Matrix-free Interior Point Method for Compressed Sensing Problems

Kimon Fountoulakis Jacek Gondzio Pavel Zhlobich

School of Mathematics University of Edinburgh

OR54

September 4, 2012

Existing solvers

- FPC_AS by Wen, Yin, Goldfarb, Y. Zhang, H. Zhang.
- SPGL1 by van den Berg, Friedlander.
- GPSR by Figueiredo, Nowak, Wright
- \bullet $\ell_1 \ell_s$ by Kim, Koh, Lustig, Boyd, Gorinevsky.
- PDCO by Saunders.
- many others ...

Outline

Compressed sensing (CS) basics

Objects & terminology

Properties

Objective

IPM basics for Compressed Sensing

Formulations

Matrix-free IPM

Compressed sensing and linear systems for IPMs

Solution of linear systems for IPMs

Convergence of the CG method for IPMs

Preconditioning

Results

Sparco

Noise robustness

Phase transition

Conclusions & further research

Objects & terminology

Object	CS terminology	Optimization terminology		
$x \in \mathbb{R}^n$	sparse signal	decision variables		
$b \in \mathbb{R}^m$	noiseless measured signal	rhs, equality constraints		
$e \in \mathbb{R}^m$	vector of noise	slacks, inequality constraints		
$b+e=\tilde{b}\in\mathbb{R}^{m}$	noisy measured signal	rhs, inequality constraints		
$A \in \mathbb{R}^{m \times n}$	measurement matrix	constraint matrix, Eq./Ineq.		

- ▶ x: $||x||_0 = k \ll n$ nonzero components.
- A: Satisfies the Restricted Isometry Property (RIP).

- ▶ x: $||x||_0 = k \ll n$ nonzero components.
- A: Satisfies the Restricted Isometry Property (RIP).

- ▶ x: $||x||_0 = k \ll n$ nonzero components.
- A: Satisfies the Restricted Isometry Property (RIP).

$$ar{\mathcal{A}}=$$

RIP

$$\left\|\frac{n}{m}\bar{A}^T\bar{A}-I_m\right\|_2 \leq \delta_k$$

- ▶ x: $||x||_0 = k \ll n$ nonzero components.
- A: Satisfies the Restricted Isometry Property (RIP).

Objective of CS

Find the k-sparse $x \in \mathbb{R}^n$, having $b \in \mathbb{R}^m$ with $m \ll n$.

Noiseless

measurements b

BP:

 $\min_{x \in \mathbb{R}^n} \|x\|_1$ subject to: Ax = b

Noisy

measurements \hat{b}

BPDN: $\min_{x \in \mathbb{R}^n} |\tau| \|x\|_1 + \frac{1}{2} \|Ax - \tilde{b}\|_2^2$

BPDN for IPMs

BPDN:
$$\min_{x \in \mathbb{R}^n} \ \tau \|x\|_1 + \frac{1}{2} \|Ax - \tilde{b}\|_2^2$$

replace with using
$$\|x\|_1 = 1_{2n}^T z \qquad |x_i| = z_i + z_{i+n}$$

$$z \in \mathbb{R}^{2n} \ge 0 \qquad z_i \ge 0, \ \forall i$$

$$\|Ax - \tilde{b}\|_2^2 \qquad F\tilde{b} + z^T F F^T z \qquad x_i = z_i - z_{i+n}$$

$$F = \begin{bmatrix} A^T \\ -A^T \end{bmatrix} \in \mathbb{R}^{2n \times m}$$

$$FF^T = B = \begin{bmatrix} A^T \\ -A^T \end{bmatrix} \begin{bmatrix} A & -A \end{bmatrix} = \begin{bmatrix} A^T A & -A^T A \\ -A^T A & A^T A \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$$

Primal-Dual BPDN Programs

Primal BPDN

Dual BPDN

$$\begin{array}{lll} \min\limits_{z\in\mathbb{R}^{2n}} & c^Tz+\frac{1}{2}z^TB^Tz & \max\limits_{z,s\in\mathbb{R}^{2n}} & -\frac{1}{2}z^TB^Tz \\ subject\ to: & z\geq 0 & subject\ to: & B^Tz-s=-c \\ & z,s>0 & \end{array}$$

$$B = \begin{bmatrix} A^T A & -A^T A \\ -A^T A & A^T A \end{bmatrix} \in \mathbb{R}^{2n \times 2n}, \quad c = \begin{bmatrix} \tau 1_n - A^T \tilde{b} \\ \tau 1_n + A^T \tilde{b} \end{bmatrix} \in \mathbb{R}^{2n}$$

Matrix-free IPM

Calculate the direction by solving:

Reduced Newton system for Primal-Dual BPDN

$$(B + \Theta^{-1}) \times \Delta z = *$$

 $\Theta \in \mathbb{R}^{2n \times 2n} = S^{-1}Z$ and $Z, S \in \mathbb{R}^{2n \times 2n}$ are diagonal matrices

Matrix-free Regime

- ▶ Inexact solution using an iterative process, i.e CG.
- Only matrix-vector products are allowed.
- ▶ If the matrix $B + \Theta^{-1}$ is an operator then the process is memoryless.

Solution of linear systems for IPMs

Use the CG method to solve linear systems with the matrix:

$$M = B + \Theta^{-1} = \begin{bmatrix} A^T A & -A^T A \\ -A^T A & A^T A \end{bmatrix} + \begin{bmatrix} \Theta_1^{-1} & \\ & \Theta_2^{-1} \end{bmatrix}$$

 $\Theta_i \in \mathbb{R}^{n \times n}, i = 1, 2$, are the (i,i) blocks of $\Theta = S^{-1}Z$.

The fast convergence of the CG method depends on:

▶ The clustering of $\lambda(M)$. Better clustering \Rightarrow faster CG.

How the $\lambda(M)$ behave as the IPM progresses?

Slow convergence of the CG for IPMs

Required accuracy: 1.0e-6

Objectives of preconditioning

Reduce the computational efforts of the CG method with preconditioning.

▶ Introduce a matrix $P \in \mathbb{R}^{2n \times 2n}$ and solve instead:

$$P^{-1}M = P^{-1}*$$

An efficient preconditioner should:

- Be easily invertible.
- 2 Cluster the eigenvalues $\lambda(P^{-1}M)$

Proposed preconditioner

$$M = \begin{bmatrix} A^T A & -A^T A \\ -A^T A & A^T A \end{bmatrix} + \begin{bmatrix} \Theta_1^{-1} & \\ & \Theta_2^{-1} \end{bmatrix}$$

with P:

$$\mathsf{P} = \rho \left[\begin{array}{cc} \mathsf{I} & -\mathsf{I} \\ -\mathsf{I} & \mathsf{I} \end{array} \right] + \left[\begin{array}{cc} \Theta_1^{-1} & \\ & \Theta_2^{-1} \end{array} \right]$$

$$k$$
 entries of $\Theta^{-1} \to 0$

$$2n-k$$
 entries of $\Theta^{-1} \to \infty$

Spectral properties of $P^{-1}M$

Theorem

- ▶ Exactly *n* eigenvalues of $P^{-1}M$ are 1.
- ▶ The remaining n satisfy $|\lambda(P^{-1}M) 1| \le \delta_k + \frac{n}{m\delta_k L}$

where $L = \mathcal{O}(\max_i (\Theta_1 + \Theta_2)^{-1}) \to \infty$ and δ_k is the RIP-constant.

- **1** Universality of the proof! It holds $\forall A \in \mathbb{R}^{m \times n} \vdash \mathsf{RIP}$.
- ② P^{-1} works if $||x||_0 \le \max k$ such that $A \vdash RIP$.

Practical performance

Required accuracy: 1.0e-6

Practical performance

Required accuracy: 1.0e-6

Results I: Sparco test suite

Table: Number of matrix-vector products

ID	rhs	Accuracy	mfipm	ℓ_1 ℓ_s	pdco	fpc_as cg	spgl1
2	ĥ	3.0e-04	61	48	687	9	40000
2	Ь	1.0e-11	65	98	40007	40002	22
3	ъ	7.0e-04	241	462	4941	106	40000
3	Ь	1.0e-08	415	1612	40157	212	148
5	ъ̃	2.0e-03	5991	9842	28203	521	40000
5	Ь	2.0e-05	7953	19684	41283	874	2567
7	ъ	4.0e-03	179	272	425	62	39
,	Ь	1.0e-06	255	850	601	76	81
9	ъ	1.0e-03	689	1546	7065	1680	40000
9	Ь	5.0e-12	649	1886	6845	40016	40000
10	\tilde{b}	1.0e-03	4775	8529	6203	40002	40000
10	Ь	9.0e-10	4567	8192	41227	40161	40000
701	ъ	2.0e-02	947	1794	5967	1049	40000
701	Ь	7.0e-09	1341	2656	42041	40017	15239
702	ъ	4.0e-03	809	1574	3341	40001	40000
102	Ь	1.0e-07	1123	3030	49563	40157	11089
902	\tilde{b}	3.0e-04	181	588	261	40	40000
902	Ь	2.0e-06	225	675	275	42	59
903	ъ	7.0e-03	2201	4944	5939	11395	8941
903	Ь	3.0e-06	4173	25114	29901	40161	40000

Noise robustness

- ► SNR= 10, 20, ..., 120 dB.
- ► The quality of reconstruction is measured by the amplification factor:

$$\mathsf{AMP2} = \frac{\sqrt{\frac{1}{n} \|x - \hat{x}\|_2}}{\sqrt{\frac{1}{m} \|e\|_2}}$$

The FPC_AS CG solver is used as a reference algorithm which produces the minimum AMP2.

Noise robustness

- ► SNR= 10, 20, ..., 120 dB.
- ► The quality of reconstruction is measured by the amplification factor:

$$\mathsf{AMP2} = \frac{\sqrt{\frac{1}{n} \|x - \hat{x}\|_2}}{\sqrt{\frac{1}{m} \|e\|_2}}$$

► The FPC_AS CG solver is used as a reference algorithm which produces the minimum AMP2.

Optimal phase transition

 $A \in \mathbb{R}^{m \times n}$: partial Discrete Cosine Transform.

 $x \in \mathbb{R}^n$: randomly placed ± 1 's at $k \ll n$ positions.

Conclusions

- Matrix-free IPM.
- Implements universal and robust preconditioner.
- Robust reconstruction for noisy measurements.
- Faster on some signal processing applications.
- Optimal phase transition.

Further research

- Substantial decrement of the computational complexity via reduction of Newton's systems size (i.e fewer rows/columns).
 - ▶ Pros: The computational complexity will be greatly reduced.
 - ▶ Cons: The complexity of the matrix-free IPM will increase.

▶ Extend to ℓ_1 – analysis ($\|Wx\|_1$) and total variation ($\|x\|_{TV}$).

Thank you!

Kimon Fountoulakis, Jacek Gondzio, and Pavel Zhlobich. Matrix-free interior point method for compressed sensing problems.

Technical report, School of Mathematics, The University of Edinburgh, 2012.