PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-293483

(43) Date of publication of application: 05.11.1996

(51)Int.Cl.

H01L 21/3065

(21)Application number: 07-057587

C23F 4/00

(71)Applicant: RES DEV CORP OF JAPAN

SANYO ELECTRIC CO LTD

(22) Date of filing:

16.03.1995

(72)inventor:

AKIZUKI MAKOTO

HARADA MITSUAKI DOI ATSUMASA

YAMADA AKIRA

(30)Priority

Priority number: 06213079

Priority date: 06.09.1994

Priority country: JP

(54) FLATTENING METHOD FOR SOLID SURFACE WITH GAS CLUSTER ION BEAM

PURPOSE: To prevent defects from being produced on the surface of a substrate by irradiating a solid surface with gas cluster ions being a massive group of atoms or molecules of a substance being gaseous at a normal temperature and pressure.

CONSTITUTION: By using an oxide, a nitride, a carbide, a rear gas substance, and a mixed gaseous substance obtained by mixing them by a proper ratio, and so on, a cluster of gases of these substances are formed. A gas cluster ion beam obtained by ionization on irradiating this gas cluster with electrons under a condition of an accelerating voltage of 10kV irradiates solid surfaces, selecting a beam of specific size as occasion demands. Consequently, it becomes possible to flatten and cleanse the surfaces of boards under a lower temperature condition without damaging the surfaces.

LEGAL STATUS

[Date of request for examination]

21.11.2000

[Date of sending the examiner's decision of rejection]

27.08.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

[Date of final disposal for application]

[Patent number]

3731917

[Date of registration]

21.10.2005

[Number of appeal against examiner's decision of rejection] 2002-18496 [Date of requesting appeal against examiner's decision of

24.09.2002

rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-293483

(43)公開日 平成8年(1996)11月5日

(51) Int.Cl.*	識別記号	庁内整理番号	FI	技術表示箇所
H01L 21/3	·		H 0 1 L 21/302	N
C23F 4/0)		C23F 4/00	С
			H 0 1 L 21/302	F

審査請求 未請求 請求項の数7 OL (全 7 頁)

(21)出願番号	特顯平7-57587	(71)出顧人	390014535
(22)出願日	平成7年(1995) 3月16日	(71) LUBRA I	新技術事業団 埼玉県川口市本町4丁目1番8号
(31)優先権主張番号	特顧平6-213079	(71)出顧人	
	平6 (1994) 9月6日		三洋電機株式会社
(33)優先権主張国		(72)発明者	大阪府守口市京阪本通2丁目5番5号
		(12) 72 914	大阪府守口市京阪本通2丁目5番5号 三
		(72)発明者	
			大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内
		(74)代理人	并理士 西澤 利夫
			最終頁に続く

(54) 【発明の名称】 ガスクラスターイオンビームによる固体表面の

平坦化方法

(57)【要約】

【構成】 常温および常圧で気体状物質の塊状原子集団または分子集団であるガスクラスターを形成し、これに電子を浴びせて生成させたガスクラスターイオンを加速電圧によって加速して基板表面に照射し、固体表面を平坦化する。

【効果】 表面損傷を生じるととなく、半導体、その他電子デバイス等の固体表面の平坦化、さらにはその表面清浄化も可能となる。

1

【特許請求の範囲】

【請求項1】 常温および常圧で気体状物質の塊状原子 集団または分子集団であるガスクラスターイオンを固体 表面に照射してその表面を平坦化することを特徴とする ガスクラスターイオンビームによる固体表面の平坦化方 法。

【請求項2】 表面の不純物の除去を行う請求項1の方法。

【請求項3】 常温および常圧で気体状の物質が酸素またはその化合物、窒素またはその化合物、希ガス物質、もしくはそれらの混合物質からなる請求項1の方法。

【請求項4】 構成分子数を選別したクラスターイオン を照射する請求項1の方法。

【請求項5 】 常温および常圧で気体状の反応性物質の 塊状原子集団または分子集団であるガスクラスターイオ ンを基板表面に照射して反応させ、基板表面に薄膜を形 成すると同時に、その表面を平坦化することを特徴とす るガスクラスターイオンビームによる固体表面の平坦化 方法。

【間求項6】 平坦化と同時に表面に形成された薄膜を 20 非反応性のガスクラスターイオンの照射、または、湿式 法により除去して平坦な基板材料表面を露出させる請求 項5の方法。

【請求項7】 表面の不純物の除去を加速電圧5 k V 以下で行う請求項2の方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、クラスターイオンビームによる固体表面の平坦化方法に関するものである。 さらに詳しくは、この発明は、半導体、その他電子デバ 30イス等の基板表面の平坦化や清浄化処理に有用な、常温で気体物質のクラスターを用いての固体表面の処理方法 に関するものである。

[0002]

【従来の技術とその課題】従来より、半導体等の電子デバイス等の基板表面の清浄化および平坦化などを目的に各種の気相反応方法が開発され、たとえばスパッタリング、真空蒸着、CVD、イオンビーム蒸着などの方法が実用化されてきている。しかしながら、これら従来の方法の場合には、対象とする基板表面の損傷、劣化等の好40ましくない影響を避けることが難しく、高精度、高品質な電子デバイスの製造等にとって大きな課題となっていた。

【0003】すなわち、たとえば、基板表面を平坦化する方法としてAr(アルゴン)ガスなどの単原子または 炭化物分子イオンを低角度で基板表面に照射し、スパッタリン ダすることによって平坦化する方法が知られている。しかしながら、この従来の方法の場合には、基板表面に存在した凸部が優先的に削られ、ある程度までは平坦化さ のサイカる一方で、スパッタリング前には存在しなかったさざ 50 いる。

被状の起伏が新たに生じるため、イオンの入射角をある程度高角度にしてこれを抑制しなければならなかった。だが、このような入射角の抑制は、逆に凸部のスパッタリングの優先性を弱めるとともに、入射イオンにより基板表面の損傷を顕著なものとする。さらに、基板表面の損傷を抑えるためには入射エネルギーを100eV程度以下にする必要があるが、この場合にはイオン電流が極端に少なくなり、実用的なスパッタリング速度が得られなくなるという欠点があった。

10 【0004】また、基板表面を清浄化する方法としてA r などの希ガス物質のイオンビームを基板表面に照射する乾式法や化学薬品に基板表面を侵食させる湿式法などが知られている。しかしながら、イオンビームを照射する方法では、入射エネルギーが100eV以下ではイオン電流が極端に少なくなるため、入射エネルギーを数keVと高くしたイオンビームを利用しなければならなかった。そのため、基板表面には欠陥を発生させたり、あるいはArが表面に注入され不純物原子となるため、清浄な表面が得られない等の欠点があった。

0 【0005】 このため、ULS I等の高度エレクトロニクスの発展へと向かうための基板技術として、イオンビームを用いながらも無損傷で基板表面を平坦化し、清浄化することのできる新しいイオンビーム技術の実現が強く望まれていた。この発明は、以上の通りの事情に鑑みてなされたものであり、従来のイオンビーム技術の欠点を解消し、基板表面に欠陥を生じさせることのない無損傷表面平坦化、さらには清浄化を可能とする新しいイオンビーム表面処理方法を提供することを目的としている。

[0006]

【課題を解決するための手段】との発明は、上記の課題を解決するものとして、常温および常圧で気体状物質の塊状原子集団または分子集団であるガスクラスターのイオンを固体表面に照射してその表面を平坦化することを特徴とするガスクラスターイオンビームによる固体状面の平坦化方法を提供する。

【0007】また、この発明は、常温および常圧で気体 状の反応性物質の塊状原子集団または分子集団であるガ スクラスターのイオンを基板表面に照射して反応させ、

40 基板表面に薄膜を形成すると同時に、基板表面を平坦化 する方法をも提供する。

[0008]

【作用】すなわち、この発明では、前記した通りの常温 および常圧で気体状の物質、たとえば酸化物、窒化物、炭化物、希ガス物質およびそれらの適度な割合での混合 気体状の物質などを用い、これら物質のガスクラスターを形成し、これに電子照射してイオン化したガスクラスターイオンピームを固体表面に対して必要に応じて特定のサイズのピームを選別して照射することを特徴としている。

【0009】この場合、クラスターは、通常数百個の原 子または分子集団によって構成されているため、たとえ 加速電圧が10kVでもそれぞれの原子または分子は、 数十eV以下の超低速イオンビームとして照射されるの で、極めて低損傷で固体表面を処理することができる。 そして、このガスクラスターイオンビームを固体表面に 照射すると、クラスターイオンを構成する分子または原 子種相互の、そしてそれらの固体表面の原子との多段階 での衝突により、横方向の運動成分を持った反射分子ま たは原子を生じるため、これにより基板表面凸部の選択 10 的なスパッタリングが生じる。との効果を利用するとと により表面の平坦化を行うことができる。また、この平 坦化現象は表面に集中的に与えられるエネルギーによ り、結合力の弱い表面凸部に存在する原子を優先的にス パッタリングする効果からも得られる。さらに、との表 面からの選択的なスパッタリング効果により、平坦化と 同時に固体表面の不純物を除去して清浄化することも可 能となる。

【0010】そして、この発明では、常温および常圧で 気体状の反応生物質の塊状原子集団または分子集団であ るガスクラスターのイオンを基板表面に照射して反応さ せ、基板表面に薄膜を形成すると同時に、その表面を平 坦化することや、平坦化と同時に表面に形成された薄膜 をAr等の非反応性のガスクラスターイオンの照射、ま たは、湿式法により除去して平坦な基板材料表面を露出 させることも可能としている。

【0011】なお、ガスクラスターそのものの生成につ いては、すでにこの発明の発明者が提案しているよう に、加圧状態の気体を真空装置内に膨張型ノズルを介し て噴出させることで生成可能である。このようにして生 30 の結果を示したものが図3である。 成したガスクラスターは、電子を照射してイオン化する ことができる。なお、常温で気体状の物質としては、た とえば代表的なものとしては、CO、CO、N、O、 NO_x、C_x H_y O_z、等の酸化物、O_x、N_x、その 他各種のもの、さらにはAr、He等の希ガスが例示さ れる。

【0012】平坦化と同時に薄膜を形成する際の反応性 のガスクラスターイオンとしては、平坦化の対象とする 固体の種類によって、その固体表面との反応で生起する 含酸素の原子、分子集団からなるクラスターイオンを用 いる。これらの表面薄膜は、Ar (アルゴン) 等非反応 性のガスクラスターイオンによって除去される。また、 フッ酸溶液等を用いる湿式法で除去してもよい。これに よって平坦化された表面が露出することになる。

【0013】以下、実施例を示してさらに詳しくこの発 明のガスクラスターイオンビームによる固体表面の平坦 化方法について説明する。

[0014]

【実施例】

実施例 1

添付した図面の図1は、この発明のガスクラスターイオ ンピームを用いて、CO』モノマーイオン、およびクラ スターサイズ250以上のCO。 クラスターイオンを、 加速電圧10kVの条件で照射した場合のPt薄膜表面 の平均粗さを測定した結果を示したものである。

【0015】平均粗さは、モノマーイオンを照射した場 合は27A以上にしか平坦化されていないのに対し、ガ スクラスターイオンを2×1016ions/cm2 照射 の場合には、照射前の48人から8人まで減少し、表面 を大幅に平坦化することができた。この結果はCO、ク ラスターをPt表面を平坦化した例であるが、絶縁膜、 半導体を平坦化することもできる。

実施例2

CO2 モノマーイオンとクラスターサイズ250以上の CO₂ クラスターイオンと、5×10¹³ ions/cm ² の条件でPt薄膜表面に照射し、加速電圧を変化させ てこの薄膜表面の平坦性を測定した。その結果を示した ものが図2である。

【0016】CO。クラスターイオンの場合には、加速 電圧が高いほど効果があり、加速電圧が5 k V、つま り、構成原子1個あたりの持つエネルギーが20eV以 下の極低エネルギーでも平坦化の効果があることが確認 された。一方、CO、モノマーイオンでは、加速電圧を 大きくしても平坦化効果は顕著なものとならなかった。 実施例3

加速電圧10kV、5×10¹¹ions/cm²の条件 で、CO』ガスクラスターイオンのクラスターサイズを 変化させた場合のPt薄膜表面の平坦性を測定した。そ

【0017】Pt薄膜の場合、クラスターサイズ250 程度のクラスターイオンによる平坦化効果が最も高いこ とが確認された。

実施例4

CO』モノマーイオンとCO』クラスターイオンを照射 した後のP t 薄膜表面のスパッタリング量と表面平坦性 との関係によって検討した。

【0018】図4はその結果を示したものである。モノ マーイオンの照射では、25人以上のスパッタリングに ものを選択する。たとえば酸化膜を生成させる場合には 40 より表面が粗化されていくのに対し、クラスターイオン 照射では、さらに平坦化され、100A以上のスパッタ リングにより飽和することが確認された。モノマーイオ ンの照射では得られないRa24A以下の平坦性がクラ スターイオンの照射により実現された。

図5は、Niを強制的に6×10¹²atoms/cm² 付着させたSi基板に構成原子数250以上のCO,ク ラスターイオン、およびCO、モノマーイオンを加速電 圧10kV、ドーズ量2×10¹³ions/cm²の条

50 件でSi基板に照射した場合のその前後での表面のNi

濃度を全反射蛍光X線分析法によって測定した結果であ る。これにより深さ15nm程度までの極表面の不純物 濃度を測定している。

【0019】Ni不純物濃度はモノマーイオン照射では ほとんど減少していないのに対し、ガスクラスターイオ ン照射ではドーズ量の増加に伴い急速に減少している。 ドーズ量が2×101ions/cm2のクラスター照 射後のNi不純物濃度は1.3×101atoms/c m² であり、照射前の1/5まで減少することができ 少させるととができる。

実施例6

CO、モノマーイオンとCO、クラスターイオンとを、 加速電圧10kV、5×10¹ ions/cm² の照射 量の条件において、クラスターサイズを変化させながら Cu薄膜表面に照射した。

【0020】図6は、この際のクラスターサイズとCu 薄膜表面の平坦性との関係を示したものである。この図 6からも明らかなように、Cu薄膜の場合、サイズ15 0程度のクラスターイオンによる平坦化効果が最も高い 20 ことが確認された。

実施例7

Ar (アルゴン) モノマーイオンとArクラスターイオ ンとを用い、加速電圧20kVで、実施例5と同様にし て表面にCuを付着させたSi基板表面に照射し、照射 前後での表面のCu 濃度を測定した。

*【0021】その結果を示したものが図7である。図中 のsmall クラスターは、クラスターサイズ 1000程度 のものを、large クラスターは、クラスターサイズ30 00程度のものを示している。Arモノマーイオンの照 射ではCuはほとんど除去できないが、1×10¹¹io ns/cm²のlarge クラスターの照射によって1/6 ~1/10程度にまで除去することができること、sma1 1 クラスターイオンがモノマーイオンと共存する場合に も除去効果が得られることが確認された。このことは、 る。ドーズ量を増やすことによりさらに不純物濃度を減 10 モノマーとクラスターとを完全に分離しなくとも、両者 が共存する状態であっても、不純物の除去効果が得られ ることを示している。

表1は、各種基板にサイズ250以上のCO, クラスタ ーを加速電圧10kVの条件で照射した場合の、その前 後での表面平均粗さを測定した結果を示したものであ る。このように、クラスターイオン照射の場合には等価 的に大電流のビームが得られるので、基板のチャージア ップを抑制して、基板表面を平坦化することができる。 【0022】このように、この発明の方法によって、基 板表面に欠陥のない平坦であり清浄な表面が低温でも形 成できるため、この清浄な表面を用いた単結晶成長が可 能であり、さらにはこれらの材料を用いた電子デバイス のモノシリック化にも応用でき、その効果は大きい。 [0023]

【表1】

	各種基板の表面平均租さ(単位:人)			
基板の種類	照射前	CO ₂ クラスター イオン照射後	CO _x モノマー イオン照射後	
Ti/Si基版上のPl荷膜	49	10	33	
Pt薄膜	71	28	61	
Si基板上のSi。Na薄膜	3.6	2.4	3. 2	
ソーダガラス基板	6.1	2.8	6. 2	
Si基板	20	. 1.5	2.2	
Si基板上の多結晶Si苺膜	37	7	83 ·	
Ti/Si基板上のCu厚膜	64	28	GI	

[0024] 実施例9

表2は、CO。クラスターイオンを加速電圧10kV、 ドーズ重5×10¹¹ i on s/cm² の条件で照射した 多結晶シリコン膜の表面に形式されたSiO,膜の膜厚 と、フッ酸溶液処理前後での表面平均粗さを示したもの である。とのフッ酸処理は、SiO、膜が完全に除去で・ きる時間行われている。比較のために、クラスターイオ ンを照射していない多結晶シリコン薄膜での値を併せて 示している。

【0025】クラスターイオンを照射していない試料の 表面平均粗さは37点であり、この値はフッ酸処理によ り変化しない。サイズ250、及び500のクラスター 50 のみを得たい場合には、クラスターイオン照射後に薄膜

イオン照射により多結晶シリコン膜の表面平均粗さはそ 40 れぞれ、7人、及び18人に減少している。これと同時 に、多結晶シリコン膜の表面には8~6nmのSiO, 薄膜が形成されており、平坦化と同時にSiO、薄膜が 得られている。表面の平坦性はフッ酸除去により殆ど変 化無く、平坦性が保たれている。

【0026】CO、クラスターイオン照射により形成さ れた酸化膜をAェクラスター照射により除去することが できる。この場合、同一の照射装置内で供給ガスの種類 を切り替えるだけで酸化膜除去の効果が得られる。以上 のように、薄膜形成の効果を必要とせず、平坦化の効果 を除去することもできる。

*【表2】

[0027]

shed a stear	SiO,貧哀の	表面平均租さ(単位:人)	
試料の種類	英 库 (A)	フッ酸処理前	フッ酸処理後
照射していない飲料		3 7	3 7
サイズ250のクラスターを照射した試料	8	7	9
サイズ500のクラスターを照射した試料	6	1.8	2.0

【0028】実施例10

スターイオンをドーズ量3×10¹¹ions/cm²の 条件で、実施例5と同様にして表面にCuを付着させた Si基板表面に照射した前後での表面のCuの濃度を測 定した。その結果を示したものが図8である。5kVの 低加速電圧の場合にも、20kVで照射した場合と同様 の清浄化の効果が得られることがわかる。この場合、構 成原子1個あたりの平均エネルギーは2eV以下とな り、低損傷での基板表面の清浄化が実現される。

実施例11

表3は、各種基板に平均サイズ3000のArクラスタ ーを加速電圧20kV、ドーズ量1.3×101ion s/cm²の条件で照射した場合の、その前後での表面※

Si系板上の多結晶Si薄膜

※粗さを測定した結果を示したものである。比較のため

加速電圧を変化させて、平均サイズ3000のArクラ 10 に、同一の加速電圧、イオンドーズ量の単分子イオンを 照射した場合の結果も合わせて示す。CO、クラスター 照射の場合と同様に、各種基板表面が平坦化される。C u薄膜の場合には、照射前に見られた結晶粒による凸部 がAェクラスター照射により削られ、CO、クラスター 照射の場合よりも強い平坦化の効果が得られている。と の場合、Aェクラスターの構成原子1個当たりの平均エ ネルギーは7eV程度と非常に低エネルギーである。こ のため、ガスクラスターイオン照射により低損傷で基板 表面が平坦化される。

[0029]

【表3】

各種基板の表面平均粗さ(単位:A) 基板の種類 照射前 Arクラスター イオン照射後 Arモノマー イオン照射後 Ti/Si基板上のPi薄膜 49 16 30 Ti/Si基板上のCu薄膜 64 20 55

3 7

[0030]

り、超低速のガスクラスターイオンビームを照射するこ とによって、表面損傷を生じることなく、より低温条件 で基板表面の平坦化および清浄化が可能となる。また、 平坦化と同時に反応性のガスクラスターイオンビームの 照射により薄膜形成も可能とされ、非反応性ガスクラス ターイオンビームで、あるいは湿式法によって、との薄 膜を除去して平坦化された表面を露出することも可能と される。

【図面の簡単な説明】

【図1】との発明によるCO。 ガスクラスターイオン と、比較としてのモノマーイオンを照射した後のPt薄 膜表面の平坦性を示した図である。

【図2】この発明によるCO、ガスクラスターイオン と、比較としてのモノマーイオンを照射した後のPt薄 膜表面の平坦性の加速電圧依存性を示した図である。 【図3】この発明によるCO、のガスクラスターイオン

【発明の効果】との発明により、以上詳しく説明した通 30 ラスターサイズ依存性を示した図である。

【図4】この発明によるCO、のガスクラスターイオン と、モノマーイオン照射後のP t 薄膜表面のスパッタリ ング量と表面平坦性との関係を示した図である。

と、モノマーイオン照射後のP t 薄膜表面の平坦性のク

【図5】この発明によるCO、ガスクラスターイオンと 比較としてのモノマーイオンを照射した後の表面のNi 不純物濃度を示した図である。

【図6】この発明によるCO、のガスクラスターイオン と、モノマーイオン照射後のCu薄膜表面の平坦性のク ラスターサイズ依存性を示した図である。

【図7】この発明によるArのガスクラスターイオンと 比較としてのモノマーイオンを照射した後の表面のCu 不純物濃度を示した図である。

【図8】この発明によるArのガスクラスターイオンを 照射した後の表面のCu不純物濃度の減少量(除去率) の加速電圧依存性を示した図である。

[図2]

[図3]

【図4】

フロントページの続き

(72)発明者 土井 淳雅 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

(72)発明者 山田 公 兵庫県姫路市新在家本町 6 丁目11-9