Assignment #3

Dr. Chung-Hsien Kuo

Duration: 2 weeks

Please write report to show and explain your solution.

The content should have *student name* and *student ID*. The report file must be named as **report <ID>.pdf**, e.g., report D10907813.pdf

This assignment is individual assignment. Any teamwork or cheating behavior are prohibited and will be marked 0 if being figured out.

Question 1: Perceptron (15pts)

Given a perceptron with input $X = (x_1, x_2)^T$, weight vector $(\theta, w_1, w_2)^T = (-2, 1, 1)^T$ and activation function is the step function: $f_{\text{step}}(x) = \begin{cases} -1, & x < 0 \\ +1, & x \ge 0 \end{cases}$.

a) The decision boundary is a surface/line that separates the data point into region, which are the classes in which they belong. Plot decision boundary that is realized by this perceptron in the partition of \mathbb{R}^2 and mark the area where the perceptron outputs 1. (5pts)

Note: In this question, you can do program, or write on paper and then capture and put it the report or use the following online tool: https://www.geogebra.org/graphing?lang=en to plot your solution.

- b) Suppose $X_1 = (2, -5)^T$, what is the corresponding output of this perceptron? (5pts)
- c) Same as question b), what is the corresponding output of this perceptron with the tanh activation function $\tanh = \frac{1}{1+e^{-2x}} 1$ instead? (5pts)

Question 2: Multi-Layer Perceptron - MLP (60pts)

Given a MLP as following. All neurons use the sigmoid function. The network has two input variables x_1 and x_2 and one output variable y.

a) Calculate the output of all neurons $(y_1^1, y_2^1, \widehat{y})$ and the error made by the MLP when applying input $X = (x_1, x_2)^T = (10, -2)^T$, weights $w^1 =$

$$\begin{pmatrix} w_{11}^1 & w_{12}^1 \\ w_{21}^1 & w_{22}^1 \end{pmatrix} = \begin{pmatrix} 0.5 & 0.9 \\ 0.4 & 1.0 \end{pmatrix} \text{ and } w^2 = \begin{pmatrix} w_{11}^2 \\ w_{21}^2 \end{pmatrix} = \begin{pmatrix} -1.2 \\ 1.1 \end{pmatrix}, \text{ bias } \theta^1 = \begin{pmatrix} \theta_1^1 \\ \theta_2^1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ and } \theta^2 = (\theta_1^2) = (1), \text{ and the target value } y = 1. \text{ (30pts)}$$

b) Use back-propagation technique to update weights w^1 and w^2 with the learning rate is equal to 0.1. (30pts)

Question 3: Perceptron Learning (10pts)

A student implemented MLP using following training data and computed a decision boundary as $x_1 + x_2 - 1 = 0$

x_1	x_2	label
1	2	1
2	3	1
4	4.5	1
0	1.5	1
0	0	0
0.5	0	0
0.5	1	0
-1	0	0

When he applied this model on the validation samples, he noticed that the accuracy was low. He debugged the code and found that the separating boundary is not computed accurately.

- a) Which point(s) are misclassified in the above samples? (5pts)
- b) Suggest appropriate corrections to the parameters of the separating boundary? (5pts)

Question 4: Hopfield Networks (15pts)

- c) Can the vector (1,0,-1,0,1) be stored in a 5-neuron Hopfield network? If so, what are the weights for a network with that vector stored in it? If so, why not? (5pts)
- d) Given the Hopefield network as following.

Write down the corresponding weight matrix, such that weight w_{ij} is in

column i and row j. Write down the threshold vector θ , such that element θ_i is the bias of neuron i. (5pts)

e) Find one or more stable state of the given network. (5pts)