

Symmetric Key Encryption Attacks on CBC

Levente Buttyán
CrySyS Lab, BME
buttyan@crysys.hu

Contents

- 1. Content leak problem
 - ciphertext-only or known-plaintext model
- 2. Padding oracle attack
 - adaptive chosen-ciphertext model
- 3. Exploiting predictable IVs
 - adaptive chosen-plaintext model

Content Leak Problem

Content leak problem

let's assume that we have two encrypted blocks:

$$Y_i = E_K(X_i + Y_{i-1})$$

 $Y_j = E_K(X_j + Y_{j-1})$

that happen to be equal:

$$Y_i = Y_j$$

this means that

$$D_{K}(Y_{i}) = D_{K}(Y_{j})$$

$$X_{i} + Y_{i-1} = X_{j} + Y_{j-1}$$

$$X_{i} + X_{j} = Y_{i-1} + Y_{j-1}$$

- the attacker learns the difference X_i + X_i
- if X_i (or part of it) is known to the attacker, then X_j (or part of it) is also disclosed: $X_i = X_i + Y_{i-1} + Y_{i-1}$

- $Pr\{Y_i = Y_j\} = ?$
- assume that the block cipher works as a random function
- let P_k be the probability of having <u>no</u> matching pairs among k outputs (size of output space is $N = 2^n$)

$$-P_1 = 1$$

$$-P_2 = ?$$

$$\sum_{\text{for all } y} \Pr\{Y_1 = y\} \Pr\{Y_2 \neq y\} = N \frac{1}{N} \frac{N-1}{N} = \frac{N-1}{N}$$

•
$$Pr\{Y_i = Y_j\} = ?$$

- assume that the block cipher works as a random function
- let P_k be the probability of having <u>no</u> matching pairs among k outputs (size of output space is $N = 2^n$)

$$-P_1 = 1$$

$$-P_2 = \frac{N-1}{N}$$

$$- P_{3} = ? \qquad \sum_{\substack{\text{for all } y \\ \text{for all } y' \neq y}} Pr\{Y_{1} = y\} Pr\{Y_{2} = y'\} Pr\{Y_{3} \neq y, y'\}$$

$$= N (N-1) \frac{1}{N} \frac{1}{N} \frac{N-2}{N} = \frac{N-1}{N} \frac{N-2}{N}$$

- $Pr\{Y_i = Y_j\} = ?$
- assume that the block cipher works as a random function
- let P_k be the probability of having <u>no</u> matching pairs among k outputs (size of output space is $N = 2^n$)

$$-P_1 = 1$$

$$-P_2 = \frac{N-1}{N}$$

$$-P_3 = \frac{N-1}{N} \frac{N-2}{N}$$

••

$$-P_k = \frac{N-1}{N} \frac{N-2}{N} \dots \frac{N-k+1}{N}$$

• $Pr\{Y_i = Y_j\} = 1-P_k$

Numerical example

- let's assume that we use a block cipher with block length n = 64 bits (e.g., DES) in CBC mode
- among $2^{n/2} = 2^{32}$ encrypted blocks, there will be 2 identical blocks with large probability
 - information about the corresponding plaintext blocks is leaked
- as 1 block is 8 bytes (64 bits), 2^{32} blocks is just $8x2^{32} = 2^{35}$ bytes, which is ~32GB
- it may be possible to observe that much encrypted data (e.g., an encrypted hard disk)

One should use a block cipher for which n/2 is sufficiently large, e.g., AES (n = 128 bits) or encrypt only small chunks of data with a given key.

Padding Oracle Attack

The padding oracle attack

- let's assume two parties (e.g., a client and a server) communicate using a block cipher in CBC mode
- let's assume they use the ISO 7816 padding scheme

- when the server receives any message (maybe from an attacker)...
 - it decrypts it according to the rules of CBC decryption
 - it tries to identify and remove the padding
- What should the server do, if the padding found is incorrect?
- if it sends a "padding error" message, then it essentially leaks information...

The padding oracle attack

- Can we exploit this to decode something meaningful?
- an attack discovered by Serge Vaudenay in 2002 allows us to decrypt
 any encrypted message efficiently by repeatedly sending (adaptively)
 crafted ciphertexts to the server and observing its reponse
 - "padding error" means that padding was not correct in what was obtained after decryption by the server
 - no error message means the padding was correct
 - we can play a "yes/no questions" game with the server
 - if we ask cleverly, we can obtain all information we need!
- this is a special version of the (adaptive) chosen ciphertext attack model, where we choose a ciphertext, but we do not obtain the corresponding plaintext, only some partial information about the result of the decryption

The model

- let's assume we have an encrypted block Y = E_K(X) and we don't know X and K
- we have access to an Oracle, which
 - knows and uses key K
 - decrypts whatever is sent to it using E in CBC mode with key K
 - checks the padding at the end of the decrypted input
 - tells whether the padding format was compliant with ISO 7816 (responds with PADDING_OK or PADDING_ERROR)
- we want to recover X

An example

The idea

The idea

But what if the padding was longer?

knowing that for some $R = r_1 r_2 ... r_L$ the padding length is plen, and hence, the padding is 80 00 ... 00 (with length plen), we can compute

$$x_{L-plen+1} = r_{L-plen+1} + 80$$
 and $x_i = r_i + 00 = r_i$ for $i > L-plen+1$

e.g., plen = 3 --» padding is 80 00 00

$$x_{L-2} = r_{L-2} + 80$$

 $x_{L-1} = r_{L-1}$
 $x_{I} = r_{I}$

And the last step...

assume that for some $R = r_1 r_2 ... r_L$ the padding length is plen, and hence, the padding is 80 00 ... 00 (with length plen)

we can set $r_{L-plen+1} = x_{L-plen+1}$, which probably destroys the padding

but then we can change r_{L-plen} until we get correct padding again, which means that the changed $r'_{L-plen} + x_{L-plen}$ must be 80, and hence $x_{L-plen} = r'_{L-plen} + 80$

e.g., plen = 3 --» padding is 80 00 00

--» we can compute $x_{L-2} x_{L-1} x_{L}$

--» we can compute $x_{L-3} = r'_{L-3} + 80$

```
X = de ad be efY = 6f 7a 23 0eR = 00 00 00 00
```



```
X = de ad be ef
Y = 6f 7a 23 0e
R = 00 00 00 01
```



```
X = de ad be ef
Y = 6f 7a 23 0e
R = 00 00 00 6f
```



```
X = de ad be ef
Y = 6f 7a 23 0e
R = ff 00 00 6f
```



```
X = de ad be ef
Y = 6f 7a 23 0e
R = 00 ff 00 6f
```



```
X = de ad be ef
Y = 6f 7a 23 0e
R = 00 00 00 ff
```



```
X = de ad be ef
Y = 6f 7a 23 0e
R = 00 00 00 6f
```



```
X = de ad be ef
Y = 6f 7a 23 0e
R = 00 00 00 ef
```



```
X = de ad be ef
Y = 6f 7a 23 0e
R = 00 00 01 ef
```



```
X = de ad be ef
Y = 6f 7a 23 0e
R = 00 00 3e ef
```



```
X = de ad be efY = 6f 7a 23 0eR = 00 00 be ef
```



```
X = de ad be ef
Y = 6f 7a 23 0e
R = 00 01 be ef
```



```
X = de ad be ef

Y = 6f 7a 23 0e

R = 00 2d be ef
```


Attack complexity

- let's assume the block length of E is b bytes
- we measure processing complexity in the number of calls to the Oracle
- computing the last byte(s) requires
 - at most 256+b calls
 - on average 128+b calls
- the most likely case is that the number of remaining bytes is b-1
- computing each remaining byte requires
 - at most 256 calls
 - on average 128 calls
- so the complexity is
 - worst case: 256 + b + (b-1)*256 = b*257
 - average: 128 + b + (b-1)*128 = b*129
- e.g., in case of AES, b = 16:
 - worst case complexity: 4112 calls
 - Average complexity: appr. 2064 calls

The problem of predictable IVs

- let $Y_i = E_K(Y_{i-1} + X_i)$ for some i (part of a CBC encrypted message)
- we want to obtain X_i
- let us assume that we have access to a CBC encryption oracle (chosen plaintext attack model) and the oracle uses predictable IVs
- so let's predict the next IV, and submit a plaintext with IV + Y_{i-1} + X* as the first block to the oracle, where X* is our guess for X_i
- the oracle outputs a ciphertext with $E_K(IV + IV + Y_{i-1} + X^*) = E_K(Y_{i-1} + X^*)$ as the first block
- if our guess was correct (i.e., X_i = X*), then the above first block is equal to Y_i
- if not, we can try agian with another guess, until we'll have the right one

- chosen plaintext assumptions:
 - the attacker can inject messages into the input queue (choose X)
 - the attacker can eavesdrop the communication channel (obtain Y)
- predictable IV assumption:
 - the attacker can predict the value of the next IV to be used by the oracle

Exploiting predictable IVs in practice

- in practice, the block length of the cipher is large and guessing the value of X_i is infeasible
- what if we don't need to guess the entire block, because large part of it is already known?
- then predictable IVs can still be a problem!

Lessons learned

- content leak problem
 - → use a sufficiently large block size (e.g., 128 bits) or encrypt sufficiently small chunks of data with the same key
- padding oracle attack
 - → avoid leaking information about the correctness of the padding
 - → explicit error messages should be avoided
 - → pay attention to side channels as well (e.g., timing of oracle response)
- exploiting predictable IVs
 - → don't use predictable IVs; there are methods to generate IVs that are unpredictable for an attacker

Control questions

- What is the basic idea behind the content leak problem?
- When do we expect to have at least two identical ciphertext blocks in a CBC encrypted message? (length of message as a function of the block length)
- What attacker model does the padding oracle attack belong to?
- What is the main idea of the padding oracle attack?
- How we can prevent padding oracle attacks?
- Why are predictable IVs in CBC mode dangerous?
- What could be the problem with repeated guessing of a plaintext block in practice?
- When can the guessing attack that exploits predictable IVs still work?