	Rige Na
	Date
ji -	
.0	
,e ^r	Assignment No. 3
1.>	Applications of Linked list:
*	
400	Linked lists are used in wide variety
,	of applications because of their exceptional
	characteristic of expansion and compression
	according to program requirement. They
	save wastage of memory and in some
	cases their response is exceptional.
	Some common applications of linked
	lists are -
	Implementing stack
	Implementing queul
	Implementing non linear structures
	Maintaining objectories
, 4	Performing arithmetic operations on long
,	
	Manipulating polynomials
	Manipulating polynomials Representing sparse matrices etc.
,	
,	
,	
2.>	Representation of Linked List in memory-
,	
	Consider a linked list called list.
	List requires two arrays. One for information part called INFO [K] and other for address
	part called INFO [K] and other for address

	Page No.	
	of next element called LINK [K].	
	List requires three variables Start,	_
	Avail and NULL. Start contains	_
	Marie of list element. Avail and the	_
	address of first element. Avail contains address of first unused space and	
	NULL contains unknown adolress to	_
	end the list. We will choose NULL=0.	_
	end the wish the wind mobile NOLL-O.	_
		_
	7 41 2 42 5 43 1	_
	10 10	+
	START 9	4
	4	-
	44 3 45 6 46 0	بخد
	43 44	4
	NULL /	
		٠,
	Last Node	٠.
		-
		مب
		مبر
		ربد
		مبر
		Į.
-		,,,,,,
-		V»

Page No.

Dots

ends, sych queue is assume it in circular called as "Double format, then such Ended Quiui" (DeQueux) queue is called as "Circular Quene". (Xii) It follows "First In First Out" nethod (ix) Insertion and deletion of elements can be done from for insertion and both ends in this ! iii) Circular quene es used iii) Deque is a quene which stores address when we want the of first and last iterator to comeback elements. So accessing to start when we elements or insertion seach the last at front or end will element of the queue. have O(1) complexity. (v) Charquer consume iv) Double Ended Quine ii) It has no specific order of execution. consumes more memory. ii) It follows the FIFO principle in order to perform the tasks. i) In dequue, insertion v) In circular queue, the and deletion can be insertion and deletion done from both the can take place from any end, ends (two). more efficiently used. in inefficient.