¿Es posible reconocer fusiones de galaxias usando mapas de velocidad en z~2?

Resultados preliminares de experimentos controlados con observaciones sintéticas

Juan Carlos Basto Pineda

jcbastop@correo.uis.edu.co

Cristian Rolando Carvajal Bohorquez

Juan Manuel Pacheco Arias

Marzo 16 de 2021

Simulaciones

Observaciones sintéticas

Observaciones

Observaciones IFU

Mapas de intensidad

Mapas de velocidad

Disp. de velocidades

Cómo funciona:

$$rac{\Delta \lambda}{\lambda_o} = rac{V_{los}}{c}$$

$$Lum = h\nu \cdot \eta_{\text{ions}}^2 \cdot \alpha_B \cdot \text{ smooth }^3$$

Proyección de las líneas de emisión en los canales

Suma de las contribuciones en luminosidad

Aplicaciones

The diversity of dwarf galaxy rotation curves

¿Es posible reconocer fusiones de galaxias usando mapas de velocidad en z~2?

En 1<z<3 ocurrió el pico en la historia cósmica de formación estelar

Mecanismos posibles de aprovisionamiento de gas:

Acreción de gas desde filamentos cósmicos Vs fusiones de galaxias

$$V_{los}(R,\psi) = V_0 + V_c(r)\sin(heta)\cos(\psi)$$

$$V_{los,n}(\psi) = A_o + \sum_{j=1} A_{j,n} \sin(j\psi) + \sum_{j=1} B_{j,n} \cos(j\psi)$$

$$V_{los,n}(\psi) = A_o + \sum_{j=1} A_{j,n} \sin(j\psi) + \sum_{j=1} B_{j,n} \cos(j\psi)$$

¿Es posible reconocer fusiones de galaxias usando mapas de velocidad en z~2?

$$egin{align} k_{i,v/\sigma} &= \sqrt{A_{i,v/\sigma}^2 + B_{i,v/\sigma}^2} \ V_{
m asym} &= \left\langle rac{\sum_{i=2}^5 k_{i,v}/4}{B_{1,v}}
ight
angle_r = \left\langle rac{k_{{
m avg}\,,v}}{B_{1,v}}
ight
angle \ \sigma_{
m asym} &= \left\langle rac{\sum_{i=1}^5 k_{i,\sigma}/5}{B_{1,v}}
ight
angle_r = \left\langle rac{k_{{
m avg}\,,\sigma}}{B_{1,v}}
ight
angle
onumber \ . \end{align}$$

Shapiro, K. L. y cols. (2008). In: The Astrophysics Journal, 739(1), 45.

Simons, R. C. y cols. (2019). In: The Astrophysics Journal, 682(1), 231.

- $Log_{10}(M_{star}[M_{\odot}]) = 10.60$
- $R_{200}[kpc] = 99.8$
- $M_{200}[10^{10} M_{\odot}] = 102.4$
- $V_{200}[km \ s^{-1}] = 210.1$

. 00

Galaxia G2

- $Log_{10}(M_{star}[M_{\odot}]) = 10.20$
- $R_{200}[kpc] = 73.4$
- $M_{200}[10^{10} M_{\odot}] = 40.8$
- $V_{200}[km \ s^{-1}] = 154.6$

Galaxia G3

- $Log_{10}(M_{star}[M_{\odot}]) = 9.80$
- $R_{200}[kpc] = 54.0$
- $M_{200}[10^{10} M_{\odot}] = 16.2$
- $V_{200}[km \ s^{-1}] = 113.7$

$$LM = rac{\sum_i m_i rac{j_{Z,i}}{\mathbf{J_i}}}{\sum_i m_i}$$

Se generaron 192 cubos de datos a partir de 4 simulaciones

Con el aumento de la resolución aumenta el número de fusiones detectadas correctamente

¿Cuántos discos o fusiones son detectados correctamente?

¿Cuántos de los sistemas clasificados observacionalmente como discos o fusiones lo son en realidad?

GRACIAS

