USTHB Faculté d'Electronique et Informatique Département Informatique Année 2019/2020 SYS01 Section Lic. Isil. A - Dr M. CHENAITmchenait@usthb.dz

Série N° 4 - Corrigé -(Gestion du Processeur Central)

Exercice 1

F1

	I	(Q=2) P3 P3		P1	(Sch	eduler	0		I	В											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Periph																		P2	P2	P2		
CPU	P1	P1	P1	P1	P2	P2	P2	P2	Р3	Р3	Р3	Р3	P1	P1	P1	P1	P2	Р3	Р3	Р3	P3	P2
		P2	P2	P2	Р3	P3	Р3	P3	P1	P1	P1	P1	P2	P2	P2	P2	Р3	P1	P1	P1	P1	P1
			P3	P3	P1	P1	P1	P1	P2	P2	P2	P2	P3	P3	P3	P3	P1					P3
F0 (P1)			<u> </u>	<u> </u>	<u> </u>				<u> </u>						<u> </u>	<u> </u>						

				i	i		i	i	i	i	i	i			
													•		
													•		
T74													•	 D0 '	
Lil													•	 12') .	
P I						•	•						•	 F /	
														 1 – .	
						•	•						•		
													•		

	23	24	25	26	27	28	29	30	31	32						
Periph																
CPU	P2	P1	P1	P3	P3	P3	P3	P2	P2	P2						
	P1	Р3	Р3	P2	P2	P2	P2									
F0	P3	P2	P2													
F1																

Les programmes sont:

F0

F1

- Scheduler + SVC(dem E/S, arrivée, fin de processus)+ Routine fin d'E/S+ Routine fin de Q+ Init (TC1).

```
Scheduler ()

Debut

etiq:

Si (F1 est non vide)

Alors m_pactif =<0,0,Co_pactif >// preparer le mot d'état

Q=2;

activer (F1, pactif);

Sinon

Si (F0 est non vide)

Alors m_pactif =<0,0,Co_pactif >// preparer le mot d'etat

Q=4;

activer (F0, pactif);

Sinon Jump etiq // les deux vides

Fsi;
```

Init () Routine horloge () // s SVC() <SC> incremente chaque 1 Switch case..... <SC> ms préparer les mots d'état des pgmme connus Dem E/S: si periph est libre (+0.25)... Arrivée : P=allouer(PCB); m_h=<1,1,Co_RH> <SC> m_svc=<1,1,Co_svc>// P->nom=nomE; Q1--; Q2--; m_Rf=<1,1,Co_Rf > // P->idf= allouer-id(); Si Q1=0 alors m_sch=<0,0,Co_sch > P->etat="prêt"; Pactif->etat="prêt"; Lpsw(m_ sch); P->mot_etat=<0, 0, adr>; Enfiler(F0, pactif) Enfiler(F0, P); <RC> Lpsw(m_ sch); Fin pgme (): librer_ressources Lpsw(m_ sch); Si Q2=0 alors Pactif->etat="prêt"; <RC> Enfiler(F0, pactif) Lpsw(m_ sch); <RC>

Routine fin E/S ()

```
<SC>
Pactif->etat="prêt";
Enfiler(F1, pactif):
Debloquer les demandes en attente;
<RC> // reprise de scheduler ()
```

Exercice 2

1. Cas non- Préemptif:

Periph CPU

Ftr (F1)

Fsys (F2)

Fuser (F3)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
P1	P1	P2	P2	P2	P4	P5	P5	P3	P3	Р6	Р6	Р6	P7	P7	P7	Р6	P3	P3	P8	P8	P9
-	-	-	P4	P4, P5	P5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	P9	-
P2	P2	-	-	-	-	-	-		P6	P7	P7	P7	Р6	Р6	Р6	-	-	-	-	-	
-	-	P3	P3	Р3	Р3	P3	P3	-	-	-P3	-P3	-P3	Р3	P3	P3, P8	P3, P8	P8	P8	P3	P3	P3, P8

Periph

	23	24	25	26	27	28	29	30	31	32							
ì																	

CPU	P9			P10			Р3	P8	P8	P8						
Ftr (F1)	-	-	-	-	-	-	-	-	-	-						
Fsys (F2)	-P10	P10	-	-	-	-	-	-	-	-						
Fuser (F3)		l	Р3,	P3, P8	P3, P8	P8	P8	-	-	-				_		

Les programmers sont : scheduler, RfinQ, SVC (arrivée, fin pgmme).

```
Scheduler ()
Debut
Attendre:
Si \rightarrow vide(FTR)

alors

Défiler (P-actif, FTR);

P-actif.etat := "Actif";

Lpsw(P-actif);// le rendre actif

sinon si \rightarrow vide(Fsys)

Défiler (P-actif, Fsys);

P-actif.etat := "Actif";

Q1= 3;
```

Lpsw(P-actif);

sinon si \rightarrow vide(Fuser)

```
Défiler (P-actif, Fuser);
                             P-actif.etat := "Actif";
                              Q2= 2;
                           Lpsw(P-actif);
           sinon Jump Attendre;
          Fsi
     Fsi
 fsi
Fin
SVC (cause, .....)
Debut
       <S.G.CXT>
      Cas cause vaut
          Creation: Créer le PCB;
                     PCB.etat := "Prêt";
                     PCB.File := File_correspondante () ;
                     PCB.priorité := prio ; // la priorité de La
                                                               FILE (0, 1, 2), .....
                    si PCB.File=F1 Alors Enfiler (PCB, F1);
                    si PCB.File=F2 Alors Enfiler (PCB, F2);
```

```
si PCB.File=F3 Alors Enfiler (PCB, F3);
// ici Préemptive (Pt) si la politique est Préemptive
        Dem E/S: .... // connu
Fin processus: ... // connu// liberer processus+ appeler
        <R.G .CXT>
Routine d'it Horloge() // la fréquence est 1 ms.
  <S.G.CXT> // à rectifier , prendre en compte l'origine de processus actif
 Q1--, Q2--;
Si si pactif \in à F2 et Q1=0 alors
                                               P-actif.etat := "Prêt";
                                              Enfiler (P, F2);
                                              Fsi;
Si si pactif € F3 et Q2=0 alors
                                               P-actif.etat := "Prêt";
                                              Enfiler (P, F3);
                                              Fsi;
                                          Lpsw(scheduler);
 <R.G.CXT>
```

2. Cas Préemptif:// jusqu'a 10 ms

	1	2	3	4	5	6	7	8	9	10
Periph										
CPU	P1	P1	P2	P4	P5	P5	P2	P2	Р3	P6
Ftr (F1)	-		-	-	-	_	-	-	-	-
Fsys (F2)	P2	P2	-	P2	P2	P2	-	-	-	-
Fuser (F3)	-	-	Р3	Р3	Р3	Р3	Р3	Р3	-	Р3

Préemptive (Pt) // on fait appelle à cette procedure ds le SVC

Debut

Fin.

```
Si (P-actif ≠ Null) et (Pt.priorité > P-actif.priorité)

Alors P-actif.etat := "Prêt";

Enfiler (P-actif, File correspondante());

Lpsw(scheduler);

Fsi;
```