Liouville Equation

[R. Zwanzig, "Nonequilibrium Statistical Mechanics", P.31]

- Phase space

Let $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_{3N})$ and $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_{3N})$ be the coordinate and momentum vectors, where N is the number of atoms.

The pair of the vectors, X = (9, P), specifies a phase-space point.

- Phase-space trajectory: Liouville operator

The motion of the system in the phase space is described by the trajectory, X(t) ($t \in \mathbb{R}$), which is governed by Hamilton's equations,

$$\dot{P} = \frac{dP}{dt} = -\frac{\partial H}{\partial \theta} \tag{1b}$$

For the Hamiltonian, H(9,P), we assume a form

$$\Box + (9, \mathbb{P}) = \sum_{i=1}^{3N} \frac{P_i^2}{2m_i} + \sqrt{(9)}$$
 (2a)

$$= \frac{1}{2} P^{\mathsf{T}} M^{-1} P + V(\mathfrak{A}) \tag{2b}$$

where mi is the mass associated with the i-th coordinate,

 $M_{ij} = m_i \delta_{ij}$ is the diagonal mass matrix, and V(9) is

the potential energy.

Substituting Eq. (2) in (1), the equations of motion become -9-M-1P (3a)

$$\dot{\mathbf{p}} = -\frac{\partial V}{\partial \mathbf{g}} \tag{3b}$$

12

	96/1P6 P6/1P6 .
	1 3F /3F 3F/3F
	I M-dt
	$-\frac{\partial^2 V}{\partial g^2} dt$ II
	Note that the identical permutation gives the contribution 1 to
n naga perlangkan Pantaina, sebagai nagan nagan naga terbagai pang pengap engan dapan pengaban pengan berapa p	the determinant. Also note that the diagonal blocks are identity
	matrices, so that only permutations mixing the 9 and IP blocks
	need to be considered: Consider
	$J_{11} J_{22} \cdots J_{g_{1}g} \cdots J_{g_{q}} \cdots J_{NN} = \overline{m_{j}} \overline{\partial g_{j}} \overline{\partial g_{j}} \partial j dt$
	$J_{11} J_{22} \cdots J_{q_1 \beta} \cdots J_{p_2 q_1} \cdots J_{NN} = -\frac{1}{m_j} \frac{\partial^2 V}{\partial y_j \partial y_i} \delta_{ij} dt^2$ $1 1 m_j^{-1} \delta_{ij} -\frac{\partial^2 V}{\partial y_j \partial y_i}$
	Any such permutation thus introduces a factor dt?
	Therefore,
	$\left \frac{\partial Xdt}{\partial X}\right = 1 + O(dt^{\frac{3}{2}}) \tag{10}$
	13% 1 - 1 % 6.00)
	and
gallarindagen kalalarindarinda yilkidi kerra salasi salasi salasi salasi salasi salasi salasi salasi salasi sa	$\frac{\left \frac{\partial Xt}{\partial X}\right = \lim_{N \to \infty} \left(1 + a\left(\frac{t}{N}\right)^2\right)^N}{N}$
	$= \exp\left(\lim_{N \to \infty} N \log_{e} \left[1 + a \left(\frac{t}{N}\right)^{2}\right]\right)$
kaminda, ita i jarahan kata ita da kata jarah kata ita kata i kata kata i kata i kata i kata i kata i kata i k	$= \exp\left(\lim_{N\to\infty} N \cdot a \frac{t^2}{N^2}\right) = e^0 = 1$
minister en	: 13Xt1
	$ \frac{ \cdot \partial X_t }{ \partial X } = 1 $
	Combining Egs. (8) and (11),
	$f(X_t, t) = \int_0^{\infty} (X_t, t) dt dt dt$

Continuity equation From Eq. (14) $\frac{\partial f}{\partial t} = \frac{\partial H}{\partial P} \cdot \frac{\partial f}{\partial P} + \frac{\partial H}{\partial P} \cdot \frac{\partial f}{\partial P}$ $= -\frac{98}{9} \cdot \left(\frac{96}{9H} \cdot \frac{1}{9} \cdot \frac{1}{9$ $= \frac{\partial}{\partial \theta} \cdot (\dot{\theta} f) - \frac{\partial}{\partial \theta} \cdot (\dot{\theta} f)$ $= -\frac{3}{2} \cdot (\hat{x}f)$ $\frac{\partial f}{\partial t} + \frac{\partial}{\partial x} \cdot (x^2 f) = 0$ (Useful identity) For arbitrary function, A(X),

(Useful identity)

For arbitrary function,
$$A(X)$$
,

$$LA(X) = \dot{X} \cdot \frac{\partial}{\partial X} A = \frac{\partial}{\partial X} \cdot (\dot{X}A)$$
(18)

(16)

(17)

$$A \stackrel{(X)}{=} A \stackrel{$$

$$= \frac{2}{3} \cdot (\dot{x}A)$$