Workflow pseudocode of the load balancer.

```
Algorithm LoadBalancer(r):
1. if r.latency == 'high' then
                               // latency-sensitive
2.
     if onboard.resource usage < 80 then
3.
         Process(r, "onboard")
4.
     else
5.
         if bandwidth to cloud == 0 then
6.
             Process(r, "onboard")
         else if 0 < bandwidth to cloud <= 5 then
7.
8.
             if r.priority == "accuracy" then
9.
                 Process(r, "onboard")
10.
             else
11.
                  r.resolution = lower(r.resolution)
12.
                  Process(r, "cloud_low_res")
13.
             end if
          else if bandwidth_to_cloud > 5 then
14.
15.
              Process(r, "cloud")
23.
          end if
24.
      end if
25. else
26.
      // Non-latency-sensitive request
27.
       if bandwidth_to_cloud > 5 then
28.
          Process(r, "cloud")
29.
      else
30.
          Queue(r, "onboard")
      end if
31.
32. end if
```

Thresholds Values

Decision Type	Key Thresholds	Action
Onboard preferred	CPU < 80%, RAM < 80%, GPU < 80%	Process onboard
Bandwidth low	Bandwidth < 5 Mbps	Lower resolution or onboard
Bandwidth good	Bandwidth ≥ 5 Mbps	Offload to edge/cloud
Edge/cloud allowed (extra)	Download speed > 5 Mbps	Safe to offload

List of applications with varying requirements for load balancer.

Category	Application	Reason
Onboard	Traffic light, lane detection	Ultra-low latency, critical safety
Offload	Traffic-sign detection	High compute, medium latency tolerant
II AWAR FASAII ITIAN/ARIARITA	Collision detection, depth estimation	can run at lower resolution