Задачи сайта problems.ru

Chapter 1

Инварианты и полуинварианты

Exercise 1.0.1

Есть три печатающих автомата. Первый по карточке с числами a и b выдает карточку с числами a+1 и b+1; второй по карточке с четными числами a и b выдает карточку с числами $\frac{a}{2}$ и $\frac{b}{2}$; третий автомат по паре карточек с числами a, b и b, c выдает карточку с числами a, c. Все автоматы возвращают заложенные в них карточки. Можно ли с помощью этих автоматов из карточки (5,19) получить карточку (1,1988)?

Решение.

Заметим, что разность чисел в исходной паре (5, 19) делится на 7. А также то, что все из вышеуказанных преобразований сохраняют это свойство. Так как 1987 не делится на 7, то получить требуемую карточку невозможно. ◀

Exercise 1.0.2

Дно прямоугольной коробки вымощено плитками 1×4 и 2×2 . Плитки высыпали из коробки и одна плитка 2×2 потерялась. Ее заменили на плитку 1×4 . Докажите, что теперь дно коробки вымостить не удастся.

Решение.

Рассмотрим раскраску вида

1 2 1 2 ... 3 4 3 4 ... 1 2 1 2 ... 3 4 3 4 ... : : : : ...

Любая плитка 2×2 содержит 1 клетку цвета 1. Значит четность плиток этого вида должна быть равна четности клеток цвета 1. Так как плитка вида 1×4 не содержит вовсе или содержит 2 клетки цвета 1. Значит замощение при замене плитки выполнить не получится.

Chapter 2

Принцип Дирихле

Exercise 2.0.1

В банде 50 бандитов. Все вместе они ни в одной разборке ни разу не участвовали, а каждые двое встречались на разборках ровно по разу. Докажите, что один из бандитов был не менее, чем на восьми разборках.

Решение

Предположим противное. Выберем произвольного бандита, полагая, что он был менее, чем на 8 разборках. С каждым из 49 оставшихся он должен встретиться не более раза, значит, на какой то разборке он должен был встретиться не менее чем с 7 бандитами. Всего на этой разборке было не менее 8 бандитов. Выберем бандита, который в этой разборке не принимал участие. Он искомый, так как с каждым из бандитов, бывших на этой разборке он должен был встретиться по разу. ◀

Chapter 3

Теория графов

Exercise 3.0.1

В графе 20 вершин, степень каждой не меньше 10. Доказать, что в нём есть гамильтонов путь.

Решение.

Допустим противное. Тогда рассмотрим самый длинный из существующих путей, обозначив его L. Пусть в L входит n вершин. Вершины которые не входят в L обозначим M. Вершины пути L будем обозначать L_i где $1 \le i \le n$. Так как степень L_n не меньше 10 и это конечная вершина, то все ребра из нее должны идти в вершины L. Если из вершины L_i есть ребро в вершину из M и существует ребро из L_n в L_{i-1} то мы можем сконструировать путь $L_1 \ldots L_{i-1} L_n \ldots L_i M$. Длина этого пути будет больше n. Отсюда следует, что в M могут идти только ребра тех вершин L_i , которые не соединены с L_n . Таких ребер не более n-10. В компоненте M не более 20-n вершин, то есть степень вершины в M не больше 19-n. Из L в M ведут не более n-10 ребер. Значит максимальная степень вершины в M равна (19-n)+(n-10)=9. Противоречие.

Exercise 3.0.2

Каждое из рёбер полного графа с 6 вершинами покрашено в один из двух цветов. Докажите, что есть три вершины, все рёбра между которыми - одного цвета.

Решение.

Выберем произвольную вершину. Ее степень равна 5, значит, по принципу Дирихле, как минимум три ребра будут одного цвета. Пусть это будет синий цвет. Рассмотрим вершины к которым ведут эти ребра. Между ними не может быть синих ребер, так как тогда две вершины образовывали бы одноцветный треугольник с первой вершиной. Но в таком случае эти три вершины сами образовывают одноцветный треугольник. ◀

Exercise 3.0.3

Каждое из рёбер полного графа с 9 вершинами покрашено в синий или красный цвет. Докажите, что либо есть четыре вершины, все рёбра между которыми - синие, либо есть три вершины, все рёбра между которыми - красные.

Решение.

Выберем произвольные 6 вершин. Среди них должен быть треугольник все ребра которого одного цвета. Либо эти ребра красного цвета и тогда реализуется второй случай, либо все ребра синие.

Exercise 3.0.4

Каждое из рёбер полного графа с 17 вершинами покрашено в один из трёх цветов. Докажите, что есть три вершины, все рёбра между которыми - одного цвета.

Решение.

Выберем произвольную вершину. Ее степень 16, значит, по принципу Дирихле, от нее отходят не менее 6 ребер одного цвета. Пусть этот цвет синий. Рассмотрим полный граф на 6 вершинах, к которым ведут эти ребра. Если в графе есть синее ребро, то найдутся три вершины соединенные ребрами синего цвета. Тогда допустим, что в этом подграфе нет синих ребер. Тогда он должен быть окрашен в два цвета, а в полном двуцветном графе на 6 вершинах найдется одноцветный треугольник. ◀

Exercise 3.0.5

Каждое из рёбер полного графа с 18 вершинами покрашено в один из двух цветов. Докажите, что есть четыре вершины, все рёбра между которыми - одного цвета.

Решение.

Рассмотрим произвольную вершину. По принципу Дирихле, от нее отходят не менее 9 ребер одного цвета. Пусть этот цвет красный. В графе на 9 вершинах, к которым идут эти ребра, найдется три вершины, все ребра между которыми -

красные или четыре вершины все ребра между которыми синие. В каждом случае мы получим клику на 4 вершинах, все ребра между которыми одного цвета. ◀

Exercise 3.0.6

В правильном 21-угольнике шесть вершин покрашены в красный цвет, а семь вершин - в синий. Обязательно ли найдутся два равных треугольника, один из которых с красными вершинами, а другой - с синими?