1 Introduction

1.1 Description

1.1.1 Categories of correspondences

• $\mathcal{C} \leadsto Corr(\mathcal{C}) = Span(\mathcal{C})$

- $\mathcal{C}^{\otimes} \rightsquigarrow Corr(\mathcal{C})^{\otimes}$ (monoidal structure)
- $\mathfrak{C} \leadsto \mathbf{Corr}_2(\mathfrak{C})$, $\mathbf{Corr}_n(\mathfrak{C})^{\otimes}$ (where perhaps \otimes is a symmetric monoidal n-category)

 $\text{TFT:}\, M \mapsto X^M$

Haugseng: Iterated Spans and Classical TFTs

$$\mathbf{Bord}_n^{\otimes} \to \mathbf{Corr}_n(\mathfrak{C})^{\otimes} \stackrel{?}{\dashrightarrow} \mathbf{Vect}^{\otimes}$$

1.1.2 Transfer theories

Let $F: \mathcal{C} \to \mathcal{D}$, and let $x \in \mathcal{C}$.

1.2 Motivation

Let X and Y be sets, say representing the physical states of some physical system. For example, imagine a photon sent out by some emitter, passing through a screen with holes, and then being detected. The set X might be

{left hole, middle hole, right hole},

and the set *Y* might be

{detected at *A*, detected at *B*}.

Consider a set *T*, equipped with maps $s: T \to X$ and $t: T \to Y$.

We can think of T as consisting of a set of ways of going from an element of X to an element of Y; that is, (using the universal property for products) the fiber $T_y^x := (s,t)^{-1}(x,y)$ can be thought of as the set of ways of going from $x \in X$ to $y \in Y$. In our example, the fiber T_y^x would correspond to the set of classical trajectories starting at hole x and ending at detector y.

Consider concatenating two such processes.

Taking the pullback in **Set** gives us a set of ways of going from X to Z.

That is, the fibers S_z^x consist of pairs (t, t'), where t' is a process from x to y and t' is a process from y to z.

For a set X, denote by L(X) the free \mathbb{C} -vector space on X. Consider a span $T\colon X\to Y$ as before. We can assign to T a linear map

$$L(T): L(X) \to L(Y)$$