فصل دهم و یازدهم

شیوه به کارگیری و نکات کاربردی در طراحی الگوریتم ها و سیستم های یادگیری ماشین

انتخاب الگوريتم يادگيري ماشين

- اگر در بحث پیش بینی یا دسته بندی خطا از حد انتظار بیشتر شد چه باید کرد؟
 - انتخاب کورکورانه یا انتخاب آگاهانه
 - حمع آوری داده های بیشتر (همیشه مفید نیست)
 - → کاهش یا افزایش ویژگی ها (زمان بر است باید مطلوبیت این کار مشخص گردد)
 - اضافه کردن ویژگی های ترکیبی
 - تنظيم ضرايب آلفا و لامبدا
 - -برخی از این سعی و خطاها هزینه بر و ممکن است ماه ها طول بکشد!!
 - راه حل چیست؟؟

معاینه یادگیری ماشین

معاینه یادگیری ماشین

- معاینه یادگیری ماشین آزمونی است که از طریق آن می توان فهمید که چه اقداماتی عملکرد الگوریتم
 یادگیری را بهبود می بخشد و یا در افزایش عملکرد آن بی تاثیر است.
 - زمانگیر است ولی از روش سعی و خطا بهتر است.
 - ارزیابی فرضیه ها
 - ◄ بيش تطابقي و كم تطابقي
 - ◄ به دنبال کاهش خطا هستیم اما گاهی این کاهش به دلیل بیش تطابقی است.
 - اگر ویژگی ها زیاد باشد از طریق ترسیم شکل نمی توان بیش تطابقی را تشخیص داد.

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

تقسیم داده ها به داده های آموزشی و آزمون

بيان پارامتريک نمونهها	نوع داده	قيمت	اندازه
$(x^{(1)}, y^{(1)})$		F	7.14
$(x^{(\tau)},y^{(\tau)})$		77.	15
$(x^{(r)},y^{(r)})$		759	74
,	مجموعة أموزشي	777	1418
)	54.	۲۰۰۰
		۲	1980
$(x^{(Y)},y^{(mY)})$		110	1084
$(x_{\text{test}}^{(i)}, y_{\text{test}}^{(i)})$		199	1474
$(x_{\text{test}}^{(r)}, y_{\text{test}}^{(r)})$	مجموعة أزمون	717	144.
$(x_{\text{test}}^{(r)}, y_{\text{test}}^{(r)})$		744	1494
1			l.

ترتیب داده ها بهم می ریخته می شود. ۷۰٪ داده های آموزشی M-train ۳۰٪ داده های آزمون M-test

- ابتدا با داده های آموزشی مقدار بهینه پارمترهای به دست می آید.
 - و با داده های آزمون تابع مناسب انتخاب می شود.

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{\underline{test}}} h_{\theta}(x_{test}^{i}) - y_{test}^{i})^{2}$$

$$J_{test}(\theta) = -\left[\frac{1}{m_{test}} \sum_{i=1}^{m_{\underline{test}}} y_{test}^{i} \log\left(\mathbb{Z}_{\theta}(x_{test}^{i})\right) + \left(1 - y_{test}^{i}\right) \log(1 - \log\left(1 - \mathbb{Z}_{\theta}(x_{test}^{i})\right)\right]$$

$$Test \; error = \; \frac{1}{m_{test}} \sum_{i=1}^{m_{test}} err(h_{\theta}(x_{test}^i) - y_{test}^i)$$

- انتخاب تابع فرضیه مناسب از بین توابع مختلف:
 - تابعی که کمترین خطا آزمون را دارد.

آیا بهترین انتخاب است؟

		پارامترهای بهینه	خطای تابع هزینه		درجهٔ چندجملهای
$h_{\theta}(x) = \theta_{\circ} + \theta_{\uparrow} x$	\rightarrow	$\theta^{(1)}$	$J_{\mathrm{test}} \theta^{(i)}$	\rightarrow	d_1
$h_{\theta}(x) = \theta_o + \theta_i x + \theta_r x^{T}$	\rightarrow	$ heta^{(extsf{ iny Y})}$	$J_{\text{test}}\theta^{(r)}$	\rightarrow	d_{τ}
$h_{\theta}(x) = \theta_s + \theta_t x + \dots + \theta_\tau x^{\tau}$	\rightarrow	$ heta^{(au)}$	$J_{test} \theta^{(r)}$	\rightarrow	d_{τ}
$h_{\theta}(x) = 0, + 0, x$:	:	:	:	÷
$h_{\theta}(x) = \theta_{\circ} + \theta_{\circ}x + \dots + \theta_{\circ}x^{1}.$	\rightarrow	$\theta^{(1\cdot)}$	$J_{\text{test}}\theta^{(1\cdot)}$	\rightarrow	d_{i}

- ◄ چون انتخاب با داده های آزمون انجام شده است پس بررسی خطای مدل با این داده ها مناسب نیست.
 - داده های آموزشی
 - داده های صحت سنجی
 - 🗖 داده های آزمونی

بیان پارامتریک نمونهها	نوع داده	قيمت	اندازه	
$(x^{(1)},y^{(1)})$	(*	7-14	-
$(x^{(\tau)},y^{(\tau)})$	1	77.	15	
$(x^{(r)},y^{(r)})$	مجموعة أمورشي	759	74	19.
:)	777	1419	15.
(-) (-)	1	54.	7	
$(x^{(m)},y^{(m)})$		۲۰۰	1910	
$(x_{cv}^{(1)}, y_{cv}^{(1)})$	ک مجموعهٔ رواییسنجی ۱	710	1074	
$(x_{cv}^{(m_{cv})}, y_{cv}^{(m_{cv})})$		199	1444	77.
$(x_{test}^{(r)}, y_{test}^{(r)})$	◄ مجموعة أزمون	717	177-	
1		141	1494	7.4.
$(x_{\text{test}}^{(m_{\text{test}})}, y_{\text{test}}^{(m_{\text{test}})})$				

ترتیب داده ها بهم می ریخته می شود. ۴۰٪ داده های آموزشی M-train M-cv ۲۰٪ داده های صحت سنجی ۲۰٪ داده های صحت

M-test ازمون ۱۲۰٪ داده های آزمون

$$J_{train}(\theta) = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} h_{\theta}(x_{train}^{i}) - y_{train}^{i})^{2}$$

$$J_{CV}(\theta) = \frac{1}{2m_{CV}} \sum_{i=1}^{m_{CV}} h_{\theta}(x_{CV}^i) - y_{CV}^i)^2$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{\underline{test}}} h_{\theta}(x_{test}^{i}) - y_{test}^{i})^{2}$$

$$h_{\theta}(x) = \theta_{\circ} + \theta_{\gamma} x \qquad \frac{\min_{\theta} J(\theta)}{\longrightarrow} \qquad \theta^{(1)} \longrightarrow \qquad J_{CV} \theta^{(1)}$$

$$h_{\theta}(x) = \theta_{\circ} + \theta_{\gamma} x + \theta_{\gamma} x^{\gamma} \qquad \longrightarrow \qquad \theta^{(\gamma)} \longrightarrow \qquad J_{CV} \theta^{(\gamma)}$$

$$h_{\theta}(x) = \theta_{\circ} + \theta_{\gamma} x + \theta_{\gamma} x^{\gamma} \qquad \longrightarrow \qquad \theta^{(\gamma)} \longrightarrow \qquad J_{CV} \theta^{(\gamma)}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$h_{\theta}(x) = \theta_{\circ} + \theta_{\gamma} x + \theta_{\gamma} x^{\gamma} \longrightarrow \qquad \theta^{(\gamma)} \longrightarrow \qquad J_{CV} \theta^{(\gamma)}$$

انتخاب از طریق خطای صحت سنجی و محاسبه خطا از طریق داده های آزمون

مقایسه تورش و واریانس

کم تطابقی باعث بایاس بالا و بیش تطابقی باعث واریانس بالا می شود. چگونه می توان از هر دو حالت اجتناب کرد؟

$$J_{train}(\theta) = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} h_{\theta}(x_{train}^i) - y_{train}^i)^2$$

 $J_{CV}(\theta) = \frac{1}{2m_{CV}} \sum_{i=1}^{m_{CV}} h_{\theta}(x_{CV}^i) - y_{CV}^i)^2$

• در كم تطابقي هر دو خطا بالاست.

• در بیش تطابقی خطای خطای آموزش کم ولی خطای صحت سنجی بالاست.

• درجه چند جمله ای d=4

اثر ضریب تنظیم لامبدا در بایاس و واریانس بالا

$$h_{\theta}(x) = \theta_{o} + \theta_{v}x + \theta_{v}x^{v} + \theta_{v}x^{v} + \theta_{v}x^{v}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{v} + \frac{\lambda}{m} \sum_{j=1}^{m} \theta_{j}^{v}$$

وضعيت درست

ضریب کر کوچک واریانس بالا (تطابق زیاد)

توسط داده های آموزشی چند جمله را انتخاب و سپس با توجه به مقادیر مختلف λ و داده های صحت سنجی پارامتر بهینه انتخاب می شود.

1	λ=•	$\min_{\theta} J(\theta)$	$\theta^{(i)}$		$J_{cv}\theta^{(i)}$
۲	$\lambda = \cdot_{i} \cdot 1$	\longrightarrow	$\theta^{(\tau)}$	→	$J_{cv}\theta^{(r)}$
۲	$\lambda = \cdot \cdot \cdot \tau$	\longrightarrow	$\theta^{(\tau)}$	\rightarrow	$J_{cv}\theta^{(r)}$
۴	$\lambda = \cdot_{i}$		$\theta^{(*)}$	\rightarrow	$J_{cv}\theta^{(*)}$
:	:		•		
١.	$\lambda = 1$	\longrightarrow	$\theta^{(i,\cdot)}$	\rightarrow	$J_{cv}\theta^{(v)}$

- اگر λ کوچک باشد خطای آموزش کم ولی خطای صحت سنجی زیاد شده و بیش تطابقی (واریانس بالا) داریم.
- \blacksquare اگر Λ بزرگ باشد خطای آموزش زیاد و صحت سنجی زیاد شده و کم تطابقی (بایاس بالا) داریم.

تاثیر افزایش داده ها:منحنی یادگیری

$$2(x) = \theta_0 x_0 + \theta_1 x + \theta_2 x^2$$

$$J_{train}(\theta) = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} h_{\theta}(x_{train}^{i}) - y_{train}^{i})^{2}$$

$$J_{CV}(\theta) = \frac{1}{2m_{CV}} \sum_{i=1}^{m_{CV}} h_{\theta}(x_{CV}^{i}) - y_{CV}^{i})^{2}$$

در كم تطابقي (باياس بالا) افزايش داده باعث بهبودعملكرد نمي شود.

در نمودار خطا فاصله کم نمودار آموزش و صحت سنجی نشان دهنده کم تطابقی است.

در بیش تطابقی (واریانس بالا) افزایش داده باعث بهبود عملکرد می شود.

در نمودار خطا فاصله زیاد نمودار آموزش و صحت سنجی نشان دهنده بیش تطابقی است.

جمع بندي

- حر کم تطابقی (بایاس بالا) افزایش داده باعث بهبود عملکرد نمی شود
- حر بیش تطابقی (واریانس بالا) افزایش داده باعث بهبود عملکرد می شود.
- در بیش تطابقی (واریانس بالا) کاهش تعداد ویژگی ها کمک کننده است ولی در کم تطابقی
 (بایاس بالا) تاثیری ندارد.
- در کم تطابقی (بایاس بالا) اضافه کردن ویژگی های ترکیبی کمک کننده است ولی در بیش تطابقی (واریانس بالا) تاثیری ندارد.
 - کمک (واریانس بالا) و افزایش λ بیش تطابقی (واریانس بالا) کمک کننده است.

From:

cheapsales@buystufffromme.com

To: ang@cs.stanford.edu

Subject: Buy now!

Deal of the week! Buy now! Rolex w4tchs - \$100

Medicine (any kind) - \$50

Also low cost Mortgages available.

From: Alfred Ng

To: ang@cs.stanford.edu Subject: Christmas dates?

Hey Andrew, Was talking to Mom about plans for Xmas. When do you get off work? Meet Dec 22? ایمیل های عادی و اسپم

- ◄ برای ساخت مدل ویژگی ها و خروجی ها مشخص می شود.
 - معمولاً از تكنيك دانه باشي استفاده مي شود.
 - ساخت تدریجی مدل
- ساخت مدل ساده سپس اضافه کردن ویژگی ها و داده ها با تحلیل مدل
 - با استفاده از نمودار خطا و تحلیل کم و بیش برازشی

تحليل خطا

- منظور از تحلیل خطا، بررسی دقیق نمونه هایی است که الگوریتم به درستی دسته بندی نکرده است تا علت آن مشخص گردد.
 - افزایش یا کاهش ویژگی ها مشخص می شود.
 - 🗖 ضعف مدل مشخص می شود.
 - مانند اسپم هایی که درست تشخیص داده نشده اند.
 - وجود كلمه خاصي
 - وجود علامت خاصی
 - شيوه نوشتن متفاوت حروف
 - مدل ساده اولیه کمک می کند که نمونه های دشوار به موقع تشخیص و تحلیل شوند.

محاسبه شاخص کمی در داده های دارای چولگی

- ◄ محاسبه شاخص كمى وقتى نمونه ها داراى چولگى باشد داراى اشكال است.
 - ➡ شاخص کمی در بیماران سرطانی
 - ■نسبت بیماران به افراد سالم کمتر است.
- اگر تمام بیماران را به اشتباه سالم تشخیص دهد عدد ناچیزی خواهد شد. (۹۹٪ نمونه های سالم و بیمار را درست تشخیص می دهد و خطا برای هر کدام ۱٪ است)
 - آیا خطای ۱٪ مطلوب است؟؟؟
 - ◄ در داده های دارای چولگی شاخص خطای کلی، شاخص مناسبی نیست.

المنتف واقعى المنتف واقعى المنتف واقعى المنتف واقعى المنتف واقعى المنتف المنتف

به درستی مثبت
$$+$$
 به درستی مثبت $+$ واقعاً مثبت $+$ به درستی مثب

حقت (precision):نشان می دهد که چند درصد مواردی که به درستی مثبت (y=1) پیش بینی کرده است، واقعاً مثبت بوده اند.

$$p = \frac{TP}{TP + FP}$$

بازخوانی (recall): نشان می دهد که چند درصد موارد واقعاً مثبت (y=1) درست مثبت پیش بینی شده اند.

$$R = \frac{TP}{TP + FN}$$

المبل 2758 دستة واقعى عادى 2758 المبل 2758 المبل 2758 المبلم 1813 المبلم 1558 125 المبلم 190 المبلم 1558 125 المبلم 190 المبلم 190

$$p = \frac{TP}{TP + FP} = \frac{1558}{1558 + 125} = 92.5\%$$

$$R = \frac{TP}{TP + FN} = \frac{1558}{1558 + 255} = 86\%$$

افزایش یا کاهش شاخص های دقت و بازخوانی به چه معناست؟

- ◄ در مواردی که پیش بینی دست های کوچک تر اهمیت بیشتری دارد (سرطانی) شاخصدقت و بازخوانی ما را به اشتباه می اندازد.
 - 🗖 شاخص دقت بیشتر

اگر
$$h(\theta) \geq \cdot ,$$
۱ اگر $y = 1$

اگر
$$h(\theta) < \cdot, \lor$$
 اگر $y = \cdot$

🗖 شاخص بازخوانی بیشتر

اگر
$$h(\theta) \ge \cdot$$
 آنگاه $y = 1$

اگر
$$h(\theta) < \cdot, r$$
 اگر $\rightarrow y = \cdot$

انتخاب الگوریتم براساس شاخص های دقت و بازخوانی

$$=\frac{P+R}{\Upsilon}$$
 = شاخص

میانگین شاخصها	شاخص بازخوانی (R)	شاخص دقت (P)	
.,40	•/۴		الكوريتم اول
•,*	•,1	-, Y	الگوريتم دوم
-,01	١,٠	٠,٠٢	الگوريتم سوم

شاخص بازخوانی (R)	شاخص دقت (P)	
•,4	٠۵	الگوريتم اول
•,1	•,٧	الگوريتم دوم
1,.	٠,-٢	الكوريتم سوم

	میانگین شاخصها	شاخص بازخوانی (R)	شاخص دقت (P)	
FScore	د د المحقق	• ,4	۰,۵	الگوريتم اول
. +++	•,10	•,1	•,٧	الگوريتم دوم
.,170	7,•		-,-۲	الگوريتم سوم
. 444	10,0	11.	9	الحوريت المرا

$$F_iScore = Y \frac{PR}{P + R}$$