Chapitre 28 : Probabilités

Événements et variables aléatoires 1

Généralités 1.1

Définition 1.1.

- * Un univers (fini) est un ensemble fini non vide Ω
- * Un événement est une partie $A \subseteq \Omega$
- * Une variable aléatoire (VA) est une application $X : \Omega \to E$ vers un ensemble E

1.2 **Opérations**

Image d'une VA par une application

Étant donné une VA $X : \Omega \to E$ est une application $f : E \to F$, on définit la VA image de X par f, f(x) comme la composition $f \circ X : \Omega \to F$

Événements définis par une VA

Soit $X: \Omega \to E$

Pour toute partie $S \subseteq E$, on définit l'événement

$$(X \in S) = \{X \in S\} = \{\omega \in \Omega \mid X(\omega) \in S\} = X^{-1}[S]$$

Indicatrice d'un élément

Tout événement $A \subseteq \Omega$ définit une VA

$$\mathbb{1}_A: \begin{cases} \Omega \to \{0,1\} \\ \omega \mapsto \begin{cases} 1 \text{ si } \omega \in A \\ 0 \text{ si } \omega \notin A \end{cases} \end{cases}$$

Expériences aléatoires

Considérons un exemple d'expérience aléatoire. On joue à pile ou face n fois de suite.

UNIVERS : On considère $\Omega = \{0,1\}$

Une issue est un résultat possible, càd ici une suite de n lancers.

ÉVÉNEMENTS : L'événement (au sens usuel) "le i-ème lancer donne pile" correspond à l'événement (au sens mathématique) $\pi_i = \{(b_1, ..., b_n) \in \Omega \mid b_i = 1\}$ (ensemble à 2^{n-1} événements)

"Obtenir que des 'face' " $F = \{(0,0,...,0)\}$ (est élémentaire = singleton)

"Obtenir un nombre impair de 'pile' " $I = \{(b_1, ..., b_n) \in \Omega \mid b_1 + ... + b_n \equiv 1 \pmod{2}\}$

*
$$L_i: \begin{cases} \Omega \to \{0,1\} \\ (b_1,\dots,b_n) \mapsto b_i \end{cases}$$
 "est le résultat du i -ème lancer"
$$* \ N: \begin{cases} \Omega \to \llbracket 0,n \rrbracket \\ (b_1,\dots,b_n) \mapsto b_1,\dots,b_n \end{cases}$$
 est le nombre de "pile" obtenus
$$* \ P: \begin{cases} \Omega \to \llbracket 1,n \rrbracket \cup \{+\infty\} \\ (b_1,\dots,b_n) \mapsto \min \{i \in \llbracket 1,n \rrbracket \mid b_i=1\} \end{cases}$$
 est le rang de premier "pile" (avec la convention $\min \varnothing = +\infty$)

$$* \ R: \begin{cases} \Omega \to P(\llbracket 1, n \rrbracket) \\ (b_1, \dots, b_n) \mapsto \{i \in \llbracket 1, n \rrbracket \mid b_i = 1\} \end{cases} \text{ est l'ensemble des rangs où l'on a obtenu pile}$$

Lien entre ces objets:

- * "Obtenir un nombre impair de 'pile' " et "Obtenir que 'face' " sont incompatibles : $I \cap F = \emptyset$
- * $F = \pi_1 \cup \pi_2 \cup ... \cup \pi_n = \overline{\pi_1} \cap ... \cap \overline{\pi_n}$
- * Si n = 3, $I = (\pi_1 \cap \overline{\pi_2} \cap \overline{\pi_3}) \cup (\overline{\pi_1} \cap \pi_2 \cap \overline{\pi_3}) \cup (\overline{\pi_1} \cap \overline{\pi_2} \cap \pi_3) \cup (\pi_1 \cap \pi_2 \cap \pi_3)$
- * On a $N = L_1 + L_2 + ... + L_n$
- * On a N = |R|

Formellement,
$$N = \operatorname{Card} \circ R$$
, où $\operatorname{Card} : \begin{cases} P(\llbracket 1, n \rrbracket) \to \llbracket 0, n \rrbracket \\ T \mapsto |T| \end{cases}$

On a en fait utilisé la notation f(x) des VÀ images (càd qu'on a noté Card(R) plutôt que Card $\circ R$)

- * On a $L_1 + L_2 \le N$ (en supposant $n \ge 2$)
- $* P = \min(R)$
- *(N = 0) = F
- * $(N \equiv 1 \pmod{2}) = (N \text{ impair}) = I$
- * $\pi_1 \cap ... \cap \pi_n = (N = n)$
- * $(L_i = 1) = \pi_i$: en fait, $L_i = 1_{\pi_i}$
- * $\overline{\pi_1} = (p \ge 2)$
- * $(p = n) = \overline{\pi_1} \cap \overline{\pi_2} \cap ... \cap \overline{\pi_{n-1}} \cap \pi_n = (R = \{n\}) = (N = 1, L_n = 1)$

2 Espaces probabilisés finis

2.1 Généralités

Définition 2.1.

- * Une mesure de probabilités sur un univers Ω est une application $P: \mathcal{P}(\Omega) \to [0,1]$ telle que :
 - $-P(\Omega)=1$
 - Pour tous $A, B \in \mathcal{P}(\Omega)$ disjoints, $P(A \sqcup B) = P(A) + P(B)$
- * On appelle <u>espace probabilisé (fini)</u> tout couple (Ω, P) , où Ω est un univers et P une mesure de probabilités du Ω

Proposition 2.2. Soit (Ω, P) un espace probabilisé fini (epf).

On a:

- $*P(\emptyset)=0$
- * Croissance : pour tous $A, B \in \mathcal{P}(\Omega), A \subseteq B \implies P(A) \leq P(B)$
- * $\forall A \in \mathcal{P}(\Omega), P(\overline{A}) = 1 P(\overline{A})$
- * Pour tous $A_1, ..., A_r \in \mathcal{P}(\Omega)$ disjoints,

$$P\left(\bigsqcup_{i=1}^{r} A_{i}\right) = \sum_{i=1}^{r} P(A_{i})$$

* $\forall A, B \in \mathcal{P}(\Omega), P(A \cup B) = P(A) + P(B) - P(A \cap B)$

2.2 Formule des probabilités globales

Définition 2.3. Soit (Ω, P) un epf. Un <u>système complet d'événements</u> (scé) est une famille $(C_i)_{i=1}^r$ qui forme un recouvrement disjoint de Ω , càd telle que :

- * Les C_i sont (deux à deux) disjoints : $\forall i, j \in [1, r], i \neq j \implies C_i \cap C_j = \emptyset$
- $* \bigcup_{i=1}^{\infty} C_i = \Omega$

Théorème 2.4 (Formule des probabilités totales). Soit (Ω, P) un epf et $(C_i)_{i=1}^r$ un scé.

Alors
$$\forall A \in \mathcal{P}(\Omega)$$
, $P(A) = \sum_{i=1}^{r} P(A \cap C_i)$

2.3 Loi d'une VA

Définition 2.5. Soit (Ω, P) un epf et $X : \Omega \to E$ une VA.

La loi de X est la donnée pour tout $S \subseteq E$ de la probabilité $P(X \in S) = P((X \in S))$

Proposition 2.6. Soit (Ω, P) un epf et $X : \Omega \to E$ une VA.

La loi de X est déterminée par les probabilités P(X=x), pour x décrivant im X

Plus précisément, pour tout $S \subseteq E$

$$P(X \in S) = \sum_{x \in S \cap \text{im } X} P(X = x)$$

Définition 2.7. Soit (Ω, P) un epf et E un ensemble fini non vide.

Une VA $X : \Omega \to E$ suit la loi uniforme sur E si $\forall S \in \mathcal{P}(E), P(X \in S) = \frac{|S|}{|E|}$ On note alors $X \sim U(E)$

Définition 2.8. Soit (Ω, P) un epf.

Une VA $X: \Omega \to \{0,1\}$ suit le <u>loi de Bernoulli</u> de paramètre $p \in [0,1]$ si P(X=1) = pOn note alors $X \sim B(p)$

Remarque importante : Si $A \subseteq \Omega$ est un événement, alors $\mathbb{1}_A \sim B(p)$, où p = P(A)

2.4 Couples de VA

Définition 2.9. Soit un epf et $X_1 : \Omega \to E_1$ et $X_2 : \Omega \to E_2$ deux VA.

Le loi conjointe de X_1 et X_2 est la loi de la VA

$$(X_1, X_2): \begin{cases} \Omega \to E_1 \times E_2 \\ \omega \to (X_1(\omega), X_2(\omega)) \end{cases}$$

Les lois de X_1 et X_2 sont appelées <u>lois marginales</u> de loi conjointe.

Proposition 2.10 (Calcul des marginales). Avec les notations de la définition :

$$\forall x_1 \in E_1, P(X_1 = x_1) = \sum_{x_2 \in \text{im } X_2} P(X_1 = x_1, X_2 = x_2)$$

Remarque important:

La loi conjointe détermine les lois marginales, la réciproque est fausse : il y a plusieurs manières de <u>coupler</u> des lois.

Notamment, pour tout $p \in \left[0, \frac{1}{2}\right]$ on a

$$\begin{array}{c|ccccc}
k \setminus l & 0 & 1 \\
\hline
0 & p & \frac{1}{2} - p \\
\hline
1 & \frac{1}{2} - p & p
\end{array}$$

3

qui constitue un couplage de $B\left(\frac{1}{2}\right)$ avec elle-même.

Trois cas particuliers:

$$p = \frac{1}{2} \quad \frac{\frac{1}{2} \quad 0}{0 \quad \frac{1}{2}}$$
On a $P(X_1 = X_2) = 1$

 X_1 et X_2 sont égales (presque sûrement).

$$p = 0 \quad \frac{0}{\frac{1}{2}} \quad 0$$

 $X_1 + X_2 = 1$ presque sûrement.

$$p = \frac{1}{4} \quad \frac{\frac{1}{4}}{\frac{1}{4}} \quad \frac{\frac{1}{4}}{\frac{1}{4}}$$

$$P(X_1 = X_2) = \frac{1}{2}$$

Connaître le résultat de X_1 ne donne aucune information sur celui de X_2

On dira que X_1 et X_2 sont indépendantes.

2.5 Construction d'espaces probabilisés finis

Définition 2.11. Une <u>distribution de probabilités</u> sur un univers fini Ω est une famille $(p_{\omega})_{\omega \in \Omega}$ de réels ≥ 0 tels que $\sum_{\omega \in \Omega} p_{\omega} = 1$

Proposition 2.12. Soit $(p_{\omega})_{\omega \in \Omega}$ une distribution de probabilités sur un univers fini Ω Alors il existe une unique mesure de probabilités P sur Ω telle que $\forall \omega \in \Omega$, $P(\{\omega\}) = p_{\omega}$

2.6 Modélisation(s) d'expériences aléatoires

Imaginons qu'on veuille modéliser l'expérience constituant à tirer aléatoirement une carte dans un jeu de 52 cartes.

Modélisation 1 (normale): On prend $\Omega = \{2, 3, ..., V, D, R, A\} \times \{P, C, K, T\}$ l'ensemble des 52 cartes, muni de la probabilité uniforme.

L'événement (au sens usuel) "tirer un coeur" correspond à l'événement $\heartsuit = \{(2, C), \dots, (A, C)\}$ donc $P(\heartsuit) = \frac{|\heartsuit|}{|\Omega|} = \frac{13}{52} = \frac{1}{4}$

Modélisation 2 (un peu tordue): On commence par mélanger le jeu. On va poser $J = \{2, ..., R, A\} \times \{P, C, K, T\}$ puis on pose Ω l'ensemble des permutations de J (càd une 52-liste sans répétition de J), muni de la mesure de probabilités uniforme.

L'événement (au sens usuel) "tirer un coeur" correspond à l'événement

$$\heartsuit' = \{(C_1, C_2, \dots, C_{52}) \in \Omega' \mid C_1 \in \{(2, C), \dots, (A, C)\}\}$$

On a $|\Omega'| = 52!$ Calculons $|\heartsuit'|$

Pour construire un élément de \heartsuit' :

- * On choisit une première carte (un coeur) : 13 possibilités.
- * _____ 2è carte (différente de la 1ère) : 51 possibilité.
- * _____ 3è carte (différente des précédentes) : 50 possibilités.

Par principe de multiplication, $|\heartsuit'| = 13 \times 51 \times 50 \times ... \times 1 = 13 \times 51!$

Donc
$$P(\heartsuit') = \frac{13 \times 51!}{52!} = \frac{13}{52} = \frac{1}{4}$$

En théorie des possibilités, l'epf joue un rôle de seconde plan : dans l'exemple précédent, les détails de Ω n'importent pas. Ce qui compte est qu'il existe une VA donnant le résultat du tirage. Que l'on prenne

$$X: \begin{cases} \Omega \to J \\ C \mapsto C \end{cases}$$
 ou $X': \begin{cases} \Omega' \to J \\ (C_1, \dots, C_{52} \mapsto C_1) \end{cases}$

On a une VA X ou $X' \sim U(J)$ et c'est ce qui compte.

2.7 Vers les espaces probabilisés généraux

Définition 2.13. Une <u>tribu</u> (ou une $\underline{\sigma}$ -algèbre) sur une ensemble Ω est une partie $a \in \mathcal{P}(\Omega)$ contenant Ω ($\Omega \in a$) stable par passage au complémentaire (si $A \in a$, $\overline{A} \in a$) et union dénombrable (si A_0 , A_1 , ... $\in a$, $\bigcup_{n \in \mathbb{N}} A_n \in a$)

Définition 2.14. Un espace probabilisé est un triplet (Ω, a, P) où :

- * L'univers Ω est un ensemble non vide.
- * a est une tribu sur Ω
- * La mesure de probabilités $P: a \rightarrow [0,1]$ vérifie :
 - $-P(\Omega)=1$
 - Si $(A_n)_{n\in\mathbb{N}}$ est une suite d'éléments de a, deux à deux disjoints, alors $P\left(\bigsqcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}P(A_n)$ (σ -additivité)

Théorème 2.15 (culturel). Il existe un espace probabilisé ([0,1], B, λ) où :

- * *B* est une tribu sur [0, 1] (tribu des boréliens) contenant les intervalles.
- * $\lambda : B \to [0,1]$ est une mesure de probabilités telle que $\forall 0 \le a < b \le 1, \lambda(]a,b[) = b-a$ appelée mesure de Lebesgue.

3 Indépendance

Dans cette section, (Ω, P) est un épf.

3.1 Deux événements

Définition 3.1. Soit $A, B \in \mathcal{P}(\Omega)$ deux événements.

On dit que A et B sont indépendants si $P(A \cap B) = P(A)P(B)$

Proposition 3.2. Soit $A, B \in \mathcal{P}(\Omega)$ indépendants.

Alors \overline{A} et B sont indépendants.

3.2 Variables aléatoires

Définition 3.3. Soit $X_1 : \Omega \to E_1$ et $X_2 : \Omega \to E_2$

On dit que X_1 et X_2 sont indépendantes (et on note $X_1 \perp \!\!\! \perp X_2$) si $\forall S_1 \in \mathcal{P}(E_1), \forall S_2 \in \mathcal{P}(E_2)$

$$P(X_1 \in S_1, X_2 \in S_2) = P(X_1 \in S_1)P(X_2 \in S_2)$$

Plus généralement, soit $X_i : \Omega \to E_i$ des VA $(i \in [1, n])$.

On dit qu'elles sont indépendantes si $\forall S_1 \in \mathcal{P}(E_1), ..., \forall S_n \in \mathcal{P}(E_n)$

$$P(X_1 \in S_1, ..., X_n \in S_n) = P(X_1 \in S_1)...P(X_n \in S_n)$$

<u>Remarque</u>: Si n VA sont indépendantes (ou, pour insister <u>mutuellement</u> indépendantes), elles sont indépendantes deux à deux, càd $\forall i \neq j \in [\![1,n]\!], X_i \perp \!\!\! \perp X_j$

Théorème 3.4. Soit $X_1 : \Omega \to E_1, ..., X_n : \Omega \to E_n$ des VA.

Alors $X_1, ..., X_n$ sont indépendantes ssi

$$\forall x_1 \in E_1, ..., \forall x_n \in E_n, P(X_1 = x_1, ..., X_n = x_n) = P(X_1 = x_1)...P(X_n = x_n)$$

Proposition 3.5. Soit $A, B \in \mathcal{P}(\Omega)$

Alors A et B sont indépendants ssi $\mathbb{1}_A \perp \!\!\! \perp \mathbb{1}_B$

3.3 Plusieurs événements

Définition 3.6. Soit $A_1, ..., A_n \in \mathcal{P}(\Omega)$

Alors ils sont indépendants si $\mathbb{1}_{A_1}, \dots, \mathbb{1}_{A_n}$ sont indépendants.

Théorème 3.7. Soit $A_1, ..., A_n \in \mathcal{P}(\Omega)$

Alors $A_1, ..., A_n$ sont indépendants ssi

$$\forall I \subseteq \llbracket 1, n \rrbracket, P\left(\bigcap_{i \in I} A_i\right) = \prod_{i \in I} P(A_i)$$

3.4 Stabilité de l'indépendance

Théorème 3.8 (Transfert de l'indépendance).

Soit $X_1 : \Omega \to E_1, ..., X_n : \Omega \to E_n$ des VA indépendantes.

Soit $f_1 : E_1 \to F_1, ..., f_n : E_n \to F_n$ des applications.

Alors $f_1(X_1), ..., f_n(X_n)$ sont indépendantes.

Corollaire 3.9. Si $X_1: \Omega \to E_1, ..., X_n: \Omega \to E_n$ sont indépendantes et que, pour tout $i \in [1, n]$, A_i est un événement défini par X_i , alors $A_1, ..., A_n$ sont indépendants.

Théorème 3.10 (Lemme de coalitions). Soit $X_1: \Omega \to E_1, ..., X_n: \Omega \to E_n$ indépendantes et $r \in [0, n]$ Alors les VA

$$Y: \begin{cases} \Omega \to E_1 \times ... \times E_r \\ \omega \mapsto (X_1(\omega), ..., X_r(\omega)) \end{cases} Z: \begin{cases} \Omega \to E_{r+1} \times ... \times E_n \\ \omega \mapsto (X_{r+1}(\omega), ..., X_n(\omega)) \end{cases}$$

sont indépendantes.

3.5 Indépendance et mesure uniforme

Théorème 3.11. Soit $E_1, ..., E_n$ des ensembles finis non vides et on munit $\Omega = E_1 \times ... \times E_n$ de la probabilité uniforme.

Alors

$$X_1: \begin{cases} \Omega \to E_1 \\ (x_1, \dots, x_n) \mapsto x_1 \end{cases}, \dots, \quad X_n: \begin{cases} \Omega \to E_n \\ (x_1, \dots, x_n) \mapsto x_n \end{cases}$$

sont indépendantes.

3.6 Loi binomiale

Définition 3.12. Une VA $X: \Omega \to \llbracket 0, n \rrbracket$ <u>suit la loi binomiale</u> de paramètre n et $p \in [0,1]$ ($X \sim B(n,p)$) si $\forall k \in \llbracket 0, n \rrbracket$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Théorème 3.13. Soit $X_1, ..., X_n : \Omega \to \{0,1\}$ indépendantes suivant la loi de Bernoulli B(p) (pour $p \in [0,1]$) Alors $X_1 + ... + X_n \sim B(n,p)$

4 Probabilités conditionnelles

On se place dans un espace probabilisé fini (Ω, P)

4.1 Définition

Définition 4.1. Soit $B \in \mathcal{P}(\Omega)$ un événement non négligeable (càd P(B) > 0). Soit $A \in \mathcal{P}(\Omega)$ On définit la probabilité conditionnelle de A sachant B

$$P_B(A) = P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Proposition 4.2. Soit $B \in \mathcal{P}(\Omega)$ tel que P(B) > 0

Alors P_B est une mesure de probabilités sur Ω pour laquelle B est presque sûr.

Attention! La notation $(A \mid B)$ seule n'a aucun sens.

Par exemple, la phrase française "Sachant que X = Y, 'X = 0' équivaut à 'Y = 0' "ne se traduit pas en $(X = 0 \mid X = Y) = (Y = 0)$ qui n'a aucun sens.

Elle ne se traduit pas non plus en $P(X = 0 \mid X = Y) = P(Y = 0)$ (qui a un sens mais qui est faux en général). La bonne traduction est (X = Y, X = 0) = (X = Y, Y = 0)

Proposition 4.3. Soit $A, B \in \mathcal{P}(\Omega)$ tels que P(B) > 0

Alors A et B sont indépendants ssi $P(A \mid B) = P(A)$

Définition 4.4. Soit $X : \Omega \to E$ une VA et $A \in \mathcal{P}(\Omega)$ un événement non négligeable. La loi conditionnelle de X sachant A est la donnée, pour tout $S \subseteq E$ de $P(X \in S \mid A)$

4.2 Probabilités composées et probabilités totales

Proposition 4.5 (Formule des probabilités composées).

Soit $A_1, ..., A_n \in \mathcal{P}(\Omega)$ tels que $\bigcap_{i=1}^{n-1} A_i$ soit non négligeable.

On a

$$P\left(\bigcap_{i=1}^{n} A_{i}\right) = P(A_{1})P(A_{2} \mid A_{1})P(A_{3} \mid A_{2} \cap A_{1})...P\left(A_{n} \mid \bigcap_{i=1}^{n-1} A_{i}\right)$$

 $\underline{\text{Remarque}}: \text{Si} \bigcap_{i=1}^{n-1} A_i \text{ est n\'egligeable, la formule reste correcte si on pose la convention } 0 \times \text{inepte} = 0$

Proposition 4.6 (Formule des probabilités totales). Soit $A \in \mathcal{P}(\Omega)$ et $C_1, ..., C_n \in \mathcal{P}(\Omega)$ des événements (non négligeables) formant un système complet d'événements. Alors

$$P(A) = \sum_{i=1}^{n} P(A \cap C_i) = \sum_{i=1}^{n} P(A \mid C_i) P(C_i)$$

Corollaire 4.7. Soit $A, B \in \mathcal{P}(\Omega)$ (tels que $P(B) \in [0,1[)$

Alors $P(A) = P(A \mid B)P(B) + P(A \mid \overline{B})P(\overline{B})$

4.3 Formules de Bayes

Proposition 4.8. Soit *A*, *B* deux événements non négligeables.

On a

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$$

Proposition 4.9. Soit A un événement et $(C_i)_{i=1}^n$ un scé, tous non négligeables. Alors, pour tout $i \in [1, n]$

$$P(C_i \mid A) = \frac{P(A \mid C_i)P(C_i)}{P(A)} = \frac{P(A \mid C_i)P(C_i)}{\sum_{j=1}^{n} P(A \mid C_j)P(C_j)}$$

5 Espérance

Dans toute cette section, *X* sera une variable aléatoire à valeurs réelle ou complexe, voire à valeurs dans un espace vectoriel réel.

Définition 5.1. Soit *X* une VA complexe.

On définit son espérance :

$$E(X) = \sum_{x \in \text{im}(X)} P(X = x)x$$

Remarque : E(X) ne dépend que de la loi de X :

Si X' est une VA de même loi que X (ce que l'on note $X \sim X'$), alors E(X) = E(X')

Théorème 5.2. L'espérance possède les propriétés suivantes :

Linéarité : L'espérance est une forme linéaire $\mathbb{C}^\Omega \to \mathbb{C}$ (ou $\mathbb{R}^\Omega \to \mathbb{R}$)

Concrètement, si X, Y sont deux VA complexes et $\lambda \in \mathbb{C}$, alors $E(X + \lambda Y) = E(X) + \lambda E(Y)$

Positivité : Si $X : \Omega \to \mathbb{R}_+$ est une VA positive, on a $E(X) \ge 0$

Croissante : Si $X, Y : \Omega \to \mathbb{R}$ sont deux VA telles que $X \le Y$ (càd $\forall \omega \in \Omega, X(\omega) \le Y(\omega)$), alors $E(X) \le E(Y)$

Inégalité triangulaire : Si $X: \Omega \to \mathbb{C}$ est une VA complexe, $|E(X)| \leq E(|X|)$

5.1 Définition

Lemme 5.3. Si *X* est une VA complexe, $E(X) = \sum_{\omega \in \Omega} P(\{\omega\})X(\omega)$

Proposition 5.4. Soit $X \sim B(n, p)$

Alors E(X) = np

Théorème 5.5 (Formule de transfert). Soit $X : \Omega \to E$ et $f : E \to \mathbb{C}$ une application.

Alors

$$E(f(x)) = \sum_{x \in \text{im}(X)} P(X = x) f(x)$$

Corollaire 5.6 (Formule de transfert bivariée). Soit $X: \Omega \to E$ et $Y: \Omega \to F$ deux VA et $f: E \times F \to \mathbb{C}$ Alors

$$E(f(X,Y)) = \sum_{\substack{x \in \text{im } X \\ y \in \text{im } Y}} P(X = x, Y = y) f(x,y)$$

Définition 5.7. Une VA $X:\Omega\to\mathbb{C}$ est centrée si E(X)=0

5.2 Applications

Théorème 5.8 (Formule du crible ou d'inclusion-exclusion). Soit $A_1, ..., A_n \in \mathcal{P}(\Omega)$ On a

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_1 < \dots < i_k \leq n} P\left(A_{i_1} \cap \dots \cap A_{i_k}\right)$$

Corollaire 5.9. Soit Ω un ensemble non vide et $A_1, \dots, A_n \in \mathcal{P}(\Omega)$

Alors

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} \left| A_{i_1} \cap \dots \cap A_{i_k} \right|$$

5.3 Indépendance

Théorème 5.10. Soit $X, Y : \Omega \to \mathbb{C}$ deux VA indépendantes.

Alors
$$E(XY) = E(X)E(Y)$$

Évidemment, cela se généralise à n VA.

5.4 Espérance conditionnelle

Définition 5.11. Soit $X:\Omega\to\mathbb{C}$ une VA et $B\in\mathcal{P}(\Omega)$ non négligeable.

On définit l'espérance conditionnelle de *X* sachant *B* :

$$E(X \mid B) = \sum_{i \in \text{im } X} P(X = x \mid B)x$$

Théorème 5.12 (Formule des espérances totales). Soit $X : \Omega \to \mathbb{C}$ une VA et $(C_i)_{i=1}^n$ un scé non négligeables. Alors

$$E(X) = \sum_{i=1}^{n} E(X \mid C_i) P(C_i)$$

6 Moments d'ordre deux

Remarque : Pour $k \in \mathbb{N}$, l'espérance $E(X^k)$ s'appelle le k-ième moment de X

6.1 Variance et écart-type

Définition 6.1. Soit $X : \Omega \to \mathbb{R}$ une VA réelle.

On définit sa variance :

$$V(X) = E((X - E(X))^2)$$

On définit l'écart-type:

$$\sigma(X) = \sqrt{V(X)}$$

Proposition 6.2 (Formule de König-Huygens). Soit $X : \Omega \to \mathbb{R}$ Alors

$$V(X) = E(X^2) - E(X)^2$$

Exemple important : Si $X \sim B(p)$, on a E(X) = p

Proposition 6.3. Soit $X : \Omega \to \mathbb{R}$ et $a, b \in \mathbb{R}$

On a
$$V(aX + b) = a^2V(X)$$

Proposition 6.4. Soit $X : \Omega \to \mathbb{R}$

On a $V(X) = 0 \implies X$ est constante presque sûrement.

(et signifie qu'il existe $c \in \mathbb{R}$ tel que P(X = c) = 1

6.2 Covariance

Définition 6.5. Soit $X, Y : \Omega \to \mathbb{R}$

On définit la covariance de *X* et *Y* :

$$cov(X,Y) = E((X - EX)(Y - EY))$$

Proposition 6.6. On a

$$cov(X,Y) = E(XE) - EX \cdot EY$$

Remarque : Si $X \perp \!\!\! \perp Y$, on a donc cov(X,Y) = 0. On dit que X et Y sont <u>décorrélées</u>. Si cov(X,Y) > 0 (resp. < 0), on dit que X et Y sont positivement (resp. négativement) corrélées.

 $\underline{Remarque}: La \ covariance \ est \ \underline{presque} \ un \ produit \ scalaire \ (il \ manque \ le \ caractère \ défini)$

On garde donc toutes les propriétés liées à la bilinéarité et au caractère positif, notamment :

- * L'identité remarquable $V(X + Y) = V(X) + 2 \operatorname{cov}(X, Y) + V(Y)$
- * L'inégalité de Cauchy-Schwarz (sans le cas d'égalité)

Théorème 6.7. Soit $X, Y : \Omega \to \mathbb{R}$

On a

$$\mathrm{cov}(X,Y) \leq |\operatorname{cov}(X,Y)| \leq \sqrt{V(X)} \sqrt{V(Y)}$$

Théorème 6.8. Soit $X_1, ..., X_n : \Omega \to \mathbb{R}$ deux à deux décorrélées.

Alors

$$V(X_1 + ... + X_n) = V(X_1) + ... + V(X_n)$$

Corollaire 6.9. Soit $X \sim B(n, p)$

Alors V(X) = np(1-p)

7 Inégalités de concentration

7.1 Inégalité de Markov

Théorème 7.1. Soit $X : \Omega \to \mathbb{R}_+$ (à valeurs positives)

Alors $\forall a > 0$

$$P(X \ge a) \le \frac{E(X)}{a}$$