

Insight of the Black Friday Sales Prediction

- (1) Sum of Actual Purchase and Sum of Predicted purchase using Random Forest Regressor in Train Dataset, it is clear from the graph that the product id P00025442 has the highest Actual Purchase with \$10,013 k and has the highest Predicted Purchase with \$5,347k.
- (2) Sum of Actual Purchase and Sum of Predicted purchase using XGBoost Regressor in Train Dataset, it is clear from the graph that the product id P00025442 has the highest Actual Purchase with \$10,013 k and has the highest Predicted Purchase with \$5,315k.
- (3) Sum of Predicted Purchase Using Random Forest Regressor and XGBoost Regressor in Test Dataset, it clear from the graph that the product id P00112142 has the highest Predicted Purchase with \$10,243 k.
- (4) Sum of Predicted Purchase Using Random Forest in Train data, it clear from the graph that the age between 26-35 has the highest Predicted purchase with \$5,16,096K for Male and \$1,53,589 K for female, where for city category B the predicted purchase is \$5,31,360 K for male and for female \$1,77,477 K and for Overall predicted Purchase for male is \$12,69,751 K and for female is \$4,13,162 K.
- (5) Sum of Predicted Purchase Using XGBoost Regressor in Train data, it clear from the graph that the age between 26-35 has the highest Predicted purchase with \$5,12,842K for Male and \$1,52,567 K for female, where for city category B the predicted purchase is \$5,27,806 K for male and for female \$1,76,253 K and for Overall predicted Purchase for male is \$12,61,389 K and for female is \$4,10,426 K.
- (6) Sum of Predicted Purchase Using Random Forest in Test data, it clear from the graph that the age between 26-35 has the highest Predicted purchase with \$6,82,712 K for Male and \$1,89,600 K for female, where for city category B the predicted purchase is \$6,95,655 K for male and for female \$2,11,451 K and for Overall predicted Purchase for male is \$16,75,002 K and for female is \$5,08,443 K.
- (7) Sum of Predicted Purchase Using XGBoost in Test data, it clear from the graph that the age between 26-35 has the highest Predicted purchase with \$6,78,448 K for Male and \$1,88,209 K for female, where for city category B the predicted purchase is \$6,91,135 K for male and for female \$2,09,962 K and for Overall predicted Purchase for male is \$16,64,475 K and for female is \$5,05,006 K.

Black Friday Sales Prediction (Random Forest Regressor)

Clear Filter

Black Friday Sales Prediction (XGBoost Regressor)

Clear Filter

Black Friday Sales Prediction in Test Data (Random Forest Regressor vs XGBoost Regressor)

Sum of Actual Purchase and Sum of Predicted Purchase Value For Random Forest by Product_ID

Sum of Actual Purchase and Sum of Predicted Purchase Value For XGBoost by Product_ID

Sum of Predicted Purchase Using Random Forest and Sum of Predicted Purchase Using XGBoost by Product_ID

Count Distinct Gender, Group by Age and by Occupation in Train Dataset

Sum of Purchase by Age, Gender, Occupation and City Category in Train Dataset

Sum of Actual Purchase By Product Category 1,2 and 3 and Gender in Train Dataset

Count Distinct Gender, Group by Age and by Occupation in Test Dataset

Sum of Predicted Purchase by Age, Gender, Occupation and City Category in Test Dataset (Random Forest)

Sum of Predicted Purchase by Age, Gender, Occupation and City Category in Test Dataset (XGBoost Regressor)

Sum of Predicted Purchase By Product Category 1,2 and 3 and Gender in Train Dataset (Random Forest)

Sum of Predicted Purchase Value For Random Forest by Product Category 2 and Gender

Sum of Predicted Purchase Value For Random Forest by Product_Category_3 and Gender

Sum of Predicted Purchase By Product Category 1,2 and 3 and Gender in Train Dataset (XGBoost)

Sum of Predicted Purchase by Age, Gender, Occupation and City Category in Train Dataset (Random Forest)

Sum

\$0K

\$1,00,000K \$2,00,000K \$3,00,000K \$4,00,000K \$5,00,000K \$6,00,000K **Sum of Predicted Purchase Value For Random Forest**

Sum of Predicted Purchase Value For Random Forest by Occupation and Gender

\$1,08,458K

City Category

Sum of Predicted Purchase by Age, Gender, Occupation and City Category in Train Dataset (XGBoost)

Sum of Predicted Purchase Value For XGBoost by Occupation and Gender

Sum of Predicted Purchase Value For XGBoost

Sum of Purchase by Gender

Sum of Predicted Purchase Value For XGBoost by City_Category and Gender

Sum of Predicted Purchase By Product Category 1,2 and 3 and Gender in Test Dataset (Random Forest)

Sum of Predicted Purchase Using Random Forest by Product_Category_1 and Gender

Sum of Predicted Purchase Using Random Forest by Product_Category_2 and Gender

Sum of Predicted Purchase Using Random Forest by Product_Category_3 and Gender

Sum of Predicted Purchase By Product Category 1,2 and 3 and Gender in Test Dataset (XGBoost)

