

See What Happened With Real-Time KVM When Building Real Time Cloud?

Pei Zhang (张 培) pezhang@redhat.com June 20, 2017

Agenda

- 1. Background
- 2. Build real time cloud
- 3. Configure Open vSwitch, DPDK and vhost-user in real time environment
- 4. Show performance testing results

1. Background

1.1 Real-Time

Real-Time is about determinism, constant and predictive behaviour.

1.2 Network Function Virtualization(NFV)

Network functions will be implemented in software that can run on a range of industry standard server hardware.

Dedicated network appliances will be replaced by virtualization and software.

1.3 FCAPS in Telecommunications

- Fault management
- Configuration management
- Accounting management
- Performance management
 - Throughput, network response times, packet loss rates, etc
- Security management

2. Build real time cloud

2.1 Real-Time in OpenStack

2.2 Strict pre-requisites for compute nodes

- Set up BIOS
- Install real time kernel/kvm
- Isolate cores
- Set hugepages

2.3 Configure Nova for launching real time VM

- Real time policy
- Pin vCPUs to individual cores
- Set housekeeping cores and real time cores
- Reserve hugepages
- Avoid devices which cause high latency

3. Configure Open vSwitch, DPDK and vhost-user in real time environment

3.1 NFV Solution

3.2 VM with Open vSwitch, DPDK and vhost-user

Poll mode driver

- **Strict NUMA policy**
- Real time scheduling
 - Individual cores pinning

3.2 Single queue topology

Fig. vhost-user single queue

3.3 Multiple queues topology

Fig. vhost-user 2 queues

4. Show performance testing results

4.1 Real-Time KVM latency testing

- Multiple vCPUs in VM

	vCPU 1	vCPU 2	vCPU 3	vCPU 4	vCPU 5	vCPU 6	vCPU 7	vCPU 8
Min(us)	00006	00006	00006	00006	00006	00005	00006	00006
Avg(us)	00006	00006	00006	00006	00006	00006	00006	00006
Max(us)	00012	00012	00012	00011	00016	00012	00012	00017

Testing environment:

CPU: Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz

Versions: Red Hat Enterprise Linux 7

4.1 Real-Time KVM latency testing

- Multiple VMs

	VM 1	VM 2	VM 3	VM 4
Min(us)	00005	00005	00005	00005
Avg(us)	00006	00006	00006	00006
Max(us)	00012	00011	00013	00013

Testing environment:

CPU: Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz

Versions: Red Hat Enterprise Linux 7

4.2 Network layer 2 latency testing

1 hour	Min(us)	Avg(us)	Max(us)	v_95p	v_99p	v_9999p
KVM / 2Q	15.987	17.077	777.990	17.555	18.547	23.692
RT-KVM /2Q	15.916	16.429	39.084	17.004	17.171	17.683

Testing environment:

CPU: Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz

NIC: 10-Gigabit X540-AT2

Versions: Red Hat Enterprise Linux 7

Thanks.

Appendix

- Configuring compute node

cat /proc/cmdline

 $BOOT_IMAGE=/vmlinuz-3.10.0-661.rt56.579.el7.x86_64 ...default_hugepagesz=1G iommu=pt intel_iommu=on isolcpus=1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,30,28,26,24,22,20,18,16 nohz=on nohz_full=1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,30,28,26,24,22,20,18,16 rcu_nocbs=1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,30,28,26,24,22,20,18,16 intel_pstate=disable nosoftlockup$

tuned-adm active

Current active profile: realtime-virtual-host

```
# cat /usr/lib/tuned/realtime-virtual-host/lapic_timer_adv_ns 3500 # cat /sys/module/kvm/parameters/lapic_timer_advance_ns 3500
```

cat /sys/devices/system/node/node0/hugepages/hugepages-1048576kB/nr_hugepages 20

- configuring nova

[root@compute1 ~]# cat /etc/nova/nova.conf

vcpu pin set=2,4,6,8,10,12,14,16,18

```
[root@compute1 ~]# source admin-openrc
[root@compute1 ~]# nova flavor-key 1 set hw:cpu_policy=dedicated
[root@compute1 ~]# nova flavor-key 1 set hw:cpu_realtime=yes
[root@compute1 ~]# nova flavor-key 1 set hw:cpu_realtime_mask="^0-1"
[root@compute1 ~]# nova flavor-key 1 set hw:mem_page_size=1GB
```

- booting VM


```
<memoryBacking>
   <hugepages>
    <page size='1048576' unit='KiB' nodeset='0'/>
    </hugepages>
   <locked/>
</memoryBacking>
<vcpu placement='static'>2</vcpu>
<cputune>
    <vcpupin vcpu='0' cpuset='19'/>
    <vcpupin vcpu='1' cpuset='18'/>
    <emulatorpin cpuset='1,3,5,7,9'/>
    <vcpusched vcpus='0-1' scheduler='fifo' priority='1'/>
</cputune>
<cpu mode='host-passthrough'>
    <feature policy='require' name='tsc-deadline'/>
</cpu>
```

Hugepage

vCPU pin

Real time

Note:

Remove devices which will cause high latency:

- 1. All USB support
- 2. All Spice support and QXL hardware
- 3. Virtio serial and guest agent sockets
- 4. Sound card

- Configuring VM

cat /proc/cmdline

BOOT_IMAGE=/vmlinuz-3.10.0-661.rt56.579.el7.x86_64 root=/dev/mapper/rhel-root ro crashkernel=auto rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet LANG=en_US.UTF-8 console=tty0 console=ttyS0,115200 isolcpus=1 nohz=on nohz_full=1 rcu_nocbs=1 intel_pstate=disable nosoftlockup

tuned-adm active

Current active profile: realtime-virtual-guest

- Set up of Open vSwitch

- 1. Bind network devices to the driver dpdk supported, like vfio-pci
- 2. Open DPDK support option

```
# ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true
```

3. Use hugepage

```
# ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-socket-mem="1024,1024"
```

4. Create DPDK ports and vhost-user ports

#ovs-vsctl add-port ovsbr1 dpdk1 -- set Interface dpdk1 type=dpdk

ovs-vsctl add-port ovsbr1 vhost-user1 -- set Interface vhost-user1 type=dpdkvhostuserclient options:vhost-server-path=/tmp/vhostuser1.sock

ovs-vsctl add-port ovsbr0 vhost-user0 -- set Interface vhost-user0 type=dpdk vhostuser

- 5. Pin each PMD thread to individual isolate core
 - Eg. 4 port, 4 pmd thread, 4 individual cores.
- 6. Follow strict NUMA placement policy
 Should use cores and hugepage of same NUMA with network devices locate
- 7. Change the real time scheduling of all PMD processes.

chrt -fp 95 \$processID

- Set up of VM

1. Follow strict NUMA placement policy

Should use cores and hugepage of same NUMA with host network devices(or Open vSwitch)

- 2. Boot with enough vCPUs
- 3. Add network devices with vhost-user client/server mode

If Open vSwitch vhost-user ports is client mode, then guest should be server mode. Vice visa.