TUTORIAL 2

CSCI3230 (2019-2020 First Term)

By Xubin Zheng(xbzheng@cse.cuhk.edu.hk)

Outline

- Deep Neural Network
 - Introduction
 - How DNN resolves Vanishing Gradient
 - Convolutional Neural Network

Deep Neural Network

- No formal definition
- Some people call neural networks with more than one hidden layers "deep"

Deep neural network

Branches of DNN

- For each node or layer of the DNN, it can have many different structures:
 - 1. Convolutional Neural Network
 - 2. Recurrent Neural Network
 - 3. Restricted Boltzmann Machine
 - 4. Deep Belief Neural network
 - Autoencoder
 - 6.
- The list is still increasing since DNN is a hot research topic in recent years

Burst of DNN

IM[♣]GENET Large Scale Visual Recognition Challenge (ILSVRC)

- The biggest computer vision challenge till 2017
- Millions of images to classify

How DNN resolves Vanishing Gradient

-3

-2

- Rectified Linear Unit (ReLU)
- ReLU(x) = max(0, x)
- Also known as ramp function

Fewer vanishing gradient problems compared to sigmoidal activation functions that saturate in both directions.

Convolutional Neural Network

 The most popular DNN in computer vision, and directly related to the coming course project.

Convolution

 A mathematical operation on two functions (f and g) to produce a third function

$$f[x] * g[x] = \sum_{k=-\infty}^{\infty} f[k] \cdot g[x-k]$$
$$(f * g)(t) = \int f(\tau) g(t-\tau) d\tau$$

Architecture

- Neural network with specialized connectivity structure
- Feed-forward:
 - Convolve input
 - Non-linearity (e.g. ReLU)
 - Pooling (local max or average)
- Train convolutional filters (kernels)
 via backpropagation

Example

Convolutional layer

- 1. Intuition
- Local connectivity
- 3. Stride
- Zero-padding
- Parameter sharing

Convolutional layer

- 1. Intuition
- Local connectivity
- 3. Stride
- 4. Zero-padding
- 5. Parameter sharing

Non-linearity Layer

- Actually it's the activation function introduced before
- Tanh
- Sigmoid
- ReLU → preferred option
 - Sparse activation
 - Better gradient propagation

-2

-1

- Efficient computation

Feature maps

Pooling

Non-linearity

Convolution

(Learned)

Input image

Pooling layer

- A form of down-sampling
- Average pooling
- Max pooling (the most common one)

Single depth slice

x	1	1	2	4
	5	6	7	8
	3	2	1	0
	1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

CNN Example

Summary

- Artificial Neural Network
 - Gradient Descent
 - Vanishing Gradient Problem
- Deep Neural Network
 - Introduction
 - How DNN resolves Vanishing Gradient
 - Convolutional Neural Network

Reference

- CS231n Convolutional Neural Networks for Visual Recognition
 - https://cs231n.github.io/convolutional-networks/

Next Week

- Introduction to TensorFlow
- Introduction to the Course Project