Numerical methods for eigenvalue problems

D. Löchel Supervisors: M. Hochbruck und M. Tokar

> Mathematisches Institut Heinrich-Heine-Universität Düsseldorf

GRK 1203 seminar february 2008

Introduction

Power Method

Inverse Power Method
Inverse Power Method with Shift
Rayleigh Quotient Iteration

Simultaneous Iteration

QR Algorithm

QR Algorithm with Shift

Summary

Introduction

Linear Algebra:

Definition

$$A\in\mathbb{C}^{n imes n},\quad ext{eigenvector } ec{x}\in\mathbb{C}^n\setminus\{0\}\;,\quad ext{eigenvalue } \lambda\in\mathbb{C}$$
 $Aec{x}=\lambdaec{x}$

Theorem

$$\lambda$$
 eigenvalue of $A \iff P_A(\lambda) := det(\lambda I - A) = 0$

- ► P_A characteristic polynomial
- ▶ $deg(P_A) \ge 5$: no explicit formula \longrightarrow numerical algorithm required
- using $P_A(\lambda)$ numerical instable

Definition

Rayleigh quotient: $\rho_A(\vec{x}) = \frac{\vec{x}^H A \vec{x}}{\vec{x}^H \vec{x}}$

Theorem

 \vec{x} eigenvector of $A \Longrightarrow \rho_A(\vec{x})$ is eigenvalue of A

Definition

- ▶ numbering of eigenvalues: $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_n|$
- $ightharpoonup \vec{x}_j$ eigenvector for λ_j

Power Method

Given: $A \in \mathbb{C}^{n \times n}, \ \vec{y}_0 \in \mathbb{C}^n \setminus \{0\}, \ \|\vec{y}_0\|_2 = 1$

Assume: $\vec{y}_0^H \vec{x}_1 \neq 0$

Idea:

$$\vec{y}_0 = \sum_{j=1}^n \beta_j \vec{x}_j$$

$$\Longrightarrow A\vec{y}_0 = \sum_{j=1}^n \beta_j A\vec{x}_j = \sum_{j=1}^n \beta_j \lambda_j \vec{x}_j$$

$$\Longrightarrow A^k \vec{y}_0 = \sum_{j=1}^n \beta_j \lambda_j^k \vec{x}_j = \beta_1 \lambda_1^k \vec{x}_1 + \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$$

Power Method

Initial guess $\|\vec{y}_0\|_2 = 1$. for $k = 0, 1, \ldots$ do $\vec{z}_{k+1} = A\vec{y}_k$ // power $\rho_k = \vec{y}_k^H \vec{z}_{k+1}$ // Rayleigh quotient $\frac{\vec{y}_k^H A \vec{y}_k}{\vec{y}_k^H \vec{y}_k}$ $\vec{y}_{k+1} = \frac{\vec{z}_{k+1}}{\|\vec{z}_{k+1}\|_2}$ // avoid over and underflow end for

- ▶ Convergence if $\eta := \left| \frac{\lambda_2}{\lambda_1} \right| < 1$ and $\vec{x}_1^H \vec{y}_0 \neq 0$.
- ▶ Approximation $\rho(\vec{y}_k) = \lambda_1 + \mathcal{O}(\eta^k)$, slow if $\eta \approx 1$.
- Finds λ₁ only.

Interior Eigenvalues

Recall: $\lambda \neq 0$ eigenvalue of A $\iff \frac{1}{\lambda}$ eigenvalue of A^{-1} .

Idea: apply power method to $A^{-1} \rightarrow$ inverse power method.

Definition

LU decomposition: A = LU, L lower, U upper triangular matrix

$$A\vec{z} = \vec{y}$$

$$\iff L(U\vec{z}) = \vec{y}$$

$$\iff L\vec{t} = \vec{y}, \ U\vec{z} = \vec{t}$$

two triangular linear systems

Inverse Power Method

```
Initial guess \|\vec{y}_0\|_2 = 1. Calculate LU decomposition of A. for k = 0, 1, \ldots do Solve A\vec{z}_{k+1} = \vec{y}_k with LU decomposition. /\!/ \vec{z}_{k+1} = A^{-1}\vec{y}_k \vec{y}_{k+1} = \frac{\vec{z}_{k+1}}{\|\vec{z}_{k+1}\|_2} // avoid over and underflow \rho_k = \rho_A(\vec{y}_{k+1}) = \vec{y}_{k+1}^H A\vec{y}_{k+1} // Rayleigh quotient end for
```

- Finds eigenvalue closest to zero.
- ► Convergence if $\eta := \left| \frac{\lambda_n}{\lambda_{n-1}} \right| < 1$ and $\vec{x}_n^H \vec{y}_0 \neq 0$.
- ▶ Approximation $\rho(\vec{y}_k) = \lambda_n + \mathcal{O}(\eta^k)$, slow if $\eta \approx 1$.

What about the remaining eigenvalues?

Smallest eigenvalue of $A - \mu I$ is eigenvalue from A closest to μ .

Definition

 μ is called Shift and $A - \mu I$ shifted matrix.

Inverse Power Method with Shift

```
Initial guess \|\vec{y}_0\|_2 = 1. \mu_0 initial guess for desired eigenvalue. Calculate LU decomposition of (A-\mu_0I). for k=0,1,\ldots do Solve (A-\mu_0I)\vec{z}_{k+1}=\vec{y}_k with LU decomposition. \vec{y}_{k+1}=\frac{\vec{z}_{k+1}}{\|\vec{z}_{k+1}\|_2} // avoid over and underflow \rho_k=\rho_A(\vec{y}_{k+1})=\vec{y}_{k+1}^HA\vec{y}_{k+1} // Rayleigh quotient end for
```

- ▶ Finds eigenvalue λ_i closest to μ_0 .
- ▶ Convergence if $\eta := \max_{m \neq j} \left| \frac{\lambda_j \mu_0}{\lambda_m \mu_0} \right| < 1$ and $\vec{x}_j^H \vec{y}_0 \neq 0$.
- ▶ Approximation $\rho(\vec{y}_k) = \lambda_i + \mathcal{O}(\eta^k)$, slow if $\eta \approx 1$.

Rayleigh Quotient Iteration

Initial guess $\|\vec{y}_0\|_2 = 1$.

 μ_0 initial guess for desired eigenvalue.

for
$$k = 0, 1, ...$$
 do

Calculate LU decomposition of $(A - \mu_k I)$.

Solve $(A - \mu_k I)\vec{z}_{k+1} = \vec{y}_k$ with LU decomposition.

$$\vec{y}_{k+1} = \frac{\vec{z}_{k+1}}{\|\vec{z}_{k+1}\|_2}$$
 // avoid over and underflow

$$\rho_k = \rho_A(\vec{y}_{k+1}) = \vec{y}_{k+1}^H A \vec{y}_{k+1} // \text{Rayleigh quotient}$$

$$\mu_{\mathbf{k}} := \rho_{\mathbf{k}}$$

end for

- ▶ Finds eigenvalue λ_j closest to μ_0 .
- ▶ Convergence if $\eta_0 := \max_{m \neq j} \left| \frac{\lambda_j \mu_0}{\lambda_m \mu_0} \right| < 1$ and $\vec{x}_j^H \vec{y}_0 \neq 0$.
- ▶ Approximation $\rho(\vec{y}_k) = \lambda_j + \mathcal{O}(\eta_0^{2k})$.
- LU decompostion in each step expensive
- Convergence fast

Simultaneous Iteration

Until now: calculating only one eigenvalue Next step: calculating many or all eigenvalues

$$m \leq n,\ U_0 \in \mathbb{C}^{n,m}$$
 unitary, $U_0^H U_0 = I_m,\ A_0 := A$ for $k=0,1,\ldots$ do
$$Y_{k+1} := A_k U_k \text{ // power of each column of } U_k$$
 Calculate QR decomposition $Y_{k+1} = U_{k+1} R_{k+1}.$ $A_{k+1} = U_{k+1}^H A U_{k+1} \text{ // similarity transformation}$ end for

Orthogonalisation is necessary to avoid that all columns converge against x₁.

m = n: QR algorithm (equivalent to simultaneous iteration)

$$A_0:=A$$
 for $k=0,1,\ldots$ do Calculate QR Decomposition $A_k=Q_kR_k$. $A_{k+1}:=R_kQ_k$ end for

- ▶ $A_{k+1} = R_k Q_k = Q_k^H A_k Q_k = (Q_{k-1} Q_k)^H A_{k-1} (Q_{k-1} Q_k) = \widehat{Q}_k^H A_0 \widehat{Q}_k$, unitary similarity transformation.
- ▶ $A_k \longrightarrow$ upper triangular matrix, eigenvalues on diagonal (proof: schur decomposition).
- This way QR algorithm can be very slow.

QR Algorithm with Shift

```
A_0 := A for k = 0, 1, \ldots do Choose a shift \mu_k. Calculate QR decomposition A_k - \mu_k I = Q_k R_k. A_{k+1} := R_k Q_k + \mu_k I end for
```

this way convergence is fast in general

HENRICH HEINE UNIVERSITÄT QR Implementation

- ▶ complexity of one QR decomposition: $\frac{2}{3}n^3$ operations
- \triangleright complexity to calculate all eigenvalues: at least $\mathcal{O}(n^4)$
- reduce complexity for QR decomposition by $A \leftarrow H := U^H A U$ with H upper Hessenberg.

$$U^{H}AU = H = \begin{bmatrix} h_{1,1} & \dots & h_{1,n-1} & h_{1,n} \\ h_{2,1} & \ddots & \vdots & \vdots \\ & \ddots & h_{n-1,n-1} & h_{n-1,n} \\ 0 & & h_{n,n-1} & h_{n,n} \end{bmatrix}$$

U product of Givens-Rotations

$$G = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

- power method for biggest eigenvalue
- inverse power method for eigenvalue closest to zero.
- inverse power method with shift for desired eigenvalue
- Rayleigh quotient iteration, fast
- simultaneous iteration for many eigenvalues
- QR algorithm (with shift) for all eigenvalues (fast)

Thank you for your attention!