Generative vs Discriminative Models in Supervised Learning

Objective

Objective

Differentiate between generative and discriminative models of supervised learning

Discuss challenges in Bayesian learning

Supervised Learning

The set-up: the given training data consist of <sample, label> pairs, or (x, y); the objective of learning is to figure out a way to predict label y for any new sample x.

– E.g., Given n pairs $\langle \mathbf{x}^{(i)}, \mathbf{y}^{(i)} \rangle$, i=1, ..., n; $\mathbf{x}^{(i)}$: i-th sample represented as d-dimensional vectors; $\mathbf{y}^{(i)}$: corresponding labels.

Equivalently, to find $P(y|\mathbf{x})$

Two Types of Models

Generative Model

- $P(y|\mathbf{x}) \propto P(y) p(\mathbf{x}|y)$
- To learn P(y) and p(x|y).

Discriminative Model

- Directly learn $P(y|\mathbf{x})$
- No assumption made on $p(\mathbf{x}|\mathbf{y})$

Two Types of Models

Generative Model

$$P(y|\mathbf{x}) \propto P(y) p(\mathbf{x}|y)$$

- To learn P(y) and p(x|y).
- → Bayesian learning, Bayes classifiers.
- Example: Naïve Bayes Classifier

Discriminative Model

Directly learn P(y|x)

No assumption made on $p(\mathbf{x}|\mathbf{y})$

Example: Logistic Regression

Practical Difficulty of Bayesian Learning

Consider doing Bayesian learning without making simplifying assumptions.

- -Given n training pairs $\langle \mathbf{x}^{(i)}, \mathbf{y}^{(i)} \rangle$, i=1, ..., n. Each $\mathbf{x}^{(i)}$ is d-dimensional.
- We need to learn P(y) and p(x|y)

- $\rightarrow p(\mathbf{x}|\mathbf{y})$ can be very difficult to estimate:
 - → Consider a very simple case: binary features, and y is also binary. How many probabilities do we need to estimate?