

Presentación del equipo

Pablo Baez
Consulta proyectos
relacionados

Jonathan Betancur Implementación del código

Andrea Serna Revisión de la literatura

Mauricio Toro
Preparación
de los datos

Planteamiento del problema

Calles de Medellín, Origen y Destino

El más camino más corto restringido

Primer algoritmo

Calles de Medellín, Origen y Destino

Algoritmo de Dijkstra

El camino más corto sin superar un riesgo medio ponderado de acoso *r*

Segundo algoritmo

Calles de Medellín, Origen y Destino

Algoritmo de A*

Ruta con el menor riesgo promedio ponderado de acoso sin superar una distancia d

Explicación del algoritmo

Ejemplo de grafos con Dijkstra y A* respectivamente:

Ambas imagenes nos demuestran como ejecuta el recorrido cada algoritmo planteado, el algoritmo de A* es mas eficiente y arroja un resultado mas rapido.

Complejidad del algoritmo

Nombre del Algoritmo	Complejidad Temporal	Complejidad de la memoria
A*	O(E)	O(E)
Dijkstra	O(V*V)	O(V*E*(2 ^E)

Complejidad en tiempo (¿cual es mas rapido?) y memoria (cantidad de RAM que se usa) de los algoritmos. V es "fundamental devertex" o vértice (numero de vertices), la unidad los grafos, E es "edge" o aristas (numero de aristas), indica la relacion entre dos vertices.

