ECE 20002 – Spring 2022 Exam #3 April 13, 2022

Section (please mark on scantron)

Prof. Byunghoo Jung (07:30 AM) – Section 0002

Prof. Michael Capano (03:30 PM) - Section 0003

Instructions

- 1. DO NOT START UNTIL TOLD TO DO SO.
- 2. Write your name, section, professor, and student ID# on your **Scantron** sheet. We may check PUIDs.
- 3. This is a CLOSED BOOKS and CLOSED NOTES exam.
- 4. The use of a TI-30X IIS calculator is allowed.
- 5. A formula sheet is provided on the last page. You may tear it out for reference during the exam.
- 6. Cheating will not be tolerated. Cheating in this exam will result in an F grade for the course. In particular, continuing to write after the exam time is up is regarded as cheating.
- 7. If you cannot solve a question, be sure to look at the other ones and come back if time permits.
- 8. You may not leave the room during the last 10 minutes of the exam.
- 9. We collect scantrons only. You may keep the exam booklets.

Question 1. (10 points)

In the circuit below, find $V_C(s)$ in s-domain. Assume the capacitor initial voltage $v_C(0) = 0$ V and the inductor initial current $i_L(0) = 0$ A.

[Note] Do not perform partial fraction.

$$R = 1 \left[\Omega\right]$$

$$L = 1 \left[H\right]$$

$$C = 1 \left[F\right]$$

$$v_{c}(t)$$

$$v_{in}(t) = \begin{cases} 2e^{-2t} \left[V\right] & \text{for } t \ge 0 \\ 0 \left[V\right] & \text{for } t < 0 \end{cases}$$

$$\mathcal{L}\left[u(t)\right] = \frac{1}{s}$$

$$\mathcal{L}\left[e^{-at}\right] = \frac{1}{s+a}$$

$$v_{C}(0) = 0 \left[V\right]$$

$$i_{L}(0) = 0 \left[A\right]$$

(1)
$$V_C(s) = \frac{s+2}{2(s^2+s+1)}$$

(2)
$$V_C(s) = \frac{s+2}{(s^2+s+1)}$$

(3)
$$V_C(s) = \left(\frac{s^2 + s + 1}{s + 2}\right)$$

(4)
$$V_C(s) = \frac{2(s^2 + s + 1)}{s + 2}$$

(5)
$$V_C(s) = \left(\frac{1}{s^2 + s + 1}\right) \left(\frac{1}{s + 2}\right)$$

(6)
$$V_C(s) = \left(\frac{1}{s^2 + s + 1}\right) \left(\frac{2}{s + 2}\right)$$

(7)
$$V_C(s) = \left(\frac{1}{s^2 + 2s + 1}\right) \left(\frac{1}{s + 2}\right)$$

(8)
$$V_C(s) = \left(\frac{1}{s^2 + 2s + 1}\right) \left(\frac{2}{s + 2}\right)$$

Question 2. (10 points)

In the circuit below, find $V_c(s)$ in s-domain. Assume the capacitor initial voltage $v_c(0) = 5 \text{ V}$. [Note] Do not perform partial fraction.

$$R = 1 \left[\Omega\right]$$

$$C = 1 \left[F\right]$$

$$V_{in}(t) = 5e^{-2t}u(t) \left[V\right]$$

$$\mathcal{L}\left[u(t)\right] = \frac{1}{s}$$

$$\mathcal{L}\left[e^{-at}\right] = \frac{1}{s+a}$$

$$R = 1 \left[\Omega\right]$$

$$C = 1 \left[F\right]$$

$$v_{in}(t) = 5e^{-2t}u(t) \left[V\right]$$

$$v_{C}(0) = 5 \left[V\right]$$

$$\mathcal{L}\left[u(t)\right] = \frac{1}{s}$$

$$\mathcal{L}\left[e^{-at}\right] = \frac{1}{s+a}$$

$$(1) V_C(s) = \left(\frac{1}{s+1}\right)\left(\frac{5}{s+2}\right)$$

(2)
$$V_C(s) = \left(\frac{1}{s+1}\right)\left(\frac{5}{s+2}\right) - \left(\frac{1}{s+1}\right)\left(\frac{5}{s}\right)$$

(3)
$$V_C(s) = \left(\frac{1}{s+1}\right)\left(\frac{5}{s+2}\right) + \frac{5}{s}$$

(4)
$$V_C(s) = \left(\frac{1}{s+1}\right)\left(\frac{5}{s+2}\right) - \left(\frac{1}{s+1}\right)\left(\frac{5}{s}\right) + \frac{5}{s}$$

(5)
$$V_C(s) = \left(\frac{1}{s+1}\right) \left(\frac{1}{s+2}\right)$$

(6)
$$V_C(s) = \left(\frac{1}{s+1}\right)\left(\frac{5}{s+2}\right) - \left(\frac{1}{s+1}\right)5$$

(7)
$$V_C(s) = \left(\frac{1}{s+1}\right)\left(\frac{5}{s+2}\right) + 5$$

(8)
$$V_C(s) = \left(\frac{1}{s+1}\right)\left(\frac{5}{s+2}\right) - \left(\frac{1}{s+1}\right)5 + 5$$

Question 3. (10 points)

In the circuit below, the output $v_{OUT}(t)$ consists of zero input response (ZIR) and zero state response (ZSR).

$$v_{OUT}(t) = v_{OUT,ZIR}(t) + v_{OUT,ZSR}(t)$$

Find the zero input response (ZIR) $v_{OUT,ZIR}(t)$.

(1)
$$v_{OUT,ZIR}(t) = 0.5 \text{ [V]}$$

(2)
$$v_{OUTZIR}(t) = -0.5e^{-2t}$$
 [V]

(3)
$$v_{OUT,ZIR}(t) = 1.5e^{-2t}$$
 [V]

(4)
$$v_{OUT.ZIR}(t) = 2e^{-2t}$$
 [V]

(5)
$$v_{OUT,ZIR}(t) = 2.5e^{-2t}$$
 [V]

(6)
$$v_{OUT,ZIR}(t) = 0.5 - 0.5e^{-2t}$$
 [V]

(7)
$$v_{OUT,ZIR}(t) = 0.5 + 1.5e^{-2t}$$
 [V]

(8)
$$v_{OUTZIR}(t) = 0.5 + 2e^{-2t}$$
 [V]

Question 4. (10 points)

In the circuit below, find $H(s) = V_L(s)/I_{IN}(s)$. Assume all initial conditions are zero.

(1)
$$H(s) = \frac{V_L(s)}{I_{IN}(s)} = \frac{0.5}{s^2 + 0.5s + 1}$$

(2)
$$H(s) = \frac{V_L(s)}{I_{IN}(s)} = \frac{1}{s^2 + 0.5s + 1}$$

(3)
$$H(s) = \frac{V_L(s)}{I_{IN}(s)} = \frac{s}{s^2 + 0.5s + 1}$$

(4)
$$H(s) = \frac{V_L(s)}{I_M(s)} = \frac{0.5}{s^2 + 2s + 1}$$

(5)
$$H(s) = \frac{V_L(s)}{I_{IN}(s)} = \frac{1}{s^2 + 2s + 1}$$

(6)
$$H(s) = \frac{V_L(s)}{I_{IN}(s)} = \frac{s}{s^2 + 2s + 1}$$

(7)
$$H(s) = \frac{V_L(s)}{I_{IN}(s)} = \frac{0.5}{s^2 + s + 1}$$

(8)
$$H(s) = \frac{V_L(s)}{I_{IN}(s)} = \frac{1}{s^2 + s + 1}$$

Question 5. (10 points)

One of the transfer functions or pole-zero diagrams shown below represents an unstable system. Which one?

(4)		
(1)	H(s) =	$\frac{7(s+3)(s+7)^2}{+4)^3(s+2+j3)(s+2-j3)}$
	(s-	$(s+4)^3(s+2+j3)(s+2-j3)$
(2)	***	$7(s-3)(s+7)^2$
	$H(s) = \frac{1}{(s-1)^n}$	$\frac{7(s-3)(s+7)^2}{+4)^3(s+2+j3)(s+2-j3)}$
(3)		, , , , , , , , , , , , , , , , , , , ,
	$H(s) = \frac{7(s+3)(s+7)^2}{(s+4)^3(s-2+j3)(s-2-j3)}$	
(-)	,	
(4)	H(s) =	$\frac{(s-7)}{(s+2+j3)(s+2-j3)}$
(5)	∳ jω	(6) ♠jω
	Estate	0
	X	X
	\longrightarrow	• • • • • • • • • • • • • • • • • • •
	X	X
		•
(=)		(0)
(7)	Δ jω	⁽⁸⁾ ↑jω
	0	X
	X	X
	Χ σ	σ
	X	X
	0	X
	ı ı	

Question 6. (10 points)

In the circuit below, find $v_R(t)$ in steady-state. [Hint] Check resonance frequency.

$$R = 10 \left[\Omega\right]$$

$$L = 0.1 \left[H\right]$$

$$C = 0.1 \left[F\right]$$

$$v_{in}(t) = 2\cos(10t + 45^{\circ}) \left[V\right]$$

1)
$$v_{in}(t) = 0.2\cos(10t + 45^\circ)$$
 [V]

2)
$$v_{in}(t) = -0.2\cos(10t + 45^\circ)$$
 [V]

3)
$$v_{in}(t) = 2\cos(10t + 45^\circ)$$
 [V]

4)
$$v_{in}(t) = -2\cos(10t + 45^\circ)$$
 [V]

5)
$$v_{in}(t) = 20\cos(10t + 45^\circ)$$
 [V]

6)
$$v_{in}(t) = -20\cos(10t + 45^\circ)$$
 [V]

7)
$$v_{in}(t) = 0.2\cos(10t + 45^{\circ} + 90^{\circ})$$
 [V]

8)
$$v_{in}(t) = -0.2\cos(10t + 45^{\circ} + 90^{\circ})$$
 [V]

Question 7. (10 points)

Which transfer function H(s) has the Bode magnitude plot shown below? [Note] The y-axis is in dB scale and the x-axis is in log scale.

1)
$$H(s) = \frac{(s+10000)}{(s+1)(s+100)}$$

2)
$$H(s) = \frac{s}{(s+1)(s+100)}$$

3)
$$H(s) = \frac{s(s+10000)}{(s+1)(s+100)}$$

4)
$$H(s) = \frac{(s+10000)}{(s+1)(s+100)^2}$$

5)
$$H(s) = \frac{s}{(s+1)(s+100)^2}$$

6)
$$H(s) = \frac{s(s+10000)}{(s+1)(s+100)^2}$$

7)
$$H(s) = \frac{(s+10000)}{(s+100)^2}$$

8)
$$H(s) = \frac{s}{(s+100)^2}$$

Question 8. (10 points)

Shown below are the Bode plots of a transfer function H(s) = $V_{OUT}(s)/V_{IN}(s)$. When $v_{IN}(t) = 2\cos(0.001t + 15^\circ) + 3\cos(1000t + 45^\circ)$, find $v_{OUT}(t)$ in steady state using the Bode plots.

[Note] In the magnitude plot, the y-axis is in dB scale and the x-axis is in log scale. In the phase plot, the y-axis unit is degree, not radian.

1)
$$v_{OUT}(t) = 2\cos(0.001t + 15^{\circ}) + 3\cos(1000t + 45^{\circ})$$

2)
$$v_{OUT}(t) = 2\cos(0.001t + 15^{\circ}) + 0.003\cos(1000t - 45^{\circ})$$

3)
$$v_{OUT}(t) = 2\cos(0.001t + 15^{\circ}) + 0.003\cos(1000t - 90^{\circ})$$

4)
$$v_{OUT}(t) = 2\cos(0.001t + 15^{\circ}) + 0.003\cos(1000t - 135^{\circ})$$

5)
$$v_{OUT}(t) = 0.002\cos(0.001t + 15^{\circ}) + 3\cos(1000t + 45^{\circ})$$

6)
$$v_{OUT}(t) = 0.002\cos(0.001t - 75^{\circ}) + 0.003\cos(1000t - 45^{\circ})$$

7)
$$v_{OUT}(t) = 0.002\cos(0.001t - 90^{\circ}) + 0.003\cos(1000t - 45^{\circ})$$

8)
$$v_{OUT}(t) = 0.002\cos(0.001t - 105^{\circ}) + 0.003\cos(1000t - 45^{\circ})$$

Question 9. (10 points)

The transfer function of the circuit shown below is $H(s) = \frac{V_{OUT}(s)}{V_{IN}(s)} = \frac{1}{8\left(s + \frac{1}{8}\right)}$

We would like to (a) use a 20 Ω resistor instead of the 2 Ω resistor, (b) keep the passband gain (low frequency gain) unchanged, and (c) increase the 3dB frequency (pole frequency) from 1/8 [rad/s] to 8 [rad/s]. Find the required capacitance value.

- 1) C = 6.25 mF
- 2) C = 62.5 mF
- 3) C = 400 mF
- 4) C = 625 mF
- 5) C = 40 F
- 6) C = 25.6 F
- 7) C = 256 F
- 8) C = 2560 F

Question 10. (10 points)

In the circuit below, a transfer function is defined as $H(s) = \frac{I_{OUT}(s)}{V_{IN}(s)}$.

$$R_S = 0.1 \left[\Omega\right]$$

$$L_{\rm S} = 0.1 \, [H]$$

$$L_S = 0.1 [H]$$

$$C_S = 0.1 [F]$$

Shown below is the Bode magnitude plot of H(s). Find ω_m , H_m, and the pole-zero diagram of H(s). [Note] The y-axis of the Bode magnitude plot is in linear scale. Do not use [dB].

Current-Voltage relationships

1. Resistors: $\mathcal{L}\{v_R(t) = Ri_R(t)\} = V_R(s) = RI_R(s)$ (23.1)

$$\mathcal{L}\{i_R(t) = Gv_R(t)\} = I_R(s) = GV_R(s)$$
 (23.2)

2. Inductors:

$$\mathcal{L}\left\{v_{L}(t) = L\frac{di_{L}(t)}{dt}\right\} = V_{L}(s) = L[sI_{L}(s) - i_{L}(0^{-})] \quad (23.3)$$

$$\mathcal{L}\left\{i_L(t) = \frac{1}{L} \int_{-\infty}^t v_L(\tau) d\tau\right\} = I_L(s) = \frac{1}{L} \left[\frac{V_L(s)}{s} + \frac{\int_{-\infty}^0 v_L(\tau) d\tau}{s}\right]$$
(23.4)

3. Capacitors:

$$\mathcal{L}\left\{v_{\mathcal{C}}(t) = \frac{1}{C} \int_{-\infty}^{t} i_{\mathcal{C}}(\tau) d\tau\right\} = V_{\mathcal{C}}(s) = \frac{1}{C} \left[\frac{I_{\mathcal{C}}(s)}{s} + \frac{\int_{-\infty}^{0} i_{\mathcal{C}}(\tau) d\tau}{s}\right]$$
(23.5)

$$\mathcal{L}\left\{i_{C}(t) = C\frac{dv_{C}(t)}{dt}\right\} = I_{C}(s) = C[sV_{C}(s) - v_{C}(0^{-})]$$
(23.6)