Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE

Prof. Me. Luiz C. M. de Aquino

Lista IV

- 1. Determine a raiz das funções dadas por:
 - (a) $f(x) = 2^{x-2} 4 \cdot 2^x$

(b)
$$g(x) = \frac{1}{2^{1-x}} - 16^x$$

(c)
$$h(x) = \log_3^2 x + \frac{3}{4} \log_3 x - \frac{1}{4}$$

(d)
$$j(x) = \log_2(x^2 - 1) - 3$$

- 2. Uma pessoa tomou 60 mg de certo remédio. A bula do remédio informava que a cada 6 horas a sua quantidade no organismo reduzia-se a metade. Com base nessas informações, para que a quantidade no organismo atinja 7,5 mg, qual é o tempo (em horas) necessário?
- 3. A escala Richter assim chamada em homenagem ao sismólogo americano Charles F. Richter mede a magnitude de um terremoto em uma escala logarítmica de base 10. A intensidade I de um terremoto medida nessa escala, dada por um valor entre 0 e 8,9 (para o maior terremoto conhecido), é obtida pela fórmula $I = \frac{2}{3} \log_{10} \frac{E}{E_0}$, em que E é a energia (em kWh quilowattshora) liberada pelo terremoto e $E_0 = 7 \cdot 10^{-3}$ kWh. Com base nessas informações, responda os quesitos abaixo.
 - (a) Um terremoto de intensidade 8 libera quanta energia?
 - (b) Se a energia calculada no quesito (a) pudesse ser convertida para energia elétrica e usada para abastecer uma cidade que consome $3, 5 \cdot 10^5$ kWh por dia, então quantos dias a cidade ficaria abastecida?
- 4. Sobre o gráfico das funções definidas por $f(x) = 2^x$ e $g(x) = x^2$, podemos afirmar que:
 - (a) possuem dois pontos de interseção quando $x \in \left[-\frac{1}{2}; 3\right]$.
 - (b) possuem algum ponto de interseção quando $x \in [0; 1]$.
 - (c) não possuem ponto de interseção quando $x \in [-1; 1]$.
 - (d) possuem algum ponto de interseção quando $x \in [-1; 0]$.
 - (e) possuem dois pontos de interseção quando $x \in \left[-3; \frac{1}{2}\right]$.
- 5. Considere as funções definidas por $f(x) = \log_a x$ e $g(x) = \log_b x$, onde $a \neq b$. Se $n \in \mathbb{N}^*$, podemos afirmar que:

(a)
$$f(a^n) + g\left(\frac{1}{b^n}\right) = 0.$$

(b)
$$f(b^n) - g(a^n) = 0$$
.

(c)
$$\left(\frac{f(a)}{g(b)}\right)^n = f(a)^n - g(b)^n$$
.

- (d) $f(a^n) g(b^n) = [f(a) + g(b)]^n$.
- (e) $f(\sqrt[n]{a}) \sqrt[n]{g(b)} = n$.
- 6. A soma das raízes da função definida por $f(x) = 4^x 2^{x+3} + 15$ é igual a:
 - (a) $\log_2 8$.
 - (b) $\log_2 4$.
 - (c) $\log_2 3$.
 - (d) $\log_2 15$.
 - (e) $\log_2 5$.
- 7. Seja a função $f: \mathbb{N} \to \mathbb{R}$ definida por:

$$f(x) = \begin{cases} 10; \ x = 0\\ 10\log(f(x-1)); \ x > 0 \end{cases}$$

É correto afirmar que f(100) é igual a:

- (a) 10.
- (b) 10^2 .
- (c) 10^3 .
- (d) 10^4 .
- (e) 10^5 .
- 8. Classifique cada afirmação abaixo como Verdadeiro ou Falso.
 - () Se $a \in \mathbb{R}$, então $a^0 = 1$.
 - () $0^n = 0$, para qualquer $n \in \mathbb{R}$.
 - () Se $a^x = 2$ e $a^y = 3$, então $a^{x+y} = 6$.
 - $(\)\ \sqrt[3]{\sqrt[4]{x}} = \ \sqrt[12]{x}$
 - () Se $\log_b a = 2$ e $\log_b c = 3$, então $\log_b ac = 5$.
 - () Se $\log_b a = 10$ e $\log_b c = 2$, então $\log_b \frac{a}{c} = 5$.
 - () Se $\log_b a = 4$, então $a = b^4$.
 - $(\)\ \log_b a + \log_b a = \log_b a^2$
 - () $\log_2 8 \log_8 2 = 0$
 - () $\log_{30} 27000 \log_{20} 8000 = 0$