NBA shot log analysis

Multivariate Analysis. UPC.

Sergio Llana and Pau Madrero.

June, 2018.

Dataset Summary

Kaggle dataset on NBA shots taken during the 2014-2015 season.

- · Game actions as observations.
- · Missing and wrong values in several columns.

Enriched with players' salaries and positions scrapped from ESPN.

· Joined "automatically" using stringdist on names.

Binary response variable: success.

Data Preprocessing

Feature Extraction

shot_difficulty based on defender distance.

"Tightly Contested", "Contested", "Open" or "Wide Open"

shot_cat based on the distance and the number of dribbles.

"Catch&Shoot", "Cut", "Drive", "ISO", "Spot up three"...

clutch based on the final result of the match and the period¹.

¹Clutch situations are those when the player is under pressure.

Data Cleansing

touch_time should have values in [0, 24].

· Negative values marked as NA.

Weird spike in values close to 24 in shot_clock.

· Offensive rebounds by big men close to the hoop.

Handling Missing Values

Shot clock turned off when remaining_secs is lower than shot_clock. Imputed randomly between [0, remaining_secs]

touch_time's NAs studied with catdes and imputed with 1NN.

Analysis

Before PCA

We need to transform the categorical variables into continuous.

- · Examples:
 - Shooter
 - · Shot difficulty
 - · Shooter's position
 - ...
- · Based on the percentage of successful shots per modality
- Conditioned by whether the shot is a 2-pointer or a 3-pointer
- · We will keep the categorical variables

PCA(I): Screeplot

PCA (II): Variables

PCA (III): Biplot

PCA (IV): Varimax

Clustering

- · Clustering for large datasets.
- · 4 resulting clusters:
 - · Black: 2-pointer fast plays.
 - Red: Long plays with dribbles.
 - · Green: 3-pointer shots.
 - · Blue: 2-pointer shots.

Prediction

Validation Protocol

Binary classification problem: predict success of a future action. Partition alternatives:

- · Random partition: balanced response.
- · Temporal partition: most recent obvs. as test set.
- · Partition by players: subset of players' actions as test set.

Dataset split with 70:30 ratio of train and test data.

Decision Tree

10-fold Cross Validation to compare different alphas.
Post-pruning penalized by the size of the tree (number of leaves).

Random Forest

No need of Cross Validation thanks to the OOB error.

Parameters (ntree = 1000 and mtry = 3) optimized via grid search.

Results

	Accuracy	Precision (positive)
Decision Tree	61.91 %	37.77 %
Random Forest	61.96 %	40.07 %

Conclusions

Conclusions

- · Comprehensive analysis of the dataset.
- · Importance of applying domain knowledge.
- · Possible extensions of the work:
 - · Trying other classification models.
 - · Add data from other seasons or more features.