Computer Architecture Practice 11 Feb 2018

Instruction Set Architecture for 16-bit Processor

- 1. Instruction Format and Size:
 - This design considers the Instruction size as 16-bits.
 - The processor has 16 registers ranging from 0000 to 1111 i.e., r0, r1, ...r15.
- 2. Register based Instructions:

3. Load Instruction:

4. Store Instruction:

5. Opcode (Operation code) Encoding:

Operation	Description	Usage	Explanation
Code			
0000	Addition	ADD Rdst, Rsrc2, Rsrc1	Rdst = Rsrc2 + Rsrc1
0001	Addition with Carry	ADC Rdst, Rsrc2, Rsrc1	Rdst = Rsrc2 + Rsrc1 + CF
0010	Subtraction	SUB Rdst, Rsrc2, Rsrc1	Rdst = Rsrc2 - Rsrc1
0011	Subtraction With	SBB Rdst, Rsrc2, Rsrc1	Rdst = Rsrc2 - Rsrc1 -1
	Barrow		
0100	Multiplication	MUL Rdst, Rsrc2, Rsrc1	{R15, Rdst} = Rsrc2 * Rsrc1
0101	Floating Point	FADD Rdst, Rsrc2, Rsrc1	Rdst = Rsrc2 + Rsrc1
	Addition		
0110	Floating Point	FSUB Rdst, Rsrc2, Rsrc1	Rdst = Rsrc2 - Rsrc1
	Subtraction		
0111	Floating Point	FMUL Rdst, Rsrc2, Rsrc1	Rdst = Rsrc2 * Rsrc1
	Multiplication		
1000	Halt	HLT	Halt
1001	Register	CMP Rdst, Rsrc1	Rdst = ~Rsrc1
	Complement		
1010	Logical Bit Wise	AND Rdst, Rsrc2, Rsrc1	Rdst = Rsrc2 ^ Rsrc1
	XOR		
1011	Logical Bit wise	AND Rdst, Rsrc2, Rsrc1	Rdst = Rsrc2 ~& Rsrc1
	NAND		
1100	Shift Right	SHR Rdst, Rsrc2, Rsrc1	Rdst = Rsrc2 >> Rsrc1
			If Rsrc1 = 2 then shift the
			Rsrc2 in 2bit towards right
1101	Shift Left	LHR Rdst, Rsrc2, Rsrc1	Rdst = Rsrc2 << Rsrc1
			If Rsrc1 = 2 then shift the
			Rsrc2 in 2bit towards Left
1110	Store	STR Rdst, 8-bit Address	[8-bit Address] = Rdst
1111	Load	LDR Rdst, 8-bit Address	Rdst = [8-bit Address]