Self-Attentive Classification-Based Anomaly Detection in Unstructured Logs (2020)

Index

- 1. Introduction
- 2. Related Work
- 3. Towards Classification-based Log Anomaly Detection
- 4. Self-attentive Anomaly Detection With classification-based objective Logsy
- 5. Evaluation
- 6. Conclusion

Logsy

Fig. 1. Overview of the architecture and component details of Logsy.

- log message tokenization
- neural network model

Tokenization

- log message 는 HTTP 및 system path endpoints 에 대해 **filtering** 됨.
 - (e.g., /p/gb2/stella/RAPTOR/)
- 모든 대소문자는 **소문자로 변환**되고 **ASCII 특수문자는 제거**됨.
- Log message 는 word token 으로 분할(split) 됨.
- numerical character 가 포함된 모든 token 제거 (log message 에서 변수를 나타냄 —> 별로 중요한 정보가 아님)
- 가장 자주 사용되는 English word 제거(NLTK 의 stop words dictionary 에 포함된 단어들..)
 - o (e.g., the and is)
- tokenized log message 앞에는 '[EMBEDDING]' 라는 special token 이 붙는다.
 - o '[EMBEDDING]' token : 모델이 vector 표현에서 log message 의 context 를 summarize 할 수 있게 한다.
- log message 의 모든 token 은 크기 IVI 인 Vocabulary V 를 형성한다.
 - 각각의 token 은 **integer label i ∈ 0, 1, . . . , IVI 1** 로 표현됨.

Tokenization

model 의 direct input : tokenized log message

▼ tokenization 예시

Model

Fig. 2. Transformer encoder architecture with multi-head self-attention.

model 은 input token 에 두 가지 연산을 적용

- token vectorization(word embedding)
- 2. positional encoding

multi-head self-attention 기반 transformer encoder

→ 위 연산을 거친 결과의 벡터를 입력값으로 받는 모델이다.

각각의 log 벡터 표현 'z' 와 각 message 에 대한 anomaly score 를 생성한다.

Model

- word embedding : 입력 토큰(input token) 을 무작위로 수치화된 <mark>벡터 x</mark>로 변환
- positional encoding : log message 내의 위치를 고려하여 encode
 - positional encoding block 은 sin 및 cos 함수를 기반으로 토큰의 상대 위치를 나타내는 벡터 n
 을 계산한다.

$$n_{2k} = \sin\left(\frac{j}{10000^{\frac{2k}{d}}}\right), \quad n_{2k+1} = \cos\left(\frac{j}{10000^{\frac{2k+1}{d}}}\right).$$

- O **d**: 벡터의 size
- \circ **k** = 0, 1, ..., d 1 (index of each element in **n**)
- **j** = 1, 2, . . . , |ri| (각 token 의 positional index) , |ri| : log message 내 token 의 개수
- x'= word embedding(x) + positional encoding(n)

Model

- ullet 모든 벡터를 한번에 행렬연산으로 처리하기 위해 x'를 전치한 행렬 X'을 생성 $\mathbf{x'}^{T'} \in X'$
- 각 입력(X')에 가중치 행렬(W)을 곱하여 Q, K, V 행렬 생성

$$Q_l = X' \times W_l^Q, \ K_l = X' \times W_l^K, \ V_l = X' \times W_l^V$$

- $X_l'' = softmax\left(rac{Q_l imes K_l^T}{\sqrt{w}}
 ight) imes V_l, ext{ for } l=1,2,\ldots,L.$
- 축적된 XI" 합쳐서 하나의 행렬 X"(M*d) 생성
- original input X' 와 어텐션 과정을 거친 행렬 X" 을 합쳐서 normalization
 - \circ X' = norm(X' + X'')
- 모델의 마지막 부분에 single linear layer → log vector representation
 - X'를 입력으로 받아서 [EMBEDDING] token 이 있는 행렬의 첫 행(row)만 추출

Objective function

spherical loss function 제안

- radial classification loss 사용
 - o enforces a compact hyperspherical decision region for the normal samples.
 - o normal sample 에 대해 compact 한 초구형 결정 지역을 가지게 함.
- normal sample 들의 compact 함을 보장.
- normal sample 들이 구의 중심 c=0 에 모이도록 함

$$\frac{1}{n} \sum_{i=1}^{n} (1 - y_i) \|\phi(\mathbf{x_i}; \theta)\|^2 - y_i \log(1 - \exp(-\|\phi(\mathbf{x_i}; \theta)\|^2))$$

- normal sample(yi=0) 의 경우, loss function 은 c(중심) 까지의 거리를 최소화 한다.
 - 왼쪽 항의 값이 작아짐.
- anomaly sample(yi=1) 인 경우
 - 오른쪽 항의 값이 커짐.
- spherical classifier 에서의 possible problem → 제안된 function 은 trivial solution 을 해결하려고 하지 않음.

Anomaly score and detecting anomalies

Anomaly score A(xi) : log vector ('EMBEDDING' 토큰에서 얻은 값)와 구의 중심 c 까지의 거리로 정의한다.

$$A(\mathbf{x_i}) = \|\phi(\mathbf{x_i}; \theta)\|^2$$

• threshold E 를 사용하여 그보다 높으면 anomaly, 낮으면 normal 로 봄.

$$A(\mathbf{x_i}) > \mathcal{E}$$

- anomaly scores : A(xi) > E → the sample is an anomaly
- anomaly scores : $A(xi) < E \rightarrow$ the sample is an normal

Including expert knowledge

컴퓨터 시스템 관리자가 log event 의 일부를 수동으로 검사하고, label 을 제공해왔음

→ Logsy 를 그러한 label 된 log 를 통합하는데 활용할 수 있다!

operator-labeled sample

- 현실적이고 고가의 anomaly samples -> 추가하면 성능 향상
- operator-labeled sample 은 보조데이터와 함께 추가되어 retrain 되어야 함/ 또는 일반데이터+보조데이터로 model pre-training 후에 labeled-sample 로 fine-tunning 해야 한다.
- 보조데이터를 labeled sample 로 대체하는 경우
 - o model 은 몇 개의 epoch 에서만 parameter 를 튜닝할 수 있음
 - This preserves the already learned information from the larger auxiliary dataset as a bias to the fine-tuning procedure.

Vector representations of the logs

- Logsy 에서 얻은 numerical log representations 은 다른 log anomaly detection method 에도 사용할 수 있다. → 성능 향상
 - ex.) PCA (TF-IDF in previous log-based anomaly detection methods)
- The transformed vector of the ['EMBEDDING'] token
 - 임베딩 토큰의 변환된 벡터는 log message 의 context 를 요약해준다.
- spherical classification decision boundary(구형의 분류 결정 경계;점선) 를 사용하여
 - o normal sample 들은 구의 중심에 가깝도록, 그리고 각자끼리도 가깝도록 한다.

Fig. 3. Ideal distribution of the log vector representations in space.

5. Evaluation

평가를 위한 target system dataset	additional dataset				
Blue Gene/L, Spirit, Thunderbird	HPC RAS log dataset → 보조데이터의 풍부함을 위해 추가하는 데이터				
(HPC system 의 open real-world dataset)					

target vs auxiliary 분할

- 각 target dataset 에 대해 anomaly class 을 나타내는 보조 데이터로서 나머지 데이터 세트의 로그를 사용한다.
- target vs auxiliary 분할을 신경써서 해야 함(정보가 누출되지 않도록)

예시) target system(관심있는 system): Blue Gene/L 이면,

Thunderbird, Spirit, and RAS(나머지 system) 의 negative samples 부분 ⇒ auxiliary dataset 으로 사용됨(anomaly class 나타냄)

dataset 의 주요 특성 정리

DATASET DETAILS.

System	#Messages	#Anomalies	#Anomalies5m	#Unique Log messages in test and not in train for every split					total unique
				10%	20%	40%	60%	80%	messages
Blue Gene/L	4747963	348460	348460	2679	2621	2256	2231	465	4486
Thunderbird	211212192	3248239	226287	334	127	71	27	12	3279
Spirit	272298969	172816564	764890	1091	1028	297	129	73	3441

- Thunderbird and Spirit : 2억 개 이상의 꽤 큰 dataset
- 처음 500만개의 log 로 데이터 사이즈 제한(계산 시간 목적을 위해/ timestamp, log message 를 기준으로)
- 분할한 dataset 에서 new unseen logs 이 있음을 보장함.
- Blue Gene/L: 500만개 미만이므로 그대로 모두 유지
- #Anomalies5m: 500만개 메시지 중 anomalous log messages 의 개수
- Logsy의 견고성과 일반화를 자세히 평가하기 위해 target data set 에서 서로 다른 train, test 분할로 여러 실험을 수행한다.
 - ex.) 10% training; 90% test data, 20% training -80% test, 40% training -60% test, 60% training -40% test, and 80% training -20% test.

1) Evaluation Methods

- 이전 work 와의 성능 비교를 위해 standard evaluation scores 를 채택
- F1-score, precision, recall, accuracy 로 평가
- The positive class of 1 => anomalous log.

2) Baselines

• PCA, Deeplog 와 비교

3) Logsy

- max(Iril) = 50 tokens.
- 두 개의 transformer encoder layer (N=2)

Fig. 2. Transformer encoder architecture with multi-head self-attention.

- words are embedded with **16 neural units** / transformer encoding 으로 얻는 higher level vector representations 은 all of the same sizes. / multihead self-attention mechanism 의 output 을 받는 feed-forward network 의 size 도 16 이므로 '[EMBEDDING]' vector 의 size 가 동일
- dropout = 0.05 learning rate = 0.0001 과 0.001 의 weight decay를 갖는 Adam optimizer 사용
- normal class = 0.5, anomaly class = 1.0
 - 2개의 classes(normal/anomaly) 의 loss function 에 각각의 weights 를 추가해서 normal 과 anomaly
 samples 개수 의 불균형 문제 해결

Baseline 과 비교한 Logsy의 전반적인 성능

Fig. 4. Comparison of the evaluation scores against the two baselines DeepLog and PCA on three different datasets.

- Blue Gene/L 0.448, Thunderbird 0.99, Spirit 0.77

1) The effect of the auxiliary data on the evaluation scores

다양한 크기의 보조 데이터를 사용할 때 Logsy가 어떻게 수행하는지에 대한 분석을 수행

Fig. 5. Increasing the size auxiliary dataset, where the target system are Blue Gene/L, Thunderbird, and Spirit (left, middle, right) on 20% train - 80% test split

- 보조 데이터가 1에서 250000으로 증가하면 모든 평가 score 증가
- 100000 → 250000 인 경우, score 변하지 않음
 - → 이는 보조 데이터에 존재하는 정보의 양이 비슷하고 **모든 사례가 100000 랜덤 샘플에 이미 존재한다는 것을 보여준다.**

2) Including expert labeling

target data set 의 anomaly label 을 증가시켜 실험/ 20%-80% split of the Blue Gene/L dataset.

Fig. 6. Increasing the size of the labeled anomaly data in the Blue Gene/L dataset (20% train - 80% test).

• label 된 anomaly sample 의 수를 늘리면 성능이 향상됨.

3) Utilization of the learned log embeddings in related approaches

log embeddings 의 중요성을 평가하기 위해, lowest-performing method 인 PCA 의 original TF-IDF log representations 을 Logsy 에서 추출한 embeddings 로 대체 하는 실험 수행

Fig. 8. Comparison in F1 score between the standard PCA [21] and PCA using the embeddings extracted from our method (80%-20% split).

● replacement of the log representation : the performance of PCA 향상 → log representation learning 이 Logsy 뿐만 아니라 new log embeddings 을 사용하도 록 조정할 수 있는 previous approaches 에도 영향을 미친다는 것을 보여줌

6. Conclusion

6. Conclusion

Logsy

- It is based on a self-attention encoder network with a hyperspherical classification objective.
- target system 의 정상 training data 와 보조 데이터의 비정상 로그 data 를 구분하도록 formulate.

Logsy 성능 평가

- F1score 0.25
- logsy 에서 생성된 log vector representation 이 다른 방법에도 활용 가능함을 보여줌.
 - o PCA 활용 → F1 score 0.07 개선됨

본 논문의 연구진들은

앞으로의 log anomaly detection 연구가 **정상 및 이상 데이터의 다양성을 강조하는 풍부한 domain bias 를 통합하는 대안적 방법을 찾는 데 초점을 맞춰야 한다**고 마무리 한다.