

planetmath.org

Math for the people, by the people.

normal subgroups form sublattice of a subgroup lattice

 ${\bf Canonical\ name} \quad {\bf Normal Subgroups Form Sublattice Of A Subgroup Lattice}$

Date of creation 2013-03-22 15:48:24 Last modified on 2013-03-22 15:48:24

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 5

Author CWoo (3771) Entry type Example Classification msc 20E15 Consider L(G), the subgroup lattice of a group G. Let N(G) be the subset of L(G), consisting of all normal subgroups of G.

First, we show that N(G) is closed under \wedge . Suppose H and K are normal subgroups of G. If $x \in H \wedge K = H \cap K$, then for any $g \in G$, $gxg^{-1} \in H$ since H is normal, and $gxg^{-1} \in K$ likewise. So $gxg^{-1} \in H \cap K = H \wedge K$, implying that $H \wedge K$ is normal in G, or $H \wedge K \in N(G)$.

To see that N(G) is closed under \vee , let H, K be normal subgroups of G, and consider an element

$$x = x_1 x_2 \cdots x_n \in H \vee K$$

where $x_i \in H$ or $x_i \in K$. If $g \in G$, then

$$gxg^{-1} = gx_1x_2\cdots x_ng^{-1} = (gx_1g^{-1})(gx_2g^{-1})\cdots (gx_ng^{-1}),$$

where each $gx_ig^{-1} \in H$ or K. Therefore, $gxg^{-1} \in H \vee K$, so $H \vee K$ is normal in G and $H \vee K \in N(G)$.

Since N(G) is closed under \wedge and \vee , N(G) is a sublattice of L(G).

Remark. If G is finite, it can be shown (Wielandt) that the subnormal subgroups of G form a sublattice of L(G).

References

[1] H. Wielandt Eine Verallgemeinerung der invarianten Untergruppen, Math. Zeit. 45, pp. 209-244 (1939)