Enhance visitor experience and researcher productivity by leveraging machine intelligence

Stinger Inspector - Team UBS February 2018

This document is for informational purposes only and is not intended to be construed as an invitation or offer of securities or to conclude a contract or to buy and sell any security or related financial instrument. The facts and opinions presented are those of the author only and not official opinions of UBS

Enhancing Experience and Productivity

Goals:

- Find appealing stinger pictures to show visitors
- Scale manual researcher stinger classification to large number of pictures automatically
- Validate researcher classification for scientific accuracy
- Find new categories of stingers for researcher and visitors to explore

Find Appealing Displays

Objective: find clean images for visitors to see core features clearly

Challenge: many pictures in many folders, which ones to pick

Solution: scan through all folders find images with little absolute change

Clean

Noisy

Scale manual researcher classification

Objective: automatically classify stinger types on unseen images

Challenge: many noisy pictures

Solution: train deep neutral networks, achieved 62% accuracy

In [60]: plot_val_with_title(most_by_correct(0, True), "Most correct typeA's")

Most correct typeA's

In [61]: plot_val_with_title(most_by_correct(1, True), "Most correct typeB's")

Most correct typeB's

In [58]: plot_val_with_title(most_by_correct(0, False), "Most incorrect TypeAs")

Most incorrect TypeAs

In [59]: plot_val_with_title(most_by_correct(1, False), "Most incorrect TypeBs")

Most incorrect TypeBs

0.09539217

0.021750202

0.15205073

Validate Work / Find New Categories

Objective: did the researcher miss anything? Are there other categories?

Challenge: many stingers look similar to the human eye

Solution: identified cluster of stingers which get consistently misclassified

Our Workflow

Preparatio n

- Course.fast.ai
- Kaggle Right Whale Challenge

Preprocess

- Normalize, Transform
- Learning rate tuning

Model

- Convolutional Neural Network (CNN)
- Modify pre-trained resnet34

Infra-struct ure

- Stack: Python PIL, CV2, pytorch, fastai
- Hardware: Paperspace cloud gpu

Our Learnings - What worked

- Pretrained deep CNN easily adopted for other purposes
- Image normalization, transformation and parameter tuning increased accuracy from 55% to 62%

Caffe

Fine-tuning Pretrained Network

Our Learnings - What didn't work (fast)

- Tried to leverage object detection but confused by different shapes and multiple objects
- Tried to leverage human drawn image focus but alignment areas shapes differ and multiple objects

Training auto detection model

Training auto crop model

Training auto alignment model

Objectives Achieved?

- √ Find appealing pictures to display
- √ Scale manual researcher classification
- √ Validate researcher / Find new categories
- × Auto detect
- × Auto crop
- × Auto align

