

AHB-Lite Multilayer Interconnect

Datasheet

HTTP://ROALOGIC.GITHUB.IO/PLIC

October, 2017

Contents

1	Intr	roducti	on	1							
	1.1	Featur	es	1							
2	\mathbf{Spe}	Specifications									
	2.1	Functi	onal Description	2							
	2.2	Master	r Port	2							
		2.2.1	Master Priority	3							
		2.2.2	Bus Locking Support	3							
		2.2.3	Specifying the number of Master Ports	3							
	2.3	Slave 1	Port	3							
		2.3.1	Address Space Configuration	4							
		2.3.2	Slave Port HREADYOUT and HREADY Routing	5							
		2.3.3	Specifying the number of Slave Ports	5							
3	Cor	nfigurat	tions	6							
	3.1	Introd	uction	6							
	3.2	Core F	Parameters	6							
		3.2.1	HADDR_SIZE	6							
		3.2.2	HDATA_SIZE	6							
		3.2.3	MASTERS	6							
		3.2.4	SLAVES	6							
4	Inte	erfaces		7							
	4.1	Global	Signals	7							
		4.1.1	HRESETn	7							
		4.1.2	HCLK	7							
	4.2	Master	r Interfaces	7							
		4.2.1	mst_HSEL	8							
		4.2.2	mst_HTRANS	8							
		4.2.3	mst_HADDR	8							
		4.2.4	mst_HWDATA	8							
		4.2.5	mst_HRDATA	8							
		4.2.6	mst_HWRITE	8							
		4.2.7	mst_HSIZE	8							

6	Rev	rision H	History	15
5	Res	ources		14
		4.3.13	slv_HRESP	13
		4.3.12	slv_HREADY	13
			slv_HREADYOUT	
		4.3.10	slv_HMASTLOCK	12
		4.3.9	slv_HTRANS	12
		4.3.8	slv_HPROT	12
		4.3.7	slv_HBURST	11
		4.3.6	slv_HSIZE	11
		4.3.5	slv _HWRITE	11
		4.3.4	slv _HWDATA	11
		4.3.3	slv _HRDATA	11
		4.3.2	slv_HADDR	11
		4.3.1	slv_HSEL	11
	4.3	Slave I	Interface	10
		4.2.13	mst_HRESP	10
		4.2.12	mst_HREADY	10
		4.2.11	mst_HMASTLOCK	10
		4.2.10	mst_HREADYOUT	9
		4.2.9	mst_HPROT	9
		4.2.8	mst_HBURST	9

Todo list

Figure:	$\ensuremath{HREADYOUT}$ and	HREADY	Routi	ng .								5
Figure:	Single Master/Slave	Routing.										5

1. Introduction

The Roa Logic AHB-Lite Multi-layer Interconnect is a fully parameterized soft IP High Performance, Low Latency Interconnect Fabric for AHB-Lite. It allows a virtually unlimited number of AHB-Lite Bus Masters and Slaves to be connected without the need of bus arbitration to be implemented by the Bus Masters. Instead, Slave Side Arbitration is implemented for each Slave Port within the core.

Figure 1.1: Multi-layer Interconnect Usage Example

The Multi-layer Interconnect supports priority based and Round-Robin based arbitration when multiple Bus Masters request access to the same Slave Port. Typically arbitration completes within 1 clock cycle.

1.1 Features

- AMBA AHB-Lite Compatible
- Fully parameterized
- Unlimited number of Bus Masters and Slaves¹
- Slave side arbitration
- Priority and Round-Robin based arbitration
- Slave Port address decoding

¹The number of Bus Masters and Slaves is physically limited by the timing requirements.

2. Specifications

2.1 Functional Description

The Roa Logic AHB-Lite Multi-layer Interconnect is a highly configurable Interconnect Fabric for AMBA AHB-Lite based systems, enabling multiple Masters to be connected to multiple Slaves.

Connections are dynamically created based on which Slave a Master is addressing, and once created enable direct communication between Master and Slave without other Masters being aware or interfering.

A new connection is typically created within one clock cycle, providing high bandwidth and low latency communication between Master and Slave.

Figure 2.1: Example Master / Slave Communication Setup

2.2 Master Port

An AHB-Lite Bus Master connects to a Master port of the Multi-layer Interconnect. The Master port is implemented as a regular AHB-Lite Slave Interface thereby allowing support for complex bus structures.

Figure 3-2 shows an example bus structure where a Bus Master – Master-1 – has two directly connected Slaves; the Interconnect-Master-Port1 and Slave-4

To access a Slave, the Interconnect first checks if the designated Slave Port is available. If it is available the Slave Port immediately switches to the requesting Master. If the Slave Port is occupied due to another Master accessing the Slave, the Master Port generates wait states until the requested Slave becomes available. Note the pipelined nature of the AHB-Lite bus may cause a single wait state to be inserted when the Slave switches to a new Master.

The Slave Port always retains the connection to the Master until another Master requests access to that Slave Port; this enables the original Master to request further access to the Slave without incurring any delay due to arbitration.

Figure 2.2: Connectivity Example for 2 Bus Masters, 4 Slaves

2.2.1 Master Priority

Each Master Port has a 3-bit priority level port (mst_priority[2:0]).

When multiple Masters with different priority levels request access to the same Slave Port, access is always granted to the Master with the highest priority level. If a new Master requests access while a transaction is already in progress, access will be granted according to its priority, ahead of any waiting lower priority Masters. If Masters have the same priority level, then access is granted based on a Round-Robin scheme.

Master priority may be set dynamically, however assigning a static priority results in a smaller Interconnect and reduces timing paths. The priority value may only be changed while the Master Port is idle; i.e. mst_HSEL is negated ('0') and/or when mst_HTRANS is IDLE.

2.2.2 Bus Locking Support

The priority levels determine the order in which Masters are granted access to the Slave Port. The Slave Port switches between masters when the current accessing master is idle (mst_HSEL is negated and/or mst_HTRANS = IDLE) or when the current burst completes.

However the current Master may lock the bus by asserting HMASTLOCK; this prevents the Slave port switching.

2.2.3 Specifying the number of Master Ports

The number of Master Ports is specified by the MASTERS parameter.

2.3 Slave Port

An AHB-Lite Bus Slave connects to a Slave Port of the Multi-layer Interconnect. The Slave Port is implemented as a regular AHB3Lite Master Interface thereby allowing support for complex bus structures such as shown in Figure 3-3

Figure 2.3: Connectivity Example for 2 Bus Masters, 6 Slaves

2.3.1 Address Space Configuration

Each Slave Port has an Address Base (slv_addr_base) and Address Mask (slv_addr_mask) port. Together these set the address range covered by the Slave Port.

The Address Base port specifies the base address for the address range covered by the Slave Port and the Address Mask port defines the address range covered by the Slave Port. The internal port select signal is specified as slv_addr_base AND slv_addr_mask.

The Address Base and Address Mask values may be changed dynamically, however assigning static values results in a smaller Interconnect and reduces timing paths. Address Base and Address Mask may only be changed when the slave port(s) are idle. Since multiple masters may be active at the same time trying to access the Interconnect, special care must be taken to ensure NO master accesses the Interconnect while updating the Address Base and Address Mask values.

The Slave Port asserts HSEL when accesses are within the port's address range. When the port is not being accessed HSEL is negated ('0'), but HTRANS and other AMBA signals will still provide data. These signals must be ignored while HSEL is negated ('0').

The slave port will output the full address, i.e. all HADDR_SIZE bits, on its address bus (slv_HADDR). Connected AMBA slaves should use the relevant least significant bits (LSBs) only.

Example 1

 $slave_addr_base = 32'h1000_0000$

 $slave_addr_mask = 32'hF000_0000$ $Address-range = 32'h1000_0000 \text{ to } 32'h1FFF_FFF$

Example 2

 $slave_addr_base = 32'h4000_0000$ $slave_addr_mask = 32'hE000_0000$ $Address-range = 32'h4000_0000 \text{ to } 32'h5FFF_FFF$

2.3.2 Slave Port HREADYOUT and HREADY Routing

The Slave Port has an HREADYOUT port, which is not part of the AHB-Lite specification. It is required to support slaves on the master's local bus. The HREADY signal, generated by the multiplexor, is driven to the addressed slave's HREADYOUT port.

The simple case of where only one master is connected to a Master Port or where only a single slave is connected to a Slave Port is illustrated below.

There are no multiplexors on either the Master Bus or the Slave Bus. Since there is no other slave on the Master Bus, its HREADY signal is only driven by the Master Port's HREADYOUT signal. Thus the Master Port's HREADYOUT drives both the Master's HREADY input and the Master Port's HREADY input.

Similarly since there is no other slave on the Slave Bus, the Slave Port's HREADYOUT signals drives the slave's HREADY input and the slave's HREADYOUT signal drives the Slave Port's HREADY input.

2.3.3 Specifying the number of Slave Ports

The number of Slave Ports is specified by the SLAVES parameter.

3. Configurations

3.1 Introduction

The Roa Logic AHB-Lite Multi-layer Interconnect is a highly configurable Interconnect Fabric for AMBA AHB-Lite based systems. The core parameters and configuration options are described in this section.

3.2 Core Parameters

Parameter	Type	Default	Description
HADDR_SIZE	Integer	32	Address Bus Size
$HDATA_SIZE$	Integer	32	Data Bus Size
MASTERS	Integer	3	Number of Master Ports
SLAVES	Integer	8	Number of Slave Ports

Table 3.1: Core Parameters

3.2.1 HADDR_SIZE

The HADDR_SIZE parameter specifies the width of the address bus for all Master and Slave ports.

3.2.2 HDATA_SIZE

The HDATA_SIZE parameter specifies the width of the data bus for all Master and Slave ports.

3.2.3 MASTERS

The MASTERS parameter specifies the number of Master Ports on the Interconnect fabric.

3.2.4 SLAVES

The SLAVES parameter specifies the number of Slave Ports on the Interconnect Fabric.

4. Interfaces

4.1 Global Signals

The common signals are shared between all devices on the AHB bus. The AHB-Lite Interconnect has Master and Slave AHB-Lite buses and they all use the global signals.

Port	Size	Direction	Description
HRESETn	1	Input	Asynchronous active low reset
HCLK	1	Input	System clock input

Table 4.1: AMBA3 Global Signals

4.1.1 HRESETn

When the active low asynchronous HRESETn input is asserted ('0'), the core is put into its initial reset state.

4.1.2 HCLK

HCLK is the system clock. All internal logic operates at the rising edge of the system clock. All AHB bus timings are related to the rising edge of HCLK. All Master and Slave ports must operate at the same HCLK clock.

4.2 Master Interfaces

The Master Ports are regular AMB3-Lite slave interfaces. All signals are supported. See the AHB-Lite specifications for a complete description of the signals.

Port	Size	Direction	Description
mst_HSEL	1	Input	Bus Select
mst_HTRANS	2	Input	Transfer Type
mst_HADDR	$HADDR_SIZE$	Input	Address Bus
mst_HWDATA	$HDATA_SIZE$	Input	Write Data Bus
mst_HRDATA	$HDATA_SIZE$	Output	Read Data Bus
mst_HWRITE	1	Input	Write Select
mst_HSIZE	3	Input	Transfer Size
mst_HBURST	3	Input	Transfer Burst Size
mst_HPROT	4	Input	Transfer Protection Level
$mst_HMASTLOCK$	1	Input	Transfer Master Lock
$mst_HREADYOUT$	1	Output	Transfer Ready Output
mst_HREADY	1	Input	Transfer Ready Input
mst_HRESP	1	Input	Transfer Response

Table 4.2: Master Port Interface

4.2.1 mst_HSEL

The Master Port only responds to other signals on its bus when HSEL is asserted ('1'). When mst_HSEL is negated ('0') the Master Port considers the bus IDLE and negates mst_HREADYOUT ('0').

4.2.2 mst_HTRANS

mst_HTRANS indicates the type of the current transfer. It is driven to the connected slave.

HTRANS	Type	Description
00	IDLE	No transfer required
01	BUSY	Connected master is not ready to accept data, but
		intents to continue the current burst.
10	NONSEQ	First transfer of a burst or a single transfer
11	SEQ	Remaining transfers of a burst

Table 4.3: Transfer Type (HTRANS)

4.2.3 mst_HADDR

HADDR is the address bus. Its size is determined by the HADDR_SIZE parameter. It is driven to the connected slave.

4.2.4 mst_HWDATA

mst_HWDATA is the write data bus. Its size is determined by the HDATA_SIZE parameter. It is driven to the connected slave.

4.2.5 mst_HRDATA

mst_HRDATA is the read data bus. Its size is determined by HDATA_SIZE parameter. The connected slave drives it.

4.2.6 mst_HWRITE

mst_HWRITE is the read/write signal. HWRITE asserted ('1') indicates a write transfer. It is driven to the connected slave.

4.2.7 mst_HSIZE

mst_HSIZE indicates the size of the current transfer. It is driven to the connected slave.

HSIZE	Size	Description
000	8bit	Byte
001	16bit	Half Word
010	32 bit	Word
011	64bits	Double Word

HSIZE	Size	Description
100	128bit	
101	256 bit	
110	512 bit	
111	1024 bit	

Table 4.4: Transfer Size Values (HSIZE)

4.2.8 mst_HBURST

The burst type indicates if the transfer is a single transfer or part of a burst. It is driven to the connected slave.

HBURST	Type	Description
000	SINGLE	Single access
001	INCR	Continuous incremental burst
010	WRAP4	4-beat wrapping burst
011	INCR4	4-beat incrementing burst
100	WRAP8	8-beat wrapping burst
101	INCR8	8-beat incrementing burst
110	WRAP16	16-beat wrapping burst
111	INCR16	16-beat incrementing burst

Table 4.5: Burst Types (HBURST)

4.2.9 mst_HPROT

The protection signals provide information about the bus transfer. They are intended to implement some level of protection. It is driven to the connected slave.

Bit #	Value	Description
3	1	Cacheable region addressed
	0	Non-cacheable region addressed
2	1	Bufferable
	0	Non-bufferable
1	1	Privileged Access
	0	User Access
0	1	Data Access
	0	Opcode fetch

Table 4.6: Protection Signals (HPROT)

4.2.10 mst_HREADYOUT

When a slave is addressed, the mst_HREADYOUT indicates that the addressed slave finished the current transfer. The Interconnect IP routes the addressed slave's HREADY

signal to the master.

When no slave is address, the mst_HREADYOUT signal is generated locally, inside the Interconnect.

4.2.11 mst_HMASTLOCK

The master lock signal indicates if the current transfer is part of a locked sequence, commonly used for Read-Modify-Write cycles. While the mst_HMASTLOCK is asserted, the Interconnect IP cannot switch the addressed slave to another master, even if that master has a higher priority. Instead the current master retains access to slave until it releases mst_HMASTLOCK.

4.2.12 mst HREADY

mst_HREADY indicates the status of the local HREADY on the master's local bus. It is routed to the HREADYOUT port of the addressed slave.

4.2.13 mst_HRESP

mst_HRESP is the transfer response from the addressed slave, it can either be OKAY ('0') or ERROR ('1'). The Interconnect IP routes the addressed slave's HRESP port to mst_HRESP.

4.3 Slave Interface

The Slave Ports are regular AHB-Lite master interfaces.. All signals are supported. In addition each Slave Port has a non-standard slv_HREADYOUT. See the AHB-Lite specifications for a complete description of the signals.

Port	Size	Direction	Description
slv_HSEL	1	Output	Bus Select
slv_HADDR	HADDR_SIZE	Output	Address
slv_HWDATA	$HDATA_SIZE$	Output	Write Data Bus
slv_HRDATA	$HDATA_SIZE$	Input	Read Data Bus
slv_HWRITE	1	Output	Write Select
slv_HSIZE	3	Output	Transfer size
slv_HBURST	3	Output	Transfer Burst Size
slv_HPROT	4	Output	Transfer Protection Level
slv_HTRANS	2	Input	Transfer Type
slv_HMASTLOCK	1	Output	Transfer Master Lock
slv_HREADY	1	Input	Transfer Ready Input
slv_HRESP	1	Input	Transfer Response

Table 4.7: Data Interface Signals

4.3.1 slv_HSEL

The Master Port only responds to other signals on its bus when HSEL is asserted ('1'). When slv_HSEL is negated ('0') the Master Port considers the bus IDLE and negates mst_HREADYOUT ('0').

4.3.2 slv_HADDR

slv_HADDR is the data address bus. Its size is determined by the HADDR_SIZE parameter. The connected master drives slv_HADDR.

4.3.3 slv _HRDATA

slv_HRDATA is the read data bus. Its size is determined by the HDATA_SIZE parameter. It is driven to the connected master.

4.3.4 slv _HWDATA

slv_HWDATA is the write data bus. Its size is determined by the HDATA_SIZE parameter. The connected master drives slv_HADDR.

4.3.5 slv _HWRITE

slv_HWRITE is the read/write signal. HWRITE asserted ('1') indicates a write transfer. The connected master drives slv_HWRITE.

4.3.6 slv_HSIZE

slv_HSIZE indicates the size of the current transfer. The connected master drives slv_HSIZE.

HSIZE	Size	Description
000	8bit	Byte
001	16bit	Half Word
010	32 bit	Word
011	64bits	Double Word
100	128bit	
101	256 bit	
110	512 bit	
111	1024 bit	

Table 4.8: Data Transfer Sizes

4.3.7 slv_HBURST

The burst type indicates if the transfer is a single transfer or part of a burst. The connected master drives it.

HBURST	Type	Description
000	Single	Single access
001	INCR	Continuous incremental burst

HBURST	Type	Description
010	WRAP4	4-beat wrapping burst
011	INCR4	4-beat incrementing burst
100	WRAP8	8-beat wrapping burst
101	INCR8	8-beat incrementing burst
110	WRAP16	16-beat wrapping burst
111	INCR16	16-beat incrementing burst

Table 4.9: Burst Types (HBURST)

4.3.8 slv_HPROT

The data protection signals provide information about the bus transfer. They are intended to implement some level of protection. The connected master drives slv_HPROT.

Bit#	Value	Description
3	1	Cacheable region addressed
	0	Non-cacheable region addressed
2	1	Bufferable
	0	Non-bufferable
1	1	Privileged access. CPU is not in User Mode
	0	User access. CPU is in User Mode
0	1	Data transfer, always '1'

Table 4.10: Data Protection Signals

4.3.9 slv_HTRANS

slv_HTRANS indicates the type of the current data transfer.

slv_HTRANS	Type	Description
00	IDLE	No transfer required
01	BUSY	Not used
10	NONSEQ	First transfer of an data burst
11	SEQ	Remaining transfers of an data burst

Table 4.11: Data Transfer Type

4.3.10 slv_HMASTLOCK

The master lock signal indicates if the current transfer is part of a locked sequence, commonly used for Read-Modify-Write cycles. The connected master drives slv_MASTLOCK.

4.3.11 slv_HREADYOUT

Note:

slv_HREADYOUT is not an AHB-Lite Master Signal

The slv_HREADYOUT signal reflects the state of the connected Master Port's HREADY port. It is provided to support local slaves connected directly to the Master's AHB-Lite bus. It is driven by the connected master's HREADY port.

4.3.12 slv_HREADY

slv_HREADY indicates whether the addressed slave is ready to transfer data or not. When slv_HREADY is negated ('0') the slave is not ready, forcing wait states. When slv_HREADY is asserted ('0') the slave is ready and the transfer completed. It is driven to the connected master's HREADYOUT port.

4.3.13 slv_HRESP

slv_HRESP is the data transfer response, it can either be OKAY ('0') or ERROR ('1'). It is driven to the connected master.

5. Resources

Below are some example implementations for various platforms.

All implementations are push button, no effort has been undertaken to reduce area or improve performance.

Platform	DFF	Logic Cells	Memory	Performance (MHz)
lfxp3c-5	34	103	0	226MHz

Table 5.1: Resource Utilisation Examples

6. Revision History

Date	Rev.	Comments
1-Sep-2016	1.0	Official release

Table 6.1: Revision History