Lecture 5: Shallow Aquifer Models & Boundary Conditions

Logistics: - Today ouline (Karc is sick)

- Thursday will be freezing
 - -> likely UT will open late
 - -> stay ouline for now
- HW 1 is due Th 9:30 am
- Office hours 4-5 pur Wed.

Last time: - Discrete operators

$$\underline{\underline{D}} = \frac{1}{\Delta x} \begin{bmatrix} -1 & 1 & 1 \\ & -1 & 1 \\ & & -1 & 1 \end{bmatrix}$$
 Nx by Nx t | faces \rightarrow conters

Today: · lutro duce shallow aquifer model

> D model problem

> notivate BC's

Dirichlet BC's

> using constraints

Ground water recharge between two rivo's (Sauferd et al 2001) precip. qp~ 1.5 $\frac{CM}{yr}$ $\frac{L^3}{L^2T}$ $\frac{L}{T}$ $\frac{L}{T}$ $\frac{L}{L}$ $\frac{L}{L}$

Aquilit espect ratio: b/L=

⇒ flow is practically ID in horizontal direction

This can be seen from scaling enalysis of the

coutinuity egn:

$$X_D = \frac{X}{L}$$
 $Z_D = \frac{Z}{b}$

boundary

flux

$$q_{x,c} = \frac{q_x}{q_{x,c}}$$

dx = dx'c dx'D

substitute into continuity equi

Collect perms
$$\triangle \cdot d = \frac{9x}{36x} + \frac{9x}{36x} = \frac{7}{6x^{10}} = \frac{9x^{10}}{36x^{10}} + \frac{9x^{10}}{36x^{10}} = \frac{9x^{10}}{36x^{10}} = 0$$

$$\frac{\Delta x^{D}}{9 d^{x^{1}D}} + \frac{\partial x^{C}}{\partial z^{C}} + \frac{\partial x^{D}}{\partial dz^{C}D} = 0$$

 $\Pi = 1$ suggest the relation between scales $\frac{9\pi c}{9\pi c} = 1$ \Rightarrow $9\pi c = \frac{b}{L} 9\pi c \sim 10^3 9\pi c$

the vertical fluxes are approx. 1000 times smaller than borizontal flux?

Assume
$$g_z = 0 \Rightarrow \frac{2h}{2z} = 0 \Rightarrow h = h(x)$$
implies that pressure is hydrostaticial
we bical.

Durcy:
$$q_x = -k \frac{3h}{3x}$$

Assumptions:

1)
$$q = \begin{pmatrix} q \times (x) \\ 0 \end{pmatrix} \Rightarrow q \neq q(z)$$

$$\int_{z_B}^{z_A} q \, dz = q (z_T - z_B) = b(\kappa) q(\kappa)$$

2) bottom of aquifer is impermeable
q.
$$\nabla z_8|_{z_8} = q \cdot \hat{n}_8|_{z_8} = 0$$

3) sloper of top of aquiforis negligible

q.
$$\nabla z_T|_{z_T} = q \cdot \hat{n}_T|_{z_T} = -q_p$$

[180]

$$\ln 1D - \frac{d}{dx} \left[b K \frac{dh}{dx} \right] = q_{\beta}$$

Note:

Here we arran b = coust => confined aguisor

limer problem -> start.

Simplified exemple problem:

PDE:
$$-\frac{d}{dx} \left[b \left(\frac{dh}{dx} \right) \right] = g_p \times G \left[0, L \right]$$

$$BC: h(0) = h_D h(L) = h_T$$

Inhegrate twice to obtain analytic solution

$$h = h_D + \left(\frac{h_T - h_D}{L} + \frac{q_D L}{26 K}\right) \times - \frac{q_P}{26 K} \times^2$$

$$q = \frac{q_P}{b} \left(x - \frac{L}{2}\right) - \frac{K}{L} \left(h_T - h_D\right)$$

ground wats divid

Dirichlet boundary conditions

BC's are unscessory for the problem to be well posed, i.e., unique solution. Dirichlet BC's prescribe the unknown on bud. This provided constraints on solution unknown o that reduce the number of unknowns we need to solve for.

=> need to maderstand how to eliminate constraints
from our system.

Example 1: Homogeneous BC's

$$BC: h(o) = h(L) = 0$$

We can use discrete aperators to writer

PDE as system ef Liver equations

L is not invertible ?

⇒ med to eliminate constraint from BC to make invertible matrix

Write ta BC's as a linear system.

$$h_i = 0$$
 $h_{Nx} = 0$

Note: Imposing Dir. BC's at cell centr.

B is a Ne by Nx recustraint matrix # of constraints

Full discrebe problem statement

PDE: $\underline{\underline{L}} = \underline{f}$ $\underline{\underline{L}}$ is $Nx \, by \, Nx$ system matrix BC: $\underline{\underline{B}} \, \underline{h} = \underline{0}$ $\underline{\underline{B}}$ is $Nc \, by \, Nx$ constraint mat

Neither system is solvable individually

> need to combine them by eliminating the

constraints & from & to produce a

"reduced" system <u>Lr</u> (Nx-Nc) by (Nx-Ne)