Aula 16 - Árvores Binárias de Busca Balanceadas (AVL)

Estruturas de Dados 2018/1 Prof. Diego Furtado Silva

Relembrando ABB

Relembrando ABB

- Eficiência das operações numa ABB depende da profundidade dos nós folha
- Tal profundidade depende do seu balanceamento
- Algoritmos de inserção e remoção não possuem garantias em relação ao balanceamento

Relembrando ABB

ABB Balanceadas - AVL

- Nome vem dos seus criadores Adelson-Velsky e Landis
- As AVL são uma das mais famosas **árvores binárias de** busca balanceadas

Para verificar se a árvore está balanceada, precisamos definir o fator de balanceamento

Fator de balanceamento de um nó: a diferença entre as alturas de suas sub-árvore esquerda e direita

Em uma árvore AVL, a altura das subárvores de cada nó se difere em, no máximo, 1

Ou seja, o fator de balanceamento de qualquer nó é sempre
-1, 0 ou 1

Em quais posições uma inserção causaria desbalanceamento?

As seguintes situações **podem** causar desbalanceamento:

- Nó inserido em descendente esquerdo de nó com Fb = 1
- Nó inserido em descendente direito de nó com Fb = -1

Em uma inserção, quais nós podem ter seu fator de balanceamento afetado?

Ok! Mas como eu faço agora?!

AVL - Rotações

Para manter uma árvore balanceada, é necessário fazer transformações nela tal que:

- O percurso em ordem da árvore antes e depois da transformação seja igual (ou seja, continue sendo uma ABB)
- A árvore esteja balanceada (|Fb| ≤ 1)

Para essa transformação, se dá o nome de rotação

AVL - Rotações

- As rotações em uma AVL são feitas à esquerda ou à direita, dependendo do desbalanceamento a ser tratado
- Em alguns caso, pode ser necessário fazer duas rotações
- As rotações são sempre realizadas para se alcançar as propriedades requeridas (slide anterior)

Isso está balanceado para qualquer subárvores A, B, C e D?

Exercício: insira, na ordem apresentada, os elementos a seguir em uma árvore AVL (inicialmente vazia)

10, 7, 5, 3, 2

AVL - Rotação à esquerda

AVL - Rotação à esquerda

AVL - Rotação à esquerda

Exercício: insira, na ordem apresentada, os elementos a seguir em uma árvore AVL (inicialmente vazia)

2, 4, 7, 9, 12

AVL - Rotações simples

Ok, mas quando rotacionar para a esquerda e quando rotacionar para a direita?

AVL - Rotações simples

Ok, mas quando rotacionar para a esquerda e quando rotacionar para a direita?

- Se fator de desbalanceamento for positivo (+2 no pai e +1 ou 0 no filho à esquerda), rotacionar à direita
- Se fator de desbalanceamento for negativo (-2 no pai e -1 ou 0 no filho à direita), rotacionar à esquerda

AVL - Rotações simples

E se misturar positivo e negativo (+2 no pai e -1 no filho à esquerda ou -2 no pai e +1 no filho à direita)?

Nesse ponto, ainda temos um desbalanceamento na raiz

Situação igual à rotação simples à direita... usemos!

AVL - Rotação dupla à esquerda

AVL - Rotação dupla à esquerda

AVL - Rotação dupla ou simples?

- Fatores de balanceamento positivos vs. filhos negativos
 - Balanceamento positivo/negativo: rotação simples
 - Balanceamento "misto": rotação dupla

- Inserção nas "partes internas" ou "externas"
 - Externa (subárvore direita do filho à direita ou subárvore esquerda do filho à esquerda): simples
 - Interna (subárvore direita do filho à esquerda ou subárvore esquerda do filho à direita): dupla

AVL - Rotação dupla ou simples?

Visualmente falando, se olharmos para os nós envolvidos no desbalanceamento, veremos uma reta (rotação simples) ou um "joelho" (rotação dupla)

AVL - Exercícios

- Demonstre que as rotações simples e duplas, ao serem executadas, garantem o balanceamento da AVL
 - Use a figura ao lado para ajudar
 - Tente inserir na subárvore azul
 - Tente inserir na subárvore verde
 - Os valores ao lado são as alturas

- A partir de uma AVL vazia, insira os elementos

15, 27, 49, 10, 8, 67, 59, 9, 13, 20, 14

AVL - Exercícios

- Descreva como você faria as operações de
 - Busca
 - Remoção

Por hoje é só, pessoal

Fiquem com a reflexão do dia

