Working Set Theorems for Routing in Self-Adjusting Skip List Networks

Chen Avin¹

Iosif Salem²

Stefan Schmid²

¹Communication Systems Engineering Department, Ben Gurion University of the Negev ²Communication Technologies, Faculty of Computer Science, University of Vienna

Context: Self-Adjusting Networks

Goal: adjust a non-tree topology over unknown demand,

minimize routing+adjustment costs

Data center traffic on the rise

cse.bgu.ac.il & ct.cs.univie.ac.at

- internet/data center traffic is increasing (even more in lockdowns!)
- packet switch bandwidth is increasing slower than the traffic increase rate!

A look inside: data center interconnects

cse.bgu.ac.il & ct.cs.univie.ac.at

- data center top-of-the rack switch interconnects are currently static
- good design only for uniform demand patterns
- what if there is "elephant" traffic between (A, C) and (B, D)?
- Demand is skewed! [BAM10, GMP+16]
- Need dynamic physical topologies!

Hardware support for dynamic connectivity

cse.bgu.ac.il & ct.cs.univie.ac.at

- dynamic physical topologies so far use: circuit switches, 60 GHz wireless, and free-space optics [GMP+16]
- large number of topologies are possible (high maximum degree), low reconfiguration time

How should topology adjust over time to better serve the demand?

Emergence of Self-adjusting Networks (SANs)

cse.bgu.ac.il & ct.cs.univie.ac.at

Challenges:

- I How should topology change upon serving a request?
- 2 Is it possible to support **non tree-based** topologies? existing work focuses on tree-based topologies, e.g. SplayNet [SAS+16]
- **3** What are the **performance** guarantees?

- 1 Model
- 2 Self-Adjusting Skip List Networks
- 3 Proving working set property
- 4 Concurrent requests

1 Model

- 2 Self-Adjusting Skip List Networks
- 3 Proving working set property
- 4 Concurrent requests

Input: G_0 an initial graph, $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_m)$ a sequence of communication requests

An **online SAN algorithm** A takes input G_0 and upon $\sigma_t = (s_t, d_t)$

- \blacksquare serves σ_t
- decides how to transform G_{t-1} to G_t

Based on [SAS+16, AS19]

Model

• $cost(\sigma_t)$: routing cost in G_{t-1} + cost of adjusting G_{t-1} to G_t

(pairwise) working bag $WB(\sigma_t)$: smallest subsequence ending in σ_{t-1} that contains both source and destination of σ_t

(pairwise) working set $WS(\sigma_t)$: distinct elements in working bag (pairwise) working set number $|WS(\sigma_t)|$: size of working set

(pairwise) working set property: $\forall \sigma_t$: $cost(\sigma_t) = \mathcal{O}(\log |WS(\sigma_t)|)$

- 1 Model
- 2 Self-Adjusting Skip List Networks
- 3 Proving working set property
- 4 Concurrent requests

Self-Adjusting Skip List Networks

- element/link of the skip list = node/edge in graph (no duplicates)
- routing according to skip list finger search
- Good fit for networks due to: local routing, more resilient to link failures than trees, alternative to tree-based self-adjusting networks

SASL²: Self-Adjusting Skip List Network

Self-Adjusting Skip List Networks

cse.bgu.ac.il & ct.cs.univie.ac.at

- based on SASL, a statically optimal (for search sequences)
 self-adjusting skip list by Ciriani et al. [CFLM07]
- adjustment: promotion/demotion of nodes:
 - higher levels ⇒ shortest distance

SASL²: Self-Adjusting Skip List Network

Self-Adjusting Skip List Networks

cse.bgu.ac.il & ct.cs.univie.ac.at

 $SASL^2$: upon request (s, d): route (s, d), adjust(s), adjust(d)

- demoted nodes selected uniformly at random
- demotion is graceful and proportional to originating level

- 1 Model
- 2 Self-Adjusting Skip List Networks
- 3 Proving working set property
- 4 Concurrent requests

Step 1: Working set property for *SASL*

Fix a **search** request σ_i

Consider working bag of size $T: (\sigma_{i-T+1}, \dots, \sigma_i)$

[CFLM07]: items in working bag pushed down $\mathcal{O}(\log T)$ bands **This work**: items in working bag pushed down $\mathcal{O}(\log |WS(\sigma_i)|)$ bands $\implies SASL$ has the working set property!

Proving working set property

cse.bgu.ac.il & ct.cs.univie.ac.at

Step 2: Extending to *SASL*²

Fix a communication request σ_i

Consider working bag of size $T: (\sigma_{i-T+1}..., \sigma_i)$

Step 2a: convert to sequence of search requests $(s_{i-T+1}, d_{i-T+1}, \ldots, s_i, d_i)$, where $\sigma_t = (s_t, d_t)$

Step 2b: apply pairwise working set property definition!

$$\begin{cases}
\mathcal{L}_{1} \} = \mathcal{B}_{1} \overline{s_{i-1} \ d_{i-1}} \\
\mathcal{L}_{2}, \mathcal{L}_{3} \} = \mathcal{B}_{2} \overline{s_{i-2}} \\
\vdots & \vdots & \vdots \\
\mathcal{L}_{2^{k-1}}, \dots, \mathcal{L}_{2^{k-1}} \} = \mathcal{B}_{k} \overline{s_{i-T+1} \quad s_{i-T+2} \atop d_{i-T+1} \quad d_{i-T+2}} \\
\vdots & \vdots & \vdots \\
\mathcal{B}_{b} \overline{s_{i-T+1} \quad s_{i-T+2} \atop d_{i-T+2}}
\end{cases}$$

$$b = \Theta(\log \log n)$$

- 1 Model
- 2 Self-Adjusting Skip List Networks
- 3 Proving working set property
- 4 Concurrent requests

- Combine *SASL*² with a **concurrent skip list implementation**, e.g. Herlihy et al. [HLLS07]
- Routing: use search routine (findNode())
- Node promotion/demotion: use modified node add/delete routines

Wrap-up

- Existing/developing technology supports dynamic physical topologies
 [GMP+16]
- Our contribution: a self-adjusting skip list network with the (pairwise) working set property

- Lower bounds? (beyond the ones in SplayNet [SAS+16])
- Extend other data structures to SANs

- Existing/developing technology supports dynamic physical topologies [GMP+16]
- Our contribution: a self-adjusting skip list network with the (pairwise) working set property

- Chen Avin and Stefan Schmid, *Toward demand-aware networking: a theory for self-adjusting networks*, ACM SIGCOMM Computer Communication Review **48** (2019), no. 5, 31–40.
- Chen Avin, Iosif Salem, and Stefan Schmid, *Brief announcement: On self-adjusting skip list networks*, 33rd International Symposium on Distributed Computing, DISC 2019, October 14-18, 2019, Budapest, Hungary, 2019.
- Theophilus Benson, Aditya Akella, and David A Maltz, *Network traffic characteristics of data centers in the wild*, Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, 2010, pp. 267–280.

Prosenjit Bose, Karim Douïeb, and Stefan Langerman, *Dynamic optimality for skip lists and b-trees*, Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, 2008, pp. 1106–1114.

Valentina Ciriani, Paolo Ferragina, Fabrizio Luccio, and S. Muthukrishnan, *Static optimality theorem for external memory string access*, 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings, IEEE Computer Society, 2002, pp. 219–227.

Valentina Ciriani, Paolo Ferragina, Fabrizio Luccio, and S Muthukrishnan, *A data structure for a sequence of string accesses in external memory*, ACM Transactions on Algorithms (TALG) **3** (2007), no. 1, 6.

Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil R. Devanur, Janardhan Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar, Madeleine Glick, and Daniel C. Kilper, *Projector: Agile reconfigurable data center interconnect*, Proceedings of the ACM SIGCOMM 2016 Conference, Florianopolis, Brazil, August 22-26, 2016 (Marinho P. Barcellos, Jon Crowcroft, Amin Vahdat, and Sachin Katti, eds.), ACM, 2016, pp. 216–229.

Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit, *A simple optimistic skiplist algorithm*, Structural Information and Communication Complexity, 14th International Colloquium, SIROCCO 2007, Castiglioncello, Italy, June 5-8, 2007, Proceedings (Giuseppe Prencipe and Shmuel Zaks, eds.), Lecture Notes in Computer Science, vol. 4474, Springer, 2007, pp. 124–138.

- Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker, *Splaynet: Towards locally self-adjusting networks*, IEEE/ACM Transactions on Networking (TON) **24** (2016), no. 3, 1421–1433.
- Daniel Dominic Sleator and Robert Endre Tarjan, *Amortized efficiency of list update and paging rules*, Commun. ACM **28** (1985), no. 2, 202–208.
- Daniel Dominic Sleator and Robert Endre Tarjan, *Self-adjusting binary search trees*, Journal of the ACM (JACM) **32** (1985), no. 3, 652–686.