

QUADRATIC

IMP:
$$\gamma$$
 - intercep: $\gamma = e^{x}$ $x = 0$, $\gamma = e^{-1}$

ABSOLUTE

 $\gamma = |x|$

$$y = a |x - b| + c$$

 $y=2\left| \infty -1\right| +1$

Turning point x-b=0 y=c

x - 1 = 0 y = 1 (1, 1)

y-intercept: x=0 and solve

y = 2|0-1|+1 2|-1|+1 3(1)+14=3

MAIN VARIATIONS

 $\begin{cases} -1 \\ 6x \end{cases}$

-
$$f(x)$$
 Reflect in a axis.
 $f(-x)$ Reflect in y axis.
 $f(x) + a$ Shifts up
 $f(x) - a$ Shift down

Inverse functions: Reflection of each other in line y=I

TRIG GRAPHS

2 (i) By sketching a suitable pair of graphs, show that the equation

$$\csc x = \frac{1}{2}x + 1,$$

where x is in radians, has a root in the interval $0 < x < \frac{1}{2}\pi$.

[2]

9709/3/M/J/05

4	(i)	Bv	sketching	a suitable	nair of	oranhs	show	that the	equation

$$2 - x = \ln x$$

has only one root.

$$y=2-x$$

 $x-int=2$
 $y-int=2$

[2]

