2절 고강도콘크리트 생산기술

현재 국내에서 PSC I 형 거더에 사용되는 콘크리트는 일반적으로 $40 \sim 50$ MPa급이고, PHC 말뚝에 사용되는 콘크리트는 80 MPa급으로 금번 제안 연구는 이 두 가지 기술을 융합하여 $60 \sim 80$ MPa급 고강도콘크리트를 PSC I 형 분절 거더에 사용하여 저형고 교량을 개발하고 자 하는 것이다.

1차년도 연구 목표는 생산 단가의 증가 없이 기존 말뚝 생산에 적용하던 80MPa 배합설계를 일반 프리캐스트 제품 생산에 적합하도록 변경하고 생산 설비 또한 언제든지 80MPa급 제품을 양산할 수 있도록 개선함에 있다.

연구 초반 4개월에 걸쳐 분절거더에 필요한 강도와 워커빌리티 등을 확보하기 위하여 시행 착오법(Trial-error method)에 의한 시합배합과 내부 시험을 거쳐 수정한 최종 배합 설계표는 아래와 같다.

조골재 최대 치수 (mm)	슬럼프 (cm)	공기량 (%)	물-	잔골재율 s/a (%)	단 위 량 (kg/m²)						
					물 W	시멘트 <i>C</i>	잔골재 S			흔화재료	
			申] W/C (%)				세척사	부순 모래	조골재 G (20mm)	슬래그 미분말	고성능 감수제
20	50	4	25.3	38.0	150	445	355	240	985	148	8.3

[표 3.2.1] 고강도콘크리트 배합비

아래 사진 왼쪽은 설비 개선 이후의 레미콘 생산 시설이고 중앙은 콘크리트 공시체에 대한 압축강도를 공동연구기관인 ㈜장헌산업의 내부 시험 결과 88MPa를 달성한 결과이다. 추가 공시체를 생산하여 공인 시험 기관인 한국건설생활환경시험연구원에 의뢰하여 KS F 2405:2010에 의한 시험을 시행하고 시험 성적서를 획득하였다.

(a) 레미콘 생산 설비 개선 (b) 압축강도 자체 시험 결과 (c) 공인시험성적서 [그림 3.2.1] 고강도 콘크리트 생산 설비 및 시험성적서