Table des matières

1	Rap	Rappel sur l'espérance conditionnelle et les vecteurs gaus-				
	sien	ıs		1		
	1.1	Espéra	ance conditionnelle	1		
		1.1.1	Définitions et exemples	1		
		1.1.2	Caractérisation et propriétés	7		
	1.2	Vecteurs gaussiens				
		1.2.1	Vecteurs aléatoires	9		
		1.2.2	Vecteurs gaussiens	11		
		1.2.3	Espérance conditionnelle des vecteurs gaussiens	14		
	1.3	Conve	rgence de suites de variables aléatoires	14		
		1.3.1	Convergence en loi	14		
		1.3.2	Convergence en probabilité	15		
		1.3.3	Convergence prèsque sûre	16		
		1.3.4	Convergence dans L^p	16		
	1.4	4 Uniformement intégrabilité d'une familles de variables aléatoire				
	1.5	Exerc	cices	19		
	7. <i>(</i>			0.4		
2		_	es en temps discret	24		
	2.1		tions et premières propriétés	24		
		2.1.1	Propriétés	26		
		2.1.2	Décomposition de Doob d'une sous martingale	27		
	2.2	Martin	ngales et temps d'arrêt	28		
		2.2.1	Temps d'arrêt	28		
		2.2.2	Théorème d'arrêt borné	30		
		2.2.3	Inégalités maximales et minimales des martingales	31		
		2.2.4	Convergence des martingales	32		
	2.3	Exerc	cices	33		

TABLE DES MATIÈRES

3	Mouvement brownien			
	3.1	Processus stochastiques en temps continu		
		3.1.1 Loi d'un processus stochastique		
		3.1.2 Comparaison de processus	40	
	3.2	Processus gaussiens	42	
		3.2.1 Exemples de processus gaussiens		
	3.3	Mouvement brownien	45	
		3.3.1 Construction d'un mouvement brownien		
		3.3.2 Propriétés des trajectoires browniennes	51	
		3.3.3 Propriété de Markov d'un mouvement brownien	52	
	3.4	Exercices	54	
4	Ma	rtingales en temps continu	5 5	
	4.1	Définitions et exemples	55	
	4.2	Temps d'arrêt et tribus associées	56	
	4.3	Inégalités maximales		
	4.4	Convergence	58	

Chapitre 1

Rappel sur l'espérance conditionnelle et les vecteurs gaussiens

Ce premier chapitre est considéré comme préliminaire du cours de "Processus stochastiques et Martingales". Il contient des rappels sur les principaux résultats et notions utilisés dans les chapitres suivants.

1.1 Espérance conditionnelle

L'objectif de ce paragraphe est de formaliser la notion de l'espérance conditionnelle et de fournir les outils qui permettent de la calculer.

1.1.1 Définitions et exemples

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé sur lequel est définie une variable aléatoire X. L'espérance conditionnelle, d'une variable aléatoire (v.a.) X sachant une information τ , notée $\mathbb{E}(X \mid \tau)$, est la valeur moyenne attendue pour X lorsque l'on connait l'information τ .

exemple 1.1.1 Lançons deux dés à 6 faces et intéressons à la somme S des deux chiffres obtenus.

Notons X_1 : la valeur obtenue par le premier dé. X_2 : la valeur obtenue par le deuxième dé.

CHAPITRE 1. RAPPEL SUR L'ESPÉRANCE CONDITIONNELLE ET LES VECTEURS GAUSSIENS

Ainsi $S = X_1 + X_2$.

Avant de lancer le premier dé, on ne dispose d'aucune information sur S, donc la valeur moyenne attendue pour S est son espérance mathématique :

$$\mathbb{E}(S) = \mathbb{E}(X_1 + X_2) = \mathbb{E}(X_1) + \mathbb{E}(X_2) = 7.$$

Après le lancer du premier dé, on connait la valeur de X_1 , et avec cette information, on s'attend à avoir en moyenne pour S son éspérance conditionnelle sachant la valeur de X_1 :

$$\mathbb{E}(S \mid X_1) = \mathbb{E}(X_1 + X_2 \mid X_1) = \mathbb{E}(X_1 \mid X_1) + \mathbb{E}(X_2 \mid X_1)$$
$$= X_1 + \frac{7}{2}.$$

Espérance conditionnelle d'une v.a.d. sachant un événement quelconque

Soient X une variable aléatoire discrète (v.a.d.) définie sur l'espace $(\Omega, \mathcal{A}, \mathbb{P})$ à valeur dans l'ensemble $\mathcal{X} = \{x_1, x_2, ..., x_n\} \subset \mathbb{R}$, et B un événement quelconque, avec $\mathbb{P}(B) \neq 0$.

Définition 1.1.1 L'espérance conditionnelle de X sachant l'événement B, notée $\mathbb{E}(X \mid B)$, est donnée par

$$\mathbb{E}(X \mid B) = \sum_{x \in \mathcal{X}} x. \mathbb{P}(X = x \mid B). \tag{1.1}$$

 $\mathbb{E}(X\mid B)$ est une quantité réelle, représentant la valeur moyenne attendue pour X sachant que l'événement B a lieu.

exemple 1.1.2 On lance un dé de 6 faces, et on note X la valeur prise par ce dé, si B est l'événement "X supérieur ou égale à 4", alors

$$\mathbb{E}(X \mid B) = \sum_{x=1}^{6} x. \mathbb{P}(X = x \mid B) = \sum_{x=1}^{6} x. \frac{\mathbb{P}(\{X = x\} \cap B)}{\mathbb{P}(B)}$$

$$\frac{\mathbb{P}(\{X = x\} \cap B)}{\mathbb{P}(B)} = \begin{cases} 0, si \ x = 1, 2, 3 \\ \frac{1}{3}, si \ x = 4, 5, 6. \end{cases}, \mathbb{P}(B) = \frac{1}{2}.$$

finalement $\mathbb{E}(X \mid B) = \frac{1}{3}.(4+5+6) = 5.$

exemple 1.1.3 Reprenons l'exemple de l'introduction et considérons l'événement $B = \{X_1 = 2\}$.

- $Calculer \mathbb{E}(S \mid B)$.

Espérance conditionnelle d'une v.a.d. sachant une autre v.a.d.

Soient X et Z deux v.a.d. définies sur l'espace $(\Omega, \mathcal{A}, \mathbb{P})$ à valeur dans les ensembles $\mathcal{X} = \{x_1, x_2, ..., x_n\} \subset \mathbb{R}$ et $\mathcal{Z} = \{z_1, z_2, ..., z_m\} \subset \mathbb{R}$ respectivement.

Définition 1.1.2 L'espérance conditionnelle de X sachant Z, notée $\mathbb{E}(X \mid Z)$, est une v.a. définie par

$$\mathbb{E}(X \mid Z) : \Omega \to \mathbb{R}$$

$$\omega \mapsto h(Z(\omega)),$$

où $h: \mathcal{Z} \to \mathbb{R}$ est la fonction définie, pour chaque z, par

$$h(z) = \mathbb{E}(X \mid Z = z), \forall z \in \mathcal{Z}.$$
$$= \sum_{x \in \mathcal{X}} x. \mathbb{P}(X = x \mid Z = z).$$

Remarque 1.1.1 1- La quantité $\mathbb{E}(X \mid Z = z)$ est un nombre réel, mais $\mathbb{E}(X \mid Z)$ est une v.a.

- 2- La quantité $\mathbb{E}(X \mid Z=z)$ est celle définie par (1.1) pour $B=\{Z=z\}$.
- 3- Soit $\sigma(Z)$ la tribu engendrée par la v.a. Z, $\sigma(Z)$ représente l'ensemble d'informations sur la v.a. Z, donc on peut écrire

$$\mathbb{E}(X \mid Z) = \mathbb{E}(X \mid \sigma(Z)).$$

exemple 1.1.4 Soit Z une v.a. uniforme sur $\{1,2,...,n\}$, c'est à dire

$$\mathbb{P}(Z=z) = \frac{1}{n}, \ pour \ z = 1, 2, ..., n.$$

Y est une v.a. indépendante de Z, telle que $\mathbb{P}(Y=1)=p$ et $\mathbb{P}(Y=-1)=1-p$, pour $p\in]0,1[$.

On pose X = Y.Z qui est une v.a. prenant ses valeurs dans $\{-n, ..., n\}$. - Calculer $\mathbb{E}(X \mid Z)$.

Solution : On calcule $\mathbb{E}(X \mid Z = z)$ pour tout $z \in Z(\Omega)$, comme suit

$$\begin{split} \mathbb{E}\left(X\mid Z=z\right) &= \sum_{x\in X(\Omega)} x.\mathbb{P}(X=x\mid Z=z) \\ &= \sum_{x=-n}^n x.\mathbb{P}(YZ=x\mid Z=z) \\ &= \sum_{x=-n}^n x.\frac{\mathbb{P}(Y=\frac{x}{z},Z=z)}{\mathbb{P}\left(Z=z\right)} \\ &= \sum_{x=-n}^n x.\mathbb{P}\left(Y=\frac{x}{z}\right) \text{ (car } Y \text{ est indépendant de } Z) \\ &= -z\mathbb{P}\left(Y=-1\right) + z\mathbb{P}\left(Y=1\right) \text{ (car } Y\left(\Omega\right) = \{1,-1\}) \\ &= z\left(2p-1\right). \end{split}$$

Par conséquent

$$\mathbb{E}\left(X\mid Z\right) = Z\left(2p-1\right).$$

exemple 1.1.5 Vérifier qu'on peut écrire $\mathbb{E}(X \mid Z)$ sous la forme

$$\mathbb{E}(X \mid Z) = \sum_{z \in \mathcal{Z}} 1_{\{Z(\omega) = z\}} \mathbb{E}(X \mid Z = z).$$

Espérance conditionnelle d'une v.a.d. sachant plusieurs v.a.d.

Considérons
$$(p+1)$$
 v.a.d. $X : \Omega \to \mathcal{X} = \{x_1, x_2, ..., x_n\} \subset \mathbb{R},$
 $Z_1 : \Omega \to \mathcal{Z}_1 = \{z_{1,1}, z_{2,1}, ..., z_{m_1,1}\} \subset \mathbb{R},$
 $Z_2 : \Omega \to \mathcal{Z}_2 = \{z_{1,2}, z_{2,2}, ..., z_{m_2,2}\} \subset \mathbb{R},$
 \vdots
 \vdots
 $Z_p : \Omega \to \mathcal{Z}_p = \{z_{1,p}, z_{2,p}, ..., z_{m_p,p}\} \subset \mathbb{R}.$

Nous allons étendre la définition (1.1.2) au cas à plusieurs v.a.d.

Définition 1.1.3 L'espérance conditionnelle de X sachant $(Z_1, Z_2, ..., Z_p)$ est la v.a., notée $\mathbb{E}(X \mid Z_1, Z_2, ..., Z_p)$, définie par

$$\mathbb{E}\left(X\mid Z_{1},Z_{2},...,Z_{p}\right)=h\left(Z_{1}(\omega),Z_{2}\left(\omega\right),...,Z_{p}\left(\omega\right)\right),$$

où $h: \mathcal{Z}_1 \times \mathcal{Z}_2 \times ... \times \mathcal{Z}_p \to \mathbb{R}$ est la fonction à p variables définie par

$$h(z_1, z_2, ..., z_p) = \mathbb{E}(X \mid Z_1 = z_1, Z_2 = z_2, ..., Z_p = z_p)$$

=
$$\sum_{x \in \mathcal{X}} x. \mathbb{P}(X = x \mid Z_1 = z_1, Z_2 = z_2, ..., Z_p = z_p).$$

pour $z_1 \in \mathcal{Z}_1, z_2 \in \mathcal{Z}_2, ..., z_p \in \mathcal{Z}_p$.

Espérance conditionnelle d'une v.a. sachant une variable aléatoire continue (v.a.c).

Rappel:

1- Les v.a. X et Z, définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, possédent une densité jointe par rapport à la mesure de Lebesgue, s'il existe une fonction

$$f_{(X,Z)}(x,z): \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+,$$

telle que, pour tout D une partie du domaine de définition de f

$$\mathbb{P}\left((X,Z)\in D\right) = \int_{D} f_{(X,Z)}(x,z)dxdz,$$

dans ce cas, les densités marginales de X et Z sont respectivement

$$f_X(x) = \int_{z \in \mathbb{R}} f_{(X,Z)}(x,z)dz$$
 et $f_Z(z) = \int_{x \in \mathbb{R}} f_{(X,Z)}(x,z)dx$.

2- Lorsque l'on a des v.a. avec densité jointe, les probabilités $\mathbb{P}(X=x)$ et $\mathbb{P}(Z=z)$ sont nulles, ce qui pose une difficulté pour définir la quantité $\mathbb{P}(X=x\mid Z=z)$. Pour contourner cette difficulté, nous allons introduire la densité conditionnelle $f_X(x\mid Z=z)$, définie par

$$f_{X|Z}(x \mid Z = z) = \frac{f_{(X,Z)}(x,z)}{f_{Z}(z)}.$$

Définition 1.1.4 Soient X et Z deux v.a. ayant une densité jointe $f_{(X,Z)}(x,z)$. L'espérance conditionnelle de X sachant Z est la v.a., notéé $\mathbb{E}(X \mid Z)$, définie par

$$\mathbb{E}(X \mid Z) = \int_{x \in \mathcal{X}} x f_{X|Z}(x \mid Z = z) dx.$$

CHAPITRE 1. RAPPEL SUR L'ESPÉRANCE CONDITIONNELLE ET LES VECTEURS GAUSSIENS

exemple 1.1.6 On considère un couple de v.a. (X, Z) admettant pour densité jointe

$$f_{(X,Z)}(x,z) = n(n-1)(z-x)^{n-2}1_{(x,z)\in A},$$
 où $A = \{(x,z) \in \mathbb{R}^2, 0 \le x \le z \le 1\}$.
- Calculer $\mathbb{E}(Z \mid X)$.

Solution

$$\mathbb{E}(Z \mid X = x) = \int_{z \in Z(\Omega)} z f_{Z|X}(z \mid X = x) dz$$
$$= \int_{x}^{1} z \frac{f_{(X,Z)}(x,z)}{f_{X}(x)} dz.$$

La densité marginale f_X de X est calculer comme suit

$$f_X(x) = \int_{z \in Z(\Omega)} f_{(X,Z)}(x,z) dz$$
$$= \int_x^1 n(n-1)(z-x)^{n-2} dz$$
$$= n(1-x)^{n-1}.$$

Donc

$$\mathbb{E}(Z \mid X = x) = \int_{x}^{1} z(n-1) \frac{(z-x)^{n-2}}{(1-x)^{n-1}} dz,$$

par une intégration par partie on obtient

$$\mathbb{E}\left(Z\mid X=x\right) = \frac{x+n-1}{n},$$

Par conséquent

$$\mathbb{E}\left(Z\mid X\right) = \frac{X+n-1}{n}.$$

exemple 1.1.7 Soit le couple de v.a. (X,Y) défini sur $\mathbb{R}_+ \times \mathbb{N}$ pour lequel

$$f_{(X,Y)}(x,k) = \exp(-2x)\frac{x^k}{k}.$$

1- Montrer que $f_{(X,Y)}(x,k)$ est une loi de probabilité.

2- Déterminer les lois marginales de X et Y. Ces v.a. sont elles indépendantes?

3- Calculer $\mathbb{E}(Y \mid X)$ et $\mathbb{E}(X \mid Y)$.

1.1.2 Caractérisation et propriétés

Maintenant, on donne une caractérisation de l'espérance conditionnelle et surtout les propriétés de celle ci qui permettent de la calculer.

Caractérisation

Soit $\sigma(Z_1, Z_2, ..., Z_p)$ la σ - algèbre engendrée par les v.a. $Z_1, Z_2, ..., Z_p$ elle représente l'information donnée par les p v.a. $Z_1, Z_2, ..., Z_p$. Lorsque il sera possible de prédire la valeur d'une v.a. Y appartir de l'information $\sigma(Z_1, Z_2, ..., Z_p)$, on dira que Y est $\sigma(Z_1, Z_2, ..., Z_p)$ -mesurable.

Voici une formulation plus précise de cette notion.

Définition 1.1.5 La v.a. Y est dite $\sigma(Z_1, Z_2, ..., Z_p)$ -mesurable, s'il existe une fonction $g: \mathbb{R}^p \to \mathbb{R}$ mesurable telle que

$$Y(\omega) = g(Z_1(\omega), Z_2(\omega), ..., Z_p(\omega)), \text{ pour } \omega \in \Omega.$$

Pour abréger les notations, on note souvent $\mathcal{F}_p = \sigma(Z_1, Z_2, ..., Z_p)$, et on dit $Y \ est \mathcal{F}_p - mesurable.$

exemple 1.1.8 Les v.a. Y suivantes sont $\sigma(Z_1, Z_2, ..., Z_p)$ – mesurable. 1- $Y = Z_1 + Z_2 + ... + Z_p$, car $g(Z_1(\omega), Z_2(\omega), ..., Z_p(\omega))$ est définie par : $g(Z_1(\omega), Z_2(\omega), ..., Z_p(\omega)) = z_1 + z_2 + ... + z_p.$

2-
$$Y=Z_1^2$$
, avec $g\left(Z_1\left(\omega\right),Z_2\left(\omega\right),...,Z_p\left(\omega\right)\right)=z_1^2$.

$$3-Y = \max(Z_1, Z_2, ..., Z_p).$$

3-Y =
$$\max(Z_1, Z_2, ..., Z_p)$$
.
4-Y =
$$\begin{cases} 1, si \ Z_p = 1 \\ 0, si \ non \end{cases}$$
.

Proposition 1.1.1 L'espérance conditionnelle de X sachant une sous tribu \mathcal{G} de \mathcal{A} , notée $\mathbb{E}(X \mid \mathcal{G})$, est l'unique v.a. vérifiant les deux conditions :

- a) $\mathbb{E}(X \mid \mathcal{G})$ est \mathcal{G} mesurable,
- b) Pour toute v.a.Y G-mesurable (et bornée), l'égalité

$$\mathbb{E}\left(\mathbb{E}\left(X\mid\mathcal{G}\right).Y\right)=\mathbb{E}\left(X.Y\right)\ a\ lieu.$$

Propriétés

Soient X et Y deux v.a. définies sur l'espace $(\Omega, \mathcal{A}, \mathbb{P})$, \mathcal{G} et \mathcal{F} deux sous tribus de \mathcal{A} telles que $\mathcal{G} \subset \mathcal{F}$.

- 1- $\mathbb{E}\left(\mathbb{E}\left(X\mid\mathcal{F}\right)\right) = \mathbb{E}\left(X\right), p.s.,$
- 2- si X est \mathcal{F} -mesurable, alors $\mathbb{E}(X \mid \mathcal{F}) = X, p.s.$,
- 3- si X est indépendante de \mathcal{F} , alors $\mathbb{E}(X \mid \mathcal{F}) = \mathbb{E}(X)$, p.s.,
- 4- si $(a,b) \in \mathbb{R}^2$, alors $\mathbb{E}(aX + bY \mid \mathcal{F}) = a\mathbb{E}(X \mid \mathcal{F}) + b\mathbb{E}(Y \mid \mathcal{F}), p.s.$
- 5- Si $X \leq Y$, alors $\mathbb{E}(X \mid \mathcal{F}) \leq \mathbb{E}(Y \mid \mathcal{F}), p.s.$
- 5- si Y est \mathcal{F} -mesurable, alors $\mathbb{E}(X.Y \mid \mathcal{F}) = Y.\mathbb{E}(X \mid \mathcal{F}), p.s.$
- 6- $\mathbb{E}\left(\mathbb{E}\left(X\mid\mathcal{F}\right)\mid\mathcal{G}\right) = \mathbb{E}\left(\mathbb{E}\left(X\mid\mathcal{G}\right)\mid\mathcal{F}\right) = \mathbb{E}\left(X\mid\mathcal{G}\right), p.s.$
- 7- pour toute fonction convex Φ , on a $\Phi(\mathbb{E}(X \mid \mathcal{G})) \leq \mathbb{E}(\Phi(X) \mid \mathcal{G}), p.s.$
- 8- si $1 \le p < \infty$ et $X \in L^p$, alors $||\mathbb{E}(X \mid \mathcal{G})||_p \le ||X||_p$.

exemple 1.1.9 Reprenons l'exemple de l'introduction et calculons $\mathbb{E}(S \mid X_1)$, puis supposons que $R = \frac{X_1}{X_2}$ et calculer $\mathbb{E}(R \mid X_1)$.

En effet,

$$\mathbb{E}(S \mid X_{1}) = \mathbb{E}(X_{1} + X_{2} \mid X_{1})$$

$$= \mathbb{E}(X_{1} \mid X_{1}) + \mathbb{E}(X_{2} \mid X_{1}) \ (\mathbb{E} \ est \ linéaire)$$

$$= X_{1} + \frac{7}{2} \cdot (X_{1} \ est \ mesurable \ par \ rapport \ \grave{a} \ X_{1})$$

$$\mathbb{E}(R \mid X_{1}) = \mathbb{E}\left(\frac{X_{1}}{X_{2}} \mid X_{1}\right)$$

$$= X_{1}\mathbb{E}\left(\frac{1}{X_{2}} \mid X_{1}\right) (\ mesurabilité)$$

$$= X_{1}\mathbb{E}\left(\frac{1}{X_{2}} \mid X_{1}\right) (\ indépendance \ de \ X_{1} \ et \ X_{2})$$

Remarque 1.1.2 Si Z_0 est une valeur détérministe (fixée), son information $\mathcal{F}_0 = \sigma(Z_0)$ est vide. En conséquence, on aura $\mathbb{E}(X \mid \mathcal{F}_0) = \mathbb{E}(X), \forall X \in L^1(\Omega)$.

1.2 Vecteurs gaussiens

Maintenant, passons à l'étude des vecteurs gaussiens en donnant quelques définitions et résultats principaux.

1.2.1 Vecteurs aléatoires

Définition 1.2.1 On appelle vecteur aléatoire réel, de dimmension n, toute application mesurable $X = (X_1, X_2, ..., X_n)$ de $(\Omega, \mathcal{A}, \mathbb{P})$ dans $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$.

Proposition 1.2.1 $X = (X_1, X_2, ..., X_n)$ est un vecteur aléatoire si et seulement si

$$\{\omega \in \Omega, X_1(\omega) \le t_1, X_2(\omega) \le t_2, ..., X_n(\omega) \le t_n\} \in \mathcal{A}, \forall t_1, t_2, ..., t_n \in \mathbb{R}.$$

Remarque 1.2.1 Si X est un vecteur aléatoire (vec.aléa), alors chaque X_i est une v.a, mais la réciproque est fausse. Pour tout i, X_i s'appelle la i-ème marginale.

Définition 1.2.2 (Loi de probabilité d'un vecteur aléatoire)

La loi de probabilité du vec. aléa. X, notée \mathbb{P}_X , est la mesure image, sur \mathbb{R}^n , de la probabilité \mathbb{P} par X, c'est à dire, pour tout $(A_1, A_2, ..., A_n) \in (\mathcal{B}(\mathbb{R}^n))^n$

$$\mathbb{P}_{X} (A_{1} \times A_{2} \times ... \times A_{n}) = \mathbb{P} (X \in A_{1} \times A_{2} \times ... \times A_{n})$$
$$= \mathbb{P} (X_{1} \in A_{1}, X_{2} \in A_{2}, ..., X_{n} \in A_{n}).$$

La fonction de répartition F_X du vec.aléa. X est définie pour tout $x \in \mathbb{R}^n$ comme suit

$$F_X(x) = \mathbb{P}(X \le x)$$

$$= \mathbb{P}(X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n), x = (x_1, x_2, ..., x_n).$$

$$= \mathbb{P}(\bigcap_{i=1}^n \{X_i \le x_i\}).$$

Définition 1.2.3 1- X est un vec.aléa. discret, s'il prend ses valeurs dans un ensemble dénombrable. Dans ce cas, la distribution de X est

$$\mathbb{P}_{X}(x) = \mathbb{P}(X = x) = \mathbb{P}(X_{1} = x_{1}, X_{2} = x_{2}, ..., X_{n} = x_{n}).$$

CHAPITRE 1. RAPPEL SUR L'ESPÉRANCE CONDITIONNELLE ET LES VECTEURS GAUSSIENS

et la loi marginale \mathbb{P}_{X_i} de X_i est définie par

$$\mathbb{P}_{X_{i}}(x_{i}) = \mathbb{P}(X_{i} = x_{i}) = \sum_{x_{1} \in E_{1}} \dots \sum_{x_{i} \in E_{i-1}} \sum_{x_{i+1} \in E_{i+1}} \dots \sum_{x_{n} \in E_{n}} \mathbb{P}_{X}(x_{1}, x_{2}, \dots, x_{n}).$$

2- X est un vec.aléa. continu, s'il existe une fonction borélienne $f_X : \mathbb{R}^n \to \mathbb{R}^+$, appelée densité jointe; telle que

$$\begin{cases} \int_{\mathbb{R}^{n}} f_{X}(x_{1}, x_{2}, ..., x_{n}) dx_{1} dx_{2} ... dx_{n} = 1. \\ et \ \forall B \in \mathcal{B}(\mathbb{R}^{n}), \mathbb{P}(\{X \in B\}) = \int_{B} f_{X}(x_{1}, x_{2}, ..., x_{n}) dx_{1} dx_{2} ... dx_{n}. \end{cases}$$

définie la loi de probabilité de X. Et dans ce cas, les densités marginales f_{X_i} de X_i sont définies par

$$f_{X_i}(x_i) = \int_{\mathbb{R}^{n-1}} f_X(x_1, x_2, ..., x_n) dx_1 ... dx_{i-1} dx_{i+1} ... dx_n.$$

Définition 1.2.4 (éspérance et matrice de covariance)

Soit $X = (X_1, X_2, ..., X_n)$ un vec.aléa. tel que $\forall i = 1, 2, ..., n, X_i \in L^2(\Omega)$. 1- l'espérance du vec. X, notée $\mathbb{E}(X)$, est le vecteur des espérances de ces marginales, c'est à dire

$$\mathbb{E}\left(X\right) = \left(\mathbb{E}\left(X_{1}\right), \mathbb{E}\left(X_{2}\right), ..., \mathbb{E}\left(X_{n}\right)\right).$$

2- La matrice de covariance du vec. X est la matrice carrée symétrique définie positive, notée $K\left(\operatorname{cov}\left(X_{i},X_{j}\right)\right)_{i,j=1,\ldots,n}$, avec $\forall i,j=1,\ldots,n$,

$$cov(X_i, X_j) = \mathbb{E}(X_i.X_j) - \mathbb{E}(X_i).\mathbb{E}(X_j),$$

ou simplement cov(X), donnée par :

exemple 1.2.1 Soit V = (X, Y) un vecteur aléatoire sur \mathbb{R}^2 dont la loi admet la densité de probabilité :

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi} \exp{-\left(\frac{x^2 + y^2}{2}\right)}.$$

- 1- Calculer $F_{(X,Y)}$.
- 2- Calculer la loi de X, Y, X + Y, $X^2 + Y^2$.
- 3- Calculer $\mathbb{E}(V)$ et cov(V).

exemple 1.2.2 Soit V = (X, Y) un vecteur aléatoire sur $\mathbb{N}^* \times \mathbb{N}^*$, telle que :

$$\mathbb{P}\left(X=i,Y=j\right) = \frac{a}{2^{i+j}} \ por \ tout \ i,j \in \mathbb{N}^*.$$

- 1- Calculer a, puis déterminer les lois marginales de X et Y.
- 2- X etY sont- elles indépendantes?
- 3- Calculer le vecteur moyen et la matrice des covariance de V.
- 4- Calculer $\mathbb{E}(X \mid Y)$.

Remarque 1.2.2 Si $\mathbb{E}(X) = 0$, le vec. X est dit centré.

Définition 1.2.5 (Variable aléatoire gaussienne)

Une variable aléatoire X est dite gaussienne, de moyenne μ ($\mu \in \mathbb{R}$) et de variance σ^2 ($\sigma \in \mathbb{R}^+$), notée $X \sim \mathcal{N}(\mu, \sigma^2)$, si elle admet pour densité

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2).$$

Remarque 1.2.3 1- $Si \sigma^2 = 0$, la loi est dite dégénérée, la v.a. X est contante égale à μ .

2- Si $X \sim \mathcal{N}(0,1)$, la loi est dite centrée réduite, et pour $Y = \sigma X + \mu$, on a $Y \sim \mathcal{N}(\mu, \sigma^2)$.

1.2.2 Vecteurs gaussiens

Définition 1.2.6 Un vecteur aléatoire $X = (X_1, X_2, ..., X_n)$ est dit gaussien si toute combinaison linéaire de ses composantes est une variable aléatoire gaussienne, c'est à dire

$$\forall \alpha \in \mathbb{R}^n, \ la \ v.a. \ \sum_{i=1}^n \alpha_i X_i \ est \ gaussienne.$$

Proposition 1.2.2 Si le vec. aléa. $X = (X_1, X_2, ..., X_n)$ est gaussien, alors chaque composante X_i est une v.a. gaussienne.

CHAPITRE 1. RAPPEL SUR L'ESPÉRANCE CONDITIONNELLE ET LES VECTEURS GAUSSIENS

Remarque 1.2.4 Si toutes les v.a. $(X_i)_{i=1,...n}$ sont gaussiennes, le vec.aléa. $X = (X_1, X_2, ..., X_n)$ n'est pas nécessairement gaussien.

exemple 1.2.3 Soient X une v.a gaussienne centrée réduite, et ζ une v.a indépendante de X telle que

$$\mathbb{P}\left(\zeta=1\right) = \mathbb{P}\left(\zeta=-1\right) = \frac{1}{2}.$$

Considérons une nouvelle v.a. $Y = X\zeta$ et le vec.aléa. V = (X, Y).

- 1- Quelle est la loi de Y?
- 2- V est-il gaussien?

Proposition 1.2.3 Soit $(X_1, X_2, ..., X_n)$ une famille de v.a. indépendantes, alors le vecteur $X = (X_1, X_2, ..., X_n)$ est gaussien ssi pour tout i = 1, ..., n, la v.a. X_i est gaussienne.

Remarque 1.2.5 1-Si $X = (X_1, X_2, ..., X_n)$ est un vec.gaussien, alors $\sum_{i=1}^n \alpha_i X_i = \langle \alpha, X \rangle$ suit une loi normale de paramètres :

$$\mathbb{E}(\langle \alpha, X \rangle) = \mathbb{E}(\alpha_1 X_1 + \alpha_2 X_2 + \dots + \alpha_n X_n)$$

$$= \alpha_1 \mathbb{E}(X_1) + \alpha_2 \mathbb{E}(X_2) + \dots + \alpha_n \mathbb{E}(X_n), car \mathbb{E} \text{ est linéaire.}$$

$$= \langle \alpha, \mathbb{E}(X) \rangle$$

$$var(\langle \alpha, X \rangle) = var(\alpha_1 X_1 + \alpha_2 X_2 + \dots + \alpha_n X_n)$$

$$= \sum_{i,j=1}^n \alpha_i \alpha_j cov(X_i, X_j) = \alpha^t K \alpha.$$

c'est à dire

$$\sum_{i=1}^{n} \alpha_i X_i \sim \mathcal{N}\left(\langle \alpha, \mathbb{E}(X) \rangle, \alpha^t K \alpha\right).$$

2- Si X est un vecteur gaussien de moyenne $\mathbb{E}(X) = m$ et de matrice de covariance K, on note $X \sim \mathcal{N}(m, K)$.

Proposition 1.2.4 (Indépendance de deux vecteurs gaussiens)

Soient $X = (X_1, X_2, ..., X_n)$ et $Y = (Y_1, Y_2, ..., Y_p)$ deux vec. gaussiens. X et Y sont dit indépendants ssi les covariances $cov(X_i, Y_j)_{\substack{i=1,2,...n\\j=1,2,...,p}}$ sont toutes nulles.

Densité de probabilité d'un vecteur gaussien

Soit $X = (X_1, X_2, ..., X_n)$ un vecteur gaussein non dégénéré de dimension n, alors

1- Si $X \sim \mathcal{N}(0, I_n)$, un vecteur gaussien standard, alors les marginales $X_1, X_2, ..., X_n$ sont toutes indépendantes, par conséquence la loi du vecteur X est le produit de ses lois marginales, i.e

$$f_X(x_1, x_2, ..., x_n) = f_{X_1}(x_1).f_{X_2}(x_2)...f_{X_n}(x_n)$$
$$= \frac{1}{\left(\sqrt{2\pi}\right)^n} \exp\left(-\frac{1}{2} \sum_{i=1}^n x_i^2\right).$$

2- Dans le cas général où $X \sim \mathcal{N}(m, K)$, avec K inversible, la densité de probabilité de X est

$$f_X(x_1, x_2, ..., x_n) = \frac{1}{((2\pi)^n \det K)^{\frac{1}{2}}} \exp(-\frac{1}{2} \langle (x-m), K^{-1}(x-m) \rangle.$$

exemple 1.2.4 Soit (X, Y) un vecteur aléatoire dans \mathbb{R}^2 , tel que $X \sim \mathcal{N}(1, 1)$ et la loi conditionnelle de Y sachant X = x est $\mathcal{N}(2x, 4)$.

- 1- Calculer la moyenne et la matrice de covariance du couple (X, Y).
- 2- Donner la densité du couple (X,Y).
- 3- Calculer la fonction caractéristique du vecteur (X, Y).
- 4- Montrer que Y est gaussien.
- 5- Montrer que le vecteur (X,Y) est gaussien.
- 6- Montrer que la loi conditionnelle de X sachant Y est gaussienne, donner la moyenne et la variance.

Transformation affine d'un vecteur gaussien

Théorème 1.2.1 Soient X un vec. gaussien de dimension n et de loi $\mathcal{N}(m_X, K_X)$, A une matrice de dimension (p, n) et B un vecteur constant de dimmension p. Alors

$$Y = AX + B$$
,

est un vecteur gaussien de loi $\mathcal{N}\left(Am_X + B, AK_X^t A\right)$.

Théorème 1.2.2 Si X est un vecteur gaussien de dimension n et de loi $\mathcal{N}(m_X, K_X)$, alors il existe une matrice B de dimension (n, p), de rang p, telle que

$$X = m_X + BX^*,$$

où X^* est le vecteur gaussien centré réduit.

1.2.3 Espérance conditionnelle des vecteurs gaussiens

Théorème 1.2.3 Soit le vecteur gaussien de dimenssion 2(X,Y) d'espérance $m = (\mathbb{E}(X), \mathbb{E}(Y))$ et de coéfficient de corrélation $\rho_{(X,Y)}$. L'espérance conditionnelle $\mathbb{E}(Y \mid X)$ s'exprime sous la forme de la fonction affine de X définie par

$$\mathbb{E}(Y \mid X) = A.X + B, où A = \frac{\rho_{(X,Y)}.\sigma_X}{\sigma_Y} et B = \mathbb{E}(Y) - A.\mathbb{E}(X).$$

On généralise le théorème (1.2.4) au cas de 2 vec.gaussiens X et Y sous la condition que leur ensemble (X,Y) soit un vec. gaussien.

Remarque 1.2.6 Les lois conditionnelles de l'un des vecteurs X et Y par rapport à l'autre sont gaussiennes.

1.3 Convergence de suites de variables aléatoires

1.3.1 Convergence en loi

La convergence en loi est la forme la plus faible de convergence de suites de v.a., au sens où , en général, elle n'implique pas les autre formes de convergence de v.a., alors que ces autre formes l'implique. Elle est souvent notée $X_n \to^D X$ ou $X_n \to^{\mathcal{L}} X$.

Soient $(X_n)_{n\geq 0}$ une suite de v.a. et X une autre v.a., toutes à valeurs dans le même espace métrique (E,d).

Définition 1.3.1 On dit que la suite $(X_n)_{n\geq 0}$ converge en loi vers X ssi pour toute fonction réelle bornée et continue Ψ de \mathbb{R}^n dans \mathbb{R} , on a

$$\lim_{n\to\infty}\mathbb{E}\left[\Psi\left(X_{n}\right)\right]=\mathbb{E}\left[\Psi\left(X\right)\right].$$

Remarque 1.3.1

Les $v.a.(X_n)_{n\geq 0}$ et X ne sont pas nécéssairement définies sur les mêmes espaces de probabilités, mais peuvent être définies sur des espaces probabilisés tous différents, disons, par exemples $(\Omega_n, \mathcal{A}_n, \mathbb{P}_n)$ et $(\Omega, \mathcal{A}, \mathbb{P})$, car la convergence en loi est, en réalité, la convergence d'une suite de lois de probabilités des $v.a.(X_n)_{n\geq 0}$ vers la loi de probabilité de la $v.a.(X_n)$

Théorème 1.3.1 Soient $(X_n)_{n\geq 0}$ une suite de v.a. et X une v.a, alors on a 1- $X_n \to^{\mathcal{L}} X \iff F_{X_n}(x) \to_{n\to\infty} F_X(x)$ pour chaque x point de continuité de F_X , où $(F_{X_n})_{n\geq 0}$ et F_X sont les fonctions des répartitions de $(X_n)_{n\geq 0}$ et X respectivement.

2- $X_n \to^{\mathcal{L}} X \iff \forall x, \Phi_{X_n}(x) \to_{n\to\infty} \Phi_X(x)$ et Φ_X est continue en 0, où $(\Phi_{X_n})_{n\geq 0}$ et Φ_X sont resp. les fonctions caractéristiques de $(X_n)_{n\geq 0}$ et X.

3- Soient $(X_n)_{n\geq 0}$ à valeurs entières positives et $(G_{X_n})_{n\geq 0}$ et G_X^- les fonctions génératrices de $(X_n)_{n\geq 0}$ et de X. Alors

$$X_n \to^{\mathcal{L}} X \iff \forall s, |s| \leq 1, G_{X_n}(s) \to_{n \to \infty} G_X(s).$$

Théorème 1.3.2 1- $\forall c \in \mathbb{R}, X_n \to^{\mathcal{L}} X \text{ et } Y_n \to^{\mathcal{L}} c, \text{ alors}$

$$a)$$
 $(X_n, Y_n) \to^{\mathcal{L}} (X, c),$

b)
$$X_n + Y_n \to^{\mathcal{L}} X + c$$
,

c)
$$X_n.Y_n \to^{\mathcal{L}} X.c$$
,

d)
$$X_n/Y_n \to^{\mathcal{L}} X/c, c \neq 0$$
.

Remarque 1.3.2 $X_n \to^{\mathcal{L}} X$ et $Y_n \to^{\mathcal{L}} Y \Rightarrow X_n + Y_n \to^{\mathcal{L}} X + Y$.

1.3.2 Convergence en probabilité

Considérons une suite de v.a.r. $(X_n)_{n\geq 0}$ et une autre v.a. X toutes définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

Définition 1.3.2 La suite $(X_n)_{n\geq 0}$ converge en probabilité vers la v.a.X (notation $X_n \to^{\mathbb{P}} X$) ssi

$$\forall \varepsilon > 0, \mathbb{P}\left(\left\{\omega : \left|X_n\left(\omega\right) - X\left(\omega\right)\right| > \varepsilon\right\}\right) \to_{n \to \infty} 0.$$

Propriétés

- 1- Si $\forall n, X_n = a$, alors $X_n \to^{\mathbb{P}} a$.
- 2- La limite en probabilité, si elle existe, est unique p.s.
- 3- Si $X_n \to^{\mathbb{P}} X$ et $Y_n \to^{\mathbb{P}} Y$ et si $(a, b) \in \mathbb{R}^2$, alors

$$aX_n + bY_n \to {}^{\mathbb{P}}aX + bY,$$

$$X_n.Y_n \to {}^{\mathbb{P}}X.Y,$$

$$si \ \mathbb{P}(X_n \neq 0) = 1, \frac{1}{X_n} \to \frac{1}{X}.$$

4- $(X_n)_{n\geq 0}$ converge en probabilité ssi elle est une suite de Cauchy en probabilité, c'est à dire

$$\lim_{\substack{n \to \infty \\ m \to \infty}} \mathbb{P}\left(\left|X_n - X_m\right| > \varepsilon\right) = 0$$

CHAPITRE 1. RAPPEL SUR L'ESPÉRANCE CONDITIONNELLE ET LES VECTEURS GAUSSIENS

exemple 1.3.1 Soit $(X_n)_{n\geq 1}$ une suite de v.a. toutes de même loi. - Montrer que $\frac{X_n}{n} \to \mathbb{P} 0$.

1.3.3 Convergence prèsque sûre

La convergence prèsque sûre (p.s. en abrg) corespond à la convergence prèsque partout. Considérons une suite de v.a.r. $(X_n)_{n\geq 0}$ et une autre v.a.X toutes définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

Définition 1.3.3 La suite de v.a. $(X_n)_{n\geq 0}$ converge prèsque sûrement (converge avec une probabilité égale à 1) vers la v.a. X (notation $X_n \to^{p.s.} X$) ssi

$$\mathbb{P}\left(\left\{\omega:X_{n}\left(\omega\right)\to_{n\to\infty}X\left(\omega\right)\right\}\right)=1.$$

Propriétés (même propriétés pour la convergence en probabilité)

1.3.4 Convergence dans L^p

Considérons l'espace $L^p = \{X , X \text{ est une v.a.r., telle que } \int |X|^p d\mathbb{P} < \infty, 0 < p \le \infty \}$ muni de la norme $\|X\|_p = (\mathbb{E} \, |X|^p)^{\frac{1}{p}}$. Pour $p \ge 1, L^p$ est un espace normé complet (espace de Banach). De plus L^2 est un espace de Hilbert.

Définition 1.3.4 Pour $1 \le p < \infty$, la suite de v.a. $(X_n)_{n \ge 0}$ converge dans L^p (ou en moment d'ordre p) vers la v.a. X (notation $X_n \to^{L^p} X$) ssi

$$(X_n)_{n\geq 0}$$
 et $X \in L^p$, et $||X_n - X||_p \to_{n\to\infty} 0$

Remarque 1.3.3 (même propriétés pour la convergence en probabilité)

exemple 1.3.2 Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes et toutes de carré intégrables.

1- Montrer que pour tout $n \geq 1$ et $a \in \mathbb{R}$, on a

$$\mathbb{E}\left[\left(X_{n}-a\right)^{2}\right]=\left(\mathbb{E}\left(X_{n}\right)-a\right)^{2}+var\left(X_{n}\right)$$

2- En déduire que la suite $(X_n)_{n\geq 1}$ converge en moyenne quadratique (dans L^2) vers une constante a si et seulement si on a les convergenges

$$\lim_{n \to \infty} \mathbb{E}(X_n) = a \ et \ \lim_{n \to \infty} var(X_n) = 0.$$

1.4. UNIFORMEMENT INTÉGRABILITÉ D'UNE FAMILLES DE VARIABLES ALÉATOIRES

Liens entre les divers types de convergence

convergence p.s . \Rightarrow convergence en probabilité \Rightarrow convergence en loi.

1

convergence dans L^p

Convergence et espérance conditionnelle

Soient $(X_n)_{n\geq 0}$, X et Y des v.a. définies sur l'espace $(\Omega, \mathcal{A}, \mathbb{P})$ et \mathcal{G} une sous tribu de \mathcal{A} .

Théorème 1.3.3 (convergence monotone conditionnelle)

Soit $(X_n)_{n\geq 0}$ une suite de v.a. positives, telle que $(X_n)_{n\geq 0}\uparrow p.s.X\in L^1, alors$

$$\lim_{n \to \infty} \mathbb{E} (X_n \mid \mathcal{G}) = \mathbb{E} (X \mid \mathcal{G}) p.s.$$

Théorème 1.3.4 (convergence dominée conditionnelle)

Soit la suite $(X_n)_{n\geq 0}$ de v.a. telle que $\forall n\in\mathbb{N}, X_n\in L^1$ et $|X_n|\leq Y$ avec $Y\in L^1$. $(X_n)_{n\geq 0}$ converge p.s. vers X, alors

$$\lim_{n\to\infty} \mathbb{E}\left(X_n\mid \mathcal{G}\right) = \mathbb{E}\left(X\mid \mathcal{G}\right) p.s. \ et \ dans \ L^1.$$

Lemme 1.3.1 (lemme de Fatou conditionnelle)

Soit la suite $(X_n)_{n\geq 0}$ de v.a. positives, alors

$$\mathbb{E}\left(\liminf X_n \mid \mathcal{G}\right) \leq \liminf \mathbb{E}\left(X_n \mid \mathcal{G}\right).$$

Convergence de suites de v.a.gaussiennes

Proposition 1.3.1 Toute limite de suite de v.a.gaussienne $(X_n)_{n\geq 0}$, en loi, en probabilité ou presque sûrement, ou dans L^1 , ou dans L^2 est gaussienne. De plus l'espérance et la variance de la suite $(X_n)_{n\geq 0}$ convergent vers l'espérance et la variance de la limite.

1.4 Uniformement intégrabilité d'une familles de variables aléatoires

Soit $(X_n)_{n\in\mathbb{N}}$ une famille de v.a.r. définie sur l'espace $(\Omega, \mathcal{A}, \mathbb{P})$.

CHAPITRE 1. RAPPEL SUR L'ESPÉRANCE CONDITIONNELLE ET LES VECTEURS GAUSSIENS

Définition 1.4.1 La famille $(X_n)_{n\in\mathbb{N}}$ est dite uniformement intégrable (U.I) si une des 3 conditions suivantes est vérifiée :

1- pour $\lambda > 0$, $\sup_{n \in \mathbb{N}} \int_{\{|X_n| > \lambda\}} |X_n| d\mathbb{P} \to 0$, lorsque $\lambda \to \infty$,

2- pour tout $\varepsilon > 0$, il existe $\lambda > 0$ tel que

$$\sup_{n\in\mathbb{N}} \int_{\{|X_n|>\lambda\}} |X_n| \, d\mathbb{P} < \varepsilon,$$

3-pour tout $\varepsilon > 0$, il existe $\lambda > 0$ tel que

$$\int_{\{|X_n|>\lambda\}} |X_n| d\mathbb{P} > \varepsilon, \text{ pour tout } n \in \mathbb{N}.$$

On dit que $(X_n)_{n\in\mathbb{N}}$ est uniformement intégrable d'**ordre** p si $(|X_n|^p)_{n\in\mathbb{N}}$ est uniformement intégrable pour $p\in(0,\infty)$.

Théorème 1.4.1 La famille $(X_n)_{n\in\mathbb{N}}$ est dite uniformement intégrable ssi les deux conditions suivantes sont vérifiées

1-
$$\sup_{n\in\mathbb{N}} \mathbb{E}(|X_n|) < \infty$$
,
2- $\forall \varepsilon > 0, \exists \delta > 0, \text{ tel que } \int_E |X_n| d\mathbb{P} < \varepsilon, \text{ pour tout } n \in \mathbb{N},$
où $E \in \mathcal{A} \text{ et } \mathbb{P}(E) < \delta$.

La proposition suivante donne quelques propriétée de l'uniformement intégrabilité :

Proposition 1.4.1 Soit $(X_n)_{n\in\mathbb{N}}$ une famille de v.a U.I. on a

- 1- $Si Y \in L^p(\Omega, \mathcal{A}, \mathbb{P})$, alors la famille $(X_nY)_{n\in\mathbb{N}}$ est U.I.
- 2- Si $(Y_n)_{n\in\mathbb{N}}$ est une famille U.I., alors la famille $(X_n+Y_n)_{n\in\mathbb{N}}$ l'est aussi.
 - 3- Toute sous famille de $(X_n)_{n\in\mathbb{N}}$ est U.I.

 $(X_n)_{n\in\mathbb{N}}$ est U.I. si et seulement si $(|X_n|)_{n\in\mathbb{N}}$ est U.I.

- 3- Soit $Y_n = X_n$ ou $-X_n$ pour chaque $n \in \mathbb{N}$. Alors $(X_n)_{n \in \mathbb{N}}$ est U.I. ssi $(Y_n)_{n \in \mathbb{N}}$ l'est.
- $4\text{-}Si \mid X_n \mid \leq \mid Y_n \mid \text{ pour chaque } n \in \mathbb{N} \text{ et } (Y_n)_{n \in \mathbb{N}} \text{ est } U.I., \text{ alors } (X_n)_{n \in \mathbb{N}} \text{ est } U.I..$ En particulier si $\mid X_n \mid \leq Y \text{ pour chaque } n \in \mathbb{N} \text{ et } Y \text{ est une } v.a.$ intégrable, alors $(X_n)_{n \in \mathbb{N}} \text{ est } U.I.$
 - 5- $(X_n)_{n\in\mathbb{N}}$ est U.I si et seulement si $(X_n^+)_{n\in\mathbb{N}}$ et $(X_n^-)_{n\in\mathbb{N}}$ sont U.I.

Le théorème suivant compare les différent **ordres** de l'uniformement intégrabilité.

Théorème 1.4.2 Soit $(X_n)_{n\in\mathbb{N}}$ une famille de v.a. définies sur l'espace $(\Omega, \mathcal{A}, \mathbb{P})$. Si $\sup_{n\in\mathbb{N}} ||X_n||_p < \infty$ pour $p \in (0, \infty)$, alors $(X_n)_{n\in\mathbb{N}}$ est uniformement intégrable d'ordre p, et $(|X_n|^{p_1})_{n\in\mathbb{N}}$ est U.I. pout chaque $p_1 \in (0, p)$.

L'uniformement intégrabilité et la convergence dans L^p

On parle dans ce paragraphe de l'utilité de l'uniformement intégrabilité pour démontrer la convergence dans L^p . Soient $(X_n)_{n\in\mathbb{N}}$ et X des v.a. définies sur $(\Omega, \mathcal{A}, \mathbb{P})$.

Théorème 1.4.3 Soit $(X_n)_{n\in\mathbb{N}}\in L^p, p\in(0,\infty)$, on suppose que

$$X_n \to^{\mathbb{P}} X$$
,

alors les trois conditions suivantes sont équivalentes :

- 1- $(X_n)_{n\in\mathbb{N}}$ est U.I. d'orde p.
- 2- $X \in L^p$ et $\lim_{n \to \infty} ||X_n X||_p = 0$.
- $3-X \in L^p \ et \lim_{n\to\infty} ||X_n||_p = ||X||_p.$

Théorème 1.4.4 Soit $(X_n)_{n\in\mathbb{N}}\in L^1$ et pour tout $n\in\mathbb{N}$ on a $X_n\geq 0$ p.s.. On suppose que

$$X_n \to^{\mathbb{P}} X$$
,

alors les deux conditions suivantes sont équivalentes :

- 1- $(X_n)_{n\in\mathbb{N}}$ est U.I.
- $2-\mathbb{E}(X) < \infty \ et \ \lim_{n\to\infty} \mathbb{E}(X_n) = \mathbb{E}(X).$

1.5 Exercices

Exercice 1:

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, G une sous tribu de \mathcal{A} et X une variable aléatoire définie sur cet espace.

- On pose $var(X/G) = \mathbb{E}(X^2/G) - (\mathbb{E}(X/G))^2$. Montrer que

$$var(X) = \mathbb{E}(var(X/G)) + var(\mathbb{E}(X/G)).$$

CHAPITRE 1. RAPPEL SUR L'ESPÉRANCE CONDITIONNELLE ET LES VECTEURS GAUSSIENS

Considérons maintenant deux variables aléatoires X et Y telles que

$$\mathbb{E}(Y/G) = X \text{ et } \mathbb{E}(X^2) = \mathbb{E}(Y^2),$$

- 1- Calculer var(Y X/G) puis en déduire var(Y X) = 0.
- 2- Que peut-on dire sur la relation entre X et Y?

Exercice 2:

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, \mathcal{F} et \mathcal{G} deux sous tribus de \mathcal{A} et X une variable aléatoire définie sur cet espace.

- Montrer les propriétés suivantes :
- a) $\mathbb{E}(\mathbb{E}(X \mid \mathcal{F})) = \mathbb{E}(X) p.s.$
- b) Si X est indépendant de \mathcal{F} , alors $\mathbb{E}(X \mid \mathcal{F}) = \mathbb{E}(X) p.s.$
- c) Si $\mathcal{G} \subset \mathcal{F}$, on a $\mathbb{E}(\mathbb{E}(X \mid \mathcal{F}) \mid \mathcal{G}) = \mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{F}) = \mathbb{E}(X \mid \mathcal{G}) p.s.$

Exercice 3:

- 1- Soit $X = (X_1, X_2, ..., X_n)$ un vecteur gaussien de dimension n dont chaque composante est de carrée intégrable.
 - a)- Montrer que la matrice de covariance de X est symétrique positive.
 - b)- Les matrice suivantes sont- elles positives

$$A_{1} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}, A_{2} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, A_{3} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
2- Soit $X = (X_{1}, X_{2}, X_{3}, X_{4})$ un vecteur gaussien tel que

$$m_X = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 2 \end{pmatrix} \text{ et } K_X = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{pmatrix}$$

- a) Montrer que $Y = (X_1 + 2X_2 + 1, X_2 X_3)$ est un vecteur gaussien et donner sa loi en fonction de m_X et K_X .
- 3- Montrer que pour toute matrice carrée symetrique positive $K_X \in M_{n \times n}$ et vecteur $m_X \in \mathbb{R}^n$, il existe un vecteur gaussien X de matrice de covariance K_X et de vecteur moyenne m_X .
- Montrer l'existence d'un vecteur gaussien de matrice de covariance K_X et de vecteur moyenne m_X donnés par

$$K_X = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}, m_X = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

Soit (X,Y) un vecteur aléatoire gaussien dans \mathbb{R}^2 centré et de matrice de covariance l'identité I_2 .

Soit (Z, Q) un vecteur aléatoire défini par :

$$Z = \frac{X+Y}{2}$$
 et $Q = \frac{X-Y}{2}$,

on pose $U = \frac{1}{2} (X - Z)^2 + \frac{1}{2} (Y - Z)^2$.

- 1- Calculer la matrice de covariance du couple (Z, Q).
- 2- Z et Q sont-elles indépendantes?
- 3- Calculer $\mathbb{E}(U)$ et var(U).
- 4- Montrer que Z et U sont indépendantes.
- 5- Donner la loi de U.

Exercice 5:

Une source radioactive émet X particules, où X est une v.a. de Poisson d'intensité λ : chaque particule émise est détecté avec la probabilité p.Soit Y la v.a. représentant le nombre total de particules détectées.

- 1- Donner la loi de Y/X.
- 2- Déterminer la loi de Y.
- 3- Calculer $\mathbb{E}(Y/X)$.

Exercice 6:

Soit X un vecteur gaussien centré de matrice de covariance

$$K = \left(\begin{array}{rrr} 2 & 2 & -2\\ 1 & 5 & 1\\ -2 & 1 & 5 \end{array}\right)$$

- 1- Le vecteur aléatoire X admet-il une densité?
- 2- a)- Déterminer a tel que les variables aléatoires X_1 et $Y = X_2 aX_1$ soient indépendantes. Quelle est la loi de (X_1, Y) ?
- b)- Montrer que pour tout $t \in \mathbb{R}$, $\mathbb{E}(\exp(itX_2/X_1)) = \exp(itaX_1)\mathbb{E}(\exp(itY))$. En déduire la loi conditionnelle de X_2 sachant $X_1 = x$.

Exercice 7:

Soit $X=(X_1,X_2,X_3,X_4)$ un vecteur gaussien centré de matrice de covariance

$$K = \left(\begin{array}{cccc} 2 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 2 \end{array}\right)$$

- 1- Que peut-on dire dire de X_3 et de (X_1, X_2, X_4) ?
- 2- Donner la loi marginale de (X_1, X_2) et calculer $\mathbb{E}(X_1 \mid X_2)$.
- 3- Même question pour (X_3, X_4) .

CHAPITRE 1. RAPPEL SUR L'ESPÉRANCE CONDITIONNELLE ET LES VECTEURS GAUSSIENS

- 4- En déduire deux v.a. indépendantes de X_2 , fonctions de répartition de X_1, X_2 et de X_2, X_4 .
- 5- Vérifier que X_1-X_2 et X_4-X_2 sont indépendants et écrire X comme la somme de quarte vecteurs indépendants.

Exercice 8:

- 1- Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoires. Montrer que si $(X_n)_{n\geq 0}$ converge simultanément vers deux variables aléatoires X et Y, alors X=Y p.s., et ceci quelque soit le mode de convergence vers X et quelque soit le mode de convergence vers Y, parmi : convergence p.s., dans $L^p(p \in \{1,2\})$, en probabilité.
 - 2- Montrer les implications suivantes : convergence p.s.⇒convergence en probabilité⇒ convergence en loi.

$$\uparrow$$
 convergence dans L^p

Exercice 9:

On considère la fonction f_n , définie pour tout $n \in \mathbb{N}^*$, comme suit

$$f_n(x) = n^2 x \exp(-\frac{n^2 x^2}{2}) 1_{\mathbb{R}^+}.$$

- 1- Montrer que f_n est une densité de probabilité.
- 2- Soit $(X_n)_{n\geq 1}$ une suite de v.a.telle que, pour tout $n\geq 1,\ X_n$ admet pour densité f_n . Démontrer que la suite $(X_n)_{n\geq 1}$ converge en probabilité vers 0.

Exercice 10:

Soit Y une v.a. de densité de probabilité :

$$f_Y(y) = \exp(-y - \exp(-y)).$$

- 1- Calculer la fonction de répartition de Y.
- 2- Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes et identiquement distribuées de loi exponentielle de paramètre 1. On pose

$$Z_n = \max(X_1, X_2, ..., X_n).$$

- Démontrer que la suite $(Z_n - \ln(n))_{n \ge 1}$ converge en loi vers Y.

Exercice 11:

Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes, supposons que pour tout $n\geq 1,\, X_n\sim B\left(\frac{1}{n}\right)$.

- 1- Montrer que $(X_n)_{n\geq 1}$ converge en loi vers une v.a.X que l'on précisera. 2-Montrer que $(X_n)_{n\geq 1}$ converge dans L^1 et préciser la limite. 3- La suite $(X_n)_{n\geq 1}$ converge t-elle presque surement? (utiliser la condition suffisante de la convergence p.s)

$$\forall \epsilon > 0, \sum_{n=1}^{\infty} P(|X_n - X| > \epsilon) \text{ converge} \Rightarrow (X_n)_{n \ge 1} \to^{p.s.} X.)$$

Chapitre 2

Martingales en temps discret

Ce chapitre est consacré à l'étude des martingales en temps discret. La théorie de martingales a son origine dans l'étude des jeux : elle modélise d'une part le caractère aléatoire d'un phénomène mais aussi son évolution dans le temps. Les martingales forment une classe importante des processus stochastiques, et le mot martingale est synonime de jeu équitable, c'est à dire d'un jeu où le gain que l'on peut éspérer faire en tout temps ultérieur est égal à la somme gagniée au moment présent.

2.1 Définitions et premières propriétés

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité.

Définition 2.1.1 (Processus stochastique à temps discret)

On appelle processus stochastique à temps discret, à valeurs dans l'espace mesurable (E,ζ) , la famille des variables aléatoires $(X_n)_{n\geq 0}$, définies sur (Ω,\mathcal{A}) , où pour tout n, X_n est à valeurs dans (E,ζ) .

Définition 2.1.2 (Filtration)

Une suite $(\mathcal{F}_n)_{n\geq 0}$ de sous tribus de \mathcal{A} est appelée filtration de l'espace $(\Omega, \mathcal{A}, \mathbb{P})$ si

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset ... \subset \mathcal{F}_n \subset ... \subset \mathcal{A}$$
.

L'espace $(\Omega, \mathcal{A}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$ est appelé espace probabilisé filtré. \mathcal{F}_n représente l'ensemble d'informations disponibles jusqu'à l'instant n.

Définition 2.1.3 (Processus stochastique adapté)

Un processus stochastique $(X_n)_{n\geq 0}$ est dit adapté à la filtration $(\mathcal{F}_n)_{n\geq 0}$ si

 X_n est \mathcal{F}_n – mesurable pour tout $n \geq 0$.

Remarque 2.1.1 Tout processus stochastique est adapté à sa filtration canonique (filtration naturelle) définie par

$$\mathcal{F}_n = \sigma\left(X_k, k \in \{0, 1, ..., n\}\right).$$

Définition 2.1.4 (Martingale, sur martingale, sous martingale)

Soit $(X_n)_{n\geq 0}$ un processus stochastique adapté à la filtration $(\mathcal{F}_n)_{n\geq 0}$, dont tous les éléments sont intégtables. On dit que $(X_n)_{n\geq 0}$ est, par rapport à $(\mathcal{F}_n)_{n\geq 0}$, une

- 1) $martingale ssi \forall n \geq 0, \mathbb{E}(X_{n+1} \mid \mathcal{F}_n) = X_n;$
- 2- sous martingale ssi $\forall n \geq 0, \mathbb{E}(X_{n+1} \mid \mathcal{F}_n) \geq X_n;$

Remarque 2.1.2 1- Une martingale est à la fois une sous martingale et une sur martingale.

2- Un processus stochastique $(X_n)_{n\geq 0}$ est une sous martingale ssi $(-X_n)_{n\geq 0}$ est une sur martingale.

exemple 2.1.1 1- Soient $(\mathcal{F}_n)_{n\geq 0}$ la filtration engendrée par $(X_n)_{n\geq 0}$ et X une variable aléatoire intégrable. Alors le processus stochastique défini par

$$\forall n \geq 0, X_n = \mathbb{E}\left(X \mid \mathcal{F}_n\right),\,$$

est une \mathcal{F}_n -martingale.

2- Soient $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et intégrables, et $(\mathcal{F}_n)_{n\geq 0}$ la filtration naturelle de $(X_n)_{n\geq 1}$.

On définit le processus stochastique $(S_n)_{n>1}$ comme suit :

$$\forall n \ge 1, S_n = \sum_{i=1}^n X_{i;}$$

- Montrer que $(S_n)_{n\geq 1}$ est une martingale (resp. sur martingale, sous martingale) si $\forall n\geq 1, \mathbb{E}(X_n)=0$ (resp. $\mathbb{E}(X_n)\leq 0, \mathbb{E}(X_n)\geq 0$).

3- Soit $(Y_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes de même loi normale centrée réduite. On pose

$$\forall n \geq 1, S_n = \sum_{i=1}^n Y_{i;}, \text{ avec } S_0 = 0, \mathcal{F}_0 = \{\varnothing, \Omega\} \text{ et } \mathcal{F}_n = \sigma\left(Y_k, 1 \leq k \leq n\right).$$

Soit $X_0 = 0$ et pour tout $n \ge 1$,

$$X_n = \exp(S_n - \frac{n}{2}).$$

- Montrer que $(X_n)_{n\geq 1}$ est une martingale positive.

2.1.1 Propriétés

Intéressons maintenant aux propriétés des martingales. Soient $(X_n)_{n\geq 0}$ et $(Y_n)_{n\geq 0}$ des processus stochastiques définis sur l'espace $(\Omega, \mathcal{A}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$.

Propriétés

Soient $(X_n)_{n\geq 0}$ et $(Y_n)_{n\geq 0}$ deux martingales sur la même filtration $(\mathcal{F}_n)_{n\geq 0}$, alors

- 1- $(aX_n + bY_n)_{n\geq 0}$ est une martingale, avec $(a,b) \in \mathbb{R}^2$. (on a un résultat analogue pour les sur martingales si a et b sont positifs).
- 2- $(X_n \vee Y_n)_{n\geq 0}$ et $(X_n \wedge Y_n)_{n\geq 0}$ sont des martingales. (même résultat pour les sous martingales et les sur martingales)
- 3- $(X_n)_{n\geq 0}$ est une martingale (resp. sur martingale, sous martingale), alors $\mathbb{E}(X_n)$ est une fonction constante (resp. $\mathbb{E}(X_n)$ est une fonction décroissante, $\mathbb{E}(X_n)$ est une fonction croissante).
- 4- Si $(X_n)_{n\geq 0}$ est une martingale et $(Y_n)_{n\geq 0}$ est une sous martingale (sur martingale), alors $(X_n+Y_n)_{n\geq 0}$ est une sous martingale (sur martingale).
- **Proposition 2.1.1** 1- $Si(X_n)_{n\geq 0}$ est une \mathcal{F}_n -martingale (resp. sous martingale) et $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe (resp. convexe croissante) telle que $f(X_n) \in L^1, \forall n \in \mathbb{N}$. Alors $(f(X_n))_{n\geq 0}$ est une sous martingale.
- 2- $Si(X_n)_{n\geq 0}$ est une \mathcal{F}_n -martingale (resp. sur martingale) et $g: \mathbb{R} \to \mathbb{R}$ une fonction concave (resp. concave croissante) telle que $g(X_n) \in L^1, \forall n \in \mathbb{N}$. Alors $(g(X_n))_{n\geq 0}$ est une sur martingale.

Remarque 2.1.3 1- Si $(X_n)_{n\geq 0}$ est une martingale, alors $(|X_n|)_{n\geq 0}$ et $(X_n^2)_{n\geq 0}$ (si $\forall n \in \mathbb{N}, X_n^2 \in L^1$) sont des sous martingales.

2- $Si(X_n)_{n\geq 0}$ est une sous martingale, alors $(X_n^+)_{n\geq 0}$ est une sous martingale.

2.1.2 Décomposition de Doob d'une sous martingale

Définition 2.1.5 Soit $(X_n)_{n\geq 0}$ une martingale (sous martingale, sur martingale) définie sur l'espace $(\Omega, \mathcal{A}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$. $(X_n)_{n\geq 0}$ est dite bornée dans L^p pour $p\geq 1$,si

$$\sup_{n\in\mathbb{N}}\mathbb{E}\left(\left|X_{n}\right|^{p}\right)<\infty.$$

Théorème 2.1.1 Une sous martingale (resp. sur martingale) $(X_n)_{n\geq 0}$ est dite bornée dans L^1 ssi

$$\sup_{n\in\mathbb{N}}\mathbb{E}\left(X_{n}^{+}\right)<\infty.(resp.\sup_{n\in\mathbb{N}}\mathbb{E}\left(X_{n}^{-}\right)<\infty)$$

Définition 2.1.6 (Processus prévisible croissant)

Soit $(A_n)_{n\geq 0}$ un processus stochastique défini sur l'espace probabilisé filtré $(\Omega, \mathcal{A}, (\mathcal{F}_n)_{n>0}, \mathbb{P})$. $(A_n)_{n>0}$ est dit prévisible si

$$\forall n \geq 0, A_{n+1} \text{ est } \mathcal{F}_n - mesurable.$$

- $(A_n)_{n\geq 0}$ est dit croissant si

$$\forall n \ge 0, A_n \le A_{n+1}.$$

Proposition 2.1.2 (Décomposition de Doob)

Toute sous martingale $(X_n)_{n\geq 0}$ s'écrit, de façon unique, sous la forme

$$X_n = M_n + A_n,$$

avec $(M_n)_{n\geq 0}$ est une martingale et $(A_n)_{n\geq 0}$ est un processus croissant prévésible, tels que $A_0=0$; s'appelle le compensateur de la sous martingale $(X_n)_{n\geq 0}$, noté $\langle X\rangle_n$.

exemple 2.1.2 Un cas pariculier important se présente si $(X_n)_{n\geq 0}$ et une martingale telle que $X_n = 0$ et $\mathbb{E}(X_n^2) < \infty, \forall n$, dans ce cas la décomposition de Doob s'applique à la sous martingale $(X_n^2)_{n\geq 0}$ comme suit :

$$X_n^2 = M_n + A_n,$$

où avec $(M_n)_{n\geq 0}$ est une martingale et $(A_n)_{n\geq 0}$ est le processus croissant ou le compnsateur de la martingale $(X_n)_{n\geq 0}$ défini, pour tout $n\geq 1$, par

$$A_{n} = \sum_{k=1}^{n} \mathbb{E} \left(X_{k}^{2} - X_{k-1}^{2} \mid \mathcal{F}_{k-1} \right) = \sum_{k=1}^{n} \mathbb{E} \left(\left(X_{k} - X_{k-1} \right)^{2} \mid \mathcal{F}_{k-1} \right)$$

le compensateut $\langle X \rangle_n$ est un mesure de la variance de la trajectoire jusqu'à l'instant n.

Proposition 2.1.3 (Décomposition de Krickeberg)

Soit $(X_n)_{n\geq 0}$ une sous martingale bornée dans L^1 , alors on a

$$X_n = Y_n - Z_n,$$

avec $(Y_n)_{n\geq 0}$ est une martingale positive et $(Z_n)_{n\geq 0}$ est une sur martingale positive.

2.2 Martingales et temps d'arrêt

2.2.1 Temps d'arrêt

Dans un jeu de hasard, un temps d'arrêt est un temps lors duquel le joueur décide d'arrêter de jouer, selon un critère ne dépendant que du passé et de présent. Il peut par exemple décider d'arrêter de jouer dès qu'il a dépensé tout son capital, dès qu'il a gagné une certaine somme,....Les temps d'arrêt sont aléatoires, puisqu'ils dépendent du déroulement antérieur du jeu, et ils ne peuvent pas dépendre du futur, puisque le joueur doit à tout moment pouvoir décider s'il arrête ou non.

Définition 2.2.1 (Temps d'arrêt)

On appelle temps d'arrêt toute variable aléatoire $T:\Omega\to\mathbb{N}\cup\{\infty\}$ telle que

$$\{T=n\}\in\mathcal{F}_n, \forall n\in\mathbb{N}.$$

 $\{T=n\} = \{\omega \in \Omega : T(\omega) = n\} \in \mathcal{F}_n$ signifie qu'avec l'information disponible au temps n, on doit pouvoir décider si oui ou non l'événement $\{T=n\}$ est réalisé.

exemple 2.2.1 1- Si la variable aléatoire T est constante, alors T est un temps d'arrêt.

2- Temps d'atteinte : Supposons que $(X_n)_{n\geq 0}$ est réel et soit $B\subset \mathbb{R}$ un borélien. Le temps T_B de première atteinte de B par $(X_n)_{n\geq 0}$ est défini comme suit :

$$T_B = \inf \left\{ n \in \mathbb{N}, X_n \in B \right\}.$$

 T_B est un temps d'arrêt (on pose $T_B = \infty$ si le processus $(X_n)_{n \ge 0}$ n'atteint jamais l'ensemble B)

Lemme 2.2.1 T est un temps d'arrêt ssi $\{T \leq n\} \in \mathcal{F}_n$, pour tout $n \in \mathbb{N}$.

Proposition 2.2.1 Soit T un temps d'arrêt défini sur l'espace $(\Omega, \mathcal{A}, (\mathcal{F}_n)_{n>0}, \mathbb{P})$.

- 1- La condition $\{T = n\} \in \mathcal{F}_n, \forall n \in \mathbb{N} \text{ est \'equivalente \'a } \begin{cases} a) \forall n \in \mathbb{N}, \{T \leq n\} \in \mathcal{F}_n. \\ b) \forall n \in \mathbb{N}, \{T > n\} \in \mathcal{F}_n. \end{cases}$
- 2- Les événements $\{T \geq n\}$ et $\{T < n\}$ appartiennent à \mathcal{F}_{n-1} .

Propriétés des temps d'arrêt

Proposition 2.2.2 1- Si T est un temps d'arrêt et k un entier positif, alors T + k est un temps d'arrêt.

- 2- Si T et S sont deux temps d'arrêt du processus stochastique $(X_n)_{n\geq 0}$, alors $T\vee S, T\wedge S$ et T+S sont des temps d'arrêt. En particulier $T\wedge k$ est un temps d'arrêt borné.
- 3- Soit $(T_n)_{n\geq 0}$ une suite de temps d'arrêt, alors $\sup T_n$, $\inf T_n$, $\limsup T_n$ et $\liminf T_n$ sont des temps d'arrêt.
- 4- Soit $(T_n)_{n\geq 0}$ une suite de temps d'arrêt telle que $T_n \nearrow T$, alors T est un temps d'arrêt.

Remarque 2.2.1 Soient T et S deux temps d'arrêt tels que T < S, alors V = T - S n'est pas nécessairement un temps d'arrêt.

Définition 2.2.2 (tribu antérieur d'un temps d'arrêt)

Soit T un temps d'arrêt, la tribu \mathcal{F}_T définie par :

$$\mathcal{F}_T = \{ A \in \mathcal{A}, A \cap \{ T = n \} \in \mathcal{F}_n \}, \qquad (2.1)$$

est appelée la tribu des événement antérieurs à T.

Proposition 2.2.3 Soient T et S deux temps d'arrêt tels que $T \leq S$, alors

$$\mathcal{F}_T \subset \mathcal{F}_S$$
.

Définition 2.2.3 (Temps d'arrêt borné)

Soit T un temps d'arrêt défini sur l'espace $(\Omega, \mathcal{A}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$. T est dit borné si

$$\exists M \geq 0, |T(\omega)| \leq M, \forall \omega \in \Omega.$$

Processus stochastique arrété

Définition 2.2.4 (Processus arrété)

Soient $(X_n)_{n\geq 0}$ un processus stochastique et T un temps d'arrêt définis sur l'espace $(\Omega, \mathcal{A}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$, adaptés à la filtration $(\mathcal{F}_n)_{n\geq 0}$. On appelle processus stochastique arrété en T, le processus, noté X^T , défini par

$$X^{T} = \left(X_{n}^{T}\right)_{n \geq 0} = \left(X_{n \wedge T}\right)_{n \geq 0} = \begin{cases} X_{n}\left(\omega\right), & si \ n < T(\omega). \\ X_{T(\omega)}\left(\omega\right), & si \ n \geq T(\omega). \end{cases}$$

i.e

$$X_{n \wedge T} = X_n(\omega) 1_{\{n < T(\omega)\}} + X_{T(\omega)}(\omega) 1_{\{n \ge T(\omega)\}}$$

= $X_n(\omega) 1_{\{n < T(\omega)\}} + \sum_{k=0}^n X_k(\omega) 1_{\{T(\omega)=k\}}.$

Remarque 2.2.2 Le processus arrété X^T est adapté à $(\mathcal{F}_n)_{n\geq 0}$ si le processus $(X_n)_{n\geq 0}$ est adapté à $(\mathcal{F}_n)_{n\geq 0}$.

Définition 2.2.5 La variable aléatoire X_T est appélée variable aléatoire terminale du processus arrété X^T , elle est définie si le temps d'arrêt T est p.s. fini.

La proposition suivante confirme que le processus arrété d'une martingale (resp. sous martingale, sur martingale) est une martingale (resp. sous martingale, sur martingale).

Proposition 2.2.4 Si $(X_n)_{n\geq 0}$ est une martingale (sur martingale, sous martingale) et T est un temps d'arrêt par rapport à la même filtration $(\mathcal{F}_n)_{n\geq 0}$. Alors le processus stochastique arrété $(X_n^T)_{n\geq 0}$ est encore une martingale (sur martingale, sous martingale).

2.2.2 Théorème d'arrêt borné

Soit $(X_n)_{n\geq 0}$ une martingale, alors on a pour tout $n\geq 0$; $\mathbb{E}(X_n)=\mathbb{E}(X_0)$. La question qui se pose : est-ce qu'on a encore $\mathbb{E}(X_T)=\mathbb{E}(X_0)$ pour tout temps d'arrêt T? La réponse de cette question est donnée par les théorèmes suivants.

Théorème 2.2.1 Soient $(X_n)_{n\geq 0}$ une martingale (resp. sous martingale, sur martingale), T_1 et T_2 deux temps d'arrêt bornés tels que $T_1 \leq T_2$ p.s..alors X_{T_1} et X_{T_2} sont intégrables et l'on a

$$\mathbb{E}(X_{T_2} \mid \mathcal{F}_{T_1}) = X_{T_1} \ p.s.(resp.\mathbb{E}(X_{T_2} \mid \mathcal{F}_{T_1}) \ge X_{T_1}, \mathbb{E}(X_{T_2} \mid \mathcal{F}_{T_1}) \le X_{T_1}).$$

Théorème 2.2.2 Soient $(X_n)_{n\geq 0}$ une martingale (resp. sous martingale, sur martingale) et T un temps d'arrêt borné, tous les deux adapté à la filtration $(\mathcal{F}_n)_{n\geq 0}$. Alors on a

$$\mathbb{E}\left(X_{T}\right) = \mathbb{E}\left(X_{0}\right) \ (resp.\mathbb{E}\left(X_{T}\right) \geq \mathbb{E}\left(X_{0}\right), \mathbb{E}\left(X_{T}\right) \leq \mathbb{E}\left(X_{0}\right)\right).$$

2.2.3 Inégalités maximales et minimales des martingales

Les inégalités maximales et maximales sont des inégalités consernant les variables aléatoires $\max_{0 \le k \le n} X_k$, $\max_{0 \le k \le m} |X_k|$, $\sup_{0 \le k \le n} X_k$, $\min_{0 \le k \le n} X_k$...,utilisées dans l'étude de convergence des martingales.

Théorème 2.2.3 1- Soit $(X_n)_{n\geq 0}$ une sous martingale positive, alors

$$\forall \lambda > 0, \lambda \mathbb{P}(\max_{0 \le k \le n} X_k > \lambda) \le \mathbb{E}(X_n).$$

2- Inégalité maximale de Doob : Soit $(X_n)_{n\geq 0}$ une sous martingale de signe quelconque, alors

$$\forall \lambda > 0, \lambda \mathbb{P}(\max_{0 \le k \le n} X_k > \lambda) \le \mathbb{E}\left(X_n.1_{\left\{\max_{0 \le k \le n} X_k > \lambda\right\}}\right) \le \mathbb{E}\left(X_n^+\right) \le \mathbb{E}\left(|X_n|\right).$$

Théorème 2.2.4 1- Soit $(X_n)_{n\geq 0}$ une sur martingale positive, alors

$$\forall \lambda > 0, \lambda \mathbb{P}(\max_{0 \le k \le n} X_k > \lambda) \le \mathbb{E}(X_0).$$

2- Inégalité minimale de Doob : Soit $(X_n)_{n\geq 0}$ une sur martingale de signe quelconque, alors

$$\forall \lambda > 0, \lambda \mathbb{P}(\min_{0 \le k \le n} X_k \le -\lambda) \le \mathbb{E}(X_n^+) - \mathbb{E}(X_0).$$

Théorème 2.2.5 (Inegalité maximale dans L^p de Doob)

Soit $(X_n)_{n\geq 0}$ une martingale telle que il existe p>0 tel que $\mathbb{E}\left(\left|X_n\right|^p\right)<\infty, \forall n\in\mathbb{N}.$ Alors $\forall m\in\mathbb{N}$

- a) la variable aléatoire $\max_{0 \le k \le m} |X_k| \in L^p$ (c'est à dire $\mathbb{E}(|\max_{0 \le k \le m} |X_k||^p) < \infty$;
 - b) de plus

$$\mathbb{E}\left[\max_{0\leq k\leq m}\left|X_{k}\right|^{p}\right]\leq\left(\frac{p}{p-1}\right)^{p}\mathbb{E}\left(\left|X_{k}\right|^{p}\right).$$

2.2.4 Convergence des martingales

Dans ce paragraphe on donne des réponses aux questions suivantes : Si $(X_n)_{n\geq 0}$ est une martingale, existe-t-il une variable aléatoire X telle que $\lim_{n\to\infty} X_n = X$?

Et si c'est le cas, en quel sens a lieu cette convergence (presque sûre, en probabilité, en loi, dans L^1 ou L^2)?

D'autre part a-t-on, alors $\mathbb{E}(X) = \mathbb{E}(X_0)$ ou encore $\mathbb{E}(X \mid \mathcal{F}_n) = X_n$?

Convergence presque sûre

Le théorème et le corollaire suivants donnent des conditions sous les quelleques la convergence presque sûre est obtenue.

Théorème 2.2.6 Soit $(X_n)_{n\geq 0}$ une martingale (sous martingale, sur martingale) bornée dans L^1 , alors $(X_n)_{n\geq 0}$ converge presque sûrement vers une v.a. intégrable X_{∞} , c'est à dire

$$X_n \to^{p.s} X_\infty$$
, avec $X_\infty \in L^1$.

Corollaire 2.2.1 1- Soit $(X_n)_{n\geq 0}$ une sur martingale positive (sous martingale négative), alors

$$X_n \to^{p.s} X_\infty$$
, avec $X_\infty \in L^1$.

et X_{∞} vérifie

$$X_n \geq \mathbb{E}(X_\infty \mid \mathcal{F}_n) \text{ pour tout } n \in \mathbb{N}.(X_n \leq \mathbb{E}(X_\infty \mid \mathcal{F}_n))$$

2- Soit $(X_n)_{n\geq 0}$ une sur martingale minorée par une variable aléatoire intégrable (sous martingale majorée par une variable aléatoire), alors $(X_n)_{n\geq 0}$ converge p.s. vers une variable aléatoire X_∞ intégrable.

Remarque 2.2.3 Il est important de noter que de la convergence presque sur vers une variable aléatoire intégrabe, on ne peut pas déduire la convergence de $\mathbb{E}(X_n)$ vers $\mathbb{E}(X)$ et pour obtenir cette dernière on est besoin de la propériété de l'uniformement intégrabilité.

Convergence dans L^p

Passons maintenant à la convergence dans L^p .

Théorème 2.2.7 Soit $(X_n)_{n\geq 0}$ une martingale, supposons qu'il existe p>1 tel que

$$\sup_{n\in\mathbb{N}}\mathbb{E}\left|X_n\right|^p<\infty.$$

Alors $(X_n)_{n>0}$ converge p.s. et dans L^p vers une .v.a. X_∞ telle que

$$\mathbb{E}\left|X_{\infty}\right|^{p} = \sup_{n \in \mathbb{N}} \mathbb{E}\left|X_{n}\right|^{p}.$$

Uniformement intégrabilité et martingale

Théorème 2.2.8 Soit $(X_n)_{n\geq 0}$ une martingale qui converge en probabilité vers une v.a. X_{∞} , alors il y a équivalence entre :

- 1- $(X_n)_{n>0}$ converge dans L^1 et p.s.
- $2-(X_n)_{n>0}^-$ est U.I.
- 3- La martingale $(X_n)_{n\geq 0}$ est fermée, c'est à dire qu'il existe une v.a. Z intégrable telle que

$$\forall n \in \mathbb{N}, X_n = \mathbb{E}\left(Z \mid \mathcal{F}_n\right).$$

2.3 Exercices

Exercice 1:

- 1) Soient $(\Omega, \mathcal{A}, \mathbb{P}, (\mathcal{F}_n)_{n \geq 1})$ un espace probabilisé filtré et $X_n = \sum_{m=1}^n I_{B_m}$, avec $B_n \in \mathcal{F}_n, \forall n \geq 1...$
- -Montrer que $(X_n)_{n\geq 1}$ est une sous martingale, puis donner la décomposition de Doob de X_n .
- 2) Soit $(X_n)_{n\geq 1}$, $(Y_n)_{n\geq 1}$ deux martingales et T un temps d'arrêt par rapport à la même filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ tels que $X_T=Y_T$ sur l'évenement $\{T<\infty\}$. Soit le processus stochastique $(Z_n)_{n>1}$ défini par

$$Z_n = \begin{cases} X_n, & \text{si } n < T \\ Y_n, & \text{si } n \ge T \end{cases}$$

- Montrer que $(Z_n)_{n\geq 1}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale.
- 3) Soint \mathbb{P} et \mathbb{Q} deux mesures de probabilité définies sur même espace mesurable (Ω, \mathcal{A}) avec $\Omega = \{\omega_1, \omega_2, ..., \omega_8\}$, et considérons une suite $(X_n, n = 1, 2, ...)$ de variables aléatoires indépendantes et identiquement distribuéés par rapport à la mesure \mathbb{P} telles que $\mathbb{E}^{\mathbb{P}}(X_n) = 0$ et $\mathbb{E}^{\mathbb{P}}(X_n^2) < \infty$.

Posons $\mathcal{F}_0 = \{\Phi, \Omega\}$, $M_0 = 0, \forall n \in \{1, 2, ...\}$, $\mathcal{F}_n = \sigma(X_k, k \in \{1, 2, ...n\})$ et $M_n = \sum_{k=1}^n X_k$.

a- Montrer que $(M_n)_{n\geq 0}$ est une martingale sur $(\Omega, \mathcal{A}, \mathbb{P}, (\mathcal{F}_n)_{n\geq 1})$.

b- $(M_n)_{n>0}$ est-il une martingale sur $(\Omega, \mathcal{A}, \mathbb{Q}, (\mathcal{F}_n)_{n>1})$

Exercice 2:

Soit $(X_n)_{n>0}$ une martingale sur l'espace probabilisé filtré $(\Omega, \mathcal{A}, \mathbb{P}, (\mathcal{F}_n)_{n>0})$.

- 1- Montrer que $(X_n^2)_{n\geq 0}$ est une sous martingale, et donner sa décomposition de Doob.
 - 2- Calculer $\langle X \rangle_n$, puis montrer que $X_n^2 \langle X \rangle_n$ est une \mathcal{F}_n martingale.

Exercice 3:

- 1- Soit T un temps d'arrêt, montrer que \mathcal{F}_T est une tribu.
- 2-Soient T un temps d'arrêt et $(X_n)_{n\geq 0}$ une suite de v.a. adaptée à \mathcal{F}_n , montrer que les variables aléatoires T et X_T sont \mathcal{F}_T —mesurables.
- 3- Soit T un temps d'arrêt et S une v.a. \mathcal{F}_T -mesurable, vérifiant $T \leq S$. Montrer que S est un temps d'arrêt.
- 4-Soit $(T_k)_{k\in\mathbb{N}}$ une suite croissante de temps d'arrêt telle que $\lim_{k\to\infty} T_k = T$. Montrer que T est un temps d'arrêt.
- 6- Soient T et S deux temps d'arrêt, montrer que $\{S \leq T\}$ et $\{T \leq S\}$ appartiennent à \mathcal{F}_S .
- 7- Le temps L_B du dernier passage, du proc. stoc. $(X_n)_{n\geq 0}$, dans un borélienB, avant un temps fixé M, est défini par : $L_B = \sup\{n\leq M, X_n\in B\}$.
 - L_B est-il un temps d'arrêt?

Exercice 4:

Soit $(X_n)_{n\geq 0}$ une suite de v.a. indép., intégrables, de même loi et T un temps d'arrêt intégrable. On pose

$$Y_0 = 0, Y_n = X_1 + X_2 + \dots + X_n.$$

- Montrer que Y_T est intégrable et $\mathbb{E}(Y_T) = \mathbb{E}(X_1) \mathbb{E}(T)$.

Exercice 5:

1- Soit $(X_n)_{n\geq 0}$ une sur martingale positive (resp. de signe quelconque), montrer que

$$\forall \lambda \succ 0, \lambda \mathbb{P}\left(\max_{0 \le k \le n} X_k > \lambda\right) \le \mathbb{E}\left(X_0\right).(\text{resp.}\forall \lambda \succ 0, \lambda \mathbb{P}\left(\min_{0 \le k \le n} X_k > \lambda\right) \le \mathbb{E}\left(X_n^+\right) - \mathbb{E}\left(X_n\right)\right).$$

3-Soit $(X_n)_{n\geq 0}$ une martingale de carré intégrable et $n\in\mathbb{N}$. Montrer que pour tout $\lambda>0$,

$$\mathbb{P}\left(\max_{0 \le k \le n} |X_k| > \lambda\right) \le \frac{\mathbb{E}\left(X_n^2\right)}{\lambda^2}.$$

b- Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes de carré intégrable, on pose $:S_n=X_1+X_2+\ldots+X_n.$

- Montrer que : pour tout $\lambda > 0$, $\mathbb{P}\left(\max_{0 \le k \le n} |S_k - \mathbb{E}\left(S_k\right)| > \lambda\right) \le \frac{var(S_n)}{\lambda^2}$.

Exercice 6:

Un joueur dispose initialemant de la somme $X_0 = 1$. Il joue à un jeu de hasard, dans lequel il mise à chaque tour une proprtion λ de son capitale, avec $0 \prec \lambda \leq 1$, il a une chance sur deux de gagner le double de sa mise, sinon il perd sa mise.

1- Donner l'équation d'évolution du capital X_n en fonction du temps n.(Ecriver X_{n+1} en fonction de X_n)

(indication utiliser les variables aléatoires i.i.d. $(\zeta_n)_{n\geq 0}$ avec $\mathbb{P}(\zeta_n=0)=\mathbb{P}(\zeta_n=2)=1/2$.

- 2- Montrer que $(X_n)_{n\in\mathbb{N}}$ est une martingale, puis Calculer $\mathbb{E}(X_n)$.
- 3- Discuter la convergence p.s. de $(X_n)_{n\in\mathbb{N}}$ lorsque $n\to\infty$.
- 4- Calcuer $\mathbb{E}(X_n^2)$ par récurrence sur n.
- 5- Que peut-on dire sur la convergence dans L^2 de $(X_n)_{n\in\mathbb{N}}$
- 6- Déterminer le processus crois sant $\langle X \rangle_n$.
- 7- On suppose que le joueur mise à chaque tour la totalité de son capital, c'est à dire $\lambda=1$:
 - a) calculer explicitement la loi de $(X_n)_{n\in\mathbb{N}}$.
 - b) déterminer la limite p.s de $(X_n)_{n\in\mathbb{N}}$.
 - c) discuter la convergence de $(X_n)_{n\in\mathbb{N}}$ dans L^1 . Les $(X_n)_{n\in\mathbb{N}}$ sont-il U.I

Exercice 7:

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $X_1, X_2, ...$ des v.a. indépendantes telles que $\mathbb{P}(X_i = 0) = \mathbb{P}(X_i = 2) = 1/2$.

CHAPITRE 2. MARTINGALES EN TEMPS DISCRET

On pose $S_0 = 0$, $S_n = X_1 + X_2 + ... + X_n$ pour $n \ge 1$ et $\mathcal{F}_n =$ $\sigma\left(X_{1},X_{2},...,X_{n}\right).$

- 1- On fixe $\lambda \succ 0$, montrer que $M_n = \frac{\exp(\lambda S_n)}{(\cosh \lambda)^n}$ est une \mathcal{F}_n -martingale. 2- Montrer que $\cosh x \geq 1$ pour tout $x \geq 0$.
- 3- Soit $T = \inf\{n > 0, S_n \ge 10\}$,
montrer que $(M_{n \wedge T})_{n \ge 1}$ est une martingale et donner une constante k > 0 telle que $|M_{n \wedge T}| \leq k$.
- 4- On pourra admetre que $\mathbb{P}(T < \infty) = 1$, etablir l'égalité $\mathbb{E}\left(\left(\cosh \lambda\right)^{-T}\right) =$ $\exp(-10\lambda)$.

Chapitre 3

Mouvement brownien

Ce chapitre est consacré à l'étude du mouvement browien : définition et propriété des trajectoires. Il est partagé en deux parties, dans la première, on donne des rappels sur les processus en temps continu, notamment le processus gaussien, et dans la deuxième on définit le mouvement brownien et on donne ses principales propriétés.

3.1 Processus stochastiques en temps continu

Définition 3.1.1 (Filtration)

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, une filtration $(\mathcal{F}_t)_{t\in T}$ sur cet espace est une famille croissante (au sens d'inclussion) de sous tribus de \mathcal{A} , i.e

$$\forall s < t \ dans \ T \ on \ a \ \mathcal{F}_s \subset \mathcal{F}_t.$$

- Dans le cas où $T = [0, +\infty[$, on note $\mathcal{F}_{\infty} = \sigma(\cup_{s \in T} \mathcal{F}_s)$.

Définition 3.1.2 (Processus stochastique en temps continu)

Soit T un ensemble d'indices $(T = \subseteq \mathbb{R}ou \mathbb{R}^+)$, un processus stochastique en temps continu $X = (X_t(\omega))_{t \in T}$, défini sur T à valeurs dans un espace mesurable (E, ζ) , est une famille de v.a. X_t , définies sur l'éspace $(\Omega, \mathcal{A}, \mathbb{P})$, indexées par T.

- $(\Omega, \mathcal{A}, \mathbb{P})$ est appelé l'espace probabilisé de base du processus et (E, ζ) est l'espace de phases ou des états possibles du processus.
- Si T est fini, le processus stochastique $(X_t(\omega))_{t\in T}$ est un vecteur aléatoire.

- Un processus stochastique est une fonction de deux variables : t (en général représente le temps) et l'aléatoire $\omega \in \Omega$:
 - * Pour $t \in T$ fixé, l'application $\omega \mapsto X_t(\omega)$ est une v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$.
- * Pour $\omega \in \Omega$ fixé, l'application $t \mapsto X_t(\omega)$ est une fonction à valeurs réelle appelée trajectoire du processus $(X_t(\omega))_{t \in T}$. La valeur de cette fonction est déterminer par le résultat d'un phénomène aléatoire au temps t de l'observation du phénomène, par exemples les résultats de la croissance des générations d'une population, la température journalière en un lieu donné....

Définition 3.1.3 (Mesurabilité, Adaptation, Progressivement mesurabilité)

1- Un processus stochastique $(X_t(\omega))_{t\in T}$ est dit mesurable s'il est mesurable comme fonction définie sur $T \times \Omega$ (muni de la tribu $\mathcal{B}_T \otimes \mathcal{A}$) et à valeurs dans E. C'est à dire

$$\forall A \in \zeta, X^{-1}(A) \in \mathcal{B}_T \otimes \mathcal{A}.$$

- 2- On dit que le processus $(X_t(\omega))_{t\in T}$ est $(\mathcal{F}_t)_{t\in T}$ -adapté ou adapté par rapport à $(\mathcal{F}_t)_{t\in T}$ s'il est \mathcal{F}_t -mesurable pour tout $t\in T$.
- 3- Le processus $(X_t(\omega))_{t\in T}$ est dit progressivement mesurable par rapport à $(\mathcal{F}_t)_{t\in T}$ si l'application

$$(s,\omega) \in [0,t] \times \Omega \to X(s,\omega) \in E$$

est $\mathcal{B}_{[0,t]} \otimes \mathcal{F}_t$ -mesurable.

Définition 3.1.4 Soit $(X_t(\omega))_{t\in T}$ un processus stochastique. La filtration naturelle de $(X_t(\omega))_{t\in T}$, notée $(\mathcal{F}_t^X)_{t\in T}$, est définie, pour tout $t\in T$, par

$$\mathcal{F}_{t}^{X} = \sigma\left(X_{s}\left(\omega\right); 0 \leq s \leq t\right),$$

c'est la plus petite sous tribu qui rend mesurable toutes les applications

$$\omega \to X_s(\omega)$$
, pour tout $s \le t$

Proposition 3.1.1 1- Si le processus $(X_t(\omega))_{t\in T}$ est mesurable, alors la trajectoire

$$X(.,\omega):T\to E$$

est mesurable pour tout $\omega \in \Omega$.

2- Si le processus $(X_t(\omega))_{t\in T}$ est progressivement mesurable, alors il est mesurable.

3.1.1 Loi d'un processus stochastique

Pour caractériser un processus stochastique il suffit de donner sa loi, et cette dernière est définie dès qu'on a les probabilités $\mathbb{P}(X_{t_1} \leq x_1, X_{t_2} \leq x_2, ..., X_{t_n} \leq x_n)$.

Définition 3.1.5 (loi d'un processus stochastique)

Soit $X = (X_t(\omega))_{t \in T}$ un processus stochastique défini sur $(\Omega, \mathcal{A}, \mathbb{P})$. 1- La probabilité $\mathbb{P}_X = \mathbb{P} \circ \mathbb{X}^{-1}$ définie sur $(\mathbb{R}^T, \mathcal{B}(\mathbb{R}^T))$ par

$$\mathbb{P}_{X}\left(B\right) = \mathbb{P}\left(X \in B\right), B \in \mathcal{B}\left(\mathbb{R}^{T}\right),$$

est appelée loi de X.

2- Les probabilités $\mathbb{P}_{t_1,t_2,...,t_n}$ définies par

$$\mathbb{P}_{t_1,t_2,...,t_n}(B_1,B_2,...,B_n) = \mathbb{P}(X_{t_1} \in B_1, X_{t_2} \in B_2,...,X_{t_n} \in B_n),$$

avec $t_1 < t_2 < ... < t_n, t_i \in T$, sont les lois fini-dimensionnelles de X.

3- Les fonctions $F_{t_1,t_2,...,t_n}$ définies par

$$F_{t_1,t_2,...,t_n}(x_1,x_2,...x_n) = \mathbb{P}(X_{t_1} \le x_1, X_{t_2} \le x_2,..., X_{t_n} \le x_n),$$

avec $t_1 < t_2 < ... < t_n, t_i \in T$ et $x_i \in \mathbb{R}$, sont appelées fonctions de répartition fini-dimentionnelles de X.

Question : Pour une famille $(F_{t_1,t_2,...,t_n})$ donnée, existe -t-il un processus stochastique défini sur un espace de probabilité et ayant cette famille pour fonction de répartition finidimentionnelles?

La réponse de cette question est donnée par le théorème d'existance d'un processus stochastique suivant :

Théorème 3.1.1 (théorème de Kolmogorov)

Si $(F_{t_1,t_2,...,t_n})$ une famille de fonctions de répartition vérifiant pour tout $t_1 < t_2 < ... < t_n$ dans T et tout $(x_1,x_2,...x_n) \in \mathbb{R}^n$ les deux conditions suivantes :

1- $F_{t_1,t_2,...,t_n}(x_1,x_2,...x_n) = F_{t_{i_1},t_{i_2},...,t_{t_n}}(x_{i_1},x_{i_2},...x_{i_n})$, pour toute permutation $(i_1,i_2,...,i_n)$ de (1,2,...,n),

 $2 - F_{t_1,t_2,...,t_n}(x_1, x_2, ...x_k, +\infty, ..., +\infty) = F_{t_1,t_2,...,t_k}(x_1, x_2, ...x_k)$, pour tout $1 \le k < n$,

alors, il existe un processus stochastique $X = (X_t(\omega))_{t \in T}$ défini sur un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ tel que

$$F_{t_1,t_2,...,t_n}(x_1,x_2,...x_n) = \mathbb{P}(X_{t_1} \le x_1, X_{t_2} \le x_2,..., X_{t_n} \le x_n).$$

exemple 3.1.1 Soit X une v.a. positive de fonction de répartition F_X , on définit un processus stochastique Y comme suit

pour tout
$$t \ge 0$$
; $Y_t = X - \min(t, X)$.

- Calculer les fonctions de répartition unidimensionnelle (d'ordre 1) et celle bidimensionnelle (d'ordre 2) du processus Y.

3.1.2 Comparaison de processus

Soient $Y = (Y_t(\omega))_{t \in T}$ et $X = (X_t(\omega))_{t \in T}$ deux processus stochastiques définis sur le même espase probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. Quand peut-on dire X = Y?

Définition 3.1.6 (Verssion d'un processus stochastique)

On dira que Y est une **verssion** de X, ssi

pour tout
$$t \in T$$
, $\mathbb{P}(\{\omega \in \Omega, Y_t(\omega) = X_t(\omega)\}) = 1$,

autrement dit pour tout t les v.a. Y_t et X_t sont prèsque sûrement égales. On parle encore d'équivalence au sens fort.

Définition 3.1.7 (Processus indistingables)

Deux processus stochastiques X et Y sont dit indistingables, ssi

pour tout
$$\omega \in \Omega$$
, $\mathbb{P}(Y_t = X_t, \forall t \in T) = 1$.

Autrement dit les trajectoires de X et Y coincident partout prèsque sûrement.

Proposition 3.1.2 Deux processus stochastiques indistingables sont évidement verssion l'un de l'autre, mais la réciproque est fausse.

exemple 3.1.2 Soient $Y = (Y_t(\omega))_{t \in T}$ et $X = (X_t(\omega))_{t \in T}$ deux processus stochastiques définis sur le même espase probabilisé $([0,1], \mathcal{B}([0,1]), \mathbb{P})$ où \mathbb{P} est la mesure de Lebesgue sur [0,1], définis par

$$X_{t}\left(\omega\right)=1_{\left[t,1\right]}\left(\omega\right),Y_{t}\left(\omega\right)=1_{\left[t,1\right]}\left(\omega\right).$$

Ces deux processus sont indistinguables car on a pour tout ω

$$\mathbb{P}\left(\left\{\forall t\in\left[0,1\right];X_{t}\left(\omega\right)=Y_{t}\left(\omega\right)\right\}\right)=\mathbb{P}\left(\left[0,1\right]-\left\{t\right\}\right)=1$$

D'autre part, on a pour tout t

$$\mathbb{P}\left(\left\{\omega\in\Omega;X_{t}\left(\omega\right)=Y_{t}\left(\omega\right)\right\}\right)=\mathbb{P}\left(\left[0,1\right]-\left\{t\right\}\right)=1$$

c'est à dire que les deux processus sont version l'un de l'autre.

Donnons un exemple deux processus stochastiques qui sont version l'un de l'autre, mais ils ont les trajectoires complètement différentes.

exemple 3.1.3 Soit l'espace de probabilité $(\mathbb{R}^+, \mathcal{B}(\mathbb{R}^+), \mathbb{P})$ sur lequel est définis : une v.a. T positive continue et les processus

$$X_{t}\left(\omega\right)=0,Y_{t}\left(\omega\right)=\left\{ egin{array}{l} 0,t
eq T \ 1,t=T \end{array}
ight.$$

Y est une verssion de X, puisque pour chaque $t \geq 0$, on a

$$\mathbb{P}\left(\left\{\omega \in \Omega; X_t\left(\omega\right) = Y_t\left(\omega\right)\right\}\right) = \mathbb{P}\left(\left\{\omega \in \Omega; T \neq t\right\}\right) = 1$$

mais

$$\mathbb{P}\left(\left\{\forall t \geq 0; X_t\left(\omega\right) = Y_t\left(\omega\right)\right\}\right) = 0.$$

Maintenant, lorsque X et Y ne sont pas définis sur le même espace probabilisé. Les définitions antérieures n'ont plus de sens, on doit alors donner un autre type de comparaison plus faible que les présédents.

Définition 3.1.8 (Processus équivalents)

On dira que les processus stochastiques X et Y, à valeurs dans le même espace d'états, définis respectivement sur $(\Omega_1, \mathcal{A}_1, \mathbb{P}_1)$ et $(\Omega_2, \mathcal{A}_2, \mathbb{P}_2)$ ont même lois fini-dimensionnelles ssi $t_1 < t_2 < ... < t_n$ dans T et tout $(x_1, x_2, ... x_n) \in \mathbb{R}^n$

$$\mathbb{P}_1(X_{t_1} \le x_1, ..., X_{t_n} \le x_n) = \mathbb{P}_2(Y_{t_1} \le x_1 ..., Y_{t_n} \le x_n)$$

la notation $X = \mathcal{L} Y$ signifie : X égal en loi Y, égalité de toutes les lois fini dimensionnelles de X et de Y :

$$(X_{t_1}, X_{t_2}, ..., X_{t_n}) = \mathcal{L}(Y_{t_1}, Y_{t_2}, ..., Y_{t_n})$$
 pour tout $t_1, t_2, ..., t_n \in \mathbb{N}$.

Remarque 3.1.1 indistingabilité \Rightarrow équivalence forte \Rightarrow équivalence.

Définition 3.1.9 (Processus continu ou à trajectoires continue)

Un processus stochastique $X = (X_t(\omega))_{t \in T}$ est continu (resp.à droite ou à gauche), ou à trajectoires continues (resp. à droite ou à gauche), si l'application $t \mapsto X_t(\omega)$ est continu (resp. à droite ou à gauche) avec une probabilité égale à 1, i.e.

$$\mathbb{P}\left(\left\{\omega \in \Omega : t \mapsto X_t\left(\omega\right) \text{ est continu (resp. à droite ou à gauche)}\right\}\right) = 1.$$

Remarque 3.1.2 Si toutes les trajectoires d'un processus stochastiques ont une certaine propriété, on dit que le processus est lui même a cette propriété.

Théorème 3.1.2 (Théoème de Kolmogorov-Centsov)

Soit $X = (X_t(\omega))_{0 \le t \le T}$ un processus stochastique sur l'espase $(\Omega, \mathcal{A}, \mathbb{P})$ satisfaisant la condition

$$\mathbb{E} |X_t - X_s|^{\alpha} \le C |t - s|^{1+\beta}, 0 \le s, t \le T,$$

où α, β et C sont des constantes positives. Alors il existe une verssion continue Y de X.

Définition 3.1.10 (Accroissements d'un processus, indépendants et stationnaires)

Soit $X = (X_t(\omega))_{t \in T}$ un processus stochastique:

- Les v.a. $X_t X_s, t > s \ge 0$ sont appelées les accroissements de $(X_t(\omega))_{t \in T}$.
- On dit que X est à accroissements indépendants, si la v.a. $(X_t X_s)$ est indépendante de $\mathcal{F}_s = \sigma(X_u, 0 \le u \le s)$, $\forall t > s$ dans T.
- On dit que X est stationnaire, si pour tout h > 0, $(X_{t+h})_t = {}^{\mathcal{L}} (X_t)_t$ ne dépend pas de h, c'est à dire pout tout h > 0, et tout $t_1, t_2, ..., t_n$, on a

$$(X_{t_1+h}, X_{t_2+h}, ..., X_{t_n+h}) =^{\mathcal{L}} (X_{t_1}, X_{t_2}, ..., X_{t_n}).$$

- On dit que X est à accroissements stationnaires, si la loi des accroissements $(X_{t+h} - X_t)$ ne dépend pas de h > 0, ou bien la loi de $(X_t - X_s)$, pour t > s dans T, ne dépend que de (t - s), (la loi de $(X_t - X_s)$ est identique à celle de $X_{t-s} - X_0$, $\forall t > s$ dans T).

Remarque 3.1.3 1- Si X est à accroissements indépendants, alors les v.a. $X_{t_0}, X_{t_1} - X_{t_0}, X_{t_2} - X_{t_1}, ..., X_{t_n} - X_{t_{n-1}}$ sont indépendantes, pour tous $t_0 < t_1 < t_2 < ... < t_n$ et tout $n \in \mathbb{N}$.

2- Pour les processus à accroissements indépendants et stationnaires, donner la loi de $X_t - X_0, \forall t > 0$, ainsi que celle de X_0 suffit à caractériser entièrement le processus X.

3.2 Processus gaussiens

Soit $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t \in T}, \mathbb{P})$ un espace probabilité filtré sur lequel est défini un processus stochastique $X = (X_t(\omega))_{t \in T}$.

Définition 3.2.1 (Processus gaussien)

Un processus stochastique X est dit gaussien si ses lois fini-dimensionnelles $\mathcal{L}(X_{t_1}, X_{t_2}, ..., X_{t_n})$ sont gaussiennes $(\forall n \in \mathbb{N}, \forall t_1, t_2, ..., t_n \in T)$.

Autrement dit X est gaussien ssi toute combinaison linéaire de ses marginales $a_1X_1 + a_2X_2 + ... + a_nX_n$ suit une loi gaussienne (pour tout $n \in \mathbb{N}, t_1, t_2, ..., t_n \in T$ et $a_1, a_2, ..., a_n \in \mathbb{R}$).

Remarque 3.2.1 1- Toutes les marginales d'un processus gaussien sont des variables aléatoires gaussiennes.

2-Toute combinaison linéaire de marginales d'un processus gaussien est une variable aléatoire gaussienne.

Loi d'un processus gaussien

Soit $X = (X_t(\omega))_{t \in T}$ un processus gaussien. On sait que la loi d'un vecteur gaussien $(X_{t_1}, X_{t_2}, ..., X_{t_n})$ est déterminée par le vecteur moyenne $m_X = (\mathbb{E}(X_{t_1}), \mathbb{E}(X_{t_2}), ..., \mathbb{E}(X_{t_n}))$ est la matrice de covariance $K = cov(X) = (cov(X_{t_i}, X_{t_j})_{1 \le i,j \le n})$, on comprend dés lors que toutes les lois fini dimentionnelles de $(X_t(\omega))_{t \ge 0}$ (donc toute la loi du processus) est connue dés qu'on se donne la fonction moyenne $m(t) = \mathbb{E}(X_t)$ et l'opérateur de covariance $K(s,t) = cov(X_s, X_t)$.

En effet,

la loi fini dimensionnelle du vecteur gaussien $(X_{t_1}, X_{t_2}, ..., X_{t_n})$ est la loi gaussienne de dimension $n, \mathcal{N}(m_n, K_n)$, avec $m_n = (m(t_1), m(t_2), ..., m(t_n))$ et $K_n = \left(cov\left(X_{t_i}, X_{t_j}\right)_{1 \leq i,j \leq n}\right)_{1 \leq i,j \leq n}$. Les fonctions m et K définissent donc toutes les lois fini-dimentionnelles du processus $(X_t(\omega))_{t \geq 0}$ et donc aussi sa loi.

Réciproquement, maintenent, étant données une fonction m sur \mathbb{R} et un opérateur K sur $\mathbb{R}^+ \times \mathbb{R}^+$, existe-t-il un processus gaussien $(X_t(\omega))_{t\geq 0}$ admettant m pour fonction moyenne et K pour opérateur de covariance? La réponce est donnée par le théorème suivant :

Théorème 3.2.1 Soit K une fonction symétrique de type positif sur $\mathbb{R}^+ \times \mathbb{R}^+$. Alors il existe un processus gaussien dont la fonction de covariance est K.

Proposition 3.2.1 Un processus gaussien $(X_t)_{t\geq 0}$ est stationnaire ssi $\mathbb{E}(X_t)$ est constante et K(s,t)=K(s-t) (stationarité faible).

Théorème 3.2.2 (Théorème de régularité d'un processus gaussien)

Soit $X = (X_t(\omega))_{t \geq 0}$ un processus gaussien centré $(\mathbb{E}(X_t) = 0)$, de fonction de covariance K(s,t). On suppose qu'il existe $\alpha > 0$ et $C < +\infty$ tels que pour tout s,t:

$$K(t,t) + K(s,s) - 2K(s,t) \le C |t-s|^{\alpha}.$$

Alors il existe une version continue Y de X. De plus, pour tout $\gamma < \frac{\alpha}{2}$, les trajectoires de Y sont p.s. holdériennes de coéfficient γ .

3.2.1 Exemples de processus gaussiens

Dans ce paragraphe on donne queleque exemples de processus gaussiens. **Mouvement brownien :** Un mouvement brownien (processus de *Wiener*) $(B_t)_{t\geq 0}$ est un processus gaussien continu, centré, de fonction de covariance

$$K(s,t) = \min(s,t).$$

Pont brownien : Un pont brownien $\left(B_t^{\circ}\right)_{t\in[0,1]}$ est un processus gaussien centré continu, défini par la fonction de covariance

$$K(s,t) = \min(s,t) - st.$$

Proposition 3.2.2 Soit $(B_t)_{t\geq 0}$ un mouvement brownien. On peut définir un pont brownien $(B_t^{\circ})_{t\in [0,1]}$ à partir de $(B_t)_{t\geq 0}$ comme suit

$$B_t^{\circ} = B_t - tB_1, t \ge 0.$$

Remarque 3.2.2 Réciproquement, on peut construire le mouvement brownien $(B_t)_{t\geq 0}$ sur [0,1] à partir du pont brownien $(B_t^{\circ})_{t\in [0,1]}$ et d'une loi normale $X \sim \mathcal{N}(0,1)$ indépendante de $(B_t^{\circ})_{t\in [0,1]}$ par

$$B_t = B_t^{\circ} + tX.$$

Voici quelque propriétés du pont brownien

Propriétés

1- Le processus stochastique $(V_t^{\circ})_{t\in[0,1]}$ défini par

$$V_t^{\circ} = B_{1-t}^{\circ},$$

est un pont brownien.

- 2- $(B_t^{\circ})_{t\in[0,1]}$ a des trajectoires p.s. holdériennes d'ordre $\gamma<\frac{1}{2}$ mais non pas dérivables.
- 3- $(B_t^{\circ})_{t\in[0,1]}$ est un mouvement brownien $(B_t)_{t\geq0}$ conditionné à valoir 0 à la date t=1.

Processus d'*Ornstein-Uhlenbeck* : Le processus d'*Ornstein-Uhenbeck* $(U_t)_{t\in\mathbb{R}}$ est un processus gaussien centré défini par

$$U_t = \exp(-\frac{t}{2})B(\exp(t)),$$

où $(B_t)_{t\geq 0}$ est un mouvement brownien, $U_t \sim \mathcal{N}(0,1)$, et sa fonction de covariance est

$$K(s,t) = \exp(-\frac{|t-s|}{2}).$$

Remarque 3.2.3 La fonction de covariance de $(U_t)_{t\in\mathbb{R}}$ ne dépend que de la différence (t-s), donc c'est un processus stationnaire.

3.3 Mouvement brownien

En 1827, Robert Brown a observé que de petites particules immergées dans un liquide sont perpétuellement en mouvement, lequel est des plus irréguliers. Historiquement, le mouvement brownien se voulait une tentative pour modéliser ce phénomène. Aujourd'hui, le mouvement brownien est utilisé dans divers domaines tels l'économie, la théorie de la communication, la biologie, les sciences administratives et les mathématiques. I'analyse rigoureuse des mathématiques concernant le mouvement brownien est attribuée au mathématicien Norbert Wiener, et c'est pourquoi ce processus est aussi connu sous le nom de processus de Wiener.

Soit $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t \in T}, \mathbb{P})$ un espace probabilisé filtré sur lequel est défini un processus stochastique $(B_t)_{t \geq 0}$.

Définition 3.3.1 Un processus stochastique $(B_t)_{t\geq 0}$ est appelé mouvement brownien standard (m.b.s.) s'il satisfait les conditions suivantes :

1-
$$\mathbb{P}(\omega, B(0, \omega) = 0) = 1$$
,

2- la trajectoire brownienne est continue, i.e., la fonction $t \to B(t, \omega)$ est continue avec une probabilité égale à 1.

3- pour chaque $0 \le s < t$, l'acroissement $(B_t - B_s)$ suit la loi normale centré de variance (t - s), i.e. pour chaque a < b

$$\mathbb{P}\left(a \le B_t - B_s \le b\right) = \frac{1}{\sqrt{2\pi \left(t - s\right)}} \int_a^b \exp\left(-\frac{x^2}{2(t - s)}\right) dx.$$

4- les acroissements de $(B_t)_{t\geq 0}$ sont indépendants, i.e., pour chaque $0\leq t_1 < t_2 < ... < t_n$, les v.a.

$$B_{t_1}, B_{t_2} - B_{t_1}, ..., B_{t_n} - B_{t_{n-1}}$$

sont indépendantes.

5- les acroissements de $(B_t)_{t>0}$ sont stationnaires.

Remarque 3.3.1 Il vient de la définition précédente que : $\forall t \in \mathbb{R}^+, B_t = B_t - B_0$ p.s et que $B_t \sim \mathcal{N}(0, t)$. Alors

$$\mathbb{P}\left(a \le B_t \le b\right) = \frac{1}{\sqrt{2\pi t}} \int_a^b \exp{-\frac{x^2}{2t}} dx, \text{ por tout } a < b.$$

Proposition 3.3.1 Un processus gaussien $(B_t)_{t\geq 0}$ à trajectoires continues est un mouvement brownien standard ssi, il est centré de fonction de covariance $K(s,t) = \min(s,t)$.

Définition 3.3.2 (Mouvement brownien avec dérive)

On appelle mouvement brownien issu de x et de dérive (ou drift) μ et de coéfficient de diffusion σ , le processus stochastique $(X_t)_{t>0}$ défini comme suit

$$X_t = x + \sigma B_t + \mu t$$
, avec $(B_t)_{t \ge 0}$ est un mouvement brownien.

Proposition 3.3.2 Le mouvement brownien $(X_t)_{t\geq 0}$ est encore un processus à acroissements indépendants stationnaires et gaussien, il est non centré et tel que $X_0 = x$. De plus pour tout $t \geq 0, X_t \sim N\left(x + \mu t, \sigma^2 t\right)$.

Remarque 3.3.2 Un processus stochastique $(W_t)_{t\geq 0}$ est un mouvement brownien de volatilité σ s'il est nul au point 0 avec $W_t \sim \mathcal{N}(0, \sigma^2 t)$ pour tout $t\geq 0$ et à accroissements indépendents et stationnaire dont $W_t - W_s \sim \mathcal{N}(0, \sigma^2 (t-s))$.

Filtration et mouvement brownien

Considérons l'espace probabilisé filtré $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t \in T}, \mathbb{P})$, on pose $\mathcal{F}_{t^+} = \bigcap_{\epsilon > 0} \mathcal{F}_{t+\epsilon}$ et $\mathcal{F}_{t^-} = \sigma(\bigcup_{\epsilon > 0} \mathcal{F}_{t-\epsilon})$.

- On dit que la filtration est continue à droite si $\mathcal{F}_{t^+} = \mathcal{F}_t$. (\mathcal{F}_{t^+} représente l'information disponible juste après l'instant t)
- On dit que la filtration est continue à gauche si $\mathcal{F}_{t^-} = \mathcal{F}_t.(\mathcal{F}_{t^-})$ est l'ensemble d'informations disponibles avant t)

Définition 3.3.3 (\mathcal{F}_t - mouvement brownien)

Un processus $(B_t)_{t\geq 0}$ est un \mathcal{F}_t – mouvement brownien si $(B_t)_{t\geq 0}$ mouvement brownien \mathcal{F}_t – adapté, et pour tout $s\geq 0$, la famille $\{B_t - B_s, t\geq s\}$ est indépendante de \mathcal{F}_s .

Propriétés en loi du mouvement brownien standard (m.b.s)

Soit $(B_t)_{t>0}$ un m.b.s. sur l'espace $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t\in T}, \mathbb{P})$, alors on a

- 1- Propriété de symétrie : le processus $(-B_t)_{t>0}$ est aussi un m.b.s.
- 2- Propriété d'échelle (autosimilarité) : le processus $(B^c_t)_{t\geq 0}$ défini pout tout t par

$$\forall c > 0, B_t^c = \frac{1}{\sqrt{c}} B_{ct},$$

est un m.b.s.

 3- Propriété d'invariance par translation : le m.b. translaté de h>0, défini par

$$B_t^{\sim h} = B_{t+h} - B_h,$$

est un m.b.s. indépendant du m.b. arrété en $h(B_t)_{0 \le t \le h}$.

4- Propriété du ratournement du temps : le processus retourné à l'instant T, défini par

$$B_t^{\sim T} = B_T - B_{T-t}$$
, pour tout t

est un m.b.s. sur [0,T].

5- Comportement analogue en 0 et en $+\infty$: le processus défini pout tout t>0, par

$$B_t^{\sim} = tB_{\frac{1}{t},}$$

est encore un m.b.s.

3.3.1 Construction d'un mouvement brownien

Construire un mouvement brownien, c'est fabriquer un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et un processus stochastique sur cet espace satisfaisant les conditions (1), (2),(3), (4) et (5). Pour simplifier, on construit le mouvement brownien sur l'intervalle de temps [0,1] puisque s'il existe un mouvement brownien sur cet intervalle, on peut en construire un sur n'importe quel intervalle de temps borné. En effet, si $(B_t)_{1 \geq t \geq 0}$ est un mouvement brownien sur [0,1], alors

$$\forall T>0, B_t^\sim=\sqrt{T}B_{\frac{t}{T}}, t\in[0,T]\,,$$

est un mouvement brownien sur [0,T].

On va construire le mouvement brownien par approximations successives. Soit

$$I(n) = \{\text{entiers impairs entre } 0 \text{ et } 2^n\}.$$

Par exemple,
$$I(0) = 1$$
, $I(1) = 1$, $I(2) = \{1, 3\}$, $I(3) = \{1, 3, 5, 7\}$...

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé sur lequel est définie une suite de variables aléatoires

$$\left\{X_{i}^{(n)}, i \in I\left(n\right)\right\} = \left\{X_{1}^{(0)}, X_{1}^{(1)}, X_{1}^{(2)}, X_{3}^{(2)}, X_{1}^{(3)}, X_{3}^{(3)}, X_{5}^{(3)}, X_{7}^{(3)}, \ldots\right\},$$

indépendantes, toutes de loi normale centrée et réduite $\mathcal{N}(0,1)$. A partir de ces variables qu'on va construire la

suite de processus stochastiques se rapprochant du mouvement brownien. La première approximation : on pose

$$B_0^{(0)}(\omega) = 0 \text{ et } B_1^{(0)}(\omega) = X_1^{(0)}(\omega),$$

et tous les autres $B_t^{(0)}(\omega)$ sont des interpolations linéaires de ces deux points

$$B_t^{(0)}(\omega) = \begin{cases} 0 & , \text{ si } t = 0; \\ X_1^{(0)}t, & \text{ si } 0 < t < 1; \\ X_1^{(0)}, & , \text{ si } t = 1. \end{cases}$$

La deuxième approximation se construit à partir de la première :

$$B_0^{(1)}(\omega) = B_0^{(0)}(\omega) = 0 \text{ et } B_1^{(1)}(\omega) = B_1^{(0)}(\omega) = X_1^{(0)}(\omega),$$

et le point milieu est

$$B_{\frac{1}{2}}^{(1)}(\omega) = \frac{1}{2} (B_0^{(0)}(\omega) + B_1^{(0)}(\omega)) + \frac{1}{2} X_1^{(1)}(\omega),$$

Les autres points de la trajectoire sont obtenus par interpolations linéaires.

$$B_{t}^{(1)}(\omega) = \begin{cases} B_{0}^{(0)}(\omega) & , \text{ si } t = 0; \\ \frac{1}{2} \left(B_{0}^{(0)}(\omega) + B_{1}^{(0)}(\omega) \right) + \frac{1}{2} X_{1}^{(1)}(\omega), & \text{ si } t = \frac{1}{2}; \\ B_{1}^{(0)}(\omega) & , \text{ si } t = 1. \end{cases}$$

On remarque que

$$B_0^{(1)}(\omega) = B_0^{(0)}(\omega) = 0,$$

$$B_{\frac{1}{2}}^{(1)}(\omega) = \frac{1}{2}(B_0^{(0)}(\omega) + B_1^{(0)}(\omega)) + \frac{1}{2}X_1^{(1)}(\omega)$$

$$= \frac{1}{2}(0 + X_1^{(0)}(\omega)) + \frac{1}{2}X_1^{(1)}(\omega)$$

$$= \frac{1}{2}(X_1^{(0)}(\omega) + X_1^{(1)}(\omega)) \sim N\left(0, \frac{1}{2}\right).$$

$$B_1^{(1)}(\omega) = B_1^{(0)}(\omega) = X_1^{(0)} \sim N(0, 1)$$

implique que

$$\begin{split} B_{1}^{(1)}\left(\omega\right) - B_{\frac{1}{2}}^{(1)}\left(\omega\right) &= B_{1}^{(0)}\left(\omega\right) - \left(\frac{1}{2}(B_{0}^{(0)}\left(\omega\right) + B_{1}^{(0)}\left(\omega\right)) + \frac{1}{2}X_{1}^{(1)}\left(\omega\right)\right) \\ &= X_{1}^{(0)}\left(\omega\right) - \frac{1}{2}\left(0 + X_{1}^{(0)}\left(\omega\right)\right) + \frac{1}{2}X_{1}^{(1)}\left(\omega\right) \\ &= \frac{1}{2}\left(X_{1}^{(0)}\left(\omega\right) + X_{1}^{(1)}\left(\omega\right)\right) \sim N\left(0, \frac{1}{2}\right). \\ B_{\frac{1}{2}}^{(1)}\left(\omega\right) - B_{0}^{(1)}\left(\omega\right) &= \frac{1}{2}\left(0 + X_{1}^{(0)}\left(\omega\right)\right) + \frac{1}{2}X_{1}^{(1)}\left(\omega\right) - B_{0}^{(1)}\left(\omega\right) \\ &= \frac{1}{2}\left(X_{1}^{(0)}\left(\omega\right) + X_{1}^{(1)}\left(\omega\right)\right) \sim N\left(0, \frac{1}{2}\right). \end{split}$$

Ces deux variables aléatoires gaussiennes sont indépendantes car

$$cov\left(B_1^{(1)}(\omega) - B_{\frac{1}{2}}^{(1)}(\omega), B_{\frac{1}{2}}^{(1)}(\omega) - B_0^{(1)}(\omega)\right) = 0$$

La troisième approximation s'obtient de la deuxième :

$$B_{t}^{(2)}(\omega) = \begin{cases} B_{0}^{(1)}(\omega) &, \text{ si } t = 0; \\ \frac{1}{2} \left(B_{0}^{(1)}(\omega) + B_{\frac{1}{2}}^{(1)}(\omega) \right) + \frac{1}{2^{\frac{3}{2}}} X_{1}^{(2)}(\omega), & \text{ si } t = \frac{1}{4}; \\ B_{\frac{1}{2}}^{(1)}(\omega) &, \text{ si } t = \frac{1}{2}; \\ \frac{1}{2} \left(B_{\frac{1}{2}}^{(1)}(\omega) + B_{1}^{(1)}(\omega) \right) + \frac{1}{2^{\frac{3}{2}}} X_{3}^{(2)}(\omega), & \text{ si } t = \frac{3}{4}; \\ B_{1}^{(1)}(\omega), \text{ si } & t = 0. \end{cases}$$

On remarque que

$$\begin{split} B_0^{(2)}\left(\omega\right) &= B_0^{(1)}\left(\omega\right) = 0, \\ B_{\frac{1}{4}}^{(2)}\left(\omega\right) &= \frac{1}{2}\left(B_0^{(1)}\left(\omega\right) + B_{\frac{1}{2}}^{(1)}\left(\omega\right)\right) + \frac{1}{2^{\frac{3}{2}}}X_1^{(2)}\left(\omega\right) \sim N\left(0, \frac{1}{4}\right), \\ B_{\frac{1}{2}}^{(2)}\left(\omega\right) &= B_{\frac{1}{2}}^{(1)}\left(\omega\right) = \frac{1}{2}\left(X_1^{(0)}\left(\omega\right) + X_1^{(1)}\left(\omega\right)\right) \sim N\left(0, \frac{1}{2}\right), \\ B_{\frac{3}{4}}^{(2)}\left(\omega\right) &= \frac{1}{2}\left(B_{\frac{1}{2}}^{(1)}\left(\omega\right) + B_1^{(1)}\left(\omega\right)\right) + \frac{1}{2^{\frac{3}{2}}}X_3^{(2)}\left(\omega\right) \sim N\left(0, \frac{3}{4}\right), \\ B_1^{(2)}\left(\omega\right) &= B_1^{(1)}\left(\omega\right) \sim N\left(0, 1\right). \end{split}$$

Ce qui implique

$$B_{1}^{(2)}(\omega) - B_{\frac{3}{4}}^{(2)}(\omega) \sim N\left(0, \frac{1}{4}\right)$$

$$B_{\frac{3}{4}}^{(2)}(\omega) - B_{\frac{1}{2}}^{(2)}(\omega) \sim N\left(0, \frac{1}{4}\right)$$

$$B_{\frac{1}{2}}^{(2)}(\omega) - B_{\frac{1}{4}}^{(2)}(\omega) \sim N\left(0, \frac{1}{4}\right)$$

$$B_{\frac{1}{4}}^{(2)}(\omega) - B_{0}^{(2)}(\omega) \sim N\left(0, \frac{1}{4}\right)$$

ces quatres variables aléatoires gaussiennes sont mutuelement indépandantes.

Maintenant la n ième approximation

pour pouvoire exprimer la n ième approximation, on introduit pout tout $n \in \mathbb{N}$ et pout tout $k \in I(n)$ les fonctions de Haar

$$H_k^{(n)}:[0,1]\to\mathbb{R},$$

et de Schauder

$$S_k^{(n)}:[0,1]\to\mathbb{R},$$

 $\forall t \in \left[0,1\right], H_{1}^{\left(0\right)}\left(t\right) = 1 \text{ et } \forall n \in \mathbb{N}, \forall k \in I\left(n\right), \forall t \in \left[0,1\right]$

$$H_k^{(n)} = \begin{cases} 2^{\frac{n-1}{2}}, & si \frac{k-1}{2^n} \le t < \frac{k}{2^n} \\ -2^{\frac{n-1}{2}}, & si \frac{k}{2^n} \le t < \frac{k+1}{2^n} \\ 0, & \text{sinon} \end{cases}$$

 $\forall n \in \mathbb{N}, \forall k \in I(n), \forall t \in [0, 1]$

$$S_k^{(n)}(t) = \int_0^t H_k^{(n)}(s) \, ds$$

Ces fonctions sont déterministes, elles ne sont pas aléatoires.

Le (n+1) ième processus stochastique de la suite d'approximations du mouvement brownien peut s'écrire sous la forme

$$B_{t}^{(n)}(\omega) = \sum_{k=0}^{n} \sum_{j \in I(k)} S_{j}^{(k)}(t) X_{j}^{(k)}(\omega)$$

Si $B_t^{(n)}(\omega)$ doit converge, il le fera vers

$$B_t(\omega) = \sum_{k=0}^{\infty} \sum_{j \in I(k)} S_j^{(k)}(t) X_j^{(k)}(\omega).$$

On prétend que pour la plupart des ω cette limite existe et que le processus $(B_t)_{t\in[0,1]}$ ainsi obtenu est un mouvement brownien.(pour la suite d la démonstration voir Karatzas et Shreve, 1988, lemme 3.1, page 57).

3.3.2 Propriétés des trajectoires browniennes

Variation et variation quadratique des trajectoires browniennes

Définition 3.3.4 (variation d'une fonction)

Soit une fonction $f:[a,b]\to\mathbb{R}$, on définit la α -variation de f par

$$Var(f,\alpha) = \lim_{\Delta \to 0} \sup \sum_{k} |f(t_{k+1}) - f(t_k)|^{\alpha}$$

où $\Delta = \max_k |t_{k+1} - t_k|$ est le pas de subdivision de [a, b] et le sup est pris sur l'ensemble de ses subdivisions.

- Pour $\alpha = 1$, on parle de la variation de f, et on dit que f est à variation bornée si $Var(f,1) < \infty$.
 - Pour $\alpha = 2$, on parle de la variation quadratique de f.

Théorème 3.3.1 La variation quadratique des trajectoires d'un mouvement brownien $(B_t)_{t \in [a,b]}$ sur un intervalle [a,b], définie par

$$\lim_{\Delta \to 0} \sup \sum_{k} |B(t_{k+1}) - B(t_k)|^2,$$

existe et converge dans $L^{2}(\Omega)$ vers (b-a).

Proposition 3.3.3 Les trajectoires browniennes sont p.s. à variation non bornée.

Théorème 3.3.2 (Critère de Kolmogorov de continuité)

Soit $(B_t)_{t\geq 0}$ un mouvement brownien standard, puisque la v.a. $(B_{t+h} - B_t) \sim \mathcal{N}(0,h)$, on a

$$\mathbb{E}\left(\left(B_{t+h} - B_t\right)^4\right) = 3h^2,$$

alors en appliquant le critère de Kolmogorov, on conclut que $(B_t)_{t\geq 0}$ admet une verssion p.s. continue.

Régularité des trajectoires browniennes

Théorème 3.3.3 Soit $(B_t)_{t\geq 0}$ un mouvement brownien standard sur l'espace $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$, alors

- la trajectoire brownienne est une fonction continue.
- la trajectoire brownienne est p.s. nulle part dérivable, non monotone sur chaque intervalle.
 - $\lim_{t\to 0^+} \sup \frac{B_t}{\sqrt{t}} = +\infty, p.s.$ $\lim_{t\to 0^+} \inf \frac{B_t}{\sqrt{t}} = -\infty, p.s$

3.3.3 Propriété de Markov d'un mouvement brownien

Théorème 3.3.4 (Distribution marginale)

Soit $(B_t)_{t\geq 0}$ un mouvement brownien standard, et soit $0 < t_1 < t_2 < ... < t_n$, la fonction de densité jointe du vecteur $(B_{t_1}, B_{t_2}, ..., B_{t_n})$ est

$$f(x_1, x_2, ..., x_n) = \frac{\exp{-\frac{1}{2} \left(\frac{x_1}{t_1} + \frac{(x_2 - x_1)^2}{t_2 - t_1} + ... + \frac{(x_n - x_{n-1})^2}{(t_n - t_{n-1})} \right)}{(2\pi)^n \sqrt{t_1(t_2 - t_1)...(t_n - t_{n-1})}}.$$

Définition 3.3.5 (Processus de Markov)

Soit $(X_t)_{t\geq 0}$ un processus stochastique sur l'espace probabilisé filtré $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$. $(X_t)_{t\geq 0}$ est dit de Markov si pour chaque $0 \leq s < t$,

$$\mathbb{E}(f(X_t) \mid \mathcal{F}_s) = \mathbb{E}(f(X_t) \mid X_s)$$
, avec f est une fonction mesurable.

en terme de densités de probabilité

$$f(x_{n+1}, t_{n+1} \mid x_n, t_n, ..., x_1, t_1) = f(x_{n+1}, t_{n+1} \mid x_n, t_n).$$

Autrement dit, l'état future x_{n+1} du processus $(X_t)_{t\geq 0}$, à l'instant t_{n+1} , est indépendant des états passé, sachant l'état présent x_n , à l'instant t_n .

Théorème 3.3.5 Un mouvement brownien $(B_t)_{t\geq 0}$ est un processus de Markov, de densité de probabilité de transition

$$f(x_2, t_2 \mid x_1, t_1) = \frac{1}{\sqrt{2\pi (t_2 - t_1)}} \exp{-\frac{1}{2} \frac{(x_2 - x_1)^2}{t_2 - t_1}}, t_1 < t_2$$

$$telle que, f(x_1, t_1) = \frac{1}{\sqrt{2\pi (t_1)}} \exp{-\frac{1}{2} \frac{(x_1)^2}{t_1}}.$$

Théorème 3.3.6 Soit $(B_t)_{t>0}$ un mouvement brownien standard

Théorème 3.3.7 1- pour $0 \le s < t$, la distribution de B_t sachant B_s est gaussienne de moyenne B_s et de variance (t - s).

2- pour $0 \le s < t$, la distribution de B_s sachant B_t est gaussienne de moyenne $\frac{s}{t}B_t$ et de variance $\frac{s(t-s)}{t}$.

Exercices 3.4

Exercice 1:

Soit Z une v.a. de loi normale centrée réduite. Pour tout $t \geq 0$, on pose $X_t = \sqrt{t}Z$. Le processus $(X_t)_{t>0}$ est à tajectoires continues. Est ce que $(X_t)_{t>0}$ est un mouvement brownien?justifier

Exercice 2:

Soit $(B_t)_{t\geq 0}$ un mouvement brownien standard défini sur l'espace probabilisé filtré $(\Omega, \mathcal{A}, \mathbb{P}, (\mathcal{F}_t)_{t>0})$.

- On concidère un mouvement brownien $(X_t)_{t>0}$ de variance $\sigma^2 = 9$, calculer
- $\overline{\mathbb{P}}(X_2 2X_3 \le 4).$ * $\mathbb{P}(X_2 \le 15)$ * $var(3X_2 - 2X_5)$
- Soit 0 < s < t < u, montrer que $\mathbb{E}(B_s.B_t.B_u) = 0$
- Soit $0 < s \le t \le u \le v$, montrer que les variable aléatoires $(\frac{1}{t}B_t \frac{1}{s}B_s)$ et $(aB_u + bB_v)$ sont indépendantes pour tout $(a, b) \in \mathbb{R}^2$.
 - Quelle est la distribution de la v.a. $B_s + B_t$, pour s et t fixés.
 - Soit λ_s une v.a. bornée et \mathcal{F}_s mesurable.
 - * Calculer pour $t \geq s$, $\mathbb{E}(\lambda_s [B_t B_s])$ et $\mathbb{E}(\lambda_s [B_t B_s]^2)$.
 - * Calculer $\mathbb{E}(I_{B_t \leq a})$ et $\mathbb{E}(B_t I_{B_t \leq a})$.

Exercice 3:

Montrer que la distribution marginale d'un mouvement brownien aux instants $0 < t_1 < t_2 < ... < t_n$ est donnée par :

$$\mathbb{P}\left(B\left(t_{1}\right) \leq a_{1}, B\left(t_{2}\right) \leq a_{2}, ..., B\left(t_{n}\right) \leq a_{n}\right) = \frac{1}{\sqrt{(2\pi)^{n}} \sqrt{t_{1}(t_{2}-t_{1})(t_{3}-t_{2})...(t_{n}-t_{n-1})}} \int_{-\infty}^{a_{1}} ... \int_{-\infty}^{a_{n}} \exp\left[-\frac{1}{2} \left(\frac{x_{1}^{2}}{t_{1}} + \frac{(x_{2}-x_{1})^{2}}{(t_{2}-t_{1})} + \frac{(x_{3}-x_{2})^{2}}{(t_{3}-t_{2})} + ... + \frac{(x_{n}-x_{n-1})^{2}}{(t_{n}-t_{n-1})^{2}}\right] dt} dt$$

Indication: utiliser le changement de variable suivant:

Exercice 4:

- 1- Supposons que $(X_t)_{t\geq 0}$ est un m.b. de variance $\sigma^2=4$. Calculer

Exercice 5:

Parmi les fonctions $K: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ ci dessous, déterminer lesquelles sont définies positives.

- $-K^{(1)}(s,t) = \min(s,t).$ $K^{(3)}(s,t) = t + s$ $-K^{(2)}(s,t)=q(t)q(s) \text{ où } q:\mathbb{R}^+\to\mathbb{R}.$ $-K^{(4)}(s,t) = \exp(-ts) - 1.$
- $-K^{(5)}(s,t) = \exp(ts) 1.$

Chapitre 4

Martingales en temps continu

On s'intéresse dans ce chapitre à l'étude des martingales en temps continu lorsque $t \in \mathbb{R}^+$ ou $t \in [0, T]$ avec T > 0.

4.1 Définitions et exemples

Soit $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ un espace probabilisé filtré et soit $(X_t)_{t\geq 0}$ un processus stochastique défini sur cet espace, sa filtration naturelle est $(\mathcal{F}_t^X)_{t\geq 0}$.

Définition 4.1.1 Un processus stochastique $(X_t)_{t\geq 0}$ sur $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$, est appelé \mathcal{F}_t — martingale (resp. sous martingale, sur martingale) ssi

- 1) $(X_t)_{t\geq 0}$ est \mathcal{F}_t adapté;
- 2) $\forall t \geq 0, X_t \in L^1(\Omega)$;
- 3) $\forall s \leq t, \mathbb{E}(X_t \mid \mathcal{F}_s) = X_s \ p.s. \ (resp. \ \mathbb{E}(X_t \mid \mathcal{F}_s) \geq X_s, \mathbb{E}(X_t \mid \mathcal{F}_s) \leq X_s).$

exemple 4.1.1

Martingale de Doob : soit X une variable aléatoire intégrable et $(\mathcal{F}_t)_{t\geq 0}$ une filtration, on définit le processus stochastique $(X_t)_{t\geq 0}$ comme suit

$$\forall t \geq 0, X_t = \mathbb{E}\left(X \mid \mathcal{F}_t\right).$$

Alors $(X_t)_{t>0}$ est une \mathcal{F}_t — martingale de plus elle est U.I.

2) Soit $(B_t)_{t\geq 0}$ un \mathcal{F}_t -mouvement brownien standard, alors les processus suivants sont des martingales par rapport à la même filtration $(\mathcal{F}_t)_{t\geq 0}$:

$$(B_t)_{t\geq 0}, (B_t^2 - t)_{t\geq 0}, \forall a \in \mathbb{R}; \left(\exp\left(aB_t - \frac{a^2t}{2}\right)\right)_{t\geq 0}.$$

Théorème 4.1.1 Soit $(X_t)_{t\geq 0}$ un $(\mathcal{F}_t)_{t\geq 0}$ processus stochastique à accroissements indépendants réel et $\forall t\geq 0$, la v.a. X_t est intégrable et centrée. Alors $(X_t)_{t\geq 0}$ est une $(\mathcal{F}_t)_{t\geq 0}$ – martingale.

Propriétés:

- 1) Si $(X_t)_{t\geq 0}$ est une martingale (sous martingale, sur martingale), alors la fonction $\mathbb{E}(X_t)$ est constante (croissante, décroissante)
- 2) Inégalité de Jensen :Si $(X_t)_{t\geq 0}$ est une martingale (sous martingale) et φ une fonction convexe (convexe croissante) avec $\mathbb{E} |\varphi(X_t)| < \infty, \forall t \geq 0$. Alors $(\varphi(X_t))_{t\geq 0}$ est une sous martingale.

Le théorème suivant donne la caractérisation martingale d'un mouvement brownien (processus de *Wiener*)

Théorème 4.1.2 (Théorème de Lévy)

Soit $(X_t)_{t\geq 0}$ un processus stochastique réel centré, à trajectoire continu et \mathcal{F}_t -adapté, tel que :

- 1) $(X_t)_{t>0}$ est un \mathcal{F}_t martingale;
- 2) $(X_t^2 t)_{t>0}$ est un \mathcal{F}_t martingale.

Alors $(X_t)_{t>0}^-$ est un mouvement brownien standard.

4.2 Temps d'arrêt et tribus associées

Définition 4.2.1 Une variable aléatoire $T: \Omega \to [0, +\infty]$ est un temps d'arrêt par rapport à la filtration $(\mathcal{F}_t)_{t>0}$ si

$$\forall t \geq 0, \{T \leq t\} \in \mathcal{F}_t.$$

On associe à un temps d'arrêt T les tribus suivantes

$$\mathcal{F}_{T} = \{ A \in \mathcal{F}_{\infty}, \forall t \geq 0, A \cap \{ T \leq t \} \in \mathcal{F}_{t} \};$$

$$\mathcal{F}_{T^{+}} = \{ A \in \mathcal{F}_{\infty}, \forall t \geq 0, A \cap \{ T < t \} \in \mathcal{F}_{t} \};$$

$$\mathcal{F}_{T^{-}} = \{ A \in \mathcal{F}_{\infty}, \forall t \geq 0, A \cap \{ T > t \} \in \mathcal{F}_{t} \}.$$

Remarque 4.2.1 Si T est un temps d'arrêt, $\{T = \infty\} = (\bigcup_{n \in \mathbb{N}} \{T \leq t\})^c \in \mathcal{F}_{\infty}$.

Propriétés:

On donne ici quelques propriétés des temps d'arrêt :

- 1) Soit T un temps d'arrêt, alors on a $\mathcal{F}_{T^-} \subset \mathcal{F}_T \subset \mathcal{F}_{T^+}$. Et si la filtration $(\mathcal{F}_t)_{t\geq 0}$ est continu à droite, on a $\mathcal{F}_T = \mathcal{F}_{T^+}$.
 - 2) T est un \mathcal{F}_{t^+} -temps d'arrêt ssi $\forall t \geq 0, \{T < t\} \in \mathcal{F}_t$.
 - 3) Si T = t est un temps d'arrêt constant, alors $\mathcal{F}_T = \mathcal{F}_t$ et $\mathcal{F}_{T^+} = \mathcal{F}_{t^+}$.
 - 4) Si T est un temps d'arrêt, alors T est \mathcal{F}_T —mesurable.
- 5) Si T et S sont deux temps d'arrêt tels que $S \leq T$, alors $\mathcal{F}_S \subset \mathcal{F}_T$ et $\mathcal{F}_{S^+} \subset \mathcal{F}_{T^+}$.
- 6) Si (S_n) est une suite croissante de temps d'arrêt alors $S = \lim_{n \to \infty} S_n$ est aussi un temps

d'arrêt et $\mathcal{F}_{S^-} = \vee_n \mathcal{F}_{S_n^-}$.

7) Si (S_n) est une suite décroissante de temps d'arrêt alors $S = \lim_{n \to \infty} S_n$ est aussi un temps

d'arrêt de
$$(\mathcal{F}_{t^+})_t$$
 et $\mathcal{F}_{S^+} = \cap_n \mathcal{F}_{S^+}$.

Définition 4.2.2 (Processus arrété)

Soit $(X_t)_{t\geq 0}$ un processus stochastique réel et continu à droite, sur $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$, et T un temps d'arrêt. Le processus réel , noté $(X_t^T)_{t\geq 0}$, défini par

pour tout
$$t \ge 0, X_t^T = X_{t \land T} = X_t \mathbb{1}_{\{T < t\}} + X_T \mathbb{1}_{\{T \ge t\}},$$

s'appelle processus arrété en T.

Corollaire 4.2.1 Soit $(X_t)_{t\geq 0}$ une martingale (resp. sous martingale, sur martingale) et T un temps d'arrêt par rapport à la même filtration $(\mathcal{F}_t)_{t\geq 0}$, alors le processus arrété $(X_t^T)_{t\geq 0}$ est une martingale (resp.sous martingale, sur martingale).

Théorème 4.2.1 (Théorème d'arrêt pour les temps d'arrêt bornés)

Soient $(X_t)_{t\geq 0}$ une martingale (resp. sous martingale, sur martingale) continu à droite, S et T deux temps d'arrêt bornés par rapport à la filtration $(\mathcal{F}_t)_{t\geq 0}$, tels que $S\leq T$. Alors X_T et $X_S\in L^1(\Omega)$ et

$$X_S = \mathbb{E}\left(X_T \mid \mathcal{F}_S\right).$$

4.3 Inégalités maximales

Dans cette section, on généralise au cadre continu quelques inégalites maximales déja connues dans le cadre discret (martingales en temps discret). Pourcela, l'idée est de considerer un ensemble dénombrable dense D qu'on voit comme limite de parties nies croissantes ft1; :::; tng. On applique les r esultats discrets aux restrictions a ft1; :::; tng. En passant a la limite (convergence monotone avec ft1; :::; tng % D), le

r esultat s'obtient pour les restrictions a D. Comme D est dense dans R+, la continuit e (adroite) permet de lever la restriction t 2 D et d'obtenir le r esultat pour tout t 2 R+.

Donnons maintenant quelques inégalités maximales

Théorème 4.3.1 (inégalité de Doob)

a) Soit $(X_t)_{t\geq 0}$ une sous martingale continue à droite par rapport à la filtration $(\mathcal{F}_t)_{t>0}$, alors pour tout t>0, pour tout c>0

$$\mathbb{P}\left(\sup_{s\in[0,t]}X_s\geq c\right)\leq \frac{\mathbb{E}\left|X_t\right|}{c}.$$

b) Soit $(X_t)_{t\geq 0}$ une martingale continue à droite telle que por tout $t\geq 0, X_t\in L^p$, avec p>1 fixé, alors pour tout t>0, pour tout c>0

$$\mathbb{P}\left(\sup_{s\in[0,t]}|X_s|\geq c\right)\leq \frac{\mathbb{E}\left|X_t\right|^p}{c^p}.$$

4.4 Convergence

Dans ce paragraphe, on étudie les différente formes de convergence des martingales.

Définition 4.4.1 Une martingale $(X_t)_{t\geq 0}$ est dite fermée par une variable aléatoire Y si

$$\mathbb{E}\left|Y\right| < \infty \ et \ \forall t \geq 0, X_{t} = \mathbb{E}\left(Y \mid \mathcal{F}_{t}\right).$$

Remarque 4.4.1 La v.a. n'est pas nécésseremen unique.

Théorème 4.4.1 (convergence p.s.)

Soit $(X_t)_{t\geq 0}$ une martingale continue à droite telle que $\sup_t \mathbb{E} |X_t|^p < \infty$ (i.e bornée dans L^p) Alors la v.a $Y = \lim_t X_t$ existe p.s et $\mathbb{E} |Y|^p < \infty$.

Corollaire 4.4.1 Si $(X_t)_{t\geq 0}$ une sur martingale continue à droite, alors $(X_t)_{t>0}$ converge p.s. vers une limite intégrable.

Théorème 4.4.2 (convergence en moyenne d'ordre 1 ou p)

- a) Soit $(X_t)_{t\geq 0}$ une martingale continue à droite, les 3 conditions suivantes sont équivalentes :
 - 1) $(X_t)_{t>0}$ converga dans L^1 .
 - 2) $\exists une^{-}v.a. X_{\infty} intégrable telle que X_t = \mathbb{E}(X_{\infty} \mid \mathcal{F}_t), \forall t \geq 0.$
 - 3) $(X_t)_{t>0}$ est U.I.
- b) De plus, si p > 1 et si $(X_t)_{t \geq 0}$ est bornée dans L^p , alors la convergence a aussi lieu dans L^p avec $X_\infty \in L^{\overline{p}}$.