

심층신경망 훈련 문제점

고해상도 이미지에서 수백 종류의 물체를 감지하는 것처럼 복잡한 문제에서는, 수백 개의 뉴런으로 구성된 10개 이상의 층을 수십만개의 가중치로 연결개 훨씬 더 깊은 심층신경망을 훈련해야 합니다.

■ 심층신경망 훈련 문제점

- 그레이디언트 소실(vanishing gradients)
- 그레이디언트 폭주(exploding gradients)
- 충분하지 않은 훈련데이터
- 레이블을 만드는 작업에 비용이 너무 많이 들 수 있습니다.
- 훈련이 극단적으로 느려질 수 있습니다.
- 수백만개의 파라미터를 가진 모델은 훈련 세트에 과대적합(overfitting) 될 위험이 매우 큽니다.

그레이디언트 소실과 폭주 문제

■ 로지스틱 활성화 함수의 수렴

Gradient Vanishing

- 심층신경망 학습(역전파) 과정에서 입력층으로 갈수록 기울기(Gradient)가 점차적으로 작아지는 현상이 발생할 수 있습니다.
- 입력층에 가까운 층들에서 가중치들이 업데이트가 제대로 되지 않으면 결국 최적의 모델을 찾을 수 없게 됩니다.

Gradient Exploding

- 기울기가 점차 커지더니 가중치들이 비정상적으로 큰 값이 되면서 결국 발산되기도 합니다.
- 이를 기울기 폭주(Gradient Exploding)이라고 하며, 순환신경망(Recurrent Neural Network, RNN)에서 발생할 수 있습니다.

| 글로럿과 He 초기화

Glorot 와 Bengio는 적절한 신호가 흐르기 위해서는 각 층의 출력에 대한 분산이 입력에 대한 분산과 같아야 한다고 주장

■ 세이비어 초기화 또는 글로럿 초기화(Xavier initialization or Glorot initialization)

- fan-in, fan-out : 층의 입력과 출력 연결 개수
- fan-avg = (fan-in + fan-out)/2
- 평균이 0이고 분산이 $\sigma^2 = \frac{1}{fan_{avg}}$ 인 정규분포
 또는 $r = \sqrt{\frac{3}{fan_{avg}}}$ 일때 -r과 +r 사이의 균등분포

■ 초기화 전략

Initialization	Activation functions	σ^2 (Normal)	
Glorot	None, tanh, logistic, softmax	1 / fan _{avg}	<pre>keras.layers.Dense(10, activation="relu", kernel_initializer="he_normal")</pre>
He	ReLU and variants	2 / fan _{in}	keras.tayers.bense(10, activation= retu , kernet_thittattzer= ne_normat
LeCun	SELU	1 / fan _{in}	

수렴하지 않는 활성화 함수

생물학적 뉴런의 방식과 비슷한 시그모이드 할성화 함수보다 다른 활성화함수가 심층신경망에서 훨씬 더 잘 작동

■ Leaky ReLU(Rectified Linear Unit)

■ ELU(Exponential Linear Unit)

배치 정규화(Batch Normalization)

세리게이 이오페(Sergey Ioffe) 와 치리슈티언 세게지(Christian Szegedy)가 제안한 기법으로 각 층에서 활성화 함수를 통과하기 전이나 후에 모델에 연산을 하나 추가합니다.

■ 배치 정규화 알고리즘

1.
$$\mu_B = \frac{1}{m_B} \sum_{i=1}^{m_B} \mathbf{x}^{(i)}$$

2.
$$\sigma_B^2 = \frac{1}{m_B} \sum_{i=1}^{m_B} (\mathbf{x}^{(i)} - \boldsymbol{\mu}_B)^2$$

3.
$$\widehat{\mathbf{x}}^{(i)} = \frac{\mathbf{x}^{(i)} - \mathbf{\mu}_B}{\sqrt{{\sigma_B}^2 + \varepsilon}}$$

4.
$$\mathbf{z}^{(i)} = \mathbf{\gamma} \otimes \widehat{\mathbf{x}}^{(i)} + \mathbf{\beta}$$

■ 정규화 구현

```
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(300, activation="elu", kernel_initializer="he_normal"),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal"),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(10, activation="softmax")
])
```

배치 정규화(Batch Normalization)

>>> model.summary()
Model: "sequential_3"

Output	Shape	Param #
(None,	784)	0
(None,	784)	3136
(None,	300)	235500
(None,	300)	1200
(None,	100)	30100
(None,	100)	400
(None,	10)	1010
	(None, (None, (None, (None, (None, (None,	(None, 784) (None, 784) (None, 300) (None, 300) (None, 100) (None, 100) (None, 100)

배치 정규화 층은 입력마다 4개의 파라미터 γ, β, μ, σ 를 추가합니다.

Total params: 271,346

Trainable params: 268,978 Non-trainable params: 2,368

사전훈련된 층 재사용

큰 규모의 DNN 훈련시에는 비슷한 문제를 처리한 신경망을 찾아서 재사용하는 것이 좋으며 이를 전이학습이라고 합니다.

■ 전이학습(Transfer Learning)

```
model_A = keras.models.load_model("my_model_A.h5")
model_B_on_A = keras.models.Sequential(model_A.layers[:-1])
model_B_on_A.add(keras.layers.Dense(1, activation="sigmoid"))
```

고속 옵티마이저

심층신경망 훈련속도를 크게 높일 수 있는 방법으로 보통의 경사하강법 대신 더 빠른 옵티마이저를 사용합니다.

■ Momentum Optimization

$$\mathbf{m} \leftarrow \beta \mathbf{m} - \eta \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

$$\theta \leftarrow \theta + m$$

Nesterov Accelerated Gradient

Starting point Regular momentum update βm $\eta \nabla_2$ Nesterov update θ_1

AdaGrad

■ RMSProp

$$\mathbf{s} \leftarrow \beta \mathbf{s} + (1 - \beta) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \otimes \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

$$\theta \leftarrow \theta - \eta \nabla_{\theta} J(\theta) \oslash \sqrt{s + \varepsilon}$$

Adam and Nadam Optimization

1.
$$\mathbf{m} \leftarrow \beta_1 \mathbf{m} - (1 - \beta_1) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

2.
$$\mathbf{s} \leftarrow \beta_2 \mathbf{s} + (1 - \beta_2) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \otimes \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

3.
$$\widehat{\mathbf{m}} \leftarrow \frac{\mathbf{m}}{1 - \beta_1^t}$$

4.
$$\widehat{\mathbf{s}} \leftarrow \frac{\mathbf{s}}{1 - \beta_2^t}$$

5.
$$\theta \leftarrow \theta + \eta \widehat{\mathbf{m}} \oslash \sqrt{\widehat{\mathbf{s}} + \varepsilon}$$

고속 옵티마이저 비교

Class	Convergence speed	Convergence quality
SGD	*	***
SGD(momentum=)	**	***
SGD(momentum=, nesterov=True)	**	***
Adagrad	***	* (stops too early)
RMSprop	***	** or ***
Adam	***	** or ***
Nadam	***	** or ***
AdaMax	***	** or ***

L1 L2 규제

규제(Regularization)는 과적합을 예방하고 일반화(Generalization) 성능을 높이는데 도움을 주며, 신경망의 연결 가중 치를 제한하기 위해 L2 규제를 사용하거나 많은 가중치가 0인 희소모델을 만들기 위해 L1규제를 사용할 수 있습니다.

■ Regularization

■ L2 규제 적용방법

드롭아웃(Dropout)

인기있는 규제기법으로 훈련할 때 임의의 뉴런을 삭제하여 신호를 전달하지 않게 하며, 테스트할 때는 모든 뉴런을 사용

다층 퍼셉트론(MLP: Multilayer Perceptron)

입력층과 하나 이상의 은닉층과 출력층으로 구성되며, 은닉층을 여러 개 쌓아 올린 인공신경망을 심층신경망이라고 함

가이드라인

작업마다 좋은 기법은 다르며, 선택에 명확한 기준은 없음. 하이퍼파라미터 튜닝을 크게하지 않고 대부분의 경우에 맞는 설정

■ 기본 DNN 설정

하이퍼파라미터	일반적인 값
커널 초기화	He 초기화
활성화 함수	ELU
정규화	얕은 신경망일 경우 없음, 깊은 신경망이라면 배치 정규화
규제	조기종료 (필요하면 L2 규제 추가)
옵티마이저	모멘텀 최적화 (또는 RMSProp이나 Nadam)
학습률 사이클	1사이클

■ 자기 정규화를 위한 DNN 설정

하이퍼파라미터	일반적인 값
커널 초기화	르쿤 초기화
활성화 함수	SELU
정규화	없음(자기 정규화)
규제	필요하다면 알파 드롭아웃
옵티마이저	모멘텀 최적화 (또는 RMSProp이나 Nadam)
학습률 사이클	1사이클

Thank you