Multiobjective Decomposition-based Mallows models Estimation of Distribution Algorithm. A case of study for Permutation Flowshop Scheduling Problem

Murilo Zangari^{a,*}, Alexander Mendiburu^b, Roberto Santana^c, Aurora Pozo^a

1. Supplementary results

Table 1 present the average HV results obtained by MOEA/D and MEDA/D-MK for the 110 Taillard test instances optimizing the objectives Total Flowtime (TFT), and the makespan (C_{max}). For each algorithm configuration and problem instance, we have executed 10 independent runs. Next, we have used the Kruskall-Wallis statistical test. The Kruskall-Wallis test is the main statistical method used in the determination if two samples are from the same population, which is an alternative to the one-way independent-samples Analysis of Variance (ANOVA). Therefore, we applied the Kruskall-Wallis test (at 5% significance level) to check if the results obtained have a statistical difference. Next, the *post-hoc* test *Nemenyi* is applied to check (if they have achieved significant differences) which one(s) have produced the best results. Thus, the best ranked algorithm(s) is(are) highlighted in boldface.

Table 1: Average normalized HV results

Taillard Instance	Weig	ghted Sum	Tchebycheff			
Tamard Instance	MOEA/D	MEDA/D-MK	MOEA/D	MEDA/D-MK		
Ta_001	0.9020	0.9367	0.8722	0.9276		
${ m Ta_002}$	0.6969	0.7767	0.7280	0.7743		
${ m Ta_003}$	0.7602	0.9107	0.7111	0.8775		
${ m Ta_004}$	0.8541	0.9077	0.8412	0.8944		
${ m Ta_005}$	0.8005	0.8169	0.7440	0.7560		
${ m Ta_006}$	0.7015	0.7371	0.7344	0.7440		
${ m Ta_007}$	0.7619	0.9393	0.7312	0.7681		
Ta -008	0.8893	0.9442	0.8256	0.9002		
${ m Ta_009}$	0.7704	0.8242	0.6999	0.7811		
Ta_010	0.8058	0.8736	0.7637	0.8116		
Ta011	0.7366	0.8338	0.6702	0.7757		
Ta_012	0.7140	0.8043	0.6290	0.7478		
	Continued on next page					

^{*}Corresponding author

Email addresses: murilo.zangari@gmail.com (Murilo Zangari), alexander.mendiburu@ehu.es (Alexander Mendiburu), roberto.santana@ehu.es (Roberto Santana), aurora@inf.ufpr.br (Aurora Pozo)

^a Computer Science Department, Federal University of Paraná (UFPR), Brazil. PO 19081, ZIP Code: 81531-970, Curitiba, Brazil

^bIntelligent Systems Group, Department of Computer Architecture and Technology, University of the Basque Country (UPV/EHU), Paseo Manuel de Lardizabal 1, 20080 San Sebastián, Guipúzcoa, Spain

^cIntelligent Systems Group, Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Paseo Manuel de Lardizabal 1, 20080 San Sebastián, Guipúzcoa, Spain

Table 1 – continued from previous page

Table 1 – continued from previous page	Weie	ghted Sum	T cheby cheff		
Taillard Instance	MOEA/D	MEDA/D-MK	MOEA/D	MEDA/D-MK	
Ta_013	0.8347	0.8926	0.6708	0.8009	
Ta_014	0.7929	0.8457	0.7121	0.8012	
${ m Ta_015}$	0.7782	0.8668	0.6966	0.8572	
Ta_016	0.8290	0.8830	0.7929	0.8553	
${ m Ta_017}$	0.8137	0.8487	0.7704	0.7828	
Ta_018	0.8353	0.8925	0.8086	0.9073	
Ta_019	0.8345	0.8923	0.7302	0.8448	
${ m Ta_020}$	0.8247	0.9035	0.7432	0.8248	
Ta_021	0.6278	0.6860	0.5342	0.6794	
Ta_022	0.8160	0.8647	0.6870	0.8121	
Ta_023	0.7940	0.8504	0.6598	0.7377	
Ta_024	0.8768	0.9357	0.8710	0.9234	
Ta_025	0.7830	0.8561	0.6669	0.6970	
Ta_026	0.8183	0.8762	0.7463	0.8060	
Ta_027	0.7607	0.8578	0.7194	0.8262	
Ta_028	0.8082	0.8522	0.6665	0.7503	
Ta_029	0.8017	0.8405	0.7442	0.8279	
Ta_030	0.7597	0.8500	0.6584	0.7957	
Ta_031	0.9057	0.9509	0.8853	0.9178	
Ta _032	0.8075	0.8885	0.6935	0.7586	
Ta_033	0.9076	0.9589	0.7668	0.8440	
Ta_034	0.8505	0.9401	0.6435	0.7883	
Ta_035	0.9184	0.9763	0.7974	0.9369	
Ta_036	0.8729	0.9330	0.6318	0.7317	
Ta_037	0.8334	0.9222	0.7542	0.8375	
Ta_038	0.8726	0.8955	0.8630	0.9198	
Ta_039	0.7799	0.8972	0.5733	0.6997	
Ta_040	0.9010	0.9593	0.7914	0.9082	
Ta_041	0.7539	0.8701	0.6074	0.6836	
Ta_042	0.6859	0.8281	0.5166	0.6305	
Ta_043	0.6902	0.8274	0.5331	0.6028	
Ta_044	0.8043	0.8786	0.6765	0.7206	
Ta_045	0.7657	0.8601	0.5883	0.6542	
Ta_046	0.7645	0.8680	0.5779	0.6524	
${ m Ta_047}$	0.7819	0.8725	0.6172	0.6571	
Ta_048	0.7800	0.8497	0.5948	0.6572	
${ m Ta_049}$	0.7795	0.8431	0.6390	0.6996	
Ta_050	0.7472	0.8507	0.5243	0.6008	
Ta_051	0.7544	0.8551	0.5427	0.6306	
${ m Ta_052}$	0.7552	0.8110	0.5567	0.5448	
Ta_053	0.7375	0.8282	0.5507	0.6509	
${ m Ta_054}$	0.7240	0.8767	0.5419	0.6592	
${ m Ta_055}$	0.6776	0.7781	0.4816	0.5904	
${ m Ta_056}$	0.7547	0.8461	0.5525	0.6542	
${ m Ta_057}$	0.7155	0.7632	0.4625	0.6252	
${ m Ta_058}$	0.7552	0.8996	0.6160	0.6876	
Ta_059	0.7243	0.8311	0.6033	0.6560	
			Continu	ed on next page	

2

Table 1 – continued from previous page

Taillard Instance	Weig	ghted Sum	${\it Tchebycheff}$		
ramaid instance	MOEA/D	MEDA/D-MK	MOEA/D	MEDA/D-MK	
Ta060	0.8181	0.9186	0.7115	0.7778	
Ta_061	0.9676	0.9890	0.7784	0.8738	
Ta062	0.8840	0.9041	0.8442	0.8611	
Ta_063	0.7648	0.8273	0.6537	0.7101	
Ta_064	0.9257	0.9477	0.7808	0.8772	
Ta_065	0.9368	0.9655	0.8312	0.9007	
Ta_066	0.8028	0.8678	0.7274	0.7580	
Ta_067	0.8737	0.9009	0.6841	0.7970	
Ta_068	0.7855	0.8625	0.5837	0.7111	
Ta_069	0.6688	0.7139	0.6573	0.7187	
${ m Ta_070}$	0.8608	0.8945	0.7112	0.8134	
Ta_071	0.7616	0.8283	0.5507	0.6120	
Ta_072	0.8054	0.8733	0.6517	0.6811	
Ta_073	0.8426	0.8989	0.5272	0.6109	
Ta_074	0.7137	0.8223	0.5103	0.5889	
Ta_075	0.7476	0.8168	0.5193	0.6018	
Ta_076	0.8257	0.9061	0.4714	0.5998	
Ta_077	0.7615	0.8201	0.4942	0.5613	
Ta_078	0.7622	0.8359	0.4558	0.5715	
Ta_079	0.6975	0.7656	0.4514	0.523	
Ta_080	0.6758	0.7021	0.6256	0.700	
Ta_081	0.7755	0.8519	0.4619	0.537	
Ta_082	0.7195	0.8296	0.3618	0.4620	
Ta_083	0.6744	0.7889	0.4346	0.5239	
Ta_084	0.7114	0.8095	0.4052	0.465'	
Ta_085	0.7533	0.8610	0.4838	0.563	
Ta_086	0.7373	0.8349	0.4327	0.472	
Ta_087	0.7429	0.8115	0.4567	0.478	
Ta_088	0.7171	0.8564	0.4414	0.515	
Ta_089	0.7674	0.8891	0.5681	0.554	
Ta_090	0.8332	0.8915	0.5853	0.615	
Ta_091	0.9553	0.9663	0.5965	0.693	
Ta_092	0.8162	0.8747	0.5612	0.5728	
Ta_093	0.7256	0.7531	0.5720	0.5916	
Ta_094	0.7837	0.8160	0.6746	0.646	
Ta_095	0.8969	0.9153	0.4887	0.530	
Ta_096	0.8871	0.8790	0.5846	0.610	
Ta_097	$\boldsymbol{0.7482}$	0.7618	0.5677	0.6080	
Ta_098	0.7778	0.8102	0.4530	0.506	
Ta_099	0.9074	0.9613	0.4330 0.5325	0.616	
Ta_100	0.5293	0.5434	0.4528	0.4627	
Ta_100	0.7336	0.7892	0.4328	0.402 0.442	
$Ta_{-}101$ $Ta_{-}102$	0.7577	0.7892 0.8340	0.4480 0.3980	0.4422	
$Ta_{-}102$ $Ta_{-}103$	0.7377	0.8493	0.3980 0.4586	0.4048	
Ta_103 Ta_104	0.7590 0.7635	0.8410	0.4580 0.4473	0.493	
$Ta_{-}104$ $Ta_{-}105$	0.7035 0.6989	0.7957	0.4475 0.3811	0.3236 0.4438	
Ta_105 Ta_106	0.0989 0.7797	0.7957	0.3811 0.4561	0.4456	
1a_100	0.7797	0.8310		ed on next page	

3

Table 1 – continued from previous page

Taillard Instance	Weig	ghted Sum	Tchebycheff		
Talliard Instance	MOEA/D	$\mathrm{MEDA}/\mathrm{D}\text{-}\mathrm{MK}$	MOEA/D	$\mathrm{MEDA}/\mathrm{D}\text{-}\mathrm{MK}$	
Ta_107	0.7402	0.8024	0.3574	0.4036	
$Ta_{-}108$	0.6983	0.7760	0.4738	0.4960	
$Ta_{-}109$	0.7441	0.8242	0.3409	0.3954	
Ta_110	0.7056	0.8095	0.4271	0.4321	

The results in Table 1 show that, overall, MEDA/D-MK using the scalarizing function $Weighted\ Sum\ (MEDA/D-MK^w)$ obtain the best results. MEDA/D-MK w significantly outperforms the other three algorithm configurations in 78 of the 110 test instances. As Miettinen [?] argued, the $Weighted\ sum$ approach is good at convex (concave) bi-objectives problems, while Tchebycheff approach is useful when the problem is non-convex. This is also confirmed in our results, in which $Weighted\ sum$ have outperformed Tchebycheff. Therefore, due to these results, we have used the $Weighted\ sum$ for the remaining experimental studies.

Moreover, these results contemplate that, MEDA/D-MK significantly outperforms MOEA/D (using the tailored genetic operators for the objectives TFT and C_{max} in most of the test instances.

The execution time analysis was performed on a PC with Intel Xeon E5-620 2.4 GHz processor and 12 GB memory. Table 2 indicates that MEDA/D-MK consumes more CPU time than MOEA/D. This is because the Mallows Model EDA components (e.g., learning and sampling steps) involves more computational overhead than crossover and mutation operators. Regarding that, the computational cost of the sampling in the MEDA/D-MK is $\mathcal{O}(n^2)$. This should explain why the difference between both algorithms increases as the problem size increases.

Table 2: Average CPU time (in seconds) used by $\mathsf{MOEA/D}^T$ and $\mathsf{MEDA/D}^T$

	MOEA/D MEDA/D			/D MIZ
Taillard Instance		,		/D-MK
	mean	std ved	mean	std dev
${ m Ta_001}$	73.05	8.83	93.15	2.84
${ m Ta_002}$	72.19	6.59	92.33	1.46
Ta_003	79.95	4.34	91.09	4.05
Ta_004	73.04	5.00	92.89	3.45
Ta_005	74.96	3.14	94.97	4.18
Ta_006	75.73	7.71	91.86	2.42
${ m Ta}_007$	79.01	3.29	93.39	2.14
Ta_008	72.07	5.40	91.31	2.20
Ta_009	71.93	5.60	93.37	4.30
Ta_010	72.37	4.42	92.02	3.78
Ta_011	89.59	6.89	101.42	1.88
Ta_012	83.29	5.76	102.44	3.13
Ta_013	81.65	3.54	96.30	5.18
Ta_014	84.19	1.60	103.58	2.19
Ta_015	85.60	2.93	103.31	1.50
Ta_016	87.04	3.31	102.10	2.60
Ta_017	87.01	4.94	97.61	3.42
Ta_018	83.59	1.42	98.93	1.70
Ta_019	80.57	3.50	103.25	2.09
${ m Ta}_020$	88.45	2.90	101.50	2.23
Ta_021	100.51	3.47	117.04	3.62
${ m Ta_022}$	99.47	2.23	118.18	1.90
	Continued on next page			

Table 2 – continued from previous page

Tailland It	MOEA/D		MEDA/D-MK	
Taillard Instance	mean	std ved	mean	std dev
Ta_023	100.36	3.12	121.18	2.53
Ta -024	101.67	2.25	117.09	2.45
${ m Ta_025}$	105.48	3.75	117.78	2.34
Ta_026	103.58	2.74	115.64	2.25
Ta_027	101.43	2.56	119.57	3.51
Ta_028	99.38	4.37	118.92	3.08
Ta_029	100.44	4.75	118.43	2.62
Ta_030	105.53	3.81	116.99	2.37
Ta_031	217.35	6.43	303.42	5.98
Ta_032	228.03	5.97	312.20	2.89
Ta_033	224.24	6.10	307.18	7.81
Ta_034	221.43	5.89	305.71	4.49
Ta_035	223.08	3.24	309.09	4.70
Ta_036	225.31	6.49	310.94	3.52
Ta_037	222.35	3.13	306.17	4.75
Ta_038	221.72	7.12	309.08	4.10
Ta_039	228.40	6.00	305.58	8.07
Ta_040	223.07	2.63	305.41	4.81
Ta_041	271.91	3.51	368.68	4.41
Ta_042	279.66	6.22	366.26	3.21
Ta_043	277.87	2.01	366.54	2.19
Ta_044	278.06	5.95	366.01	6.25
Ta_045	278.00	4.37	366.33	4.98
Ta_046	282.20	9.51	369.12	5.05
Ta_047	275.67	4.01	362.17	4.25
Ta_048	279.91	3.59	368.40	2.97
Ta_049	279.31 279.47	4.64	367.16	4.00
Ta_050	276.11	9.23	367.18	8.11
Ta_050	389.90	3.72	480.24	2.74
$Ta_{-}052$	393.41	3.12	482.20	2.14
$Ta_{-}052$ $Ta_{-}053$	389.67	$\frac{3.12}{4.35}$	478.65	$\frac{2.18}{2.48}$
Ta_054	389.59	4.45	476.73	3.43
Ta_055	399.29	5.85	480.22	4.41
Ta_056	394.70	5.63	481.69	5.48
Ta_057	394.38	5.64	477.36	6.18
Ta_058	392.12	5.31	477.43	3.46
Ta_059	396.09	7.70	478.83	4.29
Ta_060	391.73	3.22	477.30	8.15
Ta_061	548.77	6.86	892.75	9.54
Ta_062	564.76	14.99	880.62	9.46
$Ta_{-}063$	547.39	6.97	883.68	8.30
$Ta_{-}003$	549.89	8.52	892.55	13.22
Ta_065	561.64	12.25	867.95	13.22 10.37
${ m Ta_066} \ { m Ta_067}$	552.11	5.90 5.24	869.71	12.62
1a_U0 <i>t</i>	549.52	5.24	889.50	5.13
	ちにつ ピコ	() ()()		
Ta_068 Ta_069	557.51 547.54	$9.90 \\ 6.34$	874.56 884.94	15.09 5.10

5

Table 2 – continued from previous page

Table 2 – continued from previous page				
Taillard Instance	MOEA/D		MEDA/D-MK	
	mean	std ved	mean	std dev
Ta_070	550.07	9.65	880.50	3.91
Ta_071	775.07	6.93	1118.42	8.04
Ta_072	764.39	7.49	1106.47	6.80
Ta_073	782.00	7.33	1114.78	14.42
Ta074	762.59	5.81	1114.07	8.07
Ta_075	787.13	9.43	1127.19	5.05
Ta_076	774.33	6.09	1110.00	6.41
${ m Ta_077}$	772.64	6.65	1125.14	8.99
Ta_078	778.16	4.80	1119.39	10.38
Ta079	780.24	5.43	1124.94	10.05
Ta080	765.56	3.09	1123.50	5.14
Ta_081	1241.83	8.96	1586.35	9.08
Ta_082	1242.28	4.55	1586.54	9.09
Ta_083	1243.11	5.30	1598.08	9.31
Ta_084	1232.42	7.14	1573.39	7.75
Ta_085	1251.57	5.90	1589.51	10.26
Ta_086	1246.92	9.88	1585.96	6.85
Ta_087	1232.00	6.84	1575.23	10.91
Ta_088	1253.64	6.89	1593.02	9.83
Ta089	1245.93	6.68	1586.87	11.24
Ta090	1241.25	8.28	1587.45	8.55
Ta_091	2491.88	27.21	3789.63	25.26
Ta_092	2477.69	15.23	3760.98	22.98
Ta_093	2492.70	8.00	3786.04	14.15
Ta094	2457.41	10.34	3787.36	41.81
Ta_095	2482.50	17.15	3749.81	22.27
Ta_096	2480.92	6.24	3739.61	13.52
Ta_097	2461.74	16.93	3792.48	24.49
Ta098	2471.82	8.56	3731.21	19.35
Ta099	2450.06	11.49	3724.39	11.58
$Ta_{-}100$	2469.99	15.26	3754.15	19.43
$Ta_{-}101$	4293.12	15.47	5639.96	24.15
$Ta_{-}102$	4311.73	34.07	5584.47	20.77
$Ta_{-}103$	4286.46	32.44	5571.16	20.14
$Ta_{-}104$	4244.79	20.87	5544.95	32.86
$Ta_{-}105$	4295.91	15.80	5600.41	25.71
$Ta_{-}106$	4289.32	12.25	5578.47	23.18
Ta -107	4260.43	11.62	5582.55	15.94
$Ta_{-}108$	4313.17	33.16	5597.05	28.62
$Ta_{-}109$	4294.80	13.40	5614.86	29.65
Ta_110	3501.59	607.55	5562.85	23.67