Cheatsheet Probability and Statistics

Marc-Olivier Jufer mjufer@ethz.ch

June 6, 2025

Mathematical framework

Probability space

Def. 1.1. The set Ω is called the sample space. An element $\omega \in \Omega$ is called an outcome or elementary experiment.

Ex. 1.1. Throw of a die : $\Omega = \{1, 2, 3, 4, 5, 6\}$

Def. 1.2. A sigma-algebra is a subset $\mathcal{F} \subset \mathcal{P}(\Omega)$ satisfying the following properties:

P1. $\Omega \in \mathcal{F}$

P2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$: If A is an event, "not A" is also an event.

P3. $A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F} : \text{if } A_1, A_2, \ldots \text{ are events,}$ then " A_1 or A_2 or ..." is an event

Ex. 1.2. Examples of sigma-algebras for $\Omega = \{1, 2, 3, 4, 5, 6\}$

• $\mathcal{F} = \{\emptyset, \{1, 2, 3, 4, 5, 6\}\}$

• $\mathcal{F} = \mathcal{P}(\Omega)$

• $\mathcal{F} = \{\emptyset, \{1, 2\}, \{3, 4, 5, 6\}, \{1, 2, 3, 4, 5, 6\}\}$

Non examples of sigma-algebras for $\Omega = \{1, 2, 3, 4, 5, 6\}$:

• $\mathcal{F} = \{\{1, 2, 3, 4, 5, 6\}\}\ : P2 \text{ is not satisfied}$

• $\mathcal{F} = \{\emptyset, \{1, 2, 3\}, \{4, 5, 6\}, \{1\}, \{2, 3, 4, 5, 6\}, \Omega\} : \mathbf{P3} \text{ is}$ not satisfied

Def. 1.3. Let Ω a sample space and \mathcal{F} a sigma-algebra. A | 1.3 Properties of Events **probability measure** on (Ω, \mathcal{F}) is a map

$$\mathbb{P}: \mathcal{F} \to [0,1], \quad A \mapsto \mathbb{P}[A]$$

that satisfies the properties

P1. $\mathbb{P}[\Omega] = 1$

P2. (countable additivity) $\mathbb{P}[A] = \sum_{i=1}^{\infty} \mathbb{P}[A_i]$ if A = $\bigcup_{i=1}^{\infty} A_i$ (disjoint union)

Int. A probability measure is a map that associates to each event a number in [0, 1]

Ex. 1.3. For $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\mathcal{F} = \mathcal{P}(\Omega)$, the mapping $\mathbb{P}: \mathcal{F} \to [0,1]$ defined by

$$\forall A \in \mathcal{F} \quad \mathbb{P}[A] = \frac{|A|}{6}$$

is a probability measure on (Ω, \mathcal{F}) .

Def. 1.4. Let Ω a sample space, \mathcal{F} a sigma-algebra and \mathbb{P} a probability measure. The triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a **proba**bility space.

Int. To construct a probabilistic model, we give

- a sample space Ω : all the possible outcomes of the experiment
- a sigma-algebra $\mathcal{F} \subset \mathcal{P}(\Omega)$: the set of events
- a probability measure \mathbb{P} : gives a number in [0,1] to every event

Def. 1.5. Let $\omega \in \Omega$ (a possible outcome). Let A be an event. We say the event A occurs (does not occur) (for ω) if $\omega \in A \ (\omega \notin A)$.

Examples of probability spaces

Def. 1.6. Let Ω be a finite sample space. The Laplace **model** on Ω is the triple $(\Omega, \mathcal{F}, \mathbb{P})$, where $\mathcal{F} = \mathcal{P}(\Omega)$ and $\mathbb{P}: \mathcal{F} \to [0,1]$ is defined by

$$\forall A \in \mathcal{F} \quad P[A] = \frac{|A|}{|\Omega|}$$

Prop 1.1. (Consequences of definition 1.2). Let \mathcal{F} be a sigma-algebra on Ω . We have

P4. $\emptyset \in \mathcal{F}$

P5. $A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$

P6. $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$

P7. $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$

Event	Graphical representation	Probab. interpretation
A^c	A^{c} A	A does not occur
$A \cap B$	$\stackrel{A}{\bigoplus}$	$A \ {f and} \ B \ {f occur}$
$A \cup B$	AB	$A ext{ or } B ext{ occurs}$
$A\Delta B$	$\stackrel{A}{\bigoplus}$	one and only one of A or B occurs

Figure 1: Representation of set operations

Relation	Graphical representation	Probab. interpretation
$A \subset B$	A B	If A occurs, then B occurs
$A \cap B = \emptyset$		A and B cannot occur at the same time
$\Omega = A_1 \cup A_2 \cup A_3 \text{ with }$ $A_1, A_2, A_3 \text{ pairwise disjoint }$	Ω A_1 A_3 A_2	for each outcome ω , one and only one of the events A_1 , A_2 , A_3 is satisfied.

Figure 2: Representation of set relations

1.4 Properties of probability measures

Prop 1.2. (Consequences of definition 1.3). Let \mathbb{P} be a probability measure on (Ω, \mathcal{F}) .

P3. We have $\mathbb{P}[\emptyset] = 0$

P4. (additivity) Let $k \geq 1$, let A_1, \ldots, A_k be k pairwise disjoint events, then

$$\mathbb{P}\left[A_1 \cup \ldots \cup A_k\right] = \mathbb{P}\left[A_1\right] + \ldots + \mathbb{P}\left[A_k\right]$$

P5. Let A be an event, then

$$\mathbb{P}\left[A^c\right] = 1 - \mathbb{P}\left[A\right]$$

P6. If A and B are two events (not necessarily disjoint) then

$$\mathbb{P}\left[A \cup B\right] = \mathbb{P}\left[A\right] + \mathbb{P}\left[B\right] - \mathbb{P}\left[A \ capB\right]$$

Prop 1.3. (Monotonicity). Let $A, B \in \mathcal{F}$, then

$$A \subset B \Rightarrow \mathbb{P}[A] \leq \mathbb{P}[B]$$

Prop 1.4. (Union bound).Let $A_1, A_2,...$ be a sequence of events (not necessarily disjoint), then we have

$$\mathbb{P}\left[\bigcup_{i=1}^{\infty} A_i\right] \le \sum_{i=1}^{\infty} \mathbb{P}\left[A_i\right]$$

Union bound also applies to a finite collection of events.

Prop 1.5. Let (A_n) be an increasing sequence of events (i.e. $\forall n \ A_n \subset A_{n+1}$). Then

$$\lim_{n\to\infty} \mathbb{P}[A_n] = \mathbb{P}\left[\bigcup_{n=1}^{\infty} \infty A_n\right]$$
. increasing limit

Let (B_n) be a decreasing sequence of events (i.e. $\forall n \ B_n \supset B_{n+1}$). Then

$$\lim_{n\to\infty} \mathbb{P}\left[B_n\right] = \mathbb{P}\left[\bigcap_{n=1}^{\infty} \infty B_n\right]$$
. decreasing limit

1.5 Conditional probabilities

Def. 1.7. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be some probability space. Let A, B be two events with $\mathbb{P}[B] > 0$. The **conditional probability of** A **given** B is defined by

$$\mathbb{P}\left[A|B\right] = \frac{A \cap B}{B}$$

Ex. 1.4. We consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ corresponding to the throw of one die. Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 6\}$. Then

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}$$

Prop 1.6. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be some probability space. Let B be an event with positive probability. Then $\mathbb{P}[\cdot, |B]$ is a probability measure on Ω .

Prop 1.7. (Formula of total probability). Let $B_1, ..., B_n$ be a partition¹ of the sample space Ω with $\mathbb{P}[B_i] > 0$ for every $i \leq i \leq n$. Then one has

$$\forall A \in \mathcal{F} \quad \mathbb{P}[A] = \sum_{i=1}^{n} \mathbb{P}[A|B_i] \mathbb{P}[B_i]$$

Prop 1.8. (Bayes formula). Let $B_1, \ldots, B_n \in \mathcal{F}$ be a partition of Ω with $\mathbb{P}[B_i] > 0 \ \forall i$. For every event A with $\mathbb{P}[A] > 0$ we have

$$\forall i = 1, \dots, n \quad \mathbb{P}\left[B_i | A\right] = \frac{\mathbb{P}\left[A | B_i\right] \mathbb{P}\left[B_i\right]}{\sum_{i=1}^n \mathbb{P}\left[A | B_i\right] \mathbb{P}\left[B_i\right]}$$

Ex. 1.5. Test to detect a disease which concerns about 1/10000 of the population. The test gives the right answer 99% of the time. If a patient has a positive test, what is the probability that he is actually sick?

We modeled the situation as $\Omega = \{0,1\} \times \{0,1\}$. $\mathcal{F} = \mathcal{P}(\Omega)$ and an outcome is $\omega = (\omega_1, \omega_2)$, where ω_1 is 1 if the patient is sick and ω_2 is 1 if the test is positive. Let $S = \{(1,0),(1,1)\}$ be the event that the patient is sick and $T = \{(0,1),(1,1)\}$ the event that the test is positive.

From the hypotheses, we have

$$\mathbb{P}[S] = \frac{1}{10000}, \quad \mathbb{P}[T|S] = \frac{99}{100}, \quad \mathbb{P}[T|S^c] = \frac{1}{100}$$

By applying the Bayes formula to the partition $\Omega = S \cup S^c$, we obtain

$$\mathbb{P}[S|T] = \frac{\mathbb{P}[T|S] \mathbb{P}[S]}{\mathbb{P}[T|S] \mathbb{P}[S] + \mathbb{P}[T|S^c] \mathbb{P}[S^c]} \simeq 0.0098$$

1.6 Independence

Def. 1.8. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Two events A and B are said to be **independent** if

$$\mathbb{P}\left[A \cap B\right] = \mathbb{P}\left[A\right] \mathbb{P}\left[B\right]$$

A is independent of B iff A is independent of B^c . If $\mathbb{P}[A] \in \{0,1\}$, then A is independent of every event. If A is independent with itself (i.e. $\mathbb{P}[A \cap A] = \mathbb{P}[A]^2$), then $\mathbb{P}[A] \in \{0,1\}$.

Prop 1.9. Let $A, B \in \mathcal{F}$ be two events with $\mathbb{P}[A], \mathbb{P}[B] > 0$. Then the following are equivalent:

- i. $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$: A and B are independent
- ii. $\mathbb{P}[A|B] = \mathbb{P}[A]$: the occurrence of B has no influence on A
- iii. $\mathbb{P}[B|A] = \mathbb{P}[B]$: the occurrence of A has no influence on B

Def. 1.9. Let I be an arbitrary set of indices. A collection of events $(A_i)_{i \in I}$ is said to be **independent** if

$$\forall J \subset Ifinite \quad \mathbb{P}\left[\bigcap_{j \in J} A_j\right] = \prod_{j \in J} \mathbb{P}\left[A_j\right]$$

Int. Three events A, B and C are independent if the following 4 equations are satisfied:

$$\begin{split} \mathbb{P}\left[A \cap B\right] &= \mathbb{P}\left[A\right] \mathbb{P}\left[B\right] \\ \mathbb{P}\left[A \cap C\right] &= \mathbb{P}\left[A\right] \mathbb{P}\left[C\right] \\ \mathbb{P}\left[B \cap C\right] &= \mathbb{P}\left[B\right] \mathbb{P}\left[C\right] \\ \mathbb{P}\left[A \cap B \cap C\right] &= \mathbb{P}\left[A\right] \mathbb{P}\left[B\right] \mathbb{P}\left[C\right] \end{split}$$

¹i.e. $\Omega = B_1 \cup \ldots \cup B_n$ and the events are pairwise disjoint.

2 Random variables and distribu- 2.2 tion functions

2.1 Abstract definition

Def. 2.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A **random** variable (r.v.) is a map $X : \Omega \to \mathbb{R}$ s.t.

$$\forall a \in \mathbb{R} \quad \{\omega \in \Omega : X(\omega) \le a\} \in \mathcal{F}$$

Ex. 2.1. We throw a fair die. The sample space is $\Omega = \{1, 2, 3, 4, 5, 6\}$ and we consider the Laplace model $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose we gamble on the outcome in such a way that our profit is -1 if the outcome is 1, 2 or 3; 0 if the outcome is 4 and 2 if the outcome is 5 or 6. Our profit can be represented by the mapping X defined by

$$\forall \omega \in \Omega \quad X(\omega) = \begin{cases} -1 & \text{if } \omega = 1, 2, 3, \\ 0 & \text{if } \omega = 4, \\ 2 & \text{if } \omega = 5, 6 \end{cases}$$

Since $\mathcal{F} = \mathcal{P}(\Omega)$, we have $\{\omega : X(\omega) \leq a\} \in \mathcal{F}$ for every a. Therefore, X is a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$.

Def. 2.2. When events are defined in terms of random variable, we omit the dependence in ω . E.g. for $a \leq b$ we write

$$\{X \le a\} = \{\omega \in \Omega : X(\omega) \le a\}$$

$$\{a < X \le b\} = \{\omega \in \Omega : a < X(\omega) < b\}$$

$$\{X \in \mathbb{Z}\} = \{\omega \in \Omega : X(\omega) \in \mathbb{Z}\}$$

When consider the probability of events as above, we omit the brackets

$$\mathbb{P}\left[X \leq a\right] = \mathbb{P}\left[\left\{X \leq a\right\}\right] = \mathbb{P}\left[\left\{\omega \in \Omega : X(\omega) \leq a\right\}\right]$$

2.2 Distribution function

Def. 2.3. Let X be a random variable on a prob. space $(\Omega, \mathcal{F}, \mathbb{P})$. The **distribution function of X** is the function $F_X : \mathbb{R} \to [0, 1]$ defined by

$$\forall a \in \mathbb{R} \quad F_X(a) = \mathbb{P}\left[X \le a\right]$$

Ex. 2.2. Same example with the die. Let X be the random variable defined as above. For $a \in \mathbb{R}$ we have

$$F_X(a) = \begin{cases} 0 & \text{if } a < -1, \\ 1/2 & \text{if } -1 \le a < 0, \\ 2/3 & \text{if } 0 \le a < 2, \\ 1 & \text{if } a \ge 2 \end{cases}$$

Figure 3: Graph of the distribution function F_X

Prop 2.1. (Basic identity). Let a < b be two real numbers. Then

$$\mathbb{P}\left[a < X \le b\right] = F(b) - F(a)$$

Prop 2.2. Let X be a r.v. on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The distribution function $F = F_X : \mathbb{R} \to [0, 1]$ of X satisfies the following properties :

- i. F is nondecreasing
- ii. F is right continuous²
- iii. $\lim_{a \to -\infty} F(a) = 0$ and $\lim_{a \to \infty} F(a) = 1$

2.3 Independence

Def. 2.4. Let X_1, \ldots, X_n be n random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We say that they are **independent** if $\forall x_1, \ldots, x_n \in \mathbb{R}$ $\mathbb{P}[X_1 \leq x_1, \ldots, X_n \leq x_n] = \mathbb{P}[X_1 \leq x_1] \ldots \mathbb{P}[X_n \leq x_n]$.

One can show that X_1, \ldots, X_n are independent iff $\forall I_1 \subset \mathbb{R}, \ldots, I_n \subset \mathbb{R}$ intervals $\{X_1 \in I_1\}, \ldots, \{X_n \in I_n\}$ are independent.

Prop 2.3. (Grouping). Let X_1, \ldots, X_n be n independent r.v. Let $1 \leq i_1 < i_2 < \ldots < i_k \leq n$ be some indices and ϕ_1, \ldots, ϕ_k some functions. Then $Y_1 = \phi_1(X_1, \ldots, X_{i_1}), Y_2 = \phi_2(X_{i_1+1}, \ldots, X_{i_2}), \ldots, Y_k = \phi_k(X_{i_{k-1}+1}, \ldots, X_{i_k})$ are independent.

Def. 2.5. An infinite sequence X_1, X_2, \ldots of random variables is said to be

- independent if X_1, \ldots, X_n are independent for every n
- independent and identically distributed (i.i.d) if they are independent and they have the same distribution function, i.e. $\forall i, j \mid F_{X_i} = F_{X_i}$.

²i.e. $F(a) = \lim_{h\downarrow 0} F(a+h)$ for every $a \in \mathbb{R}$