Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Zavada Svetlana Гр. 320201

Вариант 18

Часть І. Планирование адресного пространства IPv6

Задание 1.1: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4ee9:5376:6574:6c00:0/102

Задание 1.2: разбить сеть из п.1.1 на 20 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{ m C\acute{\Gamma}C,}$	$2001: \mathtt{db8:} 0: 4 \mathtt{ee9:} 5376: 6574: 6 \mathtt{c} 00: 0 / 107$
Префикс $N_{\rm C,PePS}$	2001:db8:0:4ee9:5376:6574:6e60:0/107

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (18*16)/256+10=11

 $X1 = {f octatok}$ от деления $(N*16)/256 = {f octatok}$ от деления (18*16)/256 = 32

Дано: Сеть 11.32.0.0/12

Задание 2.1.1: разбить сеть на 512 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	32	0	0
Адрес сети	00001011	00100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 5 бит из 2-го октета.

3. Итого, получается, что сеть 11.32.0.0/12 мы разбили на 512 подсети, в каждой из которых по 2046 узлов, указываем первые 5 подсетей:

	11	32	0	0
Адрес сети дв.с	00001011	00100000	00000000	00000000
Маска дв.с	11111111	11111111	11111000	00000000
	255	255	248	0

Адрес сети $N_1/$ Префикс N_1	11.32.0.0/21
Λ дрес первого узла N_1	11.32.0.1
Адрес последнего узла N_1	11.32.7.254
Широковещательный адрес N_1	11.32.7.255
Адрес сети $N_2/$ Префикс N_2	11.32.8.0/21
Адрес первого узла N_2	11.32.8.1
Адрес последнего узла N_2	11.32.15.254
Широковещательный адрес N_2	11.32.15.255
Адрес сети $N_3/$ Префикс N_3	11.32.16.0/21
Адрес первого узла N_3	11.32.16.1
Адрес последнего узла N_3	11.32.23.254
Широковещательный адрес N_3	11.32.23.255
Адрес сети $N_4/$ Префикс N_4	11.32.24.0/21
Λ дрес первого узла N_4	11.32.24.1
Адрес последнего узла N_4	11.32.31.254
Широковещательный адрес N_4	11.32.31.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	11.32.32.0/21
Адрес первого узла N_5	11.32.32.1
Адрес последнего узла N_5	11.32.39.254
Широковещательный адрес N_5	11.32.39.255

Дано: Сеть 11.32.0.0/12

Задание 2.1.2: разбить сеть на 200 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(200\leqslant 2^8=256)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 4 бит из 2-го октета (получается, что сеть можно разбить на 256 подсетей: $2^8=256$; оставшиеся 12 бит идут под узлы: $2^{12}-2=4094$ в каждой подсети).

3. Указываем первую и последнюю подсети:

$oxedsymbol{\mathrm{A}}$ дрес сети $N_1/$ Префикс N_1	11.32.0.0/20
Λ дрес первого узла N_1	11.32.0.1
Адрес последнего узла N_1	11.32.15.254
Широковещательный адрес N_1	11.32.15.255

$igcap_{A$ дрес сети $N_2/$ Префикс N_2	$oxed{11.44.112.0/20}$
Адрес первого узла N_2	11.44.112.1
Адрес последнего узла N_2	11.44.127.254
Широковещательный адрес N_2	11.44.127.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 8192 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	32	0	0
Адрес сети	00001011	00100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=13, т.к. $2^{13}-2=8190$. Т.е. нужно выбрать такую маску, которря выделит ровно 13 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^7=512$ подсетей по 8190 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	11.47.96.0/19
Адрес первого узла N_1	11.47.96.1
Адрес последнего узла N_1	11.47.127.254
Широковещательный адрес N_1	11.47.127.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.47.128.0/19
Адрес первого узла N_2	11.47.128.1
Адрес последнего узла N_2	11.47.159.254
Широковещательный адрес N_2	11.47.159.255
$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.47.160.0/19
Адрес первого узла N_3	11.47.160.1
Адрес последнего узла N_3	11.47.191.254
Широковещательный адрес N_3	11.47.191.255

$oxed{\mathrm{A}}$ дрес сети $N_4/$ Префикс N_4	11.47.192.0/19
Λ дрес первого узла N_4	11.47.192.1
Λ дрес последнего узла N_4	11.47.223.254
Широковещательный адрес N_4	11.47.223.255
$oxed{A}$ дрес сети $N_5/$ Префикс N_5	11.47.224.0/19
Λ дрес первого узла N_5	11.47.224.1
Адрес последнего узла N_5	11.47.255.254
Широковещательный адрес N_5	11.47.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 1200 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	32	0	0
Адрес сети	00001011	00100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=11, т.к. $2^{11}-2=2046 \geqslant 1200$.

	11	32	U	U
Адрес сети дв.с	00001011	00100000	00000000	00000000
Маска дв.с	11111111	11111111	11111000	00000000
	255	255	248	0

3. Указываем первую и последнюю подсети

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.32.0.0/21
Λ дрес первого узла N_1	11.32.0.1
Адрес последнего узла N_1	11.32.7.254
Широковещательный адрес N_1	11.32.7.255

Адрес сети $N_2/$ Префикс N_2	11.47.248.0/21
Адрес первого узла N_2	11.47.248.1
Адрес последнего узла N_2	11.47.255.254
Широковещательный адрес N_2	11.47.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 400 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	32	0	0
Адрес сети	00001011	00100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=9, т.к. $2^9-2=510$.

	11	32	0	0
Адрес сети дв.с	00001011	00100000	00000000	00000000
Маска дв.с	11111111	11111111	11111110	00000000
	255	255	254	0

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	11.47.246.0/23
Адрес первого узла N_1	11.47.246.1
Адрес последнего узла N_1	11.47.247.254
Широковещательный адрес N_1	11.47.247.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.47.248.0/23
Адрес первого узла N_2	11.47.248.1
Адрес последнего узла N_2	11.47.249.254
Широковещательный адрес N_2	11.47.249.255

11.47.250.0/23
11.47.250.1
11.47.251.254
11.47.251.255
11.47.252.0/23
11.47.252.1
11.47.253.254
11.47.253.255
11.47.254.0/23
11.47.254.1
11.47.255.254
11.47.255.255