. value added gain
 - 135% by re-allocating intermediates alone, fixing capital and labor as in data
 - 98% by re-allocating capital and labor in Hsieh and Klenow (2009)'s approach, ignoring misallocation of intermediates
 - 22% for capital, 9% for labor

Re-allocate intermediates, capital and labor simultaneously:

- gross output gain 138%
- value added gain 551%
 - much greater than 98% by value added approach in literature

What I Do: Model & Numerical Expeirments

Model: extend standard firm investment model with capital adjustment costs [Cooper and Haltiwanger (2006); Khan and Thomas (2003)]

- 1. pre-pay for a fraction of intermediates a period ahead
- 2. endogenous borrowing constraints on intermediates and capital

Calibrate to key moments in China.

Numerical Experiments:

Introduction

- 1. Contributions of borrowing constraints on intermediates, on capital, and capital adjustment costs to measured gross output misallocation in China?
- 2. Bias of value added misallocation measure in literature by ignoring misallocation of intermediates?

Introduction

Model accounts for 69% of gross output misallocation in China:

- 1. half from intermediate goods frictions
 - borrowing constraints on intermediates: 23%
 - pre-pay: 11%
- 2. half from capital adjustment costs: 35%
- 3. borrowing constraints on capital unimportant: 1%
 - consistent with Midrigan and Xu (2014)

Why borrowing constraints matter with intermediates?

- · increased borrowing needs every period
- lower recovery rate of cash than capital upon default

Value added approach underestimates misallocation in model:

- 67% < 203% value added gain by re-allocating all three inputs
- underestimated value-added productivity for constrained firms

Introduction 00000000

- 1. Firm-level productivity and misallocation in developing countries
 - Hsieh and Klenow (2009), Brandt, Van Biesebroeck and Zhang (2012)
 - Brandt, Tombe and Zhu (2013), Tombe and Zhu (2015), Brandt, Kambourov and Storesletten (2016), Bai, Lu and Tian (2016)
 - Bils, Klenow and Ruane (2016)
- 2. Capital misallocation across firms
 - (1) capital adjustment costs: Bartlesman, Haltiwanger and Scarpetta (2013), Asker, Collard-Wexler and De Loecker (2014)
 - (2) financial frictions on capital investment: Moll (2014), Buera and Shin (2013), Midrigan and Xu (2014) etc.

Intermediate Goods in Data

Annual China Industrial Enterprise Survey, 1998-2007

- Ideal: rich firm-level information
- Widely used in literature [e.g. Hsieh and Klenow (2009); Brandt et al. (2012)]

Which input most important in measured gross output misallocation?

 largest gross output gain by re-allocating that input alone across firms, holding the other two as observed in data

Gross output misallocation:

 gross output gain by re-allocating capital, labor and intermediates across firms

Firm-level annual balance sheet, income and cash flow statements

- Cross-sectional firm-level data
- 29 CIC 2-digit (3-digit NAICS equivalent) manufacturing industries
- Include all state-owned firms, and private- and foreign- owned firms with sales above 800 thousand U.S. dollars
 - \approx 20% of manufacturing firms, 70% employment, 90% gross output, 97% export values (NBS, 2004)

Variables:

- "Demographics": firm name and I.D., ownership, opening year, industry
- Production: gross output y, book value of capital k, employment, wage bill I, intermediates input m, value of export, inventory, account receivables
 - real capital stock: perpetual inventory method
 - y, k, m deflated by industry specific deflators [Brandt et al. (2012)]

Construct unbalanced panel

- link firms over years by I.D., company name, name of legal representatives, postal code, industry and main products
- following Brandt et al. (2012)

High Intermediate Goods (Revenue) Share

• Intermediate goods (revenue) share for sector s:

 $\frac{\text{Total Value of Input for Sector } s}{\text{Total Value of Gross Output for Sector } s}$

- include materials, energy, fuel etc.
- High intermediate goods share: 74%
 - OECD average, 53%; South Korea and Japan in 1970s, 60-80%
 [Jones (2011)]
 - ranges from 0.54 (wood product) to 0.95 (nonferrous metal)

Misallocation of Intermediate Goods

Within 2-digit CIC industries, compute:

- 1. dispersion (CV) in marginal products of intermediates
- 2. gross output gain by re-allocating intermediates alone, holding capital & labor as observed in data

Cobb-Douglas production function: $y = exp(z)k^{\alpha_k^s}I^{\alpha_l^s}m^{\alpha_m^s}$

• y, gross output; k, capital; l, labor; m, intermediate goods

Firm-level productivity z_i for firm i in industry s

$$z_i = log y_i - \alpha_k^s log k_i - \alpha_l^s log l_i - \alpha_m^s log m_i$$

 α_I^s , α_m^s median firm-level input shares α_I^{is} , α_m^{is} within 2-digit CIC industries

$$\bullet \ \alpha_k^s = 0.85 - \alpha_l^s - \alpha_m^s$$

1. Marginal product of input x at firm i in industry s:

$$MP_{i,x} = \alpha_x^s \frac{y_i}{x_i}, \quad x \in \{k, l, m\}$$

2. Gross output gain by re-allocating intermediate goods alone for industry s

$$\frac{\sum_{i \in s} \exp(z_i) (k_i^d)^{\alpha_k^s} (l_i^d)^{\alpha_i^s} (m_i^1)^{\alpha_m^s} - \sum_{i \in s} y_i^d}{\sum_{i \in s} y_i^d}$$

- y_i^d , k_i^d , l_i^d : gross output, capital and labor in data
- m_i^1 hypothetical intermediate goods: $MP_{im}^1 = \alpha_m^s \frac{y_s}{m!} = constant$ and $\sum_{i \in s} m_i^1 = \sum_{i \in s} m_i^d$
- similar exercise for capital alone & labor alone

Misallocation of Intermediates

Dispersion in Marginal Products and Output Gains by Reallocating One Input within CIC 2-digit Industries, Output Weighted, 1998-2007 Average

	Intermediates	Capital	Labor
CV	0.25	1.69	1.16
Gross output gain	34.81%	5.66%	2.46%
Value added gain	135.01%	21.83%	9.49%

Compared to capital and labor, intermediates

- $1/7 \sim 1/5$ dispersion of marginal products
- \bullet but 6 \sim 15 times of potential gross output & value added gain

Value added gain $\approx \frac{1}{1-0.74} \times \text{gross}$ output gain

Gross Output & Value Added Misallocation

Output Gains by Re-allocating Capital, Labor and Intermediates *Simultaneously* within CIC 2-digit Industries, Output Weighted, 1998-2007 Average

	Gross output approach	Value added approach in literature
Gross output gain	138.01%	-
Value added gain	550.74%	98.12%

Gross output misallocation in China 138%

 input complementarity: greater than 35% (intermediates)+6% (capital) +2% (labor)

Value added approach in literature underestimates misallocation

• ignore misallocation of intermediate goods

Data Summary

Substantial mesured misallocation of intermediate goods in China:

- 1. 35% gross output & 135% value added gain by re-allocating intermediates
 - 6% & 22% for capital, 2% & 9% for labor
- 2. value added misallocation by literature approach: 98%, underestimates misallocation
 - 551% when misallocation of intermediates taken into account

Quantitative Exercises

Model: incorporate borrowing constraints on intermediate goods into

• standard firm-level investment model with capital adjustment costs [Cooper and Haltiwanger (2006); Khan and Thomas (2003)]

Calibrate to China. Quantify

- 1. how much can
 - (1) borrowing constraints on intermediates
 - (2) borrowing constraints on capital
 - (3) capital adjustment costs
 - account for measured misallocation in China
- 2. bias of value added misallocation in literature due to misallocation of intermediates? Source of this bias?

Model

Model set-up:

- firm pre-pay a fraction of intermediate goods a period (annual) ahead
- intermediates and capital subject to endogenous borrowing constraints

Motivation for pre-pay constraint in data:

- intermediates purchased several months before production & receiving sales revenue from buyers
- a.k.a *Operating Cycle* in trade credit and working capital management literature [e.g. Jose, Lancaster and Stevens (1996)]

Pre-pay Constraint

For firm i, operating cycle OC

$$OC_i = \frac{\text{DI: Days in Inventory}}{\text{Sales}_i} * 365 + \frac{\text{DR: Days in Receivables}}{\text{Sales}_i} * 365$$

	OC	DI	DR
Mean	161.20	86.39	74.81
Median	107.89	46.94	42.92

Mean and median OC, \overline{DI} and DR are calculated across firms in each year, and then average out over 1998-2007.

China: in range of 90-180 days in literature [Hager(1976), Deloof(2003), Garcia-Teruel and Martinez-Salano(2007)]

ownerships, exporter status

Model Overview

Infinite horizon economy, t = 0, 1, 2, ...

Financial intermediaries:

 charge break-even interest rates that reflect firms' default probabilities

Model

M_t firms at time t:

- Firms choose inputs to maximize NPV of dividends, given
 - pre-pay constraint on intermediates and capital adjustment costs
 - · borrowing constraints arise because firms
 - 1 can default
 - 2. cannot issue equity

New entrants and equilibrium of loanable funds market

⇒ long-run stationary firm size distribution

000000000000000

Model

Firm i at time t characterized by $(z_{it}, k_{it}, m_{it}, b_{it})$

- z_{it} exogenous stochastic productivity
- k_{it} capital
- m_{it} intermediate goods
- *bit* debt (> 0) / savings (< 0).

Decreasing return to scale technology for gross output production

$$y_{it} = exp(z_{it})k_{it}^{\alpha_k}l_{it}^{\alpha_l}m_{it}^{\alpha_m}$$

- $\alpha_k + \alpha_l + \alpha_m < 1$
- AR(1) process for z_{it} : $z_{it+1} = \rho z_{it} + (1-\rho)\mu_z + \epsilon_{it+1}$ where $\epsilon_{i+1} \sim N(0, \sigma_{\epsilon}^2)$

Intermediate Goods: Pre-pay

Firms pay intermediate goods m_t a period ahead

- payment at t-1: ωm_t
- rest at $t: (1-\omega)m_t$
- ω captures average time length to pre-pay

Period t starts, z_t realizes:

• firms choose intermediate goods usage \bar{m}_{it} up to pre-determined m_{it}

Choices of \bar{m}_{it} and l_{it} : static to maximize profit Π_t

$$\Pi_{t}(z_{it}, k_{it}, m_{it}) = \max_{\bar{m}_{it} \leq m_{it}, l_{it}} y_{it}(z_{it}, k_{it}, \bar{m}_{it}, l_{it}) - l_{it} - (1 - \omega) m_{it} + (m_{it} - \bar{m}_{it})$$

End of production net worth in *t*:

$$\overbrace{\Pi_t - b_t}^{Cash} + \overbrace{(1 - \delta)k_t}^{Capital}$$

Capital Adjustment Costs

Firms invest / divest capital subject to scale-dependent adjustment costs:

$$C(k,k'|\Theta) = \begin{cases} & \text{Type Construction},\Theta = tc \\ & \xi k + \frac{\theta(k' - (1 - \delta)k)^2}{2(1 - \delta)k} & \text{if } \overbrace{k' \notin \left[(1 - \delta - \zeta)k, (1 - \delta + \zeta)k \right]}^{\text{Type Maintenance},\Theta = tm}, \\ & \frac{\theta(k' - (1 - \delta)k)^2}{2(1 - \delta)k} & \text{if } \overbrace{k' \in \left[(1 - \delta - \zeta)k, (1 - \delta + \zeta)k \right]}^{\text{Type Construction},\Theta = tc} \end{cases}$$

 Standard in literature [Cooper and Haltiwanger (2006); Khan and Thomas (2008)]

Timing

productivity z_t realized

firm (z_t,k_t,m_t,b_t) choose intermediate goods $\leq m_t,$ labor l_t produce, profit $\Pi(z_t,k_t,m_t)$

Exit

default and liquidate asset

Continue

pay operating cost, choose $b_{t+1}, k_{t+1}, m_{t+1}$

t ends

00000000000000

Firms endogenously exit $\chi(z, b, k, m) = 1$ after production and asset liquidation takes place.

Model

Liquidation process costs:

- $1-\gamma_2$ cash
- $1-\gamma_1$ capital

i.e. γ_2 cash and γ_1 capital split between firms and financial intermediaries

default when liquidated asset cannot cover debt

Firm's value of exit V^{x}

$$\max\{\gamma_2[\Pi(z,k,m) - b\mathbb{1}(b \le 0)] + \gamma_1(1-\delta)k - b\mathbb{1}(b > 0), 0\}$$

Financial intermediary's loss: $\min\{b - \gamma_2 \Pi(z, k, m) - \gamma_1 (1 - \delta)k, 0\}$

Competitive risk-neutral intermediaries in a small open economy

Model

- take deposits at r₁
- lend at r₂ with intermediation cost c₁ per dollar

Given debt price schedule q'(z, b', k', m'), intermediaries choose b' to maximize expected profit:

$$\begin{split} \max_{b'} \quad & E_{z'|z} \{ \chi'(z',b',k',m') (b'-\gamma_2 \Pi(z',k',m') - \gamma_1 (1-\delta)k') \} \\ & + \{ 1 - E_{z'|z} \chi'(z',b',k',m') \} b' - (1+r_1+c_I)q'b' \end{split}$$

 \Rightarrow supply of funds $b'^s = b'^s(z, k', m'; a')$

Special case: zero expected default probability $E_{z'|z}\chi'$

- competitiveness implies $q' = \frac{1}{1+r_1+r_2}$
- $r_1 + c_I$ prime borrowing interest rate

Firm's Borrowing Constraint

Firms cannot issue new equity, i.e. nonnegative per period dividend d

$$\begin{aligned} d(z, b, k, m, b', k', m', \Theta; q') &= \Pi_t(z, k, m) + (1 - \delta)k - \omega m' - k' \\ &- C(k, k'|\Theta) - b + q'(z, b', k', m')b' - c_o \geq 0 \end{aligned}$$

where Θ is investment type, c_o operating cost

00000000000000

Given state variables (z, b, k, m) and bond price schedules q'(z, b', k', m'), firms maximize value of continuation:

Model

$$\begin{split} V^{c}(z,b,k,m) &= \max_{b',k',m',\Theta \in \{tc,tm\}} d(z,b,k,m,b',k',m',\Theta;q') \\ &+ \beta E_{z'|z} V(z',b',k',m') \\ s.t. \quad d(z,b,k,m,b',k',m',\Theta;q') \geq 0 \\ b' &\leq \bar{b} \qquad \text{(Debt Limit)} \end{split}$$

$$\Rightarrow$$
 Demand for borrowing/saving: $b'^d = b'^d(z, b, k, m; q')$
Capital: $k' = k'(z, b, k, m; q')$
Intermediate goods: $m' = m'(z, b, k, m; q')$

Mass of $\mu_{ent}M_t$ firms exogenously enter every period

- initial productivity $z_0 \sim N(\mu_z, \sigma_z^2)$
- initial net worth b₀ from Pareto distribution

$$g(-b_0) = \begin{cases} \frac{\alpha a_{\min}^{\alpha}}{(-b_0)^{\alpha+1}} & \text{if } -b_0 \ge a_{\min} \\ 0 & \text{if } -b_0 < a_{\min} \end{cases}$$

 a_{min} minimum wealth, α Pareto shape

One period to set-up, i.e. $k_0 = 0$, $m_0 = 0$

Value function upon entry:

$$\begin{split} V_{ent}(z_0,b_0,0,0) &= \max_{b',k',m'} -\omega m' - k' - b_0 + q'(z,b',k',m')b' \\ &- c_o + \beta E_{z'|z_0} V(z',b',k',m') \\ s.t. &- \omega m' - k' - b_0 + q'(z,b',k',m')b' - c_o \geq 0 \\ b' &\leq \bar{b} \end{split} \tag{Debt Limit}$$

Firm i enter in t and start to produce in t+1

Debt price function q'(z,b',k',m'), policy functions of incumbents $b'^d(z,b,k,m;q')$, k'(z,b,k,m;q') and m'(z,b,k,m;q'), transition indicator functions for incumbents $\mathbb{T}(z,b,k,m;b',k',m')$, policy functions of entrants $b'_{ent}(z_0,-b_0,0,0;q')$, $k'_{ent}(z_0,-b_0,0,0;q')$ and $m'_{ent}(z_0,-b_0,0,0;q')$, exit rule $\chi(z,b,k,m)$, transition indicator function for entrants $\mathbb{T}_{ent}(z,b,0,0;b',k',m')$, supply function of funds $b^s(z,k',m';q')$, endogenous mass of firms M' and distribution of firms f'(z',b',k',m') such that

- given debt price function, policy functions solve problems of incumbents and entrants
- given debt price function the supply function of funds solves lenders' problem
- debt price function clears supply and demand of funds at the firm-level
- 4. distribution and mass of firms f' and M' evolve recursively

Stationary distribution defined as f'(z, b, k, m) = f(z, b, k, m) for any state (z, b, k, m)

Quantitative Analysis

Calibrate model to China' data

Quantitative contribution of

- 1. borrowing constraints on intermediates and capital
- 2. capital adjustment costs

in measured gross output misallocation in China

Value added misallocation:

 when intermediates are reallocated, compared to Hsieh and Klenow (2009) approach

Problem in CIES: 800 thousand U.S. dollars threshold sales for private-owned firms \approx top 20% firms in sales

- entry and exit in CIES not entry and exit in manu. sector / model
- growing incumbents among CIES entrants; vice versa for exiters

Model analog of threshold sales y_c

Numerical:

- 1. given a set of parameters, compute model implied stationary distribution of firms f(z, b, k, m)
- 2. sample 630,000 firms from the distribution
- 3. choose y_c as top 20% of sales and compute key moments in $y>y_c$ subsample
- 4. choose parameters to match moments in China's data

Recovery rates $\gamma_1 = 0.3$, $\gamma_2 = 0.1$

capital: 37%

cash: 22% [Fan and Morck (2012, p.85)]

Fraction of pre-paid intermediate goods $\omega=60\%$

- calibrated jointly with other 10 parameters
- ullet ω affects bindingness of borrowing constraints \Rightarrow firm growth
- Market share of data entrants age $\geq 5 \over {
 m Market}$ share of data entrants age $< 5 \over {
 m market}$ most sensitive to ω

Parametrization

Parametrized			Calibrated		
Parameter Value		Value	Parameter		Value
Discounting factor	β	0.94	Return to Scale	η	0.85
Depreciation rate	δ	0.09	Labor share	α_I	0.05
Capital Adjustment Cost			Intermediate goods share	α_m	0.70
Fixed cost	ξ	0.039	fraction of intermediate goods in advance	ω	60%
Fixed cost free band	ζ	0.09	Debt limit	$log(\bar{b})$	6.10
Convex cost	θ	0.049	Threshold sales	Уc	436.30
Interest Rates			Operating cost	Co	5.00
Saving rate	r_1	0.03	Productivity Process		
Prime borrowing rate	r_2	0.06	Population persistence of productivity	ρ_z	0.70
Recovery Rates			Population S. D. of productivity	σ_z	0.70
Cash	γ_2	0.10	Unconditional mean	μ_z	0.90
Capital	γ_1	0.30	Initial Wealth Distribution of Entrants	•	
	•		Mass of entrants	μ_{ent}	0.17
			Pareto Shape	α	0.60
			Min. Wealth	a_{min}	20.00

Moments Targeted

Moments	Data	Model
Market share by firms of top 10% sales	84.5%	87.5%
Population exit rate*	8%	5.80%
Frac. of firms above threshold	20.00%	20.00%
Frac. of firms with debt*	34.29%	34.60%
Mean productivity (Top 20% firms)	1.82	1.80
SD of productivity (Top 20% firms)	0.45	0.42
5-year Horizon		
Frac. of data exiters in t	59%	57.88%
Frac. of data entrants in $t+5$	67.89%	72.20%
Market share of data exiters in t	40.09%	41.29%
Market share of data entrants in $t+5$	49.14%	56.38%
Market share of age (≤ 5) data entrants Market share of age (> 5) data entrants	1.30	1.29

Moments except for * are from CIES data 1998-2003. Population exit rate from survival analysis of Chinese firms by State Administration for Industry and Commerce. Fraction of firms with debt from World Bank Enterprise Survey 2011.

Model:

- 96% gross output gain when re-allocate intermediates, capital and labor
- 69% of measured gross output misallocation in data

For intermediate goods alone,

• 61% misallocation in data

Dispersion in Marginal Products and Output Gain by Reallocating One Input, Model vs Data

	Int	termediate Goods	Capital		
	CV	Gross Output Gain	CV	Gross Output Gain	
Model Data	0.47	21.18%	1.07	8.79%	
Data	0.25	34.81%	1.69	5.66%	

Counterfactuals: decompose misallocation contributed by each friction

Order of removing frictions:

- 1. intermediate goods frictions first
- 2. a model with capital frictions alone resembles that in literature:
 - e.g. Asker et al. (2014) (Exp. 3), Midrigan and Xu (2014) (Exp. 2 without capital adj. costs)

Model Specifications of Counterfactual Experiments

Friction	Benchmark	Exp. 1	Exp. 2	Exp. 3
Capital adjustment costs	√	✓	✓	✓
Borrowing constraints on capital	✓	\checkmark	\checkmark	
Pre-pay on intermediates	✓	\checkmark		
Borrowing constraints on intermediates	✓			

No default on intermediate goods $\omega m'$, i.e. fully recoverable

$$\begin{split} V^{c}(z,b,k,m) &= \max_{b',k',m',x \in \{ct,mt\}} \Pi(z,k,m) + (1-\delta)k - \omega m' - k' \\ &- C(k,k'|\Theta) - b + q'(z,b',k',m')b' - c_o + \beta E_{z'|z} V(z',b',k',m') \\ s.t. \\ \Pi(z,k,m) + (1-\delta)k - k' - C(k,k'|\Theta) - b + q'(z,b',k',m')b' - c_o \ge 0 \end{split}$$

Payment for next period intermediate goods, $\omega m'$

- not into borrowing constraint
- e.g. intermediate goods from suppliers in processing trade

Gross Output Misallocation in Counterfactuals

	Be	enchmark	!	Exp. 1	1	Exp. 2	!	Exp. 3
	Level	% of Data						
Gross output gain when re-allocate k , l , m	0.96	69.34%	0.64	46.69%	0.49	35.62%	0.48	34.75%
Borrowing constraints on intermediate goods Pre-pay on intermediate goods	0.32	22.65%	0.15	11.07%				
Borrowing constraints on capital					0.01	0.87 %		
4. Capital adjustment costs							0.48	34.75%

Intermediate goods frictions, 34% of misallocation in China

- borrowing constraints more important than pre-pay
- Capital frictions, 35%
 - small by borrowing constraints, as in Midrigan and Xu (2014)
 - robustness: 8% when removed first

Borrowing Constraints on Intermediates: Mechanisms

Channels: borrowing constraints on intermediates cause misallocation

- 1. pre-payment for next period intermediates ωm_{t+1} increases borrowing need and tightens constraint
- 2. crowd out k_{t+1} ; decreases future collateral; further tightens borrowing constraints
- 3. firms in t+1 cannot respond to high productivity shocks by having intermediate goods usage beyond pre-ordered m_{t+1}
- 4. 3 worsens Channels 1 & 2; firms are constrained longer than without intermediates frictions

Value Added Misallocation

Value added approach in literature **underestimates** value added misallocation in data & model.

	Value adde	ed approach in literature	Gross outp	ut approach
	Data	Model	Data	Model
Value added gain	98.12%	66.76%	550.74%	203.48%

Source of bias in model:

- (1) high gross output productivity firms borrowing constrained in $m \Rightarrow$ low value added productivity \Rightarrow low k, l re-allocated to them Post
- (2) ignore misallocation of k, l "because of" misallocation of m via complementarity

Model generates 61% of intermediate goods misallocaiton in China's data

Model generates 69% gross output misallocation:

- half by intermediate goods frictions, mainly borrowing constraints on intermediate goods
- · half by capital frictions, most capital adjustment costs

Value added misallocation based on value added productivity underestimates misallocation.

Conclusion

Intermediate goods important for measured gross output misallocation.

This paper

- 1. document gross output misallocation in intermediate goods in China's data
- 2. quantitatively assess how borrowing constraints on intermediate goods accounts for gross output misallocation
 - 34% of misallocation of China's data
 - quantitatively as important as capital adjustment costs
- 3. traditional approach on value added misallocation under-estimates misallocation by ignoring misallocation of intermediates

Applicable to other countries with under-developed financial system, e.g. India and Mexico

Thank You!

	Number	Gross Output (billion)	Total Wage (billion)	Employment (10,000)
2004				
Below	1,001,587	1,867.76	196.54	2413.28
Above	256,999	17,528.35	791.97	5667.34
% of above size firms	20.42%	90.37%	80.12%	70.13%
2008				
Below	1,356,124	3,318.36	382.68	2889.91
Above	396,950	44,135.83	2,678.62	7,731.57
% of above size firms	22.64%	93.01%	87.50%	72.79%

Current price. Source: The First and Second Economic Census (2004,2008), National Bureau of Statistics

Figure 1: Share of Intermediate Goods and Labor, 2-digit CIC Industry

Source: China Industrial Survey Data 1998-2007

Table 2: Intermediate Goods Share, CIES 1998-2007

All	74.17%
By Ownership	
State	74.38%
Private	76.02%
Foreign	72.27%
By Exporter Status	
Exporter	73.59%
Non-exporter	74.82%

Table 3: Operating Cycles, Days in Inventory and Days in Receivables, CIES 1998-2007

	All	(Ownershi	р	Exporter Status	
	All	Private	State	Foreign	Exporter	Non-exporter
ОС						
Mean	161	134	204	155	166	149
Median	108	97	130	120	108	107
DI						
Mean	86	69	113	81	88	81
Median	47	41	57	54	45	51
DR						
Mean	75	65	91	74	77	68
Median	43	39	49	51	43	43

Table 4: Growth in Mean Productivities in the CIES, 1998-2007

Year	Mean Productivity \bar{z}	Mean Productivity Relative to 1998 Δz
1998	1.82	0
1999	1.84	0.02
2000	1.89	0.07
2001	1.90	0.08
2002	1.92	0.10
2003	1.97	0.15
2004	1.98	0.16
2005	2.04	0.22
2006	2.09	0.27
2007	2.12	0.30

Source: China Industrial Survey Data 1998-2007

Figure 2: Diff. in Log Capital of 1998 Cohort Compared to All Firms above Cutoff, Data vs Model

Figure 3: Diff. in Log Sale of 1998 Cohort Compared to All Firms above Cutoff, Data vs Model

Figure 4: Diff. in Log Productivity of 1998 Cohort Compared to All Firms above Cutoff, Data vs Model

Model: Given One Birth Cohort							
Years Post Birth		No. of Firms in Data	Data Exit	Exit %	Data Enter	Enter %	Enter-Exit
0		2246					
1		3075	656	29.21%	1485	66.12%	36.91%
2		3862	860	27.97%	1647	53.56%	25.59%
3		4177	1232	31.90%	1547	40.06%	8.16%
4		4374	1264	30.26%	1461	34.98%	4.72%
5			1298	29.68%	1411	32.26%	2.58%
		Data	a: 1998 Coho	ort			
Years Post Birth	Year	No. of Firms in Data	Data Exit	Exit %	Data Enter	Enter %	Enter-Exit
0	1998	5024					
1	1999	7430	801	15.94%	3038	60.47%	44.53%
2	2000	9622	1031	13.88%	2888	38.87%	24.99%
3	2001	11886	1871	19.45%	3706	38.52%	19.07%
4	2002	12870	1425	11.99%	2395	20.15%	8.16%
5	2003	13308	1736	13.49%	2079	16.15%	2.67%

Figure 5: Age Distribution of Data Entrants

Capital Accumulation With and Without Intermediate **Goods Frictions**

Average Log Capital Among Stayers and Accumulated Exit Rate, With and Without Intermediates Frictions

t = 0: 30,000 firms from stationary distribution f(z, b, k, m)

Complementary Misallocation

When re-allocate intermediate goods, holding capital and labor fixed

- complementarity among inputs not captured
 - e.g. low productivity firms still assigned with many intermediates "because of" high capital and labor

Complementary Misallocation $g_{kl,m}^{s}$ captures misallocation in capital and labor "because of" misallocation in intermediates. For industry s:

$$g_{kl,m}^s = g_{klm}^s - g_{kl}^s - g_m^s \tag{1}$$

- g_{klm}^{s} gross output gain by re-allocating k, l, m
- g_{kl}^{s} gross output gain by re-allocating k, l

Complementary Misallocation

Gross Output Gain by Reallocating Inputs, Output Weighted, 1998-2007 Average

Posllogate Inputs	Gross Output Gain		
Reallocate Inputs	Average 2-digit	Median 2-digit	
1. k, l	8.69%	6.18%	
2. m	34.81%	28.31%	
3. k, l, m	138.72%	145.91%	
Compl. Misallocation=3-(1+2)	95.22%	111.41%	

Complementary misallocation, 95.22%

- 3 times of g_{m}^{s} , 11 times of g_{kl}^{s}
- \Rightarrow crucial interactions between distortions in intermediates and capital & labor

Sensitivity to Pre-pay Fraction of Intermediates ω

Measures of Misallocation: Output Gain by Re-allocating k, l, m

	Benchmark	$\omega = 40\%$	$\omega = 20\%$
Gross output Value added	96% 203%	94% 198%	83% 195%
value added	203/0	190/0	195/0

Bias from Value Added Misallocation

Suppose firm i face distortion on intermediate goods τ .

$$\max_{m_i} \exp(z_i) k_i^{\alpha_k} m_i^{\alpha_m} l_i^{\alpha_l} - (1+\tau_i) p_m m_i$$
 (2)

FOC implies optimal choice of m_i

$$m_i^* = \left[\frac{(1+\tau_i)p_m}{\alpha_m \exp(z_i)k_i^{\alpha_k}l_i^{\alpha_l}}\right]^{\frac{1}{\alpha_m-1}} \tag{3}$$

Value added

$$Y - m^* = \exp(z_i) \left[\frac{\alpha_m \exp(z_i)}{p_m (1 + \tau_i)} \right]^{\frac{\alpha_m}{1 - \alpha_m}} k_i^{\frac{\alpha_k}{1 - \alpha_m}} I_i^{\frac{\alpha_l}{1 - \alpha_m}}$$
(4)

Log value-added productivity =

$$\frac{1}{1-\alpha_m} z_i - \frac{\alpha_m}{1-\alpha_m} log(1+\tau_i) + \frac{\alpha_m}{1-\alpha_m} log\alpha_m$$
 (5)

In HK exercise

- if $corr(\tau_i, z_i) > 0$ (as in the model), capital and labor are not reallocated to productive firm i because of high τ_i .
- bias larger when α_m larger

Misallocation of Intermediates, Simulation

Gross Output Misallocation & Complementary Misallocation: Model 69% of Data

Deelle este la sute	Gross Output Gain		
Reallocate Inputs	Data	Model	
1. k, l	8.69%	8.79%	
2. m	34.81%	21.18%	
3. k, l, m	138.72%	96%	
Compl. Misallocation=3-(1+2)	95.22%	66.03%	

Lower Value Added Productivity: Constrained Firms

Dispersion in Marginal Products and Output Gains by Reallocating One Input within CIC 2-digit Industries, Output Weighted, 1998-2007 Average

	Intermediates		Capital		Labor	
	Median	Average	Median	Average	Median	Average
	2-digit	2-digit	2-digit	2-digit	2-digit	2-digit
CV	0.22	0.25	1.65	1.69	1.13	1.16
Gross output gain	28.31%	34.81%	2.59%	5.66%	2.41%	2.46%

Output Gains by Reallocating All Inputs within CIC 2-digit Industries, Output Weighted, 1998-2007 Average

	Gross output approach	Value added approach in literature
Gross output gain	138.01%	- 00.100/
Value added gain	550.74%	98.12%
How-to	(i) reallocate k, l, m based on gross output productivity(ii) compute gross output gain & value added gain	(i) compute value added $y_i - \bar{m}_i$ & value added productivity (ii) reallocate k, l based on value added productivity (iii) compute value added gain

