PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C07D 221/14, 401/04, 401/12, 405/04, A61K 31/473, A61P 7/00

(11) International Publication Number:

WO 00/32577

A2

(43) International Publication Date:

8 June 2000 (08.06.00)

(21) International Application Number:

PCT/EP99/08561

(22) International Filing Date:

9 November 1999 (09.11.99)

(30) Priority Data:

09/199,413 09/398,783 25 November 1998 (25.11.98) US 20 September 1999 (20.09.99) US

(71) Applicant: MERCK PATENT GMBH [DE/DE]; Frankfurter Strasse 250, D-64293 Darmstadt (DE).

(72) Inventors: MEDERSKI, Werner; Am Ohlenberg 29, D-64390 Erzhausen (DE). DEVANT, Ralf; Frankfurter Landstrasse 135, D-64291 Darmstadt (DE). BARNICKEL, Gerhard; Emilstrasse 27, D-64298 Darmstadt (DE). TAT-DANIELOWSKI, Sabine; Liebigstrasse 5, D-61231 Bad Nauheim (DE). MELZER, Guido; Mörikestrasse 6, D-65719 Hofheim (DE). RADDATZ, Peter; Im Kirschensand 27, D-64656 Alsbach (DE). WU, Zhengdong; 311 Norwood House Road, Downtown, PA 19335 (US). DHANOA, Daljit; 2037 Skiles Boulevard, West Chester, PA 19382 (US). SOLL, Richard; 324 Glenn Avenue, Lawrenceville, NJ 08648 (US). RINKER, James; 1115 Fern Avenue, Kenhurst, PA 19607 (US). GRAYBILL, Todd; 1380 Miller Road, Pottstown, PA 19465 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: SUBSTITUTED BENZO[DE]ISOQUINOLINE-1,3-DIONES

(57) Abstract

Novel compounds of formula (I) in which R, R1 and R2 have the meaning indicated, and their salts or solvates as glycoprotein IbIX antagonists.

$$\begin{array}{c|c}
R^1 \\
0 \\
N \\
0
\end{array}$$

$$\begin{array}{c}
R^1 \\
0 \\
R^2
\end{array}$$

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

		_					**
ΑL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
\mathbf{AU}	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Substituted benzo[de]isoquinoline-1,3-diones

This application is a continuation-in-part of Serial No. 09/199,413, the entirety of which is incorporated by reference herein.

The invention relates to substituted benzo[de]-isoquinoline-1,3-diones of the formula I

$$R$$
 O
 N
 O
 R^2

10 in which

25

R is H or NO_2 ,

R¹ is -Het, -Het-SO₂-Ar, -Het-R⁵, -Het-(CH₂)_n-Ar, NO₂, -N=CH-Ar, NHAlk, NAAlk, NHA', NA'₂,

$$-N$$

$$-Y-(CH2)n-Het, -Y-(CH2)n-Ar,$$

$$-Y-(CH2)n-Ar'-(CH2)i-R6, -Y-(CH2)n-D-(CH2)i-R6,$$

$$-Y-(CH_2)_n-Het-(CH_2)_i-R^6$$
, $-Y-(CH_2)_n-NA-(CH_2)_i-R^6$,

$$-Y-(CH_2)_n-NH-(CH_2)_i-R^6$$
, $-Y-(CH_2)_n-D-(CH_2)_i-R^8$,

$$-Y-(CH_2)_n-Ar'-(CH_2)_i-R^8$$
, $-Y-(CH_2)_n-NH-(CH_2)_i-R^8$,

$$-Y-(CH_2)_n-NA-(CH_2)_i-R^8$$
,

$$\text{-Y-(CH}_2)_n \hspace{-2em} \hspace{-2e$$

 $-Y-[X-O]_t-[X^1-O]_u-X^2-R^6$ or $-Y-[X-NH]_u-X^1-OH$,

30
$$-Ar'-NH-SO_2-Het$$
, $Ar'-SO_2-R^7$, $-Ar'-(CH_2)_n-(CO-NH)-$

```
 (CH_2)_{i}-R^6, \quad -Ar'-(CH_2)_{n}-(CO-NH)-(CH_2)_{i}-R^{11}, \quad -Ar'-(CH_2)_{n}-CO-Het, \quad -Ar'-(CH_2)_{n}-(CO-NH)-(CH_2)_{i}-D-H, \quad -Ar'-(CH_2)_{n}-(CO-NH)-(CH_2)_{i}-D-H, \quad -Ar'-(CH_2)_{n}-(CO-NH)-(CH_2)_{i}-Ar, \quad -Ar'-(CH_2)_{n}-(CO-NH)-(CH_2)_{i}-Ar, \\ (CH_2)_{i}-Het^1, \quad -Ar'-(CH_2)_{n}-(CH(CN))-(CH_2)_{i}-Ar, \\ -Ar'-(CH_2)_{n}-(CO-NH)-(CH_2)_{i}-CH(Ar^1)-Ar^2, \quad -Ar'-S-(CH_2)_{n}-(CO-NH)-(CH_2)_{i}-Ar, \\ (CH_2)_{n}-(CO-NH)-(CH_2)_{i}-Ar, \quad -Ar'-S-(CH_2)_{n}-(CO-NH)-(CH_2)_{i}-Het^1, \\ -Ar'-S-(CH_2)_{n}-(CO-NH)-(CH_2)_{i}-CH(Ar^1)-Ar^2 \quad \text{or} \quad -Ar'-S-(CH_2)_{n}-(CO-NH)-(CH_2)_{i}-D-H,
```

- 10 R^3 is C(O)A, CONH₂, CONHA, CONA₂, COOH or COOA,
 - R4 is Ph or OH,
 - R^5 is CH_3 , CH_2Cl , CF_3 or Ph,
 - R^6 is NH_2 , NHA, NA_2 , NH(D-H) or NH-C(O)A,
 - R^7 is NA(D-H), NHA, NH(D-H) or NA₂,
- 15 R^8 is $-NH-(C=NH)-NH_2$, -NH-(C=NH)-NHA, $-NH-(C=NH)-NA_2$, $-NA-(C=NH)-NH_2$, -NA-(C=NH)-NHA or $-NA-(C=NH)-NA_2$,
 - R^{11} is -CH(A)-Ph,
 - Ar' is phenylene, biphenylene, naphthylene or pyrazol-4-yl, which is unsubstituted or mono-, di- or trisubstituted by A, OH, OA, OCF₃, Hal, CN, NH₂, NHA, NA₂, NO₂, CF₃, SO₂NH₂, SO₂Ph, SO₂NAH, SO₂NA₂,

Ar, Ar¹ and Ar²

20

are each independently phenyl, biphenyl, stilbyl, pyridyl, pyrimidyl, quinolyl, 1-imidazolyl, pyrazolyl, indanyl, benzo[1,3]dioxol-5-yl, dibenzofuranyl, 9-H-fluorenyl, 9-H-carbazolyl, [1,1',4',1'']terphenyl, anthracenyl, naphthalen-1-yl, naphthalen-2-yl or fluoren-9-on-2-yl, which is unsubstituted or mono-, di- or trisubstituted by A, OH, OA, OCF3, O-Ph, O-Ph-CH3, CH2-Ph, O-CH2-Ph, Hal, CN, NH2, NHA, NA2, NO2, CF3, SO2NH2, SO2Ph, SO2NAH, SO2NA2 or R⁸,

Het is a saturated, partially or completely unsaturated mono-, bi- or tricyclic heterocyclic radical having 5 to 13 ring members, where 1 or 2 N and/or 1 or 2 S or 0 atoms can be present and the heterocyclic radical can be mono- or disubstituted by CN, Hal, OH, OA, CF₃, A, NO₂, oxo or R⁵, where pyrazole is not bonded via N,

- Het¹ is an unsaturated mono-, bi- or tricyclic heterocyclic radical having 5 to 13 ring members, where 1 or 2 N and/or 1 or 2 S or 0 atoms can be present and/or can be mono- or disubstituted by Hal, A, OH, OA, oxo or CF₃ or piperidine, morpholine, pyrrolidine or pyrrollidin-2-one,
- A is unbranched or branched alkyl having 1-8 C atoms,
- A' is unbranched or branched alkyl having 2-6 C atoms,
 - Alk is unbranched alkyl having 4-8 C atoms,
 - D is cycloalkylene having 4-7 C atoms or cyclohexen-1-yl,

Hal is F, Cl, Br or I,

15 X,

5

- X^1, X^2 in each case independently of one another are alkylene having 1 to 12 C atoms,
- Y is O, S, NH or NA,
- is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12,
- 20 k is 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12,
 - m is 0, 1 or 2,
 - n is 0, 1, 2, 3 or 4,
 - o is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10,
 - t is 0, 1 or 2,
- 25 u is 1 or 2,

where if R^2 is 4-chlorophenyl, R^1 is not -NH-CH₂-CH₂-OH, and their pharmaceutically tolerable salts and solvates.

Similar compounds having a benzo[de]isoquinoline-1,3-dione parent structure are disclosed as
dyes in US 4,200,752, FR 2 272 215, FR 2 271 216 A,
Chemical Abstracts, Vol. 73, No. 2, 13 July 1970,
Chemical Abstracts, Vol. 57, No. 13, 24 December 1962
and Chemical Abstracts, Vol. 111, No. 20,
35 13 November 1989.

The invention is based on the object of finding novel compounds having valuable properties, in particular those which can be used for the production of medicaments.

It has been found that the compounds of the formula I and their salts or solvates have very valuable pharmacological properties together with good tolerability. They act especially as GPIbIX inhibitors, in particular inhibiting the interaction of this receptor with the ligand von Willebrand factor (vWF). This action can be demonstrated, for example, by a method which is described by S. Meyer et al. in J. Biol. Chem. 1993, 268, 20555-20562. Furthermore, the GPIbIX receptor is able to bind alpha-thrombin (N.J. Greco, Biochemistry 1996, 35, 915-921), it likewise being possible to block this interaction by means of the compounds according to the invention.

10

15

20

25

30

35

The significance of GPIbIX as an adhesion receptor on platelets, which mediates the primary interaction of platelets with an arteriosclerotically modified vascular wall via binding to the vWF expressed there, has been described by many authors (e.g. Z.M. Ruggeri in Thromb. Hemost. 1997, 78, 611-616). The activation of another platelet adhesion receptor, GPIIbIIIa, following the GPIbIX-vWF interaction, leads to platelet aggregation and thus to thrombotic vascular occlusion.

A GPIbIX antagonist can thus prevent the start of thrombus formation and thus also release of active substances from the platelets which, for example, promote thrombus growth and have an additional trophic action on the vascular wall. This has been shown with inhibitory peptides or antibodies in various experimental models (e.g. H Yamamoto et al., Thromb. Hemost. 1998, 79, 202-210).

In the case of higher shear forces, the blocking action of GPIbIX inhibitors exerts its maximum effect, as described by J.J. Sixma et al. in Arteriosclerosis, Thrombosis, and Vascular Biology 1996, 16, 64-71. According to the flow chamber method used there, the compounds of the formula I can be characterized as GPIbIX inhibitors in whole blood.

The inhibition of thrombus formation of the GPIbIX inhibitors can be measured by a modified Born

10

15

20

25

30

method (Nature 1962, 4832, 927-929) using botrocetin or ristocetin as an aggregation stimulant.

The compounds of the formula I according to the invention can therefore be employed as pharmaceutical active compounds in human and veterinary medicine. They act as adhesion receptor antagonists, in particular as glycoprotein IbIX antagonists, and are suitable for the prophylaxis and/or therapy of thrombotic disorders and sequelae deriving therefrom. The preferentially best action is to be expected in the case of thrombotic disorders in the arterial vascular system, but GPIbIX inhibitors also have an effect in the case thrombotic disorders in the venous vascular bed. The disorders are acute coronary syndromes, angina pectoris, myocardial infarct, peripheral circulatory disorders, stroke, transient ischaemic arteriosclerosis, reocclusion/restenosis after angioplasty/stent implantation. The compounds can furthermore be employed as anti-adhesive substances where the body comes into contact with foreign surfaces such as implants, catheters or cardiac pacemakers.

Comparison medications which may be mentioned are aspirin and GPIIbIIIa antagonists introduced onto the market, in particular ${\tt ReoPro}^{\scriptsize \circledcirc}$.

The invention relates to the compounds of the formula I and their salts and solvates, and to a process for the preparation of these compounds and their salts or solvates, characterized in that

a) a compound of the formula I is liberated from one of its functional derivatives by treating with a solvolysing or hydrogenolysing agent,

or

b) a compound of the formula II

$$\mathbb{R}^9$$

35 in which

 R^9 is Cl, Br, NO_2 or R^1 , and R has the meaning indicated in Claim 1 is reacted with a compound of the formula III H_2N-R^2 III

in which R^2 has the meaning indicated in Claim 1, and, if necessary, the radical R^9 is converted into a radical R^1 ,

or

15

- (c) a radical R and/or R^2 and/or R^9 is converted into another radical R and/or R^2 and/or R^9 by, for example
 - converting an amino group into a guanidino group by reaction with an amidinating agent,
 - reacting an aryl bromide or iodide to give the corresponding coupling products by means of a Suzuki coupling with boronic acids,
 - reducing a nitro group, sulfonyl group or sulfoxyl group,
 - etherifying an OH group or subjecting an OA group to ether cleavage,
- 20 alkylating a primary or secondary amino group,
 - partially or completely hydrolysing a CN group,
 - cleaving an ester group or esterifying a carboxylic acid radical,
- or carrying out a nucleophilic or electrophilic substitution,

and/or

(d) a base or acid of the formula I is converted into one of its salts or solvates.

The compounds of the formula I can have a chiral centre and therefore occur in a number of stereoisomeric forms. All these forms (e.g. R and S forms) and their mixtures (e.g. the RS forms) are included in the formula I.

The compounds according to the invention also include so-called prodrug derivatives, i.e. compounds of the formula I modified with, for example, alkyl or acyl groups, sugars or oligopeptides and which are rapidly cleaved in the body to give the active compounds according to the invention.

PCT/EP99/08561

Furthermore, the invention relates to compounds of the formula I in which free amino groups are provided with appropriate conventional "amino protective groups".

Solvates of the compounds of the formula I are understood as meaning adducts of inert solvent molecules to the compounds of the formula I which are formed on account of their mutual power of attraction. Solvates are, for example, mono- or dihydrates or alcoholates.

The abbreviations used have the following meanings:

BOC tert-butoxycarbonyl

CBZ benzyloxycarbonyl

DCC dicyclohexylcarbodiimide

15 DMF dimethylformamide

Et ethyl

Fmoc fluorenylmethoxycarbonyl

Me methyl

Mtr 4-methoxy-2,3,6-trimethylphenylsulfonyl

20 OBut tert-butyl ester

OMe methoxy

OEt ethoxy

POA phenoxyacetyl

Ph phenyl

25 tert-bu tert-butyl

TFA trifluoroacetic acid

In the above formulae, A is alkyl and has 1 to 8, preferably 1, 2, 3, 4 or 5 C atoms. Alkyl is preferably methyl, furthermore ethyl, propyl, 30 isopropyl, butyl, isobutyl, sec-butyl or tert-butyl, additionally also pentyl, 1-, 2- or 3-methylbutyl, 1,1-, 1,2- or 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1-, 2-, 3- or 4-methylpentyl, 1,1-, 1,2-, 1,3-, 2,2-, 2,3- or 3,3-dimethylbutyl, 1- or 2-ethylbutyl, 1-ethyl-35 1-methylpropyl, 1-ethyl-2-methylpropyl, 1,1,2-1,2,2-trimethylpropyl, heptyl, 1-, 2-, 3-, 5-methylhexyl, 1,1-, 1,2-, 1,3-, 1,4-, 2,2-, 2,3-, 2,4-3,3-dimethylpentyl, 1-, 2-, 3-, 4-ethylpentyl,

1,1,2-, 1,1,3-, 1,1,4-, 1,2,2-, 1,2,3-, 1,2,4-, 1,3,3-, 1,3,4-, 1,4,4- or 2,2,3-trimethylbutyl or octyl.

A' is alkyl and has 2 to 6 C atoms, preferably 2, 3 or 4 C atoms. A' is preferably ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl.

Alk is unbranched alkyl having 4 to 8 carbon atoms, preferably n-butyl, n-pentyl, n-hexyl, n-heptyl

or n-octyl. Ar is preferentially phenyl, preferably - as 10 indicated - monosubstituted phenyl, specifically preferentially phenyl, o-, m- or p-methylphenyl, o-, mor p-ethylphenyl, o-, m- or p-propylphenyl, o-, m- or p-isopropylphenyl, o-, m- or p-tert-butylphenyl, o-, mor p-aminophenyl, 0-, mor 15 p-(N, N-dimethylamino)phenyl, 0-, mor p-sulfonamoylphenyl, o-, m- or p-nitrophenyl, o-, m- or p-hydroxyphenyl, o-, m- or p-methoxyphenyl, o-, m- or p-ethoxyphenyl, o-, m- or p-phenoxyphenyl, o-, mp-(phenylmethox)yphenyl, 0-, mor p-20 (trifluoromethyl)phenyl, 0-, mor p-(trifluoromethoxy)phenyl, o-, m- or p-fluorophenyl, o-, m- or p-chlorophenyl, o-, m- or p-bromophenyl, o-, m- or p-iodophenyl, 4-benzenesulfonyl-phenyl, 4-(4chloro-phenoxy)-phenyl, furthermore preferentially 25 2,3-, 2,4-, 2,5-, 2,6-, 3,4- or 3,5-dimethylphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- or 3,5-dimethoxyphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- or 3,5-dihydroxyphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- or 3,5-difluorophenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- or 3,5-dichlorophenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- or 3,5-dibromophenyl, 30 2-chloro-3-methyl-, 2-chloro-4-methyl-, 2-chloro-5methyl-, 2-chloro-6-methyl-, 3-chloro-2-methyl-, chloro-2-methyl-, 5-chloro-2-methyl-, 3-chloro-4-

methyl-, 3-chloro-5-methyl-, 4-chloro-3-methylphenyl,

35 2-bromo-3-methyl-, 2-bromo-4-methyl-, 2-bromo-5methyl-, 2-bromo-6-methyl-, 3-bromo-2-methyl-, 4-bromo-2-methyl-, 5-bromo-2-methyl-, 3-bromo-4-methyl-, 3-bromo-5-methyl-, 4-bromo-3-methylphenyl, 2-iodo-3methyl-, 2-iodo-4-methyl-, 2-iodo-5-methyl-, 2-iodo-6-

```
methyl-, 3-iodo-2-methyl-, 4-iodo-2-methyl-, 5-iodo-
    2-methyl-, 3-iodo-4-methyl-, 3-iodo-5-methyl-, 4-iodo-
    3-methylphenyl,
                        2-chloro-3-methoxy-, 2-chloro-4-
    methoxy-, 2-chloro-5-methoxy-, 2-chloro-6-methoxy-, 3-
 5 chloro-2-methoxy-,
                             4-chloro-2-methoxy-,
    chloro-2-methoxy-, 3-chloro-4-methoxy-,
                                              3-chloro-5-
                  4-chloro-3-methoxyphenyl,
    methoxy-,
                                               2-chloro-3-
    hydroxy-, 2-chloro-4-hydroxy-, 2-chloro-5-hydroxy-,
    2-chloro-6-hydroxy-,
                              3-chloro-2-hydroxy-,
10
    chloro-2-hydroxy-, 5-chloro-2-hydroxy-,
                                               3-chloro-4-
                3-chloro-5-hydroxy-, 4-chloro-3-hydroxy-
    hydroxy-,
    phenyl, 3-fluoro-4-methoxy, 4-fluoro-3-methoxyphenyl,
    2-chloro-3-fluoro-, 2-chloro-4-fluoro-,
                                              2-chloro-5-
    fluoro-, 2-chloro-6-fluoro-, 3-chloro-2-fluoro-, 4-
15
    chloro-2-fluoro-,
                         5-chloro-2-fluoro-,
                                               3-chloro-4-
              3-chloro-5-fluoro-, 4-chloro-3-fluorophenyl,
    fluoro-,
    2-fluoro-3-methyl-, 2-fluoro-4-methyl-,
                                               2-fluoro-5-
    methyl-, 2-fluoro-6-methyl-, 3-fluoro-2-methyl-, 4-
                         5-fluoro-2-methyl-,
    fluoro-2-methyl-,
                                               3-fluoro-4-
    methyl-, 3-fluoro-5-methyl-, 4-fluoro-3-methylphenyl,
20
    2,5-
                     3,4-dimethoxyphenyl,
              or
                                              2-cyano-4,5-
    dimethoxyphenyl,
                       5-chloro-2, 4-dimethoxy-phenyl,
    cyano-3,4-dimethoxyphenyl or 3,4,5-trimethoxy-phenyl.
    Furthermore, however, also preferentially unsubstituted
25
    biphenyl - as
                     indicated - or alternatively mono-
    substituted
                biphenyl, specifically
                                            preferentially
    biphenyl-4-yl or biphenyl-3-yl, 2'-methylbiphenyl-4-yl,
    3'-methylbiphenyl-4-yl,
                                   4'-methylbiphenyl-4-yl,
    2'-methylbiphenyl-3-yl,
                                   3'-methylbiphenyl-3-yl,
30
    4'-methylbiphenyl-3-yl,
                                    2-methylbiphenyl-4-yl,
    3-methylbiphenyl-4-yl,
                                    2-methylbiphenyl-3-yl,
    4-methylbiphenyl-3-yl,
                                2'-tert-butylbiphenyl-4-yl,
    3'-tert-butylbiphenyl-4-yl, 4'-tert-butylbiphenyl-4-yl,
    2'-tert-butylbiphenyl-3-yl, 3'-tert-butylbiphenyl-3-yl,
35
    4'-tert-butylbiphenyl-3-yl,
                               2-tert-butylbiphenyl-4-yl,
    3-tert-butylbiphenyl-4-yl,
                                 2-tertbutylbiphenyl-3-yl,
    4-tert-butylbiphenyl-3-yl,
                                2'-isopropylbiphenyl-4-vl,
    3'-isopropylbiphenyl-4-yl,
                                4'-isopropylbiphenyl-4-yl,
    2'-isopropylbiphenyl-3-yl,
                                3'-isopropylbiphenyl-3-yl,
```

```
4'-isopropylbiphenyl-3-yl,
                                    2-isopropylbiphenyl-4-yl,
     3-isopropylbiphenyl-4-yl,
                                    2-isopropylbiphenyl-3-yl,
     4-isopropylbiphenyl-3-yl,
                                      2'-fluorobiphenyl-4-yl,
     3'-fluorobiphenyl-4-yl,
                                      4'-fluorobiphenyl-4-yl,
     2'-fluorobiphenyl-3-yl,
                                      3'-fluorobiphenyl-3-yl,
     4'-fluorobiphenyl-3-yl,
                                       2-fluorobiphenyl-4-yl,
     3-fluorobiphenyl-4-yl, 2-fluorobiphenyl-3-yl, 4-fluoro-
    biphenyl-3-yl, 2'-methoxybiphenyl-4-yl, 3'-methoxy-
    biphenyl-4-yl,
                                      4'-methoxybiphenyl-4-yl,
10
    2'-methoxybiphenyl-3-yl,
                                      3'-methoxybiphenyl-3-yl,
    4'-methoxybiphenyl-3-yl,
                                      2-methoxybiphenyl-4-yl,
    3-methoxybiphenyl-4-yl,
                                      2-methoxybiphenyl-3-yl,
    4-methoxybiphenyl-3-yl,
                                       2'-nitrobiphenyl-4-yl,
    3'-nitrobiphenyl-4-yl, 4'-nitrobiphenyl-4-yl, 2'-nitro-
    biphenyl-3-yl, 3'-nitrobiphenyl-3-yl, 4'-nitrobiphenyl-
15
    3-v1,
              2-nitrobiphenyl-4-yl,
                                       3-nitrobiphenyl-4-vl,
    2-nitrobiphenyl-3-yl,
                                        4-nitrobiphenyl-3-yl,
    2'-trifluoromethylbiphenyl-4-yl,
    3'-trifluoromethylbiphenyl-4-yl,
                                         4'-trifluoromethyl-
20
   biphenyl-4-yl,
                            2'-trifluoromethylbiphenyl-3-yl,
    3'-trifluoromethylbiphenyl-3-yl,
                                         4'-trifluoromethyl-
    biphenyl-3-yl, 2-trifluoromethylbiphenyl-4-yl,
    fluoromethylbiphenyl-4-yl, 2-trifluoromethylbiphenyl-3-
    yl,
                             4-trifluoromethylbiphenyl-3-yl,
25
    2'-trifluoromethoxybiphenyl-4-yl,
                                        3'-trifluoromethoxy-
    biphenyl-4-yl,
                           4!-trifluoromethoxybiphenyl-4-yl,
    2'-trifluoromethoxybiphenyl-3-yl,
    3'-trifluoromethoxybiphenyl-3-yl,
                                                      4'-tri-
    fluoromethoxybiphenyl-3-yl, 2-trifluoromethoxybiphenyl-
30
    4-y1,
                            3-trifluoromethoxybiphenyl-4-yl,
    2-trifluoromethoxybiphenyl-3-yl,
    4-trifluoromethoxybiphenyl-3-yl,
                                                 furthermore
    preferentially
                     disubstituted biphenyls,
                                                   such
    2'-methyl-3'-nitrobiphenyl-4-yl,
                                         2'-methyl-4'-nitro-
35
    biphenyl-4-yl,
                      2'-methyl-5'-nitrobiphenyl-4-yl,
                                                         2'-
    methyl-6'-nitrobiphenyl-4-yl,
                                               3'-methyl-2'-
    nitrobiphenyl-4-yl,
                            3'-methyl-4'-nitrobiphenyl-4-yl,
    3'-methyl-5'-nitrobiphenyl-4-yl,
                                               3'-methvl-6'-
    nitrobiphenyl-4-yl,
                            4'-methyl-2'-nitrobiphenyl-4-yl,
```

```
4'-methyl-3'-nitrobiphenyl-4-yl,
                                                2'-methvl-3'-
     nitrobiphenyl-3-yl,
                             2'-methyl-4'-nitrobiphenyl-3-yl,
     2'-methyl-5'-nitrobiphenyl-3-yl,
                                          2'-methyl-6'-nitro-
     biphenyl-3-yl,
                             3'-methyl-2'-nitrobiphenyl-3-yl,
   3'-methyl-4'-nitrobiphenyl-3-yl,
                                                3'-methyl-5'-
     nitrobiphenyl-3-yl,
                             3'-methyl-6'-nitrobiphenyl-3-yl,
     4'-methyl-2'-nitrobiphenyl-3-yl,
                                                4'-methyl-3'-
     nitrobiphenyl-3-yl,
                            2'-methoxy-2-methylbiphenyl-4-yl,
     3'-methoxy-2-methylbiphenyl-4-yl,
                                                4'-methoxy-2-
10
    methylbiphenyl-4-yl,
                            4'-methoxy-3-nitrobiphenyl-4-yl,
     2'-chloro-3'-fluorobiphenyl-4-yl,
                                                2'-chloro-4'-
     fluorobiphenyl-4-yl,
                           2'-chloro-5'-fluorobiphenyl-4-yl,
     2'-chloro-6'-fluorobiphenyl-4-yl,
                                                3'-chloro-2'-
     fluorobiphenyl-4-yl,
                            3'-chloro-4'-fluorobiphenyl-4-yl,
15
    3'-chloro-5'-fluorobiphenyl-4-yl,
                                                3'-chloro-6'-
    fluorobiphenyl-4-yl,
                           4'-chloro-2'-fluorobiphenyl-4-yl,
    4'-chloro-3'-fluorobiphenyl-4-yl,
                                                2'-chloro-3'-
    fluorobiphenyl-3-yl, 2'-chloro-4'-fluorobiphenyl-3-yl,
    2'-chloro-5'-fluorobiphenyl-3-yl,
                                                2'-chloro-6'-
20
    fluorobiphenyl-3-yl,
                           3'-chloro-2'-fluorobiphenyl-3-yl,
    3'-chloro-4'-fluorobiphenyl-3-yl,
                                                3'-chloro-5'-
    fluorobiphenyl-3-yl,
                           3'-chloro-6'-fluorobiphenyl-3-yl,
    4'-chloro-2'-fluorobiphenyl-3-yl,
                                                4'-chloro-3'-
    fluorobiphenyl-3-yl,
                           (2',3'-dimethoxy)biphenyl-4-yl,
25
    2',4'-dimethoxy)biphenyl-4-yl,
    (2',5'-dimethoxy)biphenyl-4-yl,
                                           (2', 6'-dimethoxy) -
    biphenyl-4-yl,
                             (3',4'-dimethoxy)biphenyl-4-yl,
    (3',5'-dimethoxy)biphenyl-4-yl,
                                           (2',3'-dimethoxy)-
    biphenyl-3-yl,
                              (2', 4'-dimethoxy) biphenyl-3-yl,
30
   (2',5'-dimethoxy)biphenyl-3-yl,
                                           (2', 6'-dimethoxy) -
    biphenyl-3-yl,
                            (3',4'-dimethoxy)biphenyl)-3-yl,
    (3',5'-dimethoxy)biphenyl-3-yl,
    (2',3'-di(trifluoromethyl))biphenyl-4-yl,
    (2',4'-di(trifluoromethyl))biphenyl-4-yl,
   (2',5'-di(trifluoromethyl))biphenyl-4-yl,
35
    (2',6'-di(trifluoromethyl))biphenyl-4-yl,
    (3',4'-di(trifluoromethyl))biphenyl-4-yl,
                                                      (3',5'-
    di(trifluoromethyl))biphenyl-4-yl,
    (2',3'-di(trifluoromethyl))biphenyl-3-yl,
```

(2',4'-di(trifluoromethyl))biphenyl-3-yl, (2',5'-di(trifluoromethyl))biphenyl-3-yl,

(2',6'-di(trifluoromethyl))biphenyl-3-yl,

(3',4'-di(trifluoromethyl))biphenyl-3-yl, (3',5'-

- di(trifluoromethyl)biphenyl-3-yl,
 - (2,2'-dimethyl)biphenyl-4-yl, (2,'3-dimethyl)biphenyl-4-yl, (2,4'-dimethyl)biphenyl-4-yl, (2,2'-dimethyl)biphenyl-3-yl, (2,3'-dimethyl)biphenyl-
 - 3-yl or (2,4'-dimethyl)biphenyl-3-yl.
- Furthermore, however, also preferentially benzo[1,3]-dioxol-5-yl, 9-H-carbazolyl, quinolyl, dibenzofuranyl, 9-H-fluorenyl, 7-bromo-9H-fluoren-2-yl, 9H-fluoren-9-ol-1-yl, fluoren-9-on-2-yl, imidazolyl, indanyl, 1-imidazolyl, pyrazolyl, 9-H-carbazolyl,
- 15 [1,1',4',1'']terphenyl, anthracenyl, naphthalen-1-yl, naphthalen-2-yl, 4-bromo-naphthalen-1-yl, 4-cyano-naphthalen-1-yl, 4-chloro-naphthalen-1-yl, 4-nitro-naphthalen-1-yl, 4-methoxy-naphthalen-2-yl, 6-hydroxy-naphthalen-1-yl, 7-hydroxy-naphthalen-1-yl, 8-hydroxy-
- 20 napththalen-1-yl or stilbyl.
 - Furthermore, Ar is preferentially pyridyl-2-, pyridyl-3-, pyridyl-4-yl, pyrazol-3-yl, pyrazol-4-yl or pyrazol-5-yl, pyrimidin-2-, pyrimidin-4-, pyrimidin-5-yl, which is unsubstituted or substituted
- by A or Hal particularly preferentially pyridyl-2-, pyridyl-3-yl, 4-chloro-pyridyl-2-yl, 1-methylpyrazol-4-yl or pyrimidin-2-yl.
- Ar' is preferentially phenylene, biphenylene, 1-naphthylene or pyrazol-4-yl, which is unsubstituted or monosubstituted by A, OH, OA, CF₃, OCF₃ or Hal. Unsubstituted phenylene or 1-naphthylene, 2-methoxyphenylene, 2-methylphenylene, 3-biphenylene, 4-biphenylene or 1-methylpyrazol-4-yl is particularly preferred.
- ${\rm Ar}^1$ and ${\rm Ar}^2$ are in each case independently of one another Ar having the preferred meanings indicated beforehand. Phenyl is particularly preferred for ${\rm Ar}^1$ and ${\rm Ar}^2$ independently of one another.

In -Ar'-D-H, Ar' is preferentially unsubstituted or substituted phenylene, D having one of the preferred or particularly preferred meanings mentioned below.

5

10

15

is particularly preferred for -Ar'-D-H.

In -Ar'-Het¹, Ar' is preferentially unsubstituted or substituted phenylene, Het¹ having one of the preferred or particularly preferred meanings mentioned below.

is particularly preferred for -Ar'-Het1.

In $-Ar'-Y-C(A)_2-R^3$, Ar' is preferentially unsubstituted or substituted biphenylene, where R^3 is preferentially an alkyloxycarbonyl group and A has a preferred meaning as mentioned above.

$$- CH_3 O C_2H_5$$

is particularly preferred for $-Ar'-Y-C(A)_2-R^3$.

In $-Ar'-(CH_2)_n-R^3$, Ar' is preferentially unsubstituted or substituted phenylene, naphthylene, biphenylene or pyrazol-4-yl, where R^3 is preferentially an amido group, alkylamido group or dialkylamido group, carboxyl group, alkyloxycarbonyl group or an alkylcarbonyl group and n can be 0, 1, 2, 3 or 4.

is particularly preferred for $Ar' - (CH_2)_n - R^3$.

In Ar'-Y-(CH₂)_n-R³, Ar' is preferentially unsubstituted or substituted phenylene, where Y is preferentially S or O, R³ is preferentially an amido group, alkylamido group or dialkylamido group, alkyloxycarbonyl or an alkylcarbonyl group and n can be 0, 1, 2, 3 or 4.

$$- S - CH_2 - CONH - (CH_2)_2 - C(CH_3)_3$$

$$- S - CH_2 - CONH - C_3H_7$$

$$- O - CH_2 - O$$

15

10

$$-$$
S-CH₂ $-$ NH₂

is particularly preferred for $-Ar'-Y-(CH_2)_n-R^3$.

In -Ar'-Het¹-R³, Ar' is preferentially unsubstituted or substituted phenylene, where Het¹ has one of the meanings preferentially indicated in the following and R³ is preferentially alkylcarbonyl.

is particularly preferred for -Ar'-Het1-R3.

In $-Ar'-(CH_2)_n-R^6$, Ar' is preferentially unsubstituted or substituted phenylene or biphenylene, where R^6 is preferentially an amino group, alkylamino group, dialkylamino group or alkyloxycarbonylamino group and n can be 0, 1, 2, 3 or 4.

is particularly preferred for $-Ar'-(CH_2)_n-R^6$.

In -Ar'-SO₂-Het, Ar' is preferentially unsubstituted or substituted naphthylene or phenylene, where Het has one of the meanings preferentially indicated in the following.

$$SO_2$$
 or SO_2-N

is particularly preferred for $-Ar'-SO_2-Het$.

In $-Ar'-NH-SO_2-Het$, Ar' is preferentially unsubstituted or substituted phenylene, where Het is particularly preferred 5-methoxy-pyrimidin-2-yl.

$$N-SO_2$$
 $N-SO_2$
 O
 CH_3

is particularly preferred for -Ar'-NH-SO₂-Het.

In $-Ar'-SO_2-R^7$, Ar' is preferentially unsub10 stituted or substituted naphthylene, where R^7 is preferentially an alkylamino group, dialkylamino group, cycloalkylamino group or an alkylcycloalkylamino group.

$$H_5C_2$$
 or H_3C C_4H_9 H_3C C_2H_5

is particularly preferred for $-Ar'-SO_2-R^7$.

In -Ar'-(CH₂)_n-(CONH)-(CH₂)_i-R⁶, Ar' is preferentially unsubstituted or substituted phenylene, where R⁶ is preferentially an amino group, alkylamino group, dialkylamino group or a cycloalkylamino group and n can be 0, 1, 2, 3 or 4 and i can be 0, 1, 2, 3, 4, 5, 6, 7, 20 8, 9, 10, 11 or 12.

$$(CH_2)_2$$
-CONH- $(CH_2)_3$ -N $(CH_3)_2$

$$(CH_2)_2$$
- CONH- $(CH_2)_4$ -NH₂

$$(CH_2)_2$$
- CONH- $(CH_2)_2$ -NH₂
or

is particularly preferred for $-Ar' - (CH_2)_n - (CONH) - (CH_2)_i - R^6$.

In $-Ar'-(CH_2)_n-(CONH)-(CH_2)_i-D-H$, Ar' is preferentially unsubstituted or substituted phenylene, where D has one of the preferred meanings mentioned below and n can be 0, 1, 2, 3 or 4 and i can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

$$(CH_2)_2$$
- $CONH$ - CH_2
 $(CH_2)_2$ - $CONH$ - $(CH_2)_2$

or

is particularly preferred for $-Ar' - (CH_2)_n - (CONH) - (CH_2)_i - D - H$.

In -Ar'-S-(CH₂)_n-(CONH)-(CH₂)_i-D-H, Ar' is preferentially unsubstituted or substituted phenylene, where D has one of the preferred meanings mentioned below and n can be 0, 1, 2, 3 or 4 and i can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

10 or

is particularly preferred for $-Ar'-S-(CH_2)_n-(CONH)-(CH_2)_i-D-H$.

In $-Ar' - (CH_2)_n - (CONH) - (CH_2)_i - R^{11}$, Ar' is preferentially unsubstituted or substituted phenylene, where R^{11} is -CH(A)-Ph, wherein A has one of the preferred meanings mentioned beforehand, Ph is phenyl and n can be 0, 1, 2, 3 or 4 and i can be 0, 1, 2, 3, 20 4, 5, 6, 7, 8, 9, 10, 11 or 12.

$$\begin{array}{c|c} (\operatorname{CH_2})_2\text{-}\operatorname{CONH} & \\ \hline & \operatorname{CH_3} & \\ \end{array} \quad \text{or} \quad$$

is particularly preferred for $-Ar' - (CH_2)_n - (CONH) - (CH_2)_i - R^{11}$.

25

In $-Ar'-S-(CH_2)_n-(CONH)-(CH_2)_i-R^{11}$, Ar' is preferentially unsubstituted or substituted phenylene, where R^{11} is -CH(A)-Ph, wherein A has one of the preferred meanings mentioned beforehand, Ph is phenyl

and n can be 0, 1, 2, 3 or 4 and i can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

$$- \left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle - S - CH_2 - CONH - CH_2 - \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle$$

is particularly preferred for $-Ar'-S-(CH_2)_n-(CONH)-5$ $(CH_2)_i-R^{11}$.

In $-Ar' - (CH_2)_n - (CO) - Het$, Ar' is preferentially unsubstituted or substituted phenylene, where Het has one of the preferred meanings mentioned in the following and n can be 0, 1, 2, 3 or 4.

is particularly preferred for $-Ar'-(CH_2)_n-(CO)-Het$.

In $-Ar' - (CH_2)_n - (CONH) - (CH_2)_i - Ar$, Ar' is preferentially unsubstituted or substituted phenylene, where Ar has one of the preferred meanings mentioned beforehand and n can be 0, 1, 2, 3 or 4 and i can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

20

$$(CH_2)_2$$
-CONH- $(CH_2)_2$ NC_2 $CONH-(CH_2)_2$ NC_2 $CONH-CH_2$ NC_2 N

CONH-CH₂

$$(CH_2)_2 - CONH \longrightarrow N \longrightarrow C_2H_5$$

$$(CH_2)_2 - CONH \longrightarrow N \longrightarrow C_2H_5$$

$$(CH_2)_2 - CONH \longrightarrow N \longrightarrow CH_3$$

$$(CH_2)_2 - CONH - CH_2 \longrightarrow N \longrightarrow CH_3$$

$$(CH_2)_2 - CONH - CH_2 \longrightarrow N \longrightarrow CH_3$$

$$(CH_2)_2 - CONH - (CH_2)_2 \longrightarrow SO_2 - NH_2$$

$$(CH_2)_2 - CONH - (CH_2)_2 \longrightarrow SO_2 - NH_2$$

CONH-CH₂

$$CH_{2})_{2}$$

$$CONH$$

$$CH_{3}$$

$$CH_{4$$

6/30/2008, EAST Version: 2.2.1.0

CONH-(CH₂)₂

$$(CH2)2-CONH-(CH2)2$$

$$(CH2)2-CONH-CH2
$$(CH2)2-CONH-CH2$$

$$(CH2)2-CONH-CH2
$$(CH2)2-CONH-CH2$$

$$(CH2)2-CONH-CH2
$$(CH2)2-CONH-CH2$$

$$(CI)$$

$$(CONH-(CH2)2-CONH-CH2)$$

$$(CI)$$

$$(CONH-(CH2)2-CONH-CH2)$$

$$(CI)$$$$$$$$

$$(CH_2)_2$$
-CONH- $(CH_2)_2$ CI
 $(CH_2)_2$ -CONH- $(CH_2)_2$ CI
 $(CH_2)_2$ -CONH- $(CH_2)_2$ CI
 $(CH_2)_2$ -CONH- $(CH_2)_2$ CH_3
 $(CH_2)_2$ -CONH- $(CH_2)_2$ CH_3
 $(CH_2)_2$ -CONH- $(CH_2)_2$ CH_3

6/30/2008, EAST Version: 2.2.1.0

$$(CH_2)_2$$
-CONH—

 $(CH_2)_2$ -CONH—

 $(CH_2)_2$ -CONH-CH2

 $(CH_2)_2$ -CONH-CH2

 $(CH_2)_2$ -CONH-CH2

 $(CH_2)_2$ -CONH-CH2

 $(CH_2)_2$ -CONH-CH2

 $(CH_2)_2$ -CONH-CH2

 $(CH_2)_2$ -CONH-CH2

6/30/2008, EAST Version: 2.2.1.0

$$CH_2)_2$$
-CONH- CI
 $CONH$ - CI
 $CONH$ - CH_2
 $CONH$ - $CH_2)_3$
 $CONH$ - $CH_2)_2$ - $CONH$ - $CH_2)_3$
 $CONH$ - $CH_2)_2$ - $CONH$ -

$$(CH_2)_2$$
-CONH- $(CH_2)_4$
 $(CH_2)_2$ -CONH- $(CH_2)_2$
 $(CH_2)_2$ -CONH
 $(CH_2)_2$
 $(CH_3)_2$ -CONH
 $(CH_3)_2$
 $(CH_3)_2$ -CONH
 $(CH_3)_2$

$$C_2H_5$$
 C_2H_5
 C_3
 C_3
 C_3
 C_3
 C_4
 C_5
 C_5
 C_5
 C_5
 C_5
 C_5
 C_7
 C_7

6/30/2008, EAST Version: 2.2.1.0

, 5

CONH-CH₂
$$\rightarrow$$
 F

CI

CONH-CH₂ \rightarrow F

CI

CONH-CH₂ \rightarrow F

CI

CONH-CH₂ \rightarrow F

CI

CONH-CH₂ \rightarrow CONH-CH₂

OCH₃

CONH-CH₂ \rightarrow OCH₃

CONH-CH₂ \rightarrow OCH₃

6/30/2008, EAST Version: 2.2.1.0

6/30/2008, EAST Version: 2.2.1.0

$$\begin{array}{c} -37 - \\ F \\ CONH \\ - OCH_3 \\ \\ CONH \\ - CH_3 \\ \\ CONH \\ - CH_3 \\ \\ - CONH \\ - CH_3 \\ \\ - CF_3 \\ \\ - CONH \\ - CH_3 \\ \\ - CF_3 \\ \\ - CONH \\ - CH_3 \\ \\ - CF_3 \\ \\ - CONH \\ - CH_3 \\ \\ - CONH \\ - CH_3 \\ \\ - CH_2)_2 - CONH \\ - CONH \\ - CH_3 \\ - CONH \\ - CH_3 \\ -$$

6/30/2008, EAST Version: 2.2.1.0

is particularly preferred for $-Ar' - (CH_2)_n - (CONH) - (CH_2)_i - Ar$.

15

In -Ar'-S-(CH₂)_n-(CONH)-(CH₂)_i-Ar, Ar' is preferentially unsubstituted or substituted phenylene, where Ar has one of the preferred meanings mentioned beforehand and n can be 0, 1, 2, 3 or 4 and i can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

$$S-CH_2-CONH$$

$$S-CH_2-CONH-CH_2$$

$$S-CH_2-CONH-(CH_2)_2$$

$$S-CH_2-CONH-(CH_2)_2$$

$$NO_2$$

$$N=0$$

$$S-CH_2-CONH-(CH_2)_2$$

$$S-CH_2-CONH-CH_2$$

$$S-CH_2-CONH-CH_2$$

$$NO_2$$

$$N=0$$

$$S-CH_2-CONH-CH_2$$

$$NO_2$$

$$N=0$$

$$S-CH_2-CONH-CH_2$$

$$NO_2$$

$$N=0$$

$$S-CH_2-CONH-CH_2$$

$$NO_2$$

$$N=0$$

$$S-CH_2-CONH-CH_2$$

$$NO_2$$

$$S-CH_2-CONH-CH_2$$

$$NO_2$$

$$S-CH_2-CONH-CH_2$$

$$NO_2$$

$$S-CH_2-CONH-CH_2$$

$$NO_2$$

$$S-CH_3$$

$$S-CH_3$$

$$CH_3$$

$$S-CH_2-CONH$$

$$S-CH_2-CONH-(CH_2)_2$$

$$S-CH_2-CONH-CH_2$$

$$S-CH_2-CONH$$

$$S-CH_3$$

$$S-CH_2-CONH-(CH_2)_2$$

$$S-CH_2-CONH-(CH_2)_2$$

$$CI$$

$$-S-CH_2-CONH-(CH_2)_2$$

$$-S-CH_2-CONH-CH_2$$

$$-S-CH_2-CONH-CH_2-CF_3$$

$$-S-CH_2-CONH-CH_2-F$$

$$S - CH_2 - CONH - OCH_3$$

$$S - CH_2 - CONH - (CH_2)_2 - F$$

$$S - CH_2 - CONH - CH_2$$

$$S - CH_2 - CONH - F$$

$$S - CH_2 - CONH - F$$

$$S - CH_2 - CONH - OPh$$

$$S-CH_2-CONH-CH_3$$

$$S-CH_2-CONH-CH_3$$

$$S-CH_2-CONH-CH_3$$

$$S-CH_2-CONH-(CH_2)_2$$

$$OCH_3$$

In $-Ar' - (CH_2)_n - (CONH) - (CH_2)_i - Het^1$, Ar' is preferentially unsubstituted or substituted phenylene, where Het¹ has one of the preferred meanings mentioned in the following and n can be 0, 1, 2, 3 or 4 and i can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

CONH-CH₂

$$(CH_2)_2\text{-CONH-CH}_2$$

$$(CH_2)_2\text{-CONH-CH}_2$$

$$(CH_2)_2\text{-CONH-CH}_2$$
or

is particularly preferred for $-Ar' - (CH_2)_n - (CONH) - (CH_2)_i - Het^1$.

In -Ar'-S-(CH₂)_n-(CONH)-(CH₂)_i-Het¹, Ar' is preferentially unsubstituted or substituted phenylene, where Het¹ has one of the preferred meanings mentioned in the following and n can be 0, 1, 2, 3 or 4 and i can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

$$-S-CH_2-CONH-(CH_2)_2-N$$

$$-S-CH_2-CONH-(CH_2)_3-N$$

$$-S-CH_2-CONH-(CH_2)_2-N$$

$$-S-CH_2-CONH-(CH_2)_2-N$$

$$-S-CH_2-CONH-CH_2-S$$

or

$$-$$
S-CH₂-CONH-CH₂- $\frac{O}{}$

is particularly preferred for $-Ar'-S-(CH_2)_n-(CONH)-(CH_2)_i-Het^1$.

In $-Ar'-(CH_2)_n-(CH(CN))-(CH_2)_i-Ar$, Ar' is preferentially unsubstituted or substituted phenylene, where Ar has one of the preferred meanings mentioned beforehand and n can be 0, 1, 2, 3 or 4 and i can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

$$- CH-CH_2 - CH_3 CH_3$$

_

10

is particularly preferred for $-Ar' - (CH_2)_n - (CH(CN)) - (CH_2)_i - Ar$.

In $-Ar' - (CH_2)_n - (CONH) - (CH_2)_i - CH(Ar^1) - Ar^2$, Ar' is preferentially unsubstituted or substituted phenylene, where Ar^1 and Ar^2 each independently of one another has one of the preferred meanings mentioned beforehand and n can be 0, 1, 2, 3 or 4 and i can be 0, 1, 2, 3, 4, 5, 20 6, 7, 8, 9, 10, 11 or 12.

$$(CH_2)_2$$
- $CONH$ - $(CH_2)_2$ - CH or

is particularly preferred for $-Ar' - (CH_2)_n - (CONH) - (CH_2)_i - CH(Ar^1) - Ar^2$.

5

In $-Ar'-S-(CH_2)_n-(CONH)-(CH_2)_i-CH(Ar^1)-Ar^2$, Ar' is preferentially unsubstituted or substituted phenylene, where Ar^1 and Ar^2 each independently of one another has one of the preferred meanings mentioned beforehand and n can be 0, 1, 2, 3 or 4 and i can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

or

15 is particularly preferred for $-Ar'-S-(CH_2)_n-(CONH)-(CH_2)_i-CH(Ar^1)-Ar^2$.

In the above formulae, D is cycloalkylene and has 4 to 7, preferably 5 or 6, C atoms. Cycloalkylene 20 is preferably cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl, particularly preferentially cyclopentyl or

cyclohexyl. Furthermore, D is preferentially cyclohexen-1-yl.

Hal is preferably F, Cl, Br or iodine.

Het1 is preferentially substituted or unsubsti-5 tuted furan-2-yl or furan-3-yl, carbazol-9-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, [1,3,4]-thiadiazol-2-yl, 1,2-dihydropyrazol-3-on-4-yl, 1,2-dihydropyrazol-3-on-5-yl, benzothiophen-2-yl, benzothiophen-3-yl, 3Hbenzotriazol-5-yl, benzothiazol-2-yl, benzofuran-2-yl, 10 benzofuran-3-yl, imidazol-1-yl or benzo[1,3]dioxol-5-yl or piperidine-1-yl, pyrrolidine-1-yl or pyrrolidine-2-on-1yl. Furthermore furan-2-yl, carbazol-9-yl, 3,6-di-tertbutyl-carbazol-9-yl, thiazol-2-yl, thiazol-3-yl, 5-methyl-[1,3,4]-thiadiazol-2-yl, 5-trifluoromethyl-[1,3,4]-15 thiadiazol-2-yl, 1,5-dimethyl-1,2-dihydropyrazol-3-on-4-yl, benzofuran-2-yl, 6-methyl-benzothiazol-2-yl, 2,3-dihydro-1H-indol-6-yl, 3H-benzotriazol-5-yl,

2,3-dihydro-1H-indol-6-yl, 3H-benzotriazol-5-yl, benzothiophen-2-yl, imidazol-1-yl or benzo[1,3]dioxol-5-yl or piperidine-1-yl, morpholin-4-yl, pyrrolidine-1-yl or pyrrolidine-2-on-1-yl is particularly preferred.

In -Het¹-Ar, Het¹ and Ar have one of the preferred meanings indicated above, where Ar is preferably phenyl. 4-phenylthiazol-2-yl, 5-phenyl-[1,3,4]-thiadiazol-2-yl or 1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-on-4-yl is particularly preferred for Het¹-Ar.

In $-\text{Het}^1-\text{R}^3$, Het^1 is preferably 2,3-dihydro-1H-indol-6-yl and R3 is preferably CO(A).

25

35

30 is particularly preferred for Het1-Ar.

Het is preferably substituted or unsubstituted 2- or 3-furyl, 2- or 3-thienyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or

WO 00/32577 PCT/EP99/08561

4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, furthermore preferably 1,2,3-triazol-1-, -4- or 1,2,4-triazol-1-, -4- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-v1,1,3,4-thiadiazol-2or -5-v1, 1,2,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-1H-indolyl, 10 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 2-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6-7-benzisothiazolyl, 4-, 5-, 6- or 7-benz-2,1,3-15 oxadiazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7- or 8-isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, 3-, 4-, 5-, 20 6-, 7- or 8-cinnolinyl, 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl. The heterocyclic radicals can also be partially or completely hydrogenated. Het can thus also be 2,3-dihydro-2-, -3-, -4- or -5-furyl, dihydro-2-, -3-, -4- or -5-furyl, tetrahydro-2--3-furyl, 1,3-dioxolan-4-yl, tetrahydro-2-25 or -3-thienyl, 2,3-dihydro-1-, -2-, -3-, -4or -5-pyrrolyl, 2,5-dihydro-1-, -2-, -3-, -4or-5-pyrrolyl, 1-, 2- or 3-pyrrolidinyl, tetrahydro-1-, -2- or -3-pyrrolyl, tetrahydro-1-, -2- or 4-imidazolyl, 2,3-dihydro-1-, -2-, -3-, -4-, -5-, -6-, -7-1H-indoly1, 30 2,3-dihydro-1-, -2-, -3-, -4- or -5-pyrazolyl, tetrahydro-1-, -3- or -4-pyrazolyl, 1,4-dihydro-1-, -2-, -3- or -4-pyridyl, 1,2,3,4-tetrahydro-1-, -2-, -3-, -4-, -5- or -6-pyridyl, 1,2,3,6-tetrahydro-1-, 35 -2-, -3-, -4-, -5- or -6-pyridyl, 1-, 2-, 3- or 4-piperidinyl, 1-, 2-, 3- or 4-azepanyl, 2-, 3- or 4-morpholinyl, tetrahydro-2-, -3- or -4-pyranyl, 1,4-dioxanyl, 1,3-dioxan-2-, -4- or -5-yl, hexahydro-1-, -3- or -4-pyridazinyl, hexahydro-1-, -2-, -4- or

-5-pyrimidinyl, 1-, 2- or 3-piperazinyl, 1,2,3,4-tetrahydro-1-, -2-, -3-, -4-, -5-, -6-, -7- or -8-quinolinyl, 1,2,3,4-tetrahydro-1-, -2-, -3-, -4-, -5-, -6-, -7- or -8-isoquinolinyl.

5 Tetrahydro-1-pyrrolyl, 2,3-dihydro-1H-indol-1-yl, 1-piperidinyl, 2,6-tetramethylpiperidin-4-yl, 4-morpholinyl, 1-piperazinyl, 4-methylpiperazin-1-yl, 4-phenylpiperazin-1-yl, 1,2,3,4-tetrahydroquinolin-1-yl or 1,2,3,4-tetrahydroisoquinolin-1-yl is particularly preferred.

In $-\text{Het}-SO_2-\text{Ar}$, Het and Ar have one of the preferred meanings indicated above, where Het is preferably piperazine-1,4-diyl.

$$-N$$
 $N-SO_2$ \longrightarrow Br

15 is particularly preferred for -Het-SO₂-Ar.

In $-\text{Het-R}^5$, Het has one of the preferred meanings indicated beforehand, where Het is preferably piperazine-1,4-diyl and R^5 is preferentially phenyl, methyl, chloromethyl or trifluoromethyl.

$$-N$$

20

25

is particularly preferred for -Het-R⁵.

In $-\text{Het-}(CH_2)_n-\text{Ar}$, Het and Ar have one of the preferred meanings indicated above, where Het is preferably piperazine-1,4-diyl and n can be 0, 1, 2, 3 or 4.

$$-N$$
 $N-CH_2$ O

$$-N$$
 $N-CH_2$,

15

$$-N N \longrightarrow N$$
 or
$$-N N \longrightarrow N$$

is particularly preferred for $-Het-(CH_2)_n-Ar$.

X and/or X^1 and/or X^2 is alkylene and is preferably methylene, ethylene, propylene, butylene, furthermore also pentylene or hexylene.

Y is preferably O, S, NH or NA.

In $-Y-(CH_2)_n-Het$, Y is preferably O, S, NH or NA, where Het has one of the preferred meanings indicated above and n is preferably 0, 1, 2, 3 or 4.

$$-NH-(CH_2)_2-N O -NH-(CH_2)_3-N N-CH_3$$
 or
$$-NH-(N+1)_10$$

is particularly preferred for $-Y-(CH_2)_n-Het$.

In $-Y-Ar'-R^3$, Y is preferably O, S, NH or NA, where Ar' has one of the preferred meanings indicated beforehand and R^3 is preferentially an alkylcarbonyl group.

is particularly preferred for -Y-Ar'-R3.

In $-Y-(CH_2)_n-Ar$, Y is preferably O, S, NH or NA, where Ar has one of the preferred meanings indicated above and n is preferably 0, 1, 2, 3 or 4.

$$-NH-(CH_2)_2 \longrightarrow -NH-CH_2 \longrightarrow -NH-(CH_2)_3 \longrightarrow -NH-(CH_2)_3 \longrightarrow -NH-(CH_2)_3 \longrightarrow -NH-CH_2 \longrightarrow -NH-$$

$$-NH-(CH_2)_2 \longrightarrow OH \qquad -NH-CH_2 \longrightarrow NH-CH_2 \longrightarrow NH-CH_2 \longrightarrow NH-CH_2 \longrightarrow OH$$

$$-NH-(CH_2)_2 \longrightarrow OF \qquad OH$$

$$-N(CH_3)-(CH_2)_2 \longrightarrow OH$$

is particularly preferred for -Y-(CH₂)_n-Ar.

In $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^6$, Y is preferentially O, S, NH or NA, where Ar' has a preferred meaning indicated beforehand, R^6 is preferably amino or alkylamino and n is 0, 1, 2, 3 or 4 and i is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

$$CH_2$$
- NH_2
 NH - CH_2
 CH_2 - NH_2
 CH_2 - NH_2

is very particularly preferred for $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^6$.

In $-Y-(CH_2)_n-D-(CH_2)_i-R^6$, Y is preferentially O, S, NH or NA, where D has a preferred meaning indicated beforehand, R^6 is preferably amino or alkylamino and n is 0, 1, 2, 3 or 4 and i is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

20 or

5

10

is very particularly preferred for $-Y-(CH_2)_n-D-(CH_2)_i-R^6$.

In $-Y-(CH_2)_n-Het-(CH_2)_i-R^6$, Y is preferentially O, S, NH or NA, where Het has a preferred meaning indicated beforehand, R^6 is preferably amino or alkylamino and n is 0, 1, 2, 3 or 4 and i is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

$$_{-}$$
 NH-(CH $_{2}$) $_{3}$ — N — (CH $_{2}$) $_{3}$ — NH $_{2}$

is very particularly preferred for $-Y-(CH_2)_n-Het-(CH_2)_i-R^6$.

In $-Y-(CH_2)_n-NA-(CH_2)_i-R^6$, Y is preferentially O, S, NH or NA, where A has a preferred meaning indicated beforehand, R^6 is preferably amino or alkylamino and n is 0, 1, 2, 3 or 4 and i is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12. $-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH_2$ is very particularly preferred for $-Y-(CH_2)_n-NA-(CH_2)_i-R^6$.

In $-Y-(CH_2)_n-D-(CH_2)_i-R^8$, Y is preferentially O, S, NH or NA, where D has a preferred meaning indicated beforehand, R^8 is preferably guanidino or alkylguanidino and n is 0, 1, 2, 3 or 4 and i is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

$$\begin{array}{c} \text{CH}_2 - \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{Or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 \end{array} \qquad \text{or} \\ \text{-NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{NH-CH}_2 - \begin{array}{c} \text{N} \\ \text{N$$

is very particularly preferred for $-Y-(CH_2)_n-D-(CH_2)_i-R^8$. In $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^8$, Y is preferentially O, S, NH or NA, where Ar' has a preferred meaning indicated beforehand, R^8 is preferably guanidino or alkylguanidino and n is 0, 1, 2, 3 or 4 and i is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

$$CH_2 - N H_2$$

$$-NH-CH_2 - NH_2$$

$$- NH-(CH_2)_2 \longrightarrow N \\ NH_2 \qquad \text{or} \\ H$$

is very particularly preferred for $-Y-(CH_2)_p-Ar'-(CH_2)_i-R^8$.

In $-Y-(CH_2)_n-NA-(CH_2)_i-R^8$, Y is preferentially O, S, NH or NA, where A has a preferred meaning indicated beforehand, R^8 is preferably guanidino or alkylguanidino and n is 0, 1, 2, 3 or 4 and i is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12. $-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH-C(=NH)-NH_2$ is very particularly preferred for $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^8$.

In $-Y-[X-O]_t-[X^1-O]_u-X^2-R^6$, Y is preferentially 0, S, NH or NA, where X, X^1 and X^2 have a preferred meaning indicated beforehand. Furthermore, R^6 is preferably amino, alkylamino or dialkylamino, t is 0, 1 or 2 and u is 1 or 2. $-NH-(CH_2)_3-O-(CH_2)_4-O-(CH_2)_3-NH_2$ is particularly preferred for $-Y-[X-O]_t-[X^1-O]_u-X^2-R^6$.

Furthermore, in $-Y-[X-NH]_u-X^1-OH$, Y is preferentially O, S, NH or NA, where X and X^1 have a preferred meaning indicated beforehand and u can be 1 or 2. $-NH-(CH_2)_2-NH-(CH_2)_2-OH$ is particularly preferred for $-Y-[X-NH]_u-X^1-OH$.

R is preferably H or NO_2 .

 R^1 is preferably -Het, -Het-SO₂-Ar, -Het-R⁵, -Het-(CH₂)_n-Ar, NO₂, -N=CH-Ar, NHAlk, NAAlk, NHA', NA'₂,

$$-N$$
 N
 R^6

20

 $-Y-D-H, -Y-Ar'-R^{3}, -Y-(CH_{2})_{o}-R^{3}, -Y-(CH_{2})_{n}-(CHR^{4})-R^{5},$ $-Y-C[(CH_{2})_{o}-OH]_{3}, -Y-(CH_{2})_{m}-NA_{2}, -Y-(CH_{2})_{m}-NHA',$ $-Y-(CH_{2})_{o}-OH, -Y-(CH_{2})_{k}-R^{6}, -Y-(CH_{2})_{i}-R^{8}, -Y-(CH_{2})_{n}-Het,$ $-Y-(CH_{2})_{n}-Ar, -Y-(CH_{2})_{n}-Ar'-(CH_{2})_{i}-R^{6}, -Y-(CH_{2})_{n}-D-(CH_{2})_{i}-R^{6},$ $-Y-(CH_{2})_{n}-Het-(CH_{2})_{i}-R^{6}, -Y-(CH_{2})_{n}-NA-(CH_{2})_{i}-R^{6},$ $-Y-(CH_{2})_{n}-NH-(CH_{2})_{i}-R^{6}, -Y-(CH_{2})_{n}-D-(CH_{2})_{i}-R^{8},$ $-Y-(CH_{2})_{n}-NA-(CH_{2})_{i}-R^{8}, -Y-(CH_{2})_{n}-NH-(CH_{2})_{i}-R^{8},$ $-Y-(CH_{2})_{n}-NA-(CH_{2})_{i}-R^{8},$

$$-Y-(CH_2)_n$$
 N N

 $-Y-[X-O]_{t}-[X^{1}-O]_{u}-X^{2}-R^{6} \quad \text{or} \quad -Y-[X-NH]_{u}-X^{1}-OH, \quad \text{where } -\text{Het}, \\ -\text{Het}-SO_{2}-\text{Ar}, \quad -\text{Het}-R^{5}, \quad -\text{Het}-(CH_{2})_{n}-\text{Ar}, \quad -Y-\text{Ar}'-R^{3}, \\ -Y-(CH_{2})_{n}-\text{Het}, \quad -Y-(CH_{2})_{n}-\text{Ar}, \quad -Y-(CH_{2})_{n}-\text{Ar}'-(CH_{2})_{i}-R^{6}, \\ -Y-(CH_{2})_{n}-D-(CH_{2})_{i}-R^{6}, \quad -Y-(CH_{2})_{n}-\text{Het}-(CH_{2})_{i}-R^{6}, \\ -Y-(CH_{2})_{n}-\text{NA}-(CH_{2})_{i}-R^{6}, \quad -Y-(CH_{2})_{n}-D-(CH_{2})_{i}-R^{8}, \\ -Y-(CH_{2})_{n}-\text{Ar}'-(CH_{2})_{i}-R^{8}, \quad -Y-(CH_{2})_{n}-\text{NA}-(CH_{2})_{i}-R^{8}, \\ -Y-[X-O]_{t}-[X^{1}-O]_{u}-X^{2}-R^{6} \quad \text{and} \quad -Y-[X-NH]_{u}-X^{1}-OH \quad \text{in particular} \\ \text{have the preferred or particularly preferred meanings}$

10 indicated beforehand.

Furthermore, Ar in -N=CH-Ar is preferably 2-hydroxyphenyl.

In NHAlk, Alk has a preferred meaning indicated beforehand.

NH- $(n-C_5H_{11})$ is particularly preferred for NHAlk. In NAAlk, A and Alk have a preferred meaning indicated beforehand, where N(CH₃)- $(n-C_4H_9)$ is particularly preferred for NAAlk.

In NHA', A' has a preferred meaning indicated before-

hand. NH- $(n-C_3H_7)$ is particularly preferred for NHA'. Furthermore, A' in NA'2 has a preferred meaning indicated beforehand, where N(C_2H_5)2 is particularly preferred for NA'2.

In -Y-D-H, as a R^1 substituent, Y is preferentially O,

S, NH or NA, where D has a preferred meaning indicated beforehand. $-NH-C_6H_{11}$ or $-NH-C_5H_9$ is particularly preferred for -Y-D-H.

In $-Y-(CH_2)_o-R^3$, Y is preferentially O, S, NH or NA, where R^3 is preferably alkyloxycarbonyl and o can be 1,

30 2, 3, 4, 5, 6, 7, 8, 9 or 10.

-NH-(CH₂)₂-COOMe is particularly preferred for -Y-(CH₂)_o-R³. In -Y-(CH₂)_n-(CHR⁴)-R⁵, Y is preferentially O, S, NH or NA, where R⁴ is preferably phenyl or hydroxyl, R⁵ is preferentially methyl, chloromethyl or trifluoromethyl

35 and n is 0, 1, 2, 3 or 4.

$$-NH - H \qquad \text{or} \qquad -NH-CH_2 - H \\ CH_3 \qquad \qquad CH_2C$$

is particularly preferred for $-Y-(CH_2)_n-(CHR^4)-R^5$ In $-Y-C[(CH_2)_o-OH]_3$, Y is preferentially O, S, NH or NA, where o can be 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. $-NH-C[CH_2-OH]_3$ is particularly preferred for $-Y-C[(CH_2)_o-OH]_3$.

In $-Y-(CH_2)_m-NA_2$, Y is preferentially O, S, NH or NA, where A has a preferred meaning indicated beforehand and m can be 0, 1 or 2.

In $-Y-(CH_2)_m-NHA'$, Y is preferentially O, S, NH or NA, where A' has a preferred meaning indicated beforehand and m can be 0, 1 or 2. $-NH-(CH_2)_2-NH-(C_3H_7)$ is

15 particularly preferred for $-Y-(CH_2)_m-NHA'$.

In $-Y-(CH_2)_o-OH$, Y is preferably O, S, NH or NA, where o is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. $-NH-(CH_2)_2-OH$ or $-NH-(CH_2)_5-OH$ is particularly preferred for $-Y-(CH_2)_o-OH$.

20 In $-Y-(CH_2)_k-R^6$, Y is preferentially O, S, NH or NA, where R^6 is preferably amino, alkylamino, dialkylamino or cycloalkylamino and k can be 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12. $-NH-(CH_2)_3-NH_2$, $-NH-(CH_2)_4-NH_2$, $-NH-(CH_2)_5-NH_2$, $-NH-(CH_2)_7-NH_2$, $-NH-(CH_2)_8-NH_2$, 25 $-NH-(CH_2)_3-N(CH_3)_2$, $-NH-(CH_2)_3-N(CH_3)_3$,

 $-N(CH_3) - (CH_2)_3 - NH(CH_3)$

or
$$-NH$$
— $(CH_2)_3$ — N — \downarrow

is particularly preferred for $-Y-(CH_2)_k-R^6$.

In $-Y-(CH_2)_i-R^8$, Y is preferentially O, S, NH or NA, where R^8 is preferably $-NH-(C=NH)-NH_2$, -NH-(C=NH)-NHA, $-NH-(C=NH)-NA_2$, $-NA-(C=NH)-NH_2$, $-NA-(C=NH)-NA_2$, $-NA-(C=NH)-NA_2$ and i can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12. $-NH-(CH_2)_2-NH-C(=NH)-NH_2$,

30

is particularly preferred for $-Y-(CH_2)_i-R^8$.

In
$$-N$$
 N and $-Y-(CH_2)_n$ N NH

Y is preferentially O, S, NH or NA, where R^6 is preferably amino, alkylamino or dialkylamino and n can be 0, 1, 2, 3 or 4.

$$-N \longrightarrow N \longrightarrow NH_2 \qquad \text{and} \quad -NH-CH_2 \longrightarrow N \longrightarrow NH_2 \longrightarrow NH$$

is particularly preferred for

 R^2 is preferably -Ar, -Ar'-D-H, -Het¹, -Het¹-Ar, -Ar'-Het¹, -Ar'-(CH₂)_n-R³, -Ar'-Y-(CH₂)_n-R³, $-Ar'-Y-C(A)_2-R^3$, $-Het^1-R^3$, $-Ar'-Het^1-R^3$, $-Ar'-(CH_2)_n-R^6$, -15 $Ar'-SO_2-Het$, $-Ar'-NH-SO_2-Het$, $Ar'-SO_2-R^7$, $-Ar'-(CH_2)_n-(CO-R^7)_n$ NH) - $(CH_2)_i - R^6$, $-Ar' - (CH_2)_n - (CO-NH) - (CH_2)_i - R^{11}$, $-Ar' - (CH_2)_n -$ CO-Het, $-Ar' - (CH_2)_n - (CO-NH) - (CH_2)_i - D-H$, $-Ar' - (CH_2)_n - (CO-NH) - (CH_2)_i - D-H$ $-Ar' - (CH_2)_n - (CO-NH) - (CH_2)_i - Het^1$, NH) - $(CH_2)_i$ -Ar, $-Ar' - (CH_2)_n - (CH(CN)) - (CH_2)_i - Ar$, 20 $-Ar' - (CH_2)_n - (CO-NH) (CH_2)_i - CH(Ar^1) - Ar^2$, $-Ar' - S - (CH_2)_n - (CO - NH) - (CH_2)_i - Ar$, $-Ar' - CH_2 - CH_$ $S-(CH_2)_n-(CO-NH)-(CH_2)_i-R^{11}$, $-Ar'-S-(CH_2)_n-(CO-NH) (CH_2)_i - Het^1$, $-Ar' - S - (CH_2)_n - (CO - NH) - (CH_2)_i - CH(Ar^1) - Ar^2$ or $-Ar'-S-(CH_2)_n-(CO-NH)-(CH_2)_i-D-H$, Ar, Ar', Ar', Ar², A,

D, Het, Het¹, R³, R⁶, R¹¹, Y, n and i in particular have one of the preferred or particularly preferred meanings indicated beforehand.

 R^3 is preferably C(0)A, $CONH_2$, CONHA, $CONA_2$, COOH or COOA, where A has one of the preferred meanings indicated beforehand.

R4 is preferentially phenyl or hydroxyl.

 ${\ensuremath{\mathsf{R}}}^5$ is preferably methyl, chloromethyl, trifluoromethyl or phenyl.

 R^6 is preferentially NH₂, NHA, NA₂, NH(D-H) or NHC(O)A, where A and D have a preferred meaning indicated beforehand.

 $$\rm R^7$$ is preferably NA(D-H), NHA, NH(D-H) or NA2, where A and D have a preferred meaning indicated beforehand.

 R^8 is preferentially $-NH-(C=NH)-NH_2$, $-NH-(C=NH)-NH_2$, $-NH-(C=NH)-NH_2$, -NA-(C=NH)-NHA, $-NA-(C=NH)-NA_2$, where A has a preferred meaning indicated beforehand.

R¹¹ is preferentially -CH(A)-Ph, where A has a preferred meaning indicated beforehand.

Some preferred groups of compounds can be expressed by the following subformulae Ia to Iz and I1 to I5, which correspond to the formula I

and in which the radicals not designated in greater detail have the meanings indicated in formula I, but in which:

in Ia R is NO_2 , R^1 is NO_2 and R^2 is Ar;

25

in Ib R is H, R^2 is Ar and R^1 is -Het,

R¹ is -Het, -Het-SO₂-Ar, -Het-R⁵, NO₂, NHAlk, NAAlk, NHA', NA'₂, -Y-D-H, -Y-Ar'-R³, -Y-(CH₂)_o-R³, -Y-(CH₂)_{n-}(CHR⁴)-R⁵, -Y-C[(CH₂)_o-OH]₃, -Y-(CH₂)_n-NA₂, -Y-(CH₂)_m-NHA', -Y-(CH₂)_o-OH, -Y-(CH₂)_k-R⁶,

```
-Y-(CH<sub>2</sub>)<sub>n</sub>-Het,
                                                              -Y-(CH_2)_n-Ar,
                      -Y-(CH_2)_n-Ar'-(CH_2)_i-R^6,
                      -Y-(CH_2)_n-Ar'-(CH_2)_i-R^8,
                      -Y-(CH_2)_n-D-(CH_2)_{i-R}^6, -Y-(CH_2)_{n-Het-(CH_2)_{i-R}^6},
 5
                      -Y-(CH_2)_n-NA-(CH_2)_i-R^6
                                                                           or
                      -Y-(CH_2)_{n-NH-(CH_2)_{i-R}}^{6};
      in Ic R is H,
                R<sup>2</sup> is -Het<sup>1</sup> and
                R^1
10
                      is NO2;
      in Id
                      is H.
                R
                R^2 is -Het^1-Ar and
                R^1
                      is NO2;
15
      in Ie
                R is H
                R^2 is -Ar' - (CH_2)_n - R^3 and
                R^1
                                -Het, -Het-SO_2-Ar, -Het-R^5,
                      -Het-(CH_2)_{n}-Ar, NO_2, NHAlk, NAAlk, NHA',
                      NA'_{2}, -Y-D-H, -Y-Ar'-R^{3}, -Y-(CH_{2})_{0}-R^{3},
20
                      -Y-(CH_2)_n-(CHR^4)-R^5,
                                                   -Y-C[(CH<sub>2</sub>)_{o}-OH]_{3}
                      -Y-(CH_2)_m-NA_2, -Y-(CH_2)_m-NHA', -Y-(CH_2)_o-OH,
                      -Y-(CH_2)_k-R^6, -Y-(CH_2)_n-Het, -Y-(CH_2)_n-Ar,
                      -Y-(CH_2)_n-Ar'-(CH_2)_i-R^6, Y-(CH_2)_n-D-(CH_2)_i-R^6,
25
                      -Y-(CH_2)_n-Het-(CH_2)_i-R^6,
                      -Y-(CH_2)_n-NA-(CH_2)_i-R^6,
                      -Y-(CH_2)_n-NH-(CH_2)_i-R^6,
                      -Y-[X-O]_{+}-[X^{1}-O]_{+}-X^{2}-R^{6} or -Y-[X-NH]_{+}-X^{1}-OH;
30
    in If
                      is H,
                R
                R^2
                      is -Ar'-Y-(CH_2)_n-R^3 and
                      is -Y-(CH_2)_k-R^6, -Y-(CH_2)_n-Ar'-(CH_2)_i-R^6 or
                      -Y-(CH<sub>2</sub>)<sub>n</sub>-Ar;
35 in Ig
                R
                      is H,
                R^2 is -Ar'-SO_2-Het and
                R^1
                      is -Y-(CH_2)_k-R^6 or -Y-(CH_2)_n-Ar'-(CH_2)_i-R^6;
```

 $-Y-(CH_2)_n-NA-(CH_2)_i-R^8;$

6/30/2008, EAST Version: 2.2.1.0

PCT/EP99/08561

```
in In
               R
                    is H,
               R^2
                     is -Ar' - (CH_2)_n - (CH(CN)) - (CH_2)_i - Ar and
                     is -Y-(CH_2)_k-R^6, -Y-(CH_2)_n-D-(CH_2)_i-R^6 or -Y-
               R^1
                     (CH_2)_n - Ar' - (CH_2)_i - R^6;
 5
     in Io
                     is H,
               R
                     is -Ar' - (CH_2)_n - (CO-NH) - (CH_2)_i - CH(Ar^1) - Ar^2 and
               R^2
               R^1
                     is -Y-(CH_2)_i-R^8,
                                                -Y-(CH_2)_n-D-(CH_2)_i-R^8,
                     -Y-(CH_2)_n-Ar'-(CH_2)_i-R^8
                     -Y-(CH_2)_n-NA-(CH_2)_i-R^8;
10
     in Ip
              R
                    is H,
               \mathbb{R}^2
                    is -Ar'-Het1 and
                     is -Y-(CH_2)_k-R^6, -Y-(CH_2)_n-Ar'-(CH_2)_i-R^6,
               R^1
                     -Y-(CH_2)_n-Ar'-(CH_2)_i-R^8 or -Y-(CH_2)_n-
15
                     D-(CH_2)_i-R^6;
     in Iq
                    is H,
               R
               R^2
                    is -Ar'-Het^1-R^3 and
               R^1
                     is -Y - (CH_2)_k - R^6 or -Y - (CH_2)_n - D - (CH_2)_i - R^6;
20
                    is H
     in Ir
               R
               R^2 is -Ar' - (CH_2)_n - R^6 and
               R^1 is -Y-(CH_2)_k-R^6 or -Y-(CH_2)_n-D-(CH_2)_i-R^6:
25
     in Is
               R
                    is H,
               R^2 is -Ar'-Y-C(A)_2-R^3 and
               R^1
                    is -Y-(CH_2)_k-R^6;
30
     in It
               R
                     is H,
               R^2
                     is -Ar'-NH-SO2-Het and
                    is -Y-(CH<sub>2</sub>)<sub>k</sub>-R<sup>6</sup>;
     in Iu
                     is H,
               R
               R^2
                    is -Het^1-R^3 and
35
               R^1
                    is -Y-(CH<sub>2</sub>)<sub>k</sub>-R<sup>6</sup>;
     in Iv
               R
                    is H,
               R^2
                    is -Ar'-D-H and
```

WO 00/32577 PCT/EP99/08561

- 64 -

 R^1 is $-Y-(CH_2)_k-R^6$;

in Iw R is H,

> R^2 is $-Ar' - (CH_2)_n - (CONH) - (CH_2)_i - R^{11}$ and

5 R^1 is $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^6;$

in Ix is H, R

> R^2 is $-Ar' - (CH_2)_n - CO - Het$ and

 R^1 is $-Y-(CH_2)_n-D-(CH_2)_i-R^6$;

10

in Iy is H, R

> R^2 is $-Ar'-S-(CH_2)_n-(CO-NH)-(CH_2)_i-Ar$ and

 R^1 $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^6$ is or $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^8;$

15

in Iz R is H,

> R^2 is $-Ar'-S-(CH_2)_n-(CO-NH)-(CH_2)_n-Het^1$ and

 R^1 $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^6$ is or $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^8;$

20

in I1 R is H,

> R^2 is $-Ar'-S-(CH_2)_n-(CO-NH)-(CH_2)_i-DH$ and

 R^1 $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^6$ is or

 $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^8;$

25

in I2 R is H,

> is $-Ar'-S-(CH_2)_n-(CO-NH)-(CH_2)_i-R^{11}$ and \mathbb{R}^2

 R^1 is $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^6$ or

 $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^8;$

30

in I3 R is H,

> R^2 is $-Ar'-S-(CH_2)_n-(CO-NH)-(CH_2)_i-CH(Ar^1)-Ar^2$

and

 R^1 $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^6$ or

35 $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^8;$

> in I4 R is H,

> > R^2 is -Ar', -Ar'- $(CH_2)_n$ -(CO-NH)-(CH₂)_i-Ar and

WO 00/32577 PCT/EP99/08561

R¹ is $-Y-(CH_2)_k-R^6$, $-Y-(CH_2)_i-R^8$; $-Y-(CH_2)_n-D-(CH_2)_i-R^8$, $-Y-(CH_2)_n-NA-(CH_2)_i-R^8$ or $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^8$;

5 in I5 R is H, R^2 is

30

is -Ar, -Ar' $-(CH_2)_n$ -(CO-NH) $-(CH_2)_i$ -Ar, -Ar' -S $-(CH_2)_n$ -(CO-NH) $-(CH_2)_i$ -Ar, -Ar' $-(CH_2)_n$ -(CO-NH) $-(CH_2)_i$ -(C

10 $-Ar'-S-(CH_2)_n-(CO-NH)-(CH_2)_i-D-H,$

 $-\mathrm{Ar'} - (\mathrm{CH_2})_{n} - (\mathrm{CO} - \mathrm{NH}) - (\mathrm{CH_2})_{i} - \mathrm{CH} (\mathrm{Ar^1}) - \mathrm{Ar^2},$ $-\mathrm{Ar'} - \mathrm{S} - (\mathrm{CH_2})_{n} - (\mathrm{CO} - \mathrm{NH}) - (\mathrm{CH_2})_{i} - \mathrm{CH} (\mathrm{Ar^1}) - \mathrm{Ar^2},$ $-\mathrm{Ar'} - (\mathrm{CH_2})_{n} - (\mathrm{CO} - \mathrm{NH}) - (\mathrm{CH_2})_{i} - \mathrm{R^{11}} \quad \text{or} \quad -\mathrm{Ar'} - \mathrm{S} - (\mathrm{CH_2})_{n} - (\mathrm{CO} - \mathrm{NH}) - (\mathrm{CH_2})_{i} - \mathrm{R^{11}} \quad \text{and}$

15 R^1 is $-Y - (CH_2)_n - Ar' - (CH_2)_i - R^6$ or $-Y - (CH_2)_n - Ar' - (CH_2)_i - R^8$.

Preferred compounds of the formula I are in the following:

- 3-{3-[6-(4-Guanidinomethyl-benzylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-N-[2-(4-sulfamoyl-phenyl)-ethyl]-propionamide;
- N-[2-(4-Chloro-phenyl)-ethyl]-3-{3-[6-(4-25 guanidinomethyl-benzylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide;
 - 6-(3-Amino-propylamino)-2-(3,4,5-trimethoxy-phenyl)-benzo[de]isoquinoline-1,3-dione;
 - 6-(3-Amino-propylamino)-2-(7-hydroxy-naphthalen-1-yl)-benzo[de]isoquinoline-1,3-dione;
- 6-[(3-Amino-propylamino)-1,3-dioxo-1H,3H-35 benzo[de]isoquinolin-2-yl]-4,5-dimethoxy-benzonitrile;
 - 6-(3-Amino-propylamino)-2-(2,3-dimethoxy-phenyl)-benzo[de]isoquinoline-1,3-dione;

- 66 -

```
N-[2-(3-Chloro-phenyl)-ethyl]-3-{3-[6-(4-guanidinomethyl-cyclohexylmethyl-amino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide;
```

- 5 N-[2-(4-Chloro-phenyl)-ethyl]-3-{3-[6-(4-guanidinomethyl-cyclohexylmethyl-amino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide;
- 6-(3-Amino-propylamino)-2-(4'-methoxy-biphenyl-4-yl)10 benzo[de]isoquinoline-1,3-dione;
 - 6-(3-Amino-propylamino)-2-(4-carbazol-9-yl-phenyl)-benzo[de]isoquinoline-1,3-dione;
- 15 6-(3-Amino-propylamino)-2-(4'-hydroxy-2-methyl-biphenyl-4-yl)-benzo[de]isoquinoline-1,3-dione;
- N-(3-{[2-(4'Methoxy-biphenyl-4-yl)-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-ylamino]-methyl}20 benzyl)-guanidine;
 - 3-{3-[6-(2-Guanidino-ethylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-N-(4-phenyl-butyl)-propionamide;
- N-(2-(4-Chloro-phenyl)-ethyl]-3-{3-[6-(2-guanidino-ethylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide;
- N-(2-(4-Chloro-phenyl)-ethyl]-3-{3-[6-(3-guanidino-propylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide;
- N-(2-(4-Chloro-phenyl)-ethyl]-3-[3-(6-{3-[(3-guanidinopropyl)-methyl-amino]-propylamino}-1,3-dioxo-1H,3Hbenzo[de]isoquinolin-2-yl]-phenyl}-propionamide;

- 67 -

N-(2-(3-Chloro-phenyl)-ethyl]-3-{3-[6-(3-guanidino-propylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide;

5 6-(3-Amino-propylamino)-2-(4'-methoxy-biphenyl-4-yl)-benzo[de]isoquinoline-1,3-dione;

N-[3-({2-[4-(3,6-Di-tert-butyl-carbazol-9-yl)-phenyl]-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-ylamino]-methyl)-benzyl]-quanidine and

6-(3-Amino-propylamino)-2-(4-carbazol-9-yl-phenyl)-benzo[de]isoquinoline-1,3-dione.

10

35

- The compounds of the formula I and also the starting substances for their preparation are otherwise prepared by methods known per se, such as are described in the literature (e.g. in the standard works such as Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg-Thieme-Verlag, Stuttgart), namely under reaction conditions which are known and suitable for the reactions mentioned. In this case, use can also be made of variants which are known per se, but not mentioned here in greater detail.
- 25 The starting substances, if desired, can also be formed in situ such that they are not isolated from the reaction mixture, but immediately reacted further to give the compounds of the formula I.

The compounds of the formula I can be obtained by liberating them from their functional derivatives by solvolysis, in particular hydrolysis or by hydrogenolysis.

Preferred starting substances for the solvolysis or hydrogenolysis are those which otherwise correspond to the formula I, but instead of one or more free amino and/or hydroxyl groups contain corresponding protected amino and/or hydroxyl groups, in particular those which instead of an H-N- group carry an R'-N-group, in which R' is an amino protective group and/or

15

2.0

25

30

35

WO 00/32577 PCT/EP99/08561

those which instead of the H atom of a hydroxyl group carry a hydroxyl protective group, e.g. those which correspond to the formula I, but instead of a group - COOH carry a group -COOR", in which R" is a hydroxyl protective group.

A number of - identical or different - protected amino and/or hydroxyl groups can also be present in the molecule of the starting substance. If the protective groups present are different from one another, in many cases they can be removed selectively.

The expression "amino protective group" generally known and relates to groups which suitable for protecting (for blocking) an amino group which are easily against chemical reactions, but removable after the desired chemical reaction has been carried out at other positions in the molecule. Typical groups of this type are, in particular, unsubstituted or substituted acyl, aryl, aralkoxymethyl or aralkyl groups. Since the amino protective groups are removed after the desired reaction (or reaction sequence), their nature and size is otherwise not critical; however, those having 1-20, in particular 1-8, C atoms are preferred. The expression "acyl group" is to be interpreted in the widest sense in connection with the present process. It includes acyl groups derived from araliphatic, aromatic or aliphatic, heterocyclic carboxylic acids or sulfonic acids and, in particular, groups, aryloxycarbonyl groups alkoxycarbonyl especially aralkoxycarbonyl groups. Examples of acyl groups of this type are alkanoyl such as acetyl, propionyl, butyryl; aralkanoyl such as phenylacetyl; aroyl such as benzoyl or toluyl; aryloxyalkanoyl such alkoxycarbonyl such as POA; as methoxycarbonyl, ethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, BOC, 2-iodoethoxycarbonyl; aralkyloxycarbonyl such as CBZ ("carbobenzoxy"), 4-methoxybenzyloxycarbonyl, arylsulfonyl such as Mtr. Preferred amino protective groups are BOC, furthermore CBZ, Fmoc, benzyl and acetyl.

- 69 -

The expression "hydroxyl protective group" is also generally known and relates to groups which are suitable for protecting a hydroxyl group against chemical reactions, but which are easily removable after the desired chemical reaction has been carried out at other positions in the molecule. Typical groups of this type are the abovementioned unsubstituted or substituted aryl, aralkyl or acyl groups, furthermore also alkyl groups. The nature and size of the hydroxyl protective groups is not critical, since they are removed again after the desired chemical reaction or reaction sequence; groups having 1-20, in particular 1-10 C atoms, are preferred. Examples of hydroxyl protective groups are, inter alia, benzyl, p-nitrobenzoyl, p-toluolsulfonyl, tert-butyl acetyl, benzyl and tert-butyl being particularly preferred.

5

10

15

20

25

30

35

liberation The of the compounds formula I from their functional derivatives is carried out - depending on the protective group used - for example using strong acids, expediently using TFA or perchloric acid, but also using other strong inorganic acids such as hydrochloric acid or sulfuric acid, strong organic carboxylic acids such as trichloroacetic acid or sulfonic acids such as benzene- or p-toluenesulfonic acid. The presence of an additional inert solvent is possible, but not always necessary. Suitable inert solvents are preferably organic, for example carboxylic acids such as acetic acid, ethers such as tetrahydrofuran or dioxane, amides such as DMF, halogenated hydrocarbons such as dichloromethane, furthermore also alcohols such as methanol, ethanol or isopropanol, and also water. Furthermore, mixtures of the abovementioned solvents are possible. preferably used in an excess without addition of a further solvent, perchloric acid in the form of a mixture of acetic acid and 70% perchloric acid in the ratio 9:1. The reaction temperatures for the cleavage are expediently between approximately 0 and

25

30

35

WO 00/32577 PCT/EP99/08561

approximately 50°C; the reaction is preferably carried out between 15 and 30°C (room temperature).

The groups BOC and Obutyl can preferably be removed, for example, using TFA in dichloromethane or using approximately 3 to 5N HCl in dioxane at $15-30^{\circ}$ C, the Fmoc group using an approximately 5 to 50% solution of dimethylamine, diethylamine or piperidine in DMF at $15-30^{\circ}$ C.

Hydrogenolytically removable protective groups 10 (e.g. CBZ or benzyl) can be removed, for example, by treating with hydrogen in the presence of a catalyst (e.g. of a noble metal catalyst such as palladium, expediently on a support such as carbon). Suitable solvents in this case are those indicated above, in 15 particular, for example, alcohols such as methanol or ethanol or amides such as DMF. As a rule, hydrogenolysis is carried out at temperatures between 100°C and approximately 0 and pressures approximately 1 and 200 bar, preferentially at 20-30°C 20 and 1-10 bar. Hydrogenolysis of the CBZ group takes place readily, for example, on 5 to 10% Pd/C methanol or ammonium formate (instead of hydrogen) on Pd/C in methanol/DMF at 20-30°C.

Compounds of the formula I can also preferably be obtained by reacting compounds of the formula II with compounds of the formula III. As a rule, the starting compounds of the formulae II and III are known commercially available. The unknown compounds, however, can be prepared by methods known per se. The of compounds the formula ΙI are naphthalene-1,8-dicarboxylic anhydride derivatives. They can be prepared in a conventional manner from appropriately substituted 1,8-naphthalenedicarboxylic acids corresponding derivatives. It is furthermore possible to introduce appropriate substituents into the aromatic conventional electrophilic or alternatively nucleophilic substitutions.

The compounds of the formula III are primary amines, which, as a rule, are also commercially

- 71 -

available. Furthermore, syntheses for the preparation of primary amines, such as, for example, the Gabriel synthesis, can be used.

As a rule, the reaction is carried out in an inert solvent. Depending on the conditions used, the reaction time is between a few minutes and a number of days, the reaction temperature between approximately 0° and 150°C, normally between 20° and 130°C. The reactions can be carried out in analogy to the methods indicated in Eur. J. Chem. Chim. Ther. 1981, 16, 207-212 and in J. Med. Chem. 1982, 25, 714-719.

10

15

20

25

30

Suitable inert solvents are, for example, hydrocarbons such as hexane, petroleum ether, benzene, toluene or xylene; chlorinated hydrocarbons such as trichloroethylene, 1,2-dichloroethane, carbon tetrachloride, chloroform or dichloromethane; alcohols such as methanol, ethanol, isopropanol, n-propanol, n-butanol or tert-butanol; ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran (THF) glycol ethers such as ethylene glycol monomethyl or monoethyl ether (methyl glycol or ethyl glycol), ethylene glycol dimethyl ether (diglyme); ketones such as acetone or butanone; amides such as acetamide, N-methylpyrrolidone (NMP), dimethylacetamide dimethylformamide (DMF); nitriles acetonitrile; sulfoxides such as dimethyl sulfoxide (DMSO); carbon disulfide; carboxylic acids such as formic acid or acetic acid; nitro compounds such as nitromethane or nitrobenzene; esters such as ethyl acetate or mixtures of the solvents mentioned.

Derivatives having a free primary or an additional secondary amino group are expediently employed in protected form. Possible protective groups are those mentioned beforehand.

For the preparation of compounds of the formula I in which R^1 and/or R^2 are $H_2N-C(=NH)-NH-$, an appropriate amino-substituted compound can be treated with an amidinating agent. The preferred amidinating agent is 1-amidino-3,5-dimethylpyrazole (DPFN), which

is employed, in particular, in the form of its nitrate, or pyrazole-1-carboxamidine. The reaction is expediently carried out with addition of a base such as triethylamine or ethyldiisopropylamine in an inert solvent or solvent mixture, e.g. DMF at temperatures between 0° and 150°C, preferably between 60° and 120°C.

the preparation of compounds of formula I in which R^2 is unsubstituted or substituted biphenyl, $-Ar'-Het^1$, $-Ar'-Het^1-R^3$, $-Ar'-(CH_2)_n-R^3$ and/or $-Ar'-(CH_2)_n-R^6$, an appropriate compound of the formula I in which ${\ensuremath{\mbox{R}}}^2$ is aryl bromide or aryl iodide can be reacted with the appropriate boronic acid derivatives reaction. in Suzuki The Suzuki reaction expediently carried out in palladium-mediated form, preferably by addition of Pd(PPh3)4, in the presence of a base such as potassium carbonate in an inert solvent or solvent mixture, e.g. DMF at temperatures between 0° and 150°, preferably between 60° and 120°. Depending on the conditions used, the reaction time is between a few minutes and a number of days. The boronic acid derivatives can be prepared by conventional methods or are commercially available. The reactions can be carried out in analogy to the methods indicated in Suzuki et al., J. Am. Chem. Soc. 1989, 111, 314ff. and Suzuki et al., Chem. Rev. 1995, 95, 2457ff.

10

15

20

25

30

35

For the esterification, an acid of formula I ($R^1 = COOH \text{ or } -Y-(CH_2)_n-COOH \text{ and/or } R^2 = COOH$) be treated with an excess of an alcohol, expediently in the presence of a strong acid such as hydrochloric acid or sulfuric acid at temperatures between 0° and 100°C, preferably between 20° and 50°C. Conversely, an ester of the formula I $(R^1 = COOA \text{ or }$ $-Y-(CH_2)_n-COOA$ and/or $R^2=COOA$) can be converted into the corresponding acid of the formula I, expediently by solvolysis according to one of the methods indicated above, e.g. using NaOH or KOH in water-dioxane at temperatures between 0° and 40°C, preferably between 10° and 30°C.

- 73 -

Furthermore, free amino groups can be acylated in a customary manner using an acid chloride or anhydride, expediently in an inert solvent such as dichloromethane or THF and/or in the presence of a base such as triethylamine or pyridine at temperatures between -60° C and $+30^{\circ}$ C.

5

10

15

20

25

30

35

A base of the formula I can be converted into the associated acid addition salt using an acid, for example by reaction of equivalent amounts of the base and of the acid in an inert solvent such as ethanol and subsequent evaporation. Acids which give physiologically acceptable salts are particularly suitable for this reaction. Thus inorganic acids can be used, e.g. sulfuric acid, nitric acid, hydrohalic acids such as hydrochloric acid or hydrobromic acid, phosphoric acids such as orthophosphoric acid, sulfamic acid, furthermore organic acids, in particular aliphatic, alicyclic, aromatic heterocyclic araliphatic, or monopolybasic carboxylic, sulfonic or sulfuric acids, e.g. formic acid, acetic acid, propionic acid, pivalic acid, diethylacetic acid, malonic acid, succinic pimelic acid, fumaric acid, maleic acid, lactic acid, tartaric acid, malic acid, citric acid, gluconic acid, ascorbic acid, nicotinic acid, isonicotinic acid, ethanesulfonic acid, p-toluenesulfonic methane- or disulfonic acid, naphthalenemonoand acids laurylsulfuric acid. Salts with physiologically unacceptable acids, e.g. picrates, can be used for the isolation and/or purification of the compounds of the formula I.

On the other hand, compounds of the formula I with bases (e.g sodium or potassium hydroxide or carbonate) can be converted into the corresponding metal salts, in particular alkali metal or alkaline earth metal salts, or into the corresponding ammonium salts.

All synthesis methods indicated here and all other suitable processes for the preparation of compounds of the formula I can also be carried out by

- 74 -

means of the novel methods of combinatorial chemistry, i.e. by robot- and computer-assisted syntheses, and subjected to mass screening (for this see: US 5,463,564; M. A. Gallop et al., J. Med. Chem. 1994, 37, 1233-1251 and 1385-1401 and M.J. Sofia, Drugs Discovery Today 1996, 1, 27-34).

5

10

15

furthermore invention The relates to pharmaceutical preparations comprising at least compound of the formula Ι and/or one of its physiologically acceptable salts, which are prepared, in particular, in an non-chemical way. In this case, the compounds of the formula I can be brought into a suitable dose form together with at least one solid, liquid and/or semi-liquid excipient or auxiliary and, if appropriate, in combination with one or more other active compounds.

These preparations can be used as medicaments in human or veterinary medicine. Possible excipients are organic or inorganic substances which are suitable 20 for enteral (e.g. oral) or parenteral administration or topical application and do not react with the novel compounds, for example water, vegetable oils, benzyl alcohols, alkylene glycols, polyethylene glycols, glyceryl triacetate, gelatin, carbohydrates such as 25 lactose or starch, magnesium stearate, talc petroleum jelly. Tablets, pills, coated tablets, capsules, powders, granules, syrups, juices or drops are used, in particular, for oral administration, suppositories are used for rectal administration, 30 solutions, preferably oily or solutions, aqueous furthermore suspensions, emulsions or implants, used for parenteral administration, and ointments, creams or powders are used for topical application. The novel compounds can also be lyophilized and the 35 lyophilizates obtained used, for example, production of injection preparations. The preparations indicated can be sterilized and/or can auxiliaries such lubricants, as preservatives, stabilizers and/or wetting agents, emulsifiers, salts - 75 -

5

10

for affecting the osmotic pressure, buffer substances, colourants, flavourings and/or one or more other active compounds, e.g. one or more vitamins.

The compounds of the formula I and physiologically acceptable salts act as adhesion receptor antagonists, in particular glycoprotein IbIX antagonists, and can be employed for the prophylaxis and/or therapy of thrombotic disorders and sequelae deriving therefrom. The disorders are acute coronary syndromes, angina pectoris, myocardial infarct, peripheral circulatory disorders, stroke, transient ischaemic attacks, arteriosclerosis reocclusion/restenosis after angioplasty/stent implantation.

15 In this case, the substances according to the invention are as a rule administered in the dose of the glycoprotein IIbIIIa antagonist ReoPro® of preferably between approximately 1 and 500 mg, in particular between 5 and 100 mg, per dose unit. The daily dose is 20 preferably between approximately 0.02 and 10 mg/kg of body weight. The specific dose for each depends, however, on all sorts of factors, for example on the efficacy of the specific compound employed, on the age, body weight, general state of health and sex, on the diet, on the time and route of administration, 25 and on the excretion rate, pharmaceutical combination and severity of the particular disorder to which the therapy applies. Oral administration is preferred.

in °C. In the following examples, "customary working-up" means: if necessary, water is added, if necessary, depending on the constitution of the final product, the mixture is adjusted to pHs between 2 and 10 and extracted with ethyl acetate or dichloromethane, the organic phase is separated off, dried over sodium sulfate and evaporated, and the residue is purified by chromatography on silica gel and/or by crystallization. Mass spectrometry (MS) apparatuses Kratos Maldi III and Finnigan LCQ. (M+H) to values are determined.

EXAMPLES

Example 1:

suspension of 6.6 g of 6,7dinitrobenzo[de]isochromene-1,3-dione in 100 ml toluene is treated with 3.3 g of 5-chloropyridin-2-ylamine and the mixture is heated under reflux. After reaction is complete, the reaction mixture is allowed cool and is worked up as is customary. 2-(5-Chloropyridin-2-yl)-6,7-dinitrobenzo[de]isoquinoline-1,3-dione is obtained.

Example 2:

10

Α suspension of 4 g of 6-chlorobenzo[de]isochromene-1,3-dione 100 ml of 15 toluene is treated 4.6 g with 2,5-dichlorophenylamine and heated under reflux. After reaction is complete, the reaction mixture is allowed to cool and is worked up as is customary. 6-Chloro-2-(2,5-dichlorophenyl)benzo[de]isoquinoline-1,3-dione 20 is obtained. This compound is then heated in morpholine until conversion is complete. After cooling reaction mixture, it is worked up as is customary and 2-(2,5-dichlorophenyl)-6-morpholin-4-ylbenzo[de]isoquinoline-1,3-dione is obtained. MS: calculated: 426; 25 found: 427.

Analogously, by reaction of 6-chloro-2-(2,5-dichlorophenyl)benzo[de]isoquinoline-1,3-dione with R¹-H, the following compounds of the formula Iba are obtained:

R ¹ in R ¹ -H and in Iba	77 - MS	
	calculated	found
-N-CH ₃	460	461
-N	424	425
-N	410	411
-N	501	502
-NH-(CH ₂) ₅ -OH		
-NH-(CH ₂) ₃ -N(CH ₃) ₂	441	442
$-N$ — CH_2 —		
$ - \underset{H}{N} - (CH_2)_2 - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle $		
-NH-(CH ₂) ₂ -COOMe	442	443
$-N$ — CH_2 — SO_2NH	2	
_N(CH ₂) ₂	476	477
$ \begin{array}{c} $		
-N	438	439

R ¹ in R ¹ -H and in Iba	MS	
	calculated	found
-N	424	425
-N		
	472	473
$-N - CH_2 - NH_2$		
$-N$ — CH_2 — NH_2		
$ \begin{array}{c} -N - (CH_2)_2 - \begin{pmatrix} N - \\ - \end{pmatrix} \end{array} $		
$-N$ — CH_2 — N — N		
-N-(CH ₂) ₂ -N0		
$-N - (CH_2)_3 - N - CH_3$		
-N-(CH ₂) ₃ -N-N		
-NH (C ₅ H ₁₁)	426	427
-NH (C ₃ H ₇)	398	399
-N (CH ₃) -C ₄ H ₉	426	427
-N (C ₂ H ₅) ₂	412	413

Example 3:

Analogously to Example 2, 6-chlorobenzo[de]isochromene-1,3-dione is reacted with 3-chlorophenylamine and then with R¹-H. The following compounds of the formula Ibb are obtained:

calculated	
	found
376	377
467	468
407	408
412	413
426	427
	467 407 412

6/30/2008, EAST Version: 2.2.1.0

R ¹ in R ¹ -H and in Ibb	MS	
	calculated	found
$ \begin{array}{c c} -\text{N}-\text{CH}_2- & \\ -\text{N}-\text{SO}_2\text{NH}_2 \end{array} $		
_N(CH ₂) ₂	442	443
CH_3 OH $-N$ $-(CH_2)_2$ $-$ OH	,	
-N	404	405
-N	390	391
-N	438	439
$-N - CH_2 - NH_2$	441	442
$- \underset{H}{N} - CH_2 - \underbrace{\hspace{-1em} - \hspace{-1em} NH_2}_{}$		
-N-(CH ₂) ₂	427	428
-N-(CH ₂) ₂ -	427	428

R^{1} in R^{1} -H and in Ibb	MS	
	calculated	found
$-N$ — CH_2 — N	413	414
-N-(CH ₂) ₂ -N-O	435	436
$-N - (CH_2)_3 - N - CH_3$		
-N-(CH ₂) ₃ -NN	430	431
-N-CH ₃		
-N-F		
-NH-(CH ₂) ₂ -COOCH ₃	408	409
-NH (C ₅ H ₁₁)	392	393
-NH (C ₃ H ₇)		
-N (CH ₃) -C ₄ H ₉	392	393
-N(C ₂ H ₅) ₂	378	379

5 Example 4:

Analogously to Example 2, 6-chlorobenzo[de]isochromene-1,3-dione is reacted with phenylamine and then with R¹-H. The following compounds of the formula Ibc are obtained:

R ¹ in R ¹ -H and in Ibc	MS	
	calculated	found
-N-CH ₃	392	393
	342	343
-N	433	434
-NH-(CH ₂) ₃ -N(CH ₃) ₂	373	374
NCH ₂	378	379
-N-(CH ₂) ₂ -	392	393
_N CH ₂ SO ₂ NH ₂	2	
-N-(CH ₂) ₂		

	33 –	
R ¹ in R ¹ -H and in Ibc	MS	
	calculated	
	found	
CH_3 OH OH OH		
_N	370	371
-N	356	357
-N	404	405
$\begin{array}{c c} & \text{CH}_2 \\ -\text{N} - \text{CH}_2 \end{array} \begin{array}{c} \text{CH}_2 \\ \end{array}$	407	408
$\begin{array}{c c} -{\rm N}-{\rm CH_2}- \end{array} \begin{array}{c} -{\rm NH_2} \end{array}$		
$ - \underset{H}{N} - (CH_2)_2 - \left\langle \begin{array}{c} N \\ \\ \end{array} \right\rangle $	393	394
-N-(CH ₂) ₂	393	394
$-N$ — CH_2 — N	379	380

\mathbb{R}^1 in \mathbb{R}^1 -H and in Ibc	<u>4 -</u> MS	
	calculated	found
-N-(CH ₂) ₂ -N-O	401	402
$-N - (CH_2)_3 - N - CH_3$		
-N - (CH ₂) ₃ -N N	396	397
-NH-(CH ₂) ₂ -COOCH ₃	374	375
-NH (C ₅ H ₁₁)	358	359
-NH (C ₃ H ₇)	330	331
-N (CH ₃) -C ₄ H ₉	358	359
-N (C ₂ H ₅) ₂	344	345
-NH-CH ₂ -CH (CH ₂ C1) -OH		
-N=CH-		
но		
-NH-(CH ₂) ₅ -OH	374	375
	358	359

Example 5:

Analogously to Example 2, 6-chlorobenzo-[de]isochromene-1,3-dione is reacted with 3-nitrophenylamine and then with R¹-H. The following compounds of the formula Ibd are obtained:

R ^I in R ^I -H and in Ibd	MS	
	calculated	found
-N-CH ₃		
-N		
-NH-(CH ₂) ₃ -N(CH ₃) ₂	418	419
	387	388
-NH-(CH ₂) ₅ -OH	476	477
-N-CH ₂		
-N-(CH ₂) ₂	437	438
$ \begin{array}{c} -\text{N} - \text{CH}_2 - \\ \text{H} \end{array} \hspace{-0.5cm} \right) \hspace{-0.5cm} - \text{SO}_2 \text{NH}_2 $		
-N(CH ₂) ₂ OH		

R^1 in R^1 -H and in Ibd	MS	
	calculated	found
$-N$ — $(CH_2)_2$ — OH		
-N	401	402
-N		
	449	450
$\begin{array}{c c} & \text{CH}_2 \\ \hline -\text{N} - \text{CH}_2 \\ \hline \end{array}$	2	
$-N$ — CH_2 — NH_2		
$ \begin{array}{c c} -N - (CH_2)_2 - \\ \hline \\ H \end{array} $	438	439
-N-(CH ₂) ₂	438	439
$-$ N $-$ CH $_2$ $-$ N $-$		
-N-(CH ₂) ₂ -NO	446	447
-N	415	416

6/30/2008, EAST Version: 2.2.1.0

R^1 in R^1 -H and in Ibd	MS		
	calculated		found
$-N - (CH_2)_3 - N - CH_3$			
-N-(CH ₂) ₃ -N-N	441	442	
-NH-(CH ₂) ₂ -COOCH ₃	419	420	
-NH (C ₅ H ₁₁)	403	404	
-NH (C ₃ H ₇)	375	376	
-N (CH ₃) -C ₄ H ₉	403	404	
-N (C ₂ H ₅) ₂	389	390	
	403	404	

Example 6:

Analogously to Example 2, 6-chlorobenzo- [de] isochromene-1,3-dione is reacted with 3-methoxyphenylamine and then with R^1 -H. The following compounds of the formula Ibe are obtained:

<u> - 88 - </u>		
R ¹ in R ¹ -H and in Ibe	MS	
	calculated	found
-N-CH ₃	422	423
	386	387
-N	372	373
-N	463	464
-NH- (CH ₂) ₃ -N (CH ₃) ₂	403	404
-N-CH ₂	408	409
-N-(CH ₂) ₂ -	422	423
$\begin{array}{c c} -\text{N} - \text{CH}_2 - \\ \text{H} \end{array} \longrightarrow \text{SO}_2 \text{NH}_2$	2	
CH_3 OH OH		
-N-H	386	387
-N		
$- \underset{\text{H}}{\text{N}} - \text{CH}_2 - \underbrace{ \begin{array}{c} \text{CH}_2 - \text{NH}_2 \\ \text{H} \end{array} }$	437	438

R ¹ in R ¹ -H and in Ibe	MS	
	calculated	found
$-N$ — CH_2 — NH_2	423	424
$ \begin{array}{c c} -N - (CH_2)_2 - \\ H \end{array} $	423	424
$-N-CH_2$	409	410
-N-(CH ₂) ₂ -NO	431	432
$-N - (CH_2)_3 - N - CH_3$		
-NH- (CH ₂) ₂ -COOCH ₃	404	405
-NH (C ₃ H ₇)	360	361
-N (CH ₃) -C ₄ H ₉	388	389
-N (C ₂ H ₅) ₂	374	375
-NH-(CH ₂) ₅ -OH	404	405
	388	389

Example 7:

Analogously to Example 2, 6-chlorobenzo- [de]isochromene-1,3-dione is reacted with 4-styrylphenylamine and then with R^1-H . The following compounds of the formula Ibf are obtained:

R^1 in R^1 -H and in Ibf	MS	
	calculated	found
-NH-(CH ₂) ₃ -N(CH ₃) ₂	475	476
$-N - CH_2 - CH_2 - NH_2$	509	510
-N-CH ₂	495	496
-N-(CH ₂) ₂	495	496
-N-(CH ₂) ₂ -		
$-N$ — CH_2 — N — N	481	482

R ¹ in R ¹ -H and in Ibf	MS	
	calculated	found
-N-(CH ₂) ₂ -NO	503	504
$-N - (CH_2)_3 - N - CH_3$	530	531
-NH-(CH ₂) ₅ -OH		
-N-(CH ₂) ₃ -N-N	498	499

Example 8:

Analogously to Example 2, 6-nitrobenzo- [de]isochromene-1,3-dione is reacted with H_2N-Ar and then (if necessary) with R^1-H . The following compounds of the formula Ibg are obtained:

Ar	R ¹ in R ¹ -H and Ibg
N N	$-N\bigcirc O$
`CH₃	
CI	-N_N
НО	-NO ₂

	$-$ 92 - R^1 in R^1 -H and Ibg
Ar	R' in R'-H and Ibg
CI CI	$-N$ $-CH_3$
	-N
	$-N$ CH^3
-CI	$-N$ $N-SO_2$ Br
H ₃ CO	-NN
H ₃ C ————————————————————————————————————	-NH-C (CH ₂ OH) ₃
OH OH	-NO ₂
H ₃ CO	-NO ₂
осн ₃	
	-NO ₂
	-N

Example 9:

Analogously to Example 2, 6-chlorobenzo-5 [de]isochromene-1,3-dione is reacted with 3-chloro-

4-methylphenylamine and then with R^1-H . The following compounds of the formula Ibh is obtained:

R^{1} in R^{1} -H and in 1bh	
-NH-(CH ₂) ₂ -N(C ₂ H ₅) ₂	
-N	
-N_N-CH ₃	
-N-CH ₃	
-NH- (CH ₂) ₂ -OH	

5

Example 10:

Analogously to Example 2, 6-chlorobenzo- [de]isochromene-1,3-dione is reacted with H_2N-Ar and then with R^1-H . The following compounds of the formula 10 Ibi are obtained:

Ar	R^{1} in R^{1} -H and Ibg	MS	
		calc.	fnd.
0,	-NH-(CH ₂) ₃ -NH ₂	435	436
	$-NH-(CH_2)_5-NH_2$		
	-NH-(CH2)7-NH2		
	CH ₂ NH ₂	497	498
	-N-CH ₂	157	130
	-NH-(CH ₂) ₃ -NH ₂	433	434
	$-NH-(CH_2)_5-NH_2$		
	-NH-(CH2)7-NH2		
	CH ₂ —NH ₂		
	-NСН ₂ ()		
0	-NH-(CH ₂) ₃ -NH ₂		
	-NH-(CH2)5-NH2		
	-NH-(CH2)7-NH2		
	CH ₂ -NH ₂		
	-N-CH ₂		
	-NH-(CH ₂) ₃ -NH ₂	462	463
✓ V	-NH-(CH2)5-NH2	490	491
	-NH-(CH2)7-NH2		
	$-\underset{H}{\overset{\text{CH}_2-\overset{\text{CH}_2-\overset{\text{CH}_2}-}{\overset{\text{CH}_2}-}}}$	524	524
	П		

	- 95 -		
Ar	R^1 in R^1 -H and Ibg	MS	
		calc.	fnd.
	-NH-(CH ₂) ₃ -NH ₂	395	396
	$-NH-(CH_2)_5-NH_2$	423	424
	$-NH-(CH_2)_7-NH_2$	451	452
	$-\underset{H}{N}-CH_2-\underbrace{\qquad}^{CH_2-NH_2}$	457	458
	-NH-(CH ₂) ₃ -NH ₂	395	396
	-NH-(CH2)5-NH2	423	424
	$-NH-(CH_2)_7-NH_2$	451	452
	$-\underset{H}{N}-CH_2-\underbrace{\qquad}^{CH_2-NH_2}$	457	458
	-NH-(CH ₂) ₃ -NH ₂	396	397
	-NH-(CH2)5-NH2	424	425
	$-NH-(CH_2)_7-NH_2$	452	453
N N	$-\underset{H}{\overset{\circ}{\text{N}}}-\text{CH}_2$		
	-NH-(CH ₂) ₃ -NH ₂	396	397
	$-NH-(CH_2)_5-NH_2$	424	425
, N,	$-NH-(CH_2)_7-NH_2$	452	453
	$-\underset{H}{\overset{N}{-}} CH_2 - \underset{H}{\overset{CH_2 - NH_2}{-}}$	458	459

Example 11:

A suspension of 4 g of 6-nitrobenzo[de]iso-chromene-1,3-dione in 100 ml of toluene is treated with 3.1 g of 4-iodophenylamine and the mixture is heated under reflux. After reaction is complete, the reaction mixture is allowed to cool and is worked up as is customary.

6-Nitro-2-(4-iodophenyl)benzo[de]iso-quinoline-1,3-dione is obtained. 1.2 Equivalents of Pd((PPh)₃)₄ are added to a solution of this compound in 80 ml of DMF and it is heated at 80°C until conversion is complete. After filtering off the catalyst and

customary working up, 6-nitro-2-biphenyl-4-ylbenzo[de]isoquinoline-1,3-dione is heated with 1,3-diaminopropane until conversion is complete. After cooling the reaction mixture, it is worked up as is customary and 6-(3-aminopropylamino)-2-biphenyl-4-ylbenzo[de]isoquinoline-1,3-dione is obtained.

Analogously, by reaction of 6-nitro-2-(4-iodophenyl)benzo[de]isoquinoline-1,3-dione with Ph-B-(OH) $_2$ and R¹-H, the following compounds of the formula Ibk are obtained:

10

R ¹ in R ¹ -H und in Ibk
-NH-(CH ₂) ₅ -NH ₂
-NH-(CH ₂) ₇ -NH ₂
-N NH ₂

Example 12:

Analogously to Example 11, 6-nitro-15 2-(4-iodophenyl)benzo[de]isoquinoline-1,3-dione is reacted with R^{10} -B-(OH)₂ and R^{1} -H. The following compounds of the formula Ibl are obtained:

R ¹⁰	R^1 in R^1 -H and Ibl
	-NH- (CH ₂) ₃ -NH ₂
	-NH-(CH2)5-NH2
CF ₃	-NH-(CH2)7-NH2
	$-N$ NH_2
	-NH-(CH ₂) ₃ -NH ₂
$-\langle -\rangle$ CF ₃	-NH-(CH2)5-NH2
	-NH-(CH2)7-NH2
	$-N$ NH_2
	H \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
<u> </u>	NV (avi)
CF ₃	-NH- (CH ₂) ₃ -NH ₂
//	-NH- (CH ₂) ₅ -NH ₂
\\C_	-NH-(CH2)7-NH2
CF ₃	-N NH ₂
	-NH-(CH ₂) ₃ -NH ₂
$-\langle _ \rangle$ —OCF ₃	-NH-(CH2)5-NH2
	-NH-(CH2)7-NH2
	$-N$ NH_2

r. 10	- 98 -
R ¹⁰	R ¹ in R ¹ -H and Ibl
H ₃ C	-NH-(CH2)3-NH2
	-NH-(CH2)5-NH2
	-NH-(CH2)7-NH2
	-N NH ₂
CU	-NH-(CH2)3-NH2
CH ₃	-NH-(CH2)5-NH2
	$-NH-(CH_2)_7-NH_2$
	$-N$ NH_2
	-NH-(CH ₂) ₃ -NH ₂
— — — — ОСН3	$-NH-(CH_2)_5-NH_2$
	$-NH-(CH_2)_7-NH_2$
	-N NI
	-N NH ₂
OCH ₃	-NH-(CH2)3-NH2
	-NH-(CH2)5-NH2
осн3	-NH-(CH2)7-NH2
	$-N$ NH_2
	-NH-(CH ₂) ₃ -NH ₂
- _} -	-NH-(CH2)5-NH2
	-NH-(CH2)7-NH2
	-N NH ₂
	-NH-(CH2)3-NH2
	-NH-(CH ₂) ₅ -NH ₂
//	-NH-(CH2)7-NH2
_/	$-N$ NH_2
	н 🗸 -

	- 99 -
R ¹⁰	R^{I} in R^{I} -H and Ibl
	-NH-(CH2)3-NH2
	-NH-(CH2)5-NH2
NO ₂	$-NH-(CH_2)_7-NH_2$
_	-N NH ₂
CII	-NH-(CH2)3-NH2
CH ₃	-NH-(CH2)5-NH2
NO ₂	$-NH-(CH_2)_7-NH_2$
_	$-N$ NH_2
	H \
	-NH-(CH ₂) ₃ -NH ₂
F	-NH-(CH2)5-NH2
	$-NH-(CH_2)_7-NH_2$
	$-N$ NH_2
	H \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	-NH-(CH ₂) ₃ -NH ₂
— √	-NH - (CH2)3 - NH2 -NH - (CH ₂) ₅ - NH ₂
\ <u>-</u> <	
CI	$-NH-(CH_2)_7-NH_2$
	$-N$ NH_2

Example 13:

Analogously to Example 11, 6-nitro- 2-(3-iodophenyl) benzo[de]isoquinoline-1, 3-dione is reacted with $R^{10}-B-(OH)_2$ and R^1-H . The following compounds of the formula Ibm are obtained:

R ¹⁰	R^{I} in R^{I} -H and Ibm
	-NH-(CH2)3-NH2
	-NH-(CH2)5-NH2
CF ₃	-NH-(CH ₂) ₇ -NH ₂
	$-N$ NH_2
	$-NH-(CH_2)_3-NH_2$
CF ₃	-NH-(CH2)5-NH2
	-NH-(CH2)7-NH2
	$-N$ NH_2
CF ₃	-NH- (CH ₂) ₃ -NH ₂
	-NH-(CH2)5-NH2
\=<	-NH-(CH2)7-NH2
CF ₃	$-N$ NH_2
205	-NH- (CH ₂) ₃ -NH ₂
OCF ₃	-NH-(CH2)5-NH2
	-NH-(CH2)7-NH2
	-N NH ₂

R ¹⁰	R^1 in R^1 -H and Ibm
H ₃ C	-NH-(CH ₂) ₃ -NH ₂
	-NH-(CH2)5-NH2
	-NH-(CH2)7-NH2
	$-N$ NH_2
	Ĥ \
	-NH-(CH ₂) ₃ -NH ₂
	-NH-(CH2)5-NH2
	-NH-(CH2)7-NH2
	$-N$ NH_2
	-NH- (CH ₂) ₃ -NH ₂
—	-NH - (CH2)5 - NH2
	$-NH-(CH_2)_7-NH_2$
	^ ^
	-N' NH ₂
QCH ₃	-NH- (CH ₂) ₃ -NH ₂
501.3	-NH - (CH2)5 - NH2
— √ У—осн ₃	$-NH - (CH_2)_7 - NH_2$
	^ ^ ^
	-N' NH ₂
	-NH-(CH ₂) ₃ -NH ₂
	$-NH-(CH_2)_5-NH_2$
	-NH-(CH2)7-NH2
	$-$ N H_2
	H L
	-NH-(CH2)3-NH2
	$-NH-(CH_2)_5-NH_2$
	$-NH-(CH_2)_7-NH_2$
\ <u> </u>	-N $+$ 2
	H \

R ¹⁰	R^{I} in R^{I} -H and Ibm
	-NH-(CH2)3-NH2
	-NH-(CH2)5-NH2
NO ₂	-NH-(CH2)7-NH2
2	$-N$ NH_2
	-NH-(CH2)3-NH2
——————————————————————————————————————	-NH-(CH2)5-NH2
NO ₂	-NH-(CH2)7-NH2
1102	$-N$ NH_2
	-N' NH ₂
F	-NH-(CH2)3-NH2
	-NH-(CH2)5-NH2
	-NH-(CH2)7-NH2
	-N NH ₂
	-NH-(CH ₂) ₃ -NH ₂
	-NH-(CH2)5-NH2
CI	-NH-(CH2)7-NH2
	-N-NH ₂
	-NH-(CH ₂) ₃ -NH ₂
	-NH-(CH2)5-NH2
	$-NH-(CH_2)_7-NH_2$
	$-N$ NH_2

Example 14:

Analogously to Example 11, 6-nitro-2-(3-iodo-4-methylphenyl)benzo[de]isoquinoline-1,3-dione is reacted with $R^{10}-B-(OH)_2$ and R^1-H . The following compounds of the formula Ibn are obtained:

CH ₃	
R ¹⁰	R^{1} in R^{1} -H und Ibn
	-NH-(CH ₂) ₃ -NH ₂
	-NH-(CH2)5-NH2
	-NH-(CH2)7-NH2
	$-N$ NH_2
	-NH-(CH ₂) ₃ -NH ₂
—()—OCH ₃	-NH-(CH2)5-NH2
	$-NH-(CH_2)_7-NH_2$
	$-N$ NH_2
	-NH-(CH ₂) ₃ -NH ₂
-CH ₃	$-NH-(CH_2)_5-NH_2$
NO ₂	-NH-(CH2)7-NH2
	$-N$ NH_2
	-NH-(CH ₂) ₃ -NH ₂
	-NH-(CH2)5-NH2
H ₃ C	-NH-(CH2)7-NH2
	$-N$ NH_2

Example 15:

5

Analogously to Example 11, 6-nitro-2-(4-iodo-3-methylphenyl)benzo[de]isoquinoline-1,3-dione is reacted with R^{10} -B-(OH)₂ and R^{1} -H. The following compounds of the formula Ibo are obtained:

R ¹⁰	R ¹ in R ¹ -H and Ibo
	-NH-(CH2)3-NH2 -NH-(CH2)5-NH2 -NH-(CH2)7-NH2
	$-N$ NH_2
	$-NH-(CH_2)_3-NH_2$ $-NH-(CH_2)_5-NH_2$ $-NH-(CH_2)_7-NH_2$
	$-N$ H NH_2
-CH ₃	$-NH-(CH_2)_3-NH_2$ $-NH-(CH_2)_5-NH_2$
NO ₂	-NH-(CH2)7-NH2
	$-N$ NH_2

R ¹⁰	R ¹ in R ¹ -H and Ibo	
	-NH-(CH2)3-NH2	
	-NH-(CH2)5-NH2	
H ₃ C	-NH-(CH2)7-NH2	
	-N NH ₂	

Example 16:

5

Analogously to Example 2, 6-nitrobenzo[de]iso-chromene-1,3-dione is reacted with H_2N-Het^1 . The following compounds of the formula Ic are obtained:

Example 17:

Analogously to Example 2, 6-nitrobenzo[de]iso-10 chromene-1,3-dione is reacted with H_2N-Het^1-Ar . The following compounds of the formula Id are obtained:

1100 7 11	
Het ¹	R ¹ in Id
N N S	-NO ₂
N S	-NO ₂
H ₃ C CH ₃	-NO ₂

Example 18:

Analogously to Example 2, 6-nitrobenzo[de]iso-5 chromene-1,3-dione reacted is with 2-(3-aminophenyl)acetamide and then with R1-H. The following compounds of the formula Iea are obtained:

R ¹ in R ¹ -H and in Iea	240	
R In R-H and In lea	MS	
	calculated	found
CH2-NH2		
$-N$ — CH_2		
-N-(CH ₂) ₂		
-N-(CH ₂) ₃ -N-N	455	456
-NH-(CH ₂) ₃ -N(CH ₃) ₂	430	431
-NH-(CH ₂) ₄ -NH ₂		
-NH-(CH ₂) ₇ -NH ₂	458	459
-NH- (CH ₂) ₈ -NH ₂	472	473
N-(CH ₂) ₂ N<	444	445

Example 19:

Analogously to Example 2, 6-nitrobenzo[de]iso-5 chromene-1,3-dione is reacted with 2-(4-aminophenyl)acetamide and then with R¹-H. The following compounds of the formula leb are obtained:

- 1	.08 –	
R^{I} in R^{I} -H and in Ieb	MS	
	calculated	found
_Ph		
-N-<		
CH ₃		
	413	414
	413	474
	399	400
	399	400
-N		
-NH-(CH ₂) ₅ -OH		
-NH- (CH ₂) ₃ -N (CH ₃) ₂	430	431
		-
-N-CH ₂		
-N CH ₂ (')		
	·	
N (811)	4.4.0	450
$\left \begin{array}{c} -N - (CH_2)_2 - \left\langle \begin{array}{c} -N \end{array} \right\rangle$	449	450
н		
$\left -\stackrel{N}{-} \operatorname{CH}_{2} \stackrel{\checkmark}{-} \right\rangle = \operatorname{SO}_{2} \operatorname{NH}_{2}$		
H H 3.12		
$-N - (CH_2)_2 - OH$	465	466
H		
_N 0		
'``		
-NH-(CH ₂) ₂ -COOCH ₃	431	432
CH ₂ NH ₂		
/ 	464	465
-N-CH ₂ ()		
H		

_N_CH/____\		
$-$ N $-$ CH $_2$ $-$ NH $_2$;
Н ———		
<u> </u>		

R ¹ in R ¹ -H and in Ieb	MS	
	calculated	found
-N-(CH ₂) ₂		
$-N$ — CH_2 — N — N		
$ \begin{array}{c c} -N - (CH_2)_2 - \begin{pmatrix} -N \\ -N \end{pmatrix} $	450	451
	458	459
$-N - (CH_2)_3 - N - CH_3$		
-N-(CH ₂) ₃ -N-N	455	456
-NH (C ₅ H ₁₁)		
-NH (C ₃ H ₇)	387	388
-NH-(CH ₂) ₅ -NH ₂		
-NH-(CH ₂) ₇ -NH ₂	458	459

Example 20:

Analogously to Example 2, 6-nitrobenzo[de]iso-5 chromene-1,3-dione is reacted with 3-aminobenzamide and then with R¹-H. The following compounds of the formula Iec are obtained:

R^1 in R^1 -H and in Iec	MS	
	calculated	found
-N-CH ₃		
-N		
-N		
-NH-(CH ₂) ₅ -OH		
-NH-(CH ₂) ₃ -N(CH ₃) ₂	416	417
-N-CH ₂	,	
-N-(CH ₂) ₂ -		
$\begin{array}{c c} -\mathrm{N} - \mathrm{CH}_2 - \overline{\left\langle \right\rangle} - \mathrm{SO}_2 \mathrm{NH}_2$	2	

R^1 in R^1 -H and in Iec	MS	
	calculated	found
_N (CH ₂) ₂ ОН	451	452
-NH-(CH ₂) ₂ -COOCH ₃	417	418
$\begin{array}{c} \text{CH}_2 \text{NH}_2 \\ -\text{N} \text{CH}_2 \end{array}$	450	451
$\begin{array}{c c} -{\rm N} - {\rm CH_2} - \\ -{\rm N} \\ {\rm H} \end{array}$		
-N-(CH ₂) ₂ -	436	437
$-N-CH_2$		
-N-(CH ₂) ₂		
-N-(CH ₂) ₂ -N	444	445
$-N - (CH_2)_3 - N - CH_3$		
-N-(CH ₂) ₃ -N-N		
-NH (C ₅ H ₁₁)		

R ¹ in R ¹ -H and in Iec	MS	
	calculated	found
-NH (C ₃ H ₇)		
-NH-(CH ₂) ₅ -NH ₂		
-NH- (CH ₂) ₇ -NH ₂		

Example 21:

Analogously to Example 2, 6-nitrobenzo[de]iso-5 chromene-1,3-dione is reacted with 4-(4-aminophenyl)butyramide and then with R¹-H. The following compounds of the formula Ied are obtained:

R ¹ in R ¹ -H and in Ied	MS	
<u></u>	calculated	found
-NH- (CH ₂) ₄ -NH ₂		
-NH-(CH ₂) ₇ -NH ₂	486	487
-NH-(CH ₂) ₈ -NH ₂	500	501
N-(CH ₂) ₂ -N-	458	459
-NH-(CH ₂) ₃ -N(CH ₃) ₂		
-N-(CH ₂) ₃ -N-N		

	113	
R^1 in R^1 -H and in Ied	MS	
	calculated	found
-N-(CH ₂) ₂ -	478	479
$-\text{N}-\text{CH}_2-\text{N}$	H ₂	

Example 22:

Analogously to Example 2, 6-nitrobenzo[de]iso-chromene-1,3-dione is reacted with 3-(3-aminophenyl)-propionamide and then with R¹-H. The following compounds of the formula Iee are obtained:

\mathbb{R}^1 in \mathbb{R}^1 -H and in Iee	MS calc.	fnd.	R ¹ in R ¹ -H and in Iee	MS calc. fnd.
$-$ N \bigcirc O	429	430	-NH-(CH ₂) ₃ -NH(CH ₃)	430 431
	427	428	N-(CH ₂) ₂ N-<-	444 445
-N	413	414	$-N$ $N-CH_2$ 0 0	
	504	505	-N_N-CH ₂ -	518 519

R ¹ in R ¹ -H and in MS	R ¹ in R ¹ -H and in Iee	MS
Iee calc. fnd.		calc.
DL.		fnd.
Ph -N-	$\left \begin{array}{c} \\ -N \end{array} \right \stackrel{N}{\longrightarrow} \left\langle \begin{array}{c} \\ \end{array} \right\rangle$	
;; ∕CH ₃		
	N	
-NH-(CH ₂) ₂ -COOMe		
_N _ CH_		542
$-N-CH_2-$	-NH-(CH ₂) ₃ -NH ₂	
$-N - (CH_2)_2 - (CH_$		498
H	-NH N	499
	\	
N. CH. SO.NII.		_
-N -CH₂ -SO₂NH₂ H	$-NH-(CH_2)_2-NH-(CH_2)_2-$	446
	ОН	447
-N-(CH ₂) ₂ -OH		
-N-(CH₂)₂ - OH	-NH-(CH2)2-NH(C3H7)	
-NH- (CH ₂) ₅ -OH		
(5152, 5 555	-NH- (CH ₂) ₃ -O- (CH ₂) ₄ -O- (CH ₂) ₃ -	546
	NH ₂	547
$-N (CH_3) - (CH_2)_3 - 444 445$	-N (CH ₃) - (CH ₂) ₂ -	472
NH (CH ₃)	$N(C_2H_5)_2$	473
-NH-(CH ₂) ₃ -N(CH ₃) ₂ 444 445	\mid -NH-(CH ₂) ₃ -N- \langle	498
	H \	499
	CH ₂ NH ₂	
$-N-CH_2-NH_2$	J 7 12 11 12	484
Н 🛫	-NH-CH ₂ —〈	485
CH ₂ —NH ₂		487
-N CH ₂ ()	$-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-$	488
	NH ₂	400

	115 -	
R ¹ in R ¹ -H and in MS calc. fnd.	R' in R'-H and in Iee	MS calc.
Iee care. ma.		fnd.
$-N - (CH_2)_2 - N - 464 - 465$	-NH-(CH ₂) ₂ -NH(C ₂ H ₅)	430
		431
-N(CH ₂) ₂	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$-N - CH_2 - $	-N-(CH ₂) ₃ -N-CH ₃	499 500
-N-(CH ₂) ₃ -N-N 469 470	-NH-(CH ₂) ₅ -NH ₂	
-NH (C ₅ H ₁₁)	-NH- (CH ₂) ₇ -NH ₂	472
		473
-NH (C ₃ H ₇)	$- \underset{H}{N} - CH_2 - \underbrace{-} \underset{L}{NH_2} - NH_2$	

Example 23:

5

Analogously to Example 2, 6-nitrobenzo[de]iso-chromene-1,3-dione is reacted with 3-amino-4-methoxybenzamide and then with R^1-H . The following compounds of the formula Ief are obtained:

$$R^1$$
 R^1
 R^1

R ^I in R ^I -H and in Ief	MS	
in in in and in ici		
	calculated	found
-NH- (CH ₂) ₄ -NH ₂		
-NH- (CH ₂) ₇ -NH ₂		
-NH-(CH ₂) ₈ -NH ₂	488	489
$-N-(CH_2)_2-N-$	460	461
-NH-(CH ₂) ₃ -N(CH ₃) ₂		
-N-(CH ₂) ₃ -NN		
-N-(CH ₂) ₂ -		
$\begin{array}{c} \text{CH}_2\text{NH}_2\\ -\text{N}-\text{CH}_2\\ \text{H} \end{array}$		

Example 24:

Analogously to Example 2, 6-nitrobenzo[de]iso- chromene-1,3-dione is reacted with $H_2N-Ar'-(CH_2)_n-R^3$ and

then (if necessary) with ${\ensuremath{\text{R}}}^1\text{-H.}$ The following compounds of the formula Ieg are obtained:

$Ar'-(CH_2)_n-R^3$	R^{I} in R^{I} -H and in leg	MS	
		calc.	fnd.
———соосн ₃	-NO ₂		:
N N CONH ₂	-NO ₂		
(CH ₂) ₂ N—C ₃ H ₇	-NH- (CH ₂) ₇ -NH ₂	514	515
— () н	$-\underset{H}{\text{N}}-\text{CH}_2-\underset{=}{\underbrace{\text{CH}_2-\text{NH}_2}}$	520	521
	$-N - (CH_2)_3 - N N$	511	512
(CH ₂) ₂ N—C ₅ H ₁₁	-NH- (CH ₂) ₇ -NH ₂	542	543
H 951411	$-N - CH_2 - NH_2$	548	549
	-N-(CH ₂) ₃ -N-N	539	540

Example 25:

Analogously to Example 11, 6-nitro-2-(3-iodophenyl)benzo[de]isoquinoline-1,3-dione or 6-nitro-2-(4-iodophenyl)benzo[de]isoquinoline-1,3-dione is reacted with R^3 -(CH₂)_n-Ph-B-(OH)₂ and R^1 -H. The following compounds of the formula Ieh (Ph-Ph=Ar') are obtained:

-Ar'-(CH2)n-R3	R ¹ in R ¹ -H and Ieh
— соон	-NH-(CH2)3-NH2
	-NH-(CH2)5-NH2
	-NH-(CH2)7-NH2
	$-N$ NH_2
Соон	-NH-(CH2)3-NH2
\/ \/ \/	-NH-(CH2)5-NH2
ĺ.	-NH-(CH2)7-NH2
	$-N$ NH_2
	-NH-(CH ₂) ₃ -NH ₂
OCH ₃	$-NH-(CH_2)_5-NH_2$
	-NH-(CH2)7-NH2
	-N NH ₂

Example 26:

Analogously to Example 2, 6-nitrobenzo[de]iso-chromene-1,3-dione is reacted with 2-(4-aminophenyl-sulfanyl)acetamide and then with R¹-H. The following compounds of the formula Ifa are obtained:

_	1	2	\cap	
_	- 1	7.	1)	_

R ¹ in R ¹ -H and in Ifa	MS	
	calculated	found
-NH- (CH ₂) ₄ -NH ₂	448	449
-NH- (CH ₂) ₇ -NH ₂	490	491
-NH- (CH ₂) ₈ -NH ₂		
$N - (CH_2)_2 - N - \langle H - H - H - H - H - H - H - H - H -$	476	477
-NH- (CH ₂) ₃ -N (CH ₃) ₂		
-N-(CH ₂) ₃ -N-N	487	488
-N-(CH ₂) ₂ -		
$\begin{array}{c c} & \text{CH}_2 - \text{NF} \\ -\text{N} - \text{CH}_2 - \begin{array}{c} & \\ & \text{H} \end{array}$	2	

Example 27:

Analogously to Example 2, 6-nitrobenzo[de]iso-chromene-1,3-dione is reacted with 2-(4-amino-phenoxy)acetaamide and then with R¹-H. The following compounds of the formula Ifb are obtained:

R^{I} in R^{I} -H and in Ifb	MS	
	calculated	found
-NH- (CH ₂) ₄ -NH ₂		
-NH-(CH ₂) ₇ -NH ₂	474	475
-NH-(CH ₂) ₈ -NH ₂	488	489
N-(CH ₂) ₂ N-<	460	461
-NH-(CH ₂) ₃ -N(CH ₃) ₂	446	447
-N-(CH ₂) ₃ -N-N	471	472
-N-(CH ₂) ₂		
$\begin{array}{c c} & \text{CH}_2 & \text{NH}_2 \\ -\text{N} & \text{CH}_2 & \end{array}$	2 480	481

Example 28:

Analogously to Example 2, 6-nitrobenzo[de]iso-5 chromene-1,3-dione is reacted with 5-(piperidine-1-sulfonyl)naphthalen-1-ylamine and then with R¹-H. The following compounds of the formula Ig are obtained:

R^1 in R^1 -H and in Ig	MS	
	calculated	found
-NH-(CH ₂) ₃ -NH ₂	542	543
-NH- (CH ₂) ₅ -NH ₂	570	571
-NH-(CH ₂) ₇ -NH ₂		
$\begin{array}{c c} & \text{CH}_2 - \text{NH}_2 \\ -\text{N} - \text{CH}_2 - \begin{array}{c} & \\ & \\ & \text{H} \end{array}$		

Example 29:

Analogously to Example 2, 6-nitrobenzo[de]iso-chromene-1,3-dione is reacted with $H_2N-Ar'-SO_2-R^7$ and then with R^1-H . The following compounds of the formula Ih are obtained:

10

Ar'-SO ₂ -R'	R^{1} in R^{1} -H and in Ih	MS	
		calc.	fnd.
	-NH-(CH ₂) ₃ -NH ₂	584	585
	-NH-(CH2)5-NH2	612	613
	-NH-(CH2)7-NH2		
	CH2-NH2		
\$0 ₂	-N-CH ₂ -	646	647
N ~	-NCH ₂		
H ₅ C ₂			
	-NH-(CH ₂) ₃ -NH ₂	544	545
	$-NH-(CH_2)_5-NH_2$	572	573
	$-NH-(CH_2)_7-NH_2$	600	601
	CH2-NH2		
\$02		606	607
N _s	-NCH ₂ (')		
H ₃ C C ₄ H ₉			
	NU /CU \ NU	F1.C	F17
	-NH-(CH2)3-NH2	516	517
	-NH- (CH ₂) ₅ -NH ₂	544	545
	-NH- (CH ₂) ₇ -NH ₂		
	CH ₂ NH ₂	578	579
SO ₂	-N-CH ₂	3,0	5,5
N Call	н		
H ₃ C \ C ₂ H ₅			
······································			

Example 30:

Analogously to Example 2, 6-nitrobenzo[de]iso-chromene-1,3-dione is reacted with $H_2N-C_6H_4-(CH_2)_2-CONH-(CH_2)_i-NH_2$ and then with R^1-H . The following compounds of the formula Ii are obtained:

i	R^1 in R^1 -H and in Ii	MS	
		calc.	fnd.
4	-NH- (CH ₂) ₇ -NH ₂	543	544
	$- \underset{H}{N} - CH_2 - \underbrace{CH_2 - NH_2}_{CH_2}$	549	550
2	-NH-(CH ₂) ₇ -NH ₂	515	516
	$- \underset{\text{H}}{\text{N}} - \text{CH}_2 - \underbrace{\hspace{1cm}}^{\text{CH}_2} - \text{NH}_2$		

Example 31:

Analogously to Example 2, 6-nitrobenzo[de]iso-chromene-1,3-dione is reacted with $H_2N-C_6H_4-(CH_2)_2-CONH-CH_2-C_6H_{11}$ and then with R^1-H . The following compounds of the formula Ika are obtained:

10

R ¹ in R ¹ -H and in Ika	MS	
	calculated	found
-NH- (CH ₂) ₇ -NH ₂	568	564
$-N$ $-CH_2$ $-N$	574	575

Example 32:

20

Analogously to Example 2, 6-nitrobenzo[de]iso-chromene-1,3-dione is reacted with $H_2N-C_6H_4-(CH_2)_2-CONH-(CH_2)_2-C_6H_9$ and with $H_2N-(CH_2)_5-NH_2$. One equivalent of tert-butyl (tert-butoxycarbonyliminopyrazol-1-yl-methyl)carbamate is then added to a solution of 3- $\{3-[6-(5-aminopentylamino)-1,3-dioxo-1H,3H-$

benzo[de]isoquinolin-2-yl]phenyl}-N-(2-cyclohex1-enylethyl)propionamide in 60 ml of DMF and, after
reaction is complete, the BOC protective groups are
removed by addition of TFA in 1,2-dichloroethane.
N-(2-Cyclohex-1-enylethyl)-3-{3-[6-(5-guanidinopentylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]phenyl}propionamide is obtained.

The following compounds of the formula Ikb are obtained analogously by reacting $H_2N-C_6H_4-(CH_2)_2-CONH-(CH_2)_2-C_6H_9$ with the appropriate diamine in each case and tert-butyl (tert-butoxycarbonyliminopyrazol-1-yl-methyl)carbamate and removing the protective groups:

$$R^1$$
 O
 N
 O
 Ikb
 $(CH_2)_2$ -CONH- $(CH_2)_2$

- 126 -
R ¹ in Ikb
-NH-(CH2)5-NH-C(=NH)-NH2
-NH-(CH2)2-NH-C(=NH)-NH2
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂
CH ₂ —N NH ₂
$-N-CH_2$
$- \underset{H}{N} - CH_2 - \underbrace{\hspace{1cm} \underset{H}{\overset{NH}}{\overset{NH}{\overset{NH}{\overset{NH}}{\overset{NH}{\overset{NH}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}}{\overset{NH}{\overset{NH}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{N}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\mathsf{$
-NH-(CH2)3-NH-C(=NH)-NH2
-NH-(CH ₂) ₃ -N(CH ₃)-(CH ₂) ₃ -NH-C(=NH)-
NH ₂
$-N$ $-CH_2$ $-CH_2$ $-N$ NH_2 NH_2
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂

Example 33:

Analogously to Example 2, 6-nitrobenzo[de]iso-chromene-1,3-dione is reacted with $H_2N-C_6H_4-(CH_2)_2-CONH-(CH_2)_1$ -Ar and then with R^1 -H. The following compounds of the formula IIa are obtained:

-C ₆ H ₄ -(CH ₂) ₂ -CONH-	R ¹ in R ¹ -H and in Ila	MS	
(CH ₂) _i -Ar		calc. fno	d.
	-NH- (CH ₂) ₇ -NH ₂		
(CH ₂) ₂ -CONH-CH ₂			
	CH ₂ —NH ₂	569 570	^
	-N-CH ₂	303 37	
	H .		
		560 56:	1
	$-N \longrightarrow (CH_0)_0 \longrightarrow N \longrightarrow N$	000 00.	_
	$-N - (CH_2)_3 - N $		
	• •		
(CH ₂) ₂ -CONH———N-CH ₃	-NH- (CH ₂) ₇ -NH ₂	591 592	2
	CH ₂ -NH ₂	597 598	8
	-N-CH ₂		
	H =		
	-NH-(CH ₂) ₇ -NH ₂	624 625	5
(CH ₂) ₂ -CONH—			
	CH ₂ —NH ₂	630 633	1
	-NCH ₂		
		621 622	2
	•		
	$-N - (CH_2)_3 - N N$		
	ή		
	-NH-(CH ₂) ₇ -NH ₂	596 59	7
	, 2 , , 2		
(CH ₂) ₂ -CONH-CH ₂ —CI	CH . — NH-		
	CH ₂ —NH ₂		
	-N-CH ₂		
	Н		

Example 34:

Analogously to Example 32, 6-nitro-benzo[de]isochromene-1,3-dione is reacted with $H_2N-C_6H_4-(CH_2)_2-CONH-(CH_2)_3-C_6H_5$, the appropriate diamine in each case and (if necessary) with tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formula Ilb are obtained:

R ¹ in Ilb	MS	
	calculated	found
-NH-(CH ₂) ₇ -NH ₂		
$-\underset{\text{H}}{\overset{\text{CH}_2\text{NH}_2}{\longrightarrow}}$	596	597
-NH-(CH2)5-NH-C(=NH)-NH2	604,8	605,3
$-NH-(CH_2)_2-NH-C(=NH)-NH_2$	562,7	563,6
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	632,8	633,4
$-N - CH_2 - CH_2$	644,8	645,5
$-N$ $-CH_2$ $-CH_2$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$	638,8	639,5
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	576,7	577,5
$-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH-$ C(=NH)-NH ₂	647,8	648,4
$-N$ $-CH_2$ $-CH_2$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$	644,8	645,7
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂ -NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	590,7	591,7
MII (OII2) 4 MII C (-MII) -NII2		JJ1, 1

Example 35:

Analogously to Example 32, 6-nitrobenzo[de]isochromene-1,3-dione is reacted with $H_2N-C_6H_4-(CH_2)_2-CONH-(CH_2)_2-C_6H_4-SO_2-NH_2$, the appropriate diamine in each case and tert-butyl (tert-butoxycarbonyl-iminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formula Ilc are obtained:

10

R ¹ in Ilc	MS	
	MO	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	669,8	670,5
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	627,7	628,4
-NH-(CH2)7-NH-C(=NH)-NH2	697,9	698,5
$\begin{array}{c c} & & & \text{NH} \\ \hline -\text{N} - \text{CH}_2 - & & \text{H} \\ \hline +\text{H} & & & \\ \end{array}$		
$\begin{array}{c c} -\mathtt{N} - \mathtt{CH_2} - \begin{array}{c} \mathtt{NH} \\ -\mathtt{N} - \mathtt{CH_2} - \\ \end{array} \\ \begin{array}{c c} \mathtt{NH_2} \\ \end{array}$		
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	641,8	642,3
$-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH-$		
C(=NH)-NH ₂		·
$\begin{array}{c c} -\mathtt{N} - \mathtt{CH_2} - \begin{array}{c} & \mathtt{NH} \\ -\mathtt{N} - \mathtt{CH_2} - \begin{array}{c} & \mathtt{NH} \\ + \end{array} \end{array}$		

R ¹ in Ilc	MS	
	calculated	found
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	683,8	684,4
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	655,8	656,4
-N— $(CH2)3—N—NH2 CH3$	655,8	656,4
H 122 \=/ H	703,8	704,0
$-N$ NH_2 NH	653,8	654,5
$\begin{array}{c c} -\text{N}-\text{CH}_2 & \text{NH}_2 \\ \text{H} & \text{NH} \end{array}$	681,8	682,5

Example 36:

Analogously to Example 32, 6-nitro-benzo[de]isochromene-1,3-dione is reacted with H₂N-C₆H₄-(CH₂)₂-CONH-C₆H₅, the appropriate diamine in each case and tert-butyl (tert-butoxycarbonyliminopyrazol-1-yl-methyl)carbamate. After removal of the protective groups, the following compounds of the formula Ild are obtained:

$$R^1$$
 $CH_2)_2$ - $CONH$

	-	\sim	4	
-		٦.	- 1	_

— 13		
R ¹ in Ild	MS	
	calculated	d found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	562,7	563,3
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	520,6	521,3
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	590,7	591,4
$\begin{array}{c c} & \text{NH} \\ \hline -\text{N} - \text{CH}_2 - \begin{array}{c} & \text{NH} \\ & \text{H} \end{array}$	602,7	603,4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	596,7	597,3
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	534,6	535,3
-NH-(CH ₂) ₃ -N(CH ₃)-(CH ₂) ₃ -NH-	605,7	606,4
C(=NH)-NH ₂		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	602,7	603,4
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	576,7	577,3
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	548,6	549,3
-N— $(CH2)3—N—NH2 CH3$	548,6	549,5
$-N - (CH_2)_2 - N NH_2$	596,7	597,0
$-N$ NH_2 NH	546,6	547,7
-N-CH ₂ -N-NH ₂ NH	574,7	575,5

Example 37:

Analogously to Example 32, 6-nitrobenzo[de]isochromene-1,3-dione is reacted with

$$(CH_2)_2$$
-CONH- $(CH_2)_i$

the appropriate diamine and tert-butyl (tert-butoxy-carbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formulae Ilea-Ilef are obtained:

R ¹ in Ilea	MS		
	calculated		found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	625,2	625,3	
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	583,1	583,2	
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	653,2	653,3	
$\begin{array}{c c} & \text{NH} \\ \hline -\text{N} - \text{CH}_2 - \begin{array}{c} & \text{NH} \\ & \text{H} \end{array}$	665,2	665,4	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	659,2	659,3	
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	597,1	597,3	
$-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH-$ $C(=NH)-NH_2$	668,2	668,3	

	3 -	·	
R ¹ in Ilea	MS		
	calculated		found
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	665,2	665,4	
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	639,2	639,4	
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	611,1	611,3	
$\begin{array}{c c} & \text{NH} \\ \hline -\text{N}(\text{CH}_2)_3 - \text{N} & \text{NH}_2 \\ \text{H} & \text{CH}_3 \end{array}$	611,1	611,6	
H	659,2	659,0	
$-N$ NH_2 NH	609,1	609,6	
$-N-CH_2-N-NH_2$	637,2	637,6	

R ¹ in Ileb	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	625,2	625,3
-NH-(CH2)2-NH-C(=NH)-NH2	583,1	583,3
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	653,2	653,4

R ¹ in Ileb			
IN III IIED	MS		
	calculat	- a d	£
NID -	Calculat	.ea	found
NH 			
CH ₂ —N NH ₂	665,2	665,4	
/ \	003,2	005,4	
$-N$ — CH_2			
NH			
$\begin{array}{c c} -N - CH_2 - \sqrt{} - N - CH_2 - N - NH_2 \\ \hline H \end{array}$	659,2	659,3	
н 🕒 н			
$-NH-(CH_2)_3-NH-C(=NH)-NH_2$	597,1	597,3	
-NH-(CH ₂) ₃ -N(CH ₃)-(CH ₂) ₃ -NH-	668,2	668,3	
C(=NH)-NH ₂			
NH			
$-N - CH_2 - \sqrt{NH_2}$	665,2	665,3	İ
H			
-NH- (CH ₂) ₆ -NH-C (=NH) -NH ₂	639,2	639,4	
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	611,1	611,3	
NH	·	· · · · · · · · · · · · · · · · · · ·	
<u> </u>			
-N-(CH2)3N-NH2	611,1	611,6	
H CH₃			
. NH			
	659,2	659,2	
$-N - (CH_2)_2 - N - NH_2$	000,2	039,2	
н 22 — н		•	
NH ₂			
—N NH	609,1	609,6	
$-N-CH_2-N-NH_2$	637,2	637,6	
H NH	001,2	037,0	
••			

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & &$$

R¹ in Ilec	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	625,2	625,4
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	583,1	583,4
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	653,2	653,5
$\begin{array}{c c} & \text{NH} \\ \hline -\text{N} - \text{CH}_2 - \begin{array}{c} & \text{NH} \\ & \text{H} \end{array} \end{array}$	665,2	665,4
$\begin{array}{c c} -\text{N} - \text{CH}_2 - \begin{array}{c} \text{NH} \\ \text{H} \end{array} \end{array}$	659,2	659,4
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	597,1	597,3
-NH-(CH2)3-N(CH3)-(CH2)3-NH-C(=NH)-NH2	668,2	668,4
$\begin{array}{c c} -\mathtt{N} - \mathtt{CH_2} - \\ & + \\ & + \\ \end{array} \qquad \begin{array}{c c} \mathtt{NH} \\ - \mathtt{NH_2} \\ - \mathtt{NH_2} \\ \end{array}$	665,2	665,4
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	639,2	639,5
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	611,1	611,4
$\begin{array}{c c} & \text{NH} \\ -\text{N}(\text{CH}_2)_3 - \text{N} \text{NH}_2 \\ \text{H} & \text{CH}_3 \end{array}$	611,1	612,4

R ¹ in Ilec	MS	
	calculated	found
$ \begin{array}{c c} -\text{N} & \text{CCH}_2)_2 & \begin{array}{c} \text{NH} \\ \text{NH}_2 \end{array} \end{array} $	659,2	659,2
-N N N N N N N	609,1	609,5
$\begin{array}{c c} -\text{N-CH}_2 & \text{NH}_2 \\ \text{H} & \text{NH} \end{array}$	637,2	637,5

R ¹ in Iled	MS		· · · · · · · · · · · · · · · · · · ·
	calculated	i	found
-NH-(CH2)5-NH-C(=NH)-NH2			
-NH-(CH2)2-NH-C(=NH)-NH2	555,0	555,4	
-NH-(CH2)7-NH-C(=NH)-NH2	625,2	625,3	
$- \underset{\text{H}}{\overset{\text{NH}}{\longrightarrow}} \text{CH}_2 - \underset{\text{H}}{\overset{\text{NH}}{\longrightarrow}} \text{NH}_2$	637,2	637,4	
$-N$ $-CH_2$ $-CH_2$ $-N$ $-NH_2$ $-NH_2$	631,1	631,3	
$-NH-(CH_2)_3-NH-C(=NH)-NH_2$	569,1	569,3	
-NH-(CH2)3-N(CH3)-(CH2)3-NH-C(=NH)-NH2	640,2	640,3	

[D] · T] · 1	110		
R ¹ in Iled	MS		
	calculated		found
$\begin{array}{c c} -\mathtt{N} - \mathtt{CH_2} - \begin{array}{c} \mathtt{NH} \\ -\mathtt{N} - \mathtt{CH_2} - \\ \end{array} \\ \begin{array}{c c} \mathtt{NH} \\ \mathtt{NH_2} \end{array}$	637,2	637,3	
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	611,1	611,3	
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	583,1	583,3	
$\begin{array}{c c} & \text{NH} \\ -\text{N}(\text{CH}_2)_3 - \text{N} \text{NH}_2 \\ \text{H} & \text{CH}_3 \end{array}$	583,1	583,4	
$ \begin{array}{c c} -\text{N} & \text{CCH}_2)_2 & \begin{array}{c} \text{NH} \\ -\text{N} & \text{NH}_2 \end{array} $	631,1	631,2	
$-N$ NH_2 NH	581,1	581,3	
$-N$ - CH_2 - N - NH_2	609,1	609,3	

R ¹ in Ilee	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	611,1	611,4
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	569,1	569,4
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	639,2	639,3
$\begin{array}{c c} & \text{NH} \\ \hline -\text{N} - \text{CH}_2 - \end{array} \begin{array}{c} \text{NH} \\ \text{NH}_2 \end{array}$	651,2	651,5
$- \underset{H}{N} - CH_2 - \underbrace{\hspace{1cm}}_{N} NH_2$	645,2	645,4
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	583,1	583,5
$-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH-$ C(=NH)-NH ₂	654,2	654,2
$\begin{array}{c c} -\mathtt{N} - \mathtt{CH_2} - \begin{array}{c} \mathtt{NH} \\ -\mathtt{N} - \mathtt{CH_2} - \\ \mathtt{H} \end{array} \\ \end{array} \text{NH}_2$	651,2	651,6
-NH-(CH2)6-NH-C(=NH)-NH2	625,2	625,3
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	597,1	597,4
$\begin{array}{c c} & \text{NH} \\ -\text{N}(\text{CH}_2)_3 - \text{N} & \text{NH}_2 \\ \text{H} & \text{CH}_3 \end{array}$		

R ¹ in Ilee	MS	
	calculated	found
-N-(CH ₂) ₂	NH -N NH₂ H	
$-N$ N NH $-N$ $-CH_2$ N	NH ₂	
_ н <u> </u>	INII	

$$\begin{array}{c} & & \\$$

DI in Tlof	MC	
R' in Ilef	MS	
Make a	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	597,1	597,2
$-NH-(CH_2)_2-NH-C(=NH)-NH_2$	555,0	555,3
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	625,2	625,3
$\begin{array}{c c} & \text{NH} \\ \hline -\text{N} - \text{CH}_2 - \begin{array}{c} & \text{NH} \\ & \text{NH}_2 \end{array} \\ \\ + & \text{H} \end{array}$	637,2	637,2
$- \underset{H}{N} - CH_2 - \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N} H_2 \right)}_{N} + \underbrace{\hspace{-2em} \left(- \underset{H}{N} H_2 - \underset{H}{N$	631,1	631,3
$-NH-(CH_2)_3-NH-C(=NH)-NH_2$	569,1	569,3
$-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH C(=NH)-NH_2$	640,2	640,2

R ¹ in Ilef	MS	
	calculated	found
$- \underset{H}{N} - CH_2 - \underbrace{CH_2 - \underset{H}{\overset{NH}{\overset{NH_2}}{\overset{NH_2}{\overset{NH_2}{\overset{NH_2}{\overset{NH_2}{\overset{NH_2}}{\overset{NH_2}{\overset{NH_2}{\overset{NH_2}{\overset{NH_2}{\overset{NH_2}}{\overset{NH_2}{\overset{NH_2}}{\overset{NH_2}{\overset{NH_2}}{\overset{NH_2}{\overset{NH_2}}{\overset{NH_2}{\overset{NH_2}}{\overset{NH_2}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}}}}}}}}}}}}}}}}}}}}}_{n_{n_{n_{n_{n_{n_{n_{n_{n_{n_{n_{n_{n_$	637,2	637,5
$-NH-(CH_2)_6-NH-C(=NH)-NH_2$	611,1	611,3
$-NH-(CH_2)_4-NH-C(=NH)-NH_2$	583,1	583,3

Example 38:

Analogously to Example 32, 6-nitrobenzo[de]isochromene-1,3-dione is reacted with $H_2N-C_6H_4-$ 5 $(CH_2)_2$ -CONH- CH_2 -Ar, the corresponding diamine and tert-(tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formula Ilfa are obtained with $H_2N-C_6H_4-(CH_2)_2-CONH-CH_2-C_{10}H_7$:

R ¹ in Ilfa	MS	
·	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	626,8	627,3
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	584,7	585,3
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	654,8	655,4

_ 141 -		
R ¹ in Ilfa	MS	
	calculated	found
$-N-CH_2$	666,8	667,4
$\begin{array}{c c} -\mathrm{N} - \mathrm{CH_2} - \begin{array}{c} \mathrm{NH} \\ + \end{array} \end{array}$	660,8	661,3
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	598,7	599,3
-NH-(CH ₂) ₃ -N(CH ₃)-(CH ₂) ₃ -NH- C(=NH)-NH ₂	669,8	670,4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	666,8	667,4
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	640,8	641,4
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	612,7	613,3
$-N$ — $(CH_2)_3$ — N CH_3	612,7	613,6
H 272 - H	660,8	661,0
$-N$ NH_2 NH	610,7	611,6
$-N-CH_2-N-NH_2$ $N+NH_2$ $N+NH$	638,8	639,6

After removal of the protective groups, the following compounds of the formula Ilfb are obtained with $H_2N-C_6H_4-(CH_2)_2-CONH-CH_2-C_9H_9$:

MS	
calculated	found
602,7	603,3
560,7	561,4
630,8	631,3
² 642,8	643,5
2636,8	637,3
574,7	575,6
645,8	646,5
642,8	643,5
616,8	617,4
588,7	589,4
	calculated 602,7 560,7 630,8 2642,8 574,7 645,8 616,8

	-	•	\sim	
_	- 1	4	٦.	_

R ¹ in Ilfb	MS	
	calculated	found
$-N - (CH_2)_3 - N NH_2$ $H CH_3$	612,7	613,6
-N (CH ₂) ₂ N NH NH	H ₂ 660,8	661,0
-N N N N N N	610,7	611,6
$\begin{array}{c c} -\text{N}-\text{CH}_2 & \text{NH}_2 \\ \text{H} & \text{NH} \end{array}$	638,8	639,6

Example 39:

Analogously to Example 32, 6-nitro-benzo[de]isochromene-1,3-dione is reacted with 3-(3-aminophenyl)-N-(3-chloro-4-methoxyphenyl)propion-amide, the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formula Ilg are obtained:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

10

	Oi	
R ¹ in Ilg	MS	
	calculated	found
$-NH-(CH_2)_5-NH-C(=NH)-NH_2$	627,1	627,3

R ¹ in Ilg	MS	
	calculated	found
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	585,1	585,2
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	655,2	655,3
$-N$ $-CH_2$ $-N$ $-N$ $-CH_2$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$	667,2	667,3
$\begin{array}{c c} & & & \text{NH} \\ \hline -\text{N} - \text{CH}_2 - & & & \text{NH}_2 \\ \hline + & & & \text{H} \end{array}$	661,2	661,2
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	599,1	599,2
$-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH C(=NH)-NH_2$	670,2	670,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	667,2	667,3
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	641,2	641,3
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	613,1	613,3
-N— $(CH2)3—N—NH2 CH3$	613,1	613,5
H 22 H	661,2	661,2
-N N N N N N N	611,1	611,4
$\begin{array}{c c} -\text{N}-\text{CH}_2-& \text{NH}_2\\ \text{H} & \text{NH} \end{array}$	639,2	639,4

Example 40:

5

Analogously to Example 32, 6-nitrobenzo[de]isochromene-1,3-dione is reacted with 3-(3-aminophenyl)-N-(4-phenylbutyl)propionamide, the appropriate diamine and tert-butyl (tertbutoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After the protective groups, the of following compounds of the formula Ilh are obtained:

$$CH_2)_2$$
-CONH-(CH_2)4

R ¹ in Ilh	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	618,8	619,4
-NH-(CH2)2-NH-C(=NH)-NH2	576,7	577,3
-NH-(CH2)7-NH-C(=NH)-NH2	646,8	647,4
$-\text{N}-\text{CH}_2-\text{N}+\text{NH}_2$	658,8	659,4
$-\underset{H}{\overset{NH}}{\overset{NH}{\overset{NH}{\overset{NH}{\overset{NH}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{N}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{N}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{N}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}{N$	652,8	653,4
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	590,7	591,3
-NH-(CH2)3-N(CH3)-(CH2)3-NH-C(=NH)-NH2	661,8	662,4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	658,8	659,5
-NH-(CH2)6-NH-C(=NH)-NH2	632,8	633,4

R ¹ in Ilh	MS calculated	found
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	604,8	605,4
-N— $(CH2)3—N—NH2 CH3$	604,8	605,7
$-\underset{H}{N} - (CH_2)_2 - \underbrace{\underset{H}{\bigvee}} \underset{H}{NH_2}$	652,8	653,3
$-N$ NH_2 NH	602,7	603,8
$\begin{array}{c c} -\text{N-CH}_2 & \text{NH}_2 \\ \text{H} & \text{NH} \end{array}$	630,8	631,6

Example 41:

10

Analogously to Example 32, 6-nitro-5 benzo[de]isochromene-1,3-dione is reacted with

$$(CH_2)_2$$
-CONH- $(CH_2)_i$

the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formulae Ilia-Ilic are obtained:

$$CH_2)_2$$
-CONH-(CH_2)2- CH_3

- 14	/ -	
R ¹ in Ilia	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	604,8	605,4
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	562,7	563,4
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	632,8	633,4
$\begin{array}{c c} & \text{NH} \\ \hline -\text{N} - \text{CH}_2 - \hline \\ \text{H} \end{array}$	644,8	645,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	638,8	639,4
$-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH-$ C(=NH)-NH ₂	647,8	648,4
$\begin{array}{c c} & \text{NH} \\ -\text{N} - \text{CH}_2 - \begin{array}{c} & \text{NH} \\ & \text{H} \end{array} \end{array}$	644,8	645,5
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	618,8	619,5
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	590,7	591,4
-N(CH ₂) ₃ N-NH ₂ H CH ₃	590,7	591,6
H \ 222 \= H -	638,8	639,3
-N N N N N N N	588,7	589,8
$\begin{array}{c c} -\text{N}-\text{CH}_2-& \text{NH}_2\\ \text{H} & \text{NH} \end{array}$	616,8	617,7

R ^I in Ilib	MS	
	calculated	found
$-NH-(CH_2)_5-NH-C(=NH)-NH_2$	604,8	605,4
-NH-(CH2)2-NH-C(=NH)-NH2	562,7	563,3
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	632,8	633,4
$\begin{array}{c c} & \text{NH} \\ \hline -\text{N} - \text{CH}_2 - \hline \\ & \text{H} \end{array}$	644,8	645,6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	638,8	639 , 5
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	576,7	577,6
-NH-(CH ₂) ₃ -N(CH ₃)-(CH ₂) ₃ -NH-	647,8	648,4
C(=NH)-NH ₂		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	644,8	645,7
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	618,8	619,4
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	590,7	591,4
-N— $(CH2)3—N—NH2 CH3$	590,7	591,8
$-\underset{H}{\overset{\text{NH}}{\bigvee}} (\text{CH}_2)_2 - \underset{H}{\overset{\text{NH}}{\bigvee}} \text{NH}_2$	638,8	639,3

R ¹ in Ilib	MS	
	calculated	found
-N N N N N N N	588,7	589,6
$\begin{array}{c c} -\text{N}-\text{CH}_2 & \text{NH}_2 \\ \text{H} & \text{NH} \end{array}$	616,8	617,8

$$\begin{array}{c|c} & & \\ & &$$

R ¹ in Ilic	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	590,7	591,3
-NH-(CH2)2-NH-C(=NH)-NH2	548,6	549,6
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	618,8	619,4
$\begin{array}{c c} & & \text{NH} \\ & \downarrow & \\ -\text{N} - \text{CH}_2 - & \downarrow \\ & \text{H} \end{array}$	630,8	631,7
$-\underset{H}{\overset{NH}{\longrightarrow}} - CH_2 - \underset{H}{\overset{NH}{\longrightarrow}} NH_2$	624,7	625,4
$-NH-(CH_2)_3-NH-C(=NH)-NH_2$	562,7	563,5
-NH- $(CH_2)_3$ -N (CH_3) - $(CH_2)_3$ -NH- C $(=NH)$ -NH ₂	633,8	634,4

R' in Ilic	MS	
	calculated	found
$\begin{array}{c c} -\mathrm{N} - \mathrm{CH}_2 - \begin{array}{c} \mathrm{NH} \\ \mathrm{H} \end{array} \end{array}$	630,8	631,8
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	604,8	605,2
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	576,7	577,5

Example 42:

suspension of 4.1 g of 6-nitrobenzo[de]isochromene-1,3-dione in 100 ml of glacial 5 acetic acid is treated with 4.3 g of 3 - (3 aminophenyl) propionic acid and the mixture is heated under reflux. After reaction is complete, the reaction mixture is allowed to cool and is worked up as is 3-[3-(6-Nitro-1,3-dioxo-2,3-dihydrocustomary. 10 1H-phenalen-2-yl)phenyl]propionic acid in 80 ml of THF is treated with 1.5 equivalents of oxalyl chloride, the mixture is stirred and 1.5 equivalents 2-p-tolylethylamine are added. After conversion is complete, the mixture is worked up as is customary. A 15 solution of 3-[3-(6-nitro-1,3-dioxo-2,3-dihydro-1H-phenalen-2-yl)phenyl]-N-(2-p-tolylethyl)propionamide in 80 ml of DMF is treated with one equivalent of propane-1,3-diamine and the mixture is heated under reflux. After customary working up, the amine obtained 20 heated with 1.5 equivalents of pyrazole-1carboxamidine and diisopropylethylamine in 80 ml of DMF. After reaction is complete and customary working up, 3-{3-[6-(3-guanidinopropylamino)-1,3-dioxo-2,3-dihydro-1H-phenalen-2-yl]phenyl}-N-(2-p-tolylethyl)propionamide is obtained. MS: calculated: 576.7;

25 found: 577.4.

Example 43:

Analogously to Example 32, 6-nitrobenzo[de]iso-30 chromene-1,3-dione is reacted with

$$(CH_2)_2$$
-CONH- $(CH_2)_i$
 CI
 H_2N

the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl) carbamate. After removal of the protective groups, the following compounds of the formulae Ilka-Ilke are obtained:

5

R ¹ in Ilka	MS	
	calculated	found
-NH-(CH2)5-NH-C(=NH)-NH2	645,6	645,4
-NH-(CH2)2-NH-C(=NH)-NH2	603,5	603,3
-NH-(CH2)7-NH-C(=NH)-NH2	673,6	673,4
$- \underset{H}{\overset{\text{CH}_2 - \underset{H}{\bigvee} \text{NH}_2}{\bigvee}} $	685,7	685,4
$- \underset{H}{N} - CH_2 - \underbrace{-}_{N} - CH_2 - \underbrace{-}_{N} \underset{H}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}{\overset{NH}{\overset{NH}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}}{\overset{NH}{\overset{NH}{\overset{NH}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{N}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{N}}}{\overset{NH}}}{\overset{N}}{\overset{NH}}}{\overset{N}}}{\overset{NH}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset$	679,6	679,3
$-NH-(CH_2)_3-NH-C(=NH)-NH_2$	617,5	617,3
$\begin{array}{c c} & \text{NH} \\ \hline -\text{N}(\text{CH}_2)_3 - \text{N} & \text{NH}_2 \\ \text{H} & \text{CH}_3 \end{array}$	631,6	631,4

R ¹ in Ilka	MS	
	calculated	found
$-\underset{H}{\overset{\text{NH}}{\longrightarrow}} (CH_2)_2 - \underset{H}{\overset{\text{NH}}{\longrightarrow}} NH_2$	679,6	681,2
-N NH₂ NH	629,5	630,5
$\begin{array}{c c} -\text{N-CH}_2 & \text{NH}_2 \\ \text{H} & \text{NH} \end{array}$		

$$R^1$$
IIkb

 CI
 CI
 CI
 CI

R ¹ in Ilkb	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	645,6	645,3
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	603,5	603,3
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	673,6	673,4
$\begin{array}{c c} & & \text{NH} \\ & & \text{CH}_2 - \text{N} \\ & & \text{H} \end{array}$	685,7	685,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	679,6	679,3
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	617,5	617,5

- 15		
R¹ in Ilkb	MS	
	calculated	found
-NH-(CH ₂) ₃ -N(CH ₃)-(CH ₂) ₃ -NH-C(=NH)-NH ₂	688,7	688,4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	685,7	687,4
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	659,6	659,4
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	631,6	633,3
$-N$ — $(CH_2)_3$ — N CH_3	631,6	632,4
H 122 - H	679,6	679,1
$-N$ NH_2 NH	629,5	630,4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	657,6	658,5

$$R^1$$
 O
 N
 O
 CI
 $(CH_2)_2$ -CONH-CH₂
 CI

R ¹ in Ilkc	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	645,6	645,6
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	603,5	604,6
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	673,6	673,4

R ¹ in Ilkc	MS	
	calculated	found
$\begin{array}{c c} & & \text{NH} \\ \hline -\text{N} - \text{CH}_2 - & \text{H} \\ \hline \end{array}$	685,7	686,6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	679,6	681,3
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	617,5	618,6
-NH-(CH ₂) ₃ -N(CH ₃)-(CH ₂) ₃ -NH- C(=NH)-NH ₂	688,7	688,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	685,7	686,5
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	659,6	659,4
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	631,6	633,3
$-N$ — $(CH_2)_3$ — N CH_3	631,6	632,5
H	679,6	679,1
$-N$ NH_2 NH	629,5	630,4
$-N-CH_2$ $N-CH_2$ $N-CH_2$ $N+CH_2$	657,6	658 ,6

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

R ¹ in Ilkd	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	645,6	645,3
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	603,5	603,3
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	673,6	673,3
$\begin{array}{c c} & & \text{NH} \\ & \downarrow & \\ -\text{N} - \text{CH}_2 - & \downarrow & \\ & \downarrow & \\ -\text{N} - \text{CH}_2 - & \downarrow & \\ & \downarrow & \\ \end{array}$	685,7	685,5
$- \underset{H}{N} - CH_2 - \underbrace{\hspace{1cm}}_{N} - CH_2 - \underbrace{\hspace{1cm}}_{N} NH_2$	679,6	679,3
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	617,5	617,4
-NH-(CH ₂) ₃ -N(CH ₃)-(CH ₂) ₃ -NH-	688,7	688,3
C (=NH) -NH ₂		
$\begin{array}{c c} & & \text{NH} \\ -\text{N} - \text{CH}_2 - & \text{CH}_2 - \text{N} \\ \text{H} & \text{NH}_2 \end{array}$	685,7	687,3
$-NH-(CH_2)_6-NH-C(=NH)-NH_2$	659,6	659,4
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	631,6	631,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	631,6	631,4

R ¹ in Ilkd	MS	-
	calculated	found
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	679,6	679,1
-N N N N N N	629,5	629,4
$-N-CH_2$ $N-CH_2$ $N+CH_2$	657,6	658,4

$$R^1$$

$$CI$$

$$(CH_2)_2\text{-CONH}$$

R ¹ in Ilke	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	631,6	631,2
-NH-(CH2)2-NH-C(=NH)-NH2	589,5	589,1
-NH-(CH2)7-NH-C(=NH)-NH2	659,6	659,2
$-N - CH_2 - N - NH_2$	671,6	671,2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	665,6	665,1
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	603,5	603,2
-NH- (CH ₂) ₃ -N (CH ₃) - (CH ₂) ₃ -NH-C (=NH) -NH ₂	674,6	674,2

R¹ in Ilke	MS	
	calculated	found
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	671,6	671,2
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	645,6	645,2
-NH- (CH ₂) ₄ -NH-C (=NH) -NH ₂	617,5	619,2

Example 44:

Analogously to Example 32, 6-nitro-benzo[de]isochromene-1,3-dione is reacted with 3-(3-aminophenyl)-N-(3-chloro-4-fluorobenzyl)propionamide, the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formula Ilm are obtained:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

R ¹ in Ilm	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	629,1	629,5
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	587,1	587,5
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	657,2	657,3

Di in Tim	08 -	
R ¹ in Ilm	MS	
	calculated	found
$-N - CH_2 - N - NH_2$	669,2	669,6
$- \underset{H}{N} - CH_2 - \underbrace{\hspace{1cm}}_{H} - NH_2$	663,2	663,4
$-NH-(CH_2)_3-NH-C(=NH)-NH_2$	601,1	601,5
$-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH-$ $C(=NH)-NH_2$	672,2	672,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	669,2	669,7
$-NH-(CH_2)_6-NH-C(=NH)-NH_2$	643,2	643,4
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	615,1	615,5
$-N - (CH_2)_3 - N NH_2$ $H CH_3$	615,1	615,5
$-N - (CH_2)_2 - N - NH_2$	663,2	663,2
-N N N N N N	613,1	613,4
$-\underset{H}{N}-CH_2 - \underbrace{\qquad \qquad \underset{NH}{NH_2}}$	641,1	641,4

Example 45:

Analogously to Example 32, 6-nitrobenzo[de]isochromene-1,3-dione is reacted with

$$\begin{array}{c} \text{CCH}_2)_2\text{-CONH-(CH}_2)_i \\ \\ \text{CH}_2\text{N} \\ \end{array},$$

5 the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formulae Ilna-Ilnc are obtained:

R ¹ in Ilna	MS	
es.	calculated	found
-NH-(CH2)5-NH-C(=NH)-NH2	606,7	607,4
-NH-(CH2)2-NH-C(=NH)-NH2	564,6	565,6
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	634,8	635,3
$\begin{array}{c c} & & & \text{NH} \\ & & & \\ -\text{N} - \text{CH}_2 - & & \\ & \text{H} \end{array}$	646,8	647,6
$-N - CH_2 - CH_2 - N - NH_2$	640,7	641,5
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	578,7	579,6
$-NH - (CH_2)_3 - N (CH_3) - (CH_2)_3 - NH - C (=NH) - NH_2$	649,8	650,5

R ¹ in Ilna	MS	
	calculated	found
$- \underset{H}{\overset{N}{ - ch_2}} - \underset{H}{\overset{NH}{ - ch_2}} - \underset{H}{\overset{NH}{ - ch_2}}$	646,8	647,9
-NH-(CH2)6-NH-C(=NH)-NH2	620,8	621,3
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	592,7	593,4
$\begin{array}{c c} & \text{NH} \\ \hline -\text{N}(\text{CH}_2)_3 - \text{N} \text{NH}_2 \\ \dot{\text{H}} & \text{CH}_3 \end{array}$	592,7	593,7
H '2'2 \=/ H '	640,7	641,2
-N N N N N N	590,7	591,6
$-N-CH_2-N-NH_2$	618,7	619,6

$$\begin{array}{c} & & \\$$

R ¹ in Ilnb	MS	
	calculated	found
-NH-(CH2)5-NH-C(=NH)-NH2	620,8	621,4
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	578,7	579,4
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	648,8	649,5

R ¹ in Ilnb	MS	
	calculated	found
_N _ CH ₂	660,8	661,5
$- \underset{H}{N} - CH_2 - \underbrace{\hspace{1cm}}_{C} - CH_2 - \underset{H}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{N}}{\overset{NH}}}{\overset{NH}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}$	654,8	655,4
$-NH-(CH_2)_3-NH-C(=NH)-NH_2$	592,7	593,5
-NH- $(CH_2)_3$ -N (CH_3) - $(CH_2)_3$ -NH- C $(=NH)$ -NH ₂	663,8	664,4
$- \underset{H}{N} - CH_2 - \underbrace{\hspace{1cm}}_{CH_2} - \underset{H}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}}{\overset{NH}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}{\overset{NH}}{\overset{NH}}}{\overset{NH}}}{\overset{NH}}{\overset{NH}}}{\overset{N}}}{\overset{NH}}}{\overset{NH}}}{$	660,8	661,9
-NH-(CH2)6-NH-C(=NH)-NH2	634,8	635,4
$-NH-(CH_2)_4-NH-C(=NH)-NH_2$	606,7	607,4
$-N$ — $(CH_2)_3$ — N CH_3 NH NH		
$-\underset{H}{N} - (CH_2)_2 - \underbrace{\hspace{1cm}}_{H} NH_2$		
$-N$ NH_2 NH		
$-N$ - CH_2 - N - NH_2		

$$R^1$$
Ilinc
 CH_2
 $CONH$
 CH_3

R ¹ in Ilnc	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	592,7	593,3
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	550,6	551,4
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	620,8	621,3
$\begin{array}{c c} & \text{NH} \\ & \text{CH}_2 - \text{N} \\ & \text{H} \end{array}$	632,8	633,4
$ \begin{array}{c c} -\text{N} - \text{CH}_2 - \begin{array}{c} \text{NH} \\ \text{NH}_2 \end{array} $	626,7	627,3
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	564,6	565,3
-NH-(CH ₂) ₃ -N(CH ₃)-(CH ₂) ₃ -NH- C(=NH)-NH ₂	635,8	636,3
$\begin{array}{c c} -\mathtt{N} - \mathtt{CH_2} - \begin{array}{c} \mathtt{NH} \\ + \end{array} \\ \begin{array}{c} \mathtt{NH_2} \end{array}$	632,8	633,4
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	606,7	607,3
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	578,7	579,4
		<u>, </u>

Example 46:

Analogously to Example 32, 6-nitro-5 benzo[de]isochromene-1,3-dione is reacted with 5

$$-163$$
 - $(CH_2)_2$ -CONH- $(CH_2)_i$ -163 - F

the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formulae Iloa-Iloc are obtained:

Iloa
$$(CH_2)_2\text{-CONH-}(CH_2)_2 \longrightarrow F$$

R ¹ in Iloa	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	608,7	609,4
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	566,6	567,5
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	636,8	637,3
$\begin{array}{c c} & & \text{NH} \\ \hline -\text{N} - \text{CH}_2 - \end{array} \begin{array}{c} & \text{NH} \\ & \text{NH}_2 \end{array}$	648,8	649,5
$\begin{array}{c c} -\mathtt{N} - \mathtt{CH_2} - \begin{array}{c} & \mathtt{NH} \\ -\mathtt{N} - \mathtt{CH_2} - \begin{array}{c} & \mathtt{NH} \\ -\mathtt{N} - \mathtt{NH_2} \end{array} \end{array}$	642,7	643,4
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	580,7	581,4
-NH-(CH ₂) ₃ -N(CH ₃)-(CH ₂) ₃ -NH- C(=NH)-NH ₂	651,8	652,4
$\begin{array}{c c} -\text{N} - \text{CH}_2 - \\ \text{H} & \text{NH}_2 \end{array}$	648,8	649,6
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	622,7	623,3

R ¹ in Iloa	MS	
	calculated	found
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	594,7	595,5

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

R¹ in Ilob	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	594,7	595,5
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	552,6	553,4
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	622,7	623,2
$-N - CH_2 - CH_2$	634,8	635,5
$- \underset{H}{N} - CH_2 - \underbrace{-}_{H} \underset{H}{\overset{NH}{NH_2}}$	628,7	629,4
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	566,6	567,5
$-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH-$ C(=NH)-NH ₂	637,8	638,3
$\begin{array}{c c} -\mathrm{N}-\mathrm{CH}_2-\end{array} \begin{array}{c} \mathrm{NH} \\ \mathrm{NH}_2 \end{array}$	634,8	635,6
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	608,7	609,3
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	580,7	581,4

$$R^1$$
Iloc
 $CH_2)_2$ -CONH

R¹ in Iloc	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	580,7	581,3
-NH-(CH2)2-NH-C(=NH)-NH2	538,6	539,3
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	608,7	609,3
$- \underset{H}{\overset{\text{CH}_2 - \underset{\text{N}}{\overset{\text{NH}}{\longrightarrow}}}} $	620,7	621,4
$\begin{array}{c c} -N-CH_2- & NH_2 \\ H & H & H_2 \end{array}$	614,7	615,2
$-NH-(CH_2)_3-NH-C(=NH)-NH_2$	552,6	553,4

Example 47:

5 Analogously to Example 32, 6-nitrobenzo[de]isochromene-1,3-dione is reacted with 3-(3-aminophenyl)-N-(3-phenoxyphenyl)propionamide, the appropriate diamine and tert-butyl (tertbutoxycarbonyliminopyrazol-1-ylmethyl)carbamate. removal of the protective groups, the following 10 compounds of the formula Ilp are obtained:

R' in Ilp	MS	
		£_,
	calculated	found
$-NH-(CH_2)_5-NH-C(=NH)-NH_2$		
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	682,8	683,3
$\begin{array}{c c} & & & \\ \hline -\text{N} - \text{CH}_2 - & & \\ \hline + & & \\ \end{array}$	694,8	695,4
-NH-(CH2)2-NH-C(=NH)-NH2		
$\begin{array}{c c} -\mathrm{N}-\mathrm{CH}_2 & & \mathrm{NH}_2 \\ \hline +\mathrm{H} & & \mathrm{H}_2 \end{array}$	688,8	689,4
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	626,7	627,4
-NH- (CH ₂) ₃ -N (CH ₃) - (CH ₂) ₃ -NH-	697,8	698,4
$C (=NH) - NH_2$	·	·
$\begin{array}{c c} -\text{N}-\text{CH}_2 & \text{NH} \\ -\text{N}-\text{CH}_2 & \text{NH}_2 \end{array}$	694,8	695,6
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	668,8	669,3
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	640,7	641,5
$\begin{array}{c c} & \text{NH} \\ -\text{N}(\text{CH}_2)_3 - \text{N} & \text{NH}_2 \\ \text{H} & \text{CH}_3 \end{array}$	640,7	641,5
$ \begin{array}{c c} -\text{N} & \text{CCH}_2)_2 & & \text{NH} \\ \text{H} & \text{NH}_2 \end{array} $	688,8	689,2

R' in Ilp	MS	
	calculated	found
$-N$ NH_2 NH	638,7	639,5
-N-CH ₂ -N-NH ₂ NH	666,8	667,5

Example 48:

Analogously to Example 32, 6-nitro-benzo[de]isochromene-1,3-dione is reacted with 3-(3-aminophenyl)-N-(3-benzyloxyphenyl)propionamide, the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formula Ilq are obtained:

$$R^1$$
 $CH_2)_2$ - $CONH$

R ¹ in Ilq	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	668,8	669,3
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	626,7	627,4
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	696,8	697,3

R ¹ in Ilq	MS	
	calculated	found
$\begin{array}{c c} & & \text{NH} \\ & & \text{NH}_2 \\ -\text{N} - \text{CH}_2 - & \text{H} \end{array}$	708,9	709,5
$\begin{array}{c c} -\mathrm{N} - \mathrm{CH}_2 - \begin{array}{c} \mathrm{NH} \\ + \end{array} \end{array}$		
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	640,7	641,5
H	702,8	703,0
-N N N N N N	652,8	653,5
-N— $(CH2)3—N—NH2 CH3$	654,8	655,5
$\begin{array}{c c} -\text{N}-\text{CH}_2 & \text{NH}_2 \\ \text{H} & \text{NH} \end{array}$	680,8	681,5

Example 49:

Analogously to Example 32, 6-nitro-benzo[de]isochromene-1,3-dione is reacted with 3-(3-aminophenyl)-N-naphthalen-2-ylpropionamide, the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formula Ilr are obtained:

R ¹ in Ilr
-NH-(CH2)5-NH-C(=NH)-NH2
-NH-(CH2)2-NH-C(=NH)-NH2
$-NH-(CH_2)_7-NH-C(=NH)-NH_2$
NH II
CH_2 N
$\begin{array}{c c} -\mathrm{N}-\mathrm{CH}_2 & \stackrel{\mathrm{NH}}{\longrightarrow} -\mathrm{CH}_2 - \mathrm{N} & \mathrm{NH}_2 \\ \stackrel{\mathrm{H}}{\mapsto} & \stackrel{\mathrm{H}}{\mapsto} & \stackrel{\mathrm{H}}{\mapsto} & \mathrm{NH}_2 \end{array}$
$-NH-(CH_2)_3-NH-C(=NH)-NH_2$
$-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH C.(=NH)-NH_2$
$-N$ $-CH_2$ $-CH_2$ $-N$ NH_2 $-N$ $-CH_2$ $-N$ $-N$ $-CH_2$ $-N$ $-N$ $-CH_2$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂
-N - (CH2)3 - N NH2 $H CH3$
$-N - (CH_2)_2 - N - NH_2$

Example 50:

Analogously to Example 32, 6-nitro-benzo[de]isochromene-1,3-dione is reacted with 3-(3-aminophenyl)-N-benzylpropionamide, the appropriate diamine and tert-butyl (tert-butoxycarbonyl-iminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formula Ils are obtained:

10

· · · · · · · · · · · · · · · · · · ·		
R ¹ in Ils	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	576,7	577,4
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	534,6	535,5
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	604,8	605,4
$\begin{array}{c c} & \text{NH} \\ \hline -\text{N} - \text{CH}_2 - \text{N} \\ \hline + \\ \end{array}$	² 616,8	617,5
$- \underset{H}{N} - CH_2 - \underbrace{\hspace{-2pt} - \hspace{-2pt} CH_2 - \hspace{-2pt} N}_{H} + \underbrace{\hspace{-2pt} NH_2}_{H} - \hspace$	610,7	611,3

R¹ in Ils	MS	
	calculated	found
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	548,6	549,5
-NH-(CH ₂) ₃ -N(CH ₃)-(CH ₂) ₃ -NH-	619,8	620,3
C (=NH) -NH ₂	F00 7	501.3
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	590,7	591,3
$-NH-(CH_2)_4-NH-C(=NH)-NH_2$	562,7	563,5
-N— $(CH2)3—N—NH2 CH3$		
$\begin{array}{c c} -\mathtt{N} - \mathtt{CH_2} - & \\ -\mathtt{N} - \mathtt{CH_2} - & \\ -\mathtt{N} + & \\ \end{array}$	616,8	617,6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
-N N N N N N		
$-\text{N-CH}_2 - \text{N-}_{\text{NH}}$		

Example 51:

Analogously to Example 32, 6-nitro-benzo[de]isochromene-1,3-dione is reacted with 3-(3-aminophenyl)-N-(3-fluoro-4-methoxyphenyl)propion-amide, the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formula Ilt are obtained:

$$CH_2$$
 $CONH$ CH_3

$(CH_2)_2$ -CONH $-CCH_3$			
R ¹ in Ilt	MS		
	calculated	found	
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂			
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	568,6	569,3	
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	638,7	639,4	
NH II			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$\begin{array}{c c} -\text{N}-\text{CH}_2 & \text{NH}_2 \\ \hline +\text{H} & \text{NH}_2 \end{array}$	644,7	645,3	
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂			
-NH-(CH ₂) ₃ -N(CH ₃)-(CH ₂) ₃ -NH-	653,8	654,3	
C (=NH) -NH ₂			
	650,8	651,8	
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	624,7	625,3	
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	596,7	597,5	
$\begin{array}{c c} & \text{NH} \\ -\text{N}(\text{CH}_2)_3 - \text{N} & \text{NH}_2 \\ \text{H} & \text{CH}_3 \end{array}$	596,7	597,7	
$-N - (CH2)2 - \sqrt{-} NH2$ H NH ₂	644,7	645,2	

R ¹ in Ilt	MS	
	calculated	found
-N-NH ₂	594,6	595,7
-N-CH ₂ -N-NH ₂ NH	622,7	623,5

Example 52:

10

Analogously to Example 32, 6-nitro-5 benzo[de]isochromene-1,3-dione is reacted with 3-(3-aminophenyl)-N-(3-fluoro-4-methylphenyl)propionamide, the appropriate diamine and tert-butyl (tertbutoxycarbonyliminopyrazol-1-ylmethyl)carbamate. removal of the protective groups, the following compounds of the formula Ilu are obtained:

R ¹ in Ilu	MS		
	calculated	found	
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	594,7	595,3	
-NH-(CH2)2-NH-C(=NH)-NH2	552,6	553,5	
-NH-(CH2)7-NH-C(=NH)-NH2	622,7	623,4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

± /	4 -	
R¹ in Ilu	MS	
,	calculated	found
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	628,7	629,3
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	566,6	567,5
-NH-(CH2)3-N(CH3)-(CH2)3-NH-C(=NH)-NH2	637,8	638,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	634,8	635,6
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	608,7	609,3
-NH-(CH2)4-NH-C(=NH)-NH2	580,7	581,4

Example 53:

10

Analogously to Example 32, 6-nitro-

5 benzo[de]isochromene-1,3-dione is reacted with

$$\begin{array}{c} \text{OCH}_3 \\ \text{H}_2\text{N} \end{array}$$

the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formulae Ilva-Ilvb are obtained:

	175 -	
R ¹ in Ilva	MS	
!	calculated	found
-NH-(CH2)5-NH-C(=NH)-NH2	650,8	651,5
-NH-(CH2)2-NH-C(=NH)-NH2	608,7	609,5
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	678,8	679,4
$\begin{array}{c c} & \text{NH} \\ -\text{N} - \text{CH}_2 - \begin{array}{c} & \text{NH} \\ & \text{H} \end{array}$	² 690,8	691,6
-NH $-$ CH ₂ $-$ CH ₂ $-$ NH	684,8	685,5
$-NH-(CH_2)_3-NH-C(=NH)-NH_2$	622,7	623,5
$-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH-$ C(=NH)-NH ₂	693,8	694,4
$-N - CH_2 - CH_2 - N - NH_2$	2 690,8	691,6
$-NH-(CH_2)_{6}-NH-C(=NH)-NH_2$	664,8	665,4
-NH-(CH2)4-NH-C(=NH)-NH2	636,7	637,5

$$\begin{array}{c} & \\ & \\ \\ \text{O} \\ \\ \text{OCH}_3 \\ \\$$

R ¹ in Ilvb	MS	
	calculated	found
-NH-(CH2)5-NH-C(=NH)-NH2	650,8	651,4
-NH-(CH2)2-NH-C(=NH)-NH2	608,7	609,5

R ¹ in Ilvb	MS	
	calculated	found
-NH-(CH2)7-NH-C(=NH)-NH2	678,8	679,4
$\begin{array}{c c} & & \text{NH} \\ \hline -\text{N} - \text{CH}_2 - \hline \\ \text{H} \end{array}$	690,8	691,8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	684,8	685,4
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	622,7	623,4
$-NH-(CH_2)_3-N(CH_3)-(CH_2)_3-NH C(=NH)-NH_2$	693,8	694,4
$- \underset{H}{N} - CH_2 - \underbrace{\hspace{1cm}}_{H} NH_2$	690,8	691,6
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	664,8	665,3
$-NH-(CH_2)_4-NH-C(=NH)-NH_2$	636,7	637,4

Example 54:

10

Analogously to Example 32, 6-nitro-5 benzo[de]isochromene-1,3-dione is reacted with

$$\begin{array}{c} \text{(CH}_2)_2\text{-CONH-CH}_2 \\ \\ \text{H}_2\text{N} \\ \end{array}$$

the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formulae Ilw are obtained:

$$\begin{array}{c} & & \\$$

Example 55:

Analogously to Example 32, 6-nitrobenzo[de]isochromene-1,3-dione is reacted with

$$H_2N$$
 — (CH₂)₂-CONH-CH₂

the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formulae Im are obtained:

$$CH_2)_2$$
-CONH-CH₂

 R^1 in Im calculated found -NH-(CH₂)₅-NH-C(=NH)-NH₂ $-NH-(CH_2)_2-NH-C(=NH)-NH_2$ 524,6 525,3 -NH-(CH₂)₇-NH-C(=NH)-NH₂594,7 595,3 607,3 600,7 601,2 -NH-(CH₂)₃-NH-C(=NH)-NH₂538,6 539,4 -NH-(CH₂)₃-N(CH₃)-(CH₂)₃-NH-609,7 610,3 $C (=NH) - NH_2$ 607,4 -NH-(CH₂)₆-NH-C(=NH)-NH₂580,7 581,3 -NH-(CH₂)₄-NH-C(=NH)-NH₂

Example 56:

Analogously to Example 2, 6-nitrobenzo[de]isochromene-1,3-dione is reacted with 2-(4-aminophenyl)-3-(4-dimethylaminophenyl)propio-

nitrile and then with R^1 -H. The following compounds of the formula In are obtained:

R ¹ in R ¹ -H und in In	MS	
	calculated	found
-NH- (CH ₂) ₅ -NH ₂	545	546
-NH- (CH ₂) ₇ -NH ₂	573	574
$\begin{array}{c c} & CH_2 - NF \\ -N - CH_2 - CH_2 - CH_2 - NF \\ \hline \end{array}$		

Example 57:

10 ml of TFA are added at room temperature to a solution of 2.4 g of tert-butyl [3-(2-{4-[1-cyano-2-(4-dimethylaminophenyl)ethyl]phenyl}-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-ylamino)propyl]-carbamate in 40 ml of dichloromethane [obtainable by reaction of 6-nitrobenzo[de]isochromene-1,3-dione with 2-(4-aminophenyl)-3-(4-dimethylaminophenyl)propionitrile and H₂N-(CH₂)₃-NHBOC] and the reaction mixture is stirred until removal is complete. After customary working up, 2-{4-[6-(3-aminopropylamino)-1,3-dioxo-ylamino)-1,3-dioxo-ylamino}

1H, 3H-benzo[de]isoquinolin-2-yl}-3-(4-dimethylamino-phenyl)propionitrile is obtained.

Example 58:

10

5 Analogously to Example 32, 6-nitrobenzo[de]isochromene-1,3-dione is reacted with

$$(CH_2)_2$$
- $CONH$ - $(CH_2)_2$ - CH
 Ph
 Ph

the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formula Ioa are obtained:

R ¹ in Ioa	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	680,8	681,4
-NH-(CH2)2-NH-C(=NH)-NH2	638,8	639,6
-NH-(CH2)7-NH-C(=NH)-NH2	708,9	709,4
$\begin{array}{c c} & & \text{NH} \\ & \downarrow & \text{CH}_2 - \text{N} & \text{NH}_2 \\ & & \text{H} & \\ & & \text{H} & \\ \end{array}$	720,9	721,6
$\begin{array}{c c} -\mathrm{N} - \mathrm{CH_2} - \begin{array}{c} \mathrm{NH} \\ -\mathrm{N} - \mathrm{CH_2} - \mathrm{N} \end{array} \\ \mathrm{H} \end{array}$	714,9	715,5

R¹ in Ioa	MS	
	calculated	found
-NH-(CH ₂) ₃ -NH-C(=NH)-NH ₂	652,8	653,6
$-NH - (CH_2)_3 - N(CH_3) - (CH_2)_3 - NH - C(=NH) - NH_2$	723,9	724,4
$\begin{array}{c c} - \text{N} - \text{CH}_2 - \text{CH}_2 - \text{N} & \text{NH}_2 \\ \hline + & & \text{H} & \text{NH}_2 \\ \end{array}$	720,9	721,6
-NH-(CH ₂) ₆ -NH-C(=NH)-NH ₂	694,9	695,4
-NH-(CH ₂) ₄ -NH-C(=NH)-NH ₂	666,8	667,3

Example 59:

10

Analogously to Example 32, 6-nitrobenzo- [de]isochromene-1,3-dione is reacted with

$$\begin{array}{c} \text{(CH}_2)_2\text{-CONH-CH}_2\text{-CH} \\ \text{Ph} \\ \\ \text{H}_2\text{N} \\ \end{array},$$

the appropriate diamine and tert-butyl (tert-butoxycarbonyliminopyrozol-1-ylmethyl)carbamate. After removal of the protective groups, the following compounds of the formula Iob are obtained:

R ¹ in Iob	MS	
	calculated	found
-NH-(CH ₂) ₅ -NH-C(=NH)-NH ₂	666,8	667,3

R ¹ in Iob	MS	
	calculated	found
-NH-(CH ₂) ₂ -NH-C(=NH)-NH ₂	624,7	625,5
-NH-(CH ₂) ₇ -NH-C(=NH)-NH ₂	694,9	695,4
$\begin{array}{c c} -\text{N} - \text{CH}_2 - \begin{array}{c} \text{NH} \\ \text{H} \end{array}$	700,8	701,4
$\begin{array}{c c} & & \text{NH} \\ & & \text{CH}_2 - \text{N} \\ & & \text{H} \end{array}$	706,9	707,6
$-NH-(CH_2)_3-NH-C(=NH)-NH_2$	638,8	639,6

Example 60:

Analogously to Example 11, 6-nitrobenzo[de]iso-chromene-1,3-dione is reacted with 4-iodophenylamine or 3-iodophenylamine (= $I-Ar'-NH_2$), $Het^1-B(OH)_2$ and then with R^1-H . The following compounds of the formula Ip are obtained:

10

-Ar'-Het ¹	R^1 in R^1 -H and Ip
S	$-NH-(CH_2)_3-NH_2$ $-NH-(CH_2)_5-NH_2$ $-NH-(CH_2)_7-NH_2$
	-N NH ₂
	-NH-(CH2)3-NH2 $-NH-(CH2)5-NH2$
	-NH- (CH ₂) ₇ -NH ₂ -N NH ₂
	$-NH-(CH_2)_3-NH_2$ $-NH-(CH_2)_5-NH_2$ $-NH-(CH_2)_7-NH_2$
	-N NH ₂
S	$-NH-(CH_2)_3-NH_2$ $-NH-(CH_2)_5-NH_2$ $-NH-(CH_2)_7-NH_2$
	-N NH ₂
S S	-NH-(CH2)3-NH2 -NH-(CH2)5-NH2 -NH-(CH2)7-NH2
	$-N$ H NH_2
S	-NH-(CH2)3-NH2 $-NH-(CH2)5-NH2$ $-NH-(CH2)7-NH2$
	-N NH ₂

	<u> </u>
-Ar'-Het ¹	R ¹ in R ¹ -H and Ip
S	$-NH-(CH_2)_3-NH_2$ $-NH-(CH_2)_5-NH_2$ $-NH-(CH_2)_7-NH_2$
	-N NH ₂
	$-NH-(CH_2)_3-NH_2$ $-NH-(CH_2)_5-NH_2$ $-NH-(CH_2)_7-NH_2$
	-N NH ₂
	$-NH-(CH_2)_3-NH_2$ $-NH-(CH_2)_5-NH_2$ $-NH-(CH_2)_7-NH_2$
	-N NH ₂
	-NH-(CH2)3-NH2 $-NH-(CH2)5-NH2$ $-NH-(CH2)7-NH2$
	-N NH ₂
	-NH-(CH2)3-NH2 -NH-(CH2)5-NH2 -NH-(CH2)7-NH2
	-N NH ₂

Example 61:

Analogously to Example 11, 6-nitrobenzo[de]iso-chromene-1,3-dione is reacted with 4-iodophenylamine or 3-iodophenylamine (= $I-Ar'-NH_2$), $R^3-Het^1-B(OH)_2$ and then with R^1-H . The following compounds of the formula Iq are obtained:

PCT/EP99/08561

WO 00/32577 PCT/

Example 62:

Analogously to Example 11, 6-nitrobenzo[de]iso-chromene-1,3-dione is reacted with 4-iodophenylamine or 3-iodophenylamine (= I-Ph-NH₂), R^6 -(CH₂)_n-Ph-B-(OH)₂ and then with R^1 -H (Ph-Ph = Ar'). The following compounds of the formula Ir are obtained:

$$R^1$$
O
N
O
Ar'-(CH₂)_n-R⁶

10

	- 186 -
-Ar'-(CH2)n-R6	R^{I} in R^{I} -H and Ir
	-NH-(CH2)3-NH2
	-NH-(CH2)5-NH2
NH ₂	-NH-(CH2)7-NH2
	$-N$ NH_2
	-NH-(CH2)3-NH2
	-NH-(CH2)5-NH2
	-NH-(CH2)7-NH2
NH ₂	$-N$ NH_2
	-NH- (CH ₂) ₃ -NH ₂
	-NH-(CH2)5-NH2
, N—√ H CH₃	-NH-(CH2)7-NH2
	-N NH ₂
	-NH-(CH ₂) ₃ -NH ₂
_____\\\\\\\\\\\\\\\\\\\\	-NH-(CH2)5-NH2
$ \longrightarrow $	-NH-(CH2)7-NH2
H CH3	-N NH ₂

Example 63:

Analogously to Example 11, 6-nitro-2-(4-iodophenyl)benzo-[de]isoquinoline-1,3-dione is reacted with R^{10} -B-(OH)₂, wherein R^{10} is

$$-$$
O-C(CH₃)₂-CO-OC₂H₅

and Propan-1,3-diamine. 2-{4'-[6-(3-Amino-propylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-biphenyl-4-yloxy}-2-methyl-propionic acid ethyl ester is obtained.

10 Example 64:

5

15

25

30

Analogously to Example 2, 6-chlorobenzo[de]isochromene-1,3-dione is reacted with 5-methoxypyrimidine-2-sulfonic acid (4-amino-phenyl)-amide and
Propan-1,3-diamine. 5-Methoxy-pyrimidine-2-sulfonic
acid {4-[6-(3-amino-propylamino)-1,3-dioxo-1H,3Hbenzo[de]isoquinolin-2-yl]-phenyl}-amide is obtained.

Example 65:

Analogously to Example 2, 6-chlorobenzo20 [de]isochromene-1,3-dione is reacted with 1-(6-amino2,3-dihydro-indol-1-yl)-ethanone and propan-1,3diamine. 2-(1-Acetyl-2,3-dihydro-1H-indol-6-yl)-6-(3amino-propylamino)-benzo[de]isoquinoline-1,3-dione is obtained.

Example 66:

Analogously to Example 2, 6-chlorobenzo-[de]isochromene-1,3-dione is reacted with 4-(pyrrolidine-1-sulfonyl)-phenylamine and propan-1,3-diamine. 6-(3-Amino-propylamino)-2-[4-(pyrrolidine-1-sulfonyl)-phenyl]-benzo[de]isoquinoline-1,3-dione is obtained.

Example 67:

Analogously to Example 2, 6-chlorobenzo-[de]isochromene-1,3-dione is reacted with 4-cyclohexylphenylamine and Propan-1,3-diamine. 6-(3-Aminopropylamino) -2-(4-cyclohexyl-phenyl) benzo[de]isoquinoline-1,3-dione is obtained.

Example 68:

Analogously to Example 2, 6-chlorobenzo[de]isochromene-1,3-dione is reacted with 3-(3-aminophenyl)-N-(2-phenyl-propyl)-propionamide and 3aminomethyl-benzylamine. 3-{3-[6-(3-Aminomethylbenzylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2yl]-phenyl}-N-(2-phenyl-propyl)-propionamide is
obtained.

Analogously, by reaction of 6-chlorobenzo[de]isochromene-1,3-dione with 3-(3-Amino-phenyl)-N-(1phenyl-ethyl)-propionamide and 3-aminomethylbenzylamine, 3-{3-[6-(3-aminomethyl-benzylamino)-1,3dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-N-(1phenyl-ethyl)-propionamideis obtained.

20 Example 69:

Analogously to Example 2, 6-chlorobenzo[de]isochromene-1,3-dione is reacted with 3-(3-aminophenyl)-1-(3,4-dihydro-2H-quinolin-1-yl)-propan-1-one
and 3-aminomethyl-cyclohexylamine. 6-[(3-Aminomethylcyclohexylmethyl)-amino]-2-{3-[3-(3,4-dihydro-2Hquinolin-1-yl)-3-oxo-propyl]-phenyl}benzo[de]isoquinoline-1,3-dione is obtained.

Example 70:

Analogously to Example 2, 6-chlorobenzo- [de]isochromene-1,3-dione is reacted with $H_2N-Ar'-S-(CH_2)_n-CONH-(CH_2)_i-Ar$ and 3-aminomethyl-benzylamine. The following compounds of the formula Iya are obtained:

$A\Gamma$ -S-(CH ₂) _n -CONH-(CH ₂)	12/i-741
$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-Ar$ in	
Iya	
S-CH ₂ -CONH-Br	
S-CH ₂ -CONH-CN	
-S-CH ₂ CONH-(CH ₂) ₂ NO ₂	
S-CH ₂ CONH-CH ₂	
$- S - CH_2 - CONH - (CH_2)_2 - CONH_2	
S-CH ₂ -CONH-CH ₂	
$- S - CH_2 - CONH-(CH_2)_2 - $	
S-CH ₂ -CONH-CH ₂ -N	
$- S - CH_2 - CONH - C_2H_5$ C_2H_5	
S-CH ₂ -CONH -NCH ₃	
$- S-CH_2-CONH-CH_2 - N CH_3$ CH_3	
S-CH ₂ -CONH	
-S-CH ₂ -CONH-(CH ₂) ₂ -SO ₂ -NH ₂	
S—CH ₂ —CONH-CH ₂ —SO ₂ -NH ₂	
S-CH ₂ -CONH-CH ₃	

$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-Ar$ in	
Iya	
$- CH_2 - CONH - CH_3 - CH_3 - CH_3$	
S—CH ₂ —CONH-(CH ₂) ₂ —CI	
S-CH ₂ -CONH-CH ₂	
$- S - CH_2 - CONH - (CH_2)_2 - CI$	
S-CH ₂ -CONH-CI	
S-CH ₂ -CONH-CH ₂	
S-CH ₂ -CONH-CH ₂ -CI	
-S-CH ₂ -CONH-CI	
$- S - CH_2 - CONH-(CH_2)_2 - CH_3$	
$-\!$	
S-CH ₂ -CONH-CH ₂	
-S-CH ₂ -CONH	
S-CH ₂ -CONH-CI	

$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-Ar$ in	
Iya	
- $ -$	
$- S - CH_2 - CONH - CI$	
$- S - CH_2 - CONH-CH_2 - CI$	
$- S - CH_2 - CONH-(CH_2)_2 - CI$	
S—CH ₂ —CONH-CH ₂ —CI	
S—CH ₂ —CONH-CH ₂ —CI	
S-CH ₂ -CONH-(CH ₂) ₂ -CI	
$-$ S- $-$ CH $_2$ - $-$ CONH-CH $_2$ - $-$ CI	
CI ————————————————————————————————————	
S—CH ₂ —CONH—CI	
S—CH ₂ —CONH-CH ₂ —	
S-CH ₂ -CONH-(CH ₂)3	
-S-CH ₂ -CONH- $-$ S	
-	

<u>- 192 - </u>	
Ar'-S-(CH2)n-CONH-(CH2)i-Ar in	
Iya	
S—CH ₂ —CONH-(CH ₂) ₂ —CH ₃	
S-CH ₂ -CONH-CH ₃	
S-CH ₂ -CONH-CH ₃ CH ₃	
SCH ₂ CONH	
C_2H_5	
S-CH ₂ -CONH	
$-$ S $-$ CH $_2$ $-$ CONH $-$ CF $_3$	
S—CH ₂ —CONH-CH ₂ —CF ₃	
-S- $-$ CH ₂ - $-$ CONH-CH ₂ - $-$ F	
S—CH ₂ —CONH—F	
S—CH ₂ —CONH-CH ₂ —F	
S-CH ₂ -CONH-(CH ₂) ₂ -COCH ₃	
S-CH ₂ -CONH-CH ₂ -OCH ₃	
S-CH ₂ -CONH-	
$^{\circ}$ OCH ₃ $-^{\circ}$ S—CH ₂ —CONH-(CH ₂) ₂ — $^{\circ}$ —OCH ₃	
S— CH ₂ —CONH-CH ₂ —OCF ₃	

- 193 -	
$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-Ar$ in	
Iya	
-S-CH ₂ -CONH- $-$ OCH ₃	
S—CH ₂ —CONH-CH ₂ —	
$- S - CH_2 - CONH - F$	
S—CH ₂ —CONH—F	
$-$ S $-$ CH $_2$ $-$ CONH $-$	
$-$ S- CH_2 - $CONH$ - $-$ OPh	
S-CH ₂ -CONH-O	
S-CH ₂ -CONH-CH ₂	
-CONH-CH ₂ -CONH-CH ₂	
S—CH ₂ —CONH——OCH ₃	
-S-CH ₂ -CONH- $-$ CH ₃	
-CF ₃ $-$ CONH $-$ CF ₃	
OCH ₃	

$$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-Ar in$$

$$Iya$$

$$-S-CH_2-CONH-(CH_2)_2$$

$$-S-CH_2-CONH-(CH_2)_2$$

$$-COH_3$$

$$-CH_3$$

$$-CH_3$$

$$-CH_3$$

$$-CH_3$$

$$-CH_3$$

$$-CH_3$$

$$-CH_3$$

$$-CH_3$$

$$-CCH_3$$

Analogously to example 32, the compounds of the formula Iya as indicated above are reacted with tert-butyl (tert-butoxycarbonyliminopyrazol-1-yl-methyl)carbamate.

5 After removing of the protection group, the following compounds of the formula Iyb are obtained:

- 195 -	
$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-Ar$ in	
Iyb	
S-CH ₂ CONH-CH ₂	
S-CH ₂ -CONH-CH ₂	
$- S - CH_2 - CONH - (CH_2)_2 - N$	
S-CH ₂ -CONH-CH ₂	
$- \underbrace{\hspace{1cm} C_2H_5} - S - CH_2 - CONH - \underbrace{\hspace{1cm} C_2H_5} - N \underbrace{\hspace{1cm} C_2H_5} $	
S-CH ₂ -CONH - CH ₃ CH ₃	
S-CH ₂ -CONH-CH ₂ -N <ch<sub>3 CH₃</ch<sub>	
S-CH ₂ -CONH	
S-CH ₂ -CONH-(CH ₂) ₂ -SO ₂ -NH ₂	
S-CH ₂ -CONH-CH ₂ -SO ₂ -NH ₂	
$-$ S- CH_2 - $CONH$ - CH_3	
$- S - CH_2 - CONH - CH_3 - CH_3$	
$- \left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle - S - CH_2 - CONH-(CH_2)_2 - \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle$	
-S-CH ₂ -CONH-CH ₂ -CI	
$- \left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle - S - CH_2 - CONH - (CH_2)_2 - \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle$	
-S-CH ₂ -CONH-CI	
· · · · · · · · · · · · · · · · · · ·	

$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-Ar$ in	
lyb	
S—CH ₂ —CONH-CH ₂ —CI	
S—CH ₂ —CONH-(CH ₂) ₂ —CI	
S—CH ₂ -CONH-CH ₂ —CI	
-S-CH ₂ -CONH-CI	
S—CH ₂ —CONH-(CH ₂) ₂ —CH ₃	
-S-CH ₂ -CONH-CH ₃	
S-CH ₂ -CONH-CH ₂	
S-CH ₂ -CONH	
S-CH ₂ -CONH-CI	
$- S - CH_2 - CONH - CF_3$ CF_3	
S-CH ₂ -CONH-CI	
$- S - CH_2 - CONH-CH_2 - CI$	
$- S - CH_2 - CONH-(CH_2)_2 - CI$	
S-CH ₂ -CONH-CH ₂	
S—CH ₂ —CONH-CH ₂ —CI	

$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-Ar$ in	
Iyb	
S—CH ₂ —CONH-(CH ₂) ₂ —CI	
S-CH ₂ -CONH-CH ₂ -CI	
S-CH ₂ -CONH CI	
-S- $-$ CH ₂ - $-$ CONH- $-$ CI	
S-CH ₂ -CONH-CH ₂	
-S-CH ₂ -CONH-(CH ₂)3	
SCH2CONH	
S—CH ₂ —CONH-(CH ₂) ₄ —	
$- \sqrt{} - S - CH_2 - CONH - CH_3$	
S—CH ₂ —CONH—CH ₃ CH ₃	
SCONH	
$- S - CH_2 - CONH - CONH$	
-S-CH ₂ -CONH-CF ₃	

$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-Ar$ in	
Iyb	
S-CH ₂ -CONH-CH ₂ -CF ₃	
S—CH ₂ —CONH-CH ₂ —F	
-S- $-$ CH ₂ - $-$ CONH- $-$ CI	
S—CH ₂ —CONH-CH ₂ —F	
$- S - CH_2 - CONH-(CH_2)_2 - CONH_3$	
S-CH ₂ -CONH-CH ₂ -COCH ₃	
S-CH ₂ -CONH-OCH ₃	
S—CH ₂ —CONH-(CH ₂) ₂ —OCH ₃	
S—CH ₂ —CONH-CH ₂ —OCF ₃	
SCH ₂ CONHOCH ₃	
S—CH ₂ —CONH-CH ₂ —F	
-S-CH ₂ -CONH-F	
S—CH ₂ —CONH—S	
S—CH ₂ —CONH—OPh	

$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-Ar$ in	
Iyb	
SCH ₂ CONHOPh	
SCH ₂ CONH	
S—CH ₂ —CONH—O	
S—CH ₂ —CONH-CH ₂	
S—CH ₂ —CONH-CH ₂ —	
$-$ S— CH_2 — $CONH$ — OCH_3	
S—CH ₂ —CONH—CH ₃	
$- \left\langle \begin{array}{c} \text{CF}_3 \\ \text{OCH}_3 \end{array} \right $	
s— CH ₂ — CONH— tert-butyl	
OCH ₃	
S— CH ₂ —CONH—OCH ₃	·
$- CH_2 - CONH-(CH_2)_2 - COH_3$	

Example 71:

are obtained:

5

Analogously to Example 2, 6-chlorobenzo-[de]isochromene-1,3-dione is reacted with $H_2N-Ar'-S-(CH_2)_n-CONH-(CH_2)_i-Het^1$ and 3-aminomethyl-benzylamine. The following compounds of the formula Iza

$$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-Het^1 in$$

$$Iza$$

$$-S-CH_2-CONH-(CH_2)_2-N$$

$$-S-CH_2-CONH-(CH_2)_3-N$$

$$-S-CH_2-CONH-(CH_2)_2-N$$

$$-S-CH_2-CONH-(CH_2)_2-N$$

$$-S-CH_2-CONH-CH_2$$

$$-S-CH_2-CONH-CH_2$$

Analogously to example 32, the compounds of the formula 10 Iza as indicated above are reacted with tert-butyl (tert-butoxycarbonyliminopyrazol-1-yl-methyl)carbamate. After removing of the protection group, the following compounds of the formula Izb are obtained:

$$Ar'-S-(CH_2)_n-CONH-(CH_2)_1-Het^1 in$$

$$Izb$$

$$-S-CH_2-CONH-(CH_2)_2-N$$

$$-S-CH_2-CONH-(CH_2)_3-N$$

$$-S-CH_2-CONH-(CH_2)_2-N$$

$$-S-CH_2-CONH-CH_2-N$$

$$-S-CH_2-CONH-CH_2$$

Example 72:

Analogously to Example 2, 6-chlorobenzo- 5 [de]isochromene-1,3-dione is reacted with $H_2N-Ar'-S-(CH_2)_n-CONH-(CH_2)_i-D-H$ and 3-aminomethyl-benzylamine. The following compounds of the formula I1a are obtained:

$$NH_2$$

$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-D-H$ in	
Ila	
S—CH ₂ —CONH—	
S—CH ₂ —CONH-(CH ₂) ₂ —	

Analogously to example 32, the compounds of the formula I1a as indicated above are reacted with tert-butyl (tert-butoxycarbonyliminopyrazol-1-yl-methyl)carbamate.

5 After removing of the protection group, the following compounds of the formula I1b are obtained:

10 Example 73:

Analogously to Example 2, 6-chlorobenzo-[de]isochromene-1,3-dione is reacted with 2-(3-amino-phenylsulfanyl)-N-(2-phenyl-propyl)-acetamide and 3-aminomethyl-benzylamine. 2-{3-[6-(3-Aminomethyl-

benzylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenylsulfanyl}-N-(2-phenyl-propyl)-acetamide is obtained.

Analogously to example 32, $2-\{3-[6-(3-Aminomethy)]$ benzylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2yl]-phenylsulfanyl}-N-(2-phenyl-propyl)-acetamide is reacted with tert-butyl (tert-5 butoxycarbonyliminopyrazol-1-yl-methyl)carbamate. After removing of the protection group 2-{3-[6-(3guanidinomethyl-benzylamino)-1,3-dioxo-1H,3Hbenzo[de]isoquinolin-2-yl]-phenylsulfanyl}-N-(2-phenylpropyl) -acetamide is obtained.

10

15

Example 74:

Analogously to Example 2, 6-chlorobenzo- [de]isochromene-1,3-dione is reacted with $H_2N-Ar'-S-(CH_2)_n-CONH-(CH_2)_i-CH(Ar^1)-Ar^2$ and 3-aminomethylbenzylamine. The following compounds of the formula I3a are obtained:

$$NH_2$$

$$0$$

$$NH_2$$

$$0$$

$$0$$

$$0$$

$$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-CH(Ar^1)-Ar^2$$

	2/1 \ /
$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-CH(Ar^1)-$	
Ar ² in I3a	
-S-CH ₂ -CONH-CH ₂ -CH	

Analogously to example 32, the compounds of the formula 20 I3a as indicated above are reacted with tert-butyl (tert-butoxycarbonyliminopyrazol-1-yl-methyl)carbamate.

After removing of the protection group, the following compounds of the formula I3b are obtained:

$Ar'-S-(CH_2)_n-CONH-(CH_2)_i-CH(Ar^1) Ar^2$ in in I3b	
S—CH ₂ —CONH-(CH ₂) ₂ -CH	
S-CH ₂ -CONH-CH ₂ -CH	

5

10

15

Example 75:

6-chlorobenzo-Analogously to Example 2, [de]isochromene-1,3-dione is reacted with 2-(3-aminoand phenyl)-N-(4-chloro-benzyl)-acetamide 2-(3-(6-(4aminomethyl-cyclohexylmethylamine. Aminomethyl-cyclohexylmethyl)-amino]-1,3-dioxo-1H,3Hbenzo[de]isoquinolin-2-yl}-phenyl)-N-(4-chloro-benzyl)acetamide is then, analogously to example 32, reacted with tert-butyl (tert-butoxycarbonyliminopyrazol-1-ylmethyl)carbamate. After removing of the protection N-(4-chloro-benzyl)-2-(3-{6-[(4-guanidinomethylcyclohexylmethyl)-amino]-1,3-dioxo-1H,3Hbenzo[de]isoquinolin-2-yl}-phenyl)-acetamide is obtained.

Analogously is reacted 6-chlorobenzo[de]isochromene-1,3-dione with 3-(3-amino-phenyl)-N-phenethylpropionamide and 4-aminomethyl-cylohexylmethylamine and following product $3-(3-\{6-[(4-Aminomethyl$ cyclohexylmethyl) -amino] -1, 3-dioxo-1H, 3H-5 benzo[de]isoquinolin-2-yl}-phenyl)-N-phenethylpropionamide with tert-butyl (tertbutoxycarbonyliminopyrazol-1-yl-methyl)carbamate. After removing the protection group 3-(3-{6-[(4-10 guanidinomethyl-cyclohexylmethyl)-amino]-1,3-dioxo-1H, 3H-benzo[de]isoquinolin-2-yl}-phenyl)-N-phenethylpropionamide is obtained.

Example 76:

Analogously to Example 2, 6-chlorobenzo- [de]isochromene-1,3-dione is reacted with $H_2N-Ar'-(CH_2)_n-CONH-(CH_2)_i-Ar$ and 3-aminomethyl-benzylamine. The following compounds of the formula I6a are obtained:

$$N$$
 NH_2
 $NH_$

20

2711	2/1
$Ar'-(CH_2)_n-CONH-(CH_2)_i-Ar$ in I6a	
CONH	
(CH ₂) ₂ -CONH—Br	

$\Delta r' = (CH_{-}) = CONH_{-} (CH_{-}) = \Delta r$ in	
$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$ in	
I6a	up.
CONH	
(CH ₂) ₂ -CONH—CN	
(CH ₂) ₂ -CONH-(CH ₂) ₂ -NO ₂	
CONH-(CH ₂) ₂ —NO ₂	
(CH ₂) ₂ -CONH-CH ₂	
CONH-CH ₂	
CONH-(CH ₂) ₂	
(CH ₂) ₂ -CONH-(CH ₂) ₂	
(CH ₂) ₂ -CONH-CH ₂ N	

$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$ in	
16a	
CONH-CH ₂	
$(CH_2)_2$ -CONH C_2H_5 C_2H_5	
$\begin{array}{c c} & & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & \\ \hline & & \\ \hline &$	
$(CH_2)_2$ -CONH- CH_2 CH_3 CH_3	
CONH-CH ₂ — CH ₃ CH ₃	
(CH ₂) ₂ - CONH-(CH ₂) ₂ - SO ₂ -NH ₂	
(CH ₂) ₂ - CONH-CH ₂ —SO ₂ -NH ₂	
CONH-CH ₂ —SO ₂ -NH ₂	
(CH ₂) ₂ -CONH—CH ₃	
CONH————————————————————————————————————	

208	
$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$ in	
I6a	
(CH ₂) ₂ -CONH——CH ₃ CH ₃	
CONH————————————————————————————————————	
(CH ₂) ₂ - CONH-(CH ₂) ₂ - CI	
(CH ₂) ₂ -CONH-CH ₂	
CONH-CH ₂ —CI	
CONH-(CH ₂) ₂ —CI	
(CH ₂) ₂ - CONH-(CH ₂) ₂ — CI	

$Ar'-(CH_2)_n-CONH-(CH_2)_i-Ar$ in	
I6a CI	
(CH ₂) ₂ - CONH	
(CH ₂) ₂ - CONH-CH ₂ CI	
CONH-CH ₂ CI	
CONH-(CH ₂) ₂ —CI	
CONH	
(CH ₂) ₂ - CONH-(CH ₂) ₂ — CI	
(CH ₂) ₂ - CONH————————————————————————————————————	

- 211	-
$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$ in	
I6a	
CONH-CH ₂	
(CH ₂) ₂ -CONH	
CONH	
(CH ₂) ₂ -CONH-CH ₂	
(CH ₂) ₂ - CONH——OCH ₃	
CONH—COCH ₃	
$(CH_2)_2$ - $CONH$ CF_3 CF_3	

- 212	_
$Ar'-(CH_2)_n-CONH-(CH_2)_i-Ar$ in	
I6a CF ₃	
$(CH_2)_2$ - $CONH$ CI	
CONH—CI	
CF ₃	
(CH ₂) ₂ - CONH-CH ₂ CI	
CI CONH-CH ₂	
(CH ₂) ₂ -CONH-(CH ₂) ₂	
(CH ₂) ₂ - CONH-CH ₂	
CI CI CI CONH-CH ₂	

- 213	
$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$ in	
I6a	
CI	
<u> </u>	
CONH-(CH ₂) ₂ — CI	
CI	
(CH ₂) ₂ - CONH-CH ₂	
(S. 12/2 SSKIT SI 12	
CI	
CI	
CONH-CH ₂	
`cı	
CI	
(211)	
$/(CH_2)_2$ - CONH — $\langle \rangle$	
CI	
,CONH —	
/\ `cı	
<u> </u>	
CI	
(011)	
(CH₂)₂- CONH—— CI	
	1
CI	
	İ
CONH—()—CI	
/_\	

- 214	T
$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$ in I6a	
CONH-CH ₂	
CONH-(CH ₂) ₃	
(CH ₂) ₂ - CONH-(CH ₂) ₃ —	
(CH ₂) ₂ - CONH—	
CONH—	
(CH ₂) ₂ - CONH-CH ₂	
(CH ₂) ₂ - CONH-(CH ₂) ₄ —	
CONH-(CH ₂) ₄	

Ar' - (CH2)n - CONH - (CH2)i - Ar in	
I6a	
(CH ₂) ₂ - CONH-(CH ₂) ₂ — CH ₃	
CONH-(CH ₂) ₂ CH ₃	
(CH ₂) ₂ -CONH — CH ₃	
CH ₃	
(CH ₂) ₂ - CONH—	
CONH—	
$(CH_2)_2$ - $CONH$	

$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$ in	
16a	
C ₂ H ₅	
CONH	
(CH ₂) ₂ - CONH—CF ₃	
(CH ₂) ₂ - CONH-CH ₂ CF ₃	
CONH-CH ₂ —CF ₃	
CONH—CF ₃	
(CH ₂) ₂ - CONH-CH ₂ CI	
(CH ₂) ₂ - CONH————————————————————————————————————	
CONH-CH ₂ — F	

- 217	
$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$ in	
I6a	
CONH——F	
CI	
(CH ₂) ₂ - CONH-CH ₂ CI	
CONH-CH ₂ F	
CI ²	
(CH ₂) ₂ - CONH-(CH ₂) ₂ -OCH ₃	
(CH ₂) ₂ - CONH—OCH ₃	
/(CH ₂) ₂ - CONH-CH ₂	
OCH ₃	
CONH-CH₂ —	
—⟨	
CONH-(CH ₂) ₂	
OCH ₃	
CONH-	
OCH ₃	

$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$ in	
I6a // N	
(CH ₂) ₂ - CONH-(CH ₂) ₂ — OCH ₃	
CONH-CH ₂ CONH-CH ₃	
/(CH ₂) ₂ - CONH-CH ₂ OCF ₃	
(CI 12/2° CONTPOLI2	
(011) 00111	
(CH ₂) ₂ - CONH———OCH ₃	
CONH— CONH	
CONH-(CH ₂) ₂ —OCH ₃	
SSINIT (SI12/2	
(CH ₂) ₂ - CONH-(CH ₂) ₂ — F	
,CONH-(CH ₂) ₂ — F	
CONH-(CH ₂) ₂ — F	

$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$ in	
I6a	
(CH ₂) ₂ - CONH-CH ₂	
CONH-CH ₂	
CONH	
(CH ₂) ₂ - CONH	
(CH ₂) ₂ - CONH	
CONH	
(CH ₂) ₂ - CONH	

- 221	
$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$ in	
16a	
(CH ₂) ₂ - CONH—OCH ₃	
CONH———OCH ₃	
(CH ₂) ₂ - CONH—CH ₃	
CONH—CH ₃	
$(CH_2)_2$ - $CONH$ OCH_3	
CCF ₃ CONH—OCH ₃	
(CH ₂) ₂ - CONH tert-butyl	
Cirebutyi	

	-
Ar'-(CH ₂) _n -CONH-(CH ₂) _i -Ar in	
I6a	
tert-butyl	
CONH	
tert-butyl	
(CH ₂) ₂ -CONH—OCH ₃	
OCH ₃	
OCH ₃	
CONH—	
OCH ₃	
OCH ₃	
CONH-(CH ₂) ₂ OCH ₃	
CH ₂) ₂ - CONH-(CH ₂) ₂	
OCH ₃	
OCH ₃ (CH ₂) ₂ - CONH-(CH ₂) ₂ — OCH ₃	

Analogously to example 32, the compounds of the formula I6a as indicated above are reacted with tert-butyl (tert-butoxycarbonyliminopyrazol-1-yl-methyl)carbamate.

5 After removing of the protection group, the following compounds of the formula I6b are obtained:

$Ar'-(CH_2)_n-CONH-(CH_2)_i-Ar$ in I6b	
CONH	
(CH ₂) ₂ -CONH—Br	
CONH	
(CH ₂) ₂ -CONH—CN	
$(CH_2)_2$ - $CONH$ - $(CH_2)_2$ - NO_2	
CONH-(CH ₂) ₂ —NO ₂	
$\begin{array}{c} \text{(CH}_2\text{)}_2\text{-CONH-CH}_2 \\ \hline \\ \text{NO}_2 \end{array}$	

<u> </u>	
$Ar'-(CH_2)_n-CONH-(CH_2)_i-Ar$ in I6b	
CONH-CH ₂ NO ₂	
$\begin{array}{c} N = \\ \\ \hline \\ \\ \hline \end{array}$	
(CH ₂) ₂ -CONH-CH ₂	
(CH ₂) ₂ -CONH-(CH ₂) ₂	
(CH ₂) ₂ -CONH-CH ₂	
CONH-CH ₂	
$(CH_2)_2$ -CONH C_2H_5 C_2H_5	
$\begin{array}{c c} & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline &$	
$(CH_2)_2$ -CONH- CH_2 CH_3 CH_3	
$(CH_2)_2$ -CONH $ CH_3$ CH_3	

- 225 -	
$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$ in I6b	
CONH-CH ₂ — CH ₃	
CONH-CH ₂ CH ₃	
(CH ₂) ₂ - CONH-CH ₂ SO ₂ -NH ₂	
CONH-CH ₂ SO ₂ -NH ₂	
(CH ₂) ₂ -CONH————————————————————————————————————	
CH ₃	
CONH————————————————————————————————————	
ÇH₃	
$(CH_2)_2$ - $CONH$ $(CH_3)_2$ - $(CH_3)_3$	
☐ CH₃	
CH ₃	
CONH—————CH ₃	
CH3	
,CONH-CH₂—✓	

(CI ´	
CONII (CIL)	
CONH-(CH ₂) ₂ —	
CI	

	·
$Ar'-(CH_2)_n-CONH-(CH_2)_i-Ar$ in I6b	
CONH-CH ₂ CI	
CONH-(CH ₂) ₂ —CI	
CONH	
CONH-(CH ₂) ₂ —CI	
(CH ₂) ₂ - CONH-CH ₂ — CI	
CONH—CI	
(CH ₂) ₂ - CONH————————————————————————————————————	
CONH—CH ₃	

<u> </u>	
$Ar'-(CH_2)_n-CONH-(CH_2)_i-Ar$ in I6b	
CONH-(CH ₂) ₂ —CH ₃	
CONH—CH ₃	
CONH-CH ₂	
(CH ₂) ₂ -CONH	
CONH	
(CH ₂) ₂ -CONH-CH ₂	
(CH ₂) ₂ -CONH	
CONH—OCH3	
CONH———OCH ₃	
<u>\/</u>	

- 228 -	
Ar'-(CH ₂) _n -CONH-(CH ₂) _i -Ar in I6b CF ₃	
CF ₃	
(CH ₂) ₂ - CONH—	
(6.12)2 66.411	
`CF ₃	
CF ₃	
(CH) CONU	
(CH ₂) ₂ -CONH————————————————————————————————————	
CONH—()—CI	
CF₃	
CI	
CONH-CH ₂ —	
CI CI	
CI\ CI	
CONH-CH ₂ —	
- 	
Cl	
CONH-(CH₂)₂— CI	
CI	
CONHIGH	
CONH-CH ₂	
CI	

**************************************	- 229 -
Deal (CII) CONII (CII) De	- 229 -
$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$	IN 16B
(CH ₂) ₂ - CONH	
CONH — CI	
CONH—CI	
CONH-CH ₂	
CONH-(CH ₂) ₃	
CONH	
CONH-(CH ₂) ₄	
CONH-(CH ₂) ₂	CH ₃

$Ar' - (CH_2)_n - CONH - (CH_2)_i - Ar$ in I6b CH_3	
(CH ₂) ₂ -CONH —	
CH ₃	
CH₃	
CONH—	
CH ₃	
CONH—	
CONH—	
(011)	
(CH ₂) ₂ - CONH——	
CF ₃	
(011) 000111 011	
(CH ₂) ₂ - CONH-CH ₂	
CONH-CH2	
	;
CF ₃	
CONH—()	
$-\langle \rangle$ CF ₃	

$Ar'-(CH_2)_n-CONH-(CH_2)_i-Ar$ in I6b	
(CH ₂) ₂ - CONH——F	
CONH-CH ₂ — F	
CI	
CONH—————F	
CI	
(CH ₂) ₂ - CONH-CH ₂ F	
CI CI	
CONH-CH ₂ —F	
CI	
(CH ₂) ₂ - CONH-(CH ₂) ₂ -OCH ₃	
(CH ₂) ₂ - CONH—	
→ OCH ₃	
CONH-CH₂ —	
OCH ₃	
CONH-(CH ₂) ₂	
OCH ₃	

WO 00/32577	PCT/EP
-232 - Ar'-(CH ₂) _n -CONH-(CH ₂) _i -Ar in I6b	
CONH—CONH—CONH—CONH—CONH—CONH—CONH—CONH—	
CONH-CH ₂ —COCF ₃	
CONH———OCH ₃	
CONH-(CH ₂) ₂ —OCH ₃	
(CH ₂) ₂ - CONH-(CH ₂) ₂ — F	
CONH-(CH ₂) ₂ — F	
CONH-CH ₂	
CONH	
(CH ₂) ₂ - CONH	

$Ar'-(CH_2)_n-CONH-(CH_2)_i-Ar$ in I6b	
CONH	
CONH	
(CH ₂) ₂ -CONH——OPh	
CONH——OPh	
CONH — CH ₃	
(CH ₂) ₂ -CONH — CH ₃	
CONH	
CONH—COCH ₃	

$Ar'-(CH_2)_n-CONH-(CH_2)_i-Ar$ in I6b	
F	
CONH——CH3	
CF ₃	
(CH ₂) ₂ - CONH — ⟨	
`OCH₃	
CF ₃	
,CONH—	
OCH ₃	
tert-butyl	
(CH ₂) ₂ - CONH —	
tert-butyl	
tert-butyl	
,conh—	
tert-butyl	
OCH ₃	
(CH ₂) ₂ -CONH——	
OCH ₃	
OCH ₃	
JOH 13	
CONH—()	
OCH ₃	
OCH ₃	
CONH-(CH₂)2 OCH3	

Example 77:

Analogously to Example 2, 6-chlorobenzo- [de]isochromene-1,3-dione is reacted with $H_2N-Ar'-(CH_2)_n-CONH-(CH_2)_i-Ar$ and 3-aminomethyl-cyclohexylmethyl- amine. The following compounds of the formula I7a are obtained:

10 Example 78:

Analogously to Example 2, 6-chlorobenzo-[de]isochromene-1,3-dione is reacted with $H_2N-Ar'-(CH_2)_n-CONH-(CH_2)_i-Het^1$ and 3-aminomethyl-benzylamine. The following compounds of the formula I8a

15 are obtained:

74 -(011 ₂) _n -001411-(011 ₂) ₁	
$Ar' - (CH_2)_n - CONH - (CH_2)_i - Het^1$ in	
I8a	
$CONH-(CH_2)_2-N$	
(CH ₂) ₂ -CONH-(CH ₂) ₂ -N	
$(CH_2)_2$ -CONH- $(CH_2)_2$ -N	
CONH-(CH ₂) ₃ —N	
(CH ₂) ₂ - CONH-(CH ₂) ₃ —N	
CONH-(CH ₂) ₂ —N	

$Ar'-(CH_2)_n-CONH-(CH_2)_i-Het^1$ in	
18a	
(CH ₂) ₂ -CONH-(CH ₂) ₂ —N	
(CH ₂) ₂ -CONH-(CH ₂) ₃ -N	
(CH ₂) ₂ -CONH-CH ₂	
CONH-CH ₂	
(CH ₂) ₂ -CONH-CH ₂	
(CH ₂) ₂ -CONH-CH ₂	
CONH-CH ₂	

Analogously to example 32, the compounds of the formula I8a as indicated above are reacted with tert-butyl (tert-butoxycarbonyliminopyrazol-1-yl-methyl)carbamate. After removing of the protection group, the following compounds of the formula I8b are obtained:

6/30/2008, EAST Version: 2.2.1.0

A1 -(0112) _n -001411-(0112) _i -11ct	
$Ar' - (CH_2)_n - CONH - (CH_2)_i - Het^1$ in	
I8b	
CONH-(CH ₂) ₂ —N	
$(CH_2)_2$ -CONH- $(CH_2)_2$ -N	
$(CH_2)_2$ -CONH- $(CH_2)_{\overline{2}}$ -NO	
CONH-(CH ₂) ₃ —N	
(CH ₂) ₂ - CONH-(CH ₂) ₃ —N	
CONH-(CH ₂) ₂ —N	

- 239 -	, , , , , , , , , , , , , , , , , , ,
$Ar'-(CH_2)_n-CONH-(CH_2)_i-Het^1$ in I8b	
(CH ₂) ₂ -CONH-(CH ₂) ₂ —N	
(CH ₂) ₂ -CONH-(CH ₂) ₃ —N—N	
(CH ₂) ₂ -CONH-CH ₂	
CONH-CH ₂	
(CH ₂) ₂ -CONH-CH ₂	

Example 79:

Analogously to Example 2, 6-chlorobenzo-[de]isochromene-1,3-dione is reacted with $H_2N-Ar'-(CH_2)_n-CONH-(CH_2)_i-D-H$ and 3-aminomethyl-benzylamine. The following compounds of the formula I9a are obtained:

$$O$$
 N
 O
 O
 $Ar'-(CH2)n-CONH-(CH2)i-D-H$

- 24	10 -	
$Ar'-(CH_2)_n-CONH-(CH_2)_i-D-H$	in	
I9a		
(CH ₂) ₂ -CONH		
CONH		
CONH - (CH ₂) ₂ —		

Analogously to example 32, the compounds of the formula 19a as indicated above are reacted with tert-butyl (tert-butoxycarbonyliminopyrazol-1-yl-methyl)carbamate.

5 After removing of the protection group, the following compounds of the formula I9b are obtained:

271		
$Ar'-(CH_2)_n-CONH-(CH_2)_i-D-H$ 19b	in	
(CH ₂) ₂ -CONH		

771	1
Ar' - (CH2)n - CONH - (CH2)1 - D - H in	
I9b	
CONH	
CONH-(CH ₂) ₂	
(CH ₂) ₂ - CONH-CH ₂	
(CH ₂) ₂ - CONH-(CH ₂) ₂	

Example 80:

Analogously to Example 2, 6-chlorobenzo- [de]isochromene-1,3-dione is reacted with $H_2N-Ar'-(CH_2)_n-CONH-(CH_2)_i-CH(Ar^1)-Ar^2$ and 3-aminomethylbenzylamine. The following compounds of the formula I10a

are obtained:

$Ar'-(CH_2)_n-CONH-(CH_2)_i-CH(Ar^1)-$ Ar^2 in I10a	
CONH-(CH ₂) ₂ -CH	
CONH-CH ₂ -CH	
(CH ₂) ₂ - CONH-(CH ₂) ₂ -CH	
(CH ₂) ₂ - CONH-CH ₂ -CH	

Analogously to example 32, the compounds of the formula I10a as indicated above are reacted with tert-butyl (tert-butoxycarbonyliminopyrazol-1-yl-methyl)carbamate.

5 After removing of the protection group, the following compounds of the formula I10b are obtained:

$Ar'-(CH_2)_n-CONH-(CH_2)_i-CH(Ar^1)-Ar^2$ in I10b	
CONH-(CH ₂) ₂ -CH	
CONH-CH ₂ -CH	
(CH ₂) ₂ - CONH-(CH ₂) ₂ -CH	
(CH ₂) ₂ - CONH-CH ₂ -CH	

Example 81:

Analogously to Example 2, 6-nitrobenzo[de]isochromene-1,3-dione is reacted with H_2N-5 $C_6H_4-(CH_2)_n-R^3$ and then with R1-H. The following compounds of the formula I11a are obtained:

O N O I11a
$$(CH_2)_n-R_3$$

G II (CII) P3	pl in pl H and Til-
$-C_6H_4-(CH_2)_n-R^3$	R ¹ in R ¹ -H and Illa
(CH ₂) ₂ —(NH ₂	-NH-(CH ₂) ₃ -NH ₂
	-NH- (CH ₂) ₅ -NH ₂
	-NH- (CH ₂) ₇ -NH ₂
	NH ₂
	-N NH ₂
0	-NH-(CH ₂) ₃ -NH ₂
O (CH ₂) ₂ —(N—C ₃ H ₇	-NH-(CH ₂) ₅ -NH ₂
H 331.7	NH ₂
	$-N$ NH_2
	Н \iint
(CH ₂) ₂ (CH ₃) ₄ (CH ₃) ₄ (CH ₃) ₅ (CH ₃) ₇	-N NH ₂
	-N NH ₂
CO-N-C-H-	-NH-(CH ₂) ₃ -NH ₂
CO-N-C ₃ H ₇	-NH-(CH2)5-NH2
	-NH- (CH ₂) ₇ -NH ₂
	NH ₂
	NI AIII
	NH ₂
	-NH-(CH ₂) ₃ -NH ₂
00 11 011	-NH-(CH ₂) ₅ -NH ₂
CO-N-CH ₃	-NH-(CH ₂) ₇ -NH ₂
	NH ₂
	NH ₂
	<u></u>

WO 00/32577 PCT/EP99/08561

	_ 245 -	Terre
$-C_6H_4-(CH_2)_n-R^3$	R^1 in R^1 -H and Illa	
	-NH- (CH ₂) ₃ -NH ₂ -NH- (CH ₂) ₅ -NH ₂ -NH- (CH ₂) ₇ -NH ₂	
CH ₂) ₂ — CH ₃ N — (CH ₂) ₂ — CH ₃ CH ₃	NH ₂ NH ₂ NH ₂	
CO-N-(CH) CH ₃	-NH- (CH ₂) ₃ -NH ₂ -NH- (CH ₂) ₅ -NH ₂ -NH- (CH ₂) ₇ -NH ₂ -N	
CO-N-(CH ₂) ₂ CH ₃ CH ₃	H NH ₂	
OCH ₃	-NH- (CH ₂) ₃ -NH ₂ -NH- (CH ₂) ₅ -NH ₂ -NH- (CH ₂) ₇ -NH ₂ -NH- (CH ₂) ₁ -NH ₂	
CH ₃	$-N$ H NH_2	
ноос	-NH- (CH ₂) ₃ -NH ₂ -NH- (CH ₂) ₅ -NH ₂ -NH- (CH ₂) ₇ -NH ₂ -N	
	H $-N$ H NH_2	

Analogously Example 11, 6-nitro-2-(3to ioodophenyl)benzo[de]isoquinoline-1,3-dione or 6-nitro-2-(4-iodophenyl)benzo[de]isoquinoline-1,3-dione 5 reacted with $H_2N-C_{12}H_8-\left(CH_2\right)_n-R^3$ and then with R1-H. The following compounds of the formula I11b are obtained:

$-C_{12}H_8-(CH_2)_n-R^3$	R ¹ in R ¹ -H and I11b
CH ₃	-NH- (CH ₂) ₃ -NH ₂
H ₃ C	-NH-(CH ₂) ₃ -NH ₂ -NH-(CH ₂) ₅ -NH ₂ -NH-(CH ₂) ₇ -NH ₂ -N NH ₂
CH ₃	-NH- (CH ₂) ₃ -NH ₂ -NH- (CH ₂) ₅ -NH ₂ -NH- (CH ₂) ₇ -NH ₂ -N NH ₂
H ₃ C O	-NH-(CH ₂) ₃ -NH ₂ -NH-(CH ₂) ₅ -NH ₂ -NH-(CH ₂) ₇ -NH ₂ -NH-(CH ₂) ₇ -NH ₂

$-C_{12}H_8-(CH_2)_n-R^3$	R^1 in R^1 -H and I11b
	-NH-(CH ₂) ₃ -NH ₂
	-NH-(CH ₂) ₅ -NH ₂
	-NH-(CH ₂) ₇ -NH ₂
H,C H,C	$-N$ NH_2
1.30	H

Example 82:

Analogously to Example 11, 6-nitrobenzo- 5 [de]isochromene-1,3-dione is reacted with 4-iodophenylamine or 3-iodophenylamine (= $I-Ar'-NH_2$), $Het^1-B(OH)_2$ and then with R^1-H . The following compounds of the formula Ip are obtained:

10

-Ar'-Het ¹	R ¹ in R ¹ -H and Ip
	-NH- (CH ₂) ₃ -NH ₂ -NH- (CH ₂) ₅ -NH ₂ -NH- (CH ₂) ₇ -NH ₂ -N NH ₂

	<u> </u>	
-Ar'-Het ¹	R^1 in R^1 -H and Ip	
, N	-NH-(CH2)3-NH2-NH-(CH2)5-NH2	
S CH ₃	NH ₂	
	-N NH ₂	
tert-butyl	-NH-(CH ₂) ₃ -NH ₂	
	-NH- (CH ₂) ₅ -NH ₂	
tert-butyl	-NH- (CH ₂) ₇ -NH ₂ -N NH ₂ NH ₂	
	$-N$ H NH_2	
	-N H N	

Example 83:

Analogously to Example 2, 6-nitrobenzo- [de]isochromene-1,3-dione is reacted with R^6 -(CH₂)_n-Ph- NH₂ and then with R^1 -H. The following compounds of the formula I12 are obtained:

	243	
$-Ar' - (CH_2)_n - R^6$	R ¹ in R ¹ -H and I12	
N CH ₃	-NH-(CH ₂) ₃ -NH ₂ -NH-(CH ₂) ₅ -NH ₂	
	$ \begin{array}{c c} -NH-(CH_2)_7-NH_2\\ -N\\ H \end{array} $ $ NH_2$	
N CH ₃	-NH- (CH ₂) ₃ -NH ₂ -NH- (CH ₂) ₅ -NH ₂ -NH- (CH ₂) ₇ -NH ₂ -N NH ₂	.,,
N—CH ₃	-NH- (CH ₂) ₃ -NH ₂ -NH- (CH ₂) ₅ -NH ₂ -NH- (CH ₂) ₇ -NH ₂ -N NH ₂	·

Example 84:

Analogously to Example 2, 6-nitrobenzo-[de]isochromene-1,3-dione is reacted with (4-amino-phenyl)-phenyl-acetonitrile and then with R¹-H. The following compounds of the formula I13 are obtained:

R ¹ in R ¹ -H and I13	
-NH-(CH ₂) ₃ -NH ₂	
-NH-(CH ₂) ₅ -NH ₂	
-NH-(CH ₂) ₇ -NH ₂	

R^1 in R^1 -H and I13	
-N NH ₂	
-N NH ₂	
-N NH ₂	

Example 85:

Analogously to Example 11, 6-nitro-2-(4-iodo- R^{12} -phenyl)benzo-[de]isoquinoline-1,3-dione is reacted with R^{10} -B-(OH)₂ and with R^{1} -H. The following compounds of the formula I14 are obtained:

10

R ¹²	R ¹⁰	R ¹ inR ¹ -H and I14
Н		-NH- (CH ₂) ₃ -NH ₂ -N NH ₂ -N NH ₂ -N NH ₂

- 251 -			
R ¹²	R ¹⁰	R ¹ inR ¹ -H and I14	
Н		-NH- (CH ₂) ₃ -NH ₂ -NH- (CH ₂) ₅ -NH ₂ -NH- (CH ₂) ₇ -NH ₂ -N	
3-CH ₃	——ОН	-NH-(CH ₂) ₃ -NH ₂ -NH-(CH ₂) ₅ -NH ₂ -NH-(CH ₂) ₇ -NH ₂	
		NH ₂	
Н	-\lambda_NO2	-NH- (CH ₂) ₃ -NH ₂ -NH- (CH ₂) ₅ -NH ₂ -NH- (CH ₂) ₇ -NH ₂ -N	
Н	——ОМе	-N-N-NH-NH2	
NO ₂	——ОМе	-NH- (CH ₂) ₃ -NH ₂ -NH- (CH ₂) ₅ -NH ₂ -NH- (CH ₂) ₇ -NH ₂ -N NH ₂	

Example 86:

Analogously to Example 11, 6-nitro-2-(3-iodo- R^{12} -phenyl)benzo-[de]isoquinoline-1,3-dione is reacted with R^{10} -B-(OH)₂ and with R^{1} -H. The following compounds of the formula Ibm are obtained:

6/30/2008, EAST Version: 2.2.1.0

R ¹⁰	R ¹ in R ¹ -H and Ibm	
	-N NH ₂	
	-N NH ₂	

Example 87:

Analogously to Example 2, 6-nitrobenzo-
[de]isochromene-1,3-dione is reacted with H_2N-Ar and then with R^1-H . The following compounds of the formula Ibg are obtained: R^1

Ar	R ¹ in R ¹ -H and Ibg
CH ₂ -Ph	-NH-(CH ₂) ₃ -NH ₂ -NH-(CH ₂) ₅ -NH ₂
	-NH- (CH ₂) ₇ -NH ₂ -N NH- (CH ₂) ₇ -NH ₂ NH ₂
	-N NH ₂

Ar	R ¹ in R ¹ -H and Ibg
CH ₂ -Ph	$-N$ H NH_2
O-CH ₂ -Ph	$-NH-(CH_2)_3-NH_2$ $-NH-(CH_2)_5-NH_2$ $-NH-(CH_2)_7-NH_2$
	NH (CH277-NH2)
	NH ₂
	-N NH NH ₂
	-NH-(CH ₂) ₃ -NH ₂ -NH-(CH ₂) ₅ -NH ₂ -NH-(CH ₂) ₇ -NH ₂
	NH (CH ₂) 7-NH ₂ NH ₂
	NH ₂
	-N NH NH ₂
	$-NH-(CH_2)_3-NH_2$ $-NH-(CH_2)_5-NH_2$ $-NH-(CH_2)_7-NH_2$
H ₃ C-O	NH (GH2) / INH2
	-N NH ₂
	-N-NH-NH ₂

	- 254 -	
Ar	R ¹ in R ¹ -H and Ibg	
	-NH-(CH2)3-NH2	
	-NH-(CH2)5-NH2	
•	-NH-(CH2)7-NH2	
	NH ₂	
	NH ₂	
	NH NH ₂	
	-NH-(CH ₂) ₃ -NH ₂	
	-NH-(CH ₂) ₅ -NH ₂	
	-NH-(CH ₂) ₇ -NH ₂	
	NH ₂	
	-N NH ₂	
	NH NH ₂	
	-NH-(CH ₂) ₃ -NH ₂	
	-NH-(CH ₂) ₅ -NH ₂	
	-NH-(CH ₂) ₇ -NH ₂	
	NH ₂	
	-N NH ₂	
	$-N$ N NH_2	
Br	-NH-(CH ₂) ₃ -NH ₂ -NH-(CH ₂) ₅ -NH ₂	
	-NH - (CH2)5 - NH2 -NH - (CH ₂) ₇ - NH ₂	
	$-N \longrightarrow NH_2$	
	H H	
	~	

	- 255 -	
Ar	R ¹ in R ¹ -H and Ibg	
Br	-N NH ₂	
	-N NH NH ₂	
OCH ₃	$-NH-(CH_2)_3-NH_2$	
OCH ₃	-NH-(CH2)5-NH2	
	-NH-(CH ₂) ₇ -NH ₂	
OCH ₃ OCH ₃	-NH-(CH ₂) ₃ -NH ₂	
	-NH-(CH2)5-NH2	
	-NH-(CH ₂) ₇ -NH ₂	
/=\	-NH-(CH ₂) ₃ -NH ₂	
SO ₂	-NH-(CH ₂) ₅ -NH ₂	
	-NH- (CH ₂) ₇ -NH ₂	
	$-N$ N NH_2	
	-NH- (CH ₂) ₃ -NH ₂	
	-NH- (CH ₂) ₅ -NH ₂	
	-NH-(CH ₂) ₇ -NH ₂	
	-NH-(CH ₂) ₃ -NH ₂	
OCH ₃	-NH-(CH ₂) ₅ -NH ₂	
NC OCH₃	-NH-(CH2)7-NH2	
OCH ₃	-NH-(CH ₂) ₃ -NH ₂	
— OCH₃	-NH- (CH ₂) ₅ -NH ₂	
	-NH-(CH ₂) ₇ -NH ₂	
`OCH₃		
CF ₃	-NH-(CH ₂) ₃ -NH ₂	
/ \>	-NH- (CH ₂) ₅ -NH ₂	
/	-NH- (CH ₂) ₇ -NH ₂	
CF ₃	-NH- (CH ₂) ₃ -NH ₂	
	-NH- (CH ₂) ₅ -NH ₂	
	-NH-(CH ₂) ₇ -NH ₂	

	<u> - 256 </u>
Ar	R ¹ in R ¹ -H and Ibg
NC	-NH-(CH ₂) ₃ -NH ₂
—— ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	-NH-(CH ₂) ₅ -NH ₂
	-NH-(CH ₂) ₇ -NH ₂
OCH ₃	
OCH₃	-NH-(CH ₂) ₃ -NH ₂
—OCH ₃	-NH-(CH ₂) ₅ -NH ₂
00113	-NH-(CH ₂) ₇ -NH ₂
CI	
,0	-NH-(CH ₂) ₃ -NH ₂
	-NH-(CH ₂) ₅ -NH ₂
	-NH-(CH ₂) ₇ -NH ₂
F	-NH-(CH ₂) ₃ -NH ₂
	-NH-(CH ₂) ₅ -NH ₂
	-NH-(CH ₂) ₇ -NH ₂
OCH ₃	-NH-(CH ₂) ₃ -NH ₂
	-NH-(CH ₂) ₅ -NH ₂
	-NH-(CH ₂) ₇ -NH ₂
OCF ₃	
	-NH-(CH ₂) ₃ -NH ₂
	-NH-(CH ₂) ₅ -NH ₂
CI	-NH-(CH ₂) ₇ -NH ₂
	-NH-(CH ₂) ₃ -NH ₂
$-C_2H_5$	-NH-(CH ₂) ₅ -NH ₂
	-NH-(CH ₂) ₇ -NH ₂
OCH₃	-NH-(CH ₂) ₃ -NH ₂
0011	-NH-(CH ₂) ₅ -NH ₂
OCH ₃	-NH-(CH ₂) ₇ -NH ₂
	-NH-(CH ₂) ₃ -NH ₂
	-NH-(CH ₂) ₅ -NH ₂
	-NH-(CH ₂) ₇ -NH ₂
ĊN	

	<u> </u>	
Ar	R ¹ in R ¹ -H and Ibg	
	-NH-(CH ₂) ₃ -NH ₂	
	-NH-(CH ₂) ₅ -NH ₂	
	-NH- (CH ₂) ₇ -NH ₂	
Br		
	-NH-(CH ₂) ₃ -NH ₂	-
	-NH-(CH2)5-NH2	
	-NH-(CH2)7-NH2	
NO ₂		
	-NH-(CH ₂) ₃ -NH ₂	
	-NH-(CH ₂) ₅ -NH ₂	
	-NH-(CH ₂) ₇ -NH ₂	
OCH ₃		
ОН	-NH-(CH ₂) ₃ -NH ₂	
	-NH-(CH ₂) ₅ -NH ₂	
	-NH-(CH2)7-NH2	
	-NH-(CH ₂) ₃ -NH ₂	
OH	-NH-(CH ₂) ₅ -NH ₂	
	-NH-(CH ₂) ₇ -NH ₂	
<u> </u>		
	-NH-(CH2)3-NH2	
CI	-NH-(CH2)5-NH2	
	-NH- (CH ₂) ₇ -NH ₂	
	-NH-(CH ₂) ₃ -NH ₂	
	-NH-(CH ₂) ₅ -NH ₂	
	$-NH - (CH_2)_7 - NH_2$	
CI		
/=\	-NH-(CH ₂) ₃ -NH ₂	
── CH ₃	-NH-(CH2)5-NH2	
Br	-NH-(CH ₂) ₇ -NH ₂	

is

- 258 -		
Ar	R ¹ in R ¹ -H and Ibg	
-SO ₂ NH ₂	-NH-(CH ₂) ₃ -NH ₂	
	-NH-(CH ₂) ₅ -NH ₂	
	-NH-(CH2)7-NH2	
	-NH-(CH ₂) ₃ -NH ₂	
OCH ₃	-NH-(CH ₂) ₅ -NH ₂	
	-NH-(CH ₂) ₇ -NH ₂	
004	-NH-(CH ₂) ₃ -NH ₂	
OCH ₃	-NH-(CH ₂) ₅ -NH ₂	
ОН	-NH-(CH ₂) ₇ -NH ₂	
	-NH-(CH ₂) ₃ -NH ₂	
	-NH-(CH ₂) ₅ -NH ₂	
	-NH-(CH2)7-NH2	
ÓН		
	-NH-(CH ₂) ₃ -NH ₂	
	-NH-(CH ₂) ₅ -NH ₂	
	-NH-(CH ₂) ₇ -NH ₂	
→ , OH		

Example 88:

The compound $3 - \{4 - [6 - (3 - aminomethy)$ benzylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2yl]-phenyl}-N-(3,3-dimethyl-butyl)-propionamide according to example 81 is reacted with tert-butyl (tert-butoxy-carbonyliminopyrazol-1-ylmethyl)carbamate according to example 32. After removal 10 protective group, $N-(3,3-Dimethyl-butyl)-3-{4-[6-(3$ guanidinomethyl-benzylamino)-1,3-dioxo-1H,3Hbenzo[de]isoquinolin-2-y1]-phenyl}-propionamide

15 Example 89:

20

obtained.

Analogously to Example 2, 6-chlorobenzo-[de]isochromene-1,3-dione is reacted with 3-(4-aminophenyl)-N-(3-dimethylamino-propyl)-propionamide and C-(3-aminomethyl-cyclohexyl)-methylamine. 3-(4-{6-[(3-Aminomethyl-cyclohexylmethyl)-amino]-1,3-dioxo-1H,3H-

benzo[de]isoquinolin-2-yl}-phenyl)-N-(3-dimethylamino-propyl)-propionamide is obtained.

Example 90:

Analogously to Example 2, 6-chlorobenzo[de]isochromene-1,3-dione is reacted with 2-(4-aminophenylsulfanyl)-N-(3,3-dimethylbutyl)-acetamide and 3aminomethyl-benzylamine. 2-{4-[6-(3-Aminomethylbenzylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2yl]-phenylsulfanyl}-N-(3,3-dimethyl-butyl)-acetamide is
obtained.

Example 91:

Analogously to Example 2, 6-chlorobenzo[de]isochromene-1,3-dione is reacted with $H_2N-Ar'-Y-(CH_2)_n-R^3$ and 3-aminomethyl-benzylamine. The following compounds of the formula I12 are obtained:

Ar'-Y-(CH ₂) _n -R ³	
$\begin{array}{c c} & & \text{CH}_3 \\ \hline & & \text{CH}_3 \\ \hline & & \text{CH}_3 \\ \end{array}$	
$S \longrightarrow H$ C_3H_7	

WO 00/32577 **-** 260 -

Example 92:

Analogously to Example 2, 6chlorobenzo[de]isochromene-1,3-dione is reacted with 4-(pyrrolidine-1-sulfonyl)-phenylamine and 3-aminomethyl-5 benzylamine. 6-(3-Aminomethyl-benzylamino)-2-[4-(pyrrolidine-1-sulfonyl)-phenyl]-benzo[de]isoquinoline-1,3-dione is obtained.

10 Example 93:

20

Equimolar amounts of [6-(3-amino-propylamino)-1,3dioxo-1H, 3H-benzo[de]isoquinolin-2-yl]-4,5-dimethoxybenzonitrile (according to example 87, page 256, table 15 line 1) and methanesulfonic acid are reacted according to known procedures to give the acid addition salt[6-(3-amino-propylamino) -1, 3-dioxo-1H, 3Hbenzo[de]isoquinolin-2-yl]-4,5-dimethoxy-benzonitrile, methane sulfonate.

 1 H-nmr (DMSO-d₆): 8.80 (dd, J = 1.0 and J = 8.6 Hz, 1H), 8.50 (dd, J =0.8 and J = 7.4 Hz, 1H), 8.34 (d, J = 8.6 Hz, 1H), 7.94

(t (N-H), J = 5.8 Hz, 1H), 7.76 (dd, J = 7.4 and J =

- 8.4 Hz, 1H), 7.71 (sbr, 2H (NH₂)), 7.55 (s, 1H), 7.30 25 (s, 1H), 6.90 (d, J = 8.8 Hz, 1H), 3.90 (s, 3H), 3.81(s, 3H), 3.60-3.45 (m, 2H), 2.96 (t, J = 7.6 Hz, 2H),2.31 (s, 3H), 2.08-1.94 (m, 2H).
- 30 Abbreviations of the nmr-signals (nmr nuclear magnetic resonance):
 - s singlet,
 - d doublet,
 - dd double doublet,
- 35 t triplet,
 - sbr broad singlet,
 - m multiplet,
 - quadruplet, q
 - J coupling constant J in Hz

Analogously to Example 93 the following acid addtion salts are obtained:

5 3-{3-[6-(2-guanidino-ethylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl-phenyl}-N-(4-phenyl-butyl)-propionamide (example 40, p.145, table line 2)
3-{3-[6-(2-guanidino-ethylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl-phenyl}-N-(4-phenyl-butyl)-propionamide, methane sulfonate;

 $^{1}H-nmr$ (DMSO-d₆):

15

20

8.73 (dd, J = 1.0 and J = 8.5 Hz, 1H), 8.46 (dd, J = 1.0 and J = 7.3 Hz, 1H), 8.28 (d, J = 8.5 Hz, 1H), 7.88 (t, J = 5.6 Hz, 1H), 7.75 (dd, J = 7.3 and J = 8.4 Hz, 1H), 7.61 (t, J = 5.8 Hz, 1H), 7.40-7.36 (m, 1H), 7.28-7.23 (m, 3H), 7.16-7.10 (m, 4H), 6.89 (d, J = 8.7 Hz, 1H), 3.61-3.50 (m, 4H), 3.06 (q, J = 7.0 Hz, 2H), 2.89-2.85 (m, 2H), 2.53 (d, J = 7.6 Hz, 1H), 2.39 (t, J = 8.5 Hz, 2H), 2.36 (s, 3H), 1.56-1.49 (m, 2H), 1.41-1.34

 $N-[2-(4-chloro-phenyl)-ethyl]-3-[3-(6-{3-[(3-guanidino-propyl)-methyl-amino}-propylamino}-1,3-dioxo-1H,3H-$

benzo[de]isoquinolin-2-yl)-phenyl]-propionamide
(example 37, p. 135, table line 7)

 $N-[2-(4-\text{chloro-phenyl})-\text{ethyl}]-3-[3-(6-\{3-[(3-\text{guanidino-propyl})-\text{methyl-amino}\}-\text{propylamino}\}-1,3-\text{dioxo-lh},3\text{H-benzo}[\text{de}]\text{isoquinolin-2-yl})-\text{phenyl}]-\text{propionamide},$

30 methane sulfonate

(m, 2H).

 $^{1}H-nmr$ (DMSO-d₆):

10.49 (sbr, 1H), 8.85 (d, J = 8.5 Hz, 1H), 8.44 (dd, J = 0.9 and J = 7.3 Hz, 1H), 8.27 (d, J = 8.5 Hz, 1H), 8.01 (sbr, 1H(NH)), 7.94 (t, J = 5.6 Hz, 1H(NH)), 7.90 (t, J 5.9 Hz, 1H(NH)), 7,73 (dd, J = 7.4 and J = 8.4 Hz, 1H), 7.42-7.38 (m, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 7.7 Hz, 1H), 7.18 (d, J = 8.4 Hz, 2H), 7.14-7.11 (m, 2H), 6.88 (d, J = 8.7 Hz, 1H), 3.65-3.45

WO 00/32577 PCT/EP99/08561

(m, 3H), 3.31-3.15 (m, 6H), 3.11-3.04 (m, 1H), 2.85 (t, J = 7.3 Hz, 2H), 2.77 (d, J = 4.9 Hz, 3H), 2.67 (t, J = 7.3 Hz, 2H), 2.39 (t, J = 5.7 Hz, 1H), 2.35 (s, 3H), 2.21-2.14 (m, 2H), 1.96-1.89 (m, 2H).

5

N-[2-(4-chloro-phenyl)-ethyl]-3-{3-[6-(2-guanidino-ethylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide (example 37, p. 135, table line 2)
N-[2-(4-chloro-phenyl)-ethyl]-3-{3-[6-(2-

guanidino-ethylamino)-1,3-dioxo-1H,3Hbenzo[de]isoquinolin-2-yl]-phenyl}-propionamide,
methane sulfonate;

 $^{1}H-nmr$ (DMSO-d₆):

- 8.74 (dd, J = 1.0 and J = 8.6 Hz, 1H), 8.44 (dd, J = 1.0 and J = 7.3 Hz, 1H), 8.27 (d, J = 8.5 Hz, 1H), 7.94 (t, J = 5.7 Hz, 1H(NH)), 7.80 (t, J = 5.2 Hz, 1H(NH)), 7.76 (t, J = 5.1 Hz, 1H(NH)), 7.74 (dd, J = 7.3 and J = 8.5 Hz, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.31 (d, J = 8.4
- 20 Hz, 2H), 7.26 (d, J = 7.8 Hz, 1H), 7.18 (d, J = 8.4 Hz, 2H), 7.14-7.11 (m, 2H), 6.89 (d, J = 8.7 Hz, 1H), 3.61-3.56 (m, 2H), 3.55-3.50 (m, 2H), 3.28-3.23 (m, 2H), 2.86 (t, J = 8.2 Hz, 2H), 2.67 (t, J = 7.1 Hz, 2H), 2.40 (t, J = 7.3 hz, 2H), 2.35 (s, 3H).

- N-[2-(4-chloro-phenyl)-ethyl]-3-{3-[6-(3-guanidino-propylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide (example 37, p. 135, table line 6)
- N-[2-(4-chloro-phenyl)-ethyl]-3-{3-[6-(3-guanidino-propylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide, methane sulfonate;
- 35 $^{1}H-nmr$ (DMSO-d₆):
 - 8.76 (d, J = 8.5 Hz, 1H), 8.44 (d, J = 7.3 Hz, 1H), 8.27 (d, J = 8.5 Hz, 1H), 7.93 (t, J = 5.6, 1H(NH)), 7.73 (t, J = 7.5 Hz, 1H), 7.65 (t, J = 5.6 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H),

WO 00/32577 PCT/EP99/08561

7.18 (d, J = 8.4 Hz, 2H), 71.4-7.11 (m, 2H), 6.84 (d, J = 8.7 Hz, 1H), 3.45 (t, J = 6.3 Hz, 2H), 3.31-3.22 (m, 4H), 2.86 (t, J = 8.0 Hz, 2H), 2.66 (t, J = 7.1 Hz, 2H), 2.41 (d, J = 8.2 Hz, 2H), 2.37 (s, 3H), 199-1.91 (m, 2H).

6-(3-amino-propylamino)-2-(2,3-dimethoxyphenyl)benzo[de]isoquinoline-1,3-dione (example 87, p. 255, table line 3)

10 6-(3-amino-propylamino)-2-(2,3-dimethoxyphenyl)-benzo[de]isoquinoline-1,3-dione, methane sulfonate;

$^{1}H-nmr$ (DMSO-d₆):

5

8.75 (dd, J = 0.9 and J = 8.4 Hz, 1H), 8.46 (dd, J = 0.8 and J = 7.3 Hz, 1H), 8.30 (d, J = 8.5 Hz, 1H), 7.86 (sbr, 1H(NH)), 7.75 (dd, J = 7.3 and J = 8.4 Hz, 1H), 7.65 (sbr, 2H(NH)), 7.17-7.15 (m, 2H), 6.89-6.85 (m, 2H), 3.89 (s, 3H), 3.60 (s, 3H), 3.51 (t, J = 7.0 Hz, 2H), 2.97 (t, J = 7.8 Hz, 2H), 2.31 (s, 3H), 2.03-1.96 (m, 2H).

6-(3-amino-propylamino)-2-(4'-methoxy-biphenyl-4-yl)-benzo[de]isoquinoline-1,3-dione (example 12, p. 98, table line 3)

25 6-(3-amino-propylamino)-2-(4'-methoxy-biphenyl-4-yl)-benzo[de]isoquinoline-1,3-dione, methane sulfonate;

$^{1}H-nmr$ (DMSO-d₆):

35

8.75 (d, J = 8.5 Hz, 1H), 8.48 (d, J = 6.6 Hz, 1H),
8.31 (d, J = 8.5 Hz, 1H), 7.84 (sbr, 1H(NH)), 7.77-7.68
(m, 7H(2xNH)), 7.36 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.7 Hz, 1H), 3.83 (s, 3H),
3.54-3.48 (m, 2H), 2.98 (t, J = 7.8 Hz, 2H), 2.31 (s, 3H), 2.04-1.96 (m, 2H).

6-(3-aminopropylamino)-2-(4-carbazol-9-yl-phenyl)benzo[de]isoquinoline-1,3-dione (example 82, p. 247, table line1) 6-(3-aminopropylamino)-2-(4-carbazol-9-yl-phenyl)-benzo[de]isoquinoline-1,3-dione, methane sulfonate;

$^{1}H-nmr$ (DMSO-d₆):

- 5 8.77 (dd, J = 0.9 and J = 8.6 Hz, 1H), 8.57 (dd, J = 0.8 and J = 7.3 Hz, 1H), 8.36 (d, J = 8.5 Hz, 1H), 8.29 (d, J = 7.8 Hz, 2H), 7.87 (t, J = 5.7 Hz, 1H(NH)), 7.81-7.77 (m, 3H), 7.72 (sbr, 2H(NH)), 7.64 (d, J = 8.6 Hz, 2H), 7.53-7.47 (m, 4H), 7.36-7.32 (m, 2H), 6.91 (d, J = 8.7 Hz, 1H), 3.57 (g, J = 5.9 Hz, 2H), 3.03.2 05
- 10 J = 8.7 Hz, 1H), 3.57 (q, J = 5.9 Hz, 2H), 3.03-2.95 (m, 2H), 2.31 (s, 3H), 2.05-1.98 (m, 2H).

N-(3-{[2-(4'-methoxy-biphenyl-4-yl)-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-2-yl]-phenyl}-N-(4-

- phenyl-butyl)-propionamide (example 85, p. 251, table line 4)
 - N-(3-{[2-(4'-methoxy-biphenyl-4-yl)-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-2-yl]-phenyl}-N-(4-phenyl-butyl)-propionamide, methane sulfonate;

 $^{1}H-nmr$ (DMSO- d_{6}):

- 8.83 (d, J = 7.8 Hz, 1H), 8.56 (t, J = 6.5 Hz, 1H(NH)), 8.49 (dd, J = 0.8 and J = 7.3 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 7.84 (t, J = 5.8 Hz, 1H(NH)), 7.78 (dd, J =
- 25 7.4 and J = 8.4 Hz, 1H), 7.72 (d, J = 8.5 Hz, 2H), 7.68 (d, J = 8.8 Hz, 2H), 7.40-7.36 (m, 4H), 7.34 (d, J = 8.5 Hz, 2H), 7.22-7.19 (m, 1H), 7.07 (d, J = 8.8 Hz, 1H), 6.70 (d, J = 8.7 Hz, 1H), 4.70 (d, J = 5.9 Hz, 2H), 4.36 (d, J = 5.9 Hz, 2H), 3.82 (s, 3H), 2.30 (s, 20)
- 30 3H).

- 6-(3-aminopropylamino)-2-(7-hydroxy-naphthalen-1-yl)-benzo[de]isoquinoline-1,3-dione (example 87, p. 257, table line 5)
- 35 6-(3-aminopropylamino)-2-(7-hydroxy-naphthalen-1-yl)-benzo[de]isoquinoline-1,3-dione, methane sulfonate;

WO 00/32577 PCT/EP99/08561

 $^{1}H-nmr$ (DMSO-d₆):

9.61 (s, 1H(OH)), 8.79 (dd, J = 0.9 and J = 8.6 Hz, 1H), 8.50 (dd, J = 0.8 and J = 7.3 Hz, 1H), 8.33 (d, J = 8.5 Hz, 1H), 7.93-7.87 (m, 2H), 7.79 (dd, J = 7.4 and J = 8.4 Hz, J = 1.4 Hz

10

35

- N-[2-(4-chloro-phenyl)-ethyl]-3-{3-[6-(4-guanidinomethyl-benzylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide (example 37, p. 135, table line 5)
- N-[2-(4-chloro-phenyl)-ethyl]-3-{3-[6-(4-guanidinomethyl-benzylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide, methane sulfonate;
- - N-[2-(3-chloro-phenyl)-ethyl]-3-(3-{6-[(4-guanidinomethyl-cyclohexylmethyl)-amino]-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl}-phenyl)-propionamide (example 37, p. 134, table line 5)

N-[2-(3-chloro-phenyl)-ethyl]-3-(3-{6-[(4-guanidinomethyl-cyclohexylmethyl)-amino]-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl}-phenyl)-propionamide, methane sulfonate;

1H-nmr (DMSO-d₆):
8.79 (d, J = 8.5 Hz, 1H), 8.43 (d, J = 7.3 Hz, 1H),
8.24 (dd, J = 3.1 and J = 8.6 Hz, 1H), 7.94 (t, J = 5.7
5 Hz, 1H(NH)), 7.84 (sbr, 1H(NH)), 7.78-7.69 (m, 1H),
7.40 (t, J = 8.0 Hz, 1H), 7.30-7.22 (m, 4H), 7.14-7.10
(m, 3H), 6.82 (dd, J = 3.3 and J = 8.8 Hz, 1H), 3.27
(q, J = 6.8 Hz, 2H), 3.11 (t, J = 6.5 Hz, 2H), 2.85 (t, J = 7.3 Hz, 2H), 2.69 (t, J = 7.3 Hz, 2H), 2.39 (t, J = 7.4 Hz, 2H), 2.34 (s, 3H), 1.94-1.74 (m, 2H), 1.60-1.40
(m, 4H), 1.05-0.90 (m, 2H); (cis isomer:trans isomer = 2:1).

guanidinomethyl-cyclohexylmethyl)-amino]-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl}-phenyl)-propionamide (example 37, p. 135, table line 8)

N-[2-(4-chloro-phenyl)-ethyl]-3-(3-{6-[(4-guanidinomethyl-cyclohexylmethyl)-amino]-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl}-phenyl)-propionamide,

¹H-nmr (DMSO-d₆):

methane sulfonate:

20

35

8.79 (dd, J = 1.7 and J = 7.8 Hz, 1H), 8.43 (d, J = 7.3 Hz, 1H), 8.24 (dd, J = 3.2 and J = 8.6 Hz, 1H), 7.92 (t, J = 5.7 Hz, 1H(NH)), 7.83 (sbr, 1H(NH)), 7.73-7.69 (m, 1H), 7.41-7.37 (m, 1H), 7.30 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 7.8 Hz, 1H), 7.17 (d, J = 8.4 Hz, 2H), 7.13-7.10 (m, 2H), 6.81 (dd, J = 2.9 and J = 8.8 Hz, 1H), 3.25 (q, J = 7.3 hz, 2H), 3.11 (t, J = 6.4 Hz, 2H), 2.85 (t, J = 8.2 Hz, 2H), 2.66 (t, J = 7.2 Hz, 2H), 2.39 (t, J = 7.4 Hz, 2H), 2.33 (s, 3H), 1.95-1.75 (m, 2H), 1.60-1.40 (m, 4H), 1.05-0.90 (m, 2H),); (cis isomer:trans isomer = 2:1).

3-{3-[6-(4-guanidinomethyl-benzylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-N-[2-(4-sulfamoyl-phenyl)-ethyl]-propionamide (example 35, p. 129, table line 5)

2H), 2.38 (s, 3H).

3-{3-[6-(4-guanidinomethyl-benzylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-N-[2-(4sulfamoyl-phenyl)-ethyl]-propionamide, methane sulfonate;

5

15

 $^{1}H-nmr$ (DMSO-d₆): 8.88 (d, J = 8.5 Hz, 1H), 8.66 (sbr, 1H(NH)), 8.50 (dd, J = 0.8 and J = 7.3 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 7.93 (t, J = 6.0 Hz, 1H(NH)), 7.77 (d, J = 8.3 Hz, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 10 7.35-7.30 (m, 4H), 7.19-7.14 (m, 3H), 6.73 (d, J=8.7Hz, 1H), 4.71 (d, J = 6.1 Hz, 2H), 4.39 (d, J = 6.1 Hz, 2H), 3.34 (q, J = 7.4 Hz, 2H), 2.90 (t, J = 8.6 Hz, 2H), 2.81 (t, J = 7.2 Hz, 2H), 2.45 (t, J = 8.3 Hz,

5

10

25

The following examples relate to pharmaceutical preparations:

Example A: Injection vials

A solution of 100 g of an active compound of the formula I and 5 g of disodium hydrogenphosphate is adjusted to pH 6.5 in 3 l of double-distilled water using 2N hydrochloric acid, sterile-filtered, dispensed into injection vials, lyophilized under sterile conditions and aseptically sealed. Each injection vial contains 5 mg of active compound.

Example B: Suppositories

A mixture of 20 g of an active compound of the formula I is melted with 100 g of soya lecithin and 1400 g of cocoa butter, poured into moulds and allowed to cool. Each suppository contains 20 mg of active compound.

20 Example C: Solution

A solution is prepared from 1 g of an active compound of the formula I, 9.38~g of $NaH_2PO_4.2H_2O$, 28.48~g of $Na_2HPO_4.12H_2O$ and 0.1~g of benzalkonium chloride in 940~ml of double-distilled water. The mixture is adjusted to pH 6.8, made up to 1 l and sterilized by irradiation. This solution can be used in the form of eye drops.

Example D: Ointment

30 500 mg of an active compound of the formula I is mixed with 99.5 g of petroleum jelly under aseptic conditions.

Example E: Tablets

A mixture of 1 kg of active compound of the formula I, 4 kg of lactose, 1.2 kg of potato starch, 0.2 g of talc and 0.1 kg of magnesium stearate is compressed in a customary manner to give tablets such that each tablet contains 10 mg of active compound.

5

10

Example F: Coated tablets

Analogously to Example E, tablets are pressed which are then coated with a coating of sucrose, potato starch, talc, tragacanth and colourant in a customary manner.

Example G: Capsules

2 kg of active compound of the formula I are dispensed into hard gelatin capsules in a customary manner such that each capsule contains 20 mg of the active compound.

Example H: Ampoules

A solution of 1 kg of active compound of the formula I in 60 ml of double-distilled water is sterile-filtered, dispensed into ampoules, lyophilized under sterile conditions and aseptically sealed. Each ampoule contains 10 mg of active compound.

- The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.
- 25 From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

What is claimed is:

Compounds of the formula I
$$\mathbb{R}^1$$
 \mathbb{R}^1 \mathbb{R}^2

5 in which

> R is H or NO2.

 R^1 is -Het, -Het-SO₂-Ar, -Het-R⁵, -Het-(CH₂)_n-Ar, NO2, -N=CH-Ar, NHAlk, NAAlk, NHA', NA'2,

$$-N$$
N $-$ NH

-Y-D-H, $-Y-Ar'-R^3$, $-Y-(CH_2)_0-R^3$, 10 $-Y-(CH_2)_n-(CHR^4)-R^5$, $-Y-C[(CH_2)_o-OH]_3$, $-Y-(CH_2)_m-NA_2$, $-Y-(CH_2)_m-NHA'$, $-Y-(CH_2)_o-OH$, $-Y-(CH_2)_k-R^6$, $-Y-(CH_2)_i-R^8$, $-Y-(CH_2)_n-Het$, $-Y-(CH_2)_n-Ar$,

 $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^6$, $-Y-(CH_2)_n-D-(CH_2)_i-R^6$. $-Y-(CH_2)_n-Het-(CH_2)_i-R^6$, $-Y-(CH_2)_n-NA-(CH_2)_i-R^6$, 15 $-Y-(CH_2)_n-NH-(CH_2)_i-R^6$, $-Y-(CH_2)_n-D-(CH_2)_i-R^8$, $-Y-(CH_2)_n-Ar'-(CH_2)_i-R^8$, $-Y-(CH_2)_n-NH-(CH_2)_i-R^8$,

$$-Y-(CH_2)_n-NA-(CH_2)_i-R^8$$
,

 $-Y-[X-O]_t-[X^1-O]_u-X^2-R^6$ or $-Y-[X-NH]_u-X^1-OH$, 20 is -Ar, -Ar'-D-H, -Het1, -Het1-Ar, -Ar'-Het1, R^2 $-Ar' - (CH_2)_n - R^3$, $-Ar' - Y - (CH_2)_n - R^3$, $-Ar' - Y - C(A)_2 - R^3$, - Het^1-R^3 , $-\text{Ar'}-\text{Het}^1-R^3$, $-\text{Ar'}-(\text{CH}_2)_n-R^6$, $-\text{Ar'}-\text{SO}_2-\text{Het}$, $-Ar'-NH-SO_2-Het$, $Ar'-SO_2-R^7$, $-Ar'-(CH_2)_n-(CO-NH) (CH_2)_i - R^6$, $-Ar' - (CH_2)_n - (CO-NH) - (CH_2)_i - R^{11}$, -Ar' -25

 $(CH_2)_n$ -CO-Het, -Ar'- $(CH_2)_n$ -(CO-NH)- $(CH_2)_i$ -D-H, -Ar'- $(CH_2)_n - (CO-NH) - (CH_2)_i - Ar$, $-Ar' - (CH_2)_n - (CO-NH) -$ (CH₂)_i-Het¹, $-Ar' - (CH_2)_n - (CH(CN)) - (CH_2)_i - Ar,$ $-Ar' - (CH_2)_n - (CO-NH) - (CH_2)_i - CH(Ar^1) - Ar^2$

30 $(CH_2)_n - (CO-NH) - (CH_2)_i - Ar$, $-Ar' - S - (CH_2)_n - (CO-NH) -$ - 271 -

 $(CH_2)_i - R^{11}$, $-Ar' - S - (CH_2)_n - (CO - NH) - (CH_2)_i - Het^1$, $-Ar' - S - (CH_2)_n - (CO - NH) - (CH_2)_i - CH (Ar^1) - Ar^2$ or $-Ar' - S - (CH_2)_n - (CO - NH) - (CH_2)_i - D - H$,

 R^3 is C(O)A, CONH₂, CONHA, CONA₂, COOH or COOA,

5 R⁴ is Ph or OH,

 R^5 is CH_3 , CH_2Cl , CF_3 or Ph,

 R^6 is NH_2 , NHA, NA_2 , NH(D-H) or NH-C(O)A,

 R^7 is NA(D-H), NHA, NH(D-H) or NA₂,

 R^8 is $-NH-(C=NH)-NH_2$, -NH-(C=NH)-NHA, $-NH-(C=NH)-NA_2$, $-NA-(C=NH)-NH_2$, -NA-(C=NH)-NHA or $-NA-(C=NH)-NA_2$,

 R^{11} is -CH(A)-Ph,

10

15

20

Ar' is phenylene, biphenylene, naphthylene or pyrazol-4-yl, which is unsubstituted or mono-, di- or trisubstituted by A, OH, OA, OCF₃, Hal, CN, NH₂, NHA, NA₂, NO₂, CF₃, SO₂NH₂, SO₂Ph, SO₂NAH, SO₂NA₂,

Ar, Ar^1 and Ar^2

are each independently phenyl, biphenyl, stilbyl, pyridyl, pyrimidyl, quinolyl, 1-imidazolyl, pyrazolyl, indanyl, benzo[1,3]dioxol-5-yl, dibenzofuranyl, 9-H-fluorenyl, 9-H-carbazolyl, [1,1',4',1'']terphenyl, anthracenyl, naphthalen-1-yl, naphthalen-2-yl or fluoren-9-on-2-yl, which is unsubstituted or mono-, di- or trisubstituted by A, OH, OA, OCF3, O-Ph, O-Ph-CH3, CH2-Ph, O-CH2-Ph,

25 Hal, CN, NH₂, NHA, NA₂, NO₂, CF₃, SO₂NH₂, SO₂Ph, SO₂NAH, SO₂NA₂ or \mathbb{R}^8 ,

Het is a saturated, partially or completely unsaturated mono-, bi- or tricyclic heterocyclic radical having 5 to 13 ring members, where 1 or 2 N and/or 1 or 2 S or O atoms can be present and the heterocyclic radical can be mono- or disubstituted by CN, Hal, OH, OA, CF₃, A, NO₂, oxo or R⁵, where pyrazole is not bonded via N,

Het¹ is an unsaturated mono-, bi- or tricyclic heterocyclic radical having 5 to 13 ring members, where 1 or 2 N and/or 1 or 2 S or 0 atoms can be present and/or can be mono- or disubstituted by Hal, A, OH, OA, oxo or CF₃ or piperidine, morpholine, pyrrolidine or pyrrolidin-2-one,

- 272 -

```
A is unbranched or branched alkyl having 1-8 C atoms,
```

- A' is unbranched or branched alkyl having 2-6 C atoms,
- 5 Alk is unbranched alkyl having 4-8 C atoms,
 - D is cycloalkylene having 4-7 C atoms or cyclohexen-1-yl,

Hal is F, Cl, Br or I,
X,

- 10 X^1, X^2 in each case independently of one another are alkylene having 1 to 12 C atoms,
 - Y is O, S, NH or NA,
 - i is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12,
 - k is 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12,
- 15 m is 0, 1 or 2,
 - n is 0, 1, 2, 3 or 4,
 - o is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10,
 - t is 0, 1 or 2,
 - u is 1 or 2,

25

30

- where if R^2 is 4-chlorophenyl, R^1 is not -NH-CH₂-CH₂-OH, and their pharmaceutically tolerable salts and solvates.
 - Compounds of the formula I according to Claim 1
 - a) 6-benzylamino-2-(2,5-dichlorophenyl)-3a,9b-dihydro-1H,3H-benzo[de]isoquinoline-1,3-dione;
 - b) 3-{3-[6-(2-guanidinopropylamino)-1,3-dioxo-3a,9b-dihydro-1H,3H-benzo[de]isoquinolin-2-yl]phenyl}-N-(2-p-tolylethyl)propionamide;
 - c) 3-{3-[6-(2-guanidinomethylcyclohexylmethyl)amino]-1,3-dioxo-3a,9b-dihydro-1H,3Hbenzo[de]isoquinolin-2-yl]phenyl}N-(2-p-tolylethyl)propionamide;
 - d) 3-{3-[6-(4-Guanidinomethyl-benzylamino)-1,3dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-N-[2-(4-sulfamoyl-phenyl)-ethyl]-propionamide;
 - e) N-[2-(4-Chloro-phenyl)-ethyl]-3-{3-[6-(4-guanidinomethyl-benzylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide;

5

10

20

25

- f) 6-(3-Amino-propylamino)-2-(3,4,5-trimethoxy-phenyl)-benzo[de]isoquinoline-1,3-dione;
- g) 6-(3-Amino-propylamino)-2-(7-hydroxynaphthalen-1-yl)-benzo[de]isoquinoline-1,3dione;
- h) 6-[(3-Amino-propylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-4,5-dimethoxy-benzonitrile;
- i) 6-(3-Amino-propylamino)-2-(2,3-dimethoxy-phenyl)-benzo[de]isoquinoline-1,3-dione;
- j) N-[2-(3-Chloro-phenyl)-ethyl]-3-{3-[6-(4guanidinomethyl-cyclohexylmethyl-amino)-1,3dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}propionamide;
- k) N-[2-(4-Chloro-phenyl)-ethyl]-3-{3-[6-(4-guanidinomethyl-cyclohexylmethyl-amino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide;
 - 1) 6-(3-Amino-propylamino)-2-(4'-methoxy-biphenyl-4-yl)-benzo[de]isoquinoline-1,3-dione;
 - m) 6-(3-Amino-propylamino)-2-(4-carbazol-9-ylphenyl)-benzo[de]isoquinoline-1,3-dione;
 - n) 6-(3-Amino-propylamino)-2-(4'-hydroxy-2-methyl-biphenyl-4-yl)-benzo[de]isoquinoline-1,3-dione;
 - o) N-(3-{[2-(4'Methoxy-biphenyl-4-yl)-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-ylamino]-methyl}-benzyl)-quanidine;
 - p) 3-{3-[6-(2-Guanidino-ethylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-N-(4phenyl-butyl)-propionamide;
 - q) N-(2-(4-Chloro-phenyl)-ethyl]-3-{3-[6-(2-guanidino-ethylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}propionamide;
- 35 r) N-(2-(4-Chloro-phenyl)-ethyl]-3-{3-[6-(3-guanidino-propylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide;

5

10

20

- s) N-(2-(4-Chloro-phenyl)-ethyl]-3-[3-(6-{3-[(3-guanidino-propyl)-methyl-amino]-propylamino}-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}-propionamide;
- t) N-(2-(3-Chloro-phenyl)-ethyl]-3-{3-[6-(3-guanidino-propylamino)-1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-yl]-phenyl}propionamide;
 - u) 6-(3-Amino-propylamino)-2-(4'-methoxy-biphenyl-4-yl)-benzo[de]isoquinoline-1,3-dione;
 - v) N-[3-({2-[4-(3,6-Di-tert-butyl-carbazol-9-yl) phenyl]-1,3-dioxo-2,3-dihydro-1H benzo[de]isoquinolin-6-ylamino]-methyl) benzyl]-guanidine;
- w) 6-(3-Amino-propylamino)-2-(4-carbazol-9-yl-phenyl)-benzo[de]isoquinoline-1,3-dione. and their physiologically acceptable salts or solvates.
 - 3. Process for the preparation of the compounds of the formula I according to Claim 1 and their salts or solvates, characterized in that
 - a) a compound of the formula I is liberated from one of its functional derivatives by treating with a solvolysing or hydrogenolysing agent,

or

25 b) a compound of the formula II

in which

 R^9 is Cl, Br, NO_2 or R^1 , where

R has the meaning indicated in Claim 1

30 is reacted with a compound of the formula III H_2N-R^2 III

in which R^2 has the meaning indicated in Claim 1, and, if necessary, the radical R^9 is converted into a radical R^1 ,

35 or

WO 00/32577 PCT/EP99/08561

- (c) a radical R and/or R^2 and/or R^9 is converted into another radical R and/or R^2 and/or R^9 by, for example
- converting an amino group into a guanidino group by reaction with an amidinating agent,
 - reacting an aryl bromide or iodide to give the corresponding coupling products by means of a Suzuki coupling with boronic acids,
 - reducing a nitro group, sulfonyl group or sulfoxyl group,
 - etherifying an OH group or subjecting an OA group to ether cleavage,
 - alkylating a primary or secondary amino group,
 - partially or completely hydrolysing a CN group,
- cleaving an ester group or esterifying a carboxylic acid radical,
 - or carrying out a nucleophilic or electrophilic substitution,

and/or

5

10

25

- 20 (d) a base or acid of the formula I is converted into one of its salts or solvates.
 - 4. A pharmaceutical composition comprising an effective amount of a compound of formula I of claim 1 or a physiologically acceptable salt or solvate thereof, and a pharmaceutically acceptable excipient.
 - 5. A pharmaceutical composition of claim 4 which is effective as a glycoprotein IbIX antagonist.
 - 6. A pharmaceutical composition of claim 5, wherein said glycoprotein IbIX antagonist is effective for the control of thrombotic disorders and sequelae deriving therefrom.
 - 7. A compound of formula I of claim 1, or a physiologically acceptable salt or solvate thereof as a medicament.
- 35 8. A compound of formula I of claim 1, or a physiologically acceptable salt or solvate thereof as a glycoprotein IbIX antagonist.
 - 9. Use of compounds of the formula I according to Claim 1 and/or their physiologically acceptable salts

or solvates for the production of a medicament for the control of thrombotic disorders and sequelae deriving therefrom or for use as anti-adhesive substances.

Use of compounds of the formula I according to Claim 1 and/or their physiologically acceptable salts or solvates in the treatment of illnesses, such as for the prophylaxis and/or therapy of thrombotic disorders, as well as sequelae such as, for example, myocardial infarct, arteriosclerosis, angina pectoris, coronary syndromes, peripheral circulatory disorders, 10 stroke, transient ischaemic attacks, reocclusion/restenosis after angioplasty/stent implantations or as anti-adhesive substances for implants, catheters or

heart

pacemakers.