Escuela de Ciencias Físicas y Matemáticas

Métodos Matemáticos de la Física Hoja de trabajo 4

1. Demostrar que si ${\bf A}$ es un operador lineal acotado sobre un espacio euclídeo ${\bf E}$, y x un vector no nulo en E, entonces

$$||Ax|| \le ||A|| ||x||. \tag{1}$$

Luego, demostrar que esta desigualdad es válidad para todo $x \in \mathbf{E}$.

2. Demostrar que la norma de un operador acotado puede escribirse como

$$\|\mathbf{A}\| = \sup_{(\mathbf{x}, \ \mathbf{y} \ \text{unitarios})} |(\mathbf{y}, A\mathbf{x})| \tag{2}$$

- 3. Demostrar que si $\bf A$ es un operador acotado, entonces la norma del operador adjunto es igual a la norma de $\bf A$. Demostrar las siguientes proposiciones:
- 1. Sea **A** un operador simétrico y **e** un vector unitario. Entonces $\|\mathbf{Ae}\|^2 \le \|\mathbf{A^2e}\|$. La igualdad sólo vale si **e** es un autovector de $\mathbf{A^2}$ con autovalor $\lambda = \|\mathbf{Ae}\|^2$.
- 2. Si \mathbf{u} es un vector unitario máximo de un operdor simétrico acotado \mathbf{A} , entoces \mathbf{u} es un autovector de \mathbf{A}^2 correspondiente al autovalor $\lambda = \|\mathbf{A}\|^2$.
- 3. Si el operador simétrico acotado \mathbf{A} tiene un vector máximo \mathbf{u} , entonces \mathbf{A} también tiene un autovecotr con autovalor $\|\mathbf{A}\|$ o $-\|\mathbf{A}\|$.