Binary Search Tree

Outline

- Binary Search Tree Definition
- Binary Search Tree Operations
 - Finding an item
 - Insertion
 - Deletion
 - Rotation

Binary Search Tree

- A binary search tree (BST) is a binary tree in which
 - The values in the left subtree of a node are always less than the value in the node
 - The values in the right subtree of a node are all greater than the value of the node.
 - The subtrees of a binary search tree must themselves be binary search trees.
- Note that under this definition, a BST never contains duplicate nodes.

Binary Search Tree

Left < Node < Right

Operations

- Some operations for BSTs:
 - Find an item
 - Insert an item
 - Delete an item
 - Rotation
 - Count the number of nodes
 - Find the height of the tree
 - Traverse(pre-order, in-order, post-order)

Finding an Item in a BST

How to find 4 to the following BST?

Finding an Item in a BST

```
bool ItemExists(Tree tree, int Data){
   if (tree == 0)
      return false;
   else if (Data == tree->data)
      return true;
   else if (Data < tree->data)
      return ItemExists(tree->left, Data);
   else
      return ItemExists(tree->right, Data);
}
```

Finding an Item in a BST

- Complexity
 - Best case: O(1)
 - Worst case: O(h), where h is the height of the tree.

How to insert 5 into the following BST?


```
void InsertItem(Tree &tree, int Data){
   if (tree == 0)
        tree = MakeNode(Data);
   else if (Data < tree->data)
        InsertItem(tree->left, Data);
   else if (Data > tree->data)
        InsertItem(tree->right, Data);
   else // Data == tree->data
        cout << "Error, duplicate item" << endl;
}</pre>
```

- Create a tree using these values (in this order):
 - -12, 22, 8, 19, 10, 9, 20, 4, 2, 6

- Complexity
 - Best case and worst case: O(h), where h is the of the tree.

Deleting a Node

 The caveat of deleting a node is that, after deletion, the tree must still be a BST.

Deleting a Node

Case 1: The node to be deleted is a leaf node.

- Case 2: The node to be deleted has an empty left child but non-empty right child.
- Case 3: The node to be deleted has an empty right child but non-empty left child.

Case 4: The node has both children non-empty.

Case 1: Leaf Node

- Set the parent's pointer to this node to NULL.
- Release the memory of the leaf node.

Case 2: Empty Left Child

Replace the deleted node with its right child.

Case 2: Empty Left Child

Replace the deleted node with its right child.


```
if (tree->left == 0){
    Tree temp = tree;
    tree = tree->right;
    FreeNode(temp);
}
```

Case 3: Empty Right Child

Replace the deleted node with its left child.

Case 3: Empty Right Child

Replace the deleted node with its left child.


```
if (tree->right == 0){
    Tree temp = tree;
    tree = tree->left;
    FreeNode(temp);
```

Case 4: Non-empty Left and Right Child

- Replace the data in the deleted node with its predecessor (or successor) under in-order traversal.
- Delete the node that holds the predecessor.

In-order Traversal order: 1 2 3 4 5 6 7

Case 4: Non-empty Left and Right Child

- Why predecessor?
 - Recall for binary search tree, left < node < right.
 - An in-order traversal (left, then node, then right) will always produce a sequence of values in increasing numerical order.
 - Therefore, the predecessor is the maximum value in left subtree of the node.

In-order Traversal order: 1 2 3 4 5 6 7

```
else{
    Tree pred = 0;
    FindPredecessor(tree, pred);
    tree->data = pred->data;
    DeleteItem(tree->left, tree->data);
}
```

- We are replacing the data in the node, not the node itself.
- The predecessor is still in the tree, so we still need to delete it.

Find the Predecessor

 Note that the predecessor is the rightmost node in the left subtree.

Deleting a Node

```
void DeleteItem(Tree &tree, int Data){
    if (tree == 0) return;
    else if (Data < tree->data)
         DeleteItem(tree->left, Data);
    else if (Data > tree->data)
         DeleteItem(tree->right, Data);
                                               }
    else { // (Data == tree->data)
         if (tree->left == 0){
              Tree temp = tree;
              tree = tree->right;
              FreeNode(temp);
         else if (tree->right == 0){
              Tree temp = tree;
              tree = tree->left;
              FreeNode(temp);
         else{
              Tree pred = ∅;
              FindPredecessor(tree, pred);
              tree->data = pred->data;
              DeleteItem(tree->left, tree->data);
```

```
void FindPredecessor(Tree tree, Tree
&predecessor){
    predecessor = tree->left;
    while (predecessor->right != 0)
        predecessor = predecessor->right;
}
```

Rotation

- Rotation is a fundamental technique performed on BSTs.
- A tree rotation moves one node up in the tree and one node down.

Rotation

- It is used to change the shape of the tree.
 - In particular, to decrease its height by moving smaller subtrees down and larger subtrees up.
- This results in the improved performance of many tree operations.
- Two types of rotations:
 - Right rotation
 - Left rotation
- After the rotation, the sort order is preserved.
 - The resulting tree is STILL a BST.

Right Rotation

- Rotate right about a node
 - Move the left child up so that it will rotate into its parent's position
 - This is to promote the left child.

How to Implement Right Rotation?

Before rotation After rotation

Step by Step

2.tree = tree->left; 1.Tree temp = tree; tree temp temp tree W M M

Step by Step

temp->left = tree->right; tree->right = temp; temp temp tree tree M M

Adjusting the Diagram

Right Rotation: Another Example

 Right rotate the following BST twice, first about 7 and then 5.

Right Rotation: Another Example

 Right rotate the following BST twice, first about 7 and then 5.

Left Rotation

- Rotate left around a node
 - Move the right child up so that it will rotate into its parent's position.
 - This is to promote the right child.

How to Implement Left Rotation?

Before rotation After rotation

Step by Step

Step by Step

Adjusting the Diagram

Right and Left Rotation

```
void RotateRight(Tree &tree){
    Tree temp = tree;
    tree = tree->left;
    temp->left = tree->right;
    tree->right = temp;
}
```

```
void RotateLeft(Tree &tree){
    Tree temp = tree;
    tree = tree->right;
    temp->right = tree->left;
    tree->left = temp;
}
```

Left Rotation: Another Example

Left rotate the following BST about 4.

Summary

- Binary Search Tree Definition
- Binary Search Tree Operations
 - Finding an item
 - Insertion
 - Deletion
 - Rotation