

1 Fibre à saut d'indice

Une fibre optique à saut d'indice possède un indice de coeur $n_1=1,48$, un indice de gaine $n_2=1,47$ et un rayon de coeur $a=28\mu m$.

- (a) la fibre est-elle monomode?
- (b) Calculer l'ouverture numérique ON.
- (c) Quel est l'angle maximum θ_{max} du cône d'entrée pour un faisceau injecté dans la fibre optique?
- (d) Calculer pour cette fibre optique la fréquence normalisée V pour une longueur d'onde $\lambda = 1300nm$.

2 interface diélectrique / diélectrique

Une onde plane de polarisation TM (le champ ${\bf H}$ est parallèle à l'interface) est incidente depuis un milieu d'indice $n_1=3.5$ sur un mileu d'indice $n_2=1.5$

- (a) Quelle est la valeur de l'angle limite?
- (b) Donner l'allure du module et de la phase du coefficient de réflexion en fonction de l'angle d'incidence.
- (c) Quelle doit être l'angle d'incidence pour que l'amplitude de l'onde transmise soit divisée par deux à la distance $\lambda/10$ de l'interface?

3 Liaison sur fibre optique monomode

Soit une liaison sur fibre optique monomode. Une diode laser monomode émet une puissance dans la fibre $P_e=1,5~mW$ à $\lambda=1.55~\mu m$ avec une largeur spectrale $\Delta\nu=3~Ghz$. La fibre optique présente un affaiblissement global A=0,3~dB/km et une dispersion $D=25ps.nm^{-1}.km^{-1}$ à cette longueur d'onde.

- (a) Calculer la puissance, en Watt et en dBm, en bout de fibre.
- (b) On place en bout de fibre un récepteur photodiode. On exige une puissance minimale sur la photodiode de $P_{\min}=-20~dBm$. Quelle est la longueur maximale de la liaison permise sous ces conditions?
- (c) La transmission doit pouvoir fonctionner avec un débit B=40~Gb/s. La dispersion de la fibre optique constitue une autre limitation pour la longueur maximale de la liaison. Comparer la limitation due à la dispersion avec celle due à l'atténuation.
- (d) On souhaite transmettre sur une distance $L_0=100\ Km$. Est-ce possible?