

中国研究生创新实践系列大赛 "华为杯"第十八届中国研究生 数学建模竞赛

No.21104870023
1. 🗆 🗆 🗆
2. 🗆 🗆 🗆
3. □□□

中国研究生创新实践系列大赛 "华为杯"第十八届中国研究生 数学建模竞赛

			d	国国	研究	往	数:	学员	建模	竞	赛	论	文材	示是	页			
					搪	Ī		Ę	更:									
□ Pytho	on $\square \square$] pand	las 🗆 🗆													20	20	
\square 25 \square	□ 2020	0 □ 8 □	□ 28 □			AÇ	\square Ig											
					\square 3													
									□ P	ytho	n 🗆			1	"[4 [
] ''														
									□ A	QI								
$\Box \Box AP$									AP									
$\square \square$ SP	SS □□		\square AQ	$I \square \square$								Pe	arso	n 🗆				
Critic [AP 🗆															
		AP 🗆 🗆						AP										Al
		$\Box\Box\Box$ F	Pearso	n 🗆 🗆							Al	P 🗆						
							5 □											
关键字	: 00						Pear	cson				$\Box C$	RIT	IC [LS	TN

目录

1.	问题重述	3
	1.1 问题背景	3
	1.2 问题提出	4
2.	背景阐述、模型合理假设以及符号说明	5
	2.1 背景阐述	5
	2.2 模型合理假设	5
	2.3 符号说明	6
3.	问题的分析	6
	3.1 问题一: 通过给定污染物数据计算当日的 AQI 指数	6
	3.1.1 AQI 指数计算方式与相关背景	6
	3.1.2 快速求解 AQI 指数算法及对应结果	7
	3.2 问题二根据对污染物浓度的影响程度,对气象条件进行分类	7
	3.2.1 问题分析与数据预处理	7
	3.2.2 模型建立、求解与验证	9
	3.3 问题三依据一次预报数据和实测数据进行气象二次预报	11
	3.3.1 问题描述和分析	11
	3.3.2 模型建立与求解	11
	3.4 问题四 xxx	12
	3.4.1 问题描述和分析	12
	3.4.2 模型建立与求解	12
4.	模型的评价	12
••		
	4.2 模型的缺点	12
_	写作参考格式	13
		13
6.	参考文献	13
附	[†] 录 A 程序代码	14

1. 问题重述

1.1

图 1-1 中尺度数值天气预报系统 WRF 结构^[2]

图 1-2 空气质量预测与评估系统 CMAQ 结构^[3]

1.2

□□ 1 □□□□ 1 □□□□□□□ A □ 2020 □ 8 □ 25 □□ 8 □ 28 □□□□□□ AQI

图 1-3 空气质量预测与评估系统 CMAQ 结构

表 1 AQI 计算结果表

		AQI □□					
		AQI					
2020/8/25	$\Box\Box\Box$ A						
2020/8/26	□□□A						
2020/8/27	$\Box\Box\Box$ A						
2020/8/28	$\Box\Box\Box$ A						

表 2 AOI 计算结果表

			0000000								
		$SO2(\mu g/m^3)$	NO2(μg/m³)	$PM10(\mu g/m^3)$	PM2.5(μg/m³)	O3 □□□□□□□□ (μg/m³)	CO(mg/m³)	AQI	00000		
2020/7/13	□□□A										
2020/7/14	□□□A										
2020/7/15	□□□A										

□□ 4 □□□□ 1 □ 3 □□□□□□□□□□□□□□□□□□□□□□□□
$A \square A1 \square A2 \square A3 \ \square \ 2021 \ \square \ 7 \ \square \ 13 \ \square \square \ 7 \ \square \ 15 \ \square $

2. 背景阐述、模型合理假设以及符号说明

2.1

0000000 (°C)000000000 T0 kg | | | | H | H | ullet______90°___ On the control of the □ NOx □□□□□□□□ NO □□□□□ NO2□NO2 □□□□ O3 □□□□□□□ • 00030008 0000000000 8 00 24 0000 8 0000000 $C_{O_3} = \max_{T}(t = 8, 9, ..., 24) \frac{1}{8} \sum_{i=t-7}^{t} c_t$ • 0000/00000000/000000000000/000000000 $"2020/11/04~05:00" \square \square \square \square \square SO2~\square \square \square ~X\mu g/m^3 \square \square \square SO2~\square~2020~\square~11~\square~4~\square$ $5:00-6:00 \square X \mu g/m^3 \square$ $\square \square \square W/m^2 \square$

图 2-1 一种臭氧与氮氧化物之间相互转化的反应过程[5]

2.2

- - c.

2.3

表 3 本文涉及到的部分符号说明

Т	
Н	
P	
WS	
WD	
ZX	

3. 问题的分析

3.1 00000000000000000AQI

3.1.1 AQI

AQI DDDDDDDDDDDDDDDDDDDDAQI DDDDDDDDD 00000000000000IAQI

$$IAQI_{P} = \frac{IAQI_{Hi} - IAQI_{Lo}}{BP_{Hi} - BP_{Lo}} * (C_{P} - BP_{Lo}) + IAQI_{Lo}$$

$$(1)$$

- $C_P \square \square \square \square \square P \square \square \square \square \square$
- BP_{Hi} , BP_{Lo} $\Box\Box\Box$ C_P $\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box$
- $IAQI_{Hi}$, $IAQI_{Lo} \square \square \square BP_{Hi}$, $BP_{Lo} \square \square \square \square \square \square \square \square$

表 4 空气质量分指数(IAOI)及对应的污染物项目浓度限值

			0000000000000000							
0			50	100	150	200	300	400	500	-
1	CO_24		2	4	14	24	36	48	60	mg/m³
2	□□□□□SO2□24 □□□□		50	150	475	800	1600	2100	2620	
3	□□□□□NO2□24 □□□□		40	80	180	280	565	750	940	
4	O38		100	160	215	265	800	-	-	μg/m³
5	□□□□□□ 10μm □□□□PM10□24 □□□□		50	150	250	350	420	500	600	
6	□□□□□□ 2.5μm □□□□PM2.5□24 □□□□	0	35	75	115	150	250	350	500	

$$AQI = maxIAQI_1, IAQI_2, ..., IAQI_n$$

$$AQI = \max IAQI_{SO_2}, IAQI_{NO_2}, IAQI_{PM_10}, IAQI_{PM_2.5}, IAQI_{O_3}, IAQI_{CO}$$
 (2)

____AQI ____AQI ____AQI ____AQI ____4_

表5 空气质量等级及对应空气质量指数(AQI)范围

				[201 200]	
[0,50]	[51,100]	[101,150]	[151,200]	[201,300]	[301,+∞)

图 3-1 完全处理"监测点 A 逐日污染物浓度数据"表流程图

3.1.2 | | | | | AQI | | | | | | |

表 6 问题一AQI 计算结果表

		AQI □□				
		AQI				
2020/8/25	□□□A	60	O ₃			
2020/8/26	$\Box\Box\Box$ A	46				
2020/8/27	$\Box\Box\Box$ A	109	O ₃			
2020/8/28	$\Box\Box\Box$ A	138	O_3			

3.2

3.2.1

图 3-2 线性插值示意图

$$y = f(x) \square x_0 \square x_1 \square \square \square \square y_0 \square y_1 \square \square \square \square$$
$$y = \phi_1(x) = a_0 + a_1 x$$

$$\phi_1(x_0) = y_0, \phi_1(x1) = y_1$$

$$y=\phi_1(x)=y_0+\frac{y_1-y_0}{x_1-x_0}(x-x_0)$$

_2____AQI ___AQI ___AQI _______ ____AQI ___ $ZX_i = \frac{X_i - \mu}{\delta}, \mu = \frac{1}{n}\sum_{i=1}^n X_i, \delta = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (X_i - \mu)^2}$ (3) □□□□□ AQI,SO3,NO2,O3,PM10,PM2.5,CO □□□□□□□□□□□□□□□ZAQI,ZSO3,ZNO2,ZO3,ZPM □□□□□□ T,H,P,WS,WD □□□□□□□ ZT,ZH,ZP,ZWS,ZWD 3.2.2 $\Box 1 \Box Person \Box \Box \Box \Box \Box \Box$ □□□ Pearson □□□□□□□□□□□□□□□□(4) □□□ $r = \frac{N \sum x_i y_i - \sum x_i \sum y_i}{\sqrt{N \sum x_i^2 - (\sum x_i)^2} \sqrt{N \sum y_i^2 - (\sum y_i)^2}}$ **(4)** \bigcirc \square \square SPSS \square \square \square \square Excel \square \square On One of the Critic On One of the One of th _____j ___j

$$C_j = \delta_j \sum_{i=1}^n 1 - r_{ij}$$

			41	八正				
		ZAQI	ZSO2	ZNO2	ZPM10	ZPM2.5	Z03	ZCO
ZAQI	皮尔逊相关性	1	.447**	.574**	.757**	.747**	.500**	.502**
	显著性 (双尾)		.000	.000	.000	.000	.000	.000
	个案数	19388	19388	19388	19388	19388	19388	19388
ZSO2	皮尔逊相关性	.447**	1	.409**	.561**	.542**	.182**	.350
	显著性 (双尾)	.000		.000	.000	.000	<.001	.000
	个案数	19388	19388	19388	19388	19388	19388	19388
ZN02	皮尔逊相关性	.574**	.409**	1	.668**	.669**	298**	.681**
	显著性 (双尾)	.000	.000		.000	.000	.000	.000
	个案数	19388	19388	19388	19388	19388	19388	19388
ZPM10	皮尔逊相关性	.757**	.561**	.668**	1	.883**	.237**	.609**
	显著性 (双尾)	.000	.000	.000		.000	<.001	.000
	个案数	19388	19388	19388	19388	19388	19388	19388
ZPM2.5	皮尔遜相关性	.747**	.542**	.669**	.883**	1	.203**	.661**
	显著性 (双尾)	.000	.000	.000	.000		<.001	.000
	个案数	19388	19388	19388	19388	19388	19388	19388
Z03	皮尔逊相关性	.500**	.182**	298**	.237**	.203**	1	123 ^{**}
	显著性 (双尾)	.000	<.001	.000	<.001	<.001		<.001
	个案数	19388	19388	19388	19388	19388	19388	19388
ZCO	皮尔逊相关性	.502**	.350**	.681**	.609**	.661**	123**	1
	显著性 (双尾)	.000	.000	.000	.000	.000	<.001	
	个案数	19388	19388	19388	19388	19388	19388	19388

相关性

图 3-3 ZAQI 变量 Person 相关矩阵示意图

$$AP = \sum_{i=1}^{n} W_i Z X_i \tag{5}$$

表 7 AP 权重计算结果表

ZSO2	0.127	ZNO2	0.163	ZPM10	0.215
ZPM2.5	0.212	ZO3	0.142	ZCO	0.142

$$newW_i = 0.6*W_i + 0.4*P_i, P_i = \frac{T_i}{\sum T_i}$$

^{**.} 在 0.01 级别 (双尾), 相关性显著。

$\square \ \square \ T_i$	$\Box\Box\Box$ i		
			??□□□

表 8 AP 权重计算结果表

ZSO2	0.076	ZNO2	0.260	ZPM10	0.226
ZPM2.5	0.165	ZO3	0.182	ZCO	0.091

 $AP = 0.076*ZSO_2 + 0.260*ZNO_2 + 0.226*ZPM_{10} + 0.165*ZPM_{2.5} + 0.182*ZO_3 + 0.091*ZCO_3 + 0.000*ZNO_2 + 0.0$

$\square 3 \square \square \square AP \square $
SPSS DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

相关性

		AP	ZT	ZH	ZP	ZWS	ZWD
AP	皮尔逊相关性	1	239**	407**	.373**	310**	050**
	显著性 (双尾)		<.001	.000	.000	.000	<.001
	个案数	19388	19388	19388	19388	19388	19388
ZT	皮尔逊相关性	239**	1	.119**	823**	.087**	.117**
	显著性 (双尾)	<.001		<.001	.000	<.001	<.001
	个案数	19388	19388	19388	19388	19388	19388
ZH	皮尔逊相关性	407**	.119**	1	397**	268**	.022**
	显著性 (双尾)	.000	<.001		.000	.000	.003
	个案数	19388	19388	19388	19388	19388	19388
ZP	皮尔逊相关性	.373**	823**	397**	1	032**	165**
	显著性 (双尾)	.000	.000	.000		<.001	<.001
	个案数	19388	19388	19388	19388	19388	19388
ZWS	皮尔逊相关性	310**	.087**	268**	032**	1	033**
	显著性 (双尾)	.000	<.001	.000	<.001		<.001
	个案数	19388	19388	19388	19388	19388	19388
ZWD	皮尔逊相关性	050**	.117**	.022**	165**	033**	1
	显著性 (双尾)	<.001	<.001	.003	<.001	<.001	
	个案数	19388	19388	19388	19388	19388	19388
	5 0 04 Ø BL 4 Z EL V	Jen 35 Lif. en 46					

^{**.} 在 0.01 级别 (双尾), 相关性显著。

图 3-4 变量 AP 的 Person 相关系数矩阵

图 3-5 变量 AP 与风速变量 WS 的折线图

图 3-6 变量 AP 与风速变量 WS 的拟合曲线

图 3-7 变量 AP 与温度变量 T 的拟合曲线

图 3-8 变量 AP 与湿度变量 H 的拟合曲线

图 3-9 变量 AP 与气压变量 P 的拟合曲线

图 3-10 变量 AP 与风向变量 WD 的拟合曲线

表 9 气象类型分类表

0000 T00000 H00000 P

3.3.1

3.3.2

3.3.3

图 3-11 LSTM 模型输入。我们按图中所示的方式把三天(72 小时)的实测数据输入到 LSTM 模型中进行训练。

```
| Color | LSTM | Color | Color
```


图 3-12 二次预测模型。通过 LSTM 对实测数据进行学习后接入一次模型预测的数据来提升预测准确度。最后直接输出三天的污染物浓度。

表 10 污染物浓度及 AQI 预测结果

		00000000							
	SO2(µg		NO2(μg/m³)	PM10(μg/m ³)	PM2.5(μg/m³)	O3 □□□□□□□ (μg/m³)	CO(mg/m³)	AQI	00000
2020/7/13	□□□A	6.06	43.60	41.28	35.92	86.76	0.73	55	NO2
2020/7/14	□□□A	7.90	41.13	53.02	22.39	46.77	0.61	52	NO2&PM10
2020/7/15	□□□A	9.80	42.16	54.02	48.52	48.61	1.10	67	PM2.5
2020/7/13	□□□B	2.09	38.69	92.57	11.58	106.18	0.52	72	PM10
2020/7/14	□□□B	21.52	19.93	41.09	16.18	49.90	0.53	42	PM10
2020/7/15	□□□B	13.48	27.40	64.16	19.99	23.26	0.47	58	PM10
2020/7/13	□□□ C	9.03	31.59	72.48	17.95	-1.87	0.82	62	PM10
2020/7/14	□□□ C	9.12	40.59	49.47	30.22	49.57	1.03	51	NO2
2020/7/15	□□□ C	4.62	16.72	50.68	15.79	20.01	0.80	51	PM10

表 11 各污染物浓度 MSE

$SO2(\mu g/m^3)$	$NO2(\mu g/m^3)$	PM10($\mu g/m^3$)	PM2.5($\mu g/m^3$)	$O3(\mu g/m^3)$	$CO(\mu g/m^3)$
21.41	2221.62	2105.39	1135.74	2728.31	0.32
13.21	584.92	705.37	629.26	1828.01	0.16

3.4.1
□□□□□□□□□ 1 □ 3 □□□□□ A□A1□A2 □ A3 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
00000000000000000000000000000000000000

3.4.2

3.4

4. 模型的评价

4.1

O	
□ AQI □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	
AQI	

- (a) 监测点 A 模型 LOSS
- (b) 监测点 B 模型 LOSS
- (c) 监测点 C 模型 LOSS

图 4-1 不同监测点的 Model Loss

AQI	
1682.42	24%
897.86	26%
612.49	39%
217.69	33%

表 12 各监测点 AQI 的 MSE 及主要污染物的预测正确率。

____AQI _____AQI ________

4.2

5. 参考文献

- [3], 1997.
- [4] 000, 00, 000. 00000000000 [J]. 0000, 2018, 31(05): 72-76.

附录 A 程序代码

```
kk=2; [mdd, ndd] = size (dd);
while ~isempty(V)
[tmpd, j] = min(W(i, V)); tmpj = V(j);
for k=2:ndd
[tmp1, jj] = min(dd(1, k) + W(dd(2, k), V));
tmp2=V(jj); tt(k-1,:)=[tmp1,tmp2,jj];
end
tmp=[tmpd, tmpj, j; tt]; [tmp3, tmp4]=min(tmp(:,1));
if tmp3==tmpd, ss(1:2,kk)=[i;tmp(tmp4,2)];
else, tmp5=find(ss(:,tmp4)~=0);tmp6=length(tmp5);
if dd(2, tmp4) == ss(tmp6, tmp4)
ss(1:tmp6+1,kk) = [ss(tmp5,tmp4);tmp(tmp4,2)];
else, ss(1:3,kk) = [i;dd(2,tmp4);tmp(tmp4,2)];
end; end
dd = [dd, [tmp3; tmp(tmp4, 2)]; V(tmp(tmp4, 3)) = [];
[mdd, ndd] = size (dd); kk = kk + 1;
end; S=ss; D=dd(1,:);
```