

Thoughts on DL3 for IACTs

Jürgen Knödlseder

My favorite questions

- How to factorise the Instrument Response Function?

But before that ...

- What information do we need in the event file?
 - is the minimal format that we implemented in GammaLib enough?
 - should there be redundant information?
 - Note: RA/DEC DETX/DETY is not considered redundant as the transformation needs a pointing model and explicitly the time
 - should there be mandatory columns and optional columns?
 Should there be flexibility in implementing the format?
 (recall: the "F" in FITS stands for flexibility, maybe one of the reasons for its success)

Select All Invert	☐ EVENT_ID 1J Modify	□ TIME 1D s Modify	□ RA 1E deg Modify	□ DEC 1E deg Modify	□ ENERGY 1E TeV Modify	□ DETX 1E deg Modify	□ DETY 1E deg Modify
1	1	3.596789240837E-01	8.362013E+01	2.197107E+01	1.570517E-01	-3.893483E-02	-9.149051E-03
2	2	9.667769908905 E +00	8.360922E+01	2.195930E+01	1.137184E-01	-5.070112E-02	-1.927271E-02
3	3	1.314883381128E+01	8.365855E+01	2.205752E+01	1.149002E-01	4.752544E-02	2.645994E-02
4	4	1.550700747967E+01	8.362605E+01	2.206566E+01	1.719268E-01	5.566480E-02	-3.665101E-03
4	-	1.5507007475072701	0.002000101	2.200300E:01	1.1122002 01	3.300400E 02	0.0001011 00

But before that ...

- How to partition the events?
 - can we use the logic of event classes and event types defined by Fermi/LAT?
 - inclusive or exclusive event files?
 - how to organise the response functions for the partitions?

event types (reconstruction quality) Fermi/LAT: PSF, EDISP, FB (same file) CTA: ? (multiplicity, xST)

event classes (background cuts)

Fermi/LAT: transient, source, clean, ultraclean (separate files) CTA: South_0.5h, South_5h, South_50h

A possible DL3 format

Index	Extension	Туре	Dimension	View				
□ 0	Primary	Image	0	Header	Image		Table	
□ 1	EVENTS	Binary	7 cols X 12121 rows	Header	Hist	Plot	All	Select
□ 2	GTI	Binary	2 cols X1 rows	Header	Hist	Plot	All	Select
□ 3	EFFECTIVE AREA	Binary	6 cols X1 rows	Header	Hist	Plot	All	Select
□ 4	POINT SPREAD FUNCTION	Binary	10 cols X1 rows	Header	Hist	Plot	All	Select
□ 5	ENERGY DISPERSION	Binary	7 cols X1 rows	Header	Hist	Plot	All	Select
□ 6	BACKGROUND	Binary	7 cols X1 rows	Header	Hist	Plot	All	Select

- Store information for one observation (aka run) in a single file
 - event list (for a given cut)
 - Good Time Intervals for the selected events
 - Instrument Response for the selected events (one per event type)
 - Background rate template for the selected events (one per event type)
- Science Users get for each observation a single, self contained file
 - simplifies data distribution
 - minimizes risk of improper usage

A possible DL3 format

Index	Extension	Туре	Dimension	View				
□ 0	Primary	Image	0	Header	Image		Table	
□ 1	EVENTS	Binary	7 cols X 12121 rows	Header	Hist	Plot	All	Select
□ 2	GTI	Binary	2 cols X1 rows	Header	Hist	Plot	All	Select
□ 3	EFFECTIVE AREA	Binary	6 cols X1 rows	Header	Hist	Plot	All	Select
□ 4	POINT SPREAD FUNCTION	Binary	10 cols X1 rows	Header	Hist	Plot	All	Select
□ 5	ENERGY DISPERSION	Binary	7 cols X1 rows	Header	Hist	Plot	All	Select
□ 6	BACKGROUND	Binary	7 cols X1 rows	Header	Hist	Plot	All	Select

But ...

- assumes a given temporal granularity (IRF "fixed" over period)
- eventually duplicates IRF and/or background information if their temporal variation is slower than the temporal granularity of the files
- file size likely dominated by IRF
 - EVENTS & GTI: 406 kBytes / 325 kBytes (30 min, South_0.5h)
 - IRF: 2105 kBytes / 406 kBytes
 - Uncompressed / gzip compressed

Caveats

- Should an event file correspond to one run?
 - should we assume that the pointing direction is fixed?
 - how to deal with data for "slew" or "scan" observations?
 - CTA is considering to abandon "runs" at the low-level. Should we have a format that can do the same at the high-level?
- What if we want to support shorter runs (~ min)?
 - do we need that?
 - can we really measure IRF variations at such short time scales?
 - what about memory requirements?
 - can't we achieve the same with a proper response factorisation?

Response formalism

"Standard" response factorisation

$$R(\mathbf{p}', E', t'|\mathbf{p}, E, t) = A_{\text{eff}}(\mathbf{p}, E, t) \times PSF(\mathbf{p}'|\mathbf{p}, E, t) \times E_{\text{disp}}(E'|\mathbf{p}, E, t)$$

Event probability

$$P_i(\mathbf{p}', E', t'|M_j) = \int_{\mathbf{p}, E, t} R_i(\mathbf{p}', E', t'|\mathbf{p}, E, t) \times M_j^S(\mathbf{p}, E, t) \,\mathrm{d}\mathbf{p} \,\mathrm{d}E \,\mathrm{d}t$$

Number of observed events (N_{pred})

$$e_i(M) = \int_{GTI} \int_{Ebounds} \int_{ROI} P_i(\mathbf{p}', E', t'|M) \,\mathrm{d}\mathbf{p}' \,\mathrm{d}E' \,\mathrm{d}t'.$$

Can we factorise more?

• E.g. separate zenith angle from camera/array dependencies

- Can we factorise other atmospheric parameters?
- Ultimate goal: separate atmosphere from array configuration

Preliminary conclusions

- Defining the DL3 format boils down to finding the proper factorisation for the Instrument Response Function
- Event file format will follow once the IRF format is fixed

