

ARGONNE LEADERSHIP COMPUTING FACILITY

Ben Blaiszik (bblaiszik@anl.gov), Ryan Chard, Logan Ward, Kyle Chard, Zhuozhao Li, Anna Woodard, Yadu Babuji, Steve Tuecke, Mike Franklin, Ian Foster

Funding: 2018 Argonne Advanced Computing LDRD

Data and Learning Hub for Science (DLHub)

- Collect, publish, categorize models from many disciplines (materials science, physics, chemistry, genomics, etc.)
- Serve models via API to simplify sharing, consumption, and access
- Enable new science through reuse, real-time integration, and synthesis of existing models

Select DLHub Use Cases

Model-driven Experimentation and Data Tagging

Metallic glass discovery [active learning]

XRD beamline image tagging

ic i		probability	tags
	1	0.999780	Beam Off Image
	6	0.745707	Halo
Ī	13	0.364863	Strong scattering
	7	0.082574	High background
	12	0.027826	Ring
	8	0.012137	Higher orders
	15	0.008106	Weak scattering
1	9	0.001964	Linear beamstop
	16	0.001744	Wedge beamstop
•	2	0.000982	Circular Beamstop
_) `			

(Yager, BNL

Community Model Benchmarking

Crystal structure

NIST PFHub

(Ward, ANL/UC)

(Wheeler, Warren, Heinonen NIST/UC/Argonne/NU)

Automated Model Retraining with New Data

Models linked to dynamic data sources

(Center for Hierarchical Materials Design NIST/UC/Argonne/NU)

Funding: 2018 Argonne Adv. Computing LDRD

DLHub Servables and Pipelines

Servables

DLHub Architecture

- REST API with Python SDK (available) / CLI (delivery in Nov. 2018)
 - Support model markup, data staging, registration, and invocation
- Model Repository
 - Container registry
 - Advanced search functions
 - Identifier minting capabilities

DLHub Architecture

- <u>Task Managers (TM)</u> to support execution on various compute resources
- <u>Executors</u> chosen by TM to invoke a given servable'
- Caching at TM
- Data staging with Globus
- Batch submissions
- Scalability through deployment of model replicas

DLHub Model Registration and Publication

- Register model metadata, weights, and files to improve discoverability and reusability
- Containerize model to enhance interoperability
- **Identify** model with a permanent identifier (e.g., DOI, minid)
- Version model and data pre/post processing steps
- **Deploy** model with simplified interfaces for users
- Control access to model metadata and usage
- (future) **Automate** retraining and testing when new data are available

Marking up a Model - Python SDK

Existing Model

User Mark Up with SDK

SDK Extracts Metadata for Known Model Types

Send to DLHub (via Globus or HTTPS)

DLHub Containerization Populate Search Index / Mint Identifiers

```
from dlhub_toolbox.models.servables.keras import KerasModel
import pickle as pkl
import ison
model = KerasModel('model.hd5', list(map(str, range(10))))
model.set_title("MNIST Digit Classifier")
model.set_name("mnist_tiny_example")
model.set domains(["general","digit recognition"])
model.add_related_identifier("10.1109/CVPR.2007.383157", "DOI",
                             "IsDescribedBy")
model.set_authors(["Lecunn, Yann", "Cortes, Corinna"])
model.output['description'] = 'Probabilities of being 0-9'
model.input['description'] = 'Image of a digit'
```

Python SDK - Automated Metadata Generation

Citation Metadata

```
"datacite": {
   "creators": [{
           "givenName": "Yann",
           "familyName": "Lecunn",
           "affiliations": []
           "givenName": "Corinna",
           "familyName": "Cortes",
           "affiliations": []
   "titles": [{
       "title": "MNIST Digit Classifier"
   "publisher": "DLHub",
   "publicationYear": "2018",
   "relatedIdentifiers": [{
       "relatedIdentifier": "10.1109/CVPR.2007.383157",
       "relatedIdentifierType": "DOI",
       "relationType": "IsDescribedBy"
   }],
   "identifier": {
       "identifier": "10.YET/UNASSIGNED",
       "identifierType": "D0I"
   "resourceType": {
       "resourceTypeGeneral": "InteractiveResource"
```

DLHub Metadata

```
"dlhub": {
    "version": "0.1",
    "domains": [
        "general",
        "digit recognition"
   "visible to": [
        "public"
    "id": null,
    "name": "mnist_tiny_example",
    "files": {
        "other": [],
        "model": "model.hd5"
```

Access Control

- Public
- Globus users
- Globus groups

Servable Metadata

```
"servable": {
    "methods": {
       "run": {
            "input": {
                "type": "ndarray",
                "description": "Image of a digit",
                "shape": [null,28,28,1]
           "output": {
                "type": "ndarray",
                "description": "Probabilities of being 0-9",
                "shape": [null,10]
            "parameters": {},
            "method details": {
                "method_name": "predict",
                "classes": ["0","1","2","3","4",
                    "5","6","7","8","9"]
   "shim": "keras.KerasServable",
   "language": "python",
   "dependencies": {
        "python": {
           "keras": "2.2.4",
           "h5py": "2.8.0"
    "type": "Keras Model",
   "model type": "Deep NN"
```

DLHub Model Discovery and Usage

- Find curated and tested models
- Use models through simple interfaces

Predicting Glass-forming Ability

- Where are the model and trained weights?
- How do I run the model on my data?
- How can I retrain the model on new data?
- How can I build on this work?

Predicting Glass-forming Ability

Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments

Fang Ren^{1,*}, Logan Ward^{2,3,*}, Travis Williams⁴, Kevin J. Laws⁵, Christopher Wolverton², Jason Hattrick-Simpers⁶ and Apurva Mehta^{1,†}

10.1126/sciadv.aaq1566


```
servable_name = "metallic_glass"
servable_id = dl.get_id_by_name(servable_name)
elems = ["V","Co","Zr"]

res = dl.run(servable_id, {"data":elems})
```

Predicted glass-forming ability

["Zr", "Co", " V"]

Analyzing Beamline Images

- Stage data into containers via Globus HTTPS
- Pass valid token and data location

Data and Learning Hub (DLHub): Pipelines

Servables

Pipelines: Predicting Formation Enthalpy

Step 1

Step 3

Step 2

Predicting Formation Enthalpy

DLHub Performance

DLHub Performance

Scale Testing

The time required for the Inception, CIFAR10, and Matminer-featurize models to process 5000 inferences with varying numbers of replicas.

Batching

Servable invocation time, with and without batching.

DLHub Performance

Serving General Models

Performance of different serving systems on the Inception and CIFAR-10 problems.

Performance impact of caching in DLHub. Bars and error bars show median and 5th/95th percentiles

DLHub Summary

Model deposit and discovery

- Developed a model schema to promote discovery
- Implemented advanced search and filtering
- Built ingest flow: models are dynamically staged, packaged, dockerized, published, and indexed

Model serving

- Deployed capabilities for users to run inference with SDK and CLI
- Automated testing of containers
- Implemented caching and batching

Support for multiple execution sites

- PetrelKube: Parsl, TF serving, Sagemaker
- Other: AWS, OSG

Authentication

- Protected model metadta and inference with GlobusAuth
- Secured data staging

Monitoring and statistics

Request, invocation, data staging

Future work

- Dynamic scaling by load
- Build Web UI to create pipelines and invoke models
- Cache at the servable level within pipelines
- Couple DLHub to data sources (MDF, etc.)
- Integrate with ML frontend tools (DeepForge), optimization tools (DeepHyper), and more
- Create interface for training and retraining of models

Thanks to our sponsors!

ARGONNE LEADERSHIP COMPUTING FACILITY

Argonne LDRD

