UMELÁ INTELIGENCIA Plánovanie

- · Plánovanie: je daný jeden alebo viacero cieľov, vytvor postupnosť akcií vedúcich k jeho/ich splneniu
- · Rozvrhovanie (Scheduling): je daná množina akcií a ohraničení, prideľ zdroje a priraď časy akciám tak, aby neboli porušené ohraničenia
- Tradične, plánuje sa špecializovanými logickými metódami
- Tradične, rozvrhuje sa spĺňaním ohraničení, lineárnym programovaním alebo metódami operačného výskumu
- · Avšak plánovanie a rozvrhovanie sú natoľko blízke úlohy, že sa nie vždy dajú oddeliť.

Plánovanie

- plánovanie v kontexte umelej inteligencie
- · vyjadrenie problému plánovania
- potreba odhaliť spojitosti priamo medzi stavmi a akciami

(pod)cieľ: Mám(Mlieko)

akcia $K\dot{u}p(x)$ s dôsledkom $M\dot{a}m(x)$

plánovaná akcia: Kúp(Mlieko)

(ale napr. netreba uvažovať o

Kúp(Šampón-a-Vymývač-Hláv-v-Jednom)

Odstrihni-sa)

stratégia "rozdeľuj a panuj"

Plánovanie

function JEDNODUCHÝ-PLÁNOVACÍ-AGENT(vnem) returns akcia static: BP, báza poznatkov (sú v nej aj opisy akcií) plán, plán, na začiatku NoPlan

t, počítadlo, na začiatku 0, udáva čas local variables: cieľ, cieľ stav, opis súčasného stavu

PRIDAJ(BP, VYTVOR-VETU-O-VNEME(vnem, t))

 $stav \leftarrow OPIS-STAVU(BP, t)$ if plán = NoPlan then

if plán = NoPlan or plán je prázdny then akcia ← NoOp

if NoPlan or plán je prázdny then akcia ← NoOp

akcia ← VYBER-PRVÚ(plán)

plán ← ZVYŠOK-AKCIÍ(plán)
PRIDAJ(BP, VYTVOR-VETU-O-AKCII(akcia, t)

return akcia

Reprezentácia plánovacieho problému

reprezentácia stavov a cieľov

stav: NachádzamSa(Doma) \(\sim Mám(Mlieko) \(\sim \sim Mám(Rožky) \) \(\) ¬Mám(Noviny) ∧ ..

cieľ: NachádzamSa(Doma) A Mám(Mlieko) A Mám(Rožky) A Mám(Noviny)

NachádzamSa(x) ∧ PredávaSa(x, Mlieko)

- reprezentácia akcií
 - operátor (jazyk STRIPS)
 - opis akcie
 - predpodmienka
 - účinky

Op(AKCIA: Chod' (tam),

PREDPOD: NachádzamSa(tu) A Cesta(tu, tam), ÚČINKY: NachádzamSa(tam)∧¬NachádzamSa(tu))

aplikovateľnosť operátora

- vyjadrovacia schopnosť vs výpočtová efektívnosť
- STRIPS: jednoduchý, ale rozumne vyjadrovací plánovací jazyk založený na výrokovom počte
- STRIPS = Stanford Research Institute Problem
- Stanford Research Institute, výskum 1966-1972, behal tam legendárny robot Šejkí

Principle	torni fra	Transia (corre)
Parison.	2.41.103	and the second second
	continue tour tour 1	treat fit faint
1994	named face manual	name (i) harriface)
Terretion:	Services Save makes!	SareGord St. S.11
4134	etion face etion	erve (1) etc.
benefer see	hunderestime rest direction	boundaryout fi #1 ear
pects.		
true	trender/der/1	treet do doors
***		named of 2 hallhowers
destinct.	Sourteest our number numbers	mercocken P.A. S.E.
Secrefores.	Introducesioner face faced	permefarenteit få fft
;m: *******	printressident race read	jainerconsist #1 #2:
CHICATATAN	district and status	decatations, joban,
1000		1509574 V5556
gross.	gridines grid	grodel gi)
CHITCHIO		
****	tree(a) (ec) "object")	property appendi
ration	radical object number)	melical at 2,53
MOST		
1200	"cost" reter" "reten" !	tour rebet most!
nere	manel "reber mane)	name(rebut states)
46	att"riset" number number)	attrebet 6.1 7.21
Theta	TENTIS" FORCE SURGEST	Theral Pobot 181.11
4124	NGSS"rebot"number)	Sulfit Peter 13.27
940	pest"resor"suspert	partresses 45.21
white serv	whishere("romen";stager()	Witcher M. raber: 8)
SELR.	Situal reter tempert	SPECIFICAL ID
DOGETTIES	sverrage("reset"(aregen)	OVERTIMECTURE ST
range .	rangel "robot" matter!	rangel robon 30.45
******	twoodet "runot": arregar)	Treater return 61
feret.	(horse," relief "mater)	Excust Patent 30',1')

Each STRIPS operator must be described in some convenient way. We characterize each operator in the repertoire by three entities: an add function, a delete function, and a precondition wff. The meanings of these entities are straightforward. An operator is

Reprezentácia plánovacieho problému

- priestor situácií a priestor plánov
 - progresívny a regresívny plánovač
 - least commitment
- reprezentácia plánov
 - množina krokov
 - množina ohraničení, určujúcich usporiadanie krokov S_i K_j
 - množina ohraničení na priradenia premenným v = x
 - množina príčinných spojení $S_i \rightarrow^c S_j$

Reprezentácia plánovacieho problému

reprezentácia plánov (pokr.)

```
Začni ≺ Skonči
Op(AKCIA:ZačniNákup,
    ÚČINKY:NachádzamSa(Doma) A
             PredávaSa(Trafika, Noviny) A
PredávaSa(PredajňaPotravín, Mlieko) A
             PredávaSa(PredajňaPotravín, Rožky))
Op(AKCIA: SkončiNákup,
   PREDPOD: NachádzamSa(Doma) A
Mám(Noviny) A Mám(Mlieko) A Mám(Rožky))
```

Plán(KROKY: {S₁: Op(AKCIA: ZačniNákup), S2: Op(AKCIA: SkončiNákup)}, USPORIADANIA: $\{S_1 \prec S_2\}$ PRIRADENIA: {} SPOJENIA: { })

Reprezentácia plánovacieho problému

- reprezentácia plánov (pokr.)
 - linearizácia plánu
- riešenia
 - úplný neprotirečivý plán
 - úplnosť

Krok S_i dosiahne predpodmienku c kroku S_i ak:

 $-S_i \leq S_i a c \in U\check{c}inky(S_i)$

- neexistuje krok S_k taký, že $(\neg c) \in U$ činky (S_k) a $S_i \prec S_k \prec S_i$ v nejakej linearizácii plánu.

neprotirečivosť

 $S_i \prec S_j$ aj $S_j \prec S_i$

v = A aj v = B (A a B sú rozdielne konštanty)

Plánovanie v situačnom počte

• Reprezentácia plánovacieho problému:

```
    začiatočný stav

   NachádzamSa(Doma, S_0) \land \neg Mám(Mlieko, S_0)
\land \neg Mám(Rožky, S_0) \land \neg Mám(Noviny, S_0)
```

cieľový stav

 $\exists s \ NachádzamSa(Doma, \ s) \land Mám(Mlieko, \ s)$ \land Mám(Rožky, s) \land Mám(Noviny, s)

operátory

∀a ∀s Mám(Mlieko, Výsledok(a, s)) ⇔ [(a = Kúp(Mlieko)

∧ NachádzamSa(PredajňaPotravín, s)

∨ (Mám(Mlieko, s) ∧ a ≠ Rozlejem(Mlieko))]

 $\forall s \ V \acute{v} s ledok'([], s) = s$

 $\forall s \ V \acute{y} s ledok'([a|p], s) = V \acute{y} s ledok'(p, V \acute{y} s ledok(a, s))$

2

Plánovanie v situačnom počte

potom cieľový test:

```
\begin{aligned} & \textit{NachádzamSa(Doma, Výsledok'(p, <math>S_0))} \\ & \land \textit{Mám(Mlieko, Výsledok'(p, S_0))} \\ & \land \textit{Mám(Rožky, Výsledok'(p, S_0))} \\ & \land \textit{Mám(Noviny, Výsledok'(p, S_0))} \end{aligned}
```

a plán:

```
p = [Chod' (PredajňaPotravín), Kúp(Mlieko), Kúp(Rožky),
Chod'(Trafika), Kúp(Noviny), Chod'(Doma)]
```

Algoritmus čiastočne usporadúvajúceho plánovania

```
function ČUP(stav, cief, operátory) returns plán

plán ← VYTVOR-MINIMÁLNY-PLÁN(stav, cief)
loop do

if RIEŠENIE?(plán) then return plán

S_{traba}: cief ← ZVOL-PODCIEĽ(plán)

VYBER-OPERÁTOR(plán, operátory, S_{traba}: cief)

VYRIEŠ-OHROZENIA(plán)

end
```

```
function ZVOĽ-PODCIEĽ(plán) returns S_{rebar} ciel vezmi krok plánu S_{rebar} Z KROKY(plán) s predpodmienkou c, ktorá sa ešte nedosiahla return S_{rebar} c
```

Algoritmus čiastočne usporadúvajúceho plánovania

```
procedure VYBER-OPERÁTOR(plán, operátory, S_{rebar} c) choose krok S_{pridaj} z operátory alebo z KROKY(plán) taký, ktorý má za účinok c if taký krok neexistuje then fail pridaj príčinné spojenie S_{pridaj} \rightarrow^c S_{trebar} do SPOJENIA(plán) pridaj usporadúvajúce spojenie S_{pridaj} \prec S_{treba} do USPORIADANIA(plán) if S_{pridaj} je krok, ktorý sa teraz pridal z operátory then pridaj S_{pridaj} do KROKY(plán) pridaj Začni \prec S_{pridaj} \prec Skonči do USPORIADANIA(plán)
```

Algoritmus čiastočne usporadúvajúceho plánovania

```
procedure VYRIEŠ-OHROZENIA(pl\acute{a}n) for each S_{hrozi} ohrozujúci spojenie S_i \rightarrow^c S_j z SPOJENIA(pl\acute{a}n) do choose buď Predsunutie: pridaj S_{hrozi} \prec S_i do USPORIADANIA(pl\acute{a}n) Odsunutie: pridaj S_j \prec S_{hrozi} do USPORIADANIA(pl\acute{a}n) if not ZLUČITEĽNÝ(pl\acute{a}n) then fail end
```

Algoritmus čiastočne usporadúvajúceho plánovania

- regresívny plánovač
- ohrozenia množiny na priradenia premenným:

```
procedure VYBER-OPERÁTOR(plán, operátory, S<sub>reba</sub>, c)
choose krok S<sub>pridaj</sub> z operátory alebo z KROKY(plán)
taký, ktorý má za účinok c<sub>pridaj</sub>
taký, že u = Unify(c, c<sub>pridaj</sub>, PRIRADENIA(plán))

if taký krok neexistuje then fail
pridaj u do PRIRADENIA(plán))
pridaj príčinné spojenie S<sub>pridaj</sub> → c S<sub>treba</sub> do SPOJENIA(plán)
pridaj usporadúvajúce spojenie S<sub>pridaj</sub> ≺ S<sub>treba</sub> do USPORIADANIA(plán)

if S<sub>pridaj</sub> je krok, ktorý sa teraz pridal z operátory then
pridaj Š<sub>pridaj</sub> do KROKY(plán)
pridaj Žačni ≺ S<sub>pridaj</sub> ≺ Skončí do USPORIADANIA(plán)
```

Algoritmus čiastočne usporadúvajúceho plánovania

Algoritmus čiastočne usporadúvajúceho plánovania

rozšírenie definície dosiahnutia podmienky krokom v pláne

Krok S_i dosiahne predpodmienku c kroku S_i ak:

- S_i ≺ S_i a UNIFY(c, u) pre nejaký účinok u ∈ ÚČINKY(S_i)
- neexistuje krok S_k taký, že UNIFY(¬c, u) pre nejaký účinok $u \in \text{UČINKY }(S_k)$ a $S_i \leq S_k \leq S_i$ v nejakej linearizácii plánu

inteligencie

- vojenské operácie
- operácie v kontajnerových prístavoch
- konštrukčné úlohy
- autonómne riadenie družíc a iných vesmírnych lodí

- domény skutočného sveta sú zložité a nemusia spĺňať predpoklady jazyka ako je STRIPS alebo metód ako je čup
- v skutočnom svete sa možno budeme musieť boriť s takýmito charakteristikami:
 - Modelovanie a usudzovanie o zdrojoch

 - Reprezentovanie a usudzovanie o čase
 - Plánovanie na rôznych úrovniach abstrakcie rozvrhovanie! - Podmienené výsledky akcií
 - Neurčité výsledky akcií
 - Vonkajšie (zvonku pôsobiace, exogénne) udalosti
 - Inkrementálne navrhovanie plánu
 - Dynamické preplánovanie v reálnom čase

- dve miestnosti: R₁ and R₂
- robot vysávač
- prach

In(Robot, R_1) \wedge Clean(R_1)

- konjunkcia tvrdení
- nie je možné negované tvrdenie napr. ¬Clean(R₂)
- predpoklad uzavretého sveta: Každé tvrdenie, ktoré sa v danom stave neuvádza, je v tom stave nepravdivé
- nie je logická spojka "alebo" ln(Robot,R₁)√ln(Robot,R₂)
- nie sú premenné, napr. ∃x Clean(x)

 $Clean(R_1) \wedge Clean(R_2)$ príklad:

- konjunkcia tvrdení
- neobsahuje negované tvrdenie
- neobsahuje spojku "alebo"
- neobsahuje premennú

Cieľ G sa dosiahne v stave S, ak všetky tvrdenia v G (nazývané podciele) sú tiež v S

Right

- Precondition = In(Robot, R₁)
- Delete-list = In(Robot, R₁)
- Add-list = In(Robot, R₂)

In(Robot, R_1) \wedge Clean(R_1)

- Precondition = In(Robot, R₁)
 - Delete-list = In(Robot, R₁)
 - Add-list = In(Robot, R₂)

množiny tvrdení

- rovnaký tvar ako ciele: konjunkcia tvrdení

Right

- Precondition = In(Robot, R₁)
- Delete-list = In(Robot, R₁)
- Add-list = In(Robot, R₂)
- Akcia A je aplikovateľná v stave S, ak tvrdenia v jej predpodmienke sú všetky v S
- Aplikovaním akcie A na stav S vzniká nový stav taký, že sa vymažú z S tvrdenia uvedené v zozname na zrušenie (delete-list) a pridajú sa tvrdenia uvedené v zozname na pridanie (add-list)

28

Left

- P = In(Robot, R₂)
- D = In(Robot, R_2)
- $A = In(Robot, R_1)$

Suck(R₁)

Suck(R₂)

- \blacksquare P = In(Robot, R₁) \blacksquare P = In(Robot, R₂)
- $D = \emptyset$ [empty list] $D = \emptyset$ [empty list]

27

- $A = Clean(R_1)$
- A = Clean(R₂)

Left

- P = In(Robot, R₂)
- D = In(Robot, R₂)
- $A = In(Robot, R_1)$

Suck(r)

- P = In(Robot, r)
- D = Ø [prázdny zoznam]
- A = Clean(r)

jedna schéma opisuje viacero akcií, v tomto príklade: $Suck(R_1)$ and $Suck(R_2)$

> Parameter, ktorý sa nainštaluje prirovnaním (matching) predpodmienky a stavu

- P = In(Robot, r)
- D = Ø
- A = Clean(r)

In(Robot, R_2) \wedge Clean(R_1)

In(Robot, R_2) \wedge Clean(R_1) ∧ Clean(R2)

32

 $Suck(R_1)$

 $In(Robot, R_1) \wedge Clean(R_1)$

 R_2

33

- robot dokáže ramenom pohybovať kocky na stole
- rameno nemôže držať viac než jednu kocku v jednom okamihu
- nijaké dve kocky sa nezmestia priamo na tú istú kocku
- stôl je ľubovoľne veľký

34

 $Block(A) \wedge Block(B) \wedge Block(C) \wedge$ $On(A,stôl) \wedge On(B,stôl) \wedge On(C,A) \wedge$ $Clear(B) \wedge Clear(C) \wedge Handempty$

 $kocka(A) \wedge kocka(B) \wedge kocka(C) \wedge$ $Na(A,stôl) \wedge Na(B,stôl) \wedge Na(C,A) \wedge$ čistá(B) ∧ čistá(C) ∧ prázdneRameno

 $On(A,stôl) \land On(B,A) \land On(C,B) \land Clear(C)$

 C

 B

 A

 $On(A, stôl) \wedge On(B, A) \wedge On(C, B) \wedge Clear(C)$

37

cieľ C A B $On(A,stôl) \wedge On(C,B)$

akcıa

Unstack(x,y)

 $P = Handempty_{\Lambda} Block(x)_{\Lambda} Block(y)_{\Lambda} Clear(x)_{\Lambda} On(x,y)$

D = Handempty, Clear(x), On(x,y)

A = Holding(x), Clear(y)

akcia

Unstack(x,y)

 $P = Handempty \land Block(x) \land Block(y) \land Clear(x) \land On(x,y)$

D = Handempty, $\frac{Clear(x)}{Clear(y)}$, On(x,y)A = Holding(x), Clear(y)

vlastne netreba, iba ak má robot viac ramien akcia

Unstack(x,y)

 $P = Handempty \land Block(x) \land Block(y) \land Clear(x) \land On(x,y)$

D = Handempty, Clear(x), On(x,y)

A = Holding(x), Clear(y)

C A B $Block(A) \wedge Block(B) \wedge Block(C) \wedge On(A,stôl) \wedge On(B,stôl) \wedge On(C,A) \wedge Clear(B) \wedge Clear(C) \wedge Handempty$

40

42

Unstack(C,A)

 $P = Handempty \land Block(C) \land Block(A) \land Clear(C) \land On(C,A)$

D = Handempty, Clear(C), On(C,A)

A = Holding(C), Clear(A)

Unstack(x,y) $P = Handempty \land Block(x) \land Block(y) \land Clear(x) \land$ On(x,y)D = Handempty, Clear(x), On(x,y)Holding(x), Clear(y) $Block(A) \wedge Block(B) \wedge Block(C) \wedge$ $On(A,stôl) \wedge On(B,dtôl) \wedge On(C,A) \wedge$ Clear(B) ∧ Clear(C) ∧ Handempty A В \land Holding(C) \land Clear(A) Unstack(C,A) $P = Handempty_{\land} Block(C)_{\land} Block(A)_{\land} Clear(C)_{\land} On(C,A)$ D = Handempty, Clear(C), On(C,A)Holding(C), Clear(A)

- robot musí zamknúť dvere a vložiť kľúč do schránky
- kľúč treba na zamknutie a odomknutie dverí
- keď sa raz kľúč dostane do schránky, robot ho už nedokáže dostať späť

Unstack(x,y)

- $P = Handempty \land Block(x) \land Block(y) \land Clear(x) \land On(x,y) \\ D = Handempty, Clear(x), On(x,y) \\ A = Holding(x), Clear(y)$

Stack(x,y)

- P = Holding(x) A Block(x) A Block(y) A Clear(y)
 D = Clear(y), Holding(x)
 A = On(x,y), Clear(x), Handempty

Pickup(x)

- P = Handempty \land Block(x) \land Clear(x) \land On(x, Table)
 D = Handempty, Clear(x), On(x, Table)
- A = Holding(x)

Putdown(x)

- $P = Holding(x), \land Block(x)$
- D = Holding(x)
 A = On(x, Table), Clear(x), Handempty

Unstack(x,y)

- P = Handempty A Block(x) A Block(y) A Clear(x) A On(x,y)
 D = Handempty, Clear(x), On(x,y)
 A = Holding(x), Clear(y)

Stack(x,y)

- $P = Holding(x) \land Block(x) \land Block(y) \land Clear(y)$
- $D = \frac{\text{Clear(y)}}{\text{Clear(x)}}, \text{Holding(x)},$ A = On(x,y), Clear(x), Handempty

Pickup(x)

P = Handempty \land Block(x) \land Clear(x) \land On(x, Table)
D = Handempty, Clear(x), On(x, TABLE)

kocka sa vždy zmestí na

stôl

46

- A = Holding(x)

Putdown(x)

- $P = Holding(x), \land Block(x)$
- D = Holding(x)
- A = On(x, TABLE), Clear(x), Handempty

 $In(Robot,R_2) \wedge In(Kľúč,R_2) \wedge Unlocked(Dvere)$

 $v(Robot,R_2) \wedge v(Kľúč,R_2) \wedge odomknuté(Dvere)$

Locked(Dvere) ∧ In(Kľúč,Box)

[miesto robota sa v cieli nešpecifikuje]

zamknuté(Dvere) ∧ v(Kľúč, Schránka)

[miesto robota sa v cieli nešpecifikuje]

Grasp-Key-in-R2

 $P = In(Robot,R_2) \wedge In(Key,R_2)$

D = ∅

A = Holding(Key)

Lock-Door

P = Holding(Key) D = Ø

A = Locked(Door)

Move-Key-from-R2-into-R1 P = In(Robot, R2) A Holding(Key) A Unlocked(Door)

D = In(Robot,R₂), In(Key,R₂) A = In(Robot,R₁), In(Key,R₁) Put-Key-Into-Box

 $P = In(Robot,R_1) \wedge Holding(Key)$

D = Holding(Key), In(Key,R₁)

A = In(Key,Box)

52

Uchop-Kľúč-v-R₂

= v(Robot,R2) A v(Key,R2)

D = Ø

A = Drží(Kľúč)

Zamkni-Dvere P = Drží(Kľúč)

D = Ø

A = Zamknuté(Dvere) Presuň-Kľúč-z-R2-do-R1

P = $v(Robot,R_2)$, $v(K')\tilde{u}\tilde{c}$, A Odomknuté(Dvere)
D = $v(Robot,R_2)$, $v(K')\tilde{u}\tilde{c}$, A A = $v(Robot,R_1)$, A =

P = v(Robot,R₁) \(Drží(Kľúč)

 $D = Drži(Kľúč), v(Kľúč,R_1)$

A = v(Key,Box)

Metódy plánovania

Suck(R₁) R_1 R_2 R₁ R_2 Right Left začiatočný stav Suck(R₂) Goal: Clean(R_1) \wedge Clean(R_2) R_2

- Dopredné plánovanie jednoducho prehľadáva priestor stavov sveta od začiatočného k cieľovému stavu
- · Predstavme si agenta s veľkou knižnicou akcií, ktorých cieľom je G, napr., G = Mať(Mlieko)
- Vo všeobecnosti sa dá v každom stave aplikovať mnoho akcií, takže faktor vetvenia je obrovský
- V ľubovoľnom stave je väčšina akcií irrelevantná z pohľadu dosiahnutia cieľa Mať(Mlieko)
- Našťastie, dá sa počítať konzistentná heuristika použitím plánovacích grafov

58

- S_0 obsahuje tvrdenia o stave (tu, o začiatočnom stave) A_0 obsahuje všetky akcie, ktorých predpodmienky sa vyskytujú v S_0 S_1 obsahuje všetky tvrdenia, ktoré boli v S_0 alebo sú v zoznamoch na pridanie akcií v A_0 v dôsledku toho S_1 obsahuje všetky tvrdenia, ktoré by mohli byť pravdivé v stave dosiahnutom po prvej akcií A_1 obsahuje všetky akcie, ktoré už nie sú v A_0 , ktorých predpodmienky sú v S_1 , čiže môžu sa vykonať v stave dosiahnutom po vykonaní prvej akcie. Atď...

- Hodnota i taká, že S_i obsahuje všetky cieľové tvrdenia, sa nazýva úrovňová cena (level cost) cieľa (tu i=2)
- Tak, ako sa zostrojuje plánovací graf, je to dolná hranica počtu akcií potrebných na dosiahnutie cieľa
 V tomto príklade je 2 aj skutočná dĺžka najkratšej cesty do cieľa

plánovací graf pre iný stav robota vysávača

úrovňová cena cieľa je 1 a je to opäť aj skutočná dĺžka najkratšej cesty do

plánovaní

- Kedykoľvek sa vygeneruje nový uzol, vypočítaj plánovací graf jeho stavu [oprav/update plánovací graf pri rodičovskom uzle]
- Skonči počítanie plánovacieho grafu ak:
 buď cieľové tvrdenia sú v množine S_i

 - [vtedy i je úrovňová cena cieľa] alebo ak $S_{i+1} = S_i$
 - [vtedy vygenerovaný uzol nie je na ceste riešenia]
- Nastav hodnotu heuristickej funkcie h(N) pre uzol N na úrovňovú cenu cieľa pre stav reprezentovaný uzlom N
- h je konzistentná heuristika pre akcie s jednotkovou cenou
- čiže A* s použitím takejto h bude nachádzať riešenia s minimálnym počtom akcií

So A_0 S₁ A_1 S2 In(Robot,R1), In(Robot,R1) In(Robot,R1) Clean(R₁) — In(Robot,R₂) →Clean(R₁) →In(Robot,R₂) Clean(R1) Clean(R2) 'Right Suck(R₁)

- Nejaká akcia sa vyskytuje najviac raz Tvrdenie sa pridáva najviac raz a každý S_k (k ≠ i) je ostrou nadmnožinou S_{k-1} Takže počet úrovní je ohraničený Min{počet akcií, počet tvrdení} Naproti tomu stavový priestor rastie exponenciálne s počtom

63

Počítanie plánovacích grafov môže ušetriť mnoho nepotrebného prehľadávania

- · Cieľ (čo chceme dosiahnuť): zjemnime vyjadrenie úrovňovej ceny cieľa, aby bola presnejším odhadom počtu akcií, ktoré treba na dosiahnutie cieľa
- Metóda: rozpoznať zjavné vylúčenia medzi tvrdeniami na rovnakej úrovni
- Zvyčajne to vedie k presnejším heuristikám, ale plánovacie grafy budú väčšie a ich počítanie bude drahšie (bude dlhšie trvať)

64

- napriek všetkým snahám, dopredné plánovanie je spojené s veľkým faktorom vetvenia
- vo všeobecnosti je omnoho menej akcií, ktoré môžu prispieť k naplneniu cieľa (sú relevantné) než akcií, ktoré sa môžu v nejakom stave vykonať
- lepšie je potom začať od cieľa
- Ako určiť, ktoré akcie sú relevantné? Ako ich použiť?
- → spätné plánovanie

- akcia je relevantná k dosiahnutiu cieľa ak tvrdenie v jej opise.add.list sa pripodobí (match) nejakému podcieľu (čo je tiež nejaké tvrdenie)
- napr.:

Stack(B,A)

P = Holding(B) A Block(B) A Block(A) A Clear(A)

D = Clear(A), Holding(B),

A = On(B,A), Clear(B), Handempty

je relevantná k dosiahnutiu $On(B,A) \land On(C,B)$

regresia cieľa G cez akciu A je najmenej ohraničujúca predpodmienka R[G,A] taká, že:

Ak stav S dosiahne R[G,A], tak:

- 1. predpodmienka akcie A je splnená v S
- 2. aplikovaním akcie A v stave S sa dosiahne stav, v ktorom je splnený G

- $G = On(B,A) \wedge On(C,B)$
- Stack(C,B)

 $P = Holding(C) \land Block(C) \land Block(B) \land$ Clear(B)

D = Clear(B), Holding(C)

A = On(C,B), Clear(C), Handempty

• R[G,Stack(C,B)] =

 $On(B,A) \wedge$

 $Holding(C) \wedge Block(C) \wedge Block(B) \wedge Clear(B)$

- $G = On(B,A) \land On(C,B)$
- Stack(C,B)

 $P = Holding(C) \land Block(C) \land Block(B) \land Clear(B)$

D = Clear(B), Holding(C)

A = On(C,B), Clear(C), Handempty

• R[G,Stack(C,B)] =

 $On(B,A) \wedge$

 $Holding(C) \land Block(C) \land Block(B) \land Clear(B)$

- $G = In(key,Box) \wedge Holding(Key)$
- Put-Key-Into-Box

 $P = In(Robot,R_1) \land Holding(Key)$

 $D = Holding(Key), In(Key,R_1)$

A = In(Key,Box)

R[G,Put-Key-Into-Box] = False kde False je nedosiahnuteľný cieľ

 To ale znamená, že In(key,Box) ∧ Holding(Key) sa nedá dosiahnuť vykonaním akcie Put-Key-Into-Box

70

72

postup počítania R[G,A]

- 1. ak je ľubovoľný podcieľ cieľa G v zozname na zrušenie v opise akcie A (delete list) tak return False
- 2. inak
 - a. G' ← predpodmienka akcie A
 - b. pre každý podcieľ SG cieľa G vykonaj ak SG nie je v zozname na pridanie v opise akcie A (add list) tak pridaj SG do G'
- 3. Return G'

 $On(B,A) \wedge On(C,B)$

 $On(B,A) \wedge On(C,B)$ C A B √ Stack(C,B) $On(B,A) \wedge Holding(C) \wedge Clear(B)$ Pickup(C) $On(B,A) \wedge Clear(B) \wedge Handempty \wedge Clear(C) \wedge On(C,Table)$ Clear(C) ~ On(C, TABLE) ~ Holding(B) ~ Clear(A) Pickup(B) $Clear(C) \land On(C, Table) \land Clear(A) \land Handempty \land Clear(B) \land On(B, Table)$ Putdown(C) $Clear(A) \wedge Clear(B) \wedge On(B, Table) \wedge Holding(C)$ / Unstack(C,A)

Clear(B) \land On(B, Table) \land Clear(C) \land Handempty \land On(C,A)

 $On(B,A) \wedge On(C,B)$ C A B Stack(C,B) $On(B,A) \wedge Holding(C) \wedge Clear(B)$ Pickup(C) $On(B,A) \wedge Clear(B) \wedge Handempty \wedge Clear(C) \wedge On(C/Table)$ Clear(C) ~ On(C, TABLE) ~ Holding(B) ~ Clear(A) Pickup(B) $Clear(C) \wedge On(C, Table) \wedge Clear(A) \wedge Handempty \wedge Clear(B) \wedge On(B, Table)$ Putdown(C) $Clear(A) \wedge Clear(B) \wedge On(B, Table) \wedge Holding(C)$ / Unstack(C, A)

Clear(B) \wedge On(B, Table) \wedge Clear(C) \wedge Handempty \wedge On(C,A)

- Spätné plánovanie prehľadáva priestor cieľov od pôvodného cieľa problému k cieľu, ktorý je splnený v začiatočnom stave
- Zvyčajne je omnoho menej akcií relevantných k nejakému cieľu, než je akcií, aplikovateľných v nejakom stave → menší faktor vetvenia než pri doprednom plánovaní
- Dĺžky ciest riešenia sú rovnaké

postup:

75

- 1. Pred-vypočítať plánovací graf začiatočného stavu až pokiaľ neklesne úroveň na nulu
- 2. pre každý uzol N, ktorý sa pridal do stromu hľadania, stanoviť hodnotu heuristickej funkcie h(N) ako hodnotu úrovňovej ceny cieľa združeného s uzlom N

Ak sa cieľ združený s uzlom N nedá splniť v nijakej množine S_k plánovacieho grafu, nedá sa vôbec dosiahnuť - useknúť ho!

76

počíta sa len jeden plánovací graf

S₀ A_0 S A_1 S2 In(Robot,R₁), In(Robot,R₁) In(Robot,R₁) Clean(R₁) Clean(R1) Clean(R1) →In(Robot,R₂) In(Robot,R2) ·Clean(R2) Right Suck(R₁) Suck(R2)

 $On(B,A) \wedge On(C,B)$ Stack(C, B)

78

 $On(B,A) \wedge On(C,B)$ Stack(B,A) $Holding(B) \wedge Clear(A) \wedge On(C,B)$ Stack(C,B) $Holding(B) \wedge Clear(A) \wedge Holding(C) \wedge Clear(B)$ Pick(B) [delete list obsahuje Clear(B)] False

 $On(B,A) \wedge On(C,B)$ Stack(B, A) $Holding(B) \land Clear(A) \land On(C,B)$

stavové ohraničenie napr. $Holding(x) \rightarrow \neg(\exists y)On(y,x)$ by umožnilo useknúť túto vetvu skôr

ProgWS(stav, ciele, akcie, cesta) If stav spĺňa ciele, then return cesta else a = choose(akcie), takú, že predpodmienky(a) sú splnené v stave if nie je taká a, then return neúspech else return ProgWS(apply(a, stav), ciele, akcie,

pridaj(cesta, a)) prvé volanie: ProgWS(IS, G, Akcie, ())

I: (on-table A) (on C A) (on-table B) (clear B) (clear C) G: (on A B) (on B C) nedeterministický

P(I, G, AkcieSvetaKociek, ())

• P(S1, G, ASK, (Unstack&Putdown(C, A)) P(S2, G, ASK, (Unstack&Putdown(C, A),

Stack(B, C)) P(S3, G, ASK, (Unstack&Putdown(C, A),

Stack(B, C), Stack(A, B))

 $G \subseteq S3 => \text{úspech!}$

RegWS(init-stay, súčasné-ciele, akcie, cesta)

If init-stav spĺňa súčasné-ciele, then return cesta

else a =**choose** (akcie), takú, že nejaký účinok akcie a spĺňa jeden zo súčasných-cieľov

If nie je taká akcia a, then return neúspech [nedosiahnuteľný*]

If nejaký účinok a je v rozpore s niektorým súčasným-cieľom, then return neúspech [nezlučiteľný stav]

CG' = súčasné-ciele – účinky(a) + predpodmienky(a) If súčasné-ciele ⊂ CG', then return neúspech [zbytočné*]

RegWS(init-stav, CG', akcie, pridaj(a,cesta)) prvé volanie: RegWS(IS, G, Akcie, ())

I: (on-table A) (on C A) (on-table B) (clear B) (clear C) G: (on AB) (on BC) nedeterministický

· R(I, G, AkcieSvetaKociek, ())

 R(I, ((clear A) (on-table A) (clear B) (on B C)), ASK, (Stack(A, B)))

• R(I, ((clear A) (on-table A) (clear B) (clear C), (on-table B)), ASK, (Stack(B, C), Stack(A, B)))

R(I, ((on-table A) (clear B) (clear C) (on-table B) (on C A)), ASK, (Unstack&Pushdown(C, A), Stack(B, C), Stack(A, B)))

súčasné-ciele \subseteq I => úspech!

- · oba algoritmy sú:
 - správne: výsledný plán je platný
 - úplné: ak existuje platný plán, nájdu ho
- nedeterministický výber => hľadanie!
 - neinformované: DFS, BFS, Iterative Deepening, ..,
 - Heuristické: A*, IDA*, ...
- zložitosť: O(bⁿ) v najhoršom prípade b = faktor vetvenia, n = |"choose"|
- Regresia: často menší faktor vetvenia b

Niektoré rozšírenia jazyka **STRIPS**

 $In(Robot, R_1) \land \neg In(Robot, R_2) \land Clean(R_1) \land \neg Clean(R_2)$

Dump-Dirt(r) $P = In(Robot, r) \land Clean(r)$ E = ¬Clean(r)

Suck(r) $P = In(Robot, r) \land \neg Clean(r)$ E = Clean(r)

- Q v E znamená zrušiť ¬Q a pridať Q do stavu ¬Q v E znamená zrušiť Q a pridať ¬Q

Predpoklad otvoreného sveta: Tvrdenie v stave je pravdivé ak nie je negované, inak je nepravdivé. Pravdivosť tvrdenia, ktoré nie je v stave uvedené, je neznáma.

Metódy plánovania sa dajú relatívne ľahko rozšíriť tak, aby pracovali aj s negáciou. Len opisy stavov veľmi narasťú (predstavme si, že by sa robot pohyboval v budove s 50 miestnosťamii)

svet kociek:

A = On(x,z), Clear(y)

Move(x,Table,z)

P = Block(x) \(\text{A Block(z)} \(\text{A On(x,Table)} \) \(\text{Clear(x)} \\ \text{A Clear(z)} \(\text{A (x*z)} \)
D = On(x,y), Clear(z)

A = On(x,z)

 $\begin{array}{l} \textbf{Move(x,y,Table)} \\ \textbf{P = Block(x) \land Block(y) \land On(x,y) \land Clear(x)} \end{array}$

D = On(x,y) A = On(x,Table), Clear(y)

svet kociek:

Move(x,y,z)
P = Block(x) ∧ Block(y) ∧ Block(z) ∧ On(x,y) ∧ Clear(x)
∧ Clear(z) ∧ (x≠z)
D = On(x,y), Clear(z)
A = On(x,z), Clear(y)

Move(x, Table, z)

P = Block(x) \(\) Block(z) \(\) O \(\) Clear(z) \(\) (\(\pm \neq z \)) \(\) D = On(x,y), Clear(z) A = On(x,z)

Move(x, y, Table)

P = Block(x) A Block(y) A O D = On(x,y)A = On(x, Table), Clear(y)

Plánovacie metódy jednoducho vyhodnotia (x≠z) keď sú obe premenné nainštalované

To je ekvivalentné tomu, ako by sa uvažovalo, že tvrdenia (A ≠ B), (A ≠ C), ... sú implicitne pravdivé v každom stave

Dve fľaše F₁ a F₂ majú objemy 30 a 50

F₁ obsahuje 20 nejakej tekutiny

F₂ obsahuje 15 tej istej tekutiny

Stav:

 $Cap(F_1,30) \land Cont(F_1,20) \land Cap(F_2,50) \land Cont(F_2,15)$

Akcia prelievania (pour) obsahu jednej flašky do druhej:

Pour(f,f')

 $P = Cont(f,x) \wedge Cap(f',c') \wedge Cont(f',y)$

D = Cont(f,x), Cont(f',y),

 $A = Cont(f, \max\{x+y-c', 0\}), Cont(f', \min\{x+y, c'\})$

Dve fľaše F₁ a F₂ majú objemy 30 a 50 F₁ obsahuje 20 nejakej tekutiny F₂ obsahuje 15 tej sitej tekutiny

Toto rozšírenie si vyžaduje, aby Stav: Cap(F₁ plánovacie metódy "vedeli" aj Akcia preli algebraické manipulácie

Pour(f,f')

 $P = Cont(f,x) \wedge Cap(f',c') \wedge Cont(f',y)$ D = Cont(f,x), Cont(f',y), $A = Cont(f, \max\{x+y-c', 0\}), Cont(f', \min\{x+y, c'\})$

93

h b d С g e a

Stav:

 $Adj(1,2) \wedge Adj(2,1) \wedge ... \wedge Adj(8,9) \wedge Adj(9,8) \wedge$ $At(h,1) \wedge At(b,2) \wedge At(c,4) \wedge ... \wedge At(f,9) \wedge Empty(3)$

Move(x,y)
P = At(x,y) \(\text{Empty}(z) \(\text{Adj}(y,z) \)
D = At(x,y), \(\text{Empty}(z) \)
A = At(x,z), \(\text{Empty}(y) \)

h	Ь	
С	d	g
е	а	f

 $Adj(1,2) \wedge Adj(2,1) \wedge ... \wedge Adj(8,9) \wedge Adj(9,8) \wedge$ $At(h,1) \wedge At(b,2) \wedge At(c,4) \wedge ... \wedge At(f,9) \wedge Empty(3)$

Stavové ohraničenie: $Adj(x,y) \rightarrow Adj(y,x)$

Move(x,y)

P = $At(x,y) \land Empty(z) \land Adj(y,z)$ D = At(x,y), Empty(z) A = At(x,z), Empty(y)

svet kociek:

 $(\forall x)[\mathsf{Block}(x) \ \land \neg(\exists y)\mathsf{On}(y,\!x) \land \neg \mathsf{Holding}(x)] \ \to \mathcal{C}\mathsf{lear}(x)$

 $(\forall x)[\mathsf{Block}(x) \ \land \ \mathsf{Clear}(x)] \to \neg (\exists y) \mathsf{On}(y,\!x) \land \neg \mathsf{Holding}(x)$

Handempty $\leftrightarrow \neg(\exists x)$ Holding(x)

takéto tvrdenia by veľmi zjednodušili opisy akcií

Stavové ohraničenia si vyžadujú plánovacie metódy, ktoré "vedia" usudzovať, aby rozhodli, či sú ciele dosiahnuté a ohraničenia splnené