

<u>UE MATH 102-Version COVID: EXAMEN</u> <u>SEMESTRE MOUSSON 2019-2020</u> DURÉE: 2 heures

EXERCICE 1 (6 pts)

Soit σ une permutation de \mathcal{S}_{10} définie par: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ & & & & & & & \\ 3 & 2 & 5 & 10 & 1 & 8 & 7 & 4 & 6 & 9 \end{pmatrix}$.

- 1. Décomposer σ en produit de cycles disjoints puis en produit de transpositions.
- 2. Calculer $I(\sigma)$ le nombre d'inversions de σ puis sa signature $\varepsilon(\sigma)$.

4. Déterminer la permutation μ telle que $\sigma\mu = (1357)$.

- 3. Déterminer σ^{-1} puis σ^{2020} .

EXERCICE 2 (7 pts)

- 1. Soient x_1, x_2, x_3, x_4 les racines de $P = X^4 + pX^2 + qX + r$ avec $r \neq 0$. Calculer $u = \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4}$ et $v = \frac{1}{x_1^4} + \frac{1}{x_2^4} + \frac{1}{x_3^4} + \frac{1}{x_4^4}$ en fonction de p, q et r en utilisant la formule de Viète.
- 2. Soient x_1, x_2, x_3 les racines de $X^3 2X^2 + X + 3$, un polynôme de $\mathbb{C}[X]$.
 - (a) Calculer $x_1^3 + x_2^3 + x_3^3$
 - (b) Déterminer un polynôme du troisième degré dont les trois racines sont $x_1^2,\,x_2^2$ et $x_3^2.$

EXERCICE 3 (7 pts)

1. Décomposer en éléments simples sur $\mathbb R$ les fractions rationnelles suivantes: $\frac{X^3}{X^3-1}, \quad \frac{X^2+X+1}{(X-1)^2(X+1)^2}.$

$$\frac{X^3}{X^3-1}$$
, $\frac{X^2+X+1}{(X-1)^2(X+1)^2}$.

2. Décomposer en éléments simples sur $\mathbb R$ la fraction rationnelle suivante:

$$h(x) = \frac{x^6 - 2x^5 + 4x^4 - 6x^3 - x^2 + 8x + 121}{(x-1)^3(x^2+4)} .$$