Concours d'Entrée

DEUXIÈME ÉPREUVE DE MATHÉMATIQUES

Durée: 4 heures

Calculatrice interdite

OPTION A

EXERCICE 1

Le but de cet exercice est le calcul des deux intégrales

$$C(x) = \int_{0}^{+\infty} e^{-t} \cos(xt) \frac{dt}{\sqrt{t}} \quad \text{et} \quad S(x) = \int_{0}^{+\infty} e^{-t} \sin(xt) \frac{dt}{\sqrt{t}}.$$

1) Etablir les relations : $C'(x) = -xS'(x) - \frac{1}{2}S(x)$ $S'(x) = xC'(x) + \frac{1}{2}C(x)$.

2) En déduire que C et S sont deux fonctions, de classe \mathcal{C}^1 , vérifiant sur \mathbb{R} le système différentiel :

$$\begin{cases} 2(1+x^2)u'(x)+xu(x)=-v(x) \\ 2(1+x^2)v'(x)+xv(x)=u(x) \end{cases}.$$

3) Montrer que la fonction $G(x) = \left(\int_{0}^{x} e^{-t^2} dt\right)^2 + \int_{0}^{1} \frac{e^{-(1+t^2)x^2}}{(1+t^2)} dt$ est constante sur \mathbb{R} . Que vaut cette constante ?

En déduire la valeur de l'intégrale $\int_{0}^{+\infty} e^{-t^2} dt$ puis la valeur de C(0).

4) Montrer que si $\alpha(x)$ et $\beta(x)$ sont deux fonctions dérivables vérifiant sur $\mathbb R$:

$$\begin{cases} 2(1+x^2)\alpha'(x) = -\beta(x) \\ 2(1+x^2)\beta'(x) = \alpha(x) \end{cases} \text{ et } \begin{cases} \alpha(0) = \sqrt{\pi} \\ \beta(0) = 0 \end{cases}.$$

Alors $\alpha^2(x) + \beta^2(x) = \pi$ pour tout x de \mathbb{R} . En faisant un changement de fonction inspirée par ce résultat, trouver $\alpha(x)$ et $\beta(x)$.

5) Trouver C(x) et S(x) pour tout x réel.

PROBLEME

 $\mathbb{R}^k (k = n \text{ ou } p)$ est muni de la structure euclidienne standard. On utilise les conventions usuelles du calcul

matriciel un vecteur x est écrit spontanément en colonne $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}$. Si on veut l'écrire en ligne, on écrit

 $x^T = (x_1, x_2, ..., x_k)$. De sorte que si y est un autre vecteur de \mathbb{R}^k , $x^T y = y^T x$ désigne le produit scalaire de x par y et $||x|| = \sqrt{x^T} x$ la norme (euclidienne) du vecteur x.

Soit X une matrice à coefficients réels ayant p lignes et n colonnes, on note aussi X l'application linéaire de \mathbb{R}^n dans \mathbb{R}^p ayant X pour matrice relativement aux bases canoniques. X^T la matrice n lignes p colonnes, transposée de X est encore identifiée à l'application linéaire de \mathbb{R}^p dans \mathbb{R}^n correspondante.

I

- 1. Justifier le fait que les valeurs propres de X^TX et de XX^T sont positives ou nulles et l'existence d'une base orthonormée de vecteurs propres de chacun de ces endomorphismes.
- 2. Si $\lambda \neq 0$ est une valeur propre de X^TX et u un vecteur propre unitaire correspondant, montrer que $v = \frac{1}{\sqrt{\lambda}}Xu$ est aussi un vecteur propre unitaire de XX^T associé à λ valeur propre de XX^T . Montrer que $u = \frac{1}{\sqrt{\lambda}}X^Tv$.
- 3. Montrer que 0 est valeur propre de X^TX si et seulement si ker(X) n'est pas réduit à {0}. On note α l'ordre de multiplicité de 0 en tant que valeur propre de X^TX et on pose r = n α, montrer que r = rg(X) (la dimension de Im(X)). En déduire que si p est strictement supérieur à r: 0 est aussi valeur propre de XX^T. Quel est l'ordre de multiplicité de 0 en tant que valeur propre de XX^T?
- 4. On désigne par λ_i , i=1...n, les valeurs propres de X^TX , classées par ordre décroissant, répétées autant de fois que leur ordre de multiplicité. Par définition de r, si $r < n : \lambda_{r+1} = \lambda_{r+2} = ... = \lambda_n = 0$. A chaque valeur propre on associe une base orthonormée du sous espace propre correspondant ; de sorte que l'on obtient une base orthonormée $\{u_1, u_2, ..., u_n\}$ de \mathbb{R}^n satisfaisant, pour i=1...n, u_i est un vecteur propre unitaire de X^TX associée à la valeur propre λ_i .

Montrer que $\{u_{r+1}, u_{r+2}, ..., u_n\}$ est une base de $\ker(X)$, que $\{u_1, u_2, ..., u_r\}$ est une base de $\operatorname{Im}(X^T)$ et que $\{v_1, ..., v_r\}$ est une base de $\operatorname{Im}(X)$ (Rappelons que $v_i = \frac{1}{\sqrt{\lambda_i}} X u_i$ i = 1...r).

Enfin on note $\{v_{r+1}...v_p\}$ une quelconque base orthonormée de $\ker(X^T)$ permettant de compléter $\{v_1,...v_r\}$ en une base orthonormée de \mathbb{R}^p .

5. Montrer que $\sum_{i=1}^{r} u_i u_i^T$ est le projecteur orthogonal de \mathbb{R}^n sur $\operatorname{Im}(X^T)$ et que $\sum_{i=1}^{r} v_i v_i^T$ est le projecteur orthogonal de \mathbb{R}^p sur $\operatorname{Im}(X)$. Montrer que pour tout b de \mathbb{R}^p

$$\min_{x \in \mathbb{R}^n} ||Xx - b||^2 = \sum_{i=r+1}^P \left(v_i^T b\right)^2.$$

6. Montrer que $X = \sum_{i=1}^{r} \sigma_i v_i u_i^T$ où l'on a posé $\sigma_i = \sqrt{\lambda_i}$ pour i = 1...r.

Les σ_i (i=1...r) s'appellent les valeurs singulières de X et la somme précédente la décomposition en valeurs singulières de X.

7. Pour la matrice $X = \begin{bmatrix} 2 & 2 & 0 \\ -1 & 1 & 0 \end{bmatrix}$. Trouver $\lambda_1, \lambda_2, \lambda_3$; u_1, u_2, u_3 v_1, v_2 .

- Pour chaque y de ℝ^p on note p_X (y) la projection orthogonale de y sur Im(X).
 Montrer que X⁻¹({p_X (y)}) est un sous espace affiné de ℝⁿ. A quel sous espace vectoriel est-il parallèle? Montrer qu'il existe un unique y' dans l'intersection X⁻¹({p_X (y)}) ∩ (ker(X))[⊥]. Montrer que l'application y → y' est linéaire. On la note X⁺. Si X est bijective, montrer que X⁺ = X⁻¹. X⁺ est appelée la pseudo inverse de X.
- 2. Montrer que $X^+ = \sum_{i=1}^r \frac{1}{\sigma_i} u_i v_i^T$.

On désigne par $\mathcal{M}(p,n)$ l'espace vectoriel des matrices p lignes, n colonnes à coefficients réels et pour $A \in \mathcal{M}(p,n)$ on note (classiquement) $\|A\|_F$ la norme de Frobenius de A c'est-à-dire si $A = (a_{ij})_{\substack{i=1...p \text{ indice ligne } j=1...n \text{ indice colonne}}}$

on a
$$||A||_F^2 = \sum_{\substack{j=1...n\\i=1...p}} (a_{ij}^2)$$
 (somme double).

3. Montrer que $\|X\|_F^2 = \sigma_1^2 + \sigma_2^2 + ... + \sigma_r^2$ alors que l'on sait que $\|X\|_2 = \sigma_1$ (où $\|X\|_2 = \sup \|X_x\|$) / $\|x\| = 1$

Ce résultat n'est utilisé que dans la partie III de la suite.

4. Montrer que XX^+ est le projecteur orthogonal de \mathbb{R}^p sur $\mathrm{Im}(X)$. En déduire que $X^+ \in \mathcal{M}_{(n,p)}$ est solution du problème d'optimisation

 $\begin{aligned} & \mathit{Min} \big\| \mathit{XY} - \mathit{I}_{p} \big\|_{F} \\ & \mathit{Y} \in \mathcal{M} \big(n, p \big) \end{aligned} & \text{où } \mathit{I}_{p} \text{ est la matrice identité } pxp \text{ . On notera que la norme de Frobenius utilisée dans cette} \\ & \text{question est celle de } \mathcal{M} \big(p, p \big) \text{ !} \end{aligned}$

Ш

Dans cette partie on suppose que r = rg(X) est supérieur ou égal à 2.

1. On note U la matrice orthogonale (pourquoi ?) nxn $U = \left[u_1 | u_2 | ... | u_n\right] \text{ et } V \text{ la matrice orthogonale } V = \left[v_1 | v_2 | ... | v_p\right] \text{ et pour } k = 1...r, \quad \sum_k \text{ la matrice } nxp \text{ dont tous les termes sont nuls sauf les } k \text{ premiers termes diagonaux qui valent } \sigma_i (i = 1...k), \text{ soit donc}$

$$\Sigma_k = \begin{bmatrix} \sigma_1 & \cdots & 0 & \cdots & 0 \\ \vdots & \sigma_2 & & & \vdots \\ \vdots & & \sigma_k & & \vdots \\ \vdots & & & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 \end{bmatrix}. \text{ Montrer que si l'on pose } X_k = V \sum_k U^T, \text{ on a}$$

$$rg(X_k) = k \quad (k=1...r)$$
 ; $X_r = X$ et $\|X - X_k\|_2 = \sigma_{k+1}$ pour $k=1...(r-1)$.

2. On note Y une quelconque matrice (pxn) de rang k (k = 1...(r-1)).

Montrer qu'il existe une base orthonormée $\{x_1, x_2, ..., x_{n-k}\}$ de $\ker(Y)$ puis un vecteur non nul z appartenant à $\ker(Y)$ $\ker(Y)$ $\ker(U_1, ..., U_k, U_{k+1})$.

En posant
$$\zeta = \frac{z}{\|z\|}$$
 montrer que $\|(X - Y)\zeta\|^2 \ge \sigma_{k+1}^2$.

3. En déduire que $X_k (k=1...r)$ est solution du problème d'optimisation :

$$\begin{aligned} &Min \left\| X - Y \right\|_2 \\ &\left\{ Y \in \mathcal{M} \Big(p, n \Big), rg \left(Y \right) = k \right\} \,. \end{aligned}$$
