

FCTUC FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA

Introdução à Inteligência Artificial

 $2016/2017 - 2^{\circ}$ Semestre

Trabalho Prático Nº 3: Space Shooter

Índice

Introdução	2
Modelação e desenvolvimento do algoritmo genético	3
Algoritmos genéticos	3
Representação	3
Fitness	3
Seleção	4
Seleção por torneio	4
Recombinação	4
Mutação	4
Elitismo	
Recolha de dados	
Experimentação e análise	5
Conclusão	6
Anexos	7
Valores para a Experiência	7
Seleção aleatória mapa 0	8
Seleção aleatória mapa 1	9
Seleção aleatória mapa 2	10
Seleção Torneio mapa 0	11
Seleção Torneio mapa 1	
Seleção Torneio mapa 2	

Introdução

A evolução dos seres vivos depende muito do ambiente e como estes se adaptam ao mesmo. Melhores indivíduos, melhores probabilidades de sobrevivência.

Com este principio, iremos explorar esta abordagem evolucionária para encontrar os agentes com maior probabilidade de sobreviver, no jogo *Space Shooter*. Esta abordagem foi feita usando algoritmos genéticos.

Numa primeira fase foi realizada a modelação, onde tivemos de produzir representações para o problema, operadores genéticos, mecanismos de seleção através de um *fitness*.

Na segunda fase, passamos à experimentação e análise dos algoritmos implementados.

Modelação e desenvolvimento do algoritmo genético

Algoritmos genéticos

Os algoritmos genéticos(AG) são formas de otimização estocásticas inspirados no processo de evolução através de uma seleção natural. Estes algoritmos utilizam normalmente uma população de soluções candidatas para um dado problema. Os indivíduos dessa população são selecionados para reprodução de acordo com a sua qualidade. A reprodução envolve tipicamente a troca de informação entre os progenitores num processo conhecido por recombinação. Os novos indivíduos assim gerados podem ainda ser alterados de forma localizada através dos efeitos de um operador conhecido por mutação. Para avaliar a qualidade de um indivíduo é utilizada uma função de fitness.

Um algoritmo genético trabalha sobre uma população de indivíduos cujo tamanho permanece, em geral, constante ao longo das gerações. Estes indivíduos, designados cromossomas, representam as soluções candidatas para um dado problema.

O mecanismo de recombinação consiste na troca do material genético de dois progenitores, selecionados segundo a sua função de avaliação. Os novos indivíduos podem ser sujeitos a mutações que provocam trocas dos valores de um ou mais genes.

Representação

A representação a utilizar pelos indivíduos da população é a primeira componente a ser decidida, pois todos os outros dependem desta, e depende do tipo de problema subjacente. A representação consiste numa lista de elementos com os movimentos que o agente realiza, com os disparos que efetua e o seu fitness.

Fitness

O fitness/aptidão é o mérito ou qualidade de um indivíduo, que é quantificado por uma função de avaliação e traduz a capacidade que ele tem de viver e produzir descendência.

Indivíduos de melhor qualidade terão mais oportunidades para se reproduzir e impor as suas características na população.

Neste problema a aptidão, já implementada, de um indivíduo varia de individuo para individuo. Ou seja, quanto maior a sua pontuação melhor será o individuo, e consequentemente maior a sua oportunidade para se reproduzir.

Seleção

O mecanismo de seleção deve possibilitar que os melhores indivíduos se reproduzam mais vezes, para que a população ao evoluir chegue até uma convergência.

Para que o algoritmo genético atinja uma solução, para o problema, o método deve ser conjugado com os operadores de recombinação e de mutação.

Já nos foi fornecido um mecanismo de selecção que seleciona os indivíduos de uma forma completamente aleatório, o que não é muito viável pois queremos que os melhores indivíduos sejam escolhidos. Tendo em conta isto procedemos a criação de uma seleção por torneio.

Seleção por torneio

Na seleção por torneio escolhemos dois indivíduos distintos da população de forma aleatória. O melhor dos dois indivíduos é selecionado para reprodução, isto é, visto que se trata de um problema de maximização, o indivíduo que tiver o maior valor de aptidão é o selecionado.

Recombinação

O operador de recombinação/crossover utiliza dois progenitores selecionados por um dos métodos explicados anteriormente, que vão trocar o seu material genético, com uma probabilidade que é definida na aplicação, produzindo indivíduos com novas características. A recombinação pode ser feita com um ou mais pontos de corte, em que o número de cortes é definido no programa. Se for só um ponto de corte, é gerado uma posição aleatória. Se forem mais do que um, os cortes são feitos dividindo o tamanho do cromossoma nas várias partes que queremos. Isto é, se tivermos dois cortes, o cromossoma é dividido em três partes, no qual a primeira pertence ao primeiro progenitor, a segunda parte ao segundo progenitor e a terceira ao primeiro. Sendo a parte impar pertencente ao primeiro progenitor e a par ao segundo.

Mutação

A mutação consiste na alteração do valor de um ou mais genes de um cromossoma. Optámos por gerar um valor aleatório para a substituição do valor que estava no gene.

Elitismo

O elitismo serve de complemento a um dos métodos de seleção abordados acima, tem como objetivo evitar que os indivíduos de melhor qualidade se percam, retendo um determinado número, que é introduzido na interface, dos melhores indivíduos para a geração seguinte, sendo que os restantes são obtidos normalmente através de um dos métodos de seleção.

Para utilizar o elitismo só é necessário definir o numero de indivíduos que passam entre gerações no campo "Num Individuos Selecionados".

Começamos por guardas os n's melhores indivíduos, de seguida através de um dos métodos de seleção. Mas devido a problemas na implementação, não conseguimos implementar de forma correta. E a função encontra-se desativa.

Recolha de dados

A nossa aplicação recolhe e armazena em ficheiro para cada geração o melhor indivíduo, a sua aptidão e a aptidão média da população.

Estes valores irão permitir uma análise da performance do algoritmo evolucionário.

Experimentação e análise

Para a recolha de resultados para depois efetuar a análise, decidimos variar os parâmetros de "crossover" e "Mutation", e fixar os outros valores. Sendo o valor do número de gerações de 50, o tamanho do individuo de 500, o "Individual Multiplier" de 15 e o tamanho da população de 50 indivíduos. Tivemos o cuidado de manter as mesmas condições para que a recolha de dados produzisse resultados analisáveis. Todos os parâmetros que não estavam a ser testados e analisados foram mantidos iguais durante toda a recolha de resultados entre os algoritmos e/ou parâmetros a serem testados.

Para além disto efetuámos 30 testes e calculámos a média para retirar um pouco da incerteza deste problema estocástico.

Conclusão

Devido há natureza estocástica do trabalho, os resultados podem não ser totalmente satisfatórios. Para atenuar o défice de precisão deveriam de ser realizados mais execuções, para calcular as médias ponderadas. Isto é, quanto mais experiências se realizarem maior será a precisão dos resultados.

A seleção por torneio, é o melhor em relação ao método aleatório. A seleção por torneio seleciona em competição o que tem melhor fitness, enquanto que o método aleatório pode selecionar os piores elementos.

Anexos

Valores para a Experiência

individual size	500
individual multiplier	15
n generations	50
population size	50
tournament size	10
n cortes	20
n individuos selection	15

Seleção aleatória mapa 0

CROSSOVER	0,91		0,85		0,7	
MUTAÇÃO	0,91		0,7		0,85	
SIMULAÇÃO	Fitness	Média	Fitness	Média	Fitness	Média
0	13	-3,3	13	-3,38	11	-5,26
1	15	-3,16	4	-13,1	12	-5,48
2	17	-3,36	6	-14,24	0	-12,52
3	-1	-13,12	11	-5,56	3	-13,12
4	9	-12,18	12	-3,72	12	-5,28
5	15	-4,42	12	-3,54	17	-4,22
6	14	-4,58	12	-3,3	7	-5,24
7	14	-5,3	8	-4,08	14	-4,48
8	15	-4,52	9	-3,26	8	-4,56
9	9	-4,94	15	-3,78	16	-6,02
10	10	-6	12	-4,8	16	-4,8
11	10	-6,92	6	-5,6	15	-6,5
12	5	-6,46	7	-6,62	7	-6,84
13	10	-5,96	4	-7,96	7	-6,16
14	11	-6,82	6	-7,14	9	-6,56
15	11	-7,42	2	-7,36	16	-8,04
16	9	-8,42	11	-6,48	15	-9,76
17	9	-7,98	8	-5,9	15	-7,88
18	5	-8,3	12	-6,62	15	-9,02
19	15	-8,4	6	-7,96	2	-11,24
20	5	-10,14	14	-5,9	-1	-12,72
21	5	-10,86	15	-6,58	-2	-13,24
22	5	-11,94	15	-9,62	13	-5,68
23	2	-12,8	13	-10,7	14	-5,08
24	6	-12,94	1	-14,24	0	-13,42
25	2	-12,02	1	-13,1	-1	-13,88
26	15	-2,38	11	-3,8	-1	-13,54
27	15	-1,5	13	-4,74	-3	-13,64
28	-1	-12	5	-14,92	-2	-13,1
29	1	-11,92	3	-14,94	1	-12,44
30	-1	-11,16	0	-14,64	-4	-13,4
MÉDIA	8,677419355	-7,781290323	8,612903226	-7,663870968	7,451612903	-8,810322581
DESVIO PADRÃO	5,402431333	3,517029302	4,52717543	3,943400921	7,065768043	3,576460211

Seleção aleatória mapa 1

CROSSOVER	0,91		0,85		0,7	
MUTAÇÃO	0,91		0,7		0,85	
SIMULAÇÃO	Fitness	Média	Fitness	Média	Fitness	Média
0	74	10,9	64	11,52	72	14,38
1	74	10,34	53	8,2	52	11,7
2	47	4,96	85	12,36	45	13,16
3	31	-1,06	65	7,06	9	-12,72
4	54	14,32	69	9,14	62	7,2
5	47	11,8	69	6,1	55	8,62
6	45	5,74	42	1,56	7	-12,68
7	16	-16,98	39	-3,12	5	-12,42
8	15	-16,24	19	-8,66	62	-4,82
9	34	-5,18	19	-11,22	52	-6,36
10	34	-3,8	38	-9,58	43	2,1
11	41	-2,06	19	-6,94	46	0,5
12	33	-4,56	17	-7,36	66	-1,6
13	35	-1,08	16	-8,94	62	4,02
14	24	-7,9	0	-16,88	9	-12,24
15	23	-8,3	-2	-18,16	32	-8,1
16	22	-10,6	18	-11,1	32	-7,42
17	24	-9,7	10	-9,7	31	-7,56
18	23	-7,92	15	-10,56	30	-7,86
19	24	-6,16	10	-8,26	30	-9,18
20	22	-7,02	19	-7,86	33	-12,12
21	35	-9,4	17	-6,42	70	2,78
22	33	-10,5	18	-8,12	54	2,72
23	33	-13,1	17	-7,42	5	-12,6
24	26	-14,9	18	-8,56	20	-13,1
25	7	-16,78	39	-4,8	20	-13,5
26	7	-18,86	40	-5,5	6	-13,52
27	18	-17,12	10	-14,76	52	10,36
28	70	9,9	3	-16,88	46	9,6
29	64	13,8	18	-9,92	3	-13,38
30	16	-16,64	18	-9,54	2	-13,4
MÉDIA DESVIO	33,90322581	-4,648387097	28,4516129	-5,623225806	35,90322581	-3,465806452
PADRÃO	17,90180175	10,08677931	22,25778401	8,200470634	22,12771556	9,373492059

Seleção aleatória mapa 2

CROSSOVER	0,91		0,85		0,7	
MUTAÇÃO	0,91		0,7		0,85	
SIMULAÇÃO	Fitness	Média	Fitness	Média	Fitness	Média
0	162	47,46	144	46,26	139	46,38
1	181	40,52	136	43,54	139	49,48
2	111	39,06	126	35,6	134	41,02
3	141	45,8	81	20,46	54	22,52
4	101	36,86	64	16,42	54	20,24
5	137	38,92	61	17,4	106	37,2
6	137	40,3	133	30,2	50	18,56
7	78	31,1	104	29,86	52	21,26
8	92	33,3	103	40,12	94	34,92
9	92	39,22	87	38,52	92	30,8
10	100	37,44	83	33,96	101	31,82
11	140	36,34	109	28,88	70	29,36
12	140	33,34	53	24,16	84	29,12
13	139	34,96	53	19,32	62	22,94
14	110	30,48	37	17,4	76	24,36
15	75	28,28	83	23,16	62	25,06
16	83	31,6	111	37,28	82	30,8
17	103	35,16	98	31,94	70	25,28
18	113	30,42	82	28,96	54	21,32
19	67	30,38	81	20,8	145	35,14
20	67	24,28	81	20,76	104	37,14
21	65	23,26	90	28,76	64	22,74
22	140	35,82	92	34,1	60	21,72
23	99	29,08	82	26,9	53	21,16
24	92	25,48	51	17,88	54	18,78
25	57	25,08	50	17,9	81	19,66
26	102	29,68	45	17,88	72	21,5
27	140	27,26	159	35,68	117	35,68
28	65	21,38	87	27,7	106	37,8
29	65	25,24	40	17,48	55	18,88
30	84	27,96	159	41,62	53	18,96
MÉDIA DESVIO	105,7419355	32,75677419	89,19354839	28,09354839	81,90322581	28,11612903
PADRÃO	31,96567488	6,404919675	33,17151844	8,746713133	29,04096644	8,469432581

Seleção Torneio mapa 0

CROSSOVER	0,91		0,85		0,7	
MUTAÇÃO	0,91		0,7		0,85	
SIMULAÇÃO	Fitness	Média	Fitness	Média	Fitness	Média
0	17	-3,98	14	-2,88	14	-2,34
1	14	-0,08133333	10	-0,164	15	0,03866667
2	15	0,044	14	-0,0973333	11	-0,092
3	17	-0,084	14	-0,0093333	14	-0,04133333
4	14	-0,09066667	14	-0,012	14	0,068
5	12	-0,0413333	14	-0,06666667	15	0,0893333
6	11	0,0733333	15	0,110667	15	0,1533333
7	15	-0,232	13	0,012	15	0,0426667
8	13	-0,1213333	13	-0,00266667	13	0,124
9	16	-0,002133333	16	0,0573333	13	0,084
10	18	0,088	18	0,14533333	15	0,1653333
11	10	0,02	15	0,0733333	14	0,1933333
12	11	-0,0333334	12	-0,024	17	0,06533334
13	19	0,124	14	-0,1	13	0,108
14	11	-0,0573333	14	0,1	17	0,122667
15	14	0,0893333	16	0,15455	15	0,166667
16	12	0,0373333	16	0,206667	15	0,136
17	14	0,06133333	18	-0,0173333	13	0,1173333
18	14	-0,05333333	16	0,092	12	0,0893333
19	14	0,05066667	13	0,0813333	17	0,07066666
20	17	-0,06666667	14	0,0201333	14	0,1093333
21	17	0,1306667	15	0,0773333	11	0,0293333
22	14	0,7733333	17	0,0746666	15	0,06
23	15	0,07866666	17	0,016	14	0,0773333
24	12	0,0493333	15	0,1413333	13	0,03866667
25	14	0,184	15	-0,028	15	0,1893333
26	14	0,133333	13	0,1653333	14	0,0133333
27	12	0,1626667	15	0,1306667	14	0,05466667
28	14	0,1733333	15	0,07066666	15	0,1813333
29	15	0,2266667	16	0,0136	15	0,0266667
30	12	0,104	15	0,096	15	0,0893333
MÉDIA	14,09677419	-0,072240873	14,70967742	-0,050399447	14,25806452	0,00744087
DESVIO PADRÃO	2,190225187	0,732275861	1,669335359	0,523426033	1,436118019	0,433258594

Seleção Torneio mapa 1

CROSSOVER	0,91		0,85		0,7	
MUTAÇÃO	0,91		0,7		0,85	
SIMULAÇÃO	Fitness	Média	Fitness	Média	Fitness	Média
0	86	7,8	76	12,44	70	13,32
1	79	0,921333	64	0,988	71	1,289333
2	57	0,9653333	74	1,236	54	1,093333
3	68	1,494667	64	1,229333	79	1,390667
4	65	1,266667	73	1,252	63	1,117333
5	68	1,124	61	0,7973334	53	1,126667
6	73	1,29733	76	1,476	50	1,286667
7	55	0,937333	80	1,306667	70	1,034667
8	66	0,92	62	1,408	64	1,253333
9	67	1,081333	64	1,250667	64	1,16
10	65	1,08	59	1,301333	62	1,124
11	60	0,7493333	79	1,237333	55	1,185333
12	65	0,7346666	66	1,438667	54	1,245333
13	75	1,90667	61	1,24667	68	1,665333
14	70	1,082667	54	0,942666	50	1,128
15	54	0,994667	68	1,508	64	1,165333
16	62	1,234667	72	1,441333	53	0,768
17	74	1,364	69	1,370667	81	1,378667
18	72	1,210667	78	1,376	69	1,324
19	54	0,989333	68	1,370667	71	1,066667
20	52	1,009333	62	1,356	60	1,157333
21	56	0,68	79	1,228	64	1,121333
22	70	1,094667	66	1,09333	71	1,428
23	71	1,029333	72	1,296	63	1,112
24	67	0,9853333	77	1,154667	53	1,436
25	68	1,118667	72	1,78667	45	1,068
26	73	1,421333	56	1,250667	73	1,162667
27	45	0,770667	64	1,94667	83	1,256
28	70	1,1	52	1,396	72	1,23333
29	78	0,9426666	79	1,202667	81	1,246667
30	65	1,270667	75	0,9213333	62	1,26533
MÉDIA	66,12903226	1,308946261	68,4516129	1,653204539	64,25806452	1,600300839
DESVIO PADRÃO	8,727937847	1,209757578	7,803385162	1,981879009	9,820872249	2,145285608

Seleção Torneio mapa 2

CROSSOVER	0,91		0,85		0,7	
MUTAÇÃO	0,91		0,7		0,85	
SIMULAÇÃO	Fitness	Média	Fitness	Média	Fitness	Média
0	140	36,46	143	34,38	129	39,26
1	178	3,642667	154	3,006667	138	3,778667
2	145	3,557333	144	2,845333	148	3,294667
3	129	3,34	156	3,006667	130	3,548
4	161	3,356	152	2,969333	152	2,781333
5	135	3,32	133	2,969333	125	3,06
6	134	3,297333	145	3,257333	137	2,948
7	129	3,124	152	2,934667	139	3,605333
8	156	3,590667	154	3,213333	137	3,688
9	137	2,934667	149	2,901333	138	3,121333
10	144	3,552	142	2,938667	132	3,14
11	147	3,108	135	2,938667	130	3,316
12	117	3,310667	172	3,645333	127	3,350667
13	125	3,042667	160	3,336	129	3,35333
14	136	3,768	141	3,372	165	3,488
15	137	3,490667	160	3,216	139	3,688
16	100	2,212	171	2,897333	132	2,974667
17	132	2,993333	141	3,232	141	4,269333
18	129	3,084	145	3,253333	138	3,726667
19	116	2,954667	163	3,034667	149	3,121333
20	149	3,010667	135	2,470667	131	3,509333
21	116	2,430667	133	3,226667	155	3,216
22	147	3,002667	153	3,126667	119	3,349333
23	172	3,364	145	3,168	121	3,150667
24	144	3,106667	134	3,130667	122	3,446667
25	143	3,168	146	2,644	123	3,098667
26	166	2,796	102	2,750667	144	3,318667
27	144	3,341333	129	2,646667	142	3,08667
28	108	2,906667	135	3,212	119	2,810667
29	144	2,698667	150	3,198667	166	3,272
30	166	2,761333	134	3,524	98	2,777333
MÉDIA DESVIO	139,5483871	4,216946323	145,4193548	4,078924774	135,3225806	4,469333355
PADRÃO	17,81597455	5,896618891	13,49019762	5,537808159	13,74276841	6,359966547