CDI-2

Revisão: Curvas em coordenadas Polares

por: Elisandra Bar de Figueiredo

Algumas equações em coordenadas polares e seus gráficos

Retas

- 1. $\theta = \theta_0$ ou $\theta = \theta_0 \pm n\pi$, $n \in \mathbb{Z}$ é uma reta que passa pelo pólo e faz um ângulo θ_0 ou $\theta_0 \pm n\pi$ radianos com o eixo polar.
- 2. $r \sin \theta = a$ e $r \cos \theta = b$, com $a, b \in \mathbb{R}$, são retas paralelas ao eixo polar e $\theta = \frac{\pi}{2}$, respectivamente.

Circunferências

- 1. $r = a, a \in \mathbb{R}$ é uma circunferência de raio |a|.
- 2. $r = 2a\cos\theta$ é uma circunferência de raio |a|, com centro sobre o eixo polar e tangente ao eixo $\theta = \frac{\pi}{2}$ de modo que
 - (i) se a > 0 o gráfico está à direita do pólo;
 - (ii) se a < 0 o gráfico está à esquerda do pólo.
- 3. $r = 2b\sin\theta$ é uma circunferência de raio |b|, com centro sobre o eixo $\theta = \frac{\pi}{2}$ e tangente ao eixo polar de modo que
 - (i) se b > 0 o gráfico está acima do pólo;
 - (ii) se b < 0 o gráfico está abaixo do pólo.

Limaçons

Equações do tipo $r = a \pm b \cos \theta$ ou $r = a \pm b \sin \theta$, onde $a, b \in \mathbb{R}$ o gráfico varia conforme os casos abaixo.

1. se b > a, então o gráfico tem um laço. Veja a Figura 6.

Figura 6: Limaçons com laço

2. se b=a, então o gráfico tem o formato de um coração, por isso é conhecido como **Cardióide**. Veja a Figura 7.

Figura 7: Cardióide

3. se b < a, então o gráfico não tem laço e não passa pelo pólo. Veja a Figura 8.

Figura 8: Limaçons sem laço

Rosáceas

Equações do tipo $r = a\cos(n\theta)$ ou $r = a\sin(n\theta)$, onde $a \in \mathbb{R}$ e $n \in \mathbb{N}$ o gráfico varia conforme os casos abaixo.

1. Se n é par temos uma rosácea com 2n pétalas. Veja a Figura 13.

Figura 13: Rosáceas com 2n pétalas

2. Se n é impar temos uma rosácea com n pétalas. Veja a Figura 14.

Figura 14: Rosáceas com \boldsymbol{n} pétalas

Lemniscatas

Equações do tipo $r^2 = \pm a^2 \cos(2\theta)$ ou $r^2 = \pm a^2 \sin(2\theta)$, onde $a \in \mathbb{R}$. É fácil ver que trocando r por -r a equação das lemniscatas permanece a mesma, desta forma existe simetria em torno do pólo. Os gráficos para cada caso estão na Figura 10.

Figura 10: Lemniscatas

Espirais

As equações seguintes representam algumas espirais-

- 1. Espiral hiperbólica: $r\theta = a, \ a > 0.$
- 2. Espiral de Arquimedes: $r = a\theta$, a > 0.
- 3. Espiral logarítmica: $r = e^{a\theta}$.
- 4. Espiral parabólica: $r^2 = \theta$.

A Figura 12 ilustra estas espirais.

Figura 12: Espirais