Graphs & Trees (G)

	Chapter	Lecture	Assignment
Graphs & Trees	1.3, 10	11	6

10	O. (6 pts) Each of the four descriptions below specify a graph. For one of those four descriptions it is impossible to construct a graph that matches the description. Which description is the impossible one?	10.	(6 pts) Each of the four descriptions below specify a graph. For one of those four descriptions it is impossible to construct a graph that matches the description. Which description is the impossible one?
	A simple graph with two connected components and a simple circuit.		A simple graph with two connected components and a simple circuit.
	\square A full binary tree with 9 vertices.		B A full binary tree with 9 vertices.
	A graph with 6 vertices: one vertex of degree 0, one of degree 1, one of degree 2, one of degree 3, and two of degree 4.		$\overline{\mathbb{C}}$ A graph with 6 vertices: one vertex of degree 0, one of degree 1, one of degree 2, one of degree 3, and two of degree 4.
	A tree with 6 vertices and total degree 12.		☑ A tree with 6 vertices and total degree 12.
			Solution: A tree with 6 vertices must have 5 edges according to Theorem 14. According to the Handshake Theorem, a graph with 5 edges has total degree 10 – not 12 .
9.	(6 pts) Consider the following three descriptions of a graph:	9. ((6 pts) Consider the following three descriptions of a graph:
	(A) A simple graph with 6 vertices: one vertex of degree 0, one of degree 1, one of degree 2, one of degree 3, one of degree 4 and one of degree 5.		(A) A simple graph with 6 vertices: one vertex of degree 0, one of degree 1, one of degree 2, one of degree 3, one of degree 4 and one of degree 5.
	(B) A tree with 5 vertices and an Euler trail.		(B) A tree with 5 vertices and an Euler trail.
	(C) A tree with 5 vertices and a total degree of 10.		(C) A tree with 5 vertices and a total degree of 10.
	Which statement is true ?	Ţ	Which statement is true ?
	\square (B) and (C) exist, but (A) does not.		A (B) and (C) exist, but (A) does not.
	\square (B) exists, but neither (A) nor (C) do.]	(B) exists, but neither (A) nor (C) do.
	\square (A) and (B) exist, but (C) does not.	($\overline{\mathbf{C}}$ (A) and (B) exist, but (C) does not.
	(C) exists, but neither (A) nor (B) do.	Ī	D (C) exists, but neither (A) nor (B) do.
		F	Solution: (A) not exist. Such a graph would have total degree of $0+1+2+3+4+5=15$. However, according to the Handshake Theorem, every graph has an even total degree. (B) does exist:
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		ì	(C) does not exist. According to the Handshake Theorem, a graph with total degree 10 must have exactly 5 edges. However, according to Theorem 14 on page 14, a tree with 5 vertices must have exactly 4 edges.

9. (6 pts) Let n be a positive integer. What is the total degree of a tree with n vertices? 9. (6 pts) Let n be a positive integer. What is the total degree of a tree with n vertices?

2n.

2n-1.

2n-2.

n-1.

8. (6 pts) Let G be the following graph:

Which of the following statements is **true**?

 $\Box G$ is a tree.

 \square G has an Euler circuit.

 \square G has an Euler trail.

 \square G has two connected components.

A 2n.

B 2n - 1.

2n-2.

 $\boxed{\mathbb{D}} n-1.$

Solution: A tree with n vertices must have n-1 edges according to Theorem 14. According to the Handshake Theorem, a graph with n-1 edges has total degree 2(n-1) = 2n-2.

8. (6 pts) Let G be the following graph:

Which of the following statements is **true**?

 $\overline{\mathbf{A}}$ G is a tree.

 \mathbb{B} G has an Euler circuit.

 \square G has two connected components.

Solution: The graph is connected, two vertices have degree 3, while all remaining vertices have degree 2. Hence, the graph has an Euler trail.

10. (6 pts) Let G be the following graph:

Which of the following statements is **true**?

	\sim				. 1
1 1	<i>('</i>	10	not	CONT	
	\ T	10	11()()	COLL	iccicu.

- \Box G has an Euler circuit.
- \Box G has an Euler trail.
- \square G is a simple graph.
- **9.** (2 pts) Consider the following directed graph G = (V, E).

Which of the following statements is *false*?

 \Box G is a simple directed graph

 \square $H = (\{f\}, \{\})$ is a strongly connected component of G

 \square G is weakly connected

 \Box The path b, c, f, b is a simple circuit of length 3

10. (6 pts) Let G be the following graph:

Which of the following statements is **true**?

- $\overline{\mathbf{A}}$ G is not connected.
- $\overline{\mathbf{B}}$ G has an Euler circuit.
- $\bigcirc G$ has an Euler trail.
- \square G is a simple graph.

Solution: Both a and c have an odd degree (namely 3) all other vertices have an even degree. Hence, there is an Euler trail from a to c.

9. Consider the following directed graph G = (V, E).

Which of the following statements is false?

- $\overline{\mathbf{A}}$ G is a simple directed graph
- $\mathbf{P} H = (\{f\}, \{\})$ is a strongly connected component of G
- \square The path b, c, f, b is a simple circuit of length 3

- 3. (15 pts) There are three conditions for a graph listed below. For each of these conditions give either an example of a graph that satisfies the condition, or a reason why no such graph exists. In order to give an example, either draw the corresponding graph or give the triple (V, E, f) of vertices, edges and edge-endpoint function.
 - Hint: Use the definitions and theorems about graphs and trees on pages 15–16.
 - (a) A tree with 5 vertices and a total degree of 10.
 - (b) A tree with 5 vertices and an Euler trail.
 - (c) A simple graph with 6 vertices: one vertex of degree 0, one of degree 1, one of degree 2, one of degree 3, one of degree 4 and one of degree 5.

- tions give either an example of a graph that satisfies the condition, or a reason why no such graph exists. In order to give an example, either draw the corresponding graph or give the triple (V, E, f) of vertices, edges and edge-endpoint function.
- Hint: Use the definitions and theorems about graphs and trees on pages 16–17.
- (a) A tree with 5 vertices and a total degree of 10. Solution: Such a graph does not exist. According to the Handshake Theorem, a graph with total degree 10 must have exactly 5 edges. However, according to Theorem 13 on page 17, a tree with 5 vertices must have exactly 4 edges.
- (b) A tree with 5 vertices and an Euler trail.

Solution: Such a graph does exist:

It has the Euler trail $v_1e_1v_2e_2v_3e_3v_4e_4v_4$.

(c) A simple graph with 6 vertices: one vertex of degree 0, one of degree 1, one of degree 2, one of degree 3, one of degree 4 and one of degree 5.

Solution: Such a graph does not exist. Such a graph would have total degree of 0+1+2+3+4+5=15. However, according to the Handshake Theorem, every graph has an even total degree.

Alternative Solution: The vertex with degree 5 must have an edge to each other vertex, because a simple graph may not have loops or parallel edges. But that means that there cannot be a vertex with degree 0.

- 13. (12 pts) There are three conditions for a graph listed below. For each of these conditions give *either* an example of a graph that satisfies the condition, or a justification why no such graph exists. In order to give an example, either draw the corresponding graph or give the triple (V, E, f) of vertices, edges and edge-endpoint function. In order to give a justification that a graph of the given description cannot exist, use the definitions and theorems about graphs and trees on pages 16-18.
 - (a) A graph with 4 vertices 7 edges and an Euler circuit.
 - (b) A simple connected graph with a circuit.
 - (c) A full binary tree with 8 vertices.

Above question appears multiple times in previous exams

- 13. (12 pts) There are three conditions for a graph listed below. For each of these conditions give *either* an example of a graph that satisfies the condition, *or* a justification why no such graph exists. In order to give an example, either draw the corresponding graph or give the triple (V, E, f) of vertices, edges and edge-endpoint function. In order to give a justification that a graph of the given description cannot exist, use the definitions and theorems about graphs and trees on pages 15–17.
 - (a) A graph with 4 vertices 7 edges and an Euler circuit.

Solution: Such a graph does exist:

The graph has an Euler circuit since each vertex has an even degree.

(b) A simple connected graph with a circuit.

Solution: Such a graph exists:

(c) A full binary tree with 8 vertices.

Solution: Such a graph does not exist. According to Theorem 15 on page 17, a full binary tree with n internal vertices has exactly n+1 leaves. That means, every full binary tree has 2n+1 vertices, i.e. an odd number of vertices. Hence, there is no full binary tree with an even number of vertices.