

- ① 改进思想

 - 2 数据结构3 算法过程

1 改进思想

输入:多边形顶点序列P₁(x₁,y₁)到P₇(x₇,y₇)

输出:最佳逼近这个多边形的像素点集

改进思想

改进的出发点:

(1)对于某一条扫描线,需要与所有的边求交吗?

- a.求交
- b.排序
- c.交点配对
- d.区间填色

3 改i

改进思想

改进的出发点:

- (2)扫描线和直线在Y方向上都有连贯性,那么交点可以怎么求?
 - a.求交
 - b.排序
 - c.交点配对
 - d.区间填色

改进思想

改进的出发点:

(3)每次都需要排序吗?

- a.求交
- b.排序
- c.交点配对
- d.区间填色

2 数据结构

边表 (Edge Table) :

每条多边形的边放入首次出现的桶中。

桶 y=10 y=9 y=8 -> P_2P_1 P_2P_3 y=7 -> P_7P_1 y=6 y=5 y=4 y=3 P_6P_7 P_6P_5 y=2 - P_4P_5

 P_4P_3

2

数据结构

相关定义:

新边 (New Edge):

每条新边对应一个 结点:

Х	y _{max}	1/k	next	
---	------------------	-----	------	--

新边结点排序原则:

- (1)交点递增
- (2)交点相同,增量递增

数据结构

边表 (Edge Table) :

如何体现: 当扫描线与多边形顶点相交时, 交点的取舍策略?

2 数据结构

y=2 -

3

-2/5

2/3

3

2/7

Λ

8

-4/3

9

2

数据结构

相关定义:

有效边 (Active Edge) :

指与当前扫描线相交的多边形的边,也称为活性边。

有效边表 (Active Edge Table, AET) :

把有效边按与扫描线交点x坐标递增的 顺序存放在一个链表中,此链表称为有效边表。

有效边表的每个结点:

x y _{max}	1/k	next
--------------------	-----	------

有效边表(Active Edge Table, AET): 开始为空

有效边表(Active Edge Table, AET): 与边表中y=2处边表合并

有效边表 (Active Edge Table, AET): 增量计算

有效边表 (Active Edge Table, AET): 增量计算

有效边表(Active Edge Table, AET): 删除之后的无效边

边表 (Edge Table) :

有效边表 (Active Edge Table, AET): 增量计算

$$P_6P_7$$
 P_4P_3
 $y=5 \rightarrow 4\frac{4}{5} 6 -2/5 \rightarrow 9\frac{6}{7} 8 2/7 ^$

边表 (Edge Table) :

有效边表 (Active Edge Table, AET) : 增量计算

$$P_6P_7$$
 P_4P_3 P_6P_7 P_4P_3 P_4P_4 P_4P_3 P_4P_4 P_4 P_4

边表 (Edge Table):

有效边表(Active Edge Table, AET): 删除之后的无效边

$$P_6P_7$$
 P_4P_3 P_6P_7 P_4P_3 P_6P_7 P_4P_3 P_4P_4 P_4P_3 P_4P_3 P_4P_4 P_4P_4 P_4P_4 P_4 P_4

边表 (Edge Table) :

有效边表 (Active Edge Table, AET): 增量计算

$$y=7 \longrightarrow 10\frac{3}{7} 8 2/7 ^{\circ}$$

边表 (Edge Table) :

有效边表(Active Edge Table, AET): 插入新边

$$P_7P_1$$
 P_4P_3 P_4P_4 P_4P_3 P_4P_4 P_4 P_4

算法分析:

优点:

- ◆ 采用增量计算的方法进行交点计算
- ◆ 仅仅在新边加入时排序

(边数<<扫描线数)

缺点:

桶表、链表的维护开销

