

MARTY MARKETA ENERGY

FOR THE UNITED STATES, DEPARTMENT OF ENERGY

Chemical Characterization and Toxicologic Evaluation of Airborne Mixtures

Tumorigenicity Studies of Diesel Fuel-2, Red Smoke Dye and Violet Smoke Dyes in the SENCAR Mouse Skin Tumorigenesis Bioassay System

Final Report

T. J. Slaga L. L. Triplett

R. J. M. Fry

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, MD 21701-5010

Army Project Orders 9600 and 0027
Department of Energy Interagency Agreement 40-106-79

Project Officer: James C. Eaton

Health Effects Research Division
U.S. Army Medical Bioengineering Research Laboratory
Fort Detrick, Frederick, MD 21701-5010

This document has been approved for public release and sale; its distribution is unlimited.

85 10 03 080

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes—Printed Copy: A03; Microfiche A01

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AD-A1.59 7	28
4. TITLE (and Subtitio) Chemical Characterization and Toxi-	5. TYPE OF REPORT & PERIOD COVERED
cologic Evaluation of Airborne Mixtures	Technical Report
Tumorigenicity Studies of Diesel Fuel-2, Red Smoke	1982-1983 6. PERFORMING ORG. REPORT NUMBER
Dye and Violet Smoke Dyes in the SENCAR Mouse Skin Tumorigenesis Bioassay System	5. PERFORMING ORG. REPORT NUMBER
7- AUTHOR(a)	B. CONTRACT OR GRANT NUMBER(a)
T. J. Slaga L. L. Triplett	U.S. Army Project Order
R. J. M. Fry	Nos. 9600 and 0027
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT PROJECT TASK
Biology Division, Oak Ridge National Laboratory	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61102A
P. O. Box Y, Oak Ridge, TN 37831	3E161102BS04
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Army Medical Research and Development	December 1983 13. NUMBER OF PAGES
Command, Fort Detrick, Frederick, MD 21701-5012	32
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
U.S. Army Medical Bioengineering Research and	Unclassified
Development Laboratory, Fort Detrick, Frederick,	
MD 21701-5010	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimite	d.
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different fro	on Report)
j	
18. SUPPLEMENTARY NOTES	
}	
19. KEY WORDS (Continue on reverse side it necessary and identify by block number)
Diesel Fuel Type 2-D, Red Smoke Mix, Violet Smoke	Dye, SENCAR Mice, SENCAR
Mouse Skin Bioassay System, Carcinoma, Papillomas,	•
quinone, 1-methylaminoanthraquinone, Tumorigenesis	, Initiation, Promotion,
12-0-tetradecanoylphorbol-13-acetate (TPA), DMBA.	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
The tumorigenicities of Diesel Fuel-2, Red Smoke D	ye and Violet Smoke Dye were
tested in the SENCAR Mouse Skin Bioassay System.	
significant tumor response when tested as a tumor	promoter but negative results

when tested as a complete carcinogen. There were no tumor responses to either the Red or Violet Smoke Dyes when tested as complete carcinogens. Although a few tumors occurred in the Red and Violet Smoke Dye tumor initiation studies,

the response was not significantly different from that of the controls.

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Chemical Characterization and Toxicologic Evaluation of Airborne Mixtures

Tumorigenicity Studies of Diesel Fuel-2, Red Smoke Dye and Violet Smoke Dyes in the SENCAR Mouse Skin Tumorigenesis Bioassay System

Final Report

T. J. Slaga^a
L. L. Triplett^b
R. J. M. Fry^b

aUniversity of Texas System Cancer Center, P.O. Box 389, Smithville, TX 78957
bBiology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Date Published: September 1985

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, MD 21701-5010

Army Project Orders 9600 and 0027
Department of Energy Interagency Agreement 40-106-79

Project Officer: James C. Eaton

Health Effects Research Division
U.S. Army Medical Bioengineering Research Laboratory
Fort Detrick, Frederick, MD 21701-5010

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
Under Contract No. DE-ACO5-840R21400

IAI.

Foreword

SSEA CHEETERSON SASSESSEE

In conducting the research described in this report, the investigators adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animals Resources, National Research Council [DHEW Publication No. (NIH) 78-23, Revised 1978].

TABLE OF CONTENTS

	Page
List of Tables	5
Foreword	1
Introduction	7
Materials and Methods	11
References	23
Distribution List	27

LIST OF TABLES

			Page
Table	1	Chemicals Other than PAH Detected by Mouse Skin Bioassay	8
Table	2	Response of Carcinogens in Humans, Animals and Mouse Skin	10
Table	3	Diesel Fuel-2 Protocols	13
Table	4	Colored Smoke Dye Protocols	14
Table	5	Complete Skin Carcinogenicity of Diesel Fuel-2 when Applied Topically Once a Week	15
Table	6	Skin Tumor Promoting Activity of Diesel Fuel-2 when Given Twice a Week after DMBA Initiation	16
Table	7	Diesel Fuel-2 Promotion, Male and Female Tumor Responses	17
Table	8	Major Diesel Fuel-2 Components Characterized by Jenkins et al. (1983)	20
Table	9	Complete Carcinogenesis Activity of Red and Violet Smoke Dyes at 30 Weeks	21
Table	10	Tumor Initiating Activity of Red and Violet Smoke Dyes at 30 Weeks	22

Introduction

This report summarizes the findings of tumorigenicity studies of reference grade Diesel Fuel-2 obtained from Phillips Petroleum Company. This study was carried out as part of a program to determine the possible long range health hazard to personnel exposed to diesel fuel disseminated as an aerosol to provide an obscuring battlefield smoke.

A number of the U.S. Army's pyrotechnic devices contain compounds which produce colored smokes for signaling and marking. Because of the potential for exposure of workers to the dyes and of instructors and trainees to the disseminated smokes, the U.S. Army Medical Research and Development Command has supported research to study the immediate and delayed health effects of such exposure. This report also describes the results of the tumorigenicity assays of the red and violet colored smoke dyes. The red dye is composed of 1-methylaminoanthraquinone (MAA). The violet dye is made up of 80 percent by weight 1,4-diamino-2,3-dihydroanthraquinone (DDA) and 20 percent by weight MAA.

The assessment of tumorigenicity has been carried out in the SENCAR mouse skin tumorigenesis bioassay system (Slaga et al., 1978; Boutwell, 1964; Slaga et al., 1982). Skin tumors are induced by the sequential application of a subthreshold dose of a carcinogen followed by repetitive treatment with a chemical promoter (Slaga, 1983). In testing a compound, the compound is substituted for either the carcinogen and/or the promoter and the endpoints for this assay are: (1) the incidence of papillomas, i.e., the percentage of papilloma-bearing mice, (2) the multiplicity of papillomas, i.e., the number of papillomas per mouse, (3) the incidence of carcinomas, i.e. the percent of carcinoma-bearing mice, and (4) the multiplicity of carcinomas, i.e. the number of carcinomas per mouse.

This assay system has a well documented response to polycyclic aromatic hydrocarbons (PAH) (Slaga et al., 1978). The system has also been used to identify many chemicals other than PAHs as potential carcinogens (Table 1). These chemicals represent a wide variety of classes of chemicals, including aldehydes, carbamates, epoxides, haloalkylethers, haloaromatics, haloalkylcarbonyls, hydroxylamines, lactones, nitrosamides, sulfonates, sultones, and ureas. chemicals listed in Table 1 include such well known chemical carcinogens as aflatoxin Bi, bis(chloromethyl)ether, chloromethyl methyl β-propiolactone, urethane, N-acetoxy-2-acetamidofluorene, N-methyl-N'-nitro-N-nitrosoguanidine, 1,3-propanesultone, methyl urea, triethylenemelamine, and 4-nitroquinoline-N-oxide. mouse skin tumorigenesis bioassay can also detect chemicals that cause tumors in the respiratory tract of animals (Table 2). Of 11 known animal respiratory carcinogens, the mouse skin tumorigenesis system has to date detected carcinogens from the PAH, quinoline, and carbamate Of the chemicals tested from the list of highly suspect occupational respiratory carcinogens, chloromethyl ethers and coke oven emissions have been found to be tumorigenic in the mouse skin

Table 1. Chemicals Other Than PAH Detected by Mouse Skin Bioassay^a

Class	Chemical	Reference
Al dehyd e	Malonaldehyde	Shamberger et al., 1974
Carbamate	Urethane	Salaman and Roe, 1953
	Vinyl carbamate Ethyl N-phenylcarbamate	Dahl et al., 1978 Roe and Salaman, 1955
Epoxide,	Glycidaldehyde	Shamberger et al., 1974
diepoxide	1,2,3,4-Diepoxybutane 1,2,4,5-Diepoxypentane 1,2,6,7-Diepoxyheptane Chloroethylene oxide	Van Duuren et al., 1965 Van Duuren et al., 1965 Van Duuren et al., 1965 Zajdela et al., 1980
Haloalkylether	Bis(chloromethyl)ether	Van Duuren et al., 1969 Zajdela et al., 1980
	Chloromethyl methyl ether	Slaga et al., 1973 Slaga et al., 1973 Van Duuren et al., 1969
Haloaromatic	2,3,4,5-Tetrachloronitrobenzene 2,3,4,6-Tetrachloronitrobenzene 2,3,5,6-Tetrachloronitrobenzene Pentachloronitrobenzene	Searle, 1966 Searle, 1966 Searle, 1966 Searle, 1966
Haloalkyl-	Chloroacetone	Searle, 1966
carbonyl	3-Bromopropionic acid	Searle, 1966

Table 1. (Cont'd)

Constant access servers accessors

Class	Chemical	Reference
Hydroxylamine	N-Acetoxy-4-acetamidobiphenyl N-Acetoxy-2-acetamidofluorene N-Hydroxy-2-aminonaphthalene N-Acetoxy-2-acetoamidophen- anthrene N-(4-Methoxy)benzoyloxy- piperidine N-(4-Nitro)benzoyloxypiperidine N-Acetoxy-4-acetamidostilbene	Scribner and Slaga, 1975 Scribner and Slaga, 1975 Slaga et al., 1978 Clayson and Garner, 1976 Scribner and Slaga, 1975
Lactone	β-Propiolactone	Roe and Salaman, 1955 Slaga et al., 1973 Hennings and Boutwell, 1969
Multifunctional	Triethylenemelamine 4-Nitroquinoline-N-oxide	Roe and Salaman, 1955 Hennings and Boutwell, 1969
Natural products	Aflatoxin Bl	Lindenfelser et al., 1974
Nítrosamíde	N-Methyl-N'-nitro-N- nitrosoguanidine	Hennings et al., 1978 Fujii, 1976
Sulfonate	A lyl methysulfonate	Roe, 1957
Sultone	1,3-Propenesultone	Slaga et al., 1973
Ureas	N-Nitrosomethylurea	Graff1 and Hoffman, 1966

aNesnow et al., 1981.

Response of Carcinogens in Humans, Animals and Mouse Skin^a Table 2.

Sample	Occupational	Animal	Mouse
	Respiratory	Respiratory	Skin
	Carcinogen ^b	Carcinogen ^b	Tumorigen ^c
Arsenic Asbestos Beryllium Carbamates Chloromethyl ethers Chromium Coke oven Isopropyl oil MOCAd Mustard gas Nickel Nitrosamines PAH Quinolines	+++ +++++ +	++++ ++++	++ + ++

aFrom Nesnow et al., 1981.
bFrank, 1978.
cSlaga et al., 1978; Van Duuren, 1976.
dMethylene bis(ortho-chloroaniline).

tumorigenesis system (Nesnow et al., 1981). These results indicate that the mouse skin tumorigenesis bioassay seems particularly well suited for evaluation of the tumorigenic potential of compounds and mixtures known to be dermal carcinogens and also some compounds and mixtures that are thought to cause cancers at other sites (Nesnow et al., 1982).

Materials and Methods

A. Materials

- 1. The carcinogen, 7,12-dimethylbenz(a)anthracene (DMBA), was obtained from Sigma Chemical Co.
- The promoter, 12-0-tetradecanoylphorbol 13-acetate (TPA), was obtained from L. C. Systems of Woburn, Mass.
- 3. Diesel Fuel Type 2-D (Diesel Fuel-2, DF-2) as specified in the code of Federal Regulations, Title 45, Subtitle A, Part 1210, Sub Part J, paragraph 120, 121, Commercial fuel was obtained from Phillips Petroleum Co. Our test sample was a portion from the bulk quantity supplied to ORNL for this project. A detailed chemical analysis of this fuel was performed by the Analytical Chemistry Division, ORNL, and reported by Jenkins (1983).
- 4. Red (RSD) and Violet (VSD) smoke dyes were supplied to ORNL for this project courtesy of Pine Bluff Arsenal. The samples used in the tumorigenicity assays were characterized by the Analytical Chemistry Division, ORNL, and reported by Rubin (1983). "The VSD is formulated to contain 80 percent 1,4-diaminoanthraquinone and 20 percent 1-methylaminoanthraquinone. The RSD is formulated to contain only one dye component, 1-methylaminoanthraquinone."
- 5. Spectral grade acetone from Baker Chemical Co. was used to dilute or dissolve all compounds to the desired concentration.
- 6. SENCAR mice, male and female, ages 5 to 9 weeks, either bred at the Oak Ridge National Laboratory, Oak Ridge, TN, or from Harlan Sprague Dawley, Indianapolis, IN. In one experiment, namely, complete carcinogenesis with smoke dyes, SENCAR mice obtained from Harlan Sprague-Dawley (HSD) were used. The breeding stock used by HSD was supplied by ORNL.

B. Methods

These studies used forty 5 to 9 week-old SENCAR mice per treatment group (20 of each sex). The animals were housed in plastic (Maryland Plastics #E0670 cage, 8 5/8" x 13 7/8" x 5 1/8" with bar type stainless steel tops) cages (10/cage) with hardwood chip bedding (Sanichip, P. J. Murphy Forest Products Corp., Rochelle Park, NJ), fed Purina Laboratory

Chow 5001 and water ad libitum, and maintained at $20^{\circ}-23^{\circ}\text{C}$ with 10 changes of air per hour. Animals were treated and housed in gold-lighted rooms (General Electric F40G0: 12 hrs of light/day) reducing the possibility of UVB-induced reactions with the treatment chemicals or cocarcinogenic effects of the UVB on the treated animals. The hair was shaved from the backs of the mice with surgical clippers 2 days before the initial treatment. All sample doses were applied in topical treatment volumes of 0.2 mL. Spectral quality acetone was used as a solvent for the samples, the positive control, DMBA (2.52 μg in 0.2 mL), and the promoter, TPA (2.0 μg in 0.2 mL).

After the topically administered initiation dose, the animals were promoted 1 or 2 times per week as outlined in Tables 3 and 4. Skin tumor formation was recorded weekly and papillomas greater than 2 mm in diameter were included in the cumulative total if they persisted for one week or longer. Both the number of mice with tumors and the number of tumors per mouse were determined and recorded weekly. Tumors were randomly removed for histological verification. Group animal weights were determined every three to four weeks throughout the study.

The maximum dose level for the smoke dyes was determined by their solubility in acetone. The maximum dose of the DF-2 was the undiluted liquid.

The Fisher Exact Test (Fisher, 1935) was used to determine if the tumor responses were significantly above background controls.

1. <u>Diesel Fuel-2</u>

A. Results

When the mice were treated with diesel fuel one time a week at 1X, 1/10X, 1/100X concentration, for 38 weeks, no treatment group gave a tumor yield above historic background controls (Table 5).

In the tumor promotion study where the mice were initiated with DMBA and then given the 1X, 1/10X or 1/100X concentration dose of diesel fuel two times a week, some positive results were obtained (Table 6). Visibly, all three test concentrations gave a positive tumor response but only the 1X dose gave a statistically positive tumor response significantly above background controls. In addition, 5.5% of the 1X test animals developed carcinomas. Even though the data for the 1/10X and 1/100X concentrations are not statistically different from the controls, the results indicate a trend that may suggest that the Diesel Fuel-2 is a promoting agent.

An additional observation on the tumor promotion data is that there is a tumor response time of 8 to 11 weeks difference between the males and females (Table 7). A difference in tumor response time of 14 to 21 days between sexes is often observed but 8 to 11 weeks is unusual. The males are more sensitive to the diesel fuel than the females.

Table 3. Diesel Fuel-2 Protocols

ys r	DF-2 1x conc. 0.2 mL 1x/wk DF-2 1/10x conc. 0.2 mL 1x/wk DF-2 1/100x conc. 0.2 mL 1x/wk DMBA 2.52 µg 1x/wk	DF-2 1x, 0.2 mL 2x/wk DF-2 1/10x, 0.2 mL 2x/wk DF-2 1/100x, 0.2 mL 2x/wk TPA 2 µg 2x/wk
7 days later		
Initiation	A. Complete Carcinogenesis ^a Group 1 ^b DF-2 lx conc. 0.2 mL Group 2 DF-2 1/10x conc. 0.2 mL Group 3 DF-2 1/100x conc. 0.2 mL Group 4 DMBA 2.52 g	B. Tumor Promotion ^a Group 1 ^b DMBA 2.52 µg Group 2 DMBA 2.52 µg Group 3 DMBA 2.52 µg Group 4 DMBA 2.52 µg

a38 weeks duration of test program. bEach group consisted of 20 male and 20 female SENCAR mice, 5-9 weeks old.

Table 4. Colored Smoke Dye Protocols

Promotion		Smoke Dye 1 mg/0.2 mL 2x/wk Smoke Dye 1 mg/0.2 mL 1x/wk Smoke Dye 0.1 mg/0.2 mL 1x/wk	w /v 8f 10 2 com	TPA 2 µg 2x/wk TPA 2 µg 2x/wk TPA 2 µg 2x/wk TPA 2 µg 2x/wk
7 days later				
Initiation	enesisa	2 mg/0.4 mLc 1 mg/0.2 mL 0.1 mg/0.2 mL		2 mg/0.4 mL 1 mg/0.2 mL 0.1 mg/0.2 mL 2.52 µg
	A. Complete Carcinogenesis ^a	Group 1 Smoke Dyeb Group 2 Smoke Dye Group 3 Smoke Dye	B. Tumor Initiation ^a	Group 1 Smoke Dyeb Group 2 Smoke Dye Group 3 Smoke Dye Group 4 DMBA

aThirty weeks duration of test program.

^bEach group consisted of 20 male and 20 female SENCAR mice, 5-9 weeks old.

^cMaximum solubility of Smoke Kyes was 5 mg/mL of acetone.

In Group 1, 1 mg/0.2 mL was applied and as soon as the acetone dried, this was repeated to give a 2 mg dose.

Table 5. Complete Skin Carcinogenesis of Diesel Fuel-2 When Applied Topically Once a Week.

and expressed in sociosis of the second of the property of the second of

Summary at 38 Weeks

Dose of DF-2	2	No. o O Wks	No. of Mice O Wks 38 Wks	Avg. W	Avg. Wt. Mice O Wks 38 Wks	Mice/ Papillomas	e/ Lomas	Mice/ Carcinomas
<pre>1X Conc. 1/10 Conc. 1/100 Conc. DMBA 2.52 μg (1x/wk) *Acetone 0.2 mL (1x/wk)</pre>	g (1x/wk) 2 mL	04 04 04 04 04	38 38 70 70 70 70	33.5 33.6 32.9 31.3 34.3	40.9 41.0 41.6 41.0 42.7	0/0 1/1 0/0 10/41 0/0	0.10.70	0/0 0/0 0/0 0/0
Dose	% Mice with Paps	No.	No. of Paps/ Mouse	No. Mo	No. of Ca/ Mouse	% Mice with Ca	Fishers on Mice	Pishers Exact Test on Mice with Paps
1X 1/10X 1/100X DMBA Acetone	0 2.9 0 25 0		0 0.025 0 1.025 0	00000		00000	Not sig	significant _

mice/test group. In historic controls, 1 or 2 papillomas are expected in a test group of 40.*Control data terminated at 30 weeks of test. 20 male and 20 female SENCAR

Skin Tumor Promoting Activity of Diesel Fuel-2 When Given Twice a Week after DMBA Initiation. Table 6.

Dose of DF-2	Number of Mice Owk 30 w	Number of Mice Owk 30 wk	Avg. Wt. Mice O wk 30 wk	Wt. e 30 wk	Mice/ Papillomas	Mice/ Carcinomas	% Mice with Paps
1X Conc. 1/10X Conc. 1/100X Conc. DMBA 2.52 µg Acetone 0.2 mL + TPA 2 µg	04 04 04 04 04 04	37 38 35 39	32.6 32.5 32.95 33.5 30.5	39.9 40.1 42.7 39.1 41.5	24/118 4/17 2/5 35/432 1/1	0/0 0/0 3/3 0/0	60 10 5 100 2.5
Dose	No. of Paps/Mou	No. of Paps/Mouse	No. of Ca/Mouse		x Mice With Ca	Fishers Exact Test on Mice with Paps	est
1X Conc. 1/10X Conc. 1/100X Conc. DMBA Acetone + TPA	2.95 0.43 0.13 10.3 0.025	95 43 13 3 025	2/2 mice 0 0 0.075	au	5.5 0 0 7.5	P<.001 Significant Not significant Not significant	cant

20 male and 20 female SENCAR mice/test group.

Table 7. Diesel Fuel-2 Promotion, Male and Female Tumor Responses

Weeks of Testing	1X Conc. Paps/Mouse Male/Female (40 mice, 32.6 gm/mouse)	1X Conc. Paps/Mouse Male/Female (40 mice,	1/10X Con Paps/Mous Male/Fema (40 mice,	1/10X Conc. Paps/Mouse Male/Female (40 mice, 32.5 gm/mouse)	1/1(Paj Male (40	1/100X Conc. Paps/Mouse Male/Female (40 mice, 32.95 gm/mouse)	DMBA 2.52 ng Paps/Mouse Male/Female (40 mice, 33.5 gm/mouse	DMBA 2.52 ug Paps/Mouse Male/Female (40 mice, 3.5 gm/mouse)
-		6	-	-	٥	c	0	0
٦,	> c) c	o c) c	· 0	0	0	0
. œ	, c	, 0	0	0	0	0	2.0	2.0
9	0	0	0	0	0	0	2.0	7.0
10	.15	0	0	0	0	0	4.7	8. 6
=======================================	.15	0	0	0	0	0	6.7	11.7
12	4.	0	0	0	0	0	7.1	13.4
13	.45	0	0	0	0	0	ı	ı
14	.55	0	0	0	0	0	8.2	14.9
15	.95	0	0	0	0	0	& &	14.5
16	1.05	0	0	0	0	0	11.2	14.45
17	1.1	0	0	0	0	0	10.3	13.45
18	1.35	0	0.21	0	0	0	11.2	15.15
19	1.45	0	0.22	0	0	0	ı	1
20	1.9	0	0.27	0	0	0	11.45	14.05
21	2.35	0	0.27	0	0	0	11.5	13.6p
22	2.45	0.10	0.33	0	0	0	11.4	13.7
23	2.40	0.20	0.33	0	0	0	11.8	14.15
24	2.9	0.45	0.33	0	0	0	12.1	13.9
25	3.0	0.50	0.38	0	0	0	12.4	14.5
5 6	3.05	09.0	0.5	0	0	0	1	1
27	3.15	09.0	99•0	0.05	0	0	10.8	12.13
28	3.45	0.0	99.0	0.05	0	0	t	ı
29	3.45	1.2	0.77	0.05	0	0	10.95	11.5
30	3.75	1.3	0.83	0.1	0.1	0	11.11	12.3

Table 7. (Cont'd)

Weeks of Testing	1X Paps Male (40	1X Conc. Paps/Mouse Male/Female (40 mlce,	1/10X Paps/ Male/ (40 m	1/10X Conc. Paps/Mouse Male/Female (40 mice,	1/100 Papa Male, (40 1	1/100X Conc. Paps/Mouse Male/Female (40 mice,	DMBA Paps Male/ (40	DMBA 2.52 µg Paps/Mouse Male/Female (40 mice,
31	3.75	1.5	77.0	0.1	1.0	0	11.9	12.9
32	3.37	1.55	0.77	0.1	0.15	0	ı	1
33	3.17	1.8	0.77	0.1	0.2	0	11.6	12.4
34	3.22	2.0	0.83	0.1	0.25	0	12.2	12.5
35	3.44	2.0	0.83	0.1	0.25	0	ı	ı
36	3.61	2.0	0.83	0.1	0.25	0	11.7	8.6
37	3.66	2.11	0.83	0.1	0.25	0	•	1
38	3.83	2.47	0.83	0.1	0.26	8 0	12.6	8.
39	Termi	Terminated			,		•	•
	(37	(37 mfce,	(38 mice,	ice,	(38 mice,	ice,	(23	(23 mice,
	39.	39.8 gm)	40.1	40.1 gm)	42.7 gm)	ga)	* 0 *	(8)

arreatment of this group had to be terminated shortly before a response in females would have been expected, assuming that the female response was later than that in the males, as had been observed in the two higher dose groups. 12 mice died over last 8 weeks of test bCarcinomas began to appear after 22 weeks. due to massive papillomas and carcinomas.

B. Discussion

In the two-stage carcinogenesis system using mouse skin, the initiation phase requires only a single application of either a direct or indirect carcinogen at a subthreshold dose and is essentially irreversible. The promotion phase requires repetitive treatments after initiation and is initially reversible, later becoming irreversible. A promoting agent is one which, when applied repeatedly after a single dose of a tumor-initiating agent, results in tumors. Tumor promoters can be either weak carcinogens or noncarcinogens (Slaga et al., 1982).

The chemical characterization of DF-2 is presented in Table 8. A number of the chemical fractions contain compounds or groups of compounds that give a positive tumor response in the animal system (NIH Pub. #80-453). However, the quantity of these compounds per gram or mL of DF-2 is very low. For example, the benzo(a)pyrene [B(a)P] analysis gave an average concentration of 72 nanograms/mL. This is 14.4 nanograms of B(a)P per 0.2 mL of DF-2 which was the maximum initiation dose. With such minute amounts of carcinogens given to the mouse in the tumor initiation studies, at maximum dose, it is not surprising that there were no tumors due to this component obtained in the tumor initiation study. The concentration of other carcinogens in the fuels is also low. Unless there were marked interactions including, perhaps, synergisms, a very low degree of potency would be expected.

The positive tumor response in the DF-2 promotion study reflects the amplified sensitivity of the SENCAR two-stage mouse skin system. After multiple doses of the DF-2, tumors were detected. If it is assumed that the multiple exposures to the very low doses of the carcinogenic constituents of the fuel did not act as initiators they must have acted as promoters. In support of this contention, the cumulative dose of B(a)P was 6% of a dose that is known to be sufficient for initiation (2.52 μg , Slaga et al., 1982) and far less than that required for complete carcinogenesis. It should be noted that with the multiplicity of compounds in the DF-2, some of which are carcinogens, complex interactions that might include cocarcinogenesis cannot be eliminated as the cause of our findings.

2. Colored Smoke Dyes

A. Results

Table 9 shows that there was no tumor response to either the red or violet smoke dyes when tested as complete carcinogens. Although a few tumors occurred in the tumor initiation studies (Table 10) the results are not significantly different from the TPA controls when compared by the Fisher Exact Test.

B. Discussion

The colored smoke dyes are anthraquinones. As a group, the anthraquinones have a molecular configuration that is not carcinogenic. Literature references of specific anthraquinones give tumor data of background levels only (NIH Publication No. 80-453). Our tumor initiation and promotion studies agree with these findings.

Major Diesel Fuel-2 Components Characterized by Jenkins et al. (1983) Table 9.

Components		
Fraction A	Aliphatic Fraction Straight & branched chain hydrocarbons	Approx. 700 mg/gm of fuel
Fraction B	Alkyl-substituted benzene compounds	Approx. 160 mg/gm of fuel
Fraction C	Two-ring aromatic Naphthalene, alkylated naphthalenes, alkylated biphenyls and small amounts of triopenes	Approx. 120 mg/gm of fuel
Fraction D	Three-ring aromatic Fluorene, alkylated fluorene, aphenanthrene and alkylated phenanthrenes	Approx. 20 mg/gm of fuel
Semi-Polar Fraction	Alkyl-substituted indols & Carbazols, Carbozole	Approx. 2 mg/gm fuel
B(a)P Analysis	B(a)P	Average level was 72 nanograms/mL of fuel
Trace Elements	21 Trace Elements 2 are Chromium (<0.01 g/mL) and Cadmium (0.01 µg/mL)	Approx. total <.48 g/mL

Table 9. Complete Carcinogenic Activity of Red & Violet Smoke Dyes at 30 Weeks.

		Mf ce) 	Avg Wt/Mouse	Mouse	Mi ce/	Mice/
		0 Wks 0 Wks	0 Wks	0 Wks	30 Wks	Papillomas	Carcinomas
RSD	1 mg (2x/wk)	42	40	33.3 gm	43.9 gm	0	0
RSD	1 mg (1x/wk)	æ	38	33.3 8	44.9 gm	0	0
RSD	1/10 mg (1x/wk)	39	38	32.6 gm	39.1 gm	0	0
ASD	1 mg (2x/wk)	40	07	32.1 gm	43.0 gm	0	0
VSD		39	39	32.2 gm	40.2 gm	0	0
VSD	1/10 mg (1x/wk)	41	41	32.3 gm	42.0 gm	0	0
DMBA	2.52 µg (1x/wk)	07	39	31.3 gm	41.0 gm	10/41	0/0
Acetone	0.2 mL of stock (2x/wk)	70	07	34.3 gm	42.8 gm	0	0

20 male and 20 female SENCAR mice/test group.

Table 10. Tumor Initiating Activity of Red & Violet Smoke Dyes of $30~\mathrm{Weeks}$

		MI ce	8	Avg Wt/Mouse	Mouse	Mi ce/	Mice	% Mice
		0 Wks	30 Wks	0 Wks	30 Wks	Papi 11omas	Carcinomas	w/Paps
000	, ,	0,7	9,	23 6 22		5/6	0/0	12.5
UCA TOB	7 - 20 1 20	Ç (2 5	22.00	m & C 07	0/0	2 6	
RSD	1/10 mg	9 4	9 9	34.3 gm	40.9 85	3/4	0/0	7.5
)				
VSD	2 mg	40	38	32.6 gm	41.2 gm	2/2	0/0	5.2
OSA	l mg	40	38	32.5 gm	41.2 gm	3/3	0/0	7.5
VSD	1/10 mg	07	39	33.0 gm		1/1	0/0	2.6
DMBA	2.52 µg	07	35	33.5 gm	39.1 gm	35/432	3/3	100
Acetone + TPA	2 µ8	70	70	34.6 gm	42.1 gm	1/1	0/0	2.6
			Mean			Fishers Exact Test	Test	
Dose			Paps/Mouse	- 18e		Mice with Paps	ips	
• • •			0.15			Not significant	fi fi	
RSD 1/10 mg			0.1				יי יי	
• •			0.05				.	
VSD 1 mg			0.075				ŭ	
VSD 1/10 mg			0.025			Not significant	ı,	
Acetone + TP	¥		0.025					

REFERENCES

- Boutwell, R. K. 1964. Some biological aspects of skin carcinogenesis. Progr. Exp. Tumor Res. 4: 207-250.
- Clayson, D. B., and R. C. Garner. 1976. Carcinogenic aromatic amines and related compounds. In: Chemical Carcinogens. C. E. Searle, ed. American Chemical Society: Washington, DC. pp. 366-461.
- Dahl, G. A., J. A. Miller, and E. C. Miller. 1978. Vinyl carbamate as a promutagen and a more carcinogenic analog of ethyl carbamate. Cancer Res. 38: 3793-3804.
- Fisher, R. A. 1935. The logic of inductive inference, Journal of the Royal Statistical Society, Series A 98: 39-54.
- Frank, A. L. 1978. Occupational lung cancer. In: Pathogenesis and Therapy of Lung Cancer. C. C. Harris, ed. Marcel Dekker, Inc.: New York. pp. 25-51.
- Fujii, M. 1976. Carcinogenic effect of N-butyl-N-nitrosourethane on CDF-1 mice. Gann 67: 231-236.
- Graffi, A., and F. Hoffman. 1966. Strong carcinogenic effect of methyl nitrosourea on mouse skin in the drop test. Acta Biol. Med. Ger. 16: K1-K3.
- Hennings, H., and R. K. Boutwell. 1969. Inhibition of DNA synthesis by initiators of mouse skin tumorigenesis. Cancer Res. 29: 510-514.
- Hennings, H., B. Michael, and E. Patterson. 1978. Croton oil enhancement of skin tumor initiation by MNNG. Proc. Soc. Exp. Biol. Med. 158: 1-4.
- Jenkins, R. A., R. W. Holmberg, J. S. Wike, J. H. Moneyhun, and R. S. Brazell. 1983. Chemical and Physical Characterization of Diesel Fuel Smoke. ORNL/TM-9196. AD A142718.
- Lindenfelser, L. A., E. B. Lillehoj, and H. R. Burmeister. 1974. Aflatoxin and trichothecene toxins: skin tumor induction and synergistic acute toxicity in white mice. J. Natl. Cancer Inst. 52: 113-116.
- Nesnow, S., L. L. Triplett, and T. J. Slaga. 1982. Comparative tumor initiating activity of complex mixtures from environmental particulate emissions on SENCAR mouse skin. J. Natl. Cancer Inst. 68: 829-834.

REFERENCES (Cont'd)

- Nesnow, S., L. L. Triplett, and T. J. Slaga. 1981. Tumorigenesis of diesel exhaust, gasoline exhaust, and related emission extracts of SENCAR mouse skin. In: Short-Term Bioassays in the Analysis of Complex Environmental Mixtures II. M. D. Waters, S. Shahbeg, S. Sandhu, J. L. Huisingh, L. Claxton, and S. Nesnow, eds. Plenum Press: New York. pp. 277-297.
- NIH Publication #80-453. 1978. Survey of compounds which have been tested for carcinogenic activity.
- Roe, F. J. C. 1957. Tumor initiation in mouse skin by certain esters of methane sulfonic acid. Cancer Res. 17: 64-67.
- Roe, F. J. C., and M. H. Salaman. 1955. Further studies on incomplete carcinogenesis: triethylene melamine (TEM), 1,2-benzanthracene, and B-propiolactone as initiators of skin tumor formation in the mouse. Brit. J. Cancer 9: 177-203.
- Rubin, I. B., and M. V. Buchanan. 1983. Chemical characterization and toxicologic evaluation of airborne mixtures. ORNL/TM-8956. ADA134777.
- Salaman, H. H., and F. J. C. Roe. 1953. Incomplete carcinogens: Ethyl carbamate (urethane) as an initiator of skin tumor formation in the mouse. Br. J. Cancer 7: 472-481.
- Scribner, J. D., and T. J. Slaga. 1975. Tumor initiation by N-acetoxy derivatives of pipperidine and N-arylacetamides. J. Natl. Cancer Inst. 54: 491-493.
- Searle, C. E. 1966. Tumor initiatory activity of some chloromononitrobenzenes and other compounds. Cancer Res. 26: 12-17.
- Shamberger, R. J., T. L. Andreone, and C. E. Willis. 1974. Antioxidants and cancer IV. Initiating activity of malonaldehyde as a carcinogen. J. Natl. Cancer Inst. 53: 1771-1773.
- Slaga, T. J., A. Sivak, and R. K. Boutwell, eds. 1978. Carcinogenesis: A Comprehensive Survey, Vol. 2. Mechanisms of Tumor Promotion and Cocarcinogenesis. Raven Press: New York.
- Slaga, T. J., G. T. Bowden, B. G. Shapas, and R. K. Boutwell. 1973. Macromolecular synthesis following a single application of alkylating agents used as initiators of mouse skin tumorigenesis. Cancer Res. 33: 769-776.
- Slaga, T. J., S. M. Fischer, L. Triplett, and S. Nesnow. 1982. Comparison of complete carcinogenesis and tumor initiation in mouse skin: Tumor initiation-promotion, a reliable short term assay. J. Environ. Pathol. Toxicol. 4: 1025-1041.

REFERENCES (Cont'd)

- Slaga, T. J. 1983. Overview of tumor promotion in animals. Environ. Health Perspectives 50: 3-14.
- Van Duuren, B. L., L. Orvis, and N. Nelson. 1965. Carcinogenicity of epoxides, lactones and peroxy compounds, Part II. J. Natl. Cancer Inst. 35: 707-717.
- Van Duuren, B. L., A. Sivak, B. M. Goldschmidt, C. Katz, and S. Melchionne. 1969. Carcinogenicity of haloethers. J. Natl. Cancer Inst. 43: 481-486.
- Van Duuren, B. L. 1976. Tumor-promoting and co-carcinogenic agents in chemical carcinogenesis. In: Chemical Carcinogens. C. E. Searle, ed. American Chemical Society: Washington, DC. pp. 24-51.
- Zajdela, F., A. Croisy, C. Malaveille, L. Tomatis, and H. Bartsch. 1980. Carcinogenicity of chloroethylene oxide, an ultimate reactive metabolite of vinyl chloride, and bis(chloromethyl)ether after subcutaneous administration and in initiation-promotion experiments in mice. Cancer Res. 40: 352-356.

Distribution

No. of Copies	
4	Commander US Army Medical Research and Development Command ATTN: SGRD-RMS Fort Detrick Frederick, MD 21701-5012
12	Defense Technical Information Center (DTIC) ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314
1	Dean School of Medicine Uniformed Services University of the Health Sciences 4301 Jones Bridge Road Bethesda, MD 20014
1	Commandant Academy of Health Sciences, US Army ATTN: AHS-CDM Fort Sam Houston, TX 78234
1	Librarian US Army Medical Bioengineering Research and Development Laboratory ATTN: SGRD-UBZ-I Fort Detrick Frederick, MD 21701-5010
35	Commander US Army Medical Bioengineering Research and Development Laboratory ATTN: SGRD-UBG-M Fort Detrick Frederick, MD 21701-5010
1	R. J. M. Fry Biology Division Building 9211 Oak Ridge National Laboratory P. O. Box Y Oak Ridge, TN 37831
1	R. A. Griesemer Biology Division Building 9207 Oak Ridge National Laboratory P. O. Box Y Oak Ridge, TN 37831

Distribution List (Cont'd)

No. of Copies	
10	M. R. Guerin Building 4500-S; E-160 Oak Ridge National Laboratory P. O. Box X Oak Ridge, TN 37831
10	L. L. Triplett Biology Division Building 9211 Oak Ridge National Laboratory P. O. Box Y Oak Ridge, TN 37831
5	T. J. Slaga University of Texas System Cancer Center P. O. Box 389 Smithville, TX 78957
1	Biology Library Biology Division Building 9207 Oak Ridge National Laboratory P. O. Box Y Oak Ridge, TN 37831
1	Central Research Library Building 4500N Oak Ridge National Laboratory P. O. Box X Oak Ridge, TN 37831
1	Department of Energy Oak Ridge Operations ATTN: Mr. J. A. Lenhard, Assistant Manager for Energy Research and Development P. O. Box E Oak Ridge, TN 37830
1	Document Reference Section Building 9711-1 Oak Ridge National Laboratory P. O. Box X Oak Ridge, TN 37831

Distribution List (Cont'd)

No. of Copies	
3	Laboratory Records
	Building 4500N, H-205
	Oak Ridge National Laboratory
	P. O. Box X
	Oak Ridge, TN 37831
1	ORNL Patent Office
	Building 4500N, M-120
	Oak Ridge National Laboratory
	P. O. Box X
	Oak Ridge, TN 37831
123	Technical Information Center
	Department of Energy
	Oak Ridge, TN 37830