Robust estimations of moments for unimodal distributions

Tuban Lee

This manuscript was compiled on June 10, 2023

A. Invariant Moments. All popular robust location estimators, such as the symmetric trimmed mean, symmetric Winsorized mean, Hodges-Lehmann estimator, Huber M-estimator, and median of means, are symmetric. As shown previously, a $\gamma\text{-weighted Hodges-Lehmann mean }(\mathrm{WHLM}_{k,\epsilon,\gamma})$ can achieve consistency for the population mean in any γ -symmetric distribution with a finite mean. However, it falls considerably short of consistently handling other parametric distributions that are not γ -symmetric. Shifting from semiparametrics to parametrics, consider a robust estimator with a non-sampledependent breakdown point (defined in Subsection??) which is consistent simultaneously for both a semiparametric distribution and a parametric distribution that does not belong to that semiparametric distribution, it is named with the prefix 'invariant' followed by the name of the population parameter it is consistent with. Here, the recombined I-statistic is defined as

$$\operatorname{RI}_{d,\mathbf{k}_{1},\mathbf{k}_{2},k_{1},k_{2},\epsilon_{1},\epsilon_{2},\gamma_{1},\gamma_{2},n,LU_{1},LU_{2}} \coloneqq \lim_{c \to \infty} \left(\frac{(LU_{1}_{\mathbf{k}_{1},k_{1},\epsilon_{1},\gamma_{1},n} + c)^{d+1}}{(LU_{2}_{\mathbf{k}_{2},k_{2},\epsilon_{2},\gamma_{2},n} + c)^{d}} - c \right),$$

where d is the key factor for bias correction, $LU_{\mathbf{k},k,\epsilon,\gamma,n}$ is the LU-statistic, \mathbf{k} is the degree of the U-statistic, k is the degree of the LL-statistic, ϵ is the upper asymptotic breakdown point of the LU-statistic. It is assumed in this series that in the subscript of an estimator, if \mathbf{k} , k and γ are omitted, $\mathbf{k}=1$, k=1, $\gamma=1$ are assumed, if just one γ is indicated, $\gamma_1=\gamma_2$, if n is omitted, only the asymptotic behavior is considered, in the absence of subscripts, no assumptions are made. The subsequent theorem shows the significance of a recombined I-statistic.

```
Define
       Theorem
                                           A.1.
                                                                                                            recombined
11
12
                                            rm_{d,k_1,k_2,\epsilon_1,\epsilon_2,\gamma_1,\gamma_2,n,WL_1,WL_2}
       RI_{d,\mathbf{k}_1=1,\mathbf{k}_2=1,k_1,k_2,\epsilon_1,\epsilon_2,\gamma_1,\gamma_2,n,LU_1=WL_1,LU_2=WL_2}.
13
       Assuming
                                              finite
                                                                             second
                                                                                                                moments,
14
      \begin{matrix} rm_{d=\frac{\mu-WL_{1}_{k_{1},\epsilon_{1},\gamma_{1}}}{WL_{1}_{k_{1},\epsilon_{1},\gamma_{1}}-WL_{2}_{k_{2},\epsilon_{2},\gamma_{2}}},k_{1},k_{2},\epsilon_{1},\epsilon_{2},\gamma_{1},\gamma_{2},WL_{1},WL_{2} \end{matrix} \quad is \quad a \\ consistent \ mean \ estimator \ for \ a \ location\text{-}scale \ distribution}, \end{matrix}
15
       where \mu, WL_{1k_1,\epsilon_1,\gamma_1}, and WL_{2k_2,\epsilon_2,\gamma_2} are different location
17
       parameters from that location-scale distribution. If \gamma_1 = \gamma_2,
       WL = WLM, rm is also consistent for any \gamma-symmetric
       distributions.
```

21 Proof. Finding d that make $rm_{d,k_1,k_2,\epsilon_1,\epsilon_2,\gamma_1,\gamma_2,\mathrm{WL}_1,\mathrm{WL}_2}$ a consistent mean estimator is equivalent to finding the solution of $rm_{d,k_1,k_2,\epsilon_1,\epsilon_2,\gamma_1,\gamma_2,\mathrm{WL}_1,\mathrm{WL}_2} = \mu$. First consider the location-scale distribution. Since $rm_{d,k_1,k_2,\epsilon_1,\epsilon_2,\gamma_1,\gamma_2,\mathrm{WL}_1,\mathrm{WL}_2} = \mu$

$$\lim_{c \to \infty} \left(\frac{\left(WL_{1k_1, \epsilon_1, \gamma_1} + c \right)^{d+1}}{\left(WL_{2k_2, \epsilon_2, \gamma_2} + c \right)^d} - c \right) = (d+1) WL_{1k_1, \epsilon_1, \gamma} - 2d$$

$$dWL_{2k_2, \epsilon_2, \gamma} = \mu. \text{ So, } d = \frac{\mu - WL_{1k_1, \epsilon_1, \gamma_1}}{WL_{1k_1, \epsilon_1, \gamma_1} - WL_{2k_2, \epsilon_2, \gamma_2}}.$$

Significance Statement

Bias, variance, and contamination are the three main errors in statistics. Consistent robust estimation is unattainable without parametric assumptions. In this article, invariant moments are proposed as a means of achieving near-consistent and robust estimations of moments, even in scenarios where moderate violations of distributional assumptions occur, while the variances are sometimes smaller than those of the sample moments.

T.L. designed research, performed research, analyzed data, and wrote the paper. The author declares no competing interest.

¹To whom correspondence should be addressed. E-mail: tl@biomathematics.org