Chapitres	Wombsel a Pentar	na et pseudo-aleateire
1.1. Introdu	ictions	
S., x2,, xn P.		et Fx sa Panction de répartition in simulant sur système on sations
les variable d'entrées Connue graph	X1, X2, Modèle X3, 24: Shèma representati	Yx Sortie inconnue.
Propriété: si X est une		de fonction de réportition
	ntinue alaw F(x) ex	t Craissante et F _x * exciste.
Soil ye Eo. 1	3. F _y (y) = P(y < y) = P(x < F = F _y (F _y ')	= P[Fx(x) < y] [x^0(y)) y)) = y
=> \ \ y \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

F (5) y = F(x) En utilisant le graphe on pout determiner les valeurs de X à pontir des valeurs de y * Cette propriété permet de namemer la géneration des réalisations de la variable aleatoire X de Fonction de réportition E(x) à la géneration des réalisations de la V.a Le problème est donc de générer des nombres aléatoires Uniforme Sur La, 4] 12 La géneration des nombres aféatremes (ou au harand) et Pertables A l'arigine, on utilise des tirages des baules dans des urner numérate de 0 dg. des contes ou Dés pour obtenir des tables de nombre a l'éatoires. Ceci étant unsuffisant, on a Construit des machines générant des nombres au haband. page 02

Exemple 018

Les machines servant au tirage des numeras gagnant de La Potrie nationale.

Exemple 023

Kendall et Babington-Smith, on obtenue 100.000 chiffres à partir d'un disque tournant divisé en secteurs multiples 10 et éclané à intervaller régulier. Vu la laurdeur de l'utilisation des tables sur l'ardinateur on préfère d'utiliser des générateurs de nombres dit « Pseudo-aléataire » qui générant des nombres à la demande.

1 3. Génération des nombres poseudo-aléataires:

Le terme " Pseudo " vien du fait qu'on construit par un procédé déterministe une anite de nombres aléatoire

x = 3 (x2, x3, ... , x0)

Si le nombre xo est donné (Initialisation) toute la suite xn, nell est déterminée, mais on demande à la suite d'avair l'aspect d'une suite de nombres au harard.

Supposons que N sait la plus grande valeur que peut attendre en, le problème est arrivée à obtenir des suites telle que:

- 1 Res xn sont réparties uniformement son CO, NJ
 - 2 Les xn sont indépendants
 - 3. L'algorithme de géneration soit plus rapide possible

- Page 03 -

1-3-1: Les génerateus congruentiels:
Rappel: Saient a, b, q, T & IN
a = r mod b => { a = bq+r r: est le reste de la { r = 0,4,, b = s dévision a/b
Méthode congruentielle lineaux et mixte.
{ Xn+1 = a Xn+c (mod m) n 70
à a.C., m et Xo sont des entiers tellque:
m: modula m70
a : multiplicateur o « a em
Xo: la valeur de dépard Ox xo < m
Congruentielle multiplicative au lineaire.
+ Dans le cas au C + 0 on obtient la méthode : Congruentielle mixte.
Exemple: Supposons les Constantes suivantes: a=3, c=0, m=5 x X=4
le génerateur des nombres pa endo-aléatoires est suivant: [Xn+1 = 3 Xn mad 5 n>0
- page ou-

on calcule la suite des nombre pseudo-aléataire Sa = 3 xo = 12 mod 5 => xa = 2 x2 = 3 x 1 mod 5 => x2 = 1. x3 = 3 x2 mod 5 => X3 = 3 $= \begin{cases} x_0 = 4 \\ x_A = 2 \\ x_2 = 4 \end{cases}$ Aucune valeur ne doit deparser x3 = 3 La suite de nombre pseudo-aleataire (n.p.a) est (4,2,1,3,4,2,5,4) Remarque Pour obtenir une quite de nombres aléatoire entre det s if suffit de prendre Un= Xn, n>0 Contre exemple: Supposons Per paramètres savivants: a = c = xo= 1 et m=3850 Le génerateur : xn+1 = xn + 1 mod 3850 la suite de n.p.a est (4,2,3,4,5,...) Ce génerateur n'a aucun interêt car la soute génerer n'a pas l'aspect du hasand ce n'est pas un bon generateur baen que le parametre est très elevé.

Remarque 023

Donnons la formule génerale de Xn en fonction de xo en = a en- + c (modm) . = a (a xn-2+c)+c (mod m) = a2 xn-2 + ac + c (mod m) = a2 (axn-3+c)+ac+c (mod m) $= a^{3} \times_{n-3} + a^{2} + a + a + a + a + a^{2} + a^{3} + a^{2} + a^{2} + a^{3} + a^{3} + a^{4} + a^$ $x_n = a^n x_0 + c \sum_{i=0}^{n-1} a^i \pmod{m}$ $(x_n = a^n x_0 + C + \frac{1}{4 - a^n} \mod m)$

1-3-2- Problème de paramètre

Le problème est le chaix des 4 paramètre a, c, met so paur que la soute des nombres génerésant de bonne propriétes statistique (satisfie 4, 2, 3 de paragraphe 3). Les paramètres montres des plus importants, les paramètres « aseta Crossont chaisés pour que la periode sait de longueur « mos. Certain auteurs affirme que la realisation d'un bonne génerateur exige de paramètre « mos être grand mais sonne génerateur exige de paramètre « mos être grand mais serie n'est pas une condition nécessaire (voir contre exemple)

En géneral, on dit qu'un génerateur est bon si ils engendre une bonne soute de nombre aléatoire c-a-d qu'il satisfait les propriétes statistique 1,2,3 de paragraphe 03 1-4- Tests de générateurs des nombres pseudo-aléataires Pour que les coutes de nombres généres pressédent un comportent aleataire son [0, s], il faut tester ce compartement selon géneration comme des réalisations d'une variable aléatoire
Uniforme Up ? - Indépendance: Pent-on considerer les Un comme des réalisations de variable aléctaire indépendantes? 1-4-1. Tests de l'uniformité de la distribution Comparaison d'ine la empirique (abtenu à portir des nombres génerés entre 10,21) avec la lai Recrique (lai uniforme Done il s'agit de tester l'hypothèse Ho selon laquelle les observations farmer par le génerateur sont bien réparties unilcommement entre o et 1 Uniformement entre o et 1 Page of

1-4-1 Test de Khi-deux:

Scient

n: le nombre d'observation (le nombre pseudo-aléataire générer)

K: le nombre de classe de l'intervalle [0,1].

n: les effect ps observer dans la i ème classe

npi = n x 1 : l'effectifs Phéorique de chaque classe (lau uniforme)

Pi : la probabilité associé à la classe i

on calcule le test statistique:

 $\left(x^{2} = \frac{k}{n} \sum_{n=1}^{k} (n_{i} - \frac{n}{k})^{2} = \frac{1}{n} \sum_{i=1}^{k} (n_{i} - \frac{n}{k})^{2} \right)$

qui suit approximativement sous l'hypothèse Ho, une lai de

Khi-deux à (k-1) degrés de liberté. (Xk-1). On fixe un reall de signification det on réjette l'hypothère He si X2 > Volein critique (lue sur la table du X(k+1))

Remarque

- Paul que ce test ait un sons il faut que npi > 5 c'est à dire n > 5k.

- Si K > 30, on utilise l'approximation de Fisher de la Pai de Xº par la lai normale. Pour le calcule de K, on peut utiliser les approximations

* Approximation de Mann et Wald: K= (4n) 5

* Approximation de Stunges: K = 1 + (3,3) togn

Exemple:

Soit la suite des nombres aléatraire suivante sur [ord]:

0,99 - 0,01 - 0,03 - 0,05 - 0,89 - 0,91 - 0,19 - 0,33 - 0,36 -0,45

0,80 - 0,70 - 0,75 - 0,20 - 0,31 - 0,23 - 0,65 - 0,35 - 0,43 - 0,42 -

0,62 -0,79 - 0,11 - 0,15 - 0,21

Pa toulle de l'echantiffon n= 25

le nombre de classe on le prend K=4

P'hypothèse Ho! Les obervation suivent une lai Uto, 13

- le seul de signification & = 0,05

la réponse:

Classe	Lo -0,25E	[0,25 - 0,5 [Lois -0,45E	[0,45-1[Total
ni	g	7	3	6	25
n =nPi	6,25	6,25	6,25	6,25	25
$\left(n_i - \frac{n}{\kappa}\right)^2$	7,5625	0,5625	10,5675	0,062(18,75.

$$\mathcal{L}^{2} = \frac{K}{n} \sum_{i=1}^{K} (n_{i} - \frac{n}{k})^{2} = \frac{4 \times 48,75}{25} = 3$$

Pau $\mathcal{A}=0.05$, la valeur critique lue un latable \mathcal{X}_3^2 est \mathcal{X}_3 (0.05) = 7.815 on a \mathcal{R}^2 = 3 < 7.815 Decision: on accepte & hypothese to Dong les observations suivent la lai uniforme Co. 15 1 4-12 Test de Kolmogorove - Smit nov: Ce Test est plus puissant que le précedent car c'est celui pour lequel le risque d'accepter 40 est plus faible. La procedure est la suivante: 1. On tire un échantiffon de n observations à l'aide du générateur. 2. On classe les observations en ordre croissant 3. on Compare la fonction de répartition empirique F (x) Calculé à portir de ces n nombre pseudo-aléatoire avec la fonction de réportition théorique F(X) de la Lai Co'41 on calcule la statistique D = Max | F (x) - F(x) = max D(xi) nombre d'observation &X et $F(x) = \infty$ - Page 10.

on fixe un seuil de signification & et on compare
cet écart D à des valeurs critiques particuliers qu'on
note Dn (où n'est la taille de l'echantiflon) obtenus
à partir de la table de Kolmogorov-Smirnov.
THE ADDRESS OF THE PARTY OF THE
La Je cision sera:
Accepter Ho, so D < Dn : C-à-d le générateur et bon.
- Rejeter Ho, sinon: c-à-d le génerateur n'a pas les qualités I:
requires 5
The Bottom I and the late of t
Exemple:
Soit un échantillon de taille n=4 d'une population
The state of the s
Xi = 0,34 - 0,48 - 0,56 - 0, 40
Tester l'hypothère selon laquelle la distribution de la
population suit une la uniforme sur [0, 1], en prenant
un seul de signification d=0,2, VxE[0,1],
F(x) = x Pai theorique.
Xi 0134 0149 0156 0170
Fn (xi) = 2 3 1
Fn (Xi) + + + + +
F(xi) 0,34 0,49 0,56 0,40
D(X1) 0,09 0,01 0,19 0,30
on deduit le test statistique de RS: D=maxD(xi)=0,30
Pour d=0,2, la valeur critique luc sur la table de K-5
OLF D. L. O. HOLL
est D4 = 0,494 _ page 11-

Comme D=0,30 < Dy=0,494 on accepte Phypothèse Ho	
1-4-1-3- Test de l'histogramme:	
Soit n nombre pseudo-aléatoire générer son [0,1] soit k le nombre de classe son [0,1]	
ne l'effectif abservé dans la classe i	
On divise l'intervalle [0, 1] en K classes et on trace l'histogramme de la serie (Xi, K hi) et in l'uniformité	
est parfaite on oura alou ni ~ n => K ni ~s	
Ce teste n'est utilisé sa l'uniformité était parfaite.	
Exemple:	
Soit un échantiffon de la taille n = 10 (exemple du test X2) on utilise l'approximation de Manet Wald,	
on trauve: K=4,87~5	
K = (4.10) = 4,37.	
Classe [0-012[[012-014[[014-0,6[[016-018[[018-1[
ni 4 2 1 0 3	ŀ
K ni 2 1 0,5 0 1,5	
- Page 12	

K ni , Classe 0,6 Remarque: D'après l'histogramme, on ne peut pas déader avec ce test il Paut gaire d'autre tests. 1-4-2- Test de l'indépendance (test de sequences cen or nous stest. Ce test est utilisé pour tester on les observations sont mutuellement undependontes on considére les données tell qu'ils sont collectées l'echantiffon doit être diviser en deux classes scient no et ne le nombre d'observations dans la classe 1 et 2 respectivement on registre (+) si labservation est de la clarse s et un (-) si l'observation est de la clare 2 on compte le nombre de requences homogèner de (+) et (-) - Page 13-

Exemple: ds : ++ = ++ + - - = 4 On défine en seul de signification det on accepte Phypothèse Ho: "Ples observations sont indépendantes" si: * L'est compris entre les valeurs critiques lues son les tables na et na < 20 * Si n, et nz > 20, on utilise le resultats suivant: 1~ N(u, +1) où $u = \frac{2n_1n_2}{n} + 1$ et $v^2 = \frac{2n_1n_2}{n^2(n-1)}$ Exemple: on définie la classe 1 (+) par les nores (0,5 on définie la classe 2 (-) par les obres >0,5 Réponte. n = 25 $n_1 = 46$ $n_2 = 9$ $n_1 + n_2 = n$ 0,89-0,04-0,03-0,05-0,89-0,93-0,33-0,36-0,45 - 0,80 - 0,70 - 0,75 - 0,20 - 0,31 - 0,23 - 0,65 -0,35 0143 - 0142 - 0,62 - 0,79 - 0,11 - 0,15 - 0,21 r= nombre de séquence = 10 test bolateral pour un seuil de signification d=0,05 La valeur critique « Lue son la table 4 est «= 7 Page 14-

