United College of Engineering and Research, Allahabad

Department of Computer Science & Engineering

B.Tech CSE-III Semester

Set-1

Course Name: Discrete Structure and Theory of Logic AKTU Course Code: KCS-303

Time: 60 Minutes Max. Marks: 30

• All Questions are compulsory.

• All Questions carry one mark.

Q. No.	Questions	CO
1	Power set of empty set has exactly subset. (A) One (B) Two (C) Zero (D) Three	CO1
2	What is the Cardinality of the Power set of the set {0, 1, 2}? a) 8 b) 6 c) 7 d) 9	CO1
3	Two sets are called disjoint if there is the empty set. a) Union b) Difference c) Intersection d) Complement	CO1
4	The binary relation {(1,1), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2)} on the set {1, 2, 3} is a) reflective, symmetric and transitive b) irreflexive, symmetric and transitive c) neither reflective, nor irreflexive but transitive d) irreflexive and antisymmetric	CO1
5	Let S be a set of $n>0$ elements. Let be the number B_r of binary relations on S and let B_r be the number of functions from S to S. The expression for B_r and B_r , in terms of n should be	

	a) n² and 2(n+1)² b) n³ and n ⁽ⁿ⁺¹⁾	CO1
	c) n and n ⁽ⁿ⁺⁶⁾ d) 2 ^(n*n) and n ⁿ	
6	Consider the binary relation, $A = \{(a,b) \mid b = a-1 \text{ and } a, b \text{ belong to } \{1, 2, 3\}\}$. The reflexive transitive closure of A is? a) $\{(a,b) \mid a >= b \text{ and } a, b \text{ belong to } \{1, 2, 3\}\}$ b) $\{(a,b) \mid a > b \text{ and } a, b \text{ belong to } \{1, 2, 3\}\}$ c) $\{(a,b) \mid a <= b \text{ and } a, b \text{ belong to } \{1, 2, 3\}\}$ d) $\{(a,b) \mid a = b \text{ and } a, b \text{ belong to } \{1, 2, 3\}\}$	CO1
7	Let A and B be two non-empty relations on a set S. Which of the following statements is false? a) A and B are transitive \Rightarrow A \cap B is transitive b) A and B are symmetric \Rightarrow A \cup B is symmetric c) A and B are transitive \Rightarrow A \cup B is not transitive d) A and B are reflexive \Rightarrow A \cap B is reflexive	CO1
8	The inverse of function $f(x) = x^3 + 2$ is a) $f^{-1}(y) = (y - 2)^{1/2}$ b) $f^{-1}(y) = (y - 2)^{1/3}$ c) $f^{-1}(y) = (y)^{1/3}$ d) $f^{-1}(y) = (y - 2)L$	CO1
9	The function $f(x) = x^3$ is bijection from R to R. Is it True or False? a) True b) False	CO1
10	Let f and g be the function from the set of integers to itself, defined by $f(x) = 2x + 1$ and $g(x) = 3x + 4$. Then the composition of f and g is a) $6x + 9$ b) $6x + 7$ c) $6x + 6$ d) $6x + 8$	CO1
11	A relation R is said to be circular if aRb and bRc together imply cRa. Which of the following options is/are correct? (A) If a relation S is reflexive and symmetric, then S is an equivalence relation. (B) If a relation S is circular and symmetric, then S is an equivalence relation. (C) If a relation S is reflexive and circular, then S is an equivalence relation. (D) If a relation S is transitive and circular, then S is an equivalence relation.	
12	Consider the following sets, where n≥2: S1: Set of all n×n matrices with entries from the set {a,b,c} S2: Set of all functions from the set {0,1,2 ,n²-1} to the set {0,1,2} Which of the following choice(s) is/are correct?	

	(A) There does not exist a bijection from S1 to S2 (B) There exists a surjection from S1 to S2	
	(C) There exists a bijection from S1 to S2 (D) There does not exist an injection from S1 to S2	
	,, , , , , , , , , , , , , , , , , , , ,	
13	Let S be a set of consisting of 10 elements. The number of tuples of the form (A,B) such that A and B are subsets of S, and A⊆B is (A) 59049 (B) 1024 (C) 50049 (D) 59000	
14	Consider the binary relation R = {(x, y), (x, z), (z, x), (z, y)} on the set {x, y, z}. Which one of the following is TRUE? (A) R is symmetric but NOT antisymmetric (B) R is NOT symmetric but antisymmetric	
	(=,	
	(C) R is both symmetric and antisymmetric	
	(D) R is neither symmetric nor antisymmetric	
15	If P, Q, R are subsets of the universal set U, then	
	$(P \cap Q \cap R) \cup (P^c \cap Q \cap R) \cup Q^c \cup R^c$ is	
	(A)U	
	$(B) P^{c} U Q^{c} U R^{c}$	
	$(C) P U Q^{c} U R^{c}$ $(D) Q^{c} U R^{c}$	
16	Let S be a set of nelements. The number of ordered pairs in the largest and the	
	smallest equivalence relations on S are:	
	(A) n and n	
	(B) n ² and n	
	(C) n ² and 0	
	(D) n and 1	
17	Let R be a relation on the set of ordered pairs of positive integers such that ((p, q),	
	 (r, s)) ∈ R if and only if p–s = q–r. Which one of the following is true about R? (A) Both reflexive and symmetric 	
	(B) Reflexive but not symmetric	
		l

	(C) Not reflexive but symmetric								
	(D) Neither reflexive nor symmetric								
18	Let f be a function from a set A to a set B, g a function from B to C, and h a function from A to C, such that $h(a) = g(f(a))$ for all $a \in A$. Which of the following statements is always true for all such functions f and g? (A) g is onto => h is onto								
	(B) h is onto => f is onto								
	(C) h is onto => g is onto								
	(D) h is onto => f and g are onto								
19	that for any two subsets S_1 and S_2 in C , either $S_1 \subset S_2$ or $S_2 \subset S_1$. What is the maximum cardinality of C ? (A) n								
	(B) n + 1								
	(C) $2^{(n-1)} + 1$								
	(D) n!								
20	A function $f: \mathbb{N}^+ \to \mathbb{N}^+$, defined on the set of positive integers \mathbb{N}^+ , satisfies the following properties:								
	f(n) = f(n/2) if <i>n</i> is even $f(n) = f(n+5)$ if <i>n</i> is odd								
	Let $R = \{i \mid \exists j : f(j) = i\}$ be the set of distinct values that f takes. The maximum possible size of R is [This Question was originally a Fill-in-the-Blanks question] (A) 1								
	(B) 2								
	(C) 3								
	(D) 4								
21	A binary relation R on N x N is defined as follows: (a, b) R (c, d) if a <= c or b <= d.								
	Consider the following propositions: P: R is reflexive								
	Q: R is transitive								

	Which one of the following statements is TRUE?	
	(A) Both P and Q are true.	
	(B) P is true and Q is false.	
	(C) P is false and Q is true.	
	(D) Both P and Q are false	
22	Let P, Q and R be sets let Δ denote the symmetric difference operator defined as P Δ Q = (P U Q) - (P \cap Q). Using Venn diagrams, determine which of the following is/are TRUE? P Δ (Q \cap R) = (P Δ Q) \cap (P Δ R) P \cap (Q \cap R) = (P \cap Q) Δ (P Δ R) (A) I only	
	(B) II only	
	(C) Neither I nor II	
	(D) Both I and II	
23	What is the cardinality of the set of integers X defined below? $X = \{n \mid 1 \le n \le 123, n \text{ is not divisible by either 2, 3 or 5} $ (A) 28	
	(B) 33	
	(C) 37	
	(D) 44	
24	Suppose A is a finite set with <i>n</i> elements. The number of elements in the largest equivalence relation of A is (A) n	
	(B) n^2	
	(C) 1	
	(D) n+1	
25	Let X, Y, Z be sets of sizes x, y and z respectively. Let W = X x Y. Let E be the set of all subsets of W. The number of functions from Z to E is: (A) z^{2xy}	
	(B) z x 2 ^{xy}	
	(C) z^{2x+y}	

	(D) 2 ^{xyz}					
26	Let S denote the set of all functions f: {0,1} ⁴ -> {0,1}. Denote by N the number of					
	functions from S to the set {0,1}. The value of Log ₂ Log ₂ N is (A) 12					
	(B) 13					
	(C) 15					
	(D) 16					
27	Consider the following relation on subsets of the set S of integers between 1 and 2014. For two distinct subsets U and V of S we say U < V if the minimum element in the symmetric difference of the two sets is in U. Consider the following two statements: S1: There is a subset of S that is larger than every other subset.					
	S2: There is a subset of S that is smaller than every other subset.					
	Which one of the following is CORRECT? (A) Both S1 and S2 are true					
	(B) S1 is true and S2 is false					
	(C) S2 is true and S1 is false					
	(D) Neither S1 nor S2 is true					
28	Let X and Y be finite sets and f: X -> Y be a function. Which one of the following statements is TRUE?					
	(A) For any subsets A and B of X, $ f(A \cup B) = f(A) + f(B) $					
	(B) For any subsets A and B of X, $f(A \cap B) = f(A) \cap f(B)$					
	(C) For any subsets A and B of X, $ f(A \cap B) = \min\{ f(A) , f(B) \}$					
	(D) For any subsets S and T of Y, $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$					
	(A) A					
	(B) B					
	(C) C					
	(D) D					
29	Let E, F and G be finite sets. Let $X = (E \cap F) - (F \cap G)$ and $Y = (E - (E \cap G)) - (E - F)$. Which one of the following is true? (A) $X \subset Y$					

	(B) X ⊃ Y	
	(C) X = Y	
	(D) X - Y $\neq \varphi$ and Y - X $\neq \varphi$	
30	Let A, B and C be non-empty sets and let X = (A - B) - C and Y = (A - C) - (B - C). Which one of the following is TRUE? (A) X = Y	
	(B) X ⊂ Y	
	$(C) Y \subset X$	
	(D) none of these	

<u>Answer</u>

1-A	2-A	3-C	4-C	5-D	6-A	7- C	8-B	9-A	10-A
11-C	12-B,C	13-A	14-D	15-A	16-B	17-C	18-C	19-B	20-B
21-B	22-C	23-B	24-B	25-D	26-D	27-A	28-D	29-C	30-A