Nonlinear Dynamics in Recurrent Neural Networks

Final Presentation | May 4, 2018
Joel Dapello
Elbert Gong
Kevin Stephen

Trajectory

Background

- What is a recurrent neural network?
- Why does it matter?

Motivation

- The RNN-Nonlinear Dynamics Connection
- How we get there: dimensionality reduction, optimization

Problem

- Three-Bit Flip Flop Problem
- Our replication of the system

Methods & Results

- Principal Component Analysis, NLPCA
- SINDy
- LSTMVis

Conclusions

- Language applications
- Findings, extensions, next steps

Background Why are RNNs useful?

Shown here:
Google's Multilingual
Neural Machine
Translation System.

Source: https://research.googleblog.com/2016/11/zero-shot-translation-with-googles.html

Background Motivation Problem Method & Results Conclusion

Recurrent Neural Network Structure

What is a recurrent neural network?

Basic Neural Network

$$\underline{x} = \tanh(J\underline{u})$$

Recurrent Neural Network

$$\underline{x}_{t+1} = \tanh(W\underline{x}_t + J\underline{u}_t)$$

Background Problem Problem Method & Results Conclusion

Interpreting RNNs

Opening the black box...

```
Command Prompt - python
 0.8090
 7.7974
 9.9696
 -2.4375
 4.6992
 3.6019
 -6.3875
 8.3638
 -2.6013
 2.5896
 2.7510
 6.8370
 -0.6561
 torch.FloatTensor of size 100]
 ('output_layer.h2o.weight',
olumns 0 to 9
 -7.6379 5.6771 -7.8376 4.5422 7.3511 -2.8587 9.2204 -3.2472 3.7721 -6.2286
 3.5290 -8.5306 6.7713 -8.3834 9.7036 -5.4028 -2.2963 1.5380 4.4052 -7.2753
 8.7684 1.5421 6.5147 -1.8595 -9.0344 -6.5313 -1.9975 -0.5717 -7.9942
 3.2077 -9.3507 -1.3442 0.0419 -9.3864 -5.1471 -8.5895 4.7379 -5.8487
 6.2922 -7.1076 -1.6781 -3.7995 -5.5788 -0.9157 -8.2896 -2.8091 -9.5601 -9.2946
 5.7974 5.5876 0.3699 6.0822 7.9787 -0.3705 7.5929 0.6846 9.7740
 1.9645 -9.0144 -2.2687 -8.2195 -4.0192 5.8962 0.8880 9.9428 -5.1578 4.9016
 7.9676 -6.2428 8.8580 -5.8865 -5.8712 7.7525 -8.5098 -0.3356 -0.4576 -8.717
olumns 10 to 19
 .00000e-02 *
 0.3935 -6.9568 -4.3695 -0.0669 -4.4937 3.7733 2.9923 -9.2453 -9.9346 4.5047
 -4.8762 2.0678 -2.4409 -9.4717 -6.5144 5.4125 2.4286 9.9384 -0.7616 -2.0118
 8.3702 -0.1297 7.3290 -0.9227 6.5492 -7.4703 -5.1127 -7.2113 -3.2810 3.1993
 8.6627 9.9840 -3.7008 4.4609 -9.4855 -3.0064 -2.9788 -7.5221 -6.4145 3.055
 6.2947 -9.2242 2.7828 -5.0139 8.7721 -2.0650 -7.4642 2.9307 9.9637
 2.9322 -0.9936 -8.6592 4.6761 -0.7700 -3.1420 1.1847 -6.6662 7.6145 -3.6399
 9.2400 8.0039 0.6627 1.4703 -2.8231 -8.3022 -6.7386 5.0310 0.9414 2.5680
 2.2691 9.9118 -2.5577 9.0104 9.5495 4.3467 -4.7656 -4.6596 5.0771 8.1919
 olumns 20 to 29
 00000e-02 *
  7.6629 -9.0370 -3.7781 1.4072 4.6685 3.0809 -5.8118 -5.6445 2.9414 -1.133
```

by following hidden states

RNNs and Nonlinear Dynamics: The Connection

The RNN IS the dynamical system!

Map equation:

$$\underline{x}_{t+1} = \tanh(W\underline{x}_t + J\underline{u}_t)$$

Nonlinear Dynamical System:

$$\underline{\dot{x}} = -\underline{x} + \tanh(W\underline{x} + J\underline{u})$$

How to get there: Dimensionality Reduction

How do we analyze 1000+ dimensional data with methods from our course?

Motivation

Background

Q Optimization for Finding FPs

How do we find FPs when we can't solve for them analytically?

Example:

$$\dot{x} = (1 - x^2)y, \dot{y} = x/2 - y$$

$$\underline{\dot{x}} = -\underline{x} + \tanh(W\underline{x} + J\underline{u})$$

$$q(\underline{x}) = \frac{1}{2} |\underline{\dot{x}}|^2$$

Find fixed points by minimizing q

Background Motivation Problem Method & Results Conclusion

Three-Bit Flip-Flop Problem

What is the three-bit flip-flop problem?

Background Problem Method & Results Conclusion

3-Bit Flip-Flop Analysis - Sussillo & Barak

Sussillo, David and Barak, Omri. Opening the Black Box: low-dimensional dynamics in high-dimensional systems. Neural Comput. 2013 Mar; 25(3):626-49. doi: 10.1162/NECO_a_00409. Epub 2012 Dec 28.

Background Problem Method & Results Conclusion

Our Replication

Background Motivation Problem Method & Results Conclusion

Our Replication

Background Problem Method & Results Conclusion

Our Replication The FPs act like memory reservoirs.

At time 20: Turn on traffic light #0

At time 20: Turn on traffic light #1

Our Replication The FPs act like memory reservoirs.

Homoclinic and heteroclinic orbits, driven by inputs.

Background Problem Motivation Method & Results Conclusion

Evolution of System through TrainingBifurcations: gradual emergence of structure from scratch.

Background Motivation Problem Method & Results Conclusion

Nonlinear curves can store most of the data's signal more efficiently than PCA

LSTM Vis

Drilling down to the individual neuron level, sans PCA

Istm.seas.harvard.edu

Background Motivation Problem Method & Results Conclusion

Simple Language-Like System: Parentheses Dataset

The Parentheses Language

```
()(((3)2))((2()))
```

Step 1: LSTM Vis

Like the three-bit system, groups of neurons move together and memorize changes

Step 2: Hidden State Dimensionality Reduction

Takeaways:
This data can be stored in just one dimension!

2. The explanation of the majority of the variance in the data using PCA suggests that a dynamical approach will yield accurate results.

Step 3: Trajectory Analysis

Step 3: Trajectory Analysis

Takeaways:

- Trajectories of the hidden states seem to converge to a stable attractor at the origin.
- 2. It's more difficult to see a clean orbit pattern as we did for the three-bit flip flop.
- 3. With some work, we have extended our approach to a very basic language set.

Future Explorations

- Beyond fixed points: attracting submanifolds
- Diagnosing chaos in RNNs
- Applying techniques to a full language dataset (more data, bigger nets)
 - o Limit cycles = repetitive sentences?
- Other dimensionality reduction techniques (LFADS)
- Learning a LDS over word vectors

Sparse Identification of NLDS

Our Attempts So Far

Background Problem Method & Results Conclusion

Thank You!

Barak, Omri et al. From Fixed Points to Chaos. In Prog Neurobiol. 2013 Apr;103:214-22. doi: 10.1016/j.pneurobio.2013.02.002. Epub 2013 Feb 21.

Brunton, Steven L., Proctor, Joshua L., Kutz, J. Nathan. *Sparse identification of nonlinear dynamics*. Proceedings of the National Academy of Sciences Apr 2016, 113 (15) 3932-3937; DOI:10.1073/pnas.1517384113 (video)

Elman, Jeffrey. "Language as a Dynamical System." in Robert F. Port & T. van Gelder (Eds.) *Mind as Motion: Explorations in the Dynamics of Cognition*. Cambridge, MA: MIT Press, 1995. Pp. 195-223.

Gao, Peiran, Trautmann, Eric, Yu, Byron, Santhanam, Gopal, Ryu, Stephen, Shenoy, Krishna Shenoy, and Ganguli, Surya. <u>A Theory of Multineuronal Dimensionality. Dynamics and Measurement.</u> Stanford University, 2017.

Jang, Eric. "Recurrent Neural Networks: A Dynamical Systems Perspective."

Laurent, Thomas, and James Von Brecht. <u>A Recurrent Neural Network without Chaos.</u> Department of Mathematics, Loyola Marymount University. Mastrogiuseppe, Francesca, and Srdjan Ostojic. <u>Linking Connectivity, Dynamics and Computations in Recurrent Neural Networks</u>. <u>Linking Connectivity, Dynamics and Computations in Recurrent Neural Networks</u>, arxiv.org/pdf/1711.09672.pdf.

Olah, Chris. "Understanding LSTM Networks." Github.io, 27 Aug. 2015, colah.github.io.

Rush, Alexander; Strobelt, Hendrik; Gehrmann, Sebastian; Huber, Bernd; Pfister, Hanspeter. <u>LSTMvis</u>. Lstm.seas.harvard.edu.

Sussillo, David and Barak, Omri. Opening the Black Box: low-dimensional dynamics in high-dimensional systems. Neural Comput. 2013 Mar; 25(3):626-49. doi: 10.1162/NECO a 00409. Epub 2012 Dec 28.

Sussillo, David; Jozefowicz, Rafal; Abbott, L. F.; Pandarinath Chethan. LFADS - Latent Factor Analysis via Dynamical Systems. arXiv:1608.06315. (video)

Background Motivation Problem Method & Results Conclusion