Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\madrid_2012.
df

Out[2]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL
0	2012- 09-01 01:00:00	NaN	0.2	NaN	NaN	7.0	18.0	NaN	NaN	NaN	2.0	NaN	NaN
1	2012- 09-01 01:00:00	0.3	0.3	0.7	NaN	3.0	18.0	55.0	10.0	9.0	1.0	NaN	2.4
2	2012- 09-01 01:00:00	0.4	NaN	0.7	NaN	2.0	10.0	NaN	NaN	NaN	NaN	NaN	1.5
3	2012- 09-01 01:00:00	NaN	0.2	NaN	NaN	1.0	6.0	50.0	NaN	NaN	NaN	NaN	NaN
4	2012- 09-01 01:00:00	NaN	NaN	NaN	NaN	1.0	13.0	54.0	NaN	NaN	3.0	NaN	NaN
210715	2012- 03-01 00:00:00	NaN	0.6	NaN	NaN	37.0	84.0	14.0	NaN	NaN	NaN	NaN	NaN
210716	2012- 03-01 00:00:00	NaN	0.4	NaN	NaN	5.0	76.0	NaN	17.0	NaN	7.0	NaN	NaN
210717	2012- 03-01 00:00:00	NaN	NaN	NaN	0.34	3.0	41.0	24.0	NaN	NaN	NaN	1.34	NaN
210718	2012- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	44.0	36.0	NaN	NaN	NaN	NaN	NaN
210719	2012- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	56.0	40.0	18.0	NaN	NaN	NaN	NaN
210720 rows × 14 columns													
										k			
4													•

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [5]:

```
df.columns
```

```
Out[5]:
```

In [6]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10916 entries, 6 to 210702
Data columns (total 14 columns):
    Column
             Non-Null Count Dtype
    -----
             -----
---
                             ----
0
    date
             10916 non-null object
 1
    BEN
             10916 non-null float64
 2
    CO
             10916 non-null float64
 3
    EBE
             10916 non-null float64
 4
    NMHC
             10916 non-null float64
 5
             10916 non-null float64
    NO
 6
    NO_2
             10916 non-null float64
 7
    0 3
             10916 non-null float64
 8
    PM10
             10916 non-null float64
 9
    PM25
             10916 non-null float64
 10
    SO_2
             10916 non-null float64
 11
    TCH
             10916 non-null float64
 12
    TOL
             10916 non-null float64
    station 10916 non-null int64
dtypes: float64(12), int64(1), object(1)
memory usage: 1.2+ MB
```

```
In [7]:
```

```
data=df[['BEN', 'TOL', 'TCH']]
data
```

Out[7]:

	BEN	TOL	тсн	
6	0.4	0.6	1.33	
30	0.4	0.5	1.33	
54	0.4	0.5	1.33	
78	0.3	0.4	1.34	
102	0.4	0.5	1.33	
210654	0.6	2.3	1.12	
210673	2.0	6.2	1.33	
210678	0.7	1.9	1.11	
210697	1.5	4.9	1.34	
210702	0.6	1.2	1.11	

10916 rows × 3 columns

Line chart

In [8]:

```
data.plot.line(subplots=True)
```

Out[8]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

In [9]:

data.plot.line()

Out[9]:

<AxesSubplot:>

Bar chart

In [10]:

b=data[0:50]

In [11]:

b.plot.bar()

Out[11]:

<AxesSubplot:>

Histogram

In [12]:

data.plot.hist()

Out[12]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [13]:

data.plot.area()

Out[13]:

<AxesSubplot:>

Box chart

In [14]:

data.plot.box()

Out[14]:

<AxesSubplot:>

Pie chart

In [15]:

```
b.plot.pie(y='BEN' )
```

Out[15]:

<AxesSubplot:ylabel='BEN'>

Scatter chart

In [16]:

```
data.plot.scatter(x='BEN' ,y='TOL')
```

Out[16]:

<AxesSubplot:xlabel='BEN', ylabel='TOL'>

In [17]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10916 entries, 6 to 210702
Data columns (total 14 columns):
 #
     Column
              Non-Null Count Dtype
     ----
              -----
 0
     date
              10916 non-null
                             object
 1
     BEN
              10916 non-null
                             float64
 2
     CO
              10916 non-null
                              float64
 3
     EBE
              10916 non-null
                              float64
 4
     NMHC
              10916 non-null
                             float64
 5
              10916 non-null
                             float64
     NO
 6
     NO 2
              10916 non-null
                             float64
 7
     0 3
              10916 non-null
                             float64
 8
     PM10
                             float64
              10916 non-null
 9
     PM25
              10916 non-null
                              float64
 10
     S0_2
              10916 non-null
                             float64
                             float64
 11
     TCH
              10916 non-null
 12
     TOL
              10916 non-null
                              float64
     station 10916 non-null
                             int64
dtypes: float64(12), int64(1), object(1)
memory usage: 1.2+ MB
```

```
In [18]:
```

```
df.describe()
```

Out[18]:

	BEN	СО	EBE	NMHC	NO	NO_2
count	10916.000000	10916.000000	10916.000000	10916.000000	10916.000000	10916.000000
mean	0.784014	0.279333	0.992213	0.215755	18.795529	31.262642
std	0.632755	0.167922	0.804554	0.075169	40.038872	27.234732
min	0.100000	0.100000	0.100000	0.050000	0.000000	1.000000
25%	0.400000	0.200000	0.500000	0.160000	1.000000	9.000000
50%	0.600000	0.200000	0.800000	0.220000	3.000000	24.000000
75%	0.900000	0.300000	1.200000	0.250000	18.000000	47.000000
max	7.000000	2.500000	9.700000	0.670000	525.000000	225.000000
4						>

In [19]:

```
df1=df[['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [20]:

sns.pairplot(df1[0:50])

Out[20]:

<seaborn.axisgrid.PairGrid at 0x18fd7c01760>

In [21]:

```
sns.distplot(df1['BEN'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[21]:

<AxesSubplot:xlabel='BEN', ylabel='Density'>

In [22]:

sns.heatmap(df1.corr())

Out[22]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

In [24]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [25]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[25]:

LinearRegression()

In [26]:

```
lr.intercept_
```

Out[26]:

28079017.331148606

In [27]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[27]:

Co-efficient BEN 4.053746 CO 21.639243 **EBE** -0.299229 **NMHC** 16.593507 NO -0.023593 NO_2 -0.115481 -0.031714 O_3 **PM10** 0.005100 **PM25** -0.057039 SO_2 -0.686152 **TCH** 1.976342 **TOL** -1.535403

```
In [28]:
```

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[28]:

<matplotlib.collections.PathCollection at 0x18fe4c39100>

ACCURACY

```
In [29]:
```

```
lr.score(x_test,y_test)
```

Out[29]:

0.6173246480033722

In [30]:

```
lr.score(x_train,y_train)
```

Out[30]:

0.626814373777909

Ridge and Lasso

In [31]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [32]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[32]:

Ridge(alpha=10)

Accuracy(Ridge)

```
In [33]:
rr.score(x_test,y_test)
Out[33]:
0.6123186216863385
In [34]:
rr.score(x_train,y_train)
Out[34]:
0.6228871250229713
In [35]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[35]:
Lasso(alpha=10)
In [36]:
la.score(x_test,y_test)
Out[36]:
0.37384023853831394
```

Accuracy(Lasso)

```
In [37]:
la.score(x_train,y_train)
Out[37]:
0.3655097139415614
```

Accuracy(Elastic Net)

```
In [38]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[38]:
```

ElasticNet()

```
In [39]:
en.coef_
Out[39]:
                                , -0.
array([ 0.
                                                0.
                                                              0.06620803,
       -0.08549274, -0.039121 , 0.
                                                0.
                                                           , -0.70807648,
                 , -0.71182233])
In [40]:
en.intercept_
Out[40]:
28079027.755586464
In [41]:
prediction=en.predict(x_test)
In [42]:
en.score(x_test,y_test)
Out[42]:
0.5392059744304518
```

Evaluation Metrics

```
In [43]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

3.4507079618543615 23.378308914389724

4.835112089123656

Logistic Regression

```
In [44]:
from sklearn.linear_model import LogisticRegression
In [45]:
```

```
In [46]:
feature_matrix.shape
Out[46]:
(10916, 10)
In [47]:
target_vector.shape
Out[47]:
(10916,)
In [48]:
from sklearn.preprocessing import StandardScaler
In [49]:
fs=StandardScaler().fit_transform(feature_matrix)
In [50]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[50]:
LogisticRegression(max_iter=10000)
In [51]:
observation=[[1,2,3,4,5,6,7,8,9,10]]
In [52]:
prediction=logr.predict(observation)
print(prediction)
[28079008]
In [53]:
logr.classes_
Out[53]:
array([28079008, 28079024], dtype=int64)
In [54]:
logr.score(fs,target_vector)
Out[54]:
0.9293697325027482
```

```
In [55]:
logr.predict_proba(observation)[0][0]
Out[55]:
1.0
In [56]:
logr.predict_proba(observation)
Out[56]:
array([[1.00000000e+00, 3.50349553e-26]])
Random Forest
In [57]:
from sklearn.ensemble import RandomForestClassifier
In [58]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[58]:
RandomForestClassifier()
In [59]:
parameters={'max_depth':[1,2,3,4,5],
            'min_samples_leaf':[5,10,15,20,25],
            'n_estimators':[10,20,30,40,50]
}
In [60]:
from sklearn.model_selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[60]:
GridSearchCV(cv=2, estimator=RandomForestClassifier(),
             param_grid={'max_depth': [1, 2, 3, 4, 5],
                          'min_samples_leaf': [5, 10, 15, 20, 25],
                          'n_estimators': [10, 20, 30, 40, 50]},
             scoring='accuracy')
In [61]:
grid_search.best_score_
Out[61]:
0.9646636937508478
```

In [62]:

```
rfc_best=grid_search.best_estimator_
```

In [63]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
\nvalue = [7, 9]\nclass = b'),
Text(4349.538461538462, 181.1999999999982, 'gini = 0.03\nsamples = 169
\nvalue = [263, 4]\nclass = a')]
```

Conclusion

Accuracy

Linear Regression:0.626814373777909

Ridge Regression:0.6228871250229713

Lasso Regression:0.3655097139415614

ElasticNet Regression:0.5392059744304518

Logistic Regression:0.9293697325027482

Random Forest: 0.9646636937508478

Random Forest is suitable for this dataset