```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import os
os.chdir("./Data/")
abalone = pd.read csv('abalone.csv')
abalone
                              Height
     Sex
          Length
                   Diameter
                                      Whole weight
                                                     Shucked weight
0
       М
           0.455
                      0.365
                               0.095
                                             0.5140
                                                              0.2245
1
       М
           0.350
                      0.265
                               0.090
                                             0.2255
                                                              0.0995
2
       F
           0.530
                      0.420
                               0.135
                                             0.6770
                                                              0.2565
3
                                             0.5160
       М
           0.440
                      0.365
                               0.125
                                                              0.2155
4
       Ι
           0.330
                      0.255
                               0.080
                                             0.2050
                                                              0.0895
. . .
      . .
4172
       F
           0.565
                      0.450
                               0.165
                                                              0.3700
                                             0.8870
4173
           0.590
                      0.440
                               0.135
                                             0.9660
                                                              0.4390
       М
4174
       М
           0.600
                      0.475
                               0.205
                                             1.1760
                                                              0.5255
4175
       F
           0.625
                      0.485
                               0.150
                                             1.0945
                                                              0.5310
4176
           0.710
                      0.555
                               0.195
                                             1.9485
                                                              0.9455
       М
                                      Rings
      Viscera weight
                       Shell weight
0
               0.1010
                              0.1500
                                          15
1
                              0.0700
                                          7
               0.0485
2
               0.1415
                              0.2100
                                          9
3
               0.1140
                              0.1550
                                          10
4
               0.0395
                              0.0550
                                          7
               0.2390
                              0.2490
4172
                                          11
4173
               0.2145
                              0.2605
                                          10
                                          9
4174
               0.2875
                              0.3080
4175
               0.2610
                              0.2960
                                          10
4176
               0.3765
                              0.4950
                                          12
[4177 rows x 9 columns]
abalone.head()
  Sex
       Length
               Diameter
                          Height Whole weight Shucked weight
                                                                   Viscera
weight
   М
        0.455
                   0.365
                           0.095
                                          0.5140
                                                           0.2245
0.1010
        0.350
                           0.090
1
    М
                   0.265
                                         0.2255
                                                           0.0995
0.0485
2
                   0.420
    F
        0.530
                           0.135
                                          0.6770
                                                           0.2565
0.1415
```

```
0.440
   М
                  0.365
                          0.125
                                        0.5160
                                                        0.2155
0.1140
                          0.080
                                        0.2050
                                                        0.0895
   Ι
        0.330
                  0.255
0.0395
   Shell weight
                 Rings
0
          0.150
                    15
1
          0.070
                     7
2
                     9
          0.210
3
                    10
          0.155
          0.055
                     7
abalone.tail()
         Length Diameter
                                     Whole weight
                            Height
                                                   Shucked weight
     Sex
           0.565
                              0.165
                                                            0.3700
4172
      F
                     0.450
                                           0.8870
4173
       М
           0.590
                     0.440
                              0.135
                                           0.9660
                                                            0.4390
4174
           0.600
                     0.475
                              0.205
                                                            0.5255
       М
                                           1.1760
4175
      F
           0.625
                     0.485
                              0.150
                                           1.0945
                                                            0.5310
4176
       М
           0.710
                     0.555
                              0.195
                                           1.9485
                                                            0.9455
      Viscera weight Shell weight
                                     Rings
4172
              0.2390
                            0.2490
                                        11
4173
              0.2145
                            0.2605
                                        10
                                         9
4174
              0.2875
                            0.3080
4175
              0.2610
                            0.2960
                                        10
4176
              0.3765
                                        12
                            0.4950
#age can be calculated by using adding value 1.5 to Rings
abalone['age'] = abalone['Rings']+1.5
abalone = abalone.drop('Rings', axis = 1)
```

Univariate Analysis

sns.heatmap(abalone.isnull())

<AxesSubplot: >


```
plt.figure(figsize = (20,7))
sns.swarmplot(x = 'Sex', y = 'age', data = abalone, hue = 'Sex')
sns.violinplot(x = 'Sex', y = 'age', data = abalone)
sns.countplot(x = 'Sex', data = abalone, palette = 'Set3')

<AxesSubplot: xlabel='Sex', ylabel='count'>
```


Bivariate Analysis

Multivariate Analysis

sns.pairplot(abalone)

<seaborn.axisgrid.PairGrid at 0x24a6b3f5ae0>

Descriptive Statistics

#continuous variables

abalone['Length'].describe()

```
4177.000000
count
            0.523992
mean
            0.120093
std
            0.075000
min
25%
            0.450000
50%
            0.545000
75%
            0.615000
max
            0.815000
```

Name: Length, dtype: float64

abalone['Shucked weight'].describe()

```
4177.000000
count
            0.359367
mean
std
            0.221963
            0.001000
min
25%
            0.186000
50%
            0.336000
75%
            0.502000
            1.488000
max
Name: Shucked weight, dtype: float64
abalone['Shell weight'].describe()
         4177,000000
count
            0.238831
mean
            0.139203
std
min
            0.001500
25%
            0.130000
50%
            0.234000
75%
            0.329000
            1.005000
max
Name: Shell weight, dtype: float64
abalone['Height'].describe()
         4177.000000
count
            0.139516
mean
std
            0.041827
min
            0.000000
25%
            0.115000
50%
            0.140000
75%
            0.165000
            1.130000
max
Name: Height, dtype: float64
# Categorical variable
abalone['Sex'].describe()
          4177
count
unique
             3
             М
top
freq
          1528
Name: Sex, dtype: object
abalone['Sex'].value_counts()
     1528
М
Ι
     1342
F
     1307
Name: Sex, dtype: int64
#Distribution measures
```

```
abalone['Length'].kurtosis()
0.06462097389494126
abalone['Length'].skew()
-0.639873268981801
abalone['Shucked weight'].kurtosis()
0.5951236783694207
abalone['Shucked weight'].skew()
0.7190979217612694
Missing values
missing values = abalone.isnull().sum()
missing values
Sex
                  0
                  0
Length
Diameter
                  0
                  0
Height
Whole weight
                  0
                  0
Shucked weight
Viscera weight
                  0
Shell weight
                  0
                  0
age
dtype: int64
missing_values = abalone.isnull().sum().sort_values(ascending = False)
percentage_missing_values = (missing_values/len(abalone))*100
pd.concat([missing_values, percentage_missing_values], axis = 1, keys=
['Missing values', '% Missing'])
                Missing values % Missing
Sex
                                       0.0
                              0
                                       0.0
Length
                              0
Diameter
                              0
                                       0.0
Height
                              0
                                       0.0
Whole weight
                              0
                                       0.0
Shucked weight
                              0
                                       0.0
Viscera weight
                              0
                                       0.0
Shell weight
                              0
                                       0.0
                              0
                                       0.0
age
```

Outliers

```
abalone = pd.get_dummies(abalone)
dummy_df = abalone
abalone.boxplot( rot = 90, figsize=(20,5))
```

<AxesSubplot: >


```
var = 'Viscera weight'
plt.scatter(x = abalone[var], y = abalone['age'])
plt.grid(True)
```


abalone.drop(abalone[(abalone['Viscera weight']> 0.5) &
 (abalone['age'] < 20)].index, inplace=True)</pre>

```
abalone.drop(abalone[(abalone['Viscera weight']<0.5) & (abalone['age']
> 25)].index, inplace=True)

var = 'Shell weight'
plt.scatter(x = abalone[var], y = abalone['age'])
plt.grid(True)
```



```
abalone.drop(abalone[(abalone['Shell weight']> 0.6) & (abalone['age']
< 25)].index, inplace=True)
abalone.drop(abalone[(abalone['Shell weight']<0.8) & (abalone['age'] >
25)].index, inplace=True)

var = 'Shucked weight'
plt.scatter(x = abalone[var], y = abalone['age'])
plt.grid(True)
```



```
abalone.drop(abalone[(abalone['Shucked weight'] >= 1) &
  (abalone['age'] < 20)].index, inplace = True)
abalone.drop(abalone[(abalone['Viscera weight']<1) & (abalone['age'] >
  20)].index, inplace = True)

var = 'Whole weight'
plt.scatter(x = abalone[var], y = abalone['age'])
plt.grid(True)
```



```
abalone.drop(abalone[(abalone['Whole weight'] >= 2.5) &
  (abalone['age'] < 25)].index, inplace = True)
abalone.drop(abalone[(abalone['Whole weight']<2.5) & (abalone['age'] >
  25)].index, inplace = True)

var = 'Diameter'
plt.scatter(x = abalone[var], y = abalone['age'])
plt.grid(True)
```



```
abalone.drop(abalone[(abalone['Diameter'] <0.1) & (abalone['age'] <
5)].index, inplace = True)
abalone.drop(abalone[(abalone['Diameter']<0.6) & (abalone['age'] >
25)].index, inplace = True)
abalone.drop(abalone[(abalone['Diameter']>=0.6) & (abalone['age'] <
25)].index, inplace = True)

var = 'Height'
plt.scatter(x = abalone[var], y = abalone['age'])
plt.grid(True)</pre>
```



```
abalone.drop(abalone[(abalone['Height'] > 0.4) & (abalone['age'] <
15)].index, inplace = True)
abalone.drop(abalone[(abalone['Height']<0.4) & (abalone['age'] >
25)].index, inplace = True)

var = 'Length'
plt.scatter(x = abalone[var], y = abalone['age'])
plt.grid(True)
```


abalone.drop(abalone[(abalone['Length'] <0.1) & (abalone['age'] <5)].index, inplace = True) abalone.drop(abalone[(abalone['Length']<0.8) & (abalone['age'] > 25)].index, inplace = True) abalone.drop(abalone[(abalone['Length']>=0.8) & (abalone['age'] < 25)].index, inplace = True)

abalone

	, -	Diameter	Height	Whole weight	Shucked weight	Viscera
weight 0 0.1010 1 0.0485 2 0.1415 3 0.1140 4 0.0395	0.455	0.365	0.095	0.5140	0.2245	
	0.350	0.265	0.090	0.2255	0.0995	
	0.530	0.420	0.135	0.6770	0.2565	
	0.440	0.365	0.125	0.5160	0.2155	
	0.330	0.255	0.080	0.2050	0.0895	
4172 0.2390	0.565	0.450	0.165	0.8870	0.3700	
4173	0.590	0.440	0.135	0.9660	0.4390	

```
0.2145
4174
                 0.475
                         0.205
                                                       0.5255
       0.600
                                       1.1760
0.2875
4175
       0.625
                 0.485
                         0.150
                                       1.0945
                                                       0.5310
0.2610
4176
       0.710
                 0.555
                         0.195
                                       1.9485
                                                       0.9455
0.3765
                                  Sex I Sex_M
      Shell weight
                     age Sex F
            0.1500
0
                    16.5
                               0
                                      0
                                             1
1
            0.0700
                    8.5
                               0
                                      0
                                             1
2
            0.2100
                                      0
                                             0
                    10.5
                               1
3
            0.1550
                    11.5
                               0
                                      0
                                             1
                                      1
4
            0.0550
                     8.5
                               0
                                             0
                     . . .
. . .
            0.2490
                    12.5
                                      0
                                             0
4172
                              1
            0.2605
4173
                    11.5
                               0
                                      0
                                             1
4174
            0.3080
                    10.5
                               0
                                      0
                                             1
4175
            0.2960
                   11.5
                                      0
                               1
                                             0
4176
            0.4950 13.5
                               0
                                      0
                                             1
[3995 rows x 11 columns]
Categorical columns
numerical features = abalone.select dtypes(include =
[np.number]).columns
categorical features = abalone.select dtypes(include =
[np.object] .columns
numerical features
Index(['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked
weight'
       'Viscera weight', 'Shell weight', 'age', 'Sex F', 'Sex I',
'Sex M'],
      dtype='object')
categorical features
Index([], dtype='object')
abalone numeric = abalone[['Length', 'Diameter', 'Height', 'Whole
weight', 'Shucked weight', 'Viscera weight', 'Shell weight', 'age',
'Sex_F', 'Sex_I', 'Sex_M']]
abalone numeric.head()
   Length
           Diameter Height Whole weight Shucked weight Viscera
weight \
   0.455
              0.365
                      0.095
                                    0.5140
                                                    0.2245
```

```
0.1010
    0.350
               0.265
                       0.090
                                     0.2255
                                                      0.0995
1
0.0485
2
    0.530
               0.420
                       0.135
                                     0.6770
                                                      0.2565
0.1415
    0.440
               0.365
                       0.125
                                     0.5160
                                                       0.2155
0.1140
    0.330
               0.255
                       0.080
                                     0.2050
                                                      0.0895
0.0395
                        Sex_F
                                Sex I
                                       Sex M
   Shell weight
                   age
0
          0.150
                  16.5
                             0
                                    0
                                            1
1
          0.070
                   8.5
                             0
                                    0
                                            1
2
                                    0
          0.210
                  10.5
                             1
                                            0
3
          0.155
                  11.5
                             0
                                    0
                                            1
4
                                    1
                   8.5
                             0
                                            0
          0.055
```

Dependent and Independent Variables

```
x = abalone.iloc[:, 0:1].values
y = abalone.iloc[:, 1]
Х
array([[0.455],
       [0.35],
       [0.53],
       [0.6],
       [0.625],
       [0.71]
У
0
        0.365
1
        0.265
2
        0.420
3
        0.365
4
        0.255
4172
        0.450
4173
        0.440
4174
        0.475
4175
        0.485
4176
        0.555
Name: Diameter, Length: 3995, dtype: float64
```

```
Scaling the Independent Variables
print ("\n ORIGINAL VALUES: \n\n", x,y)
 ORIGINAL VALUES:
 [[0.455]
 [0.35]
 [0.53]
 . . .
 [0.6]
 [0.625]
                  0.365
 [0.71]] 0
       0.265
2
        0.420
3
        0.365
4
        0.255
4172
        0.450
4173
        0.440
4174
        0.475
4175
        0.485
4176
        0.555
Name: Diameter, Length: 3995, dtype: float64
from sklearn import preprocessing
min max scaler = preprocessing.MinMaxScaler(feature range = (0, 1))
new_y= min_max_scaler.fit_transform(x,y)
print ("\n VALUES AFTER MIN MAX SCALING: \n\n", new y)
 VALUES AFTER MIN MAX SCALING:
 [[0.51587302]
 [0.34920635]
 [0.63492063]
 [0.74603175]
 [0.78571429]
 [0.92063492]]
Split the data into Training and Testing
X = abalone.drop('age', axis = 1)
y = abalone['age']
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train_test_split, cross_val_score
from sklearn.feature selection import SelectKBest
```

```
standardScale = StandardScaler()
standardScale.fit_transform(X)
selectkBest = SelectKBest()
X_new = selectkBest.fit_transform(X, y)
X_train, X_test, y_train, y_test = train_test_split(X_new, y,
test size = 0.25)
Build the model
Linear Regression
from sklearn import linear model as lm
from sklearn.linear model import LinearRegression
model=lm.LinearRegression()
results=model.fit(X train,y train)
accuracy = model.score(X train, y train)
print('Accuracy of the model:', accuracy)
Accuracy of the model: 0.523907384638246
lm = LinearRegression()
lm.fit(X train, y train)
LinearRegression()
y train pred = lm.predict(X train)
y test pred = lm.predict(X test)
Training the model
X train
array([[0.61 , 0.46 , 0.145, ..., 1.
                                        , 0.
                                               , 0.
                                                      ],
                                        , 0.
                                               , 0.
                                                      ],
       [0.525, 0.415, 0.15, ..., 1.
                                               , 0.
       [0.45, 0.33, 0.105, \ldots, 0.
                                        , 1.
                                                      ],
                                      , 0.
                                               , 1.
       [0.4 , 0.32 , 0.095, ..., 0.
                                                      ],
       [0.37, 0.275, 0.1, ..., 0.
                                       , 1.
                                               , 0.
                                                      ],
       [0.72 , 0.55 , 0.2 , ..., 1.
                                       , 0.
                                                      11)
                                               , 0.
y_train
        11.5
1923
2755
        11.5
1089
        8.5
```

1710

11.5

```
1544
         7.5
3873
         6.5
3201
         7.5
51
         8.5
680
         8.5
        11.5
1200
Name: age, Length: 2996, dtype: float64
from sklearn.metrics import mean_absolute_error, mean_squared_error
s = mean_squared_error(y_train, y_train_pred)
print('Mean Squared error of training set :%2f'%s)
Mean Squared error of training set :3.682301
Testing the model
X_test
array([[0.445, 0.34 , 0.12 , ..., 0.
                                        , 0.
                                                , 1.
                                                       ],
       [0.33, 0.265, 0.085, ..., 0.
                                        , 1.
                                                , 0.
                                                       1,
       [0.62, 0.525, 0.155, \ldots, 0.
                                                       ],
                                        , 0.
                                                , 1.
       [0.61 , 0.495, 0.19 , ..., 1.
                                        , 0.
                                                , 0.
                                                       ],
       [0.615, 0.465, 0.15, ..., 1.
                                        , 0.
                                                , 0.
                                                       ],
       [0.6, 0.465, 0.165, \ldots, 0.
                                                , 1.
                                                       ]])
                                        , 0.
y test
2185
        10.5
        7.5
907
        11.5
3683
380
        16.5
3838
         9.5
823
         7.5
2552
         7.5
3247
        16.5
1165
        10.5
2922
        12.5
Name: age, Length: 999, dtype: float64
p = mean_squared_error(y_test, y_test_pred)
print('Mean Squared error of testing set :%2f'%p)
Mean Squared error of testing set :3.215477
from sklearn.metrics import r2 score
s = r2_score(y_train, y_train_pred)
print('R2 Score of training set:%.2f'%s)
R2 Score of training set:0.52
```

from sklearn.metrics import r2_score
p = r2_score(y_test, y_test_pred)
print('R2 Score of testing set:%.2f'%p)

R2 Score of testing set:0.56