Un polinomio de Laurent en una variable x es una función real racional que se puede escribir de la forma $\sum_{k=m}^{n} a_k x^k$ con $m \leq n$ dos numeros enteros y a_k un numero real para cada $k \in \{m, \ldots, n\}$. Una tal representación es única (se puede mostrar), y por tanto hace sentido hablar de a_k como el coeficiente del monomio de grado k. El coeficiente a_0 llamamos coeficiente constante.

La adición y multiplicación entre polinomios de Laurent resulta otra vez en una función real racional que es un polinomio de Laurent (muy facil a ver).

Problema 1.

i) Calcule una formula cerrada de

$$\sum_{\ell=1}^{n+1} \left(\frac{1}{\ell+2} - \frac{1}{\ell} \right).$$

ii) Calcule el coeficiente del monomio x^6 del polinomio de Laurent

$$(x+1)\left(3x^2-\frac{3}{x}\right)^7.$$

Problema 2. Sea $n \in \mathbb{N}$ y x una variable.

- i) Obtenga el coeficiente del monomio de grado n del polinomio $(1+x)^{2n}$. Justifique su respuesta.
- ii) Obtenga los coeficientes de los monomios de grado n y n-1 binomial del polinomio $(1+x)^{2n-1}$. Justifique su respuesta.
- iii) Muestre el coeficiente del monomio del grado n de $(1+x)^{2n}$ es igual a la suma de los coeficientes de los dos monomios de grado n y n-1 del polinomio $(1+x)^{2n-1}$.

Problema 3. En el polinomio $(px+1)^q$, con $p \in \mathbb{Z}$ y $q \in \mathbb{Z}^+$, se tiene que el coeficiente del monomio x es -12 y el coeficiente del monomio x^2 es 60. Determine el valor de p y q.

Problema 4.

i) Determine el valor numérico de la siguiente expresión:

$$\sum_{l=0}^{n} (1 - (-1)^{l}) \binom{n}{l},$$

donde $n \in \mathbb{N}$, fijo.

Problema 5.

1. Determine una fórmula cerrada para la sumatoria

$$\sum_{k=0}^{n} \left[2^{-(k+3)} + \frac{k+3}{k+2} - \frac{k+2}{k+1} + \binom{n}{k} (-1)^k \right]$$

Problema 6.

1. Calcule el valor de las siguientes sumatorias:

a)
$$\sum_{k=1}^{n} \frac{2}{(2k+3)(2k+5)}$$
.

$$\underline{\mathbf{b}}) \sum_{k=1}^{n} 8(3^k + 5k) - 7k^2.$$

Problema 7.

i) Si se sabe que $\sum_{i=1}^{7} x_i^2 = 196$; $\sum_{i=1}^{10} (2x_i - 3)^2 = 1130$; $x_8 = x_9 = -3$, $x_{10} = 5$. Determine el valor de $\sum_{i=1}^{7} x_i$

Problema 8. Determine una fórmula cerrada simplificada para cada una de las siguientes sumatorias

$$1. \sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}$$

2.
$$\sum_{k=0}^{n} (1 + x + x^2 + \dots + x^{k-1} + x^k) \binom{n}{k}, \quad x \neq 1$$

Problema 9.

1. Sea x una variable y $n \in \mathbb{N}$. En el desarrollo de $\left(x \cdot \sqrt{x} + \frac{1}{x^2}\right)^n$, se sabe que

$$\binom{n}{2} = \binom{n}{1} + 44.$$

Determine el valor de n, y encuentre el coeficiente que acompaña al término x^6 (donde se ve la expresión como un polinomio de Laurent en la "variable" \sqrt{x}).

2. Demuestre que coeficiente constante en el polinomio de Laurent es $\left(1+\frac{2}{x}+\frac{1}{x^2}\right)(1+x)^n$ es $\binom{n+2}{2}$.

Problema 10. Sean $a_i, = 1, ..., n$ y $b_j, = 1, ..., m$ successones. Muestre que:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} (a_i + b_j) = \sum_{j=1}^{m} \sum_{i=1}^{n} (a_i + b_j) = m \sum_{i=1}^{n} a_i + n \sum_{j=1}^{m} b_j.$$

Aplicar lo anterior para encontrar la fórmula cerrada de

$$\sum_{k=1}^{n} \sum_{\ell=1}^{k} (2\ell + k).$$

Problema 11. Sea $a,b,c\in\mathbb{R}$ y $n\in\mathbb{N}.$ Demuestre la fórmula de <u>Trinomio de Newton:</u>

$$(a+b+c)^n = \sum_{j=1}^n \sum_{k=1}^j \frac{n!}{(n-j)!(j-k)!k!} a^{n-j} b^{j-k} c^k.$$

Hint: Utilice Teorema de Binomio dos veces.