

MeteoMagician

个用于气象数据诊断分析的 Matlab 工具箱

Dy

2022年8月

目 录

—、	MeteoMagician 简介	5
<u>_</u> ,	安装步骤	5
三、	函数使用说明	5
3.	1 基本函数	5
	色标选取	5
3.	2 基础物理量	6
	科氏参数	6
	经纬度网格距	6
	空气密度	, 6
	散度	6
	垂直相对涡度	7
	绝对涡度	7
	水平平流项	7
	重力位势、高度的相互转换	7
3.	3 差分/梯度/平滑	8
	水平梯度	8
	垂直梯度	8
	拉普拉斯项(二维)	8
	拉普拉斯项(垂直)	8
	五点平滑	8
	九点平滑	9
4	泊松方程	9
3.	4 动力相关量	9
	地转风	9
	Q 矢量	10
	正压模式下的位势涡度	10
	Ertel 位涡	10
	湿位涡	11
	流函数	11
	势函数	
	使用风速、风向计算风的经纬分量	
	使用经纬向风计算风速、风向	

13
13
13
13
13
13
14
14
14
14
15
15
15
15
15
16
16
16
16
16
17
17
17
. 18
18
18
18
18
19
19
19
20
21
21

MeteoMagician 使用说明

一、MeteoMagician 简介

MeteoMagician 是基于 Matlab 开发的,专门用于气象数据诊断和分析的工具箱,包含气象物理量诊断相关的基本函数,可快速计算出所需的气象物理量。可用于气象科研、数据可视化等领域。需要在 Matlab2016a 以上版本运行。

二、安装步骤

1. 需要先将当前文件夹设置为工具箱安装路径

2.在命令行输入 setup MeteoMagician

命令行窗口f x >> setup_MeteoMagicain

3.出现 MeteoMagician added to Matlab path,即为启动成功

三、函数使用说明

3.1 基本函数

色标选取

function col_data = colormap_selection(name)

功能:更换色阶

输入:

色阶名称 name,包括 NCL 中的大部分色阶,且名称相同使用例子:

```
colormap(colormap_selection('MPL_Blues'));
3.2 基础物理量
科氏参数
                               f = 2\Omega sin\varphi
                              \beta = 2\Omega \cos \varphi
 function [f,b]=coriolis_parameter(lat,lon)
     输入:
        纬度 lat(n)、
        经度 lon(m) (可选)
     输出:
         科氏参数 f(n,m) (单位: /s)、
        β项(科氏参数随纬度的导数)b(n,m) (单位: /s)
         如果不输入经度,则为: f(n)、b(n)
经纬度网格距
 function [dx,dy]=latlon2delta(lat,lon)
     输入:
        纬度 lat(n)、
        经度 lon(m)
     输出:
         纬向、经向网格距(目前仅适用于等经纬度和墨卡托投影网格)
         dx,dy(n,m) (单位: m)
空气密度
 function rho=density(T,pressure)
     输入:
         温度 T(p,n,m) (单位: K)、
         气压 pressure(p) (单位: Pa)
     输出:
         空气密度 rho(p,n,m) (单位: kg/m³)
散度
                              Div = \nabla_h \cdot \overrightarrow{V_h}
 function dv=divergence_2d(U,V, dx,dy,lat)
     输入:
```

经向风、纬向风 U,V(n,m) (单位: m/s)、

纬向、经向网格距 dx,dy(n,m) 或 dx,dy(1) (单位: m)、

```
纬度 lat(n) (可选)
```

输出:

水平散度 **dv(n,m)** (单位: /s)

垂直相对涡度

$$\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

function rv=vorticity_2d(U,V,dx,dy,lat)

输入:

经向风、纬向风 U, V(n,m) (单位: m/s)、

纬向、经向网格距 dx,dy(n,m) 或 dx,dy(1) (单位: m)、

纬度 lat(n) (可选)

输出:

垂直相对涡度 rv(n,m) (单位: /s)

绝对涡度

$$\zeta_a = f + \zeta$$

function Ca = absolute_vorticity(U,V,lat,dx,dy)

输入:

经向风、纬向风 U, V(n, m) (单位: m/s)、

纬向、经向网格距 dx,dy(n,m) 或 dx,dy(1) (单位: m)、

纬度 lat(n)

输出:

绝对涡度 Ca(n,m) (单位: /s)

水平平流项

$$adv = \vec{V} \cdot \nabla F$$

function adv=advection_2d(F,U,V,dx,dy)

输入:

物理量 F(n,m)、

经向风、纬向风 U,V(n,m) (单位: m/s)、

纬向、经向网格距 dx,dy(n,m) 或 dx,dy(1) (单位: m)

输出:

水平平流项 adv(n,m)

重力位势、高度的相互转换

function z = geopotential2height(Phi)

功能: 重力位势转为高度

function Phi = height2geopotential(z)

功能: 高度转为重力位势

3.3 差分/梯度/平滑

水平梯度

function [gradx,grady]=gradient_2d(F,dx,dy)

输入:

物理量 F(n,m)、

纬向、经向网格距 **dx,dy(n,m)**或 **dx,dy(1)** (单位: m)

输出:

等压面/等位势面上的水平梯度 gradx, grady(n, m)

垂直梯度

function [gradp]=gradient_vert(F, vertical)

输入:

物理量 F(p,n,m)、

垂直方向的坐标(气压或高度) vertical(p) (单位: Pa)

输出:

物理量的垂直梯度 gradp(p,n,m)

拉普拉斯项 (二维)

$$\Delta F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2}$$

function Lap=Laplacian_2d(F,dx,dy)

输入:

物理量 F(n,m)、

纬向、经向网格距 dx, dy(n, m) (单位: m)

输出:

等压面/等位势面上的拉普拉斯项 Lap(n,m)

拉普拉斯项 (垂直)

function Lap_vert = Laplacian_vert(F, vertical)

输入:

物理量F(p,n,m)、

垂直方向的坐标(气压或高度)vertical(p) (单位: Pa)

输出:

物理量垂直方向的拉普拉斯项 Lap_vert(p,n,m)

五点平滑

$$\widetilde{F_{i,j}} = F_{i,j} + \frac{s}{4} (F_{i+1,j} + F_{i-1,j} + F_{i,j+1} + F_{i,j-1} - 4F_{i,j})$$

function F1=smth5(F,s)

输入:

物理量 **F(n,m)**、

平滑系数S

输出:

五点平滑后的数据 F1(n,m)

九点平滑

$$\widetilde{F_{i,j}} = F_{i,j} + \frac{s(1-s)}{2} \left(F_{i+1,j} + F_{i-1,j} + F_{i,j+1} + F_{i,j-1} - 4F_{i,j} \right) + \frac{s^2}{4} \left(F_{i+1,j+1} + F_{i-1,j-1} + F_{i-1,j+1} + F_{i+1,j-1} - 4F_{i,j} \right)$$

function F1=smth9(F,s)

输入:

物理量 F(n,m)、

平滑系数S

输出:

九点平滑后的数据 F1(n,m)

泊松方程

$$\Delta u = f(x, y)$$

function u = poisson(f,dx,dy,option,eps)

输入:

泊松方程右端的**f(n,m)** 或**f(p,n,m)**、

纬向、经向网格距 dx. dy(n,m) (单位: m)、

选项 option:

option = 1 时表示计算三维空间上的水平方向二维泊松方程 option = 0 时表示计算二维空间上的泊松方程

收敛精度 eps: 默认为10⁻⁷,可以不输入

输出:

泊松方程的解 u(n,m)或 u(p,n,m)

3.4 动力相关量

地转风

$$U_g = -\frac{g}{f} \frac{\partial H}{\partial y}$$
$$V_g = \frac{g}{f} \frac{\partial H}{\partial x}$$

function [Ug,Vg]=geostropic_wind(H,dx,dy,f)

输入:

位势高度 **H(n,m)** (单位: gpm)、

纬向、经向网格距 dx,dy(n,m) 或 dx,dy(1) (单位: m)、

科氏参数 **f(n,m)** (单位: /s)

输出:

地转风场 Ug, Vg(n,m) (单位: m/s)

Q矢量

$$Q_x = -\frac{R}{p} \left(\frac{\partial \overrightarrow{V_g}}{\partial x} \cdot \nabla T \right)$$
$$Q_y = -\frac{R}{p} \left(\frac{\partial \overrightarrow{V_g}}{\partial y} \cdot \nabla T \right)$$

function [Qx,Qy]=qvector_isobaric(T,Ug,Vg,pressure,dx,dy)

输入:

温度 T(n,m) (单位: K)、

地转风场 Ug, Vg(n,m) (单位: m/s)、

气压(Pa) pressure(1) (单位: Pa)、

纬向、经向网格距 **dx**,**dy**(**n**,**m**) (单位: **m**)

输出:

Q 矢量 Q(n,m) (单位: $m^2 \cdot kg^{-1}s^{-1}$)

正压模式下的位势涡度

$$PV = \frac{f + \zeta}{H}$$

function pv = potential_vorticity_barotropic(U,V,H,lat,dx,dy)

输入:

风场 U,V(n,m) (单位: m/s)、

位势高度场 (单位: gpm)、

纬度 lat(n)、

纬向、经向网格距 dx,dy(n,m) (单位: m)

输出:

位涡 pv(n,m) (单位: PVU)

Ertel 位涡

$$pv = (\zeta_{\theta} + f) \left(-g \frac{\theta}{n} \right)$$

function pv = Ertel_potential_vorticity(theta,U,V,dx,dy,lat,pressure)

输入:

位温 theta(p,n,m) (单位: K)、

风场 U,V(p,n,m) (单位: m/s)、

纬向、经向网格距 dx,dy(n,m) (单位: m) 、

纬度 lat(n)、

```
气压 pressure(p) (单位: Pa)
    输出:
         Ertel 位涡 pv(p,n,m) (单位: PVU)
湿位涡
                           MPV = -g\zeta_{\theta} \frac{\partial \theta_{e}}{\partial p} = MPV1 + MPV2
                                 MPV1 = -g(\zeta + f)\frac{\partial \theta_e}{\partial p}
                         MPV2 = -g\zeta \frac{\partial \theta_e}{\partial p} + g\left(\frac{\partial v}{\partial p} \frac{\partial \theta_e}{\partial x} - \frac{\partial u}{\partial p} \frac{\partial \theta_e}{\partial y}\right)
  function [MPV,MPV1,MPV2] = ...
         moist_potential_vorticity(RH,T,U,V,lat,dx,dy,p)
    输入:
         相对湿度 RH(p,n,m) (单位: 小数)、
         温度 T(p,n,m) (单位: K)、
         风场 U,V(p,n,m) (单位: m/s)、
         纬度 lat(n)、
         纬向、经向网格距 dx,dy(n,m) (单位: m)、
         气压 pressure(p) (单位: Pa)
    输出:
         湿位涡 pv(p,n,m)
流函数
  function[psi,u,v] = stream_function(C,dx,dy,eps)
    输入:
         相对涡度 C(n,m) (单位:/s)、
         纬向、经向网格距 dx, dy(n, m) (单位: m)、
         收敛精度 eps: 默认为10-7,可以不输入
    输出:
         流函数 psi(n,m)
         无辐散风场 u,v (n,m) (单位: m/s)
势函数
                                         \Delta \varphi = -D
  function [phi,u,v] = potential_function(D,dx,dy,eps)
    输入:
         散度 D(n,m) (单位: /s)、
         纬向、经向网格距 dx, dy(n, m) (单位: m)、
```

收敛精度 eps: 默认为10⁻⁷,可以不输入

输出:

势函数 phi(n,m)

无旋风场 u,v (n,m) (单位: m/s)

图 3.1 使用流函数和势函数程序计算得到的风场(左)与实际风场(右)的对比

图 3.2 计算得到的流函数场、无辐散风(左)和势函数场、无旋风场

使用风速、风向计算风的经纬分量

function [U,V] = wind_component(speed,direction)

输入:

风速 speed (单位: m/s)、

风向 direction (单位: m/s)、

输出:

纬向、经向风分量 U,V (单位: m/s)

使用经纬向风计算风速、风向

function [speed,direction] = wind_direction(U,V)

输入:

纬向、经向风分量 U,V (单位: m/s)

输出:

风速 speed (单位: m/s)、

```
风向 direction (单位: m/s)
风暴移动方向
 function tc_dir = storm_motion(lat,lon)
   输入:
      纬度 lat(n)、
      经度 lon(n)
   输出:
      各时刻风暴的移动方向 tc_dir(n)
3.5 热力相关量
位温
 function theta=potential_temperature(T,pressure)
   输入:
      温度 T(p,n,m) (单位: K)、
      气压 pressure(p) (单位: Pa)
   输出:
      位温 theta(p,n,m) (单位: K)
相当位温
 function theta_e=equivalent_potential_temperature(RH,T,pressure)
   输入:
      相对湿度 RH(p,n,m) (单位:小数)、
      温度 T(p,n,m) (单位: K)、
      气压 pressure(p) (单位: Pa)
   输出:
      相当位温 theta_e(p,n,m) (单位: K)
虚温
 function tv = virtual_temperature(T,q)
   输入:
      温度 (单位: K)、
      比湿 q (单位: kg/kg)
   输出:
      虚温 tv (单位: K)
虚位温
 function theta_v = virtual_potential_temperature(theta,q)
   输入:
      位温 theta (单位: K)、
```

比湿 q (单位: kg/kg)

输出:

虚位温 theta_v (单位: K)

干绝热递减率

$$\gamma_d = \frac{dT}{dp} = \frac{RT}{c_n p}$$

function gamma_d = dry_lapse(T,pressure)

输入:

温度 $\mathbf{T}(p,n,m)$ 或 $\mathbf{T}(n,m)$ 或 $\mathbf{T}(p)$ (单位: K)、

气压 pressure(p) 或 pressure(1) (单位: Pa)

输出:

干绝热递减率 gamma_d(p,n,m)或 gamma_d(n,m)或 gamma_d(p) (单位:

K/Pa)

湿绝热递减率

$$\gamma_s = \frac{dT}{dp} = \frac{1}{p} \frac{R_d T + L_v r_s}{C_{pd} + \frac{L_v^2 r_s \epsilon}{R_d T^2}}$$

function gamma_s = moist_lapse(T pressure)

输入:

温度 T(p,n,m) 或 T(n,m)或 T(p) (单位: K)、

气压 pressure(p) 或 pressure(1) (单位: Pa)

输出:

湿绝热递减率 gamma_s(p,n,m)或 gamma_s(n,m)或 gamma_s(p)(单位:K/Pa)

非绝热加热率

$$\frac{d\theta}{dt} = \omega \left(\frac{\partial \theta}{\partial p} - \frac{\gamma_m}{\gamma_d} \frac{\theta}{\theta_e} \frac{\partial \theta_e}{\partial p} \right)$$

function H = diabatic_heating(T,Omega,pressure,RH)

输入:

温度 **[(p,n,m)** (单位: K)、

P坐标垂直速度 Omega(p,n,m) (单位: Pa/s)、

气压 pressure(p) (单位: Pa)

相对湿度 RH(p,n,m) (单位: 小数)、

输出:

非绝热加热率 **H(p,n,m)** (单位: K/s)

锋生函数

$$F \approx -\frac{1}{|\nabla_h \theta|} \left\{ \left[\left(\frac{\partial \theta}{\partial x} \right)^2 \frac{\partial u}{\partial x} + \left(\frac{\partial \theta}{\partial y} \right)^2 \frac{\partial v}{\partial y} \right] + \left[\frac{\partial \theta}{\partial x} \frac{\partial \theta}{\partial y} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right] \right\}$$

```
function F = frontogenesis(theta,U,V,dx,dy)
   输入:
      温度 T(n,m) (单位: K)、
      风场 U.V(n.m) (单位: m/s)、
      纬向、经向网格距 dx,dy(n,m) (单位: m)
   输出:
      水平锋生函数 F(n,m) (单位: K/(m.s))
干静力能
 function D = dry_static_energy(T,Phi)
   输入:
      重力位势 Phi (单位: m^2s^{-2})、
      温度 T (单位: K)
   输出:
      干静力能 D
3.6 水汽相关量
露点温度
 function Td=Dewpoint(RH,T)
   输入:
      相对湿度 RH (单位:小数)、
      温度 T (单位: K)
   输出:
      露点温度 Td (单位: K
抬升凝结温度
 function Tlcl=T_
   输入:
      温度 Ţ (单位: K)、
      露点温度 Td (单位: K)
   输出:
      抬升凝结温度 Tlcl (单位: K)
单层水汽通量/散度
 function [qu,qv,qd] = vapor_flux(Q,U,V,dx,dy,lat)
   输入:
      比湿 Q(n,m) (单位: kg/kg)、
      风场 U,V(n,m) (单位: m/s)、
      纬向、经向网格距 dx,dy(n,m) (单位: m)
```

```
纬度 lat(n) (可选)
   输出:
      水汽通量 qu,qv(n,m) (单位: kg \cdot m^{-1}s^{-1})
      水汽通量散度 qd(n,m) (单位: kg \cdot m^{-2}s^{-1})
饱和水汽压
 function es = saturation_vapor_pressure(T)
   输入:
      温度 T (单位: K)
   输出:
      饱和水汽压 es (单位: Pa)
饱和混合比
 function rs = saturation_mixing_ratio(T,pressure)
   输入:
      温度 T(p,n,m) 或 T(n,m)或 T(p) (单位: K)、
      气压 pressure(p) 或 pressure(1) (单位: Pa)
   输出:
      饱和混合比 rs(p,n,m)或 rs(n,m)或 rs(p) (单位: kg/kg)
混合比
 function r = mixing_ratio(e,pressur
   输入:
      水汽压e (单位: Pa或hPa)、
      气压 pressure
                    (单位: Pa 或 hPa)
   输出:
      混合比r
饱和比湿
 function qs = saturation_specific_humidity(es,pressure)
   输入:
      饱和水汽压 es (单位: Pa 或 hPa)、
      气压 pressure (单位: Pa 或 hPa)
   输出:
      饱和比湿 qs (单位: kg/kg)
可降水量
 function pw = precipitable_water(q,pressure,p_sfc)
   输入:
      比湿 q (单位: kg/kg)、
```

气压 pressure (单位: Pa)

地表气压 p_sfc (单位: Pa, 可以不输入)

输出:

可降水量 pw (单位: mm)

图 3.3 计算得到的全球可降水量分布

3.7 大气稳定性

静力稳定度

function [ss]=static_stability(T,pressure)

输入:

温度 T(p,n,m)、

气压 pressure(p)

输出:

静力稳定度 ss(p,n,m)

Brunt Vaisala 频率

$$N^2 = \frac{g}{\theta} \frac{d\theta}{dz}$$

function N = brunt_vaisala_frequency(theta,z)

输入:

位温 theta(p,n,m)或 theta(p)

高度 **z(p)**

输出:

Brunt Vaisala 频率的平方 N(p,n,m)或 N(p)

四、高级功能

1. Shuman-Shapiro 滤波

function [synoptic_scale,meso_scale]=

shuman_shapiro_filter(F,s,option)

2. 涡度收支诊断

function [H_adv,V_adv,Tilt,Dive]=

vorticity_equation(U,V,W,vertical,dx,dy,lat)

输入:三维的风场、垂直坐标(气压或高度)、水平格点间距、纬度

%!!!!!!!!!!!!! 注意

%输入气象要素信息必须为 F(vertical_dim, y_dim, x_dim)

%如果不是请用 matlab 自带的 permute 函数调整维度

%如果是在等经纬度网格上计算,请输入一维的纬度数组

%如果是在非经纬度网格上计算,请用一个具体的纬度代替

%如用 45N 代替,则 1at 变量输入 45

%输出信息为涡度方程右侧的

%水平涡度平流项、垂直涡度平流项、扭转项、辐散项

3. 台风诊断

二维直角坐标插值到二维极坐标系

function [F,thetar,lat_n,lon_n] = hurricane_cart2pol ...

(F0,ctr lat,ctr lon,lat,lon,Radius,Nr,Ntheta,option)

%% 功能: 以涡旋中心为原点,将二维直角坐标插值到极坐标

%使用方法:

%输入变量: FO: 气象要素, ctr_lat, ctr_lon: 涡旋中心经纬度

%lat, lon: 一维经纬度向量, R: 需要插值的极坐标半径范围(km 或度)

%Nr: 极坐标径向格点个数, Ntheta: 方位格点个数

%!!! option: 径向方向的单位是距离还是度,是距离则输入0,度则输入1

%输出变量: F: 插值后的气象要素, theta: 方位坐标, r: 径向坐标

%lat_n, lon_n: 插值后气象要素的经纬度坐标

三维直角坐标插值到柱坐标系

function [F,theta,r,lat_n,lon_n] = hurricane_cart2cyl ...

(F0,ctr_lat,ctr_lon,lat,lon,vertical,Radius,Nr,Ntheta,option)

%% 功能:以涡旋中心为原点,将三维直角坐标插值到柱坐标 %使用方法:

%输入变量: FO: 气象要素, ctr_lat, ctr_lon: 涡旋中心经纬度

%lat, lon: 一维经纬度向量, vertical: 一维垂直坐标(气压或高度)

%R: 需要插值的极坐标半径范围(km 或度)

%Nr: 极坐标径向格点个数, Ntheta: 方位格点个数

%!!! option: 径向方向的单位是距离还是度,是距离则输入0,度则输入1

%输出变量: F: 插值后的气象要素, theta: 方位坐标, r: 径向坐标

%lat n, lon n: 插值后气象要素的经纬度坐标

极坐标系插值到二维直角坐标系

function F = hurricane_pol2cart

(F0,F_base,theta,r,ctr_lat,ctr_lon,lat,lon,option)

%% 功能: 以涡旋中心为原点,将极坐标插值到二维直角坐标

%使用方法:

%输入变量: F0: 气象要素, theta: 方位坐标, r: 径向坐标

%ctr lat, ctr lon: 涡旋中心经纬度

%lat, lon: 一维经纬度向量

%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

%!!! option: 径向方向的单位是距离还是度,是距离则输入 0,度则输入 1

%输出变量: F: 插值后的气象要素,

柱坐标系插值到三维直角坐标系

function F = hurricane_cyl2cart

(F0,F_base,vertical,theta,r,ctr_lat,ctr_lon,lat,lon,option)

%使用方法:

%输入变量: F0: 气象要素, F_base: 等经纬度网格上的数据

%vertical: 垂直坐标, theta: 方位坐标, r: 径向坐标

%ctr_lat, ctr_lon: 涡旋中心经纬度

%lat, lon: 一维经纬度向量

%!!! option: 径向方向的单位是距离还是度,是距离则输入0,度则输入1

%输出变量: F: 插值后的气象要素

图 4.1 原始场(左)、从极坐标插值到直角坐标后(中)、直角坐标插值到极坐标后(右)

切向风和径向风

function [v_theta,v_r] = hurricane_uv(U,V,theta,r)

输入:

纬向、经向风场 U,V(r,theta) (单位: m/s)、

方位角 theta(theta) (单位: 度)

径向距离 r(r) (单位: 度或 km)

输出:

切向风、径向风 v theta, v r(r, theta) (单位: m/s)

图 4.2 计算得到的径向风速(上)和切向风速(下)的分布

绝对角动量

function M = hurricane_absolute_angular_momentum

(v_theta,v_r,r,ctr_lak)

输入:

切向风、径向风 v_theta, v_r(r,theta) (单位: m/s)、

径向距离 r(r) (单位: km)、

TC 中心所在纬度 ctr_lat

输出:

绝对角动量 M(r,theta)

热带气旋变性的客观分析

function [A,B] = hurricane_extratropical_transition

(H,pressure,SN,tc_dir,theta,r,Radius)

输入:

柱坐标系下的位势高度场 H(pressure,r,theta) (单位: gpm)、

半球 SN, 北半球输入 1, 南半球输入-1

热带气旋的移动方向 tc_dir (单位: 度)、

TC 中心所在纬度 ctr_lat

方位角 theta(theta) (单位: 度)

径向距离**r(r)**(单位: km)

分析半径 Radius, 默认为 500km, 可以不输入

输出:

A-热成风关系、B-风暴对称性

图 4.3 计算得到的飓风热成风关系、风暴对称性绘制的相空间图