FINANCIAL ENGINEERING IME611A

Suman Saurabh, IIT Kanpur

SESSION OBJECTIVES

- Fixed income instrument: Credit Rating
- Yield to maturity
- Pricing of a Bond
- Price-Yield curve

QUALITY RATING (CREDIT RATING) (1/2)

- Bonds offer fixed-income stream, yet they may be **subject to default** if the issuer faces financial difficulties or falls into bankruptcy.
- Default: Failure to pay the coupons or the face value
- Credit Rating Agencies (CRAs)
 - Assess <u>financial health</u> of issuer and issue some rating
 - Example: Moody's, Standard and Poor (S&P), CRISIL, ICRA
 - Rating schemes
 - AAA, AA, A, BBB, BB, B etc. (S&P)
 - Aaa, Aa, A, Baa, Ba, B, etc. (Moody's)

QUALITY RATING (CREDIT RATING) (2/2)

	Moody's	S&P
High grade (least risky)	Aaa	AAA
-do-	Aa	AA
Medium grade	A	A
-do-	Baa	BBB
Speculative grade	Ва	BB
-do-	В	В
Default grade (highly risky)	Caa	CCC
-do-	Ca	CC
-do-	С	С
		D

Additional reading:

https://www.crisil.com/en/home/our-businesses/ratings/credit-ratings-scale.html

YIELD

• A bond's yield is the interest rate implied by the payment structure.

• **Yield:** The interest rate at which present value of the stream of payments is equal to the current price. [Similar to the concept of **IRR** earlier discussed!]

PRICING OF A BOND (1/2)

 Consider, a bond with face value F paying m coupon payments of C/m each year and there are n periods remaining.

•
$$P = \frac{F}{[1 + (\lambda/m)]^n} + \sum_{k=1}^n \frac{C/m}{[1 + (\lambda/m)]^k}$$

- Where,
 - P = price of the bond
 - F = face value of the bond
 - C = coupon amount of the bond per year
 - λ = yield to maturity of the bond
 - m = number of coupon payments per year
 - n = number of periods remaining

PRICING OF A BOND (2/2)

• Bond price formula: The price of a bond, having exactly n coupon periods remaining to maturity and a yield to maturity of λ , satisfies

•
$$P = \frac{F}{[1 + (\lambda/m)]^n} + \frac{C}{\lambda} \{1 - \frac{1}{[1 + (\lambda/m)]^n} \}$$

• Where, **F** is the <u>face value</u> of the bond, **C** is the <u>yearly coupon payment</u>, and **m** is the <u>number of coupons per year</u>.

PRICE-YIELD CURVE

- Price and yield have an inverse relation.
- · <u>Curvature</u> is an important idea.
- Useful tools (*Duration, Convexity*) for <u>analysis of the risk</u> (sensitivity of price to yield)
- An illustration [Wolfram Demonstrations Project]
 - Source: <u>https://www.wolframcloud.com/objects/demonstrations/PriceYieldCurve-source.nb</u>

PRICE YIELD CURVES

Practice Problem - 1: A bond with FV of 100 offers 6% annual coupon.
 Calculate its price for following scenarios.

- i) Time to maturity = 1 year, Yield to maturity = a) 4%, b) 6%, c) 8%
- ii) Time to maturity = 5 years, Yield to maturity = a) 4%, b) 6%, c) 8%
- iii) Time to maturity = 20 years, Yield to maturity = a) 4%, b) 6%, c) 8%

PRICE YIELD CURVES

- Practice Problem 1:
- Q1) Construct a table as below (showing prices in each cell)

Time to maturity	Yield		
	4%	6%	8%
1 year			
5 years			
20 years			

- Q2) What can you comment about the price and yield relationship?
- Q3) Draw the charts similar to Fig. 3.3 and 3.4.

DISCLAIMER

 The information in this presentation has been compiled from the following textbook which has been mentioned as a reference text for this course on **Financial Engineering.**

Reference Text:

Investment Science, 2nd Edition, Oxford University Press, David G. Luenberger