PREP 3

FINAL REVISION

SECOND GEOMETRY

Choose the correct answer:

1) In the opposite figure:

$$m(DB) = 80^{\circ},$$

$$m (AC) = 60^{\circ}$$
, then

$$m (\angle AEC) = \cdots$$

 $(20^{\circ} \text{ or } 30^{\circ} \text{ or } 70^{\circ} \text{ or } 140^{\circ})$

(parallel. or intersecting. or perpendicular. or coincide.)

3) In the opposite figure:

M is a circle, m
$$(\angle BMC) = 100^{\circ}$$

, then m (
$$\angle BAC$$
) = -----

(150° or 100° or 50° or 25°)

4) In the opposite figure:

 \overrightarrow{AB} and \overrightarrow{AC} are two tangents to

the circle at B and C, m ($\angle ABC$) = 70°

, then m
$$(\angle A) = \cdots$$

(140° or 70° or 40° or 35°)

5) Sum of the measures of any two opposite angles in the cyclic quadrilateral equals

 $(90^{\circ} \text{ or } 180^{\circ} \text{ or } 270^{\circ} \text{ or } 360^{\circ})$

ALSHAMEKH

AT MATH

Measure of an are which represents $\frac{1}{3}$ of the measure of the circle equals =

 $(60^{\circ} \text{ or } 90^{\circ} \text{ or } 120^{\circ} \text{ or } 180^{\circ})$

7) In the opposite figure:

The length of the arc which represents $\frac{1}{4}$ of circumference of a circle =

 $(2\pi r \text{ or } \pi r \text{ or } \frac{1}{2}\pi r \text{ or } \frac{1}{4}\pi r)$

9) In a cyclic quadrilateral, each two opposite angles are

equal or supplementary intersecting or corresponding

If surface of circle M \cap surface of circle N = \emptyset , than the two circles are

intersecting or distant touching internally or touching externally

11) In the opposite figure:

Circle M, if m ($\angle MBA$) = 20°

, then m ($\angle C$) =

(120° or 70° or 40° or 30°)

12) In the opposite figure:

If \overrightarrow{AD} is a tangent to the circle at A

, m ($\angle DAB$) = 105°

, then m $(\angle ACB) = \cdots$

 $(75^{\circ} \text{ or } 60^{\circ} \text{ or } 50^{\circ} \text{ or } 35^{\circ})$

The number of common tangents for the two tangent circles 13) externally is

(4 or 3 or 2 or infinite number)

The figure which the circle doesn't passing through its vertices 14) is

(square or rectangle or rhombus or triangle)

15) In the opposite figure:

$$m (\angle C) = \cdots$$

 $(45^{\circ} \text{ or } 50^{\circ} \text{ or } 30^{\circ} \text{ or } 60^{\circ})$

In the opposite figure: 16)

$$(\angle AEC) = 35^{\circ}$$
, then m $(AC) + m$ $(DB) = ----$

(17.5° or 35° or 70° or 140°

The inscribed angle opposite to an arc greater than the semicircle 17) is

(straight or acute or right or obtuse)

In the opposite figure: 18)

If m
$$(\angle DMB) = m (\angle DCB) = 2x$$

, than m ($\angle A$) =

 $(60^{\circ} \text{ or } 70^{\circ} \text{ or } 40^{\circ} \text{ or } 30^{\circ})$

The diameter length of a circle is 8 cm. if the straight line L is at a 19) distance 4 cm. form the Centre, then the straight line L is

a secant to the circle. or outside the circle.

a tangent to the circle. or an axis of symmetry to the circle.

The measure of the exterior angle at any vertex of a cyclic quadrilateral vertices...... the measure of the opposite interior of the adjacent angle.

 $(> or < or = or \ge)$

21) The number of common tangents of two distant circles is

(4 or 3 or 2 or infinite)

The length of the arc opposite to the inscribed angle of measure $.60^{\circ} =$ Circumference of the circle.

 $(\frac{1}{6} \text{ or } \frac{1}{3} \text{ or } \frac{1}{2} \text{ or otherwise})$

(acute or obtuse or reflex or right)

24) In the opposite figure:

 \overline{MA} and \overline{MB} two radii in a circle M, $\overline{MA} \perp \overline{MB}$ and the radius length is 7 cm. then the perimeter of the shaded part =..........cm. (14 or 21 or 38.5 or 25)

25) The measure of the circle with radius r is

 $(2 \pi r \text{ or } 180^{\circ} \text{ or } \pi r \text{ or } 360^{\circ})$

26) In the opposite figure:

 $m (\angle C) = 55^{\circ}, m (\angle A) = 35^{\circ}$

, then m (\angle AHD) =

(20° or 90° or 70° or 110°)

The Centre of inscribed circle of a triangle is the intersection point of is

altitudes. or axes of symmetry of its sides. medians. or bisectors of its interior angles.

ALSHAMEKH

AT MATH

28) In the opposite figure:

 \overrightarrow{AB} is tangent to the circle,

$$m (\angle C) = 32^{\circ}$$

, then m (\angle BAD) =

(64° or 32° or 148° or 58°)

If M and N are two touching externally circles with radii lengths 9 cm. and r cm. respectively, if MN = 14 cm., then r = ---- cm.

(10 or 23 or 5 or 7)

30) In the opposite figure:

How many cyclic quadrilaterals?

(1 or 2 or 3 or 4)

31) In the opposite figure:

 \overrightarrow{BC} is a tangent to the circle M

, m (
$$\angle$$
 ABC) = 35°

, then m ($\angle AMB$) = -----

(105° or 120° or 70° or 60°)

32) In the opposite figure:

 \overline{AB} and \overline{CD} are two parallel chords of a circle,

$$m(\angle DEB) = 25^{\circ}$$
, then $m(AC) = \dots$

(100° or 75° or 50° or 25°)

33) In the opposite figure:

ABCD is a cyclic quadrilateral,

$$m (\angle ADB) = 30^{\circ}$$

and m (\angle DCE) = 110°, then m (\angle ABD) =

 $(30^{\circ} \text{ or } 40^{\circ} \text{ or } 60^{\circ} \text{ or } 70^{\circ})$

34) In the opposite figure:

 \overrightarrow{XZ} , \overrightarrow{XL} are two tangents to the circle at Y and Z,

35) If the measures of the two arcs are equal in the same circle then their chords are

intersecting. or parallel perpendicular. or equal in length.

36) In the opposite figure:

A metallic wire is formed in the form of a quarter of a circle of radius length 14 cm. as shown, then the length of the wire =

where $\pi = \frac{22}{7}$

(154 cm. or 50 cm. or 26 cm. or 22 cm.)

1) a) In the opposite figure:

 \overline{AB} and \overline{AC} are two equal chords in length In the circle M, X is the midpoint of

 \overline{AB} and Y

Is the midpoint of \overline{AC} , m (\angle CAB) = 70°

- (1) Calculate: m (∠ DME)
- (2) Prove that: XD = YE
- b) In the opposite figure:

M and N are two circles intersecting at A and B.

and $C \in \overrightarrow{BA}$,

D \in the circle N, m (\angle MND) = 130°, m (\angle BCD) = 50°,

Prove that: \overline{CD} is a tangent to the circle at D

D

ALSHAMEKH

AT MATH

a) In the opposite figure:

 $\overline{\textit{CD}}$ is a tangent to the circle M at C,

 $\overrightarrow{CD}//\overrightarrow{BA}$

Prove that: $m (\angle DCA) = 45^{\circ}$

b) In the opposite figure:

 \overline{DE} $//\overline{BC}$

Prove that

 $M (\angle DAC) = m (\angle BAE)$

3) a) In the opposite figure:

$$\overline{AD}//\overline{BE}$$
 ,m (\angle BAD) = 100°

And m ($\angle CDE$) = 30°

Find: m (∠ ADC)

b) In the opposite figure

 \overrightarrow{AB} and \overrightarrow{AC} are two tangents to the circle

M at B and C

 $\overline{AB}//\overline{CD}$,

 $m (\angle BMD) = 140^{\circ}$

Find: $m (\angle A)$

4) a) In the opposite figure:

Two concentric circles at M,

 \overline{AB} and \overline{AC} are two tangent segments to the smaller circles, m (\angle A) = 70°

(1) Find: m (∠ DME)

(2) Prove that : AB = AC

ALSHAMEKH

AT MATH

b) In the opposite figure:

 \overrightarrow{BC} is a tangent to the circle M at C D is the midpoint of \overline{EC} , $\overline{MC}//\overline{AB}$ Prove that : ABCD is a cyclic quadrilateral.

5) a) In the opposite figure:

A circle of Centre M , $\overline{MD} \perp \overline{AB}$, If m (\angle A) = 30°

(1) Prove that : \overline{MD} // \overline{CB}

(2) Find: m (∠C)

b) In the opposite figure:

A circle M , $\overline{MD} \perp \overline{AB}$,

 $\overline{ME} \perp \overline{AC}$ where MD = ME

 $m (\angle DME) = 120^{\circ}$

Prove that: the triangle ABC is equilateral.

a) In the opposite figure:

If: AB = AD, $m (\angle ABD) = 30^{\circ}$,

 $m (\angle C) = 60^{\circ}$

Prove that: ABCD is a cyclic quadrilateral

b) In the opposite figure:

ABCD is a cyclic quadrilateral, \overrightarrow{BD} bisects \angle ABC,

If $\overline{BD} \cap \overline{AC} = \{E\}$

Prove that: \overrightarrow{CD} is a tangent to the circle

Passing through the vertices of Δ BEC

ALSHAMEKH

AT MATH

7) a) In the opposite figure:

 \overline{BC} is a diameter in the circle M,

$$m (\angle CAD) = 35^{\circ}, \overline{AB}//\overline{DM},$$

Find: m (∠ ABC)

b) In the opposite figure:

If m (AC) =
$$120^{\circ}$$
, m (DE) = 50°

Find: m (∠ ABC)

8) a) In the opposite figure:

If \overrightarrow{AX} is a common tangent to the two circles at A.

Prove that: $\overline{BD}//\overline{CE}$

b) In the opposite figure:

 \overrightarrow{XY} and \overrightarrow{XZ} are two tangents to the circle from the point X at Y, Z, if m (\angle EDZ) = 110°, m (\angle YXZ) = 40°

Prove that: m(ZDE) = m(ZY)

9) a) In the opposite figure:

M and N are two intersecting circles at A and B

,
$$\mathbf{C} \in \overrightarrow{BA}$$
 , $\mathbf{D} \in \mathsf{the}\ \mathsf{circle}\ \mathsf{N}$

, m (
$$\angle$$
 MND) = 125° and m (\angle BCD) = 55°

Prove that: \overrightarrow{CD} is a tangent to circle N at D

ALSHAMEKH

AT MATH

b) In the opposite figure:

 \overline{AB} and \overline{CD} are two chords in the circle M

, $\overrightarrow{MX} \perp \overrightarrow{AB}$ and intersects the circle in F

, $\overrightarrow{MY} \perp \overrightarrow{CD}$ and intersects the circle at E

where FX = EY

Prove that: (1) AB = CD

$$(2) AF = CE$$

10) a) In the opposite figure:

ABC is an inscribed triangle inside a circle

,
$$\overline{DE}$$
 $//$ \overline{BC}

Prove that: $m (\angle DAC) = m (\angle BAE)$

b) In the opposite figure:

XYZ is an inscribed triangle in a circle

, \overline{LE} paralled tangent \overrightarrow{XN}

Prove that:

LYZE is cyclic quadrilateral.

11) a) In the opposite figure:

 \overline{AB} , \overline{AC} are two tangents

To circle M at B, C,

$$m (\angle A) = 45^{\circ}$$

Prove that:

(1) ABMC is cyclic quadrilateral.

$$(2) AD = AB + MB$$

b) In the opposite figure:

ABCD is a quadrilateral inscribed in circle,

BC = CD, $m (\angle BDC) = 40^{\circ}$

Find: $m (\angle A)$

12) a) In the opposite figure:

Prove that:

 $\overline{BD}//\overline{CE}$

b) In the opposite figure:

 \overline{AB} , \overline{CD} are two equal chords in length

Prove that : the triangle ACE is an isosceles triangle.

13) a) In the opposite figure:

M and N are two intersecting circles at A and

B, $C \in \overrightarrow{BA}$ and $D \in \text{the circle N}$, m (\angle MND)

 $= 125^{\circ}, \ \mathbf{m}(\angle BCD) = 55^{\circ}$

Prove that:

 \overrightarrow{CD} is a tangent to the circle N at D

b) \overline{AB} and \overline{CD} are two chords in the

circle M, \overrightarrow{MX} is drawn perpendicular to \overrightarrow{AB} to intersect the circle in F and \overrightarrow{MY} is drawn perpendicular to \overrightarrow{CD} to intersect the circle at E , if FX = EY

Prove that:

(1) AB = CD

(2) AF = CE

ALSHAMEKH

AT MATH

14) a) In the opposite figure:

E is a point outside the circle

Prove that:

$$m (\angle DCB) > m (\angle E)$$

$$m(\angle ABE) = 100^{\circ}$$

,
$$m(\angle CAD) = 40^{\circ}$$

Prove that:

$$m(CD) = m(AD)$$

- 15) Complete:
 - a) The straight line passing through the center of the circle and the intersection point of the two tangents are to the chord of tangency of those two tangents.
 - b) In the opposite figure:

ABC is an inscribed

triangle inside the circle

,
$$\overline{DE}//\overline{BC}$$

Prove that: $m (\angle DAC) = m (\angle BAE)$

16) In the opposite figure:

XYZ is an inscribed triangle in

a circle , if $L \in \overline{XY}$ and \overrightarrow{LE} is drawn

parallel to the tangent \overline{XN} which

touches the circle at X and

intersects \overline{XZ} at E

Prove that: LYZE is a cyclic quadrilateral.

ALSHAMEKH

AT MATH

17) a) In the opposite figure:

A circle M whose radius length is 10 cm., m (\angle DCA) = 40°, AB = 16 cm.

, E is the midpoint of \overrightarrow{AB} , \overrightarrow{CD} is a tangent to the circle

Find by proof: m (\angle DMF), the length of \overline{FE}

If M and N are two intersecting circles at A and B, AB = AC,

X is the midpoint of \overline{AC}

Prove that: XY = DE

18) a) In the opposite figure:

 \overline{AB} is a diameter of circle M,

 $m (\angle ABD) = 40^{\circ}$

Find

 $m (\angle A), m (\angle C)$

ABC is an inscribed triangle in the circle,

 $\overline{ED} // \overline{BC}$

Prove that: $m (\angle DAC) = m (\angle BAE)$

 \overline{CB} is a diameter of circle M,

 \overline{AB} // \overline{DM} , m (\angle DAC) = 30°

Find: $m (\angle ACB)$

b) In the opposite figure:

ABCD is a square, \overrightarrow{AX} bisects \angle BAC and \overrightarrow{DY} bisects \angle CDB

- (1) Prove that the figure AXYD is cyclic quadrilateral
- (2) Find with proof m (\angle DXY)

In the opposite figure: 21)

> \overrightarrow{XZ} and \overrightarrow{XY} are two tangents at Z and Y, m (\angle YXZ) = 80°, m (\angle ELZ) = 130° Prove that:

- (1) ZE = ZY
- $(2)\overline{XZ}//\overline{YE}$
- (3) \overline{ZE} is a tangent to the circle passing through the points X, Y and Z

Prove that

- (1) \overline{MD} // \overline{BC}
- (2) The length of \overline{BC} = length of radius.
- b) In the opposite figure:

 \overline{AB} and \overline{CD} are two chords in the circle M,

 $\overrightarrow{MX} \perp \overrightarrow{AB}$ and intersect it at F

, $\overrightarrow{MY} \perp \overrightarrow{CD}$ and intersect it at E

FX = EY

Prove that: (1) AB = CD (2) AF = CE

14

23) a) Prove that:

In a cyclic quadrilateral each two opposite angles are supplementary.

b) In the opposite figure:

 \overrightarrow{XY} , \overrightarrow{XZ} are two tangents to the circle from point X, m (\angle D) = 110°,

$$m(\angle D) = 110^{\circ}$$

$$m (\angle X) = 40^{\circ}$$

Prove that

$$m(ZE) = m(ZY)$$

a) A is a point outside a circle M, \overrightarrow{AB} is a tangent to the circle at point B, \overrightarrow{AM} intersects the circle M at C and D respectively, m (\angle A) = 40° and draw \overrightarrow{BM}

Find with proof: m (∠ BDC)

b) In the opposite figure

 \overline{AB} , \overline{CD} are two chords in the circle

M intersecting at E , If AE = CE

Prove that: $m (\angle ACB) = m (\angle CAD)$

25) \overline{AB} is a diameter in the circle M , \overline{AC} is a chord in this circle and D is the midpoint of \overline{AC} , \overline{DM} was drawn to intersect the tangent to the circle M at B in E

Prove that:

(1) The figure ADBE is cyclic quadrilateral.

(2) m (
$$\angle$$
 CMB) = 2 m (\angle MEB)

ALSHAMEKH

AT MATH

The answer

1)	70°	2)	parallel
3)	50°	4)	40°
5)	180°	6)	120°
7)	65°	8)	$\frac{1}{2}\pi r$
9)	supplementary	10)	distant
11)	70°	12)	75°
13)	3	14)	rhombus
15)	60°	16)	70°
17)	obtuse	18)	60°
19)	a tangent to the circle	20)	
21)	4	22)	$\frac{1}{3}$
23)	right	24)	25
25)	360°	26)	90°
27)	bisectors of its interior angles	28)	32°
29)	5	30)	2
31)	70°	32)	50°
33)	40°	34)	80°
35)	equal in length	36)	50 cm

ALSHAMEKH

AT MATH

1)(a) :: X is midpoint of \overline{AB} :: $\overline{MX} \perp \overline{AB}$

- "Y is midpoint of AC . MY 1 AC
- The sum of measure of the interior angle of the quadrilateral AXMY = 360°

$$m (\angle XMY) = 360^{\circ} - (70^{\circ} + 90^{\circ} + 90^{\circ}) = 110^{\circ}$$

- ∴ m (∠ DME) = 1100
- (Q.E.D. 1)
- AB = AC
- MX = MY
- ∴ MD = ME (lengths of two radii)
 By subtracting
- $\therefore XD = YE$
- (Q.E.D. 2)
- (b) $: \overline{MN}$ is the line of centres, \overline{AB} is the common chord
 - $AB \perp MN$
- $m (\angle AEN) = 900$
- · The sum of measure of the interior angle

of the quadrilateral CDNE = 360°

- $\therefore m (\angle CDN) = 360^{\circ} (50^{\circ} + 130^{\circ} + 90^{\circ}) = 90^{\circ}$
- · ND 1 CD
- .: CD is a tangent to the circle N at D (Q.E.D.)
- 2)(a) : DC //AB
 - m (AC) = m (BC)
 - . AB is a diameter in circle M
 - : m (ACB) = 180°
 - $m (AC) = 180^{\circ} \div 2 = 90^{\circ}$
 - $, : m(\angle DCA) = \frac{1}{2} m(AC)$
 - $\therefore m (\angle DCA) = \frac{1}{2} \times 90^{\circ} = 45^{\circ} \quad \text{(The req.)}$

 $3)(a) : m (\angle EDC) = m (\angle EBC)$

(two inscribed angle subtended by EC)

- ∴ m (∠ EBC) = 30°
- $: \overline{AD} / / \overline{BE}, \overline{AB}$ is a transversal
- $\therefore m (\angle A) + m (\angle ABE) = 180^{\circ}$

(two interior angle on the same side of the transversal)

- .. m (∠ ABE) = 180° 100° = 80°
- ∴ m (∠ ABC) = 80° + 30° = 110°
- , : ABCD is a cyclic quadrilateral
- ∴ m (∠ ABC) + m (∠ ADC) = 180°
- $m (\angle ADC) = 180^{\circ} 1100 = 700 \text{ (the req.)}$
- (b) $m (\angle BCD) = \frac{1}{2}m (BMD)$

(inscribed and central angle subtended by AD)

- $m (\angle BCD) = \frac{1}{2} \times 140^{\circ} = 70^{\circ}$
- , : AB // CD , BC is a transversal
- ∴ m (∠ ABC) = m (∠ BCD) = 70° (alternate angle)
- , : AB = AC
- ∴ m (∠ ABC) = m (∠ ACB) = 70°
- : in A ABC:

 $m (\angle A) = 180^{\circ} - (2 \times 70^{\circ}) = 40^{\circ} (the red.)$

- (b) : DE // BC
- m = m (DB) = m (EC)
- $m (\angle BAD) = m (\angle EAC)$

adding m $(\angle BAC)$ to both sides

 $\therefore m (\angle DAC) = m (\angle BAE) \qquad (Q.E.D.)$

ALSHAMEKH

AT MATH

4)(a) : AB and AC are two tangents to the smaller circle

$$m (\angle MDA) = m (\angle MEA) = 90^{\circ}$$

: From the quadrilateral ADME :

$$m (\angle DME) = 360^{\circ} - (90^{\circ} + 70^{\circ} + 90^{\circ}) = 110^{\circ}$$

(First req.)

MD = ME (two radii in the smaller circle)

$$AB = AC$$

(second req.)

(b) : D is the midpoint of the chord EC

$$\therefore$$
 m (\angle MDC) = 90°

: BC is a tangent to the circle at C

: AB // MC, BC is a transversal to them

$$\therefore m (\angle MCB) + m (\angle ABC) = 180^{\circ}$$

(two interior angle in the same side of the transversal)

$$m (\angle ABC) = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

... The figure ABCD is a cyclic quadrilateral.

(Q.E.D.)

6)(a) In ∆ ABC : : AB = AD

$$m (\angle ABD) = m (\angle ADB) = 30^{\circ}$$

$$m(\angle A) = 180^{\circ} - 2 \times 30^{\circ} = 120^{\circ}$$

$$m(\angle A) + m(\angle C) = 120^{\circ} + 60^{\circ} = 120^{\circ}$$

: ABCD is a cyclic quadrilateral. (Q.E.D.)

5)(a) MD \(\perp AB\)

, : AC is a diameter in the circle M

 $: m (\angle ADM) = m (\angle ABC) = 90^{\circ}$

and they are corresponding angles.

:. MD // BC

(First req.)

In $\triangle ABC$: \Rightarrow m ($\angle A$) = 30°, m ($\angle ABC$) = 90°

 \therefore m (\angle C) = 180° - (30° + 90°) = 60° (second req.)

(b) : MD 1 AB

. D is the midpoint of AB

" ME L AC

E is the midpoint of AC

* MD = ME

$$AB = AC$$

(1)

From the quadrilateral ADME

 $m(2A) = 360^{\circ} - (120^{\circ} + 90^{\circ} + 90^{\circ}) = 60^{\circ}$ (2

From (1) and (2):

.. Δ ABC is an equilateral triangle.

(Q.E.D.)

(b) : ABCD is a cyclic quadrilateral.

$$\cdot \cdot m (\angle DCA) = m (\angle DBA)$$

(1)

(drawn on \overline{AD} and on the same side of it

, ∵ BD bisects ∠ ABC

 $m (\angle DBC) + m (\angle DBA)$

(2)

From (1), (2): $m (\angle DBC) + m (\angle DCA)$

: CD is a tangent to the circle passing through

the vertices of $\triangle BEC$

(Q.E.D.)

ALSHAMEKH

AT MATH

7)(a) $\cdot \cdot \cdot m (\angle CMD) = 2 m (\angle CAD)$

(central and inscribed angles subtended by CD)

$$m (\angle CMD) = 2 \times 35^{\circ} = 70^{\circ}$$

$$m (\angle ABC) = m (\angle CMD)$$
 (corresponding angles)

(The red.)

(b)
$$\cdots$$
 m ($\angle ABC$) = $\frac{1}{2}$ [m (\widehat{AC}) - m (\widehat{DE})]

$$m (\angle ABC) = \frac{1}{2} [120^{\circ} - 50^{\circ}]$$

$$=\frac{1}{2}\times70^{\circ}=35^{\circ}$$

9)(a) : MN is the line of centers , AB is the common chord

$$\therefore$$
 m ($\angle AEN$) = 90°

The sum of the measures of the interior angles
 of the quadrilateral CDNE=360°

$$m (\angle CDN) = 360^{\circ} - (55^{\circ} + 125^{\circ} + 90^{\circ}) = 90^{\circ}$$

: CD is a tangent to the circle N at D (Q.E.D.)

$$XF = YE$$

$$MX = MY$$

(Q.E.D.1)

$$\therefore AX = \frac{1}{2}AB$$

$$\therefore CY = \frac{1}{2} CD$$

$$AX = CY$$

8)(a)In the small circle

∵ m (∠ XAB)(the tangency angle)

= $m (\angle ADB)$ (the inscribed angle) (1)

In the great circle

∴ m (∠ XAC)(the tangency angle)

= $m (\angle AEC)$ (the inscribed angle) (2)

From (1) and (2):

 \therefore m ($\angle ADB$) = m ($\angle AEC$) but they are

corresponding

(Q.E.D.)

(b) $\vec{x}\vec{y}$ and $\vec{x}\vec{z}$ are two tangents

$$XY = XZ$$

$$\Delta \ln \Delta XYZ : m (\angle XZY) = m (\angle XYZ)$$

$$=\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}$$

, ∵ m (∠ XZY) (tangency) = m (∠ YEZ) (inscribed)

DEYZ is a cyclic quadrilateral

$$\therefore$$
 m (\angle EYZ) + m (\angle D) = 180°

$$m (\angle EYZ) = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

$$m (\angle EYZ) = m (\angle YEZ) = 70^{\circ}$$

$$\therefore$$
 In \triangle EZY: ZE = ZY

$$m$$
 (ZDE) = m (ZY)

ALSHAMEKH

AT MATH

In them
$$\begin{cases} AX = CY \\ XF = YE \\ m (\angle AXF) = m (\angle CYE) = 90^{\circ} \end{cases}$$

 $\Delta \Delta AXF \equiv \Delta CYE$ then we deduce that $\Delta F = CE$

(Q. E. D. 2)

10) :
$$\overline{DE} // \overline{BC}$$
 :: m (BD) =m (CE)

$$\therefore \mathbf{m} (\angle \mathbf{DAB}) = \mathbf{m} (\angle \mathbf{CAE})$$

adding m (BAC) to both sides

$$\therefore (\angle DAC) = m (\angle BAE)$$

(Q.E.D.)

$$m (\angle XEL) = m (\angle NXZ)$$
 (alternate angles)

∵ m (∠y) the inscribed = m (∠ NXZ) of tangency

$$\therefore m(\angle y) = m(\angle XEL)$$

.. the figure LYZE is a cyclic quadrilateral.

(Q.E.D.)

11)(a) : AB touches the circle at B . MB 1 AB

: AC touches the circle at C : MC \ AC

∴ the figure ABMC is a cyclic quadrilateral.

(Q.E.D. 1)

(1)

∠ CMD is an exterior angle of it

$$\therefore m (\angle CMD) = m (\angle A) = 45^{\circ}$$

In
$$\triangle$$
 MCD: M (\angle D) = 180° - (90° + 45°) = 45°

$$\therefore$$
 CD = MC

: AC, AB are two tangent segments to

the circle

$$\therefore AC = AB \tag{2}$$

Adding (1) and (2): \therefore CD + AC = MC + AB

AD = AB + MC

: MC = MB (the length of two radii)

AD = AB + MB

(Q. E.D.2)

(b) In ∆ CBD: : CB = CD

$$\therefore m (\angle CBD) = m (\angle CDB) = 40^{\circ}$$

$$m (\angle C) = 180^{\circ} - 2 \times 40^{\circ} = 100^{\circ}$$

, . ABCD is a cyclic quadrilateral.

$$\therefore m (\angle A) + m (\angle C) = 180^{\circ}$$

$$m (\angle A) = 180^{\circ} - 100^{\circ} = 80^{\circ}$$
 (The req.)

12)(a) In the small circle

"m (∠ XAB) (the tangency angle)

= m (∠ ADB) (the inscribed angle) (1)

In the great circle

: m (∠ XAC) (the tangency angle)

= m (∠ AEC) (the inscribed angle) (2)

From (1) and (2):

∴ m (∠ ADB) = m (∠ AEC) but they are corresponding.

(Q.E.D.)

$$\therefore$$
 m (AB) = m (CD)

Subtracting m (BD) from both sides

$$\therefore$$
 m (AD) = m (BC) \therefore m (\angle C) = m (\angle A)

(Q.E.D.)

ALSHAMEKH

AT MATH

13)(a) $: \overline{MN}$ is the line of centers, \overline{AB} is the common chord

$$m (\angle AEN) = 90^{\circ}$$

"The sum of the measures of the interior angles of the quadrilateral CDNE=360°

: \overrightarrow{CD} is a tangent to the circle N at D (Q.E.D.)

[b] : MF = ME (lengths of two radii)

$$XF = YE$$

$$MX = MY$$

 $: \overline{MX} \perp \overline{AB}, \overline{MY} \perp \overline{CD}$

$$\therefore AB = CD \qquad (Q.E.D.1)$$

$$\therefore AX = \frac{1}{2}AB$$

∴Y is the midpoint of \overline{CD} ∴ $CY = \frac{1}{2} CD$

$$AX = CY$$

In them
$$\begin{cases} AX = CY \\ XF = YE \\ m (\angle AXF) = m (\angle CYE) = 90 \end{cases}$$

 $\Delta \Delta AXF \equiv \Delta CYE$ then we deduce that $\Delta F = CE$

(Q. E. D. 2)

14)(a) :
$$m(\angle E) = \frac{1}{2} [m(\widehat{BD}) - m(\widehat{AO})]$$

$$\therefore \mathbf{m} (\angle \mathbf{E}) = \frac{1}{2} \mathbf{m} (\widehat{\mathbf{BD}}) - \frac{1}{2} (\widehat{\mathbf{AO}})$$

$$, \forall m(\angle DCB) = \frac{1}{2}m(\widehat{BD})$$

$$\therefore m(\angle E) = m(\angle DCB) - \frac{1}{2}m(\widehat{AO})$$

$$m (\angle DCB) = m (\angle E) + \frac{1}{2}m (AO)$$

$$\therefore m(\angle DCB) > m(\angle E) \qquad (Q. E. D.)$$

(b) ∵ ∠ ABE is an exterior angle of the cyclic quadrilateral ABCD

$$m (\angle ACD) = m(\angle CAD)$$

$$\therefore$$
 CD=AD \checkmark m (CD) = m (AD) (Q.E.D.)

15)(a) an axis of symmetry.

(b)
$$: \overline{DE} // \overline{BC} : m(\overline{BD}) = m(\overline{CE})$$

$$\therefore \mathbf{m} (\angle \mathbf{DAB}) = \mathbf{m} (\angle \mathbf{CAE})$$

adding m (BAC) to both sides

$$\therefore (\angle DAC) = m (\angle BAE)$$

16)(a)

∵ LE // XN, XZ is a transversal

∵ m (∠ XEL) = m (∠ NXZ) (alternate angles)

 \because m (\angle y) the inscribed = m(\angle NXZ)of tangency

 $\therefore m(\angle y) = m (\angle XEL)$

: the figure LYZE is a cyclic quadrilateral

(Q.E.D.)

ALSHAMEKH

AT MATH

17)(a)

- " CD is a tangent to the circle
- .. MD 1 CD

- . E is the midpoint of AB
- . ME 1 AB
- ∴ m (∠ MEC) = 90°

,
$$\therefore$$
 AE = $\frac{1}{2}$ AB = 8 cm

$$rac{1}{2}$$
 AM = r = 10 cm

$$\ln \Delta AEM : : m (\angle AEM) = 90^{\circ}$$

 $=360^{\circ}-220^{\circ}-140^{\circ}$

$$(ME)^2 = (AM)^2 - (AE)^2 = 100 - 64 = 36$$

: ME =
$$\sqrt{36}$$
 = 6 cm

$$\therefore FE = MF - ME = 10 - 6cm. \text{ (second req.)}$$

(b) : MN is the line of centres

- . AB is the common chord of the two circles
- : MN L AB
- , . X is the midpoint of AC
- . MX LAC
- $\cdot \cdot \cdot AB = AC$

$$\therefore MX = MD$$

- ... MY = ME (lengths of two radii)
- : MY-MX=ME-MD
- .. XY=DE
- (Q.E.D)

18)

- " AB is a diameter of the circle M
- $m(\angle ADB) = 90$

 $\ln \Delta ABD$: $m(\angle ABD) = 40^{\circ}$

- $m (\angle A) = 180^{\circ} (90^{\circ} + 40^{\circ}) = 50^{\circ}$
- , .: ABCD is a cyclic quadrilateral
- $\therefore m(\angle C) + m(\angle A) = 180^{\circ}$
- $m (\angle C) = 180^{\circ} 50^{\circ} = 130^{\circ}$ (The req.)

19) 7 DE // BC

adding m (∠ BAC)to both sides $m (\angle DAC) = m (\angle BAE)$ (Q. E. D)

4

20)(a)

 $m(\angle DMC) = 2 m (\angle CAD)$

(central and inscribed angles subtended by CD)

- $\therefore \mathbf{m} (\angle \mathbf{DMC}) = 2 \times 30^{\circ} = 60^{\circ}$
- .: AB //DM. BC is a transbersal
- $, :: m(\angle B) = m(\angle DMC)$
- = 60" (corresponding angles)
- .: BC is a diameter of circle M
- $m(\angle BAC) = 90^{\circ}$
- : $\ln \Delta ABC \cdot m(\angle ACB) = 180^{\circ} (90^{\circ} + 60^{\circ})$ = 30 (The reg)

(b)

- · ABCD is a square. AC
- and BD are two diagonals of the square
- $\therefore \mathbf{m}(\angle \mathbf{BAC}) = \mathbf{m}(\angle \mathbf{BDC})$
- _ m (∠ BAC)
- = m (∠ BDC)
- ∴ m (∠ XAY)
- = m (\(\times \text{XDY} \)) but they are drawn

On XY and on one side of it

: The figure AXYD is a cyclic quadrilateral

(Q. E. D. 1)

 $m(\angle DXY) = m(\angle DAY) = 45^{\circ}$

(They are drawn on DY and on one side of it)

(Q. E. D. 2)

ALSHAMEKH

AT MATH

21)(a)

- ¬ XY. XZ are tangentsegments to the circle at Y
 and Z
- XY = XZ

$$m(\angle XYZ) = m(\angle XZY) = \frac{180^{\circ} - 80^{\circ}}{2} = 50^{\circ}$$

- ∴ m (∠ ZEY) (the inscribed angle)
- = m (\(\angle \) ZYX) (the tangency angle) = 50°
- The figure LEYZ. is a cyclic quadrilateral
- $m(\angle ZYE) = 180^{\circ} 130^{\circ} = 50^{\circ}$
- $\therefore m(\angle ZEY) = m(\angle ZYE) = 50^{\circ}$
- $\therefore ZE = ZY$
- (Q. E. D. 1)
- ∵ m (∠ XZY) = m (∠ ZYE) = 50⁰
 but they are alternate angles
- : XZ // YE
- (Q.E.D.2)
- : $\ln \Delta ZYE: m (\angle EZY) = 180^{\circ} 2 \times 50^{\circ}$ = 80°
- $m (\angle EZY) = m(\angle X) = 80^{\circ}$
- ∴ ZE is a tangent to the circle passing through The points X. Y and Z (Q. E. D. 3)

22)(a)

- " AB is a diameter
- $\therefore \mathbf{m} (\angle \mathbf{C}) = 90^{\circ}.$
- ·· MD 1 AC
- $m(\angle ADM) = m(\angle C) = 90^{\circ}$ and they are corresponding angles
- ∴ DM//BC
- (Q.E.D.1)
- In A ABC which is right anlged at C
- $\therefore m(\angle A) = 30^{\circ}$
- $\therefore BC = \frac{1}{2}AB$
- = radius length
- (Q.E.D.2)

- (b) : MF = ME
- (Two radii) (1)
- XF = YE
- (given) (2)

Subtracting (2) from (1):

- $\therefore MX = MY, \because \overline{MX} \perp \overline{AB}, \overline{MY} \perp \overline{CD}$
- AB = CD

(Q.E.D.1)

$$\therefore \frac{1}{2} AB = \frac{1}{2} CD$$

$$AX = CY \quad (Q.E.D.1)$$

.: In ΔΔ AXF, CYE:

$$\begin{cases} AX = CY \\ XF = YE \\ m (\angle CYE) = m (\angle AXF) = 90 \end{cases}$$

- $\therefore \Delta AXF \equiv \Delta CYE \therefore AF = CE \quad (Q. E. D. 2)$
- 23)(a) Theoretical.
- (b): (XZ) and (XY) are two tangents :: XZ=XY
- \therefore m (\angle XZY) = $\frac{(180^{\circ} 40^{\circ})}{2}$ = 70°
- : m (ZEY) the inscribed
- = m (Z XZY) of tangency
- $\therefore m (\angle ZEY) = 70^{\circ}$ (1)
- ,: DEYZ is a cyclic quadrilateral
- $m (\angle EYZ) = 180^{\circ} 110^{\circ} = 70^{\circ}$ (2) From (1) and (2):
- : m (ZE) = m (ZY) (Two arcs subtended by two equal inscribed angles in measure)

24)(a): AB is tangent to

the circle M at B

- ∴ MB ⊥ AB
- ∴ From ∆ ABM:
- $m(\angle BMA) = 180^{\circ} (90^{\circ} + 40^{\circ}) = 50^{\circ}$
- $\therefore m(\angle D) = \frac{1}{2}m(\angle BMC) = 25^{\circ}$

(inscribed and central angles subtended by BC)

- (b) In \triangle AEC: \because EA = EC
 - $\therefore \mathbf{m} (\angle \mathbf{BAC}) = \mathbf{m} (\angle \mathbf{DCA})$
 - $, : m(\angle BAD) = m(\angle DCB)$
 - (inscribed angles subtended by BD) (2)
 adding (1) and (2)
 - $m (\angle CAD) = m(\angle ACB) \qquad (Q. E. D)$

(1)

ALSHAMEKH

AT MATH

25)(a)

- " D is the midpoint of the chord AC
- . MD 1 AC.
- : BE is tangent to the circle M at B
- : MB 1 BE
- $\therefore m(\angle ADE) = m(\angle EBA) = 90^{\circ}$

and they aer draw on AE and on one side of it

: ADBE is a cyclic quadrilateral (Q. E. D. (1))

 $\therefore m (\angle BED) = m (\angle BAD)$

(are drawn on BD and on one side of it)

 $m(\angle CMB) = 2 m (\angle CAB)$

(central and inscribed angles subtended by BC)

 $\therefore m (\angle CMB) = 2m (\angle MEB)$

(Q.E.D.2)

Choose the correct answer:

- The inscribed angle drawn in a semicircle is
- (a) an acute.
- (b) an obtuse.
- (c) a straight.
- (d) a right.

In the opposite figure:

- 2. Circle of centre M
 - If $m(\widehat{AB}) = 50^{\circ}$, then $m(\angle ADB) = \cdots$
 - (a) 25°
- (b) 50°
- (c) 100°
- A 50 B (d) 150°
- The number of symmetric axes of any circle is
- 3. (a) zero
- (b) 1
- (c) 2
- (d) an infinite number.

Preparatory Three – Second Term Revision - 2022 In the opposite figure: If $m (\angle A) = 120^{\circ}$, then $m (\angle C) = \cdots$ 120 4. (a) 60° (b) 90°(c) 120° (d) 180° If the straight line L is a tangent to the circle M of diameter length 8 cm. , then the distance between L and the centre of the circle equals cm. 5. (a) 3 (b) 4 (c) 6(d) 8 The surface of the circle $M \cap$ the surface of the circle $N = \{A\}$ and the radius length of one of them is 3 cm. and MN = 8 cm., then the radius length of the other 6. circle = ····· cm. (a) 5 (b) 6 (c) 11 (d) 16 The measure of the arc which equals half the measure of the circle equals 7. (c) 120° (d) 90° (a) 360° (b) 180° The number of common tangents of two touching circles externally equals 8. (b) 1 (d) 3 (a) 0 (c) 2 The measure of the inscribed angle drawn in a semicircle equals 9. (b) 90° (c) 120° (d) 80° (a) 45° The angle of tangency is included between 10. (a) two chords. (b) two tangents. (d) a chord and a diameter. (c) a chord and a tangent. ABCD is a cyclic quadrilateral, $m (\angle A) = 60^{\circ}$, then $m (\angle C) = \cdots$ 11. (c) 90° (a) 60° (b) 30° (d) 120° If M, N are two touching circles internally, their radii lengths are 5 cm., 9 cm. , then $MN = \cdots cm$. 12. (d)9(b) 4 (c) 5 (a) 14

Preparatory Three – Second Term Revision - 2022 In the opposite figure: m (∠ ACB) = ············ 13. (b) 80° (a) 40° (d) 180° (c) 90° The number of the common tangents of two distant circles is 14. (c) 3 (d) 4(b) 2 (a) 1 In the opposite figure: The length of $\overline{BC} = \cdots \cdots cm$. 15. (a) 3 (b) 4(d) 6(c) 5The number of circles which can be drawn passes through the endpoints of a line 16. segment AB equals (d) an infinite number. (c) 3 (a) 1 (b) 2 In the opposite figure: m (∠ AHC) = ·········· 100 17. (a) 25° (b) 50° (c) 75° (d) 100° The measure of the inscribed angle is the measure of the central angle, subtended by the same arc. 18. (a) half (b) third (c) quarter (d) double It is possible to draw a circle passing through the vertices of a 19. (a) trapezium. (b) parallelogram. (c) rectangle. (d) rhombus. The centre of the inscribed circle of any triangle is the point of intersection of its 20. (a) altitudes. (b) medians. (c) axes of symmetry of its sides. (d) bisectors of its interior angles. If the two circles M and N are touching internally, the radius length of one of them = 3 cm. 21. (a) 12 (b) 11 (c)6(d)5-10-

Preparatory Three – Second Term Revision - 2022 In the opposite figure: If $E \in \overrightarrow{BC}$, \overrightarrow{CX} bisects \angle DCE $, m (\angle XCE) = 62^{\circ}$ 22. • then m ($\angle A$) = $(a) 62^{\circ}$ (b) 118° $(c) 56^{\circ}$ (d) 124° In the opposite figure: If C is the midpoint of AB 23. , then AB 2 AC (a) <(b) >(c)≥ (d) =The two opposite angles in the cyclic quadrilateral are 24. (b) supplementary. (c) complementary. (d) alternate. (a) equal. The opposite figure represents a semicircle its centre is M and its radius length is r length unit, 25. then the area of the opposite figure = square units. M (d) $\frac{\pi r^2}{2}$ (a) 2 T r (b) **π** r (c) πr^2 In a regular hexagon, the measure of the angle of its vertex equals 26. $(a) 60^{\circ}$ (b) 108° (c) 120° (d) 135° If AB is a line segment, then the number of circles can be drawn passing through A and B equals 27. (a) 1 (b) 2 (c) 3 (d) an infinite number. In the opposite figure: The length of $\overline{AB} = \cdots \cdots cm$. (a) $10\sqrt{3}$ 28. Scm. (b) 10 (d) $5\sqrt{3}$ (c)5The inscribed angle which is opposite to the minor arc in a circle is 29. (a) acute. (b) right. (c) obtuse. (d) reflex.

Preparatory Three – Second Term Revision - 2022							
20	If the area of the circle is $9 \pi \text{ cm}^2$, then its radius length =						
30.	(a) 9	(b) 2	(c)(-3)	(d) 3			
2.1	The number of symmetric axes of a square =						
31.	(a) l	(b) 2	(c) 3	(d) 4			
	If M is a circle of a diameter length equals 14 cm., $MA = (2 \times 4)$ cm.						
32.	where A lies on the circle, then $x = \dots$						
	(a) 5	(b) 3	(c) 2	(d) 1			
33.	The raito between the measure of the inscribed angle and the measure of the central angle subtended by the same arc =						
	(a) 1 : 2	(b) 2 : 1	(c) 1:1	(d) 1:3			
34.	If ABCD is a cyclic quadrilateral and m (\angle B) = $\frac{1}{2}$ m (\angle D), then m (\angle B) =						
	(a) 90°	(b) 60°	(c) 120°	(d) 180°			
35.	If the figure ABCD ~ the figure XYZL, then $m (\angle B) = m (\angle \cdots)$						
	(a) X	(b) Y	(c) Z	(d) L			
36.	The two tangents which are drawn from the two endpoints of a diameter of a circle are						
	(a) parallel.		(c) coincide.	(d) intersecting.			
37.	The number of the axes of symmetry of the semicircle the number of the axes of symmetry of the isosceles triangle.						
	(a) >	(b) <	(c) =	(d) ≥			
	In the opposite figure :						
38.	AB // CD	$m (\angle AWC) = 40^{\circ}$	B				
	then m (∠ l	DEB) =		(//)			
	(a) 50°		(b) 40°	D 40 C			
	(c) 30°		(d) 45°	W			

In the opposite figure:

CD = 3 cm.,
$$\overline{MC} \perp \overline{AB}$$

39. , D is the midpoint of \overline{MA} then the area of the circle $M = \dots \pi$ cm².

(a) 3

2.

3.

4.

(b) 6

(c) 9

(d) 36

Essay problems:

Complete and prove that:

1. In a cyclic quadrilateral, each two opposite angles are

ABC is a triangle inscribed in a circle

, BD is a tangent to the circle at B

 $X \in \overline{AB}$, $Y \in \overline{BC}$ where $\overline{XY} / / \overline{BD}$

Prove that: AXYC is a cyclic quadrilateral.

In the opposite figure:

Two circles are touching internally at B

- , AB is a common tangent
- , AC is a tangent to the smaller circle at C
- , AD is a tangent to the greater circle at D
- AC = 15 cm. AB = (2 X 3) cm.

and AD = (y - 2) cm.

Find: The value of each of X and y

In the opposite figure:

AB is a diameter in the circle M

- , C ∈ the circle M , m (\angle CAB) = 30°
- , D is midpoint of \widehat{AC} , $\overline{DB} \cap \overline{AC} = \{H\}$
- (1) Find: $m (\angle BDC)$ and $m (\widehat{AD})$
- (2) Prove that : $\overline{AB} // \overline{DC}$

In the opposite figure:

 \overline{AB} and \overline{AC} are two chords equal in length in circle M

, X is the midpoint of \overline{AB} , Y is the midpoint of \overline{AC}

 $m (\angle CAB) = 70^{\circ}$

6.

(1) Calculate: m (\(\subseteq \text{DMH} \)

(2) Prove that : XD = YH

In the opposite figure:

$$m (\angle A) = 30^{\circ}, m (\widehat{HC}) = 120^{\circ}$$

7. $\int \mathbf{m} (\widehat{\mathbf{BC}}) = \mathbf{m} (\widehat{\mathbf{DH}})$

1 Find: m (BD the minor)

Prove that : AB = AD

In the opposite figure:

DA and DB are two tangents of the circle M

8. and AB = AC

AC is a tangent to the circle passing through the vertices of the triangle ABD

In the opposite figure:

C is the midpoint of \overrightarrow{AB} , $\overrightarrow{MC} \cap$ the circle $M = \{D\}$

 $, m (\angle MAB) = 20^{\circ}$

Find: $m (\angle BHD)$ and $m (\widehat{ADB})$

In the opposite figure:

$$AB = AC$$
, $\overline{MD} \perp \overline{AB}$,

10. $\overline{\mathbf{ME}} \perp \overline{\mathbf{AC}}$

9.

Prove that : XD = YE

In the opposite figure:

ABCD is a quadrilateral in which AB = AD,

$$m (\angle ABD) = 30^{\circ}$$
,

$$m (\angle C) = 60^{\circ}$$

11.

Prove that: ABCD is a cyclic quadrilateral.

In the opposite figure:

BC is a tangent at B,

12. E is the midpoint of \widehat{BF}

Prove that:

ABCD is a cyclic quadrilateral.

In the opposite figure:

A circle is drawn touches the sides of a triangle

13 ABC, \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{AC} at

$$D, E, F, AD = 5 cm$$

$$BE = 4 \text{ cm.}$$
, $CF = 3 \text{ cm.}$

Find the perimeter of \triangle ABC

In the opposite figure:

AF is a tangent to the circle at A, AF // DE

Prove that:

14.

15.

DEBC is a cyclic quadrilateral.

In the opposite figure:

AB, AC are two tangents

to the Circle at B, C

$$m (\angle A) = 70^{\circ}$$

 $m (\angle CDE) = 125^{\circ}$

Prove that:

(1)
$$CB = CE$$

(2) $\overrightarrow{AC} // \overrightarrow{BE}$

Preparatory Three – Second Term Revision - 2022						
16.	In the opposite figure : If E is the midpoint of \overline{XY} , $m (\angle EMN) = 130^{\circ}$, then find : $m (\angle C)$	C X X 136 E Y				
17.	In the opposite figure: If \overrightarrow{AB} , \overrightarrow{AC} are two tangents to the circle at B, C, \overrightarrow{M} , \overrightarrow{M} , \overrightarrow{M} , \overrightarrow{M} are two tangents to the circle at B, C, \overrightarrow{M} ,	D B A				
18.	In the opposite figure : $\overline{XB} /\!\!/ \overline{CY}$, $\overline{MA} \perp \overline{XC}$, $\overline{MD} \perp \overline{BY}$ Prove that : MA = MD	B X X X X X X X X X X X X X X X X X X X				
19.	In the opposite figure: \(\overline{CE} \pm \overline{AB} \rightarrow \overline{AD} \pm \overline{BC} \) and intersects the circle at X Prove that: (1) AEDC is a cyclic quadrilateral. (2) \(\overline{CB} \) bisects ∠ ECX	C D B				
20.	In the opposite figure : If m (\angle DEF) = 115°, then find : m (\angle DMF)	F 115 E				
21.	Complete: The measure of the inscribed angle equals central angle by the same arc.	the measure of the				

In the opposite figure:

Inscribed circle of the triangle ABC touches

22. its sides at X, Y and Z

If AX = 3 cm., XB = 4 cm., AC = 8 cm.

Find: The length of BC

In the opposite figure:

$$\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}, m (\angle C) = 25^{\circ}$$

23. $| , m (\angle E) = 40^{\circ}$

Find: $m (\angle ADC)$

In the opposite figure:

AB is a diameter in the circle M

- , CF is a tangent to the circle at C
- $, \overrightarrow{DF} \perp \overrightarrow{AB}$ and intersects \overrightarrow{BC} at E

Prove that:

24.

- (1) ADEC is a cyclic quadrilateral.
- (2) Δ FCE is an isosceles triangle.

In the opposite figure:

$$AB = AD$$

$$_{25}$$
. • m (\angle ABC) = 20°

$$m (\angle ADB) = 70^{\circ}$$

Find: $m(\angle C)$, $m(\angle BDC)$

In the opposite figure:

$$m (\angle BAC) = m (\angle BDC) = 90^{\circ}$$

26. H is the midpoint of \overline{BC} and m ($\angle AHD$) = 48°

- (1) Prove that: ABCD is a cyclic quadrilateral.
- (2) Find: $m (\angle ABD)$

Using your geometric tools, draw \overline{AB} with a length of 4 cm., then draw a circle passing through the two points A and B whose radius length is 3 cm.

What are the possible solutions? (Don't remove the arcs)

Preparatory Three – Second Term Revision - 2022 In the opposite figure: A circle M of circumference 44 cm. , \overline{AB} is a diameter, \overline{BC} is a tangent at B 28. M and m (\angle ACB) = 30° **Find**: The length of \overline{BC} $(\pi = \frac{22}{7})$ In the opposite figure: If M is a circle \Rightarrow m ($\angle A$) = 48° 29. Find: m (BD) the major) In the opposite figure: AD is a diameter in a circle M , CA and CB are two tangents to the circle M, 30. touch it at A and B respectively. **Prove that :** $m (\angle DMB) = m (\angle ACB)$ In the opposite figure: ABC is a triangle in which AB = AC, BC is a chord in the circle M 31. , if \overline{AB} and \overline{AC} cut the circle at D and H respectively. м Prove that: $m(\widehat{DB}) = m(\widehat{HC})$ In the opposite figure: M and N are two congruent circles 32. AB = CDProve that: The figure MXYN is a rectangle. ABCD is a quadrilateral inscribed in a circle, H is a point outside the circle and \overline{HA} and \overline{HB} are two tangents to the circle at A and B, if m ($\angle AHB$) = 70° 33. and m (\angle ADC) = 125°, prove that: (1)AB = AC(2) AC is a tangent to the circle passing through the points A, B and H

Preparatory Three – Second Term Revision - 2022 In the opposite figure: Two concentric circles at M $m (\angle ABE) = m (\angle AEB)$ 34. **Prove that :** CD = ZLIn the opposite figure: AB is a tangent to the circle M 35. $, m (\angle A) = 40^{\circ}$ Find with proof: $m (\angle BDC)$ In the opposite figure: AB is a diameter in the circle M , X is the midpoint of \overline{AC} and \overline{XM} intersecting 36. the tangnet of the circle at B in Y Prove that: The figure AXBY is a cyclic quadrilateral. In the opposite figure: \overrightarrow{XY} and \overrightarrow{XZ} are two tangents to the circle 37. at the two points Y and Z \rightarrow m ($\angle X$) = 40° $, m (\angle D) = 110^{\circ}$ **Prove that :** $m (\angle ZYE) = m (\angle ZEY)$ In the opposite figure: $m (\angle E) = 40^{\circ}, m (\angle C) = 25^{\circ}$ 38. Find with proof: (2) m (\widehat{AC}) (1) m $(\angle ADC)$ ABCD is a quadrilateral drawn in a circle $E \in \overline{AB}$, $E \notin \overline{AB}$ 39. , m (\widehat{AB}) = 110° , m (\angle CBE) = 85° Find with proof: $m (\angle BDC)$

Preparatory Three – Second Term Revision - 2022 In the opposite figure: AD is the tangent to the circle M at A 40. $, m (\angle DAC) = 130^{\circ}$ Find with proof : $m (\angle B)$ In the opposite figure: AB and AC are two chords equal in length at the circle M , X is the midpoint of AB 41. • Y is the midpoint of \overline{AC} • m ($\angle A$) = 70° (1) **Find**: m (∠ DME) (2) Prove that : XD = YEIn the opposite figure: AB is a diameter in the circle M 42. $\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}$, m ($\angle E$) = 30°, m (\overrightarrow{AC}) = 80° M Find: $m(\widehat{CD})$ In the opposite figure: M is a circle, $m (\angle MAB) = 50^{\circ}$ 43. Find: $m (\angle C)$ In the opposite figure: $m (\angle ABE) = 100^{\circ}$ 44. $, m (\angle CAD) = 40^{\circ}$ **Prove that:** \triangle DAC is an isosceles triangle. In the opposite figure: AB and AC are two tangent-segments 45. to the circle at B and C

-20-

 $m (\angle A) = 50^{\circ} , m (\angle D) = 115^{\circ}$

Prove that: (1) \overrightarrow{BC} bisects $\angle ABE$ (2) $\overrightarrow{CB} = \overrightarrow{CE}$

3rd Prep. 2nd	term 2019
3 : AB, Ac are tangents to	1: m (LM) = 360° - (90+90+70) = 110°)
the smaller circle	··· Aca AB
- AB=AC	* MY = MX J :: MH = MX = F
∴ 2x=3=15 · x=9	· YH= xD
AB, AB are tangents to	
the greater circle	(BD) = 2m(CA)
-: AB=AD	120°-m(130)=60
y-2=15 (7=17)	-: m (BD) = 600
	:m(HD) = 360-(120+60) = 90°
(m(LD)=m(LA)=300	:-m(4c)= = = (HDB)=75°
subtended by BC	m(4H)= 1 m(CBD)= 75°
: m(Bc)=2x30=60°	HDBc is a cyclic quad.
: m(AD) = 180-60 = 60°	:m(4ADB)=m(4c)=750
m(4c) = \frac{1}{2} m(AD) = 300	:m(LABD)=m(LH)=75°
:- m(LC) = m(LA)	: (AD=AB)
But they are alternate.	
· ABIIDC.	8 - DA 1s a tangent
	:m(L DAB) = m(LC) -> 0
5) It's easy to answer:	:DB is a tangent
1) IF there we two opposite	∴ m (∠DBA) = m(∠c) →@
Supplementary angles	AB = AC
@ IF there is an exterior	= m(LABC) = m(LC) -> 3
anyle equal in measure to the	From (1), (2), (3) we get
measure of the opposite to	m(LDAB)=m(LDBA)=m(LABC)=m(4)
its adjacent angle.	AAADB, ABC
3 If there are two angles equaling	in which & m(CDBA)=m(CABE)
measure and drawn on one side	Lm(CDAB)=m(Le)
and on one side of this side	: m(4 BAc) = m(4 BDA)
	: Ac is a tangent to the
6 : x is the midpoint of AB	circle ABS.
MX L AB	
: y is the midpoint of Ac	
- MY _ AC	<u> </u>
إعداد/ محمود أحمد محب	
マシェシェシェシェシェシェシェシェシェシェシェシェシェ	0

parararara 3 rd Prep. 2 ⁿ	term 2019
3 : c is the midpoint of AB	
and MA=MB	
inc LAB, me bisects (M)	15 : AC, AB one two tangents
: mc (90+20)=70	
: m(LAMD) = m(LBMD) = 700	: m(LABC)=m(LACB)= 180-70
- m (2 BHD) = 1 m (2 B MD) = 35)	= 55°
subtended by (BD)	- BCDE is cyclic quade
m (ADB) = m(LAMB)=[48]	: m(4 B) = 180-125 = 550
	: CA is a tangent
(6) as no. (6)	= m(LACB) = m(LCEB)=55°
§	subtended by BC
(1) : AB=AD	:m(4CEB) = m(4CBE)=550
√ -: m(∠ABD)=m(∠ADB)=30°	÷ CB=CE
m(LA)=180-(30+30)=1200	m(LACB) = m(LCBE)=55°
== m(LA)+m(Lc)= 1800	but the are alternate.
: A BcD is a cyclic quad.	∴ Ac // BE.
§	
12 x BC is a tangent	16 : E is the midpoint of xy
m(LCBD)=m(LBAE)-C	ME L XY
subtended by BE	The two circles are intersecting
: E is the midpoint of BF	** A,B
m(BE) = m(EF)	: MN LAB
: m(L FAE) = m(L BAE) -> @	:m(4c)=360-(130+90+90)=50
From O,O, we get	(2) 1 AB 1 1 +
m(LCBD)=m(LCAD)	17: AB is a tangent
: A BCD Is a cyclic quad.	= m(LABc) = m(LD)=70°
(3) :: AD, AF ove two tangents	subtended by BC : AB, Ac are two tangents
· AD=AF=5cm	: AB=Ac
Similarly: BD=BE=4cm	: m(2 ABc)=m(CA CB) =70°
CF=CF=3cm	:- m (CA)=180-(70+70)=400
: P. of ABC = 9+7+8=24em	cB= cD
	:m(4 cBD)=m(4 cDB)=70°
إعداد/ محمود أحمد محب	: m(/ ACB) =m(L CBD)
()	6 AC//BD

22222222222 3 rd Prep. 2 nd	term 2019
(45) : AB, Ac are tangents	
- AB=AC	
:mccABc)=m(cAcB)	
<u>- 180-50 - 650</u>	
2	
-: AB is a tangent	
:m(LABc) = m(LBEc)=650	
subtended by BC	
BCDE is a cyclic quad.	
: m(4 EBC) = 180-115=65°	
m(LABC) = m(LCBE)	
Bc bisects (LABE)	
:m (L CBE)=m(LCEB)	
∴ cB=cF	
Best wishes	
	
	
إصاد/ محمود أحمد محب	
2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	0

Choose the correct answer:

(1)	The line of centers of two intersecting circles is perpendicular
	to the common and bisect it.

- a diameter
- **b** tangent
- **G** chord
- d arc
- (2) The line of centers of two intersecting circles is the axis of symmetry of the common
 - a diameter
- **b** tangent
- **G** chord
- d arc
- (3) The measure of the inscribed angle drawn in a quarter of a circle =°
 - **a** 135
- **(b)** 120
- **G** 90
- **d** 45
- (4) The center of the inscribed circle of triangle is the intersection point of
 - a medians

- **G** altitudes
- **b** axes of its sides
- d bisectors of its angles

- a outside
- **b** secant to **c** tangent to **d** otherwise

(6) If ABCD is a cyclic quadrilateral and $m(\angle A) = 3m(\angle C)$, then $m(\angle A) = \dots^{\circ}$

- **a** 180
- **b** 135
- **G** 90
- **d** 45

M and N are two intersecting circles of radii lengths 6 cm and **(7)** 4 cm, then MN ∈

- **a**]10,∞[
- **(b)**]2,10[
- **G** 10,2[
- **d**]4,6[

(8) In the opposite figure: ED is a tangent, $m(\angle DAB) = 110^{\circ}$, then $m(\angle C)$

- **a** 35
- **6** 55
- **G** 110
- **d** 70

(9) A circle of radius length 5 cm, \overline{AB} is a chord of length 8 cm, then the distance between the chord and the center = cm.

- **a** 3
- **6**
- **d** 10

(10) From the opposite figure:

$$m(arc EC) = \dots^{\circ}$$

- **a** 56
- **(b)** 30
- **G** 86
- **d** 28

(11) From the opposite figure:

$$m(\angle A) = \dots^{\circ}$$

- **a** 20
- **6** 40
- **G** 50
- **@** 80

(12) The measure of the central angle in a circle the measure of the inscribed angle subtended by the same arc.

- a supplements b equal
- **G** half
- double

(13) The length of an arc which represents a semicircle =

- a πr
- **6** 2 π r
- $\frac{1}{2} \pi r$ $\frac{1}{4} \pi r$

(14) If AB = 6 cm, then the number of circles which passes through A and B of radius length 3 cm is

- **a** 0
- $\mathbf{6}$ 1
- \mathbf{G} 2
- infinite

(15) If AB = 5 cm, then the number of circles which passes through A and B of radius length 3 cm is

- **a** 0
- \mathbf{G} 2
- (infinite

(16) If AB = 8 cm, then the number of circles which passes through A and B of radius length 3 cm is

- **a** 0
- **6**1
- \mathbf{G} 2
- (infinite

(17) The number of common tangents of two distant circles is

- **a** 1
- **(b)** 2
- **G** 3

(18) If the longest chord in a circle is 12 cm, then its circumference = cm

- **a** 6 π
- **12** π
- **G** 24 π
- **(1)** 144 π

(19) If the lengths of the radii of the two circles M and N are 6 cm, 8 cm and MN = 14 cm, then the two circles are

a intersecting

C touching externally

b distant

d one inside the other

(20) The inscribed angle in a semicircle is

- acute
- **b** straight
- **C** right
- d obtuse

(21) A chord of length 8 cm drawn in a circle of diameter length 10 cm, then the distance between the chord and the center is cm.

- **(5)** 4
- **G** 5
- **d** 6

3 rd Pre	ep. 2 nd term 2021			Mahmoud Moheb
(22) Number of tangents of two touching internally circles is				
	a 0	6 1	© 2	d 3
(23)	If ABCD is a cy $m(\angle A) = \dots$	clic quadrilatero	al and $m(\angle A) = 2m($	$(\angle C)$, then
	a 30	6 0	9 0	d 120
(24)			circles M and N circles are	are 6 cm, 3 cm
	a intersecting	1	c one inside t	the other
	b distant		d touching ex	ternally
(25)	_		cm, a straight he straight line	line of distance is circle.
	1 tangent to	the	G secant to t	he
	b axis of sym	metry of the	d outside the	
(26)	Number of com	mon tangents of	a two concentric	c circles is
	a 3	b 2	© 1	0 0
(27)	The measure of	the inscribed a	ngle in a semicir	cle =°
	a 360	b 180	© 120	d 90
(28)			circles M and N circles are	are 9 cm, 4 cm
	a intersecting	1	c touching int	ternally
	b distant		1 touching ex	ternally
(29)	The centers of A and B lies on		passes through	the two points
	a AB		\odot axis of \overline{AB}	
	b midpoint of	AB	perpendicul	ar to \overline{AB} at B
(30)	The measure of	the inscribed a	ngle in a third o	f a circle =°
	a 360	b 180	© 120	d 90

(31) The measure of the inscribed angle in a quarter of a circle is°

- **a** 45
- **b** 90
- **G** 135
- **d** 145

(32) From the opposite figure:

 $m(arc BD) = \dots$

- **a** 55
- **(b)** 90
- **G** 180
- **d** 110

(33) The length of an arc which represents a quarter of a circle of radius length r cm is cm

- **a** 4 π r
- **b** 2 π r
- C π r

(34) One of the following identifies a unique circle

- a length of radius and a point one point
- **b** two points

d center and a point

- a outside the circle
- secant to the circle
- (b) tangent to the circle
- 1 passes through the center

(36) If ABCD is a cyclic quadrilateral, $m(\angle A) = 90^{\circ}$, then the diameter of the circle is

- $\overline{\mathbf{a}}$ $\overline{\mathbf{AB}}$
- \bigcirc \overline{AC}
- G AD
- d BD

(37) From the opposite figure:

 $m(\angle MCB) = \dots^{\circ}$

- **a** 110
- **(b)** 35
- **G** 45
- **d** 55

(38) Number of axes of symmetry of two congruent circles and touching externally is

- **a** 3
- **6** 2
- **G** 1
- d infinite

(39) Number of axes of symmetry of two touching externally circles is

- **a** 3
- **b** 2
- 1
- d infinite

(40) Number of common tangents of two touching externally circles is

- **a** 3
- **b** 2
- 1
- d infinite

(41) Two touching circles of radii lengths 5 cm and 8 cm, then the distance between their centers ∈

- **a**]13,3[
- **(b)**]3,13[
- **G** R-[3,13]
- **d** {3,13}

(42) Two intersecting circles of radii lengths 5 cm and 3 cm, then the distance between their centers ∈

- **a**]8,∞[
- **(b)**]2,∞[
- **G**]0,2]
- **d**]2,8[

(43) We can't draw a circle passing through the vertices of

- **a** triangle
- b rectangle c rhombus
- **d** square

(44) The minor arc in the circle is opposite to inscribed angle.

- an acute
- (b) an obtuse (c) a right
- a reflex

(45) The radius length of the smallest angle passing through the endpoints of a line segment half of its length.

- a less than
- **(b)** more than **(c)** equals
- double

(46) The two tangents to a circle drawn from the endpoints of its diameter are

- a parallel
- (b) equal
- coincident
- d intersecting

(47) From the opposite figure:

$$m(\angle ACB) = \dots^{\circ}$$

- **a** 45
- **b** 110
- **C** 135
- **(1)** 270

- (48) The measure of an arc which represents a third of a circle is°
 - **a** 60
- **b** 90
- **G** 120
- **d** 240

(49) From the opposite figure:

 $m(arc EC) = \dots^{\circ}$

- **a** 100
- **(b)** 120
- **G** 130
- **6** 50

(50) From the opposite figure:

 $m(arc DA) = \dots^{\circ}$

- **a** 40
- **(b)** 55
- **6** 80
- **(1)** 110
- - **a** 3 π
- **6** π
- **G** 8 π
- 0 9 π

(52) From the opposite figure:

 $m(\angle ABC) = \dots^{\circ}$

- **a** 60
- **b** 120
- **G** 240
- **d** 360
- (53) The center of the circumcircle of a triangle is the intersection point of
 - a its medians

- **©** its altitudes
- (b) axes of its sides
- d bisectors of its angles
- (54) From the opposite figure:

 $m(\angle BAC) = \dots^{\circ}$

- **a** 90
- **6**0
- **G** 30
- **d** 15

Essay Problems:

(1) In the opposite figure :

ABC is a triangle inscribed in a circle

- , BD is a tangent to the circle at B
- $, X \in \overline{AB}, Y \in \overline{BC} \text{ where } \overline{XY} /\!/ \overrightarrow{BD}$

Prove that: AXYC is a cyclic quadrilateral.

(2) In the opposite figure :

Two circles are touching internally at B

- , AB is a common tangent
- , AC is a tangent to the smaller circle at C
- , \overrightarrow{AD} is a tangent to the greater circle at D
- AC = 15 cm. AB = (2 X 3) cm.

and AD = (y - 2) cm.

Find: The value of each of X and y

(3) In the opposite figure:

AB is a diameter in the circle M

- , C \in the circle M , m (\angle CAB) = 30°
- , D is midpoint of \widehat{AC} , $\overline{DB} \cap \overline{AC} = \{H\}$
- (1) Find: $m (\angle BDC)$ and $m (\widehat{AD})$

(4) In the opposite figure:

 \overline{AB} and \overline{AC} are two chords equal in length in circle M

- , X is the midpoint of \overline{AB} , Y is the midpoint of \overline{AC}
- $m (\angle CAB) = 70^{\circ}$
- (1) Calculate: m (\(\subseteq \text{DMH} \)
- (2) Prove that : XD = YH

(5) In the opposite figure:

$$m (\angle A) = 30^{\circ} \cdot m (\widehat{HC}) = 120^{\circ}$$

- $m(\widehat{BC}) = m(\widehat{DH})$
- 1) Find: m (BD the minor)
- (2) Prove that : AB = AD

(10)

(7)	In the opposite figure :
	DA and DB are two tangents of the circle M
	and AB = AC
	Prove that •

AC is a tangent to the circle passing through the vertices of the triangle ABD

(8)	In the opposite figure :
	C is the midpoint of \overrightarrow{AB} , $\overrightarrow{MC} \cap$ the circle $M = \{D\}$
	$m (\angle MAB) = 20^{\circ}$
	Find: m (∠ BHD) and m (ADB)

(9)	In the opposite figure :
	In the opposite figure : $AB = AC , \overline{MD} \perp \overline{AB} ,$
	<u>ME</u> ⊥ <u>AC</u>
	Prove that : XD = YE

In the opposite figure: ABCD is a quadrilateral in which AB = AD, $m (\angle ABD) = 30^{\circ}$, $m (\angle C) = 60^{\circ}$ Prove that: ABCD is a cyclic quadrilateral.

(11)In the opposite figure: BC is a tangent at B, E is the midpoint of BF Prove that: ABCD is a cyclic quadrilateral.

(12) In the opposite figure: AF is a tangent to the circle at A, AF // DE Prove that: DEBC is a cyclic quadrilateral.

(13)	In the opposite figure :	
	A circle is drawn touches	
	the sides of a triangle	
	$ABC, \overline{AB}, \overline{BC}, \overline{AC}$ at	
	D, E, F, AD = 5 cm	

BE = 4 cm., CF = 3 cm.

Find the perimeter of \triangle ABC

(14) In the opposite figure:

 \overrightarrow{AB} , \overrightarrow{AC} are two tangents to the Circle at B, C, m ($\angle A$) = 70°, m ($\angle CDE$) = 125° **Prove that:**

(1) CB = CE

(2) $\overrightarrow{AC} // \overrightarrow{BE}$

(15) In the opposite figure :

If E is the midpoint of \overline{XY} , m (\angle EMN) = 130°, then find: m (\angle C)

(16) In the opposite figure:

If \overrightarrow{AB} , \overrightarrow{AC} are two tangents to the circle at B, C

$$, m (\angle D) = 70^{\circ}, CB = CD$$

(1) Find: $m (\angle A)$

(2) Prove that : $\overline{BD} // \overline{AC}$

(17) Complete: The measure of the inscribed angle equals the measure of the

central angle by the same arc.

(18) In the opposite figure :

 $\overline{XB} / / \overline{CY}$, $\overline{MA} \perp \overline{XC}$

 $,\overline{MD}\perp \overline{BY}$

Prove that : MA = MD

(19) In the opposite figure:

 $\overrightarrow{CE} \perp \overrightarrow{AB}$, $\overrightarrow{AD} \perp \overrightarrow{BC}$ and intersects the circle at X

Prove that:

(1) AEDC is a cyclic quadrilateral.

(2) CB bisects ∠ ECX

(20) In the opposite figure :

If m (\angle DEF) = 115°

, then find : $m (\angle DMF)$

(21) In the opposite figure :

Inscribed circle of the triangle ABC touches

its sides at X , Y and Z

If AX = 3 cm., XB = 4 cm., AC = 8 cm.

Find: The length of \overline{BC}

(22) In the opposite figure :

 $\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}, m (\angle C) = 25^{\circ}$

 $, m (\angle E) = 40^{\circ}$

Find: $m (\angle ADC)$

(23) In the opposite figure:

AB is a diameter in the circle M

, CF is a tangent to the circle at C

, DF 1 AB and intersects BC at E

Prove that:

(1) ADEC is a cyclic quadrilateral.

(2) Δ FCE is an isosceles triangle.

(24) In the opposite figure:

AB = AD

 $m (\angle ABC) = 20^{\circ}$

 $m (\angle ADB) = 70^{\circ}$

Find: $m (\angle C) \cdot m (\angle BDC)$

(25)	In the opposite figure:
------	-------------------------

 $m (\angle BAC) = m (\angle BDC) = 90^{\circ}$

, H is the midpoint of \overline{BC} and m (\angle AHD) = 48°

(1) Prove that: ABCD is a cyclic quadrilateral.

(2) **Find**: m (∠ ABD)

Using your geometric tools, draw AB with a length of 4 cm., then draw a circle passing through the two points A and B whose radius length is 3 cm.

What are the possible solutions? (Don't remove the arcs)

(27) In the opposite figure :

A circle M of circumference 44 cm.

, \overline{AB} is a diameter, \overline{BC} is a tangent at B and m ($\angle ACB$) = 30°

Find: The length of \overline{BC} $\left(\pi = \frac{22}{7}\right)$

(28)

In the opposite figure:

If M is a circle \cdot m ($\angle A$) = 48°

Find: m (BD) the major)

(29)

In the opposite figure:

AD is a diameter in a circle M

, \overrightarrow{CA} and \overrightarrow{CB} are two tangents to the circle M, touch it at A and B respectively.

Prove that : $m (\angle DMB) = m (\angle ACB)$

(30)

In the opposite figure:

ABC is a triangle in which AB = AC

, BC is a chord in the circle M

, if \overline{AB} and \overline{AC} cut the circle at D and H respectively.

Prove that: $m(\widehat{DB}) = m(\widehat{HC})$

(24)		
(31)	In the	opposite figure :

M and N are two congruent circles

,AB = CD

Prove that: The figure MXYN is a rectangle.

(32) ABCD is a quadrilateral inscribed in a circle, H is a point outside the circle and \overrightarrow{HA} and \overrightarrow{HB} are two tangents to the circle at A and B, if m (\angle AHB) = 70°

and m (\angle ADC) = 125°, prove that:

(1)AB = AC

(2) AC is a tangent to the circle passing through the points A, B and H

(33) In the opposite figure:

Two concentric circles at M

 $, m (\angle ABE) = m (\angle AEB)$

Prove that : CD = ZL

(34) In the opposite figure:

AB is a tangent to the circle M

 $m (\angle A) = 40^{\circ}$

Find with proof: $m (\angle BDC)$

(35) In the opposite figure:

AB is a diameter in the circle M

, X is the midpoint of AC and XM intersecting

the tangnet of the circle at B in Y

Prove that: The figure AXBY is a cyclic quadrilateral.

(36) In the opposite figure:

 \overline{XY} and \overline{XZ} are two tangents to the circle at the two points Y and Z \rightarrow m ($\angle X$) = 40°

at the two points 1 and \mathbb{Z} 3 in $(\mathbb{Z}|X) = 40$

 $, m (\angle D) = 110^{\circ}$

Prove that: $m (\angle ZYE) = m (\angle ZEY)$

ABCD is a quadrilateral drawn in a circle $, E \in \overrightarrow{AB} \,$, $E \notin \overline{AB}$

, m
$$(\widehat{AB})$$
 = 110° , m (\angle CBE) = 85°

Find with proof: $m (\angle BDC)$

In the opposite figure:

 \overrightarrow{AD} is the tangent to the circle M at A • m (\angle DAC) = 130°

Find with proof: $m (\angle B)$

(39)

In the opposite figure:

 \overline{AB} and \overline{AC} are two chords equal in length at the circle M

 \mathbf{X} is the midpoint of $\overline{\mathbf{AB}}$

• Y is the midpoint of \overline{AC} • m ($\angle A$) = 70°

(1) Find: $m (\angle DME)$

(40)

In the opposite figure:

AB is a diameter in the circle M

$$\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}$$
, m ($\angle E$) = 30°, m (\overrightarrow{AC}) = 80°

Find: m (CD)

(41)

In the opposite figure:

M is a circle, $m (\angle MAB) = 50^{\circ}$

Find: $m (\angle C)$

(42)

In the opposite figure:

$$m (\angle ABE) = 100^{\circ}$$

 $, m (\angle CAD) = 40^{\circ}$

Prove that: \triangle DAC is an isosceles triangle.

(43)	In the opposite figure :
------	--------------------------

 \overline{AB} and \overline{AC} are two tangent-segments to the circle at B and C , m ($\angle A$) = 50°, m ($\angle D$) = 115°

Prove that: (1) BC bisects ∠ ABE

(2) CB = CE

(44) In the opposite figure:

M, N are two intersecting circles in A , B \overrightarrow{EC} is tangent to the circle M at C, \overrightarrow{DC} is tangent to the circle N at D, Prove that: ECDB is cyclic quadrilateral

(45)

In the opposite figure:

A B = AC = AD, m (\angle BAD) = 50° Find m (\angle BCD)

(46)

In the opposite figure:

 \overline{XY} , \overline{XZ} are two tangents to the circle M (\angle YXZ) = 40°, m (\angle Z D E) = 110° Prove that: Z E = Z Y

(47)

In the opposite figure:

 \overline{AB} is a diameter in circle M, \overline{Y} \overline{B} is tangent.

Prove that: DCXY is cyclic quadrilateral

1) Choose the correct answer

- **1)** If M circle with radius length = 4 cm and A is a point in its plane, MA = 3 cm, then A is circle M.
 - (inside on outside)
- **2)** If M circle with radius length = 4 cm and A is a point in its plane, MA = 4 cm, then A is circle M.
 - (inside on outside)
- **3)** If M circle with radius length = 4 cm and A is a point in its plane, MA = 5 cm, then A is circle M.
 - (inside on outside)
- **4)** A tangent to a circle isthe radius at its point of tangency.
 - (perpendicular to parallel to bisects
- **5)** If a straight line is perpendicular to a diameter of a circle at one of its endpoints, then it is a to the circle.
 - (axis of symmetry tangent chord
- **6)** In the opposite figure: $m (\angle AMB) = \dots$

$$(25^{\circ} - 35^{\circ} - 45^{\circ})$$

- **7)** If the surface of the circle $M \cap If$ the surface of the circle $N = \emptyset$, then the two circles are
 - (Distant touching externally intersecting)
- **8)** If M and N are two centers of two circles with radii r_1 , r_2 , where MN > r_1 + r_2 , then the two circles are
 - (Distant touching externally intersecting)

PREP3 **SECOND TERM** 2) In the opposite figure: AB and AC are two equal chords in circle M, X and Y are the midpoint of AB and AC $m(\angle A) = 70^{\circ}$ a) Find m(∠DME) Prove that XD = YE 3) In the opposite figure: AB = AC, X is the mid-point of \overline{AB} , Y is the mid-point D of \overline{AC} prove that: DX = HY

4) In the opposite figure: ABC is a triangle in which AB = AC. circle M was drawn with diameter \overline{BC} intersecting \overline{AB} at D and \overline{AC} at E, $\overline{MX} \perp \overline{BD}$, $\overline{MY} \perp \overline{CE}$ prove that : BD = CE	C M B
5) In the opposite figure: AB is a tangent to the circle M, E is the midpoint of the chord CD, m (∠ ABC) = 50°	B 50° C E
Find : m (∠AME)	A M D

8 cm

PREP3	SECOND TERM
6) In the opposite figure:	
AB is a tangent to the circle M at A and	
$AM = 8 \text{ cm}, \text{ m} (\angle ABM) = 30^{\circ}$	
Find the length of each: AB and AC	
	• • • • • • • • • • • • • • • • • • • •
7) In the opposite figure:	
	nd D
The two circles M and N intersects at A a	IIU B A
CD is a chord in the circle M cuts MN at E	
, If E is the midpoint of CD	N D M
Prove that AB // CD	$\bigcup_{B} \bigcup_{C}$
PTTOTTOU	
	• • • • • • • • • • • • • • • • • • • •
	•••••••
	• • • • • • • • • • • • • • • • • • • •

8) In the opposite figure The two circles M and N inte is drawn MX \(\triangle \) AC MN is draw	ersect at A and B.	
1) Prove that : MD = MX	2) Prove that: XY = DE	
		• •
	••••••	• •
		• •
		• •
		• •
9) In the opposite figure: M and N are two intersecting circles At A and B, $m(\angle C)=55^{\circ}$, $m(\angle N)=125^{\circ}$ Prove that: \overrightarrow{CD} is a tangent to the circle		
	D 55° A 125° N E N	M
		• •
•••••	• • • • • • • • • • • • • • • • • • • •	• •
	• • • • • • • • • • • • • • • • • • • •	• •
		• •
		• •
		0 0
••••••	• • • • • • • • • • • • • • • • • • • •	0 0

PREP3

10) In the opposite figure:

M is a circle, m (\angle MAC) = 35° Find m (\angle ABC)

	M\\
	35°
$C \setminus$	

11) In the opposite figure:

 \overline{AB} is a diameter in the circle M with radius length 4 cm , m (\angle A) = 30°

1) Find $m (\angle ABC)$

2) Find the length of BC

12) In the opposite figure:

AB and CD are two equal chords

Prove that △ AEC is isosceles

\triangle ABC drawn D ∈ \overrightarrow{CB} such t if m (\angle BMC	opposite figure: in the circle M that m (∠ABD)=120°)=100° of m (∠ACB)	A M 100° 120° B D
The chords A At X , M is the if m(∠BAC)=4 Find:	pposite figure: C and BE intersects c centre of the circle, 10° 2) m(∠BMC)	$egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} A \ D \ \end{array}$

PREP3 **SECOND TERM** 15) In the opposite figure: M is a circle ABCD is a cyclic quadrilateral, $m (\angle C) = 100^{\circ}$ Find: $n \in \mathbb{C}$ $m(\angle A)$ $n \in \mathbb{C}$ 16) In the opposite figure: ABCD is a cyclic quadrilateral in which m(∠ABC)=70% The length of \widehat{AD} = The length of \widehat{DC} Find: m(∠ACD) 17) Mention conditions of cyclic quadrilateral

18) In the opposite figure:

m (\angle ABE) = 100°, m (\angle CAD) = 40°

Prove that : m (\widehat{CD}) = m (\widehat{AD}).

19) In the opposite figure:

XY and XZ are two tangents to the circle from point X,

 $M(\angle D) = 110^{\circ}$, $M(\angle X) = 40^{\circ}$

Prove that : m (\widehat{ZE}) = m (\widehat{ZY}).

MR.AMR ALFEKY
Qowesna, Monofia

3rd prep

Final revision

SECOND TERM

Geometry

Choose the correct answer:

(1) In the opposite figure:

$$AB = AC$$
, $AB = 2 x - 1$ and $AC = x + 2$,

Then x =

(a) 3

- (d) 14
- (1) M and N are two intersecting circles the lengths of their radii are 3 cm and 5 cm, then MN ∈
 - (a) [2,8]
- (b) [2,8
- (c)
- [2,8]

- Number of the axes of symmetry (2) of the semicircle is
 - (a) zero
- (b)
- (c) 2
- d) infinite

(3) In the opposite figure:

if m (∠ BAD) =60°, then m (∠ BCF)

(a) 30

(c) 80 (d)

The number of circles that pass through three collinear points equals (b) one (c) three (a) zero (d) infinite number (6) The inscribed angle which opposite to the minor arc in a circle is (c) obtuse (a) reflex (b) right (d) acute (7) In the opposite figure: ABCD is quadrilateral, m (∠ ABD) = 30° m (∠ DCE) = 120° 30° then ABCD is E (a) a rectangle (b) a rhombus d) a parallelogram (c) a cyclic quadrilateral (8) The ratio between the measure of the inscribed angle and the measure of the central angle subtended by the same arc equals measure of the central angle subtenized by the same arc equals

(a) 1:2 (b) 2:1 (c) 1:1 (d) 1:3

(9) The area of a rhombus which the lengths of its diagonals are 6 cm, 8 cm equals

(a) 2 cm^2 (b) 14 cm^2 (c) 124 cm^2 (d) 48 cm^2 (10) In the opposite figure:

Two concentric circle M , m (BC) = 80° If the radius length of the smaller circle is 7 cm and the radius length of the large circle is

14 cm, ($\pi = \frac{22}{7}$) then :

First: the perimeter of the smaller circle = cm

(a) 44

(b) 22

(c) 154

(d) 88

ਗ੍ਰੰਡ ਗ੍ਰੇਡ ਗ੍ਰੰਡ ਗ੍ਰੇਡ ਗ੍ਰੰਡ ਗ੍ਰੰਡ ਗ੍ਰੰਡ ਗ੍ਰੰਡ ਗ੍ਰੰਡ ਗ੍ਰੰਡ ਗ੍ਰੰਡ ਗ੍ਰੇਡ ਗ੍ਰੰਡ ਗ੍ਰੇਡ ਗ੍ਰੰਡ ਗ੍ਰੇਡ ਗ੍ਰੇਡ

(a) 70	(a)	(c) 50	(a) 35
(18) The number touching extern			ngruent circles and
(a) 4	(b) 2	(c) 1 (d)	infinite number
1970 TG	The same of the sa	SAFETY OF THE PARTY OF THE PART	nd the straight line L
		n, then L is	ALL THE PARTY OF T
(a) distant fro		(b) intersects t	
(c) touches th	ne ci <mark>rcl</mark> e	(d) passes throug	gh the center of circle
13. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14			nt-angle at vertices Q ,
then is	a diameter ii		
(a) DQ	(b) HW	(c) WD	(d) DH
(21) A circle w	hose circumf	erence 20 π cm. its	$area = \dots \pi cm^2$
(a) 10	(b) 100	(c) 200	(d) 400
(22) In the opp	osite figure:		В
m (∠ ABC) = 60°	,m (∠ AMC)	= (y + 20°)	
then y =°			60° M Y + 20°
(a) 30	(b) 40	(c) 80	(d) 100
(23) A ABC is a	right-angled	triangle at C, then t	he two angles A, B are
(a) suppleme		(b) complement	

ਗ੍ਰੰਡ ਗ੍ਰੇਡ ਗ੍ਰੰਡ ਗ੍ਰੇਡ ਗ੍ਰੰਡ ਗ੍ਰੇਡ ਗ੍ਰੰਡ ਗ੍ਰੇਡ ਗ੍ਰੇਡ

(c) 10 cm (a) 5 cm (b) 7 cm (d) 13 cm (44) The number of sides of the regular polygon in which the measure one of its interior angles 135° = sides (a) 4 (b) 6 (c) 8 (d) 10 (45) In the opposite figure; A If M is a circle, m (∠ BCD) = 130° Then m (∠ BAD) = 130° (a) 50 b) 130 (d) 260 (46) The rhombus in which the lengths of its diagonals are L_1 and L_2 , its area = (c) 2 $\frac{1}{2}L_1L_2$ (b) $L_1 + L_2$ (a) $L_1 L_2$ (47) The image of the point (A, B) by rotation R (0, 180°) the point (a) (-A, B)B) (d) (A, (b) (-/ A (c) B) (48) The inscribed angle which opposite to the minor arc in a circle (c) obtuse (d) acute (a) reflex (b) right (49) If two chords intersect at a point inside a circle then the

(a) half of the difference
(b) half of the sum
(c) twice the sum/8 (d) twice the difference

measure of the included angle equals Of the two opposite arcs

(50) The radius length of the circle whose center is (7, 4) and pass through the point (3, 1) equals length unit (a) 3 (b) 4 (d) 6 (c) 5 (51) Numbers of circles passing through a given point (a) one circle (b) two circles (d) infinite number of circles (c) three circles (52) If the radius length of the circle M equals 2 cm, then its circumference equals 5 π cm d) $7 \pi \text{ cm}$ (a) 4π cm (c) 6 π cm (53) If m ($\angle A$) = $\frac{1}{2}$ m ($\angle C$) in a cyclic quadrilateral ABCD, then m (∠ A) =° c) 60 (a) 20 (b) 30¹ (d) 120 (54) In the opposite figure: AB is a tangent, AM = 5 cm, m (∠B) = 30° then the length of BC equals, 5cm В (a) 5 10 (b) 7 (c) (55) The number of symmetric axes of the square is (a) 1 (b) 2 (d) 4

(2) m (
$$\angle$$
 F) = $\frac{1}{2}$ m (\angle D)

$$m (\angle DAB) = 60^{\circ}$$

$$m (\angle A) = 50^{\circ}$$

Final Revision

Geometry

1	1 Two distance circles M and N with radii lengths 6 cm and 8 cm respectively								
	a the	en MN14 cm. «	(Cairo	2019))	©	<	d	=	
2	The	measure of inscribe	d ang	le is the meast	ire of	the central angle sub Quarter	tend		e same Arc . ((Cairo 2019))
3	In th	ne cyclic quad , if : m	(∠A	$=\frac{1}{2} m (\angle C)$, then	: m(2	∠ A) =	••••••		
		20°		30°	©	60°	d	120°	((Cairo 2019))
4	The	measure of inscribe	d ang	le in a semicircle =	((Giza , S.sinai 2019 »			
	a	45°	b	90°	©	120°	d	180°	
5	Two	circles M and N tou	ching	internally , their rac	lii len	gths 3 cm and 5 cm re	spec	tively	••••••••••
	, the	en MN = cm. «	Giza 20	019 »					
	a	3	b	5	©	2	d	8	
6	If th	e surface of circle M	∩ the	e surface of the circle	N = {	A } and the radius le	ngth	of one	of them
	equa	als 3 cm., and $MN =$	8 cm	, then the radius len	gth of	the other circle =	c	m. «Ale	x 2019 »
	a	5	b	6	C	11	d	16	
7	A cir	cle can be drawn pas	ssing	through the vertices	of a .	«Alex 2019 , sharkia	2019))		••••••••••
	a	Rhombus	ь	Parallelogram	©	Trapezium	d	Recta	ngle
8	A cir	cle with diameter le	ngth	equals 10 cm. , the st	raigh	line L is distant fron	n its	center l	by 5 cm.
	, the	n the straight line L	is						
	a	a tangent			b	a secant			
	C	Outside the circle			d	a diameter of the ci	rcle		
9	The	number of common	tang	ents of two touching	circle	s externally equals		« sharkia	2019 »
	a	zero	b	1	©	2	d	3	
10	If M	and N are two toucl	ning (circles externally , th	e leng	ths of their radii are	2 cm.	, and 4	cm.
	Resp	pectively , then the a	rea o	f the circle with dian	neter I	MN equals cm²	« sha	rkia 2019)	
	a	36 π	b	9 π	©	16 π	d	4 π	
11	M a	nd N are two circles	who	se radii lengths are 6	cm.,	and 8 cm. and MN =	14 cr	n.	
	The	n the two circles are	***********	« Dakahlia 2019 »					
	a	Distant			b	Intersecting			
	©	One inside the othe	r		d	Touching externally	y		

12	A ci	rcle with greatest ch	ord w	ith length = 12 cm. ,	then	the circumference of	the o	circle =		
	((Dal	kahlia 2019 »								
	a	12 π	b	24 π	C	6 π	d	10 π		
13	13 The inscribed angle drawn in a semicircle is « Dakahlia , r.sea 2019 »									
	a	an acute	b	a straight	©	an obtuse	d	a right		
14	A ch	ord is of length 8 cm	ı. in a	circle of diameter le	ngth 1	10 cm.	•••••	•••••••••••••••••••••••••••••••••••••••		
	, the	en the chord is at	fr	om the center of the	circle	2. ((Dakahlia 2019))				
	a	2 cm.	b	3 cm.	©	4 cm.	d	6 cm.		
15	The	number of common	tange	ents of two touching	circle	s internally is	« Dake	ahlia 2019 »		
	a	zero	b	1	©	2	d	3		
16	In th	ne cyclic quad , if : m	(∠ A) + 3 m(∠C) = 280	° . the	n:m(∠C) =		•••••••••••••••••••••••••••••••••••••••		
		50°		150°	(C)	130°	(d)	100°		
				1				•••••••••••••••••••••••••••••••••••••••		
17	the	measure of the centra	al ang	gle drawn in $\frac{1}{3}$ circle	equal	S « ismailia 2019 »				
	a	240°	b	120°	©	60°	d	30°		
18	Whi	ch of the following fi	igure	s is cyclic quadrilate	ral			•••••••••••••••••••••••••••••••••••••••		
	a	the Rhombus	b	the Parallelogram	©	the Trapezium	d	the Rectangle		
	If AB = 8 cm. then the radius length of the smallest circle can be drawn passing through									
19	If A	B = 8 cm. then the ra	dius	length of the smalles	t circ	le can be drawn pass	ing th	ırough		
19		B = 8 cm. then the ra				le can be drawn pass	ing th	irough		
19						le can be drawn pass	ing th	rough		
	the	two points A and B e	equals b	2 cm. (ismailia 20)19 » ©	3	d	rough 4		
	the If M	two points A and B e	equals b sectin	cm. « ismailia 20 2 ng circles whose radi)19 » ©	3	d	arough		
	the If M Th	two points A and B e	equals b sectin	cm. « ismailia 20 2 ng circles whose radi)19 » ©	3	d	1rough 4]3,7]		
20	the If M Th	two points A and B e 1 I and N are two interes en: MN ∈	equals b section	cm. « ismailia 20 2 Ig circles whose radi 2019 » [3,7]	i leng	3 th are 5 cm. and 2 cm	d]3,7]		
20	the If M Th	two points A and B e 1 I and N are two inters en: MN ∈« ka	equals b section	cm. « ismailia 20 2 Ig circles whose radi 2019 » [3,7]	i leng	3 th are 5 cm. and 2 cm	d]3,7]		
20	the If M Th	two points A and B e 1 I and N are two interes en: MN ∈	equals b section	cm. « ismailia 20 2 Ig circles whose radi 2019 » [3,7]	i leng	3 th are 5 cm. and 2 cm	d]3,7]		
20	the If M Th a the	two points A and B end I I and N are two interests and MN ∈	equals section lyoubia al ang	cm. (ismailia 20 2 g circles whose radi 2019) [3 , 7] gle which is opposite 60°	i lengt	th are 5 cm. and 2 cm. $[3,7[$ arc of length $\frac{1}{3}\pi r$	d	4] 3, 7] « kalyoubia 2019 »		
20	the If M Th a the	two points A and B e 1 I and N are two interes en: MN ∈« ka] 3,7[measure of the centre 30°	equals section lyoubia al ang	cm. (ismailia 20 2 g circles whose radi 2019) [3 , 7] gle which is opposite 60°	i lengt	th are 5 cm. and 2 cm. $[3,7[$ arc of length $\frac{1}{3}\pi r$	d	4] 3, 7] « kalyoubia 2019 »		
20	the If M Th a the	two points A and B e 1 I and N are two inters en: MN ∈« ka] 3,7[measure of the central 30° e axis of symmetry of	equals section lyoubia al ang	cm. (ismailia 20 2 g circles whose radi 2019) [3 , 7] gle which is opposite 60°	i lengt	th are 5 cm. and 2 cm $[3,7[$ arc of length $\frac{1}{3}\pi r$ 120° The chord	dd	4] 3, 7] « kalyoubia 2019 »		
21	the If M The The Co	two points A and B e I and N are two inters en: MN ∈	equals section lyoubia al ang	cm. (ismailia 20 2 Ig circles whose radi 2019)) [3 , 7] gle which is opposite 60° cle is (Monofia 2	i lengto	th are 5 cm. and 2 cm $[3,7[$ arc of length $\frac{1}{3}\pi r$ 120° The chord The straight line pa	d d ssing	4] 3,7] « kalyoubia 2019 » 240°		
21	the If M The The Co	two points A and B end I I and N are two intersonants (kan len : MN ∈	equals section lyoubia al ang	cm. (ismailia 20 2 Ig circles whose radi 2019)) [3 , 7] gle which is opposite 60° cle is (Monofia 2	i lengto	th are 5 cm. and 2 cm $[3,7[$ arc of length $\frac{1}{3}\pi r$ 120° The chord The straight line pa	d d ssing	4] 3,7] « kalyoubia 2019 » 240°		
21	the a fine	two points A and B e 1 I and N are two inters en: MN ∈ « ka] 3,7[measure of the centra 30° axis of symmetry of The diameter The tangent CD is a cyclic quad in 30°	equals section lyoubia al ang a circ	cm. (ismailia 20 2 Ig circles whose radi 2019)) [3,7] gle which is opposite 60° cle is	i lengton	th are 5 cm. and 2 cm [3,7[arc of length $\frac{1}{3}\pi r$ 120° The chord The straight line pathen: m(∠A) =	d d ssing	4] 3,7] « kalyoubia 2019 » 240° g through the center Pakahlia , monofia 2019 »		
21	the a fine	two points A and B e I and N are two inters en: MN ∈	equals section lyoubia al ang a circ	cm. (ismailia 20 2 Ig circles whose radi 2019)) [3,7] gle which is opposite 60° cle is	i lengton	th are 5 cm. and 2 cm [3,7[arc of length $\frac{1}{3}\pi r$ 120° The chord The straight line pathen: m(∠A) =	d d ssing	4] 3,7] « kalyoubia 2019 » 240° g through the center Pakahlia , monofia 2019 »		

25	If the two circles M and N touching externally and the radius length of one of them							m
	equa	als 3 cm. , and $MN =$	8 cm	, then the radius leng	gth of	the other circle =	с	m. « Suez 2019 »
	a	5	b	6	©	11	d	16
26	If th	e straight line L is a	tang	ent to the circle M of	diame	eter length equals 10	cm.,	then the distance
	betv	ween L and the cente	r of t	he circle equals	cm.	« p.said 2019 »		
	a	3	b	4	C	5	d	10
27	The	ratio between The m	easu	re of the inscribed a	ngle a	nd the measure of th	e cen	tral angle
	subt	tended by the same A	rc is	« matrouh 2019 »				
	a	1:2	b	2:1	C	3:2	d	2:3
28	A ch	ord with length 8 cm	ı. in a	circle with circumfe	rence	10π cm.		
	, the	en it is distant from i	ts cei	nter by cm. «m	atrouh !	2019 »		
	a	2	b	3	©	4	d	5
29	The	angle of tangency is	incl	ıded between	(r.sea 20	019)		•••••••••••••••••••••••••••••••••••••••
	a	Two chords			b	Two tangents		
	©	a chord and a tange	nt		d	a chord and a diame	eter	
30	The	number of symmetr	y axi	s of the semicircle is		. ((r.sea 2019))		
	a	0	b	1	©	3	d	an infinite number
31	The	number of symmetr	y axi	s of the circle is	«S.si	nai , sohag 2019 »		
	a	0	Ь	1	©	3	d	an infinite number
32	the	diameter length of th	1e cir	cle whose center is t	he ori	gin point and passes	thro	igh the point
		- 4) equalslei						
	a	2.5	ь	5	©	10	d	20
33	If th	e surface of circle M	∩ the	surface of the circle	N = {	A }, then M and N ar	е	« N.sinai 2019 »
	a	distant			(b)	Concentric		
	©	Touching externall	y		d	Intersecting		
34	ABC	CD is a cyclic quadrila	atera	l, then: m(∠A) + 1	n(∠((Asw)	an 201	9 »
	a	60°	b	80°	©	100°	d	120°
35	The	length of the arc sub	tend	ing a central angle of	meas	sure 60° in a circle wh	iose (circumference
		4 cm. equalscr						
	a	4	b	8	©	12	d	16
36	If A	, B two points in the	plane	AB = 7 cm. then the	ne dian	meter length of the s	malle	st circle passing
			76 67 75	B equals cm.		35		
	a	3	b	3.5	©	7	d	14

37	The	diameter is ap	assii	ng through the cente	r of th	e circle. « Assiut 2019 »				
	a	ray	ь	Straight line	©	tangent	d	chord		
38	If th	e circumference of a	circl	e is 20 π cm. , then it	s area	= cm.²				
	a	10	ь	20	©	100π	d	400π		
39	The	symmetry axis of the	e con	nmon chord AB of th	ie two	intersecting circles	M,N	is ((B.suef 2019)		
	a	MA	b	MN	©	MB	d	AB		
40	If M	is circle of diameter	leng	th 8 cm. , the straigh	t line	L is far from the cent	er M	of the circle 4 cm.		
	, then the straight line L is (Fayoum 2019)									
	a	a secant to the circle	e in t	wo points.	b	Outside the circle.				
	©	A tangent to the circ	cle.		d	an axis of symmetr	y of t	he circle.		
41	the o	center of the circle th	at pa	ssing through the ve	ertices	of the triangle is the	inte	rsection		
	poir	nt of « Fayoum 207	19))							
	The bisectors of its interior angles.					The bisectors of its exterior angles.				
	©	Its altitudes.			d	The axis of its sides				
42	If M	is circle of diameter	leng	th 8 cm. , the straigh	t line	L is far from the cent	er M	of the circle 4 cm.		
	, the	en the straight line L	is							
43	If th	e straight line L is a	tang	ent to the circle M of	diam	eter length equals 8 c	m. , t	hen L is at		
	a dis	stance ofcm. f	rom	the centre. « kalyoubia	2018))					
	a	3	Ъ	4	©	5	d	10		
44	If M	is circle , its diamete	r len	gth = 14 cm., MA =	(2 x -	+ 3) cm. where A is a	poin	t on the circle.		
	, the	en: x =« Sharkia	2015)							
	a	1	b	2	©	3	d	5		
45	A cir	cle of circumference	6π α	m. , and the straight	line I	is distance from its	centi	re by 3 cm.		
	, the	n the straight line L	is	((monofia 2015))						
	a	a diameter of the cir	rcle.		b	a secant.				
	©	A tangent to the circ	cle.		d	Outside the circle.				
46	If M	is circle , its diamete	r len	gth = (2 x + 5) cm.	, and t	he straight line L is o	listaı	nce (x + 2) cm.		
	fron	n its centre circle , th	en tł	ne straight line L is	(P.said 2017 »				
	a	a secant to the circle	e in t	wo points.	b	Outside the circle.				
	©	A tangent to the circ	cle.		d	an axis of symmetr	y of t	he circle.		

47	Two circles M and N with radii lengths 4 cm. and 7 cm. respectively, are touching										
	, Th	en : MN ∈									
	a]3,11[b	[3,11]	©	ℝ-[3,7]	d	{3,11}			
48	If th	e radii lengths of the	e two	circles M and N are 6	cm. a	and 3 cm. MN = 2 cm.	. circ	le.			
	, then the two circles M and N are « Dakahlia 2018 »										
	a	Distant			b	Intersecting					
	C	One inside the othe	r		d	Touching externall	y				
49	The	number of circles p	assin	g through three colli	near p	ooints is« Giza 20	016 , 80	uhag 2018 »			
	a	zero	b	one	©	three	d	an infinite number			
50	The	number of circles p	assin	g through three colli	near p	ooints is« menia	2017))				
	a	zero	b	one	C	two	d	three			
51	The	type of the inscribed	l ang	le which is opposite	to an a	arc greater than the s	emic	ircle			
	is										
	a	acute	Ъ	obtuse	©	straight	a	right			
52	The	centre of the circles	pass	ing through the two	points	A and B lies on	((m	enia 2017 »			
	a	the axis of symmet	ry of	AB	b	AB					
	©	The perpendicular	to Al	3	d	the midpoint of AB	Ø.				
53	The	length of the arc wh	ich r	epresents $\frac{1}{4}$ the circ	ımfer	ence of the circle =		cm. « menia 2017 »			
	a	2 π r	Ъ	πr	C	$\frac{1}{2}\pi r$	d	4 π r			
54	Its i	mpossible to draw a	circl	e passing through th	e vert	ices of a« B.suef	2017))	•			
	a	rectangle	ь	triangle	©	square	d	rhombus			
55	The	inscribed angle whi	ch is	subtended by minor	arc in	a circle is« Qen	a 2016))			
	a	acute	b	obtuse	©	straight	d	right			
56	The	number of tangents	can	be drawn from a poir	ıt lies	on a circle is«	Beheire	z 2017 »			
	a	1	b	2	C	3	d	Infinite number			
57	The	number of common	tang	ents of two intersect	ing ci	rcles is		•••••••••••••••••••••••••••••••••••••••			
	a	1	b	2	©	3	d	4			
58	The	number of common	tang	ents of two distant c	ircles	is	••••••	•			
	a	1	b	2	C	3	d	4			
59						nd the measure of th					
	subt	tended by the same A	arc is								
		1:2	(h)	2:1	(0)	1:1	(d)	1:3			

60	If: 7	$\overrightarrow{AB} \cap \text{the circle } \mathbf{M} = \{$	(A , E	$\{AB, \text{ then } : \overrightarrow{AB} \cap \text{ the s} \}$	urface	of the circle M =					
	a	{ A , B }	Ъ	AB	©	AB	d	AB			
61	If \overline{MA} and \overline{MB} are two perpendicular radii in the circle M and the area of the triangle MAB = 8 cm ² .										
	, the	en the radius length o	of the	circle = cm.							
	a	2	Ь	4	©	8	d	16			
62	A cir	cle of radius length :	= 2 cı	n. , then its circumfe	rence	= cm. « Aswan 2	016))				
	a	4 π	b	5 π	©	6 π	d	7 π			
63	the t	two opposite angles i	n the	cyclic quadrilateral	are						
	a	equal	b	Supplementary	©	Complementary	d	Alternate			
64	If:t	he circle M∩the circ	le N	$= \{ A, B \}$, then the t	wo cir	cles are«)smal	ilia 2018	?))			
	a	Distant			b	Intersecting					
	©	Concentric			d	Touching					
65	ABC	D is a cyclic quadrila	iteral	, in which : m(∠A)	= 75°	, then: $m(\angle C) =$		«R.sea 2016»			
	a	75°	b	125°	©	150°	d	105°			
66	Whi	ch of the following p	oints	doesn't belon <mark>g to t</mark> h	ie circ	l <mark>e who</mark> se centre is th	e orig	gin and its radius			
	leng	gth = 7 cm ? « Giza 2016))								
	a	(0,7)	b	(0,-7)	©	(7,0)	d	(7,7)			
67	ABC	DEF is a regular hex	agon	drawn inside the cir	cle M	, then : m (\widehat{BC}) =					
	a	30°	b	60°	C	90°	d	120°			
68	A cir	cle with diameter le	ngth	= (2 x) cm., and the	e strai	ght line L is distance	(x -	- 1) cm.			
	fron	n its centre circle , th	en th	e straight line L will	be	((Dakahlia 2018))					
	(a)	secant.			(b)	Outside					
	0	tangent.			(d)	axis of symmetry.					
69	ABC	is an equilateral tria	ngle	drawn inscribed in c	ircle M	\mathbf{I} , then: $\mathbf{m}(\widehat{\mathbf{AB}}) = \mathbf{I}$		« Fayoum 2018 »			
	a	30°	b	60°	©	90°	d	120°			
70	the	measure of the in ins	cribe	d angle which is dra	wn in	1 3 a circle equals	((D	akahlia 2018 »			
	a	240°	b	120°	C	60°	d	30°			
71	AB a	and DC are two inte	rsect	ed chord at the point	t X in t	he circle M , and m (ÂC)	$+ m(\widehat{BD}) = 130^{\circ}.$			
	The	n m (∠ AXC) =									
	a	260°	Ь	130°	©	65°	d	60°			

In each of the following figures, choose the correct answer

in the opposite figure :

If D and E is the midpoints of \overline{AB} and \overline{AC} , and $m(\angle BAC) = 60^{\circ}$

Then: m(∠ DME) =

(a) 60°

(b) 120°

© 90°

(d) 30°

2 in the opposite figure : (Gharbia 2019)

 \overline{AB} is a chord in circle M, $\overline{MC} \perp \overline{AB}$, D is a midpoint of \overline{MA} , CD = 3 cm.

, Then the surface area of the circle = π cm².

a 3

(b)

(c) 9

(d) 36

in the opposite figure : (Gharbia 2019)

If \overline{MA} and \overline{MB} are two radii perpendicular in the circle M which its radius Length = 7 cm. then the perimeter of shaded shape = $\frac{22}{7}$

(a) 14

(b) 11

© 38.5

(d) 25

in the opposite figure:

Circle M with radius length = 13 cm. and AB = 24 cm., then : $CD = \dots \text{ cm.}$

(a) 6.5

(h) 8

(c) 10

d 12

5 in the opposite figure :

MX = MY and $m(\angle B) = 50^{\circ}$, then: $m(\angle A) = \dots$

a 50°

(b) 60°

© 70°

(d) 80°

6 in the opposite figure :

Two concentric circle with centre M, their radii 7 cm. and 14 cm.

Then the area of shaded shape = cm.² (($\pi = \frac{22}{7}$))

(a) 315

b 412

(c) 462

d 530

7 in the opposite figure :

AC is a tangent to the circle M at A , D is the midpoint of AB and m (\angle C) = 50°

, then : m (∠ A) =

(a) 40°

b 45

© 50°

(d) 90°

 \overrightarrow{BD} is a tangent to the circle M at B, m(\angle ABC) = 65° and m(\angle DBC) = 75°

, Then: m(∠ DBC) =

(a) 20°

(b) 40°

© 50°

(d) 80°

9 in the opposite figure :

If: $m(\widehat{CE}) = 100^{\circ}$ and $m(\widehat{BD}) = 30^{\circ}$, Then: $m(\angle A) =$

70°

(b) 65°

(c) 60°

(d) 35°

in the opposite figure:

If: $m(\angle ADC) = 80^{\circ}$, Then: $m(\angle ABE) = \dots$

(a) 10°

(b) 80°

(c) 60°

(d) 100°

11 in the opposite figure:

If: m(\angle ACB) = 60°, (\angle AMB) = (x + 20)°, Then: $x = \frac{1}{2}$

(a) 30°

(b) 40°

(c) 80°

d 100°

in the opposite figure :

If: $m(\angle ABE) = 100^{\circ}$, $m(\widehat{AD}) = m(\widehat{DC})$, Then: $m(\angle ACD) = \dots$

(100°

(b) 80°

(c) 40°

(d) 30°

13 in the opposite figure :

If: AX = 3 cm., XB = 2 cm. and, AC = 8 cm. Then: $CB = \frac{1}{2}$ cm.

a 5

b 7

© 10

d 13

14 in the opposite figure :

Two concentric circle with centre M , m (\widehat{AC}) = 80°

, Then: $m(\widehat{AD}) = \dots$

(a) 20°

b 40

© 80°

(d) 160°

If: $m(\angle BAE) = 55^{\circ}$, Then: $m(\angle MBC) = ...$

110°

in the opposite figure:

AB and AC Two tangents to the circle M from the point A, m(\angle BAM) = 30°

, Then : $AB = \dots cm$.

in the opposite figure:

If: $m(\angle ABC) = 40^{\circ}$, Then: $m(\angle AMC) = \dots$

20°

in the opposite figure:

If: $m(\angle DAC) = 36^{\circ}$, and AC = AD, Then: $m(\angle B) = ...$

in the opposite figure:

AB is a diameter in circle M, m(\angle BCD) = 30°, Then: m(\angle ABC) =

120°

110°

90°

in the opposite figure:

AB // CD, $m(\angle BMC) = 60^{\circ}$, Then: $m(\widehat{AD}) = \dots$

90°

120°

in the opposite figure:

AB is a diameter in circle M , AB // CD , $m(\widehat{DEC}) = 80^{\circ}$

, Then: $m(\widehat{AC}) = \dots$

100°

AC // BD, $m(\angle AMB) = 140^{\circ}$, Then: $m(\angle DAC) = \dots$

70°

110°

220°

23 in the opposite figure:

 $\overrightarrow{AB} \cap \overrightarrow{DC} = \{X\}, m(\overrightarrow{AC}) = 100^{\circ}, m(\overrightarrow{BD}) = 120^{\circ}, Then: m(\angle AXC) = \dots$

110°

70°

in the opposite figure:

D is a midpoint of the arc \widehat{CB} , m($\angle CMB$) = 120°, Then: m($\angle A$) = _____

in the opposite figure:

AB is a diameter in circle M, $m(\angle ABD) = 25^{\circ}$, Then: $m(\angle C) =$

100°

125°

in the opposite figure:

If: $m(\angle DMB) = 110^{\circ}$, Then: $m(\angle C) =$

70°

110°

55°

125°

in the opposite figure:

AB // CD, $m(\angle AFC) = 40^{\circ}$, Then: $m(\angle BED) = \dots$

30°

120°

in the opposite figure:

If C is a midpoint of the arc \widehat{AB} , Then : AB ______2 AC

in the opposite figure:

If: $m(\angle MBC) = 32^{\circ}$, Then: $m(\angle A) = \dots$

16°

116°

 \overrightarrow{CX} bisects \angle DCE and m (\angle ECX) = 62°, Then: m(\angle A) =

(a) 62°

(b) 128°

© 56°

(d) 124°

31 in the opposite figure:

ABCD is a cyclic quadrilateral, in which: $m(\angle A) = (2x)^{\circ}$, $(\angle C) = (3x)^{\circ}$

, then : x =(R.sea 2016)

(a) 20°

(b) 32°

(c) 32°

(d) 36°

32 in the opposite figure:

 \overline{AB} // \overline{CD} , m(\widehat{AC}) = 50°, Then: m(\angle BED) =

(a) 50°

(b) 5°

(c) 25°

(d) 20°

33 in the opposite figure :

 \overline{AB} and \overline{AC} Two tangents to the circle M from the point A, m($\angle BAM$) = 70°

, Then: $m(\widehat{AC}) = \dots$

150°

(b) 110°

(c) 100°

(d) 90°

34 in the opposite figure :

 $\overline{AB} \cap \overline{DC} = \{E\}, m(\angle CEM) = 140^{\circ}, m(\angle CDB) = 80^{\circ}$

, Then: m(∠ ACD) =

(a) 30°

(b) 40°

© 50°

(d) 60°

35 in the opposite figure :

 $\overrightarrow{AB} \cap \overrightarrow{DC} = \{E\}, m(\angle E) = 40^{\circ}, m(\angle DCB) = 25^{\circ}$

, Then: m(∠ABC) =

a 50°

b 80°

(c) 25°

d 65°

36 in the opposite figure :

 \overline{AB} is a diameter in circle M, m($\angle CAB$) = x° , m($\angle CBA$) = x°

, Then : x =

(a) 20°

(b) 30°

© 40°

d) 60°

 \overline{AD} touches the circle M at A, m(\angle CAB) = x° , m(\angle CBA) = $2x^{\circ}$

 $m(\angle ACB) = 3x^{\circ}$, Then: $m(\angle DAC) = \dots$

(a) 20°

(b) 40

(c) 60°

(d) 80°

38 in the opposite figure:

 \overline{AB} and \overline{AC} Two tangents to the circle M from the point A, m(\angle CDB) = 125°

, Then: m(∠A) =

(a) 50°

(b) 60°

© 70°

(d) 80°

39 in the opposite figure:

 \overrightarrow{AD} touches the circle M at A, m(\angle CAB) = 70°, m(\overrightarrow{BC}) = 120°

Then: $m(\angle A) = \dots$

(a) 50°

(b) 60°

(c) 35°

(d) 70°

40 in the opposite figure:

AB and AC Two to the two circles M and N from the point X

BX = 7 cm., DX = (x + 3) cm., AB = 5 cm. and CD = (y - 3) cm.

, Then : x + y =

(a) 10

(b) 11

(c) 12

d 14

41 in the opposite figure :

AB and AC Two tangents to the circle M from the point A

FD = 4 cm., FA = 9 cm., AE = 10 cm., Then: $ED = \dots \text{ cm.}$

a 3

b 4

© 5

(d) 6

42 in the opposite figure :

 \overline{AB} and \overline{DC} are two radii perpendicular in the circle M ,

, Then: $m(\widehat{AC}) + m(\widehat{BD}) = \dots$

(a) 45°

(b) 90°

(c) 180°

d 270°

in the opposite figure :

AC // DM and $m(\widehat{AC}) = 56^{\circ}$, then: $m(\angle ABD) = \dots$

a 28°

(b) 56°

(c) 62°

d) 31°

ABCD is a cyclic quad, in which: $m(\angle BAC) = 70^{\circ}$, $(\angle DBC) = 40^{\circ}$

, Then: m(∠ DCB) =

(a) 30°

(b) 40°

© 70°

(d) 110°

45 in the opposite figure :

If : \overline{AD} touches the circle whose passes through the vertices of the triangle ABC at A, m(\angle DAB) = $(x + 32)^{\circ}$, m(\angle ACB) = $(2x)^{\circ}$, m(\angle ABC) = x°

, Then: m(∠ BAC) =

 \overline{AB} is a diameter in circle M, m(\angle ECA) = 20°, m(\widehat{AE}) = 70°

, Then: $m(\widehat{DE}) = \dots$

47 in the opposite figure:

AB is a tangent to the circle at B, AB = 10 cm., AC = 4 cm.

, Then : DC = cm.

48 in the opposite figure:

 \overline{DC} // \overline{AM} and D is a midpoint of \overline{BM} , Then: $m(\widehat{AC}) = \dots$

(a) 60°

(b) 30°

© 45°

(d) 90°

in the opposite figure :

 \overline{ABCD} is a cyclic quad, in which: $m(\angle BAC) = 40^{\circ}$, $(\angle ACB) = 20^{\circ}$

, Then: m(∠D) =

(a) 20°

(b) 40°

© 60°

(d) 120°

al besit in methemetics . A new sterting

The Professionals

mprove that Cos 60 = Cos30 = sin230

1. H'S = COS GO= = B.H.S = Cos 30-Sin330

= (\frac{5}{\gamma_3} - (\frac{5}{7})_5 = \frac{5}{7} D.H.S = P.H.S

@ Prove that tom 60=2tan30+(1-tom20

1.4.5 = tom60 = 13

RH'S= 2 tan 30 + (1-tan 30) =5x f3 + (1-(f2)s)

Q.H.S = R.H.S

B) prove that 51n330=9cos360-tungus

1.H.S=Sin330=(2)3

P.H.'s = 9 COS 60 - TENTYS

= 9x(=)3-(1)2

2.H.S=R.H.S

1.H:5= Sin60= 13

e.H.s= 25in3 ocos3

1. R.H S= P.H.S

(S) Find The value

Cos60 + Sin30 - sin60 cos30

드 뉴 그 골 = -1

The Professionals

find the degree measure of each angle

1et tumesuresuf angles 3x and SX 3X+SX=180

8/x=180 (-8)

X=22.5

the measure of thefirst angle = 3 x22.5=67°30° the measure of the secondangle = 5x22.5

= 112° 30

23) i f X siny scosy s tumbo = tum²ys-cos°6.

Sind X

X. 1/2 x 1/2 x 1/3 = 15-(1/5)

√3 χ = 3 (-√3)

(X= 1/2)

tan((ÂD)+tan(BÂD) tan((ÂD) - tan(BÂD)

Sol AD= VI52-02

in A ADB BD= √132-122 = 5cm

tan((AD) + tam(BAD)

tam (CAD) - tam (BAD)

12 + 12

15 - 15

= -2

The Professionals

56) Prove that the

points A(-2,5), B(3,3)

AB=BC=CD=DA AC = BD

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\frac{1}{2} = \frac{1}$$

L1 // X-axis

12 // Y-9Xis

60	125	2 11	٧.	axis
				-5,y)

Aindy ≤2 :. €B//x-axis -- y = y 2

~ X1=X2=> (X=3)

62) F-11	(molbups out box
of The	nd the equation straight einc passes through
which	passes through
(3,4)	and parallel to
- X -	34+5=0

Marwed = 3

(3,4) satisfy the equation

:- 4= 3 x3+(

4-1=C (C=3)

(63) ABC is aTriangle A(1,2), B(5,-2), c(3,4)

DISMIDPOINT of AB, DE

isdraun parallel to BC

and cuts Ac at E

Dismidpoint + AB MA

三(学,造)

2(3,0)

$$(9=-3 \times +9)$$

$$(x=S)$$

LI

1010101

Therroje	SSIUILUIS MEMEMEME
From The Previous Years	of symmetry of tue 1505 celes Triumgle = -
Complete Dituesum of measures of the accumulative angles at a point =	8) the two base angle of the social
ef The hexagon.	Triangle are
3) the number of- dragonals of the pentagon = - and of hexagon=	(10) true longes T side In the right ampled triangle is
$9)$ \triangle ABC In which $m(\hat{B}) = 3m(\hat{A}) = 93$ there $m(\hat{C}) =$	(1) the quadrilateral whose dragonal are equalinlength and
5) if ABCD is Parallelogram milâ)=m(B) = 1'.3 Then m(B)=	Tel tuemeasure af
*	The exterior angle

B) 1 F 3,7, K are leagths at any write x of of triangle tuen k may be= (133,4,7

luretalinps out Triangle:

The Professionals $\Omega = \overline{AB} = \overline{CD}$ (13) tresum af Then AB-CD=--measures of tru angles = -14) The Image of the Point (-3,5) by teflection and tresmal i'm X-axis 15 ---measures of two supplementer and by teflection in angles = ___ Y-axis is ---omd in origin point is ____ (20) if m(A) =100 (13) The I mage up The tuenm(reflex a) Point (2,4) by atranslation (2,1)

(6) the image of the Point (-1,2) by arotationabout (u) by 180 is

(17) tueimage of The Point (1,2) by arotation about 0 by 90 is --

18) tue numberal The acuter angle=

<u>/.....</u>

27/18 two STraight line intersects tuen each two verticuly opposite angles are

BS) INDARCLE AB=AC=BC then m(A)=---

[33] IF DABENDXYZ Free m(A)=m()

(24) the point of concinence of medians aftriangle divides it intrutation --- Fronthos Heafbase cond in the ratio --From The side of URITEX

= -- lenoth of

the hypotenuse

Final revision on geometry 3rd

In The opposite figure:

ABC is atriangle inscribed in acircle IN I'S a tangent to the Circle where XY 11BD prove that: AXXC is a cyclic quadri lateral.

.. BD is atangent to the circle at B

: m(<DBA)=m(<C) --- 0

tangency and inscribed angles subtended by AB - " XY // BB " m (< DBA) = m (< Bxy) -- @

"alternate angles"

from @ and @ i m(LBXY) = m(LC)

Exterior and interior angle at the opposite vertex

.. Axxc is a cyclic quadrilateral.

In the opposite frigure: AB 13 46mmon Tangent Ac is a tangent to the smaller Circle at C AB is a tangent to the greater circle of D AC= 15 Cm, AB= (2x-3) Cm and AD = (y-2) cm. Find the Value of x and y. solution, .. As and Ac are two tangents to the smaller circle "AB=AC > 2x-3=15>(x=9) .. AB and AB are two tangents to the greater Circle "AB=AD > y-2=15 > [y=17]

In the opposite figure:
= + · · · · · · · · · · · · · · · · · ·
, CE the Circle M, M(LCAB) = 30°
D is midpoint of AC, DBAAC={H} B
III Find: m(LBDC) and m(AD)
AB is adiameter in the Circle II, CE the Circle M, M(LCAB) = 30° D is midpoint of AC, DB AAC = {H} III Find: M(LBDC) and M(AD) Prove that: AB 1/DC Solution: M(LBDC) = M(LBAC) = 30° (first)
Solution:
m(LBDC)= m(LBAC)=30 (FIVSC)
two inscribed angles subtended by BC
· · · · (Bc)=60°
AB is adrameter in m(AB) = 100
Dis midpoint of AC
Dis midpoint of AC m(AD)= m(DC)= 180-60=120=60
·· m(<dca) =="" m(ad)="30</td" {2=""></dca)>
: m(<dca) 12="" =="" m(ad)="30<br">: m(<bac) =="" alternate<br="" and="" are="" m(<dca)="" they="">: AB 11 DC</bac)></dca)>
ABILDE
In the opposite figure:
In the opposite figure: AB and Ac are two equal chords inlength in sincle M x is the midpoint of AB, y
In the opposite figure: AB and AC are two equal chords intength in circle M, X is the midpoint of AB, Y in the midpoint of AC, m(L(AB)=70°
In the opposite figure: AB and AC are two equal chords intength in circle M, X is the midpoint of AB, Y in the midpoint of AC, m(L(AB)=70°
In the opposite figure: AB and AC are two equal chords inlength in circle M, x is the midpoint of AB, y is the midpoint of AC, m(L(AB)=70° (aculate: m(LDMH) & prove that: XD=YH B
In the opposite figure: AB and AC are two equal chords inlength in circle M, X is the midpoint of AB, Y is the midpoint of AC, m(2(AB)=70° II Caulate: m(2DMH) & prove that: XD=YH B Bolation: X is the midpoint of AB MXLAB D
In the opposite figure: AB and Ac are two equal chords integral in circle M, x is the midpoint of AB, y is the midpoint of AC, m(2(AB)=70° II Caulate: m(2DMH) 2) prove that: XD=YH B goldien: x is the midpoint of AB : MXLAB D y is the midpoint of AC : MXLAB D
In the opposite figure: AB and AC are two equal chords inlength in circle M, x is the midpoint of AB, y is the midpoint of AC, m(2(AB)=70° II Caculate: m(2DMH) & prove that: XD=YH B goldien: y is the midpoint of AC MXLAB D y is the midpoint of AC MXLAB D
In the opposite figure: AB and Ac are two equal chords inlength in circle M, X is the midpoint of AB, Y is the midpoint of AC, m(2(AB)=70° II (aculate: m(2DMH) & prove that: XD=YH B solution: X is the midpoint of AB MX L AB D Y is the midpoint of AC MX L AB D AB = AC B the Sum of interior angles of quadrilateral = 360
In the opposite figure: AB and AC are two equal chords intempth in circle M, X is the midpoint of AB, Y is the midpoint of AC, m(2(AB)=70° If Caulate: m(2DMH) Exprove that: XD=YH B of AB MX L AB I) y is the midpoint of AC MYL AC P AB = AC B the Sum of interior angles of quadrilateral = 360 m(2DMH) = 360-(90+90+70) = 110°
In the opposite figure: AB and Ac are two equal chords inlength in circle M, X is the midpoint of AB, Y is the midpoint of AC, m(2(AB)=70° II (aculate: m(2DMH) & prove that: XD=YH B solution: X is the midpoint of AB MX L AB D Y is the midpoint of AC MX L AB D AB = AC B the Sum of interior angles of quadrilateral = 360

: Ac is atangent ...

by Subtracting D from D

"YE=XD X

In the opposite figure: ABCD is a quadrelateral in which D AB=AD, M((ABD) = 30, M((C)= 60° prove that: ABCD 13 acyclic quad. solution: In A ABD " AB=AD ". M((ABD) = M((ADB) = 30 : M (LDAB) = 180- (30+30)=186-60=120 " m(<A)+m(<C)=60+120=180 and they are opposite angle " ABCD is a cyclic quadrelateral. In the opposite figure: BC is a tangent at B; E is the midpoint of Bf prove that: ABCD is a cyclic qual. Solution: .. Be is atangent at B ,, m (KCBE) tangency = m (KBAE). inscribed .. E is the midpoint of Bf : m(BE)=m(Ef) inscribed angles subtended by equal arcs. from O and @ m(<cBD) = m(2 (AD)

drawn on CD and on one side of it : ABCD is a Cyclic quadrelateral.

In the opposite figure: A circle is drawn touches the sides of atriangle ABC, AB, BC, AC at D, E, F, AD=5 cm, BE= 4cm o CF = 3cm Find, The perimeter of DABC Solution: " AD, AF are two tangent-segments 553. : AD= AF= 5 cm - BD, BE are two tangent - segments : BD=BE=4cm and . . EF, EE are two tangent-segments CE= CF=3cm · perimeter of DABC = 5+5+4+4+3+3=24 Cm In the opposite figures AB, Ac are two tangents to the - Circle at B, C, M(LD)=125° m(4A) = 70° prove that: OCB =CE OACHBE Solution .. AB and AC tangent-segments In DEBC " AB= AC · · · m (xEBC)= mKCEB) 1. m(LACB)= m(LABC)= 180-70 : EC=BC (first) M(LACB)=MLCBE) , M (ACB) tangen (y = m (BEC)= \$5 and they are inscribed alternate .. EBCD is Cyclic quad : AC IIBE : M(KB) = 180-125= 55°

m(LBMD) Central = 2m(LBAD)
= 80° inscribed

m(LBCD) inscribed = 1/2 (reflex LBMD) = 1/2 x280 = 140°

central

10
M is a circle with ractive length 6.3 cm A
m((BAC)=40°
FAIR COMPANY
(2) length (RC) (m 22)
Elength (BC) where (N ~ 22)
C B
M(LBMC) = Q m(L = 12)
M(LBMC) = 2 m(LBAC) = 800
In AMBC
In AMBC
" MB=MC=Y
in (c MBC) = m(c MCB) = 180-80 = 50°
2
length (Bc) = m(Bc) x 2 Tr
360
80 x2 x22 x / 2 = 0 = 0
$= \frac{80 \times 2 \times 22 \times 6.3}{360} = 8.8 \text{ cm}$
AD = AC, AF bisects < A
prove that DRFF or all to
prove that: DBFE is a cyclic quad.
TO - AC
In DA ADE, ACE AE is a common side
(MKDAE)=M(CCAE) F
ADE = A ACE
in m(< ADE) =m(LACE) D
" m ((ACB) = m ((AFB) 0)
two inscribed angles subtended by AB
from @ and @
in (LADE) exterior = m(LEFB) intervor
i DBFE is a cyclic qual.

AB is atangent to the Circle M et B, mich=40° find: m(KBDC) Solution: : AB 15 atangent at B In DAMB: m(<AMB) = 180-(90+40) = 50° in (LBDC) tangency = 1 m(LBMC) central 9/6 Suz Find; mccD) m(cH)={[m(A()-m(DB)] H Solution :. 30 = 4 [80 - m(DB)] (X2) 60=80-m(DB) => m(DB)=80-60=20° · AB is adiameter " m(Ac) + m(Dc) + m(DB) = 180° " m (DC)= 180 - (80+20) = 80° Find: length of AB Solution: .: AB is atangent in MATAB : tan30 = 8 = 8 = 8 = 8 = 8 S3 Cm

prove that: AD = DC Solution " ABCD is a Cyclic quad. : m (ADC) interior = m(LABH) =100° exterior In AADC: m (< A (D) = 180 - (100 + 40) = 40 ~ m(LDAC) = m(LDCA)=40 - 2. DC = DA DA and DBI are two tangents to the Circle M and AB=AC prove that: AC is a tangent to the Circle possing through the vertices of SABD Hint we need to prove that m(LD)=m(LCAB) Solution: In DABD ·: AB = AC : m(LACB) = m(LABC) --In DDAB : DA , DB are two tangent-segments in DA=DB in (DBA) = m(DAB) : DA is atangent in (DAB) tangen (y = m (LACB) inscribed from O, Q and (3 in m(c(AB) = m(LD) .. Ac is a tangent to the Circle passing through the vertices of DABD

AB, AC are two tangents to the Circle at B, C prove that: BC bisects LABH Solution: .. AB, Ac are two tangent-segments 27)/9 : AB= AC :, M(LABC)= m(LACB) = 180-50 = 130 = 65° : DCBH îs a cyclic quadrilateral in m(4 HBC) = 180-115 = 65° --- 0 from Dand D : m((ABC)=m(LHBC) : BE bisects LABH ABC is atriangle inscribed in a circle XEAB , YEAC, where m(AX) = m(AY) , CXA AB= {D} 2 BY 1 AC -{ H} prove that: BCHD is acyclic quadrilateral. Solution . m(Ax) = m(Ax) in (LACX) = m(LABY) inscribed angles subtended by equal arcs. In the quad. BCHD · · mcLDBH)= mcLDCH) drawn on DH and on one side of it = BCHD a Cyclic quad.

- AB and AC are two tangents segments to the Corcle
M , m (4BAM) = 25
findi [] m (LACB)
(2) m(LBEC)
Solution:
M, m(xBAM) = 25 find: [] m(xA(B) [] m(xBEC) Solution: AB and AC are two tangents AM bisects (A and C CMB and AC = AB M(xACB) = (120-50) = 2 = 65° (first) and mc AC, MB AB
Am bisects < A and con B . 24 10
and AC = AB
: M((A)=2×25=50°.
M(4ACB)=(180-50)+2=65° (first)
and melAc, MBLAB
:. ABMC is acyclic quadrilateral
in M(KM) 4M(KA)= 180 & M(KCMB)=180-50=130
in (< BE() inscribed = 12 m (< (MB) Central = 65°
ABCD is aparallelegram in which ACSAB
ABCD is aparallelegram in which ACSAB
ABCD is aparallelegram in which ACSAB prove that: EB is a Tangent to the Circle Circumscribed about the triangle ABC. Solution:
ABCD is aparallelogram in which ACSAB prove that; EB is a Tangent to the Circle Circumscribed about the triangle ABC. Solution: Hint: we need to prove that D A
ABCD is aparallelegram in which ACSAB prove that: EB is a Tangent to the Circle Circumscribed about the triangle ABC. Solution:
ABCD is aparallelegram in which AC=AB prove that; EB is a Tangent to the Circle Circumscribed about the triangle ABC. Solution: Mint: we need to prove that m (LD (A)=m (LB) Solution:
ABCD is aparallelegram in which ACSAB prove that; EB is a Tangent to the Circle Circumscribed about the triangle ABC. Solution: Hint: we need to prove that m(LDCA)=m(LB) Solution:
ABCD is aparallelegram in which ACSAB prove that; EB is a Tangent to the Circle Circumscribed about the triangle ABC. Solution: Hint: we need to prove that m(LDCA)=m(LB) Solution:
ABCD is aparallelegram in which AC=AB prove that: $\vec{c}\vec{b}$ is a Tangent to the Circle Circumscribed about the triangle ABC. Solution: Mint: we need to prove that $m(\angle DCA) = m(\angle B)$ Solution: $ABCD$ is aparallelegram $m(\angle DCA) = m(\angle CAB)$ "alt." In $\triangle ABC$
ABCD is aparallelegram in which AC=AB prove that: CB is a Tangent to the Circle Circumscribed about the triangle ABC. Solution: Mint: we need to prove that m(LDCA)=m(LB) Solution:
ABCD is aparallelogram in which AC=AB prove that: cB is a Tangent to the Circle Circumscribed about the triangle ABC. Solution: Mint: we need to prove that m(LDCA)=m(LB) Solution: ABCD is aparallelogram M(LDCA)=m(LCAB) "alt." In ABC i. AC=CB im(LABC)=m(L(AB) from O and O :m(LDCA)=m(LABC)
ABCD is aparallelegram in which AC=AB prove that; CB is a Tangent to the Circle Circumscribed about the triangle ABC. Solution: Hinti we need to prove that m(LDCA)=m(LB) Solution: in ABCD is aparallelegram in (LDCA)=m(L(AB) "alt." In ABC from O and O in m(LDCA)=m(LABC) in CC DCA)=m(LABC) in CC DCA)=m(LABC) in is a tangent to the Circle passes through
ABCD is aparallelegram in which AC=AB prove that: CB is a Tangent to the Circle Circumscribed about the triangle ABC. Solution: Mint: we need to prove that m(LDCA)=m(LB) Solution:

The two Circles Mand N intersect at A and B, MX LAC, AC = AB prove that: XY=DE Solution M and N are two Circles intersects at A, B : MN LAB -> O "MXLAC -D, AC = AB from O , O and 3) ·· MX=MD " MY=ME=r --- (5) by subtracting & from 6 * XY=DE X find: m(KBBC) Solution: ABCD is acyclic quad. · m((CBE) Exterior = m(LD) interior 1. m (< CDA) = 85° -, m (BDA) = 12 m (AB) = 110-550 : M(LBDC) = 85-55=300 two Concentric Circles with Centre M prove that: m(LBAC) = m(LFDE) Solution In The Smaller Circle. m(LFOE) inscribed= 2m(LFME) contral In the greater Circle m(xBAC) inscribed 2 m(LBM() Central from @ and @ in (LBAC) 2 m(LFDE)

Prove that: AD is atangent to the Dy
Circle which passes through
the vertices of DABC ASCO
Solution:
In DABC
Cos (B) = 4 = 1
i.m(c8)=60 }/\$/\$
" m (LDAC) = m(LB) = 60
AB is a tangent to the circle which passes
through the vertices of DABC
1 De la contra del la contra de la contra de la contra del la co
M(AEC)=100°, BC is adiqueter 30° E
Find: mcLBAD)
Solution:
- m(4D) = { [m(AB) - m(EC)]
JAB Is adiameter in m(BAC) = 180°
in (AB) = 180-100=80°
11 11 (MB) 2 100 2 00
: 30 = { [80 - m(£c)] (x2)
$80 - m(\widehat{E}() = 80 \Rightarrow m(\widehat{E}() = 20^{\circ})$
1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
:, m(<bad) 200="100°</td" =="" m(<bae)="1/2" m(bce)="1/2" x=""></bad)>
CM 11 AB prove that: BE>AE
" m(c cmA) > m(L CBA) D
· MCIIBA : M(4 CMA)=M(4 MAB) +0B
from ond Dim (KMAB) > m(KCBA)
DEAR : M (CEAB) > M (CEBA)
', EDXEA

a DAEC is an isosceles tryangle

proof: AXEY is a cyclic quad.
AXCB is a cyclic quad m(cAXE) exterior = m(cABC) ABDY is a cyclic quad. D B C
: m(LAYE) exterior = m(LABD) interior (D)
m(CAXE)+m(LAYE)=m(ABC)+m(LABD)
and they are opposite AXEY is acyclic quadrilateral.
prove that: [] AEFD is a Cyclic quad. Proof: "ABCD is a Cyclic quad. "m (< BAC) = m (< BDC) - 0 drawn on BC
· m(<bac)=m(<bdc) td="" ·="" ·<=""></bac)=m(<bdc)>
drawn on BC THE bisects LBAC : M(LEAF) = \frac{1}{2}m(LBAC) TOF bisects LBDC : M(LEDF) = \frac{1}{2}m(LBDC) (
drawn on BC THE bisects LBAC : M(LEAF) = \frac{1}{2}m(LBAC) The bisects LBAC : M(LEDF) = \frac{1}{2}m(LBAC) From (D, @ and @) i.m(LEAF) = m(LEDF)
drawn on BC TAE bisects LBAC :: m(LEAF) = \frac{1}{2}m(LBAC) TOF bisects LBDC :: m(LEDF) = \frac{1}{2}m(LBDC) from D, D and B
drawn on BC The bisects LBAC : m(LEAF) = \frac{1}{2}m(LBAC) The bisects LBAC : m(LEDF) = \frac{1}{2}m(LBAC) from D, D and 3 i.m(LEAF) = m(LEDF) and they are drawn on one side of EF

the Circle M has Circumference = 44 cm. AB 1's adiameter, BE 1's tangent abb MELLO = 60°, TT = 22 find: the length of BC Solution C = 2TY BC AB = 14 Cm AB adiameter and BC is atangent in (LB) = 90° tan C = OPP. = AB adj. BC is adiameter in the Circle M, By is alchord HE BY Such that By = Y H prove that m(ymc) = 2m(LBHC) prosf In A HBC in My = 1/2 CH & CH = 2My in CYMC Central = 2 m(LB) inscribed Prove (LYMC) = 2m(LBHC) from (D ad C) from (D ad C) in M(YMC) = 2 m(LBHC)	
AB is adiameter, BE is tangent abb mecc) = 60°, M = 22 find: the length of BE solution (= 2 MY AB = 14 Cm AB adiameter and BE is atangent in (LB) = 90° tan c = opp. = AB adj. BE is BE is atangent in (LB) = 90° tan 60 = 14 adj. BE is BC is adiameter in the Circle M, BY is achord H BY such that BY=YH prove that: m(YmC) = 2m(LBHC) proof In A HBE in My= 1/2 CH & CH = 2MY in CH = 2Y = BC H C = BC in m(LH) 5 m(LB) in scribed from (D and (D)	the circle of has circumference = 44 cm.
C=2TiY \$\frac{44=2x\frac{22}{7}xr}{7} \rightarrow r=7 \text{Cm}\$ \$\frac{14}{7} \text{B} = 14 \text{Cm}\$ \$\frac{14}{7} \text{B} = 14 \text{Cm}\$ \$\frac{14}{7} \text{B} = 20^{\text{O}}\$ \$\text{tan 60} = \frac{14}{8} \text{E}\$ \$\text{can 60} = \frac{14}{8} \text{Can 60}\$ \$c	, ATS 15 adiameter, BE is tangent at B
C=2TiY \$\frac{44=2x\frac{22}{7}xr}{7} \rightarrow r=7 \text{Cm}\$ \$\frac{14}{7} \text{B} = 14 \text{Cm}\$ \$\frac{14}{7} \text{B} = 14 \text{Cm}\$ \$\frac{14}{7} \text{B} = 20^{\text{O}}\$ \$\text{tan 60} = \frac{14}{8} \text{E}\$ \$\text{can 60} = \frac{14}{8} \text{Can 60}\$ \$c	M(LC)= 60 , TT = 25
C=2TiY \$\frac{44=2x\frac{22}{7}xr}{7} \rightarrow r=7 \text{Cm}\$ \$\frac{14}{7} \text{B} = 14 \text{Cm}\$ \$\frac{14}{7} \text{B} = 14 \text{Cm}\$ \$\frac{14}{7} \text{B} = 20^{\text{O}}\$ \$\text{tan 60} = \frac{14}{8} \text{E}\$ \$\text{can 60} = \frac{14}{8} \text{Can 60}\$ \$c	find; the length of BC
AB = LY CM BC is advanter and BC is ataugent AB = LY CM BC AB = LY CM BC is ataugent BC AB = LY BC IS ataugent BC AB = LY BC IS ataugent BC IS ataugent BC IS ataugent BC AB = LY BC IS ataugent BC IS ataug	Solution C-271x
Tance opp. = AB in (LB) = 90° tance opp. = AB adj. BC is adjameter in the Circle M, By is alchord He By such that By= y H prove that m(ymc) = 2m(LBHC) proof In A HBC in M = 2r = BC in CH = 2r = BC in CLH = 2r = BC	1111 = 0 × 22 × 0 × 0 = 1 0
Tance opp. = AB in (LB) = 90° tance opp. = AB adj. BC is adjameter in the Circle M, By is alchord He By such that By= y H prove that m(ymc) = 2m(LBHC) proof In A HBC in M = 2r = BC in CH = 2r = BC in CLH = 2r = BC	244-2X = x7 => Y= + Cm
tan C= OPP = AB adj. BC i BC = 14 = 14 J3 ~ B.1 Cm BC = is adiameter in the Circle M, By is achord He BY such that By = y H prove that: m(ymc) = 2m(2BHC) proof In D HBC in My = 12 CH & CH = 2My in CH = 2r = BC in HC = BC in m(2H) s m(2B) in scribed - D from 12 and 20	
tan C= OPP = AB adj. BC i BC = 14 = 14 J3 ~ B.1 Cm BC = is adiameter in the Circle M, By is achord He BY such that By = y H prove that: m(ymc) = 2m(2BHC) proof In D HBC in My = 12 CH & CH = 2My in CH = 2r = BC in HC = BC in m(2H) s m(2B) in scribed - D from 12 and 20	AB advaneter and BE is atament
BC is adiameter in the Circle M, By is achord HEBY Such that BY= YH prove that m(YMC) = 2m(2BHC) proof In D HBC in is the midpoint of BC and y is the midpoint of BH in MY= 2 CH D CH = 2MY in CH = 2r = BC HC = BC in m(2H) s m(2B) inscribed - D from D and D	\sim
BC is adiameter in the Circle M, By is achord HEBY Such that BY= YH prove that m(YMC) = 2m(2BHC) proof In D HBC in is the midpoint of BC and y is the midpoint of BH in MY= 2 CH D CH = 2MY in CH = 2r = BC HC = BC in m(2H) s m(2B) inscribed - D from D and D	Tan C= OPP = AB tan 60= 14
BC is adiameter in the Circle M, By is alchord THE BY Such that BY=YH prove that: m(Ym()=2m(LBHC) proof In A HBC in is the midpoint of BC and y is the midpoint of BH in MY= 1/2 CH => CH = ZMY in CH = 2r = BC HC = BC in m(LH) s m(LB) inscribed Arom D and D	
BC is adiameter in the Circle M, By is alchord THE BY Such that BY=YH prove that: m(Ym()=2m(LBHC) proof In A HBC in is the midpoint of BC and y is the midpoint of BH in MY= 1/2 CH => CH = ZMY in CH = 2r = BC HC = BC in m(LH) s m(LB) inscribed Arom D and D	$BC = \frac{14}{\sqrt{3}} = \frac{14}{3} \cdot \frac{14}{3} \approx 8.1 \text{ Cm}$
prove that: $m(ymc) = 2m(2BHC)$ proof In \triangle HBC in A HBC in A HBC and A is the midpoint of BC and A is the midpoint of BH in A HBC in A HBC and A is the midpoint of BH in A is the midpoint	BC is adigmeter in the Circle M. Bx is alchord
prove that $m(y\hat{m}() = 2m(2BHC))$ proof In \triangle HBC m is the midpoint of BC and M is the midpoint of BH $MY = \frac{1}{2}CH \Rightarrow CH = 2MY$ $CH = 2r = BC$ $HC = BC$ $m(LH) \leq m(LB)$ D H $m(LYMC)$ Central $\leq 2m(LB)$ insuribed D from D and D	HERY Such That BY= YH
In \triangle HBC M is the midpoint of BC and Y is the midpoint of BH MY = $\frac{1}{2}$ CH => CH = ZMY CH = $\frac{1}{2}$ CH => CH = ZMY HC = BC m(LH) s m(LB) D H m(LYMC) Central $\frac{1}{2}$ 2 m(LB) inscribed $\frac{1}{2}$	
mis the midpoint of BC and y is the midposit of BH in MY= 2 CH => CH = ZMY in CH = 2r = BC HC= BC in m(LH) s m(LB). D H m(LYMC) Central = 2 m(LB) insuribed -D from 0 and 0	,
mis the midpoint of BC and y is the midposit of BH in MY= 2 CH => CH = ZMY in CH = 2r = BC HC= BC in m(LH) s m(LB). D H m(LYMC) Central = 2 m(LB) insuribed -D from 0 and 0	IN D HBC
and y is the mid posit of BH i. MY= 12 CH => CH = ZMY i. CH = 2r = BC i. HC = BC i. m(LH) s m(LB). D H m(LYMC) Central = 2 m(LB) insuribed -D from (1) and (2)	
:. MY = \frac{1}{2} CH = 2MY :. CH = 2r = BC HC = BC :: m(L H) s m(LB)D H m(LYMC) Central = 2 m(LB) inscribed D from (1) and (2)	, — , M \
m(Lymc) central z 2 m(LB) inscribed D	
m(Lymc) Central = 2 m(LB) inscribed D	
m(Lymc) central z 2 m(LB) inscribed D	
from Dad D	· H
from 0 ad 0	
1, m(VMC) = 2 m (4 BHC) 2	from Dad O
	in m(ymc) = 2 m (4 BHC) A

	4
ABC inscribed triangle In	a circle such that
AE bisects < A and inte	ysects be at E and
intersects the Circle a	\$ F
prove that: BDEF is acy	dic quadrilateral.
prosp: (AD=A	^
IN DA ADE, ACE \ AE IS	a Common side
- muchos	E)=MKCAE)
Prove that: BDEF is acy proof: In DD ADE, ACE \ AE is m(LOA in DADE = DACE in M(LACE) = m(LACE) in accribed subtended by A	$(f \mid \uparrow_D)$
· M(LACE) S M(LADE) D c E
MICACDIEMICAFD)	D
inscribed subtended by A	D F
from 1 -d 2	
~ M(LADE) EXTERIOR = M	(LEFD) interior
BDEF 15 acyclic quade	cilateral.
prove that OABHD is Cycli	H=DC D/2
prove that OABHD is Chili	c quad.
DAD is atangent of circle p	assing /
through tringle DHC.	B
Solution	4 C H
ABCD is a parallelugram	AD 11 BC
:m((c) = m((A) ->0	: mc< ADH) = m(KDHC)
EN DO HC: "DH=DC	alternate.
" M(LC) = M(LDHC) - D	~ m(<<)= m(<)HC)
from O and (2)	=m(cAOH)=m(cC)
Nucley town of multan	AD is atangent.
in m(c DHC) exterior = m(cA)	
ABHD is acyclic	2.29/0
CILLORY LIVINGE	

Mand N are two Circles whose radii lengths are to com ad 6 cm - and touching internally at A, AB If the area of NBMN= 24 cm² find length of AB the two circles touching internally : MN= 1,-12 = 10-6 = 4 cm AB is a Common tangent :, MN LAB area of DBMN= 1 MNX AB => 2x4xAB=24 => 2AB=24 => (AB=12G ABCD is aquadrilateral in which, AB=AD> m(4ABD)=30° and m(4C)=60° prove that: ABCD is a cyclic quadrilateral. solution; In DABD : AB=AD : m((ABD)=m(LADB)=30 ·.m(<A)=180-(30+30)=120 .. M (LA) + m (L()-60+120x180 and they are opposite i. ABCD is acyclic quadrilaterul. مع الموب إلا مينات بانني وليقوم بباهر C.CI/0/10 DELTY/P