# **EXPT NO.3:**

#### STUDY OF DE-MORGAN'S THEOREM

### **Objective:**

To study and verify de-morgan's theorem.

## **Equipments:**

Logic Circuit Simulator Pro.

## Theory:

A mathematician named DeMorgan developed a pair of rules regarding group complementation in Boolean algebra. By group complementation, represented by a long bar over more than one variable.

Inverting all inputs to a gate reverses that gate's essential function from AND to OR, or vice versa, and also inverts the output. So, an OR gate with all inputs inverted (a Negative-OR gate) behaves the same as a NAND gate and an AND gate with all inputs inverted (a Negative-AND gate) behaves the same as a NOR gate. This theorems states the same equivalence in "backward" from: that inverting the output of any gate results in the same function as the opposite type of gate (AND vs OR) with inverted inputs:

A long bar extending over the term AB acts as a grouping symbol, and as such is entirely different from the product of A and B independently inverted. In other words, (AB)' is not equal to A'B'. Because the "prime" symbol (') cannot be stretched over two variables like a bar can, we are forced to use parentheses to make it apply to the whole term AB in the previous sentence. A bar, however, acts as its own grouping symbol when stretched over more than one variable. This has a profound impact on how Boolean expressions are evaluated and reduced, as we shall see.

De Morgan's theorem may be thought of in terms of breaking a long bar symbol. When a long bar is broken, the operation directly underneath the break changes from addition to multiplication, or vice versa, and the broken bar pieces remain over the individual variables

#### **Procedure:**

**THEOREM 1:**  $\overline{AB} = \overline{A} + \overline{B}$ 

- 1. Do the connection as shown in the figure.
- 2. Connect A & B terminals to the logic inputs from input switches.
- 3. Connect both the outputs to led indicators in the Output section.
- 4. Provide different combinations of inputs A &B and observe the output on LEDs to verify the theorem.



|   | Truth Table |    |   |   |                               |  |  |  |  |  |  |
|---|-------------|----|---|---|-------------------------------|--|--|--|--|--|--|
| Α | В           | ĀB | Ā | B | $\overline{A} + \overline{B}$ |  |  |  |  |  |  |
| 0 | 0           | 1  | 1 | 1 | 1                             |  |  |  |  |  |  |
| 0 | 1           | 1  | 1 | 0 | 1                             |  |  |  |  |  |  |
| 1 | 0           | 1  | 0 | 1 | 1                             |  |  |  |  |  |  |
| 1 | 1           | 0  | 0 | 0 | 0                             |  |  |  |  |  |  |



Figure :  $\overline{AB} = \overline{A} + \overline{B}$ 



**Figure:**  $\overline{AB} = \overline{A} + \overline{B}$ 



**Figure**:  $\overline{AB} = \overline{A} + \overline{B}$ 

### **THEOREM 2:** $\overline{A+B} = \overline{A} \cdot \overline{B}$

- 1. Do the connection as shown in the figure.
- 2. Connect A & B terminals to the logic inputs from input switches.
- 3. Connect both the outputs to led indicators in the Output section.
- 4. Provide different combinations of inputs A &B and observe the output on LEDs to verify the theorem.

| Truth Table |   |                |   |     |                  |                                 |  |  |  |
|-------------|---|----------------|---|-----|------------------|---------------------------------|--|--|--|
| Α           | В | $\overline{A}$ | B | A+B | $\overline{A+B}$ | $\overline{A}$ . $\overline{B}$ |  |  |  |
| 0           | 0 | 1              | 1 | 0   | 1                | 1                               |  |  |  |
| 0           | 1 | 1              | 0 | 1   | 0                | 0                               |  |  |  |
| 1           | 0 | 0              | 1 | 1   | 0                | 0                               |  |  |  |
| 1           | 1 | 0              | 0 | 1   | 0                | 0                               |  |  |  |



**Figure :**  $\overline{A+B} = \overline{A} \cdot \overline{B}$ 



**Figure :**  $\overline{A+B} = \overline{A} \cdot \overline{B}$ 



**Figure**:  $\overline{A+B} = \overline{A} \cdot \overline{B}$ 

#### **Conclusion:**

Hence, De-Morgan's theorem is verified.