Symmetric obstruction theories and Joyce's perverse sheaves

Andrea T. Ricolfi

Trial Lecture
University of Stavanger, 10 November 2017

Joyce (2013):

"The author and his collaborators tried for some time to construct perverse sheaves, and motivic Milnor fibres, from a scheme with symmetric obstruction theory, but failed, and the author now believes this is not possible."

Joyce, A classical model for derived critical loci

Overview

We shall try to understand this quote, with a view towards applications to Donaldson-Thomas theory.

- Why perverse sheaves?
- Categorification of the DT invariant
- Why are symmetric obstruction theories bad?

I. Why perverse sheaves?

One can think of perverse sheaves as good systems of coefficients for cohomology. If $X = \{d f = 0\} \subset U$ is a critical locus for some function f on a smooth scheme U, we have the perverse sheaf of vanishing cycles Φ_f on X, whose cohomology

$$\mathbb{H}^*(X,\Phi_f)$$

measures how the cohomology $H^*(f^{-1}(t), \mathbb{Q})$ varies as t becomes a critical value of f.

THE SETUP

Let Y be a projective Calabi-Yau 3-fold over \mathbb{C} . Let \mathscr{M} be a (finite type) moduli scheme of simple coherent sheaves on Y.

Why would one want a "good system of coefficients" for cohomology of \mathcal{M} in Donaldson-Thomas theory?

2000 Thomas defined a symmetric obstruction theory on \mathcal{M} , and proved that the number

$$\mathrm{DT}(\mathscr{M}) = \int_{[\mathscr{M}]^{\mathrm{vir}}} 1 \in \mathbb{Z}$$

is invariant under deformations of Y. This number is the *Donaldson-Thomas invariant*.

2005 Behrend proved that one can compute the DT invariant by

$$\mathrm{DT}(\mathscr{M}) = \chi(\mathscr{M}, \nu) = \sum_{r \in \mathbb{T}} r \cdot \chi \big(\nu^{-1}(r) \big)$$

where $v : \mathcal{M} \to \mathbb{Z}$ is the... "Behrend function". It treats the singularities in a special, mysterious way.

Moreover, $\nu_X = \chi(\Phi_f)$ when $X = Z(d\,f) \subset U$ is a critical locus, so

$$\chi(X,\nu_X) = \sum_i (-1)^i \dim \mathbb{H}^i(X,\Phi_f).$$

Since *M* is locally of this form, this suggests that the DT invariant is just a *realization* of a cohomology theory on the moduli space.

Zhina Joyce–Song proved that the moduli stack \mathfrak{M} of coherent sheaves on Y is locally analytically isomorphic to a quotient of a critical locus by a Lie group.

Joyce:

"This is the complex analogue for $\mathfrak M$ of the fact that the moduli scheme $\mathcal M$ has a symmetric obstruction theory."

It follows that \mathcal{M} is locally analytically a critical locus.

This poses the *categorification problem*:

Find a canonical perverse sheaf \mathscr{P} on \mathscr{M} such that

$$DT(\mathcal{M}) = \sum_{i} (-1)^{i} \dim \mathbb{H}^{i}(\mathcal{M}, \mathcal{P}^{\cdot}).$$

The graded vector space $\mathbb{H}^*(\mathcal{M}, \mathcal{P}^{\cdot})$ would be called the *cohomological DT invariant*, \mathcal{P}^{\cdot} would be called the *DT sheaf*.

1997 Behrend-Fantechi

A perfect obstruction theory on a scheme X is a two-term complex $E \in D(X)$, perfect in [-1,0], with a morphism $\phi : E \to L_X$ such that $h^0(\phi)$ is an isomorphism and $h^{-1}(\phi)$ is onto.

We say (E, φ) is symmetric if there is an isomorphism $\theta : E^{\vee}[1] \xrightarrow{\sim} E$ such that $\theta^{\vee}[1] = \theta$.

A critical locus $X = Z(df) \subset U$, with ideal $\mathscr{I} \subset \mathscr{O}_U$, carries the symmetric obstruction theory

where d is the usual differential.

If one knew how to go

symmetric obstruction theories ---> perverse sheaves

one could hope to be able to glue symmetric obstruction theories together, and \mathscr{P} (solution to the categorification problem) would be the perverse sheaf corresponding to the glueing.

Problems:

- (i) Find the "right" global structure on \mathcal{M} allowing you to pick compatible critical charts.
- (ii) Glue the symmetric obstruction theories so to get \mathscr{P} .

Upshot: (ii) is hopeless, (i) is not. In the paper containing the initial quote (2015),

Joyce defines d-critical loci,

solving problem (i).

II. Constructing \mathscr{P}

Pantev-Toën-Vaquié-Vezzosi define k-shifted symplectic derived schemes (\mathbf{X}, ω) . Here \mathbf{X} is a derived scheme, and

$$\omega = [(\omega^0, \omega^1, \dots)] \in \mathsf{H}^{\mathbf{k}} \left(\bigoplus_{i=0}^{\infty} \bigwedge^{2+i} \mathsf{L}_{\mathbf{X}}[i], d + d_{dR} \right)$$

is a closed non-degenerate 2-form of degree k. Non-degenerate means that the induced 2-form $[\omega^0]\in H^k\big(\textstyle\bigwedge^2 L_X,d\big)$ is such that $\omega^0\colon T_X\to L_X[k]$ is a quasi-isomorphism.

Important theorems:

2013 PTVV: The moduli scheme \mathcal{M} has the structure of -1-shifted symplectic derived scheme.

Brav-Bussi-Joyce: Let (\mathbf{X}, ω) be a -1-shifted symplectic derived scheme. Then the underlying scheme $X = t_0(\mathbf{X})$ has a natural structure of d-critical locus.

 \Rightarrow \mathcal{M} is Zariski locally a critical locus.

Open patches in a d-critical locus (X,s) are critical charts, that is, tuples (R,U,f,i) where $R\subset X$ is Zariski open, f is a function on the smooth scheme U and $i:R\to U$ is a closed immersion such that $i(R)=Z(d\,f)$ as subschemes of U.

The structure includes the choice of a section $s \in H^0(\mathbb{S}^0_X)$ where \mathbb{S}^0_X is a certain natural sheaf of \mathbb{C} -vector spaces. It prescribes how the critical charts should fit together.

Remember \mathcal{M} is naturally a d-critical locus, and we want to construct \mathcal{P} on \mathcal{M} . So the question becomes:

Will the d-critical locus structure allow us to glue together the sheaves of vanishing cycles living on the critical charts?

Answer: almost. When (X, s) is orientable one can glue.

In this sense, vanishing cycles are not better than symmetric obstruction theories: they both pose a glueing issue.

2015 Brav-Bussi-Dupont-Joyce-Szendrői solve this issue for vanishing cycles.

Example

Let $f: \mathbb{C}^n \to \mathbb{C}$ be $f(z_1, \dots, z_n) = z_1^2 + \dots + z_n^2$ for a fixed n > 1. Then $Z(df) = \{0\}$ and

$$\Phi_f = H^{n-1}(MF_{f,0}, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}_0.$$

However, $MF_{f,0} = T^*S^{n-1}$, therefore we find

$$H^{n-1}(MF_{f,0},\mathbb{Q})=H^{n-1}(S^{n-1},\mathbb{Q})\cong\mathbb{Q},$$

where the last isomorphism corresponds to a choice of orientation for the sphere S^{n-1} .

Joyce proves that a d-critical locus (X,s) has a natural line bundle $K_{X,s}$ on X_{red} , called the *canonical line bundle*, and each critical chart $\gamma = (R, U, f, i)$ provides a natural isomorphism

$$\iota_{\gamma}: \mathsf{K}_{X,s}\big|_{R_{red}} \, \widetilde{\to} \, \mathfrak{i}^*(\mathsf{K}_{\mathsf{U}}^{\otimes 2})\big|_{R_{red}}.$$

Definition. An orientation on (X, s) is a choice of a square root of $K_{X,s}$.

If we view (\mathcal{M}, s) as a d-critical locus, its canonical line bundle is

$$K_{\mathcal{M},s} = \det \mathscr{E} \big|_{\mathscr{M}_{red}},$$

where $\mathscr{E} \to L_{\mathscr{M}}$ is the natural symmetric obstruction theory constructed by Thomas or Huybrechts–Thomas.

If \mathcal{M} is smooth, then $K_{\mathcal{M},s} = K_{\mathcal{M}}^{\otimes 2}$. Moreover, (\mathcal{M},s) is always orientable, although there exist d-critical loci that have no orientation.

Choose an orientation $K_{X,s}^{1/2}$ on (X,s)

Given a critical chart $\gamma = (R, U, f, i)$, consider the principal \mathbb{Z}_2 -bundle $Q_{\gamma} \to R$ parametrizing local isomorphisms

$$\alpha: K_{X,s}^{1/2}\big|_{R_{red}} \to \mathfrak{i}^*(K_U)\big|_{R_{red}} \text{ such that } \alpha\otimes\alpha=\iota_\gamma.$$

2015 Brav-Bussi-Dupont-Joyce-Szendrői

Let $K_{X,s}^{1/2}$ be an orientation on (X,s). Then there exists a natural \mathbb{Q} -perverse sheaf \mathscr{P} on X, such that if $\gamma=(R,U,f,i)$ is a critical chart, there is a natural isomorphism

$$\omega_{\gamma}: \mathscr{P}^{\cdot}\big|_{R} \,\widetilde{\to}\, \mathfrak{i}^{*}\Phi_{f} \otimes_{\mathbb{Z}_{2}} Q_{\gamma}.$$

Warning: \mathscr{P} depends on $K_{X,s}^{1/2}$.

Idea of the proof

Instead of glueing the sheaves of vanishing cycles together, glue the twists

$$i^*\Phi_f\otimes_{\mathbb{Z}_2}Q_\gamma. \tag{1}$$

The d-critical locus structure allows one to do this.

Crucial steps:

- (i) Perverse sheaves glue uniquely (and (1) is perverse)
- (ii) when X is a critical locus in two different ways, the sheaves of vanishing cycles differ by a principal \mathbb{Z}_2 -bundle.

Explaining (ii)

Let U, V be smooth, and let $f: U \to \mathbb{A}^1$, $g: V \to \mathbb{A}^1$ be regular functions, with

$$X=Z(\operatorname{d} f)\subset U, \qquad Y=Z(\operatorname{d} g)\subset V.$$

Suppose you have a closed immersion $j:U\to V$ such that the restriction $h=j|_X$ is an isomorphism

$$h: X \widetilde{\rightarrow} Y$$
.

We wish to compare Φ_f and Φ_g . It is **not true** in general that $\Phi_f = h^* \Phi_g$.

. . .

. . .

BBDJS prove the existence of a natural quadratic form $q_j \in H^0(X,S^2N_j^{\vee}|_X) \text{ inducing an isomorphism of line bundles}$

$$\mathsf{J}_{\mathfrak{j}}:\mathsf{K}_{\mathsf{U}}^{\otimes 2}\big|_{X_{\mathsf{red}}}\widetilde{\to}\mathsf{h}\big|_{X_{\mathsf{red}}}^{*}\big(\mathsf{K}_{\mathsf{V}}^{\otimes 2}\big)$$

Let $P_j \to X$ be the principal \mathbb{Z}_2 -bundle parametrizing square roots of J_j on X_{red} (roughly: square roots of q_j). Then

$$\Phi_f = h^* \Phi_g \otimes_{\mathbb{Z}_2} P_j.$$

The twist by P_j disappears when "det $q_j=1$ ". But one can also have det $q_j=-1$.

REMARKS

- \mathscr{P} comes with Verdier duality and monodromy isomorphisms which, together with the isomorphisms ω_{γ} , characterize it uniquely.
- If X is a scheme equipped with an oriented d-critical locus structure, one has

$$\chi(X,\nu_X) = \sum_i (-1)^i \dim \mathbb{H}^i(X,\mathscr{P}^\cdot).$$

Example (Szendrői 2015).

Let Y contain a divisor $E \subset Y$ admitting a \mathbb{P}^1 -fibration $\pi: E \to C$, where C is a smooth proper curve of genus g, and assume there is a contraction $Y \to \overline{Y}$ to a singular projective Calabi–Yau 3-fold, which contracts E and is an isomorphism on its complement.

Let β be the class of a fibre of π , and let \mathcal{M} be the moduli space of ideal sheaves $\mathscr{I}_Z \subset \mathscr{O}_Y$ with Chern character $(1,0,-\beta,-n)$, where n is the lowest possible.

Then
$$\mathcal{M} = C$$
.

. . .

. . .

The numerical DT invariant is $DT(\mathcal{M}) = -\chi(C) = 2g - 2$. There is only one d-critical locus structure (C,0), and $K_{C,0} = K_C^{\otimes 2}$. Every 2-torsion line bundle $L \in Pic \ C$ gives an orientation

$$K_{C}\otimes L. \\$$

If $L = \mathscr{O}_C$, we get DT sheaf $\mathbb{Q}_C[1]$. If L is nontrivial, let \mathscr{L} be the rank one local system on C corresponding to the étale double cover $\widetilde{C} \to C$. Then

DT sheaf =
$$\mathcal{L}[1]$$
.

III. Symmetric obstruction theories

The next example will show why obstruction theories are non-local. Incidentally, we will also note that they carry global information that the d-critical locus is not always able to see.

Example (Joyce 2013)

Let $t:U\to \mathbb{A}^1$ be a family of K3 surfaces, and set $X=t^{-1}(0)$. Let $\beta\in H^1(T_X)$ be the deformation corresponding to t. We compare the critical loci of

$$t^2:U\to \mathbb{A}^1$$
 and $0:X\to \mathbb{A}^1$

They are the same scheme X, and they also agree as d-critical loci (because X is smooth).

The associated symmetric obstruction theories are

$$\begin{split} \mathbf{E} &= \left[\partial^2(\mathbf{t}^2) \big|_{\mathbf{X}} : \mathbf{T}_{\mathbf{U}} \big|_{\mathbf{X}} \to \Omega_{\mathbf{U}} \big|_{\mathbf{X}} \right] \\ \mathbf{F} &= \left[\mathbf{0} : \mathbf{T}_{\mathbf{X}} \to \Omega_{\mathbf{X}} \right] \end{split}$$

and we wish to show these might not be isomorphic in D(X).

We have $\tau_{<0}E=T_X[1]$ and $\tau_{\geqslant 0}E=\Omega_X,$ so there is an exact triangle

$$\Omega_X[-1] \stackrel{\alpha}{\longrightarrow} T_X[1] \longrightarrow E \longrightarrow \Omega_X,$$

realizing E as the cone of a morphism

$$\alpha \in \text{Hom}(\Omega_X[-1], T_X[1]) = \text{Ext}^2(\Omega_X, T_X).$$

We must find an example where $\alpha \neq 0$, as this is equivalent to $E \ncong F$ in D(X).

Notice that $N_{X/U} = t^*(T_0 \mathbb{A}^1) = \mathscr{O}_X$ so we have

corresponding to

$$\operatorname{Ext}^{1}(\mathscr{O}_{X},\mathsf{T}_{X}) \xrightarrow{\sim} \mathsf{H}^{1}(\mathsf{T}_{X}) \xleftarrow{\sim} \operatorname{Ext}^{1}(\Omega_{X},\mathscr{O}_{X})$$
$$\beta' \xrightarrow{} \beta \xleftarrow{} \beta''$$

and such that $\alpha = \beta' \circ \beta'' \in \operatorname{Ext}^2(\Omega_X, T_X) = H^2(T_X \otimes T_X)$.

Under the projection

$$H^2(T_X\otimes T_X)\to H^2\left({ \wedge}^2 T_X\right)=\mathbb{C}$$

the class α maps to β^2 . it is enough to pick our initial deformation $U \to \mathbb{A}^1$ such that the corresponding class $\beta \in H^1(T_X)$ satisfies $\beta^2 \neq 0 \in H^2(\mathscr{O}_X)$.

The example show that symmetric obstruction theories do not glue. It also shows that the class

$$\alpha \in \operatorname{Ext}^2(\Omega_X, T_X)$$

induced by E is a global datum, which as Joyce observes, is locally trivial – restricting α to an affine open $A \subset X$ one has $\alpha|_A = 0$.

The (symmetric) obstruction theory remembers global, nonlocal information which is forgotten by the algebraic dcritical locus.

Joyce, A classical model for derived critical loci