Лебедев Вадим Р3110

Курсовая работа по дискретной математике. Часть 2.

СИНТЕЗ МНОГОВЫХОДНЫХ КОМБИНАЦИОННЫХ СХЕМ

Вариант 58

$$C = (A - 1)_{mod27}, A = (a_1, a_2, a_3, a_4, a_5), C = (C_1, C_2, C_3, C_4, C_5)$$

1. Составление таблицы истинности

N	a ₁ a ₂ a ₃ a ₄ a ₅	C ₁ C ₂ C ₃ C ₄ C ₅	C ₁₀
0	00000	11010	26
1	00001	00000	0
2	00010	00001	1
3	00010	00010	2
4	00100	00010	3
5	00100	00100	4
6	00101	00100	5
7	00110	00101	6
8	01000	00110	7
9	01000	01000	8
10			9
	01010	01001	
11	01011	01010	10
12	01100	01011	11
13	01101	01100	12
14	01110	01101	13
15	01111	01110	14
16	10000	01111	15
17	10001	10000	16
18	10010	10001	17
19	10011	10010	18
20	10100	10011	19
21	10101	10100	20
22	10110	10101	21
23	10111	10110	22
24	11000	10111	23
25	11001	11000	24
26	11010	11001	25
27	11011	ddddd	d
28	11100	ddddd	d
29	11101	ddddd	d
30	11110	ddddd	d
31	11111	ddddd	d

2. Минимизация булевых функций на картах Карно.

Для С1:

$$C_{min}(C_1) = \begin{cases} 00000\\ 1XX1X\\ 1XXX1\\ 1X1XX\\ 11XXX \end{cases}$$

 $C_1=\bar{a}_1\bar{a}_2\bar{a}_3\bar{a}_4\bar{a}_5$ v a_1a_4 v a_1a_5 v a_1a_3 v a_1a_2 ,Sa = 13, Sb = 18 Для С2:

$$C_{min}(C_2) = \begin{cases} X0000 \\ X11XX \\ X1XX1 \\ X1X1X \end{cases}$$

 $C_2 = \bar{a}_2 \bar{a}_3 \bar{a}_4 \bar{a}_5 \ v \ a_2 a_3 \ v \ a_2 a_5 \ v \ a_2 a_4$, Sa = 10, Sb = 14

Для С3:

				a4	a5		
			00		11	10	
	a2a3	00					
		01		1	1	1	
		11		1	1	1	
		10	1				
				a1=0			
C3							
	a4a5						
			00	01	11	10	
	a2a3	00	1				
		01		1	1	1	
		11	d	d	d	d	
		10	1		d		
				a1=1			

$$C_{min}(C_3) = \begin{cases} X1000 \\ 1X000 \\ XX1X1 \\ XX11X \end{cases}$$

 $\mathcal{C}_3=a_2\bar{a}_3\bar{a}_4\bar{a}_5\ v\ a_1\bar{a}_3\bar{a}_4\bar{a}_5\ v\ a_3a_5v\ a_3a_4$, Sa = 12, Sb = 16 Для С4:

				_	-		
					a5	_	
			00	01	11_	10	
	a2a3	00	1		1		
		01	1		1		
		11	1		1		
		10	1		٦		
				a1=0			
C4							
				a4	a5		
			00	01	_11_	10	
	a2a3	00	1		1		
		01	1		1		
		11	d	d	d	d	
		10	1		d		
				a1=1			

$$C_{min}(C_4) = \begin{cases} XXX00 \\ XXX11 \end{cases}$$

$$C_4 = \bar{a}_4 \bar{a}_5 \ v \ a_4 a_5, \ S_a = 4, \ S_b = 6$$

Для С5:

$$C_{min} (C_5) = \begin{cases} XX1X0 \\ X1XX0 \\ 1XXX0 \\ XXX10 \end{cases}$$

$$C_5 = a_3 \bar{a}_5 \ v \ a_2 \bar{a}_5 \ v \ a_1 \bar{a}_5 \ v \ a_4 \bar{a}_5$$
, Sa = 8, Sb = 12

$$\begin{cases} C_1 = \bar{a}_1 \bar{a}_2 \bar{a}_3 \bar{a}_4 \bar{a}_5 \ v \ a_1 a_4 \ v \ a_1 a_5 \ v \ a_1 a_3 \ v \ a_1 a_2 \ S_q^{C1} = 18 \\ C_2 = \bar{a}_2 \bar{a}_3 \bar{a}_4 \bar{a}_5 \ v \ a_2 a_3 \ v \ a_2 a_5 \ v \ a_2 a_4 \ S_q^{C2} = 14 \\ C_3 = a_2 \bar{a}_3 \bar{a}_4 \bar{a}_5 \ v \ a_1 \bar{a}_3 \bar{a}_4 \bar{a}_5 \ v \ a_3 a_5 v \ a_3 a_4 \ S_q^{C3} = 16 \\ C_4 = \bar{a}_4 \bar{a}_5 \ v \ a_4 a_5 \ S_q^{C4} = 6 \\ C_5 = a_3 \bar{a}_5 \ v \ a_2 \bar{a}_5 \ v \ a_1 \bar{a}_5 \ v \ a_4 \bar{a}_5 \ S_q^{C5} = 12 \end{cases}$$

При реализации схемы в виде пяти независимых подсхем ее цена $S_q = 67$.

3. Преобразование минимальных форм булевых функций системы:

Решим задачу факторизации применительно к функциям $C_1,\,C_2,\,C_3,\,C_5.$

$$\begin{cases} C_1 = \bar{a}_1 \bar{a}_2 \bar{a}_3 \bar{a}_4 \bar{a}_5 \ v \ a_1 (a_4 \ v \ a_5 \ v \ a_3 \ v \ a_2) \ S_q^{C1} = 16 \\ C_2 = \bar{a}_2 \bar{a}_3 \bar{a}_4 \bar{a}_5 \ v \ a_2 (a_3 \ v \ a_5 \ v \ a_4) \ S_q^{C2} = 13 \\ C_3 = \bar{a}_3 \bar{a}_4 \bar{a}_5 (a_1 \ v \ a_2) \ v \ a_3 (a_5 \ v \ a_4) \ S_q^{C3} = 14 \\ C_4 = \bar{a}_4 \bar{a}_5 \ v \ a_4 a_5 \ S_q^{C4} = 6 \\ C_5 = \bar{a}_5 (a_3 \ v \ a_2 \ v \ a_1 \ v \ a_4) \ S_q^{C5} = 10 \end{cases}$$

За счет раздельной факторизации цена схемы уменьшилась: $S_q = 59$ Решим задачу факторизации применительно ко всем функциям системы, выделяя общие части и обозначая их как дополнительные функции:

$$\begin{cases} Z_1 = a_2 \ v \ a_3 & S_q^{z1} = 2 \\ Z_2 = a_4 \ v \ a_5 & S_q^{z2} = 2 \\ C_1 = \bar{a}_1 \bar{Z}_1 \bar{Z}_2 \ v \ a_1 (Z_1 \ v \ Z_2) & S_q^{C1} = 9 \\ C_2 = \bar{Z}_1 \bar{Z}_2 \ v \ a_2 (a_3 \ v \ Z_2) & S_q^{C2} = 8 \\ C_3 = \bar{a}_3 \bar{Z}_2 (a_1 \ v \ a_2) v \ a_3 Z_2 & S_q^{C3} = 9 \\ C_4 = \bar{Z}_2 \ v \ a_4 a_5 & S_q^{C4} = 4 \\ C_5 = \bar{a}_5 (Z_1 \ v \ a_1 \ v \ a_4) & S_q^{C5} = 7 \end{cases}$$

После совместной факторизации цена схемы $S_q=41$

4. Синтез многовыходной комбинационной схемы в булевом базисе.

Задержка схемы: $T_{C1} = 5$, $T_{C2} = 4$, $T_{C3} = 4$, $T_{C4} = 3$, $T_{C5} = 3$, $T_{max} = 5$.

5. Анализ многовыходной комбинационной схемы.
На схеме показано определение реакции схемы на входной набор (00000). Значение
выходного набора (11010) соответствует таблице истинности, что подтверждает
корректность построенной схемы, по крайне мере, в отношении рассмотренного
набора.