ETUDE DE FONCTIONS

I - GÉNÉRALITÉS SUR LES FONCTIONS

DÉFINITION

Une **fonction** f associe, à tout nombre réel x d'une partie D de \mathbb{R} , un unique nombre réel y. y s'appelle l'**image** de x par la fonction f et se note f(x)

DÉFINITION

L'ensemble D des éléments x de $\mathbb R$ qui possèdent une image par f s'appelle l'**ensemble de définition** de f.

DÉFINITION

La **courbe représentative** de la fonction f est l'ensemble des points du plan \mathcal{P} dont les coordonnées (x; y) vérifient l'égalité y = f(x).

REMARQUE

Cette définition est importante car elle établit un lien entre la courbe représentative d'une fonction et la formule définissant la fonction. Elle permet de déterminer notamment si un point appartient à la courbe représentative d'une fonction.

Par exemple si f est la fonction définie sur \mathbb{R} par $f(x) = x^2 + 1$, le point A(1;2) appartient à courbe représentative de f car $f(1) = 1^2 + 1 = 2$. Par contre le point B(2;4) n'y appartient pas car $f(2) = 5 \neq 4$.

DÉFINITIONS

- La fonction f est **croissante** sur l'intervalle I si et seulement si pour tous réels x_1 et x_2 de I tels que $x_1 \le x_2$ on a $f(x_1) \le f(x_2)$.
- La fonction f est **décroissante** sur l'intervalle I si et seulement si pour tous réels x_1 et x_2 de I tels que $x_1 \le x_2$ on a $f(x_1) \ge f(x_2)$.

DÉFINITIONS

Soit *I* un intervalle et $x_0 \in I$.

- La fonction f admet un **maximum** en x_0 sur l'intervalle I si et seulement si pour tout réel x de I, $f(x) \le f(x_0)$. Le maximum de la fonction f sur I est alors $M = f(x_0)$
- La fonction f admet un **minimum** en x_0 sur l'intervalle I si et seulement si pour tout réel x de I, $f(x) \ge f(x_0)$. Le minimum de la fonction f sur I est alors $m = f(x_0)$

II - LA FONCTION RACINE CARRÉE

DÉFINITION

La fonction racine carrée est la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$

PROPRIÉTÉ

La fonction racine carrée est strictement croissante sur $[0; +\infty[$

Tableau de variation de la fonction racine carrée

Graphique de la fonction racine carrée

REMARQUE

La courbe représentative de la fonction racine carrée est une demi-parabole

III - LA FONCTION CUBE

DÉFINITION

La fonction cube est la fonction définie sur $]-\infty;+\infty[$ par $f(x)=x^3$

PROPRIÉTÉ

La fonction cube est strictement croissante sur $]-\infty;+\infty[$

Tableau de variation de la fonction cube

Graphique de la fonction cube

REMARQUES

- Comme la fonction $x \mapsto x^3$ est strictement croissante sur \mathbb{R} : $a > b \Leftrightarrow a^3 > b^3$
- En particulier $x > 0 \Leftrightarrow x^3 > 0$ Autrement dit, le cube d'un nombre positif est positif et le cube d'un nombre négatif est négatif.