

NEST TUTORIAL - EITN SPRING SCHOOL 2019

11 April 2019 | Alexander van Meegen | INM-6, IAS-6, INM-10; Jülich Research Centre

Multi-scale brain structure and dynamics

The microcircuit model

- 10⁵ identical leaky-integrate and fire neurons
- 3 · 10⁸ exponentially decaying synaptic currents
- four layers with one excitatory and one inhibitory population each
- size of populations and connection probabilities deduced from anatomical data sets

- asynchronous irregular and cell-type specific firing rates
- thalamic stimulation elicits flow of activity through cortical layers

Potjans and Diesmann (2014) The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model. Cerebral Cortex 24(3):785-806

The multi-area model

- full-density model of macaque visual cortex
- axonal tracing data from the CoCoMac database, which are systematically refined using dynamical constraints
- stable asynchronous irregular ground state

- produces realistic spiking statistics in V1
- functional connectivity compares to fMRI measurements

Schmidt et al. (2018) Multi-scale account of the network structure of macaque visual cortex. Brain Structure and Function 223(3):1409-1435

Schmidt et al. (2018) A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas. PLOS CB 14(10):e1006359

Importance of the correct network size

- under which conditions can a small network represent a subsampled larger network?
- analyzes scalability of binary and LIF neuron networks

- mean activity can be preserved by adjusting the mean and variance of the input
- temporal structure of pairwise averaged correlations depends on the effective connectivity and cannot always be preserved

van Albada et al. (2015) Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations. PLOS CB 11(9):e1004490

NEST = NEural Simulation Tool

- Focus on the dynamics, size and structure of neural systems rather than on the exact morphology of individual neurons
- NEST runs on laptops (Linux, Mac OS X (\geq 10.3), Windows via virtualization) as well as supercomputers \rightarrow simulations of large-scale models
- NEST is a hybrid parallel (OpenMP+MPI) simulator for spiking neural networks, written in C++ with a Python front end

 Get publication and source code on http://nest-simulator.org

Programming languages

- C++ kernel
- Built-in simulation language interpreter (SLI)
- Python-based user interface (PyNEST)

- Back end for the simulatorindependent modeling tool PyNN
- Interface to the Multi Simulator Coordinator MUSIC

Three main components of a NEST simulation

Nodes

- Neurons Devices (- Sub-networks)
- Have dynamic state variable(s) that changes over time $(V_m(t))$
- Can be affected by events (spikes)

Events

- Pieces of information of a particular type (e.g., spike, voltage or current event)
- Recording devices: 'spike_detector', 'voltmeter', 'multimeter'

Connections

- Communication channels for the exchange of events
- Directed (from source node to target node)
- Weighted (how strongly does an event influence the target node)
- Delayed (length of transmission duration between source and target)
- Connections are created using one global Connect function

NEST neuron and synapse models

Event-driven vs. time-driven simulation

	Event-driven	Time-driven
Pros	 more efficient for low input rates 'correct' solution for invertible neuron models 	 more efficient for high input rates works for all neuron models scales well
Cons	 only works for neurons with invertible dynamics event queue does not scale well 	 only 'approximate' solution even for analytically solvable models spikes can be missed due to discrete sampling of membrane potential

Event-driven vs. time-driven simulation

NEST: hybrid approach to simulation

- input events to neurons are frequent: time-driven algorithm
 - If the dynamics is nonlinear, we need a numerical method to solve it, e.g.:
 - Forward Euler: $y([i+1]h) = y(ih) + h \cdot \dot{y}(ih)$
 - Runge-Kutta (kth order)
 - Runge-Kutte-Fehlberg with adaptive step size
 - **–** ...
 - ightarrow Use a pre-implemented solver, for example, from the GNU Scientific Library (GSL).
 - If the dynamics is linear (e.g. LIF or MAT), we can solve it exactly.
- events at synapses are rare: event driven component
 - Exception: gap junctions

Exact integration of linear time-invariant systems

• consider time-invariant linear system $\dot{y} = Ay + x$

$$\rightarrow$$
 exact solution: $y(t) = e^{A(t-s)}y(s) + \int_{s_+}^t e^{A(t-\tau)}x(\tau) d\tau$

- time grid: $\{t_k = k \cdot h \mid k = 1, 2, ...\}$; spike train: $x(t) = \sum_k x_k \delta(t t_k)$
- \rightarrow general solution: $y_{k+1} = e^{Ah}y_k + x_{k+1}$
- iterative propagation of solution

with propagator (matrix) $P(h) = e^{Ah}$

Rotter and Diesmann (1999) Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biological Cybernetics 81(5-6):381-402

Representation of network structure: serial

- each neuron and synapse maintains its own parameters
- synapses save the index of the target neuron

Representation of network structure: distributed

- modulo operation distributes neurons
- one target list for every neuron on each machine
- synapse stored on machine that hosts the target neuron
- connections are established on each machine and the connectivity information subsequently propagated to other machines
 - → wiring is a parallelizable task

Creating custom models

- Discuss with developers via user mailing list
 - if your idea makes sense
 - if it has not yet been implemented
- Only create models for NEST versions > 2.10
 - Start from most similar existing model
 - It may end up in a release!
- Extension modules (C++)
 - loaded dynamically (recommended)
 - http://nest.github.io/nest-simulator/extension_modules
- Inside NEST (C++)
- NESTML (NEST Modeling Language)
 - New simplified language with syntax similar to Python (even more recommended)
 - Currently enables developing neuron but not yet synapse models
- Re-compile and re-install after each change

Topology

- Functionality:
 - Lay out elements on grids or at arbitrary points in space (2D or 3D)
 - Elements can be neurons or combinations of neurons and devices
 - Connect neurons in a position- and distance-dependent manner
 - Set periodic boundary conditions
 - Choose whether to allow self-connections (autapses) or multiple connections (multapses)
 - Distance-dependent or random weights and delays
- lacktriangledown User manual: https://www.nest-simulator.org/documentation/ ightarrow Topological connections

Why should I use NEST?

- NEST provides over 50 neuron models
- NEST provides over 10 synapse models, including short-term plasticity (Tsodyks & Markram) and different variants of STDP
- 3 NEST provides many examples that help you getting started
- NEST lets you inspect and modify the state of each neuron and each connection at any time during a simulation
- NEST is fast and memory efficient; it makes best use of your multi-core computer and compute clusters
- 6 NEST has a large and experienced developer community
- NEST was first released in 1994 under the name SYNOD and has been extended and improved ever since
- NEST is open source software and is licensed under the GPL 2

Now hands-on

Install NEST

- Instructions: https://www.nest-simulator.org/documentation/
- On Windows use a virtual machine (USB sticks with image available)
- On Ubuntu you can also use a PPA: ppa:nest-simulator/nest

Get the exercises

- Go to https://github.com/alexvanmeegen/eitn_spring_school
- Download as zip (or clone)

3 Enjoy the ride

- Open O_hello_world.ipynb for a first glance
- Get going with 1_first_steps.ipynb

