Generelle Statistiske Metoder

Erik Rybakken

December 11, 2017

• Studie av 4434 pasienter, med fokus på hjerteproblemer.

- Studie av 4434 pasienter, med fokus på hjerteproblemer.
- Hver pasient ble undersøkt tre ganger, med 6 års mellomrom.

- Studie av 4434 pasienter, med fokus på hjerteproblemer.
- Hver pasient ble undersøkt tre ganger, med 6 års mellomrom.

To mulige problemstillinger:

1. Hvilke faktorer påvirker blodtrykket?

- Studie av 4434 pasienter, med fokus på hjerteproblemer.
- Hver pasient ble undersøkt tre ganger, med 6 års mellomrom.

To mulige problemstillinger:

- 1. Hvilke faktorer påvirker blodtrykket?
- 2. Kan vi forutsi hvor lenge en pasient har igjen å leve basert på dataene som ble gjort i første sjekk?

Detaljer om analysen:

1. Kun pasientene fra den første sjekken ble brukt i analysen

- Studie av 4434 pasienter, med fokus på hjerteproblemer.
- Hver pasient ble undersøkt tre ganger, med 6 års mellomrom.

To mulige problemstillinger:

- 1. Hvilke faktorer påvirker blodtrykket?
- 2. Kan vi forutsi hvor lenge en pasient har igjen å leve basert på dataene som ble gjort i første sjekk?

Detaljer om analysen:

- 1. Kun pasientene fra den første sjekken ble brukt i analysen
- 2. Paientene med minst én ukjent verdi ble fjernet fra analysen

- Studie av 4434 pasienter, med fokus på hjerteproblemer.
- Hver pasient ble undersøkt tre ganger, med 6 års mellomrom.

To mulige problemstillinger:

- 1. Hvilke faktorer påvirker blodtrykket?
- 2. Kan vi forutsi hvor lenge en pasient har igjen å leve basert på dataene som ble gjort i første sjekk?

Detaljer om analysen:

- 1. Kun pasientene fra den første sjekken ble brukt i analysen
- 2. Paientene med minst én ukjent verdi ble fjernet fra analysen
- 3. Dette ble i alt 3885 pasienter

Lineær regresjon

Vi antar en lineær modell:

$$Y = X\beta + \epsilon \tag{1}$$

Lineær regresjon

Vi antar en lineær modell:

$$Y = X\beta + \epsilon \tag{1}$$

der

- Y er responsen
- X er prediktorene
- ullet β er en vektor med koeffisienter
- \bullet $\;\epsilon$ er en normalfordelt variabel med forventningsverdi 0

Lineær regresjon

Vi antar en lineær modell:

$$Y = X\beta + \epsilon \tag{1}$$

der

- *Y* er responsen
- X er prediktorene
- β er en vektor med koeffisienter
- \bullet ϵ er en normalfordelt variabel med forventningsverdi 0

I vårt tilfelle er Y blodtrykket, mens X består av faktorene kjønn (mann/kvinne), alder, antall sigaretter røyket per dag, BMI, glukosenivå, utdanningsnivå og kolesterolnivå.

Minstre kvadraters metode

Vi har en $n \times p$ -matrise **X** bestående av n observasjoner av p faktorer, og en $n \times 1$ -matrise **Y** bestående av de korresponderene responsvariablene. Vi vil fra nå av anta at de observerte faktorene og responsene er normalisert til å ha gjennomsnitt 0 og varians 1.

Minstre kvadraters metode

Vi har en $n \times p$ -matrise \mathbf{X} bestående av n observasjoner av p faktorer, og en $n \times 1$ -matrise \mathbf{Y} bestående av de korresponderene responsvariablene. Vi vil fra nå av anta at de observerte faktorene og responsene er normalisert til å ha gjennomsnitt 0 og varians 1.

Minstre kvadraters metode estimerer koeffisientene β ved å minimere RSS (residual sum of squares):

$$(\mathbf{Y} - \mathbf{X}\beta)(\mathbf{Y} - \mathbf{X}\beta)^T \tag{2}$$

Minstre kvadraters metode

Vi har en $n \times p$ -matrise **X** bestående av n observasjoner av p faktorer, og en $n \times 1$ -matrise **Y** bestående av de korresponderene responsvariablene. Vi vil fra nå av anta at de observerte faktorene og responsene er normalisert til å ha gjennomsnitt 0 og varians 1.

Minstre kvadraters metode estimerer koeffisientene β ved å minimere RSS (residual sum of squares):

$$(\mathbf{Y} - \mathbf{X}\beta)(\mathbf{Y} - \mathbf{X}\beta)^T \tag{2}$$

Bruker alle faktorene, og kan føre til overfitting, og dermed dårligere prediksjon.

Tre forbedringer av minstre kvadraters metode

• Beste delmengde-utvalg velger ut en delmengde av faktorene og utfører minstre kvadrater på denne.

Tre forbedringer av minstre kvadraters metode

- Beste delmengde-utvalg velger ut en delmengde av faktorene og utfører minstre kvadrater på denne.
- ullet Lasso-regresjon krymper absoluttverdien til koeffisientene eta.

Tre forbedringer av minstre kvadraters metode

- Beste delmengde-utvalg velger ut en delmengde av faktorene og utfører minstre kvadrater på denne.
- ullet Lasso-regresjon krymper absoluttverdien til koeffisientene eta.
- Prinsipalkomponent-regresjon projiserer først faktorene til et lavere-dimensjonalt underrom og utfører deretter minstre kvadrater.

Gitt en delmengde $S \subset \{1, \dots, p\}$ kan vi danne matrisen $\mathbf{X}_S = (\mathbf{X}_{i_1} | \mathbf{X}_{i_2} | \dots | \mathbf{X}_{i_k})_{i_* \in S}$. Vi kan så utføre minst kvadrater på \mathbf{X}_S .

Gitt en delmengde $S \subset \{1, \ldots, p\}$ kan vi danne matrisen $\mathbf{X}_S = (\mathbf{X}_{i_1} | \mathbf{X}_{i_2} | \ldots | \mathbf{X}_{i_k})_{i_* \in S}$. Vi kan så utføre minst kvadrater på \mathbf{X}_S . For en gitt $0 \le k \le p$ utfører vi minste kvadrater på den delmengden $S \mod |S| = k$ som gir lavest RSS.

Lasso-regresjon

Lasso-regresjon finner koeffisientene β som minimerer uttrykket

$$(\mathbf{Y} - \mathbf{X}\beta)(\mathbf{Y} - \mathbf{X}\beta)^T + \lambda \sum_{i=1}^{p} |\beta_i|$$
 (3)

der λ er en parameter som bestemmer hvor mye store koeffisienter skal straffes. Dette er ekvivalent med å minimere uttrykket

$$(\mathbf{Y} - \mathbf{X}\beta)(\mathbf{Y} - \mathbf{X}\beta)^T \tag{4}$$

der vi krever at $\sum_{i=1}^{p} |\beta_i| \leq t$.

Lasso-regresjon

Matrisen $\mathbf{X}^T\mathbf{X}$ kan dekomponeres (egenverdi-dekomposisjon):

$$\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{D}^2 \mathbf{V}^T \tag{5}$$

der V er matrisen med egenvektorene til X^TX som kolonnevektorer og \mathbf{D}^2 er diagonalmatrisa med de korresponderende egenverdiene $d_1^2 \geq d_2^2 \geq \cdots \geq d_p^2$ som diagonalelementer.

Matrisen $\mathbf{X}^T\mathbf{X}$ kan dekomponeres (egenverdi-dekomposisjon):

$$\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{D}^2 \mathbf{V}^T \tag{5}$$

der ${\bf V}$ er matrisen med egenvektorene til ${\bf X}^T{\bf X}$ som kolonnevektorer og ${\bf D}^2$ er diagonalmatrisa med de korresponderende egenverdiene $d_1^2 \geq d_2^2 \geq \cdots \geq d_p^2$ som diagonalelementer.

Vi danner matrisa $\mathbf{Z} = \mathbf{X}\mathbf{V}$. Kolonnene i denne matrisa kalles *prinsipalkomponentene* til \mathbf{X} . Den n-te prinsipalkomponenten har maksimal varians gitt at den skal være ortogonal til de forrige n-1 prinsipalkomponentene.

Prinsipalkomponent-regresjon utføres ved at man velger de k første prinsipalkomponentene til X, dvs. de første k kolonnene til Z og gjør minste kvadrater på denne matrisa.

Aller først delte jeg datasettet i to deler: Ett treningssett med 3108 (80%) pasienter og et valideringssett med 777 (20%) pasienter.

Aller først delte jeg datasettet i to deler: Ett treningssett med 3108 (80%) pasienter og et valideringssett med 777 (20%) pasienter. For å bestemme parameterene til de tre metodene, brukte jeg kryss-validering.

• Treningssettet ble delt inn i 10 grupper.

- Treningssettet ble delt inn i 10 grupper.
- Hver modell og valg av parameter ble trent på 9 grupper og testet på den siste.

- Treningssettet ble delt inn i 10 grupper.
- Hver modell og valg av parameter ble trent på 9 grupper og testet på den siste.
- Dette ble gjentatt for hver gruppe.

- Treningssettet ble delt inn i 10 grupper.
- Hver modell og valg av parameter ble trent på 9 grupper og testet på den siste.
- Dette ble gjentatt for hver gruppe.
- Gjennomsnittet av RSS ble beregnet for hver gruppe.

- Treningssettet ble delt inn i 10 grupper.
- Hver modell og valg av parameter ble trent på 9 grupper og testet på den siste.
- Dette ble gjentatt for hver gruppe.
- Gjennomsnittet av RSS ble beregnet for hver gruppe.
- Jeg valgte den parameteren med lavest gjennomsnittlig RSS.

Lasso-regresjon

Resultater

0.071
0.317
0.002
0.246
0.032
0.037
-0.035
0.100
0.723
0.039

Utvidelse av metodene

Jeg dannet nye faktorer ved å ta alle mulige produkter av de originale:

$$X_1 \cdot X_1, X_1 \cdot X_2, \ldots$$

Utvidelse av metodene

Jeg dannet nye faktorer ved å ta alle mulige produkter av de originale:

$$X_1 \cdot X_1, X_1 \cdot X_2, \ldots$$

Disse faktorene ble brukt til å danne en ny matrise \mathbf{X} bestående av både de originale og de nye faktorene, tilsammen 44 faktorer.

Utvidelse av metodene

Jeg dannet nye faktorer ved å ta alle mulige produkter av de originale:

$$X_1 \cdot X_1, X_1 \cdot X_2, \ldots$$

Disse faktorene ble brukt til å danne en ny matrise **X** bestående av både de originale og de nye faktorene, tilsammen 44 faktorer. Jeg utførte så Lasso-regresjon og PCR på denne nye matrisen.

Lasso-regresjon (del 2)

Prinsipalkomponent-regresjon (del 2)

Resultater

	Lasso	PCR
Test Error	0.703	0.720
Std Error	0.038	0.039

Vi ser at Lasso-regresjon ble forbedret fra $0.720\ til\ 0.703.$