INTRODUCTION TO KUBERNETES

INTRODUCTION TO KUBERNETES

Kubernetes Objects and Components

- 1000

- Node - Pod

- Pod Service

- - Pool
- Service
- Ingress

- - Pool
- Service
- Ingress

NODE & POD

POD

the smallest deployable units of computing that you can create and manage in Kubernetes.

A **Pod** is a group of one or more <u>containers</u>, with <u>shared storage and network resources</u>, and a specification for how to run the containers. A Pod's contents are always co-located and co-scheduled, and run in a shared context.

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		

Physical Machine Kubernetes Cluster

POD - STORAGE AND NETWORK

POD - STORAGE AND NETWORK

POD - STORAGE AND NETWORK

A Pod can specify a set of shared storage volumes. All containers in the Pod can access the shared volumes, allowing those containers to share data.

Each Pod is assigned a unique IP address for each address family. Every container in a Pod shares the network namespace, including the IP address and network ports. Inside a Pod (and only then), the containers that belong to the Pod can communicate with one another using localhost. When containers in a Pod communicate with entities outside the Pod, they must coordinate how they use the shared network resources (such as ports).

A Pod can specify a set of shared storage volumes. All containers in the Pod can access the shared volumes, allowing those containers to share data.

Each Pod is assigned a unique IP address for each address family. Every container in a Pod shares the network namespace, including the IP address and network ports. Inside a Pod (and only then), the containers that belong to the Pod can communicate with one another using localhost. When containers in a Pod communicate with entities outside the Pod, they must coordinate how they use the shared network resources (such as ports).

SERVICE & INGRESS

WHAT'S SERVICE

An abstract way to expose an application running on a set of Pods as a network service.

With Kubernetes you don't need to modify your application to use an unfamiliar service discovery mechanism. Kubernetes gives Pods their own IP addresses and a single DNS name for a set of Pods, and can load-balance across them.

a Service is an abstraction which defines a logical set of Pods and a policy by which to access them. The set of Pods targeted by a Service is usually determined by a selector. To learn about other ways to define Service endpoints, see Services without selectors.

PHYSICAL VS LOGICAL

PHYSICAL VS LOGICAL

WITHOUT PHYSICAL VIEWS

WHAT'S INGRESS

An API object that manages external access to the services in a cluster, typically HTTP.

Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster. Traffic routing is controlled by rules defined on the Ingress resource.

- You want to have an external database cluster in production, but in your test environment you use your own databases.
- You want to point your Service to a Service in a different Namespace or on another cluster.
- You are migrating a workload to Kubernetes. While evaluating the approach, you run only a portion of your backends in Kubernetes.

- You want to have an external database cluster in production, but in your test environment you use your own databases.
- You want to point your Service to a Service in a different Namespace or on another cluster.
- You are migrating a workload to Kubernetes. While evaluating the approach, you run only a portion of your backends in Kubernetes.

- You want to have an external database cluster in production, but in your test environment you use your own databases.
- You want to point your Service to a Service in a different Namespace or on another cluster.
- You are migrating a workload to Kubernetes. While evaluating the approach, you run only a portion of your backends in Kubernetes.

- You want to have an external database cluster in production, but in your test environment you use your own databases.
- You want to point your Service to a Service in a different Namespace or on another cluster.
- You are migrating a workload to Kubernetes. While evaluating the approach, you run only a portion of your backends in Kubernetes.

- You want to have an external database cluster in production, but in your test environment you use your own databases.
- You want to point your Service to a Service in a different Namespace or on another cluster.
- You are migrating a workload to Kubernetes. While evaluating the approach, you run only a portion of your backends in Kubernetes.

- You want to have an external database cluster in production, but in your test environment you use your own databases.
- You want to point your Service to a Service in a different Namespace or on another cluster.
- You are migrating a workload to Kubernetes. While evaluating the approach, you run only a portion of your backends in Kubernetes.

THANK YOU