Storytelling Case Study: Airbnb in NYC PPT-1

Presentation by: Swapnil Srivastava

Objective:

- To Conduct a thorough analysis of New York Airbnb Dataset
- Ask effective questions that can lead to data insights
- Process, analyse and share findings by data visualisation and statistical techniques

Background

- For the past few months, Airbnb has seen a major decline in revenue.
- Now that the restrictions have started lifting and people have started to travel more, Airbnb wants to make sure that it is fully prepared for this change.
- So, analysis has been done on a dataset consisting of various Airbnb listings in New York.

Data Preparation

- In the first phase the data captured and loaded into various environment.
- Once data is cleaned, EDA is done and new features are created.
- Then Meaningful insights are derived using various analytical methods.

Importing libraries and reading the data

```
In [1]: import pandas as pd
            import numpy as np
            import matplotlib.pyplot as plt
            import seaborn as sns
In [65]: airbnb = pd.read_csv('AB_NYC_2019.csv')
            airbnb.head(10)
Out[65]:
                              name host_id host_name neighbourhood_group neighbourhood latitude longitude room_type price minimum_nights number_of_revie
                        Clean & quiet
                                                                                                                     Private
            0 2539 apt home by the
                                       2787
                                                   John
                                                                     Brooklyn
                                                                                  Kensington 40.64749 -73.97237
                       Skylit Midtown
                                                                                                                     Entire
                                       2845
            1 2595
                                                 Jennifer
                                                                    Manhattan
                                                                                     Midtown 40.75362 -73.98377
                              Castle
                                                                                                                  home/apt
                        THE VILLAGE
                                                                                                                    Private
                                                Elisabeth
                                                                                      Harlem 40.80902 -73.94190
                                                                                                                             150
                                                                    Manhattan
                     HARLEM....NEW
                             YORK!
                          Cozy Entire
            3 3831
                                       4869 LisaRoxanne
                                                                                   Clinton Hill 40.68514 -73.95976
                             Floor of
                                                                     Brooklyn
                         Brownstone
                          Entire Apt:
                           Spacious
            4 5022
                                       7192
                                                                    Manhattan
                                                                                 East Harlem 40.79851 -73.94399
                                                                                                                                              10
                                                   Laura
                        Studio/Loft by
                         central park
                         Large Cozy 1
            5 5099 BR Apartment In
                                       7322
                                                   Chris
                                                                                   Murray Hill 40.74767 -73.97500
                                                                                                                             200
                                                                    Manhattan
                                                                                                                  home/apt
                        Midtown East
                                                                                                                    Private
                      BlissArtsSpace!
                                       7356
                                                  Garon
                                                                     Brooklyn
                                                                                             40.68688 -73.95596
                                                                                   Stuvvesant
                                                                                                                     room
                      Large Furnished
                                                                                                                    Private
                                                                                                                              79
            7 5178
                          Room Near
                                       8967
                                                Shunichi
                                                                    Manhattan
                                                                                 Hell's Kitchen 40.76489 -73.98493
                              B'way
                         Cozy Clean
                                                                                                                    Private
            8 5203
                       Guest Room -
                                       7490
                                               MaryEllen
                                                                    Manhattan
                                                                                             40.80178 -73.96723
                                                                                                                     room
```

Family Apt

Removing unimportant columns and replacing null values

Certain columns that are not efficient to the dataset can be removed

ai	airbnb.head()												
	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price	minimum_nights	number_of_	
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749	-73.97237	Private room	149	1		
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	-73.98377	Entire home/apt	225	1		
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.94190	Private room	150	3		
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	-73.95976	Entire home/apt	89	1		
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	-73.94399	Entire home/apt	80	10		

Creating features

categorizing the "availability_365" column into 5 categories

```
def availability_365_categories_function(row):
    """"
    Categorizes the "availability_365" column into 5 categories
    """
    if row <= 1:
        return 'very Low'
    elif row <= 100:
        return 'Low'
    elif row <= 200:
        return 'Medium'
    elif (row <= 300):
        return 'High'
    else:
        return 'very High'</pre>
```

categorizing the "number_of_reviews" column into 5 categories

```
def number_of_reviews_categories_function(row):
    """
    Categorizes the "number_of_reviews" column into 5 categories
    """
    if row <= 1:
        return 'very Low'
    elif row <= 5:
        return 'Low'
    elif row <= 10 :
        return 'Medium'
    elif (row <= 30):
        return 'High'
    else:
        return 'very High'</pre>
```

categorizing the "minimum_nights" column into 5 categories

```
def minimum_nights_function(row):
    """
    Categorizes the "minimum_nights" column into 5 categories
    """
    if row <= 1:
        return 'very Low'
    elif row <= 3:
        return 'Low'
    elif row <= 5:
        return 'Medium'
    elif (row <= 7):
        return 'High'
    else:
        return 'very High'</pre>
```

categorizing the "price" column into 5 categories

```
def price_categories_function(row):
    Categorizes the "price" column into 5 categories
    if row <= 50:
        return 'very Low'
    elif row <= 125:
        return 'Low'
    elif row <= 250:
        return 'Medium'
    elif (row <= 500):
        return 'High'
    else:
        return 'very High'</pre>
```

Data Types

4.1 Categorical

dtype='object')

```
1 inp0.columns
Index(['id', 'name', 'host id', 'host name', 'neighbourhood group',
       'neighbourhood', 'latitude', 'longitude', 'room type', 'price',
       'minimum nights', 'number of reviews', 'last review',
       'reviews per month', 'calculated host listings count',
       'availability 365', 'availability 365 categories',
       'minimum night categories', 'number of reviews categories',
       'price categories'],
     dtype='object')
 1 # Categorical nominal
 2 categorical_columns = inp0.columns[[0,1,3,4,5,8,16,17,18,19]]
 3 categorical_columns
Index(['id', 'name', 'host_name', 'neighbourhood_group', 'neighbourhood',
       'room type', 'availability 365 categories', 'minimum night categories',
       'number of reviews categories', 'price categories'],
```

4.2 Numerical

```
1 numerical_columns = inp0.columns[[9,10,11,13,14,15]]
   2 numerical columns
: Index(['price', 'minimum_nights', 'number_of_reviews', 'reviews_per_month',
         'calculated_host_listings_count', 'availability_365'],
        dtype='object')
   inp0[numerical columns].describe()
```

	price	$minimum_nights$	number_of_reviews	reviews_per_month	$calculated_host_listings_count$	availability_365
count	48895.000000	48895.000000	48895.000000	38843.000000	48895.000000	48895.000000
mean	152.720687	7.029962	23.274466	1.373221	7.143982	112.781327
std	240.154170	20.510550	44.550582	1.680442	32.952519	131.622289
min	0.000000	1.000000	0.000000	0.010000	1.000000	0.000000
25%	69.000000	1.000000	1.000000	0.190000	1.000000	0.000000
50%	106.000000	3.000000	5.000000	0.720000	1.000000	45.000000
75%	175.000000	5.000000	24.000000	2.020000	2.000000	227.000000
max	10000.000000	1250.000000	629.000000	58.500000	327.000000	365.000000

Analysis

Airbnb Price Range:

Most listings are under price of 5000

Understanding correlation between numeric columns

- High correlation between number_of_reviews and reviews_per_month.
- Significant Correlation observed between other numerical variables.
- Negative correlation observed between minimum_nights and number_of_reviews.

NEIGHBOURHOODS WITH MOST AIRBNB LISTIN

Neighborhoods Groups participation chart

- 85% of the listings are Manhattan and Brooklyn neighbourhood groups
- Staten Island has the lowest contribution of less than 1%.

Price variation in different Neighbourhoods

- We see that, Airbnb has high prices in Manhattan, Brooklyn & Queens.
- Prices are highest in Manhattan & Brooklyn owing to the high population density and it being the financial and tourism hubs of NYC. Staten Island has the least prices, due to its low population density and very few tourism destinations.

Popular Neighbourhoods

- We see that Bedford-Stuyvesant from Brooklyn is the highest popular with over 100K no of reviews in total followed by Williamsburg with over 80K reviews.
- Harlem from Manhattan got the highest no of reviews followed by Hell's kitchen.
- The higher number of customer reviews imply higher satisfaction in these localities.

Top 5 most popular neighborhoods in each Borough

CONCLUSION

- Strong significant insights are derived based on various attributes in the dataset.
- Data collection team should collect data about review scores so that it can strengthen the later analysis.
- Based on the insights, a clustering machine learning model can be made to identify groups of similar objects in datasets with two or more variable quantities.
- Brooklyn and Manhattan emerged to be the boroughs with highest number of listings and have higher prices than the others, owing to the high population density and it being the financial and tourism hubs of NYC. This makes them suitable for business in Airbnb market.

APPENDIX -DATA SOURCES

Description
listing ID
name of the listing
host ID
name of the host
location
area
latitude coordinates
longitude coordinates
listing space type
amount of nights minimum
number of reviews
latest review
number of reviews per month
amount of listing per host
number of days when listing is available for booking

APPENDIX -DATA METHODOLOGY

- Conducted a thorough analysis of New York Airbnbs Dataset.
- Cleaned the data set using python.
- Derived the necessary features.
- Used group aggregation, pivot table and other statistical methods.
- Created charts and visualisations using Tableau for generating insights.

APPENDIX -DATA ASSUMPTIONS

Categorical Variables: - room type - neighbourhood_group - neighbourhood Continous Variables(Numerical): - Price - minimum_nights - number_of_reviews - reviews_per_month - calculated_host_listings_count - availability_365 - Continous Variables could be binned in to groups too Location Varibles: - latitude - longitude Time Varibale: last_review