✓ Congratulations! You passed!

Next Item

1. Problem Statement

points

This example is adapted from a real production application, but with details disguised to protect confidentiality.

You are a famous researcher in the City of Peacetopia. The people of Peacetopia have a common characteristic: they are afraid of birds. To save them, you have **to build an algorithm that will detect any bird flying over Peacetopia** and alert the population.

The City Council gives you a dataset of 10,000,000 images of the sky above Peacetopia, taken from the city's security cameras. They are labelled:

- y = 0: There is no bird on the image
- y = 1: There is a bird on the image

Your goal is to build an algorithm able to classify new images taken by security cameras

There are a lot of decisions to make:

- · What is the evaluation metric?
- How do you structure your data into train/dev/test sets?

Metric of success

The City Council tells you the following that they want an algorithm that

- 1. Has high accuracy
- 2. Runs quickly and takes only a short time to classify a new image.
- 3. Can fit in a small amount of memory, so that it can run in a small processor that the city will attach to many different security cameras.

 $\underline{\text{Note}}\text{: Having three evaluation metrics makes it harder for you to quickly choose between}$ $\ \ \, \text{two different algorithms, and will slow down the speed with which your team can iterate.}$

True

Correct

points

2. After further discussions, the city narrows down its criteria to:

- "We need an algorithm that can let us know a bird is flying over Peacetopia as accurately as possible."
- "We want the trained model to take no more than 10sec to classify a new image."
- "We want the model to fit in 10MB of memory."

If you had the three following models, which one would you choose?

_			
\bigcirc	Test Accuracy	Runtime	Memory size
	97%	1 sec	3МВ
\bigcirc	Test Accuracy	Runtime	Memory size
	99%	13 sec	9MB
_			
\bigcirc	Test Accuracy	Runtime	Memory size
	97%	3 sec	2MB
	Toot Acquiroov	Duntimo	Momony size

rd reco			98%	9 sec	9MB	
		on in 1		etopia (case stud	y) 15/15 poi	nts (100
z, 15 question	ns	Corr	ect! As soon as the run	time is less than 10 second ccuracy after you made su	ds you're good. So, you may re the runtime is <10sec.	
~	3.	Based	on the city's requests, v	which of the following wou	ld you say is true?	
1 / 1 points		Corre	satisficing metrics.	ting metric; running time a	ind memory size are a	
		COIT				
			Accuracy is a satisficin optimizing metric.	g metric; running time an	d memory size are an	
			Accuracy, running tim want to do well on all		optimizing metrics because you	I
				e and memory size are all well on all three for your	satisficing metrics because you system to be acceptable.	
~	4.	<u>Stru</u>	cturing your o	<u>lata</u>		
1 / 1 points			implementing your alg of these do you think is		our data into train/dev/test set	5.
			Train	Dev	Test	
			3,333,334	3,333,333	3,333,333	
			Train	Dev	Test	
			6,000,000	1,000,000	3,000,000	
			Train	Dev	Test	
			6,000,000	3,000,000	1,000,000	
			Train	Dev	Test	
			9,500,000	250,000	250,000	
		Corre Yes.	ect			
1/1 points	5.	images birds th these a	, called the "citizens" da nat they volunteered to dditional 1,000,000 im	ita". Apparently the citizen take pictures of the sky a ages. These images are dif	I comes across another 1,000,01 s of Peacetopia are so scared o nd label them, thus contributing ferent from the distribution of I think it could help your	f
images the City Council had originally given you, but you think it could he algorithm. You should not add the citizens' data to the training set, because this will training and dev/test set distributions to become different, thus hurting:					t	
			nance. True/False? True			
		Corre Addi How the c	True False ect ng this data to the train ever, it is not a probler	ning set will change the tra n to have different training ry problematic to have dif	g and dev distribution. On	
~	6.	Corre Addi How the distr	True False ect ng this data to the train ever, it is not a probler contrary, it would be veilbutions.	n to have different training ry problematic to have dif cil knows a little about ma	g and dev distribution. On	
1/1 points	6.	Corre Addi How the distr	True False Let Ing this data to the train ever, it is not a problem contrary, it would be veilbutions. Let the contract of the City Cour add the 1,000,000 citizens The 1,000,000 citizens	n to have different training ry problematic to have dif cil knows a little about ma ens' data images to the te ' data images do not have milar to the New York City	g and dev distribution. On ferent dev and test set set set set set set set set se	
	6.	Corre Addi How the distr	False Let Ing this data to the train gethere, it is not a probler contrary, it would be ver ibutions. Let Let Let Let Let Let Let Le	n to have different training ry problematic to have dif cil knows a little about ma ens' data images to the te ' data images do not have milar to the New York City	g and dev distribution. On ferent dev and test set set set set set set set set se	

This would cause the dev and test set distributions to become different. This is a bad idea because you're not aiming where you want to hit.

Un-selected is correct

Quiz, 15 questions

The test set no longer reflects the distribution of data (security cameras) you most care about.

Correct

7. You train a system, and its errors are as follows (error = 100%-Accuracy):

1/1

Training set error	4.0%
Dev set error	4.5%

This suggests that one good avenue for improving performance is to train a bigger network so as to drive down the 4.0% training error. Do you agree?

Yes, because having 4.0% training error shows you have high bias.

Yes, because this shows your bias is higher than your variance.

No, because this shows your variance is higher than your bias.

No, because there is insufficient information to tell.

Correct

You ask a few people to label the dataset so as to find out what is human-level performance. You find the following levels of accuracy:

points

Bird watching expert #1	0.3% error
Bird watching expert #2	0.5% error
Normal person #1 (not a bird watching expert)	1.0% error
Normal person #2 (not a bird watching expert)	1.2% error

If your goal is to have "human-level performance" be a proxy (or estimate) for Bayes error, how would you define "human-level performance"?

0.0% (because it is impossible to do better than this)

0.3% (accuracy of expert #1)

Correct

0.4% (average of 0.3 and 0.5)

0.75% (average of all four numbers above)

Which of the following statements do you agree with?

points

A learning algorithm's performance can be better than human-level performance but it can never be better than Bayes error.

Correct

A learning algorithm's performance can never be better than human-level performance but it can be better than Bayes error.

A learning algorithm's performance can never be better than human-level performance nor better than Bayes error.

A learning algorithm's performance can be better than human-level performance and better than Bayes error.

10. You find that a team of ornithologists debating and discussing an image gets an even better 0.1% performance, so you define that as "human-level performance." After working further on your algorithm, you end up with the following:

1/1

Human-level performance	0.1%
Training set error	2.0%
Dev set error	2.1%

Based on the evidence you have, which two of the following four options seem the most promising to try? (Check two options.)

Train a bigger model to try to do better on the training set.

Quiz, 15 questions

Un-selected is correct

Try increasing regularization.

Un-selected is correct

Try decreasing regularization.

Correct

11. You also evaluate your model on the test set, and find the following:

1/1

Human-level performance	0.1%
Training set error	2.0%
Dev set error	2.1%
Test set error	7.0%

What does this mean? (Check the two best options.)

Correct

You should get a bigger test set.

Un-selected is correct

Correct

You have underfit to the dev set.

Un-selected is correct

12. After working on this project for a year, you finally achieve:

1 / 1 points

Human-level performance	0.10%
Training set error	0.05%
Dev set error	0.05%

What can you conclude? (Check all that apply.)

With only 0.09% further progress to make, you should quickly be able to close the remaining gap to 0%

Un-selected is correct

It is now harder to measure avoidable bias, thus progress will be slower going forward

Correct

If the test set is big enough for the 0.05% error estimate to be accurate, this implies Bayes error is ≤ 0.05

Correct

This is a statistical anomaly (or must be the result of statistical noise) since it should not be possible to surpass human-level performance.

Un-selected is correct

13. It turns out Peacetopia has hired one of your competitors to build a system as well. Your system and your competitor both deliver systems with about the same running time and memory size. However, your system has higher accuracy! However, when Peacetopia tries out your and your competitor's systems, they conclude they actually like your

$competitor \hbox{'s system better, because even though you have higher overall accuracy, you}$ have more false negatives (falling to raise an alarm when a bird is in the air). What should Bird recognition in the city of Peacetopia (case study) 15/15 point 15/15 points (100%) Quiz, 15 questions Look at all the models you've developed during the development process and find the one with the lowest false negative error rate. Ask your team to take into account both accuracy and false negative rate during development Rethink the appropriate metric for this task, and ask your team to tune to the new metric. Pick false negative rate as the new metric, and use this new metric to drive all further development. 14. You've handily beaten your competitor, and your system is now deployed in Peacetopia and is protecting the citizens from birds! But over the last few months, a new species of bird has been slowly migrating into the area, so the performance of your system slowly 1/1 degrades because your data is being tested on a new type of data. points You have only 1,000 images of the new species of bird. The city expects a better system from you within the next 3 months. Which of these should you do first? Use the data you have to define a new evaluation metric (using a new dev/test set) taking into account the new species, and use that to drive further progress for your team. Correct Put the 1,000 images into the training set so as to try to do better on these Try data augmentation/data synthesis to get more images of the new type of Add the 1,000 images into your dataset and reshuffle into a new train/dev/test $\textbf{15.} \ \ \text{The City Council thinks that having more Cats in the city would help scare off birds. They}$ are so happy with your work on the Bird detector that they also hire you to build a Cat detector. (Wow Cat detectors are just incredibly useful aren't they.) Because of years of 1/1 working on Cat detectors, you have such a huge dataset of 100,000,000 cat images that training on this data takes about two weeks. Which of the statements do you agree with? (Check all that agree.) Buying faster computers could speed up your teams' iteration speed and thus your team's productivity. Correct If 100,000,000 examples is enough to build a good enough Cat detector, you might be better of training with just 10,000,000 examples to gain a \approx 10x improvement in how quickly you can run experiments, even if each model performs a bit worse because it's trained on less data. Correct

Needing two weeks to train will limit the speed at which you can iterate.

Having built a good Bird detector, you should be able to take the same model and hyperparameters and just apply it to the Cat dataset, so there is no need to

iterate.

Un-selected is correct

Correct