Алгоритмы SLAM с использованием планарных поверхностей

Ярош Дмитрий, группа 21.М05-мм 30 декабря

Научный руководитель: Доцент кафедры СП, к.т.н. Ю. В. Литвинов *Консультант:* Инженер-исследователь, Сколтех А. В. Корнилова

SLAM

- Локализация и построение карты окружающей местности
- SLAM алгоритмы: фронтенд и бэкенд
- Для работы фронтенда нужны объекты-ориентиры

Классические ориентиры в SLAM

- Наиболее популярные ориентиры: ключевые точки из гдb изображений (ORB, SIFT)
- Проблемы:
 - монотонные поверхности
 - изменяющаяся освещенность
 - отражающие поверхности
 - большой объем обнаруживаемых точек
- Недостаток информации от обычных камер

Облака точек и ориентиры-плоскости

- Восприятие окружающего мира в трех измерениях
- Большое разнообразие датчиков
- Ориентиры плоскости
 - Наличие в большинстве окружений
 - Ускорение благодаря малочисленности
 - Использование информации о структуре окружающей среды
 - Независимость от освещенности

Оценка качества работы планарных SLAM

- Существующие работы оценивают только итоговую траекторию
- Все современные SLAM бенчмарки рассчитаны только на оценку системы в целом
- Не существует единого датасета, содержащего данные, собранные с различных видов датчиков с размеченными плоскостями
- Отсутствует единый набор метрик для оценки качества работы алгоритмов детекции и ассоциации плоскостей

Цель работы

Разработать бенчмарк для оценки качества фронтенда и бэкенда планарных SLAM алгоритмов и сравнить существующие решения в данной области с его использованием

Задачи

- ✓ Провести обзор существующих SLAM подходов, использующих информацию о плоскостях
- ✓ Провести обзор существующих алгоритмов распознавания плоскостей в облаках точек
- ✓ Провести обзор существующих алгоритмов ассоциирования плоскостей в облаках точек
- ✓ Подготовить датасет с планарными поверхностями для сравнения существующих решений.
- Выполнить обзор существующих метрик в данной области и реализовать их в форме библиотеки
- ✓ Сравнить производительность и качество работы алгоритмов распознавания плоскостей
- Сравнить производительность и качество работы алгоритмов ассоциирования плоскостей
- Сравнить производительность и качество работы SLAM бэкендов, использующих информацию о плоскостях

В прошлом семестре

- Проведен обзор предметной области:
 - Датчики (5 типов)
 - Датасеты (15 представителей)
 - Алгоритмы выделения плоскостей (45 алгоритмов, разделенных на 8 классов, из 90 статей)
 - Алгоритмы ассоциирования плоскостей (представители из 11 статей)
 - SLAM подходы, использующих информацию о плоскостях (13 алгоритмов)
 - Метрики (11 представителей)
- Подготовлен датасет для тестирования алгоритмов с привлечением специалиста-разметчика и студента 2 курса Павла Мокеева
- Реализован фреймворк для тестирования и замеров производительности существующих алгоритмов распознавания плоскостей
- Проведен запуск и сравнение существующих алгоритмов распознавания плоскостей

Ассоциирование плоскостей

- Критерии для ассоциирования:
 - размер области пересечения
 - IoU (Intersection over Union)
 - о угол отклонения нормалей
 - расстояние от начала координат
 - вспомогательная информация (например, инерциальные датчики)

Ассоциирование плоскостей

- Реализовано 2 подхода студентом 3 курса Иваном Москаленко:
 - Подход с использованием взвешенной суммы IoU и вектора нормали (IoUWeighted)
 - Подход с использованием фильтрации по разности векторов нормали (IoUThresholded)
- Подготовлен бенчмарк для сравнения (https://github.com/prime-slam/plane-association)
- Проведено сравнение производительности и качества на 6ти последовательностях из подготовленного датасета

Ассоциирование плоскостей: качество

Ассоциирование плоскостей: производительность

Библиотека метрик evops-metrics

- Первая версия разработана в рамках курсовой 2 курса Павла Мокеева
- Метрики неполны, доступны только для распознавания плоскостей
- Обновление:
 - Переработаны метрики noise, missed, OSR, USR, mean использование IoU в качестве критерия совпадения плоскостей
 - o Bce метрики разделены на 3 группы: instance-based, point-based, general
 - Добавлена адаптация panoptic¹ метрики
 - Добавлены метрики ассоциации плоскостей

^{1 — &}lt;u>Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, Piotr Dollár "Panoptic Segmentation"</u>

Библиотека метрик: instance-based

- Показывают точность на уровне плоскостей
- Содержат как классические метрики, так и специализированные

Метрика	Разметка А до обновления	Разметка А после обновления
USR	0.2	0.2
OSR	0.17	0
Missed	0.33	0
Noise	0.2	0

Библиотека метрик: point-based

- Показывают точность на уровне пикселей
- Состоят из двух частей: агрегат и функция поточечного сравнения плоскостей

Метрика	Разметка A до обновления	Разметка А после обновления
mean(IoU)	0.91	0.99
mean(Dice)	0.94	0.99

Истинная разметка

Разметка А

Библиотека метрик: panoptic

• Объединяет в одном числе plane-based и point-based метрики

\triangleleft	
Разметка,	

Метрика	Разметка А	Разметка Б
Panoptic	0.96	0.83
Mean (IoU)	0.96	1
F-Score	1	0.83

Библиотека метрик: ассоциации

• Возможность автогенерации истинных ассоциаций по разметке плоскостей

Библиотека метрик: ассоциации

 Возможность автогенерации истинных ассоциаций по разметке плоскостей

Кадр 1

Кадр 2

 Метрика
 Значение

 Уровня плоскостей
 0.88

 Уровня точек
 0.91

Истинная ассоциация

Результат ассоциаци*и*

Результаты

- Усовершенствованы и расширены метрики в библиотеке evops-metrics
- Проведен запуск и сравнение качества работы и производительности алгоритмов ассоциации плоскостей в облаках точек