

UNIVERSITAS DIPONEGORO – FAKULTAS TEKNIK DEPARTEMEN TEKNIK ELEKTRO

Jl. Prof. H. Soedarto, SH, Tembalang, Semarang 50275 Telp/Faks. (024)-7460057 e-mail: departemen@elektro.undip.ac.id

Dokumen Pengembangan Produk Lembar Sampul Dokumen

Judul Dokumen TUGAS AKHIR:

Rancang Bangun Sistem Keamanan Kunci Pintu

Gedung Berbasis Internet of Things

Jenis Dokumen SPESIFIKASI

Catatan: Dokumen ini dikendalikan penyebarannya oleh Dept. Teknik Elektro Undip

Nomor Dokumen **B200-01-TA2223.2.19012**

Nomor Revisi 01

Nama File **B200-2-TA2223**

Tanggal Penerbitan 8 September 2023

Unit Penerbit Departemen Teknik Elektro Undip

Jumlah Halaman 15 (termasuk lembar sampul ini)

Data Pengusul				
Pengusul	Nama	Henric Dhiki Wicaksono	Jabatan	Anggota
	NIM	21060119120011	Tanda Tangan	Janua.
	Nama	Novi Dianasari	Jabatan	Anggota
	NIM	21060119120039	Tanda Tangan	Moui
	Nama	Muhammad Khoiril Wafi	Jabatan	Anggota
	NIM	21060119140133	Tanda Tangan	Ame
Pembimbing	Nama	M. Arfan, S.Kom., M.Eng.	Tanda Tangan	
Utama	NIP	198408172015041002		
Pendamping	Nama	Imam Santoso, S.T., M.T.	Tanda Tangan	Canolina III
	NIP	197012031997021001		

No. Dokumen: B200-01-TA2223.2

No. Revisi: 01

Tanggal: 8 September 2023

DAFTAR ISI

1.	PENDAHULUAN4
1.1	Ringkasan Isi Dokumen
1.2	Aplikasi Dokumen4
1.3	Referensi
1.4	Daftar Singkatan5
2.	GAMBARAN SISTEM5
2.1	Gambaran Sistem Saat Ini
2.2	Gambaran Sistem yang Akan Dikembangkan
2.3	Fungsi
2.4	Kebutuhan9
3.	SPESIFIKASI11
3.1	Target Sistem yang Akan Dikembangkan
3.2	Aktor
3.3	Standarisasi
3.4	Batasan
4.	PENGEMBANGAN13
4.1	Jadwal Pengembangan
4.2	Biaya Pengembangan
5	PENITUP 15

Catatan Sejarah Perbaikan Dokumen

VERSI, TGL, OLEH	PERBAIKAN
01,	Draft Dokumen B200
8 September 2023,	J
oleh Henric Dhiki Wicaksono, Novi Dianasari,	
dan Muhammad Khoiril Wafi.	

1. PENDAHULUAN

1.1 Ringkasan Isi Dokumen

Dokumen ini berisi gambaran serta uraian spesifikasi produk "Rancang Bangun Sistem Keamanan Kunci Pintu Gedung Berbasis *Internet of Things*". Dalam dokumen ini akan dibahas mengenai gambaran dari sistem yang akan dikembangkan, spesifikasi, prosedur pelaksanaan serta waktu pelaksanaan dari proses tersebut. Uraian spesifikasi dari sistem akan memberikan gambaran mengenai kebutuhan yang diperlukan untuk mengimplementasikan produk sesuai dengan spesifikasi yang telah ditentukan. Dalam dokumen ini juga dibahas mengenai fungsionalitas dari produk yang akan dikembangkan serta batasan-batasan dari produk tersebut. Pada akhirnya dokumen ini akan menjadi acuan dalam proses pengembangan produk yang akan dibuat.

1.2 Aplikasi Dokumen

Dokumen ini digunakan dalam proses pengembangan produk "Rancang Bangun Sistem Keamanan Kunci Pintu Gedung Berbasis *Internet of Things*" untuk:

- 1) Sebagai gambaran proses pengembangan produk yang akan dilaksanakan serta batasan-batasan dari produk.
- 2) Sebagai gambaran target yang akan dicapai berdasarkan spesifikasi yang telah ditentukan.
- 3) Sebagai dokumentasi dan pencatatan perubahan.

Dokumen B200 ini diajukan kepada dosen pembimbing tugas akhir dan tim tugas akhir Program Studi Sarjana Teknik Elektro Undip sebagai bahan penilaian tugas akhir.

1.3 Referensi

- [1] I. Hermawan, D. Arnaldy, P. Oktivasari, and D. A. Fachrudin, "Development of Intelligent Door Lock System for Room Management Using Multi Factor Authentication," vol. 16, no. 1, pp. 1–14, 2023.
- [2] K. Y. Sun, Y. Pernando, and M. I. Safari, "Perancangan Sistem IoT pada Smart Door Lock Menggunakan Aplikasi BLYNK," *JUTSI (Jurnal Teknol. dan Sist. Informasi)*, vol. 1, no. 3, pp. 289–296, 2021, doi: 10.33330/jutsi.v1i3.1360.

1.4 Daftar Singkatan

Tabel 1.1 Daftar singkatan.

SINGKATAN	Arti
IoT	Internet of Things
WiFi	Wireless Fidelity
JSON	Javascript Object Notation
ACL	Access Control List
IOS	iPhone Operating System
PCB	Printed Circuit Board
SDK	Software Development Kit
ESP	Espressif

2. GAMBARAN SISTEM

2.1 Gambaran Sistem Saat Ini

Pada umumnya sebuah gedung memiliki banyak ruangan yang menyimpan berbagai barang, contohnya pada sebuah gedung perkuliahan terdapat ruang perkuliahan, laboratorium, ruang dosen, dan lain sebagainya. Semua ruangan tersebut tentunya membutuhkan sebuah kunci untuk mengamankan barang-barang yang ada di dalamnya supaya terhindar dari pencurian, perusakan, dan hal lainnya yang mengakibatkan kerugian. Saat ini, hampir semua gedung masih menggunakan metode penguncian secara tradisional yaitu menggunakan kunci fisik, mungkin jika hanya satu pintu saja metode penguncian tersebut mudah dilaksanakan. Namun, pastinya di sebuah gedung memiliki jumlah ruangan yang banyak sehingga jumlah kunci yang dimiliki juga semakin banyak. Dengan adanya jumlah kunci yang banyak maka pengelolaan kunci akan menjadi kurang optimal seperti harus membuka pintu satu persatu dengan menggunakan kunci yang sekilas terlihat identik sehingga memerlukan waktu untuk menemukan kunci yang tepat[1]. Ada pula kondisi dimana terdapat pinjam-meminjam kunci dengan memberikan kunci fisik secara langsung yang akan memberikan kesempatan kepada orang lain untuk melakukan duplikasi dan kehilangan kunci. Dengan perkembangan teknologi, sistem kunci konvensional sering kali sulit untuk diperbarui atau dikontrol dari jarak jauh. Hal tersebut menyulitkan pengaturan akses berdasarkan jadwal atau kebutuhan khusus. Oleh sebab itu, diperlukan sebuah mekanisme penguncian yang dapat meningkatkan keamanan serta memudahkan pengelolaan semua kunci di dalam gedung.

2.2 Gambaran Sistem yang Akan Dikembangkan

Dengan adanya kebutuhan mengenai mekanisme penguncian yang dapat meningkatkan keamanan serta memudahkan pengelolaan semua kunci di dalam gedung maka dilaksanakan "Rancang Bangun Sistem Keamanan Kunci Pintu Gedung Berbasis Internet of Things". Sistem ini berfokus pada pengelolaan semua kunci pintu pada sebuah gedung dengan menggunakan konsep IoT. Konsep IoT memberikan mekanisme yang menghubungkan sebuah perangkat elektronik ke sebuah jaringan komunikasi sehingga dapat membentuk sebuah jaringan dapat bekerja secara otomatis[2]. Dengan menggunakan konsep IoT, sistem ini diharapkan dapat meningkatkan keamanan dan efisiensi dalam pengelolaan kunci pintu gedung dengan cara membuat sebuah perangkat penguncian yang terpasang di setiap pintu. Semua perangkat penguncian tersebut nantinya akan terhubung ke sebuah server untuk mengelola semua kunci yang ada. Adapun pengguna dapat menggunakan antarmuka seperti aplikasi mobile dan website yang telah disediakan untuk berinteraksi dengan sistem seperti membuka kunci pintu.

Gambar 2.1 Konfigurasi sistem yang akan dibuat.

Gambar di atas menjelaskan konfigurasi sistem yang akan dibuat. Sistem keamanan kunci pintu gedung ini mempunyai 3 bagian utama seperti yang terlihat pada Gambar 2.1 yaitu terdapat perangkat penguncian untuk masing-masing pintu, sebuah server, serta aplikasi mobile dan website sebagai antarmuka. Bagian-bagian tersebut akan bekerja secara bersama-sama untuk meningkatkan keamanan dan efisiensi sistem penguncian.

2.3 Fungsi

Seperti yang sudah dijelaskan pada bagian sebelumnya, sistem yang akan dikembangkan merupakan sebuah sistem yang berfungsi untuk melakukan pengelolaan kunci pintu gedung. Tujuan utamanya adalah untuk meningkatkan keamanan serta efisiensi penggunaan kunci. Fungsi tersebut akan diimplementasikan ke dalam fitur-fitur yang dimiliki oleh sistem seperti pemantauan, pengelolaan hak akses, pencatatan riwayat, penjadwalan, dan lain sebagainya. Dengan adanya fitur-fitur tersebut maka sistem yang akan dikembangkan mampu meningkatkan keamanan dan efisiensi pengelolaan kunci pintu pada gedung. Adapun fungsi-fungsinya secara lebih rinci akan dijelaskan pada Tabel 2.1 di bawah ini.

Tabel 2.1 Kemampuan sistem.

Fitur	Penjelasan
Pemantauan Secara Realtime	Sistem yang akan dibangun memungkinkan adanya
	pemantauan kondisi pintu secara realtime. Setiap
	pengelola gedung dapat melihat kondisi pintu setiap
	saat melalui aplikasi mobile atau website.
Pengaturan Hak Akses	Sistem yang akan dibangun memberikan wewenang
	akses ke pengelola. Pengelola dapat memberikan akses
	ke pengguna pada pintu tertentu. Akses yang diberikan
	dapat berupa akses sementara atau akses tidak terbatas
	dengan waktu akses harian yang telah ditentukan.

Tabel 2.1 (lanjutan)

Fitur	Penjelasan
Notifikasi Penerobosan	Sistem yang akan dikembangkan memiliki kemampuan untuk mengirimkan notifikasi kepada pengelola jika terjadi penerobosan pada sebuah pintu. Pengelola juga akan mendapatkan notifikasi jika sebuah pintu dalam kondisi yang tidak sesuai misalnya pintu terbuka sehingga tidak bisa dikunci.
Pencatatan Riwayat Aktivitas	Sistem yang akan dikembangkan dapat mencatat riwayat aktivitas dari semua pengguna yang berinteraksi dengan sistem. Dengan adanya catatan ini maka semua tindakan pengguna dapat dipantau.
Penjadwalan	Sistem yang akan dikembangkan mampu untuk membuka pintu secara otomatis pada rentang waktu tertentu. Metode ini memudahkan pengelolaan pintu yang harus dibuka setiap hari dalam periode waktu tertentu misalnya ruang kelas atau sejenisnya. Tentunya pengaturan penjadwalan merupakan wewenang dari pengelola di setiap gedung tersebut.
Kendali Jarak Jauh	Sistem yang akan dikembangkan memiliki kemampuan untuk menerima perintah penguncian secara <i>remote</i> sehingga semua pintu dapat dikendalikan dari jarak jauh melalui koneksi internet.
Multi Offices	Sistem yang akan dikembangkan tidak terbatas hanya untuk satu gedung saja. Sistem ini dapat digunakan untuk banyak gedung tentunya di dalam satu gedung tersebut memiliki satu orang pengelola yang menjadi penanggung jawab.

Dengan berbagai kemampuan yang dimiliki oleh sistem tersebut maka keamanan pada suatu gedung dapat ditingkatkan serta pengelolaan kunci pintu dapat menjadi lebih mudah dimana kunci fisik akan digantikan dengan kunci secara digital.

2.4 Kebutuhan

Pada Gambar 2.1 di atas terlihat bagian-bagian dari sistem yang akan dikembangkan yaitu sebuah perangkat penguncian yang dapat terhubung ke *server*, sebuah *server*, serta aplikasi *mobile* dan *website*. Semua bagian tersebut dilandaskan pada kebutuhan untuk menjalankan semua aktivitas dari pengguna seperti autentikasi, membuka pintu, menambahkan data baru, dan lain sebagainya. Adapun penjelasan kebutuhan sistem secara rinci dapat dilihat pada Tabel 2.2 di bawah ini.

Tabel 2.2 Kebutuhan sistem.

Komponen	Penjelasan		
Perangkat Keras Penguncian	Untuk menjalankan mekanisme penguncian tentunya		
	memerlukan perangkat keras yang terpasang di setiap		
	pintu. Perangkat penguncian nantinya akan		
	terhubung ke server sehingga memerlukan modul		
	komunikasi seperti WiFi dan bluetooth. Dengan		
	adanya modul komunikasi tersebut, perangkat		
	penguncian dapat dipantau dan dikendalikan dengan		
	menggunakan metode pengendalian secara digital.		
Mekanisme Pengecekan Akses	Sebuah mekanisme diperlukan untuk memeriksa		
	akses setiap pengguna. Setiap pengguna dapat		
	mengakses ruangan jika pengguna tesebut memiliki		
	izin akses yang tersimpan di dalam sistem.		

Tabel 2.2 (lanjutan)

Komponen	Penjelasan
Server	Sebuah <i>server</i> digunakan untuk mengatur semua proses dan aktivitas di dalam sistem penguncian. <i>Server</i> akan melakukan autentikasi akses serta melakukan pencatatan aktivitas pengguna. Dengan adanya fitur kendali jarak jauh maka <i>server</i> juga harus memiliki kemampuan untuk mengirimkan perintah ke perangkat penguncian secara langsung.
Database	Untuk dapat bekerja dengan baik tentunya sistem membutuhkan data-data yang terkait dengan penguncian seperti data pengguna, pintu, gedung, dan lain sebagainya. Oleh karena itu, diperlukan sebuah tempat untuk menyimpan data-data tersebut.
Aplikasi <i>Mobile</i>	Aplikasi <i>mobile</i> digunakan oleh pengguna untuk berinteraksi dengan sistem penguncian. Dengan karakteristik perangkat yang ringkas dan dapat dibawa kemana-mana maka penggunaan perangkat <i>mobile</i> dapat meningkatkan kenyamanan pengguna dalam berinteraksi dengan sistem.
Website	Sebuah <i>website</i> dibutuhkan sebagai <i>dashboard</i> pengelola yang digunakan untuk mengatur semua aktivitas di dalam sistem seperti menambahkan pengguna, manambahkan penjadwalan, membuka pintu, dan lain sebagainya.

Daftar kebutuhan tersebut nantinya akan diimplementasikan ke dalam beberapa bagian pengembangan sistem yang terpisah. Dimana pada akhirnya akan membentuk suatu sistem yang utuh.

3. SPESIFIKASI

3.1 Target Sistem yang Akan Dikembangkan

Target yang harus dicapai untuk mengindikasikan bahwa sistem yang akan dikembangkan telah sesuai dengan rancangan awal yaitu dengan tesedianya semua fitur yang telah dijelaskan sebelumnya. Pada Tabel 2.1 telah dijelaskan mengenai fitur-fitur yang dimiliki oleh sistem seperti pengaturan hak akses, pemantauan, dan lain sebagainya. Fitur-fitur tersebut menjadi parameter yang akan dijadikan sebagai poin-poin pengujian yang akan menentukan keberhasilan pengembangan dari sistem tersebut.

3.2 Aktor

Aktor merupakan orang yang berinteraksi dengan sistem penguncian. Berdasarkan uraian fungsi dan fitur yang telah dijelaskan maka terdapat tiga aktor yang berinteraksi dengan sistem ini yang akan ditunjukkan pada Tabel 3.1 di bawah ini yaitu:

Tabel 3.1 Daftar aktor.

Aktor	Wewenang	Penjelasan
Moderator	Mengelola data gedung dan	Moderator bertugas untuk mengelola
	operator	data gedung dan operator. Seorang
		moderator dapat menambahkan gedung
		atau operator baru, serta menghapus
		gedung dan juga operator.
Operator	Mengelola sistem penguncian	Operator bertugas untuk mengelola
	pada satu gedung	sistem penguncian pada satu gedung
		tertentu dengan fitur yang dimiliki.
Pengguna	Menggunakan hak akses yang	Pengguna dapat menggunakan hak
	dimiliki	akses yang telah dimiliki untuk
		mengakses ruangan dengan
		menggunakan aplikasi <i>mobile</i> .

3.3 Standarisasi

Dalam pengembangan sistem keamanan kunci pintu gedung berbasis IoT mengikuti beberapa standar sebagai berikut. Standarisasi yang digunakan dapat dilihat pada Tabel 3.2 di bawah ini.

Tabel 3.2 Standarisasi yang digunakan.

Bagian	Standarisasi	Penjelasan
Protokol Komunikasi	WiFi dan <i>Bluetooth</i>	Protokol komunikasi pada perangkat penguncian menggunakan WiFi untuk berkomunikasi dengan <i>server</i> dan <i>bluetooth</i> untuk berkomunikasi dengan aplikasi <i>mobile</i> .
Format Data	Javascript Object Notation (JSON)	Format data yang dikirimkan oleh server ke perangkat penguncian dan aplikasi mobile mengikuti format dari JSON yaitu berupa javascript object dalam bentuk teks.
Metode Autentikasi	Access Control List (ACL)	Metode autentikasi menggunakan sebuah daftar yang berisi identitas pengguna yang diizinkan untuk mengakses sebuah sumber daya yang dilindungi.
Sistem Operasi	Android dan IOS	Pengembangan aplikasi <i>mobile</i> mengikuti <i>Software Development Kit</i> (SDK) yang disediakan untuk sistem operasi Android dan IOS

3.4 Batasan

Pengembangan sistem keamanan kunci pintu gedung berbasis IoT berfokus untuk menerapkan metode baru dalam proses pengelolaan kunci pintu pada suatu gedung dengan beberapa batasan, yaitu:

- 1. Pengelolaan data gedung dan operator hanya bisa dilakukan melalui *website* sistem penguncian.
- 2. Pengguna hanya dapat menggunakan aplikasi *mobile* untuk menggunakan akses yang dimiliki.
- 3. Modul komunikasi menggunakan WiFi dan *bluetooth* untuk menjalankan mekanisme autentikasi dan kontrol penguncian.

4. PENGEMBANGAN

4.1 Jadwal Pengembangan

Proyek rancang bangun sistem keamanan kunci pintu gedung berbasis IoT dirancang untuk rentang 6 bulan, dimulai pada Maret 2023 – Agustus 2023. *Time table* proyek ini dapat dilihat pada Tabel 4.1.

Tabel 4.1 Jadwal pengembangan.

Fase	Deliverables	Jadwal	Kebutuhan Sumber Daya	
Konsep Produk	Dokumen B100	Maret 2023	Literatur	
	Proposal			
Analisis	Dokumen B200	April 2023	1. Spek standar	
	Spesifikasi Fungsional		2. Engineer	
Desain	Dokumen B300	April 2023	1. Dvlp. Tools	
	Skematik Rangkaian		2. Penguasaan teknologi	
	Rancangan		pendukung	
			3. Literatur	
			4. Engineer	

Tabel 4.1 (lanjutan)

Fase	Deliverables	Jadwal	Kebutuhan Sumber Daya
Implementasi	Dokumen B400	Mei - Juni	1. Dvlp. Tools
(Pedoman	Lab Redesain	2023	2. Software Cadsoft
standar			Eagle
perencanaan)			3. Software Android
			Studio
			4. Engineer
			5. Komponen-
			komponen hardware
Pengujian	Dokumen B500	Juli 2023	1. Dvlp. Tools
subsistem	Error Report, redesain		2. Software Cadsoft
	skematik, ralat kode		Eagle
	program		3. Engineer
Laporan Akhir	Dokumen Laporan	Agustus	1. Dvlp. Tools
		2023	2. Mekanisme
			Pelaporan

4.2 Biaya Pengembangan

Dengan beberapa bagian yang digunakan untuk membangun sistem penguncian ini maka diperlukan sejumlah biaya sebagaimana yang terlihat pada Tabel 4.2.

Tabel 4.2 Perkiraan biaya pengembangan.

No.	Pengeluaran	Jumlah	Harga (Rp)	Total (Rp)
1	Mikrokontroler ESP32	2 buah	70.000	140.000
2	Sensor magnetic	2 buah	10.000	20.000
3	Kabel	5 meter	2.500	12.500
4	Cetak PCB	4 buah	25.000	100.000
5	Baut, mur, spacer	2 buah	15.000	30.000
6	Adaptor 12 Volt	2 buah	20.000	40.000

Tabel 4.2 (lanjutan)

No.	Pengeluaran	Jumlah	Harga (Rp)	Total (Rp)
7	Tombol	2 buah	3.000	6.000
8	Server	5 bulan	120.000	600.000
9	Solenoida	2 buah	40.000	80.000
10	Kusen Pintu	2 buah	300.000	600.000
Jumla	1.628.500			

5. PENUTUP

Dokumen B200 memaparkan definisi, fungsi, dan spesifikasi dari produk "Sistem Keamanan Kunci Pintu Gedung Berbasis IoT". Hasil perancangan spesifikasi pada dokumen B200 akan dijadikan acuan untuk pembuatan desain produk sistem keamanan kunci pintu gedung berbasis IoT, acuan pelaksanaan proyek, dan acuan pengujian fitur dari produk tersebut.