```
import pandas as pd
df = pd.read_csv('owid-covid-data.csv')
df.head()
```

| <del></del> |   | iso_code | continent | location    | date           | total_cases | new_cases | new_cases_smoothed | total_deaths | new_deaths | new_deaths_smoothed |
|-------------|---|----------|-----------|-------------|----------------|-------------|-----------|--------------------|--------------|------------|---------------------|
|             | 0 | AFG      | Asia      | Afghanistan | 2020-<br>01-05 | 0           | 0         | NaN                | 0            | 0          | NaN                 |
|             | 1 | AFG      | Asia      | Afghanistan | 2020-<br>01-06 | 0           | 0         | NaN                | 0            | 0          | NaN                 |
|             | 2 | AFG      | Asia      | Afghanistan | 2020-<br>01-07 | 0           | 0         | NaN                | 0            | 0          | NaN                 |
|             | 3 | AFG      | Asia      | Afghanistan | 2020-<br>01-08 | 0           | 0         | NaN                | 0            | 0          | NaN                 |
|             | 4 | AFG      | Asia      | Afghanistan | 2020-<br>01-09 | 0           | 0         | NaN                | 0            | 0          | NaN                 |

5 rows × 67 columns

| •     | location            | date       | total_cases | new_cases | total_deaths | new_deaths | population |
|-------|---------------------|------------|-------------|-----------|--------------|------------|------------|
| 0     | Afghanistan         | 2020-01-05 | 0           | 0         | 0            | 0          | 41128772.0 |
| 1     | Afghanistan         | 2020-01-06 | 0           | 0         | 0            | 0          | 41128772.0 |
| 2     | Afghanistan         | 2020-01-07 | 0           | 0         | 0            | 0          | 41128772.0 |
| 3     | Afghanistan         | 2020-01-08 | 0           | 0         | 0            | 0          | 41128772.0 |
| 4     | Afghanistan         | 2020-01-09 | 0           | 0         | 0            | 0          | 41128772.0 |
|       |                     |            |             |           |              |            |            |
| 14513 | Antigua and Barbuda | 2023-01-30 | 9106        | 0         | 146          | 0          | 93772.0    |
| 14514 | Antigua and Barbuda | 2023-01-31 | 9106        | 0         | 146          | 0          | 93772.0    |
| 14515 | Antigua and Barbuda | 2023-02-01 | 9106        | 0         | 146          | 0          | 93772.0    |
| 14516 | Antigua and Barbuda | 2023-02-02 | 9106        | 0         | 146          | 0          | 93772.0    |
| 14517 | Antigua and Barbuda | 2023-02-03 | 9106        | 0         | 146          | 0          | NaN        |

import matplotlib.pyplot as plt

```
# Filter a few countries for comparison
countries = ['India', 'United States', 'Brazil']
df_countries = df[df['location'].isin(countries)]

# Plot
#plt.figure(figsize=(12,6))
for country in countries:
    country_data = df_countries[df_countries['location'] == country]
    plt.plot(country_data['date'], country_data['total_cases'], label=country)

plt.title('Total COVID-19 Cases Over Time')
plt.xlabel('Date')
plt.ylabel('Total Cases')
```

plt.legend()
plt.grid(True)
plt.tight\_layout()
plt.show()



## Total COVID-19 Cases Over Time



# Get the latest date from the dataset
latest\_date = df['date'].max()

# Filter data for the latest date
latest\_data = df[df['date'] == latest\_date]

# Top 10 countries by total deaths

 $top\_deaths = latest\_data.groupby('location')['total\_deaths'].sum().sort\_values(ascending=False).head(10)$ 

# Plot

top\_deaths.plot(kind='bar', figsize=(10,6), title='Top 10 Countries by Total Deaths')

plt.ylabel('Total Deaths')

plt.xticks(rotation=45)

plt.tight\_layout()

plt.show()



## Top 10 Countries by Total Deaths



```
...por c ...acpiociio.pypioc ao pic
import pandas as pd
# Step 1: Remove null or 0 total_cases
df_valid = df[(df['total_cases'].notna()) & (df['total_cases'] > 0)]
# Step 2: Pick top 3 countries with highest total cases (latest date)
latest_date = df_valid['date'].max()
top3 = df_valid['df_valid['date'] == latest_date].sort_values(by='total_cases', ascending=False).head(3)['location'].tolist()
print("Top 3 countries by total cases:", top3) # Check selected countries
# Step 3: Filter only top 3 countries
df_plot = df_valid[df_valid['location'].isin(top3)]
# Step 4: Plot
plt.figure(figsize=(12,6))
for country in top3:
    data = df_plot[df_plot['location'] == country]
    plt.plot(data['date'], data['total_cases'], label=country)
plt.title('Top 3 Countries - Total COVID-19 Cases Over Time')
plt.xlabel('Date')
plt.ylabel('Total Cases')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
```



