Math 217 – Final Exam Winter 2022 Solutions

Question:	1	2	3	4	5	6	7	8	Total
Points:	12	16	12	12	14	12	10	12	100
Score:									

- 1. (12 points) Write complete, precise definitions for, or precise mathematical characterizations of, each of the following (italicized) terms.
 - (a) The kernel of the linear transformation $T:V\to W$ from the vector space V to the vector space W

Solution: The *kernel* of the linear transformation $T:V\to W$ is the set $\{\vec{v}\in V:T(\vec{v})=\vec{0}_W\}.$

(b) A basis of the vector space V

Solution: A basis of the vector space V is a linearly independent subset of V that spans V.

(c) The function $T:V\to W$ from the vector space V to the vector space W is a linear transformation

Solution: The function $T: V \to W$ is a linear transformation if for all $v_1, v_2 \in V$ and $c \in \mathbb{R}$, we have $T(v_1 + v_2) = T(v_1) + T(v_2)$ and T(cv) = cT(v).

(d) The vector \vec{v} in the vector space V is an eigenvector of the linear transformation $T:V\to V$

Solution: The vector \vec{v} in the vector space V is an eigenvector of the linear transformation $T: V \to V$ if $\vec{v} \neq \vec{0}$ and there is $\lambda \in \mathbb{R}$ such that $T(\vec{v}) = \lambda \vec{v}$.

(a) (4 points) If (\vec{v}_1, \vec{v}_2) and (\vec{w}_1, \vec{w}_2) are bases of the subspaces V and W of \mathbb{R}^4 , respectively, where $V \neq W$, then $(\vec{v}_1, \vec{v}_2, \vec{w}_1, \vec{w}_2)$ is a basis of \mathbb{R}^4 .

Solution: FALSE. For instance, we could let $\vec{v}_1 = \vec{e}_1$, $\vec{v}_2 = \vec{e}_2 = \vec{w}_1$, and $\vec{w}_2 = \vec{e}_3$. Then $V \neq W$ since $\vec{e}_3 \in W \setminus V$, but $(\vec{v}_1, \vec{v}_2, \vec{w}_1, \vec{w}_2) = (\vec{e}_1, \vec{e}_2, \vec{e}_2, \vec{e}_3)$ is linearly dependent since it has a repeated vector, hence is not a basis of \mathbb{R}^4 .

(b) (4 points) For every finite-dimensional vector space V, every surjective linear transformation from V to V is injective.

Solution: TRUE. Let V be a vector space of finite dimension $n \in \mathbb{N}$, and let $T: V \to V$ be a surjective linear transformation. Then $\operatorname{im}(T) = V$, so $\operatorname{dim}\operatorname{im}(T) = n$. By Rank-Nullity, it follows that $\operatorname{dim}\ker(T) = 0$, which implies $\ker(T) = \{\vec{0}\}$ and therefore T is injective.

(c) (4 points) Every square matrix A has the same characteristic polynomial as its transpose, A^{\top} .

Solution: TRUE. Let A be an $n \times n$ matrix, and let f_A and $f_{A^{\top}}$ be the characteristic polynomials of A and A^{\top} , respectively. Then

$$f_{A^{\top}}(x) = \det(xI_n - A^{\top}) = \det((xI_n)^{\top} - A^{\top})$$

= $\det((xI_n - A)^{\top}) = \det(xI_n - A) = f_A(x)$

since every matrix has the same determinant as its transpose.

(d) (4 points) If the square matrix A is symmetric, then every matrix that is similar to A is diagonalizable.

Solution: TRUE. Let A be a symmetric matrix. Then A is orthogonally diagonalizable by the Spectral Theorem, so we can write $A = QDQ^{\top}$ where Q is orthogonal and D is diagonal. Now let B be any matrix that is similar to A, and fix an invertible matrix S such that $B = SAS^{-1}$. Then

$$B \ = \ SAS^{-1} \ = \ SQDQ^{\top}S^{-1} \ = \ SQDQ^{-1}S^{-1} \ = \ (SQ)D(SQ)^{-1},$$

so B is diagonalizable.

3. Let $M = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ and define the linear transformation $T : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ by

$$T(A) = MA - AM$$
 for all $A \in \mathbb{R}^{2 \times 2}$.

(You do not have to prove that T is linear.)

(a) (4 points) Find the \mathcal{E} -matrix $[T]_{\mathcal{E}}$ of T, where $\mathcal{E} = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$.

Solution: Note that

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) \ = \ \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \ = \ \begin{bmatrix} c & b+d-a \\ -c & -c \end{bmatrix}.$$

Therefore,

$$[T]_{\mathcal{E}} = \begin{bmatrix} | & | & | \\ [T(E_{11})]_{\mathcal{E}} & \cdots & [T(E_{22})]_{\mathcal{E}} \\ | & | & | \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}.$$

(b) (4 points) Find the characteristic polynomial of T.

Solution: The characteristic polynomial f_T of T is given by

$$f_T(x) = \det(xI_4 - [T]_{\mathcal{E}}) = \det\begin{bmatrix} x & 0 & -1 & 0 \\ 1 & x - 1 & 0 & -1 \\ 0 & 0 & x + 1 & 0 \\ 0 & 0 & 1 & x \end{bmatrix} = x^2(x - 1)(x + 1).$$

(c) (4 points) Diagonalize T; that is, find a basis \mathcal{B} of $\mathbb{R}^{2\times 2}$ and a diagonal matrix D such that $[T]_{\mathcal{B}} = D$.

Solution: From (b), we see that the eigenvalues of T are 0, 0, 1, and -1. From the definition of T we see that M and I_2 belong to $\ker(T)$, and by inspection we see that \vec{e}_2 is a 1-eigenvector of $[T]_{\mathcal{E}}$, so $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is a 1-eigenvector of T. Finally,

a calculation shows that ker $(T + I_2)$ is spanned by $\begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}$. So we can take

$$\mathcal{B} = \left(\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \right) \quad \text{and} \quad D = \begin{bmatrix} 0 & & & \\ & 0 & & \\ & & 1 & \\ & & & -1 \end{bmatrix}.$$

4. Below are two copies of the same picture of the unit circle in \mathbb{R}^2 , along with vectors \vec{v} and \vec{w} lying in the first quadrant. Assume $\vec{v} = \vec{w} + \vec{e}_2$. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation with standard matrix $A = \begin{bmatrix} \vec{v} & \vec{w} \end{bmatrix}$.

(a) (3 points) Draw and clearly label the vector $T\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ in the first picture above.

Solution: $T \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ should be the vector $\vec{e_2}$ in the picture.

(b) (3 points) Draw and clearly label the vectors \vec{u}_1 and \vec{u}_2 in the second picture above, where (\vec{u}_1, \vec{u}_2) is the orthonormal basis of \mathbb{R}^2 obtained by applying the Gram-Schmidt procedure to (\vec{v}, \vec{w}) .

Solution: \vec{u}_1 is the unit vector $\frac{\vec{v}}{\|\vec{v}\|}$, and \vec{u}_2 is the unit vector perpendicular to \vec{u}_1 that lies in the fourth quadrant.

(c) (3 points) Assuming $\vec{w} = \begin{bmatrix} a \\ b \end{bmatrix}$, find $\det(T)$ in terms of a and b.

Solution: If $\vec{w} = \begin{bmatrix} a \\ b \end{bmatrix}$ then $\vec{v} = \begin{bmatrix} a \\ b+1 \end{bmatrix}$, so $A = \begin{bmatrix} a & a \\ b+1 & b \end{bmatrix}$ and thus $\det(T) = \det(A) = ab - a(b+1) = -a$.

(d) (3 points) Assuming $\vec{w} = \begin{bmatrix} a \\ b \end{bmatrix}$, solve the linear system $A\vec{x} = \text{proj}_{\vec{e}_1}(\vec{v})$. (Your answer may involve a or b.)

Solution: Assuming $\vec{w} = \begin{bmatrix} a \\ b \end{bmatrix}$, we have $A = \begin{bmatrix} a & a \\ b+1 & b \end{bmatrix}$ and $\text{proj}_{\vec{e_1}}(\vec{v}) = a\vec{e_1}$, so

we must solve the linear system with augmented matrix $\begin{bmatrix} a & a & a \\ b+1 & b & 0 \end{bmatrix}$. Noting from the picture that a,b>0, we find after row reducing that

$$\operatorname{rref} \begin{bmatrix} a & a & a \\ b+1 & b & 0 \end{bmatrix} \ = \ \begin{bmatrix} 1 & 0 & -b \\ 0 & 1 & b+1 \end{bmatrix},$$

so the unique solution is $\vec{x} = \begin{bmatrix} -b \\ b+1 \end{bmatrix}$.

5. Let
$$A = \begin{bmatrix} a & 1 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4}$$
, where $a, b, c \in \mathbb{R}$. In each part below, determine the set

of all real numbers a, b, c that make the given statement true. (No justification required.)

(a) (2 points) A is invertible.

Solution: $ab(c+1) \neq 0$.

Justification: A is invertible iff $det(A) \neq 0$ iff $ab(c+1) \neq 0$.

(b) (2 points) Multiplication by A preserves length; that is, for all $\vec{x} \in \mathbb{R}^4$, $||A\vec{x}|| = ||\vec{x}||$.

Solution: None.

Justification: A preserves length iff A is orthogonal, which is impossible since the final column of A is not a unit vector, no matter what a, b, c are.

(c) (2 points) Multiplication by A preserves (4-dimensional) volume; that is, for every parallelepiped P in \mathbb{R}^4 , the 4-volume of $\{A\vec{x}:\vec{x}\in P\}$ equals the 4-volume of P.

Solution: |ab(c+1)| = 1.

Justification: A preserves volumes iff $|\det(A)| = 1$ iff |ab(c+1)| = 1.

(d) (4 points) A is diagonalizable over \mathbb{R} .

Solution: $a \neq b$ and (c > 3 or c < -1).

Justification: using block matrices, we see that A is diagonalizable over \mathbb{R} iff both 2×2 blocks $B = \begin{bmatrix} a & 1 \\ 0 & b \end{bmatrix}$ and $C = \begin{bmatrix} c & -1 \\ 1 & 1 \end{bmatrix}$ are diagonalizable over \mathbb{R} . But B is diagonalizable over \mathbb{R} iff B is diagonalizable over \mathbb{C} iff $a \neq b$, so our solution follows from the following observations about C: if c < -1 or 3 < c, then f_C has two distinct real roots; if -1 < c < 3, then f_C has two non-real complex roots; if c = -1 then gemu(0) < almu(0); and if c = 3 then gemu(2) < almu(2).

(e) (4 points) A is diagonalizable over \mathbb{C} .

Solution: $a \neq b$ and $c \neq 3$ and $c \neq -1$.

Justification: essentially the same as that given in part (d). The only difference here is that A is diagonalizable over $\mathbb C$ (but not over $\mathbb R$) whenever $a \neq b$ and -1 < c < 3, since then A has four distinct complex roots, two of them nonreal.

- 6. Let $u, v \in \mathbb{R}^4$ and let $A = \begin{bmatrix} u & v & u+v & u-v \end{bmatrix} \in \mathbb{R}^{4\times 4}$. Suppose that the vectors $\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ are eigenvectors of A, with eigenvalues 1 and 2, respectively.
 - (a) (4 points) Find a basis of ker(A), and justify your answer.

Solution: From the equations $A\vec{x} = \vec{x}$ and $A\vec{y} = 2\vec{y}$ we get

$$\vec{x} = u + u + v + u - v = 3u$$
 and $2\vec{y} = v + u + v - (u - v) = 3v$,

which implies
$$u = \frac{1}{3} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$
 and $v = \frac{1}{3} \begin{bmatrix} 0 \\ 2 \\ 2 \\ -2 \end{bmatrix}$, so $A = \frac{1}{3} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 2 & 2 & -2 \\ 1 & 2 & 3 & -1 \\ 1 & -2 & -1 & 3 \end{bmatrix}$. Ob-

serving that (u, v) is linearly independent while u + v and u - v are redundant in the list of columns of A, we see that $\operatorname{rank}(A) = 2$, so $\dim(\ker A) = 2$ by

Rank-Nullity. It follows that the vectors $\vec{a} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, which

belong to ker(A) by inspection, form a basis of ker A. (Alternatively, we could row reduce A and use the usual procedure to find a basis of ker A.)

Solution: By inspection we see that the vectors $\vec{a} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$

belong to $\ker(A)$. Since \vec{x} and \vec{y} are eigenvectors of A corresponding to distinct nonzero eigenvalues, $\{\vec{x}, \vec{y}\}$ is a linearly independent subset of $\operatorname{im}(A)$, so $\operatorname{rank}(A) \geq 2$. This implies $\operatorname{dim} \ker(A) \leq 2$ by Rank-Nullity, so we conclude that $\operatorname{dim} \ker(A) = 2$ and (\vec{a}, \vec{b}) is in fact a basis of $\ker(A)$.

Solution: By inspection we see that the vectors \vec{a} and \vec{b} (as above) belong to $\ker(A)$, and are therefore eigenvectors of A with eigenvalue 0. Since unions of linearly independent subsets of distint eigenspaces are still linearly independent (by 7.3.3, or a result from the worksheets), the set $\{\vec{a}, \vec{b}, \vec{x}, \vec{y}\}$ is a linearly independent subset of \mathbb{R}^4 , and is thus a basis of \mathbb{R}^4 . This implies that (\vec{a}, \vec{b}) spans $\ker(A)$, and is therefore a basis of $\ker(A)$.

(b) (4 points) Orthogonally diagonalize A. That is, explicitly find an orthogonal matrix

Q and a diagonal matrix D such that $Q^{T}AQ = D$. (No justification required.)

Solution:

$$Q = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

(c) (4 points) Either write down a triangular matrix that has the same characteristic polynomial as A but is *not* similar to A, if this is possible, or else state that this is impossible. Briefly justify your answer.

Solution: This is possible. For instance, we can let $B = \begin{bmatrix} 0 & 1 & & \\ & 0 & & \\ & & 1 & \\ & & & 2 \end{bmatrix}$. Then

B is not diagonalizable, since gemu(0) = 1 < 2 = almu(0), so B cannot be similar to A since A is diagonalizable. However, the characteristic polynomial of B is $x^2(x-1)(x+1)$, just like A.

- 7. Let V be an n-dimensional vector space, and let $T: V \to V$ be a linear transformation.
 - (a) (4 points) Prove that every eigenvector of T belongs to ker(T) or im(T).

Solution: Let $\vec{v} \in V$ be an eigenvector of T, say with corresponding eigenvalue λ . If $\lambda = 0$, then $T(\vec{v}) = 0\vec{v} = \vec{0}$, so $\vec{v} \in \ker(T)$. If $\lambda \neq 0$, then $T(\lambda^{-1}\vec{v}) = \lambda^{-1}T(\vec{v}) = \lambda^{-1}\lambda\vec{v} = \vec{v}$, so $\vec{v} \in \operatorname{im}(T)$. Either way, we see that $\vec{v} \in \ker(T) \cup \operatorname{im}(T)$, completing the proof.

(b) (6 points) Prove that if T is diagonalizable, then $\ker(T) \cap \operatorname{im}(T) = \{\vec{0}\}.$

Solution: Suppose T is diagonalizable, which means there is an eigenbasis \mathcal{B} of V for T, say $\mathcal{B} = (\vec{v}_1, \dots, \vec{v}_n)$ with corresponding eigenvalues $\lambda_1, \dots, \lambda_n$. Let $\vec{y} \in \ker(T) \cap \operatorname{im}(T)$, and fix $\vec{x} \in V$ such that $T(\vec{x}) = \vec{y}$. Let c_1, \dots, c_n be the unique scalars such that $\vec{x} = \sum_{i=1}^n c_i \vec{v}_i$. Then

$$\vec{y} = T(\vec{x}) = T\left(\sum_{i=1}^{n} c_i \vec{v}_i\right) = \sum_{i=1}^{n} c_i T(\vec{v}_i) = \sum_{i=1}^{n} c_i \lambda_i \vec{v}_i.$$

Now, let $I = \{i : \lambda_i \neq 0\}$, and note that since $\vec{y} \in \ker(T)$, we must have $c_i \lambda_i = 0$ for each $i \in I$, which implies $c_i = 0$ for each $i \in I$. But this means $\vec{x} \in \ker(T)$, so $\vec{y} = T(\vec{x}) = \vec{0}$, and we conclude that $\ker(T) \cap \operatorname{im}(T) = \{\vec{0}\}$.

8. Let A be an $m \times n$ matrix. Let $V = (\ker A)^{\perp} = \operatorname{im} A^{\top}$ and $W = \operatorname{im} A = (\ker A^{\top})^{\perp}$, and let $T: V \to W$ and $S: W \to V$ be the linear transformations defined by

$$T(\vec{x}) = A\vec{x}$$
 and $S(\vec{y}) = A^{\top}\vec{y}$ for all $\vec{x} \in V$ and $\vec{y} \in W$.

(a) (6 points) Prove that T is an isomorphism.

Solution: Since T is given by matrix multiplication, it is linear, so it will be enough to show that T is injective and surjective. For injectivity, let $\vec{x} \in V$ and suppose $T(\vec{x}) = \vec{0}$. Then $A\vec{x} = \vec{0}$, so $\vec{x} \in \ker A$, but also $\vec{x} \in V = (\ker A)^{\perp}$, so we must have $\vec{x} = \vec{0}$ since $\ker(A) \cap \ker(A)^{\perp} = \{\vec{0}\}$. This shows $\ker(T) = \{\vec{0}\}$, so T is injective. To show T is surjective, let $\vec{y} \in W = \operatorname{im} A$ be arbitrary, and fix $\vec{x} \in \mathbb{R}^n$ such that $A\vec{x} = \vec{y}$. Let $\vec{z} = \operatorname{proj}_V(\vec{x}) \in V$, so $\vec{z} - \vec{x} \in V^{\perp} = \ker A$. Then

$$T(\vec{z}) = A\vec{z} = A(\vec{x} + (\vec{z} - \vec{x})) = A\vec{x} + A(\vec{z} - \vec{x}) = \vec{y} + \vec{0} = \vec{y}.$$

Since $\vec{y} \in W$ was arbitrary, this shows T is surjective.

Alternatively: Having shown just one of injectivity or surjectivity, one could use Rank-Nullity to show $\dim V = \dim W$, and then argue from there that T must be bijective.

Since part (a) holds for arbitrary $A \in \mathbb{R}^{m \times n}$, it follows that S is also an isomorphism, so $S \circ T$ is an isomorphism from V to V. (You do not have to prove this.)

(b) (6 points) Prove that $\det(S \circ T)$ is the product of all the (possibly repeated) nonzero eigenvalues of $A^{\top}A$.

Solution: Since $A^{\top}A$ is symmetric, it is orthogonally diagonalizable by the Spectral Theorem, so fix an orthonormal basis $(\vec{u}_1, \ldots, \vec{u}_k, \vec{u}_{k+1}, \ldots, \vec{u}_n)$ of \mathbb{R}^n consisting of eigenvectors of $A^{\top}A$ and with $(\vec{u}_{k+1}, \ldots, \vec{u}_n)$ a basis of $\ker(A^{\top}A) = \ker A$, so that $\mathcal{B} = (\vec{u}_1, \ldots, \vec{u}_k)$ is a basis of V. For each $1 \leq i \leq n$, fix λ_i such that $A^{\top}A\vec{u}_i = \lambda_i\vec{u}_i$, so $\lambda_1, \ldots, \lambda_k$ are the nonzero eigenvalues of $A^{\top}A$. Then $(S \circ T)(\vec{u}_i) = A^{\top}A\vec{u}_i = \lambda_i\vec{u}_i$ for each $1 \leq i \leq k$, so

$$\det(S \circ T) = \det[S \circ T]_{\mathcal{B}} = \det \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_k \end{bmatrix} = \prod_{i=1}^k \lambda_i.$$