



# Secretaría Académica, de Investigación e Innovación Dirección de Docencia e Innovación Educativa

### Datos Generales de la asignatura.

Nombre de la asignatura: Programación Orientada a Objetos

Clave de la asignatura: AED-1286

SATCA<sup>1</sup>: 2-3-5

**Carrera:** Ingeniería en Sistemas Computacionales

#### Presentación.

Esta asignatura aporta al perfil del Ingeniero la capacidad de analizar, desarrollar, implementar y administrar software de aplicación orientado a objetos, cumpliendo con estándares de calidad, con el fin de apoyar la productividad y competitividad de las organizaciones.

Esta materia es muy importante porque proporciona soporte a otras, más directamente vinculadas con desempeños profesionales; se ubica en el segundo semestre de la trayectoria escolar. Proporciona al estudiante las competencias necesarias para abordar el estudio de cualquier lenguaje orientado a objetos, metodología de análisis y diseño orientado a objetos, de los sistemas gestores de bases de datos, y en general de cualquier materia basada en el modelo orientado a objetos.

Para cursarla se requiere de los conocimientos y habilidades adquiridas en Fundamentos de la Programación.

#### Competencia(s) a desarrollar

Aplica la programación orientada a objetos para resolver problemas reales y de ingeniería.

#### **Competencias previas**

Aplica algoritmos y lenguajes de programación para diseñar e implementar soluciones a problemáticas del entorno.

\_

<sup>&</sup>lt;sup>1</sup> Sistema de Asignación y Transferencia de Créditos Académicos





# Secretaría Académica, de Investigación e Innovación

Dirección de Docencia e Innovación Educativa

## Temario.

| No. | Temas                                                            | Subtemas                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Introducción al paradigma de la programación orientada a objetos | 1.1 Elementos del modelo de objetos: clases, objetos, abstracción, modularidad, encapsulamiento, herencia y polimorfismo     1.2 Lenguaje de modelado unificado: diagrama de clases                                                                                                                                                                                                                                                                            |
| 2   | Clases y objetos                                                 | <ul> <li>2.1 Declaración de clases: atributos, métodos, encapsulamiento</li> <li>2.2 Instanciación de una clase</li> <li>2.3 Referencia al objeto actual</li> <li>2.4 Métodos: declaración, mensajes, paso de parámetros, retorno de valores</li> <li>2.5 Constructores y destructores declaración, uso y aplicaciones</li> <li>2.6 Sobrecarga de métodos</li> <li>2.7 Sobrecarga de operadores: Concepto y utilidad, operadores unarios y binarios</li> </ul> |
| 3   | Herencia                                                         | <ul> <li>3.1 Definición: clase base, clase derivada</li> <li>3.2 Clasificación: herencia simple, herencia múltiple</li> <li>3.3 Reutilización de miembros heredados</li> <li>3.4 Referencia al objeto de la clase base</li> <li>3.5 Constructores y destructores en clases derivadas</li> <li>3.6 Redefinición de métodos en clases derivadas</li> </ul>                                                                                                       |
| 4   | Polimorfismo                                                     | <ul> <li>4.1 Definición</li> <li>4.2 Clases abstractas: definición, métodos abstractos, implementación de clases abstractas, modelado de clases abstractas</li> <li>4.3 Interfaces: definición, implementación de interfaces, herencia de interfaces</li> <li>4.4 Variables polimórficas (plantillas): definición, uso y aplicaciones</li> <li>4.5 Reutilización de código</li> </ul>                                                                          |
| 5   | Excepciones                                                      | <ul> <li>5.1 Definición</li> <li>5.2 Tipos de excepciones</li> <li>5.3 Propagación de excepciones</li> <li>5.4 Gestión de excepciones: manejo de excepciones, lanzamiento de excepciones</li> <li>5.5 Creación y manejo de excepciones definidas por el usuario</li> </ul>                                                                                                                                                                                     |
| 6   | Flujos y archivos                                                | <ul><li>6.1 Definición</li><li>6.2 Clasificación: Archivos de texto y binarios</li><li>6.3 Operaciones básicas y tipos de acceso</li><li>6.4 Manejo de objetos persistentes</li></ul>                                                                                                                                                                                                                                                                          |