

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification: A61M 25/00	A1	(11) International Publication Number: WO 00/03756
		(43) International Publication Date: 27 January 2000 (27.01.2000)
<p>(21) International Application Number: PCT/US99/16102</p> <p>(22) International Filing Date: 16 July 1999 (16.07.1999)</p> <p>(30) Priority Data: 60/093,035 16 July 1998 (16.07.1998) US</p> <p>(60) Parent Application or Grant COHEN, Mark [/]; (O) COHEN, Mark [/]; (O) PARKER, Sheldon, H. ; (O).</p>		

Published

(54) Title: **REINFORCED VARIABLE STIFFNESS TUBING**
(54) Titre: **TUBE RENFORCE A RIGIDITE VARIABLE**

(57) Abstract

A multilayered catheter (10) is disclosed which has an inner liner (12) covered with a variable pitch braid (14) which is encapsulated within an interior co-taper (16), and exterior co-taper (18). The current invention utilizes the varying braid patterns encapsulated throughout the catheter to program into the tube either good push ability characteristics or good flexibility characteristics.

(57) Abrégé

La présente invention concerne un cathéter à structure multicouche (10) qui comporte un revêtement interne (12) recouvert d'une tresse à schéma de tressage variable (14), elle même prise entre une couche biseautée interne (16) et une couche biseautée externe (18) disposées coaxialement. Ce cathéter fait intervenir des schémas de tressage qui varient le long du tube, variations qui permettent de moduler la capacité de flexion et l'aptitude au refoulement.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : A61M 25/00	A1	(11) International Publication Number: WO 00/03756 (43) International Publication Date: 27 January 2000 (27.01.00)
(21) International Application Number: PCT/US99/16102		(81) Designated States: AU, JP, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 16 July 1999 (16.07.99)		
(30) Priority Data: 60/093,035 16 July 1998 (16.07.98) US		Published <i>With international search report.</i>
(71)(72) Applicant and Inventor: COHEN, Mark [US/US]; 32 Lawrence Lane, Palisades, NY 10964 (US).		
(74) Agent: PARKER, Sheldon, H.; Suite 300, 300 Preston Avenue, Charlottesville, VA 22902 (US).		

(54) Title: REINFORCED VARIABLE STIFFNESS TUBING

(57) Abstract

A multilayered catheter (10) is disclosed which has an inner liner (12) covered with a variable pitch braid (14) which is encapsulated within an interior co-taper (16), and exterior co-taper (18). The current invention utilizes the varying braid patterns encapsulated throughout the catheter to program into the tube either good push ability characteristics or good flexibility characteristics.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Description

5

10

15

20

25

30

35

40

45

50

55

5

1 REINFORCED VARIABLE STIFFNESS TUBING

2 | BACKGROUND OF THE INVENTION

3 | Cross-Reference to Related Application

4 This application claims the benefit of copending provisional
5 patent application, serial number 60/093,035, filed July 16,
6 1998, the disclosure of which is incorporated hereby, by
7 reference, as though recited in full.

8 | Field of the Invention

9 The invention discloses reinforced co-
10 tapered, variable stiffness tubing, and more
25 11 specifically a reinforced tubing using an
12 encapsulated braid.

30 13 | Brief Description of the Prior Art

14 Catheterization procedures are used to diagnose the
15 condition of a patient's body tissue such as arterial
35 16 passageways or the like. Normally, an incision is made in
17 the patient's body in order to insert the catheter apparatus
18 into the passageways to be diagnosed. The catheter is then
40 19 inserted through the incision and into the desired
20 passageway. The catheter is fed through the passageway
21 until it is correctly positioned adjacent the desired body
45 22 organ, such as the heart. The catheter is then precisely
23 rotated and manipulated into the desired body organ, for

50

55

1 instance, the right coronary artery. Diagnostic fluid is
10 then injected into the passageway at a predetermined minimum
3 flow rate in order for a separate device, such as an x-ray;
4 to properly record in photograph form the condition of the
15 passageway.

6 Dilatation catheters predominately fall into two
7 categories, over-the-wire catheters that are fed over a
20 guide wire and fixed wire catheters, which serve as their
8 own guide wire. Wireless dilatation balloon catheters have
9 been developed in an attempt to obtain some of the advantage
10 of an over-the-wire catheter. Dilatation catheters must
11 offer flexibility to allow the catheter to maneuver through
12 tight curvatures in the vascular system. The physician must
13 also have the ability to transmit longitudinal force, from
14 the proximal to the distal ends, to push the catheter
15 through the guide catheter and arteries and across the
35 stenosis.

18 Angioplasty is an effective method of opening stenosis
40 in the vascular system. In the most commonly used form of
19 angioplasty, a balloon catheter is guided through the
20 vascular system in position across the stenosis. Once in
21 position, the balloon is inflated, the artery opened and
22 acceptable blood flow reestablished.
45

1 The above procedures, however, frequently induce trauma
10 2 to the walls of the patient's passageways. Prior art
15 3 catheters have sought to reduce this trauma by providing a
20 4 highly flexible catheter that bends in conformance with the
25 5 passageways. In order to allow the catheter to be fed
30 6 through the passageways, the catheter must have sufficient
35 7 rigidity to provide adequate torque transmission. Without
40 8 sufficient torque transmission, the catheter cannot be
45 9 precisely rotated into the desired body organ. Further,
50 10 poor torque transmission causes buckling, wind-up and
55 11 whiplash, inducing trauma to the passageways and causing
60 12 pain and discomfort to the patient.

13 Thus, the medical profession has been faced with a
14 15 trade-off between a highly flexible catheter apparatus that
16 17 fails to function adequately when in torsion or a rigid
18 19 catheter that creates an intolerable amount of trauma.

20 U.S. Patent 5,805,649 issued to Flynn, discloses a
21 22 Torque Controlled Tube that utilizes the co-tapering of
23 24 polymeric materials, such as polyamides and polyurethanes,
25 26 to produce a tube that is variable in stiffness. While this
26 27 construction produces adequate pushability and kink
27 28 resistance results for thick walled tubing, it does not
28 29 address problems inherent in thin-walled tubing. The

5

4

10

1 stiffer material is in higher concentration in the
2 sections(s) of the tube that requires good pushability while
3 the softer material is in higher concentration in the tube
4 sections that require greater flexibility.

15

20

25

30

5 To address problems associated with thin walled tubing,
6 many angiography and guiding catheters are constructed by
7 encapsulating a braid for added strength and flex
8 properties. Unfortunately, due to the construction methods
9 of these catheters, the braid pattern remains constant
10 throughout the entire length of the catheter, with exception
11 of the tip region, therefore compromising performance
12 characteristics through out the different segments of the
13 catheter.

35

40

45

14 One method of producing a variable stiffness tube,
15 suitable for medical device applications, is disclosed in
16 U.S. Patent Number 5,531,721, Multiple Member Intravascular
17 Guide Catheter. This patent relates to the bonding/joining
18 of multiple tube sections. These tube sections may or may
19 not be reinforced. The difficulty in producing a catheter
20 of this nature is that the transition from a "stiff" section
21 to a "soft" section is not achieved continuously. Rather at
22 each joint, a stress riser may occur that can weaken the

50

55

5

5

1 tube's structure thereby leading to possible premature
10 kinking when flexed or rupturing when pressurized.

15 Engleson, U.S. Patent Number 5,312,356, discloses a
20 Catheter with Low-Friction Distal Segment that utilizes a
25 variable braided pattern to minimize jamming, stick or
30 locking of the distal end of the catheter or any part of the
35 guide wire against the surface. The braided material is
40 exposed on the inner surface of the tube at the distal tip
45 of this catheter and is not used to provide variable
50 stiffness but rather as a means of preventing the sticking
55 problems mentioned previously.

12 Many other patents have addressed the problem of
13 minimizing body trauma during insertion of a catheter.
14 These include the use of a glass transition material (U.S.
15 5,441,489 to Utsumi et al); a single-lumen shaft for use
16 with either a fixed-wire balloon catheter or an innerless
17 catheter (U.S. 5,533,987 to Pray et al); and a collapsible
18 shaft and guide wire lumen (5,466,222 to Ressemann et al).
19 Muni et al (U.S. 5,569,196) discloses a tractable catheter
20 having two lumens that vary in Shore hardness. In 5,603,705
21 to Berg, an intravascular catheter is constructed with an
22 outer layer and an inner layer that is covered with a
23 support surface, such as a stainless steel wire braid.

50

55

5

6

1 Another dual lumen catheter that includes a wire braid
10 between the two lumens, is disclosed in 5,078,702 to
3 Pomeranz. In 5,254,107 to Soltesz the plastic catheter shaft
4 has embedded the braid within the outer catheter shaft. In
15 5,764,324 to Burnham also incorporates the reinforcing
6 member into the outer lumen by heating the lumen after
7 molding. U.S. 5,221,270 to Parker discloses the use of
20 8 tapered ends on the catheter materials to change from a
9 harder Shore to a softer Shore and provide an outer diameter
10 with a uniform, continuous outer layer.

25 U.S. 4,425,919 has sought to overcome the foregoing
11 problems by providing a catheter with a small outside
30 12 diameter and utilizing a pre-oriented substrate that
13 adequately supports the reinforcing means. A flat braid is
14 used which is maintained in its position around the
15 substrate by a surrounding superstrate.

16 SUMMARY OF THE INVENTION

17 The foregoing prior art examples do not provide
40 18 solutions to the current problems associated with thin
19 walled catheters that are used for placement of medical
20 devices.

45 22 Although the prior art illustrates attempts to provide
23 a flexible catheter tubing with a soft tip and stiff body,

50

55

5

7

1 in order to reduce trauma while allowing for
10 maneuverability, they do not specifically address the
3 current problems associated with thin walled catheters that
4 are used for placement of medical devices. For example, the
15 co-tapering of materials address stiffness and flexibility
6 issues in angiography catheters where thicker walled
7 catheters are acceptable, but do not provide sufficient
20 strength to perform as a guide catheter. One existing
9 problem with current guide catheter technology is that the
10 braid pattern is constant through out the length of the
25 catheter, therefore compromising both push and flex
11 requirements.

30 Another problem that has been addressed in the prior
14 art is that of adhering a "soft" tip to the distal end of
15 the catheter. Many catheters use a heat or gluing process
35 to adhere a low durometer polymeric material to the end of
17 the catheter. Usually, these materials are in the same
18 polymeric family, (i.e. urethanes, ethylenes, etc.) but vary
40 in durometer and do not bond easily to the tube matrix.
20 Pomeranz, U.S. Patent 5,078,702 discloses a Soft Tip
21 Catheter that attempts to address these bonding problems to
45 form a stable joint. Unfortunately, this design limits the

50

55

5

8

10

- 1 contact surface of the materials being bonded due to the
- 2 presence of the inner liner.

15

The current invention overcomes the foregoing problems in "stiff" to "soft" transition by providing a continuous structure that is reinforced while varying in longitudinal stiffness. Further the utilization of a co-tapered soft tip reduces body trauma while selecting polymeric materials matching the contact surface maximize the bonding mechanism between the tube and the tip.

2

8 matching the contact surface maximize the bonding mechanism

25

11

30

BRIEF DESCRIPTION OF THE DRAWINGS

14 The advantages of the instant disclosure will become
15 apparent when read with the specification and the drawings,
16 wherein:

17 FIGURE 1 is a longitudinal, cross-sectional view of the
18 disclosed gasmeter;

16

19 FIGURE 2 is a cross-section view of the distal end of
20 the tube of Figure 1.

45

21 FIGURE 3 is a longitudinal, cross-sectional view of the
22 catheter of Figure 1 with a two layered, co-tapered tip
23 attached to the distal end; and

50

55

5

9

10

1 Figure 4 is a longitudinal cross-sectional view of a
2 three layer co-taper system over a braid.

15

3 DETAILED DESCRIPTION OF THE
4 PREFERRED EMBODIMENTS OF THE INVENTION

20

5 Currently variable stiffness catheters comprise an
6 inner most layer that is comprised of a thin fluorepolymer
7 film. This film is then covered with a braid, which is
8 usually metallic but also can be made of a polymer, such as
9 nylon, high density and linear polyolefines, such as
10 polyethylene, or a composite, such as Kevlar. The actual
11 braid design can be single or side-by-side strands,
12 following a traditional braid pattern. The braid is then
13 coated with at least two component co-tapered.

25

14 The cotapered layers of tubing, extend from the
15 proximal to distal ends. In general, the discrete layers
16 differ in durometer as they advance distally, forming a
17 rigid to soft composite construction. Most advantageously
18 the structure softens in durometer from distal to proximal
19 end.

30

20 In other applications, a soft tube having a uniform
21 durometer is joined with the braided substrate. A non-
45 braided soft tip is then usually bonded to the distal end.
22 Hubs and strain relief are fitted proximally and the tip is

40

50

55

5

10

10

1 | preformed into a specific shape depending on the intended
2 | application.

15

3 | In U. S. 5,085,649 issued on February 4, 1992 to
4 | Vincent Flynn, a catheter tubing suitable for medical use
5 | is disclosed. The tubing is multi-layer and comprises an
6 | interior tubular portion, consisting of two layers, and a
7 | concentric outer shell. The two interior layers are tapered
8 | inversely for a portion of the length of the tube with at
9 | least one end of the interior portion extending beyond the
10 | concentric outer shell. Although the '649 patent provides
11 | an increased torque resistance and pushability suitable for
12 | thick walled tubing, the problems inherent with thin wall
13 | tubing are not overcome.

20

25

30

14 | To enable the tubing of the disclosed invention to
15 | overcome the problems inherent with thin wall tubing, a
16 | braid is added to the variable stiffness tube to increase
17 | the resistance to kinking while maintaining the desired
18 | flexibility. The braid further increases the burst
19 | pressures and pushability of the catheter. Possibly the
20 | most valuable improvement is the increased torque control of
21 | the distal tip.

40

45

22 | The current invention utilizes varying braid patterns
23 | encapsulated throughout the catheter to program into the

50

55

5

11

1 tube either good pushability characteristics or good
10 flexibility characteristics. Typically a "loose" braid
3 pattern promotes column strength in the structure and hence
4 enhances the pushability of the catheter while a "tight"
15 braid pattern promotes radial reinforcement in the structure
6 and enhances the flexibility of the tube. By providing
7 variable patterns within a single length of tubing, a single
20 catheter can be provided with optimum controllability.

9 The advantage of the braid has been recognized in the
10 prior art, such as 5,312,356 to Engelson et al, where the
11 braid is used to minimize jamming, sticking or locking of
12 the distal end of the catheter. The catheter disclosed
13 herein utilizes the advantages provided by the braid and
14 incorporates these with the variable stiffness tube in an
15 easy to manufacture monolithic construction that avoids
16 bursting and reduces body stress and trauma. The extruded
17 construction, which incorporates the braid in a single
18 extrusion operation, greatly reduces manufacturing expenses
40 by providing a single step, fully automated process

45 The catheter tube 10, as illustrated in Figures 1 and 2
20 is constructed by forming an interior liner 12 as the inner
21 most layer. The liner 12 is then covered with a variable
22 pitch braid 14 and then encapsulated within an interior co-

50

55

5

12

1 | taper 16 and exterior co-taper 18 that form the tube wall
10 |
2 | 20. The liner 12 is manufactured from a resin having
3 | suitable properties to provide minimal friction between a
4 | guide wire/device or fluid and the interior surface of the
15 | liner 12. Examples of these materials are a fluoropolymer
6 | or high durometer polymers (greater than 63D Shore hardness)
7 | such as polyurethane, polyamide, polyimide, peek,
20 | polyesters, Pebax, Plexar, polyethylenes, etc. The wall
9 | thickness of the liner 12 can vary from .0005 inch to .0030
10 | inch depending on the desired performance. The thickness
25 | of the liner 12 directly alters the flexibility and
11 | subsequently the kink resistance. By varying the thickness
12 | of the liner 12 within the catheter length, additional
13 | control over flexibility can be achieved.

15 |
35 | The variable pitch braid 14 can be fabricated from
16 | round or profile wire stock. The braid pattern can also be
17 | formed using one; two or three wires wound parallel to and
18 | touching each other in a diamond or herringbone pattern.
40 | Typical materials used in the braid 14 are stainless steel,
20 | nickel titanium or any precious metal that could enhance the
21 | fluoroscopic visualization of the tube. Typical round wire
22 | diameters are .0005 inch to .005 inch with profile wire
23 | sizes varying from a width to height ratio of 1:1 to 8:1

50

55