Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

Tema: Pruebas No Paramétricas

#### SIMULACIÓN DEL LANZAMIENTO DE UN DADO EQUILIBRADO.

## A) AJUSTAR MEDIANTE CHI CUADRADRA (datos en APÉNDICE A)

Se me pide demostrar sí existen evidencia significativa para asegurar si los datos que se proporcionan provienen de los resultados de varios (600) lanzamientos de un dado. Esto, en otras palabras, me estaría diciendo que de las 600 veces, en promedio, cada cara debió haber caído 100 veces, pues la probabilidad asociada a cada cara (el dado es justo) es 1/6. Dicho lo anterior, y rescatando lo visto en probabilidad uno, plantearé la siguiente hipótesis a probar:

### ¿Los datos provienen realmente de un dado justo?

Ho: los datos provienen realmente de un dado justo

Vs

Ha: los datos no provienen de un dado justo

A lo que es equivalente decir:

Ho: Los datos provienen de una distribución uniforme.

Vs

Ha: Los datos no provienen de una distribución uniforme.

### Prueba de Bondad: Chi Cuadrada.

Para empezar, se calcularán las probabilidades Acumuladas con cada uno de los valores que puede tomar el dado:

|       | Frecuencia |           |                  |                       |  |
|-------|------------|-----------|------------------|-----------------------|--|
| Valor | Observada  | Acumulada | Relativa         | Relativa<br>Acumulada |  |
| 1     | 115        | 115       | 0.1916667        | 0.1916667             |  |
| 2     | 93         | 208       | 0.155            | 0.3466667             |  |
| 3     | 112        | =@FREQUEN | CY(\$C\$4:\$C\$6 | 603,E6)               |  |
| 4     | 85         | 405       | 0.1416667        | 0.675                 |  |
| 5     | 89         | 494       | 0.1483333        | 0.8233333             |  |
| 6     | 106        | 600       | 0.1766667        | 1                     |  |

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

Tema: Pruebas No Paramétricas

Después, se calcularán las Frecuencias observadas. Para al primer caso, simplemente se iguala a la Frecuencia Acumulada. Posteriormente, se calculan de la siguiente manera:

|       |           | Frecuencia |           |                       |  |  |
|-------|-----------|------------|-----------|-----------------------|--|--|
| Valor | Observada | Acumulada  | Relativa  | Relativa<br>Acumulada |  |  |
| 1     | 115       | 115        | 0.1916667 | 0.1916667             |  |  |
| 2     | 93        | 208        | 0.155     | 0.3466667             |  |  |
| 3     | =G6-G5    | 320        | 0.1866667 | 0.5333333             |  |  |
| 4     | 85        | 405        | 0.1416667 | 0.675                 |  |  |
| 5     | 89        | 494        | 0.1483333 | 0.8233333             |  |  |
| 6     | 106       | 600        | 0.1766667 | 1                     |  |  |

Si se realiza la suma de las Frecuencias observadas, está debe corresponder al valor de registros; es decir, en este caso se obtiene **600**.

Posteriormente, se realiza el cálculo de las Frecuencias Relativas:

|       | Frecuencia |           |             |           |
|-------|------------|-----------|-------------|-----------|
| Valor | Observada  | Acumulada | Relativa    | Relativa  |
|       |            |           |             | Acumulada |
| 1     | 115        | 115       | 0.1916667   | 0.1916667 |
| 2     | 93         | 208       | 0.155       | 0.3466667 |
| 3     | 112        | 320       | =F6/\$F\$10 | 0.5333333 |
| 4     | 85         | 405       | 0.1416667   | 0.675     |
| 5     | 89         | 494       | 0.1483333   | 0.8233333 |
| 6     | 106        | 600       | 0.1766667   | 1         |
|       | 600        |           | 1           | _         |

Si se realiza la suma de las Frecuencias Relativas, se observa que esta debe corresponder a 1.

Ahora, para el cálculo de las Frecuencias Relativas Acumuladas, hace falta sumas los registros uno tras otro:

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

Tema: Pruebas No Paramétricas

|       | Frecuencia |           |           |                       |  |
|-------|------------|-----------|-----------|-----------------------|--|
| Valor | Observada  | Acumulada | Relativa  | Relativa<br>Acumulada |  |
| 1     | 115        | 115       | 0.1916667 | 0.1916667             |  |
|       |            |           |           |                       |  |
| 2     | 93         | 208       | 0.155     | 0.3466667             |  |
| 3     | 112        | 320       | 0.1866667 | =H6+I5                |  |
| 4     | 85         | 405       | 0.1416667 | 0.675                 |  |
| 5     | 89         | 494       | 0.1483333 | 0.8233333             |  |
| 6     | 106        | 600       | 0.1766667 | 1                     |  |

**NOTA:** Observar que el primer valor de las Frecuencias Relativas Acumuladas es igual al primer valor de las Frecuencias Relativas. Además, el último valor debe ser igual a **1, pues se están sumando probabilidades.** 

La columna de Probabilidad de una uniforme es clara: Un dado justo tiene 6 caras, con la particularidad de que cada cara tiene el mismo valor de probabilidad asociada, esto es, **a cada cara le corresponde 1/6 = .16666... = .17 de probabilidad.** 

| Valor | Observada | Acumulada | Relativa  | Relativa<br>Acumulada | Probabilidad<br>Uniforme |
|-------|-----------|-----------|-----------|-----------------------|--------------------------|
| 1     | 115       | 115       | 0.1916667 | 0.1916667             | 0.17                     |
| 2     | 93        | 208       | 0.155     | 0.3466667             | 0.17                     |
| 3     | 112       | 320       | 0.1866667 | =H6+I5                | 0.17                     |
| 4     | 85        | 405       | 0.1416667 | 0.675                 | 0.17                     |
| 5     | 89        | 494       | 0.1483333 | 0.8233333             | 0.17                     |
| 6     | 106       | 600       | 0.1766667 | 1                     | 0.17                     |

La columna de Frecuencia Esperada se calcula como:

|       |           | Frecuencia |           |           |              |             |
|-------|-----------|------------|-----------|-----------|--------------|-------------|
| Valor | Observada | Acumulada  | Relativa  | Relativa  | Probabilidad | Frecuencia  |
|       | Observada | Acumulaua  | Relativa  | Acumulada | Uniforme     | Esperada    |
| 1     | 115       | 115        | 0.1916667 | 0.1916667 | 0.17         | 100         |
| 2     | 93        | 208        | 0.155     | 0.3466667 | 0.17         | 100         |
| 3     | 112       | 320        | 0.1866667 | 0.5333333 | 0.17         | =J6*\$F\$10 |
| 4     | 85        | 405        | 0.1416667 | 0.675     | 0.17         | 100         |
| 5     | 89        | 494        | 0.1483333 | 0.8233333 | 0.17         | 100         |
| 6     | 106       | 600        | 0.1766667 | 1         | 0.17         | 100         |
|       | 600       |            | 1         |           |              |             |

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

Tema: Pruebas No Paramétricas

Previo a calcular el estadístico de prueba, se puede visualizar de una manera sencilla cómo es que la distribución de las Frecuencias Observadas y de las Frecuencias Esperadas se visualizan juntas:



Por simple inspección, se puede presumir que las distribuciones son muy similares, y que el pequeño ruido que la distribución observada presenta se debe meramente por aleatoriedad. Es necesario probar de manera formal esta afirmación.

Una vez que se cuenta con los datos anteriores, se procede a utilizar el estadístico de prueba.

### **ESTADISTICO DE PRUEBA CHI CUADRADA:**

$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

Donde: **Oi** corresponde al valor i de las Frecuencias observadas y el valor **Ei** corresponde a las Frecuencias esperadas. Así:

|       | Frecuencia |           |           |                       |                          |                        |              |                        |
|-------|------------|-----------|-----------|-----------------------|--------------------------|------------------------|--------------|------------------------|
| Valor | Observada  | Acumulada | Relativa  | Relativa<br>Acumulada | Probabilidad<br>Uniforme | Frecuencia<br>Esperada | Ji cuadrada  |                        |
| 1     | 115        | 115       | 0.1916667 | 0.1916667             | 0.17                     | 100                    | 2.25         |                        |
| 2     | 93         | 208       | 0.155     | 0.3466667             | 0.17                     | 100                    | 0.49         |                        |
| 3     | 112        | 320       | 0.1866667 | 0.5333333             | 0.17                     | 100                    | =POWER(F6-K6 | 6, <mark>2)/</mark> K6 |
| 4     | 85         | 405       | 0.1416667 | 0.675                 | 0.17                     | 100                    | 2.25         |                        |
| 5     | 89         | 494       | 0.1483333 | 0.8233333             | 0.17                     | 100                    | 1.21         |                        |
| 6     | 106        | 600       | 0.1766667 | 1                     | 0.17                     | 100                    | 0.36         |                        |

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

Tema: Pruebas No Paramétricas

La suma de la columna Ji Cuadrada corresponde a 8.

Dado que se presentan 6 clasificaciones (caras) y que no se calculó ningún parámetro de la distribución, se tienen 5 grados de libertad.

Para calcular el P-valor, se utilizó la función CHISQ.DIST.RT. Estos son los resultados:

| 8      |                   |
|--------|-------------------|
| 5      | <b>Grados Lib</b> |
| 0.1562 | P value           |
| 0.05   | Alfa              |

Por lo tanto, como el P-Value es mayor a alfa (.05), se tiene suficiente evidencia estadística para ACEPTAR LA HIPÓTESIS NULA, esto es, los datos presentados si siguen una distribución uniforme.

En R, se obtienen los siguientes resultados:

```
Chi-squared test for given probabilities

data: freq
X-squared = 8, df = 5, p-value = 0.1562
```

Y se concluye de la misma manera

B) Estimar la media y la varianza de los datos. Después, utilizar la prueba Lillieforts para verificar normalidad (datos en APÉNDICE B).

¿Los datos provienen de una distribución normal?

Ho: Los datos provienen de una distribución normal.

VS

Ha: Los datos no provienen de una distribución normal.

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

Tema: Pruebas No Paramétricas

| Media    | 292.76786 |     |           |
|----------|-----------|-----|-----------|
| Varianza | 2612.8599 | EES | 51.116141 |

Así es como se ve el histograma de los datos que se me presentan. A simple vista, no se puede determinar si los datos siguen una distribución normal; más aún, no tiene forma de una. Esto tiene que demostrarse de manera formal por medio de una prueba de bondad de ajuste.



Este ejercicio cuanta con 280 registros (no tantos como el ejercicio anterior); sin embargo, para el desarrollo de la prueba se necesitan utilizar muchos reglones. Por consiguiente, mostraré solamente 10 registros, pero siempre debe de tenerse en consideración que los pasos siguientes se aplican **para todos los registros.** 

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

Tema: Pruebas No Paramétricas

Primero, es necesario ordenar de menor a mayor los registros:

| j  | ×   |
|----|-----|
| 1  | 154 |
| 2  | 185 |
| 3  | 186 |
| 4  | 190 |
| 5  | 192 |
| 6  | 203 |
| 7  | 204 |
| 8  | 205 |
| 9  | 206 |
| 10 | 207 |

Posteriormente, se calculará la distribución simulada. Esto es, dividir cada j entre el total de registros (280):

| j  | X          | S(x)=j/n        |
|----|------------|-----------------|
| 1  | 154        | 0.0035714       |
| 2  | 185        | 0.0071429       |
| 3  | 186        | 0.0107143       |
| 4  | 190        | 0.0142857       |
| 5  | =F12/COUNT | \$F\$8:\$F\$287 |
| 6  | 203        | 0.0214286       |
| 7  | 204        | 0.025           |
| 8  | 205        | 0.0285714       |
| 9  | 206        | 0.0321429       |
| 10 | 207        | 0.0357143       |

Luego, para calcular la distribución teórica, se recurre a la función **NORM.DIST** con parámetros la media y el error estándar, calculados al principio del ejercicio.

| Media    | 292.76786 |     |           |
|----------|-----------|-----|-----------|
| Varianza | 2612.8599 | EES | 51.116141 |

| j  | x   | S(x)=j/n    | F(xj)            | j   |
|----|-----|-------------|------------------|-----|
| 1  | 154 | 0.0035714   | 0.0033162        | 0.  |
| 2  | 185 | 0.0071429   | 0.0175028        | -0  |
| 3  | 186 | 0.0107143   | 0.018366         | -0  |
| 4  | 190 | 0.0142857   | 0.0221903        | -0  |
| 5  | 192 | =NORM.DIST( | G12,\$G\$2,\$I\$ | 3,1 |
| 6  | 203 | 0.0214286   | 0.039531         | -0  |
| 7  | 204 | 0.025       | 0.0412296        | -0  |
| 8  | 205 | 0.0285714   | 0.042987         | -0  |
| 9  | 206 | 0.0321429   | 0.0448044        | -0  |
| 10 | 207 | 0.0257142   | 0.0466022        | 0   |

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

Tema: Pruebas No Paramétricas

**NOTA:** Se utiliza la distribución normal porque es la que se plantea como la posible distribución que siguen los datos.



En la siguiente gráfica se puede mostrar un pequeño diferencial entre los valores 300 y 400. En general, se puede observar que las distribuciones no distan mucho de sí.

Se procede a calcular los siguientes valores:

| j  | x   | S(x)=j/n  | F(xj)     | j/n-F(xj)  |
|----|-----|-----------|-----------|------------|
| 1  | 154 | 0.0035714 | 0.0033162 | 0.0002552  |
| 2  | 185 | 0.0071429 | 0.0175028 | -0.0103599 |
| 3  | 186 | 0.0107143 | 0.018366  | -0.0076517 |
| 4  | 190 | 0.0142857 | 0.0221903 | -0.0079046 |
| 5  | 192 | 0.0178571 | 0.0243419 | =H12-l12   |
| 6  | 203 | 0.0214286 | 0.039531  | -0.0181024 |
| 7  | 204 | 0.025     | 0.0412296 | -0.0162296 |
| 8  | 205 | 0.0285714 | 0.042987  | -0.0144156 |
| 9  | 206 | 0.0321429 | 0.0448044 | -0.0126615 |
| 10 | 207 | 0.0357143 | 0.0466832 | -0.0109689 |

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

Tema: Pruebas No Paramétricas

Para después calcular estos, con la particularidad de que el primer registro se define como el negativo del primer registro de la columna de la distribución teórica:

| j  | x   | S(x)=j/n  | F(xj)     | j/n-F(xj)  | (j-1)/n-<br>F(j/n) |
|----|-----|-----------|-----------|------------|--------------------|
| 1  | 154 | 0.0035714 | 0.0033162 | 0.0002552  | =-18               |
| 2  | 185 | 0.0071429 | 0.0175028 | -0.0103599 | -0.0139314         |
| 3  | 186 | 0.0107143 | 0.018366  | -0.0076517 | -0.0112231         |
| 4  | 190 | 0.0142857 | 0.0221903 | -0.0079046 | -0.011476          |
| 5  | 192 | 0.0178571 | 0.0243419 | -0.0064847 | -0.0100562         |
| 6  | 203 | 0.0214286 | 0.039531  | -0.0181024 | -0.0216738         |
| 7  | 204 | 0.025     | 0.0412296 | -0.0162296 | -0.0198011         |
| 8  | 205 | 0.0285714 | 0.042987  | -0.0144156 | -0.017987          |
| 9  | 206 | 0.0321429 | 0.0448044 | -0.0126615 | -0.016233          |
| 10 | 207 | 0.0357143 | 0.0466832 | -0.0109689 | -0.0145403         |

| j  | x   | S(x)=j/n  | F(xj)     | j/n-F(xj)  | (j-1)/n-<br>F(j/n) |
|----|-----|-----------|-----------|------------|--------------------|
| 1  | 154 | 0.0035714 | 0.0033162 | 0.0002552  | -0.0033162         |
| 2  | 185 | 0.0071429 | 0.0175028 | -0.0103599 | -0.0139314         |
| 3  | 186 | 0.0107143 | 0.018366  | -0.0076517 | -0.0112231         |
| 4  | 190 | 0.0142857 | 0.0221903 | -0.0079046 | -0.011476          |
| 5  | 192 | 0.0178571 | 0.0243419 | -0.0064847 | =H11-I12           |
| 6  | 203 | 0.0214286 | 0.039531  | -0.0181024 | -0.0216738         |
| 7  | 204 | 0.025     | 0.0412296 | -0.0162296 | -0.0198011         |
| 8  | 205 | 0.0285714 | 0.042987  | -0.0144156 | -0.017987          |
| 9  | 206 | 0.0321429 | 0.0448044 | -0.0126615 | -0.016233          |
| 10 | 207 | 0.0357143 | 0.0466832 | -0.0109689 | -0.0145403         |

Se llega a la parte del estadístico de prueba, en el cual se calcula el máximo de los j/n - F(xj):

|            | T(+) Máximo  |
|------------|--------------|
|            | =MAX(J8:J287 |
| j/n-F(xj)  | (j-1)/n-     |
| J/11-F(XJ) | F(j/n)       |
| 0.0002552  | -0.0033162   |
| -0.0103599 | -0.0139314   |
| -0.0076517 | -0.0112231   |
| -0.0079046 | -0.011476    |
| -0.0064847 | -0.0100562   |
| -0.0181024 | -0.0216738   |
| -0.0162296 | -0.0198011   |
| -0.0144156 | -0.017987    |
| -0.0126615 | -0.016233    |
| -0.0109689 | -0.0145403   |

Y el mínimo de los (j-1)/n - F(j/n):

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

Tema: Pruebas No Paramétricas

| T(-) Mínimo   |
|---------------|
| =MIN(K8:K287) |
| -             |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |

El estadístico de prueba no es más que **el mayor de los valores absolutos de ambos valores.** En este caso, el valor absoluto de T(+) es el mayor.

| T(+) Máximo | T(-) Mínimo | D abs    |
|-------------|-------------|----------|
| 0.0523938   | -0.0288805  | 0.052394 |

Se han calculado ambos P-Values tanto para la prueba de Kolmogorov-Smirnov y la de Lilliefors para poder contrastar ambos resultados:

|          | Ajuste Kolmogorov-Smirnov | Ajuste de lilliefors |
|----------|---------------------------|----------------------|
| D abs    | 1.36/raiz(n)              | .886/raiz(n)         |
| 0.052394 | 0.081275545               | 0.052948627          |

La distribución proviene de una normal La distribución proviene de una normal

Dado que D es menor a cada uno de los p-valores, se concluye que:

Prueba K-S: Existe evidencia estadística para aceptar la hipótesis nula; esta es, los datos proporcionados siguen una distribución normal.

Prueba Lilliefors: Existe evidencia estadística (mínima) para aceptar la hipótesis nula; esta es, los datos proporcionados siguen una distribución normal.

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

Tema: Pruebas No Paramétricas

Los cálculos en R son:

```
Lilliefors (Kolmogorov-Smirnov) normality test
data: lillie$ï..Z
D = 0.052394, p-value = 0.06085
```

Que, pese a que el P-valor es diferente a los de arriba, se sigue aceptando la hipótesis nula. La estadística D es la misma.

**APÉNDICE A: Tabla de datos** 

| Lanzamiento | Valor | Lanzamiento | Valor | Lanzamiento | Valor |
|-------------|-------|-------------|-------|-------------|-------|
| 1           | 5     | 201         | 1     | 401         | 4     |
| 2           | 1     | 202         | 2     | 402         | 6     |
| 3           | 3     | 203         | 6     | 403         | 5     |
| 4           | 5     | 204         | 3     | 404         | 6     |
| 5           | 2     | 205         | 4     | 405         | 1     |
| 6           | 5     | 206         | 5     | 406         | 6     |
| 7           | 5     | 207         | 1     | 407         | 6     |
| 8           | 4     | 208         | 4     | 408         | 1     |
| 9           | 6     | 209         | 2     | 409         | 3     |
| 10          | 4     | 210         | 6     | 410         | 5     |
| 11          | 6     | 211         | 3     | 411         | 6     |
| 12          | 3     | 212         | 6     | 412         | 6     |
| 13          | 6     | 213         | 5     | 413         | 4     |
| 14          | 1     | 214         | 1     | 414         | 3     |
| 15          | 2     | 215         | 5     | 415         | 1     |
| 16          | 1     | 216         | 6     | 416         | 6     |
| 17          | 6     | 217         | 6     | 417         | 3     |
| 18          | 5     | 218         | 1     | 418         | 2     |
| 19          | 4     | 219         | 2     | 419         | 5     |
| 20          | 1     | 220         | 1     | 420         | 3     |
| 21          | 2     | 221         | 6     | 421         | 5     |
| 22          | 2     | 222         | 5     | 422         | 2     |
| 23          | 5     | 223         | 3     | 423         | 5     |
| 24          | 4     | 224         | 6     | 424         | 6     |
| 25          | 6     | 225         | 3     | 425         | 3     |
| 26          | 4     | 226         | 3     | 426         | 4     |
| 27          | 4     | 227         | 1     | 427         | 1     |
| 28          | 2     | 228         | 2     | 428         | 1     |
| 29          | 1     | 229         | 6     | 429         | 3     |
| 30          | 2     | 230         | 2     | 430         | 3     |

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

| as no Parametrio | .dS |     |   |     |   |
|------------------|-----|-----|---|-----|---|
| 31               | 1   | 231 | 1 | 431 | 2 |
| 32               | 3   | 232 | 3 | 432 | 6 |
|                  |     |     |   |     |   |
| 33               | 6   | 233 | 2 | 433 | 4 |
| 34               | 6   | 234 | 6 | 434 | 1 |
| 35               | 1   | 235 | 4 | 435 | 5 |
| 36               | 1   | 236 | 1 | 436 | 5 |
|                  |     |     |   |     |   |
| 37               | 3   | 237 | 3 | 437 | 3 |
| 38               | 1   | 238 | 2 | 438 | 6 |
| 39               | 4   | 239 | 6 | 439 | 2 |
| 40               | 1   | 240 | 4 | 440 | 3 |
| 41               | 2   | 241 | 4 | 441 | 2 |
|                  |     |     |   |     |   |
| 42               | 6   | 242 | 1 | 442 | 5 |
| 43               | 6   | 243 | 6 | 443 | 4 |
| 44               | 3   | 244 | 3 | 444 | 1 |
| 45               | 5   | 245 | 3 | 445 | 4 |
| 46               | 5   | 246 | 2 | 446 | 4 |
| 47               | 3   | 247 | 2 | 447 | 1 |
| 48               | 5   | 248 | 1 | 448 | 5 |
| 49               | 5   | 249 | 1 | 449 | 3 |
|                  |     |     |   |     |   |
| 50               | 3   | 250 | 3 | 450 | 3 |
| 51               | 3   | 251 | 6 | 451 | 2 |
| 52               | 1   | 252 | 6 | 452 | 4 |
| 53               | 5   | 253 | 3 | 453 | 2 |
| 54               | 6   | 254 | 1 | 454 | 4 |
| 55               | 5   | 255 | 4 | 455 | 5 |
| 56               | 2   | 256 | 5 | 456 | 5 |
| 57               | 1   | 257 |   | 457 | 3 |
|                  |     |     | 5 |     |   |
| 58               | 6   | 258 | 1 | 458 | 3 |
| 59               | 5   | 259 | 4 | 459 | 2 |
| 60               | 6   | 260 | 3 | 460 | 1 |
| 61               | 5   | 261 | 3 | 461 | 4 |
| 62               | 5   | 262 | 3 | 462 | 2 |
| 63               | 4   | 263 | 1 | 463 | 4 |
|                  |     | 264 |   | 464 |   |
| 64               | 4   |     | 1 |     | 2 |
| 65               | 4   | 265 | 4 | 465 | 2 |
| 66               | 6   | 266 | 2 | 466 | 5 |
| 67               | 6   | 267 | 3 | 467 | 3 |
| 68               | 6   | 268 | 1 | 468 | 5 |
| 69               | 1   | 269 | 3 | 469 | 6 |
| 70               | 4   | 270 | 1 | 470 | 6 |
| 71               | 3   | 271 | 1 | 471 | 6 |
|                  |     |     |   |     |   |
| 72               | 6   | 272 | 4 | 472 | 1 |
| 73               | 6   | 273 | 2 | 473 | 1 |
| 74               | 5   | 274 | 3 | 474 | 2 |
| 75               | 4   | 275 | 3 | 475 | 5 |
| 76               | 1   | 276 | 5 | 476 | 5 |
| 77               | 2   | 277 | 3 | 477 | 3 |
|                  | _   |     | • |     | • |

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

| as no Parametrio | .as |      |   |              |   |
|------------------|-----|------|---|--------------|---|
| 78               | 1   | 278  | 6 | 478          | 6 |
|                  |     |      |   |              |   |
| 79               | 2   | 279  | 4 | 479          | 6 |
| 80               | 2   | 280  | 6 | 480          | 1 |
| 81               | 2   | 281  | 3 | 481          | 5 |
|                  |     |      |   |              |   |
| 82               | 2   | 282  | 1 | 482          | 4 |
| 83               | 3   | 283  | 1 | 483          | 2 |
| 84               | 5   | 284  | 1 | 484          | 5 |
|                  |     |      |   |              |   |
| 85               | 3   | 285  | 5 | 485          | 5 |
| 86               | 6   | 286  | 1 | 486          | 6 |
| 87               | 2   | 287  | 1 | 487          | 5 |
|                  |     |      |   |              |   |
| 88               | 5   | 288  | 6 | 488          | 6 |
| 89               | 3   | 289  | 4 | 489          | 5 |
| 90               | 3   | 290  | 4 | 490          | 1 |
|                  |     |      |   |              |   |
| 91               | 1   | 291  | 2 | 491          | 4 |
| 92               | 4   | 292  | 5 | 492          | 1 |
| 93               | 5   | 293  | 2 | 493          | 1 |
|                  |     |      |   |              |   |
| 94               | 2   | 294  | 1 | 494          | 2 |
| 95               | 5   | 295  | 1 | 495          | 5 |
| 96               | 1   | 296  | 5 | 496          | 4 |
|                  |     |      |   |              |   |
| 97               | 3   | 297  | 4 | 497          | 5 |
| 98               | 4   | 298  | 1 | 498          | 3 |
| 99               | 6   | 299  | 5 | 499          | 1 |
|                  |     |      |   |              |   |
| 100              | 2   | 300  | 5 | 500          | 1 |
| 101              | 1   | 301  | 6 | 501          | 3 |
| 102              | 6   | 302  | 1 | 502          | 6 |
|                  |     |      |   |              |   |
| 103              | 6   | 303  | 5 | 503          | 6 |
| 104              | 3   | 304  | 4 | 504          | 1 |
| 105              | 6   | 305  | 2 | 505          | 4 |
|                  |     |      |   |              |   |
| 106              | 5   | 306  | 3 | 506          | 4 |
| 107              | 3   | 307  | 1 | 507          | 4 |
| 108              | 4   | 308  | 4 | 508          | 2 |
| 109              |     | 309  |   | 509          |   |
|                  | 3   |      | 5 |              | 5 |
| 110              | 5   | 310  | 3 | 510          | 4 |
| 111              | 5   | 311  | 4 | 511          | 2 |
| 112              | 6   | 312  | 4 | 512          | 3 |
|                  |     |      |   |              |   |
| 113              | 1   | 313  | 1 | 513          | 6 |
| 114              | 6   | 314  | 2 | 514          | 4 |
| 115              | 3   | 315  | 4 | 515          | 3 |
|                  |     |      |   |              |   |
| 116              | 4   | 316  | 4 | 516          | 1 |
| 117              | 3   | 317  | 3 | 517          | 5 |
| 118              | 5   | 318  | 1 | 518          | 4 |
|                  |     |      |   |              |   |
| 119              | 6   | 319  | 3 | 519          | 3 |
| 120              | 3   | 320  | 2 | 520          | 6 |
| 121              | 4   | 321  | 5 | 521          | 2 |
|                  |     |      |   |              |   |
| 122              | 6   | 322  | 1 | 522          | 2 |
| 123              | 4   | 323  | 4 | 523          | 3 |
| 124              | 5   | 324  | 2 | 524          | 2 |
| 1                |     | V= ! | _ | <b>5</b> 2 ! | _ |

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

| as No Parametrio | cas |     |   |            |   |
|------------------|-----|-----|---|------------|---|
| 125              | 3   | 325 | 3 | 525        | 4 |
| 126              | 2   | 326 | 1 | 526        | 2 |
| 127              | 3   | 327 | 3 | 527        | 2 |
| 128              | 1   | 328 | 6 | 528        | 1 |
| 129              |     |     |   |            |   |
|                  | 6   | 329 | 3 | 529        | 6 |
| 130              | 5   | 330 | 2 | 530        | 6 |
| 131              | 6   | 331 | 3 | 531        | 4 |
| 132              | 5   | 332 | 1 | 532        | 6 |
| 133              | 3   | 333 | 5 | 533        | 4 |
| 134              | 1   | 334 | 1 | 534        | 4 |
| 135              | 1   | 335 | 3 | 535        | 2 |
| 136              | 2   | 336 | 6 | 536        | 4 |
| 137              | 4   | 337 | 2 | 537        | 6 |
| 138              | 5   | 338 | 2 | 538        | 2 |
| 139              | 3   | 339 | 3 | 539        | 1 |
| 140              | 6   | 340 | 3 | 540        | 4 |
| 141              | 2   | 341 | 6 | 541        | 3 |
| 142              | 2   | 342 | 6 | 542        | 6 |
|                  |     |     |   |            |   |
| 143              | 6   | 343 | 2 | 543        | 6 |
| 144              | 1   | 344 | 3 | 544        | 1 |
| 145              | 5   | 345 | 2 | 545        | 1 |
| 146              | 6   | 346 | 4 | 546        | 4 |
| 147              | 4   | 347 | 3 | 547        | 3 |
| 148              | 5   | 348 | 5 | 548        | 1 |
| 149              | 6   | 349 | 3 | 549        | 3 |
| 150              | 3   | 350 | 3 | 550        | 3 |
| 151              | 1   | 351 | 1 | 551        | 4 |
| 152              | 4   | 352 | 1 | 552        | 5 |
| 153              | 2   | 353 | 1 | 553        | 6 |
| 154              | 2   | 354 | 4 | 554        | 1 |
| 155              | 6   | 355 | 3 | 555        | 2 |
| 156              | 1   | 356 | 5 | 556        | 4 |
|                  |     |     | 1 | 557        | 3 |
| 157              | 1   | 357 |   |            |   |
| 158              | 1   | 358 | 3 | 558        | 3 |
| 159              | 2   | 359 | 5 | 559        | 4 |
| 160              | 3   | 360 | 5 | 560        | 2 |
| 161              | 4   | 361 | 4 | 561        | 1 |
| 162              | 2   | 362 | 1 | 562        | 1 |
| 163              | 2   | 363 | 1 | 563        | 2 |
| 164              | 2   | 364 | 3 | 564        | 6 |
| 165              | 3   | 365 | 6 | 565        | 5 |
| 166              | 3   | 366 | 2 | 566        | 4 |
| 167              | 3   | 367 | 6 | 567        | 1 |
| 168              | 1   | 368 | 2 | 568        | 1 |
| 169              | 2   | 369 | 2 | 569        | 2 |
| 170              | 6   | 370 | 6 | 570        | 4 |
| 170              | 6   | 370 | 6 | 570<br>571 | 1 |
| 1/1              | O   | 3/1 | O | 5/1        | 1 |

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

Tema: Pruebas No Paramétricas

| is no Parametricas |   |     |   |     |   |
|--------------------|---|-----|---|-----|---|
| 172                | 3 | 372 | 2 | 572 | 1 |
| 173                | 3 | 373 | 4 | 573 | 2 |
| 174                | 3 | 374 | 1 | 574 | 2 |
| 175                | 2 | 375 | 6 | 575 | 6 |
| 176                | 6 | 376 | 5 | 576 | 1 |
| 177                | 2 | 377 | 3 | 577 | 4 |
| 178                | 5 | 378 | 5 | 578 | 5 |
| 179                | 1 | 379 | 2 | 579 | 5 |
| 180                | 1 | 380 | 6 | 580 | 3 |
| 181                | 6 | 381 | 2 | 581 | 3 |
| 182                | 5 | 382 | 6 | 582 | 5 |
| 183                | 3 | 383 | 3 | 583 | 1 |
| 184                | 1 | 384 | 2 | 584 | 6 |
| 185                | 1 | 385 | 4 | 585 | 5 |
| 186                | 6 | 386 | 6 | 586 | 6 |
| 187                | 2 | 387 | 1 | 587 | 6 |
| 188                | 1 | 388 | 3 | 588 | 2 |
| 189                | 1 | 389 | 6 | 589 | 5 |
| 190                | 2 | 390 | 6 | 590 | 4 |
| 191                | 3 | 391 | 2 | 591 | 6 |
| 192                | 5 | 392 | 4 | 592 | 4 |
| 193                | 4 | 393 | 1 | 593 | 3 |
| 194                | 2 | 394 | 3 | 594 | 1 |
| 195                | 3 | 395 | 1 | 595 | 5 |
| 196                | 3 | 396 | 1 | 596 | 5 |
| 197                | 1 | 397 | 3 | 597 | 6 |
| 198                | 3 | 398 | 6 | 598 | 3 |
| 199                | 5 | 399 | 4 | 599 | 3 |
| 200                | 1 | 400 | 2 | 600 | 6 |

# **APÉNDICE B: Tabla de datos**

| Observación | Valor | Observación | Valor |
|-------------|-------|-------------|-------|
| 1           | 317   | 141         | 313   |
| 2           | 230   | 142         | 280   |
| 3           | 290   | 143         | 272   |
| 4           | 275   | 144         | 276   |
| 5           | 313   | 145         | 323   |
| 6           | 262   | 146         | 305   |
| 7           | 330   | 147         | 250   |
| 8           | 295   | 148         | 280   |
| 9           | 290   | 149         | 331   |
| 10          | 321   | 150         | 263   |
| 11          | 378   | 151         | 249   |
| 12          | 321   | 152         | 186   |

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

| etricas |     |     |     |
|---------|-----|-----|-----|
| 13      | 226 | 153 | 277 |
| 14      | 332 | 154 | 407 |
| 15      | 236 | 155 | 214 |
| 16      | 277 | 156 | 247 |
| 17      | 281 | 157 | 310 |
| 18      | 397 | 158 | 331 |
| 19      | 231 | 159 | 240 |
| 20      | 323 | 160 | 385 |
| 21      | 218 | 161 | 349 |
| 22      | 326 | 162 | 301 |
| 23      | 304 | 163 | 244 |
| 24      | 340 | 164 | 285 |
| 25      | 319 | 165 | 297 |
| 26      | 207 | 166 | 280 |
| 27      | 251 | 167 | 403 |
| 28      | 298 | 168 | 358 |
| 29      | 343 | 169 | 303 |
| 30      | 345 | 170 | 322 |
| 31      | 241 | 171 | 313 |
| 32      | 226 | 172 | 241 |
| 33      | 331 | 173 | 308 |
| 34      | 226 | 174 | 245 |
| 35      | 235 | 175 | 253 |
| 36      | 154 | 176 | 402 |
| 37      | 283 | 177 | 329 |
| 38      | 226 | 178 | 332 |
| 39      | 278 | 179 | 307 |
| 40      | 364 | 180 | 261 |
| 41      | 263 | 181 | 211 |
| 42      | 390 | 182 | 221 |
| 43      | 298 | 183 | 400 |
| 44      | 258 | 184 | 220 |
| 45      | 294 | 185 | 377 |
| 46      | 240 | 186 | 313 |
| 47      | 313 | 187 | 338 |
| 48      | 265 | 188 | 408 |
| 49      | 262 | 189 | 280 |
| 50      | 297 | 190 | 246 |
| 51      | 325 | 191 | 268 |
| 52      | 335 | 192 | 237 |
| 53      | 318 | 193 | 243 |
| 54      | 269 | 194 | 270 |
| 55      | 261 | 195 | 275 |
|         |     |     |     |

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

| etricas |     |     |     |
|---------|-----|-----|-----|
| 56      | 264 | 196 | 308 |
| 57      | 283 | 197 | 325 |
| 58      | 301 | 198 | 371 |
| 59      | 333 | 199 | 254 |
| 60      | 238 | 200 | 304 |
| 61      | 408 | 201 | 264 |
| 62      | 276 | 202 | 282 |
| 63      | 249 | 203 | 338 |
| 64      | 250 | 204 | 324 |
| 65      | 301 | 205 | 237 |
| 66      | 301 | 206 | 279 |
| 67      | 307 | 207 | 399 |
| 68      | 258 | 208 | 276 |
| 69      | 281 | 209 | 261 |
| 70      | 251 | 210 | 299 |
| 71      | 320 | 211 | 325 |
| 72      | 308 | 212 | 292 |
| 73      | 244 | 213 | 322 |
| 74      | 270 | 214 | 245 |
| 75      | 263 | 215 | 359 |
| 76      | 319 | 216 | 260 |
| 77      | 296 | 217 | 286 |
| 78      | 218 | 218 | 241 |
| 79      | 218 | 219 | 293 |
| 80      | 321 | 220 | 305 |
| 81      | 271 | 221 | 425 |
| 82      | 286 | 222 | 190 |
| 83      | 292 | 223 | 285 |
| 84      | 329 | 224 | 338 |
| 85      | 363 | 225 | 299 |
| 86      | 268 | 226 | 231 |
| 87      | 298 | 227 | 232 |
| 88      | 301 | 228 | 287 |
| 89      | 269 | 229 | 219 |
| 90      | 259 | 230 | 298 |
| 91      | 274 | 231 | 368 |
| 92      | 310 | 232 | 437 |
| 93      | 185 | 233 | 264 |
| 94      | 298 | 234 | 316 |
| 95      | 218 | 235 | 320 |
| 96      | 293 | 236 | 341 |
| 97      | 233 | 237 | 258 |
| 98      | 258 | 238 | 275 |
|         |     |     |     |

Tarea 7. Prueba Chi Cuadrada y Prueba de Lilliefors (Kolmogorov - Smirnoff) para bondad de ajuste.

| 99  | 296 | 239 | 295 |
|-----|-----|-----|-----|
| 100 | 206 | 240 | 339 |
| 101 | 276 | 241 | 318 |
| 102 | 226 | 242 | 315 |
| 103 | 313 | 243 | 295 |
| 104 | 283 | 244 | 321 |
| 105 | 328 | 245 | 455 |
| 106 | 406 | 246 | 324 |
| 107 | 280 | 247 | 220 |
| 108 | 318 | 248 | 338 |
| 109 | 226 | 249 | 388 |
| 110 | 333 | 250 | 274 |
| 111 | 362 | 251 | 324 |
| 112 | 386 | 252 | 285 |
| 113 | 219 | 253 | 361 |
| 114 | 330 | 254 | 296 |
| 115 | 217 | 255 | 275 |
| 116 | 220 | 256 | 333 |
| 117 | 299 | 257 | 247 |
| 118 | 274 | 258 | 336 |
| 119 | 203 | 259 | 291 |
| 120 | 298 | 260 | 330 |
| 121 | 287 | 261 | 204 |
| 122 | 277 | 262 | 315 |
| 123 | 319 | 263 | 305 |
| 124 | 312 | 264 | 315 |
| 125 | 382 | 265 | 269 |
| 126 | 315 | 266 | 338 |
| 127 | 251 | 267 | 287 |
| 128 | 247 | 268 | 345 |
| 129 | 378 | 269 | 383 |
| 130 | 287 | 270 | 209 |
| 131 | 291 | 271 | 273 |
| 132 | 297 | 272 | 320 |
| 133 | 307 | 273 | 338 |
| 134 | 192 | 274 | 310 |
| 135 | 279 | 275 | 325 |
| 136 | 229 | 276 | 216 |
| 137 | 406 | 277 | 298 |
| 138 | 292 | 278 | 295 |
| 139 | 214 | 279 | 205 |
| 140 | 344 | 280 | 338 |