Categorical Data Analysis

Overview

library(tidyverse)
OR
library(dplyr)
library(ggplot2)
library(tidyr)
For G-Test:
library(DescTools)

New package to install:

library(ggmosaic)

- · Data on Canvas!
- Goodness-of-fit tests (χ^2 and G-test AKA log-likelihood ratio)
- · Contingency tables
- · Contingency tests (Fisher's exact, χ^2 , G-test)
- · Mosaic plots in ggplot2 with ggmosaic

2/42

file://localhost/Users/scottericr/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#1

file://localhost/Users/scottericr/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#1

Avalon C.S. Owens, Eric R. Scott

11/02/2018

1/4

12/c/2018 Categorical Data Analysis

Categorical Data Analysis

Goodness-of-fit

Goodness-of-fit

2/6/2018 Categorical Data Analysis

Chi-square with expected probabilities

Phenotypes:	Yellow & Round	Green & Round	Yellow & Wrinkled	Green & Wrinkled
Offspring:	93	31	28	8

Do offspring ratios support a diyhybrid cross model?

Observed numbers:

```
Obs <- c(yellowround = 93, greenround = 31, yelowwrinkled = 28, greenwrinkled = 8)
```

Expected probabilities:

```
Exp.p \leftarrow c(9/16, 3/16, 3/16, 1/16)
```

5/42

file://localhost/Users/scottericr/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#

5/42

12/6/2018 Categorical Data Analysis

Chi-squared with expected values

Use rescale.p = TRUE to use expected values instead of expected probabilities

```
Exp <- c(yellowround = 90, yelowwrinkled = 30, greenround = 30, greenwrinkled = 10)
sum(Obs) == sum(Exp) #the expected numbers of each type.</pre>
```

[1] TRUE

```
chisq.test(Obs, p = Exp, rescale.p = TRUE)
```

```
##
## Chi-squared test for given probabilities
##
## data: Obs
## X-squared = 0.66667, df = 3, p-value = 0.881
```

(6/2018 Categorical Data Analysis

Chi-square with expected probabilities

Do the test with chisq.test()

· Supply observed numbers and expected probabilities

```
##
## Chi-squared test for given probabilities
##
## data: Obs
## X-squared = 0.66667, df = 3, p-value = 0.881
• Interpretation?
```

Categorical Data Analysis

6/42

file://localhost/Users/scotterior/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#

props <- c(9, 3, 3, 1)

Chi-squared with expected ratios

You could also supply the 9:3:3:1 expected ratio

```
chisq.test(Obs, p = props, rescale.p = TRUE)

##

## Chi-squared test for given probabilities

##

## data: Obs

## X-squared = 0.66667, df = 3, p-value = 0.881
```

2/6/2018 Categorical Data Analysis

G test

- The package we installed for Dunnnett's Test also has a G-test function!
- · Unlike chisq.test(), you must supply expected probabilities.

```
#library(DescTools)
GTest(Obs, p = Exp.p) #'p' must be probabilities

##
## Log likelihood ratio (G-test) goodness of fit test
##
## data: Obs
## G = 0.69798, X-squared df = 3, p-value = 0.8737

• Interpretation?
```

9/42

file://localhost/Users/scottericr/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#

Exact binomial test in R

```
binom.test(c(<</successes>>, <</sfailures>>), p = <<pre>probability of success>>)
```

Categorical Data Analysis

If success is "giant":

```
binom.test(c(682, 243), p = 3/4)
```

```
##
## Exact binomial test
##
## data: c(682, 243)
## number of successes = 682, number of trials = 925, p-value =
## 0.3825
## alternative hypothesis: true probability of success is not equal to 0.75
## 95 percent confidence interval:
## 0.7076683 0.7654066
## sample estimates:
## probability of success
## 0.7372973
```

11/42

/2018 Categorical Data Analysi

Exact binomial test

· If there are only two categories, you can use a binomial test.

- You cross two heterozygous corn plants and get 243 dwarf offspring and 682 giant offspring.
- · Is plant size a Mendelian trait?
- 1. Define "success" (totally arbitrary)
- 2. Probability of "success" = 3/4 if you chose "giant", 1/4 if you chose "dwarf"

Categorical Data Analysis

10/42

file://localhost/Users/scottericr/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#

Interpretation

```
##
## Exact binomial test
##
## data: c(682, 243)
## number of successes = 682, number of trials = 925, p-value =
## 0.3825
## alternative hypothesis: true probability of success is not equal to 0.75
## 95 percent confidence interval:
## 0.7076683 0.7654066
## sample estimates:
## probability of success
## 0.7372973
```

- · Accept or reject null?
- · Is it Mendelian?

Categorical Data Analysis

Contingency tables

Count									
		Gender							
		Men	Women	Total					
College major	Humanities	4	10	14					
	Natural Sciences	11	10	21					
	Social Sciences	8	14	22					
Total		23	34	57					

- · Inherently untidy!
- · It's basically impossible to enter contingency tables *directly*.
- We'll cover two possible formats of data that we can convert to contingency tables in R:
- Already tabulated data, like you might be likely to get from context 1 experiments
- 2. Two columns of categorical data, like you might be likely to get from context 2 experiments

2/6/2018 Categorical Data Analysis

Contingency analysis

Context 1: Assign samples to levels of categorical variable, measure a categorical variable.

Context 2: Random sample individuals and measure two categorical variables.

Both have two categorical variables, but data entry and data visualization might differ.

14/42

file://localhost/Users/scotterior/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#

14/4

Starting with frequncy data (context 1)

Angina treatment data from lecture:

- $\cdot\;$ Every combination of treatment and symptoms and # of people in each group.
- $\cdot\,$ You might record data in this format since you assigned the groups and simply counted individuals with or without symptoms.

Categorical Data Analysis

angina <- read.csv("Angina.csv")
angina

#Try using `View(angina)

16/42

2/6/2018 Categorical Data Analysis

Converting frequency data into a contingency table

- · "table" is a special class in R.
- R knows how to do things like χ^2 tests automatically on tables.
- · We need to make our data.frame into a table.
- · In this case, we do that with xtabs(), which takes a formula.

class(angina)

[1] "data.frame"

17/42

file://localhost/Users/scottericr/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#1

17/42

12/6/2018 Categorical Data Analysis

Starting with tidy data (context 2)

- Example 9.4 from the text: Are fish infected by a trematode worm eaten or not?
- · Two columns of factors: infection status and predation (eaten or not)
- · What makes this tidier than the previous example?

```
worm <- read.csv("WormGetsBird.csv")
worm</pre>
```

19/42

5/2018 Categorical Data Analysis

Making a table with xtabs()

- · Uses formula interface.
- · Freq as explained by Treatment and Symptoms

angina.table <- xtabs(Freq ~ Treatment + Symptoms, data = angina)
angina.table</pre>

Symptoms
Treatment Angina No_Angina
Placebo 128 19
Timelol 116 44

class(angina.table)

[1] "xtabs" "table'

18/42

file://localhost/Users/scotterior/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#

Tabulating data

We could get this into the same format as the previous example (a frequency table) using count() and then use xtabs() on it...

Categorical Data Analysis

worm %>% count(infection, bird_predation)

...But there is another way

Tabulating data

- table() is another function for making contingency tables
- · Unlike xtabs() it takes two vectors of categorical data as input.

worm.table <- table(worm\$infection, worm\$bird_predation)</pre> worm.table

```
##
               eaten not eaten
                 37
    highly
    lightly
                 10
                           35
    uninfected
```

class(worm.table)

[1] "table"

21/42

file://localhost/Users/scottericr/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#1

21/42

Adding margins to a contingency table

Categorical Data Analysis

angina.table %>% addmargins()

##	Symptoms						
##	Treatment	Angina	No_Angina	Sum			
##	Placebo	128	19	147			
##	Timelol	116	44	160			
##	Sum	244	63	307			

worm.table %>% addmargins()

```
eaten not eaten Sum
highly
             10
                      35 45
lightly
uninfected
                      49 50
```

Two ways to make tables!

· xtabs(): Use when you have a column of frequencies and two columns of factors. Uses the formula interface.

```
mytable <- xtabs(freq ~ factor1 + factor2, data = mydata)</pre>
```

• table(): Use when you have two columns of categorical data and each row is an observation. Needs vectors so you have to use the \$ operator.

mytable <- table(myotherdata\$factorA, myotherdata\$factorB)

22/42

Categorical Data Analysis

Contingency tests

file://localhost/Users/scotterior/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#

Once you have a contingency table of the class table, it's easy to do statistical

24/42

12/6/2018

Categorical Data Analysis

Fisher's Exact test for 2x2 tables

```
fisher.test(angina.table)
```

```
##
## Fisher's Exact Test for Count Data
##
## data: angina.table
## p-value = 0.001785
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.365721 4.902015
## sample estimates:
## odds ratio
## 2.547687
```

- · Accept or reject null?
- · Did the drug work?

25/42

file://localhost/Users/scottericr/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#1

25/42

 χ^2 test

chisq.test(angina.table)

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: angina.table
## X-squared = 9.1046, df = 1, p-value = 0.00255
```

12/6/2018 Categorical Data Analysis

 χ^2 test

chisq.test(worm.table)

```
##
## Pearson's Chi-squared test
##
## data: worm.table
## X-squared = 69.756, df = 2, p-value = 0.0000000000000001124
```

- · Accept or reject null?
- · Is fish predation contingent on infection status?

26/42

file://localhost/Users/scottericr/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#1

26/4

G-test

· GTest() function from the DescTools package

Categorical Data Analysis

GTest(worm.table)

```
##
## Log likelihood ratio (G-test) test of independence without
## correction
##
## data: worm.table
## G = 77.897, X-squared df = 2, p-value < 0.000000000000000022</pre>
```

28

6/2018 Categorical Data Analysis

Using geom_mosaic()

- · geom_mosaic() is a little weird, because mosaic plots are a little weird
- · aes() MUST go inside of geom_mosaic(), NOT inside of ggplot().
- · Rather than supplying an x and a y aesthetic, you supply only x as a product(). I know, weird.

library(ggmosaic)
ggplot(worm) +
 geom_mosaic(aes(x = product(bird_predation, infection)))

31/42

2/6/2018 Categorical Data Analysis

Mosaic plots

- · ggmosaic adds geom_mosaic() for plotting contingency data
- · Works on tidy data, **not** tables

30/42

30/

Prettying up geom_mosaic()

- · Add color with the fill aesthetic
- · Add axis labels

ggplot(worm) +
 geom_mosaic(aes(x = product(bird_predation, infection), fill = bird_predation)) +
 labs(x = "Infection status", y = "Bird predation")

Categorical Data Analysis

file://localhost/Users/scottericr/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#1

33/42

33/42

Try on your own!

mtcars is a dataset in ggplot2 from *Motor Trends* magazine. gear is the number of gears a car has and am is whether a car has manual (1) or automatic (0) transmission.

Categorical Data Analysis

- Is # of gears contingent on transmission type?
- · Make a mosaic plot
- · Do a statistical test

mtcars

2/6/2018 Categorical Data Analysis

Mosaic plot for angina data

Now we can plot the tidy data with geom_mosaic()

```
ggplot(angina.tidy) +
  geom_mosaic(aes(x = product(Symptoms, Treatment), fill = Symptoms)) +
  labs(x = "Treatment", y = "Symptoms")
```


34/42

12/6/2018 Categorical Data Analysis

If you want to learn more...

V6/2018 Categorical Dat

More statistics!

- · Ecological Models and Data (BIO0133)
 - If you have more than two variables
 - Instead of transforming data, use a test that assumes a different distribution besides normal
- · Mixed Models Practical Guide
 - Fixed and random effects in the same regression

37/42

file://localhost/Users/scottericr/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#

37/42

More R Markdown!

- Make customized web pages, PDFs, presentations, etc. in RStudio with $\underline{\mathbb{R}}$ Markdown
- · Make a website in RStudio with blogdown

More tidyverse!

- · R for Data Science: r4ds.had.co.nz
- · Slack channel for R for Data Science: bit.ly/R4DSslack
- #TidyTuesday on Twitter

38/42

file://localhost/Users/scottericr/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#

20/

12/6/20

Categorical Data Analysis

Interactive plots!

· Make ggplots interactive with ggplotly

```
library(plotly)
p <- ggplot(iris, aes(x = Petal.Length, y = Petal.Width, color = Species)) +
  geom_point()
ggplotly(p)</pre>
```

39/42

12/6/2018 Categorical Data Analysis 12/6/2018 Categorical Data Analysis

Really fancy stuff with Shiny

Shiny apps

Thank you, keep in touch!

Twitter:

- @LeafyEricScott
- · @avalonceleste

file://localhost/Users/scottericr/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#1

42/42

file://localhost/Users/scotterier/Dropbox/Bio132/Recitation%20notes/Week%2014/Week_14_2018.html#1

41/42

41/42