Social Networks & Recommendation Systems

III. Real networks properties and their visualization.

Grzegorz Siudem

Warsaw University of Technology

Warsaw University of Technology

MSc program in Data Science has been developed as a part of task 10 of the project "NERW PW. Science - Education - Development - Cooperation" co-funded by European Union from European Social Fund.

Before classes

Remember: vertex degree

Vertex degree

Number of edges connected to vertex

$$k = \{1, 2, 2, 3, 2\},\$$

Repetition from probability and statistics:

Repetition from probability and statistics:

 Is it possible for the probability distribution to do not have expected value? What with variance?

Repetition from probability and statistics:

- Is it possible for the probability distribution to do not have expected value? What with variance?
- · What are examples of such distributions?

Repetition from probability and statistics:

- Is it possible for the probability distribution to do not have expected value? What with variance?
- · What are examples of such distributions?
- What do we know about the support of the distribution with infinite moments?

Repetition from probability and statistics:

- Is it possible for the probability distribution to do not have expected value? What with variance?
- · What are examples of such distributions?
- What do we know about the support of the distribution with infinite moments?
- What is the interpretation of mean from the sample for distributions without expected value? To what value does it converge as the sample size increases?

5 SARS

Lecture

What does not distinguish real networks?

What does not distinguish real networks?

· Size (big and small).

What does not distinguish real networks?

- · Size (big and small).
- · Planarity (see visualization).

What does not distinguish real networks?

- · Size (big and small).
- · Planarity (see visualization).
- · Regularity.

What does not distinguish real networks?

- · Size (big and small).
- · Planarity (see visualization).
- Regularity.
- · Type of graph.

What does not distinguish real networks?

- · Size (big and small).
- · Planarity (see visualization).
- · Regularity.
- · Type of graph.

• ...

Examples?

What distinguish real networks?

What distinguish real networks?

• Degree distributions with fat tails.

What distinguish real networks?

- Degree distributions with fat tails.
- · Small world phenomenon.

What distinguish real networks?

- Degree distributions with fat tails.
- · Small world phenomenon.
- · Correlations.

What distinguish real networks?

- Degree distributions with fat tails.
- · Small world phenomenon.
- · Correlations.
- · Hierarchies (often).

What distinguish real networks?

- Degree distributions with fat tails.
- Small world phenomenon.
- Correlations
- · Hierarchies (often).
- · Self-similarity (sometimes).

What distinguish real networks?

- · Degree distributions with fat tails.
- · Small world phenomenon.
- · Correlations.
- · Hierarchies (often).
- · Self-similarity (sometimes).

Be careful!

The above observations are empirical, not mathematical. It is not that **each** complex network has **each** of the above features.

5 SARS

What are fat tails?

Probability reminder:

$$\mathbb{E}X^p = \int_{-\infty}^{\infty} x^p f(x) dx = \infty^*$$

analogously for discrete distributions

$$\mathbb{E}X^p = \sum_{k=0}^{\infty} k^p P(k) = \infty^*$$

What are fat tails?

Probability reminder:

$$\mathbb{E}X^p = \int_{-\infty}^{\infty} x^p f(x) dx = \infty^*$$

analogously for discrete distributions

$$\mathbb{E}X^p = \sum_{k=0}^{\infty} k^p P(k) = \infty^*$$

Warning!

The necessary condition for the divergence of integrals is the infinity support of the density function (probability mass function).

What are fat tails?

Probability reminder:

$$\mathbb{E}X^p = \int_{-\infty}^{\infty} x^p f(x) dx = \infty^*$$

analogously for discrete distributions

$$\mathbb{E}X^p = \sum_{k=0}^{\infty} k^p P(k) = \infty^*$$

Warning!

The necessary condition for the divergence of integrals is the infinity support of the density function (probability mass function).

What with real networks?

Finite or infinite?

How to deal with this problem?

We typically consider a vertex degree distribution to have a fat tail if the corresponding integrals (sums) diverge in the limit $N \to \infty$.

How to deal with this problem?

We typically consider a vertex degree distribution to have a fat tail if the corresponding integrals (sums) diverge in the limit $N \to \infty$.

It is not strictly mathematically! :(

How to deal with this problem?

We typically consider a vertex degree distribution to have a fat tail if the corresponding integrals (sums) diverge in the limit $N \to \infty$.

It is not strictly mathematically! :(

Bad news:

Almost all complex network science has this degree of precision.

How to deal with this problem?

We typically consider a vertex degree distribution to have a fat tail if the corresponding integrals (sums) diverge in the limit $N \to \infty$.

It is not strictly mathematically! :(

Bad news:

Almost all complex network science has this degree of precision.

Good news:

It works!

How to deal with this problem?

We typically consider a vertex degree distribution to have a fat tail if the corresponding integrals (sums) diverge in the limit $N \to \infty$.

It is not strictly mathematically! :(

Bad news:

Almost all complex network science has this degree of precision.

Good news:

It works!

We will be more mathematically precise in Lecture 7.

What are results of the fat tails?

What are results of the fat tails?

Pareto Rule (80/20)

How much of the resources belong to what proportion of the population?

What are results of the fat tails?

Pareto Rule (80/20)

How much of the resources belong to what proportion of the population?

Does it holds for any distribution?

We will check during projects.

Why power law networks are scale free?

Why power law networks are scale free?

Mathematical justification

Fat-tailed distributions are those for which there is no expected value or one of the higher moments.

$$\mathbb{E}X^k = \int f(x)x^k dx = \infty^*$$

Why power law networks are scale free?

Mathematical justification

Fat-tailed distributions are those for which there is no expected value or one of the higher moments.

$$\mathbb{E}X^k = \int f(x)x^k dx = \infty^*$$

Suppose there is no second moment

$$\mathbb{E}X^2=\infty$$
,

thus

$$\mathbb{E}\left[X - \mathbb{E}X\right]^2 = \infty,$$

Why power law networks are scale free?

Mathematical justification

Fat-tailed distributions are those for which there is no expected value or one of the higher moments.

$$\mathbb{E}X^k = \int f(x)x^k dx = \infty^*$$

Suppose there is no second moment

$$\mathbb{E}X^2 = \infty$$
,

thus

$$\mathbb{E}\left[X - \mathbb{E}X\right]^2 = \infty,$$

So we have no scale!

How to interpret this in a finite case?

Networks with power law distributions

For to everyone who has will be given, and he will have more: but from him who has not, even what he has will be taken away.

Mt 25:29.

For to everyone who has will be given, and he will have more: but from him who has not, even what he has will be taken away.

Mt 25:29.

· Matthew Effect,

For to everyone who has will be given, and he will have more: but from him who has not, even what he has will be taken away.

Mt 25:29.

- · Matthew Effect,
- · rich get richer rule,

For to everyone who has will be given, and he will have more: but from him who has not, even what he has will be taken away.

Mt 25:29.

- · Matthew Effect,
- · rich get richer rule,
- · preferential attachment rule,

For to everyone who has will be given, and he will have more: but from him who has not, even what he has will be taken away.

Mt 25:29.

- · Matthew Effect,
- · rich get richer rule,
- · preferential attachment rule,
- rule money make money,

For to everyone who has will be given, and he will have more: but from him who has not, even what he has will be taken away.

Mt 25:29.

- · Matthew Effect,
- · rich get richer rule,
- · preferential attachment rule,
- · rule money make money,
- ...

M. Perc, J. R. Soc. Interface, **11**, (2014).

Is the distribution sufficient?

Question:

Prove or find a counterexample: whether the vertex degree distribution unambiguously characterize a network or a graph.

Assortativity vs disassortativity

$$\mathcal{P}(k_i|k_j) = \frac{\mathcal{P}(k_i,k_j)}{k_j \mathcal{P}(k_j)/\langle k \rangle}$$

Assortativity vs disassortativity

$$\mathcal{P}(k_i|k_j) = \frac{\mathcal{P}(k_i,k_j)}{k_j \mathcal{P}(k_j)/\langle k \rangle}$$

 A disassortative network is one where the probability of connecting nodes of very different degrees is high.

Assortativity vs disassortativity

$$\mathcal{P}(k_i|k_j) = \frac{\mathcal{P}(k_i,k_j)}{k_j \mathcal{P}(k_j)/\langle k \rangle}$$

- A disassortative network is one where the probability of connecting nodes of very different degrees is high.
- An assortative network is one where the probability of connecting nodes of a similar degree is high.

Question:

What are real examples of such networks?

5NARS 1

Correlations

 $\mathcal{P}(k_i, k_j)$ - probability that randomly chosen edge connectrs vertices of degrees k_i i k_j

$$\mathcal{R}(k_i, k_j) = \frac{\mathcal{P}(k_i, k_j)}{\mathcal{P}_u(k_i, k_j)},$$

and P_{μ} is for uncorrelated network with the same distributon.

Derivation of \mathcal{P}_{μ}

Correlations

 $\mathcal{P}(k_i, k_j)$ - probability that randomly chosen edge connectrs vertices of degrees k_i i k_j

$$\mathcal{R}(k_i, k_j) = \frac{\mathcal{P}(k_i, k_j)}{\mathcal{P}_u(k_i, k_j)},$$

and P_u is for uncorrelated network with the same distributon.

Derivation of \mathcal{P}_{μ}

Random switch – see figure (project).

Correlations

 $\mathcal{P}(k_i, k_j)$ - probability that randomly chosen edge connectrs vertices of degrees k_i i k_j

$$\mathcal{R}(k_i, k_j) = \frac{\mathcal{P}(k_i, k_j)}{\mathcal{P}_u(k_i, k_j)},$$

and P_u is for uncorrelated network with the same distributon.

Derivation of \mathcal{P}_{μ}

Random switch – see figure (project).

•
$$\mathcal{P}_u(k_i, k_j) = \frac{k_i k_j \mathcal{P}(k_i) \mathcal{P}(k_j)}{\langle k \rangle^2}$$

Reminder:

How many handshakes separate any two people on the Earth? (see Milgram's experiment)

Reminder:

How many handshakes separate any two people on the Earth? (see Milgram's experiment)

How to measure the smallness of the world?

$$\ell = \frac{1}{N(N-1)} \sum_{i \neq j} d(i,j)$$

What is the average path length in the selected network models?

Reminder:

How many handshakes separate any two people on the Earth? (see Milgram's experiment)

How to measure the smallness of the world?

$$\ell = \frac{1}{N(N-1)} \sum_{i \neq j} d(i,j)$$

What is the average path length in the selected network models?

• for random graphs $\ell \sim \frac{\ln N}{\ln \langle k \rangle}$,

Reminder:

How many handshakes separate any two people on the Earth? (see Milgram's experiment)

How to measure the smallness of the world?

$$\ell = \frac{1}{N(N-1)} \sum_{i \neq j} d(i,j)$$

What is the average path length in the selected network models?

- for random graphs $\ell \sim \frac{\ln N}{\ln \langle k \rangle}$,
- for square lattice $\ell \sim \sqrt{N}$,

Reminder:

How many handshakes separate any two people on the Earth? (see Milgram's experiment)

How to measure the smallness of the world?

$$\ell = \frac{1}{N(N-1)} \sum_{i \neq j} d(i,j)$$

What is the average path length in the selected network models?

- for random graphs $\ell \sim \frac{\ln N}{\ln \langle k \rangle}$,
- for square lattice $\ell \sim \sqrt{N}$,
- for scale free networks with $\alpha=$ 3 $\ell\sim\frac{\ln N}{\ln \ln N}$,

Reminder:

How many handshakes separate any two people on the Earth? (see Milgram's experiment)

How to measure the smallness of the world?

$$\ell = \frac{1}{N(N-1)} \sum_{i \neq j} d(i,j)$$

What is the average path length in the selected network models?

- for random graphs $\ell \sim \frac{\ln N}{\ln \langle k \rangle}$,
- for square lattice $\ell \sim \sqrt{N}$,
- for scale free networks with $\alpha = 3 \ell \sim \frac{\ln N}{\ln \ln N}$,
- for scale free networks with $\alpha \in (2,3)$ $\ell \sim \ln \ln N$.

Other properties of real networks

fractal distribution networks,

Other properties of real networks

- fractal distribution networks,
- · hierarchical networks,

Other properties of real networks

- · fractal distribution networks,
- · hierarchical networks,
- networks with community structure.

Question:

What are examples of such networks?

Features of good visualization:

Features of good visualization:

· appropriate distance between vertices,

Features of good visualization:

- · appropriate distance between vertices,
- · appropriate angles between edges,

Features of good visualization:

- · appropriate distance between vertices,
- · appropriate angles between edges,
- · minimal number of intersections,

5NARS 18

Features of good visualization:

- · appropriate distance between vertices,
- · appropriate angles between edges,
- · minimal number of intersections,
- symmetries!

Features of good visualization:

- appropriate distance between vertices,
- · appropriate angles between edges,
- · minimal number of intersections,
- · symmetries!
- · is pleasing to the eye.

Comment:

Optimization of the above features (especially the last one!) Is algorithmically demanding.

Features of good visualization:

- appropriate distance between vertices,
- · appropriate angles between edges,
- · minimal number of intersections,
- · symmetries!
- is pleasing to the eye.

Comment:

Optimization of the above features (especially the last one!) Is algorithmically demanding.

Conclusion:

Visualization is largely an art ... or the use of ready-made tools.

For R users:

http://kateto.net/network-visualization

Summary

Homework

Read

- M.E.J. Newman, Power laws, Pareto distributions and Zipf's law, Contemporary Physics, 46, 323-351 (2005).
 and/or
- chapter 3.1-3.3 in A. Fronczak, P. Fronczak, Świat sieci złożonych PWN (2009).

Thank you for your attention!

Warsaw University of Technology

MSc program in Data Science has been developed as a part of task 10 of the project "NERW PW. Science - Education - Development - Cooperation" co-funded by European Union from European Social Fund.