Vector Algebra

12^{th} Maths - Chapter 10

This is Problem-3 from Exercise 10.4

1. If unit vector \overrightarrow{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find θ and hence, the components of \overrightarrow{a} .

Solution: Let **A** be the given vector and $\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}$ be the unit vectors representing the unit vectors $\hat{i}, \hat{j}, \hat{k}$ respectively

$$\mathbf{A} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \mathbf{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 (1)

The magnitudes for vectors $\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}$ are

$$\|\mathbf{e_1}\| = 1, \|\mathbf{e_2}\| = 1, \|\mathbf{e_3}\| = 1$$
 (2)

Let

$$\cos \theta_i = 1, 2, 3 \tag{3}$$

So for different values of $\cos \theta_i$ the angles of vector **A** are

$$\cos \theta_1 = \frac{\begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}{1} = a_1 \tag{4}$$

$$\cos \theta_2 = \frac{\begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}}{1} = a_2 \tag{5}$$

$$\cos \theta_3 = \frac{\begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}{1} = a_3 \tag{6}$$

Then,

$$a_1 = \cos \theta_1 = \cos \frac{\pi}{3} = \frac{1}{2}$$
 (7)

$$a_2 = \cos \theta_2 = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
 (8)

$$a_3 = \cos \theta_3 \tag{9}$$

As A is unit vector then

$$\|\mathbf{A}\| = 1\tag{10}$$

$$\sqrt{a_1^2 + a_2^2 + a_3^2} = 1 \tag{11}$$

$$\|\mathbf{A}\| = 1 \tag{10}$$

$$\sqrt{a_1^2 + a_2^2 + a_3^2} = 1 \tag{11}$$

$$\sqrt{\frac{1^2}{2} + \frac{1}{\sqrt{2}}^2 + \cos^2 \theta_3} = 1 \tag{12}$$

$$\cos \theta_3 = \pm \frac{1}{2} \tag{13}$$

As θ_3 is an acute angle

$$\theta_3 = 60^\circ, a_3 = \cos 60^\circ = \frac{1}{2}$$
 (14)

Hence
$$\mathbf{A} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{2} \end{pmatrix}$$
 (15)