

NBS TECHNICAL NOTE 938

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

PRÁCTICA RECOMENDADA PARA EL USO DE UNIDADES MÉTRICAS (SI) EN EL DISEÑO Y CONSTRUCCIÓN DE EDIFICIOS

PRÁCTICA RECOMENDADA PARA EL USO DE UNIDADES MÉTRICAS (SI) EN EL DISEÑO Y CONSTRUCCIÓN DE EDIFICIOS

Hans J. Milton

Center for Building Technology Institute of Applied Technology National Bureau of Standards Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary
Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Publicación Abril 1977 - Reimpresión con correcciones Junio 1977.

PRÁCTICA RECOMENDADA PARA EL USO DE UNIDADES MÉTRICAS (SI) EN EL DISEÑO Y CONSTRUCCIÓN DE EDIFICIOS

Hans. J. Milton

Resumen: Esta Nota Técnica contiene un conjunto exhaustivo de recomendaciones para el uso de unidades métricas (SI) en el diseño y la construcción de edificios.

Incluye material descriptivo relacionado con la estructura del Sistema Internacional de Unidades (SI); reglas y recomendaciones para la presentación de unidades y símbolos del SI y de los valores numéricos asociados con el SI; un conjunto de tablas que muestran las unidades con que trabaja y aplicaciones típicas de las unidades del SI en el diseño y la construcción de edificios; y una sección que discute consideraciones especiales relacionadas con la selección y el uso de las unidades del SI en el diseño y la construcción. Los Apéndices contienen factores de conversión para las unidades más habituales; unidades métricas cuyo uso no se recomienda con el SI; una gráfica de unidades y relaciones del SI; y referencias adecuadas.

Este documento ha sido preparado para proveer la base técnica para una norma de referencia ASTM sobre práctica recomendada para el uso de unidades métricas (SI) en el diseño y la construcción de edificios.

<u>Palabras clave</u>: Sistema Internacional de Unidades (SI); diseño y construcción con unidades métricas; práctica SI recomendada.

TABLA DE CONTENIDO

	INTROD	UCCIÓN	1
1.	ALCANO	E	2
2.	DEFINIC	CIONES	2
3.	EL CON	CEPTO DEL SI	3
4.	UNIDAD	ES DEL SI	4
	Tabla A	– UNIDADES EN EL SISTEMA INTERNACIONAL – SI – Ver final del documento.	
5.	UNIDAD	ES NO PERTENECIENTES AL SI A UTILIZAR CON EL SI	4
	Tabla B	- OTRAS UNIDADES CUYO USO CON EL SI ESTA PERMITIDO	5
6.	PREFIJO	OS PARA LAS UNIDADES DEL SI	5
	Tabla C	MÚLTIPLOS Y SUBMÚLTIPLOS PREFERIDOS Y SUS PREFIJOS	6
	Tabla D	OTROS MÚLTIPLOS NO PREFERIDOS Y SUS PREFIJOS	6
7.	REGLAS	S Y RECOMENDACIONES PARA EL USO DEL SI	6
	Tabla E	REGLAS Y RECOMENDACIONES PARA LA PRESENTACIÓN DE UNIDADES Y SÍMBOLOS DEL SI	8
	Tabla F	PRESENTACIÓN DE VALORES NUMÉRICOS EN CONJUNCIÓN CON EL SI	10
8.	UNIDAD	ES DEL SI A UTILIZAR EN EL DISEÑO Y LA CONSTRUCCIÓN	12
	Tabla G	ESPACIO Y TIEMPO: GEOMETRÍA, CINEMÁTICA Y FENÓMENOS PERIÓDICOS	13
	Tabla H	MECÁNICA: ESTÁTICA Y DINÁMICA	16
	Tabla J	CALOR: EFECTOS TÉRMICOS, TRANSFERENCIA DE CALOR	18
	Tabla K	ELECTRICIDAD Y MAGNETISMO	20
	Tabla L	- ILUMINACIÓN	22
	Tabla M	– ACÚSTICA	23
9.		DERACIONES ESPECIALES SOBRE EL USO DE UNIDADES DEL SI EN EL DISEÑO Y RUCCIÓN DE EDIFICIOS	24
	9.1	Medidas lineales (Longitud)	24
	9.2	Superficie	25
	9.3	Volumen y capacidad	25
	9.4	Propiedades de las secciones geométricas	26
	9.5	Angulo plano	27
	9.6	Intervalo de tiempo	27
	9.7	Temperatura e intervalo de temperatura	27
	9.8	Masa, peso y fuerza	28
	9.9	Presión, tensión y módulo de elasticidad	29
	9.10	Energía, trabajo y cantidad de calor	29
	9.11	Dinámica rotacional	29
	9.12	Potencia y flujo energético	30

	9.13	Unidades eléctricas	30
	9.14	Unidades de iluminación	30
	9.15	Magnitudes adimensionales	31
	9.16	Constantes que se usan en el diseño de edificios	31
10.	APENDIO	DE	32
	A.	FACTORES DE CONVERSIÓN PARA LAS UNIDADES MÁS COMUNES UTILIZADAS EN EL DISEÑO Y LA CONSTRUCCIÓN	.33
	B.	GRÁFICA DE LAS UNIDADES DEL SI Y SUS RELACIONES: GRÁFICA Y EXPLICACIONES .	.37
	C.	UNIDADES MÉTRICAS QUE HAN SIDO ABANDONADAS Y CUYO USO CON EL SI NO SE RECOMIENDA	.40
RE	FERENCI	AS	.41
TA	BLA A-L	INIDADES EN EL SISTEMA INTERNACIONAL – SI	42

INTRODUCCIÓN

El Sistema Internacional de Unidades (SI) fue desarrollado por la Conferencia General de Pesas y Medidas (CGPM), la cual es una organización de tratado internacional. La abreviatura (SI), derivada del francés "Système International d'Unités," se utiliza en todos los idiomas.

El SI es un sistema de mediciones racional, coherente, internacional y preferido que se deriva de sistemas métricos decimales anteriores pero que los sustituye a todos ellos.

En los Estados Unidos de América el uso del sistema métrico fue legalizado por una Ley del Congreso en 1866, pero su uso no fue declarado obligatorio.

El 23 de diciembre de 1975 el Presidente Ford firmó la Ley Pública 94-168, "Ley de Conversión Métrica de 1975," declarando una política nacional para coordinar el creciente uso del sistema métrico en los Estados Unidos, y estableciendo una Junta Métrica Norteamericana para coordinar la conversión voluntaria al sistema métrico. La Ley específicamente define al sistema métrico como el "Sistema Internacional de Unidades según lo establecido por la Conferencia General de Pesas y Medidas en 1960, y según lo descripto o modificado para los Estados Unidos de América por el Secretario de Comercio."

Desde 1960 el sistema se ha refinado, y los Estados Unidos tiene una oportunidad especial para cambiar y pasar del sistema USCS (United States Customary System) al sistema internacional más actualizado en un solo paso.

Dentro de la comunidad del diseño y la construcción la aplicación de las unidades del SI, junto con los valores numéricos preferidos, seguramente simplificará y acelerará los cálculos y facilitará todas las actividades de medición. Debido a que el SI es un sistema de unidades coherente que posee solamente una unidad para cualquier magnitud física, no hay necesidad alguna de realizar conversiones dentro del propio sistema, de una unidad a otra, como en el caso de las pulgadas y los pies, las onzas y las libra, o los galones y los metros cúbicos. Al pasar al SI, la comunidad norteamericana relacionada con la construcción puede convertirse en líder dentro del universo de las construcciones métricas.

Este documento ha sido preparado para proveer la base técnica para una norma única, exhaustiva y obligatoria sobre unidades SI a utilizar en aplicaciones de diseño de edificios, fabricación de productos o construcción.

1. ALCANCE

- 1.1 Este documento contiene una selección de unidades del SI, con múltiplos y submúltiplos, para su uso general en el diseño y la construcción de edificios.
- 1.2 Además, se presentan reglas y recomendaciones para la presentación de unidades y símbolos del SI, y para los valores numéricos dados conjuntamente con el SI.
- 1.3 En el Apéndice A se presenta una selección de factores de conversión adecuados para utilizar dentro de la comunidad de la construcción.
- 1.4 Las unidades del SI incluidas en este documento cumplen con el documento "American National Standard Metric Practice" ANSI Z 210.1 1976 (también identificado como ASTM E-76 ó Norma IEEE 268-1976) y lo amplían, y en general son consistentes con la norma ISO 1000-1973 (E) "SI Units and Recommendations for the Use of Their Multiples and Certain Other Units."
- 1.5 El sistema métrico oficial de mediciones (SI) a utilizar en los Estados Unidos de América se describe en el documento "THE METRIC SYSTEM OF MEASUREMENT - Interpretation and Modification of the International System of Units for the United States," publicado en el Registro Federal (Vol. 41, No. 239, páginas 54 018-19) el viernes 10 de diciembre de 1976.

2. **DEFINICIONES**

- 2.1 <u>SI</u> Sistema Internacional de Unidades (abreviatura de "Système International d'Unités") según lo definido por la Conferencia General de Pesas y Medidas (CGPM) que se basa en siete (7) unidades de base y dos (2) unidades suplementarias, y unidades derivadas, que conjuntamente forman un sistema coherente.
- 2.2 <u>Magnitud</u> Atributo mensurable de un fenómeno físico. Hay unidades de base para siete (7) magnitudes y unidades suplementarias para dos (2) magnitudes, y en base a estas unidades se derivan todas las demás magnitudes.
- 2.3 <u>Unidad</u> Valor de referencia de una magnitud dada según lo definido por Resolución de la CGPM o establecido en las normas ISO. En el SI existe <u>solamente una</u> unidad para cada magnitud.
- 2.4 <u>Sistema de unidades coherente</u> Sistema en el cual las relaciones entre unidades contienen como único factor numérico el número (1) o la unidad, ya que todas las unidades derivadas poseen una relación unitaria con las unidades de base y suplementarias que lo constituyen.
- 2.5 <u>Valor numérico de una magnitud</u> Valor numérico de una magnitud expresada como el producto de un número y la unidad en la cual se mide dicha magnitud.

3. EL CONCEPTO DEL SI

- 3.1 El Sistema Internacional de Unidades (SI) representa un sistema de pesas y medidas universal, coherente y preferido para su uso mundial y apropiado para las necesidades de la ciencia y tecnología modernas. El SI es un sistema de pesas y medidas dinámico, bajo constante revisión y desarrollo por parte de la CGPM de acuerdo con los desarrollos prácticos y los avances científicos.
- 3.2 Las principales características del SI son:
 - a. Existe solamente una unidad reconocida para cada magnitud física.
 - b. El sistema es totalmente coherente. Esto significa que todas las unidades del sistema se relacionan entre sí en una base unitaria (una a una).
 - c. A las unidades se les puede añadir un conjunto de prefijos acordados internacionalmente para formar múltiplos y submúltiplos preferidos en potencias de 1000. Esto permite contar con valores numéricos convenientes cuando se expresa el valor numérico de una magnitud.
- 3.3 Debido a su importancia práctica, para algunas magnitudes está permitido emplear un grupo específico de unidades no pertenecientes al SI conjuntamente con el SI.
- 3.4 En las Secciones 4, 5 y 6 se discuten las unidades SI, las unidades permitidas no pertenecientes al SI y los prefijos.
- 3.5 El siguiente diagrama muestra gráficamente los tipos de unidades pertenecientes al SI o relacionados con el mismo.

4. **UNIDADES DEL SI**

- 4.1 El Sistema Internacional de Unidades (SI) tiene tres tipos de unidades:
 - a. Unidades de base (7)
- Para magnitudes independientes
- b. Unidades suplementarias (2) Para ángulo plano y ángulo sólido
- c. Unidades derivadas
- 4.2 Las siete unidades de base y las dos unidades suplementarias son unidades únicas que, a excepción del kilogramo, 1 se definen en términos de fenómenos reproducibles.
- 4.3 Todas las unidades derivadas se pueden definir en términos de su derivación a partir de unidades de base y unidades suplementarias. Las unidades derivadas se dividen en dos categorías:
 - a. Unidades derivadas con nombres y símbolos especiales
 - b. Unidades derivadas con nombres genéricos o complejos, expresadas en base a:
 - i. una unidad de base
 - ii. dos o más unidades de base
 - iii. unidades de base y/o unidades derivadas con nombres especiales
 - iv. unidades suplementarias y unidades de base y/o unidades derivadas
- 4.4 La Tabla A (ubicada al final del documento) contiene las unidades de base, unidades suplementarias y unidades derivadas del SI relevantes para el diseño y la construcción. En esta Tabla se lista:
 - a. Magnitud
 - b. Nombre de la unidad
 - c. Símbolo de la unidad
 - d. Fórmula de la unidad
 - e. Derivación de la unidad (en términos de unidades de base y suplementarias)
 - f. Comentarios
- 4.5 En el Apéndice B se incluye una gráfica que ilustra las relaciones entre las unidades de base, las unidades suplementarias y las unidades derivadas a las cuales se les han asignado nombres especiales.

5. UNIDADES NO PERTENECIENTES AL SI A UTILIZAR CON EL SI

- 5.1 Existe un grupo adicional de unidades tradicionales aceptables, aunque no coherentes, cuyo uso con el SI se mantiene debido a la importancia de su aplicación general.
- 5.2 Las unidades no pertenecientes al SI relevantes para el diseño y la construcción se indican en la Tabla B, divididas en dos categorías:

El patrón de masa primario es el "kilogramo prototipo internacional" que se conserva bajo condiciones especificadas en la Oficina Internacional de Pesas y Medidas (BIPM) cerca de París, Francia.

- a. Unidades de uso general
- b. Unidades de aplicación limitada

TABLA B: OTRAS UNIDADES CUYO USO CON EL SI ESTÁ PERMITIDO

		- (
MAGNITUD	MAGNITUD NOMBRE DE LA UNIDAD SÍMBOLO RELACIÓN CON LA UNIDAD DEL SI			COMENTARIOS			
UNIDADES DE USO GENERAL							
Volumen	litro (1)	L	1 L = 0,001 m ³ = 10 ⁶ mm ³	El litro se puede utilizar con el prefijo "mili" del SI.			
Masa	tonelada métrica (2)	t	1 t = 1 Mg = 1000 kg				
Tiempo	minuto	min	1 min = 60 s	Ver también la Sección 9.6.			
	hora	h	1 h = 3600 s = (60 min)				
	día (medio solar)	d	1 d = 86 400 s = (24 h)				
	año	а	1 a = 31 536 000 s = (365 d)				
Intervalo de temperatura	grado Celsius	°C	1 °C = 1 K	La temperatura Celsius 0 °C corresponde exactamente a 273,15 K.			
				(t ∘ _C = T _K - 273,15)			
Ángulo plano	grado (de arco)	0	1° = 0,017 453 rad	1° = (π/180) rad			
			= 17,453mrad				
Velocidad	kilómetro por hora	km/h	1 km/h = 0,278 m/s	1 m/s = 3,6 km/h			
UNIDADES ACEPTADAS S	SÓLO PARA APLICACIO	NES LIMITADA	S:				
Superficie	hectárea	ha	1 ha = 10 000 m ²	Para uso en topografía.			
Energía	kilowatt-hora	kWh	1 kWh = 3,6 MJ	Sólo para medición de consumo de energía eléctrica.			
Velocidad de rotación	revolución por minuto	r/min	1 r/min = $\frac{1}{60}$ r / s = $\frac{2\pi}{60}$ rad / s	Sólo para medición de velocidad rotacional en equipos de movimiento lento.			

⁽¹⁾ El símbolo internacional del litro es la letra "l" minúscula, la cual se puede confundir fácilmente con el numeral "1". Varios países de habla inglesa han adoptado el símbolo "\ell" para el litro a fin de evitar cualquier confusión. Por igual motivo en los Estados Unidos se recomienda el uso del símbolo "L" (letra ele mayúscula).

5.3 El Apéndice C muestra un grupo de unidades métricas anteriormente utilizadas pero cuyo uso con el SI no se recomienda en aplicaciones de diseño y construcción.

6. PREFIJOS PARA LAS UNIDADES DEL SI

6.1 El SI se basa en un sistema decimal de múltiplos y submúltiplos, y por lo tanto se minimiza el uso de fracciones comunes. Los múltiplos se forman anteponiendo prefijos estándares a las unidades del SI.

⁽²⁾ En inglés, el nombre internacional de la tonelada métrica es "tonne". La tonelada métrica es igual al "megagramo" (Mg).

- 6.2 Los múltiplos preferidos varían en pasos geométricos de 1000 (10³) a 10¹8, los submúltiplos preferidos varían en pasos geométricos de 1/1000 (10⁻³) a 10⁻¹8.
- 6.3 MÚLTIPLOS Y SUBMÚLTIPLOS PREFERIDOS: Los siguientes prefijos preferidos, indicados en la Tabla C, son relevantes en el diseño y la construcción. Los prefijos fuera del rango comprendido entre 10⁻⁶ (micro) y 10⁶ (mega) son muy poco frecuentes.

TABLA C: MÚLTIPLOS Y SUBMÚLTIPLOS PREFERIDOS Y SUS PREFIJOS

	PRE	FIJO
FACTOR DE MULTIPLICACIÓN	NOMBRE	SÍMBOLO
1012 ó 1 000 000 000 000	tera	Т
10º ó 1 000 000 000	giga	G
10 ⁶ ó 1 000 000	mega	M
10 ³ ó 1 000	kilo	k
10 ⁻³ ó 0,001	mili	m
10 ⁻⁶ ó 0,000 001	micro	μ
10 ⁻⁹ ó 0,000 000 001	nano	n
10 ⁻¹² ó 0,000 000 000 001	pico	р

6.4 OTROS MÚLTIPLOS DE APLICACIÓN LIMITADA: El SI incluye una cantidad de múltiplos y submúltiplos utilizados históricamente, los cuales se indican en la Tabla D. Sin embargo, en la medida de lo posible estos múltiplos y submúltiplos se deberán evitar.

TABLA D: OTROS MÚLTIPLOS NO PREFERIDOS Y SUS PREFIJOS

FACTOR DE MULTIPLICACIÓN	NOMBRE DEL PREFIJO	SÍMBOLO DEL PREFIJO
10 ² ó 100	hecto	h
10 ¹ ó 10	deca	da
10 ⁻¹ ó 0,1	deci	d
10 ⁻² ó 0,01	centi	С

7. REGLAS Y RECOMENDACIONES PARA EL USO DEL SI

- 7.1 Se han preparado dos tablas de reglas y recomendaciones a fin de facilitar la correcta aplicación de las unidades y símbolos del SI y la correcta presentación de las unidades, símbolos y valores numéricos indicados conjuntamente con las unidades y símbolos.
- 7.2 La Tabla E de las páginas 8 y 9 contiene "Reglas y Recomendaciones para la Presentación de Unidades y Símbolos del SI."

- 7.3 La Tabla F de las páginas 10 y 11 contiene lineamientos sobre la "Presentación de Valores Numéricos con el SI."
- 7.4 Las tablas proporcionan una guía de referencia conveniente para la verificación editorial de documentos métricos a fin de asegurar que la presentación de los datos concuerda con la práctica aceptada.

TABLA E

REGLAS Y RECOMENDACIONES PARA LA PRESENTACIÓN DE UNIDADES Y SÍMBOLOS DEL SI

		EJEMPLOS TÍPICOS	COMENTARIOS
	GENERALIDADES Todos los nombres de las unidades se deben indicar mediante símbolos correctos o mediante el término completo. Por motivos de simplicidad y para reducir la cantidad de caracteres, al escribir utilizar los símbolos de las unidades antes que los términos completos.		
2.	NO MEZCLAR nombres con símbolos.	USAR: J/kg <u>ó</u> joule por kilogramo	NO: joule por kg NO: J/kilogramo
В.	SÍMBOLOS DE LAS MAGNITUDES Y PREFIJOS	,	
1.	Los símbolos del SI han sido acordados internacionalmente y sólo existe un símbolo para cada magnitud. Los múltiplos y submúltiplos se forman utilizando el símbolo de la unidad y agregando delante del mismo el símbolo del prefijo.	m, kg, s, A, cd, K	Ver también B5-B7
2.	Todos los símbolos de las unidades se indican utilizando letras del alfabeto latino, y se pueden escribir utilizando el teclado de una máquina de escribir estándar, a excepción de los símbolos de las unidades SI ohm y el prefijo micro, los cuales se representan mediante las letras griegas Ω y μ respectivamente.		Excepciones: Ω , μ
3.	Los símbolos de las unidades NUNCA van seguidos por un punto, excepto cuando se ubican al final de una oración	60 kg/m	NO: 60 kg./m.
4.	Los símbolos de las unidades normalmente se escriben en minúscula, a excepción de los nombres de unidades derivados de un nombre propio, en cuyo caso la primera letra va en mayúscula. Algunas unidades poseen símbolos formados por dos letras de un nombre propio, de las cuales <u>solamente</u> la primera va en mayúscula. (El símbolo para la unidad "ohm" es la letra griega mayúscula Ω).	m, kg, s, mol, cd, etc. A, K, N, J, W, V, etc. Pa, Hz, Wb, etc.	EXCEPCIÓN: L
5.	Los símbolos de los prefijos para las magnitudes entre $10^6\mathrm{y}\ 10^{18}\mathrm{son}$ letras mayúsculas.	M, G, T, etc.	Ver también C1
6.	Los símbolos de los prefijos para las magnitudes entre 10^{-18} a 10^3 son letras minúsculas. (El símbolo para 10^6 o micro es la letra griega minúscula μ).	p, n, m, k, etc.	Ver también C1
7.	Los símbolos de los prefijos se unen directamente al símbolo de la unidad, <u>sin que haya un espacio</u> entre ellos.	mm, kW, MN, etc.	NO: m m, k W, M N
8.	NO USAR prefijos compuestos para formar un múltiplo o submúltiplo de una unidad (por ejemplo, USAR nanómetro, NO USAR micromilímetro <u>ni</u> milimicrómetro).	nm	NO: μmm <u>ni</u> nμm
9.	En el caso de la unidad de base kilogramo, los prefijos se unen al "gramo" (por ejemplo, miligramo, NO microkilogramo).	mg	NO: μkg
10.	USAR SOLAMENTE UN PREFIJO para formar un múltiplo o submúltiplo de una unidad compuesta. Normalmente el prefijo se debe unir a una unidad en el numerador. Hay una excepción a esta regla para el caso de la unidad de base kilogramo.	km/s; mV/m	NO: mm/µs; µV/mm EXCEPCIÓN: MJ/kg; NO: KJ/g
C.	ÁREAS DE POSIBLE CONFUSIÓN QUE REQUIEREN PARTICULAR ATENCIÓN		
1.	Los símbolos de las unidades del SI y las convenciones que rigen su empleo se deben respetar ESTRICTAMENTE. Varios símbolos de prefijos y unidades utilizan la misma letra pero se diferencian por su forma. Se debe prestar ATENCIÓN a la selección del símbolo correcto para cada magnitud.	g (gramo); G (giga) k (kilo); K (kelvin) m (mili); m (metro); M (mega) n (nano); N (newton)	OTROS: c (centi); C (coulomb) °C (grado Celsius) s (segundo); S (siemens) t (tonelada métrica); T (Tesla); T (Tera)
2.	Todos los símbolos de los prefijos y unidades mantienen la forma para ellos prescripta, independientemente de la tipografía del contexto. En impresiones realizadas con conjuntos limitados de caracteres (telex, impresoras para computadoras) se aplican consideraciones especiales para los símbolos correspondientes a mega, micro, ohm y siemens. Cuando exista la posibilidad de confusión se deben ESCRIBIR LAS UNIDADES UTILIZANDO SU FORMA COMPLETA.		
D.	NOMBRES DE LAS UNIDADES ESCRITOS EN SU FORMA COMPLETA		

1.	Los nombres de las unidades, incluyendo los prefijos, se tratan como sustantivos comunes y <u>no se escriben con mayúscula</u> , excepto cuando aparecen al comienzo de una oración o en un título. (La única excepción es "Celsius" en "grado Celsius", donde se considera que el nombre de la unidad es el grado y por lo tanto se escribe con minúscula, mientras que Celsius representa un adjetivo y lleva mayúscula.)	metro, newton, etc.	NO: Metro, Newton EXCEPCIÓN: grado <u>C</u> elsius
2.	Cuando a fin de formar un múltiplo o submúltiplo a una unidad del SI se le antepone un prefijo, esta combinación se escribe como una sola palabra. (Existen tres casos en los cuales en la combinación se omite la vocal final del prefijo: megohm, kilohm y hectárea).	milímetro; kilowatt	NO: mili-metro NO: kilo watt
3.	Cuando una unidad compuesta se forma como el producto de dos unidades, se prefiere el uso de un espacio entre las unidades, pero un guión es aceptable y en algunos casos adecuado para evitar cualquier riesgo de malinterpretación.	newton metro <u>o</u> newton-metro	NO: newtonmetro
4.	Cuando una unidad compuesta se forma como el cociente entre dos unidades, esto se expresa insertando "por" entre el numerador y el denominador.	metro por segundo joule por kelvin	NO: metro/segundo NO: joule/kelvin
5.	Cuando el valor numérico de una unidad está escrito en su forma completa la unidad también se debe escribir en su forma completa.	siete metros	NO: siete m
E.	PLURALES		
1.	Las unidades escritas en su forma completas están sujetas a las reglas gramaticales habituales. Para cualquier unidad con un valor numérico superior a la unidad (1), a la forma escrita de la unidad se le agrega "s" o "es", según coresponda, para indicar el plural.	1,2 metro <u>s;</u> 2,3 newton <u>s;</u> 33,2 kilogramo <u>s</u>	PERO: 0,8 metro
2.	Cuando las siguientes unidades se escriben en su forma completa, la forma plural es igual a la forma singular; hertz, lux, siemens	350 kilohertz 12,5 lux	
3.	Los símbolos nunca cambian en el plural.	2,3 N; 33,2 kg	NO: 2,3 N <u>s</u> ; 33,2 kg <u>s</u>
F.	SÍMBOLOS DE LAS UNIDADES COMPUESTAS - PRODUCTOS Y COCIENTES		
1.	El producto de dos unidades se indica mediante un punto ubicado a mitad de altura entre los símbolos de las unidades.	kN·m; Pa·s	NO: kNm; Pas NO: kN m; Pa s
2.	Para expresar una unidad derivada formada por división se puede utilizar cualquiera de los métodos siguientes		Ver también F3 y F5.
	a. una barra inclinada (/)	kg/m³; W/(m·K)	Ver también F3 y F5.
	b. una línea horizontal entre numerador y denominador	$\frac{\text{kg}}{\text{m}^3}$; $\frac{\text{W}}{\text{m} \cdot \text{K}}$	
	c. un índice negativo (o potencia negativa)	m ³ m · K kg·m ⁻³ ; W·m ⁻¹ ·K ⁻¹	
3.	En una combinación se puede utilizar solamente una barra inclinada	m/s²; m·kg/(s³·A)	NO: m/s/s NO: m-kg/s³/A
4.	NO USAR la abreviatura "p" en reemplazo de "por" en la expresión de un cociente.	km/h	NO: kph <u>ni</u> k.p.h.
5.	Cuando el denominador es un producto se lo debe indicar encerrado por un paréntesis.	W/(m²⋅K)	

TABLA F PRESENTACIÓN DE VALORES NUMÉRICOS EN CONJUNCIÓN CON EL SI

			T
		EJEMPLOS TÍPICOS	COMENTARIOS
A.	MARCADOR DECIMAL		
1.	Aunque la mayoría de los países europeos utilizan la coma como marcador decimal y esta práctica es apoyada por ISO, hay una excepción particular para los documentos en idioma inglés en los cuales tradicionalmente se ha utilizado el punto o período como marcador decimal.		Ver también G.
2.	El marcador decimal recomendado para los Estados Unidos es el punto (período), y no se debería utilizar la coma. Por motivos de claridad en los documentos manuscritos el marcador decimal se puede colocar	9.9; 15.375 9.9; 15.375	NO: 9,9; 15,375
	ligeramente por encima de la línea.	99, 10010	
3.	<u>Siempre</u> colocar un cero delante del marcador decimal para todos los números menores que 1,0 (uno).	0,1; 0,725	NO: ,1; ,725
B.	SEPARACIÓN		
1.	Siempre dejar un espacio entre el valor numérico asociado con un símbolo y el símbolo, de al menos la mitad del ancho del espacio normal. En el caso del símbolo correspondiente al "grado Celsius" este espacio es opcional, pero el símbolo del grado siempre debe estar unido a Celsius.	900 MHz; 200 mg; 10 ⁶ mm ² ó 10 ⁶ mm ² 20°C ó 20 °C	NO: 900MHz; 200mg NO: 10 ⁶ mm ² NO: 20 ^o C
2.	En las expresiones de ángulo plano no pertenecientes al SI (°, ', ") NO DEJAR UN ESPACIO entre el valor numérico y el símbolo.	27°30' (de arco)	NO: 27 ° 30 '
3.	$\underline{\underline{Siempre}} \ dejar \ un \ espacio \ a \ cada \ lado \ de \ los \ signos \ de \ multiplicación, \ división, \ adición \ o \ sustracción.$	100 mm x 100 mm; 26 MPa + 8 MPa	NO: 100 mmx100 mm NO: 36 MPa+ 8 MPa
C.	FRACCIONES		
1.	Evitar las fracciones comunes en relación con las unidades del SI.	ESCRIBIR: 0,5 kPa	NO: 1/2 kPa
2.	<u>Siempre</u> usar notación decimal para expresar fracciones de cualquier número mayor que 1,0 (uno).	1,5; 16,375	NO: 1-1/2; 16-3/8
3.	Aunque en el habla se continuarán utilizando la mayoría de las fracciones habituales tales como un medio, un tercio, un cuarto y un quinto, <u>siempre</u> usar notación decimal en el material escrito, mecanografiado o impreso.	0,5; 0,33; 0,25; 0,2	NO: 1/2; 1/3; 1/4; 1/5
D.	POTENCIAS DE LAS UNIDADES Y NOTACIÓN EXPONENCIAL		
1.	Al escribir el nombre de una unidad con el modificador "al cuadrado" o "al cubo" se deben aplicar las siguientes reglas:		
	a. En el caso de superficies y volúmenes el modificador se escribe detrás del nombre de la unidad utilizando los términos "cuadrado" y "cúbico".	metro cúbico milímetro cuadrado	NO: metro al cubo; milímetro al cuadrado
	 En todos los demás casos el modificador se indica después del nombre de la unidad utilizando los términos "al cuadrado", "al cubo", "a la cuarta", etc. 	metro por segundo al cuadrado	NO: metro por segundo cuadrado (ni "metro por segundo por segundo")
	c. NO se deben utilizar abreviaturas para "cuadrado" y "cúbico".		NO: milímetro cuad. NO: metro cúb.
2.	Para los símbolos de unidades con modificadores (tales como al cuadrado, al cubo, a la cuarta potencia, etc.) siempre indicar el número supraindicado inmediatamente después del símbolo.	m²; mm³; s⁴	NO: m ² ; mm ³ ; s ⁴
3.	Indicar el supraíndice como un numeral de tamaño reducido. Si se utiliza una máquina de escribir sin supraíndices será necesario elevar el numeral de tamaño normal la mitad de una línea, siempre que no se superponga con la línea superior.	mm³; m/s²	PERMITIDO: mm ³ ; m/s ²

4.	Si hay un exponente unido a un símbolo prefijado, éste indica que el múltiplo (o submúltiplo) está elevado a la potencia indicada por el exponente.	1 mm ³ = (10 ⁻³ m) ³ = 10 ⁻⁹ m ³ 1 km ² = (10 ³ m) ² = 10 ⁶ m ²	NO: 1 mm ³ = 10 ⁻³ m ³
E.	RELACIONES		
1.	Para expresar una relación de magnitudes de unidades similares no se deben mezclar las unidades.	0,01 m/m 0,03 m ² /m ²	NO: 10 mm/m NO: 30.000 mm²/m²
2.	Siempre que sea posible se debe utilizar una expresión adimensional (relación o porcentaje) para indicar la medida de pendientes, deformaciones unitarias, etc.		SE PREFIERE: 1:100; 0,01; 1% 1:33; 0,03; 3%
F.	RANGO		
1.	La elección del prefijo adecuado para indicar un múltiplo o submúltiplo de una unidad del SI está determinada por motivos de conveniencia a fin de obtener valores numéricos comprendidos en un rango práctico y eliminar dígitos no significativos.		
2.	Preferentemente usar prefijos que representen potencias ternarias de 10 (10 elevado a una potencia que sea múltiplo de 3).	mili, kilo, mega	EVITAR: centi, deci, deca, hecto
3.	Seleccionar los prefijos de manera que el valor o los valores numéricos ocurran en un rango común comprendido entre 0,1 y 1000.	120 kN 3,94 mm 14,5 MPa	EN VEZ DE: 120 000 N 0,003 94 m 14 500 kPa
4.	Se debe considerar la compatibilidad con el rango general; por ejemplo, si todas las dimensiones de un plano están expresadas en milímetros (mm), sería aceptable un rango comprendido entre 1 y 99.999 (un máximo de cinco dígitos) para evitar la mezcla de unidades.		NOTA: Los planos deberían tener la leyenda "Todas las dimensiones en milímetros".
G.	PRESENTACIÓN Y TABULACIÓN DE NÚMEROS		differisiones en milifietios .
1.	Para los números con muchos dígitos la práctica habitual en los Estados Unidos ha sido separar los dígitos en grupos de tres por medio de comas. A fin de evitar confusiones esta práctica <u>no</u> se	54 375, 260 55	NO: 54.375,26055
	debe utilizar con el SI. Se recomienda la práctica internacional de disponer los dígitos en grupos de tres a partir del marcador decimal, con una separación entre grupos no mayor que un espacio.	54 375, 260 55	NO: 54375,26055
2.	Para números individuales con cuatro dígitos antes (o después) del marcador decimal este espacio no es necesario.	4500; 0,0355	
3.	En toda tabulación de números con cinco o más dígitos delante y/o después del marcador decimal, agrupar los dígitos en grupos de tres: por ejemplo: 12,5255; 5735; 98 300; 0,425 75	12,525 5 735 98 300 0,425 75 104 047,951 25	
H.	USO DE UNIDADES SIN PREFIJOS EN LOS CÁLCULOS		
	Es posible minimizar los errores en los cálculos que involucran unidades compuestas si todas las unidades prefijadas se convierten a unidades de base o derivadas coherentes, expresando los valores numéricos en notación exponencial.	SE PREFIERE: 136 kJ = 136 x 10 ³ J 20 MPa = 20 x 10 ⁶ Pa 1,5 t (Mg) = 1,5 x 10 ³ kg	TAMBIÉN SE ACEPTA: 1,36 x 10 ⁵ J 2 x 10 ⁷ Pa

8. UNIDADES DEL SI A UTILIZAR EN EL DISEÑO Y LA CONSTRUCCIÓN

- 8.1 Es fundamental seleccionar correctamente las unidades a utilizar en el cálculo y la construcción de edificios y en la documentación técnica a fin de minimizar los errores y optimizar la coordinación entre los diferentes grupos y sectores dentro de la comunidad de la construcción.
- 8.2 La siguiente tabla lista las unidades SI, y otras unidades aceptables con el SI según lo recomendado, a utilizar en las actividades relacionadas con el diseño y la construcción. Cuando corresponde, se indican los rangos de trabajo para unidades seleccionadas y se proporcionan ejemplos típicos de sus aplicaciones. Además, se incluyen comentarios explicativos para tratar brevemente cualquier consideración especial necesaria. Se ha adoptado una subdivisión similar a la de ISO 1000:

TABLA G: Páginas 14-16 ESPACIO Y TIEMPO: GEOMETRÍA, CINEMÁTICA Y FENÓMENOS PERIÓDICOS

TABLA H: Páginas 17-18 MECÁNICA: ESTÁTICA Y DINÁMICA

TABLA J: Páginas 19-20 CALOR: EFECTOS TÉRMICOS, TRANSFERENCIA DE CALOR

TABLA K: Páginas 21-22 ELECTRICIDAD Y MAGNETISMO

TABLA L: Página 23 ILUMINACIÓN

TABLA M: Página 24 ACÚSTICA

8.3 RANGO DE VALORES PREFERIDOS

El empleo de una unidad o de un múltiplo de una unidad depende del contexto en el cual se utilizan.

- 8.4.1 En material impreso o mecanografiado es preferible utilizar números entre 1 y 1000 siempre que sea posible, seleccionando el prefijo adecuado. Por ejemplo:
 - Se prefiere 725 m antes que 0,725 km ó 725.000 mm
- 8.4.2 Si la magnitud numérica es parte de un grupo de números en un rango diferente, seleccionar el prefijo que cubra el rango más adecuadamente, sin que haya números indebidamente grandes o pequeños. Por ejemplo:
 - Si <u>725 m</u> forma parte de un grupo de números indicados en kilómetros, indicarlo como <u>0,725 km</u>.
- 8.4.3 Aunque los datos físicos generalmente se deberían presentar de la forma más condensada posible, utilizando prefijos adecuados, el uso de la notación exponencial en lugar de los prefijos puede resultar ventajoso para los cálculos. Por ejemplo:
 - $900 \text{ mm}^2 = 0.9 \text{ x } 10^{-3} \text{ m}^2$; $36 \text{ MPa} = 36 \text{ x } 10^6 \text{ Pa} = 36 \text{ x } 10^6 \text{ N/m}^2$

8.4.4 En los planos resultará ventajoso mostrar una sola unidad de medida, de manera que los valores numéricos se puedan representar exclusivamente mediante números y se pueda eliminar el símbolo de la unidad.

Por ejemplo, en un plano donde todas las dimensiones se presentan en milímetros, son aceptables los números de cinco dígitos (indicando milímetros).

TABLA G ESPACIO Y TIEMPO: GEOMETRÍA, CINEMÁTICA Y FENÓMENOS PERIÓDICOS

MAGNITUD Y SÍMBOLO DE LA UNIDAD SI	UNIDADES PREFERIDAS (SÍMBOLOS)	OTRAS UNIDADES ACEPTABLES	NOMBRE DE LA UNIDAD	APLICACIONES TÍPICAS	COMENTARIOS
LONGITUD (m)	m		metro	ARQUITECTURA E INGENIERÍA EN GENERAL Cotas, dimensiones generales, longitudes de tramo, alturas de columna, etc., en cálculos de ingeniería ESTIMACIONES Y ESPECIFICACIONES Zanjas, cordones cuneta, cercas, longitudes de los maderos, tuberías y conducciones; longitudes de los materiales de construcción en general TOPOGRAFÍA Relevamientos de límites y catastrales; planos topográficos; cotas, relevamientos geodésicos, curvas de nivel INGENIERÍA HIDRÁULICA Longitudes de tuberías y canales, profundidad de tanques de almacenamiento o reservorios, carga	USAR metros en todos los planos con escalas comprendidas entre 1:200 y 1:2000. Cuando por motivos de precisión resulte necesario, indicar las dimensiones con tres cifras decimales.
	mm		milímetro	potenciométrica, carga hidráulica, carga piezométrica ARQUITECTURA E INGENIERÍA EN GENERAL Longitudes de tramo, dimensiones de las construcciones, dimensiones de productos para la construcción; profundidad y ancho de las secciones; desplazamiento, asentamiento, flecha, alargamiento; asentamiento del hormigón, tamaño de los agregados; radio de giro, excentricidad; dimensiones detalladas en general; precipitación ESTIMACIONES Y ESPECIFICACIONES Secciones transversales de los maderos; espesores, diámetros del acero y los sujetadores; todas las demás dimensiones de los productos para la construcción INGENIERÍA HIDRÁULICA Diámetros de tuberías; radios de los pozos de agua subterránea; altura de ascensión capilar; precipitación, evaporación	USAR milímetros en todos los planos con escalas comprendidas entre 1:1 y 1:200. EVITAR el uso del centímetro (cm). Cuando en los documentos se indica "cm", como en el caso de altura de nieve, dimensiones de un cuerpo o tamaños de losa, etc. CONVERTIR a 'mm' ó 'm'.
	km		kilómetro	Distancias a los fines del transporte; aplicaciones geográficas o estadísticas en topografía; tuberías y canales de gran longitud	
	μm		micrómetro	Espesor de recubrimientos (pintura, galvanizado, etc.); materiales de poco espesor, tamaño de los agregados finos	
SUPERFICIE (m²)	m²		metro cuadrado	APLICACIONES GENERALES Pequeñas superficies de tierra; área de la sección transversal en trabajos de movimiento de suelo, canales y tuberías de mayor tamaño; área superficial de tanques y pequeños depósitos; superficies en general. ESTIMACIONES Y ESPECIFICACIONES	(1 m² = 106 mm²) Reemplaza al pie cuadrado, yarda cuadrada.

				Superficies cubiertas; pavimentos, construcciones de	ESPECIFICAR construcción de
				mampostería, cubiertas, acabados de muros y entrepisos, yesería, pintura, superficies vidriadas, membranas, revestimientos, aislación, mallas de refuerzo, encofrados; superficies de todos los componentes de un edificio	mampostería como superficie de muro por espesor de muro.
	mm²		milímetro cuadrado	Área de la sección transversal para secciones estructurales y otras secciones, barras, tuberías, perfiles conformados y laminados, etc.	EVITAR el uso de cm² (centímetro cuadrado) convirtiendo a mm² (1 cm² = 10² mm² = 100 mm²)
	km²		kilómetro cuadrado	Grandes cuencas hidrográficas o terrenos	
		ha	hectárea	Terrenos; zonas de irrigación; áreas en planos de límites u otros planos topográficos	$(1 \text{ ha} = (10^2 \text{ m})^2$ $= 10^4 \text{ m}^2$ $= 10 000 \text{ m}^2$
VOLUMEN,	m³		metro cúbico	APLICACIONES GENERALES	1 m ³ = 1000 L
CAPACIDAD (m³)				Volumen, capacidad (grandes magnitudes); volumen de los movimientos de suelo, excavaciones, rellenos, eliminación de residuos; hormigón, arena, todos los materiales a granel entregados por volumen, y grandes cantidades de madera INGENIERÍA HIDRÁULICA Distribución de agua, irrigación, desagües cloacales, capacidad de almacenamiento, cuencas subterráneas	Siempre que sea posible, USAR el metro cúbico como unidad de volumen preferida para todas las aplicaciones de ingeniería.
	mm³		milímetro cúbico	Volumen, capacidad (pequeñas magnitudes).	
		L	litro	Volumen de fluidos y recipientes para fluidos; materiales líquidos, suministro de agua potable domiciliaria, consumo; volumen/capacidad de tanques de combustible	El litro y sus múltiplos o submúltiplos se pueden utilizar para suministros de líquidos domiciliarios e industriales.
		mL	mililitro	Volumen de fluidos y recipientes para fluidos (solamente de aplicación limitada)	1 L = 1 dm³ = 1000 cm³ 1 mL = 1 cm³ Ver también la Sección 9.3.
		cm ³	centímetro cúbico	Solamente de aplicación limitada (pequeñas cantidades)	1 cm ³ = 1000 mm ³ = 10 ⁻⁶ m ³
MÓDULO DE SECCIÓN (RESISTENTE) (m³)	mm³ m³		milímetro al cubo metro al cubo	Propiedades geométricas de secciones estructurales, tales como módulo plástico de la sección, módulo elástico de la sección, etc.	Ver también la Sección 9.4
SEGUNDO MOMENTO DE	mm ⁴		milímetro a la cuarta	Propiedades geométricas de secciones estructurales, tales como momento de inercia de una sección,	Ver también la Sección 9.4.
ÁREA (m⁴)	m ⁴		metro a la cuarta	constante torsional de una sección transversal	
ÁNGULO PLANO (rad)	rad mrad		radián miliradián	Generalmente utilizadas en los cálculos con el sólo propósito de preservar la coherencia	Las pendientes y gradientes también se pueden expresar
(100)	muu	(<u></u> °)	grado (de arco)	APLICACIONES GENERALES Medición angular en la construcción (generalmente utilizando los grados en forma decimal); ángulo de rotación, torsión, resistencia al corte, fricción, fricción interna, etc. TOPOGRAFÍA Rumbos indicados en planos de relevamiento de límites y planos catastrales; relevamientos geodésicos	como una relación o un porcentaje: 26,57° = 1 : 2
TIEMPO, INTERVALO DE TIEMPO (s)	S		segundo	Tiempo utilizado en métodos de ensayo; todos los cálculos que involucran unidades derivadas que tienen una componente de tiempo, a fin de preservar la coherencia	EVITAR el uso del minuto (min) tanto como sea posible.
\-\cdot -\frac{\cdot -\cdot -\frac{\cdot -\cdot -	_	h	hora	Tiempo utilizado en métodos de ensayo; todos los	(1h = 3600 s)
		d	día	cálculos que involucran tiempo de mano de obra,	(1d = 86 400 s)
		а	año	alquiler de equipos, períodos de mantenimiento, etc.	= 86,4 ks)
FRECUENCIA	Hz		hertz	Frecuencia del sonido, vibración, choque; frecuencia de	$(1 \text{ Hz}) = 1/\text{s} = \text{s}^{-1}$
(Hz)	kHz		kilohertz	las ondas electromagnéticas	Reemplaza al ciclo(s) por segundo (c/s ó cps)
	MHz		megahertz		segundo (c/s o cps)

FRECUENCIA ROTACIONAL, VELOCIDAD DE ROTACIÓN (s-1)		r/s	revolución por segundo	Ampliamente utilizado en la especificación de la velocidad de rotación de las maquinarias. Usar r/min solamente para maquinarias de movimiento lento	(1 r/s = 2 π rad/s) = 60 r/min)
VELOCIDAD (m/s)	m/s		metro por segundo	Cálculos que involucran movimiento rectilíneo, velocidad en general; velocidad del viento; velocidad de los fluidos; velocidad de flujo en tuberías	1 (m/s = 3,6 km/h)
		km/h	kilómetro por hora	Velocidad del viento; velocidad utilizada en transporte; límites de velocidad	
		mm/h	milímetro por hora	Intensidad de precipitación	
VELOCIDAD ANGULAR (rad/s)	rad/s		radián por segundo	Cálculos que involucran movimiento rotacional	
ACELERACIÓN LINEAL (m/s²)	m/s²		metro por segundo al cuadrado	Cinemática; cálculo de fuerzas dinámicas	Valor recomendado para la aceleración de la gravedad a utilizar en los Estados Unidos: $g_{EEUU} = 9.8 \text{ m/s}^2$ Ver también página 30
CAUDAL (m³/s)	m³/s		metro cúbico por segundo	Caudal en general; caudal en tuberías, conductos, canales, ríos; demanda de riego por aspersión	(1 m ³ /s = 1000 L/s)
, ,		m³/h	metro cúbico por hora		Ver también la Sección 9.6.3.
		m³/d	metro cúbico por día		
		L/s L/d	litro por segundo litro por día	Solamente caudal volumétrico de fluidos	

TABLA H MECÁNICA: ESTÁTICA Y DINÁMICA

MACHITUDAY	LINUDADEO	OTDAG	T	T	T
MAGNITUD Y SÍMBOLO DE LA UNIDAD SI	UNIDADES PREFERIDAS (SÍMBOLOS)	OTRAS UNIDADES ACEPTABLES	NOMBRE DE LA UNIDAD	APLICACIONES TÍPICAS	COMENTARIOS
MASA (kg)	kg	NOLI INDELO	kilogramo	Masa de los materiales en general, masa de elementos estructurales y maquinaria	En los cálculos y especificaciones USAR kilogramos (kg).
	g		gramo	Masa de las muestras de material para ensayo	Las masas de más de 104 kg
		t	tonelada métrica	Masa de grandes cantidades de materiales, tales como acero estructural, armadura, agregados, hormigón, etc.; calificación de los equipos elevadores (grúas, etc.)	(10 000 kg) se pueden expresar convenientemente en toneladas métricas (t): 1 t = 10 ³ kg = 1 Mg = 1000 kg
DENSIDAD LINEAL (kg/m)	kg/m		kilogramo por metro	Masa por unidad de longitud de las secciones, barras y similares de sección transversal uniforme	También denominada "masa por unidad de longitud"
		g/m	gramo por metro	Masa por unidad de longitud de alambre y similares de sección transversal uniforme	
DENSIDAD SUPERFICIAL (kg/m²)	kg/m²		kilogramo por metro cuadrado	Masa por unidad de superficie de losas, placas y similares de espesor o profundidad uniforme; calificación de capacidades de carga de entrepisos (usar sólo en las notas)*	* NO USAR en el cálculo de tensiones
		g/m²	gramo por metro cuadrado	Masa por unidad de superficie de materiales laminares de poco espesor, recubrimientos, etc.	
DENSIDAD DE MASA, CONCENTRACIÓN (kg/m³)	kg/m³		kilogramo por metro cúbico	Densidad de los materiales en general; masa por unidad de volumen de los materiales en una mezcla de hormigón; evaluación de las masas de estructuras y materiales	También denominada "Masa por unidad de volumen" (1 kg/m³ = 1 g/L)
,		g/m³	gramo por metro cúbico	Masa por unidad de volumen (concentración) en el control de la contaminación	(1 g/m³ = 1 mg/L)
		μg/m³	microgramo por metro cúbico		
IMPULSO (kg · m/s)	kg · m/s		kilogramo metro por segundo	Usado en mecánica aplicada: evaluación de impacto y fuerzas dinámicas	
MOMENTO DE INERCIA $(kg \cdot m^2)$	kg ⋅ m²		kilogramo metro cuadrado	Dinámica rotacional. Evaluación de las fuerzas requeridas para hélices, molinos de viento, etc.	Ver también la Sección 9.11.
CAUDAL MÁSICO (kg/s)	kg/s		kilogramo por segundo	Velocidad de transporte de materiales sobre cintas transportadoras y otros equipos	1 kg/s = 3,6 t/h
		t/h	tonelada métrica por hora		
FUERZA	N		newton	Unidad de fuerza a utilizar en los cálculos	1 N = 1 kg · m/s ²
(N)	kN		kilonewton	Fuerzas en los elementos estructurales, tales como columnas, pilares, zunchos, tendones de pretensado, etc.; fuerzas concentradas; fuerzas axiales; reacciones; esfuerzo de corte; fuerza gravitatoria	Ver también la Sección 9.8.
FUERZA POR UNIDAD DE	N/m		newton por metro	Unidad a usar en los cálculos	
LONGITUD (N/m)	kN/m		kilonewton por metro	Fuerza transversal por unidad de longitud sobre una viga, columna, etc.; distribución de la fuerza en una dirección lineal	
MOMENTO DE	N · m		newton metro	Momentos flectores (en secciones estructurales),	Ver también las Secciones
UNA FUERZA,	kN ⋅ m		kilonewton metro	momento torsor; momento de vuelco; tensión de	9.10.4 y 9.11
MOMENTO TORSIONAL O FLECTOR (N·m)	MN · m		meganewton metro	ajuste para bulones de alta resistencia; torque en ejes accionados por un motor, etc.	
PRESIÓN, TENSIÓN,	Pa		pascal	Unidad a utilizar en los cálculos; bajas presiones diferenciales en líquidos	(1 Pa = 1 N/m²)
MÓDULO DE ELASTICIDAD (Pa)	kPa		kilopascal	Presión uniformemente distribuida (cargas) sobre entrepisos; presión que soporta el suelo; presión del viento (cargas), cargas de nieve, cargas permanentes y sobrecargas; presión en fluidos; presión diferencial (por ejemplo, en sistemas de ventilación)	Cuando la presión del viento, cargas de nieve, cargas permanentes y sobrecargas se indican en kN/m², cambiar las unidades a kPa

	MPa		megapascal	Módulo de elasticidad; tensión (última, de verificación, de fluencia, admisible, calculada, etc.) en materiales estructurales; grados de resistencia del hormigón y el acero	1 MPa = 1 MN/m ² = 1 N/mm ²
	GPa		gigapascal	Módulo de elasticidad de materiales de alta resistencia	
	μРа		micropascal	Presión sonora (20 μPa es la referencia para el nivel de presión sonora)	
COMPRESIBILIDAD (Pa-1)	1/Pa		inversa del pascal	Análisis de asentamiento (coeficiente de compresibilidad, compresibilidad volumétrica)	(1/Pa = 1 m ² /N)
	1/kPa		inversa del kilopascal		
VISCOSIDAD	Pa⋅s		pascal segundo	Tensiones de corte en fluidos	(1 Pa · s = 1 Ns/m ²)
DINÁMICA (Pa · s)	mPa · s		milipascal segundo		NO SE DEBE USAR el centipoise (cP) = 10-3 Pa · s
VISCOSIDAD CINEMÁTICA	m²/s		metro cuadrado por segundo		NO SE DEBE USAR el centistokes (cSt) = 10-6 m²/s
(m²/s)	mm²/s		milímetro cuadrado por segundo	Cálculo del número de Reynold, análisis de asentamiento (coeficiente de compactación)	1 cSt = 1 mm ² /s
TRABAJO,	J		joule	Energía absorbida en ensayos de impacto; energía en	
ENERGÍA	kJ		kilojoule	general; cálculos que involucran energía mecánica y	
(J)	MJ		megajoule	eléctrica	
		kWh	kilowatt hora	Sólo aplicaciones de energía eléctrica	1 kWh = 3,6 MJ
RESISTENCIA AL IMPACTO	J/m²		joule por metro cuadrado	Resistencia al impacto; ductilidad de impacto	
(J/m ²)	kJ/m²		kilojoule por metro cuadrado		
POTENCIA	W		watt	Potencia en general (mecánica, eléctrica, térmica);	
(W)	kW		kilowatt	tasa de entrada/salida, etc. de motores, plantas de calefacción o ventilación y otros equipos en general	
	MW		megawatt	Calificación de potencia de entrada/salida de plantas eléctricas	
	pW		picowatt	Nivel de potencia sonora (1 pW es la referencia para el nivel de potencia sonora)	

TABLA J
CALOR: EFECTOS TÉRMICOS, TRANSFERENCIA DE CALOR

MAGNITUD Y	UNIDADES	OTRAS	NOMBRE DE LA		
SÍMBOLO DE LA	PREFERIDAS	UNIDADES	UNIDAD	APLICACIONES TÍPICAS	COMENTARIOS
UNIDAD SI	(SÍMBOLOS)	ACEPTABLES	_		
VALOR DE LA	K		kelvin	Expresión de temperatura termodinámica; cálculos	(t _{°C} = T _K - 273,15)
TEMPERATURA				que involucran unidades de temperatura	
(K)		°C	grado Celsius	Escala habitual de temperatura usada en meteorología	
				y aplicaciones generales; valores de temperatura	
				ambiente	
INTERVALO DE	K		kelvin	Cálculo de transferencia de calor; intervalos de	(1 K = 1 °C)
TEMPERATURA		°C	grado Celsius	temperatura en métodos de ensayo, etc.	En las unidades compuestas se
(K)			·	·	recomienda usar el kelvin (K)
COEFICIENTE DE	1/K		inversa del kelvin	Expansión de materiales sometidos a un cambio de	, ,
EXPANSIÓN		1/°C	inversa del grado	temperatura (generalmente expresada como una tasa	
TÉRMICA LINEAL			Celsius	por kelvin o grado Celsius)	
(1/K)				,	
CALOR, CANTIDAD	J		ioule	Cálculo de energía térmica; entalpía, calor latente,	
DE CALOR	kJ		kilojoule	calor sensible	
(J)	MJ		megajoule		
ENERGÍA	J/kg		joule por	Calor de transición; calor y energía contenidos en los	
ESPECÍFICA,	orkg		kilogramo	materiales; calor de combustión por unidad de masa;	
CALOR LATENTE	kJ/kg		kilojoule por	poder calorífico de los combustibles (másico); calor	
ESPECÍFICO:	KU/Kg		kilogramo	sensible específico, calor latente específico en	
CALOR DE	MJ/kg		megajoule por	cálculos psicrométricos	
COMBUSTIÓN	IVIJ/Kg		kilogramo	calculos psiciometricos	
(másico)			Kilograffio		
(J/kg)					
DENSIDAD DE	J/m³		joule por metro	Calor de combustión por unidad de volumen	
ENERGÍA, CALOR	3/111-		cúbico	Calor de combastion por unidad de volumen	
DE COMBUSTIÓN	kJ/m³		kilojoule por		$(1 \text{ kJ/m}^3 = 1 \text{ J/L})$
(volumétrico)	NJ/III-		metro cúbico		(1 KO/III' = 1 6/L)
(J/m³)	MJ/m³		megajoule por	Poder calorífico de los combustibles (volumétrico)	$(1 \text{ MJ/m}^3) = 1 \text{ kJ/L})$
(0/111*)	IVIJ/III°		metro cúbico	1 oder calornico de los combustibles (volunicineo)	(1 Mo/III*) = 1 Ko/L)
CAPACIDAD	J/K		joule por kelvin	Comportamiento térmico de los materiales, cálculos de	
CALORÍFICA,	kJ/K			transmisión de calor, entropía	
ENTROPÍA	KJ/N		kilojoule por kelvin	transmision de caior, entropia	
(J/K)			Keivin		
CAPACIDAD	1//1 1/)		joule por	Comportamiento térmico de los materiales, cálculos de	
CALORÍFICA	J/(kg · K)			transmisión de calor	
ESPECÍFICA,	1.1//1 . 1/0		kilogramo kelvin		
ENTROPÍA	$kJ/(kg \cdot K)$		kilojoule por		
ESPECÍFICA			kilogramo kelvin		
(J/kg · K)	14/			This are at the attention of the second control of the second cont	4.14 - 4.1/0
FLUJO	W		watt	Flujo energético a través de muros, ventanas, etc.;	1 W = 1 J/S
ENERGÉTICO	kW		kilowatt	demanda de calor	
(W)	14//			Described de matematica finite de colore (co. Co. Co. Co.	
DENSIDAD DE	W/m ²		watt por metro	Densidad de potencia o flujo de calor a través de los	
POTENCIA,	1.3.477		cuadrado	muros de las construcciones y otras superficies que	
DENSIDAD DE	kW/m²		kilowatt por	transfieren calor; cálculos de transmisión de calor	
FLUJO			metro cuadrado		
CALORÍFICO, IRRADIANCIA					
_					
(W/m²)	14//2			Tana da Bhanaita da salan e e e e e e e e e e e	(AAII2 11/-2)
TASA DE	W/m³		watt por metro	Tasa de liberación de calor por unidad de volumen en	$(W/m^3 = J / (m^3 \cdot s)$
LIBERACIÓN DE	114// 2		cúbico	el tiempo (para gases y líquidos)	
CALOR	kW/m³		kilowatt pro		
(W/m³)	1411/		metro cúbicl	French (Control of the Control of th	111111
CONDUCTIVIDAD	$W/(m \cdot K)$		watt por metro	Estimación del comportamiento térmico de sistemas y	1 W / (m · K) = 1 W / (m · °C)
TÉRMICA			kelvin	materiales; cálculos de transmisión de calor	
[W/(m · K)]				O and all Manda (Constant of the Constant of t	
				Conductividad térmica de materiales estructurales y	(valor k)
				para la construcción en ensayos de incendio,	
1				aislaciones, etc.	

COEFICIENTE DE TRANSFERENCIA	W/ (m² ⋅K)	watt por metro cuadrado kelvin	Cálculos de transferencia de calor para edificios, componentes de los edificios y equipos	(valor U)
DE CALOR (CONDUCTANCIA TÉRMICA) [W/ (m² ·K)]	kW/ (m² ⋅K)	kilowatt por metro cuadrado kelvin	Transmitancia de los elementos de la construcción	
RESISTIVIDAD TÉRMICA (m·kg)/W	(m · k) / W	metro kelvin por watt	Cálculos de transmisión de calor (inversa de la conductividad térmica)	
AISLACIÓN TÉRMICA (RESISTENCIA TÉRMICA) (m² · K) / W	(m² · K) / W	metro cuadrado kelvin por watt	Cálculos de transmisión de calor (inversa de la conductancia térmica)	(valor R)

TABLA K ELECTRICIDAD Y MAGNETISMO

			•		
MAGNITUD Y	UNIDADES	OTRAS	NOMBRE DE LA	ARI IOAQIONEO TÍRIOAO	COMENTARIO
SÍMBOLO DE LA	PREFERIDAS	UNIDADES	UNIDAD	APLICACIONES TÍPICAS	COMENTARIOS
UNIDAD SI	(SÍMBOLOS)	ACEPTABLES			
CORRIENTE	Α		ampere	Calificación de una instalación eléctrica. Corriente de	
ELÉCTRICA	lεA		kiloomnoro	fuga	
(A)	kA mA		kiloampere miliampere		
	μA		microampere		
FUERZA	μΑ		microampere	Usada en el cálculo de los circuitos magnéticos	
MAGNETOMOTRIZ.				Osada en el calculo de los circultos magneticos	
DIFERENCIA DE					
POTENCIAL					
MAGNÉTICO8(A)					
INTENSIDAD DEL	A/m		ampere por	Intensidad de campo magnético usada en el cálculo	(1 kA/m = 1 A/mm)
CAMPO	7 0111		metro	de circuitos magnéticos tales como los de los	(1.00.11.70.11.11)
MAGNÉTICO.	kA/m		kiloampere por	transformadores, amplificadores magnéticos y núcleos	
MAGNETIZACIÓN			metro	magnéticos	
(A/m)				.9	
DENSIDAD DE	A/m ²		ampere por	Diseño de la sección de los conductores eléctricos	
CORRIENTE			metro cuadrado		
(A/m ²)	kA/m²		kiloampere por		
			metro cuadrado		
		A/mm ²	ampere por		(1 A/mm ² = 1 MA/m ²)
			milímetro		
			cuadrado		
ÇARGA	С		coulomb	El voltaje de una unidad con características	1 C = 1 A · s
ELÉCTRICA,	kC		kilocoulomb	capacitativas se puede relacionar con la cantidad de	
CANTIDAD DE	μC		microcoulomb	carga presente (por ejemplo, precipitadores	NO USAR ampere hora:
ELECTRICIDAD	nC		nanocoulomb	electrostáticos). Capacidad de almacenamiento de las	1 A . h = 3,6 kC
(C)	рC		picocoulmob	baterías.	
POTENCIAL	V		volt		1 V = 1 W/A
ELÉCTRICO,	MV		megavolt		
DIFERENCIA DE	kV		kilovolt		
POTENCIAL,	mV		milivolt		
FUERZA	μV		microvolt		
ELECTROMOTRIZ					
(V)	Miss		-10 0 1	La Catala de La casa de 16 a 18 a	
INTENSIDAD DE	V/m		volt pot metro	La intensidad de campo eléctrico da el gradiente de	
CAMPO	MV/m		megavolt por	potencial en puntos en el espacio. Se puede usar para	
ELÉCTRICO	kV/m		metro	calcular o ensayar parámetros eléctricos tales como la resistencia dieléctrica.	
(V/m)	mV/m		kilovolt por metro	resistencia dielectrica.	
	μV/m		milivolt por metro microvolt por		
			metro		
POTENCIA ACTIVA	W		watt	La potencia útil de un circuito eléctrico se expresa en	1 W = 1 V · A
(W)	GW		gigawatt	"watts" (W).	1 vv - 1 v · \
(**)	MW		megawatt	(11).	
	kW		kilowatt	(La potencia aparente de un circuito eléctrico se	
	mW		miliwatt	expresa en "volt-amperes" (V · A)).	
	μW		microwatt		
CAPACITANCIA	F		faradio	Componentes electrónicos. Diseño eléctrico y cálculo	1 F = 1 C/V
(F)	mF		milifaradio	de eficiencia.	
' '	μF		microfaradio		
	nF		nanofaradio		
	pF		picofaradio		

RESISTENCIA		Ι,	ohm	Diseño de dispositivos eléctricos con resistencia, tales	1 Ω = 1 V/A
	00		gigaohm	como motores, generadores, calentadores, sistemas	1 2 2 = 1 V/A
(Ω)	GΩ		gigaonm megohm	de distribución de energía eléctrica, etc.	
	MΩ		kilohm	de distribución de energía electrica, etc.	
	kΩ		milliohm		
	mΩ	Į.	IIIIIIOIIIII		
CONDUCTANCIA,	S	5	siemens		El siemens (S) anteriormente se
ADMITANCIA.					denominaba "mho".
SUSCEPTACIA	MS	r	megasiemens		
(S)	kS		kilosiemens		
. ,	mS		milisiemens		
	μS	r	microsiemens		
RESISTIVIDAD	$\Omega \cdot m$	(ohm metro		
$(\Omega \cdot M)$					
` '	$G\Omega\cdotm$		gigaohm metro		
	MΩ · m		megohm metro		
	kΩ · m		kilohm metro		
	mΩ·m	l lr	milliohm metro		
	μΩ ·m	r	microhm metro		
	nΩ · m	r	nanohm metro		
CONDUCTIVIDAD	S/m		siemens por	Parámetro para medir la calidad del agua.	
ELÉCTRICA	0/111		metro	i aramono para moun la calluau uel agua.	
(S/m)	MS/m		megasiemens		
(O/III)	WOM		oor metro		
	kS/m		kilosiemens por		
	KO/III		metro		
	μS/m		microsiemens		
	μοπι		oor metro		
FLUJO	mWb		miliweber	Usado en los cálculos relacionados con circuitos	1 Wb = 1 V · s
MAGNÉTICO,				magnéticos.	
FLUJO DE					
INDUCCIÓN					
MAGNÉTICA					
(Wb)					
DENSIDAD DE	T	t	esla	Usado en los cálculos relacionados con circuitos	1 T = 1 Wb/m ²
FLUJO				magnéticos.	
MAGNÉTICO,	mT		militesla		
INDUCCIÓN	μΤ		microtesla		
MAGNÉTICA	nT	r	nanotesla		
(T)	134/1/2	ļ.,	9	Heada a da a Mada a da 2	
POTENCIAL	kWb/m²		kiloweber por	Usado en los cálculos relacionados con circuitos	
MAGNÉTICO		r	metro cuadrado	magnéticos.	
VECTORIAL					
(Wb/m²) AUTO-	Н	l l	nonry	Usado en análisis y cálculo de transformadores.	1 H = 1 Wb/A
INDUCTANCIA,	I 17		nenry	Osado en analisis y calculo de transionnadores.	
INDUCTANCIA, INDUCTANCIA	mH	,	milihenry		
MUTUA.	μH		micro henry		
PERMEANCIA	nH		nanohenry		
(H)	pH		picohenry		
RELUCTANCIA	1/H		nversa del henry	Diseño de motores y generadores.	
(1/H) PERMEABILIDAD			•		
	H/m		nenry por metro	La permeabilidad da la relación entre la densidad de	
(H/m)	μH/m		microhenry por metro	flujo magnético y la intensidad de campo eléctrico.	
	nH/m		netro nanohenry por		
	111 1/111		netro		
	L		HULIU		l

TABLA L ILUMINACIÓN

MAGNITUD Y SÍMBOLO DE LA UNIDAD SI	UNIDADES PREFERIDAS (SÍMBOLOS)	OTRAS UNIDADES ACEPTABLES	NOMBRE DE LA UNIDAD	APLICACIONES TÍPICAS	COMENTARIOS
INTENSIDAD LUMINOSA (cd)	cd		candela		
ÁNGULO SÓLIDO (sr)	sr		esterorradián		
FLUJO LUMINOSO (lm)	lm klm		lumen kilolumen	Flujo luminoso de fuentes luminosas, lámparas y bombillas.	1 lm = 1 cd · sr Actualmente de uso general
CANTIDAD DE LUZ (lm · s)	lm · s	lm · h	lumen segundo		1 lm · h = 3600 lm/s
LUMINANCIA (cd/m²)	cd/m² kcd/m²	cd/mm²	candela por metro cuadrado kilocandela por metro cuadrado candela por milímetro cuadrado	Evaluación del brillo superficial; luminancia de fuentes luminosas, lámparas y bombillas; cálculo del encandilamiento en el diseño de la iluminación.	Reemplaza al stilb (1 sb = 10 ⁴ cd/m ²) y al apostilb (1 apostllb = cd/πm ²)
ILUMINANCIA (lx)	lx klx		lux kilolux	Flujo luminoso por unidad de superficie usado para determinar niveles de iluminación y para el diseño y/o evaluación de diseños de iluminación para interiores. (La iluminación solar al aire libre sobre un plano horizontal es de alrededor de 100 klx.)	a) Anteriormente se conocía como iluminación 1 lx = 1 lm/m² b) Reemplaza a (1 ph = 10 ⁴ lx) c) La excitancia luminosa se describe en lm/m²
EXPOSICIÓN A LA LUZ (lx.s)	lx · s klx · s		lux segundo kilolux segundo		
EFICACIA LUMINOSA (Im/W)	lm/W		lumen por watt	Calificación de la eficacia luminosa de las fuentes de luz artificiales.	

TABLA M ACÚSTICA

MAGNITUD Y SÍMBOLO DE LA UNIDAD SI	UNIDADES PREFERIDAS (SÍMBOLOS)	OTRAS UNIDADES ACEPTABLES	NOMBRE DE LA UNIDAD	APLICACIONES TÍPICAS	COMENTARIOS
LONGITUD DE ONDA (m)	m mm		metro milímetro	Definición de la equidistancia de las ondas sonoras	
ÁREA DE SUPERFICIE ABSORBENTE	m²		metro cuadrado	Cálculo de la absorción de una habitación	
(m²) PERÍODO, TIEMPO PERIÓDICO (s)	s ms		segundo milisegundo	Medición de tiempo y tiempo de reverberación	
FRECUENCIA (Hz)	Hz kHz		hertz kilohertz	Rangos de frecuencia en cálculos de absorción y medición de presión sonora	1 Hz = 1 ciclo por segundo (cps)
PRESIÓN DE SONIDO INSTANTÁNEA (Pa)	Pa mPa µPa		pascal milipascal micropascal	Medición de presión sonora; el nivel de referencia para la presión sonora es 20 μ Pa, pero la presión sonora se indica en decibeles (dB) en base a una escala logarítmica	NO USAR la dina (1 dyn = 10 μPa)
				Nivel de presión sonora $L_{P} = 20 \log_{10} \frac{\text{presión real (Pa)}}{20 \times 10^{-6} \text{ (Pa)}}$	
POTENCIA SONORA, FLUJO DE ENERGÍA SONORA (W)	W mW µW pW		watt miliwatt microwatt picowatt	Medición de potencia sonora; el nivel de referencia para la potencia sonora es 1 pW Nivel de potencia sonora $L = 10 log_{10} \frac{potencia real (W)}{10^{-12} (W)}$	
INTENSIDAD SONORA	W/m²		watt por metro cuadrado	Medición de intensidad sonora; el nivel de referencia para la intensidad sonora es 1 pW/m²	
(W/m²)	pW/m²		picowatt por metro cuadrado	Nivel de intensidad sonora $L_{I} = 10 log_{10} \frac{int ensidad real (W / m^{2})}{10^{-12} (W / m^{2})} dB$	
IMPEDANCIA ACÚSTICA ESPECÍFICA	Pa.s/m		pascal segundo por metro	Medición de impedancia sonora	(1 Pa · s/m = 1 N · s/m³)
(Pa·s/m) IMPEDANCIA ACÚSTICA, RESISTENCIA (Pa·s/m³)	Pa.s/m³		pascal segundo por metro cubico	Medición de impedancia sonora	

9. CONSIDERACIONES ESPECIALES SOBRE EL USO DE UNIDADES DEL SI EN EL DISEÑO Y CONSTRUCCIÓN DE EDIFICIOS

9.1 MEDIDAS LINEALES (LONGITUD)

- 9.1.1 En las aplicaciones relacionadas con el diseño, la construcción y la producción de edificios las unidades preferidas para las medidas de longitud son el milímetro (mm) y el metro (m).
- 9.1.2 En aplicaciones especiales se utiliza el kilómetro (km) para grandes distancias y el micrómetro (μ) para medidas de precisión.
- 9.1.3 <u>Se debe evitar el centímetro (cm)</u> en todas las aplicaciones relacionadas con el diseño y la construcción de edificios.
- 9.1.4 Los argumentos para la eliminación del centímetro son:
 - a. el centímetro no es consistente con el uso preferido de múltiplos que representan potencias ternarias de 10:
 - b. el orden de magnitud entre el milímetro y el centímetro es solamente 10, y el uso de ambas unidades podría provocar confusión;
 - c. el milímetro (mm) proporciona enteros con tolerancias apropiadas para todas las dimensiones de los edificios y casi todas las dimensiones de los productos utilizados en la construcción de edificios, de manera que las fracciones decimales se eliminan casi completamente de los documentos. Por el contrario, la aceptación del centímetro llevaría a un amplio uso de las fracciones decimales, lo cual es indeseable.
- 9.1.5 Si se aplican las siguientes reglas en los planos se pueden eliminar los símbolos de las unidades:
 - a. el plano lleva la leyenda "todas las dimensiones en milímetros," o "todas las dimensiones en metros;"
 - b. los números enteros siempre indican milímetros: por ejemplo 3600; 300; 25
 - i. cualquier longitud de hasta 328 pies se puede indicar mediante un número de 5 dígitos, por ejemplo:
 - 327' -10 11/16" es igual a 99 941
 - ii. de manera similar, cualquier longitud de hasta 32 pies y 9 pulgadas se puede indicar mediante un número de 4 dígitos;
 - iii. cualquier longitud de hasta 3 pies y 3 ⁵/₁₆ pulgadas se puede indicar mediante un número de 3 dígitos.
 - c. las expresiones con decimales, tomadas hasta tres cifras decimales, siempre indican "metros"; por ejemplo: 3,600; 0,300; 0,025
- 9.1.6 El uso de milímetros y metros, según lo recomendado, ahorra tanto espacio como tiempo en la confección de planos, trabajos mecanografiados y aplicaciones computarizadas. También mejora la claridad de los planos que contienen gran cantidad de dimensiones

9.1.7 MEDICIONES TOPOGRÁFICAS

El cambio a las unidades del SI también eliminará las discrepancias entre las unidades "pie internacional" y el "U.S. survey foot," la "milla internacional" y el "U.S. survey mile" (la "survey mile" tiene aproximadamente 3 milímetros más de longitud), y las unidades derivadas correspondientes para la medición de superficie.²

9.2 SUPERFICIE

- 9.2.1 La unidad preferida para las medidas de superficie es el metro cuadrado (m²). Las superficies muy grandes se pueden expresar en kilómetros cuadrados (km²), y las superficies muy pequeñas en milímetros cuadrados (mm²) o bien en metros cuadrados utilizando notación exponencial (por ejemplo, 10⁻⁶ m²).
- 9.2.2 La hectárea (ha) se utiliza <u>exclusivamente</u> para medidas de superficies de tierra o agua $(1 \text{ ha} = (100 \text{ m})^2 = 10\ 000\ \text{m}^2 = 10^4\ \text{m}^2 = 0.01\ \text{km}^2)$.
- 9.2.3 <u>Se debe evitar el uso del centímetro cuadrado (cm²)</u> a fin de minimizar las confusiones. Cualquier medida de superficie dada en centímetros cuadrados se debería convertir a milímetros cuadrados o metros cuadrados (1 cm² = 100 mm² = 10⁻⁴ m²).
- 9.2.4 En algunos casos resultará más conveniente indicar la superficie o sección transversal de los miembros o elementos de un edificio como el producto de sus dimensiones lineales; por ejemplo, 40 mm x 90 mm; 300 x 600.
 - La práctica preferida consiste en indicar en primer término la dimensión correspondiente al ancho y luego la correspondiente a la altura.

9.3 VOLUMEN Y CAPACIDAD

- 9.3.1 En la construcción la unidad preferida para las medidas de volumen y para las capacidades de los grandes tangues de almacenamiento es el metro cúbico (m³).
- 9.3.2 Las unidades preferidas para las medidas de capacidad líquida (volumen líquido) son el litro (L) y el mililitro (mL).
- 9.3.3 De acuerdo con la definición internacional de 1964, el litro es igual a la milésima parte de un metro cúbico, o igual a un decímetro cúbico (dm³).

Al cambiar al Sistema Internacional de Unidades se eliminará este doble estándar

² Desde 1893 en los Estados Unidos la unidad de base para la medición de longitud se ha derivado de estándares métricos. En 1959 la definición de la longitud del "pie" se cambió de <u>1200/3937 m</u> a exactamente <u>0,3048 m</u>, lo cual significa que el nuevo valor es dos millonésimas más corto.

Simultáneamente se decidió que cualquier dato derivado y publicado como resultado de relevamientos geodésicos dentro de los Estados Unidos mantendrían el antiguo patrón. Por lo tanto, todos los relevamientos terrestres en el sistema USCS (U.S. Customary) se basan en el "U.S. survey foot," que se convierte a 0,304800 6 m (1200/3937 m).

9.3.4 Debido a que el metro cúbico contiene mil millones (10⁹) de milímetros cúbicos, el decímetro cúbico (dm³) y el centímetro cúbico (cm³) pueden ser de aplicación limitada en algunas industrias, particularmente debido a que representan pasos preferidos de 1000 en las medidas de volumen. Sin embargo, en las aplicaciones relacionadas con el diseño y la construcción de edificios se recomienda que estos casos se conviertan a las unidades preferidas para las medidas de volumen en las aplicaciones relacionadas con el diseño y la construcción de edificios, como se indica en la Tabla N.

TABLA N: UNIDADES DE VOLUMEN Y CAPACIDAD Y SUS RELACIONES

UNIDADES F TODOS LOS VOLÚMENES	PREFERIDAS SÓLO VOLUMEN DE FLUIDOS	APLICACIÓN LIMITADA	EQUIVALENCIAS
m ³	521201500		1 m ³ = 1000 L = 1000 dm ³
	L	dm ³	1 L = 1 dm ³ = 10 ⁻³ m ³ o 10 ⁶ mm ³ = 1000 mL
	mL	cm ³	1 mL = 1 cm 3 = 10 $^{-6}$ m 3 o 10 3 mm 3
mm ³			1 mm ³ = 10 ⁻⁹ m ³

9.4 PROPIEDADES DE LAS SECCIONES GEOMÉTRICAS

9.4.1 La expresión de las propiedades de las secciones transversales de las secciones estructurales implica elevar la longitud al cubo, a la cuarta potencia o a la sexta potencia. Los valores se pueden indicar ya sea en mm³, mm⁴ o mm⁶ con notación exponencial, o bien en m³, m⁴ o m⁶ con notación exponencial.

9.4.2 Las siguientes unidades de medida son adecuadas:

a. Módulo resistente mm³ o m³ (1 mm³ = 10⁻9 m³)
 b. Segundo momento de área mm⁴ o m⁴ (1 mm⁴ = 10⁻¹² m⁴)
 c. Constante torsional
 c. Constante de alabeo mm⁶ o m⁶ (1 mm⁶ = 10⁻¹8 m⁶)

9.4.3 En consecuencia, las propiedades de la sección transversal de una viga de ala ancha de 460 mm de profundidad y 82 kg/m de densidad lineal se podría expresar de la siguiente manera:

a. Módulo plástico Z_X = 1,835 x 10⁶ mm³ ó 1,835 x 10⁻³ m³ b. Segundo momento de área I_{X-X} = 0,371 x 10⁹ mm⁴ ó 0,371 x 10⁻³ m⁴ c. Constante torsional J = 0,691 x 10⁶ mm⁴ ó 0,691 x 10⁻⁶ m⁴ d. Constante de alabeo C_W = 0,924 x 10¹² mm⁶ ó 0,924 x 10⁻⁶ m⁶

9.5 ÁNGULO PLANO

- 9.5.1 Aunque por motivos de coherencia en los cálculos se deberían utilizar la unidad del SI para ángulos planos (radián), las unidades de medición angular del USCS, grado (°), minuto (') y segundo (") de arco se continuarán utilizando en numerosas aplicaciones cartográficas y de agrimensura.
- 9.5.2 El grado (°), indicando sus fracciones mediante decimales (como por ejemplo 27,25°) se continuará utilizando en la ingeniería y la construcción.

9.6 INTERVALO DE TIEMPO

- 9.6.1 En las aplicaciones generales, se permite utilizar el día (d), la hora (h) y el minuto (min) como alternativas no pertenecientes al SI en vez de la unidad de tiempo de base del SI, el segundo (s).
- 9.6.2 Se recomienda evitar el minuto (min) tanto como sea posible, a fin de minimizar el número de unidades en las cuales el tiempo es una dimensión.
- 9.6.3 Por ejemplo, los caudales se deberían expresar en metros cúbicos por segundo, litros por segundo o metros cúbicos por hora, evitando los metros cúbicos por minuto o los litros por minuto, de manera de reducir la variedad de unidades. Por ejemplo:

```
1 m^3/s = 1000 L/s (NO UTILIZAR 60 m^3/min)

1 L/s = 3,6 m^3/h (NO UTILIZAR 60 L/min)

1 m^3/h = 1000 L/h (NO UTILIZAR 16,67 L/min)
```

- 9.6.4 Debido a su variabilidad, no se debería utilizar el mes para indicar una dimensión de tiempo, a menos que se especifique un mes calendario determinado.
- 9.6.5 Cuando se utilice el año calendario como una medida para un intervalo de tiempo (símbolo "a", por annum), éste representa 365 días, ó 31 536 000 segundos.

9.7 TEMPERATURA E INTERVALO DE TEMPERATURA

- 9.7.1 La unidad de base de temperatura (termodinámica) del SI es el Kelvin (K), y esta unidad se utiliza para expresar tanto temperatura termodinámica como intervalo de temperatura.
- 9.7.2 El grado Celsius (°C) también se utiliza ampliamente para expresar niveles de temperatura ambiente en temperatura Celsius, y para intervalos de temperatura.
- 9.7.3 El intervalo de temperatura de un kelvin es exactamente igual a un grado Celsius. Por este motivo, en los cálculos que involucran intervalos de temperatura se puede utilizar el grado Celsius en lugar del kelvin, aunque se prefiere el kelvin (K).

- 9.7.4 Una temperatura expresada en grados Celsius es igual a la temperatura expresada en kelvin menos 273,15. En la escala kelvin no hay valores de temperatura negativos (signo menos).
- 9.7.5 Se recomienda utilizar el kelvin (K) en las unidades compuestas que involucran temperatura o intervalo de temperatura.

9.8 MASA, PESO Y FUERZA

- 9.8.1 La diferencia significativa entre el SI y el sistema métrico tradicional u otros sistemas de medidas es el uso de unidades explícita y distintivamente diferentes para "masa" y "fuerza".
- 9.8.2 La unidad de base del SI <u>kilogramo (kg) denota la unidad de base de masa</u> (la cantidad de materia de un objeto, la cual es constante e independiente de la atracción gravitatoria).
- 9.8.3 La unidad derivada del SI <u>newton (N) denota la unidad derivada de fuerza</u> (masa por aceleración: kg · m/s²).
- 9.8.4 En la práctica profesional se debería evitar el uso general del término "peso" por dos motivos:
 - a. en el habla habitual se confunde "peso" con "masa";
 - b. peso describe solamente una fuerza en particular que se relaciona exclusivamente con la aceleración gravitatoria, la cual varía sobre la superficie de la tierra.
- 9.8.5 Aunque el sistema USCS gravitacional pueda parecer útil en el área de la "estática", los conceptos absolutos y de mayor utilidad universal de la clara distinción del SI entre "masa" y "fuerza" serán cada vez más significativos a medida que la ingeniería y la construcción involucre más consideraciones "dinámicas".
- 9.8.6 En los cálculos dinámicos, el valor de masa en kilogramos (kg) se utiliza directamente con la aceleración adecuada. Por lo tanto, la expresión habitual (a menudo desconcertante) m = W / g no es aplicable, y de hecho es inconsistente con el SI. En consecuencia, el SI simplifica y aclara los cálculos dinámicos.
- 9.8.7 A los fines de la de ingeniería, dentro de los Estados Unidos (exceptuando tal vez Alaska) se recomienda el siguiente valor para la aceleración de la gravedad: $q = 9.8 \text{ m/s}^2$. (El valor estándar internacional es 9,806 65 m/s²).
- 9.8.8 Se recomienda utilizar para g el valor 9,8 m/s² ya que este valor:
 - a. proporciona una precisión adecuada en casi todas las aplicaciones;
 - b. da un menor número de lugares decimales que el uso de 9,81 ó 9,80665, valor que se defendía en Gran Bretaña:
 - c. da un resultado diferente en el producto del que se obtendría utilizando un factor de 10 (defendido por algunos), el cual se podría pasar por alto fácilmente provocando error; el factor 10 también introduciría un sobrediseño del 2%.
- 9.8.9 El Newton se extiende a todas las magnitudes derivadas para presión y tensión; energía, trabajo y cantidad de calor; potencia; y muchas de las unidades eléctricas.

9.8.10 La unidad kilogramo fuerza (kgf) no es consistente con el SI, y en los países tradicionalmente métricos está en proceso de ser abandonada y reemplazada por el newton. El kilogramo fuerza (kgf) NO SE DEBE UTILIZAR en los Estados Unidos.

9.9 PRESIÓN, TENSIÓN, MÓDULO DE ELASTICIDAD

- 9.9.1 La unidad del SI tanto para presión como para tensión (fuerza por unidad de área) es el pascal (Pa), el cual reemplaza una gran cantidad de unidades del USCS y también algunas unidades métricas tradicionales pero no pertenecientes al SI.
- 9.9.2 Aunque para algunas aplicaciones pueda resultar útil leer los resultados de ensayo en N/mm² (lo cual es idéntico a MN/m²) o en kN/m², se prefiere y recomienda siempre indicar cálculos y resultados en megapascales (MPa) o kilopascales (kPa).
- 9.9.3 Las unidades no pertenecientes al SI, <u>el "bar"</u> (igual a 100 kPa ó 0,1 MPa) y el <u>"milibar"</u> (igual a 100 Pa ó 0,1 MPa), no se deberían utilizar junto con el SI en aplicaciones de diseño o construcción.

9.10 ENERGÍA, TRABAJO Y CANTIDAD DE CALOR

- 9.10.1 La unidad de energía, trabajo y cantidad de calor del SI es el joule (J), que es igual a un newton metro (N·m), y a un watt segundo (W·s).
- 9.10.2 El joule proporciona <u>una</u> unidad coherente para reemplazar un gran número de unidades tradicionales: Btu, caloría, kilocaloría, pie libra fuerza, etc.
- 9.10.3 Durante muchos años, y desde antes de asignarle un nombre al joule, el kilowatt hora (kWh)* era muy utilizado como unidad de energía en relación con el consumo de energía eléctrica. La mayoría de los medidores eléctricos existentes indican kWh, y su recalibración en la unidad megajoule (MJ) del SI sería innecesariamente costosa. Por este motivo, el kWh (kilowatt hora) estará permitido como unidad alternativa en aplicaciones eléctricas, pero no se lo debería introducir en áreas nuevas. (* El símbolo aceptado en los Estados Unidos es "kWh", pero el símbolo correcto del SI sería kW·h).
- 9.10.4 Nunca se debe utilizar el joule para torque, el cual se designa ampliamente como newton por metro (N·m).

9.11 DINÁMICA ROTACIONAL

Por motivos de consistencia dimensional en los cálculos que involucran dinámica rotacional, se recomiendan las unidades indicadas en la Tabla O, ya que éstas contienen la unidad del SI correspondiente a desplazamiento angular, el radián (rad), y por lo tanto proporcionan integridad dimensional en las ecuaciones.

TABLA O: UNIDADES RECOMENDADAS PARA LA DINÁMICA ROTACIONAL

MAGNITUD	UNIDAD DEL SI RECOMENDADA	UNIDAD ALTERNATIVA QUE NO CONSIDERA EL DESPLAZAMIENTO ANGULAR
Torque	N⋅m / rad	N⋅m
Momento de inercia	kg·m² / rad²	kg⋅m²
Momento de momentum	kg·m² / (rad·s)	kg⋅m² / s

9.12 POTENCIA Y FLUJO ENERGÉTICO

- 9.12.1 La unidad de potencia y flujo energético del SI es el watt (W), el cual ya está ampliamente difundido a nivel internacional como unidad general para potencia eléctrica.
- 9.12.2 El watt y sus múltiplos reemplazarán varias unidades tradicionales de potencia y flujo energético:
 - a. potencia: caballo de fuerza (electricidad, calderas), y pie libra fuerza por hora (o minuto / o segundo)
 - b. flujo energético: Btu por hora, caloría por minuto (o segundo), kilocaloria por minuto (o segundo) y tonelada de refrigeración.

9.13 UNIDADES ELÉCTRICAS

No hay cambios en las unidades utilizadas en el campo de la ingeniería eléctrica, a excepción de las siguientes:

- a. asignación de un nuevo nombre a la unidad de conductancia, que pasa a llamarse siemens (S) en vez de "mho";
- b. uso de la unidad de frecuencia del SI, hertz (Hz) en lugar de ciclos por segundo (cps).

9.14 UNIDADES DE ILUMINACIÓN

- 9.14.1 Las unidades del SI para intensidad luminosa, candela (cd) y para flujo luminoso, lumen (lm) ya son de uso común.
- 9.14.2 La candela (cd) reemplaza directamente las unidades anteriores "candle" y "candlepower".
- 9.14.3 La iluminancia se expresará en la unidad del SI, lux (lx), que es igual al lumen por metro cuadrado (lm/m²), y reemplaza al lumen por pie cuadrado y la "footcandle".
- 9.14.4 La luminancia se expresará en la unidad del SI, candela por metro cuadrado (cd/m²), la cual reemplaza la candela por pie cuadrado, el pie-lambert y el lambert.

9.15 MAGNITUDES ADIMENSIONALES

Las magnitudes adimensionales, o relaciones, tales como la humedad relativa, la gravedad específica, el decibel (dB), el pH, etc. no varían al convertirlas al SI.

9.16 CONSTANTES QUE SE USAN EN EL DISEÑO DE EDIFICIOS

La Tabla P muestra una selección de constantes empíricas y valores aceptados internacionalmente que se utilizan en el campo de la ingeniería:

NOMBRE	SÍMBOLO	VALOR	UNIDAD
Presión atmosférica normal (valor internacional)	P_0	101,325	kPa
Temperatura absoluta (cero)	Т	0,0	K
		(-273,15)	(°C)
Velocidad del sonido en el aire (<i>P</i> ₀ , 20°C, 50% H.R.)	М	344	m/s
Volumen específico de un gas perfecto (P_0 , 20°C)	V _o	22,414	m ³ / kmol (L/mol)
Constante característica de los gases para el aire	R_{lpha}	287,045	J / (kg⋅K)
Constante característica de los gases para el vapor de agua	R_{v}	461,52	J / (kg⋅K)
Logaritmos naturales	е	2,71828	
Pi (π)	π	3,14159	

10. APÉNDICES

APÉNDICE A: Páginas 35-38

FACTORES DE CONVERSIÓN PARA LAS UNIDADES MÁS COMUNES UTILIZADAS EN EL DISEÑO Y LA

CONSTRUCCIÓN (Indicadas con seis cifras decimales significativas)

SISTEMA MÉTRICO A USCS USCS A SISTEMA MÉTRICO

APÉNDICE B: Página 39

GRÁFICA DE LAS UNIDADES DEL SI Y SUS RELACIONES: GRÁFICA Y EXPLICACIONES

APÉNDICE C: Página 42

UNIDADES MÉTRICAS QUE HAN SIDO ABANDONADAS Y CUYO USO CON EL SI NO SE RECOMIENDA

APÉNDICE A

FACTORES DE CONVERSIÓN PARA LAS UNIDADES MÁS COMUNES UTILIZADAS EN EL DISEÑO Y LA CONSTRUCCIÓN

Cuando corresponde, los factores de conversión se toman con <u>seis</u> cifras significativas. Los valores <u>subrayados</u> indican conversiones <u>exactas</u>.

SISTEMA MÉTRICO A USCS			USCS A SISTEMA MÉTRICO			
1 m	= 0,621 371 = 49,7096 = 1,093 61 = 3,280 84 = 0,039 370 1	milla (internacional) cadena yd ft in	1 milla (internacional) 1 cadena 1 yd 1 ft 1 in (1 U.S survey foot	$= \frac{1,609\ 344}{20,1168}$ $= \frac{0,9144}{304.8}$ $= \frac{25,4}{0,304\ 800\ 6}$	km m m m mm mm mm	
* Seco	ión 9.1.7 de la págin	a 26 trata las medidas "us survey".	(1 0.0 survey loot	- 0,304 000 0	111)	
1 km ² 1 ha 1 m ²	RFICIE = 0,388 101 = 2,471 04 = 1,195 99 = 10,7639 = 0,001 550	milla ² (us survey) acre (us survey) yd ² ft ² in ²	1 milla ² (us survey) 1 acre (us survey) 1 yd ² 1 ft ² 1 in ²	= 2,590 00 = 0,404 687 = 4046,87 = 0,836 127 = 0,092 903 = <u>645,16</u>	km² ha m² m² m² mm²	
1 m ³	MEN, MÓDULO RE: = 0,810 709 x 10-3 = 1,307 95 = 35,3147 = 423,776 = 61,0237 x 10-6	pie acre yd ³ ft ³ pie de taba in ³	1 acre ft 1 yd ³ 100 pie de tabla 1 ft ³ 1 in ³	= 1233,49 = 0,764 555 = 0,235 974 = 0,028 316 8 = 28,3168 = 16 387,1 = 16,3871	m ³ m ³ m ³ m ³ L (dm ³) mm ³ mL (cm ³)	
CAPA 1 L 1 mL	CIDAD = 0,035 314 7 = 0,264 172 = 1,056 69 = 0,061 023 7 = 0,033 814	ft ³ gal (U.S.) qt (U.S.) in ³ fl oz (U.S.)	1 gal (líquido U.S.)** 1 qt (líquido U.S.)** 1 pt (líquido U.S.)** 1 fl oz (EE.UU) ** 1 gal (G.B) aproxim	= 3,785 41 = 946,353 = 473,177 = 29,5735 adamente 1,2 gal (l	L mL mL mL J.S.)	
	NDO MOMENTO DI = 2,402 51 x 10 ⁻⁶	E ÁREA in ⁴	1 in ⁴	= 416 231 = 0,416 231 x 10-	mm ⁴	
ÁNGU 1 rad	LO PLANO	(grado) (grado) (minuto)	1° (grado) 1′ (minuto)	•	d rad rad	

SISTEMA MÉTRICO A USCS

USCS A SISTEMA MÉTRICO

= 206 265′′	(segundo)	1'' (segundo)	= 4,848 14	μrad
VELOCIDAD				
1 m/s = 3,280 84	ft/s	1 ft/s	= <u>0,3048</u>	m/s
2.236 94 1 km/h = 0,621 371	milla/h milla/h	1 milla/h	$= \frac{1,609\ 344}{0,447\ 04}$	km/h m/s
1 KIII/II - 0,021 07 1	111111 12 /11		- <u>0,777 07</u>	111/3
ACELERACIÓN	***			
$1 \text{ m/s}^2 = 3,280 84$	ft/s²	1 ft/s ²	= <u>0,3048</u>	m/s ²
CAUDAL				
$1 \text{ m}^3/\text{s} = 35,3147$	ft³/s	1 ft ³ /s	= 0,028 316 8	m³/s
= 22,8245	millón gal/d	1 ft³/min	= 0,0471 947	L/s
$= 0.810709 \times 10^{-3}$		1 gal/min	= 0,063 090 2	
1 L/s = 2,118 88	ft³/min	1 gal/h	= 1,051 50 = 43 9136	mL/s
= 15,850 3 = 951,022	gal/min gal/h	1 millon gal/d 1 acre ft/s	= 43,8126 = 1233,49	L/s m ³ /s
- 951,022	gai/II	i acie ivs	- 1233,49	1117/5
INTERVALO DE TEMPER	RATURA			
$1 {}^{\circ}\text{C} = 1 \mathrm{K} = 1$	I,8 °F	1°F	= 0,555 556	°C ó K
			= 5/9°c $= 5/9$ K	
TEMPERATURA EQUIVA	LENTE (t °C = $t_K - 273,15$)		- 0/5 +	
$t_{C} = 5/9 (t_{F} - 32)$		t⊧	= 9/5 t _{°C} + 32	
MASA				
1 kg = 2,204 62	lb (avoirdupois)	1 tonelada (corta)***	= 0,907 185	tonelada métrica
= 35,2740	oz (avoirdupois)	,	= 907,185	kg
	2 31 tonelada (corta, 2000 lb)	1 lb	= 0,453 592	kg
ton = 2204,62	lb	1 oz	= 28,3495	9
1 g = 0,035 274	OZ nannuwajaht	1 pennyweight *** (1 tonelada larga (2240 lb)	= 1,555 17	g
=0,643 015	pennyweight	(i torielada larga (2240 lb)	1016,05	kg
DENSIDAD LINEAL				
1 kg/m = 0,671 969	lb/ft	1 lb/ft	= 1,488 16	kg/m
1 g/m = 3,547 99	lb/milla	1 lb/milla	= 0,281 849	g/m
DENSIDAD SUPERFICIA	I			
1 kg/m ² = 0,204 816	lb/ft ²	1 lb/ft ²	= 4,822 43	kg/m²
1 g/m ² = 0,029 494	oz/yd ²	1 oz/yd ²	= 33,9057	g/m²
$= 3,277 06 \times 10^{-3}$		1 oz/ft²	= 305,152	g/m ²
DENSIDAD (MASA POR	UNIDAD DE VOLUMEN Ib/ft³	1 lb/ft³	= 16,0185	ka/m³
1 kg/m ³ = 0,062 428 = 1,685 56	lb/yd ³	1 lb/yd ³	= 0,593 276	kg/m³ kg/m³
1 t/m ³ = 0,842 778	ton/yd ³	1 ton/yd ³	= 1,186 55	t/m ³
·	•	,	,	
MOMENTO DE INERCIA	11 (12	A II. 600	0.040.4404	1 2
$1 \text{ kg} \cdot \text{m}^2 = 23,7304$	lb · ft ²	1 lb · ft ²	= 0,042 1401	kg ⋅m²
= 3417,17	lb ⋅ in²	1 lb ⋅ in²	= 292,640	kg ⋅ mm²
CAUDAL MÁSICO				
1 kg/s = 2,204 62	lb/s	1 lb/s	= 0,453 592	kg/s
1 t/h = 0,984 207	ton/h	1 ton/h	= 1,016 05	t/h

SISTEMA MÉTRICO A USCS

USCS A SISTEMA MÉTRICO

FUERZA					
1 MN	= 112,404	tonf (tonelada fuerza)	1 tonf (tonelada fuerza	,	kN
1 kN	= 0,112 404	tonf	1 kip (1000 lbf)	= 4,448 22	kN
1N	= 224,809 = 0,224,809	lbf (libra fuerza) lbf	1 lbf (libra-fuerza)	= 4,448 22	N
		RZA, TORQUE			
1 N.m	= 0,737 562	lbf · ft	1 lbf.ft	= 1,355 82	$N \cdot m$
	= 8,850 75	lbf ⋅ in	1 lbf.in	= 0,112 985	$N \cdot m$
1 kN.m	= 0,368 781	tonf ·ft	1 tonf.ft	= 2,711 64	$Kn\cdotm$
	= 0,737 562	kip · ft	1 kip.ft	= 1,355 82	$kN\cdot m$
ELIED7A	POR UNIDAD D	NE LONGITUD			
1 N/m	= 0,068 521 8		1 lbf/ft	= 14,5939	N/m
1 kN/m	= 0,034 260 9		1 tonf/in	= 175,127	N/m
	-,		1 tonf/ft	= 29,187 8	kN/m
pprojóv		NO. 11 O DE EL AGTIGIDAD / ELIEDZA D		DEIQIE\ / 4 D	4 11/ 0)
1 MPa	i, TENSION, MC = 0,072 518 8	DULO DE ELASTICIDAD (FUERZA P	OR UNIDAD DE SUPE 1 tonf/in²	RFICIE) (1 Pa = = 13,7895	= 1 N/m²) MPa
I IVIF a	= 10,4427	tonf/ft ²	1 tonf/ft ²	= 15,7695 = 95,7605	kPa
	= 145,038	lbf/in²	1 kip/in ²	= 6,894 76	MPa
1 kPa	= 20,8854	lbf/ft²	1 lbf/in ²	= 6,894 76	kPa
			1 lbf/ft ²	= 47,8803	Pa
TDADAI	O ENEDOÍA O	ANTIDAD DE CALOD			
1 MJ), ENERGIA, C/ = 0,277 778	ANTIDAD DE CALOR (1J = 1 N · kWh	$m = 1 W \cdot s)$	- 2.6	MI
1 IVIJ 1 kJ	= 0,277 776 = 0,947 817	Btu	1 kWh (550 ft · lbf/s) 1 Btu (Tabla Int.)	= <u>3,6</u> = 1,055 06	MJ kJ
1 KJ 1 J	= 0,947 617 = 0,737 562	ft · lbf	i blu (Tabia ilit.)	= 1,055,06 = 1055,06	J
10	- 0,737 302	11.101	1 ft ⋅ lbf	= 1,355 82	J
				1,000 02	· ·
	A, FLUJO ENE				
1 kW	= 1,341 02	hp (caballo de fuerza)	1 hp	= 0,745 700	kW
1 W	= 3,412 14	Btu/h	1Btu/h	=745,700 = 0,293 071	W W
	= 0,737 562	ft.lbf/s	1 ft.lbf/s	= 0,295 07 1 = 1,355 82	W
	0,707 002	11.101/3	i itibiio	1,000 02	**
	D DE FLUJO T				
1 W/m ²	= 0,316 998	Btu/(ft².h)	1 Btu/(ft ² .h)	= 3,154 59	W/m ²
COEEICII	ENTE DE TDAN	SFERENCIA TÉRMICA			
1 W/(m ² .K	(1) = 0.176110	Btu/(ft2.h.°F)	1 Btu/(ft². h .°F)	= 5,678 26	W/(m ² .K)
•	•	,	. 2104 (111111)	0,0.0 =0	()
	TIVIDAD TÉRM				
1 W/(m.K)	= 0,577 789	Btu/(ft.h.°F)	1 Btu/(ft.h.°F)	= 1,730 73	W/(m.K)
VALOR O	ALORÍFICO (P	OR MASA Y POR VOLUMEN)			
1 kJ/kg	=			= <u>2,326</u>	kJ/kg
(1 J/g)	= 0,429 923	Btu/lb	1 Btu/lb	(= 2,326)	(J / g)
1 kJ/m³	= 0,026 839 2	Btu/ft ³	1 Btu/ft ³	= 37,2589	kJ/m ³
CADACIC	AN TÉPMICA (POR MASA Y POR VOLUMEN)			
	(i) = 0,238 846	Btu/(lb.°F)	1 Btu/(lb.°F)	= 4,1868	kJ/(kg.K)
	ζ) = 0,014 9107	Btu/(ft³.°F)	1 Btu/(ft ³ .°F)	= 67,0661	kJ/(m ³ .K)
.,	, , , , , , , , , , , , , , , , , , , ,	1	` /	,	` /

SISTEMA MÉTRICO A USCS

USCS A SISTEMA MÉTRICO

	IВ				A	NI	C	ıA
	ıΝ	л	IΠ	ч.	Δ	N		Δ

 $1 \text{ lx (lux)} = 0.092 903 \quad \text{lm/ft}^2 \text{ (pie-candela)} \qquad \qquad 1 \text{ lm/ft}^2 \text{ (pie-candela)} = 10,7639 \quad \text{lx (lux)}$

LUMINANCIA

cd/ft2 1 cd/ft² = 10,7639 cd/m² 1 cd/m² = 0,092 903 = 0,291 864 pie-lambert 1 pie-lambert = 3,426 26 cd/m² $1 \text{ kcd/m}^2 = 0.314 159$ 1 lambert = 3,183 01 iambert kcd/m²

APÉNDICE B

GRÁFICA DE LAS UNIDADES DEL SI Y SUS RELACIONES - EXPLICACIONES

- 1. La representación gráfica del SI de la página 41 muestra gráficamente cómo las diecisiete (17) unidades derivadas del SI que tienen nombres especiales se forman de manera coherente a partir de las unidades de base y las unidades suplementarias. Los símbolos de las unidades de base y suplementarias se representan en un rectángulo, las unidades derivadas en un círculo. En la parte superior izquierda se indica el nombre completo, en el paréntesis a la derecha se indica la forma de derivación. El nombre de la magnitud (atributo que mide) se indica en letras mayúsculas.
- 2. En esta representación gráfica la derivación de cada unidad se indica mediante flechas de la siguiente manera:
 - a. una línea continua representa una relación en la cual la unidad derivada es un producto entre las unidades que la componen. ($J = N \cdot m$; $Wb = V \cdot s$; $C = A \cdot s$)
 - b. una sola línea de trazos indica que la unidad derivada es la inversa de la unidad que la origina. (Hz = 1/s; Bq = 1/s; S = 1/ Ω)
 - c. líneas continuas y de trazos indican que la unidad derivada tiene tanto un producto en el numerador (línea continua) y un producto en el denominador (línea de trazos), como se ilustra en los siguientes ejemplos: Pa = N/m²; W = J/s; Ω = V/A; H = Wb/A; Ix = Im/m².
- 3. En estas representaciones parciales tomadas del de la siguiente página se ilustra el encadenamiento progresivo de las unidades del SI:

Las tres unidades de base - metro (m), kilogramo (kg) y segundo (s) - se combinan para formar la unidad de derivada de FUERZA (kg·m/s²), a la cual se le ha dado el nombre especial "newton" (N).

El newton se combina con la unidad de base metro (m) para formar la unidad derivada de ENERGÍA, TRABAJO o CANTIDAD DE CALOR (N·m), la cual se le ha dado el nombre especial "joule" (J).

4. Hay un total de veintiséis unidades del SI que tienen los nombres y símbolos especiales del gráfico.

De ellas:

- a. trece (13) de ellas, la mitad del total, ya son de uso generalizado: s, A, cd, Hz, W, V, C, F, H, Ω , Im, rad y sr.
- b. una (1), el siemens (S), anteriormente era denominado "mho"; esto significa que su adopción solamente implica un cambio de nombre.
- c. tres (3) prácticamente no tienen ninguna aplicación en el diseño y la construcción:
 - mol (mol) unidad de base para cantidad de sustancia becquerel (Bq) unidad derivada para actividad nuclear
 - gray (Gy) unidad derivada para dosis absorbida
- 5. Por lo tanto, será necesario aprender un máximo de nueve (9) unidades del SI:

m, kg, K, N, Pa, J, Wb, T, lx

6. El "grado Celsius" (°C) es un nombre especial para la unidad de base kelvin (K), que se usa para expresar intervalo de temperatura o temperatura Celsius, y por lo tanto está directamente relacionada con el kelvin.

APÉNDICE C UNIDADES MÉTRICAS QUE HAN SIDO ABANDONADAS Y CUYO USO CON EL SI NO ES RECOMENDABLE

Se recomienda evitar el uso de las tradicionales unidades del sistema métrico "cgs" (no pertenecientes al SI) listadas en la Tabla P en el diseño de edificios o en aplicaciones relacionadas con la construcción. Cualquier dato en el cual aparezcan estas unidades se debería convertir a las correspondientes unidades del SI.

Nombre de la unidad	Símbolo	Valor en unidades del SI			
dina	dyn	10 ⁻⁵ N	(ό 10 μΝ)		
bar	bar	10⁵ Pa	(ó 100 kPaN)		
ergio	erg	10 ⁻⁷ J	(ó 100 nJ)		
poise	Р	10 ⁻¹ Pa ⋅ s	(ó 100 mPa · s)		
stokes	St	10 ⁻⁴ m ² /s	(ó 100 mm²/s)		
gauss	Gs, (G)	10 ⁻⁴ T	(ό 100 μΤ)		
Maxwell	Mx	10 ⁻⁸ Wb	(ó 10 nWb)		
stilb	sb	10 ⁴ cd/m ²	(ó 10 kcd/m²)		
phot	ph	10 ⁴ lx	(ó 10 klx)		
kilogramo fuerza	kgf	9,806 65 N			
caloría (int.)	cal	4,1868 J			
kilocaloría (int.)	kcal	4,1868 kJ			
torricelli	torr	133,322 Pa			
oersted	Oe	79,5775 A/r	n		

REFERENCIAS (Y SU DISPONIBILIDAD)

1. American National Standard ANSI Z 210.1 - 1976 / ASTM E 380 - 76 / IEEE Std 268 - 1976 METRIC PRACTICE (Edición revisada de 1976)

Disponible de:

- (ANSI Z 210.1) - American National Standards Institute

1430 Broadway, New York, N.Y. 10018

- (ASTM E 380) - American Society for Testing and Materials

1916 Race Street, Philadelphia, Pa. 19013

- (IEEE Std 268) - Institute of Electrical and Electronic Engineers

345 East 47th Street, New York, N.Y. 10017

2. ANMC METRIC EDITORIAL GUIDE, Segunda Edición, 1975

Disponible de: - American National Metric Council

1625 Massachusetts Avenue, N.W.

Washington, D.C. 20036

3. U.S. Department of Commerce / National Bureau of Standards /

NBS Special Publication 330, THE INTERNATIONAL SYSTEM OF UNITS (SI),

Edición revisada de 1974.

Disponible de: - U.S. Government Printing Office

Washington, D.C. 20402

4. U.S. Federal Register - The National Archives of the United Stattes, Vol. 41, No. 239, páginas 54018-

19, <u>THE METRIC SYSTEM OF MEASUREMENT</u> (Interpretación y modificación del Sistema

Internacional de Unidades para Estados Unidos) - Publicado Diciembre 10, 1976

Disponible de: - Office of Technical Publications

National Bureau of Standards

Washington, D.C. 20234

5. Ley 94-168, <u>METRIC CONVERSION ACT OF 1975</u> (Diciembre 23, 1975)

Disponible de: - U.S. Government Printing Office

Washington, D.C. 20402

6. Norma Internacional ISO 1000-1973 (E) <u>SI UNITS AND RECOMMENDATIONS FOR THE USE OF THEIR MULTIPLES AND CERTAIN OTHER UNITS</u> (Edición 1973)

- 7. Norma Internacional ISO 31/0 1974 (E), Introducción General a ISO 31 <u>GENERAL PRINCIPLES</u>
 <u>CONCERNING QUANTITIES, UNITS AND SYMBOLS</u>
 - Y 7. disponibles de: American National Standards Institute
 1430 Broadway, New York, N.Y. 10018

TABLA A UNIDADES EN EL SISTEMA INTERNACIONAL – S I

GRUPO DE UNIDADES MAGNITUD	NOMBRE DE LA UNIDAD	SÍMBOLO	FÓRMULA	OBTENCIÓN DE LA UNIDAD	COMENTARIOS
UNIDADES DE BASE					
Longitud Masa Tiempo Corriente eléctrica Temperatura termodinámica	metro kilogramo segundo ampere kelvin	m kg s A K			Ortografía alternativa (idioma inglés): metre Actualmente de uso común. Actualmente de uso común. La unidad habitual para la temperatura es el grado Celsius (°C).
Cantidad de sustancia	mol candela	mol cd			El "mol" no tiene ninguna aplicación relacionada con la construcción. Actualmente de uso común.
UNIDADES SUPLEMENTARIAS					
Ángulo plano Ángulo sólido	radián esterorradián	rad sr			Actualmente de uso común. Actualmente de uso común.
UNIDADES DERIVADAS CON NOMBRES	ESPECIALES				
Frecuencia (de un fenómeno periódico) Fuerza Presión, Tensión, Módulo elástico	hertz newton pascal	Hz N Pa	1/s kg·m/s² N/m²	s-1 m·kg·s-2 m-1·kg·s-2	El hertz remplaza a "ciclos por segundos"
Energía, Trabajo, Cantidad de calor Potencia, Flujo radiante Cantidad de electricidad, Carga eléctrica	joule watt coulomb	J C	N·m J/s A·s	$\begin{array}{l} m^2 \cdot kg \cdot s^{\cdot 2} \\ m^2 \cdot kg \cdot s^{\cdot 3} \\ s \cdot A \end{array}$	Actualmente de uso común. Actualmente de uso común.
Potencial eléctrico, Diferencia de Potencial, Fuerza electromotriz Capacitancia eléctrica Resistencia eléctrica	volt faradio ohm	V F Ω	J/C ó W/A C/V V/A	m ² · kg · s ⁻³ · A ⁻¹ m ⁻² · kg ⁻¹ · s ⁴ · A ² m ² · kq · s ⁻³ · A ⁻²	Actualmente de uso común. Actualmente de uso común. Actualmente de uso común.
Conductancia eléctrica Flujo magnético Densidad de flujo magnético	siemens weber tesla	S Wb T	A/V ό 1/Ω V·s Wb/m²	m ⁻² · kg ⁻¹ · s ³ · A ² m ² · kg· s ⁻² · A ⁻¹ kg· s ⁻² · A ⁻¹	Antiguamente el "siemens" se conocía como "mho". Actualmente de uso común. Actualmente de uso común.
Inductancia eléctrica Flujo luminoso Iluminancia	henry lumen lux	H lm lx	Wb/A cd·sr lm/m²	m ² · kg · s ⁻² · A ⁻² cd · sr m ⁻² · cd · sr	Actualmente de uso común. Actualmente de uso común. Actualmente de uso común.
Actividad (de un radionucloide) Dosis adsorbida	becquerel gray	Bq Gy	1/s J/kg	s-1 m ² ·s- ² (*)	No tiene ninguna aplicación en la construcción. (*) kg se simplifica. No tiene ninguna aplicación en la construcción.

GRUPO DE UNIDADES MAGNITUD	NOMBRE DE LA UNIDAD	SÍMBOLO	FÓRMULA	OBTENCIÓN DE LA UNIDAD	COMENTARIOS
UNIDADES DERIVADAS CON NOMBRES	GENÉRICOS (COMPUEST	OS)			
a: UNIDADES QUE SE EXPRESAN EN TÉRMIT	NOS DE UNA UNIDAD DE BAS				
Superficie	metros cuadrados	l m²		m ²	
Volumen, Capacidad	metros cúbicos	m ³		m ³	(1 m ³ = 1000 L)
Módulo resistente	metro al cubo	1119	m³	m ³	(1 III° – 1000 L)
Segundo momento de área	metro a la cuarta		m ⁴	m ⁴	
Curvatura	inversa del metro		1/m	m-1	
Frecuencia rotacional			1/s	S ⁻¹	En las especificaciones para máquinas giratorias se utiliza
Frecuencia rotacional	inversa del segundo		1/5	5	"revolución por segundo" (r/s).
Conficiente de expensión térmica lineal	inverse del Irabia		1/1/2	k ⁻¹	revolucion poi segundo (1/s).
Coeficiente de expansión térmica lineal	inversa del kelvin		1/K	K-1	
b: UNIDADES QUE SE EXPRESAN EN TÉRMI	NOS DE DOS O MÁS UNIDADA	ES DE BAS	E		
Velocidad lineal	metro por segundo		m/s	m.s ⁻¹	
Aceleración lineal	metro por segundo cuadrado		m/s ²	m.s ⁻²	
Viscosidad cinemática	metro al cuadrado por segundo		m ² /s	m ² .s ⁻¹	
Caudal fluido	metro cúbico por segundo		m³/s	m ³ .s ⁻¹	
Volumen específico	metro cúbico por kilogramo		m³/kg	m ³ .kg ⁻¹	
Densidad lineal	kilogramo por metro		kg/m	m¹-kg	
Densidad infear Densidad superficial	kilogramo por metro cuadrado		kg/m²	•	
				m-2-kg	Fr. cote ferror del CI de descrided de secce de
Densidad (masa por unidad de volumen)	kilogramo por metro cúbico		kg/m³	m-3.kg	En esta forma del SI, la densidad de masa es
Momento de inercia	kilo aromo motro ovodrodo		lea mo?	m2 lea	convenientemente 1000 por la gravedad específica.
	kilogramo metro cuadrado		kg.m²	m².kg	
Caudal másico	kilogramo por segundo		kg/s	kg.s ⁻¹	
Momento	kilogramo metro por segundo		kg.m/s	m.kg.s ⁻¹	
Momento del momentum	kilogramo metro cuadrado por		1 2/-		
	segundo		kg.m²/s	m ² .kg.s ⁻¹	
Intensidad de campo magnético	ampere por metro		A/m	m-1.A	
Densidad de corriente	ampere por metro cuadrado		A/m ²	m-2.A	
Luminancia	candela por metro cuadrado		cd/m ²	m ⁻² .cd	
c: UNIDADES QUE SE EXPRESAN EN TÉRMIN	NOS DE UNIDADES DE BASE	Y/O UNIDA	DES DERIVA	DAS CON NOMBRES	SESPECIALES
Momento de una Fuerza, Torque	newton metro		N.m	m ² .kg.s ⁻²	
Rigidez flexional	newton metro cuadrado		N.m ²	m ³ .kg.s ⁻²	
Fuerza por unidad de longitud, Tensión					
superficial	newton por metro		N/m	kg.s ⁻² (1)	(1) m se simplifica.
Viscosidad dinámica	pascal segundo		Pa.s	m-1.kg.s-1	
Ductilidad ante solicitaciones de impacto	joule por metro cuadrado		J/m ²	kg.s ⁻² (2)	(2) m² se simplifica.
Calor de combustión (por unidad de volumen)	joule por metro cúbico		J/m ³	m-1.kg.s-2	
Calor de combustión (por unidad de masa), Energía especifica, Calor latente específico	joule por kilogramo		J/kg	m ² .s ⁻² (3)	(3) kg se simplifica.
Capacidad calorífica, entropía	joule por kelvin		J/K	m ² .kg.s ⁻² .K ⁻¹	
Capacidad calorífica especifica, Entropía	1				
especifica	joule por kilogramo kelvin		J/(kg.K)	m ² .s ⁻² .K ⁻¹ (4)	(4) kg se simplifica.

GRUPO DE UNIDADES MAGNITUD	NOMBRE DE LA UNIDAD	SÍMBOLO	FÓRMULA	OBTENCIÓN DE LA UNIDAD	COMENTARIOS
Densidad de flujo calorífico, Irradiancia, Intensidad sonora Conductividad térmica Coeficiente de transferencia de calor Resistencia térmica, Aislación térmica Intensidad de campo eléctrico Densidad de flujo eléctrico Densidad de carga eléctrica Permitividad eléctrica Permeabilidad eléctrica Resistividad eléctrica Conductividad eléctrica Exposición (luz) Eficacia luminosa	watt por metro cuadrado watt por metro kelvin watt por metro cuadrado kelvin metro cuadrado kelvin por watt volt por metro coulomb por metro cuadrado coulomb por metro cúbico faradio por metro henry por metro ohm metro siemens por metro lux segundo lumen por watt		W/(m.K) W/(m².K) m².K/W V/m C/m² C/m³ F/m H/m Ω.m S/m lx.s Im/W	kg.s ⁻³ (5) m.kg.s ⁻³ .K ⁻¹ kg.s ⁻³ .K ⁻¹ (6) kg ⁻¹ .s ³ .K (7) m.kg.s ⁻³ .A ⁻¹ m ⁻² .s.A m ⁻³ .s.A m ⁻³ .kg ⁻¹ .s ⁴ .A ⁻² m.kg.s ⁻² .A ⁻² m ⁻³ .kg.s ⁻³ .A ⁻² m ⁻³ .kg.s ⁻³ .A ⁻² m ⁻³ .kg ⁻¹ .s ⁻³ .A ⁻² m ⁻² .s.cd.sr	 (5) m² se simplifica. (6) m² se simplifica. (7) m² se simplifica.
d: UNIDADES QUE SE EXPRESAN EN TÉRMIN		NTARIAS `	-		ADAS
Velocidad angular Aceleración angular Intensidad radiante Radiancia	radian por segundo radian por segundo cuadrado watt por estereorradián watt por metro cuadrado		rad/s rad/s² W/sr	s ⁻¹ .rad s ⁻² .rad m ² .kg.s ⁻³ .sr ⁻¹	
	estereorradián		W/(m2.sr)	kg.s-3.sr-1 (8)	(8) m ² se simplifica.