Talk

Overview

- Introduction to Program Synthesis
 - Deductive Synthesis
 - Inductive Synthesis
- Formal Inductive Synthesis
- Probabilistic Inductive Synthesis
- Interesting problems

Formal Inductive Synthesis

- **E**: The (finite/infinite) domain of examples.
 - \circ A concept is a set of examples within ${f E}$. ie: $c\subseteq {f E}$.
 - \circ An example is a specific instantiations from ${f E}$.
- ullet ${\mathscr C}$: The concept class. A set of all possible concepts from ${f E}$. Also, $c\subseteq 2^{f E}$.
- ullet Φ : The specification. A set of "correct" concepts.
 - $\circ \ x \vdash \Phi$. A positive example x. ie: $x \in \mathbf{E}$ and $x \in c$ such that $c \in \Phi$.
 - \circ In inductive synthesis, $\Phi \subseteq \mathbf{E}$ and c satisfies Φ iff $c \in \Phi$.
- Formal Inductive Synthesis: Given $\mathscr C$ and $\mathbf E$, find -- using a subset of $\mathbf E$ -- a target concept $c\in\mathscr C$ that satisfies specification $\Phi\subseteq\mathscr C$.
- \mathscr{O} : Oracle Interface. Subset of $\mathscr{Q} \times \mathscr{R}$ that are semantically well formed.
 - \circ 2: Set of query types.
 - \circ \mathscr{R} : Set of response types.

Formal Inductive Synthesis

Generalization of Inductive Program Synthesis.

Definition: Given a concept class $\mathscr C$, and a domain of examples $\mathbf E$, find - using a subset of $\mathbf E$ - a target concept $c\in\mathscr C$ that satisfies specification $\Phi\subseteq\mathscr C$.

- ullet ${f E}$: The (finite/infinite) domain of examples. $x\in {f E}$ is an input-output behavior.
- c : A concept is a set of examples within ${f E}$. ${\cal C}$ is the set of all possible concepts. ${\cal C}\subset 2^{f E}$.
- ullet Φ : The set of correct concepts. $xdash\Phi$ if $x\in {f E}$ and $x\in c$ such that $c\in \Phi$.
 - \circ In inductive synthesis, $\Phi \subseteq \mathbf{E}$ and c satisfies Φ iff $c \in \Phi$.

Oracle Guided Inductive Synthesis

- ullet ${f O}$: Oracle. A non-deterministic mapping ${f O}:{f D}^* imes{f Q} o{f R}$
 - **Q**: Set of queries to the oracle.
 - \circ \mathbf{R} : Set of responses from the oracle.
 - \circ d: A valid dialogue pair $(q,r)\in \mathbf{Q} imes \mathbf{R}$ such that (q,r) conforms to an oracle interface \mathscr{O} .
 - \circ **D**: Set of valid dialogue pairs for an oracle interface. **D*** denotes the set of valid dialogue sequences (of finite length).
- ullet ${f L}$: Learner. A non-deterministic mapping ${f L}:{f D}^* o{f Q} imes{\mathscr C}$
- An OGIS procedure $\langle \mathbf{O}, \mathbf{L} \rangle$ is said to solve an FIS $\langle \mathscr{C}, \mathbf{E}, \Phi, \mathscr{O} \rangle$ with dialogue sequence δ if $\exists i. \mathbf{L}(\delta[i]) = (q,c), c \in \mathscr{C} \land c \in \Phi$ and $\forall j > i \exists q' \mathbf{L}(\delta[j]) = (q',c)$ (ie: OGIS converges to c).

Complexity of OGIS

The complexity of OGIS depends on:

- 1. Learner complexity: The complexity of each invocation of ${f L}$
- 2. Oracle complexity: The complexity of each invocation of **O**
- 3. Query complexity: The number of iterations of the OGIS loop before convergence.

Counter-Example Guided Inductive Synthesis

ullet (q_{ce},r_{ce}) : The queries ask for counterexamples to a particular concept $(c
otin\Phi)$

Counter-examples can contain vary-ing degree of information:

1. **CEGIS**: Arbitary Conterexamples

2. MINCEGIS: Minimal Counterexamples

3. CBCEGIS: Constant-bounded counterexamples

4. PBCEGIS: Positive-bounded counterexamples

The learner can have varying degrees of memory:

- 1. Infinite Memory
- 2. Finite Memory

Under Finite Memory

- 4 possible synthesis engines:
 - \circ $T_{ t CEGIS}$
 - $\circ T_{ exttt{MINCEGIS}}$
 - \circ $T_{ ext{CBCEGIS}}$
 - \circ $T_{ t PBCEGIS}$
- Using arbitary counter-examples and minimal counterexamples

Туре	Query	Response
$q_{ m mem}(x)$	Is x positive or negative?	Yes/No
$q_{ m wit}^+$	Give me a positive example.	$x \vdash \Phi$
$q_{ m wit}^-$	Give me a negative example.	$x \not\vdash \Phi$
$q_{ m ce}(c)$	Prove that c doesn't satisfy Φ	Proof / ⊥
$q_{ m corr}(c)$	Prove that c satisfies Φ	Yes / No w/Proof

$$egin{aligned} \mathscr{C} &= \{\{1,2\},\{3,4\}\} \ &\Phi &= \{\{1,2\}\} \ &\mathbf{E} &= \mathbb{N} imes \mathbb{N} \end{aligned}$$

Goal: Find a set of queries Q of minimum cardinality that recovers all concepts in \mathscr{C} .

- $TD(\mathscr{C})$: The minimum number of examples that a teacher must reveal to uniquely identify $c\in\mathscr{C}$.
- $M_{\text{OGIS}}(\mathscr{C}) \geq TD(\mathscr{C})$
 - \circ If $M_{\rm OGIS}(\mathscr{C}) < TD(\mathscr{C})$, there exists a shorter teaching sequence than $TD(\mathscr{C})$. Contradiction.
- $\frac{VC(\mathscr{C})}{\log(|\mathscr{C}|)} \leq TD(\mathscr{C}) \leq |\mathscr{C}| 1$
 - Known result from literature on teaching dimension.