Isomorphisms

Definition: Isomorphism

Let H_1 and H_2 be inner product (or Hilbert) spaces. To say that H_1 is isomorphic to H_2 means there exists a mapping $T: H_1 \to H_2$, called an inner product (or Hilbert) space isomorphism, such that:

- T is a bijection.
- $\forall \vec{x}, \vec{y} \in H_1, \langle T\vec{x}, T\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle.$

Theorem

Every finite dimensional inner product (and hence Hilbert) space H is isomorphic to \mathbb{C}^N .

Proof

Assume $\dim H = N$.

Assume $\{\vec{x}_1,\ldots,\vec{x}_N\}$ is an orthonormal basis for H. Let $T:H\to\mathbb{C}^N$ be defined by:

$$T\vec{x} = T\left(\sum_{k=1}^{N} \alpha_k \vec{x}_k\right) = \sum_{k=1}^{N} \alpha_k e_k = y$$

Clearly *T* is bijective.

Assume $\vec{x}, \vec{y} \in H$.

$$\exists\,\alpha,\beta\in\mathbb{C}\text{ such that }\vec{x}=\sum_{k=1}^N\alpha_k\vec{x}_k\text{ and }\vec{y}=\sum_{k=1}^N\beta_k\vec{x}_k.$$

$$\langle T\vec{x}, T\vec{y} \rangle = \left\langle \sum_{k=1}^{N} \alpha_k e_k, \sum_{j=1}^{N} \beta_j e_j \right\rangle = \sum_{k=1}^{N} \alpha_k \overline{\beta_k}$$

Similarly:
$$\langle \vec{x}, \vec{y} \rangle = \left\langle \sum_{k=1}^N \alpha_k \vec{x}_k, \sum_{j=1}^N \beta_j \vec{x}_j \right\rangle = \sum_{k=1}^N \alpha_k \overline{\beta_k}$$

$$\therefore \langle T\vec{x}, T\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$$

T is an isomorphism and thus $H \sim \mathbb{C}^N$.

Theorem

Every infinite dimensional separable Hilbert space is isomorphic to ℓ^2 .

Proof

Since H is separable, H contains a complete orthonormal sequence (\vec{x}_n) .

Assume
$$\vec{x} = \sum_{n=1}^{\infty} \langle \vec{x}, \vec{x}_n \rangle \vec{x}_n \in H$$
.

Define $T: H \to \ell^2$ by $T\vec{x} = (\langle \vec{x}, \vec{x}_n \rangle)$, which converges (Bessel).

T is linear due to the linearity of the inner product.

Assume $T\vec{x} = 0$.

So $\forall\,n\in\mathbb{N},\langle\vec{x},\vec{x}_n\rangle=0.$ Thus $\vec{x}=\vec{0},$ and so the kernel of linear $T=\{\vec{0}\}.$

Therefore T is injective.

Assume $(\alpha_n) \in \ell^2$.

Let
$$\vec{x} = \sum_{n=1}^{\infty} \alpha_n \vec{x}_n$$
, which converges since $(\alpha_n) \in \ell^2$.

But (\vec{x}_n) is complete, so $\alpha_n = \langle \vec{x}, \vec{x}_n \rangle$.

And so $T\vec{x} = (\alpha_n)$.

Therefore T is surjective.

Therefore T is a bijection.

Finally, assume $\vec{x}, \vec{y} \in H$:

$$\begin{split} \langle T\vec{x}, T\vec{y} \rangle &= \langle (\langle \vec{x}, \vec{x}_n \rangle), (\langle \vec{y}, \vec{x}_n \rangle) \rangle \\ &= \sum_{n=1}^{\infty} \langle \vec{x}, \vec{x}_n \rangle \, \overline{\langle \vec{y}, \vec{x}_n \rangle} \\ &= \left\langle \sum_{n=1}^{\infty} \langle \vec{x}, \vec{x}_n \rangle \, \vec{x}_n, \sum_{m=1}^{\infty} \langle \vec{y}, \vec{x}_m \rangle \, \vec{x}_m \right\rangle \\ &= \langle \vec{x}, \vec{y} \rangle \end{split}$$

Therefore T is an isomorphism and thus $H \sim \ell^2$.