Gradient Coding: Avoiding Stragglers in Synchronous Gradient Descent

Rashish Tandon*, Qi Lei*, Alexandros Dimakis*, Nikos Karampatziakis†

* The University of Texas at Austin, † Microsoft

Overview

We propose a novel coding theoretic framework for mitigating stragglers in distributed learning. We show how to achieve tolerance to **failures/stragglers** for **synchronous Gradient-based methods** by:

- Replicating data blocks across machines
- Coding over the gradients transmitted

Introduction

Given a data set $D = \{(x_1, y_1), \dots, (x_d, y_d)\}$, many ML tasks require solving:

$$\beta^* = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \sum_{i=1}^d \ell(\beta; x_i, y_i)$$
 (1)

Gradient-based methods solve this via the update step:

$$\beta^{(t+1)} = h\left(\beta^{(t)}, g^{(t)}\right) \tag{2}$$

- $g^{(t)} := \sum_{i=1}^{d} \nabla \ell(\beta^{(t)}; x_i, y_i)$, is the **gradient**
- Several methods e.g. gradient descent, accelerated gradient descent, conditional gradient, LBFGS, bundle methods etc. fit in this framework
- If d is large, computation of $g^{(t)}$ can be distributed
- **KEY PROBLEM:** Some workers in a synchronous distributed setup can be **slow** or even **fail**

Figure: Average communication times (over 100 rounds), for a vector of dimension p = 500000 using $n = 50 \pm 2$ micro workers, and a c38x.large master machine.

Figure: Basic Idea of Gradient Coding

General Setup

• Notation: d samples, n workers denoted as $\{W_1, \ldots, W_n\}$, s stragglers (with s < n), Data partitions denoted as $\{D_1, \ldots, D_n\}$

We seek matrices $A \in \mathbb{R}^{f \times n}$, $B \in \mathbb{R}^{n \times n}$:

$$AB = \mathbf{1}_{f \times n} \tag{3}$$

- f is number of combinations of non-straggler workers
- $\mathbf{1}_{f \times n}$ is the all 1s matrix of size $f \times n$
- B_i (i^{th} row of B) is *linear combination* over **partial gradients** computed by i^{th} worker
- A_i (i^{th} row of A) is linear combination over workers when $supp(A_i)$ survive
- In the previous example:

$$\bullet A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & -1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1/2 & 1 & 0 \\ 0 & 1 & -1 \\ 1/2 & 0 & 1 \end{pmatrix}$$

Full Stragglers

- Stragglers are allowed to be arbitrarily slow, to the extent of complete failure
- Rows of A have all subsets over [n] of size (n-s) as supports $(f=\binom{n}{n-s})$

We require that for any set $I \subseteq [n]$ s.t. |I| = n - s, B satisfies:

$$\mathbf{1}_{1\times n} \in \operatorname{span}\left\{B_i \mid i \in I\right\} \tag{4}$$

- In other words, any n s rows of B must contain the all 1s vector in their span
- Rows of B must also be sparse, to control computational overhead

Theorem (Lower Bound on B's density): If all rows of *B* have the same no. of non-zeros, then:

$$||B_i||_0 \ge (s+1)$$
 for all $i \in [n]$

Fractional Repetition Scheme:

- Applicable when n is a multiple of (s + 1)
- Partition data equally among $\frac{n}{(s+1)}$ workers
- Create (s + 1) replicas using other workers
- Every worker sends sum of its partial gradients

Figure: Fractional Repetition Scheme for n = 6, s = 2

Cyclic Repetition Scheme: B has the support structure

- Pick rows of B from a random subspace S (described as null-space of an $s \times n$ MDS matrix) and also containing $\mathbf{1}_{n \times 1}$
- Always possible for any n and s

Partial Stragglers

- Stragglers are allowed to be at most α -times slower than any non-straggler
- Key idea is to couple the naive scheme with the coding scheme
- Data is split into a *naive* component and *coded* component
- When a straggler finishes processing its *naive* components, a non-straggler finishes its *naive+coded* components

Figure: Scheme for Partial Stragglers, n = 3, s = 1, $\alpha = 2$. $g(\cdot)$ represents the partial gradient. Each worker gets 4/9 fraction of the data (as opposed to a 2/3 fraction in the earlier scheme).

Experiments

Artificial Dataset:

- Generate a dataset with d = 554400 samples, $D = \{(x_1, y_1), \dots, (x_d, y_d)\}$
- $x \sim \frac{1}{2}\mathcal{N}(\mu_1, I) + \frac{1}{2}\mathcal{N}(\mu_2, I)$ and $y \sim Ber(p), p = 1/\left(\exp\left(2x^T\beta^*\right) + 1\right)$
- Model dimension p=100, and μ_1, μ_2, β^* chosen randomly
- Train a logistic regression model

(a) One straggler

(b) Two stragglers

Figure: Empirical running time on EC2 with $n=12\,\mathrm{ml}$. small machines, and one or two stragglers. Other machines run at normal speed while stragglers are artificially delayed. α is slowdown rate for partial schemes. We note that the partial straggler schemes for $\alpha=1.2$ needs to only replicate approximately 10% of the blocks.

Experiments

Real Dataset:

- Train a logistic regression model on Amazon Employee Access Dataset¹ (d = 26200, p = 241915)
- Comparison with *ignoring stragglers* approach *i.e.* data is distributed equally and we only wait for (n s) machines to finish

Figure: Avg. Time per iteration on Amazon Employee Access dataset, using t2.micro EC2 instances

Figure: AUC vs. Time on Amazon Employee Access dataset, using t2.micro EC2 instances

¹ https://www.kaggle.com/c/amazon-employee-access-challenge