

Numerical study of nonlinear full wave acoustic propagation

Roberto Velasco-Segura Pablo L. Rendón

Grupo de Acústica y Vibraciones Centro de Ciencias Aplicadas y Desarrollo Tecnológico Universidad Nacional Autónoma de México

APS DFD13-2013-000813

Westervelt equation

M. F. Hamilton and C. L. Morfey. *Model equations*, Chap. 3, in M. F. Hamilton and D. T. Blackstock, *Nonlinear acoustics*, 1998.

$$\nabla^2 p - \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} = -\frac{\delta}{c_0^4} \frac{\partial^3 p}{\partial t^3} - \frac{\beta}{\rho_0 c_0^4} \frac{\partial^2 p^2}{\partial t^2}$$

- Compressible fluid
- Nonlinearity, β
- ▶ Thermoviscous dissipation, δ
- Not restricted in direction of propagation

A finite volume method cannot be applied directly

Numerical study of nonlinear full wave acoustic propagation

R. Velasco-Segura P. L. Rendón

Mode

Numeric treatment

Validation

Against analytic solution Against another numeric result

Performance

Reformulation as conservation laws

(or balance laws)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$$

$$\frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot \left(\rho_0 \vec{u} \otimes \vec{u} + c_0^2 \mathbf{I} \left(\rho + \frac{1}{\rho_0} (\beta - 1)(\rho')^2\right)\right) = \rho_0 \delta \nabla^2 \vec{u}$$

Obtained with the same hypotheses used to obtain Westervelt equation, except for one: we didn't drop the Lagragian density term.

This equations are in the appropriate form to apply a finite volume method.

Numerical study of nonlinear full wave acoustic propagation

R. Velasco-Segura
P. L. Rendón

Model

Numeric treatment

Validation

Against analytic solution Against another numeric result

Performance

Numeric method

R. LeVeque, *Finite Volume Methods for Hyperbolic Problems*, 2002, Cambridge University Press.

We rewrite our system of equations as:

$$q_t + f'(q)q_x + g'(q)q_y = \mathcal{B}$$

Then we split it to use a fractional step method:

$$q_t = -f'(q)q_x$$

 $q_t = -g'(q)q_y$
 $q_t = \mathcal{B}$

Finite volume method used for the first and second equations, with:

- high resolution
- Roe linearization

Numerical study of nonlinear full wave acoustic propagation

R. Velasco-Segura P. L. Rendón

Model

Numeric treatment

Validation

Against analytic solution Against another numeric result

Performance

Validation against analytic solution

Taylor shock

The Taylor shock is just an hyperbolic tangent solution

$$p = \frac{-\delta}{\beta} \tanh(x - t)$$

We implemented it, in a 2D Cartesian mesh, for different:

- mesh refinements,
- ▶ propagation angles θ_T .

Then the error was evaluated, at t = 100, as

$$E = \frac{\| \text{numeric solution} - \text{reference} \|}{\| \text{reference} \|}$$

Numerical study of nonlinear full wave acoustic propagation

R. Velasco-Segura
P. L. Rendón

Model

Numeric treatment

Validation

Against analytic solution
Against another numeric result

Performance

Taylor shock, error analysis

 η is the number of cells across the shock

Numerical study of nonlinear full wave acoustic propagation

R. Velasco-Segura P. L. Rendón

Model

Numeric treatment

Validation

Against analytic solution
Against another numeric result

Performance

Validation against another numeric result

Full wave diffraction

N. Albin et. al, *Fourier continuation methods for high-fidelity simulation of nonlinear acoustic beams*, J. Acoust. Soc. Am., 132 (2012): 2371.

This kind of simulation corresponds to a High Intensity Focused Ultrasound (HIFU) system.

Numerical study of nonlinear full wave acoustic propagation

R. Velasco-Segura P. L. Rendón

Model

Numeric treatment

Validation

Against analytic solution
Against another numeric result

Performance

Against another numeric result

Comparison: maximum pressure over the propagation axis

Numerical study of nonlinear full wave acoustic propagation

R. Velasco-Segura P. L. Rendón

Model

Numeric treatment

Validation

Against analytic solution Against another numeric result

Performance

HIFU, error analysis

Numerical study of nonlinear full wave acoustic propagation

R. Velasco-Segura P. L. Rendón

Model

Numeric treatment

Validation

Against analytic solution
Against another numeric result

Performance

Performance

Our code is written C++/CUDA, it is inspired on CLAWPACK code, but it does not incorporate or depend on it.

	Device	Cores	Exec. time	
Our code	GPU C2075	448	10s	
CLAWPACK	CPU i3-550	1	10min	

	Nodes	Cores	Δχ	Exec. t.
Our code	1	448	$\lambda/82$ time dom.	31 min
Albin et al.	16?	128	$\lambda/21$ freq. dom.	14 min

Numerical study of nonlinear full wave acoustic propagation

R. Velasco-Segura P. L. Rendón

Model

Numeric treatment

Validation

Against analytic solution Against another numeric result

Performance

Conclusions

- A set of conservation laws is presented, it is model for nonlinear acoustic propagation at least as general as Westervelt equation.
- A very good agreement is observed between our numeric results and the references.
- ► Limitations of the model are observed: when amplitudes are too large solutions become complex.
- Limitations of GPU are found: memory. Then hybrid schemes should be considered: clusters of GPUs.
- Details can be found in http://arxiv.org/abs/1311.3004.
- Code will be published soon as FOSS. http://github.com/rvelseg/FiVoNAGI.

Numerical study of nonlinear full wave acoustic propagation

R. Velasco-Segura P. L. Rendón

Model

Numeric treatment

Validation

Against analytic solution Against another numeric result

Performance

Potential application: parametric acoustic array

work in progress

In collaboration with:

- Ricardo R. Bulloza
- Pablo L. Rendón
- Antonio Peréz-López
- Ricardo Dorantes
- Israel González

Boundary condition at the window:

$$g(t) = A \sin(2\pi t) \sin\left(\frac{2\pi}{16}t\right) \exp\left(-(t/72)^{10}\right)$$

$$q^{1} = g(t) + 1$$

$$q^{2} = q_{1}g(t)$$

$$q^{3} = 0$$

We expect to have experimental comparison

Numerical study of nonlinear full wave acoustic propagation

R. Velasco-Segura P. L. Rendón

Model

Numeric treatment

Validation

Against analytic solution Against another numeric result

Performance

Thank you

Numerical study of nonlinear full wave acoustic propagation

R. Velasco-Segura P. L. Rendón

Model

Numeric treatment

Validation

Against analytic solution Against another numeric result

Performance