P2 de Álgebra Linear I-2010.1

Data: 15 de maio de 2010

Nome:	Matrícula:
Assinatura:	Turma:

Caderno de Respostas

Preencha CORRETA e COMPLETAMENTE todos os campos acima (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota ZERO.

Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Respostas a caneta. Respostas a lápis não serão corrigidas e terão nota <u>ZERO</u>.

Duração: 1 hora 50 minutos

Q	1.a	1.b	2.a	2.b	2.c	3.a	3.b	3.c	soma
\mathbf{V}	1.5	2.0	1.0	1.0	1.5	1.0	1.0	1.0	10.0
N									
\mathbf{R}									

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas e resoluções.
- Escreva de forma clara, ordenada e legível.
- Somente serão aceitas respostas devidamente <u>JUSTIFICADAS</u>.

Respostas a lápis não serão corrigidas e terão nota ZERO.

Questão 1)

Considere a matriz,

$$A = \begin{bmatrix} 2 & c & c \\ c & c & c \\ 8 & 7 & c \end{bmatrix},$$

onde $c \in \mathbb{R}$.

- a) Determine todos os valores de c para os quais a matriz A $n\tilde{a}o$ é inversível.
- b) Ache a inversa de A quando c = 8.

Atenção: 1 erro na matriz inversa, perde 0.5 pto.; 2 erros perde 1 pto.; 3 ou mais erros zera o item.

Respostas:

(a)

(b)

Resolução:

Questão 2)

Considere a transformação linear $T:\mathbb{R}^3\to\mathbb{R}^2$ tal que T(1,0,0)=(1,1), T(0,1,0)=(0,3) e T(1,1,1)=(2,8).

- a) Ache a matriz de T.
- **b)** T é injetora? Explique.
- c) Determine $T(\mathbb{V})$, a imagem de $\mathbb{V}=\{(x,y,z)\in\mathbb{R}^3:x+y+z=0\}$ sob a transformação T.

Respostas:

(a)

$$[T] =$$

(b)

Ι.	

(c)

$$T(\mathbb{V}) =$$

Resolução:

Questão 3)

Decida se as afirmações a seguir são Verdadeiras ou Falsas (**Atenção**: no caso Verdadeiro, prove a afirmação e no caso Falso, exiba um contra-exemplo concreto).

- a) Toda transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ é sobrejetora.
- **b)** Se o conjunto $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ é linearmente independente, então o mesmo vale para $\{\overrightarrow{v_2} \overrightarrow{v_3}, \overrightarrow{v_1} \overrightarrow{v_3}, \overrightarrow{v_1} \overrightarrow{v_2}\}$.
- c) Não existe subespaço vetorial bidimensional de \mathbb{R}^3 que não contém nenhum dos vetores $\overrightarrow{\mathbf{i}}$, $\overrightarrow{\mathbf{j}}$, e $\overrightarrow{\mathbf{k}}$.

Respostas:

(a)

(b)

Resolução: