(19) Weltorganisation für geistiges Eigentum Internationales Büro

T CONTROL NEW PROPERTY OF THE CONTROL OF THE CONTRO

(43) Internationales Veröffentlichungsdatum 28. Oktober 2004 (28.10.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/092175 A1

(51) Internationale Patentklassifikation⁷: C07D 487/04, A01N 43/90

(21) Internationales Aktenzeichen: PCT/EP2004/004067

(22) Internationales Anmeldedatum:

16. April 2004 (16.04.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 103 17 898.8

17. April 2003 (17.04.2003) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): TORMO I BLASCO, Jordi [ES/DE]; Carl-Benz-Strasse 10-3, 69514 Laudenbach (DE). BLETTNER, Carsten [DE/DE]; Richard-Wagner-Strasse 48, 68165 Mannheim (DE). MÜLLER, Bernd [DE/DE]; Stockingerstrasse 7, 67227 Frankenthal (DE). GEWEHR, Markus [DE/DE]; Goethestrasse 21, 56288 Kastellaun (DE). GRAM-MENOS, Wassilios [GR/DE]; Alexander-Fleming-Strasse 13, 67071 Ludwigshafen (DE). GROTE, Thomas [DE/DE]; Im Hoehnhausen 18, 67157 Wachenheim (DE). GYPSER, Andreas [DE/DE]; B 4,4, 68159 Mannheim (DE). RHEINHEIMER, Joachim [DE/DE]; Merziger Strasse 24, 67063 Ludwigshafen (DE). SCHÄFER, Peter [DE/DE]; Römerstrasse 1, 67308 Ottersheim (DE). SCHIEWECK, Frank [DE/DE]; Lindenweg 4, 67258 Hessheim (DE). SCHWÖGLER, Anja [DE/DE]; Heinrich-Lanz-Strasse 3, 68165 Mannheim

(DE). WAGNER, Oliver [DE/DE]; Im Meisental 50, 67433 Neustadt (DE). AMMERMANN, Eberhard [DE/DE]; Von-Gagern-Strasse 2, 64646 Heppenheim (DE). STRATHMANN, Siegfried [DE/DE]; Donnersbergstrasse 9, 67117 Limburgerhof (DE). SCHÖFL, Ulrich [DE/DE]; Luftschiffring 22c, 68782 Brühl (DE). SCHERER, Maria [DE/DE]; Hermann-Jürgens-Strasse 30, 76829 Landau (DE). STIERL, Reinhard [DE/DE]; Jahnstrasse 8, 67251 Freinsheim (DE).

(74) Anwalt: REITSTÖTTER-KINZEBACH; Reitstötter, Kinzebach & Partner (GbR), Ludwigsplatz 4, 67059 Ludwigshafen (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

[Fortsetzung auf der nächsten Seite]

(54) Title: HETEROBICYCLIC COMPOUNDS USED AS FUNGICIDES

(54) Bezeichnung: HETEROBICYCLISCHE VERBINDUNGEN ALS FUNGIZIDE

(57) Abstract: The invention relates to bicyclic compounds of general formula (I), in addition to the agriculturally compatible salts of said compounds, to agricultural pesticides containing at least one compound of general formula (I) and/or the agriculturally compatible salt of (I) and to at least one liquid or solid support. The invention also relates to a method for controlling harmful phytopathogenic fungi.

(57) Zusammenfassung: Die Erfindung betrifft bicyclische Verbindungen der allgemeinen Formel (I) sowie die landwirtschaftlich verträglichen Salze von Verbindungen (I), Pflanzenschutzmittel, enthaltend wenigstens eine Verbindung der allgemeinen Formel (I) und/oder landwirtschaftlich verträgliches Salz von (I) und wenigstens einen flüssigen oder festen Trägerstoff sowie ein Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen.

WO 2004/092175

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

HETEROBICYCLISCHE VERBINDUNGEN ALS FUNGIZIDE

Beschreibung

Die vorliegende Erfindung betrifft neue, bicyclische Verbindungen und ihre Verwendung zur Bekämpfung von Schadpilzen sowie Pflanzenschutzmittel, die derartige Verbindungen als wirksamen Bestandteil enthalten.

Die EP-A 71792, US 5,994,360, EP-A 550113, WO 02/48151 beschreiben fungizid wirksame Pyrazolo[1,5-a]pyrimidine und Triazolo[1,5a]pyrimidine, die in der 5-Position des Pyrimidinrings eine gegebenenfalls substituierte Phenylgruppe tragen. Aus der WO 03/022850 sind Imidazolo[1,2-a]pyrimidine mit fungizider Wirkung bekannt.

Die EP-A 770615 beschreibt ein Verfahren zur Herstellung von 5-Arylazolopyrimidinen, die in der 4- und in der 6-Position des Pyrimidinrings ein Chlor- oder Bromatom aufweisen.

Die aus dem Stand der Technik bekannten Azolopyrimidine sind hinsichtlich ihrer fungiziden Wirkung teilweise nicht zufriedenstellend oder besitzen unerwünschte Eigenschaften, wie eine geringe Nutzpflanzenverträglichkeit.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, neue Verbindungen mit besserer fungizider Wirksamkeit und/oder einer besseren Nutzpflanzenverträglichkeit bereitzustellen. Diese Aufgabe wird gelöst durch bicyclische Verbindungen der allgemeinen Formel I

$$A_{3} A_{4} A_{5} N R^{2}$$

$$(I)$$

worin

20

25

30 A_1 oder A_5 für C steht und die andere der beiden Variablen A_1 , A_5 für N, C oder C-R³ steht;

 A_2 , A_3 , A_4 unabhängig voneinander für N oder C- \mathbb{R}^{3a} stehen, wobei eine der Variablen A_2 , A_3 oder A_4 auch für S oder eine Gruppe N- \mathbb{R}^4 stehen kann, wenn A_1 und A_5 beide für C stehen, worin

 A_1 mit A_2 und A_3 mit A_4 oder A_2 mit A_3 und A_4 mit A_5 oder

		A ₁ mit A ₅ und A ₂ mit A ₃ oder
		A₁ mit A₅ und A₃ mit A₄ oder
		A_1 mit A_2 und A_4 mit A_5 durch Doppelbindungen miteinander verbunden sind;
5	n	für 0, 1, 2, 3, 4 oder 5 steht;
J	R ^a	für Halogen, Cyano, C₁-C₀-Alkyl, C₁-C₀-Alkoxy, C₁-C₀-Haloalkyl, C₁-C₀-
		Haloalkoxy, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkenyloxy oder $C(O)R^5$ steht;
	R ¹	
	1	Halogen, Cyano, C ₁ -C ₁₀ -Alkyl, worin ein Kohlenstoffatom der C ₁ -C ₁₀ -
10		Alkylkette durch ein Siliciumatom ersetzt sein kann, C ₁ -C ₆ -Haloalkyl, C ₂ -
10		C ₁₀ -Alkenyl, C ₂ -C ₆ -Haloalkenyl, C ₂ -C ₆ -Alkinyl, C ₃ -C ₈ -Cycloalkyl, C ₃ -C ₈ -
		Cycloalkyl-C ₁ -C ₄ -alkyl, wobei der Cycloalkylteil der zwei letztgenannten
		Gruppen 1, 2, 3, 4, 5 oder 6 unter C ₁ -C ₄ -Alkyliden, C ₁ -C ₄ -Alkyl, Halogen,
		C ₁ -C ₄ -Halogenalkyl und Hydroxy ausgewählte Substituenten aufweisen
15		kann und der Alkylteil in C ₃ -C ₈ -Cycloalkyl-C ₁ -C ₄ -alkyl 1, 2, 3 oder 4 unter
IJ		Halogen, C ₁ -C ₄ -Halogenalkyl und Hydroxy ausgewählte Substituenten auf-
		weisen kann, C ₅ -C ₈ -Cycloalkenyl, das 1, 2, 3 oder 4 unter C ₁ -C ₄ -Alkyl, Halogon C. C. Halogonalkel and Hudrons are provided a constant of the contract
		logen, C₁-C₄-Halogenalkyl und Hydroxy ausgewählte Substituenten aufweisen kann, OR ⁶ , SR ⁸ , NR ⁷ R ⁸ , eine Gruppe der Formel
		-C(R ¹¹)(R ¹²)C(=NOR ¹³)(R ¹⁴) oder eine Gruppe der Formel
20		-C(=NOR ¹⁵)C(=NOR ¹⁶)(R ¹⁷) bedeutet;
20	R ²	Halogen, Cyano, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Haloalkyl, C ₂ -C ₆ -Alkenyl, C ₂ -C ₆ -
	1	
		Haloalkenyl, C ₂ -C ₆ -Alkinyl, C ₃ -C ₈ -Cycloalkyl, C ₅ -C ₈ -Cycloalkenyl, OR ⁶ , SR ⁶ oder NR ⁷ R ⁸ bedeutet;
	R^3 , R^{3a}	unabhängig voneinander für Wasserstoff, CN, Halogen, C₁-C₀-Alkyl oder
25	1	C_2 -C ₆ -Alkenyl stehen;
20	R⁴	Wasserstoff, C ₁ -C ₆ -Alkyl oder C ₂ -C ₆ -Alkenyl bedeutet;
	R ⁵	Wasserstoff, OH, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Haloalkyl, C_1 - C_6 -
	1	Haloalkoxy, C_2 - C_6 -Alkenyl, C_1 - C_6 -Alkylamino oder Di- C_1 - C_6 -alkylamino, Pi-
		peridin-1-yl, Pyrrolidin-1-yl oder Morpholin-4-yl bedeutet;
30	R ⁶	Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Haloalkyl, C_2 - C_6 -Alkenyl oder COR 9 bedeu
	• • • • • • • • • • • • • • • • • • • •	tet;
	R ⁷ , R ⁸	unabhängig voneinander für Wasserstoff, C ₁ -C ₁₀ -Alkyl, C ₂ -C ₁₀ -Alkenyl, C ₄ -
	,	C ₁₀ -Alkadienyl, C ₂ -C ₁₀ -Alkinyl, C ₃ -C ₈ -Cycloalkyl, C ₅ -C ₈ -Cycloalkenyl, C ₅ -
		C ₁₀ -Bicycloalkyl, Phenyl, Naphthyl,
35		ein 5- oder 6-gliedriger, gesättigter oder teilweise ungesättigter Heterocyc-
••		lus, der 1, 2 oder 3 Heteroatome, ausgewählt unter N, O und S, als Ring-
		glieder aufweisen kann, oder
		ein 5- oder 6-gliedriger, aromatischer Heterocyclus, der 1, 2 oder 3 Hetero-
		atome, ausgewählt unter N, O und S, als Ringglieder aufweisen kann,
40		wobei die als R ⁷ , R ⁸ genannten Reste teilweise oder vollständig halogenier
. •		sein können und/oder 1. 2 oder 3 Posto Pb aufweisen können webei

35

40

 R^{b} ausgewählt ist unter Cyano, Nitro, OH, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Haloalkyl, C₁-C₆-Haloalkoxy, C₁-C₆-Alkylthio, C₂-C₆-Alkenyl, C₂-C₆-Alkinyloxy, C₂-C₆-Alkinyl, C₂-C₆-Alkinyloxy, C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino, Piperidin-1-yl, Pyrrolidin-1-yl oder Morpholin-4-yl;

- auch gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5-, 6 oder 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus bilden können, der 1, 2, 3 oder 4 weitere Heteroatome, ausgewählt unter O, S, N und NR¹⁰ als Ringglied aufweisen kann, der teilweise oder vollständig halogeniert sein kann und der 1, 2 oder 3 der Reste R^b aufweisen kann;
- 10 R⁹, R¹⁰ unabhängig voneinander Wasserstoff oder C₁-C₆-Alkyl bedeuten; und R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷ unabhängig voneinander Wasserstoff oder C₁-C₆-Alkyl bedeuten;

wobei A_1 nicht für N steht, wenn A_5 für C steht und gleichzeitig A_2 , A_3 und A_4 die folgenden Bedeutungen aufweisen: A_2 steht für N oder C- \mathbb{R}^{3a} , A_3 steht für C- \mathbb{R}^{3a} und A_4 steht für N oder C- \mathbb{R}^{3a} ; sowie die landwirtschaftlich verträglichen Salze von Verbindungen I.

Gegenstand der vorliegenden Erfindung sind somit die bicyclische Verbindungen der allgemeinen Formel I und deren landwirtschaftlich verträglichen Salze, ausgenommen Verbindungen der allgemeinen Formel I, worin R¹ und R² gleichzeitig für OH oder gleichzeitig für Halogen stehen, wenn A₁ für N und A₅ für C stehen und die Variablen A₂, A₃ und A₄ unabhängig voneinander N oder C-R³a bedeuten.

Gegenstand der vorliegenden Erfindung ist weiterhin die Verwendung der bicyclischen Verbindungen der allgemeinen Formel I und ihrer landwirtschaftlich verträglichen Salze zur Bekämpfung von pflanzenpathogenen Pilzen (=Schadpilzen) sowie ein Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen, das dadurch gekennzeichnet ist, dass man die Pilze, oder die vor Pilzbefall zu schützenden Materialien, Pflanzen,
 den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der allgemeinen Formel I und/oder mit einem landwirtschaftlich verträglichen Salz von I behandelt.

Gegenstand der vorliegenden Erfindung Mittel zur Bekämpfung von Schadpilzen, enthaltend wenigstens eine Verbindung der allgemeinen Formel I und/oder ein landwirtschaftlich verträgliches Salz davon und wenigstens einen flüssigen oder festen Trägerstoff.

Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren aufweisen und liegen dann als Enantiomeren- oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomere oder

4

Diastereomere als auch deren Gemische. Gegenstand der Erfindung sind auch Tautomere von Verbindungen der Formel I.

Unter landwirtschaftlich brauchbaren Salzen kommen vor allem die Salze derjenigen
 Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen beziehungsweise Anionen die fungizide Wirkung der Verbindungen I nicht negativ beeinträchtigen. So kommen als Kationen insbesondere die Ionen der Alkalimetalle, vorzugsweise Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium, Magnesium und Barium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie das Ammoniumion, das gewünschtenfalls ein bis vier C₁-C₄-Alkylsubstituenten und/oder einen Phenyl- oder Benzylsubstituenten tragen kann, vorzugsweise Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfonium und Sulfoxoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfonium und Sulfoxoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfoxonium, in Betracht.

Anionen von brauchbaren Säureadditionssalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Phosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat, sowie die Anionen von C₁-C₄-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat. Sie können durch Reaktion von I mit einer Säure des entsprechenden Anions, vorzugsweise der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure oder Salpetersäure, gebildet werden.

- 25 Bei den in den vorstehenden Formeln angegebenen Definitionen der Variablen werden Sammelbegriffe verwendet, die allgemein repräsentativ für die jeweiligen Substituenten stehen. Die Bedeutung C_n-C_m gibt die jeweils mögliche Anzahl von Kohlenstoffatomen in dem jeweiligen Substituenten oder Substituententeil an:
- 30 Halogen: Fluor, Chlor, Brom und Jod;

20

35

Alkyl sowie alle Alkylteile in Alkoxy, Alkylthio, Alkylamino und Dialkylamino: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4, bis 6, bis 8 oder bis 10 Kohlenstoffatomen, z.B. C₁-C₆-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl,

40 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-

methylpropyl;

5

10

Halo(gen)alkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 4 oder bis 6 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. C₁-C₂-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl und 1,1,1-Trifluorprop-2-yl;

Alkenyl: einfach ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4, bis 6, bis 8 oder bis 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C₂-C₆-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-15 propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-20 Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-25 Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-30 Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1propenyl und 1-Ethyl-2-methyl-2propenyl;

Alkadienyl: zweifach ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 4 bis 10 Kohlenstoffatomen und zwei Doppelbindungen in einer beliebigen
Position z.B. 1,3-Butadienyl, 1-Methyl-1,3-butadienyl, 2-Methyl-1,3-butadienyl, Penta1,3-dien-1-yl, Hexa-1,4-dien-1-yl, Hexa-1,4-dien-3-yl, Hexa-1,4-dien-6-yl, Hexa-1,5dien-1-yl, Hexa-1,5-dien-3-yl, Hexa-1,5-dien-4-yl, Hepta-1,4-dien-1-yl, Hepta-1,4-dien3-yl, Hepta-1,4-dien-6-yl, Hepta-1,4-dien-7-yl, Hepta-1,5-dien-1-yl, Hepta-1,5-dien-3-yl,
Hepta-1,5-dien-4-yl, Hepta-1,5-dien-7-yl, Hepta-1,6-dien-1-yl, Hepta-1,6-dien-3-yl, Hepta-1,6-dien-1-yl, Octa-1,4-

6

dien-2-yl, Octa-1,4-dien-3-yl, Octa-1,4-dien-6-yl, Octa-1,4-dien-7-yl, Octa-1,5-dien-1-yl, Octa-1,5-dien-3-yl, Octa-1,5-dien-4-yl, Octa-1,5-dien-7-yl, Octa-1,6-dien-1-yl, Octa-1,6-dien-3-yl, Octa-1,6-dien-4-yl, Octa-1,6-dien-5-yl, Octa-1,6-dien-2-yl, Deca-1,4-dienyl, Deca-1,5-dienyl, Deca-1,5-dienyl, Deca-1,5-dienyl, Deca-2,5-dienyl, Deca-2,5-dienyl, Deca-2,6-dienyl, Deca-2,7-dienyl, Deca-2,8-dienyl und dergleichen;

5

10

15

20

25

35

Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 4, 2 bis 6, 2 bis 8 oder 2 bis 10 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C₂-C₆-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;

Alkyliden: geradkettige oder verzweigte Kohlenwasserstoffgruppe mit 1 bis 4, vorzugsweise 1 bis 2 Kohlenstoffatomen, das an einem Kohlenstoffatom 2 Wasserstoffatome weniger enthält als das Stammalkan, z. B. Methylen, Ethyliden, Propyliden, Isopropyliden und Butyliden;

Cycloalkyl: monocyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 8, vorzugsweise bis 6 Kohlenstoffringgliedern, wie Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl, das unsubstituiert oder 1, 2, 3, 4, 5 oder 6 unter C₁-C₄-Alkyliden, C₁-C₄-Alkyl, Halogen, C₁-C₄-Halogenalkyl und Hydroxy ausgewählte Substituenten aufweisen kann;

30 **Cycloalkenyl:** monocyclische, einfach ungesättigte Kohlenwasserstoffgruppen mit 5 bis 8, vorzugsweise bis 6 Kohlenstoffringgliedern, wie Cyclopenten-1-yl, Cyclopenten-3-yl, Cyclohexen-1-yl, Cyclohexen-3-yl und Cyclohexen-4-yl, das unsubstituiert oder 1, 2, 3 oder 4 unter C₁-C₄-Alkyl, Halogen, C₁-C₄-Halogenalkyl und Hydroxy ausgewählte Substituenten aufweisen kann;

Bicycloalkyl: bicyclischer Kohlenwasserstoffrest mit 5 bis 10 C-Atomen wie Bicyclo[2.2.1]hept-1-yl, Bicyclo[2.2.1]hept-2-yl, Bicyclo[2.2.1]hept-7-yl, Bicyclo[2.2.2]oct-1-yl, Bicyclo[2.2.2]oct-2-yl, Bicyclo[3.3.0]octyl und Bicyclo[4.4.0]decyl;

- C₁-C₄-Alkoxy für eine über ein Sauerstoff gebundene Alkylgruppe mit 1 bis 4 C-Atomen: z. B. Methoxy, Ethoxy, n-Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy oder 1,1-Dimethylethoxy;
- 5 C₁-C₆-Alkoxy: für C₁-C₄-Alkoxy, wie voranstehend genannt, sowie z. B. Pentoxy, 1-Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 1,1-Dimethylpropoxy, 1,2-Dimethylpropoxy, 2,2-Dimethylpropoxy, 1-Ethylpropoxy, Hexoxy, 1-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1,1-Dimethylbutoxy, 1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1,1,2-Trimethylpropoxy, 1,2,2-

Trimethylpropoxy, 1-Ethyl-1-methylpropoxy oder 1-Ethyl-2-methylpropoxy;

- C₁-C₄-Halogenalkoxy: für einen C₁-C₄-Alkoxyrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod, vorzugsweise durch Fluor substituiert ist, also z.B. OCH₂F, OCH₂, OCH₃, OCH₂Cl, OCHCl₂, OCCl₃, Chlorfluor-methoxy, Dichlorfluormethoxy, Chlordifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Bromethoxy, 2-lodethoxy, 2,2-Difluorethoxy, 2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2,2-difluorethoxy, 2,2-Dichlor-2-fluorethoxy, 2,2-Trichlorethoxy, OC₂F₅, 2-Fluorpropoxy, 3-Fluorpropoxy, 2,2-Difluorpropoxy, 2,3-Difluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy, 2,3-Dichlorpropoxy, 2-Brompropoxy, 3-Brompropoxy, 3,3,3-Trifluorpropoxy, 3,3,3-Trichlorpropoxy, OCH₂-C₂F₅, OCF₂-C₂F₅, 1-(CH₂F)-2-fluorethoxy, 1-(CH₂Cl)-2-chlorethoxy, 1-(CH₂Br)-2-bromethoxy, 4-Fluorbutoxy, 4-
- C₁-C₆-Halogenalkoxy: für C₁-C₄-Halogenalkoxy, wie voranstehend genannt, sowie z.B. 5-Fluorpentoxy, 5-Chlorpentoxy, 5-Brompentoxy, 5-Iodpentoxy, Undecafluorpentoxy, 6-Fluorhexoxy, 6-Chlorhexoxy, 6-Bromhexoxy, 6-Iodhexoxy oder Tridecafluorhexoxy;

Chlorbutoxy, 4-Brombutoxy oder Nonafluorbutoxy;

Alkenyloxy: Alkenyl wie vorstehend genannt, das über ein Sauerstoffatom gebunden ist, z.B. C₂-C₆-Alkenyloxy wie Vinyloxy, 1-Propenyloxy, 2-Propenyloxy, 1-Methyl-1-propenyloxy, 1-Methyl-1-propenyloxy, 2-Butenyloxy, 3-Butenyloxy, 1-Methyl-1-propenyloxy, 2-Methyl-1-propenyloxy, 1-Methyl-2-propenyloxy, 1-Pentenyloxy, 2-Pentenyloxy, 3-Pentenyloxy, 4-Pentenyloxy, 1-Methyl-1-butenyloxy, 2-Methyl-1-butenyloxy, 3-Methyl-1-butenyloxy, 1-Methyl-2-butenyloxy, 2-Methyl-3-butenyloxy, 3-Methyl-2-butenyloxy, 1-Methyl-3-butenyloxy, 2-Methyl-3-butenyloxy, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyloxy, 1,2-Dimethyl-1-propenyloxy, 1-Ethyl-1-propenyloxy, 1-Ethyl-1-propenyloxy, 1-Hexenyloxy, 2-Hexenyloxy, 3-Hexenyloxy, 4-Hexenyloxy, 5-Hexenyloxy, 1-Methyl-1-pentenyloxy, 2-Methyl-1-pentenyloxy, 3-Methyl-1-pentenyloxy, 4-Methyl-1-pentenyloxy, 1-Methyl-2-pentenyloxy, 1-pentenyloxy, 4-Methyl-2-pentenyloxy, 4-Methyl-2-pentenyloxy, 4-Methyl-2-pentenyloxy, 4-Methyl-2-pentenyloxy,

1-Methyl-3-pentenyloxy, 2-Methyl-3-pentenyloxy, 3-Methyl-3-pentenyloxy, 4-Methyl-3-pentenyloxy, 1-Methyl-4-pentenyloxy, 2-Methyl-4-pentenyloxy, 3-Methyl-4-pentenyloxy, 4-Methyl-4-pentenyloxy; 1,1-Dimethyl-2-butenyloxy, 1,1-Dimethyl-3-butenyloxy, 1,2-Dimethyl-1-butenyloxy, 1,2-Dimethyl-2-butenyloxy, 1,2-Dimethyl-3-butenyloxy, 1,3-Dimethyl-1-butenyloxy, 1,3-Dimethyl-3-butenyloxy, 2,2-Dimethyl-3-butenyloxy, 2,3-Dimethyl-1-butenyloxy, 2,3-Dimethyl-3-butenyloxy, 3,3-Dimethyl-1-butenyloxy, 3,3-Dimethyl-2-butenyloxy, 1-Ethyl-1-butenyloxy, 2-Ethyl-1-butenyloxy, 2-Ethyl-2-butenyloxy, 1-Ethyl-3-butenyloxy, 2-Ethyl-1-butenyloxy, 2-Ethyl-1-butenyloxy, 1-Ethyl-1-methyl-2-propenyloxy, 1-Ethyl-1-propenyloxy, 1-Ethyl-2-methyl-2-methyl-2-propenyloxy;

Alkinyloxy: Alkinyl wie vorstehend genannt, das über ein Sauerstoffatom gebunden ist, z.B. C₃-C₆-Alkinyloxy wie 2-Propinyloxy, 2-Butinyloxy, 3-Butinyloxy, 1-Methyl-2-propinyloxy, 2-Pentinyloxy, 3-Pentinyloxy, 4-Pentinyloxy, 1-Methyl-2-butinyloxy, 1-Methyl-3-butinyloxy, 2-Methyl-3-butinyloxy, 1-Ethyl-2-propinyloxy, 2-Hexinyloxy, 3-Hexinyloxy, 4-Hexinyloxy, 5-Hexinyloxy, 1-Methyl-2-pentinyloxy, 1-Methyl-3-pentinyloxy und dergleichen;

- fünf- oder sechsgliedriger gesättigtes oder partiell ungesättigter Heterocyclus, 20 enthaltend ein, zwei oder drei Heteroatome aus der Gruppe Sauerstoff, Stickstoff und Schwefel: z.B. mono- und bicyclische Heterocyclen (Heterocyclyl) enthaltend neben Kohlenstoffringgliedern ein bis drei Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom oder ein oder zwei Sauerstoff- und/oder Schwefelatome, z.B. 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 2-25 Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazolidinyl, 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Isothiazolidinyl, 4-Isothiazolidinyl, 5-Isothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 1,2,4-Oxadiazolidin-3yl, 1,2,4-Oxadiazolidin-5-yl, 1,2,4-Thiadiazolidin-3-yl, 1,2,4-Thiadiazolidin-5-yl, 1,2,4-30 Triazolidin-3-yl, 1,3,4-Oxadiazolidin-2-yl, 1,3,4-Triazolidin-2-yl, 1,3,4-Triazolidin-2-yl, 2,3-Dihydrofur-2-yl, 2,3-Dihydrofur-3-yl, 2,4-Dihydrofur-3-yl, 2,3-Dihydrofur-3-yl, 2,3-Dihydrofur-3-yl, 2,3-Dihydrofur-3-yl, 2,4-Dihydrofur-3-yl, 2,4-Dihyd Dihydrothien-2-yl, 2,3-Dihydrothien-3-yl, 2,4-Dihydrothien-3-yl, 2,4-Dihydrothien-3-yl, 2,5-Dihydrothien-3-yl, 2,4-Dihydrothien-3-yl, 3,4-Dihydrothien-3-yl, 3,4 Pyrrolin-2-yl, 2-Pyrrolin-3-yl, 3-Pyrrolin-2-yl, 3-Pyrrolin-3-yl, 2-Isoxazolin-3-yl, 3-Isoxazolin-3-yl, 4-Isoxazolin-3-yl, 2-Isoxazolin-4-yl, 3-Isoxazolin-4-yl, 4-Isoxazolin-4-yl, 35 2-Isoxazolin-5-yl, 3-Isoxazolin-5-yl, 4-Isoxazolin-5-yl, 2-Isothiazolin-3-yl, 3-Isothiazolin-3-yl, 4-Isothiazolin-3-yl, 2-Isothiazolin-4-yl, 3-Isothiazolin-4-yl, 4-Isothiazolin-4-yl, 2-Isothiazolin-5-yl, 3-Isothiazolin-5-yl, 4-Isothiazolin-5-yl, 2,3-Dihydropyrazol-1-yl, 2,3-
- Dihydropyrazol-2-yl, 2,3-Dihydropyrazol-3-yl, 2,3-Dihydropyrazol-4-yl, 2,3-Dihydropyrazol-5-yl, 3,4-Dihydropyrazol-3-yl, 3,4-Dihydropyrazol-3-yl, 4,5-Dihydropyrazol-1-yl, 4,5-

9

Dihydropyrazol-3-yl, 4,5-Dihydropyrazol-4-yl, 4,5-Dihydropyrazol-5-yl, 2,3-Dihydrooxazol-2-yl, 2,3-Dihydrooxazol-3-yl, 2,3-Dihydrooxazol-4-yl, 2,3-Dihydrooxazol-5-yl, 3,4-Dihydrooxazol-2-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-4-yl, 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl, 1,3-Dioxan-5-yl, 2-Tetrahydropyranyl, 4-Tetrahydropyranyl, 2-Tetrahydrothienyl, 3-Hexahydropyridazinyl, 4-Hexahydropyridazinyl, 2-Hexahydropyrimidinyl, 4-Hexahydropyrimidinyl, 5-Hexahydropyrimidinyl, 2-Piperazinyl, 1,3,5-Hexahydrotriazin-2-yl und 1,2,4-Hexahydrotriazin-3-yl;

10

15

20

25

5

fünf- oder sechsgliedriger aromatischer Heterocyclus, enthaltend ein, zwei oder drei Heteroatome aus der Gruppe Sauerstoff, Stickstoff oder Schwefel: ein- oder zweikerniges Heteroaryl, z.B. C-gebundenes 5-gliedriges Heteroaryl, enthaltend ein bis drei Stickstoffatome oder ein oder zwei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder wie 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,2,4-Triazol-3-yl, 1,3,4-Oxadiazol-5-yl, 1,3,4-Thiadiazol-2-yl und 1,3,4-Triazol-2-yl; über Stickstoff gebundenes 5-gliedriges Heteroaryl, enthaltend ein bis drei Stickstoffatome als Ringglieder wie Pyrrol-1-yl, Pyrazol-1-yl, Imidazol-1-yl, 1,2,3-Triazol-1-yl und 1,2,4-Triazol-1-yl; 6-gliedriges Heteroaryl, enthaltend ein bis drei Stickstoffatome als Ringglieder wie Pyridin-2-yl, Pyridin-3-yl, Pyridin-4-yl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl.

Eine erste bevorzugte Ausführungsform der vorliegenden Erfindung betrifft Verbindungen der Formel I, worin A₁ mit A₂ sowie A₃ mit A₄ jeweils durch eine Doppelbindung miteinander verbunden sind. In der Regel stehen dann A₁ für C und A₅ für N. Die verbleibenden Gruppen A₂, A₃ und A₄ stehen dann unabhängig voneinander für N oder C-R^{3a}. Hierzu zählen beispielsweise die Verbindungen der allgemeinen Formeln I.a, I.b und I.c:

Hierunter sind Verbindungen bevorzugt, worin A_1 für C steht, A_2 und A_5 für N stehen und die verbleibenden Gruppen A_3 und A_4 unabhängig voneinander N oder C- \mathbb{R}^{3a} bedeuten, z.B. die Verbindungen der Formeln I.b und I.c.

Eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung betrifft Verbindungen der Formel I, worin A_2 mit A_3 sowie A_4 mit A_5 jeweils durch eine Doppelbindung miteinander verbunden sind. In der Regel stehen dann A_1 für N oder C-R³ und A_5 für C. Beispiele hierfür sind Verbindungen I, worin A_2 und A_3 für C-R³³ stehen und A_4 N oder C-R³³ bedeuten, beispielsweise die Verbindungen der Formeln I.d und I.e. A_1 steht vorzugsweise für N.

$$R^{3a}$$
 R^{1} R^{2} R^{3a} $R^{$

15

20

5

10

Unter den Verbindungen der Formel I, worin A_2 mit A_3 und A_4 mit A_5 jeweils durch eine Doppelbindung miteinander verbunden sind, A_1 für N und A_5 für C stehen, sind solche Verbindungen bevorzugt, worin A_3 für N steht und A_2 und A_4 unabhängig voneinander C- R^{3a} oder N bedeuten. Hierzu zählen beispielsweise die Verbindungen der Formeln I.f, I.g, I.h und I.k:

$$R^{3a^a}$$
 R^1
 R^a
 R^a
 R^a
 R^a
 R^a
 R^a
 R^a

$$R^{3a'}$$
 (I.h)

$$R^1$$
 $(R^a)_n$
 $(R^a)_n$
 $(I.k)$

Eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung betrifft Verbindungen der Formel I, worin A₁ mit A₅ und A₂ mit A₃ oder A₁ mit A₅ und A₃ mit A₄ jeweils durch eine Doppelbindung miteinander verbunden sind. In der Regel stehen dann A₁ und A₅ für C. Hierunter bevorzugt sind Verbindungen I, worin eine der Variablen A₂, oder A₄ für S und die verbleibenden Variablen A₂, A₃ und A₄ unabhängig voneinander für N oder C-R^{3a} stehen, beispielsweise die Verbindungen der Formeln I.m, I.n, I.o, I.p, I.q, I.r, I.s und I.t.

$$R^{3a^{*}}$$
 R^{1}
 R^{2}
 $(I.m)$
 R^{1}
 R^{2}
 $(I.o)$
 R^{3a}
 $R^{3a^{*}}$
 R^{1}
 R^{2}
 $R^{3a^{*}}$
 R^{2}
 $R^{3a^{*}}$
 R^{2}
 $R^{3a^{*}}$
 $R^{3a^{*}}$
 R^{2}
 $R^{3a^{*}}$
 $R^{3a^{*}}$

15

$$R^{3a}$$
 S
 N
 R^{2}
 $(I.n)$
 R^{2}
 $R^{3a'}$
 $(I.p)$
 R^{1}
 R^{2}
 $(I.p)$
 R^{2}
 R^{2}
 $(I.r)$

5

15

20

25

(Ra)_n

12

$$R^{3a}$$
 R^{1}
 R^{2}
 R^{3a}
 R^{1}
 R^{2}
 R^{2}

$$R^{3a}$$
 R^{3a}
 $R^{3a'}$
 $R^{3a'}$
 $R^{3a'}$
 $R^{3a'}$
 $R^{3a'}$

Hierunter bevorzugt sind auch Verbindungen I, worin eine der Variablen A_2 oder A_4 für $N-R^4$ steht und die verbleibenden Variablen A_2 , A_3 und A_4 unabhängig voneinander für N oder $C-R^{3a}$ stehen, beispielsweise die Verbindungen der Formeln I.u und I.v:

In den Formeln I.a bis I.v haben die Variablen R^a, n, R¹, R², R³, R^{3a} und R⁴ die zuvor genannten Bedeutungen, insbesondere die im Folgenden als bevorzugt angegebenen Bedeutungen. R^{3a'} und R^{3a''} haben die für R^{3a} angegebenen Bedeutungen.

Unter den Verbindungen der Formeln I.a bis I.v sind insbesondere die Verbindungen I.c, I.f, I.g und I.k bevorzugt. Bevorzugt sind außerdem die Verbindungen der Formeln I.m, I.n, I.o, I.o, I.q, I.r, I.s, I.t, I.u und I.v.

Im Hinblick auf die Verwendung der erfindungsgemäßen Verbindungen I als Fungizide weisen die Variablen n, R^a , R^1 und R^2 unabhängig voneinander und vorzugsweise in Kombination die folgenden Bedeutungen auf:

n 1, 2, 3 oder 4, insbesondere 2, oder 3;

- R^a Halogen, insbesondere Fluor oder Chlor, C₁-C₄-Alkyl, insbesondere Methyl, Alkoxy, insbesondere Methoxy, C₁-C₂-Fluoralkyl insbesondere Difluormethyl und Trifluormethyl, und C₁-C₂-Fluoralkoxy, insbesondere Difluormethoxy und Trifluormethoxy. Besonders bevorzugt ist R^a ausgewählt unter Halogen, speziell Fluor oder Chlor, C₁-C₄-Alkyl, speziell Methyl, und C₁-C₄-Alkoxy, speziell Methoxy.
- R¹ C₁-C₈-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₈-Cycloalkyl, C₃-C₈-Cycloalkenyl oder insbesondere eine Gruppe NR⁷R⁸.

R² Halogen, speziell Chlor, oder C₁-C₄-Alkyl, speziell Methyl.

Sofern R^1 für C_1 - C_6 -Alkyl, C_3 - C_8 -Cycloalkyl, C_3 - C_8 -Cycloalkenyl, C_2 - C_6 -Alkenyl oder C_2 - C_6 -Alkinyl steht, bedeutet R^2 vorzugsweise C_1 - C_4 -Alkyl und speziell Methyl.

Sofern R^1 für eine Gruppe NR^7R^8 steht, ist R^2 vorzugsweise ausgewählt unter Chlor und C_1 - C_4 -Alkyl und speziell unter Chlor und Methyl.

- Sofern R¹ für eine Gruppe NR²R³ steht, ist vorzugsweise wenigstens einer der Reste R², R³ von Wasserstoff verschieden. Insbesondere steht R² für C₁-C₆-Alkyl, C₁-C₆-Haloalkyl, C₂-C₆-Alkenyl oder C₂-C₆-Alkinyl. R³ steht insbesondere für Wasserstoff oder C₁-C₆-Alkyl.
- Zu den bevorzugten Gruppen NR⁷R⁸ zählen auch solche, die für einen gesättigten oder teilweise ungesättigten heterocyclischen Rest stehen, der neben dem Stickstoffatom 1 weiteres Heteroatom, ausgewählt unter O, S, und NR¹⁰ als Ringglied aufweisen kann, und der 1 oder 2 Substituenten aufweisen kann, die ausgewählt sind unter C₁-C₆-Alkyl und C₁-C₆-Haloalkyl. Vorzugsweise weist der heterocyclische Rest 5 bis 7 Atome als Ringglieder auf. Beispiele für derartige heterocyclische Reste sind Pyrrolidin, Piperidin, Morpholin, Tetrahydropyridin, z.B. 1,2,3,6-Tetrahydropyridin, Piperazin und Azepan, die in der vorgenannten Weise substituiert sein können.
 Im Hinblick auf die Verwendung der erfindungsgemäßen Verbindungen I als Fungizide

25 steht der Rest vorzugsweise für einen Rest der Formel

worin

Ra1 für Fluor, Chlor oder Methyl;

30 R^{a2} für Wasserstoff oder Fluor;

 R^{a3} für Wasserstoff, Fluor, Chlor, C_1 - C_4 -Alkyl, speziell Methyl, oder C_1 - C_4 -Alkoxy, speziell Methoxy;

R^{a4} für Wasserstoff oder Fluor;

R^{a5} für Wasserstoff, Fluor, Chlor oder C₁-C₄-Alkyl, speziell Methyl, stehen.

Hierbei ist wenigstens einer der Reste R^{a3}, R^{a5} von Wasserstoff verschieden. Insbesondere steht wenigstens einer und besonders bevorzugt beide Reste R^{a2}, R^{a4} für Wasserstoff.

5

20

25

30

35

40

Im Übrigen weisen die Variablen R³, R³a, R³a, R³a, R⁴, R⁵ und R⁶ unabhängig voneinander und vorzugsweise in Kombination mit den bevorzugten Bedeutungen der Variablen n, R³, R¹ und R² die folgenden Bedeutungen auf:

 R^3 10 Wasserstoff; R^{3a} Wasserstoff; R^{3a'} Wasserstoff oder CN R^{3a}" Wasserstoff R⁴ C₁-C₄-Alkyl; R^5 15 Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy; R^6 Wasserstoff, C₁-C₄-Alkyl, CHO oderC₁-C₄-Alkylcarbonyl.

 R^{10} steht vorzugsweise für H oder C_1 - C_4 -Alkyl, z. B. Methyl. R^{11} und R^{12} stehen unabhängig voneinander vorzugsweise für H oder Methyl, insbesondere H. R^{13} , R^{15} und R^{16} stehen vorzugsweise für C_1 - C_4 -Alkyl. R^{14} und R^{17} stehen vorzugsweise für C_1 - C_4 -Alkyl.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³), für 2-Fluor-6-chlor steht (Verbindungen I.c.1). Beispiele hierfür sind Verbindungen I.c.1 worin R² Chlor bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.1, worin R² Methyl bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³)_n für 2,6-Difluor steht (Verbindungen I.c.2). Beispiele hierfür sind Verbindungen I.c.2, worin R² Chlor bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.2, worin R² Methyl bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle

WO 2004/092175

15

PCT/EP2004/004067

A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³)_n für 2,6-Dichlor steht (Verbindungen I.c.3). Beispiele hierfür sind Verbindungen I.c.3, worin R² Chlor bedeutet, R³³ für Wasserstoff steht, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.3, worin R² Methyl bedeutet, R³³ für Wasserstoff steht, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³)_n für 2-Fluor-6-methyl steht (Verbindungen I.c.4). Beispiele hierfür sind Verbindungen I.c.4, worin R² Chlor bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.4, worin R² Methyl bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

25

30

35

40

5

10

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c., worin R² für Chlor oder Methyl steht und (R³)_n für 2,4,6-Trifluor steht (Verbindungen I.c.5). Beispiele hierfür sind Verbindungen I.c.5, worin R² Chlor bedeutet, R³³ für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.5, worin R² Methyl bedeutet, R³³ für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R^2 für Chlor oder Methyl steht und $(R^a)_n$ für 2,6-Difluor-4-methoxy steht (Verbindungen I.c.6). Beispiele hierfür sind Verbindungen I.c.6, worin R^2 Chlor bedeutet, $R^{3a'}$ für Wasserstoff steht, R^1 für R^7 steht, wobei R^7 , R^8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen

16

aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.6, worin R² Methyl bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

5

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³)_n für 2-Methyl-4-fluor steht (Verbindungen I.c.7). Beispiele hierfür sind Verbindungen I.c.7, worin R² Chlor bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.7, worin R² Methyl bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³)_n für 2-Fluor steht (Verbindungen I.c.8). Beispiele hierfür sind Verbindungen I.c.8, worin R² Chlor bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.8, worin R² Methyl bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³)n für 2-Chlor steht (Verbindungen I.c.9). Beispiele hierfür sind Verbindungen I.c.9, worin R² Chlor bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR⁻R³ steht, wobei R⁻, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.9, worin R² Methyl bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR⁻R³ steht, wobei R⁻, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

40 Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³)_π

17

für 2,4-Difluor steht (Verbindungen I.c.10). Beispiele hierfür sind Verbindungen I.c.10, worin R² Chlor bedeutet, R³a′ für Wasserstoff steht, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.10, worin R² Methyl bedeutet, R³a′ für Wasserstoff steht, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³)n für 2-Fluor-4-chlor steht (Verbindungen I.c.11). Beispiele hierfür sind Verbindungen I.c.11, worin R² Chlor bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.11, worin R² Methyl bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

20

25

30

35

40

5

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³)_n für 2-Chlor-4-fluor steht (Verbindungen I.c.12). Beispiele hierfür sind Verbindungen I.c.12, worin R² Chlor bedeutet, R³³ für Wasserstoff steht, R¹ für NR¬R³ steht, wobei R¬, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.12, worin R² Methyl bedeutet, R³³ für Wasserstoff steht, R¹ für NR¬R³ steht, wobei R¬, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³)_n für 2-Methyl steht (Verbindungen I.c.13). Beispiele hierfür sind Verbindungen I.c.13, worin R² Chlor bedeutet, R³³ für Wasserstoff steht, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.13, worin R² Methyl bedeutet, R³³ für Wasserstoff steht, R¹ für NR²R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³)_n für 2,4-Dimethyl steht (Verbindungen I.c.14). Beispiele hierfür sind Verbindungen I.c.14, worin R² Chlor bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR¹R³ steht, wobei R¹, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.14, worin R² Methyl bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR¹R³ steht, wobei R¹, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³)n für 2-Fluor-4-methyl steht (Verbindungen I.c.15). Beispiele hierfür sind Verbindungen I.c.15, worin R² Chlor bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.c.15, worin R² Methyl bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.c, worin R² für Chlor oder Methyl steht und (R³)n für 2,6-Dimethyl steht (Verbindungen I.c.16). Beispiele hierfür sind Verbindungen I.c.16, worin R² Chlor bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

30 Beispiele hierfür sind auch Verbindungen I.c.16, worin R² Methyl bedeutet, R³a¹ für Wasserstoff steht, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind die Verbindungen der allgemeinen Formel I.f, worin R² für Chlor oder Methyl steht und (R³)n für 2-Fluor-6-chlor steht (Verbindungen I.f.1). Beispiele hierfür sind Verbindungen I.f.1 worin R² Chlor bedeutet, R³a¹ und R³a¹ für Wasserstoff stehen, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.1, worin R² Methyl bedeutet, R³a¹ und R³a¹ für Was-

19

Wasserstoff stehen, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.). Beispiele hierfür sind auch Verbindungen I.f.1 worin R² Chlor bedeutet, R³a¹ für CN und R³a¹ für Wasserstoff stehen, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.1, worin R² Methyl bedeutet, R³a¹ für CN und R³a¹ für Wasserstoff stehen, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

5

10

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.f, worin R² für Chlor oder Methyl steht und (R³), für 2,6-Difluor steht (Verbindungen I.f.2). Beispiele hierfür sind Verbindungen I.f.2, worin R² Chlor bedeutet, R^{3a'} und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei 15 R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.2, worin R² Methyl bedeutet, R³a¹ und R³a˚ für Wasserstoff stehen, R¹ für NR¹R³ steht, wobei R¹, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer 20 Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.2 worin R² Chlor bedeutet, R^{3a'} für CN und R^{3a"} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.2, worin R² Methyl 25 bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.f., worin R² für Chlor oder Methyl steht und (R³)_n für 2,6-Dichlor steht (Verbindungen I.f.3). Beispiele hierfür sind Verbindungen I.f.3, worin R² Chlor bedeutet, R³³ und R³³ für Wasserstoff stehen, R¹ für NR¬R³ steht, wobei R¬, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.3, worin R² Methyl bedeutet, R³³ und R³³ für Wasserstoff stehen, R¹ für NR¬R³ steht, wobei R¬, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.3 worin R² Chlor bedeutet, R³³ für CN und R³³ für Wasserstoff stehen, R¹ für NR¬R³ steht, wobei R¬, R³ gemeinsam jeweils die in einer Zeile der Tabelle A ange-

20

gebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.3, worin R² Methyl bedeutet, R³a¹ für CN und R³aⁿ für Wasserstoff stehen, R¹ für NR³R⁵ steht, wobei R³, R⁵ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

5

10

15

20

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.f, worin R² für Chlor oder Methyl steht und (R³)n für 2-Fluor-6-methyl steht (Verbindungen I.f.4). Beispiele hierfür sind Verbindungen I.f.4, worin R² Chlor bedeutet, R^{3a'} und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.4, worin R² Methyl bedeutet, R³a¹ und R^{3a"} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.4 worin R² Chlor bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.4, worin R² Methyl bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Ver-25 bindungen der allgemeinen Formel I.f, worin R² für Chlor oder Methyl steht und (R³), für 2,4,6-Trifluor steht (Verbindungen I.f.5). Beispiele hierfür sind Verbindungen I.f.5, worin R² Chlor bedeutet, R^{3a'} und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung auf-30 weist. Beispiele hierfür sind auch Verbindungen I.f.5, worin R² Methyl bedeutet, R³a¹ und R^{3a*} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.5 worin R² Chlor bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff ste-35 hen, R¹ für NR¹R³ steht, wobei R¹, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.5, worin R² Methyl bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen 40 aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

WO 2004/092175

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.f, worin R² für Chlor oder Methyl steht und (Ra)n für 2,6-Difluor-4-methoxy steht (Verbindungen I.f.6). Beispiele hierfür sind Verbindungen I.f.6, worin R^2 Chlor bedeutet, $R^{3a'}$ und $R^{3a''}$ für Wasserstoff stehen, R^1 für NR^7R^8 steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.6, worin R² Methyl bedeutet, $R^{3a'}$ und $R^{3a''}$ für Wasserstoff stehen, R^1 für NR^7R^8 steht, wobei R^7 , R^8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R1 die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.6 worin R² Chlor bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff stehen, R¹ für NR¹R³ steht, wobei R¹, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.6, worin R² Methyl bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

20

25

30

35

40

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.f., worin R^2 für Chlor oder Methyl steht und $(R^a)_n$ für 2-Methyl-4-fluor steht (Verbindungen I.f.7). Beispiele hierfür sind Verbindungen I.f.7, worin R² Chlor bedeutet, R^{3a¹} und R^{3a¹} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.7, worin R² Methyl bedeutet, R³a¹ und R³a° für Wasserstoff stehen, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.7 worin R² Chlor bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff stehen, R¹ für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.7, worin R² Methyl bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.f, worin R² für Chlor oder Methyl steht und (R^a)_n für 2-Fluor steht (Verbindungen I.f.8). Beispiele hierfür sind Verbindungen I.f.8, worin

22

R² Chlor bedeutet, R³a¹ und R³a¹ für Wasserstoff stehen, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.8, worin R² Methyl bedeutet, R³a¹ und R³a¹ für Wasserstoff stehen, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.8 worin R² Chlor bedeutet, R³a¹ für CN und R³a¹ für Wasserstoff stehen, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.8, worin R² Methyl bedeutet, R³a¹ für CN und R³a² für Wasserstoff stehen, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebenen Bedeutungen aufweist.

15

20

25

30

35

40

10

5

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.f, worin R² für Chlor oder Methyl steht und (R^a)_n für 2-Chlor steht (Verbindungen I.f.9). Beispiele hierfür sind Verbindungen I.f.9, worin R² Chlor bedeutet, R^{3a'} und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.9, worin R² Methyl bedeutet, R^{3a'} und R^{3a''} für Wasserstoff stehen, R¹ für NR¹R³ steht, wobei R¹, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.9 worin R² Chlor bedeutet, R^{3a'} für CN und R^{3a*} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.9, worin R2 Methyl bedeutet, R³a¹ für CN und R³a⁵ für Wasserstoff stehen, R¹ für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.f, worin R² für Chlor oder Methyl steht und (R⁸)_n für 2,4-Difluor steht (Verbindungen I.f.10). Beispiele hierfür sind Verbindungen I.f.10, worin R² Chlor bedeutet, R^{3a'} und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.10, worin R² Methyl bedeutet, R^{3a'} und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils

23

die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.10 worin R² Chlor bedeutet, R³a¹ für CN und R³aª für Wasserstoff stehen, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.10, worin R² Methyl bedeutet, R³a¹ für CN und R³aª für Wasserstoff stehen, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.f, worin R² für Chlor oder Methyl steht und (Rª), für 2-Fluor-4-chlor steht (Verbindungen I.f.11). Beispiele hierfür sind Verbindungen l.f.11, worin R² Chlor bedeutet, R^{3a'} und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.11, worin R² Methyl bedeutet, R³a' und R³a" für Wasserstoff stehen, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R1 die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.11 worin R² Chlor bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff stehen, R¹ für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.11, worin R² Methyl bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

30

35

40

5

10

15

20

25

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.f, worin R² für Chlor oder Methyl steht und (R³)_n für 2-Chlor-4-fluor steht (Verbindungen I.f.12). Beispiele hierfür sind Verbindungen I.f.12, worin R² Chlor bedeutet, R³a¹ und R³a² für Wasserstoff stehen, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.12, worin R² Methyl bedeutet, R³a¹ und R³a² für Wasserstoff stehen, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.12 worin R² Chlor bedeutet, R³a¹ für CN und R³a² für Wasserstoff

24

stehen, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.12, worin R² Methyl bedeutet, R³a¹ für CN und R³a¹ für Wasserstoff stehen, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.f, worin R² für Chlor oder Methyl steht und (R³)n 10 für 2-Methyl steht (Verbindungen I.f.13). Beispiele hierfür sind Verbindungen I.f.13, worin R^2 Chlor bedeutet, R^{3a^*} und R^{3a^*} für Wasserstoff stehen, R^1 für NR^7R^8 steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.13, worin R² Methyl bedeutet, R³a¹ 15 und R^{3a"} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.13 worin R² Chlor bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff stehen, R¹ für NR¹R³ steht, wobei R¹, R³ gemeinsam jeweils die in einer Zeile der Tabelle 20 A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.13, worin R² Methyl bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung 25 aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.f., worin R² für Chlor oder Methyl steht und (R³)n für 2,4-Dimethyl steht (Verbindungen I.f.14). Beispiele hierfür sind Verbindungen I.f.14, worin R² Chlor bedeutet, R³a¹ und R³aª für Wasserstoff stehen, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.14, worin R² Methyl bedeutet, R³a¹ und R³aª für Wasserstoff stehen, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.14 worin R² Chlor bedeutet, R³a¹ für CN und R³aª für Wasserstoff stehen, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebenen Bedeutungen aufweist. Beispiele hierfür sind auch Verbindungen I.f.14, worin

30

35

40

25

 R^2 Methyl bedeutet, $R^{3a'}$ für CN und $R^{3a''}$ für Wasserstoff stehen, R^1 für NR^7R^8 steht, wobei R^7 , R^8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R^1 die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

5

10

15

20

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.f, worin R² für Chlor oder Methyl steht und (R³), für 2-Fluor-4-methyl steht (Verbindungen I.f.15). Beispiele hierfür sind Verbindungen I.f.15, worin R² Chlor bedeutet, R^{3a'} und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R1 die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.15, worin R² Methyl bedeutet, R^{3a'} und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R1 die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.15 worin R² Chlor bedeutet, R^{3a'} für CN und R^{3a"} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.15, worin R² Methyl bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Ver-25 bindungen der allgemeinen Formel I.f, worin R² für Chlor oder Methyl steht und (R³), für 2,6-Dimethyl steht (Verbindungen I.f.16). Beispiele hierfür sind Verbindungen I.f.16, worin R² Chlor bedeutet, R^{3a'} und R^{3a''} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R1 die in einer Zeile der Tabelle B angegebene Bedeutung auf-30 weist. Beispiele hierfür sind auch Verbindungen I.f.16, worin R² Methyl bedeutet R³a¹ und R^{3a"} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.16 worin R² Chlor bedeutet, R^{3a'} für CN und R^{3a''} für Wasserstoff ste-35 hen, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.f.16, worin R² Methyl bedeutet, R^{3a'} für CN und R^{3a"} für Wasserstoff stehen, R¹ für NR⁷R⁸ steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeu-40

26

tungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind die Verbindungen der allgemeinen Formel I.g, worin R² für Chlor oder Methyl steht und (R³)n für 2-Fluor-6-chlor steht (Verbindungen I.g.1). Beispiele hierfür sind Verbindungen I.g.1 worin R² Chlor bedeutet, R³a* für Wasserstoff steht, R¹ für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R1 die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.1, worin R² Methyl bedeutet, R³a" für Wasserstoff steht, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R1 die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Ver-15 bindungen der allgemeinen Formel I.g, worin R² für Chlor oder Methyl steht und (R^a)_n für 2,6-Difluor steht (Verbindungen I.g.2). Beispiele hierfür sind Verbindungen I.g.2, worin R² Chlor bedeutet, R^{3a"} für Wasserstoff steht, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispie-20 le hierfür sind auch Verbindungen I.g.2, worin R² Methyl bedeutet, R³a" für Wasserstoff steht, R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

25 Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.g, worin R² für Chlor oder Methyl steht und (R^a)_n für 2,6-Dichlor steht (Verbindungen I.g.3). Beispiele hierfür sind Verbindungen I.g.3,

worin R² Chlor bedeutet, R^{3a"} für Wasserstoff steht, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufwei-

sen, oder R1 die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.3, worin R² Methyl bedeutet, R^{3a*} für Wasserstoff steht, R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B an-

35 gegebene Bedeutung aufweist.

5

30

40

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.g, worin R² für Chlor oder Methyl steht und (R^a)_n für 2-Fluor-6-methyl steht (Verbindungen I.g.4). Beispiele hierfür sind Verbindungen I.g.4, worin R² Chlor bedeutet, R^{3a*} für Wasserstoff steht, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen

27

aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.4, worin R² Methyl bedeutet, R³a" für Wasserstoff steht, R¹ für NR¹R³ steht, wobei R¹, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

5

15

20

25

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.g, worin R² für Chlor oder Methyl steht und (R³), für 2,4,6-Trifluor steht (Verbindungen I.g.5). Beispiele hierfür sind Verbindungen I.g.5, worin R² Chlor bedeutet, R^{3a*} für Wasserstoff steht, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ 10 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.5, worin R² Methyl bedeutet, R³a" für Wasserstoff steht, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.g, worin R² für Chlor oder Methyl steht und (R²), für 2,6-Difluor-4-methoxy steht (Verbindungen I.g.6). Beispiele hierfür sind Verbindungen I.g.6, worin R² Chlor bedeutet, R^{3a*} für Wasserstoff steht, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.6, worin R² Methyl bedeutet, R³a" für Wasserstoff steht, R¹ für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.g, worin R^2 für Chlor oder Methyl steht und $(R^a)_n$ 30 für 2-Methyl-4-fluor steht (Verbindungen I.g.7). Beispiele hierfür sind Verbindungen I.g.7, worin R² Chlor bedeutet, R^{3a*} für Wasserstoff steht, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.7, worin R² Methyl bedeutet, R³a" für Was-35 serstoff steht, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Ver-40 bindungen der allgemeinen Formel I.g, worin R^2 für Chlor oder Methyl steht und $(R^a)_n$

28

für 2-Fluor steht (Verbindungen I.g.8). Beispiele hierfür sind Verbindungen I.g.8, worin R² Chlor bedeutet, R³a² für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.8, worin R² Methyl bedeutet, R³a² für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.g., worin R² für Chlor oder Methyl steht und (R³)_n für 2-Chlor steht (Verbindungen I.g.9). Beispiele hierfür sind Verbindungen I.g.9, worin R² Chlor bedeutet, R³³ für Wasserstoff steht, R¹ für NR¬R³ steht, wobei R¬, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.9, worin R² Methyl bedeutet, R³³ für Wasserstoff steht, R¹ für NR¬R³ steht, wobei R¬, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

20

25

30

35

40

5

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.g, worin R² für Chlor oder Methyl steht und (R³)n für 2,4-Difluor steht (Verbindungen I.g.10). Beispiele hierfür sind Verbindungen I.g.10, worin R² Chlor bedeutet, R³³ für Wasserstoff steht, R¹ für NR¬R³ steht, wobei R¬, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.10, worin R² Methyl bedeutet, R³³ für Wasserstoff steht, R¹ für NR¬R³ steht, wobei R¬, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.g, worin R² für Chlor oder Methyl steht und (R³)n für 2-Fluor-4-chlor steht (Verbindungen I.g.11). Beispiele hierfür sind Verbindungen I.g.11, worin R² Chlor bedeutet, R³a" für Wasserstoff steht, R¹ für NR⁻R³ steht, wobei R⁻, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.11, worin R² Methyl bedeutet, R³a" für Wasserstoff steht, R¹ für NR⁻R³ steht, wobei R⁻, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

5

10

15

20

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.g, worin R² für Chlor oder Methyl steht und (R³)n für 2-Chlor-4-fluor steht (Verbindungen I.g.12). Beispiele hierfür sind Verbindungen I.g.12, worin R² Chlor bedeutet, R³a" für Wasserstoff steht, R¹ für NR⁻R³ steht, wobei R⁻, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.12, worin R² Methyl bedeutet, R³a" für Wasserstoff steht, R¹ für NR⁻R³ steht, wobei R⁻, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.g, worin R² für Chlor oder Methyl steht und (R³)_n für 2-Methyl steht (Verbindungen I.g.13). Beispiele hierfür sind Verbindungen I.g.13, worin R² Chlor bedeutet, R³a" für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.13, worin R² Methyl bedeutet, R³a" für Wasserstoff steht, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.g, worin R² für Chlor oder Methyl steht und (R³)n für 2,4-Dimethyl steht (Verbindungen I.g.14). Beispiele hierfür sind Verbindungen I.g.14, worin R² Chlor bedeutet, R³a" für Wasserstoff steht, R¹ für NR¹R³ steht, wobei R¹, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

30 Beispiele hierfür sind auch Verbindungen I.g.14, worin R² Methyl bedeutet, R³a" für Wasserstoff steht, R¹ für NR¹R³ steht, wobei R¹, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.g, worin R² für Chlor oder Methyl steht und (R³)n für 2-Fluor-4-methyl steht (Verbindungen I.g.15). Beispiele hierfür sind Verbindungen I.g.15, worin R² Chlor bedeutet, R³a⁵ für Wasserstoff steht, R¹ für NR⁻R⁵ steht, wobei R⁻, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.15, worin R² Methyl bedeutet, R³a⁵ für

Wasserstoff steht, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile

Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.g, worin R² für Chlor oder Methyl steht und (R³)n für 2,6-Dimethyl steht (Verbindungen I.g.16). Beispiele hierfür sind Verbindungen I.g.16, worin R² Chlor bedeutet, R³³ für Wasserstoff steht, R¹ für NR¬R³ steht, wobei R¬, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.g.16, worin R² Methyl bedeutet, R³³ für Wasserstoff steht, R¹ für NR¬R³ steht, wobei R¬, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)n für 2-Fluor-6-chlor steht (Verbindungen I.k.1). Beispiele hierfür sind Verbindungen I.k.1 worin R² Chlor bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.1, worin R² Methyl bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

25

30

20

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)n für 2,6-Difluor steht (Verbindungen I.k.2). Beispiele hierfür sind Verbindungen I.k.2, worin R² Chlor bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.2, worin R² Methyl bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

35

40

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)_n für 2,6-Dichlor steht (Verbindungen I.k.3). Beispiele hierfür sind Verbindungen I.k.3, worin R² Chlor bedeutet, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Ver-

bindungen I.k.3, worin R² Methyl bedeutet, R¹ für NR⁷R⁸ steht, wobei R⁷, R⁸ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

- Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)n für 2-Fluor-6-methyl steht (Verbindungen I.k.4). Beispiele hierfür sind Verbindungen I.k.4, worin R² Chlor bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.4, worin R² Methyl bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.
- Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)n für 2,4,6-Trifluor steht (Verbindungen I.k.5). Beispiele hierfür sind Verbindungen I.k.5, worin R² Chlor bedeutet, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer
 Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.5, worin R² Methyl bedeutet, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.
- Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)n für 2,6-Difluor-4-methoxy steht (Verbindungen I.k.6). Beispiele hierfür sind Verbindungen I.k.6, worin R² Chlor bedeutet, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.6, worin R² Methyl bedeutet, R¹ für NR²R³ steht, wobei R², R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.
- Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)_n für 2-Methyl-4-fluor steht (Verbindungen I.k.7). Beispiele hierfür sind Verbindungen I.k.7, worin R² Chlor bedeutet, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.7, worin R² Methyl bedeutet, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemein-

32

sam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)_n für 2-Fluor steht (Verbindungen I.k.8). Beispiele hierfür sind Verbindungen I.k.8, worin R² Chlor bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.8, worin R² Methyl bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)_n für 2-Chlor steht (Verbindungen I.k.9). Beispiele hierfür sind Verbindungen I.k.9, worin R² Chlor bedeutet, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.9, worin R² Methyl bedeutet, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)_n für 2,4-Difluor steht (Verbindungen I.k.10). Beispiele hierfür sind Verbindungen I.k.10, worin R² Chlor bedeutet, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.10, worin R² Methyl bedeutet, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

25

30

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)_n für 2-Fluor-4-chlor steht (Verbindungen I.k.11). Beispiele hierfür sind Verbindungen I.k.11, worin R² Chlor bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.11, worin R² Methyl bedeutet, R¹ für NR³R³ steht, wobei R³, R³ ge-

meinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)n für 2-Chlor-4-fluor steht (Verbindungen I.k.12). Beispiele hierfür sind Verbindungen I.k.12, worin R² Chlor bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.12, worin R² Methyl bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

5

10

15

20

25

30

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)_n für 2-Methyl steht (Verbindungen I.k.13). Beispiele hierfür sind Verbindungen I.k.13, worin R² Chlor bedeutet, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.13, worin R² Methyl bedeutet, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)_n für 2,4-Dimethyl steht (Verbindungen I.k.14). Beispiele hierfür sind Verbindungen I.k.14, worin R² Chlor bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.14, worin R² Methyl bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)_n für 2-Fluor-4-methyl steht (Verbindungen I.k.15). Beispiele hierfür sind Verbindungen I.k.15, worin R² Chlor bedeutet, R¹ für NR⁷R³ steht, wobei R⁷, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.15, worin R² Methyl bedeutet, R¹ für NR⁷R³ steht, wobei R⁷, R³ ge-

meinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind weiterhin die Verbindungen der allgemeinen Formel I.k, worin R² für Chlor oder Methyl steht und (R³)n für 2,6-Dimethyl steht (Verbindungen I.k.16). Beispiele hierfür sind Verbindungen I.k.16, worin R² Chlor bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist. Beispiele hierfür sind auch Verbindungen I.k.16, worin R² Methyl bedeutet, R¹ für NR³R³ steht, wobei R³, R³ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen, oder R¹ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Tabelle A:

5

10

Nr.	R ⁷	R ⁸
A-1	• Н	Н
A-2	CH₂CH₃	Н
A-3	CH₂CH₃	CH₃
A-4	CH₂CH₃	CH₂CH₃
A-5	CH₂CF₃	Н
A-6	CH₂CF₃	CH₃
A-7	CH₂CF₃	CH₂CH₃
A-8	CH₂CCI₃	Н
A-9	CH₂CCI₃	CH₃
A-10	CH₂CCI₃	CH₂CH₃
A-11	CH₂CH₂CH₃	Н
A-12	CH₂CH₂CH₃	CH₃
A-13	CH₂CH₂CH₃	CH₂CH₃
A-14	CH₂CH₂CH₃	CH₂CH₂CH₃
A-15	CH(CH ₃) ₂	Н
A-16	CH(CH ₃) ₂	CH₃
A-17	CH(CH ₃) ₂	CH₂CH₃
A-18	(±) CH(CH ₃)-CH ₂ CH ₃	Н
A-19	(±) CH(CH₃)-CH₂CH₃	CH₃
A-20	(±) CH(CH ₃)-CH ₂ CH ₃	CH₂CH₃

Nr.	R ⁷	R ⁸
A-21	(S) CH(CH ₃)-CH ₂ CH ₃	Н
A-22	(S) CH(CH ₃)-CH ₂ CH ₃	CH ₃
A-23	(S) CH(CH₃)-CH₂CH₃	CH ₂ CH ₃
A-24	(R) CH(CH₃)-CH₂CH₃	Н
A-25	(R) CH(CH ₃)-CH ₂ CH ₃	CH ₃
A-26	(R) CH(CH₃)-CH₂CH₃	CH₂CH₃
A-27	(±) CH(CH ₃)-CH(CH ₃) ₂	Н
A-28	(±) CH(CH ₃)-CH(CH ₃) ₂	CH ₃
A-29	(±) CH(CH ₃)-CH(CH ₃) ₂	CH₂CH₃
A-30	(S) CH(CH ₃)-CH(CH ₃) ₂	Н
A-31	(S) CH(CH ₃)-CH(CH ₃) ₂	CH₃
A-32	(S) CH(CH ₃)-CH(CH ₃) ₂	CH₂CH₃
A-33	(R) CH(CH₃)-CH(CH₃)₂	Н
A-34	(R) CH(CH₃)-CH(CH₃)₂	CH ₃
A-35	(R) CH(CH₃)-CH(CH₃)₂	CH ₂ CH ₃
A-36	(±) CH(CH ₃)-C(CH ₃) ₃	Н
A-37	(±) CH(CH ₃)-C(CH ₃) ₃	CH₃
A-38	(±) CH(CH ₃)-C(CH ₃) ₃	CH₂CH₃
A-39	(S) CH(CH ₃)-C(CH ₃) ₃	Н
A-40	(S) CH(CH ₃)-C(CH ₃) ₃	CH₃
A-41	(S) CH(CH ₃)-C(CH ₃) ₃	CH₂CH₃
A-42	(R) CH(CH ₃)-C(CH ₃) ₃	Н
A-43	(R) CH(CH ₃)-C(CH ₃) ₃	CH₃
A-44	(R) CH(CH ₃)-C(CH ₃) ₃	CH₂CH₃
A-45	(±) CH(CH ₃)-CF ₃	Н
A-46	(±) CH(CH ₃)-CF ₃	CH₃
A-47	(±) CH(CH ₃)-CF ₃	CH₂CH₃
A-48	(S) CH(CH ₃)-CF ₃	Н
A-49	(S) CH(CH ₃)-CF ₃	CH₃
A-50	(S) CH(CH ₃)-CF ₃	CH₂CH₃
A-51	(R) CH(CH ₃)-CF ₃	Н

Nr.	R ⁷	R ⁸
A-52	(R) CH(CH ₃)-CF ₃	CH₃
A-53	(R) CH(CH₃)-CF₃	CH₂CH₃
A-54	(±) CH(CH ₃)-CCl ₃	Н
A-55	(±) CH(CH ₃)-CCl ₃	CH₃
A-56	(±) CH(CH ₃)-CCl ₃	CH ₂ CH ₃
A-57	(S) CH(CH ₃)-CCl ₃	Н
A-58	(S) CH(CH ₃)-CCl ₃	CH₃
A-59	(S) CH(CH ₃)-CCl ₃	CH₂CH₃
A-60	(R) CH(CH₃)-CCl₃	Н
A-61	(R) CH(CH₃)-CCl₃	CH₃
A-62	(R) CH(CH ₃)-CCl ₃	CH₂CH₃
A-63	CH₂CF₂CF₃	Н
A-64	CH₂CF₂CF₃	CH₃
A-65	CH₂CF₂CF₃	CH₂CH₃
A-66	CH ₂ (CF ₂) ₂ CF ₃	Н
A-67	CH ₂ (CF ₂) ₂ CF ₃	CH₃
A-68	CH ₂ (CF ₂) ₂ CF ₃	CH₂CH₃
A-69	CH₂C(CH₃)=CH₂	н
A-70	CH₂C(CH₃)=CH₂	CH₃
A-71	CH ₂ C(CH ₃)=CH ₂	CH₂CH₃
A-72	CH ₂ CH=CH ₂	Н
A-73	CH ₂ CH=CH ₂	CH₃
A-74	CH₂CH=CH₂	CH₂CH₃
A-75	CH(CH₃)CH=CH₂	Н
A-76	CH(CH₃)CH=CH₂	CH₃
A-77	CH(CH₃)CH=CH₂	CH₂CH₃
A-78	CH(CH₃)C(CH₃)=CH₂	Н
A-79	CH(CH ₃)C(CH ₃)=CH ₂	CH₃
A-80	CH(CH ₃)C(CH ₃)=CH ₂	CH₂CH₃
A-81	Cyclopentyl	Н
A-82	Cyclopentyl	CH₃

Nr.	R ⁷	R ⁸	
A-83	Cyclopentyl	CH₂CH₃	
A-84	Cyclohexyl	Н	
A-85	Cyclohexyl	CH ₃	
A-86	Cyclohexyl	CH₂CH₃	
A-87	-(CH₂)₂CF	H=CHCH ₂ -	
A-88	-(CH₂)₂C(CH	H ₃)=CHCH ₂ -	
A-89	-(CH₂)₂CH(-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -	
A-90	-(CH₂)₂CI	-(CH ₂) ₂ CHF(CH ₂) ₂ -	
A-91	-(CH₂)₃C	-(CH₂)₃CHFCH₂-	
A-92	-(CH ₂) ₂ CH(-(CH ₂) ₂ CH(CF ₃)(CH ₂) ₂ -	
A-93	-(CH ₂) ₂ (-(CH ₂) ₂ O(CH ₂) ₂ -	
A-94	-(CH ₂) ₂ S(CH ₂) ₂ -		
A-95	-(CH ₂) ₅ -		
A-96	-(CH ₂) ₄ -		
A-97	-CH₂CH=CHCH₂-		
A-98	-CH(CH ₃)(CH ₂) ₃ -		
A-99	-CH ₂ CH(CH ₃)(CH ₂) ₂ -		

Tabelle B:

Nr.	R ¹	· · · · · · · · · · · · · · · · · · ·
B-1	CH₃	
B-2	CH₂CH₃	
B-3	CH₂CH₂CH₃	
B-4	CH(CH ₃) ₂	
B-5	CH ₂ CH(CH ₃) ₂	
B-6	(±) CH(CH ₃)CH ₂ CH ₃	······································
B-7	(R) CH(CH ₃)CH ₂ CH ₃	
B-8	(S) CH(CH ₃)CH ₂ CH ₃	
B-9	(CH₂)₃CH₃	· · · · · · · · · · · · · · · · · · ·
B-10	C(CH₃)₃	
B-11	(CH ₂) ₄ CH ₃	
B-12	CH(CH ₂ CH ₃) ₂	
B-13	CH ₂ CH ₂ CH(CH ₃) ₂	

	30
Nr.	R ¹
B-14	(±) CH(CH ₃)(CH ₂) ₂ CH ₃
B-15	(R) CH(CH ₃)(CH ₂) ₂ CH ₃
B-16	(S) CH(CH ₃)(CH ₂) ₂ CH ₃
B-17	(±) CH ₂ CH(CH ₃)CH ₂ CH ₃
B-18	(R) CH ₂ CH(CH ₃)CH ₂ CH ₃
B-19	(S) CH ₂ CH(CH ₃)CH ₂ CH ₃
B-20	(±) CH(CH ₃)CH(CH ₃) ₂
B-21	(R) CH(CH ₃)CH(CH ₃) ₂
B-22	(S) CH(CH ₃)CH(CH ₃) ₂
B-23	(CH ₂) ₅ CH ₃
B-24	(±,±) CH(CH ₃)CH(CH ₃)CH ₂ CH ₃
B-25	(±,R) CH(CH ₃)CH(CH ₃)CH ₂ CH ₃
B-26	(±,S) CH(CH ₃)CH(CH ₃)CH ₂ CH ₃
B-27 ·	(R,±) CH(CH ₃)CH(CH ₃)CH ₂ CH ₃
B-28	(S, ±) CH(CH ₃)CH(CH ₃)CH ₂ CH ₃
B-29	(±) CH ₂ CH(CH ₃)CF ₃
B-30	(R) CH₂CH(CH₃)CF₃
B-31	(S) CH₂CH(CH₃)CF₃
B-32	(±) CH ₂ CH(CF ₃)CH ₂ CH ₃
B-33	(R) CH₂CH(CF₃)CH₂CH₃
B-34	(S) CH ₂ CH(CF ₃)CH ₂ CH ₃
B-35	(±,±) CH(CH ₃)CH(CH ₃)CF ₃
B-36	(±,R) CH(CH ₃)CH(CH ₃)CF ₃
B-37	(±,S) CH(CH ₃)CH(CH ₃)CF ₃
B-38	(R,±) CH(CH ₃)CH(CH ₃)CF ₃
B-39	(S,±) CH(CH ₃)CH(CH ₃)CF ₃
B-40	(±,±) CH(CH ₃)CH(CF ₃)CH ₂ CH ₃
B-41	(±,R) CH(CH ₃)CH(CF ₃)CH ₂ CH ₃
B-42	(±,S) CH(CH ₃)CH(CF ₃)CH ₂ CH ₃
B-43	(R,±) CH(CH ₃)CH(CF ₃)CH ₂ CH ₃
B-44	(S,±) CH(CH ₃)CH(CF ₃)CH ₂ CH ₃
B-45	CF ₃
B-46	CF ₂ CF ₃
B-47	CF ₂ CF ₂ CF ₃
B-48	c-C₃H₅
B-49	(1-CH₃)-c-C₃H₄
B-50	c-C ₅ H ₉
B-51	c-C ₆ H ₁₁

Nr.	R ¹
B-52	(4-CH ₃)-c-C ₆ H ₁₀
B-53	$CH_2C(CH_3)=CH_2$
B-54	CH ₂ CH ₂ C(CH ₃)=CH ₂
B-55	CH ₂ -C(CH ₃) ₃
B-56	CH ₂ -Si(CH ₃) ₃
B-57	n-C ₆ H ₁₃
B-58	$(CH_2)_3$ - $CH(CH_3)_2$
B-59	(CH ₂) ₂ -CH(CH ₃)-C ₂ H ₅
B-60	CH ₂ -CH(CH ₃)-n-C ₃ H ₇
B-61	CH(CH ₃)-n-C ₄ H ₉
B-62	CH_2 - $CH(C_2H_5)_2$
B-63	CH(C ₂ H ₅)-n-C ₃ H ₇
B-64	CH₂-c-C₅H ₉
B-65	CH ₂ -CH(CH ₃)-CH(CH ₃) ₂
B-66	CH(CH ₃)-CH ₂ CH(CH ₃) ₂
B-67	CH(CH ₃)-CH(CH ₃)-C ₂ H ₅
B-68	CH(CH ₃)-C(CH ₃) ₃
B-69	(CH ₂) ₂ -C(CH ₃) ₃
B-70	CH ₂ -C(CH ₃) ₂ -C ₂ H ₅
B-71	·2-CH ₃ -c-C ₅ H ₈
B-72	3-CH ₃ -c-C ₅ H ₈
B-73	$C(CH_3)_2$ -n- C_3H_7
B-74	(CH ₂) ₆ -CH ₃
B-75	(CH ₂) ₄ -CH(CH ₃) ₂
B-76	(CH ₂) ₃ -CH(CH ₃)-C ₂ H ₅
B-77	(CH ₂) ₂ -CH(CH ₃)-n-C ₃ H ₇
B-78	CH₂-CH(CH₃)-n-C₄H ₉
B-79	CH(CH ₃)-n-C ₅ H ₁₁
B-80	(CH ₂) ₃ C(CH ₃) ₃
B-81	(CH₂)₂CH(CH₃)-CH(CH₃)₂
B-82	(CH₂)CH(CH₃)-CH₂CH(CH₃)₂
B-83	CH(CH ₃)(CH ₂) ₂ -CH(CH ₃) ₂
B-84	(CH ₂) ₂ C(CH ₃) ₂ C ₂ H ₅
B-85	CH₂CH(CH₃)CH(CH₃)C₂H₅
B-86	CH(CH ₃)CH ₂ CH(CH ₃)C ₂ H ₅
B-87	CH₂C(CH₃)₂-n-C₃H ₇
B-88	CH(CH ₃)CH(CH ₃)-n-C ₃ H ₇
B-89	C(CH ₃) ₂ -n-C ₄ H ₉

Nr.	R ¹
B-90	(CH ₂) ₂ CH(C ₂ H ₅) ₂
B-91	CH ₂ CH(C ₂ H ₅)-n-C ₃ H ₇
B-92	CH(C₂H₅)-n-C₄H ₉
B-93	CH ₂ CH(CH ₃)C(CH ₃) ₃
B-94	CH(CH ₃)CH ₂ C(CH ₃) ₃
B-95	CH ₂ C(CH ₃) ₂ CH(CH ₃) ₂
B-96	CH ₂ CH(C ₂ H ₅)CH(CH ₃) ₂
B-97	CH(CH ₃)CH(CH ₃) ₂
B-98	C(CH ₃) ₂ CH ₂ CH(CH ₃) ₂
B-99	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂
B-100	CH(CH ₃)C(CH ₃) ₂ C ₂ H ₅
B-101	CH(CH ₃)CH(C ₂ H ₅) ₂
B-102	C(CH ₃) ₂ CH(CH ₃)C ₂ H ₅
B-103	CH(C₂H₅)CH(CH₃)C₂H₅
B-104	$C(CH_3)(C_2H_5)-n-C_3H_7$
B-105	CH(n-C ₃ H ₇) ₂
B-106	CH(n-C ₃ H ₇)CH(CH ₃) ₂
B-107	C(CH ₃) ₂ C(CH ₃) ₃
B-108	$C(CH_3)(C_2H_5)-CH(CH_3)_2$
B-109	C(C ₂ H ₅) ₃
B-110	(3-CH ₃)-c-C ₆ H ₁₀
B-111	(2-CH ₃)-c-C ₆ H ₁₀
B-112	n-C ₈ H ₁₇
B-113	CH₂C(=NO-CH₃)CH₃
B-114	CH ₂ C(=NO-C ₂ H ₅)CH ₃
B-115	CH₂C(=NO-n-C₃H ₇)CH₃
B-116	CH₂C(=NO-i-C₃H₁)CH₃
B-117	CH(CH ₃)C(=NOCH ₃)CH ₃
B-118	CH(CH ₃)C(=NOC ₂ H ₅)CH ₃
B-119	CH(CH ₃)C(=NO-n-C ₃ H ₇)CH ₃
B-120	CH(CH ₃)C(=NO-i-C ₃ H ₇)CH ₃
B-121	C(=NOCH ₃)C(=NOCH ₃)CH ₃
B-122	C(=NOCH ₃)C(=NOC ₂ H ₅)CH ₃
B-123	$C(=NOCH_3)C(=NO-n-C_3H_7)CH_3$
B-124	$C(=NOCH_3)C(=NO-i-C_3H_7)CH_3$
B-125	$C(=NOC_2H_5)C(=NOCH_3)CH_3$
B-126	$C(=NOC_2H_5)C(=NOC_2H_5)CH_3$
B-127	$C(=NOC_2H_5)C(=NO-n-C_3H_7)CH_3$

Nr.	41
B-128	C(≈NOC ₂ H ₅)C(=NO-i-C ₃ H ₇)CH ₃
B-129	CH ₂ C(=NO-CH ₃)C ₂ H ₅
B-130	$CH_2C(=NO-C_2H_5)C_2H_5$
B-131	CH ₂ C(=NO-n-C ₃ H ₇)C ₂ H ₅
B-132	$CH_2C(=NO-i-C_3H_7)C_2H_5$
B-133	$CH(CH_3)C(=NOCH_3)C_2H_5$
B-134	$CH(CH_3)C(=NOC_2H_5)C_2H_5$
B-135	CH(CH ₃)C(=NO-n-C ₃ H ₇)C ₂ H ₅
B-136	$CH(CH_3)C(=NO-n-C_3H_7)C_2H_5$
B-137	$C(=NOCH_3)C(=NOCH_3)C_2H_5$
B-138	$C(=NOCH_3)C(=NOC_2H_5)C_2H_5$
B-139	$C(=NOCH_3)C(=NO-n-C_3H_7)C_2H_5$
B-140	$C(=NOCH_3)C(=NO-i-C_3H_7)C_2H_5$
B-141	$C(=NOC_2H_5)C(=NOCH_3)C_2H_5$
B-142	$C(=NOC_2H_5)C(=NOC_2H_5)C_2H_5$
B-143	$C(=NOC_2H_5)C(=NO-n-C_3H_7)C_2H_5$
B-144	$C(=NOC_2H_5)C(=NO-i-C_3H_7)C_2H_5$
B-145	CH=CH-CH ₂ CH ₃
B-146	CH₂-CH=CH-CH₃
B-147	CH ₂ -CH ₂ -CH=CH ₂
B-148	C(CH ₃) ₂ CH ₂ CH ₃
B-149	CH=C(CH ₃) ₂
B-150	C(=CH ₂)-CH ₂ CH ₃
B-151	C(CH ₃)=CH-CH ₃
B-152	CH(CH₃)CH=CH₂
B-153	CH≈CH-n-C₃H ₇
B-154	CH₂-CH=CH-C₂H₅
B-155	(CH ₂) ₂ -CH=CH-CH ₃
B-156	(CH ₂) ₃ -CH=CH ₂
B-157	CH=CH-CH(CH ₃) ₂
B-158	CH ₂ -CH=C(CH ₃) ₂
B-159	(CH ₂) ₂ -C(CH ₃)=CH ₂
B-160	CH=C(CH ₃)-C ₂ H ₅
B-161	CH ₂ -C(=CH ₂)-C ₂ H ₅
B-162	CH₂-C(CH₃)=CH-CH₃
B-163	CH ₂ -CH(CH ₃)-CH≈CH ₂
B-164	C(=CH ₂)-CH ₂ -CH ₃
B-165	C(CH ₃)=CH-CH ₂ -CH ₃

Nr.	R ¹
B-166	CH(CH ₃)-CH=CH-CH ₃
B-167	CH(CH ₃)-CH ₂ -CH=CH ₂
B-168	C(=CH ₂)CH(CH ₃) ₂
B-169	C(CH ₃)=C(CH ₃) ₂
B-170	CH(CH ₃)-C(=CH ₂)-CH ₃
B-171	C(CH ₃) ₂ -CH≈CH ₂
B-172	$C(C_2H_5)=CH-CH_3$
B-173	CH(C ₂ H ₅)-CH=CH ₂
B-174	CH=CH-CH ₂ -CH ₂ -CH ₃
B-175	CH ₂ -CH=CH-CH ₂ -CH ₃
B-176	CH ₂ -CH ₂ -CH=CH-CH ₂ -CH ₃
B-177	CH ₂ -CH ₂ -CH=CH-CH ₃
B-178	CH ₂ -CH ₂ -CH ₂ -CH=CH ₂
B-179	CH=CH-CH ₂ -CH(CH ₃)CH ₃
B-180	CH ₂ -CH=CH-CH(CH ₃)CH ₃
B-181	CH ₂ -CH ₂ -CH=C(CH ₃)CH ₃
B-182	CH ₂ -CH ₂ -C(CH ₃)=CH ₂
B-183	CH=CH-CH(CH ₃)-CH ₂ -CH ₃
B-184	CH ₂ -CH=C(CH ₃)-CH ₂ -CH ₃
B-185	CH ₂ -CH ₂ -C(=CH ₂)-CH ₂ -CH ₃
B-186	CH ₂ -CH ₂ -C(CH ₃)=CH-CH ₃
B-187	CH ₂ -CH ₂ -CH(CH ₃)-CH=CH ₂
B-188	CH=C(CH ₃)-CH ₂ -CH ₂ -CH ₃
B-189	CH ₂ -C(=CH ₂)-CH ₂ -CH ₃
B-190	CH ₂ -C(CH ₃)=CH-CH ₂ -CH ₃
B-191	CH ₂ -CH(CH ₃)-CH=CH-CH ₃
B-192	CH ₂ -CH(CH ₃)-CH ₂ -CH=CH ₂
B-193	C(=CH ₂)-CH ₂ -CH ₂ -CH ₃
B-194	C(CH ₃)=CH-CH ₂ -CH ₂ -CH ₃
B-195	CH(CH ₃)-CH=CH-CH ₂ -CH ₃
B-196	CH(CH ₃)-CH ₂ -CH=CH ₃
B-197	CH(CH ₃)-CH ₂ -CH ₂ -CH ₂
B-198	CH=CH-C(CH ₃) ₃
B-199	CH=C(CH ₃)-CH(CH ₃)-CH ₃
B-200	CH ₂ -C(=CH ₂)-CH(CH ₃)-CH ₃
B-201	CH ₂ -C(CH ₃)=C(CH ₃)-CH ₃
B-202	CH ₂ -CH(CH ₃)-C(=CH ₂)-CH ₃
B-203	C(=CH ₂)-CH ₂ -CH(CH ₃)-CH ₃

Nr.	R¹
B-204	C(CH ₃)=CH-CH(CH ₃)-CH ₃
B-205	CH(CH ₃)-CH=C(CH ₃)-CH ₃
B-206	CH(CH ₃)-CH ₂ -C(=CH ₂)-CH ₃
B-207	CH=C(CH ₂ -CH ₃)-CH ₂ -CH ₃
B-208	CH ₂ -C(=CH-CH ₃)-CH ₂ -CH ₃
B-209	CH ₂ -CH(CH=CH ₂)-CH ₂ -CH ₃
B-210	C(=CH-CH ₃)-CH ₂ -CH ₃
B-211	CH(CH=CH ₂)-CH ₂ -CH ₃
B-212	C(CH ₂ -CH ₃)=CH-CH ₂ -CH ₃
B-213	CH(CH ₂ -CH ₃)-CH=CH-CH ₃
B-214	CH(CH ₂ -CH ₃)-CH ₂ -CH=CH ₂
B-215	CH ₂ -C(CH ₃) ₂ -CH=CH ₂
B-216	C(=CH ₂)-CH(CH ₃)-CH ₂ -CH ₃
B-217	C(CH ₃)=C(CH ₂ -CH ₃
B-218	CH(CH ₃)-C(=CH ₂)-CH ₂ -CH ₃
B-219	CH(CH ₃)-C(CH ₃)=CH-CH ₃
B-220	CH(CH ₃)-CH(CH ₃)-CH=CH ₂
B-221	C(CH ₃) ₂ -CH=CH ₃
B-222	C(CH ₃) ₂ -CH ₂ -CH=CH ₂
B-223	C(=CH ₂)-C(CH ₃) ₃
B-224	C(=CH-CH ₃)-CH(CH ₃)-CH ₃
B-225	CH(CH=CH ₂)-CH(CH ₃)-CH ₃
B-226	C(CH ₂ -CH ₃)=C(CH ₃)-CH ₃
B-227	CH(CH ₂ -CH ₃)-C(=CH ₂)-CH ₃
B-228	C(CH ₃) ₂ -C(=CH ₂)-CH ₃
B-229	C(CH ₃)(CH=CH ₂)-CH ₂ -CH ₃
B-230	C(CH ₃)(CH ₂ CH ₃)-CH ₂ -CH ₂ -CH ₃
B-231	CH(CH ₂ CH ₃)-CH(CH ₃)-CH ₂ -CH ₃
B-232	CH(CH ₂ CH ₃)-CH ₂ -CH(CH ₃)-CH ₃
B-233	C(CH ₃) ₂ -C(CH ₃) ₃
B-234	C(CH2-CH3)-C(CH3)3
B-235	C(CH ₃)(CH ₂ -CH ₃)-CH(CH ₃) ₂
B-236	CH(CH ₃) ₂)-CH(CH ₃) ₂
B-237	CH=CH ₂ -CH ₂ -CH ₂ -CH ₃
B-238	CH ₂ -CH=CH-CH ₂ -CH ₂ -CH ₃
B-239	CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃
B-240	CH ₂ -CH ₂ -CH=CH-CH ₂ -CH ₃
B-241	CH ₂ -CH ₂ -CH ₂ -CH=CH-CH ₃

Nr.	R¹
B-242	CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH=CH ₂
B-243	CH=CH-CH ₂ -CH ₂ -CH(CH ₃)-CH ₃
B-244	CH ₂ -CH=CH-CH ₂ -CH(CH ₃)-CH ₃
B-245	CH ₂ -CH ₂ -CH=CH-CH(CH ₃)-CH ₃
B-246	CH ₂ -CH ₂ -CH ₂ -CH=C(CH ₃)-CH ₃
B-247	CH ₂ -CH ₂ -CH ₂ -C(=CH ₂)-CH ₃
B-248	CH=CH-CH ₂ -CH(CH ₃)-CH ₂ -CH ₃
B-249	CH ₂ -CH=CH-CH(CH ₃)-CH ₂ -CH ₃
B-250	CH ₂ -CH ₂ -CH=C(CH ₃)-CH ₂ -CH ₃
B-251	CH ₂ -CH ₂ -CH ₂ -C(=CH ₂)-CH ₂ -CH ₃
B-252	CH ₂ -CH ₂ -C(CH ₃)=CH-CH ₃
B-253	CH ₂ -CH ₂ -CH _{(CH₃)-CH=CH₂}
B-254	CH=CH-CH(CH ₃)-CH ₂ -CH ₂ -CH ₃
B-255	CH ₂ -CH=C(CH ₃)-CH ₂ -CH ₂ -CH ₃
B-256	CH ₂ -CH ₂ -C(=CH ₂)-CH ₂ -CH ₃
B-257	CH ₂ -CH ₂ -C(CH ₃)=CH-CH ₂ -CH ₃
B-258	CH ₂ -CH ₂ -CH(CH ₃)-CH=CH-CH ₃
B-259	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -CH=CH ₂
B-260	CH=C(CH ₃)-CH ₂ -CH ₂ -CH ₃
B-261	CH ₂ -C(=CH ₂)-CH ₂ -CH ₂ -CH ₃
B-262	CH ₂ -C(CH ₃)=CH-CH ₂ -CH ₂ -CH ₃
B-263	CH ₂ -CH(CH ₃)-CH=CH-CH ₂ -CH ₃
B-264	CH ₂ -CH(CH ₃)-CH ₂ -CH=CH-CH ₃
B-265	CH ₂ -CH(CH ₃)-CH ₂ -CH ₂ -CH ₂
B-266	C(=CH ₂)-CH ₂ -CH ₂ -CH ₂ -CH ₃
B-267	C(CH ₃)=CH-CH ₂ -CH ₂ -CH ₃
B-268	CH(CH ₃)-CH=CH-CH ₂ -CH ₂ -CH ₃
B-269	CH(CH ₃)-CH ₂ -CH=CH-CH ₂ -CH ₃
B-270	CH(CH ₃)-CH ₂ -CH ₂ -CH=CH-CH ₃
B-271	CH(CH ₃)-CH ₂ -CH ₂ -CH ₂ -CH ₂
B-272	CH=CH ₂ -C(CH ₃) ₃
B-273	CH ₂ -CH=CH-C(CH ₃) ₃
B-274	CH=CH-CH(CH ₃)-CH(CH ₃) ₂
B-275	CH ₂ -CH=C(CH ₃)-CH(CH ₃) ₂
B-276	CH_2 - CH_2 - $C(=CH_2)$ - $CH(CH_3)_2$
B-277	CH_2 - $C(CH_3)$ = $C(CH_3)_2$
B-278	CH ₂ -CH ₂ -CH(CH ₃)-C(=CH ₂)-CH ₃
B-279	CH=C(CH ₃)-CH ₂ -CH(CH ₃) ₂

Nr.	R ¹
B-280	CH_2 - $C(=CH_2)$ - CH_2 - $CH(CH_3)_2$
B-281	CH ₂ -C(CH ₃)=CH-CH(CH ₃) ₂
B-282	CH ₂ -CH(CH ₃)-CH=C(CH ₃) ₂
B-283	CH ₂ -CH(CH ₃)-CH ₂ -C(=CH ₂)-CH ₃
B-284	C(=CH ₂)-CH ₂ -CH ₂ -CH(CH ₃) ₂
B-285	$C(CH_3)=CH-CH_2-CH(CH_3)_2$
B-286	CH(CH ₃)-CH=CH-CH(CH ₃) ₂
B-287	$CH(CH_3)-CH_2-CH=C(CH_3)_2$
B-288	CH(CH ₃)-CH ₂ -C(=CH ₂)-CH ₃
B-289	CH=CH-C(CH ₃) ₂ -CH ₂ -CH ₃
B-290	CH ₂ -CH ₂ -C(CH ₃) ₂ -CH=CH ₂
B-291	CH=C(CH ₃)-CH(CH ₃)-CH ₂ -CH ₃
B-292	CH ₂ -C(=CH ₂)-CH(CH ₃)-CH ₂ -CH ₃
B-293	CH_2 -C(CH ₃)=C(CH ₃)-CH ₂ -CH ₃
B-294	CH ₂ -CH(CH ₃)-C(=CH ₂)-CH ₂ -CH ₃
B-295	CH ₂ -CH(CH ₃)-C(CH ₃)=CH-CH ₃
B-296	CH ₂ -CH(CH ₃)-CH(CH ₃)-CH=CH ₂
B-297	C(=CH ₂)-CH ₂ -CH(CH ₃)-CH ₂ -CH ₃
B-298	$C(CH_3)=CH-CH(CH_3)-CH_2-CH_3$
B-299	CH(CH ₃)-CH=C(CH ₃)-CH ₂ -CH ₃
B-300	CH(CH ₃)-CH ₂ -C(=CH ₂)-CH ₂ -CH ₃
B-301	CH(CH ₃)-CH ₂ -C(CH ₃)=CH-CH ₃
B-302	CH(CH ₃)-CH ₂ -CH(CH ₃)-CH=CH ₂
B-303	CH ₂ -C(CH ₃) ₂ -CH=CH-CH ₃
B-304	CH ₂ -C(CH ₃) ₂ -CH ₂ -CH=CH ₂
B-305	C(=CH ₂)-CH(CH ₃)-CH ₂ -CH ₂ -CH ₃
B-306	C(CH ₃)=C(CH ₃)-CH ₂ -CH ₂ -CH ₃
B-307	CH(CH ₃)-C(=CH ₂)-CH ₂ -CH ₃
B-308	CH(CH ₃)-C(CH ₃)=CH-CH ₂ -CH ₃
B-309	CH(CH ₃)-CH(CH ₃)-CH=CH-CH ₃
B-310	CH(CH ₃)-CH ₂ -CH=CH ₂
B-311	$C(CH_3)_2$ - $CH=CH_2$ - CH_3
B-312	C(CH ₃) ₂ -CH ₂ -CH ₂ -CH ₃
B-313	$C(CH_3)_2$ - CH_2 - $CH=CH_2$
B-314	CH=CH-CH(CH ₂ -CH ₃)-CH ₂ -CH ₃
B-315	CH_2 - CH_2 - CH_3)- CH_2 - CH_3
B-316	CH ₂ -CH ₂ -C(≈CH-CH ₃)-CH ₂ -CH ₃
B-317	CH_2 - CH_2 - CH_3 -

Nr. R¹ B-318	NI-	51
B-319		
B-320		
B-321		
B-322		
B-323		
B-324		
B-325	<u> </u>	
B-326		
B-327		CH(CH=CH ₂)-CH ₂ -CH ₂ -CH ₃
B-328	B-326	C(CH ₂ -CH ₃)=CH-CH ₂ -CH ₂ -CH ₃
B-329	B-327	CH(CH ₂ -CH ₃)-CH=CH-CH ₂ -CH ₃
B-330	B-328	CH(CH ₂ -CH ₃)-CH ₂ -CH=CH-CH ₃
B-331	B-329	CH(CH ₂ -CH ₃)-CH ₂ -CH ₂ -CH ₂ -CH ₂
B-332	B-330	C(=CH-CH ₂ -CH ₃)-CH ₂ -CH ₃
B-333	B-331	C(CH=CH-CH ₃)-CH ₂ -CH ₂ -CH ₃
B-334	B-332	C(CH ₂ -CH=CH ₂)-CH ₂ -CH ₃
B-335	B-333	
B-336	B-334	CH_2 - $C(=CH_2)$ - $C(CH_3)_3$
B-336 C(=CH₂)-CH(CH₃)-CH₃ B-337 C(CH₃)=C(CH₃)-CH(CH₃)-CH₃ B-338 CH(CH₃)-C(=CH₂)-CH(CH₃)-CH₃ B-339 CH(CH₃)-C(=CH₂)-CH₃ B-340 CH(CH₃)-C(CH₃)-CH₃ B-341 C(CH₃)-CH₃ B-342 C(CH₃)-CH₂-CH₃ B-343 C(CH₃)-CH₂-CH₃ B-344 C(CH₃)-C(=CH₂)-CH₃ B-345 C(CH₃)-C(=CH₂)-CH₃ B-346 C(CH₃)-C(=CH₂)-CH₃ B-347 CH(CH₃)-CH(CH₃)-CH₂ B-348 C(CH₃)-CH₂-CH₃ B-349 CH(CH₂-CH₃)-CH₂-CH₃ B-349 CH(-C₃-CH₃)-CH₂-CH₃ B-350 CH=C(CH₂-CH₃)-CH₂-CH₃ B-351 CH₂-C(=CH₂-CH₃)-CH₃ B-352 CH₂-CH(CH₃)-CH₃ B-353 CH₂-CH(CH₃)-CH₃ B-354 CH₂-CH(CH₃)-CH₃ B-355 CH₂-CH(CH₃)-CH₃ B-356 CH₂-C(=CH₂-CH₃)-CH(CH₃)-CH₃ B-357 CH₂-C(=CH₂-CH₃)-CH(CH₃)-CH₃ B-358 CH₂-C(=CH₂-CH₃)-CH(CH₃)-CH₃ B-359 CH₂-C(=CH₂-CH₃)-CH(CH₃)-CH₃ B-350 CH₂-C(=CH₂-CH₃)-CH(CH₃)-CH₃ B-351 CH₂-C(=CH₂-CH₃)-CH(CH₃)-CH₃ B-353 CH₂-C(CH₂-CH₃)-CH(CH₃)-CH₃ B-354 CH₂-CH(CH₂-CH₃)-C(=CH₂)-CH₃ B-355 CH₂-C(CH₂-CH₃)-C(CH₃)-CH₃	B-335	CH_2 - $C(CH_3)_2$ - $CH(=CH_2)$ - CH_3
B-338	B-336	
B-339	B-337	
B-339	B-338	CH(CH ₃)-C(=CH ₂)-CH(CH ₃)-CH ₃
B-340	B-339	$CH(CH_3)-C(CH_3)=C(CH_3)-CH_3$
B-341	B-340	
B-343	B-341	
B-344 C(CH ₃) ₂ -C(CH ₃)=CH-CH ₃ B-345 C(CH ₃) ₂ -CH(CH ₃)CH=CH ₂ B-346 CH(CH ₂ -CH ₃)-CH ₂ -CH(CH ₃)-CH ₃ B-347 CH(CH ₂ -CH ₃)-CH(CH ₃)-CH ₂ -CH ₃ B-348 C(CH ₃)(CH ₂ -CH ₃)-CH ₂ -CH ₃ B-349 CH(i-C ₃ H ₇)-CH ₂ -CH ₂ -CH ₃ B-350 CH=C(CH ₂ -CH ₃)-CH(CH ₃)-CH ₃ B-351 CH ₂ -C(=CH-CH ₃)-CH(CH ₃)-CH ₃ B-352 CH ₂ -CH(CH=CH ₂)-CH(CH ₃)-CH ₃ B-353 CH ₂ -C(CH ₂ -CH ₃)=C(CH ₃)-CH ₃ B-354 CH ₂ -CH(CH ₂ -CH ₃)-C(=CH ₂)-CH ₃	B-342	$C(CH_3)_2-CH_2-C(=CH_2)-CH_3$
B-345	B-343	$C(CH_3)_2$ - $C(=CH_2)$ - CH_2 - CH_3
B-346	B-344	$C(CH_3)_2$ - $C(CH_3)$ = CH - CH_3
B-347 CH(CH ₂ -CH ₃)-CH(CH ₃)-CH ₂ -CH ₃ B-348 C(CH ₃)(CH ₂ -CH ₃)-CH ₂ -CH ₃ B-349 CH(i-C ₃ H ₇)-CH ₂ -CH ₂ -CH ₃ B-350 CH=C(CH ₂ -CH ₃)-CH(CH ₃)-CH ₃ B-351 CH ₂ -C(=CH-CH ₃)-CH(CH ₃)-CH ₃ B-352 CH ₂ -CH(CH=CH ₂)-CH(CH ₃)-CH ₃ B-353 CH ₂ -C(CH ₂ -CH ₃)=C(CH ₃)-CH ₃ B-354 CH ₂ -CH(CH ₂ -CH ₃)-C(=CH ₂)-CH ₃	B-345	$C(CH_3)_2$ - $CH(CH_3)CH=CH_2$
B-347 CH(CH ₂ -CH ₃)-CH(CH ₃)-CH ₂ -CH ₃ B-348 C(CH ₃)(CH ₂ -CH ₃)-CH ₂ -CH ₂ -CH ₃ B-349 CH(i-C ₃ H ₇)-CH ₂ -CH ₂ -CH ₃ B-350 CH=C(CH ₂ -CH ₃)-CH(CH ₃)-CH ₃ B-351 CH ₂ -C(=CH-CH ₃)-CH(CH ₃)-CH ₃ B-352 CH ₂ -CH(CH=CH ₂)-CH(CH ₃)-CH ₃ B-353 CH ₂ -C(CH ₂ -CH ₃)=C(CH ₃)-CH ₃ B-354 CH ₂ -CH(CH ₂ -CH ₃)-C(=CH ₂)-CH ₃	B-346	CH(CH ₂ -CH ₃)-CH ₂ -CH(CH ₃)-CH ₃
B-348 C(CH ₃)(CH ₂ -CH ₃)-CH ₂ -CH ₂ -CH ₃ B-349 CH(i-C ₃ H ₇)-CH ₂ -CH ₂ -CH ₃ B-350 CH=C(CH ₂ -CH ₃)-CH(CH ₃)-CH ₃ B-351 CH ₂ -C(=CH-CH ₃)-CH(CH ₃)-CH ₃ B-352 CH ₂ -CH(CH=CH ₂)-CH(CH ₃)-CH ₃ B-353 CH ₂ -C(CH ₂ -CH ₃)=C(CH ₃)-CH ₃ B-354 CH ₂ -CH(CH ₂ -CH ₃)-C(=CH ₂)-CH ₃	B-347	
B-349 CH(i-C ₃ H ₇)-CH ₂ -CH ₂ -CH ₃ B-350 CH=C(CH ₂ -CH ₃)-CH(CH ₃)-CH ₃ B-351 CH ₂ -C(=CH-CH ₃)-CH(CH ₃)-CH ₃ B-352 CH ₂ -CH(CH=CH ₂)-CH(CH ₃)-CH ₃ B-353 CH ₂ -C(CH ₂ -CH ₃)=C(CH ₃)-CH ₃ B-354 CH ₂ -CH(CH ₂ -CH ₃)-C(=CH ₂)-CH ₃	B-348	
B-350 CH=C(CH ₂ -CH ₃)-CH(CH ₃)-CH ₃ B-351 CH ₂ -C(=CH-CH ₃)-CH(CH ₃)-CH ₃ B-352 CH ₂ -CH(CH=CH ₂)-CH(CH ₃)-CH ₃ B-353 CH ₂ -C(CH ₂ -CH ₃)=C(CH ₃)-CH ₃ B-354 CH ₂ -CH(CH ₂ -CH ₃)-C(=CH ₂)-CH ₃	B-349	
B-351 CH ₂ -C(=CH-CH ₃)-CH(CH ₃)-CH ₃ B-352 CH ₂ -CH(CH=CH ₂)-CH(CH ₃)-CH ₃ B-353 CH ₂ -C(CH ₂ -CH ₃)=C(CH ₃)-CH ₃ B-354 CH ₂ -CH(CH ₂ -CH ₃)-C(=CH ₂)-CH ₃	B-350	CH=C(CH ₂ -CH ₃)-CH(CH ₃)-CH ₃
B-352 CH ₂ -CH(CH=CH ₂)-CH(CH ₃)-CH ₃ B-353 CH ₂ -C(CH ₂ -CH ₃)=C(CH ₃)-CH ₃ B-354 CH ₂ -CH(CH ₂ -CH ₃)-C(=CH ₂)-CH ₃	B-351	
B-353 CH ₂ -C(CH ₂ -CH ₃)=C(CH ₃)-CH ₃ B-354 CH ₂ -CH(CH ₂ -CH ₃)-C(=CH ₂)-CH ₃	B-352	
B-354 CH ₂ -CH(CH ₂ -CH ₃)-C(=CH ₂)-CH ₃	B-353	
	B-354	
	B-355	CH ₂ -C(CH ₃)(CH=CH ₂)-CH ₂ -CH ₃

Nr.	R ¹
B-356	C(=CH ₂)-CH(CH ₂ -CH ₃)-CH ₂ -CH ₃
B-357	C(CH ₃)=C(CH ₂ -CH ₃)-CH ₂ -CH ₃
B-358	CH(CH ₃)-C(=CH-CH ₃)-CH ₂ -CH ₃
B-359	CH(CH ₃)-CH(CH=CH ₂)-CH ₂ -CH ₃
B-360	CH=C(CH ₂ -CH ₃)-CH(CH ₃)-CH ₃
B-361	CH ₂ -C(=CH-CH ₃)-CH(CH ₃)-CH ₃
B-362	CH ₂ -CH(CH=CH ₂)-CH(CH ₃)-CH ₃
B-363	CH ₂ -C(CH ₂ -CH ₃)=C(CH ₃)-CH ₃
B-364	CH ₂ -CH(CH ₂ -CH ₃)-C(=CH ₂)-CH ₃
B-365	C(=CH-CH ₃)-CH ₂ -CH(CH ₃)-CH ₃
B-366	CH(CH=CH ₂)-CH ₂ -CH(CH ₃)-CH ₃
B-367	C(CH ₂ -CH ₃)=CH-CH(CH ₃)-CH ₃
B-368	CH(CH ₂ -CH ₃)CH=C(CH ₃)-CH ₃
B-369	CH(CH ₂ -CH ₃)CH ₂ -C(=CH ₂)-CH ₃
B-370	C(=CH-CH ₃)CH(CH ₃)-CH ₂ -CH ₃
B-371	CH(CH=CH ₂)CH(CH ₃)-CH ₂ -CH ₃
B-372	C(CH2-CH3)=C(CH3)-CH2-CH3
B-373	CH(CH ₂ -CH ₃)-C(=CH ₂)-CH ₂ -CH ₃
B-374	CH(CH ₂ -CH ₃)-C(CH ₃)=CH-CH ₃
B-375	CH(CH ₂ -CH ₃)-CH(CH ₃)-CH=CH ₂
B-376	C(CH ₃)(CH=CH ₂)-CH ₂ -CH ₃
B-377	C(CH ₃)(CH ₂ -CH ₃)-CH=CH-CH ₃
B-378	C(CH ₃)(CH ₂ -CH ₃)-CH ₂ -CH=CH ₂
B-379	$C[=C(CH_3)-CH_3]-CH_2-CH_3$
B-380	CH[C(=CH ₂)-CH ₃]-CH ₂ -CH ₂ -CH ₃
B-381	$C(i-C_3H_7)=CH-CH_2-CH_3$
B-382	CH(i-C ₃ H ₇)-CH=CH-CH ₃
B-383	CH(i-C₃H₁)-CH₂-CH=CH₂
B-384	C(=CH-CH ₃)-C(CH ₃) ₃
B-385	CH(CH=CH ₂)-C(CH ₃) ₃
B-386	C(CH ₃)(CH=CH ₂)CH(CH ₃)-CH ₃
B-387	$C(CH_3)(CH_2-CH_3)C(=CH_2)-CH_3$
B-388	2-CH₃-Cyclohex-1-enyl
B-389	[2-(=CH ₂)]-c-C ₆ H ₉
B-390	2-CH₃-Cyclohex-2-enyl
B-391	2-CH₃-Cyclohex-3-enyl
B-392	2-CH₃-Cyclohex-4-enyl
B-393	2-CH₃-Cyclohex-5-enyl

Nr.	R ¹
B-394	2-CH₃-Cyclohex-6-enyl
B-395	3-CH₃-Cyclohex-1-enyl
B-396	3-CH₃-Cyclohex-2-enyl
B-397	$[3-(=CH_2)]-c-C_6H_9$
B-398	3-CH₃-Cyclohex-3-enyl
B-399	3-CH ₃ -Cyclohex-4-enyl
B-400	3-CH ₃ -Cyclohex-5-enyl
B-401	3-CH ₃ -Cyclohex-6-enyl
B-402	4-CH₃-Cyclohex-1-enyl
B-403	4-CH ₃ -Cyclohex-2-enyl
B-404	4-CH ₃ -Cyclohex-3-enyl
B-405	[4-(=CH ₂)]-c-C ₆ H ₉

Die erfindungsgemäßen Verbindungen der Formel I können in Analogie zu an sich bekannten Methoden des Standes der Technik nach den in den folgenden Schemata dargestellten Synthesen hergestellt werden:

Schema 1:

5

$$A_{3}$$
 A_{4}
 A_{5}
 A_{5}
 A_{4}
 A_{5}
 A_{5}
 A_{4}
 A_{5}
 A_{5}
 A_{4}
 A_{5}
 A_{5

In Schema 1 haben n, R^a , R^1 , R^2 und A_1 bis A_5 die zuvor genannten Bedeutungen. In Formel II steht A_1 ' für N, NH oder C- R^{3a} . In Formel II sind für $A_5 = N$ die Variablen A_1 ' mit A_2 und A_3 mit A_4 und für $A_5 = C$ die Variablen A_5 mit A_1 ' und A_3 mit A_4 oder alternativ A_4 mit A_5 und A_3 mit A_2 jeweils durch eine Doppelbindung verbunden. R steht für C_1 - C_4 -Alkyl, insbesondere für Methyl oder Ethyl.

30

Gemäß Schema 1 wird in einem ersten Schritt ein Hetarylamin der allgemeinen Formel II mit einem geeignet substituierten 2-Phenylmalonsäuredialkylester III kondensiert. Beispiele für geeignete Hetarylamine der allgemeinen Formel II sind 2-Aminopyrrol, 1-Aminopyrazol, 1-Amino-1,2,4-triazol, 1-Amino-1,3,4-triazol, 5-Amino-1,2,3-triazol, 4-Aminothiazol, 5-Aminothiazol, 4-Aminoisothiazol, 5-Aminoisothiazol, 4-Aminothia-2,3-diazol, 5-Amino-1,2,3,4-tetrazol, 1-Alkyl-5-aminoimidazol, 1-Alkyl-4-aminoimidazol und 2-Aminoimidazol. So erhält man bei Einsatz von:

- 1-Aminopyrazol die Verbindungen I.a mit $R^1 = R^2 = OH$,
- 10 1-Amino-1,2,4-triazol die Verbindungen I.b mit $R^1 = R^2 = OH$,
 - 1-Amino-1,3,4-triazol die Verbindungen I.c mit $R^1 = R^2 = OH$,
 - 2-Aminopyrrol die Verbindungen I.e mit R¹ = R² = OH,
 5-Aminoimidazol die Verbindungen I.f mit R¹ = R² = OH,
 - 4-Amino-1,2,3-triazol die Verbindungen I.h mit $R^1 = R^2 = OH$,
- 5-Amino-1,2,3,4-tetrazol die Verbindungen I.k mit $R^1 = R^2 = OH$,
 - 5-Aminoisothiazol die Verbindungen I.m mit $R^1 = R^2 = OH$,
 - 5-Aminothiazol die Verbindungen I.n mit $R^1 = R^2 = OH$,
 - 5-Aminothia-2,3-diazol die Verbindungen I.o mit $R^1 = R^2 = OH$,
 - 4-Aminoisothiazol die Verbindungen I.p mit $R^1 = R^2 = OH$,
- 20 4-Aminothiazol die Verbindungen I.q mit $R^1 = R^2 = OH$,
 - 4-Aminothia-2,3-diazol die Verbindungen I.r mit $R^1 = R^2 = OH$,
 - 2-Aminothiophen die Verbindungen I.s mit $R^1 = R^2 = OH$,
 - 3-Aminothiophen die Verbindungen I.t mit $R^1 = R^2 = OH$,
 - 1-Alkyl-5-aminoimidazol die Verbindungen I.u mit $R^1 = R^2 = OH$,
- 25 1-Alkyl-4-aminoimidazol die Verbindungen I.v mit $R^1 = R^2 = OH$.

Die Kondensationsreaktion erfolgt in der Regel in Gegenwart einer Brönstedt- oder Lewissäure als saurem Katalysator oder in Gegenwart eine basischen Katalysators. Beispiele für geeignete saure Katalysatoren sind Zinkchlorid, Phosphorsäure, Salzsäure, Essigsäure, sowie Mischungen aus Salzsäure und Zinkchlorid. Beispiele für basische Katalysatoren sind tertiäre Amine, wie Triethylamin, Tri-n-butylamin, Pyridinbasen wie Pyridin und Chinolin, und Amidinbasen wie DBN oder DBU.

Sauer katalysierte Kondensationsreaktionen dieses Typs sind aus der Literatur prinzipiell bekannt, z.B. aus G. Saint-Ruf et al., J. Heterocycl. Chem. 1981, 18, S. 1565-1570; I. Adachi et al., Chem. and Pharm. Bull. 1987, 35, S. 3235-3252; B. M Lynch et al., Can. J. Chem. 1988, 66, S. 420-428; Y. Blache et al., Heterocycles, 1994, 38, S. 1527-1532; V.D. Piaz et al., Heterocycles 1985, 23, S. 2639-2644; A. Elbannany et al., Pharmazie 1988, 43, S. 128-129; D. Brugier et al., Tetrahedron 2000, S. 56, 2985-2933; K. C. Joshi et al., J. Heterocycl. Chem. 1979, 16, S. 1141-1145. Die dort be-

10

15

schriebenen Methoden können in analoger Weise zur Herstellung der erfindungsgemäßen Verbindungen I $\{R^1 = R^2 = OH\}$ genutzt werden.

Basisch katalysierte Kondensationsreaktionen dieses Typs sind aus der Literatur prinzipiell bekannt, z.B. aus EP-A 770615. Die dort angegebene Methode kann in analoger Weise zur Herstellung der erfindungsgemäßen Verbindungen I $\{R^1 = R^2 = OH\}$ genutzt werden.

Bei der in Schema 1 gezeigten Kondensation erhält man Azoloverbindungen der allgemeinen Formel I, worin R^1 und R^2 gleichzeitig für OH stehen. Derartige Azoloverbindungen I $\{R^1 = R^2 = OH\}$ sind als Zwischenprodukte für die Herstellung anderer Azoloverbindungen I von besonderem Interesse. Die OH-Gruppen in diesen Verbindungen können in einem oder mehreren Schritten in andere funktionelle Gruppen umgewandelt werden. In der Regel wird man hierzu zunächst die OH Gruppen in Halogenatome, insbesondere in Chloratome überführen (siehe Schema 1a).

Schema 1a:

$$A_{3}$$
 A_{4}
 A_{5}
 A_{5}
 A_{1}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{5}
 A_{6}
 A_{7}
 A_{1}
 A_{1}
 A_{1}
 A_{2}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{5}
 A_{6}
 A_{7}
 A_{1}
 A_{1}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{6}
 A_{7}
 A_{1}
 A_{1}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{6}
 A_{7}
 A_{1}
 A_{1}
 A_{2}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{6}
 A_{7}
 A_{1}
 A_{1}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{7}
 A_{1}
 A_{1}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{7}
 A_{1}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{5}
 A_{7}
 A_{1}
 A_{1}
 A_{2}
 A_{5}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{5}
 A_{7}
 A_{7

Diese Umwandlung geling beispielsweise durch Umsetzung von I {R¹ = R² = OH) mit einem geeigneten Halogenierungsmittel (in Schema 1a für ein Chlorierungsmittel [CI] gezeigt). Als Halogenierungsmittel eignen sich beispielsweise Phosphortribromid, Phosphoroxytribromid, und insbesondere Chlorierungsmittel wie POCl₃, PCl₃/Cl₂ oder PCl₅, und Mischungen dieser Reagenzien. Die Reaktion kann in überschüssigem Halogenierungsmittel (POCl₃) oder einem inerten Lösungsmittel, wie beispielsweise Acetonitril oder 1,2-Dichlorethan durchgeführt werden. Für die Chlorierung ist die Umsetzung von I {R¹ = R² = OH} in POCl₃ bevorzugt.

Diese Umsetzung erfolgt üblicherweise zwischen 10 und 180°C. Aus praktischen
Gründen entspricht gewöhnlich die Reaktionstemperatur der Siedetemperatur des eingesetzten Chlorierungsmittels (POCl₃) oder des Lösungsmittels. Das Verfahren wird
vorteilhaft unter Zusatz von N,N-Dimethylformamid oder von Stickstoffbasen, wie beispielsweise N,N-Dimethylanilin in katalytischen oder stöchiometrischen Mengen durch-

geführt.

Die hierbei erhaltenen Dihalogenverbindungen I, z.B. die Dichlorverbindungen I $\{R^1 = R^2 = CI\}$, können dann in Analogie zu den im eingangs zitierten Stand der Technik in andere Verbindungen I umgewandelt werden. Azoloverbindungen der allgemeinen Formel I worin R^1 und R^2 gleichzeitig für Halogen stehen, sind daher als Zwischenprodukte für die Herstellung anderer Azoloverbindungen I von besonderem Interesse. Einen Überblick über derartige Umwandlungen geben die Schemata 1b und 1c.

So kann man beispielsweise, wie in Schema 1b gezeigt, die Dichlorverbindungen I $\{R^1 = R^2 = CI\}$ mit einem Amin HNR⁷R⁸ umsetzen, wobei man eine Verbindung I erhält, worin R¹ für NR⁷R⁸ steht und R² Chlor bedeutet.

Schema 1b:

15

5

(I:
$$R^1 = R^2 = CI$$
)

 A_3
 A_4
 A_5
 CI

(I: $R^1 = NR^7R^8$, $R^2 = Alkyl$, Haloalkyl, Alkenyl, Haloalkenyl, Cyloalkyl, Cycloalkenyl, CN, OR⁶)

(I: $R^1 = NR^7R^8$, $R^2 = CI$)

Die im ersten Schritt von Schema 1b dargestellte Methode ist im Prinzip für die Herstellung von 5-Chlor-7-amino-6-aryl-[1,2,4]triazolo[1,5-a]pyrimidinen aus der US 5,593,996 und der WO 98/46607 bekannt und kann in analoger Weise zur Herstellung von Verbindungen I $\{R^1 = NR^7R^8, R^2 = CI\}$ angewendet werden.

Die Umsetzung der Dichlorverbindungen I $\{R^1 = R^2 = CI\}$ mit einem Amin HNR^7R^8 erfolgt üblicherweise bei 0 bis $150^{\circ}C$, vorzugsweise bei 10 bis $120^{\circ}C$ in einem inerten Lösungsmittel gegebenenfalls in Gegenwart einer Hilfsbase. Diese Methode ist prinzipiell bekannt z.B. aus J. Chem. Res. S (7), S. 286-287 (1995) und Liebigs Ann. Chem., S. 1703-1705 (1995) sowie aus dem eingangs zitierten Stand der Technik bekannt und kann in analoger Weise zur Herstellung der erfindungsgemäßen Verbindungen angewendet werden.

30

25

20

Als Lösungsmittel kommen protische Lösungsmittel, wie Alkohole, beispielsweise Ethanol, sowie aprotische Lösungsmittel, beispielsweise aromatische Kohlenwasserstoffe, Halogenkohlenwasserstoff und Ether, z.B. Toluol, o-, m- und p-Xylol, Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Tetrahydrofuran, Dichlor-

methan, insbesondere tert. Butylmethylether und Tetrahydrofuran sowie Mischungen der vorgenannten Lösungsmittel, in Betracht. Geeignete Hilfsbase sind beispielsweise die im folgenden genannten: Alkalimetallcarbonate und -Hydrogencarbonate wie NaHCO3, und Na2CO3, Alkalimetallhydrogenphosphate wie Na2HPO4, Alkalimetallborate wie Na2B4O7, tertiäre Amine und Pyridinverbindungen, Diethylanilin und Ethyldiisopropylamin. Als Hilfsbase kommt auch ein Überschuss des Amins HNR 7 R 8 in Betracht.

Üblicherweise werden die Komponenten in etwa stöchiometrischem Verhältnis eingesetzt. Es kann jedoch vorteilhaft sein, das Amin HNR⁷R⁸ im Überschuss einzusetzen.

10

15

20

25

30

35

40

5

Die Amine HNR⁷R⁸ sind käuflich oder literaturbekannt oder können nach bekannten Methoden hergestellt werden.

In den auf diesem Wege erhaltene Verbindung I $\{R^1 = NR^7R^8, R^2 = CI\}$ kann das Chloratom in an sich bekannter Weise in andere Substituenten R^2 umgewandelt werden.

Verbindungen der Formel I, worin R^2 für OR^6 steht, werden aus den entsprechenden Chlorverbindungen der Formel I $\{R^1 = NR^7R^8, R^2 = CI\}$ durch Umsetzung mit Alkalimetallhydroxiden $\{OR^6 = OH\}$, Alkali- oder Erdalkalimetallalkoholaten $\{OR^6 = O-AlkyI, O-HaloalkyI\}$ erhalten [vgl.: Heterocycles, Bd. 32, S. 1327-1340 (1991); J. Heterocycl. Chem. Bd. 19, S. 1565-1567 (1982); Geterotsikl. Soedin, S. 400-402 (1991)]. Veresterung von Verbindungen mit $R^2 = OH$ nach an sich bekannten Methoden liefert Verbindungen I, worin R^2 für $O-C(O)R^9$ steht. Verbindungen mit $R^2 = OH$ können nach an sich bekannten Methoden der Veretherung in die entsprechenden Verbindungen I überführt werden, worin R^2 für O-AlkyI, O-HaloalkyI oder O-AlkenyI steht.

Verbindungen der Formel I, in der R^2 für Cyano steht, können aus den entsprechenden Chlorverbindungen der Formel I { $R^1 = NR^7R^8$, $R^2 = Cl$ } durch Umsetzung mit Alkali-, Erdalkalimetall- oder Übergangsmetallcyaniden, wie NaCN, KCN oder Zn(CN)₂, erhalten werden [vgl.: Heterocycles, Bd. 39, S. 345-356 (1994); Collect. Czech. Chem. Commun. Bd. 60, S. 1386-1389 (1995); Acta Chim. Scand., Bd. 50, S. 58-63 (1996)].

Die Umwandlung von Chlorverbindungen der Formel I $\{R^1 = NR^7R^8, R^2 = CI\}$ in Verbindungen der Formel I, worin R^2 für C_1 - C_6 -Alkyl, C_1 - C_6 -Haloalkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, C_3 - C_8 -Cycloalkyl, C_5 - C_8 -Cycloalkenyl steht gelingt in an sich bekannter Weise durch Umsetzung mit metallorganischen Verbindungen R^{2a} -Met, worin R^{2a} für C_1 - C_6 -Alkyl, C_1 - C_6 -Haloalkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, C_3 - C_8 -Cycloalkyl, C_5 - C_8 -Cycloalkenyl steht und Met Lithium, Magnesium oder Zink bedeutet. Die Umsetzung wird vorzugsweise in Gegenwart katalytischer oder insbesondere wenigstens äquimolarer Mengen an Übergangsmetallsalzen und/oder -verbindungen, insbesondere in Gegenwart von Cu-Salzen wie Cu(I)halogenide und speziell Cu(I)iodid durchge-

WO 2004/092175

führt. In der Regel erfolgt die Umsetzung in einem inerten organischen Lösungsmittel, beispielsweise einem der vorgenannten Ether, insbesondere Tetrahydrofuran, einem aliphatischen oder cycloaliphatischen Kohlenwasserstoff wie Hexan, Cyclohexan und dergleichen, einem aromatischen Kohlenwasserstoff wie Toluol oder in einer Mischung dieser Lösungsmittel. Die hierfür erforderlichen Temperaturen liegen im Bereich von -100 bis +100°C und speziell im Bereich von -80°C bis +40°C.

Verbindungen der allgemeinen Formel I, worin R^1 für NR^7R^8 und R^2 für Methyl stehen, können außerdem aus den Chlorverbindungen der Formel I $\{R^1 = NR^7R^8, R^2 = CI\}$ hergestellt werden, indem man diese mit einem Dialkylmalonat in Gegenwart einer Base oder mit dem Alkalimetallsalz eines Dialkylmalonats umsetzt und anschließend eine saure Hydrolyse durchführt. Das Verfahren ist grundsätzlich aus der US 5,994,360 bekannt und kann in analoger Weise für die Herstellung von Verbindungen I, worin R^1 für R^7R^8 und R^2 für Methyl stehen, angewendet werden.

15

10

5

Durch entsprechende Abwandlung der in Schema 1b gezeigten Synthese kann man auch in einem ersten Schritt anstelle der Gruppe NR^7R^8 eine Nitrilgruppe, eine Gruppe $OR^{6'}$ { $R^{6'}$ = Alkyl} oder eine Gruppe S- $R^{6''}$ { $R^{6''}$ =H oder Alkyl} nach den hier angegebenen Methoden als Substituent R^1 einführen.

20

25

30

Die Herstellung von Verbindungen der Formel I, worin R^1 für C_1 - C_{10} -Alkyl, worin ein Kohlenstoffatom der C_1 - C_{10} -Alkylkette durch ein Siliciumatom ersetzt sein kann, C_1 - C_6 -Haloalkyl, C_2 - C_{10} -Alkenyl, C_2 - C_6 -Haloalkenyl, C_2 - C_6 -Alkinyl, gegebenenfalls substituiertes C_3 - C_8 -Cycloalkyl, gegebenenfalls substituiertes C_3 - C_8 -Cycloalkyl- C_1 - C_4 -alkyl oder gegebenenfalls substituiertes C_5 - C_8 -Cycloalkenyl steht, gelingt nach der in Schema 1c dargestellten Methode, in dem man die Dichlorverbindung I $\{R^1 = R^2 = Cl\}$ in der oben beschriebenen Weise mit metallorganischen Verbindungen R^{2a} -Met umsetzt, worin R^{2a} die für R^1 angegebenen Bedeutungen aufweist und Met für Lithium, Magnesium oder Zink stehen.

Schema 1c:

5

20

I: (R1 = Alkyl, Haloalkyl, Alkinyl, Alkenyl, Haloalkenyl, Cycloalkyl, Cycloalkenyl, Cycloalkyl-alkyl-, R2 = CI) I: (R¹ = Alkyl, Haloalkyl, Alkinyl, Alkenyl, Haloalkenyl, Cycloalkylalkyl, Cycloalkyl, Cycloalkenyl, R² = Alkyl, Haloalkyl, Alkinyl, Alkenyl, Haloalkenyl, Cycloalkyl, Cycloalkenyl, CN, NR²R³, OR³)

Die in Schritt a) dargestellte Umsetzung kann in Analogie zu der in WO 99/41255 beschriebenen Methode erfolgen. In den dabei erhaltenen Verbindungen kann das Chloratom (Substituent R²) dann nach den für Schema 1b angegebenen Methoden in andere Substituenten R² umgewandelt werden.

Verbindungen der Formel I, worin R¹ für C₁-C₁₀-Alkyl, worin ein Kohlenstoffatom der C₁-C₁₀-Alkylkette durch ein Siliciumatom ersetzt sein kann, C₁-C₆-Haloalkyl, C₂-C₁₀-Alkenyl, C₂-C₆-Haloalkenyl, C₂-C₆-Alkinyl, gegebenenfalls substituiertes C₃-Cȝ-Cycloalkyl, gegebenenfalls substituiertes C₃-Cȝ-Cycloalkyl-C₁-C₄-alkyl oder gegebenenfalls substituiertes C₅-Cȝ-Cycloalkenyl steht, lassen sich analog zu der in Schema 1 Schritt a) beschriebenen Synthese auch durch entsprechende Abwandlung der Ausgangsmaterialien der Formel III herstellen. Diese Verfahren sind in den Schemata 1d und 1e dargestellt.

Anstatt des Phenylmalonesters der Formel III werden gemäß Schema 1d Phenyl- β -ketoester der Formel IIIa eingesetzt, worin R^1 die vorgenannten Bedeutungen hat und R C_1 - C_4 -Alkyl, insbesondere Methyl oder Ethyl bedeutet.

Schema 1d:

$$A_{3} \stackrel{A_{2} \stackrel{A_{1}}{\longrightarrow} A_{5}}{\longrightarrow} NH_{2} \qquad CO_{2}R \qquad A_{3} \stackrel{R^{1}}{\longrightarrow} A_{5} \stackrel{R^{1}}{\longrightarrow} OH \qquad (R^{a})_{n}$$

$$(II) \qquad (IIIa)$$

I: (R¹ = Alkyl, Haloalkyl, Alkinyl, Alkenyl, Haloalkenyl, Cycloalkyl, Cycloalkyl-alkyl, Cycloalkenyl R² = OH) In den dabei erhaltenen Verbindungen I kann die Hydroxygruppe (Substituent R²) dann nach den für die Schemata 1a, 1b und 1c angegebenen Methoden in andere Substituenten R² umgewandelt werden.

5

Gemäß Schema 1e werden anstatt des Phenylmalonesters der Formel III 2-Phenyl- β -diketone der Formel IIIb eingesetzt. Hierin haben R^1 und R^2 unabhängig voneinander die folgenden Bedeutungen: C_1 - C_6 -Alkyl, C_1 - C_6 -Haloalkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Haloalkenyl, C_2 - C_6 -Alkinyl, C_3 - C_8 -Cycloalkyl oder C_5 - C_8 -Cycloalkenyl.

10

15

20

25

30

Schema 1e:

I: (R¹, R² = Alkyl, Haloalkyl, Alkenyl, Haloalkenyl, Cycloalkyl, Cycloalkenyl)

Die zur Herstellung der Verbindungen I eingesetzten Phenylmalonester der Formel III sind aus dem eingangs zitierten Stand der Technik bekannt oder können in an sich bekannter Weise durch Pd-katalysierte Kupplung von 2-Brommalonestern mit geeignet substituierten Phenylboronsäuren oder -boronsäurederivaten im Sinne einer Suzuki-Kupplung hergestellt werden (Übersicht siehe A. Suzuki et al. in Chem. Rev. 1995, 95, S. 2457-2483). In analoger Weise sind auch substituierte 2-Phenyl-3-oxocarbonsäureester IIIa und substituierte α -Phenyl- β -diketone IIIb herstellbar. α -Phenyl- β -diketone IIIb sind zudem aus der WO 02/74753 bekannt.

Hetarylamine der Formel II sind teilweise käuflich oder aus der Literatur bekannt, z.B. aus J. Het. Chem. 1970, 7, S.1159; J.Org.Chem. 1985, 50, S.5520; Synthesis 1989, 4, S.269; Tetrahedron Lett. 1995, 36, S.9261, oder können durch Reduktion der entsprechenden Nitroheteroaromaten in an sich bekannter Weise hergestellt werden.

Ein weiterer Zugang zu den erfindungsgemäßen Verbindungen der Formel I ist in Schema 2 dargestellt. Hierzu wird in Analogie zu der in Schema 1, Schritt a) bwz. zu der in Schema 1e dargestellten Methode ein 2-Brom-1,3-diketon der Formel IV mit einem Hetarylamin der Formel II umgesetzt.

Schema 2:

5

10

15

20

In Schema 2 haben n, R^a und A_1 bis A_5 die zuvor genannten Bedeutungen. In Formel II steht A_1 ' für N, NH oder CH. In Formel II sind für A_5 = N die Variablen A_1 ' mit A_2 und A_3 mit A_4 und für A_5 = C die Variablen A_5 mit A_1 ' und A_3 mit A_4 oder alternativ A_4 mit A_5 und A_3 mit A_2 jeweils durch eine Doppelbindung verbunden. R^{1a} und R^{2a} in Formel IV stehen unabhängig voneinander für : C_1 - C_6 -Alkyl, C_1 - C_6 -Haloalkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, C_3 - C_8 -Cycloalkyl oder C_5 - C_8 -Cycloalkenyl. In Formel VI steht $(RO)_2$ B für einen von Borsäure abgeleiteten Rest, z.B. für $(HO)_2$ B, $(C_1$ - C_4 -Alkyl- $O)_2$ B oder für einen von Borsäureanhydrid abgeleiteten Rest. [Pd] steht hierbei für einen Palladium(0)komplex, der vorzugsweise 4 Trialkylphosphin- oder Triarylphosphin-Liganden aufweist.

Die Umsetzung von II mit IV erfolgt üblicherweise unter den für Schema 1 angegebenen basischen Kondensationsbedingungen. Basisch katalysierte Kondensationsreaktionen dieses Typs sind aus der Literatur prinzipiell bekannt, z.B. aus EP-A 770615. Die dort angegebene Methode kann in analoger Weise zur Herstellung der Verbindungen V genutzt werden. Die Umsetzung von II mit IV kann auch in Gegenwart einer Brönstedtoder Lewissäure als saurem Katalysator erfolgen. Beispiele für geeignete saure Katalysatoren sind die im Zusammenhang mit Schema 1, Schritt a) genannten sauren Katalysatoren. Die dort beschriebenen Methoden können in analoger Weise zur Herstellung der erfindungsgemäßen Verbindungen V genutzt werden (siehe auch die dort zitierte Literatur).

Die bei der Kondensation erhaltenen Verbindungen V werden dann mit einer Phenylboronsäureverbindung VI unter den Bedingungen einer Suzuki-Reaktion (s.o.) umgesetzt Die hierfür erforderlichen Reaktionsbedingungen sind aus der Literatur bekannt, z.B.

aus A. Suzuki et al. in Chem. Rev. 1995, 95, S. 2457-2483 sowie, J. Org. Chem. 1984, 49, S. 5237 und J. Org. Chem. 2001, 66(21) S. 7124-7128.

Verbindungen der allgemeinen Formel I.g, worin R^1 und R^2 unabhängig voneinander für Halogen, NR^7R^8 , C_1 - C_6 -Alkyl, C_1 - C_6 -Haloalkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Haloalkyl, C_3 - C_8 -Cycloalkyl, C_5 - C_8 -Cycloalkenyl bedeuten, können auch gemäß der in Schema 3 dargestellten Synthese hergestellt werden:

Schema 3:

5

10

15

20

In Schema 3 haben n, R^a die zuvor genannten Bedeutungen. R steht für C_1 - C_4 -Alkyl oder C_1 - C_4 -Haloalkyl, insbesondere für Methyl und R^1 und R^2 bedeuten unabhängig voneinander für Halogen, NR^7R^8 , C_1 - C_6 -Alkyl, C_1 - C_6 -Haloalkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Haloalkenyl, C_2 - C_6 -Alkinyl, C_3 - C_8 -Cycloalkyl oder C_5 - C_8 -Cycloalkenyl. Vorzugsweise steht R^1 in Schema 3 für NR^7R^8 , worin R^7 , R^8 die zuvor genannten Bedeutungen aufweisen. R^2 steht vorzugsweise für Halogen und insbesondere für Chlor.

In Schritt a) von Schema 3 wird die Pyrimidinverbindung VII in an sich bekannter Weise mit Hydrazin oder Hydrazinhydrat umgesetzt, wobei man die Verbindung der Formel VIII erhält. Derartige Umsetzungen sind aus der Literatur prinzipiell bekannt, z.B. von D.T Hurst et al, Heterocycles 1977, 6, S. 1999-2004 und können in analoger Weise zur Herstellung der Verbindungen VIII angewendet werden.

In Schritt b) wird dann das 2-Hydrazinopyrimidin IX mit einer Carbonsäure R^{3a}-COOH, insbesondere mit Ameisensäure oder einem Ameisensäureequivalent, z.B. einem Ameisensäureorthoester wie Triethylorthoformat, Bis(dimethylamino)methoxymethan, Dimethylamino(bismethoxy)methan und dergleichen cyclisiert. Die Cyclisierung kann in einer Stufe erfolgen, wie in Heterocycles 1986, 24, S. 1899-1909; J. Chem. Res. 1995, 11, S. 434f.; J. Heterocycl. Chem. 1998, 35, S. 325-327, Pharmazie 2000, 55, S. 356-358, J. Heterocycl. Chem. 1990, 27, S. 1559-1563, Org. Prep.. Proced. Int. 1991, 23, S. 413-418, Liebigs Ann. Chem. 1984, S. 1653-1661, Heterocycles, 1984, 22, S. 1821 oder Chem. Ber. 1970, 103, S. 1960 beschrieben. Die Umsetzung kann aber auch in zwei Stufen durchgeführt werden, wobei man in einer ersten Stufe die Verbindung VIII mit Triethylorthoformat, Bis(dimethylamino)methoxymethan oder Dimethylami-

15

25

no(bismethoxy)methan bei erhöhter Temperatur in einem aprotischen Lösungsmittel, beispielsweise einem Ether wie Tetrahydrofuran oder Dimethylformamid umsetzt und anschließend die dabei erhaltene Zwischenstufe unter Säurekatalyse cyclisiert, wobei man die Verbindung I erhält. Methoden hierzu sind bekannt, z.B. aus Z. Chem. 1990. 20, 320f, Croat. Chem. Acta, 1976, 48, S161-167, Liebigs Ann. Chem. 1980, S. 1448-1453, J. Chem. Soc. Perkin. Trans. 1984, S. 993-998, J. Heterocycl. Chem. 1996, 33, S. 1073-1077 und können in analoger Weise auf die Herstellung der Verbindungen I angewendet werden.

10 Verbindungen der allgemeinen Formel VIIa sind aus der WO 02/74753 grundsätzlich bekannt oder können nach den dort angegebenen Methoden hergestellt werden.

Verbindungen der allgemeinen Formel I.q, worin R^1 für NR^7R^8 , und R^2 für C_1 - C_8 -Alkyl, C_1 - C_8 -Haloalkyl oder C_3 - C_8 -Cycloalkyl stehen, können auch gemäß der in Schema 4 dargestellten Synthese hergestellt werden:

Schema 4:

$$R^7$$
 R^8 R^7 R^8 R^7

In Schema 4 haben n, R^a, R⁷, R⁸ die zuvor genannten Bedeutungen. R^{2b} steht für C₁-C₄-Alkyl, C₁-C₄-Haloalkyl oder C₃-C₈-Cycloalkyl insbesondere für Methyl.

In Schritt a) wird eine Pyridinverbindung der allgemeinen Formel IX bromiert, vorzugsweise unter sauren Reaktionsbedingungen, beispielsweise in Essigsäure nach der in J. Org. Chem. 1983, 48, S. 1064 angegebenen Methode. Hierbei erhält man ein 3,5-Dibrompyridin der allgemeinen Formel X.

Das 3,5-Dibrompyridin X wird dann in einem zweiten Schritt b) durch Umsetzung von X mit Ethylxanthogenat, z.B. KSC(S)OC₂H₅,zum 6-Mercaptothiazolo[4,5-b]pyridin der Formel XII cyclisiert, z.B. nach der in Synthetic Commun. 1996, 26, S. 3783 beschriebenen Methode. Mercaptothiazolo[4,5-b]pyridin XI wird anschließend in Schritt c) zum Thiazolo[4,5-b]pyridin XII reduziert, beispielsweise mit Raney-Nickel nach der von Metzger et al. in Bull. Soc. Chim. France, 1956, S. 1701 beschriebenen Methode. Alternativ kann man auch das 3,5-Dibrompyridin X direkt zum Thiazolo[4,5-b]pyridin XII cyclisieren (Schritt b'), z.B. nach der von N. Suzuki in Chem. Pharm. Bull, 1979, 27(1) S. 1-11 beschriebenen Methode.

10

5

Das so erhaltene Thiazolo[4,5-b]pyridin XII wird dann mit einer Phenylboronsäureverbindung der Formel VI unter den Bedingungen einer Suzuki-Reaktion nach der in Schema 2 (s.o.) beschriebenen Methode umgesetzt, wobei man das 3-(substituiertes)-Phenylthiazolo[4,5-b]pyridin I.q erhält.

15

Die Herstellung der Pyridinverbindung gelingt nach Standardverfahren der organischen Chemie, beispielsweise nach der in Schema 5 dargestellten Synthese

Schema 5:

$$\begin{array}{c|c}
 & CI \\
 & R^7 \\
 & N \\
 & R^8 \\
 & N \\
 & R^2 \\
 & N \\
 & R^2
\end{array}$$
(X)

20

30

35

- a): Umsetzung mit POCI₃ nach der in WO 96/39407 beschriebenen Methode;
- b): Umsetzung mit HNR⁷R⁸ nach der in J. Org. Chem. 1984, 49, S.5237 beschriebenen Methode;
- 25 c): Umsetzung mit NaNH₂ nach der in J. Chem. Soc. Perkin Trans. 1 1990, S. 2409 beschriebenen Methode.

Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich aus durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Oomyceten und Basidiomyceten. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Ba-

nanen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

- 5 Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:
 - o Alternaria-Arten an Gemüse und Obst,
 - Bipolaris- und Drechslera-Arten an Getreide, Reis und Rasen,
 - Blumeria graminis (echter Mehltau) an Getreide,
 - Botrytis cinerea (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
- 10 Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,
 - Fusarium- und Verticillium-Arten an verschiedenen Pflanzen,
 - Mycosphaerella-Arten an Getreide, Bananen und Erdnüssen,
 - Phytophthora infestans an Kartoffeln und Tomaten,
 - Plasmopara viticola an Reben,
- 15 Podosphaera leucotricha an Äpfeln,
 - Pseudocercosporella herpotrichoides an Weizen und Gerste,
 - Pseudoperonospora-Arten an Hopfen und Gurken,
 - Puccinia-Arten an Getreide,
 - Pyricularia oryzae an Reis,
- 20 Rhizoctonia-Arten an Baumwolle, Reis und Rasen,
 - Septoria tritici und Stagonospora nodorum an Weizen,
 - Uncinula necator an Reben,
 - Ustilago-Arten an Getreide und Zuckerrohr, sowie
 - Venturia-Arten (Schorf) an Äpfeln und Birnen.

25

Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen wie *Pae-cilomyces variotii* im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich, Fasern bzw. Gewebe) und im Vorratsschutz.

- Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.
- Die fungiziden Mittel enthalten im Allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.-% Wirkstoff.

Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.

WO 2004/092175 PCT/EP2004/004067

61

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 1 g, vorzugsweise 0,01 bis 0,5 g je Kilogramm Saatgut benötigt.

Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Kubikmeter behandelten Materials.

Die Verbindungen I können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Betracht: Lösungsmittel wie Aromaten (z.B. Xylol), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexanon), Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate und Fettsäuren sowie deren Alkali- und Erdalkalisalze, Salze von sulfatiertem Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.

30

35

5

WO 2004/092175 PCT/EP2004/004067

62

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Benzol, Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron, stark polare Lösungsmittel, z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Wasser, in Betracht.

10 Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nussschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten im Allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Beispiele für Formulierungen sind:

5

25

- 5 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 95 Gew.-Teilen feinteiligem Kaolin innig vermischt. Man erhält auf diese Weise ein Stäubemittel, das 5 Gew.-% des Wirkstoffs enthält.
- 30 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit einer Mischung aus 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit (Wirkstoffgehalt 23 Gew.-%).
- 10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung
 gelöst, die aus 90 Gew.-Teilen Xylol, 6 Gew.-Teilen des Anlagerungsproduktes
 von 8 bis 10 Mol Ethylenoxid an 1Mol Ölsäure-N-monoethanolamid, 2 Gew.-

Teilen Calciumsalz der Dodecylbenzolsulfonsäure und 2 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 9 Gew.-%).

- 5 IV. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 60 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 5 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 5Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 16 Gew.-%).
 - V. 80 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 7 Gew.-Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen (Wirkstoffgehalt 80 Gew.-%).

15

20

40

- VI. Man vermischt 90 Gew.-Teile einer erfindungsgemäßen Verbindung mit 10 Gew.-Teilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist (Wirkstoffgehalt 90 Gew.-%).
- VII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gew.-Teilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- VIII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-a-sulfonsäure, 17 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gew.-Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20000 Gew.-Teilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.
 - Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Ver-

wendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netz-baren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermitttel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

20

15

Zu den Wirkstoffen können Öle verschiedenen Typs, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt werden.

25

30

35

Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der Verbindungen I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

- Acylalanine wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl,
- Aminderivate wie Aldimorph, Dodine, Dodemorph, Fenpropimorph, Fenpropidin, Guazatine, Iminoctadine, Spiroxamin, Tridemorph,
- 40 Anilinopyrimidine wie Pyrimethanil, Mepanipyrim oder Cyrodinyl,

- Antibiotika wie Cycloheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin oder Streptomycin,
- Azole wie Bitertanol, Bromoconazol, Cyproconazol, Difenoconazole, Dinitroconazol, Epoxiconazol, Fenbuconazol, Fluquiconazol, Flusilazol,
- Hexaconazol, Imazalil, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Tebuconazol, Triadimefon, Triadimenol, Triflumizol, Triticonazol,
 - o Dicarboximide wie Iprodion, Myclozolin, Procymidon, Vinclozolin,
 - Dithiocarbamate wie Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamat, Thiram, Ziram, Zineb,
 - Heterocylische Verbindungen wie Anilazin, Benomyl, Boscalid, Carbendazim, Carboxin, Oxycarboxin, Cyazofamid, Dazomet, Dithianon, Famoxadon, Fenamidon, Fenarimol, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolan, Mepronil, Nuarimol, Probenazol, Proquinazid, Pyrifenox, Pyroquilon, Quinoxyfen, Silthiofam,
- Thiabendazol, Thifluzamid, Thiophanat-methyl, Tiadinil, Tricyclazol, Triforine,
 - Kupferfungizide wie Bordeaux Brühe, Kupferacetat, Kupferoxychlorid, basisches Kupfersulfat,
 - Nitrophenylderivate, wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl,
 - Phenylpyrrole wie Fenpiclonil oder Fludioxonil,
- 20 Schwefel,

25

30

35

40

- Sonstige Fungizide wie Acibenzolar-S-methyl, Benthiavalicarb, Carpropamid, Chlorothalonil, Cyflufenamid, Cymoxanil, Dazomet, Diclomezin, Diclocymet, Diethofencarb, Edifenphos, Ethaboxam, Fenhexamid, Fentin-Acetat, Fenoxanil, Ferimzone, Fluazinam, Fosetyl, Fosetyl-Aluminium, Iprovalicarb, Hexachlorbenzol, Metrafenon, Pencycuron, Propamocarb, Phthalid, Toloclofos-methyl, Quintozene, Zoxamid,
- Strobilurine wie Azoxystrobin, Dimoxystrobin, Fluoxastrobin, Kresoxim-methyl, Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin oder Trifloxystrobin,
- Sulfensäurederivate wie Captafol, Captan, Dichlofluanid, Folpet, Tolylfluanid,
- Zimtsäureamide und Analoge wie Dimethomorph, Flumetover oder Flumorph.

Synthesebeispiele

Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen I benutzt. Die so erhaltenen Verbindungen sind in den anschließenden Tabellen mit physikalischen Angaben aufgeführt.

Beispiel 1: 7-Phenyl-8-isobutyl-6-methyl-[1,2,4]triazolo[4,3-b]pyridazin

1.1 7-Brom-8-isobutyl-6-methyl-[1,2,4]triazolo[4,3-b]pyridazin

10

15

20

25

30

Zu einer Lösung von 28,6 g (0,2 mol) 6-Methylheptan-2,4-dion in 120 ml Tetrachlormethan und 120 ml Wasser tropfte man bei 0 °C eine Lösung von 32 g (0,2 mol) Brom in 100 ml Tetrachlormethan. Nach beendeter Zugabe rührte man das Reaktionsgemisch noch 45 Minuten bei 0 °C nach. Man trennte die organische Phase ab, trocknete über wasserfreiem Magnesiumsulfat, filtrierte das Trockenmittel ab und engte die Mischung im Vakuum bis zur Trockne ein, wobei man 44 g des bromierten Dions erhielt. Das erhaltenen rohe Zwischenprodukt löste man in 400 ml Eisessig, gab 16,8 g (0,2 mol) 1,2,4-Triazol-4-ylamin zu und erhitzte das Reaktionsgemisch 1,5 Stunden am Rückfluss. Man entfernte das organische Lösungsmittel und gab tert.-Butyl-methylether, Wasser und 1 N Natronlauge zu. Nach Phasentrennung trocknete man die organische Phase, filtrierte das Trockenmittel ab und engte die Mischung im Vakuum bis zur Trockne ein, wobei man ein dunkles Öl erhielt. Das erhaltene Öl reinigte man durch Chromatographie an Kieselgel (Eluierungsmittel: Cyclohexan + Essigsäureethylester 2:1 v/v), wobei man 6,6 g 7-Brom-8-isobutyl-6-methyl-[1,2,4]triazolo[4,3-b]pyridazin als viskoses Öl erhielt. $^{1}\text{H-NMR}$ (CDCl₃) δ [ppm]: 1,0 (d, 6H), 2,5 (m, 1H), 2,7 (s, 3H), 3,2 (d, 2H), 9,0 (s, 1H).

1.2 7-Phenyl-8-isobutyl-6-methyl-[1,2,4]triazolo[4,3-b]pyridazin

Man erhitzte ein Gemisch aus 0,5 mmol 7-Brom-8-isobutyl-6-methyl[1,2,4]triazolo[4,3-b]pyridazin aus Beispiel 1.1, 0,75 mmol Phenylboronsäure,
1,5 mmol Natriumhydrogencarbonat und 0,03 mmol Tetrakis-(triphenylphosphin)palladium(0) in 5 ml Tetrahydrofuran und 2 ml Wasser 24 Stunden am Rückfluss.
Danach ließ man das Reaktionsgemisch auf Raumtemperatur abkühlen und filtrierte über Celite. Das Filtrat engte man im Vakuum bis zur Trockne ein und reinigte den so erhaltenen Rückstand durch Säulenchromatographie an Kieselgel
(Eluierungsmittel: Cyclohexan + Essigsäureethylester), wobei man 0,08 g der Titelverbindung erhielt.

¹H-NMR (CDCl₃) δ [ppm]: 0,8 (d, 2H), 2,2 (s, 3H), 2,4 (m, 1H), 2,7 (d, 2H), 7,2 (d,
2H), 7,5 (m, 3H), 9,0 (s, 1H).

In analoger Weise wurden die in der nachstehenden Tabelle 1a angegebenen Verbindungen der allgemeinen Formel I.c {R³a=H} hergestellt:

Tabelle 1a:

Bei- spiel	R ¹	C ₆ H _{5-n} (R ^a) _n	¹ H-NMR (CDCl ₃) [δ] bzw.
2	2 Mothylpropyl	0.04-4-1.4	Schmelzpunkt [°C]
2	2-Methylpropyl	2-Methyl-4-	9,05(s), 7,10(m), 2,95(dd),
		fluorphenyl	2,45(m), 2,20(s), 2,05(s),
3	- Duti		1,90(d), 1,75(d)
3	n-Butyl	2-Methyl-4-	9,05(s), 7,10(m), 2,85(m),
		fluorphenyl	2,55(m), 2,20(s), 2,10(s),
	- B 11		1,75(m), 1,35(m), 1,80(t)
4	n-Butyl	2,4-Difluorphenyl	9,05(s), 7,20(m), 7,05(m),
			2,85(f). 1,70(m), 1,30(m),
			1,80(f)
5	n-Butyl	2-Fluor-4-	9,00(s), 7,15(m), 2,85(m),
		methylphenyl	2,50(s),
			2,30(s), 1,70(m), 1,30(m),
			1,80(f)
6	2-Methylpropyl	2,4-Difluorphenyl	92°C
7	2-Methylpropyl	2-Fluor-4-	9,05(s), 7,10(m), 2,75(m),
		methylphenyl	2,50(f),
			2,30(s), 1,65(d), 1,60(d)
8	Cyclohexyl	2,4-Difluorphenyl	1,11 (m, 2H); 1,42 (m, 2H); 1,62
			(m, 2H), 1,78 (m, 2H); 2,20 (s,
İ			3H); 2,50 (m, 3H); 7,03 (m, 2H);
			7,11 (m, 1H); 9,00 (s, 1H);
9	Cyclohexyl	2,4-Dimethyl-	1,10 (m, 2H); 1,33 (m, 2H); 1,50
		phenyl	(m, 2H); 1,67 (m, 2H); 2,03 (s,
			3H); 2,10 (s, 3H); 2,32 (m, 1H);
			2,40 (s, 3H); 2,45 (m, 1H); 2,64
			(m, 1H); 6,90 (d, 1H); 7,12 (d,
			1H); 7,18 (s, 1H); 9,00 (s, 1H);
10	Cyclohexyl	2-Methyl-4-	1,10 (m, 2H); 1,43 (m, 2H); 1,62
į		fluorphenyl	(m, 2H), 1,80 (t, 2H); 2,08 (s,
1			3H); 2,13 (s, 3H); 2,40 (m, 2H);
			2,67 (m, 1H); 7,05 (m, 3H); 9,03
			(s, 1H);
11	CH ₂ CH ₂ C(CH ₃) ₃	2,4-Difluorphenyl	0,80 (s, 9H); 1,53 (dd, 2H); 2,28
			(s, 3H); 2,78 (dd, 2H); 7,05 (m,

Bei-	R ¹	C ₆ H _{5-n} (R ^a) _n	THE NIME CODOL YES
spiel		₩ 15-n(17)n	¹ H-NMR (CDCl ₃) [δ] bzw.
Opic,		-	Schmelzpunkt [°C]
12	CH ₂ CH ₂ C(CH ₃) ₃	2-Fluor-4-	2H); 7,20 (m, 1H); 9,04 (s, 1H);
	011201120(0113)3	methylphenyl	0,80 (s, 9H); 1,43 (ddd, 1H);
1		Trietriyiprietryi	1,62 (ddd, 1H); 2,08 (s, 3H);
}			2,18 (s, 3H); 2,50 (ddd, 1H);
}			2,86 (ddd, 1H); 7,07 (m, 3H);
13	CH(CH ₃)(CH ₂ CH ₂ CH ₃)	2-Methyl-4-	9,03 (s, 1H);
	3,(31.1201.1201.13)	fluorphenyl	0,78 (q, 3H); 1,06 (m, 1H); 1,23
		, acorphony,	(m, 1H); 1,45 (dd, 3H); 1,90 (m,
}			1H); 2,09 (d, 3H); 2,13 (d, 3H); 2,65 (m, 1H); 7,05 (m, 3H); 7,18
1	1		(s, 1H); 9,03 (s, 1H);
14	CH(CH ₃)(CH ₂ CH ₂ CH ₃)	2,4-	0,79 (m, 3H); 1,05 (m, 1H); 1,23
ļ	, , , , , , , , , , , , , , , , , , , ,	Dimethylphenyl	(m, 1H); 1,43.(dd, 3H); 1,87 (m,
}			1H); 2,07 (d, 3H); 2,13 (d, 3H);
[}		2,19 (m, 1H); 2,40 (s, 3H); 2,70
			(m, 1H); 6,92 (d, 1H); 7,13 (d,
<u></u>			1H); 7,18 (s, 1H); 9,02 (s, 1H);
15	CH ₂ CH ₂ C(CH ₃) ₃	2,4-Dimethyl-	0,78 (s, 9H); 1,45 (ddd, 1H);
ĺ		phenyl	1,62 (ddd, 1H); 2,03 (s, 3H);
			2,17 (s, 3H); 2,40 (s, 3H); 2,52
1	,		(ddd, 1H); 2,85 (ddd, 1H); 6,95
ĺ		}	(d, 1H); 7,13 (d, 1H); 7,18 (s,
			1H); 9,02 (s, 1H);
16	CH(CH₃)CH(CH₃)CH₂CH₃	2-Methyl-4-	0,68 (m, 3H); 0,91 (d, 3H); 1,13
i		fluorphenyl	(m, 1H); 1,46 (d, 3H); 1,70 (m,
1			1H); 2,08 (s, 3H); 2,12 (d, 3H);
ĺ			2,34 (m, 1H); 2,59 (m, 1H); 7,04
			(m, 3H); 9,02 (s, 1H);
17	CH(CH ₃)CH(CH ₃)CH ₂ CH ₃	2,4-Difluorphenyl	0,69 (m, 3H); 0,92 (m, 3H); 1,12
			(m, 1H); 1,44 (m, 3H); 1,70 (m,
İ		1	1H); 2,22 (s, 3H); 2,38 (m, 1H);
			2,68 (m, 1H); 7,03 (m, 2H); 7,17
40	101101111111111111111111111111111111111	ļ	(m, 1H); 9,04 (s, 1H);
18	(CH(CH ₃)(CH ₂) ₂ CH ₃	2,4-Difluorphenyl	0,75 (t, 3H); 1,09 (m, 1H); 1,19
	/d Distance = 5 cm;		(m, 1H); 1,47 (d, 3H); 1,83 (m,
	(1 Diastereomer, R _f : 0,5)*		1H); 2,22 (s, 3H); 2,28 (m, 1H);
			2,76 (m, 1H); 7,04 (m, 2H); 7,17
19	CH(CH)(CH) CH	0.51	(m, 1H); 9,02 (s, 1H);
וט	CH(CH₃)(CH₂)₂CH₃	2-Fluor-4-	0,74 (t, 3H); 1,09 (m, 1H); 1,19
	(1 Diactoroomer D : 0 4)*	methylphenyl	(m, 1H); 1,49 (d, 3H); 1,77 (m,
	(1 Diastereomer; R _f : 0,4)*		1H); 2,25 (s, 3H); 2,29 (m, 1H);
l			2,49 (s, 3H); 2,80 (m, 1H); 7,06

Bei-	R ¹	C ₆ H _{5-n} (R ^a) _n	¹ H-NMR (CDCl ₃) [δ] bzw.
spiel			Schmelzpunkt [°C]
			(m, 3H); 9,02 (s, 1H);
20	(CH(CH₃)CH(CH₃)CH₂CH₃	2-Fluor-4-	0,69 (m, 3H); 0,91 (m, 3H); 1,14
		methylphenyl	(m, 1H); 1,43 (d, 3H); 1,78 (m,
1	(1 Diastereomer; R _f : 0,5)*		1H); 2,22 (d, 3H); 2,45 (m, 1H);
			2,46 (s, 3H); 2,68 (m, 1H); 7,06
			(m, 3H); 9,02 (s, 1H);
21	CHCH₃(CH₂)₂CH₃	2,4-Difluorphenyl	0,75 (t, 3H); 1,09 (m, 2H); 1,50
			(d, 3H); 1,75 (m, 1H); 2,23 (s,
	(1 Diastereomer; R _f : 0,4)*		3H); 2,29 (m, 1H); 2,75 (m, 1H);
			7,03 (m, 2H); 7,14 (m, 1H); 9,02
			(s, 1H);
22	CH(CH ₃)CH(CH ₃)CH ₂ CH ₃	2-Fluor-4-	0,60 (m, 3H); 0,88 (d, 3H); 1,10
ļ		methylphenyl	(m, 1H); 1,46 (d, 3H); 1,72 (m,
	(1 Diastereomer; R _f : 0,4)*		1H); 2,22 (s, 3H); 2,44 (s, 3H);
			2,45 (m, 1H); 2,63 (m, 1H); 7,03
			(m, 3H); 9,02 (s, 1H);

^{*} R_r-Werte bestimmt mittels Dünnschichtchromatographie an Kieselgel (Eluierungsmittel: Cyclohexan/Essigsäureethylester (1:5))

Beispiel 23: 5-Chlor-6-(2-chlor-6-fluorphenyl)-7-(4-methylpiperidin-1-yl)-tetrazolo-[1,5-a]pyrimidin

23.1. 5,7-Dihydroxy-6-(2-chlor-6-fluorphenyl)tetrazolo[1,5-a]pyrimidin

Eine Mischung aus 5-Aminotetrazol (0,15 mol), 2-Aminotetrazol (0,15 mol), 2-(2-chlor-6-fluorphenyl)malonsäurediethylester (0,15 mol) und Tributylamin (50 ml) wurde 6 Stunden auf 180°C erwärmt. Man kühlte die Reaktionsmischung auf 70°C, gab eine Lösung von 21 g Natriumhydroxid in 22 ml Wasser zu und rührte die Mischung 30 Minuten. Man trennte die organische Phase ab und extrahierte die wässrige Phase mit Diethylether. Man säuerte die wässrige Phase mit konzentrierter Salzsäure an. Der Niederschlag wurde abfiltriert und getrocknet, wobei man 7 g des Produkts erhielt.

23. 2.5,7-Dichlor-6-(2-chlor-6-fluorphenyl)tetrazolo[1,5-a]pyrimidin

Eine Mischung aus 5,7-Dihydroxy-6-(2-chlor-6-fluorphenyl)tetrazolo[1,5-a]pyrimidin (6 g), aus Beispiel 23.1 und Phosphoroxychlorid (20 ml) wurde 8 Stunden zum Rückfluss erhitzt. Anschließend wurde Phosphoroxychlorid teilweise abdestilliert. Der Rückstand wurde in eine Mischung aus Dichlormethan und Wasser gegossen. Man trennte die organische Phase ab, trocknete sie mit was-

10

15

20

serfreiem Natriumsulfat und filtrierte. Das Filtrat wurde im Vakuum eingeengt, wobei man 4 g der Titelverbindung erhielt.

23.3. 5-Chlor-6-(2-chlor-6-fluorphenyl)-7-(4-methylpiperidin-1-yl)tetrazolo[1,5-a]pyrimidin

Eine Mischung von 4-Methylpiperidin (1,5 mmol), Triethylamin (1,5 mmol) und Dichlormethan (10 ml) gab man zu einer Mischung von 5,7-Dichlor-6-(2-chlor-6-fluorphenyl)tetrazolo[1,5-a]pyrimidin (1,5 mmol, aus Beispiel 23.2) und Dichlormethan (20 ml) unter Rühren. Man rührte die Mischung 16 Stunden bei Raumtemperatur und wusch anschließend mit verdünnter Salzsäure (5 %). Man trennte die organische Phase ab, trocknete mit wasserfreiem Natriumsulfat und filtrierte. Man engte das Filtrat unter vermindertem Druck ein und reinigte den Rückstand durch Säulenchromatographie an Kieselgel, wobei man 0,26 g des Produkts erhielt.

In analoger Weise wurden die in der nachstehenden Tabelle 1b angegebenen Verbindungen der allgemeinen Formel I.k (R^2 = CI, (R^a)_n = 2,4,6-Trifluormethyl) hergestellt:

$$\begin{array}{c|c}
 & F \\
 & N \\
 & N \\
 & N \\
 & CI \\
 & F
\end{array}$$
(I.k)

Tabelle 1b:

Bei-	R ¹	¹ H-NMR (CDCl ₃) [δ] bzw.
spiel		Schmelzpunkt [°C]
24	Isopropylamino	142-146
25	NH((S) CH(CH ₃)CH(CH ₃) ₂)	85-86
26	NH((S) CH(CH ₃)C(CH ₃) ₃)	85-86
27	sec-Butylamino	116
28	4-Methylpiperidin-1-yl	0,92 (d, 3H); 1,03 (m, 2H); 1,58 (m, 2H); 1,58 (m, 1H); 2,76 (m, 2H); 3,95 (m,2H); 6,80 (m,2H);
29	NH((R) CH(CH ₃)CH(CH ₃) ₂)	0,86 (m, 6H); 1,08 (d, 3H); 1,74 (m, 1H); 4,15 (m, 1H); 4,42 (d, 1H); 6,86 (m, 2H);
30	CI	6,82 (m, 2H);

Beispiel 31: 7-Chlor-5-isopropylamino-6-(2,4,6-trifluorphenyl)-[1,2,4]triazolo[4,3-a]pyrimidin

5

10

15

20

25

30

31.1. 6-Chlor-2-hydrazino-4-isopropylamino-5-(2,4,6-trifluorphenyl)pyrimidin

Man suspendierte 16,3 g (43 mmol) 6-Chlor-4-isopropylamino-2-methylsulfonyl-5-(2,4,6-trifluorphenyl)pyrimidin in 50 ml Ethanol, gab hierzu 5,3 g (0,17 mol) Hydrazinhydrat und erwärmte unter Rühren 90 Minuten zum Rückfluss. Anschließend engte man die Reaktionsmischung unter vermindertem Druck ein, nahm den Rückstand mit Ethanol auf, trocknete über Natriumsulfat und engte erneut ein. Anschließend reinigte man den Rückstand mittels Säulenchromatographie an Kieselgel (Eluent: Cyclohexan: Essigsäureethylester (2:1)). Man erhielt so 14,2 g des Produkts als hellgelben Feststoff. Festpunkt 143-150°C.

31.2. N,N-Dimethyl-N'-(4-chlor-6-isopropylamino-5-(2,4,6-trifluorphenyl)pyrimidin-2-yl)hydrazonoformamid

Zu einer Lösung 1,0 g (3 mmol) des Hydrazinopyrimidins aus 31.1 in 10 ml Tetrahydrofuran gab man 6 ml Dimethoxymethyldimethylamin, rührte 16 h bei Raumtemperatur und 2 h unter Rückfluss. Man engte die Reaktionsmischung im Vakuum ein und reinigte den Rückstand anschließend chromatographisch an Kieselgel (Eluent: Cyclohexan/Essigsäureethylester (2:1)). Man erhielt so 0,6 g des Produkts als hellbraunen Feststoff mit einem Schmelzpunkt von 204 bis 207°C.

31.3. 7-Chlor-5-isopropylamino-6-(2,4,6-trifluorphenyl)-[1,2,4]triazolo[4,3-a]pyrimidin

Man löste 0,25 g (0,65 mmol) der Pyrimidinverbindung aus 31.2. in 12,5 ml Tetrahydrofuran. Hierzu gab man 0,2 g (3,3 mmol) Essigsäure, rührte 15 h bei Raumtemperatur und 2 h bei 40°C und 60°C und engte anschließend unter vermindertem Druck ein. Der Rückstand wurde an Kieselgel chromatographisch gereinigt (Eluent: Cyclohexan/Methyl-tert.-butylether (2:1)). Man erhielt so 0,18 g des Produkts als beigefarbenen Feststoff mit einem Schmelzpunkt von 268 bis 273°C.

Beispiel 33: 2-Methyl-4-(4-methylpiperidin-1-yl)-3-(2,4,6-trifluorphenyl)-imidazo[1,5-a]pyrimidin-8-carbonitril

- 33.1 4-Hydroxy-2-methyl-3-(2,4,6-trifluorphenyl)-imidazo[1,5-a]pyrimidin-8-carbonsäureamid
- 40 Unter Rühren erhitzte man ein Gemisch aus 31,0 g (0,119 mol) 3-Oxo-2-(2,4,6-trifluor-phenyl)butansäureethylester, 19,4 g (0,119 mol) 4-Aminoimidazol-5-

WO 2004/092175 PCT/EP2004/004067

72

carbonsäureamid-Hydrochlorid und 22,0 g (0,119 mol) Tributylamin 15 Stunden bei 140°C. Nach dem Abkühlen des Reaktionsgemischs verdünnte man die erhaltene Suspension mit Methyl-tert-butylether und Essigester und trennte den erhaltenen Feststoff ab. Den Feststoff wusch man mit Methyl-tert-butylether/Essigester nach und trocknete ihn im Vakuumtrockenschrank bei 40°C. Man erhielt 31,2 g eines Gemisches der beiden Regioisomere.

33.2 4-Chlor-2-methyl-3-(2,4,6-trifluorphenyl)-imidazo[1,5-a]pyrimidin-8-carbonitril

Man erwärmte ein Gemisch aus 31,2 g (0,097 mol) 4-Hydroxy-2-methyl-3-(2,4,6-trifluorphenyl)-imidazo[1,5-a]pyrimidin-8-carbonsäureamid aus Beispiel 33.1 und 180 ml (20 Äquivalente) Phosphoroxychlorid 40 Stunden unter Rühren am Rückfluss. Nach dem Abkühlen verdünnte man das Reaktionsgemisch mit Methyl-tert-butylether und tropfte das Gemisch innerhalb von 45 Minuten bei 30° C in eine verdünnte Natronlaugelösung. Die erhaltene Suspension saugte man über Kieselgel ab und wusch mit Methyl-tert-butylether nach. Die wässrige Phase extrahierte man danach mit Methyl-tert-butylether und wusch die vereinigten organischen Phasen mit Wasser. Man trocknete über Natriumsulfat und engte ein. Den Rückstand reinigte man chromatographisch an Kieselgel (Eluierungsmittel: Cyclohexan:Essigester), wobei man 0,5 g der Titelverbindung mit einem Schmelzpunkt 183° C und 2,4 g des anderen Regioisomeren erhielt.

33.3 2-Methyl-4-(4-methylpiperidin-1-yl)-3-(2,4,6-trifluorphenyl)-imidazo[1,5-a]pyrimidin-8-carbonitril

Man erwärmte ein Gemisch aus 0,15 g (0,46 mmol) 4-Chlor-2-methyl-3-(2,4,6-trifluorphenyl)-imidazo[1,5-a]pyrimidin-8-carbonitril aus Beispiel 33.2, 0,1 g (0,92 mmol) Methylpiperidin und 0,1 g (0,92 mmol) Triethylamin in 2 ml Tetrahydrofuran 72 Stunden am Rückfluss. Nach dem Abkühlen gab man Methyl-tert-butylether und 2N Salzsäure zu. Die wässrige Phase des erhaltenen Gemischs extrahierte man mit Methyl-tert-butylether und wusch danach die vereinigten organische Phasen mit Wasser, trocknete die organische Phase über Natriumsulfat und engte ein. Die Chromatographie des erhaltenen Rückstands an Kieselgel (Eluierungsmittel: Cyclohexan:Essigester) lieferte 100 mg 2-Methyl-4-(4-methylpiperidin-1-yl)-3-(2,4,6-trifluorphenyl)-imidazo[1,5-a]pyrimidin-8-carbonitril.

Beispiel 34: 2-Methoxy-4-methyl-3-(2,4,6-trifluorphenyl)-imidazo[1,5-a]pyrimidin-8-carbonitril

25

30

35

0,2 g (0,62 mmol) 2-Chlor-4-methyl-3-(2,4,6-trifluorphenyl)-imidazo[1,5-a]pyrimidin-8-carbonitril aus Beispiel 33.2 und 0,11 g (0,62 mmol) 30%ige Natri-ummethylatlösung wurden in 2 ml Methanol 45 Stunden bei Raumtemperatur gerührt. Anschließend gab man Dichlormethan und 2N Salzsäure zu. Man trennte die organische Phase ab, trocknete über Natriumsulfat und engte ein, wobei man 0,17 g der Titelverbindung mit einem Schmelzpunkt von 225°C erhielt.

Beispiel 35: 4-Methyl-2-methylamino-3-(2,4,6-trifluorphenyl)-imidazo[1,5-a]pyrimidin-8-carbonitril

10

15

20

5

Man rührte ein Gemisch aus 0,2 g (0,62 mmol) 2-Chlor-4-methyl-3-(2,4,6-trifluorphenyl)-imidazo[1,5-a]pyrimidin-8-carbonitril aus Beispiel 33.2, 0,1 g (1,24 mmol) Methylamin und 0,23 g (1,24 mmol) Triethylamin in 2 ml Methanol 24 Stunden bei 35°C. Danach gab man Dichlormethan und 2N Salzsäure zu dem Reaktionsgemisch, trennte die organische Phase ab, trocknete über Natriumsulfat und engte ein. Man erhielt 60 mg der Titelverbindung.

In analoger Weise wurden die in der nachstehenden Tabelle 1c angegebenen Verbindungen der allgemeinen Formel I.f $\{(R^a)_n = 2,4,6$ -Trifluor) hergestellt. Tabelle 1c enthält auch die spektroskopischen Daten der Verbindungen aus den Beispielen 33 und 37 sowie den Schmelzpunkt der Verbindung aus Beispiel 36:

$$\begin{array}{c|c}
R_1 & F & F \\
\hline
N & N & R_2 & F
\end{array}$$
(I.f)

Tabelle 1c:

Bei-	R ¹	R ²	¹ H-NMR (CDCl ₃) [δ]
spiel			bzw. Schmelzpunkt [°C]
32	CH₃	CI	183
33	4-Methylpiperidin-1-yl	CH₃	0,99 (d, 3H); 1,28 (m, 2H); 1,53 (m, 1H); 1,72 (m, 2H); 2,32 (s, 3H); 2,62 (m, 2H); 3,24 (m, 2H); 6,89 (m, 2H); 7,93 (m, 1H);
34	CH₃	OCH ₃	225
35	CH₃	Methylam ino	2,37 (s, 3H); 3,06 (d, 3H); 4,67 (s, 1H); 6,93 (m, 2H); 7,72 (s, 1H);
36	NH((R) CH(CH ₃)CH(CH ₃) ₂)	CH ₃	0,82 (m, 6H); 1,08 (d, 3H); 1,71 (m, 1H); 2,25 (s, 3H); 3,37 (m, 1H); 4.54

Bei-	R ¹	R ²	¹ H-NMR (CDCl ₃) [δ]
spiel			bzw. Schmelzpunkt [°C]
			(d, 1H); 6,90 (m, 2H); 8,17 (s, 1H);
37	sec-Butylamino	CH₃	207-210

Beispiel 38: 7-(2,4-Difluorphenyl)-8-isobutyl-6-methyl-[1,2,4]triazolo[1,5-b]pyridazin

5 Die Herstellung der Titelverbindung erfolgte analog Beispiel 1. Schmelzpunkt: 103-105 °C.

Beispiele für die Wirkung gegen Schadpilze

Die fungizide Wirkung der Verbindungen der allgemeinen Formel I ließ sich durch die folgenden Versuche zeigen:

Die Wirkstoffe für die Anwendungsbeispiele 1 und 2 wurden als Stammlösung aufbereitet mit 0,25 Gew.-% Wirkstoff in Aceton oder Dimethylsulfoxid (DMSO). Dieser Lösung wurde 1 Gew.-% Emulgator Uniperol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) zugesetzt und entsprechend der gewünschten Konzentration mit Wasser verdünnt.

Anwendungsbeispiel 1: Wirksamkeit gegen die Dürrfleckenkrankheit der Tomate verur-20 sacht durch *Alternaria solani* bei protektiver Anwendung

Blätter von Topfpflanzen der Sorte "Große Fleischtomate St. Pierre" wurden mit einer wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Blätter mit einer wässrigen Sporenaufschwemmung von *Alternaria solani* in 2 % Biomalzlösung mit einer Dichte von 0.17 x 10⁸ Sporen/ml infiziert. Anschließend wurden die Pflanzen in einer wasserdampf-gesättigten Kammer bei Temperaturen zwischen 20 und 22°C aufgestellt. Nach 5 Tagen hatte sich die Krautfäule auf den unbehandelten, jedoch infizierten Kontrollpflanzen so stark entwickelt, dass der Befall visuell in % ermittelt werden konnte.

Tabelle 2:

35

30

25

Wirkstoff-Nr.	Befall [%] bei 250 ppm
Beispiel 1	10
Beispiel 2	15
Beispiel 3	25
Beispiel 4	10

Wirkstoff-Nr.	Befall [%] bei 250 ppm
Beispiel 7	20
Beispiel 8	0
Beispiel 11	20
Beispiel 12	3
Beispiel 13	10
Beispiel 16	20
Beispiel 36	7
Unbehandelt	80

Anwendungsbeispiel 2: Wirksamkeit gegen Rebenperonospora verursacht durch Plasmopara viticola bei protektiver Anwendung

Blätter von Topfreben der Sorte "Müller-Thurgau" wurden mit wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Unterseiten der Blätter mit einer wässrigen Zoosporenaufschwemmung von *Plasmopara viticola* inokuliert. Danach wurden die Reben zunächst für 48 Stunden in einer wasserdampfgesättigten Kammer bei 24° C und anschließend für 5 Tage im Gewächshaus bei Temperaturen zwischen 20 und 30° C aufgestellt. Nach dieser Zeit wurden die Pflanzen zur Beschleunigung des Sporangienträgerausbruchs abermals für 16 Stunden in eine feuchte Kammer gestellt. Dann wurde das Ausmaß der Befallsentwicklung auf den Blattunterseiten visuell ermittelt.

15 Tabelle 3:

Wirkstoff-Nr.	Befall [%] bei 250 ppm
Beispiel 1	20
Beispiel 2	0
Beispiel 3	0
Beispiel 4	0
Beispiel 5	0
Beispiel 6	0
Beispiel 8	0
Beispiel 9	20
Beispiel 10	0
Beispiel 11	0
Beispiel 12	3
Beispiel 15	3
Beispiel 18	10
Beispiel 21	3

	• • • • • • • • • • • • • • • • • • • •
Wirkstoff-Nr.	Befall [%] bei 250 ppm
Unbehandelt	90

Anwendungsbeispiel 3 - Wirksamkeit gegen Weizenmehltau verursacht durch Erysiphe [syn. Blumeria] graminis forma specialis tritici bei protektiver Anwendung

Blätter von in Töpfen gewachsenen Weizenkeimlingen der Sorte "Newton" wurden mit 5 wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Die Suspension oder Emulsion wurde durch Verdünnung mit Wasser aus einer Stammlösung mit 5 % Anteil Wirkstoff, 94 % Cyclohexanon und 1 % Emulgiermittel (Tween 20) hergestellt. 3 - 5 Stunden nach dem Antrocknen des Spritzbelages mit Sporen des Weizenmehltaus (Erysiphe [syn. Blumeria] graminis forma 10 specialis. tritici) bestäubt. Die Versuchspflanzen wurden anschließend im Gewächshaus bei Temperaturen zwischen 20 und 24 °C und 60 bis 90 % relativer Luftfeuchtigkeit aufgestellt. Nach 7 Tagen wurde das Ausmaß der Mehltauentwicklung visuell in % Befall der gesamten Blattfläche ermittelt.

Tabelle 4:

Wirkstoff-Nr.	Befall [%] bei 250 ppm
Beispiel 14	20
Beispiel 15	20
Beispiel 18	7
Beispiel 19	20
Beispiel 20	5
Beispiel 21	3
Beispiel 22	7
Beispiel 23	15
Unbehandelt	90

Patentansprüche

1. Bicyclische Verbindungen der allgemeinen Formel I

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

worin

5

10

20

25

30

35

 A_1 oder A_5 für C steht und die andere der beiden Variablen A_1 , A_5 für N, C oder C-R³ steht;

 A_2 , A_3 , A_4 unabhängig voneinander für N oder C-R^{3a} stehen, wobei eine der Variablen A_2 , A_3 oder A_4 auch für S oder eine Gruppe N-R⁴ stehen kann, wenn A_1 und A_5 beide für C stehen,

und wobei A₄ nicht N oder C-R^{3a} bedeutet, wenn A₁ für N, A³ für

C-R^{3a} und A5 für C stehen, und worin

15 A_1 mit A_2 und A_3 mit A_4 oder

 A_2 mit A_3 und A_4 mit A_5 oder A_1 mit A_5 und A_2 mit A_3 oder

A₁ mit A₅ und A₃ mit A₄ oder

 A_1 mit A_2 und A_4 mit A_5 durch Doppelbindungen miteinander verbunden sind;

n für 0, 1, 2, 3, 4 oder 5 steht;

Für Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Haloalkyl, C₁-C₆-Haloalkyl, C₁-C₆-Haloalkyl, C₁-C₆-Alkoxyl, C₁-C₆

C₆-Haloalkoxy, C₂-C₆-Alkenyl, C₂-C₆-Alkenyloxy oder C(O)R⁵ steht;

R¹ Halogen, Cyano, C₁-C₁₀-Alkyl, worin ein Kohlenstoffatom der C₁-C₁₀-Alkylkette durch ein Siliciumatom ersetzt sein kann, C₁-C₆-Haloalkyl, C₂-C₁₀-Alkenyl, C₂-C₆-Haloalkenyl, C₂-C₆-Alkinyl, C₃-C₈-Cycloalkyl,

 C_2 - C_6 -Alkinyl, C_2 - C_6 -Haloaikenyl, C_2 - C_6 -Alkinyl, C_3 - C_8 -Cycloaikyl- C_1 - C_4 -alkyl, wobei der Cycloaikylteil der zwei letztgenannten Gruppen 1, 2, 3, 4, 5 oder 6 unter C_1 - C_4 -Alkyliden, C_1 - C_4 -Alkyl, Halogen, C_1 - C_4 -Halogenalkyl und Hydroxy ausgewählte Substi-

tuenten aufweisen kann und der Alkylteil in C_3 - C_8 -Cycloalkyl- C_1 - C_4 -alkyl 1, 2, 3 oder 4 unter Halogen, C_1 - C_4 -Halogenalkyl und Hydroxy ausgewählte Substituenten aufweisen kann, C_5 - C_8 -Cycloalkenyl, das

1, 2, 3 oder 4 unter C₁-C₄-Alkyl, Halogen, C₁-C₄-Halogenalkyl und Hydroxy ausgewählte Substituenten aufweisen kann, OR⁶, SR⁶, NR⁷R⁸, eine Gruppe der Formel -C(R¹¹)(R¹²)C(=NOR¹³)(R¹⁴) oder ei-

ne Gruppe der Formel -C(=NOR¹⁵)C(=NOR¹⁶)(R¹⁷) bedeutet;

Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Haloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Haloalkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl, C₅-C₈-Cycloalkenyl,

OR⁶, SR⁶ oder NR⁷R⁸ bedeutet;

WO 2004/092175 PCT/EP2004/004067

	R^3 , R^{3a}	unabhängig voneinander für Wasserstoff, CN, Halogen, C ₁ -C ₆ -Alkyl oder C ₂ -C ₆ -Alkenyl stehen;
5	R⁴ R⁵	Wasserstoff, C ₁ -C ₆ -Alkyl oder C ₂ -C ₆ -Alkenyl bedeutet; Wasserstoff, OH, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Alkoxy, C ₁ -C ₆ -Haloalkyl, C ₁ -C ₆ -Haloalkoxy, C ₂ -C ₆ -Alkenyl, C ₁ -C ₆ -Alkylamino oder Di- C ₁ -C ₆ -alkylamino, Piperidin-1-yl, Pyrrolidin-1-yl oder Morpholin-4-yl bedeut
	R^6	tet; Wasserstoff, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Haloalkyl, C ₂ -C ₆ -Alkenyl oder COR ⁹ bedeutet;
10	R ⁷ , R ⁸	unabhängig voneinander für Wasserstoff, C ₁ -C ₁₀ -Alkyl, C ₂ -C ₁₀ -Alkenyl, C ₄ -C ₁₀ -Alkadienyl, C ₂ -C ₁₀ -Alkinyl, C ₃ -C ₈ -Cycloalkyl, C ₅ -C ₈ -Cycloalkenyl, C ₅ -C ₁₀ -Bicycloalkyl, Phenyl Naphthyl
15		ein 5- oder 6-gliedriger, gesättigter oder teilweise ungesättigter Heterocyclus, der 1, 2 oder 3 Heteroatome, ausgewählt unter N, O und S, als Ringglieder aufweisen kann, oder
		ein 5- oder 6-gliedriger, aromatischer Heterocyclus, der 1, 2 oder 3 Heteroatome, ausgewählt unter N, O und S, als Ringglieder aufweisen kann,
20		wobei die als R ⁷ , R ⁸ genannten Reste teilweise oder vollständig halogeniert sein können und/oder 1, 2 oder 3 Reste R ^b aufweisen können, wobei
25	_	R ^b ausgewählt ist unter Cyano, Nitro, OH, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Alkoxy, C ₁ -C ₆ -Haloalkyl, C ₁ -C ₆ -Haloalkoxy, C ₁ -C ₆ -Alkylthio, C ₂ -C ₆ -Alkenyl, C ₂ -C ₆ -Alkenyloxy, C ₂ -C ₆ -Alkinyl, C ₂ -C ₆ -Alkinyloxy, C ₁ -C ₆ -Alkylamino, Di-C ₁ -C ₆ -alkylamino, Piperidin-1-yl, Pyrrolidin-1-yl oder Morpholin-4-yl;
30	!	auch gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5-, 6- oder 7-gliedrigen, gesättigten oder ungesättigten Hetercyclus bilden können, der 1, 2, 3 oder 4 weitere Heteroatome, ausgewählt unter O, S, N und NR ¹⁰ als Ringglied aufweisen kann, der teilweise oder vollständig halogeniert sein kann und der 1, 2 oder 3 der Reste R ^b aufweisen kann;
35	R ⁹ , R ¹⁰ (R ¹¹ , R ¹² , R ¹³	unabhängig voneinander Wasserstoff oder C_1 - C_6 -Alkyl bedeuten; und 1 , R^{14} , R^{15} , R^{16} , R^{17} unabhängig voneinander Wasserstoff oder C_1 - C_6 -Alkyl bedeuten; ndwirtschaftlich verträglichen Salze von Verbindungen I,
40	ausgenomm	ien Verbindungen der allgemeinen Formel I worin R^1 und R^2 gleichlicher gleichzeitig für Halogen stehen, wenn A_1 für N und A_5 für C

Verbindungen nach Anspruch 1 der allgemeinen Formel I, worin
 R¹ Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Haloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₈-Cycloalkyl, C₅-C₈-Cycloalkenyl, OR⁶, SR⁶ oder NR⁷R⁸ bedeutet; und

- R² Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Haloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₈-Cycloalkyl, C₅-C₈-Cycloalkenyl, OR⁶, SR⁶ oder NR⁷R⁸ bedeutet.
- Verbindungen nach Anspruch 1 oder 2 der allgemeinen Formel I, worin A₁ für C
 und A₅ für N stehen und A₂, A₃ und A₄ unabhängig voneinander N oder C-R^{3a} bedeuten.
 - 4. Verbindungen nach Anspruch 3 der allgemeinen Formel I, worin A₂ für N steht.
- 10 5. Verbindungen nach Anspruch 1 der allgemeinen Formel I, worin A_1 und A_3 für N stehen, A_5 für C steht und A_2 und A_4 unabhängig voneinander N oder C-R^{3a} bedeuten.
- Verbindungen nach Anspruch 1 der allgemeinen Formel I, worin A₁ für N und A₅
 für C stehen, und A₂, A₃ und A₄ unabhängig voneinander C-R^{3a} bedeuten.
 - Verbindungen nach Anspruch 1 der allgemeinen Formel I, worin A₁ und A₅ für C stehen, eine der Variablen A₂ oder A₄ für Schwefel steht und die andere der beiden Variablen A₂ oder A₄ sowie die Variable A₃ unabhängig voneinander C-R^{3a} oder N bedeuten.
 - 8. Verbindungen nach einem der vorhergehenden Ansprüche der allgemeinen Formel I, worin n für 1, 2, 3 oder 4 steht.
- 25 9. Verbindungen nach einem der vorhergehenden Ansprüche der allgemeinen Formel I, worin die Gruppe

$$(R^{a})_{n} \quad \text{für} \quad R^{a2}$$

$$R^{a1} \qquad R^{a3}$$

$$R^{a4}$$

steht, worin

20

30

35

R^{a1} für Fluor, Chlor oder Methyl:

R^{a2} für Wasserstoff oder Fluor;

R^{a3} für Wasserstoff, Fluor, Chlor, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;

R^{a4} für Wasserstoff oder Fluor;

R^{a5} für Wasserstoff, Fluor, Chlor oder C₁-C₄-Alkyl stehen.

10. Verbindungen nach einem der vorhergehenden Ansprüche der allgemeinen Formel I, worin R¹ für eine Gruppe NR⁷R⁸ steht, worin wenigstens einer der Reste R⁷, R⁸ von Wasserstoff verschieden ist.

WO 2004/092175

- 11. Verbindungen nach Anspruch 10 der allgemeinen Formel I, worin
 - R^7 für C_1 - C_6 -Alkyl, C_1 - C_6 -Haloalkyl, C_2 - C_6 -Alkinyl oder C_2 - C_6 -Alkenyl steht;
 - R⁸ für Wasserstoff oder C₁-C₆-Alkyl steht; oder
 - R⁷, R⁸ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gesättigten oder teilweise ungesättigten Stickstoffheterocyclus stehen, der 1 weiteres Heteroatom, ausgewählt unter O, S, und NR¹⁰ als Ringglied aufweisen kann, und der 1 oder 2 Substituenten, ausgewählt unter C₁-C₆-Alkyl und C₁-C₆-Haloalkyl, aufweisen kann, wobei R¹⁰ die in Anspruch 1 angegebene Bedeutung aufweist.

10 Verbindunger

5

20

25

- Verbindungen nach Anspruch 10 oder 11 der allgemeinen Formel I, worin R² für Halogen oder C₁-C₄-Alkyl steht.
- Verbindungen nach einem der vorhergehenden Ansprüche der allgemeinen
 Formel I, worin R¹ für C₁-C₀-Alkyl, C₂-C₀-Alkenyl, C₂-C₀-Alkinyl, C₃-C₀-Cycloalkyl oder C₃-C₀-Cycloalkenyl steht und R² für C₁-C₄-Alkyl steht.
 - 14. Verwendung von Verbindung der allgemeinen Formel I gemäß einem der Ansprüche 1 bis 13 und von deren landwirtschaftlich verträglichen Salzen zur Bekämpfung von pflanzenpathogenen Pilzen.
 - 15. Mittel zur Bekämpfung von pflanzenpathogenen Pilzen, enthaltend wenigstens eine Verbindung der allgemeinen Formel I gemäß einem der Ansprüche 1 bis 13 und/oder ein landwirtschaftlich verträgliches Salz von I und wenigstens einen flüssigen oder festen Trägerstoff.
 - 16. Verfahren zur Bekämpfung von pflanzenpathogenen Pilzen, dadurch gekennzeichnet, dass man die Pilze, oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der allgemeinen Formel I gemäß einem der Ansprüche 1 bis 13 und/oder mit einem landwirtschaftlich verträglichen Salz von I behandelt.

INTERNATIONAL SEARCH REPORT

A. CLASSI	FICATION OF SUBJECT MATTER				
IPC 7 C07D487/04 A01N43/90					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS	SEARCHED				
Minimum de IPC 7	ocumentation searched (classification system followed by classification ${\tt C07D} - {\tt A01N}$	lion symbols)			
	tion searched other than minimum documentation to the extent that				
	ata base consulted during the international search (name of data be	ase and, where practical, search terms used)		
EPO-In	ternal, WPI Data, CHEM ABS Data				
	ENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.		
A .	WO 99/25353 A (HILL RAYMOND GEOR SHARP & DOHME (GB); WHITING PAUL (GB)) 27 May 1999 (1999-05-27) claim 1	GE ; MERCK John	1-16		
Α	US 5 994 360 A (PFRENGLE WALDEMAR) 30 November 1999 (1999-11-30) cited in the application the whole document		1-16		
Α .	EP 0 550 113 A (SHELL INT RESEAR 7 July 1993 (1993-07-07) cited in the application the whole document	сн)	1-16		
Furth	ner documents are listed in the continuation of box C.	χ Patent family members are listed in	n annex.		
° Special ca	legories of cited documents:		*		
A document defining the general state of the art which is not considered to be of particular relevance *E* earlier document but published on or offer the later allows.		*T* later document published after the Inter or priority date and not in conflict with died to understand the principle or the invention	the application but ory underlying the		
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of exception		"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled			
'P' document published prior to the international filing date but later than the priority date claimed .		in the art. '&' document member of the same patent f			
Date of the	actual completion of the international search	Date of mailing of the international sear	ch report		
2	August 2004	11/08/2004			
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk		Authorized officer			
Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016		Fritz, M			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/EP2004/004067

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	emational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. 🔀	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: See supplemental sheet ISA/210
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Вох П	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.
	L and passed and payment of additional search fees.

PCT/EP2004/004067

Box II.2

In its initial stages, the search yielded a very large number of documents prejudicial to novelty.

This number is so large that it becomes impossible to identify anything in the claims as a whole for which protection might justifiably be sought (PCT Article 6). For these reasons it does not appear possible to carry out a meaningful search covering the full range of the claims. The search was therefore restricted to:

Compounds of general formula (I), the heterobicyclic system of which corresponds to that of compounds (I.c), (I.k) and (I.f) (see the description), the use thereof for combating phytopathogenic fungi, means containing the stated compounds, and method for combating phytopathogenic fungi using the stated compounds.

Even without the large number of documents that are prejudicial to novelty, the above restriction is not allowable, since the current claims 1 to 16 relate to an inordinately large number of possible compounds, uses and methods, of which only a small proportion are supported by the description (PCT Article 6) and can be regarded as having been disclosed in the application (PCT Article 5). In the present case the claims lack the proper support and the application lacks the requisite disclosure to such an extent that a meaningful search covering the entire range of protection sought cannot be carried out even without taking into account the documents that are prejudicial to novelty.

The applicant is advised that claims relating to inventions in respect of which no international search report has been established cannot normally be the subject of an international preliminary examination (PCT Rule 66.1(e)). In its capacity as International Preliminary Examining Authority the EPO generally will not carry out a preliminary examination for subjects that have not been searched. This also applies to cases where the claims were amended after receipt of the international search report (PCT Article 19) or where the applicant submits new claims in the course of the procedure under PCT Chapter II. After entry into the regional phase before the EPO, however, an additional search can be carried out in the course of the examination (cf. EPO Guidelines, C-VI, 8.5) if the defects that led to the declaration under PCT Article 17(2) have been remedied.

INTERNATIONAL SEARCH REPORT

PCT/EP2004/004067

			101/2121	004/00406/	
Patent document cited in search report	Publication date		Patent family member(s)	Publication date	
WO 9925353	A 27-05-1999	AU WO US US US US	1041599 A 9925353 A1 6174886 B1 6046196 A 6110915 A 6063783 A 6107296 A	07-06-1999 27-05-1999 16-01-2001 04-04-2000 29-08-2000 16-05-2000 22-08-2000	
US 5994360	A 30-11-1999	NONE			
EP 0550113	A 07-07-1993	EP EP GR AT AU BR CN DE DE DE DE DE DE DE SS HULL PP RUSS VZA	0550113 A2 0782997 A2 3033916 T3 159256 T 192154 T 667204 B2 3043592 A 9205172 A 2086404 A1 1075144 A ,B 1141119 A ,B 69222746 D1 69222746 T2 69230977 D1 69230977 T2 550113 T3 782997 T3 2108727 T3 2147411 T3 3025920 T3 1010105 A1 63305 A2 104244 A 3347170 B2 5271234 A 245581 A 297160 A1 171579 B1 782997 T 2089552 C1 47563 A1 5593996 A 9210043 A	07-07-1993 09-07-1997 30-11-2000 15-11-1997 15-05-2000 14-03-1996 01-07-1993 06-07-1993 01-07-1993 29-01-1997 20-11-1997 12-02-1998 31-05-2000 09-11-2000 09-02-1998 07-08-2000 01-01-1998 01-09-2000 30-04-1998 23-06-2000 30-08-1993 13-07-1997 20-11-2002 19-10-1993 26-07-1995 06-09-1993 30-05-1997 29-09-2000 10-09-1997 17-04-1998 14-01-1997 28-07-1993	

INTERNATIONALER RECHERCHENBERICHT

rnationales Aktenzeichen	
T/EP2004/004067	,

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07D487/04 A01N43/90						
IPK 7	C07D487/04 A01N43/90					
Nach der In	nternationalen Patentklassifikation (IPK) oder nach der nationalen Ki	assifikation und der IPK				
B. RECHE	RCHIERTE GEBIETE		···			
Recherchie IPK 7	rier Mindestprüfstoff (Klassifikationssystem und Klassifikationssyml CO7D A01N	pole)	· · · · · · · · · · · · · · · · · · ·			
Recherchie	rte aber nicht zum Mindestprüfstott gehörende Veröffentlichungen, s	sowell diese unter die recherchierten Geblete	allen			
Während de	er internationalen Recherche konsuliterte elektronische Datenbank (Name der Datenbank und avil verwendete	Such hacrito)			
EPO-In	ternal, WPI Data, CHEM ABS Data		out.ibeg.iiie)			
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN					
Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angal					
	and a second state of the	De der in Betracht kommenden Teile	Betr. Anspruch Nr.			
Α .	WO 99/25353 A (HILL RAYMOND GEOR SHARP & DOHME (GB); WHITING PAUL (GB)) 27. Mai 1999 (1999-05-27) Anspruch 1	1-16				
Α	US 5 994 360 A (PFRENGLE WALDEMA 30. November 1999 (1999-11-30) in der Anmeldung erwähnt das ganze Dokument	1–16				
А	EP 0 550 113 A (SHELL INT RESEAR 7. Juli 1993 (1993-07-07) in der Anmeldung erwähnt das ganze Dokument	CH)	- 1–16			
			•			
Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu [X] Siehe Anhang Patentfamilie						
 Besondere Kalegorien von angegebenen Veröffentlichungen : "A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E* älleres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldedatum veröffentlicht worden ist und mil der Anmeldente der Erifficung zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegenden Prinzips oder der ihr zugrundellegend						
Dalum des A	Datum des Abschlusses der Internationalen Recherche Absendedatum des internationalen Recherchenberichts					
	2. August 2004 11/08/2004					
Name und P	oslanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2	Bevollmächtigter Bediensteter				
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Fritz, M				

INTERNATIONALER RECHERCHENBERICHT

Feld II B	emerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)
Gemäß Arl	tikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. Ar	nsprüche Nr. eil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
da da	nsprüche Nr. ell sie sich auf Telle der Internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, aß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich siehe BEIBLATT PCT/ISA/210
we	nsprüche Nr. ell es sich dabel um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld III Be	emerkungen bei mangeInder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die Internat	tionale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
1. Da	a der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeltig entrichtet hat, erstreckt sich dieser ternationale Recherchenbericht auf alle recherchlerbaren Ansprüche.
2. Da zu	a für alle recherchlerbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine usätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
.,,,	a der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser ternationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die nsprüche Nr.
4. De ch	er Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der Internationale Recher- ienbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen er- Bit:
Bemerkung	gen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld II.2

Ansprüche Nr.;

Die Recherche ergab in ihrer Anfangsphase eine sehr grosse Zahl neuheitsschädlicher Dokumente.

Diese Zahl ist so gross, dass sich unmöglich feststellen lässt, für was in der Gesamtheit der Patentansprüche eventuell nach zu Recht Schutz begehrt werden könnte (Artikels 6 PCT). Aus diesen Gründen erscheint eine sinnvolle Recherche über den gesamten Bereich der Patentansprüche unmöglich. Die Recherche wurde daher beschränkt auf

Verbindungen der allgemeinen Formeln (I), deren heterobicyclisches System dem der Verbindungen (I.c), (I.k.) und (I.f) (vgl. Beschreibung) entspricht,

deren Verwendung zur Bekämpfung von pflanzenpathogenen Pilzen, Mittel, welche die zuletzt genannten Verbindungen enthalten sowie Verfahren zur Bekämpfung von pflanzenpathogenen Pilzen mittels letztgnannter Verbindungen

Selbst ohne die Vielzahl der neuhitsschädlichen Dokumente ist die obige Einschränkung unerlässlich, als sich die geltenden Patentansprüche 1-16 auf eine unverhältnismässig grosse Zahl möglicher Verbindungen, Verwendungen und Verfahren beziehen, von denen sich nur ein kleiner Anteil im Sinne von Artikels 6 PCT auf die Beschreibung stützen und als im Sinne von Artikels 5 PCT in der Patentanmeldung offenbart gelten kann. Im vorliegenden Fall fehlt den Ansprüchen die entsprechende Stütze und der Anmeldung die nötige Offenbarung in einem solchen Masse, dass eine Recherche auch ohne Berücksichtigung der neuheitsschädlichen Dokumente über den gesamten erstrebten Schutzbereich nicht sinnvoll wäre.

Der Anmelder wird darauf hingewiesen, dass Patentansprüche auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit, der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, dass die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, dass der Anmelder im Zuge des Verfahrens gemäss Kapitel II PCT neue Patentanprüche vorlegt. Nach Eintritt in die regionale Phase vor dem EPA kann jedoch im Zuge der Prüfung eine weitere Recherche durchgeführt werden (Vgl. EPA-Richtlinien C-VI, 8.5), sollten die Mängel behoben sein, die zu der Erklärung gemäss Art. 17 (2) PCT geführt haben.

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen FCT/EP2004/004067

100.0		·····			FCI/EF2	2004/004067
angefül	Recherchenbericht hrtes Patentdokum	nent	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
	9925353	A	27-05-1999	AU WO US US US US	1041599 A 9925353 A1 6174886 B1 6046196 A 6110915 A 6063783 A 6107296 A	07-06-1999 27-05-1999 16-01-2001 04-04-2000 29-08-2000 16-05-2000 22-08-2000
US ——	5994360	A	30-11-1999	KEINE		——————————————————————————————————————
EP	0550113	A	07-07-1993	EP GR AT AUURA BCCN DDE DDE DDE BCCN DDE DDE BCCN DDE DDE BCCN DDE DDE BCCN DDE BCCN DDE BCCN DDE BCCN DDE BCCN DDE BCCN DDE BCN DDE DDE DDE DDE DDE DDE DDE	0550113 A2 0782997 A2 3033916 T3 159256 T 192154 T 667204 B2 3043592 A 9205172 A 2086404 A1 1075144 A , B 1141119 A , B 69222746 D1 69222746 T2 69230977 D1 69230977 T2 550113 T3 782997 T3 2108727 T3 2147411 T3 3025920 T3 1010105 A1 63305 A2 104244 A 3347170 B2 5271234 A 245581 A 297160 A1 171579 B1 782997 T 2089552 C1 47563 A1 5593996 A 9210043 A	07-07-1993 09-07-1997 30-11-2000 15-11-1997 15-05-2000 14-03-1996 01-07-1993 06-07-1993 01-07-1993 11-08-1997 20-11-1997 12-02-1998 31-05-2000 09-02-1998 07-08-2000 01-01-1998 01-09-2000 30-04-1998 23-06-2000 30-08-1993 13-07-1997 20-11-2002 19-10-1993 26-07-1995 06-09-1993 30-05-1997 17-04-1998 14-01-1997 28-07-1993