Bayesian Decision Theory

Bayesian Decision Theory

- Design classifiers to recommend decisions that minimize some total expected "risk".
 - The simplest risk is the classification error (i.e., costs are equal).
 - Typically, the risk includes the cost associated with different decisions.

Terminology

- State of nature ω (random variable):
 - e.g., ω₁ for sea bass, ω₂ for salmon
- Probabilities $P(\omega_1)$ and $P(\omega_2)$ (priors):
 - e.g., prior knowledge of how likely is to get a sea bass or a salmon
- Probability density function p(x) (evidence):
 - e.g., how frequently we will measure a pattern with feature value x (e.g., x corresponds to lightness)

Terminology (cont'd)

- Conditional probability density p(x/ω_j)
 (likelihood):
 - e.g., how frequently we will measure a pattern with feature value x given that the pattern belongs to class ω_i

FIGURE 2.1. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category ω_i . If x represents the lightness of a fish, the two curves might describe the difference in lightness of populations of two types of fish. Density functions are normalized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons,

Terminology (cont'd)

- Conditional probability $P(\omega_i/x)$ (posterior):
 - e.g., the probability that the fish belongs to class ω_i given measurement x.

Decision Rule Using Prior Probabilities

Decide ω_1 if $P(\omega_1) > P(\omega_2)$; otherwise **decide** ω_2

$$P(error) = \begin{cases} P(\omega_1) & \text{if we decide } \omega_2 \\ P(\omega_2) & \text{if we decide } \omega_1 \end{cases}$$

or
$$P(error) = min[P(\omega_1), P(\omega_2)]$$

- Favours the most likely class.
- This rule will be making the same decision all times.
 - i.e., optimum if no other information is available

Decision Rule Using Conditional Probabilities

• Using Bayes' rule, the posterior probability of category ω_j given measurement x is given by:

$$P(\omega_{j}/x) = \frac{p(x/\omega_{j})P(\omega_{j})}{p(x)} = \frac{likelihood \times prior}{evidence}$$

where
$$p(x) = \sum_{j=1}^{2} p(x/\omega_j) P(\omega_j)$$
 (i.e., scale factor – sum of probs = 1)

Decide ω_1 if $P(\omega_1/x) > P(\omega_2/x)$; otherwise **decide** ω_2 or

Decide ω_1 if $p(x/\omega_1)P(\omega_1)>p(x/\omega_2)P(\omega_2)$ otherwise **decide** ω_2

Decision Rule Using Conditional pdf (cont'd)

FIGURE 2.1. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category ω_i . If x represents the lightness of a fish, the two curves might describe the difference in lightness of populations of two types of fish. Density functions are normalized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons,

FIGURE 2.2. Posterior probabilities for the particular priors $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$ for the class-conditional probability densities shown in Fig. 2.1. Thus in this case, given that a pattern is measured to have feature value x = 14, the probability it is in category ω_2 is roughly 0.08, and that it is in ω_1 is 0.92. At every x, the posteriors sum to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Probability of Error

The probability of error is defined as:

$$P(error/x) = \begin{cases} P(\omega_1/x) & \text{if we decide } \omega_2 \\ P(\omega_2/x) & \text{if we decide } \omega_1 \end{cases}$$

or
$$P(error/x) = min[P(\omega_1/x), P(\omega_2/x)]$$

What is the average probability error?

$$P(error) = \int_{-\infty}^{\infty} P(error, x) dx = \int_{-\infty}^{\infty} P(error/x) p(x) dx$$

 The Bayes rule is optimum, that is, it minimizes the average probability error!

Where do Probabilities Come From?

- There are two competitive answers to this question:
 - (1) Relative frequency (objective) approach.
 - Probabilities can only come from experiments.
 - (2) Bayesian (subjective) approach.
 - Probabilities may reflect degree of belief and can be based on opinion.

Prior and Posterior Probabilities

- P(A) and P(B) are called prior probabilities
- P(A|B), P(B|A) are called posterior probabilities

Example 8.6: Prior versus Posterior Probabilities

- This table shows that the event Y has two outcomes namely A and B, which is dependent on another event X with various outcomes like x_1 , x_2 and x_3 .
- **Case1:** Suppose, we don't have any information of the event A. Then, from the given sample space, we can calculate $P(Y = A) = \frac{5}{10} = 0.5$
- Case2: Now, suppose, we want to calculate $P(X = x_2/Y = A) = \frac{2}{5} = 0.4$.

The later is the conditional or posterior probability, where as the former is the prior probability.

X	Υ
x_1	А
x_2	Α
x_3	В
x_3	A
x_2	В
x_1	Α
x_1	В
x_3	В
x_2	В
x_2	Α

Example (objective approach)

- Classify cars whether they are more or less than \$50K:
 - <u>Classes</u>: C₁ if price > \$50K, C₂ if price <= \$50K</p>
 - Features: x, the height of a car
- Use the Bayes' rule to compute the posterior probabilities:

$$P(C_i/x) = \frac{p(x/C_i)P(C_i)}{p(x)}$$

• We need to estimate $p(x/C_1)$, $p(x/C_2)$, $P(C_1)$, $P(C_2)$

Example (cont'd)

- Collect data
 - Ask drivers how much their car was and measure height.
- Determine prior probabilities $P(C_1)$, $P(C_2)$
 - e.g., 1209 samples: $\#C_1=221 \ \#C_2=988$

$$P(C_1) = \frac{221}{1209} = 0.183$$

$$P(C_2) = \frac{988}{1209} = 0.817$$

Example (cont'd)

- Determine class conditional probabilities (likelihood)
 - Discretize car height into bins and use normalized histogram

Example (cont'd)

Calculate the posterior probability for each bin:

$$P(C_1/x = 1.0) = \frac{p(x = 1.0/C_1)P(C_1)}{p(x = 1.0/C_1)P(C_1) + p(x = 1.0/C_2)P(C_2)} = \frac{0.2081*0.183}{0.2081*0.183 + 0.0597*0.817} = 0.438$$

A More General Theory

- Use more than one features.
- Allow more than two categories.
- Allow actions other than classifying the input to one of the possible categories (e.g., rejection).
- Employ a more general error function (i.e., "risk" function) by associating a "cost" ("loss" function) with each error (i.e., wrong action).

Terminology

- Features form a vector $\mathbf{x} \in R^d$
- A finite set of c categories ω_1 , ω_2 , ..., ω_c
- Bayes rule (i.e., using vector notation):

$$P(\omega_j / \mathbf{x}) = \frac{p(\mathbf{x} / \omega_j)P(\omega_j)}{p(\mathbf{x})} \quad \text{where} \quad p(\mathbf{x}) = \sum_{j=1}^{c} p(\mathbf{x} / \omega_j)P(\omega_j)$$

- A finite set of *I* actions α_{1} , α_{2} , ..., α_{I}
- A *loss* function $\lambda(\alpha_i/\omega_i)$
 - the cost associated with taking action α_i when the correct classification category is ω_j
 - For example, in case of binary classification if we take an action of classifying an input feature vector into class 1 when it should have been in class 2, we incur the loss $\lambda(\alpha_1/\omega_2)$.
 - If i = j, then we get a smaller value of the loss as compared to the alternative cases because it corresponds to a correct decision.

Conditional Risk (or Expected Loss)

- Suppose we observe x and take action α_i
- Suppose that the cost associated with taking action α_i with ω_j being the correct category is $\lambda(\alpha_i/\omega_j)$
- The **conditional risk** (or **expected loss**) with taking action α_i is:

$$R(a_i/\mathbf{x}) = \sum_{j=1}^{c} \lambda(a_i/\omega_j) P(\omega_j/\mathbf{x})$$

Overall Risk

• Suppose $\alpha(\mathbf{x})$ is a general decision rule that determines which action $\alpha_1, \alpha_2, \ldots, \alpha_l$ to take for every \mathbf{x} ; then the overall risk is defined as:

$$R = \int R(\mathbf{a}(\mathbf{x})/\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

• The optimum decision rule is the *Bayes rule*

Overall Risk (cont'd)

- The *Bayes decision rule* minimizes *R* by:
 - (i) Computing $R(\alpha_i/\mathbf{x})$ for every α_i given an \mathbf{x}
 - (ii) Choosing the action α_i with the minimum $R(\alpha_i/\mathbf{x})$
- The resulting minimum overall risk is called Bayes
 risk and is the best (i.e., optimum) performance
 that can be achieved:

$$R^* = \min R$$

Example: Two-category classification

Define

- α_1 : decide ω_1 - α_2 : decide ω_2 - $\lambda_{ii} = \lambda(\alpha_i/\omega_i)$
- The conditional risks are:

$$R(a_i/\mathbf{x}) = \sum_{j=1}^{c} \lambda(a_i/\omega_j) P(\omega_j/\mathbf{x})$$

$$R(a_1/\mathbf{x}) = \lambda_{11} P(\omega_1/\mathbf{x}) + \lambda_{12} P(\omega_2/\mathbf{x})$$

$$R(a_2/\mathbf{x}) = \lambda_{21} P(\omega_1/\mathbf{x}) + \lambda_{22} P(\omega_2/\mathbf{x})$$

Example: Two-category classification (cont'd)

Minimum risk decision rule:

Decide
$$\omega_1$$
 if $R(a_1/\mathbf{x}) < R(a_2/\mathbf{x})$; otherwise decide ω_2

Decide
$$\omega_1$$
 if $(\lambda_{21} - \lambda_{11})P(\omega_1/\mathbf{x}) \ge (\lambda_{12} - \lambda_{22})P(\omega_2/\mathbf{x})$; otherwise decide ω_2

or (i.e., using likelihood ratio)

Decide
$$\omega_1$$
 if $\frac{p(\mathbf{x}/\omega_1)}{p(\mathbf{x}/\omega_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{P(\omega_2)}{P(\omega_1)}$; otherwise decide ω_2

likelihood ratio threshold

Special Case: Zero-One Loss Function

Assign the same loss to all errors:

$$\lambda(a_i/\omega_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases}$$

The conditional risk corresponding to this loss function:

$$P(a_i/\mathbf{x}) = \sum_{j=1}^{c} \lambda(a_i/\omega_j) P(\omega_j/\mathbf{x}) = \sum_{i \neq j} P(\omega_j/\mathbf{x}) = 1 - P(\omega_i/\mathbf{x})$$

Special Case: Zero-One Loss Function (cont'd)

The decision rule becomes:

Decide
$$\omega_1$$
 if $R(a_1/\mathbf{x}) \le R(a_2/\mathbf{x})$; otherwise decide ω_2

or **Decide** ω_1 if $1 - P(\omega_1/\mathbf{x}) \le 1 - P(\omega_2/\mathbf{x})$; otherwise decide ω_2

or **Decide** ω_1 if $P(\omega_1/\mathbf{x}) \ge P(\omega_2/\mathbf{x})$; otherwise decide ω_2

 In this case, the overall risk is the average probability error!

Example

Assuming general loss:

Decide
$$\omega_1 \left(\text{if } \frac{p(\mathbf{x}/\omega_1)}{p(\mathbf{x}/\omega_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{P(\omega_2)}{P(\omega_1)} \right)$$
; otherwise decide ω_2

Assuming zero-one loss:

Decide ω_1 if $p(x/\omega_1)/p(x/\omega_2) > P(\omega_2)/P(\omega_1)$ otherwise **decide** ω_2

$$\theta_a = P(\omega_2) / P(\omega_1)$$

$$\theta_b = \frac{P(\omega_2)(\lambda_{12} - \lambda_{22})}{P(\omega_1)(\lambda_{21} - \lambda_{11})}$$

assume: $\lambda_{12} > \lambda_{21}$