THE THREE EQUATION NEW KEYNESIAN MODEL IN DYNARE

April 2020

OUTLINE

- Recap the three equation model
- Take a brief detour to talk about filtering
- Going through a .mod file
- What is Dynare doing?
- Some results and implications for filtering
- A larger-scale example

MODEL EQUATIONS

New Keynesian IS (NKIS) Curve

$$x_t = \mathbb{E}_t[x_{t+1}] - \frac{1}{\sigma} \left(i_t - \mathbb{E}_t[\pi_{t+1}] \right) + (\rho_z - 1) \frac{1 + \eta}{\eta + \sigma} z_t$$

New Keynesian Phillips Curve (NKPC)

$$\pi_t = \frac{(\sigma + \eta)(1 - \omega\beta)(1 - \omega)}{\omega} x_t + \beta \mathbb{E}_t[\pi_{t+1}] + v_t$$

► Taylor Rule

$$i_t = \phi_\pi \pi_t + \phi_x x_t + u_t$$

► Shock Processes (Why do we need three?)

$$\begin{split} z_t &= \rho_z z_{t-1} + \sigma_z \epsilon_t^z \\ v_t &= \rho_v v_{t-1} + \sigma_v \epsilon_t^v \\ u_t &= \rho_u u_{t-1} + \sigma_u \epsilon_t^u \end{split}$$

DATA AND DETRENDING

- Take inflation, FFR, and rGDP data from FRED
- Demean inflation and FFR and detrend rGDP
- Detrending is something we should think about briefly
- Two methods I'll talk briefly about
 - 1. Hodrick-Prescott Filter
 - 2. Simple Regression Filter
- Want to think about what the filter does to different frequencies (i.e. its gain). Which frequencies does it silence or turn up?

HODRICK-PRESCOTT FILTER

Involves solving the problem

$$\min_{\tau_t} \sum_{t=1}^T (y_t - \tau_t)^2 + \lambda \sum_{t=2}^{T-1} \left[(y_t - \tau_t) - (\tau_t - y_{t-1}) \right]^2.$$

- λ controls the degree of smoothing (1600 is common) and we have a nice, closed-form solution for the problem
- lackbox Can also write in transition/observation form where $\sigma_c^2/\sigma_v^2=\lambda$

$$\begin{split} \tau_t &= 2\tau_{t-1} - \tau_{t-2} + v_t \\ y_t &= \tau_t + c_t \end{split}$$

Gain of the filter has the form

$$g(\omega) = \frac{4\lambda(1-\cos(\omega))^2}{1+4\lambda(1-\cos(\omega))^2}$$

REGRESSION FILTER

- Conceptually simple. Instead of assuming that our trend is just low frequency movements, this approach tries to model the trend and calls prediction error the cyclical component
- Run regressions of the form

$$\begin{split} y_{t+h} &= \beta_0 + \beta_1 y_t + \beta_2 y_{t-1} + \beta_3 y_{t-2} + \beta_4 y_{t-3} + \epsilon_{t+h} \\ y_t &= \beta_0 + \beta_1 y_{t-h} + \beta_2 y_{t-h-1} + \beta_3 y_{t-h-2} + \beta_4 y_{t-h-3} + \epsilon_t \end{split}$$

- \blacktriangleright Hamilton suggests h=8 and p=4.
- ▶ Then the trend and cyclical components are

$$\begin{split} \tau_t &= \beta(L) y_t = (\beta_1 L^h + \beta_2 L^{h+1} + \beta_3 L^{h+2} + \beta_4 L^{h+3}) y_t \\ c_t &= (1 - \beta(L)) y_t = C(L) y_t. \end{split}$$

Further, we can calculate the gain as

$$g = \left(C(e^{i\omega})C(e^{-i\omega})\right)^{\frac{1}{2}}$$

SPECTRAL COMPARISON

Figure 1: Regression v. HP Gain

TREND COMPARISON

Figure 2: Regression v. HP Trends

THE ANATOMY OF A .MOD FILE

For this, we'll take a look at the .mod file for the three equation New Keynesian model

UNDER THE HOOD (SOLVING THE MODEL)

We want a simple transition equation for the state variables in terms of past states and exogeneous variables. The form we want is

$$s_t = Qs_{t-1} + R\epsilon_t$$

- Dynare first takes the equations and stacks them systematically to get a matrix equation that can be solved to get the transition equation of the form above
- That starting matrix equation is sometimes called a canonical form
- ▶ Blanchard-Kahn form is one (ss are state variables, ps are jump variables, and Zs are exogenous processes):

$$\begin{bmatrix} s_{t+1} \\ \mathbb{E}_t[p_{t+1}] \end{bmatrix} = A \begin{bmatrix} s_t \\ p_t \end{bmatrix} + \gamma Z_t$$

UNDER THE HOOD (SOLVING THE MODEL)

What Dynare actually uses is Sims' (2002) canonical form and method (code and paper can be found on his website). The canonical form is

$$\Gamma_0 s_t = \Gamma_1 s_{t-1} + C + \Psi z_t + \Pi \eta_t$$

- In the above, η is expectational error. Each x_t can be written as $\mathbb{E}_{t-1}[x_t] + \eta_t$. In this way, we can handle expectations
- Notice that we don't have any parametric form for η_t . We must use the structure of the model to pin it down
- In the most abstract terms, this method involves decomposing the Γ_0 and Γ_1 matrices (which might not be full rank or square) and solving for η_t
- This gives us conditions for the stability and uniqueness of the equilibrium

UNDER THE HOOD (MAXIMIZING THE POSTERIOR)

- Before you start your MCMC, you want to start at a point of high probability and you also want a decent proposal density
- Maximizing the posterior can get you both
- But first, have to compute the posterior likelihood for a given set of parameters
- If we add an observation equation to our transition equation, our problem is in state space form and we can use the Kalman filter to evaluate the likelihood $P(Y|\theta)$. That is

$$\begin{split} s_t &= Q(\theta) s_{t-1} + R(\theta) \epsilon_t \\ y_t &= P(\theta) s_t + u_t \end{split}$$

- Multiply that likelihood by the prior and you have the posterior likelihood
- Give that function to an optimizer that will return the Hessian and the maximum of the posterior likelihood

UNDER THE HOOD (ESTIMATING THE MODEL)

- Now you can use an MCMC to sample from the posterior
- Your initial parameter draw $\theta_0=\theta^{MAX}$ and your proposal density $\theta_t\sim\mathcal{N}(\theta_{t-1},-cH^{-1})$, where c is a scale factor and H is the Hessian at the posterior maximum
- Then, the RWMH algorithm is
 - lnitialize θ_0 and LLH_0
 - For t in 1:#DRAWS
 - \triangleright Draw $\theta^p \sim \mathcal{N}(\theta_{t-1}, -cH^{-1})$
 - Compute the posterior likelihood $LLH^p = P(Y|\theta^p)\pi(\theta^p)$
 - $| \mathbf{f}(LLH^p/LLH_{t-1}) > 1, \, \theta_t = \theta_p$
 - ightharpoonup Else, draw $u \sim \mathcal{U}(0,1)$
 - $\blacktriangleright \ \text{If } (LLH^p/LLH_{t-1}) > u \text{, } \theta_t = \theta_p$
 - $\blacktriangleright \ \ \mathsf{Else} \ \theta_t = \theta_{t-1}$
- Now we have our draws and we can compute posterior statistics (means, credible intervals, etc.)

UNDER THE HOOD (COMPUTING IRFs)

▶ The IRF of a state variable is (over a horizon h)

$$Q(\theta)^h R(\theta)$$

ightharpoonup To compute pointwise (i.e. for each horizon) credible intervals, we compute IRFs for each draw of θ and compute the credible intervals (percentiles, basically) of the value of the IRF at eash horizon

ON THE MENU

- The estimation command has multiple different options available to you for computing the mode, defining the jump distribution, using the Kalman Filter, initializing the states, etc.
- Pick the ones that make sense for your model, but the defaults are usually okay
- One to be aware of: in mode_compute, I use option 6 for several reasons
 - Sometimes quasi-Newton methods (which approximate the hessian instead of calculating it) will produce a hessian that's not positive definite
 - You don't have to worry about tuning the scale parameter here
- Drawback is that it's not really an optimizer

POSTERIORS FOR HP DATA

		Prior		Posterior			
	Dist.	Mean	Stdev.	Mean	Stdev.	HPD inf	HPD sup
$\sigma-1$	gamm	0.100	0.0500	0.216	0.0075	0.2047	0.2279
η	norm	1.000	0.2500	2.453	0.0607	2.3547	2.5474
ω	beta	0.500	0.1000	0.059	0.0026	0.0541	0.0627
β	beta	0.990	0.0025	0.996	0.0003	0.9954	0.9964
ϕ_{π}	gamm	1.700	0.1000	1.918	0.0100	1.9045	1.9360
ϕ_x	gamm	0.125	0.1000	0.203	0.0050	0.1960	0.2117
ρ_z	beta	0.800	0.0500	0.982	0.0009	0.9806	0.9832
$ ho_v$	beta	0.800	0.0500	0.636	0.0149	0.6155	0.6583
$ ho_u$	beta	0.800	0.0500	0.791	0.0093	0.7752	0.8019
ϵ^z	invg	1.000	2.0000	0.215	0.0118	0.1961	0.2357
ϵ^v	invg	1.000	2.0000	0.596	0.0154	0.5740	0.6222
ϵ^u	invg	1.000	2.0000	0.130	0.0006	0.1290	0.1304

MARGINAL POSTERIOR DISTRIBUTIONS WITH HP DATA

Figure 3: Marginals 1

MARGINAL POSTERIOR DISTRIBUTIONS WITH HP DATA

Figure 4: Marginals 2

IRFs WITH HP DATA (MP SHOCK)

Figure 5: MP Shock IRFs

IRFs WITH HP DATA (CP SHOCK)

Figure 6: CP Shock IRFs

IRFs WITH HP DATA (PROD. SHOCK)

Figure 7: Prod. Shock IRFs

SHOCKS WITH HP DATA

Figure 8: Estimated Shocks

SMOOTHED ESTIMATES WITH HP DATA

Figure 9: Smoothed Data

POSTERIORS FOR RF DATA

		Prior		Posterior			
	Dist.	Mean	Stdev.	Mean	Stdev.	HPD inf	HPD sup
$\sigma-1$	gamm	0.100	0.0500	0.005	0.0024	0.0024	0.0100
η	norm	1.000	0.2500	1.406	0.0377	1.3531	1.4582
ω	beta	0.500	0.1000	0.475	0.0047	0.4690	0.4833
β	beta	0.990	0.0025	0.991	0.0001	0.9907	0.9910
ϕ_{π}	gamm	1.700	0.1000	2.127	0.0184	2.1024	2.1577
ϕ_x	gamm	0.125	0.1000	0.104	0.0223	0.0718	0.1367
ρ_z	beta	0.800	0.0500	0.799	0.0003	0.7986	0.7993
ρ_v	beta	0.800	0.0500	0.827	0.0140	0.8047	0.8549
ρ_u	beta	0.800	0.0500	0.844	0.0075	0.8344	0.8564
ϵ^z	invg	1.000	2.0000	0.130	0.0006	0.1290	0.1304
ϵ^v	invg	1.000	2.0000	1.347	0.0283	1.2825	1.3826
ϵ^u	invg	1.000	2.0000	0.130	0.0008	0.1290	0.1305

MARGINAL POSTERIOR DISTRIBUTIONS WITH RF DATA

Figure 10: Marginals 1

MARGINAL POSTERIOR DISTRIBUTIONS WITH RF DATA

IRFs WITH RF DATA (MP SHOCK)

Figure 12: MP Shock IRFs

IRFs WITH RF DATA (CP SHOCK)

Figure 13: CP Shock IRFs

IRFs WITH RF DATA (PROD. SHOCK)

Figure 14: Prod. Shock IRFs

SHOCKS WITH RF DATA

Figure 15: Estimated Shocks

SMOOTHED ESTIMATES WITH RF DATA

Figure 16: Smoothed Data

THINGS TO NOTE

- In this model the shock processes completely determine the shape of the responses
- We also note that differences in filtering choices have big impacts on the sizes of shocks and estimates of their persistence
- Other parameters of note are also affected (Risk aversion, labor elasticity, price rigidity, and Taylor Rule coefficients)
- Policy and theory conclusions are sensitive to method of detrending and also potentially sensitive to smoothness parameters

WHAT CAN DYNARE DO FOR YOU?

- Even larger DSGEs with many equations (Open economy models, Two-Agent NK models, etc.)
- DSGEs with sticky or lagged expectations à la Mankiw and Reis, which are otherwise unwieldy
- DSGE-VARs, which use the DSGE as a prior for a VAR
- Toolboxes for heterogeneous agent models (Winberry et al.)
- > SVARs with a number of identification schemes
- Support for Julia interface (hopefully coming soon!)

DSGE-VARs IN DYNARE (AN EXAMPLE)

- ▶ You've heard about BVARs already. This is very similar!
- The DSGE-VAR is basically a BVAR, but you use the DSGE as a prior rather than the Minnesota Prior
- Main complication is figuring out how to convert the DSGE into a prior for the parameters of the VAR
- Once that's taken care of, you estimate as before. You can even use the same Gibbs sampler for the VAR parameter draws (DSGE parameter draws necessitate RWMH)!
- There is a hyperparameter for the weight placed on the DSGE prior and we can use it for model comparison
- Now, let's take a look at one of the .mod files for it

REFERENCES

- "Why you should never use the Hodrick-Prescott Filter" Hamilton (WP 2017)
- "Solving Linear Rational Expectation Models" Sims (Comp. Econ. 2002)
- "The Solution of Linear Difference Models Under Rational Expectation" Blanchard and Kahn (ECMA 1980)