Name: Muhammad Laraib Akhtar

Rall no: 211-5294

Assignment no: 3

Course: Probability and Statistics.

Question 1

$$P(+ve) = P(A_1) P(+ve/A_1) + P(A_2) P(+ve/A_2) + P(A_3) P(+ve/A_3)$$

$$= (0.5)(0.1) + (1/6)(0.2) + (1/3)(0.9)$$

$$= 0.05 + 0.0333 + 0.3$$

Question a

Sample Space(s)	x
N N N N N B	0
NBN	1
NBNB	1
BBN	2
BBB	3

$$P(X = 8) = \frac{3}{3} \cdot \frac{3}{3} \cdot \frac{3}{3} = \frac{1}{20} = 0.05$$

$$P(X = 2) = \frac{3}{2} \cdot \frac{3}{1} \cdot \frac{3}{1} = \frac{3 \times 3}{20} = \frac{9}{20} = 0.45$$

$$P(X = 1) = \frac{3}{3} \cdot \frac{3}{2} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{1}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{1}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{1}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{1}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{1}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{1}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{1}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{1}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) = \frac{3}{3} \cdot \frac{3}{3} = \frac{9}{20} = 0.45$$

$$P(X = 0) =$$

b)
$$P(3 \le x < 4) = \frac{4}{3} \int \frac{2(1+x)}{27} dx$$

 $= \frac{4}{3} \int \frac{2(1+x)}{27} dx$
 $= \left[\frac{2x}{47} + \frac{x^2}{27}\right]^3$
 $= \frac{8}{9} - \left[\frac{2(3)}{27} + \frac{3^4}{27}\right]$
 $= \frac{8}{9} - \frac{1}{9}$
 $= \frac{3}{9}$
 $= \frac{1}{3}$
C) $\frac{2(1+x)}{27} dx$
 $= \frac{3}{27} + \frac{x^2}{27} - \frac{8}{27}$
 $= \frac{2x}{27} + \frac{x^2}{27} - \frac{8}{27}$
 $= \frac{2x}{27} + \frac{x^2}{27} - \frac{8}{27}$
 $= \frac{2x}{27} + \frac{x^2}{27} - \frac{8}{27}$
 $= \frac{3}{27} + \frac{3}{27} - \frac{3}{27} = \frac{9}{27}$
 $= \frac{16}{27}$
 $= \frac{16}{27} - \frac{7}{27} = \frac{9}{27}$
 $= \frac{1}{3}$

$$dx = du$$

$$\int_{00}^{300} \frac{20000}{u^3} du$$

$$\left[\begin{array}{c} 20000 \, u^{-\lambda} \\ -2 \end{array}\right]_{100}^{300}$$

$$= \left(-\frac{10000}{u^2}\right)^{300}$$

$$= \left[\frac{-10000}{300^2}\right] - \left[\frac{-10000}{100^4}\right] = -\frac{1}{9} + 1$$

(b)
$$P(80 \le x \le 120) = \frac{8}{120} \int \frac{2000}{(x+100)^3} dx$$

$$\left[\frac{-10000}{4^{2}}\right]^{220}$$

$$=\frac{-25}{121}+\frac{25}{81}$$

c)
$$\frac{1}{0} = \frac{20000}{(1/100)^{3}} dx$$
 $\frac{100}{100} = \frac{20000}{0} dx$
 $\frac{100}{100} = \frac{10000}{10000}$
 $\frac{-10000}{10000} = \frac{-10000}{10000}$
 $\frac{-10000}{10000} = \frac{-10000}{10000}$
 $\frac{-10000}{10000} = \frac{+1}{10000}$
 $\frac{-10000}{10000} + \frac{1}{10000}$
 $\frac{10000}{10000} + \frac{1}{10000}$
 $\frac{10000}{10000} + \frac{1}{10000}$
 $\frac{10000}{10000} = \frac{10000}{10000}$
 $\frac{10000}{10000} = \frac{10000}{10000}$

$$= \underbrace{(0.5)(0.05)(0.1)}_{(0.5)(0.008)(0.04)}$$

$$= \underbrace{0.0025}_{0.0025} + 0.00016 = \underbrace{0.0025}_{0.00266}$$

$$= \underbrace{0.9398}_{0.0025} + 0.00016 = \underbrace{0.0025}_{0.00266}$$

$$= \underbrace{0.9398}_{0.0025} + \underbrace{0.0026}_{0.00266}$$

$$= \underbrace{0.9398}_{0.0025} + \underbrace{0.0026}_{0.00266}$$

$$= \underbrace{0.9398}_{0.0025} + \underbrace{0.0026}_{0.00266}$$

$$= \underbrace{0.9398}_{0.0025} + \underbrace{0.0026}_{0.0026}$$

$$= \underbrace{0.9398}_{0.0025} + \underbrace{0.0026}_{0.0026}$$

$$= \underbrace{0.9398}_{0.13} + \underbrace{0.3038}_{0.13} = \underbrace{0.3038}_{0.13}$$

$$= \underbrace{0.9398}_{0.13} + \underbrace{0.3038}_{0.13}$$

$$= \underbrace{0.9398}_{0.13} + \underbrace{0.3038}_{0.13}$$

$$= \underbrace{0.3038}_{0.13}$$

$$= \underbrace{0.0025}_{0.0026}$$

$$= \underbrace{0.0025}_{0.0026}$$

$$= \underbrace{0.0025}_{0.0026}$$

$$= \underbrace{0.0026}_{0.0026}$$

$$= \underbrace{0.0026}_{0.0026}$$

$$= \underbrace{0.00285}_{0.0026}$$

$$= \underbrace{0.0029}_{0.0026}$$

$$=$$

Question8			4 -	.,
Y 1 2 31 8	3 16			
av/ 0.05 0.10 0.35 0	01.0 love			
F(y) 0.05 0.15 0.5	0.9 =1	. 6	~	
	y ≤ 1	F(1)=f((1)+f(r)	
$F(y) = \begin{cases} 0.05 \\ 0.15 \end{cases}$	2 9 ≤ 2	F(2) = f(1)	1)+f(2)+1	(4)
$F(y) = \begin{cases} 0.05 \\ 0.15 \\ 0.5 \\ 0.9 \\ 4 \end{cases}$	2y ≤ 4 2y ≤ 8 32 y ≤ 16	#181-f(i)+f(2)+f((4)+1(8)
91	32°y ≤16	f(6) = f(i))+f(1) +f(y)+f(8)+f(18)
Question 9	,		- 4 _W -	
(i) f(x) ≥0				
f(0) = 0				
f(1) = 0				
hence proven				
(ii) $x = 1$				
$= \int_{-\infty}^{-\infty} f_{x} dx + \int_{0}^{1} f_{x} dx +$	+ of fich		82 FW 123 Vilje in	
= -0) +201 + 0)	1 14			
$= 0 + 0 + 0 + 0 \le 6x - 6x$	1 ² dk			
$= 0 + 0 + 0 + 0 = 0 = 0 = 0$ $= 6 \left[\frac{x^2 - \frac{x^3}{3}}{3} \right] = 0$				
			1.30	
$= 6 \left[\frac{1}{3} - \frac{1}{3} \right]$ $= \int_{1}^{\infty} proven.$				
(iii) p(acx2b) =	+(1) F(0		X	
(iii) P(aZXZb)=	F(b)-100			
X (fx dx				
$6\left[\frac{\chi^2}{2},\frac{\chi^3}{3}\right]_0^{\times}$				
				THE THE

$$= \frac{6 x^{2} - 6 x^{3}}{3}$$
$$= 3x^{2} - 2x^{3}$$

$$F(i) = 1$$

$$F(1) - F(0) = 1$$

hence proven

b)
$$F(x) = P(\chi \leq x) = \mathcal{I} f(x) dx$$

 $= 6\left(\frac{\chi^2}{2} - \frac{\chi^3}{3}\right)^{\chi}$
 $= 3\chi^2 - 2\chi^3$

C)
$$P(\frac{1}{3} \le x \le \frac{2}{3})$$

$$6\left[\frac{x^{2}}{2} - \frac{x^{3}}{3}\right] \frac{1}{3}$$

$$6\left[\frac{4}{9x^{2}} - \frac{8}{27x^{3}}\right] - 6\left[\frac{1}{9x^{2}} + \frac{8}{27x^{3}}\right]$$

$$6\left[\frac{2}{9} - \frac{8}{81}\right] - 6\left[\frac{1}{18} - \frac{8}{81}\right]$$

$$6\left[\frac{10}{81}\right] - 6\left[-\frac{7}{162}\right]$$

$$\frac{30}{27} = \frac{47}{27}$$

$$\frac{3}{27} = \frac{3}{27}$$

Question 10

$$P(A) = 0.5$$
, $P(B) = 0.3$, $P(C) = 0.2$
 $P(F/A) = 0.02$, $P(F/B) = 0.03$, $P(F/C) = 0.05$
 $P(B/F) = P(F/B) * P(B)$
 $P(F)$
 $P(F)$
 $P(F) = P(A) P(F/A) + P(B)P(F/B) + P(C)P(F/C)$
 $= (0.5)(0.02) + (0.3)(0.03) + (0.2)(0.05)$
 $= 0.029$
 $P(B/F) = 0.03 \times 0.3$
 $= 0.03 \times 0.3$