

Find solutions for your homework

Search

home / study / engineering / mechanical engineering / mechanical engineering questions and answers / 120 dynamics of structures 4.2 compute t..

Question: 120 Dynamics of Structures 4.2 Compute the vertical motion o...

See this question in the app

120 Dynamics of Structures

4.2 Compute the vertical motion of the car shown schematically in Figure 4.32 when it is crossing a bridge at a velocity of 60 km/h. The spring stiffness was evaluated by a test during which the measured vertical displacement of the car was 2.5 mm when its weight was increased by 500 N. The bridge profile is idealized by a sinusoidal curve with a wave length of 12 m and a half-amplitude of 30 mm. Consider a damping ratio of 50% of critical.

Figure 4.32. Problem 4.2

Show transcribed image text

Expert Answer

Anonymous answered this

353 answers

Given;

v = 60kmph

 $\Delta F = 500N$

 $\Delta x = 2.5mm$

W = 20000N $\lambda = 12m$

A = 30mm

Solution

Was this answer helpful?

0

0

Post a question Answers from our experts for your toug

Enter question

Continue to post

20 questions remaining

Snap a photo from you phone to post a questic We'll send you a one-time do

Text

By providing your phone number, you agree to receivautomated text message with a link to get the app. St messaging rates may apply.

888-888-888

My Textbook Solutions

Materials Science and. 8th Edition

Engineering Fluid.. 10th Edition

Modern Control 13th Edition

View all solutions

Mechanical Engineering Chegg tutors who can h right now

Sarvesh S. INSTITUTE OF CHA.

Emily S. Baylor University

David A. University of Los An..

Find me a tutor

 \equiv

Chegg Study Textbook Solutions Expert Q&A Study Pack Practice NEW!

$$m = \frac{W}{9.81} = \frac{20000}{9.81} = 2038.736kg$$

$$k = \frac{\Delta F}{\Delta x} = \frac{500}{0.0025} = 2 \times 10^5 N/m$$

$$c = \zeta c_c = 0.5(2\sqrt{km}) = 20192.751Ns/m$$

Road profile:

Vehicle velocity = 60 kmph = 16.67 m/s

Frequency of base excitation,
$$\omega = \frac{2\pi v}{\lambda} = \frac{2\pi (16.67)}{12} = 8.7284 \ rad/s$$

Amplitude of base excitation= 0.06 m.

Therefore, $y(t) = 0.03\sin(8.7284t)$

Free body diagram

Using Newton's law of motion,

$$-k(x-y) - c(\dot{x} - \dot{y}) = m\ddot{x}$$

$$m\ddot{x} + c\dot{x} + kx = ky + c\dot{y}$$

Substituting y(t), we get,

$$m\ddot{x} + c\dot{x} + kx = Ak\sin(\omega t) + Ac\omega\cos(\omega t)$$

Using properties of vectors,

 \equiv

Chegg Study Textbook Solutions Expert Q&A Study Pack Practice NEW!

$$m\ddot{x} + c\dot{x} + kx = A\sqrt{k^2 + (c\omega)^2}\sin(\omega t + \theta)$$

$$\theta = \tan^{-1}\left(\frac{k}{c\omega}\right)$$

$$m\ddot{x} + c\dot{x} + kx = (0.3)\sqrt{(2 \times 10^5)^2 + 176250.41^2}\sin(8.7284t + \theta)$$

$$m\ddot{x} + c\dot{x} + kx = (52997.534)\sin(8.7284t + \theta)$$

Let
$$F_o = 7997.3612N$$

Therefore this equation will be of the form,

$$m\ddot{x} + c\dot{x} + kx = F\dots(1)$$

To solve this differential equation let us assume,

$$x = Xe^{i\omega t}$$

Therefore,

$$\dot{x}=i\omega Xe^{i\omega t}$$

$$\ddot{x} = i^2 \omega^2 X e^{i\omega t} = -\omega^2 X e^{i\omega t}$$

$$F = F_o e^{i\omega t}$$

Substituting in the equation we get,

$$(-m\omega^2 + i\omega c + k) X e^{i\omega t} = F_o e^{i\omega t}$$

$$X = \frac{F_o}{(k - m\omega^2) + i(\omega c)}$$

$$|X| = \frac{F_o}{\sqrt{(k - m\omega^2)^2 + (\omega c)^2}}$$

$$|X| = \frac{7997.3612}{\sqrt{(2 \times 10^5 - 2038.736 \times 8.7284^2)^2 + (8.7284 \times 20192.751)^2}}$$

$$|X| = 0.9716m$$

Therefore,

$$x(t) = (0.04398)e^{i(8.7284)t}$$
 m

Comment >

Questions viewed by other students

Q: 1. A linear, causal discrete system is described by the following difference equation y(n) - ay(n-1) - bx(n) + x(n-1) Where "a" is real and its magnitude is less then 1 a. Find the value of "b" such that the magnitude response f the fiter is frall (Such filter is called an all pass filter). b. Use the value of "b" obtained in part a, evaluate and sketch the phase response of the...

A: See answer

100% (2 ratings)

Q: When water is heated, the temperature eventually reaches a constant value and forms a plateau on the graph. What does the plateau indicate?

 $\ensuremath{\circledcirc}$ 2003-2020 Chegg Inc. All rights reserved.