Math 445 Number Theory

November 1, 2004

From last time: $x = [a_0, a_1, \dots, a_n, \dots]$; set $r_n = [a_0, \dots, a_n] = \frac{h_n}{k_n}$. Then $|x - r_n| < \frac{1}{k_n k_{n+1}} \le \frac{1}{k_n^2 a_{n+1}}$. In particular, $\frac{h_n}{k_n} \to x$ as $n \to \infty$.

From this, we can learn many things! First, if $x = [a_0, a_1, \dots]$ with $a_1 \ge 1$ for all $i \ge 1$, then $x \notin \mathbb{Q}$; because if $x = \frac{a}{b}$, then $\left|\frac{a}{b} - \frac{h_n}{k_n}\right| < \frac{1}{k_n k_{n+1}}$, so $\left|ak_n - bh_n\right| < \frac{|b|}{k_{n+1}} \to 0$ as $n \to \infty$, so $ak_n - bh_n = 0$ for some n (since this quantity is an integer). So $x = r_n$, a contradiction (since r_{n+2k} , $k \ge 0$, is a monotone sequence converging to x).

Second, since $x = \lim_{n \to \infty} [a_0, \dots, a_n] = \lim_{n \to \infty} a_0 + \frac{1}{[a_1, \dots, a_n]} = a_0 + \frac{1}{[a_1, \dots]}$, we can, as before, recover a_0 from x as $a_0 = \lfloor x \rfloor$. This in turn, using the same proof as for finite continued fractions, yields

If $x = [a_0, a_1, \dots] = [b_0, b_1, \dots]$ with $a_i, b_i \in \mathbb{Z}$ and $a_i, b_i \geq 1$ for all $i \geq 1$, then $a_i = b_i$ for all $i \geq 0$.

Third, the convergents $r_n = \frac{h_n}{k_n}$ give better rational approximations than any other rational numbers we might choose:

If $x \notin \mathbb{Q}$ and $b \in \mathbb{Z}$ with $1 \le b \le k_n$, then for any $a \in \mathbb{Z}$, $|x - \frac{a}{b}| \ge |x - \frac{h_n}{k_n}|$. In fact, if $1 \le b < k_{n+1}$, then $|bx - a| \ge |k_n x - h_n|$.

To see this, suppose not; suppose $1 \leq b < k_{n+1}$ and, for some a, $|bx-a| < |k_nx-h_n|$. We can assume that (a,b)=1. We first solve the system of equations $h_n\alpha+h_{n+1}\beta=a$, $k_n\alpha+k_{n+1}\beta=b$; the solutions are $\alpha=(-1)^{n+1}(k_{n+1}a-h_{n+1}b), \beta=(-1)^{n+1}(h_nb-k_na)$. Note that $\alpha,\beta\neq 0$, since otherwise $\frac{a}{b}=\frac{h_n}{k_n}$ or $\frac{h_{n+1}}{k_{n+1}}$, so $|bx-a|=|k_nx-h_n|$ or $b=k_{n+1}$. Also, if $\alpha<0$, then $k_n\alpha+k_{n+1}\beta=b$ implies $k_{n+1}\beta=b-k_n\alpha>b>0$, so $\beta>0$. And if $\alpha>0$, then $k_n\alpha+k_{n+1}\beta=b$ implies $k_{n+1}\beta=b-k_n\alpha< k_{n+1}$, so $\beta<1$, so $\beta<0$. So α and β have opposite signs. On the other hand, from before, we know that xk_n-h_n and $xk_{n+1}-h_{n+1}$ have oposite signs, as well, so $\alpha(xk_n-h_n)$ and $\beta(xk_{n+1}-h_{n+1})$ have the same sign. Then: $xb-a=x(k_n\alpha+k_{n+1}\beta)-(h_n\alpha+h_{n+1}\beta)=\alpha(xk_n-h_n)+\beta(xk_{n+1}-h_{n+1})$, so $|xb-a|=|\alpha|\cdot|xk_n-h_n|+|\beta|\cdot|xk_{n+1}-h_{n+1}|\geq |\alpha|\cdot|xk_n-h_n|\geq |xk_n-h_n|$, a contradiction. So no such a exists!