WEAK EXTENT, SUBMETRIZABILITY AND DIAGONAL DEGREES

D. BASILE, A. BELLA, AND G. J. RIDDERBOS

ABSTRACT. We show that if X has a zero-set diagonal and X^2 has countable weak extent, then X is submetrizable. This generalizes earlier results from Martin and Buzyakova. Furthermore we show that if X has a regular G_{δ} -diagonal and X^2 has countable weak extent, then X condenses onto a second countable Hausdorff space. We also prove several cardinality bounds involving various types of diagonal degree.

1. Introduction

A space is called submetrizable if it admits a coarser metrizable topology. The diagonal of X^2 , denoted by Δ_X , is the set $\{(x,x):x\in X\}$. A space X is said to have a zero-set diagonal if there is a continuous function $f:X^2\to [0,1]$ such that $\Delta_X=f^{-1}(0)$ and X is said to have a regular G_δ -diagonal if Δ_X is a regular G_δ -subset of X, i.e. it is the intersection of countably many closed neighbourhoods.

It is well-known that every submetrizable space has a zero-set diagonal, but the converse is false in general (see the example constructed in [15] and the remarks on it made in [2, Example 2.17]). This suggests to find conditions for a space with a zero-set diagonal to be submetrizable.

For example, in [13] H.W. Martin proved that separable spaces having a zero-set diagonal are submetrizable. In another direction, in [7] R.Z. Buzyakova showed that if X has a zero-set diagonal and X^2 has countable extent then X is submetrizable. Separability and countable extent are independent properties, but they have a quite natural common weakening, namely countable weak extent. In the first part of our paper, we give a simultaneous generalization of both the previous results by showing that spaces having a zero-set diagonal and whose square has countable weak extent are submetrizable.

Buzyakova also proved (see [7, Theorem 2.4 & 2.5]) that if X has a regular G_{δ} -diagonal and either it is separable or X^2 has countable extent, then X condenses onto a second-countable Hausdorff space. Again, we give a simultaneous generalization of both these results by showing that if X^2 has countable weak extent and a regular G_{δ} -diagonal, then X condenses onto a second-countable Hausdorff space.

In the second part of the paper we will study cardinality bounds on a space X according to the specific way its diagonal is embedded in X^2 .

1

Date: December 6, 2011.

²⁰⁰⁰ Mathematics Subject Classification. 54A25, 54C10, 54D20, 54E99.

 $Key\ words\ and\ phrases.$ Submetrizable spaces, weak extent, regular G_δ -diagonal, rank n-diagonal, weak Lindelöf number.

2. Notation and terminology

For all undefined notions we refer to [10].

Recall that X condenses onto Y if there is a continuous bijection from X onto Y. So a space is submetrizable if and only if it condenses onto a metrizable space. The extent of a space X, denoted by e(X), is the supremum of the cardinalities of closed and discrete subsets of X. The weak extent of a space X, denoted by we(X), is the least cardinal number κ such that for every open cover $\mathcal U$ of X there is a subset A of X of cardinality no greater than κ such that $\mathrm{St}(A, \mathcal U) = X$. It is clear that $we(X) \leq d(X)$ and $we(X) \leq e(X)$. Note that spaces with countable weak extent are called star countable by several authors (see, for instance [1]). For a space X the weak-Lindelöf number of X, denoted by wL(X), is the least cardinal κ such that every open cover of X has a subfamily of cardinality no greater than κ whose union is dense in X.

Whenever \mathcal{B} is a collection of subsets of X and $A \subseteq X$, the star at A with respect to \mathcal{B} , denoted by $St(A, \mathcal{B})$, is defined by the formula

$$St(A, \mathcal{B}) = \bigcup \{B \in \mathcal{B} : A \cap B \neq \emptyset\}.$$

If we let $\mathrm{St}^0(A, \mathcal{B}) = A$ then, for $n \in \omega$, the *n*-star around A is defined by induction:

$$\operatorname{St}^{n+1}(A, \mathcal{B}) = \operatorname{St}(\operatorname{St}^n(A, \mathcal{B}), \mathcal{B}).$$

Note that $\operatorname{St}^1(A, \mathcal{B}) = \operatorname{St}(A, \mathcal{B})$. If $A = \{a\}$ we write $\operatorname{St}^n(a, \mathcal{B})$ instead of $\operatorname{St}^n(A, \mathcal{B})$.

If $n \in \omega$, and κ is an infinite cardinal, we say that a space X has a rank n G_{κ} -diagonal (a strong rank n G_{κ} -diagonal) if there is a sequence $\{\mathcal{U}_{\alpha} : \alpha < \kappa\}$ of open covers of X such that for all $x \neq y$, there is some $\alpha < \kappa$ such that $y \notin St^n(x,\mathcal{U}_{\alpha})$ ($y \notin \overline{St^n(x,\mathcal{U}_{\alpha})}$). When $\kappa = \omega$, we will simply write rank n-diagonal. We will denote the minimal cardinal κ such that X has a rank n G_{κ} -diagonal or a strong rank n G_{κ} -diagonal by $\Delta_n(X)$ and $s\Delta_n(X)$, respectively. The formula $\Delta_n(X) \leq \min\{\Delta_{n+1}(X), s\Delta_n(X)\}$ is obviously true. If n = 1 we will omit the number 1

Recall that a space has a G_{δ} -diagonal if and only if it has a rank 1-diagonal (this was proved by Ceder in [9, Lemma 5.4]). In analogy to Ceder's result, Zenor proved in [17, Theorem 1] that a space X has a regular G_{δ} -diagonal if and only if there is a sequence $\{\mathcal{U}_n : n \in \omega\}$ of open covers of X such that for all $x \neq y$, there is a neighbourhood U of x and some $n \in \omega$ such that $y \notin \overline{St(U, \mathcal{U}_n)}$.

In particular, if a space has a strong rank 2-diagonal, then it has a regular G_{δ} -diagonal. We must say that at present we do not know any example of spaces having a regular G_{δ} -diagonal that does not have a strong rank 2-diagonal. Even more intriguing is the relationship between regular G_{δ} -diagonal and rank 2-diagonal. It is well-known that there exists a space with a rank 2-diagonal that does not have a regular G_{δ} -diagonal, namely the Mrowka space Ψ (see [2]). This easily follows from a result of McArthur ([14]), stating that a pseudocompact space with a regular G_{δ} -diagonal is metrizable. But the following question from A. Bella ([4]) is still open:

Question 2.1. Does any space with a regular G_{δ} -diagonal have a rank 2-diagonal?

A good reason for asking such a question comes out from a comparison of the following two facts. In [4] Bella proved that a ccc space with a rank 2-diagonal

has cardinality not exceeding 2^{ω} . Much more recently and with a certain effort, in [8] Buzyakova has shown that a ccc space with a regular G_{δ} -diagonal has again cardinality not exceeding 2^{ω} . Therefore, a positive answer to the previous question would imply a trivial proof of the latter result from the former.

3. Zero-set diagonal vs submetrizability

The aim of this section is to provide a simultaneous generalization of Martin and Buzyakova's results. The obvious way to accomplish this is by using the weak extent. However, we actually present a formally stronger result obtained by means of an even weaker form of the weak extent of a square.

The weak double extent of a space X, denoted by wee(X), is the smallest cardinal κ such that whenever \mathcal{U} is an open cover of X^2 , there exists some $A \subseteq X$ with $|A| \leq \kappa$ such that

$$St(X \times A, \mathcal{U}) = X^2$$
.

The following is obvious.

Proposition 3.1. For any space X, we have $we(X) \leq we(X) \leq we(X^2)$.

By using Example 3.3.4 in [16], we are going to provide a space X such that we(X) < wee(X). Let Ψ be the Mrowka space $\mathcal{A} \cup \omega$, where the cardinality of \mathcal{A} is \mathfrak{c} , and let Y be the one-point compactification of a discrete space D of cardinality \mathfrak{c} . The space $X = \Psi \oplus Y$ is the topological sum of a separable space and a compact space and so we have $we(X) = \omega$. Write $\mathcal{A} = \{A_{\alpha} : \alpha < \mathfrak{c}\}$ and $D = \{d_{\alpha} : \alpha < \mathfrak{c}\}$. Let

$$\begin{split} U_1 &= \{\Psi \times \{d_\alpha\} : \alpha < \mathfrak{c}\}, \\ U_2 &= \{(\{A_\alpha\} \cup A_\alpha) \times (Y \setminus \{d_\alpha\}) : \alpha < \mathfrak{c}\}, \\ U_3 &= \{\{n\} \times Y : n < \omega\}, \end{split}$$

and finally $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2 \cup \mathcal{U}_3 \cup \{Y \times Y\} \cup \{\Psi \times \Psi\} \cup \{Y \times \Psi\}.$

Of course the family \mathcal{U} is an open cover of X^2 . Assume that there exists a countable set $C \subseteq X$ such that $St(X \times C, \mathcal{U}) = X^2$. This in turn would imply the relation $St(\Psi \times (C \cap Y), \mathcal{U}_1 \cup \mathcal{U}_2 \cup \mathcal{U}_3)) = \Psi \times Y$. Since we have $\Psi \times Y \setminus (\bigcup \mathcal{U}_2 \cup \bigcup \mathcal{U}_3) \supseteq \{(A_{\alpha}, d_{\alpha}) : \alpha < \mathfrak{c}\}$, it should be $\{(A_{\alpha}, d_{\alpha}) : \alpha < \mathfrak{c}\} \subseteq St(\Psi \times (C \cap Y), \mathcal{U}_1)$. But this would imply $D \subseteq C \cap Y$, which is a contradiction. This suffices for the proof that $wee(X) > \omega = we(X)$.

A further look shows that we actually have $wee(X) = \mathfrak{c}$. By repeating the same construction, with the Katetov's extension in place of Ψ and with D a set of cardinality $2^{\mathfrak{c}}$, we get a Hausdorff space X such that $we(X) = \omega$ and $wee(X) = 2^{\mathfrak{c}}$. Right now, we do not have a space X for which $wee(X) < we(X^2)$.

Lemma 3.2. If $wee(X) = \omega$ and F is a closed subset of X^2 and \mathcal{U} is a cover of F by open subsets of X^2 , then there is a countable subset A of X such that

$$F \subseteq \operatorname{St}(X \times A, \mathcal{U}).$$

Theorem 3.3. If X has a zero-set diagonal and $wee(X) = \omega$, then X is submetrizable

Proof. Let $f: X^2 \to [0,1]$ be such that $f^{-1}(0) = \Delta_X$. Next, for $n \in \mathbb{N}$ we let $C_n = f^{-1}([1/n,1])$. Of course C_n is a closed subset of X^2 , and $X^2 \setminus \Delta_X = \bigcup_{n \in \mathbb{N}} C_n$.

For $n \in \mathbb{N}$, we let \mathcal{W}_n be defined by

$$\mathcal{W}_n = \{ U \times V : U \times V \subseteq f^{-1}((1/2n, 1]), \ V \times V \subseteq f^{-1}([0, 1/2n)) \ \& \ U, V \text{ open in } X \}.$$

Note that W_n is a cover of C_n by open subsets of X^2 . To see this, fix $n \in \mathbb{N}$ and let $(x,y) \in C_n$. We have $f(x,y) \in (1/2n,1]$, and therefore there exist open subsets U and V of X such that $(x,y) \in U \times V \subseteq f^{-1}((1/2n,1])$. Moreover, since $(y,y) \in V \times V$ and f(y,y) = 0 we can shrink V in such a way that $V \times V \subseteq f^{-1}([0,1/2n))$.

Since $wee(X) = \omega$, by the preceding lemma we may find a countable subset B_n of X such that

$$C_n \subseteq \operatorname{St}(X \times B_n, \mathcal{W}_n).$$

We now let $B = \bigcup_{n \in \mathbb{N}} B_n$, and we define $F: X \to [0,1]^B$ by

$$F(x)(b) = f(x, b).$$

We will show that F is an injection. Since B is countable, this will imply that X is submetrizable. Pick $x, y \in X$ with $x \neq y$. Then there is some $n \in \omega \setminus \{0\}$ with $(x,y) \in C_n$. So we may find $b \in B_n$ and $U \times V \in \mathcal{W}_n$ such that $(x,y) \in U \times V$ and $b \in V$. Then $(x,b) \in U \times V$ and $(y,b) \in V \times V$. From the definition of \mathcal{W}_n , it follows that

and therefore $F(x) \neq F(y)$. This completes the proof.

The following is the announced generalization of [13, Theorem 1] and [7, Theorem 2.1].

Corollary 3.4. If X^2 has countable weak extent and a zero-set diagonal, then X is submetrizable.

In [7, Theorem 2.4 and 2.5], R.Z. Buzyakova proved that if X has a regular G_{δ} -diagonal and either it is separable or X^2 has countable extent, then X condenses onto a second-countable Hausdorff space.

Following the same technique of Buzyakova, we now generalize those two results.

Theorem 3.5. Let $wee(X) \leq \kappa$ and assume that X has a regular G_{δ} -diagonal. Then X condenses onto a Hausdorff space of weight at most κ .

Proof. Let $\Delta_X = \bigcap_{n < \omega} U_n = \bigcap_{n < \omega} \overline{U}_n$, and let $C_n = X^2 \setminus U_n$. We define a family of open sets \mathcal{U} as follows:

$$\mathcal{U} = \{U \times V : U \times V \subset X \setminus \overline{U}_m, V \times V \subset U_m \text{ for some } m \in \omega \& U, V \text{ open in } X\}.$$

Note that since $\Delta_X = \bigcap_{m \in \omega} \overline{U}_m$, it follows that \mathcal{U} is an open cover of $X^2 \setminus \Delta_X$. Since $wee(X) \leq \kappa$, we may find, for every $n \in \omega$, a subset B_n of X of cardinality at most κ such that

$$C_n \subseteq \operatorname{St}(X \times B_n, \mathcal{U}).$$

If we let $B = \bigcup_{n \in \omega} B_n$, then B is of cardinality at most κ and

$$X^2 \setminus \Delta_X \subseteq \operatorname{St}(X \times B, \mathcal{U}).$$

Now we let the family \mathcal{B} consist of all open subsets of X of one of the following forms:

- (1) $\{y:(y,b)\in U_n\}$ for some $b\in B$ and some $n\in\omega$,
- (2) $\{x:(x,b)\in X^2\setminus \overline{U}_n\}$ for some $b\in B$ and some $n\in\omega$.

Then since $|B| \le \kappa$, we also have that $|\mathcal{B}| \le \kappa$. We will show that \mathcal{B} is a Hausdorff separating family (cf. [7]).

So, pick $p \neq q$. Then there is some $b \in B$ and $U \times V \in \mathcal{U}$ such that $b \in V$ and $(p,q) \in U \times V$. Also, since $U \times V \in \mathcal{U}$, there is some $m \in \omega$ such that

$$U \times V \subset X \setminus \overline{U}_m \& V \times V \subset U_m$$
.

This means that $(p,b) \in U_m$ and $(q,b) \in X \setminus \overline{U}_m$, and so we have

$$p \in \{y : (y,b) \in U_m\}$$

$$q \in \{x : (x,b) \in X^2 \setminus \overline{U}_m\},$$

and since these open sets are disjoint members of \mathcal{B} , this shows that \mathcal{B} is Hausdorff separating.

Corollary 3.6. If X^2 has countable weak extent and a regular G_{δ} -diagonal, then X condenses onto a second countable Hausdorff space.

4. Some cardinal inequalities

In this section we prove various cardinality bounds involving different types of diagonal degree. We start off by showing that for Hausdorff spaces X the inequalities $|X| \leq 2^{d(X)s\Delta(X)}$ and $|X| \leq we(X)^{\Delta_2(X)}$ hold.

Next, we shall prove that if X is either a Baire space with a rank 2-diagonal or a space with a rank 3-diagonal, then its cardinality is bounded by $wL(X)^{\omega}$. We do not know if the same inequality is still true for spaces having a strong rank 2-diagonal. However, we can prove that, for such spaces, the inequality $|X| \leq wL(X)^{\pi\chi(X)}$ holds. Finally, we will show that the last formula is true for homogeneous spaces having a regular G_{δ} -diagonal.

Proposition 4.1. For any Hausdorff space X we have

$$|X| < 2^{d(X)s\Delta(X)}$$
.

Proof. Let $\kappa = d(X)s\Delta(X)$ and fix a family $\{\mathcal{U}_{\alpha} : \alpha < \kappa\}$ that witnesses the fact that X has a strong rank 1 G_{κ} -diagonal. Let D be a dense subset of X of cardinality at most κ . We define a map $F: X \to \mathcal{P}(D)^{\kappa}$ by

$$F(x)(\alpha) = D \cap \operatorname{St}(x, \mathcal{U}_{\alpha}).$$

We only have to show that this map is one-to-one. First of all, note that since D is dense, we always have $x \in \overline{F(x)(\alpha)}$. Now let $x \neq y$. Then we may find $\alpha < \kappa$ with $y \notin \overline{\operatorname{St}(x, \mathcal{U}_{\alpha})}$. But then, since $F(x)(\alpha) \subseteq \operatorname{St}(x, \mathcal{U}_{\alpha})$, it follows that $y \notin \overline{F(x)(\alpha)}$. So as $y \in \overline{F(y)(\alpha)}$, it follows that $F(x)(\alpha) \neq F(y)(\alpha)$.

One could try to conjecture the bound $2^{d(X)\Delta(X)}$, but the Katetov extension of the discrete space ω disproves it. It is separable, it has a G_{δ} -diagonal and its cardinality is $2^{\mathfrak{c}}$.

Taking into account a result of Ginsburg and Woods, see [11, Theorem 9.4], which states that if X is a T_1 space, then its cardinality is bounded by $2^{e(X)\Delta(X)}$, it is quite natural to wonder whether the previous proposition can be improved as follows:

Question 4.2. Is the cardinality of a Hausdorff space X bounded by $2^{we(X)s\Delta(X)}$?

If, in the previous question, we replace $s\Delta(X)$ with $\Delta_2(X)$, we can actually prove the following stronger bound.

Proposition 4.3. For any Hausdorff space X we have

$$|X| \le we(X)^{\Delta_2(X)}.$$

Proof. Let $\kappa = we(X)$ and $\lambda = \Delta_2(X)$. Fix a sequence of open covers $\{\mathcal{U}_\alpha : \alpha < \lambda\}$ witnessing the fact that X has a rank 2 G_λ -diagonal. For every $\alpha < \lambda$, we may fix a subset A_α of X with $|A_\alpha| \leq \kappa$ such that $X = \operatorname{St}(A_\alpha, \mathcal{U}_\alpha)$. We let $A = \bigcup_{\alpha < \lambda} A_\alpha$. Note that $|A| \leq \kappa \cdot \lambda$.

We may fix a map $f: X \to A^{\lambda}$ with the property that for $x \in X$ and $\alpha < \lambda$ we have that $f(x)(\alpha) = a \in A_{\alpha}$ and $x \in \text{St}(a, \mathcal{U}_{\alpha})$. To complete the proof we will show that such a mapping is injective.

So fix $x \neq y$. Then we may find $\alpha < \lambda$ such that

$$\operatorname{St}(x,\mathcal{U}_{\alpha}) \cap \operatorname{St}(y,\mathcal{U}_{\alpha}) = \emptyset.$$

Now let $p = f(x)(\alpha)$. Then $x \in \text{St}(p, \mathcal{U}_{\alpha})$, and so also $p \in \text{St}(x, \mathcal{U}_{\alpha})$. This means that $p \notin \text{St}(y, \mathcal{U}_{\alpha})$ and therefore $y \notin \text{St}(p, \mathcal{U}_{\alpha})$. This implies that $p \neq f(y)(\alpha)$. So the mapping f is injective and this completes the proof.

This result should be compared with the inequality $|X| \leq we(X)^{psw(X)}$, obtained by R. Hodel (see [3] for an alternative and direct proof; see also [12]). The Katetov extension of ω witnesses that in the last two formulas it is not possible to put $\Delta(X)$ at the exponent. However, one may still try to conjecture to improve Ginsburg-Woods' inequality by moving down e(X) from the exponent. This question was already published by Bella in 1996 (see [6]), but we think is worthy to repeat it here.

Question 4.4. Does the inequality

$$|X| \le e(X)^{\Delta(X)}$$

hold for any T_1 space X?

In [4, Theorem 2], Bella proved that the cardinality of a Hausdorff space X is bounded by $2^{c(X)\Delta_2(X)}$. This was done by an application of the Erdös-Rado Theorem. For Baire spaces with a rank 2-diagonal this bound can be considerably improved.

Proposition 4.5. If X a Baire space with a rank 2-diagonal then,

$$|X| \leq wL(X)^{\omega}$$
.

Proof. This follows from Proposition 4.3, the fact that $we(X) \leq d(X)$ and the following lemma.

Lemma 4.6. If X is a Baire space with a G_{δ} -diagonal then,

$$d(X) \le wL(X)^{\omega}$$
.

Proof. Let $wL(X) = \kappa$ and let $\{U_n : n < \omega\}$ be a sequence of open covers of X witnessing the fact that X has a rank 1-diagonal. For every $n < \omega$, we fix a family $\mathcal{V}_n \subseteq \mathcal{U}_n$ of cardinality κ whose union is dense in X. Next we let $\mathcal{V} = \bigcup_{n < \omega} \mathcal{V}_n$ and $D_n = \bigcup \mathcal{V}_n$. Then $|\mathcal{V}| \leq \kappa$, and D_n is an open and dense subset of X for every n. Since X is a Baire space, this means that $D = \bigcap_{n < \omega} D_n$ is a dense subset of X. So to complete the proof it suffices to show that $|D| \leq \kappa^{\omega}$.

We fix some well-ordering on \mathcal{V} and we define a map $f:D\to\mathcal{V}^\omega$ as follows

$$f(d)(n) = \min\{V \in \mathcal{V} : d \in V \in \mathcal{V}_n\}.$$

We will show that f is an injection. So fix $x, y \in D$ with $x \neq y$. Then $y \notin St(x, \mathcal{U}_n)$ for some $n \in \omega$. Let V = f(x)(n). Then $x \in V$ and since \mathcal{V}_n is a refinement of \mathcal{U}_n , this means that $V \subseteq \operatorname{St}(x,\mathcal{U}_n)$. So we have that $y \notin V$ and therefore $f(x)(n) \neq f(y)(n)$. This completes the proof.

We could ask whether the Baire assumption in Proposition 4.5 is necessary. This is an open question, but we can prove that for spaces having a rank 3-diagonal the following is true.

Proposition 4.7. If X has a rank 3-diagonal then,

$$|X| \leq wL(X)^{\omega}$$
.

Proof. Let $wL(X) = \kappa$ and let $\{U_n : n < \omega\}$ be a sequence of open covers of X witnessing the fact that X has a rank 3-diagonal. For every $n < \omega$, we fix a family $\mathcal{V}_n \subseteq \mathcal{U}_n$ of cardinality κ whose union is dense in X.

Next we let $\mathcal{V} = \bigcup_{n < \omega} \mathcal{V}_n$. Of course we have $|\mathcal{V}| \leq wL(X)$. Note that whenever $U \in \mathcal{U}_n$, there is some $V \in \mathcal{V}_n$ such that $U \cap V \neq \emptyset$. So it follows that for every $x \in X$ and $n \in \omega$, there is some $V \in \mathcal{V}_n$ such that $\operatorname{St}(x, \mathcal{U}_n) \cap V \neq \emptyset$. Also note that in this case $V \subseteq \operatorname{St}^2(x, \mathcal{U}_n)$. We fix a well-ordering on \mathcal{V} and we define a map $F: X \to \mathcal{V}^{\omega}$ as follows

$$F(x)(n) = \min\{V \in \mathcal{V} : V \in \mathcal{V}_n \& \operatorname{St}(x, \, \mathcal{U}_n) \cap V \neq \emptyset\}.$$

We have just shown that F is well-defined. It remains to show that F is an injection. So let $x, y \in X$ with $x \neq y$. By assumption, there is some $n \in \omega$ such that

$$\operatorname{St}^2(x, \ \mathcal{U}_n) \cap \operatorname{St}(y, \ \mathcal{U}_n) = \emptyset.$$

Since $F(x)(n) \subseteq \operatorname{St}^2(x, \mathcal{U}_n)$ and $F(y)(n) \cap \operatorname{St}(y, \mathcal{U}_n) \neq \emptyset$, it follows that $F(x)(n) \neq \emptyset$ F(y)(n). This shows that F is an injection and this completes the proof.

The discrete cellularity of a space X is the cardinal number $dc(X) = \sup\{|\mathcal{U}| : \mathcal{U}\}$ is a discrete family of open subsets of X. The last result should be compared with the inequality $|X| \leq 2^{dc(X)\Delta_3(X)}$ proved in [5]. Note that, at least for regular spaces, we have $dc(X) \leq wL(X)$ and the gap can be artitrarely large. We do not know if the last two mentioned inequalities are true for spaces with a strong rank 2-diagonal.

Question 4.8. Let X be a space with a strong rank 2-diagonal. Is it the case that

- $|X| \le wL(X)^{\omega}$? $|X| \le 2^{dc(X)}$?

However, for spaces of countable π -character, we have the answer.

Proposition 4.9. Let X be a space with a strong rank 2-diagonal. Then

$$|X| \le wL(X)^{\pi\chi(X)}.$$

Proof. Let $\{\mathcal{U}_n : n < \omega\}$ be a sequence of open covers of X witnessing the fact that X has a strong rank 2-diagonal and let $\kappa = \pi \chi(X)$ and $\lambda = wL(X)$. For every $x \in X$, we let $\mathcal{V}_x = \{V(x,\alpha) : \alpha < \kappa\}$ be a local π -base at x. For $n < \omega$, we fix a family $W_n \subseteq U_n$ of cardinality λ whose union is dense in X.

Next we let $\mathcal{W} = \bigcup_{n < \omega} \mathcal{W}_n$. Note that $|\mathcal{W}| \leq \lambda$. Since \mathcal{U}_n is a cover of X, it follows that whenever V is a non-empty open subset of X, then $V \cap W \neq \emptyset$ for some $W \in \mathcal{W}_n$. We fix a well-ordering on \mathcal{W} and we define a map $F: X \to \mathcal{W}^{\kappa \times \omega}$ as follows,

$$F(x)(\alpha, n) = \begin{cases} \emptyset, & \text{if } V(x, \alpha) \not\subseteq \operatorname{St}(x, \mathcal{U}_n), \\ \min\{W \in \mathcal{W}_n : W \cap V(x, \alpha) \neq \emptyset\}, & \text{otherwise.} \end{cases}$$

By the remarks made before, the map F is well-defined. For $x \in X$ and $n < \omega$, we let W(x, n) be defined by

$$W(x,n) = \bigcup \{F(x)(\alpha,n) : \alpha \in \kappa\}.$$

Note that by definition of F, we have that $W(x, n) \subseteq \text{St}(\text{St}(x, \mathcal{U}_n), \mathcal{W}_n)$ and since \mathcal{W}_n is a refinement of \mathcal{U}_n , it follows that

$$W(x,n) \subseteq \operatorname{St}^2(x, \mathcal{U}_n).$$

CLAIM. $x \in \overline{W(x,n)}$ for every $n \in \omega$.

PROOF OF CLAIM. To see this, let Ox be an open neighbourhood of x. Then $V(x,\alpha) \subseteq Ox \cap \operatorname{St}(x, \mathcal{U}_n)$ for some $\alpha < \kappa$. By definition of F, it follows that $F(x)(\alpha,n) \cap V(x,\alpha) \neq \emptyset$ and therefore $F(x)(\alpha,n) \cap Ox \neq \emptyset$. Since $F(x)(\alpha,n) \subseteq W(x,n)$, it follows that $x \in \overline{W(x,n)}$ and this proves the claim.

So for every $x \in X$, we have that

$$\{x\} \subseteq \bigcap_{n < \omega} \overline{W(x,n)} \subseteq \bigcap_{n < \omega} \overline{\operatorname{St}^2(x, \, \mathcal{U}_n)} = \{x\}.$$

This shows that F is an injection and this completes the proof.

For homogeneous spaces, the previous proposition can be improved.

Note that if X is homogeneous and $\pi\chi(X) = \kappa$, then there is a collection $\{V(x,\alpha): x \in X, \alpha < \kappa\}$ of non-empty open subsets of X such that for every $x \in X$, $\mathcal{V}_x = \{V(x,\alpha): \alpha < \kappa\}$ is a local π -base at x and whenever Ox and Oy are open neighbourhoods of x and y respectively, there is some $\alpha < \kappa$ such that

$$V(x,\alpha) \subseteq Ox$$
 and $V(y,\alpha) \subseteq Oy$.

For example, if $p \in X$ is fixed and $\{V_{\alpha} : \alpha < \kappa\}$ is a local π -base at p in X, then we may define $V(x,\alpha) = h_x[V_{\alpha}]$, where h_x is a homeomorphism of X mapping p onto x.

Proposition 4.10. Let X be a homogeneous space with a regular G_{δ} -diagonal. Then

$$|X| \le wL(X)^{\pi\chi(X)}.$$

Proof. Fix a sequence $\{U_n : n < \omega\}$ of open covers of X witnessing the fact that X has a regular G_{δ} -diagonal. Furthermore, let $\pi\chi(X) = \kappa$ and $wL(X) = \lambda$ and fix a collection $\{V(x,\alpha) : x \in X, \alpha < \kappa\}$ of non-empty open subsets of X with the property stated just before this proposition.

Next, for $n < \omega$, we fix a family $W_n \subseteq U_n$ of cardinality λ whose union is dense in X.

Note that since \mathcal{U}_n is a cover of X, if follows that whenever V is a non-empty open subset of X, then $V \cap W \neq \emptyset$ for some $W \in \mathcal{W}_n$. We let $\mathcal{W} = \bigcup_{n < \omega} \mathcal{W}_n$ and we fix a well-ordering on \mathcal{W} . Note that $|\mathcal{W}| \leq wL(X)$.

We now define a map $F: X \to \mathcal{W}^{\omega \times \kappa}$ as follows,

$$F(x)(n,\alpha) = \min\{W \in \mathcal{W} : W \in \mathcal{W}_n \& W \cap V(x,\alpha) \neq \emptyset\}.$$

We have just showed that F is well-defined. It remains to verify that F is an injection, so let $x, y \in X$ with $x \neq y$. Then there is some $n < \omega$ and open neighbourhoods Ox and Oy of x and y respectively such that

$$\operatorname{St}(Ox, \ \mathcal{U}_n) \cap Oy = \emptyset.$$

By the property of our local π -bases, it follows that there is some $\alpha < \kappa$ such that

$$V(x,\alpha) \subseteq Ox$$
 and $V(y,\alpha) \subseteq Oy$.

Now recall that W_n is a refinement of U_n , and therefore, since $V(x,\alpha) \subseteq Ox$, we have the following:

$$F(x)(n,\alpha) \subseteq St(Ox, \mathcal{U}_n).$$

Furthermore, by construction we have that $F(y)(n,\alpha) \cap Oy \neq \emptyset$ so it follows that $F(x)(n,\alpha) \neq F(y)(n,\alpha)$. This shows that F is an injection and this completes the proof.

References

- O. T. Alas, L. R. Junqueira, and R. G. Wilson, Countability and star covering properties, Topology and its Applications 158 (2011), no. 4, 620–626.
- [2] A. V. Arhangel'skii and R. Z. Buzyakova, The rank of the diagonal and submetrizability, Comment. Math. Univ. Carolin. 47 (2006), no. 4, 585-597.
- [3] D. Basile and A. Bella, Short proof of a cardinal inequality involving the weak extent, Rend. Istit. Mat. Univ. Trieste 38 (2006), 17–20.
- [4] A. Bella, Remarks on the metrizability degree, Boll. Un. Mat. Ital. A (7) 1 (1987), no. 3, 391–396.
- [5] _____, More on cellular extent and related cardinal functions, Boll. Un. Mat. Ital. A (7) 3 (1989), no. 1, 61–68.
- [6] _____, A couple of questions concerning cardinal invariants, Questions Answers Gen. Topology 14 (1996), no. 2, 139–143.
- [7] R. Z. Buzyakova, Observations on spaces with zeroset or regular G_δ-diagonals, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 469–473.
- [8] _____, Cardinalities of ccc-spaces with regular G_{δ} -diagonals, Topology Appl. 153 (2006), no. 11, 1696–1698.
- [9] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105–125.
- [10] R. Engelking, General topology, second ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author.
- [11] R. Hodel, Cardinal functions. I, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 1–61.
- [12] R. E. Hodel, Combinatorial set theory and cardinal function inequalities, Proc. Amer. Math. Soc. 111 (1991), no. 2, 567–575. MR 1039531 (91f:54002)
- [13] H. W. Martin, Contractibility of topological spaces onto metric spaces, Pacific J. Math. 61 (1975), no. 1, 209-217.
- [14] W. G. McArthur, G_{δ} -diagonals and metrization theorems, Pacific J. Math. 44 (1973), 613–617.
- [15] G. M. Reed, On normality and countable paracompactness, Fund. Math. 110 (1980), no. 2, 145–152. MR 600588 (82d:54033)
- [16] E. K. van Douwen, G. M. Reed, A. W. Roscoe, and I. J. Tree, Star covering properties, Topology Appl. 39 (1991), no. 1, 71–103.
- [17] P. Zenor, On spaces with regular G_{δ} -diagonals, Pacific J. Math. 40 (1972), 759–763.

Università degli Studi di Catania, Dipartimento di Matematica e Informatica, Viale Andrea Doria 6, 95125 Catania, Italy

 $E\text{-}mail\ address: \verb|basile@dmi.unict.it||$

Università degli Studi di Catania, Dipartimento di Matematica e Informatica, Viale Andrea Doria 6, 95125 Catania, Italy

E-mail address: bella@dmi.unict.it

Faculty of Electrical Engineering, Mathematics and Computer Science, TU Delft, Postbus 5031, $2600~{\rm GA}~{\rm Delft}$, the Netherlands

 $\label{eq:continuous} E\text{-}mail\ address: \texttt{G.F.Ridderbos@tudelft.nl} \\ URL: \ \texttt{http://aw.twi.tudelft.nl/"ridderbos}$