Lecture 14

Introduction to Recurrent Neural Networks (Part 2)

STAT 479: Deep Learning, Spring 2019

Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Weight matrices in a single-hidden layer RNN

Weight matrices in a single-hidden layer RNN

Net input:

$$\mathbf{z}_{h}^{\langle t \rangle} = \mathbf{W}_{hx} \mathbf{x}^{\langle t \rangle} + \mathbf{W}_{hh} \mathbf{h}^{\langle t-1 \rangle} + \mathbf{b}_{h}$$

Activation:

$$\mathbf{h}^{\langle t \rangle} = \sigma_h (\mathbf{z}_h^{\langle t \rangle})$$

Weight matrices in a single-hidden layer RNN

Net input:

$$\mathbf{z}_{h}^{\langle t \rangle} = \mathbf{W}_{hx} \mathbf{x}^{\langle t \rangle} + \mathbf{W}_{hh} \mathbf{h}^{\langle t-1 \rangle} + \mathbf{b}_{h}$$

Activation:

$$\mathbf{h}^{\langle t \rangle} = \sigma_h (\mathbf{z}_h^{\langle t \rangle})$$

Net input:

$$\mathbf{z}_y^{\langle t \rangle} = \mathbf{W}_{yh} \mathbf{h}^{\langle t \rangle} + \mathbf{b}_y$$

Output:

$$\mathbf{y}^{\langle t \rangle} = \sigma_y (\mathbf{z}_y^{\langle t \rangle})$$

Backpropagation through time **y**<t> y<t-1> $\mathbf{W}_{h} = \left[\mathbf{W}_{hh} ; \mathbf{W}_{hx} \right]$ W_{yh} $W_{yh}^{'}$ **W**_{hh} W_{hh/} W_{hh} h<t+1> h<t> h<t> h<t-1> **Unfold** W_{hx} W_{hx} W, W_{hx} x<t-1> x<t> X<t+1>

Werbos, Paul J. "Backpropagation through time: what it does and how to do it." *Proceedings of the IEEE* 78, no. 10 (1990): 1550-1560.

The loss is computed as the sum over all time steps:

$$L = \sum_{t=1}^{T} L^{\langle t \rangle}$$

Werbos, Paul J. "Backpropagation through time: what it does and how to do it." *Proceedings of the IEEE* 78, no. 10 (1990): 1550-1560.

$$L = \sum_{t=1}^{T} L^{(t)}$$

$$\frac{\partial L^{(t)}}{\partial \mathbf{W}_{hh}} = \frac{\partial L^{(t)}}{\partial y^{(t)}} \cdot \frac{\partial y^{(t)}}{\partial \mathbf{h}^{(t)}} \cdot \left(\sum_{k=1}^{t} \frac{\partial \mathbf{h}^{(t)}}{\partial \mathbf{h}^{(k)}} \cdot \frac{\partial \mathbf{h}^{(k)}}{\partial \mathbf{W}_{hh}} \right)$$

Werbos, Paul J. "Backpropagation through time: what it does and how to do it." *Proceedings of the IEEE* 78, no. 10 (1990): 1550-1560.

$$L = \sum_{t=1}^{T} L^{(t)} \qquad \frac{\partial L^{(t)}}{\partial \mathbf{W}_{hh}} = \frac{\partial L^{(t)}}{\partial y^{(t)}} \cdot \frac{\partial y^{(t)}}{\partial \mathbf{h}^{(t)}} \cdot \left(\sum_{k=1}^{t} \frac{\partial \mathbf{h}^{(t)}}{\partial \mathbf{h}^{(k)}}\right) \cdot \frac{\partial \mathbf{h}^{(k)}}{\partial \mathbf{W}_{hh}}$$

computed as a multiplication of adjacent time steps:

$$\frac{\partial \mathbf{h}^{(t)}}{\partial \mathbf{h}^{(k)}} = \prod_{i=k+1}^{t} \frac{\partial \mathbf{h}^{(i)}}{\partial \mathbf{h}^{(i-1)}}$$

Werbos, Paul J. "Backpropagation through time: what it does and how to do it." Proceedings of the IEEE 78, no. 10 (1990): 1550-1560.

$$L = \sum_{t=1}^{T} L^{(t)} \qquad \frac{\partial L^{(t)}}{\partial \mathbf{W}_{hh}} = \frac{\partial L^{(t)}}{\partial y^{(t)}} \cdot \frac{\partial y^{(t)}}{\partial \mathbf{h}^{(t)}} \cdot \left(\sum_{k=1}^{t} \left[\frac{\partial \mathbf{h}^{(t)}}{\partial \mathbf{h}^{(k)}}\right] \cdot \frac{\partial \mathbf{h}^{(k)}}{\partial \mathbf{W}_{hh}}\right)$$

computed as a multiplication of adjacent time steps:

Vanishing/Exploding gradient problem! $\frac{\partial \mathbf{h}^{(t)}}{\partial \mathbf{h}^{(k)}} = \prod_{i=1}^t \frac{\partial \mathbf{h}^{(i)}}{\partial \mathbf{h}^{(i-1)}}$

$$\frac{\partial \mathbf{h}^{(t)}}{\partial \mathbf{h}^{(k)}} = \prod_{i=k+1}^{t} \frac{\partial \mathbf{h}^{(i)}}{\partial \mathbf{h}^{(i-1)}}$$

A good resource that explains backpropation through time nicely
Boden, Mikael. "A guide to recurrent neural networks and backpropagation." the Dallas project (2002).

Solutions to the vanishing/exploding gradient problems

- 1) Gradient Clipping: set a max value for gradients if they grow to large (solves only exploding gradient problem)
- 2) Truncated backpropagation through time (TBPTT)
 - simply limits the number of time steps the signal can backpropagate each forward pass. E.g., even if the sequence has 100 elements/steps, we may only backpropagate through 20 or so
- 3) Long short-term memory (LSTM) -- uses a memory cell for modeling long-range dependencies and avoid vanishing gradient problems

Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9, no. 8 (1997): 1735-1780.

LSTM cell:

Cell state at previous time step

Cell state at current time step

element-wise

Gers, Felix A., Jürgen Schmidhuber, and Fred Cummins. "Learning to forget: Continual prediction with LSTM." (1999): 850-855.

<u>"Forget Gate"</u>: controls which information is remembered, and which is forgotten; can reset the cell state

 $f_t = \sigma \left(\mathbf{W}_{fx} \mathbf{x}^{\langle t \rangle} + \mathbf{W}_{fh} \mathbf{h}^{\langle t-1 \rangle} + \mathbf{b}_f \right)$ **Tanh** Tanh To next layer h<t-1>

Brief summary of the gates so far ...

For updating the cell state

Output gate for updating the values of hidden units:

- Still popular and widely used today
- A recent, related approach is the Gated Recurrent Unit (GRU) Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).
- Nice article exploring LSTMs and comparing them to GRUs Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever. "An empirical exploration of recurrent network architectures." In International Conference on Machine Learning, pp. 2342-2350. 2015.

RNNs with LSTMs in PyTorch

Conceptually simple, the (very) hard part is the data processing pipeline

```
self.rnn = torch.nn.LSTMCell(input_size, hidden_size)

def forward(self, x):
    embedded = self.embedding(text)
    h = self.initial_hidden_state()
    for input in x:
        h = self.rnn(input, h)
```

```
self.rnn = torch.nn.LSTM(input_size, hidden_size)

def forward(self, x):
   h_0 = self.initial_hidden_state()
   output, h = self.rnn(x, h_0)
```

These two are equivalent, but the bottom one is substantially faster

Different Types of Sequence Modeling Tasks

Figure based on:

The Unreasonable Effectiveness of Recurrent Neural Networks by Andrej Karpathy (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)

Many-to-One

Many-to-One ("Word"-RNN)

1 - Simple Sentiment Analysis (Simple RNN)

https://github.com/bentrevett/pytorch-sentiment-analysis/blob/master/1%20-%20Simple%20Sentiment%20Analysis.ipynb

2 - Updated Sentiment Analysis (LSTM)

https://github.com/bentrevett/pytorch-sentiment-analysis/blob/master/2%20-%20Upgraded%20Sentiment%20Analysis.ipynb

Optional:

Using TorchText with Your Own Datasets

https://github.com/bentrevett/pytorch-sentiment-analysis/blob/master/A%20-%20Using%20TorchText%20with%20Your%20Own%20Datasets.ipynb

4 - Convolutional Sentiment Analysis

https://github.com/bentrevett/pytorch-sentiment-analysis/blob/master/4%20-%20Convolutional%20Sentiment%20Analysis.ipynb

Many-to-One ("Character"-RNN)

Classifying Names with a Character-level RNN

https://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

"generating new text"

Generating Names with a Character-level RNN

https://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

"training"

Generating Names with a Character-level RNN

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

To generate new text, now, sample from the softmax outputs and provide the letter as input to the next time step

"generating new text"

Generating Names with a Character-level RNN

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

To generate new text, now, sample from the softmax outputs and provide the letter as input to the next time step

many-to-many

"generating new text"

Note that this approach works with both Word-and Character-RNNs

Generating Names with a Character-level RNN

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Additional Tutorials:

https://github.com/bentrevett/pytorch-seq2seq

Translation with a Sequence to Sequence Network and Attention (English to French)

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Figure based on:

Data Processing for a Word RNN (e.g., for sentiment classification)

Data Processing for Word-RNNs

Step 1): Create one-hot encoded matrix

One-hot encoded matrix

0	0	0	0	 0	0	0	0	0	
0	0	0	0	 0	0	0	0	0	all-zero row
0	0	0	0	 0	0	0	0	0	vectors due to padding
0		0	0	 (1)	0		0	0	pos. 21
0		0	0	 0	0		(1)	0	pos. 88
0		0	(1)	 0	0		0	0	pos. 15
0		0	0	 0	1		0	0	pos. 15

Each sentence becomes a matrix, where each row is a one-hot encoded vector

Data Processing for Word-RNNs

Step 2): Multiply with embedding matrix

A trainable matrix of type real

One-hot encoded matrix

0	0	0	0	 0	0	0	0	0	
0	0	0	0	 0	0	0	0	0	all-zero row
0	0	0	0	 0	0	0	0	0	vectors due to padding
	:		:	 					J
0		0	0	 1	0		0	0	pos. 21
0		0	0	 0	0		1)	0	pos. 88
0		0	(1)	 0	0		0	0	pos. 15
0		0	0	 0	1		0	0	pos. 15

Each sentence becomes a matrix, where each row is a one-hot encoded vector

Output is a $\mathsf{matrix} \in \mathbb{R}^{\mathrm{num_words} \times \mathrm{vocab_size}}$

r _{1,1}	r _{1,2}	r _{1,3}	r _{1,4}	r _{1,5}	r _{1,6}
r _{2,1}	r _{2,2}	r _{2,3}	r _{2,4}	r _{2,5}	r _{2,6}
r _{3,1}	r _{3,2}	r _{3,3}	r _{3,4}	r _{3,5}	r _{3,6}
r _{4,1}	r _{4,2}	r _{4,3}	r _{4,4}	r _{4,5}	r _{4,6}
r _{5,1}	r _{5,2}	r _{5,3}	r _{5,4}	r _{5,5}	r _{5,6}
r _{6,1}	r _{6,2}	r _{6,3}	r _{6,4}	r _{6,5}	r _{6,6}
r _{7,1}	r _{7,2}	r _{7,3}	r _{7,4}	r _{7,5}	r _{7,6}

r_{n-2,5} r_{n-2,6} r_{n-1,5} r_{n-1,6} r_{n,5} r_{n,6}

Number of features (or *embedding size*)

r_{n-2,4}

r_{n-1,4}

r_{n-2,3}

r_{n-1,3}

r_{n,3}

r_{n-2,2}

r_{n-1,2}

 $r_{n,2}$

Number of unique words (or n_{words})

r_{n-2,1}

r_{n-1,1}

r_{n,1}

The "huge" matrix multiplication is very inefficient, so we replace it with an embedding "look-up"

Step 1: Read Sentences into a Word Matrix

Step 2: "Look up" row that correspond to word index

Sebastian Raschka

STAT 479: Deep Learning

SS 2019

Data Processing for a Character RNN (e.g., for text generation)

Step 1: Break up text into characters

Step 2: Define Mapping Dictionaries

Mapping characters to integers

Mapping integers to characters

Step 3: Define Inputs and Outputs

Outputs are the characters shifted by 1 position as we want to predict the next character

Text Corpus

Convert text into a long sequence of integers

49, 29, 29, 29, 5, 19, 27, 0, 7, 3, 36, 65, 27, 41, 31, 0, 26, 4, 31, 27, 86, 10, 27, 3, 84, 67, 12, 0, 80, 31, 27, 58, 31, 0, 36, 28, 0, 75, 19, 22, . . . , 52, 84, 19, 31, 0, 22

Create sequences x and y

Sequence x:

49, 29, 29, 29, 5, 19, 27, 0, 7, 3, 36, 65, 27, 41, 31, 0, 26, 4, 31, 27, 86, 10, 27, 3, 84, 67, 12, 0, 80, 31, 27, 58, 31, 0, 36, 28, 0, 75, 19, 22, . . . , 52, 84, 19, 31, 0, 22

Sequence y:

49, 29, 29, 29, 5, 19, 27, 0, 7, 3, 36, 65, 27, 41, 31, 0, 26, 4, 31, 27, 86, 10, 27, 3, 84, 67, 12, 0, 80, 31, 27, 58, 31, 0, 36, 28, 0, 75, 19, 22, ..., 52, 84, 19, 31, 0, 22

More details for how this is specifically implement in PyTorch are shown in the excellent Jupyter Notebooks I linked in the earlier slides