Project Development Phase SPRINT DELIVERY – 4

Team ID	PNT2022TMID34687
Project Name	Smart Farmer-IoT Enabled Smart Farming Application
Date	16 November 2022

5.5 Receiving commands from IBM cloud using Python program

import time import

sys

import ibmiotf.application

import ibmiotf.device import

random

#Provide your IBM Watson Device Credentials

```
organization = "157uf3" deviceType = "abcd" deviceId = "7654321" authMethod = "token" authToken = "87654321"
```

Initialize GPIO

```
print("Command
def
     myCommandCallback(cmd):
received: %s" % cmd.data['command'])
status=cmd.data['command'] if status=="motoron":
                       elif status == "motoroff": print
print ("motor is on")
("motor is off")
                 else: print ("please send proper
command")
try:
      deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method":
                 authMethod,
                                 "auth-token":
                                                 authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
except Exception as e:
      print("Caught exception connecting device: %s" % str(e))
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type "greeting" 10 times deviceCli.connect()
while True:
    #Get
                Sensor
                                         from
                                                      DHT11
                              Data
temp=random.randint(90,110)
Humid=random.randint(60,100)
```

```
Mois=random. Randint(20,120) data = {
  'temp': temp, 'Humid': Humid,
'Mois': Mois}
    #print data
                 def myOnPublishCallback():
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%" %
Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
     success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on_publish=myOnPublishCallback)
                                     if not success:
      print("Not connected to IoTF")
time.sleep(10)
                    deviceCli.commandCallback
myCommandCallback # Disconnect the device and
application from the cloud
deviceCli.disconnect()
```


6.Flow Chart

7. Observations & Results

8. Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

9.Conclusion

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.