TABLE DES MATIÈRES

partie 2	. Exercices
1.	Particule dans un champ magnétique
2.	Théorème fondamental des courbes planes
2.1.	Démonstration du théorème fondamental
3.	Résolution d'un système linéaire très simple
4.	Un autre système linéaire
5.	Une équation linéaire à coefficients non constants
Biblio	ographie (

Deuxième partie 2. Exercices

1. Particule dans un champ magnétique

On se propose d'étudier la trajectoire d'une particule de masse m chargée sous l'action d'un champ magnétique et d'un champ électrique constants (cf [2]). Notons \vec{B} le champ magnétique supposé uniforme, E le champ électrique et q la charge de la particule. Si \vec{V} et $\vec{\gamma}$ désignent la vitesse et l'accélération de la particule, la loi de Lorentz donne :

$$\vec{F} = m\vec{\gamma} = q\vec{V} \wedge \vec{B} + q\vec{E}. \tag{1.1}$$

 $\gamma \text{ étant la dérivée de } \vec{V}, (1.1) \text{ est un système différentiel linéaire du premier ordre en } \vec{V} = \left\{ \begin{array}{l} x'(t) \\ y'(t) \\ z'(t) \end{array} \right..$

L'application $u: \vec{V} \mapsto \frac{q}{m} \vec{V} \wedge \vec{B}$ est linéaire : nous noterons A la matrice associée à cette application linéaire dans une base de $E = \mathbb{R}^3$ et $Q = \frac{q}{m}$. On a donc :

$$\vec{V}' = A\vec{V} + Q\vec{E}.$$

Or,

$$u^{2}\left(\vec{V}\right)=Q^{2}\left(\vec{V}\wedge\vec{B}\right)\wedge\vec{B}=Q^{2}\|\vec{B}\|^{2}P_{\vec{B}}\left(\vec{V}\right)$$

où $P_{\vec{B}}(\vec{V})$ désigne la projection orthogonale de \vec{V} sur le plan vectoriel de vecteur normal \vec{B} . Mais $u(\vec{V}) = QP_B(\vec{V}) \wedge \vec{B}$ de sorte que , pour $p \geqslant 1$,

$$A^{2p}(\vec{V}) = (-1)^p Q^{2p} ||\vec{B}||^{2p} P_{\vec{B}}(\vec{V})$$
(1.2)

$$A^{2p+1}(\vec{V}) = (-1)^p Q^{2p+1} ||\vec{B}||^{2p} \vec{V} \wedge \vec{B}. \tag{1.3}$$

Il est donc facile de calculer l'exponentielle e^{tA} : si $\vec{B} \neq 0$

$$e^{tA}\vec{V} = \vec{V} - \cos{(Qt)}\,P_{\vec{B}}\left(\vec{V}\right) + \frac{1}{\|\vec{B}\|}\sin{(Qt)}\,\vec{V}\wedge\vec{B}.$$

Si le champ électrique est nul, la particule suit un mouvement hélicoïdal uniforme tracé sur un cylindre d'axe de direction vectorielle \vec{B} . Si $\vec{E} \neq 0$ est colinéaire à \vec{B} , le mouvement est encore un mouvement hélicoïdal mais accéléré dans la direction de \vec{E} .

2. Théorème fondamental des courbes planes

On consultera à ce sujet ([1] Tome 4 p. 392)

Théorème 2.1. — Soit L un réel strictement positif et g une application continue de [0,L] dans \mathbb{R} . Il existe, à une isométrie du plan près, une et une seule courbe plane de longueur L dont la courbure est donnée par $\rho(p) = g(s)$ si p est le point d'abscisse curviligne s.

Les courbes obtenues n'ont aucune raison d'être injectives : elles peuvent donc avoir des point multiples.

DÉFINITION 2.2. — Soit γ un arc géométrique de classe \mathscr{C}^k et régulier, avec $k \geqslant 2$. On appelle paramétrisation normale de γ une paramétrisation $\gamma: I \to \mathbb{R}^n$ qui vérifie :

$$\forall s \in I, \quad \|\gamma'(s)\| = 1$$

Pour une telle paramétrisation le paramètre s est appelé l'abscisse curviligne.

Une telle paramétrisation existe pour tout arc régulier. Si $\gamma: I \to \mathbb{R}^n$ est une paramétrisation normale d'un arc géométrique orienté on a : $\gamma(s)' \cdot \gamma'(s) = 1$ de sorte que $2\gamma''(s) \cdot \gamma'(s) = 0$: c'est-à-dire que le vecteur $\gamma''(s)$ est orthogonal au vecteur tangent unitaire $\gamma'(s)$.

Pour tout $s \in I$, on complète le vecteur unitaire tangent en s, $\tau(s) = \gamma'(s)$, en une base orthonormée directe $(\tau(s), n_1(s))$. C'est-à-dire que $n_1(s)$ est l'image de $\tau(s)$ par la rotation d'angle $\frac{\pi}{2}$.

En dérivant la relation $\|\tau(s)\|^2 = 1$, on déduit que $\tau(s)\tau'(s) = 0$ et donc qu'il existe une fonction $\rho: I \to \mathbb{R}$ telle que :

$$\forall s \in I$$
, $\tau'(s) = \rho(s) n_1(s)$

En utilisant le fait que $|\rho(s)| = ||\tau'(s)|| = C(s)$ (courbure en s), on peut donner la définition suivante.

DÉFINITION 2.3. — On appelle courbure algébrique (ou orientée) en s (ou en $\gamma(s)$ si le point est simple) la fonction ρ définie par $\tau'(s) = \rho(s) \, n_1(s) \, (s \in I)$.

Si $\rho(s) \neq 0$, alors $R_1(s) = \frac{1}{\rho(s)}$ est le rayon de courbure algébrique en s.

Si $\gamma'(s) = (x'(s), y'(s))$ on a $n_1(s) = (-y'(s), x'(s))$. Notons $\theta(s)$ l'angle de vecteurs (e_1, γ') –défini localement-un calcul simple montre que $\rho(s) = \theta'(s)$. La courbure donne donc la vitesse de rotation du vecteur tangent unitaire.

Remarque 2.4. — Un changement d'orientation de la courbe change le signe de la courbure algébrique.

Si φ est un déplacement alors la courbure algébrique de $\varphi \circ \gamma$ en s est égale à celle de γ en s.

 ${\tt TH\'{E}OR\`{E}ME~2.5.} \begin{tabular}{l} \textbf{Eplan} \textbf{E$

(i) $\tau'(s) = \rho(s) n_1(s)$.

(*ii*) $n'_1(s) = -\rho(s)\tau(s)$.

2.1. Démonstration du théorème fondamental

THÉORÈME 2.6. — *Soit* ρ : $I \to \mathbb{R}$ une fonction continue.

- (i) Il existe une paramétrisation normale $\gamma: I \to \mathbb{R}^2$ d'un arc géométrique régulier orienté de classe \mathscr{C}^2 telle que ρ soit la courbure algébrique de γ .
- (ii) Si $\alpha: I \to \mathbb{R}^2$ est une autre paramétrisation normale admettant ρ comme courbure algébrique, alors il existe déplacement φ tel que :

$$\forall t \in I, \alpha(t) = \varphi \circ \gamma(t)$$

Démonstration. — (i) Le problème est de trouver γ telle que $\tau'(s) = \rho(s) n_1(s)$.

On calcule tout d'abord les coordonnées du vecteur unitaire tangent en les faisant apparaître comme solutions d'un système différentiel linéaire.

Si $\tau(s) = (\tau_1(s), \tau_2(s))$, alors le vecteur $n_1(s) = (-\tau_2(s), \tau_1(s))$ est déduit par une rotation d'angle $\frac{\pi}{2}$ et la définition du rayon de courbure algébrique s'écrit sous forme d'un système différentiel linéaire :

$$\begin{cases} \tau_1'(s) = -\rho(s)\tau_2(s) \\ \tau_2'(s) = \rho(s)\tau_1(s) \end{cases}$$

En se donnant $a \in I$ et se fixant $\tau(a)$ unitaire, il existe une unique solution de classe \mathscr{C}^1 .

D'autre part, on a:

$$(\|\tau(s)\|^2)' = 2(\tau_1(s)\tau_1'(s) + \tau_2(s)\tau_2'(s))$$

= $2\rho(s)(-\tau_1(s)\tau_2(s) + \tau_2(s)\tau_1(s)) = 0$

Donc $\|\tau(s)\| = \|\tau(a)\| = 1$.

Il suffit alors de poser:

$$\gamma(s) = \int_{a}^{s} \gamma'(u) du + \gamma(a) = \int_{a}^{s} \tau(u) du + \gamma(a)$$

où on s'est donné $\gamma(a) \in \mathbb{R}^2$.

(ii) Si γ et α sont des paramétrisations normales de même courbure algébrique ρ , alors elles vérifient le même système différentiel :

$$z'(s) = \rho(s)(-z_2(s), z_1(s))$$
(2.1)

Si $\tau = \gamma'$, alors pour toute rotation u, $u \circ \tau$ est aussi solution de (2.1). En effet, on a :

$$(u \circ \tau)(s) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} \tau_1(s) \\ \tau_2(s) \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\theta)\tau_1(s) - \sin(\theta)\tau_2(s) \\ \sin(\theta)\tau_1(s) + \cos(\theta)\tau_2(s) \end{pmatrix}$$

et

$$(u \circ \tau)'(s) = \begin{pmatrix} \cos(\theta) \, \tau_1'(s) - \sin(\theta) \, \tau_2'(s) \\ \sin(\theta) \, \tau_1'(s) + \cos(\theta) \, \tau_2'(s) \end{pmatrix}$$

$$= \rho(s) \begin{pmatrix} -\cos(\theta) \, \tau_2(s) - \sin(\theta) \, \tau_1(s) \\ -\sin(\theta) \, \tau_2(s) + \cos(\theta) \, \tau_1(s) \end{pmatrix}$$

$$= \rho(s) \begin{pmatrix} -(u \circ \tau)_2(s) \\ (u \circ \tau)_1(s) \end{pmatrix}$$

On choisit alors, pour a donné dans I, une rotation qui vérifie $u(\tau(a)) = f'(a)$ et par unicité de la solution de (2.1) avec condition initiale, on a $u \circ \gamma' = \alpha'$.

Il en résulte alors qu'il existe un vecteur constant b tel que $u \circ \gamma + b = \alpha$.

Exercice 2.1 Déterminer les courbes planes dont la courbure c(s) est une fonction affine de s.

Remarque 2.7. — Le théorème 2.6 est faux si on remplace la courbure algébrique par sa valeur absolue, à moins de supposer qu'elle ne s'annule jamais (pas de points d'inflexion).

Remarque 2.8. — On a un théorème analogue pour les courbes gauches caractérisées par leur courbure et leur torsion.

3. Résolution d'un système linéaire très simple

On veut résoudre le système Y' = AY où $Y = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right)$$

avec condition initiale x(0) = 1, y(0) = 1 et z(0) = 1

Dans un premier temps nous allons utiliser le logiciel Xcas:

$$\boxed{1} A := [[2,1,1],[1,2,1],[1,1,2]]$$

$$\begin{pmatrix}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{pmatrix}$$
(3.1)

2 eigenvals(A)

$$4, 1, 1$$
 (3.2)

3 pcar(A,x); factor(pcar(A,x))

$$x^3 - 6 \cdot x^2 + 9 \cdot x - 4$$
, $(x - 4)(x - 1)^2$ (3.3)

4 eigenvectors((A)

$$\begin{pmatrix}
1 & 2 & -1 \\
1 & 0 & 2 \\
1 & -2 & -1
\end{pmatrix}, \begin{pmatrix}
4 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$
(3.4)

5 exp(t*A)

$$\begin{pmatrix}
\frac{8e^{t}+4e^{4\cdot t}}{12} & \frac{-e^{t}+e^{4\cdot t}}{3} & \frac{-4e^{t}+4e^{4\cdot t}}{12} \\
\frac{-4e^{t}+4e^{4\cdot t}}{12} & \frac{2e^{t}+e^{4\cdot t}}{3} & \frac{-4e^{t}+4e^{4\cdot t}}{12} \\
\frac{-4e^{t}+4e^{4\cdot t}}{12} & \frac{-e^{t}+e^{4\cdot t}}{3} & \frac{8e^{t}+4e^{4\cdot t}}{12}
\end{pmatrix}$$
(3.5)

6 simplify(exp(t*A)*[[1],[1],[1]])

$$\begin{pmatrix} e^{4 \cdot t} \\ e^{4 \cdot t} \\ e^{4 \cdot t} \end{pmatrix} \tag{3.6}$$

Ce qui nous donne évidemment la solution :

$$x(t) = e^{4t}$$

$$y(t) = e^{4t}$$

$$z(t) = e^{4t}$$

Utilisons maintenant la transformée de Laplace. Nous savons déjà que x, y et z sont de croissance au plus exponentielle; nous pouvons donc, pour $s \in \mathbb{R}$ assez grand, calculer

$$X(s) = \int_0^{+\infty} x(t) \exp(-st) \ dt, \ Y(s) = \int_0^{+\infty} y(t) \exp(-st) \ dt \ \text{et} \ Z(s) = \int_0^{+\infty} z(t) \exp(-st) \ dt.$$

On obtient alors le système suivant :

$$(s-2)X(s) - Y(s) - Z(s) = 1$$

-X(s) + (s-2)Y(s) - Z(s) = 1
-X(s) - Y(s) + (s-2)Z(s) = 1.

7 linsolve([(s-2)*x -y-z=1, -x+(s-2)*y-z=1,-x-y+(s-2)*z=1],[x,y,z])

$$\left[\frac{1}{s-4}, \frac{1}{s-4}, \frac{1}{s-4}\right] \tag{3.7}$$

Et l'inversion de Laplace nous donne :

8 ilaplace(1/(s-4),s,x)

$$e^{4 \cdot x} \tag{3.8}$$

4. Un autre système linéaire

On considère le système de trois ressorts de raideur k et deux masses suivant La loi fondamentale de la mécanique montre que si y_1 et y_2 désignent les élongations des deux premiers ressorts on a

$$-my_1" - ky_1 - k(y_1 - y_2) = 0 (4.1)$$

$$k(y_1 - y_2) - my_2" - ky_2 = 0. (4.2)$$

- (1) Écrire ce système d'équations différentielle sous forme d'un sytème différentiel d'ordre 1.
- (2) Déterminer les valeurs propres de la matrice 4×4 associée dans le cas où k = 1 et m = 1.
- (3) On se donne pour condition initiale $y_1(0) = \alpha$, $y_1'(0) = 0$. $y_2(0) = 0$ et $y_2'(0) = 0$. Étudier le mouvement.
- (4) On impose maintenant un mouvement sinusoïdal à l'extrémité précédemment fixe du « premier » ressort. Étudier le mouvement.

FIGURE 1. Ressorts couplés.

Notant

$$Y = \left(\begin{array}{c} y_1 \\ y_1' \\ y_2 \\ y_2' \end{array}\right),$$

on a le système

$$Y' = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ -2k & 0 & k & 0 \\ 0 & 0 & 0 & 1 \\ k & 0 & 2k & 0 \end{array}\right) Y.$$

La commande factor(pcar(A,x)) (ne pas oublier de passer en mode complexe) montre que le polynôme caractéristique de A admet pour racines $i, -i, i\sqrt{3}$ et $-i\sqrt{3}$. A est donc diagonalisable dans \mathbb{C} .

$$(x+i)\cdot(x+-i)\cdot(x+i\sqrt{3})\cdot(x+-i\sqrt{3})$$
(4.3)

10 jordan(A)

$$\begin{pmatrix} -i & i & i & -i \\ -1 & -1 & \sqrt{3} & \sqrt{3} \\ -i & i & -i & i \\ -1 & -1 & -\sqrt{3} & -\sqrt{3} \end{pmatrix}, \begin{pmatrix} -i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & \sqrt{3} \cdot -i & 0 \\ 0 & 0 & 0 & \sqrt{3} \cdot i \end{pmatrix}$$

$$(4.4)$$

Cette dernière réponse nous donnant une matrice de passage et une forme diagonale de A. Enfin, 11 B :=exp(t*A)*[[a],[0],[0],[0]]

$$\begin{pmatrix}
a(\frac{e^{i \cdot t}}{4} + \frac{e^{-i \cdot t}}{4} - 3 \cdot \frac{1}{12} \cdot -1e^{\sqrt{3} \cdot i \cdot t} + 3 \cdot \frac{1}{12} \cdot i \cdot -ie^{-\sqrt{3} \cdot i \cdot t}) \\
a(\frac{ie^{i \cdot t}}{4} + \frac{-ie^{-i \cdot t}}{4} + 3\sqrt{3} \cdot \frac{1}{12} \cdot ie^{\sqrt{3} \cdot i \cdot t} + 3\sqrt{3} \cdot \frac{1}{12} \cdot -ie^{-\sqrt{3} \cdot i \cdot t}) \\
a(\frac{e^{i \cdot t}}{4} + \frac{e^{-i \cdot t}}{4} + 3 \cdot \frac{1}{12} \cdot -1e^{\sqrt{3} \cdot i \cdot t} - 3 \cdot \frac{1}{12} \cdot i \cdot -ie^{-\sqrt{3} \cdot i \cdot t}) \\
a(\frac{ie^{i \cdot t}}{4} + \frac{-ie^{-i \cdot t}}{4} - 3\sqrt{3} \cdot \frac{1}{12} \cdot ie^{\sqrt{3} \cdot i \cdot t} - 3\sqrt{3} \cdot \frac{1}{12} \cdot -ie^{-\sqrt{3} \cdot i \cdot t})
\end{pmatrix}$$
(4.5)

12 B(1)

$$\left[a(\frac{e^{-\sqrt{3}\cdot i\cdot t}}{4} + \frac{e^{i\cdot t}}{4} + \frac{e^{-i\cdot t}}{4} + \frac{e^{\sqrt{3}\cdot i\cdot t}}{4})\right] \tag{4.6}$$

Autrement dit, $y_1(t) = \frac{a}{2} \left(\cos(t) + \cos\left(\sqrt{3}t\right) \right)^{(1)}$ et $y_2(t) = \frac{a}{2} \left(\cos(t) - \cos\left(\sqrt{3}t\right) \right)$.

⁽¹⁾ ce dernier résultat étant obtenu avec real (B(1)) par exemple

5. Une équation linéaire à coefficients non constants

$$xy'' + y' + xy = 0 (5.1)$$

On se propose de montrer le théorème

Théorème 5.1. — L'ensemble des solutions \mathscr{C}^2 de (5.1) au voisinage de 0 est l'espace vectoriel engendré par la fonction analytique

$$J_0(x) = \sum_{n \ge 0} \frac{(-1)^n}{4^n (n!)^2} x^{2n} = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta.$$

De plus aucune solution de (5.1) sur un intervalle de la forme]-a,0[ou]0,a[avec a>0 et linéairement indépendante de J_0 ne se prolonge en 0.

Le théorème de cauchy ne s'applique pas sur ℝ puisque le coefficient de y" s'annule en 0.

Cherchons tout d'abord s'il existe une solution développable en série entière $y = \sum a_n x^n$.

Le terme en x^n dans xy" provient du terme en x^{n-1} de y" : son coefficient est donc $(n+1)na_{n+1}$; celui du terme en y' est n+1) a_{n+1} et enfin, celui de xy est a_{n-1} . On a donc la relation

$$(n+1)^2 a_{n+1} + a_{n-1} = 0.$$

D'autre part, l'équation porposée montre que $a_1 = y'(0) = 0$ de sorte que pour tout $p \in \mathbb{N}$ on a $a_{2p+1} = 0$ et, une récurrence simple montre que

$$a_{2p} = (-1)^p \frac{1}{2^2 4^2 \cdots (2p)^2} a_0 = (-1)^p \frac{1}{4^p (p!)^2} a_0.$$

On pose

$$J_0(x) = \sum_{0}^{+\infty} (-1)^p \frac{4^p (p!)^2}{x}^{2p}.$$

Le rayon de convergence de cette série entière étant infini, c'est une solution de (5.1). On peut aussi écrire

$$J_0 = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin(t)) dt$$

comme on le voit en développant en série entière en $\cos(x\sin(t))$ en x puis en intégrant terme à terme (ce qu'il faut évidemment justifier).

Sur tout intervalle $I =]-\alpha,0[$ ou $]0,\alpha[$ l'équation proposée s'écrit $y'' + \frac{1}{x}y' + y = 0$. On peut donc appliquer le théorème de Cauchy : l'espace des solutions réelles de (5.1) sur I est un \mathbb{R} -espace vectoriel de dimension 2.

Soit f une solution linéairement indépendante de J_0 sur un intervalle $]0,\alpha[$. L'équation s'écrit Y'=AY avec $A=\begin{pmatrix}0&1\\-1&-\frac{1}{x}\end{pmatrix}$. Le wronskien $w(J_0,f)$ vérifie donc l'équation différentielle $w'=-\frac{1}{x}w$ de sorte que $w(x)=\frac{\lambda}{x}$ avec $\lambda\in\mathbb{R}^*$ puisque f et J_0 sont indépendantes. Si f est bornée, on a, puisque $J_0(0)=1$ et $J_0'(0)=0$,

$$f'(x) \sim_{0+} \frac{\lambda}{x}$$

et, l'intégrale de $\frac{1}{x}$ étant divergente en 0+,

$$f(x) \sim_{0+} \lambda \ln(x)$$

ce qui contredit notre hypothèse. f n'est donc pas bornée en 0^+ . De plus, si f est solution sur $]-\alpha,0^[$, $x \mapsto f(-x)$ est solution sur $]0,\alpha[$ et la parité de J_0 permet donc de conclure qu'il n'existe pas de solution bornée au voisinage de 0^- linéairement indépendante de J_0 .

BIBLIOGRAPHIE

- [1] J. M. Arnaudiès & H. Fraysse, Cours de mathématiques, Dunod université, Dunod, Paris.
- [2] J.-P. Demailly, Analyse numérique et équations différentielles, Grenoble sciences, Presses universitaires de Grenoble, 1991 (07-Aubenas, Grenoble.