Berlekamp-Massey 算法

Berlekamp-Massey 算法是一种用于求数列的最短递推式的算法。给定一个长为 n 的数列,如果它的最短递推式的数为 m,则 Berlekamp-Massey 算法能够在 O(nm) 时间内求出数列的每个前缀的最短递推式。最坏情况下 m=O(n),因此算法的最坏复杂度为 $O(n^2)$ 。

定义

定义一个数列 $\{a_0 \ldots a_{n-1}\}$ 的递推式为满足下式的序列 $\{r_0 \ldots r_m\}$:

$$\sum_{i=0}^{m} r_j a_{i-j} = 0, orall i \geq m$$

其中 $r_0 = 1$ 。m 称为该递推式的 **阶数**。

数列 $\{a_i\}$ 的最短递推式即为阶数最小的递推式。

做法

与上面定义的稍有不同,这里定义一个新的递推系数 $\{f_0 \dots f_{m-1}\}$,满足:

$$a_i = \sum_{j=0}^{m-1} f_j a_{i-j-1}, orall i \geq m$$

容易看出 $f_i = -r_{i+1}$,并且阶数 m 与之前的定义是相同的。

我们可以增量地求递推式,按顺序考虑 $\{a_i\}$ 的每一位,并在递推结果出现错误时对递推系数 $\{f_i\}$ 进行调整。方便起见,以下将前 i 位的最短递推式记为 $F_i=\{f_{i,i}\}$ 。

显然初始时有 $F_0 = \{\}$ 。假设递推系数 F_{i-1} 对数列 $\{a_i\}$ 的前 i-1 项均成立,这时对第 i 项就有两种情况:

- 1. 递推系数对 a_i 也成立,这时不需要进行任何调整,直接令 $F_i = F_{i-1}$ 即可。
- 2. 递推系数对 a_i 不成立,这时需要对 F_{i-1} 进行调整,得到新的 F_i 。

设 $\Delta_i=a_i-\sum_{j=0}^m f_{i-1,j}a_{i-j-1}$,即 a_i 与 F_{i-1} 的递推结果的差值。

如果这是第一次对递推系数进行修改,则说明 a_i 是序列中的第一个非零项。这时直接令 F_i 为 i 个 0 即可,显然这是一个合法的最短递推式。

否则设上一次对递推系数进行修改时,已考虑的 $\{a_i\}$ 的项数为 k。如果存在一个序列 $G = \{g_0 \dots g_{m'-1}\}$,满足:

$$\sum_{i=0}^{m'-1} g_j a_{i'-j-1} = 0, orall i' \in [m',i)$$

并且 $\sum_{i=0}^{m'-1} g_j a_{i-j-1} = \Delta_i$,那么不难发现将 F_k 与 G 按位分别相加之后即可得到一个合法的递推系数 F_i 。

考虑如何构造 G。一种可行的构造方案是令

$$G = \{0,0,\ldots,0,rac{\Delta_i}{\Delta_k}, -rac{\Delta_i}{\Delta_k}F_{k-1}\}$$

其中前面一共有 i-k-1 个 0,且最后的 $-\frac{\Delta_i}{\Delta_k}F_{k-1}$ 表示将 F_{k-1} 每项乘以 $-\frac{\Delta_i}{\Delta_k}$ 后接在序列后面。

不难验证此时 $\sum_{j=0}^{m'-1}g_ja_{i-j-1}=\Delta_k\frac{\Delta_i}{\Delta_k}=\Delta_i$,因此这样构造出的是一个合法的 G。将 F_i 赋值为 F_k 与 G 逐项相加后的结果即可。

如果要求的是符合最开始定义的递推式 $\{r_i\}$,则将 $\{f_j\}$ 全部取相反数后在最开始插入 $r_0=1$ 即可。

从上述算法流程中可以看出,如果数列的最短递推式的阶数为 m,则算法的复杂度为 O(nm)。最坏情况下 m=O(n),因此算法的最坏复杂度为 $O(n^2)$ 。

在实现算法时,由于每次调整递推系数时都只需要用到上次调整时的递推系数 F_k ,因此如果只需要求整个数列的最短递推式,可以只存储当前递推系数和上次调整时的递推系数,空间复杂度为 O(n)。


```
1
     vector<int> berlekamp massey(const vector<int> &a) {
 2
       vector<int> v, last; // v is the answer, 0-based, p is the module
 3
       int k = -1, delta = 0;
 4
 5
       for (int i = 0; i < (int)a.size(); i++) {
 6
         int tmp = 0;
 7
         for (int j = 0; j < (int)v.size(); j++)
           tmp = (tmp + (long long)a[i - j - 1] * v[j]) % p;
 8
 9
         if (a[i] == tmp) continue;
10
11
12
         if (k < 0) {
13
           k = i:
           delta = (a[i] - tmp + p) % p;
14
15
           v = vector < int > (i + 1);
16
17
           continue;
         }
18
19
20
         vector<int> u = v;
         int val = (long long)(a[i] - tmp + p) * power(delta, p - 2) % p;
21
22
23
         if (v.size() < last.size() + i - k) v.resize(last.size() + i - k);</pre>
24
25
         (v[i - k - 1] += val) \% = p;
26
27
         for (int j = 0; j < (int)last.size(); <math>j++) {
           v[i - k + j] = (v[i - k + j] - (long long)val * last[j]) % p;
28
           if (v[i - k + j] < 0) v[i - k + j] += p;
29
30
31
         if ((int)u.size() - i < (int)last.size() - k) {</pre>
32
33
           last = u;
34
           k = i;
35
           delta = a[i] - tmp;
           if (delta < 0) delta += p;</pre>
36
         }
37
       }
38
39
       for (auto \&x : v) x = (p - x) \% p;
40
       v.insert(v.begin(), 1);
41
42
       return v; // $\forall i, \sum_{j = 0} ^ m a_{i - j} v_{j = 0}
43
44
```

朴素的 Berlekamp-Massey 算法求解的是有限项数列的最短递推式。如果待求递推式的序列有无限项,但已知最短递推式的阶数上界,则只需取出序列的前 2m 项即可求出整个序列的最短递推式。(证明略)

应用

由于 Berlekamp-Massey 算法的数值稳定性比较差,在处理实数问题时一般很少使用。为了叙述方便,以下均假定在某个质数 p 的剩余系下进行运算。

求向量列或矩阵列的最短递推式

如果要求向量列 v_i 的最短递推式,设向量的维数为 n,我们可以随机一个 n 维行向量 \mathbf{u}^T ,并计算标量序列 $\{\mathbf{u}^Tv_i\}$ 的最短递推式。由 Schwartz–Zippel 引理,二者的最短递推式有至少 $1-\frac{n}{n}$ 的概率相同。

求矩阵列 $\{A_i\}$ 的最短递推式也是类似的,设矩阵的大小为 $n\times m$,则只需随机一个 $1\times n$ 的行向量 \mathbf{u}^T 和一个 $m\times 1$ 的列向量 \mathbf{v} ,并计算标量序列 $\{\mathbf{u}^TA_i\mathbf{v}\}$ 的最短递推式即可。由 Schwartz–Zippel 引理可以类似地得到二者相同的概率 至少为 $1-\frac{n+m}{n}$ 。

优化矩阵快速幂

设 \mathbf{f}_i 是一个 n 维列向量,并且转移满足 $\mathbf{f}_i = A\mathbf{f}_{i-1}$,则可以发现 $\{\mathbf{f}_i\}$ 是一个不超过 n 阶的线性递推向量列。(证明略)

我们可以直接暴力求出 $\mathbf{f}_0 \dots \mathbf{f}_{2n-1}$,然后用前面提到的做法求出 $\{\mathbf{f}_i\}$ 的最短递推式,再调用 常系数齐次线性递推 即可。

如果要求的向量是 f_m ,则算法的复杂度是 $O(n^3 + n \log n \log m)$ 。如果 A 是一个只有 k 个非零项的稀疏矩阵,则复杂度可以降为 $O(nk + n \log n \log m)$ 。但由于算法至少需要 O(nk) 的时间预处理,因此在压力不大的情况下也可以使用 $O(n^2 \log m)$ 的线性递推算法,复杂度同样是可以接受的。

求矩阵的最小多项式

方阵 A 的最小多项式是次数最小的并且满足 f(A) = 0 的多项式 f。

实际上最小多项式就是 $\{A^i\}$ 的最小递推式,所以直接调用 Berlekamp-Massey 算法就可以了。如果 A 是一个 n 阶方阵,则显然最小多项式的次数不超过 n。

瓶颈在于求出 A^i ,因为如果直接每次做矩阵乘法的话复杂度会达到 $O(n^4)$ 。但考虑到求矩阵列的最短递推式时实际上求的是 $\{u^TA^iv\}$ 的最短递推式,因此我们只要求出 A^iv 就行了。

假设 A 有 k 个非零项,则复杂度为 $O(kn + n^2)$ 。

求稀疏矩阵行列式

如果能求出方阵 A 的特征多项式,则常数项乘上 $(-1)^n$ 就是行列式。但是最小多项式不一定就是特征多项式。

实际上如果把 A 乘上一个随机对角阵 B,则 AB 的最小多项式有至少 $1-\frac{2n^2-n}{p}$ 的概率就是特征多项式。最后再除掉 $\det B$ 就行了。

设 A 为 n 阶方阵,且有 k 个非零项,则复杂度为 $O(kn + n^2)$ 。

求稀疏矩阵的秩

设 A 是一个 $n\times m$ 的矩阵,首先随机一个 $n\times n$ 的对角阵 P 和一个 $m\times m$ 的对角阵 Q, 然后计算 $QAPA^TQ$ 的最小多项式即可。

实际上不用调用矩阵乘法,因为求最小多项式时要用 $QAPA^TQ$ 乘一个向量,所以我们依次把这几个矩阵乘到向量里就行了。答案就是最小多项式除掉所有 x 因子后剩下的次数。

设 $A \in \mathbb{R}$ 个非零项,且 n < m,则复杂度为 $O(kn + n^2)$ 。

解稀疏方程组

问题: 已知 $A\mathbf{x} = \mathbf{b}$, 其中 A 是一个 $n \times n$ 的 满秩 稀疏矩阵, \mathbf{b} 和 \mathbf{x} 是 $1 \times n$ 的列向量。A, \mathbf{b} 已知,需要在低于 n^{ω} 的复杂度内解出 x。

做法: 显然 $\mathbf{x} = A^{-1}\mathbf{b}$ 。如果我们能求出 $\{A^i\mathbf{b}\}(i \geq 0)$ 的最小递推式 $\{r_0 \dots r_{m-1}\}(m \leq n)$, 那么就有结论

$$A^{-1}\mathbf{b} = -rac{1}{r_{m-1}}\sum_{i=0}^{m-2}A^{i}\mathbf{b}r_{m-2-i}$$

(证明略)

因为 A 是稀疏矩阵,直接按定义递推出 $\mathbf{b} \dots A^{2n-1}\mathbf{b}$ 即可。

同样地,设 A 中有 k 个非零项,则复杂度为 $O(kn + n^2)$ 。

```
参考实现
     vector<int> solve_sparse_equations(const vector<tuple<int, int, int>> δA,
 2
                                         const vector<int> &b) {
 3
       int n = (int)b.size(); // 0-based
 4
       vector<vector<int>> f({b});
 5
 6
 7
       for (int i = 1; i < 2 * n; i++) {
         vector<int> v(n);
 8
         auto &u = f.back();
 9
10
         for (auto [x, y, z] : A) // [x, y, value]
11
           v[x] = (v[x] + (long long)u[y] * z) % p;
12
13
14
         f.push back(v);
15
16
17
       vector<int> w(n);
18
       mt19937 gen;
       for (auto &x : w) x = uniform_int_distribution<int>(1, p - 1)(gen);
19
20
21
       vector<int> a(2 * n);
22
       for (int i = 0; i < 2 * n; i++)
         for (int j = 0; j < n; j++) a[i] = (a[i] + (long long)f[i][j] * w[j]) % p;
23
24
25
       auto c = berlekamp_massey(a);
       int m = (int)c.size();
26
27
       vector<int> ans(n);
28
29
       for (int i = 0; i < m - 1; i++)
30
         for (int j = 0; j < n; j++)
31
           ans[j] = (ans[j] + (long long)c[m - 2 - i] * f[i][j]) % p;
32
33
       int inv = power(p - c[m - 1], p - 2);
34
35
36
       for (int i = 0; i < n; i++) ans[i] = (long long)ans[i] * inv % p;
37
38
       return ans;
39
```

例题

1. LibreOJ #163. 高斯消元 2