Lecture 6

Local extrema and derivatives

Definition 1. Let $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$. We say that f

- attains a local maximum (local minimum) at $c \in A$: if there exists $V \in \mathcal{V}(c)$ such that c is a maximum point (minimum point) for $f|_{A\cap V}$. In this case c is called a local maximum point (minimum point) for f.
- attains a local extremum at $c \in A$: if it attains either a local maximum or a local minimum at c. In this case c is called a local extremum point for f.

Theorem 1 (Fermat). Let $a, b \in \overline{\mathbb{R}}$ with a < b, $f : (a, b) \to \mathbb{R}$, and $c \in (a, b)$. If f has a derivative at c and f attains a local extremum at c, then f'(c) = 0.

Remark 1. Let $a, b \in \overline{\mathbb{R}}$ with $a < b, f : (a, b) \to \mathbb{R}, c \in (a, b)$, and suppose that f has a derivative at c

$$f'(c) = 0$$
 f attains a local extremum at c

Remark 2. The conclusion in Fermat's Theorem may not hold if

- f is not assumed to have a derivative at c:
- the open interval is replaced by a closed one:

Theorem 2 (Darboux). Let $a, b \in \mathbb{R}$, a < b and let $f : [a, b] \to \mathbb{R}$ be differentiable. If $\gamma \in \mathbb{R}$ satisfies $f'(a) < \gamma < f'(b)$ or $f'(b) < \gamma < f'(a)$, then there exists a point $c \in (a, b)$ such that $f'(c) = \gamma$.

Remark 3. The derivative of a differentiable function is not always continuous. Take $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Definition 2. A function is called *continuously differentiable* if it is differentiable and its derivative is continuous.

Theorem 3 (Rolle). Let $a, b \in \mathbb{R}$, a < b and $f : [a, b] \to \mathbb{R}$. If f is continuous on [a, b], differentiable on (a, b) and f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

Theorem 4 (Mean Value Theorem, Lagrange). Let $a, b \in \mathbb{R}$, a < b and $f : [a, b] \to \mathbb{R}$. If f is continuous on [a, b] and differentiable on (a, b), then there exists $c \in (a, b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

Theorem 5 (Generalized Mean Value Theorem, Cauchy). Let $a, b \in \mathbb{R}$, a < b and $f, g : [a, b] \to \mathbb{R}$. If f, g are continuous on [a, b] and differentiable on (a, b), then there exists $c \in (a, b)$ such that

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

Higher order derivatives

Definition 3. Let $A \subseteq \mathbb{R}$, $c \in A \cap A'$ and $f : A \to \mathbb{R}$. We say that f is twice differentiable at c if $\exists V \in \mathcal{V}(c)$ such that f is differentiable on $A \cap V$ and f' is differentiable at c. If f is twice differentiable at c, then we write $f^{(2)}(c) = f''(c) = (f')'(c)$.

In general, for $n \geq 2$, we say that f is n-times differentiable at c if $\exists V \in \mathcal{V}(c)$ such that f is (n-1)-times differentiable on $A \cap V$ and $f^{(n-1)}$ is differentiable at c. If f is n-times differentiable at c, then we write $f^{(n)}(c) = (f^{(n-1)})'(c)$.

If B is a subset of A, we say that f is n-times differentiable on B if it is n-times differentiable at every point of B. In this case, the function $f^{(n)}: B \to \mathbb{R}, x \in B \mapsto f^{(n)}(x)$ is called the n^{th} derivative of f on B.

We say that f is infinitely differentiable at c if for every $n \in \mathbb{N}$, f is n-times differentiable at c. Notation: $f^{(0)} = f$, $f^{(1)} = f'$.

Local extrema and derivatives (revisited)

Theorem 6 (Second Derivative Test). Let $a, b \in \mathbb{R}$ with a < b, $f : (a, b) \to \mathbb{R}$, and $c \in (a, b)$. If f is twice differentiable at c, f'(c) = 0, and $f''(c) \neq 0$, then

- (i) if f''(c) > 0, then f attains a local minimum at c.
- (ii) if f''(c) < 0, then f attains a local maximum at c.

Remark 4. If f''(c) = 0, the Second Derivative Test gives no information.

Example 1. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 - 9x^2 + 15x + 2.$

Taylor polynomials

Let $I \subseteq \mathbb{R}$ be a nonempty interval, $x_0 \in I$, $f: I \to \mathbb{R}$ and $n \in \mathbb{N}_0$. Suppose that f is n-times differentiable at x_0 .

<u>Goal</u>: Approximate f by finding a polynomial function $T_n : \mathbb{R} \to \mathbb{R}$ of degree (at most) n such that

$$T_n(x_0) = f(x_0), \quad T'_n(x_0) = f'(x_0), \quad T''_n(x_0) = f''(x_0), \quad \dots, \quad T_n^{(n)}(x_0) = f^{(n)}(x_0).$$
 (1)

We are looking for T_n of the form

$$T_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \ldots + a_n(x - x_0)^n.$$

Clearly, from (1), we obtain that

$$a_0 = f(x_0), \quad a_1 = f'(x_0), \quad a_2 = \frac{f''(x_0)}{2!}, \quad \dots, \quad a_n = \frac{f^{(n)}(x_0)}{n!}.$$

The polynomial function $T_n : \mathbb{R} \to \mathbb{R}$,

$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$
 (2)

is called the n^{th} Taylor polynomial of f at the point x_0 .

Notation: The complete notation for the n^{th} Taylor polynomial of f at the point x_0 would be $T_n(f;x_0)(x)$. However, to simplify the writing we keep the notation $T_n(x)$.

Remark 5. There is a unique polynomial function of degree (at most) n that satisfies (1).

We are interested to establish the quality of the approximation of f at points in I near x_0 . To this end we consider the function $R_n: I \to \mathbb{R}$, $R_n(x) = f(x) - T_n(x)$ called the remainder of the approximation of f by T_n around x_0 (in other words, R_n represents the error between f and T_n). If R_n is given explicitly, the formula $f(x) = T_n(x) + R_n(x), \forall x \in I$, is called Taylor's formula.

Theorem 7 (Taylor-Lagrange). Let $I \subseteq \mathbb{R}$ be an interval, $n \in \mathbb{N}_0$ and $f: I \to \mathbb{R}$ be (n+1)-times differentiable. Then $\forall x, x_0 \in I$ with $x \neq x_0$, there exists a point c strictly between x and x_0 such that

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}.$$
 (3)

In other words, $f(x) = T_n(x) + R_n(x)$, where

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$
 (4)

Remark 6. (i) The above formula (4) for the remainder term R_n is known as the Lagrange form (there are also other expressions of the remainder).

(ii) If we can bound $|f^{(n+1)}(c)|$, then we can estimate the error of approximation of f(x) by $T_n(x)$.

Local extrema and derivatives (revisited once again)

Corollary 1. Let $a, b \in \mathbb{R}$ with a < b, $f : (a, b) \to \mathbb{R}$, and $c \in (a, b)$. If f is n-times differentiable $(n \in \mathbb{N}, n \ge 2)$ at c, $f'(c) = f''(c) = \ldots = f^{(n-1)}(c) = 0$, and $f^{(n)}(c) \ne 0$, then

- (i) if n is even and $f^{(n)}(c) > 0$, then f attains a local minimum at c.
- (ii) if n is even $f^{(n)}(c) < 0$, then f attains a local maximum at c.
- (iii) if n is odd, then f does not attain a local extremum at c.

Taylor series

Definition 4. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to R$ be infinitely differentiable. For $x_0 \in I$ and $x \in \mathbb{R}$, the series

$$\sum_{n>0} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

is called the Taylor series of f around x_0 .

<u>Problem</u>: At which points x is the above series convergent? If so, is its sum f(x) (when $x \in I$)?

Definition 5. If $J \subseteq I$ is a nonempty set such that for all $x \in J$, the Taylor series of f around x_0 converges and its sum is f(x), i.e.,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n,$$
 (5)

we say that f can be expanded as a Taylor series around x_0 on J. In this case, the formula (5) is called the Taylor series expansion of f(x) around x_0 .

Remark 7. f can be expanded as a Taylor series around x_0 on J if and only if

$$\lim_{n \to \infty} R_n(x) = 0, \quad \forall x \in J.$$

