Computability and Complexity COSC 4200

Space Complexity

Deterministic Time and Space Complexity

Definition

Let M be a Turing machine and $x \in \{0,1\}^*$.

1 The running time of M on input x is

$$time_{M}(x) = \begin{cases} \text{ the number of steps} \\ M \text{ executes on input } x & \text{if } M \text{ halts on input } x, \\ \text{before halting} \end{cases}$$

Deterministic Time and Space Complexity

Definition

Let M be a Turing machine and $x \in \{0, 1\}^*$.

1 The running time of M on input x is

$$time_{M}(x) = \begin{cases} \text{the number of steps} \\ M \text{ executes on input } x & \text{if } M \text{ halts on input } x, \\ \text{before halting} \\ \infty & \text{otherwise.} \end{cases}$$

Deterministic Time and Space Complexity

Definition

Let M be a Turing machine and $x \in \{0, 1\}^*$.

1 The running time of M on input x is

$$time_{M}(x) = \begin{cases} \text{the number of steps} \\ M \text{ executes on input } x & \text{if } M \text{ halts on input } x, \\ \text{before halting} \\ \infty & \text{otherwise.} \end{cases}$$

2 The *space usage* of M on input x is

$$space_{M}(x) = \begin{cases} \text{the number of worktape} \\ \text{cells } M \text{ uses on input } x \\ \text{before halting} \\ \infty \end{cases} \text{ otherwise.}$$

Definition

Let $s, t : \mathbb{N} \to \mathbb{N}$, and let M be a TM. Then M is

• t(n)-time-bounded if for all $x \in \{0,1\}^*$, $time_M(x) \le t(|x|)$.

Definition

Let $s, t : \mathbb{N} \to \mathbb{N}$, and let M be a TM. Then M is

- t(n)-time-bounded if for all $x \in \{0,1\}^*$, $time_M(x) \le t(|x|)$.
- s(n)-space-bounded if for all $x \in \{0,1\}^*$, $space_M(x) \le s(|x|)$.

Definition

Let $s, t : \mathbb{N} \to \mathbb{N}$, and let M be a TM. Then M is

- t(n)-time-bounded if for all $x \in \{0,1\}^*$, $time_M(x) \le t(|x|)$.
- s(n)-space-bounded if for all $x \in \{0,1\}^*$, $space_M(x) \le s(|x|)$.
- O(t)-time-bounded if M is f(n)-time-bounded for some f(n) = O(t(n)).

Definition

Let $s, t : \mathbb{N} \to \mathbb{N}$, and let M be a TM. Then M is

- t(n)-time-bounded if for all $x \in \{0,1\}^*$, $time_M(x) \le t(|x|)$.
- s(n)-space-bounded if for all $x \in \{0,1\}^*$, $space_M(x) \le s(|x|)$.
- O(t)-time-bounded if M is f(n)-time-bounded for some f(n) = O(t(n)).
- O(s)-space-bounded if M is f(n)-space-bounded for some f(n) = O(s(n)).

Definition

Given functions $t, s : \mathbb{N} \to \mathbb{N}$, define the following complexity classes.

$$\mathrm{DTIME}(t) \ = \ \{L(M) \mid M \text{ is an } O(t)\text{-time-bounded} TM\},$$

 $DSPACE(s) = \{L(M) \mid M \text{ is an } O(s)\text{-space-bounded TM}\}.$

Definition

Given functions $t, s : \mathbb{N} \to \mathbb{N}$, define the following complexity classes.

$$DTIME(t) = \{L(M) \mid M \text{ is an } O(t)\text{-time-bounded } TM\},$$

$$\mathrm{DSPACE}(s) \ = \ \{L(M) \mid M \text{ is an } O(s)\text{-space-bounded TM}\}.$$

Then

$$P = \bigcup_{k=0}^{\infty} DTIME(n^k)$$

is the class of problems decidable in polynomial time and

$$PSPACE = \bigcup_{k=0}^{\infty} DSPACE(n^k)$$

is the class of problems decidable in polynomial space.

We also define the exponential-time complexity classes

$$E = \bigcup_{k=0}^{\infty} DTIME(2^{kn}),$$

$$EXP = \bigcup_{k=0}^{\infty} DTIME(2^{n^k}),$$

We also define the exponential-time complexity classes

$$E = \bigcup_{k=0}^{\infty} DTIME(2^{kn}),$$

$$EXP = \bigcup_{k=0}^{\infty} DTIME(2^{n^k}),$$

and the exponential-space complexity classes

ESPACE =
$$\bigcup_{k=0}^{\infty} \text{DSPACE}(2^{kn}),$$

EXPSPACE = $\bigcup_{k=0}^{\infty} \text{DSPACE}(2^{n^k}).$

We also define the exponential-time complexity classes

$$E = \bigcup_{k=0}^{\infty} DTIME(2^{kn}),$$

$$EXP = \bigcup_{k=0}^{\infty} DTIME(2^{n^k}),$$

and the exponential-space complexity classes

ESPACE =
$$\bigcup_{k=0}^{\infty} \text{DSPACE}(2^{kn}),$$

EXPSPACE = $\bigcup_{k=0}^{\infty} \text{DSPACE}(2^{n^k}).$

Finally, we have the logarithmic-space complexity class

$$L = DSPACE(log n).$$

Relationships

The following relationships among these classes are immediate.

- **3** $P \subseteq PSPACE$; $E \subseteq ESPACE$; $EXP \subseteq EXPSPACE$.

We can prove the following inclusions of space classes in time classes.

Theorem

 $L \subseteq P$ and $PSPACE \subseteq EXP$.

We can prove the following inclusions of space classes in time classes.

Theorem

 $L \subseteq P$ and $PSPACE \subseteq EXP$.

The theorem follows from the following:

Lemma

If $s(n) \ge \log n$, then

$$DSPACE(s(n)) \subseteq \bigcup_{s=1}^{\infty} DTIME(2^{c \cdot s(n)}).$$

In other words, running time is at most exponential in the space usage.

Proof. Let $L \in \mathrm{DSPACE}(s(n))$ and let M be a TM that decides L using at most $d \cdot s(n)$ space for some constant d. Let m be the number of states in M.

Proof. Let $L \in \text{DSPACE}(s(n))$ and let M be a TM that decides L using at most $d \cdot s(n)$ space for some constant d. Let m be the number of states in M.

Then on an input x of length n, M can be in at most

$$m \cdot 3^{d \cdot s(n)} \cdot (d \cdot s(n))$$

configurations: we have m possibilities for the state, 3 possibilities (0, 1, or blank) for each of the $d \cdot s(n)$ worktape cells, and at most $d \cdot s(n)$ possibilities for the location of the tape head.

Proof. Let $L \in \text{DSPACE}(s(n))$ and let M be a TM that decides L using at most $d \cdot s(n)$ space for some constant d. Let m be the number of states in M.

Then on an input x of length n, M can be in at most

$$m \cdot 3^{d \cdot s(n)} \cdot (d \cdot s(n))$$

configurations: we have m possibilities for the state, 3 possibilities (0, 1, or blank) for each of the $d \cdot s(n)$ worktape cells, and at most $d \cdot s(n)$ possibilities for the location of the tape head.

Call this number T(n). Note that

$$T(n) = 2^{(\log_2 3) \cdot d \cdot s(n) + \log_2 d \cdot s(n) + \log_2 m} = O(2^{c \cdot s(n)})$$

for some constant c. We claim that M halts in at most T(n) steps.

configuration. But then M will come back to that configuration

again and again, in an infinite loop.

configuration. But then M will come back to that configuration

If M does not halt in T(n) steps, it must repeat some

halt within T(n) steps.

again and again, in an infinite loop.

We know that M halts (because it decides L), so therefore it must

If M does not halt in T(n) steps, it must repeat some configuration. But then M will come back to that configuration again and again, in an infinite loop.

We know that M halts (because it decides L), so therefore it must halt within T(n) steps.

nait within I(n) steps.

Therefore M is T(n)-time-bounded and $L \in DTIME(T(n))$.

Lemma

If $s(n) \ge \log n$, then

$$\mathrm{DSPACE}(s(n)) \subseteq \bigcup_{c=1}^{\infty} \mathrm{DTIME}(2^{c \cdot s(n)}).$$

Theorem

 $L \subseteq P$ and $PSPACE \subseteq EXP$.

Lemma

If $s(n) \ge \log n$, then

$$\mathrm{DSPACE}(s(n)) \subseteq \bigcup_{i=1}^{\infty} \mathrm{DTIME}(2^{c \cdot s(n)}).$$

Theorem

 $L \subseteq P$ and $PSPACE \subseteq EXP$.

Proof. Applying the lemma with $s(n) = \log n$, we have

$$L = \operatorname{DSPACE}(\log n)$$

$$\subseteq \bigcup_{c=1}^{\infty} \operatorname{DTIME}(2^{c \log n})$$

Lemma

If $s(n) \ge \log n$, then

$$\mathrm{DSPACE}(s(n)) \subseteq \bigcup^{\infty} \mathrm{DTIME}(2^{c \cdot s(n)}).$$

Theorem

$L \subseteq P$ and $PSPACE \subseteq EXP$.

Proof. Applying the lemma with $s(n) = \log n$, we have

L = DSPACE(log
$$n$$
)

$$\subseteq \bigcup_{c=1}^{\infty} DTIME(2^{c \log n})$$

$$= \bigcup_{c=1}^{\infty} DTIME(n^{c}) = P.$$

Applying the lemma with $s(n) = n^d$ for each $d \ge 1$ yields

PSPACE =
$$\bigcup_{d=1}^{\infty} \text{DSPACE}(n^d)$$
$$\subseteq \bigcup_{d=1}^{\infty} \bigcup_{m=1}^{\infty} \text{DTIME}(2^{cn^d})$$

d = 1 c = 1

Applying the lemma with $s(n) = n^d$ for each $d \ge 1$ yields

Applying the lemma with
$$s(n) = n^d$$
 for each $d \ge 1$ yiel

PSPACE $-\frac{1}{2} | DSPACE(n^d)$

$$PSPACE = \bigcup_{i=1}^{\infty} DSPACE(n^d)$$

d=1 c=1

d=1= EXP \square .

 \subseteq \bigcup \bigcup DTIME (2^{cn^d})

 \subseteq $\bigcup DTIME(2^{n^{d+1}})$

Time and Space Classes Summary

• L = P?

Does every problem that has a polynomial-time algorithm also have a logarithmic-space algorithm?

- L = P?
 - Does every problem that has a polynomial-time algorithm also have a logarithmic-space algorithm?
- P = PSPACE?
 Does every problem that has a polynomial-space algorithm also have a polynomial-time algorithm?

- L = P?
 Does every problem that has a polynomial-time algorithm also have a logarithmic-space algorithm?
- P = PSPACE?
 Does every problem that has a polynomial-space algorithm also have a polynomial-time algorithm?
- PSPACE = EXP?
 Does every problem that has an exponential-time algorithm also have a polynomial-space algorithm?

- L = P?
 Does every problem that has a polynomial-time algorithm also have a logarithmic-space algorithm?
- P = PSPACE?
 Does every problem that has a polynomial-space algorithm also have a polynomial-time algorithm?
- PSPACE = EXP?
 Does every problem that has an exponential-time algorithm also have a polynomial-space algorithm?
- E = ESPACE? EXP = EXPSPACE?

 Does every problem that has an exponential-space algorithm also have a exponential-time algorithm?

The answer to all of these questions is probably no.

Savitch's Algorithm

The graph reachability problem is

$$\mathrm{PATH} = \big\{ \langle G, u, v \rangle \, \big| \ G \text{ is a directed graph with a path from } u \text{ to } v \ \big\}$$

We know that $PATH \in P$ by BFS or DFS. These are O(n)-time algorithms that use O(n) space.

Savitch's Algorithm

The graph reachability problem is

$$PATH = \{ \langle G, u, v \rangle \mid G \text{ is a directed graph with a path from } u \text{ to } v \}$$

We know that PATH \in P by BFS or DFS. These are O(n)-time algorithms that use O(n) space.

Theorem

 $PATH \in DSPACE(log^2 n)$.

Here $\log^2 n = (\log n)^2 = (\log n) \cdot (\log n)$.

Proof.

Let $G = (V, E), n = |V|, u, v \in V$.

For any two vertices $a, b \in V$, we define the predicate reach(a, b, i) to be true if there is a path $a \to b$ in G of length at most 2^i .

Since a shortest path in G has length at most n, we have

$$\langle G, u, v \rangle \in PATH \iff reach(u, v, \lceil \log n \rceil)$$

reach(a, b, i) is true if there is a path $a \rightarrow b$ of length at most 2^i

Notice that

$$reach(a, b, i) \iff (\exists z) \ reach(a, z, i - 1) \land reach(z, b, i - 1).$$

```
\begin{aligned} \textit{REACH}(a,b,i): \\ &\text{if } a = b \text{ or } (a,b) \in \textit{E}, \text{ return } \textit{T}; \\ &\text{if } i = 0, \text{ return } \textit{F}; \\ &\text{for all } z \in \textit{V} \\ &\text{if } \textit{REACH}(a,z,i-1) = \textit{T} \text{ and } \textit{REACH}(z,b,i-1) = \textit{T} \\ &\text{return } \textit{T}; \\ &\text{return } \textit{F}; \end{aligned}
```

• On input $\langle G, u, v \rangle$, we call $REACH(u, v, \lceil \log n \rceil)$.

```
\begin{aligned} \textit{REACH}(a,b,i): \\ &\text{if } a = b \text{ or } (a,b) \in E, \text{ return } T; \\ &\text{if } i = 0, \text{ return } F; \\ &\text{for all } z \in V \\ &\text{if } \textit{REACH}(a,z,i-1) = T \text{ and } \textit{REACH}(z,b,i-1) = T \\ &\text{return } T; \\ &\text{return } F; \end{aligned}
```

- On input $\langle G, u, v \rangle$, we call $REACH(u, v, \lceil \log n \rceil)$.
- The depth of the recursion tree is $\lceil \log n \rceil$.

```
\begin{aligned} \textit{REACH}(a,b,i): \\ &\text{if } a = b \text{ or } (a,b) \in E, \text{ return } T; \\ &\text{if } i = 0, \text{ return } F; \\ &\text{for all } z \in V \\ &\text{if } \textit{REACH}(a,z,i-1) = T \text{ and } \textit{REACH}(z,b,i-1) = T \\ &\text{return } T; \\ &\text{return } F; \end{aligned}
```

- On input $\langle G, u, v \rangle$, we call $REACH(u, v, \lceil \log n \rceil)$.
- The depth of the recursion tree is $\lceil \log n \rceil$.
- Each REACH call uses $O(\log n)$ space to store a, b, i, and z.

```
\begin{aligned} \textit{REACH}(a,b,i): \\ &\text{if } a = b \text{ or } (a,b) \in \textit{E}, \text{ return } \textit{T}; \\ &\text{if } i = 0, \text{ return } \textit{F}; \\ &\text{for all } z \in \textit{V} \\ &\text{if } \textit{REACH}(a,z,i-1) = \textit{T} \text{ and } \textit{REACH}(z,b,i-1) = \textit{T} \\ &\text{return } \textit{T}; \\ &\text{return } \textit{F}; \end{aligned}
```

- On input $\langle G, u, v \rangle$, we call $REACH(u, v, \lceil \log n \rceil)$.
- The depth of the recursion tree is $\lceil \log n \rceil$.
- Each REACH call uses $O(\log n)$ space to store a, b, i, and z.
- The total space required is $\lceil \log n \rceil \cdot O(\log n) = O(\log^2 n)$.

The algorithm in the above proof is space efficient, but very time inefficient – its running time is quasipolynomial: $O(n^{\log n})$.

This is quite a contrast to the linear-time, linear-space algorithms provided by depth-first or breadth-first search.

	time	space
BFS/DFS	O(n)	O(n)
Savitch	$O(n^{\log n})$	$O(\log^2 n)$

The algorithm in the above proof is space efficient, but very time inefficient – its running time is quasipolynomial: $O(n^{\log n})$.

This is quite a contrast to the linear-time, linear-space algorithms provided by depth-first or breadth-first search.

	time	space
BFS/DFS	O(n)	O(n)
Savitch	$O(n^{\log n})$	$O(\log^2 n)$

Open problems:

- Is there a polynomial-time, $O(\log^2 n)$ -space algorithm for PATH?
- Is there a $O(\log n)$ -space algorithm for PATH? (Is PATH \in L?)

Savitch's algorithm for graph reachability may be used to compare deterministic and nondeterministic space complexity classes.

Definition

For any $s: \mathbb{N} \to \mathbb{N}$, we define

 $NSPACE(s) = \{L(M) \mid M \text{ is an } O(s)\text{-space-bounded NTM}\}.$

Savitch's algorithm for graph reachability may be used to compare deterministic and nondeterministic space complexity classes.

Definition

For any $s: \mathbb{N} \to \mathbb{N}$, we define

$$NSPACE(s) = \{L(M) \mid M \text{ is an } O(s)\text{-space-bounded NTM}\}.$$

Definition

A space bound s(n) is space-constructible if the function

$$f_s(x) = \text{binary representation of } s(|x|)$$

is computable by a O(s(n))-space-bounded TM.

Typical space bounds like $\log n$, n, n^2 , etc. are space-constructible.

Savitch's algorithm for graph reachability may be used to compare deterministic and nondeterministic space complexity classes.

Definition

For any $s: \mathbb{N} \to \mathbb{N}$, we define

$$NSPACE(s) = \{L(M) \mid M \text{ is an } O(s)\text{-space-bounded NTM}\}.$$

Definition

A space bound s(n) is space-constructible if the function

$$f_s(x) = \text{binary representation of } s(|x|)$$

is computable by a O(s(n))-space-bounded TM.

Typical space bounds like $\log n$, n, n^2 , etc. are space-constructible.

Savitch's Theorem

For any space-constructible $s(n) \ge \log(n)$,

$$NSPACE(s(n)) \subseteq DSPACE(s(n)^2).$$

 We view the computation of N on x as a directed graph on configurations of N. There are at most 2^{c·s(n)} configurations for some constant c.

- We view the computation of N on x as a directed graph on configurations of N. There are at most $2^{c \cdot s(n)}$ configurations for some constant c.
- We assume that N has a unique accepting configuration F (modify N to clear its tapes if necessary).

- We view the computation of N on x as a directed graph on configurations of N. There are at most 2^{c·s(n)} configurations for some constant c.
- We assume that N has a unique accepting configuration F (modify N to clear its tapes if necessary).
- N on input x starts in an initial configuration C_x .
- We want to know if N can reach F from configuration C_x .

- We view the computation of N on x as a directed graph on configurations of N. There are at most $2^{c \cdot s(n)}$ configurations for some constant c.
- We assume that N has a unique accepting configuration F (modify N to clear its tapes if necessary).
- N on input x starts in an initial configuration C_x .
- We want to know if N can reach F from configuration C_x .

We can apply the reachability algorithm on the configuration graph. This graph is exponentially large, but we do not have to explicitly write the whole thing down – the transition function of N implicitly gives us the graph.

- We view the computation of N on x as a directed graph on configurations of N. There are at most $2^{c \cdot s(n)}$ configurations for some constant c.
- We assume that N has a unique accepting configuration F (modify N to clear its tapes if necessary).
- N on input x starts in an initial configuration C_x .
- We want to know if N can reach F from configuration C_x .

We can apply the reachability algorithm on the configuration graph. This graph is exponentially large, but we do not have to explicitly write the whole thing down – the transition function of N implicitly gives us the graph.

On input x, we run the *REACH* algorithm to see if there is a path from C_x to F. This uses

$$O\left(\log(2^{c \cdot s(n)})^2\right) = O(c^2 s(n)^2) = O(s(n)^2)$$

space.

For any space-constructible $s(n) \ge \log(n)$,

$$NSPACE(s(n)) \subseteq DSPACE(s(n)^2).$$

Define the nondeterministic logspace class

$$NL = NSPACE(\log n).$$

For any space-constructible $s(n) \ge \log(n)$,

$$NSPACE(s(n)) \subseteq DSPACE(s(n)^2).$$

Define the nondeterministic logspace class

$$NL = NSPACE(\log n)$$
.

Corollary

 $NL \subseteq DSPACE(\log^2 n)$.

Proof.
$$NL = NSPACE(\log n) \subseteq DSPACE(\log^2 n)$$
.

For any space-constructible $s(n) \ge \log(n)$,

$$NSPACE(s(n)) \subseteq DSPACE(s(n)^2).$$

Define the nondeterministic polynomial space class

$$NPSPACE = \bigcup_{c=1}^{SS} NSPACE(n^c).$$

For any space-constructible $s(n) \ge \log(n)$,

$$NSPACE(s(n)) \subseteq DSPACE(s(n)^2).$$

Define the nondeterministic polynomial space class

$$NPSPACE = \bigcup_{c=1}^{c} NSPACE(n^{c}).$$

Corollary

PSPACE = NPSPACE.

Proof.

NPSPACE =
$$\bigcup_{c=1}^{\infty} \text{NSPACE}(n^c) \subseteq \bigcup_{c=1}^{\infty} \text{DSPACE}(n^{2c}) = \text{PSPACE}.$$

Since $PSPACE \subseteq NPSPACE$, equality follows.

Theorem

 $NP \subseteq PSPACE$.

Proof. This is true because $NP \subseteq NPSPACE = PSPACE$.

Theorem

 $NP \subseteq PSPACE$.

Proof. This is true because $NP \subseteq NPSPACE = PSPACE$.

For a direct proof, consider a verifier V for an NP problem A. Let M be an algorithm loops through all possible witnesses, testing each with V. If a valid witness is found, M accepts; otherwise, M rejects. Storing the current witness uses polynomial space and V uses at most polynomial space, so M uses polynomial space.

Summary

We showed $L\subseteq P.$ In fact, a stronger result is true:

Theorem

 $NL \subseteq P$.

We showed $L \subseteq P$. In fact, a stronger result is true:

Theorem

 $NL \subseteq P$.

Recall our lemma used to show $L \subseteq P$:

Lemma

If $s(n) \ge \log n$, then DSPACE $(s(n)) \subseteq \bigcup_{s=1}^{\infty} \text{DTIME}(2^{c \cdot s(n)})$.

This can be extended to show:

Lemma

If $s(n) \ge \log n$, then $\text{NSPACE}(s(n)) \subseteq \bigcup_{i=1}^{\infty} \text{DTIME}(2^{c \cdot s(n)})$.

We showed $L \subseteq P$. In fact, a stronger result is true:

Theorem

 $NL \subseteq P$.

Recall our lemma used to show $L \subseteq P$:

Lemma

If
$$s(n) \ge \log n$$
, then DSPACE $(s(n)) \subseteq \bigcup_{c=1}^{\infty} \text{DTIME}(2^{c \cdot s(n)})$.

This can be extended to show:

Lemma

If
$$s(n) \ge \log n$$
, then $\text{NSPACE}(s(n)) \subseteq \bigcup_{i=1}^{\infty} \text{DTIME}(2^{c \cdot s(n)})$.

Proof sketch. In the nondeterministic computation tree, there are at most $2^{O(s(n))}$ configurations like before. Thus we can explore the computation tree in $2^{O(s(n))}$ time.

The theorem follows from this lemma.

Summary

Open problems:

- P = NP?
- P = PSPACE?
- NP = PSPACE?
- PSPACE = EXP?
- NP = EXP?
- NP \subseteq E? E \subseteq NP?
- PSPACE \subseteq E? E \subseteq PSPACE?
- L = NL?
- NL = P?
- NL = NP?
- L = NP?

Known:

- L \neq DSPACE(log² n) \neq PSPACE \neq ESPACE \neq EXPSPACE