Программа коллоквиума по дискретной математике (основной поток)

Правила проведения коллоквиума

Коллоквиум состоит из трех частей: контрольный вопрос на понимание определения, задача на понимание теорем и доказательств, вопрос на знание доказательств (нужно будет доказать теорему из курса). Коллоквиум будет проходить дистанционно. Ответ на вопрос—это беседа преподавателя со студентом, в которой студент рассказывает, а преподаватель имеет возможность по ходу рассказа задавать уточняющие вопросы.

Ответ на вопрос об определениях не предполагает длительной подготовки, как и формулировка теоремы вместе с основной идеей доказательства. Для подготовки рассказа решения задачи дается 15—20 минут. Такое же время дается для восстановления технических деталей доказательства (при необходимости).

При подготовке рассказа решения задачи и восстановления технических деталей доказательств разрешается использование материалов курса (записи лекций, решения задач и т.п.). Ответ должен быть самостоятельным, не разрешается консультироваться по поводу ответа с другими людьми. Все время участия коллоквиума должно быть доступно ваше видео, будет вестись запись. По правилам НИУ ВШЭ при обнаружении нарушений правил коллоквиума результатом коллоквиума станет 0 баллов.

Оценка за коллоквиум формируется следующим образом. Вы получаете свой первый балл как только приходите на коллоквиум, еще 3 балла—за полный ответ на контрольный вопрос на понимание определений, 3 балла—за правильное решение задачи, и 3 балла—за полный ответ на вопрос на знание доказательств.

1. Список определений

Контрольные вопросы на понимание определений или формулировок теорем будут задаваться по следующему списку.

Каждый такой вопрос будет сопровождаться простым проверочным заданием. Пример:

«Множества, теоретико-множественные операции. Найдите пересечение множеств $\{a, \{a, b\}, c, \{c\}\}$ и $\{b, c, \{a, b\}, \{a\}\}$.»

- 1. Логические значения и логические связки. Задание таблицами истинности.
- 2. Законы де Моргана.
- 3. Принцип контрапозиции.
- 4. Свойства дизъюнкции и конъюнкции (ассоциативность, дистрибутивность, коммутативность).
- 5. Множества, теоретико-множественные операции.
- 6. Взаимосвязь множеств и булевой логики.
- 7. Принцип математической индукции. Принцип полной математической индукции (на шаге используются все предыдущие утверждения).
- 8. Правила суммы и произведения в комбинаторике. Задачи о подсчете числа монотоных путей на прямой.
- 9. Конечные слова в алфавите. Соответствие между двоичными словами и подмножествами множества.
- 10. Формула включений-исключений.
- 11. Размещения и сочетания, перестановки.
- 12. Числа Фибоначчи, их комбинаторный смысл.
- 13. Биномиальные коэффициенты.
- 14. Мультиномальные коэффциенты. Их комбинаторный смысл.
- 15. Задача о подсчёте монотонных путей на плоскости. Треугольник Паскаля. Рекуррентное соотношение.
- 16. Сочетания с повторениями.
- 17. Ориентированные и неориентированные графы. Степени вершин.
- 18. Циклы и пути в графах. Независимые множества.
- 19. Отношение достижимости и компоненты связности графа.
- 20. Деревья и леса. Критерии деревьев.
- 21. Двудольные графы. Булев куб.
- 22. Паросочетания.
- 23. Компоненты сильной связности в ориентированных графах.
- 24. Ациклические графы.
- 25. Эйлеровы графы.
- 26. *k*-раскрашиваемые графы.

2. Задачи на понимание материала курса

Задача в билете будет из списка задач, приведенного ниже. Это задачи из листков, выдававшихся в семестре. Номера задач приводятся в соответствии с листками. Например, задача 2.3—это задача 3 из классного листка для второго занятия, задача $\mathcal{J}32.3$ —это задача 3 из домашнего задания ко второму занятию.

На коллоквиуме будет предложено рассказать решение одной из следующих задач:

 $1.2-1.5;\ 1.7-1.9;\ ДЗ1.3-ДЗ1.8;\ 2.2-2.10;\ ДЗ2.1-ДЗ2.10;\ 3.2,\ 3.4-3.8;\ ДЗ3.3-ДЗ3.4;\ ДЗ3.6;\ ДЗ3.8;\ ДЗ3.10;\ 4.2-4.5;\ 4.7;\ 4.8;\ ДЗ4.2;\ ДЗ4.3;\ ДЗ4.5-ДЗ4.9;\ 5.1-5.7;\ ДЗ5.2,\ ДЗ5.3;\ ДЗ5.5-ДЗ5.7;\ ДЗ5.9;\ 6.1-6.6;\ ДЗ6.1;\ ДЗ6.4-ДЗ6.7;\ 7.1-7.7;\ ДЗ7.2;\ ДЗ7.4-ДЗ7.10;\ 8.1-8.8;\ ДЗ8.1-ДЗ8.3;\ ДЗ8.5-ДЗ8.9.$

3. Вопрос на знание доказательств

Ниже указаны утверждения, доказанные в курсе. Про каждое требуется рассказать доказательство. Не обязательно рассказывать доказательство из курса, но нужно быть готовым к дополнительным вопросам о возможности встроить это доказательство в курс (какие факты используются в доказательстве, не возникает ли порочного круга и т.п.).

- 1. Формула для чисел Фибоначчи.
- 2. Число слов из n букв в алфавите размера k.
- 3. Формула для числа монотонных путей по прямой из 0 в n, разрешены шаги длиной 1 и 2.
- 4. Формула для числа монотонных путей по прямой из 0 в n, разрешены шаги любой длины.
- 5. Формула включений-исключений.
- 6. Формула для числа размещений из n по k.
- 7. Формула для числа k-элементных подмножеств в n-элементном множестве (сочетания из n по k).
- 8. Бином Ньютона. Сумма биномиальных коэффициентов. Знакопеременная сумма биномиальных коэффициентов.
- 9. Формула для мультиномиальных коэффициентов.
- 10. Количество решений уравнения $x_1 + x_2 + \cdots + x_k = n$ в неотрицательных целых числах (сочетания с повторениями из n по k).
- 11. Формула для суммы степеней вершин в графе. (Для ориентированных и неориентированных графов.)
- 12. Свойства отношения достижимости в неориентированном графе (рефлексивность, симметричность, транзитивность).
- 13. Разбиение неориентированного графа на компоненты связности.
- 14. Критерии для деревьев: графы без простых циклов, графы с единственностью простых путей.
- 15. Критерий для деревьев: связный граф, в котором разность количества вершин и рёбер равна 1.
- 16. Описание ориентированных графов, в которых все исходящие степени равны 1; все входящие и исходящие степени равны 1.
- 17. 2-раскрашиваемые графы это в точности графы без циклов нечётной длины.
- 18. Свойства отношения связанности в ориентированном графе (рефлексивность, симметричность, транзитивность).
- 19. Разбиение ориентированного графа на компоненты сильной связности.
- 20. Критерии ацикличности графов: через размеры компонент сильной связности; через возможность упорядочения вершин, в котором каждое ребро идёт из вершины с меньшим номером в вершину с большим номером.
- 21. Критерий существования эйлерова цикла в графе: неориентированные и ориентированные графы.
- 22. Теорема Холла.