CENG 2010 - Programming Language Concepts Week 3: Regular Expressions and Lexical Analysis

Burak Ekici

March 20, 2022

Table of Contents

1 Languages

- 2 Compilers and Interpreter
- Pattern Matching and Regular Expression
- 4 Finite State Automator
- **5** Lexe

Languages 000

• alphabet is finite set; its elements are called symbols or letters

Languages

0000

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ

Example

strings over $\Sigma = \{0, 1\} : 0 \quad 0110$

Languages

0000

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ
- length |x| of string x is number of symbols in x

Example

strings over $\Sigma = \{0,1\}:0$ 0110

Languages

0000

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ
- length |x| of string x is number of symbols in x
- empty string is unique string of length 0 and denoted by ε

Example

strings over $\Sigma = \{0,1\}:0$ 0110

Languages

000

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ
- length |x| of string x is number of symbols in x
- empty string is unique string of length 0 and denoted by ε
- Σ^* is set of all strings over Σ ($\emptyset^* = \{\varepsilon\}$)

Example

strings over $\Sigma = \{0, 1\} : 0 \quad 0110$

Languages

000

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ
- length |x| of string x is number of symbols in x
- empty string is unique string of length 0 and denoted by ε
- Σ^* is set of all strings over Σ ($\emptyset^* = \{ \epsilon \}$)
- language $\mathcal L$ over Σ is subset of Σ^*

Example

strings over $\Sigma = \{0, 1\} : 0$ 0110 languages over Σ :

• $\{\varepsilon, 0, 1, 00, 01, 10, 11\}$ (all strings having at most two symbols)

Languages

0000

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ
- length |x| of string x is number of symbols in x
- empty string is unique string of length 0 and denoted by ε
- Σ^* is set of all strings over Σ ($\emptyset^* = \{\varepsilon\}$)
- language $\mathcal L$ over Σ is subset of Σ^*

Example

strings over $\Sigma = \{0, 1\} : 0$ 0110 languages over Σ :

- $\{\varepsilon, 0, 1, 00, 01, 10, 11\}$ (all strings having at most two symbols)
- {x | x is valid program in some machine language}

Definitions (Operations on Languages)

Let Σ be an alphabet and let $\mathcal{L},\mathcal{L}_1,\mathcal{L}_2$ be languages over Σ

Definitions (Operations on Languages)

Let Σ be an alphabet and let \mathcal{L} , \mathcal{L}_1 , \mathcal{L}_2 be languages over Σ

Concatenation
$$\mathcal{L}_1\mathcal{L}_2$$
 := $\{xy \mid x \in \mathcal{L}_1 \land y \in \mathcal{L}_2\}$

0000

Definitions (Operations on Languages)

Let Σ be an alphabet and let \mathcal{L} , \mathcal{L}_1 , \mathcal{L}_2 be languages over Σ

Concatenation $\mathcal{L}_1\mathcal{L}_2$:= $\{xy \mid x \in \mathcal{L}_1 \land y \in \mathcal{L}_2\}$ Union $\mathcal{L}_1 \cup \mathcal{L}_2$:= $\{x \mid x \in \mathcal{L}_1 \lor x \in \mathcal{L}_2\}$

0000

Definitions (Operations on Languages)

Let Σ be an alphabet and let \mathcal{L} , \mathcal{L}_1 , \mathcal{L}_2 be languages over Σ

 $\begin{array}{lll} \text{Concatenation} & \mathcal{L}_1\mathcal{L}_2 & := & \{xy \mid x \in \mathcal{L}_1 \ \land \ y \in \mathcal{L}_2\} \\ \text{Union} & \mathcal{L}_1 \cup \mathcal{L}_2 & := & \{x \mid x \in \mathcal{L}_1 \ \lor \ x \in \mathcal{L}_2\} \\ \text{Intersection} & \mathcal{L}_1 \cap \mathcal{L}_2 & := & \{x \mid x \in \mathcal{L}_1 \ \land \ x \in \mathcal{L}_2\} \\ \end{array}$

0000

Definitions (Operations on Languages)

Let Σ be an alphabet and let \mathcal{L} , \mathcal{L}_1 , \mathcal{L}_2 be languages over Σ

 $\begin{array}{lll} \text{Concatenation} & \mathcal{L}_1\mathcal{L}_2 & := & \{xy \mid x \in \mathcal{L}_1 \ \land \ y \in \mathcal{L}_2\} \\ \text{Union} & \mathcal{L}_1 \cup \mathcal{L}_2 & := & \{x \mid x \in \mathcal{L}_1 \ \land \ x \in \mathcal{L}_2\} \\ \text{Intersection} & \mathcal{L}_1 \cap \mathcal{L}_2 & := & \{x \mid x \in \mathcal{L}_1 \ \land \ x \in \mathcal{L}_2\} \\ \end{array}$

Kleene star $\Sigma^* = \mathcal{L} := \{x \mid x = \varepsilon \ v \ x \in \mathcal{L} \ v \ x \in \mathcal{LL} \ v \ x \in \mathcal{LLL} \ v \ \dots \}$

0000

Definitions (Operations on Languages)

Let Σ be an alphabet and let \mathcal{L} , \mathcal{L}_1 , \mathcal{L}_2 be languages over Σ

 $\begin{array}{lll} \text{Concatenation} & \mathcal{L}_1\mathcal{L}_2 & := & \{xy \mid x \in \mathcal{L}_1 \ \land \ y \in \mathcal{L}_2\} \\ \text{Union} & \mathcal{L}_1 \cup \mathcal{L}_2 & := & \{x \mid x \in \mathcal{L}_1 \ \lor \ x \in \mathcal{L}_2\} \\ \text{Intersection} & \mathcal{L}_1 \cap \mathcal{L}_2 & := & \{x \mid x \in \mathcal{L}_1 \ \land \ x \in \mathcal{L}_2\} \\ \end{array}$

Kleene star $\Sigma^* = \mathcal{L} := \{ x \mid x = \varepsilon \lor x \in \mathcal{L} \lor x \in \mathcal{LL} \lor x \in \mathcal{LLL} \lor \ldots \}$

Kleene plus $\Sigma^+ := \Sigma^* - \{\varepsilon\}$

Example (Operations on Languages)

let

Languages ○○○●

$$\begin{array}{lcl} \Sigma & = & \left\{a,b,c,d\right\} \\ \mathcal{L}_1 & = & \left\{a,ab,c,d,\varepsilon\right\} \\ \mathcal{L}_2 & = & \left\{d\right\} \\ \mathcal{L}_3 & := & \mathcal{L}_1\mathcal{L}_2 \\ \mathcal{L}_4 & := & \mathcal{L}_1\cup\mathcal{L}_2 \end{array}$$

Example (Operations on Languages)

let

Languages

000

$$\begin{array}{rcl} \Sigma & = & \left\{a,b,c,d\right\} \\ \mathcal{L}_1 & = & \left\{a,ab,c,d,\varepsilon\right\} \\ \mathcal{L}_2 & = & \left\{d\right\} \\ \mathcal{L}_3 & := & \mathcal{L}_1\mathcal{L}_2 \\ \mathcal{L}_4 & := & \mathcal{L}_1\cup\mathcal{L}_2 \end{array}$$

• which of the following strings are in \mathcal{L}_3 ? – a, abd, cd, d

Example (Operations on Languages)

let

Languages

000

$$\Sigma = \{a, b, c, d\}$$

$$\mathcal{L}_1 = \{a, ab, c, d, \varepsilon\}$$

$$\mathcal{L}_2 = \{d\}$$

$$\mathcal{L}_3 := \mathcal{L}_1 \mathcal{L}_2$$

$$\mathcal{L}_4 := \mathcal{L}_1 \cup \mathcal{L}_2$$

- which of the following strings are in \mathcal{L}_3 ? a, abd, cd, d
- which of the following strings are in \mathcal{L}_4 ? a, abd, cd, d

Table of Contents

1 Language

- 2 Compilers and Interpreters
- Pattern Matching and Regular Expression
- 4 Finite State Automator
- **5** Lexe

00.00

00.00

Languages 0000

• goal: map program texts into PTs/ASTs

- goal: map program texts into PTs/ASTs
- PTs and ASTs are easier to work with analyze, optimize, execute the program

- goal: map program texts into PTs/ASTs
- PTs and ASTs are easier to work with analyze, optimize, execute the program
- front end use regular expressions at scanning/lexing

- goal: map program texts into PTs/ASTs
- PTs and ASTs are easier to work with analyze, optimize, execute the program
- front end use regular expressions at scanning/lexing
- regular expressions cannot reliably parse paired braces {{...}} and parentheses (((...))), etc.

- goal: map program texts into PTs/ASTs
- PTs and ASTs are easier to work with analyze, optimize, execute the program
- front end use regular expressions at scanning/lexing
- regular expressions cannot reliably parse paired braces $\{\{...\}\}$ and parentheses (((...))), etc.
- regular expressions for tokenizing (scanning/lexing), and context free grammars for parsing tokens

Table of Contents

1 Language

- 2 Compilers and Interpreter
- 3 Pattern Matching and Regular Expressions
- 4 Finite State Automator
- 5 Lexe

Pattern matching is important for

• lexical analysis of programs

Languages 0000

- search engines (Google Code Search)
- scripting languages (Perl, Ruby)

DNA analysis

Applications of Regular expressions: grep

• grep foo file returns lines in file containing pattern foo

Applications of Regular expressions: grep

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

Languages

matches beginning of line

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

- matches beginning of line
- \$ matches end of line

Applications of Regular expressions: grep

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

- ^ matches beginning of line
- \$ matches end of line
- c matches character c

Applications of Regular expressions: grep

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

- matches beginning of line matches any character
- matches end of line
- C matches character c

Finite State Automaton

matches character c

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

C

Languages

matches beginning of line matches any character matches end of line [abc] matches a or b or c

Finite State Automaton

Applications of Regular expressions: grep

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

^	matches beginning of line		matches any character
\$	matches end of line	[abc]	matches a or b or c
С	matches character c	[a-zA-Z]	matches any letter

Applications of Regular expressions: grep

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

Languages

matches beginning of line . matches any character matches end of line [abc] matches a or b or c matches character c [a-zA-Z] matches any letter

Example

grep "0" file returns lines containing 0

Applications of Regular expressions: grep

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

matches beginning of line . matches any character matches end of line [abc] matches a or b or c matches character c [a-zA-Z] matches any letter

Example

Languages

grep "0" file returns lines containing 0
grep "0\$" file returns lines ending with 0

Applications of Regular expressions: grep

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

Languages

matches beginning of line . matches any character matches end of line [abc] matches a or b or c matches character c [a-zA-Z] matches any letter

Example

grep "0" file returns lines containing 0
grep "0\$" file returns lines ending with 0
grep "b.g" file returns lines containing e.g. bag, big, bug, buggy

- lexical analysis of programs
- search engines (Google Code Search)
- scripting languages (Perl, Ruby) DNA analysis

Definitions

Languages

lexical analysis of programs

• search engines (Google Code Search)

• scripting languages (Perl, Ruby)

DNA analysis

Definitions

Languages

• pattern is string α that represents set of strings $L(\alpha) \subseteq \Sigma^*$

atomic pattern
$$\alpha$$
 $L(\alpha)$
 $\mathbf{a} \in \Sigma$ $\{a\}$

•

lexical analysis of programs

• search engines (Google Code Search)

• scripting languages (Perl, Ruby)

DNA analysis

Definitions

Languages

• pattern is string α that represents set of strings $L(\alpha) \subseteq \Sigma^*$

atomic pattern α L	()
$\mathbf{a} \in \Sigma$	a}
ε {	ε}

•

lexical analysis of programs

• search engines (Google Code Search)

• scripting languages (Perl, Ruby)

DNA analysis

Definitions

Languages

atomic pattern $lpha$	$L(\alpha)$
$\mathbf{a} \in \Sigma$	{a}
ε	$\{oldsymbol{arepsilon}\}$
Ø	Ø

lexical analysis of programs

• search engines (Google Code Search)

• scripting languages (Perl, Ruby)

DNA analysis

Definitions

Languages

atomic pattern $lpha$	$L(\alpha)$
$\mathbf{a} \in \Sigma$	{a}
ε	$\{arepsilon\}$
Ø	Ø
#	Σ

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

Languages

atomic pattern $lpha$	$L(\alpha)$
$\mathbf{a} \in \Sigma$	{a}
ε	{ε}
Ø	Ø
#	Σ
@	Σ^*

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

Languages

	atomic pattern α	L(a
	$\mathbf{a} \in \Sigma$	{a}
	ε	$\{oldsymbol{arepsilon}\}$
•	Ø	Ø
	#	Σ
	@	Σ^*

compound pattern $lpha$	$L(\alpha)$
$eta + \gamma$	$L(\beta) \cup L(\gamma)$

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

Languages

	atomic pattern α	$L(\alpha)$
	$\mathbf{a} \in \Sigma$	{a}
	ε	$\{\varepsilon\}$
•	Ø	Ø
	#	Σ
	@	Σ^*

compound pattern $lpha$	$L(\alpha)$
$\beta + \gamma$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$

- lexical analysis of programs
- scripting languages (Perl, Ruby)

- search engines (Google Code Search)
- DNA analysis

Definitions

Languages

	atomic pattern $lpha$	$L(\alpha)$
	$\mathbf{a} \in \Sigma$	{a}
	ε	$\{oldsymbol{arepsilon}\}$
•	Ø	Ø
	#	Σ
	@	Σ^*

compound pattern $lpha$	$L(\alpha)$
$eta + \gamma$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$
βγ	$L(\beta)L(\gamma)$

lexical analysis of programs

• search engines (Google Code Search)

• scripting languages (Perl, Ruby)

-t---!- --tt---- - / / --\

DNA analysis

Definitions

Languages

	atomic pattern α	$L(\alpha)$
	$\mathbf{a} \in \Sigma$	{a}
	ε	$\{oldsymbol{arepsilon}\}$
•	Ø	Ø
	#	Σ
	@	Σ^*

compound pattern $lpha$	$L(\alpha)$
$oldsymbol{eta}+oldsymbol{\gamma}$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$
$eta\gamma$	$L(\beta)L(\gamma)$
$oldsymbol{eta}^*$	$L(\beta)^*$

- lexical analysis of programs
- scripting languages (Perl, Ruby)

-t---!- --tt---- - / / --\

- search engines (Google Code Search)
- DNA analysis

Definitions

Languages

	atomic pattern α	$L(\alpha)$	
	$\mathbf{a} \in \Sigma$	{a}	
	ε	{ε}	
•	Ø	Ø	
	#	Σ	
	@	Σ^*	

compound pattern $lpha$	$L(\alpha)$
$\beta + \gamma$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$
$eta\gamma$	$L(\beta)L(\gamma)$
$oldsymbol{eta}^*$	$L(\beta)^*$
$oldsymbol{eta}^+$	$L(\beta)^+$

• lexical analysis of programs

search engines (Google Code Search)

scripting languages (Perl, Ruby)

DNA analysis

Definitions

Languages

• pattern is string α that represents set of strings $L(\alpha) \subseteq \Sigma^*$

	atomic pattern α	$L(\alpha)$
	$\mathbf{a} \in \Sigma$	{a}
	ε	$\{oldsymbol{arepsilon}\}$
•	Ø	Ø
	#	Σ
	@	Σ^*

-t---!- --tt---- - / / --\

compound pattern $lpha$	$L(\alpha)$
$oldsymbol{eta}+\gamma$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$
$eta\gamma$	$L(\beta)L(\gamma)$
$oldsymbol{eta}^*$	$L(\beta)^*$
$oldsymbol{eta}^+$	$L(\beta)^+$
~ β	$\sim L(\beta) = \Sigma^* - L(\beta)$

lexical analysis of programs

• search engines (Google Code Search)

scripting languages (Perl, Ruby)

DNA analysis

Definitions

Languages

• pattern is string α that represents set of strings $L(\alpha) \subseteq \Sigma^*$

	atomic pattern $lpha$	$L(\alpha)$
	$\mathbf{a} \in \Sigma$	{a}
	ε	$\{\varepsilon\}$
•	Ø	Ø
	#	Σ
	@	Σ^*

С	ompound pattern $lpha$	$L(\alpha)$
β	$r^2 + \gamma$	$L(\beta) \cup L(\gamma)$
β	$\cap \gamma$	$L(\beta) \cap L(\gamma)$
β	γ	$L(\beta)L(\gamma)$
β	*	$L(\beta)^*$
β	+	$L(\beta)^+$
~	β	$\sim L(\beta) = \Sigma^* - L(\beta)$

• string $x \in \Sigma^*$ matches pattern α if $x \in L(\alpha)$

Example	
pattern	matched string
@a@a@a@	strings containing at least 3 occurrences of a

Example	
pattern	matched string
@a@a@a@	strings containing at least 3 occurrences of a
@ a @ b @	strings containing a followed later by b

Example		
pattern	matched string	
@a@a@a@	strings containing at least 3 occurrences of a	
@ a @ b @	strings containing a followed later by b	
#∩ ~ a	single letters except a	

Example	
pattern	matched string
@ a @ a @ a @	strings containing at least 3 occurrences of a
@ a @ b @	strings containing a followed later by b
#∩ ~ a	single letters except a
(#∩ ~ a)*	strings without a

Languages 0000

Languages 0000

$$\varepsilon$$
 \equiv $\sim (\#@) \equiv \emptyset^*$

Languages 0000

Languages 0000

$$\alpha^+ \equiv \alpha \alpha^*$$

Languages 0000

$$\boldsymbol{\varepsilon}$$
 \equiv $\sim (\#@) \equiv \boldsymbol{\mathcal{O}}^*$ \equiv $\#^*$

$$\alpha^+ \equiv \alpha \alpha^*$$

$$\# \equiv a_1 \dots a_n$$

Languages 0000

$$\begin{array}{lll} \boldsymbol{\varepsilon} & \equiv & \boldsymbol{\sim} (\# @) \equiv \boldsymbol{\varnothing}^* \\ @ & \equiv & \#^* \\ \alpha^+ & \equiv & \alpha \alpha^* \\ \# & \equiv & a_1 \dots a_n \\ \alpha \cap \beta & \equiv & \boldsymbol{\sim} (\boldsymbol{\sim} \alpha + \boldsymbol{\sim} \beta) \end{array} \text{ if } \Sigma = \{a_1 \dots a_n\}$$

Languages 0000

$$\begin{array}{lll} \boldsymbol{\varepsilon} & \equiv & \boldsymbol{\sim} (\#@) \equiv \boldsymbol{\varnothing}^* \\ @ & \equiv & \#^* \\ \alpha^+ & \equiv & \alpha\alpha^* \\ \# & \equiv & a_1 \dots a_n & \text{if } \Sigma = \{a_1 \dots a_n\} \\ \alpha \cap \beta & \equiv & \boldsymbol{\sim} (\boldsymbol{\sim} \alpha + \boldsymbol{\sim} \beta) \\ \boldsymbol{\sim} \alpha & \equiv & ? \end{array}$$

Languages 0000

which operators are redundant?

$$\begin{array}{lll} \boldsymbol{\varepsilon} & \equiv & \sim (\#@) \equiv \boldsymbol{\mathcal{Q}}^* \\ @ & \equiv & \#^* \\ \alpha^+ & \equiv & \alpha\alpha^* \\ \# & \equiv & a_1 \dots a_n & \text{if } \Sigma = \{a_1 \dots a_n\} \\ \alpha \cap \beta & \equiv & \sim (\sim \alpha + \sim \beta) \\ \sim \alpha & \equiv & ? \end{array}$$

Notation

$$\alpha \equiv \beta$$
 if $L(\alpha) = L(\beta)$

Definition

regular expressions are restricted patterns which use only

 $\mathbf{a} \in \Sigma$ $\mathbf{\varepsilon}$ $\mathbf{\emptyset}$ $\alpha + \beta$ α^*

αβ

Definition

Languages

regular expressions are restricted patterns which use only

$$\mathbf{a} \in \Sigma$$
 $\mathbf{\varepsilon}$ $\mathbf{\emptyset}$ $\alpha + \beta$ α^* $\alpha\beta$

Remark (Precedence)

Kleene closure * > concatenation > union +

$$ab + c$$
 := $(ab) + c$ = $\{ab, c\}$
 ab^* := $a(b^*)$ = $\{a, ab, abb, ...\}$
 $a + b^*$:= $a + (b^*)$ = $\{a, \varepsilon, b, bb, bbb, ...\}$

Definition

Languages

a language A is called regular if it is generated by a regular expression α . Namely $A=L(\alpha)$

Example

```
\begin{array}{lll} {\bf a} & & = \{a\} \\ {\bf a} + {\bf b} & := & \{a\} \cup \{b\} & = \{a,b\} \\ {\bf a}^* & := & \{\epsilon\} \cup \{a\} \cup \{aa\} \cup \ldots & = \{\epsilon,a,aa,aaa,\ldots\} \\ {\bf ab}^*({\bf c} + {\bf \epsilon}) & = \{a,ac,ab,abc,abb,abbc,\ldots\} \end{array}
```

Theorer

Languages

patterns, and regular expressions and regular languages are equivalent:

Theorem

Languages

patterns, and regular expressions and regular languages are equivalent:

for all $A \subseteq \Sigma^*$ ① A is regular

 \Leftrightarrow 2 $A = L(\alpha)$ for some pattern α

 \iff \blacksquare $A = L(\alpha)$ for some regular expression α

Implementing Regular Expressions

• by finite automaton – "machines" recognize regular languages

Implementing Regular Expressions by finite automaton – "machines" recognize regular languages string FA

Table of Contents

1 Language

- 2 Compilers and Interpreter
- Pattern Matching and Regular Expression
- 4 Finite State Automaton
- **5** Lexe

Languages 0000

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

- deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
 - ① Q: finite set of states

Languages 0000

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

① Q : finite set of states

Languages

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

① Q : finite set of states

② Σ : input alphabet ③ δ : $O \times \Sigma \rightarrow O$: transition function

transition function

$$M = (Q, \Sigma, \delta, s, F)$$

 $M = (Q, \Sigma, \delta, s, F)$

$$\bigcirc Q = \{1, 2, 3, 4\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\Sigma = \{a, b\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

- ① $Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$

- 2 3
- 4

Languages

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

 $\bigcirc Q$: finite set of states

② Σ : input alphabet $\delta: O \times \Sigma \to O$: transition function

6 $\delta: Q \times \Sigma \to Q:$ transition function start state

Languages

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

 $\bigcirc Q$: finite set of states

② Σ : input alphabet $\delta: Q \times \Sigma \to Q$: transition function

 $4s \in Q$: start state

⑤ $F \subseteq Q$: final (accept) states

Finite State Automaton

00000000000000000

Example (DFAs → Regular Sets)

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$

- 2 3
- 4

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$

4 s = 1

- 4

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$

. 2 1

2 2 3

4 s = 1

3 4

6 $F = \{4\}$

4 4 4

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$

2 3

4 s = 1

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

2 3

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$

- 2 2 3 4
- s = 1 $F = \{4\}$

4 4 4

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- 2 3
- **4** s = 1

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$

- 2 3 **4** s = 1
- **6** $F = \{4\}$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

2 3

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

2 3

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

2 3

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

2 3

Finite State Automaton

00000000000000000

Example (DFAs → Regular Sets)

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

2 3

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

2 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- 2 3

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

2 3

6 $F = \{4\}$

22/38

$$M = (Q, \Sigma, \delta, s, F)$$

Languages 0000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

2 3

6 $F = \{4\}$

22/38

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

- - 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3
- 4

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

- 3

 $M = (Q, \Sigma, \delta, s, F)$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3
- 4

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

- 3

Finite State Automaton

00000000000000000

Example (DFAs → Regular Sets)

 $M = (Q, \Sigma, \delta, s, F)$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3
- 4

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3
- 4

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3
- 4

- 3

Definitions

Languages

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

① Q : finite set of states

 \bigcirc Σ : input alphabet \bigcirc $\delta: O \times \Sigma \rightarrow O$: transition function

⑤ $F \subseteq Q$: final (accept) states

• $\hat{\delta}$: $Q \times \Sigma^* \to Q$ is inductively defined by

 $\widehat{\delta}(q, \varepsilon) := q$ $\widehat{\delta}(q, xa) := \delta(\widehat{\delta}(q, x), a)$

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

$$\delta(\widehat{\delta}(q_0,abbaa),b)$$

first recursive call

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

$$\delta(\widehat{\delta}(q_0, abbaa), b)$$

 $\delta(\delta(\widehat{\delta}(q_0, abba), a), b)$

first recursive call second recursive call

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

 $\begin{array}{l} \delta(\widehat{\delta}(q_0,abbaa),b) \\ \delta(\delta(\widehat{\delta}(q_0,abba),a),b) \\ \delta(\delta(\delta(\widehat{\delta}(q_0,abb),a),a),b) \end{array}$

first recursive call second recursive call third recursive call

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

$$\begin{split} &\delta(\widehat{\delta}(q_0,abbaa),b)\\ &\delta(\delta(\widehat{\delta}(q_0,abba),a),b)\\ &\delta(\delta(\delta(\widehat{\delta}(q_0,abb),a),a),b)\\ &\delta(\delta(\delta(\widehat{\delta}(q_0,abb),a),a),b), \end{split}$$

first recursive call second recursive call third recursive call fourth recursive call

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

$$\begin{split} &\delta(\widehat{\delta}(q_0,abbaa),b) \\ &\delta(\delta(\widehat{\delta}(q_0,abba),a),b) \\ &\delta(\delta(\delta(\widehat{\delta}(q_0,abb),a),a),b) \\ &\delta(\delta(\delta(\widehat{\delta}(q_0,abb),a),a),b) \\ &\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b) \\ &\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,a),b),b),a),a),b) \end{split}$$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

$$\begin{split} &\delta(\widehat{\delta}(q_0,abbaa),b) \\ &\delta(\delta(\widehat{\delta}(q_0,abba),a),b) \\ &\delta(\delta(\delta\widehat{\delta}(q_0,abb),a),a),b) \\ &\delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b) \\ &\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b) \\ &\delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,a),b),b),a),a),b)) \\ &\delta(\delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,\epsilon),a),b),b),a),a),b)) \end{split}$$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

$$\begin{split} &\delta(\widehat{\delta}(q_0,abbaa),b) \\ &\delta(\delta(\widehat{\delta}(q_0,abba),a),b) \\ &\delta(\delta(\delta(\widehat{\delta}(q_0,abb),a),a),b) \\ &\delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b) \\ &\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b) \\ &\delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,a),b),b),a),a),b) \\ &\delta(\delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,\epsilon),a),b),b),a),a),b) \\ &\delta(\delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,a),b),b),a),a),b) \end{split}$$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

$$\begin{split} &\delta(\widehat{\delta}(q_0,abbaa),b)\\ &\delta(\delta(\widehat{\delta}(q_0,abba),a),b)\\ &\delta(\delta(\delta(\widehat{\delta}(q_0,abb),a),a),b)\\ &\delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\widehat{\delta}(\widehat{d}(q_0,ab),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\widehat{\delta}(\widehat{d}(q_0,a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,\epsilon),a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(\delta(q_0,\epsilon),a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(q_0,a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(q_0,a),b),b),a),a),b) \end{split}$$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

assuming $\delta(q_0,a)=q_1$

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

$$\begin{split} &\delta(\widehat{\delta}(q_0,abbaa),b)\\ &\delta(\delta(\widehat{\delta}(q_0,abba),a),b)\\ &\delta(\delta(\delta(\widehat{\delta}(q_0,abb),a),a),b)\\ &\delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\widehat{\delta}(\widehat{\delta}(q_0,a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,\epsilon),a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(\delta(q_0,\epsilon),a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(q_0,a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(q_0,a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(q_0,b),a),a),b) \end{split}$$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

assuming $\delta(q_0,a)=q_1$ assuming $\delta(q_1,b)=q_2$

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

$$\begin{split} &\delta(\widehat{\delta}(q_0,abbaa),b)\\ &\delta(\delta(\widehat{\delta}(q_0,abba),a),b)\\ &\delta(\delta(\delta(\widehat{\delta}(q_0,abb),a),a),b)\\ &\delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,e),a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(\delta(q_0,a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(q_0,a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(q_0,a),b),a),a),b)\\ &\delta(\delta(\delta(\delta(q_0,a),a),a),b)\\ &\delta(\delta(\delta(\delta(q_0,a),a),a),b)\\ &\delta(\delta(\delta(q_0,a),a),a),b)\\ &\delta(\delta(\delta(q_0,a),a),a),b) \end{split}$$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

assuming $\delta(q_0,a)=q_1$ assuming $\delta(q_1,b)=q_2$ assuming $\delta(q_2,b)=q_3$

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

$$\begin{split} \delta(\widehat{\delta}(q_0,abbaa),b) \\ \delta(\delta(\widehat{\delta}(q_0,abba),a),b) \\ \delta(\delta(\delta(\widehat{\delta}(q_0,abb),a),a),b) \\ \delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b) \\ \delta(\delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b) \\ \delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,a),b),b),a),a),b) \\ \delta(\delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,\epsilon),a),b),b),a),a),b) \\ \delta(\delta(\delta(\delta(\delta(\delta(q_0,\epsilon),a),b),b),a),a),b) \\ \delta(\delta(\delta(\delta(\delta(q_1,b),b),a),a),b) \\ \delta(\delta(\delta(\delta(\delta(q_1,b),b),a),a),b) \\ \delta(\delta(\delta(\delta(q_3,a),a),b) \\ \delta(\delta(\delta(q_4,a),b) \\ \delta(\delta(q_4,a),b) \end{split}$$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

assuming $\delta(q_0,a)=q_1$ assuming $\delta(q_1,b)=q_2$ assuming $\delta(q_2,b)=q_3$ assuming $\delta(q_3,a)=q_4$

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

$$\begin{split} &\delta(\widehat{\delta}(q_0,abbaa),b)\\ &\delta(\widehat{\delta}(q_0,abbaa),a),b)\\ &\delta(\delta(\delta(q_0,abba),a),b)\\ &\delta(\delta(\delta(\widehat{\delta}(q_0,abb),a),a),b)\\ &\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,\epsilon),a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(\delta(q_0,\epsilon),a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(q_1,b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(q_1,b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(q_2,b),a),a),b)\\ &\delta(\delta(\delta(q_4,a),b)\\ &\delta(q_5,b) \end{split}$$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

assuming $\delta(q_0,a)=q_1$ assuming $\delta(q_1,b)=q_2$ assuming $\delta(q_2,b)=q_3$ assuming $\delta(q_3,a)=q_4$ assuming $\delta(q_4,a)=q_5$

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

 $\delta(\widehat{\delta}(a_0, abbaa), b)$ $\delta(\delta(\widehat{\delta}(q_0, abba), a), b)$ $\delta(\delta(\delta(\widehat{\delta}(q_0,abb),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(g_0,ab),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(g_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(a_0, \varepsilon), a), b), b), a), a), b))$ $\delta(\delta(\delta(\delta(\delta(\delta(q_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(q_1,b),b),a),a),b)$ $\delta(\delta(\delta(\delta(q_2,b),a),a),b)$ $\delta(\delta(\delta(q_3,a),a),b)$ $\delta(\delta(q_4,a),b)$ $\delta(q_5, b)$ 96

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

assuming $\delta(q_0,a)=q_1$ assuming $\delta(q_1,b)=q_2$ assuming $\delta(q_2,b)=q_3$ assuming $\delta(q_3,a)=q_4$ assuming $\delta(q_4,a)=q_5$ assuming $\delta(q_5,b)=q_6$

Definitions

Languages

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

 $\bigcirc Q$: finite set of states

 \bigcirc Σ : input alphabet \bigcirc $\delta: O \times \Sigma \rightarrow O$: transition function

 $\triangle s \in O$: start state

⑤ $F \subseteq Q$: final (accept) states

• $\hat{\delta}: Q \times \Sigma^* \to Q$ is inductively defined by

 $\widehat{\delta}(q, \varepsilon) := q$ $\widehat{\delta}(q, xa) := \delta(\widehat{\delta}(q, x), a)$

• string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s, x) \in F$

Finite State Automaton

Definitions

Languages

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

① Q: finite set of states

 $\bigcirc \Sigma$: input alphabet

6 $\delta: Q \times \Sigma \to Q:$ transition function $A \in O:$ start state

⑤ F ⊆ Q: final (accept) states

• $\hat{\delta}: O \times \Sigma^* \to O$ is inductively defined by

$$\widehat{\delta}(q, \varepsilon) := q$$
 $\widehat{\delta}(q, xa) := \delta(\widehat{\delta}(q, x), a)$

• string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s, x) \in F$

• string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s, x) \notin F$

Finite State Automaton

00000000000000000

Example (DFAs → Regular Sets)

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

- $\in L(M)$
- - $\notin L(M)$
- 2 3

Definitions

Languages

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

① Q : finite set of states

 \bigcirc Σ : input alphabet \bigcirc $\delta: O \times \Sigma \rightarrow O$: transition function

6 $\delta: Q \times \Sigma \rightarrow Q:$ transition func $A : S \in O:$ start state

⑤ $F \subseteq Q$: final (accept) states

• $\hat{\delta}$: $Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q, \varepsilon) := q$$
 $\widehat{\delta}(q, xa) := \delta(\widehat{\delta}(q, x), a)$

• string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s, x) \in F$

• string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s, x) \notin F$

• language accepted by M is given by $L(M) := \{x \mid \widehat{\delta}(s, x) \in F\}$

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

- $\in L(M)$ а
- $\notin L(M)$
- 3
 - $L(M) := \{x \mid$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

Pattern Matching and Regular Expressions

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **⑤** $F = \{4\}$

- - 2 3

 - 4

- $\in L(M)$
- - $\notin L(M)$
- 3

 $L(M) := \{x \mid x \text{ contains } aba \text{ as substring}\}$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\Sigma = \{a, b\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\Sigma = \{a, b\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

- **(1)** Q =
- $\Sigma = \{a, b\}$

$$M = (Q, \Sigma, \delta, s, F)$$

- **1** 0 =
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\mathbf{A} s =$

 $M = (Q, \Sigma, \delta, s, F)$

- **0** 0 =
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- \bigcirc F =

 $M = (Q, \Sigma, \delta, s, F)$

 $M \text{ start} \rightarrow 1$

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- \bigcirc F =

 $M = (Q, \Sigma, \delta, s, F)$

 $M \text{ start} \longrightarrow 1$

2

$$\bigcirc Q =$$

$$2 \Sigma = \{a, b\}$$

$$\triangle s =$$

$$\bigcirc$$
 $F =$

 $M = (Q, \Sigma, \delta, s, F)$

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- F =

 $M = (Q, \Sigma, \delta, s, F)$

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- F =

 $M = (Q, \Sigma, \delta, s, F)$

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- F =

 $M = (Q, \Sigma, \delta, s, F)$

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- F =

 $M = (Q, \Sigma, \delta, s, F)$

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- F =

 $M = (Q, \Sigma, \delta, s, F)$

$$\bigcirc Q = \{1, 2\}$$

②
$$\Sigma = \{a, b\}$$

③ $\delta : Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

⑤
$$F = \{1\}$$

 $M = (Q, \Sigma, \delta, s, F)$

a

b

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

6
$$F = \{1\}$$

b

Example (Regular Language → DFA)

$$M = (Q, \Sigma, \delta, s, F)$$

а

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\begin{array}{c|cccc}
\hline
\bullet & \Sigma = \{a,b\} \\
\hline
\bullet & \delta : Q \times \Sigma \to Q \\
\hline
\bullet & s = 1 \\
\hline
\bullet & s = 2
\end{array}$$

6
$$F = \{1\}$$

 $M = (Q, \Sigma, \delta, s, F)$

b

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\begin{array}{c|cccc}
\bullet & \bullet & \bullet \\
\bullet & \delta : Q \times \Sigma \to Q & & 1 & 1 \\
\bullet & \bullet & \bullet & & & \\
\bullet & \bullet & \bullet & & & \\
\bullet & \bullet & \bullet & & & \\
\bullet & \bullet & \bullet & & & \\
\bullet & \bullet & \bullet & & & & \\
\bullet & \bullet & \bullet & & & & \\
\bullet & \bullet & \bullet & & & & \\
\bullet & \bullet & \bullet & & & & \\
\bullet & \bullet & \bullet & & & & \\
\bullet & \bullet & \bullet & & & & \\
\bullet & \bullet & \bullet & & & & \\
\bullet & \bullet & \bullet & & & & \\
\bullet & \bullet & \bullet & & & & \\
\bullet & \bullet & \bullet & & & & \\
\bullet & \bullet & \bullet & & & & \\
\bullet & \bullet & \bullet & & & & \\
\bullet & \bullet & \bullet & \bullet & & & \\
\bullet & \bullet & \bullet & \bullet & & & \\
\bullet & \bullet & \bullet & \bullet & & & \\
\bullet & \bullet & \bullet & \bullet & & & \\
\bullet & \bullet & \bullet & \bullet & & & \\
\bullet & \bullet & \bullet & \bullet & & & \\
\bullet & \bullet & \bullet & \bullet & & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet$$

4
$$s = 1$$

6
$$F = \{1\}$$

$$L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$$

 $M = (Q, \Sigma, \delta, s, F)$

a

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

⑤
$$F = \{1\}$$

b

 $M = (Q, \Sigma, \delta, s, F)$

a

b

b

$$\bigcirc Q = \{1, 2\}$$

②
$$\Sigma = \{a, b\}$$

③ $\delta : Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

⑤
$$F = \{1\}$$

 $M = (Q, \Sigma, \delta, s, F)$

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

⑤
$$F = \{1\}$$

a

b

 $M = (Q, \Sigma, \delta, s, F)$

a

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

b

⑤
$$F = \{1\}$$

 $M = (Q, \Sigma, \delta, s, F)$

a

b

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to 0$$

$$\delta: Q \times \Sigma \to 0$$

⑤
$$F = \{1\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

a

b

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

⑤
$$F = \{1\}$$

$$L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$$

 $M = (Q, \Sigma, \delta, s, F)$

a

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\begin{array}{ccc} \text{ } & \delta: Q \times \Sigma \to Q & \\ \text{ } & 1 & \\ \text{ } & 2 & \\ \end{array}$$

6
$$F = \{1\}$$

b

b

 $M = (Q, \Sigma, \delta, s, F)$

a

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$0: Q \times$$

6
$$F = \{1\}$$

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

b

 $M = (Q, \Sigma, \delta, s, F)$

a

b

b

$$\bigcirc Q = \{1, 2\}$$

②
$$\Sigma = \{a, b\}$$

6
$$F = \{1\}$$

$$s = 1$$

 $F = \{1\}$

 $M = (Q, \Sigma, \delta, s, F)$

a

b

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{1\}$$

$$L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

a

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

⑤
$$F = \{1\}$$

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

а

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

$$F = \{1\}$$

b

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

а

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

6
$$F = \{1\}$$

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

а

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

⑤
$$F = \{1\}$$

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

 $\in L(M)$

Example (Regular Language → DFA)

 $M = (Q, \Sigma, \delta, s, F)$

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

⑤
$$F = \{1\}$$

$$L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$$

b

Finite State Automaton

00000000000000000

Example (Regular Language → DFA)

 $M = (Q, \Sigma, \delta, s, F)$

а

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

6
$$F = \{1\}$$

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

а

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

6
$$F = \{1\}$$

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

а

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

$$F = \{1\}$$

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

 $\in L(M)$

Finite State Automaton

00000000000000000

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

6
$$F = \{1\}$$

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

⑤
$$F = \{1\}$$

а

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

 $M = (Q, \Sigma, \delta, s, F)$

а

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

⑤
$$F = \{1\}$$

b

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

а

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

6
$$F = \{1\}$$

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

 $M = (Q, \Sigma, \delta, s, F)$

Languages

а

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{1\}$$

b

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\Sigma = \{a, b\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc O =$$

$$\ \ \ \Sigma = \{a,b\}$$

$$M=(Q,\Sigma,\delta,s,F)$$

$$\ \ \Sigma = \{a,b\}$$

$$\delta: Q \times \Sigma \to Q$$

$$M = (Q, \Sigma, \delta, s, F)$$

- **(1)** Q =
- $\Sigma = \{a, b\}$
- $\bigcirc s =$

$$M = (Q, \Sigma, \delta, s, F)$$

- **0** 0 =
- $\Sigma = \{a, b\}$
- $\mathbf{a} s =$
- $\bigcirc F =$

$$M = (Q, \Sigma, \delta, s, F)$$

$$M \text{ start} \longrightarrow 1$$

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- $\mathbf{a} s =$
- \bigcirc F =

$$M = (Q, \Sigma, \delta, s, F)$$

$$M \operatorname{start} \longrightarrow 1$$
 2

$$\bigcirc Q =$$

$$\mathbf{a} s =$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$M \text{ start} \longrightarrow 1$$
 $\longrightarrow 2$

$$\bigcirc Q =$$

$$\Sigma = \{a, b\}$$

$$\mathbf{0}$$
 $s =$

$$\bigcirc$$
 $F =$

$$M = (Q, \Sigma, \delta, s, F)$$

$$M \text{ start} \longrightarrow 1 \longrightarrow 2$$
 3

$$\bigcirc Q =$$

$$\Sigma = \{a, b\}$$

$$\bigcirc s =$$

$$\bigcirc F =$$

$$M = (Q, \Sigma, \delta, s, F)$$

- **(1)** *Q* =
- $\Sigma = \{a, b\}$
- $\triangle s =$
- F =

$$M = (Q, \Sigma, \delta, s, F)$$

- **(1)** *Q* =
- $\Sigma = \{a, b\}$
- $\triangle s =$
- **⑤** *F* =

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- $\bigcirc s =$
- **⑤** *F* =

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- $\bigcirc s =$
- F =

$$M = (Q, \Sigma, \delta, s, F)$$

- **(1)** *Q* =
- $\Sigma = \{a, b\}$
- $\mathbf{0}$ s =
- F =

 $M = (Q, \Sigma, \delta, s, F)$

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

$$5 = 1$$

 $5 = {3}$

	_	
•	1	- 3
.	_	_

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

$$5 = \{3\}$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

6
$$F = \{3\}$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$0 = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

5
$$F = \{3\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

6
$$F = \{3\}$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$0 = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{3\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

6
$$F = \{3\}$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$0 = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

$$5 = \{3\}$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$0 = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{3\}$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$0 = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

$$5 = \{3\}$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$0 = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

$$F = \{3\}$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$0 = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

$$5 = 1$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

$$5 = \{3\}$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

6
$$F = \{3\}$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

 $\in L(M)$

 $\in L(M)$

Example (Regular Language → DFA)

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{3\}$$

δ	а	b
1	1	2
2	1	3
3	3	3

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

6
$$F = \{3\}$$

δ	a	b
1	1	2
2	1	3

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

 $\in L(M)$

 $\in L(M)$

2

Example (Regular Language → DFA)

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

Pattern Matching and Regular Expressions

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{3\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{3\}$$

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

6
$$F = \{3\}$$

3

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{3\}$$

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{3\}$$

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

Pattern Matching and Regular Expressions

$$0 = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{3\}$$

b a b b
$$a \in L(M)$$

 $\in L(M)$

2

Example (Regular Language → DFA)

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

Pattern Matching and Regular Expressions

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

6
$$F = \{3\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

6
$$F = \{3\}$$

3

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{3\}$$

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$\bigcirc O = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

$$F = \{3\}$$

3

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

Languages

$$0 = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

6
$$F = \{3\}$$

δ	а	b
1	1	2
2	1	3

b a b b a
$$\in L(M)$$

1	2	1	2	3	3

a a b a b
$$\notin L(M)$$

2

Definitions

Languages 0000

• nondeterministic finite automaton (NFA) is quintuple $N=(Q,\Sigma,\Delta,S,F)$ with

Languages 0000

• nondeterministic finite automaton (NFA) is quintuple $N=(Q,\Sigma,\Delta,S,F)$ with $\bigcirc Q:$ finite set of states

Languages 0000

• nondeterministic finite automaton (NFA) is quintuple $N=(Q,\Sigma,\Delta,S,F)$ with

① Q: ② Σ: finite set of states input alphabet

Languages 0000

• nondeterministic finite automaton (NFA) is quintuple $N = (Q, \Sigma, \Delta, S, F)$ with

① Q: finite set of states ② Σ : input alphabet

⑤ $\Delta: Q \times \Sigma \rightarrow 2^Q:$ transition function

Languages 0000

 nondeterministic finite quintuple $(Q, \Sigma, \Delta, S, F)$ with automaton (NFA) is

① Q: finite set of states Σ : input alphabet

 $\triangle : Q \times \Sigma \rightarrow 2^Q :$ transition function $49.5 \subseteq Q$:

Languages

 nondeterministic $(Q, \Sigma, \Delta, S, F)$ finite automaton (NFA) is quintuple with

① Q: finite set of states Σ : input alphabet

 $\triangle : Q \times \Sigma \rightarrow 2^Q :$ transition function

4 5 ⊆ *Q* : set of start states \bigcirc $F \subseteq Q$: final (accept) states

Example

Languages 0000

Exampl

Languages 0000

①
$$Q = \{1, 2, 3\}$$

Example

Languages 0000

①
$$Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

Example

Languages 0000

- ① $Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$

Exampl

Languages 0000

- ① $Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$

Δ	a	b
1	{1,2}	{1}
2	{3}	{1,3}
3	{3}	Ø

Finite State Automaton

000000000000000000

Example

Languages 0000

①
$$Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\P$$
 $S = \{1\}$

Δ	a	b
1	{1,2}	{1}
2	{3}	{1,3}
3	{3}	Ø

 $N = (Q, \Sigma, \Delta, S, F)$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\P$$
 $S = \{1\}$

6
$$F = \{3\}$$

$$\begin{array}{c|cccc} \Delta & {\sf a} & {\sf b} \\ \hline 1 & \{1,2\} & \{1\} \\ 2 & \{3\} & \{1,3\} \\ 3 & \{3\} & \varnothing \\ \end{array}$$

Ø

{3}

Languages

• nondeterministic finite automaton (NFA) is quintuple $N = (Q, \Sigma, \Delta, S, F)$ with

1 Q: finite set of states Q: input alphabet

S $\Delta: O \times \Sigma \rightarrow 2^{Q}$: transition function

 $4 \le Q$: set of start states

⑤ $F \subseteq Q$: final (accept) states

• $\widehat{\Delta} : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}(A, \varepsilon) := A$$
 $\widehat{\Delta}(A, xa) := \bigcup_{q \in \widehat{\Delta}(A, x)} \Delta(q, a)$

Languages

• nondeterministic finite automaton (NFA) is quintuple $N = (Q, \Sigma, \Delta, S, F)$ with

1 Q: finite set of states Q: input alphabet

⑤ $\Delta: O \times \Sigma \rightarrow 2^{Q}:$ transition function

 \P $S \subseteq Q$: set of start states

⑤ $F \subseteq Q$: final (accept) states

• $\widehat{\Delta} : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}(A, \varepsilon) := A$$
 $\widehat{\Delta}(A, xa) := \bigcup_{q \in \widehat{\Delta}(A, x)} \Delta(q, a)$

• string $x \in \Sigma^*$ is accepted by N if $\widehat{\Delta}(S, x) \cap F \neq \emptyset$

- $oldsymbol{0}$ ever set accepted by NFA is regular (procedure: subset construction NFA ightarrow DFA)
- 2 every DFA M minimizes into a DFA M' such that L(M) = L(M') (unless M is minimal)

- $oldsymbol{0}$ ever set accepted by NFA is regular (procedure: subset construction NFA ightarrow DFA)
- 2 every DFA M minimizes into a DFA M' such that L(M) = L(M') (unless M is minimal)

Languages

- ever set accepted by NFA is regular (procedure: subset construction NFA → DFA)
- 2 every DFA M minimizes into a DFA M' such that L(M) = L(M') (unless M is minimal)

Theoren

regular languages are closed under

union

Languages

- ever set accepted by NFA is regular (procedure: subset construction NFA → DFA)
- every DFA M minimizes into a DFA M' such that L(M) = L(M') (unless M is minimal)

Theoren

- union
- intersection

Languages

- ever set accepted by NFA is regular (procedure: subset construction NFA → DFA)
- 2 every DFA M minimizes into a DFA M' such that L(M) = L(M') (unless M is minimal)

Theoren

- union
- intersection
- complementation

Languages

- ever set accepted by NFA is regular (procedure: subset construction NFA → DFA)
- 2 every DFA M minimizes into a DFA M' such that L(M) = L(M') (unless M is minimal)

Theoren

- union
- intersection
- complementation
- concatenation

Theorem

Languages

- ever set accepted by NFA is regular (procedure: subset construction NFA → DFA)
- 2 every DFA M minimizes into a DFA M' such that L(M) = L(M') (unless M is minimal)

Theorem

- union
- intersection
- complementation
- concatenation
- asterate

Languages

- ever set accepted by NFA is regular (procedure: subset construction NFA → DFA)
- 2 every DFA M minimizes into a DFA M' such that L(M) = L(M') (unless M is minimal)

Theorem

- union
- intersection
- complementation
- concatenation
- asterate
- homomorphic image and preimage

Table of Contents

1 Language

- 2 Compilers and Interpreter
- Pattern Matching and Regular Expression
- 4 Finite State Automator
- 5 Lexer

Languages

translator tool : strings (programs) → list of tokens (or error)

• simulate finite state automaton to create tokens

Languages

- simulate finite state automaton to create tokens
- lexer generators

Languages

- simulate finite state automaton to create tokens
- lexer generators
 - Alex for Haskell

Languages

- simulate finite state automaton to create tokens
- lexer generators
 - Alex for Haskell
 - JLex for Java

Languages

- simulate finite state automaton to create tokens
- lexer generators
 - Alex for Haskell
 - JLex for Java
 - Flex for C

Languages

- simulate finite state automaton to create tokens
- lexer generators
 - Alex for Haskell
 - JLex for Java
 - Flex for C
 - ocamllex for OCaml

ocamllex

Languages

• generates lexers in compatible with OCaml programs

input : list of *lexing rules* in the form of *regular expressions* with corresponding *tokens* output : a lexer as a DFA accepting the language generated by the input expressions

ocamllex

Languages

• generates lexers in compatible with OCaml programs

input : list of *lexing rules* in the form of *regular expressions* with corresponding *tokens* output : a lexer as a DFA accepting the language generated by the input expressions

recognizes patterns specified by the rules, associates the corresponding tokens

```
ocamllex (Specifications)
{ header }
rule entrypoint = parse
    regexp { action }
    regexp { action }
    . . .
{ trailer }
```

```
ocamllex (Specifications)
{ header }
rule entrypoint = parse
    regexp { action }
    regexp { action }
    . . .
{ trailer }
where
     actions
              are OCaml expressions of the same type
```

```
ocamllex (Specifications)
{ header }
rule entrypoint = parse
    regexp { action }
    regexp { action }
    . . .
{ trailer }
where
     actions
              are OCaml expressions of the same type
              define functions used in tokenization
     header
                                                       (before tokenization)
```

```
ocamllex (Specifications)
{ header }
rule entrypoint = parse
    regexp { action }
    regexp { action }
     . . .
{ trailer }
where
     actions
              are OCaml expressions of the same type
     header
              define functions used in tokenization
                                                        (before tokenization)
     trailer
              define functions using tokenization
                                                        (after tokenization)
```

```
Example (ocamllex: Balanced Parentheses – Header)
(* lexer.mll *)
 open Lexing
 open Printf
 exception Bad char of char
 type token =
     BLANK: token
     LPAREN: token
     RPAREN: token
     EOL
          : token
     IDENT : string → token
     NUM
             : int
                     → token
  let rec token2String (t: token): string =
   match t with
     BLANK → "BLANK"
     LPAREN → "LPAREN"
     RPAREN → "RPAREN"
     FOL → "FOL"
     IDENT s \rightarrow "IDENT=[" ^ s ^ "]"
     NUM x \rightarrow "NUM=" ^ string of int x ^ "]"
  let printToken (t: token): unit = printf "%s." (token2String t)
```

Finite State Automaton

```
Example (ocamllex: Balanced Parentheses – Rules)
```

```
rule tokenize = parse
                                          BLANK }
                                          LPAREN }
                                          RPAREN }
                                          IDENT s }
     '0'-'9' ]+ as i
                                          NUM (int of string i) }
                                          EOL }
   eof
  _ as c
                                          raise (Bad char c) }
```

Example (ocamllex: Balanced Parentheses – Trailer)

```
{
  let rec getTokensFromBuffer (b: lexbuf): token list =
    let tkn = tokenize b in
    match tkn with
    | EOL → [EOL]
    | t → t :: getTokensFromBuffer b

let getTokensFromString (s: string): token list =
    getTokensFromBuffer (from_string s)
}
```

Example (ocamllex: Balanced Parentheses – Trailer)

```
let rec getTokensFromBuffer (b: lexbuf): token list =
 let tkn = tokenize b in
 match tkn with
   EOL → [EOL]
   t \rightarrow t :: qetTokensFromBuffer b
let getTokensFromString (s: string): token list =
 getTokensFromBuffer (from string s)
```

Remark (in OCaml "Lexing" library)

where

Languages

lexbuf input stream that delivers characters one at a time from string: string → lexbuf function converts the input string into a stream

Example (ocamllex: Balanced Parentheses – Main)

```
(* main.ml *)
open Printf
open Lexer
let rec tokenList2String (I: token list): string =
 match I with
  | x::xs → token2String x ^ "_" ^ tokenList2String xs
let printTokenList (I: token list): unit =
  printf "%s\n" (tokenList2String I)
let main: unit =
  let tl = getTokensFromString "[][][[[2023][burak]]" in
  printTokenList tl:
```


Thanks! & Questions?