BOOK RATING DATABASE

A DATABASE PROJECT FOR CSC 4402 CLASS SPRING 2017 AT LOUISIANA STATE UNIVERSITY

Group Members:

Pu Du

Pengfei Pan

Min Cui

Tianyi Zhang

OUTLINE FOR THIS PRESENTATION

- Introduction
- E-R diagram
- Create tables
- SQL queries
 - Count
 - group by and order by
 - natural join
 - subquery

INTRODUCTION

- Database Name: **Book crossing dataset**
 - collected by Cai-Nicolas Ziegler in a 4-week crawl from bookcrossing.com.
 - contains 1,149,780 ratings of 271,379 books by 278,858 users.

E-R DIAGRAM

Create table Book_Ratings
drop table if exists book_ratings;
create table book_ratings
(User_ID int(11),
ISBN varchar(13),
Rating int(11),
primary key (User_ID, ISBN),
foreign key (User_ID) references users(User_ID),
foreign key (ISBN) references books(ISBN)
);

CREATE TABLES

```
Create Table books
drop table if exists books;
create table books
(ISBN varchar(13),
Book_Title varchar(255),
Author_ID int(11),
Year_Of_Publication int(10),
Publisher_ID int(11),
primary key (ISBN),
foreign key (Author_ID) references authors(Author_ID),
foreign key (Publisher_ID) references publishers(Publisher_ID)
);
```

Create Table users drop table if exists users; create table users (User_ID int(11), Location varchar(255), Age int(11), primary key (User_ID));

SQL QUERIES--COUNT

```
\! echo "#Total users, total authors, total authors and total books'
select count(*)
                   count(*)
                   278858
from users;
                   count (*)
                   99198
select count(*)
                   count(*)
from authors;
                   16550
                   count(*)
select count(*)
                   271065
from publishers;
select count(*)
from books;
```

SQL QUERIES—GROUP BY AND ORDER BY

```
\! echo "#Find the number of users in each location with book rating>8."
select location, count(u.user id)
from users as u, book_ratings as b
where u.user id=b.user id and rating>8
group by location
order by location;
xiamen, fujian, china
xiaogan hubei, n/a, china
xix?n, asturies, spain 1
xi`an, shannxi, china 1
xxx, california, austria
xxxxxx, xxxxxx, netherlands
yabulu, queensland, australia
yackandandah, victoria, australia
yakima, washington, usa 14
yamato-shi, kanagawa-ken, japan 1
yancey, texas, usa
yankalilla, south australia, australia 5
yankton, south dakota, usa
yardley, pennsylvania, usa
yardville, new jersey, usa
yarmouth, nova scotia, 1
yarmouth, nova scotia, canada
yarraville, victoria, australia 2
yate, bristol, england, united kingdom 1
yaxley, cambridgeshire, united kingdom 4
yazoo city, mississippi, usa
yellowknife, , canada 1
yellowknife, northwest territories, canada
yellowstone national park, wyoming, usa 1
yellville, arkansas, usa
yelm, washington, usa 2
```

SQL QUERIES—INTERESTING EXAMPLE

```
\! echo "# find what age of user is likely to give high ratings."
Select Age, avg(Rating)
From book_ratings, users
Where book_ratings.User_ID = users.User_ID
Group by Age
order by avg(Rating) desc;
          2.6000
          2.5873
         2.5434
239
104
         2.1751
         2.0000
          1.8439
         1.7936
```

SQL QUERIES— NATURAL JOIN

• ## select the books whose rating is grater than 5, published by author id = 1, order by rating

Select distinct Book_Title,authors.Name,RatingYear_Of_Publication

From books NATURAL JOIN authors NATURAL JOIN book_ratings

Where authors. Author_ID = I and book_ratings. ISBN = books. ISBN and Rating>5

order by Rating desc;

SQL QUERIES— SUBQUERY

```
## select the book rated by user from Sweden and rating = 10
select A.Name
from books as B, Authors as A
where A.Author_ID = B.Author_ID and ISBN in
(select ISBN
from book_ratings
where Rating = 10 and User_ID in
(select User_ID
from users
where Location = 'sweden'))
```

THANKS FOR WATCHING

