Question1

```
In [1]: # importing libraries
  import matplotlib.pyplot as plt
  import seaborn as sns
  import pandas as pd
  df = pd.read_csv('KCLT_data.csv')
  df
```

Out[1]:		date	actual_mean_temp	actual_min_temp	actual_max_temp	average_min_temp	average_max_temp
	0	2014- 7-1	81	70	91	67	89
	1	2014- 7-2	85	74	95	68	89
	2	2014- 7-3	82	71	93	68	89
	3	2014- 7-4	75	64	86	68	89
	4	2014- 7-5	72	60	84	68	89
	360	2015- 6-26	85	70	100	67	88
	361	2015- 6-27	82	71	92	67	88
	362	2015- 6-28	76	66	85	67	88
	363	2015- 6-29	73	59	87	67	88
	364	2015- 6-30	83	71	94	67	89
	365 n	ows × 1	13 columns				
	4						•

```
In [2]: # Plotting bar graph
# This is a stacked bar chart, it shoes different groups together.
# Here it is showing min value with blue and max value with red
mean_min = df['actual_mean_temp'].min()
mean_max = df['actual_min_temp'].max()
min_min = df['actual_min_temp'].max()
max_min = df['actual_max_temp'].min()
max_max = df['actual_max_temp'].max()
x = ['actual_mean_temp', 'actual_min_temp', 'actual_max_temp']
y1 = [mean_min, min_min, max_min]
y2 = [mean_max, min_max, max_max]
plt.bar(x, y1, color='b')
plt.bar(x, y2, bottom=y1, color='r')
plt.show()
```



```
In [3]: # Plotting histogram
hist = (df['date'] >= '2014-8-1') & (df['date'] <= '2014-8-31')
df = df.loc[hist]
df</pre>
```

Out[3]:		date	actual_mean_temp	actual_min_temp	actual_max_temp	average_min_temp	average_max_temp
	31	2014- 8-1	68	65	70	68	89
	32	2014- 8-2	69	65	72	68	89
	33	2014- 8-3	77	67	86	68	89
	40	2014- 8-10	70	67	73	68	88
	41	2014- 8-11	78	71	85	68	88
	42	2014- 8-12	81	72	89	68	88
	43	2014- 8-13	75	65	84	68	88
	44	2014- 8-14	71	59	83	68	88
	45	2014- 8-15	73	60	86	68	88
	46	2014- 8-16	77	68	86	68	88
	47	2014- 8-17	78	67	89	67	88
	48	2014- 8-18	81	71	90	67	88
	49	2014- 8-19	80	70	90	67	87
	50	2014- 8-20	79	67	91	67	87
	51	2014- 8-21	80	67	93	67	87
	52	2014- 8-22	83	70	95	67	87
	53	2014- 8-23	82	73	91	67	87
	54	2014- 8-24	74	66	81	67	87
	55	2014- 8-25	72	60	83	66	87
	56	2014- 8-26	72	60	84	66	87
	57	2014- 8-27	72	57	87	66	86
	58	2014- 8-28	77	61	92	66	86
	59	2014- 8-29	79	69	88	66	86
	60	2014- 8-30	79	68	90	66	86

```
    date
    actual_mean_temp
    actual_min_temp
    actual_max_temp
    average_min_temp
    average_max_temp

    61
    2014-
8-31
    83
    74
    91
    65
    86
```

```
In [15]: # Histogram is being plotted between actual_mean_temp and months of Aug 2014
# and march 2015
import datetime as dt
import time
df = df[['actual_mean_temp','date']]
df['date'] = pd.to_datetime(df['date'], format = '%Y-%m-%d')
final_df = df.loc[(df['date'] >= '2014-8-1') & (df['date'] <= '2014-8-31')]
plt.show()
plt.hist(df['actual_mean_temp'])</pre>
```

Out[15]: (array([2., 1., 4., 1., 2., 0., 5., 3., 4., 3.]), array([68., 69.5, 71., 72.5, 74., 75.5, 77., 78.5, 80., 81.5, 83.]), <BarContainer object of 10 artists>)

Question4

```
In [19]: # Boxplot is showing the quartiles of the dataset. Here x-axis denotes the data to be
# plotted and y-axis shows the frequency distribution
df = pd.read_csv('KCLT_data.csv')
boxplot = df.boxplot(column=['actual_mean_temp', 'actual_min_temp', 'actual_max_temp'])
```



```
In [20]: # Here correlation between actual_mean_temp and actual_min_temp is greater. Also both
# correlation are positive meaning both variables move in the same direction.
print(df["actual_mean_temp"].corr(df["actual_min_temp"]))
print(df["actual_mean_temp"].corr(df["actual_max_temp"]))
```

0.973738455753214
0.9731336995939672

Question6

```
In [21]: # Scatter plot shows how two variables relate to each other. Here it shows when
# actual_mean_temp increases actual_min_temp and actual_max_temp also increases
plt.scatter(df["actual_mean_temp"], df["actual_min_temp"])
plt.scatter(df["actual_mean_temp"], df["actual_max_temp"])
plt.show()
```


In [26]: # It is useful to look at the pair-wise relationships from different perspectives
because there is a little point of drawing a scatterplot of each
variable with itself, the diagonal shows histograms of each attribute.
from pandas.plotting import scatter_matrix
drop_data = df.drop(['record_min_temp_year','record_max_temp_year','actual_precipitation
df = drop_data
scatter_matrix(df,figsize=(13, 13))
plt.show()

