

11.06.2004
PCT/JP2004/007120

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年 6月30日

出願番号 Application Number: 特願2003-186475
[ST. 10/C]: [JP2003-186475]

出願人 Applicant(s): 住友電気工業株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 5月18日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願
【整理番号】 103H0491
【提出日】 平成15年 6月30日
【あて先】 特許庁長官殿
【国際特許分類】 A61L 27/00
A61F 2/04

【発明者】

【住所又は居所】 大阪府大阪市此花区島屋一丁目1番3号 住友電気工業
株式会社大阪製作所内

【氏名】 林 文弘

【特許出願人】

【識別番号】 000002130
【氏名又は名称】 住友電気工業株式会社
【代表者】 岡山 紀男

【代理人】

【識別番号】 100093528

【弁理士】

【氏名又は名称】 西川 繁明

【手数料の表示】

【予納台帳番号】 062189
【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【包括委任状番号】 9721044

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 生体内移植材料

【特許請求の範囲】

【請求項 1】 (A) 孔径が $0.45\text{ }\mu\text{m}$ 未満の微多孔質または無孔質で生体組織遮断性を有する樹脂成形体と、(B) 孔径が $0.45\text{ }\mu\text{m}$ 以上の多孔質で生体組織進入性を有する樹脂成形体との複合体からなり、(B) 多孔質樹脂成形体の一部が露出して、該露出部に生体組織が進入可能な構造を有することを特徴とする生体内移植材料。

【請求項 2】 (A) 微多孔質または無孔質樹脂成形体が、孔径が $0.05\text{ }\mu\text{m}$ 未満の微多孔質であるか、無孔質である請求項 1 記載の生体内移植材料。

【請求項 3】 (B) 多孔質樹脂成形体の孔径が $1\text{ }\mu\text{m}$ 以上である請求項 1 または 2 記載の生体内移植材料。

【請求項 4】 (A) 微多孔質または無孔質樹脂成形体及び (B) 多孔質樹脂成形体が、いずれもポリテトラフルオロエチレンから形成された成形体である請求項 1 乃至 3 のいずれか 1 項に記載の生体内移植材料。

【請求項 5】 (A) 微多孔質または無孔質樹脂成形体のバブルポイントが 0.70 kg f/cm^2 より大きく、(B) 多孔質樹脂成形体のバブルポイントが 0.70 kg f/cm^2 以下である請求項 4 記載の生体内移植材料。

【請求項 6】 (B) 多孔質樹脂成形体のバブルポイントが 0.50 kg f/cm^2 以下である請求項 4 または 5 記載の生体内移植材料。

【請求項 7】 いずれもシート状の (A) 微多孔質または無孔質樹脂成形体と (B) 多孔質樹脂成形体とを積層した複合体からなり、シート状の (B) 多孔質樹脂成形体の一部がシート状の (A) 微多孔質または無孔質樹脂成形体の周辺部に延在して露出した構造を有する請求項 1 乃至 6 のいずれか 1 項に記載の生体内移植材料。

【請求項 8】 いずれもシート状の (A) 微多孔質または無孔質樹脂成形体及び (B) 多孔質樹脂成形体を積層した複合体からなり、シート状の (B) 多孔質樹脂成形体の一部がシート状の (A) 微多孔質または無孔質樹脂成形体に形成した開口部から露出した構造を有する請求項 1 乃至 6 のいずれか 1 項に記載の生

体内移植材料。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、人工血管や心膜パッチなどの疾病または傷害により失われた生体の管状構造物や隔壁などの代替物として用いられる生体組織遮断性の生体内移植材料に関する。さらに詳しくは、本発明は、生体組織遮断性に加えて、移植部での炎症を抑制することができる生体内移植材料に関する。

【0002】

【従来の技術】

ポリテトラフルオロエチレン（以下、「PTFE」と略記）を延伸する方法により製造された延伸PTFE多孔質体は、非常に細い多数のフィブリル（微小纖維）と該フィブリルによって互いに連結された多数のノード（結節）とからなる微細構造を有しており、該微細構造が連続気孔性の多孔質構造を形成している。延伸PTFE多孔質体（「EPTFE」ともいう）の孔径や気孔率などは、主として延伸条件を制御することにより任意に設定することができる。

【0003】

延伸PTFE多孔質体は、PTFE自体が有する耐熱性、耐薬品性などの特性と、低摩擦係数、撥水性、非粘着性などの表面特性に加えて、多孔質構造を有することから、柔軟性、流体透過性、微粒子の捕集性、濾過性、低誘電率、低誘電正接などの特性が付加されている。延伸PTFE多孔質体は、このような独自の特性から一般工業分野のみならず医療分野などへの用途が拡大している。また、延伸PTFE多孔質体は、化学的な安定性、生体に対する無毒性、非分解性、抗血栓性などの特性を有しているため、生体内組織に直接触れる用途には最適な材料である。

【0004】

PTFE自体は、硬くて脆い樹脂であるが、延伸PTFE多孔質体は、柔軟性を有しているため、様々な生体内の組織形状等に合わせてその形状を柔軟に変化させることができる。そのため、延伸PTFE多孔質体は、柔軟なシート状や管

状などの構造を有する多孔質体として、パッチ材や人工血管、カテーテル等の医療用高分子材料として使用されている。

【0005】

特に延伸P T F E多孔質体は、気孔率が高い多孔質構造を有することから、柔軟性、可撓性、通過性に富み、生体内移植材料として好適である。延伸P T F E多孔質体は、2、3倍から数十倍までの延伸倍率で延伸を行うことにより、柔軟性が付与され、高気孔率の多孔質構造が形成されているため、生体内では周囲の結合組織が多孔質構造内に侵入したり、多孔質構造を透過することにより、生体組織と一体となって良好な治癒状態を形成することが可能である。

【0006】

他方、周囲組織や治癒組織の侵入及び癒着を防止する必要がある生体内移植材料では、生体組織遮断性を付与する必要がある。例えば、心膜、胸膜、横隔膜、腹膜、腱の鞘などを補修する用途で用いられる生体内移植材料には、生体組織遮断性を有することが求められている。その理由は、心膜、胸膜、横隔膜、腹膜などが、本来、周囲組織から心臓や肺、消化器管などの臓器を隔てて、これらの臓器に腔内での自由な動きを維持させる役割を有しているためである。

【0007】

例えば、生体組織遮断性を有する心膜パッチは、胸部を切開し心臓を露出して行われる冠状動脈のバイパス手術などに使用されている。心膜パッチは、手術後に周囲組織や治癒組織が心臓へ侵入して癒着するのを防止する隔膜としての役割を担っている。また、生体組織遮断性の心膜パッチを使用することにより、頻回のバイパス手術において、心臓へのアクセスが非常に容易になるという利点がある。

【0008】

このような生体組織遮断性の生体内移植材料には、無孔質の樹脂成形体か、結合組織の侵入が困難な程度の小さな孔径を有する微多孔質の樹脂成形体が用いられている。芯膜パッチなどの用途において、樹脂成形体の形状は、一般にシート状（膜状）である。樹脂成形体を構成する樹脂として、P T F Eは、非粘着性を有するため、癒着防止に有効である。特に、組織侵入が生じ難い微小な孔径に制

御した延伸P T F E多孔質体は、柔軟なために手術操作性も良好である。

【0009】

一方、延伸P T F E多孔質体は、押出工程及び延伸工程に起因して強度的な異方性が生じたり、縫合糸を用いた縫合の際に裂けて破れ易いなどの問題がある。特に低い延伸倍率で製造した孔径が小さな微多孔質の延伸P T F E多孔質体は、引裂き強度が低下する傾向が強い。

【0010】

従来、前記の如き問題を克服するため、延伸P T F E多孔質シートを二枚以上それらの延伸方向を互に任意の角度で交叉させて積層一体化する方法（例えば、特許文献1参照。）、延伸P T F E多孔質体を加熱処理して、結節凝集部と結節非凝集部とを形成し、かつ結節凝集部を一体的に連結して結節非凝集部の周りを囲む連続模様を形成させる方法（例えば、特許文献2参照。）などが提案されている。これらの方において、孔径が小さくなるように製造条件を制御すれば、生体組織遮断性を有する生体内移植材料に適した積層体や延伸P T F E多孔質体を得ることができる。

【0011】

また、延伸P T F E多孔質体を生体内移植材料として用いる場合、体液の通透性を維持しながら生体組織遮断性を得るために、延伸P T F E多孔質体の孔径を0.05～0.5μmの範囲内に調整すること、さらに、このような微多孔質の延伸P T F E多孔質シートと孔径が例えば1μmの延伸P T F E多孔質シートとを積層することにより、生体内移植材料全体の生体組織遮断性と柔軟性と強度のバランスを改善する方法が提案されている（例えば、特許文献3参照。）。

【0012】

【特許文献1】

特開昭54-90897号公報 （第1頁）

【特許文献2】

特開平7-82399号公報 （第1～2頁、図1）

【特許文献3】

特開平9-173438号公報 （第1～2頁、実施例1～4）

【0013】**【発明が解決しようとする課題】**

現在市販されている延伸P T F E多孔質体製の心膜パッチは、無毒かつ柔軟な設計で、臨床における生体組織遮断性も良好である。しかし、延伸P T F E多孔質体製の心膜パッチは、移植部やその周辺で炎症が生じ易いことが指摘されている〔例えば、山梨大学 鈴木章司他「E P T F E人工心膜によると考えられた術後難治性心囊液貯留の1例」（第99回日本胸部外科学会関東甲信越地方会、1996、東京）など〕。

【0014】

実際、本発明者らが生体組織遮断性を有する微多孔質の延伸P T F E多孔質体製パッチ（移植片）を用いてラットの皮下埋植試験を行ったところ、移植部周囲の瘢痕組織が厚くなり、しかも移植片の周囲に生体液が貯留しており、炎症が発生していることが確認された。このような炎症性の傾向は、延伸P T F E多孔質体の孔径が小さくなるほど大きくなる。特に未延伸P T F Eシートなどの無孔質樹脂成形体は、柔軟性や可撓性が低く、生体液の交通性がないため、炎症性がより高くなる。

【0015】

この技術分野における従来の知見によれば、生体組織遮断性を有する移植材料の炎症性は、その無孔質性や微多孔質性に原因があって、生体組織遮断性を実質的に保持しながら炎症性を低減することは極めて困難であるか、不可能であると考えられていた。孔径が小さな微多孔質の延伸P T F E多孔質シートと孔径の大きな延伸P T F E多孔質シートを積層しても、積層体の全面に生体組織遮断性の微多孔質の延伸P T F E多孔質シートが存在する場合には、瘢痕組織の肥大化や生体液の貯留による炎症を抑制することが困難である。

【0016】

本発明の目的は、合成樹脂成形体からなり、実質的に生体組織遮断性を有することに加えて、移植部位やその周辺部での瘢痕組織の肥大化や生体液の貯留等に見られる炎症を顕著に抑制することができる新規な生体内移植材料を提供することにある。

【0017】

本発明者らは、前記目的を達成するために銳意研究した結果、微多孔質または無孔質で生体組織遮断性を有する樹脂成形体と、生体組織進入性を有する多孔質樹脂成形体とを複合化し、その際、多孔質樹脂成形体の一部を露出させて、該露出部に生体組織が進入可能とすることにより、生体組織遮断性を実質的に保持しながら、移植部やその周辺部での瘢痕組織の肥大化や体液の貯留等の炎症を著しく抑制することができる生体内移植材料の得られることを見出した。

【0018】

本発明の生体内移植材料は、生体組織遮断性を有しているが、その一部に生体組織が進入可能な孔径を有する多孔質樹脂成形体を露出させることにより、露出部に移植部位やその周辺部の治癒組織が自由に侵入し、一体化して固定され、それによって、瘢痕組織の肥大化や生体液の貯留等に見られる炎症が大幅に低減することができる。しかも、本発明の生体内移植材料は、複合化したものであるため、柔軟性や強度等のバランスを調整することもできる。本発明は、これらの知見に基づいて完成するに至ったものである。

【0019】**【課題を解決するための手段】**

本発明によれば、(A) 孔径が $0.45\text{ }\mu\text{m}$ 未満の微多孔質または無孔質で生体組織遮断性を有する樹脂成形体と、(B) 孔径が $0.45\text{ }\mu\text{m}$ 以上の多孔質で生体組織進入性を有する樹脂成形体との複合体からなり、(B) 多孔質樹脂成形体の一部が露出して、該露出部に生体組織が進入可能な構造を有することを特徴とする生体内移植材料が提供される。

【0020】**【発明の実施の形態】**

本発明で使用する(A) 微多孔質または無孔質樹脂成形体及び(B) 多孔質樹脂成形体の材質は、従来より臨床埋植材料として使用されているフッ素樹脂、ポリエステル樹脂、ポリプロピレン、ポリエチレン、ポリアミド樹脂などから適宜選択することができる。これらの樹脂材料の中でも、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体

(FEP)、テトラフルオロエチレン-パーカルオロアルキルビニルエーテル共重合体(PFA)、ポリフッ化ビニリデン樹脂、テトラフルオロエチレン-エチレン共重合体(ETFE)などのフッ素樹脂が好ましく、PTFEが化学的な安定性、生体に対する無毒性、非分解性、抗血栓性などの特性を有しているため特に好ましい。

【0021】

無孔質樹脂成形体は、通常の押出成形などにより製造することができる。微多孔質または多孔質樹脂成形体は、延伸法により製造することが好ましい。延伸法による多孔質樹脂成形体の製造方法について、延伸PTFE多孔質体を例に取り上げて説明する。

【0022】

延伸PTFE多孔質体は、例えば、特公昭42-13560号公報に記載される方法によって製造することができる。まず、PTFEパウダーと潤滑剤を混合し、シート状またはチューブ状に押し出し、必要に応じて圧延などの加工を施した後、これを少なくとも1方向に延伸する。延伸後、延伸PTFE多孔質体を収縮が起こらないように固定しながら、焼結温度の327℃以上の温度に加熱して延伸した構造を焼結固定する。

【0023】

延伸PTFE多孔質体の気孔率及び繊維長（平均フィブリル長）は、延伸倍率及び延伸歪み速度を調整することにより任意に設定することが可能である。無孔質PTFE成形体が所望の場合には、押出成形体を延伸せずに焼結することにより製造することができる。このようにPTFEは、多孔質構造を自由に設定可能である点からも、本発明の樹脂成形体を構成する樹脂材料として好適である。

【0024】

本発明で使用する(A)微多孔質または無孔質樹脂成形体は、孔径が0.45μm未満で生体組織遮断性を有する樹脂成形体である。微多孔質樹脂成形体の場合、孔径が0.50μm以下であれば細胞の進入を防ぐことができるが、太い線維束が進入があるので、十分な生体組織遮断性を得るために、その孔径を0.45μm未満にする。生体内移植材料に生体液の交通性が要求される用途

には、孔径が $0.05\text{~}0.45\mu\text{m}$ の微多孔質樹脂成形体を使用することが好ましい。

【0025】

他方、無孔質樹脂成形体は、生体組織遮断性の点で最も優れている。また、孔径が $0.05\mu\text{m}$ 未満の微多孔質樹脂成形体も、生体組織遮断性の点で優れている。本発明の生体移植材料は、(A) 微多孔質または無孔質樹脂成形体と(B) 多孔質樹脂成形体とを複合化したものであって、(B) 多孔質樹脂成形体の一部を露出させて、該露出部に生体組織が進入可能としたものであるため、生体組織遮断性の樹脂成形体が無孔質または孔径が $0.05\mu\text{m}$ 未満の微多孔質樹脂成形体であっても好適に使用することができる。

【0026】

これらの(A) 微多孔質または無孔質樹脂成形体が延伸PTE多孔質体である場合、生体組織遮断性の観点から、イソプロピルアルコールを用いて測定したバブルポイントが 0.70kgf/cm^2 よりも高いことが好ましく、 1.50kgf/cm^2 以上であることがより好ましい。

【0027】

一方、(B) 多孔質樹脂成形体は、治癒組織が自由に侵入または透過し、それによって生体移植材料に生体組織を一体化し固定化する機能を付与する役割を有しているため、粒子径が $0.45\mu\text{m}$ 以上の粒子が侵入可能な孔径 $0.45\mu\text{m}$ 以上の多孔質材料であることが必要である。(B) 多孔質樹脂成形体が延伸PTE多孔質体である場合、イソプロピルアルコールを用いて測定したバブルポイントは、生体組織の進入性の観点から、 0.70kgf/cm^2 以下であることが好ましい。

【0028】

(B) 多孔質樹脂成形体は、 $1\mu\text{m}$ 以上の粒子が侵入可能な孔径 $1\mu\text{m}$ 以上であり、バブルポイントが 0.50kgf/cm^2 以下であることが好ましく、 $3\mu\text{m}$ 以上の粒子が侵入可能な孔径 $3\mu\text{m}$ 以上であり、イソプロピルアルコールを用いて測定したバブルポイントが 0.30kgf/cm^2 以下であることがより好ましい。また、(B) 多孔質樹脂成形体の孔径は、 $1\text{~}15\mu\text{m}$ の範囲が好ま

しい。さらに、(B) 多孔質樹脂成形体の気孔率は、好ましくは50%以上、より好ましくは70%以上である。

【0029】

本発明の生体内移植材料及び各樹脂成形体の形状は、移植部位等に応じて適宜定めることができるが、通常、シート状または管状であり、芯膜パッチ材などのパッチ材として使用する場合には、シート状であることが好ましい。また、本発明の生体内移植材料の形状や寸法は、移植部位や用途によって様々に設計することができるが、シート状の場合には、手術操作性を考慮して、厚さが通常3mm以下、好ましくは1mm以下、より好ましくは0.5mm以下である。シート状の(A) 微多孔質または無孔質樹脂成形体及び(B) 多孔質樹脂成形体の各厚さは、好ましくは1.5mm以下、より好ましくは $500\mu\text{m}$ 以下、さらに好ましくは $250\mu\text{m}$ 以下であり、その下限は、好ましくは $30\mu\text{m}$ 、より好ましくは $40\mu\text{m}$ 、特に好ましくは $50\mu\text{m}$ である。

【0030】

本発明の生体内移植材料は、(A) 孔径が $0.45\mu\text{m}$ 未満の微多孔質または無孔質で生体組織遮断性を有する樹脂成形体と、(B) 孔径が $0.45\mu\text{m}$ 以上の多孔質で生体組織進入性を有する樹脂成形体との複合体から構成されている。このような複合体は、通常、(A) 微多孔質または無孔質樹脂成形体と、(B) 多孔質樹脂成形体とを別々に作製してから、それぞれを貼り合わせて接着することにより製造することができる。この他、予め(A) 微多孔質または無孔質樹脂成形体を作製した後、部分的な延伸を行なうことにより、部分的に(B) 孔径が $0.45\mu\text{m}$ 以上の多孔質で生体組織進入性を有する樹脂成形体部を形成する方法も採用することができる。

【0031】

本発明の生体内移植材料は、前記の複合体からなり、(B) 多孔質樹脂成形体の一部が露出して、該露出部に生体組織が進入可能な構造を有するものである。シート状の樹脂成形体を例にとって、本発明の生体内移植材料の具体例について説明する。

【0032】

図1は、シート状の（A）微多孔質または無孔質樹脂成形体1と、シート状の（B）多孔質樹脂成形体2とを積層した複合体の一例の正面図であり、図2は、その断面図である。相対的に面積の小さなシート状の（A）微多孔質または無孔質樹脂成形体と、相対的に面積の大きいシート状の（B）多孔質樹脂成形体とを積層すると、積層部の周辺に（B）多孔質樹脂成形体2が単独で露出する。この露出部分には、治癒組織やその周辺の生体組織が多孔質構造内に進入し、その結果、生体内移植材料と生体組織とが一体化する。また、この露出部分は、生体液の交通性にも優れている。そのため、このような構造の生体内移植材料は、移植部位やその周辺での瘢痕組織の肥大化や生体液の貯留が抑制され、低炎症性のものとなる。

【0033】

図1及び2に示すような層構成の複合体は、生体組織遮断性を有する（A）微多孔質または無孔質樹脂成形体1の大きさや形状を移植部の形状等に合わせて設計することができる。周辺に露出した多孔質樹脂成形体は、延伸倍率を高めることにより、引裂き強度を高めることができ、柔軟性も有している。

【0034】

本発明の生体内移植材料の他の具体例としては、いずれもシート状の（A）微多孔質または無孔質樹脂成形体及び（B）多孔質樹脂成形体を積層した複合体からなり、シート状の（B）多孔質樹脂成形体の一部がシート状の（A）微多孔質または無孔質樹脂成形体に形成した開口部から露出した構造を有するものを挙げることができる。このような構造を有する生体内移植材料の場合、2枚のシート状の（A）微多孔質または無孔質樹脂成形体の間に1枚のシート状の（B）多孔質樹脂成形体を挟み、2枚のシート状の（A）微多孔質または無孔質樹脂成形体のそれぞれに設けた開口部から（B）多孔質樹脂成形体の一部を単独で露出させた構造とすることが好ましい。

【0035】

例えば、図3に示すように、2枚のシート状の（A）微多孔質または無孔質樹脂成形体（部材A）のそれぞれに開口部を設け、これら2枚のシートの間に1枚のシート状の（B）多孔質樹脂成形体（部材B）を挟んで積層すると、3層構成

でかつ開口部から多孔質樹脂製形体が単独で露出した構造の生体内移植材料を得ることができる。開口部の大きさや形状は、移植部位の形状や生体組織遮断性とのバランスを考慮して適宜定めることができる。また、このような開口部は、1箇所だけではなく、複数箇所に形成することもできる。

【0036】

図3に示す3層構成の積層体は、(B)多孔質樹脂成形体が複合化されているため、引裂き強度が高く、縫合によって裂ける傾向が抑制される。また、(B)多孔質樹脂成形体が単独で露出しているため、その部分に生体組織が進入して一体化することができる。この露出部分が存在するために、生体組織との一体化が進んで瘢痕組織の肥大化が抑制されるとともに、生体液の貯留も抑制することができ、その結果、炎症性が顕著に低減された生体内移植材料とすることができます。

【0037】

2枚以上の樹脂成形体を積層して一体化するには、高温でプレスする方法、接着性樹脂を用いて貼り合わせる方法などを採用することができる。例えば、樹脂材料としてPTFEを用いる場合には、(A)微多孔質または無孔質のPTFEシートと、(B)多孔質の延伸PTFEシートをPTFEの融点以上の温度でプレスすることにより接着させることができる。また、FEP、PFAなどの熱溶融性フッ素樹脂を介在させ、積層界面に熱溶融性フッ素樹脂を溶融浸透させることにより接着させてもよい。

【0038】

本発明の生体内移植材料は、生体組織遮断性を実質的に維持しながら、多孔質樹脂成形体を部分的に露出させることにより、生体組織の進入による一体化を図り、それらによって、移植部位またはその周辺部での瘢痕組織の肥大化と生体液の貯留を抑制することができる。また、各樹脂成形体を積層により複合体とすることによって、引裂き強度を高め、縫合操作を容易にすることができる。部分的に露出した多孔質樹脂成形体が生体組織と一体化することにより、生体内移植材料を生体内に強固に保持することができる。生体組織遮断性を有する微多孔質または多孔質性形体の部分は、移植部位に接触させることにより、移植部位への癒

着や生体組織の過度な進入を防ぐことができる。

【0039】

【実施例】

以下、本発明について、実施例及び比較例を挙げてより具体的に説明する。なお、実施例では、小動物を用いたモデル実験により本発明の原理を検証する方法を採用しているため、生体内移植材料は、評価に便利なサイズ及び形態としている。本発明は、これらの実施例のみに限定されるものではない。物性の測定方法は、以下の通りである。

【0040】

(1) 孔径：

分離膜として使用したときに、粒子が材料壁内にあまり侵入せず、捕集可能な最小粒子径で表される孔径のことである。より具体的には、各平均粒子径の球形粒子を含有する懸濁液を用いて微多孔質または多孔質シートを濾過させた後、90%以上の粒子をカットできる最小粒子径を孔径とした。

【0041】

(2) バブルポイント：

延伸P T F E多孔質体をイソプロピルアルコールに含浸し、管壁の孔内をイソプロピルアルコールで充満した後、一方の面より徐々に空気圧を負荷したときに初めて気泡が反対面より出てくるときの圧力を測定した。

【0042】

(3) 気孔率：

延伸P T F E多孔質体の乾燥重量と水中重量の差より体積を求めた。乾燥重量とP T F Eの真比重を2.25 g / c cとして樹脂の容積を算出した。樹脂の容積を除いた空隙容積が全体の体積のどのくらいを占めるのかを%表示し、気孔率とした。

【0043】

(4) 埋植評価方法：

実験動物には、11週齢のSDラット（雄）を用いた。1匹に対し2サンプルを背皮下に埋植した。このとき個体差の影響を抑えるために、1匹には同じ種類

のサンプルが重ならないように埋植した。また、埋植部位の違いによる差を考慮し、各サンプルとも広背筋付近、大殿筋付近の2箇所に $n = 3$ (全 $n = 6$) ずつとなるように埋植した。埋植したサンプルは、4週間経過後に摘出した。比較例4では、ラット4個体にそれぞれ比較例4のサンプルを1つのみ埋植して評価を行った。

【0044】

(5) 炎症性評価：

ラット背皮下にサンプルを埋植し、閉創後4週間後にサンプルの周囲組織ごと摘出した時に、肉眼で組織の状態等を観察した。また、サンプルの一部を切り出してホルマリン固定後、脱水パラフィンに置換し、パラフィンブロックに包埋した。次に、プレパラートに $7 \mu\text{m}$ の厚さの切片を載せ、HE染色を行った後、光学顕微鏡で観察を行った。炎症性の評価としては、周囲組織が厚いか薄いかで判断した。サンプルによっては激しい炎症によって、移植片と周囲組織との間に粘液状の体液が溜まった例が存在したため、その例数をカウントした。

【0045】

(6) 生体組織と一体化し固定化される機能を付与した部分についての生体組織一体化程度評価方法：

摘出したサンプルを周囲組織が付いた状態で平板に接着剤で固定した。平板上で治癒組織が自由に侵入し生体組織と一体化し固定化される機能を付与した部分を、付着した周囲組織ごとメスとノギスを用いて幅が10mmになるように調整した。その後、ピンセットで延伸PTFE多孔質体を組織から部分的に剥がして掴みしろとし、180度剥離方式によって20mm/分の速度で25mmサンプルを引っ張って剥離した。

【0046】

この時に記録された最大荷重をサンプルの幅(10mm)で割った値の平均値を剥離強度とした。引張試験機には島津製作所製オートグラフAG500Eを使用し、一連の測定操作中、サンプルが乾燥しないように生理食塩水を滴下しながら行った。炎症が激しくサンプルと周囲組織の間に粘液状の体液が溜まった例については、周囲組織がサンプルと解離していたので剥離強度は測定していない。

剥離強度が高いほど一体化傾向が高い。

【0047】

また、炎症性評価に用いた病理切片の観察により、組織侵入の度合いにより一体化の程度を判断した。光学顕微鏡では観察不可能なコラーゲン線維束等の侵入の有無については、臨界点乾燥を行った後、走査型電子顕微鏡で多孔質体断面の観察を行って判定した。

【0048】

[実施例1]

P T F E ファインパウダー（旭硝子工業製、商品名「C D 4」）100重量部にナフサを約20重量部の割合で配合し、5時間以上放置して馴染ませた後、T型ダイスを通してシート状に押し出し、さらに、ロール圧延した。成形物の形状を固定した状態で340℃以上の温度に加熱して焼結し、厚さ約 $40\mu m$ の無孔質で半透明のP T F E シートを作製した。無孔質P T F E シートを図3 (a) に示すように、縦40mm、横30mmの長方形で、かつ中心部に縦20mm、横10mmの長方形の開口部を有する枠状に切り出して、部材A（生体組織遮断性部材）とした。

【0049】

他方、孔径 $10\mu m$ の延伸P T F E 多孔質体シート（住友電気工業製、商品名「ポアフロンWP-1000」、厚さ約 $100\mu m$ 、捕集可能な粒子径 $10\mu m$ 以上）を図3 (b) に示すように、縦40mm、横30mmの長方形に切り出して、部材B（生体組織一体化部材）とした。

【0050】

図3 (c) に示すように、2枚の部材Aの間に1枚の部材Bを挟み、360℃以上に加熱したステンレス鋼製の板に挟んでプレスしながら加熱融着し一体化させた。このようにして、延伸P T F E 多孔質体シートが単独で露出する部分を有する生体内移植材料を作製した。

【0051】

ラットに移植した移植サンプルについて、部材Bへの生体組織の進入、周囲組織の一体化の度合いを観察したところ、細胞の進入が良好で、毛細血管も発達し

ていた。SEM観察では、生体組織は周囲組織と多孔質壁内で完全に連続しており、壁内組織と外部組織との境目が見分けることができなかった。結果を表1に示す。

【0052】

[実施例2]

部材Bとして、孔径 $3\text{ }\mu\text{m}$ の延伸PTFE多孔質体シート（住友電気工業製、商品名「ポアフロンWP-300」、厚さ約 $100\text{ }\mu\text{m}$ 、孔径 $3\text{ }\mu\text{m}$ 、捕集可能な粒子径 $3\text{ }\mu\text{m}$ 以上）を用いた他は、実施例1と同様にして生体内移植材料を作製した。

【0053】

ラットに移植した移植サンプルについて、部材Bへの生体組織の進入、周囲組織の一体化の度合いを観察したところ、細胞の進入が良好で、毛細血管も発達していた。SEM観察では、生体組織は周囲組織と多孔質壁内で完全に連続しており、壁内組織と外部組織との境目が見分けることができなかった。結果を表1に示す。

【0054】

[実施例3]

部材Bとして、孔径 $1\text{ }\mu\text{m}$ の市販PTFE多孔質体シート（住友電気工業製、種品名「ポアフロンWP-100」、厚さ約 $100\text{ }\mu\text{m}$ 、捕集可能な粒子径 $1\text{ }\mu\text{m}$ 以上）を用いた他は、実施例1と同様にして生体内移植材料を作製した。

【0055】

ラットに移植した移植サンプルについて、部材Bへの生体組織の進入、周囲組織の一体化の度合いを観察したところ、細胞の進入が確認された。SEM観察では、生体組織は周囲組織と多孔質壁内で完全に連続しており、壁内組織と外部組織との境目が見分けることができなかった。結果を表1に示す。

【0056】

[実施例4]

部材Bとして、孔径 $0.45\text{ }\mu\text{m}$ の延伸PTFE多孔質体シート（住友電気工業製、商品名「ポアフロンWP-045-80」、厚さ約 $80\text{ }\mu\text{m}$ 、捕集可能な

粒子径0.45μm以上)を用いた他は、実施例1と同様にして生体内移植材料を作製した。

【0057】

ラットに移植した移植サンプルについて、部材Bへの生体組織の進入、周囲組織の一体化の度合いを観察したところ、細胞の進入はないが、SEM観察では太い線維束の進入が確認された。結果を表1に示す。

【0058】

[比較例1]

部材Bとして、孔径0.20μmの延伸PTFE多孔質体シート(住友電気工業製、商品名「ポアフロンWP-020-80」、厚さ約80μm、捕集可能な粒子径0.2μm以上)を用いた他は、実施例1と同様にして生体内移植材料を作製した。

【0059】

ラットに移植した移植サンプルについて、部材Bへの生体組織の進入、周囲組織の一体化の度合いを観察したところ、細胞の进入はないが、SEM観察では比較的細い線維の进入があった。結果を表1に示す。

【0060】

[比較例2]

部材Bとして、孔径0.10μmの延伸PTFE多孔質体シート(住友電気工業製、商品名「ポアフロンWP-010-80」、厚さ約80μm、捕集可能な粒子径0.1μm以上)を用いた他は、実施例1と同様にして生体内移植材料を作製した。

【0061】

ラットに移植した移植サンプルについて、部材Bへの生体組織の進入、周囲組織の一体化の度合いを観察したところ、細胞の进入はないが、SEM観察では比較的細い線維の进入があった。結果を表1に示す。

【0062】

[比較例3]

部材Bとして、孔径0.05μmの延伸PTFE多孔質体シート(住友電気工

業製、商品名「ポアフロンWP-005-80」、厚さ約 $80\mu\text{m}$ 、捕集可能な粒子径 $0.05\mu\text{m}$ 以上)を用いた他は、実施例1と同様にして生体内移植材料を作製した。

【0063】

ラットに移植した移植サンプルについて、部材Bへの生体組織の進入、周囲組織の一体化の度合いを観察したところ、細胞の進入はないが、SEM観察では比較的細い線維の進入があった。結果を表1に示す。

【0064】

[比較例4]

市販の生体組織遮断性シート心膜パッチ(ゴア社製、商品名「ゴアテックス心膜用EPTFEパッチII」、厚さ $100\mu\text{m}$)を図3(b)の形状に切り出した。ラットに移植した移植サンプルについて、部材Bへの生体組織の進入、周囲組織の一体化の度合いを観察したところ、細胞の进入はないが、SEM観察では比較的細い線維の进入があった。結果を表1に示す。

【0065】

【表1】

表1

	実施例1	実施例2	実施例3	実施例4	比較例1	比較例2	比較例3	比較例4
<u>部材A</u>	無孔質 無孔質 無孔質 80	- - - 100						
孔径(μm)	10	3	1	0.45	0.2	0.1	0.05	-
気孔率(%)	88	86	86	81	70	84	-	67
バブルポイント(kgf/cm ²)	0.05	0.18	0.33	0.70	1.15	2.20	5.00	1.80
厚さ(μm)	100	100	100	80	80	80	80	100
<u>部材Bと周囲組織間の剥離強度(gf/mm)</u>	7.64	4.39	4.03	1.90	1.30	1.07	0.39	0.76
部材Bへの組織侵入、周囲組織との一体化の度合	細胞の侵入良好	細胞の侵入良好	細胞の侵入あり	太い線維束の侵入	比較的細い線維束の侵入	比較的細い線維束の侵入	比較的細い線維束の侵入	比較的細い線維束の侵入
移植片全体を包む治癒周囲組織の厚さ度合	非常に薄い	非常に薄い	薄い	薄い	厚い	厚い	厚い	厚い
移植片と周囲組織の間に粘液状の体液が溜まつた例の数	0	0	0	0	3	3	3	1
	(移植数6)	(移植数4)						

【0066】

表1に全サンプルの動物評価結果を示したが、生体組織と馴染まない生体組織遮断性を有する部材単独またはそれらを組み合わせて複合化したサンプル（比較例1～4）では、移植片周囲の治癒組織が厚く、さらには、移植片と周囲組織との間に粘り気のある体液が貯留する例が半数程度あった。

【0067】

これに対して、生体組織と馴染まない生体組織遮断性の部材と生体組織が侵入し周囲組織と一体化し固定化される多孔質部材とを組み合わせて複合化したサンプル（実施例1～4）では、移植片全体を包む周囲治癒組織は半透明状で薄く、非炎症性を示した。

【0068】

以上のことから生体組織遮断性の生体内移植材料において、治癒組織が自由に侵入し生体組織と一体化し固定化される機能を部分的に付与することによって、炎症性を大幅に低減させることが可能であることが分かる。

【0069】

【発明の効果】

本発明によれば、合成樹脂成形体からなり、実質的に生体組織遮断性を有することに加えて、移植部位やその周辺部での瘢痕組織の肥大化や生体液の貯留等に見られる炎症を顕著に抑制することができる生体内移植材料が提供される。

【0070】

本発明の生体内移植材料は、生体組織遮断性を実質的に維持しながら、部分的な生体組織の進入による一体化を達成することができ、それによって、移植部位またはその周辺部での瘢痕組織の肥大化と生体液の貯留等に見られる炎症を抑制することができる。各樹脂成形体を積層により複合体とすることによって、引裂き強度を高め、縫合操作を容易にすることができます。部分的に露出した多孔質樹脂成形体が生体組織と一体化することにより、生体内移植材料を生体内に強固に保持することができる。

【図面の簡単な説明】

【図1】

本発明の生体内移植材料の一例を示す正面図である。

【図2】

本発明の生体内移植材料の一例を示す断面図である。

【図3】

本発明の生体内移植材料の他の一例の構成を示す略図である。図3 (a) は、
枠状に切り出した部材Aを示し、(b) は、長方形に切り出した部材Bを示し、
(c) は、積層構成を示す。

【符号の説明】

1：微多孔質または無孔質樹脂成形体、

2：多孔質樹脂成形体、

A：微多孔質または無孔質樹脂成形体、

B：多孔質樹脂成形体。

【書類名】

図面

【図1】

【図2】

【図3】

部材A

部材B

(c)

部材A

部材B

部材A

【書類名】 要約書

【要約】

【課題】 実質的に生体組織遮断性を有することに加えて、移植部位やその周辺部での瘢痕組織の肥大化や生体液の貯留等に見られる炎症を顕著に抑制することができる生体内移植材料を提供すること。

【解決手段】 孔径が $0.45\text{ }\mu\text{m}$ 未満の微多孔質または無孔質で生体組織遮断性を有する樹脂成形体と、孔径が $0.45\text{ }\mu\text{m}$ 以上の多孔質で生体組織進入性を有する樹脂成形体との複合体からなり、多孔質樹脂成形体の一部が露出して、該露出部に生体組織が進入可能な構造を有する生体内移植材料。

【選択図】 図3

特願 2003-186475

出願人履歴情報

識別番号

[000002130]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住 所

大阪府大阪市中央区北浜四丁目5番33号

氏 名

住友電気工業株式会社