TASK 5

To analyze traffic accident data to identify patterns related to road conditions, weather, and time of day and visualize accident hotspots and contributing factors.

#Import required libraries import pandas as pd import numpy as np #import seaborn as sns import matplotlib.pyplot as plt from matplotlib.pyplot import figure import seaborn as sns

#Load the data
Data=pd.read_csv('/content/drive/MyDrive/UK_Accident.csv')
Data

#Create a dataframe
df=pd.DataFrame(Data)
df

	Unnamed:	Accident_Index	Location_Easting_OSGR	Location_Northing_OSGR	Lor
0	0	200501BS00001	525680.0	178240.0	-0
1	1	200501BS00002	524170.0	181650.0	-0
2	2	200501BS00003	524520.0	182240.0	-0
3	3	200501BS00004	526900.0	177530.0	-0
4	4	200501BS00005	528060.0	179040.0	-0
1504145	464692	2.01E+12	310037.0	597647.0	-3
1504146	464693	2.01E+12	321509.0	574063.0	-3
1504147	464694	2.01E+12	321337.0	566365.0	-3
1504148	464695	2.01E+12	323869.0	566853.0	-3
1504149	464696	2.01E+12	314072.0	579971.0	-3
1504150 rd	ows × 33 colu	umns			

#First 5 rows of the dataset
df.head()

	Unnamed:)	Accident_Index	Location_Easting_OSGR	Location_Northing_OSGR	Longitude
0	0)	200501BS00001	525680.0	178240.0	-0.19117(
1	1		200501BS00002	524170.0	181650.0	-0.211708

#Last 5 rows of the dataset
df.tail()

	Unnamed: 0	Accident_Index	Location_Easting_OSGR	Location_Northing_OSGR	Lor
1504145	464692	2.01E+12	310037.0	597647.0	-3
1504146	464693	2.01E+12	321509.0	574063.0	-3
1504147	464694	2.01E+12	321337.0	566365.0	-3
1504148	464695	2.01E+12	323869.0	566853.0	-3
1504149	464696	2.01E+12	314072.0	579971.0	-3
5 rows × 33 columns					

 $\# Check \ for \ all \ the \ columns \ of \ the \ dataset \ df.columns$

 $\mbox{\sc \#Check}$ for the number of rows and columns of the dataset $\mbox{\sc df.shape}$

(1504150, 33)

 $\# Check \ for \ the \ information$,i.e, dtype and null value for each column df.info

```
1504145
                        None
                                                2
1504146
                        None
1504147
                        None
1504148
                        None
                                                2
1504149
                        None
        Did_Police_Officer_Attend_Scene_of_Accident \
0
1
2
                                                 Yes
3
                                                 Yes
4
                                                Yes
...
1504145
                                                Yes
1504146
                                                Yes
1504147
                                                 Yes
1504148
                                                Yes
1504149
                                                 Yes
         LSOA_of_Accident_Location Year
0
                         E01002849
                                    2005
1
2
                         E01002909
                                    2005
                         E01002857
                                    2005
3
                         E01002840
                                    2005
                         E01002863
                                    2005
4
1504145
                               NaN
                                    2014
1504146
                               NaN
                                    2014
1504147
                               NaN
                                    2014
1504148
                               NaN
                                    2014
1504149
                               NaN 2014
[1504150 rows x 33 columns]>
```

#Check for Statistical Analysis df.describe

[1504150 rows x 33 columns]>

#Datatype of each column df.dtypes

Unnamed: 0	int64
Accident_Index	object
Location_Easting_OSGR	float64
Location_Northing_OSGR	float64
Longitude	float64
Latitude	float64
Police_Force	int64
Accident_Severity	int64
Number_of_Vehicles	int64
Number_of_Casualties	int64
Date	object
Day_of_Week	int64
Time	object
Local_Authority_(District)	int64
Local_Authority_(Highway)	object
1st_Road_Class	int64
1st Road Number	int64
Road Type	object
Speed_limit	int64
Junction Control	object
2nd Road Class	int64
2nd Road Number	int64
Pedestrian Crossing-Human Control	object
Pedestrian Crossing-Physical Facilities	object
Light Conditions	object
Weather Conditions	object
Road Surface Conditions	object
Special Conditions at Site	object
Carriageway_Hazards	object
Urban or Rural Area	int64
Did_Police_Officer_Attend_Scene_of_Accident	object
LSOA of Accident Location	object
Year	int64
dtype: object	

DATA CLEANING

#Check for the null values
print(df.isnull().sum())

Unnamed: 0	0
Accident Index	0
Location_Easting_OSGR	101
Location Northing OSGR	0
Longitude	101
Latitude	0
Police_Force	0
Accident Severity	0
Number_of_Vehicles	0
Number_of_Casualties	0
Date	0
Day_of_Week	0
Time	117
Local_Authority_(District)	0
Local_Authority_(Highway)	0
1st_Road_Class	0
1st_Road_Number	0
Road_Type	0
Speed_limit	0
Junction_Control	0
2nd_Road_Class	0
2nd_Road_Number	0
Pedestrian_Crossing-Human_Control	17
Pedestrian_Crossing-Physical_Facilities	34
Light_Conditions	0
Weather_Conditions	0
Road_Surface_Conditions	0
Special_Conditions_at_Site	0
Carriageway_Hazards	0
Urban_or_Rural_Area	0
<pre>Did_Police_Officer_Attend_Scene_of_Accident</pre>	0
LSOA_of_Accident_Location	108238
Year	0
dtype: int64	

#New dataframe without unnecesary columns
print(df1.isnull().sum())

Unnamed: 0	0
Accident_Index	0
Location_Northing_OSGR	0
Latitude	0
Police_Force	0
Accident_Severity	0
Number_of_Vehicles	0
Number_of_Casualties	0
Date	0
Day_of_Week	0
Time	117
Local_Authority_(District)	0
Local_Authority_(Highway)	0
1st_Road_Class	0
1st_Road_Number	0
Road_Type	0
Speed_limit	0
Junction_Control	0
2nd_Road_Class	0
2nd_Road_Number	0
Light_Conditions	0
Weather_Conditions	0
Road_Surface_Conditions	0
Special_Conditions_at_Site	0
Carriageway_Hazards	0
Urban_or_Rural_Area	0
<pre>Did_Police_Officer_Attend_Scene_of_Accident</pre>	0
Year	0
dtype: int64	

DATA VISUALIZATION

```
#Accident rates by week
week = df1["Day_of_Week"].value_counts()
week
weeks = df1["Day_of_Week"].unique()
num_weeks = week.values
sns.barplot(x=weeks,y=num_weeks,color='violet')
plt.title("Number of Traffic Acciddetns By Weekdays")
plt.xlabel("Number of Accidents")
plt.ylabel("Weekdays")
```



```
#Accident rates due to weather conditions
weather_cond = df1["Weather_Conditions"].value_counts()
weather_cond_values= df1["Weather_Conditions"].unique()
weather_num_acc_arr = weather_cond.values
custom_colors_ = ['skyblue', 'lightcoral', 'lightgreen', 'gold', 'lightpink', 'lightgrey', 'lightblue', 'lightsalmon', 'lightgreen']
figure(figsize=(10, 10), dpi=80)
plt.pie(weather_cond, labels = weather_cond_values,startangle = 30,textprops={'size': 'large'},explode=(0.01,0.01,0.01,0.01,0.01,0.00,0.3)
plt.legend(loc ="lower left")
plt.title("Accident Rate by Weather Condition")
```


#Accidents rates in urban and rural areas
plt.style.use('fivethirtyeight')
df1["Urban_or_Rural_Area"].value_counts().plot(kind='bar', color=['red', 'green','yellow'])
plt.ylabel("Number of Accidents")
plt.xlabel("Urban(1) or Rural(2) Area")
plt.title("Urban Area vs Rural Area")

#Number of injured in accidents and the severity of accidents
sns.barplot(x="Year",y="Number_of_Casualties",data=df1,hue="Accident_Severity",palette="Set3")
plt.title("Accident_Severity")
plt.ylabel("Number of Casualties")
plt.legend(loc="upper right")
plt.show()

