ASSIGNMENT 3 DATE Si) Show that the subset M = Sy = (nj) 1213 = 14 of complex nos (" is complete & convex. Find the vector of minimum norm in M. Ans) Convex part:

Let $y_1 = (n_1^1) = (n_1^1, n_2^1, ...$ Such that $\hat{z}_1^1 = 1$ Let $y_2 = (n_1^2) = (n_1^2, n_2^2, --.$ such that $\sum_{j=1}^{n_1^2} n_j^2 = 1$ 4, , 4, € 4. Let 7 = x4,+ (1-x)4, x ∈ [0,1] For M to be convex, every point of the line segment between 4, & 42 must belong to M. $\mathcal{E} = (\langle n_1', \langle n_2', \langle n_3', -.. \langle n_n' \rangle + ((1-4))^{\frac{1}{2}}, (1-4)^{\frac{1}{2}}, -.. \langle (1-4) \rangle^{\frac{1}{2}})$ = $(\alpha n_1' + (1-\alpha)n_1^2, \alpha n_2 + (1-\alpha)n_2^2, \dots, \alpha n_n + (1-\alpha)n_n)$ for Z to be in M, [xR;+(1-d) R;=1 =) & In: + (1-d) En: =) d.1 + (1-d).1 · regardless of x, = will always be in M.

· M is convex.

Completences:
We know C' is a Hilbert space (complete inner product space).

classmate

PAGE

	DATE
-	A subspace M of a Hilbert space C' is complete iff M is closed in C'.
	Proof:
	Proof: Let M be complete, for every $x \in M$ there
	is a sequence (Xn) in M which converges to
	x. Since (xn) is cauchy, M is complete (xn) converges in M with a unique limit value.
	converges in M with a unique limit value.
	Hence x∈M. This proves M is closed because x∈M was
	arhitman.
	As $x_n \rightarrow x$, $\langle x_n, y \rangle \longrightarrow \langle x_1 y \rangle$
	Let M be closed and (x_n) is a cauchy in M. Then $x_n \to \mathcal{X} \in \mathbb{C}^n \ni n \in \mathbb{M}$ and $n \in \mathbb{M}$
	M. Then Xn -> 2 E C" => n E M and nE
	M since M = M.
	This proves completeness of M.
	The proves windrights of IVI.
	Vector of minimum norm in M:
	The vector of minimum norm will be a vector z which is I to M.
	7 which is I to M.
	$\langle z, y \rangle = 0 \forall y \in M.$
	$z \in \mathbb{C}^n$, $y \in M$
The second	
Second Second	7= (8, 8, 8)
	$7 = (\xi_1, \xi_2, -\xi_n)$ $y = (\eta_1, \eta_2, -\eta_n)$ $\xi_1 = 1$
1	
1	(2,y)= \(\xi_1\), \(\overline{1}\), \(
	M at all all the Box & b state of the
	The second secon
	seriam) area (1111) in the serial and the serial

	DATE
	Show that the vector space X of all real valued functions on [-1, 1] is the direct sum of the set of all even continous functions and the set of all odd continous functions on [-1, 1]. We need to prove C[-1, 1] = Ce[-1, 1] (+) Co[-1, 1]
	Ce → set of all even continous fus.
	Let f be a fu of C[-1, 1]
	$f(x) = g_e(x) + g_o(x) \longrightarrow goal and the representation must be unique.$
	$f \in C[-1,1]$, $g_e \in Ce[-1,1]$, and $g_o \in Co[-1,1]$ Let $g_e(x) = f(x) + f(-x)$, $g_o(x) = f(x) - f(-x)$
1.1	$g_e(-x) = g_e(x)$, $g_o(-x) = -g_o(x)$ \longrightarrow Basic conditions satisfied.
	:. f(x) = ge(x) + go(x)
	Uniqueness: Let he (x) & Ce [-1,]] and ho (x) & Co [-1,]]
	exist as $f(x) = he(x) + ho(x) = g_e(x) + g_o(x)$
	=) $he(x) + ho(x) - ge(x) - go(x) = 0$ =) $he(x) - ge(x) = go(x) - ho(x)$ odd fu
	even $f^{(1)} = k(-x) = -k(x) = k(x) = 0$
	: he(x) = ge(x) & go(x) = ho(x)

	DATE
Ang)	Let $X = \mathbb{R}^n$, find M^{\perp} if M is (a) fXf , where $X = (\xi_1, \xi_2) \neq 0$ (b) a linearly independent set $\{x_1, x_2\} \subset X$ a) $X = (\xi_1, \xi_2) \neq 0 \in X$ $Y = (N_1, N_2) \in M^{\perp}$
	Since $y \in M^{\frac{1}{2}}$, $\langle x_{2}y_{2}\rangle = 0$ =) $\xi_{1} n_{1} + \xi_{2} n_{2} = 0$ =) $-\xi_{1} n_{1} = \xi_{2} n_{2}$ =) $-\xi_{1} = n_{2}$ $\xi_{1} = n_{2}$ $\xi_{2} = n_{1}$ $\vdots n_{2} = k \cdot -\xi_{1}$, $n_{1} = k \cdot \xi_{2}$
	$y = (x \xi_2, -x \xi_1)$ b) Let $y \in (n_1, n_2) \in M^{\perp}$ $y \perp x_1, y \perp x_2 \text{ as } y \perp M \cdot m_1, x_2 \in M.$
	If x_1 , x_2 are linearly independent, then y must be the zero vector. M^{\perp} contains $\{0\}$. Ex: $x_1 \rightarrow (1,0)$, $x_2 \rightarrow (0,0)$ $x_1 \perp x_2$
	Y = 203 satisfies here.

classmate

Show that $V = \{x \mid x = (\xi_i) \in l^2, \xi_{2n} = 0, n \in N \}$ is a closed subspace of l^2 and find V^{\perp} . What is V^{\perp} if $V = \text{span}(\xi_1, \xi_2, \ldots, \xi_n) \in L^2$ where $\xi_i = (\xi_i)^2$ Ans) $l^2 = (\xi_1, \xi_2, \dots), \xi_1 |\xi_i|^2 < \infty$ Y= (\xi_1,0,\xi_3,0... Y is a proper subspace of 12 Clearly the sum of the elements of subspace 4 converges cut a slower rate compared to 2. If xn -> x, iff <xn,y> -> <x,y> ty el2 MREY => NEY (xn, e2k) = 0 -> (x, e2k) = 0 eak = (0,0, -. 1,0, ... 0) 1 → 2kth entry. Every 2 kth entry of x vanishes. In 12 (Hilbert space), $\langle x,y \rangle = \sum_{i=1}^{\infty} \xi_i \cdot n_i \quad y = (n_i)$ let y & 4 then to x & y, <x, y7 = 0 = / (x,y) = \(\xi_1 \n_1 + 0 + \xi_2 \n_2 + - \xi_2 \n_n \n_n \)

PAGE

classmate

 $e_1 = (1,0,...0)$ $e_2 = (0,1,0--0)$ en = (0,0, ... 1) classmate PAGE

	DATE DATE
95)	let A and BDA be nonempty subsets of an inner
	product epace X. clinin that:
	a) A C Att
	6) B C A L
1	c) A = A -
Ans)	a) neA
	$\Rightarrow \chi \mid A^{\perp}$
	$=)$ $\chi \in (A^{\perp})^{\perp} \longrightarrow \chi \in A^{\perp\perp}$
	=) A C A 1 +
	b) REBT
	=) X L B(DA)) as A is subset of B , =) M L A =) X E A L
	$=)$ $B^{\perp}CA^{\perp}$
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	c) $A^{\perp \perp \perp} = (A^{\perp})^{\perp \perp} \supset A^{\perp}$ from (a) $(A \subset A^{\perp \perp})$
why.	20-2 VITT Em (P)
	· Combing (i) & (ii)
2,40	$A^{\perp} = A^{\perp \perp \perp}$
	A = A
06)	Chan that the aughilator MI of a cot M+M:
30/	Show that the aunhilator M ¹ of a set M + Ø in an I-P-S X is a closed subspace of X.
Ans	An orthogonal complement is a special annhilator where by definition, the annhilator M of a Set M + P in an I.P.S X is the set
	where by definition, the annhibator M' of a
	Set M = 9 lu au 1.P.S X so the set
	MI = {nex x I m}
	M' is a vector space.
	classmate

Let n be an element of MI. Hence there is a sequence (2n) in MI such that 2n > x. Now for any $y \in M^{\bullet}$, we have $\langle x, y \rangle = \langle \text{th} x , y \rangle = \text{th} \langle x , y \rangle = 0$ - . XEM I -: M is a closed subspace. M1 = SneH: (x)y7=0 yyEM3 For any scalar x, B and f, g ∈ M1 (xf+Bg) = xf(x)+B(g(x))= 0+0 $\forall x \in M$. .. of + Bg CM+ so M is a vector space of dual of X. Let $f \in M^{\perp}$. Then there exists a sequence of bounded linear functionals of X which are seens $f \in M^{\perp}$ such that It $f \cap f = f$ YNEM $f(x) = It f_n(x) = It 0 = 0.$ f∈ M[⊥]. So M+ is closed.

classmate

PAGE