成果報告書

KIM 人因性危害評估工具

指導教授: 陸子強教授

組員姓名:

資工四B 411017991 張佑誠

資工四B 411017713 韓宇桓

資工四B 411018214 鍾坤璋

資工四B 411018191 陳益宏

資工四 B 411018117 賴泓宇

中華民國一一三年十二月

目錄

1.	簡介3
	1.1 研究目的3
	1.2 系統特色3
2.	系統架構4
	2.1 系統設計概述4
	2.2 系統架構圖4
3.	分析與成果5
	3.1 Blazepose 姿勢偵測模型應用5
	3.2 姿勢分數計算方式5
	3.3 系統測試與成效6
4.	結論與展望7
	4.1 成果總結7
	4.2 未來發展方向7
5.	参考文獻8

1. 簡介

1.1 研究目的

本專題旨在開發一套基於 KIM 工具的人工搬運 (LHC) 人因性危害評估系統,結合 Blazepose 3D 姿勢偵測模型,提供高效且精準的姿勢風險評估。透過此系統,使用者可快速了解工作環境中潛在的姿勢危害,並進一步提出改進建議,以降低勞工肌肉骨骼傷害的風險。

1.2 系統特色

- 1. 實時偵測與分析:採用 Blazepose 3D 模型進行動作捕捉,生成精準的姿勢數據。
- 2. 智能風險評估:依據 KIM-LHC 模組的標準,計算姿勢分數並判定風險等級,提供清晰的改善建議。
- 3. 後端支持:伺服器負責數據處理與風險分析,確保計算結果的高效性與準確性。

2. 系統架構

2.1 系統設計概述

- 1. 前端應用:使用 Flutter 開發,用戶可以 上傳影像資料並查看姿勢分數與風險分析 結果。
- 2. 伺服器後端:伺服器負責處理影像資料, 利用 Blazepose 3D 模型進行肢體動作分析,並根據 KIM-LHC 規範計算姿勢分數與 風險等級。

2.2 系統架構圖

3. 分析與成果

3.1 Blazepose 姿勢偵測模型應用

Blazepose 3D 模型是基於深度學習的關鍵點檢測系統,能夠準確地偵測人體的各個關節,並生成 3D 姿勢數據。在本專題中,我們利用Blazepose 進行用戶的肢體動作偵測,將其應用於人工搬運(LHC)動作的分析。該模型在搬運工姿勢分析中具有良好的精度,能夠捕捉到人的關節位置及其移動軌跡,為後續的姿勢評分和風險分析提供了穩定的數據支持。

3.2 姿勢分數計算方式

在姿勢偵測後,使用 KIM 工具中的 LHC 模 組進行風險評估。根據 Blazepose 生成的 3D 關節數據,我們將其轉換為對應的姿勢分數。 每個動作的危害程度依據角度、姿勢的持續時 間和頻率進行計算。這些數據會進一步與 KIM 標準進行比對,從而產生風險評分。

3.3 系統測試與成效

系統經過多次測試與調整,結果顯示 Blazepose 模型在肢體動作偵測上具有高準確性,能夠準確捕捉關鍵姿勢並提供可靠的姿勢數據。在測試過程中,系統成功識別並評估了多種搬運姿勢,並在不同的工作環境下產生了準確的風險分數。根據用戶反饋,系統在易用性和準確性方面均得到了高度評價,並能有效協助識別潛在的危害,對勞工健康提供即時反協助識別潛在的危害,對勞工健康提供即時反的預防建議。雖然系統目前無法提供即時反的預防建議。雖然系統目前無法提供即時反的預防建議。雖然系統目前無法提供即時反的預防建議。雖然系統目前無法提供即時反的預防建議。

4. 結論與展望

4.1 成果總結

本專題成功開發了基於 Blazepose 姿勢偵測 技術的人因性危害評估系統。系統能夠準確地 分析並計算搬運動作的姿勢分數,並根據風險 評估提供具體的改進建議。能夠有效協助職場 健康管理與危害風險評估。

4.2 未來發展方向

未來,該系統可以進一步擴展應用至更多的 工作環境。例如,可以結合機器學習模型對姿 勢風險進行自動優化,提升系統的智能化程 度。此外,將系統整合至企業的日常操作流程 中,能夠實現實時風險監控,並提供即時改善 建議,從而進一步降低勞工受傷風險。

5. 參考文獻

- 勞動部勞工保險局-勞工職業災害保險職業傷害給付率-按給付種 類、職業傷害類型及性別分
- 職業安全衛生法 全國法規資料庫
- <u>Kim-lhc</u> 量表