4.1: Euler's Method

Contents

L	Euler's Method via example	1
2	Euler's Method in General 2.1 Examples	3
1	Euler's Method via example	
	• The idea of Euler's method is rather like the idea of a discrete dynamic system: use what you know at time t to "bootstrap" yourself to tin $t+1$.	
	• Only now, we don't need to restrict ourselves to a time increment of	1.
	• Ex: Consider the equation $y' = \frac{1}{2}y$. We know the general solution $y = Ce^{\frac{1}{2}x}$, but let's pretend we didn't.	is
	• Say we have initial condition $y(0) = 1$ and that we want to predict increments of $\Delta t = 0.5$. (For this example, to make things clearer, will round everything to 2 decimals. In practice, this is unneccessary	, I
	• From the DE: $y'(0) = \frac{1}{2}y(0) = \frac{1}{2} \cdot 1 = \frac{1}{2}$.	
	• Vou know slope - rise/run or that the rise - run × slope so	

• predict: $y(0.5) \approx 1.25$ (add the rise to the known value of 1).

rise = $(0.5) \left(\frac{1}{2}\right) = 0.25$.

• feedback: $y'(0.5) = \frac{1}{2}(1.25) = 0.63$, so

rise =
$$(0.5)(0.63) = 0.32$$
.

- predict: y(1) = 1.25 + 0.32 = 1.57.
- can continue this cycle of predicting a rise, getting a new y-value, and feeding back into the DE to get a new slope and rise.
- Draw picture; we are obtaining y-values of the solution, predicted from the DE, the initial condition, and the time increment.
- compare to the actual solution of $e^{t/2}$ using computer.

2 Euler's Method in General

- Here's the strategy of Euler's method.
- Start with: a DE, an initial condition, and a time step Δt .
- Follow the recipe:
 - 1. get a slope from the DE by plugging in the current t and y-values.
 - 2. find the rise.
 - 3. use the rise and the known y-value to get the new y-value at time $t + \Delta t$.
 - 4. feedback: return to step 1.
- This is known as *Euler's Method*. (Note: Euler is pronounced like "Oiler".)
- Facts about Euler's method:
 - The y-values we obtain from this are known as the numerical solution, because we don't have a formula for them; rather we just have the y-values.
 - It can be applied to any first-order DE (and to higher order, with modifications that we might discuss later.) As such, it is very widely used in practice.

- The predicted y-values are only approximate; they may not be exactly the right y-values, but they will be close.
- Using smaller Δt makes a more accurate solution, but takes a lot more work to compute further out! So it's a tradeoff: do you want a quick answer, or an accurate answer? This is the idea of computational complexity.

2.1 Examples

• Ex: With the DE $\frac{dy}{dt} = -t + y$, initial value y(0) = 0, and step size $\Delta t = 0.5$, predict the value of y(2).

t	y
0	0
0.5	0
1	-0.25
1.5	-0.875
2	-2.0625

• You try: With the DE $\frac{dy}{dt} = t^2 + 1$, initial value y(0) = -1, and step size $\Delta t = 0.1$, predict the value of y(0.3).

• You try: with DE $y' = t^2y$, initial condition y(0) = 2, and step size $\Delta t = 1$, predict y(3).

$$\begin{array}{c|cc}
t & y \\
\hline
0 & 2 \\
1 & 2 \\
2 & 4 \\
3 & 20
\end{array}$$