Resumen del proyecto: Customer Personality Clustering

Objetivo

Segmentar clientes en grupos homogéneos según su perfil económico y comportamiento de compra, con el fin de:

- Diseñar estrategias de marketing personalizadas
- · Mejorar la fidelización
- Optimizar la asignación de recursos comerciales

Proceso realizado

1. Carga y exploración de datos

- Dataset original de 2.240 clientes
- · Limpieza y depuración:
 - Eliminación de duplicados
 - Agrupación de categorías raras en Marital_Status
 - o Imputación de valores nulos en Income

2. Ingeniería de características

- Creación de variables:
 - o Age: Edad actual
 - o Children: Total de hijos en el hogar
 - o Total Spent: Gasto acumulado en los últimos 2 años
 - Total Purchases: Total de compras en todos los canales
 - o Campaigns_Accepted: Número de campañas aceptadas
 - o Customer_Since_Days: Antigüedad del cliente en días
- Eliminación de columnas redundantes e identificadores

3. Codificación y escalado

- · One-Hot Encoding en:
 - Education
 - Marital_Status
- Escalado estándar (StandardScaler) en todas las variables

4. Clustering

- Modelo utilizado: KMeans
- Número de clusters: 4
- · Asignación de segmento a cada cliente
- Evaluación de la calidad:
 - o Silhouette Score: 0.119
 - o Distribución equilibrada de clientes por segmento

5. Visualización

- Reducción dimensional con PCA (2 componentes) y t-SNE (2 componentes)
- · Gráficos de dispersión coloreados por segmento
- t-SNE permitió identificar mejor la distribución de grupos

6. Guardado de artefactos

- $\bullet \ \ \mathsf{Modelo} \ \mathsf{entrenado} \ \mathsf{serializado} \ (\ \mathsf{kmeans_customer_segments.pkl} \)$
- Dataset final con segmentos (customer segments.csv)

Resultados y conclusiones

- El clustering logró identificar 4 segmentos diferenciados de clientes.
- Cada grupo presenta patrones distintos en gasto total, antigüedad, ingresos y campañas aceptadas.
- Las visualizaciones de t-SNE mostraron una separación más clara que PCA.
- Este modelo permite:
 - Clasificar nuevos clientes en segmentos
 - o Analizar la rentabilidad y perfil de cada grupo

Paso 0 – Importación de librerías

df.drop_duplicates(inplace=True)

df['Income'] = df['Income'].fillna(df['Income'].median())

```
#@title Paso 0 - Importación de librerías
# Manipulación de datos
import pandas as pd
import numpy as np
# Visualización
import seaborn as sns
import matplotlib.pyplot as plt
# Preprocesamiento
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.base import BaseEstimator, TransformerMixin
# Clustering
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.manifold import TSNE
# Guardar y cargar modelos
import joblib
print("Librerías cargadas correctamente.")
 → Librerías cargadas correctamente.

    Paso 1 Cargar datos Customer Personality Analysis

#@title Paso 1 Cargar datos Customer Personality Analysis
df = pd.read_csv("Customer_Personality.csv",sep='\t')

→ Paso 2: Limpieza y Feature Engineering

#@title Paso 2: Limpieza y Feature Engineering
# Copia de seguridad por si se quiere conservar el original
df = df.copy()
# --- 1. Conversión de fechas y cálculo de antigüedad ---
df['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'], dayfirst=True)
df['Customer_Since_Days'] = (df['Dt_Customer'].max() - df['Dt_Customer']).dt.days
# --- 2. Nuevas variables derivadas ---
df['Age'] = 2025 - df['Year_Birth']
df['Children'] = df['Kidhome'] + df['Teenhome']
df['Total_Spent'] = df[['MntWines','MntFruits','MntMeatProducts',
                                               'MntFishProducts', 'MntSweetProducts', 'MntGoldProds']].sum(axis=1)
# Compras totales
\label{eq:df_purchases'} df['Total\_Purchases'] = df[['NumWebPurchases','NumCatalogPurchases','NumStorePurchases']].sum(axis=1)
# Total campañas aceptadas
df['Campaigns_Accepted'] = df[['AcceptedCmp1','AcceptedCmp2','AcceptedCmp3','AcceptedCmp4','AcceptedCmp5']].sum(axis=1)
# --- 3. Limpieza de columnas ---
df.drop(columns=[
        'ID', 'Year_Birth', 'Dt_Customer',
         'Kidhome', 'Teenhome',
        'Z_CostContact', 'Z_Revenue',
        \verb|'AcceptedCmp1', 'AcceptedCmp2', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', |'AcceptedCmp5', |'AcceptedCmp5', |'AcceptedCmp6', |'Accep
         'MntWines','MntFruits','MntMeatProducts','MntFishProducts','MntSweetProducts','MntGoldProds',
        'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases'
], inplace=True)
# --- 4. Limpieza de datos ---
```

```
# Agrupar valores extraños de estado civil
df['Marital_Status'] = df['Marital_Status'].replace({
    'Alone': 'Other', 'Absurd': 'Other', 'YOLO': 'Other'
})
print("Limpieza y feature engineering completados.")
```

Limpieza y feature engineering completados.

Gráfico de gasto medio por estado civil

```
#@title Gráfico de gasto medio por estado civil
sns.set(style="whitegrid")
plt.figure(figsize=(10, 6))
sns.barplot(
    data=df,
    x='Marital_Status',
    y='Total_Spent',
    estimator='mean',
    errorbar=None,
    hue='Marital_Status', # evita warning de `palette`
    palette='muted',
    legend=False # oculta la leyenda innecesaria
plt.title('Gasto Medio por Estado Civil', fontsize=16)
plt.xlabel('Estado Civil', fontsize=12)
plt.ylabel('Gasto Medio (€)', fontsize=12)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


→ Visualización Tabla

#@title Visualización Tabla
Con la función head se muestra las 5 primeras filas del archivo.
df.head()

Resumen estadistico general

#@title Resumen estadistico general

df.describe().T

	count	mean	std	min	25%	50%	75%	max
Income	2039.0	52352.305542	25429.762373	1730.0	35702.5	51537.0	68298.5	666666.0
Recency	2039.0	49.096616	28.974507	0.0	24.0	49.0	74.0	99.0
NumDealsPurchases	2039.0	2.329083	1.934170	0.0	1.0	2.0	3.0	15.0
NumWebVisitsMonth	2039.0	5.310446	2.438496	0.0	3.0	6.0	7.0	20.0
Complain	2039.0	0.009809	0.098576	0.0	0.0	0.0	0.0	1.0
Customer_Since_Days	2039.0	351.848455	201.931177	0.0	178.5	351.0	527.0	699.0
Age	2039.0	56.231976	11.983086	29.0	48.0	55.0	66.0	132.0
Children	2039.0	0.952428	0.748694	0.0	0.0	1.0	1.0	3.0
Total_Spent	2039.0	605.871015	602.092007	5.0	68.5	396.0	1044.5	2525.0
Total_Purchases	2039.0	12.529671	7.188406	0.0	6.0	12.0	18.0	32.0
Campaigns_Accepted	2039.0	0.299166	0.678966	0.0	0.0	0.0	0.0	4.0

✓ Info de tipo de datos, nulos, etc.

#@title Info de tipo de datos, nulos, etc.
df.info()

<</pre>
<<class 'pandas.core.frame.DataFrame'>
Index: 2039 entries, 0 to 2239
Data columns (total 13 columns):

Data	columns (total 13 co.	lumns):	
#	Column	Non-Null Coun	t Dtype
0	Education	2039 non-null	object
1	Marital_Status	2039 non-null	object
2	Income	2039 non-null	float64
3	Recency	2039 non-null	int64
4	NumDealsPurchases	2039 non-null	int64
5	NumWebVisitsMonth	2039 non-null	int64
6	Complain	2039 non-null	int64
7	Customer_Since_Days	2039 non-null	int64
8	Age	2039 non-null	int64
9	Children	2039 non-null	int64
10	Total_Spent	2039 non-null	int64
11	Total_Purchases	2039 non-null	int64
12	Campaigns_Accepted	2039 non-null	int64
dtype	es: float64(1), int64	(10), object(2)

memory usage: 223.0+ KB

Leyenda con nuevas variables

Columna	Tipo	Descripción
Education	Categórica	Nivel educativo del cliente (e.g., Graduation, PhD, Master, etc.)
Marital_Status	Categórica	Estado civil del cliente
Income	Numérica	Ingreso anual familiar del cliente (en euros)
Recency	Numérica	Días desde la última compra del cliente
NumDealsPurchases	Numérica	Número de compras realizadas con descuento
NumWebVisitsMonth	Numérica	Número de visitas al sitio web en el último mes
Complain	Binaria	1 = se quejó en los últimos 2 años, 0 = no se quejó
Customer_Since_Days	Numérica	Antigüedad del cliente en días desde su alta en la empresa
Age	Numérica	Edad del cliente (calculada como 2025 - Year_Birth)

Columna	Tipo	Descripción
Children	Numérica	Número total de hijos (Kidhome + Teenhome)
TotaLSpent	Numérica	Gasto total acumulado en productos (vino, carne, frutas, oro, etc.)
TotaLPurchases	Numérica	Número total de compras por cualquier canal
Campaigns_Accepted	Numérica	Número total de campañas promocionales aceptadas (de 0 a 5)

Paso 3: Codificación de variables categóricas + Escalado

```
#@title Paso 3: Codificación de variables categóricas + Escalado
# 1 Codificación One-Hot de variables categóricas
df_encoded = pd.get_dummies(
   df,
    columns=['Education', 'Marital_Status'],
    drop_first=True
print("Codificación completada.")
print(f"Columnas\ resultantes:\ \{df\_encoded.columns.tolist()\}")
# 2 Escalado de todas las variables
scaler = StandardScaler()
df_scaled = pd.DataFrame(
   scaler.fit transform(df encoded),
    columns=df_encoded.columns
print("Escalado completado.")
# 3 Verificación de la forma del dataset final
print(f"Dimensiones finales del dataset: {df_scaled.shape}")
# 4 Vista previa
df_scaled.head()
```

Transfer of Codificación completada.

Columnas resultantes: ['Income', 'Recency', 'NumDealsPurchases', 'NumWebVisitsMonth', 'Complain', 'Customer_Since_Days', 'Age', 'Chi Scalado completado.

Dimensiones finales del dataset: (2039, 20)

	Income	Recency	NumDealsPurchases	NumWebVisitsMonth	Complain	Customer_Since_Days	Age	Children	Total_Spent	Total_
0	0.227572	0.307359	0.346961	0.693037	-0.099528	1.541257	0.982294	-1.272431	1.679772	
1	-0.236329	-0.383073	-0.170183	-0.127342	-0.099528	-1.183111	1.232708	1.399543	-0.961669	
2	0.757593	-0.797331	-0.687328	-0.537531	-0.099528	-0.197385	0.314522	-1.272431	0.282632	
3	-1.011123	-0.797331	-0.170183	0.282848	-0.099528	-1.054323	-1.271435	0.063556	-0.918475	
4	0.233669	1.550135	1.381250	-0.127342	-0.099528	-0.945348	-1.021021	0.063556	-0.305462	

Paso 4: Entrenamiento del clustering y análisis de segmentos (corregido)

```
#@title Paso 4: Entrenamiento del clustering y análisis de segmentos (corregido)
# 1 Entrenar el modelo
kmeans = KMeans(n_clusters=4, random_state=42)
kmeans.fit(df_scaled)
# 2 Asignar segmentos
df["Segment"] = kmeans.labels_
print(" Clustering completado.")
# 3 Silhouette Score
sil_score = silhouette_score(df_scaled, kmeans.labels_)
print(f" Silhouette Score: {sil_score:.3f}")
# 4 Resumen de variables numéricas solamente
numerical_cols = ['Income', 'Recency', 'NumDealsPurchases', 'NumWebVisitsMonth',
                   'Complain', 'Customer_Since_Days', 'Age', 'Children', 'Total_Spent', 'Total_Purchases', 'Campaigns_Accepted']
segment_summary = df.groupby("Segment")[numerical_cols].mean().round(1)
print("\n Resumen de cada segmento (variables numéricas):")
display(segment_summary)
```

```
# 5 Distribución de clientes
counts = df["Segment"].value_counts().sort_index()
print("\n Número de clientes por segmento:")
print(counts)
# 6 Vista previa
df.head()
```

Clustering completado.
Silhouette Score: 0.119

📊 Resumen de cada segmento (variables numéricas):

	Income	Recency	NumDealsPurchases	NumWebVisitsMonth	Complain	Customer_Since_Days	Age	Children	Total_Spent	Total_Pu
Segment										
0	48208.7	47.6	2.6	5.6	0.0	323.7	58.2	1.1	412.9	
1	39053.8	49.7	2.7	6.5	0.0	351.3	55.1	1.3	211.2	
2	74749.6	49.0	1.7	3.4	0.0	366.1	58.0	0.4	1288.1	
3	40601.0	49.2	2.6	6.3	0.0	347.4	53.3	1.1	285.7	

Número de clientes por segmento:

Segment 0 283

0 283 1 803 2 675

3 278 Name: count, dtype: int64

	Education	Marital_Status	Income	Recency	NumDealsPurchases	NumWebVisitsMonth	Complain	Customer_Since_Days	Age	Children	T
0	Graduation	Single	58138.0	58	3	7	0	663	68	0	
1	Graduation	Single	46344.0	38	2	5	0	113	71	2	
2	Graduation	Together	71613.0	26	1	4	0	312	60	0	
3	Graduation	Together	26646.0	26	2	6	0	139	41	1	
4	PhD	Married	58293.0	94	5	5	0	161	44	1	

→ Paso 5: Reducción dimensional con PCA y visualización de clusters

```
#@title Paso 5: Reducción dimensional con PCA y visualización de clusters
# 1 Reducir a 2 dimensiones
pca = PCA(n_components=2, random_state=42)
pca_components = pca.fit_transform(df_scaled)
# 2 Crear DataFrame con componentes y segmentos
pca_df = pd.DataFrame(pca_components, columns=["PC1", "PC2"])
pca_df["Segment"] = df["Segment"]
# 3 Visualización
plt.figure(figsize=(10,6))
sns.scatterplot(
   x="PC1",
   y="PC2",
   hue="Segment",
   palette="tab10",
   data=pca_df,
    alpha=0.7,
   s=60
plt.title("Visualización PCA de los clusters")
plt.xlabel("Componente Principal 1")
plt.ylabel("Componente Principal 2")
plt.legend(title="Segmento")
plt.show()
# 4 Varianza explicada
explained_variance = pca.explained_variance_ratio_.sum()
print(f" Porcentaje de varianza explicada por las 2 componentes: {explained_variance:.2%}")
```


Paso 6: Guardar modelo y dataset con segmentos

```
#@title Paso 6: Guardar modelo y dataset con segmentos
# Guardar el modelo KMeans
#import joblib

joblib.dump(kmeans, "kmeans_customer_segments.pkl")
print(" Modelo guardado como 'kmeans_customer_segments.pkl'.")

# Guardar el dataset con segmentos
df.to_csv("customer_segments.csv", index=False)
print(" Dataset guardado como 'customer_segments.csv'.")

Modelo guardado como 'kmeans_customer_segments.pkl'.
Dataset guardado como 'customer_segments.csv'.")
```

Paso 7: Visualización con t-SNE

```
#@title Paso 7: Visualización con t-SNE

tsne = TSNE(n_components=2, random_state=42, perplexity=40, max_iter=300)
tsne_components = tsne.fit_transform(df_scaled)

tsne_df = pd.DataFrame(tsne_components, columns=["TSNE1", "TSNE2"])
tsne_df["Segment"] = df["Segment"]

plt.figure(figsize=(10,6))
sns.scatterplot(
    x="TSNE1",
    y="TSNE2",
    hue="Segment",
    palette="tab10",
    data=tsne_df,
    alpha=0.7,
    s=60
)
plt.title("Visualización t-SNE de los clusters")
plt.show()
```


→ Paso 8: Preparar predicciones en nuevos datos

```
#@title Paso 8: Preparar predicciones en nuevos datos
# Ejemplo: Predecir el segmento de un nuevo cliente
nuevo_cliente = df_scaled.iloc[[0]]
segmento_predicho = kmeans.predict(nuevo_cliente)[0]
```

print(f"Segmento asignado al nuevo cliente: {segmento_predicho}")

→ Segmento asignado al nuevo cliente: 2

→ Paso 9: Tabla resumen de medias por segmento

```
#@title Paso 9: Tabla resumen de medias por segmento
vars_bar = [
    'Income',
    'Age',
    'Total_Spent',
    'Total_Purchases',
    'Customer_Since_Days',
    'Children',
    'Recency'
]

# Crear tabla resumen
tabla_resumen = df.groupby('Cluster_Nombre_Abrev')[vars_bar].mean().round(1)
print(" Tabla de medias por segmento:")
display(tabla_resumen)
```

→ Tabla de medias por segmento:

	Income	Age	Total_Spent	Total_Purchases	Customer_Since_Days	Children	Recency
Cluster_Nombre_Abrev							
Alto valor	74749.6	58.0	1288.1	19.8	366.1	0.4	49.0
Desconectados	39053.8	55.1	211.2	8.1	351.3	1.3	49.7
Estrella	40601.0	53.3	285.7	9.2	347.4	1.1	49.2
Tradicionales	48208.7	58.2	412.9	11.0	323.7	1.1	47.6

→ Paso 10: Gráficos de barras con medias reales

#@title Paso 10: Gráficos de barras con medias reales

Reset index para graficar

```
cluster_means = tabla_resumen.reset_index()
cols = 3
rows = -(-len(vars_bar) // cols)
fig, axes = plt.subplots(rows, cols, figsize=(cols * 5, rows * 4))
axes = axes.flatten()
for i, var in enumerate(vars_bar):
    sns.barplot(
        data=cluster_means,
         x='Cluster_Nombre_Abrev',
         hue='Cluster_Nombre_Abrev',
         palette='Set2',
         legend=False,
         ax=axes[i]
    )
    axes[i].set_title(var, fontsize=12)
    axes[i].set_ylabel('Media')
    axes[i].set_xlabel('Segmento')
    axes[i].tick_params(axis='x', rotation=15)
    axes[i].grid(True, axis='y')
# Quitar subgráficos vacíos si sobran
for j in range(i + 1, len(axes)):
    fig.delaxes(axes[j])
plt.tight_layout()
plt.show()
₹
                                Income
                                                                                    Age
                                                                                                                                   Total_Spent
                                                              60
         70000
                                                                                                               1200
                                                              50
         60000
                                                                                                               1000
         50000
                                                                                                                800
                                                            Media
00
      Media
00000
                                                                                                               600
         30000
                                                              20
                                                                                                                400
         20000
                                                              10
                                                                                                                200
         10000
             0
                                                                                                                  0
                        Desconectados Estrella
                                                                          Desconectados Estrella
                                                                                                                             Desconectados Estrella
                                                                                               Tradicionales
                                                                                                                                                  Tradicionales
                Alto valor
                                             Tradicionales
                                                                   Alto valor
                                                                                                                     Alto valor
                               Segmento
                                                                                 Segmento
                                                                                                                                    Segmento
                             Total_Purchases
                                                                            Customer_Since_Days
                                                                                                                                     Children
            20
                                                             350
                                                                                                                1.2
                                                             300
            15
                                                                                                                1.0
                                                             250
                                                                                                                8.0
                                                                                                              9.0
8.0
8.0
         Media
10
                                                           Wedia 200
                                                             150
                                                                                                                0.4
                                                             100
                                                                                                                0.2
                                                              50
             0
                                                                                                                0.0
                                                                          Desconectados Estrella
                                                                                                                             Desconectados Estrella
                        Desconectados Estrella
                Alto valor
                                             Tradicionales
                                                                   Alto valor
                                                                                               Tradicionales
                                                                                                                     Alto valor
                                                                                                                                                  Tradicionales
                               Segmento
                                                                                 Segmento
                                                                                                                                    Segmento
                                Recency
            50
```

Paso 11 Radar Plot comparativo de segmentos

Desconectados Estrella

Segmento

Tradicionales

40

Wedia 20

Alto valor

"Gerere i and the image, i have combat acted as nebusiness

```
# Normalizar cada variable 0-1 para radar
radar_data = tabla_resumen.copy()
for col in radar_data.columns:
   min_ = radar_data[col].min()
   max_ = radar_data[col].max()
   radar_data[col] = (radar_data[col] - min_) / (max_ - min_)
# Variables
labels = radar_data.columns
n_vars = len(labels)
# Ángulos
angles = np.linspace(0, 2 * np.pi, n_vars, endpoint=False).tolist()
angles += angles[:1]
# Crear figura
fig, ax = plt.subplots(figsize=(8,8), subplot_kw=dict(polar=True))
# Plotear cada segmento
for idx, row in radar_data.iterrows():
   values = row.tolist()
   values += values[:1]
    ax.plot(angles, values, label=idx)
   ax.fill(angles, values, alpha=0.25)
# Ajustar etiquetas
ax.set_xticks(angles[:-1])
ax.set_xticklabels(labels, fontsize=11)
ax.set_yticks([0.2,0.4,0.6,0.8])
ax.set_yticklabels(['20%','40%','60%','80%'])
ax.set_title('Comparación de segmentos (Radar plot)', size=12, pad=40)
ax.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
plt.show()
```

