生態模擬:以C語言為例

Class 06 (2018/04/19)

- Simple numerical calculations
 - 6.1 How to use standard output for saving data to a file
 - 6.2 How to use R for graphics
 - 6.3 Numerical solution of a difference equation (& bifurcation)
 - 6.4 Explicit Euler method for ODE
 - 6.5 4-th order Runge-Kutta method for ODE
 - 6.6 Application to a prey-predator model

Takeshi Miki

三木 健(海洋研究所)

6.1 How to use standard output for saving data to a file

You can use 'output redirection' for redirecting output to a file.

```
#include <stdio.h>
                                      When you use mathematical functions, i) you need to include the math library and
#include <math.h>
                                      ii) add option –Im when compiling via either:
                                      > gcc -lm ***.c -o ***.out
#define STEP 0.1
                                      > gcc ***.c -lm -o ***.out
int main(void)
                                      > gcc ***.c -o ***.out -lm
             int j, k;
             double x, y;
             for(j = 0; j \le 100; j++){
                          x = i*STEP;
                          printf("%If\t%If\n", x, sin(x));
             return 0;
```

At Terminal, you need to put the following command.

```
miki$miki-VB-ubuntu:~$ ./graph.out > plot01.dat 4
miki$miki-VB-ubuntu:~$ less plot01.dat 4
```

6.2 How to use R for graphics: open plot_test.R

You can use gnuplot for graphical presentation of data.

At the editor window of Rstudio, you can load and check the result from the program

```
#load the data
test<-read.table("./plot01.dat")
#see the data
View(test)
```

	V1	÷	V2 [‡]
1		0.0	0.000000
2		0.1	0.099833
3		0.2	0.198669
4		0.3	0.295520
5		0.4	0.389418
6		0.5	0.479426
7		0.6	0.564642
8		0.7	0.644218
9		0.8	0.717356
10		0.9	0.783327
11		1.0	0.841471
12		1.1	0.891207
13		1.2	0.932039
14		1.3	0.963558
15		1.4	0.985450
10		4.5	0.007405

Simplest 2D scatterplot

With the following script, you can plot the result.

#simplest scatter plot plot(test\$V1,test\$V2)

Some options

You can change the style of the plot with various options.

```
#change the options plot(test$V1, test$V2, xlim=c(0,5),ylim=c(-1.5, 1.5), cex=2, pch=2, col=3)
```


Some options

You can change the style of the plot with various options.

```
#lineplot plot(test$V1, test$V2, xlim=c(0,5),ylim=c(-1.5, 1.5), type='l',col=2)
```


Some options

You can change the style of the plot with various options.

```
#linepoint plot plot(test$V1, test$V2, xlim=c(0,5),ylim=c(-1.5, 1.5), type='o',col=2)
```


Some options

Two plots can be overdrawn.

```
#overdraw plot(cos, 0,5, xlim=c(0,5), ylim=c(-1.5,1.5)) par(new=T) plot(test$V1, test$V2, xlim=c(0,5),ylim=c(-1.5, 1.5), type='o',col=2, xlab='',ylab='')
```


Some options

3D scatterplot is also possible with library::scatterplot3d

```
#3Dplot
test2<-read.table("./plot02.dat")
View(test2)
library(scatterplot3d)
scatterplot3d(test2$V1,test2$V2,test2$V3,cex.symbols=0.5)
```


Let's consider the following simple population dynamics (Ricker Map).

$$N_{t+1} = N_t \exp[r \cdot (1 - N_t)]$$
 $N_0 = 0.1$

Let's consider the following simple population dynamics (Ricker Map).

$$N_{t+1} = N_t \exp[r \cdot (1 - N_t)]$$
 $N_0 = 0.1$

```
#include <stdio.h>
#include <math.h>
int main(void)
       int j;
       int end step = 20;
       double x;
       double r = 1.5;
       x = 0.1; //initial condition
       for(i = 0; i \le end step; i++){
          x = x*exp(r*(1.0 - x));
          printf("%d\t%lf\n", i, x):
       return 0;
```

6.3 Numerical solution of a difference equation (& bifurcation)

Let's consider the following simple population dynamics (Ricker Map).

$$N_{t+1} = N_t \exp[r \cdot (1 - N_t)]$$
 $N_0 = 0.1$

We can easily obtain the bifurcation diagram (Ricker Map).

$$N_{t+1} = N_t \exp[r \cdot (1 - N_t)]$$
 $1 \le r \le 4.5$

Homework 1!!

Let's consider a one-dimensional ordinary differential equation (1D ODE)

$$\begin{cases} \frac{dN(t)}{dt} = f(N(t), t) \\ N(0) = N_0 \end{cases}$$

The explicit Euler method <u>approximates N as n</u>.

$$\begin{cases} \frac{n(t_1 + h) - n(t_1)}{h} = f(n(t_1), t_1) \\ n(0) = N_0 \end{cases}$$

The explicit Euler method (explicit Euler discretization) is:

$$\begin{cases} \frac{n(t_1+h)-n(t_1)}{h} = f(n(t_1),t_1) \\ n(0) = N_0 \end{cases}$$
 (1)

From eqn.1,
$$n(t_1 + h) = n(t_1) + h \cdot f(n(t_1), t_1)$$
 (2)

The true solution N(t) satisfies the following condition,

$$N(t_1+h) = N(t_1) + h \cdot \frac{\partial N}{\partial t} \bigg|_{t=t_1} + \frac{1}{2!} h^2 \cdot \frac{\partial^2 N}{\partial t^2} \bigg|_{t=t_1} + O(h^3) (3)$$

From Eqns. 2 and 3,

$$N(t_1+h)-n(t_1+h)=O(h^{1+1})$$

We say the explicit Euler method has first order accuracy (= local accuracy).

From Eqns. 2 and 3,

$$N(t_1+h)-n(t_1+h)=O(h^{1+1})$$

We say the explicit Euler method has first order accuracy (= local accuracy).

Stability behavior of the Euler method

Consider the following linear ODE. $\frac{dY}{dt} = \lambda \cdot Y$

If we use the explicit Euler method, $y(i \cdot h) = (1 + h\lambda)^i Y_0$

The numerical solution is decaying (= stable) only when,

$$|1+h\lambda|<1$$

6.4 Explicit Euler method for ODE

cf) Implicit Euler method is...

$$\begin{cases} \frac{n(t_1) - n(t_1 - h)}{h} = f(n(t_1), t_1) \\ n(0) = N_0 \end{cases}$$

Stability behavior of the Euler method

Consider the following linear ODE.
$$\dfrac{dY}{dt}=\lambda\cdot Y$$
 If we use the implicit Euler method, $y(i\cdot h)=\left(\dfrac{1}{1-h\lambda}\right)^iY_0$

The numerical solution is decaying (= stable) only when,

$$|1+h\lambda|>1$$

6.4 Explicit Euler method for ODE

Use the explicit Euler method.

$$n(t_1 + h) = n(t_1) + h \cdot f(n(t_1), t_1)$$

$$\begin{cases} \frac{dN(t)}{dt} = 1.0 \cdot N(t) \cdot \left(1.0 - \frac{N(t)}{\left[1.0 + 0.5 \cdot \sin(2\pi t)\right]}\right) \\ N(0) = 0.1 \end{cases}$$
 圓周率 M_PI

Let's consider a one-dimensional ordinary differential equation (1D ODE)

$$\begin{cases} \frac{dN(t)}{dt} = f(N(t), t) \\ N(0) = N_0 \end{cases}$$

The 4th order (explicit) Runge-Kutta method is...

$$n(t_1+h) = n(t_1) + h \cdot \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$\begin{cases} k_1 = f(n(t_1), t_1) \\ k_2 = f\left(n(t_1) + \frac{h}{2}k_1, t_1 + \frac{h}{2}\right) \\ k_3 = f\left(n(t_1) + \frac{h}{2}k_2, t_1 + \frac{h}{2}\right) \\ k_4 = f(n(t_1) + hk_3, t_1 + h) \end{cases}$$

You can mathematically show the difference with the true solution as follows.

$$N(t_1+h)-n(t_1+h)=O(h^{4+1})$$

Compare the explicit Euler method and the Runge-Kutta method.

$$\begin{cases} \frac{dN(t)}{dt} = 1.0 \cdot N(t) \cdot \left(1.0 - \frac{N(t)}{\left[1.0 + 0.5 \cdot \sin(2\pi t) \right]} \right) \\ N(0) = 0.1 \end{cases}$$

6.6

Numerically solve the following equations with the Runge-Kutta method.

$$\begin{cases} \frac{dx}{dt} = rx \left(1 - \frac{x}{K} \right) - a \frac{xy}{1 + H_t ax} \\ \frac{dy}{dt} = b \frac{xy}{1 + H_t ax} - my \\ x(0) = 0.1, y(0) = 0.1 \end{cases}$$

$$r = 1.0, a = 1.0, b = 0.5, H_t = 1.0, m = 0.1$$

Runge-Kutta method is the same for the multidimensional ODE.

$$\begin{cases} \frac{dN(t)}{dt} = f(N(t), t) \\ N(0) = N_0 \end{cases}$$

The 4th order (explicit) Runge-Kutta method is...

$$m_{i+1} = n_i + h \cdot \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

$$\begin{cases} k_1 = f(n_i, t_i) \\ k_2 = f \left(n_i + \frac{h}{2} k_1, t_i + \frac{h}{2} \right) \\ k_3 = f \left(n_i + \frac{h}{2} k_2, t_i + \frac{h}{2} \right) \\ k_4 = f(n_i + hk_3, t_i + h) \end{cases}$$

Numerically solve the following equations with the Runge-Kutta method.

Homework 2!!