

Problème 1

Soit

$$P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

un polynôme à coefficients réels, tel que $0 \le a_i \le a_0$ pour chacun des entiers i = 1, 2, ..., n. Démontrer que, si

$$P(X)^2 = b_{2n}X^{2n} + b_{2n-1}X^{2n-1} + \dots + b_{n+1}X^{n+1} + \dots + b_1X + b_0$$

alors $4b_{n+1} \leqslant P(1)^2$.

§ Solution n°1

Il suffit de vérifier que

$$P(1)^{2} = (a_{n} + a_{n-1} + \dots + a_{1} + a_{0})^{2}$$

$$= (a_{n} + a_{n-1} + \dots + a_{1} - a_{0})^{2} + 4(a_{n} + a_{n-1} + \dots + a_{1})a_{0}$$

$$\geqslant 4(a_{n} + a_{n-1} + \dots + a_{1})a_{0}$$

$$\geqslant 4(a_{n}a_{1} + a_{n-1}a_{2} + \dots + a_{1}a_{n}) = 4b_{n+1}.$$

§ Solution n°2

On commence par remarquer que

$$P(1)^2 = (a_0 + a_1 + a_2 + \dots + a_n)^2 = a_0^2 + (a_1^2 + a_2^2 + \dots + a_n^2) + 2a_0(a_1 + a_2 + \dots + a_n) + \sum_{i \neq j \text{ et } i, j \geqslant 1} a_i a_j.$$

L'inégalité du réordonnement indique alors que

$$a_1^2 + a_2^2 + \dots + a_n^2 \geqslant a_1 a_n + a_2 a_{n-1} + \dots + a_n a_1 = b_{n+1}.$$

Par ailleurs, puisque a_0 est le plus grand des coefficients a_i , on sait aussi que

$$a_0(a_1 + a_2 + \dots + a_n) \geqslant a_n a_1 + a_{n-1} a_2 + \dots + a_1 a_n = b_{n+1}$$

Enfin, on vérifie que

$$a_0^2 + \sum_{i \neq j \text{ et } i, j \geqslant 1} a_i a_j \geqslant a_1 a_n + a_2 a_{n-1} + \dots + a_n a_1 = b_{n+1}.$$

En effet, chacun des termes $a_i a_{n+1-i}$ apparaît déjà dans la somme $\sum_{i \neq j \text{ et } i, j \geqslant 1} a_i a_j$, sauf si i = n+1-i. Ce cas n'arrive que si n est impair, et ne concerne alors que le terme $a_{(n+1)/2}^2$, qui est cependant déjà majoré par le terme a_0^2 que l'on n'avait pas utilisé jusqu'à présent.

En additionnant nos trois inégalités, on en conclut comme souhaité que $P(1)^2 \geqslant 4b_{n+1}$.

Problème 2

Soit $k \ge 1$ un entier fixé; oncle Picsou dispose de k pièces de monnaie. Il dispose également d'une infinité de boîtes B_1, B_2, B_3, \ldots devant lui. Initialement, la boîte B_1 contient une des pièces de Picsou; les k-1 autres pièces sont posées sur la table, en dehors de toute boîte.

Oncle Picsou s'autorise alors à effectuer, autant qu'il le voudra, des opérations de la forme suivante :

- \triangleright si deux boîtes consécutives B_i et B_{i+1} contiennent chacune une pièce, il peut ôter la pièce que contenait la boîte B_{i+1} et la reposer sur sa table;
- \triangleright si une boîte B_i contient une pièce, si la boîte B_{i+1} est vide, et si Picsou a encore au moins une pièce sur sa table, il peut prendre cette pièce et la mettre dans la boîte B_{i+1} .

En fonction de k, pour quels entiers n oncle Picsou peut-il faire en sorte de mettre une pièce dans la boîte B_n ?

§ Solution

Lorsque $n \ge 2$, mettre une pièce dans la boîte B_n requiert d'en avoir préalablement mis une dans la boîte B_{n-1} . Par conséquent, il s'agit de calculer le plus grand entier, que l'on notera u(k), pour lequel Picsou peut mettre une pièce dans la boîte $B_{u(k)}$ alors qu'il n'a que k pièces en tout à sa disposition; s'il est en mesure de mettre une pièce dans n'importe quelle boîte, on posera $u(k) = +\infty$. Dans ces circonstances, les entiers n recherchés seront les entiers compris entre 1 et u(k).

On dit que Picsou agit sur une boîte B_i s'il enlève une pièce de B_i ou s'il ajoute une pièce dans B_i . On remarque alors qu'agir deux fois sur une même boîte revient à ne rien faire; plus généralement, agir sur des boîtes $B_{i_1}, B_{i_2}, \ldots, B_{i_\ell}$ puis sur les boîtes $B_{i_\ell}, B_{i_{\ell-1}}, \ldots, B_{i_1}$ revient à ne rien faire. Cette remarque nous permet de démontrer un premier résultat.

Lemme: Soit a, b et ℓ trois entiers strictement positifs tels que $b \ge a + u(\ell)$. Si, à un moment donné, la boîte B_b contient une pièce et chacune des boîtes $B_a, B_{a+1}, \ldots, B_{b-1}$ est vide, alors, auparavant, il y a eu un moment où les boîtes $B_a, B_{a+1}, \ldots, B_b$ contenaient, au total, $\ell + 1$ pièces ou plus.

Démonstration : Considérons l'instant où, pour la dernière fois, Picsou a mis une pièce dans la boîte B_b . À cet instant-là, la boîte B_{b-1} contenait une pièce. Picsou a ensuite dû agir sur des boîtes $B_{i_1}, B_{i_2}, \ldots, B_{i_\ell}$ comprises entre B_2 et B_{b-1} pour vider l'ensemble des boîtes $B_a, B_{a+1}, \ldots, B_{b-1}$.

Faisons-lui grâce des actions effectuées sur les boîtes $B_2, B_3, \ldots, B_{a-1}$, et supposons même que la boîte B_{a-1} a toujours contenu une pièce, que lui a généreusement donnée son neveu Donald. Cette supposition nous permet de supposer que Picsou n'a agi que sur les boîtes $B_a, B_{a+1}, \ldots, B_{b-1}$; quitte à carrément supprimer toutes les boîtes $B_1, B_2, \ldots B_{a-2}$, on peut même supposer que a=2.

Mais alors, à partir de la configuration initiale, et en agissant sur les boîtes $B_{i_\ell}, B_{i_{\ell-1}}, \dots, B_{i_1}$, Picsou peut mettre une pièce dans la boîte B_{b-1} . La première fois qu'il le fait, seules les boîtes $B_{a-1}, B_a, \dots, B_{b-1}$ ont contenu une pièce. Or, $b-1\geqslant a+u(\ell)-1=u(\ell)+1>u(\ell)$, et mettre une pièce dans la boîte B_{b-1} a donc nécessité d'utiliser au moins $\ell+1$ pièces, dont ℓ pièces se trouvaient dans les boîtes $B_a, B_{a+1}, \dots, B_{b-1}$. Puisque l'on avait une pièce en B_b , cela nous fait bien le total de $\ell+1$ pièces recherché.

On démontre alors par récurrence sur ℓ que, si Picsou a posé ℓ de ses k pièces dans des boîtes $B_{a_1}, B_{a_2}, \ldots, B_{a_\ell}$ avec $1 = a_1 < a_2 < \ldots < a_\ell$ (les $k - \ell$ pièces restantes étant disposées sur la table), alors $a_\ell \leqslant v(\ell)$, où l'on a posé

$$v(\ell) = 1 + u(k-1) + u(k-2) + \dots + u(k+1-\ell).$$

En effet, cette inégalité est immédiate si $\ell=1$. On suppose donc que $a_\ell \geqslant v(\ell)+1$ pour un certain entier $\ell \geqslant 2$, que l'on choisit minimal. Le lemme nous indique qu'à un moment, Picsou a dû placer au moins $k+2-\ell$ pièces parmi les boîtes $B_{v(\ell-1)+1}, B_{v(\ell-1)+2}, \ldots, B_{a_\ell}$. En outre, par minimalité de ℓ , Picsou a aussi dû placer au moins $\ell-1$ pièces parmi les boîtes $B_1, B_2, \ldots, B_{v(\ell-1)}$. Cela fait un total absurde de k+1 pièces, ce qui invalide notre supposition et conclut la récurrence.

Pour $\ell = k$, ce résultat signifie précisément que $u(k) \leq v(k)$. Puisque u(1) = 1, une récurrence immédiate sur k démontre alors que $u(k) \leq 2^{k-1}$ pour tout entier $k \geq 1$.

Il ne nous reste plus qu'à expliquer comment Picsou peut se débrouiller pour mettre une pièce dans la boîte $B_{2^{k-1}}$. Il lui suffit, pour ce faire, de calquer la stratégie déjà esquissée ci-dessus. Tout d'abord, il commence

par mettre une pièce en position $B_{u(k-1)}$, en ayant utilisé au plus k-1 pièces en tout, et agi sur les boîtes $B_{i_1}, B_{i_2}, \ldots, B_{i_\ell}$. Puis il agit sur les boîtes $B_{u(k-1)+1}, B_{i_\ell}, B_{i_{\ell-1}}, \ldots, B_{i_1}$, et se retrouve avec une pièce en boîtes B_1 et $B_{u(k-1)+1}$, et k-2 pièces sur la table. Il ignore alors les boîtes B_1 à $B_{u(k-1)}$ et l'unique pièce que celles-ci contiennent et, en utilisant les k-1 pièces qui lui restent, parvient à placer une pièce en position $B_{(u(k-1)+1)+(u(k-1)-1)}$. Cela démontre que $u(k) \ge 2u(k-1)$, et donc que $u(k) = 2^{k-1}$.

En conclusion, les entiers n recherchés sont les entiers $1, 2, 3, \ldots, 2^{k-1}$.

■ Problème 3

Soit ABCD un quadrilatère convexe, tel que $\widehat{ABC} > 90^{\circ}$, $\widehat{CDA} > 90^{\circ}$ et $\widehat{DAB} = \widehat{BCD}$. On note E, F et G les symétriques de A par rapport aux droites (BC), (CD) et (DB). Enfin, on suppose que la droite (BD) rencontre les segments [AE] et [AF] en deux points K et L.

Démontrer que les cercles circonscrits aux triangles BEK et DFL sont tangents l'un à l'autre en G.

§ Solution

Pour jouer sur nos relations de cocyclicité, nous allons utiliser des angles de droites. Tout d'abord, puisque la symétrie d'axe (BD) échange les points A et G mais laisse les points B et K invariants, on observe que (GB, GK) = (AK, AB). De même, la symétrie d'axe (BC) échange les points A et E mais laisse le point B invariant, de sorte que (AE, AB) = (EB, EA). On en conclut déjà que

$$(GB, GK) = (AK, AB) = (AE, AB) = (EB, EA) = (EB, EK),$$

ce qui signifie que les points B, G, E et K sont cocycliques. On note alors ℓ la tangente en G au cercle circonscrit à ces quatre points.

On démontre de même que les points D, G, F et L sont cocycliques, et on note ℓ' la tangente en G au cercle circonscrit à ces quatre points.

Enfin, comme les points C et G sont séparés de A par la droite (BD), et puisque $\widehat{BGC} = \widehat{DAB} = \widehat{BCD}$, les points B, C, G et D sont cocycliques. Dans ces conditions,

$$(BG, \ell) + (\ell', GD) = (KB, KG) + (LG, LD) = (KA, KB) + (LD, LA)$$
$$= (KA, LA) = (KA, BC) + (CB, CD) + (CD, LA)$$
$$= 90^{\circ} + (CB, CD) + 90^{\circ} = (CB, CD)$$
$$= (GB, GD) = (BG, \ell) + (\ell, GD).$$

Ainsi, les droites ℓ et ℓ' sont parallèles et, puisqu'elles passent toutes deux par G, elles sont confondues.

Problème 4

Existe-t-il deux entiers a et b tels qu'aucun des nombres $a, a+1, \ldots, a+2023, b, b+1, \ldots, b+2023$ n'en divise un des 4047 autres, mais que $a(a+1)(a+2)\cdots(a+2023)$ divise $b(b+1)(b+2)\cdots(b+2023)$?

§ Solution n°1

La réponse est positive; on construit les entiers a et b comme suit. On commence par choisir 2024^2 nombres premiers $p_{i,j}$ (pour $0 \le i, j \le 2023$) deux à deux distincts et plus grands que 2024.

Le théorème chinois indique qu'il existe un entier $a \ge 2024$ tel que $a \equiv p_{i,j} - i \pmod{p_{i,j}^2}$ pour tout nombre premier $p_{i,j}$. Ainsi, $p_{i,j}$ divise a+i et, lorsque $k \ne i$, le nombre $p_{i,j}$ est strictement supérieur à la différence entre a+i et a+k, donc il ne divise pas a+k. Par conséquent, la valuation $p_{i,j}$ -adique du produit $a(a+1)(a+2)\cdots(a+2023)$ vaut 1, et l'entier

$$q = \frac{a(a+1)(a+2)\cdots(a+2023)}{\prod_{i,j} p_{i,j}}$$

est premier avec chacun des nombres $p_{i,j}$.

À nouveau, le théorème chinois indique qu'il existe un entier $b \ge 2024$ tel que $b \equiv 0 \pmod{q}$ et $b \equiv -j \pmod{p_{i,j}}$ pour tout nombre premier $p_{i,j}$. Cette fois-ci, $p_{i,j}$ divise b+j et, lorsque $\ell \ne j$, le nombre $p_{i,j}$ est strictement supérieur à la différence entre b+j et $b+\ell$, donc il ne divise pas $b+\ell$.

En particulier, $p_{i,j}$ divise donc a+i et b+j mais ni a+k ni $b+\ell$, donc a+i et b+j ne divisent ni a+k, ni $b+\ell$. Cela démontre déjà qu'aucun des nombres $a, a+1, \ldots, a+2023, b, b+1, \ldots, b+2023$ n'en divise un autre.

Enfin, le produit

$$a(a+1)(a+2)\cdots(a+2023) = q \times \prod_{i,j} p_{i,j}$$

divise bien $b(b+1)(b+2)\cdots(b+2023)$, car chacun des facteurs q ou $p_{i,j}$ divise un des nombres b+j, et ces facteurs sont deux à deux premiers entre eux.