

Image Processing

Dr Jagadish Nayak

Image Segmentation

Fundamentals

- Let R be the entire spatial region occupied by an image
- Process that partitions R into n sub-regions R1,R2,R3....Rn, such that.
- 1. $\bigcup_{i=1}^{n} R_i = R$ (Segmentation must be complete)
- 2. R_i is a connected set i = 1,2,3,4,....n(Points in the region must be connected in some predefined sense)
- 3 $R_i \cap R_j = \phi$ for all i and j $i \neq j$ (Regions must be disjoint)
- 4 $Q(R_i) = TRUE \ for \ i = 1,2,3,...,n$ (Property satisfied by all the pixels)

Two adjacent regions must be different in the sense predicate Q

5 $Q(R_i \cup R_j) = FALSE$ for any adjacent regions R_i and R_j

innovate achieve lead

Fundamentals

METHODS

There are two approaches

Discontinuity based

Identification of

- Isolated points
- Edges
- •lines

Similarity based

- Threshold operation
- Region growing
- Region splitting and merging

Detection of isolated points

The Laplacian operator is given by

$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

The corresponding mask is

0	1	0
1	-4	1
0	1	0

- This is only for the vertical and horizontal directions
- Consider the one with diagonal direction, we get a mask

innovate achieve lead

Detection of isolated points

1	1	1
1	-8	1
1	1	1

- Apply this mask on the image, using spatial mask processing
- Example

4	7	6	2	3
2	5	4	1	2
1	1	2	3	4
0	2	3	4	5
2	6	6	4	3

	4	7	6
	2	5	4
>	1	1	2
			\rightarrow

1x4	1x7	1x6
1x2	-8x5	1x4
1x1	1x1	1x2

Detection of isolated points

- If the absolute value of sum is greater than some positive threshold value, then that value is considered to be a point.
- value is set to 1 and all the other values are set to 0
- Threshold can be any value based on the selection
- Consider an example, where threshold value is 90% of the highest absolute value of the image.

Detection of isolated points

X-ray image of the turbine blade

Result of convolving with the mask

Applying threshold to detect single point

- Laplacian mask can be used
- The Laplacian, used for point detection, is isotropic and has no direction information.
- ♣ Detecting the lines in specific direction is of interest.
- Following masks are used for detecting lines

-1	-1	-1
2	2	2
-1	-1	-1

2	-1	-1
-1	2	-1
-1	-1	2

-1	2	-1
-1	2	-1
-1	2	-1

-1	-1	2
-1	2	-1
2	-1	-1

Horizontal

+45°

Vertical

-45°

- Constant intensity area yield zero response
- ♣ Let R₁,R₂,R₃ and R₄ be the responses of the masks belongs to Horizontal, +45° vertical, -45° respectively.
- ♣ When the image is filtered using all these 4 masks
- lacktriangledown If, at a given point in the image $R_k/>R_j/N$, for all $j\neq k$
- That point is said to be more likely associated with the linein the direction of the mask k
- ♣ Example, if at a point in the image, $|R_1| > |R_2|$ for j=2,3,4 that particular point is said to be more likely associated with the horizontal line.

innovate achieve lead

1	1	1
1	-8	1
1	1	1

Let us apply Laplacian in the image.

Original image

Magnitude section of the Laplacian. Positive and -ve double line effect.

Absolute value of the Laplacian

Positive value of the Laplacian Thinner lines considerably useful

Now let us apply an line detection operator, which detects

horizontal lines.

Original image

-1	-1	-1
2	2	2
-1	-1	-1

Result of processing with horizontal line detector mask

Zoomed view

Horizontal line detected image with all negative values set to zero.

Horizontal line detected image with applied threshold

Different types of edges

innovate achieve lead

Detection of edges.

Profile without any noiise

Profile with Gaussian noise with zero mean an 0.1 standard dev

0.1 std

10 std

- As we have seen edges can be detected using first order or second order derivatives.
- Let us start with the first order derivatives

 Let us find the edge strength and direction at a location (x,y) in an image f.

Let us define the gradient as ∇f , defined as vector

$$\nabla f = \operatorname{grad}(f) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

➤ This vector points in the direction of the greatest rate of change of f at location (x,y).

4 The magnitude (length) of vector ∇f denoted as M(x,y)

$$M(x,y) = mag(\nabla f) = \sqrt{g_x^2 + g_y^2} (:.|g_x| + |g_y|)$$

- The image which we get is a gradient image
- ♣ The direction of the gradient vector is given by the angle.

$$\alpha(x,y) = tan^{-1} \left[\frac{g_x}{g_y} \right]$$
 measured w.r.t $x - axis$

The direction of an edge at an arbitrary point (x,y) is orthogonal to the direction, $\alpha(x,y)$, of the gradient vector at any point.

Example

- Each square is a pixel
- Let the gray pixel be 0 and white pixel be 1.
- Let us get the partial derivative along x and y direction.

To get partial derivative in x direction

Subtract the pixels in the top row of the neighborhood from the pixels in the bottom row

0	1	1
0	0	1
0	0	0

♣ We get

$$g_x = \frac{\partial f}{\partial x} = (0 - 0) + (0 - 1) + (0 - 1) = -2$$

To get partial derivative in y direction

Subtract the pixels in the left column from the pixels in the right column.

0	1	1
0	0	1
0	0	0

♣ We get

$$g_x = \frac{\partial f}{\partial y} = (1 - 0) + (1 - 0) + (0 - 0) = 2$$

At the point of question, we get

$$\nabla f = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

Which is same as 135° measured from the +ve axis

$$M(x,y) = 2\sqrt{2}$$
 and $\alpha(x,y) = -45^{\circ}$

- Edge at a point is orthogonal to the gradient vector at that point.
- So direction of the angle of the edge in this example is (α-90o)=45o
- ♣ All edge points in the example shown below have same gradient so the entire segment is in the same direction.

Gradient operator

♣ Gradient is computed by partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ at every pixel location in the image. For a digital quantity partial derivative is given by

$$g_{x} = \frac{\partial f(x, y)}{\partial x} = f(x+1, y) - f(x, y)$$

$$g_{y} = \frac{\partial f(x, y)}{\partial y} = f(x, y-1) - f(x, y)$$

The above two equations can be implemented using 1D masks as

Gradient operator

- When the diagonal edge is required 2D mask is required
- Roberts cross-gradient operator is one of the first attempt.
- Consider 3x3 sub-image.

z_1	Z ₂	Z ₃
Z ₄	Z ₅	Z ₆
Z ₇	Z ₈	Z ₉

Roberts operator based on implementing the diagonal differences.

0	-1
-1	0

$$g_x = \frac{cf}{\partial x} = (z_9 - z_5)$$

$$g_{y} = \frac{\partial f}{\partial y} = (z_{8} - z_{6})$$

 $g_x = \frac{\partial f}{\partial x} = (z_9 - z_5)$ Not useful for computing the edge direction. The mask which is symmetric bot the center point is preferred

♣ Simplest 3x3 mask is
$$g_x = \frac{\partial f}{\partial x} = (z_7 + z_8 + z_9) - (z_7 + z_8 + z_9)$$

$$g_y = \frac{\partial f}{\partial y} = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$$

Corresponding mask is called as Prewitt operator

-1	-1	1	-1	0	1
0	0	0	-1	0	1
1	1	1	-1	0	1

A slight variation used weight of 2 in the center coefficient

-1	-2	1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

Which is called as Sobel

Gradient operator

For the strongest responses along the diagonal direction, the modified Prewitt and Sobel masks are given by.

0	1	1	-
-1	0	1	-
-1	-1	0	

-1	-1	0
-1	0	1
0	1	1

Prewitt

0	1	2
-1	0	1
-2	-1	0

-2	-1	0
-1	0	1
0	1	2

Sobel

Gradient operator (Example)

- Earlier method does not makes use of edge characteristics or noise before applying the edge detection operator.
- Marr-Hildreth addresses this issue
- They developed operators which changes its size based on the blurry edges and sharply focused fine details.
- lacktriangledown The operator, which fulfill this requirement is the filter $\nabla^2 G$
- \blacksquare As we have seen earlier ∇^2 is Laplacian operator $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$
- G is 2D Gaussian function

$$G(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$$

 \blacksquare Where σ is standard deviation

4 The expression for $\nabla^2 G$

$$\nabla^{2}G(x,y) = \frac{\partial^{2}G(x,y)}{\partial x^{2}} + \frac{\partial^{2}G(x,y)}{\partial y^{2}}$$

$$= \frac{\partial}{\partial x} \left[\frac{-x}{\sigma^{2}} e^{\frac{-x^{2}+y^{2}}{2\sigma^{2}}} \right] + \frac{\partial}{\partial y} \left[\frac{-y}{\sigma^{2}} e^{\frac{-x^{2}+y^{2}}{2\sigma^{2}}} \right]$$

$$\left[\frac{x^{2}}{\sigma^{2}} - \frac{1}{\sigma^{2}} \right] e^{\frac{-x^{2}+y^{2}}{2\sigma^{2}}} + \left[\frac{y^{2}}{\sigma^{2}} - \frac{1}{\sigma^{2}} \right] e^{\frac{-x^{2}+y^{2}}{2\sigma^{2}}}$$

$$\nabla^{2}G(x,y) = \left[\frac{x^{2}+y^{2}-2\sigma^{2}}{\sigma^{4}} \right] e^{\frac{-x^{2}+y^{2}}{2\sigma^{2}}}$$

This expression is called as <u>Laplacian of Gaussian (LoG)</u>

innovate achieve lead

Marr- Hildreth edge detector

Marr-Hildreth algorithm consist of convolving the LoG filter with an input image, f(x,y)

$$g(x,y) = [\nabla^2 G(x,y)] * f(x,y)$$

- \blacksquare Then, find the zero crossings of g(x,y) to determine the location of the edges in f(x,y).
- These are linear process, we can write above as

$$g(x,y) = \nabla^2 [G(x,y) * f(x,y)]$$

This indicates, smooth the image first with a Gaussian filter and then compute the Laplacian of the result.

Following are the steps used

Step1: Filter the input image with an nxn Gaussian low pass filter obtained by sampling.

$$G(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Step2: Compute Laplacian of the image resulting from above step using 3x3 mask

1	1	1
1	-8	1
1	1	1

Step3: Find the zero crossings of the image from the above step.

- ♣ What should be the size of the Gaussian filter mask nxn,
- \clubsuit Most of the volume of Gaussian surface lies between $\pm 3\sigma$, so n is a smallest odd integer greater than or equal to 6σ
- Mask smaller than this will tend to truncate the LOG function.

How do we find the zero crossings

- Consider 3x3 neighborhood across p,
- Zero crossing at p implies that signs of at least two of its opposing neighbor pixels must differ.

+	+	-
-	р	+
+	-	-

Result of step 1 and 2, using σ =4 and n=25

Zero crossings in 3x3 with a threshold value 0

Result of using a threshold approximately equal to 4% of the maximum value of the LoG image.

The canny edge detector

- This complex algorithm is superior to the algorithms seen so far.
- It is based on the following objectives.
- ♣ Low error rate : edges are as close as possible to true edges.
- Edge point should be well localized: distance between the point marked as an edge by the detector and the center of the true edge should be minimum.
- Single edge point response : Detector should not identify multiple edge pixels where only a single edge point exist.

The canny edge detector

innovate achieve lead

The canny edge detector

