Physics

1. (A),(D)

Case A

Since the liquid is frictionless, it doesn't rotate

So we have 2 mgsin θ -f= 2ma

 $F*R=(2/3)mR^2$

Solving these 2 equations we get a=(3/4) gsin θ

For kinetic energy

 $\frac{1}{2}$ *2mv²+ $\frac{1}{2}$ * (2/3)*mR ² *(v/R)²

We get KE=(4/3)mv²

CASE B

After the liquid is frozen, it acts as a rigid body.

So we have 2 mgsin θ -f=2ma

 $F*R=(2/5)*2mR^{2*}(a/R)^{2}$

Solving these 2 equations we get a=(5/7)mR²

For kinetic energy

$$\frac{1/2*2\text{mv}^2 + \frac{1}{2}*}{\text{The rotation of the Posterior of the Relation of the Posterior of the Relation of the Relation$$

Substituting the value of E_0 as $\frac{\mathrm{ql}}{2\pi\epsilon_0\mathrm{x}^3}$ w.

3. (A),(D)

A. From the free body diagram of the arrangement,

$$(P - P_{atm})A_u = (P - P_{atm})A_l + m_{piston}g.$$

Rearranging, we get:

$$P_g = P_{atm} + \frac{m_{piston}g}{A_u - A_l} - \cdots - (1)$$

Sushstituting the known values, we get the difference in area of the upper and lower pistons, $A_u - A_l = 10 \text{ cm}^2$

From equation 1, it is clear that P_{g} is constant throughout the process.

Work done on the piston is due to the gravitational force.

B.
$$W_{piston} = -m_{piston}g(h_2-h_1) = -(5 \times 10 \times 0.25) = -12.5 J$$

C.
$$W_{atm} = P_{atm} \Delta V = -P_{atm} (A_u - A_l) (h_2 - h_1) = -25 J$$

D. Since the process is infinitesimally slow, $\Delta KE = 0$.

So the total work done on the system is 0.

$$W_{gas} + W_{atm} + W_{piston} = 0$$

$$So, W_{gas} = 37.5 J$$

4. (B) (C)

First we have to find z and n for the given atom

Orbital angular momentum in the n^{th} shell is $nh/2\pi$. So comparing we get $n{=}4$

Now de-Broglie wavelength =h/p or h/mv

 $mvr = nh/2\pi$

mv=nh/2 π r where r= a_o n²/z

Substituting in λ

 $4\pi a_o = 2\pi a_o n/z$

Put n=4 we get z=2

For de-excitation

 $1/\lambda = Rz^2[1/n_2^2 \cdot 1/n_1^2]$ where $n_1=4$ and $n_2=3,2,1$

Substituting we get 36/7R for $n_2=3$

4/3R for $n_2 = 2$ and 4/15R $n_2 = 1$

5. (A), (B), (D)

Curvature → 1/r

When liquid droplets coalesce, the flow is initially controlled by a balance between surface tension and viscosity

6. (A)

$$u = -(2f-f/3)$$

$$=-5f/3$$

$$1/(-f) = 1/v + 3/(-5f)$$

$$1/v = 3/5f-1/f = -2/5f$$

$$v = -5f/2$$

$$I=f/2$$

SECTION 2

SINGLE DIGIT INTEGER

7) 5

First find g at surface of planet

$$g_p$$
' $/g_p = R^2/(R+2R)^2$ g_e '= g_e (1-d/r) [Put d=r/2]
9 g_p '= g_p g_e '= g_e /2 g_e '= g_p / $(9/2)g_e = g_p$ $g_p = 9x10/2 = 45$

Now the force acting on rod

```
dF=dmg<sup>2</sup>
                                   g' = gx/R(where x is distance from centre)
    = \mu dxgx/R
F=\int_{2R/3}^{R} \mu x dx 45/R
 =(45\mu[x^2]^R_{2R/3})/2R
 =45\mu[R^2-4R^2/9]/2R
                        (Put \mu=2)
 =25\mu R/2
  =25R
N^2 = 25
N=5
   8) 2
        Consider angular momentum of the door about the hinges.
       dL = \tau dt
Lfinal – Linitial = -\int_{t_i}^{t_f} \tau dt
But Lfinal = 0 and T = -Fd x
I\omega 0 = x \int_{ti}^{tf} F_d dt
Consider the linear momentum of the centre of mass. Just before the
collision, momentum is only along the y direction and Mvy = ML \omega0 /2
PFinal – Pinitial = \int F y dt
Where Fy is the net force in the y direction.
Fy = F' + Fd and Pfinal = 0
So, ML \omega 0/2 = \int \mathbf{F}' dt + \int \mathbf{F} d dt
ML \omega 0/2 = \int \mathbf{F}' dt + I\omega 0/x
\int \mathbf{F}' dt = \omega 0 (ML/2 - I/x)
So the impact force at the hinge is zero, if x = 2I / ML
For a door hinged at one end, I = ML^2/3
       So x = 2L/3
```

Assume that at time t, only x length remains on the horizontal tube. Then the pulling force on the rest of the chain is given by

$$F=M^*(h/l)^*g$$

So a= $(M^*(h/l)^*g)/(M^*(x+h)/l)=hg/(x+h)$

$$-v(dv/dx)=hg/(x+h)$$

 $-\int vdv = \int hgdx/(x+h)$

Here v varies from 0 to v and x varies from I-h to 0

 $v^2/2=hgln(l/h)$

 v^2 =2hgln(l/h)

So kinetic energy=k=(1/2)*m*v²

k=mhgln(l/h)

substituting values of m,h and I we get k=ln2

so $e^k=2$

10) 8

In our system, resistance of the medium $R = \frac{\rho}{4\pi} \left[\frac{1}{a} - \frac{1}{b} \right]$, where ρ is the resistivity of the medium

$$i = \frac{\varphi}{R} = \frac{\varphi}{\frac{\rho}{4\pi} \left[\frac{1}{a} - \frac{1}{b} \right]}$$

Also,
$$i = \frac{-dq}{dt} = -\frac{d(C \varphi)}{dt} = -C \frac{d\varphi}{dt}$$
, as capacitance is constant.

So, equating (1) and (2) we get,

$$\frac{\varphi}{\frac{\rho}{4\pi}\left[\frac{1}{a}-\frac{1}{b}\right]} = -C\frac{d\varphi}{dt}.$$

or,

$$-\int \frac{d\varphi}{\varphi} = \frac{\Delta t}{\frac{C \rho}{4 \pi} \left[\frac{1}{a} - \frac{1}{b}\right]}$$

or,

in
$$\eta = \frac{\Delta t \, 4 \, \pi \, ab}{C \, \rho \, (b-a)}$$

Hence, resistivity of the medium,

$$\rho = \frac{4 \pi \Delta t \, ab}{C \, (b - a) \ln \eta}$$

11. **7**

P₁=200kPa

P₂=500kPa

 $P_1=P_{atm}+k\Delta x_1/A$

 $P_2=P_{atm}+k\Delta x_2/A$

 $P_2-P_1=300kPa=3\times10^5Pa$

 $P_2-P_1=k(\Delta x_2-\Delta x_1)/A=k(\Delta V_2-\Delta V_1)/A^2$,

Where $\Delta V_1 = V_1 - V_0$ and $\Delta V_2 = V_2 - V_0$, where V_0 is the volume of the system when the spring is uncompressed.

Therefore, $k/A^2 = (P_2 - P_1)/(\Delta V_2 - \Delta V_1) = 30000/(V_2 - V_1) = 3 \times 10^7 N/m^5$

At any instant, $P=P_{atm}+P_{piston}+k\Delta x/A$, or

P-P₁= $3\times10^7\times(V-V_1)$, where V is the volume at that instant.

Thus, $P=200000+3\times10^7\times(V-0.01)$

Work done by the air during expansion,

 $\int PdV = 2\times10^5\times0.01 + 3\times10^7\times(0.02\times0.02/2 - 0.01\times0.01/2) -$

 $(3\times10^7\times0.01\times0.01)$

=2000+4500-3000=<u>3500J</u>

12. 8

Since the electric field in the x direction must not depend on the value of the electric flux associated with the two surfaces perpendicular to the x direction cancels out each other. A similar argument follows for the y direction as well.

Hence only the z component of the electric field provides flux.

z component of the electric field is:

$$\mathbf{E}_{z} = \mathbf{E}_{0} \mathbf{z} \, \mathbf{k}$$

Therefore, flux entering the cube (z=0) is zero, since the field is 0 at that surface.

Flux leaving the cube $(z = +a) = E_0 a \times a^2 \mathbf{k} = E_0 a^3$

Using Gauss' theorem $\varphi = \frac{q_{net}}{\varepsilon_0}$

Therefore, $q_{net} = \varphi \ \epsilon_0 = \epsilon_0 \ E_0 \ a^3$

So,
$$x = 8$$

13. 4

Let the intensity of the source be I_0 , then intensity at any point with phase difference $\Delta\theta$ will $I=4I_0\cos^2(\Delta\theta/2)$. Hence initial intensity at P is $4I_0$

At P with the glass slabs inserted

$$\frac{3}{4} \times 4I_0 = 4I_0 \cos^2(\Delta \theta/2)$$

$$\Rightarrow \Delta\theta = 2n\pi \pm (\pi/3)$$
 also $\Delta\theta = (2\pi/\lambda) \Delta x$

Hence Δx = $\lambda (n$ ± (1/6)) , from the data about the 8th maxima and 9th minima we get

8
$$\lambda < \Delta x < [(2 \times 9) - 1] \lambda / 2$$

$$\Rightarrow$$
 8 λ < λ (n ± (1/6)) < [(2×9) – 1] λ /2

The only value of n satisfying the above condition is n=8 and Δx = $\lambda(8 + (1/6))$ =49 $\lambda/6$

Let μ_2 be the refractive index of the lower glass slab with respect to vacuum then 1.2= $\mu_2/(4/3)$

$$\Rightarrow \mu_2=1.6$$

Considering the two glass slabs $\Delta x = t(\mu_1 - 1) - t(\mu_2 - 1)$

Hence $\Delta x = t(\mu_1 - \mu_2)$

 $49 \lambda/6 = t (2.3-1.6)$

 \Rightarrow t=7×10⁻⁶

k=7 and so k-3=4

14. 5

An ion of charge q will pick up kinetic energy, $\Delta KE = qV$ in dropping through a P.D of V volts.

In a magnetic induction B perpendicular to its path, the ion of momentum p will describe a circular path of radius r given by

$$p = qBr = \sqrt{2M} \Delta KE = \sqrt{2MqV}$$

$$M = qB^2r^2/2V$$

For the first ion, $q = 1.6 \times 10^{-19}$ C, B = 0.08 T, r = 0.0883 m and V = 400 V. Substituting these values in we get m1 = 9.98×10^{-27} kg

The mass of this ion is then $\frac{(9.98 \times 10 - 27 \ kg)}{1.66 \times 10 - 27 \ kg/amu} = 6.012$ amu, Therefore the mass number is 6.

For the second ion, the only change is the radius of the orbit which is 0.0954 m. The mass of the second ion is $m2 = m1 \times (r_2/r)^2 = 6.012 \times (0.11954/0.08832)^2 = 11.0135$ amu. Therefore, the mass number is 11.

Difference is 11-6=5

SECTION 3- PASSAGE

Passage 1

$$F = k\Delta x = k\left(\sqrt{l^2 + x^2} - l\right)$$

F=2FCos⊖

$$F_r = 2k \left(\sqrt{l^2 + x^2} - l \right)$$

$$x \ll < l$$
;

$$F_r = 2kl((1+x^2/l^2)^{1/2}-1)^{x}/l$$

$$F_r = 2kx(1 + x^2/l^2 - 1)$$

$$F_r = \frac{2kx^3}{2l^2} = \frac{kx^3}{l^2}$$

$$a = -kx^3/_{ml^2} \Rightarrow w^2 = k/_{ml^2}$$

$$w = \left(\sqrt{k/_{ml^2}}\right)$$

To find energy formulation:

$$Exte = \left(\sqrt{l^2 + x^2} - x\right)$$

$$E = 2 \times \frac{1}{2} k (\Delta l)^2$$
 2 springs

$$E = k \left(\sqrt{l^2 + x^2} - l \right)^2$$

$$E = kl^2((1 + x^2/l^2)^{1/2} - 1)^2$$

$$E = kl^2(1 + x^2/2l^2 - 1)^2$$

$$E = \frac{kl^2x^4}{4l^4} = \frac{kx^4}{4l^2} = \frac{kA^4}{4l^2}$$

$$E_{T/4} = \frac{2kA^4}{4l^2}$$

$$E_{(T/4)_n} = {2^n k A^4}/{4l^2}$$

but
$$E = \frac{2kA^4}{4l^2} = \frac{2^n kA^4}{4l^2}$$

 $\Rightarrow 2^n = 8 \Rightarrow n = 3$

3 movements to
$$pos^n \Rightarrow \frac{5T}{4} \Rightarrow B$$

$$E_n = \frac{2^n k A_i^4}{4l^2}$$

$$EA_n = \frac{kA_o^4}{4l^2}$$

$$E(A) = E_n$$

$$\Rightarrow 2^{n}kA^{4} /_{4l^{2}} = kA_{o}^{4} /_{4l^{2}}$$

$$\Rightarrow 2^n A_i^4 = A_i^4$$

$$\Rightarrow A_n = A_i 2^{n/4}$$

Passage 2

18) C 19) B 20) D

The circuit is inductive when X_L dominates X_c Therefore it is inductive at point C

$$R_1$$
=100 Ω X_L = 100 Z =100 $\sqrt{2}$ θ = $\pi/4$ I =100 sin 100t

V=IZ
=
$$\sqrt{2*10^4}$$
 sin (100t + π/4)

V across R =
$$10^4 \sin 100t$$

V across L= $10^4 \sin (100t + \pi/2)$

Since inductors are similar, voltage across the two coils are similar No of turns in primary coil = No of turns in secondary coil

V in circuit 2=10⁴ sin (100t +
$$\pi$$
/2 \pm π)
I in circuit 2=10⁴ sin (100t + π /2 \pm π) [R=1 Ω]

Chemistry

21.
$$[A,C,D]$$

 $x_AP^0_A + x_BP^0_B = 700 \dots (i)$
 $x''_AP^0_A + x''_BP^0_B = 0.30P^0_A + 0.70P^0_B = 600 \dots (ii)$
If moles of A & B initially are x & y then
 $x=0.75x(2/3)(x+y) + 0.30x(1/3)(x+y)$
& $x_A=x/(x+y)$ or $x_B=y/(x+y)$
Solving gives
 $x_A=0.6$, $x_B=0.4$, $P^0_A=2500/3$ torr & $P^0_B=500$ torr.
22. $[B]$
23. $[A,B]$

$$r_{B} = \frac{dC_{B}}{dt} = \frac{1}{V} \frac{dn_{B}}{dt} = \frac{1}{V} \frac{d(C_{B}V)}{dt} = \frac{V}{V} \frac{dC_{B}}{dt} + \frac{C_{B}}{V} = \frac{dC_{B}}{dt} + \frac{C_{B}}{V} \frac{dV}{dt}.$$

24. [B,C,D]

(A) Structure is similar to ethane. Each N atom is tetrahedrally surrounded by 1 N, 2 H & a lone pair. The two halves of the molecule are rotated 95° about N-N bond and occupy a gauche(non eclipsed) conformation. The bond length is $0.145 \, \text{nm}$.

(B)Has partial double bond character due to pm-dm delocalisation.

(C)OF₂ =103 $^{\circ}$ (approx.) and OCl₂ =112 $^{\circ}$ (approx.).

(D)Exist in polymeric structure as in solid state.

25. [C]

THF is used as solvent, oxide layer MgO is formed on Mg, so it's not reactive to organic halides. Value of x is 3.

26. [B,D]

27. [1]

Dissolved $[Zn(OH)_2] = [Zn^{+2}]_{aq} + [Zn(OH)_2]_{aq}^+ + [Zn(OH)_2]_{aq}^- + [Zn(OH)_3]_-^- + [Zn(OH)_4]_-^2$.

Now, $[Zn(OH)_2]_{aq} = 10^{-6}M$ in saturated solution.

So,
$$[Zn(OH)]^+ = 10^{-6}x \ 10^{-7}/[OH^-] = 10^{-13}/[OH^-]$$

Similarly, $[Zn^{+2}] = 10^{-17}/[OH^{-}]^{2}$,

$$[Zn(OH)_3]^- = 10^{-3}[OH^-]$$

$$[Zn(OH)_4]^{2^-}=K_5[Zn(OH)_3]^-$$

 $[OH^-] = (10^{-2}M^{-1})[OH^-]^2$

Dissolved
$$Zn(OH)_2 = 10^{-17}/[OH^-]^2 + 10^{-13}/[OH^-] + 10^{-6} + 10^{-3}x[OH^-] + 10^{-2}x[OH^-]^2$$

 $= 10^{-17}/10^{-16} + 10^{-13}/10^{-8} + 10^{-6} + 10^{-3}x10^{-8} + 10^{-18}$
 $= 10^{-1} + 10^{-5} + 10^{-6} + 10^{-11} = 10^{-1}$
 $= -log Zn(OH)_2 (aq) = 1$

28. [5]

 Sb_2S_3 , SnS_2 , As_2S_5 , Bi_2S_3 , FeS_2 .

29. [4]

$$S.I = 2^2 = 4$$

$$ClO_3^- + 2H_2 + 4e^- \longrightarrow ClO^- + 4OH^-; \Delta G_1^\circ$$
 $ClO^- + H_2O + e^- \longrightarrow \frac{1}{2} Cl_2 + 2OH^-; \Delta G_2^\circ$
 $\frac{1}{2} Cl_2 + e^- \longrightarrow Cl^- ; \Delta G_3^\circ$

$$ClO_3^- + 3H_2O + 3e^- \longrightarrow Cl^- + 6OH^-; \Delta G^\circ$$

$$\therefore \Delta G^{\circ} = \Delta G_1^{\circ} + \Delta G_2^{\circ} + \Delta G_3^{\circ}$$

$$-6FE^{\circ} = -4F \times 0.54 - 1F \times 0.45 - 1F \times 1.07$$

$$E^{\circ} = +3.68/6 = +0.61V$$

$$∴10xE^{\circ} = 6V$$

31. [6]

$$C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$$

0

0

x x

$$\Delta T_b = m_1 K_b + m_2 K_b + m_3 K_b$$

$$m_1 + m_2 + m_3 = 0.104/0.52 = 0.2$$

$$((0.125-x+x+x)/(100))x 100 = 60$$

x=0.0075

$$(1/10)^{th}$$
 of mol% = $60/10 = 6$

32. [6]

 $H_3PO_2: P=O \ H_2S_4O_6: S=O \ XeO_4: Xe=O \ XeOF_4: Xe=O$

 $Fe(CO)_5$: Metal carbonyls have d orbitals of metal in π bonding.

ClO₂: Cl=O

34. [9]

The process can be described on a P-V diagram as

$$T = 400K$$

$$V = V_1$$

$$T = 800K$$

$$V = V_2 = 2V_1$$

$$T=T_3$$

$$V = V_3 = V_2 = 2V_1$$

Therefore, $W_{12} = -P\Delta V = -nRT = -400R$

$$W_{23} = 0$$
 [Since $\Delta V = 0$]

Between 3 & 1, TV γ – 1 = Constant

$$T_3 \times (2V_1)\gamma - 1 = 400 (V_1)\gamma - 1$$

$$T_3 = 400 \times (1/2)^{2/3} = 252 K$$

$$W_{31} = \Delta U_{31} = nC_v(T_1 - T_3) = 3/2 R (400-252) = 222R$$

$$W_{12-31} = W_{12} + W_{23} + W_{31} = -178 R$$

- 35. [C]
- 36. [C]
- 37. [D]

38. [A]

$$2 K_2MnF_6 + 4 SbF_5 \rightarrow 4 K[SbF_6] + 2 MnF_3 + F_2$$

39. [D]

- (A) XeF₂
- (B) 24 XeF₂ + (B) S₈ \rightarrow 24 Xe + 8SF₆
- (C) $XeF_2 + SbF_5 \rightarrow [XeF]^+[SbF_6]^-$

40. [B]

- (A) F_2 gives O_2 gas (C) H_2O_2 in acidic medium form CrO_5 not O_3
- (B) $KI + 3O_3 \rightarrow KIO_3 + 3O_2$

$$XeF_2 \longrightarrow Xe + 2HF$$

(A) (B) (C)

$$XeF_2 + H_2O \xrightarrow{H_2} Xe + HF + O_2$$
(B) (C) (D)

 $3O_2 \rightleftharpoons 2O_3$; $5O_3 + 2KOH \rightarrow 2KO_3$ (orange solid) + $5O_2 + H_2O$

(D) (E)

HF + KF
$$\rightarrow$$
 KHF₂ (molten) \longrightarrow F₂
(C) (G)

Mathematics

41.

Sol: A

The solution becomes
$$x(t) = 5e^{-\frac{\gamma t}{2}}\cos(iw't)$$

We know that $\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$

Hence cos(iw't) = cosh(w't)

42.

Sol: A,B,D

$$I = \int_{-1}^{-1} \frac{x^2 e^x}{x^4 + \cos^2 x} \, \mathrm{d}x$$

$$I = \int_{-1}^{-1} \frac{x^2 e^{-x}}{x^4 + \cos^2 x} dx; property of integral$$

Adding them, we get

$$I = \int_{-1}^{-1} \frac{x^2 (e^x + e^{-x})}{2(x^4 + \cos^2 x)} dx$$

$$I \ge \int_{-1}^{-1} \frac{x^2 \cos(x)}{(x^2+1)} dx$$
; (compare the expansions of $\cos(x)$ and $(e^x + e^{-x})$)

Since $x^2 \le \tan^2 x$, we have option A

$$I \ge \int_{-1}^{1} x^2 \cos^3(x) \, \mathrm{d}x = 2 \int_{0}^{1} x^2 \cos^3(x)$$

Since $x \ge \sin x$ in (0,1), we have option B

$$I = \int_{-1}^{-1} \frac{x^2 e^x}{x^4 + \cos^2 x} dx$$
, implies that

$$I \ge \frac{1}{e} \int_{-1}^{-1} \frac{x^2}{(x^2 + 1)} dx = \frac{\left(2 - \frac{pi}{2}\right)}{e}$$

hence option D

```
43.
ANS a,c
Solution:
 x/p + y/q + z/r = 1+i
 On squaring, we get
(x/p)^2 + (y/p)^2 + (z/r)^2 + 2 xyz[p/x + q/y + r/z]/pqr = 1-1+2i
    => (x/p)^2 + (y/q)^2 + (z/r)^2 = 2i
Now let x/p = a and y/q = b and z/r = c
a^3 - b^3 / a^2 - b^2 = (a - b)(a^2 + b^2 + ab) / (a - b)(a + b)
= a^2 + b^2 + ab / a + b
= (a + b)^2 - ab / a + b
= a + b - ab/(a+b)
                     -> (1)
Now 1/a + 1/b + 1/c = 0 (given)
Therefore c = -ab/(a+b)
Substituting in (1) we get,
A+b+c which is 1+i given in the question.
44.
ANS: b,c
Solution:
R1 = /(s-a) (radius of excircle)
  On substituting the values in the equation we get,
 S - a = 125
 S - b = 25
 S-c=5
On adding all three of them we get,
3s - 2s = 155
 s = 155
Therefore perimeter = 2s = 310.
We got the value for s. Now using the above relation,
a=30 b=130 c=150
```

Next equation of altitude = 2/a

```
On substituting the values

We get the 3 altitude values

45.
```

ANS : a,c

A person can make a number as much as the coefficient of $x + x^2 + x^3 + x^4 + x^4$

So the required sum will be the coefficient of xn-3 in (1-x10)3(1-x)-3

46.

Ans:(b),(c)

Since variable x is present at exactly two positions in each of the matrices, the maximum power of x in D(x) is x2.

Let D(x)=ax2+bx+c

Using any three of the given values of D(x), we get,

D(x)=2x2+5x-2

Integer type

47. 0.25

Substituten.exp(n)=cos(y) sin(y)=k ln(k)=x

48. 6

$$y2 = 4x + (t2,2t)$$

 $2ym = 4$
 $m = 1/t$
 $M(normal) = -1/m$
 $y-2t = -t + (x-t2)$
 $=> t3+ (-x+2)t - y=0$
 $Slope -t1 = -t2 = -2$
 $t1 = t2 = 2$
 $t3 + (-x+2)t - y \div (t2 - 4t + 4.)$

(-x + 14)t - y - 16 is the remainder.

But it has to be 0 for the divident to be a perfect multiple of divisor. So on equating x=14 y= -16

Therefore 3|x+y| = 6

49. 2

The coordinate of B is of the type (3,k), as angle A is 900

Also BC perpendicular to DE.

So equation of BC is of the type 3y = x + c

AS C satisfies the line we get c = 3.

Therefore substituting B in equation 3y = x + 3 gives

K = 2.

Now equation of AC is y = 3.

So point E is of the form (h,3)

Substituting E in equation y + 3x = 7,

We get h = 4/3

Since B and E substends 900 on the circumference of the circle , BE is diameter of the circle .

So by using diameter formula,

$$(x-3)(x-4/3) + (y-2)(y-3) = 0$$

$$X2 + y2 - 7/3x - 5y + 10 = 0$$

50.9

Property of conics distance from the focus = e times the distance between point and the directrix x = a/e.

So distances are a - ex and a + ex.

So
$$a + ex = 2 (a - ex)$$

$$= x = a/3e$$

$$e = 3/5$$
.

So x = 25/9.

$$y = 814/9$$

So on differentiating the equation of ellipse and substituting the points we get the corresponding slope . With the slope and points we are able to find the equation of tangent .

$$M = -2/7$$

Y- 814/9 = -2/7(x - 25/9)
Putting y= 0 we get,
X = 9

51. 3

L=lim1/x0((1+(1/x))/(1-(1/x))1/(1/x)-e2)x2
Replace 1/x with h.
L=limh0 ((1+h)/(1-h))1/h-e2)/h2
Use (1+x)1/x=e(1-x/2 + 11x2/24
L=limh0 (e2(1-h/2+11h2/24-...)(1+h/2+11h2/24+....)-e2) /h2
L=limh0(e2 (1 - h2 /4+22h2 /24)-e2)/h2
L=limh0 e2 (2h2 /3)/h2
L=2e2 /3

52. 1.00

The area is given by the following integral

4 ,0-ln2-,2,e--x .-1.dx=4(1-ln2) .

$$\Rightarrow$$
 A = 4
 \Rightarrow Therefore A/4 = 1.00

53. 3.46

We have ,
$$|x-1|-1.=,y-2.-2.=,|z-3|-3.$$

, $x-1-1.=,y-2-2.=,z-3-3.$
, $x-1-1.=,y-2-2.=,z-3-3.$
, $x-2-1.=,y-2-2.=,z-3-3.$
, $x-1-1.=,y-2-2.=,z-3-3.$
Intersection points with plane $x+y+z=18$

Are (3,6,9), (-2,8,12), (7,-10,21)

Therefore area S = 36,-3. Taking ,-3 .=1.73 S/18 = 3.46

54. 5.

Let (a,,a-2.) be any point on the curve,

Slope of tangent =m=,,a-2.+1-a-t.

Slope of tangent at 'a' = 2a =m

Two values of a are c&d

d=t+,-1+,t-2..

Area enclosed ,c-d-

$$(x-2.+1).dx - 2,(1+,t-2.)-,3-2.. = ,2-3.,(1+,t-2.)-,3-2..$$

The given function is minimum at t=,1-,-5...

Comprehension:

I:

General Property:The circles defined in the above question passes through the foci of the respective ellipses.Therefore T_1 , T_2 are foci of E_1 and T_3 , T_4 are foci of E_2 . Then Quadrilateral specified in problem is a rhombus.

(1) Rhombus has area $T_1 T_2 \times T_3 T_4 / 2$.

(3)
$$T_1 = (3,0)$$
 $T_2 = (0,4)$
 $T_1 T_2 = 19$

Equation of the tangent to the ellipse is:

$$x-a$$
, $\cos-\theta+$, $y-b$, $\sin-\theta=1$

$$,x-3.,cos-\theta.+,y-5.,sin-\theta.=1$$

Slope, $m=4=-,5-3.,cot-\theta$.

 $,\cot -\theta .=-,12-5.$

Solving for $\sin \Theta$ and $\cos \Theta$, the equation of the tangent becomes,

4x - y = 13

To find the intersection points R and S, put y = -5 and y = 5, to get

R = (2,-5) and S = (,9-2.,5)

So the length RS = ,-,(2-,9-2.)-2.+,(5+5)-2..=,5,-17.-2.

II.

58.B 59.C 60.B

$$6=0(2)+6(1)=1(2)+4(1)=2(2)+2(1)=3(2)+0(1)$$

No of 2s	No of 1s	No of permutations
0	6	1
1	4	5!4!=5
2	2	4!2!2!=6
3	0	3!3!=1
		Total =13

Now,

f(f(6))=f(13)

No of 1s	No of 2s	No of permutations
13	0	1
11	1	12
9	2	55
7	3	120
5	4	126
3	5	56
1	6	7
		total=377

sof(f(6))=377

f(1)=1

f(2)=2

f(3)=3

f(4)=5

By taking higher values of n in f(n), we always get more value of f(n). Hence, f(x) is one-one ,clearly f(x) is into.