Vertiefung Analysis Hausaufgabenblatt Nr. 11

Jun Wei Tan* and Lucas Wollmann

Julius-Maximilians-Universität Würzburg

(Dated: January 18, 2024)

Problem 1. Seien $M, N \subseteq \mathbb{R}^n$ k-dimensionale Untermannigfaltigkeiten der Klasse C^{α} sowie $P \subseteq \mathbb{R}^m$ eine l-dimensionale Untermannigfaltigkeit der Klasse C^{α} . Zeigen Sie:

- (a) $M \times P \subseteq \mathbb{R}^{n+m}$ ist eine (k+l)-dimensionale Untermannigfaltigkeit der Klasse C^{α} .
- (b) Gilt $M \cap \overline{N} = \emptyset = \overline{M} \cap N$, so ist $M \cup N$ eine k-dimensionale Untermannigfaltigkeit der Klasse C^{α} .
- (c) Die Mengen

$$A := \{(x, y) \in \mathbb{R}^2 | x \in (-1, 1), y = x^2 \},$$

$$B := \{(x, y) \in \mathbb{R}^2 | x \in (-1, 0) \cup (0, 1), y = -|x| \},$$

sind jeweils 1-dimensionale Untermannigfaltigkeiten der Klasse \mathbb{C}^1 .

- (d) Die Aussage aus (b) ist unter der schwächeren Voraussetzung $M\cap N=\varnothing$ im Allgemeinen nicht richtig.
- Proof. (a) Sei $(m, p) \in M \times P$. Per Definition gibt es offene Mengen $U \subseteq \mathbb{R}^n$, $V \subseteq \mathbb{R}^m$, f und g α -mal differenzierbare Funktionen $f: U \to \mathbb{R}^{n-k}, \ g: V \to \mathbb{R}^{m-l}$, so dass

$$m \in U, p \in V$$

 $M \cap U = \{x \in U : f(x) = 0\}$
 $\operatorname{Rang}(f'(m)) = n - k$
 $P \cap V = \{x \in V : g(x) = 0\}$
 $\operatorname{Rang}(g'(p)) = m - l$

Dann ist $U \times V \subseteq \mathbb{R}^{k+l}$ offen Sei außerdem $h: U \times V \to \mathbb{R}^{n+m-(n+k)}$ definiert durch h(x,y)=(f(x),g(y)), wobei $x\in\mathbb{R}^n$ und $y\in\mathbb{R}^m$.

 $^{^{*}}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Dann ist h(x,y) = 0 genau dann, wenn f(x) = 0 und g(y) = 0. Außerdem ist

$$h' = \begin{pmatrix} f' & 0 \\ 0 & g' \end{pmatrix}.$$

Da h' eine Blockmatrix ist, ist $\operatorname{Rang}(h'(m,p)) = \operatorname{Rang}(f'(m)) + \operatorname{Rang}(g'(p))$. (Man kann das beweisen, indem man das Gauss-Algorithismus durchführt, bis f' und g' in Zeilenstufenform sind.)

Weil f und g α -mal stetig differenzierbar sind, ist h auch α -mal stetig differenzierbar Es gilt dann

$$(U \times V) \cap (M \times P) = \{x \in U \times V : h(x) = 0\}$$

Rang $(h'(m, p)) = n + m - (k + l)$

Problem 2. Sei $a < b, \alpha \in \mathbb{N}$ und $r : (a, b) \to \mathbb{R}$ sei α -mal stetig differenzierbar mit r(z) > 0 für alle $z \in (a, b)$. Definiere

$$R := \left\{ (x, y, z) \in \mathbb{R}^3 | z \in (a, b), \sqrt{x^2 + y^2} = r(z) \right\}.$$

Dann ist R durch die Abbildung

$$\varphi: (a,b) \times (0,2\pi) \to \mathbb{R}^3, \ \varphi(z,\alpha) := \begin{pmatrix} r(z)\cos\alpha \\ r(z)\sin\alpha \\ z \end{pmatrix}$$

parametrisiert.

- (a) Zeigen Sie, dass R eine 2-dimensionale Untermannigfaltigkeit der Klasse C^{α} ist.
- (b) Zeigen Sie, dass R eine λ_3 -Nullmenge ist.
- (c) Bestimmen Sie das Integral

$$I := \int_{(a,b)\times(0.2\pi)} \sqrt{\det(\varphi'^T \varphi')} \, d\lambda_2(z,\alpha)$$

in Abhängigkeit der Funktion r.

(d) Bestimmen Sie das Integral I in (c) für den Fall $r(z) := \cosh(z)$ und (a,b) := (0,1).