New realization of cyclotomic q-Schur algebras I

Kentaro Wada

ABSTRACT. We introduce a Lie algebra $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ and an associative algebra $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ associated with the Cartan data of \mathfrak{gl}_m which is separated into r parts with respect to $\mathbf{m} = (m_1, \ldots, m_r)$ such that $m_1 + \cdots + m_r = m$. We show that the Lie algebra $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ is a filtered deformation of the current Lie algebra of \mathfrak{gl}_m , and we can regard the algebra $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ as a "q-analogue" of $U(\mathfrak{g}_{\mathbf{Q}}(\mathbf{m}))$. Then, we realize a cyclotomic q-Schur algebra as a quotient algebra of $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ under a certain mild condition. We also study the representation theory for $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ and $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$, and we apply them to the representations of the cyclotomic q-Schur algebras.

Contents

§ 0.	Introduction	1
§ 1.	Notation	5
§ 2.	Lie algebra $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$	6
§ 3.	Representations of $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$	15
§ 4.	Algebra $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$	17
§ 5.	Representations of $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$	22
§ 6.	Review of cyclotomic q -Schur algebras	24
§ 7.	Generators of cyclotomic q-Schur algebras	26
§ 8.	The cyclotomic q-Schur algebra as a quotient of $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$	48
§ 9.	Characters of Weyl modules of cyclotomic q-Schur algebras	52
§ 10.	Tensor products for Weyl modules of cyclotomic q-Schur algebras at	
	q = 1	55
Refer	References	

§ 0. Introduction

0.1. Let $\mathscr{H}_{n,r}$ be the Ariki-Koike algebra associated with the complex reflection group of type G(r, 1, n) over a commutative ring R with parameters $q, Q_0, \ldots, Q_{r-1} \in R$, where q is invertible in R. Let $\mathscr{S}_{n,r}(\mathbf{m})$ be the cyclotomic q-Schur algebra associated with $\mathscr{H}_{n,r}$ introduced in [DJM], where $\mathbf{m} = (m_1, \ldots, m_r)$ is an r-tuple of positive integers. By the result in [DJM], it is known that $\mathscr{S}_{n,r}(\mathbf{m})$ -mod is a highest weight cover of $\mathscr{H}_{n,r}$ -mod in the sense of [R] if R is a field and \mathbf{m} is enough large.

In [RSVV] and [L] independently, it is proven that $\mathscr{S}_{n,r}(\mathbf{m})$ -mod is equivalent to a certain highest weight subcategory of an affine parabolic category \mathbf{O} in a dominant case of an affine general linear Lie algebra as a highest weight cover of $\mathscr{H}_{n,r}$ -mod. It is also equivalent to the category \mathcal{O} of rational Cherednik algebra with

the corresponding parameters. In the argument of [RSVV], the monoidal structure on the affine parabolic category \mathbf{O} (more precisely, the structure of \mathbf{O} as a bimodule category over the Kazhdan-Lusztig category) has an important role.

In the case where r=1, it is known that the q-Schur algbera $\mathscr{S}_{n,1}(m)$ is a quotient algebra of the quantum group $U_q(\mathfrak{gl}_m)$ associated with the general linear lie algebra \mathfrak{gl}_m , and $\bigoplus_{n\geq 0}\mathscr{S}_{n,1}(m)$ -mod is equivalent to the category $\mathcal{C}_{U_q(\mathfrak{gl}_m)}^{\geq 0}$ consisting of finite dimensional polynomial representations of $U_q(\mathfrak{gl}_m)$ ([BLM], [D] and [J]). The category $\mathcal{C}_{U_q(\mathfrak{gl}_m)}^{\geq 0}$ has a (braided) monoidal structure which comes from the structure of $U_q(\mathfrak{gl}_m)$ as a Hopf algebra. Then the monoidal structure on $\mathcal{C}_{U_q(\mathfrak{gl}_m)}^{\geq 0}$ is compatible with the monoidal structure on the Kazhdan-Lusztig category by [KL]. However, it is not known such structures for cyclotomic q-Schur algebras in the case where r>1 although we may expect such structures through the equivalence in [RSVV]. This is a motivation of this paper.

In [W1], we obtained a presentation of cyclotomic q-Schur algebras by generators and defining relations. The argument in [W1] are based on the existence of the upper (resp. lower) Borel subalgebra of the cyclotomic q-Schur algebra $\mathcal{S}_{n,r}(\mathbf{m})$ which is introduced in [DR]. In [DR], it is proven that the upper (resp. lower) Borel subalgebra of $\mathcal{S}_{n,r}(\mathbf{m})$ is isomorphic to the upper (resp. lower) Borel subalgebra of $\mathcal{S}_{n,1}(m)$ (i.e. the case where r=1) which is a quotient of the upper (resp. lower) Borel subalgebra of the quantum group $U_q(\mathfrak{gl}_m)$ ($m:=\sum_{k=1}^r m_k$) if \mathbf{m} is enough large. The presentation of $\mathcal{S}_{n,r}(\mathbf{m})$ in [W1] is applied to the representation theory of cyclotomic q-Schur algebras in [W2] and [W3]. However, this presentation is not so useful in general since, in the presentation, we need some non-commutative polynomials which are computable, but we can not describe them explicitly (see [W1, Lemma 7.2]). Hence, we hope more useful realization of cyclotomic q-Schur algebras like as the fact that the q-Schur algebra $\mathcal{S}_{n,1}(m)$ is a quotient of the quantum group $U_q(\mathfrak{gl}_m)$ in the case where r=1. In this paper, by extending the argument in [W1], we give a possibility of such realization of cyclotomic q-Schur algebras.

0.2. Let $\mathbf{Q} = (Q_1, \dots, Q_{r-1})$ be an r-1 tuple of indeterminate elements over \mathbb{Z} , and $\mathbb{Q}(\mathbf{Q})$ be a field of rational functions with variables \mathbf{Q} . In §2, we introduce a Lie algebra $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ with parameters \mathbf{Q} associated with the Cartan data of \mathfrak{gl}_m $(m = \sum_{k=1}^r m_k)$ which is separated into r parts with respect to \mathbf{m} (see the paragraph 1.3). Then, in Proposition 2.13, we prove that $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ is a filtered deformation of the current Lie algebra $\mathfrak{gl}_m[x] = \mathbb{Q}(\mathbf{Q})[x] \otimes \mathfrak{gl}_m$ of the general linear Lie algebra \mathfrak{gl}_m . In Corollary 2.8, we see that $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ has a triangular decomposition

$$\mathfrak{g}_{\mathbf{Q}}(\mathbf{m}) = \mathfrak{n}^- \oplus \mathfrak{n}^0 \oplus \mathfrak{n}^+.$$

Then we can develop the weight theory to study representations of $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ in the usual manner (see §3). Let $\mathcal{C}_{\mathbf{Q}}(\mathbf{m})$ be the category of finite dimensional $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ -modules which have the weight space decompositions, and all eigenvalues of the action of \mathfrak{n}^0 belong to $\mathbb{Q}(\mathbf{Q})$. Then we see that a simple $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ -module in $\mathcal{C}_{\mathbf{Q}}(\mathbf{m})$ is a highest weight module.

There exists a surjective homomorphism of Lie algebras $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m}) \to \mathfrak{gl}_m$ (see (2.16.1)) which can be regarded as a special case of evaluation homomorphisms (see

Remark 2.17). Let $\mathcal{C}_{\mathfrak{gl}_m}$ be the category of finite dimensional \mathfrak{gl}_m -modules which have the weight space decompositions. Then $\mathcal{C}_{\mathfrak{gl}_m}$ is a full subcategory of $\mathcal{C}_{\mathbf{Q}}(\mathbf{m})$ through the above surjection (see Proposition 3.7).

Let $\widetilde{\mathbf{Q}} = (Q_0, Q_1, \dots, Q_{r-1})$ be an r tuple of indeterminate elements over \mathbb{Z} , and $\mathbb{Q}(\widetilde{\mathbf{Q}})$ be a field of rational functions with variables $\widetilde{\mathbf{Q}}$. Put $\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m}) = \mathbb{Q}(\widetilde{\mathbf{Q}}) \otimes_{\mathbb{Q}(\mathbf{Q})} \mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$, and define the category $\mathcal{C}_{\widetilde{\mathbf{Q}}}(\mathbf{m})$ in a similar way. Let $\mathscr{S}_{n,r}^1(\mathbf{m})$ be the cyclotomic q-Schur algebra over $\mathbb{Q}(\widetilde{\mathbf{Q}})$ with parameters q = 1 and $\widetilde{\mathbf{Q}}$. In Theorem 8.4, we prove that there exists a homomorphism of algebras

$$\Psi_{\mathbf{1}}: U(\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m})) \to \mathscr{S}^{\mathbf{1}}_{n,r}(\mathbf{m}),$$

where $U(\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m}))$ is the universal enveloping algebra of $\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m})$. Assume that $m_k \geq n$ for all $k = 1, 2, \ldots, r - 1$, then Ψ_1 is surjective. Then $\mathscr{S}^1_{n,r}(\mathbf{m})$ -mod is a full subcategory of $\mathcal{C}_{\widetilde{\mathbf{Q}}}(\mathbf{m})$ through the surjection Ψ_1 (see Theorem 8.4 (ii)). We expect that the surjectivity of Ψ_1 also holds without the condition for \mathbf{m} . (We need the condition for \mathbf{m} by a technical reason (see Remark 8.2).)

It is known that $\mathscr{S}_{n,r}^{1}(\mathbf{m})$ is semi-simple, and the set of Weyl (cell) modules $\{\Delta(\lambda) \mid \lambda \in \widetilde{\Lambda}_{n,r}^{+}(\mathbf{m})\}$ gives a complete set of isomorphism classes of simple $\mathscr{S}_{n,r}^{1}(\mathbf{m})$ -modules (see §6 and [DJM] for definitions). The characters of the Weyl modules, denoted by $\operatorname{ch} \Delta(\lambda)$ ($\lambda \in \widetilde{\Lambda}_{n,r}^{+}(\mathbf{m})$), are studied in [W2]. We see that $\operatorname{ch} \Delta(\lambda)$ ($\lambda \in \widetilde{\Lambda}_{n,r}^{+}(\mathbf{m})$) is a symmetric polynomial with variables $\mathbf{x}_{\mathbf{m}}$ with respect to \mathbf{m} . Put $\widetilde{\Lambda}_{>0}^{+}(\mathbf{m}) = \bigcup_{n \geq 0} \widetilde{\Lambda}_{n,r}^{+}(\mathbf{m})$. Then, for $\lambda, \mu \in \widetilde{\Lambda}_{>0}^{+}(\mathbf{m})$, it was conjectured that

(0.2.1)
$$\operatorname{ch} \Delta(\lambda) \operatorname{ch} \Delta(\mu) = \sum_{\nu \in \widetilde{\Lambda}^+_{\geq 0, r}(\mathbf{m})} \operatorname{LR}^{\nu}_{\lambda \mu} \operatorname{ch} \Delta(\nu)$$

in [W2], where $LR^{\nu}_{\lambda\mu}$ is the product of Littlewood-Richardson coefficients with respect to λ, μ and ν (see §9 for details). We prove this conjecture in Proposition 9.4. We remark that the characters of Weyl modules of a cyclotomic q-Schur algebra do not depend on the choice of a base field and parameters.

By using the usual coproduct of the universal enveloping algebra $U(\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m}))$ of $\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m})$, we can consider the tensor product $M \otimes N$ in $U(\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m}))$ -mod for $M, N \in U(\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m}))$ -mod. We regard $\mathscr{S}^1_{n,r}(\mathbf{m})$ -modules $(n \geq 0)$ as a $U(\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m}))$ -modules through the homomorphism Ψ_1 . Take $n, n_1, n_2 \in \mathbb{Z}_{>0}$ such that $n = n_1 + n_2$. Then, in Proposition 10.1, we prove that, for $\lambda \in \widetilde{\Lambda}^+_{n_1,r}(\mathbf{m})$ and $\mu \in \widetilde{\Lambda}^+_{n_2,r}(\mathbf{m})$,

(0.2.2)
$$\Delta(\lambda) \otimes \Delta(\mu) \cong \bigoplus_{\nu \in \widetilde{A}_{n,r}^+(\mathbf{m})} LR_{\lambda\mu}^{\nu} \Delta(\nu)$$

as $U(\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m}))$ -modules if $m_k \geq n$ for all k = 1, 2, ..., r - 1, where $LR^{\nu}_{\lambda\mu} \Delta(\nu)$ means the direct sum of $LR^{\nu}_{\lambda\mu}$ copies of $\Delta(\nu)$. In particular, we see that $\Delta(\lambda) \otimes \Delta(\nu) \in \mathscr{S}_{n,r}(\mathbf{m})$ -mod. The decomposition (0.2.2) gives an interpretation of the formula

(0.2.1) in the category $\mathcal{C}_{\widetilde{\mathbf{Q}}}(\mathbf{m})$. We expect that (0.2.2) also holds without the condition for \mathbf{m} . (Note that we prove the formula (0.2.1) without the condition for \mathbf{m} in Proposition 9.4.)

0.3. Put $\mathbb{A} = \mathbb{Z}[q, q^{-1}, Q_1, \dots, Q_{r-1}]$, where q, Q_1, \dots, Q_{r-1} are indeterminate elements over \mathbb{Z} , and let $\mathbb{K} = \mathbb{Q}(q, Q_1, \dots, Q_{r-1})$ be the quotient field of \mathbb{A} . In §4, we introduce an associative algebra $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ with parameters q and \mathbf{Q} associated with the Cartan data of \mathfrak{gl}_m which is separated into r parts with respect to \mathbf{m} .

Let $\mathcal{U}_{\mathbb{A},q,\mathbf{Q}}^{\star}(\mathbf{m})$ be the \mathbb{A} -subalgebra of $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ generated by defining generators of $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ (see the paragraph 4.11). We regard $\mathbb{Q}(\mathbf{Q})$ as an \mathbb{A} -module through the ring homomorphism $\mathbb{A} \to \mathbb{Q}(\mathbf{Q})$ by sending q to 1, and we consider the specialization $\mathbb{Q}(\mathbf{Q}) \otimes_{\mathbb{A}} \mathcal{U}_{\mathbb{Q},q,\mathbf{Q}}^{\star}(\mathbf{m})$ using this ring homomorphism. Then we have a surjective homomorphism of algebras

$$(0.3.1) U(\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})) \to \mathbb{Q}(\mathbf{Q}) \otimes_{\mathbb{A}} \mathcal{U}_{\mathbb{A},q,\mathbf{Q}}^{\star}(\mathbf{m})/\mathfrak{J},$$

where \mathfrak{J} is a certain ideal of $\mathbb{Q}(\mathbf{Q}) \otimes_{\mathbb{A}} \mathcal{U}_{\mathbb{A},q,\mathbf{Q}}^{\star}(\mathbf{m})$ (see (4.11.2)). We conjecture that the surjection (0.3.1) is isomorphic. Then we can regard $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ as a "q-analogue" of $U(\mathfrak{g}_{\mathbf{Q}}(\mathbf{m}))$. Dividing by the ideal \mathfrak{J} in (0.3.1) means that the Cartan subalgebra $U(\mathfrak{n}^0)$ of $U(\mathfrak{g}_{\mathbf{Q}}(\mathbf{m}))$ deforms to several directions in $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ (see the paragraph 4.11 and Remark 4.12).

We see that $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ has a triangular decomposition

(0.3.2)
$$\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m}) = \mathcal{U}^{-}\mathcal{U}^{0}\mathcal{U}^{+}$$

in a weak sense (see (4.6.1)). We conjecture that the multiplication map $\mathcal{U}^- \otimes_{\mathbb{K}} \mathcal{U}^0 \otimes_{\mathbb{K}} \mathcal{U}^+ \to \mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ gives an isomorphism as vector spaces. More precisely, we expect the existence of a PBW type basis of $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ which is compatible with a PBW basis of $U(\mathfrak{g}_{\mathbf{Q}}(\mathbf{m}))$ through the homomorphism (0.3.1).

Anyway, thanks to the triangular decomposition (0.3.2), we can develop the weight theory to study $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ -modules in the usual manner (see §5). Let $\mathcal{C}_{q,\mathbf{Q}}(\mathbf{m})$ be the category of finite dimensional $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ -modules which have the weight space decompositions, and all eigenvalues of the action of \mathcal{U}^0 belong to \mathbb{K} . Then we see that a simple $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ -module in $\mathcal{C}_{q,\mathbf{Q}}(\mathbf{m})$ is a highest weight module.

There exists a surjective homomorphism of algebras $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m}) \to U_q(\mathfrak{gl}_m)$ (see (4.9.1)) which can be regarded as a special case of evaluation homomorphisms (see Remark 4.10). Let $\mathcal{C}_{U_q(\mathfrak{gl}_m)}$ be the category of finite dimensional $U_q(\mathfrak{gl}_m)$ -modules which have the weight space decompositions. Then $\mathcal{C}_{U_q(\mathfrak{gl}_m)}$ is a full subcategory of $\mathcal{C}_{q,\mathbf{Q}}(\mathbf{m})$ through the above surjection (see Proposition 5.6).

Put $\widetilde{\mathbb{K}} = \mathbb{K}(Q_0)$ and $\widetilde{\mathbb{A}} = \mathbb{A}[Q_0]$. We also put $\mathcal{U}_{q,\widetilde{\mathbf{Q}}}(\mathbf{m}) = \widetilde{\mathbb{K}} \otimes_{\mathbb{K}} \mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$. Let $\mathcal{U}_{\mathbb{A},q,\mathbf{Q}}(\mathbf{m})$ be the \mathbb{A} -form of $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ taking divided powers (see the paragraph 4.13), and put $\mathcal{U}_{\widetilde{\mathbb{A}},q,\widetilde{\mathbf{Q}}}(\mathbf{m}) = \widetilde{\mathbb{A}} \otimes_{\mathbb{A}} \mathcal{U}_{\mathbb{A},q,\mathbf{Q}}(\mathbf{m})$. Let $\mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$ (resp. $\mathscr{S}_{n,r}^{\widetilde{\mathbb{A}}}(\mathbf{m})$) be the cyclotomic q-Schur algebra over $\widetilde{\mathbb{K}}$ (resp. over $\widetilde{\mathbb{A}}$) with parameters q and $\widetilde{\mathbf{Q}}$. In Theorem 8.1, we prove that there exists a homomorphism of algebras

$$\Psi: \mathcal{U}_{q,\widetilde{\mathbf{Q}}}(\mathbf{m}) \to \mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m}).$$

By the restriction of Ψ to $\mathcal{U}_{\widetilde{\mathbb{A}},q,\widetilde{\mathbf{Q}}}(\mathbf{m})$, we have the homomorphism $\Psi_{\widetilde{\mathbb{A}}}:\mathcal{U}_{\widetilde{\mathbb{A}},q,\widetilde{\mathbf{Q}}}(\mathbf{m})\to$ $\mathscr{S}_{n,r}^{\widetilde{\mathbb{A}}}(\mathbf{m})$. Then we can specialize $\Psi_{\widetilde{\mathbb{A}}}$ to any base ring and parameters. If $m_k \geq n$ for all $k=1,2,\ldots,r-1$, then Ψ (resp. $\Psi_{\widetilde{\mathbb{A}}}$) is surjective (see also Remark 8.2 for surjectivity of Ψ). In Theorem 8.3, we prove that $\mathscr{S}_{n,r}^{\mathbb{K}}(\mathbf{m})$ -mod is a full subcategory of $C_{q,\widetilde{\mathbf{Q}}}(\mathbf{m})$ through the surjection Ψ if \mathbf{m} is enough large.

We conjecture that $\mathcal{U}_{q,\widetilde{\mathbf{Q}}}(\mathbf{m})$ has a structure as a Hopf algebra, and that the decomposition (0.2.2) also holds for Weyl modules of $\mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$ $(n \geq 0)$ through the homomorphism Ψ and the Hopf algebra structure of $\mathcal{U}_{a,\widetilde{\mathbf{O}}}(\mathbf{m})$. (Note that the formula (0.2.1) holds for $\mathscr{S}_{n,r}^{\mathbb{K}}(\mathbf{m}) \ (n \geq 0).)$

It is also interesting problem to obtain a monoidal structure for $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ (resp. $\mathcal{U}_{\mathbb{A},q,\mathbf{Q}}(\mathbf{m})$ and its specialization) which should be related to the monoidal structure on the affine parabolic category **O**.

Acknowledgements. This research was supported by JSPS KAKENHI Grant Number 24740007. The author is grateful to Tatsuyuki Hikita for his suggestion on the definition of the polynomials $\Phi_t^{\pm}(x_1,\ldots,x_k)$ (see Remark 7.4).

§ 1. NOTATION

- **1.1.** For a condition X, put $\delta_{(X)} = \begin{cases} 1 & \text{if } X \text{ is true,} \\ 0 & \text{if } X \text{ is false.} \end{cases}$ We also put $\delta_{i,j} = \delta_{(i=j)}$ for simplicity.
- **1.2.** q-integers. Let $\mathbb{Q}(q)$ be the field of rational functions over \mathbb{Q} with an indeterminate variable q. For $d \in \mathbb{Z}$, put $[d] = (q^d - q^{-d})/(q - q^{-1}) \in \mathbb{Q}(q)$. For $d \in \mathbb{Z}_{>0}$, put [d]! = [d][d-1]...[1], and we put [0]! = 1. For $d \in \mathbb{Z}$ and $c \in \mathbb{Z}_{>0}$, put

$$\begin{bmatrix} d \\ c \end{bmatrix} = \frac{[d][d-1]\dots[d-c+1]}{[c][c-1]\dots[1]}, \text{ and put } \begin{bmatrix} d \\ 0 \end{bmatrix} = 1.$$

It is well-known that all [d], [d]! and [d] belong to $\mathbb{Z}[q,q^{-1}]$. Thus we can specialize these elements to any ring R and $q \in R$ such that q is invertible in R, and we denote them by same symbols.

1.3. Cartan data. Let $\mathbf{m} = (m_1, \dots, m_r)$ be an r-tuple of positive integers. Put $m = \sum_{k=1}^{r} m_k$. Let $P = \bigoplus_{i=1}^{m} \mathbb{Z}\varepsilon_i$ be the weight lattice of \mathfrak{gl}_m , and let $P^{\vee} = \bigoplus_{i=1}^{m} \mathbb{Z}h_i$ be its dual with the natural pairing $\langle , \rangle : P \times P^{\vee} \to \mathbb{Z}$ such that $\langle \varepsilon_i, h_j \rangle = \mathbb{Z}$ δ_{ij} . put $P_{\geq 0} = \bigoplus_{i=1}^m \mathbb{Z}_{\geq 0} \varepsilon_i$.

Set $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$ for $i = 1, \ldots, m-1$, then $\Pi = \{\alpha_i \mid 1 \le i \le m-1\}$ is the set of simple roots, and $Q = \bigoplus_{i=1}^{m-1} \mathbb{Z}\alpha_i$ is the root lattice of \mathfrak{gl}_m . Put $Q^+ = \bigoplus_{i=1}^{m-1} \mathbb{Z}_{\geq 0}\alpha_i$. Set $\alpha_i^{\vee} = h_i - h_{i+1}$ for $i = 1, \ldots, m-1$, then $\Pi^{\vee} = \{\alpha_i^{\vee} \mid 1 \leq i \leq m-1\}$ is the

set of simple coroots.

We define a partial order \geq on P, so called dominance order, by $\lambda \geq \mu$ if $\lambda - \mu \in Q^+$.

Put $\Gamma(\mathbf{m}) = \{(i,k) | 1 \le i \le m_k, 1 \le k \le r\}$, and $\Gamma'(\mathbf{m}) = \Gamma(\mathbf{m}) \setminus \{(m_r,r)\}$. We identify the set $\Gamma(\mathbf{m})$ with the set $\{1,2,\ldots,m\}$ by the bijection

(1.3.1)
$$\gamma: \Gamma(\mathbf{m}) \to \{1, 2, \dots, m\} \text{ such that } (i, k) \mapsto \sum_{j=1}^{k-1} m_j + i.$$

Then, we can identify the set $\Gamma'(\mathbf{m})$ with the set $\{1, 2, \dots, m-1\}$. Under the identification (1.3.1), for $(i, k), (j, l) \in \Gamma(\mathbf{m})$, we define

$$(i,k) > (j,l)$$
 if $\gamma((i,k)) > \gamma((j,l))$, and $(i,k) \pm (j,l) = \gamma((i,k)) \pm \gamma((j,l))$.

We also have $(m_k + 1, k) = (1, k + 1)$ for k = 1, ..., r - 1 (resp. $(1 - 1, k) = (m_{k-1}, k - 1)$ for k = 2, ..., r).

We may write

$$P = \bigoplus_{(i,k)\in\Gamma(\mathbf{m})} \mathbb{Z}\varepsilon_{(i,k)}, \quad P^{\vee} = \bigoplus_{(i,k)\in\Gamma(\mathbf{m})} \mathbb{Z}h_{(i,k)}, \quad Q = \bigoplus_{(i,k)\in\Gamma'(\mathbf{m})} \mathbb{Z}\alpha_{(i,k)}.$$

For $(i,k) \in \Gamma'(\mathbf{m}), (j,l) \in \Gamma(\mathbf{m})$, put $a_{(i,k)(j,l)} = \langle \alpha_{(i,k)}, h_{(j,l)} \rangle$. Then, we have

$$a_{(i,k)(j,l)} = \begin{cases} 1 & \text{if } (j,l) = (i,k), \\ -1 & \text{if } (j,l) = (i+1,k), \\ 0 & \text{otherwise.} \end{cases}$$

Put

$$P^{+} = \{ \lambda \in P \mid \langle \lambda, \alpha_{(i,k)}^{\vee} \rangle \in \mathbb{Z}_{\geq 0} \text{ for all } (i,k) \in \Gamma'(\mathbf{m}) \} \text{ and }$$

$$P^{+}_{\mathbf{m}} = \{ \lambda \in P \mid \langle \lambda, \alpha_{(i,k)}^{\vee} \rangle \in \mathbb{Z}_{\geq 0} \text{ for all } (i,k) \in \Gamma(\mathbf{m}) \setminus \{(m_k,k) \mid 1 \leq k \leq r \} \}.$$

Then P^+ is the set of dominant integral weights for \mathfrak{gl}_m , and $P^+_{\mathbf{m}}$ is the set of dominant integral weights for Levi subalgebra $\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r}$ of \mathfrak{gl}_m with respect to $\mathbf{m} = (m_1, \ldots, m_r)$.

§ 2. Lie algebra
$$\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$$

In this section, we introduce a Lie algebra $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ with r-1 parameters $\mathbf{Q} = (Q_1, \ldots, Q_{r-1})$ associated with the Cartan data in the paragraph 1.3. Then we study some basic structures of $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$. In particular, we prove that $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ is a filtered deformation of the current Lie algebra $\mathfrak{gl}_m[x]$ of the general linear Lie algebra \mathfrak{gl}_m .

2.1. Let $\mathbf{Q} = (Q_1, \dots, Q_{r-1})$ be an r-1-tuple of indeterminate elements over \mathbb{Z} . Let $\mathbb{Z}[\mathbf{Q}] = \mathbb{Z}[Q_1, \dots, Q_{r-1}]$ be the polynomial ring with variables Q_1, \dots, Q_{r-1} , and $\mathbb{Q}(\mathbf{Q}) = \mathbb{Q}(Q_1, \dots, Q_{r-1})$ be the quotient field of $\mathbb{Z}[\mathbf{Q}]$.

Definition 2.2. We define the Lie algebra $\mathfrak{g} = \mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ over $\mathbb{Q}(\mathbf{Q})$ by the following generators and defining relations:

Generators: $\mathcal{X}_{(i,k),t}^{\pm}$, $\mathcal{I}_{(j,l),t}$ $((i,k) \in \Gamma'(\mathbf{m}), (j,l) \in \Gamma(\mathbf{m}), t \geq 0)$. Relations:

(L1)
$$[\mathcal{I}_{(i,k),s}, \mathcal{I}_{(j,l),t}] = 0,$$

(L2)
$$[\mathcal{I}_{(j,l),s}, \mathcal{X}_{(i,k),t}^{\pm}] = \pm a_{(i,k)(j,l)} \mathcal{X}_{(i,k),s+t}^{\pm},$$

(L3)
$$[\mathcal{X}_{(i,k),t}^{+}, \mathcal{X}_{(j,l),s}^{-}] = \delta_{(i,k),(j,l)} \begin{cases} \mathcal{J}_{(i,k),s+t} & \text{if } i \neq m_k, \\ -Q_k \mathcal{J}_{(m_k,k),s+t} + \mathcal{J}_{(m_k,k),s+t+1} & \text{if } i = m_k, \end{cases}$$

(L4)
$$[\mathcal{X}_{(i,k),t}^{\pm}, \mathcal{X}_{(j,l),s}^{\pm}] = 0$$
 if $(j,l) \neq (i \pm 1, k)$,

(L5)
$$[\mathcal{X}_{(i,k),t+1}^+, \mathcal{X}_{(i\pm 1,k),s}^+] = [\mathcal{X}_{(i,k),t}^+, \mathcal{X}_{(i\pm 1,k),s+1}^+],$$
$$[\mathcal{X}_{(i,k),t+1}^-, \mathcal{X}_{(i\pm 1,k),s}^-] = [\mathcal{X}_{(i,k),t}^-, \mathcal{X}_{(i\pm 1,k),s+1}^-],$$

(L6)
$$[\mathcal{X}_{(i,k),s}^+, [\mathcal{X}_{(i,k),t}^+, \mathcal{X}_{(i\pm 1,k),u}^+]] = [\mathcal{X}_{(i,k),s}^-, [\mathcal{X}_{(i,k),t}^-, \mathcal{X}_{(i\pm 1,k),u}^-]] = 0,$$

where we put $\mathcal{J}_{(i,k),t} = \mathcal{I}_{(i,k),t} - \mathcal{I}_{(i+1,k),t}$.

2.3. For $\tau \in \mathbb{Q}(\mathbf{Q})$, let $V_{\tau} = \bigoplus_{(j,l) \in \Gamma(\mathbf{m})} \mathbb{Q}(\mathbf{Q}) v_{(j,l)}$ be the $\mathbb{Q}(\mathbf{Q})$ -vector space with a basis $\{v_{(j,l)} \mid (j,l) \in \Gamma(\mathbf{m})\}$. We can define the action of \mathfrak{g} on V_{τ} by

$$\mathcal{X}_{(i,k),t}^{+} \cdot v_{(j,l)} = \begin{cases}
\tau^{t} v_{(i,k)} & \text{if } (j,l) = (i+1,k) \text{ and } i \neq m_{k}, \\
(-Q_{k} + \tau) \tau^{t} v_{(m_{k},k)} & \text{if } (j,l) = (1,k+1) \text{ and } i = m_{k}, \\
0 & \text{otherwise},
\end{cases}$$

$$\mathcal{X}_{(i,k),t}^{-} \cdot v_{(j,l)} = \begin{cases}
\tau^{t} v_{(i+1,k)} & \text{if } (j,l) = (i,k), \\
0 & \text{otherwise},
\end{cases}$$

$$\mathcal{I}_{(i,k),t} \cdot v_{(j,l)} = \begin{cases}
\tau^{t} v_{(j,l)} & \text{if } (j,l) = (i,k), \\
0 & \text{otherwise}.
\end{cases}$$

We can check the well-definedness of the above action by direct calculations.

2.4. For $(i,k),(j,l)\in\Gamma(\mathbf{m})$ and $t\geq 0$, we define the element $\mathcal{E}^t_{(i,k)(j,l)}\in\mathfrak{g}$ by

$$\mathcal{E}_{(i,k),(j,l)}^{t} = \begin{cases} \mathcal{I}_{(i,k),t} & \text{if } (j,l) = (i,k), \\ [\mathcal{X}_{(i,k),0}^{+}, [\mathcal{X}_{(i+1,k),0}^{+}, \dots, [\mathcal{X}_{(j-2,l),0}^{+}, \mathcal{X}_{(j-1,l),t}^{+}] \dots] & \text{if } (j,l) > (i,k), \\ [\mathcal{X}_{(i-1,k),0}^{-}, [\mathcal{X}_{(i-2,k),0}^{-}, \dots, [\mathcal{X}_{(j+1,l),0}^{-}, \mathcal{X}_{(j,l),t}^{-}] \dots] & \text{if } (j,l) < (i,k), \end{cases}$$

in particular, we have $\mathcal{E}^t_{(i,k),(i+1,k)} = \mathcal{X}^+_{(i,k),t}$ and $\mathcal{E}^t_{(i+1,k),(i,k)} = \mathcal{X}^-_{(i,k),t}$. If (j,l) > (i,k), we have

$$\mathcal{E}_{(i,k),(j,l)}^{t} = [\mathcal{X}_{(i,k),0}^{+}, \mathcal{E}_{(i+1,k),(j,l)}^{t}]$$
$$= [\mathcal{E}_{(i,k),(j-1,l)}^{t}, \mathcal{X}_{(i-1,l),0}^{+}].$$

If (i, l) < (i, k), we have

$$\mathcal{E}_{(i,k),(j,l)}^{t} = [\mathcal{X}_{(i-1,k),0}^{-}, \mathcal{E}_{(i-1,k),(j,l)}^{t}]$$
$$= [\mathcal{E}_{(i,k),(j+1,l)}^{t}, \mathcal{X}_{(j,l),0}^{-}].$$

Lemma 2.5.

(i) For $(i, k), (j, l) \in \Gamma(\mathbf{m})$ such that (j, l) > (i, k), we have

(2.5.1)
$$[\mathcal{X}_{(a,c),s}^+, \mathcal{E}_{(i,k),(j,l)}^t] = \begin{cases} \mathcal{E}_{(i-1,k),(j,l)}^{t+s} & \text{if } (a,c) = (i-1,k), \\ -\mathcal{E}_{(i,k),(j+1,l)}^{t+s} & \text{if } (a,c) = (j,l), \\ 0 & \text{otherwise,} \end{cases}$$

$$[\mathcal{X}_{(a,c),s}^{+}, \mathcal{E}_{(i,k),(j,l)}^{t}] = \begin{cases} \mathcal{E}_{(i-1,k),(j,l)}^{t+s} & if (a,c) = (i-1,k), \\ -\mathcal{E}_{(i,k),(j+1,l)}^{t+s} & if (a,c) = (j,l), \\ 0 & otherwise, \end{cases}$$

$$[\mathcal{I}_{(a,c),s}, \mathcal{E}_{(i,k),(j,l)}^{t}] = \begin{cases} \mathcal{E}_{(i,k),(j,l)}^{t+s} & if (a,c) = (i,k), \\ -\mathcal{E}_{(i,k),(j,l)}^{t+s} & if (a,c) = (j,l), \\ 0 & otherwise, \end{cases}$$

$$\begin{aligned} & [\mathcal{X}^{-}_{(a,c),s},\mathcal{E}^{t}_{(i,k),(j,l)}] \\ & = \begin{cases} -\mathcal{E}^{t+s}_{(i,k),(i,k)} + \mathcal{E}^{t+s}_{(i+1,k),(i+1,k)} & \text{if } \ell = 1, (a,c) = (i,k) \text{ and } i \neq m_k, \\ Q_k(\mathcal{E}^{t+s}_{(m_k,k),(m_k,k)} - \mathcal{E}^{t+s}_{(1,k+1),(1,k+1)}) - \mathcal{E}^{t+s+1}_{(m_k,k),(m_k,k)} + \mathcal{E}^{t+s+1}_{(1,k+1),(1,k+1)} \\ & \text{if } \ell = 1, (a,c) = (i,k) \text{ and } i = m_k, \\ \mathcal{E}^{t+s}_{(i+1,k),(j,l)} & \text{if } \ell > 1, (a,c) = (i,k) \text{ and } i \neq m_k, \\ -Q_k\mathcal{E}^{t+s}_{(1,k+1),(j,l)} + \mathcal{E}^{t+s+1}_{(1,k+1),(j,l)} & \text{if } \ell > 1, (a,c) = (i,k) \text{ and } i = m_k, \\ -\mathcal{E}^{t+s}_{(i,k),(j-1,l)} & \text{if } \ell > 1, (a,c) = (j-1,l) \text{ and } j-1 \neq m_l, \\ Q_l\mathcal{E}^{t+s}_{(i,k),(m_l,l)} - \mathcal{E}^{t+s+1}_{(i,k),(m_l,l)} & \text{if } \ell > 1, (a,c) = (j-1,l) \text{ and } j-1 = m_l, \\ 0 & \text{otherwise}, \end{aligned}$$

where we put $\ell = (j, l) - (i, k)$.

(ii) For $(i,k), (j,l) \in \Gamma(\mathbf{m})$ such that (j,l) < (i,k), we have

$$[\mathcal{X}_{(a,c),s}^{-}, \mathcal{E}_{(i,k),(j,l)}^{t}] = \begin{cases} \mathcal{E}_{(i+1,k),(j,l)}^{t+s} & if \ (a,c) = (i,k), \\ -\mathcal{E}_{(i,k),(j-1,l)}^{t+s} & if \ (a,c) = (j-1,l), \\ 0 & otherwise, \end{cases}$$

$$[\mathcal{I}_{(a,c),s}, \mathcal{E}_{(i,k),(j,l)}^{t}] = \begin{cases} \mathcal{E}_{(i,k),(j,l)}^{t+s} & if \ (a,c) = (i,k), \\ -\mathcal{E}_{(i,k),(j,l)}^{t+s} & if \ (a,c) = (j,l), \\ 0 & otherwise, \end{cases}$$

otherwise,

$$[\mathcal{X}^+_{(a,c),s},\mathcal{E}^t_{(i,k),(j,l)}]$$

$$= \begin{cases} \mathcal{E}_{(i-1,k),(i-1,k)}^{t+s} - \mathcal{E}_{(i,k),(i,k)}^{t+s} & \text{if } \ell = 1, (a,c) = (i-1,k) \text{ and } i-1 \neq m_k, \\ -Q_k(\mathcal{E}_{(m_k,k),(m_k,k)}^{t+s} - \mathcal{E}_{(1,k+1),(1,k+1)}^{t+s}) + \mathcal{E}_{(m_k,k),(m_k,k)}^{t+s+1} - \mathcal{E}_{(1,k+1),(1,k+1)}^{t+s+1} \\ & \text{if } \ell = 1, (a,c) = (i-1,k) \text{ and } i-1 = m_k, \\ \mathcal{E}_{(i-1,k),(j,l)}^{t+s} & \text{if } \ell > 1, (a,c) = (i-1,k) \text{ and } i-1 \neq m_k, \\ -Q_k\mathcal{E}_{(m_k,k),(j,l)}^{t+s} + \mathcal{E}_{(m_k,k),(j,l)}^{t+s+1} & \text{if } \ell > 1, (a,c) = (i-1,k) \text{ and } i-1 = m_k, \\ -\mathcal{E}_{(i,k),(j+1,l)}^{t+s} & \text{if } \ell > 1, (a,c) = (j,l) \text{ and } j \neq m_l, \\ Q_l\mathcal{E}_{(i,k),(1,l+1)}^{t+s} - \mathcal{E}_{(i,k),(1,l+1)}^{t+s+1} & \text{if } \ell > 1, (a,c) = (j,l) \text{ and } j = m_l, \\ 0 & \text{otherwise}, \end{cases}$$

where we put
$$\ell = (i, k) - (j, l)$$
.
(iii) For $(i, k) \in \Gamma(\mathbf{m})$, we have

$$\begin{split} &[\mathcal{I}_{(a,c),s}, \mathcal{E}^t_{(i,k),(i,k)}] = 0, \\ &[\mathcal{X}^+_{(a,c),s}, \mathcal{E}^t_{(i,k),(i,k)}] = -a_{(a,c)(i,k)} \mathcal{E}^{t+s}_{(a,c),(a+1,c)}, \\ &[\mathcal{X}^-_{(a,c),s}, \mathcal{E}^t_{(i,k),(i,k)}] = a_{(a,c)(i,k)} \mathcal{E}^{t+s}_{(a+1,c),(a,c)}. \end{split}$$

Proof. We prove (2.5.1) by the induction on (j, l) - (i, k).

In the case where (j, l) - (i, k) = 1, it is follows from the relations (L4) and (L5). Assume that (j, l) - (i, k) > 1. We have

$$\begin{split} [\mathcal{X}^{+}_{(a,c),s},\mathcal{E}^{t}_{(i,k),(j,l)}] &= [\mathcal{X}^{+}_{(a,c),s},[\mathcal{X}^{+}_{(i,k),0},\mathcal{E}^{t}_{(i+1,k),(j,l)}]] \\ &= [\mathcal{X}^{+}_{(i,k),0},[\mathcal{X}^{+}_{(a,c),s},\mathcal{E}^{t}_{(i+1,k),(j,l)}]] + [[\mathcal{X}^{+}_{(a,c),s},\mathcal{X}^{+}_{(i,k),0}],\mathcal{E}^{t}_{(i+1,k),(j,l)}]. \end{split}$$

Applying the assumption of the induction, we have

(2.5.4)
$$[\mathcal{X}_{(a,c),s}^{+}, \mathcal{E}_{(i,k),(j,l)}^{t}] = \begin{cases} [\mathcal{X}_{(i,k),0}^{+}, \mathcal{E}_{(i,k),(j,l)}^{t+s}] & \text{if } (a,c) = (i,k), \\ -[\mathcal{X}_{(i,k),0}^{+}, \mathcal{E}_{(i+1,k),(j+1,l)}^{t+s}] & \text{if } (a,c) = (j,l), \\ [[\mathcal{X}_{(i-1,k),s}^{+}, \mathcal{X}_{(i,k),0}^{+}], \mathcal{E}_{(i+1,k),(j,l)}^{t}] & \text{if } (a,c) = (i-1,k), \\ [[\mathcal{X}_{(i+1,k),s}^{+}, \mathcal{X}_{(i,k),0}^{+}], \mathcal{E}_{(i+1,k),(j,l)}^{t}] & \text{if } (a,c) = (i+1,k), \\ 0 & \text{otherwise.} \end{cases}$$

We also have

$$\begin{split} [\mathcal{X}^+_{(a,c),s},\mathcal{E}^t_{(i,k),(j,l)}] &= [\mathcal{X}^+_{(a,c),s},[\mathcal{E}^t_{(i,k),(j-1,l)},\mathcal{X}^+_{(j-1,l),0}]] \\ &= [[\mathcal{X}^+_{(j-1,l),0},\mathcal{X}^+_{(a,c),s}],\mathcal{E}^t_{(i,k),(j-1,l)}] + [[\mathcal{X}^+_{(a,c),s},\mathcal{E}^t_{(i,k),(j-1,l)}],\mathcal{X}^+_{(j-1,l),0}]. \end{split}$$

Applying the assumption of the induction, we have

(2.5.5)

$$[\mathcal{X}_{(a,c),s}^{+}, \mathcal{E}_{(i,k),(j,l)}^{t}] = \begin{cases} [[\mathcal{X}_{(j-1,l),0}^{+}, \mathcal{X}_{(j,l),s}^{+}], \mathcal{E}_{(i,k),(j-1,l)}^{t}] & \text{if } (a,c) = (j,l), \\ [[\mathcal{X}_{(j-1,l),0}^{+}, \mathcal{X}_{(j-2,l),s}^{+}], \mathcal{E}_{(i,k),(j-1,l)}^{t}] & \text{if } (a,c) = (j-2,l), \\ [\mathcal{E}_{(i-1,k),(j-1,l)}^{t+s}, \mathcal{X}_{(j-1,l),0}^{+}] & \text{if } (a,c) = (i-1,k), \\ -[\mathcal{E}_{(i,k),(j,l)}^{t+s}, \mathcal{X}_{(j-1,l),0}^{+}] & \text{if } (a,c) = (j-1,l), \\ 0 & \text{otherwise.} \end{cases}$$

By (2.5.4) and (2.5.5), we have

$$[\mathcal{X}^{+}_{(a,c),s}, \mathcal{E}^{t}_{(i,k),(j,l)}] = \begin{cases} \mathcal{E}^{t+s}_{(i-1,k),(j,l)} & \text{if } (a,c) = (i-1,k), \\ -\mathcal{E}^{t+s}_{(i,k),(j+1,l)} & \text{if } (a,c) = (j,l), \\ [\mathcal{X}^{+}_{(i,k),0}, \mathcal{E}^{t+s}_{(i,k),(i+2,k)}] & \text{if } (a,c) = (i,k) = (j-2,l), \\ [[\mathcal{X}^{+}_{(i+1,k),s}, \mathcal{X}^{+}_{(i,k),0}], \mathcal{E}^{t}_{(i+1,k),(i+3,k)}] & \text{if } (a,c) = (i+1,k) = (j-2,l), \\ [\mathcal{X}^{-}_{(i+1,k),0}, \mathcal{E}^{t+s}_{(i,k),(i+2,k)}] & \text{if } (a,c) = (i+1,k) = (j-1,l), \\ 0 & \text{otherwise.} \end{cases}$$

By the direct calculations using the relations (L4)-(L6), we also have

$$[\mathcal{X}^+_{(i,k),0},\mathcal{E}^{t+s}_{(i,k),(i+2,k)}] = [[\mathcal{X}^+_{(i+1,k),s},\mathcal{X}^+_{(i,k),0}],\mathcal{E}^t_{(i+1,k),(i+3,k)}] = [\mathcal{X}^-_{(i+1,k),0},\mathcal{E}^{t+s}_{(i,k),(i+2,k)}] = 0.$$

Now we proved (2.5.1).

We prove (2.5.2) by the induction on (j, l) - (i, k). In the case where (j, l) - (i, k) = 1, it is just the relation (L2). Assume that (j, l) - (i, k) > 1. We have

$$\begin{split} [\mathcal{I}_{(a,c),s}, \mathcal{E}^t_{(i,k),(j,l)}] &= [\mathcal{I}_{(a,c),s}, [\mathcal{X}^+_{(i,k),0}, \mathcal{E}^t_{(i+1,k),(j,l)}]] \\ &= [\mathcal{X}^+_{(i,k),0}, [\mathcal{I}_{(a,c),s}, \mathcal{E}^t_{(i+1,k),(j,l)}]] + [[\mathcal{I}_{(a,c),s}, \mathcal{X}^+_{(i,k),0}], \mathcal{E}^t_{(i+1,k),(j,l)}]. \end{split}$$

Applying the assumption of the induction, we have

$$[\mathcal{I}_{(a,c),s}, \mathcal{E}^t_{(i,k),(j,l)}] = \begin{cases} [\mathcal{X}^+_{(i,k),0}, \mathcal{E}^{t+s}_{(i+1,k),(j,l)}] - [\mathcal{X}^+_{(i,k),s}, \mathcal{E}^t_{(i+1,k),(j,l)}] & \text{if } (a,c) = (i+1,k), \\ -[\mathcal{X}^+_{(i,k),0}, \mathcal{E}^{t+s}_{(i+1,k),(j,l)}] & \text{if } (a,c) = (j,l), \\ [\mathcal{X}^+_{(i,k),s}, \mathcal{E}^t_{(i+1,k),(j,l)}] & \text{if } (a,c) = (i,k), \\ 0 & \text{otherwise.} \end{cases}$$

Thus, we have (2.5.2) by applying (2.5.1).

We prove (2.5.3) by the induction on $\ell = (j, l) - (i, k)$. In the case where $\ell = 1, 2$, we can show (2.5.3) by direct calculations. Assume that $\ell > 2$, we have

$$[\mathcal{X}_{(a,c),s}^{-},\mathcal{E}_{(i,k),(j,l)}^{t}] = [\mathcal{X}_{(a,c),s}^{-},[\mathcal{X}_{(i,k),0}^{+},\mathcal{E}_{(i+1,k),(j,l)}^{t}]]$$

$$= [\mathcal{X}^+_{(i,k),0}, [\mathcal{X}^-_{(a,c),s}, \mathcal{E}^t_{(i+1,k),(j,l)}]] + [[\mathcal{X}^-_{(a,c),s}, \mathcal{X}^+_{(i,k),0}], \mathcal{E}^t_{(i+1,k),(j,l)}].$$

Applying the assumption of the induction, we have

$$\begin{bmatrix} \mathcal{X}_{(a,c),s}^{-}, \mathcal{E}_{(i,k),(j,l)}^{t} \end{bmatrix} & \text{if } (a,c) = (i+1,k) \text{ and } i+1 \neq m_k, \\ [\mathcal{X}_{(i,k),0}^{+}, -Q_k \mathcal{E}_{(1,k+1),(j,l)}^{t+s} + \mathcal{E}_{(1,k+1),(j,l)}^{t+s+1} \end{bmatrix} & \text{if } (a,c) = (i+1,k) \text{ and } i+1 \neq m_k, \\ [\mathcal{X}_{(i,k),0}^{+}, -Q_k \mathcal{E}_{(1,k+1),(j,l)}^{t+s} + \mathcal{E}_{(1,k+1),(j,l)}^{t+s+1} \end{bmatrix} & \text{if } (a,c) = (i+1,k) \text{ and } i+1 = m_k \\ [\mathcal{X}_{(i,k),0}^{+}, -\mathcal{E}_{(i+1,k),(j-1,l)}^{t+s} \end{bmatrix} & \text{if } (a,c) = (j-1,l) \text{ and } j-1 \neq m_l, \\ [\mathcal{X}_{(i,k),0}^{+}, Q_l \mathcal{E}_{(i+1,k),(m_l,l)}^{t+s} - \mathcal{E}_{(i+1,k),(m_l,l)}^{t+s+1} \end{bmatrix} & \text{if } (a,c) = (j-1,l) \text{ and } j-1 = m_l, \\ [-\mathcal{I}_{(i,k),s} + \mathcal{I}_{(i+1,k),s}, \mathcal{E}_{(i+1,k),(j,l)}^{t} \end{bmatrix} & \text{if } (a,c) = (i,k) \text{ and } i \neq m_k, \\ [Q_k(\mathcal{I}_{(m_k,k),s} - \mathcal{I}_{(1,k+1),s}) - \mathcal{I}_{(m_k,k),s+1} + \mathcal{I}_{(1,k+1),s+1}, \mathcal{E}_{(1,k+1),(j,l)}^{t} \end{bmatrix} & \text{if } (a,c) = (i,k) \text{ and } i = m_k, \\ 0 & \text{otherwise.} \end{cases}$$

Thus, we have (2.5.3) by applying (2.5.1) and (2.5.2).

(ii) is proven in a similar way. (iii) is just the relations (L1) and (L2).
$$\Box$$

By Lemma 2.5, we see that \mathfrak{g} is spanned by $\{\mathcal{E}^t_{(i,k)(j,l)} | (i,k), (j,l) \in \Gamma(\mathbf{m}), t \geq 0\}$ as a $\mathbb{Q}(\mathbf{Q})$ -vector space. In fact, we see that it is a basis of \mathfrak{g} as follows.

Proposition 2.6.
$$\{\mathcal{E}_{(i,k)(j,l)}^t \mid (i,k), (j,l) \in \Gamma(\mathbf{m}), t \geq 0\}$$
 gives a basis of $\mathfrak{g} = \mathfrak{g}_{\mathbf{Q}}(\mathbf{m}).$

Proof. It is enough to show that $\{\mathcal{E}^t_{(i,k),(j,l)} | (i,k), (j,l) \in \Gamma(\mathbf{m}), t \geq 0\}$ are linearly independent.

For $\tau \in \mathbb{Q}(\mathbf{Q})$, let $V_{\tau} = \bigoplus_{(j,l) \in \Gamma(\mathbf{m})} \mathbb{Q}(\mathbf{Q}) v_{(j,l)}$ be the \mathfrak{g} -module given in 2.3. Then, we see that

$$\mathcal{E}_{(i,k)(j,l)}^t \cdot v_{(a,c)} = \delta_{(a,c)(j,l)} \psi_{(i,k)(j,l)} \tau^t v_{(i,k)},$$

where we put

$$\psi_{(i,k)(j,l)} = \begin{cases} \prod_{p=0}^{l-k-1} (-Q_l + \tau) & \text{if } l-k > 0, \\ 1 & \text{otherwise.} \end{cases}$$

Thus, if $\sum_{(i,k),(j,l)\in\Gamma(\mathbf{m}),t\geq0} r^t_{(i,k)(j,l)} \mathcal{E}^t_{(i,k),(j,l)} = 0 \ (r^t_{(i,k)(j,l)}\in\mathbb{Q}(\mathbf{Q}))$, we have

$$\left(\sum_{(i,k),(j,l)\in\Gamma(\mathbf{m}),t\geq0}r_{(i,k)(j,l)}^t\mathcal{E}_{(i,k),(j,l)}^t\right)\cdot v_{(a,c)} = \sum_{(i,k)\in\Gamma(\mathbf{m})}\psi_{(i,k)(j,l)}\left(\sum_{t\geq0}r_{(i,k)(a,c)}^t\tau^t\right)v_{(i,k)} = 0.$$

Thus, for any $(i, k), (j, l) \in \Gamma(\mathbf{m})$ and any $\tau \in \mathbb{Q}(\mathbf{Q})$, we have

$$\psi_{(i,k)(j,l)} \left(\sum_{t>0} r_{(i,k)(j,l)}^t \tau^t \right) = 0.$$

This implies that $r_{(i,k)(j,l)}^t = 0$ for any $(i,k), (j,l) \in \Gamma(\mathbf{m})$ and any $t \geq 0$.

2.7. Let \mathfrak{n}^+ , \mathfrak{n}^- and \mathfrak{n}^0 be the Lie subalgebras of \mathfrak{g} generated by

$$\{\mathcal{X}_{(i,k),t}^{+} | (i,k) \in \Gamma'(\mathbf{m}), t \ge 0\}, \{\mathcal{X}_{(i,k),t}^{-} | (i,k) \in \Gamma'(\mathbf{m}), t \ge 0\} \text{ and } \{\mathcal{I}_{(i,l),t} | (j,l) \in \Gamma(\mathbf{m}), t \ge 0\}$$

respectively. Then, we have the following triangular decomposition as a corollary of Proposition 2.6.

Corollary 2.8. We have the triangular decomposition

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{n}^0 \oplus \mathfrak{n}^+$$
 (as vector spaces).

2.9. A current Lie algebra. Let $\mathbb{Q}[x]$ be the polynomial ring over \mathbb{Q} , and let $\mathfrak{gl}_m[x] = \mathbb{Q}[x] \otimes \mathfrak{gl}_m$ be the current Lie algebra associated with the general linear Lie algebra \mathfrak{gl}_m over \mathbb{Q} . Namely, the Lie bracket on $\mathfrak{gl}_m[x]$ is defined by

$$[a\otimes g,b\otimes h]=ab\otimes [g,h]\quad (a,b\in \mathbb{Q}[x],\,g,h\in \mathfrak{gl}_m).$$

Let $E_{i,j} \in \mathfrak{gl}_m$ $(1 \leq i, j \leq m)$ be the elementary matrix having 1 at the (i, j)-entry and 0 elsewhere. Put $e_i = E_{i,i+1}$, $f_i = E_{i+1,i}$ and $K_j = E_{j,j}$. Then $\mathbb{Q}[x] \otimes \mathfrak{gl}_m$ is generated by

$$x^t \otimes e_i, x^t \otimes f_i, x^t \otimes K_j \quad (1 \le i \le m - 1, 1 \le j \le m, t \ge 0).$$

2.10. In the case where r = 1 ($\mathbf{m} = m$), the Lie algebra $\mathfrak{g}(m)$ over \mathbb{Q} is generated by $\mathcal{X}_{i,t}^{\pm}$ and $\mathcal{I}_{j,t}$ ($1 \leq i \leq m-1, 1 \leq j \leq m, t \geq 0$) with the defining relations (L1)-(L6) (for $(i,1) \in \Gamma(m)$, we denote (i,1) by i simply). In this case, the relation (L3) is just

$$[\mathcal{X}_{i,t}^+, \mathcal{X}_{j,s}^-] = \delta_{i,j}(\mathcal{I}_{i,t} - \mathcal{I}_{i+1,t}).$$

Then, we have the following lemma.

Lemma 2.11. There exists the isomorphism of Lie algebras

$$\Phi: \mathfrak{g}(m) \to \mathfrak{gl}_m[x] \quad (\mathcal{X}_{i,t}^+ \mapsto x^t \otimes e_i, \, \mathcal{X}_{i,t}^- \mapsto x^t \otimes f_i, \, \mathcal{I}_{j,t} \mapsto x^t \otimes K_j).$$

In particular, the relations (L1)-(L6) (in the case where r=1) give a defining relations of $\mathfrak{gl}_m[x]$ through the isomorphism Φ .

Proof. We can show the well-definedness of the homomorphism Φ by checking the defining relations of $\mathfrak{g}(m)$ directly.

For $i, j \in \{1, ..., m\}$ and $t \geq 0$, we see that $\Phi(\mathcal{E}_{i,j}^t) = x^t \otimes E_{i,j}$. Clearly, $\{x^t \otimes E_{i,j} \mid 1 \leq i, j \leq m, t \geq 0\}$ gives a basis of $\mathfrak{gl}_m[x]$. Thus, Proposition 2.6 implies that Φ is isomorphic.

2.12. In the case where $r \geq 2$, we can regard $\mathfrak{g} = \mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ as a deformation of the current Lie algebra $\mathbb{Q}(\mathbf{Q}) \otimes_{\mathbb{Q}} \mathfrak{gl}_m[x]$ as follows.

For $t \geq 0$, put

$$\mathcal{Y}_t = \{ \mathcal{X}_{(i,k),t}^{\pm}, \mathcal{I}_{(j,l),t} \mid (i,k) \in \Gamma'(\mathbf{m}), (j,l) \in \Gamma(\mathbf{m}) \}.$$

Let \mathfrak{g}_t be the $\mathbb{Q}(\mathbf{Q})$ -subspace of \mathfrak{g} spanned by

$$\{[Y_{t_1}, [Y_{t_2}, \dots, [Y_{t_{p-1}}, Y_{t_p}] \dots] \mid Y_{t_b} \in \mathcal{Y}_{t_b}, \sum_{b=1}^p t_b \ge t, \ p \ge 1\}.$$

Then, we have the sequence

$$\mathfrak{g} = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \mathfrak{g}_2 \supset \dots$$

By the defining relations (L1)-(L6), we see that

$$[\mathfrak{g}_s,\mathfrak{g}_t] \subset \mathfrak{g}_{s+t} \quad (s,t \ge 0).$$

For $t \geq 0$, let $\sigma_t : \mathfrak{g}_t \to \mathfrak{g}_t/\mathfrak{g}_{t+1}$ be the natural surjection. By (2.12.1), we can define the structure as a Lie algebra on $\operatorname{\mathbf{gr}} \mathfrak{g} = \bigoplus_{t \geq 0} \mathfrak{g}_t/\mathfrak{g}_{t+1}$ by

$$[\sigma_s(g), \sigma_t(h)] = \sigma_{s+t}([g, h]) \quad (g \in \mathfrak{g}_s, h \in \mathfrak{g}_t).$$

Then we see that, $\mathbf{gr} \mathfrak{g}$ is generated by

$$\sigma_t(\mathcal{X}_{(i,k),t}^{\pm}), \ \sigma_t(\mathcal{I}_{(j,l),t}) \quad ((i,k) \in \Gamma'(\mathbf{m}), \ (j,l) \in \Gamma(\mathbf{m}), \ t \ge 0),$$

and $\operatorname{\mathbf{gr}}\mathfrak{g}$ has a basis $\{\sigma_t(\mathcal{E}^t_{(i,k),(j,l)}) \mid (i,k),(j,l) \in \Gamma(\mathbf{m}), t \geq 0\}.$

Proposition 2.13. There exists the isomorphism of Lie algebras

$$\Psi:\mathbb{Q}(\mathbf{Q})\otimes_{\mathbb{Q}}\mathfrak{gl}_m[x]\to\operatorname{\mathbf{gr}}\mathfrak{g}=\bigoplus_{t>0}\mathfrak{g}_t/\mathfrak{g}_{t+1}$$

such that

$$x^{t} \otimes e_{(i,k)} \mapsto \begin{cases} \sigma_{t}(\mathcal{X}_{(i,k),t}^{+}) & \text{if } i \neq m_{k}, \\ -Q_{k}^{-1}\sigma_{t}(\mathcal{X}_{(m_{k},k),t}^{+}) & \text{if } i = m_{k}, \end{cases}$$
$$x^{t} \otimes f_{(i,k)} \mapsto \sigma_{t}(\mathcal{X}_{(i,k),t}^{-}),$$

$$x^t \otimes K_{(j,l)} \mapsto \sigma_t(\mathcal{I}_{(j,l),t}),$$

where we use the identification (1.3.1) for the indices of generators of $\mathfrak{gl}_m[x]$.

Proof. We can show the well-definedness of the homomorphism Ψ by checking the defining relations of $\mathfrak{gl}_m[x]$ directly (see Lemma 2.11). We also see that

$$\Psi(x^t \otimes E_{(i,k),(j,l)}) = \psi_{(i,k)(j,l)} \sigma_t(\mathcal{E}_{(i,k),(j,l)}^t),$$

where we put

$$\psi_{(i,k)(j,l)} = \begin{cases} \prod_{p=0}^{l-k-1} (-Q_{k+p}^{-1}) & \text{if } l-k > 0, \\ 1 & \text{otherwise.} \end{cases}$$

Thus, we see that Ψ is isomorphic.

As a corollary of the above proposition, we have the following isomorphism between $\mathbb{Q}(\mathbf{Q}) \otimes_{\mathbb{Q}} \mathfrak{g}(m)$ and $\operatorname{\mathbf{gr}} \mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$.

Corollary 2.14. There exists the isomorphism of Lie algebras

$$\widetilde{\Psi}: \mathbb{Q}(\mathbf{Q}) \otimes_{\mathbb{Q}} \mathfrak{g}(m) \to \operatorname{\mathbf{gr}} \mathfrak{g}_{\mathbf{Q}}(\mathbf{m}) = \bigoplus_{t > 0} \mathfrak{g}_t/\mathfrak{g}_{t+1}$$

such that

$$\mathcal{X}_{(i,k),t}^{+} \mapsto \begin{cases} \sigma_t(\mathcal{X}_{(i,k),t}^{+}) & \text{if } i \neq m_k, \\ -Q_k^{-1}\sigma_t(\mathcal{X}_{(m_k,k),t}^{+} & \text{if } i = m_k, \end{cases} \quad \mathcal{X}_{(i,k),t}^{-} \mapsto \sigma_t(\mathcal{X}_{(i,k),t}^{-}), \ \mathcal{I}_{(j,l),t} \mapsto \sigma_t(\mathcal{I}_{(j,l),t}),$$

where we use the identification (1.3.1) for the indices of generators of $\mathfrak{g}(m)$.

2.15. We also have some relations between the Lie algebra $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ and the general linear Lie algebra \mathfrak{gl}_m as follows. Let $\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r}$ be a Levi subalgebra of \mathfrak{gl}_m associated with $\mathbf{m} = (m_1, \ldots, m_r)$. Then generates of $\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r}$ are given by $e_{(i,k)}, f_{(i,k)}$ $(1 \leq i \leq m_k - 1, 1 \leq k \leq r)$ and $K_{(j,l)}$ $((j,l) \in \Gamma(\mathbf{m}))$, where we use the identification (1.3.1) for indices.

Proposition 2.16.

(i) There exists a surjective homomorphism of Lie algebras

$$(2.16.1) g: \mathfrak{g}_{\mathbf{Q}}(\mathbf{m}) \to \mathfrak{gl}_m$$

such that

$$g(\mathcal{X}_{(i,k),0}^{+}) = \begin{cases} e_{(i,k)} & \text{if } i \neq m_k, \\ -Q_k e_{(m_k,k)} & \text{if } i = m_k, \end{cases} g(\mathcal{X}_{(i,k),0}^{-}) = f_{(i,k)},$$

$$g(\mathcal{I}_{(j,l),0}) = K_{(j,l)} \text{ and } g(\mathcal{X}_{(i,k),t}^{\pm}) = g(\mathcal{I}_{(j,l),t}) = 0 \text{ for } t \ge 1.$$

(ii) There exists an injective homomorphism of Lie algebras

(2.16.2)
$$\iota: \mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r} \to \mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$$

such that
$$\iota(e_{(i,k)}) = \mathcal{X}^+_{(i,k),0}$$
, $\iota(f_{(i,k)}) = \mathcal{X}^-_{(i,k),0}$ and $\iota(K_{(j,l)}) = \mathcal{I}_{(j,l),0}$.

Proof. We can check the well-definedness of g and ι by direct calculations. Clearly g is surjective. Let $\iota': \mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r} \to \mathfrak{gl}_m$ be the natural embedding. Then, by investigating the image of generators, we see that $\iota' = g \circ \iota$. This implies that ι is injective.

Remark 2.17. The surjective homomorphism g in (2.16.1) can be regarded as a special case of evaluation homomorphisms. However, we can not define evaluation homomorphisms for $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ in general although we can consider $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ -modules corresponding to some evaluation modules. They will be studied in a subsequent paper.

§ 3. Representations of $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$

Thanks to the triangular decomposition in Corollary 2.8, we can develop the weight theory to study some representations of $\mathfrak{g}_{\mathbb{Q}}(\mathbf{m})$ in the usual manner as follows.

3.1. Let $U(\mathfrak{g}) = U(\mathfrak{g}_{\mathbf{Q}}(\mathbf{m}))$ be the universal enveloping algebra of the Lie algebra $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$. Then, by Corollary 2.8 together with PBW theorem, we have the triangular decomposition

$$(3.1.1) U(\mathfrak{g}) \cong U(\mathfrak{n}^{-}) \otimes U(\mathfrak{n}^{0}) \otimes U(\mathfrak{n}^{+}).$$

Thanks to the triangular decomposition, we can develop the weight theory for $U(\mathfrak{g})$ modules as follows.

- **3.2. Highest weight modules.** For $\lambda \in P$ and a multiset $\varphi = (\varphi_{(j,l),t} | (j,l) \in \Gamma(\mathbf{m}), t \geq 1)$ $(\varphi_{(j,l),t} \in \mathbb{Q}(\mathbf{Q}))$, we say that a $U(\mathfrak{g})$ -modules M is a highest weight modules of highest weight (λ, φ) if there exists an element $v_0 \in M$ satisfying the following three conditions:
 - (i) M is generated by v_0 as a $U(\mathfrak{g})$ -module,
 - (ii) $\mathcal{X}_{(i,k),t}^+ \cdot v = 0$ for all $(i,k) \in \Gamma'(\mathbf{m})$ and $t \geq 0$,
 - (iii) $\mathcal{I}_{(j,l),0} \cdot v_0 = \langle \lambda, h_{(j,l)} \rangle v_0$ and $\mathcal{I}_{(j,l),t} \cdot v_0 = \varphi_{(j,l),t} v_0$ for $(j,l) \in \Gamma(\mathbf{m})$ and $t \geq 1$.

If an element $v_0 \in M$ satisfies the above conditions (ii) and (iii), we say that v_0 is a maximal vector of weight (λ, φ) . In this case, the submodule $U(\mathfrak{g}) \cdot v_0$ of M is a highest weight module of highest weight (λ, φ) . If a maximal vector $v_0 \in M$ satisfies the above condition (i), we say that v_0 is a highest weight vector.

For a highest weight $U(\mathfrak{g})$ -module M of highest weight (λ, φ) with a highest weight vector $v_0 \in M$, we have $M = U(\mathfrak{n}^-) \cdot v_0$ by the triangular decomposition

(3.1.1). Thus, the relation (L2) implies the weight space decomposition

(3.2.1)
$$M = \bigoplus_{\substack{\mu \in P \\ \mu < \lambda}} M_{\mu} \text{ such that } \dim_{\mathbb{Q}(\mathbf{Q})} M_{\lambda} = 1,$$

where $M_{\mu} = \{ v \in M \mid \mathcal{I}_{(j,l),0} \cdot v = \langle \mu, h_{(j,l)} \rangle v \text{ for } (j,l) \in \Gamma(\mathbf{m}) \}.$

3.3. Verma modules. Let $U(\mathfrak{n}^{\geq 0})$ be the subalgebra of $U(\mathfrak{g})$ generated by $U(\mathfrak{n}^0)$ and $U(\mathfrak{n}^+)$. Then, by Proposition 2.6 together with the proof of Lemma 2.5, we see that $U(\mathfrak{n}^+)$ (resp. $U(\mathfrak{n}^-)$) is isomorphic to the algebra generated by $\{\mathcal{X}^+_{(i,k),t} \mid (i,k) \in \Gamma'(\mathbf{m}), t \geq 0\}$ (resp. $\{\mathcal{X}^-_{(i,k),t} \mid (i,k) \in \Gamma'(\mathbf{m}), t \geq 0\}$) with the defining relations (L4)-(L6), $U(\mathfrak{n}^0)$ is isomorphic to the algebra generated by $\{\mathcal{I}_{(j,l),t} \mid (j,l) \in \Gamma(\mathbf{m}), t \geq 0\}$ with the defining relations (L1), and that $U(\mathfrak{n}^{\geq 0})$ is isomorphic to the algebra generated by $\{\mathcal{X}^+_{(i,k)t}, \mathcal{I}_{(j,l)t} \mid (i,k) \in \Gamma'(\mathbf{m}), (j,l) \in \Gamma(\mathbf{m}), t \geq 0\}$ with the defining relations (L1)-(L6) except (L3). Then we have the surjective homomorphism of algebras

$$(3.3.1) U(\mathfrak{n}^{\geq 0}) \to U(\mathfrak{n}^{0}) \text{ such that } \mathcal{X}^{+}_{(i,k),t} \mapsto 0, \mathcal{I}_{(j,l),t} \mapsto \mathcal{I}_{(j,l),t}.$$

For $\lambda \in P$ and a multiset $\varphi = (\varphi_{(j,l),t})$, we define a (1-dimensional) simple $U(\mathfrak{n}^0)$ -module $\Theta_{(\lambda,\varphi)} = \mathbb{Q}(\mathbf{Q})v_0$ by

$$\mathcal{I}_{(j,l),0} \cdot v_0 = \langle \lambda, h_{(j,l)} \rangle v_0, \quad \mathcal{I}_{(j,l)t} \cdot v_0 = \varphi_{(j,l),t} v_0$$

for $(j,l) \in \Gamma(\mathbf{m})$ and $t \geq 1$. Then we define the Verma module $M(\lambda,\varphi)$ as the induced module

$$M(\lambda, \varphi) = U(\mathfrak{g}) \otimes_{U(\mathfrak{n}^{\geq 0})} \Theta_{(\lambda, \varphi)},$$

where we regard $\Theta_{(\lambda,\varphi)}$ as a left $U(\mathfrak{n}^{\geq 0})$ -module through the surjection (3.3.1).

By definitions, the Verma module $M(\lambda, \varphi)$ is a highest weight module of highest weight (λ, φ) with a highest weight vector $1 \otimes v_0$. Then we see that any highest weight module of highest weight (λ, φ) is a quotient of $M(\lambda, \varphi)$ by the universality of tensor products. We also see that $M(\lambda, \varphi)$ has the unique simple top $L(\lambda, \varphi) = M(\lambda, \varphi)/\operatorname{rad} M(\lambda, \varphi)$ from the weight space decomposition (3.2.1).

By using the homomorphism $\iota: U(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r}) \to U(\mathfrak{g})$ induced from (2.16.2), we have a necessary condition for $L(\lambda, \varphi)$ to be finite dimensional as follows.

Proposition 3.4. For $\lambda \in P$ and a multiset $\varphi = (\varphi_{(j,l),t})$, if $L(\lambda, \varphi)$ is finite dimensional, then we have $\lambda \in P_{\mathbf{m}}^+$.

Proof. Assume that $L(\lambda, \varphi)$ is finite dimensional. Let $v_0 \in L(\lambda, \varphi)$ be a highest weight vector. When we regard $L(\lambda, \varphi)$ as a $U(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r})$ -module through the injection $\iota : U(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r}) \to U(\mathfrak{g})$, we see that $U(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r})$ -submodule of $L(\lambda, \varphi)$ generated by v_0 is a (finite dimensional) highest weight $U(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r})$ -module of highest weight λ . Thus, the Lemma follows from the well-known facts for $U(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r})$ -modules.

- **3.5.** Category $C_{\mathbf{Q}}(\mathbf{m})$. Let $C_{\mathbf{Q}}(\mathbf{m})$ (resp. $C_{\mathbf{Q}}^{\geq 0}(\mathbf{m})$) be the full subcategory of $U(\mathfrak{g})$ -mod consisting of $U(\mathfrak{g})$ -modules satisfying the following conditions:
 - (i) If $M \in \mathcal{C}_{\mathbf{Q}}(\mathbf{m})$ (resp. $M \in \mathcal{C}_{\mathbf{Q}}^{\geq 0}(\mathbf{m})$), then M is finite dimensional,
 - (ii) If $M \in \mathcal{C}_{\mathbf{Q}}(\mathbf{m})$ (resp. $M \in \mathcal{C}_{\mathbf{Q}}^{\geq 0}(\mathbf{m})$), then M has the weight space decomposition

$$M = \bigoplus_{\lambda \in P} M_{\lambda} \quad \text{(resp. } M = \bigoplus_{\lambda \in P_{\geq 0}} M_{\lambda}),$$

where $M_{\lambda} = \{ v \in M \mid \mathcal{I}_{(j,l),0} \cdot v = \langle \lambda, h_{(j,l)} \rangle v \text{ for } (j,l) \in \Gamma(\mathbf{m}) \},$

(iii) If $M \in \mathcal{C}_{\mathbf{Q}}(\mathbf{m})$ (resp. $M \in \mathcal{C}_{\mathbf{Q}}^{\geq 0}(\mathbf{m})$), then all eigenvalues of the action of $\mathcal{I}_{(j,l),t}$ $((j,l) \in \Gamma(\mathbf{m}), t \geq 0)$ on M belong to $\mathbb{Q}(\mathbf{Q})$.

By the usual argument, we have the following lemma.

Lemma 3.6. Any simple object in $C_{\mathbf{Q}}(\mathbf{m})$ is a highest weight module.

By using the surjection $g:U(\mathfrak{g})\to U(\mathfrak{gl}_m)$ induced from (2.16.1), we have the following proposition.

Proposition 3.7. Let $C_{\mathfrak{gl}_m}$ be the category of finite dimensional $U(\mathfrak{gl}_m)$ -modules which have the weight space decomposition. Then, we have the followings.

- (i) $C_{\mathfrak{gl}_m}$ is a full subcategory of $C_{\mathbf{Q}}(\mathbf{m})$ through the surjection $g:U(\mathfrak{g})\to U(\mathfrak{gl}_m)$.
- (ii) For $\lambda \in P^+$, the simple highest weight $U(\mathfrak{gl}_m)$ -module $\Delta_{\mathfrak{gl}_m}(\lambda)$ of highest weight λ is the simple highest weight $U(\mathfrak{g})$ -module of highest weight $(\lambda, \mathbf{0})$ through the surjection $g: U(\mathfrak{g}) \to U(\mathfrak{gl}_m)$, where $\mathbf{0}$ means $\varphi_{(j,l),t} = 0$ for all $(j,l) \in \Gamma(\mathbf{m})$ and $t \geq 1$.

§ 4. Algebra
$$\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$$

In this section, we introduce an algebra $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ with parameters q and $\mathbf{Q} = (Q_1, \ldots, Q_{r-1})$ associated with the Cartan data in the paragraph 1.3. Then we study some basic structures of $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$. In particular, we can regard $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ as a "q-analogue" of the universal enveloping algebra $U(\mathfrak{g}_{\mathbf{Q}}(\mathbf{m}))$ of the Lie algebra $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ introduced in the section §2.

4.1. Put $\mathbb{A} = \mathbb{Z}[\mathbf{Q}][q, q^{-1}] = \mathbb{Z}[q, q^{-1}, Q_1, \dots, Q_{r-1}]$, where q, Q_1, \dots, Q_{r-1} are indeterminate elements over \mathbb{Z} , and let $\mathbb{K} = \mathbb{Q}(q, Q_1, \dots, Q_{r-1})$ be the quotient field of \mathbb{A} .

Definition 4.2. We define the associative algebra $\mathcal{U} = \mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ over \mathbb{K} by the following generators and defining relations:

Generators: $\mathcal{X}_{(i,k),t}^{\pm}$, $\mathcal{I}_{(j,l),t}^{\pm}$, $\mathcal{K}_{(j,l)}^{\pm}$ $((i,k) \in \Gamma'(\mathbf{m}), (j,l) \in \Gamma(\mathbf{m}), t \geq 0)$. Relations:

(R1)

$$\mathcal{K}_{(j,l)}^{+}\mathcal{K}_{(j,l)}^{-} = \mathcal{K}_{(j,l)}^{-}\mathcal{K}_{(j,l)}^{+} = 1, \quad (\mathcal{K}_{(j,l)}^{\pm})^{2} = 1 \pm (q - q^{-1})\mathcal{I}_{(j,l),0}^{\mp},$$
(R2)

$$[\mathcal{K}_{(i,k)}^{+}, \mathcal{K}_{(j,l)}^{+}] = [\mathcal{K}_{(i,k)}^{+}, \mathcal{I}_{(j,l),t}^{\sigma}] = [\mathcal{I}_{(i,k),s}^{\sigma}, \mathcal{I}_{(j,l),t}^{\sigma'}] = 0 \quad (\sigma, \sigma' \in \{+, -\}),$$

$$\begin{array}{l} \mathcal{K}^{(\mathrm{R}3)}_{(j,l)}\mathcal{K}^{\pm}_{(i,k),l}\mathcal{K}^{-}_{(j,l)} = q^{\pm a_{(i,k)(j,l)}}\mathcal{X}^{\pm}_{(i,k),t}, \\ (\mathrm{R}4) \\ q^{\pm a_{(i,k)(j,l)}}\mathcal{I}^{\pm}_{(j,l),0}\mathcal{X}^{+}_{(i,k),t} - q^{\mp a_{(i,k)(j,l)}}\mathcal{X}^{\pm}_{(i,k),t}\mathcal{I}^{\pm}_{(j,l),0} = a_{(i,k)(j,l)}\mathcal{X}^{+}_{(i,k),t}, \\ q^{\mp a_{(i,k)(j,l)}}\mathcal{I}^{\pm}_{(j,l),0}\mathcal{X}^{-}_{(i,k),t} - q^{\pm a_{(i,k)(j,l)}}\mathcal{X}^{-}_{(i,k),t}\mathcal{I}^{\pm}_{(j,l),0} = -a_{(i,k)(j,l)}\mathcal{X}^{+}_{(i,k),t}, \\ (\mathrm{R}5) \\ [\mathcal{I}^{\pm}_{(j,l),s+1},\mathcal{X}^{+}_{(i,k),t}] = q^{\pm a_{(i,k)(j,l)}}\mathcal{I}^{\pm}_{(j,l),s}\mathcal{X}^{+}_{(i,k),t+1} - q^{\mp a_{(i,k)(j,l)}}\mathcal{X}^{+}_{(i,k),t+1}\mathcal{I}^{\pm}_{(j,l),s}, \\ [\mathcal{I}^{\pm}_{(j,l),s+1},\mathcal{X}^{-}_{(i,k),t}] = q^{\mp a_{(i,k)(j,l)}}\mathcal{I}^{\pm}_{(j,l),s}\mathcal{X}^{+}_{(i,k),t+1} - q^{\pm a_{(i,k)(j,l)}}\mathcal{X}^{-}_{(i,k),t+1}\mathcal{I}^{\pm}_{(j,l),s}, \\ (\mathrm{R}6) \\ [\mathcal{X}^{+}_{(i,k),t},\mathcal{X}^{-}_{(j,l),s}] \\ = \delta_{(i,k),(j,l)} \left\{ \begin{matrix} \widetilde{K}^{+}_{(i,k)}\mathcal{J}_{(i,k),s+t} & if \ i \neq m_k, \\ -Q_k \widetilde{K}^{+}_{(m_k,k)}\mathcal{J}_{(m_k,k),s+t} + \widetilde{K}^{+}_{(m_k,k)}\mathcal{J}_{(m_k,k),s+t+1} & if \ i = m_k, \\ \end{matrix} \right. \\ (\mathrm{R7}) \\ [\mathcal{X}^{\pm}_{(i,k),t},\mathcal{X}^{\pm}_{(j,l),s}] = 0 & if \ (j,l) \neq (i,k), \ (i\pm 1,k), \\ \mathcal{X}^{\pm}_{(i,k),t+1}\mathcal{X}^{\pm}_{(i,k),s} - q^{\pm 2}\mathcal{X}^{\pm}_{(i,k),s}\mathcal{X}^{\pm}_{(i,k),t+1} = q^{\pm 2}\mathcal{X}^{\pm}_{(i,k),t}\mathcal{X}^{\pm}_{(i,k),s+1} - \mathcal{X}^{\pm}_{(i,k),s+1}\mathcal{X}^{\pm}_{(i,k),t}, \\ \mathcal{X}^{+}_{(i,k),t+1}\mathcal{X}^{+}_{(i+1,k),s} - q^{-1}\mathcal{X}^{+}_{(i+1,k),s}\mathcal{X}^{+}_{(i,k),t+1} = \mathcal{X}^{+}_{(i,k),t}\mathcal{X}^{+}_{(i+1,k),s+1} - q\mathcal{X}^{+}_{(i,k),t}\mathcal{X}^{+}_{(i,k),t}, \\ \mathcal{X}^{+}_{(i+1,k),s}\mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t}\mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t+1} \\ \mathcal{X}^{+}_{(i+1,k),s}\mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t}\mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t} \\ \mathcal{X}^{+}_{(i+1,k),s}\mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t}\mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t} \\ \mathcal{X}^{+}_{(i+1,k),s}\mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t}\mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t} \\ \mathcal{X}^{+}_{(i+1,k),s}\mathcal{X}^{-}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t} \\ \mathcal$$

Remark 4.3. The relations (R4) follows from the relations (R1) and (R3) in $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$. Thus, we do not need the relations (R4) as a defining relations of $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$. However, (R4) does not follows from (R1) and (R3) in the integral forms $\mathcal{U}_{\mathbb{A},q,\mathbf{Q}}^{\star}(\mathbf{m})$ and $\mathcal{U}_{\mathbb{A},q,\mathbf{Q}}(\mathbf{m})$ defined below. Then, we require the relations (R4) in a defining relations of $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$.

4.4. By the relation (R1), for $(i, k) \in \Gamma'(\mathbf{m})$, we have

(4.4.1)
$$\widetilde{\mathcal{K}}_{(i,k)}^{+} \mathcal{J}_{(i,k),0} = \frac{\widetilde{\mathcal{K}}_{(i,k)}^{+} - \widetilde{\mathcal{K}}_{(i,k)}^{-}}{q - q^{-1}}.$$

Thus, in the case where s = t = 0, we can replace the relation (R6) by

(4.4.2)

$$[\mathcal{X}_{(i,k),0}^{+}, \mathcal{X}_{(j,l),0}^{-}] = \delta_{(i,k),(j,l)} \begin{cases} \frac{\widetilde{\mathcal{K}}_{(i,k)}^{+} - \widetilde{\mathcal{K}}_{(i,k)}^{-}}{q - q^{-1}} & \text{if } i \neq m_k, \\ \frac{\widetilde{\mathcal{K}}_{(m_k,k)}^{+} - \widetilde{\mathcal{K}}_{(m_k,k)}^{-}}{q - q^{-1}} + \widetilde{\mathcal{K}}_{(m_k,k)}^{+} \mathcal{J}_{(m_k,k),1} & \text{if } i = m_k. \end{cases}$$

By (R8), if s = t, we have

$$(4.4.3)$$

$$\mathcal{X}^{+}_{(i\pm 1,k),u}(\mathcal{X}^{+}_{(i,k),t})^{2} - (q+q^{-1})\mathcal{X}^{+}_{(i,k),t}\mathcal{X}^{+}_{(i\pm 1,k),u}\mathcal{X}^{+}_{(i,k),t} + (\mathcal{X}^{+}_{(i,k),t})^{2}\mathcal{X}^{+}_{(i\pm 1,k),u} = 0,$$

$$\mathcal{X}^{-}_{(i\pm 1,k),u}(\mathcal{X}^{-}_{(i,k),t})^{2} - (q+q^{-1})\mathcal{X}^{-}_{(i,k),t}\mathcal{X}^{-}_{(i\pm 1,k),u}\mathcal{X}^{-}_{(i,k),t} + (\mathcal{X}^{-}_{(i,k),t})^{2}\mathcal{X}^{-}_{(i\pm 1,k),u} = 0.$$

By (R4) and (R5), we have

$$[\mathcal{I}_{(j,l),1}^+, \mathcal{X}_{(i,k),t}^{\pm}] = [\mathcal{I}_{(j,l),1}^-, \mathcal{X}_{(i,k),t}^{\pm}] = \pm a_{(i,k)(j,l)} \mathcal{X}_{(i,k),t+1}^{\pm}.$$

By the induction on s using the relation (R6), for $s \ge 1$, we can show that

$$\begin{aligned} &[\mathcal{I}_{(j,l),s}^{\pm},\mathcal{X}_{(i,k),t}^{+}] \\ &= a_{(i,k)(j,l)}q^{\pm a_{(i,k)(j,l)}(s-1)}\mathcal{X}_{(i,k),t+s}^{+} \pm a_{(i,k)(j,l)}(q-q^{-1}) \sum_{p=1}^{s-1} q^{\pm a_{(i,k)(j,l)}(p-1)}\mathcal{X}_{(i,k),t+p}^{+} \mathcal{I}_{(j,l),s-p}^{\pm} \\ &= a_{(i,k)(j,l)}q^{\mp a_{(i,k)(j,l)}(s-1)}\mathcal{X}_{(i,k),t+s}^{+} \pm a_{(i,k)(j,l)}(q-q^{-1}) \sum_{p=1}^{s-1} q^{\mp a_{(i,k)(j,l)}(p-1)}\mathcal{I}_{(j,l),s-p}^{\pm} \mathcal{X}_{(i,k),t+p}^{+}, \end{aligned}$$

and

$$\begin{aligned} & (4.4.6) \\ & [\mathcal{I}_{(j,l),s}^{\pm}, \mathcal{X}_{(i,k),t}^{-}] \\ & = -a_{(i,k)(j,l)}q^{\mp a_{(i,k)(j,l)}(s-1)}\mathcal{X}_{(i,k),t+s}^{-} \mp a_{(i,k)(j,l)}(q-q^{-1}) \sum_{p=1}^{s-1} q^{\mp a_{(i,k)(j,l)}(p-1)}\mathcal{X}_{(i,k),t+p}^{-}\mathcal{I}_{(j,l),s-p}^{\pm} \\ & = -a_{(i,k)(j,l)}q^{\pm a_{(i,k)(j,l)}(s-1)}\mathcal{X}_{(i,k),t+s}^{-} \mp a_{(i,k)(j,l)}(q-q^{-1}) \sum_{p=1}^{s-1} q^{\pm a_{(i,k)(j,l)}(p-1)}\mathcal{I}_{(j,l),s-p}^{\pm}\mathcal{X}_{(i,k),t+p}^{-}. \end{aligned}$$

4.5. Let $\mathcal{U}^+ = \mathcal{U}_{q,\mathbf{Q}}^+(\mathbf{m})$, $\mathcal{U}^- = \mathcal{U}_{q,\mathbf{Q}}^-(\mathbf{m})$ and $\mathcal{U}^0 = \mathcal{U}_{q,\mathbf{Q}}^0(\mathbf{m})$ be the subalgebra of \mathcal{U} generated by

$$\{\mathcal{X}_{(i,k),t}^{+} \mid (i,k) \in \Gamma'(\mathbf{m}), t \geq 0\}, \{\mathcal{X}_{(i,k),t}^{-} \mid (i,k) \in \Gamma'(\mathbf{m}), t \geq 0\} \text{ and } \{\mathcal{I}_{(j,l),t}^{\pm}, \mathcal{K}_{(j,l)}^{\pm} \mid (j,l) \in \Gamma(\mathbf{m}), t \geq 0\}$$

respectively. Then, we have the following triangular decomposition of \mathcal{U} from the relations (R1)-(R8), (4.4.5) and (4.4.6).

Proposition 4.6. We have

$$\mathcal{U} = \mathcal{U}^{-}\mathcal{U}^{0}\mathcal{U}^{+}.$$

Remark 4.7. We conjecture that the multiplication map $\mathcal{U}^- \otimes_{\mathbb{K}} \mathcal{U}^0 \otimes_{\mathbb{K}} \mathcal{U}^+ \to \mathcal{U}$ $(x \otimes y \otimes z \mapsto xyz)$ gives an isomorphism as vector spaces. More precisely, we expect the existence of a PBW type basis of \mathcal{U} (cf. Proposition 2.6 and (4.11.2) with Remark 4.12).

4.8. We have some relations between the algebra \mathcal{U} and a quantum group associated with the general linear Lie algebra as follows.

Let $U_q(\mathfrak{gl}_m)$ be the quantum group associated with the general linear Lie algebra \mathfrak{gl}_m over \mathbb{K} . Namely, $U_q(\mathfrak{gl}_m)$ is an associative algebra over \mathbb{K} generated by e_i, f_i $(1 \leq i \leq m-1)$ and K_j^{\pm} $(1 \leq j \leq m)$ with the following defining relations:

(Q1)
$$K_i^+ K_j^+ = K_j^+ K_i^+, \quad K_i^+ K_i^- = K_i^- K_i^+ = 1,$$

(Q2)
$$K_{i}^{+}e_{i}K_{i}^{-} = q^{a_{ij}}e_{i}, \quad K_{i}^{+}f_{i}K_{i}^{-} = q^{-a_{ij}}f_{i}, \text{ where } a_{ij} = \langle \alpha_{i}, h_{j} \rangle,$$

(Q3)
$$e_i f_j - f_j e_i = \delta_{i,j} \frac{K_i^+ K_{i+1}^- - K_i^- K_{i+1}^+}{q - q^{-1}},$$

(Q4)
$$e_{i\pm 1}e_i^2 - (q+q^{-1})e_ie_{i\pm 1}e_i + e_i^2e_{i\pm 1} = 0, \quad e_ie_j = e_je_i(|i-j| \ge 2),$$

(Q5)
$$f_{i\pm 1}f_i^2 - (q+q^{-1})f_i f_{i\pm 1}f_i + f_i^2 f_{i\pm 1} = 0, \quad f_i f_j = f_j f_i (|i-j| \ge 2).$$

Let $U_q(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r}) \cong U_q(\mathfrak{gl}_{m_1}) \otimes \cdots \otimes U_q(\mathfrak{gl}_{m_r})$ be the Levi subalgebra of $U_q(\mathfrak{gl}_m)$ associated with the Levi subalgebra $\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r}$ of \mathfrak{gl}_m . Then generators of $U_q(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r})$ are given by $e_{(i,k)}, f_{(i,k)}$ $(1 \leq i \leq m_k - 1, 1 \leq k \leq r)$ and $K_{(j,l)}^{\pm}$ $((j,l) \in \Gamma(\mathbf{m}))$, where we use the identification (1.3.1) for indices.

Proposition 4.9.

(i) There exits a surjective homomorphism of algebras

$$(4.9.1) g: \mathcal{U}_{q,\mathbf{Q}}(\mathbf{m}) \to U_q(\mathfrak{gl}_m)$$

such that

$$g(\mathcal{X}_{(i,k),0}^{+}) = \begin{cases} e_{(i,k)} & \text{if } i \neq m_k, \\ -Q_k e_{(m_k,k)} & \text{if } i = m_k, \end{cases} g(\mathcal{X}_{(i,k),0}^{-}) = f_{(i,k)},$$
$$g(\mathcal{K}_{(i,l)}^{\pm}) = K_{(i,l)}^{\pm} \text{ and } g(\mathcal{X}_{(i,k),t}^{\pm}) = g(\mathcal{I}_{(i,l),t}^{\pm}) = 0 \text{ for } t \geq 1.$$

(ii) There exists an injective homomorphism of algebras

(4.9.2)
$$\iota: U_q(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r}) \to \mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$$

such that
$$\iota(e_{(i,k)}) = \mathcal{X}^+_{(i,k),0}$$
, $\iota(f_{(i,k)}) = \mathcal{X}^-_{(i,k),0}$ and $\iota(K^{\pm}_{(j,l)}) = \mathcal{K}^{\pm}_{(j,l)}$.

Proof. We can check the well-definedness of g and ι by direct calculations. Clearly g is surjective. Let $\iota': U_q(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r}) \to U_q(\mathfrak{gl}_m)$ be the natural embedding. Then, by investigating the image of generators, we see that $\iota' = g \circ \iota$. This implies that ι is injective.

Remark 4.10. The surjective homomorphism g in (4.9.1) can be regarded as a special case of evaluation homomorphisms. However, we can not define evaluation homomorphisms for $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ in general although we can consider $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ -modules corresponding to some evaluation modules. They will be studied in a subsequent paper.

4.11. Let $\mathcal{U}_{\mathbb{A}}^{\star} = \mathcal{U}_{\mathbb{A},q,\mathbf{Q}}^{\star}(\mathbf{m})$ be the \mathbb{A} -subalgebra of $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ generated by

$$\{\mathcal{X}_{(i,k),t}^{\pm}, \mathcal{I}_{(j,l),t}^{\pm}, \mathcal{K}_{(j,l)}^{\pm} | (i,k) \in \Gamma'(\mathbf{m}), (j,l) \in \Gamma(\mathbf{m}), t \geq 0\}.$$

Then, $\mathcal{U}_{\mathbb{A}}^{\star}$ is an associative algebra over \mathbb{A} generated by the same generators with the defining relations (R1)-(R8). We regard $\mathbb{Q}(\mathbf{Q})$ as an \mathbb{A} -module through the ring homomorphism $\mathbb{A} \to \mathbb{Q}(\mathbf{Q})$ $(q \mapsto 1)$, and we consider the specialization $\mathbb{Q}(\mathbf{Q}) \otimes_{\mathbb{A}} \mathcal{U}_{\mathbb{A}}^{\star}$ using this ring homomorphism. Let \mathfrak{J} be the ideal of $\mathbb{Q}(\mathbf{Q}) \otimes_{\mathbb{A}} \mathcal{U}_{\mathbb{A}}^{\star}$ generated by

$$\{\mathcal{K}_{(j,l)}^{+} - 1, \, \mathcal{I}_{(j,l),t}^{+} - \mathcal{I}_{(j,l),t}^{-} \, | \, (i,l) \in \Gamma(\mathbf{m}), \, t \ge 0\}.$$

Let $U(\mathfrak{g}_{\mathbf{Q}}(\mathbf{m}))$ be the universal enveloping algebra of the Lie algebra $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ defined in Definition 2.2. Then we can check that there exists a surjective homomorphism of algebras

$$(4.11.2) U(\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})) \to \mathbb{Q}(\mathbf{Q}) \otimes_{\mathbb{A}} \mathcal{U}_{\mathbb{A}, q, \mathbf{Q}}^{\star}(\mathbf{m})/\mathfrak{J}$$

such that
$$\mathcal{X}_{(i,k),t}^{\pm} \mapsto \mathcal{X}_{(i,k),t}^{\pm}$$
 and $\mathcal{I}_{(j,l),t} \mapsto \mathcal{I}_{(j,l),t}^{+} (= \mathcal{I}_{(j,l),t}^{-})$.

Remark 4.12. We conjecture that the homomorphism (4.11.2) is isomorphic. Then we may regard $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ as a q-analogue of $U(\mathfrak{g}_{\mathbf{Q}}(\mathbf{m}))$.

We also remark that we have $(\mathcal{K}_{(j,l)}^+)^2 = 1$ in $\mathcal{U}_{\mathbb{A}}^*$ by the relation (R1). On the other hand, there exists an algebra automorphism of \mathcal{U} such that $\mathcal{K}_{(i,l)}^{\pm} \mapsto -\mathcal{K}_{(i,l)}^{\pm}$

and the other generators send to the same generators. Thus, the choice of signs for $\mathcal{K}_{(i,l)}^+$ in (4.11.1) will not cause any troubles.

4.13. The final of this section, we define the \mathbb{A} -form of \mathcal{U} taking the divided powers. For $(i,k) \in \Gamma'(\mathbf{m})$ and $t,d \in \mathbb{Z}_{\geq 0}$, put

$$\mathcal{X}_{(i,k),t}^{\pm(d)} = \frac{(\mathcal{X}_{(i,k),t}^{\pm})^d}{[d]!} \in \mathcal{U}.$$

For $(j, l) \in \Gamma(\mathbf{m})$ and $d \in \mathbb{Z}_{\geq 0}$, put

$$\begin{bmatrix} \mathcal{K}_{(j,l)}; 0 \\ d \end{bmatrix} = \prod_{b=1}^{d} \frac{\mathcal{K}_{(j,l)}^{+} q^{-b+1} - \mathcal{K}_{(j,l)}^{-} q^{b-1}}{q^{b} - q^{-b}} \in \mathcal{U}.$$

Let $\mathcal{U}_{\mathbb{A}} = \mathcal{U}_{\mathbb{A},q,\mathbf{Q}}(\mathbf{m})$ be the \mathbb{A} -subalgebra of \mathcal{U} generated by all $\mathcal{X}^{\pm(d)}_{(i,k),t}$, $\mathcal{I}^{\pm}_{(j,l),t}$, $\mathcal{K}^{\pm}_{(j,l)}$ and $\begin{bmatrix} \mathcal{K}_{(j,l);0} \\ d \end{bmatrix}$.

§ 5. Representations of $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$

Thanks to the triangular decomposition (4.6.1) of $\mathcal{U} = \mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$, we can develop the weight theory to study \mathcal{U} -modules in the usual manner as follows.

- **5.1. Highest weight modules.** For $\lambda \in P$ and a multiset $\varphi = (\varphi_{(j,l),t}^{\pm} | (j,l) \in \Gamma(\mathbf{m}), t \geq 1)$ ($\varphi_{(j,l),t}^{\pm} \in \mathbb{K}$), we say that a \mathcal{U} -module M is a highest weight module of highest weight (λ, φ) if there exists an element $v_0 \in M$ satisfying the following three conditions:
 - (i) M is generated by v_0 as a \mathcal{U} -module,
 - (ii) $\mathcal{X}_{(i,k),t}^+ \cdot v_0 = 0$ for all $(i,k) \in \Gamma'(\mathbf{m})$ and $t \ge 0$,
 - (iii) $\mathcal{K}^+_{(j,l)} \cdot v_0 = q^{\langle \lambda, h_{(j,l)} \rangle} v_0$ and $\mathcal{I}^{\pm}_{(j,l),t} \cdot v_0 = \varphi^{\pm}_{(j,l),t} v_0$ for $(j,l) \in \Gamma(\mathbf{m})$ and $t \geq 1$.

If an element $v_0 \in M$ satisfies the above conditions (ii) and (iii), we say that v_0 is a maximal vector of weight (λ, φ) . In this case, the submodule $\mathcal{U} \cdot v_0$ of M is a highest weight module of highest weight (λ, φ) . If a maximal vector $v_0 \in M$ satisfies also the above condition (i), we say that v_0 is a highest weight vector.

If $v_0 \in M$ is a maximal vector of weight (λ, φ) , for $(j, l) \in \Gamma(\mathbf{m})$, we have

$$\mathcal{I}_{(j,l),0}^{\pm} \cdot v = q^{\mp \lambda_{(j,l)}} [\lambda_{(j,l)}] v$$
, where $\lambda_{(j,l)} = \langle \lambda, h_{(j,l)} \rangle$

by the relation (R1).

For a highest weight \mathcal{U} -module M of highest weight (λ, φ) with a highest weight vector $v_0 \in M$, we have $M = \mathcal{U}^- \cdot v_0$ by the triangular decomposition (4.6.1). Thus, the relation (R3) implies the weight space decomposition

(5.1.1)
$$M = \bigoplus_{\substack{\mu \in P \\ \mu \le \lambda}} M_{\mu} \text{ such that } \dim_{\mathbb{K}} M_{\lambda} = 1,$$

where $M_{\mu} = \{ v \in M \mid \mathcal{K}^+_{(j,l)} \cdot v = q^{\langle \mu, h_{(j,l)} \rangle} v \text{ for } (j,l) \in \Gamma(\mathbf{m}) \}.$

5.2. Verma modules. Let $\widetilde{\mathcal{U}}^0$ be the associative algebra over \mathbb{K} generated by $\mathcal{I}_{(j,l),t}^{\pm}$ and $\mathcal{K}_{(j,l)}^{\pm}$ for all $(j,l) \in \Gamma(\mathbf{m})$ and $t \geq 0$ with the defining relations (R1) and (R2). We also define the associative algebra $\widetilde{\mathcal{U}}^{\geq 0}$ generated by $\mathcal{X}_{(i,k),t}^+$, $\mathcal{I}_{(j,l),t}^{\pm}$ and $\mathcal{K}_{(j,l)}^{\pm}$ for all $(i,k) \in \Gamma'(\mathbf{m})$, $(j,l) \in \Gamma(\mathbf{m})$ and $t \geq 0$ with the defining relations (R1)-(R8) except (R6). Then we have the homomorphism of algebras

(5.2.1)
$$\widetilde{\mathcal{U}}^{\geq 0} \to \mathcal{U}$$
 such that $\mathcal{X}_{(i,k),t}^+ \mapsto \mathcal{X}_{(i,k),t}^+, \mathcal{I}_{(j,l),t}^\pm \mapsto \mathcal{I}_{(j,l),t}^\pm$

and the surjective homomorphism of algebras

$$(5.2.2) \widetilde{\mathcal{U}}^{\geq 0} \to \widetilde{\mathcal{U}}^{0} \text{ such that } \mathcal{X}_{(i,k),t}^{+} \mapsto 0, \mathcal{I}_{(j,l)}^{\pm} \mapsto \mathcal{I}_{(j,l),t}^{\pm}, \mathcal{K}_{(j,l)}^{\pm} \mapsto \mathcal{K}_{(j,l)}^{\pm}.$$

For $\lambda \in P$ and a multiset $\varphi = (\varphi_{(j,l),t}^{\pm})$, we define a (1-dimensional) simple $\widetilde{\mathcal{U}}^0$ -module $\Theta_{(\lambda,\varphi)} = \mathbb{K}v_0$ by

$$\mathcal{K}_{(j,l)}^+ \cdot v_0 = q^{\langle \lambda, h_{(j,l)} \rangle} v_0, \quad \mathcal{I}_{(j,l),t}^{\pm} \cdot v_0 = \varphi_{(j,l),t}^{\pm} v_0$$

for $(j,l) \in \Gamma(\mathbf{m})$ and $t \geq 1$. Then we define the Verma module $M(\lambda,\varphi)$ as the induced module

$$M(\lambda, \varphi) = \mathcal{U} \otimes_{\widetilde{\mathcal{U}}^{\geq 0}} \Theta_{(\lambda, \varphi)},$$

where we regard $\Theta_{(\lambda,\varphi)}$ (resp. \mathcal{U}) as a left (resp. right) $\widetilde{\mathcal{U}}^{\geq 0}$ -module through the homomorphism (5.2.2) (resp. (5.2.1)).

By definitions, the Verma module $M(\lambda, \varphi)$ is a highest weight module of highest weight (λ, φ) with a highest weight vector $1 \otimes v_0$. Then we see that any highest weight module of highest weight (λ, φ) is a quotient of $M(\lambda, \varphi)$ by the universality of tensor products. We also see that $M(\lambda, \varphi)$ has the unique simple top $L(\lambda, \varphi) = M(\lambda, \varphi) / \operatorname{rad} M(\lambda, \varphi)$ from the weight space decomposition (5.1.1).

By using the homomorphism $\iota: U_q(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r}) \to \mathcal{U}$ in (4.9.2), we have the following necessary condition for $L(\lambda, \varphi)$ to be finite dimensional in a similar way as in the proof of Proposition 3.4.

Proposition 5.3. For $\lambda \in P$ and a multiset $\varphi = (\varphi_{(j,l),t}^{\pm})$, if $L(\lambda, \varphi)$ is finite dimensional, then we have $\lambda \in P_{\mathbf{m}}^{+}$.

- **5.4. Category** $C_{q,\mathbf{Q}}(\mathbf{m})$. Let $C_{q,\mathbf{Q}}(\mathbf{m})$ (resp. $C_{q,\mathbf{Q}}^{\geq 0}(\mathbf{m})$) be the full subcategory of \mathcal{U} -mod consisting of \mathcal{U} -modules satisfying the following conditions:
 - (i) If $M \in \mathcal{C}_{q,\mathbf{Q}}(\mathbf{m})$ (resp. $M \in \mathcal{C}_{q,\mathbf{Q}}^{\geq 0}(\mathbf{m})$), then M is finite dimensional,

(ii) If $M \in \mathcal{C}_{q,\mathbf{Q}}(\mathbf{m})$ (resp. $M \in \mathcal{C}_{q,\mathbf{Q}}^{\geq 0}(\mathbf{m})$), then M has the weight space decomposition

$$M = \bigoplus_{\lambda \in P} M_{\lambda} \quad \text{(resp. } M = \bigoplus_{\lambda \in P_{>0}} M_{\lambda}\text{)},$$

where $M_{\lambda} = \{ v \in M \mid \mathcal{K}_{(j,l)}^+ \cdot m = q^{\langle \lambda, h_{(j,l)} \rangle} v \text{ for } (j,l) \in \Gamma(\mathbf{m}) \},$

(iii) If $M \in \mathcal{C}_{q,\mathbf{Q}}(\mathbf{m})$ (resp. $M \in \mathcal{C}_{q,\mathbf{Q}}^{\geq 0}(\mathbf{m})$), then all eigenvalues of the action of $\mathcal{I}_{(j,l),t}^{\pm}$ $((j,l) \in \Gamma(\mathbf{m}), t \geq 0)$ on M belong to \mathbb{K} .

By the usual argument, we have the following lemma.

Lemma 5.5. Any simple object in $C_{q,\mathbf{Q}}(\mathbf{m})$ is a highest weight module.

By using the surjection $g: \mathcal{U}_{q,\mathbf{Q}}(\mathbf{m}) \to U_q(\mathfrak{gl}_m)$ in (4.9.1), we have the following proposition.

Proposition 5.6. Let $C_{U_q(\mathfrak{gl}_m)}$ be the category of finite dimensional $U_q(\mathfrak{gl}_m)$ -modules which have the weight space decomposition. Then we have the followings.

- (i) $C_{U_q(\mathfrak{gl}_m)}$ is a full subcategory of $C_{q,\mathbf{Q}}(\mathbf{m})$ through the surjection (4.9.1).
- (ii) For $\lambda \in P^+$, the simple highest weight $U_q(\mathfrak{gl}_m)$ -module $\Delta_{U_q(\mathfrak{gl}_m)}(\lambda)$ of highest weight λ is the simple highest weight \mathcal{U} -module of highest weight $(\lambda, \mathbf{0})$ through the surjection (4.9.1), where $\mathbf{0}$ means $\varphi_{(j,l),t}^{\pm} = 0$ for all $(j,l) \in \Gamma(\mathbf{m})$ and $t \geq 1$.

§ 6. REVIEW OF CYCLOTOMIC q-SCHUR ALGEBRAS

In this section, we recall the definition and some fundamental properties of the cyclotomic q-Schur algebra $\mathscr{S}_{n,r}(\mathbf{m})$ introduced in [DJM]. See [DJM] and [M1] for details.

6.1. Let R be a commutative ring, and we take parameters $q, Q_0, Q_1, \ldots, Q_{r-1} \in R$ such that q is invertible in R. The Ariki-Koike algebra $\mathscr{H}_{n,r}$ associated with the complex reflection group $\mathfrak{S}_n \ltimes (\mathbb{Z}/r\mathbb{Z})^n$ is the associative algebra with 1 over R generated by $T_0, T_1, \ldots, T_{n-1}$ with the following defining relations:

$$(T_0 - Q_0)(T_0 - Q_1)\dots(T_0 - Q_{r-1}) = 0, \quad (T_i - q)(T_i + q^{-1}) = 0 \quad (1 \le i \le n - 1),$$

 $T_0T_1T_0T_1 = T_1T_0T_1T_0, \quad T_iT_{i+1}T_i = T_{i+1}T_iT_{i+1} \quad (1 \le i \le n - 2),$
 $T_iT_j = T_jT_i \quad (|i - j| \ge 2).$

The subalgebra of $\mathcal{H}_{n,r}$ generated by T_1, \ldots, T_{n-1} is isomorphic to the Iwahori-Hecke algebra \mathcal{H}_n associated with the symmetric group \mathfrak{S}_n of degree n. For $w \in \mathfrak{S}_n$, we denote by $\ell(w)$ the length of w, and denote by T_w the standard basis of \mathcal{H}_n corresponding to w.

6.2. Put $L_1 = T_0$ and $L_i = T_{i-1}L_{i-1}T_{i-1}$ for i = 2, ..., n. These elements $L_1, ..., L_n$ are called Jucys-Murphy elements of $\mathcal{H}_{n,r}$ (see [M2] for properties of Jucys-Murphy elements). The following lemma is well-known, and one can easily check them from defining relations of $\mathcal{H}_{n,r}$.

Lemma 6.3. We have the following.

- (i) L_i and L_j commute with each other for any $1 \le i, j \le n$.
- (ii) T_i and L_j commute with each other if $j \neq i, i+1$.

- (iii) T_i commutes with both L_iL_{i+1} and $L_i + L_{i+1}$ for any $1 \le i \le n-1$. (iv) $L_{i+1}^tT_i = (q-q^{-1})\sum_{s=0}^{t-1} L_{i+1}^{t-s}L_i^s + T_iL_i^t$ for any $1 \le i \le n-1$ and $t \ge 1$. (v) $L_i^tT_i = -(q-q^{-1})\sum_{s=1}^t L_i^{t-s}L_{i+1}^s + T_iL_{i+1}^t$ for any $1 \le i \le n-1$ and $t \ge 1$.
- **6.4.** Let $\mathbf{m} = (m_1, \dots, m_r) \in \mathbb{Z}_{>0}^r$ be an r-tuple of positive integers. Put

$$\Lambda_{n,r}(\mathbf{m}) = \left\{ \mu = (\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(r)}) \middle| \begin{array}{l} \mu^{(k)} = (\mu_1^{(k)}, \dots, \mu_{m_k}^{(k)}) \in \mathbb{Z}_{\geq 0}^{m_k} \\ \sum_{k=1}^r \sum_{i=1}^{m_k} \mu_i^{(k)} = n \end{array} \right\}.$$

We also put

$$\Lambda_{n,r}^+(\mathbf{m}) = \{ \mu \in \Lambda_{n,r}(\mathbf{m}) \mid \mu_1^{(k)} \ge \mu_2^{(k)} \ge \dots \ge \mu_{m_k}^{(k)} \ge 0 \text{ for each } k = 1,\dots,r \}.$$

We regard $\Lambda_{n,r}(\mathbf{m})$ as a subset of weight lattice $P = \bigoplus_{(i,k)\in\Gamma(\mathbf{m})} \mathbb{Z}\varepsilon_{(i,k)}$ by the injection $\Lambda_{n,r}(\mathbf{m}) \to P$ such that $\mu \mapsto \sum_{(i,k)\in\Gamma(\mathbf{m})} \mu_i^{(k)} \varepsilon_{(i,k)}$. Then we see that $\Lambda_{n,r}^+(\mathbf{m}) = \Lambda_{n,r}(\mathbf{m}) \cap P_{\mathbf{m}}^+.$

For $\mu \in \Lambda_{n,r}(\mathbf{m})$, put

(6.4.1)
$$m_{\mu} = \left(\sum_{w \in \mathfrak{S}_{\mu}} q^{\ell(w)} T_{w} \right) \left(\prod_{k=1}^{r-1} \prod_{i=1}^{a_{k}} (L_{i} - Q_{k}) \right),$$

where \mathfrak{S}_{μ} is the Young subgroup of \mathfrak{S}_n with respect to μ , and $a_k = \sum_{j=1}^k |\mu^{(j)}|$. The following fact is well known:

(6.4.2)
$$m_{\mu}T_{w} = q^{\ell(w)}m_{\mu} \text{ if } w \in \mathfrak{S}_{\mu}.$$

The cyclotomic q-Schur algebra $\mathscr{S}_{n,r}(\mathbf{m})$ associated with $\mathscr{H}_{n,r}$ is defined by

(6.4.3)
$$\mathscr{S}_{n,r}(\mathbf{m}) = \operatorname{End}_{\mathscr{H}_{n,r}} \left(\bigoplus_{\mu \in \Lambda_{n,r}(\mathbf{m})} m_{\mu} \mathscr{H}_{n,r} \right).$$

For convenience in the later arguments, put $m_{\mu} = 0$ for $\mu \in P \setminus \Lambda_{n,r}(\mathbf{m})$.

6.5. Put $\widetilde{A}_{n,r}^+(\mathbf{m}) = A_{n,r}^+((n,\ldots,n,m_r))$. It is clear that $\widetilde{A}_{n,r}^+(\mathbf{m}) = A_{n,r}^+(\mathbf{m})$ if $m_k \ge n$ for all k = 1, ..., r - 1. In the case where $m_k < n$ for some k < r, $\Lambda_{n,r}^+(\mathbf{m})$ is a proper subset of $\Lambda_{n,r}^+(\mathbf{m})$.

In [DJM] (see also [M1] for the case where $m_k < n$ for some k), it is proven that $\mathscr{S}_{n,r}(\mathbf{m})$ is a cellular algebra with respect to the poset $(\widetilde{\Lambda}_{n,r}^+,\geq)$. For $\lambda\in$ $\widetilde{A}_{n,r}^+(\mathbf{m})$, let $\Delta(\lambda)$ be the Weyl (cell) module corresponding to λ constructed in [DJM] (see also [M1] and [W3, Lemma 1.18]). By the general theory of cellular algebras

given in [GL], $\{\Delta(\lambda) \mid \lambda \in \widetilde{\Lambda}_{n,r}^+(\mathbf{m})\}$ gives a complete set of isomorphism classes of simple $\mathscr{S}_{n,r}(\mathbf{m})$ -modules if $\mathscr{S}_{n,r}(\mathbf{m})$ is semi-simple. It is also proven, in [DJM], that $\mathscr{S}_{n,r}(\mathbf{m})$ is a quasi-hereditary algebra such that $\{\Delta(\lambda) \mid \lambda \in \Lambda_{n,r}^+(\mathbf{m})\}$ gives a complete set of standard modules if R is a field and $m_k \geq n$ for all $k = 1, \ldots, r - 1$.

From the construction of $\Delta(\lambda)$ in [DJM], $\Delta(\lambda)$ has a basis indexed by the set of semi-standard tableaux. Since we use them in the later argument, we recall the definition of semi-standard tableaux from [DJM].

For $\lambda \in \widetilde{\Lambda}_{n,r}^+(\mathbf{m})$, the diagram $[\lambda]$ of λ is the set

$$[\lambda] = \{(i, j, k) \in \mathbb{Z}^3 \mid 1 \le i \le m_k, \ 1 \le j \le \lambda_i^{(k)}, \ 1 \le k \le r\}.$$

For $x = (i, j, k) \in [\lambda]$, put

$$res(x) = q^{2(j-i)}Q_{k-1}.$$

For $\lambda \in \widetilde{\Lambda}_{n,r}^+(\mathbf{m})$ and $\mu \in \Lambda_{n,r}(\mathbf{m})$, a tableau of shape λ with weight μ is a map

$$T: [\lambda] \to \{(a,c) \in \mathbb{Z} \times \mathbb{Z} \mid a \ge 1, 1 \le c \le r\}$$

such that $\mu_i^{(k)} = \sharp \{x \in [\lambda] \mid T(x) = (i,k)\}$. We define the order on $\mathbb{Z} \times \mathbb{Z}$ by $(a,c) \geq (a',c')$ if either c > c', or c = c' and $a \geq a'$. For a tableau T of shape λ with weight μ , we say that T is semi-standard if T satisfies the following conditions:

- (i) If T((i, j, k)) = (a, c), then $k \le c$,
- (ii) $T((i, j, k)) \le T((i, j + 1, k))$ if $(i, j + 1, k) \in [\lambda]$,
- (iii) T((i, j, k)) < T((i + 1, j, k)) if $(i + 1, j, k) \in [\lambda]$.

For $\lambda \in \widetilde{\Lambda}_{n,r}^+(\mathbf{m})$, $\mu \in \Lambda_{n,r}(\mathbf{m})$, we denote by $\mathcal{T}_0(\lambda,\mu)$ the set of semi-standard tableaux of shape λ with weight μ . Then, from the cellular basis of $\mathscr{S}_{n,r}(\mathbf{m})$ in [DJM], we see that $\Delta(\lambda)$ has the basis

$$\{\varphi_T \mid T \in \mathcal{T}_0(\lambda, \mu) \text{ for some } \mu \in \Lambda_{n,r}(\mathbf{m})\}.$$

(See [DJM] for the definition of φ_T .)

§ 7. Generators of cyclotomic q-Schur algebras

In this section, we define some generators of the cyclotomic q-Schur algebra, and we obtain some relations among them which will be used to obtain the homomorphism from $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ in the next section.

7.1. A partition λ is a non-increasing sequence $\lambda = (\lambda_1, \lambda_2, \dots)$ of non-negative integers. For a partition $\lambda = (\lambda_1, \lambda_2, \dots)$, we denote by $\ell(\lambda)$ the length of λ which is the maximal integer ℓ such that $\lambda_{\ell} \neq 0$. If $\sum_{i=1}^{\ell(\lambda)} \lambda_i = n$, we denote it by $\lambda \vdash n$. For a integer ℓ and a partition $\lambda \vdash n$ such that $\ell(\lambda) \leq k$, put

$$\mathfrak{S}_k \cdot \lambda = \{(\mu_1, \mu_2, \dots, \mu_k) \in \mathbb{Z}_{\geq 0}^k \mid \mu_i = \lambda_{\sigma(i)}, \ \sigma \in \mathfrak{S}_k \}.$$

7.2. For integers t, k > 0, we define the symmetric polynomials $\Phi_t^{\pm}(x_1, \ldots, s_k) \in R[x_1, \ldots, x_k]^{\mathfrak{S}_k}$ of degree t with variables x_1, \ldots, x_k as

(7.2.1)
$$\Phi_t^{\pm}(x_1, \dots, x_k) = \sum_{\substack{\lambda \vdash t \\ \ell(\lambda) \le k}} (1 - q^{\mp 2})^{\ell(\lambda) - 1} \mathfrak{m}_{\lambda}(x_1, \dots, x_k),$$

where $\mathfrak{m}_{\lambda}(x_1,\ldots,x_k) = \sum_{\mu=(\mu_1,\mu_2,\ldots,\mu_k)\in\mathfrak{S}_k\cdot\lambda} x_1^{\mu_1}x_2^{\mu_2}\ldots x_k^{\mu_k}$ is the monomial symmetric polynomial associated with the partition λ . For convenience, we also define

(7.2.2)
$$\Phi_0^{\pm}(x_1, \dots, x_k) = q^{\mp k \pm 1}[k].$$

From the definition, we have

(7.2.3)
$$\Phi_1^{\pm}(x_1, \dots, x_k) = x_1 + x_2 + \dots + x_k \text{ and } \Phi_t^{\pm}(x_1) = x_1^t.$$

The polynomials $\Phi_t^{\pm}(x_1,\ldots,x_k)$ satisfy the following recursive relations which will be used for calculations of some relations between generators of $\mathscr{S}_{n,r}(\mathbf{m})$ in later.

Lemma 7.3. For $t \geq 0$, we have

$$\Phi_{t+1}^{\pm}(x_1, \dots, x_k) = \sum_{s=1}^k \Phi_t^{\pm}(x_1, \dots, x_s) x_s - q^{\mp 2} \sum_{s=1}^{k-1} \Phi_t^{\pm}(x_1, \dots, x_s) x_{s+1}
= x_1^{t+1} + \sum_{s=2}^k \left(\Phi_t^{\pm}(x_1, \dots, x_s) x_s - q^{\mp 2} \Phi_t^{\pm}(x_1, \dots, x_{s-1}) x_s \right)$$

and

(7.3.2)
$$\Phi_{t+1}^{\pm}(x_1, x_2, \dots, x_k) - \Phi_{t+1}^{\pm}(x_2, \dots, x_k) \\
= x_1 \left(\Phi_t^{\pm}(x_1, x_2, \dots, x_k) - q^{\mp 2} \Phi_t^{\pm}(x_2, \dots, x_k) \right).$$

Proof. In the case where t = 0, we can check the statements by direct calculations. Assume that $t \ge 1$. From the definition, we have

$$\Phi_{t+1}^{\pm}(x_1, \dots, x_k) = \sum_{\substack{\lambda \vdash t+1 \\ \ell(\lambda) \le k}} (1 - q^{\mp 2})^{\ell(\lambda) - 1} \sum_{\mu \in \mathfrak{S}_k \lambda} x_1^{\mu_1} x_2^{\mu_2} \dots x_k^{\mu_k}
= \sum_{s=1}^k \sum_{\substack{\lambda \vdash t+1 \\ \ell(\lambda) \le s}} (1 - q^{\mp 2})^{\ell(\lambda) - 1} \sum_{\substack{\mu \in \mathfrak{S}_s \lambda \\ \mu_s \ne 0}} x_1^{\mu_1} x_2^{\mu_2} \dots x_s^{\mu_s}
= \sum_{s=1}^k \sum_{\substack{\lambda \vdash t+1 \\ \ell(\lambda) \le s}} (1 - q^{\mp 2})^{\ell(\lambda) - 1} \sum_{\substack{\mu \in \mathfrak{S}_s \lambda \\ \mu_s = 1}} x_1^{\mu_1} x_2^{\mu_2} \dots x_s^{\mu_s}$$

$$+ \sum_{s=1}^{k} \sum_{\substack{\lambda \vdash t+1 \\ \ell(\lambda) \leq s}} (1 - q^{\mp 2})^{\ell(\lambda)-1} \sum_{\substack{\mu \in \mathfrak{S}_{s} \lambda \\ \mu_{s} \geq 2}} x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \dots x_{s}^{\mu_{s}}$$

$$= \sum_{s=1}^{k} \sum_{\substack{\lambda \vdash t \\ \ell(\lambda) \leq s}} (1 - q^{\mp 2})^{\ell(\lambda)} \sum_{\substack{\mu \in \mathfrak{S}_{s} \lambda \\ \mu_{s} = 0}} x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \dots x_{s-1}^{\mu_{s-1}} x_{s}$$

$$+ \sum_{s=1}^{k} \sum_{\substack{\lambda \vdash t \\ \ell(\lambda) \leq s}} (1 - q^{\mp 2})^{\ell(\lambda)-1} \sum_{\substack{\mu \in \mathfrak{S}_{s} \lambda \\ \mu_{s} \neq 0}} x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \dots x_{s}^{\mu_{s}} x_{s}$$

$$= \sum_{s=1}^{k} \left(\sum_{\substack{\lambda \vdash t \\ \ell(\lambda) \leq s}} (1 - q^{\mp 2})^{\ell(\lambda)-1} \sum_{\substack{\mu \in \mathfrak{S}_{s} \lambda \\ \mu_{s} \neq 0}} x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \dots x_{s}^{\mu_{s}} \right) x_{s}$$

$$- q^{\mp 2} \sum_{s=2}^{k} \left(\sum_{\substack{\lambda \vdash t \\ \ell(\lambda) \leq s}} (1 - q^{\mp 2})^{\ell(\lambda)-1} \sum_{\substack{\mu \in \mathfrak{S}_{s} \lambda \\ \mu_{s} = 0}} x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \dots x_{s-1}^{\mu_{s-1}} \right) x_{s}$$

$$= \sum_{s=1}^{k} \Phi_{t}^{\pm}(x_{1}, \dots, x_{s}) x_{s} - q^{\mp 2} \sum_{s=1}^{k-1} \Phi_{t}^{\pm}(x_{1}, \dots, x_{s}) x_{s+1}.$$

We can easily check the second equality of (7.3.1).

We prove (7.3.2) by the induction on t. In the case where t = 1, we can check (7.3.2) directly by using the relation (7.3.1) together with (7.2.3). Assume that t > 1. By (7.3.1), we have

$$\Phi_{t+1}^{\pm}(x_1, x_2, \dots, x_k) - \Phi_{t+1}^{\pm}(x_2, \dots, x_k)
= \left(\sum_{s=1}^k \Phi_t^{\pm}(x_1, \dots, x_s) x_s - q^{\mp 2} \sum_{s=1}^{k-1} \Phi_t^{\pm}(x_1, \dots, x_s) x_{s+1}\right)
- \left(\sum_{s=2}^k \Phi_t^{\pm}(x_2, \dots, x_s) x_s - q^{\mp 2} \sum_{s=2}^{k-1} \Phi_t^{\pm}(x_2, \dots, x_s) x_{s+1}\right)
= \Phi_t^{\pm}(x_1) x_1 - q^{\mp 2} \Phi_t^{\pm}(x_1) x_2 + \sum_{s=2}^k \left(\Phi_t^{\pm}(x_1, \dots, x_s) - \Phi_t^{\pm}(x_2, \dots, x_s)\right) x_s
- q^{\mp 2} \sum_{s=2}^{k-1} \left(\Phi_t^{\pm}(x_1, \dots, x_s) - \Phi_t^{\pm}(x_2, \dots, x_s)\right) x_{s+1}.$$

Applying the assumption of the induction, we have

$$\Phi_{t+1}^{\pm}(x_1, x_2, \dots, x_k) - \Phi_{t+1}^{\pm}(x_2, \dots, x_k)$$

= $x_1 \Phi_{t-1}^{\pm}(x_1) x_1 - q^{\mp 2} x_1 \Phi_{t-1}^{\pm}(x_1) x_2$

$$+ \sum_{s=2}^{k} x_1 \left(\Phi_{t-1}^{\pm}(x_1, x_2, \dots, x_s) - q^{\mp 2} \Phi_{t-1}^{\pm}(x_2, \dots, x_s) \right) x_s$$

$$- q^{\mp 2} \sum_{s=2}^{k-1} x_1 \left(\Phi_{t-1}^{\pm}(x_1, x_2, \dots, x_s) - q^{\mp 2} \Phi_{t-1}^{\pm}(x_2, \dots, x_s) \right) x_{s+1}$$

$$= x_1 \left\{ \left(\sum_{s=1}^{k} \Phi_{t-1}^{\pm}(x_1, x_2, \dots, x_s) x_s - q^{\mp 2} \sum_{s=1}^{k-1} \Phi_{t-1}^{\pm}(x_1, x_2, \dots, x_s) x_{s+1} \right) - q^{\mp 2} \left(\sum_{s=2}^{k} \Phi_{t-1}^{\pm}(x_2, \dots, x_s) x_s - q^{\mp 2} \sum_{s=2}^{k-1} \Phi_{t-1}^{\pm}(x_2, \dots, x_s) x_{s+1} \right) \right\}.$$

Applying the relation (7.3.1), we obtain (7.3.2).

Remark 7.4. At first, the author defined the polynomials $\Phi_t^{\pm}(x_1,\ldots,x_k)$ by using the relations (7.3.1) inductively. The definition of $\Phi_t^{\pm}(x_1,\ldots,x_k)$ as in (7.2.1) was suggested by Tatsuyuki Hikita.

7.5. For $\mu \in \Lambda_{n,r}(\mathbf{m})$ and $(j,l) \in \Gamma(\mathbf{m})$, put

$$N^{\mu}_{(j,l)} = \sum_{c=1}^{l-1} |\mu^{(c)}| + \sum_{p=1}^{j} \mu_p^{(l)}.$$

For $(j,l) \in \Gamma(\mathbf{m})$ and an integer $t \geq 0$, we define the elements $\mathcal{K}_{(j,l)}^{\pm}$ and $\mathcal{I}_{(j,l),t}^{\pm}$ of $\mathscr{S}_{(n,r)}(\mathbf{m})$ by

$$\mathcal{K}_{(j,l)}^{\pm}(m_{\mu}) = q^{\pm \mu_{j}^{(l)}} m_{\mu},
\mathcal{I}_{(j,l),t}^{+}(m_{\mu}) = \begin{cases} q^{t-1} m_{\mu} \Phi_{t}^{+}(L_{N_{(j,l)}^{\mu}}, L_{N_{(j,l)}^{\mu}-1}, \dots, L_{N_{(j,l)}^{\mu}-\mu_{j}^{(l)}+1}) & \text{if } \mu_{j}^{(l)} \neq 0, \\ 0 & \text{if } \mu_{j}^{(l)} = 0, \end{cases}
\mathcal{I}_{(j,l),t}^{-}(m_{\mu}) = \begin{cases} q^{-t+1} m_{\mu} \Phi_{t}^{-}(L_{N_{(j,l)}^{\mu}}, L_{N_{(j,l)}^{\mu}-1}, \dots, L_{N_{(j,l)}^{\mu}-\mu_{j}^{(l)}+1}) & \text{if } \mu_{j}^{(l)} \neq 0, \\ 0 & \text{if } \mu_{j}^{(l)} = 0, \end{cases}$$

for each $\mu \in \Lambda_{n,r}(\mathbf{m})$.

It is clear that the definitions of $\mathcal{K}_{(j,l)}^{\pm}$ are well-defined. For $\mu \in \Lambda_{n,r}(\mathbf{m})$ and $(j,l) \in \Gamma(\mathbf{m})$ such that $\mu_j^{(l)} \neq 0$, we see that $\Phi_t^{\pm}(L_{N_{(j,l)}^{\mu}}, L_{N_{(j,l)}^{\mu}-1}, \dots, L_{N_{(j,l)}^{\mu}-\mu_j^{(l)}+1})$ commute with T_w for any $w \in \mathfrak{S}_{\mu}$ by Lemma 6.3 since $\Phi_t^{\pm}(L_{N_{(j,l)}^{\mu}}, \dots, L_{N_{(j,l)}^{\mu}-\mu_j^{(l)}+1})$ is a symmetric polynomials with variables $L_{N_{(j,l)}^{\mu}}, L_{N_{(j,l)}^{\mu}-1}, \dots, L_{N_{(j,l)}^{\mu}-\mu_j^{(l)}+1}$. Thus, $\Phi_t^{\pm}(L_{N_{(j,l)}^{\mu}}, \dots, L_{N_{(j,l)}^{\mu}-\mu_j^{(l)}+1})$ commute with m_{μ} , and the definitions of $\mathcal{I}_{(j,l),t}^{\pm}$ are well-defined.

The following lemma is immediate from definitions.

Lemma 7.6. For $(i,k), (j,l) \in \Gamma(\mathbf{m})$ and $s,t \geq 0$, we have the following relations.

(i) $\mathcal{K}_{(i,l)}^+ \mathcal{K}_{(i,l)}^- = \mathcal{K}_{(i,l)}^- \mathcal{K}_{(i,l)}^+ = 1$.

(ii)
$$[\mathcal{K}_{(i,k)}^+, \mathcal{K}_{(j,l)}^+] = [\mathcal{K}_{(i,k)}^+, \mathcal{I}_{(j,l),t}^\sigma] = [\mathcal{I}_{(i,k),s}^\sigma, \mathcal{I}_{(j,l),t}^{\sigma'}] = 0 \ (\sigma, \sigma' \in \{+, -\}).$$

We also have the following lemma by direct calculations.

Lemma 7.7. For $(j, l) \in \Gamma(\mathbf{m})$, we have

$$(\mathcal{K}_{(j,l)}^{\pm})^2 = 1 \pm (q - q^{-1})\mathcal{I}_{(j,l),0}^{\mp}.$$

7.8. For $(i, k) \in \Gamma'(\mathbf{m})$ and an integer $t \geq 0$, we define the element $\widetilde{\mathcal{K}}_{(i,k)}^{\pm}$ and $\mathcal{J}_{(j,l),t}$ of $\mathscr{S}_{n,r}(\mathbf{m})$ by

$$\widetilde{\mathcal{K}}_{(i,k)}^{\pm} = \mathcal{K}_{(i,k)}^{\pm} \mathcal{K}_{(i+1,k)}^{\mp}$$

and

30

$$\mathcal{J}_{(i,k),t} = \begin{cases} \mathcal{I}_{(i,k),0}^{+} - \mathcal{I}_{(i+1,k),0}^{-} + (q - q^{-1})\mathcal{I}_{(i,k),0}^{+} \mathcal{I}_{(i+1,k),0}^{-} & \text{if } t = 0, \\ q^{-t}\mathcal{I}_{(i,k),t}^{+} - q^{t}\mathcal{I}_{(i+1,k),t}^{-} - (q - q^{-1})\sum_{b=1}^{t-1} q^{-t+2b}\mathcal{I}_{(i,k),t-b}^{+} \mathcal{I}_{(i+1,k),b}^{-} & \text{if } t > 0. \end{cases}$$

By Lemma 7.7, we have the following corollary.

Corollary 7.9. For $(i, k) \in \Gamma'(\mathbf{m})$, we have

$$\mathcal{J}_{(i,k),0} = \mathcal{I}^{+}_{(i,k),0} - (\mathcal{K}^{-}_{(i,k)})^{2} \mathcal{I}^{-}_{(i+1,k),0}.$$

7.10. For $N \in \mathbb{Z}_{\geq 0}$ and $\mu \in \mathbb{Z}_{>0}$, put

$$[T; N, \mu]^{+} = \begin{cases} 1 + \sum_{h=1}^{\mu-1} q^{h} T_{N+1} T_{N+2} \dots T_{N+h} & \text{if } N + \mu \leq n, \\ 0 & \text{otherwise,} \end{cases}$$
$$[T; N, \mu]^{-} = \begin{cases} 1 + \sum_{h=1}^{\mu-1} q^{h} T_{N-1} T_{N-2} \dots T_{N-h} & \text{if } n \geq N \geq \mu, \\ 0 & \text{otherwise.} \end{cases}$$

For convenience, we put $[T; N, 0]^{\pm} = 0$ for any $N \in \mathbb{Z}_{\geq 0}$. For $N, \mu \in \mathbb{Z}_{\geq 0}$ and $d \in \mathbb{Z}_{>0}$, put

$$\begin{bmatrix} T; N, \mu \\ d \end{bmatrix}^{+} = [T; N + (d-1), \mu - (d-1)]^{+} \dots [T; N+1, \mu-1]^{+} [T; N, \mu]^{+},$$

$$\begin{bmatrix} T; N, \mu \\ d \end{bmatrix}^{-} = [T; N - (d-1), \mu - (d-1)]^{-} \dots [T; N-1, \mu-1]^{-} [T; N, \mu]^{-}.$$

We also put $\begin{bmatrix} T; N, \mu \\ 0 \end{bmatrix}^+ = \begin{bmatrix} T; N, \mu \\ 0 \end{bmatrix}^- = 1$ for any $N, \mu \in \mathbb{Z}_{\geq 0}$.

For $N \in \mathbb{Z}_{>0}$ and $d \in \mathbb{Z}_{>0}$, put

$$(T; N, d)^{+} = \begin{cases} 1 + \sum_{h=1}^{d-1} q^{h} T_{N+d-h} T_{N+d-(h-1)} \dots T_{N+d-2} T_{N+d-1} & \text{if } N+d \leq n, \\ 0 & \text{otherwise,} \end{cases}$$

$$(T; N, d)^{-} = \begin{cases} 1 + \sum_{h=1}^{d-1} q^{h} T_{N-d+h} T_{N-d+(h-1)} \dots T_{N-d+2} T_{N-d+1} & \text{if } n \geq N \geq d, \\ 0 & \text{otherwise.} \end{cases}$$

We also put

$$(T; N, d)^{\pm}! = (T; N, d)^{\pm}(T; N, d - 1)^{\pm} \dots (T; N, 1)^{\pm}.$$

The following lemma follows from Lemma 6.3 immediately.

Lemma 7.11. For $N, \mu \in \mathbb{Z}_{>0}$, we have the following.

- (i) L_i commute with $[T; N, \mu]^+$ unless $N + \mu \ge i \ge N + 1$.
- (ii) L_i commute with $[T; N, \mu]^-$ unless $N \ge i \ge N \mu + 1$.

Lemma 7.12. We have the following.

(i) For $N, \mu \in \mathbb{Z}_{\geq 0}$ such that $N + \mu \leq n$ and $\mu \geq 3$, we have

$$(q^{\mu-2}T_{N+2}T_{N+3}\dots T_{N+\mu-1})(q^{\mu-1}T_{N+1}T_{N+2}\dots T_{N+\mu-1})$$

= $(q^{\mu-1}T_{N+1}T_{N+2}\dots T_{N+\mu-1})(q^{\mu-2}T_{N+1}T_{N+2}\dots T_{N+\mu-2}).$

(ii) For $N, \mu \in \mathbb{Z}_{\geq 0}$ such that $N \geq \mu \geq 3$, we have

$$(q^{\mu-2}T_{N-2}T_{N-3}\dots T_{N-\mu+1})(q^{\mu-1}T_{N-1}T_{N-2}\dots T_{N-\mu+1})$$

$$= (q^{\mu-1}T_{N-1}T_{N-2}\dots T_{N-\mu+1})(q^{\mu-2}T_{N-1}T_{N-2}\dots T_{N-\mu+2}).$$

(iii) For $N, \mu, c \in \mathbb{Z}_{\geq 0}$ such that $\mu \geq c \geq 1$, we have

$$[T; N+1, c]^{+}(q^{\mu}T_{N+1}T_{N+2}\dots T_{N+\mu}) = (q^{\mu}T_{N+1}T_{N+2}\dots T_{N+\mu})[T; N, c]^{+},$$

$$[T; N-1, c]^{-}(q^{\mu}T_{N-1}T_{N-2}\dots T_{N-\mu}) = (q^{\mu}T_{N-1}T_{N-2}\dots T_{N-\mu})[T; N, c]^{-}.$$

Proof. (i) and (ii) follows from the defining relations of $\mathcal{H}_{n,r}$. We can prove (iii) by the induction on c.

Lemma 7.13. For $N, \mu \in \mathbb{Z}_{\geq 0}$ and $d \in \mathbb{Z}_{>0}$, we have

$$\begin{bmatrix} T^{T,N,\mu} \\ d \end{bmatrix}^{+} = \begin{cases}
(T; N, d)^{+} \left(\begin{bmatrix} T^{T,N,d-1} \\ d-1 \end{bmatrix}^{+} \\
+ \sum_{h=1}^{\mu-d} (q^{h} T_{N+d} T_{N+d+1} \dots T_{N+d+h-1}) \begin{bmatrix} T^{T,N,d+h-1} \\ d-1 \end{bmatrix}^{+} \right) & \text{if } \mu \ge d, \\
0 & \text{if } \mu < d,
\end{cases}$$

$$\begin{bmatrix} T; N, \mu \\ d \end{bmatrix}^{-} = \begin{cases}
(T; N, d)^{-} \left(\begin{bmatrix} T; N, d-1 \\ d-1 \end{bmatrix}^{-} \\
+ \sum_{h=1}^{\mu-d} (q^{h} T_{N-d} T_{N-d-1} \dots T_{N-d-h+1}) \begin{bmatrix} T; N, d+h-1 \\ d-1 \end{bmatrix}^{-} \right) & \text{if } \mu \ge d, \\
0 & \text{if } \mu < d.
\end{cases}$$

Proof. In the case where $\mu < d$, we see that $\begin{bmatrix} T; N, \mu \\ d \end{bmatrix}^{\pm} = 0$ from the definitions. First, we prove that, if $\mu > d$,

by the induction on d. In the case where d = 1, it is clear by definitions. Assume that d > 1, then we have

$$\left[\begin{smallmatrix} T;N,\mu\\d\end{smallmatrix}\right]^+ = [T;N+(d-1),\mu-(d-1)]^+ \left[\begin{smallmatrix} T;N,\mu\\d-1\end{smallmatrix}\right]^+.$$

Applying the assumption of the induction, we have

$$\begin{bmatrix} T; N, \mu \\ d \end{bmatrix}^{+} \\
= \left\{ [T; N + (d-1), \mu - d]^{+} + (q^{\mu - d} T_{N+d} T_{N+d+1} \dots T_{N+\mu-1}) \right\} \\
\times \left\{ \begin{bmatrix} T; N, \mu - 1 \\ d - 1 \end{bmatrix}^{+} + (T; N, d-1)^{+} (q^{\mu - d+1} T_{N+d-1} T_{N+d} \dots T_{N+\mu-1}) \begin{bmatrix} T; N, \mu - 1 \\ d - 2 \end{bmatrix}^{+} \right\}.$$

Then, by using Lemma 7.11 and Lemma 7.12, we see that

$$\begin{bmatrix} T; N, \mu \\ d \end{bmatrix}^{+} \\
= [T; N+d-1, \mu-d]^{+} \begin{bmatrix} T; N, \mu-1 \\ d-1 \end{bmatrix}^{+} + (q^{\mu-d}T_{N+d}T_{N+d+1} \dots T_{N+\mu-1}) \begin{bmatrix} T; N, \mu-1 \\ d-1 \end{bmatrix}^{+} \\
+ (T; N, d-1)^{+} (q^{\mu-d+1}T_{N+d-1}T_{N+d} \dots T_{N+\mu-1}) [T; N+d-2, \mu-d]^{+} \begin{bmatrix} T; N, \mu-1 \\ d-2 \end{bmatrix}^{+} \\
+ (T; N, d-1)^{+} (q^{\mu-d+1}T_{N+d-1}T_{N+d} \dots T_{N+\mu-1}) (q^{\mu-d}T_{N+d-1}T_{N+d} \dots T_{N+\mu-2}) \\
\times \begin{bmatrix} T; N, \mu-1 \\ d-2 \end{bmatrix}^{+} .$$

Note that

$$[T; N+d-2, \mu-d]^{+} + q^{\mu-d}T_{N+d-1}T_{N+d} \dots T_{N+\mu-2} = [T; N+d-2, \mu-d+1]^{+}$$
and $[T; N+d-2, \mu-d+1]^{+} \begin{bmatrix} T; N, \mu-1 \\ d-2 \end{bmatrix}^{+} = \begin{bmatrix} T; N, \mu-1 \\ d-1 \end{bmatrix}^{+}$, we have
$$\begin{bmatrix} T; N, \mu \\ d \end{bmatrix}^{+}$$

$$= \begin{bmatrix} T; N, \mu-1 \\ d \end{bmatrix}^{+}$$

$$+ (1+(T; N, d-1)^{+}(qT_{N+d-1}))(q^{\mu-d}T_{N+d}T_{N+d+1} \dots T_{N+\mu-1}) \begin{bmatrix} T; N, \mu-1 \\ d-1 \end{bmatrix}^{+}.$$

By definition, we see that $1 + (T; N, d - 1)^+(qT_{N+d-1}) = (T; N, d)^+$. Thus, we have (7.13.1).

Next, we prove that

$$[T;N,d]^+ = (T;N,d)^+ \begin{bmatrix} T;N,d-1 \\ d-1 \end{bmatrix}^+$$

by the induction on d. In the case where d = 1, it is clear from definitions. Assume that d > 1. Note that $\begin{bmatrix} T;N,d \\ d \end{bmatrix}^+ = \begin{bmatrix} T;N,d \\ d-1 \end{bmatrix}^+$, by (7.13.1), we have

$$\begin{bmatrix} T; N, d \\ d \end{bmatrix}^{+} = \begin{bmatrix} T; N, d-1 \\ d-1 \end{bmatrix}^{+} + (T; N, d-1)^{+} (qT_{N+d-1}) \begin{bmatrix} T; N, d-1 \\ d-2 \end{bmatrix}^{+}
= (1 + (T; N, d-1)^{+} (qT_{N+d-1})) \begin{bmatrix} T; N, d-1 \\ d-1 \end{bmatrix}^{+}
= (T; N, d)^{+} \begin{bmatrix} T; N, d-1 \\ d-1 \end{bmatrix}^{+}.$$

Next we prove that, if $\mu \geq d$,

by the induction on $\mu - d$. In the case where $\mu = d$, it is just (7.13.2). Assume that $\mu > d$. By applying the assumption of the induction to the right-hand side of (7.13.1), we have (7.13.3).

It is similar for
$$\begin{bmatrix} T; N, \mu \\ d \end{bmatrix}^-$$
.

We have the following corollary which will be used in Theorem 8.1 to consider the divided powers in cyclotomic q-Schur algebras.

Corollary 7.14. For $N, \mu \in \mathbb{Z}_{\geq 0}$ and $d \in \mathbb{Z}_{> 0}$, there exist the elements $\mathfrak{H}^{\pm}(N, \mu, d) \in \mathscr{H}_{n,r}$ such that

$$\left[\begin{smallmatrix}T;N,\mu\\d\end{smallmatrix}\right]^{\pm}=(T;N,d)^{\pm}!\mathfrak{H}^{\pm}(N,\mu,d).$$

Proof. Note that $T_{N+d}T_{N+d+1}...T_{N+d+h-1}$ (resp. $T_{N-d}T_{N-d-1}...T_{N-d-h+1}$) commute with $(T; N, d-1)^+!$ (resp. $(T; N, d-1)^-!$), then we can prove the corollary by the induction on d using Lemma 7.13.

7.15. For $(i,k) \in \Gamma'(\mathbf{m})$, we define the elements $\mathcal{X}^+_{(i,k),0}$ and $\mathcal{X}^-_{(i,k),0}$ of $\mathscr{S}_{n,r}(\mathbf{m})$ by

$$\begin{split} \mathcal{X}^{+}_{(i,k),0}(m_{\mu}) &= q^{-\mu_{i+1}^{(k)}+1} m_{\mu+\alpha_{(i,k)}} [T; N^{\mu}_{(i,k)}, \mu^{(k)}_{i+1}]^{+}, \\ \mathcal{X}^{-}_{(i,k),0}(m_{\mu}) &= q^{-\mu_{i}^{(k)}+1} m_{\mu-\alpha_{(i,k)}} h^{\mu}_{-(i,k)} [T; N^{\mu}_{(i,k)}, \mu^{(k)}_{i}]^{-} \end{split}$$

for each $\mu \in \Lambda_{n,r}(\mathbf{m})$, where we put $\mu_{m_k+1}^{(k)} = \mu_1^{(k+1)}$ if $i = m_k$, and

$$h^{\mu}_{-(i,k)} = \begin{cases} 1 & \text{if } i \neq m_k, \\ L_{N^{\mu}_{(m_k,k)}} - Q_k & \text{if } i = m_k. \end{cases}$$

Note that $m_{\mu \pm \alpha_{(i,k)}} = 0$ if $\mu \pm \alpha_{(i,k)} \notin \Lambda_{n,r}(\mathbf{m})$.

By [W1, Lemma 6.10], the definitions of $\mathcal{X}_{(i,k),0}^{\pm}$ are well-defined. (The elements $\mathcal{X}_{(i,k),0}^{\pm}$ are denoted by $\varphi_{(i,k)}^{\pm}$ in [W1].)

For $(i, k) \in \Gamma'(\mathbf{m})$ and an integer t > 0, we define the elements $\mathcal{X}_{(i,k),t}^{\pm}$ of $\mathscr{S}_{n,r}(\mathbf{m})$ inductively by

(7.15.1)
$$\mathcal{X}_{(i,k),t}^{+} = \mathcal{I}_{(i,k),1}^{+} \mathcal{X}_{(i,k),t-1}^{+} - \mathcal{X}_{(i,k),t-1}^{+} \mathcal{I}_{(i,k),1}^{+}, \\ \mathcal{X}_{(i,k),t}^{-} = - \left(\mathcal{I}_{(i,k),1}^{-} \mathcal{X}_{(i,k),t-1}^{-} - \mathcal{X}_{(i,k),t-1}^{-} \mathcal{I}_{(i,k),1}^{-} \right).$$

Lemma 7.16. For $(i,k) \in \Gamma'(\mathbf{m})$, $(j,l) \in \Gamma(\mathbf{m})$ and $t \geq 0$, we have

$$\mathcal{K}_{(j,l)}^+ \mathcal{X}_{(i,k),t}^{\pm} \mathcal{K}_{(j,l)}^- = q^{\pm a_{(i,k)(j,l)}} \mathcal{X}_{(i,k),t}^{\pm}$$

Proof. We see the statement in the case where t = 0 from the definitions directly. Then we can prove the statement by the induction on t using (7.15.1) together with Lemma 7.6.

We can describe the elements $\mathcal{X}_{(i,k),t}^{\pm}$ of $\mathcal{S}_{n,r}(\mathbf{m})$ precisely as follows.

Lemma 7.17. For $(i,k) \in \Gamma'(\mathbf{m})$, $t \geq 0$ and $\mu \in \Lambda_{n,r}(\mathbf{m})$, we have the followings.

(i)
$$\mathcal{X}_{(i,k),t}^+(m_\mu) = q^{-\mu_{i+1}^{(k)}+1} m_{\mu+\alpha_{(i,k)}} L_{N_{(i,k)}^{\mu}+1}^t [T; N_{(i,k)}^{\mu}, \mu_{i+1}^{(k)}]^+.$$

(ii)
$$\mathcal{X}_{(i,k),t}^{-}(m_{\mu}) = q^{-\mu_{i}^{(k)}+1} m_{\mu-\alpha_{(i,k)}} L_{N_{(i,k)}^{\mu}}^{\mu} h_{-(i,k)}^{\mu} [T; N_{(i,k)}^{\mu}, \mu_{i}^{(k)}]^{-}.$$

Proof. We prove (i). We can easily show that $\mathcal{X}_{(i,k),t}^+(m_\mu) = 0$ if $\mu_{i+1}^{(k)} = 0$ by the induction on t using (7.15.1). Assume that $\mu_{i+1}^{(k)} \neq 0$. If t = 0, then it is just the definition of $\mathcal{X}_{(i,k),0}^+$. We prove the equation for t > 0 by the induction on t. Note that $(\mu + \alpha_{(i,k)})_i^{(k)} = \mu_i^{(k)} + 1$ and $N_{(i,k)}^{\mu+\alpha_{(i,k)}} = N_{(i,k)}^{\mu} + 1$, by the assumption of the induction, we have

$$\mathcal{I}^{+}_{(i,k),1}\mathcal{X}^{+}_{(i,k),t-1}(m_{\mu}) = q^{-\mu_{i+1}^{(k)}+1}m_{\mu+\alpha_{(i,k)}} \times (L_{N^{\mu}_{(i,k)}+1} + L_{N^{\mu}_{(i,k)}} + L_{N^{\mu}_{(i,k)}-1} + \dots + L_{N^{\mu}_{(i,k)}-\mu_{i}^{(k)}+1}) \times L^{t-1}_{N^{\mu}_{(i,k)}+1}[T; N^{\mu}_{(i,k)}, \mu^{(k)}_{i+1}]^{+}.$$

On the other hand, we have

$$\mathcal{X}^+_{(i,k),t-1}\mathcal{I}^+_{(i,k),1}(m_\mu) = \delta_{(\mu_i^{(k)} \neq 0)} q^{-\mu_{i+1}^{(k)}+1} m_{\mu+\alpha_{(i,k)}} L^{t-1}_{N^\mu_{(i,k)}+1}[T;N^\mu_{(i,k)},\mu^{(k)}_{i+1}]^{+}$$

$$\times (L_{N^{\mu}_{(i,k)}} + L_{N^{\mu}_{(i,k)}-1} + \dots + L_{N^{\mu}_{(i,k)}-\mu^{(k)}_{i}+1}).$$

Thus, by (7.15.1) and Lemma 7.11, we have (i). (ii) is similar.

Proposition 7.18. For $(i, k), (j, l) \in \Gamma'(\mathbf{m})$ and $s, t \geq 0$, we have the following relations.

(i)
$$[\mathcal{X}_{(i,k),t}^{\pm}, \mathcal{X}_{(j,l),s}^{\pm}] = 0$$
 if $(j,l) \neq (i,k), (i\pm 1,k)$.
(ii) $\mathcal{X}_{(i,k),t+1}^{\pm} \mathcal{X}_{(i,k),s}^{\pm} - q^{\pm 2} \mathcal{X}_{(i,k),s}^{\pm} \mathcal{X}_{(i,k),t+1}^{\pm} = q^{\pm 2} \mathcal{X}_{(i,k),t}^{\pm} \mathcal{X}_{(i,k),s+1}^{\pm} - \mathcal{X}_{(i,k),s+1}^{\pm} \mathcal{X}_{(i,k),t}^{\pm}$.

$$\mathcal{X}^{+}_{(i,k),t+1}\mathcal{X}^{+}_{(i+1,k),s} - q^{-1}\mathcal{X}^{+}_{(i+1,k),s}\mathcal{X}^{+}_{(i,k),t+1} = \mathcal{X}^{+}_{(i,k),t}\mathcal{X}^{+}_{(i+1,k),s+1} - q\mathcal{X}^{+}_{(i+1,k),s+1}\mathcal{X}^{+}_{(i,k),t},$$

$$\mathcal{X}^{-}_{(i+1,k),s}\mathcal{X}^{-}_{(i,k),t+1} - q^{-1}\mathcal{X}^{-}_{(i,k),t+1}\mathcal{X}^{-}_{(i+1,k),s} = \mathcal{X}^{-}_{(i+1,k),s+1}\mathcal{X}^{-}_{(i,k),t} - q\mathcal{X}^{-}_{(i,k),t}\mathcal{X}^{-}_{(i+1,k),s+1}.$$

Proof. (i) follows from Lemma 7.17 using Lemma 6.3.

We prove (ii). We may assume that $t \geq s$ by multiplying -1 to both sides if necessary. We prove

$$(7.18.1) \quad \mathcal{X}_{(i,k),t+1}^{+}\mathcal{X}_{(i,k),s}^{+} - q^{2}\mathcal{X}_{(i,k),s}^{+}\mathcal{X}_{(i,k),t+1}^{+} = q^{2}\mathcal{X}_{(i,k),t}^{+}\mathcal{X}_{(i,k),s+1}^{+} - \mathcal{X}_{(i,k),s+1}^{+}\mathcal{X}_{(i,k),t+1}^{+}$$

Put $N=N_{(i,k)}^{\mu}$. By Lemma 7.17 together with Lemma 7.11, for $\mu\in \Lambda_{n,r}(\mathbf{m})$, we have

(7.18.2)
$$\mathcal{X}_{(i,k),t+1}^{+} \mathcal{X}_{(i,k),s}^{+}(m_{\mu})$$

$$= q^{-2\mu_{i+1}^{(k)}+3} m_{\mu+2\alpha_{(i,k)}} L_{N+1}^{s} L_{N+2}^{t+1} [T; N+1, \mu_{i+1}^{(k)}-1]^{+} [T; N, \mu_{i+1}^{(k)}]^{+}.$$

Thus, we may assume that $\mu_{i+1}^{(k)} \geq 2$ since $m_{\mu+2\alpha_{(i,k)}} = 0$ if $\mu_{i+1}^{(k)} < 2$. By the induction on $\mu_{i+1}^{(k)}$, we can show that

$$(7.18.3)$$

$$T_{N+1}[T; N+1, \mu_{i+1}^{(k)} - 1]^{+}[T; N, \mu_{i+1}^{(k)}]^{+} = q[T; N+1, \mu_{i+1}^{(k)} - 1]^{+}[T; N, \mu_{i+1}^{(k)}]^{+}.$$

We also have, by Lemma 6.3,

$$(7.18.4)$$

$$L_{N+1}^{s}L_{N+2}^{t+1} = (L_{N+1}L_{N+2})^{s}(T_{N+1}L_{N+1}T_{N+1})L_{N+2}^{t-s}$$

$$= T_{N+1}(L_{N+1}L_{N+2})^{s}L_{N+1}\left\{L_{N+1}^{t-s}T_{N+1} + (q-q^{-1})\sum_{p=1}^{t-s}L_{N+1}^{t-s-p}L_{N+2}^{p}\right\}$$

$$= T_{N+1}L_{N+1}^{t+1}L_{N+2}^{s}T_{N+1} + (q-q^{-1})T_{N+1}\sum_{p=1}^{t-s}L_{N+1}^{t-p+1}L_{N+2}^{s+p}.$$

Then, (7.18.2) by using (6.4.2), (7.18.3) and (7.18.4), we have

$$\begin{split} &\mathcal{X}^{+}_{(i,k),t+1}\mathcal{X}^{+}_{(i,k),s}(m_{\mu}) \\ &= q^{2}q^{-2\mu_{i+1}^{(k)}+3}m_{\mu+2\alpha_{(i,k)}}L_{N+1}^{t+1}L_{N+2}^{s}[T;N+1,\mu_{i+1}^{(k)}-1]^{+}[T;N,\mu_{i+1}^{(k)}]^{+} \\ &\quad + q(q-q^{-1})q^{-2\mu_{i+1}^{(k)}+3}m_{\mu+2\alpha_{(i,k)}}\sum_{p=1}^{t-s}L_{N+1}^{t-p+1}L_{N+2}^{s+p}[T;N+1,\mu_{i+1}^{(k)}-1]^{+}[T;N,\mu_{i+1}^{(k)}]^{+} \\ &= q^{2}\mathcal{X}^{+}_{(i,k),s}\mathcal{X}^{+}_{(i,k),t+1}(m_{\mu}) \\ &\quad + q(q-q^{-1})q^{-2\mu_{i+1}^{(k)}+3}m_{\mu+2\alpha_{(i,k)}}\sum_{p=1}^{t-s}L_{N+1}^{t-p+1}L_{N+2}^{s+p}[T;N+1,\mu_{i+1}^{(k)}-1]^{+}[T;N,\mu_{i+1}^{(k)}]^{+}. \end{split}$$

Similarly, we have

$$\begin{split} q^2 \mathcal{X}^+_{(i,k),t} \mathcal{X}^+_{(i,k),s+1}(m_{\mu}) \\ &= q^{-2\mu_{i+1}^{(k)}+3} m_{\mu+2\alpha_{(i,k)}} T_{N+1} L_{N+1}^{s+1} L_{N+2}^t T_{N+1}[T;N+1,\mu_{i+1}^{(k)}-1]^+[T;N,\mu_{i+1}^{(k)}]^+ \\ &= q^{-2\mu_{i+1}^{(k)}+3} m_{\mu+2\alpha_{(i,k)}} L_{N+1}^t L_{N+2}^{s+1}[T;N+1,\mu_{i+1}^{(k)}-1]^+[T;N,\mu_{i+1}^{(k)}]^+ \\ &+ q(q-q^{-1})q^{-2\mu_{i+1}^{(k)}+3} m_{\mu+2\alpha_{(i,k)}} \sum_{p=1}^{t-s} L_{N+1}^{t-p+1} L_{N+2}^{s+p}[T;N+1,\mu_{i+1}^{(k)}-1]^+[T;N,\mu_{i+1}^{(k)}]^+ \\ &= \mathcal{X}^+_{(i,k),s+1} \mathcal{X}^+_{(i,k),t}(m_{\mu}) \\ &+ q(q-q^{-1})q^{-2\mu_{i+1}^{(k)}+3} m_{\mu+2\alpha_{(i,k)}} \sum_{p=1}^{t-s} L_{N+1}^{t-p+1} L_{N+2}^{s+p}[T;N+1,\mu_{i+1}^{(k)}-1]^+[T;N,\mu_{i+1}^{(k)}]^+. \end{split}$$

Thus, we have (7.18.1). Another case of (ii) is proven in a similar way.

We prove (iii). Put $N = N^{\mu}_{(i,k)}$. In the case where $\mu^{(k)}_{i+1} = 0$, by Lemma 7.17 together with Lemma 7.11, we see that

$$(\mathcal{X}_{(i,k),t+1}^{+}\mathcal{X}_{(i+1,k),s}^{+} - q^{-1}\mathcal{X}_{(i+1,k),s}^{+}\mathcal{X}_{(i,k),t+1}^{+})(m_{\mu})$$

$$= (\mathcal{X}_{(i,k),t}^{+}\mathcal{X}_{(i+1,k),s+1}^{+} - q\mathcal{X}_{(i+1,k),s+1}^{+}\mathcal{X}_{(i,k),t}^{+})(m_{\mu})$$

$$= q^{-\mu_{i+2}^{(k)}+1}m_{\mu+\alpha_{(i,k)}+\alpha_{(i+1,k)}}L_{N+1}^{s+t+1}[T; N, \mu_{i+2}^{(k)}]^{+}.$$

Assume that $\mu_{i+1}^{(k)} \neq 0$. By Lemma 7.17 together with Lemma 7.11, we have

$$(7.18.6)$$

$$(\mathcal{X}_{(i,k),t+1}^{+}\mathcal{X}_{(i+1,k),s}^{+} - q^{-1}\mathcal{X}_{(i+1,k),s}^{+}\mathcal{X}_{(i,k),t+1}^{+})(m_{\mu})$$

$$= q^{-\mu_{i+1}^{(k)} - \mu_{i+2}^{(k)} + 1} m_{\mu + \alpha_{(i,k)} + \alpha_{(i+1,k)}} L_{N+1}^{t+1} (q^{\mu_{i+1}^{(k)}} T_{N+1} T_{N+2} \dots T_{N+\mu_{i+1}^{(k)}}) L_{N+\mu_{i+1}^{(k)} + 1}^{s}$$

$$\times [T; N + \mu_{i+1}^{(k)}, \mu_{i+2}^{(k)}]^{+}$$

and

$$(7.18.7)$$

$$(\mathcal{X}_{(i,k),t}^{+}\mathcal{X}_{(i+1,k),s+1}^{+} - q\mathcal{X}_{(i+1,k),s+1}^{+}\mathcal{X}_{(i,k),t}^{+})(m_{\mu})$$

$$= -(q - q^{-1})q^{-\mu_{i+1}^{(k)} - \mu_{i+2}^{(k)} + 2} m_{\mu + \alpha_{(i,k)} + \alpha_{(i+1,k)}} L_{N+1}^{t} L_{N+\mu_{i+1}^{(k)} + 1}^{s+1}$$

$$\times [T; N, \mu_{i+1}^{(k)}]^{+} [T; N + \mu_{i+1}^{(k)}, \mu_{i+2}^{(k)}]^{+}$$

$$+ q^{-\mu_{i+1}^{(k)} - \mu_{i+2}^{(k)} + 1} m_{\mu + \alpha_{(i,k)} + \alpha_{(i+1,k)}} L_{N+1}^{t} (q^{\mu_{i+1}^{(k)}} T_{N+1} T_{N+2} \dots T_{N+\mu_{i+1}^{(k)}}) L_{N+\mu_{i+1}^{(k)} + 1}^{s+1}$$

$$\times [T; N + \mu_{i+1}^{(k)}, \mu_{i+2}^{(k)}]^{+}.$$

By the induction on $\mu_{i+1}^{(k)}$ using Lemma 6.3, we can prove that

$$\begin{split} &(T_{N+1}T_{N+2}\dots T_{N+\mu_{i+1}^{(k)}})L_{N+\mu_{i+1}^{(k)}+1}\\ &=L_{N+1}(T_{N+1}T_{N+2}\dots T_{N+\mu_{i+1}^{(k)}})+\delta_{(\mu_{i+1}^{(k)}\geq 2)}(q-q^{-1})L_{N+2}(T_{N+2}T_{N+3}\dots T_{N+\mu_{i+1}^{(k)}})\\ &+(q-q^{-1})\sum_{p=1}^{\mu_{i+1}^{(k)}-2}(T_{N+1}T_{N+2}\dots T_{N+p})L_{N+p+2}(T_{N+p+2}T_{N+p+3}\dots T_{N+\mu_{i+1}^{(k)}})\\ &+(q-q^{-1})(T_{N+1}T_{N+2}\dots T_{N+\mu_{i+1}^{(k)}-1})L_{N+\mu_{i+1}^{(k)}+1}. \end{split}$$

By using Lemma 6.3 and (6.4.2), this equation implies

$$m_{\mu+\alpha_{(i,k)}+\alpha_{(i+1,k)}} L_{N+1}^{t} (q^{\mu_{i+1}^{(k)}} T_{N+1} T_{N+2} \dots T_{N+\mu_{i+1}^{(k)}}) L_{N+\mu_{i+1}^{(k)}+1}$$

$$= m_{\mu+\alpha_{(i,k)}+\alpha_{(i+1,k)}} L_{N+1}^{t+1} (q^{\mu_{i+1}^{(k)}} T_{N+1} T_{N+2} \dots T_{N+\mu_{i+1}^{(k)}})$$

$$+ q(q-q^{-1}) m_{\mu+\alpha_{(i,k)}+\alpha_{(i+1,k)}} L_{N+1}^{t} [T; N, \mu_{i+1}^{(k)}]^{+} L_{N+\mu_{i+1}^{(k)}+1}.$$

Thus, (7.18.7) and (7.18.8) imply

$$(7.18.9) (\mathcal{X}_{(i,k),t}^{+} \mathcal{X}_{(i+1,k),s+1}^{+} - q \mathcal{X}_{(i+1,k),s+1}^{+} \mathcal{X}_{(i,k),t}^{+}) (m_{\mu}) = q^{-\mu_{i+1}^{(k)} - \mu_{i+2}^{(k)} + 1} m_{\mu + \alpha_{(i,k)} + \alpha_{(i+1,k)}} L_{N+1}^{t+1} (q^{\mu_{i+1}^{(k)}} T_{N+1} T_{N+2} \dots T_{N+\mu_{i+1}^{(k)}}) L_{N+\mu_{i+1}^{(k)} + 1}^{s} \times [T; N + \mu_{i+1}^{(k)}, \mu_{i+2}^{(k)}]^{+}.$$

By (7.18.5), (7.18.6) and (7.18.9), we have

$$\mathcal{X}_{(i,k),t+1}^{+}\mathcal{X}_{(i+1,k),s}^{+} - q^{-1}\mathcal{X}_{(i+1,k),s}^{+}\mathcal{X}_{(i,k),t+1}^{+} = \mathcal{X}_{(i,k),t}^{+}\mathcal{X}_{(i+1,k),s+1}^{+} - q\mathcal{X}_{(i+1,k),s+1}^{+}\mathcal{X}_{(i,k),t}^{+}$$

Another case of (iii) is proven in a similar way.

Proposition 7.19. For $(i, k) \in \Gamma'(\mathbf{m})$ and $s, t, u \geq 0$, we have the followings.

$$\mathcal{X}_{(i\pm1,k),u}^{+} \left(\mathcal{X}_{(i,k),s}^{+} \mathcal{X}_{(i,k),t}^{+} + \mathcal{X}_{(i,k),t}^{+} \mathcal{X}_{(i,k),s}^{+} \right) + \left(\mathcal{X}_{(i,k),s}^{+} \mathcal{X}_{(i,k),t}^{+} + \mathcal{X}_{(i,k),t}^{+} \mathcal{X}_{(i,k),s}^{+} \right) \mathcal{X}_{(i\pm1,k),u}^{+}
= (q+q^{-1}) \left(\mathcal{X}_{(i,k),s}^{+} \mathcal{X}_{(i\pm1,k),u}^{+} \mathcal{X}_{(i,k),t}^{+} + \mathcal{X}_{(i,k),t}^{+} \mathcal{X}_{(i\pm1,k),u}^{+} \mathcal{X}_{(i,k),s}^{+} \right).$$

(ii)

$$\mathcal{X}_{(i\pm 1,k),u}^{-} \left(\mathcal{X}_{(i,k),s}^{-} \mathcal{X}_{(i,k),t}^{-} + \mathcal{X}_{(i,k),t}^{-} \mathcal{X}_{(i,k),s}^{-} \right) + \left(\mathcal{X}_{(i,k),s}^{-} \mathcal{X}_{(i,k),t}^{-} + \mathcal{X}_{(i,k),t}^{-} \mathcal{X}_{(i,k),s}^{-} \right) \mathcal{X}_{(i\pm 1,k),u}^{-} \\
= (q+q^{-1}) \left(\mathcal{X}_{(i,k),s}^{-} \mathcal{X}_{(i\pm 1,k),u}^{-} \mathcal{X}_{(i,k),t}^{-} + \mathcal{X}_{(i,k),t}^{-} \mathcal{X}_{(i\pm 1,k),u}^{-} \mathcal{X}_{(i,k),s}^{-} \right).$$

Proof. By Lemma 7.17 together with Lemma 7.11, we have

(7.19.1)

$$\begin{split} &(\mathcal{X}^{+}_{(i+1,k),u}\mathcal{X}^{+}_{(i,k),s}\mathcal{X}^{+}_{(i,k),t} - q\mathcal{X}^{+}_{(i,k),s}\mathcal{X}^{+}_{(i+1,k),u}\mathcal{X}^{+}_{(i,k),t})(m_{\mu}) \\ &= -\delta_{(\mu^{(k)}_{i+1}=1)}q^{-\mu^{(k)}_{i+2}+2}m_{\mu+2\alpha_{(i,k)}+\alpha_{(i+1,k)}}L^{t}_{N+1}L^{s+u}_{N+2}[T;N+1,\mu^{(k)}_{i+2}]^{+} \\ &- \delta_{(\mu^{(k)}_{i+1}\geq2)}q^{-2\mu^{(k)}_{i+1}-\mu^{(k)}_{i+2}+4}m_{\mu+2\alpha_{(i,k)}+\alpha_{(i+1,k)}}L^{t}_{N+1}L^{s}_{N+2} \\ &\qquad \times (q^{\mu^{(k)}_{i+1}-1}T_{N+2}T_{N+3}\dots T_{N+\mu^{(k)}_{i+1}})[T;N,\mu^{(k)}_{i+1}]^{+}L^{u}_{N+\mu^{(k)}_{i+1}+1}[T;N+\mu^{(k)}_{i+1},\mu^{(k)}_{i+2}]^{+} \end{split}$$

and

$$\begin{split} &(\mathcal{X}_{(i,k),s}^{+}\mathcal{X}_{(i,k),t}^{+}\mathcal{X}_{(i+1,k),u}^{+} - q^{-1}\mathcal{X}_{(i,k),s}^{+}\mathcal{X}_{(i+1,k),u}^{+}\mathcal{X}_{(i,k),t}^{+})(m_{\mu}) \\ &= q^{-2\mu_{i+1}^{(k)} - \mu_{i+2}^{(k)} + 2} m_{\mu + 2\alpha_{(i,k)} + \alpha_{(i+1,k)}} L_{N+1}^{t} L_{N+2}^{s} \\ &\qquad \times [T; N+1, \mu_{i+1}^{(k)}]^{+} (q^{\mu_{i+1}^{(k)}} T_{N+1} T_{N+2} \dots T_{N+\mu_{i+1}^{(k)}}) L_{N+\mu_{i+1}^{(k)} + 1}^{u} [T; N+\mu_{i+1}^{(k)}, \mu_{i+2}^{(k)}]^{+}. \end{split}$$

Applying Lemma 7.12 (iii), we have

$$(\mathcal{X}_{(i,k),s}^{+} \mathcal{X}_{(i,k),t}^{+} \mathcal{X}_{(i+1,k),u}^{+} - q^{-1} \mathcal{X}_{(i,k),s}^{+} \mathcal{X}_{(i+1,k),u}^{+} \mathcal{X}_{(i,k),t}^{+}) (m_{\mu})$$

$$= \delta_{(\mu_{i+1}^{(k)}=1)} q^{-\mu_{i+2}^{(k)}+1} m_{\mu+2\alpha_{(i,k)}+\alpha_{i+1,k})} L_{N+1}^{t} L_{N+2}^{s} T_{N+1} L_{N+2}^{u} [T; N + \mu_{i+1}^{(k)}, \mu_{i+2}^{(k)}]^{+}$$

$$+ \delta_{\mu_{i+1}^{(k)} \geq 2} q^{-2\mu_{i+1}^{(k)}-\mu_{i+2}^{(k)}+3} m_{\mu+2\alpha_{(i,k)}+\alpha_{(i+1,k)}} L_{N+1}^{t} L_{N+2}^{s} T_{N+1}$$

$$\times (q^{\mu_{i+1}^{(k)}-1} T_{N+2} T_{N+3} \dots T_{N+\mu_{i+1}^{(k)}}) [T; N; \mu_{i+1}^{(k)}]^{+} L_{N+\mu_{i+1}^{(k)}+1}^{u} [T; N + \mu_{i+1}^{(k)}, \mu_{i+2}^{(k)}]^{+}.$$

We see that

$$m_{\mu+2\alpha_{(i,k)}+\alpha_{(i+1,k)}} (L_{N+1}^t L_{N+2}^s + L_{N+1}^s L_{N+2}^t) T_{N+1}$$

$$= m_{\mu+2\alpha_{(i,k)}+\alpha_{(i+1,k)}} T_{N+1} (L_{N+1}^t L_{N+2}^s + L_{N+1}^s L_{N+2}^t)$$

$$= q m_{\mu+2\alpha_{(i,k)}+\alpha_{(i+1,k)}} (L_{N+1}^t L_{N+2}^s + L_{N+1}^s L_{N+2}^t)$$

by Lemma 6.3 and (6.4.2). Then (7.19.1) and (7.19.2) imply

$$\begin{aligned} & \mathcal{X}^{+}_{(i+1,k),u}(\mathcal{X}^{+}_{(i,k),s}\mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t}\mathcal{X}^{+}_{(i,k),s}) + (\mathcal{X}^{+}_{(i,k),s}\mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t}\mathcal{X}^{+}_{(i,k),s})\mathcal{X}^{+}_{(i+1,k),u} \\ & = (q+q^{-1})(\mathcal{X}^{+}_{(i,k),s}\mathcal{X}^{+}_{(i+1,k),u}\mathcal{X}^{+}_{(i,k),t} + \mathcal{X}^{+}_{(i,k),t}\mathcal{X}^{+}_{(i+1,k),u}\mathcal{X}^{+}_{(i,k),s}). \end{aligned}$$

The other cases of the proposition are proven in a similar way.

By direct calculations, we have the following lemma.

Lemma 7.20. For $(i, k) \in \Gamma'(\mathbf{m})$, $(j, l) \in \Gamma(\mathbf{m})$, $t \geq 0$, we have the followings.

(i)
$$q^{\pm a_{(i,k)(j,l)}} \mathcal{I}_{(i,l),0}^{\pm} \mathcal{X}_{(i,k),t}^{+} - q^{\mp a_{(i,k)(j,l)}} \mathcal{X}_{(i,k),t}^{+} \mathcal{I}_{(i,l),0}^{\pm} = a_{(i,k)(j,l)} \mathcal{X}_{(i,k),t}^{+}$$

$$\begin{array}{ll} \text{(i)} & q^{\pm a_{(i,k)(j,l)}} \mathcal{I}_{(j,l),0}^{\pm} \mathcal{X}_{(i,k),t}^{+} - q^{\mp a_{(i,k)(j,l)}} \mathcal{X}_{(i,k),t}^{+} \mathcal{I}_{(j,l),0}^{\pm} = a_{(i,k)(j,l)} \mathcal{X}_{(i,k),t}^{+}. \\ \text{(ii)} & q^{\mp a_{(i,k)(j,l)}} \mathcal{I}_{(j,l),0}^{\pm} \mathcal{X}_{(i,k),t}^{-} - q^{\pm a_{(i,k)(j,l)}} \mathcal{X}_{(i,k),t}^{-} \mathcal{I}_{(j,l),0}^{\pm} = -a_{(i,k)(j,l)} \mathcal{X}_{(i,k),t}^{-}. \end{array}$$

We also have the following proposition.

Proposition 7.21. For $(i,k) \in \Gamma'(\mathbf{m})$, $(j,l) \in \Gamma(\mathbf{m})$, $s,t \geq 0$, we have the follow-

$$\begin{array}{l} \text{(i)} \ \ [\mathcal{I}_{(j,l),s+1}^{\pm},\mathcal{X}_{(i,k),t}^{+}] = q^{\pm a_{(i,k)(j,l)}}\mathcal{I}_{(j,l),s}^{\pm}\mathcal{X}_{(i,k),t+1}^{+} - q^{\mp a_{(i,k)(j,l)}}\mathcal{X}_{(i,k),t+1}^{+}\mathcal{I}_{(j,l),s}^{\pm}. \\ \text{(ii)} \ \ [\mathcal{I}_{(j,l),s+1}^{\pm},\mathcal{X}_{(i,k),t}^{-}] = q^{\mp a_{(i,k)(j,l)}}\mathcal{I}_{(j,l),s}^{\pm}\mathcal{X}_{(i,k),t+1}^{-} - q^{\pm a_{(i,k)(j,l)}}\mathcal{X}_{(i,k),t+1}^{-}\mathcal{I}_{(j,l),s}^{\pm}. \end{array}$$

(ii)
$$[\mathcal{I}_{(j,l),s+1}^{\pm}, \mathcal{X}_{(i,k),t}^{-}] = q^{\mp a_{(i,k)(j,l)}} \mathcal{I}_{(j,l),s}^{\pm} \mathcal{X}_{(i,k),t+1}^{-} - q^{\pm a_{(i,k)(j,l)}} \mathcal{X}_{(i,k),t+1}^{-} \mathcal{I}_{(j,l),s}^{\pm}$$

Proof. By Lemma 7.17 together with Lemma 6.3, we see that

$$[\mathcal{I}^{\sigma}_{(i,l),s}, \mathcal{X}^{\sigma'}_{(i,k),t}] = 0 \text{ if } (j,l) \neq (i,k), (i+1,k),$$

where $\sigma, \sigma' \in \{+, -\}$. Thus, it is enough to prove the cases where (j, l) = (i, k) or (j, l) = (i + 1, k). We prove

$$[\mathcal{I}_{(i,k),s+1}^+, \mathcal{X}_{(i,k),t}^+] = q \mathcal{I}_{(i,k),s}^+ \mathcal{X}_{(i,k),t+1}^+ - q^{-1} \mathcal{X}_{(i,k),t+1}^+ \mathcal{I}_{(i,k),s}^+$$

For $\mu \in \Lambda_{n,r}(\mathbf{m})$, put $N = N_{(i,k)}^{\mu}$. Then, by Lemma 7.17 together with Lemma 7.11, we have

$$(\mathcal{I}_{(i,k),s+1}^{+} \mathcal{X}_{(i,k),t}^{+} - \mathcal{X}_{(i,k),t}^{+} \mathcal{I}_{(i,k),s+1}^{+})(m_{\mu})$$

$$= q^{s-\mu_{i+1}^{(k)}+1} m_{\mu+\alpha_{(i,k)}}$$

$$\times \left(\Phi_{s+1}^{+}(L_{N+1}, L_{N}, L_{N-1}, \dots, L_{N-\mu_{i}^{(k)}+1}) - \Phi_{s+1}^{+}(L_{N}, L_{N-1}, \dots, L_{N-\mu_{i}^{(k)}+1})\right)$$

$$\times L_{N+1}^{t}[T; N, \mu_{i+1}^{(k)}]^{+}.$$

By (7.3.2), we have

$$(\mathcal{I}_{(i,k),s+1}^{+}\mathcal{X}_{(i,k),t}^{+} - \mathcal{X}_{(i,k),t}^{+}\mathcal{I}_{(i,k),s+1}^{+})(m_{\mu})$$

$$= q^{s-\mu_{i+1}^{(k)}+1} m_{\mu+\alpha_{(i,k)}}$$

$$\times L_{N+1} \left(\Phi_{s}^{+}(L_{N+1}, L_{N}, \dots, L_{N-\mu_{i}^{(k)}+1}) - q^{-2} \Phi_{s}^{+}(L_{N}, L_{N-1}, \dots, L_{N-\mu_{i}^{(k)}+1}) \right)$$

$$\times L_{N+1}^{t} [T; N, \mu_{i+1}^{(k)}]^{+}$$

$$= q^{(s-1)-\mu_{i+1}^{(k)}+1} m_{\mu+\alpha_{(i,k)}}$$

$$\times \left\{ q \Phi_s^+(L_{N+1}, L_N, \dots, L_{N-\mu_i^{(k)}+1}) L_{N+1}^{t+1}[T; N, \mu_{i+1}^{(k)}]^+ \right.$$

$$\left. - q^{-1} L_{N+1}^{t+1}[T; N, \mu_{i+1}^{(k)}]^+ \Phi_s^+(L_N, L_{N-1}, \dots, L_{N-\mu_i^{(k)}+1}) \right\}$$

$$= (q \mathcal{I}_{(i,k),s}^+ \mathcal{X}_{(i,k),t+1}^+ - q^{-1} \mathcal{X}_{(i,k),t+1}^+ \mathcal{I}_{(i,k),s}^+)(m_{\mu}).$$

Now we proved (7.21.1). Other cases are proven in a similar way.

Proposition 7.22. For $(i,k), (j,l) \in \Gamma'(\mathbf{m})$ such that $(i,k) \neq (j,l)$ and $s,t \geq 0$, we have

$$[\mathcal{X}_{(i,k),t}^+, \mathcal{X}_{(j,l),s}^-] = 0.$$

Proof. By Lemma 7.17, for $\mu \in \Lambda_{n,r}(\mathbf{m})$, we have

$$\begin{split} & \mathcal{X}^{+}_{(i,k),t} \mathcal{X}^{-}_{(j,l),s}(m_{\mu}) \\ &= q^{-\mu_{j}^{(l)} - (\mu - \alpha_{(j,l)})_{i+1}^{(k)} + 2} m_{\mu + \alpha_{(i,k)} - \alpha_{(j,l)}} \\ & \times L^{t}_{N_{(i,k)}^{\mu - \alpha_{(j,l)}} + 1} [T; N_{(i,k)}^{\mu - \alpha_{(j,l)}}, (\mu - \alpha_{(j,l)})_{i+1}^{(k)}]^{+} L^{s}_{N_{(j,l)}^{\mu}} h^{\mu}_{-(j,l)} [T; N_{(j,l)}^{\mu}, \mu_{j}^{(l)}]^{-} \end{split}$$

and

$$\begin{split} & \mathcal{X}^{-}_{(j,l),s} \mathcal{X}^{+}_{(i,k),t}(m_{\mu}) \\ &= q^{-\mu_{i+1}^{(k)} - (\mu + \alpha_{(i,k)})_{j}^{(l)} + 2} m_{\mu + \alpha_{(i,k)} - \alpha_{(j,l)}} \\ & \times L^{s}_{N^{\mu + \alpha_{(i,k)}}_{(j,l)}} h^{\mu + \alpha_{(i,k)}}_{-(j,l)}[T; N^{\mu + \alpha_{(i,k)}}_{(j,l)}, (\mu + \alpha_{(i,k)})_{j}^{(l)}]^{-} L^{t}_{N^{\mu}_{(i,k)} + 1}[T; N^{\mu}_{(i,k)}, \mu^{(k)}_{i+1}]^{+}. \end{split}$$

Since $(i, k) \neq (j, l)$, we have

$$\begin{split} N_{(i,k)}^{\mu} &= N_{(i,k)}^{\mu-\alpha_{(j,l)}}, \quad N_{(j,l)}^{\mu} = N_{(j,l)}^{\mu+\alpha_{(i,k)}}, \\ (\mu - \alpha_{(j,l)})_{i+1}^{(k)} &= \begin{cases} \mu_{i+1}^{(k)} & \text{if } (j,l) \neq (i+1,k), \\ \mu_{i+1}^{(k)} - 1 & \text{if } (j,l) = (i+1,k), \end{cases} \\ (\mu + \alpha_{(i,k)})_{j}^{(l)} &= \begin{cases} \mu_{j}^{(l)} & \text{if } (j,l) \neq (i+1,k), \\ \mu_{j}^{(l)} - 1 & \text{if } (j,l) = (i+1,k). \end{cases} \\ h_{-(j,l)}^{\mu} &= h_{-(j,l)}^{\mu+\alpha_{(i,k)}} &= \begin{cases} 1 & \text{if } j \neq m_{j}, \\ L_{N_{(m_{l},l)}^{\mu}} - Q_{l} & \text{if } j = m_{l}. \end{cases} \end{split}$$

Then, by Lemma 7.11, we have

$$[T;N_{(i,k)}^{\mu-\alpha_{(j,l)}},(\mu-\alpha_{(j,l)})_{i+1}^{(k)}]^{+}L_{N_{(j,l)}^{\mu}}^{s}h_{-(j,l)}^{\mu}=L_{N_{(j,l)}^{\mu}}^{s}h_{-(j,l)}^{\mu}[T;N_{(i,k)}^{\mu-\alpha_{(j,l)}},(\mu-\alpha_{(j,l)})_{i+1}^{(k)}]^{+}$$

and

$$[T;N_{(j,l)}^{\mu+\alpha_{(i,k)}},(\mu+\alpha_{(i,k)})_{j}^{(l)}]^{-}L_{N_{(i,k)}^{\mu}+1}^{t}=L_{N_{(i,k)}^{\mu}+1}^{t}[T;N_{(j,l)}^{\mu+\alpha_{(i,k)}},(\mu+\alpha_{(i,k)})_{j}^{(l)}]^{-}.$$

Thus, in order to prove the proposition, it is enough to show that

(7.22.1)
$$[T; N_{(i,k)}^{\mu-\alpha_{(j,l)}}, (\mu - \alpha_{(j,l)})_{i+1}^{(k)}]^{+}[T; N_{(j,l)}^{\mu}, \mu_{j}^{(l)}]^{-}$$

$$= [T; N_{(j,l)}^{\mu+\alpha_{(i,k)}}, (\mu + \alpha_{(i,k)})_{j}^{(l)}]^{-}[T; N_{(i,k)}^{\mu}, \mu_{i+1}^{(k)}]^{+}.$$

If $(j, l) \neq (i+1, k)$, we see easily that (7.22.1) holds since the product is cummutative in each side. In the case where (j, l) = (i+1, k), we can prove that (7.22.1) by the induction on $\mu_{i+1}^{(k)}$. Now we proved the proposition.

Remark 7.23. There is an error in the proof of [W1, Proposition 6.11 (i)] (see the case where (j, l) = (i + 1, k)). The above proof also gives a fixed proof of [W1, Proposition 6.11 (i)] as a special case.

We prepare some technical lemmas.

Lemma 7.24. For $\mu \in \Lambda_{n,r}(\mathbf{m})$ and $(i,k) \in \Gamma(\mathbf{m})$, we have the followings.

(i) For
$$t \ge 0$$
 and $1 \le p \le \mu_i^{(k)}$, we have
$$m_{\mu} L_{N_{(i,k)}^{\mu}}^{t} [T; N_{(i,k)}^{\mu}, p]^{-} = q^{2p-2} m_{\mu} \Phi_t^{+} (L_{N_{(i,k)}^{\mu}}, L_{N_{(i,k)}^{\mu}-1}, \dots, L_{N_{(i,k)}^{\mu}-p+1}).$$

(ii) For
$$t \ge 0$$
 and $1 \le p \le \mu_{i+1}^{(k)}$, we have
$$m_{\mu} L_{N_{(i,k)}^{\mu}+1}^{t}[T; N_{(i,k)}^{\mu}, p]^{+} = m_{\mu} \Phi_{t}^{-}(L_{N_{(i,k)}^{\mu}+1}, L_{N_{(i,k)}^{\mu}+2}, \dots, L_{N_{(i,k)}^{\mu}+p}).$$

Proof. In the case where t = 0, we have (i) and (ii) from (6.4.2).

We prove (i) for t > 0. Put $N = N_{(i,k)}^{\mu}$. For $1 \le h \le \mu_i^{(k)} - 1$, by the induction on h together with Lemma 6.3 and (6.4.2), we can show that

$$(7.24.1)$$

$$m_{\mu}L_{N}^{t}(T_{N-1}T_{N-2}\dots T_{N-h})$$

$$= m_{\mu}\left\{(q-q^{-1})q^{h-1}L_{N}^{t} + \sum_{s=2}^{h}(q-q^{-1})q^{h-s}L_{N}^{t-1}(T_{N-1}T_{N-2}\dots T_{N-s+1})L_{N-s+1} + L_{N}^{t-1}(T_{N-1}T_{N-2}\dots T_{N-h})L_{N-h}\right\}.$$

We prove that

$$(7.24.2) \quad m_{\mu} L_{N}^{t}(T_{N-1}T_{N-2}\dots T_{N-h}) \\ = m_{\mu} \left(q^{h} \Phi_{t}^{+}(L_{N}, L_{N-1}, \dots, L_{N-h}) - q^{h-2} \Phi_{t}^{+}(L_{N}, L_{N-1}, \dots, L_{N-h+1}) \right)$$

by the induction on t. In the case where t = 1, by (7.24.1) together with (6.4.2), we have

$$m_{\mu}L_{N}(T_{N-1}T_{N-2}...T_{N-h})$$

$$= m_{\mu} \{ (q-q^{-1})q^{h-1}L_{N} + \sum_{s=2}^{h} (q-q^{-1})q^{h-s}q^{s-1}L_{N-s+1} + q^{h}L_{N-h} \}$$

$$= m_{\mu} (q^{h}\Phi_{1}^{+}(L_{N}, L_{N-1}, ..., L_{N-h}) - q^{h-2}\Phi_{1}^{+}(L_{N}, L_{N-1}, ..., L_{N-h+1})).$$

Assume that t > 1. Applying the assumption of the induction to (7.24.1), we have

$$\begin{split} m_{\mu}L_{N}^{t}(T_{N-1}T_{N-2}\dots T_{N-h}) \\ &= m_{\mu}\Big\{(q-q^{-1})q^{h-1}L_{N}^{t} \\ &+ \sum_{s=2}^{h}(q-q^{-1})q^{h-s}\Big(q^{s-1}\Phi_{t-1}^{+}(L_{N},L_{N-1},\dots,L_{N-s+1}) \\ &- q^{s-3}\Phi_{t-1}^{+}(L_{N},L_{N-1},\dots,L_{N-s+2})\Big)L_{N-s+1} \\ &+ \Big(q^{h}\Phi_{t-1}^{+}(L_{N},L_{N-1},\dots,L_{N-h}) - q^{h-2}\Phi_{t-1}^{+}(L_{N},L_{N-1},\dots,L_{N-h+1})\Big)L_{N-h}\Big\} \end{split}$$

Put s' = s - 1, we have

$$m_{\mu}L_{N}^{t}(T_{N-1}T_{N-2}\dots T_{N-h})$$

$$= m_{\mu} \Big\{ q^{h} \Big(L_{N}^{t} + \sum_{s=1}^{h} \Big(\Phi_{t-1}^{+}(L_{N}, L_{N-1}, \dots, L_{N-s'}) L_{N-s'} - q^{-2} \Phi_{t-1}(L_{N}, L_{N-1}, \dots, L_{N-s'+1}) L_{N-s'} \Big) \Big)$$

$$- q^{h-2} \Big(L_{N}^{t} + \sum_{s=1}^{h-1} \Big(\Phi_{t-1}^{+}(L_{N}, L_{N-1}, \dots, L_{N-s'}) L_{N-s'} - q^{-2} \Phi_{t-1}(L_{N}, L_{N-1}, \dots, L_{N-s'+1}) L_{N-s'} \Big) \Big) \Big\}.$$

Applying (7.3.1) to the right-hand side, we have (7.24.2). Thanks to (7.24.2), we have

$$m_{\mu}L_{N}^{t}[T; N, p]^{-}$$

$$= m_{\mu}L_{N}^{t}(1 + \sum_{h=1}^{p-1} q^{h}T_{N-1}T_{N-2} \dots T_{N-h})$$

$$= m_{\mu} \left\{ \Phi_{t}^{+}(L_{N}) + \sum_{h=1}^{p-1} \left(q^{2h}\Phi_{t}^{+}(L_{N}, L_{N-1}, \dots, L_{N-h}) - q^{2h-2}\Phi_{t}^{+}(L_{N}, L_{N-1}, \dots, L_{N-h+1}) \right) \right\}$$

$$= q^{2p-2} m_{\mu} \Phi_t^+(L_N, L_{N-1}, \dots, L_{N-p}).$$

Now we obtained (i).

For t > 0 and $1 \le h \le \mu_{i+1}^{(k)} - 1$, by the induction on h using Lemma 6.3 and (6.4.2), we can show that

$$(7.24.3) m_{\mu} L_{N+1}^{t} (T_{N+1} T_{N+2} \dots T_{N+h})$$

$$= q^{-h} m_{\mu} L_{N+1}^{t-1} \left\{ (1 - q^{2}) \left(1 + \sum_{s=1}^{h-1} q^{s} T_{N+1} T_{N+2} \dots T_{N+s} \right) + q^{h} T_{N+1} T_{N+2} \dots T_{N+h} \right\} L_{N+h+1}.$$

We prove (ii) by the induction on t. We have already proved (ii) in the case where t=0.

Assume that t > 0. By (7.24.3), we have

$$m_{\mu}L_{N+1}^{t}[T; N, p]^{+}$$

$$= m_{\mu}L_{N+1}^{t}\left(1 + \sum_{h=1}^{p-1} q^{h}T_{N+1}T_{N+2} \dots T_{N+h}\right)$$

$$= m_{\mu}L_{N+1}^{t-1}\left\{L_{N+1} + \sum_{h=1}^{p-1}\left\{(1 - q^{2})(1 + \sum_{s=1}^{h-1} q^{s}T_{N+1}T_{N+2} \dots T_{N+s}) + q^{h}T_{N+1}T_{N+2} \dots T_{N+h}\right\}L_{N+h+1}\right\}$$

$$= m_{\mu}L_{N+1}^{t-1}\left\{\sum_{h=1}^{p}[T; N, h]^{+}L_{N+h} - q^{2}\sum_{h=1}^{p-1}[T; N, h]^{+}L_{N+h+1}\right\}.$$

Applying the assumption of the induction, we have

$$m_{\mu}L_{N+1}^{t}[T; N, p]^{+}$$

$$= m_{\mu} \Big\{ \sum_{h=1}^{p} \Phi_{t-1}^{-}(L_{N+1}, L_{N+2}, \dots, L_{N+h}) L_{N+h}$$

$$- q^{2} \sum_{h=1}^{p-1} \Phi_{t-1}^{-}(L_{N+1}, L_{N+2}, \dots, L_{N+h}) L_{N+h+1} \Big\}.$$

Applying (7.3.1), we have

$$m_{\mu}L_{N+1}^{t}[T; N, p]^{+} = m_{\mu}\Phi_{t}^{-}(L_{N+1}, L_{N+2}, \dots, L_{N+p}).$$

Lemma 7.25. For $\mu \in \Lambda_{n,r}(\mathbf{m})$ and $(i,k) \in \Gamma'(\mathbf{m})$, put $N = N^{\mu}_{(i,k)}$. Then we have the followings.

(i) If $\mu_i^{(k)} \neq 0$, we have

$$\begin{split} m_{\mu}L_{N}^{t}[T;N-1,\mu_{i+1}^{(k)}+1]^{+}[T;N,\mu_{i}^{(k)}]^{-} \\ &= q^{2\mu_{i}^{(k)}-2}m_{\mu}\Phi_{t}^{+}(L_{N},L_{N-1},\ldots,L_{N-\mu_{i}^{(k)}+1}) \\ &+ \delta_{(\mu_{i+1}^{(k)}\neq0)}m_{\mu}L_{N}^{t}([T;N+1,\mu_{i}^{(k)}+1]^{-}-1)[T;N,\mu_{i+1}^{(k)}]^{+} \end{split}$$

(ii) If $\mu_i^{(k)} \neq 0$, we have

$$\begin{split} m_{\mu}L_{N}^{t}[T;N-1,\mu_{i+1}^{(k)}+1]^{+}L_{N}[T;N,\mu_{i}^{(k)}]^{-} \\ &= q^{2\mu_{i}^{(k)}-2}m_{\mu}\Phi_{t+1}^{+}(L_{N},L_{N-1},\ldots,L_{N-\mu_{i}^{(k)}+1}) \\ &- \delta_{(\mu_{i+1}^{(k)}\neq0)}(q-q^{-1})q^{2\mu_{i}^{(k)}-1}m_{\mu}\Phi_{t}^{+}(L_{N},L_{N-1},\ldots,L_{N-\mu_{i}^{(k)}+1}) \\ &\qquad \times \Phi_{1}^{-}(L_{N+1},L_{N+2},\ldots,L_{N+\mu_{i+1}^{(k)}}) \\ &+ m_{\mu}L_{N}^{t}L_{N+1}\big([T;N-1,\mu_{i+1}^{(k)}+1]^{+}-1\big)[T;N,\mu_{i}^{(k)}]^{-} \end{split}$$

(iii) If $\mu_{i+1}^{(k)} \neq 0$, we have

$$\begin{split} m_{\mu}[T;N+1,\mu_{i}^{(k)}+1]^{-}L_{N+1}^{t}[T;N,\mu_{i+1}^{(k)}]^{+} \\ &= (1+\delta_{(t\neq 0)}(q^{2\mu_{i}^{(k)}}-1))m_{\mu}\Phi_{t}^{-}(L_{N+1},L_{N+2},\ldots,L_{N+\mu_{i+1}^{(k)}}) \\ &+ \delta_{(\mu_{i}^{(k)}\neq 0)}(q-q^{-1})\sum_{b=1}^{t-1}m_{\mu}q^{2\mu_{i}^{(k)}-1}\Phi_{t-b}^{+}(L_{N},L_{N-1},\ldots,L_{N-\mu_{i}^{(k)}+1}) \\ &\times \Phi_{b}^{-}(L_{N+1},L_{N+2},\ldots,L_{N+\mu_{i+1}^{(k)}}) \\ &+ m_{\mu}L_{N}^{t}([T;N+1,\mu_{i}^{(k)}+1]^{-}-1)[T;N,\mu_{i+1}^{(k)}]^{+} \end{split}$$

(iv) If $\mu_{i+1}^{(k)} \neq 0$, we have

$$\begin{split} m_{\mu}L_{N+1}[T;N+1,\mu_{i}^{(k)}+1]^{-}L_{N+1}^{t}[T;N,\mu_{i+1}^{(k)}]^{+} \\ &= (1+\delta_{(t\neq 0)}(q^{2\mu_{i}^{(k)}}-1))m_{\mu}\Phi_{t+1}^{-}(L_{N+1},L_{N+2},\ldots,L_{N+\mu_{i+1}^{(k)}}) \\ &+ \delta_{(\mu_{i}^{(k)}\neq 0)}(q-q^{-1})\sum_{b=1}^{t-1}m_{\mu}q^{2\mu_{i}^{(k)}-1}\Phi_{t-b}^{+}(L_{N},L_{N-1},\ldots,L_{N-\mu_{i}^{(k)}+1}) \\ &\times \Phi_{b+1}^{-}(L_{N+1},L_{N+2},\ldots,L_{N+\mu_{i+1}^{(k)}}) \\ &+ m_{\mu}L_{N}^{t}L_{N+1}\big([T;N+1,\mu_{i}^{(k)}+1]^{-}-1\big)[T;N,\mu_{i+1}^{(k)}]^{+} \end{split}$$

Proof. By the induction on $\mu_{i+1}^{(k)}$, we can prove that

(7.25.1)
$$[T; N-1, \mu_{i+1}^{(k)} + 1]^{+}[T; N, \mu_{i}^{(k)}]^{-} = [T; N, \mu_{i}^{(k)}]^{-} + \delta_{(\mu_{i+1}^{(k)} \neq 0)} ([T; N+1, \mu_{i}^{(k)} + 1]^{-} - 1)[T; N, \mu_{i+1}^{(k)}]^{+}$$

Thus we have

$$m_{\mu}L_{N}^{t}[T; N-1, \mu_{i+1}^{(k)}+1]^{+}[T; N, \mu_{i}^{(k)}]^{-}$$

$$= m_{\mu}L_{N}^{t}\Big\{[T; N, \mu_{i}^{(k)}]^{-} + \delta_{(\mu_{i+1}^{(k)} \neq 0)}([T; N+1, \mu_{i}^{(k)}+1]^{-}-1)[T; N, \mu_{i+1}^{(k)}]^{+}\Big\}.$$

Applying Lemma 7.24 (i), we have (i).

We prove (ii). By Lemma 6.3, we have

$$[T; N-1, \mu_{i+1}^{(k)} + 1]^{+}L_{N}$$

$$= L_{N} + L_{N+1} ([T; N-1, \mu_{i+1}^{(k)} + 1]^{+} - 1) - \delta_{(\mu_{i+1}^{(k)} \neq 0)} q(q-q^{-1}) L_{N+1} [T; N, \mu_{i+1}^{(k)}]^{+}.$$

Thus, we have

$$m_{\mu}L_{N}^{t}[T; N-1, \mu_{i+1}^{(k)}+1]^{+}L_{N}[T; N, \mu_{i}^{(k)}]^{-}$$

$$= m_{\mu}L_{N}^{t+1}[T; N, \mu_{i}^{(k)}]^{-} + m_{\mu}L_{N}^{t}L_{N+1}([T; N-1, \mu_{i+1}^{(k)}+1]^{+}-1)[T; N, \mu_{i}^{(k)}]^{-}$$

$$- \delta_{(\mu_{i+1}^{(k)}\neq 0)}q(q-q^{-1})m_{\mu}L_{N}^{t}L_{N+1}[T; N, \mu_{i+1}^{(k)}]^{+}[T; N, \mu_{i}^{(k)}]^{-}.$$

Applying (6.4.2), Lemma 7.11, Lemma 7.24 and (7.25.1), we have (ii). We prove (iii). By Lemma 6.3, we have

$$\begin{split} [T;N+1,\mu_i^{(k)}+1]^-L_{N+1}^t &= L_{N+1}^t + L_N^t \big([T;N+1,\mu_i^{(k)}+1]^- - 1 \big) \\ &+ \delta_{(\mu_i^{(k)} \neq 0)} q(q-q^{-1}) \sum_{b=1}^t L_N^{t-b} L_{N+1}^b [T;N,\mu_i^{(k)}]^-. \end{split}$$

Thus, we have

$$\begin{split} & m_{\mu}[T;N+1,\mu_{i}^{(k)}+1]^{-}L_{N+1}^{t}[T;N,\mu_{i+1}^{(k)}]^{+} \\ & = m_{\mu}L_{N+1}^{t}[T;N,\mu_{i+1}^{(k)}]^{+} + m_{\mu}L_{N}^{t} \left([T;N+1,\mu_{i}^{(k)}+1]^{-}-1\right)[T;N,\mu_{i+1}^{(k)}]^{+} \\ & + \delta_{(\mu_{i}^{(k)}\neq0)}q(q-q^{-1})\sum_{b=1}^{t}m_{\mu}L_{N}^{t-b}L_{N+1}^{b}[T;N,\mu_{i}^{(k)}]^{-}[T;N,\mu_{i+1}^{(k)}]^{+} \\ & = m_{\mu}L_{N+1}^{t}[T;N,\mu_{i+1}^{(k)}]^{+} \\ & + \delta_{(\mu_{i}^{(k)}\neq0)}\delta_{(t\neq0)}q(q-q^{-1})m_{\mu}L_{N+1}^{t}[T;N,\mu_{i}^{(k)}]^{-}[T;N,\mu_{i+1}^{(k)}]^{+} \end{split}$$

$$+ \delta_{(\mu_i^{(k)} \neq 0)} q(q - q^{-1}) \sum_{b=1}^{t-1} m_{\mu} L_N^{t-b} L_{N+1}^b [T; N, \mu_i^{(k)}]^- [T; N, \mu_{i+1}^{(k)}]^+$$

$$+ m_{\mu} L_N^t ([T; N+1, \mu_i^{(k)} + 1]^- - 1) [T; N, \mu_{i+1}^{(k)}]^+$$

Applying (6.4.2), Lemma 7.11 and Lemma 7.24, we have (iii). We prove (iv). By Lemma 6.3, we have

$$\begin{split} m_{\mu}L_{N+1}[T;N+1,\mu_{i}^{(k)}+1]^{-}L_{N+1}^{t}[T;N,\mu_{i+1}^{(k)}]^{+} \\ &= m_{\mu}L_{N+1}^{t+1}[T;N,\mu_{i+1}^{(k)}]^{+} + m_{\mu}L_{N}^{t}L_{N+1}([T;N+1,\mu_{i}^{(k)}+1]^{-}-1)[T;N,\mu_{i+1}^{(k)}]^{+} \\ &+ \delta_{(\mu_{i}^{(k)}\neq 0)}q(q-q^{-1})\sum_{b=1}^{t} m_{\mu}L_{N}^{t-b}L_{N+1}^{b+1}[T;N,\mu_{i}^{(k)}]^{-}[T;N,\mu_{i+1}^{(k)}]^{+} \end{split}$$

Applying (6.4.2), Lemma 7.11 and Lemma 7.24, we have (iv).

Proposition 7.26. For $(i,k) \in \Gamma'(\mathbf{m})$ and $s,t \geq 0$, we have

$$[\mathcal{X}_{(i,k),t}^{+}, \mathcal{X}_{(i,k),s}^{-}] = \begin{cases} \widetilde{\mathcal{K}}_{(i,k)}^{+} \mathcal{J}_{(i,k),s+t} & \text{if } i \neq m_{k}, \\ -Q_{k} \widetilde{\mathcal{K}}_{(m_{k},k)}^{+} \mathcal{J}_{(m_{k},k),s+t} + \widetilde{\mathcal{K}}_{(m_{k},k)}^{+} \mathcal{J}_{(m_{k},k),s+t+1} & \text{if } i = m_{k}. \end{cases}$$

Proof. Assume that s = 0 and $t \ge 0$. For $\mu \in \Lambda_{n,r}(\mathbf{m})$, put $N = N_{(i,k)}^{\mu}$. By Lemma 7.17, we have

(7.26.1)
$$\begin{aligned} \mathcal{X}_{(i,k),t}^{+} \mathcal{X}_{(i,k),0}^{-}(m_{\mu}) \\ &= \delta_{(\mu_{i}^{(k)} \neq 0)} q^{-\mu_{i}^{(k)} - \mu_{i+1}^{(k)} + 1} m_{\mu} L_{N}^{t}[T; N - 1, \mu_{i+1}^{(k)} + 1]^{+} h_{-(i,k)}^{\mu}[T; N, \mu_{i}^{(k)}]^{-} \end{aligned}$$

and

$$(7.26.2) \begin{array}{l} \mathcal{X}_{(i,k),0}^{-} \mathcal{X}_{(i,k),t}^{+}(m_{\mu}) \\ = \delta_{(\mu_{i+1}^{(k)} \neq 0)} q^{-\mu_{i}^{(k)} - \mu_{i+1}^{(k)} + 1} m_{\mu} h_{-(i,k)}^{\mu + \alpha_{(i,k)}} [T; N+1, \mu_{i}^{(k)} + 1]^{-} L_{N+1}^{t} [T; N, \mu_{i+1}^{(k)}]^{+}. \end{array}$$

Assume that $i \neq m_k$. By (7.26.1) and (7.26.2) together with Lemma 7.25, we have

$$(\mathcal{X}_{(i,k),t}^{+}\mathcal{X}_{(i,k),0}^{-} - \mathcal{X}_{(i,k),0}^{-}\mathcal{X}_{(i,k),t}^{+})(m_{\mu})$$

$$= q^{-\mu_{i}^{(k)} - \mu_{i+1}^{(k)} + 1} m_{\mu} \left\{ \delta_{(\mu_{i}^{(k)} \neq 0)} q^{2\mu_{i}^{(k)} - 2} \Phi_{t}^{+}(L_{N}, L_{N-1}, \dots, L_{N-\mu_{i}^{(k)} + 1}) - \delta_{(\mu_{i+1}^{(k)} \neq 0)} (1 + \delta_{(t\neq 0)} (q^{2\mu_{i}^{(k)}} - 1)) \Phi_{t}^{-}(L_{N+1}, L_{N+2}, \dots, L_{N+\mu_{i+1}^{(k)}}) - \delta_{(\mu_{i}^{(k)} \neq 0)} \delta_{(\mu_{i+1}^{(k)} \neq 0)} (q - q^{-1}) \sum_{b=1}^{t-1} q^{2\mu_{i}^{(k)} - 1} \Phi_{t-b}^{+}(L_{N}, L_{N-1}, \dots, L_{N-\mu_{i}^{(k)} + 1})$$

$$\begin{split} &\times \Phi_b^-(L_{N+1},L_{N+2},\dots,L_{N+\mu_{i+1}^{(k)}})\Big\}\\ &=q^{\mu_i^{(k)}-\mu_{i+1}^{(k)}}m_\mu\Big\{\delta_{(\mu_i^{(k)}\neq 0)}q^{-t}q^{t-1}\Phi_t^+(L_N,L_{N-1},\dots,L_{N-\mu_i^{(k)}+1})\\ &\quad -\delta_{(\mu_{i+1}^{(k)}\neq 0)}(q^{-2\mu_i^{(k)}}+\delta_{(t\neq 0)}(1-q^{-2\mu_i^{(k)}}))q^tq^{-t+1}\Phi_t^-(L_{N+1},L_{N+2},\dots,L_{N+\mu_{i+1}^{(k)}})\\ &\quad -\delta_{(\mu_i^{(k)}\neq 0)}\delta_{(\mu_{i+1}^{(k)}\neq 0)}(q-q^{-1})\sum_{b=1}^{t-1}q^{-t+2b}q^{t-b-1}\Phi_t^+(L_N,L_{N-1},\dots,L_{N-\mu_i^{(k)}+1})\\ &\quad \times q^{-b+1}\Phi_b^-(L_{N+1},L_{N+2},\dots,L_{N+\mu_{i+1}^{(k)}})\Big\}\\ &=\widetilde{\mathcal{K}}_{(i,k)}^+\mathcal{J}_{(i,k),t}(m_\mu). \end{split}$$

Thus, we have $[\mathcal{X}_{(i,k),t}^+, \mathcal{X}_{(i,k),0}^-] = \widetilde{\mathcal{K}}_{(i,k)}^+ \mathcal{J}_{(i,k),t}$ if $i \neq m_k$. (Note Corollary 7.9 in the case where t = 0.)

In a similar way, by (7.26.1) and (7.26.2) together with Lemma 7.25, we also have $[\mathcal{X}^+_{(m_k,k),t},\mathcal{X}^-_{(m_k,k),0}] = -Q_k \widetilde{\mathcal{K}}^+_{(m_k,k)} \mathcal{J}_{(m_k,k),s+t} + \widetilde{\mathcal{K}}^+_{(m_k,k)} \mathcal{J}_{(m_k,k),s+t+1}$ if $i=m_k$. Now we proved the proposition in the case where s=0 and $t\geq 0$.

Finally, we prove the proposition by the induction on s. In the case where s = 0, we have already proved. Assume that s > 0, by (7.15.1), we have

$$[\mathcal{X}_{(i,k),t}^{+}, \mathcal{X}_{(i,k),s}^{-}] = \mathcal{X}_{(i,k),t}^{+}(-\mathcal{I}_{(i,k),1}^{-}\mathcal{X}_{(i,k),s-1}^{-} + \mathcal{X}_{(i,k),s-1}^{-}\mathcal{I}_{(i,k),1}^{-}) - (-\mathcal{I}_{(i,k),1}^{-}\mathcal{X}_{(i,k),s-1}^{-} + \mathcal{X}_{(i,k),s-1}^{-}\mathcal{I}_{(i,k),s-1}^{-}\mathcal{X}_{(i,k),t}^{+})$$

Applying Proposition 7.21 together with Lemma 7.20, we have

$$\begin{split} [\mathcal{X}^{+}_{(i,k),t},\mathcal{X}^{-}_{(i,k),s}] &= -\mathcal{I}^{-}_{(i,k),1}\mathcal{X}^{+}_{(i,k),t}\mathcal{X}^{-}_{(i,k),s-1} + \mathcal{X}^{+}_{(i,k),t+1}\mathcal{X}^{-}_{(i,k),s-1} + \mathcal{X}^{+}_{(i,k),t}\mathcal{X}^{-}_{(i,k),s-1}\mathcal{I}^{-}_{(i,k),1} \\ &+ \mathcal{I}^{-}_{(i,k),1}\mathcal{X}^{-}_{(i,k),s-1}\mathcal{X}^{+}_{(i,k),t} - \mathcal{X}^{-}_{(i,k),s-1}\mathcal{X}^{+}_{(i,k),t}\mathcal{I}^{-}_{(i,k),1} - \mathcal{X}^{-}_{(i,k),s-1}\mathcal{X}^{+}_{(i,k),t+1} \\ &= [\mathcal{X}^{+}_{(i,k),t+1},\mathcal{X}^{-}_{(i,k),s-1}] \\ &- \mathcal{I}^{-}_{(i,k),1}[\mathcal{X}^{+}_{(i,k),t},\mathcal{X}^{-}_{(i,k),s-1}] + [\mathcal{X}^{+}_{(i,k),t},\mathcal{X}^{-}_{(i,k),s-1}]\mathcal{I}^{-}_{(i,k),1}. \end{split}$$

Then, by the assumption of the induction together with Lemma 7.6, we have the proposition. \Box

Lemma 7.27. For $(i,k) \in \Gamma'(\mathbf{m})$, we have the followings.

(i) If $(q - q^{-1})$ is invertible in R, we have

$$\widetilde{\mathcal{K}}_{(i,k)}^+ \mathcal{J}_{(i,k),0} = \frac{\widetilde{\mathcal{K}}_{(i,k)}^+ - \widetilde{\mathcal{K}}_{(i,k)}^-}{q - q^{-1}}.$$

(ii) If q = 1, we have

$$\widetilde{\mathcal{K}}_{(i,k)}^+ \mathcal{J}_{(i,k),0} = \mathcal{I}_{(i,k),0}^+ - \mathcal{I}_{(i+1,k),0}^-$$

Proof. For $\mu \in \Lambda_{n,r}(\mathbf{m})$, by the definitions together with Corollary 7.9, we have

$$\widetilde{\mathcal{K}}_{(i,k)}^{+} \mathcal{J}_{(i,k),0}(m_{\mu}) = \widetilde{\mathcal{K}}_{(i,k)}^{+} \left(\mathcal{I}_{(i,k),0}^{+} - (\mathcal{K}_{(i,k)}^{-})^{2} \mathcal{I}_{(i+1,k),0}^{-} \right) (m_{\mu})
= q^{\mu_{i}^{(k)} - \mu_{i+1}^{(k)}} (q^{-\mu_{i}^{(k)}} [\mu_{i}^{(k)}] - q^{-2\mu_{i}^{(k)}} q^{\mu_{i+1}^{(k)}} [\mu_{i+1}^{(k)}]) m_{\mu}
= [\mu_{i}^{(k)} - \mu_{i+1}^{(k)}] m_{\mu}.$$

If $(q - q^{-1})$ is invertible in R, we have

$$[\mu_i^{(k)} - \mu_{i+1}^{(k)}] m_{\mu} = \frac{q^{\mu_i^{(k)} - \mu_{i+1}^{(k)}} - q^{-\mu_i^{(k)} + \mu_{i+1}^{(k)}}}{q - q^{-1}} m_{\mu}$$
$$= \frac{\widetilde{\mathcal{K}}_{(i,k)}^+ - \widetilde{\mathcal{K}}_{(i,k)}^-}{q - q^{-1}} (m_{\mu}).$$

Thus, we have (i).

If q = 1, we have

$$[\mu_i^{(k)} - \mu_{i+1}^{(k)}] m_\mu = (\mu_i^{(k)} - \mu_{i+1}^{(k)}) m_\mu$$
$$= (\mathcal{I}_{(i,k),0}^+ - \mathcal{I}_{(i+1),0}^-) (m_\mu).$$

Thus, we have (ii).

In the case where q = 1, we have the following lemma.

Lemma 7.28. Assume that q = 1. Then, for $(j, l) \in \Gamma(\mathbf{m})$ and $t \ge 0$, we have the followings.

- (i) $\mathcal{K}_{(j,l)}^{\pm} = 1$.
- (ii) $\mathcal{I}_{(j,l),t}^{+} = \mathcal{I}_{(j,l),t}^{-}$

Proof. If q = 1, we see that

$$\Phi_t^{\pm}(x_1, \dots, x_k) = x_1^t + x_2^t + \dots + x_k^t,$$

in particular we have $\Phi_t^+(x_1,\ldots,x_k) = \Phi_t^-(x_1,\ldots,x_k)$. Thus, we have the lemma from the definitions.

 \S 8. The cyclotomic q-Schur algebra as a quotient of $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$

Let $\widetilde{\mathbf{Q}} = (Q_0, Q_1, \dots, Q_{r-1})$ be an r-tuple of indeterminate elements over \mathbb{Z} , and $\mathbb{Q}(\widetilde{\mathbf{Q}}) = \mathbb{Q}(Q_0, Q_1, \dots, Q_{r-1})$ be the quotient field of $\mathbb{Z}[\widetilde{\mathbf{Q}}] = \mathbb{Z}[Q_0, Q_1, \dots, Q_{r-1}]$. Put $\widetilde{\mathbb{A}} = \mathbb{Z}[q, q^{-1}, Q_0, Q_1, \dots, Q_{r-1}]$, and let $\widetilde{\mathbb{K}} = \mathbb{Q}(q, Q_0, Q_1, \dots, Q_{r-1})$ be the quotient field of $\widetilde{\mathbb{A}}$, where q is indeterminate over \mathbb{Z} . Put

$$\begin{split} &\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m}) = \mathbb{Q}(\widetilde{\mathbf{Q}}) \otimes_{\mathbb{Q}(\mathbf{Q})} \mathfrak{g}_{\mathbf{Q}}(\mathbf{m}), \\ &\mathcal{U}_{q,\widetilde{\mathbf{Q}}}(\mathbf{m}) = \widetilde{\mathbb{K}} \otimes_{\mathbb{K}} \mathcal{U}_{q,\mathbf{Q}}(\mathbf{m}) \text{ and } \mathcal{U}_{\widetilde{\mathbb{A}},q,\widetilde{\mathbf{Q}}}(\mathbf{m}) = \widetilde{\mathbb{A}} \otimes_{\mathbb{A}} \mathcal{U}_{\mathbb{A},q,\mathbf{Q}}(\mathbf{m}). \end{split}$$

We define a full subcategory $\mathcal{C}_{\widetilde{\mathbf{Q}}}(\mathbf{m})$ and $\mathcal{C}_{\widetilde{\mathbf{Q}}}^{\geq 0}(\mathbf{m})$ (resp. $\mathcal{C}_{q,\widetilde{\mathbf{Q}}}(\mathbf{m})$ and $\mathcal{C}_{q,\widetilde{\mathbf{Q}}}^{\geq 0}(\mathbf{m})$) of $U(\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m}))$ -mod (resp. $\mathcal{U}_{q,\widetilde{\mathbf{Q}}}(\mathbf{m})$ -mod) in a similar manner as $\mathcal{C}_{\mathbf{Q}}(\mathbf{m})$ and $\mathcal{C}_{\overline{\mathbf{Q}}}^{\geq 0}(\mathbf{m})$ (resp. $\mathcal{C}_{q,\mathbf{Q}}(\mathbf{m})$ and $\mathcal{C}_{q,\mathbf{Q}}^{\geq 0}(\mathbf{m})$).

Let $\mathscr{H}_{n,r}^{\widetilde{\mathbb{K}}}$ (resp. $\mathscr{H}_{n,r}^{\widetilde{\mathbb{A}}}$) be the Ariki-Koike algebra over $\widetilde{\mathbb{K}}$ (resp. over $\widetilde{\mathbb{A}}$) with parameters $q, Q_0, Q_1, \ldots, Q_{r-1}$, and $\mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$ (resp. $\mathscr{S}_{n,r}^{\widetilde{\mathbb{A}}}(\mathbf{m})$) be the cyclotomic q-Schur algebra associated with $\mathscr{H}_{n,r}^{\widetilde{\mathbb{K}}}$ (resp. $\mathscr{H}_{n,r}^{\widetilde{\mathbb{A}}}$). Then, we have the following theorem.

Theorem 8.1. We have a homomorphism of algebras

(8.1.1)
$$\Psi: \mathcal{U}_{q,\widetilde{\mathbf{Q}}}(\mathbf{m}) \to \mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$$

by taking $\Psi(\mathcal{X}_{(i,k),t}^{\pm}) = \mathcal{X}_{(i,k),t}^{\pm}$, $\Psi(\mathcal{I}_{(j,l),t}^{\pm}) = \mathcal{I}_{(j,l),t}^{\pm}$ and $\Psi(\mathcal{K}_{(j,l)}^{\pm}) = \mathcal{K}_{(j,l)}^{\pm}$. The restriction of Ψ to $\mathcal{U}_{\widetilde{\mathbb{A}},q,\widetilde{\mathbf{Q}}}(\mathbf{m})$ gives a homomorphism of algebras

$$\Psi_{\widetilde{\mathbb{A}}}: \mathcal{U}_{\widetilde{\mathbb{A}},q,\widetilde{\mathbf{Q}}}(\mathbf{m}) o \mathscr{S}_{n,r}^{\widetilde{\mathbb{A}}}(\mathbf{m}).$$

Moreover, if $m_k \ge n$ for all k = 1, 2, ..., r-1, the homomorphism Ψ (resp. $\Psi_{\widetilde{\mathbb{A}}}$) is surjective.

Proof. The well-definedness of Ψ follows from Lemma 7.6, Lemma 7.7, Lemma 7.16, Proposition 7.18, Proposition 7.19, Lemma 7.20, Proposition 7.21, Proposition 7.22, and Proposition 7.26.

Note that $\mathscr{H}_{n,r}^{\mathbb{A}}$ (resp. $\mathscr{S}_{n,r}^{\widetilde{\mathbb{A}}}(\mathbf{m})$) is an \mathbb{A} -subalgebra of $\mathscr{H}_{n,r}^{\widetilde{\mathbb{K}}}$ (resp. $\mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$) by definitions. In particular, in order to see that $\varphi \in \mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$ belong to $\mathscr{S}_{n,r}^{\widetilde{\mathbb{A}}}(\mathbf{m})$, it is enough to show that $\varphi(m_{\mu}) \in \mathscr{H}_{n,r}^{\mathbb{A}}$ for any $\mu \in \Lambda_{n,r}(\mathbf{m})$.

For $\mu \in \Lambda_{n,r}(\mathbf{m})$ and $d \in \mathbb{Z}_{\geq 0}$, we see that,

(8.1.2)
$$\begin{bmatrix} \mathcal{K}_{(j,l)}; 0 \\ d \end{bmatrix} (m_{\mu}) = \begin{cases} \begin{bmatrix} \mu_j^{(l)} \\ d \end{bmatrix} m_{\mu} & \text{if } d \leq \mu_j^{(l)}, \\ 0 & \text{if } d > \mu_j^{(l)} \end{cases}$$

in $\mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$. This implies that $\Psi(\begin{bmatrix} \mathcal{K}_{(j,l)};0 \\ d \end{bmatrix}) \in \mathscr{S}_{n,r}^{\widetilde{\mathbb{A}}}(\mathbf{m})$. For $(i,k) \in \Gamma'(\mathbf{m})$ and $t,d \in \mathbb{Z}_{\geq 0}$, we see that

$$\begin{split} &(\mathcal{X}_{(i,k),t}^{+})^{d}(m_{\mu}) \\ &= q^{-d\mu_{i+1}^{(k)} + d(d+1)/2} m_{\mu + d\alpha_{(i,k)}} (L_{N_{(i,k)}^{\mu} + 1} L_{N_{(i,k)}^{\mu} + 2} \dots L_{N_{(i,k)}^{\mu} + d})^{t} \begin{bmatrix} T; N_{(i,k)}^{\mu}, \mu_{i+1}^{(k)} \end{bmatrix} \\ &= q^{-d\mu_{i+1}^{(k)} + d(d+1)/2} m_{\mu + d\alpha_{(i,k)}} (L_{N_{(i,k)}^{\mu} + 1} L_{N_{(i,k)}^{\mu} + 2} \dots L_{N_{(i,k)}^{\mu} + d})^{t} \\ &\times (T; N_{(i,k)}^{\mu}, d)^{+}! \mathfrak{H}^{+}(N_{(i,k)}^{\mu}, \mu_{i+1}^{(k)}, d) \end{split}$$

by Lemma 7.17 together with Lemma 7.11 and Corollary 7.14. We also see that $(T; N^{\mu}_{(i,k)}, d)^+!$ commute with $(L_{N^{\mu}_{(i,k)}+1}L_{N^{\mu}_{(i,k)}+2}\dots L_{N^{\mu}_{(i,k)}+d})^t$ by Lemma 6.3 (iii), and see that $m_{\mu+d\alpha_{(i,k)}}(T; N^{\mu}_{(i,k)}, d)^+! = q^{d(d-1)/2}[d]! m_{\mu+d\alpha_{(i,k)}}$ by (6.4.2). Thus we have

$$(\mathcal{X}_{(i,k),t}^{+})^{d}(m_{\mu})$$

$$= [d]! q^{-d\mu_{i+1}^{(k)} + d^{2}} m_{\mu + d\alpha_{(i,k)}} (L_{N_{(i,k)}^{\mu} + 1} L_{N_{(i,k)}^{\mu} + 2} \dots L_{N_{(i,k)}^{\mu} + d})^{t} \mathfrak{H}^{+}(N_{(i,k)}^{\mu}, \mu_{i+1}^{(k)}, d)$$

in $\mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$. This implies that $\Psi(\mathcal{X}_{(i,k)t}^{+(d)}) \in \mathscr{S}_{n,r}^{\widetilde{\mathbb{A}}}(\mathbf{m})$ since $\mathfrak{H}^+(N_{(i,k)}^{\mu},\mu_{i+1}^{(k)},d) \in \mathscr{H}_{n,r}^{\widetilde{\mathbb{A}}}$ by the argument in the proof of Corollary 7.14. Similarly, we see that $\Psi(\mathcal{X}_{(i,k),t}^{-(d)}) \in \mathscr{S}_{n,r}^{\widetilde{\mathbb{A}}}(\mathbf{m})$. Thus, the restriction of Ψ to $\mathcal{U}_{\widetilde{\mathbb{A}},q,\widetilde{\mathbf{Q}}}(\mathbf{m})$ gives a homomorphism $\Psi_{\widetilde{\mathbb{A}}}$. The last assertion follows from [W1, Proposition 6.4].

Remark 8.2. In order to prove the surjectivity of Ψ (resp. $\Psi_{\widetilde{\mathbb{A}}}$), we use the result of [W1, Proposition 6.4]. In fact, we considered only the case where $m_k = n$ for all k = 1, 2, ..., r in [W1]. However, we can apply the result to the case where $m_k \geq n$ for all k = 1, 2, ..., r - 1 without any change since the surjectivity in [W1, Proposition 6.4] follows from the result in [DR]. The reason why we assume the condition $m_k \geq n$ for all k = 1, 2, ..., r - 1 to state the surjectivity of Ψ is just the using results of [DR]. We expect that Ψ is also surjective without this condition.

Theorem 8.3. Assume that $m_k \ge n$ for all k = 1, 2, ..., r - 1. Then we have the followings.

- (i) $\mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$ -mod is a full subcategory of $C_{q,\widetilde{\mathbf{Q}}}^{\geq 0}(\mathbf{m})$ through the surjection Ψ in (8.1.1).
- (ii) The Weyl module $\Delta(\lambda) \in \mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$ -mod $(\lambda \in \Lambda_{n,r}^+(\mathbf{m}))$ is the simple highest weight $\mathcal{U}_{q,\widetilde{\mathbf{Q}}}(\mathbf{m})$ -module of highest weight (λ, φ) through the surjection Ψ , where the multiset $\varphi = (\varphi_{(j,l),t}^{\pm} \in \widetilde{\mathbb{K}} | (j,l) \in \Gamma(\mathbf{m}), t \geq 1)$ is given by

$$\varphi_{(i,l),t}^+ = Q_{l-1}^t q^{(2t-1)\lambda_j^{(l)} - t(2j-1)} [\lambda_i^{(l)}] \text{ and } \varphi_{(i,l),t}^- = Q_{l-1}^t q^{\lambda_j^{(l)} - t(2j-1)} [\lambda_i^{(l)}].$$

Proof. For $\lambda \in \Lambda_{n,r}(\mathbf{m})$, let 1_{λ} be an element of $\mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$ such that the identity on M^{λ} and $1_{\lambda}(M^{\mu}) = 0$ for any $\mu \neq \lambda$. Then we have $1_{\lambda}1_{\mu} = \delta_{\lambda\mu}1_{\lambda}$ and $\sum_{\lambda \in \Lambda_{n,r}(\mathbf{m})} 1_{\lambda} = 1$. Thus, for $M \in \mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}$ -mod, we have the decomposition

(8.3.1)
$$M = \bigoplus_{\mu \in \Lambda_{n,r}(\mathbf{m})} 1_{\mu} M.$$

Moreover, we see that

$$1_{\mu}M = \{ m \in M \mid \mathcal{K}_{(j,l)}^{+} \cdot m = q^{\mu_{j}^{(l)}} m \text{ for } (j,l) \in \Gamma(\mathbf{m}) \}$$

from the definition of Ψ . Thus, any object M of $\mathscr{S}_{n,r}^{\widetilde{\mathbb{R}}}$ -mod has the weight space decomposition (8.3.1) as a $\mathcal{U}_{q,\widetilde{\mathbf{Q}}}(\mathbf{m})$ -module, where we remark that $\Lambda_{n,r}(\mathbf{m}) \subset P_{\geq 0}$.

For $M \in \mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$ -mod, in order to see that all eigenvalues of the action of $\mathcal{I}_{(j,l),t}^{\pm}$ $((j,l) \in \Gamma(\mathbf{m}), t \geq 0)$ on M belong to $\widetilde{\mathbb{K}}$, it is enough to show them for $\Delta(\lambda)$ $(\lambda \in \Lambda_{n,r}^+(\mathbf{m}))$ since $\mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$ is semi-simple and $\{\Delta(\lambda) \mid \lambda \in \Lambda_{n,r}^+(\mathbf{m})\}$ gives a complete set of isomorphism classes of simple $\mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}$ -modules. Recall that $\{\varphi_T \mid T \in \mathcal{T}_0(\lambda,\mu) \text{ for some } \mu \in \Lambda_{n,r}(\mathbf{m})\}$ gives a basis of $\Delta(\lambda)$.

Note that $\Phi_t^{\pm}(L_{N_{(j,l)}^{\mu}}, L_{N_{(j,l)}^{\mu}-1}, \dots, L_{N_{(j,l)}^{\mu}-\mu_j^{(l)}+1})$ commute with T_w for any $w \in \mathfrak{S}_{\mu}$ by Lemma 6.3, for $T \in \mathcal{T}_0(\lambda, \mu)$, we have

$$(8.3.2) \quad \mathcal{I}_{(j,l),t}^{\pm} \cdot \varphi_T = \begin{cases} q^{\pm(t-1)} \Phi_t^{\pm}(\operatorname{res}_{(j,l);T}) \varphi_T + \sum_{S \triangleright T} r_S \varphi_S & (r_S \in \widetilde{\mathbb{K}}) & \text{if } \mu_j^{(l)} \neq 0, \\ 0 & \text{if } \mu_j^{(l)} = 0 \end{cases}$$

in a similar argument as in the proof of [JM, Theorem 3.10], where

$$\Phi_t^{\pm}(\mathrm{res}_{(j,l);T}) = \Phi_t^{\pm}(\mathrm{res}(x_1), \mathrm{res}(x_2), \dots, \mathrm{res}(x_{\mu_i^{(l)}}))$$

with $\{x_1, x_2, \ldots, x_{\mu_j^{(l)}}\} = \{x \in [\lambda] \mid T(x) = (j, l)\}$, and \triangleright is a partial order on $\mathcal{T}_0(\lambda, \mu)$ defined in [JM, Definition 3.6]. This implies that all eigenvalues of the action of $\mathcal{I}_{(j,l),t}^{\pm}$ on $\Delta(\lambda)$ belong to $\widetilde{\mathbb{K}}$. Now we proved (i).

We prove (ii). For $\lambda \in \Lambda_{n,r}^+(\mathbf{m})$, let T^{λ} be the unique semi-standard tableau of shape λ with weight λ . Then, we see easily that $\varphi_{T^{\lambda}}$ is a highest weight vector of $\Delta(\lambda)$. Note that there is no tableau such that $S \rhd T^{\lambda}$, then we have

(8.3.3)
$$\varphi_{(j,l),t}^{\pm} = q^{\pm(t-1)} \Phi_t^{\pm}(Q_k q^{2(1-j)}, Q_k q^{2(2-j)}, \dots, Q_k q^{2(\lambda_j^{(l)} - j)})$$

by (8.3.2). Then we can prove (ii) by the induction on t using (8.3.3) and (7.3.1). \square

Let $\mathscr{S}^{\mathbf{1}}_{n,r}(\mathbf{m})$ be the cyclotomic q-Schur algebra over $\mathbb{Q}(\widetilde{\mathbf{Q}})$ with parameters $q=1,\,Q_0,\,Q_1,\ldots,\,Q_{r-1}$. Then we have the following theorem.

Theorem 8.4.

(i) We have a homomorphism of algebras

(8.4.1)
$$\Psi_{\mathbf{1}}: U(\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m})) \to \mathscr{S}_{n,r}^{\mathbf{1}}(\mathbf{m})$$

by taking $\Psi_{\mathbf{1}}(\mathcal{X}_{(i,k),t}^{\pm}) = \mathcal{X}_{(i,k),t}^{\pm}$ and $\Psi_{\mathbf{1}}(\mathcal{I}_{(j,l),t}) = \mathcal{I}_{(j,l),t}^{+} (= \mathcal{I}_{(j,l),t}^{-})$. Moreover, if $m_k \geq n$ for all $k = 1, 2, \ldots, r - 1$, the homomorphism $\Psi_{\mathbf{1}}$ is surjective.

(ii) Assume that $m_k \geq n$ for all k = 1, 2, ..., r - 1. Then $\mathscr{S}_{n,r}^{\mathbf{1}}(\mathbf{m})$ -mod is a full subcategory of $\mathcal{C}_{\widetilde{\mathbf{O}}}^{\geq 0}(\mathbf{m})$ through the surjection $\Psi_{\mathbf{1}}$.

Moreover, the Weyl module $\Delta(\lambda) \in \mathscr{S}_{n,r}^{1}(\mathbf{m})$ -mod $(\lambda \in \Lambda_{n,r}^{+})$ is the simple highest weight $U(\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m}))$ -module of highest weight (λ, φ) through the surjection Ψ_{1} , where the multiset $\varphi = (\varphi_{(j,l),t} \in \mathbb{Q}(\widetilde{\mathbf{Q}}) | (j,l) \in \Gamma(\mathbf{m}), t \geq 1)$ is given by

$$\varphi_{(j,l),t} = Q_{l-1}^t \lambda_j^{(l)}.$$

Proof. Note Lemma 7.27 and Lemma 7.28, then we can prove the theorem in a similar way as in the proof of Theorem 8.1 and Theorem 8.3. \Box

§ 9. Characters of Weyl modules of cyclotomic q-Schur algebras

In this section, we study the characters of Weyl modules of cyclotomic q-Schur algebras as symmetric polynomials. In particular, we prove the conjecture given in [W2] (the formula (9.2.1) below) which will be understood as the decomposition of the tensor product of Weyl modules in the case where q = 1.

9.1. Characters. For k = 1, ..., r, let $\mathbf{x}_{\mathbf{m}}^{(k)} = (x_{(1,k)}, x_{(2,k)}, ..., x_{(m_k,k)})$ be the set of m_k independent variables, and put $\mathbf{x}_{\mathbf{m}} = \bigcup_{k=1}^r \mathbf{x}_{\mathbf{m}}^{(k)}$. Let $\mathbb{Z}[\mathbf{x}_{\mathbf{m}}^{\pm}]$ (resp. $\mathbb{Z}[\mathbf{x}_{\mathbf{m}}]$) be the ring of Laurent polynomials (resp. the ring of polynomials) with variables $\mathbf{x}_{\mathbf{m}}$. For $\lambda \in P$, we define the monomial $x^{\lambda} \in \mathbb{Z}[\mathbf{x}_{\mathbf{m}}^{\pm}]$ by $x^{\lambda} = \prod_{k=1}^r \prod_{i=1}^{m_k} x_{(i,k)}^{(\lambda,h_{(i,k)})}$. For $M \in \mathcal{C}_{\widetilde{\mathbf{Q}}}(\mathbf{m})$ (resp. $M \in \mathcal{C}_{q,\widetilde{\mathbf{Q}}}(\mathbf{m})$), we define the character of M by

(9.1.1)
$$\operatorname{ch} M = \sum_{\lambda \in P} \dim M_{\lambda} x^{\lambda} \in \mathbb{Z}[\mathbf{x}_{\mathbf{m}}^{\pm}].$$

It is clear that $\operatorname{ch} M \in \mathbb{Z}[\mathbf{x_m}]$ if $M \in \mathcal{C}_{\widetilde{\mathbf{Q}}}^{\geq 0}(\mathbf{m})$ (resp. $M \in \mathcal{C}_{q,\widetilde{\mathbf{Q}}}^{\geq 0}(\mathbf{m})$).

When we regard $M \in \mathcal{C}_{\widetilde{\mathbf{Q}}}(\mathbf{m})$ as a $U(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r})$ -module through the injection (2.16.2), ch M defined by (9.1.1) coincides with the character of M as a $U(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r})$ -module since M_{λ} is also the weight space of weight λ as a $U(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r})$ -module. Thus, by the known results for $U(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r})$ -modules, we see that

$$\operatorname{ch} M \in \bigotimes_{k=1}^{r} \mathbb{Z}[\mathbf{x}_{\mathbf{m}}^{(k)}]^{\mathfrak{S}_{m_{k}}} \text{ if } M \in \mathcal{C}_{\widetilde{\mathbf{Q}}}^{\geq 0}(\mathbf{m}),$$

where $\mathbb{Z}[\mathbf{x}_{\mathbf{m}}^{(k)}]^{\mathfrak{S}_{m_k}}$ is the ring of symmetric polynomials with variables $\mathbf{x}_{\mathbf{m}}^{(k)}$, and we regard $\bigotimes_{k=1}^r \mathbb{Z}[\mathbf{x}_{\mathbf{m}}^{(k)}]^{\mathfrak{S}_{m_k}}$ as a subring of $\mathbb{Z}[\mathbf{x}_{\mathbf{m}}]$ through the multiplication map $\bigotimes_{k=1}^r \mathbb{Z}[\mathbf{x}_{\mathbf{m}}^{(k)}]^{\mathfrak{S}_{m_k}} \to \mathbb{Z}[\mathbf{x}_{\mathbf{m}}] \ (\bigotimes_{k=1}^r f(\mathbf{x}_{\mathbf{m}}^{(k)}) \mapsto \prod_{k=1}^r f(\mathbf{x}_{\mathbf{m}}^{(k)}))$. It is similar for $M \in \mathcal{C}_{q,\widetilde{\mathbf{Q}}}(\mathbf{m})$ through the injection (4.9.2).

9.2. The character of the Weyl module $\Delta(\lambda) \in \mathscr{S}_{n,r}(\mathbf{m})$ $(\lambda \in \widetilde{\Lambda}_{n,r}^+(\mathbf{m}))$ is studied in [W2]. Note that $\operatorname{ch} \Delta(\lambda)$ $(\lambda \in \widetilde{\Lambda}_{n,r}^+(\mathbf{m}))$ does not depend on the choice of the base field and parameters. Put $\widetilde{\Lambda}_{\geq 0,r}^+(\mathbf{m}) = \bigcup_{n\geq 0} \widetilde{\Lambda}_{n,r}^+(\mathbf{m})$. For $\lambda, \mu \in \widetilde{\Lambda}_{\geq 0,r}^+(\mathbf{m})$, the

following formula was conjectured in [W2, Conjecture 2]:

(9.2.1)
$$\operatorname{ch} \Delta(\lambda) \operatorname{ch} \Delta(\mu) = \sum_{\nu \in \widetilde{\Lambda}^{+}_{\geq 0, r}(\mathbf{m})} \operatorname{LR}^{\nu}_{\lambda \mu} \operatorname{ch} \Delta(\nu) \text{ for } \lambda, \mu \in \widetilde{\Lambda}^{+}_{\geq 0, r}(\mathbf{m}),$$

where $LR_{\lambda\mu}^{\nu} = \prod_{k=1}^{r} LR_{\lambda^{(k)}\mu^{(k)}}^{\nu^{(k)}}$, and $LR_{\lambda^{(k)}\mu^{(k)}}^{\nu^{(k)}}$ is the Littlewood-Richardson coefficient for the partitions $\lambda^{(k)}$, $\mu^{(k)}$ and $\nu^{(k)}$. We prove this conjecture as follows.

9.3. For $\lambda = (\lambda^{(1)}, \dots, \lambda^{(r)}) \in \widetilde{A}_{n,r}^+(\mathbf{m})$, we denote

$$(\underbrace{0,\ldots,0}_{k-1},\lambda^{(k)},0,\ldots,0)\in\widetilde{A}_{n_k,r}^+(\mathbf{m})$$

by $(0,\ldots,\lambda^{(k)},\ldots,0)$ simply, where $n_k = \sum_{i=1}^{m_k} \lambda_i^{(k)}$ (i.e. $\lambda^{(k)}$ appears in the k-th component in $(0,\ldots,\lambda^{(k)},\ldots,0)$). Let

$$S_{\lambda^{(k)}}(\mathbf{x}_{\mathbf{m}}^{(k)} \cup \dots \cup \mathbf{x}_{\mathbf{m}}^{(r)}) \in \mathbb{Z}[\mathbf{x}_{\mathbf{m}}^{(k)} \cup \dots \cup \mathbf{x}_{\mathbf{m}}^{(r)}]^{\mathfrak{S}(\mathbf{x}_{\mathbf{m}}^{(k)} \cup \dots \cup \mathbf{x}_{\mathbf{m}}^{(r)})}$$

be the Schur polynomial for the partition $\lambda^{(k)}$ with variables $\mathbf{x}_{\mathbf{m}}^{(k)} \cup \cdots \cup \mathbf{x}_{\mathbf{m}}^{(r)}$, where we regard $\mathbb{Z}[\mathbf{x}_{\mathbf{m}}^{(k)} \cup \cdots \cup \mathbf{x}_{\mathbf{m}}^{(r)}]^{\mathfrak{S}(\mathbf{x}_{\mathbf{m}}^{(k)} \cup \cdots \cup \mathbf{x}_{\mathbf{m}}^{(r)})}$ as a subring of $\bigotimes_{k=1}^{r} \mathbb{Z}[\mathbf{x}_{\mathbf{m}}^{(k)}]^{\mathfrak{S}_{m_k}} \subset \mathbb{Z}[\mathbf{x}_{\mathbf{m}}]$ in the natural way. Put $\widetilde{S}_{\lambda}(\mathbf{x}_{\mathbf{m}}) = \operatorname{ch} \Delta(\lambda)$ ($\lambda \in \widetilde{\Lambda}_{\geq 0,r}^{+}(\mathbf{m})$). Then we have the following proposition.

Proposition 9.4. For $\lambda, \mu \in \widetilde{\Lambda}^+_{>0,r}(\mathbf{m})$, we have the following formulas.

(i)
$$\widetilde{S}_{(0,\ldots,\lambda^{(k)},\ldots,0)}(\mathbf{x_m}) = S_{\lambda^{(k)}}(\mathbf{x_m^{(k)}} \cup \cdots \cup \mathbf{x_m^{(r)}}).$$

(ii)
$$\widetilde{S}_{\lambda}(\mathbf{x_m}) = \prod_{k=1}^{n} \widetilde{S}_{(0,\dots,\lambda^{(k)},\dots,0)}(\mathbf{x_m}).$$

(iii)
$$\widetilde{S}_{\lambda}(\mathbf{x_m})\widetilde{S}_{\mu}(\mathbf{x_m}) = \sum_{\nu \in \widetilde{\Lambda}_{\geq 0,r}^+(\mathbf{m})} LR_{\lambda\mu}^{\nu} \widetilde{S}_{\nu}(\mathbf{x_m}).$$

Proof. (i). By the definition of the cellular basis of $\mathscr{S}_{n,r}(\mathbf{m})$ in [DJM], for $\lambda \in \widetilde{\Lambda}_{n,r}^+(\mathbf{m})$, we have

(9.4.1)
$$\widetilde{S}_{\lambda}(\mathbf{x_m}) = \operatorname{ch} \Delta(\lambda) = \sum_{\mu \in \Lambda_{n,r}(\mathbf{m})} \sharp \mathcal{T}_0(\lambda, \mu) x^{\mu}.$$

Thus, we have

(9.4.2)
$$\widetilde{S}_{(0,\ldots,\lambda^{(k)},\ldots,0)}(\mathbf{x_m}) = \sum_{\mu \in \Lambda_{n_k,r}(\mathbf{m})} \sharp \mathcal{T}_0((0,\ldots,\lambda^{(k)},\ldots,0),\mu) x^{\mu},$$

where $n_k = \sum_{i=1}^{m_k} \lambda_i^{(k)}$. We see that

$$\mu^{(1)} = \dots = \mu^{(k-1)} = 0 \text{ if } \mathcal{T}_0((0,\dots,\lambda^{(k)},\dots,0),\mu) \neq \emptyset$$

by the definition of semi-standard tableaux. Thus, we have $\widetilde{S}_{(0,\dots,\lambda^{(k)},\dots,0)}(\mathbf{x_m}) \in \bigotimes_{l=k}^r \mathbb{Z}[\mathbf{x_m}^{(l)}]^{\mathfrak{S}_{m_k}}$. Put

$$\Lambda_{n_k,r}^{\geq k}(\mathbf{m}) = \{ \mu = (\mu^{(1)}, \dots, \mu^{(r)}) \in \Lambda_{n_k,r}(\mathbf{m}) \mid \mu^{(l)} = 0 \text{ for } l = 1, \dots, k-1 \}.$$

Put $m' = m_k + \cdots + m_r$. We identify the set $\Lambda_{n_k,1}(m')$ with $\Lambda_{n_k,r}^{\geq k}(\mathbf{m})$ by the bijection $\theta^k : \Lambda_{n_k,1}(m') \mapsto \Lambda_{n_k,r}^{\geq k}(\mathbf{m})$ such that

$$(\theta^k(\mu))_i^{(k+l)} = \begin{cases} \mu_i & \text{if } l = 0, \\ \mu_{m_k + m_{k+1} + \dots + m_{k+l-1} + i} & \text{if } 1 \le l \le r - k \end{cases}$$

for $\mu = (\mu_1, \mu_2, \dots, \mu_{m'}) \in \Lambda_{n_k, 1}(m')$. By the well-known fact, we can describe the Schur polynomial $S_{\lambda^{(k)}}(\mathbf{x}_{\mathbf{m}}^{(k)} \cup \dots \cup \mathbf{x}_{\mathbf{m}}^{(r)})$ as

$$(9.4.3) S_{\lambda^{(k)}}(\mathbf{x}_{\mathbf{m}}^{(k)} \cup \cdots \cup \mathbf{x}_{\mathbf{m}}^{(r)}) = \sum_{\mu \in \Lambda_{n_k,1}(m')} \sharp \mathcal{T}_0(\lambda^{(k)}, \mu) x^{\mu},$$

where we put $x^{\mu} = \prod_{i=1}^{m_k} x_{(i,k)}^{\mu_i} \prod_{l=1}^{r-k} \prod_{i=1}^{m_l} x_{(i,k+l)}^{\mu_{m_k+m_{k+1}+\cdots+m_{k+l-1}+i}}$. From the definition of semi-standard tableaux, we see that

$$\sharp \mathcal{T}_0(\lambda^{(k)}, \mu) = \sharp \mathcal{T}_0((0, \dots, \lambda^{(k)}, \dots, 0), \theta^k(\mu))$$

for $\mu \in \Lambda_{n_k,1}(m')$. Thus, by comparing the right hand sides of (9.4.2) and of (9.4.3), we obtain (i).

(ii). First we prove that

$$(9.4.4) \widetilde{S}_{(\lambda^{(1)},\lambda^{(2)},\dots,\lambda^{(r)})}(\mathbf{x_m}) = \widetilde{S}_{(\lambda^{(1)},0,\dots,0)}(\mathbf{x_m})\widetilde{S}_{(0,\lambda^{(2)},\dots,\lambda^{(r)})}(\mathbf{x_m}).$$

By (9.4.1), we have

(9.4.5)
$$\widetilde{S}_{(\lambda^{(1)},\lambda^{(2)},\dots,\lambda^{(r)})}(\mathbf{x_m}) = \sum_{\mu \in \Lambda_{n,r}(\mathbf{m})} \sharp \mathcal{T}_0(\lambda,\mu) \, x^{\mu}.$$

On the other hand, we have

$$(9.4.6)$$

$$\widetilde{S}_{(\lambda^{(1)},0,\dots,0)}(\mathbf{x_m})\widetilde{S}_{(0,\lambda^{(2)},\dots,\lambda^{(r)})}(\mathbf{x_m})$$

$$= \left(\sum_{\nu \in \Lambda_{n_1,r}(\mathbf{m})} \sharp \mathcal{T}_0((\lambda^{(1)},0,\dots,0),\nu) \, x^{\nu}\right) \left(\sum_{\tau \in \Lambda_{n',r}(\mathbf{m})} \sharp \mathcal{T}_0((0,\lambda^{(2)},\dots,\lambda^{(r)}),\tau) \, x^{\tau}\right)$$

$$= \sum_{\mu \in \Lambda_{n,r}(\mathbf{m})} \left(\sum_{\substack{\nu \in \Lambda_{n_1,r}(\mathbf{m}),\tau \in \Lambda_{n',r}(\mathbf{m})\\\nu+\tau=\mu}} \sharp \mathcal{T}_0((\lambda^{(1)},0,\dots,0),\nu) \sharp \mathcal{T}_0((0,\lambda^{(2)},\dots,\lambda^{(r)}),\tau)\right) x^{\mu}$$

where $n_1 = \sum_{i=1}^{m_1} \lambda_i^{(1)}$ and $n' = n - n_1$. From the definition of semi-standard tableaux, we can check that

$$(9.4.7) \quad \sharp \mathcal{T}_{0}(\lambda,\mu) = \sum_{\substack{\nu \in \Lambda_{n_{1},r}(\mathbf{m}),\tau \in \Lambda_{n',r}(\mathbf{m}) \\ \nu+\tau = \mu}} \sharp \mathcal{T}_{0}((\lambda^{(1)},0,\ldots,0),\nu) \sharp \mathcal{T}_{0}((0,\lambda^{(2)},\ldots,\lambda^{(r)}),\tau).$$

Thus, (9.4.5), (9.4.6) and (9.4.7) imply (9.4.4). By applying a similar argument to $\widetilde{S}_{(0,\lambda^{(2)},\dots,\lambda^{(r)})}(\mathbf{x_m})$ inductively, we obtain (ii).

By (i) and (ii), we have

$$\widetilde{S}_{\lambda}(\mathbf{x_{m}})\widetilde{S}_{\mu}(\mathbf{x_{m}}) = \left(\prod_{k=1}^{r} \widetilde{S}_{(0,\dots,\lambda^{(k)},\dots,0)}(\mathbf{x_{m}})\right) \left(\prod_{k=1}^{r} \widetilde{S}_{(0,\dots,\mu^{(k)},\dots,0)}(\mathbf{x_{m}})\right) \\
= \left(\prod_{k=1}^{r} S_{\lambda^{(k)}}(\mathbf{x_{m}^{(k)}} \cup \dots \cup \mathbf{x_{m}^{(r)}})\right) \left(\prod_{k=1}^{r} S_{\mu^{(k)}}(\mathbf{x_{m}^{(k)}} \cup \dots \cup \mathbf{x_{m}^{(r)}})\right) \\
= \prod_{k=1}^{r} S_{\lambda^{(k)}}(\mathbf{x_{m}^{(k)}} \cup \dots \cup \mathbf{x_{m}^{(r)}})\right) S_{\mu^{(k)}}(\mathbf{x_{m}^{(k)}} \cup \dots \cup \mathbf{x_{m}^{(r)}})\right) \\
= \prod_{k=1}^{r} \left(\sum_{\nu^{(k)} \in \Lambda_{\geq 0,1}^{+}(m_{k} + \dots + m_{r})} \operatorname{LR}_{\lambda^{(k)}\mu^{(k)}}^{\nu^{(k)}} S_{\nu^{(k)}}(\mathbf{x_{m}^{(k)}} \cup \dots \cup \mathbf{x_{m}^{(r)}})\right) \\
= \sum_{\nu \in \widetilde{\Lambda}_{\geq 0,r}^{+}(\mathbf{m})} \left(\prod_{k=1}^{r} \operatorname{LR}_{\lambda^{(k)}\mu^{(k)}}^{\nu^{(k)}}\right) \prod_{k=1}^{r} \widetilde{S}_{(0,\dots,\nu^{(k)},\dots,0)}(\mathbf{x_{m}}) \\
= \sum_{\nu \in \widetilde{\Lambda}_{\geq 0,r}^{+}(\mathbf{m})} \operatorname{LR}_{\lambda\mu}^{\nu} \widetilde{S}_{\nu}(\mathbf{x_{m}}),$$

where we note that, if $\ell(\lambda^{(k)}) > m_k + \cdots + m_r$ for some k, we have $S_{\lambda^{(k)}}(\mathbf{x}_{\mathbf{m}}^{(k)} \cup \cdots \cup \mathbf{x}_{\mathbf{m}}^{(r)}) = 0$ and $\mathcal{T}_0(\lambda, \mu) = \emptyset$ for any $\mu \in \Lambda_{n,r}(\mathbf{m})$. Now we obtained (iii).

\S 10. Tensor products for Weyl modules of cyclotomic q-Schur algebras at q=1

By using the comultiplication $\Delta: U(\mathfrak{g}_{\widetilde{Q}}(\mathbf{m})) \to U(\mathfrak{g}_{\widetilde{Q}}(\mathbf{m})) \otimes U(\mathfrak{g}_{\widetilde{Q}}(\mathbf{m}))$ ($\Delta(x) = x \otimes 1 + 1 \otimes x$), we define the $U(\mathfrak{g}_{\widetilde{Q}}(\mathbf{m}))$ -module $M \otimes N$ for $U(\mathfrak{g}_{\widetilde{Q}}(\mathbf{m}))$ -module M and N. We regard $\mathscr{S}^{\mathbf{1}}_{n,r}(\mathbf{m})$ -modules $(n \geq 0)$ as a $U(\mathfrak{g}_{\widetilde{Q}}(\mathbf{m}))$ -modules through the homomorphism $\Psi_{\mathbf{1}}$ in (8.4.1). Note that $\mathscr{S}^{\mathbf{1}}_{n,r}(\mathbf{m})$ is semi-simple, and $\{\Delta(\lambda) \mid \lambda \in \Lambda^+_{n,r}(\mathbf{m})\}$ gives a complete set of isomorphism classes of simple $\mathscr{S}^{\mathbf{1}}_{n,r}(\mathbf{m})$ -modules if $m_k \geq n$ for all $k = 1, 2, \ldots, r - 1$. Then, we have the following proposition.

Proposition 10.1. Assume that $m_k \geq n$ for all k = 1, 2, ..., r - 1. Take $n_1, n_2 \in \mathbb{Z}_{>0}$ such that $n = n_1 + n_2$. For $\lambda \in \Lambda_{n_1,r}^+(\mathbf{m})$ (resp. $\mu \in \Lambda_{n_2,r}^+(\mathbf{m})$), let $\Delta(\lambda)$ (resp. $\Delta(\mu)$) be the Weyl module of $\mathscr{S}_{n_1,r}^{\mathbf{1}}(\mathbf{m})$ (resp. $\mathscr{S}_{n_2,r}^{\mathbf{1}}(\mathbf{m})$) corresponding λ (resp. μ).

Then we have

(10.1.1)
$$\Delta(\lambda) \otimes \Delta(\mu) \cong \bigoplus_{\nu \in \Lambda_{n,r}^+(\mathbf{m})} \operatorname{LR}_{\lambda\mu}^{\nu} \Delta(\nu) \text{ as } U(\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m}))\text{-modules},$$

where $\Delta(\nu)$ is the Weyl module of $\mathscr{S}^{\mathbf{1}}_{n,r}(\mathbf{m})$ corresponding ν , and $\operatorname{LR}^{\nu}_{\lambda\mu}\Delta(\nu)$ means the direct sum of $\operatorname{LR}^{\nu}_{\lambda\mu}$ copies of $\Delta(\nu)$. In particular, $\Delta(\lambda)\otimes\Delta(\mu)\in\mathscr{S}^{\mathbf{1}}_{n,r}(\mathbf{m})$ -mod.

Proof. For $\tau \in P_{\geq 0}$, put

$$\pi_{\mathbf{m}}(\tau) = (|\tau^{(1)}|, |\tau^{(2)}|, \dots, |\tau^{(r)}|) \in \mathbb{Z}_{>0}^r,$$

where $|\tau^{(l)}| = \sum_{j=1}^{m_l} \langle \tau, h_{(j,l)} \rangle$ for $l = 1, \ldots, r$. We denote by \geq the lexicographic order on $\mathbb{Z}_{\geq 0}^r$. Then we have the weight space decomposition

(10.1.2)
$$\Delta(\lambda) \otimes \Delta(\mu) = \bigoplus_{\substack{\tau \in \Lambda_{n,r}(\mathbf{m}) \\ \pi_{\mathbf{m}}(\tau) \le \pi_{\mathbf{m}}(\lambda + \mu)}} (\Delta(\lambda) \otimes \Delta(\mu))_{\tau}.$$

On the other hand, it is clear that $\Delta(\lambda) \otimes \Delta(\mu) \in \mathcal{C}_{\widetilde{\mathbf{Q}}}^{\geq 0}(\mathbf{m})$. Thus, we have

(10.1.3)
$$[\Delta(\lambda) \otimes \Delta(\mu)] = \sum_{\substack{\nu \in A_{n,r}^+(\mathbf{m}) \\ \pi_{\mathbf{m}}(\nu) \leq \pi_{\mathbf{m}}(\lambda + \mu)}} \sum_{\varphi} d_{\nu,\varphi} [L(\nu, \varphi)] \text{ in } K_0(\mathcal{C}_{\widetilde{\mathbf{Q}}}^{\geq 0}(\mathbf{m})),$$

where $d_{\nu,\varphi}$ is the composition multiplicity of the simple highest weight $U(\mathfrak{g}_{\widetilde{\mathbf{Q}}}(\mathbf{m}))$ module $L(\nu,\varphi)$ of highest weight (ν,φ) in $\Delta(\lambda)\otimes\Delta(\mu)$.

Note that $L_{i+1}T_i = T_iL_i$ and $L_iT_i = T_iL_{i+1}$ since q = 1. Then, for $(j, l) \in \Gamma(\mathbf{m})$ and $t \geq 1$, we see that

(10.1.4)
$$\mathcal{I}_{(j,l),t} \cdot v = Q_{l-1}^t \nu_j^{(l)} v \text{ for any } v \in (\Delta(\lambda) \otimes \Delta(\mu))_{\nu}$$

if $\pi_{\mathbf{m}}(\nu) = \pi_{\mathbf{m}}(\lambda + \mu)$ by the argument in the proof of [JM, Proposition 3.7 and Theorem 3.10]. This implies that

(10.1.5)
$$L(\nu, \varphi) \cong \Delta(\nu) \text{ if } d_{\nu, \varphi} \neq 0 \text{ and } \pi_{\mathbf{m}}(\nu) = \pi_{\mathbf{m}}(\lambda + \mu)$$

by Theorem 8.4 (ii). By Proposition 9.4 (iii) together with (10.1.3) and (10.1.5), we have

$$ch(\Delta(\lambda) \otimes \Delta(\mu)) = \widetilde{S}_{\lambda}(\mathbf{x_m}) \widetilde{S}_{\mu}(\mathbf{x_m})$$
$$= \sum_{\nu \in \Lambda_{n,r}^+(\mathbf{m})} LR_{\lambda\mu}^{\nu} \widetilde{S}_{\nu}(\mathbf{x_m})$$

$$= \sum_{\substack{\nu \in \Lambda_{n,r}^+(\mathbf{m}) \\ \pi_{\mathbf{m}}(\nu) = \pi_{\mathbf{m}}(\lambda + \mu)}} d_{\nu} \widetilde{S}_{\nu}(\mathbf{x_m}) + \sum_{\substack{\nu \in \Lambda_{n,r}^+(\mathbf{m}) \\ \pi_{\mathbf{m}}(\nu) < \pi_{\mathbf{m}}(\lambda + \mu)}} \sum_{\boldsymbol{\varphi}} d_{\nu,\boldsymbol{\varphi}} \operatorname{ch} L(\nu,\boldsymbol{\varphi}),$$

where d_{ν} is the composition multiplicity of $\Delta(\nu)$ in $\Delta(\lambda) \otimes \Delta(\mu)$. Note that $LR^{\nu}_{\lambda\mu} = 0$ unless $\pi_{\mathbf{m}}(\nu) = \pi_{\mathbf{m}}(\lambda + \mu)$, the equations (10.1.6) imply $d_{\nu} = LR^{\nu}_{\lambda\mu}$ if $\pi_{\mathbf{m}}(\nu) = \pi_{\mathbf{m}}(\lambda + \mu)$ and $d_{\nu,\varphi} = 0$ if $\pi_{\mathbf{m}}(\nu) < \pi_{\mathbf{m}}(\lambda + \mu)$. Thus, we have

(10.1.7)
$$[\Delta(\lambda) \otimes \Delta(\mu)] = \sum_{\nu \in \Lambda_{n,r}^+(\mathbf{m})} LR_{\lambda\mu}^{\nu} [\Delta(\nu)].$$

By (10.1.2), for any k = 1, 2, ..., r - 1 and any $t \ge 0$, we have

(10.1.8)
$$\mathcal{X}_{(m_k,k),t}^+ \cdot \left(\bigoplus_{\substack{\nu \in \Lambda_{n,r}(\mathbf{m}) \\ \pi_{\mathbf{m}}(\nu) = \pi_{\mathbf{m}}(\lambda + \mu)}} (\Delta(\lambda) \otimes \Delta(\mu))_{\nu} \right) = 0$$

since $\pi_{\mathbf{m}}(\nu + \alpha_{(m_k,k)}) > \pi_{\mathbf{m}}(\nu)$. Then, by (10.1.4) and (10.1.8) together with the relation (L2), we see that

(10.1.9)

$$\{v \in (\Delta(\lambda) \otimes \Delta(\mu))_{\nu} \mid \mathcal{X}_{(i,k),t}^{+} \cdot v \text{ for all } (i,k) \in \Gamma'(\mathbf{m}) \text{ and } t \geq 0\}$$

$$= \{v \in (\Delta(\lambda) \otimes \Delta(\mu))_{\nu} \mid e_{(i,k)} \cdot v \text{ for all } (i,k) \in \Gamma(\mathbf{m}) \setminus \{(m_k,k) \mid 1 \leq k \leq r\}\}$$

for $\nu \in \Lambda_{n,r}^+(\mathbf{m})$ such that $\pi_{\mathbf{m}}(\nu) = \pi_{\mathbf{m}}(\lambda + \mu)$, where $e_{(i,k)} \in U(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r})$ acts on $\Delta(\lambda) \otimes \Delta(\mu)$ through the injection (2.16.2). On the other hand, $\bigoplus_{\substack{\nu \in \Lambda_{n,r}(\mathbf{m}) \\ \pi_{\mathbf{m}}(\nu) = \pi_{\mathbf{m}}(\lambda + \mu)}} (\Delta(\lambda) \otimes \Delta(\mu))_{\nu}$ is a $U(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r})$ -submodule of $\Delta(\lambda) \otimes \Delta(\mu)$ and we have

(10.1.10)

$$\bigoplus_{\substack{\nu \in \Lambda_{n,r}(\mathbf{m}) \\ \mathbf{m}(\nu) = \pi_{\mathbf{m}}(\lambda + \mu)}} (\Delta(\lambda) \otimes \Delta(\mu))_{\nu} \cong \bigoplus_{\nu \in \Lambda_{n,r}^{+}(\mathbf{m})} LR_{\lambda\mu}^{\nu} \, \Delta_{\mathfrak{gl}_{m_{1}}}(\nu^{(1)}) \otimes \cdots \otimes \Delta_{\mathfrak{gl}_{m_{r}}}(\nu^{(r)})$$

as $U(\mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r})$ -modules by comparing the character (note [W2, Lemma 2.6]). By (10.1.7), (10.1.9) and (10.1.10), we see that

$$\Delta(\lambda) \otimes \Delta(\mu) \cong \bigoplus_{\nu \in \Lambda_{n,r}^+(\mathbf{m})} LR_{\lambda\mu}^{\nu} \Delta(\nu)$$

as
$$U(\mathfrak{g}_{\widetilde{\mathbf{O}}}(\mathbf{m}))$$
-modules.

Remarks 10.2.

(i) For $M, N \in \mathcal{C}_{\widetilde{Q}}(\mathbf{m})$, we see that $\operatorname{ch}(M \otimes N) = \operatorname{ch}(M) \operatorname{ch}(N)$ by definition of characters. Then the decomposition (10.1.1) gives an interpretation of the formula (9.2.1) (Proposition 9.4 (iii)) in the category $\mathcal{C}_{\widetilde{\mathbf{O}}}(\mathbf{m})$.

(ii) We conjecture that the algebra $\mathcal{U}_{q,\widetilde{\mathbf{Q}}}(\mathbf{m})$ has a structure as a Hopf algebra. Then we also conjecture the similar decomposition for the tensor product of Weyl modules of $\mathscr{S}_{n,r}^{\widetilde{\mathbb{K}}}(\mathbf{m})$ $(n \geq 0)$ as in (10.1.1).

References

- [BLM] A. Beilinson, G. Lusztig and R. MacPherson, A geometric setting for the quantum deformation of GL_n , Duke. Math. J. **61** (1990), 655-677.
- [DJM] R. Dipper, G. James and A. Mathas, Cyclotomic q-Schur algebras, Math. Z. 229 (1998), 385-416.
- [D] J. Du, A note on quantized Weyl reciprocity at root of unity, Algebra Colloq. 2 (1995), 363–372.
- [DR] J. Du and H. Rui, Borel type subalgebras of the q-Schur^m algebra, J. Algebra 213 (1999), 567-595.
- [GL] J.J. Graham and G.I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), 1-34.
- [JM] G. James and A. Mathas, The Jantzen sum formula for cyclotomic q-Schur algebras, Trans Amer. Math. Soc. **352** (2000), 5381-5404.
- [J] M. Jimbo, A q-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), 247–252.
- [KL] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras I-IV, J. Amer. Math. Soc. 6-7 (1993-1994) 905-947, 949-1011, 335-381, 383-453.
- [L] I. Losev, Proof of Varagnolo-Vasserot conjecture on cyclotomic categories O, arXiv:1305.4894.
- [M1] A. Matahs, The representation theory of the Ariki-Koike and cyclotomic q-Schur algebras; in "Representation theory of algebraic groups and quantum groups", Adv. Stud. Pure Math. Vol. 40, Math. Soc. Japan, Tokyo 2004, pp. 261-320.
- [M2] A. Mathas, Seminormal forms and Gram determinants for cellular algebras, J. Reine Angew. Math. 619 (2008), 141–173.
- [R] R. Rouquier, q-Schur algebras and complex reflection groups, Moscow Math. J. 8, 119-158.
- [RSVV] R. Rouquier, P. Shan, M. Varagnolo and E. Vasserot, Categorifications and cyclotomic rational double affine Hecke algebras, arXiv:1305.4456.
- [W1] K. Wada, Presenting cyclotomic q-Schur algebras, Nagoya Math. J. 201 (2011), 45-116.
- [W2] K. Wada, On Weyl modules of cyclotomic q-Schur algebras, Contemp. Math. **565** (2012), 261-286.
- [W3] K. Wada, Induction and restriction functors for cyclotomic q-Schur algebras, Osaka J. Math. 51 (2014), 785-822.

Department of Mathematics, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621, Japan

E-mail address: wada@math.shinshu-u.ac.jp