

Yesterday's question

How is + translated to __add__?

Answer here:

https://stackoverflow.com/questions/13334218/where-are-operators-map ped-to-magic-methods-in-python

She was the first to classify stars based on their spectral signatures. Who is this?

Menu for today

- 1. Recap of data.
- 2. What is Machine learning?
- 3. Machine learning algorithms.
- Classification: exercise #1
 - a. Using Scikit-learn
- 5. Regression: exercise #2
 - a. Using Pytorch

The data:

custom:pos.helioprojective.lon

Looking at data

u	g	r	i	z	run	rerun	camcol	field	specobjid	class	redshift
19.51665	18.50036	17.95667	17.53139	17.32035	7777	301	5	53	819657923239110656	GALAXY	0.114299
19.13548	18.55482	17.95603	17.68272	17.63717	5322	301	3	56	6154252554903769088	QS0	1.802680
19.54955	18.19434	17.83220	17.51329	17.47054	4335	301	3	130	2173034979993348096	GALAXY	0.070813
17.72343	16.65830	16.23667	16.07098	16.02797	2126	301	1	275	649647859372681216	STAR	0.000570
16.60500	15.66234	15.39406	15.29443	15.29302	3699	301	2	227	5817649714997514240	STAR	-0.000184

Mg II k-line

Keyword: Features

What is Machine learning?

Machine learning is the study of computer algorithms that improve automatically through experience and by the use of data.

- Wikipedia

- Computer algorithms.
- Improve automatically.
- Use data.

Why Machine learning?

GPUs:

One task, many times.

Typical ML problems #1

Easy question: How many clusters are present in this pic?

Typical ML problems #2

Typical ML problems

Supervised learning

What is the procedure to ML?

Frame the correct science question.

Task for the day

Estimate spectroscopic redshift from photometric colors ⇒

We will use a simple Linear Regression and a Deep neural network.

Why should it work?

From https://www.kaggle.com/c/photometric-redshift-estimation-2019

Metrics

$$\frac{1}{N}\Sigma(z_{pred} - z_{known})^2$$

$$\frac{1}{N} \sum_{i=0}^{N} \frac{|z_{known,i} - z_{pred,i}|}{max(\epsilon, |z_{known,i}|)}$$

Mean absolute % error

$$-\frac{\sum (z_{pred} - z_{known})^2}{\sum (z_{known} - \mu(z_{known}))^2}$$

Coefficient of determination

Linear regression

Neural network: Training

Step 1: Initialize w and b for all layers with some non-zero values.

Step 2: Calculate output from NN for input set:

$$z_{pred} = f(..f(\Sigma_k f(\Sigma_j w_{jk} x_j + b_k) + b_k)...$$

Step 3: z_{pred} will not match z_{known} . So get the error between these two values. Step 4: Now you update weights and biases using this error:

$$w \to w - \alpha \frac{\partial loss}{\partial w}$$

Step 5: Repeat till convergence!

Let us move on to Jupyter →

References for further reading

- 1. Andrew Ng's course on Machine learning in coursera: https://www.coursera.org/learn/machine-learning
- 2. Fast AI deep learning course: https://www.fast.ai/
- 3. Analytics vidhya and Towards Data Science are good blogs too:

 https://www.analyticsvidhya.com/blog/2015/06/machine-learning-basics/,

 https://towardsdatascience.com/machine-learning-basics-part-1-a36
 d38c7916.
- 4. Advanced: Bishop's book on Pattern recognition and Machine learning; Ian Goodfellow's book on Machine learning.