Analisi II - settima parte

Integrazione

Integrazione secondo Riemann in \mathbb{R}^n (N=2,3)

Integrazione secondo Riemann su rettangoli in \mathbb{R}^2

Sia $R = [a_1,b_1] imes [a_2,b_2]$ un rettangolo in \mathbb{R}^2

Decomposizione di ${\cal R}$

Siano:

- ullet $a_1 < x_0 < x_1 < ... < x_n = b_1 n + 1$ punti di $[a_1,b_1]$
- $a_2 < y_0 < y_1 < ... < y_m = b_2 m + 1$ punti di $[a_2,b_2]$ Per i=1,...,n e j=1,...,m si pone $R_{ij}=[x_{i-1},x_i] \times [y_{j-1},y_j]$. La collezione di tutti i rettangoli si indica con δ , $\delta=\{R_{ij}:i=1,...,n,j=1,...,m\}$, si dice decomposizione di R

Insieme delle decomposizioni di ${\it R}$

Sia f una funzione **limitata**, $-\infty < l = \inf_R f \leq L = \sup_R f < +\infty$. Si pone $\Delta(R) = \{\delta : \delta \text{ è decomposizione di } R\} \leftarrow \text{è l'insieme delle decomposizioni.}$

Somme inferiori e somme superiori

Sia una $\delta \in \Delta(R)$

$$\sum_{i=1}^m \sum_{i=1}^n l_{ij} \cdot m_2(R_{ij}) = s(\delta,f) o$$
Somma inferiore,

 $\widetilde{l}_{ij} = \inf_{R-ij} f o$ altezza, misurata fino al minimo della funzione in quell'area

$$m_2(R_{ij}) = (x_i - x_{i-1})(y_j - y_{j-1})
ightarrow A_{ ext{base}}$$
 , $orall i = 1,...,n, j = 1,...,m$

 $l_{ij} \cdot m_2$ è dunque il volume inscritto nella figura solida, delimitata dal valore minimo della funzione e dal piano xy

$$\sum_{j=1}^m \sum_{i=1}^n L_{ij} \cdot m_2(R_{ij}) = \mathbb{S}(\delta,f) o$$
Somma superiore,

 $L_{ij} = \sup_{R-ij} f
ightarrow$ altezza, misurata fino al massimo della funzione in quell'area

$$m_2(R_{ij}) = (x_i - x_{i-1})(y_j - y_{j-1})
ightarrow A_{ ext{base}}, orall i = 1,...,n, j = 1,...,m$$

 $L_{ij} \cdot m_2$ è dunque il volume del parallelpipedo circoscritto alla figura solida, delimitata dal valore massimo della funzione e dal piano xy

Proposizione

$$orall \delta_1, \delta_2 \in \Delta(R)$$
, si ha $s(\delta_1, f) \leq \mathbb{S}(\delta_2, f)$

Conseguenza

Le classi

$$\sigma(f)=\{s(\delta,f):\delta\in\Delta(R)\}$$
 e $\Sigma(f)=\{\mathbb{S}(\delta,f):\delta\in\Delta(R)\}$ sono classi separate

Integrale secondo Riemann su un rettagolo in \mathbb{R}^2

Se $\sigma(f)$ e $\Sigma(f)$ sono classi contigue, cioè $sup\sigma(f)=inf\Sigma(f)$, allora si dice che f è integrabile su R e si pone $\int\int_R f(x,y)dxdy=sup\sigma(f)=inf\Sigma(f)$

Significato geometrico

Sia
$$f:R(\subseteq\mathbb{R}^2) o\mathbb{R}$$
, integrabile su R e $f(x,y)>0$ in R . Si pone $T=\{(x,y,z)^T\in R, 0< z\leq f(x,y)\}$. Si ha $m_3(T)=\int\int_R f(x,y)dxdy$

Integrazione secondo Riemann su un parallelepipedo in \mathbb{R}^3

• Sia $R = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$

Decomposizione di R

- $a_1 < x_0 < x_1 < ... < x_n = b_1 n + 1$ punti di $[a_1, b_1]$
- ullet $a_2 < y_0 < y_1 < ... < y_m = b_2 m + 1$ punti di $[a_2,b_2]$
- $a_3 < z_0 < z_1 < ... < z_m = b_3l + 1$ punti di $[a_3,b_3]$ Per $i=1,...,n,\,j=1,...,m,\,k=1,...,l.$ La collezione $\delta=\{R_{ijk}:i=1,...,n,j=1,...,m,k=1,...,l\}$ si dice decomposizione di R.

 $\Delta(R)$ è l'insieme di tutte le composizioni di R

Somme inferiori e somme superiori

Sia δ una decomposizione di R, $\delta \in \Delta(R)$, si pone

$$egin{aligned} \sum_{k=1}^{l} \sum_{j=1}^{n} j &= 1^m \sum_{i=1}^{n} l_{ijk} m_3(R_{ijk}) = s(\delta,f) \ \sum_{k=1}^{l} \sum_{j=1}^{n} j &= 1^m \sum_{i=1}^{n} L_{ijk} m_3(R_{ijk}) = S(\delta,f) \end{aligned}$$

dove
$$l_{ijk}=\inf_{R_{ijk}}f\leq L_{ijk}=\sup_{R_{ijk}}f$$
 e $m_3(R_{ijk})=(x_i-x_{i-1})(y_j-y_{j-1})(z_k-z_{k-1})$, per $i=1,...,n$, $j=1,...,m$, $k=1,...,l$.

Proposizione

$$orall \delta_1, \delta_2 \in \Delta(R)$$
 si ha $s(\delta_1, f) \leq S(\delta_2, f)$

Conseguenza

Le classi

$$\sigma(f)=\{s(\delta,f):\delta\in\Delta(R)\}$$
 e $\Sigma(f)=\{\mathbb{S}(\delta,f):\delta\in\Delta(R)\}$ sono classi separate

Integrale secondo Riemann su un parallelepipedo su ${\cal R}$

Se $\sigma(f)$ e $\Sigma(f)$ sono contigue, cioè $sup\sigma(f)=inf\Sigma(f)$, allora si dice che f è integrabile su R e si pone $\iiint_R f(x,y,z)dxdydz=sup\sigma(f)=inf\Sigma(f)$

Rettangoli n-dimensionali ("n-rettangoli") e integrazione su n-rettangoli

Se n=1, allora $R=[a,b]\subseteq\mathbb{R}$ è un rettangolo 1-dimensionale, "1-rettangolo" Se n=2, allora $R=[a_1,b_1]\times[a_2,b_2]\subseteq\mathbb{R}^2$ è un rettangolo 2-dimensionale, "2-rettangolo"

In generale $R=[a_1,b_1] imes[a_2,b_2] imes\cdots imes[a_n,b_n]\subseteq\mathbb{R}^n$ è un rettangolo n-dimensionale, "n-rettangolo"

La stessa costruzione fatta in precedenza permette di definire l'integrale di $f:R(\subseteq\mathbb{R}^n) o\mathbb{R}$, con R rettangolo limitato, si indica con $\int_R f$

Condizioni di integrabilità

Se $f:R(\subseteq\mathbb{R}^n) o\mathbb{R}$, Rn-rettangolo, continua, allora f è integrabile su R

Formula di riduzione

Problema

Come calcolare un integrale doppio o un integrale triplo?

- n=1 se $f:R=[a,b](\subseteq\mathbb{R}) o\mathbb{R}$ è continua allora $\int_a^bf(x)dx=F(b)-F(a)$, per il teorema di Torricelli, con F'=f in R
- ullet $n\geq 2$ si cerca di ridurre l'integrale doppio (triplo) a due (tre) successive integrazioni unidimensionali

Formule di riduzione per integrali doppi su rettangoli

Teorema di Fubini

Se $f:R=[a,b] imes [c,d](\subseteq\mathbb{R}^2) o\mathbb{R}$, è integrabile su R e, per ogni $\overline{x}\in[a,b]f(\overline{x},\cdot):[c,d] o\mathbb{R}$ (x fissato, y libero), è integrabile su [c,d], allora, posto $g(x)=\int_c^d f(x,y)dy$, si ha che $g:[a,b] o\mathbb{R}$ è integrabile, $\int_a^b g(x)dx=\iint_R f(x,y)dxdy$, cioè $\underbrace{\int_a^b (\int_c^d f(x,y)dy)dx}_{\text{integrale iterato}}=\underbrace{\iint_R f(x,y)dxdy}_{\text{integrale doppio}}, \text{ dove l'integrale doppio si ricava dalle somme}$ inferiori e superiori

NB

Vale il risultato analogo in cui x e y si scambiano i ruoli nel teorema di Fubini: Se $f:R=[a,b]\times [c,d](\subseteq\mathbb{R}^2)\to\mathbb{R}$, integrabile su R e $\forall \overline{y}\in [c,d]$ la funzione $f(\cdot,\overline{y}):[a,b]\to\mathbb{R}$ è integrabile su [a,b], allora, posto $h(y)=\int_a^b f(x,y)dx$, la funzione $h:[c,d]\to\mathbb{R}$ è integrabile su [c,d] e $\int_c^d h(y)dy=\iint_R f(x,y)dxdy$ cioè $\int_c^d (f(x,y)dx)dy=\iint_R f(x,y)dxdy$

Osservazione

Se $f:R o\mathbb{R}$, è continua allora valgono entrambe le versioni del teorema di Fubini

Formule di riduzione per integrazione su parallelepipedi rettangoli in \mathbb{R}^3

Due strade percorribili:

1. Integrazione per corda

2. Integrazione per corda

Riduzioni per corde

Teorema di Fubini

Se $f: R=[a_1,b_1] imes [a_2,b_2] imes [a_3,b_3] o \mathbb{R}$, integrabile su R e, $\forall (\overline{x},\overline{y}) \in S=[a_1,b_1] imes [a_2,b_2]$ la funzione $f((\overline{x},\overline{y},\cdot)$ è integrabile su $[a_3,b_3]$, allora posto $g(x,y)=\int_{a_3}^{b_3} f(x,y,z)dz$, la funzione $g: S \to \mathbb{R}$ è integrabile su S e $\iint_S g(x,y)dxdy=\iiint_R f(x,y,x)dxdydz$, cioè $\iint_S (\int_{a_3}^{b_3} f(x,y,z)dz)dxdy=\iiint_R f(x,y,z)dxdydz$ Valgono analoghi gli altri risultati in cui le variabili si scambiano i ruoli

Riduzione per sezione

Teorema di Fubini

Sia $f:R=[a_1,b_1] imes [a_2,b_2] imes [a_3,b_3] o \mathbb{R}$, integrabile su R. $orall \overline{z}\in [a_3,b_3]$ la funzione $f(\cdot,\overline{z})$ è integrabile su $S=[a_1,b_1] imes [a_2,b_2]$, allora posto $h(z)=int_Sf(x,y,z)dxdy$, la funazione $h:[a_3,b_3] o \mathbb{R}$ è integrabile su $[a_3,b_3]$ e $\int_{a_3}^{b_3}h(z)dz=\iiint_R f(x,y,z)dxdydz$, cioè $\int_{a_3}^{b_3}(\iint_S f(x,y,z)dxdy)dz)=\iiint_R f(x,y,z)dxdydz$. Valgono analoghi gli altri risultati in cui le variabili si scambiano i ruoli

Proprietà dell'integrale su *n*-rettangoli

Sia $R(\subseteq \mathbb{R}^n)$ un n-rettangolo e si ponga $\mathscr{R}(R)=\{f_R o \mathbb{R}$, f integrabile su $R\}$.

• Linearità Se $f,g\in\mathscr{R}(R)$ e $\alpha,\beta\in\mathbb{R}$, allora $\alpha f+\beta g\in\mathscr{R}(R)$ e $\int_R(\alpha f+\beta g)=\alpha\int_R f+\beta\int_R g$

 $\mathscr{R}(R)$ è uno spazio vettoriale e l'integrale è un'applicazione lineare

• Monotonia

Se
$$f,g\in\mathscr{R}(R)$$
 e $f(\underline{x})\leq g(\underline{x})orall \underline{x}\in R$, allora $\int_R f\leq \int_R g$

Integrale del prodotto

Se
$$f,g\in\mathscr{R}(R)$$
, allora $f\cdot g\in\mathscr{R}(R)$

Integrale del valore assoluto

Se
$$f \in \mathscr{R}(R)$$
, allora $|f| \in \mathscr{R}$ e $|\int_R f| \leq \int_R |f|$

Proprietà della media

Se
$$f\in \mathscr{R}(R)$$
, allora

$$\inf_R f = l < rac{\int_R f}{m_n(R)} < L = \sup_R f$$

Inoltre se
$$f$$
 è continua, allora esiste $\underline{x}^0 \in R$ t.c. $\underbrace{f(\underline{x}^0)}_{Valormedio} = \underbrace{\frac{\int_R f}{m_n(R)}}_{mediaintegrale}$

Integrale della restrizione

Se
$$f \in \mathscr{R}(R)$$
 e $R' \subseteq R$ è un n -rettangolo allora $f_{|_{R'}} \in \mathscr{R}(R')$

Additività rispetto al dominio

Se
$$R,R',R''$$
 sono n -rettangoli tali che $R'\cup R''=R$ e $int(R')\cap int(R'')=\emptyset$ e $f:R o \mathbb{R}$ t.c. $f_{|_{R'}}\in \mathscr{R}(R')$ e $f_{|_{R''}}\in \mathscr{R}(R'')$ allora $f\in \mathscr{R}(R)$ e $\int_R f=\int_{R'} f+\int_{R''} f$

Insufficienza della teoria dell'integrazione su n-rettangoli

Come definire l'area di E?

$$E = \{(x, y)^T : 0 < y < x^2 \land y \le 1 - x\}$$

Come calcolare il volume di E?

$$E = \{(x,y,z)^T : x^2 + y^2 \le 1 + z^2, 0 \le z \le 4\}$$

Integrazione di funzione limitate su insiemi limitati

Sia $E(\subseteq \mathbb{R}^n)$, un insieme limitato e sia $f:E \to \mathbb{R}$ una funzione limitata. Sia R un n-rettangolo t.c. $E\subseteq R$

Si ponga
$$f:0:R o\mathbb{R}$$
 con $f_0(\underline{x})f_0(\underline{x})=egin{cases} f(\underline{x}),\underline{x}\in E\ x,\underline{x}\in R\setminus E \end{cases}$

Si dice che f è integrabile su E se la funzione f_0 è integrabile su R e si pone $\int_E f = \int_R f_0$

Osservazione

La definizione non dipende da particolare n-rettangolo R con $E\subseteq R$

Problema

In generale, anche se f è continua in Ef_0 può essere discontinua su R.

Come stabilire, allora l'integrabilità di f_0 su R?

Bisogna trarre condizioni più generali della continuità che garantiscano l'integrabilità su n-rettangoli

Teoria della misura secondo Peano-Jordan

Insieme misurabile

Sia $E\subseteq\mathbb{R}^n$ un insieme limitato, si dice che E è misurabile (secondo P-J) in \mathbb{R}^n se la funzione 1 è integrabile su E e si pone $m_n=\int_E 1$

Osservazione

Funzione caratteristica di un insieme:

Sia
$$E(\subseteq \mathbb{R}^n)$$
 la funzione $\mathbf{X}_E:\mathbb{R}^n o \mathbb{R}$ definita da $\mathbf{X}_E(\underline{x}) = egin{cases} 1, \underline{x} \in E \\ \underline{x} \notin E \end{cases}$. Si dice funzione caratteristica di E

Osservazione

Un insieme $E(\subseteq \mathbb{R}^n)$ limitato è misurabile se e solo se $\mathrm{X}(E)$ è integrabilie su un n-rettangolo $R\supseteq E$

Definizione

$$\mathscr{M}(\mathbb{R}^n)=\{E\subseteq\mathbb{R}^n: E ext{ è misurabile in } \mathbb{R}^n\}$$
 e $m_n:\mathscr{M}(\mathbb{R}^n) o\mathbb{R}$, con $m_n(E)=\int_E 1$

Proprietà della misura

1. Se
$$A,B\in\mathscr{M}(\mathbb{R}^n)$$
, allora $A\cap B,A\cup B,A\setminus B\in\mathscr{M}(\mathbb{R}^n)$

• Dimostrazione. Poichè $A,B\in \mathscr{M}(\mathbb{R}^n)$, \mathcal{X}_A , \mathcal{X}_B sono integrabili in R. Si ha: $\mathcal{X}_{A\cap B}=\mathcal{X}_A\cdot\mathcal{X}_B$, che è integrabile in R.

Si ha
$$\mathcal{X}_{A\cup B}=\mathcal{X}_A+\mathcal{X}_B-\mathcal{X}_{A\cap B}$$
 che è integrabile su R e inoltre $\int_R\mathcal{X}_{A\cup B}=\int_R\mathcal{X}_A+\int_R\mathcal{X}_B-\int_R\mathcal{X}_{A\cap B}$. quindi $m_n(A\cup B)=m_n(A)+m_n(B)-m_n(A\cap B)$.

Si ha
$${\cal X}_{A\setminus B}={\cal X}_A-{\cal X}_{A\cap B}$$
 e $\int_R {\cal X}_{A\setminus B}=\int_R {\cal X}_A-\int_R {\cal X}_{A\cap B}$, $m_n(A\setminus B)=m_n(A)-m_n(A\cap B)$

2. Se
$$A,B\in\mathscr{M}(\mathbb{R}^n)$$
 e $A\subseteq B$. aòòpra $m_n(A)\leq m_n(B)$.

• Dimostrazione. Se $A\subseteq B$, allora $orall \underline{x}\in R$ si ha $\mathcal{X}_1(\underline{x})\leq \mathcal{X}_2(\underline{x})$ e quindi $\int_R \mathcal{X}_A \leq \int_R \mathcal{X}_B$

Insieme di misura nulla o insieme trascurabile

Sia $T(\subseteq \mathbb{R}^n)$ limitato. Si dice che T è **trascurabile in** \mathbb{R}^n (o di misura nulla) se $m_N(T)=0$

Proposizione (caratteristica dell'insieme trascurabile)

Sia $T\subseteq\mathbb{R}^n$. Si ha che T è trascurabile in \mathbb{R}^n se e solo se $orall arepsilon>0 \exists R_1,..,R_k n$ -rettangoli tali

che
$$T\subseteq igcup_{i=1}^k R_i$$
 e $\sum_{i=1}^k m_n(R_i)$

Proprietà

- 1. Se $T=\{\underline{x}^0\}\subseteq \mathbb{R}^n$, allora $m_n(T)=0$, $orall n\geq 1$
- 2. Se $T=\{\underline{x}^1,...,\underline{x}^n\}\subseteq \mathbb{R}^n$, allora $m_n(T)=0 orall n\geq 1$
- 3. Se $T\subseteq \mathbb{R}^n$ è un 1-rettangolo, allora $m_n(T)=0 orall n\geq 2$
- 4. Se $T\subseteq \mathbb{R}^n$ è un 2-rettangolo, allora $m_n(T)=0 orall n\geq 3$
- 5. Se $\varphi:R(\subseteq\mathbb{R}^n)\to\mathbb{R}$ è integrabile sul n-rettangolo R, allora $G(\varphi)=\{(\underline{x},\varphi(\underline{x}):\underline{x}\in R\}\subseteq\mathbb{R}^n$
- Dimostrazione. Caso n=1. Poichè $\varphi:R=[a,b] o\mathbb{R}$ è integrabile $sups(\delta,\varphi)=infS(\delta,\varphi)$. Fissato $\varepsilon>0$, Esiste $\delta\in\Delta(R)$ t.c. $\varepsilon>S(\delta)-s(\delta)=\sum_{i=1}^kL_i(x_i-x_{i-1})-\sum_{i=1}^kl_i(x_i-x_{i-1})$. $R_i=[x_{i-1},x_i] imes[l_i,L_i]$, per i=1,...,k, t.c. $G(\varphi)=R_1\cup R_2\cup...R_k$

Condizione di integrabilità su n-rettangoli

Teorema

Se $f:R(\subseteq\mathbb{R}^n) o\mathbb{R}$, Rn-rettangolo, è limitata e continua su $R\setminus T$, con $m_n(T)=0$, allora f è integrabile su R.

Teorema (caratterizzazione degli insiemi misurabili in \mathbb{R}^n)

Sia $E\subseteq\mathbb{R}^n$ un insieme limitato. Si ha che E è misurabile in \mathbb{R}^n se e solo se $m_n(frE)=0$

Dimostrazione

Proviamo solo che se $m_n(frE)=0$, allora E è misurabile in \mathbb{R}^n .

Sia R un n-rettangolo con $E\subseteq R$.

La funzione caratteristica \mathcal{X}_E è limitata su R e continua su $R\setminus frE$. Dunque \mathcal{X}_E è integrabile e pertanto E è misurabile in \mathbb{R}^n .

Condizione di integrabilità su insiemi limitati

Se $f: E(\subseteq \mathbb{R}^n) \to \mathbb{R}$ è continua su E, compatto, misurabile, allora f è integrabile su E.

Dimostrazione

Poichè f è continua su E compatto, f è limitata su E.

Sia R un n-rettangolo con $E\subseteq R$ e sia $f_0:R o R$ definita da $f_0(\underline{x})=egin{cases} f(\underline{x}),\underline{x}\in E\ 0,\underline{x}\in R\setminus E \end{cases}$

 f_0 è limitata su R ed è continua su $R\setminus frE$, con $m_n(frE)=0$, essendo E misurabile in \mathbb{R}^n . Quindi f_0 è integrabile su R e perciò f è integrabile su E

Proprietà dell'integrale su insiemi misurabili

- Linearità
- Monotonia
- Integrale del prodotto
- Integrale del valore assoluto
- Proprietà della media

Se $f: E(\subseteq \mathbb{R}^n) \to \mathbb{R}$ è integrabile su E misurabile allora $\inf_E f \leq \frac{\int_E f}{m_n(E)} \leq \sup_E f$ Se risulta E insieme compatto e connesso, allora $\exists \underline{x}^0 \in E$ t.c. $f(\underline{x}^0) = \frac{\int_E f}{m_n(E)}$

- Integrale rispetto al dominio Se $A,B,C(\subseteq\mathbb{R}^n)$ sono insiemi misurabili tali che $C=A\cup B$ e $m_n(A\cap B)=0$ e $f:C\to\mathbb{R}$ è t.c. $f_{|_A}$ è integrabile su A e $f_{|_B}$ è integrabile su B, allora f è integrabile su C e $\int_C f=\int_A f+\int_B f$
- Integrale della restrizione Se $f:A(\subseteq \mathbb{R}^n) o \mathbb{R}$ è integrabile su A misurabile e $B\subseteq A$ è misurabile allora $f_{|_B}$ è integrabile su B
- Invarianza dell'integrale rispetto agli insiemi di misura nulla Se $f_E(\subseteq\mathbb{R}) o\mathbb{R}$ integrabile su E misurabile, $g:E o\mathbb{R}$ è imitata e $f(\underline{x})=g(\underline{x})$ su $E\setminus T$ con $m_n(T)=0$, allora g è integrabile su E e $\int_E g=\int_E f$

Metodi per il calcol di integrali su insiemi limitati

Formule di riduzione per integrali doppi

Insiemi normali in \mathbb{R}^2 .

Siano $\varphi,\psi:[a,b]\to\mathbb{R}$ continue con $\varphi(x)\leq \psi(x)$ in [a,b] L'insieme $E=\{(x,y)^T:a\leq x\leq b, \varphi(x)\leq y\leq \psi(x)\}$ si dice insieme normale rispetto all'asse x, Analogamente si hanno insiemi normali rispetto all'asse y

Proposizione

Ogni insieme normale è un compatto misurabile in \mathbb{R}^2

Dimostrazione

È ovvio che E è in compatto. Proviamo che è misurabile verificando che frE è trascurabile in \mathbb{R}^2 . Si ha $frE=G(arphi)\cup G(\psi)\cup \sigma_a\cup \sigma_b$, con $\sigma_a=\{(a,y)^T:arphi(a)\leq y\leq \psi(a)\}$ e $\sigma_b = \{(b, y)^T : \varphi(b) \leq y \leq \psi(b)\}.$

Poichè φ e ψ sono integrabili su [a,b], $G(\varphi)$ e $G(\psi)$ sono trascurabili in \mathbb{R}^2 e così pure i seguenti σ_a , σ_b . Dunque $m_2(frE)=0$

Teorema

Se
$$f:E(\subseteq \mathbb{R}^2) o \mathbb{R}$$
 è continua ed E e $\iint_E f(x,y)dxdy=\int_a^b (\int_{arphi(x)}^{\psi(x)} f(x,y)dy)dx$

Dimostrazione

L'integrabilità di f su E seque dal teorema e dalla proposizione precedente

Poniamo
$$m=\displaystyle{\min_{[a,b]}}arphi$$
 e $M=\displaystyle{\max_{[a,b]}}\psi$ e $R=[a,b] imes[m,M]$

Poniamo
$$m=min arphi$$
 e $M=max \psi$ e $R=[a,b] imes [m,M]$ $f_0:R o \mathbb{R}$, dove $f_0(x,y)=egin{cases} f(x,y),(x,y)^T\in E \ 0,(x.y)^T\in R1setminusE \end{cases}$

Si ha f_0 integrabile su R e $f_0(\overline{x},\dot{\cdot}):[m,M] o\mathbb{R}$, è limitata e continua su $[m,M]\setminus$ $[\varphi(\overline{x}), \psi(\overline{x})]$ e quindi integrabile. Il teorema di Fubini si può applicare e

$$\iint_R f_o(x,y) dx dy = \int_a^b (\int_m^M f(x,y) dy) dx = \int_a^b (\underbrace{\int_m^{arphi(x)} f_0(x,y) dy}_0) +$$

$$\iint_R f_o(x,y) dx dy = \int_a^b (\int_m^M f(x,y) dy) dx = \int_a^b (\underbrace{\int_m^{\varphi(x)} f_0(x,y) dy}_{=0} + \underbrace{\int_a^{\psi(x)} f_0(x,y) dy}_{=0} + \underbrace{\int_a^b (\int_{\varphi(x)}^{\psi(x)} f_0(x,$$

Vale un analogo risultato per gli insiemi normali rispetto all'asse y

Formule di riduzione per gli integrali tripli

Riduzione per corde

Insiemi normali in \mathbb{R}^3

Siano $\Phi,\Psi:K(\subseteq\mathbb{R}^2) o\mathbb{R}$ continue con $\Phi(x,y)\leq \Psi(x,y)$ in K , con K compatto e misurabile.

L'insieme $E = \{(x,y,z)^T: (x,y)^T \in K, \Phi(x) \leq z \leq \Psi(x)\}$ si dice insieme normale rispetto al piano xy.

Analogamente si definiscono insiemi normali rispetto ai piani xz e yx

Proposizione

Ogni insieme normale è un compatto misurabile in \mathbb{R}^3 .

Teorema (integrazione per corde)

Se $f: E(\subseteq \mathbb{R}^3) \to \mathbb{R}$ è continua e E èun insieme normale rispetto al piano xy, allora f è integrabile su E e $\iiint_E f(x,y,z) dx dy dz = \iint_K (\int_{\Phi(x)}^{\Psi(x)} f(x,y,z) dz) dx dy$. Valgono analoghe le formule per insiemi normali rispetto agli altri due piani

Riduzione per sezioni

Insiemi sezionabili in \mathbb{R}^3

Sia E un compatto misurabile in \mathbb{R}^3 . Si dice che E è un insieme sezionabile in \mathbb{R}^3 rispetto all'asse z se posto $m=min\{z:(x,y,z)^T\in E\}$ e $M=max\{z:(x,y,z)^T\in E\}$. $\forall \overline{z}\in [m,M]$, la sezione $S_{\overline{z}}=\{(x,y)^T|(x,y,\overline{z})^T\in E\}$ sia misurabile in \mathbb{R}^2 . Analogamente si definiscono gli insiemi sezionabili rispetto agli assi x e y

Teorema (integrazione per sezioni)

Sia $f:E(\subseteq\mathbb{R}^2) o\mathbb{R}$ è continua, con E insieme sezionabile. Si ha $\iiint_E f(x,y,z)dxdydz=\int_m^M(\iint_{S_z} f(x,y,z)dxdy)dz$ Valgono risultati analoghi per gli insiemi sezionabili rispetto agli assi x e y.

Solidi di rotazione

Siano $\varphi,\psi:[a,b]\to\mathbb{R}$ continue, con $0\le \varphi(z)\le \psi(z)$ e sia $D=\{(x,z)^T,a\le z\le b, \varphi(z)\le x\le \psi(z)\}$. Il solido $E=\{(x,y,z)^T:a\le z\le b, \varphi(z)\le \sqrt{x^2+y^2}\}\le \psi(z)$ ottenuto facendo ruotare di $2\pi D$ intorno all'asse z si dice solido di rotazione rispetto all'asse z.

I Teorema di Pappo-Guldino

Ogni solido di rotazione è un compatto misurabile (anzi, sezionabile rispeto all'asse z) e $m_3(E)=2\pi x_Bm_2(D)$, dove x_b è l'ascissa del baricentro di D. ($S_z=\{(x,y)^T:\varphi(z)\leq \sqrt{x^2+y^2}\leq \psi(z)\}$)

Dimostrazione

E è misurabile rispetto all'asse z.

$$m_3(E)=\iiint_E 1dxdydz=\int_a^b(\iint_{S_z}1dxdy)dz=\int_a^b m_2(S_z)dz=\int_a^b(\pi\psi^2(z)-\piarphi^2(z))dz=2\pi\int_a^b(rac{1}{2}\psi^2(z)-rac{1}{2}arphi^2(z))dz=$$

$$egin{aligned} &=2\pi\int_a^b\left[rac{x^2}{2}
ight]_{arphi(z)}^{\psi(z)}dx=2\pi\int_a^b(\int_{arphi(z)}^{\psi(z)}xdx)dz=2\pi\iint_Dxdxdz=2\pi m_2(D)\cdot \ &rac{\iint_Dxdxdz}{m_2(D)}=2\pi x_bm_2(D). \end{aligned}$$

 $2\pi x_b$ è la distanza sulla circonferenza che il baricentro percorre

Cambio di bariabili negli integrali multipli

ullet Caso N=1

Teorema

Se $f:I=[a,b] o\mathbb{R}$ è continua è arphi:K=[lpha,eta] o I è t.c.

1.
$$arphi \in C^1$$

2. φ è biiettiva

3.
$$arphi'(t)
eq 0 orall t \in K$$
, cioè $arphi'(t) > 0 orall t \in K$ o $arphi'(t) < 0 orall t \in K$

allora
$$\int_a^b f(x)dx = \begin{cases} \int_\alpha^\beta f(\varphi(t))\varphi'(t)dt \\ \int_\beta^\alpha f(\varphi(t))\varphi'(t)dt \end{cases}, \text{ cioè}$$

$$\int_\alpha^\beta f(\varphi(t))\varphi'(t)dt = -\int_\beta^\alpha f(\varphi(t))\varphi'(t)dt$$
 cioè
$$\int_a^b f(x)dx = \int_\alpha^\beta f(\varphi(t))\varphi'(t)dt$$

Integrali generalizzati in \mathbb{R}^n

Premessa

Come definire:

$$\iint_{\mathbb{R}^2} e^{-x^2-y^2} dx dy$$

Insieme localmente misurabile

Sia $J\subseteq\mathbb{R}^n$. Si dice che J è localmente misurabile uin \mathbb{R}^n se $\forall E$, insieme misurabile in \mathbb{R}^n si ha che $J\cap E$ è misurabile in \mathbb{R}^n

Funzione localmente integrabile

Sia $f:J(\subseteq \mathbb{R}^n) \to \mathbb{R}$ una funziona, J localmente misurabile in \mathbb{R}^n . Si dice che f è localmente integrabile se essite una successione $(A_n)_n$ di insiemi **misurabili** in \mathbb{R}^n t.c.

- 1. $A_n \supset An + 1 \forall n$
- 2. orall E insieme misurabile in \mathbb{R}^n , con $E\subseteq J$, $\lim_{n o +\infty}(m_n(E\setminus A_n))=0$
- 3. $f_{|_{A_n}}$ è integrabile su A_n , orall n

Funzione integrabile in seno generalizzato

Sia $f:J(\subseteq\mathbb{R}^n) o\mathbb{R}$ localmente integrabile su J localmente misurabile, con $f(\underline{x})\geq 0$ $orall x\in J$.

Si dice che f è integrabile in senso generalizzato su J se esiste **finito** $\lim_{n \to +\infty} \int_A f$ e si poine

$$\int_{J}f=\lim_{n
ightarrow+\infty}\int_{A_{n}}f$$

NB

esiste sempre finito o infinito $\lim_{n o +\infty} \int_{A_n} f$ poichè $\int_{A_n} f \leq \int_{A_n} f orall n$ (per monotonia)

Teorema

Sia $f:J(\subseteq\mathbb{R}^n) o\mathbb{R}$ localmente integrabile su J localmente misurabile. Se $(A_n)_n$ e $(B_n)_n$ sono successioni di insiemi misurabili in \mathbb{R}^n verificanti (1), (2) e (3), allora $\lim_{n\to+\infty}\int_{A_n}f=\lim_{n\to+\infty}\int_{B_n}f$

Integrale in senso generalizzato (caso generale)

 $f:J(\subseteq\mathbb{R}^n) o\mathbb{R}$ localmente integrabile su J localmente misurabile. Si dice che f è integrabile in senso generalizzato su J se e solo se $f^+(\underline{x})$ e $f^-(\underline{x})$ sono integrabili in senso generalizzato su J e si pone $\int_J f = \int_J f^+ - \int_J f^-$

Teorema

Sia $f:J(\subseteq\mathbb{R}^n) o\mathbb{R}$ localmente integrabile su J localmente misurabile. Si ha che f è integrabile in senso generalizzato su J se e solo se |f| è integrabile in senso generalizzato su J

Inoltre risulta $\int_J f = \lim_n \int_{A_n} f$, dove $(A_n)_n$ è una successone di insiemi misurabili verificante (1), (2) e (3).

Misure in senso generalizzato in \mathbb{R}^n

Sia J localmente misurabile in \mathbb{R}^n . Si dice che J è misurabile in senso generalizzato in \mathbb{R}^n se \mathcal{X}_J è integrabile in senso generalizzato su J e si pone $m_n(J)=\int_J 1$

Misurazione e integrazione su curve e superfici

Lunghezza di una curva in \mathbb{R}^n (n=2 o n=3)

Idea - Rettificabilità e lunghezza di una curva

Sia $Y:I=[a,b] o\mathbb{R}$ continua. Sia $\delta\in\Delta(I)$ individuata dai nodi $a=t_0,t_1,...,t_n=b$ Si consideri la poligonale $\pi(\delta)$ formata dagli n segmenti $\sigma_i(t):[0,1] o\mathbb{R}^n$ con $\sigma_i(s)=\gamma(t_{i-1})+s(\gamma(t_i)-\gamma(t_{i-1}))$, per i=1,...,n

Si ha
$$l(\pi(\delta)) = \sum_{i=1}^n ||\gamma(t_i) - \gamma(t_{i-1})||$$
 se $\sup_{\delta \in \Delta(I)} l(\pi(\delta)) < +\infty$, si dice che γ è rettificabile e si pone $l(\gamma) = \sup_{\delta \in \Delta(I)} l(\pi(\delta))$

Osservazione

Non tutte le curve continue sono rettificabili

Lemma

Se
$$g:[a,b] o\mathbb{R}^n$$
 è continua, allora si pone $\int_a^bg(t)dt=(\int_a^bg_1(t)dt,...,\int_a^bg_n(t)dt)^T$ e si ha $||\underbrace{\int_a^bg(t)dt}||\leq\int_a^b||g(t)||dt$

Teorema di rettificabilità

Se
$$\gamma:I=[a,b] o\mathbb{R}$$
 è di classe C^1 , allora γ è rettificabile e $l(\gamma)=\int_a^b||\gamma'(t)||dt$

Dimostrazione

Sia
$$\delta \in \Delta(I)$$
. Si ha $l(\pi(\delta)) = \sum_{i=1}^n ||\gamma(t_i) - \gamma(t_{i-1})|| = \sum_{i=1}^n ||\int_{t_{i-1}}^{t_i} \gamma'(t) dt|| \leq \sum_{i=1}^n \int_{t_{i-1}}^{t_i} ||\gamma'(t)|| dt = \int_a^b ||\gamma'(t)|| dt < +\infty$ Quindi risulta $\sup_{\delta \in \Delta(I)} l(\pi(\delta)) \leq \int_a^b ||\gamma'(t)|| dt < +\infty$

Poichè γ è rettificabile e $l(\gamma) \leq \int_a^b ||\gamma'(t)|| dt < +\infty$ si pone la validità della disuguaglianza posta

Lunghezza di una curva in forma cartesiana

Sia
$$f:[a,b] o\mathbb{R}$$
 di classe C^1 una curva in forma cartesiana $\gamma(t)=(t,f(t))^T$, $t\in[a,b]$, rettificabile $l(G(f))=\int_a^b\sqrt{1+(f'(t))^2}dt$

Lunghezza di una curva in forma polare

Sia
$$ho:(\cdot):[lpha,eta] o\mathbb{R}\in C^1$$
 con $ho(\vartheta)\geq 0$ in $[lpha,eta]$ una curva in forma polare $\gamma(\vartheta)=(
ho(\vartheta)cos\vartheta,
ho(\vartheta)sin\vartheta)^T$, $l(\gamma)=\int_lpha^\beta||\gamma'(t)||d\vartheta=\int_lpha^\beta\sqrt{(
ho(\vartheta))^2+(
ho'(\vartheta))^2}d\vartheta$