FUNCIONAMIENTO DIGITAL

DE UN SISTEMA.

EL SISTEMA BINARIO

Fr. Casares

Sistema Digital

-Emplea dispositivos en los que solo son posibles dos estados

Elemento	Situación			
	0(Falso)	1(Verdadero)		
Relé	Desactivado	Activado		
Válvula	Cerrada	Abierta		
Línea	Sin Tensión	Con Tensión		
Presostato	Sin Presión	Con Presión		
Bomba	Apagada	Encendida		

Estado normal

Sistema Digital

-Emplea dispositivos en los que solo son posibles dos estados

Elemento	Situación				
	0(Falso)	1(Verdadero)			
Relé	Desactivado	Activado			
Válvula	Cerrada	Abierta			
Línea	Sin Tensión	Con Tensión			
Presostato	Sin Presión	Con Presión			
Bomba	Apagada	Encendida			

Sistema Digital

- Estos dos estados se pueden designar de varia formas, siendo las mas corrientes las siguientes:

L				Con tensión	Encendido
	"0"	Bajo	Falso	Sin tensión	Apagado

 Los sistemas electrónicos se adaptan perfectamente al sistema binario utilizando la notación "0" y "1" para los estados de los elementos y tambien para representar los numeros, cadenas de texto, variables, combinaciones lógicas, aritmetica, etc. .

Sistemas Electrónicos → Sistemas Digitales

Estado de un elemento

Numeración binaria

$$110_2 = 6_{10}$$

Representación cadenas de Texto

Aritmética

$$\begin{array}{c} + & 0110 \to 6 \\ 0001 \to 1 \\ \hline 0111 \to 7 \end{array}$$

Necesitamos un sistema de codificación

Concepto de codificación: Ejemplo→ Representación de números.

Numeración posicional:

Símbolos diferentes por dígito

	po. a.g.to	
Decimal	→ 10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Hexadecimal	→ 16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
Octal	→ 8	0, 1, 2, 3, 4, 5, 6, 7
Binario	→ 2	0, 1

r = nº de símbolos de la base

> El peso del dígito se representa por la posición

Concepto de codificación: Ejemplo→ Representación de números.

Existen varios sistemas de representación de números.

La no posicional: El peso del dígito se representa por el propio símbolo.

Ejemplo: la romana:
$$MMCM = M + M - C + M = 2900$$

 $IIII = 4$

La posicional: r símbolos diferentes por dígito. El peso del dígito se representa por la posición. Cada dígito tiene un peso r^i si i es la posición.

$$2979 = 2x10^3 + 9x10^2 + 7x10^1 + 9x10^0$$
 (decimal)

La base de un sistema de numeración es el numero de símbolos distintos utilizados para la representación de las cantidades de los mismos.

Concepto de codificación: Ejemplo→ Representación de números.

Numeración posicional:

Sistemas de Numeración

Numeración
posicional o
arábiga

Símbolos diferentes por dígito

10 → Decimal

16 → Hexadecimal

8 → Octal

2 → Binario

El peso del dígito se representa por la posición

_								
ſ	Dec	Hex	Oct	Bin				
ı	0	0	000	00000000				
ı	1	1	001	00000001				
ı	2	2	002	00000010				
ı	3	3	003	00000011				
ı	4	4	004	00000100				
ı	5	5	005	00000101				
ı	6	6	006	00000110				
ı	7	7	007	00000111				
ı	8	8	010	00001000				
ı	9	9	011	00001001				
ı	10	Α	012	00001010				
ı	11	В	013	00001011				
ı	12	C	014	00001100				
ı	13	D	015	00001101				
ı	14	Е	016	00001110				
1	15	F	017	00001111				

Concepto de codificación: Ejemplo→ Representación de números.

Código	C	Cantidad					Nº dígitos necesar.		
Numero decimal						1	2	6	3
Numero binario	0	1	1	1	1	1	1	0	7
Numero hexadecimal							7	Ε	2

BIT : Es la menor unidad de información en el sistema binario (0,1)

Codificación de datos en sistemas digitales:

A.- Códigos de números (datos) en binario:

Códigos de 4 variables (o dígitos):

BCD natural Código gray Código BCD exceso a tres

Códigos de 8, 16, 32, 64 variables (o dígitos):

Codificación de enteros sin signo (8, 16, 32, 64) Codificación de enteros con signo (16, 32, 64) Codificación de números reales (32, 64)

B.- Codificación alfanumérica: ASCII

Codificación de datos en sistemas digitales:

Para poder transmitir y manejar información es necesario codificarla, representarla mediante un conjunto de símbolos que constituye un código.

Con un vector binario de **n componentes** tendremos **2**ⁿ combinaciones distintas y se podrá codificar hasta un alfabeto con 2ⁿ elementos .

Código o palabra			Eq. Decimal	Nº de códigos diferentes
Dos Variables	00 11	→ →	0	22=4
Tres Variables	000 111	→ →	0 7	23=8
Cuatro Variables	0000 1111	→ →	0 15	24=16
Seis Variables	000000 111111	→	0 63	2 ⁶ =64
Ocho Variables	0000 0000 1111 1111	→	0 255	28=256
Dieciséis Variables	00000000 00000000 11111111 11111111	<i>→</i>	0 65535	2 ¹⁶ =65536

Nº decimales:

10 números → código de 4 variables

Letras:

26 letras (sin distinguir mayúsculas/minúsculas) 52 letras (mayúsculas y minúsculas)

Letras + nº decimales:

52+10 = 62 elementos → código de 8 variab

Un grupo de varios bits (vector) que tengan un determinado significado es una información, palabra o código.

Codificación de números en binario:

Códigos de 4 variables o dígitos (4 BIT):

Sistema BCD (Binario Código Decimal)

Código Decimal	BCD natural	BCD Aiken 2421	BCD 5421
0	0000	0000	0000
1	0001	0001	0001
2	0010	0010	0010
3	0011	0011	0011
4	0100	0100	0100
5	0101	1011	1000
6	0110	1100	1001
7	0111	1101	1010
8	1000	1110	1011
9	1001	1111	1100

Es un método para expresar un dígito de un número decimal en notación binaria. Cada dígito decimal se expresa por cuatro bits traduciéndose así en forma aislada.

Codificación de números en binario:

Códigos de 4 variables o dígitos (4 BIT):

Decimal	BCD	BIN
10	0001 0000	0000 1010
11	0001 0001	0000 1011
12	0001 0010	0000 1100
13	0001 0011	0000 1101
1 <mark>4</mark>	0001 0100	0000 1110
21	0010 0001	0001 0101

Con un vector de 4 bits \rightarrow de 0 a 9 \rightarrow de 0 a 16 Con un vector de 8 bits \rightarrow de 0 a 99 \rightarrow de 0 a 255 Con un vector de 16 bits \rightarrow de 0 a 9999 \rightarrow de 0 a 65535

Codificación de números en binario:

Códigos de 4 variables o dígitos (4 BIT):

Nº Decimal:	160
BCD natural	0001 0110 0000
BCD aiken	0001 1101 0000
BCD 5421	0001 1001 0000

Binario → 0000 1010 0000

Codificación de datos en sistemas digitales:

A.- Códigos de números (datos) en binario:

Códigos de 4 variables (o dígitos):

BCD natural

Códigos Código Gray: Es un código continuo porque las combinaciones correspondientes a números decimales consecutivos difieren solamente en un bit

Codif Código BCD exceso tres: Se obtiene de sumar tres a cualquiera de las combinaciones del código BCD natural

B.- Codificación alfanumérica: ASCII

DECIMAL	BCD	Exceso 3
	8421	
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

Decimal	Binario	GRAY				
0	0000	0000				
1	0001	0001				
2	0010	0011				
3	0011	0010				
4	0100	0110				
5	0101	0111				
6	0110	0101				
7	0111	0100				
8	1000	1100				
9	1001	1101				
10	1010	1111				
11	1011	1110				
12	1100	1010				
13	1101	1011				
14	1110	1001				
15	1111	1000				

Codificación de datos en sistemas digitales:

A.- Códigos de números (datos) en binario:

Códigos de 4 variables (o dígitos):

BCD natural Código gray Código BCD exceso a tres

Códigos de 8, 16, 32, 64 variables (o dígitos):

Codificación de enteros sin signo (8, 16, 32, 64) Codificación de enteros con signo (16, 32, 64) Codificación de números reales (32, 64)

B.- Codificación alfanumérica: ASCII

Codificación de números en binario:

Códigos de 8, 16, 32, 64 variables o dígitos

Codificación de enteros sin signo (8, 16, 32, 64)

→ Codificación de enteros con signo (16, 32, 64)
Codificación de números reales (32, 64)

Numero: (-32767,32767)

Codificación de números en binario:

Códigos de 8, 16, 32, 64 variables o dígitos

→ Codificación de enteros sin signo (8, 16, 32, 64)
Codificación de enteros con signo (16, 32, 64)
Codificación de números reales (32, 64)

65536 Combinaciones = 2¹⁶

Numero entero: [0,65535]

32 bit **4.294.967.296 Combinaciones = 2**³²

Numero entero: 0-4.294.967.296

Codificación de números en binario:

Códigos de 8, 16, 32, 64 variables o dígitos

Codificación de enteros sin signo (8, 16, 32, 64)

→ Codificación de enteros con signo (16, 32, 64)
Codificación de números reales (32, 64)

Signo más valor absoluto → SM

Complemento a 1 → 1C

Complemento a 2 → 2C

En numeración binaria tenemos dos tipos de complementos:

Complemento a 1: Se obtiene escribiendo el bit de estado opuesto.

Numero: 0 1 101110 Complemento a uno: 1 0 010001

Complemento a dos: Se obtiene hallando primero el complemento a 1 y después sumándole 1.

Numero: 101110 Complemento a dos: 010010

Codificación de números en binario:

Códigos de 8, 16, 32, 64 variables o dígitos

Codificación de enteros sin signo (8, 16, 32, 64)

→ Codificación de enteros con signo (16, 32, 64)

Codificación de números reales (32, 64)

Signo más valor absoluto → SM

Complemento a 1 →1C

Complemento a 2 → 2C

Codificación de números en binario:

Códigos de 8, 16, 32, 64 variables o dígitos

Codificación de enteros sin signo (8, 16, 32, 64)

→ Codificación de enteros con signo (16, 32, 64)

Codificación de números reales (32, 64)

Signo más valor absoluto → SM

Complemento a 1 →1C

Complemento a 2 → 2C

Ejemplo con 8 bits (2C):

	•			•															
- 25	→	1	1	1	0	0	1	1	1	+25	→	0	0	0	1	1	0	0	1
- 3	→	1	1	1	1	1	1	0	1	+3	→	0	0	0	0	0	0	1	1
- 1	>	1	1	1	1	1	1	1	1	+1	>	0	0	0	0	0	0	0	1

Codificación de números en binario:

Códigos de 8, 16, 32, 64 variables o dígitos

Codificación de enteros sin signo (8, 16, 32, 64) Codificación de enteros con signo (16, 32, 64)

→ Codificación de números reales (32, 64)

Coma flotante

- El código binario se divide en dos campos: Mantisa y exponente
- Se necesitan 32 bits: 1 de signo + 23 de mantisa + 8 exponente
- El numero real equivalente es igual a: x = Mantisa 2 exponente
- Estandar IEEE 7544

Coma fiia

- · El punto decimal ocupa una posición fija
- 100111,11 \rightarrow 159 x $2^{-2} \rightarrow$ 39,75

Que es esto? 01010101 10101010

- Cualquier variable, constante o expresión que se utilice en un programa (escrito en cualquier lenguaje) debe estar caracterizado por un tipo de dato. La coherencia de tipos deberá mantenerse en las operaciones gráficas y sentencias literales.
- Desde el principio se conoce si un dato es un String, una fecha o un Entero, y por tanto, no hay confusión cuando diferentes personas trabajan en un proyecto usando la representación textual (el nombre de la variable).

Que es esto? **01010101 10101010**

IEC 1131-3: Elementos Comunes

- Ejemplos de tipos de datos estándar son: **Bool, Byte Integer, Real**, los cuales conocemos. Pero aparecen otros como: **Date, Time_of_day, String**
- El tipo de dato lo que refleja en realidad es la forma de almacenamiento en la memoria del autómata: en binario (numero enteros), BCD (Fechas, números), complemento a dos(números enteros con signo), Números en coma flotante según el estándar IEEE (para los reales).

Tipos de datos & Variables

IEC 61131

Que es esto? **01010101 10101010**

Enteros sin signo → 0-255 → **USINT** Unsigned Short Integer 8 bit → 0-65535 → **UINT** Unsigned Integer 16 bit Variables → 0-2³² → **UDINT** Unsigned double Integer 32 bit → **ULINT** Unsigned Long Integer 64 bit **Enteros con signo** → - 32768 a +32768 → **INT** Integer 16 bit → -2147483648 a 2147483647 → **DINT** Double Integer 32 bit **Fipos de datos** \rightarrow - 2⁶⁴ a (2⁶⁴-1) 64 bit → **LINT** Long Integer Números reales → **REAL** real de precision simple 32 bit → LREAL real de precision doble

IEC 61131

Que es esto? **01010101 10101010**

TIPO DE DADO	TAMANHO (em memória)	INTERVALO
BOOL	1 bit	TRUE e FALSE
INT	16 bits	-32768 a +32767
UINT	16 bits	0 a 65535
WORD	16 bits	0 a FFFF
DINT	32 bits	-2147483648 a +2147483647
UDINT	32 bits	0 a 4294967295
DWORD	32 bits	0 a FFFFFFFF
REAL	32 bits	-3.40282346638528860e+38 a 3.40282346638528860e+38 Underflow: 1.1754943508222875e-38
DATE	32 bits	01/01/2000 a 31/12/2080
TIME	32 bits	0 a 49d17h2m47s290ms
TIME_OF_DAY	32 bits	00:00:00 a 23:59:59
DATE_AND_TIME		
STRING		caracteres ASCII
ARRAY		
STRUCT		

Que es esto? **01010101 10101010**

Configuración CONFIGURATION EJEMPLO VAR GLOBAL $\overline{C1}$: INT; C2: BYTE AT %IB0; C3: INT AT %IW5; RESOURCE SIGNALPROCESSING ON 1386 $R\overline{1}$: INT AT %QW4; R2: BOOL AT %IX15; R3: INT AT %IW3; TASK SLOW(INTERVAL:=TIME#20MS, PRIORITY:=2); (* OTRAS TAREAS NO MOSTRADAS *) PROGRAM P1 WITH SLOW: FILTRO(X:=C3, Y=>R3); (* OTROS PROGRAMAS NO MOSTRADOS *) (* OTROS RECURSOS NO MOSTRADOS *)

Direccionamiento según el IEC61131-3

Esta tabla representa el direccionamiento según el estándar para cualquier recurso del PLC.

AGRUPACIÓN DE NÚMEROS BINARIOS: BIT, BYTE, WORD, DOUBLE WORD

En sistemas digitales:

BIT → Nº binario compuesto por un digito.

(la menor unidad de informacion: "1", "0")

BYTE → Nº binario compuesto por 8 digitos

WORD → Nº binario compuesto por 16 digitos (2 BYTE)

DOUBLE WORD → Nº binario compuesto por 32 digitos(4 BYTE)

AGRUPACIÓN DE NÚMEROS BINARIOS: BIT, BYTE, WORD, DOUBLE WORD

En sistemas digitales:

BIT → Nº binario compuesto por un digito.

(la menor unidad de informacion: "1", "0")

BYTE → Nº binario compuesto por 8 digitos

WORD → N° binario compuesto por 16 digitos (2 BYTE)

DOUBLE WORD → N° binario compuesto por 32 digitos(4 BYTE)

Nº máximo de valores en numeración binaria que pueden representar las combinaciones de bit:

1 Palabra 65536 Combinaciones

Palabra

Palabra

1 Doble Palabra +4.000 Millones Comb.

Codificación alfanumérica en sistemas digitales:

Letras: 26 letras (sin distinguir mayúsculas y minúsculas)

52 letras (mayúsculas y minúsculas)

Nº decimales: 10 números

Total: 62 combinaciones diferentes

Código de:	Nº de códigos diferentes
4 variables	24=16
6 variables	26 =64
7 variables	27=128
8 variables	28=256

ASCII

- Código de 7 bits (128 caracteres diferentes).
- ASCII ampliado o completo: Código de 8 bits.
- Significado por contexto.

ASCII

American Standard Code for Information Interchange

Estándar Americano de Codificación para el Intercambio de Información

Tabla ASCII

Caracteres imprimible: del 32 al 127

Tabla ASCII

Caracteres imprimible: del 32 al 127

Tabla ASCII

Caracteres imprimible: del 32 al 127

Tabla ASCII

Caracteres imprimible: del 32 al 127

Tabla ASCII

Tabla ASCII

Caracteres de Control de las comunicaciones lógicas

Tabla ASCII

Caracteres de Control de las comunicaciones lógicas

Caracteres de Control de las comunicaciones lógicas

Tabla ASCII

Caracteres de Control de las comunicaciones lógicas

Tabla ASCII

Caracteres de Control de las comunicaciones lógicas

Tabla ASCII

Caracteres de Control de las comunicaciones lógicas

Caracteres de Control de las comunicaciones lógicas

Tabla ASCII

Tabla ASCII

Caracteres de Control del flujo de la información

Tabla ASCII

Alteradores de formato

Tabla ASCII 00 | 000 | 01 | 0000 | 02 | 0000 | 03 | 0000 | 04 | 0000 | 05 | 0000 | 06 | 0000 | 07 | 0000 | 08 | 0000 | 08 | 0000 | 0 Ø = 28 | 0001 | 29 | 0001 | 30 | 0001 | 31 | 0001 | 11110 | FS | GS | RS | US 16 0001 17 0001 18 0001 19 0001 20 0001 21 0 **BS** Backspace 园 **四** 9 44 0010 45 0010 46 0010 47 0010 Retroceso 40 1000 41 1001 42 10 2 SP % \$ & 60 0011 61 0011 62 0011 63 0011 48 0011 49 0011 50 0011 51 0011 52 0011 53 0011 54 0011 55 0011 56 0011 57 1 3 0 FF Form Feed 77 0100 78 0100 79 0100 64 0100 65 0100 66 0100 67 0100 68 0100 69 Salto de página O @ B M N 80 0101 81 0101 82 0101 83 0101 83 0101 84 0101 85 0101 85 0101 86 0101 86 0101 87 0101 88 0101 89 0101 90 0101 91 0101 91 0101 92 0101 93 0101 94 0101 95 0101 95 0101 R S W 96 | 0110 | 97 | 0110 | 98 | 0110 | 99 | 0110 | 100 | 0110 | 101 | 0110 | 102 | 0110 | 103 | 0110 | 104 | 0110 | 105 | 0110 | 105 | 0110 | 106 | 0110 | 107 | 0110 | 108 | 0110 | 109 | 0110 | 110 | 0110 | 110 | 0110 | 110 | 0110 | 110 | 0110 | 110 | 0110 | 110 | 0110 | 110 | 0 b d h m n 0 C е g 112 8000 113 8001 114 8001 115 8001 116 8001 117 8001 117 8001 117 8001 118 8011 119 8000 119 p S W Χ У Z DEL

Tabla ASCII

Alteradores de formato

· Control de transmisión:

- SOH Start Of Heading (comienzo de encabezado)
- STX Start of Text (comienzo del texto)
- ETX End of Text (final de texto)
- **EOT** End Of Transmission (final de Transmisión)
- ENQ ENQuiry (interrogación)
- ACK Acknowledge (reconocimiento)
- NAK Negative Acknowledge (reconocimiento negativo)
- SYN Synchronous/idle(síncrono/parado)
- **ETB** End of Transmission Block (final de bloque transmitido)

Control de formato:

- BS Back Space (retroceso de espacio)
- **HT** horizontal Tab (Tabulación Horizontal)
- LF Line Feed (avance de línea)
- VT Vertical Tab (tabulación vertical)
- **FF** Form Feed (avance de página)
- CR Carriage Return (regreso del carro)

Tabla ASCII

Alteradores de formato

Ejemplo:

