Scribed By: Eunjung KIM Locality of First Order Logic Week 6: 1, 3 April 2025

Contents

1	Terminology	1
2	Hanf locality	2

1 Terminology

Definition 1 (Substructure). For a set U of elements of a τ -structure \mathbb{A} , the substructure of \mathbb{A} induced by U is the τ -structure \mathbb{A}' defined as follows and for each $R \in \tau$,

- the universe of \mathbb{A} is $U \cup \{c^{\mathbb{A}} \mid c \text{ is a constant symbol}\},$
- each constant symbol is interpreted as the same element as in A,
- for each predicate $R \in \tau$, R is interpreted as $R^{\mathbb{A}} \cap U^{\operatorname{ar}(R)}$.

Definition 2. For a τ -structure \mathbb{A} , the Gaifman graph $G(\mathbb{A})$ of \mathbb{A} is a graph whose vertex set is the universe of \mathbb{A} , and there is an edge (without any orientation) between a pair of distinct elements $u, v \in \mathbb{A}$ if and only if there is some $R \in \tau$ such that u, v is related in the relation $R^{\mathbb{A}}$. That is, there is a tuple $\vec{a} \in R^{\mathbb{A}}$ such that $u = a_i$ and $v = a_j$ for some $1 \le i, j \le \operatorname{ar}(R)$.

The *distance* between two elements u, v of \mathbb{A} in \mathbb{A} is defined as their distance in the Gaifman graph of \mathbb{A} , denoted as $\mathsf{dist}_{\mathbb{A}}(u, v)$. For a tuple $\vec{u} = (u_1, \dots, u_\ell)$ of elements of \mathbb{A} , the distance $\mathsf{dist}_{\mathbb{A}}(\vec{u}, v)$ between \vec{u} and v in \mathbb{A} is $\min\{\mathsf{dist}_{\mathbb{A}}(u_i, v) \mid i \in [\ell]\}$.

Definition 3 (r-ball, r-neighborhood). For a τ -structure $\mathbb A$ and an element $a \in \mathbb A$, the r-ball $B_r^{\mathbb A}(a)$ at a in $\mathbb A$ is the set of elements of $\mathbb A$ whose distance to a is at most r in the Gaifman graph $G(\mathbb A)$ of $\mathbb A$. For a tuple $\vec a = (a_1, \dots, a_\ell)$ of $\mathbb A$, the r-ball $B_r^{\mathbb A}(\vec a)$ at $\vec a$ in $\mathbb A$ is defined the same way: $B_r^{\mathbb A}(\vec a) := \{v \in \mathbb A \mid \operatorname{dist}_{\mathbb A}(\vec a,v) \leq r\}$. The r-neighborhood of $\vec a$ in $\mathbb A$ is the substructure of $\mathbb A$ induced by the r-ball at $\vec a$, and it is denoted by $N_r^{\mathbb A}(\vec a)$

Definition 4. (ℓ -queries) Given an integer $\ell \geq 0$, an ℓ -query on τ -structures is a map Q such that

- $Q(\mathbb{A}) \subseteq A^{\ell}$ for any τ -struture \mathbb{A} ; and
- it is closed under isomorphism, that is, if two τ -structures \mathbb{A}, \mathbb{B} are isomorphic by an isomorphism $h: A \to B$, then $Q(\mathbb{B}) = h(Q(\mathbb{A}))$. Here,

$$h(Q(\mathbb{A})) = \{(h(a_1), \dots, h(a_{\ell})) : (a_1, \dots, a_{\ell}) \in Q(\mathbb{A})\}.$$

In particular, we consider A^0 as a singleton set so every 0-query is exactly a property on σ -structures.

Definition 5. (Definable ℓ -queries) Given an ℓ -query Q on τ -structures and a logic \mathcal{L} , Q is definable in \mathcal{L} if there is a formula $\varphi(x_1, \ldots, x_\ell)$ of \mathcal{L} in τ such that

$$Q(\mathbb{A}) = \{(a_1, \dots, a_\ell) \in A^\ell : \mathbb{A} \vDash \varphi(a_1, \dots, a_\ell)\}\$$

for every τ -structure \mathbb{A} .

For example, the set of vertex pairs of distance exactly two is a 2-query. It is also FO-definable using the formula $\varphi(x,y) := \exists z \ \mathsf{edge}(x,z) \land \mathsf{edge}(z,y) \land \neg(x,y)$.

The isomorphism between two structures over the same vocabulary is defined in the usual way.

Definition 6 (Isomorphism between two structures). *Let* \mathbb{A} *and* \mathbb{B} *be two* τ -structures. A mapping $\iota : \mathbb{A} \to \mathbb{B}$ *is an isomorphism between* \mathbb{A} *and* \mathbb{B} *if*

- ι is a bijection,
- for every constant symbol $c \in \tau$ and for every $i \leq \ell$, $\iota(c^{\mathbb{A}}) = c^{\mathbb{B}}$,
- for every predicate $R \in \tau$ with $\operatorname{ar}(R) = k$ and for every k-tuple $(a_1, \ldots, a_k) \in \mathbb{A}^k$, $R(a_1, \ldots, a_k)$ if and only if $R(\iota(a_1), \ldots, \iota(a_k))$.

We write $\mathbb{A} \cong \mathbb{B}$ *when there is* \mathbb{A} *is isomorphic to* \mathbb{B} .

Note that a property \mathcal{P} of τ -structures is (defined so that) closed under isomorphism. That is, if \mathbb{A} has the property \mathcal{P} and \mathbb{B} is isomorphic to \mathbb{A} then \mathbb{B} also has the property \mathcal{P} . Note also that ℓ -query, a generalization of a property, defined so as to be closed under isomorphism.

Intuitively, an ℓ -query Q on τ -structures is Hanf local if the query is closed under the isomorphism of the r-neighborhood. Hanf locality is not guaranteed, and it is rather an anomaly. However, it turns out that an FO-definable ℓ -query is Hanf local.

Definition 7 (r-local isomorphism between two structures). Let \mathbb{A} and \mathbb{B} be two τ -structures. We write $\mathbb{A} \hookrightarrow_r \mathbb{B}$ if there is a bijective mapping $\iota : \mathbb{A} \to \mathbb{B}$ (not necessarily isomorphism) such that for every $a \in \mathbb{A}$, it holds that $N_r^{\mathbb{A}}(a) \cong \mathbb{N}_r^{\mathbb{B}}(\iota(a))$.

When we have $\mathbb{A} \hookrightarrow_r \mathbb{B}$, they have the same cardinality, they may not be isomorphic but 'locally' they are isomorphic everywhere. Note that in the r-local isomorphism, ι creates an element-to-element mapping designating 'which r-neighborhood to examine'. However, ι is not necessarily the isomorphism which witnesses $N_r^{\mathbb{A}}(a) \cong \mathbb{N}_r^{\mathbb{B}}(\iota(a))$.

2 Hanf locality

Definition 8 (Hanf locality of boolean query). Let $\ell > 0$. A property \mathcal{P} on τ -structures is Hanf local if there is some integer r > 0 such that whenever two τ -structures \mathbb{A} and \mathbb{B} satisfy $\mathbb{A} \hookrightarrow_r \mathbb{B}$, then $\mathbb{A} \in \mathcal{P}$ of and only if $\mathbb{B} \in \mathcal{P}$. The smallest such integer r is called the Hanf locality rank, $hlr(\mathcal{P})$ in short.

Example 9. Consider the vocabulary $\{edge\}$. We want to show that the property CONNECTED is not Hanf local. Suppose that it is, with the Hanf locality rank r. The idea is to demonstrate two graphs G_1 and G_2

of the same size (vertex count), (i) which are indistinguishable when you look at any r-neighborhood of G_1 and the corresponding r-neighborhood, and (ii) one is connected whereas the other is not.

Take G_1 as the disjoint union of two cycles, each of length 2r + 2. Let G_2 be the cycle of length 4r + 4. Let ι be an arbitrary bijection from G_1 to G_2 . For any vertex v of G_1 or G_2 , r-neighborhood at v in G_i is a path of length 2r whose two endpoints are non-adjacent. (We chose the length of each cycle of G_1 as the minimum integer so as to satisfy this property.) Therefore, $G_1 \hookrightarrow_r G_2$. However, G_1 is not connected and G_2 is connected. Therefore, CONNECTED is not Hanf local!

Theorem 10. A FO-definable property is Hanf local.

An immediate corollary of Theorem 10, together with the observation in Example 9 that CONNECTED is not Hanf local, means that CONNECTED is not FO-definable.

References