Adversarial Search

AlphaGo (2016)

Game Playing State-of-the-Art

- Checkers: 1950: First computer player. 1994: First computer champion: Chinook ended 40-year-reign of human champion Marion Tinsley using complete 8-piece endgame. 2007: Checkers solved!
- Chess: 1997: Deep Blue defeats human champion Gary Kasparov in a six-game match. Deep Blue examined 200M positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply. Current programs are even better, if less historic.
- Go: 2016: AlphaGo defeats human champion!
 Uses Monte Carlo Tree Search, learned evaluation function.
- Pacman

Mahjong

Online evaluation: highest ranking in the expert room

- Suphx is the first and only AI to achieve 10 DAN.
- Suphx is the highest ranking in the Expert room, the only room that AI is allowed to play in.

Figure 11: Distributions of record ranks of human players in Tenhou. Each bar indicates the number of human players above a certain level in Tenhou.

Evaluation on Tenhou

Played 5,000+ games in Expert room of Tenhou since March 2019 and achieved 10 DAN in June 2019.

I've watched Suphx's playing for quite a while. I feel like "it is even stronger than me."

ASAPIN
The first player to achieve the highest DAN on 4-player
Mahjong

Futokunaio
The only player who
achieved the highest DAN
on both 3-player and 4player Mahjong

I've watched 300+ games of Suphx and it was really doing great. I am studying its style and I stopped watching human players' games.

^{*} Suphx was trained with 30-million rounds of self-play on 100 GPUs on Azure (which takes about 2 weeks)

Game review by top human players

Some reviews are by highest ranking professional players in Japan.

"best textbook"

最强日麻人工智能Suphx牌

© 2020-03-10

谱研究 12

■ 夏之冰結

天鳳十段を達成した麻雀AI「nSuphx(Super Phoenix)」の開発元

...

https://mj-news.net › ゲーム・アプリ › 天鳳 - Translate this page

Aug 29, 2019 - Uploaded by 麻雀ウォッチ 2019年6月22日天鳳十段に到達した麻雀AIの「n**Suphx**」(Twitter: @MSuphx)。これまでその開発者は明か…

【麻雀】最強麻雀AIのSuphx(スーパーフェニックス)研究【1位牌

https://www.youtube.com > watch - Translate this page

May 30, 2019 - Uploaded by うに丸ちゃんねる トッププレイヤークラスの成績を残している麻雀AlSuphx(スーパーフェニックス)の牌譜検討をします! 普段は天鳳の鳳凰卓で東風、東 ...

【麻雀】最強麻雀AIのSuphx(スーパーフェニックス)研究【4位牌譜 ...

https://www.youtube.com > watch - Translate this page

May 25, 2019 - Uploaded by うに丸ちゃんねる

Suphx(スーパーフェニックス)の牌譜検討をします! 普段は天風の鳳凰卓で東風、東南、サンマの実況プレイ動画を中心に動...

You've visited this page 3 times. Last visit: 8/3/19

【麻雀】最強の麻雀AIのSuphx(スーパーフェニックス)の牌譜研究

を ...

https://www.youtube.com > watch - Translate this page

May 20, 2019 - Uploaded by うに丸ちゃんねる

Suphx(スーパーフェニックス)の牌譜検討をします! 普段は天鳳の鳳凰卓 で東風、東南、サンマの実況プレイ動画を中心に動 ...

You've visited this page 3 times. Last visit: 8/3/19

Suphx観戦研究 - YouTube

https://www.youtube.com > watch - Translate this page

May 27, 2019 - Uploaded by 遊鳥ちゅん 解説したり雑談したりしながら天鳳打っていきます。 Twitterもやってます → https://twitter.com/yutori_style.

Adversarial Games

Types of Games

Many different kinds of games!

- Differences:
 - Deterministic or stochastic?
 - One, two, or more players?
 - Zero sum?
 - Perfect information (can you see the state)?

 Want algorithms for calculating a strategy (policy) which recommends a move from each state

Deterministic Games

- Many possible formalizations, one is:
 - States: S (start at s₀)
 - Players: P={1...N} (usually take turns)
 - Actions: A (may depend on player / state)
 - Transition Function: $SxA \rightarrow S$
 - Terminal Test: $S \rightarrow \{t,f\}$
 - Terminal Utilities: $SxP \rightarrow R$

• Solution for a player is a policy: $S \rightarrow A$

Zero-Sum Games

Zero-Sum Games

- Agents have opposite utilities (values on outcomes)
- Lets us think of a single value that one maximizes and the other minimizes
- Adversarial, pure competition

General Games

- Agents have independent utilities (values on outcomes)
- Cooperation, indifference, competition, and more are all possible
- More later on non-zero-sum games

Adversarial Search

Single-Agent Trees

Value of a State

Value of a state:
The best achievable outcome (utility)
from that state

Policy: the agent should choose an action leading to the state with the largest value

6

Non-Terminal States:

$$V(s) = \max_{s' \in \text{children}(s)} V(s')$$

Terminal States:

$$V(s) = \text{known}$$

Adversarial Game Trees

Tic-Tac-Toe Game Tree

Minimax Values

States Under Agent's Control:

Policy: the agent should choose an action leading to the state with the largest value

Terminal States:

$$V(s) = \text{known}$$

Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - Players alternate turns
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

Minimax Implementation

```
def value(state):
                      if the state is a terminal state: return the state's utility
                      if the next agent is MAX: return max-value(state)
                      if the next agent is MIN: return min-value(state)
def max-value(state):
                                                             def min-value(state):
    initialize v = -\infty
                                                                 initialize v = +\infty
   for each successor of state:
                                                                 for each successor of state:
       v = max(v, value(successor))
                                                                     v = min(v, value(successor))
    return v
                                                                 return v
```

Minimax Example

Minimax Efficiency

- How efficient is minimax?
 - Just like (exhaustive) DFS
 - Time: O(b^m)
 - Space: O(bm)
- Example: For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Resource Limits

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α - β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More depth makes a BIG difference

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- A simple solution in practice: weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

• e.g. $f_1(s)$ = (num white queens – num black queens), etc.

Evaluation Functions

- More advanced solutions
 - Monte Carlo Tree Search
 - Randomly choose moves until the end of game
 - Repeat for many many times
 - Evaluate the state based on these simulations, e.g., the winning rate
 - Convolutional Neural Network (value network in AlphaGo)
 - Trained from records of game plays to predict a score of the state

Branching Factor

Chess

Branching Factor

Go

Branching Factor

- Go has a branching factor of up to 361
- Idea: limit the branching factor by considering only good moves
 - AlphaGo uses a Convolutional Neural Network (policy network)
 - Trained from records of game plays
 - Trained using reinforcement learning
 - AlphaGo Zero uses RL only

Game Tree Pruning

Minimax Pruning

Alpha-Beta Pruning

- General configuration (MIN version)
 - We're computing the MIN-VALUE at some node n
 - We're looping over n's children, so n's estimate is decreasing
 - Let a be the best value that MAX can get at any choice point along the current path from the root
 - If n becomes worse than a, then we can stop considering
 n's other children
 - Reason: if n is eventually chosen, then the nodes along the path shall all have the value of n, but n is worse than a and hence the path shall not be chosen at the MAX

MAX version is symmetric

Alpha-Beta Implementation

α: MAX's best option on path to root

β: MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

```
\begin{aligned} &\text{def min-value(state }, \alpha, \beta): \\ &\text{initialize } v = +\infty \\ &\text{for each successor of state:} \\ &v = \min(v, value(successor, \alpha, \beta)) \\ &\text{if } v \leq \alpha \text{ return } v \\ &\beta = \min(\beta, v) \\ &\text{return } v \end{aligned}
```

Alpha-Beta Example

Alpha-Beta Example 2

Alpha-Beta Example 2

Alpha-Beta Example 2

Alpha-Beta Example 2

Alpha-Beta Pruning Properties

Good child ordering improves effectiveness of pruning

- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth!

Uncertain Outcomes

Worst-Case vs. Average Case

- The hidden assumption behind minimax
 - Your opponent is rational and smart

Worst-Case vs. Average Case

- What if...
 - Unpredictable opponents
 - E.g., the ghosts respond randomly
 - Explicit randomness
 - E.g., rolling dice
 - Actions can fail
 - E.g., when moving a robot, wheels might slip

State Values

States Under Agent's Control:

Value of a state: The best achievable expected utility from that state

Terminal States:

$$V(s) = \text{known}$$

Expectimax Search

- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities, i.e. taking weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertain-result problems as Markov Decision Processes

Expectimax Example

Expectimax Pruning?

Video of Demo Minimax vs Expectimax (Min)

The game:

- +10 for eating each dot
- +500 for eating all the dots
- -500 for being eaten
- -1 for each move

Video of Demo Minimax vs Expectimax (Exp 1)

The game:

- +10 for eating each dot
- +500 for eating all the dots
- -500 for being eaten
- -1 for each move

Video of Demo Minimax vs Expectimax (Exp 2)

The game:

- +10 for eating each dot
- +500 for eating all the dots
- -500 for being eaten
- -1 for each move

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it's not likely

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax Pacman		
Expectimax Pacman		

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax Pacman	Won 5/5 Avg. Score: 483	Won 5/5 Avg. Score: 453
Expectimax Pacman	Won 1/5 Avg. Score: -303	Won 5/5 Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Video of Demo World Assumptions Adversarial Ghost – Minimax Pacman

Video of Demo World Assumptions Adversarial Ghost – Expectimax Pacman

Video of Demo World Assumptions Random Ghost – Minimax Pacman

Video of Demo World Assumptions Random Ghost – Expectimax Pacman

Other Game Types

Mixed Layer Types

Backgammon

Expectiminimax

- Environment is an extra "random agent" player that moves after each min/max agent
- Each node computes the appropriate combination of its children

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:

- Terminals have utility tuples
- Node values are also utility tuples
- Each player maximizes its own component
- Can give rise to cooperation and competition dynamically...

Summary

- Adversarial Games
- Adversarial Search
 - Minimax
- Resource Limits
 - Depth-limited search, limiting branching factor
- Game Tree Pruning (alpha-beta pruning)
- Uncertain Outcomes
 - Expectimax
- Other Game Types

