PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

M

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/54, 9/12, 15/85, 5/10, C12P
1/00, 21/00

(11) International Publication Number:

WO 97/21820

A2

(43) International Publication Date:

19 June 1997 (19.06.97)

(21) International Application Number:

PCT/US96/19941

(22) International Filing Date:

13 December 1996 (13.12.96)

(30) Priority Data:

08/571,758

13 December 1995 (13.12.95) US

(71) Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 22nd floor, 300 Lakeside Drive, Oakland, CA 94612-3350 (US).

(72) Inventors: RUBIN, Gerry; University of California, Berkeley, MCB, 454 LSA Building, Berkeley, CA 94720 (US). THERRIEN, Marc; University of California, Berkeley, MCB, 454 LSA Building, Berkeley, CA 94720 (US). CHANG, Henry; University of California, Berkeley, MCB, 454 LSA Building, Berkeley, CA 94720 (US). KARIM, Felix; University of California, Berkeley, MCB, 454 LSA Building, Berkeley, CA 94720 (US). WASSARMAN, David; University of California, Berkeley, MCB, 454 LSA Building, Berkeley, CA 94720 (US).

(74) Agent: OSMAN, Richard, Aron; Science & Technology Law Group, Suite 3200, 268 Bush Street, San Francisco, CA 94111-4187 (US). (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: A NOVEL PROTEIN KINASE REQUIRED FOR RAS SIGNAL TRANSDUCTION

(57) Abstract

The kinase suppressor of Ras (Ksr), a novel protein kinase involved in the regulation of cell growth and differentiation, provides an important target for therapeutic intervention. The subject compositions also include nucleic acids which encode a Ksr kinase, and hybridization probes and primers capable of hybridizing with a Ksr gene. Such probes are used to identify mutant Ksr alleles associated with disease. The invention includes methods, including phosphorylation and binding assays, for screening chemical libraries for lead compounds for a pharmacological agent useful in the diagnosis or treatment of disease associated Ksr activity or Ksr-dependent signal transduction.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
ΑT	Austria	GE	Georgia	MX	
AU	Australia	GN	Guinea	NE NE	Mexico
BB	Barbados	GR	Greece	NL NL	Niger
BE	Belgium	HU	Hungary	NO NO	Netherlands
BF	Burkina Paso	1E	Ireland	NZ NZ	Norway
BG	Bulgaria	IT.	Italy		New Zealand
Bj	Benin	JP	Japan	PL	Poland
BR	Brazil	KE	Kenya	PT	Portugal
BY	Belanus	KG	Kyrgystan	RO	Romania
CA	Canada	KP		RU	Russian Federation
CF	Central African Republic	K.F	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR		SB	Sweden
CH	Switzerland	KZ	Republic of Korea	SG	Singapore
CI	Côte d'Ivoire	L	Kazakhstan	SI	Slovenia
СМ	Cameroon		Liechtenstein	SK	Slovakia
CN	China	LK	Sri Lanka	SN	Senegal
CS	Czechoslovakia	LR	Liberia	SZ	Swaziland
CZ		LT	Lithuania	TD	Chad
DE	Czech Republic	LU	Luxembourg	TG	Togo
DK	Germany	LV	Latvia	TJ	Tajikistan
EE	Denmark	MC	Monaco	TT	Trinidad and Tobago
	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI .	Pinland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

A Novel Protein Kinase Required for Ras Signal Transduction

The research carried out in the subject application was supported in part by grants from the National Institutes of Health. The government may have rights in any patent issuing on this application.

5

INTRODUCTION

Field of the Invention

The field of the invention is a protein kinase required for Ras signal transduction and its use in pharmaceutical screens.

10

15

Background

Ras plays a crucial role in diverse cellular processes, such as proliferation and differentiation, where it functions as a nodal point transmitting signals originating from receptor tyrosine kinases (RTKs) to a variety of effector molecules (reviewed in McCormick, 1994a; van der Geer et al., 1994; Burgering and Bos, 1995). Ras activation, which involves a switch from an inactive GDP-bound to an active GTP-bound state, is promoted by a guanine nucleotide-exchange factor. Upon RTK activation, the exchange factor is recruited by an SH2/SH3 domain-containing adaptor molecule to the RTK at the plasma membrane where it can contact and activate Ras. GTP-bound Ras then transmits the signal to downstream effector molecules.

20

25

30

The protein serine/threonine kinase Raf has been identified as a major effector of Ras (reviewed in Daum et al., 1994; McCormick, 1994b). Upon Ras activation, Raf is recruited to the plasma membrane by a direct interaction with Ras, where it is subsequently activated by an unknown mechanism. Raf activation initiates an evolutionarily conserved pathway involving two other kinases, MEK (MAPK Kinase) and MAPK (Mitogen-Activated Protein Kinase) that convey signals to the nucleus through a directional series of activating phosphorylations (reviewed in Marshall. 1994). Although this model for Ras-dependent signal transduction is well-supported, there are still major issues that remain poorly understood. One of them is the mechanism by which Raf is activated. Recent evidence suggests that once recruited to the plasma membrane Raf is activated by phosphorylation (Dent and Sturgill, 1994; Dent et al., 1995). However, a candidate kinase(s) has yet to be identified. Another unresolved issue is the nature of other Ras effectors as well as the pathways they control. Although Raf is clearly a major Ras target, it can not account for all of the cellular responses mediated by Ras (for example see White et al., 1995).

Ectopic expression of an activated Ras1 allele, Ras1^{V12}, in the developing Drosophila eye transforms non-neuronal cone cells into R7 photoreceptor cells (Fortini et al., 1992). Similar results are obtained by expression of an activated Drosophila Raf allele, D-Raf^{Tor4021} (Dickson et al., 1992). We carried out a genetic screen designed to isolate mutations that modify the signaling efficiency of Ras1^{V12}. Most mutations that decreased the signaling efficiency of Ras1^{V12} also decreased the efficiency of D-Raf^{Torso4021} signaling. However, two groups of mutations were identified that did not alter D-Raf^{Torso4021} signaling. We disclose here the characterization of their respective loci. The Suppressor of Ras1 2-2 (SR2-2) locus encodes a protein homologous to the catalytic subunit of the prenylation enzyme type I geranylgeranyl transferase. We have renamed this locus $\beta GGT-I$. The second locus, SR3-1, encodes a novel protein kinase distantly related to Raf kinase members. Based on its sequence and the ability of mutants to reduce Ras1-mediated signaling, we renamed this locus kinase suppressor of ras (ksr). In addition to its function in the Sevenless RTK pathway, we show that ksr is also required for signaling by the Torso RTK. We have isolated mouse and human homologs of ksr. Together, these data indicate that Ksr is an evolutionarily conserved component of the Ras signaling pathway. As such, the human Ksr provides an important target for pharmaceutical intervention.

Relevant Literature

Recent reports on Raf activation include Dent and Sturgill, 1994; Dent et al., 1995; White et al., 1995, Yao et al., 1995; and a recent review by Marshall, 1994.

20

25

30

15

5

10

SUMMARY OF THE INVENTION

The invention provides methods and compositions relating to a novel protein kinase involved in the regulation of cell growth and differentiation: kinase suppressor of Ras (Ksr). As such, the kinase provides an important target for therapeutic intervention. The subject compositions also include nucleic acids which encode a Ksr kinase, and hybridization probes and primers capable of hybridizing with a Ksr gene. Such probes are used to identify mutant Ksr alleles associated with disease.

The invention includes methods for screening chemical libraries for lead compounds for a pharmacological agent useful in the diagnosis or treatment of disease associated Ksr activity or Ksr-dependent signal transduction. In one embodiment, the methods involve (1) forming a mixture comprising a Ksr, a natural intracellular Ksr substrate or binding target such as the 14-3-3 gene product, and a candidate pharmacological agent; (2) incubating the mixture under conditions

whereby, but for the presence of said candidate pharmacological agent, said Ksr selectively phosphorylates said substrate or binds said binding target at a control rate; and (3) detecting the presence or absence of a change in the specific phosphorylation of said substrate by said Ksr or phosphorylation or binding of said Ksr to said binding target, wherein such a change indicates that said candidate pharmacological agent is a lead compound for a pharmacological agent capable of modulating Ksr function.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

A Drosophila melanogaster, a Drosophila virilis, a murine and a human ksr encoding sequence are set out in SEQ ID NO: 1, 3, 5 and 7, respectively. A Drosophila melanogaster, a Drosophila virilis, a murine and a human ksr protein sequence are set out in SEQ ID NO: 2, 4, 6 and 8, respectively. Ksr proteins necessarily include a disclosed ksr kinase domain. Hence, Ksr proteins include deletion mutants of natural ksr proteins retaining the ksr kinase domain.

Natural nucleic acids encoding ksr proteins are readily isolated from cDNA libraries with PCR primers and hybridization probes containing portions of the nucleic acid sequence of SEQ ID NO:1, 3, 5 and 7. Preferred ksr nucleic acids are capable of hybridizing with one of these sequences under low stringency conditions defined by a hybridization buffer consisting essentially of 1% Bovine Serum Albumin (BSA); 500 mM sodium phosphate (NaPO₄); 1 mM EDTA; 7% SDS at a temperature of 42°C and a wash buffer consisting essentially of 2X SSC (600 mM NaCl; 60 mM Na Citrate); 0.1% SDS at 50°C; more preferably under low stringency conditions defined by a hybridization buffer consisting essentially of 1% Bovine Serum Albumin (BSA); 500 mM sodium phosphate (NaPO4); 15% formamide; 1 mM EDTA: 7% SDS at a temperature of 50°C and a wash buffer consisting essentially of 1X SSC (300 mM NaCl; 30 mM Na Citrate); 0.1% SDS at 50°C; most preferably under low stringency conditions defined by a hybridization buffer consisting essentially of 1% Bovine Serum Albumin (BSA); 200 mM sodium phosphate (NaPO4); 15% formamide; 1mM EDTA; 7% SDS at a temperature of 50°C and a wash buffer consisting essentially of 0.5X SSC (150 mM NaCl; 15 mM Na Citrate); 0.1% SDS at 65°C.

The subject nucleic acids are recombinant, meaning they comprise a sequence joined to a nucleotide other than that to which sequence is naturally joined and isolated from a natural environment. The nucleic acids may be part of Ksr-expression vectors and may be incorporated into cells for expression and screening, transgenic animals for functional studies (e.g. the efficacy of candidate drugs for disease associated with expression of a Ksr), etc. These nucleic acids find a wide variety of applications including use as templates for transcription, hybridization probes,

PCR primers, therapeutic nucleic acids, etc.; use in detecting the presence of Ksr genes and gene transcripts, in detecting or amplifying nucleic acids encoding additional Ksr homologs and structural analogs, and in gene therapy applications, e.g. using antisense nucleic acids or ribozymes comprising the disclosed Ksr sequences or their complements or reverse complements.

The invention also provides Ksr-specific binding reagents such as antibodies. Such reagents find a wide variety of application in biomedical research and diagnostics. For example, antibodies specific for mutant Ksr allele-products are used to identify mutant phenotypes associated with pathogenesis. Methods for making allele-specific antibodies are known in the art. For example, an mKsr-specific antibody was generated by immunizing mice with a unique N-terminal mKsr peptide (residues 118-249) GST fusion.

10

15

5

The invention provides efficient methods of identifying pharmacological agents or lead compounds for agents active at the level of a Ksr modulatable cellular function, particularly Ksr mediated signal transduction. For example, we have found that a binding complex comprising Ksr, 14-3-3 and Raf exists in stimulated cells; modulators of the stability of this complex effect signal transduction. Generally, the screening methods involve assaying for compounds which interfere with a Ksr activity such as kinase activity or target binding. The methods are amenable to automated, cost-effective high throughput screening of chemical libraries for lead compounds. Identified reagents find use in the pharmaceutical industries for animal and human trials; for example, the reagents may be derivatized and rescreened in in vitro and in vivo assays to optimize activity and minimize toxicity for pharmaceutical development. Target therapeutic indications are limited only in that the target cellular function be subject to modulation, usually inhibition, by disruption of the formation of a complex comprising Ksr and one or more natural Ksr intracellular binding targets including substrates or otherwise modulating Ksr kinase activity. Target indications may include infection, genetic disease, cell growth and regulatory or immunologic dysfunction, such as neoplasia, inflammation, hypersensitivity, etc.

25

20

A wide variety of assays for binding agents are provided including labeled in vitro kinase assays, protein-protein binding assays, immunoassays, cell based assays, etc. The Ksr compositions used in the methods are recombinantly produced from nucleic acids having the disclosed Ksr nucleotide sequences. The Ksr may be part of a fusion product with another peptide or polypeptide, e.g. a polypeptide that is capable of providing or enhancing protein-protein binding, stability under assay conditions (e.g. a tag for detection or anchoring), etc.

30

The assay mixtures comprise one or more natural intracellular Ksr binding targets including substrates, such as the 14-3-3 gene product, or, in the case of an autophosphorylation assay, the Ksr

itself can function as the binding target. A Ksr-derived pseudosubstrate may be used or modified (e.g. A to S/T substitutions) to generate effective substrates for use in the subject kinase assays as can synthetic peptides or other protein substrates. Generally, Ksr-specificity of the binding agent is shown by kinase activity (i.e. the agent demonstrates activity of an Ksr substrate, agonist, antagonist, etc.) or binding equilibrium constants (usually at least about 10⁶ M⁻¹, preferably at least about 10⁸ M⁻¹, more preferably at least about 10⁹ M⁻¹. A wide variety of cell-based and cell-free assays may be used to demonstrate Ksr-specific binding; preferred are rapid in vitro, cell-free assays such as mediating or inhibiting Ksr-protein binding, phosphorylation assays, immunoassays, etc.

5

10

15

20

25

30

The assay mixture also comprises a candidate pharmacological agent. Candidate agents encompass numerous chemical classes, though typically they are organic compounds; preferably small organic compounds and are obtained from a wide variety of sources including libraries of synthetic or natural compounds. A variety of other reagents may also be included in the mixture. These include reagents like salts, buffers, neutral proteins, e.g. albumin, detergents, etc. which may be used to facilitate optimal binding and/or reduce non-specific or background interactions, etc. Also, reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, antimicrobial agents, etc. may be used.

In a preferred in vitro, binding assay, a mixture of a protein comprising at least one of the conserved Ksr domains, including CA1, CA2, CA3, CA4 and the kinase domain (see Table 1), one or more binding targets or substrates and the candidate agent is incubated under conditions whereby, but for the presence of the candidate pharmacological agent, the Ksr specifically binds the cellular binding target at a first binding affinity or phosphorylates the substrate at a first rate. After incubation, a second binding affinity or rate is detected. Detection may be effected in any convenient way. For cell-free binding assays, one of the components usually comprises or is coupled to a label. The label may provide for direct detection as radioactivity, luminescence, optical or electron density, etc. or indirect detection such as an epitope tag, an enzyme, etc. A variety of methods may be used to detect the label depending on the nature of the label and other assay components. For example, the label may be detected bound to the solid substrate or a portion of the bound complex containing the label may be separated from the solid substrate, and thereafter the label detected.

The following experiments and examples are offered by way of illustration and not by way of limitation.

EXPERIMENTAL

Mutations in the SR2-2 and SR3-1 loci suppress the eye phenotype of activated Ras1 but not that of activated D-Raf.

Ectopic expression of activated Ras1 (Ras1^{v12}) under control of sevenless (sev) promoter/enhancer sequences (sev-Ras1^{v12}) transforms cone cells into R7 photoreceptor cells (Fortini et al., 1992). These extra R7 cells disorganize the ommatidial array, which causes a roughening of the external eye surface. The severity of eye roughness appears proportional to the strength of Ras1^{v12}-mediated signaling since two copies of the transgene produce a much more disrupted eye than one copy. We took advantage of this sensitized system to conduct a screen for mutations that reduce (suppressors) or increase (enhancers) the degree of eye roughness. We reasoned that a two-fold reduction in the dose of a gene (by mutating one of its two copies) that functions downstream of Ras1 should dominantly alter signaling strength which in turn should visibly modify the roughness of the eye. Based on this assumption, we screened ~200,000 EMS-and ~650,000 X-ray-mutagenized progeny for dominant modifiers of the Ras1^{v12}-mediated rough eye phenotype. 18 complementation groups of suppressors with multiple alleles and 13 complementation groups of enhancers of sev-Ras1^{v12} were isolated.

5

10

15

20

25

30

To characterize further the various groups of suppressors, we tested their ability to suppress dominantly the extra R7 cell phenotype caused by overexpression of an activated Drosophila Raf allele ($sE-Raf^{fort021}$). Since Raf functions directly downstream of Ras, we expected most of our suppressor groups to modify similarly the $sE-Raf^{fort021}$ phenotype. Interestingly, two recessive lethal suppressor groups, SR2-2 and SR3-1 did not reduce the number of extra R7 cells produced by D-Raf^{Tort021} expression. Scanning electron micrographs of adult eyes illustrate the suppressor phenotypes of one SR3-1 allele. Similar results were obtained with multiple SR2-2 and SR3-1 alleles. We also monitored the suppression of extra R7 cells by counting the number of R7 photoreceptors in cross-sections of adult fly retinae. In wild-type there is one R7 cell per ommatidium, whereas in $sev-Ras1^{V12}/+$ flies we observed 2.3 (n=437) R7 cells per ommatidium. This number was reduced to 1.2 (n=481) R7 cells per ommatidium in $sev-Ras1^{V12}/+$; $SR3-1^{S-638}/+$ flies. In $sE-Raf^{Tort021}/+$ flies, 2.3 (n=302) R7 cells per ommatidium were observed. However, this number remained at 2.3 (n=474) in $sE-Raf^{Tort021}/+$; $SR3-1^{S-638}/+$ flies reflecting the inability of SR3-1 mutations to alter $sE-Raf^{Tort021}$ signaling strength.

Targeting of Ras 1^{V12} to the plasma membrane by myristylation distinguishes SR2-2 from SR3-1.

Prenylation of the C-terminal CAAX box (C=cysteine, A=aliphatic residue, X=any amino acid) is the major post-translational modification specific to all Ras-like GTPases. When the residue at position "X" is a leucine, as in Ras1, a geranylgeranyl group is added by a type I

geranylgeranyl transferase. The addition of this lipidic moiety is required to attach Ras to the plasma membrane (reviewed in Glomset and Farnsworth, 1994). Deletion of the CAAX box abolishes Ras function (Willumsen et al., 1984; Kato et al., 1992), however its activity can be restored if it is brought to the membrane by another localization signal, such as a myristyl group (Buss et al., 1989).

5

10

15

20

25

30

One possibility to account for the ability of a mutant to suppress sev-Ras1^{V12} but not sE-Raf^{Tor4021} is that the locus encodes an enzyme that is required for the membrane localization of Ras1. Consequently, mutations in this locus would not affect D-Raf^{Tor4021}. To directly test this possibility, we asked if SR2-2 or SR3-1 alleles could suppress activated Ras1 if it is targeted to the membrane by an alternative mechanism. We targeted Ras1^{V12} to the membrane by fusing the first 90 amino acids of Drosophila Src kinase (D-Src; Simon et al., 1985), which contains a myristylation signal, to Ras1^{V12} deleted of its CAAX box (sev-Src90Ras1^{V12ACAAX}). While the CAAX box-deleted Ras1^{V12} is inactive, Src90Ras1^{V12ACAAX} produces the same phenotype as Ras1^{V12}; that is, it generates extra R7 cells and disrupts the ommatidial array.

We crossed sev-Src90Ras1^{VI2ACAAX} flies to SR2-2 and SR3-1 alleles and analyzed the rough eye phenotype. SR2-2 ^{S-2110} did not suppress the rough eye phenotype while SR3-1^{S-638} suppressed the rough eye phenotype and the production of extra R7 cells. These observations indicate that SR2-2 is involved in prenylation of Ras1 while SR3-1 encodes a component of the Ras1 pathway that is not involved in the process of Ras1 membrane localization.

The SR2-2 locus encodes the Drosophila homolog of the β-subunit of type I geranylgeranyl transferase.

The SR2-2 locus was meiotically mapped to 2-15 (cytological position 25B-C), based on the ability of different mutant alleles to suppress sev-Ras1^{V12}. One of the seven recessive lethal SR2-2 alleles recovered contains an X-ray-induced inversion (SR2-2⁵⁻²¹²⁶) with a breakpoint at 25B4-6. Genomic DNA spanning this breakpoint was isolated and used to screen a Drosophila eye-antennal imaginal disc cDNA library (see Experimental Procedures). A single class of cDNAs (ranging in size from 0.8 to 1.6 kb) defining a transcription unit disrupted by the inversion present in SR2-2⁵⁻²¹²⁶, was identified and characterized. Conceptual translation of the longest open reading frame (ORF) defined by these cDNAs predicts a protein of 395 amino acids. Determination of the gene structure by sequencing the corresponding genomic region revealed four exons with the first inframe methionine located at the beginning of the second exon. The SR2-2⁵⁻²¹²⁶ inversion breakpoint maps to the 5'-end of the transcript. Further confirmation that this ORF corresponds to the SR2-2 gene, was provided by sequence analysis of two other mutant alleles, SR2-2⁵⁻⁴⁸³ and SR2-2⁵⁻²⁵⁵⁴, both

of which have small deletions that remove the first exon and part of the 5' regulatory sequences. A search of the current protein databases with this ORF indicated that the SR2-2 gene encodes the Drosophila homolog of the catalytic \(\beta\)-subunit of type I geranylgeranyl transferase (\(\beta\)GGT-I) (Marshall, 1993). Sequence alignment with the human and the yeast S. pombe \(\beta\)GGT-I proteins shows a high degree of evolutionary conservation. The human sequence is 44% identical (69% similar) to the Drosophila sequence throughout the entire ORF while the yeast sequence is 36% identical (57% similar) to the Drosophila protein. We therefore renamed this locus, \(\beta\)GGT-I.

The SR3-1 locus encodes a novel protein kinase.

5

10

15

20

25

30

The ability of SR3-1 mutant alleles to suppress the $sev-Ras1^{v12}$ phenotype was meiotically mapped to 3-47.5, which corresponds to a region near the chromocenter of the third chromosome. The map position was further refined by showing that SR3-1 meiotically maps between two Pelements inserted at 82F8-10 and 83A5-6, respectively. X-ray-induced chromosomal deletions were generated by selecting w^{-} revertants of one of the P-element insertions. One such deletion, Df(3R)e1025-14, which removes the chromosomal region from 82F8-10 to 83A1-3, complemented the SR3-1-associated lethality. Taken together, these results indicated that the SR3-1 locus lies between 83A1-3, the distal breakpoint of Df(3R)e1025-14, and 83A5-6, the insertion site of $P(w^{+})5E2$.

Five overlapping cosmids which cover this chromosomal region were recovered by chromosome walking. To identify restriction site polymorphisms that might have been induced in the SR3-1 alleles, these cosmids were used to probe genomic DNA blots prepared from 9 independent X-ray-induced SR3-1 alleles. Cosmid III revealed polymorphisms in a BamHI restriction digest of two alleles, SR3-1⁵⁻⁶⁹ and SR3-1⁵⁻⁵¹¹. No other cosmid revealed polymorphisms in the 9 tested alleles. A 7 kb SacII genomic fragment which spans the polymorphic BamHI fragments was introduced into the germline by P-element-mediated transformation. This genomic fragment, tested in transgenic flies, rescued both the lethality and the sev-Rasl VI2-suppression ability of three independent SR3-1 alleles. A single class of cDNAs that was totally encoded by the 7kb genomic fragment was identified by screening a Drosophila eye-antennal imaginal disc cDNA library and sequenced. The longest cDNA clone represents a transcript of 3.6 kb which is close to the size of a full-length transcript since RNA blot analysis identified a single band of similar size. Sequence analysis of the genomic region revealed that this transcript is encoded by a single exon. Conceptual translation of the longest ORF predicts a protein of 966 amino acids. The presence of an in-frame stop codon upstream of the predicted initiating methionine indicates that this cDNA contains the complete ORF.

A search of current protein databases indicated that SR3-1 encodes a novel protein kinase. The putative catalytic domain, which is C-terminal, contains the characteristic eleven conserved sub-domains found in eukaryotic kinases (Hardie and Hanks, 1995) and is preceded by a long N-terminal region with three distinctive features: a cysteine-rich domain similar to those found in Protein Kinase C isozymes (Hubbard et al., 1991) and Raf kinases (Bruder et al., 1992); four sequences that match the consensus phosphorylation site (PXS/TP) for MAPK (Marshall, 1994); and a block of amino acids rich in serines and threonines followed by a conserved motif (FXFPXXS/T) that resembles the sequence around the Conserved Region 2 (CR2) domain of Raf kinases (Heidecker et al., 1992). Since the SR3-1 locus encodes a putative protein kinase and mutant alleles were isolated as suppressors of sev-Ras1^{V12}, we renamed this locus kinase suppressor of ras (ksr).

5

10

Further confirmation that this gene corresponds to the ksr (SR3-1) locus was provided by sequencing three ksr alleles which revealed mutations disrupting the Ksr ORF (Table 1).

Table 1: Sequence comparison of the Ksr kinases.

Table 1 (continued): Sequence comparison of the Ksr kinases.

Dm Kw. swigssam was 1 Vasang 1 Maj 1 gagte	Dm Kw. dgdsgqurqmsisikewdipygdillierigqgrfgivhraiwhgdvavklinedyjddehmierirgevahfkNtrheniviimgscmmppylaivtsickgmtlytyihqrrekiamm 775 Dw Kw. dgdsgqurqmsisikewdipygdillierigqgrfgivhraiwhgdvavklinedylddehmierirgevahfkNtrheniviimgacmmppylaivtalckgmtlytyihqrrekiamm 812 mKw.i	Dm.ku rtilleqqieqqmgylharElihkdlrtknifleng.kviitdfglfsetkllycdmglgvphnwicylapeliralqpEkpRgecleftPysdvysfgtvwyelicgeftEkdqpa 891 Dw.km rtilleqqieqgmgylharDilhkdlrtknifleng.kviitdfglfsetkllycdmglgvpQnwicylapeliralqpCkpPgecleftSyddvysfgtvwyelicgeftEkdqpa 928 nmkw: KRQieqZilqgmgylharGiVhkdlxSknVfYpng.kvVitdfglfGlSGVVRERRRENGIKLShDwicylapelVrENIpGRDEDQ.1PfSKAdvyAfgtvwyelQhRDmPfkHqpa 776 Nkw: KRQieqZilfxgmgylharGiVhkdlKSknVfYpng.kvVitdfglfGlSGVVRENRRAGIKAPSYSpelVrENIpGRDEDQ.1PfSKAdvyAfgtvwyelQhRDmPfLHqha 776 TLIDIGRQVaqgmDylharNiihadMKSkniifLHEDL&vKiQdfglATWTRNBGRGANQpTGSLEMepeVfrNQGNNPfSFQsdvyAfglvWyelLAECLPYCHISN 551 NIBARQTaqgmDylhaRNiihadMKShnifLHEGLTVKIQdfglATWTRNBGRQVEQpTGSULMapavYtrNQGNNPfSFQsdvyAfglvWyelLAECLPYCHISN 551 VIa	Dm.Ku. esiiwqvgrgmkqslanlqsgrdvkdilmicwtyekehrpQfarlisliehlpkkrlarspshpvnlarsaeavf Dv.ku. esiiwqvgrgmkqslanlqsgrdvkdilmicwtyekehrpQfarlisliehlpkkrlarspshpvnlarsaeavf mxxxx esLiwqvgr.gmkvlarvstgkvqEsiiShcwArbLQBrpSfStRndHaRlpklwrkshpGHFWKsaeL mxxxxxyqsgCgGyRRvVlarvstgkvqEsiiShcwArbLQBrpSfStRndHaRlpklwrkshpGHFWKsaeL pCASiwqigGGgyRRvVlarvstgkvqEsiiShcwArbLQBrpSfStRndHaRlpklwrkshpGHPWRsaeL pCASichthyrgrGv.LRPbMSQVRsbARHSKNARNVRSTpLERllMMieNQARTJpkIHrsAsEp.nlTGeQLQNDEFLYLPSPKTPVNFNNFQFGSACNI pcAsi RDQiiFHvgrGv.AsPDISKIYRNCPKAHKRIVADevkKVRSEplERllMisSieLLQNSIpkINTAASEp.SiHrAsHTEDINACTLITSPALFVF XX
86 2 2	\$9,4,49.5	89 £ 3 5	29 x x 25

فتحريكم فالمحاد فالإنجيم ووطاها المحا

Table 1 provides a detailed comparison of the predicted amino acid sequence of Ksr kinases. Conceptual translation of the open reading frame from the longest D. melanogaster (Dm) Ksr cDNA is shown. The positions of mutations in three ksr alleles are indicated: S-548 is a 4 bp X-rayinduced mutation affecting two consecutive codons (CTG-CGA to AGT-GGA). S-638 is an EMSinduced allele that has two separate point mutations changing a GCC codon to GTC and GCG codon to ACG. S-721 is a frameshift mutation due to a 10 bp duplication from adjacent sequences within the codon for asparagine-727. Also shown in the alignment are the conceptual translations of the open reading frames for the Ksr genes from other species: the D. virilis (Dv) Ksr sequence was derived from genomic DNA, the mouse (m) Ksr-1 from a 4 kb cDNA, and the human (h) Ksr-1, deduced from three overlapping cDNA clones (the N-terminal two residues were absent from these clones so the numbering begins with the third residue). The human Ksr is present as one or more of a plurality of alternatively spliced forms, exemplified by Ksr' in the following sequence listing. The amino acid sequences (and their respective positions) for the cysteine-rich regions and the kinase domains of Drosophila (D-Raf) and human (h c-Raf) (Genbank accession number: X07181 and X03484, respectively) are presented. Residues identical to Dm Ksr are lower case. In the N-terminus of the Ksr kinases four Conserved Areas (CA1 to CA4) are boxed. CA1 is a novel domain present only in the Ksr kinases. CA2 is a proline-rich stretch that may represent an SH3-binding site (Alexandropoulos et al., 1995). CA3 is a cysteine-rich stretch, simlar to a domain found in multiple signaling molecules. This conserved sequence is also part of the CR1 domain found in Raf kinases (Bruder et al., 1992). CA4 is a long serine/threonine-rich stretch followed by a conserved motif (indicated by a dashed line). This domain resembles the region around the CR2 domain of Raf kinases (Heidecker et al., 1992). The four short thick lines overlying the sequences indicate potential sites of phosphorylation by MAPK (PXS/TP) found in Dm Ksr. The eleven conserved sub-domains characteristic of protein kinases are indicated by roman numerals below their approximate positions.

5

10

15

20

25

30

ksr⁵⁻⁶³⁸ has two single amino acids changes: alanine-696 to valine and alanine-703 to threonine. The latter substitution alters a highly conserved residue within kinase sub-domain II (Hanks et al., 1988). ksr⁵⁻⁷²¹ contains a 10 bp insertion in the codon for asparagine-727 within kinase sub-domain III creating a frameshift mutation that truncates the protein at kinase sub-domain III. ksr⁵⁻⁵⁴⁸ has a four base pair substitution that changes two consecutive amino acids in the N-terminus of the protein: leucine-50 and arginine-51 to glycine and serine, respectively. Unlike the 16 alleles recovered in the screen which were recessive lethal, ksr⁵⁻⁵⁴⁸ produces sub-viable flies which have rough eyes (see below), indicating that it is a weak loss-of-function mutation.

Identification of Ksr homologs in other species defines a novel class of kinases related to Raf kinases.

As a first attempt to determine functionally important domains that comprise the Ksr kinase, we searched for homologs from other species. First, we isolated the complete coding region of ksr from a Drosophila virilis genomic library by low-stringency hybridization (see Experimental Procedures). The D. virilis genomic sequence revealed a single uninterrupted ORF predicting a protein of 1003 amino acids (Table 1). The D. virilis and D. melanogaster Ksr proteins are 96% identical within the kinase domain while the N-terminal region is more divergent (69% identity), although islands of high conservation are present (see Table 1).

5

10

15

20

25

30

A search of translated nucleotide databases (using the TBLASTN program; Altschul et al., 1990) identified a partial ORF derived from a mouse DNA sequence with significant blocks of similarity to the N-terminus of Ksr. This sequence, named hb, had been isolated by Nehls et al. (1994) as part of an exon-trapping strategy to establish the transcription map of a 1 Mb region around the mouse NFI locus. To determine if the full-length hb transcript also contains a kinase domain related to Ksr, we screened a cDNA library derived from a mouse PCC4 teratocarcinoma cell line with a probe corresponding to the hb sequence (see Experimental Procedures). A 4 kb cDNA clone was isolated and encodes a protein of 873 amino acids that contains a kinase domain highly related to the Ksr kinase domain (51% identity/74% similarity; Table 1). In addition, a human fetal brain cDNA library was screened at low-stringency with the same hb probe (see Experimental Procedures). Thirteen independent cDNA clones were purified and sequenced. They represent partial transcripts ranging in size from 0.6 to 3 kb. Interestingly, they define at least three classes of N-terminal splicing variants. The predicted protein sequence derived from overlapping human cDNA clones is shown in Table 1. With the exception of the first divergent 23 amino acids, which probably represents an alternative exon, human Ksr-1 (hKsr-1) is nearly identical to mouse Ksr-1 (mKsr-1; 95% identity/99% similarity). Subsequent to this analysis, two human Expressed Sequence Tags (GenBank accession numbers: R27352 and R27353) have been reported that correspond to regions of the hKsr kinase domain.

Comparison of mammalian and Drosophila Ksr sequences showed similarity throughout the kinase domain as well as at various locations within the N-terminal region (Table 1). Sequence conservation is obvious within all sub-domains of the kinase domain. Two interesting features are present within sub-domains VIb and VIII. HRDL(K/R/A)XXN (D and N are invariant residues) is the consensus sequence corresponding to sub-domain VIb for the majority of known kinases (Hardie and Hanks, 1995). Instead of an arginine at the second position, a lysine is present for the

Ksr homologs which distinguishes them from most other kinases. In addition, the amino acids Nterminal to the APE motif in sub-domain VIII. which have been implicated in substrate recognition specificity, (Hardie and Hanks, 1995) are well-conserved between the Ksr kinases of different species, but differ from those of all other kinases. One peculiarity is found in sub-domain II of the two mammalian proteins. This sub-domain has an invariant lysine residue involved in the phosphotransfer reaction that is conserved in all kinases identified thus far (Hardie and Hanks, 1995), however, both mammalian sequences have an arginine at this position (Table 1). It has been shown that mutagenesis of this lysine residue to any other residue, including arginine, abolishes catalytic function in several kinases (Hanks et al., 1988). However, the sequence conservation between the mouse and the human kinase domains indicates that these enzymes are functional.

10

15

5

Sub-domains VIb and VIII also contain conserved residues that often correlate with hydroxy amino acid recognition (Hanks et al., 1988). For instance, HRDLKXXN (VIb) and T/SXXY/F (VIII) motifs are indicative of Ser/Thr-kinases while HRDLR/AXA/RN (VIb) and PXXW (VIII) motifs are associated with Tyr-kinases. Based solely on these conserved residues it is not clear to which class Ksr kinases belong (Table 1). Indeed, for sub-domain VIb, the Drosophila sequences have an arginine residue at the critical position (like a Tyr-kinase), while the two mammalian sequences have a lysine residue (like a Ser/Thr-kinase). The sub-domain VIII motif for all the Ksr members is WXXY, which differs from that found in all other kinases.

20

25

30

In the N-terminal region, four Conserved Areas (CA1 to CA4) can be recognized (Table 1). CA1 is a stretch of 40 amino acids located at the very N-terminus of Ksr kinases and has no equivalent in the database. Its conservation and the identification of a mutation in it (ksr⁵⁻⁵⁴⁸) indicate that it plays a role in Ksr function. CA2 is a proline-rich stretch followed by basic residues which may correspond to a class II SH3-domain binding site (PXXPXR/K; Alexandropoulos et al., 1995), although the two fly sequences diverge from the consensus by one amino acid. CA3 is a cysteine-rich domain similar to the one found in other signaling molecules, such as the CR1 domain of Raf. Finally, CA4 is rich in serines and threonines and also contains a MAPK consensus phosphorylation site.

A search of current databases indicated that the Raf kinase members are the closest relatives to the Ksr kinases based on sequence similarity within the kinase domain (e.g. 42% identity/61% similarity between the Dm Ksr and Raf kinase domains) and shared structural features in the Nterminal region (Table 1). Both the Raf and Ksr kinases have a related C-terminal 300 amino acid kinase domain, named CA5 and CR3, respectively (CR3; Heidecker et al., 1992). The spacing and sizes of the domains of the Ksr kinases are well conserved, except for the presence of an additional

~100 amino acids between the CA4 and CA5 domains of the Drosophila sequences. In addition, they both have a long N-terminal region that contains a cysteine-rich stretch followed by a serine/threonine-rich region, named CA3 and CA4 for Ksr kinases and CR1 and CR2 for Raf kinases. Ksr and Raf kinases also have distinctive features. For instance, the CA1 and CA2 regions found in Ksr kinases are absent from Raf kinases. The Ras-binding domain (RBD) found in the CR1 domain of Raf kinases (Nassar et al., 1995) is absent from Ksr kinases, which suggests that they are regulated differently. Moreover, interaction assays using the yeast two-hybrid system or bacterially-expressed fusion proteins, did not detect any interaction between Ras1 and Ksr, while similar experiments detected an interaction between Ras1 and the CR1 domain of D-Raf. Finally, amino acids in kinase sub-domain VIII, which are important for substrate recognition, are not conserved between Ksr and Raf kinases suggesting that these kinases have different targets. This is supported by the observation that Ksr failed to interact with Dsor1 (D-MEK) in a yeast two-hybrid assay, whereas, D-Raf and Dsor1 interacted strongly.

Ksr functions in multiple RTK pathways.

5

10

15

20

25

30

Recent evidence suggests that RTKs use a similar set of proteins to transduce their signals to the nucleus (see Background). Several lines of genetic evidence suggest that the Ksr kinase corresponds to a new component of this widely used signal transduction pathway. For instance, adult flies homozygous for the sub-viable allele ksr. have rough eyes in which ommatidia are missing both outer (R1-R6) and R7 photoreceptor cells. This suggests that, like Ras1 (Simon et al., 1991), ksr has a broader role than just specification of the R7 cell fate. Using the FLP/FRT system (Xu and Rubin, 1993), we did not recover homozygous mutant tissue for the strong allele ksr. which indicates that Ksr is required for cell proliferation or survival. In addition, except for the ksr. alleles are recessive lethal and in most cases they die as third instar larvae and lack imaginal discs. This phenotype is often seen with mutations in genes required for cell proliferation (Gatti and Baker, 1989). RNA in situ hybridization showed that ksr mRNA is ubiquitously distributed and is present throughout embryogenesis, consistent with a general role for this kinase.

We directly tested whether ksr is an essential component of the Torso RTK pathway, another Drosophila RTK-dependent signal transduction cascade (reviewed in Duffy and Perrimon, 1994). Torso initiates a signal transduction cascade required for development of the anterior and posterior extremities of the embryo. As for the Sevenless RTK pathway, genetic screens aimed at elucidating this pathway have led to the identification of drk, sos, Rasl and genes encoding the downstream cassette of kinases (RaflMEKIMAPK) as being critical for signal propagation (reviewed in Duffy

and Perrimon, 1994). This signal transduction cascade appears to control the expression pattern of two genes, tailless (tll) and huckebein (hkb) at the embryonic termini (reviewed in Duffy and Perrimon, 1994). During the cellular blastoderm stage, the posterior domain of expression of both factors depends uniquely on Torso-mediated signaling thereby providing excellent markers of Torso activity.

5

10

15

Embryos derived from mothers homozygous for a torso null mutation have defective termini. The posterior end is missing all structures beyond the seventh abdominal segment, while the anterior end exhibits severe head skeleton defects (reviewed in Duffy and Perrimon, 1994). Consistent with these abnormalities, aberrant expression patterns are observed for tll and hkb; that is, no tll or hkb expression is detected at the posterior end, while tll expression pattern is extended and hkb is retracted at the anterior end. Embryos derived from germlines homozygous for loss-of-function mutations in general RTK components like drk, sos, Rasl or D-Raf show similar terminal defects, albeit to various degrees, consistent with their role in Torso RTK-mediated signaling (Hou et al., 1995).

et al., 1995) to generate ksr germline clones and examined the terminal structures of embryos derived from homozygous mutant oocytes. Like embryos derived from Torso mutant mothers, cuticle preparations of ksr⁵⁻⁶³⁸ embryos revealed severe terminal defects. They are missing posterior structures beyond the seventh abdominal segment and have collapsed head skeletons. In addition, no tll or hkb expression is detected at the posterior end while a broader domain of tll expression and a reduced one for hkb is observed at the anterior extremity. These results indicate that ksr also functions in the Torso pathway, consistent with Ksr being a general component acting downstream of RTKs.

Activated *D-Raf* rescues terminal defects observed in embryos derived from germlines homozygous for ksr⁵⁻⁶³⁸.

25

30

20

The inability of ksr mutants to suppress the sE-Raf^{Torto21} phenotype in the eye suggested that Ksr functions upstream or in parallel to D-Raf, but not downstream. To clarify where ksr functions relative to D-Raf in the Torso pathway, RNA encoding an activated form of D-Raf (Raf^{Torto21}) was injected into embryos derived from germlines homozygous for ksr^{S-638}. If Ksr functions solely upstream of D-Raf then activated D-Raf should rescue the mutant phenotype. In contrast, if Ksr functions solely downstream of D-Raf then injection of activated D-Raf RNA should have no influence on the ksr^{S-638}-associated embryonic phenotype. It is also possible that rescue might be observed if Ksr functions in a pathway parallel to D-Raf and can be bypassed by activation of D-Raf

to sufficiently high levels. Injection of activated D-Raf partially rescued the ksr⁵⁻⁶³⁸-associated embryonic terminal defects. These results confirm that Ksr does not act downstream of D-Raf. Experimental Procedures:

Fly culture and crosses were performed according to standard procedures. Clonal analysis in the eye was performed on the ksr^{5-638} allele (the strongest suppressor of $sev-Ras1^{V12}$ among the ksr alleles) using the FLP/FRT system (Xu and Rubin, 1993).

5

. 10

15

20

25

30

ksr⁵⁻⁶³⁸ germline clones were generated as described in Hou et al. (1995). Cuticle preparation of embryos was performed as described in Belvin et al. (1995). In situ hybridization was performed according to Dougan and DiNardo (1992) using digoxigenin-labelled RNA probes. Injection of embryos was performed as described in Anderson and Nüsslein-Volhard (1984). An in vitro trancription kit (Promega) was used to synthesize activated D-Raf RNA from the Raf^{Tor4021} DNA template (Dickson et al., 1992).

Scanning electron microscopy was performed as described by Kimmel et al. (1990). Fixation and sectioning of adult eyes were performed as described by Tomlinson and Ready (1987).

The β GGT-I locus was recovered from a chromosome walk initiated by screening a cosmid library (Tamkun et al., 1992) with a genomic fragment flanking a P-element [l(2)05714] inserted at 25B4-6 (Karpen and Spradling, 1992; Berkeley Drosophila Genome Project, pers. comm.). A 1.7 kb Spe1-Sph1 genomic fragment spanning the S-2126 allele inversion breakpoint was used to screen a Drosophila eye-antennal imaginal disc cDNA library in λ gt10. Sixteen related cDNA clones were isolated from ~700,000 pfu screened.

The ksr gene was isolated from a chromosome walk. Genomic blot analysis of X-ray-induced ksr alleles was performed according to standard procedures (Sambrook et al., 1989). The 2.9 kb and 2.2 kb BamHI fragments from cosmid III identified polymorphisms in the S-69 and S-511 alleles, respectively. A 7 kb EcoRI genomic fragment encompassing all of the 2.9 kb BamHI fragment and part of the 2.2kb BamHI fragment was used along with the 2.2kb BamHI fragment to screen ~700,000 phage from a Drosophila eye-antennal imaginal disc cDNA library in λgt10. Seven related cDNA clones were isolated and characterized by sequencing.

A D. virilis genomic library was screened at reduced stringency using the Dm Ksr kinase domain as a probe. In brief, filters were hybridized in 5X SSCP; 10X Denhart; 0.1% SDS; 200 µg/ml sonicated salmon sperm DNA at 42°C for 12 hrs, rinsed several times at room temperature and washed twice for 2hrs at 50°C in 1X SSC: 0.1% SDS. 12 genomic clones were identified; one was purified and analyzed by sequencing.

A DNA fragment corresponding to the hb DNA sequence was prepared by PCR from a

mouse brain cDNA library and used as a probe to screen a mouse PCC4 teratocarcinoma cDNA library (Stratagene). One full-length cDNA clone, named mKsr-1, was obtained from 1 X 10⁶ pfu screened. Using the mKsr-1 kinase domain as a probe, 1 X 10⁶ pfu of a human fetal brain cDNA library (Clontech) was hybridized at reduced stringency (see above). Thirteen related cDNA clones were isolated and characterized by sequencing. They all represent partial transcripts and only one of them, named hKsr-1, has a complete kinase domain.

DNA sequences were performed by the dideoxy chain termination procedure (Sanger et al., 1977) using the Automated Laser Fluorescence (ALF) system (Pharmacia). Templates were prepared by sonicating plasmid DNA and inserting the sonicated DNA into the M13mp10 vector. The entire coding regions of β GGT-I and Ksr cDNAs from each species were sequenced on both strands as well as the genomic regions that correspond to the β GGT-I and Dm ksr loci. Sequences were analysed using the Staden (R. Staden, MRC of Molecular Biology, Cambridge UK) and the Genetics Computer Group, Inc. software packages. The chromosomal regions for different β GGT-I and ksr mutant alleles were cloned into the λ ZAP-express vector (Stratagene) and their respective coding regions were completely sequenced using oligonucleotide primers.

15

10

5

Cited References

Alexandropoulos, K., et al. (1995). Proc. Natl. Acad. Sci. USA 92, 3110-3114.

Altschul, S. F., et al. (1990) J. Mol. Biol. 215, 403-410.

Anderson, K.V. and Nüsslein-Volhard, C. (1984). Nature 311, 223-227.

20 Belvin, M. P., Jin, Y. and Anderson, K. V. (1995). Genes Dev. 9, 783-793.

Bier, E., et al. (1989). Genes Dev. 3, 1273-1287.

Bruder, J. T., Heidecker, B. and Rapp, U. R. (1992). Genes Dev. 6, 545-556.

Burgering, B. M. T. and Bos, J. L. (1995). Trends Biochem. Sci. 20, 18-22.

Buss, J. E., et al. (1989). Science 243, 1600-1603.

25 Cano, E. and Mahadevan, L. C. (1995). Trends Biochem. Sci. 20, 117-122.

Daum, G., et al. (1994). Trends Biochem. Sci. 19, 474-480.

Dent, P., et al. (1995). Science 268, 1902-1906.

Dent, P. and Sturgill, T. W. (1994). Proc. Natl. Acad. Sci. USA 91, 9544-9548.

Dickson, B., et al. (1992), Nature 360, 600-603.

30 Dougan, S. and DiNardo, S. (1992). Nature 360, 347-350.

Duffy, J. B. and Perrimon, N. (1994). Dev. Biol. 166, 380-395.

Fortini, M. E., Simon, M. A. and Rubin, G. M. (1992). Nature 355, 559-561.

Gatti, M. and Baker, B. S. (1989). Genes Dev. 3, 438-453.

Glomset, J. A. and Farnsworth, C. C. (1994). Annu. Rev. Cell Biol. 10, 181-205.

Hanks, S. K., Quinn, A. M. and Hunter, T. (1988). Science 241, 42-52.

Hardie, G.and Hanks, S. Eds. (1995). The protein kinase (part I): protein-serine kinases. (FactsBook Series, Academic Press inc.).

5 Heidecker, G., Kolch, W., Morrison, D. K. and Rapp, U. R. (1992). Adv. Can. Res. 58, 53-73.

Hou, X. S., Chou, T.B., Melnick, M. B. and Perrimon, N. (1995). Cell 81, 63-71.

Hubbard, S. R., et al. (1991). Science 254, 1776-1779.

Karpen, G. H. and Spradling, A. C. (1992). Genetics 132, 737-753.

Kato, K., et al. (1992). Proc. Natl. Acad. Sci.USA 89, 6403-6407.

10 Kimmel, B. E., Heberlein, U. and Rubin, G. M. (1990). Genes Dev. 4, 712-727.

Marshall, C. J. (1993). Science 259, 1865-1866.

Marshall, C. J. (1994). Curr. Opin. Genet. Dev. 4, 82-89.

McCormick, F. (1994a). Curr. Opin. Genet. Dev. 4, 71-76.

McCormick, F. (1994b). Trends Cell Biol. 4, 347-350.

15 Nassar, N., et al. (1995). Nature 375, 554-560.

Nehls, M., et al. (1994) (Genbank accession number X81634)

Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual,

Second Edition (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).

Sanger, F., Nicklen, S. and Coulson, A. (1977). Proc. Natl. Acad. Sci. USA 74, 5463-5467.

20 Sidow, A. and Thomas, W. K. (1994) Curr. Biol. 4, 596-603.

Simon, M. A., et al. (1991). Cell 67, 701-716.

Simon, M. A., et al. (1985). Cell 42, 831-840.

Tamkun, J. W., et al. (1992). Cell 68, 561-572.

Tomlinson, A. and Ready, D. F. (1987). Dev. Biol. 123, 264-275.

van der Geer, P., et al. (1994). Annu. Rev. Cell Biol. 10, 251-337.

White, M. A., et al. (1995). Cell 80, 533-541.

Willumsen, B. M., et al. (1984). EMBO J. 3, 2581-2585.

Xu, T. and Rubin, G. M. (1993). Development 117, 1223-1237.

- 30 Pharmaceutical lead compound screening assays.
 - 1. Protocol for Ksr substrate phosphorylation assay.
 - A. Reagents:

- Neutralite Avidin: 20 µg/ml in PBS.
- hKsr: 10^{-8} 10^{-5} M hKsr at 20 μ g/ml in PBS.
- Blocking buffer: 5% BSA, 0.5% Tween 20 in PBS; 1 hour at room temperature.
- Assay Buffer: 100 mM KCl, 20 mM HEPES pH 7.6, 0.25 mM EDTA, 1% glycerol, 0.5% NP-40, 50 mM BME, 1 mg/ml BSA, cocktail of protease inhibitors.
- ⁵ -[32 P]γ-ATP 10x stock: 2 x 10⁵ M cold ATP with 100 μCi [32 P]γ-ATP. Place in the 4°C microfridge during screening.
 - Substrate: $2 \times 10^{-6} M$ biotinylated synthetic peptide kinase substrate (MBP, Sigma) at 20 μ g/ml in PBS.
 - Protease inhibitor cocktail (1000X): 10 mg Trypsin Inhibitor (BMB # 109894), 10 mg Aprotinin (BMB # 236624), 25 mg Benzamidine (Sigma # B-6506), 25 mg Leupeptin (BMB # 1017128), 10 mg APMSF (BMB # 917575), and 2mM NaVo₃ (Sigma # S-6508) in 10 ml of PBS.
 - B. Preparation of assay plates:
 - Coat with 120 µl of stock Neutralite avidin per well overnight at 4°C.
 - Wash 2 times with 200 µl PBS.
 - Block with 150 µl of blocking buffer.
 - Wash 2 times with 200 µl PBS.
 - C. Assay:

10

15

30

- Add 40 µl assay buffer/well.
- Add 40 µl hKsr (0.1-10 pmoles/40 ul in assay buffer)
- 20 Add 10 μl compound or extract.
 - Shake at 30°C for 15 minutes.
 - Add 10 μl [32P]γ-ATP 10x stock.
 - Add 10 µl substrate.
 - Shake at 30°C for 15 minutes.
- 25 Incubate additional 45 minutes at 30°C.
 - Stop the reaction by washing 4 times with 200 μ l PBS.
 - Add 150 µl scintillation cocktail.
 - Count in Topcount.
 - D. Controls for all assays (located on each plate):
 - a. Non-specific binding (no hKsr added)
 - b. cold ATP to achieve 80% inhibition.

2. Protocol for hKsr - Raf binding assay.

A. Reagents:

5

10

15

20

25

- Anti-myc antibody: 20 µg/ml in PBS.
- Blocking buffer: 5% BSA, 0.5% Tween 20 in PBS; 1 hour at room temperature.
- Assay Buffer: 100 mM KCl, 20 mM HEPES pH 7.6, 0.25 mM EDTA, 1% glycerol, 0.5% NP-40, 50 mM β-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors.
 - ¹³P hKsr 10x stock: 10⁻⁸ 10⁻⁶ M "cold" hKsr (full length) supplemented with 200,000-250,000 cpm of labeled hKsr (HMK-tagged) (Beckman counter). Place in the 4°C microfridge during screening.
 - Protease inhibitor cocktail (1000X): 10 mg Trypsin Inhibitor (BMB # 109894), 10 mg
 Aprotinin (BMB # 236624), 25 mg Benzamidine (Sigma # B-6506), 25 mg Leupeptin (BMB # 1017128), 10 mg APMSF (BMB # 917575), and 2mM NaVo₃ (Sigma # S-6508) in 10 ml of PBS.
 - Raf: 10⁻⁸ 10⁻⁵ M myc eptitope-tagged Raf in PBS.
 - B. Preparation of assay plates:
 - Coat with 120 µl of stock anti-myc antibody per well overnight at 4°C.
 - Wash 2X with 200 µl PBS.
 - Block with 150 µl of blocking buffer.
 - Wash 2X with 200 µl PBS.

C. Assay:

- Add 40 µl assay buffer/well.
- Add 10 µl compound or extract.
- Add 10 μ l ³³P-hKsr (20,000-25,000 cpm/0.1-10 pmoles/well = 10^{-9} 10^{-7} M final concentration).
 - Shake at 25°C for 15 minutes.
 - Incubate additional 45 minutes at 25°C.
 - Add 40 µl eptitope-tagged Raf (0.1-10 pmoles/40 ul in assay buffer)
 - Incubate 1 hour at room temperature.
 - Stop the reaction by washing 4 times with 200 µl PBS.
 - Add 150 µl scintillation cocktail.
 - Count in Topcount.
- 30 D. Controls for all assays (located on each plate):
 - a. Non-specific binding (no hKsr added)
 - b. Soluble (non-tagged Raf) to achieve 80% inhibition.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

SEQUENCE LISTING

SEQ ID NO: 1 cDNA sequence of Drosophila melanogaster Ksr

SEQ ID NO: 2 amino acid sequence of Drosophila melanogaster Ksr

10 SEQ ID NO: 3 genomic sequence of Drosophila virilis Ksr

5

SEQ ID NO: 4 amino acid sequence of Drosophila virilis Ksr

SEQ ID NO: 5 cDNA sequence of Mus musculus Ksr

SEQE ID NO: 6 amino acid sequence of Mus musculus Ksr

SEQ ID NO: 7 cDNA composite sequence of human Ksr

15 SEQ ID NO: 8 amino acid composite sequence of human Ksr

SEQ ID NO: 9 cDNA sequence of human Ksr'

SEQ ID NO: 10 amino acid sequence of human Ksr'

SEQUENCE LISTING

	(1) GENERAL INFORMATION:
	(i) APPLICANT: Rubin, Gerry M.
	Therrien, Marc
	Chang, Henry C.
5	Karim, Felix D.
	Wassarman, David A.
	(ii) TITLE OF INVENTION: A Novel Protein Kinase Required for Ras
	Signal Transduction
	(iii) NUMBER OF SEQUENCES: 12
10	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: SCIENCE & TECHNOLOGY LAW GROUP
	(B) STREET: 268 BUSH STREET, SUITE 3200
	(C) CITY: SAN FRANCISCO
	(D) STATE: CALIFORNIA
15	(E) COUNTRY: USA
	(F) ZIP: 94104
	(v) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Floppy disk
	(B) COMPUTER: IBM PC compatible
20	(C) OPERATING SYSTEM: PC-DOS/MS-DOS
	(D) SOFTWARE: PatentIn Release #1.0, Version #1.30
	(vi) CURRENT APPLICATION DATA:
	(A) APPLICATION NUMBER:
	(B) FILING DATE:
25	(C) CLASSIFICATION:
	(viii) ATTORNEY/AGENT INFORMATION:
	(A) NAME: OSMAN, RICHARD A
	(B) REGISTRATION NUMBER: 36,627
	(C) REFERENCE/DOCKET NUMBER: B96-010
30	(ix) TELECOMMUNICATION INFORMATION:
	(A) TELEPHONE: (415) 343-4341
	(B) TELEFAX: (415) 343-4342
	(5) Timenus areas are are are
26	(2) INFORMATION FOR SEQ ID NO:1:
35	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 3697 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear
40	(ii) MOLECULE TYPE: cDNA
40	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
	GAATTCCAAT TATTGCTTTT TCGCATTGCC TAAGCCGTTT AGAGTTGCGG GCGTTAGCGT 60
	GCGCGATAGC CGGAGCACCG AACGTCAAGG TCGCTTGGCG AGGGCCACAA TGCGGGGCGG 120
15	AGTCCCAGCC ATTGGTCCCA TCGAATCGTC GAGTCCCCGA GAGGGCGTCT GAAAAAATCA 180
45	ATCGGGCTCC ACTCCGTCGC GAATAAGCAG GATGAGCAGC AACAACAACG CACCCGCATC 240

	GGCTCCAGAC	ACGGGCTCC	A CCAATGCCAA	CGATCCCATC	TCCGGTTCGC	TGTCCGTAGA	300		
	CAGCAACCTG	GTTATCATT	AGGACATGAT	TGATCTCTCG	GCCAACCATC	TGGAGGGCCT	360	Again to Made Main day	$h(\hat{\chi})$
	GCGAACGCAG	TGCGCGATCA	A GCTCCACGCT	GACGCAGCAG	GAGATTCGTT	GCCTGGAGTC	420	A Company of the Comp	
	GAAGCTGGTG	CGATACTTC	CCGAGCTGCT	GCTGGCGAAG	ATGCGGCTAA	ATGAGCGCAT	480		
	CCCGGCCAAC	GGGCTTGTG	CCCACACAAC	GGGCAACGAA	CTGAGGCAAT	GGCTGCGCGT	540		
5						CTCTAGAGCA			
						CCAGCCAGCG			
						AGTGCATGGA			
	GTCGCTGGAG	AGCGGTACTG	CGGCTAGCAA	CAACGATCCA	GAGCAGTGGC	ACTGGGACTC	780		
	CTGGGACAGG	CCCACCCACA	TTCATCGCGG	CAGTGTGGGA	AACATTGGAC	TGGGTAACAA	840		
10	TTCAACCGCC	TCCCCGAGAA	CCCATCATCG	CCAGCATGGT	GTCAAGGGAA	AGAATTCCGC	900		
	TCTGGCCAAC	TCCACCAACT	TCAAAAGTGG	CCGCCAATCG	CCCTCAGCGA	CAGAAGAGCT	960		
	GAACAGCACA	CAGGGTTCCC	AGCTGACTTT	AACCCTTACG	CCCTCGCCAC	CCAATTCGCC	1020		
	CTTCACGCCT	TCCAGTGGGC	TGAGCAGCAG	CCTTAATGGA	ACACCACAGA	GGAGTCGTGG	1080		
	TACCCCGCCG	CCAGCCAGAA	AGCACCAGAC	CTTGCTGAGC	CAGAGTCATG	TGCAAGTGGA	1140		
15	CGGGGAGCAA	TTAGCCCGCA	ACCGTTTGCC	CACTGATCCC	AGCCCCGATA	GCCACAGCTC	1200		
	CACCAGCTCG	GACATCTTTG	TGGACCCAAA	TACTAATGCC	AGCTCCGGAG	GAAGTTCCTC	1260		
	GAACGTGCTT	ATGGTGCCAT	GCTCTCCGGG	CGTGGGTCAC	GTGGGCATGG	GTCATGCAAT	1320		
	CAAGCATCGT	TTCACCAAGG	CCCTGGGCTT	CATGGCCACC	TGTACCCTGT	GCCAGAAGCA	1380		
	GGTCTTTCAC	CGCTGGATGA	AGTGCACCGA	CTGCAAGTAC	ATCTGCCACA	AGTCATGCGC	1440		
20	ACCGCACGTA	CCGCCCTCCT	GTGGACTTCC	ACGAGAATAT	GTGGACGAGT	TTCGGCACAT	1500		
	AAAGGAGCAG	GGAGGATACG	CCAGTCTGCC	GCATGTGCAT	GGCGCGGCGA	AAGGATCCCC	1560		
						ATAGCAGTTC			
						AGCAAAGGGA	1680		
			GCAGCAGCTC				1740		
25						GCAGTGGCGG	1800		
						CCACGGCGCC			
						ACATGAGCTC	1920		
			CAAACGCTTC				1980		
20			GCACCTGCAG				2040		
30						CAAATGACAG	2100		
						CACCCGTTCG	2160		
			GAGACTCGGG				2220		
	GGAATGGGAC	ATCCCGTATG	GTGATCTGCT	TCTGCTCGAG	CGGATAGGGC	AGGGACGCTT	2280		
25			TTTGGCACGG				2340		
35			TGCTGGAGAC				2400		
			TGCTGTTCAT				2460		
			AGGGCAACAC				2520		
	GAAGTTTGCC						2580		
40	CCTGCACGCA						2640		
40	CGGCAAGGTG .						2700		
	TATGGGCCTA						2760		
	ATTGCAGCCG						2820		
	CTCTTTCGGA .						2880		
4.5	GGCGGAATCG						2940		
45	GTCTGGACGG	GATGTCAAGG	ACTTGCTGAT	GCTGTGCTGG	ACCTACGAGA	AGGAGCACCG	3000		

	GCCGCAGTTC GCACGCCTGC TCTCCCTGCT GGAGCATCTT CCCAAGAAGC GTCTGGCGCG 30	50
	CAGTCCCTCC CACCCCGTCA ACCTTTCCCG TTCCGCCGAG TCCGTGTTCT GAGGGAACTG 31	20
	CAGCATGGCC ACTGTCACTG TCTAGTACAA TTTCGATCTA CCAACTAAGC TAGCTCGCTT 31	30
	TGTGCCCTCG TCCACTCTAC ACAAACTCTC TCCCAAGGCG AAGTTCTATC GAGCCGAGCG 32	40
	AAGATTGTAA ATACATAAAC GTAACTACCA AATTATAGCA ATCCATTTTA AAAACTACAT 33	00
5	ACATATGTGT AGGCATGTAT CGGGAGCACT CCAGTTGCAG TTGTTAGCAA ACGAAACAAA 33	50
	GGCAAATCAA ATGTTAACTC GAAAAAGACA AAACGCTTAA ATGTTTAAGA GCAGAGGCAA 34	20
	ACAGAGAAGG CATAGACATA CATATACAAA CAAACAAACA AGCACTGTGG CAAACATAAA 34	30
	TGTAAACGTT AATCAGGTGA GCAATTTCTA AATTGTTAAT TATGTGTAAG AGAACTATAT 35	10
	ATATATATA ATATATATA ATATATATAT ATATACATGT ATATACAGCA GCAATGTATT 36	00
10	GTATATGACG GACTAGTGTT AAATTAAATA TATATTGTGA ATTATGTATG	50
	TATAGTAAAT GGACTTTAAA TGCGAAATCG GGAATTC 36	₹ 7
	(2) INFORMATION FOR SEQ ID NO:2:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 966 amino acids	
	(B) TYPE: amino acid	
	(C) STRANDEDNESS: not relevant	
	(D) TOPOLOGY: not relevant	
	(ii) MOLECULE TYPE: peptide	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
	Met Ser Ser Asn Asn Ala Pro Ala Ser Ala Pro Asp Thr Gly Ser	
	1 5 10 15	
	Thr Asn Ala Asn Asp Pro Ile Ser Gly Ser Leu Ser Val Asp Ser Asn	
	20 25 30	
25	Leu Val Ile Ile Gln Asp Met Ile Asp Leu Ser Ala Asn His Leu Glu	
	35 40 45	
	Gly Leu Arg Thr Gln Cys Ala Ile Ser Ser Thr Leu Thr Gln Glu	
	50 55 60	
	Ile Arg Cys Leu Glu Ser Lys Leu Val Arg Tyr Phe Ser Glu Leu Leu	
30	65 70 75 80	
	Leu Ala Lys Met Arg Leu Asn Glu Arg Ile Pro Ala Asn Gly Leu Val	
	85 90 95	
	Pro His Thr Thr Gly Asn Glu Leu Arg Gln Trp Leu Arg Val Val Gly	
25	100 105 110	
35	Leu Ser Gln Gly Thr Leu Thr Ala Cys Leu Ala Arg Leu Thr Thr Leu 115 120 125	
		
	Glu Gln Ser Leu Arg Leu Ser Asp Glu Glu Ile Arg Gln Leu Leu Ala 130 135 140	
40	Asp Ser Pro Ser Gln Arg Glu Glu Glu Leu Arg Arg Leu Thr Arg 145 150 155 160	
70		
	Ala Met Gln Asn Leu Arg Lys Cys Met Glu Ser Leu Glu Ser Gly Thr 165 170 175	
	Ala Ala Ser Asn Asn Asp Pro Glu Gln Trp His Trp Asp Ser Trp Asp	
	180 185 190	

Arg Pro Thr His Ile His Arg Gly Ser Val Gly Asn Ile Gly Leu Gly

45

			195	5				200)				205			
	Asn	Asr	Ser	Thr	Ala	Sex	Pro			. Hi	s His	: Arc			e (21s	/ Val
		210					215					220		• ••••	. GI	val
	Lys	Gly	Lys	. Asn	Ser	Ala	Leu	ı Ala	Ası	ı Se	r Thr			Lvs	s Sei	Gly
	225					230					235			,		240
5	Arg	Gln	Ser	Pro	Ser	Ala	Thr	Glu	Glu	Lei			Thr	G1r	ı Glv	/ Ser
					245					250					255	
	Gln	Leu	Thr	Leu	Thr	Leu	Thr	Pro	Ser	Pro	Pro	Asn	Ser	Pro		Thr
				260					265					270		
	Pro	Ser	Ser	Gly	Leu	Ser	Ser	Ser	Leu	Asr	Gly	Thr	Pro	Gln	Aro	Ser
10			275					280					285		_	_ = =
	Arg	Gly	Thr	Pro	Pro	Pro	Ala	Arg	Lys	His	Gln	Thr	Leu	Leu	Ser	Gln
		290					295					300				
	Ser	His	Val	Gln	Val	Asp	Gly	Glu	Gln	Leu	Ala	Arg	Asn	Arg	Leu	Pro
16	305					310					315					320
15	Thr	Asp	Pro	Ser	Thr	Asp	Ser	His	Ser	Ser	Thr	Ser	Ser	Asp	Ile	Phe
			_		325					330					335	
	Val	Asp	Pro	Asn	Thr	Asn	Ala	Ser	Ser	Gly	Gly	Ser	Ser	Ser	Asn	Val
	T on	Mak	17-1	340		_	_		345					350		
20	ren	Met	355	Pro	Cys	Ser	Pro		Val	Gly	His	Val		Met	Gly	His
	Ala	Tle		Wie	A	Dho	(M)b an	360					365			
	••••	370	בעם	His	ALG	rue	375	гÀ2	ATA	ren	Gly		Met	Ala	Thr	Суѕ
	Thr		Cvs	Gln	Lvs	Gln		Dhe	ui o	N =====	<i>m</i>	380	•	_		_
	385		-,-	<u> </u>	2,3	390	vaı	FILE	urs	Arg	395	met	гуs	Cys	Thr	
25	Cys	Lys	Tyr	Ile	Cys		Lvs	Ser	Cvs	λla		ui c	tra l	Dro	D	400
			-		405				0,10	410	110	1115	Val	FIO	415	ser
	Cys	Gly	Leu	Pro	Arg	Glu	Tyr	Val	Asp		Phe	Ara	His	Tle		Glu
				420					425			3		430	2,5	014
	Gln	Gly	Gly	Tyr	Ala	Ser	Leu	Pro	His	Val	His	Gly	Ala		Lvs	Glv
30			435					440					445		-	•
	Ser	Pro	Leu	Val	Lys	Lys	Ser	Thr	Leu	Gly	Lys	Pro	Leu	His	Gln	Gln
		450					455					460				
	His	Gly	Asp	Ser	Ser	Ser	Pro	Ser	Ser	Ser	Суѕ	Thr	Ser	Ser	Thr	Pro
26	465	_				470					475					480
35	Ser	Ser	Pro	Ala		Phe	Gln	Gln	Arg	Glu	Arg	Glu	Leu	Asp	Gln	Ala
	G1	.	_		485	_				490					495	
	GIA	ser	ser	Ser	Ser	Ala	Asn	Leu		Pro	Thr	Pro			Gly	Lys
	uio	~1 - -	~	500					505					510		
40	nis			Ser	Gin	Phe	Asn		Pro	Asn	Val	Thr	Val	Thr	Ser	Ser
	Glv		515 Ser	C1	~1	**- 1	a	520	- 1	_		_	525			
		530	Set	Gly	grĀ			Leu	He	Ser			Pro	Val	Pro	Glu
			Dra	m	- ו מ		535	m\	x 1 .			540				
	545	- **E	110	Thr		550	wrg	rnr	нта	Asn		Gly	Leu	Asp	Ser	Leu
45		Ser	Ca-	50-			ui-	W	C	0	5 5 5					560
		Jei .	~ct	Ser .	nall	σтλ	นา2	net	ser	ser	ren	Пe	Gly	Ser	Gln	Thr

					565					570					575			
	Ser	Asn	Ala	Ser	Thr	Ala	Ala	Thr	Leu	Thr	Gly	Ser.	Leu	Val	Asn	Ser		
				580					585					590				
	Thr	Thr	Thr	Thr	Ser	Thr	Суѕ	Ser	Phe	Phe	Pro	Arg	Lys	Leu	Ser	Thr		
			59 5					600					605					
5	Ala	Gly	Val	Asp	Lys	Arg	Thr	Pro	Phe	Thr	Ser	Glu	Суѕ	Thr	Asp	Thr		
		610					615					620						
		Lys	Ser	Asn	Asp		Asp	Lys	Thr	Val		Leu	Ser	Gly	Ser			
	625	_,			•	630	mh	D	••- •		635	_		m \	01	640		
	Ser	Thr	ASP	ser		Arg	Thr	Pro	Val	_	Val	Asp	ser	Thr	655	Asp		
10	C114	Aan	Co~	Olv	645	m×	Arg	Gln	Acn	650	T10	Cor	I ou	Tarm	_	Trans		
	GTĀ	Asp	ser	660	GIII	пр	мy	GIII	665	Ser	116	Ser	red	670	Giu	LLP		
) en	Tle	Pro		Glv	Asn	Leu	T.en		Len	Glu	Ara	Tle		Gln	Glv		
			675	-,-	,			680					685					
15	Arg	Phe		Thr	Val	His	Arg	Ala	Leu	Trp	His	Gly	Asp	Val	Ala	Val		
	-	690					695			_		700						
	Lys	Leu	Leu	Asn	Glu	Asp	Tyr	Leu	Gln	Asp	Glu	His	Met	Leu	Glu	Thr		
	705					710					715					720		
	Phe	Arg	Ser	Glu	Val	Ala	Asn	Phe	Lys	Asn	Thr	Arg	His	Glu	Asn	Leu		
20					725					730					735			
	Val	Leu	Phe		Gly	Ala	Сув	Met		Pro	Pro	Tyx	Leu		Ile	Val		
			•	740	•	a 1			745		(7)		- 1 -	750	~ 1	>		
	Thr	Ser	ьеи 755	Cys	rys	GIA	yau	760	Leu	ıyr	Thr	TYT	765	Hls	Gin	Arg		
25	Ara	Glu		Phe	Δla	Met	Asn		ሞከተ	Len	Len	Tle		Gln	Gln	Tle		
2.5	.my	770	LJU	1110	2120		775	, u.g		Deu	200	780	7114		422			
	Ala		Gly	Met	Gly	Tyr	Leu	His	Ala	Arg	Glu		Ile	His	Lys	Asp		
	785					790					795					800		
	Leu	Arg	Thr	Lys	Asn	Ile	Phe	Ile	Glu	Asn	Gly	Lys	Val	Ile	Ile	Thr		
30					805					810					815			
	Asp	Phe	Gly	Leu	Phe	Ser	Ser	Thr	Lys	Leu	Leu	Tyr	Cys	Asp	Met	Gly		
				820					825					830				
	Leu	Gly		Pro	His	Asn	Trp		Cys	Tyr	Leu	Ala		Glu	Leu	Ile		
25	.		835	01 -	D	61	•	840	>	0 1	61		845	a 1	Db -	mh		
35	Arg	850	Leu	GIN	Pro	GIU	Lys 855	PFO	Arg	GIĀ	GIU	суs 860	Leu	GIU	Pne	THE		
	Pro		Ser	Aen	Va 1	ጥተ	Ser	Phe	Glv	ሞኮድ	t/a 1		There	Glu	Len	Tle		
	865	_			•	870	501		01,	•••	875	11.0	*3*	GIU	200	880		
			Glu	Phe	Thr		Lys	Asp	Gln	Pro		Glu	Ser	Ile	Ile			
40	-	_			885		-	-		890					895	•		
	Gln	Val	Gly	Arg	Gly	Met	Lys	Gln	Ser	Leu	Ala	Asn	Leu	Gln	Ser	Gly		
				900					905					910				
	Arg	Asp	Val	Lys	Asp	Leu	Leu	Met	Leu	Cys	Trp	Thr	Tyr	Glu	Lys	Glu		
			915					920					925					
45	His	Arg	Pro	Gln	Phe	Ala	Arg	Leu	Leu	Ser	Leu	Leu	Glu	His	Leu	Pro		

930

935 940 Lys Lys Arg Leu Ala Arg Ser Pro Ser His Pro Val Asn Leu Ser Arg 945 950 955 960 Ser Ala Glu Ser Val Phe 965 5 (2) INFORMATION FOR SEQ ID NO:3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3681 base pairs (B) TYPE: nucleic acid 10 (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: CCCCCAAAAA CTATAAAATT TTTCGCGTTT TTCTCATAGC AGAAGCTGTC TCGAAGTCCG 60 CATTTCGCAG GACTGTTCAT GTGTGCTTGC AGCAAGCGAA AAAAGCTGGT TGATGTGGAC 15 120 AGAATGTGTG TCAAAGTGGT GCAAACAACA AATGATTTGT AAGTGCGTCT GAAAAAATCA 180 ATCAGTTTGT ACTGCTGGAA GGGGCGGGCG GGCCACAACA AAATGAGCAG CAGCGCCGCC 240 GCCCAGCTGA CTGCGCCGCC AGTCAGCAAC AGCAACAGCA GCAGCAGTAA CAACAATACA 300 ACAACGACTG CGAGCGAAAG CAATCTAATC ATCATACAGG ATATGATTGA TCTCTCGGCC 360 AACCATCTGG AGGGTCTGCG AACACAGTGC GCAACGAGGCG CGACGTTGAC GCAACAGGAG 20 420 ATCCGCTGCC TAGAGTCCAA GTTGGTGCGC TACTTCTCCG AACTGCTCTT GACCAAAACG 480 AGACTCAACG AACGCATACC CGCGAACGGT CTGCTGCCCC ATCATCAGGC TACCGGGAAC 540 GAGTTGCGCC AATGGCTGCG AGTAGTTGGA CTCAGTCCGG AGTCACTGAA TGCATGCCTA 600 GCGCGTCTAA CGACATTGGA GCAAACACTG CAGCTGAGCG ATGAAGAACT GAAACAACTG 660 25 CTTGCCCACA ATTCAAGTAC CCAGCTGGAC GAGGAACTGC GGCGGCTGAC CAAAGCGATG 720 CATAATCTCC GAAAATGCAT GGAAACGCTG GACAGCAGCG GCGCAGTTGC GTCCAACGTC 780 GATCCGGAAC AATGGCACTG GGACTCCTGG GATCGACCCC ATCCGCATCA CATGCACCGC 840 GGCAGCATTG GCAATATTGG CCTAGGACTA AGCAGCGCCT CACCTCGCGC CCATCATCGT 900 CAACATCAAC ATCAACACGC GAACAGCAAG CCGAAAATTG TTAACAATTC TGCCTCAAGC 960 30 TCCCGCAGCG AACAGCAACC ACTGACTGGT TCTCAGTTGA CCTTAACACT GACGCCCTCG 1020 CCACCCAACT CGCCCTTTAC GCCCGCCTCA GGGACGGCAT CCGCCAGCGG CACTCCGCAG 1080 CGCAGCCGCA GTACCACAAC AGCGGCGGA ACGCCACCAC CAGCCAAGAA GCATCAAACG 1140 CTGCTCATGC ACAACAGCAG CGCTTCGGAA ACGGCACTCG CGGAGCAGCC TCCACGGCCA 1200 CCGCGCAGCC GTCTACCCAC AGATCCTAGC CCGGATAGCC ACAGCTCGGC CAGCAGTTCG 1260 35 GACATITITG TGGACGGTGG CAGTATCAAC AGCTCCAATG TACTACTAGT GCCGCCCTCG 1320 CCAGGTGTGG CACACGTGGG CATGGGTCAT ACCATTAAGC ACCGTTTCAG TAAATGGTTT 1380 GGCTTCATGG CCACGTGCAA ACTGTGCCAA AAGCAGATGA TGAGCCACTG GTTCAAGTGC 1440 ACCGACTGCA AATATATTTG CCACAAGTCC TGTGCGCCGC ATGTGCCGCC CTCGTGTGGC 1500 CTTCCACCCG AATATGTTCA CGAGTTTCGT CAAACTCAGG TGGGCGGCAG ATGGGACCCT 1560 40 GCGCAGCACA GCAGCAGCAA GGCATCACCA GTGCCCAGGA AGAGCACGCT GGGCAAACCG 1620 CAATTGCAGC AGCCACAGCT GCAGCACGGG GACAGCAGCT CACCAAGCTC GAGCTGCACC 1680 AGCTCAACGC CCAGCAGTCC AGCATTGTTC CAGCAGCAGC AACTGCAACT GGCCACGCCC 1740 AGCGCCTGCC AGCCGAAACC AGCACCAGCA GCGGTAGCAG CAGCAGCAAC ACAACAGGGT 1800 CAACAGAGTC AATTCAATTT CCCCAACGTG ACCATCACAA GCATCAATGC. CTGCAATAGT 1860 45 AACGCCAGCG CTGCCCAAAC GCTCATATCC AATGAGCCGC AAGCGCATAT GGCCACAACG 1920

	GAGTCCACGC	TGACCAATGG	CAACAACAAC	AGCAGCTCCA	ACAACGGGAG	CAGCGCCAAC	1980
	AACAATAGCA	GCAGCAGCAG	CAGCTGCTCC	AATGGTCACC	TGCACTCGCT	GACTGGAAGT	2040
	CAAGTGTCCA	CGCATTCGGC	TACCTCGCAA	GTGTCGAATG	TCAGTGGCAG	CAGCTCGGCC	2100
	ACCTACACCT	CCAGTCTGGT	GAACAGCGGC	AGTTTCTTTC	CGCGGAAATT	GAGCAATGCT	2160
	GGCGTGGACA	AGCGGGTGCC	CTTTACCAGC	GAATATACGG	ACACGCACAA	GTCGAATGAT	2220
5	AGCGACAAGA	CGGTTTCGTT	GTCGGGCAGC	GCCAGCACTG	ACTCGGATCG	CACGCCTGTG	2280
	CGTTTGGACT	CCACAGAGGA	TGGCGACTCG	GGCCAATGGC	GGCAGAACTC	CATATCATTG	2340
	AAGGAATGGG	ATATACCCTA	TGGCGATTTG	CACTTGCTGG	AGCGCATTGG	ACAGGGTCGA	2400
	TTTGGCACCG	TGCATCGGGC	ACTGTGGCAT	GGCGATGTCG	CTGTGAAGCT	GCTCAATGAA	2460
	GACTATCTGC	AGGACGAGCA	CATGCTGGAA	TCGTTTCGCA	ACGAGGTGGC	CAATTTCAAG	2520
10	AAGACGCGAC	ACGAGAATCT	GGTGCTGTTC	ATGGGCGCCT	GCATGAATCC	GCCGTATTTG	2580
	GCCATTGTCA	CGGCACTATG	CAAGGGCAAC	ACCCTGTACA	CCTATATACA	TCAGCGAAGG	2640
	GAGAAGTTTG	CAATGAATCG	CACGTTGTTG	ATTGCCCAAC	AGATTGCCCA	GGGCATGGGC	2700
	TATTTGCATG	CCAGGGACAT	AATACACAAG	GATCTGCGCA	CCAAGAACAT	TTTTATAGAG	2760
	AATGGCAAGG	TGATCATTAC	GGACTTTGGC	CTATTCAGCT	CCACAAAGCT	GCTGTACTGT	2820
15				CTCTGCTACC			2880
				TGTCTAGAGT			2940
				ATTTGCGGCG			3000
				CGCGGCATGA			3060
				ATGCTGTGCT			3120
20				CTGGAGCATT			3180
				CGCTCAGCGG			3240
				TATGTCATAT			3300
				AATTTCACGT			3360
				AACTGTAATT			3420
25				CAAGAGAATG			3480
				CGACCCTACG			3540
				AATATACATT			3600
				AATTTACAAA	TGCATTGTCA	AAATAGTTTT	3660
	TATCTTTAAT	TATGTATTGA	. А				3681

30

35

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1003 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Ser Ser Ser Ala Ala Ala Gln Leu Thr Ala Pro Pro Val Ser Asn

1 5 5 10 15

Ser Asn Ser Ser Ser Ser Asn Asn Asn Thr Thr Thr Thr Ala Ser Glu

20 25 30

Ser Asn Leu Ile Ile Ile Gln Asp Met Ile Asp Leu Ser Ala Asn His

35 40 45

45 Leu Glu Gly Leu Arg Thr Gln Cys Ala Thr Ser Ala Thr Leu Thr Gln

		50					55					60		. •	•	the state of the s
	Gln	Glu	Ile	Arg	Cys	Leu		Ser	Lvs	Leu	Val		·Tvr	Phe	Ser	r Glu r Miresand rakethen gab Malah sepercipik
	65				_	70			-,-		75	3	-,-			80
	Leu	Leu	Leu	Thr	Lys	Thr	Arg	Leu	Asn	Glu		Ile	Pro	Ala	Asn	Gly
					85		_			90	3				95	- -,
5	Leu	Leu	Pro	His	His	Gln	Ala	Thr	Gly	Asn	Glu	Leu	Arg	Gln	-	Leu
				100					105					110		
	Arg	Val	Val	Gly	Leu	Ser	Pro	Glu	Ser	Leu	Asn	Ala	Cys		Ala	Arg
			115					120					125			•
	Leu	Thr	Thr	Leu	Glu	Gln	Thr	Leu	Gln	Leu	Ser	Asp	Glu	Glu	Leu	Lys
10		130					135					140				
	Gln	Leu	Leu	Ala	His	Asn	Ser	Ser	Thr	Gln	Leu	Asp	Glu	Glu	Leu	Arg
	145					150					155					160
	Arg	Leu	Thr	Lys	Ala	Met	His	Asn	Leu	Arg	Lys	Cys	Met	Glu	Thr	Leu
					165					170					175	
15	Asp	Ser	Ser	Gly	Ala	Val	Ala	Ser	Asn	Val	Asp	Pro	Glu	Gln	Trp	His
				180					185					190		
	Trp	Asp	Ser	Trp	Asp	Arg	Pro	His	Pro	His	His	Met	His	Arg	Gly	Ser
			195					200					205			
	Ile	Gly	Asn	Ile	Gly	Leu	Gly	Leu	Ser	Ser	Ala	Ser	Pro	Arg	Ala	His
20		210					215					220				
		Arg	Gln	His	Gln	His	Gln	His	Ala	Asn	Ser	Lys	Pro	Lys	Ile	Val
	225					230					235					240
	Asn	Asn	Ser	Ala		Ser	Ser	Arg	Ser		Gln	Gln	Pro	Leu		Gly
36	C	01-	•	~ }	245		•	_,	_	250	_		_	_	255	
25	ser	GIN	ьеи		ren	Thr	Leu	Thr		Ser	Pro	Pro	Asn		Pro	Phe
	Th-	Dro	A 1 -	260	Clv	mh-	31	C	265	C	G1	m >	D	270	.	
	TILL	FIO	275	361	GTĀ	Thr	AIG	280	Ald	ser	GTĀ	Thr	285	Gin	Arg	Ser
	Ara	Ser		Thr	ጥh r	Àla	Δla		-د درن	2~0	Pro	Pro		Tve	Lve	и; е
30	9	290			• • • • •		295	O1,			110	300	ALG	Dy S	Dys	115
	Gln		Leu	Leu	Met	His		Ser	Ser	Ala	Ser	-	Thr	Ala	Len	Ala
	305					310					315					320
	Glu	Gln	Pro	Pro	Arg	Pro	Pro	Arg	Ser	Arg		Pro	Thr	Asp	Pro	
					325			_		330					335	
35	Pro	Asp	Ser	His	Ser	Ser	Ala	Ser	Ser	Ser	Asp	Ile	Phe	Val		Gly
				340					345					350	•	•
	Gly	Ser	Ile	Asn	Ser	Ser	Asn	Val	Leu	Leu	Val	Pro	Pro	Ser	Pro	Gly
			355					360					365			
	Val	Ala	His	Val	Gly	Met	Gly	His	Thr	Ile	Lys	His	Arg	Phe	Ser	Lys
40		370					375					380				
	Trp	Phe	Gly	Phe	Met	Ala	Thr	Cys	Lys	Leu	Cys	Gln	Lys	Gln	Met	Met
	385					390					395					400
	Ser	His	Trp	Phe	Lys	Cys	Thr	Asp	Cys	Lys	Tyr	Ile	Cys	His	Lys	Ser
					405					410					415	
45	Cys	Ala	Pro	His	Val	Pro	Pro	Ser	Cys	Gly	Leu	Pro	Pro	Glu	Tyr	Val

				420	*				425					430		
	His	Glu	Phe	Arq	Gln	Thr	Gln	Val	Gly.	Gly	Arg	Trp	Asp	Pro	Ala	Gln
	,,		435	_				440					445			
	His	Ser		Ser	Lys	Ala	Ser	Pro	Val	Pro	Arg	Lys	Ser	Thr	Leu	Gly
		450			-		455					460				
5	Lvs	Pro	Gln	Leu	Gln	Gln	Pro	Gln	Leu	Gln	His	Gly	Asp	Ser	Ser	Ser
,	465					470					475					480
		Ser	Ser	Ser	Cvs	Thr	Ser	Ser	Thr	Pro	Ser	Ser	Pro	Ala	Leu	Phe
	110				485					490					495	
	Gln	Gln	Gln	Gln		Gln	Leu	Ala	Thr	Pro	Ser	Ala	Cys	Gln	Pro	Lys
10	G1	0111		500					505				_	510		
10	Pro	Ala	Pro		Ala	Val	Ala	Ala		Ala	Thr	Gln	Gln	Gly	Gln	Gln
	FIO	niu	515					520					525	-		
	Car	Gln		Asn	Phe	Pro	Asn		Thr	Ile	Thr	Ser	Ile	Asn	Ala	Cys
	Jei	530					535					540				_
16	3 cm	Ser	hen	בוג	Ser	Δla		Gln	Thr	t.en	Tle		Asn	Glu	Pro	Gln
15	545	SEI	M311	ATU.	361	550	*****	U		500	555	•				560
		His	Met	Δla	Thr		Glu	Ser	Thr	Leu		Asn	Glv	Asn	Asn	
	AIG	1113	146.6	niu	565					570					575	
	Ser	Ser	Ser	Δsn		Glv	Ser	Ser	Ala		Asn	Asn	Ser	Ser	Ser	Ser
20	261	Jer	501	580		,			585					590		
20	Ser	Ser	Cvs		Asn	Glv	His	Leu		Ser	Leu	Thr	Gly		Gln	Val
	Jer	501	595	502		,		600					605			
	Ser	Thr		Ser	Ala	Thr	Ser		Val	Ser	Asn	Val	Ser	Gly	Ser	Ser
	Jer	610			•••		615					620		-		
25	Ser	Ala	Thr	Tvr	Thr	Ser		Leu	Val	Asn	Ser	Gly	Ser	Phe	Phe	Pro
	625			-•		630					635					640
		Lys	Leu	Ser	Asn	Ala	Gly	Val	Asp	Lys	Arg	Val	Pro	Phe	Thr	Ser
	5				645		-		_	650	_				655	
	Glu	Tyr	Thr	Asp		His	Lvs	Ser	Asn	Asp	Ser	Asp	Lys	Thr	Val	Ser
30		-4-		660			-		665	_		_	-	670		
	Leu	Ser	Glv			Ser	Thr	Asp	Ser	Asp	Arg	Thr	Pro	Val	Arg	Leu
			675					680		-	_		685			
	Asp	Ser	Thr	Glu	Asp	Gly	Asp	Ser	Gly	Gln	Trp	Arg	Gln	Asn	Ser	Ile
	-	690					695					700				
35	Ser	Leu	Lys	Glu	Trp	Asp	Ile	Pro	Tyr	Gly	Asp	Leu	His	Leu	Leu	Glu
	705		_		_	710					715					720
		Ile	Gly	Gln	Gly	Arg	Phe	Gly	Thr	Val	His	Arg	Ala	Leu	Trp	His
	_		-		725					730					735	
	Glv	Asp	Val	Ala	Val	Lys	Leu	Leu	Asn	Glu	Asp	Туг	Leu	Gln	Asp	Glu
40		•		740		-			745					750		
	His	Met	Leu	Glu	Ser	Phe	Arq	Asn	Glu	Val	Ala	Asn	Phe	Lys	Lys	Thr
		-	755				- 3	760					765		-	
	Ara	His			Leu	Va1	Leu			Glv	Ala	Cvs			Pro	Pro
	9	770					775		-	- 3		780				
45	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Leu		Tle	Val	ጥ ተ			Cvs	Lve	Glv			Leu	Tvr	Thr
7.3	YAT	400							-,-	_, _,	~ + Y				- 4 -	

	785)				790	,				795					800	
	Tyr	Ile	His	Gln	Arg	Arg	Glu	Lys	Phe	Ala	Met	Asn	Arg	Thr	Leu	Leu	
					805					810	1				815		
	Ile	Ala	Gln	Gln	Ile	Ala	Gln	Gly	Met	Gly	туг	Leu	His	Ala	Arg	Asp	
-				820					825					830			
5	Ile	Ile	His	Lys	Asp	Leu	Arg	Thr	Lys	Asn	Ile	Phe	Ile	Glu	Asn	Gly	
	•		835					840					845				
	rλa	Val	Ile	Ile	Thr	Asp			Leu	Phe	Ser	Ser	Thr	Lys	Leu	Leu	
	Th. 100	850) an	W	a 3	_	855					860					
10	865	cys	Asp	Met	GIA	Leu	Gly	Val	Pro	Gln	Asn	Trp	Leu	Cys	Tyr	Leu	
			Glu	Len	T1a	870				_	875					880	
	******		014	Leu	885	Arg	AIA	Leu	GLn		Суѕ	Lys	Pro	Pro		Glu	
	Cys	Leu	Glu	Phe		Ser	ጥሙ	Ser) on	890					895		
				900		DCI		361	905	vaı	ıyr	ser	Phe		Thr	Val	
15	Trp	Tyr	Glu	Leu	Ile	Cys	Glv	Glu		Thr	Pho	Lire	A en	910	D		
			915			-	•	920		••••	* ***	цуз	925	GIII	Pro	ALA	
	Glu	Ser	Ile	Ile	Trp	Gln	Val	Gly	Arg	Gly	Met	Lvs		Ser	Leu	Δla	
		930					935		_	-		940		501	J-C4	N1G	
	Asn	Leu	Gln	Ser	Gly	Arg	Asp	Val	Lys	Asp	Leu	Leu	Met	Leu	Cys	Trp	
20	945					950					955					960	
	Thr	Tyr	Glu	Lys	Glu	His	Arg	Pro	Asp	Phe	Ala	Arg	Leu	Leu	Ser	Leu	
					965					970					975		
	ren	Glu	His	Leu	Pro	Lys	Lys	Arg	Leu	Ala	Arg	Ser	Pro	Ser	His	Pro	
25	Va l	3.00		980	•	_			985					990			
_	Val		995	ser.	Arg	ser .			Ser	Val	Phe						
			J J J					1000									
	(2) INFOR	MATI	ON F	OR S	EO I	D NO	:5:										
				CHAI				:									
30				GTH:													
				E: nı													
		(C)	STR	ANDE	ONES:	S: do	oub1	е									
				DLOG:			•										
26	(ii) N																
35	(xi)																
	GAATTCCCTC	GGG	GCTI	rtcc	TGCC	GAGG	CG (CCCG1	GTC	CC CC	GGC?	CCT	GCC	CTCG	CCC		60
	CCAGCGGCCC	CGA	ATGCC	CGAG	GCAT	'GGA'I	'AG A	AGCGG	CGT1	rg co	3CGCC	GCAC	G CG	ATGG(CGA		120
	GAAAAAGGAG	י הפר	-660	GCG	GGGG	CGCC	GC (GCGG	ACGG	G GC	GCGC	GGGG	CCC	CCG1	rcag		180
40	CCGCGCGCTC	CAC	20CC2	rucu	GCCA	GCTG	CA C	SAAGO	TCAT	C G	ATATO	TCC	TCC	GCAC	STCT		240
	GCGCGGGCTG	AAC	יער היי היינים	MG1	GCTC	AGTG	TC 1	LAACG	ACCI	C AC	CACAC	CAGO	AGA	TCCC	GAC		300
	CCTAGAGGCA CCCAAGCGAC	AGO	ACCO	CCC	VCL4	ሌያያ ምህ	יים ל	ンシャルト	AUGUA OO AO	ic m	IGAGC	AAGC	TTA	GTG1	CGAC		360
	CTTCAACGTG	AGG	CCTG	AGG	TOC:	יהאני ינראני	ישה ר	. 1MCC	CCCX	n 11	CAGI	GACT	GGC	TGTA	CAT		420
	GCTGGAGATG	GAC	GAGG	CCA	AAGC	CAAC	GAG	יאיניר	TCCCA	הכי הכי	CTC	ACAC	TGG	ATGC	TCT		480
15	GGAGTGCAGC	CGC	CTAC	AGC	AAGC	الملاسات.	אר ר	העהנהרה השיר הפר	መመርር የ	אס עט איני אַ	COMO	00000 ~~~	CCA	GCAC	GGA		540
	-					1			* 1 (0	NA NA	UU TU	ACIG	GCC	TGGG	AGG		600

	GGAGCACAA	A ATGGACTCA	GTTGGAGTT	C AACAGATGC	r cgagacagtz	A GCTTGGGGCC	660
	TCCCATGGA	C ATGCTTTCC	r cgctgggca	G AGCGGGTGC	CAGCACTCAGG	GACCCCGTTC	720
	CATCTCCGT	G TCCGCCCTG	CTGCCTCAG	A CTCTCCGGT	CCCGGCCTC	A GTGAGGGCCT	780
	CTCGGACTC	TGTATCCCC	TGCACACCA	G CGGCCGGCTY	ACCCCCCGG	G CCCTGCACAG	840
	CTTCATCAC	G CCCCTACCA	CACCCCAGC	T ACGACGGCA	C GCCAAGCTG	AGCCACCAAG	900
5	GACACCCCC	A CCGCCAAGCC	GCAAGGTCT	T CCAGCTGCTC	CCCAGCTTCC	CCACACTCAC	960
	ACGGAGCAA	F TCCCACGAGT	CCCAGCTGG	G AAACCGAAT	GACGACGTC	CCCCGATGAA	1020
	GTTTGAACT	CCTCATGGAT	CCCCACAGC	r GGTACGAAGG	GATATCGGGC	TCTCGGTGAC	1080
						AGAAGAGCAT	
	GATTTTTGG	: GTGAAGTGCA	AACACTGCAG	G GTTAAAATGO	CATAACAAGT	GCACAAAGGA	1200
10	AGCTCCCGCC	TGCAGGATCA	CCTTCCTCC	C ACTGGCCAGG	CTTCGGAGGA	CAGAGTCTGT	1260
	CCCGTCAGAT	' ATCAACAACC	CAGTGGACAC	G AGCAGCAGAG	CCCCATTTTC	GAACCCTTCC	1320
	CAAGGCCCTG	ACAAAGAAGG	AGCACCCTCC	AGCCATGAAC	CTGGACTCCA	GCAGCAACCC	1380
	ATCCTCCACC	ACGTCCTCCA	CACCCTCATO	GCCGGCACCT	TTCCTGACCT	CATCTAATCC	1440
	CTCCAGTGCC	ACCACGCCTC	CCAACCCGTC	ACCTGGCCAG	CGGGACAGCA	GGTTCAGCTT	1500
15	CCCAGACATT	' TCAGCCTGTT	CTCAGGCAGG	CCCGCTGTCC	AGCACAGCCG	ACAGTACACG	1560
	GCTCGACGAC	CAGCCCAAAA	CAGATGTGCT	AGGTGTTCAC	GAAGCAGAGG	CTGAGGAGCC	1620
	TGAGGCTGGC	AAGTCAGAGG	CAGAGGATGA	CGAGGAGGAT	GAGGTGGACG	ACCTCCCCAG	1680
	CTCCCGCCGG	CCCTGGAGGG	GCCCCATCTC	TCGAAAGGCC	AGCCAGACCA	GCGTTTACCT	1740
20	GCAAGAGTGG	GACATCCCCT	TTGAACAGGT	GGAACTGGGC	GAGCCCATTG	GACAGGGTCG	1800
20	CTGGGGCCGG	GTGCACCGAG	GCCGTTGGCA	TGGCGAGGTG	GCCATTCGGC	TGCTGGAGAT	1860
	GGACGGCCAC	AATCAGGACC	ACCTGAAGCT	GTTCAAGAAA	GAGGTGATGA	ACTACCGGCA	1920
	CAUGUGGCAT	GAGAACGTGG	TGCTCTTCAT	GGGGGCCIGC	ATGAACCCAC	CTCACCTGGC	1980
	CATTATCACC	AGCTTCTGCA	AGGGGGGGAC	ATTGCATTCA	TTCGTGAGGG	ACCCCAAGAC	2040
25	TOTTOLINGE	ATCAATAAGA	CTAGGCAGAT	CGCCCAGGAG	ATCATCAAGG	GCATGGGTTA	2100
22	CCCCAACCC	AAAGGCATCG	TGCACAAGGA	CCTCAAGTCC	AAGAATGTCT	TCTATGACAA	2160
	ACCCCCCAC	AACCAACAC	ACTICGGGCT	GTTTGGGATC	TCGGGTGTGG	TCCGAGAGGA	2220
	CGTACGAGA	AMCCAACIGA	AACTGTCACA	TGACTGGCTG	TGCTACCTGG	CCCCGAGAT	2280
	TGTCTATCCA	TTCCCCACTC	MCMCCM2 mc2	GGACCAGCTG	CCCTTCTCCA	AAGCAGCCGA	2340
30	CCAGCCTGCT	CACCCCTTCA	TGTGGTATGA	ACTACAGGCA	AGAGACTGGC	CCTTTAAGCA	2400
	GGCATCCGTC	ACCOPECCE	ACCA A CTOORS	TGGAAGTGGG	GAAGGAGTAC	GCCGCGTCCT	2460
	TCTGCAGGAG	AGACCAGGGA	MOGRAGICGG	CGAGATCCTG	TCTGCCTGCT	GGGCTTTCGA	2520
	GAACCGGCGG	CTCTCCCACC	TCAGCCTGCT.	GATGGACATG	CTGGAGAGGC	TGCCCAAGCT	2580
	AGTCATGCCC	CGCTTTGAAA	CLOGGCWCI-I.	TTGGAAGTCG GGGGACCCTG	GCTGACATTA	ACAGCAGCAA	2640
35	GTAGCCAGCC	CTGCACGTTC	ATCCACACAC	COCACCCIG	GAGTCCGGTA	ATCCAAAGAT GATCACGAAA	2700
	CATGCAGACC	ACCACCTCAA	CCA ATCACA A	CCAMPGGAMG	TCGAAAACAT	GATCACGAAA GACTGGGAGC	2760
	GTGTCTCCTC	CCTAAAGGAC	GTGCGTGCGT	CCCTCCCTCC	CCAAGCTGCG	GACTGGGAGC GCGTGCGTCA	2820
	CCAAGGTGTG	TGGAGCTCAG	GATYCCACCC	ATACACCCAA	GIGCGIGCGT	GCGTGCGTCA TACCACTACC	2880
	GCCAGTGTTT	ACACAGAGGT	THE THE COURSE	CAAGCTTGGT	CTCCAGATGA	TACCACTACC	2940
40	CATTCTGCAG	AAGGGTGCTG	CCACACTCCA	CAAGCTTGGT	ATTTTACAGT	AGGTGAAGAT CCCCGTTCTG	3000
	GAAGACCCTA	CAGCTGTGAG	ACCCCC ACCC	TTTCACCCACA	TGTCCCCAGC	CCCCGTTCTG	3060
	TGTGGGCTGT	ACCCGGAAAA	GGGCACCTCC	CAGGAGGTTT	CCCOMC	GCTGCGTGGG	3120
	CGAGAACCAC	ACTAAGGAGC	AGCAGCCCCC	GTTAGGAATC	WARREST -	GTGCTTGGGC	3180
	GAGTTCCTGG	AGAGTGGACT	CACAMANAN	TOTO TOTO S	CONCERNO	ACGGGGATCA CTTTTTTTT	3240
45	TTCCCCCTTA	AAAAAAAAA		CARPORCACO	GCCTGTTGTG	CTTTTTTTT	3300
				GAATCTCAGC (SGCTTCTAGA (CTGATCTGAT	3360

	*						
	GGATCTTAGC CCGGCTTCTA CTGCGGGGGGG GAGGGGGGGA GGGATAGCCA CATATCTGTG	3420					
	GAGACACCCA CTTCTTTATC TGAGGCCTCC AGGTAGGCAC AAAGGCTGTG GAACTCAGCC	3480					
	TOTATCATCA GACACCCCC CCCAATGCCT CATTGACCCC CTTCCCCCAG AGCCAAGGGC	3540					
	TAGCCCATCG GGTGTGTGTA CAGTAAGTTC TTGGTGAAGG AGAACAGGGA CGTTGGCAGA	3600					
	AGCAGTTTGC AGTGGCCCTA GCATCTTAAA ACCCATTGTC TGTCACACCA GAAGGTTCTA	3660					
5	GACCTACCAC CACTTCCCTT CCCCATCTCA TGGAAACCTT TTAGCCCCATT CTGACCCCTG	3720					
	TGTGTGCTCT GAGCTCAGAT CGGGTTATGA GACCGCCCAG GCACATCAGT CAGGGAGGCT	3780					
	CTGATGTGAG CCGCAGACCT CTGTGTTCAT TCCTATGAGC TGGAGGGGCT GGACTGGGTG	3840					
	GGGTCAGATG TGCTTGGCAG GAACTGTCAG CTGCTGAGCA GGGTGGTCCC TGAGCGGAGG	3900					
	ATAAGCAGCA TCAGACTCCA CAACCAGAGG AAGAAAGAAA TGGGGATGGA GCGGAGACCC	3960					
10	ACGGGCTGAG TCCCGCTGTG GAGTGGCCTT GCAGCTCCCT CTCAGTTAAA ACTCCCAGTA	4020					
	AAGCCACAGT TCTCCGAGCA CCCAAGTCTG CTCCAGCCGT CTCTTAAAAC AGGCCACTCT	4080					
	CTGAGAAGGA ATTC	4094					
	(2) INFORMATION FOR SEQ ID NO:6:						
15	(i) SEQUENCE CHARACTERISTICS:						
	(A) LENGTH: 873 amino acids						
	(B) TYPE: amino acid						
	(C) STRANDEDNESS: not relevant						
20	(D) TOPOLOGY: not relevant						
20	(ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:						
	Met Asp Arg Ala Ala Leu Arg Ala Ala Met Gly Glu Lys Lys Glu						
	1 5 10 15						
	Gly Gly Gly Gly Ala Ala Ala Asp Gly Gly Ala Gly Ala Val						
25	20 25 30						
	Ser Arg Ala Leu Gln Gln Cys Gly Gln Leu Gln Lys Leu Ile Asp Ile						
	35 40 45						
	Ser Ile Gly Ser Leu Arg Gly Leu Arg Thr Lys Cys Ser Val Ser Asn						
	50 55 60						
30	Asp Leu Thr Gln Gln Glu Ile Arg Thr Leu Glu Ala Lys Leu Val Lys						

Arg Thr Ala Glu Leu Asn Ser Tyr Pro Arg Phe Ser Asp Trp Leu Tyr

Ile Phe Asn Val Arg Pro Glu Val Val Glu Glu Ile Pro Glu Leu

Thr Leu Asp Ala Leu Leu Glu Met Asp Glu Ala Lys Ala Lys Glu Met

Tyr Ile Cys Lys Gln Gln Gln Ser Lys Leu Ser Val Thr Pro Ser Asp

Leu Arg Arg Trp Gly Ala Ser Thr Glu Glu Cys Ser Arg Leu Gln Gln

Ala Leu Thr Cys Leu Arg Lys Val Thr Gly Leu Gly Gly Glu His Lys

Met Asp Ser Gly Trp Ser Ser Thr Asp Ala Arg Asp Ser Ser Leu Gly

	Pr	o Pr) Mei	t Le	ı Se	r Se	r Le	u Gl	y Ar	g Ala	a Gl	y Al	a Se	r Thr
			19!					20	-				20			
	Gl	n Gl	y Pro	o Arg	y Sei	r Ile	e Se	r Va	l Se	r Al	a Le	u Pro	Al.	a Se	r As	p Ser
		21					21					220				
	Pr	o Va	l Pro	G13	/ Let	ı Sei	Gli	4 G1	y Lei	u Se	r Ası	Sei	с Су	s Il	e Pr	o Leu
5	22					230					23		_			240
	Hi:	s Th	r Sei	Gly	/ Arg	j Lei	ı Thi	Pro	o Ar	g Ala	a Lei	ı His	s Se	r Ph	e I1	e Thr
					245					250					25	
	Pre	o Pro	o Thr	Thr	Pro	Glr	. Lei	Arc	a Arc	a His	a Ala	Lvs	: Lei	ı Lv:		o Pro
				260					265			•		270		
10	Arg	Th:	r Pro	Pro	Pro	Pro	Ser	Arc	ı Lvs	s Val	l Phe	Glo	Lei	-		o Ser
			275					280					285			5 561
	Phe	e Pro	Thr	Leu	Thr	Arq	Sei			His	: ៤៦:	Ser			. (2)	/ Asn
		290				-	295			*****		300		. Dec	. (1)	ASII
	Arg	; Ile	a Asp	Asp	Val	Thr			Lvs	: Phe	· Glu			. Hic	· 61.	/ Ser
15	305					310			-,		315				, G.L.	320
٠,	Pro	Glr	Leu	Val	Arg			Ile	Glv	Leu			Thr	Hie	h ro	J Phe
					325		•		,	330		•	****	1112	335	
	Ser	Thr	Lys	Ser	Trp	Leu	Ser	Gln	Val			Val	Cve	Gln		Ser
				340					345				412	350		, Jei
20	Met	Ile	Phe	Gly	Val	Lys	Cys	Lvs			Ara	Leu	Lve			Asn
			355				-	360		-,, -	•• 9		365		****	nati
	Lys	Cys	Thr	Lys	Glu	Ala	Pro	Ala	Cvs	Ara	Ile	Thr			Pro	Leu
		370					375		-			380				200
	Ala	Arg	Leu	Arg	Arg	Thr	Glu	Ser	Val	Pro	Ser		Ile	Asn	Asn	Pro
25	385					390					395	•				400
	Val	Asp	Arg	Ala	Ala	Glu	Pro	His	Phe	Gly	Thr	Leu	Pro	Lvs	Ala	Leu
					405					410					415	
	Thr	Lys	Lys	Glu	His	Pro	Pro	Ala	Met	Asn	Leu	Asp	Ser	Ser		Asn
				420					425					430		
30	Pro	Ser	Ser	Thr	Thr	Ser	Ser	Thr	Pro	Ser	Ser	Pro	Ala	Pro	Phe	Leu
			435					440					445			
	Thr	Ser	Ser	Asn	Pro	Ser	Ser	Ala	Thr	Thr	Pro	Pro		Pro	Ser	Pro
		450					455					460				
	Gly	Gln	Arg	Asp	Ser	Arg	Phe	Ser	Phe	Pro	Asp	Ile	Ser	Ala	Cvs	Ser
35	465					470					475					480
	Gln	Ala	Ala	Pro	Leu	Ser	Ser	Thr	Ala	Asp	Ser	Thr	Arg	Leu	Asp	
					485					490			•		495	
	Gln	Pro	ŗλ2	Thr .	Asp	Val	Leu	Gly	Val	His	Glu	Ala	Glu	Ala		Glu
				500					505					510		
40	Pro	Glu	Ala	Gly :	Lys .	Ser	Glu	Ala	Glu	Asp	Asp	Glu	Glu		Glu	Val
			515					520		-	-		525			
	Asp	Asp	Leu :	Pro s	Ser :	Ser .			Pro	Tro	Ara			Tle	Ser	۸۳۳
		530					535	-		•		540				·rr G
	Lys	Ala	Ser (Gln 7	Thr :			Tyr	Leu	Gln			Aen	Tla	Dra	Dhe
45	545					550			_		555		P	- T- E		
																560

	Glu				Leu	Gly	Glu	Pro	Ile	Gly	Gln	Gly	Arg	Trp	Gly	Arg
•		9		1.0	565		•			570			V		575	$\partial_{\tau}\mathcal{H}_{0}$
	Val	His	Arg	Gly	Arg	Trp	His	Gly	Glu	Val	Ala	Ile	Arg	Leu	Leu	Glu
				580					585					590		
	Met	Asp	Gly	His	Asn	Gln	Asp	His	Leu	Lys	Leu	Phe	Lys	Lys	Glu	Val
5			595					600					605			
	Met	Asn	Tyr	Arg	Gln	Thr	Arg	His	Glu	Asn	Val	Val	Leu	Phe	Met	Gly
		610					615					620				
	Ala	Сув	Met	Asn	Pro	Pro	His	Leu	Ala	Ile	Ile	Thr	Ser	Phe	Cys	Lys
	625					630					635					640
10	Gly	Arg	Thr	Leu	His	Ser	Phe	Val	Arg	Asp	Pro	Lys	Thr	Ser	Leu	Asp
					645					650					655	
	Ile	Asn	Lys	Thr	Arg	Gln	Ile	Ala	Gln	Glu	Ile	Ile	Lys	Gly	Met	Gly
				660					665					670		
	Tyr	Leu	His	Ala	Lys	Gly	Ile	Val	His	Lys	Asp	Leu	Lys	Ser	Lys	Asn
15			675					680					685			
	Val	Phe	Tyr	Asp	Asn	Gly	Lys	Val	Val	Ile	Thr	Asp	Phe	Gly	Leu	Phe
		690					695					700				
	Gly	Ile	ser	Gly	Val	Val	Arg	Glu	Glu	Arg	Arg	Glu	Asn	Gln	Leu	Lys
	705					710					715					720
20	Leu	Ser	His	Asp	Trp	Leu	Суѕ	Tyr	Leu	Ala	Pro	Glu	Ile	Val	Arg	Glu
					725					730					735	
	Met	Ile	Pro	Gly	Arg	Asp	Glu	Asp	Gln	Leu	Pro	Phe	Ser	Lys	Ala	Ala
				740					745					750		
	Asp	Val	_	Ala	Phe	Gly	Thr		Trp	Tyr	Glu	Leu		Ala	Arg	Asp
25			755	_				760					765			
	Trp		Phe	Lys	His	Gln		Ala	Glu	Ala	Leu		Trp	Gln	Ile	Gly
		770			-	_	775		_		_	780	_			_
		Gly	Glu	Gly	Val	_	Arg	Val	Leu	Ala		Val	Ser	Leu	СΙΆ	
	785		~1	~-		790			_		795		_		-1-	800
30	Glu	Vai	GIY	GIU	Ile	ren	Ser	Ala	Cys	_	ATA	Phe	Asp	Leu		GIU
			0	mb -	805	T	T	V	>	810	¥	01	3	T	815	T
	Arg	Pro	ser		Ser	Leu	Leu	mec	_	met	ren	GIU	Arg		PIO	Lys
	•		3	820	¥	C	***	Door	825	ui.	Dho	m	T	830	21-	200
25	rea	ASN	_	arg	Leu	ser	HIS		GIA	HIS	Pne	HP	_	Ser	ATG	ASP
35	*1 -	•	835	0	T	17- 1		840	.	nh n	C1	>	845 Dho	01. .	7	C1
	TTÉ		Ser	ser	Lys	Agi		PIO	Arg	Pne	GIU	_	rne	GTA	rea	GIY
	m1-	850	01	C	01	.	855	T				860				
		ьеп	GIU	ser	Gly		Pro	ьуs	met							
40	865					870										
40	10)															
	(2) INFO				-			~ .								
	(1)	_			ARAC:				_							
	•				: 284			Jalr:	>							
45					nucle			1								
45		(C)	571	(IVIA)	EDNES	oo: (1000	т6								

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: AGAGCAGCGC TGCGCTCGGC CGCGTTGGGA GAGAAGAAGG AGGGCGGTGG CGGGGGTGAC 60 GCGGCTATCG CGGAGGGAGG TGCAGGGGCC GCGCCCAGCC GGACACTGCA GCAGTGCGGG 120 CAGCTGCAGA AGCTCATCGA CATCTCCATC GGCAGCCTGC GCGGGCTGCG CACCAAGTGC 180 GTGGTGTCCA ACGACCTCAC CCAGCAGGAG ATACGGACCC TGGAGGCGAA GCTGGTCCGT 240 TACATTTGTA AGCAGAGGCA GTGCAAGCTG AGCGTGGCTC CCGGTGAGAG GACCCCAGAG 300 CTCAACAGCT ACCCCCGCTT CAGCGACTGG CTGTACACTT TCAACGTGAG GCCGGAGGTG 360 GTGCAGGAGA TCCCCCGAGA CCTCACGCTG GATGCCCTGC TGGAGATGAA TGAGGCCAAG 420 10 GTGAAGGAGA CGCTGCGGCG CTGTGGGGCC AGCGGGGATG AGTGTGGCCG TCTGCAGTAT 480 GCCCTCACCT GCCTGCGGAA GGTGACAGGC CTGGGAGGGG AGCACAAGGA GGACTCCAGT 540 TGGAGTTCAT TGGATGCGCG GCGGGAAAGT GGCTCAGGGC CTTCCACGGA CACCCTCTCA 600 GCAGCCAGCC TGCCTGGCC CCCAGGGAGC TCCCAGCTGG GCAGAGCAGG CAACAGCGCC 660 CAGGGCCCAC GCTCCATCTC CGTGTCAGCT CTTCCCGCCT CAGACTCCCC CACCCCCAGC 720 TTCAGTGAGG GCCTCTCAGA CACCTGTATT CCCCTGCACG CCAGCGGCCG GCTGACCCCC 15 780 CGTGCCCTGC ACAGCTTCAT CACCCCGCCC ACCACACCCC AGCTGCGACG GCACACCAAG 840 CTGAAGCCAC CACGGACGCC CCCCCCACCC AGCCGCAAGG TCTTCCAGCT GCTGCCCAGC 900 TTCCCCACAC TCACCCGGAG CAAGTCCCAT GAGTCTCAGC TGGGGAACCG CATTGATGAC 960 GTCTCCTCGA TGAGGTTTGA TCTCTCGCAT GGATCCCCAC AGATGGTACG GAGGGATATC 1020 GGGCTGTCGG TGACGCACAG GTTCTCCACC AAGTCCTGGC TGTCGCAGGT CTGCCACGTG 20 1080 TGCCAGAAGA GCATGATATT TGGAGTGAAG TGCAAGCATT GCAGGTTGAA GTGTCACAAC 1140 AAATGTACCA AAGAAGCCCC TGCCTGTAGA ATATCCTTCC TGCCACTAAC TCGGCTTCGG 1200 AGGACAGAAT CTGTCCCCTC GGACATCAAC AACCCGGTGG ACAGAGCAGC CGAACCCCAT 1260 TTTGGAACCC TCCCCAAAGC ACTGACAAAG AAGGAGCACC CTCCGGCCAT GAATCACCTG 1320 25 GACTCCAGCA GCAACCCTTC CTCCACCACC TCCTCCACAC CCTCCTCACC GGCGCCCTTC 1380 CCGACATCAT CCAACCCATC CAGCGCCACC ACGCCCCCCA ACCCCTCACC TGGCCAGCGG 1440 GACAGCAGGT TCAACTTCCC AGCTGCCTAC TTCATTCATC ATAGACAGCA GTTTATCTTT 1500 CCAGACATTT CAGCCTTTGC ACACGCAGCC CCGCTCCCTG AAGCTGCCGA CGGTACCCGG 1560 CTCGATGACC AGCCGAAAGC AGATGTGTTG GAAGCTCACG AAGCGGAGGC TGAGGAGCCA 1620 30 GAGGCTGGCA AGTCAGAGGC AGAAGACGAT GAGGACGAGG TGGACGACTT GCCGAGCTCT 1680 CGCCGGCCCT GGCGGGCCC CATCTCTCGC AAGGCCAGCC AGACCAGCGT GTACCTGCAG 1740 GAGTGGGACA TCCCCTTCGA GCAGGTAGAG CTGGGCGAGC CCATCGGGCA GGGCCGCTGG 1800 GGCCGGTTGC ACCGCGGCCG CTGGCATGGC GAGGTGGCCA TTCGCCTGCT GGAGATGGAC 1860 GGCCACAACC AGGACCACCT GAAGCTCTTC AAGAAAGAGG TGATGAACTA CCGGCAGACG 1920 35 CGGCATGAGA ACGTGGTGCT CTTCATGGGG GCCTGCATGA ACCCGCCCCA CCTGGCCATT 1980 ATCACCAGCT TCTGCAAGGG GCGGACGTTG CACTCGTTTG TGAGGGACCC CAAGACGTCT 2040 CTGGACATCA ACAAGACGAG GCAAATCGCT CAGGAGATCA TCAAGGGCAT GGGATATCTT 2100 CATGCCAAGG GCATCGTACA CAAAGATCTC AAATCTAAGA ACGTCTTCTA TGACAACGGC 2160 AAGGTGGTCA TCACAGACTT CGGGCTGTTT GGGATCTCAG GCGTGGTCCG AGAGGGACGG 2220 40 CGTGAGAACC AGCTAAAGCT GTCCCACGAC TGGCTGTGCT ATCTGGCCCC TGAGATTGTA 2280 CGCGAGATGA CCCCCGGGAA GGACGAGGAT CAGCTGCCAT TCTCCAAAGC TGCTGATGTC 2340 TATGCATTTG GGACTGTTTG GTATGAGCTG CAAGCAAGAG ACTGGCCCTT GAAGAACCAG 2400 GCTGCAGAGG CATCCATCTG GCAGATTGGA AGCGGGGAAG GAATGAAGCG TGTCCTGACT 2460 TCTGTCAGCT TGGGGAAGGA AGTCAGTGAG ATCCTGTCGG CCTGCTGGGC TTTCGACCTG 2520 CAGGAGAGAC CCAGCTTCAG CCTGCTGATG GACATGCTGG AGAAACTTCC CAAGCTGAAC 45 2580

	CGGCGGCTC	T C	CAC	CTGG	ACA	CTTC	TGG	AAGI	CAGO	TG A	GTTC	TAGO	C C	rGGC1	GCCI	•	2640
	TGCATGCAG	CC AC	GGGG	CTTTC	TTC	CTCC	AAT	TCA	CAAC	TC A	GCAC	CGTC	A C	TCTC	CTA	7	2700
	AATGCAAA	AT G	GATO	CGGG	CAC	MAT	CCA	GGGG	SATGO	CA C	CTCI	GCTC	C TO	CAG	CGTC	:	2760
	TCTCTCGAC	GG CI	'ACT'	rctti	TGC	TTTC	TTT	TAA	AAACT	rgg c	CCTC	TGCC	C TO	TCC	CGTC	3	2820
	GCCTGCATA	AT GO	CCA	AGCCG	GAA	TTC											2846
5																	
	(2) INFO	RMATI	ON I	FOR S	EQ I	D NC	:8:										
	(i)	SEQU	JENCI	E CHA	RACI	ERIS	STICS	S:									
		(A)	LEI	NGTH :	875	ami	ino a	cids	5								
		(B)	TY	PE: a	mino	aci	d										
10		(C)	STI	RANDE	EDNES	SS: r	ot r	elev	zan t								
		(D)	TO	POLOG	Y: r	ot 1	celev	rant									
	(ii)	MOL	ECULI	E TYE	E: p	pepti	ide										
				E DES													
	Arg	Ala	Ala	Leu	Arg	Ser	Ala	Ala	Leu	Gly	Glu	Lys	Lys	Glu	Gly	Gly	
15	1				5					10					15		
	Gly	Gly	Gly	Asp	Ala	Ala	Ile	Ala	Glu	Gly	Gly	Ala	Gly	Ala	Ala	Ala	
				20					25					30			
	Ser	Arg	Thr	Leu	Gln	Gln	Суѕ		Gln	Leu	Gln	Lys		Ile	Asp	Ile	
			35					40					45		_	_	
20	Ser		Gly	Ser	Leu	Arg		Leu	Arg	Thr	Lys		Val	Val	Ser	Asn	
		50					55			_		60	_		••- 1		
	-	Leu	Thr	Gln	Gln		Ile	Arg	Thr	Leu		ATA	гуs	Leu	vai	80	
	65		_		~ 1	70	- 10	G		T 011	75 50=	1107	21-	Dro	Clv		
	Tyr	IIe	Cys	Lys		Arg	GIN	Cys	ьуs	90	Ser	Vai	MIG	PLO	95	Giu	
25	.	m>	D	Glu	85 T. S.	N an	cor	The same	Pro		Pho	Ser	Aen	חדים		Tvr	
	Arg	1111	PIO	100	Deu	ASII	Ser	171	105	n. g		501		110		-,-	
	መከተ	Dhe	Δen	Val	Arn	Pro	Glu	Val		Gln	Glu	Ile	Pro		Asp	Leu	
	1111	riic	115		111. g	110	010	120		•••			125		-		
30	Thr	Leu		Ala	Leu	Leu	Glu		Asn	G1u	Ala	Lys		Lys	Glu	Thr	
50	••••	130					135					140					
	Leu			Суз	Gly	Ala		Gly	Asp	Glu	Cys	Gly	Arg	Leu	Gln	Tyr	
	145			-							155					160	
			Thr	Cys	Leu	Arg	Lys	Val	Thr	Gly	Leu	Gly	Gly	Glu	His	Lys	
35					165					170					175		
	Glu	Asp	Ser	Ser	Trp	Ser	Ser	Leu	Asp	Ala	Arg	Arg	Glu	Ser	Gly	Ser	
				180					185					190			
	G1y	Pro	Ser	Thr	Asp	Thr	Leu	Ser	Ala	Ala	Ser	Leu	Pro	Trp	Pro	Pro	
			195	•				200					205				
40	Gly	Ser	Ser	Gln	Leu	Gly	Arg	Ala	Gly	Asn	Ser	Ala	Gln	Gly	Pro	Arg	
		210					215					220					
	Ser	: Ile	Ser	Val	Ser	Ala	Leu	Pro	Ala	Ser	qzA	Ser	Pro	Thr	Pro	Ser	
	225					230					235					240	
	Ph€	e Ser	Glu	ı Gly	Leu	Ser	Asp	Thr	Cys	Ile	Pro	Leu	His	Ala			•
45					245					250					255		

	Arg	Leu	Thr	Pro	Arg										Thr	Thr
				260						,					-	
	Pro	Gln		Arg	Arg	His	Thr		Leu	Lys	Pro	Pro		Thr	Pro	Pro
			275					280					285	_		_
	Pro	Pro	Ser	Arg	Lys	Val		Gln	Leu	Leu	Pro		Phe	Pro	Thr	Leu
5		290					295			_		300	_		_	_
		Arg	Ser	Lys	Ser		Glu	Ser	Gln	Leu		Asn	Arg	He	Asp	
	305					310		_	_		315	_	_			320
	Val	Ser	Ser	Met		Phe	Asp	Leu	Ser		Gly	Ser	Pro	Gin	Met	vaı
10	.	3		-1 -	325		C	110.7	mh	330	.	nt-	Co=	mb	335	C
10	Arg	Arg	Asp		GIA	Leu	Ser	vai	345	HIS	Arg	rne	Ser	350	Lys	261
	M	7 011	C	340	**- 1	~	ui.	Wa I		Cl-	1.40	C^~	Mor		Phe	C114
	пр	rea	355	GIN	vai	Cys	птэ	360	Cys	GIII	цуs	SET	365	TIE	rne	GIY
	น า 1	Lve		7.46	ui c	Cvc) ra		Lve	Cve	Hic	λen		Cve	Thr	Tare
15	Vai	370	Cys	цуз	urs	Cys	375	Dea	шуз	Cys		380	ш	cys	****	273
•.5	Glu		Pro	Δla	Cvs	Ara		Ser	Phe	Leu	Pro		Thr	Ara	Leu	Ara
	385				-,-	390					395					400
		Thr	Glu	Ser	Val		Ser	Asp	Ile	Asn	Asn	Pro	Val	Asp	Arg	Ala
	·				405			-		410				_	415	
20	Ala	Glu	Pro	His	Phe	Gly	Thr	Leu	Pro	Lys	Ala	Leu	Thr	Lys	Lys	Glu
				420					425					430		
	His	Pro	Pro	Ala	Met	Asn	His	Leu	Asp	Ser	Ser	Ser	Asn	Pro	Ser	Ser
			435					440					445			
	Thr	Thr	Ser	Ser	Thr	Pro	Ser	Ser	Pro	Ala	Pro	Phe	Pro	Thr	Ser	Ser
25		450					455					460				
	Asn	Pro	Ser	Ser	Ala	Thr	Thr	Pro	Pro	Asn	Pro	Ser	Pro	Gly	Gln	Arg
	465					470					475					480
	Asp	Ser	Arg	Phe		Phe	Pro	Ala	Ala	-	Phe	Ile	His	His	Arg	Gln
			_		485					490					495	
30	Gln	Phe	Ile		Pro	Asp	Ile	Ser		Phe	Ala	His	Ala		Pro	Leu
	Duna	G1		500	.	C1	mb	N	505			61 -	D	510	21-	.
	PIO	GIU	515	ATA	ASD	GIĀ	TILL	520			=		525	Lys	Ala	ASD
	Val	Len		λla	Wie	Glu	Δla			Glu				A1=	Gly	Lvc
35	vai	530	GIU	ALG		GIU	535	GIU	AIG	Giu	GIU	540	O1u	AIG	Gry	دوي
	Ser		Ala	Glu	Asp	Asp		Asp	Glu	Val	Asp		Leu	Pro	Ser	Ser
	545					550					555					560
		Arg	Pro	Trp	Arg		Pro	Ile	Ser	Arg		Ala	Ser	Gln	Thr	
	_				565					570					575	
40	Val	Туг	Leu	Gln	Glu	Trp	Asp	Ile	Pro	Phe	Glu	Gln	Val	Glu	Leu	Gly
				580					585					590		
	Glu	Pro	Ile	Gly	Gln	Gly	Arg	Trp	Gly	Arg	Val	His	Arg	Gly	Arg	Trp
			595					600					605			
	His	Gly	Glu	Val	Ala	Ile	Arg	Leu	Leu	Glu	Met	Asp	Gly	His	Asn	Gln
45		610					615					620				

		Asp	His	Leu	Lys	Leu	Phe	Lys	Lys	Glu	Val	Met	Asn	Tyr	Arg	Gln	Thr	
		625			•	•	630					635					640	
		Arg	His	Glu	Asn	Val	Val	Leu	Phe	Met		Ala	Суѕ	Met	Asn	Pro	Pro	
						645					650					655		
		His	Leu	Ala	Ile	Ile	Thr	Ser	Phe		Lys	Gly	Arg	Thr		His	Ser	
5					660					665					670			
		Phe	Val	_	Asp	Pro	Lys	Thr		Leu	Asp	Ile	Asn	_	Thr	Arg	Gln	
				675				_	680		~ 1	_	_	685		_		
		Ile	Ala 690	Gln	Glu	Ile	ITE	Lys 695	GIY	Met	GIĀ	TYT	700	His	Ala	Lys	GIY	
10		Tle		Hic	Lys	Δsn	ī.eu		Ser	LVS	Asn	Val		ጥረታ	Aen	Asn	Glv	
10		705	V4.1	11,1.	2,0	ımp	710	_,		_,_		715		-11-	, den	11011	720	
			Val	Val	Ile	Thr		Phe	Gly	Leu	Phe		Ile	Ser	Gly	Val		
		_				725	_		_		730	_			_	735		
		Arg	Glu	Gly	Arg	Arg	Glu	Asn	Gln	Leu	Lys	Leu	Ser	His	Asp	Trp	Leu	
15					740					745					750			
		Cys	Tyr	Leu	Ala	Pro	Glu	Ile	Val	Arg	Glu	Met	Thr	Pro	Gly	Lys	Asp	
				755					760					765				
		Glu	-	Gln	Leu	Pro	Phe		Lys	Ala	Ala	Asp		Тут	Ala	Phe	Gly	
			770	_	_	•	_	775		_	•		780	_	_		~1	
20			Val	Trp	Tyr	Glu		Gin	Ala	Arg	Asp	795	Pro	Leu	Lys	Asn	800	
		785	פות	Glu	Ala	Cor	790	ጥተጉ	Gln	Tle	Glv		Glv	Glu	Glv	Met		
		Ald	ATA	GIU	AId	805	116	пр	Gin	776	810	Jer	Gry	GLU	Gry	815	Lys	
		Arg	Val	Leu	Thr		Val	Ser	Leu	Gly		Glu	Val	Ser	Glu		Leu	
25					820					825	_				830			
		Ser	Ala	Суз	Trp	Ala	Phe	Asp	Leu	Gln	Glu	Arg	Pro	Ser	Phe	Ser	Leu	
				835					840					845				
		Leu	Met	Asp	Met	Leu	Glu	Lys	Leu	Pro	Lys	Leu	Asn	Arg	Arg	Leu	Ser	
			850					855					860					
30			Pro	Gly	His	Phe	-	Lys	Ser	Ala	Glu							
		865					870					875						
	(2)	TNEO	DMAጥ	TON 1	FOR :	SEO '	או מד	n . q .										
	(2)				E CH				S:									
35		(-,	_		NGTH					S								
					PE: :				-									
			(C) ST	RAND	EDNE:	SS: (doub.	le									
			(D) TO	POLO	GY:	line	ar										
					E TY													
40					E DE													
	GAAT																	60
					TTCA													120
					ACGC													180
					CGGA													240
45	GTCT	CCTC	GA T	GAGG	tttĠ	A TC	TUTC	CCAT	GGA	TUCC	LML	uon I.	GG LA	ن ب	MGGG.	MIAT	Ų.	300

```
GGGCTGTCGG TGACGCACAG GTTCTCCACC AAGTCCTGGC TGTCGCAGGT CTGCCACGTG
                                                                             360
      TGCCAGAAGA GCATGATATT TGGAGTGAAG TGCAAGCATT GCAGGTTGAA GTGTCACAAC
                                                                             420
      AAATGTACCA AAGAAGCCCC TGCCTGTAGA ATATCCTTCC TGCCACTAAC TCGGCTTCGG
                                                                             480
      AGGACAGAAT CTGTCCCCTC GGACATCAAC AACCCGGTGG ACAGAGCAGC CGAACCCCAT
                                                                            540
      TTTGGAACCC TCCCCAAAGC ACTGACAAAG AAGGAGCACC CTCCGGCCAT GAATCACCTG
                                                                             600
      GACTCCAGCA GCAACCCTTC CTCCACCACC TCCTCCACAC CCTCCTCACC GGCGCCCTTC
                                                                             660
5
      CCGACATCAT CCAACCCATC CAGCGCCACC ACGCCCCCA ACCCCTCACC TGGCCAGCGG
                                                                            720
      GACAGCAGGT TCAACTTCCC AGCTGCCTAC TTCATTCATC ATAGACAGCA GTTTATCTTT
                                                                            780
      CCAGACATTT CAGCCTTTGC ACACGCAGCC CCGCTCCCTG AAGCTGCCGA CGGTACCCGG
                                                                            840
                                                                            900
      CTCGATGACC AGCCGAAAGC AGATGTGTTG GAAGCTCACG AAGCGGAGGC TGAGGAGCCA
                                                                            960
      GAGGCTGGCA AGTCAGAGGC AGAAGACGAT GAGGACGAGG TGGACGACTT GCCGAGCTCT
10
      CGCCGGCCCT GGCGGGGCCC CATCTCTCGC AAGGCCAGCC AGACCAGCGT GTACCTGCAG
                                                                            1020
      GAGTGGGACA TCCCCTTCGA GCAGGTAGAG CTGGGCGAGC CCATCGGGCA GGGCCGCTGG
                                                                            1080
      GGCCGGGTGC ACCGCGGCCG CTGGCATGGC GAGGTGGCCA TTCGCCTGCT GGAGATGGAC
      GCCCACAACC AGGACCACCT GAAGCTCTTC AAGAAAGAGG TGATGAACTA CCGGCAGACG
                                                                            1200
15
      CGGCATGAGA ACGTGGTGCT CTTCATGGGG GCCTGCATGA ACCCGCCCCA CCTGGCCATT
                                                                            1260
      ATCACCAGCT TCTGCAAGGG GCGGACGTTG CACTCGTTTG TGAGGGACCC CAAGACGTCT
                                                                            1320
      CTGGACATCA ACAAGACGAG GCAAATCGCT CAGGAGATCA TCAAGGGCAT GGGATATCTT
                                                                           1380
      CATGCCAAGG GCATCGTACA CAAAGATCTC AAATCTAAGA ACGTCTTCTA TGACAACGGC
                                                                            1440
      AAGGTGGTCA TCACAGACTT CGGGCTGTTT GGGATCTCAG GCGTGGTCCG AGAGGGACGG
                                                                            1500
      CGTGAGAACC AGCTAAAGCT GTCCCACGAC TGGCTGTGCT ATCTGGCCCC TGAGATTGTA
                                                                            1560
20
      CGCGAGATGA CCCCCGGGAA GGACGAGGAT CAGCTGCCAT TCTCCAAAGC TGCTGATGTC
                                                                            1620
      TATGCATTTG GGACTGTTTG GTATGAGCTG CAAGCAAGAG ACTGGCCCTT GAAGAACCAG
                                                                            1680
      GCTGCAGAGG CATCCATCTG GCAGATTGGA AGCGGGGAAG GAATGAAGCG TGTCCTGACT
                                                                            1740
      TCTGTCAGCT TGGGGAAGGA AGTCAGTGAG ATCCTGTCGG CCTGCTGGGC TTTCGACCTG
                                                                            1800
      CAGGAGAGAC CCAGCTTCAG CCTGCTGATG GACATGCTGG AGAAACTTCC CAAGCTGAAC
                                                                            1860
25
      CGGCGGCTCT CCCACCCTGG ACACTTCTGG AAGTCAGCTG AGTTGTAGGC CTGGCTGCCT
                                                                            1920
      TGCATGCACC AGGGGCTTTC TTCCTCCTAA TCAACAACTC AGCACCGTGA CTTCTGCTAA
                                                                            1980
      AATGCAAAAT GAGATGCGGG CACTAACCCA GGGGATGCCA CCTCTGCTGC TCCAGTCGTC
                                                                            2040
      TCTCTCGAGG CTACTTCTTT TGCTTTGTTT TAAAAACTGG CCCTCTGCCC TCTCCACGTG
                                                                            2100
30
      GCCTGCATAT GCCCAAGCCG GAATTC
                                                                            2126
      (2) INFORMATION FOR SEQ ID NO:10:
           (i) SEQUENCE CHARACTERISTICS:
```

- (A) LENGTH: 635 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: peptide

35

40

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
- Glu Phe Arg His Thr Ser Ala Leu Thr Gln His Thr Ala His Thr Gln

1 5 10 15

His Thr Ser Ala His Thr Gln His Ser Phe Ile Thr Pro Pro Thr Thr

20 25 30

Pro Gln Leu Arg Arg His Thr Lys Leu Lys Pro Pro Arg Thr Pro Pro

45 35 40 4

and the second of the respective

	Pro	Pro	Ser	Arg	Lys	Val	Phe	\mathbf{Gln}_{i}	Leu	Leu	Pro	Ser	Phe	Pro	Thr	Leu
		50		• • •			55	, . :) : i	1		60				12.71
	Thr	Arg	Ser	Lys	Ser	His	Glu	Ser	Gln	Leu	Gly	Asn	Arg	Ile	Asp	Asp
	65					70					75					80
	Val	Ser	Ser	Met	Arg	Phe	Asp	Leu	Ser	His	Gly	Ser	Pro	Gln	Met	Val
5					85					90					95	
	Arg	Arg	Asp	Ile	Gly	Leu	Ser	Val	Thr	His	Arg	Phe	Ser	Thr	Lys	Ser
				100					105					110		
	Trp	Leu	Ser	Gln	Val	Суѕ	His	Val	Суѕ	Gln	Lys	Ser	Met	Ile	Phe	GJĀ
			115					120					125			
10	Val	Lys	Cys	Lys	His	Cys	Arg	Leu	Lys	Суѕ	His	Asn	Lys	Суѕ	Tar	Lys
		130					135					140				
	Glu	Ala	Pro	Ala	Cys	Arg	Ile	Ser	Phe	Leu	Pro	Leu	Thr	Arg	Leu	
	145					150					155					160
	Arg	Thr	Glu	Ser	Val	Pro	Ser	Asp	Ile	Asn	Asn	Pro	Val	Asp	Arg	Ala
15					165					170					175	
	Ala	Glu	Pro	His	Phe	Gly	Thr	Leu	Pro	Lys	Ala	Leu	Thr		Lys	Glu
				180					185					190	_	_
	His	Pro	Pro	Ala	Met	Asn	His		Asp	Ser	Ser	Ser		Pro	Ser	ser
			195					200					205		_	
20	Thr	Thr	Ser	Ser	Thr	Pro		Ser	Pro	Ala	Pro		Pro	Thr	ser	Ser
		210					215		_	_	_	220	_	-1	01 -	.
		Pro	Ser	Ser	Ala		Thr	Pro	Pro	Asn		Ser	Pro	GIY	GIn	Arg
	225					230					235	*1 -	***	***	A ===	240 Cln
	Asp	Ser	Arg	Phe		Phe	Pro	ALA	ALA	Tyr	Pne	11e	HIS	HIS	255	GIII
25				_,	245	•	-1 -	a	N3 -	250	33.5	uie	. הוא	בוג		ī.en
	Gin	Phe	TTE		PLO	ASP	He	Ser	265	FILE	WIG	urs	W10	270	110	Leu
	_	_,		260		01	mh	.) cn	λcn	Cln	Dro		Δla	Åsn
	Pro	GIu		Ala	Asp	GIĀ	THE	280	ren	MSD	ASP	GIII	285	цуз	7.10	Asp
			275		F11.6 m	C1	.1.		81 5	Glu	Glu	Dro		Δla	Glv	Lys
30	Vai		GIU	Ala	HIS	GIU	295	GIU	VTC	GIU	Giu	300	Giu	AIG	011	2,5
	o	290	81 a	Glu	Acn	Acn		Δen	Glu	Va 1	Asn		Leu	Pro	Ser	Ser
		GIU	AIA	Gru	nap	310	GLU	nap	024	• • • • • • • • • • • • • • • • • • • •	315	шр		•		320
	305	Ara	Pro	מדים	Ara		Pro	Tle	Ser	Ara		Ala	Ser	Gln	Thr	Ser
25	Ary	MIG		**₽	325	GI,				330	3				335	
35	Va1	ጥኒታዮ	t.eu	Gln		ጥነገን	Asp	Ile	Pro		Glu	Gln	Val	Glu	Leu	Gly
	Val	131	200	340					345			-		350		
	Glu	Pro	Tle			Glv	Ara	Tro			Val	His	Arg	Gly	Arg	Trp
	GIU	110	355				5	360					365			
40	Hie	Glv			Ala	Ile	Ara			Glu	Met	Asp	Gly	His	Asn	Gln
70		370					375					380				
	Aen			Lvs	Leu	Phe			Glu	Val	Met	Asn	Tyr	Arg	Gln	Thr
	385			-,,		390					395		_			400
			Glu	Asn	Val			Phe	Met	: Gly	Ala	Cys	Met	Asn	Pro	Pro
45	9				405					410		=			415	

	His	Leu	Ala	Ile	Ile	Thr	Ser	Phe	Cys	Lys	Gly	Arg	Thr	Leu	His	Ser
												٠.		430		
	Phe	Val	Arg	Asp	Pro	Lys	Thr	Ser	Leu	Asp	Ile	Asn	Lys	Thr	Arg	Gln
			435					440					445			
	Ile	Ala	Gln	Glu	Ile	Ile	Lys	Gly	Met	Gly	Tyr	Leu	His	Ala	Lys	Gly
5		450					455					460				
	Ile	Val	His	Lys	Asp	Leu	Lys	Ser	Lys	Asn	Val	Phe	Tyr	Asp	Asn	Gly
	465					470					475					480
	Lys	Val	Val	Ile	Thr	Asp	Phe	Gly	Leu	Phe	Gly	Ile	Ser	Gly	Val	Val
					485					490					495	
10	Arg	Glu	Gly	Arg	Arg	Glu	Asn	Gln	Leu	Lys	Leu	Ser	His	Asp	Trp	Leu
				500					505					510		
	Cys	Tyr	Leu	Ala	Pro	Glu	Ile	Val	Arg	Glu	Met	Thr	Pro	Gly	Lys	Asp
			515					520					525			
	Glu	Asp	Gln	Leu	Pro	Phe	Ser	Lys	Ala	Ala	Asp	Val	Tyr	Ala	Phe	Gly
15		530					535					540				
	Thr	Val	Trp	Tyr	Glu	Leu	Gln	Ala	Arg	Asp	Trp	Pro	Leu	Lys	Asn	Gln
	545					550					555					560
	Ala	Ala	Glu	Ala	Ser	Ile	Trp	Gln	Ile	Gly	Ser	Gly	Glu	Gly	Met	Lys
					565					570					575	
20	Arg	Val	Leu	Thr	Ser	Val	Ser	Leu	Gly	Lys	Glu	Val	Ser	Glu	Ile	Leu
				580					585					590		
	Ser	Ala	Cys	Trp	Ala	Phe	Asp	Leu	Gln	Glu	Arg	Pro		Phe	Ser	Leu
			595					600					605			
	Leu	Met	Asp	Met	Leu	Glu	Lys	Leu	Pro	Lys	Leu	Asn	Arg	Arg	Leu	Ser
25		610					615					620				
	His	Pro	Gly	His	Phe		Lys	Ser	Ala	Glu						
	625					630					635					
	(2) INFO															
30	(i)						STIC		_							
							ino a	acia	S							
				PE: 6				1								
							not :		vant							
25	,	•-	•				rele	vant								
35				E TY			N: S	PO T	ח אים	.11.						
											Tla	t.au	Δla	Glu	Glu	Tla
		MIG	гуя	261	5	Giu	Giu	WOII	пр	10	716	beu	AIG	GIU	15	110
	1	T10	C111	Dro		Tle	Glyr	Sar	Gly		Pho	Glv	Thr	Val	Tyr	Δνα
40	reu	116	GLY	20	ALG	116	GLY	261	25	561	1110	O. y	1.11	30	• y 4	rar y
40	315	rri o	/h		Clv	Pro	Val	Dro		Lars	ጥኮዮ	T.en	Aen		Lys	Thr
	Ala	ពរន		nis	GTĀ	210	val	40	AGT	пÃр	TIT	neu.	45	AGIT	₩Y S	****
		C	35	۵ ٦-	C1-	T 011	01-		Dha	T	٧	C1		۸1 -	Mor	1.0
	Pro		PTO	WIG	GTII	₽€U	55	uld	FIIG	ьys	noll	60	vaı	urq	Met	eu
15	†	50	mb	X	uie	Circ		T1.	Len	Tlo	Dho		Gly	Care	Va 1	Sar

	65					70					75					80
	Lys	Pro	Ser	Leu	Ala	Ile	Val	Thr	Gln	Trp	Суѕ	Glu	Gly	Ser		Leu
					85					90					95	
	Tyr	Lys	His		His	Val	Ser	Glu		Lys	Phe	Lys	Leu		Thr	Leu
				100					105				•	110		_
5	Ile	Asp		Gly	Arg	Gln	Val		Gln	Gln	Met	Asp	-	Leu	His	Ala
			115					120					125			
	Lys	Asn	Ile	Ile	His	Arg		Leu	Lys	Ser	Asn		Ile	Phe	Leu	His
		130					135					140				
	Glu	Asp	Leu	Ser	Val	_	Ile	Gly	Asp	Phe	-	Leu	Ala	Thr	Ala	
10	145					150					155					160
	Thr	Arg	Trp	Ser	Gly	Glu	ГЛЗ	Gln	Ala		Gln	Pro	Thr	Gly		Ile
					165					170					175	
	Leu	Trp	Met	Ala	Pro	Glu	Val	Ile	_	Met	Gln	Glu	Leu	Asn	Pro	Tyr
				180					185					190		
15	Ser	Phe		Ser	Asp	Val	Tyr		Phe	Gly	Ile	Val		Tyr	Glu	Leu
			195					200					205		_	
	Leu	Ala	Glu	Cys	Leu	Pro	-	Gly	His	Ile	Ser		Lys	Asp	Gin	Ile
		210					215					220		_		1
	Leu	Phe	Met	Val	Gly		Gly	Leu	Leu	Arg		Asp	Met	Ser	Gln	
20	225					230					235					240
	Arg	Ser	Asp	Ala		Arg	His	Ser	Lys		Ile	Ala	Glu	Asp		He
					245					250		_	_	_	255	
	Lys	Tyr	Thr		Lys	Asp	Arg	Pro		Phe	Arg	Pro	Leu		Trp	Met
				260	_	_		_	265	•	-1			270		
25	Leu	Glu		Met	Leu	Arg	Thr		Pro	гÀз	TTE	HIS		Ser	Ala	Ser
		-	275	•		a 1	0	280	*	~1 ~	3	>	285	Dha	Lon	m-~
	Glu	Pro	ASII	ren	ınr	GIN		GIN	Leu	GIII	ASII	300	GIU	PHE	Leu	ıyı
	*	290 Pro	C	· D	7	mb	295	17-1	n an	Dho	λen		Dho	C1n	Dhe	Dhe
30		PIO	261	PIO	цуs	310	PIO	vai	ASII	FILE	315	NSII	FIIC	GIII	1116	320
30	305	202	A1 =	Gly	Acn	_					323					720
	GIA	Ser	AIG	GTÅ	325	116										
					323											
	(2) INFO	RMATT	ION I	FOR S	SEO I	D NO	0:12	:								
35		SEQU														
	, ,	_		VGTH					5							
				PE: a												
			-	RANDI				rele	vant							
				POLO												
40	(ii)															
	(xi)					_		EO II	D N O	:12:						
		Gln									Ile	Glu	Ala	Ser	Glu	Val
	1		9		5		-1-	- , -		10					15	
		Leu	Ser	Thr	-	Tle	Glv	Ser	Glv		Phe	Glv	Thr	Val		Lys
45	1100			20	9		1		25			•		30	•	•

44 .

				•												
	Cys	Lys	_	His	Gly	-				-						_
• •			35	,		•							_			
	Pro		Pro	Glu	Gln	Phe		Ala	Phe	Arg	Asn		Val	Ala	Val	Leu
		50					55					60				
	Arg	Lys	Thr	Arg	His	Val	Asn	Ile	Leu	Leu	Phe	Met	Gly	Tyr	Met	Thr
5	65					70					75					80
	Lys	Asp	Asn	Leu	Ala	Ile	Val	Thr	Gln	Trp	Cys	Glu	Gly	Ser	Ser	Leu
					85					90					95	
	Tyr	Lys	His	Leu	His	Val	Gln	Glu	Thr	Lys	Phe	Gln	Met	Phe	Gln	Leu
				100					105					110		
10	Ile	Asp	Ile	Ala	Arg	Gln	Thr	Ala	Gln	Gly	Met	Asp	Tyr	Leu	His	Ala
			115					120					125			
	Lys	Asn	Ile	Ile	His	Arg	Asp	Met	Lys	Ser	Asn	Asn	Ile	Phe	Leu	His
		130					135					140				
	Glu	Gly	Leu	Thr	Val	Lys	Ile	Gly	Asp	Phe	Gly	Leu	Ala	Thr	Val	Lys
15	145					150					155					160
	Ser	Arg	Trp	Ser	Gly	Ser	Gln	Gln	Val	Glu	Gln	Pro	Thr	Gly	Ser	Val
					165					170					175	
	Leu	Trp	Met	Ala	Pro	Glu	Val	Ile	Arg	Met	Gln	Asp	Asn	Asn	Pro	Phe
				180					185					190		
20	Ser	Phe	Gln	Ser	Asp	Val	Tyr	Ser	Tyr	Gly	Ile	Val	Leu	Tyr	Glu	Leu
			195					200					205			
	Met	Thr	Gly	Glu	Leu	Pro	Tyr	Ser	His	Ile	Asn	Asn	Arg	Asp	Gln	Ile
		210					215					220				
	Ile	Phe	Met	Val	Gly	Arg	Gly	Tyr	Ala	Ser	Pro	Asp	Leu	Ser	Lys	Leu
25	225					230					235					240
	Tyr	Lys	Asn	Cys	Pro	Lys	Ala	Met	Lys	Arg	Leu	Val	Ala	Asp	Сув	Val
					245					250					255	
	Lys	Lys	Val	Lys	Glu	Glu	Arg	Pro	Leu	Phe	Pro	Gln	Ile	Leu	Ser	Ser
				260					265					270		
30	Ile	Glu	Leu	Leu	Gln	His	Ser	Leu	Pro	Lys	Ile	Asn	Arg	Ser	Ala	Ser
			275					280					285			
	Glu	Pro	Ser	Leu	His	Arg	Ala	Ala	His	Thr	Glu	Asp	Ile	Asn	Ala	Cys
		290					295					300				
	Thr	Leu	Thr	Thr	Ser	Pro	Arg	Leu	Pro	Val	Phe					
35	305					310					315					

WHAT IS CLAIMED IS:

- An isolated kinase suppressor of ras (Ksr) protein.
- An isolated kinase suppressor of ras (Ksr) protein according to claim 1, wherein said protein is 2. mammalian.

3.

- An isolated kinase suppressor of ras (Ksr) protein according to claim 1, wherein said protein is human.
- An isolated nucleic acid encoding a kinase suppressor of ras (Ksr) according to claim 1. 4.

10

5

- An isolated nucleic acid encoding a kinase suppressor of ras (Ksr) according to claim 1, said nucleic 5. acid capable of hybridizing with SEQUENCE ID NO: 1, 3, 5, or 7 under low stringency conditions.
- An isolated nucleic acid having the sequence defined by or complementary or reverse 6. complementary to SEQUENCE ID NO:1, 3, 5 or 7, or a fragment thereof capable of hybridizing with a 15 nucleic acid having the sequence defined by SEQUENCE ID NO:1, 3, 5 or 7 under low stringency conditions.
- A nucleic acid according to claim 5, wherein said low stringency conditions 7. are defined by a hybridization buffer consisting essentially of 1% Bovine 20 Serum Albumin (BSA); 500 mM sodium phosphate (NaPO₄); 1mM EDTA; 7% SDS at a temperature of 42°C and a wash buffer consisting essentially of 2X SSC (600 mM NaCl; 60 mM Na Citrate); 0.1% SDS at 50°C.
- A nucleic acid according to claim 5, wherein said low stringency conditions 25 8. are defined by a hybridization buffer consisting essentially of 1% Bovine Serum Albumin (BSA); 500 mM sodium phosphate (NaPO4); 15% formamide; 1 mM EDTA; 7% SDS at a temperature of 50°C and a wash buffer consisting essentially of 1X SSC (300 mM NaCl; 30 mM Na Citrate); 0.1% SDS at 50°C.

30

35

A nucleic acid according to claim 5, wherein said low stringency conditions 9. are defined by a hybridization buffer consisting essentially of 1% Bovine Serum Albumin (BSA); 200 mM sodium phosphate (NaPO4); 15% formamide; 1mM EDTA; 7% SDS at a temperature of 50°C and a wash buffer consisting essentially of 0.5X SSC (150 mM NaCl; 15 mM Na Citrate); 0.1% SDS at 65°C.

10. A nucleic acid according to claim 6, wherein said low stringency conditions are defined by a hybridization buffer consisting essentially of 1% Bovine Serum Albumin (BSA); 500 mM sodium phosphate (NaPO₄); 1mM EDTA; 7% SDS at a temperature of 42°C and a wash buffer consisting essentially of 2X SSC (600 mM NaCl; 60 mM Na Citrate); 0.1% SDS at 50°C.

11. A nucleic acid according to claim 6, wherein said low stringency conditions are defined by a hybridization buffer consisting essentially of 1% Bovine Serum Albumin (BSA); 500 mM sodium phosphate (NaPO4); 15% formamide; 1 mM EDTA; 7% SDS at a temperature of 50°C and a wash buffer consisting essentially of 1X SSC (300 mM NaCl; 30 mM Na Citrate); 0.1% SDS at 50°C.

10

15

- 12. A nucleic acid according to claim 6, wherein said low stringency conditions are defined by a hybridization buffer consisting essentially of 1% Bovine

 Serum Albumin (BSA); 200 mM sodium phosphate (NaPO4); 15% formamide; 1mM EDTA;

 7% SDS at a temperature of 50°C and a wash buffer consisting essentially of

 0.5X SSC (150 mM NaCl; 15 mM Na Citrate); 0.1% SDS at 65°C.
- 13. A method of identifying lead compounds for a pharmacological agent useful in the diagnosis or treatment of disease, said method comprising the steps of:

forming a mixture comprising:

20

- a Ksr according to claim 1,
- a natural intracellular Ksr binding target, wherein said binding target is capable of specifically binding said Ksr, and
 - a candidate pharmacological agent;
- incubating said mixture under conditions whereby, but for the presence of said candidate pharmacological agent, said Ksr selectively binds said binding target at a first binding affinity;

detecting a second binding affinity of said Ksr to said binding target,

wherein a difference between said first and second binding affinity indicates that said candidate pharmacological agent is a lead compound for a pharmacological agent capable of modulating Ksr-dependent signal transduction.

30

25

- 14. A method according to claim 14, wherein said Ksr binding target comprises a 14-3-3 gene product.
- 15. A method according to claim 14, wherein said Ksr binding target comprises a Ksr protein.
- 35 16. A method of identifying lead compounds for a pharmacological agent useful in the diagnosis or

treatment of disease, said method comprising the steps of:

forming a mixture comprising:

5

10

15

20

- a Ksr according to claim 1,
- a substrate, wherein Ksr is capable of specifically phosphorylating said substrate, and

of a little of the contract of

a candidate pharmacological agent;

incubating said mixture under conditions whereby, but for the presence of said candidate pharmacological agent, said Ksr selectively phosphorylates said substrate at a first rate;

detecting a second rate of phosphorylation of said substrate by said Ksr,

wherein a difference between said first and second rate indicates that said candidate pharmacological agent is a lead compound for a pharmacological agent capable of modulating Ksr kinase activity.

- 17. A method according to claim 16 wherein said Ksr substrate comprises a 14-3-3 gene product...
- 18. A method according to claim 16 wherein said Ksr substrate comprises a Ksr protein.
- 19. A vector comprising a nucleic acid according to claim 5 operably linked to a transcription regulatory region not naturally lined to a Ksr-encoding gene.
- 20. A host cell comprising a vector according to claim 19.
- 21. A method of making a Ksr protein, said method comprising incubating a cell according to claim 20.
- 22. A recombinant isolated Ksr protein produced by a cell according to claim 20.
- 23. A recombinant isolated Ksr protein according to claim 22, wherein said cell is a mammalian cell, an avian cell, an insect cell, a fungal cell, an amphibian cell or a fish cell.