## **Computer Graded Assignment: Week 1**

**1.** The  $100^{th}$  digit in  $\frac{\pi^2}{6}$  is

₫ 5

 $\Box 0$ 

□ 4

□ 8

**Solution:** Use  $N[\pi^2/6, 101]$  to to see 101 significant digits. The second last digit is your answer

$$ln[\bullet]:=$$
  $N\left[\frac{\pi^2}{6}, 101\right]$ 

Out[s]= 1.64493406684822643647241516664602518921894990120679843773555822937000747040320087538336289006197587053

- **2.** The curves  $y = x^4$  and  $y = e^{x/4}$
- □ never intersect with each other
- □ intersect exactly once with each other
- □ intersect exactly twice with each other
- ☑ intersect exactly thrice with each other

**Solution:** On the positive-x side,  $e^{x/4}$  will dominate  $x^p$  for any p. We can easily find the intersections by plotting the function and keeping the large x-behaviour in mind. The best approach is to do an analysis region-wise. You can also use NSolve as shown below:

$$ln[*] := \left\{ \mathsf{Plot} \left[ \left\{ x^4, \, \mathsf{e}^{\mathsf{x}/4} \right\}, \, \left\{ x, \, -2, \, 0 \right\} \right], \, \mathsf{Plot} \left[ \left\{ x^4, \, \mathsf{e}^{\mathsf{x}/4} \right\}, \, \left\{ x, \, 0, \, 2 \right\} \right], \, \mathsf{Plot} \left[ \left\{ x^4, \, \mathsf{e}^{\mathsf{x}/4} \right\}, \, \left\{ x, \, 2, \, 100 \right\} \right] \right\}$$



$$ln[\circ]:=$$
 NSolve  $[x^4 = e^{x/4}, x, Reals]$ 

Out[\*]= 
$$\{\{x \to -0.942779\}, \{x \to 1.0691\}, \{x \to 67.3611\}\}$$

- **3.** The smallest value of x for the point of intersection of the curves  $y = x^{1/3}$  and  $y = \log(x)$  is
- □ 6.5074
- ☑ 6.4057
- □ 93.355
- □ 95.353

## **Solution:**

$$ln[*]:=$$
 NSolve[ $x^{1/3} = Log[x], x, Reals$ ]

Out[\*]= 
$$\{ \{ x \to 6.40567 \}, \{ x \to 93.3545 \} \}$$

**4.** Asymptotes for  $\coth^{-1}(x)$  are

$$\Box y = 1, y = -1 \text{ and } x = 0$$

$$\Box x = 1$$
 and  $y = 1$ 

$$\Box x = 0$$
 and  $y = 0$ 

**Solution:** It is evident from plotting. Also plotting the inverse of this function Coth[x] helps in identifying its asymptotes and confirming the results.

{Plot[ArcCoth[x], {x, -5, 5}], Plot[Coth[x], {x, -5, 5}]}



**5.** For the function  $e^{-x/4}\cos(x)$ , the distance between two consecutive minima is

 $\Box \pi$ 

In[•]:=

$$\Box 2 \tan^{-1} \left( \frac{-1}{4} \right)$$

**☑** 2 π

$$\Box \cos^{-1}\left(\frac{4}{\sqrt{17}}\right)$$

**Solution:**  $e^{-x/4}$  provides an envelope to  $\cos(x)$  which has period  $2\pi$ .  $e^{-x/4}$  is monotonically decreasing thus minima and maxima positions are determined by cosine function. This is evident from plotting

In[•]:=

$$\text{Plot}\left[e^{-x/4} \operatorname{Cos}[x], \{x, 0, 4\pi\}, \right. \\ \left. \text{Epilog} \rightarrow \left\{\operatorname{PointSize}[0.02], \operatorname{Point}\left[\left\{\frac{\pi}{2}, 0\right\}\right], \operatorname{Point}\left[\left\{\frac{3\pi}{2}, 0\right\}\right], \operatorname{Point}\left[\left\{\frac{5\pi}{2}, 0\right\}\right]\right\} \right]$$

0.5 -Out[\*]=



**6.** Which of the following images represent plot of the vector field  $\vec{v}(\vec{r}) = (x^2 + y^2)\hat{i} + (x^2 - y^2)\hat{j}$ ?



- $\Box A$
- $\square \; B$
- □ D

**Solution:** This is evident from plotting the vector field

 $VectorPlot\big[\big\{x^2+y^2,\; x^2-y^2\big\},\; \{x,\; -1,\; 1\}\;,\; \{y,\; -1,\; 1\}\;,\; ImageSize \to Small\big]$ 



Out[ • ]=

7. Stream Plot shown below represents field lines for



- $\hfill\Box$  a magnetic monopole
- ☑ a magnetic dipole
- $\hfill\Box$  an electric quadrupole
- $\ \square$  a pair of positive electric charges

**Solution:** See solution for Week 1 Practice problem 8.

**8.** In the equipotential lines plot shown below for electric dipole in the *x*–*y* plane, the negative charge is placed at



- $\Box (0, 0)$
- □ (0, 1)

$$\Box$$
  $(-1, 1)$ 

Solution: The potential near negative charge is negative and equipotential contours are centered about the charges.

**9.** If the potential  $u(r) = -\frac{1}{r^2} + \frac{2}{r^4}$  for positive r, near its minimum  $r_0$  is approximated by the quadratic potential  $u(r) \approx u_0 + \alpha (r - r_0)^2$ , then the value of  $\alpha$  is

- $\Box \frac{-1}{8}$
- □ 2
- □ -2

**Solution:** You need to do a Taylor expansion about the minima at r = 2. You can also use Series function as shown below

$$ln[0]:=$$
 Series  $\left[\frac{-1}{r^2} + \frac{2}{r^4}, \{r, 2, 2\}\right]$ 

$$\textit{Out[*]} = \left[ -\frac{1}{8} + \frac{1}{8} (r-2)^2 + 0[r-2]^3 \right]$$

10. Identify the function whose plot is given by the image below:



- $\Box x \log(x)$
- $\Box |x \log(x)|$
- $\sqrt{\frac{\log(x)}{x}}$

**Solution:** Plotting all the cases reveals the answer. However, you should be able to do this by considering small x and large x behaviour. Absolute values are immediately ruled out because plot shows a negative value.

Plot[ $\{x \text{ Log}[x], \text{ Abs}[x \text{ Log}[x]], \frac{\text{Log}[x]}{x}, \frac{x}{\text{Log}[x]} \}$ ,  $\{x, 0, 5\}, \text{ PlotRange} \rightarrow \{-2, 2\}, \text{ PlotLegends} \rightarrow \text{"Expressions"}$ 

