Privacy in Statistics and Machine Learning Spring 2021 In-class Exercises for Lecture 6 (Exponential Mechanism and Report Noisy Max)

February 11/12, 2021

Adam Smith and Jonathan Ullman

Problems with marked with an asterisk (*) are more challenging or open-ended.

- 1. Suppose we run the exponential mechanism (or report noisy max) with outcome set \mathcal{Y} and score function $q: \mathcal{Y} \times \mathcal{X}^n \to \mathbb{R}$ with sensitivity Δ . The theorems in the notes show that we expect the error $q_{\text{max}} q(A(\mathbf{x}))$ to be $O(\Delta \ln(d)/\varepsilon)$, but it might be much better.
 - (a) Fix a data set \mathbf{x} . Suppose the "true winner" for \mathbf{x} , the outcome y^* with score q_{\max} , is substantially better than all other outcomes, namely $q(y) < q_{\max} \frac{2\Delta(\ln(d)+t)}{\varepsilon}$ for all $y \neq y^*$. Show that the algorithm will output y^* with probability at least $1 e^{-t}$.
 - (b) Show that, after running the exponential mechanism, we can use the Laplace mechanism to estimate the error $q_{\text{max}} q(A(\mathbf{x}))$ with noise only $2\Delta/\varepsilon$. What is the total privacy cost of the combined algorithm?
- 2. Suppose you have a graph with a fixed vertex set V, and where each individual data point x_i is aun undirected edge $\{u,v\} \in V \times V$. Consider the problem of finding a near-maximum cut in the graph. This is a partition of V into two disjoint sets A, B of nodes. The weight of the cut is the number of edges that cross from A to B (so $u \in A$ and $v \in B$ or vice versa).
 - The weight of a cut can be as large as the size of the data set n. Use the exponential algorithm (or report noisy max) to design an algorithm that returns a cut with expected weight max-weight $-O(|V|/\varepsilon)$. It's ok if your algorithm runs in time polynomial in $2^{|V|}$.
- 3. (*) Prove that Report Noisy Max with exponential noise (Alg. 2 in the notes) is differentially private.
- 4. (*) Show that the accuracy guarantees for the exponential mechanism (and RNM) are basically tight in general. Specifically, give an input to the approval voting problem with d candidates, on which $q_{\text{max}} = n = \frac{\ln(d)}{2\varepsilon}$ but the algorithm A_{EM} will return a candidate who received 0 votes with constant probability (independent of d).