Network Traffic Botnet Classification

Kate Stadelman

Agenda

- Introduction
- Data
- Random Forest
- References

Research Question

Introduction

Network Traffic Anomaly Detection

Can we detect Botnet activity among normal network traffic?

Botnet Definition

Introduction

What is a Botnet?

- Network of Hijacked Devices
- Most are Home Computers
- Used for Cyber-Crime
 - Distributed Denial-of-Service (DDoS)
 - Stealing Personal Data
 - Sending Spam
 - Bitcoin Mining

"Botnet" by Tom-b – Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons.

Motivation

Introduction

Cyber Security: A Primary Concern for US Businesses

"71% of US CEOs said they are 'extremely concerned' about cyber threats

-- ahead of pandemics and other health crises (46%)"

– PwC's 2021 CEO Survey

The average cost of a Distributed Denial-of-Service (DDoS) attack is

\$123K for small business and \$2.3M for enterprises.

Kaspersky Lab's IT Security Risks Survey 2017

Data Set

Data

"The CTU-13 is a dataset of botnet traffic that was captured in the CTU University, Czech Republic, in 2011." 1

Id	IRC	SPAM	CF	PS	DDoS	FF	P2P	US	HTTP	Note
1	√	√	√							
2	V	V	V							
3	V	0.570		√				✓		
4	V			- 0	√			V		UDP and ICMP DDoS.
5		√		√	- 37			17.	√	Scan web proxies.
5		187		V						Proprietary C&C. RDP.
7				- 5					√	Chinese hosts.
3				√						Proprietary C&C. Net-BIOS, STUN
9	√	√	√	V						
10	V		11177	1.57	√			✓		UDP DDoS.
11	V				V			V		ICMP DDoS.
12					- 7		V	107.01		Synchronization.
13		√		V					V	Captcha. Web mail.

This research project utilizes CTU-13 #10.

Data Description & Preparation

Data

Data Fields	Mail Delivery Analogy
Traffic Label	Mail Item Name
Start Time	Time First Package Sent
Last Time	Time Last Package Sent
IP Address*	Office Building Address
Protocol*	FedEx/UPS/USPS
Port*	Mailroom Slot
Duration*	Total Transit Time
Packets*	Number of Packages
Bytes*	Combined Size of Packages
Rate*	Package Speed in Transit

^{*}Both Source & Destination

Reduced Sample Period

- 5 Hours to 1 Hours
- 1.3M to 208K Records
- Maintained ~8% Total Botnet Flows

Removed Sparse Fields

Hops & Time-to-Live

Randomly Split Sample

75% Training & 25% Validation

Selected Features

Highlighted in Blue

Data Visualization

Data

Total Flows

Туре	Flows	%
Normal	208,360	92.5%
Botnet	16,810	7.5%

Data Visualization

Data

Model Overview & Description

Random Forest

- First Proposed by Tim Kam Ho in 1995
- Ensemble Machine Learning Algorithm
- Performs Classification & Regression Tasks
- Handles Large Data Sets with High Dimensionality
- Bagging (Bootstrapping Aggregation)

Model Overview & Description

Random Forest

Model Training

Random Forest

Confusion Matrix

	R. Normal	R. Botnet	Error
P. Normal	143,623	39	2.71e-4
P. Botnet	80	12,528	6.34e-3

Parameters

Variables @ Each Split: 5

• Trees: 300

Max Nodes: 5

Model Diagram & Important Features

Random Forest

Model Validation

Random Forest

Confusion Matrix

Accuracy: 0.9994

95% CI: (0.9992, 0.9996)

No Information Rate : 0.9193 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.996

Mcnemar's Test P-Value : 0.004057

Discussion

Q & A

References

Farnaaz, N. & Jabbar, M. A. (2016). Random Forest Modeling for Network Intrusion Detection System. Procedia Computer Science 89, (213–217).

https://www.sciencedirect.com/science/article/pii/S1877050916311127

Garcia, S., Grill, M., Stiborek, J., & Zunino, A. (2014). An empirical comparison of botnet detection methods. Computers and Security Journal, Elsevier, 45, (100–123). http://dx.doi.org/10.1016/j.cose.2014.05.011

Marchette, D. (1999, April, 9–12). A Statistical Method for Profiling Network Traffic. Proceedings of the Workshop on Intrusion Detection and Network Monitoring, Santa Clara, California. https://www.usenix.org/conference/id-99/statistical-method-profiling-network-traffic