1	
2 3 4	CLAIMS:
5	1. A drill, comprising:
6	
7	a tubular outer housing having a bore extending along a longitudinal axis;
8	
9	a tubular inner housing mounted in the bore for reciprocal movement along the axis
10	between retracted and extended positions;
11	
12	a pneumatic motor assembly having a chuck adapted to receive a drill bit for rotation
13	therewith, the motor assembly being carried in the inner housing for axial movement
14	therewith; and
15	
16	an annular pneumatic cylinder between the inner housing and the outer housing for
17	supplying pressure to move the inner housing between the retracted and extended positions.
18	
19	2. The drill according to claim 1, further comprising:
20	
21	a sealed annular fluid restrictor located between the inner housing and the outer housing
22	for containing a hydraulic fluid for controlling a rate of axial movement of the inner housing
23	relative to the outer housing.

1	3. The drill according to claim 1, further comprising:
2	
3	an annular forward piston mounted to the inner housing for axial movement therewith
4	and in sealing engagement with the bore of the outer housing;
5	
6	a stationary seal fixed to the outer housing, sealingly engaging the inner housing and
7	located rearward of the forward piston, defining an annular forward restrictor chamber
8	therebetween for containing hydraulic fluid;
9	
10	an annular intermediate piston mounted to the inner housing for axial movemen
11	therewith, sealingly engaging the bore of the outer housing and located rearward of the
12	stationary seal, defining a rearward restrictor chamber therebetween for containing hydraulic
13	fluid;
14	
15	a bypass passage extending between the forward and rearward restrictor chambers for
16	allowing hydraulic fluid between the chambers as the inner housing moves axially; and
17	
18	an adjustable orifice in the bypass passage to selectively increase and decease the flow
19	rate of the hydraulic fluid through the bypass passage.
20	
21	4. The drill according to claim 1, wherein the pneumatic cylinder comprises:

1	an annular piston mounted to the inner housing for movement therewith and in sealing
2	engagement with a portion of the bore of the outer housing, defining an annular pneumatic
3	chamber; and
4	
5	a port for delivering air pressure to the pneumatic chamber on one side of the pneumatic
6	piston to cause the inner housing to move from one of the positions to the other of the
7	positions.
8	
9	5. The drill according to claim 1, wherein the pneumatic cylinder comprises:
10	
11	an annular feed piston mounted to the inner housing for movement therewith and in
12	sealing engagement with the bore of the outer housing, defining an annular feed chamber;
13	
14	a feed port for delivering air pressure to the feed chamber to cause the inner housing to
15	move to the extended position;
16	
17	an annular retract piston mounted to the inner housing for movement therewith and in
18	sealing engagement with the bore of the outer housing, defining an annular retract chambers
19	and
20	
21	a retract port for delivering air pressure to the retract chamber to cause the inner housing
22	to move to the retracted position.
23	

1	6. The drill according to claim 1, further comprising.
2	•
3	a sensor assembly that provides a signal when the inner housing begins to move from the
4	retracted position and also provides a signal when the inner housing reaches the extended
5	position; and
6	
7	a processor for receiving the signals and determining the amount of time between the
8	signals.
9	
10 .	
11	7. The drill according to claim 1, further comprising:
12	
13	a sensor assembly that provides a signal when the inner housing begins to move from the
14	retracted position and also provides a signal when the inner housing reaches the extended
15	position; and
16	
17	a processor for receiving the signals, for determining the elapsed time between the
18	signals, comparing the elapsed time to a predetermined reference, and providing an indication
19	when the elapsed time determined exceeds the reference.
20	
21	8. The drill according to claim 1, further comprising:
22	
23	at least one dome member sealingly mounted within a cavity;

1	
2	an electrical contact adjacent the dome member, the dome member being resilient and
3	deflectable into engagement with the electrical contact;
4	
5	an electronic circuit cooperatively engaged with the electrical contact for detecting when
6	the electrical contact is engaged by the dome member; and
7	
8	a pneumatic passage extending from the pneumatic cylinder assembly to the cavity for
9	delivering air pressure to the cavity upon initial movement of the inner housing from the
10	retracted position to cause the dome member to deflect into engagement with the contact.
11	
12	9. The drill according to claim 1, further comprising:
13	
14	a feed dome member and a retract dome member, each sealingly mounted within a
15	cavity;
16	
17	an electrical contact adjacent each of the dome members, each of the dome members
18	being resilient and deflectable into engagement with the electrical contact;
18 19	being resilient and deflectable into engagement with the electrical contact;
	being resilient and deflectable into engagement with the electrical contact; an electronic circuit cooperatively engaged with the electrical contacts for detecting when
19	

1	a feed air passage extending from the pneumatic cylinder assembly to the cavity
2	containing the feed dome member for delivering air pressure to the cavity containing the feed
3	dome member upon initial movement of the inner housing from the retracted position
4	causing the feed dome member to deflect; and
5	
6	a retract air passage extending from the pneumatic cylinder assembly to the cavity
7	containing the retract dome member for delivering air pressure to the cavity containing the
8	retract dome member when the inner housing reaches the extended position, causing the
9	retract dome member to deflect.
10	
11	10. The drill according to claim 1, further comprising:
12	
13	a retract valve mounted to the outer housing;
14	
15	a rod extending from the inner housing for movement therewith;
16	
17	a contact plate mounted to the rod for contacting the retract valve at the completion of the
18	extended position;
19	
20	a retract passage leading from the retract valve to the pneumatic cylinder assembly; and
21	wherein
22	
23	the contact plate is adjustable along the rod to select a stroke length.

1	
2	11. A drill, comprising:
3	
4	a tubular outer housing having a bore extending along a longitudinal axis;
5	
6	a tubular inner housing mounted in the bore for reciprocal movement along the axis
7	between retracted and extended positions;
8	
9	a pneumatic motor assembly having a chuck adapted to receive a drill bit for rotation
10	therewith, the motor assembly being carried in the inner housing for axial movement
11	therewith;
12	
13	an annular feed piston extending around the inner housing for movement therewith and
14	sealingly engaging the bore of the outer housing;
15	
16	a feed air inlet for applying air pressure to a rearward side of the feed piston to cause the
17	feed piston and the inner housing to move forward to the extended position;
18	
19	annular forward and rearward restrictor chambers between the inner and the outer housing
20	for containing hydraulic fluid;
21	
22	a bypass passage extending between the forward and rearward restrictor chambers, the
23	bypass passage having a variable orifice therein; and

1	
2	wherein forward movement of the inner housing causes flow between the forward and
3	rearward restrictor chambers through the bypass passage.
4	
5	12. The drill according to claim 11, wherein a rearward end of the rearward restrictor
6	chamber is defined by the feed piston, and forward movement of the feed piston causes flow
7	of hydraulic fluid through the bypass passage.
8	
9	13. The drill according to claim 11, further comprising an annular retract piston mounted to
10	the inner housing rearward of the feed piston for movement therewith and sealingly engaging
11	the bore, defining a retract chamber;
12	
13	a retract air inlet for supplying air pressure to the retract chamber; and
14	
15	a valve assembly for removing air pressure from the feed air inlet and causing air
16	pressure to be supplied to the retract air inlet.
17	
18	14. The drill according to claim 11, wherein the air pressure supplied to the feed air inlet is
19	independent of air pressure supplied to the pneumatic motor assembly.
20	
21	15. A drill, comprising:
22	
23	a tubular outer housing having a bore extending along a longitudinal axis;

•	
2	a tubular inner housing mounted in the bore for reciprocal movement along the axis
3	between retracted and extended positions;
4	
5	a pneumatic motor assembly having a chuck adapted to receive a drill bit for rotation
6	therewith, the motor assembly being carried in the inner housing for axial movement
7	therewith;
8	
9	an annular feed piston extending around the inner housing for movement therewith and
10	sealingly engaging the bore of the outer housing;
11	
12	an annular feed chamber stationary seal fixed to the bore of the outer housing rearward of
13	the feed piston, defining a feed chamber therebetween;
14	
15	an annular retract piston extending around the inner housing for movement therewith
16	rearward of the feed piston and sealingly engaging the bore of the outer housing, the retract
17	piston having a smaller pressure area than the feed piston;
18	
19	an annular retract chamber stationary seal fixed to the bore of the outer housing forward
20	of the retract piston, defining a retract chamber therebetween; and
21	
22	a pneumatic valve assembly for continually supplying air pressure to the retract chamber
23	and for selectively supplying air pressure to the feed chamber to cause the feed piston to

HOUSTON\1595209.1 27

1	move the inner housing forwardly, and for removing air pressure from the feed chamber to
2	cause the retract piston to move the inner housing rearwardly.
3	
4	16. The drill according to claim 15, wherein the valve assembly supplies air pressure to the
5	feed chamber independent of air pressure supplied to the pneumatic motor assembly.
6	
7	17. The drill according to claim 15, wherein the valve assembly comprises:
8	a shuttle valve having an open position for supplying air pressure to the feed chamber and
9	a closed position that bleeds air pressure from the feed chamber.
10	
11	18. The drill according to claim 15, wherein the valve assembly comprises:
12	a shuttle valve having a feed position for supplying air pressure to the feed chamber and a
13	retract position that bleeds air pressure from the feed chamber, the shuttle valve having a feed
14	pilot inlet and a retract pilot inlet;.
15	a normally closed feed valve that when manually opened supplies a pilot pressure pulse to
16	the feed pilot inlet to cause the shuttle valve to move to the feed position;
17	a retract valve that when actuated delivers a pilot pulse to the retract pilot inlet to initiate
18	movement of the shuttle valve to the retract position; and
19	a striker member mounted to the inner housing for contact with the retract valve when the
20	inner housing reaches an end of a feed stroke.
21	
22	19. The drill according to claim 15, further comprising an emergency valve incorporated
23	with the valve assembly, that when manually depressed, bleeds air pressure from the feed

1	chamber to stop feed movement, the air pressure contained within the retract chamber thereby
2	moving the inner housing to the retracted position.
3	
4	20. A drill, comprising:
5	
6	a tubular outer housing having a bore extending along a longitudinal axis;
7	
8	a tubular inner housing mounted in the bore for reciprocal movement along the axis
9	between retracted and extended positions;
10	
11	a pneumatic motor assembly having a chuck adapted to receive a drill bit for rotation
12	therewith, the motor assembly being carried in the inner housing for axial movement
13	therewith;
14	
15	an annular forward piston mounted to the inner housing for axial movement therewith
16	and in sealing engagement with the bore of the outer housing;
17	
18	a stationary forward seal fixed to the outer housing, sealingly engaging the inner housing
19	and located rearward of the forward piston, defining an annular forward restrictor chamber
20	therebetween for containing hydraulic fluid;
21	

1	an annular feed piston mounted to the inner housing for axial movement therewith, in
2	sealing engagement with the bore of the outer housing, and located rearward of the stationary
3	seal, defining a rearward restrictor chamber therebetween for containing hydraulic fluid;
4	
5	a pneumatic chamber located on the rearward side of the feed piston for moving the inner
6	housing forward;
7	
8	a bypass passage extending between the forward to the rearward restrictor chambers for
9	allowing hydraulic fluid between the chambers as the inner housing moves forward; and
10	
11	an adjustable orifice in the bypass passage to selectively increase and decease the flow
12	rate of the hydraulic fluid through the bypass passage;
13	
14	21. A drill, comprising:
15	
16	a frame having a longitudinal axis;
17	
18	a motor assembly having a chuck adapted to receive a drill bit for rotation therewith, the
19	motor being carried by the frame for movement relative to the frame;
20	
21	a pneumatic cylinder assembly mounted between the motor assembly and the frame for
22	moving the motor assembly axially relative to the frame between extended and retracted
23	positions;

1	
2	a start feed dome member sealingly mounted within a start feed cavity of the drill;
3	
4	a start feed electrical contact adjacent the start feed dome member, the start feed dome
5	member being resilient and deflectable into engagement with the start feed electrical contact;
6	
7	an electronic circuit cooperatively engaged with the start feed electrical contact for
8	initiating a timer when the start feed electrical contact is engaged by the start feed dome
9	member; and
10	
11	a start feed pneumatic passage extending from the pneumatic cylinder assembly to the
12	start feed cavity for delivering a start feed pulse of air pressure to the cavity upon initial
13	movement of the motor assembly from the retracted position, the start feed pulse causing the
14	start feed dome member to deflect.
15	
16	22. The drill according to claim 20, further comprising:
17	
18	a stop feed dome member sealingly mounted within a stop feed cavity of the drill;
19	
20	a stop feed electrical contact adjacent the stop feed dome member, the stop feed dome
21	member being resilient and deflectable into engagement with the electrical contact;
22	

I	the electronic circuit being cooperatively engaged with the stop feed electrical confact for
2	stopping the timer when the stop feed electrical contact is engaged by the stop feed dome
3	member; and
4	
5	a pneumatic passage extending from the pneumatic cylinder assembly to the stop feed
6	cavity for delivering a stop feed pulse of air pressure to the cavity upon the motor assembly
7	reaching the extended position, the stop feed pulse causing the stop feed dome member to
8	deflect.
9	
10	23. A method of drilling a hole in a workpiece, comprising:
11	
12	mounting a tubular inner housing within a bore of a tubular outer housing;
13	
14	mounting a motor assembly in the inner housing;
15	
16	providing an annular pneumatic cylinder between the inner housing and the outer
17	housing;
18	
19	inserting a drill bit into a chuck of the motor assembly; and
20	
21	supplying air pressure to the motor assembly to rotate the chuck and to the pneumatic
22	cylinder to move the inner housing between the retracted and extended positions.
23	

HOUSTON\1595209.1 32

1	24. The method according to claim 23, further comprising:
2	
3	providing forward and rearward sealed annular fluid restrictor chambers between the
4	inner housing and the outer housing containing hydraulic fluid;
5	
6	providing a bypass passage between the forward and rearward chambers;
7	
8	while moving the inner housing forward, causing allowing hydraulic fluid to flow from
9	the forward chamber through the bypass passage to the rearward chamber to limit the speed
10	of the movement to the extended position; and
11	
12	adjusting the flow rate of the hydraulic fluid through the bypass passage to select a
13	desired speed.
14	
15	
16	25. A method of drilling a hole in a workpiece, comprising:
17	
18	mounting a motor assembly to a frame;
19	
20	mounting a pneumatic cylinder assembly between the motor assembly and the frame;
21	
22	installing at least one the dome member within a cavity of a drill, the dome member being
23	resilient and deflectable into engagement with an electrical contact;

1	
2	connecting an electronic circuit with the electrical contact;
3	
4	inserting a drill bit into a chuck of the motor assembly;
5	
6	delivering air pressure to the pneumatic cylinder assembly to cause the motor assembly to
7	rotate and to move the motor assembly from a retracted position to an extended position;
8	
9	delivering a pulse of air pressure to the cavity upon initial movement of the motor
10	assembly from the retracted position, causing the dome member to deflect into engagement
11	with the contact; and
12	
13	with the electronic circuit, detecting the engagement of the dome member with the
14	contact.
15	
16	26. A method of drilling a hole in a workpiece, comprising:
17	
18	mounting a motor assembly to a frame;
19	
20	mounting a pneumatic cylinder assembly between the motor assembly and the frame;
21	
22	inserting a drill bit into a chuck of the motor assembly;
23	

1	delivering air pressure to the pneumatic cylinder assembly to cause the motor assembly to
2	rotate and to move the motor assembly from a retracted position to an extended position;
3	
4	determining the elapsed time that it took for the motor assembly to move from the
5	retracted position to the extended position;
6	
7	comparing the elapsed time determined to a reference time; and
8	
9	providing an indication if the elapsed time exceeds the reference time.
10	
11	27. The method according to claim 26, further comprising:
12	
13	recording a sequential number of cycles of movement of the motor assembly from the
14	retracted to the extended positions.
15	
16 17	