Hardware Programming with MicroPython

แนะนำการใช้งาน MicroPython สำหรับบอร์ดไมโครคอนโทรลเลอร์ประเภทต่าง ๆ

ไมโครไพธอน (MicroPython)

เรียบเรียงโดย เรวัต ศิริโภคาภิรมย์

โดยทั่วไปแล้ว สำหรับการเขียนโปรแกรมสำหรับไมโครคอนโทรลเลอร์ เราจะใช้ภาษาคอมพิวเตอร์ อย่าง เช่น C/C++ แต่ถ้าจะใช้ภาษาอื่นในประเภท Scripting Language เช่น Python 3 จะเป็นไปได้หรือไม่ ?

ไมโครไพธอนเป็นซอฟต์แวร์ประเภท Open Source ทำหน้าที่เป็นเฟิร์มแวร์ (Firmware) สำหรับไมโคร คอนโทรลเลอร์ที่ช่วยให้เราสามารถเขียนและรันโค้ดไพธอนได้ และสำหรับผู้ที่มีพื้นฐานภาษาไพธอนมา บ้างแล้ว การเลือกใช้ไมโครไพธอน อาจช่วยให้การเรียนรู้เกี่ยวกับการเขียนโปรแกรมและใช้งานไมโคร คอนโทรลเลอร์สำหรับผู้เริ่มต้น ทำได้ง่ายขึ้น เมื่อเปรียบเทียบกับการใช้งานภาษา C/C++

ภาษาไมโครไพธอน สามารถนำไปใช้สอนในชั้นเรียนได้หลายช่วงอายุของผู้เรียน ตั้งแต่ในโรงเรียนจนถึง ระดับมหาวิทยาลัย แต่ความยากง่ายของเนื้อหาและกิจกรรมการเรียนรู้ที่เกี่ยวข้อง อาจจะต้องมีการเลือก หรือปรับให้เหมาะกับระดับชั้นของผู้เรียน

MicroPython Logo (Image Source: Wiki)

ประวัติความเป็นมาของไมโครไพธอน นั้นเริ่มตันโดย Damien P. George ซึ่งเป็นนักฟิกส์ชาวออสเตรเลีย มีความคิดที่จะเขียนโปรแกรมไมโครคอนโทรลเลอร์ โดยใช้ภาษา Python ขณะที่ทำงานเป็น Post-Doctoral Fellow และทำวิจัยด้านอนุภาคพลังงานสูง ในมหาวิทยาลัย Cambridge ประเทศอังกฤษ (UK) ตอนเรียนระดับป.ตรี เขามีโอกาสได้ร่วมทีม RobotCup แข่งขันหุ่นยนต์เตะฟุตบอล (Robot Soccer League) จึงมีประสบการณ์ด้านฮาร์ดแวร์ อิเล็กทรอนิกส์ และเขียนโปรแกรมด้านสมองกลฝั่งตัว

เขาได้เลือกใช้ Python 3 และพัฒนาโปรแกรมหรือเฟิร์มแวร์ เช่น Python Run-Time Interpreter สำหรับไมโครคอนโทรลเลอร์ 32 บิต และสร้างบอร์ด PyBoard และระดมทุนใน Kickstarter ในช่วงปี ค.ศ. 2013-2014 ได้ผู้มาสนับสนุนราว 2,000 ราย (1,931 backers) และได้ระดมทุนเงินสูงเกือบ £100,000 ซึ่งเป็นจุดเริ่มต้นของ MicroPython และเผยแพร่ซอฟต์แวร์ โดยใช้ลิขสิทธิ์ MIT license

ต่อมาในปีค.ศ. 2015 องค์กรที่มีชื่อว่า European Space Agency (ESA) ของสหภาพยุโรป ได้ให้การ สนับสนุนโครงการ MicroPython อีกด้วย และในช่วงเวลาใกล้เคียงกัน British Broadcasting Corporation (BBC) ในประเทศอังกฤษ ได้พัฒนาบอร์ด Micro:bit (ไมโครบิต) และ ไมโครไพธอนได้ถูก นำมาปรับให้ใช้งานได้สำหรับบอร์ดดังกล่าว

ความสำเร็จของไมโครไพธอน ได้ดึงดูดความสนใจของ Limor "Ladyada" ผู้ก่อตั้งบริษัท Adafruit Industries ในสหรัฐอเมริกา ทางบริษัทได้พัฒนาไลบรารีสำหรับอุปกรณ์หรือโมดูลฮาร์ดแวร์เสริมหลาย รูปแบบ (โดยส่วนใหญ่ก็เป็นฮาร์ดแวร์ต่าง ๆ ที่ทางบริษัทได้ผลิตและจำหน่าย) เพื่อรองรับการใช้งาน ไมโครไพธอน รวมถึงการพัฒนาบอร์ดไมโครคอนโทรลเลอร์ที่นำมาใช้ได้กับไมโครไพธอน เช่น บอร์ด Circuit Playground Express (SAMD21) และต่อได้มาพัฒนา CircuitPython ต่อยอดมาจากไมโคร ไพธอน

บอร์ดที่ใช้ชิปหรือโมดูล ESP8266 และ ESP32 ของบริษัท Espressif Systems ซึ่งมีความสามารถใน การเชื่อมต่อ Wi-Fi มีราคาไม่แพง และนำไปใช้งานด้าน IoT ก็สามารถนำมาใช้งานร่วมกับไมโครไพธอน ได้เช่นกัน ในปัจจุบันขณะที่เขียนบทความนี้ จะเห็นได้ว่า มีฮาร์ดแวร์หลายรูปแบบที่สามารถนำมาใช้ได้ กับไมโครไพธอน

ข้อสังเกตเกี่ยวกับ MicroPython

- ทำให้สามารถเขียนโคัด Python 3 เพื่อเข้าถึงและใช้งานฮาร์ดแวร์ภายในไมโครคอนโทรลเลอร์ได้ ง่าย เช่น GPIO, Timer, SPI, I2C, UART, ADC, DAC, Wi-Fi เป็นตัน
- เนื่องจากมีข้อจำกัดเรื่องหน่วยความจำ จึงมีการสร้างไลบรารีใหม่จำนวนหนึ่ง (เรียกโดยรวมว่า MicroPython Libraries) ซึ่งโดยปรกติแล้ว จะมีให้ใช้ได้เหมือนกรณีของ Python 3 Standard Libraries แต่อาจมีฟังก์ชันไม่ครบ จึงมีการตั้งชื่อให้เริ่มต้นด้วยตัวอักษร 'u' เช่น utime, usys, uos, ustruct เป็นต้น เพื่อให้สังเกตเห็นความแตกต่าง แต่ทางผู้พัฒนาก็ได้พยายาม นำไลบรารีหรือโมดูล ต่าง ๆ ของ CPython มาปรับให้สามารถใช้กับไมโครไพอนได้ สามารถดูรายการของไลบรารีที่ใช้ได้ จาก Micropython-Lib

- สามารถสื่อสารกับไมโครไพธอนได้แบบ interactive หรือที่เรียกว่า REPL (Read, Eval, Print, Loop) ผ่านพอร์ต USB-to-Serial หรือ USB-CDC
- ในกรณีที่ใช้ชิป Wi-Fi SoC เช่น ESP8266 หรือ ESP32 ก็สามารถใช้ REPL (WebREPL) แบบไร้ สายผ่าน Wi-Fi ได้

การเลือกใช้บอร์ดไมโครคอนโทรลเลอร์สำหรับ MicroPython

สำหรับผู้ที่สนใจจะลองใช้หรือเขียนโค้ดไมโครไพธอน ร่วมกับบอร์ดไมโครคอนโทรลเลอร์ ในปัจจุบัน มี ไมโครคอนโทรลเลอร์ให้เลือกใช้ได้หลายตระกูล (32 บิต) อาจลองพิจารณาดูตัวเลือกเหล่านี้

- บอร์ดไมโครคอนโทรลเลอร์ STM32 ซึ่งมีหลายรุ่น แต่แนะนำให้ใช้ STM32F4 (ARM Cortex-M4F), STM32L4, STM32F7 อาจเป็นบอร์ดที่ทางผู้พัฒนา MicroPython ผลิตขาย หรืออาจเป็น บอร์ดอื่น เช่น STM32 Nucleo เป็นตัน
 - บอร์ด PyBoard ใช้ชิป STM32F405 (ARM Cortex-M4F, 168 MHz, 1,024 KB Flash ROM, 192 KB SRAM) ซึ่งถือว่าเป็นชิปไมโครคอนโทรลเลอร์ 32 บิต ที่มีประสิทธิภาพสูง บอร์ดมีขนาดเล็ก แต่รูปแบบของบอร์ดไม่เหมาะกับการใช้งานบนเบรดบอร์ด
 - บอร์ด PyBoard D-Series เป็นรุ่นถัดจาก PyBoard และใช้ตัวประมวลผล STM32F7 ซึ่งมี
 ความเร็วในการประมวลผลในระดับที่สูงกว่า STM32F4
- บอร์ดไมโครคอนโทรลเลอร์ ESP8266 หรือ ESP32 ของบริษัท Espressif ซึ่งมีข้อดีคือ สามารถ เชื่อมต่อผ่าน Wi-Fi ได้ ไปยังอินเทอร์เน็ต จึงเหมาะสำหรับการประยุกต์ใช้งานด้าน IoT ในปัจจุบันก็ มีบอร์ดหลายรูปแบบให้เลือกใช้งานและราคาแตกต่างกันไป
 - NodeMCU DevKit
 - Adafruit Feather HUZZAH ESP8266
 - Sparkfun ESP32 Thing
 - WeMos D1 mini
 - WeMos Lolin32
 - WeMos LOLIN D32
 - WROOM-32 DEVKIT V4
 - PyCom WiPy
- บอร์ด BBC Micro:bit ซึ่งใช้ตัวประมวลผล nRF51822 (ARM Cortex-M0, 16MHz, 256 KB Flash, 16KB SRAM) และสามารถสื่อสารไร้สายด้วย Bluetooth 4.0 ได้ และอาจจะเหมาะสำหรับผู้ เรียนที่มีประสบการณ์หรือเริ่มต้นใช้งานบอร์ดนี้มาก่อน เช่น การเขียนโปรแกรมโดยการต่อบล็อกและ ใช้ Microsoft MakeCode for Micro:bit เป็นต้น
- บอร์ด Adafruit's Circuit Playground Express มีลักษณะเป็นทรงกลม มีขา I/O pins อยู่รอบ ใช้ ตัวประมวลผล ATSAMD21G18 (ARM Cortex-M0, 48 MHz, 256KB Flash, 32 KB SRAM, 2MB external SPI Flash)

ข้อสังเกต: ในปัจจุบันก็มีบอร์ดหรือโมดูล ESP32 ให้เลือกใช้ได้หลายรูปแบบ แต่ก็สามารถจำแนกได้เป็น สองกลุ่ม (เรียกว่า non-psRAM กับ psRAM-enabled) ซึ่งขึ้นอยู่กับว่า มีการเพิ่มชิป psRAM (pseudostatic RAM) ภายนอกหรือไม่ มีความจุตั้งแต่ 4MB หรือ 8MB เป็นต้น บอร์ด ESP32 ที่มี psRAM ก็มักจะ มีราคาสูงกว่าบอร์ดที่ไม่มี แต่ก็เหมาะสำหรับนำมาใช้กับไมโครไพธอน ทำให้มีหน่วยความจำเพิ่มขึ้น สำหรับสร้าง Stack/Heap ได้ขนาดใหญ่ขึ้น เช่น การเก็บข้อมูลในอาร์เรย์ได้มากขึ้น เป็นต้น

เมื่อเลือกบอร์ดไมโครคอนโทรลเลอร์แล้ว จะต้องเลือกไฟล์ .bin / .hex ที่เป็นเฟิร์มแวร์สำหรับไมโคร ไพธอน ให้ตรงกับบอร์ดที่เลือกใช้ (ให้ไปยังหน้าเว็บสำหรับดาวน์โหลดไฟล์ MicroPython Firmware เช่น สำหรับ ESP32, ESP8266, STM32) และจะต้องทำขั้นตอนติดตั้งลงในหน่วยความจำ Flash ของ ไมโครคอนโทรลเลอร์ (ซึ่งมีขั้นตอนและวิธีการที่แตกต่างกันไป ขึ้นอยู่กับฮาร์ดแวร์ที่นำมาใช้งาน) หรือ เราอาจจะดาวน์โหลด Source Code มาจาก Github แล้วทำขั้นตอน Build เองก็ได้เช่นกัน

การเลือกใช้ Editor สำหรับ MicroPython

ตัวอย่างซอฟต์แวร์ประเภท Open Source ที่เราสามารถนำมาใช้เขียนโค้ดไมโครไพธอน และเชื่อมต่อ กับบอร์ดไมโครคอนโทรลเลอร์ที่ได้ติดตั้งเฟิร์มแวร์แล้ว ได้แก่

- Thonny IDE
- Mu Editor (Windows, Mac OS X, Linux, Raspbian OS)
- uPyCraft IDE
- VSCode + Extensions for MicroPython (e.g. PyMakr)
- ..

ถ้าเปิดพอร์ต Serial (Virtual COM port) เชื่อมต่อกับพอร์ต USB ของบอร์ดไมโครคอนโทรลเลอร์ที่ได้ ติดตั้งเฟิร์มแวร์สำหรับไมโครไพธอนไว้แล้ว จะเป็นการเชื่อมต่อกับส่วนที่เรียกว่า REPL (เหมือน Python Interactive Shell) รอให้ผู้ใช้พิมพ์คำสั่งสำหรับไมโครไพธอน

```
П
                                                                                        X
Thonny - MicroPython device :: /led_blink-2.py @ 15:53
File Edit View Run Device Tools Help
[ led_blink-2.py ] ×
   1 import machine
   2 from micropython import const
   3 import utime as time
   4 import _thread
   6 stop = False
   7 LED_GPIO = const(21) # define a constant
  8 led = machine.Pin( LED_GPIO, mode=machine.Pin.OUT ) # GPIO output
  10 def led_blink(led):
  11
          global stop
          state = 0
  13
          while not stop:
  14
              state = not state
  15
              print( 'LED state: {}'.format( int(state) ))
              led.value(state)
  16
  17
              time.sleep_ms(500)
  18
      _thread.start_new_thread(led_blink, (led,))
  20 time.sleep(10.0)
 Shell >
  LED state: 1
  LED state: 0
  Done
 >>>
```

Thonny IDE + MicroPython for ESP32 Demo

หลักการทำงานของ REPL (Read-Eval-Print Loop) มีดังนี้

- 1. Read the user input (Python code)
- 2. Evaluate Python code
- 3. Print any results (e.g., output texts or error messages)
- 4. Loop back to step 1

Python IDE ที่รองรับการใช้งานสำหรับไมโครไพธอน นอกจากมีส่วนที่เชื่อมต่อกับ REPL ได้แล้ว ยัง สามารถทำคำสั่ง เพื่อรันหรืออัปโหลดโค้ด .py และบันทึกเป็นไฟล์ลงใน Flash Storage ของ MicroPython Device ได้ด้วย

ถ้าจะใช้โปรแกรมแบบ Command Line ก็มีตัวเลือก เช่น micropy-cli ซึ่งได้ใช้ภาษา Python 3 ในการ พัฒนา และสามารถใช้ร่วมกับ VS Code ได้ด้วย

MicroPython-ESP32 Demo for Interfacing M5Stack with Rigol Oscilloscope

การเขียนโค้ดไมโครไพธอนสำหรับ ESP32: กรณีตัวอย่าง

ผู้เขียนได้เคยลองใช้งานไมโครไพธอนร่วมกับบอร์ดไมโครคอนโทรลเลอร์ ESP32 (โมดูล M5Stack Core) เช่น การเขียนโปรแกรมเพื่อควบคุมและใช้งานอุปกรณ์เครื่องมือวัด Rigol Digital Oscilloscope รุ่น DS2000A Series ที่เชื่อมต่อผ่าน LAN (Ethernet Port) และติดต่อสื่อสารกับบอร์ด ESP32 ผ่านทาง Wi-Fi ในระบบเครือข่ายเดียวกัน

ในกรณีตัวอย่างนี้ แสดงให้เห็นว่า เราสามารถเขียนโค้ดไมโครไพธอน เพื่อส่งคำสั่งไปยังอุปกรณ์เครื่องมือ วัดที่อยู่ห่างออกไปในระบบเครือข่าย (เช่น ใช้คำสั่งเกี่ยวกับ TCP Socket) เพื่อตั้งค่าการใช้งานอุปกรณ์ และอ่านข้อมูลที่ได้จากการวัดสัญญาณ (เช่น หนึ่งช่องสัญญาณ) แล้วส่งกลับมายัง ESP32 และแสดงผล เป็นรูปกราฟของสัญญาณ บนจอภาพ LCD ของโมดูล M5Stack Core เป็นต้น

MicroPython-ESP32: Interfacing M5Stack with Rigol Oscilloscope

การเขียนโด้ดไมโครไพธอนสำหรับไมโครบิต

ในกรณีที่ใช้บอร์ดไมโครบิต ซึ่งเป็นตัวอย่างหนึ่งของบอร์ดไมโครคอนโทรลเลอร์ที่ได้รับความนิยม และมี การนำมาใช้สอนโค้ดดิ้งสำหรับเด็กและเยาวชนในโรงเรียนต่าง ๆ ทั่วโลก เราก็มีตัวเลือกซอฟต์แวร์ เช่น Python Code Editor แบบออนไลน์ ไว้ให้ใช้งานได้ฟรี และทำงานบนหน้าเว็บเบราว์เซอร์ หรือจะใช้ EduBlocks Editor แบบออนไลน์ได้เช่นกัน

การใช้งานแบบออนไลน์มีข้อดีคือ ไม่ต้องติดตั้งซอฟต์แวร์ในเครื่องคอมพิวเตอร์ของผู้ใช้ และใช้เพียง โปรแกรมเว็บเบราว์เซอร์ เช่น Google Chrome ถ้าเชื่อมต่อคอมพิวเตอร์กับบอร์ดไมโครบิตผ่านทาง พอร์ต USB (WebUSB) ก็สามารถรันโค้ดโดยใช้บอร์ดไมโครบิตเพื่อทดสอบการทำงานได้จริง

ผู้ที่สนใจสามารถศึกษาชุดคำสั่งหรือ API ได้จาก "Micro:bit MicroPython Documentation" แต่มีข้อ สังเกตอยู่ว่า ไมโครไพธอนสำหรับแต่ละไมโครคอนโทรลเลอร์ที่เป็นเป้าหมาย (Target Device) อาจมีคำ สั่งหรือ API ไม่เหมือนกันในรายละเอียด โดยเฉพาะอย่างยิ่งที่เกี่ยวข้องกับฮาร์ดแวร์ส่วนต่าง ๆ ทั้งภายใน ไมโครคอนโทรลเลอร์และภายนอก

Online Python Editor for Micro:bit

EduBlocks Editor for BBC Micro:bit (Blocks View)

EduBlocks Editor for BBC Micro:bit (Device Pairing)

ในกรณีที่ใช้ VS Code เป็น IDE และถ้าได้ติดตั้ง Extension อย่างเช่น Device Simulator Express (Source Code Repository) ก็สามารถจำลองการทำงานของโค้ดและตรวจสอบความถูกต้องในการ ทำงานสำหรับบอร์ดไมโครบิตได้

Device Simulator Express เกิดจากกิจกรรมของผู้เข้าร่วม Microsoft Garage Project ในช่วงปีค.ศ. 2019 และช่วยในการเขียนโค้ด CircuitPython สามารถจำลองการทำงานของโค้ดเสมือนจริงได้ แม้ว่า อาจมีข้อจำกัดอยู่บ้าง รองรับการใช้งานบอร์ด Adafruit Circuit Express และ Adafruit CLUE แต่ก็ สามารถใช้กับ BBC Micro:bit ได้เช่นกัน สามารถอัปโหลดโค้ดไปยังบอร์ดทดลองได้ด้วย

Installation of Device Simulator Express Extension in VS Code IDE

จุดเด่นของ Device Simulator Express คือ ความสามารถในการรันโค้ดไมโครไพธอนโดยใช้ Built-in Simulator ได้ ดังนั้นจึงทดสอบโค้ดได้ โดยยังไม่จำเป็นต้องมีบอร์ดไมโครบิต

MicroPython Simulator for BBC Micro:bit

โดยสรุป

การเรียนรู้และใช้งานไมโครไพธอนสำหรับไมโครคอนโทรลเลอร์ เป็นตัวเลือกที่น่าสนใจ อาจช่วยให้ง่าย ขึ้นในการเริ่มตันการเขียนโปรแกรมไมโครคอนโทรลเลอร์สำหรับผู้ที่สนใจ โดยใช้ภาษา **Python** แทนการ ใช้ภาษา **C/C++** และช่วยให้การพัฒนาระบบสมองกลฝังตัว ทำได้เร็วและง่ายขึ้น

อัปเดต: วันที่ 2 ตุลาคม 2563 **Last Update**: October 2, 2020