Une introduction interactive à LATEX

Partie 2 : document structurés & plus

Dr John D. Lees-Miller

Traduction: Yannis Haralambous (IMT Atlantique)

17 juin 2018

Outline

Documents structurés

Titre et résumé

Sections

Labels et références croisée

Exercice

Figures et tableaux

Graphics

Éléments flottants

Tableaux

Bibliographies

bibTEX

Exercice

Et ensuite?

Encore des belles choses

Quelques packages

intéressants

Installation de LATEX

Ressources en ligne

Documents structurés

- Dans la première partie, nous avons vu des commandes et des environnements pour composer du texte et des mathématiques.
- ▶ Par la suite nous allons apprendre des commandes et des environnements pour structurer des documents.
- Essayez les nouvelles commandes sous Overleaf :

Cliquer ici pour ouvrir d'exemple de document sous **Overleaf**

Pour obtenir les meilleurs résultats possibles, utilisez Google Chrome ou un FireFox récent.

Allons-y!

Titre et résumé

- ▶ Donnez à LATEX le titre \title et le nom d'auteur(e) \author dans le préambule.
- Utilisez \maketitle dans le document pour créer le titre.
- Utilisez l'environnement abstract pour écrire un résumé.

```
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[english,french]{babel}
\usepackage[T1]{fontenc}
\title{Le titre}
\author{A. Auteur}
\date{\today}
\begin{document}
\maketitle
\begin{abstract}
Placer le résumé ici...
\end{abstract}
\end{document}
```

```
Le titre
                    A Antone
                   17 juin 2018
                     Résumé
Placer le résumé ici
```

Sections

- Utilisez \section et \subsection.
- ▶ Pouvez-vous deviner ce que font \section* et \subsection*?

```
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[english,french]{babel}
\usepackage[T1]{fontenc}
\begin{document}
\section{Introduction}
Le problème de...
\section{Méthode}
Nous étudions...
\subsection{Préparation des
échantillons}
\subsection{Collection des données}
\section{Résultats}
\section{Conclusion}
\end{document}
```

1 Introduction

Le problème de...

2 Méthode

Nous étudions...

- 2.1 Préparation des échantil
- 2.2 Collection des données
- 3 Résultats
- 4 Conclusion

Labels et références croisée

- ▶ Utilisez \label et \ref pour la numérotation automatique.
- ► Le package amsmath propose \eqref pour le référencement des équations.

```
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[english,french]{babel}
\usepackage[T1]{fontenc}
\usepackage{amsmath} % pour \eqref
\begin{document}
                                             1 Introduction
\section{Introduction}
                                              Dans la section 2, ...
\label{sec:intro}
                                             2 Méthode
Dans la section~\ref{sec:method}, ...
                                                         e^{i\pi} + 1 = 0
\section{Méthode}
\label{sec:method}
\begin{equation}
\label{eq:euler}
e^{i\pi} + 1 = 0
\end{equation}
Par~\egref{eg:euler}, nous avons...
\end{document}
```

Exercice sur la structuration de documents

Composez ce très court article sous LATEX: 1

Cliquez pour ouvrir l'article

Faites en sorte que votre article ressemble à celui-ci. Utilisez \ref et \eqref pour éviter d'écrire des numéros explicites de section ou d'équation dans le texte.

Cliquez pour ouvrir cet exercice sous **Overleaf**

Après avoir essayé, cliquez ici pour voir ma soltion.

^{1.} Il provient de http://pdos.csail.mit.edu/scigen/, un générateur d'articles aléatoires.

Outline

Documents structurés

Titre et résumé

Sections

Labels et références croisé

Exercice

Figures et tableaux

Graphics

Éléments flottants

Tableaux

Bibliographies

bibT_EX

Exercice

Et ensuite?

Encore des belles choses

Quelques packages

intéressants

Installation de LATEX

Ressources en ligne

Graphics

- Nécessite le package graphicx, qui définit la commande \includegraphics.
- Les formats graphiques prévus sont (normalement) JPEG, PNG and PDF.

\includegraphics[
 width=0.5\textwidth]{gerbil}
\includegraphics[
 width=0.3\textwidth,
 angle=270]{gerbil}

Droits d'auteur de l'image : CC0

Interlude: arguments optionnels

- ▶ On utilise des crochets [] [] pour les arguments optionnels, à la place des accolades {] [}.
- \includegraphics prévoit des arguments optionnels pour vous permettre de trasformer votre image. Par exemple, width=0.3\textwidth fait en sorte que l'image occupe une largeur de 30% de la largeur (\textwidth) du texte.
- \documentclass prévoit aussi des arguments optionnels. Exemple :
 - \documentclass[12pt,twocolumn]{article}
 - compose le texte courant en corps 12 et le repartit en deux colonnes.
- ➤ Où trouver plus d'informations? Vous trouverez une liste de liens à la fin de cette présentation.

Éléments flottants

- Ils permettent à LATEX de décider où placer la figure (elle peut « flotter »).
- Vous pouvez aussi ajouter une légende à la figure, qui peut être référencée par \ref.

```
\documentclass{article}
\usepackage[english,french]{babel}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\begin{document}
La figure \ref{fig:gerbil} montre...
\begin{figure}
\centering
\includegraphics[%
   width=0.5\textwidth]{gerbil}
\caption{\label{fig:gerbil}Ouaouh...}
\end{figure}
\end{document}
Droits de l'image : CC0
```


 $\label{eq:figure 1 - Ouaouh...} Figure 1 - Ouaouh...$

La figure 1 montre...

Tableaux

- Les tableaux sous LATEX demandent un peu d'entraînement.
- Utilisez l'environnement tabular du package tabularx.
- L'argument spécifie l'alignement des colonnes I = fer à gauche, r = fer à droite, r = fer à droite.

```
\begin{tabular}{\ll trr}
Item & Qté & Prix en \$ \\
Widget & 1 & 199,99 \\
Gadget & 2 & 399,99 \\
Câble & 3 & 19,99 \\
\end{tabular}
```

 Il spécifie également les filets verticaux; utilisez \hline pour les filets horizontaux.

\begin{tabular}{ r r } \hline			
Item & Qté & Prix en \\$ \\hline	Item	Qté	Prix en \$
Widget & 1 & 199,99 \\	Widget	1	199,99
Gadget & 2 & 399,99 \\	Gadget	2	399,99
Câble & 3 & 19,99 \\hline	Câble	3	19,99
\end{tabular}			

► Utilisez une esperluette pour séparer les colonnes et un double antislash pour passer à la ligne (comme dans l'env. align* que nous avons vu dans la première partie).

Outline

Documents structurés

Titre et résumé

Sections

Labels et références croisée

_ =xercice

Figures et tableaux

Graphics

Éléments flottants

Tableaux

Bibliographies

bibTEX

Exercice

Et ensuite?

Encore des belles choses

Quelques packages

intéressants

Installation de LATEX

Ressources en ligne

bibT_FX 1

Mettez vos références dans un fichier .bib dans le format de base de données 'bibtex' :

```
@Article{Jacobson1999Towards,
 author = {Van Jacobson}.
 title = {Towards the Analysis of Massive Multiplayer Online
           Role-Playing Games },
 journal = {Journal of Ubiquitous Information},
 Month = jun,
 Year = 1999.
 Volume = 6.
 Pages = \{75--83\}
@InProceedings{Brooks1997Methodology,
 author = {Fredrick P. Brooks and John Kubiatowicz and
            Christos Papadimitriou},
 title = {A Methodology for the Study of the
           Location-Identity Split},
 booktitle = {Proceedings of OOPSLA}.
 Month = jun,
 Year = 1997
```

La plupart des logiciels de gestion de références prévoient ce format d'exportation.

bibT_EX 2

Chaque entrée dans le fichier .bib a une clé key que vous pouvez utiliser pour vous y référer dans le document. Par exemple, Jacobson1999Towards est la clé de cet article :

```
@Article{Jacobson1999Towards,
  author = {Van Jacobson},
  ...
}
```

- C'est un bon procédé que d'utiliser des clés basées sur le nom, l'année et le titre.
- LATEX peut formatter vos citations et générer une liste de références bibliographiques automatiquement; il connaît la plupart des styles bibliographiques et vous pouvez concevoir vos propres styles.

bibT_FX 3

- Utilisez le package natbib² avec les commandes \citet et \citep.
- Placez \bibliography à la fin du document, et indiquez un style \bibliographystyle.

```
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[english,french]{babel}
\usepackage[T1]{fontenc}
\usepackage{natbib}
\begin{document}
\citet{Brooks1997Methodology}
montrent que... Clairement,
tous les nombres impairs sont premiers
\citep{Jacobson1999Towards}.
\bibliography{bib-example}
% si `bib-example' est le nom
% de votre fichier bib
\bibliographystyle{plainnat}
% essayez de le changer en abbrunat
\end{document}
```

Brooks et al. [1997] montrent que... Clairement, tous les nombres impa sont premiers (Bacobson, 1999).

Références

- Fredrick P. Brooks, John Kubistowicz, and Christos Papadimitriou. A met1dology for the study of the location-identity split. In Proceedings of OOPSI June 1997.
- Van Jacobson. Towards the analysis of massive multiplayer online role-playigames. Journal of Utiquitous Information, 6:75-83, June 1999.

2. Il existe un nouveau package, nommé biblatex, avec encore plus de fonctionnalités, mais la plupart des templates d'articles utilisent encore natbib.

Exercice: combinons tout cela!

Ajoutez une image et une bibliographie à l'article de l'exercice précédent.

1. Téléchargez ces fichiers d'exemple sur votre ordinateur.

```
Cliquez pour télécharger le fichier image
```

2. Téléchargez-les sur Overleaf (utilisez le menu projet).

Plan

Documents structurés

Titre et résumé

Sections

Labels et références croisé

---xercice

Figures et tableaux

Graphics

Eléments flottants

Tableaux

Bibliographies

bibTEX

Et ensuite?

Encore des belles choses Quelques packages intéressants Installation de LATEX Ressources en ligne

Encore des belles choses

- ► Ajoutez la commande \tableofcontents pour générer une table de matières à partir des commandes de type \section.
- Changez la classe \documentclass en
 \documentclass{scrartcl}
 ou en
 \documentclass[12pt]{IEEEtran}
- Définissez votre propre commande pour une équation compliquée :

Quelques packages intéressants

- beamer : pour les présentations (comme celle-ci!)
- todonotes : gestion des commentaires et des TODO (= choses qui restent à faire)
- tikz : faites des superbes graphiques
- pgfplots : créez des graphes sous LATEX
- ▶ listings : composez du code informatique sous LATEX
- spreadtab : créez des tableurs sous LATEX
- gchords, guitar : cordes et tablatures de guitarre
- cwpuzzle : mots croisés

Cf. https://www.overleaf.com/latex/examples et http://texample.net pour des exemples (de la plupart) de ces packages.

Installation de LATEX

▶ Pour tourner LATEX sur votre machine, vous aurez besoin d'une distribution LATEX. Une distribution contient un programme latex et (typiquement) quelques milliers de packages.

Sous Windows : MikTEX ou TEXLive

Sous Linux : T_EXLiveSur Mac : MacT_FX

► Vous aurez aussi besoin d'un éditeur de texte LETEX-compatible. Cf. http:

//en.wikipedia.org/wiki/Comparison_of_TeX_editors pour une liste raisonnablement complète.

 Vous devrez aussi apprendre un certain nombre de choses sur latex et les outils afférents — voyez les ressources indiquées dans le transparent suivant.

Ressources en ligne

- ▶ Le Wikibook LATEX des excellents tutoriaux et des pages de référence.
- ► TEX Stack Exchange posez des questions et obtenez des réponses excellentes en un rien de temps
- ► LATEX Community un forum en ligne très large
- Comprehensive TEX Archive Network (CTAN) plus de quatre mille packages y compris leur documentation
- Google vous guidera normalement vers une des ressources ci-dessus.

