DRAFT TRANSLATION from

RISING SUN COMMUNICATIONS LTD.

(Incorporating Rotha Fullford Leopold of Canberra, Australia)

40 Bowling Green Lane, London EC1R ONE

JAPANESE PATENT APPLICATION

No. J57-021320

A HYPOGLYCEMIC AGENT

(21) Filing no.: 55-93853

(22) Filing date: July 11, 1980.

(43) Specification published: February 4, 1982.

(72) Inventor(s):

Narumitsu HONDA

c/o Chugai Pharmaceutical General Laboratories.

3-41-8, Takada, Toshima-ku, Tokyo.

Hideaki NAGAI

c/o Chugai Pharmaceutical General Laboratories.

3-41-8, Takada, Toshima-ku, Tokyo.

Masuo KOIZUMI

c/o Chugai Pharmaceutical General Laboratories.

3-41-8, Takada, Toshima-ku, Tokyo.

Yasushi MURAKAMI

c/o Chugai Pharmaceutical General Laboratories.

3-41-8, Takada, Toshima-ku, Tokyo.

Hideki NAKANO

c/o Chugai Pharmaceutical General Laboratories.

3-41-8, Takada, Toshima-ku, Tokyo.

(71) Assignee(s):

Chugai Pharmaceutical KK.

5-5-1 Ukima, Kita-ku, Tokyo.

Examination request: not yet made

Number of Invention: 1

(Total 4 pages)

(51) Int.Cl.³ Identification JPO Code classification A61K 31/13 ADP 6408-4C 31/165 6408-4C

Please Note- Names of Japanese firms, research laboratories and government entities, as translated are not necessarily identical with the names adopted by such organisations for international contacts. Japanese personal and surnames often permit of several readings and the ones used in this translation are not necessarily the ones preferred by their bearers. Foreign names mentioned in Japanese specifications cannot always be accurately reconstructed.

Specification

1. Title of Invention

A hypoglycemic agent.

2. Patent Claims

A hypoglycemic agent containing as effective component a compound represented by general formula

2

$$\bigotimes_{k=1}^{NH_2} con \left\langle \begin{smallmatrix} R_1 \\ R_2 \end{smallmatrix} \right\rangle$$
 [1]

(wherein, R₁ and R₂ may be the same or different and denote a hydrogen atom, a straightchain, branched-chain or cyclic alkyl group, an aralkyl group which can have a substituent in the nucleus, or a phenyl group which may be substituted).

3. Detailed explanation of the invention

This invention is a hypoglycemic agent containing as effective component a compound represented by general formula

$$\sum_{con}^{NH_2} con \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$
 [1]

(wherein, R₁ and R₂ may be the same or different and denote a hydrogen atom, a straightchain, branched-chain or cyclic alkyl group, an aralkyl group which can have a substituent in the nucleus, or a phenyl group which may be substituted).

Among the compounds represented by aforesaid formula [I], a well known compounds are included, however, hypoglycemic action or a pharmacological action that suggests this are not described whatsoever in the prior publications describing those compounds.

The compounds represented by aforesaid formula [I] can be easily obtained for example by reduction by conventional method of corresponding meta-nitrobenzoic acid amide species as shown in the Reference Example below.

Reference Example

Into a mixed solution of 6 g isopropylamine, 15 ml triethylamine and 200 ml acetone was gradually added 18.6 g meta-nitrobenzoyl chloride under ice cooling and stirring, the mixture was stirred at the same temperature for 30 minutes and then at room temperature for one hour, thereafter, the reaction liquor was discharged into 1 litre of water, precipitated crystals were recovered by

filtration, washed with water, thereafter recrystallised, and meta-nitro-N-isoproylbenzamide (m.p. 131-132°C) 18.7 g was thereby obtained as colourless acicular crystals. Hydrogen was passed though a mixed liquor of 5.2 g of said amide, 0.5 g of 10 % palladium-carbon and 100 ml ethanol, and catalytic reduction was carried out by conventional method. After theoretical quantity hydrogen was absorbed, catalyst was eliminated, the reaction liquor was concentrated under reduced pressure, the residue was recrystallised from ethanol, and thereby meta-amino-N-isoproyl benzamide (compound 1) 4.1 g was obtained as colourless acicular crystals. m.p. 148-149°C.

3

Elemental analysis: as molecular formula C₁₀H₁₄N₂O

	C	H	N
Calculated values (%)	67.38	7.92	15.72
Measured values (%)	67.35	7.94	15.69

Compounds of Table 1 were obtained in the same way as above.

wherein, compounds 25, 27 and 29 were obtained as oily substances, the value of high mass spectra are shown in the Table and the NMR values are shown below the Table.

Table 1

	_				CON (, ቤ ₁	[1])				
Co No	omp. o.	and p	stituent position	Molecular formula	m.p. (°C)	Yield (%)		Calc. ((%)		ured (
ı.		R ₁	R ₂				<u>C</u>	H	N	C	H	,
	2	н	H	G7H8N2O	77~78	8 1	6 1.7 5	5.92	2 0,5 8	6171	5.96	20.55
	3	•	он,	O. H 10 N 2 O	121~122	8 5	63.98	671	18.65	6392	6.68	1869
	4	•	O aHa	O, H13 N3 O	70~71	7 6	6 5.8 3	7.3 7	17.06	6 5.7 2	7.2 8	17.19
-	5	•	a-CaĤy	Q10 H14N1 O	57~58	7 8	6 7.3 8	7.9 2	15.72	6 7.2 5	7.8 8	15.64
	6	•	a-C4H9	C11H1eNEO	112~113	7 5	6 6.7 2	8.39	1 4.5 7	68.70	8.3 7	1450
	7 .	,	sec -04 Hs	•	109~111	7 4				6867	8.4.4	1465
	8	•	L-04H9	,	126~127	7 9		•		68.69	8.36	1 4.5 1
	9		4-04Ha	•	87~89	7 6				68.75	8.4 6	14.62
	10	,	-⊕	C13H18N2O	147~148	8 4	7 1.5 2	8.3 1	1283	7 1.5 8	8.35	1276
	1 1		-	C 12 H 12 N2 O	132~133	8 6	7356	5.70	13.20	73.50	5.67	1326
	1 2		-Ciris	O14H14 N2O	88~89	84	74.31	6.24	1238	7424	6.20	13.45
C	omp.			Molecular	m.p. Yield Elemental analysis value							
N	0.	-	position	formula	(°C)	(%)		Calc. (ured (
		R _i	R_2))		, ,	C	Н	N	C	Н	N n
	1 3	н	SCH,	016 H16 N2 O2	83~84	7 6	66.16	5.9 2	10.29	65.98	5.8 8	10.35
	1 4	•	-CONUN	O14 H13 N3 O2	180~182	5.6	65.87	5.13	16.46	6 5.7 5	5.1 8	1 6.5 5
	15	•	-Caroly	•	135~136	5 9		,		65.79	5.1 0	1 6.5 2
	16	•.	-CONH	,	223~226	6.8				6 5.8 1	5,07	1 6.5 3
	1 7		- C	C13 H13 N3 O	151~153	7 9	68.70	5.77	1849	68.64	5.79	1843
	18	•	-Ø'**	•	130~131	7 1		•		6 8.7 7	5.70	1853
	1 9		-O-NHs	•	150~151	7 4		,		68.75	5.67	18.42
	2 0	•	\(\frac{\circ}{\circ}\)	O14 H12 N2 O2	231~233	5 9	65.62	4.72	10.93	6 5.7 1	4.6 6	1 1.0 2
	2 1	•	- 64,4	014 H14 N2O	96~97	7 3	74.31	6.24	1238	7 4.2 5	6.19	1249
Ì	2 2	•	-cu ₃ -cu ₃	C18 H14 N2 O	94~95	80	74.97	6.71	1166	74.92	6.75	1161
	2 3		-cHz	C15 H18 N2 O2	109~110	7 9	70.29	6.29	1 0.9 3	70.34	6.32	1 0.8 9
	2 4		-or-Ora	C MH12 OF N2O	131~132	6 7	64.49	5,03	1 0.7 5	5 4.4 2	5.00	1 0.7 9

4

omp.	Subs	tituent	Molecular	m.p.	Yield		Elen	nental a	nalysis	value	
٥	and p	osition	formula	(°C)	(%)		Calc.	(%)	Meas	sured ((%)
	\mathbf{R}_1	R_2				С	H	N	C	H	N
2 5	н	- CH2 CH2-	C ₁₈ H ₁₆ N ₂ O	oil	6 2			•	2 4	0.124	(#1) 6
2 6	OH 3	она	O+H12N2O	87~88	8 2	6 5.8 3	7.3 7	17.06	65.78	7.41	1 7.1 2
2 7	n-03H2	4-C3H7	'C13 H20 N2O	oil	7 6			•	2 2	20.15	(#2) 50
2 8	6-03H7	€-C3H7	•	179~180	8 0	70.87	9.1 5	1272	7 0.7 9	9.1 5	1278
2 9	8-04H9	a-04He	C15H24N2O	0 1	7.4	,	-		2 4	8187	(#3) 75
3 0	4-04H	4-C4 H9		85~86	7 9	7254	9.74	11.28	7248	9.79	11.34
	2 5 2 6 2 7 2 8 2 9	2 5 H 2 6 OH 3 2 703H 7	and position $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	and position R_1 R_2 2 5 H $-c_{H_2}\alpha_{H_2}$ $C_{15}H_{10}N_{2}O$ 2 6 OH_3 OH_3 $O_{9}H_{18}N_{2}O$ 2 7 $n-O_3H_7$ $n-O_3H_7$ $OH_{12}O_2O$ 2 8 $(-O_3H_7)$ $(-C_3H_7)$ $(-C_3H_7)$ $(-C_3H_{20}N_{20})$ 2 9 $n-O_4H_9$ $n-O_4H_9$ $OH_{24}N_{20}O$	and position formula (°C) R_1 R_2 2.5 H $-c_{H_2}c_{H_2}$ $C_{15}H_{16}N_2O$ oil 2.6 OH_3 OH_3 $O_{9}H_{18}N_2O$ $87\sim 8.8$ 2.7 $n-O_3H_7$ $n-O_3H_7$ $O_{15}H_{20}N_2O$ oil 2.8 $(-O_3H_7)$ $(-C_3H_7)$ $(-C_3H_$	and position formula (°C) (%) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	and position formula (°C) (%) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	and position formula (°C) (%) Calc. R ₁ R ₂ C H 2.5 H $-c_{H_2}c_{H_2}$ C ₁₅ H ₂₆ N ₂ O oil 8.2 C ₄ O.1.2: 2.6 OH ₃ OH ₃ O ₆ H ₁₅ N ₂ O 87~8.8 8.2 65.83 7.37 2.7 n -O ₃ H ₇ n -O ₃ H ₇ C ₁₅ H ₂₆ N ₂ O oil 7.6 C ₄ C ₂ C ₂ C ₂ O.1.5: 2.8 i -O ₃ H ₇ i -C ₃ H ₇ i 17.9~1.80 8.0 70.87 9.15 2.9 n -O ₄ H ₉ n -O ₄ H ₉ C ₁₅ H ₂₄ N ₂ O oil 7.4 C ₄ C ₂ C ₂ C ₄ S.1.8:	and position R_1 R_2 C $(\%)$	and position formula (°C) (%) Calc. (%) Mease R_1 R_2 C H N C C H N C C H N C C C C C C C C C C	and position R_1 R_2 C

The compounds of this invention obtained in this way have excellent insulin biosynthesis promotion action and hypoglycemic action, and are useful at 0.1-100 mg/kg with respect to human, and the effect thereof can be sustained for 24 hours or more by the administration of 0.1-100 mg/kg once a day.

For administration, preparations formed into desired agent form by conventional means used for normal formulation method are used.

Example 1

5-week-old DDY mice (males, body weight 25-30 g) comprising 5 animals per group were fasted for 16 hours, thereafter, aqueous solution or suspension of compounds of this invention (200 mg/kg) was orally administered, and 20 minutes later, streptozotocin 200 mg/kg was intravenously administered. Blood was collected from the heart on 24 hours later, blood sugar quantity was measured by glucose oxidase method and the plasma insulin quantity was measured by two antibody method. The measurement results are shown in Table 2.

Wherein, the compound number in the Table corresponds to the compound number of Reference Example.

Caution: Translation Standard is Draft Translation

<u>Table 2</u>		
Administered	Blood glucose (mg/dl)	Plasma Insulin (µU/ml)
compound	mean \pm S.E.M.	$mean \pm S.E.M.$
Normal mouse	157±6	199±40
None (control)	386±21	43±25
1	224±19 ***	176±37 *
2	157±16 ***	153±46
3	260±33 *	213±48 *
4	248±47 *	192±54
10	263±36 *	201±38 *
12	265±32 *	253±56 *
18	166±35 ***	190±51 *
21	150±6 ***	224±30 ***
24	193±41 **	173±63
25	210±39 **	184±48 *
26	267±53	220±37 **
*: P < 0.05, **: F	P < 0.01, ***: P < 0.001	

Example 2

meta-aminobenzamide (compound 2)	100 pts.
calcium hydrogenphosphate	58.5 pts.
crystalline cellulose	50 pts.
corn starch	40 pts.
calcium stearate	1.5 pts.

Above components were thoroughly mixed, and tablets, 250 mg per tablet (containing 100 mg effective component) was formed by conventional method. This is used as a hypoglycemic agent.

Example 3

A 40 % aqueous solution of meta-aminobenzylbenzamide (compound 21) was prepared, and 2 ml each thereof was sealed into ampoules and sterilised. This is used as a hypoglycemic injection.

J57-21320 (unexamined) Caution: Translation Standard is Draft Translation

Rising Sun Communications Ltd. Terms and Conditions

Rising Sun Communications Ltd. shall not in any circumstances be liable or responsible for the accuracy or completeness of any translation unless such an undertaking has been given and authorised by Rising Sun Communications Ltd. in writing beforehand. More particularly, Rising Sun Communications Ltd. shall not in any circumstances be liable for any direct, indirect, consequential or financial loss or loss of profit resulting directly or indirectly from the use of any translation or consultation services by the customer.

7

Rising Sun Communications Ltd. retains the copyright to all of its' translation products unless expressly agreed in writing to the contrary. The original buyer is permitted to reproduce copies of a translation for their own corporate use at the site of purchase, however publication in written or electronic format for resale or other dissemination to a wider audience is strictly forbidden unless by prior written agreement.