1. PELLOVA JEDNADŽBA

$$x^2 - y^2 d = 1$$

- d nije potpun kvadrat (\sqrt{d} nije element iz N)
- TRIVIJALNA RJEŠENJA: x₀=1, y₀=0
- FUNDAMENTALNA RJEŠENJA: x₁ i y₁

METODE NALAŽENJA FUNDAMENTALNOG RJEŠENJA:

- pogađanje
- korištenje verižnog razlomka

NALAŽENJE FUNDAMENTALNOG RJEŠENJA KORIŠTENJEM VERIŽNOG RAZLOMKA:

Neka je L duljina perioda ponavljanja istih a-ova u verižnom razlomku.

Npr.
$$[5; \overline{2,1,1,2,10}]$$
 - ovdje je period 5.

L je paran:

$$x^2$$
 - y^2 d = -1 nema rješenja
 x^2 - y^2 d = 1 ima rješenja
 $x_n = p_{nL-1}$
 $y_n = q_{nL-1}$

L je neparan:

$$x^2$$
 - y^2d = -1 ima rješenja
$$x_n = p_{(2n-1)L-1}$$

$$y_n = q_{(2n-1)L-1}$$

$$x^2$$
 - y^2 d = 1 ima rješenja $x_n = p_{2nL-1}$ $y_n = q_{2nL-1}$

RAČUNANJE p I q:

$$p_{-2} = 0, \; p_{-1} = 1, \\ p_0 = a_0 \qquad p_{n+2} = a_{n+2}p_{n+1} + p_n \qquad q_{-2} = 1, \; q_{-1} = 0, \; q_0 = 1 \qquad q_{n+2} = a_{n+2}q_{n+1} + q_n$$

VERIŽNI RAZLOMAK:

Ako imamo broj oblika α:

$$a_0 = \lfloor \alpha \rfloor, \quad \alpha = a_0 + \frac{1}{\alpha_1}, \quad a_1 = \lfloor \alpha_1 \rfloor, \quad \alpha_1 = a_1 + \frac{1}{\alpha_2}, \quad a_2 = \lfloor \alpha_2 \rfloor, \dots$$

Ako imamo broj oblika $\frac{s_0 + \sqrt{d}}{t_0}$:

$$a_0 = \lfloor \sqrt{d} \rfloor$$
 $a_i = \left\lfloor \frac{s_i + a_0}{t_i} \right\rfloor$, $s_{i+1} = a_i t_i - s_i$, $t_{i+1} = \frac{d - s_{i+1}^2}{t_i}$

2. GRUPE

Polugrupa (G,*) zadovoljava:

- zatvorenost: a,b ε G → a * b ε G
- asocijativnost: (a*b)*c = a*(b*c)

a,b,c ε G

Monoid je polugrupa (G,*) koja ima neutralni element:

• a * e = e * a = a

Grupa je monoid (G,*) koji ima inverz svakog elementa u skupu G:

•
$$a * a^{-1} = a^{-1} * a = e$$
 $a^{-1} \varepsilon G$

Abelova grupa je grupa (G,*) na kojoj vrijedi komutativnost:

ALGORITAM ZA DOKAZIVANJE DA JE NAD NEKIM SKUPOM ZA ZADANU OPERACIJU FORMIRANA GRUPA:

 dokazati zatvorenost, asocijativnost, postojanje neutralnog elementa i postojanje inverza za svaki element (Za dokaz Abelove grupe još dokazati i komutativnost)

ALGORITAM ZA DOKAZIVANJE DA JE NEKA FUNKCIJA HOMOMORFIZAM:

provjeriti iz definicije je li funkcija homomorfizam

Npr. Imamo grupe (G , op_1) i (H , op_2) - tada je funkcija f:G \rightarrow H za koju vrijedi $f(x \text{ op}_1 y) = f(x) \text{ op}_2 f(y)$ homoformizam.

• Provjeriti kakva je ta funkcija - ako je injekcija onda je monomorfizam, ako je surjekcija onda je epimorfizam i ako je bijekcija, onda je izomorfizam.

RED ELEMENTA je broj elemenata skupa koji su generirani uzastopnom primjenom operacije nad tim elementom.

Npr. Imamo grupu $(Z_5, +)$.

Tada gledamo: 1 = 1

1+1=2

1+1+1=3

1+1+1+1=4

1+1+1+1=0

Skup koji 1 generira je {0,1,2,3,4} pa je njegov red 5.

CIKLIČKA GRUPA JE GENERIRANA SAMO JEDNIM ELEMENTOM. (Z_5 , +) je ciklička grupa jer se može generirati samo jednim elementom (1).

KAD IMAMO GRUPU (Z_M, Q) gdje je M modul, a Q operacija, red te grupe je $\varphi(M)$ (Euler).

ZA NORMALNU PODGRUPU (Y, *) VRIJEDI Yx = xY za svaki x iz nadgrupe (X, *)

3. PRSTENI I POLJA

(R, +, *) je prsten ako:

- (R,+) čini abelovu grupu
- (R, *) čini polugrupu
- vrijedi distributivnost

HOMOMORFIZAM PRSTENA JE FUNKCIJA f: Prsten1 → Prsten2 za koju vrijedi:

$$f(x + y) = f(x) + f(y)$$
 i $f(x * y) = f(x) * f(y)$

IDEAL PRSTENA JE ZA PRSTEN ISTO ŠTO I NORMALNA PODGRUPA ZA GRUPU

INTEGRALNA DOMENA je prsten gdje nema djelitelja nule. X je djelitelj nule ako pomnožen sa Y daje 0, a X i Y nisu 0.

Z_m postaje integralna domena kad je m prost.

POLJE je prsten za kojeg je (R, +) abelova grupa i (R, *) abelova grupa.

ALGORITAM ZA DOKAZIVANJE POLJA:

- pokazati zatvorenost za razliku dva elementa (time se dokaže da je (R,+) abelova grupa)
- pokazati zatvorenost za umnožak dva elementa (time se dokaže da je (R, *) abelova grupa)

Primjer:

Dokažimo da brojevi oblika $a + b\sqrt{2}$, $a, b \in \mathbb{Q}$, čine polje.

 $Rje\check{s}enje:$ Označimo sa $P=\{a+b\sqrt{2}\,:\,a,b\in\mathbb{Q}\},$ te uzmimo $a+b\sqrt{2},$ $c+d\sqrt{2}\in P.$ Iz

$$(a+b\sqrt{2})-(c+d\sqrt{2})=(a-c)+(b-d)\sqrt{2} \in P$$

slijedi da je (P, +) abelova grupa.

Pretpostavimo sada da je $c + d\sqrt{2} \neq 0$. Tada je

$$(a+b\sqrt{2})\cdot (c+d\sqrt{2})^{-1} = \frac{a+b\sqrt{2}}{c+d\sqrt{2}}\cdot \frac{c-d\sqrt{2}}{c-d\sqrt{2}} = \frac{ac-2bd}{c^2-2d^2} + \frac{bc-ad}{c^2-2d^2}\sqrt{2} \in P$$