Image Processing

Al and Machine Learning
Hult International Business School
Michael de la Maza
Version 1.0

Images are unstructured data

- A very high number of low information inputs
 - High number: 100x100 pixel image has 10K pixels!
 - Low information: Each pixel contains very little information about the image (e.g., objects)
- Deep learning networks are a breakthrough in image processing
 - Learn features from raw pixel data (e.g., edges)
 - "Deep" because it has many hidden layers. Networks with 100s of layers are common.

AlexNet

- Breakthrough in image processing performance
- Announced at 2012 ImageNet Competition
- 🌳 2015: ResNet has over 100 layers!

 $Source: https://www.researchgate.net/figure/Algorithms-that-won-the-ImageNet-Large-Scale-Visual-Recognition-Challenge-ILSVRC-in_fig2_346091812$

Source: Wikipedia

Convolutional Neural Network

Unlike traditional neurons, output is a matrix.

Source: Fast.ai

A 'convolution' simply multiplies the pixels

Breakthrough: In the 1990s, the filter matrix was created by hand. Today, a CNN *learns* the weights.

Source: Data Mining for Business Analytics by Shmueli

The convolution filter sweeps through the entire image

- The matrix moves across the image.
- A filter can detect local features such as: horizontal lines, curves, borders.
- These local features can then be passed on to further convolutional layers which can then build global features: bird's legs, texture.

Pooling layer

- Downsamples convolutional layer
- Most common types
 - Max pooling
 - Average pooling

