Boundary Value Problems for Partial Differential Equations

Xiao Ma

Winter 2024

1 Introduction and preliminaries

1.1 Definitions of partial differential equations

Definition 1.1 (Notations of partial derivatives). For f(x) with one variable x, we know $f'(x) = \frac{df}{dx}$. For u(x,y), we introduce partial derivatives as

$$\frac{\partial u}{\partial x} = \left. \frac{du}{dx} \right|_{y \text{ is fixed}} = \partial_x u = u_x. \tag{1.1}$$

Similarly,

$$\frac{\partial^2 u}{\partial x^2} = \partial_x^2 u = \partial_{xx} u = u_{xx} \tag{1.2}$$

Example 1. For $u(x,y) = xy^2$, we have

$$\frac{\partial u}{\partial x} = \partial_x u = u_x = y^2, \qquad \frac{\partial u}{\partial y} = \partial_y u = u_y = 2xy,$$

$$\frac{\partial^2 u}{\partial x^2} = \partial_x^2 u = \partial_{xx} u = u_{xx} = 0, \qquad \frac{\partial^2 u}{\partial u^2} = \partial_y^2 u = \partial_{yy} u = u_{yy} = 2x$$

Definition 1.2 (Definition of general PDEs). Given a function u = u(x, y) of two variables, (similarly $u = u(x_1, \dots, x_n)$ of n variables) and an expression $F(u_{xx}, u_{xy}, u_{yy}, u_x, u_y, u_x, u_y)$ of partial derivatives of u, the following equation is a partial differential equation, abbreviated as \underline{PDE} .

$$F(u_{xx}, u_{xy}, u_{yy}, u_x, u_y, u, x, y) = 0 (1.3)$$

In the future, we may also use the notation F[u] to represent $F(u_{xx}, u_{xy}, u_{yy}, u_x, u_y, u, x, y)$. And (1.3) can be rewritten as

$$F[u] = 0. (1.4)$$

Remark 1.3. TODO: higher order is possible but we do not discuss it in this course

Example 2 (Examples of PDEs). Here are some examples of PDEs.

$$u_{xx} - u_y = 0$$
 (the heat equation)
 $u_{xx} - u_{yy} = 0$ (the wave equation)
 $u_{xx} + u_{yy} = 0$ (Laplace's equation)
 $u_x + u_y = 0$ (the transport equation)

Definition 1.4 (Order of PDEs). The order of a PDE is the order of the highest-order derivative in the equation. In (1.5), the first three PDEs are second order, and the last one is first order.

Definition 1.5 (Linear PDEs). TODO: def of linear pdes

Proposition 1.6. TODO: general form of second order linear pdes

We have the following proposition,

Proposition 1.7. The second-order PDEs can always be written as

$$a(x,y)u_{xx} + b(x,y)u_{xy} + c(x,y)u_{yy} + d(x,y)u_x + e(x,y)u_y + f(x,y)u = g(x,y),$$
(1.6)

We assume $a^2 + b^2 + c^2 \neq 0$ for any x, y (at least one of a, b, c is nonzero).

Definition 1.8. We call a, b, c, d, e, f coefficients and g <u>source term</u>.

1.2 Classification of second-order PDEs

In this course, we will mainly consider second-order linear PDEs.

$$a(x,y)u_{xx} + b(x,y)u_{xy} + c(x,y)u_{yy} + d(x,y)u_x + e(x,y)u_y + f(x,y)u = g(x,y),$$
(1.7)

These equations are classified as follows by the coefficients a, b, c.

Definition 1.9 (Classification of PDEs). The second-order linear PDEs (1.7) are classified as elliptic, parabolic and hyperbolic by the following,

$$\begin{cases}
4ac - b^2 > 0 & elliptic \\
4ac - b^2 = 0 & parabolic \\
4ac - b^2 < 0 & hyperbolic
\end{cases}$$
(1.8)

where we note that a, b, c are functions of x, y and the inequalities in (1.8) is required to be true for any x, y.

1.3 Review of ODEs

Definition 1.10 (Separable ODEs). The following ODE is the separable ODE

$$y' + p(x)y = 0. (1.9)$$

Theorem 1.11. Separable ODE can be solved in the following way

$$y' + p(x)y = 0$$
 \Rightarrow $\frac{dy}{dx} + p(x)y = 0$ \Rightarrow $\frac{dy}{y} = -p(x)dx$ \Rightarrow $\int \frac{dy}{y} = -\int p(x)dx$

and the solution is

$$y(x) = Ce^{-\int p(x)dx} \tag{1.10}$$

Example 3. Let us solve the following ODEs

$$y' = -6xy$$

Apply the procedure in Theorem 1.11

$$y' = -6xy$$
 \Rightarrow $\frac{dy}{y} = -6xdx$ \Rightarrow $\int \frac{dy}{y} = -\int 6xdx$ \Rightarrow $\ln|y| = -3x^2 + C'$

Therefore, the solution is

$$y = Ce^{-3x^2}.$$

where $C(=\pm e^{C'})$ is an arbitrary constant.

Definition 1.12 (Linear ODEs). The following ODE is the <u>linear</u> ODE

$$y' + p(x)y = q(x). (1.11)$$

Theorem 1.13. Linear ODE can be solved by the following procedure

- 1. Solve the corresponding separable equation y' p(x)y = 0 to obtain a solution $\hat{y} = e^{\int p(x)dx}$.
- 2. Multiply the linear ODE by \hat{y} and rewrite the ODE

$$y' + p(x)y = q(x)$$
 \Rightarrow $\hat{y}(y' + p(x)y) = \hat{y}q(x)$ \Rightarrow $(\hat{y}y)' = \hat{y}q(x)$

3. Integrate the above equation

$$\hat{y}y = \int \hat{y}q(x)dx + C \quad \Rightarrow \quad y = \frac{1}{\hat{y}} \left(\int \hat{y}q(x)dx + C \right)$$

$$\Rightarrow \quad y = e^{-\int p(x)dx} \left(\int q(x)e^{\int p(x)dx}dx + C \right)$$

Remark 1.14. In (2), we applied the following equation

$$(\hat{y}y)' = \hat{y}(y' + p(x)y)$$

which is a corollary of the Leibniz rule.

$$(\hat{y}y)' = \hat{y}'y + \hat{y}y' = \hat{y}y' + p(x)\hat{y}y = \hat{y}(y' + p(x)y)$$

Example 4. $(x^2 + 1)y' + 3xy = 6x, y(0) = 3$ is solved as $y(x) = 2 + (x^2 + 1)^{-3/2}$ by the procedure in Theorem 1.13.

1. Divide both sides by $(x^2 + 1)$.

$$(x^{2}+1)y'+3xy=6x \Rightarrow y'+\frac{3x}{x^{2}+1}y=\frac{6x}{x^{2}+1}$$

- 2. Solve the corresponding separable equation $y' \frac{3x}{x^2+1}y = 0$ to obtain a solution $(x^2+1)^{\frac{3}{2}}$.
- 3. Multiply the linear ODE by $(x^2 + 1)^{\frac{3}{2}}$ and rewrite the ODE

$$y' + \frac{3x}{x^2 + 1}y = \frac{6x}{x^2 + 1}$$
 \Rightarrow $((x^2 + 1)^{\frac{3}{2}}y)' = 6x(x^2 + 1)^{\frac{1}{2}}$

4. Integrate the above equation

$$((x^{2}+1)^{\frac{3}{2}}y)' = 6x(x^{2}+1)^{\frac{1}{2}} \quad \Rightarrow \quad y = (x^{2}+1)^{-\frac{3}{2}} \left(\int 6x(x^{2}+1)^{\frac{1}{2}} + C \right)$$
$$\Rightarrow \quad y = 2 + C(x^{2}+1)^{-\frac{3}{2}}$$

Definition 1.15 (Second order ODEs). The <u>constant coefficient second order ODEs</u> are the following equations

$$ay'' + by' + cy = 0 \ (a \neq 0). \tag{1.12}$$

Theorem 1.16. Constant coefficient second order ODEs can be solved by the following procedure

- 1. Solve the characteristic equation $a\lambda^2 + b\lambda + c = 0$ to get two solutions λ_1 and λ_2 .
- 2. If $\lambda_1 \neq \lambda_2$, the general solution is

$$y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} \tag{1.13}$$

3. If $\lambda_1 = \lambda_2 = \lambda$, the general solution is

$$y(x) = (C_1 + C_2 x)e^{\lambda x}$$
 (1.14)

4. If λ_1, λ_2 are complex roots $\alpha \pm i\beta$, apply the Euler's formula to rewrite (1.13)

$$y(x) = C_1 e^{(\alpha + i\beta)x} + C_2 e^{(\alpha - i\beta)x} = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$$

where
$$c_1 = C_1 + C_2$$
, $c_2 = i(C_1 - C_2)$.

Example 5. y'' - 3y' + 2y = 0 is solved as $y(x) = C_1 e^x + C_2 e^{2x}$ by the procedure in Theorem 1.16. **TODO:**

Example 6. y'' + y = 0 is solved as $y(x) = C_1 \cos(x) + C_2 \sin(x)$ by the procedure in Theorem 1.16. **TODO:**

Example 7. y'' + 2y' + y = 0 is solved as $y(x) = (C_1 + C_2 x)e^x$ by the procedure in Theorem 1.16. **TODO:**

1.4 Separation of variables

Many linear PDEs can be reduced to linear ODEs with the method of separation of variables, described below.

We take the Laplace's equation

$$u_{xx} + u_{yy} = 0 (1.15)$$

as an example.

TODO: Boundary conditions

We are looking for a separated solution. Substitute into (1.15), then we get

$$X''Y + XY'' = 0 \quad \Rightarrow \quad \frac{X''}{X} = -\frac{Y''}{Y}$$

The following lemma implies that X''/X and Y''/Y are constants.

Lemma 1.17. TODO: f(x) = g(y) implies that f(x) = g(y) = const,

Proof.
$$f(x) = g(y) \Rightarrow f'(x) = 0 \Rightarrow f(x) = const.$$

Let λ be a constant and we write

$$X'' + \lambda X = 0, \quad Y'' - \lambda Y = 0.$$

We call λ the <u>separation constant</u>. At this moment λ is arbitrary. Thus the PDE was reduced to two ODEs.

1.4.1 Solving separated solutions

If $\lambda = 0$, then two ODEs have the following linearly independent solutions.

$$X = 1, x, \quad Y = 1, y.$$
 (1.16)

If $\lambda \neq 0$, then two ODEs have the following linearly independent solutions.

$$X = e^{\sqrt{-\lambda}x}, e^{-\sqrt{-\lambda}x}, \quad Y = e^{\sqrt{\lambda}y}, e^{-\sqrt{\lambda}y}.$$
 (1.17)

In either case, the solution is given by superpositions:

$$u = \begin{cases} (A_1 x + A_2) (B_1 y + B_2), & \lambda = 0\\ \left(A_1 e^{\sqrt{-\lambda}x} + A_2 e^{-\sqrt{-\lambda}x} \right) \left(B_1 e^{\sqrt{\lambda}y} + B_2 e^{-\sqrt{\lambda}y} \right), & \lambda \neq 0 \end{cases}$$
(1.18)

where A_1, A_2, B_1, B_2 are constants.

For $\lambda > 0$, by writing $\lambda = k^2(k > 0)$ we have

$$u(x,y) = (A_1 e^{ikx} + A_2 e^{-ikx}) (B_1 e^{ky} + B_2 e^{-ky}),$$
(1.19)

and for $\lambda < 0$, by writing $\lambda = -l^2(l > 0)$ we have

$$u(x,y) = (A_1 e^{lx} + A_2 e^{-lx}) (B_1 e^{ily} + B_2 e^{-ily}).$$
(1.20)

Instead of (1.17) we can also choose

$$X = \cos(\sqrt{\lambda}x), \sin(\sqrt{\lambda}x), \quad Y = \cosh(\sqrt{\lambda}y), \sinh(\sqrt{\lambda}y). \tag{1.21}$$

In this case, we have

$$u(x,y) = (A_1 \cos(kx) + A_2 \sin(kx)) (B_1 \cosh(ky) + B_2 \sinh(ky))$$
(1.22)

$$u(x,y) = (A_1 \cosh(lx) + A_2 \sinh(lx)) (B_1 \cos(ly) + B_2 \sin(ly))$$
(1.23)

Note that (1.22) becomes (1.19) and (1.23) becomes (1.20) by redefining the coefficients. We call solutions such as (1.18) through (1.23) separated solutions because they are given in the form u(x,y) = X(x)Y(y).

1.4.2 Solving the boundary value problem

TODO: revise the section The separation constant λ and coefficients A_1, A_2, B_1, B_2 are partially determined by boundary conditions. Suppose that our Laplace's equation is considered in the region $0 < x < L, 0 < y < \infty$ with boundary conditions

$$u(0,y) = 0$$
, $u(L,y) = 0$, $u(x,0) = 0$.

We find that $u = (A_1x + A_2)(B_1y + B_2)$ in (1.3) satisfies the boundary conditions only when u = 0.

We then find that (1.5) and (1.7) satisfy the conditions u(0,y) = u(L,y) = 0 only when $A_1 = A_2 = 0$. That is, only the solution u = 0 satisfies the boundary conditions.

Finally (1.4) and (1.6) satisfy u(0,y)=u(L,y)=0 when $A_1=0$ and $k=n\pi/L$, where n is an integer. Furthermore we find $B_1=0$ by the condition u(x,0)=0. That is, the solution $A_2B_2\sin(kx)\sinh(ky)$ with $k=n\pi/L(n=0,\pm 1,\pm 2,\ldots)$ satisfies the boundary conditions.

Therefore we obtain the following separated solutions of Laplace's equation satisfying the boundary conditions.

$$u(x,y) = A \sin \frac{n\pi x}{L} \sinh \frac{n\pi y}{L}, \quad n = 1, 2, \dots,$$

TODO: linear combination and Fourier series