----- 4 ------

Divide-and-Conquer (Recurrences)

Divide-and-Conquer:

Divide: (into the same problems of

4-1×

smaller size)

Conquer: Combine:

Two examples of divide-and-conquer: 4.1, 4.2 Solving recurrences: 4.3, 4.4, 4.5

4.1 The maximum-subarray problem

Input: an array A[1..n] of n numbers

Output: a nonempty subarray A[i..j] having

the largest sum $S[i, j] = a_i + a_{i+1} + ... + a_j$

A brute-force solution

all pairs of i, j

* Examine all
$$\binom{n}{2}$$
 possible $S[i, j]$

- * Two implementations O(j i + 1)
- (1) compute each S[i, j] in O(n) time $\Rightarrow O(n^3)$ time
- (2) compute each S[i, j+1] from S[i, j] in O(1) time (S[i, i] = A[i]) and S[i, j+1] = S[i, j] + A[j+1]) $\Rightarrow O(n^2) \text{ time}$ (ex. S[2, 12] = S[2, 11] + A[12]) $I_i = 2$

$$S[2, 2] = -15$$

 $S[2, 3] = 8$
 $S[2, 4] = 12$
 $S[2, 5] = -1$ \Rightarrow $O(n)$ time for each i

A divide-and-conquer solution

* Possible locations of a maximum subarray A[i..j] of A[p..r], where $q = \lfloor (p+r)/2 \rfloor$

- (1) entirely in A[p..q]
- (2) entirely in A[q+1..r]
- (3) crossing the midpoint $(p \le i < q < j \le r)$

* A divide-and-conquer algorithm

```
FINDMAXSUBARRAY(A, p, r)
1 if p = r then return (p, p, A[p])
                                              //base case
                           take it even negative
2 else
     q \leftarrow \lfloor (p+r)/2 \rfloor (nonempty subarray)
                                                       recursive
3
                                                          calls
     (i_1, j_1, s_1) \leftarrow \text{FINDMAXSUBARRAY}(A, p, q)
4
5
     (i_2, j_2, s_2) \leftarrow \text{FINDMAXSUBARRAY}(A, q+1, r)
     (i_c, j_c, s_c) \leftarrow \text{FINDMAXCROSSING}(A, p, q, r)
6
7
      if s_1 \ge s_2 and s_1 \ge s_c then return (i_1, j_1, s_1)
8
      elseif s_2 \ge s_c then return (i_2, j_2, s_2)
      else return (i_c, j_c, s_c)
9
```

* Find a maximum subarray crossing the midpoint

FINDMAXCROSSING(A, p, q, r)

```
S_1 \leftarrow -\infty
  2
       sum \leftarrow 0
   3
       for i \leftarrow q downto p do
                                                Find maxleft, s<sub>1</sub>
  4
            sum \leftarrow sum + A[i]
                                                   (A[i..q])
  5
            if sum > s_1
  6
               then s_1 \leftarrow sum
  7
                       maxleft \leftarrow i
  8
       S_2 \leftarrow -\infty
  9
       sum \leftarrow 0
 10
       for j \leftarrow q + 1 to r do
                                               Find maxright, s<sub>2</sub>
 11
            sum \leftarrow sum + A[j]
                                                  (A[q+1..j])
 12
            if sum > s_2
 13
               then s_2 \leftarrow sum
 14
                       maxright \leftarrow i
       return (maxleft, maxright, s_1 + s_2)
Example:
```

q = 6

													4-5
Λ	1	2	3	4	5	6	7	8	9	10	11	12	
A	-7	8	-5	20	-3	-8	-23	18	20	-7	12	-5	
	$s_1 = -\infty$ maxleft												
S[6, 6] =						- 8	20 25 26 28		-8			6	
S[5, 6] = S[4, 6] =			1	9	-11		55 55 55 56 56 56 56 56 56 56 56 56 56 5		9			4	
S[3, 6] = S[2, 6] = S[16] =	5	12 <	← (n	naxle	eft =	2)	# # # # # # # # # # # # # # # # # # #		12			2	
q = 6													
Α	1	2	3	4	5	6	7	8	9	10	11	12	
	-7	8	-5	20	-3	-8	-23	18	20	-7	12	-5	
O[7 7]												S ₂ =	$-\infty$
S[7, 7] = S[7, 8] =	-23 -5 15											–23	
S[7, 9] =									15				-5 15
S[7, 10] =											•	A	10
$S[7, 11] = $ (maxright = 11) \Rightarrow 20										× _	20		
S[7. 12] =												15	

 \Rightarrow maximum subarray crossing q is A[2, 11] (with S[2, 11] = 32)

- * Time complexity
- (1) FINDMAXCROSSING: $\Theta(n)$, where n = r p + 1
- (2) FINDMAXSUBARRAY:

$$T(n) = 2T(n/2) + \Theta(n)$$
 (with $T(1) = \Theta(1)$)
= $\Theta(n | g | n)$ (similar to merge-sort)

Remark: See Ex4.1-5 for an O(n)-time algorithm.

4.2 Strassen's algorithm for matrix multiplication

4-6y

4-6a

Input: two $n \times n$ matrices A and B

Output: C = AB, where $c_{0,0} = \sum_{1 \le k \le n} a_{ik} b_{kj}$

An $O(n^3)$ time naive algorithm

```
SQUARE-MATRIX-MULTIPLY(A, B)
```

```
1 n \leftarrow rows[A]

2 let C be an n \times n matrix

3 for(j) \leftarrow 1 to n do

4 for(j) \leftarrow 1 to n do

5 c_{ij} \leftarrow 0

6 for(k) \leftarrow 1 to n do

7 c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}

8 return C

c_{ij} = a_{ij} + b_{ij}
```

* Computing $A+B \rightarrow O(n^2)$ time

Strassen's algorithm

- * Assume that *n* is an exact power of 2
- * We divide each of A, B, and C into four $n/2 \times n/2$ sub-matrices and rewrite C = AB as

$$\frac{\frac{n}{2} \times \frac{n}{2}}{t \mid u} \times \frac{r \mid s}{t \mid u} = \frac{\begin{pmatrix} a \mid b \\ c \mid d \end{pmatrix} \begin{pmatrix} e \mid g \\ f \mid h \end{pmatrix}}{(EQ-1)}$$

* We have
$$r = ae + bf$$
 $s = ag + bh$
 $t = ce + df$ $u = cg + dh$
 $t = ce + df$ $t = ce$ $t = ce$ $t = ce$

* A straightforward divide-and-conquer algorithm

$$T(n) = 8T(n/2) + O(n^2)$$

$$= O(n^3) \qquad \downarrow \rightarrow 4 \times (\frac{n}{2})^2 \text{ for addition}$$
* Let $P_1 = a(g-h) \qquad (=ag-ah)$

$$P_2 = (a+b)h \qquad (=ah+bh)$$

$$P_3 = (c+d)e \qquad (=ce+de)$$

$$P_4 = d(f-e) \qquad (=df-de)$$

$$P_5 = (a+d)(e+h) \qquad (=ae+ah+de+dh)$$

$$P_6 = (b-d)(f+h) \qquad (=bf+bh-df-dh)$$

$$P_7 = (a-c)(e+g) \qquad (=ae+ag-ce-cg) \text{ (EQ-2)}$$

* We have
$$r = P_5 + P_4 - P_2 + P_6$$

 $s = P_1 + P_2$
 $t = P_3 + P_4$
 $u = P_5 + P_1 - P_3 - P_7$ (EQ-3)

- * Strassen's divide-and-conquer algorithm
 - **Step 1**: Divide each of *A*, *B*, and *C* into four sub-matrices. (EQ-1)

Step 2: Recursively, compute
$$P_1, P_2, ..., P_7$$
. (EQ-2)

Step 3: Compute *r*, *s*, *t*, *u* according to EQ-3.

* Time complexity

$$T(n) = TT(n/2) + O(n^2)$$

$$= O(n^{\log_2 7}) \xrightarrow{18 \times (\frac{n}{2})^2} \text{ (for addition)}$$

$$= O(n^{2.81}) \text{ (by Master Thm)}$$

Discussion:

1. Strassen's method is largely of theoretical interest. (for $n \ge 45$)

$$T(n) = qT(\frac{n}{2}) + O(n^2) \quad "q < 7?"$$

2. Strassen's method is based on the fact that we can multiply two 2×2 matrices using only 7 multiplications (instead of 8). It was showed that it is impossible to multiply two 2×2 matrices using less than 7 multiplications.

4-9x

- 3. We can improve Strassen's algorithm by finding an efficient way to multiply two $k \times k$ matrices using a smaller number q of multiplications, where k > 2. The time is $\underline{T(n)} = qT(n/k) + O(n^2)$.
- 4. The current best upper bound is $O(n^{2.376})$.* 1990

*2010: 2.374; 2011: 2.3728642; 2014: 2.3728639

4.3 The substitution method

The substitution method: (i) Guess an answer and then (ii) prove it by induction. (for both upper and lower bounds)

Example: Find an upper bound for
$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$
 (with $T(1) = 1$)

- (i) Guess $T(n) = O(n \lg n)$.
- (ii) Try to prove there exist constants \underline{c} and \underline{n}_0 such that $\underline{T(n)} \le cn \lg n$ for all $n \ge n_0$.

Basis:
$$(n = n_0)$$

For n = 1, no constant c satisfies $T(1) \le cn \lg n = 0$. For $n \ge 2$, any constant $c \ge T(n)/(n \lg n)$ satisfies $T(n) \le cn \lg n$. That is, we can choose

(1)
$$n_0 \ge 2$$
 and $c \ge T(n_0)/(n_0 \lg n_0)$.

Induction: $(n > n_0)$

Assume: $T(x) \le cx \lg x$ for $x = n_0 \sim n-1$ Assume that it holds for all n between n_0 and n-1. We have

T(n) =
$$2T(n/2) + n$$

$$T(n) \le 2(c(n/2) |g(n/2)| + n$$

$$\le cn |g(n/2) + n$$

$$= cn |g(n/2) + n$$

$$= cn |g(n-cn)| + n$$

where the last step holds for

(2)
$$c \ge 1$$
. * to make substitution holds, we also need $n_0 \le \lfloor n/2 \rfloor < n-1$ => $n_0 = 2, 3, n \ge 4$

From (1) and (2), we can choose $n_0 = 2$, 3 and $c = \max\{1, T(2)/(2 \lg 2), T(3)/(3 \lg 3)\} = 2$ to make both the *basis* and the *induction* steps holds.

Substitution Method

Step 1. Guess
$$T(n) = O(g(n))$$

Step 2. Prove the guess by induction

Prove
$$T(n) = O(g(n))$$

 \Rightarrow Prove that there are c and n_0 such that $T(n) \le cg(n)$ for all $n \ge n_0$ -----(1)

- \Rightarrow If c and n_0 are known, we can prove (1) by induction
 - (a) Basis step: (1) holds for $n = n_0$
 - **(b) Induction step:** (1) holds for $n > n_0$
- ⇒ How to find c and n₀ satisfying the induction proof?
 - (i) find the condition of c and n_0 for which the basis step holds
 - (ii) find the condition of c and n_0 for which the induction step holds
 - (iii) Combine conditions (i) and (ii)

```
/'sʌt|tɪ/
Subtleties: 微妙之處(細微的差別)
```

4-12a

(Revise a guess by subtracting a lower-order term.) ⇒ induction proof does not always work unless the exact form is given

Example: $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$ (with T(1) = 1)

Guess T(n) = O(n).

 \exists c, n_0 s.t.

Try to prove $T(n) \le cn$. (for all $n \ge n_0$)

Basis: ok!

```
Assume: T(x) \le cx for x = n_0 \sim n-1
                                                                   4-13
Induction: T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1
                        \leq c(\lfloor n/2 \rfloor + \lceil n/2 \rceil) + 1
                        = cn + 1
         We can not prove that \underline{T(n)} \leq \underline{cn}!!!!
                                                        goal
Try to prove T(n) \leq cn - b. (for n \geq n_0)
Induction: T(n) \leq (c \lfloor n/2 \rfloor - b) + (c \lceil n/2 \rceil - b) + 1
                       = \frac{cn - 2b + 1}{\leq cn - b}, \text{ goal}
where the last step holds for any constant b \ge 1.
                                         Basis: (n<sub>0</sub> = 1) 1 ≤ c - b
Avoiding pitfalls
    T(n) = 2T(\lfloor n/2 \rfloor) + n
    Guess T(n) = O(n). Try to prove T(n) \le cn.
    Induction: T(n) \leq 2d \lfloor n/2 \rfloor + n
                             \leq cn + n
                             = O(n) \Leftarrow==== wrong !!
                            \leq cn (goal)
Changing variable:
                                                Assume: T(x) \le cx for x = n_0 \sim n-1
    T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \lg n
```

For simplicity, assume $n = 2^m$. Then $T(2^m) = 2T(2^{m/2}) + m$ Let $S(m) = T(2^m)$. We have S(m) = 2S(m/2) + m (Renaming $m = \lg n$)

$T(n) = S(m) = S(lg n) = lg n lglg n_{4-14}$

Since $O(m \lg m)$ is the solution to S(m), we know that $O(\lg n \lg \lg n)$ is the solution to T(n).

4.4 The iteration (recursion-tree) method

4-14×

Example:
$$T(n) = 3T(\lfloor n/4 \rfloor) + n$$
 with $T(0) = c = \Theta(1)$ $T(x) = x + 3T(\lfloor x/4 \rfloor)$ $T(1) = c = \Theta(1)$ $T(n) = n + 3(\lfloor n/4 \rfloor + 3T(\lfloor n/16 \rfloor))$ $= n + 3\lfloor n/4 \rfloor + 9(\lfloor n/16 \rfloor + 3T(\lfloor n/64 \rfloor))$. $3^kT(\lfloor \frac{n}{4^k} \rfloor) \Rightarrow \frac{n}{4^k} \le 1 \Rightarrow k \ge \lg_4 n$. (note that $n/(4^{\log_4 n}) \le 1$) $\le n + 3n/4 + 9n/16 + 27n/64 + ... + 3^{\log_4 n}\Theta(1)$ $T(0),T(1)$ $\le n \sum_{i=0}^{\infty} (\frac{3}{4})^i + \Theta(n^{\log_4 3}) = 4n + o(n) = O(n)$ $* \alpha^{\lg_c b} = b^{\lg_c a}$

* $\lfloor n/a \rfloor / b \rfloor = \lfloor n/ab \rfloor$ (similar for ceiling)

Recursion trees: (for visualizing the iteration)

with
$$T(1) = 1$$
 or $\Theta(1)$
 $T(n) = 2T(n/2) + n^2$ (Assume that $n = 2^h$.)

4-14z

$$T(n)$$

$$T\left(\frac{n}{2}\right)$$

$$T\left(\frac{n}{2}\right)$$
(a)
$$T\left(\frac{n}{2}\right)$$

* Using recursive trees to make a good guess for S.M.

4.5 The master method

Theorem 4.1 (Master theorem)

Let $\underline{a \ge 1}$ and $\underline{b > 1}$ be constants, let $\underline{f(n)}$ be a function, and let $\underline{T(n)}$ be defined on the nonnegative integers by the recurrence

$$\underline{T(n)} = a\underline{T(n/b)} + \underline{f(n)},$$

where we interpret $\underline{n/b}$ to mean either $\underline{\lfloor n/b \rfloor}$ or $\underline{\lceil n/b \rceil}$. Then, $\underline{T(n)}$ can be bounded as follows.

4-160

- 1.If $\underline{f(n)} = O(n^{(\log_b a) \varepsilon})$ for some constant $\underline{\varepsilon > 0}$, then $\underline{T(n)} = \Theta(n^{\log_b a})$.
- 2.If $\underline{f}(n) = \Theta(n^{\log_b a})$, then $\underline{T}(n) = \Theta(n^{\log_b a} \log n)$
- 3.If $f(n) = \Omega(n^{(\log_b a) + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Example:
$$T(n) = 9T(n/3) + n$$
 $f(n)$

By applying case 1, we have $T(n) = \Theta(n^2)$.

Example:
$$T(n) = \frac{a=1}{T(2n/3)} = \frac{b=3/2}{f(n)}$$
 * log_b a = 0

By applying case 2, we have $T(n) = \Theta(\lg n)$.

Example:
$$T(n) = 3T(n/4) + n \lg n * \log_4 3 \approx 0.793$$

By applying case 3, we have $T(n) = \Theta(n \lg n)$.

Note: The three cases do not cover all the possibilities for f(n). There are gaps between cases 1 and 2, and between cases 2 and 3.

Example: $T(n) = 2T(n/2) + n \lg n$ O(n $\lg^2 n$) (recursion tree)

In this example, both cases 2 and 3 cannot be applied.

*Case 1. $O(n^{\log_b a - \epsilon}) = o(n^{\log_b a})$???

4-16a

Homework: Ex. 4.1-5, 4.2-1, 4.2-4, 4.2-5, 4.2-7, 4.3-5 (using substitution method), 4.4-6, 4.4-9, 4.5-2, and Pro.4-5bc (using substitution method), 4-6de

$$T(n) = 2T(\frac{n}{2}) + \begin{cases} n & \text{n lg n} \quad (\text{recur. tree, MS}) \\ n^2 & \text{p}^2 \end{cases} \quad (\text{recur. tree, MS})$$

$$n \mid g \mid n \quad n \mid g^2 \mid n \quad (\text{recur. tree})$$