Analisi dei dati

Un goliardico riassunto

Ollari Dmitri

$18~{\rm luglio}~2023$

Indice

T	Analisi complessa	4
	1.1 Poli	4
	1.2 Zeri	4
2	Trasformata di Laplace	•
	2.1 Trasformate di laplace interessanti	4
3	Funzione di trasferimento	•
	3.1 Guadanagno statico	6
	3.2 polinomio caratteristico	
	3.3 Poli e Zeri	
	3.4 Modi	
4	Sistemi dinamici elementari	•
	4.1 Sistemi del secondo ordine	•
5	Stabilità dei sistemi dinamici	•
	5.1 Stabilità poli e zeri	4
	5.2 Teorema di Routh	
	5.2.1 Tabella	
б	Analisi armonica e Bode	!

Elenco delle figure

1 Analisi complessa

Quando si ha a che fare con equazioni differenziali lineari, solitamente si preferisce trasformare il calcolo da dominio del tempo t a dominio complesso s, svolgere il calcolo come se fosse una problema polinomiale e ritornare nel dominio del tempo t con il problema risolto.

1.1 Poli

Avendo una funzione d'esempio:

$$\frac{s(s+6)^3}{(s-2)(s+3)^2(s+5)^4} \tag{1}$$

I poli in questo caso sono:

- s = 2 di ordine 1
- s = -3 di ordine 2
- s = -5 di ordine 4

1.2 Zeri

Avendo una funzione d'esempio:

$$\frac{s(s+6)^3}{(s-2)(s+3)^2(s+5)^4} \tag{2}$$

Gli zeri in questo caso sono:

- s = 0 di ordine 1
- s = -6 di ordine 3

2 Trasformata di Laplace

La trasformata di laplace è comoda perchè permette di trasformare un problema differenziale in un problema algebrico e nel farlo mantiene la proprietà di linerià. Il che permette di:

$$\mathcal{L}[c_1 f_1(t) + c_2 f_2(t)] = c_1 \mathcal{L}[f_1(t)] + c_2 \mathcal{L}[f_2(t)]$$
(3)

La trasformata di Laplace rispetta anche la proprietà di Iniettività, ovvero:

$$\mathcal{L}[f(t)] = \mathcal{L}[g(t)] \implies f(t) = g(t) \tag{4}$$

2.1 Trasformate di laplace interessanti

Segnale	Trasformata di Laplace
Gradino unitario	$\mathcal{L}[1(t)] = \frac{1}{s}$
Segnale esponenziale	$\mathcal{L}[e^{at}] = \frac{1}{s-a}$
	$\mathcal{L}[t^n] = \frac{n!}{s^{n+1}}$
Derivata segnale impulsivo	$\mathcal{L}[\delta^{(n)}(t)] = s^n$
Segnale impulsivo	$\mathcal{L}[\delta(t)] = 1$
Segnale sinusoidale	$\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}$
Segnale cosinusoidale	$\mathcal{L}[\cos(at)] = \frac{s}{s^2 + a^2}$

3 Funzione di trasferimento

3.1 Guadanagno statico

$$Y(s) = G(0)U(s) \tag{5}$$

3.2 polinomio caratteristico

Dato:

$$\sum_{i=0}^{n} a_i D^i y = \sum_{i=0}^{m} b_i D^i u \tag{6}$$

Il polinomio caratteristico è:

$$a(s) = \sum_{i=0}^{n} a_i S^i \tag{7}$$

3.3 Poli e Zeri

I poli sono le radici di a(s), gli zeri sono le radici di b(s).

3.4 Modi

Se p è un polo reale con molteplicità h, allora:

$$t^{h-1}e^{pt}, t^{h-2}e^{pt}, \dots, e^{pt}$$
 (8)

Fino ad arrivare ad avere h = 0.

Se $\sigma \pm j\omega$ è un polo complesso con molteplicità h, allora:

$$t^{h-1}e^{\sigma t}\cos(\omega t), t^{h-1}e^{\sigma t}\sin(\omega t), \dots, e^{\sigma t}\cos(\omega t), e^{\sigma t}\sin(\omega t)$$
(9)

Oppure:

$$t^{h-1}e^{\sigma t}\sin(\omega t), t^{h-2}e^{\sigma t}\sin(\omega t), \dots, e^{\sigma t}\sin(\omega t)$$
(10)

Ecco un'esempio:

$$G(s) = \frac{(s+1)(S^2 + 2S + 7)}{(s+4)^4(s+5[(s+1^2+4)])}$$
(11)

I modi sono:

$$\left\{e^{-4t}, te^{-4t}, t^2e^{-4t}, t^3e^{-4t}, e^{-5t}, e^{-t}\sin(2t+\varphi_1), te^{-t}\sin(2t+\varphi_2)\right\}$$
(12)

4 Sistemi dinamici elementari

S	Massima sovrapposizione
T_r	Tempo di ritardo
T_s	Tempo di salita
T_m	Istante di massima sovrapposizione
T_a	Tempo di assestamento

4.1 Sistemi del secondo ordine

$$G(s) = \frac{\omega_n^2}{s^2 + 2\delta\omega_n s + \omega_n^2} \tag{13}$$

Dove ω_n è la pulsazione naturale e δ è il coefficiente di smorzamento.

5 Stabilità dei sistemi dinamici

Stabile	Per tutte le perturbazioni, la risposta libera è limitata
Asintoticamente stabile	Per tutte le perturbazioni, la risposta libera tende a zero
Semplicemente stabile	Stabile ed esiste una perturbazione che fa divergere la risposta libera
Instabile	Non è stabile

5.1 Stabilità poli e zeri

Stabile	Tutti i poli hanno parte reale non positiva, eventuali poli	
	puramente immaginari sono semplici	
Asintoticamente stabile	Tutti i poli hanno parte reale negativa	
Semplicemente stabile	ile Tutti i poli hanno parte reale non positiva e	
	quelli puramente immaginari (che devono esistere) sono semplici	
Instabile	abile Esiste almeno un polo con parte reale positiva	
	oppure esiste un polo puramente immaginario con molteplicità maggiore di uno	

5.2 Teorema di Routh

Assunto che riesco a completare la tabella di Routh, ad ogni variazione di segno dell'elemento nella colonna 1, corrisponde una radice con parte reale positiva,

Vale lo stesso principio anche per il numero di radici reali negative, ad ogni continuazione dedl segno della elemento nella colonna 1, corrisponde una radice negativa.

5.2.1 Tabella

Per la costruzione della tabelli mi aiuto con un polinomio caratteristico del tipo:

$$(s-1)(s^2+4s+5)+k(s+1) = (14)$$

$$s^3 + 3s^2 + (k+1)s + k - 5 (15)$$

Per prima cosa si inserisce nella tabella il polinomio di partenza.

Una volta inserite nella tabella le prime due righe, si procede con il calcolo delle righe successive. Si utilizzeranno la seguente tabella di riferimento:

Dove $\gamma_{i,j}$ è definito come:

$$\gamma_{i,j} = \frac{\begin{pmatrix} \gamma_{i-2,0} & \gamma_{i-2,j+1} \\ \gamma_{i-1,0} & \gamma_{i-1,j+1} \end{pmatrix}}{\gamma_{i-1,0}}$$
(16)

Un metodo visuale per ricordare come moltiplicare e dividere i valori della tabella è il seguente:

$$\frac{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}{c} \tag{17}$$

Quindi per poter dire che il sistema risulta stabile dobbiamo confermare che gli elementi della prima colonna mantenga il segno.

$$\begin{cases} 2k + 8 > 0 \\ k - 5 > 0 \end{cases} \tag{18}$$

$$\begin{cases} k > -4 \\ k > 5 \end{cases} \tag{19}$$

Quindi il sistema retrazionato è stabile se e solo se k>5.

6 Analisi armonica e Bode