Digital Image Processing (CSE/ECE 478)

Lecture 3: Intensity Transforms and Histogram Processing

Announcements

Assignment – I will be released today

- ▶ Tutorials will start from this Saturday
 - ▶ 3.30PM 4.30PM
 - ► H-203

Add/Drop is done

Previous Lecture

Recap ...

Sampling

 16×16

Quantization

8 bits per pixel

4 bits per pixel

2 bits per pixel

1 bit per pixel

Image as a function / 3D surface

f(x,y)=z

Domain: (x,y)

▶ Range = Intensity

Image Processing - Two Paradigms

Directly manipulating pixels in spatial domain

Manipulating in transform domain

Spatial vs. Transform Domain Processing

Spatial Domain Output Image Input Image Processing Inverse **Transform Processing** Transform **Transform Domain**

Spatial vs. Transform Domain Processing

Bandhani / Bandhej

Tie Dye

Spatial vs. Transform Domain Processing

Transform (Tie)

Process (Dye)

Inverse Transform (Untie)

Spatial Domain Processing

Manipulating Pixels Directly in Spatial Domain

Point to Point

Neighborhood to Point

Global Attribute to Point

Spatial Domain Processing

Manipulating Pixels Directly in Spatial Domain

Point to Point

Neighborhood to Point

Global Attribute to Point

$$f(x,y)=z$$

$$z' = g(z) = g(f(x,y))$$

Function g is a mapping between intensity value z at pixel (x,y) to a new value z'

$$\rightarrow$$
 g = z + K

$$\rightarrow$$
 g = z - K

 $g = K_1 z + K_2$

$$\rightarrow$$
 g = z + K

$$ightharpoonup$$
 g = z – K

$$g = K_1 z + K_2$$

Linear Transforms

- What form can function g take?
- Are there any constraints?

- What form can function g take?
- Are there any constraints?
 - Clamp to [0,255]

Standard Intensity transformations

Image Negatives

Intensity levels:[0,L-1]

Transformation: s = T(r) = L - I - r

a b

FIGURE 3.4

(a) Original digital mammogram.

(b) Negative image obtained using the negative transformation in Eq. (3.2-1). (Courtesy of G.E.

Medical Systems.)

What is a digital image?

2D matrix of intensities (gray or color values) or numbers

100	50	0	150
90	255	70	70
200	150	255	50
0	100	80	0

Fourier Magnitude Spectrum

 $\mathsf{Range:}[0,10^6]$

Fourier Magnitude Spectrum

- Clamp to [0, 255]
- Normalize to min : $J = \frac{I}{min(I)}$
- Normalize to max : $J = \frac{I}{max(I)}$
- Normalize to range :

$$J = \operatorname{round}\left(255 * \frac{I - min(I)}{max(I) - min(I)}\right)$$

Range: $[0, 10^6]$

Log Transformations

a b

FIGURE 3.5

(a) Fourier spectrum. (b) Result of applying the log transformation given in Eq. (3.2-2) with c = 1.

$$s = T(r) = c \log(1+r)$$

Standard Intensity transformations

Power-Law (Gamma) Transformations

$$s = c r^{\Upsilon}$$

Power-Law Transformations

a b c d

FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c=1 and $\gamma=3.0$, 4.0, and 5.0, respectively. (Original image for this example courtesy of NASA.)

Piecewise-Linear Transformations

- Can be arbitrarily complex
- Finer control over transformation

Piecewise-Linear Transformations - Contrast stretching

Expand intensity range to full intensity range

What are the constraints on (r1,s1) and (r2,s2)?

Piecewise-Linear Transformations

Intensity Slicing

Bit plane slicing

a b c d e f g h i

FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

$$h_r(i) = n_i$$

 $i \rightarrow intensity value, range [0,L-1]$

 $\boldsymbol{n}_i \rightarrow \text{number of pixels with intensity i}$

Different images can have same histogram

No information about spatial distribution of intensity values

What can we infer from histograms?

Histogram viewing standard in most DSLR cameras

Histograms and brightness

Under exposure

▶ Histograms and brightness

Over exposure

▶ Histograms and brightness

Over exposure

Histogram and contrast

Histograms for RGB images

Time for Show & Tell!

Time for Show & Tell!

Brightness & Contrast

▶ Brightness vs. Luminance vs. Contrast

Grayscale Histograms and Contrast Levels in Digital Images

Simultaneous Contrast & Perceived Brightness

