Lecture at Waseda University

Extreme Multi-label Classification

July 1, 2022

Chikara Hashimoto Rakuten Institute of Technology

Rakuten Institute of Technology (RIT) 樂天技術研究所

Rakuten Institute of Technology (RIT)

- R&D division of Rakuten Group, established in Dec. 2015.
- Currently, 100+ researchers are working in 6 locations globally.

Research Areas

Customer 4 Language Core Vision Voice **MNO** Moonshot **Cure Cancer** Quantum technology **Global Advisory Committee**

Deep customer understanding for Rakuten membership

Machine Translation

Fully automated product catalog for Rakuten services

Frictionless image-based experience design

Innovate customer-smart phone interface with voice

Autonomous network with software defined network

Design of novel 5G experiences

Al diagnosis with higher accuracy and scale

Realistic use case of quantum computer and network

Raise the bar to match worlds' top tier research institute

	Conference	Paper Title					
NLF	CHI	EMI: An Expressive Mobile Interactive Robot					
	ACL	Lexically Constrained Neural Machine Translation with Levenshtein Transformer					
	CIKM	Learning to Profile: User Meta-Profile Network for Few-Shot Learning					
2020 (7)	EMNLP	Can Automatic Post-Editing Improve NMT?					
(-)	N. IDC	Steady-State Analysis of Episodic Reinforcement Learning					
	NeurIPS	A General Large Neighborhood Search Framework for Solving Integer Linear Programs					
	AAAI	Simpson's Bias in NLP Training					
	ACL	Simple and Effective Query Expansion for QA-Based Product Attribute Extraction					
	CVPR	MRAN: Multi-Resolution Attention Network for Facial Action Unit Recognition					
	SIGIR	Neural Representations in Hybrid Recommender Systems: Prediction versus Regularizat					
2021	RecSys	Shared Neural Item Representations for Completely Cold Start Problem					
(8)	Recays	Towards Source-Aligned Variational Models for Cross-Domain Recommendation					
		Dual Encoder Attention U-net for nuclei segmentation					
	EMBC	Blur-Robust Nuclei Segmentation for Immunofluorescence Images					
		Spatial Context-aware RNA-data prediction from microscopy H&E images					

We are Hiring!

https://rit.rakuten.com/careers/

Vast and exciting data

➤ The Rakuten Group offers a full range of services related to daily life, from **shopping** and **online payment** to **telecommunications**, **travel**, and **finance**. The vast amount of diverse data we are able to generate and access makes research at RIT dynamic and exciting.

Real business-related research

➤ At RIT, your research will be put to **real use** and exposed to millions of people around the world every day.

One global team

> Rakuten has **six global offices**, but no matter where we are in the world, we share the same challenges and successes as one team.

Choose the best field for your personal growth

➤ We provide an environment to **learn**, **grow** and **engage** with excellent researchers around the world. Receive guidance from renowned scientists and AI researchers and start exciting conversations with your peers.

We are Hiring!

RIT Tokyo Language Program

- (Internship) Research Scientist
- (Entry Level) Research Scientist
- Senior Research Scientist

Position Details

- Design algorithms and build proto-type systems to solve defined scientific problems
- Demonstrate algorithms / proto-type systems to business stakeholders
- Collaborate with engineers to deploy algorithms / proto-type systems into production services
- Collaborate with other scientists on research and paper publications
- Participate in scientific conferences and contribute to the scientific community with paper publications

Mandatory Qualifications

- Bachelor's degree in computer science, related research field or equivalent experience
- English fluency for communicating with researchers, engineers, and business stakeholders
- Proficiency in reading and processing Japanese text (our product catalog is written in Japanese)
- Coding skills: fluency in Python
- Experience with Linux environment

RIT's Language Program

Research Areas

Machine Translation

Human-level machine translation for TV dramas

Learned from translated subtitles from Rakuten Viki

RIT Translate

Human

Currently developing MT in 35 languages

나으리, 혹 인어에 대해서 들어보셨습니까?

Sir, have you possibly heard about the mermaid?

나랑 사귈래?

Will you go out with me

Automated Catalog Organization

Attribute Value Extraction

Attribute	Value	
Wine Name	Bourgogne Chardonnay	
Wine Type	White Wine	
Taste	Spicy	
Producer	Bouchard Pere & Fils	
Origin	France Bourgogne	
Capacity	375 ml / Half Bottle	

User Demand Understanding

Shopping Query Intent Prediction

Mapping a query to attribute values of items

388

eXtreme Multi-label Classification (XMC) Introduction

Example

Hashtag Prediction

#children
#junglegym
#park
#boysandgirls

#sunset
#beach
#vacation
#palmtree

#party#cocktailparty#matchmaking#datingevent

Relevant hashtags

Example (cont.)

Recommendation

Example (cont.)

Shopping Query Intent Prediction

Task

"adidas blue 26"

Brand: adidas Brand: Nike Color: Red Size: 26.0cm ("adidas blue 26", Brand: adidas) → ✓ ("adidas blue 26", Brand: Nike) → X ("adidas blue 26", Color: Red) → X ("adidas blue 26", Size: 26.0cm) → ✓

...

Task (cont.)

Input
"nike white 26"
"adidas red"
"nike air jordan"

Feature 1	Feature 2	Feature 3	
0.1	0.9	0.2	
0.3	0.4	0.7	
0.1	0.2	0.8	

Label 1	Label 2	Label 3	Label 4	
0	1	0	1	
1	0	1	0	
0	1	0	0	

T T Color: Red

Brand: Nike Size: 26cm

"adidas blue 26"

Brand: adidas Brand: Nike Color: Red Size: 26.0cm

("adidas blue 26", Brand: adidas) → ✓ ("adidas blue 26", Brand: Nike) → X ("adidas blue 26", Color: Red) → X ("adidas blue 26", Size: 26.0cm) → ✓

...

Conferences on Extreme Classification

- Extreme Classification 2020, The ICML Workshop on Extreme Classification:
 Theory and Applications
- The CVPR 2020 Extreme Classification in Computer Vision Workshop
- The 2018 Dagstuhl Seminar on Extreme Classification
- The WWW 2018 Workshop on Extreme Multilabel Classification for Social Media
- The NIPS 2017 Extreme Classification Workshop
- The NIPS 2016 Extreme Classification Workshop
- The NIPS 2015 Extreme Classification Workshop
- The ICML 2015 Extreme Classification Workshop
- The NIPS 2013 Extreme Classification Workshop

Extreme Classification Repository

http://manikvarma.org/downloads/XC/XMLRepository.html

- Datasets
- Code
- Evaluation metrics
- Benchmarked results
- References

XMC in Machine Learning Typology

eXtreme Multi-label Classification (XMC) Preliminary

Underlying Technologies for XMC

Binary Classification

Training Data

	X 1	X 2	X 3	 у	
Query	adidas	superstar	blue	 adidas?	
adidas superstar	1	1	0	 1	•
superstar blue 26	0	1	1	 1	•
nike blue 26	0	0	1	 0	
louis vuitton	0	0	0	 0	

Binary Classification: Logistic Regression

Binary Classification: Training with Stochastic Gradient Decent

Underlying Technologies for XMC

Clustering

Clustering: K-Means

- 1. Initialize cluster centroids randomly.
- 2. For each data point, identify the nearest centroid.
- 3. Update each centroid as the average of its members.
- 4. Repeat 2 and 3 until convergence.

Clustering Labels

Clustering helps.

Can be millions.

Instance
"nike white 26"
"adidas red"
"nike air jordan"

Feature 1	Feature 2	Feature 3	
0.1	0.9	0.2	
0.3	0.4	0.7	
0.1	0.2	0.8	

Label 1	Label 2	Label 3	Label 4	
0	1	0	1	
1	0	1	0	
0	1	0	0	
A				

Brand: Nike

Brand: adidas

"nike white 26"

Brand: adidas Brand: Nike Color: Red Size: 26cm (*"nike white 26"*, Brand: adidas) → X

(*"nike white 26"*, Brand: Nike) → ✓

("nike white 26", Color: Red) → X

("nike white 26", Size: 26cm) → ✓

...

R

Size: 26cm

Clustering Labels (cont.)

Features for label clustering: Positive Instance Feature Aggregation (PIFA)

Query	Feature 1	Feature 2	Feature 3		Label 1	Label 2	Label 3	Label 4	
"nike white 26"	0.1	0.9	0.2		0	1	0	1	
"adidas red"	0.3	0.4	0.7		1	0	1	0	
"nike air jordan"	0.1	0.2	0.8		0	1	0	0	
Features for Brand: Nike	Feature 1 = Feature 2 = Feature 3 =	= (0.9 + 0.2)	/ 2	Bra	and: adida	rand: Nik	olor: Red	d Size: 26c	m
	Feature 1	Feature 2	Feature 3						
********	0.1	0.55	0.5						

eXtreme Multi-label Classification (XMC) Simple Solution

Simple Solution

Build a binary classifier for each label

One-Versus-Rest (OVR)

a.k.a One-Versus-All (OVA) Binary Relevance (BR)

Query
"nike white 26"
"adidas red"
"nike air jordan"

F ature 1	Feature 2	Feature 3	
0.1	0.9	0.2	
0.3	0.4	0.7	
0.1	0.2	0.8	

Model for Brand: adidas

Model for Brand: Nike

Brand: adidas

Brand: Nike

Size: 26cm

Issues for OVR

Requires long time for prediction

Issues for OVR (cont.)

Some labels may have only a few positive training instances

Long-tail distribution

In Wiki-500K, only 2.1% of the labels have more than 100 training instances.

Head labels

Tail labels

F ature 1	Feature 2	Feature 3	Label	Label	Label 3	Label 4	
0.1	0.9	0.2	 0	1	0	1	
0.3	0.4	0.7	 1	0	1	0	
0.1	0.2	0.8	 0	1	0	0	
			4	7	†	1	

Model for Brand: adidas

Model for Brand: Nike

Brand: Nike Size: 26cm

eXtreme Multi-label Classification (XMC) State-of-the-Art

State-of-the-Art Method

https://github.com/amzn/pecos

A small number of labels need to be classified; the simple OVR works.

enabling "transfer learning" from head to tail.

R

In Wiki-500K, only 2.1% of the labels have more than 100 training instances.

Clustering creates 8,192 label clusters; 99.4% of clusters have more than 100 training instances.

"nike white 26"

3 Classifying the input

with OVR

Match is a smaller XMC task!

eXtreme Multi-label Classification (XMC) A Research Direction

Data-centric Approach to Al

Discipline of systematically engineering the data used to build an Al system

https://datacentricai.org/

NeurlPS Data-centric Al Workshop (2021)

https://datacentricai.org/neurips21/

Model-centric Approach to XMC

Most studies on XMC are model-centric and use public datasets.

http://manikvarma.org/downloads/XC/XMLRepository.html

Dataset	Download	BoW Feature Dimensionality	Number of Labels	Number of Train Points	Number of Test Points	Avg. Points per Label	Avg. Labels per Point
LF-AmazonTitles- 131K	BoW Features Raw text	40,000	131,073	294,805	134,835	5.15	2.29
LF-Amazon-131K	BoW Features Raw text	80,000	131,073	294,805	134,835	5.15	2.29
LF-WikiSeeAlsoTitles- 320K	BoW Features Raw text	40,000	312,330	693,082	177,515	4.67	2.11
LF-WikiSeeAlso-320K	BoW Features Raw text	80,000	312,330	693,082	177,515	4.67	2.11
LF-WikiTitles-500K	BoW Features Raw text	80,000	501,070	1,813,391	783,743	17.15	4.74
LF-AmazonTitles- 1.3M	BoW Features Raw text	128,000	1,305,265	2,248,619	970,237	38.24	22.20
AmazonCat-13K	BoW Features Raw text	203,882	13,330	1,186,239	306,782	448.57	5.04
AmazonCat-14K	BoW Features Raw text	597,540	14,588	4,398,050	1,099,725	1330.1	3.53
WikiSeeAlsoTitles- 350K	BoW Features Raw text	91,414	352,072	629,418	162,491	5.24	2.33
WikiTitles-500K	BoW Features Raw text	185,479	501,070	1,699,722	722,678	23.62	4.89
Wikipedia-500K	BoW Features Raw text	2,381,304	501,070	1,813,391	783,743	24.75	4.77
AmazonTitles-670K	BoW Features Raw text	66,666	670,091	485,176	150,875	5.11	5.39
Amazon-670K	BoW Features Raw text	135,909	670,091	490,449	153,025	3.99	5.45
AmazonTitles-3M	BoW Features Raw text	165,431	2,812,281	1,712,536	739,665	31.55	36.18
Amazon-3M	BoW Features Raw text	337,067	2,812,281	1,717,899	742,507	31.64	36.17
Mediamill	BoW Features	120	101	30,993	12,914	1902.15	4.38
Bibtex	BoW Features	1,836	159	4,880	2,515	111.71	2.40
Delicious	BoW Features	500	983	12,920	3,185	311.61	19.03
RCV1-2K	BoW Features	47,236	2,456	623,847	155,962	1218.56	4.79
EURLex-4K	BoW Features	5,000	3,993	15,539	3,809	25.73	5.31
EURLex-4.3K	BoW Features	200,000	4,271	45,000	6,000	60.57	5.07
Wiki10-31K	BoW Features	101,938	30,938	14,146	6,616	8.52	18.64
Delicious-200K	BoW Features	782,585	205,443	196,606	100,095	72.29	75.54
WikiLSHTC-325K	BoW Features	1,617,899	325,056	1,778,351	587,084	17.46	3.19

Issues for Model-centric Approach to XMC

However, labeled datasets may have wrong and/or missing labels.

Human annotators make mistakes and get tired of long tedious work...

Deep knowledge of the target domain may be required... In XMC, the number of labels can be millions; it is hard to manually verify datasets thoroughly...

Data-centric Approach to XMC: A Case for E-Commerce

In an e-commerce service, there are various large datasets with weak supervision signals.

- Query-click logs
- Catalog data
- Item classification taxonomy

There are many wrong / missing labels...

- Inconsistent click behaviors of fickle users
- Erroneous retrieval results

How can we utilize these weak signals to generate quality training data?

We are working on this at RIT now!

We are Hiring!

RIT Tokyo Language Program

- (Internship) Research Scientist
- (Entry Level) Research Scientist
- Senior Research Scientist

Position Details

- Design algorithms and build proto-type systems to solve defined, scientific problems
- Demonstrate algorithms / proto-type systems to business stakeholders
- Collaborate with engineers to deploy algorithms / proto-type systems into production services
- Collaborate with other scientists on research and paper publications
- Participate in scientific conferences and contribute to scientific community with paper publications

Mandatory Qualifications

- Bachelor's degree in computer science, related research field or equivalent experience
- English fluency for communicating with researchers, engineers, and business stakeholders
- Proficiency in reading and processing Japanese text (our product catalog is written in Japanese)
- Coding skills: fluency in Python
- Experience with Linux environment

Rakuten