

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Yukio HOSAKA, et al.

GAU:

SERIAL NO: New Application

EXAMINER:

FILED: Herewith

FOR: COMPOSITION FOR POLISHING PAD AND POLISHING PAD THEREWITH

REQUEST FOR PRIORITY

COMMISSIONER FOR PATENTS
ALEXANDRIA, VIRGINIA 22313

SIR:

Full benefit of the filing date of U.S. Application Serial Number , filed , is claimed pursuant to the provisions of 35 U.S.C. §120.

Full benefit of the filing date(s) of U.S. Provisional Application(s) is claimed pursuant to the provisions of 35 U.S.C. §119(e): Application No. Date Filed

Applicants claim any right to priority from any earlier filed applications to which they may be entitled pursuant to the provisions of 35 U.S.C. §119, as noted below.

In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:

<u>COUNTRY</u>	<u>APPLICATION NUMBER</u>	<u>MONTH/DAY/YEAR</u>
Japan	2002-245829	August 26, 2002
Japan	2002-245830	August 26, 2002

Certified copies of the corresponding Convention Application(s)

are submitted herewith

will be submitted prior to payment of the Final Fee

were filed in prior application Serial No. filed

were submitted to the International Bureau in PCT Application Number
Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

(A) Application Serial No.(s) were filed in prior application Serial No. filed ; and

(B) Application Serial No.(s)
 are submitted herewith
 will be submitted prior to payment of the Final Fee

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND,
MAIER & NEUSTADT, P.C.

Norman F. Oblon

Registration No. 24,618

C. Irvin McClelland
Registration Number 21,124

22850

Tel. (703) 413-3000
Fax. (703) 413-2220
(OSMMN 05/03)

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application: 2002年 8月26日

出願番号

Application Number: 特願2002-245829

[ST.10/C]:

[JP2002-245829]

出願人

Applicant(s): ジェイエスアール株式会社

2003年 5月 6日

特許庁長官
Commissioner,
Japan Patent Office

太田 信一郎

出証番号 出証特2003-3032848

【書類名】 特許願
【整理番号】 P2631-9982
【提出日】 平成14年 8月26日
【あて先】 特許庁長官 殿
【国際特許分類】 B24B 37/00
H01L 21/304

【発明者】

【住所又は居所】 東京都中央区築地2丁目11番24号 ジェイエスアール株式会社内

【氏名】 保坂 幸生

【発明者】

【住所又は居所】 東京都中央区築地2丁目11番24号 ジェイエスアール株式会社内

【氏名】 長谷川 亨

【発明者】

【住所又は居所】 東京都中央区築地2丁目11番24号 ジェイエスアール株式会社内

【氏名】 川橋 信夫

【発明者】

【住所又は居所】 東京都中央区築地2丁目11番24号 ジェイエスアール株式会社内

【氏名】 森野 克昭

【特許出願人】

【識別番号】 000004178

【氏名又は名称】 ジェイエスアール株式会社

【代理人】

【識別番号】 100094190

【弁理士】

【氏名又は名称】 小島 清路

【電話番号】 052-682-8361

【選任した代理人】

【識別番号】 100111752

【弁理士】

【氏名又は名称】 谷口 直也

【電話番号】 052-682-8361

【手数料の表示】

【予納台帳番号】 019471

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 9808090

【包括委任状番号】 0103242

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 研磨パッド用組成物及びこれを用いた研磨パッド

【特許請求の範囲】

【請求項1】 非水溶性マトリックスと該非水溶性マトリックス中に分散された水溶性粒子とを含有する研磨パッド用組成物において、該非水溶性マトリックスは架橋エチレン-酢酸ビニル共重合体を含有し且つ架橋1, 2-ポリブタジエンを含有せず、該架橋エチレン-酢酸ビニル共重合体は該非水溶性マトリックス全体を100質量%とした場合に10質量%以上であることを特徴とする研磨パッド用組成物。

【請求項2】 非水溶性マトリックスと該非水溶性マトリックス中に分散された水溶性粒子とを含有する研磨パッド用組成物において、該非水溶性マトリックスは架橋エチレン-酢酸ビニル共重合体と架橋1, 2-ポリブタジエンとを含有し、該架橋エチレン-酢酸ビニル共重合体は該非水溶性マトリックス全体を100質量%とした場合に10質量%以上であり、且つ、該架橋エチレン-酢酸ビニル共重合体は該架橋エチレン-酢酸ビニル共重合体と該架橋1, 2-ポリブタジエンとの合計を100質量%とした場合に50質量%を超えることを特徴とする研磨パッド用組成物。

【請求項3】 未架橋非水溶性マトリックスと該未架橋非水溶性マトリックス中に分散された水溶性粒子とを含有する未架橋研磨パッド用組成物を架橋処理して得られる研磨パッド用組成物であって、該未架橋非水溶性マトリックスは未架橋エチレン-酢酸ビニル共重合体を含有し且つ未架橋1, 2-ポリブタジエンを含有せず、該未架橋エチレン-酢酸ビニル共重合体は該未架橋非水溶性マトリックス全体を100質量%とした場合に10質量%以上であり、且つ、上記架橋処理により該未架橋エチレン-酢酸ビニル共重合体の少なくとも一部を架橋することを特徴とする研磨パッド用組成物。

【請求項4】 未架橋非水溶性マトリックスと該未架橋非水溶性マトリックス中に分散された水溶性粒子とを含有する未架橋研磨パッド用組成物を架橋処理して得られる研磨パッド用組成物であって、該未架橋非水溶性マトリックスは未架橋エチレン-酢酸ビニル共重合体と未架橋1, 2-ポリブタジエンとを含有し

、該未架橋エチレンー酢酸ビニル共重合体は該未架橋非水溶性マトリックス全体を100質量%とした場合に10質量%以上であり、且つ、該未架橋エチレンー酢酸ビニル共重合体は該未架橋1, 2-ポリブタジエンと該未架橋エチレンー酢酸ビニル共重合体との合計を100質量%とした場合に50質量%を超える、且つ、上記架橋処理により該未架橋エチレンー酢酸ビニル共重合体及び該未架橋1, 2-ポリブタジエンの各々の少なくとも一部を架橋することを特徴とする研磨パッド用組成物。

【請求項5】 温度0～80℃の間の縦弾性率の変化量が1000MPa以下である請求項1乃至4のうちのいずれか1項に記載の研磨パッド用組成物。

【請求項6】 請求項1乃至5のうちのいずれか1項に記載の研磨パッド用組成物からなる研磨部を備えることを特徴とする研磨パッド。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、研磨パッド用組成物及びこれを用いた研磨パッドに関する。更に詳しくは、成形性及び耐摩耗性に優れ、更には、縦弾性率の温度依存性が小さい研磨パッド用組成物及びこれを用いた研磨パッドに関する。本発明は、半導体装置の製造において広く利用される。特に半導体ウェハ等の表面の化学機械研磨等において好適である。

【0002】

【従来の技術】

近年、平坦面を形成する方法としてChemical Mechanical Polishing (CMP) が注目されている。CMPでは研磨パッドと被研磨面とを摺動させながら、砥粒が分散された水系分散体であるスラリーを研磨パッド表面に供給し、研磨パッド表面に開口する穴（以下、「ポア」という）にスラリーを滞留させて研磨が行われる。

【0003】

本発明者らは、架橋重合体を含有する研磨パッド用組成物を用いた研磨パッドが優れた性能を発揮できることを見出した。この技術は特開2001-3344

55号公報にて開示されている。そのほか、従来より知られている研磨パッド等に関する技術として、特表平8-500622号公報、特開2000-34416号公報、特開2000-33552号公報及び特開2000-34416号公報等がある。しかし、各種性能の更なる向上を図る必要がある。

【0004】

【発明が解決しようとする課題】

本発明は上記実情に鑑みてなされたものであり、成形性及び耐摩耗性に優れ、更には、縦弾性率の温度依存性が小さい研磨パッド用組成物及びこれを用いた研磨パッドを提供することを目的とする。

【0005】

【課題を解決するための手段】

本発明は、下記(1)～(6)の研磨パッド用組成物及びこれを用いた研磨パッドを提供する。

(1) 非水溶性マトリックスと該非水溶性マトリックス中に分散された水溶性粒子とを含有する研磨パッド用組成物において、該非水溶性マトリックスは架橋エチレン-酢酸ビニル共重合体を含有し且つ架橋1, 2-ポリブタジエンを含有せず、該架橋エチレン-酢酸ビニル共重合体は該非水溶性マトリックス全体を100質量%とした場合に10質量%以上であることを特徴とする研磨パッド用組成物。

(2) 非水溶性マトリックスと該非水溶性マトリックス中に分散された水溶性粒子とを含有する研磨パッド用組成物において、該非水溶性マトリックスは架橋エチレン-酢酸ビニル共重合体と架橋1, 2-ポリブタジエンとを含有し、該架橋エチレン-酢酸ビニル共重合体は該非水溶性マトリックス全体を100質量%とした場合に10質量%以上であり、且つ、該架橋エチレン-酢酸ビニル共重合体は該架橋エチレン-酢酸ビニル共重合体と該架橋1, 2-ポリブタジエンとの合計を100質量%とした場合に50質量%を超えることを特徴とする研磨パッド用組成物。

(3) 未架橋非水溶性マトリックスと該未架橋非水溶性マトリックス中に分散された水溶性粒子とを含有する未架橋研磨パッド用組成物を架橋処理して得られ

る研磨パッド用組成物であって、該未架橋非水溶性マトリックスは未架橋エチレンー酢酸ビニル共重合体を含有し且つ未架橋1, 2-ポリブタジエンを含有せず、該未架橋エチレンー酢酸ビニル共重合体は該未架橋非水溶性マトリックス全体を100質量%とした場合に10質量%以上であり、且つ、上記架橋処理により該未架橋エチレンー酢酸ビニル共重合体の少なくとも一部を架橋することを特徴とする研磨パッド用組成物。

(4) 未架橋非水溶性マトリックスと該未架橋非水溶性マトリックス中に分散された水溶性粒子とを含有する未架橋研磨パッド用組成物を架橋処理して得られる研磨パッド用組成物であって、該未架橋非水溶性マトリックスは未架橋エチレンー酢酸ビニル共重合体と未架橋1, 2-ポリブタジエンとを含有し、該未架橋エチレンー酢酸ビニル共重合体は該未架橋非水溶性マトリックス全体を100質量%とした場合に10質量%以上であり、且つ、該未架橋エチレンー酢酸ビニル共重合体は該未架橋1, 2-ポリブタジエンと該未架橋エチレンー酢酸ビニル共重合体との合計を100質量%とした場合に50質量%を超える、且つ、上記架橋処理により該未架橋エチレンー酢酸ビニル共重合体及び該未架橋1, 2-ポリブタジエンの各々の少なくとも一部を架橋することを特徴とする研磨パッド用組成物。

(5) 温度0～80℃の間の縦弾性率の変化量が1000MPa以下である上記(1)乃至上記(4)のうちのいずれかに記載の研磨パッド用組成物。

(6) 上記(1)乃至上記(5)のうちのいずれかに記載の研磨パッド用組成物からなる研磨部を備えることを特徴とする研磨パッド。

【0006】

【発明の実施の形態】

以下、本発明を詳しく説明する。

〔1〕架橋EVAを含有し、架橋PBDを含有しない研磨パッド用組成物

上記「非水溶性マトリックス」は、後述する研磨パッドの研磨部、更には研磨パッド全体（以下、併せて「研磨部及び研磨パッド」ともいう）を構成する母相である。この非水溶性マトリックスには後述する水溶性粒子が分散されて含有される。非水溶性マトリックスは、その全体を100質量%とした場合に、10質

量%以上の架橋エチレン-酢酸ビニル共重合体（以下、単に「架橋EVA」ともいう）を含有する。また、この水溶性マトリックスは架橋1.2-ポリブタジエン（以下、単に「架橋PBD」ともいう）を含有しない。

【0007】

架橋EVAを含有することにより、（1）優れた成形性が付与される。この成形性とは、成形のし易さ及びハンドリング性等を含むものである。例えば、金型内に非水溶性マトリックスとなる未架橋物を充填し、架橋剤等を用いて金型内で架橋させ、その後、得られた成形体（研磨部及び研磨パッド）を脱型する工程を行う場合がある。この脱型を行う時に成形体が割れたり、欠けたりすることを確実に防止できる。また、（2）優れた耐摩耗性が付与される。このため、長寿命な研磨パッドを得ることができる。

【0008】

更に、（3）縦弾性率の温度依存性が低減される。特に、縦弾性率が温度に対してより緩やかに変化するように改善され、特定の温度範囲で急激に縦弾性率が変化することが抑制できる。温度依存性が低減されることにより研磨時の温度上昇により非水溶性マトリックスが過度に軟化することを防止でき、研磨速度の低下を抑制できる。更に、温度に対してより緩やかに変化することにより軟化具合を予測でき、研磨初期からの研磨性能を保持させ易く、研磨を安定して行うことができる。

【0009】

また、（4）弾性回復力が付与され、研磨時のずり応力による変位を小さく抑えることができる。このため、研磨時及びドレッシング時に非水溶性マトリックスが過度に引き延ばされ塑性変形してポアが埋まることや毛羽立ちが短期間で潰れることを抑制できる。即ち、良好な研磨状態を長く維持でき、ドレッシング時にはポアを効率よく形成できる。また、ドレッシングによって研磨部及び研磨パッドの表面が過度に毛羽立つことも抑制でき、研磨平坦性が阻害されない。

【0010】

架橋EVAの含有量は、非水溶性マトリックス全体を100質量%とした場合に、15質量%以上であることが好ましく、20質量%以上であることがより好

ましく、30質量%以上であることが特に好ましく、更には非水溶性マトリックス全体が架橋EVAからなっていてもよい（架橋EVAが100質量%）。架橋EVAの含有量が10質量%未満であると上記（1）～（4）の効果が十分に発揮され難い場合がある。

【0011】

また、架橋EVAの酢酸ビニル単位の含有量は特に限定されないが、通常、3質量%以上である。3質量%未満では上記（1）～（4）の効果のうち（3）である非水溶性マトリックスの縦弾性率の温度依存性を低減する効果が十分に得られ難くなる。この酢酸ビニル単位の含有量は5～50質量%であることが好ましく、5～30質量%であることがより好ましく、10～30質量%であることが特に好ましい。酢酸ビニル単位の含有量が50質量%を超えると、過架橋となり易く、十分な韌性を保持し難くなる場合がある。

【0012】

更に、架橋EVAは、どのような方法で架橋されたものであってもよい。即ち、例えば、有機過酸化物、硫黄、硫黄化合物等を用いて化学架橋されたものであってもよく、加熱により熱架橋されたものであってもよく、電子線照射等により放射線架橋されたものであってもよく、更にはこれらのうちの2種以上の架橋方法により架橋されたものであってもよい。

【0013】

非水溶性マトリックスは、上記架橋EVA以外にも、架橋EVA及び架橋PBDを除く他の重合体を含有することができる。架橋EVA及び架橋PBDを除く他の重合体としては、熱可塑性樹脂、エラストマー、ゴム及び硬化性樹脂（熱硬化性樹脂、光硬化性樹脂等、熱、光等により、硬化される樹脂及び硬化された樹脂）等を挙げることができる。これらは単独で又は組み合わせて用いることができる。

【0014】

熱可塑性樹脂としては、ポリオレフィン系樹脂（ポリエチレン等、EVAを除く）、アクリロニトリルースチレンーブタジエン共重合体（ABS樹脂等）、ポリスチレン系樹脂、ポリアクリル系樹脂（（メタ）アクリレート系樹脂等）、ビ

ニルエステル系樹脂（EVAを除く）、飽和ポリエステル系樹脂、ポリアミド系樹脂、フッ素樹脂（ポリフッ化ビニリデン等）、ポリカーボネート系樹脂、ポリアセタール系樹脂等を挙げることができる。

【0015】

エラストマーとしては、ポリオレフィン系エラストマー（EVAを除く）、スチレン系エラストマー（スチレン-ブタジエン-スチレン共重合体、その水素添加ブロック共重合体（SEBS）等）、熱可塑性ポリウレタン系エラストマー、熱可塑性ポリエステル系エラストマー、ポリアミド系エラストマー、シリコーン樹脂系エラストマー、フッ素樹脂系エラストマー等を挙げることができる。

【0016】

ゴムとしては、ブタジエン系ゴム（高シスブタジエンゴム、低シスブタジエンゴム等）、イソプレン系ゴム、スチレン-ブタジエン系ゴム、スチレン-イソプレン系ゴム等の共役ジエン系ゴム、アクリルニトリル-ブタジエン系ゴム等のニトリル系ゴム、アクリル系ゴム、エチレン-プロピレン系ゴム、エチレン-プロピレン-ジエン系ゴム等のエチレン- α -オレフィン系ゴム、及び、ブチルゴムやシリコーンゴムやフッ素ゴム等のその他のゴムを挙げることができる。

硬化性樹脂としては、ウレタン系樹脂、エポキシ系樹脂、（メタ）アクリル系樹脂、不飽和ポリエステル系樹脂、ポリウレタン-ウレア系樹脂、ウレア系樹脂、ケイ素系樹脂、フェノール系樹脂等を挙げることができる。

【0017】

また、これらの架橋EVA及び架橋PBDを除く他の重合体は、未架橋重合体であっても、架橋重合体であってもよい。更に、架橋重合体である場合には、架橋EVAと共に架橋されていてもよく、共架橋されていなくてもよい。また、これらの架橋EVA及び架橋PBDを除く他の重合体は、酸無水物基、カルボキシル基、ヒドロキシル基、エポキシ基、アミノ基等により変性された重合体であってもよい。変性により、架橋EVAや、後述する水溶性粒子や、スラリーとの親和性を調節することができる。これらの重合体は1種のみを用いてもよく、2種以上を併用してもよい。

【0018】

上記架橋EVA及び架橋PBDを除く他の重合体の中でも、ポリエチレン樹脂、アクリロニトリルースチレンーブタジエン共重合体、スチレンーブタジエンースチレン共重合体、ポリアクリル系樹脂、ビニルエステル系樹脂、飽和ポリエステル系樹脂、ポリアミド樹脂及びポリアセタール樹脂が好ましい。これらの重合体は未架橋重合体であっても、架橋重合体であってもよいが、架橋重合体であることが好ましい。これらの重合体は、吸水による軟化が少なく、スラリー中に含有される酸やアルカリに対して安定である。これらの重合体は1種のみを用いてもよく、2種以上を併用してもよい。

【0019】

上記「水溶性粒子」は、水系分散体であるスラリーと接触することにより非水溶性マトリックスから脱離するものであり、非水溶性マトリックス中に分散されている。この水溶性粒子が脱離することにより非水溶性マトリックスにはポアが形成される。水溶性粒子の脱離は、スラリー中に含有される水等との接触により溶解することで生じてもよく、この水等を含有して膨潤し、ゲル状となることで生じるものであってもよい。更に、この溶解又は膨潤は水によるものばかりでなく、メタノール等のアルコール系溶剤を含有する水系混合媒体との接触によるものであってもよい。

【0020】

水溶性粒子は、ポアを形成する以外にも、研磨部及び研磨パッドの押し込み硬さを大きくし、押圧による被研磨体の押し込み量を小さくする効果を有する。即ち、例えば、水溶性粒子を含有することにより研磨パッド用組成物のショアD硬度は35以上（より好ましくは50～90、更に好ましくは60～85、通常100以下）にすることができる。ショアD硬度が35以上であると、被研磨体に負荷できる圧力を大きくでき、これに伴い研磨速度を向上させることができる。更に加えて、高い研磨平坦性が得られる。従って、この水溶性粒子は、研磨部及び研磨パッドの十分な押し込み硬さを確保できる中実体であることが特に好ましい。

【0021】

水溶性粒子を構成する水溶性化合物の種類は特に限定されないが、例えば、有

機系水溶性化合物及び無機系水溶性化合物を挙げることができる。有機系水溶性化合物としては、糖類（シクロデキストリン、デキストリン及びでんぶん等の多糖類、乳糖、マンニット等）、セルロース類（ヒドロキシプロピルセルロース、メチルセルロース等）、蛋白質、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸、ポリアクリル酸塩、ポリエチレンオキサイド、水溶性の感光性樹脂、スルホン化ポリイソプレン、スルホン化ポリイソプレン共重合体等を挙げができる。更に、無機系水溶性化合物としては、酢酸カリウム、硝酸カリウム、炭酸カリウム、炭酸水素カリウム、塩化カリウム、臭化カリウム、リン酸カリウム、硝酸マグネシウム等を挙げができる。これらの水溶性化合物は単独又は2種以上を組み合わせて用いることができる。更に、水溶性粒子は、所定の水溶性化合物からなる1種の水溶性粒子であってもよく、異なる水溶性化合物からなる2種以上の水溶性粒子であってもよい。

【0022】

また、水溶性粒子の平均粒径は0.1～500μm（より好ましくは0.5～100μm、更に好ましくは1～50μm）とすることが好ましい。即ち、ポアの大きさは0.1～500μm（より好ましくは0.5～100μm、更に好ましくは1～50μm）であることが好ましい。水溶性粒子の平均粒径が0.1μm未満であると、形成されるポアの大きさが使用する砥粒より小さくなるためスラリーを十分に保持できる研磨部及び研磨パッドが得られ難くなる傾向にある。一方、500μmを超えると、形成されるポアの大きさが過大となり、得られる研磨部及び研磨パッドの機械的強度及び研磨速度が低下し易くなる傾向にある。

【0023】

この水溶性粒子の含有量は、非水溶性マトリックスと水溶性粒子との合計を100体積%とした場合に、水溶性粒子は10～90体積%（より好ましくは12～60体積%、更に好ましくは15～45体積%）であることが好ましい。水溶性粒子の含有量が10体積%未満であると、得られる研磨部及び研磨パッドにおいてポアが十分に形成されない場合があり、研磨速度が低下する場合がある。一方、90体積%を超えて水溶性粒子を含有する場合は、得られる研磨部及び研磨パッドに内包された水溶性粒子が連鎖的に膨潤又は溶解することを十分に防止で

き難くなる傾向にあり、研磨部及び研磨パッドの硬度及び機械的強度を適正な値に保持し難くなる場合がある。

【0024】

また、水溶性粒子は、研磨部及び研磨パッド内において表層に露出した場合にのみ水溶し、研磨部及び研磨パッドの内部では吸湿し、更には膨潤しないことが好ましい。このため水溶性粒子は最外部の少なくとも一部に吸湿を抑制する外殻を備えることができる。この外殻は水溶性粒子に物理的に吸着していても、水溶性粒子と化学結合していても、更にはこの両方により水溶性粒子に接していてもよい。このような外殻を形成する材料としては、エポキシ樹脂、ポリイミド、ポリアミド、ポリシリケート等を挙げることができる。尚、この外殻は水溶性粒子の表面の一部のみに形成されていても十分に上記効果を得ることができる。

【0025】

上記非水溶性マトリックスは、水溶性粒子との親和性並びに非水溶性マトリックス中における水溶性粒子の分散性を制御するため、相溶化剤を含有することができる。相溶化剤としては、酸無水物基、カルボキシル基、ヒドロキシル基、エポキシ基、オキサゾリン基及びアミノ基等により変性された重合体、ブロック共重合体、並びにランダム共重合体、更に、種々のノニオン系界面活性剤、カップリング剤等を挙げることができる。

【0026】

更に、非水溶性マトリックス及び／又は水溶性粒子中に、従来からスラリーに含有されている砥粒、酸化剤、アルカリ金属の水酸化物、酸、使用時に酸を発生する塩、pH調節剤、界面活性剤及びスクラッチ防止剤等の1種又は2種以上を含有することができる。これにより研磨時に水のみを供給して研磨を行うことも可能となる。

上記砥粒としては、シリカ、アルミナ、セリア、ジルコニア及びチタニア等からなる粒子を挙げることができる。これらは1種又は2種以上を用いることができる。

上記酸化剤としては、過酸化水素、過酢酸、過安息香酸、tert-ブチルハイドロパーオキサイド等の有機過酸化物、過マンガン酸カリウム等の過マンガン

酸化合物、重クロム酸カリウム等の重クロム酸化合物、ヨウ素酸カリウム等のハロゲン酸化合物、硝酸及び硝酸鉄等の硝酸化合物、過塩素酸等の過ハロゲン酸化合物、過硫酸アンモニウム等の過硫酸塩、並びにヘテロポリ酸等が挙げられる。これらの酸化剤のうちでは、分解生成物が無害である過酸化水素及び有機過酸化物の他、過硫酸アンモニウム等の過硫酸塩が特に好ましい。これらは1種又は2種以上を用いることができる。

【0027】

上記アルカリ金属の水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、及び水酸化セシウム等が挙げられる。これらは1種又は2種以上を用いることができる。

上記酸としては有機酸及び無機酸が挙げられる。このうち有機酸としては、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、イソプレンスルホン酸、グルコン酸、乳酸、クエン酸、酒石酸、リンゴ酸、グリコール酸、マロン酸、ギ酸、シユウ酸、コハク酸、フマル酸、マレイン酸及びタル酸等が挙げられる。また、無機酸としては、硝酸、塩酸及び硫酸等が挙げられる。これら酸は1種又は2種以上を用いることができる。

上記塩としては、上記酸のアンモニウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属塩等が挙げられる。これらは1種又は2種以上を用いることができる。

【0028】

上記界面活性剤としては、カチオン系、アニオン系及びノニオン系を挙げることができる。このうちカチオン系界面活性剤としては、脂肪族アミン塩、脂肪族アンモニウム塩等が挙げられる。また、アニオン系界面活性剤としては、脂肪酸石鹼、アルキルエーテルカルボン酸塩等のカルボン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、 α -オレフィンスルホン酸塩等のスルホン酸塩、高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸エステル塩、アルキルリン酸エステル塩等のリン酸エステル塩などが挙げられる。更に、ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル等のエーテル型、グリ

セリンエステルのポリオキシエチレンエーテル等のエーテルエステル型、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ソルビタンエステル等のエステル型などが挙げられる。これらは1種又は2種以上を用いることができる。

【0029】

上記スクラッチ防止剤としては、ビフェノール、ビピリジル、2-ビニルピリジン及び4-ビニルピリジン、サリチルアルドキシム、o-フェニレンジアミン及びm-フェニレンジアミン、カテコール、o-アミノフェノール、チオ尿素、N-アルキル基含有（メタ）アクリルアミド、N-アミノアルキル基含有（メタ）アクリルアミド、7-ヒドロキシ-5-メチル-1,3,4-トリアザインドリジン、5-メチル-1H-ベンゾトリアゾール、フタラジン、メラミン及び3-アミノ-5,6-ジメチル-1,2,4-トリアジン等が挙げられる。これらは1種又は2種以上を用いることができる。

【0030】

また、非水溶性マトリックスは、上記相溶化剤、上記従来からスラリーに含有されている各種材料以外に、充填剤、軟化剤、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、可塑剤等の各種の添加剤を含有することができる。このうち充填剤としては炭酸カルシウム、炭酸マグネシウム、タルク、クレー等の剛性を向上させる材料、及びシリカ、アルミナ、セリア、チタニア、ジルコニア、二酸化マンガン、三酸化二マンガン、炭酸バリウム等の研磨効果を備える材料等を用いてもよい。

【0031】

本発明の研磨パッド用組成物によると、温度0～80℃の間の縦弾性率の変化量を1000MPa以下（更には800MPa以下、特に600MPa以下）に抑えることができる。これにより、特に研磨時及びドレッシング時に摺動等による発熱によって研磨部及び研磨パッドが過度に軟化することが防止される。

また、温度20～50℃の間では、温度差10℃の間における縦弾性率の変化量を500MPa以下（更には400MPa以下、特に200MPa以下）に抑えることができる。これにより、非水溶性マトリックスの温度依存性はより緩や

かに変化することとなり、温度による軟化具合を予測しつつ、研磨状態を制御し易くなる。

この縦弾性率は、引張りモードでの縦断性率を測定することができる粘弾性測定器等を用いて、初期負荷100g、最大ひずみ0.01%、周波数0.2Hzとして測定した場合の値である。

【0032】

[2] 架橋EVA及び架橋PBDを含有する研磨パッド用組成物

上記「非水溶性マトリックス」は、後述する研磨パッドの研磨部、更には研磨パッド全体（以下、併せて「研磨部及び研磨パッド」ともいう）を構成する母相である。この非水溶性マトリックスには水溶性粒子が分散されて含有される。非水溶性マトリックスは架橋EVAと架橋PBDとを含有する。架橋EVAは、非水溶性マトリックス全体を100質量%とした場合に10質量%以上であり、架橋EVAと架橋PBDとの合計を100質量%とした場合に50質量%を超えて含有される。

【0033】

架橋EVAを含有することにより、前記[1]と同様に（1）優れた成形性が付与され、（2）優れた耐摩耗性が付与され、（3）縦弾性率の温度依存性が低減され、更には、縦弾性率が温度に対してより緩やかに変化するように改善され、（4）弾性回復力が付与される。

架橋EVAの含有量は、非水溶性マトリックス全体を100質量%とした場合に、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが特に好ましい。但し、100質量%未満であり、通常、95質量%以下である。架橋EVAの含有量が10質量%未満であると上記（1）～（4）の効果が十分に発揮され難い場合がある。

また、架橋EVAの酢酸ビニル単位の含有量は前記[1]と同様であり、更に架橋EVAの架橋方法も前記[1]と同様である。

【0034】

架橋PBDは、上記（1）～（4）の架橋EVAを含有する効果のうち、（4）の効果を特に向上させることができる。この架橋PBDの含有量は、架橋EVA

Aとの合計を100質量%とした場合に50質量%未満であれば特に限定されないが、非水溶性マトリックス全体を100質量%とした場合に5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。架橋PBDの含有量が5質量%未満であるとこれを含有する効果が十分に発揮されない場合がある。

【0035】

架橋PBDを含有する非水溶性マトリックスは、JIS K 6251に準じて非水溶性マトリックスからなる試験片を80°Cにおいて破断させた場合に、破断後に残留する伸び（以下、単に「破断残留伸び」という）を100%以下とすることができる。即ち、破断した後の標線間合計距離が破断前の標線間距離の2倍以下となる。この破断残留伸びは30%以下（更に好ましくは10%以下、とりわけ好ましくは5%以下、通常0%以上）であることがより好ましい。破断残留伸びが100%を超えると、研磨時及び面更新時に研磨部及び研磨パッドの表面から搔き取られた又は引き延ばされた微細片がポアを塞ぎ易くなる傾向にあり好ましくない。尚、この「破断残留伸び」とは、JIS K 6251「加硫ゴムの引張試験方法」に準じて、試験片形状ダンベル状3号形、引張速度500mm/min、試験温度80°Cで引張試験を行い試験片を破断させた場合に、破断して分割された試験片の各々の標線から破断部までの合計距離から、試験前の標線間距離を差し引いた距離の伸び率である。また、実際の研磨においては摺動により発熱するため温度80°Cにおける試験である。

【0036】

また、非水溶性マトリックス全体を100質量%とした場合に、架橋EVAの含有量(X_1)と架橋PBDの含有量(Y_1)との好ましい組合せとしては、例えば、 X_1 が10質量%を超え Y_1 が5質量%以上であり且つ $\{X_1 / (X_1 + Y_1) \times 100\} > 50$ であることが好ましく、 X_1 が20質量%を超え Y_1 が10質量%以上であり且つ $\{X_1 / (X_1 + Y_1) \times 100\} > 50$ であることがより好ましく、 X_1 が30質量%を超え Y_1 が15質量%以上であり且つ $\{X_1 / (X_1 + Y_1) \times 100\} > 50$ であることが特に好ましく、 X_1 が40質量%を超え、 Y_1 が20質量%以上であり且つ $\{X_1 / (X_1 + Y_1) \times 100\}$

} >50であることがとりわけ好ましい。

【0037】

非水溶性マトリックスは、上記架橋EVA及び上記架橋PBD以外にも、架橋EVA及び架橋PBDを除く他の重合体を含有することができる。他の重合体としては前記〔1〕で挙げた各種の熱可塑性樹脂、エラストマー、ゴム及び硬化性樹脂等を単独又は組み合わせて用いることができる。これらの他の重合体の中でもポリエチレン樹脂、アクリロニトリルースチレンーブタジエン共重合体、スチレンーブタジエンースチレン共重合体、ポリアクリル系樹脂、ビニルエステル系樹脂、飽和ポリエステル系樹脂、ポリアミド樹脂及びポリアセタール樹脂が好ましいことは前記〔1〕と同様である。

【0038】

上記「水溶性粒子」は、前記〔1〕における水溶性粒子をそのまま適用できる。また、非水溶性マトリックスは前記〔1〕と同様に相溶化剤を含有できる。更に、非水溶性マトリックス及び／又は水溶性粒子中は前記〔1〕と同様に従来からスラリーに含有されている砥粒、酸化剤、アルカリ金属の水酸化物、酸、使用時に酸を発生する塩、pH調節剤、界面活性剤及びスクラッチ防止剤等の1種又は2種以上を含有できる。

【0039】

本発明の研磨パッド用組成物によると、前記〔1〕と同様に、温度0～80℃の間の縦弾性率の変化量を1000MPa以下（更には800MPa以下、特に600MPa以下）に抑えることができる。また、温度20～50℃の間では、温度差10℃の間における縦弾性率の変化量を500MPa以下（更には400MPa以下、特に200MPa以下）に抑えることができる。これらによる効果及びその測定方法は前記〔1〕と同様である。

【0040】

〔3〕未架橋EVAを含有し、未架橋PBDを含有しない未架橋研磨パッド用組成物から得られる研磨パッド用組成物

上記「未架橋非水溶性マトリックス」は、架橋処理されて研磨パッドの研磨部、更には研磨パッド全体を構成する母相となるものである。この未架橋非水溶性

マトリックスには水溶性粒子が分散されて含有される。この未架橋非水溶性マトリックスは、その全体を100質量%とした場合に、10質量%以上の未架橋エチレン-酢酸ビニル共重合体（以下、単に「未架橋EVA」ともいう）を含有する。また、この未架橋水溶性マトリックスは未架橋1.2-ポリブタジエン（以下、単に「未架橋PBD」ともいう）を含有しない。未架橋EVAは、未架橋研磨パッド用組成物の架橋処理時に少なくとも一部が架橋される。未架橋EVAのうち架橋された部分は前記〔1〕における架橋EVAとなる。このため、得られる研磨部及び研磨パッドには前記〔1〕におけると同様に（1）優れた成形性が付与され、（2）優れた耐摩耗性が付与され、（3）縦弾性率の温度依存性が低減され、更には、縦弾性率が温度に対してより緩やかに変化するように改善され、（4）弾性回復力が付与される。

【0041】

未架橋EVAの含有量は、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが特に好ましく、更には未架橋非水溶性マトリックス全体が未架橋EVAからなっていてもよい（未架橋EVAが100質量%）。未架橋EVAの含有量が10質量%未満であると架橋処理した後の上記（1）～（4）の効果が十分に発揮され難い場合がある。

また、未架橋EVAの酢酸ビニル単位の含有量は前記〔1〕における架橋EVAと同様である。

【0042】

更に、未架橋非水溶性マトリックスは、未架橋EVA及び未架橋PBDを除く他の未架橋重合体を含有することができる。他の未架橋重合体としては前記〔1〕で挙げた各種の熱可塑性樹脂、エラストマー、ゴム及び硬化性樹脂等の未架橋物を単独又は組み合わせて用いることができる。これらの他の未架橋重合体の中でもポリエチレン樹脂、アクリロニトリル-スチレン-ブタジエン共重合体、スチレン-ブタジエン-スチレン共重合体、ポリアクリル系樹脂、ビニルエステル系樹脂、飽和ポリエステル系樹脂、ポリアミド樹脂及びポリアセタール樹脂の各々未架橋物が好ましい。これらは架橋処理されて各々の架橋重合体となり、前記〔1〕と同様な理由から好ましい。

【0043】

上記「水溶性粒子」は、前記〔1〕における水溶性粒子をそのまま適用できる。また、未架橋非水溶性マトリックスは前記〔1〕と同様に相溶化剤を含有できる。更に、未架橋非水溶性マトリックス及び／又は水溶性粒子中は前記〔1〕と同様に従来からスラリーに含有されている砥粒、酸化剤、アルカリ金属の水酸化物、酸、使用時に酸を発生する塩、pH調節剤、界面活性剤及びスクラッチ防止剤等の1種又は2種以上を含有できる。

【0044】

上記「架橋処理」は、未架橋研磨パッド用組成物に対して行い、この未架橋研磨パッド用組成物を構成する未架橋非水溶性マトリックス中に含有される未架橋EVAの少なくとも一部を架橋する処理である。この架橋処理は、架橋処理後の非水溶性マトリックス中の架橋EVAの量が10質量%以上となるものであり、未架橋EVAの架橋度が5%以上となるものであることが好ましく、10%以上となるものであることがより好ましく、15%以上となるものであることが特に好ましい。更には、架橋度が100%となってもよい。

また、架橋を行う方法は特に限定されず、有機過酸化物、硫黄、硫黄化合物等を用いて化学架橋、加熱により熱架橋、及び電子線照射等により放射線架橋などにより行うことができる。これらの中でも、架橋効率が良いため、有機過酸化物を用いて架橋を行うことが好ましい。

更に、架橋処理を行う時に、未架橋水溶性マトリックス中に他の未架橋重合体が含有される場合、他の未架橋重合体は共架橋されてもよく、共架橋されなくてもよい。また、他の未架橋重合体は架橋されることなく本発明の研磨パッド用組成物中に含有されてもよい。

【0045】

本発明の研磨パッド用組成物によると、前記〔1〕と同様に、温度0～80℃の間の縦弾性率の変化量を1000MPa以下（更には800MPa以下、特に600MPa以下）に抑えることができる。また、温度20～50℃の間では、温度差10℃の間における縦弾性率の変化量を500MPa以下（更には400MPa以下、特に200MPa以下）に抑えることができる。これらによる効果

及びその測定方法は前記〔1〕と同様である。

【0046】

〔4〕未架橋EVA及び未架橋PBDを含有する未架橋研磨パッド用組成物から得られる研磨パッド用組成物

上記「未架橋非水溶性マトリックス」は、架橋処理されて研磨パッドの研磨部、更には研磨パッド全体を構成する母相となるものである。この未架橋非水溶性マトリックスには水溶性粒子が分散されて含有される。未架橋非水溶性マトリックスは未架橋EVAと未架橋PBDを含有する。未架橋EVAは、未架橋非水溶性マトリックス全体を100質量%とした場合に10質量%以上であり、未架橋EVAと未架橋PBDとの合計を100質量%とした場合に50質量%を超えて含有される。

【0047】

未架橋EVAは、架橋処理時に少なくとも一部が架橋され、架橋された部分は前記〔2〕における架橋EVAとなる。このため、得られる研磨部及び研磨パッドには前記〔2〕と同様に（1）優れた成形性が付与され、（2）優れた耐摩耗性が付与され、（3）縦弾性率の温度依存性が低減され、更には、縦弾性率が温度に対してより緩やかに変化するように改善され、（4）弾性回復力が付与される。

【0048】

未架橋EVAの含有量は、未架橋非水溶性マトリックス全体を100質量%とした場合に、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが特に好ましい。但し、100質量%未満であり、通常、95質量%以下である。未架橋EVAの含有量が10質量%未満であると上記（1）～（4）の効果が十分に発揮され難い場合がある。また、未架橋EVAの酢酸ビニル単位の含有量は前記〔1〕における架橋EVAと同様である。

【0049】

未架橋PBDは、架橋処理時に少なくとも一部が架橋され、架橋された部分は前記〔2〕における架橋PBDとなる。このため、得られる研磨部及び研磨パッ

ドでは前記〔2〕と同様に上記(4)の効果が特に向上される。この未架橋PBDの含有量は、未架橋EVAとの合計を100質量%とした場合に50質量%未満であれば特に限定されないが、未架橋非水溶性マトリックス全体を100質量%とした場合に5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。未架橋PBDの含有量が5質量%未満であると架橋処理後の架橋PBDの含有量が少なく、架橋PBDを含有する効果が十分に発揮されない場合がある。

【0050】

未架橋PBDを含有することにより、架橋処理後の非水溶性マトリックスは、JIS K 6251に準じて非水溶性マトリックスからなる試験片を80℃において破断させた場合に、破断後に残留する伸び（以下、単に「破断残留伸び」という）を100%以下とすることができる。即ち、破断した後の標線間合計距離が破断前の標線間距離の2倍以下となる。この破断残留伸びは30%以下（更に好ましくは10%以下、とりわけ好ましくは5%以下、通常0%以上）であることがより好ましい。破断残留伸びが100%を超えると、研磨時及び面更新時に研磨部及び研磨パッドの表面から掻き取られた又は引き延ばされた微細片がポアを塞ぎ易くなる傾向にあり好ましくない。尚、試験方法は前記〔2〕と同様である。

【0051】

また、未架橋非水溶性マトリックス全体を100質量%とした場合に、未架橋EVAの含有量(X_2)と未架橋PBDの含有量(Y_2)との好ましい組合せとしては、例えば、 X_2 が10質量%を超え Y_2 が5質量%以上であり且つ $\{X_2 / (X_2 + Y_2) \times 100\} > 50$ であることが好ましく、 X_2 が20質量%を超え Y_2 が10質量%以上であり且つ $\{X_2 / (X_2 + Y_2) \times 100\} > 50$ であることがより好ましく、 X_2 が30質量%を超え Y_2 が15質量%以上であり且つ $\{X_2 / (X_2 + Y_2) \times 100\} > 50$ であることが特に好ましく、 X_2 が40質量%を超え、 Y_2 が20質量%以上であり且つ $\{X_2 / (X_2 + Y_2) \times 100\} > 50$ であることがとりわけ好ましい。

【0052】

更に、未架橋非水溶性マトリックスは、未架橋EVA及び未架橋PBDを除く他の未架橋重合体を含有することができる。他の未架橋重合体としては前記〔1〕に挙げた各種の熱可塑性樹脂、エラストマー、ゴム及び硬化性樹脂等の未架橋物を単独又は組み合わせて用いることができる。これらの他の未架橋重合体の中でもポリエチレン樹脂、アクリロニトリルースチレンーブタジエン共重合体、ステレンーブタジエンースチレン共重合体、ポリアクリル系樹脂、ビニルエステル系樹脂、飽和ポリエステル系樹脂、ポリアミド樹脂及びポリアセタール樹脂の各々未架橋物が好ましい。これらは架橋処理されて各々の架橋重合体となり、前記〔1〕と同様な理由から好ましい。

【0053】

上記「水溶性粒子」は、前記〔1〕における水溶性粒子をそのまま適用できる。また、未架橋非水溶性マトリックスは前記〔1〕と同様に相溶化剤を含有できる。更に、未架橋非水溶性マトリックス及び／又は水溶性粒子は前記〔1〕と同様に従来からスラリーに含有されている砥粒、酸化剤、アルカリ金属の水酸化物、酸、使用時に酸を発生する塩、pH調節剤、界面活性剤及びスクラッチ防止剤等の1種又は2種以上を含有できる。

【0054】

上記「架橋処理」は、未架橋研磨パッド用組成物に対して行い、この未架橋研磨パッド用組成物を構成する未架橋非水溶性マトリックス中に含有される未架橋EVA及び未架橋PBDの各々少なくとも一部を架橋する処理である。この架橋処理は、架橋処理後の非水溶性マトリックス中の架橋EVAの量が10質量%以上となるものであり、未架橋EVA及び未架橋PBDの各々の架橋度が5%以上となるものであることが好ましく、10%以上となるものであることがより好ましく、15%以上となるものであることが特に好ましい。更には、架橋度が100%となってもよい。更に、未架橋EVAと未架橋PBDとは架橋処理時に共架橋されてもよく、共架橋されなくてもよい。更に、架橋処理を行う際に、未架橋EVA及び未架橋PBDを除く他の未架橋重合体が含有される場合、他の未架橋重合体は未架橋EVAや未架橋PBDと共に架橋されてもよく、共架橋されなくてもよい。更に他の未架橋重合体は、架橋されることなく本発明の研磨パッド用組

成物中に含有されてもよい。架橋を行う方法は前記〔3〕と同様である。

【0055】

本発明の研磨パッド用組成物によると、前記〔1〕と同様に、温度0～80℃の間の縦弾性率の変化量を1000MPa以下（更には800MPa以下、特に600MPa以下）に抑えることができる。また、温度20～50℃の間では、温度差10℃の間における縦弾性率の変化量を500MPa以下（更には400MPa以下、特に200MPa以下）に抑えることができる。これらによる効果及びその測定方法は前記〔1〕と同様である。

【0056】

〔5〕 研磨パッド用組成物を得る方法

前記〔1〕～〔4〕の本発明の研磨パッド用組成物を得る方法は特に限定されないが、例えば、所定の有機材料等の必要な材料を混練機等により混練した後、架橋して得ることができる。混練機としては従来より公知のものを用いることができる。例えば、ロール、ニーダー、バンバリーミキサー、押出機（単軸、多軸）等の混練機を挙げることができる。但し、混練する際には、混練し易いように加熱して混練されるが、この時の温度において水溶性化合物が固体であることが好ましい。固体であることにより、未架橋非水溶性マトリックスとの相溶性の大きさに関わらず水溶性粒子を前記の好ましい平均粒径で分散させることができる。従って、使用する未架橋非水溶性マトリックスの加工温度により、水溶性粒子の種類を選択することが好ましい。

【0057】

〔6〕 研磨パッド

本発明の研磨パッドは、本発明の研磨パッド用組成物からなる研磨部を備える。上記「研磨部」は、研磨パッドの全部又は一部であって、研磨パッドの研磨に供される側の面の全部又は一部を構成する。この研磨部はスラリーや水等の供給により被研磨体に対して研磨効果を発揮できる部分である。研磨パッドのうち研磨部により構成される大きさは特に限定されないが、研磨パッドの研磨に供される側の面の少なくとも50%以上（より好ましくは80%以上、更に好ましくは90%以上）であることが好ましい。研磨部により構成される部分が上記面の5

0%未満であるとこの研磨部を備える効果が十分に発揮され難い場合がある。

【0058】

また、本発明の研磨パッドは、本発明の研磨パッド用組成物からなる研磨部以外に他の機能を有する部分を備えることができる。他の機能を有する部分としては、例えば、光学式終点検出装置を用いて終点を検出するための窓部等を挙げることができる。窓部としては、例えば、厚さ2mmにおいて、波長100～300nmの間のいずれかの波長の光の透過率が0.1%以上（好ましくは2%以上）であるか、又は、波長100～3000nmの間のいずれかの波長域における積算透過率が0.1%以上（好ましくは2%以上）である材料を用いることができる。

更に、本発明の研磨パッドは、本発明の研磨パッド用組成物からなる研磨部以外にも他の研磨パッド用組成物からなる研磨部を備えることもできる。

【0059】

この研磨パッドの形状は特に限定されないが、例えば、円盤状、ベルト状、ローラー状等とすることができます、研磨装置に応じて適宜選択することが好ましい。また、使用前における研磨パッドの大きさも特に限定されないが、円盤状の研磨パッドでは、例えば、直径0.5～500cm（更に1.0～250cm、特に20～200cm）、厚さ0.1～100mm（特に1～10mm）とすることができます。また、本発明の研磨パッドの研磨面には、必要に応じて溝を設けることができる。溝を備えることによりスラリーを研磨面の隅々に行き渡らせ、また、一時的に滞留させる効果を発揮できる。更に、研磨時に生じる研磨屑等の廃棄物を効率よく排出する経路となる。溝の形状は特に限定されず、環状、螺旋状、格子状、ドットパターン状等とすることができます。

また、本発明の研磨パッドの製造方法は特に限定されないが、架橋をするため、通常、金型を用いて成形する。また、シート状に成形した後、所定の形状に打ち抜いて得ることができる。更に、ブロック状に成形した後、所定の形状にスライスして得ることができる。

【0060】

〔7〕複層型研磨パッド

本発明の研磨パッドと、この研磨パッドの裏面側（研磨に供される面の反対面側）に配された支持層とを備えることにより複層型研磨パッドを得ることができる。

支持層は、研磨パッドを裏面側で支える層である。この支持層の特性は特に限定されないが、研磨パッドに比べてより軟質であることが好ましい。より軟質な支持層を備えることにより、研磨パッドの厚さが薄い（例えば、0.5 mm以下）場合であっても、研磨時に研磨パッドが浮き上がることや、研磨パッドの表面が湾曲すること等を防止でき、安定して研磨を行うことができる。この支持層の硬度は、研磨パッドの硬度の90%以下（更には80%以下、特に70%以下、通常10%以上）であることが好ましい。更には、ショアD硬度において70以下（より好ましくは60以下、更に好ましくは50以下、通常1以上）であることが好ましい。

【0061】

また、支持層は、多孔質体（発泡体）であっても、非多孔質体であってもよい。更に、その平面形状は特に限定されず、研磨パッドと同じであっても異なっていてもよい。この支持層の平面形状としては、例えば、円形、多角形（四角形等）などとすることができます。また、その厚さも特に限定されないが、例えば、0.1～5 mm（更に好ましくは0.5～2 mm）とすることができる。但し、例えば、研磨パッドが光学式終点検出装置を用いて終点を検出するための窓部を備える場合には、この窓部を透過する光を遮らないように、研磨パッドと同様な窓部又は同じ窓部を備えることや、窓部を備えず光が通過する切り欠かれた形状とすることもできる。

【0062】

支持層を構成する材料も特に限定されないが、所定の形状及び性状への成形が容易であり、適度な弾性等を付与できることなどから有機材料を用いることが好ましい。有機材料としては、前記研磨パッドにおける非水溶性マトリックスを構成する各種重合体を適用することができる。但し、支持層を構成する有機材料は架橋重合体であっても、未架橋重合体であってもよい。

また、支持層は1層のみを備えていてもよく、2層以上を備えていてもよい。

また、この支持層と研磨パッドとは直接接して積層されていてもよく、他の層を介して積層されていてもよい。更に、支持層は、研磨パッド又は他の層に接着剤、接着材（接着テープ等）などにより接着されていてもよく、部分的に溶融されることにより一体的に接合されていてもよい。

【0063】

これらの本発明の研磨パッドや、複層型研磨パッドは、前記架橋重合体を含有することにより非水溶性マトリックスに弾性回復力が付与される。加えて、架橋重合体の内でもEVAを含有することにより前記（1）～（4）の優れた効果を発揮できる。このため、CMPにおいても特に高い平坦性が要求されるSTI、Al及びCu等のメタル配線、Al、Cu及びW等を用いたビアプラグ、層間絶縁膜（酸化膜、Low-k及びBPSG等）、窒化膜（Ta_N及びTi_N等）、ポリシリコン、ペアシリコン等の研磨に好適である。

【0064】

【実施例】

以下、実施例により本発明を具体的に説明する。

[1] 研磨パッドの製造

実施例1

未架橋エチレン-酢酸ビニル共重合体（東ソー株式会社製、品名「ウルトラセン630」）80質量部と、未架橋1,2-ポリブタジエン（ジェイエスアール株式会社製、品名「JSR RB830」）20質量部と、水溶性粒子であるβ-サイクロデキストリン（横浜国際バイオ研究所株式会社製、品名「デキシパールβ-100」、平均粒径20μm）100質量部と、を160℃に調温された二軸押し出し機を用いて混練した。その後、有機過酸化物（日本油脂株式会社製、品名「パークミルD40」）0.5質量部を添加して更に混練した。この混練物を170℃に調温された金型内で18分間保持して架橋処理を行い、直径60cm、厚さ3mmの研磨パッドを得た。得られた研磨パッドにおいて、熱分解ガスクロマトグラフ法（以下、単に「Py-GC」という）による非水溶性マトリックス中のエチレン-酢酸ビニル共重合体の含有量は82質量%であった。更に、研磨パッド全体を100体積%とした場合に水溶性粒子は約40体積%であつ

た（非水溶性マトリックスと水溶性粒子との合計を100体積%とした場合も同じ）。

【0065】

実施例2

未架橋エチレン-酢酸ビニル共重合体（東ソー株式会社製、品名「ウルトラセン630」）を60質量部とし、未架橋1,2-ポリブタジエン（ジェイエスアール株式会社製、品名「JSR RB830」）を40質量部とした以外は実施例1と同様にして直径60cm、厚さ3mmの研磨パッドを得た。得られた研磨パッドにおいて、Py-GCによる非水溶性マトリックス中のエチレン-酢酸ビニル共重合体の含有量は61質量%であった。更に、水溶性粒子の体積割合は実施例1と同様に約40体積%であった。

【0066】

実施例3

未架橋エチレン-酢酸ビニル共重合体（東ソー株式会社製、品名「ウルトラセン630」）を30質量部とし、未架橋1,2-ポリブタジエンに換えて未架橋ポリエチレン（日本ポリケム株式会社製、品名「YF30」）を70質量部とした以外は、実施例1と同様に二軸押し出し機により混練した。その後、有機過酸化物（日本油脂株式会社製、品名「パークミルD40」）の添加量を1.0質量部とした以外は実施例1と同様にして直径60cm、厚さ3mmの研磨パッドを得た。得られた研磨パッドにおいて、Py-GCによる非水溶性マトリックス中のエチレン-酢酸ビニル共重合体の含有量は31質量%であった。更に、水溶性粒子の体積割合は実施例1と同様に約40体積%であった。

【0067】

比較例1

未架橋1,2-ポリブタジエン（ジェイエスアール株式会社製、品名「JSR RB830」）100質量部と、水溶性粒子である β -サイクロデキストリン（横浜国際バイオ研究所株式会社製、品名「デキシパール β -100」、平均粒径20μm）100質量部とを150℃に調温された二軸押し出し機を用いて混練した。その後、有機過酸化物（日本油脂株式会社製、品名「パークミルD40

」) 0.3 質量部を添加して更に混練した。この混練物を 170°C に調温された金型内で 18 分間保持して架橋処理を行い、直径 60 cm、厚さ 3 mm の研磨パッドを得た。得られた研磨パッドにおいて、Py-GC による非水溶性マトリックス中のエチレン-酢酸ビニル共重合体の含有量は 0 質量% であった。更に、研磨パッド全体を 100 体積% とした場合に水溶性粒子は約 40 体積% であった(非水溶性マトリックスと水溶性粒子との合計を 100 体積% とした場合も同じ)。

【0068】

[2] 成形性の評価

実施例 1 ~ 3 及び比較例 1 と同様に研磨パッドを各々 20 枚製造した。但し、脱型を行う時、異なる 2 つの脱型方法を用いた。一方は、成形品の一端を治具で掴み、成型機横の載置台までそのまま運搬した。他方は、成形品の下に薄い金属板を挿入し、成形品がたわまないように、この金属板を掴んで成型機横の載置台までそのまま運搬した。各脱型方法を用いて各々 10 枚ずつの研磨パッドを製造した。この結果、得られた研磨パッドを観察し、割れ又は亀裂が目視により認められた研磨パッドを数え、製造した総数に対して割れ又は亀裂が認められた割合を算出した。この結果を表 1 に示した。

【0069】

【表1】

表1

	非水溶性マトリックス		脱型時の割れ発生率 (%)		摩耗容積 (cm ³)
	EVA 含有量 (質量%)	縦弾性率 の変化量 (MPa)	補助板 非使用	補助板 使用	
実施例1	82	700	0	0	100
実施例2	61	600	0	0	250
実施例3	31	600	0	0	300
比較例1	0	800	30	0	550

【0070】

〔3〕耐摩耗性の評価

実施例1～3及び比較例1で得られた研磨パッドから試験片を切り出し、JIS K 6264に従ってDIN摩耗試験機を用いた摩耗容積を測定した。この結果を表1に併記した。

【0071】

〔4〕縦弾性率の温度依存性の評価

固体用の粘弾性測定器（レオメトリック・サイエンティフィック社製、形式「RSAII」）を使用し、2.5mm×1.0mmの短冊状の試験片を用いて、-20～100℃、初期負荷100g、最大ひずみ0.01%、周波数0.2Hzの条件において引張りモードで縦弾性率を測定した。そして、0～80℃の間の縦弾性率の変化量を算出し、表1に併記した。

【0072】

表1の結果より、未架橋非水溶性マトリックスが未架橋PBDのみからなる比較例1では、脱型時に割れを30%の確率で生じており、補助板を使用することが好ましいことが分かる。また、得られた研磨パッドにおいては、縦弾性率の変化量及び摩耗容積が実施例に比べて大きいことが分かる。

これに対して、本発明品である実施例1～3では、脱型時に補助板を使用しなくとも割れを全く生じておらず、比較例に比べると成形性に優れていることが分かる。また、縦弾性率の変化量は600～700 MPaであり、比較例1に比べると13～25%小さくなっていることが分かる。更に、摩耗容積は100～300 cm³であり、比較例1に比べると45～82%小さくなっていることが分かる。従って、架橋EVAを含有する研磨パッドは、成形性に優れ、縦弾性率の変化量が小さく、摩耗容積も小さい優れた研磨パッドであることが分かる。

【0073】

【発明の効果】

本発明の研磨パッド用組成物によると、優れた研磨性能を有する研磨パッド及び複層型研磨パッドを効率よく、安定して得ることができる。また、耐摩耗性に優れた研磨パッド及び複層型研磨パッドを得ることができる。更に、縦弾性率の温度依存性が小さい研磨パッド及び複層型研磨パッドを得ることができ、安定した研磨性能を発揮させることができる。

温度0～80℃の間の縦弾性率の変化量が1000 MPa以下である場合、摺動等による発熱によって過度な軟化が防止され、更には、研磨状態を制御し易い研磨パッド及び複層型研磨パッドを得ることができる。

本発明の研磨パッドによると、耐摩耗性に優れ、更に縦弾性率の温度依存性が小さい研磨パッドであるために、安定した研磨性能を長期にわたって発揮させることができる。

【書類名】 要約書

【要約】

【課題】 成形性及び耐摩耗性に優れ、更には、縦弾性率の温度依存性が小さい研磨パッド用組成物及びこれを用いた研磨パッドを提供する。

【解決手段】 未架橋エチレン-酢酸ビニル共重合体と、未架橋1, 2-ポリブタジエンと、 β -シクロデキストリン粒子と有機過酸化物とを含有する混練物を金型を内で架橋処理し、研磨パッドを得る。得られる研磨パッドは、10質量%以上の架橋エチレン-酢酸ビニル共重合体及び架橋1, 2-ポリブタジエンを含有する非水溶性マトリックスと、非水溶性マトリックス中に分散され、 β -シクロデキストリンからなる水溶性粒子とを含有する研磨パッド用組成物からなる。

【選択図】 なし

出願人履歴情報

識別番号 [000004178]

1. 変更年月日 1997年12月10日

[変更理由] 名称変更

住 所 東京都中央区築地2丁目11番24号

氏 名 ジェイエスアール株式会社