Ruochen Wang (王若宸)

ruocwang@g.ucla.edu / ruocwang@ucla.edu / ruocwang@umich.edu • 3108196039 Homepage: https://ruocwang.github.io/

Research Interests

My main research focus is on developing efficient, automated, and robust machine learning algorithms. Currently, I am working on the following problems:

- AutoML
 - Neural Architecture Search
 - Learning to learn
 - o Dataset Learning
- Transformers (efficient inference, inductive biases, and multimodality)
- Scalable Graph Neural Networks

Education

01/2020 to	University of California at Los Angeles (UCLA)	U.S.
present •	Computer Science Department	
	Ph.D. in Computer Science; Advisor: Prof. Cho-Jui Hsieh	
•	M.S. in Computer Science; GPA: 4.0/4.0	
09/2015 to	The University of Michigan-Ann Arbor (UMich)	U.S.
08/2019	Department of Electrical Engineering and Computer Science (EECS)	
	B.S. in Computer Science & B.S. in Statistics; GPA: 4.0/4.0	
09/2013 to	(Transferred) Shanghai University of Finance and Economics (SUFE)	China
06/2015	School of Finance	
	Financial Experimental Class; GPA: 3.93/4.0; Program Rank: 1/30	

Selected Honors

- Outstanding Paper Award ICLR 2021, 04/2021.
- Award of Excellence (10%), *Microsoft Research Asia (MSRA)*, 09/2019.
- Highest Distinction Graduate Award, *The University of Michigan*, 08/2019.
- Berkeley Fung's Excellence Scholarship, UC Berkeley Graduate Admission Committee, 03/2019.
- Outstanding Intern Award, **SenseTime**, 01/2019.
- James B. Angell Scholar, *The University of Michigan*, 2017-2019.
- Shanghai City Scholarship (0.6%), *Shanghai City Government*, 09/2014.

Publications

- Yuanhao Xiong, Li-Cheng Lan, Xiangning Chen, **Ruochen Wang**, Cho-Jui Hsieh. Learning to Schedule Learning rate with Graph Neural Networks. (*ICLR 2022*).
- Shoukang Hu*, **Ruochen Wang***, Lanqing Hong, Zhenguo Li, Cho-Jui Hsieh, Jiashi Feng. Anonymous paper. (* equal contribution) (*ICLR 2022*).
- **Ruochen Wang**, Xiangning Chen, Minhao Cheng, Xiaocheng Tang, Cho-Jui Hsieh. RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform Successive Halving. (*ICCV 2021*).
- **Ruochen Wang**, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, Cho-Jui Hsieh. Rethinking architecture selection in differentiable NAS. (*ICLR 2021*). **Outstanding Paper Award**.
- Xiangning Chen*, Ruochen Wang*, Minhao Cheng*, Xiaocheng Tang, Cho-Jui Hsieh. DrNAS: Dirichlet Neural Architecture Search. (* equal contribution) (ICLR 2021).

Research Experience

01/2020 to UCLA Samueli School of Engineering

Present

Graduate Student Researcher with Prof. Cho-Jui Hsieh

Los Angeles

Neural Architecture Search:

- Proposed a method to measure and alleviate the adverse effects of weight-sharing in One-Shot NAS; obtained <u>SOTA on all major NAS search spaces and datasets</u> (ICLR 2022).
- Proposed a scheduling algorithm and a learning-to-rank framework that reduce the search cost of predictor-based NAS by 5x while achieving the same search performance (ICCV 2021).
- Analyzed and explained the failure modes of Differentiable NAS from the long-overlooked architecture selection perspective (ICLR 2021 Oral, Outstanding Paper Award).
- Proposed (together with collaborators) a method to improve the robustness of differentiable NAS via Bayesian learning with Dirichlet distribution; derived a theoretical bound to prove the effectiveness of the proposed method utilizing Laplacian Approximation (ICLR 2021).
- Investigated advanced bilevel optimization methods for Differentiable Architecture Search.

Dataset Learning:

- Investigating the effectiveness of Dataset Distillation on non-i.i.d. Federated Learning (ongoing).
- Scaling up Dataset Compression Methods to Large-Scale datasets. (ongoing).

Graph Neural Networks:

• Explored stochastic learning algorithms for Graph Neural Networks (ongoing).

Transformers:

• Studying the efficiency, inductive biases, and multimodality of Transformer models (ongoing).

05/2019 to Microsoft Research

Beijing

09/2019

Research Intern

Neural Architecture Search:

• Conducted research on <u>resource-constrained neural architecture search</u> for production purposes.

Reinforcement Learning:

• Drafted a paper on improving the optimization of the Proximal Policy Gradient via Interior Point methods.

09/2018 to **SenseTime**

Shanghai

03/2019 Research Intern

Adversarial Robustness:

• Conducted research on the <u>adversarial robustness in the frequency domain</u>; developed evolution and gradient-based method to generate adversarial frequencies.

09/2017 to

UMich College of Engineering

Ann Arbor

04/2018

Research Assistant with Prof. Honglak Lee

Vision Meets Language:

• Worked on <u>natural language queried object detection</u> with a word-sensitive discriminative bimodal network that aimed at solving dataset bias problem utilizing Bayesian reformulation.

05/2017 to

UMich College of Engineering

Ann Arbor

09/2017

Research Assistant

Object Detection & Tracking:

• Participated in several computer vision projects including object detection (e.g., faster RCNN, YOLO in C), and multi-objective tracking with Siamese stacked hourglass network.

Professional Services

• Reviewer for ICML 2021, NeurIPS 2021, ICLR 2022, ICML 2022, TMLR