# Übungsblatt 2 zur Algebra I

Abgabe bis 29. April 2013, 17:00 Uhr

Aufgabe 1. Lösungen polynomieller Gleichungen sind algebraisch

Sei z eine Lösung der Polynomgleichung

$$X^3 - \sqrt{2 - \sqrt[3]{4}} X^2 + 3 = 0.$$

Finde eine normierte Polynomgleichung mit rationalen Koeffizienten, die z als Lösung hat.

## Lösung. Wir formen um:

$$z^{3} - \sqrt{2 - \sqrt[3]{4}} z^{2} + 3 = 0$$

$$\Rightarrow \qquad z^{3} + 3 = \sqrt{2 - \sqrt[3]{4}} z^{2}$$

$$\Rightarrow \qquad (z^{3} + 3)^{2} = 2 z^{4} - \sqrt[3]{4} z^{4}$$

$$\Leftrightarrow \qquad (z^{3} + 3)^{2} - 2 z^{4} = \sqrt[3]{4} z^{4}$$

$$\Rightarrow \qquad ((z^{3} + 3)^{2} - 2 z^{4})^{3} = 4 z^{12}$$

$$\Leftrightarrow \qquad ((z^{3} + 3)^{2} - 2 z^{4})^{3} - 4 z^{12} = 0$$

Die gesuchte Gleichung lautet also

$$((X^3+3)^2 - 2X^4)^3 - 4X^{12} = 0,$$

denn diese hat z als Lösung (Probe unnötig, wieso?), ihre Koeffizienten sind alle rational und sie ist normiert (das ist nicht ganz offensichtlich, wieso stimmt das?).

#### Aufgabe 2. Auf den Spuren Bombellis

Zeige formal die zuerst von Rafael Bombelli (1526–1572, italienischer Mathematiker) gefundene Gleichheit

$$(2 \pm \sqrt{-1})^3 = 2 \pm \sqrt{-121}$$

und diskutiere, welche Vorzeichen der Quadratwurzeln jeweils zu wählen sind.

Lösung. Mit der binomischen Formel multiplizieren wir die linke Seite aus:

$$(2 \pm i)^3 = 8 \pm 3 \cdot 4 i - 3 \cdot 2 \pm i^3 = 2 \pm 11 i.$$

Bombellis Formel stimmt also, wenn man  $\sqrt{-1}$  konsistent als i (statt als -i) und  $\sqrt{-121}$  konsistent als 11 i (statt als -11 i) liest und dann entweder auf beiden Seiten "+" oder auf beiden Seiten "-" für das "±"-Zeichen nimmt.

## Aufgabe 3. Rechnen mit komplexen Zahlen

- a) Sei  $z \neq 0$  eine komplexe Zahl, deren Real- und Imaginärteil rationale Zahlen sind. Zeige, dass  $z^{-1}$  ebenfalls rationalen Real- und Imaginärteil hat.
- b) Zeige, dass der Realteil einer komplexen Zahl z durch  $\frac{1}{2}(z+\overline{z})$  und dass der Imaginärteil durch  $\frac{1}{2i}(z-\overline{z})$  gegeben ist.
- c) Sei z eine invertierbare komplexe Zahl. Folgere die Gleichheit  $\overline{z}^{-1} = \overline{z^{-1}}$  aus der Multiplikativität der komplexen Konjugation.
- d) Interpretiere die Multiplikation mit der imaginären Einheit i geometrisch.

#### Lösung.

a) Wir schreiben z = a + bi mit  $a, b \in \mathbb{Q}$ . Dann gilt

$$z^{-1} = \frac{1}{a+bi} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}i$$

und wir sehen, dass in der Tat Real- und Imaginärteil wieder in  $\mathbb Q$  liegen.

b) Wir schreiben z = a + bi mit  $a, b \in \mathbb{R}$  und rechnen:

$$\frac{1}{2}(z+\overline{z}) = \frac{1}{2}(a+b\mathrm{i}+a-b\mathrm{i}) = a$$
$$\frac{1}{2\mathrm{i}}(z-\overline{z}) = \frac{1}{2\mathrm{i}}(a+b\mathrm{i}-a+b\mathrm{i}) = b$$

- c) Aus  $z \cdot z^{-1} = 1$  folgt wegen der Multiplikativität der komplexen Konjugation  $\overline{z} \cdot \overline{z^{-1}} = 1$ . Also ist  $\overline{z^{-1}}$  das Inverse von  $\overline{z}$ , das war zu zeigen.
- d) Drehung um 90° um den Ursprung im Gegenuhrzeigersinn (wieso?). Skizze!

#### Aufgabe 4. Zahlen nahe bei Null

Zeige, dass für zwei reelle Zahlen a und b genau dann die Wurzel  $\sqrt{a^2 + b^2}$  nahe bei Null ist, wenn sowohl |a| als auch |b| nahe bei Null sind. Zeige also:

$$\begin{split} \forall \epsilon > 0 \ \exists \delta > 0 \colon \quad \sqrt{a^2 + b^2} < \delta \implies |a|, |b| < \epsilon \\ \forall \epsilon > 0 \ \exists \delta > 0 \colon \quad |a|, |b| < \delta \implies \sqrt{a^2 + b^2} < \epsilon \end{split}$$

### Lösung.

a) Sei  $\epsilon > 0$  beliebig. Setze  $\delta := \epsilon$ . Gelte  $\sqrt{a^2 + b^2} < \delta$ . Dann folgt

$$|a| = \sqrt{|a|^2} \le \sqrt{|a|^2 + |b|^2} < \delta = \epsilon$$

und analog mit |b|.

b) Sei  $\epsilon > 0$  beliebig. Setze  $\delta := \epsilon / \sqrt{2}$ . Gelte  $|a|, |b| < \delta$ . Dann folgt

$$\sqrt{a^2 + b^2} < \sqrt{\delta^2 + \delta^2} = \sqrt{2}\delta = \epsilon.$$

Bemerkung: Auf die passenden Wahlen von  $\delta$  kommt man natürlich nicht im Vornhinein, sondern erst nach erfolgter Abschätzung.

2

## Aufgabe 5. Ein neuer Zahlbereich

- a) Zeige, dass die Gleichung  $X^2 + X + 1 = 0$  in den reellen Zahlen keine Lösung besitzt.
- b) Konstruiere einen minimalen Zahlbereich  $\mathbb{R}(\omega)$ , welcher die reellen Zahlen und eine Lösung  $\omega$  der Gleichung  $X^2 + X + 1 = 0$  enthält und in welchem Addition und Multiplikation so definiert sind, dass sie die Addition und Multiplikation reeller Zahlen fortsetzen und die einschlägigen Gesetze der Arithmetik erfüllen.
- c) Zeige, dass  $\omega^3 = 1$  in  $\mathbb{R}(\omega)$  gilt.
- d) Finde eine Lösung der Gleichung  $X^2 + 1 = 0$  in  $\mathbb{R}(\omega)$ .

### Lösung.

a) Variante 1: Man verwendet die Mitternachtsformel und sieht, dass die beiden Lösungen der Gleichung jeweils echt komplex sind:

$$\frac{-1 \pm \sqrt{1-4}}{2}$$

Variante 2: Man zeigt durch quadratische Ergänzung, dass für jedes reelle x die linke Seite der Gleichung positiv (und daher nicht null) ist:

$$x^{2} + x + 1 = (x + 1/2)^{2} - 1/4 + 1 > 3/4 > 0.$$

- b) ...
- c) Per Definition gilt  $\omega^2 + \omega + 1 = 0$ , also  $\omega^2 = -\omega 1$ . Damit kann man  $\omega^3$  explizit ausrechnen:

$$\omega^3 = \omega \cdot \omega^2 = -\omega^2 - \omega = -(-\omega - 1) - \omega = 1.$$

Bemerkung: Alternativ kann man auch den Faktor  $(\omega-1)$  vom Himmel fallen lassen:

$$0 = (\omega^2 + \omega + 1)(\omega - 1) = \omega^3 - 1.$$

d) Variante 1: Wir untersuchen für alle  $a,b\in\mathbb{R},$  ob  $x:=a+b\omega$  eine Lösung der Gleichung ist:

$$(a+b\omega)^2 + 1 = 0$$

$$\iff (a^2 - b^2 + 1) + (-b^2 + 2ab)\omega = 0$$

$$\iff a^2 - b^2 + 1 = 0 \text{ und } b (2a - b) = 0$$

$$\stackrel{?}{\iff} a^2 - b^2 + 1 = 0 \text{ und } 2a = b$$

$$\iff 1 = 3a^2 \text{ und } 2a = b$$

$$\iff a = \pm 1/\sqrt{3} \text{ und } b = \pm 2/\sqrt{3}$$

Da wir insbesondere die Richtung "

"haben, folgt also: Die Gleichung  $X^2 + 1 = 0$  hat in  $\mathbb{R}(\omega)$  zwei Lösungen, nämlich

$$\frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}}\omega$$
 und  $-\frac{1}{\sqrt{3}} - \frac{2}{\sqrt{3}}\omega$ .

Variante 2: Wir verwenden die quadratische Ergänzung von oben:

$$0 = \omega^2 + \omega + 1 = (\omega + 1/2)^2 + 3/4,$$

also folgt

$$\frac{4}{3}\left(\omega + \frac{1}{2}\right)^2 = \left(\frac{2}{\sqrt{3}}\omega + \frac{1}{\sqrt{3}}\right)^2 = -1$$

3

und man kann ebenfalls die beiden Lösungen ablesen.