

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Estatística

EST- 202 18/12/2023 Prova 2 Prof^a. Dra. Graziela Dutra Rocha Gouvêa

None

1. (20 pts) O número de carros vendidos semanalmente num stand é uma variável aleatória X com a seguinte função de probabilidade:

X	1	2	3	4
P(x)	С	$\frac{c}{2}$	<u>c</u> 3	$\frac{c}{4}$

- i. Calcule o valor de c.
- ii. Calcule a esperança e a variância desta variável aleatória.
- 2. (20 pts) Cirurgias de microfraturas no joelho têm 75% de chance de sucesso em pacientes com joelhos degenerativos. A cirurgia foi realizada em três pacientes. Determine a probabilidade de a cirurgia ser um sucesso em:
 - a) No máximo um paciente.
 - b) Pelo menos dois pacientes.
- 3. (20 pts) O numero de petroleiros que chega a certa refinaria em cada dia é uma variável aleatória com distribuição de Poisson com média 2. As atuais instalações portuárias da refinaria podem servir até 3 petroleiros por dia. Se mais de três petroleiros chegam num dia, os petroleiros em excesso são enviados para outro porto. Qual a probabilidade de, num dia, se ter de recusar serviço a petroleiros?
- 4. (20pts) As alturas dos alunos de uma determinada escola são normalmente distribuídas com média 1,60 m e desvio padrão 0,30 m. Encontre a probabilidade de um aluno escolhido ao acaso medir:
 - a) entre 1,50 e 1,80 m
 - b) mais que 1,75 m
 - c) menos que 1,48 m
- 5. (20 pts) Os pesos do papel descartados semanalmente em residências de determinada cidade tem distribuição normal com média de 9,4 toneladas e desvio-padrão de 4,2 toneladas. Determine o peso que separa os 33% inferiores dos 67% superiores

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Estatística

Formulário:

Função de probabilidade de uma variável aleatória **discreta**: $p(x_i) = P(X = x_i)$

Função de Distribuição Acumulada: $F(x) = P(X \le x)$, $x \in \mathbb{R}$.

Esperança matemática de uma variável aleatória discreta: $E(X) = \sum_i x_i p(x_i)$, i = 1, 2, ..., n. Variância de uma variável aleatória discreta: $var(X) = E(X^2) - [E(X)]^2$ em que $E(X^2) =$ $\sum_{i} x_{i}^{2} p(x_{i})$, i = 1, 2, ..., n.

Esperança e variância de Variáveis aleatórias Contínuas
$$E(X) = \int_a^b x f(x) \, dx$$
, $E(X^2) = \int_a^b x^2 f(x) \, dx$ e $var(X) = E(X^2) - [E(X)]^2$

Distribuição Binomial:

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x} \text{ em que } \binom{n}{x} = \frac{n!}{x!(n - x)!}$$

$$E(X) = np \quad \text{e} \quad var(X) = np(1 - p)$$

Distribuição Poisson:

$$P(X=x)=rac{e^{-\lambda}\lambda^x}{x!}$$
; $E(X)=\lambda$ e $var(X)=\lambda$ Aproximação da Binomial pela Poisson: $\lambda=np$

Distribuição Normal Padrão:

se
$$X \sim N(\mu, \sigma^2)$$
, entao, $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$

Boa Prova!!!