Specification-based tecting-

input conditions
include subdomains
invadid - 11 -

Equivalence Tesding.

1. Normal Eq. testing.

Several test cases
from each valid
subdomein

2. Robust Eq. tesding. select test cases from invalid subdomeins

l'input veriable l'input condition invalid | valid invalid 1. Normal Eq. tests (valid tubdemain) T2: X1=35 Z. Robust Eq. tests (invaluel tubolomoins) Th: X1 =-10

multiple input variables multiple input conductions

2 input conditions

20 6 X 1 6 10 D

Normal Eq. tests 71: X1 = 85, x2 = 72 72: X1 = 42, X2 = 120 Robust Fq. tests

73: X1=10, X2=72T4: X1=125, X2=72T5: X1=64, X2=5T6: X1=64, X2=210

Zinput variables 20 \(\times \) \(\times

10 5 X 2 5 200 10 5 X 2 5 10 0 100 6 X 2 6 200

XI: 3 volid subdomains X2: 2 valid - LL

I valid subdomeins

Weak Normal Eq. Tesking Strong Normal Eq. Tesking .

T1: X1=25, X2=64 (VI,VM) 3:2=6 tests

T2: X1=50, X2=125 (VZ,VS) T1:

T3: X1=75, X2=64 (V3) T3:

Th: X1=50, X2=125

T5: X1=50, X2=125

T6: X1=70, X2=120

Normal Eq. tesding.

- 1. Weah Hormal Eq. tesding. 1-dim subdomains.
- 2. strong Normal Ep. tesding. multi-dim subdomesing.

Weak Normal Fp. testing.

assumption: input variables are not related

Tests are relected from 1-din subdomains.

Strong Hormal Eq. tesding

1. input variables are related
2. multi-dim subdomains
select tests from each
multi-dim subdomain.

5 input variables valid subdomains XI: 4) Weak Normal Eq. tests 4t2t5t2t3 = 16ubelomeins 5 = # Frests < 16 Strong Normal Ep. tests 4.2.5.2.3= 240 J-dim sub dom eins

min # oftests = 240

Integer array dimension declaration

int n(d [,d]...)

n is the symbolic name of the array d is a dimension declaration

Symbolic name can have 1-6 letters or digits, where the first character must be a letter.

The minimum # of dimensions #

The maximum # of dimensions = 7

The format of a dimension declaration

[lb:] ub

lb: lower bound; ub: upper bound

The bound may be in the range

-65,534 to +65,535

If Ib is not specified, Ib =1

ub ≥ lb

input conditions	valid sub-domain(s)	invalid sub-domain(s)
size of array name	1 - 6 1 🗸	0; 2 > 6 3
array name has letters/digits	has letters 4 / has digit —5	something 6 else
array name starts wit	yes 7	no 8 .
# of dimensions	1 - 79	0; 10 > 7 11
lower bound	-65,534 - +65,535 12	<-65,534 - (13)>+65,535(14)
upper bound	-65,534 - +65,535 15	<-65,534 - 16>+65,535(17)
C2 Aower bound specified	yes —18 Vno —19 V	
upper bound to lower bound	ub > lb 20 ✓ ub = lb-21	ub < lb (22)

Integer array Seclaration Weak Normal Eq. tests T1: int A(1:5) T2: int A1(1:5)

T3: int ALS)

Th: int A (5:5)

min # of tests

T1: int A1(1:5)

T2: int A(1)

Strong Normal Eq. tests	
C1, C2, C3 2.2.2=8 valid jubdome 8 test5	टा
Cliarray has no (A) dipit yes (B)	
C2: lower bound yes A specified no B	
C3: Upper-bound Jub=16 B))
Assumption: C1,C2,C3: are Ineleted	

Test	C1	CZ	C 3	Tests
)	A	A	A	in+ A(1:5)
2	A	A	B	int A(5:5)
3	A	3	A-	intA(s)
4	A	3	B	int A (1)
- 5	B	A	A	int A1(1:5)
-6	B	B	A	int A1 (5.5)
7	В	A	B	lint Al (5)
8	B	3	B	[int A1 (1)

Observations I: Cl is not related to CZ II al is not related to 63 III CZ is related to 63 Strong Normal Ep. tests. We should counder CZ and L3: Z-dim subdomain

subdomain

C1: - 1-dim

C2: lower bound 1925 (A)

4 peapied no (B)

C3: ub do lb — ub>lb (A)

vb=lb (B)

C1: hes a dipit = yesv

nov

	CZ	<i>C</i> 3	Tests
TI	A	A	int A(1:5)
T2	A	B	int A1 (5:5)
T3	В	A	intA(5)
TH	В	B	int A(1)

Robust Eq. testing. 1-dim subdomain 1 variable 20 LX1 6 100 invalid 1 invalie valid 2 invertid tubdomesins T1: X1 = 12)

T2: X1 = 10

multiple input variables multiple input conditions

 X_1, X_2 20 5 X1 5 100 10 6 X2 6 200

XI: invalid RZ: valid

IVI: T/: X/=10, X2 = 75 ive: T2: X1=125, K2=75

X2: invelid

UN3: XL=65, XZ=5 ovn: X1=65, X2=225

Robust Eq. tesding.

- 1. Weak Robust Eq. tests. 1-dim invalid sub-domains
- 2. Strong Robust Eq. tests multi-dim invalid subslomeing