

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

JUNIE 2023

TEGNIESE WETENSKAPPE: CHEMIE V2

PUNTE: 75

TYD: 1½ uur

Hierdie vraestel bestaan uit 14 bladsye, insluitend 2 gegewensblaaie.

INSTRUKSIES EN INLIGTING

- 1. Skryf jou NAAM en VAN in die toepaslike spasies in die ANTWOORDEBOEK.
- 2. Beantwoord AL die vrae.
- 3. Begin elke vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 5. Jy mag toepaslike wiskundige instrumente gebruik.
- 6. Nommer die antwoorde volgens die nommeringstelsel wat in die vraestel gebruik word.
- 7. Toon ALLE formules en substitusies in ALLE berekeninge.
- 8. Rond jou finale numeriese antwoord tot 'n minimum van TWEE desimale plekke af.
- 9. Gee kort motiverings, verduidelikings, ensovoorts, waar nodig.
- 10. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 11. Skryf netjies en leesbaar.

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommers (1.1 tot 1.5) in die ANTWOORDEBOEK neer, byvoorbeeld 1.6 E.

1.1 Watter EEN van die volgende kombinasies is korrek aangaande die naam van die funksionele groep en homoloë reeks?

	Naam van die funksionele groep	Homoloë reeks
Α	Karboksiel-groep	Ketoon
В	Formiel-groep	Karboksielsuur
С	Karboksiel-groep	Aldehied
D	Hidroksiel-groep	Alkohol

(2)

1.2 Beskou die struktuurformule van die verbinding hieronder en identifiseer die korrekte IUPAC-naam en die tipe koolwaterstof:

- A Pent-3-een; versadig
- B Pent-2-een; onversadig
- C 2-Pentaan; onversadig
- D Pent-2-een; versadig (2)

1.3 Bestudeer die organiese reaksie hieronder en beantwoord die volgende vrae.

$$CH_4 + O_2 \longrightarrow CO_2 + Y$$

Die stof wat deur Y verteenwoordig word is ..., en dit is 'n ... verbinding.

- A water; organiese
- B water; anorganiese
- C koolstof; organiese
- D metaan; anorganiese (2)
- 1.4 Watter van die volgende stelle antwoorde is die korrekte rangskikking van halfgeleiers?

	Valens- elektrone	Rangskikking van kovalente bindings	Element	Stof
Α	4	tetrahedries	koolstof	diamant
В	4	heksagonaal	diamant	koolstof
C	5	tetrahedries	arseen	fosfor
D	5	pentagonaal	germanium	silikon

(2)

- 1.5 Ekstrinsieke en intrinsieke halfgeleiers:
 - (i) Tydens doktering word 'n onsuiwerheid tot 'n halfgeleier bygevoeg om die geleidingsvermoë van die halfgeleier te verbeter
 - (ii) Tydens doktering word 'n katalisator tot 'n halfgeleier bygevoeg om die geleidingsvermoë van die halfgeleier te verbeter
 - (iii) 'n Klein aantal protone verkry genoegsame hitte-energie om die energiegaping (vanaf die valensband) na die geleidingsband te oorbrug
 - (iv) Halfgeleiers word met 'n trivalente onsuiwerheid gedokteer
 - (v) 'n Klein aantal elektrone verkry genoegsame hitte-energie om die energiegaping (vanaf die valensband) na die geleidingsbandte oorbrug.

Watter EEN van die volgende kombinasies hieronder is KORREK?

- A (i) en (ii)
- B (ii) en (iii)
- C (i) en (iv)
- D (iii) en (iv) (2) [10]

VRAAG 2 (Begin op 'n NUWE bladsy.)

Beskou die organiese verbindings wat deur die letters **A** tot **G** hieronder voorgestel word en beantwoord die vrae wat volg.

Α	Heks-2-een	Е	2-metielpropan-2-ol
В	H H H H H H H—C - C—C—C—C—C—H H H H H H H	F	H H H O H H
С	H H H H H C C C C C C H H O H H H O H	G	H H H H O H-C-C-C-C-C-C-C-O-H
D	H H H H H H H H H H H H H H H H H H H	Н	H O H H—C—C—C—H H

- 2.1 Definieer die term *koolwaterstof*. (2)
- 2.2 Skryf die letter(s) neer wat die volgende verteenwoordig:
 - 2.2.1 'n Sekondêre alkohol (1)
 - 2.2.2 'n Versadigde koolwaterstof (1)
 - 2.2.3 Funksionele isomere (2)
 - 2.2.4 Koolwaterstowwe (1)
 - 2.2.5 Posisionele isomere (2)

6		TEGNIESE WETENSKAPPE V2	(EC/JUNIE 2023)						
2.3	Skryf (Skryf die IUPAC-naam van die volgende neer:							
	2.3.1	D	(1)						
	2.3.2	н	(1)						
	2.3.3	F	(2)						
2.4	Skryf ı	neer die:							
	2.4.1	STRUKTURELE formule van verbinding A	(2)						
	2.4.2	STRUKTURELE formule van die funksionele groep van verbinding ${\bf D}$	(1)						
	2.4.3	MOLEKULÊRE formule van verbinding B	(1)						
	2.4.4	Die naam van 'n ketoon	(1)						
	2.4.5	STRUKTURELE formule van verbinding E	(2) [20]						

(1)

(1) [15]

VRAAG 3 (Begin op 'n NUWE bladsy.)

3.6.2 laagste smeltpunt

3.6.3 hoogste kookpunt

Studente neem die dampdruk van drie (3) organiese verbindings van 'n homoloë reeks met 'n algemene formule C_nH_{2n+2}. Hierdie drie organiese verbindings word deur A, B en C verteenwoordig. Die aantal koolstof-atome van hierdie organiese verbindings is in die gebied tussen 3 en 5 koolstof-atome. Hulle resultate is in die volgende grafiek saamgevat:

MOLEKULÊRE MASSA (g.mol-1)

3.1 Definieer die term homoloë reeks. (2)3.2 Watter neiging kan vanaf die grafiek afgelei word? (2)3.3 Identifiseer die tipe intermolekulêre kragte wat teenwoordig tussen die molekules van hierdie organiese verbindings is. (1) 3.4 Skryf die name van die verbindings neer wat in die grafiek deur die volgende letters verteenwoordig word: 3.4.1 (1) Α 3.4.2 (1) 3.4.3 **C** (1) Verduidelik die verskille in die dampdruk van verbindings B en C. 3.5 MOLEKULÊRE MASSAS. die STERKTE VAN DIE INTERMOLEKULÊRE KRAGTE en DIE ENERGIE BENODIG. (4) 3.6 Watter verbinding het die ...? (Skryf slegs A, B of C.) hoogste viskositeit 3.6.1 (1)

VRAAG 4 (Begin op 'n NUWE bladsy.)

Die tabel hieronder toon die kookpunte van vier organiese verbindings wat verteenwoordig word deur die letters **A** tot **D**, wat van vergelykbare molekulêre massa is.

	Verbinding	Molekulêre massa	Kookpunt (°C)
Α	Butaan	58	0
В	Propanol	58	49
С	Propan-1-ol	60	97
D	Etanoësuur	60	118

- 4.1 Watter verbinding kan as brandstof in gasstowe gebruik word? (1)
- 4.2 Verduidelik jou antwoord in VRAAG 4.1. (2)
- 4.3 Hoe sal die kookpunt van 2-metielpropaan met dié van verbinding **A** vergelyk?

Skryf slegs HOËR AS, LAER AS of GELYK AAN.

Verwys na die MOLEKULÊRE STRUKTURE, INTERMOLEKULÊRE KRAGTE en die ENERGIE benodig om jou antwoord te verduidelik. (4)

- 4.4 Wat is die verwantskap tussen verbinding **A** en 2-metielpropaan? Verduidelik. (2)
- 4.5 Beskou die dampdruk van verbindings **B** en **C**. Hierdie verbindings het verskillende dampdruk.
 - 4.5.1 Gee 'n rede vir hierdie verskil in dampdruk deur te verwys na die intermolekulêre kragte wat in ELK van hierdie verbindings teenwoordig is. (4)

Watter EEN van die verbindings **B** of **C** het die:

- 4.5.2 Hoogste dampdruk (1)
- 4.5.3 Hoogste smeltpunt (1)
- 4.5.4 Laagste viskositeit (1) [16]

VRAAG 5 (Begin op 'n NUWE bladsy.)

Beskou die vloeidiagram hieronder en beantwoord die vrae wat volg.

5.1 Skryf neer die tipe reaksie wat deur die volgende verteenwoordig word:

- 5.2 Skryf vir Reaksie **E** die volgende neer:
 - 5.2.1 Die homoloë reeks waaraan verbinding **P** behoort (1)
 - 5.2.2 EEN reaksie-toestand (1)
 - 5.2.3 Die gebalanseerde chemiese vergelyking deur van STRUKTUUR-FORMULES gebruik te maak (3)
- 5.3 Skryf die struktuurformule van verbinding **Q** neer. (2) **[10]**

VRAAG 6 (Begin op 'n NUWE bladsy.)

'n p-n Verbinding word gevorm wanneer 'n halfgeleier p-tipe materiaal met 'n halfgeleier n-tipe materiaal verbind word.

6.1 Verskaf die byskrifte van die diagram van 'n p-n verbinding.

TOTAAL: 75

[4]

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

DATA FOR TECHNICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR TEGNIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAAM/ <i>NAME</i>	SIMBOOL/SYMBOL	WAARDE/ <i>VALUE</i>
Avogadro se konstante		
Avogadro's constant	N_A	6,02 × 10 ²³ mol ⁻¹
Molêre gaskonstante		
Molar gas constant	R	8,31 J·K ⁻¹ ·mol ⁻¹
Standaarddruk		
Standard pressure	pθ	1,013 × 10⁵ Pa
Molêre gasvolume teen STD		
Molar gas volume at STP	V_{m}	22,4 dm³·mol⁻¹
Standaardtemperatuur		
Standard temperature	Τ ^θ	273 K

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$ or/of	$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	pH= -log[H ₃ O ⁺] K _{w =} [H ₃ O ⁺][OH ⁻] = 1x10 ⁻¹⁴
$n = \frac{N}{N_A}$ or/of	$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	at /by 298K
$n = \frac{V}{V_m}$		

$$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} \, / \, E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$$

$$E^{\theta}_{cell} = E^{\theta}_{reduction} - E^{\theta}_{oxidation} \, / \, E^{\theta}_{sel} = E^{\theta}_{reduksie} - E^{\theta}_{oksidasie}$$

$$E^{\theta}_{cell} = E^{\theta}_{oxidising \ agent} - E^{\theta}_{reducing \ agent} \ / \ E^{\theta}_{sel} = E^{\theta}_{oksideermiddel} - E^{\theta}_{reduseermiddel}$$

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

(EC/JUNIE 2023)

1 (l)		2 (II)	3	3	4	•	5 KEV/ 9	6 SLEUTEL	7	8 Atoom	9 getal	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
2,1 H 1							KL17 C	LLOTL		Atomic r	,									2 He 4
7	1,5	4 Be 9						ktronega ectronega		_ 6	u -	_Simbo			2.0 B 11	6 C 12	7 0: N 14	3.5 0 16	4.0 4.0 8 b 19	10 Ne 20
23	1,2	12 Mg 24		Ţ					Appro	derde rel	elative	atomic ı	mass	ı	13 - Al 27	[∞] Si 28	15 7 P 31	5. S 32	17 O Cl 35,5	18 Ar 40
39	1,0	20 Ca 40	1,3	45	7.5	18	9. 7 51 23	9 Cr 52	25 Mn 55 25	26 Fe 56	27 8. Co 59	28 8. Ni 28	63,5 63,5	9 2 2 65	9 Ga 70	∞ Ge 73	33 O As 75	75 Se 79 34	35 8. Br 80	36 Kr 84
86	1,0	38 Sr 88	1,2	39 Y 89	4, 7	10 Zr 91	92	∞. Mo 96 96	6. Lc	744 77 Ru 101	45 Rh 103	106	108	48 Cd 112	49 In 115	<u>چ</u> 50 Sn 119	51 ල Sb 122	52 7 Te 128	53 5; I 127	54 Xe 131
55 Cs 133	6'0	56 Ba 137	ı	57 La I 39	7 F	72 -If 79	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 ∞ Tℓ 204	∞ Pb 207	83 6. Bi 209	0.5 Po	7.5 At	86 Rn
87 Fr	6'0	88 Ra 226		89 Ac			58 Ce	59 Pr	60 Nd	61 Dm	62 Sm	63 Eu	64 Gd	65 Tb	66	67 Ho	68 Er	69 Tm	70 Yb	71
						-	140 90 Th	91 Pa	144 92 U	93 Np	150 94 Pu	152 95 Am	157 96 Cm	159 97 Bk	Dy 163 98 Cf	165 99 Es	167 100 Fm	169 101 Md	173 102 No	Lu 175 103 Lr
							232		238											

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD REDUKSIEPOTENSIALE

TABEL 4A: STANDAARD REDUKSIEPOTENSIALE								
Half-reactions	/Hal	freaksies	Ε ^θ (V)					
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87					
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81					
H ₂ O ₂ + 2H ⁺ +2e ⁻	=	2H₂O	+1,77					
MnO ₄ + 8H+ + 5e ⁻	=	$Mn^{2+} + 4H_2O$	+ 1,51					
$C\ell_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36					
Cr ₂ O ₇ ²⁻ + 14H+ + 6e ⁻	=	$2Cr^{3+} + 7H_2O$	+ 1,33					
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H ₂ O	+ 1,23					
MnO ₂ + 4H ⁺ + 2e ⁻	=	$Mn^{2+} + 2H_2O$	+ 1,23					
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20					
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07					
NO ₃ + 4H ⁺ + 3e ⁻	=	$NO(g) + 2H_2O$	+ 0,96					
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85					
Ag+ + e-	=	Ag	+ 0,80					
NO ₃ + 2H+ + e-	=	$NO_2(g) + H_2O$	+ 0,80					
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77					
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H_2O_2	+ 0,68					
l ₂ + 2e ⁻	=	2l ⁻	+ 0,54					
Cu+ + e-	=	Cu	+ 0,52					
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45					
2H ₂ O + O ₂ + 4e ⁻	=	40H ⁻	+ 0,40					
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34					
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17					
Cu ²⁺ + e ⁻	=	Cu ⁺	+ 0,16					
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15					
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14					
2H⁺ + 2e⁻	+	H ₂ (g)	0,00					
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06					
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13					
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14					
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27					
Co ²⁺ + 2e ⁻	=	Co	- 0,28					
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40					
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41					
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44					
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74					
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76					
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83					
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91					
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18					
$A\ell^{3+} + 3e^{-}$	=	Αł	- 1,66					
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36					
Ma ⁺ + e ⁻	=	Na	- 2,71					
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87					
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89					
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90					
Cs ⁺ + e ⁻	=	Cs	- 2,92					
K ⁺ + e ⁻	=	K	- 2,92 - 2,93					
Li ⁺ + e ⁻	÷	Li	- 3,05					

Increasing reducing ability/Toenemende reduserende vermoë

Kopiereg voorbehou

Increasing oxidising ability/Toenemende oksiderende vermoë

Blaai om asseblief

Kopiereg voorbehou

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD REDUKSIEPOTENSIALE

TABEL 4B: STANDAARD REDUKSIEPOTENSIALE							
Half-reactions	s/Hal	freaksies	Ε ^θ (V)				
Li+ + e⁻	=	Li	- 3,05				
K+ + e⁻	=	K	- 2,93				
Cs+ + e-	=	Cs	- 2,92				
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90				
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89				
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87				
Na⁺ + e⁻	=	Na	- 2,71				
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36				
Al ³⁺ + 3e ⁻	=	Al	- 1,66				
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18				
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91				
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83				
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76				
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74				
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44				
Cr ³⁺ + e ⁻ Cd ²⁺ + 2e ⁻	=	Cr ²⁺	- 0,41				
Co ²⁺ + 2e Co ²⁺ + 2e ⁻	#	Cd Co	- 0,40				
Ni ²⁺ + 2e ⁻	=	Ni	- 0,28 0.27				
Sn ²⁺ + 2e ⁻	=	Sn	- 0,27 - 0,14				
		Pb					
Pb ²⁺ + 2e ⁻ Fe ³⁺ + 3e ⁻	#		- 0,13				
		Fe	- 0,06				
2H+ + 2e-	=	H₂(g)	0,00				
S + 2H ⁺ + 2e ⁻ Sn ⁴⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14				
Cu ²⁺ + e ⁻	#	Sn²+ Cu⁺	+ 0,15				
2-	=	SO ₂ (g) + 2H ₂ O	+ 0,16				
SO ₄ + 4H ⁺ + 2e ⁻ Cu ²⁺ + 2e ⁻	÷	Cu	+ 0,34				
2H ₂ O + O ₂ + 4e ⁻	=	40H ⁻	+ 0,40				
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45				
Cu ⁺ + e ⁻	=	Cu	+ 0,52				
I ₂ + 2e ⁻	=	2I ⁻	+ 0,54				
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H_2O_2	+ 0,68				
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77				
NO ₃ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80				
Ag+ + e-	=	Ag	+ 0,80				
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85				
NO ₃ + 4H ⁺ + 3e ⁻	=	$NO(g) + 2H_2O$	+ 0,96				
Br ₂ (ℓ) + 2e ⁻	=	2Br ⁻	+ 1,07				
Pt ²⁺ + 2 e ⁻	=	Pt	+ 1,20				
MnO ₂ + 4H ⁺ + 2e ⁻	=	$Mn^{2+} + 2H_2O$	+ 1,23				
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H ₂ O	+ 1,23				
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33				
C ₂ (g) + 2e ⁻	=	2Cℓ ⁻	+ 1,36				
MnO ₄ + 8H ⁺ + 5e ⁻	=	Mn ²⁺ + 4H ₂ O	+ 1,51				
H ₂ O ₂ + 2H ⁺ +2 e ⁻	=	2H₂O	+1,77				
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81				
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87				

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë