PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6: (11) Internationale Veröffentlichungsnummer: WO 99/25281 A1 A61F 13/15 (43) Internationales Veröffentlichungsdatum: 27. Mai 1999 (27.05.99)

DF

PCT/EP98/07305 (21) Internationales Aktenzeichen:

(22) Internationales Anmeldedatum: 16. November 1998 (16.11.98)

(30) Prioritätsdaten:

197 50 890.1 18. November 1997 (18.11.97) 198 24 825.3

4. Juni 1998 (04.06.98) DE

(71)(72) Anmelder und Erfinder: MAKSIMOW, Alexander [FI/DE]; Hangenkamp 25, D-48565 Steinfurt-Borghorst

(74) Anwalt: HOFFMEISTER, Helmut; Goldstrasse 38, D-48147 Münster (DE).

(81) Bestimmungsstaaten: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, GH, GM, HU, ID, IL, IS, JP. KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: METHOD AND DEVICE FOR PRODUCING A STRIP OF CELLULOSE FIBRE MATERIAL FOR USE IN HYGIENE ARTICLES

(54) Bezeichnung: VERFAHREN UND VORRICHTUNG ZUR HERSTELLUNG EINER AUS CELLULOSE-FASERN BESTEHEN-DEN FASERSTOFFBAHN FÜR DIE VERWENDUNG IN HYGIENEARTIKELN

(57) Abstract

The invention relates to a method for producing a strip of absorbent, rollable cellulose fibre material (100) which is suitable for use in the hygiene sector. A fibre layer consisting of cellulose fibres is placed on a base layer (8) and pre-compressed to form a loose non-woven fabric which is introduced into a gap between a pair of calender rollers (6.1, 6.2) and which is used to produce a pattern of dotted or lined print areas (17) in which the fibres (1) are disposed in a random manner and are compressed against each other at a pressure ranging from 150 to 600 MPa, resulting in a non-solvent fusion of said fibres and the production of a strip of fibre material (100) with an imprinted

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Herstellung einer aus Cellulose-Fasern bestehenden, saugfähigen und rollbaren Faserstoffbahn (100), die zur Anwendung auf dem Hygienesektor geeignet ist. Dazu wird eine Faserlage aus Cellulose-Fasern auf eine Unterlage (8) gelegt und vorverdichtet zu einem lockeren Vlies, der in den Spalt eines Kalanderrollen-Paares (6.1, 6.2) eingeführt wird, mit dem ein Muster von punkt- oder linienförmigen Druckbereichen (17) erzeugt wird, in denen die regellos liegenden Fasern (1) unter einem Druck im Bereich zwischen 150 bis 600 MPa aufeinander gedrückt werden, so daß eine nicht-lösende Fusion der Fasern erfolgt und eine Faserstoffbahn (100) mit einem Prägemuster erzeugt wird.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

4.4	A December	ES	Caralan	LS	1	CY	61-
AL	Albanien		Spanien	_	Lesotho	SI	Slowenien
AM	Armenien	Fí	Finnland	LT	Litauen	SK	Slowakei
AT	Osterreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	СH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	ΙE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	1L	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	ΚZ	Kasachstan	RO	Rumanien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Foderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

1

5

Verfahren und Vorrichtung zur Herstellung einer aus Cellulose-Fasern bestehenden Faserstoffbahn für die Verwendung in Hygienartikeln

15

10

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung einer aus Cellulose-Fasern bestehenden Faserstoffbahn für die Verwendung in Hygienartikeln, insbesondere persönliche, absorbierende Hygieneartikel. Ferner betrifft die Erfindung nach dem Verfahren hergestellte Produkte.

20

25

30

35

Es ist bekannt, cellulosehaltiges Material, wie Holz- oder Pflanzenfasern, zu einer Faserstoffbahn zu verbinden, indem eine Kombination aus mechanischen und chemischen Verfahrensschritten unter intensiver Erhitzung verwendet wird, wobei unter Sauerstoffabschluß gearbeitet wird. Das Ziel eines derartigen Verfahrens ist es, wenige oder praktisch keine Bindemittel-Additive verwenden zu müssen. Nach einem dieser bekannten Verfahren (US A1 4,111,744) werden Cellulose-Fasern mit einer Feuchte von 3 bis 12 Gew.% in einer sauerstofffreien Atmosphäre in einem Temperaturbereich von 450 bis 800° F (= 232 bis 426°C) einem Druck unterworfen, wobei eine hohe Umgebungstemperatur jenseits der Verkohlungstemperatur von Cellulose und der Zündtemperatur der Cellulose gegeben ist. Mit Hilfe des vorgenannten bekannten Verfahrens können auch papierähnliche Produkte, im allgemeinen jedoch nur eine Art steifer Karton, hergestellt werden.

2

Nachteil bei diesem Verfahren ist es, daß ein hoher technologischer Aufwand für die Beheizung der Druckbereiche und das Verhindern des Entzündens des Materials durch sauerstoffreie Fertigung getrieben werden muß.

1

5

10

15

20

25

30

Bekannt ist weiterhin ein Verfahren (WO 94/10956), um aus trockenen Zellulose-Fasern und Zusatzstoffen unter Druck absorbierende Bahnenware herzustellen, indem aus einem Material mit einem Flächengewicht von 30 bis 2000 g/m² ein absorbierendes Produkt mit einer spezifischen Dichte von 02 bis 1,0 g/cm³ komprimiert wird. Das Komprimieren geschieht zwischen glatten Kalanderwalzen. Nachteilig bei diesem Verfahren ist, daß zwar eine Erhöhung der Dichte eintritt, jedoch das Material in sich wenig Reißfestigkeit besitzt. Um die Reißfestigkeit zu erhöhen, müssen synthetische Zusatzstoffe hinzugefügt werden, insbesondere Thermoplasten.

Die nach dem Verfahren hergestellte Faserstoffbahn soll sich insbesondere zur Herstellung von Hygieneprodukten eignen. Sie soll hoch saugfähig, weich und als Bahn verarbeitbar sein. Hygieneartikel zum Einmalgebrauch, wie Höschenwindeln und dgl., werden in großer Zahl hergestellt. Die für sie verwendeten arbsorbierenden Kernschichten sollen möglichst gut körperverträglich sein, die eintretende Flüssigkeit gut verteilt aufnehmen und nach Gebrauch auf entsprechenden Deponien rückstandslos verrotten. Es ist bekannt, die absorbierende Schicht aus einer Holzcellulosefaser-Matrix herzustellen, wobei dieser Fasermatrix sogenannnte Superabsorber zur Erhöhung der Flüssigkeitsaufnahmekapazität hinzugefügt werden können. Superabsorber sind Polymere, die unter Bildung von Hydrogelen Wasser aufnehmen können.

Es stellt sich die Aufgabe, ein Verfahren zur Herstellung einer aus Cellulose-Fasern bestehenden Faserstoffbahn anzugeben, bei dem praktisch keine Bindestoffe verwendet werden müssen, wobei bei Zimmertemperatur und unter normalem At-

PCT/EP98/07305 WO 99/25281 3

1 mosphärendruck und Sauerstoffgehalt der Umgebungsluft gearbeitet werden kann.

Diese Aufgabe wird gelöst mit einem Verfahren zur Herstellung einer aus Cellulose-Fasern bestehenden, weitgehend reißfesten, saugfähigen und rollbaren Faserstoffbahn, mit folgenden Verfahrensschritten:

- (a) wirres Legen einer Faserlage aus den vorgenannten Cellulose-Fasern auf eine Unterlage (8) 10
 - (b) Vorverdichten unter relativ niedrigem Druck und Erzeugen eines lockeren Vlieses mit geringer Dichte und einer Reißfestigkeit, die ein Überbrücken zwischen 0,1 m und 1 m bis zum Reißen des Vlieses erlaubt,
 - (c) Einführen des lockeren Vlieses in den Spalt eines Kalanderrollen-Paares (6.1,6.2), mit dem ein Muster von punktoder linienförmigen Druckbereichen (17) erzeugt wird, in denen die regellos liegenden Fasern (1) unter einem Druck im Bereich zwischen 150 bis 600 MPa aufeinander gedrückt werden, so daß eine nicht-lösende Fusion der Fasern erfolgt und eine Faserstoffbahn (100) mit einem Prägemuster erzeugt wird.

25

30

35

20

15

5

Dabei wird davon ausgegangen, daß es in der Technologie der Herstellung von Cellulose-Fasern bekannt ist, diese aus einem Holzderivat mit der Fachbezeichnung "fluff pulp" herzustellen. Bei diesem Stoff handelt es sich um ein standardisiertes Produkt aus Holz, das aus in Platten oder Bahnen, sogenannten wood pulp cardboards, geliefertem Cellulosematerial hergestellt wird, das vor der Verwendung üblicherweise in Hammermühlen zerkleinert und aufgefasert wird, bis ein watteähnliches Produkt aus Cellulose-Fasern, nämlich fluff pulp, entstanden ist. Eine Beschreibung eines solchen standardisierten Zerkleinerungsverfahrens findet sich beispielsweise in dem Prospekt der Firma Dan-Webforming International

4

1 A/S, Risskov, Dänemark.

5

10

15

Bei diesem "fluff pulp" genannten Holzderivat handelt es sich um ein Produkt, das insbesondere bei der sogenannten wasserlosen Papierfertigung in großen Mengen verwendet wird. Die Faser haben vorzugsweise in Länge etwa zwischen 1 und 5 mm, wenn sie aus der Hammermühle heraustreten. Sie liegen gemäß dem ersten Schritt des vorgenannten Verfahrens völlig regellos in einer Cellulose-Faserlage von etwa 5 bis 15 mm Höhe und werden vorzugsweise auf einem Förderband oder einem beweglichen Sieb durch eine erste Vorverdichtungsstation geschickt, die vorzugsweise aus einem Kalanderrollen-Paar mit geringem Druck besteht, so daß ein lockeres Vlies mit geringer Dichte und Reißfestigkeit entsteht. Die Reißfestigkeit ist so hoch bemessen, daß das Vlies über eine Länge von etwa 0,1 bis 1 m frei durchhängen kann ohne zu zerreißen. Es kann auch einem Luftdruck widerstehen, wie er bei der Fertigung auftritt.

Dieses an sich bekannte und noch sehr lockere Vlies wird in 20 den Spalt eines Kalanderrollen-Paares eingeführt, wo ein Druck in den punktförmigen Druckbereichen von erheblicher Höhe aufgebracht wird. Der Druck muß mindestens 100 und sollte etwa 520 MPa = (MPa = mm²) betragen. Eine Grenze für den Druck nach oben bildet im allgemeinen die Fließgrenze 25 des für die Walzen verwendeten Materials. Bisher wurde nach dem Stand der Technik nicht mit derartig hohen Drucken gearbeitet. Zur Erzeugung eines solchen Druckes können Walzen mit Noppen, verschränkt zueinander laufenden Linienmustern oder anderen überstehenden punkt- oder linienartigen Druck-30 flächen vewendet werden, wobei die Rasterdichte der punktförmigen Druckbereiche zwischen 1 und 16 Rasterpunkte pro cm2 liegt.

Nach dem Verfahren wird eine Faserstoffbahn mit vorzugsweise einem m^2 -Gewicht zwischen 50 g und 1500 g erzeugt. Die neuartige Faserstoffbahn ist durch die rasterförmige Verteilung

- der Verbindungspunkte so fest geworden, daß eine Reißfestigkeit von wenigstens 0,12 kN/m, vorzugsweise bis 0,65 kN/m, erreicht wird. Die Dicke der Faserstoffbahn richtet sich nach der gewünschten Metrage.
- Die drückende Fläche der punktförmigen Druckbereiche bemißt sich danach, welche Drücke zwischen den zweiten Kalanderwalzen zu erreichen ist. Ausreichend haben sich punktförmige Druckbereiche mit einer Fläche zwischen 0,05 und 10 mm² ergeben.
 - Wie bereits betont, sollte die Temperatur des zweiten Kalanderrollen-Paares auf Zimmertemperatur, d.h. zwischen 18 und 25°C, gehalten werden. Es läßt sich auch bei höheren Temperaturen arbeiten. Zu bemerken ist auch, daß die Temperatur in den Druckbereichen aufgrund der erheblichen verbrauchten Leistung ansteigt.
- Die Vorverdichtung sollte bei einer Werkzeugtemperatur erfolgen, die zwischen 18° und 320°C liegt, vorzugsweise zwischen 250 und 300°C. Als vorverdichtendes Werkzeug wird vorzugsweise ein erstes Kalanderrollen-Paar verwendet, das beheizbar ist.
- Die Faser und/oder das lockere Vlies werden vor Eintritt in die Kalanderrollen vorzugsweise auf eine gewisse Feuchte gebracht, wobei vorzugsweise diese zwischen 2 und 9 Gew.-% eingestellt werden sollte, wenigstens jedoch auf 1,5 Gew.%.
- Als Ausgangsmaterial wird das bereits genannte fluff
 pulp-Holzderivat verwendet. Hierbei handelt es sich vorzugsweise um standardisierte defiberisierte Ware, wie sie in
 auch zur Herstellung von Faserstoffbahnen nach bekannten Verfahren eingesetzt wird. Als sehr vorteilhaft erscheint die
 Verwendung von sulfit- oder sulfat-gebleichten LangfaserCelluloseen aus nördlichen Hölzern.

PCT/EP98/07305 WO 99/25281 6

Vorteilhaft hat sich weiterhin erwiesen, wenn die Cellulose-1 Fasern nicht bis zur völligen Weiße gebleicht sind, sondern noch einen gewissen Anteil an natürlichen Holzstoffen enthalten. Dies zeigt sich in einem Weißegrad, der zwischen 80 bis 5 92 %, vorzugsweise von 85 bis 89 %, liegen sollte. Auch ein gewisser Restgehalt an Lignin ist vorteilhaft, wenn dieser beispielsweise zwischen 0,5 bis 5 Gew.-% des Ausgangsmaterials liegt.

10 Dem Ausgangsmaterial können auch nicht-bindende, anorganische Pigmente oder Füllstoffe, beispielsweise Titandioxid, Kaolin oder Zeolithe zugefügt werden.

15

20

25

30

35

Auch kann den Ausgangsfasern ein Anteil an Superabsorbern beigefügt werden, wobei die als Superabsorber bekannten Acrylatverbindungen sich in Pulverform in einem Anteil - bezogen auf die Gesamtmenge - von beispielsweise 0,5 bis 70 Gew.-% dem fluff pulp beimischen lassen, wobei das Herstellungsverfahren hierdurch nicht wesentlich beeinträchtigt wird.

Im Druckbereich des zweiten Kalanderrollen-Paares sollte der radiale Abstand der Kalanderrollen außerhalb der punktförmigen Druckbereiche etwa 1 bis 15 mm betragen, so daß sich das Material beim Druckvorgang außerhalb der Druckbereiche nicht quetscht, sondern vielmehr bauscht und etwas zusammenpreßt.

Der Spalt im Druckbereich des zweiten Kalanderrollen-Paares bemißt sich nach der Metrage und der Dicke des eingeführten lockeren Vlieses. Im allgemeinen sollte der Spalt eine lichte Weite von 0,05 bis 1 mm nicht überschreiten.

Wesentliches Teil der Vorrichtung zur Durchführung des Verfahrens bildet das zweite Kalanderrollen-Paar, das vorzugsweise aus zwei stählernen Kalanderwalzen besteht, die beide mit zahlreichen, über die Walzenmantelflächen verteilten Noppen, entsprechenden punktförmigen Druckbereichen oder Linienzügen versehen sind, die von Vertiefungen umgeben sind, die

das Mehrfache des Volumens der erhöhten Bereiche aufweisen.
Die erhöhten Bereiche stehen sich bei beiden Walzen im
Arbeitsspalt gegenüber, wobei in punktförmigen Druckbereichen auf das zwischen den Druckbereichen befindliche lockere
Vlies ein Druck von wenigstens 200 MPa bis maximal zur Fließgrenze des für die Noppen verwendeten Materials ausübbar ist.

Die Höhe der Noppen oder der anderen Druckbereiche beträgt vorzugsweise beträgt zwischen 0,5 und 15 mm gegenüber dem Walzengrund. Vorzugsweise haben die Noppen die Form von Pyramiden- oder Kegelstümpfen, deren Noppenmantel-Winkel gegenüber dem Radius zwischen 10 und 45° liegt. Auch linienförmige Druckbereiche oder dergleichen sind möglich.

15

20

25

30

35

10

Die regellos liegenden Fasern sind unter sehr hohem lokalen Druck in linien- oder punktförmigen Druckbereichen aufeinander gedrückt, so daß eine Vielzahl von innigen, sich nach Aufhebung des Druckes nicht-lösenden Fusionen der Faserkörper erfolgen. Es wird ein Produkt aus zahlreichen regellosen Cellulose-Fasern hergestellt, die an den Druckbereichen durch Faserverklebung verbunden sind. Die Faserstoffbahn hat eine ausreichend Reißfestigkeit und darüber hinaus eine hohe Absorptionsfähigkeit, so daß sie für Hygieneartikel hervorragend geeignet ist.

Es hat sich gezeigt, daß zur Erfüllung von spezifischen Anforderungen des Hygienesektors die Bahn aus Fasermaterial in arbeitsintensiver Weise nachträglich mit geeigneten Materialien kombiniert werden muß. Es stellt sich demnach die zusätzliche Aufgabe, ein Verfahren zur Herstellung einer aus Cellulose-Fasern bestehenden Faserstoffbahn anzugeben, das mit zusätzlichen Merkmalen, wie beispielsweise verstärkter Reißfestigkeit, Dichtigkeit oder Atmungs- und/oder Isolierfähigkeit ausgestattet ist.

Diese Aufgabe wird gelöst bei einem Verfahren gemäß den An-

8

WO 99/25281 PCT/EP98/07305

1 sprüchen 16 oder 17.

5

10

25

Die in den Ansprüchen genannten Verfahren werden anhand von Ausführungsbeispielen und anhand der Zeichnung erläutert, wobei die Figuren der Zeichnung zeigen:

- Fig. 1 in schematischer Darstellung eine Vorrichtung zur Herstellung einer aus Cellulose-Fasern bestehenden Faserstoffbahn;
- Fig. 2 in vergrößerter Darstellung gemäß Fig. 1 im Querschnitt den Druckbereich zweier Walzen mit pyramidenförmigen Noppen;
- Fig. 3 in perspektivischer Darstellung einen Abschnitt des nach dem Verfahren hergestellten, fertigen Produktes;
- Fig. 4 eine vergrößerte Darstellung der Druckbereiche der 20 Faserbahn;
 - Fig. 5 eine schematische Darstellung einer anderen Vorrichtung zur Herstellung einer Faserstoffbahn mit zwei zusätzlichen Kunststoffschichten;
- Fig. 6 eine schematische Darstellung einer weiteren Vorrichtung zur Herstellung einer Faserstoffbahn mit einer Kunststoffbeschichtung;
- 30 Fig. 7 in einer Darstellung ähnlich wie Fig. 2 im Querschnitt den Druckbereich zweier Walzen mit dazwischenliegender Faserbahn mit aufliegender Folie;
- In Fig. 1 ist in schematischer Reihenfolge eine Anordnung von Walzen und Rollen dargestellt, mit denen das Verfahren durchgeführt wird. Der Herstellungsprozeß geht aus von Cellu-

9

lose-Fasern, die als fluff pulp vorzugsweise aus trockenem wood pulp cardboards mit Hilfe von Hammermühlen hergestellt werden, was in dem Stand der Technik genannten Prospekt Dan Webforming International A/S sehr detailliert dargestellt ist.

Eine Schicht aus regellosen Fasern 1 von etwa 20 mm Höhe wird auf dem Siebförderband 8 zu einem ersten Kalander-walzen-Paar 4.1, 4.2 gefördert. Die obere Walze 4.1 hat eine Oberflächentemperatur von etwa 220°C, während die untere unbeheizt ist. Vor Eintritt in den Spalt zwischen den beiden Walzen 4.1 und 4.2 wird die Bahn mit Hilfe einer Befeuchtungsvorrichtung 3 durch Besprühen von der Oberseite her befeuchtet, wobei die Feuchte des Materials danach etwa 5 bis 10 Gew.% ausmacht.

10

15

20

25

30

35

Zwischen den Kalanderwalzen 4.1 und 4.2, wird ein Teil der Feuchte wieder ausgetrieben und die regellose Cellulose-Faserlage zu einem lockerem Vlies mit geringer Dichte und Reißfestigkeit zusammengepreßt. Die Reißfestigkeit reicht aber aus, daß das Vlies 2 bei Überbrückung der Strecke zwischen dem Ende des Siebbandes 8 an der Umlenkrolle 7 bis zum Eintritt in einen Spalt zwischen zwei weiteren Kalanderrollen 6.1 und 6.2, die etwa 50 cm beträgt, nicht abreißt.

Der erste Verfahrensschritt stellt lediglich ein Vorverdichen oder Kompaktieren des Vlieses aus den regellos liegenden Fasern dar. Eine feste Bahn wird nicht gebildet, und es ist ohne weiteres möglich, die Fasern einzeln Stück für Stück zu entrehmen. Die Reißfestigkeit des Vlieses ist sehr

Stück zu entnehmen. Die Reißfestigkeit des Vlieses ist sehr gering, vorzugsweise wenigstens 8 N/m Breite.

Das von dem Siebband 8 abgegebene Vlies 2 wird vor Eintritt in den Spalt zwischen den beiden Kalanderrollen 6.1 und 6.2 von oben und unten erneut befeuchtet (Befeuchtungsvorrichtung 5).

Zwischen den Kalanderrollen 6.1 und 6.2 wird das zunächst lockere Vlies einem Raster von punktförmigen Druckbereichen ausgesetzt, in denen die regellos liegenden Fasern unter hohem Druck aufeinander gedrückt werden, so daß eine innige, sich nach Aufhebung des Druckes nicht-lösende Fusion der Faserkörper erfolgt und eine Faserstoffbahn 100 mit einem Prägemuster erzeugt wird. Die Walzenanordnung kann auch ach

als Pixel-Walzen bezeichnet werden.

insgesamt sehr feste Faserstoffbahn.

10

PCT/EP98/07305

WO 99/25281

20

25

30

35

Dabei wird vermieden, daß das Fasermaterial verkohlt oder karbonisiert. Offensichtlich ist der Druck aber so hoch angesetzt, daß quasi ein Verschmelzen der die Faser ausmachenden Stoffe, das heißt Cellulose und ein Rest an Lignin, und der anderen Stoffen eintritt, wobei eine so innige Verbundenheit eintritt, daß praktisch eine über eine reine Adhäsion hinausgehende Verbindung erzeugt wird. Die losen Cellulose- oder Zellstofffasern werden mit punktuell hohem Druck und durch Drängen der Fasern in alle vorhandenen Freiräume miteinander verbunden, zusätzlich verklebt und verfilzt und ergeben eine

Die Rollen 6.1 und 6.2 werden bei normaler Zimmertemperatur, das heißt zwischen 18 und 25°C betrieben, wobei allerdings nicht ausgeschlossen wird, daß die Rollen auch beheizt werden können oder aber in den punktförmigen Druckbereichen auch punktuell eine höhere Temperatur aufgrund der hohen mechanischen Arbeit erreichen können. Der auf die Cellulose-Faserlage wirkende Druck in den punktförmigen Druckbereichen 17 (vgl. Fig. 2) liegt vorzugsweise oberhalb von 500 MPa, jedenfalls in einem Bereich von 100 und 600 MPa, bei entsprechendem technologischen Aufwand auch höher.

Es lassen sich beispielsweise mit dem Verfahren Faserstoffbahnen mit einem m²-Gewicht zwischen 50 und 1500 g erzeugen. Die aus den Kalandern heraustretende Faserstoffbahn ist wesentlich reißfester als die Bahn vor dem Eintreten in die Kalanderrollen 6.1 und 6.2. Das Material wird mit einer Breit-

1

5

10

15

20

25

30

35

PCT/EP98/07305 WO 99/25281 11

streckwalze 9 behandelt. Anschließend wird es mit Hilfe einer Treibwalze 10 auf eine Wickelwalze 11 aufgerollt.

Das zum Einsatz gelangende Material sollte in erster Linie ein in großer Menge zur Verfügung stehendes, preiswertes Massenmaterial sein. Vorzugsweise wird ein fluff pulp gewählt, daß eine Weißheit von 85 bis 89% besitzt, was wiederum bedeutet, daß ein Lignin- und Reststoff-Gehalt von erheblichem Ausmaß noch vorhanden ist. Es hat sich gezeigt, daß derartige Reststoffe das Bindungsverhalten wesentlich verbessern. Völlig ausgebleichte Cellulosen haben erfahrungsgemäß ein schlechteres Bindeverhalten als die vorgenannten weniger reinen Cellulosee. Der Titer sollte auch eine gewisse Länge nicht unterschreiten, da bei allzu kurzen Fasern die Abstände zwischen den punktförmigen Druckbereichen nicht überbrückt werden, so daß sich bei derartigen geringen Titern eine geringere Reißfestigkeit ergibt.

Zugefügte Hilfsstoffe werden ebenfalls nach der erwünschten Reißfestigkeit bemessen. Relativ unkritisch ist die Hinzufüqung von sogenannten Superabsorbern, wie sie beispielsweise in der Schrift WO 94/10596 genannt werden. Fluff pulp kann mit 0,5 bis 70 Gew.-% Superabsorbern, vorzugsweise 5 bis 30 Gew.-% Superabsorbern versetzt und anschließend durch die Hochdruck-Kalanderrollen 6 geschickt werden. Die Superabsorber wirken nicht bindend; ein zu hoher Anteil setzt die Reißfestigkeit herab.

Das Hinzufügen von gemahlenen nicht-bindenden anorganischen Stoffen, wie dem Weißpigment Titandioxid, verringert allerdings die Reißfestigkeit, so daß z.B. ein Prozentsatz von 25 Gew. % Titandioxid im allgemeinen nicht überschritten werden sollte. Ähnliches gilt für Füllstoffe wie Kaolin oder Zeolithe.

Wesentlich ist, daß auf Bindemittel, wie sie aus dem Stand der Technik bekannt sind und im allgemeinen auch gefordert

PCT/EP98/07305 WO 99/25281 12

1 werden, praktisch völlig verzichtet werden kann. Hierdurch wird die Recyclingfähigkeit und die Kompostierbarkeit des Produktes wesentlich verbessert. Die Herstellung wird verbillig und erleichtert, da Stationen zum Aufbringen und Ab-5 binden (curing) überhaupt nicht eingesetzt werden müssen. Es

soll aber nicht ausgeschlossen werden, daß das fertige Produkt nach Durchlauf der Kalanderwalzen 6.1 und 6.2 mit einem Oberflächen-Finish versehen werden kann oder mit einer Folie

auf einer oder beiden Seiten laminiert werden kann.

10

15

20

25

Fig. 2 zeigt ein Ausführungsbeispiel eines Hochdruck-Bereiches zwischen den beiden Kalanderwalzen 6.1 und 6.2. Wie erkennbar, sind die Walzen auf ihrem Walzenmantel mit in vergrößerter Darstellung versehenen Noppen 14 versehen. Die zahlreichen, über die Walzenmantelfläche verteilten Noppen ergeben bei der fertigen Faserstoffbahn vorzugsweise eine Rasterdichte der punktförmigen Druckbereiche zwischen 1 und 16 pro cm2. Die Noppen haben eine Pyramidenstumpf-Form, wobei der Winkel des Noppenmantels gegenüber dem Radius zwischen 10 und 45° liegen sollte. Im Spalt 12, in dem der Druckbereich 17 erzeugt wird, herrscht ein berechneter Druck von etwa 520 MPa, der zu der bereits beschriebenen Fusion der sich im Spalt befindlichen Cellulose-Fasern führt. Auch andere Formen der Druckbereiche, wie Kegelstümpfe, Zylinder oder Quader, sind möglich und werden nach fachmännischem Ermessen entsprechend dem erforderlichen Druck, dem vorliegenden Ausgangsstoof und dem Material der Walzen, den auftretenden Tem-

Die Arbeitsrichtung ist im vorliegenden Fall von links nach 30 rechts. Das fertige Produkt weist demnach fast durchsichtige Fusionsbereiche 18 auf, die sich jeweils mit etwas aufgebauschten, jedoch auch gegenüber dem Eingangsvlies zusammen-

peraturen und dergl. gewählt.

gepreßten lockeren Bereichen 19 abwechseln.

35

In Fig. 3 ist das fertige Produkt dargestellt, bestehend aus zahlreichen regellosen Cellulose-Fasern, die an Druckberei15

20

25

30

35

13

PCT/EP98/07305

1 chen 18 durch Fusion verbunden sind. Das Material selbst hat eine hohe Reißfestigkeit und darüberhinaus eine hohe Absorptionsfähigkeit, die durch Beimischung von Superabsorbern

noch erhöht werden kann, so daß es zu Verpackungsmaterial, 5 Hygieneartikeln, Futterstoffen, Polsterfüllstoffen und ähnlichen Produkten verwendet werden kann. Das Material kann aber auch im Baustoffsektor sowie als Ersatz für Papier und Pappe eingesetzt werden. Auch für Servietten, Tampons, Baby-Höschenwindeln, Slipeinlagen, Damenbinden und Inkontinenzar-

10 tikel lassen sich die vorgenannten Produkte verwenden.

> Figur 4 zeigt in vergrößerter Darstellung einen Druckbereich 17 in einer Elektronenmikroskop-Aufnahme. Der Druckbereich hat im vorliegenden Fall eine sechseckige Gestalt, die durch das Einfahren eines Noppen 14 in das Vlies hervorgerufen wird. Der im vorliegenden Fall angewandte Druck beträgt 190 MPa (= 190 N/mm²). Erkennbar ist, daß die zunächst runden und unbeschädigten Fasern 29 im Druckbereich platt und glatt gepreßt sind. Die auch vorhanden gewesenen Superabsorber-Partikel sind optisch nicht mehr auszumachen, da sie offensichtlich in die Oberfläche hineingepreßt werden. Ein Teil der Bereiche 27 innerhalb des Druckbereiches 17 läßt teilweise noch die Faserstruktur erkennen, während andere Bereiche (28) vorhanden sind, in denen überhaupt keine Faserstruktur mehr zu erkennen ist. Die aufeinader gepreßten Fasern lassen sich nicht mehr voneinander trennen, wenn dies mit einer Seziernadel versucht wird. Es hat demnach eine Fusion, Kompaktierung und Verklebung mit oberflächlicher Verschweißung der Faser- und/oder der Cellulose-Substanz stattgefunden, wobei allerdings der Druck unterhalb der Carbonisierungsgrenze der Fasern 29 gehalten wurde.

In Fig. 5 ist in schematischer Reihenfolge eine Anordnung von Walzen und Rollen dargestellt, mit denen das Verfahren in einer zweiten Ausführungsform durchgeführt wird. Eine Schicht aus regellosen Fasern 1 von etwa 20 mm Höhe wird auf dem Siebförderband 8 zu einem ersten Kalanderwalzen-Paar

WO 99/25281

4.1, 4.2 gefördert. Die obere Walze 4.1 hat eine Oberflächentemperatur von etwa 250°C, während die untere unbeheizt ist. Vor Eintritt in den Spalt zwischen den beiden Walzen 4.1 und 4.2 wird die Bahn mit Hilfe einer Befeuchtungsvorrichtung 3 durch Besprühen von der Oberseite her befeuchtet, wobei die Feuchte des Materials danach etwa 5 bis 10 Gew.% ausmacht.

14

PCT/EP98/07305

Zwischen den Kalanderwalzen 4.1 und 4.2, wird ein Teil der Feuchte wieder ausgetrieben und die regellose Cellulose-Faserlage zu einem lockerem Vlies mit geringer Dichte und Reißfestigkeit zusammengepreßt.

Zwischen den Kalanderrollen 6.1 und 6.2 wird das zunächst lockere Vlies einem Raster von punktförmigen Druckbereichen ausgesetzt, in denen die regellos liegenden Fasern unter hohem Druck aufeinander gedrückt werden, so daß eine innige, sich nach Aufhebung des Druckes nicht-lösende Fusion der Faserkörper erfolgt und eine Faserstoffbahn 100 mit einem Prägemuster erzeugt wird.

20

25

10

15

Nach Durchlauf der Kalanderwalzen 6.1 und 6.2 wird die Faserstoffbahn 40 auf beiden Seiten mit Bahnen 20.1 und 20.2 aus textilem, vliesartigem oder folienartigem Material verklebt, verschweißt und/oder mechanisch verbunden. Dazu werden vorgefertigte Beschichtungsbahnen 20.1, 20.2, die - soweit erforderlich - bereits zuvor mit Klebstoffen beschichtet worden sind, von oben und von unten auf die aus dem Kalanderwalzenpaar 6.1, 6.2 austretene Faserstoffbahn geführt und über ein Andruckrollenpaar 9.1, 9.2 mit dieser verbunden. Möglich ist hier auch eine mechanische Verbindung der Beschichtung mit dem Faserstoff über mit Prägeelementen versehene Andruckwalzen 9.1, 9.2. Auch eine Verklebung mittels Heißklebstoff ist möglich. Der Verbund wird mit Hilfe einer Treibwalze 10 auf eine Wickelwalze 11 aufgerollt.

35

30

In Fig. 6 ist in schematischer Reihenfolge eine Anordnung von Walzen und Rollen dargestellt, mit denen das Verfahren

PCT/EP98/07305 WO 99/25281 15

1 in einer weiteren Ausführungsform durchgeführt wird. Der Herstellungsprozeß geht aus von Cellulose-Fasern, die als fluff pulp aus trockenem "wood pulp" mit Hilfe von Hammermühlen hergestellt werden.

5

10

15

Ähnlich wie bei Fig. 1 wird eine Schicht aus regellosen Fasern 1 von etwa 20 mm Höhe auf dem Siebförderband 8 zu einem ersten Kalanderwalzen-Paar 4.1., 4.2 gefördert. Die obere Walze 4.1 hat eine Oberflächentemperatur von etwa 180°C, während die untere unbeheizt ist.

Zwischen den Kalanderwalzen 4.1 und 4.2 wird die regellose Cellulose-Faserlage zu einem lockeren Vlies mit geringer Dichte und Reißfestigkeit zusammengepreßt. Das von dem Siebband 8 abgegebene Vlies 2 wird vor Eintritt in den Spalt zwischen den beiden Kalanderrollen 6.1 und 6.2 von oben mit einer dünnen (10 μ m) Folie 30 aus PTFE belegt, die zunächst nicht perforiert ist (PTFE = Polyfluorethylen).

Zwischen den Kalanderrollen 6.1 und 6.2 wird das Vlies mit 20 der aufgelegten PTFE-Folie einem Raster von punktförmigen Druckbereichen ausgesetzt, in denen die regellos liegenden Fasern unter hohem Druck aufeinander gedrückt werden, so daß eine innige, sich nach Aufhebung des Druckes nicht-lösende Fusion der Faserkörper erfolgt und eine Faserstoffbahn 100 25 mit einem Prägemuster erzeugt wird; dabei wird auch die Folie, die relativ wärmebeständig ist, in den Verbund mit einbezogen. Dabei wird vermieden, daß das Faser- oder Folienmaterial verkohlt oder karbonisiert. Eine zusätzliche Bindung wird durch das sinternde oder anschmelzende Folienmate-30 rial erreicht.

Die Rollen 6.1 und 6.2 werden bei normaler Zimmertemperatur, das heißt zwischen 18 und 26° C betrieben, wobei allerdings nicht ausgeschlossen wird, daß die Rollen auch beheizt wer-35 den können oder aber in den punktförmigen Druckbereichen auch punktuell eine höhere Temperatur aufgrund der hohen me-

1 chanischen Arbeit erreichen können.

Der auf die Cellulose-Faserlage mit der aufgelegten Folie wirkende Druck in den punktförmigen Druckbereichen 17 (vgl. Fig. 4) liegt vorzugsweise oberhalb von 300 bis 400 MPa. Nach Durchlauf der Kalanderwalzen 6.1 und 6.2 ist die Faserstoffbahn auf einer Seite mit einer Bahn aus Folie verbunden. Der Verbund wird mit Hilfe einer Treibwalze 10 auf eine Wickelwalze 11 aufgerollt.

10

15

20

25

30

35

5

Eine weitere Beschichtungsbahn 20.2, die - soweit erforderlich - bereits zuvor mit Klebstoffen beschichtet worden ist, wird von unten auf die aus dem Kalanderwalzenpaar 6.1, 6.2 austretende Bahn geführt und über ein Andruckrollenpaar 9.1, 9.2 mit dieser verbunden werden (vergl. Figur 6). Der Verbund wird mit Hilfe einer Treibwalze 10 auf eine Wickelwalze 11 aufgerollt.

Fig. 7 zeigt ein Ausführungsbeispiel eines Hochdruck-Bereiches zwischen den beiden Kalanderwalzen 6.1 und 6.2. Wie erkennbar, sind die Walzen auf ihrem Walzenmantel mit in vergrößerter Darstellung versehenen Noppen 14 versehen. Die zahlreichen, über die Walzenmantelfläche verteilten Noppen 14 ergeben bei der fertigen Faserstoffbahn vorzugsweise eine Rasterdichte der punktförmigen Druckbereiche zwischen 1 und 16 pro cm₂. Die Noppen haben eine Pyramidenstumpf-Form, wobei der Winkel des Noppenmantels gegenüber dem Radius zwischen 10° und 45° liegen sollte. Im Spalt 12, in dem der Druckbereich 17 erzeugt wird, herrscht ein berechneter Druck von etwa 520 MPa, der zu der bereits beschriebenen Fusion der sich im Spalt befindlichen Cellulose-Fasern führt. Auch andere Formen der Druckbereiche, wie Kegelstümpfe, Zylinder oder Quader, sind möglich und werden nach fachmännischem Ermessen entsprechend dem erforderlichen Druck, dem vorliegenden Ausgangsstoff und dem Material der Walzen, den auftretenden Temperaturen und dgl. gewählt. Dabei kann die Folie 30 mit kalandiert und aufkaschiert werden.

1

5

Die Arbeitsrichtung ist bei Fig. 7 von links nach rechts. Das fertige Produkt weist demnach fast durchsichtige Fusionsbereiche 18 auf, die sich jeweils mit etwas aufgebauschten, jedoch auch gegenüber dem Eingangsvlies zusammengepreßten lockeren Bereichen 19 abwechseln.

Die Beschichtungsverfahren werden anhand der nachfolgenden Beispiele näher beschrieben:

10

15

Beispiel 1

Eine Faserstoffbahn 100 (vergl. Fig. 3) wird einseitig mit einer Bahn aus gewebtem textilen Material kombiniert. Die Textilbahn ist an ihrer zur Faserstoffbahn weisenden Fläche mit einem Hotmelt-Klebstoff versehen, so daß nach Durchlaufen der Andruckrollen 9.1, 9.2 ein fester Klebeverbund hergestellt ist. Ein solcher Verbund hat durch den Faserstoff gute wärmeisolierende Wirkung und kann über die gewebte Textilbahn größere mechanische Kräfte aufnehmen.

20

25

30

35

Beispiel 2

Die wie anhand der Beschreibung zur Figur 1 bis 3 hergestellte Faserstoffbahn 100 wird an ihrer unbeschichteten Fläche zusätzlich mit einer folienartigen, semipermeablen Klimamembran aus Polytetrafluorethylen über einen Haftkleber verbunden. Die Klimamembran ist wasserabweisend, aber durchlässig für Wasserdampf. Bei der Verwendung als Futtermaterial für hygienische Bekleidungstücke kann der vom Benutzer abgegebene Wasserdampf zunächst vom Fasergewebe aufgenommen und dann über die Klimamembrane abgeleitet werden. Zugleich ist die Faserstoffschicht vor Nässe geschützt.

Beispiel 3

Eine Vliesbahn 100 wird mit einer Polytetrafluorethylenfolie von 20 μm Dicke zusammengeführt, die einseitig mit einem lösungsmittelfreien Haftkleber beschichtet ist. Über die Kalanderrollen 6.1, 6.2 wird ein Verbund hergestellt. Der Verbund

wird auf der unbeschichteten Seite mit einer weiteren Polyethylenfolie vor Eintritt in die Kalanderwalzen 9.1; 9.2 belegt. Durch Nadelwalzen (nicht dargestellt) wird die zweite Polyethylenfolie perforiert. Die beim Perforieren in die Faserstoffbahn eindringenden Folienpartikel bewirken eine mechanische Verankerung zwischen der mit einer ersten Folie beklebten Faserstoffbahn und der zweiten Folie. Es entsteht ein zu einer Oberfläche hin saugfähiges und zur anderen Oberfläche hin flüssigkeitsdichtes Material 200, das sich insbesondere für die Verwendung bei Hygieneartikeln eignet.

Beim Recycling kann die verschmutzte Faserstoffbahn nach dem Abreißen der Foliendeckschichten kompostiert werden. Gegenüber den z.B. bei Wegwerfwindeln eingesetzten Cellulosen mit polymeren Superabsorbern ist bei einem erfindungsgemäßen Verbundwerkstoff eine bessere Umweltverträglichkeit gegeben.

1

Patentansprüche

5

10

15

20

25

1. Verfahren zur Herstellung einer im wesentlichen aus Cellulose-Fasern aus Zellstoff-Pulpe oder aus Zellstoff-karton (wood pulp cardboard) bestehenden, ohne Verwendung von zusätzlichen Bindemitteln hergestellten, saugfähigen und rollbaren Faserstoffbahn (100), die zur Anwendung auf dem Hygienesektor geeignet ist, mit folgenden Verfahrensschritten:

(a) wirres Legen einer Faserlage aus den vorgenannten Cellulose-Fasern auf eine Unterlage (8)

(b) Vorverdichten unter relativ niedrigem Druck und Erzeugen eines lockeren Vlieses mit geringer Dichte und einer Reißfestigkeit, die ein Überbrücken zwischen 0,1 m und 1 m bis zum Reißen des Vlieses erlaubt,

(c) Einführen des lockeren Vlieses in den Spalt eines Kalanderrollen-Paares (6.1,6.2), mit dem ein Muster von punktoder linienförmigen Druckbereichen (17) erzeugt wird, in
denen die regellos liegenden Fasern (1) unter einem Druck im
Bereich zwischen 150 bis 600 MPa aufeinander gedrückt
werden, so daß eine nicht-lösende Fusion der Fasern erfolgt
und eine Faserstoffbahn (100) mit einem Prägemuster erzeugt
wird.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Druck in den punkt- oder linienförmigen Druckbereichen (17) zwischen 100 und 550 MPa liegt.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine Faserstoffbahn (100) mit einem m²-Gewicht zwischen 50 g und 1500 g erzeugt wird.

1

5

- Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß eine Faserstoffbahn (100) mit einer Rasterdichte der punktförmigen Druckbereiche (17) zwischen 1 und 16 pro cm² erzeugt wird.
- 5. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fläche der punktförmigen Druckbereiche (17) zwischen 0,05 und 10 mm² liegt.

10

6. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Temperatur des Kalanderrollen-Paares (6.1,6.2) auf Zimmertemperatur, d.h. zwischen 18 und 25°C, gehalten wird.

15

Verfahren nach wenigstens einem der vorhergehenden 7. Ansprüche, dadurch gekennzeichnet, daß die Vorverdichtung bei einer Werkzeugtemperatur von 18° bis 320°C, vorzugsweise zwischen 200° bis 300°C, erfolgt.

20

8. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als vorverdichtendes Werkzeug ein erstes Kalanderrollen-Paar (4.1, 4.2) verwendet wird.

25

9. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fasern (1) und/oder das lockere Vlies (2) auf einem Feuchtegehalt von wenigstens 1,5 Gew.-%, vorzugsweise zwischen 2 und 5 Gew.-% gehalten werden.

10. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Ausgangsmaterial defiberisierter Zellstoff (wood pulp) verwendet wird.

35

30

Verfahren nach wenigstens einem der vorhergehenden 11. Ansprüche, dadurch gekennzeichnet, daß die als Ausgangsmate-

21

rial verwendeten Zellstoff-Fasern (1) einen Weißegrad von 80 bis 92 %, vorzugsweise von 85 bis 89 %, haben.

12. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Ausgangsmaterial Zellstoff-Fasern (1) mit einem Restgehalt an Lignin von 0,5 bis 5 Gew.-% verwendet werden.

5

15

35

13. Verfahren nach wenigstens einem der vorhergehenden 10 Ansprüche, dadurch gekennzeichnet, daß den Cellulose-Fasern ein granulierter Superabsorber in einer Menge zwischen 0,5 bis 70 Gew.-%, vorzugsweise zwischen 5 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Ausgangsmaterials für die Faserstoffbahn, innig beigemischt wird.

14. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß den Cellulose-Fasern nicht-bindende Pigmente oder anorganische Füllstoffe, wie Titandioxid, Kreide oder Kaolin, in einer Menge zwischen 0,5 bis 30 Gew.-%, vorzugsweise zwischen 5 bis 10 Gew.-%, bezogen auf das Gesamtgewicht des Ausgangsmaterials für die Faserstoffbahn, innig beigemischt werden.

- 15. Verfahren nach wenigstens einem der vorhergehenden
 25 Ansprüche, dadurch gekennzeichnet, daß im Druckbereich (17)
 des zweiten Kalanderrollen-Paares (6.1,6.2) der radiale
 Abstand der Kalanderrollen (6.1,6.2) außerhalb der punktförmigen Druckbereiche (17) 1 bis 5 mm beträgt.
- 16. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Spalt (15) im Druckbereich des zweiten Kalanderrollen-Paares (6.1,6.2) zwischen sich gegenüberliegenden punktförmigen Druckbereichen eine lichte Weite von 0,05 bis 1 mm aufweist.
 - 17. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß vor dem Durchlauf

- durch das zweite Kalanderollen-Paar (6.1; 6.2) wenigstens eine Seite des lockeren Vlieses mit einer geeigneten Bahn (20.1;20.2) aus textilem, vliesartigen oder folienartigen Material belegt wird, mit der es im Durchlauf des zweiten Kalanderrollen-Paaren verklebt, verschweißt und/oder mechnaisch verklebt wird.
- 18. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß nach dem Durchlauf durch das zweite Kalanderollen-Paar (6.1; 6.2) wenigstens eine Seite der Faserstoffbahn (100) mit einer geeigneten Bahn (20.1;20.2) aus textilem, vliesartigen oder folienartigen Material belegt wird, mit der es in einem zusätzlichen Arbeitsgang verklebt, verschweißt und/oder mechnaisch verklebt wird.
 - 19. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 und gegebenenfalls weiteren Ansprüchen 2 bis 17, dadurch gekennzeichnet, daß das zweite Kalanderrollen-Paar aus zwei Kalanderwalzen (6.1,6.2) besteht, die beide mit zahlreichen, über die Walzenmantelflächen verteilten Noppen (14) versehen sind, die von Vertiefungen umgeben sind, die das Mehrfache des Volumens der Noppen (14) aufweisen, und daß die Noppen (14) beider Walzen (6.1,6.2) im Arbeitsspalt gegenüber stehen, wobei in punktförmigen Druckbereichen (17) auf in zwischen den Noppen (14) befindliches lockeres Vlies (2) ein Druck von wenigstens 150 MPa bis maximal zur Fließgrenze des für die Noppen (14) verwendeten Materials ausübbar ist.

20

- 30 20. Vorrichtung nach Anspruch 18, daß die Höhe der Noppen (14) gegenüber dem Walzengrund (15) zwischen 0,5 und 5 mm ist.
- 21. Vorrichtung nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß die Noppen (14) die Form von Pyramiden- oder Kegelstümpfen, Quadern und dergl. haben.

23

1

5

- 22. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, daß bei Kegelstumpf- oder Pyramidenform der Winkel des Noppenmantels gegenüber dem Radius zwischen 10 und 45° liegt.
- 23. Absorbierende Faserstoffmatte zur Herstellung von Hygieneprodukten, hergestellt im Verfahren nach Anspruch 1 und gegebenenfalls weiteren Ansprüchen 2 bis 16.

10

- 24. Faserstoffmatte mit Top- und/oder Backsheet zur Herstellung von Hygieneprodukten, hergestellt im Verfahren nach Anspruch 1 und 17 oder 18.
- 25. Faserstoffmatte nach Anspruch 23, dadurch gekennzeichnet, daß das folienartige Material unidirektional durchlässig für Wasser und ambidirektional durchlässig für Luft und Wasserdampf ist.
- 26. Hygieneartikel, wie Tampon, Baby-Höschenwindel, Damenbinde oder Slipeinlage, dadurch gekennzeichnet, daß eine darin enthaltende saugfähige Schicht aus wenigstens einem Abschnitt der Faserstoffmatte gemäß Anspruch 22 oder 23 oder 24 besteht.

25

30

F16.3

F16.5

F16. 6

INTERNATIONAL SEARCH REPORT

1 national Application No PCT/EP 98/07305

A. CLASS	IFICATION OF SUBJECT MATTER A61F13/15		
•••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
According	to International Patent Classification (IPC) or to both national classific	eation and IPC	
	SEARCHED		
Minimum d	ocumentation searched (classification system followed by classificat A61F B31F	ion symbols)	
Documenta	tion searched other than minimum documentation to the extent that	such documents are included. In the fields sa	parched
Electronic	data base consulted during the international search (name of data be	ise and, where practical, search terms used)
		*	
	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the re-	levant passages	Relevant to claim No.
X	US 3 692 622 A (DUNNING CHARLES F 19 September 1972 see column 1, line 13 - line 17 see column 2, line 28 - line 31	Ξ)	1-10,16, 22,25
	see column 3, line 26 - line 36 see column 3, line 51 - line 64 see column 4, line 14 - line 25 see column 4, line 69 - line 74;	claims:	
,,	figures	,	10
A	 ·	-/	13 11,12, 14,15, 17-21, 23,24
X Furti	ner documents are listed in the continuation of box C.	X Patent family members are listed in	n annex.
* Special ca	tegories of cited documents:	"T" later document published after the inter	national filing date
	ent defining the general state of the art which is not ered to be of particular relevance	or priority date and not in conflict with t cited to understand the principle or the	he application but
	ocument but published on or after the international	invention "X" document of particular relevance; the cl- cannot be considered novel or cannot in	
"L" docume which	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another	involve an inventive step when the doc "Y" document of particular relevance; the cir	ument is taken alone
"O" docume	n or other special reason (as specified) ant referring to an oral disclosure, use, exhibition or	cannot be considered to involve an involve an involve document is combined with one or more	entive step when the e other such docu-
	int published prior to the international filling date but	ments, such combination being obvious in the art. "&" document member of the same patent for	·
	actual completion of the international search	Date of mailing of the international sear	
3	March 1999	10/03/1999	
Name and n	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Soederberg, J	

INTERNATIONAL SEARCH REPORT

national Application No PCT/EP 98/07305

	JATION) DOCUMENTS CONSIDERED TO BE RELEVANT	
legory '	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	US 5 128 193 A (ANAPOL SHERYL J ET AL) 7 July 1992 see column 1, line 13 - line 28	13
		1-12, 14-25
	WO 95 27429 A (HILBIG KLAUS ; SCHMITT WERNER (DE); REINHEIMER HORST (DE); SCHICKED) 19 October 1995 see abstract	1-25
	US 4 749 423 A (VAALBURG LAWRENCE ET AL) 7 June 1988	

INTERNATIONAL SEARCH REPORT

Information on patent family members

ti ational Application No
PCT/EP 98/07305

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 3692622	A	19-09-1972	DE	1965716 A	08-07-1971
			FR	2138296 A	05-01-1973
			NL	6917625 A	25-05-1971
			ΑT	311166 B	15-09-1973
•			CH	557927 A	15-01-1973
			GB	1296840 A	22-11-1971
			US	3764451 A	09-10-1973
			US	3765997 A	16-10-1971
			JP	48039393 B	24-11-1973
US 5128193	Α	07-07-1992	AU	634849 B	04-03-1993
			AU	6926591 A	18-07-1991
			CA	2034111 A	17-07-1991
			EP	0438113 A	24-07-1991
			GR	91100012 A	25-06-1992
			HU	66671 A,B	28-12-1994
			JP	4212354 A	03-08-1992
			PT	96478 A,B	15-10-1991
WO 9527429	A A	19-10-1995	DE	9406026 U	01-06-1994
			AU	700026 B	17-12-1998
			AU	. 2344395 A	30-10-1995
			CA	2187519 A	19-10-1995
			EP	0755212 A	29-01-1997
			JP	10501435 T	10-02-1998
US 4749423	A	07-06-1988	NONE		

INTERNATIONALER RECHERCHENBERICHT

nationales Aktenzeichen PCT/EP 98/07305

A. KLASS IPK 6	FIZIERUNG DES ANMELDUNGSGEGENSTANDES A61F13/15		
	ternationalen Patentklassifikation (IPK) oder nach der nationalen Kl	assifikation und der IPK	
	RCHIERTE GEBIETE rder Mindestprufstoff (Klassifikationssystem und Klassifikationssymb	nole)	
IPK 6	A61F B31F		
Recherchie	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, s	oweit diese unter die recherchierten Gebiete	fallen
Während de	ar internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evti, verwendete S	Suchbegriffe)
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN		
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angat	oe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 3 692 622 A (DUNNING CHARLES 19. September 1972 siehe Spalte 1, Zeile 13 - Zeile	17	1-10,16, 22,25
	siehe Spalte 2, Zeile 28 - Zeile	31	
	siehe Spalte 3, Zeile 26 - Zeile siehe Spalte 3, Zeile 51 - Zeile	64	
	siehe Spalte 4, Zeile 14 - Zeile	25	
	siehe Spalte 4, Zeile 69 - Zeile Ansprüche; Abbildungen	74;	
Y	, , , , , , , , , , , , , , , , , , ,		13
Α			11,12, 14,15,
			17-21,
			23,24
		-/	
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patenttamilie	
	Kategorien von angegebenen Veröffentlichungen : itlichung, die den allgemeinen Stand der Technik definiert,	"T" Spätere Veröffentlichung, die nach dem i oder dem Prioritätsdatum veröffentlicht v	worden ist und mit der
"E" älteres (cht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder inach dem internationalen	Anmeldung nicht kollidiert, sondern nur Erfindung zugrundellegenden Prinzips o Theorie angegeben ist	zum Verstandnis des der der der ihr zugrundellegenden
"L" Veröffen	dedatum veröffentlicht worden ist tlichung, die geeignet ist, einen Priontatsanspruch zweifelhaft er-	"X" Veröffentlichung von besonderer Bedeut kann allein aufgrund dieser Veröffentlich	lung nicht als neu oder auf
andere	en zu lassen, oder durch die das Veröffentlichungsdatum einer n im Recherchenbericht genannten Veröffentlichung belegt werden er die aus einem anderen besonderen Grund angegeben ist (wie	erfinderischer Tätigkeit beruhend betrac "Y" Veröffentlichung von besonderer Bedeut	ung; die beanspruchte Erfindung
ausgef		kann nicht als auf erfinderischer Tätigke werden, wenn die Veröffentlichung mit e Veröffentlichungen dieser Kategorie in V	iner oder mehreren anderen
eine Be "P" Veröffen	nutzung, eine Ausstellung oder andere Maßnahmen bezieht tilichung, die vor dem internationalen. Anmeldedatum, aber nach anspruchten Prioritätsdatum veröffentlicht worden ist	diese Verbindung für einen Fachmann n *&" Veröffentlichung, die Mitglied derselben f	ahellegend ist
	bschlusses der internationalen Recherche	Absendedatum des internationalen Recl	
3.	März 1999	10/03/1999	
Name und P	ostanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2	Bevollmächtigter Bediensteter	·
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Soederberg, J	

INTERNATIONALER RECHERCHENBERICHT

nationales Aktenzeichen
PCT/EP 98/07305

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
rategorie*	Deservation of the Astolientification of the	Sett. Anspruch Nr.
Y	US 5 128 193 A (ANAPOL SHERYL J ET AL) 7. Juli 1992 siehe Spalte 1, Zeile 13 - Zeile 28	13
\	Stelle Spatte 1, Zette 15 - Zette 20	1-12, 14-25
	WO 95 27429 A (HILBIG KLAUS ;SCHMITT WERNER (DE); REINHEIMER HORST (DE); SCHICKED) 19. Oktober 1995 siehe Zusammenfassung	1-25
!	US 4 749 423 A (VAALBURG LAWRENCE ET AL) 7. Juni 1988	

INTERNATIONALER RECHERCHENBERICHT

Ahgaben zu Veröffentiitungen, die zur selben Patentfamilie genören

nationales Aktenzeichen
PCT/EP 98/07305

	lecherchenberich rtes Patentdoku		Datum der Veröffentlichung		litglied(er) der Patentfamilie		Datum der Veröffentlichung
US	3692622	Α	19-09-1972	DE	1965716	A	08-07-1971
				FR	2138296	Α	05-01-1973
				NL	6917625	Α	25-05-1971
				AT	311166	В	15-09-1973
				CH	557927	Α	15-01-1973
				GB	1296840	Α	22-11-1971
				US	3764451	Α	09-10-1973
				US	3765997	Α	16-10-1971
				JP	48039393	В	24-11-1973
US	5128193	Α	07-07-1992	AU	634849	В	04-03-1993
				AU	6926591	Α	18-07-1991
				CA	2034111	Α	17-07-1991
				EP	0438113	Α	24-07-1991
				GR	91100012	Α	25-06-1992
				HU	66671	A,B	28-12-1994
				JP	4212354		03-08-1992
				PT	96478	Α,Β	15-10-1991
WO	9527429	A	19-10-1995	DE	9406026	U	01-06-1994
				ΑU	700026	В	17-12-1998
				AU	2344395		30-10-1995
				CA	2187519	Α	19-10-1995
				EP	0755212		29-01-1997
				JP	10501435	T	10-02-1998
US	4749423	 A	07-06-1988	KEIN	 IE		