1.. INTRODUCTION

1.1 Project Overview

This project analyses the number and distribution of toy manufacturers across US states from 2005 to 2016.

The goal is to provide insights into manufacturing trends using MySQL and Tableau.

1.2 Purpose

The purpose is to identify state-wise and year-wise manufacturing trends and visualize the insights using interactive dashboards.

2.. IDEATION PHASE

2.1 Problem Statement

Toy manufacturers collect a lot of data, but understanding it can be difficult. This project uses Tableau to turn complex toy data into easy, clear visuals to help improve sales, production, and decision-making.

2.2 Empathy Map Canvas

2.3 Brainstorming

1. Production Efficiency
Monitoring Analyze
production output vs.
targets. Detect
bottlenecks or delays in
the manufacturing
process. Optimize
resource allocation for
different toy lines.

1. Sales Performance
Dashboard Track sales
by product category,
region, and time period.
Identify best-selling and
low-performing toys.
Spot seasonal trends
(e.g., holiday spikes).

2. Customer
Demographics Insights
Understand sales
patterns by customer
age group or region.
Discover which products
appeal to different
customer segments.

Inventory Management Visualize stock levels for each toy model.

Highlight slow-moving or overstocked items.

Forecast demand using historical sales data.

3.. REQUIREMENT ANALYSIS

3.1 Customer Journey map

Empathy: I need to undersand which rays are goving with I worry	O To	oy Manufac	turer Mana	ger	
that poor gods exaail by affects my decisions.	Hear	See	Say	Say Do	Gains
Empathy	Other managers zay you mone- areundérstand	Registration-via deterinations are naid to under stand	Often ask for better reports and each bosuards	Clear and easy to use detalounds with Tableau	Clear and easy- to passsighs on- ards with Tabeau
Hear	Sales team complete what are and decning uniared trends	Confirmation about not knowing piervet treanes	Telimy team we ne off to orderstand product petior-	Frustration cue to doer *kout liuation tools	Real-time insights trie era leacs and stock levels
Pain & Do	Hearcomplicated 3e a.seated a, and tendlocks	Display delect ret- in to reduction using visualization	Request updates. to outdance repo- rfs.	Lack of confident on sales report-	Confident, fast decision making with visual data

3.2 Solution Requirement

Functional Requirements:

The following are the functional requirements of the proposed solution.

FR No.	Functional Requirement	Sub Requirement (Story /		
	(Epic)	Sub-Task)		
FR-1	Data Upload	Upload toy sales and production data via CSV or Excel file		
FR-2	Data Visualization	Generate interactive dashboards using Tableau		
FR-3	Sales Trend Analysis	Provide visual reports of sales trends and peak seasons		
FR-4	Defect Rate Insights	Display defect rates in production using visualization		
FR-5	Export Reports	Export visual reports in PDF and image formats		

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

NFR No.	Non-Functional	Description
	Requirement	

NFR-1	Usability	Easy-to-use interface with
		drag-and-drop features
NFR-2	Security	Secure login with
		password protection,
		role- based access
NFR-3	Reliability	Ensure system handles
		large datasets without
		crashing
NFR-4	Performance	Dashboards load within 3
		seconds for optimal
		performance
NFR-5	Availability	System available 99.9% of
		the time, minimal
		downtime
NFR-6	Scalability	Support increased data
		volume as company grows

3.3 Data Flow Diagram

3.4 Technology Stack

Table-1: Components & Technologies:

S.N o	Component	Description	Technology
1	User Interface	Tableau Dashboards viewed by users	Tableau, Tableau Public
2	Application Logic-1	Data Preparation for Visualization	Tableau Prep, Python (if applicable)
3	Application Logic-2	Sales, Inventory, and Trends Analysis Logic	Tableau Calculations, Expressions
4	Database	Store Sales, Inventory, and Customer Data	MySQL, CSV, Excel, Google Sheets
5 Cloud Database		Cloud-based storage for scalability	AWS RDS, Google Cloud SQL (Optional)

6	File Storage	Store raw data files, reports	Google Drive, Cloud Storage

7	External API-1	Integration with sales platforms (if applicable)	Shopify API, Google Analytics API
8	External API-2	Integration with market trend data (optional)	Market Research APIs (Optional)
9	Machine Learning Model	Predictive sales trends and inventory forecasting	Basic ML with Tableau Extensions or Python
10	Infrastructure (Server/Cloud)	Hosting Tableau dashboards and databases	Local Server or Tableau Online

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1	Open-Source Using Tableau Public and open-source data processing tools		Tableau Public, Python
2	Security Implementations	Access control for dashboard sharing, data security measures	Password Protection, Cloud Security
3	Scalable Architecture	Cloud deployment for handling large datasets if needed	AWS, Google Cloud (Optional)

4.. PROJECT DESIGN

4.1 Problem Solution Fit

Toy Craft Tales' Canvas

Toy craft tales: tableau inspired to Toy Manu fer Data

4.2 Proposed Solution

S.No.	Parameter	Description		
1	Problem Statement (Problem to be solved)	Toy manufacturers collect a lot of data but understanding it can be difficult. This project uses Tableau to turn complex toy data into easy, clear visuals to help improve sales, production, and decision-making.		
2	Idea / Solution description	A Tableau-powered interactive dashboard system that visualizes key toy industry metrics — including demand trends, age group preferences, and stock levels — for real-time decision-making.		
3	Novelty / Uniqueness	Combines storytelling with data through "Toy Craft Tales" – a narrative-based approach that helps non-technical users interpret complex datasets intuitively.		
4	Social Impact / Customer Satisfaction	Increases efficiency in toy production, reduces waste, and aligns products with children's interests — ultimately leading to higher satisfaction for both customers and manufacturers.		
5	Business Model (Revenue Model)	Subscription-based model for manufacturers and retailers; freemium version with limited dashboards, with additional premium analytics and customization for enterprise clients.		
6	Scalability of the Solution	The solution can scale across global markets and be adapted for various toy segments, from educational toys to collectibles, with multilingual and regional data support.		

4.3 Solution Architecture

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Upload	USN-1	As a Data Analyst, I can upload sales and inventory data in CSV format	3	High	Team A
Sprint-1	Dashboard View	USN-2	As a Data Analyst, I can view interactive dashboards in Tableau	2	High	Team A
Sprint-2	Trend Analysis	USN-3	As a Manager, I can analyze seasonal sales trends	3	Medium	Team B
Sprint-2	Inventory Monitoring	USN-4	As a Warehouse Staff, I receive alerts for low inventory levels	2	High	Team B

Sprint-3	Report Export	USN-5	As	a 1	1	Medium	Team C
			Manager,	I			
			can expo	ort			
			dashboards				
			as PDF/imag	ge			

Sprint	Total Story	Duration	Sprint Start	Sprint End Date	Story Points
	Points		Date		Completed
Sprint-1	5	5 Days	11 June 2025	15 June 2025	5
Sprint-2	5	5 Days	16 June 2025	21 June 2025	5
Sprint-3	1	3 Days	22 June 2025	24 June 2025	1

6.. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

7.. RESULTS

7.1 Output Screenshots

Below are the Tableau visualization results based on the dataset:

8.. ADVANTAGES & DISADVANTAGES

Advantages:

Easy Integration: Tableau can integrate with databases like MySQL, Google Sheets, or Cloud Storage where user data is stored, allowing seamless reporting.

User-Friendly Interface: Non-technical stakeholders can easily interpret the reports and KPIs related to registration, confirmation success rates, etc.

Real-Time Data Monitoring: Tableau enables real-time monitoring of user activities such as registrations through different channels (Form, Gmail, LinkedIn).

Disadvantages:

Cost Factor: Tableau licenses (especially Tableau Server or Tableau Online) can be expensive for small teams or projects with a limited budget.

Limited Interactivity with Core System: Tableau cannot trigger real-time actions like sending confirmation emails or OTPs—it can only report these processes.

Dependency on Data Source: Real-time accuracy depends on how well your databases or APIs integrate with Tableau; poor setup can delay reporting.

9.. CONCLUSION

This project uses Tableau to convert complex toy sales and inventory data into simple, interactive dashboards. It helps the company track sales trends, manage stock, and make better decisions quickly. Though Tableau is not a system development tool, it is ideal for data visualization and business insights, making operations more efficient.

10.. FUTURE SCOPE

Advanced Predictive Analytics: Integrate machine learning models with Tableau to predict toy sales trends, seasonal demand, and customer preferences.

Real-Time Data Integration: Connect Tableau directly to live data sources (e.g., sales platforms, inventory systems) for real-time dashboards and alerts.

Mobile Dashboard Access: Expand Tableau reports for mobile devices, enabling managers to track sales and stock anytime, anywhere

Submitted by:

Name: KONDAMUDI VAMSI

Team Id: LTVIP2025TMID50076