Álgebra 1 - Turma B

$2^{\underline{a}}$ Lista de Exercícios – $2^{o}/2015$

Prof. José Antônio O. Freitas

Exercício 1: Seja $f: E \to F$ uma aplicação e sejam A e B subconjuntos de E. Mostre que

- a) Se $A \subset B$, então $f(A) \subset f(B)$.
- b) $f(A \cup B) = f(A) \cup f(B)$.
- c) $f(A \cap B) \subset f(A) \cap f(B)$.
- d) Se f é injetora, então $f(A \cap B) = f(A) \cap f(B)$.
- e) f é bijetora se, e somente se, $f(A^C) = (f(A))^C$ para todo $A \subseteq E$.

Exercício 2: Seja $f: E \to F$ uma aplicação e sejam $A \subset E$ e $X, Y \subset F$. Mostre que

- a) Se $X \subset Y$, então $f^{-1}(X) \subset f^{-1}(Y)$.
- b) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.
- c) $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$.
- d) $A \subset f^{-1}(f(A))$.
- e) $f(f^{-1}(X)) = X \cap \text{Im} f$ e conclua que se f é sobrejetora então $f(f^{-1}(X)) = X$.

Exercício 3: Se as aplicações $f: E \to F$ e $g: F \to E$ são tais que $g \circ f$ é injetora, então f é injetora.

Exercício 4: Se as aplicações $f: E \to F$ e $g: F \to E$ são tais que $g \circ f$ é sobrejetora, então g é sobrejetora.

Exercício 5: Mostrar que toda aplicação injetora (sobrejetora) de um conjunto finito em si mesmo é também sobrejetora (injetora).

Exercício 6: Seja $f: \mathbb{R}^2 \to \mathbb{R}$ dada por f(x,y) = xy.

- a) f é injetora?
- b) f é sobrejetora?
- c) Obter $f^{-1}(0)$.
- d) Obter $f([0,1] \times [0,1])$.

Exercício 7: Considere a aplicação $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ tal que f(x,y) = (2x+3,4y+5). Prove que f é injetora. Verifique se f é bijetora.

Exercício 8: Mostra que a função $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = ax + b, com $a \in b$ constantes reais, $a \neq 0$, é uma bijeção. Obter f^{-1} .

Exercício 9: Mostrar que $f: \mathbb{R} - \left\{-\frac{d}{c}\right\} \to \mathbb{R} - \left\{\frac{a}{c}\right\}$ dada por $f(x) = \frac{ax+b}{cx+d}$, onde a, b, c, d são números reais constantes, $ad-bc \neq 0$, é uma bijeção. Descrever a aplicação f^{-1} .

Exercício 10: Achar uma função $f:A\to B$, com A e B subconjuntos de \mathbb{R} , para cada caso abaixo:

- a) $A=\mathbb{R},\,B\subsetneqq\mathbb{R}$ e finjetora e não sobrejetora.
- b) $A \subsetneq \mathbb{R},\, B = \mathbb{R}$ e finjetora e não sobrejetora.
- c) $A=\mathbb{R},\,B\subsetneqq\mathbb{R}$ e f sobrejetora e não injetora.
- d) $A \subsetneqq \mathbb{R},\, B = \mathbb{R}$ e f sobrejetora e não injetora.

Exercício 11: Classificar (se possível) em injetora ou sobrejetora as seguintes funções de \mathbb{R} em \mathbb{R} .

a)
$$y = x^3$$

d)
$$y = |\sin x|$$

b)
$$y = x^2 - 5x - 6$$

e)
$$y = x + |x|$$

c)
$$y = 2^x$$

f)
$$y = x + 3$$

Exercício 12: Seja a função $f : \mathbb{R} \to \mathbb{R}$ dada por f(x) = |x|. Determinar f([-1,1]), f([-1,2]), $f(\mathbb{R})$, $f^{-1}([0,3])$, $f^{-1}([-1,3])$ e $f^{-1}(\mathbb{R}_{-}^{*})$.