GRAVITATIONAL LENSING LECTURE 7

Docente: Massimo Meneghetti AA 2016-2017

CONTENTS

- convergence and shear
- ➤ distance dependence of lensing effects
- magnification
- > critical lines and caustics

➤ Let's consider a circular source

- ➤ Let's consider a circular source
- ➤ How is it distorted if we apply a pure convergence trasformation?

- ➤ Let's consider a circular source
- ➤ How is it distorted if we apply a pure convergence trasformation?

- ➤ Let's consider a circular source
- ➤ How is it distorted if we apply a pure convergence trasformation?
- Now, assume that $\gamma_1>0$ and $\gamma_2=0$. How is the image distorted?

- ➤ Let's consider a circular source
- ➤ How is it distorted if we apply a pure convergence trasformation?
- Now, assume that $\gamma_1>0$ and $\gamma_2=0$. How is the image distorted?

- ➤ Let's consider a circular source
- ➤ How is it distorted if we apply a pure convergence trasformation?
- Now, assume that $\gamma_1>0$ and $\gamma_2=0$. How is the image distorted?
- ➤ And what if γ_1 <0 and γ_2 =0?

- ➤ Let's consider a circular source
- ➤ How is it distorted if we apply a pure convergence trasformation?
- Now, assume that $\gamma_1>0$ and $\gamma_2=0$. How is the image distorted?
- ➤ And what if γ_1 <0 and γ_2 =0?

- ➤ Let's consider a circular source
- ➤ How is it distorted if we apply a pure convergence trasformation?
- Now, assume that $\gamma_1>0$ and $\gamma_2=0$. How is the image distorted?
- ➤ And what if γ_1 <0 and γ_2 =0?
- Let's set γ_1 =0. How is the image distorted if γ_2 >0?

- ➤ Let's consider a circular source
- ➤ How is it distorted if we apply a pure convergence trasformation?
- Now, assume that $\gamma_1>0$ and $\gamma_2=0$. How is the image distorted?
- ➤ And what if γ_1 <0 and γ_2 =0?
- Let's set γ_1 =0. How is the image distorted if γ_2 >0?

- ➤ Let's consider a circular source
- ➤ How is it distorted if we apply a pure convergence trasformation?
- Now, assume that $\gamma_1>0$ and $\gamma_2=0$. How is the image distorted?
- ➤ And what if $\gamma_1 < 0$ and $\gamma_2 = 0$?
- Let's set γ_1 =0. How is the image distorted if γ_2 >0?
- \rightarrow And if $\gamma_2 < 0$?

- ➤ Let's consider a circular source
- ➤ How is it distorted if we apply a pure convergence trasformation?
- Now, assume that $\gamma_1>0$ and $\gamma_2=0$. How is the image distorted?
- ➤ And what if γ_1 <0 and γ_2 =0?
- Let's set γ_1 =0. How is the image distorted if γ_2 >0?
- \rightarrow And if $\gamma_2 < 0$?

SHEAR DISTORTIONS

DEPENDENCE ON REDSHIFT

We have seen that the lensing potential, the deflection angle, the convergence, the shear... depend on a combination of distances.

For example, the lensing potential is:

$$\hat{\Psi}(\vec{\theta}) = \frac{D_{\rm LS}}{D_{\rm L}D_{\rm S}} \frac{2}{c^2} \oint \Phi(D_{\rm L}\vec{\theta}, z) dz$$

Every spatial derivative of Ψ introduces a factor D_{L} .

The distance ratio $D_{LS}D_L/D_S$ is called "lensing distance".

Both the shear and the convergence, being second derivatives of the lensing potential, scale as the lensing distance

$$\Sigma_{cr} = \frac{c^2}{4\pi G} \frac{D_S}{D_{LS} D_L}$$

HOW DOES THE LENSING DISTANCE SCALE WITH SOURCE REDSHIFT?

Note that if the lensing distance grows, the critical surface density decreases, the convergence and the shear grow!

HOW DOES THE LENSING DISTANCE SCALE WITH LENS REDSHIFT?

The lensing distance peaks at ~half way between the source and the observer, meaning that there is an optimal distance where the lens produces its largest effects.

HOW DOES THE LENSING DISTANCE SCALE WITH LENS REDSHIFT?

Of course, the peak moves to larger distances as the distance to the source increases.

CONSERVATION OF SURFACE BRIGHTNESS

The source surface brightness is

$$I_{\nu} = \frac{dE}{dt dA d\Omega d\nu}$$

In phase space, the radiation emitted is characterized by the density

$$f(\vec{x}, \vec{p}, t) = \frac{dN}{d^3x d^3p}$$

In absence of photon creations or absorptions, f is conserved (Liouville theorem)

$$dN = \frac{dE}{h\nu} = \frac{dE}{cp}$$

$$d^3x = cdtdA$$

$$d^3\vec{p} = p^2 dp d\Omega$$

$$f(\vec{x}, \vec{p}, t) = \frac{dN}{d^3x d^3p} = \frac{dE}{hcp^3 dA dt d\nu d\Omega} = \frac{I_{\nu}}{hcp^3}$$

Since GL does not involve creation or absorption of photons, neither it changes the photon momenta (achromatic!), surface brightness is conserved!

Kneib & Natarajan (2012)

$$F_{\nu} = \int_{I} I_{\nu}(\vec{\theta}) d^{2}\theta = \int_{S} I_{\nu}^{S} [\vec{\beta}(\vec{\theta})] \mu d^{2}\beta$$

Kneib & Natarajan (2012)

$$F_{\nu} = \int_{I} I_{\nu}(\vec{\theta}) d^{2}\theta = \int_{S} I_{\nu}^{S} [\vec{\beta}(\vec{\theta})] \mu d^{2}\beta$$

Kneib & Natarajan (2012)

$$F_{\nu} = \int_{I} I_{\nu}(\vec{\theta}) d^{2}\theta = \int_{S} I_{\nu}^{S} [\vec{\beta}(\vec{\theta})] \mu d^{2}\beta$$

Kneib & Natarajan (2012)

$$\mu = rac{dI}{dS} = rac{\delta heta^2}{\delta eta^2} = \det A^{-1}$$

$$F_{\nu} = \int_{I} I_{\nu}(\vec{\theta}) d^{2}\theta = \int_{S} I_{\nu}^{S} [\vec{\beta}(\vec{\theta})] \mu d^{2}\beta$$

CRITICAL LINES AND CAUSTICS

Both convergence and shear are functions of position on the lens plane:

$$\kappa = \kappa(\vec{\theta})$$

$$\gamma = \gamma(\vec{\theta})$$

The determinant of the lensing Jacobian is

$$\det A = (1 - \kappa - \gamma)(1 - \kappa + \gamma) = \mu^{-1}$$

The **critical lines** are the lines where the eigenvalues of the Jacobian are zero:

$$(1 - \kappa - \gamma) = 0$$
 tangential critical line

$$(1 - \kappa + \gamma) = 0$$
 radial critical line

Along these lines the magnification diverges!

Via the lens equations, they are mapped into the caustics...

VISUALIZING THE CAUSTICS

VISUALIZING THE CAUSTICS

SAMPLED VOLUME

