TEMA 9: DECISIONES DE LOCALIZACIÓN DE LAS INSTALACIONES.

- Decisiones de localización de la empresa y sus instalaciones.
- 2. Estrategias de localización multiplantas.
- 3. Procedimientos y factores para la toma de decisiones de localización.
- 4. Métodos cuantitativos de localización.

1. DECISIONES DE LOCALIZACÓN DE LA EMPRESA Y SUS INSTALACIONES.

Localización: lugar elegido por el empresario para situar la empresa y desarrollar su actividad productiva, así como donde ubicar las unidades que la componen.

La determinación del lugar debe ocasionar:

- El coste mínimo del producto a fabricar.
- El máximo beneficio empresarial.
- La máxima satisfacción de los clientes.

1. DECISIONES DE LOCALIZACÓN DE LA EMPRESA Y SUS INSTALACIONES.

¿ CUÁNDO TOMAR ESA DECISION?

- Insuficiente capacidad productiva.
- Cambios en los inputs.
- Presión de la competencia.
- Desplazamiento demográfico de la demanda.
- Fusiones o adquisiciones de empresas.

2. ESTRATEGIAS DE LOCALIZACION MULTIPLANTA.

A) PLANTAS ORIENTADAS AL PRODUCTO:

- Una o pocas plantas producen un determinado producto o línea de productos.
- Especialización y economías de escala
- Incremento de costes de transporte de las materias primas y productos terminados entre plantas y al mercado final.
- Inflexibilidad

B) PLANTAS ORIENTADAS AL MERCADO:

- Una planta fabrica la mayor parte de los productos de la empresa
- Mayor coste de producción. Menor especialización.
- Menores coste de transporte

2. ESTRATEGIAS DE LOCALIZACION MULTIPLANTAS.

C) PLANTAS ORIENTADAS AL PROCESO:

- Especializadas en un determinado segmento del proceso o en la fabricación de componentes para otras firmas.
- Tecnología muy específica. Economía de escala en los procesos de fabricación
- Elevación de costes de transportes.

D) PLANTAS DE PROPÓSITO GENERAL:

- mantienen para dar flexibilidad a la empresa.
- Complementan al resto de las plantas.

3. PROCEDIMIENTOS Y FACTORES PARA LA TOMA DE **DECISIONES DE LOCALIZACION.**

- PYMES: Preferencia empresarios, intuición, carácter político...
- PROCEDIMIENTO FORMAL:
 - A) Análisis preliminar: Estudio de las estrategias y políticas de la empresa. Se establecen factores dominantes y secundarios (existencia de personal especializado en la zona, disponibilidad de terreno...)
 - B) <u>Búsqueda de alternativas</u>: Se eliminan las propuestas que no cumplan con factores claves.
 - C) Evaluación detallada de alternativas: Se recoge información (cuantitativa y cualitativa) acerca de cada localización.
 - D) <u>Selección de</u> la localización: Tabularemos calificaciones obtenidas y las compararemos, eligiendo la mejor alternativa.

3. PROCEDIMIENTOS Y FACTORES PARA LA TOMA DE DECISIONES DE LOCALIZACION

- Fuentes de abastecimiento
- Mercados
- Medio de transporte y comunicación
- Mano de obra
- Suministros básicos
- Calidad de vida
- Climatología y Geografía
- Legislación
- Impuestos y servicios públicos
- Actitudes hacia empresa
- Terrenos-construcción
- Otros

3. PROCEDMIENTOS Y FACTORES PARA LA TOMA DE **DECISIONES DE LOCALIZACION.**

Fuentes de abastecimiento:

- ¿ Por que situarse cerca de ellas?
 - Necesidad de asegurarse abastecimiento.
 - > Inputs perecederos y difíciles de transportar.
 - Razones de transporte (que sea más fácil transportar los outputs que los inputs).

Mercados:

- ¿ Por qué situarse cerca de los clientes?.
 - Por razones competitivas (rapidez, situación competencia...).
 - Productos perecederos o frágiles
 - Razones de transporte (gran volumen, peso...).
 - Tipo producto (el cliente elige).

Medios transporte y comunicación	APTO PARA	COSTES	VENTAJAS/ INCONVENIENTES
ACUATICOS	PRODUCTOS PESADOS Y VOLUMINOSOS.	MÁS BARATO PARA LARGAS DISTANCIAS.	LENTO, ACCESIBILIDAD LIMITADA.
TERRESTRES: FERROCARRIL	PRODUCTOS PESADOS Y VOLUMINOSOS Y TAMBIÉN PEQUEÑOS.	MÁS CARO QUE EL BARCO.	ACCEDE A NUMEROSOS LUGARES; RÁPIDO.
TERRESTRES: CARRETERA	ÚTIL PARA VOLÚMENES REDUCIDOS. SUELE EMPLEARSE PARA LA FASE FINAL DE LOS RESTANTES TRANSPORTES.	MÁS CARO QUE EL BARCO	ES EL MÁS VERSÁTIL Y FLEXIBLE, TANTO POR ACCESIBILIDAD COMO POR FLEXIBILIDAD DE HORARIOS. MENOR CAPACIDAD DE CARGA.
AEREOS	PRODUCTOS DE ALTO VALOR AÑADIDO, URGENTES O PERECEDEROS DE ALTO VALOR.	ES EL MÁS CARO DE TODOS.	ES EL MÁS RÁPIDO.

3. PROCEDIMIENTOS Y FACTORES PARA LA TOMA DE DECISIONES DE LOCALIZACION.

Mano de obra:

- > Pierde importancia por mecanización, robotización, mayor formación y movilidad.
- Prioridad: disponibilidad suficiente, formación, coste, grado sindicalismo, absentismo....

Suministros básicos:

Facilidad de obtención, calidad y costes del agua, energía, materias primas y servicios.

3. PROCEDIMIENTOS Y FACTORES PARA LA TOMA DE DECISIONES DE LOCALIZACIÓN.

Calidad de vida:

Puede actuar como atrayente o repulsivo del personal, sobre todo de la mano de obra cualificada, de los técnicos y de los directivos.

Climatología y Geografía:

Climas extremos pueden afectar a los procesos productivos y encarecen las instalaciones. Han de tenerse en cuenta las zonas de especial peligro sísmico, de tornados, volcanes, etc..., pues podría afectar a su utilización.

Legislación:

Hay que tener en cuenta las legislaciones laborales, del suelo y medioambientales y la "burocracia" de las administraciones.

3. PROCEDMIENTOS Y FACTORES PARA LA TOMA DE DECISIONES DE LOCALIZACION.

Impuestos y servicios públicos:

Las bajas tasas impositivas atraen a empresas y empleados. Los beneficios fiscales pueden influir en las decisiones de localización.

Actitudes hacia la empresa:

Tanto a nivel político como de la población en general. Especialmente para las empresas peligrosas y contaminantes.

3. PROCEDMIENTOS Y FACTORES PARA LA TOMA DE DECISIONES DE LOCALIZACION.

Terrenos y construcción:

Valorará la existencia de terrenos a costes aceptables y precios de construcción razonables, debido a que fluctúan mucho de un lugar a otro.

Otros:

Lengua, cultura, estabilidad política y social, moneda, aranceles, etc.

4. METODOS CUANTITATIVOS DE LOCALIZACIÓN

EL METODO DE PONDERACION DE FACTORES.

(Ej. nº 68, Aditivo y Multiplicativo)

EL ANALISIS COSTE-VOLUMEN.

(Ei. nº 57)

LOS CRITERIOS DE DECISION EN CONDICIONES DE RIESGO E INCERTIDUMBRE.

(Ej. nº 58, Pesimista, Optimista, Optimismo Parcial, Savage y Laplace)

EL METODO DEL CENTRO DE GRAVEDAD.

(Ei. nº 62)

MODELOS DEDUCTIVOS: M. MECÁNICO DE LOCALIZACIÓN.

<u>(Ej. nº 52)</u>

Tema 9 | DECISIONES DE LOCALIZACION DE LAS INSTALACIONES

MÉTODOS DE PONDERACIÓN DE FACTORES

- a) Modelo aditivo: La calificación de cada localización se obtiene sumando el producto de la puntuación de cada factor por su ponderación.
 - P_{ii} = puntuación del factor i en el lugar j
 - F_i = Ponderación del factor i
 - T_i = Puntuación total de la localización j (se elige la mayor)

 $T_j = \sum_{i=1}^n P_{ij} \cdot F_i$

• b) Modelo multiplicativo: Se determina la puntuación tótal de cada localización multiplicando la puntuación de cada factor elevada al coeficiente de ponderación correspondiente.

$$T_{j} = P_{1j}^{F_{1}} \cdot P_{2j}^{F_{2}} \cdot \dots \cdot P_{nj}^{F_{n}}$$

EL ANALISIS COSTE-VOLUMEN.

- Consiste en elegir entre varias alternativas. Para ello hay que realizar lo siguiente:
- Calcular los costes fijos y variables para cada posible localización.
- Representar gráficamente los costes de cada localización (en ordenadas) frente al volumen anual de producción (en abscisas).
- Seleccionar aquella localización que proporcione el coste mínimo para el volumen de producción elegido.

LOS CRITERIOS DE DECISION EN CONDICIONES DE RIESGO E INCERTIDUMBRE.

- En la mayoría de las ocasiones es imposible predecir con certeza los costes que supondrían cada una de las distintas alternativas de localización, por ello se suele recurrir a criterios de decisión en condiciones de incertidumbre (cuando se conocen las situaciones que pueden presentarse, pero no se cuenta con información suficiente para asignar probabilidades a cada situación) o de riesgo (cuando es posible asignar a cada situación una probabilidad de ocurrencia).
- En la práctica se desarrollarán técnicas para la toma de decisiones en universos ciertos y en universos aleatorios.

MÉTODO DEL CENTRO DE GRAVEDAD

El método asume que los costes unitarios de transporte son los mismos en cada localización y que son directamente proporcionales a la distancia y al volumen transportado.

El siguiente paso consiste en calcular el centro de gravedad, que vendrá determinado por las ecuaciones siguientes:

$$Xc = \frac{\sum_{i} dixQi}{\sum_{i} Qi} \quad Yc = \frac{\sum_{i} diyQi}{\sum_{i} Qi}$$

Donde:

Xc = coordenada X del centro de gravedad

Yc = coordenada Y del centro de gravedad

dix = coordenada X de la localización i

diy = coordenada Y de la localización i

Qi = cantidad de bienes transportados de o hasta la localización i.

Tema 9 DECISIONES DE LOCALIZACION DE LAS INSTALACIONES

MODELOS DEDUCTIVOS

Entre los Modelos deductivos estudiaremos los:

MODELOS MECÁNICOS DE LOCALIZACIÓN.

Para determinar la localización óptima de la unidad productiva consideran un único factor: el coste de transporte, por lo que el volumen de los elementos a transportar es la fuerza determinante de la localización.

Las unidades productivas se localizarán en los puntos donde estén los factores más pesados (más caros de transportar).

Hipótesis → el espacio es uniforme.

■ CASO 1: 1 SÓLO PRODUCTO, 1 SÓLO FACTOR

- O: Lugar dónde se obtiene el factor
- D: Mercado donde se vende el producto
- L: Distancia (en Km, millas, etc.) que separa O y D
- → m₁: Cantidad de factor necesaria
- » m₂: Cantidad de producto obtenida con el factor.
- t₁: Tarifa unitaria de transporte del factor
- > t₂: Tarifa unitaria de transporte de producto
- X: Situación óptima de la unidad productiva: Distancia desde el mercado de origen Km, millas, etc.
- C₁: Coste de transporte del factor
- > C₂: Coste de transporte del producto
- \rightarrow C: Coste Total = $C_1 + C_2$

Organización y Gestión de Empresas

$$C_1 = m_1 * t_1 * X$$

 $C_2 = m_2 * t_2 * (L-X)$
 $C = C_1 + C_2 = m_1 * t_1 * X + m_2 * t_2 * (L-X)$

- a) Al tratarse de una función lineal la solución se obtiene calculando C para valores extremos de X: (X=0 y X=L)
 - Si $C_1 = 0$; $C = C_2 \rightarrow Localización óptima en O (X=0)$
 - Si $C_2 = 0$; $C = C_1 \rightarrow Localización óptima en D (X=L)$
 - Si no existe valor mínimo de C → Localización indiferente entre O y D

 b) Otra forma de calcularlo sería comparando las pendientes de las rectas de costes del factor (C₁) y del producto (C₂):

$$C = C_1 + C_2$$

 $C = m_1 t_1 X + m_2 t_2 (L-X) = (m_1 t_1 - m_2 t_2) X + m_2 t_2 L$

Entonces si la función C es creciente como la del gráfico será mejor localizarse en O, pues existen menores costes, y esto implica que $m_1*t_1 > m_2*t_2$

Si además
$$t_1 = t_2 \rightarrow m_1 > m_2 \rightarrow IM$$

= $m_1 / m_2 > 1$ (índice de Weber > 1)

Tema 9

c) Sin embargo si la función C es decreciente, como la del gráfico, será mejor localizarse en L, pues existen menores costes, y esto implica que $m_2*t_2 < m_1*t_1$

Si además $t_1 = t_2 \rightarrow m_1 < m_2 \rightarrow IM$ $= m_1/m_2 < 1$ (índice de Weber < 1)

Finalmente, si

 $m_1*t_1 = m_2*t_2 \rightarrow Localización indiferente$ en OD e índice de Weber IM = 1

d) Si existen CF de transporte (carga, descarga)

$$C_1 = m_1 (t_1 * X + CF_1)$$

 $C_2 = m_2 (t_2 * (L-X) + CF_2)$
Habrá que tener en cuenta que:
si $X = 0$, $C_1 = 0 \rightarrow$ Localización óptima en O
Si $X = L$, $C_2 = 0 \rightarrow$ Localización óptima en D

e) Si existieran costes de transbordo → funciones de costes discontinuas →los costes para la localización óptima deben calcularse además de en los extremos en los puntos intermedios de transbordo.

f) Funciones de costes de transporte no lineales:

En estos casos los costes variables de transporte pueden aumentar más que proporcionalmente con la distancia recorrida.

Se calcula la función de Costes Totales, derivable y compuesta de las funciones de costes de la materia prima y del producto terminado \rightarrow C = C₁ + C₂

Punto donde los costes son mínimos: se deriva la función de costes y se iguala $0 \rightarrow 0 = dC/dX \rightarrow X = distancia$ respecto al punto tomado como origen. Sustituyendo se obtiene:

C(x) = Coste mínimo Total

