Semaine 2 du 22 septembre 2025 (S39)

I Rappels et compléments d'algèbre linéaire (1ère partie)

Tout le programme de la semaine dernière est reconduit, y compris les exercices à connaître.

- 1. Produits et espaces vectoriels d'applications
- 1.1. Espaces vectoriels produits
- 1.2. Applications à valeurs dans un ev
- 2. Sommes d'espaces vectoriels
- 2.1. Rappels de première année : sommes, sommes directes, supplémentaires
- 2.2. Généralisation à plus de deux sev
- 3. Matrices par blocs
- 3.1. Définition
- 3.2. Opérations par blocs
- 4. Matrices semblables

- 5. Sous-espaces vectoriels stables
- 5.1. Définitions et premières propriétés
- 5.2. Stabilité et matrices triangulaires par blocs

6. Exercices à connaître

L'exercice 6.2 est très long. Vous pourrez ne donner qu'une partie des questions, par exemple (1 et 2), (1 et 3) ou (5).

6.1. Image d'une base par un endomorphisme

Soit F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie.

- 1) Déterminer une condition nécessaire et suffisante pour qu'il existe un endomorphisme u tel que Ker(u) = F et Im(u) = G.
- **2)** Construire un tel endomorphisme u avec $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ dans \mathbb{R}^3 et $G = \{\lambda(2, -1, -1) \mid \lambda \in \mathbb{R}\}$.

6.2. Une caractérisation des homothéties

Soit $f \in \mathcal{L}(E)$, où E est un \mathbb{K} -espace vectoriel.

1) Déterminer l'ensemble des endomorphismes de E laissant stables tous les sev de dimension 1.

Cette question est archi-classique, et n'est pas toujours présentée sous cette forme.

On pourra se demander le lien entre

$$\forall x \in E, \exists \lambda \in \mathbb{K}, f(x) = \lambda x$$

et

$$\exists \lambda \in \mathbb{K}, \forall x \in E, f(x) = \lambda x.$$

2) Déterminer l'ensemble des endomorphismes de E laissant stables tous les sev de dimension 2.

- 3) Si E est de dimension finie, en déduire le « centre » de $\mathcal{L}(E)$, c'est- 6.5. Endomorphismes nilpotents à-dire l'ensemble endomorphismes qui commutent avec tous les endomorphismes (on pourra remarquer qu'un tel endomorphisme commute nécessairement avec les projections sur toutes les droites vectorielles).
- **4)** Quel est le centre de $\mathcal{M}_n(\mathbb{K})$?
- 5) Retrouver le résultat précédent en utilisant la base canonique de $\mathscr{M}_n(\mathbb{K})$.

6.3. Novaux itérés

Soit f un endomorphisme d'un espace de dimension finie n non nulle. On définit, pour tout entier naturel p:

$$F_p = \operatorname{Ker}(f^p)$$
 et $G_p = \operatorname{Im}(f^p)$

(f^p désigne l'itérée d'ordre p de $f: f^0 = \mathrm{Id}$ et, $f^{p+1} = f \circ f^p$).

- 1) Démontrer que, des deux suites de s.e.v. (F_p) et (G_p) , l'une est croissante et l'autre décroissante (pour l'inclusion).
- 2) Démontrer qu'il existe un plus petit entier naturel r tel que $F_r =$ F_{r+1} , et démontrer qu'alors, pour tout entier naturel p supérieur ou égal à r, $F_p = F_{p+1}$.
- 3) Démontrer qu'il existe un plus petit entier naturel s tel que $G_s =$ G_{s+1} , et démontrer qu'alors, pour tout entier naturel p supérieur ou égal à s, $G_p = G_{p+1}$. Y-a-t-il un lien entre r et s?
- 4) Démontrer que G_s et F_r sont supplémentaires dans E.

6.4. « Inégalité triangulaire » et une autre inégalité autour du rang

Soient E et F deux K-espaces vectoriels de dimensions finies et $u, v \in$ $\mathcal{L}(E,F)$.

- 1) a) Montrer que $rg(u+v) \leq rg(u) + rg(v)$.
 - **b)** En déduire que $|\operatorname{rg}(u) \operatorname{rg}(v)| \leq \operatorname{rg}(u+v)$.
- 2) On suppose que E = F, et dim E = n. Montrer l'encadrement :

$$\operatorname{rg}(u) + \operatorname{rg}(v) - n \leqslant \operatorname{rg}(u \circ v) \leqslant \inf(\operatorname{rg}(u), \operatorname{rg}(v)).$$

Soit E un K-espace vectoriel de dimension $n \ge 1$. On dit que $f \in \mathcal{L}(E)$ est nilpotent lorsqu'il existe $k \ge 1$ tel que $f^k = 0$.

1) Montrer qu'il existe un unique entier $p \in \mathbb{N}^*$ tel que $f^{p-1} \neq 0$ et $f^p = 0$. Cet entier est appelé indice de nilpotence de f.

Dans cet énoncé, on considère $f \in \mathcal{L}(E)$ nilpotent d'indice p.

- 2) Montrer qu'il existe $x \in E$ tel que $\mathscr{F} = (x, f(x), \dots, f^{p-1}(x))$ est une famille libre.
- 3) En déduire que $p \leq n$.
- 4) On suppose dans cette question que p = n. Déterminer $Mat_{\mathscr{F}}(f)$ et rg(f).
- 5) Donner un exemple d'espace vectoriel E de dimension n et d'endomorphisme $f \in \mathcal{L}(E)$ nilpotent d'indice n.

S'y ajoute:

II Séries numériques

- 1. Rappel sur les sommes finies et les sommes doubles
- 1.1. Propriétés des sommes finies
- 1.2. Formules usuelles
- 1.3. Sommes doubles
- 2. Premières définitions sur les séries
- 3. Séries réelles à termes positifs
- 3.1. Propriété fondamentale
- 3.2. Outils de comparaison
- 3.3. Séries de Riemann
- 4. Comparaison série intégrale
- 4.1. Principe
- 4.2. Cas d'une fonction croissante
- 4.3. Estimation du reste dans le cas de convergence
- 5. Séries complexes et convergence absolue
- 5.1. Résultats généraux
- 5.2. Séries alternées
- 5.3. Comparaison logarithmique et règle de d'Alembert

6. Formule de Stirling

Démonstration non exigible.

7. Produit de Cauchy

Démonstration non exigible.

8. Exercices à connaître

8.1. Révision sur les suites : le théorème de Césaro

On considère une suite $(u_n)_{n\geqslant 0}$ de nombres réels ou complexes. On définit la suite $(v_n)_{n\geqslant 0}$ par

$$v_n = \frac{1}{n+1} \sum_{k=0}^{n} u_k$$

- 1) On suppose que la suite (u_n) converge vers 0. Montrer que la suite (v_n) converge vers 0. Indication : soit $\varepsilon > 0$. Montrer qu'il existe un rang N tel que, si $n \ge N, |v_n| \le \varepsilon$. Pour cela, couper v_n en deux morceaux.
- 2) On suppose que la suite (u_n) converge. Montrer que la suite (v_n) converge, et a même limite que (u_n) . C'est le théorème de Césaro.
- 3) Montrer que la réciproque est fausse.

On montrerait avec les mêmes outils que si $u_n \xrightarrow[n \to +\infty]{} +\infty$, v_n aussi.

8.2. Révision sur les suites : irrationalité de e

On définit la suite de terme général

$$u_n = \sum_{k=0}^n \frac{1}{k!}.$$

- 1) En introduisant la suite de terme général $v_n = u_n + \frac{1}{n!}$, montrer que les suites (u_n) et (v_n) sont adjacentes. En déduire que la suite (u_n) converge vers une limite que l'on notera ℓ
- 2) Montrer que ℓ est irrationnel. On pourra raisonner par l'absurde, et encadrer ℓ par u_n et v_n pour n bien choisi.

8.3. Série harmonique et constante d'Euler

On considère pour tout $n \in \mathbb{N}^*$ la suite $u_n = \sum_{k=1}^n \frac{1}{k} - \ln n$.

L'objectif est de montrer que (u_n) converge. Sa limite est appelée **constante** d'Euler et notée γ .

Nous allons employer deux méthodes.

8.3a. Comparaison série-intégrale et série télescopique

Pour tout $n \in \mathbb{N}^*$, on note $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1) Montrer que $H_n \sim \ln n$.
- 2) Montrer que $u_{n+1} u_n = O\left(\frac{1}{n^2}\right)$.
- 3) On pose pour tout n > 0, $v_n = u_{n+1} u_n$. Donner la nature de $\sum v_n$ et conclure.

8.3b. Deux suites adjacentes

Pour tout $n \in \mathbb{N}^*$ on pose $w_n = u_n + \ln n - \ln(n+1)$. Montrer que (u_n) et (w_n) sont adjacentes et conclure.

8.4. Une décomposition de somme

Soit k > 1; on note $S_k = \sum_{n=1}^{+\infty} \frac{1}{n^k}$ et $T_k = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^k}$. Calculer T_k en fonction de S_k .

8.5. Natures de deux séries

Soit (u_n) une suite de réels strictement positifs, pour $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=0}^n u_k$ et $v_n = \frac{u_n}{S_n}$. L'objectif est de comparer la nature de $\sum u_n$ et $\sum v_n$.

On pourra traiter les cas où $\sum u_n$ converge ou diverge, et dans ce dernier étudier la série de terme général $w_n = \ln\left(1 - \frac{u_n}{S_n}\right)$ pour $n \ge 1$.

8.6. Transformation d'Abel

Soit (a_n) une suite positive décroissante de limite nulle et (S_n) une suite bornée.

- 1) Montrer que la série $\sum (a_n a_{n+1})S_n$ est convergente.
- 2) En déduire que la série $\sum a_{n+1}(S_{n+1}-S_n)$ est convergente.
- 3) Établir que la série $\sum \frac{\sin(n)}{n}$ est convergente.

 Indication: On pourra commencer par montrer que la suite $\sigma_n = \sum_{k=0}^{n} \sin k$ est bornée.