Results of Geomagnetic Observations Belsk, Hel, Hornsund 2007

Jan REDA, Mariusz NESKA and Stanisław WÓJCIK

Institute of Geophysics, Polish Academy of Sciences ul. Księcia Janusza 64, 01-452 Warszawa, Poland

1. INTRODUCTION

This publication contains basic information on geomagnetic observations carried out in 2007 in three Polish geophysical observatories: Belsk (BEL), Hel (HLP), and Hornsund (HRN). All these observatories belong to the Institute of Geophysics, Polish Academy of Sciences. Observatories Belsk and Hel are located on the territory of Poland, while Hornsund is in Spitsbergen archipelago, governed by Norway.

In 2007, like in the previous years, the Belsk, Hel and Hornsund observatories have kept a close collaboration with the world network of geomagnetic observatories INTERMAGNET. The Belsk Observatory joined INTERMAGNET in 1992, Hel in 1999, and Hornsund in 2002.

2. DESCRIPTION OF OBSERVATORIES

The location of observatories is shown in Fig. 1 and Table 1. The geomagnetic coordinates in Table 1 were calculated in relation to the geomagnetic pole located at 83.2°N, 118.3°W on the basis of model IGRF-10 from epoch 2005.

The methodology of geomagnetic observations in all the three observatories was very similar, based on the "Guide for Magnetic Measurements and Observatory Practice" (Jankowski and Sucksdorff 1996). The instruments were similar too. Absolute measurements were made with the use of DI-flux magnetometers and proton magnetometers. The magnetic field variations were measured with the use of PSM magnetometers equipped in Bobrov's quartz variometers. The spare sets are equipped in PSM magnetometers or LEMI flux-gate magnetometers.

Continuous recording has been made by means of microprocessor-based digital loggers DR-02 or DR-03. Owing to the recording system we use and the fact that we strictly obey the procedures relating to the so-called magnetic service, the gaps in one-

minute data from Belsk and Hel are practically absent. Short gaps have only occurred in records of the Hornsund station, because the conditions prevailing there are much harder than in Poland.

Fig. 1. Location of the Belsk, Hel and Hornsund observatories.

Table 1
Coordinates of the Polish Observatories

Observatory	Geographic	c coordinates	Geomagneti	c coordinates	Elevation
Observatory	Latitude	Longitude	Latitude	Longitude	[m]
Belsk (BEL)	51°50.2′ N	20°47.5′ E	50.2°N	105.2° E	180
Hel (HLP)	54°36.5′ N	18°49.0′ E	53.2°N	104.6° E	1
Hornsund (HRN)	77°0.0′ N	15°33.0′ E	73.9°N	126.0° E	15

It is worth mentioning that in 2007 the Belsk and Hornsund Observatories have been continuing the permanent observation of the Schumann resonance. Two horizontal magnetic components and the vertical component of the electric field have been recorded at a frequency of 100 Hz. This recording was initiated in both observatories in 2004 (Neska and Satori 2006).

2.1 Central Geophysical Observatory at Belsk, Central Poland

The Observatory at Belsk began continuous observations of the Earth magnetic field in 1965 (Jankowski and Marianiuk 2007). It continued the activity of the first Polish magnetic Observatory at Świder near Warsaw, working incessantly through the years 1920-1975. The magnetic observations were transferred from Świder to Belsk because of a strong increase of artificial noise from the Warsaw agglomeration, in particular due to the electric railroad passing nearby the Świder Observatory.

The Belsk Observatory is located at a distance of about 50 km south of Warsaw and about 2 km northwest of the village Belsk Duży. The premises of the Observatory, about 10 ha in area, is at the edge of the forest reserve Modrzewina, far away of people's settlements and automobile traffic. The location of the observatory in relation to the nearby towns and villages is shown in Fig. 2. The Observatory is surrounded by typically agricultural regions (with fertile soil, mostly apple orchards), so the direct neighborhood is deprived of sources of major artificial geomagnetic field disturbances. It is only the electric railroad (DC powered) situated some 14 km away of the Observatory to the north that produces some small artificial magnetic disturbances, whose average level usually does not exceed 1 nT.

Fig. 2. Location of the Belsk Geophysical Observatory.

More information about the region in which the Observatory is located can be found, in English, Polish and German, on the internet pages of Grójec district (http://www.grojec.pl) to which the village Belsk Duży belongs. Relevant information can also be found at page of the Belsk Observatory

(http://www.igf.edu.pl/pl/obserwatoria/cog_belsk).

2.2 Geophysical Observatory at Hel, Northern Poland

The Observatory at Hel began continuous observations of the earth magnetic field in 1932 (Jankowski and Marianiuk 2007). The observations were stopped in 1939, after the outbreak of World War II. During the war, the Observatory as well as its equipment and data were completely destroyed. After reconstruction, continuous observations at Hel were resumed in 1957.

The Hel Observatory is located in a small resort town at the end of Hel Peninsula by the Bay of Gdańsk (see Fig. 3). It is the area of Seaside Landscape Park (Nadmorski Park Krajobrazowy), weakly industrialized and urbanized. The region, surrounded by water from three sides, lacks any major artificial noise and is a good place for continuous magnetic observations.

Fig. 3. Location of the Geophysical Observatory at Hel.

The observatory premises, about 4.5 ha in area, is surrounded by mixed forest (mainly pine and birch trees). Pavilions with measurement and recording instruments are located at small clearings.

More information about the town of Hel where the Observatory is located can be found at the address: http://www.hel-miasto.pl/.

2.3 Hornsund, Spitsbergen

The Polish Polar Station Hornsund (PSP Hornsund) is situated on the White Bear Bay (Isbjørnhamna) in Hornsund Fiord, Spitsbergen Island, Svalbard Archipelago. (See Fig. 4). More information on the Svalbard Archipelago can be found at the address: http://svalbard.com

Fig. 4. Location of Polish Polar Station Hornsund.

The Hornsund station is the northernmost Polish scientific facility carrying out year-round activity. The Hornsund region is situated in a zone of strong magnetic field activity, much stronger than on the magnetic pole. Therefore, it is a very interesting place for magnetic observations.

Polish geomagnetic observations in the Arctic were initiated during the II Polar Year; a magnetic station was then established by S. Siedlecki and C. Centkiewicz on the Bear Island. In the years 1932/33, they had carried out continuous recording of magnetic field and performed absolute measurements. In the years 1957/58, in the framework of the International Geophysical Year, measurements of magnetic declination and inclination were made by J. Kowalczuk and K. Karaczun in five sites in the Hornsund Fiord region.

Since the beginning of October 1978, continuous magnetic field recording has been put into operation, and systematic absolute measurements have been implemented (Jankowski and Marianiuk 2007). Since then, PSP Hornsund has begun to fulfill all the requirements for geomagnetic observatory.

Since 1993, PSP Hornsund has been participating in the IMAGE (International Monitor for Auroral Geomagnetic Effects) project. In the framework of this project, Hornsund data are being sent to a server in Finland, once a month on the average. Since 2002, PSP Hornsund is included into the global near-real-time magnetic observatory network INTERMAGNET, sending the results, via Internet, to the GIN (Geomagnetic Information Nodes) centers in Edinburgh and Paris.

3. INSTRUMENTATION

3.1 Introduction

Simplified block diagrams of geomagnetic observations in Belsk, Hel, and Hornsund Observatories are shown in Figs. 5, 6, and 7.

Recording of variations Digital recorder NDL T = 1s Internet Router GINs: Paris, Edinburgh (every 24h) http://rtbel.igf.edu.pl/ (every 1h) **Absolute** RJ45 measurements Set 1 Torsion Photoelectric Digital recorder DI-fluxgate Magnetometer type PSM COM1 PS2 Keyboard magnetometer T = 5sPC computer (data processing) type ELSEC 810 XYZ Proton Magnetometer Set 2 type PMP-5 Torsion Photoelectric Digital recorder DR-02 COM2 Magnetometer type PSM T = 5s Time service XYZ Radioclock Proton Magnetometer **DCF 77.5 kHz** Digital recorder DR-02 type PMP-5

Fig. 5. Block diagram of magnetic observations system at Belsk.

T = 10s

Fig. 6. Block diagram of magnetic observations system at Hel.

Fig. 7. Block diagram of the magnetic observations system at the Polish Polar Station Hornsund.

3.2 Absolute measurements

In all the three Polish observatories, the absolute measurements used for determination of bases of the recordings are performed by means of DI-flux and proton magnetometers. DI-flux magnetometers measure the absolute values of the angles of declination D and inclination I, while the proton magnetometers measure the absolute values of the total magnetic field vector F. From the measured values of F, D, and I, we can calculate all the remaining magnetic field components, H, X, Y, and Z.

The instruments for absolute measurements are listed in Table 2, and the basic parameters of the instruments in Table 3.

The results of absolute measurements are determined by means of a special computer package DIFLUX, which calculates the base values on the basis of data from the measurement protocol (Tomczyk 2008).

The bases B_A of digital recording of elements $X,\,Y$ and Z were calculated from the formula:

$$B_A = A - \varepsilon_A \times (a - 32768),$$

where A is the result of absolute measurement [nT], ε_A is the scale value of the recording [nT/bit], a is the recorded instantaneous value [bits].

For the digital records with a resolution of 16 bits, the values of $2^{15} = 32768$ bits, corresponding to zero voltages on inputs of these loggers, were adopted as the base levels.

Table 2
Instruments for absolute measurements

	Belsk	Hel	Hornsund
DI-fluxgate (fluxgate, theodolite)	ELSEC 810, THEO-10B sn: 002208	FLUX-9408 THEO-10B sn: 160334	FLUX-9408 THEO-10B sn: 160326
Proton magnetometer	PMP-5 sn: 128 PMP-8 sn: 13/1998	PMP-8 sn: 21/2006	PMP-5 sn: 115
Frequency of measurements	6 per week	2 per week	2 per week

Table 3
Basic parameters of the instruments for absolute measurements

$\label{eq:fluxgate declinometer/inclinometer} Fluxgate declinometer/inclinometer ELSEC 810 / THEO-10B \\ Producer$
$\label{eq:fluxgate} Fluxgate \ declinometer/inclinometer FLUX-9408 / THEO-10B \\ Producer (FLUX-9408)Institute \ of Geophysics Pol. Acad. Sc. \\ Mean square error of a horizontal direction \\ \sigma_D \approx \pm 5'' \\ Mean square error of a zenith direction$
Proton magnetometer model PMP-8 Producer
Proton magnetometer model PMP-5 Producer

Results of base determinations and the smoothed values adopted for further computations are depicted in Figs. 8, 9, 17, and 25 in the chapters describing individual observatories.

The mean random errors of a single base measurement, m_B , and the number of measurements n taken in 2007 are listed in Table 4.

Thermal coefficients of magnetic sensors are not taken into account in calculations, with a view to the following facts:

- tests made every few years indicated that the coefficients are very small, less than $0.2~\text{nT}/\text{^oC}$,
- the magnetic sensors are located in thermostat-controlled wooden boxes where the daily temperature variations are of the order of 0.1- 0.2° C.

 $Table \ 4$ Mean errors of measurements of $B_X,\,B_Y$ and B_Z in 2007

		Set	I	Set	II
Observatory	Element	Number of measurements	Mean error	Number of measurements	Mean error
		[n]	$[m_B]$	[n]	$[m_B]$
	\mathbf{B}_{X}	311	±0.5 nT	310	±0.5 nT
Belsk	\mathbf{B}_{Y}	311	±0.5 nT	310	±0.6 nT
	$\mathbf{B}_{\mathbf{Z}}$	311	±0.3 nT	310	±0.3 nT
	\mathbf{B}_{X}	104	±0.5 nT	104	±0.5 nT
Hel	\mathbf{B}_{Y}	103	±0.5 nT	104	±0.6 nT
	$\mathbf{B}_{\mathbf{Z}}$	104	±0.3 nT	104	±0.3 nT
	\mathbf{B}_{X}	104	±1.2 nT	_	-
Hornsund	B_{Y}	106	±1.0 nT	_	_
	B_Z	104	±0.8 nT	_	_

3.3 Recording of geomagnetic field variations

As we already mentioned, the continuous digital recordings of geomagnetic field variations in all the Polish observatories are performed by means of magnetometers PSM and digital loggers DR-02 (or DR-03). In spare sets, we use magnetometers PSM or LEMI. Both the main and spare sets record the components in the rectangular coordinate system X, Y, Z. At Belsk and Hel, continuous recording of the total magnetic field modulus F is performed as well. The basic parameters of the recording systems are listed in Table 5.

Magnetometers PSM

Magnetometers PSM were designed at the Institute of Geophysics PAS with the use of torsion quartz variometers of V.N. Bobrov system (Marianiuk 1977, Jankowski *et al.* 1984). In these magnetometers, the magnet's deflections in response to the magnetic field changes are transformed by means of photoelectric converters into the electric current changes. Owing to a strong negative feedback, the voltage changes on the output of the converter are in linear proportion to the magnetic field changes. The magnetometers PSM are characterized by good stability, of about 3-5 nT/year, and small noise, below 10 pT.

Magnetometers LEMI

Magnetometers LEMI were designed at the Lviv Centre of the Institute of Space Research (Ukraine). They employ flux-gate sensors. These magnetometers have been

successfully used as auxiliary sets. Their stability is not much less than that of PSM's, and they are also characterized by good orthogonality of sensors and relatively small self noise.

Table 5
Basic instruments for the magnetic field variations recording

		Belsk	Hel	Hornsund
	Name of magnetometer Kind of sensor	PSM Bobrov	PSM Bobrov	PSM Bobrov
	Туре	PSM-8511-01P	PSM 8511-09P	PSM-8911-05P
	Sensor's orientation	XYZ	XYZ	XYZ
SET 1	Range	+/- 850 nT	+/- 850 nT	+/- 5000 nT
SE	Magnetometer's producer	Institute of Geophysics PAS	Institute of Geophysics PAS	Institute of Geophysics PAS
	Digital recorder Producer	DR-02, DR-03 EL-LAB	DR-03 EL-LAB	DR-02 EL-LAB
	Sampling interval	5 s and 1 s	5 s	10 s
	Name of magnetometer Kind of sensor	PSM Bobrov	PSM Bobrov	LEMI fluxgate
	Type	PSM-8511-01P	PSM 8511-03P	LEMI-003/95
	Sensor's orientation	XYZ	XYZ	XYZ
Т2	Range	+/- 820 nT	+/- 820 nT	+/- 10.000 nT
SET	Magnetometer's producer	Institute of Geophysics PAS	Institute of Geophysics PAS	Institute of Geophysics PAS
	Digital recorder Producer	DR-02, DR-03 EL-LAB	DR-02 EL-LAB	DR-02 EL-LAB
	Sampling interval	5 s and 1 s	5 s	10 s
pl	Name of magnetometer	PMP-5	PMP-5	_
Total field	Producer	Institute of Geophysics PAS	Institute of Geophysics PAS	Institute of Geophysics PAS
Ľ	Sampling interval	10 s	10 s	_

Proton magnetometers PMP-5 and PMP-8

Magnetometers PMP-5 and PMP-8 were designed at the Institute of Geophysics PAS. These are classical proton magnetometers, in which the precession signal is forced in a cycle of proton polarization by means of direct current. The resolution of magnetometers PMP-5 is 0.1 nT, that of PMP-8 being 0.01 nT. The stability of both

magnetometers is better than 0.3 nT/year. More information about PMP-8 magnetometer can be found on the page:

http://www.igf.edu.pl/pl/zaklady naukowe/konstrukcji aparatury/aparatura

Digital loggers DR-02 and DR-03

The digital loggers were designed in the early 1990s by the enterprise EL-LAB (Poland) especially for recording the long-term slow-changing variations. These are independent instruments and their cooperation with the computer resolves itself to the read-out of data via the RS-232 interface. Model DR-03 is equipped in clock synchronized by a GPS.

3.4 Calibration of magnetic sensors

The verification of scale values of recording systems in all the three observatories was made by the classical electromagnetic method: electric currents were passed through calibration coils woven over variometers. The currents induce the magnetic field of precisely known intensity. The measurements are made at least few times a year.

The scale values of magnetometers PSM and LEMI, parameters of calibration coils of PSMs, and mutual orthogonality of sensors in PSMs and LEMIs is checked every few years in large calibration coils installed at the Belsk Observatory.

Table 6
Scale values adopted for computations in 2007

Observatory	Set	Period	Scale values					
Observatory	Set	renou	X [nT/bit]	Y [nT/bit]	Z [nT/bit]			
Belsk	Set I	Jan 01-Dec 31	0.0250	0.0249	0.0249			
Deisk	Set II	Jan 01-Dec 31	0.0249	0.0249	0.0249			
Hel	Set I	Jan 01-Dec 31	0.0249	0.0249	0.0249			
пеі	Set II	Jan 01-Dec 31	0.0249	0.0249	0.0250			
Hornsund	Set I	Jan 01-Dec 31	0.149	0.151	0.149			
Homsund	Set II	Jan 01-Dec 31	0.307	0.308	0.307			

3.5 Data treatment

In processing the results of digital recordings we used the software packet developed for the needs of an observatory operating in the INTERMAGNET network. This software makes it possible to perform, among other things, the following operations:

• conversion of magnetic data into the INTERMAGNET text format IMFV1.22 and creation in this format of daily files containing one-minute means of X, Y, Z and F (authors: J. Reda and A. Pałka),

- automatic transmission of data, via the Internet, to the Institute of Geophysics PAS in Warsaw and data centers in Paris and Edinburgh (author: M. Neska),
- archivation of data and plotting of magnetograms (author: J. Reda),
- calculation of results of absolute measurements (author: S. Tomczyk),
- automatic calculation of geomagnetic indices K and C (Nowożyński et al. 1991). The indices are calculated with the use of ASm (Adaptive Smoothed) method, developed at the Institute of Geophysics PAS, and recommended by IAGA in 1991. The currently used program calculates the indices from one-minute means in the INTERMAGNET CD-ROM Data Format or in the IMFV1.22 format. The program for calculation of indices may be taken from the INTERMAGNET page:
 - http://www.intermagnet.org/Software e.html
- test printouts to check various parameters of recording adopted for calculation and a possibility of looking over current and past data curves or tables.

The diagrams illustrating the annual variations of X, Y, and Z, monthly variations of X, Y, Z and F, bases of recording sets as well as plots of K indices for 2007 were prepared with the use of program imagplot.exe provided to us by INTERMAGNET. The diagrams prepared by means of imagplot.exe and other diagrams related to 2007 data are shown in Figs. 8 through 31 in the further part of this report.

3.6 Data availability

The newest data from Belsk, Hel and Hornsund observatories can be viewed in graphic form through the WEB application

http://rtbel.igf.edu.pl described by Nowożyński and Reda (2007).

On this page, the Belsk data appear with one-hour delay. The Hel data are made available a few hours after the end of the day, while the delay for Hornsund is 2 days on the average. The page makes it possible to view the archival data from any observatory belonging to the INTERMAGNET network (in the form of curves on the screen). It offers also a possiblity of calculating the K indices according to the ASm method (Nowożyński *et al.* 1991) and E indices (Reda and Jankowski 2004).

The current data (of status REPORTED) from all the three observatories can be found in INTERMAGNET at the Internet address:

http://www.intermagnet.org/apps/dl data prel e.php

Data from Belsk, Hel and Hornsund are also available from the WDCs. Addresses of some WDC pages with magnetic data are the following:

WDC for Geomagnetism, Edinburgh. http://www.wdc.bgs.ac.uk/catalog/master.html WDC for Geomagnetism, Kyoto. http://swdc234.kugi.kyoto-u.ac.jp/

All the three observatories have in their archives the original data, whose sampling periods are listed in Table 5. For those interested, these data can be made available on request.

4. CONTACT PERSON, POSTAL ADDRESS, CONTACT DETAILS

4.1 Belsk Observatory

Jan Reda, Mariusz Neska Central Geophysical Observatory 05-622 Belsk

Poland

Tel.: +48 486610830 Fax: +48 486610840

E-mail: jreda@igf.edu.pl (J. Reda), nemar@igf.edu.pl (M. Neska)

http://www.igf.edu.pl/pl/obserwatoria/cog belsk

4.2 Hel Observatory

Stanisław Wójcik Geophysical Observatory ul. Sosnowa 1 84-150 Hel Poland Tel./Fax +48 58 6750480 E-mail: hel@igf.edu.pl http://www.igf.edu.pl

4.3 Hornsund

Mariusz Neska Central Geophysical Observatory 05-622 Belsk

Poland

Tel.: +48 486610833 Fax: +48 486610840

E-mail: nemar@igf.edu.pl

http://hornsund.igf.edu.pl, http://www.igf.edu.pl

5. PERSONNEL TAKING PART IN THE WORK OF BELSK, HEL AND HORNSUND OBSERVATORIES IN 2007

5.1 Belsk

- Jan Reda (head of Geomagnetic Laboratory at Belsk)
- Janusz Marianiuk (consulting)
- Mariusz Neska (data processing)
- Halina Suska (data processing, observer)
- Krzysztof Kucharski (observer)
- Benedykt Pachocki (observer)
- Józef Skowroński (observer)

5.2 Hel

- Stanisław Wójcik (head of Geophysical Observatory)
- Anna Wójcik (observer)

- Mariusz Neska (data processing)
- Jan Reda (data processing)

5.3 Hornsund

- Mariusz Neska (head of geomagnetic observations)
- Piotr Modzel (observer in 1-st half-year)
- Jarosław Czyszek (observer in 1-st half-year)
- Paweł Czubak (observer in 2-nd half-year)
- Jan Reda (data processing)

References

- Jankowski, J., and C. Sucksdorff (1996), *Guide for Magnetic Measurements and Observatory Practice*, IAGA, Warsaw, 235 pp.
- Jankowski, J., J. Marianiuk, A. Ruta, C. Sucksdorff, and M. Kivinen (1984), Long-term stability of a torque-balance variometer with photoelectric converters in observatory practice, *Geophys. Surv.* 6, 3/4, 367-380.
- Jankowski, J., and J. Marianiuk (2007), Past and present of Polish geomagnetic observatories, *Publs. Inst. Geophys. Pol. Acad. Sc.* **C-99** (398), 20-31.
- Marianiuk, J. (1977), Photoelectric converter for recording the geomagnetic field elements: construction and principle of operation, *Publs. Inst. Geophys. Pol. Acad. Sc.* **C-4** (114), 57-73.
- Neska, M., and G. Satori (2006), Schumann resonance observation at Polish Polar Station at Spitsbergen and in Central Geophysical Observatory in Belsk, Poland, *Przegl. Geofiz.* **3-4**, 189-198, (in Polish).
- Nowożyński, K., T. Ernst, and J. Jankowski (1991), Adaptive smoothing method for computer derivation of K-indices, *Geophys. J. Int.* **104**, 85-93.
- Nowożyński, K., and J. Reda (2007), Comparison of observatory data in quasi-real time, *Publs. Inst. Geophys. Pol. Acad. Sc.* **C-99 (398)**, 123-127.
- Reda, J., and M. Neska (2007), Measurement Session during the XII IAGA Workshop at Belsk, *Publs. Inst. Geophys. Pol. Acad. Sc.* **C-99** (398), 7-19.
- Reda, J., and J. Jankowski (2004), Three hour activity index based on power spectra estimation, *Geophys. J. Int.* **157**, 141-146.
- Reda, J. (editor) (2007), XII IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing, Belsk, 19-24 June 2006, Monographic Volume, *Publs. Inst. Geophys. Pol. Acad. Sc.* C-99 (398), 397 pp.
- Tomczyk, S. (2008), DIFLUX software package for calculation of absolute measurement results, *Publs. Inst. Geophys. Pol. Acad. Sc.* **C-100** (402), 61-67.

Technical data of PMP-8:

http://www.igf.edu.pl/pl/zaklady naukowe/konstrukcji aparatury/aparatura

Received December 1, 2008 Accepted December 8, 2008

Tables and plots for Belsk Observatory

Fig. 8. Base values of set 1, Belsk 2007.

Fig. 9. Base values of set 2, Belsk 2007.

19

Annual mean values of magnetic elements in Belsk Observatory

			I		ı			
No	Year	[°']	H [nT]	Z [nT]	X [nT]	Y [nT]	[°']	F [nT]
1	1966	2 04.2	18901.2	45023.3	18888.9	682.8	67 13.6'	48829.8
2	1967	2 05.6	18906.2	45047.7	18893.6	690.7	67 14.0	48854.3
3	1968	2 06.2	18917.8	45071.3	18905.5	694.6	67 13.8	48880.5
4	1969	2 06.3	18935.7	45093.5	18922.9	695.6	6713.3	48907.9
5	1970	2 06.6	18953.0	45123.1	18940.2	697.7	67 13.0	48941.9
6	1971	2 06.6	18975.5	45146.4	18962.6	698.8	67 12.2	48972.1
7	1972	2 08.0	18991.6	45176.3	18978.4	706.7	67 11.9	49005.9
8	1973	2 10.2	19004.6	45210.8	18991.0	719.4	67 12.0	49042.8
9	1974	2 13.3	19016.3	45245.6	19002.0	737.1	67 12.2	49079.3
10	1975	2 16.4	19035.2	45273.5	19020.2	754.9	67 11.7	49112.4
11	1976	2 18.5	19049.7	45306.9	19034.3	767.3	67 11.7	49148.8
12	1977	2 22.0	19062.1	45336.6	19045.8	787.4	67 11.7	49181.0
13	1978	2 27.4	19058.6	45375.7	19041.1	817.1	67 13.0	49215.7
14	1979	2 32.3	19061.4	45401.4	19042.7	844.2	67 13.5	49240.5
15	1980	2 37.2	19063.2	45418.4	19043.3	871.2	67 13.9	49256.8
16	1981	2 42.9	19047.1	45448.9	19025.7	902.0	67 15.7	49278.7
17	1982	2 48.3	19034.8	45478.8	19012.0	931.3	67 17.3	49301.6
18	1983	2 52.4	19032.6	45498.8	19008.7	953.8	67 18.0	49319.2
19	1984	2 56.9	19022.8	45519.8	18997.6	978.4	67 19.2	49334.8
20	1985	3 00.8	19015.2	45542.0	18988.9	999.5	67 20.3	49352.3
21	1986	3 05.1	19003.3	45570.4	18975.8	1022.8	67 21.8	49373.9
22	1987	3 08.5	18999.1	45592.7	18970.6	1041.2	67 22.7	49392.9
23	1988	3 12.4	18983.0	45626.4	18953.3	1062.0	67 24.6	49417.8
24	1989	3 15.9	18966.2	45662.1	18935.4	1080.3	67 26.6	49444.3
25	1990	3 18.8	18961.5	45684.3	18929.8	1095.9	67 27.5	49463.1
26	1991	3 22.2	18950.8	45709.3	18918.0	1114.1	67 28.8	49482.0
27	1992	3 25.3	18954.8	45726.1	18921.0	1131.2	67 29.1	49499.1
28	1993	3 29.8	18956.4	45743.7	18921.1	1156.0	67 29.4	49516.0
29	1994	3 34.8	18953.6	45772.4	18916.6	1183.3	67 30.4	49541.4
30	1995	3 39.8	18959.3	45796.8	18920.6	1211.5	67 30.7	49566.2
31	1996	3 45.0	18965.7	45821.9	18925.1	1240.6	67 30.9	49591.8
32	1997	3 50.9	18962.8	45856.9	18920.0	1272.7	67 32.0	49623.0
33	1998	3 57.3	18955.8	45897.1	18910.6	1307.6	67 33.6	49657.5
34	1999	4 02.5	18957.8	45930.6	18910.6	1336.4	67 34.3	49689.2
35	2000	4 07.8	18955.4	45968.7	18906.2	1365.4	67 35.5	49723.5
36	2001	4 13.0	18962.4	46004.8	18911.1	1394.2	67 36.0	49759.6
37	2002	4 18.4	18969.2	46043.6	18915.6	1424.4	67 36.6	49798.0
38	2003	4 24.2	18970.2	46089.6	18914.2	1456.7	67 37.7	49840.9
39	2004	4 29.4	18980.3	46121.0	18922.0	1486.0	67 37.9	49873.8
40	2005	4 34.7	18984.3	46154.6	18923.7	1515.5	67 38.5	49906.4
41	2006	4 39.8	18996.7	46177.2	18933.8	1544.3	67 38.3	49932.0
42	2007	4 45.8	19007.4	46206.7	18941.8	1578.4	67 38.4	49963.4

Fig. 10. Secular changes of H, X, Y, Z, F, D and I at Belsk.

MONTHLY AND YEARLY MEAN VALUES OF MAGNETIC ELEMENTS

BELSK													2007
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	MEAN
				NORTH		COMPONENT:	1: 18	200	: : +	in n	nT		
All days	434	438	439	441	444	447	444	445	442	440	443	445	442
Disturbed days	427	434	434	432	439	450	443	445	3	433	431	436	3
				EAST	COMPC	COMPONENT:	1000	+ 00	-н : :	in nT			
All days Oniet days	564	566 564	567	570	573	576	580	582 282	586 584	58 58 58 50 50 50 50 50 50 50 50 50 50 50 50 50	592 589	595 592	578
Disturbed days	268	9	570	575	577	576	580	∞	288	593	298	599	581
				VERTI	CAL C	VERTICAL COMPONENT:	JENT:	46000	+ 00	-н : :	in nT		
All days	199	199	199	199	202	204	207	209	210	215	217	220	207
Quiet days	197	198	198	198	199	203	206	208	210	213	215	218	205
Disturbed days	199	199	199	200	204	205	209	208	210	217	222	223	208

Three-hour-range K indices Belsk, January - March, 2007 The limit of K=9 is 450

Darr	January	7	Febru	uary	March	
Day	K	SK	K	SK	K	SK
1	1112 4332	17	3122 214	13 18	4222 3311	18
2	5323 5333	27	1121 122	21 11	1121 1122	11
3	2333 4434	26	1101 100	00 4	0010 0111	4
4	2333 3433	24	0011 001	12 5	0111 1033	10
5	2222 3322	18	2001 222	22 11	3113 2252	19
6	1211 1321	12	1222 123	12 13	3423 3223	22
7	0001 1101	4	3223 225	53 22	4333 3333	25
8	1100 1221	8	2322 232	22 18	2111 0121	9
9	0111 1221	9	2221 112	22 13	0001 1122	7
10	0222 2321	14	2111 023	32 12	2111 1231	12
11	1222 2231	15	0100 003	32 6	1012 2333	15
12	3001 1100	6	1012 332	23 15	1213 3344	21
13	0000 0000	0	2322 245	56 26	5334 4443	30
14	0011 2113	9	4233 235	52 24	3323 3331	21
15	2222 5442	23	3422 233	32 21	1222 2334	19
16	0411 3344	20	2121 233	34 18	4211 3224	19
17	4333 3364	29	2212 332	23 18	3222 1220	14
18	3333 3454	28	2012 223	32 14	0012 2212	10
19	3322 3234	22	0001 123	11 6	0011 1111	6
20	3222 1233	18	0011 010	01 4	0000 1111	4
21	2332 2230	17	1100 000	00 2	0011 1101	5
22	1011 1230	9	0000 123	12 6	1111 0111	7
23	1111 0110	6	2110 012		1122 3334	19
24	0001 0121	5	2011 003	11 6	3323 3222	20
25	0011 0113	7	2100 123	31 10	2124 3122	17
26	1111 1102	8	2322 000	00 9	1112 2422	15
27	1111 1013	9	0132 135	54 19	2223 2342	20
28	3201 1122	12	3443 243	35 28	3212 1221	14
29	3222 6664	31			0110 0112	6
30	3433 4444	29			3112 1000	8
31	3223 3554	27			0121 2112	10

Three-hour-range K indices Belsk, April - June, 2007 The limit of K=9 is 450

Day	April		May		June	
рау	K	SK	K	SK	K	SK
1	5333 4345	30	2221 1222	14	2213 1332	17
2	3433 3343	26	1110 0101	5	2223 1322	17
3	3221 1432	18	1011 2320	10	2222 3433	21
4	2312 2123	16	1001 1011	5	3212 3331	18
5	1111 1212	10	1000 1001	3	0101 1212	8
6	2110 1111	8	0000 0011	2	0201 0111	6
7	3100 0100	5	1133 4534	24	1111 1111	8
8	0011 1113	8	2333 3332	22	2322 3223	19
9	3333 1112	17	1222 3222	16	1122 2222	14
10	2102 3333	17	1011 1232	11	2223 1121	14
11	2211 1011	9	0101 2221	9	1011 0222	9
12	2222 3321	17	1112 1101	8	0111 1111	7
13	1001 0010	3	1101 0110	5	0022 1332	13
14	0111 2213	11	0112 0121	8	3334 3434	27
15	3222 2210	14	1112 2122	12	2222 2211	14
16	0010 0000	1	1111 1113	10	2312 3321	17
17	0122 3434	19	1101 2123	11	2222 3221	16
18	3311 1233	17	3244 5333	27	1112 1231	12
19	2112 1112	11	2233 3332	21	2121 2211	12
20	1101 1112	8	3212 1222	15	1111 1211	9
21	0100 0111	4	2101 1223	12	1224 4434	24
22	2213 3333	20	2122 4444	23	3223 3324	22
23	4542 1200	18	4343 4354	30	3322 2222	18
24	1112 1122	11	5332 4444	29	2222 3231	17
25	2111 3210	11	1223 3442	21	1111 2211	10
26	2111 2323	15	2323 3432	22	0211 2111	9
27	2113 2455	23	2333 3432	23	2111 1112	10
28	4334 4444	30	2212 2001	10	1101 2212	10
29	4444 3333	28	0111 2211	9	1212 2343	18
30	4332 2321	20	1111 1111	8	2211 1111	10
31			1111 1122	10		

Three-hour-range K indices Belsk, July - September, 2007 The limit of K=9 is 450

Darr	July		August		September
Day	K	SK	K	SK	K SK
1	1112 2212	12	4333 3333	25	1123 2334 19
2	1121 2100	8	2122 2211	13	5323 4343 27
3	1112 2323	15	1111 2212	11	3223 3323 21
4	3235 4431	25	0111 0101	5	2222 2122 15
5	2112 2122	13	0001 0112	5	3332 2233 21
6	1112 2331	14	1012 2346	19	3212 1335 20
7	2221 2222	15	4333 3444	28	3321 2321 17
8	2111 1110	8	2221 2112	13	2122 2231 15
9	0111 1010	5	1112 1111	9	0111 1101 6
10	0121 1124	12	1113 4543	22	1111 0110 6
11	4445 3421	27	2222 2343	20	0001 1111 5
12	2231 2221	15	2212 1111	11	1111 1001 6
13	1101 1112	8	1111 1101	7	0111 1021 7
14	2223 4563	27	1001 1113	8	2001 2332 13
15	4232 1221	17	3311 2332	18	2012 2222 13
16	1112 1121	10	2122 1121	12	1111 1210 8
17	1111 1010	6	2111 1122	11	0011 1023 8
18	1111 0100	5	2011 0110	6	3101 0110 7
19	0111 1011	6	0012 3211	10	1122 2111 11
20	0234 4314	21	1111 1112	9	0113 3344 19
21	2322 3242	20	2102 2211	11	3112 2224 17
22	1111 0210	7	0111 2221	10	3222 3343 22
23	1112 1112	10	0111 1010	5	3433 2234 24
24	0111 2101	7	0101 0110	4	4332 2322 21
25	0001 1110	4	2112 3232	16	3211 1332 16
26	0001 2433	13	2222 3443	22	1122 0021 9
27	3322 3211	17	3232 2353	23	0003 2554 19
28	1111 1113	10	3223 2222	18	4342 2355 28
29	4423 3334	26	2111 2132	13	4444 4344 31
30	3232 2321	18	1211 1021	9	3332 2242 21
31	1122 3212	14	1112 1233	14	

Three-hour-range K indices Belsk, October - December, 2007 The limit of K=9 is 450

Dave	Octobe	er	No	ovembe	er	Dec	cember	î
Day	K	SK	I	ζ	SK	I	K	SK
1	3222 2323	19	3111	1121	11	3111	1011	9
2	1111 0024	10	1111	1011	7	0111	0110	5
3	4332 4343	26	0001	1110	4	0000	0000	0
4	3223 2330	18	1000	1431	10	1001	1111	6
5	1212 2131	. 13	1111	0001	5	2111	1000	6
6	1011 1112	2 8	0000	1100	2	0111	2122	10
7	1111 1101	. 7	0001	0001	2	1110	0020	5
8	0010 0012	2 4	1110	1112	8	0000	0002	2
9	0111 0010) 4	2111	2213	13	2101	1231	11
10	0110 0000) 2	3011	2210	10	0111	2225	14
11	0000 0012	3	2111	1111	9	3322	3444	25
12	0112 1223	12	0011	1232	10	3233	2113	18
13	0011 1012	6	3222	3134	20	2211	1130	11
14	2122 1211	. 12	3222	3322	19	1212	1121	11
15	2111 1111	. 9	2111	3233	16	1111	1201	8
16	0001 1210		1112	2333	16	1110	0113	8
17	1000 0010		4221	1320	15	2233	4434	25
18	1223 2233	18	1111	1200	7	4333	3444	28
19	3323 4343	25	1010	0023	7	3222	3133	19
20	3332 1331	. 19	3224	6544	30	3222	3543	24
21	1121 1132	12	3324	3322	22	3222	3442	22
22	2111 1242		1211	1443	17	1211	3342	17
23	3212 2131		4322	3232	21	2222	3323	19
24	1001 1221	. 8	2222	2543	22	1111	0122	9
25	1013 3454	21	2233	3443	24	1010	1100	4
26	2222 3442		3223	2122	17	1011	1112	8
27	2323 3423	3 22	1211	1222	12	1211	0123	11
28	2212 3421	. 17	2111	1312	12	3211	1120	11
29	2111 3355	21	0001	1321	8	0001	1112	6
30	3321 2322	18	0011	1222	9	1101	1110	6
31	2111 2231	. 13				0001	2132	9

Fig. 11. K-indices in graphical form, Belsk 2007.

27

Fig. 12. Daily mean data plot for Belsk 2007.

Fig. 13. Hourly mean data plot of X component for Belsk 2007.

Fig. 14. Hourly mean data plot of Y component for Belsk 2007.

Fig. 15. Hourly mean data plot of Z component for Belsk 2007.

Fig. 16. Hourly mean data plot of F component for Belsk 2007.

Tables and plots for Hel Observatory

Fig. 17. Base values of set 1, Hel 2007.

34

Annual mean values of magnetic elements in Hel Observatory

		D	Н	Z	X	Y	I	F
No	Year	[°,]	[nT]	[nT]	[nT]	[nT]	[°,]	[nT]
1	1953	-0 14.5	17388	45327	17388	-73	69 00.8	48548
2	1954	-0 10.0	17394	45374	17394	-51	69 01.5	48594
3	1955	-0 04.2	17379	45430	17379	-21	69 03.9	48640
4	1956	0 03.9	17371	45450	17371	20	69 05.0	48656
5	1957	0 05.7	17372	45475	17372	29	69 05.5	48680
6	1958	0 10.2	17380	45535	17380	52	69 06.5	48739
7	1959	0 14.7	17390	45565	17390	74	69 06.6	48771
8	1960	0 17.6	17402	45602	17402	89	69 06.8	48810
9	1961	0 19.8	17422	45625	17422	100	69 06.0	48838
10	1962	0 22.7	17438	45647	17438	115	69 05.5	48864
11	1963	0 26.5	17449	45663	17448	134	69 05.2	48883
12	1964	0 28.6	17464	45676	17463	145	69 04.6	48901
13	1965	0 30.0	17476	45692	17475	152	69 04.2	48920
14	1966	0 31.6	17485	45710	17484	161	69 04.0	48940
15	1967	0 33.3	17492	45743	17491	169	69 04.4	48973
16	1968	0 34.4	17502	45769	17501	175	69 04.4	49001
17	1969	0 34.3	17524	45792	17523	175	69 03.5	49030
18	1970	0 34.8	17542	45824	17541	178	69 03.2	49067
19	1971	0 35.7	17565	45849	17564	182	69 02.3	49098
20	1972	0 36.1	17579	45880	17578	184	69 02.1	49132
21	1973	0 38.5	17595	45912	17594	197	69 01.9	49168
22	1974	0 41.9	17606	45951	17605	215	69 02.2	49208
23	1975	0 45.0	17625	45984	17623	231	69 01.7	49246
24	1976	0 49.6	17639	46015	17637	254	69 01.6	49280
25	1977	0 55.0	17651	46045	17649	282	69 01.5	49312
26	1978	1 00.2	17646	46085	17643	309	69 02.9	49349
27	1979	1 05.1	17651	46112	17648	334	69 03.2	49375
28	1980	1 11.5	17653	46127	17649	367	69 03.5	49390
29	1981	1 17.5	17637	46156	17632	398	69 05.2	49411
30	1982	1 23.4	17620	46184	17615	427	69 07.1	49431
31	1983	1 28.6	17614	46200	17608	454	69 07.8	49444
32	1984	1 33.5	17602	46219	17596	479	69 09.1	49457
33	1985	1 37.9	17591	46239	17584	501	69 10.3	49472
34	1986	1 42.7	17579	46263	17571	525	69 11.6	49490
35	1987	1 46.3	17572	46285	17564	543	69 12.6	49508
36	1988	1 51.0	17555	46318	17546	567	69 14.6	49533
37	1989	1 55.5	17535	46352	17525	589	69 16.7	49558
38	1990	1 58.4	17527	46374	17516	604	69 17.8	49575
39	1991	2 00.6	17513	46398	17502	614	69 19.3	49593
40	1992	2 03.9	17515	46416	17504	631	69 19.6	49611
41	1993	2 10.0	17516	46428	17503	662	69 19.8	49622

		D	Н	Z	X	Y	I	F
No	Year	[° ']	[nT]	[nT]	[nT]	[nT]	[°']	[nT]
42	1994	2 15.9	17512	46456	17498	692	69 20.7	49647
43	1995	2 21.3	17518	46481	17503	720	69 21.0	49672
44	1996	2 26.6	17523	46506	17507	747	69 21.2	49698
45	1997	2 32.9	17519	46539	17502	779	69 22.3	49727
46	1998	2 39.8	17512	46581	17493	814	69 23.8	49764
47	1999	2 45.4	17511	46615	17491	842	69 24.7	49796
48	2000	2 51.9	17507	46657	17485	875	69 25.9	49833
49	2001	2 57.7	17515	46692	17492	905	69 26.2	49869
50	2002	3 03.7	17520	46730	17495	936	69 26.9	49906
51	2003	3 10.8	17519	46777	17492	972	69 28.1	49950
52	2004	3 16.6	17529	46809	17500	1002	69 28.2	49983
53	2005	3 22.3	17531	46843	17501	1031	69 28.9	50016
J	2006.0	0 -1.5	-2	9	-2	-8	0 0.6	7
54	2006	3 29.9	17550	46859	17517	1071	69 28.1	50038
55	2007	3 36.7	17559	46887	17524	1106	69 28.2	50067

<u>Note</u>: Since 2006 the observatory has stopped introducing the so-called historical corrections. The corrections were related, among other things, with the variable location of the instruments for absolute measurements. In the 2006.0 line we include the jump value J relating to the neglect of historical corrections. The jump values are defined as follows:

jump value J = old site value - new site value

Fig. 18. Secular changes of H, X, Y, Z, F, D and I at Hel.

MONTHLY AND YEARLY MEAN VALUES OF MAGNETIC ELEMENTS

2007	MEAN		524 527 519		606 605 609		387 386 388
	DEC		525 530 517		624 621 627		401 399 404
	NOV	nT	524 529 512		621 617 626	in nT	399 396 405
	OCT	in n	522 527 515	nT	616 614 620	: :	396 394 399
	SEP	: : +	524 527 519	ni.	613 610 616	+ 00	391 391 389
	AUG	17000	527 529 528	+	609 608 610	46500	388 388 387
	JUL		527 529 526	200	606 607 606	ENT:	387 386 389
	JUN	COMPONENT:	530 528 532	COMPONENT:	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VERTICAL COMPONENT:	385 384 385
	MAY		526 528 522	COMPC	600 598 604	CAL C	383 380 385
	APR	NORTH	522 526 514	EAST	598 597 603	VERTI	381 380 380
	MAR		521 524 517		20 20 20 20 20 20 20 20 20 20 20 20 20 2		380 379 378
	F E B		521 525 517		50 50 50 60 60 60		379 378 378
	JAN		517 521 510		5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		379 378 380
HEL			All days Quiet days Disturbed days		All days Quiet days Disturbed days		All days Quiet days Disturbed days

Three-hour-range K indices
Hel, January - March, 2007
The limit of K=9 is 550

Day	January		February		March		
Day	K	SK	K	SK	K	SK	
1	1102 3332	15	3122 1133	16	4222 3311	18	
2	4323 4334	26	1122 1221	12	0021 1122	9	
3	2333 4433	25	1101 0000	3	0000 0101	2	
4	2333 3432	23	0001 0001	2	0011 1022	7	
5	2222 3222	17	2001 2222	11	3013 2153	18	
6	1210 1321	11	1222 0111	10	3423 3213	21	
7	0000 1000	1	3123 2253	21	4233 3333	24	
8	1001 0221	7	2321 2321	16	2110 0120	7	
9	0010 1121	6	2221 0122	12	0001 1122	7	
10	0211 1311	10	1000 0231	7	1011 1231	10	
11	1122 2121	12	0000 0022	4	1012 2323	14	
12	3001 0000	4	0002 3323	13	1223 3233	19	
13	0000 0000	0	2322 1355	23	4334 4443	29	
14	0011 2122	9	4233 2352	24	3323 3331	21	
15	2122 5341	20	3423 2332	22	1122 3334	19	
16	0411 2334	18	2111 2233	15	4211 3124	18	
17	4333 3353	27	2212 3223	17	3222 2220	15	
18	2333 3444	26	1012 1232	12	0011 2211	8	
19	2322 3224	20	0001 1201	5	0001 1101	4	
20	2222 1223	16	0001 0100	2	0000 1011	3	
21	2222 1230	14	1000 0000	1	0011 1100	4	
22	1011 1130	8	0000 1112	5	1011 0101	5	
23	1211 0100	6	2100 0021	6	1113 3324	18	
24	0000 0110	2	2000 0010	3	3323 3222	20	
25	0011 0112	6	1000 1121	6	2123 3122	16	
26	1011 1101	6	2322 1000	10	1112 2422	15	
27	1100 1013	7	0032 1344	17	2223 2242	19	
28	3101 0122	10	3433 2434	26	3222 1221	15	
29	3222 5564	29			0101 1112	7	
30	3433 4344	28			3112 1000	8	
31	3223 3553	26			0121 2112	10	

Three-hour-range K indices Hel, April - June, 2007 The limit of K=9 is 550

Day	April	May		June		
Бау	K	SK	K	SK	K	SK
1	4433 4335	29	2221 2221	14	2113 1232	15
2	3433 3343	26	1100 1101	5	2222 1322	16
3	3221 2422	18	1011 2321	11	2222 3433	21
4	3222 2223	18	1001 1010	4	3212 3331	18
5	1111 1102	8	1000 0001	2	0001 1211	6
6	2110 1111	8	0000 0001	1	0101 1101	5
7	3100 1100	6	1033 4534	23	1101 1111	7
8	0011 1102	6	2333 3332	22	2222 3223	18
9	3233 1112	16	1222 3212	15	1122 2222	14
10	2102 3333	17	0000 1231	7	2122 2121	13
11	2211 1001	8	0001 2121	7	1001 0211	6
12	2222 4321	18	1102 0100	5	0001 1011	4
13	1011 0000	3	1101 0100	4	1022 2332	15
14	0111 2213	11	0002 0220	6	3234 3434	26
15	2122 2100	10	1012 2111	9	2222 2211	14
16	0000 1000	1	1101 1112	8	2211 3211	13
17	0122 4334	19	1111 2113	11	2122 3221	15
18	2212 1233	16	3234 5323	25	1112 1321	12
19	2111 2112	11	2233 3332	21	2111 2211	11
20	1000 1102	5	3213 1122	15	1111 1201	8
21	0100 1011	4	2101 1223	12	0124 4434	22
22	2213 3333	20	1122 4444	22	3223 3324	22
23	3442 1200	16	4343 4354	30	2322 2122	16
24	1111 1222	11	5333 4444	30	2212 3231	16
25	2111 3210	11	1223 3442	21	1001 2211	8
26	2112 2322	15	2323 3432	22	0112 2111	9
27	2113 3345	22	2223 3432	21	2111 1112	10
28	4334 4444	30	2212 2001	10	1001 2212	9
29	3343 3333	25	0001 2211	7	1212 2333	17
30	4332 3321	21	1101 1100	5	2211 1110	9
31			1111 1122	10		

Three-hour-range K indices Hel, July - September, 2007 The limit of K=9 is 550

Davi	July		August		Septembe	r
Day	K	SK	K	SK	K	SK
1	1112 2212	12	4233 3333	24	1123 2333	18
2	0121 2100	7	1122 2311	13	4323 4343	26
3	1112 2323	15	1111 2211	10	3223 3323	21
4	3235 4431	25	0001 1101	4	2222 2122	15
5	2112 2122	13	0001 1112	6	3333 2232	21
6	1112 2231	13	1012 2346	19	2312 1334	19
7	2111 2222	13	4333 3444	28	3322 2321	18
8	2211 1110	9	2221 2111	12	2122 2321	15
9	0101 1010	4	1111 1111	8	0011 1101	5
10	0121 1024	11	1113 5543	23	0011 1110	5
11	3444 3421	25	2222 2343	20	0001 1111	5
12	2221 2211	13	2112 2111	11	1111 0001	5
13	0110 1113	8	1001 1001	4	0001 0021	4
14	1122 4453	22	1001 1113	8	1001 2232	11
15	3232 2221	17	3312 2322	18	2012 2222	13
16	1101 1121	8	2122 1121	12	1101 1110	6
17	1011 1010	5	2001 1121	8	0001 1022	6
18	1111 0100	5	1001 1010	4	2101 1000	5
19	0001 1101	4	0002 3200	7	1122 2110	10
20	0224 5324	22	1101 1111	7	0203 3343	18
21	2322 3242	20	2002 2211	10	2111 2224	15
22	1111 0210	7	0112 2210	9	3222 3343	22
23	1112 1112	10	0001 1110	4	2333 2233	21
24	0101 2101	6	0101 0110	4	3322 3322	20
25	0001 1110	4	3103 4232	18	3212 1232	16
26	0001 2433	13	1112 3443	19	1122 0011	8
27	3221 3201	14	3232 2343	22	0003 2543	17
28	0111 1113	9	2213 2122	15	4332 2355	27
29	4323 3334	25	2111 2122	12	4344 4343	29
30	2232 2321	17	1112 1021	9	3332 2232	20
31	1122 3212	14	1112 1233	14		

Three-hour-range K indices Hel, October - December, 2007 The limit of K=9 is 550

Dorr	October	•	Nove	mber	De	ecembe	er
Day	K	SK	K	SK	K	5	SK
1 2	2212 2222 1111 0024	15 10	3111 11 1110 00	01 4		0110	4 4
3	3322 4343	24	0000 00			0000	0
4	3223 3330	19	1000 13			0001	2
5	1212 2121	12	0111 00			0000	3
6	1011 1012	7	0000 10		0111	2021	8
7	0011 1001	4	0000 00		0100	0010	2
8 9	0000 0012 0000 0010	3 1	1010 11 2101 21		0000 2100	0001 1131	1 9
10	0000 0010	0	2011 21		0111	2225	14
11	0000 0000	2	1011 12		3222	3443	23
12	0000 0011	11	0001 02			1113	16
13	0001 1011	4	3222 31		2211	1130	11
14	1111 1101	7	3222 23		0112	1121	9
15	2001 1010	5	2111 32		1002	0100	4
16	0011 1210	6	1111 22		1000	0113	6
17	1000 0010	2	3121 13		2233	4434	25
18	1224 2233	19	1100 01	00 3	3323	3444	26
19	2323 3343	23	1000 00	23 6	2222	2133	17
20	3322 1331	18	3123 55	44 27	2222	3543	23
21	1121 2132	13	3323 33	22 21	3232	3442	23
22	2100 1232	11	0212 14	_		3342	17
23	3211 2121	13	4222 32	32 20	2122	2223	16
24	1001 1210	6	2122 24		1001	0122	7
25	1013 3454	21		33 21	0000	1000	1
26	2222 3442	21	3223 11		1000	0001	2
27	2323 3423	22	1211 12		1111	1123	11
28	2112 2421	15	1011 13		3111	1111	10
29	2111 3355	21	0001 12			0012	3
30	3222 1321	16	0011 12	21 8		1110	4
31	2111 2231	13			0001	2232	10

Fig. 19. K-indices in graphical form, Hel 2007.

Fig. 20. Daily mean data plot for Hel 2007.

Fig. 21. Hourly mean data plot of X component for Hel 2007.

Fig. 22. Hourly mean data plot of Y component for Hel 2007.

Fig. 23. Hourly mean data plot of Z component for Hel 2007.

Fig. 24. Hourly mean data plot of F component for Hel 2007.

Tables and plots for Hornsund Observatory

Fig. 25. Base values, Hornsund 2007.

50

Annual mean values of magnetic elements in Hornsund Observatory

Year	D [°′]	H [nT]	Z [nT]	X [nT]	Y [nT]	I [°′]	F [nT]
1979	-032.2	8384	53447	8384	-79	81 05.1	54101
1980	-0 14.2	8370	53447	8370	-35	81 06.0	54098
1981	-0 09.3	8351	53449	8351	-23	81 07.2	54097
1982	-0 09.4	8319	53481	8319	-23	81 09.5	54124
1983	-0 02.0	8295	53457	8295	-5	81 10.8	54097
1984	0 07.7	8266	53439	8266	19	81 12.4	54075
1985	0 14.3	8238	53405	8238	34	81 13.9	54037
1986	0 20.4	8213	53392	8213	49	81 15.3	54020
1987	0 25.6	8193	53360	8193	61	81 16.3	53985
1988	0 34.7	8168	53368	8168	82	81 17.9	53989
1989	0 40.8	8148	53369	8147	97	81 19.2	53987
1990	0 47.2	8122	53360	8121	112	81 20.7	53975
1991	0 53.0	8107	53355	8106	125	81 21.6	53967
1992	1 01.4	8088	53352	8087	144	81 22.8	53962
1993	1 12.9	8065	53356	8063	171	81 24.3	53962
1994	1 25.9	8044	53374	8041	201	81 25.8	53977
1995	1 38.4	8038	53374	8035	230	81 26.1	53976
1996	1 51.4	8023	53385	8019	260	81 27.2	53985
1997	2 07.2	8004	53406	7999	296	81 28.6	54003
1998	2 24.0	8001	53440	7994	335	81 29.1	54036
1999	2 39.1	7998	53471	7989	370	81 29.6	54066
2000	2 55.5	7996	53504	7986	408	81 30.0	54098
2001	3 12.4	7992	53542	7979	447	81 30.6	54135
2002	3 29.7	7989	53585	7974	487	81 31.2	54177
2003	3 49.8	7965	53646	7947	532	81 33.3	54234
2004	4 04.2	7961	53675	7941	565	81 33.8	54262
2005	4 20.5	7953	53707	7930	602	81 34.6	54293
2006	4 36.2	7958	53727	7932	639	81 34.5	54314
2007	4 51.3	7950	53757	7922	673	81 35.2	54342

Fig. 26. Secular changes of H, X, Y, Z, F, D and I at Hornsund.

MONTHLY AND YEARLY MEAN VALUES OF MAGNETIC ELEMENTS

FEB MAR
427 430 432
369 403 399
160
156 159 158
171 162 180
250 251 251
244 243 244
274 270 267

Three-hour-range K indices Hornsund, January - March, 2007 The limit of K=9 is 2500 nT

Dave	January		February		March	
Day	K	SK	K	SK	K	SK
1	3113 4222	18	-343 1034		4443 3210	21
2	5333 5565	35	2232 2221	16	0222 1133	14
3	3343 4354	29	1122 2000	8	0121 1101	7
4	3443 4645	33	0121 0000	4	0112 2122	11
5	2343 3354	27	1112 2223	14	4232 2252	22
6	2221 1534	20	1432 1102	14	2544 4133	26
7	1110 1023	9	4333 3164	27	4333 4664	33
8	1112 0232	12	3433 2313	22	3331 2130	16
9	0210 2220	9	3333 1133	20	0111 1112	8
10	0332 2311	15	2221 1322	15	1222 2144	18
11	2232 2233	19	0000 0114	6	1224 3222	18
12	5211 0101	11	1113 3213	15	1133 3255	23
13	2000 0000	2	2233 1456	26	6343 4452	31
14	0010 1013	6	4253 3252	26	3334 4513	26
15	3333 5332	25	2343 3253	25	2333 3224	22
16	1432 3234	22	2333 3354	26	4422 3105	21
17	4343 3275	31	3423 3424	25	2433 2220	18
18	2433 3435	27	1223 2233	18	0133 2112	13
19	3432 3263	26	0122 2100	8	1222 2122	14
20	2343 2155	25	0101 1000	3	0100 1031	6
21	1343 2150	19	0110 1001	4	0112 1000	5
22	1022 2141	13	0100 0014	6	1111 1111	8
23	2433 0221	17	1210 1121	9	0122 2212	12
24	1010 0111	5	1110 0000	3	4423 3111	19
25	0112 0004	8	1101 1131	9	2224 3212	18
26	1211 1002	8	1321 0020	9	1223 2512	18
27	2111 1012	9	0122 2262	17	2323 2252	21
28	3211 0011	9	5344 3635	33	2342 2141	19
29	3233 3365	28			1221 1000	7
30	3443 3256	30			1232 1000	9
31	3343 3765	34			1331 2001	11

Three-hour-range K indices Hornsund, April - June, 2007 The limit of K=9 is 2500

_	April		May		June	
Day	K	SK	K	SK	K	SK
	K	Ж	K	Ж	K	ж
1	4433 3355	30	2433 2332	22	2223 1122	15
2	3534 3255	30	2311 1100	9	223- 1222	
3	3442 2422	23	1111 2232	13	3322 2333	21
4	2333 3142	21	1101 2110	7	2323 3341	21
5	2232 1231	16	0111 1001	5	1111 2114	12
6	1112 2111	10	1100 0002	4	1301 2111	10
7	1101 2100	6	1132 4532	21	1211 1121	10
8	0011 2100	5	2334 3242	23	3321 2224	19
9	2433 2002	16	1332 3221	17	2334 3122	20
10	1212 2223	15	1011 2252	14	3423 2132	20
11	2221 1000	8	1112 2121	11	2121 0121	10
12	2323 4311	19	1122 1101	9	1211 2182	18
13	0110 0000	2	1211 1200	8	1122 1233	15
14	0211 2104	11	0112 0220	8	4344 4533	30
15	4323 1210	16	0123 2133	15	2333 2212	18
16	1011 1100	5	1212 2004	12	2423 3221	19
17	0222 2222	14	1322 2222	16	2333 3221	19
18	4332 1135	22	2244 4332	24	1223 3231	17
19	2222 2101	12	2443 3442	26	2232 2211	15
20	1211 1002	8	3233 2253	23	2221 2222	15
21	1210 0001	5	2201 1112	10	1324 4234	23
22	2322 2222	17	1223 4254	23	4343 3224	25
23	4642 2200	20	5445 3355	34	3432 2133	21
24	1212 2112	12	3444 4536	33	3333 3343	25
25	2212 4320	16	2344 3532	26	2221 2132	15
26	2322 2224	19	3434 3442	27	2212 3132	16
27	2322 3235	22	2343 3553	28	2322 2322	18
28	4344 6454	34	3323 3032	19	2212 2211	13
29	3454 4354	32	1212 2221	13	1222 3254	21
30	4454 3431	28	2312 2120	13	2221 1112	12
31			2231 1133	16		

Three-hour-range K indices Hornsund, July - September, 2007 The limit of K=9 is 2500

Day	July		August		September
Day	K	SK	K	SK	K SK
1	1333 2212	17	5444 3353	31	2233 2263 23
2	1332 2101	13	2343 3331	22	3435 4473 33
3	1222 3323	18	1322 3212	16	2343 3425 26
4	3344 3542	28	1212 2103	12	2343 2131 19
5	2332 2144	21	0021 0112	7	2334 3242 23
6	3322 2333	21	1113 2335	19	2323 3245 24
7	2422 1144	20	3543 3554	32	2333 2533 24
8	3322 2121	16	1333 2211	16	2342 2352 23
9	1112 2110	9	2231 1213	15	0232 2101 11
10	0131 1013	10	1223 4564	27	1112 1110 8
11	3455 3221	25	3333 2542	25	0111 1232 11
12	2242 2222	18	3333 2131	19	0221 1001 7
13	1221 1212	12	1111 1121	9	0122 0002 7
14	2233 3463	26	2102 1232	13	2012 2112 11
15	5333 2241	23	2332 2211	16	2111 1123 12
16	2222 2221	15	2223 2212	16	2211 0010 7
17	2222 1121	13	2122 2124	16	0010 1003 5
18	2222 0110	10	3111 1001	8	2201 2000 7
19	0011 0010	3	1002 3110	8	0132 2000 8
20	1234 5324	24	2111 2001	8	0211 2243 15
21	3533 3232	24	2212 2210	12	2332 2215 20
22	2232 2211	15	0111 3310	10	3432 3254 26
23	1222 2112	13	0112 1111	8	3453 2215 25
24	0013 2101	8	1101 0000	3	3544 3543 31
25	1210 2110	8	2212 3221	15	2323 1154 21
26	0001 2333	12	1223 3443	22	1333 1033 17
27	3332 2210	16	4343 3263	28	0113 1454 19
28	2111 2113	12	3334 3135	25	3443 3264 29
29	3532 2324	24	2221 2143	17	3355 4365 34
30	2333 2322	20	1222 1133	15	3444 3263 29
31	1233 3222	18	0212 1214	13	

Three-hour-range K indices Hornsund, October - December, 2007 The limit of K=9 is 2500

Davi	Octobe	r	No	ovembe	er	Dec	cember	•
Day	K	SK	F	ζ	SK]	Χ	SK
1	2424 3323	23	2222	2131	15	3211	1000	8
2	2222 2234	19	0221	1011	8	1113	0012	9
3	4433 4246	30	0212	1010	7	0000	0000	0
4	2233 3461	24	0021	1543	16	1000	1101	4
5	1433 3231	20	1232	0100	9	1111	0000	4
6	1232 2112	14	0000	1100	2	0221	2043	14
7	1223 1121	13	1111	0000	4	1211	0020	7
8	0110 1003	6	0111	0000	3	0000	0002	2
9	1201 0010	5	1111	1102	8	0200	0142	9
10	0010 0010	2	2222	2211	14	0122	2232	14
11	0000 0022	4	1213	1011	10	2343	3454	28
12	0122 1013	10	1001	0031	6	2343	2115	21
13	0011 1002	5	4332	2132	20	4323	2251	22
14	3121 2100	10	2343	3224	23	2332	1143	19
15	0111 1000	4	2322	3353	23	2113	2213	15
16	0010 1220	6	2343	2255	26	0231	0105	12
17	2100 0000	3	5333	1330	21	2443	4445	30
18	0123 2122	13	0311	0200	7	5444	3556	36
19	2443 4354	29	1010	1012	6	2443	3256	29
20	4443 1231	22	2234	4443	26	2343	3355	28
21	1232 3142	18	4433	3244	27	3444	2364	30
22	1211 1243	15	1333	2442	22	1223	3544	24
23	3223 3041	18	5343	3244	28	4343	3424	27
24	1111 1101	7	3333	2463	27	1222	1124	15
25	1124 4553	25	3444	3645	33	0111	1101	6
26	2343 2663	29	4333	2253	25	0111	1101	6
27	2333 3533	25	1322	2244	20	1221	1013	11
28	2323 3533	24	1122	2444	20	2221	1033	14
29	2222 2266	24	1112	2423	16	0022	1003	8
30	2332 1551	22	1221	1123	13	2111	1110	8
31	2233 3252	22				1111	1122	10

Fig. 27. K-indices in graphical form, Hornsund 2007.

Fig. 28. Daily mean data plot for Hornsund 2007.

Fig. 29. Hourly mean data plot of X component for Hornsund.

Fig. 30. Hourly mean data plot of Y component for Hornsund.

Fig. 31. Hourly mean data plot of Z component for Hornsund.

List of Yearbooks from Polish Geomagnetic Observatories

Below is the list of yearbooks with the results from the Polish geomagnetic observatories. Since the year 2006, one joint yearbook has been published in place of individual yearbooks from each observatory. The present edition is an activity report, and refers the reader to the internet where one-minute data are available. Most of the issues listed below are still available from the Institute of Geophysics.

I. Results of Geomagnetic Observations Belsk, Hel, Hornsund (since 2006)

Published in

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

2006 - no C-100 (402)

II. Results of Geomagnetic Observations, Belsk Geophysical Observatory (1966-2005)

Published in

Materiały i Prace Zakładu Geofizyki PAN:

1966 – no 20;	1967 – no 27;	1968 – no 42;	1969 – no 46;
1970 – no 50;	1971 – no 57;	1972 – no 70;	1973 – no 76;
1974 – no 88			

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

1975 – no C-2 (107);	1976 – no C-4 (114);	1977 – no C-5 (125);
1978 – no C-8 (133);	1979 – no C-9 (139);	1980 – no C-10- (144);
1981 – no C-13 (159);	1982 – no C-17 (166);	1983 – no C-20 (180);
1984 – no C-23 (187);	1985 – no C-26 (196);	1986 – no C-29 (205);
1987 – no C-34 (218);	1988 – no C-37 (227);	1989 – no C-38 (228);

1990 – no C-40 (240);	1991 – no C-45 (250);	1992 – no C-49 (259);
1993 – no C-51 (267);	1994 – no C-55 (277);	1995 – no C-58 (287);
1996 – no C-61 (296);	1997 – no C-68 (305);	1998 – no C-70 (312);
1999 – no C-74 (318);	2000 – no C-79 (328);	2001 – no C-82 (343);
2002 – no C-85 (356);	2003 – no C-89 (368);	2004 – no C-92 (379);
2005 – no C-96 (392)		

III. Results of Geomagnetic Observations, Hel Geophysical Observatory (1958-2005)

Published in

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

1958-1965 – no C-41 (241);		1966-1970 – no C-6 (127);
1971-1975 – no C-7 (128);		1976-1979 – no C-11 (154);
1980-1981 – no C-16 (165)		1982 – no C-18 (170);
1983 – no C-19 (179);	1984 – no C-24 (128);	1985 – no C-25 (195);
1986 – no C-30 (206);	1987 – no C-33 (217);	1988 – no C-36 (226);
1989 – no C-39 (239);	1990 – no C-42 (242);	1991 – no C-46 (251);
1992 – no C-50 (260);	1993 – no C-52 (268);	1994 – no C-56 (278);
1995 – no C-59 (288);	1996 – no C-62 (297);	1997 – no C-67 (304);
1998 – no C-71 (313);	1999 – no C-76 (320);	2000 – no C-81 (330);
2001 – no C-84 (345);	2002 – no C-87 (358);	2001 – no C-84 (345);
2003 – no C-91 (370);	2004 – no C-94 (381);	2005 – no C-98 (394)

IV. Results of Geomagnetic Observations, Polish Polar Station Hornsund, Spitsbergen (1978-2005)

Published in

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

```
1986-1987 - no C-47 (254);

1990-1991 - no C-53 (272);

1992-1993 - no C-57 (286);

1994-1995 - no C-64 (301);

1996 - no C-66 (303);

1997 - no C-69 (311);

1998 - no C-72 (315);

1999 - no C-75 (319);

2000 - no C-80 (329);

2001 - no C-83 (344);

2002 - no C-86 (357);

2003 - no C-90 (369);

2004 - no C-93 (380);

2005 - no C-97 (393)
```

V. Results of Geomagnetic Observations, Polish Antarctic Station Arctowski (1978-1995)

Published in

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

```
1978-1979 - no C-21 (181);

1980-1981 - no C-22 (182);

1982-1983 - no C-28 (202);

1984-1985 - no C-32 (212);

1986-1987 - no C-35 (225);

1988-1989 - no C-44 (244);

1990-1991 - no C-54 (276);

1992-1993 - no C-60 (292);

1994-1995 - no C-63 (300)
```

VI. Yearbooks from Świder Observatory (1937-1967)

Annuaires Magnetiques (Roczniki magnetyczne) for the years 1937-1967 were published in Travaux de l'Observatoire Geophysique de St. Kalinowski a Swider (Prace Obserwatorium Geofizycznego im. St. Kalinowskiego w Świdrze).