WHAT IS CLAIMED IS:

1	1. A method for determining the frequency of current ripples
2	contained in the armature current signal of a commutated direct current (DC) motor,
3	the method comprising:
4	determining a frequency spectral result of the armature current signal;
5	determining a frequency spectral result of an electric operating
6	parameter of the motor;
7	subtracting the frequency spectral result of the armature current signal
8	and the frequency spectra result of the motor electric operating parameter from one
9	another to determine the frequency spectral result of the current ripples contained
10	in the armature current signal; and
11	determining current ripple frequency from the frequency spectral
12	result of the current ripples contained in the armature current signal.
1	2. The method of claim 1 wherein the armature current signal is
2	an analog armature current signal, the method further comprising:
3	digitizing the analog armature current signal;
4	wherein determining the frequency spectral result of the armature
5	current signal includes determining the frequency spectral result of the digitized
6	armature current signal.
1	The method of claim 1 wherein:
2	determining the frequency spectral results of the armature current
3	signal and the motor electric operating parameter includes using a fast Fourier
4	transform on the armature current signal and the motor electric operating parameter
5	to determine the frequency spectral results of the armature current signal and the
6	motor electric operating parameter.
1	4. The method of claim 1 wherein:
2	the motor electric operating parameter is the armature voltage signal.
1	5 The method of claim 1 wherein:

2	the motor electric operating parameter is the armature current signal
3	at a different motor operating state than the motor operating state of the armature
4	current signal used in the step of determining the frequency spectral result of the
5	armature current signal.
1	6. The method of claim 1 wherein:
2	the current ripple frequency is determined during a start-up phase of
3	the motor.
1	7. The method of claim 1 further comprising:
2	determining rotational speed of a drive shaft of the motor based on
3	the current ripple frequency; and
4	determining rotational position of the drive shaft based on the
5	rotational speed of the drive shaft.
1	8. The method of claim 7 wherein the armature current signal is
2	an analog armature current signal, the method further comprising:
3	digitizing the analog armature current signal;
4	wherein each step is performed at each point in time of the digital
5	sampling of the analog armature current signal.
	o de
1	9. The method of claim 7 further comprising:
2	monitoring the current ripple frequency for changes during the
3	operation of the motor.
1	10. The method of claim 9 further comprising:
2	counting the current ripples contained in the armature current signal;
3	and
4	modifying the number of counted current ripples as a function of a
5	change in the current ripple frequency during the operation of the motor.
	auring the operation of the motor.