Week 7

Isoperimetric Inequalities and Applications

Lecturer: Siva Athreya Scribe: Atreya Choudhury

The focus of this chapter is to look at how the geometry of weighted graph affects the properties of the corresponding random walk on it.

Definition 7.0.1 (Isoperimetric Inequality). Let $A, B \subseteq V$, $\mu_E(A, B) = \sum_{x \in A} \sum_{y \in B} \mu_{xy}$ and $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function.

 (Γ, μ) is said to satisfy the ψ -isoperimetric inequality if $\exists c_0 > 0$ such that

$$\frac{\mu_E(A, V \setminus A)}{\psi(\mu(A))} \ge \frac{1}{c_0} \qquad \forall A \subseteq V \ and \ |A| < \infty$$

If a weighted graph satisfies the ψ -isoperimetric inequality, we say it has the I_{ψ} property.

A graph is said to have the property I_{α} for $\alpha \in [0, \infty)$ when $\psi(t) = t^{1-\frac{1}{\alpha}}$ and said to have the property I_{∞} when $\psi(t) = t$

Example. \mathbb{R}^d . We look at A = B(0, r)

$$\begin{split} S_B \equiv \text{surface area of A} &= c_d r^{d-1} \\ V_B \equiv \text{volume of A} &= \widetilde{c}_d r^d \\ & \therefore \frac{S_B}{V_D^{\frac{d-1}{d}}} \geq \frac{1}{c_0} \end{split}$$

We can take $\psi(t) = t^{1-\frac{1}{d}}$

Show that Z^d has the I_d property for all such A such that $|A| < \infty$

Example. \prod_2 , the binary tree has the I_{∞} property with $c_0 = 3$

Observations. If (Γ, μ) satisfies $I_{\alpha+\delta}$, then it satisfies I_{α}

Definition 7.0.2 (Nash Inequality). $\alpha \in [1, \infty)$, (Γ, μ) is said to have the property N_{α} if $\forall f \in \mathbb{L}^1(V) \cap \mathbb{L}^2(V)$,

$$\mathcal{E}(f, f) \ge C_N \|f\|_1^{-\frac{4}{\alpha}} \|f\|_2^{2 + \frac{4}{\alpha}}$$

1. (Γ, μ) satisfies I_{α} for $\alpha \in [1, \infty) \implies (\Gamma, \mu)$ satisfies N_{α}

2. Z^d satisfies N_{α}

Theorem 7.0.1. Let $\alpha \geq 1$. Then the following are equivalent

- 1. (Γ, μ) satisfies N_{α}
- 2. $\exists C_H > 0 \text{ such that}$

$$p_n(x,x) \le \frac{C_H}{(n \lor 1)^{\frac{\alpha}{2}}} \quad \forall n \ge 0 \text{ and } x \in V$$

3. $\exists C'_H > 0 \text{ such that}$

$$p_n(x,y) \le \frac{C_H'}{(n \vee 1)^{\frac{\alpha}{2}}} \qquad \forall n \ge 0 \text{ and } x, y \in V$$

Corollary 7.0.1. 1. Suppose (Γ, μ) satisfies I_{α} . Then, $\exists C > 0$ such that

$$p_n(x,y) \le \frac{C}{(n \lor 1)^{\frac{\alpha}{2}}}$$
 $\forall n \ge 0 \text{ and } x, y \in V$

2. Let V be infinite and $\mu_{xy} \ge c_0 > 0 \ \forall \ x \sim y$. Then, $\exists \ C_1 > 0$ such that

$$p_n(x,y) \le \frac{C_1}{(n \lor 1)^{\frac{1}{2}}} \quad \forall n \ge 0 \text{ and } x,y \in V$$

Remark.1. $p_n(x,x) \equiv \text{on-diagonal bounds}$

- 2. Theorem provides global upper bounds
- 3. part b of corollary 7.0.1 applied to $V = \mathbb{Z}$ ⇒ the shortest possible on-diagonal upper bounds with natural weights
- 4. Let $\Gamma = \mathbb{Z}^d$ have natural weights $\mu_{xy}^{(0)}$ and $\Gamma' = \mathbb{Z}^d$ have natural weights $\mu_{xy}^{(1)}$ such that $\mu_{xy}^{(1)} \ge c_0 \mu_{xy}^{(0)} \text{ Let } (\Gamma, \mu^0) \text{ satisfy } N_d$ $\Longrightarrow (\Gamma', \mu^1) \text{ satisfies } N_d$

- ⇒ the upper bound of the theorem holds
- 5. $\Gamma = \mathbb{Z}^d \cup_{(0,\dots,0)} \mathbb{Z}^d$ $\implies \Gamma$ also satisfies N^d
- 6. 7.0.1 does not give us any information on upper bounds when we fix $n \geq 0$ and let d(x, y) get large.

Theorem 7.0.2. Let (Γ, μ) be a weighted graph. Then,

$$p_n(x,y) \le \frac{2}{\sqrt{\mu_x \mu_y}} e^{-\frac{d(x,y)^2}{2n}} \quad \forall x,y \in V \text{ and } n \ge 1$$

Example. Consequences for \mathbb{Z}^d

We expect

$$p_n(x,y) \le \frac{c_1}{n^{\frac{d}{2}}} e^{-c_2 \frac{d(x,y)^2}{n}}$$

 \mathbb{Z}^d satisfies $I_d \implies \mathbb{Z}^d$ satisfies $N_d \stackrel{7.0.1}{\Longrightarrow} p_n(x,y) \leq \frac{c}{n^{\frac{d}{2}}} \qquad \forall x,y \in V \text{ and } n \geq 1$

$$\therefore p_n(x,y) \le \frac{c}{n^{\frac{d}{2}}} \le \frac{c}{n^{\frac{d}{2}}} e^{-\frac{d(x,y)^2}{n}} \qquad \text{when } d(x,y) \le \sqrt{n}$$

When, $d(x,y) \ge \sqrt{2dn \log n}$,

$$p_n(x,y) \le c_1 e^{-\frac{d(x,y)^2}{n}} = c_1 e^{-\frac{2c_2}{4} \frac{d(x,y)^2}{n}} e^{-\frac{2c_2}{4} \frac{d(x,y)^2}{n}} \le \frac{\widetilde{C_1}}{n^{\frac{d}{2}}} e^{-\frac{c_2^2 d(x,y)^2}{n}}$$

Definition 7.0.3. (Γ, μ) is said to have polynomial volume growth if $\exists C_V$ and θ such that

$$\max\{|B(x,r)|, \ \mu(B(x,r))\} \le C_V r^{\theta} \qquad \forall x \in V \ and \ r \ge 1$$

Lemma 7.0.1. (Γ, μ) has polynomial volume growth with index θ . Then,

$$\mathbf{P}^{x}(d(x,X_n) > r) < cr^{\theta}e^{-\frac{r^2}{4n}}$$

This implies $\exists c_2 > 0$ such that

$$d(x, X_n) \le c_2 \sqrt{n \log n}$$
 $\forall large n w.p. 1$

Proof. We define $\mathcal{D}_k = B(x, 2^k r) \setminus B(x, 2^{k-1} r)$

$$\mathbf{P}^{x}(d(x, X_{n}) > r) \stackrel{Ex}{=} \sum_{k=1}^{\infty} \sum_{y \in \mathcal{D}_{k}} p_{n}(x, y) \mu_{x}$$

$$\stackrel{Ex}{\leq} \sum_{k=1}^{\infty} \sum_{y \in \mathcal{D}_{k}} \frac{2}{\sqrt{\mu_{x}}} \sqrt{\mu_{y}} e^{-\frac{(2^{k-1}r)^{2}}{2n}}$$

$$= \sum_{k=1}^{\infty} \frac{2}{\sqrt{\mu_{x}}} e^{-\frac{(2^{k-1}r)^{2}}{2n}} \sum_{y \in \mathcal{D}_{k}} \sqrt{\mu_{y}}$$

$$\stackrel{Ex}{\leq} \sum_{k=1}^{\infty} \frac{2}{\sqrt{\mu_{x}}} e^{-\frac{(2^{k-1}r)^{2}}{2n}} \sqrt{|\mathcal{D}_{k}|} \sqrt{\mu(\mathcal{D}_{k})}$$

$$\stackrel{Ex}{\leq} \sum_{k=1}^{\infty} \frac{2}{\sqrt{\mu_{x}}} e^{-\frac{(2^{k-1}r)^{2}}{2n}} c(2^{k}r)^{\theta}$$