Week 8 UTS Laporan Hasil Tutorial

1. Tujuan

Tujuan dari tutorial ini adalah untuk memahami cara memprogram robot **e-puck** di Webots agar dapat berputar di tempat dengan menggunakan Python. Tutorial ini juga melatih kemampuan implementasi dasar pengendalian motor pada robot simulasi.

2. Persiapan

Sebelum menjalankan simulasi, langkah-langkah berikut telah dilakukan:

- 1. Instalasi Webots: Webots telah diinstal di Windows, dan contoh dunia telah dimuat.
- 2. **Menambahkan Robot e-puck:** Robot e-puck ditambahkan ke dunia simulasi melalui antarmuka **Add Node**.
- 3. Konfigurasi Controller: Menulis kode Python yang mengatur pergerakan motor robot.

3. Kode Program

Kode Python berikut digunakan untuk mengatur pergerakan robot e-puck agar berputar di tempat:

```
from controller import Robot
# Inisialisasi robot
robot = Robot()
# Waktu langkah simulasi (milidetik)
TIME_STEP = int(robot.getBasicTimeStep())
# Mendapatkan referensi motor kiri dan kanan
left_motor = robot.getDevice("left wheel motor")
right_motor = robot.getDevice("right wheel motor")
# Mengatur motor ke mode velocity (kecepatan)
left_motor.setPosition(float('inf'))
right_motor.setPosition(float('inf'))
# Kecepatan roda untuk berputar
left_motor.setVelocity(2.0) # Roda kiri bergerak maju
right_motor.setVelocity(-2.0) # Roda kanan bergerak mundur
# Loop simulasi
while robot.step(TIME_STEP) != -1:
 pass # Robot terus berputar di tempat
```

4. Hasil Simulasi

1. Robot Berputar di Tempat:

- o Robot e-puck berhasil berputar di tempat seperti yang diinginkan.
- o Roda kiri bergerak maju dengan kecepatan 2.0, sementara roda kanan bergerak mundur dengan kecepatan -2.0.

2. Observasi Gerakan:

- o Kecepatan roda menghasilkan rotasi konstan dengan putaran yang stabil.
- Robot tetap berada di satu lokasi tanpa bergerak maju atau mundur.

3. Respons Program:

o Kode berjalan tanpa error, dan robot merespons instruksi dengan baik.

5. Analisis

1. Efisiensi Kode:

- o Struktur kode sederhana dan fokus hanya pada pengaturan kecepatan motor.
- o Loop simulasi berjalan sesuai dengan langkah waktu yang diberikan oleh Webots.

2. Fleksibilitas:

- o Kecepatan putaran dapat diubah dengan menyesuaikan nilai setVelocity().
- Pola gerakan lain, seperti rotasi lebih cepat atau lebih lambat, dapat dibuat dengan cara serupa.

6. Kesimpulan

Melalui tutorial ini, kami berhasil:

- 1. Mengonfigurasi motor robot e-puck untuk berputar di tempat menggunakan Python.
- 2. Memahami cara kerja pengendalian motor di Webots dengan metode setVelocity().
- 3. Melakukan simulasi rotasi yang stabil dan terus-menerus.

Tutorial ini memberikan dasar yang kuat untuk membuat simulasi gerakan lebih kompleks di masa depan. Dengan pengetahuan ini, pengendalian robot lain di Webots juga menjadi lebih mudah.

7. Rekomendasi

1. Eksperimen Lebih Lanjut:

Cobalah untuk membuat variasi gerakan, seperti memodifikasi kecepatan atau menambahkan logika untuk menghentikan rotasi setelah beberapa waktu.

2. **Integrasi Lanjutan:** Pelajari cara mengintegrasikan sensor untuk membuat robot lebih interaktif dalam simulasi.