Measures of dispersion

2) Quantile deviation =
$$\frac{93-91}{3}$$

1) Kange = L-S

2) Quantile deviation =
$$\frac{93-91}{2}$$

3) Mean deviation about = $\frac{1}{2}$

4) Standard deviation
$$6 = \sqrt{\frac{2}{2}} + \left(\frac{2}{2} + \frac{2}{2}\right)^2 \times i$$
Variance = 6 .

Coefficient of dispersion. Coeff of range = $\frac{L-S}{L+S}$ Coeff of Mean deviation = $\frac{M \cdot D about Mean}{Mean}$ Coeff & Q7 = Q3-Q1 Q3+Q1

Coeff of Variation = = = x100. -> Variability of the

The the moment of a variable x about any point z=A, distributed by μ'_{x} is given by

(variable) $M_{x} = \frac{1}{2!} \sum_{i} f_{i}(z_{i}-A) \longrightarrow M_{i} = \frac{2! f_{i}(z_{i}-A)}{2! f_{i}}$ The γ moment of a variable χ about the mean $\overline{\chi}$, denoted by μ_i defined as $\mu_i = \frac{1}{2\pi i} \begin{cases} f_i \left(\chi_i - \overline{\chi} \right) \end{cases}$.

Note:
$$M_{x} = \frac{\sum_{i=0}^{x} f_{i}(x_{i}-x_{i})^{x}}{\sum_{i=0}^{x} f_{i}}$$
 $Y=0$
 $M_{0} = \frac{\sum_{i=0}^{x} f_{i}}{\sum_{i=0}^{x} f_{i}} = 1$
 $M_{1} = \frac{\sum_{i=0}^{x} f_{i}(x_{i}-x_{i})}{\sum_{i=0}^{x} f_{i}} = \frac{\sum_{i=0}^{x} f_{i}}{\sum_{i=0}^{x} f_{i}} = \frac{\sum_{i=0}^{x} f_{i}}{\sum_{i=0}^{x} f_{i}} = \frac{\sum_{i=0}^{x} f_{i}}{\sum_{i=0}^{x} f_{i}} = \frac{\sum_{i=0}^{x} f_{i}}{\sum_{i=0}^{x} f_{i}} = \frac{\sum_{i=0}^{x} f_{i}}$

A=2 A=2 A=2 A=3 A=3

Relationship blu
$$M_1 \in M_1$$
.

Let $d_i = \pi_i - A$. $\mathcal{Z}_i = A + M_1$
 $N = \mathbb{Z}_i = \mathbb{Z}_i$

= 1 2 fi { di-Mi}

$$M_{Y} = \frac{1}{N} \frac{1}{2!} \frac{1}{4!} \frac{1$$

$$M_1 = \frac{28(x-x)}{518} = \frac{28x}{518} = x-x=0.$$
 $M_1 = M_1 - M_1 = 0$

Skewness = $\beta_1 = \frac{M^2}{M^2_2}$

Skewness = $\beta_2 = \frac{M_4}{M^2_2}$

Suppose $\beta_3 = \beta_4 = \frac{M_4}{M^2_2}$

Suppose $\beta_4 = \frac{M_4}{M^2_2}$

Suppose $\beta_5 = \beta_6 = \frac{M_4}{M^2_2}$

Suppose $\beta_6 = \frac{M_4}{M^2_2}$

Supp

1) Raw moments 2) Central moments 3) Relationship blu raw & Central moments 4) Parposaler Cases in Central moments

M2 = Variance = M2 - (M1).

M3 & M4. 5) $R_1 = \frac{M_3}{M_2^2}$ (Shewners) $R_2 = \frac{M_4}{M_2^2}$ (Kuryəsir).

The first four moments about the value
$$x=4$$
 are $-1.5, 17$, -30 & 108 . Find skewness & Kuntopin. $x=4$ are $-1.5, 17$, $y=-30$ & $y=-30$. My $y=-30$.

To find $y=-108$.

 $y=-108$.

$$M_{4} = M_{4} - 4M_{5} M_{1} + 6M_{2}(M_{1})^{2} + 3(M_{1})^{4}$$

$$= 108 - 4(-30)(-1.5) + 6(17)(-1.5) - 3(-1.5)$$

$$= 108 - 120(1.5) + 6(17)(2.25) - 3(2.25)(2.25)$$

$$= 142.3125$$

$$B = M_{4} = \frac{142.3125}{14.75^{2}} = 0.6541.$$

wote:
$$\bar{\chi} = A + M_1 = 4 + (-1.5) = 2.5$$
.

How will you find moments about $\chi = 0$?

 $\bar{\chi} = A + M_1$. Here assume $A = 0$
 $\bar{\chi} = A + M_1$. Here assume $A = 0$
 $\bar{\chi} = M_1 = 2.5$
 $M_2 = M_2 - (M_1)^2 \Rightarrow M_2 = M_2 + (M_1) = 14.75 + (2.5)$
 $= 14.75 + 6.25$
 $= 21$

find the first four moments -224 7