From ICSDS @ Nice, France December, 2024

Shifts in distribution, covariates, prior probability, etc

1. Huang MY, Qing J, Huang CY (2024) ` Efficient Data Integration Under Prior Probability Shift," Biometrics, 2024, Mar 27, 80(2).

https://pubmed.ncbi.nlm.nih.gov/38768225/https://profiles.ucsf.edu/chiung-yu.huang

Distribution-free prediction intervals under covariate shift, with an application to causal inference. Journal of the American Statistical Association. 2024. Qin J, Liu Y, Li M, **Huang C**Y.

2. Ying Jin, Naoki Egami, and Dominik Rothenhausler (2024) "Beyond Reweighting: On the Predictive Role of Covariate Shift in Effect Generalization"

https://arxiv.org/pdf/2412.08869 https://sites.google.com/view/rothenhaeusler/home

Some slides for the first talk:

Huang MY, Qing J, **Huang CY** (2024) ``Efficient Data Integration Under Prior Probability Shift," Biometrics, 2024, Mar 27, 80(2).

General Dataset Shift Models

- ► Notation

 - $\begin{array}{l} \bullet \ \, (Y_1,\mathbf{X}_1) \sim f_1(y,\mathbf{x}) \ \, \text{from training data} \\ \bullet \ \, (Y_2,\mathbf{X}_2) \sim f_2(y,\mathbf{x}) \ \, \text{from testing data} \end{array}$
- ► A general dataset shift model

$$f_2(y, \mathbf{x}) = \frac{w(y, \mathbf{x})f_1(y, \mathbf{x})}{\int \int w(u, v)f_1(u, v)dudv}$$

or, equivalently, $f_2(y,\mathbf{x}) \propto w(y,\mathbf{x}) f_1(y,\mathbf{x})$

- $lackbox{}{} w(y,\mathbf{x})$ can be viewed as sampling weight function
 - Covariate shift: $w(y,\mathbf{x}) \equiv w(\mathbf{x}) \Rightarrow f_1(y\mid \mathbf{x}) = f_2(y\mid \mathbf{x})$ Prior probability shift: $w(y,\mathbf{x}) \equiv w(y) \Rightarrow f_1(\mathbf{x}\mid y) = f_2(\mathbf{x}\mid y)$ $f_1(y\mid \mathbf{x}) \neq f_2(y\mid \mathbf{x})$
 - Concept shift: e.g. $w(y, \mathbf{x}) = w_1(y)w_2(\mathbf{x});$ $w(y,\mathbf{x}) = w(y,\mathbf{x};\gamma)$

Data and Model Setup

► Two datasets

$$\mathcal{D}_1 = \{ (\mathbf{X}_{1i}, Y_{1i}) : i = 1, \dots, n_1 \}$$

$$\mathcal{D}_2 = \{ (\mathbf{X}_{2i}, Y_{2i}) : i = 1, \dots, n_2 \}$$

- ► Assume prior probability shift between \mathcal{D}_1 and \mathcal{D}_2 : $f_1(\mathbf{x} \mid y) = f_2(\mathbf{x} \mid y)$
- ▶ Assumed parametric model for \mathcal{D}_1 : $f(y \mid \mathbf{x}; \theta)$
- \blacktriangleright Consider efficient estimation of θ under prior probability shift with $\mathcal{D}_1 \cup \mathcal{D}_2$

Likelihood Under Prior Probability Shift

- lacksquare Suppose $X_1 \sim dG_1(\mathbf{x})$ and $Y_2 \sim F_2(y)$
- ▶ Apply Bayes Rule and under prior probability shift

$$f_1(\mathbf{x} \mid y) = \frac{f_1(y \mid \mathbf{x}; \boldsymbol{\theta}) dG_1(\mathbf{x})}{\int f_1(y \mid u; \boldsymbol{\theta}) dG_1(u)}$$

$$\begin{array}{lcl} f_2(y,\mathbf{x}) & = & f_2(\mathbf{x} \mid y) dF_2(y) \\ \\ & = & \frac{f_1(y \mid \mathbf{x}; \boldsymbol{\theta}) dG_1(\mathbf{x})}{\int f_1(y \mid u; \boldsymbol{\theta}) dG_1(u)} dF_2(y) \end{array}$$

Maximum Likelihood Estimation

- ▶ The MLE of F_2 is the empirical distribution, so $\widehat{q}_i = n_2^{-1}$.
- ▶ Profile likelihood: for each fixed θ , write

$$\widehat{\mathbf{p}}(\boldsymbol{\theta}) = \operatorname*{argmax}_{\mathbf{p} \in \mathcal{P}_n} \ell(\boldsymbol{\theta}, \mathbf{p}, \widehat{\mathbf{q}})$$

Lagrange function:

$$\mathcal{L}(\mathbf{p}, \eta) = \sum_{i=1}^{n} \log f(Y_i | \mathbf{X}_i; \theta) + \sum_{i=1}^{n} \log p_i$$
$$- \sum_{i=1}^{n_2} \log \sum_{j=1}^{n} f(Y_{2i} | \mathbf{X}_j; \theta) p_j + \eta \left(\sum_{i=1}^{n} p_i - 1 \right),$$

 η is the Lagrange multiplier.

Profile Likelihood Estimation

ightharpoonup For fixed $heta,\ \widehat{\mathbf{p}}(heta)$ solves

$$p_{i} = \left\{ n_{1} + \sum_{j=1}^{n_{2}} \frac{f(Y_{2j} \mid \mathbf{X}_{i}; \theta)}{\sum_{k=1}^{n} f(Y_{2j} \mid \mathbf{X}_{k}; \theta) p_{k}} \right\}^{-1}, \quad i = 1, \dots, n.$$

- \blacktriangleright The equations can be rewritten as p=T(p);
- ► Following a standard argument of fixed-point theory, the root can be obtained by iteratively computing $\mathbf{T}(\mathbf{p})$ with a proper initial point.

Prediction

 Y_k^{new} : outcome corresponding to a new subject with $\mathbf{X}_k^{\mathrm{new}}$

► Predict continuous response:

$$\widehat{Y}_1 = \int y f(y \,|\, \mathbf{X}_1^{\mathrm{new}}; \widehat{\boldsymbol{\theta}}) \mathrm{d}y \quad \text{and} \quad \widehat{Y}_2 = \frac{\int y f(y \,|\, \mathbf{X}_2^{\mathrm{new}}; \widehat{\boldsymbol{\theta}}) \mathrm{d}\widehat{R}(y)}{\int f(y \,|\, \mathbf{X}_2^{\mathrm{new}}; \widehat{\boldsymbol{\theta}}) \mathrm{d}\widehat{R}(y)}$$

where $d\widehat{R}(y) = d\widehat{F}_2(y) / \int f(y \mid \mathbf{x}; \widehat{\theta}) d\widehat{G}_1(\mathbf{x})$.

► Predict discrete response:

$$\widehat{Y}_1 = \underset{y \in \{y_1, \dots, y_K\}}{\operatorname{argmax}} f(y \,|\, \mathbf{X}_1^{\text{new}}; \widehat{\theta}) \quad \text{and} \quad$$

$$\widehat{Y}_2 = \mathop{\mathrm{argmax}}_{y \in \{y_1, \dots, y_K\}} \frac{f(y \,|\, \mathbf{X}_2^{\mathrm{new}}; \widehat{\theta}) \Delta \widehat{R}(y)}{\sum_{k=1}^K f(y_k \,|\, \mathbf{X}_2^{\mathrm{new}}; \widehat{\theta}) \Delta \widehat{R}(y_k)}$$

where $\Delta \hat{R}(y) = \Delta \hat{F}_2(y) / \int f(y \mid \mathbf{x}; \hat{\theta}) d\hat{G}_1(\mathbf{x})$.

Some Slides from the 2nd talk

