ADVANCED MATH TEST 2

	nme rections: You have 30 mi		Oate Some questions may requ	nire more than one answ	er.	
1.	Simplify $\int 6x^2 - \frac{12x^4 - 2}{3x^2}$	$\left[\frac{28x^3 + 20x^2}{-7x + 5}\right]^3$				
2.	(A) 6If you change the diameter(A) 3 times	(B) $6x^6$ of a sphere so that the di (B) 9 times	(C) $6x^8$ ameter is tripled, by how r (C) 16 times	(D) $8x^6$ many times larger will the (D) 27 times	(E) 8 <i>x</i> ⁸ volume be? (E) 216 times	
3.	The area of a trapezoid is	120 square feet and its hei	ght is 20 feet. The bases a	are b_1 and b_2 . How much	greater is $14\frac{1}{2} - b_2$	
	an b_1 ?				2	
	(A) 2.5	(B) 4.5	(C) 9.5	(D) 11.5	(E) 14.5	
4.	If $\frac{\frac{x_1 x_2}{x_3 x_4}}{\frac{x_5 x_6}{x_7 x_8}} = 1$, find the value	e of x_3 .				
	(A) $\frac{x_4 x_5 x_6}{x_1 x_2 x_7 x_8}$	(B) $\frac{x_1 x_2 x_7 x_8}{x_4 x_5 x_6}$	(C) $\frac{x_4 x_7 x_8}{x_1 x_2 x_5 x_6}$	(D) $\frac{x_1 x_2 x_5 x_6}{x_4 x_7 x_8}$	$\mathbf{(E)} \ \frac{x_1 x_2 x_4 x_8}{x_5 x_6 x_7}$	
5.	If a line has a slope of $-\frac{2}{3}$	and contains the point (-12,-4), find the x-coord	linate of the ordered pair	when $y = -18$.	
	(A) -6	(B) −3	(C) 3	(D) 6	(E) 9	
6.	Solve the following for $\frac{x}{y}$	$-3\left(\frac{x}{y}+2\right) = -2 \cdot \frac{1}{y}$	$\frac{x}{y} + 6$			
	(A) -12	(B) −4	(C) 0	(D) 4	(E) 12	
7.	If $-16-4(x^3+y^3)=-4$	$8, \text{ find } \frac{\left(x^3 + y^3\right)^2}{4}.$				
	(A) 1	(B) 9	(C) 16	(D) 64	(E) $\frac{25}{4}$	
8. For $6y+4x-6=0$ and $-12x+8y=-8$, what is the reciprocal of the product of the two slopes?						
	(A) -2	(B) −1	(C) $\frac{1}{2}$	(D) 1	(E) 2	
9.	If $x^2 + y^3 - w^5 + z^4 - 7 =$	$= 9$, find the value of $\sqrt[3]{x^2}$	$x^{2} + y^{3} - w^{5} + z^{4} + 11 - 7$.			
	(A) −7	(B) −6	(C) –4	(D) 1	(E) 2	
10	. If $w = (x^y)^z$, $y = 3\sqrt[3]{a}$,	, and $z = 3$, which of the	following is equivalent to	w?		
	$(\mathbf{A}) x^{9a}$	(B) x^{27a}	(C) $x^{6\sqrt[3]{a}}$	(D) $x^{9\sqrt[3]{a}}$	$(\mathbf{E}) \ \ x^{27\sqrt[3]{a}}$	
11	. Which point is not a men	nber of the solution set?	$\begin{cases} -6x + 7y < 42 \\ 5y + 2x \ge -10 \end{cases}$			
	(A) $(-5,0)$	(B) $(-4,2)$	(C) $\left(-1,5\right)$	(D) $(3,-4)$	(E) $(1,-2)$	
12. Simplify $\frac{4x+2}{a-b} + \frac{3x-1}{b-a} - \frac{7x+4}{a-b}$						
	$(\mathbf{A}) \ \frac{-6x-3}{a-b}$		(C) $\frac{-6x+1}{a-b}$	$\mathbf{(D)} \ \frac{-6x+3}{a-b}$	$\mathbf{(E)} \ \frac{-6x+7}{a-b}$	

13. V	3. What is the ratio of the area of a circle to its circumference?						
(A	$\frac{r}{2}$	(B) $\frac{2}{r}$	(C) $\frac{r}{\pi}$	$(\mathbf{D}) \ \frac{2\pi}{r}$	$\mathbf{(E)} \ \frac{r}{2\pi}$		
14. The area of a trapezoid is 108 square inches and one of its bases has a length of 8 inches. If the height of the trapezoid is 1.5							
	Find the length of the oth a) 2	ner base in inches. (B) 4	(C) 6	(D) 7	(E) 8		
				•			
	a) 6	(B) 12	(C) 16	mes larger will the volume (D) 18	(E) 48		
16. T	The largest of three cons	ecutive multiples of seven	is $\frac{x+11}{6}$. What is the si	mallest of the three number	ers?		
(A	$\frac{x-157}{6}$	(B) $\frac{x-73}{6}$	(C) $\frac{x-31}{6}$	(D) $\frac{x-1}{6}$	$(\mathbf{E}) \ \frac{x+5}{6}$		
17. V	17. When solving $-3x^2 - 7x - 3 = 0$, what is the sum of the two roots?						
(A	$-\frac{7}{3}$	(B)	(C) 0	(D) $\frac{-7-2\sqrt{13}}{6}$	(E) $\frac{-7 + 2\sqrt{13}}{6}$		
18. It	f the midpoint of $(-10,$	4) and $\left(-e, f+2\right)$ is $\left(2\right)$	(2,-8), find the value of 2	2(e-f).			
	.) -8	(B) 8	(C) 12	(D) 16	(E) 72		
		()	0				
19. F	Find the value of y if x	$-2\left(\frac{\sqrt[4]{v-\sqrt[3]{z}}}{\sqrt[5]{w}}\right) = -\left(\frac{\sqrt[6]{q}}{\sqrt[5]{w}}\right)$	$\left(\frac{q-\sqrt[7]{p}}{\sqrt[8]{r}}\right)$ and y^2x^8+4y	$x^6 - 32x^{12} = 0$. Assume	$y \neq -8$.		
(A	A) -1	(B) 0	(C) 1	(D) 2	(E) 4		
20. If $y = -2x^2 + x + 1$, find the value of $y - \frac{9}{8}$.							
(A	$-2\left(x-\frac{1}{2}\right)^2$	$(B) -2\left(x-\frac{1}{4}\right)^2$	$(\mathbf{C}) -2\left(x+\frac{1}{4}\right)^2$	$(\mathbf{D}) -2\left(x+\frac{1}{2}\right)^2$	$(\mathbf{E}) -2\left(x+\frac{1}{10}\right)^2$		
21. V	Which of the following e	equations would not be dep	pendent with $2x - 3y = -$	-1 in a system of equations	s?		
(A	14x = 21y - 7	(B) $8-16x = -24y$	(C) $-6 = 12x - 18y$	(D) $-12y = -8x - 4$	(E) $18x + 9 = 27y$		
		(a,b) and (c,d) is e , find		_			
(A)	$d \pm \sqrt{e^2 - (a-c)^2}$	$(\mathbf{B}) -d \pm \sqrt{(a+c)^2} - e$	² (C) $d \pm \sqrt{(a-c)^2 - \epsilon}$	$\overline{e^2}$ (D) $-d \pm (a+c-e)$	$(\mathbf{E}) -d \pm (a-c-e)$		
23. T	The line that goes throug	$ \cosh\left(-\frac{2}{3},4\frac{1}{4}\right) $ and $\left(q,-8\right)$	$\left(\frac{3}{4}\right)$ has a slope of 2. Find	1 q.			
(A	$-7\frac{1}{6}$	(B) $-7\frac{1}{2}$	(C) $-7\frac{1}{3}$	(D) $-7\frac{5}{6}$	(E) $-7\frac{2}{3}$		
24. V	When $-2x^4 - 4x^3 + 3x - 4x^$	-1 is divided by $x-1$, w	hat is the remainder?				
(A	a) –6	(B) −5	(C) -4	(D) −3	(\mathbf{E}) -2		
25. S	solving the following sys	stem for e by substitution	yields which equation in t	the process? $\begin{cases} 3e - 5f \\ 2e + 3f \end{cases}$	= 15 = 7		
(A	$3e - 5\left(-\frac{2}{3}e + \frac{7}{3}\right) =$	(B) $3e - 5$	$\left(-\frac{2}{3}e - \frac{7}{3}\right) = 15$	(C) $3e - 5\left(\frac{2}{3}e - \frac{7}{3}\right) =$	15		
(D	$3e - 5\left(\frac{2}{3}e + \frac{7}{3}\right) = 1$	5 (E) $3e + 5$	$\left(\frac{2}{3}e + \frac{7}{3}\right) = 15$	` '			

This test is property of Mathfax. Permission is granted to copy for your school only for the 2017-2018 school year.

Advanced Math Test 2 Page 2

ADVANCED MATH TEST 2 ANSWERS

9. $\sqrt[3]{27} - 7 = -4$

1. D	2. D	3. A	4. B	5. E
6. A	7. C	8. B	9. C	10. D
11. D	12. B	13. A	14. B	15. B
16. B	17. A	18. D	19. E	20. B
21. B	22. A	23. A	24. C	25. A

1.
$$\left(6x^2 - 4x^2\right)^3 = 8x^6$$

2.
$$v = \frac{4}{3}\pi (3r)^3 = 27\left(\frac{4}{3}\pi r^3\right)$$

3.
$$120 = \frac{1}{2} \cdot 20(b_1 + b_2) \rightarrow 12 = b_1 + b_2 \rightarrow 14\frac{1}{2} - 12 = 2\frac{1}{2}$$

4.
$$\frac{x_1 x_2}{x_3 x_4} = \frac{x_5 x_6}{x_7 x_8} \to x_3 = \frac{x_7 x_8 x_1 x_2}{x_5 x_6 x_4}$$

5.
$$-18 = -\frac{2}{3}x - 12 \rightarrow x = 9$$

6.
$$-3a-6=-2a+6 \rightarrow a=-12$$

$$= -2a + 6 \rightarrow a = -12$$
7. $\frac{\left(x^3 + y^3\right)^2}{4} = 16$

$$8. -\frac{2}{3} \cdot \frac{3}{2} = -1$$

10.
$$w = \left(x^{3\sqrt[3]{a}}\right)^3 = x^{9\sqrt[3]{a}}$$

11.
$$(3,-4)$$

12.
$$\frac{4x+2-3x+1-7x-4}{a-b} = \frac{-6x-1}{a-b}$$

13.
$$\frac{r}{2}$$

14.
$$108 = \frac{1}{2} \cdot 18(b+8) \rightarrow b = 4$$

15.
$$v = \pi (2r)^2 \cdot 3h = 12\pi r^2 h$$

16.
$$\frac{x-73}{6}$$

17.
$$\frac{-7+\sqrt{13}}{6}+\frac{-7-\sqrt{13}}{6}=-\frac{7}{3}$$

18.
$$2(-14+22)=16$$

19.
$$y^2 + 4y - 32 = 0 \rightarrow y = 4$$

20.
$$y = -2\left(x - \frac{1}{4}\right)^2 + \frac{9}{8} \rightarrow y - \frac{9}{8} = -2\left(x - \frac{1}{4}\right)^2$$

21.
$$8-16x = -24y \rightarrow 2x-3y=1$$

22.
$$(b-d)^2 = e^2 - (a-c)^2 \rightarrow b = d \pm \sqrt{e^2 - (a-c)^2}$$

23.
$$-7\frac{1}{6}$$

25.
$$3e-5\left(-\frac{2}{3}e+\frac{7}{3}\right)=15$$