Crashkurs in Regressionsanalyse

Prof. Dr. Johannes Binswanger

Herbst 2016

KENNZAHLEN ZUM ZUSAMMENHANG VON VARIABLEN

- Oft werden Daten angeschaut, um eine Schlussfolgerung zu ziehen
 - Etwa, wie stark ist die Exportbranche durch Wechselkursschwankungen bedroht)
- Solche Schlüsse sind oft eine Basis für rationales Planen.
- Visuelle Darstellungen helfen, Einsicht in die Sachlage zu bringen...
- ... aber oft bedarf es der Hilfe von rechnerischer Statistik, um zuverlässige Schlüsse zu ziehen.

KENNZAHLEN ZUM ZUSAMMENHANG VON VARIABLEN

- Konkret möchten wir von der rechnerischen Statistik folgende Informationen haben über den Zusammenhang zweier Variablen:
 - Wenn die eine Variable um x Prozentpunkte steigt, um wie viele Prozentpunkte können wir erwarten, dass die andere Variable steigt?
 - Wie "eng" oder lose ist der Zusammenhang zwischen den beiden Variablen, ausgedrückt durch eine Zahl zwischen 0 und 1?
 - Wie zuversichtlich können wir sein, dass zwischen den beiden Variablen überhaupt ein Zusammenhang besteht (ausgedrückt in einer Zahl zwischen 0 und 1)?

- Um zu den Kennzahlen zu gelangen, bedienen wir uns einer Technik, die man Regressionsanalyse nennt.
 - Sie kennen das vielleicht auch von «Trendlinie hinzufügen» in Excel.
 - Wir betrachten die Regressionsanalyse erst für zu didaktischen Zwecken – künstlich erzeugte Daten.

- Rein visuell besteht in der vorangehenden Graphik offensichtlich ein enger Zusammenhang zwischen den beiden (künstlichen didaktischen) Variablen.
- Frage: Wie kann man diesen Zusammenhang messen?

- Lösung: Wir legen eine Gerade durch die Punkte, so dass die Punkte im Mittel «am nächsten» bei der Gerade liegen («Trendlinie»).
 - Details brauchen uns hier nicht zu kümmern.
- Diese Gerade heisst Regressionsgerade.
 - Vermutlich das am meisten verwendete statistische Konzept überhaupt, abgesehen vom Mittelwert.
- Falls die Abstände zur Gerade in Summe sehr klein sind, besteht ein «enger» Zusammenhang zwischen zwei Variablen.

- Die Regressionstechnik liefert uns eine Reihe von Kennzahlen, wovon uns drei besonders interessieren:
 - Kennzahl für Wert der Steigung der Regressionsgerade: (Steigungs-)Koeffizient
 - Kennzahl, wie gut die Gerade die Streuungstendenz in der Punktwolke «nachbildet»: R² (auch Bestimmtheitsmass oder Determinationskoeffizient)
 - Kennzahl dafür, wie wahrscheinlich es ist, die Daten zu beobachten, so wie sie sind, wenn man davon ausgeht, dass kein Zusammenhang/Trend besteht: p-Wert (oder Wahrscheinlichkeitswert)

REGRESSIONSANALYSE: STEIGUNGSKOEFFIZIENT

REGRESSIONSANALYSE: STEIGUNGSKOEFFIZIENT

- Der Steigungskoeffizient (oder, kurz, Koeffizient) im vorangegangenen Beispiel ist 2.003.
- Bedeutung: Wenn die Variable auf der horizontalen Achse um eine Einheit zunimmt, dann nimmt die Variable auf der vertikalen Achse trendmässig um 2.003 Einheiten zu
 - Anstatt trendmässig sagt man auch erwartungsgemäss oder im Durchschnitt

REGRESSIONSANALYSE: STEIGUNGSKOEFFIZIENT

- Trendmässig heisst natürlich nicht, dass man sich sicher sein kann
 - Die einzelnen Punkte liegen ja nicht auf der Geraden
 - Es gibt «Störeinflüsse» von anderen Einflussfaktoren
- Wie gut der Trend zu einer zuverlässigen Planung geeignet ist, wird durch die andern beiden Kennzahlen ausgedrückt.

- «Eichung» der Kennzahl zur «Repräsentativität» des Trends:
 - Alle Punkte liegen AUF der Gerade: Wert 100% (oder 1)
 - Mindestens ein paar Punkte liegen nicht auf der Gerade: Wert <100% (<1)
 - Minimaler Wert: 0
- Die Resultierende Grösse heisst R² («Bestimmtheitsmass» oder «Determinationskoeffizient»).
- Wir vergleichen erst einmal drei Situationen.

Mittelmässiger Zusammenhang zwischen zwei Variablen (künstliche Daten)

Loser Zusammenhang zwischen zwei Variablen (künstliche Daten)

Beachten Sie, dass die Skalen der vertikalen Achsen ganz unterschiedlich sind, die Regressionslinie/ Trendkurve ist de facto immer gleich steil!

- Es gibt zwei Arten von Streuung der Punkte:
 - Streuung, welche durch die Regressionslinie/Trend «erklärt» wird
 - Streuung welche nicht «erklärt» wird

Die Regressionsgerade «erklärt» sehr viel der Streuung: Hohes R².

 Die Regressionsgerade «erklärt» praktisch nichts von der Streuung: R² nahe bei O.

- Formal gibt das R² das Verhältnis an der Streuung, die durch die Regressionsgerade erklärt wird, zur gesamten Streuung:
 - Alles wird erklärt: 100%/100% → Alle Punkte liegen auf der Geraden, R² = 100% (oder 1)
 - Nichts wird erklärt: $0\%/100\% \rightarrow \text{Kein Trend}$, Gerade ist flach, $R^2 = 0$
- Je höher das R², desto nützlicher ist eine Variable zum Planen!

- Die dritte Kennzahl ist der p-Wert.
- Der p-Wert ist ein Indikator dafür, inwiefern überhaupt ein Zusammenhang/Trend besteht zwischen zwei Variablen.
- Aufgrund der Systematik der zugrundeliegenden statistischen Konzepte ist das Konzept des p-Wertes etwas «auf den Kopf gestellt»:

Der p-Wert beantwortet die Frage: Wie wahrscheinlich ist es, dass ich die Daten beobachte, so wie sie sind, wenn ich davon ausgehe, dass **kein** Zusammenhang/Trend besteht. → Wert zwischen 0 (Zusammenhang extrem wahrscheinlich) und 100 (Zusammenhang extrem unwahrscheinlich).

- Im Fachjargon nennt man einen systematischen Einfluss, gemessen durch einen niedrigen p-Wert, signifikant.
 - Es ist üblich, zu sagen, dass «Variable 1» signifikant ist (bezüglich ihres Einflusses auf «Variable 2») wenn der p-Wert unter 0.05 (gleichbedeutend mit 5%) zu liegen kommt.
 - Man sagt auch, dass Variable 1 signifikant sei auf dem Niveau von p.
 - Allerdings redet man hiervon nur, wenn p relativ nahe bei 0 liegt, sicher mindestens unter 15%.

- Achtung, der p-Wert und das R² messen zwei unterschiedliche Dinge!
- Auch bei einem niedrigen R² kann der p-Wert hoch sein!
 - Eine Variable kann auf das Gesamtergebnis nur einen bescheidenen Einfluss haben im Vergleich zu anderen Faktoren, aber dieser kann dennoch sehr robust/systematisch sein.
 - Z.B. hat Meereshöhe systematischen Einfluss auf Temperatur, auch wenn viele andere Faktoren einen vielleicht grösseren Einfluss haben.
 - «Nur einen geringen Teil der Streuung erklären» ist nicht dasselbe wie «kein Einfluss haben»!

Hier sehen wir ein niedriges R² und gleichzeitig einen sehr niedrigen p-Wert.

SCHWEIZER EXPORTE UND WECHSELKURSE

Nun sind wir gerüstet, Regressionen mit echten Daten zu verstehen...

