Analyse de la dynamique des modèles biologiques par programmation logique

Léo-Paul Delsaux

Stage effectué au laboratoire CRIStAL de Villeneuve-d'Ascq

29 août 2022

Introduction

Mots-clés:

- ► Bio-informatique
- Answer Set Programming (ASP)
- Réseau d'automates asynchrone (AAN)
- État local/global, transition locale/globale, chemin, cycle, automate produit, attracteur

parent(moi, papa).


```
parent(moi, papa).
parent(papa, papi).
```

```
parent(moi, papa).
parent(papa, papi).
```

 \Rightarrow grandparent(moi, papi).

ASP - Règles

```
parent(moi, papa).
parent(papa, papi).
```

ASP - Règles

```
parent(moi, papa).
parent(papa, papi).
grandparent(moi, papi) :- parent(moi, papa), parent(papa, papi).
```

ASP - Variables

```
parent(moi, papa).
parent(papa, papi).
```

ASP - Variables

```
\begin{aligned} & \mathsf{parent}(\mathsf{moi},\,\mathsf{papa}).\\ & \mathsf{parent}(\mathsf{papa},\,\mathsf{papi}).\\ & \\ & \mathsf{grandparent}(\mathsf{X},\,\mathsf{Z}) :-\,\mathsf{parent}(\mathsf{X},\,\mathsf{Y}),\,\mathsf{parent}(\mathsf{Y},\,\mathsf{Z}). \end{aligned}
```

ASP - Variables

```
parent(moi, papa).
parent(papa, papi).
grandparent(X, Z) := parent(X, Y), parent(Y, Z).
⇒ SATISFIABLE - Answer Set 1
grandparent(moi, moi) :- parent(moi, moi), parent(moi, moi).
grandparent(moi, moi) :- parent(moi, papa), parent(papa, moi).
[...] (24 lignes supplémentaires)
grandparent(papi, papi) :- parent(papi, papi), parent(papi, papi).
```

cadeau(appareil_photo). cadeau(pelle). cadeau(tshirt_bateau).

 ${\sf cadeau}({\sf appareil_photo}).\ {\sf cadeau}({\sf pelle}).\ {\sf cadeau}({\sf tshirt_bateau}).$

1 { offre_cadeau_fete_peres(C) : cadeau(C) } 1.

```
cadeau(appareil_photo). cadeau(pelle). cadeau(tshirt_bateau).
1 { offre_cadeau_fete_peres(C) : cadeau(C) } 1.

⇒ SATISFIABLE - Answer Set 1
offre_cadeau_fete_peres(appareil_photo).
```

```
cadeau(appareil_photo). cadeau(pelle). cadeau(tshirt_bateau).
1 { offre_cadeau_fete_peres(C) : cadeau(C) } 1.

⇒ SATISFIABLE - Answer Set 1
offre_cadeau_fete_peres(appareil_photo).

SATISFIABLE - Answer Set 2
offre_cadeau_fete_peres(pelle).
```

6 / 21

```
cadeau(appareil_photo). cadeau(pelle). cadeau(tshirt_bateau).
1 { offre_cadeau_fete_peres(C) : cadeau(C) } 1.
⇒ SATISFIABLE - Answer Set 1
offre_cadeau_fete_peres(appareil_photo).
SATISFIABLE - Answer Set 2
offre_cadeau_fete_peres(pelle).
SATISFIABLE - Answer Set 3
offre_cadeau_fete_peres(tshirt_bateau).
```

Sokoban

FIGURE – Grille de Sokoban. P symbolise le joueur, les ronds rouges sont les cases d'arrivée, et les carrés rouges représentent les caisses.

AAN - Schéma

AAN - Schéma

FIGURE - Schéma qui fera office d'exemple de référence

AAN - Traduction de l'exemple en ASP

En ASP, on définit l'exemple de référence en deux temps.

AAN - Traduction de l'exemple en ASP

En ASP, on définit l'exemple de référence en deux temps.

On déclare les niveaux : automaton_level("a", 0..2). automaton_level("b", 0..1). automaton_level("c", 0..2).

AAN - Traduction de l'exemple en ASP

En ASP, on définit l'exemple de référence en deux temps.

- ► On déclare les niveaux : automaton_level("a", 0..2). automaton_level("b", 0..1). automaton_level("c", 0..2).
- ► Et les transitions à l'aide de labels :
 condition(t1, "a", 0). target(t1, "a", 1). condition(t1, "b", 0).
 condition(t2, "a", 1). target(t2, "a", 2). condition(t2, "b", 0).
 [...](11 lignes supplémentaires)
 condition(t12, "a", 0). target(t12, "a", 1). condition(t12, "b",
 1). condition(t12, "c", 1).

Sémantiques

Sémantiques

On s'intéressera à 3 sémantiques :

Sémantiques

On s'intéressera à 3 sémantiques :

FIGURE – Schéma repris du pdf Folschette_Bioss18.pdf de Maxime Folschette

Attracteurs

Un **domaine de piège** est un ensemble d'états globaux duquel toutes les transitions globales pour la sémantique choisie mènent à un élément de ce domaine.

Un **domaine de piège** est un ensemble d'états globaux duquel toutes les transitions globales pour la sémantique choisie mènent à un élément de ce domaine. Un **attracteur** est un domaine de piège minimal en terme d'inclusion ensembliste.

13 / 21

Un domaine de piège est un ensemble d'états globaux duquel toutes les transitions globales pour la sémantique choisie mènent à un élément de ce domaine. Un attracteur est un domaine de piège minimal en terme d'inclusion ensembliste.

FIGURE – Sous-graphe du graphe produit de l'exemple de référence avec la sémantique synchrone. À gauche, 3 des 6 domaines de piège y sont encadrés. À droite, le seul attracteur y est encadré.

Un domaine de piège est un ensemble d'états globaux duquel toutes les transitions globales pour la sémantique choisie mènent à un élément de ce domaine. Un attracteur est un domaine de piège minimal en terme d'inclusion ensembliste.

FIGURE – Sous-graphe du graphe produit de l'exemple de référence avec la sémantique synchrone. À gauche, 3 des 6 domaines de piège y sont encadrés. À droite, le seul attracteur y est encadré.

Lemme : Les attracteurs d'un AAN sont exactement les domaines de piège cycliques.

Problématique

Pour la version synchrone, le code préexistant ne fonctionnait que partiellement : seuls les attracteurs simples (dont les états globaux ont exactement une transition sortante) étaient trouvés.

Problématique

Pour la version synchrone, le code préexistant ne fonctionnait que partiellement : seuls les attracteurs simples (dont les états globaux ont exactement une transition sortante) étaient trouvés.

FIGURE – Exemple d'AAN sur lequel le code pré-existant ne trouvait pas l'attracteur et graphe produit de celui-ci (pour la sémantique synchrone)

Solutions étudiées :

Solutions étudiées :

correction de la troisième contrainte en Python

Solutions étudiées :

- correction de la troisième contrainte en Python
- utilisation des états globaux en ASP

Une fois que l'on a généré tous les chemins possibles dans un AAN à l'aide d'agrégats, il nous faut filtrer les ensembles-solutions qui nous intéressent. On doit alors respecter 3 contraintes :

Une fois que l'on a généré tous les chemins possibles dans un AAN à l'aide d'agrégats, il nous faut filtrer les ensembles-solutions qui nous intéressent. On doit alors respecter 3 contraintes :

avoir un cycle

Une fois que l'on a généré tous les chemins possibles dans un AAN à l'aide d'agrégats, il nous faut filtrer les ensembles-solutions qui nous intéressent. On doit alors respecter 3 contraintes :

- avoir un cycle
- ▶ tous les états globaux du chemin visités après l'étape de fin du visite du cycle doivent être des éléments de ce dernier

Une fois que l'on a généré tous les chemins possibles dans un AAN à l'aide d'agrégats, il nous faut filtrer les ensembles-solutions qui nous intéressent. On doit alors respecter 3 contraintes :

- avoir un cycle
- tous les états globaux du chemin visités après l'étape de fin du visite du cycle doivent être des éléments de ce dernier
- toutes les transitions globales jouables depuis chacun des éléments du cycle doivent arriver dans un autre élément de ce cycle (= domaine piège)

n	exam.
$ \Sigma $	4
2	2
5	2
10	2
15	2

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec python)

n	exam.
2	.051
5	.052
10	.054 .093
15	.093

n	exam.	lamb.	
$ \Sigma $	4	4	
2	2	2	
5	2	2	
10	2	2	
15	2	2	

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec python)

n	exam.	lamb.	
2	.051 .052 .054	.053	
5	.052	.060	
10	.054	.076	
15	.093	.096	

n	exam.	lamb.	trp.	
$ \Sigma $	4	4	4	
2	2	2	0	
5	2	2	1	
10	2	2	1	
15	2	2	1	

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec python)

n	exam.	lamb.	trp.	
2	.051	.053	.044	
5	.052	.060	.039	
10	.054	.076	.050	
15	.051 .052 .054 .093	.096	.051	

n	exam.	lamb.	trp.	fis.	
$ \Sigma $	4	4	4	9	
2	2	2	0	1	
5	2	2	1	1	
10	2	2	1	1	
15	2	2	1	1	

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec python)

n	exam.	lamb.	trp.	fis.	
2	.051	.053	.044	.047	
5	.052	.060	.039	.057	
10	.054	.076	.050	.084	
15	.051 .052 .054 .093	.096	.051	.108	

n	exam.	lamb.	trp.	fis.	mamm.	
$ \Sigma $	4	4	4	9	10	
2	2	2	0	1	0	
5	2	2	1	1	0	
10	2	2	1	1	1	
15	2	2	1	1	1	

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec python)

					mamm.	
2	.051	.053	.044	.047	.047	
5	.051 .052 .054	.060	.039	.057	.043	
10	.054	.076	.050	.084	.082	
15	.093	.096	.051	.108	.123	

n	exam.	lamb.	trp.	fis.	mamm.	tcr.	
$ \Sigma $	4	4	4	9	10	40	
2	2	2	0	1	0	0	
5	2	2	1	1	0	0	
10	2	2	1	1	1	1	
15	2	2	1	1	1	1	

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec python)

n	exam.	lamb.	trp.	fis.	mamm.	tcr.	
2	.051	.053	.044	.047	.047	.049	
5	.052	.060	.039	.057	.047 .043 .082 .123	.079	
10	.054	.076	.050	.084	.082	.201	
15	.093	.096	.051	.108	.123	.362	

n	exam.	lamb.	trp.	fis.	mamm.	tcr.	t-helper
$ \Sigma $	4	4	4	9	10	40	101
2	2	2	0	1	0	0	8878+
5	2	2	1	1	0	0	5477 +
10	2	2	1	1	1	1	4072 +
15	2	2	1	1	1	1	2850 +

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec python)

					mamm.		
2	.051	.053	.044	.047	.047	.049	T.0
5	.052	.060	.039	.057	.047 .043 .082	.079	T.O
10	.054	.076	.050	.084	.082	.201	T.O
15	.093	.096	.051	.108	.123	.362	T.O

FIGURE – Temps (en s) de résolution pour la sémantique synchrone (version avec python) - timeout(T.O) = 100s

17 / 21

Utilisation des états globaux en ASP

Utilisation des états globaux en ASP

Une autre manière de gérer la troisième contrainte consiste à créer des prédicats pour les états globaux, et de mémoriser dans la sémantique quels sont les coups jouables depuis un état global, et non une étape temporelle donnée.

n	exam.
$ \Sigma $	4
2	2
5	2
10	2
15	2

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

n	exam.
2	3.724
5	6.457
10	11.349
15	18.767

n	exam.	lamb.	
$ \Sigma $	4	4	
2	2	2	
5	2	2	
10	2		
15	2		

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

n	exam.	lamb.	
	3.724		
5	6.457	71.786	
10	11.349	T.O	
15	18.767	T.O	

n	exam.	lamb.	trp.	
$ \Sigma $	4	4	4	
2	2	2	0	
5	2	2	0	
10	2		0	
15	2		1	

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

n	exam.	lamb.	trp.	
	3.724			
5	6.457	71.786	6.288	
10	11.349	T.O	11.561	
15	18.767	T.O	19.636	

n	exam.	lamb.	trp.	fis.	
$ \Sigma $	4	4	4	9	
2	2	2	0		
5	2	2	0		
10	2		0		
15	2		1		

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

n	exam.	lamb.	trp.	fis.	
2	3.724	43.623	4.155	T.0	
5	6.457	71.786	6.288	T.O	
10	11.349	T.O	11.561	T.O	
15	18.767	T.O	19.636	T.O	

n	exam.	lamb.	trp.	fis.	mamm.	
$ \Sigma $	4	4	4	9	10	
2	2	2	0			
5	2	2	0			
10	2		0			
15	2		1			

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

n	exam.	lamb.	trp.	fis.	mamm.	
2	3.724	43.623	4.155	T.O	T.O	
5	6.457	71.786	6.288	T.O	T.O	
10	11.349	T.O	11.561	T.O	T.O	
15	18.767	T.O	19.636	T.O	T.O	

n	exam.	lamb.	trp.	fis.	mamm.	tcr.	
$ \Sigma $	4	4	4	9	10	40	
2	2	2	0				
5	2	2	0				
10	2		0				
15	2		1				

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

n	exam.	lamb.	trp.	fis.	mamm.	tcr.
					T.O	
5	6.457	71.786	6.288	T.O	T.O	T.O
10	11.349	T.O	11.561	T.O	T.O	T.O
15	18.767	T.O	19.636	T.O	T.O	T.O

n	exam.	lamb.	trp.	fis.	mamm.	tcr.	t-helper
$ \Sigma $	4	4	4	9	10	40	101
2	2	2	0				
5	2	2	0				
10	2		0				
15	2		1				

FIGURE – Nombre d'attracteurs trouvés pour la sémantique synchrone (version avec états globaux)

			•		mamm.		•
					T.O		
5	6.457	71.786	6.288	T.O	T.O	T.O	T.O
10	11.349	T.O	11.561	T.O	T.O	T.O	T.O
15	18.767	T.O	19.636	T.O	T.O	T.O	T.O

Conclusions (et pistes)

Conclusions (et pistes)

- 2 versions fonctionnelles :
 - une efficace (en terme de complexité temporelle) avec du filtrage sous Python
 - l'autre moins efficace avec utilisation d'états globaux (avec quelques fonctions de calcul en Python)

Conclusions (et pistes)

- 2 versions fonctionnelles :
 - une efficace (en terme de complexité temporelle) avec du filtrage sous Python
 - l'autre moins efficace avec utilisation d'états globaux (avec quelques fonctions de calcul en Python)
- Pistes : la seconde version pourrait être améliorée avec de l'incrémental; considérer des classes d'équivalence des attracteurs, et manipuler des sortes de "bassins d'attraction"

Remerciements

Merci à :

- ► l'ENS de Lyon qui m'a proposé ce stage
- Maxime Folschette pour son encadrement
- les personnes au sein de l'équipe BioComputing
- mes collègues stagiaires de bureau
- les auditeurs présents dans cette salle pour leur écoute