

Hierarquia de Memória

Mapeamento direto

A maneira mais simples de assinalar uma posição da cache para uma palavra de memória é através de seu endereço na memória

direct mapped.

Mapeamento Direto

Mapeamento Direto

Os restantes *bits* (2) do endereço (neste exemplo) são colocados na *tag*.

Como é que o CPU determina se uma linha da cache contem dados válidos?

Cada linha da cache tem um bit extra (*valid*) que indica se os dados dessa linha são válidos.

Valid Tag Cache

1	10	000
0		001
0		010
0		011
0		100
0		101
0		110
0		111

Mapeamento Direto Cache 00101

Mapeamento Direto

Como podemos ver cada localização da cache pode receber mais de uma localização da memória

como saber se o dado na cache corresponde ao dado requerido? Adicionando um conjunto de tags

cache. Tags

Contém a informação do endereço necessária a identificar se a palavra na cache corresponde à palavra requerida □ necessita apenas da parte superior do endereço da palavra.

Bibliografia Base

STALLINGS, William. Arquitetura e Organização de Computadores. São Paulo: Pearson Education do Brasil, 2002.

MONTEIRO, Mário A. Introdução a Organização de Computadores. Rio de Janeiro: LTC, 2002.

David A. Patterson & John L. Hennessy. **Organização e projeto de computadores a interface Hardware/Software.** Tradução: Nery Machado Filho. Morgan Kaufmmann Editora Brasil: LTC, 2000.