Isomorphism in Union-Closed Sets

Mohammad Javad Moghaddas Mehr Cincinnati – March 2025

Outline

Figure 1: Two lattice diagrams. The red nodes belong to \mathcal{K}^{\perp} .

Introduction

Introduction

- Definition of Union-Closed Families of Sets
- Péter Frankl's Union-Closed Set Conjecture
- Our Focus: Structural Properties of Isomorphisms

Definitions and Theorems

Definitions

Union-Closed Family: A collection $\mathcal{K} \subseteq 2^{[n]}$ is union-closed if for all $A, B \in \mathcal{K}$, we have $A \cup B \in \mathcal{K}$.

Isomorphism: A bijection $h: \mathcal{K}_1 \to \mathcal{K}_2$ such that:

$$h(A \cup B) = h(A) \cup h(B) \quad \forall A, B \in \mathcal{K}_1.$$

Main Theorem

Theorem: For every isomorphism $h: \mathcal{K}_1 \to \mathcal{K}_2$, there exists a corresponding hyperisomorphism $H: \bigcup \mathcal{K}_1 \to \bigcup \mathcal{K}_2$ such that:

$$h(A) = \{H(a) \mid a \in A\}, \quad \forall A \in \mathcal{K}_1.$$

Conclusion

Conclusion

- Structural preservation under isomorphisms
- Connection to the Union-Closed Set Conjecture
- Future work: applications of hyperisomorphisms

Thank You!

Questions?