CS 6375 ASSIGNMENT SciKit Learn Lab - 2

, , , , , , , , , , , , , , , , , , ,	Names	of s	students	in	your	group	p:
---------------------------------------	-------	------	----------	----	------	-------	----

Akhila Kancharana (AXK180025)

Number	of free	late	days	used:	0	<u>)</u>

Note: You are allowed a <u>total</u> of 4 free late days for the <u>entire semester</u>. You can use at most 2 for each assignment. After that, there will be a penalty of 10% for each late day.

Please list clearly all the sources/references that you have used in this assignment.

1.Code

Algorithm	Code
Decision Tree	https://colab.research.google.com/drive/1kYihfnpvRXERP-Z2GJn RnmbP3SrsLdFl
Neural Net	https://colab.research.google.com/drive/1N3FWmLTUP4zyJJHm oMc0HeaSRK1kyBNa
SVM	https://colab.research.google.com/drive/1V7HYGU3upEymHEovqaDswCkHOOFbCeeH
Logistic Regression	https://colab.research.google.com/drive/1v7E4DJVwJHSHr9isjpk GJiYiMSLVejpT
Random Forest	https://colab.research.google.com/drive/1BuEhN2f4EM83PPC1rbbauQRgqNuekLCp
Bagging	https://colab.research.google.com/drive/10FIPvRK2Z6MupQIHR uEiLsbKil2zsk
K Nearest Neighbours	https://colab.research.google.com/drive/1cofnqIQL4WeIEov1WqwjJlnuRMyd0da1
XGBoost	https://colab.research.google.com/drive/1KjNfZlk2fZK_c-ArWvrvV 9qafz9LeyLP
Gradient Boosting	https://colab.research.google.com/drive/10YYVFvGUzE16MF_Gn AzRhICQEaMyBawm
Adaboost	https://colab.research.google.com/drive/111oy9Lpe7j9wcVs5AzH 1S6-1qp_4NO9Y
Gaussian Naive Bayes	https://colab.research.google.com/drive/1_ueJ-MjyrpiyruEjxlijK2xll 9wd2EgN

2. Evaluation Metrics:

Algorithm	Best Parameters	Avg Precisio n	Avg Recall	Avg F1	Accura cy Score
Decision Tree	{'criterion': 'entropy', 'max_depth': 20, 'max_features': 25, 'max_leaf_nodes': 80, 'min_impurity_decrease': 0.001}	0.84	0.83	0.83	0.83
Neural Net	{'activation': 'tanh', 'alpha': 1.3717421124828532e-15, 'hidden_layer_sizes': 11, 'learning_rate_init': 0.06}	0.92	0.91	0.91	0.914
SVM	{'C': 10, 'gamma': 0.001, 'kernel': 'rbf', 'max_iter': 10}	0.99	0.99	0.99	0.99
Logistic Regression	{'C': 1.0, 'fit_intercept': 1, 'max_iter': 50, 'penalty': 'l2'}	0.95	0.95	0.95	0.95
Random Forest	{'criterion': 'entropy', 'max_depth': None, 'max_features': 'auto', 'min_samples_split': 5}	0.94	0.94	0.94	0.94
Bagging	{'max_features': 0.5, 'max_samples': 0.5, 'n_estimators': 10, 'random_state': 1}	0.95	0.94	0.94	0.94
K Nearest Neighbours	{'algorithm': 'auto', 'n_neighbors': 8, 'p': 3, 'weights': 'distance'}	0.99	0.99	0.99	0.986
XGBoost	{'booster': 'gblinear', 'min_child_weight': 1, 'seed': 7}	0.98	0.97	0.98	0.975
Gradient Boosting	{'learning_rate': 0.5, 'max_depth': 4, 'min_samples_leaf': 8, 'n_estimators': 10}	0.95	0.95	0.95	0.95
Adaboost	{'algorithm': 'SAMME.R', 'learning_rate': 0.01, 'n_estimators': 100,'random_state': 1}	0.71	0.65	0.65	0.65
Gaussian Naive Bayes	{'priors': None}	0.87	0.82	0.83	0.825

3. Analysis

In the table above, we deduce that SVM, K Nearest neighbour classifiers performed the best among the classifiers given. This might be because, we are checking on a single dataset digits and the classifiers SVM,KNN fit well for this kind of dataset. As the data does not undergo pre-processing or scaling it might result in a significant increase or decrease on accuracy. I would suggest on preprocessing the data sets, testing on other dataset and implementation of various other parameters to improve and get rid of false positives increasing the accuracies and obtain optimum results.