

ข้อมูล (Data)

ข้อมูล คือ ข้อเท็จจริงเกี่ยวกับบุคคล สิ่งของหรือเหตุการณ์ที่มีอยู่ในรูปของตัวเลข ภาษา ภาพ สัญลักษณ์ต่างๆ ที่มีความหมายเฉพาะตัว เช่น น้ำหนัก ส่วนสูง เลขประจำตัวประชาชน เบอร์โทร กรุ๊ปเลือด หนังสือ เป็นต้น

<u>ชนิดของข้อมูล</u>

- 1. ข้อมูลตัวเลข ประกอบไปด้วยตัวเลขเท่านั้น มักจะนำมาใช้ในการคำนวณ
- 2. ข้อมูลอักขระ ประกอบด้วยตัวอักษร ตัวเลข และอักขระพิเศษหรือเครื่องหมายพิเศษต่างๆ ซึ่งตัวเลขในข้อมูลชนิดนี้จะไม่นำมาคำนวณ เช่น เลขที่บ้าน วันเกิด เป็นต้น
 - 3. ข้อมูลภาพ รับรู้จากการมองเห็น เช่น ภาพดารา เป็นต้น
 - 4. ข้อมูลเสียง รับรู้จากการได้ยิน เช่น เสียงพูด เสียงเพลง เป็นต้น

ข้อมูลที่ดี ต้อง......

- 1. ถูกต้องแม่นยำ (Accuracy) -> ข้อมูลที่ดีควรจะมีความถูกต้องแม่นยำ
- 2. มีความเป็นปัจจุบัน (Update) -> เป็นข้อมูลที่ทันสมัยและทันต่อความต้องการของผู้ใช้
- 3. สมบูรณ์ครบถ้วน (Complete) -> ข้อมูลที่เก็บรวบรวมต้องเป็นข้อมูลที่ให้ข้อเท็จจริง ที่ ครบถ้วนทุกด้านทุกประการ ถ้าขาดส่วนใดส่วนหนึ่งไปอาจทำให้นำไปใช้การไม่ได้
- 4. ตรงกับความต้องการของผู้ใช้ (Relevance) -> ข้อมูลที่นำมาใช้ต้องมีความสอดคล้องกับ ความต้องการของผู้ใช้ให้มากที่สุด
- 5. สามารถตรวจสอบได้ (Verifiable) -> ข้อมูลที่ได้ควรมีแหล่งอ้างอิงที่แน่นอน เพื่อป้องกัน ข้อมูลที่ผิด หรือข้อมูลเท็จ ซึ่งอาจทำให้เกิดผลเสียและข้อผิดพลาดเมื่อนำข้อมูลไปใช้

สารสนเทศ (Information)

สารสนเทศ คือ ข้อมูลที่ผ่านการจัดเรียง วิเคราะห์ คำนวณ และประมวลผลแล้ว ซึ่ง สารสนเทศนั้นมีความหมาย มีคุณค่า มีสาระ สามารถนำไปใช้งานได้

ฐานข้อมูล (Database)

ฐานข้อมูล คือ กลุ่มของข้อมูลที่รวบรวมไว้และมีการจัดการทำให้สามารถเข้าถึงข้อมูลเพื่อทำ การปรับปรุงและนำมาใช้ได้ง่าย

ระบบฐานข้อมูล (Database System)

เป็นระบบที่ใช้ในการจัดเก็บข้อมูลด้วยคอมพิวเตอร์ ซึ่ง ทำให้สามารถเรียกใช้ข้อมูลได้ทุกที่

ประเภทของฐานข้อมูล มี 3 ประเภทคือ

- 1. โครงสร้างแบบตามลำดับชั้น (Hierarchical Model)
- 2. โครงสร้างแบบเครือข่าย (Network Model)
- 3. โครงสร้างแบบเชิงสัมพันธ์ (Relational Mode)

<u>โครงสร้างฐานข้อมูลแบบตามลำดับชั้น (Hierarchical Model)</u>

บิต (Bit : Binary Digit)

เป็นลำดับชั้นหน่วยข้อมูลที่เล็กที่สุด เป็น เลขฐานสองที่มีเพียง 1 และ 0 เท่านั้น

a, b, c, d

(01000001, 01000010, 01000011, 0100010)

ไบต์ (Byte)

คือหน่วยที่คอมพิวเตอร์ใช้แสดงตัวอักษร ตัวเลข หรือสัญลักษณ์ต่างๆ

(1 byte = 1 character (ตัวอักษร) = 8 bit)

name age salary

ฟิลด์ (Field)

คือขอบเขตของข้อมูล ซึ่งประกอบด้วย ตัวอักษร(ไบต์)ตั้งแต่ 1 ตัวขึ้นไป

name = Mr. Potato

age = 11

salary = 2,000 \$/m.

เรคคอร์ด (Record)

คือชุดข้อมูล 1 ชุด ประกอบด้วยหลายๆ ฟิลด์ ที่มีความสัมพันธ์กัน

ไฟล์ หรือ แฟ้มตารางข้อมูล (File)

คือการนำเอาข้อมูลหลายๆ เรคคอร์ดมารวมกัน จะกลายเป็นแฟ้มข้อมูล

Field & Record

Г				1
	name	age	salary	
	Mr. Apple	18	2,900 \$/m.	Record: Mr. Apple
	Mr. Banana	24	4,000 \$/m.	Record: Mr. Banana
	Mr. Potato	11	2,000 \$/m.	Record: Mr. Potato
	1	1	1	·
	Field: name	Field: age	Field: salary	

จากตารางข้างบน

- ตารางนี้มี 3 ฟิลด์ ได้แก่ name, age, salary

โดยในแต่ละฟิลด์ก็จะมีชนิดของข้อมูลที่แตกต่างกัน (เช่น ฟิลด์ name เก็บข้อมูลเป็นแบบ ตัวอักขระ, ฟิลด์ age และ salary เก็บข้อมูลเป็นแบบตัวเลข)

- ตารางนี้มี 3 เรคคอร์ด ได้แก่ Mr. Apple, Mr. Banana, Mr. Potato โดยข้อมูลของแต่ละคนเป็น 1 เรคคอร์ด หรือข้อมูล 1 ชุด

(Field แนวตั้ง - Record แนวนอน)

การจัดโครงสร้างของแฟ้มข้อมูล (File Organization)

การจัดเก็บข้อมูลจะต้องกำหนดโครงสร้างในการจัดเก็บ เพื่อให้สามารถจัดเก็บและเข้าถึง ข้อมูลได้รวดเร็ว ถูกต้อง และเหมาะสมกับความต้องการ โดยการเข้าถึงและนำข้อมูลมาใช้จะอาศัย ฟิลด์ที่เป็นคีย์หลักในการสืบค้นข้อมูลเสมอ การจัดโครงสร้างของแฟ้มข้อมูลแบ่งได้เป็น 3 ลักษณะ

โครงสร้าง	ข้อดี	ข้อเสีย	สื่อที่ใช้ในการเก็บ	
	- เสียค่าใช้จ่ายน้อย	- เสียเวลาค่อนข้างมาก		
	- ใช้งานได้ง่าย	ในการหาข้อมูล		
1. แบบเรียงลำดับ	- เหมาะกับงานประมวลผลที่มี	- ข้อมูลที่ใช้ต้องมีการ	เทปแม่เหล็ก เช่น	
(Sequential file)	การอ่านข้อมูลแบบเรียงลำดับ	จัดเรียงลำดับก่อนเสมอ	เทปคาสเซ็ท	
	และมีข้อมูลในปริมาณมาก	- ไม่เหมาะกับงานที่ต้องแก้ไข		
	- สื่อที่ใช้เก็บมีราคาถูก	เพิ่ม ลบข้อมูลเป็นประจำ		
		- ไม่เหมาะกับงานประมวลผลที่		
	- สามารถทำงานได้รวดเร็ว	อ่านข้อมูลในปริมาณมาก	จานแม่เหล็ก เช่น	
2. ແບບສຸ່ມ	- เหมาะสมกับงานที่ต้องการ	- การเขียนโปรแกรมเพื่อค้นหา	จานแมเทสกา เขน ดิสก์เก็ต, ฮาร์ดดิสก์	
(Random file)	แก้ไข เพิ่ม ลบรายการ	ข้อมูลจะซับซ้อน	หรือ แผ่น CD	
	เป็นประจำ	- ไม่สามารถเข้าถึงข้อมูลแบบ	ท่าย เพน CD	
		เรียงลำดับได้		
		- สิ้นเปลืองเนื้อที่ในการจัดเก็บ		
	- สามารถรองรับการประมวลผลได้	ดรรชนีที่ใช้อ้างอิงถึงตำแหน่ง		
3. แบบลำดับเชิงดรรชนี	ทั้ง 2 แบบคือ แบบลำดับ และ	ของข้อมูล	จานแม่เหล็ก เช่น	
	แบบสุ่ม	- การเขียนโปรแกรมเพื่อค้นหา	ดิสก์เก็ต, ฮาร์ดดิสก์	
(Index sequential file)	- เหมาะสมกับงานที่ต้องการแก้ไข	ข้อมูลจะซับซ้อน	หรือ แผ่น CD	
	เพิ่ม ลบรายการเป็นประจำ	- การทำงานช้ากว่าแบบสุ่มและ		
		มีค่าใช้จ่ายสูง		

<u>ประโยชน์ของระบบฐานข้อมูล</u>

- ลดความซ้ำซ้อนของข้อมูล

ในระบบฐานข้อมูล การเรียก เพิ่มเติม แก้ไขข้อมูล จะทำในระบบเดียวกัน ทำให้ลด ความซ้ำซ้อนของข้อมูลได้

- รักษาความถูกต้องของข้อมูล

เนื่องจากข้อมูลรวมอยู่ในฐานข้อมูลเดียว เมื่อต้องการแก้ไขจะทำให้ข้อมูลทั้งหมดถูก แก้ไขตามไปด้วย

- มีความปลอดภัยของข้อมูลสูง

ในเมื่อทุกคนสามารถแก้ไขข้อมูลบางส่วนของฐานข้อมูลได้ การป้องกันและรักษาความ ปลอดภัยจึงต้องมีการเข้าถึงข้อมูล เช่น มีการให้ใส่ username, password

<u>เครื่องมือสำหรับจัดการฐานข้อมูล (DBMS)</u>

การจัดการข้อมูลด้วยคอมพิวเตอร์โดยปกติจะใช้โปรแกรมที่เรียกว่า ระบบจัดการฐานข้อมูล (DBMS : Database Management System) ซึ่งเป็นซอฟต์แวร์ที่ดูแลจัดการเกี่ยวกับฐานข้อมูล ที่นิยมใช้ในปัจจุบันได้แก่

- Oracle - Cache

- Sybase - PostgreSQL

- Microsoft SQL Server - InterBase

- Microsoft Access - Firebird

- MySQL - Pervasive SQL

- DB2 - SAP DB

ลักษณะของระบบจัดการฐานข้อมูล (DBMS)

- สร้างฐานข้อมูล (Create Database)
- เพิ่ม เปลี่ยนแปลง แก้ไข และลบข้อมูล (Add, Change, Edit and Delete data)
- จัดเรียงและค้นหาข้อมูล (Sort and Retrieve data)
- สร้างฟอร์ม และรายงาน (Create Forms and Reports)

<u>หน้าที่ของระบบจัดการฐานข้อมูล</u>

- 1. ทำหน้าที่แปลงคำสั่งที่ใช้จัดการกับข้อมูลภายในฐานข้อมูลให้อยู่ในรูปแบบที่ข้อมูลเข้าใจ
- 2. ทำหน้าที่ในการนำคำสั่งต่างๆ ซึ่งได้รับการแปลแล้วไปสั่งให้ฐานข้อมูลทำงาน เช่น การ เรียกใช้ข้อมูล (Retrieve) การจัดเก็บข้อมูล (Update) การลบข้อมูล (Delete) หรือ การเพิ่มข้อมูล (Add) เป็นต้น ฯลฯ
- 3. ทำหน้าที่ป้องกันความเสียหายที่จะเกิดขึ้นกับข้อมูลภายในฐานข้อมูล โดยจะคอยตรวจสอบ ว่าคำสั่งใดที่สามารถทำงานได้และคำสั่งใดที่ไม่สามารถทำได้
 - 4. ทำหน้าที่รักษาความสัมพันธ์ของข้อมูลภายในฐานข้อมูลให้มีความถูกต้องอยู่เสมอ
- 5. ทำหน้าที่เก็บรายละเอียดต่างๆ ที่เกี่ยวข้องกับข้อมูลภายในฐานข้อมูลไว้ใน data dictionary ซึ่งรายละเอียดเหล่านี้มักจะถูกเรียกว่า "ข้อมูลของข้อมูล" (Meta Data)
 - 6. ทำหน้าที่ควบคุมให้ฐานข้อมูลทำงานได้อย่างถูกต้องและมีประสิทธิภาพ

SOL

SQL ย่อมาจาก Structured Query Language คือภาษาที่ใช้ในการเขียนโปรแกรม เพื่อ จัดการกับฐานข้อมูลโดยเฉพาะ และเป็นชื่อโปรแกรมฐานข้อมูลอีกด้วย

SQL เป็นโปรแกรมฐานข้อมูลที่มีโครงสร้างของภาษาที่เข้าใจง่าย ไม่ซับซ้อน มีประสิทธิภาพ การทำงานสูง สามารถทำงานที่ซับซ้อนได้โดยใช้คำสั่งเพียงไม่กี่คำสั่ง

ประเภทคำสั่งของภาษา SOL

1. ภาษานิยามข้อมูล (Data Definition Language : DDL) เป็นคำสั่งที่ใช้ในการสร้าง ฐานข้อมูล

CREATE สร้างตารางข้อมูล

DROP ลบตารางข้อมูล

ALTER แก้ไขตารางข้อมูล

2. ภาษาจัดการข้อมูล (Data Manipulation Language : DML) เป็นคำสั่งที่ใช้ในการเรียกใช้ เพิ่ม ลบ และเปลี่ยนแปลงข้อมูลในตาราง

SELECT เลือกข้อมูลในฐานข้อมูล

INSERT เพิ่มข้อมูลเข้าไปในฐานข้อมูล

UPDATE แก้ไขข้อมูลในฐานข้อมูล

DELETE ลบข้อมูลในฐานข้อมูล

3. ภาษาควบคุมข้อมูล (Data Control Language : DCL) เป็นคำสั่งที่ใช้ในการกำหนดสิทธิ การอนุญาตหรือยกเลิกการเข้าถึงฐานข้อมูล เพื่อป้องกันความปลอดภัยของข้อมูล

GRANT กำหนดสิทธิการเข้าถึงข้อมูล

REVOKE ยกเลิกสิทธิการเข้าถึงข้อมูล

Not SQL

NoSQL

NoSQL (Not Only SQL) คือ แนวทางหนึ่งสำหรับ จัดการข้อมูลและออกแบบฐานข้อมูลสำหรับข้อมูลขนาด ใหญ่ ซึ่งอยู่อย่างกระจัดกระจาย หลากหลายรูปแบบ

NoSQL เป็นฐานข้อมูลที่ไม่มีความสัมพันธ์ เพราะว่า ไม่ได้เป็น Relational Database (จะไม่มีการ JOIN ในการค้นข้อมูล) และเน้นให้ทำงานได้เร็วเป็น หลัก ซึ่ง NoSQL เน้นใช้งานกับปริมาณข้อมูลที่มีจำนวนมาก เช่น Facebook, Twitter, Google

ข้อดีของ NoSOL

- สามารถขยายระบบได้ง่าย
- รองรับข้อมูลขนาดใหญ่
- รองรับรูปแบบข้อมูลที่หลากหลาย หรือมีความยืดหยุ่นสูงได้

ตัวอย่างฐานข้อมูลของ NoSOL

แบ่งออกตามประเภทของ NoSQL

- 1. Document เช่น CouchDB, MongoDB
- 2. Graph เช่น HyperGraphDB, InfoGrid, Neo4j, sonesGraphDB
- 3. Key/Value เช่น HBase, MemcacheDB, Project Voldemort, Redis, SimpleDB
- 4. Tabular เช่น Cassandra, Hypertable

ER-Diagram (Entity Relationship Diagram)

ER-Diagram (Entity Relationship Diagram) เป็นหนึ่งในวิธีที่นิยมในการเริ่มต้นออกแบบ ฐานข้อมูลเชิงสัมพันธ์ (Relational Database) โดยเป็นการนำรายละเอียดของข้อมูลที่เราจะนำไป สร้างเป็น database มาวิเคราะห์และเขียนเป็นแผนภาพแสดงความสัมพันธ์ระหว่างข้อมูลแต่ละตัว

<u>ส่วนประกอบของ ER-Diagram</u>

1. Entity

Entity คือสิ่งที่คงอยู่หรือสามารถระบุได้ในความจริง เช่น คน เหตุการณ์ สถานที่ ซึ่งทั่วไปแล้ว เอนทิตี้จะอยู่ในรูปของคำนาม และ เอนทิตี้นี้สามารถมีคุณสมบัติได้หลายอย่าง เช่น นักเรียน มี คุณสมบัติได้หลายอย่างเช่น ชื่อ ที่อยู่ อายุ เพศ ฯลฯ ใช้รูปสี่เหลี่ยมผืนผ้า

ชนิดของ Entity

- 1. Strong entity คือ เอนทิตี้ตัวทั่วๆไปที่มีคุณสมบัติในตัวเอง สามารถแยกความแตกต่างได้ จากการดูข้อมูลในแอดทริบิวต์ของตัวมันได้ เช่น นักศึกษา หรืออาจารย์ หรือสินค้า เป็นต้น
- 2. Weak entity คือขึ้นโดยอาศัย แอดทริบิวต์ในเอนทิตี้ อื่นจึงจะสามารถบ่งบอกความ แตกต่างของข้อมูลในแต่ละ record ใน เอนทิตี้นั้นๆได้ (ข้อมูลที่มักจะซ้ำ)

Strong entity

Entity: ตารางรายชื่อน้องๆ งาน ToBeIT'58

009998 น้องแชมเบอร์ เซียร์

009999 น้องหัวชมพูว์ วาลพูกิสต์นาร์ช

Weak entity

E	Entity: ตารางวันที่เข้าเรียนของน้องๆ					
	009998	มา	มา	ไม่มา		
	009999	ไม่มา	ไม่มา	มา		

2. Attribute หรือ Property

Attribute คือคุณสมบัติต่างๆของเอนทิตี้ซึ่งแต่ละเอนทิตี้จะมีคุณสมบัติแล้วแต่เราจะกำหนด ว่าจะเก็บข้อมูลคุณสมบัติใดบ้าง ใช้รูปวงกลม

ชนิดของ Attribute

- 1. Atomic Attribute (Simple Attribute) คือ แอตทริบิวต์ทั่วไปที่มีค่าไม่แบ่งแยกย่อย ออกมาได้อีก
- 2. Composite Attribute คือ แอตทริบิวต์ที่สามารถแยกย่อยออกมาได้แต่ต้องอยู่คู่กัน เท่านั้นเช่น ชื่อ และ นามสกุล
- 3. Primary Key (Key Attribute) คือ เป็นแอตทริบิวต์ที่ถูกเลือกโดยมามีเงื่อนไขว่าจะต้อง ไม่มีฟิลด์ที่ไม่มีข้อมูลซ้ำกันเลย (หรืออาจซ้ำไม่ได้) ซึ่งเอาไว้ใช้เป็นตัวอ้างอิงในแต่ละเอนทิตี้ เช่น รหัส ลงทะเบียน ToBeIT รหัสบัตรประชาชน จะขีดเส้นใต้แอตทริบิวต์ตัวนั้นเพื่อให้รู้ว่าเป็น Key Attribute
- 4. Multivalued Attribute คือ แอตทริบิวต์ที่มีตัวเดียวแต่สามารถเก็บค่าได้หลายๆค่าได้ เช่น แอตทริบิวต์ของสีเสื้อ โดยเสื้อตัวหนึ่งอาจจะมีทั้งสีแดงและสีน้ำเงินก็ได้ หรือ แอตทริบิวต์ของ เบอร์โทรศัพท์ซึ่งเราอาจเก็บเบอร์โทรศัพท์มากกว่าหนึ่งเบอร์ก็ได้ ใช้สัญลักษณ์ วงรีซ้อนกันสองวง
- 5. Derived Attribute คือ แอตทริบิวต์ที่ไม่จำเป็นต้องรับค่าเข้ามา อาศัยการคำนวนจาก แอตทริบิวต์ตัวอื่นๆเพื่อหาค่าของมันได้ ใช้วงรีเส้นประ เช่นเราจะรู้ค่าของแอตทริบิวต์อายุได้จากการ ดูค่าของแอตทริบิวต์วันเกิด

3. Relationship

Relationship คือความสัมพันธ์ระหว่างเอนทิตี้ว่ามีความสัมพันธ์ของข้อมูลกันอย่างไร ใช้รูป ข้าวหลามตัด

ชนิดของ Relationship

ความสัมพันธ์ระหว่างข้อมูลมี 3 ลักษณะ ดังนี้

1. One to One

หมายถึงข้อมูล 1 เรคคอร์ดที่อยู่ในตารางหนึ่ง มีความสัมพันธ์หรือเชื่อมโยงกับข้อมูลที่อยู่ใน อีกตารางหนึ่ง โดยที่สามารถอ้างอิงได้เพียง 1 เรคคอร์ดเท่านั้น เช่น น้อง 1 คนสามารถมีคะแนนควิช ได้เพียง 1 ชุดเท่านั้นเท่านั้น

2. One to Many

หมายถึงข้อมูล 1 เรคคอร์ดที่อยู่ในตารางหนึ่ง มีความสัมพันธ์หรือเชื่อมโยงกับข้อมูลที่อยู่ใน อีกตารางหนึ่ง โดยที่สามารถอ้างอิงได้มากกว่า 1 เรคคอร์ด เช่น ในมหาวิทยาลัยมีนักศึกษาได้หลาย คน และนักศึกษาหลายคนอยู่มหาวิทยาลัยเดียวกัน

3. Many to Many

หมายถึงข้อมูลหลายเรคคอร์ดที่อยู่ในตารางหนึ่ง มีความสัมพันธ์หรือเชื่อมโยงกับข้อมูลที่อยู่ใน อีกตารางหนึ่ง โดยที่สามารถอ้างอิงได้หลายเรคคอร์ด เช่น นักศึกษา 1 คนสามารถลงทะเบียนได้ หลายวิชา และในแต่ละวิชาก็มีนักศึกษาลงทะเบียนหลายคน

ขั้นตอนการเขียน ER diagram

- 1.กำหนด Entity โดยดูจากผู้ใช้ระบบว่าต้องการเก็บข้อมูลอะไรบ้าง
- 2.กำหนด Attribute แต่ละตัวสำหรับแต่ละ Entity โดยเลือกให้มี Attribute เท่าที่จำเป็น และทำการเลือก Attribute หนึ่งตัวมาเป็น Primary Key โดย Attribute ตัวนั้นต้องมีคุณสมบัติของ Primary Key คือภายในfieldไม่มีข้อมูลซ้ำกันเลย
- 3.ทำการวิเคราะห์ความสัมพันธ์ระหว่าง Entity แล้วเขียนตัวเชื่อมแสดงความสัมพันธ์ระหว่าง Entityเหล่านั้น