

Hidden Markov Models

Example: The dishonest casino

A casino has two dice:

Fair die

$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$$

Loaded die

$$P(1) = P(2) = P(3) = P(4) = P(5) = 1/10$$

 $P(6) = 1/2$

Casino player switches between fair and loaded die with probability 1/20 at each turn

Game:

- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2

Question # 1 – Decoding

GIVEN

A sequence of rolls by the casino player

124552646214614613613<mark>6661664661636616366163616</mark>515615115146123562344 FAIR LOADED FAIR

QUESTION

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the **DECODING** question in HMMs

Question # 2 – Evaluation

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

Prob = 1.3×10^{-35}

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the **EVALUATION** problem in HMMs

Question # 3 – Learning

GIVEN

A sequence of rolls by the casino player

QUESTION

How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

This is the **LEARNING** question in HMMs

The dishonest casino model

An HMM is memoryless

At each time step t, the only thing that affects future states is the current state π_t

An HMM is memoryless

At each time step t, the only thing that affects future states is the current state π_t

$$\begin{split} & P(\pi_{t+1} = \ k \mid \text{``whatever happened so far''}) = \\ & P(\pi_{t+1} = \ k \mid \pi_1, \, \pi_2, \, ..., \, \pi_t, \, x_1, \, x_2, \, ..., \, x_t) \quad = \\ & P(\pi_{t+1} = \ k \mid \pi_t) \end{split}$$

An HMM is memoryless

At each time step t, the only thing that affects x_t is the current state π_t

$$P(x_t = b \mid \text{``whatever happened so far''}) = P(x_t = b \mid \pi_1, \, \pi_2, \, \dots, \, \pi_t, \, x_1, \, x_2, \, \dots, \, x_{t-1}) = P(x_t = b \mid \pi_t)$$

Definition of a hidden Markov model

<u>Definition</u>: A hidden Markov model (HMM)

- Alphabet $\Sigma = \{ b_1, b_2, ..., b_M \}$
- Set of states Q = { 1, ..., K }
- Transition probabilities between any two states

$$a_{ij}$$
 = transition prob from state i to state j $a_{i1} + ... + a_{iK} = 1$, for all states i = 1...K

Start probabilities a_{0i}

$$a_{01} + ... + a_{0K} = 1$$

$$e_i(b) = P(x_i = b \mid \pi_i = k)$$

 $e_i(b_1) + ... + e_i(b_M) = 1$, for all states $i = 1...K$

A parse of a sequence

Given a sequence $x = x_1 \dots x_N$,

A <u>parse</u> of x is a sequence of states $\pi = \pi_1, \dots, \pi_N$

Given a HMM, we can generate a sequence of length n as follows:

- 1. Start at state π_1 according to prob $a_{0\pi 1}$
- 2. Emit letter x_1 according to prob $e_{\pi 1}(x_1)$
- 3. Go to state π_2 according to prob $a_{\pi 1 \pi 2}$
- 4. ... until emitting x_n

Likelihood of a parse

Given a sequence $x = x_1, \dots, x_N$ and a parse $\pi = \pi_1, \dots, \pi_N$,

To find how likely this scenario is: (given our HMM)

$$\begin{split} P(x,\,\pi) &= P(x_1,\,\ldots,\,x_N,\,\pi_1,\,\ldots\ldots,\,\pi_N) = \\ &\quad P(x_N \mid \pi_N) \; P(\pi_N \mid \pi_{N-1}) \; \ldots\ldots P(x_2 \mid \pi_2) \; P(\pi_2 \mid \pi_1) \; P(x_1 \mid \pi_1) \; P(\pi_1) = \\ &\quad a_{0\pi 1} \; a_{\pi 1\pi 2}......a_{\pi N-1\pi N} \; e_{\pi 1}(x_1)......e_{\pi N}(x_N) \end{split}$$

Example: the dishonest casino

Let the sequence of rolls be:

$$x = 1, 2, 1, 5, 6, 2, 1, 5, 2, 4$$

Then, what is the likelihood of

 π = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs $a_{0Fair} = \frac{1}{2}$, $a_{oLoaded} = \frac{1}{2}$)

½ × P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

 $\frac{1}{2} \times (\frac{1}{6})^{10} \times (0.95)^9 = .00000000521158647211 \sim 0.5 \times 10^{-9}$

Example: the dishonest casino

So, the likelihood the die is fair in this run is just 0.521×10^{-9}

What is the likelihood of

π = Loaded, Loaded

½×P(1 | Loaded) P(Loaded, Loaded) ... P(4 | Loaded) =

 $\frac{1}{2} \times (\frac{1}{10})^9 \times (\frac{1}{2})^1 (0.95)^9 = .00000000015756235243 \approx 0.16 \times 10^{-9}$

Therefore, it's somewhat more likely that all the rolls are done with the fair die, than that they are all done with the loaded die

Example: the dishonest casino

Let the sequence of rolls be:

$$x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6$$

Now, what is the likelihood $\pi = F, F, ..., F$?

$$1/2 \times (1/6)^{10} \times (0.95)^9 \sim = 0.5 \times 10^{-9}$$
, same as before

What is the likelihood

$$\pi = L, L, ..., L$$
?

$$1/2 \times (1/10)^4 \times (1/2)^6 (0.95)^9 = .00000049238235134735 \sim = 0.5 \times 10^{-7}$$

So, it is 100 times more likely the die is loaded

1. Decoding

GIVEN a HMM M, and a sequence x,

FIND the sequence π of states that maximizes P[x, π | M]

2. Evaluation

GIVEN a HMM M, and a sequence x,

FIND Prob[x | M]

3. Learning

GIVEN a HMM M, with unspecified transition/emission probs.,

and a sequence x,

FIND parameters $\theta = (e_i(.), a_{ii})$ that maximize P[x | θ]

Problem 1: Decoding

Find the most likely parse of a sequence

Decoding

GIVEN
$$x = x_1 x_2 \dots x_N$$

Find $\pi = \pi_1, \dots, \pi_N$, to maximize P[x, π]

$$\pi^* = \operatorname{argmax}_{\pi} P[x, \pi]$$

Maximizes $\mathbf{a}_{0\pi 1} \mathbf{e}_{\pi 1}(\mathbf{x}_1) \mathbf{a}_{\pi 1\pi 2} \dots \mathbf{a}_{\pi N-1\pi N} \mathbf{e}_{\pi N}(\mathbf{x}_N)$

Dynamic Programming!

$$V_k(i) = max_{\{\pi 1 \dots \pi i - 1\}} \ P[x_1 \dots x_{i-1}, \, \pi_1, \, \dots, \, \pi_{i-1}, \, x_i, \, \pi_i = k]$$

= Prob. of most likely sequence of states ending at state $\pi_i = k$

Given that we end up in state k at step i, maximize product to the left and right

Decoding – main idea

Induction: Given that for all states k, and for a fixed position i,

$$V_k(i) = \max_{\{\pi_1...\pi_{i-1}\}} P[x_1...x_{i-1}, \pi_1, ..., \pi_{i-1}, x_i, \pi_i = k]$$

What is $V_i(i+1)$?

From definition,

$$\begin{split} V_{l}(i+1) &= max_{\{\pi 1 \dots \pi i\}} P[\ x_{1} \dots x_{i},\ \pi_{1},\ \dots,\ \pi_{i},\ x_{i+1},\ \pi_{i+1} = I\] \\ &= max_{\{\pi 1 \dots \pi i\}} P(x_{i+1},\ \pi_{i+1} = I\ |\ x_{1} \dots x_{i},\ \pi_{1}, \dots,\ \pi_{i})\ P[x_{1} \dots x_{i},\ \pi_{1}, \dots,\ \pi_{i}] \\ &= max_{\{\pi 1 \dots \pi i\}} P(x_{i+1},\ \pi_{i+1} = I\ |\ \pi_{i}\)\ P[x_{1} \dots x_{i-1},\ \pi_{1},\ \dots,\ \pi_{i-1},\ x_{i},\ \pi_{i}] \\ &= max_{k}\left[P(x_{i+1},\ \pi_{i+1} = I\ |\ \pi_{i} = k)\ \boldsymbol{max}_{\{\pi 1 \dots \pi i-1\}} \boldsymbol{P[x_{1} \dots x_{i-1},\pi_{1},\dots,\pi_{i-1},\pi_{i-1},\pi_{i-1},\pi_{i-1},\dots,\pi_{i-1},\pi_{i-1},\pi_{i-1},\pi_{i-1},\pi_{i-1},\dots,\pi_{i-1},\pi_{i-1},\pi_{i-1},\dots,\pi_{i-1},\pi_{i-1},\pi_{i-1},\dots,\pi_{i-1},\pi_{i-1},\pi_{i-1},\dots,\pi_{i-1},\pi_{i-1},\dots,\pi_{i-1},\pi_{i-1},\pi_{i-1},\pi_{i-1},\dots,\pi_{i-1},\pi_{i-1},\pi_{i-1},\dots,\pi_{i-1},\pi_{i-1},\dots,\pi_{i-1},\pi_{i-1},\pi_{i-1},\dots,\pi_{i-1},\dots,\pi_{i-1},\pi_{i-1},\pi_{i-1},\dots,\pi_{i-1},\pi_{i-1},\dots,\pi_{i-1},\pi_{i-1},\dots,\pi_$$

The Viterbi Algorithm

Input:
$$x = x_1 \dots x_N$$

Initialization:

$$V_0(0)=1$$
 (0 is the imaginary first position) $V_k(0)=0$, for all $k>0$

Iteration:

$$\overline{V_j(i)} = e_j(x_i) \times \max_k a_{kj} V_k(i-1)$$

$$Ptr_i(i) = \operatorname{argmax}_k a_{kj} V_k(i-1)$$

Termination:

$$P(x, \pi^*) = \max_k V_k(N)$$

Traceback:

$$\pi_N^* = argmax_k V_k(N)$$

 $\pi_{i-1}^* = Ptr_{\pi i} (i)$

The Viterbi Algorithm

Time:

 $O(K^2N)$

Space:

O(KN)

Viterbi Algorithm – a practical detail

Underflows are a significant problem

$$P[x_1,...,x_i,\pi_1,...,\pi_i] = a_{0\pi 1} a_{\pi 1\pi 2}....a_{\pi i} e_{\pi 1}(x_1)....e_{\pi i}(x_i)$$

These numbers become extremely small – underflow

Solution: Take the logs of all values

$$V_l(i) = \log e_k(x_i) + \max_k [V_k(i-1) + \log a_{kl}]$$

Example

Let x be a long sequence with a portion of $\sim 1/6$ 6's, followed by a portion of $\sim 1/2$ 6's...

x = 123456123456...12345 6626364656...1626364656

Then, it is not hard to show that optimal parse is (exercise):

FFF.....L

6 characters "123456" parsed as F, contribute $.95^6 \times (1/6)^6 = 1.6 \times 10^{-5}$ parsed as L, contribute $.95^6 \times (1/2)^1 \times (1/10)^5 = 0.4 \times 10^{-5}$

"162636" parsed as F, contribute $.95^6 \times (1/6)^6 = 1.6 \times 10^{-5}$ parsed as L, contribute $.95^6 \times (1/2)^3 \times (1/10)^3 = 9.0 \times 10^{-5}$

Problem 2: Evaluation

Compute the likelihood that a sequence is generated by the model

Given a HMM, we can generate a sequence of length n as follows:

- 1. Start at state π_1 according to prob $a_{0\pi 1}$
- 2. Emit letter x_1 according to prob $e_{\pi 1}(x_1)$
- 3. Go to state π_2 according to prob $a_{\pi 1 \pi 2}$
- 4. ... until emitting x_n

A couple of questions

Given a sequence x,

- What is the probability that

Example: the dishonest ca 0.23-9

P(box: FFFFFFFFF) = $(1/6)^{11} * 0.95^{12} =$ $2.76^{-9} * 0.54 =$ 1.49^{-9}

Given a position i, what is the P(box: LLLLLLLLLL) = $[(1/2)^6 * (1/10)^5] * 0.95^{10} * 0.05^2 =$ $1.56*10^{-7}$ * 1.5^{-3} =

Most likely path: $\pi = FF....F$ (too "unlikely" to transition $F \rightarrow L \rightarrow F$)

However: marked letters more likely to be L than unmarked letters

Evaluation

We will develop algorithms that allow us to compute:

P(x) Probability of x given the model

 $P(x_i...x_i)$ Probability of a substring of x given the model

 $P(\pi_i = k \mid x)$ "Posterior" probability that the ith state is k, given x

A more refined measure of which states x may be in

The Forward Algorithm

We want to calculate

P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:

$$P(x) = \Sigma_{\pi} P(x, \pi) = \Sigma_{\pi} P(x \mid \pi) P(\pi)$$

To avoid summing over an exponential number of paths π , define

$$f_k(i) = P(x_1...x_i, \pi_i = k)$$
 (the forward probability)

"generate i first observations and end up in state k"

The Forward Algorithm – derivation

Define the forward probability:

$$\begin{split} f_k(i) &= P(x_1...x_i, \, \pi_i = k) \\ &= \sum_{\pi_1...\pi_{i-1}} P(x_1...x_{i-1}, \, \pi_1, ..., \, \pi_{i-1}, \, \pi_i = k) \, e_k(x_i) \\ &= \sum_l \sum_{\pi_1...\pi_{i-2}} P(x_1...x_{i-1}, \, \pi_1, ..., \, \pi_{i-2}, \, \pi_{i-1} = l) \, a_{lk} \, e_k(x_i) \\ &= \sum_l P(x_1...x_{i-1}, \, \pi_{i-1} = l) \, a_{lk} \, e_k(x_i) \\ &= e_k(x_i) \, \sum_l \, f_l(i-1) \, a_{lk} \end{split}$$

The Forward Algorithm

We can compute $f_k(i)$ for all k, i, using dynamic programming!

Initialization:

$$f_0(0) = 1$$

 $f_k(0) = 0$, for all $k > 0$

Iteration:

$$f_k(i) = e_k(x_i) \sum_{i} f_i(i-1) a_{ik}$$

Termination:

$$P(x) = \sum_{k} f_{k}(N)$$

Relation between Forward and Viterbi

VITERBI

Initialization:

$$V_0(0) = 1$$

$$V_{k}(0) = 0$$
, for all $k > 0$

Iteration:

$$V_j(i) = e_j(x_i) \max_k V_k(i-1) a_{kj}$$

Termination:

$$P(x, \pi^*) = \max_k V_k(N)$$

FORWARD

Initialization:

$$f_0(0) = 1$$

$$f_k(0) = 0$$
, for all $k > 0$

Iteration:

$$f_{l}(i) = e_{l}(x_{i}) \sum_{k} f_{k}(i-1) a_{kl}$$

Termination:

$$P(x) = \sum_{k} f_{k}(N)$$

Motivation for the Backward Algorithm

We want to compute

$$P(\pi_i = k \mid x),$$

the probability distribution on the ith position, given x

We start by computing

$$\begin{split} P(\pi_i = k, \, x) &= P(x_1 ... x_i, \, \pi_i = k, \, x_{i+1} ... x_N) \\ &= P(x_1 ... x_i, \, \pi_i = k) \, P(x_{i+1} ... x_N \mid x_1 ... x_i, \, \pi_i = k) \\ &= P(x_1 ... x_i, \, \pi_i = k) \, P(x_{i+1} ... x_N \mid \pi_i = k) \end{split}$$

Forward, $f_k(i)$ Backward, $b_k(i)$

Then,
$$P(\pi_i = k \mid x) = P(\pi_i = k, x) / P(x)$$

The Backward Algorithm – derivation

Define the backward probability:

$$\begin{split} b_k(i) &= P(x_{i+1}...x_N \mid \pi_i = k) & \text{"starting from i^{th} state = k, generate rest of x"} \\ &= \sum_{\pi_{i+1}...\pi_N} P(x_{i+1}, x_{i+2}, \, ..., \, x_N, \, \pi_{i+1}, \, ..., \, \pi_N \mid \pi_i = k) \\ &= \sum_{l} \sum_{\pi_{i+1}...\pi_N} P(x_{i+1}, x_{i+2}, \, ..., \, x_N, \, \pi_{i+1} = l, \, \pi_{i+2}, \, ..., \, \pi_N \mid \pi_i = k) \\ &= \sum_{l} e_l(x_{i+1}) \, a_{kl} \sum_{\pi_{i+1}...\pi_N} P(x_{i+2}, \, ..., \, x_N, \, \pi_{i+2}, \, ..., \, \pi_N \mid \pi_{i+1} = l) \\ &= \sum_{l} e_l(x_{i+1}) \, a_{kl} \, b_l(i+1) \end{split}$$

The Backward Algorithm

We can compute b_k(i) for all k, i, using dynamic programming

Initialization:

$$b_k(N) = 1$$
, for all k

Iteration:

$$b_k(i) = \sum_l e_l(x_{i+1}) a_{kl} b_l(i+1)$$

Termination:

$$P(x) = \sum_{i} a_{0i} e_{i}(x_{1}) b_{i}(1)$$

Computational Complexity

What is the running time, and space required, for Forward and Backward?

Time: O(K²N)

Space: O(KN)

Useful implementation technique to avoid underflows

Viterbi: sum of logs

Forward/Backward: rescaling at each few positions by multiplying

by a constant

Posterior Decoding

We can now calculate

$$P(\pi_i = k \mid x) = \frac{f_k(i) b_k(i)}{P(x)}$$

P(X)

$$\begin{split} P(\pi_i = k \mid x) &= \\ P(\pi_i = k \;,\; x) / P(x) &= \\ P(x_1, \; \dots, \; x_i, \; \pi_i = k, \; x_{i+1}, \; \dots \; x_n) \; / \; P(x) &= \\ P(x_1, \; \dots, \; x_i, \; \pi_i = k) \; P(x_{i+1}, \; \dots \; x_n \mid \pi_i = k) \; / \; P(x) &= \\ f_k(i) \; b_k(i) \; / \; P(x) \end{split}$$

Then, we can ask

What is the most likely state at position i of sequence x:

Define π^{\wedge} by Posterior Decoding:

$$\pi_i$$
 = argmax_k $P(\pi_i = k \mid x)$

Posterior Decoding

- For each state,
 - Posterior Decoding gives us a curve of likelihood of state for each position
 - That is sometimes more informative than Viterbi path π^{*}
- Posterior Decoding may give an invalid sequence of states (of probability 0)
 - Why?

Posterior Decoding

•
$$P(\pi_i = k \mid x) = \sum_{\pi} P(\pi \mid x) \mathbf{1}(\pi_i = k)$$

= $\sum_{\pi:\pi[i] = k} P(\pi \mid x)$

$$1(\psi) = 1$$
, if ψ is true 0, otherwise

Viterbi, Forward, Backward

VITERBI

Initialization:

$$V_0(0) = 1$$

 $V_k(0) = 0$, for all $k > 0$

Iteration:

$$V_l(i) = e_l(x_i) \max_k V_k(i-1) a_{kl}$$

Termination:

$$P(x, \pi^*) = \max_k V_k(N)$$

FORWARD

Initialization:

$$f_0(0) = 1$$

 $f_k(0) = 0$, for all $k > 0$

Iteration:

$$f_{i}(i) = e_{i}(x_{i}) \sum_{k} f_{k}(i-1) a_{ki}$$

Termination:

$$P(x) = \sum_{k} f_{k}(N)$$

BACKWARD

Initialization:

$$b_k(N) = 1$$
, for all k

Iteration:

$$b_{l}(i) = \sum_{k} e_{l}(x_{i}+1) a_{kl} b_{k}(i+1)$$

Termination:

$$P(x) = \sum_{k} a_{0k} e_{k}(x_{1}) b_{k}(1)$$

Problem 3: Learning

Find the parameters that maximize the likelihood of the observed sequence

Estimating HMM parameters

- Easy if we know the sequence of hidden states
 - Count # times each transition occurs
 - Count #times each observation occurs in each state
- Given an HMM and observed sequence, we can compute the distribution over paths, and therefore the expected counts
- "Chicken and egg" problem

Solution: Use the EM algorithm

- Guess initial HMM parameters
- E step: Compute distribution over paths
- M step: Compute max likelihood parameters
- But how do we do this efficiently?

The forward-backward algorithm

- Also known as the Baum-Welch algorithm
- Compute probability of each state at each position using forward and backward probabilities
 → (Expected) observation counts
- Compute probability of each pair of states at each pair of consecutive positions i and i+1 using forward(i) and backward(i+1)
 - → (Expected) transition counts

Count(k
$$\rightarrow$$
I) = $\Sigma_i f_k(i) a_{kl} b_l(i+1) / P(x)$