FAKULTA RIADENIA A INFORMATIKY ŽILINSKÁ UNIVERZITA V ŽILINE

SIMULÁCIA MONTE CARLO

SEMESTRÁLNA PRÁCA Č. 1 Z PREDMETU DISKRÉTNA SIMULÁCIA

Autor: Bc. Matej Poljak

Cvičiaci: Ing. Andrea Galadíková, PhD.

Akademický rok: 2024/2025

Obsah

Validácia generátorov rovnomerného rozdelenia	4
Architektúra riešenia	6
Balíčky	6
Generátory	7
Implementácia stratégií dodávania súčiastok	8
Vlákno pre beh simulácie	9
Simulácia	9
Úlohy	10
Úloha č.1	10
Úloha č.2	10
Postup	10
Stratégia E	10
Stratégia F	11
Stratégia G	12
Optimalizácia dodávaných množstiev súčiastok pre TOP stratégiu	14

Zoznam obrázkov

Obrázok 1 – ukážka validácie výsledkov v programe Excel	4					
Obrázok 2 – diskrétne empirické rozdelenie pravdepodobnosti (odberané množstvo svetlometov)						
Obrázok 3 – spojité empirické rozdelenie pravdepodobnosti (pravdepodobnosť dodania objednávk						
15. týždňa vyjadrená v %)	•					
Obrázok 4 – spojité empirické rozdelenie pravdepodobnosti (pravdepodobnosť dodania objednávk						
16. týždňa vyjadrená v %)	•					
Obrázok 5 – štruktúra projektu semestrálnej práce	6					
Obrázok 6 – triedy balíčku common						
Obrázok 7 – generátory v balíčku assignment_01.logic.generators						
Obrázok 8 – implementácia stratégií						
Obrázok 9 – vlákno pre beh simulácie	9					
Obrázok 10 – trieda so samotnou simuláciou						
Obrázok 11 - graf priebehu simulácie priemerných nákladov pre stratégiu E	11					
Obrázok 12 - graf priebehu simulácie priemerných nákladov pre stratégiu F	12					
Obrázok 13 – vypočítanie priemerných nákladov pre všetkých kandidátov stratégie G						
Obrázok 14 - graf priebehu simulácie priemerných nákladov pre stratégiu G8 s vybraným ako						
pravdepodobnejším dodávateľom (Y,Y,Y)	14					
Obrázok 15 – identifikácia minimálnych priemerných nákladov pre stratégiu B pri rôzne zvolených						
dodávaných množstvách súčiastok	15					
Obrázok 16 – graf priebehu simulácie priemerných nákladov pre stratégiu B so zmenenými množst	vami					
dodávaných súčiastokdodávaných súčiastok	15					
Zoznam tabuliek						
Tabuľka 1 – výsledky (priemerné náklady) metódy Monte Carlo pre stratégie zásobovanie A,B,C,D	10					
Tabuľka 2 – popis stratégie E	10					
Tabuľka 3 – popis stratégie F						
Tabuľka 4 – postup dodávania pre možnosti stratégie G	13					
Tabuľka 5 – výsledky pre usporiadané trojice dodávateľa s väčšou pravdepodobnosťou v jednotlivý	ch					
abdobiach	12					

Validácia generátorov rovnomerného rozdelenia

Implementované generátory je nevyhnutné pred ich použitím dôkladne otestovať či modelujú predpokladané rozdelenie pravdepodobnosti.

Postup:

- Krok 1: Vytvoríme si inštanciu generátora so požadovaným rozdelením pravdepodobnosti.
- Krok 2: Necháme si generátorom vypísať n vygenerovaných čísel (v našom prípade 50000)
- Krok 3: Vygenerované vzorky vložíme do programu Excel
- Krok 4: Získame početnosti v závislosti od typu rozdelenia:
 - teoretické rozdelenie pravdepodobnosti
 - Diskrétne
 - Pred diskrétne hodnoty z intervalu <min, max> si vypočítame početnosti pre min, min+1, min+2,...,max-1, max
 - Spojité
 - Podobne, ako pri diskrétnom rozdelení, si definujeme skupiny, ktoré môžu byť celé čísla alebo desatinné čísla a vypočítame si početnosti, ktoré k nim prislúchajú
 - empirické rozdelenie pravdepodobnosti
 - Spočítame početnosti pre intervaly koľko hodnôt padlo do daného intervalu
- **Krok 5**: Získané početnosti pre definované skupiny vydelíme počtom vygenerovaných hodnôt celkovo (u nás 50000) a tým získame pravdepodobnosti generovania hodnôt z danej skupiny
- **Krok 6**: Porovnáme vypočítané pravdepodobnosti s požadovanými pravdepodobnosťami s prípustnou chybou (u nás 0,005) a vynesieme záver o správnosti generátora daného rozdelenia pravdepodobnosti

Ukážku realizácie validácie generátora môžeme vidieť na obrázku 1.

Obrázok 1 – ukážka validácie výsledkov v programe Excel

Na nasledujúcich obrázkoch 2, 3, 4 sú graficky zobrazené výsledky početností vzoriek získaných z generátorov.

Obrázok 2 – diskrétne empirické rozdelenie pravdepodobnosti (odberané množstvo svetlometov)

Obrázok 3 – spojité empirické rozdelenie pravdepodobnosti (pravdepodobnosť dodania objednávky do 15. týždňa vyjadrená v %)

Obrázok 4 – spojité empirické rozdelenie pravdepodobnosti (pravdepodobnosť dodania objednávky od 16. týždňa vyjadrená v %)

Architektúra riešenia

Teraz si ukážeme architektúru riešenia semestrálnej práce pomocou balíčkové diagramu a diagramov tried.

Balíčky

Štruktúra hlavných balíčkov projektu je ukázaná na obrázku 5.

Obrázok 5 – štruktúra projektu semestrálnej práce

- Balíček assignment_01.gui obsahuje grafické okno pre interakciu s používateľom pomocou triedy SimVisualization.class.
- V balíčku assignment_01.logic nájdeme všetky implementované stratégie, empirické generátory (ktoré sme spomínali v prechádzajúcej kapitole) a aj samotnú simuláciu Monte Carlo pre minimalizovanie nákladov za skladovanie a nedodanie súčiastok pre podnikateľa Jána (trieda CarComponentsStorage.class).
- Balíček *assignment_01.controller* obsahuje triedu kontrolóra *SimController.class*, ktorý spravuje interakciu medzi GUI a logikou aplikácie.
- V balíčku *common* nájdeme triedy, ktoré sa týkajú všeobecnej implementácie simulačného jadra, ktorú si ďalej vysvetlíme podrobnejšie

Obrázok 6 – triedy balíčku **common**

Na obrázku 6 môžeme vidieť diagram tried pre balíček *common*. Triedou so simulačným jadrom je *SimCore.class*, ktorá je abstraktná kvôli metóde *execute()*. Táto metóda predstavuje hlavnú operáciu náhodného pokusu – 1 replikácie. Trieda vie prijímať objekty implementované podľa návrhového vzoru *Command* pre vykonie potrebných operácií pred a po simulácií a náhodnom pokuse (experimente).

Generátory

Trieda *Generator.class* je tiež abstraktná, lebo predpisuje metódu *sample()*, ktorá má vygenerovať číslo primitívneho typu *double*. Predstavuje potomka pre všetky generátory (obrázok 7) implementované v balíčku *assignment_01.logic.generators*.

Obrázok 7 – generátory v balíčku assignment_01.logic.generators

Implementácia stratégií dodávania súčiastok

Pre jednoduché rozširovanie o nové stratégie sme si vytvorili abstraktnú triedu *SupplyStrategy.class*, ktorá obsahuje abstraktnú metódu *supply()*. Jej návratovou hodnotou je prepravková trieda (návrhový vzor *Crate*) *SupplierResult.class*. Implementované stratégiu sú ukázané na obrázku 8.

Obrázok 8 – implementácia stratégií

Vlákno pre beh simulácie

Pre beh simulácie na inom vlákne kvôli interakcií s GUI a vykresľovaní grafov sme si vytvorili triedu *SimTask.class*, ktorá realizuje predka *SwingWorker.class* (obrázok 9).

Obrázok 9 – vlákno pre beh simulácie

Simulácia

Trieda pre simuláciu minimalizovania nákladov pre podnikateľa Jána je *CarComponentsStorage.class* (obrázok 10). Pre vykresľovanie 1 replikácie sme si vytvorili rozhranie *IMcExpMetaResultsCollector*, pod ktorým môžeme vytvoriť objekty, ktoré budú schopné získavať dáta do logicky oddelenej časti ako napríklad GUI.

Obrázok 10 – trieda so samotnou simuláciou

Úlohy

Úloha č.1

Keďže je našim cieľom minimalizovať náklady, vyberieme zo stratégií *A,B,C,D* tú, ktorá má po vykonaní dostatočne veľkého počtu replikácií pomocou metódy Monte Carlo najmenšie priemerné náklady. Výsledky simulácií týchto stratégií sú uvedené v tabuľke 1.

Počet replikácií	Stratégia A	Stratégia B	Stratégia C	Stratégia D
10^5	23085	11635	15945	15685
10^6	23082	11621	15950	15681
10^7	23085	11630	15949	15690

Tabuľka 1 – výsledky (priemerné náklady) metódy Monte Carlo pre stratégie zásobovanie A,B,C,D

Z tabuľky 1 môžeme vidieť, že už 10^5 replikácií nám prinieslo tie isté výsledky so zanedbateľným rozdielom voči simulácií s 10^7 replikáciami. Najviac sa oplatila stratégia B so zásobovaním počas celého obdobie len dodávateľom 2.

Úloha č.2

Výsledky nami vymyslenými stratégiami budeme porovnávať s priemernými nákladmi stratégie B, keďže dosahovala najmenšie náklady, ktoré sa pokúsime teraz ešte znížiť.

Postup

Najprv vyskúšame iba meniť dodávateľov v rôznych týždňoch bez zmeny počtov dodávaných súčiastok. Následne vyberieme najlepšiu stratégiu a skúsime zmeniť množstvá produktov.

V nasledujúcich dvoch stratégiách E a F a v nasledujúcej stratégií vyskúšame, aký by malo dopad na celkové priemerné náklady, keby prvých 15 týždňov dodával jeden dodávateľ a druhú polovicu sledovaného obdobia druhý dodávateľ.

Stratégia E

Stratégia E je popísaná tabuľkou 2:

Dodávateľ	Obdobie	Tlmiče	Brzdové doštičky	Svetlomety
Dodávateľ 1	Do 15-teho T	100	200	150
Dodávateľ 2	Od 16-teho T	100	200	150

Tabuľka 2 – popis stratégie E

Obrázok 11 - graf priebehu simulácie priemerných nákladov pre stratégiu E

Náklady stratégie E vyšli v priemere 15525, čo je o 4000 jednotiek viac ako pre stratégiu B.

Stratégia F Stratégia F je popísaná tabuľkou 3:

Dodávateľ	Obdobie	Tlmiče	Brzdové doštičky	Svetlomety
Dodávateľ 2	Do 15-teho T	100	200	150
Dodávateľ 1	Od 16-teho T	100	200	150

Tabuľka 3 – popis stratégie F

Obrázok 12 - graf priebehu simulácie priemerných nákladov pre stratégiu F

Z obrázku 12 môžeme vidieť, pre 10^6 replikácií sme dostali priemerné náklady približne 17860, čo je o dosť horšie ako náklady pre stratégiu B.

Stratégia G

Zaujímavé bude vyskúšať vyberať dodávateľa na týždennej báze s istou pravdepodobnosťou. Aby mali šancu sa obaja realizovať, vytvoríme si 3 obdobia po 10 týždňov s tým, že v každom období bude mať jeden z dvoch dodávateľov väčšiu pravdepodobnosť ako ten druhý. Nemá veľmi zmysel im prideliť rovnakú pravdepodobnosť, lebo to sme v podstate vyskúšali pomocou stratégie C a D, kde sa dodávatelia každý týždeň menili. Skúsime prideliť v každom období jednému z dodávateľov pravdepodobnosť 2/3 a druhému iba 1/3. Vznikne nám tak 8 možností ako môžeme prideliť každému dodávateľovi pravdepodobnosť v danom období. Všetkých týchto 8 možností vyskúšame odsimulovať a ako stratégiu G pomenujeme tú, ktorá bude mať najmenšie náklady.

Pre jednoduchšie označenie možností označíme dodávateľa 1 písmenom X a dodávateľa 2 písmenom Y. Vytvoríme teda všetkých 8 usporiadaných trojíc s dodávateľom s pravdepodobnosťou 2/3, kde prvé X alebo Y predstavuje dodávateľa s pravdepodobnosťou 2/3 pre prvé obdobie (10 týždňov). Objednávané množstvá ponecháme tak ako boli definované v zadaní.

Postup si môžeme ešte ukázať na príklade pre usporiadanú trojicu (Y,X,Y), ktorý je ukázaný v tabuľke 4.

Obdobie	Dodávateľ (Tlmiče	Brzdové platničky	Svetlomety
Týždeň 1-10	p(vybraný dodávateľ 1) = 1/3 p(vybraný dodávateľ 2) = 2/3	100	200	150
Týždeň 11-20	p(vybraný dodávateľ 1) = 2/3 p(vybraný dodávateľ 2) = 1/3	100	200	150
Týždeň 21-30	p(vybraný dodávateľ 1) = 1/3 p(vybraný dodávateľ 2) = 2/3	100	200	150

Tabuľka 4 – postup dodávania pre možnosti stratégie G

Výsledky všetkých možností ukazuje tabuľka 5.

Možnosť	Usporiadaná trojica	Priemerné náklady
1	(X,X,X)	15681
2	(X,X,Y)	15688
3	(X,Y,X)	15685
4	(X,Y,Y)	15683
5	(Y,X,X)	15680
6	(Y,Y,X)	15691
7	(Y,X,Y)	15685
8	(Y,Y,Y)	15686

Tabuľka 5 – výsledky pre usporiadané trojice dodávateľa s väčšou pravdepodobnosťou v jednotlivých obdobiach

Na obrázku 13 je zobrazený výpočet nákladov pre všetky usporiadané trojice.

Obrázok 13 – vypočítanie priemerných nákladov pre všetkých kandidátov stratégie G

Z obrázku 13 je zrejmé, že ak vyberieme ľubovoľného dodávateľa s pravdepodobnosťou 2/3 pre ľubovoľné obdobie (10 týždňov), tak najlepšie výsledky dosahuje usporiadaná trojica (Y,Y,Y) a to približne 13620 jednotiek nákladov. Začína sa nám spolu so stratégiou B a stratégiou G8 potvrdzovať, že väčšiu spoľahlivosť dodávania súčiastok bude dosahovať dodávateľ 2. Graf priebehu simulácie pre usporiadanú trojicu (Y,Y,Y) je na obrázku 14.

Obrázok 14 - graf priebehu simulácie priemerných nákladov pre stratégiu G8 s vybraným ako pravdepodobnejším dodávateľom (Y,Y,Y)

Ako záver môžeme prehlásiť, že stratégia B vykazuje najmenšie náklady za 30 týždňov prevádzky pri dodávaných množstvách jednotlivých súčiastok podľa zadania.

Optimalizácia dodávaných množstiev súčiastok pre TOP stratégiu

Ako najmenej nákladnú stratégiu z nami vyskúšaných sme označili stratégiu B. Teraz skúsime iteratívne spúšťať stratégiu B s rôznymi množstvami dodávaných produktov (hodnoty budú kombinácie troch čísel, ktoré môžu nadobúdať hodnoty 100,125,150,175,200) s cieľom nájsť čo najlacnejšiu konfiguráciu. Výsledky programu sme si nechali vypísať na konzolu a následne sme ich naimportovali do csv súboru (viď obrázok 15), kde sme našli najlacnejšiu kombináciu dodávaných množstiev. Táto kombinácia obsahuje z každého typu súčiastky po 100 dodávaných kusov.

Obrázok 15 – identifikácia minimálnych priemerných nákladov pre stratégiu B pri rôzne zvolených dodávaných množstvách súčiastok

Následne sme si vykreslili graf (obrázok 16) priebehu pre stratégiu B s aktualizovanými dodávanými množstvami.

Obrázok 16 – graf priebehu simulácie priemerných nákladov pre stratégiu B so zmenenými množstvami dodávaných súčiastok