

Biokimia

A. PENDAHULUAN

- Biokimia adalah cabang ilmu kimia yang mempelajari senyawa-senyawa organik yang memiliki fungsi biologis (biomolekul).
- Biomolekul secara umum terdiri atas karbohidrat, protein dan lemak.

B. KARBOHIDRAT

- Karbohidrat adalah biomolekul turunan hidrokarbon yang disebut polihidroksi aldehida atau polihidroksi keton.
- Sifat-sifat karbohidrat secara umum:

1) Jumlah atom karbon

Berdasarkan jumlah atom karbon, karbohidrat terdiri dari gula triosa (3), tetrosa (4), pentosa (5) dan heksosa (6).

2) Reaksi hidrolisis

Berdasarkan reaksi hidrolisis, karbohidrat terbagi menjadi monosakarida, disakarida, dan polisakarida.

monosakarida + H₂O →

disakarida + H₂O → monosakarida

polisakarida + H₂O → maltosa → glukosa

Reaksi hidrolisis berlangsung dengan bantuan katalis H_2SO_4 dan suhu tinggi.

3) Monomer-polimer

Karbohidrat terdiri atas:

a. **Monosakarida** $(C_6H_{12}O_6)$, adalah monomer dari disakarida dan polisakarida.

Contoh: glukosa, fruktosa, galaktosa.

b. **Disakarida** (C₁₂H₂₂O₁₁), adalah dimer dari monosakarida.

Monosakarida membentuk disakarida dengan melepas satu molekul air dari dua gugus hidroksi membentuk **ikatan glikosida**.

Contoh: sukrosa, laktosa dan maltosa.

c. **Polisakarida** $(-C_6H_{10}O_5-)_n$, adalah polimer dari monosakarida.

Polisakarida terbentuk melalui **reaksi polimerisasi kondensasi** dengan membentuk **ikatan glikosida**.

Contoh: amilum, selulosa dan glikogen.

Struktur monosakarida (monomer) karbohidrat terdiri atas:

- a. **Struktur Fischer**, struktur pada keadaan rantai terbuka.
- Struktur Haworth, struktur pada keadaan rantai siklik, akibat reaksi antara gugus alkohol dengan gugus aldehida atau keton sewaktu dilarutkan dalam air.

4) Rasa

Karbohidrat secara umum memiliki rasa manis, dengan fruktosa yang paling manis dan polisakarida yang paling tidak manis.

Tingkat kemanisan:

fruktosa > glukosa > galaktosa

sukrosa > maltosa > laktosa

5) Kelarutan

Karbohidrat larut dalam pelarut polar (air), dan kurang larut dalam pelarut non-polar.

- a. Monosakarida dan disakarida larut dalam air
- b. Polisakarida kurang larut dalam air.

6) Gula pereduksi

Berdasarkan kemampuan mereduksi, gula terbagi menjadi dua:

 a. Gula pereduksi, adalah karbohidrat yang bereaksi positif dengan pereaksi Tollens dan Fehling.

Contoh: semua monosakarida dan disakarida, kecuali sukrosa.

b. **Gula bukan pereduksi**, adalah karbohidrat yang bereaksi negatif dengan pereaksi Tollens dan Fehling.

Contoh: sukrosa dan semua polisakarida.

7) Mutarotasi

Mutarotasi adalah peristiwa perubahan pemutar polarimetri karbohidrat setelah dilarutkan akibat mengalami perubahan struktur **isomer optis**.

- a. Semua monosakarida dan disakarida kecuali sukrosa mengalami mutarotasi.
- b. Sukrosa dan semua polisakarida tidak mengalami mutarotasi.

MONOSAKARIDA (C₆H₁₂O₆)

GLUKOSA

CH₂OH <u></u>-ОН OH HO-ΗÓ -ċ*—он OH H-Ċ*OH ĊH₂OH D-glukosa

Nama lain gula darah G. fungsi aldehida (aldosa) manis Rasa Fermentasi dapat Pereduksi ya Mutarotasi ya

Sumber buah, sayuran, madu **FRUKTOSA**

Nama lain gula buah G. fungsi keton (ketosa) Rasa paling manis Fermentasi dapat Pereduksi ya Mutarotasi ya Sumber buah, madu, nektar

CH₂OH

-OH HO-C+H НО— с′*— н н-С*-ОН ĊH₂OH

CH₂OH HO OH ÒН OH

D-galaktosa Nama lain

GALAKTOSA

G. fungsi aldehida (aldosa) kurang manis Rasa Fermentasi tidak dapat

Pereduksi ya Mutarotasi ya

Sumber hasil hidrolisis laktosa

DISAKARIDA (C₁₂H₂₂O₁₁)

SUKROSA

Nama lain gula pasir, gula invert **Monomer** glukosa + fruktosa paling manis Rasa Pereduksi tidak Mutarotasi tidak

Sumber buah, tebu, bit

LAKTOSA

Nama lain gula susu glukosa + galaktosa Monomer Rasa kurang manis

Pereduksi ya Mutarotasi ya Sumber susu

MALTOSA

Nama lain gula malt

Monomer glukosa + glukosa

Rasa manis Pereduksi ya Mutarotasi ya

Sumber hasil hidrolisis amilum

POLISAKARIDA (-C₆H₁₀O₅-)_n

AMILUM

Nama lain pati, kanji Monomer D-glukosa tidak manis Rasa tidak Pereduksi Mutarotasi tidak Kelarutan larut dalam air panas Sumber umbi, biji-bijian

SELULOSA

Nama lain gula susu **Monomer** D-glukosa Rasa tidak manis Pereduksi tidak Mutarotasi tidak Kelarutan tidak larut Sumber daun, batang, kapas

GLIKOGEN

Nama lain gula otot, pati hewan **Monomer** D-glukosa tidak manis Rasa tidak Pereduksi Mutarotasi tidak Kelarutan koloid hidrofil Sumber otot, hati

C. UJI KARBOHIDRAT

- Niji pengenalan karbohidrat terdiri dari:
 - 1) Uji Molisch

Dilakukan dengan menambahkan alfanaftol dan H₂SO₄ pekat. Uji Molisch bereaksi positif dengan **seluruh jenis karbohidrat**.

- (+) Terbentuk bidang batas warna merahungu.
- (-) Tidak terbentuk bidang batas warna merah-ungu.
- 2) Reaksi dengan oksidator (oksidasi)

Dilakukan menggunakan pereaksi Tollens dan Fehling/Benedict lalu dipanaskan.

Reaksi ini bereaksi positif terhadap **gula pereduksi** dan bereaksi negatif terhadap gula bukan pereduksi.

Pereaksi Tollens

- (+) Terbentuk cermin perak (Ag).
- (-) Tidak terbentuk cermin perak (Ag).

Pereaksi Fehling/Benedict

- (+) Terbentuk endapan merah bata (Cu₂O).
- (-) Warna campuran tetap biru.
- 3) Uji iodin

Dilakukan menggunakan larutan I_2 berwarna kecoklatan. Uji iodin bereaksi positif dengan **amilum**, bereaksi negatif dengan selulosa dan glikogen.

- (+) Warna biru tua.
- (-) Warna tetap kecoklatan.

D. PROTEIN

- Protein adalah biomolekul yang merupakan bahan pembangun dasar sel-sel tubuh, yang merupakan polimer dari asam amino.
- Asam amino adalah suatu turunan hidrokarbon yang mengandung satu gugus karboksil dan satu gugus amina.

- Asam amino terdiri atas:
 - Asam amino esensial, asam amino penting karena tidak dihasilkan tubuh dan hanya didapat dari makanan.

Contoh: histidin, arginin, valin, leusin, isoleusin, treonin, triptofan, leusin, metionin, fenilalanin.

- Asam amino non-esensial adalah asam amino yang dapat dibuat oleh tubuh sendiri.
 Contoh: alanin, asam aspartat, asam glutamat, sistein, glutamin, glisin, tirosin.
- Asam amino adalah biomolekul yang bersifat:
 - 1) **Amfoter**, karena memiliki gugus asam (karboksil) dan gugus basa (amina).

Asam amino dapat membentuk **ion zwitter** yang merupakan molekul bermuatan ganda akibat interaksi asam-basa intramolekul.

Titik isoelektrik adalah titik pH dimana asam amino dalam keadaan muatan netral.

a. Jika pH < titik isoelektrik, asam amino bermuatan positif karena mengikat H⁺.

b. Jika pH = titik isoelektrik, asam amino membentuk ion zwitter.

c. Jika pH > titik isoelektrik, asam amino bermuatan negatif karena melepas air.

Beberapa titik isoelektrik asam amino:

A. amino	pH TIE	A. amino	pH TIE
alanin	6,1	triptofan	5,8
glisin	6,0	metionin	5,7
fenilalanin	5,9	treonin	5,6

- Optis aktif, karena memiliki atom C kiral.
 Semua jenis asam amino bersifat optis aktif, kecuali glisin.
- Dapat mengalami denaturasi, yaitu rusaknya struktur dan fungsi biologis protein akibat suhu tinggi.

Denaturasi protein bersifat irreversibel, dan mengakibatkan **koagulasi**.

- Protein terbentuk melalui reaksi polimerisasi kondensasi membentuk ikatan peptida.
- Natan peptida adalah ikatan antara gugus amina dengan gugus karboksil antar asam amino.

Struktur protein terdiri atas:

primer sekunder tersier kuartener

- 1) **Struktur primer**, adalah struktur rantai polipeptida lurus/bercabang awal.
- Struktur sekunder, adalah struktur akibat ikatan hidrogen pada satu rantai polipeptida yang membentuk struktur α-heliks, lempengβ, lekukan-β dan lekukan-γ.
- Struktur tersier, adalah struktur akibat ikatan antar struktur sekunder membentuk sub-unit protein.
- 4) **Struktur kuartener**, adalah kumpulan subunit protein.
- Berdasarkan bentuknya, protein terbagi menjadi:
 - Globular, berbentuk bulat padat.
 Contoh: enzim, protein transpor.
 - Filamen, berbentuk serabut.
 Contoh: keratin, kolagen.
- Berdasarkan fungsi biologisnya, protein terbagi menjadi:
 - Enzim (biokatalisator)
 Contoh: amilase, lipase, tripsin.
 - 2) **Hormon** (pengatur)
 Contoh: FSH, LH, adrenalin, noradrenalin.
 - Antibodi (sistem imun)
 Contoh: trombin, fibrinogen, immunoglobin.
 - 4) **Protein transpor** (transpor molekul) Contoh: hemoglobin, protein membran.
 - 5) **Protein kontraktil** (alat gerak) Contoh: aktin, myosin, mikrotubulus.
 - 6) **Protein struktur** (pelindung) Contoh: kolagen, keratin.
 - Protein nutrien (cadangan makanan)
 Contoh: albumin, kasein.

- Berdasarkan komposisinya, protein terbagi menjadi:
 - Protein tunggal, protein yang hanya tersusun atas monomer asam amino.
 Contoh: protein pada umumnya.
 - Protein majemuk, protein yang tersusun atas monomer asam amino dan zat lain.
 Contoh: glikoprotein (+karbohidrat), lipoprotein (+lemak), fosfoprotein (+fosfat), hemoprotein (+besi).
- Reaksi hidrolisis protein menghasilkan asam amino pada protein tunggal dan asam amino dan zat lain pada protein majemuk.

E. UJI PROTEIN

- Nji pengenalan protein terdiri dari:
 - 1) Uji ninhidrin

Dilakukan menggunakan larutan ninhdrin tidak berwarna. Uji ninhidrin bereaksi positif dengan senyawa yang mengandung **asam amino.**

- (+) Warna ungu.
- (-) Tidak berubah warna.

2) Uji biuret

Dilakukan dengan menambahkan NaOH dan CuSO₄. Uji biuret bereaksi positif dengan senyawa yang mengandung **ikatan peptida**.

- (+) Warna ungu.
- (-) Warna biru.

3) Uji xantoproteat

Dilakukan dengan menambahkan HNO₃ pekat lalu dipanaskan, lalu didinginkan dan ditambahkan NaOH. Uji biuret bereaksi positif dengan senyawa yang mengandung cincin benzena.

- (+) Warna jingga.
- (-) Warna kuning.

4) Uji Millon

Dilakukan dengan menambahkan pereaksi Millon yang mengandung Hg(NO₃)₂ dan HNO₂. Uji Millon bereaksi positif dengan senyawa yang mengandung **cincin benzena**.

- (+) Terbentuk endapan merah.
- (-) Tidak terbentuk endapan merah.

5) Uji timbal asetat

Dilakukan dengan menambahkan NaOH lalu dipanaskan, lalu didinginkan dan ditambahkan CH₃COOH.

Setelah itu, zat dipanaskan dan ditutup dengan kertas timbal asetat yang telah dicelupkan ke dalam larutan Pb(CH₃COOH)₂. Uji timbal asetat bereaksi positif dengan senyawa yang mengandung **sulfur/belerang**.

- (+) Akan terjadi warna biru tua.
- (-) Warna tetap kecoklatan.

F. LEMAK

- Lemak/lipid adalah biomolekul turunan hidrokarbon yang mengandung satu gugus ester.
- Lemak adalah ester gliserida dengan atom C > 10 yang terbentuk dari reaksi esterifikasi antara asam lemak dan gliserol.

asam lemak

gliserol/gliserin

(atom C > 10)

1,2,3-propantriol

Macam-macam asam lemak:

- Asam lemak jenuh, adalah asam lemak yang tidak mengandung ikatan rangkap C.
- 2) **Asam lemak tidak jenuh**, adalah asam lemak yang mengandung ikatan rangkap C.

_	_				
		Rumus molekul			
Asam lemak jenuh					
12	-	C ₁₁ H ₂₃ COOH			
14	-	C ₁₃ H ₂₇ COOH			
16	-	C ₁₅ H ₃₁ COOH			
18	-	C ₁₇ H ₃₅ COOH			
Asam lemak tak jenuh					
18	1	C ₁₇ H ₃₃ COOH			
18	2	C ₁₇ H ₃₁ COOH			
18	3	C ₁₇ H ₂₉ COOH			
	12 14 16 18 k jenuh 18	12 - 14 - 16 - 18 - k jenuh 18 1 18 2			

Sifat-sifat lemak:

- 1) **Tidak larut dalam pelarut polar**, namun larut dalam pelarut non-polar.
- 2) Bersifat hidrofob.
- Berdasarkan struktur kimia, lemak terbagi menjadi:
 - Lemak sederhana/trigliserida, tersusun atas asam lemak sejenis.
 - Contoh: gliseril tripalmitat, gliseril tristearat.
 - 2) **Lemak majemuk/campuran**, tersusun atas asam lemak beda jenis.

Contoh: gliseril linolenopalmitostearat.

Nerbedaan lemak dan minyak:

Perbedaan	Lemak	Minyak
Asal	hewan	tumbuhan
Asam lemak	jenuh	tidak jenuh
Esensial	non-esensial	esensial
Wujud kamar	padat	cair
Titik didih	lebih tinggi	lebih rendah
Contoh	mentega, keju, susu	minyak kelapa, minyak zaitun

🔦 Aturan penamaan lemak:

- 1) Nama lemak diawali kata gliserol/gliseril.
- 2) Nama lemak diakhiri dengan nama **asam lemak** yang menyusun lemak tersebut.
 - a. **Pada lemak sederhana**, nama asam lemak diberi awalan tri- dan akhiran –at/–in.
 - b. **Pada lemak majemuk**, nama asam lemak diurutkan sesuai abjad dalam bahasa Inggris, dan nama tiap asam lemaknya diberi akhiran –o, kecuali asam lemak terakhir diberi akhiran –at/–in.

Reaksi-reaksi pada lemak:

Reaksi pembentukan-hidrolisis lemak
 Merupakan dua reaksi yang berkebalikan.

 Reaksi pembentukan lemak (esterifikasi)

Asam Lemak + Gliserol → Lemak + Air

Reaksi hidrolisis lemak

Contoh:

Pembuatan gliseril tripalmitin

Pembuatan gliserol laurolinoleolinolenat

gliseril tripalmitin

BIOKIMIA

gliserol laurolinoleo-linolenat

2) Reaksi saponifikasi/penyabunan

Lemak + Basa Kuat → Garam Lemak (Sabun) + Gliserol

Jenis-jenis sabun:

a. Sabun keras, adalah sabun yang terbentuk dari NaOH.

Contoh: sabun cuci.

b. **Sabun lunak**, adalah sabun yang terbentuk dari KOH.

Contoh: sabun mandi, sabun kali.

Contoh:

gliseril tristearat

natrium stearat

gliserol

3) Reaksi hidrogenasi

Adalah reaksi penjenuhan lemak yang mengubah wujud lemak menjadi padat.

Pt/Ni Lemak Tak Jenuh + H₂ → Lemak Jenuh

Contoh:

gliserol trioleat

gliseril tristearin

↑ Turunan lemak/lipid terdiri atas:

1) Fosfolipid

Adalah turunan lemak yang gugus hidroksi pada gliserolnya diganti dengan asam karboksilat dan asam fosfat.

Fosfolipid bersifat **amfifilik,** yaitu memiliki gugus kepala (fosfat) yang bersifat **hidrofil,** dan gugus ekor (lipid) yang bersifat **hidrofob.**

Contoh fosfolipid antara lain fosfolipid bilayer (membran sel), fosfatidilkolin (lesitin), fosfatidiletanolamin, dan fosfatidilserin.

2) Steroid

Adalah turunan lemak yang tidak mengandung gugus asam lemak dan gugus ester.

Steroid bersifat **amfifilik** seperti fosfolipid, dan tersusun atas 4 cincin karbon dengan jumlah ikatan rangkap berbeda-beda dan mengikat bermacam-macam gugus.

Contoh steroid antara lain kolesterol, progesteron, estrogen dan testosteron.

G. UJI LEMAK

🔪 Uji pengenalan lemak antara lain:

1) Uji kertas buram

Dilakukan dengan meletakkan zat ke atas kertas buram. Uji kertas buram bereaksi positif dengan seluruh jenis lemak.

- (+) Kertas menjadi transparan.
- (-) Kertas tidak transparan.

2) Uji Sudan III

Dilakukan dengan meneteskan pereaksi Sudan III berwarna merah. Uji Sudan III bereaksi positif dengan seluruh jenis lemak.

- (+) Warna coklat.
- (-) Tidak berubah warna.