Sheaves on Manifolds Exercise I.37 の解答

ゆじとも

2021年2月9日

Sheaves on Manifolds [Exercise I.37, KS02] の解答です。

I Homological Algebra

問題 I.37. $\mathcal C$ を加法圏とする。 $\operatorname{End}(\mathcal C)$ を $\operatorname{id}_{\mathcal C}:\mathcal C\to\mathcal C$ の自己射のなす集合とする。すなわち、 $\operatorname{End}(\mathcal C):\stackrel{\operatorname{def}}{=}\operatorname{Hom}_{[\mathcal C,\mathcal C]}(\operatorname{id}_{\mathcal C})$ とする。

- (1) $\operatorname{End}(\mathcal{C})$ は可換環であることを示せ。
- (2) A を環とする。 $\operatorname{End}(\operatorname{\mathsf{Mod}}(A))$ は A の中心 Z(A) と同型であることを示せ。
- (3) A を可換環として、環準同型 $A \to \operatorname{End}(\mathcal{C})$ が与えられているとする。このとき加法圏 \mathcal{C} を A 上の加法圏という。 \mathcal{C} が A 上の加法圏であるとき、 $\operatorname{Hom}_{\mathcal{C}}(X,Y)$ は合成が双線型となるような A-加群の構造を持つことを示せ。
- (4) A をネーター環、C を A 上の \mathbf{P} ーベル圏とする。
 - (i) $M \in \mathsf{Mod}^f(A)$ と $X \in \mathcal{C}$ に対して函手 $Y \mapsto \mathsf{Hom}_A(M, \mathsf{Hom}_{\mathcal{C}}(X,Y)), (Y \in \mathcal{C})$ は表現可能であることを示せ。この表現対象を $X \otimes_A M$ と書く。
 - (ii) $\otimes_A : \mathcal{C} \times \mathsf{Mod}^f(A) \to \mathcal{C}$ は右完全な双函手であることを示せ。
 - (iii) \otimes_A は左導来函手 $\otimes^L_A: \mathsf{D}^-(\mathcal{C}) \times \mathsf{D}^-(\mathsf{Mod}^f(A)) \to \mathsf{D}^-(\mathcal{C})$ を持つことを示せ。
 - (iv) $\operatorname{Hom}_A(-,-):\operatorname{\mathsf{Mod}}^f(A)^{\operatorname{op}}\times\mathcal{C}\to\mathcal{C}$ についても同様の議論を行え。

証明. (1) を示す。 $f: \mathrm{id}_C \to \mathrm{id}_C$ は各 $M \in \mathcal{C}$ に対する自己射 $f_M: M \to M$ の族で $g: M \to N$ に対して $g \circ f_M = f_N \circ g$ を満たすものである。従って、二つの $f^1, f^2: \mathrm{id}_C \to \mathrm{id}_C$ に対して族 $(f_M^1 + f_M^2)_{M \in C}$ は id_C の自己射となるので、これによって加法が定義される。乗法を合成によって定義すると、 \mathcal{C} が加法圏であること、すなわち合成が双線型であることから、 $\mathrm{End}(\mathcal{C})$ は環の公理を満たす。可換であることを示すことが残っている。 $f,g: \mathrm{id}_C \to \mathrm{id}_C$ と $M \in \mathcal{C}$ を任意にとると、g が自然変換であることから、射 $f_M: M \to M$ に対して等式 $f_M \circ g_M = g_M \circ f_M$ を満たす。従って $f \circ g = g \circ f$ が成り立ち、 $\mathrm{End}(\mathcal{C})$ は合成を乗法として可換である。以上で(1)の証明を完了する。

(2) を示す。 $a\in Z(A)$ に対して、一斉に a 倍をする射 $M\to M$ は任意の $g:M\to N$ と $m\in M$ に対して g(am)=ag(m) を満たすので $\operatorname{End}(\operatorname{\mathsf{Mod}}(A))$ の元を定める。こうして写像 $Z(A)\to\operatorname{\mathsf{End}}(\operatorname{\mathsf{Mod}}(A))$ ができる。この写像は明らかに環準同型である。単射であることを示すために、 $a\in Z(A)$ が $\operatorname{End}(\operatorname{\mathsf{Mod}}(A))$ で 0 であると仮定する。すると a 倍写像 $A\to A$ が 0 射であるため、a=0 が従う。よって $Z(A)\to\operatorname{\mathsf{End}}(\operatorname{\mathsf{Mod}}(A))$ は単射である。全射であることを示すために、 $f:\operatorname{id}_{\operatorname{\mathsf{Mod}}(A)}\to\operatorname{id}_{\operatorname{\mathsf{Mod}}(A)}$ を任意にとる。 $f_A:A\to A$ によって $a:\stackrel{\operatorname{def}}{=} f_A(1)$ とおく。 f_M が a 倍写像であることを示せば、 $Z(A)\to\operatorname{End}(\operatorname{\mathsf{Mod}}(A))$ が全射であることが

従う。 $M\in \mathsf{Mod}(A)$ を任意にとる。全射 $p:A^{\oplus I}\to M$ をひとつ選ぶ。 $f:\mathrm{id}_{\mathsf{Mod}(A)}\to\mathrm{id}_{\mathsf{Mod}(A)}$ が自然変換であることから、 $f_{A^{\oplus I}}$ は各座標ごとに f_A が並んでいる射であり、それは a 倍写像に他ならない。また $f_M\circ p=p\circ f_{A^{\oplus I}}=p(a$ 倍) =ap が成り立つ。ここで p はエピなので、 f_M も a-倍写像であることが従う。以上で $Z(A)\to \mathrm{End}(\mathsf{Mod}(A))$ が全射であることが従い、(2) の証明を完了する。

(3) を示す。 $\varphi:A\to \operatorname{End}(\mathcal{C})$ を環準同型とする。 $a\in A$ に対して自然変換 $\varphi(a):\operatorname{id}_{\mathcal{C}}\to\operatorname{id}_{\mathcal{C}}$ が対応している。 $\operatorname{Hom}_{\mathcal{C}}(X,Y)$ に $\varphi(a)_Y:Y\to Y$ を合成することによって A-加群の構造を入れる(これが $\operatorname{Hom}_{\mathcal{C}}(X,Y)$ の加法と両立的であることは明らかである)。このとき、 $f:X\to Y$ に対して $f\circ\varphi(a)_X=\varphi(a)_Y\circ f$ であるから、この A-加群の構造は $\varphi(a)_X:X\to X$ を合成することによる A-加群の構造と等しい。また、 $X,Y,Z\in\mathcal{C}$ と $a\in A,f\in \operatorname{Hom}_{\mathcal{C}}(X,Y),g\in \operatorname{Hom}_{\mathcal{C}}(Y,Z)$ に対して、

$$g \circ (a \cdot f) = g \circ (f \circ \varphi(a)_X) = (g \circ f) \circ \varphi(a)_X = a \cdot (g \circ f)$$

が成り立つので、g を合成する射 $\operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(X,Z)$ は A-加群の構造と両立的である。同じく

$$(a \cdot g) \circ f = (\varphi(a)_Z \circ g) \circ f = \varphi(a)_Z \circ (g \circ f) = a \cdot (g \circ f)$$

が成り立つので、f を合成する射 $\operatorname{Hom}_{\mathcal{C}}(Y,Z) \to \operatorname{Hom}_{\mathcal{C}}(X,Z)$ は A-加群の構造と両立的である。以上より \mathcal{C} の合成は A-双線型であり、(3) の証明を完了する。

(4) を示す。(i) を示す。M=A のときは自然に $\operatorname{Hom}_A(A,\operatorname{Hom}_\mathcal{C}(X,Y))\cong \operatorname{Hom}_\mathcal{C}(X,Y)$ であるから 明らかにこの函手が表現可能であり $X\otimes_A A\cong X$ が成り立つ。M が A の有限直和の場合も同様にして $\operatorname{Hom}_A(A^n,\operatorname{Hom}_\mathcal{C}(X,Y))\cong \operatorname{Hom}_\mathcal{C}(X,Y)^n\cong \operatorname{Hom}_\mathcal{C}(X^n,Y)$ が成り立つので、この函手は表現可能であり $X\otimes_A A^n\cong X^n$ が成り立つ。一般の有限生成加群 M に対して、所望の表現可能性を証明する。A はネーターであるから、完全列 $A^n\to A^m\to M\to 0$ が存在する。このとき

$$0 \to \operatorname{Hom}_A(M, \operatorname{Hom}_{\mathcal{C}}(X, Y)) \to \operatorname{Hom}_A(A^m, \operatorname{Hom}_{\mathcal{C}}(X, Y)) \to \operatorname{Hom}_A(A^n, \operatorname{Hom}_{\mathcal{C}}(X, Y))$$

も完全である。Y に関して函手的に $\mathrm{Hom}_A(A^m,\mathrm{Hom}_{\mathcal{C}}(X,Y))\cong\mathrm{Hom}_{\mathcal{C}}(X^m,Y)$ が成り立つので、A-加群の完全列

$$0 \to \operatorname{Hom}_A(M, \operatorname{Hom}_{\mathcal{C}}(X, Y)) \to \operatorname{Hom}_{\mathcal{C}}(X^m, Y) \to \operatorname{Hom}_{\mathcal{C}}(X^n, Y)$$

を得る。従って Y に関して函手的に $\operatorname{Hom}_A(M,\operatorname{Hom}_{\mathcal{C}}(X,Y))\cong \operatorname{Hom}_{\mathcal{C}}(\operatorname{coker}(X^m\to X^n),Y)$ が成り立つ。 よって $Y\mapsto \operatorname{Hom}_A(M,\operatorname{Hom}_{\mathcal{C}}(X,Y))$ は表現可能であることが従う。以上で (i) の証明を完了する。

(ii) を示す。M, X に関しての双函手

$$\mathcal{C} \times \mathsf{Mod}^f(A) \to \mathsf{Hom}(\mathcal{C}, \mathsf{Mod}(A)), \quad (X, M) \mapsto [Y \mapsto \mathsf{Hom}_A(M, \mathsf{Hom}_{\mathcal{C}}(X, Y))]$$

の表現対象として $X \otimes_A M$ が定義されているので、米田の補題より $\otimes_A : \mathcal{C} \times \mathsf{Mod}^f(A) \to \mathcal{C}$ は双函手である。 さらに $\mathsf{Hom}_A(-,*)$ が左完全であることと $\mathsf{Hom}_\mathcal{C}(-,Y)$ が左完全であることから、 \otimes_A はいずれの成分 についても右完全であることが従う。以上で (ii) の証明を完了する。

(iii) を示す。 $\mathcal{P} \subset \mathsf{Mod}^f(A)^\mathrm{op}$ を射影加群からなる部分圏とする。 $X \in \mathcal{C}$ とする。 \mathcal{P} が $(X \otimes_A (-))^\mathrm{op}$: $\mathsf{Mod}^f(A)^\mathrm{op} \to \mathcal{C}^\mathrm{op}$ に対して injective であることを示す。まず $\mathcal{P} \subset \mathsf{Mod}^f(A)^\mathrm{op}$ は明らかに本文の条件 [(1.7.5), KS02] (=本文 [Definition 1.8.2 (i), KS02]) を満たす。次に有限生成加群の完全列 $0 \to M_1 \to M_2 \to M_3 \to 0$ で M_2 , M_3 が射影加群であるとき、この完全列は分裂して M_1 は射影加群 M_2 の直和因子となるので M_1 も射影加群である。従って \mathcal{P} は本文 [Definition 1.8.2 (ii), KS02] を満たす。 $0 \to P_1 \to P_2 \to P_3 \to 0$ を射影加群の完全列とする。これは分裂するので、各 Y に対して

$$0 \to \operatorname{Hom}_A(P_3, \operatorname{Hom}_{\mathcal{C}}(X, Y)) \to \operatorname{Hom}_A(P_2, \operatorname{Hom}_{\mathcal{C}}(X, Y)) \to \operatorname{Hom}_A(P_1, \operatorname{Hom}_{\mathcal{C}}(X, Y)) \to 0$$

も分裂完全列である。従って、

$$0 \to X \otimes_A P_1 \to X \otimes_A P_2 \to X \otimes_A P_3 \to 0$$

も分裂完全列であり、 $\mathcal P$ は本文 [Definition 1.8.2 (iii), KS02] を満たす。以上より $\mathcal P$ は $(X\otimes_A(-))^{\mathrm{op}}$: $\mathsf{Mod}^f(A)^{\mathrm{op}} \to \mathcal C^{\mathrm{op}}$ に対して injective な $\mathsf{Mod}^f(A)$ の部分圏である。 $X \in \mathsf{Ch}^-(\mathcal C)$ を 0 と擬同型な複体、P を 射影加群とする。P は A^n の直和因子であるとする。すると $X\otimes_A P$ は X^n の直和因子であるから、X が 0 と 擬同型であることから、 $X\otimes_A P$ も 0 と擬同型である。従って、函手 $(\otimes_A)^{\mathrm{op}}:\mathcal C^{\mathrm{op}} \times \mathsf{Mod}^f(A)^{\mathrm{op}} \to \mathcal C^{\mathrm{op}}$ の引き起こす三角函手 $\mathsf{K}^+(\mathcal C^{\mathrm{op}}) \times \mathsf{K}^+(\mathsf{Mod}^f(A)^{\mathrm{op}}) \to \mathsf{K}^+(\mathcal C^{\mathrm{op}})$ と $\mathcal I = \mathsf{K}^+(\mathcal P) \subset \mathsf{K}^+(\mathsf{Mod}^f(A)^{\mathrm{op}})$ に対して本文 [Corollary 1.10.5, KS02] を用いることにより、 $(\otimes_A)^{\mathrm{op}}$ の右導来函手 $\mathsf{D}^+(\mathcal C^{\mathrm{op}}) \times \mathsf{D}^+(\mathsf{Mod}^f(A)^{\mathrm{op}}) \to \mathsf{D}^+(\mathcal C^{\mathrm{op}})$ が存在することが従う。よって \otimes_A の左導来函手 $\otimes_A^L: \mathsf{D}^-(\mathcal C) \times \mathsf{D}^-(\mathsf{Mod}^f(A)) \to \mathsf{D}^-(\mathcal C)$ が存在することが 従い、(iii) の証明を完了する。

(iv) を示す。 $M \in \mathsf{Mod}^f(A)^{\mathrm{op}}$ と $X \in \mathcal{C}$ に対して $\mathcal{C}^{\mathrm{op}} \to \mathsf{Mod}(A), Y \mapsto \mathrm{Hom}_A(M, \mathrm{Hom}_{\mathcal{C}}(Y, X))$ が表現可能であることを示す。まず M = A のときは明らかに X が表現対象であり、 $M = A^n$ の場合も明らかに X^n が表現対象である。一般の M に対して完全列 $A^n \to A^m \to M \to 0$ をとって完全列

$$0 \to \operatorname{Hom}_A(M, \operatorname{Hom}_{\mathcal{C}}(Y, X)) \to \operatorname{Hom}_A(A^m, \operatorname{Hom}_{\mathcal{C}}(Y, X)) \to \operatorname{Hom}_A(A^n, \operatorname{Hom}_{\mathcal{C}}(Y, X))$$

作ると、完全列

$$0 \to \operatorname{Hom}_{\mathcal{L}}(M, \operatorname{Hom}_{\mathcal{C}}(Y, X)) \to \operatorname{Hom}_{\mathcal{C}}(Y, X^m) \to \operatorname{Hom}_{\mathcal{C}}(Y, X^n)$$

を得るので、 Hom の左完全性より Y についての自然な同型 $\operatorname{Hom}_A(M,\operatorname{Hom}_{\mathcal{C}}(Y,X))\cong \operatorname{Hom}_{\mathcal{C}}(Y,\ker(X^m\to X^m))$ (X^n))を得る。従って $\mathcal{C}^{\mathrm{op}} \to \mathsf{Mod}(A), Y \mapsto \mathrm{Hom}_A(M, \mathrm{Hom}_\mathcal{C}(Y, X))$ は表現可能函手である。この表現対象 を $\operatorname{Hom}_A(M,X)$ と表す。X,Y,M についての自然な同型 $\operatorname{Hom}_{\mathcal{C}}(X\otimes_A M,Y)\cong \operatorname{Hom}_{\mathcal{C}}(X,\operatorname{Hom}_A(M,Y))$ が存在するので、 $\operatorname{Hom}_A(M,-)$ は $(-)\otimes_A M$ の右随伴函手であり、従って左完全である。また X,Y に ついての自然な同型 $\operatorname{Hom}_{\mathcal{C}}(X,\operatorname{Hom}_{A}(-,Y))\cong \operatorname{Hom}_{A}(-,\operatorname{Hom}_{\mathcal{C}}(X,Y))$ は $\operatorname{Hom}_{A}(-,Y)$ の左完全性を示 している。従って $\operatorname{Hom}_A(-,-)$ は左完全な双函手である。射影加群のなす部分圏 $\mathcal{P} \subset \operatorname{\mathsf{Mod}}^f(A)^{\operatorname{op}}$ が本 文 [Definition 1.8.2 (i) (ii), KS02] を満たすことはすでに (iii) の証明の中で確認している。射影加群の完 全列は分裂するので、それを $\operatorname{Hom}_A(-,\operatorname{Hom}_{\mathcal{C}}(X,Y))$ に入れて得られる列も分裂完全列である。従って $\operatorname{Hom}_A(-,Y)$ に射影加群の完全列を入れると分裂完全列が得られる。このことは $\mathcal P$ が本文 [Definition 1.8.2 (iii), KS02] を $\operatorname{Hom}_A(-,Y)$ に対して満たすことを意味している。従って $\mathcal{P}\subset\operatorname{\mathsf{Mod}}^f(A)^{\operatorname{op}}$ は $\operatorname{Hom}_A(-,Y)$ injective である。さらに Y が 0 と擬同型で P が射影加群であるとき、 $P\subset A^n$ が直和因子であるとすれ ば、 $\operatorname{Hom}_A(P,Y)\subset Y^n$ も直和因子であるから、Y が 0 と擬同型であることから、 $\operatorname{Hom}_A(P,Y)$ も 0 と擬同 型であることが従う。よって本文 [Corollary 1.10.5, KS02] を適用することで、 $\operatorname{Hom}_A(-,-)$ の右導来函手 $R\operatorname{Hom}_A(-,-)$ が存在することが従う。以上で (iv) の証明を完了し、(4) の証明を完了し、問題 $\mathrm{I.37}$ の解答 を完了する。

References

[KS02] M. Kashiwara and P. Schapira. Sheaves on Manifolds. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2002. ISBN: 9783540518617. URL: https://www.springer.com/jp/book/9783540518617.