Computer Vision 02 – Image formation, part 1

doc. dr. Janez Perš (with contributions by prof. Stanislav Kovačič)

> Laboratory for Machine Intelligence Faculty of Electrical Engineering University of Ljubljana

Announcements (1/2)

- Everyone present?
- "Studis" student administration system
 - https://studij.fe.uni-lj.si
 - Exam enrollment, official message distribution system, etc.
 - If you have not yet done so, set up your account!

E-classroom

- http://e.fe.uni-lj.si
- Lecture slides, lab tasks
- Slides will be available before each lecture this year

Announcements (2/2)

Timetable

- "Urnik" in Slovenian
- http://urnik.fe.uni-lj.si/
- Lecture times
- Faculty-wide (for all classes)

In general

- If I promise something, but forget, do not hesistate to remind me, in person or via email, or after/before classes
- For example: If lecture slides are not up, etc.
- Office hours by appointment (email)

Quick recap of the previous week

- What exactly is computer vision
 - The field which aims to provide sight to computers
 - The task: generate description of the scene from image/video
- Where/how did it start?
 - As part of the field of artificial intelligence, in 60s
- Where it is used?
 - Machine vision (industrial)
 - Robot vision (experimental-research)
 - Visual searches, photo database indexing, etc.

Outline

- Image formation (from 3D to 2D)
- Basics of camera modeling
- Direct Linear Transform (DLT)
- Camera calibration
- Reconstruction back from 2D to 3D
- Camera modeling revisited
- Lens distortion

Image formation (1/5)

- Image formation is quite complex process
- There are many things to consider:
 - Spatial / geometric properties
 - Light, object, and camera themselves
 - Light-object-camera arrangement
 - Radiometric / Photometric properties of light sources, objects, and sensors.
 - Propagation of light (energy) and its effects
 - Remember: no light (energy), no image
 - In exceptional cases, objects radiate light, no external source needed (FLIR)
- The final result is an image

Image formation (2/5)

 We are interested in mapping from 3D world to 2D image plane: 3D → 2D

Image formation (3/5)

Light source

Sensor (CCD, CMOS)

Lens

2D image plane

Digital image

Picture on a computer monitor

Image formation (4/5)

Image:

a mapping of a 3D scene (world) onto a 2D plane.

Digital image:

- Sampled & quantized 2D image plane
- Made of discrete picture elements pixels

Therefore, a digital image

- Just an array (a matrix) of numbers.
- 2 D matrix of brightness values for grayscale images
- 3D array of R/G/B brightness values for RGB color images

Image formation (5/5)

Patch (8 x 8 pixels)

92	125	145	147	148	140	137	129	
121	152	159	157	147	135	130	140	
139	150	152	184	144	106	114	130	
147	154	171	222	195	170	115	112	
167	201	197	198	186	143	88	87	
172	195	169	158	175	130	95	120	
180	153	155	164	177	127	133	171	
154	136	145	145	145	123	149	173	

Pixel value: 8 bits

0: completely black

Patch
(64 x 64 pixels)

Whole image 3264 x 2448 pixels

The CV task:

from an image or a set of 2D images derive (quantitative, qualitative) description of 3D world e.g. object detection, localization, recognition, 3D reconstruction

Notation convention for images

- Mathematically: *f*, *f*(*x*, *y*), *f*(*i*, *j*), *l*(*i*, *j*),
 - 2D function, continuous or discrete.
 - Could be also a function of time, f(x, y, t), f(i, j, k), ...
- In the field of signal processing
 - image f is treated as 2D signal
 - Could be static (single image) f(x,y), or time-varying, spatio-temporal signal, f(x, y, t),
- Programmatically: I, F, ...
 - 2D array/matrix of suitable type (logical, uint8, uint16, int16, single, double,...) and size (no. of rows x no. of colomns)

Basic image types

What type of image is this?

By David Adam Kess (Own work) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

Basic image types

- Black and white (or binary) image
 - an array of zeros and ones.
- Grayscale (or grayvalue, or intensity) image
 - an array of numbers of proper type (e.g. uint8)
- Color image RGB, HSV, YUV ...
 - RGB most commonly used in computer vision
 - R = Red, G = Green, B = Blue!
 - Could be treated as three 2D arrays for R, G, B color channel each.
 - Or alternatively, could be treated as 2D array of 3D vectors with R,G,B components.

Basic image types

- Conversion from RGB color to grayscale
 - Often used as first image processing step
 - When using algorithms, developed for grayscale images

Basic image concepts & properties

Image coordinates

- Most often
 - we place the origin of the image coordinate system in the upper left corner
 - sometimes in the lower left corner.
- Sometimes we place the origin somewhere in the middle of the image.
- This often hidden in high levelfunctions that operate on images.
 - e.g. the example of B=rgb2gray(A)
 - But when you need to address individual pixels, it becomes important.

Image coordinates in Matlab

- We are used to think of images as functions of x and y
 - X is running horizontally
 - Y goes down (or sometimes up) vertically.
 - Therefore, *I(y,x)*,
- But, specifically in Matlab
 - images are 2D arrays (or 3D arrays for color images, with 3rd dimension for color)
 - Arrays (matrices) are represented as rows and columns *I(row, column)*, row first, then column
 - Reason: Matlab was developed by mathematicians, uses mathematical matrix notation

In all practical cases, image plane is in or very close to focal plane For convex lens, *f* is always positive

- Perspective projection
 - pin-hole camera model

A simple example

- Task: Calculate image point position
 - Camera lens: f = 16 mm (0.016 m)
 - Scene point ("object") distance, Z = 1 m
 - X and Y positions of the scene point X = 20 cm (0.2 m), Y = 15 cm (0.15 m)

$$x = -f\frac{X}{Z} = -0.016\frac{0.2}{1} = -0.0032$$
m = -3.2 mm

$$y = -f \frac{Y}{Z} = -0.016 \frac{0.15}{1} = -0.0024 \text{m} = -2.4 \text{mm}$$

Of course, image sensor should be large enough. The same holds for the field of view (FOV) of the lens.

2/3" sensor would be appropriate, aspect ratio 3:4, diagonal 11mm

We move center of projection back, behind the image plane!

Perspective projection – basic properties

- Straight lines remain straight
- Parallel lines meet in the vanishing point

Perspective projection – basic properties

 Angles are NOT preserved!

Perspective projection – basic properties

- Lenghts / distances are NOT preserved.
- They (of course) depend on the distance from the camera.

Weak perspective model

$$x = \frac{f}{Z}X = mX$$

$$y = \frac{f}{Z}Y = mY$$

- Object thickness much smaller than the distance to the object, $\Delta Z \ll Z$.
- Valid for thin planar objects (essentially 2D scenes).
- Orthographic projection (m=1) plus scaling (m < 1)

- Digital image / picture consists of array of picture elements – pixels.
 - Image (pixel) coordinates are given in pixels, (u, v).

$$u = \frac{x}{\lambda_u} = \frac{f}{\lambda_u} \frac{X}{Z} = f_u \frac{X}{Z} = \frac{f_u}{Z} X = m_u X$$

$$v = \frac{y}{\lambda_v} = \frac{f}{\lambda_v} \frac{Y}{Z} = f_v \frac{Y}{Z} = \frac{f_v}{Z} Y = m_v Y$$

• In many practical machine vision situations it is sufficient to find λ_u , λ_v (or f_u , f_v or m_u , m_v)

- Position (X, Y, Z) of point P is given in camera coordinate system.
 - Camera coordinate system is not known or, directly accessible).

- We prefer to define P in the world coordinate system instead
 - World coordinates could be defined by walls, object, robot...
 - Then, the coordinates can be measured directly
- Mapping 3D →2D becomes
 - Translate
 - Rotate
 - Project

P(X,Y,Z)

Parameters of the camera model (1/2)

Camera parameters

- Extrinsic ("external")
- Intrinsic ("internal")

Extrinsic

- Camera position
- Camera orientation (pose)
- ...with respect to the world coordinate system!

Intrinsic

- parameters that relate camera coordinate system with image (pixel) coordinates
- Depend on the whole optical system: camera + lens!

Parameters of the camera model (2/2)

- Altogether 11 parameters
 - Translation (3)
 - Rotation (3)
 - Focal length (1)
 - Image center (2)
 - Pixel size (2)
- So far we have only linear model!
- To model nonlinear lens distortions
 - We add distortion parameters
 - Usually 1-5 parameters, depending on the model

How do we obtain camera parameters?

Camera calibration

- Target ("real world scene") with known real world point coordinates
- Image of the target with, where we can detect real world points i

We have the model

- So we only need to calculate the parameters
- But it is not as simple as it seems

In case of lens distortion

It gets even more difficult

Direct linear transform (DLT)

Abdel-Aziz & Carara, 1971

In principle we are interested in the mapping

T: $\mathfrak{R}^3 \rightarrow \mathfrak{R}^2$, $P \rightarrow p$

P(X,Y,Z)

Direct linear transform (DLT)

$$p = o + b$$

$$P = O + a$$

$$b = p - o$$

$$a = P - O$$

Due to colinearity of vectors a and b:

$$b = c a, c > 0 (scalar!)$$

$$p - o = c(P - O)$$

Direct linear transform (DLT)

b = c a, c > 0 (skalar)

We express b in camera c.s. $b(U_b, V_b, W_b)$

We express a in world c.s. $a(X_a, Y_a, Z_a)$

$$b(U_b, V_b, W_b) = p(U, V, W=0) - o(U_0, V_0, W_0=f)$$

$$a(X_a, Y_a, Z_a) = P(X, Y, Z) - O(X_0, Y_0, Z_0)$$

b $(U_b, V_b, W_b) = c R a(X_a, Y_a, Z_a)$

R = rotation matrix

$$p-o = c R (P-O)$$

 $o(U_0, V_0, f)$

Direct linear transform (DLT)

• Let us write

$$p-o = c R (P-O)$$

• in component form:

$$\begin{bmatrix} U - U_0 \\ V - V_0 \\ -f \end{bmatrix} = c \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} X - X_0 \\ Y - Y_0 \\ Z - Z_0 \end{bmatrix}$$
 $O(X_0, Y_0, Z_0)$ $O(U_0, V_0, f)$

$$\begin{aligned} U - U_0 &= c \big[r_{11}(X - X_0) + r_{12}(Y - Y_0) + r_{13}(Z - Z_0) \big] \\ V - V_0 &= c \big[r_{21}(X - X_0) + r_{22}(Y - Y_0) + r_{23}(Z - Z_0) \big] \\ - f &= c \big[r_{31}(X - X_0) + r_{32}(Y - Y_0) + r_{33}(Z - Z_0) \big] \end{aligned}$$

$$c = \frac{-f}{r_{31}(X - X_0) + r_{32}(Y - Y_0) + r_{33}(Z - Z_0)}$$
Computer Vision 2019/2020

Direct linear transform (DLT)

Insert c into first two equations and we obtain

$$U - U_0 = -f \frac{r_{11}(X - X_0) + r_{12}(Y - Y_0) + r_{13}(Z - Z_0)}{r_{31}(X - X_0) + r_{32}(Y - Y_0) + r_{33}(Z - Z_0)}$$

$$V - V_0 = -f \frac{r_{21}(X - X_0) + r_{22}(Y - Y_0) + r_{23}(Z - Z_0)}{r_{31}(X - X_0) + r_{32}(Y - Y_0) + r_{33}(Z - Z_0)}$$

Apply discretization of image coordinates

$$U-U_0=\lambda_u(u-u_0)$$
 (u_0,v_0) = point where optical axis goes $V-V_0=\lambda_v(v-v_0)$ through the image plane (λ_u,λ_v) are pixel sizes (effectively: scaling factors) in u/v direction In theory different, in practice (almost) the same

Direct linear transform (DLT)

Let's expand

$$u - u_0 = -\frac{f}{\lambda_u} \frac{r_{11}(X - X_0) + r_{12}(Y - Y_0) + r_{13}(Z - Z_0)}{r_{31}(X - X_0) + r_{32}(Y - Y_0) + r_{33}(Z - Z_0)}$$

$$v - v_0 = -\frac{f}{\lambda_v} \frac{r_{21}(X - X_0) + r_{22}(Y - Y_0) + r_{23}(Z - Z_0)}{r_{31}(X - X_0) + r_{32}(Y - Y_0) + r_{33}(Z - Z_0)}$$

Conventional, more concise notation:

$$u = \frac{L_1 X + L_2 Y + L_3 Z + L_4}{L_9 X + L_{10} Y + L_{11} Z + 1} \qquad v = \frac{L_5 X + L_6 Y + L_7 Z + L_8}{L_9 X + L_{10} Y + L_{11} Z + 1}$$

$$v = \frac{L_5 X + L_6 Y + L_7 Z + L_8}{L_9 X + L_{10} Y + L_{11} Z + 1}$$

- L_i (i = 1,2,...,11) are so-called DLT parameters
 - They are not camera parameters, but related!

DLT parameters

$$L_{1} = \frac{u_{0}r_{31} - f_{u}r_{11}}{D}, \quad L_{2} = \frac{u_{0}r_{32} - f_{u}r_{12}}{D}, \quad L_{3} = \frac{u_{0}r_{33} - f_{u}r_{13}}{D}$$

$$L_{4} = \frac{(f_{u}r_{11} - u_{0}r_{31})X_{0} + (f_{u}r_{12} - u_{0}r_{32})Y_{0} + (f_{u}r_{13} - u_{0}r_{33})Z_{0}}{D}$$

$$L_{5} = \frac{v_{0}r_{31} - f_{v}r_{21}}{D}, \quad L_{6} = \frac{v_{0}r_{32} - f_{v}r_{22}}{D}, \quad L_{7} = \frac{v_{0}r_{33} - f_{v}r_{23}}{D}$$

$$L_{8} = \frac{(f_{v}r_{21} - v_{0}r_{31})X_{0} + (f_{v}r_{22} - v_{0}r_{32})Y_{0} + (f_{v}r_{23} - v_{0}r_{33})Z_{0}}{D}$$

$$L_{9} = \frac{r_{31}}{D}, \quad L_{10} = \frac{r_{32}}{D}, \quad L_{11} = \frac{r_{33}}{D} \qquad f_{u} = \frac{f}{\lambda_{u}}, \quad f_{v} = \frac{f}{\lambda_{v}}$$

$$D = -(X_{0}r_{31} + Y_{0}r_{32} + Z_{0}r_{33})$$

Example: deriving u

$$u - u_0 = -\frac{f_u r_{11} X + f_u r_{12} Y + f_u r_{13} Z - f_u r_{11} X_0 - f_u r_{12} Y_0 - f_u r_{13} Z_0}{r_{31} X + r_{32} Y + r_{33} Z - (r_{31} X_0 + r_{32} Y_0 + r_{33} Z_0)}$$

$$u - u_0 = -\frac{\frac{f_u r_{11}}{D} X + \frac{f_u r_{12}}{D} Y + \frac{f_u r_{13}}{D} Z - \frac{f_u r_{11} X_0 + f_u r_{12} Y_0 + f_u r_{13} Z_0}{D}}{\frac{r_{31}}{D} X + \frac{r_{32}}{D} Y + \frac{r_{33}}{D} Z + 1}$$

$$u = \frac{u_0 \left(\frac{r_{31}}{D}X + \frac{r_{32}}{D}Y + \frac{r_{33}}{D}Z + 1\right) - \left(\frac{f_u r_{11}}{D}X + \frac{f_u r_{12}}{D}Y + \frac{f r_{13}}{D}Z\right) + \frac{f_u r_{11}X_0 + f_u r_{12}Y_0 + f_u r_{13}Z_0}{D}}{D}$$

$$L_9 X + L_{10}Y + L_{11}Z + 1$$

$$u = \frac{\frac{u_0 r_{31} - f_u r_{11}}{D} X + \frac{u_0 r_{32} - f_u r_{12}}{D} Y + \frac{u_0 r_{33} - f r_{13}}{D} Z + \frac{f_u r_{11} X_0 + f_u r_{12} Y_0 + f_u r_{13} Z_0 + u_0 D}{D}}{L_9 X + L_{10} Y + L_{11} Z + 1}$$

$$u = \frac{L_1 X + L_2 Y + L_3 Z + L_4}{L_9 X + L_{10} Y + L_{11} Z + 1}$$

DLT+lens distortion

- $\Delta u, \Delta v$: Lens distortion
- depends on u,v! $(\Delta u, \Delta v) = (\Delta u(u,v), \Delta v(u,v))$

$$u + \Delta u = \frac{L_1 X + L_2 Y + L_3 Z + L_4}{L_9 X + L_{10} Y + L_{11} Z + 1}$$
$$v + \Delta v = \frac{L_5 X + L_6 Y + L_7 Z + L_8}{L_9 X + L_{10} Y + L_{11} Z + 1}$$

Distorsion adds 1,2, or more additional parameters plus nonlinearity

DLT: 2D case

3D case

$$u = \frac{L_1 X + L_2 Y + L_3 Z + L_4}{L_9 X + L_{10} Y + L_{11} Z + 1}$$

$$v = \frac{L_5 X + L_6 Y + L_7 Z + L_8}{L_9 X + L_{10} Y + L_{11} Z + 1}$$

For 2D case, set Z = 0

$$u = \frac{L_1 X + L_2 Y + L_4}{L_9 X + L_{10} Y + 1}$$

$$v = \frac{L_5 X + L_6 Y + L_8}{L_9 X + L_{10} Y + 1}$$

We start from here

E1:
$$L_1 = \frac{u_0 r_{31} - f_u r_{11}}{D}$$
, $L_2 = \frac{u_0 r_{32} - f_u r_{12}}{D}$, $L_3 = \frac{u_0 r_{33} - f_u r_{13}}{D}$

E2:
$$L_4 = \frac{(f_u r_{11} - u_0 r_{31})X_0 + (f_u r_{12} - u_0 r_{32})Y_0 + (f_u r_{13} - u_0 r_{33})Z_0}{D}$$

E3:
$$L_5 = \frac{v_0 r_{31} - f_v r_{21}}{D}$$
, $L_6 = \frac{v_0 r_{32} - f_v r_{22}}{D}$, $L_7 = \frac{v_0 r_{33} - f_v r_{23}}{D}$

E4:
$$L_8 = \frac{(f_v r_{21} - v_0 r_{31})X_0 + (f_v r_{22} - v_0 r_{32})Y_0 + (f_v r_{23} - v_0 r_{33})Z_0}{D}$$

E5:
$$L_9 = \frac{r_{31}}{D}$$
, $L_{10} = \frac{r_{32}}{D}$, $L_{11} = \frac{r_{33}}{D}$ $f_u = \frac{f}{\lambda_u}$, $f_v = \frac{f}{\lambda_v}$

E6:
$$D = -(X_0r_{31} + Y_0r_{32} + Z_0r_{33})$$

We want to find unknowns L_i (i=1,2,...,11)

$$u = \frac{L_1 X + L_2 Y + L_3 Z + L_4}{L_9 X + L_{10} Y + L_{11} Z + 1} \qquad v = \frac{L_5 X + L_6 Y + L_7 Z + L_8}{L_9 X + L_{10} Y + L_{11} Z + 1}$$

$$u(L_9X + L_{10}Y + L_{11}Z + 1) = L_1X + L_2Y + L_3Z + L_4$$

$$v(L_9X + L_{10}Y + L_{11}Z + 1) = L_5X + L_6Y + L_7Z + L_8$$

$$L_1X + L_2Y + L_3Z + L_4 - uXL_9 - uYL_{10} - uZL_{11} = u$$

$$L_5X + L_6Y + L_7Z + L_8 - vXL_9 - vYL_{10} - vZL_{11} = v$$

Equation for ONE point P:

- we know point coordinates in the scene
- we know image coordinates of that point
- we are interested in model parameters

$$\begin{bmatrix} X & Y & Z & 1 & 0 & 0 & 0 & -uX & -uY & -uZ \\ 0 & 0 & 0 & X & Y & Z & 1 & -vX & -vY & -vZ \end{bmatrix} \times \begin{bmatrix} L_5 \\ L_6 \\ L_7 \end{bmatrix}$$

- Each point gives two equations.
- There are 11 unknowns (DLT parameters)
- Thus, we need at least 6 "control" or so-called calibration points
- In practice we take many more points (why?)

Vector b Actual DLT calibration procedure

Computer Vision 2019/2020

9.10.2019

- We need to find the solution of an overdetermined system
 - The method of (linear) least squares (LS)!

$$\mathbf{A}_{2nx\mathbf{1}}\mathbf{1}\mathbf{L} = \mathbf{b}$$

$$[\mathbf{A}^{T}\mathbf{A}]\mathbf{L} = \mathbf{A}^{T}\mathbf{b}$$

$$[\mathbf{A}^{T}\mathbf{A}]^{-1}[\mathbf{A}^{T}\mathbf{A}]\mathbf{L} = [\mathbf{A}^{T}\mathbf{A}]^{-1}\mathbf{A}^{T}\mathbf{b}$$

$$\mathbf{L} = [\mathbf{A}^{T}\mathbf{A}]^{-1}\mathbf{A}^{T}\mathbf{b}$$

E1:
$$L_{1} = \frac{u_{0}r_{31} - f_{u}r_{11}}{D}$$
, $L_{2} = \frac{u_{0}r_{32} - f_{u}r_{12}}{D}$, $L_{3} = \frac{u_{0}r_{33} - f_{u}r_{13}}{D}$
E2: $L_{4} = \frac{(f_{u}r_{11} - u_{0}r_{31})X_{0} + (f_{u}r_{12} - u_{0}r_{32})Y_{0} + (f_{u}r_{13} - u_{0}r_{33})Z_{0}}{D}$
 $L_{4} = -\frac{(u_{0}r_{31} - f_{u}r_{11})}{D}X_{0} - \frac{(u_{0}r_{32} - f_{u}r_{12})}{D}Y_{0} - \frac{(u_{0}r_{33} - f_{u}r_{13})}{D}Z_{0}$

$$L_1 X_0 + L_2 Y_0 + L_3 Z_0 = -L_4$$

E3:
$$L_{5} = \frac{v_{0}r_{31} - f_{v}r_{21}}{D}$$
, $L_{6} = \frac{v_{0}r_{32} - f_{v}r_{22}}{D}$, $L_{7} = \frac{v_{0}r_{33} - f_{v}r_{23}}{D}$

E4: $L_{8} = \frac{(f_{v}r_{21} - v_{0}r_{31})X_{0} + (f_{v}r_{22} - v_{0}r_{32})Y_{0} + (f_{v}r_{23} - v_{0}r_{33})Z_{0}}{D}$
 $L_{8} = -\frac{(v_{0}r_{31} - f_{v}r_{21})}{D}X_{0} - \frac{(v_{0}r_{32} - f_{v}r_{22})}{D}Y_{0} - \frac{(v_{0}r_{33} - f_{v}r_{23})}{D}Z_{0}$

$$L_5 X_0 + L_6 Y_0 + L_7 Z_0 = -L_8$$

E5:
$$L_9 = \frac{r_{31}}{D}$$
, $L_{10} = \frac{r_{32}}{D}$, $L_{11} = \frac{r_{33}}{D}$

E6:
$$D = -(X_0 r_{31} + Y_0 r_{32} + Z_0 r_{33}) / divide by D$$

 $-1 = X_0 \frac{r_{31}}{D} + Y_0 \frac{r_{32}}{D} + Z_0 \frac{r_{33}}{D}$

$$L_9X_0 + L_{10}Y_0 + L_{11}Z_0 = -1$$

$$L_{1}X_{0} + L_{2}Y_{0} + L_{3}Z_{0} = -L_{4}$$

$$L_{5}X_{0} + L_{6}Y_{0} + L_{7}Z_{0} = -L_{8}$$

$$L_{9}X_{0} + L_{10}Y_{0} + L_{11}Z_{0} = -1$$

$$\begin{bmatrix} L_1 & L_2 & L_3 \\ L_5 & L_6 & L_7 \\ L_9 & L_{10} & L_{11} \end{bmatrix} \begin{bmatrix} X_0 \\ Y_0 \\ Z_0 \end{bmatrix} = \begin{bmatrix} -L_4 \\ -L_8 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} X_0 \\ Y_0 \\ Z_0 \end{bmatrix} = \begin{bmatrix} L_1 & L_2 & L_3 \\ L_5 & L_6 & L_7 \\ L_9 & L_{10} & L_{11} \end{bmatrix}^{-1} \begin{bmatrix} -L_4 \\ -L_8 \\ -1 \end{bmatrix}$$

E5:
$$L_9 = \frac{r_{31}}{D}$$
, $L_{10} = \frac{r_{32}}{D}$, $L_{11} = \frac{r_{33}}{D}$ square, sum

$$L_9^2 + L_{10}^2 + L_{11}^2 = \frac{1}{D^2} \left(r_{31}^2 + r_{32}^2 + r_{33}^2 \right) = \frac{1}{D^2}$$

- R is rotational matrix, not just any matrix!
- We assume orthogonality of R, $R^T R = I$
 - Preserves distances

Use orthogonality assumption again

E5:
$$L_9 = \frac{r_{31}}{D}$$
, $L_{10} = \frac{r_{32}}{D}$, $L_{11} = \frac{r_{33}}{D}$ multiply by D
E1: $L_1 = \frac{u_0 r_{31} - f_u r_{11}}{D}$, $L_2 = \frac{u_0 r_{32} - f_u r_{12}}{D}$, $L_3 = \frac{u_0 r_{33} - f_u r_{13}}{D}$

$$(DL_1)(DL_9) + (DL_2)(DL_{10}) + (DL_3)(DL_{11}) =$$

$$= u_0(r_{31}^2 + r_{32}^2 + r_{33}^2) - f_u(r_{11}r_{31} + r_{12}r_{32} + r_{13}r_{33}) = u_0$$

And orthogonality again

E5:
$$L_9 = \frac{r_{31}}{D}$$
, $L_{10} = \frac{r_{32}}{D}$, $L_{11} = \frac{r_{33}}{D}$

E3:
$$L_5 = \frac{v_0 r_{31} - f_v r_{21}}{D}$$
, $L_6 = \frac{v_0 r_{32} - f_v r_{22}}{D}$, $L_7 = \frac{v_0 r_{33} - f_v r_{23}}{D}$

$$(DL_5)(DL_9) + (DL_6)(DL_{10}) + (DL_7)(DL_{11}) =$$

$$= v_0(r_{31}^2 + r_{32}^2 + r_{33}^2) - f_v(r_{21}r_{31} + r_{22}r_{32} + r_{23}r_{33}) = v_0$$

$$(DL_{1})(DL_{9}) + (DL_{2})(DL_{10}) + (DL_{3})(DL_{11}) = u_{0}$$

$$(DL_{5})(DL_{9}) + (DL_{6})(DL_{10}) + (DL_{7})(DL_{11}) = v_{0}$$

$$L_{9}^{2} + L_{10}^{2} + L_{11}^{2} = \frac{1}{D^{2}}$$

$$u_{0} = D^{2}(L_{1}L_{9} + L_{2}L_{10} + L_{3}L_{11}) = \frac{L_{1}L_{9} + L_{2}L_{10} + L_{3}L_{11}}{L_{9}^{2} + L_{10}^{2} + L_{11}^{2}}$$

$$v_{0} = D^{2}(L_{5}L_{9} + L_{6}L_{10} + L_{7}L_{11}) = \frac{L_{5}L_{9} + L_{6}L_{10} + L_{7}L_{11}}{L_{9}^{2} + L_{10}^{2} + L_{11}^{2}}$$

We are searching for rotation matrix R now

E5:
$$L_9 = \frac{r_{31}}{D}$$
, $L_{10} = \frac{r_{32}}{D}$, $L_{11} = \frac{r_{33}}{D}$

$$r_{31} = DL_9$$
, $r_{32} = DL_{10}$, $r_{33} = DL_{11}$

E1:
$$L_{1} = \frac{u_{0}r_{31} - f_{u}r_{11}}{D}$$
, $L_{2} = \frac{u_{0}r_{32} - f_{u}r_{12}}{D}$, $L_{3} = \frac{u_{0}r_{33} - f_{u}r_{13}}{D}$
E5: $L_{9} = \frac{r_{31}}{D}$, $L_{10} = \frac{r_{32}}{D}$, $L_{11} = \frac{r_{33}}{D}$
 $L_{1} = u_{0}L_{9} - \frac{f_{u}r_{11}}{D}$, $L_{2} = u_{0}L_{10} - \frac{f_{u}r_{12}}{D}$, $L_{3} = u_{0}L_{11} - \frac{f_{u}r_{13}}{D}$
 $r_{11} = \frac{D(u_{0}L_{9} - L_{1})}{f_{u}}$, $r_{12} = \frac{D(u_{0}L_{10} - L_{2})}{f_{u}}$, $r_{13} = \frac{D(u_{0}L_{11} - L_{3})}{f_{u}}$

E3:
$$L_5 = \frac{v_0 r_{31} - f_v r_{21}}{D}$$
, $L_6 = \frac{v_0 r_{32} - f_v r_{22}}{D}$, $L_7 = \frac{v_0 r_{33} - f_v r_{23}}{D}$
E5: $L_9 = \frac{r_{31}}{D}$, $L_{10} = \frac{r_{32}}{D}$, $L_{11} = \frac{r_{33}}{D}$

$$L_5 = v_0 L_9 - \frac{f_v r_{21}}{D}, \quad L_6 = v_0 L_{10} - \frac{f_v r_{22}}{D}, \quad L_7 = v_0 L_{11} - \frac{f_v r_{23}}{D}$$

$$r_{21} = \frac{D(v_0 L_9 - L_5)}{f_v}, \quad r_{22} = \frac{D(v_0 L_{10} - L_6)}{f_v}, \quad r_{23} = \frac{D(v_0 L_{11} - L_7)}{f_v}$$

$$r_{11} = \frac{D(u_0 L_9 - L_1)}{f_u}, \quad r_{12} = \frac{D(u_0 L_{10} - L_2)}{f_u}, \quad r_{13} = \frac{D(u_0 L_{11} - L_3)}{f_u}$$

$$r_{21} = \frac{D(v_0 L_9 - L_5)}{f_v}, \quad r_{22} = \frac{D(v_0 L_{10} - L_6)}{f_v}, \quad r_{23} = \frac{D(v_0 L_{11} - L_7)}{f_v}$$

$$r_{31} = DL_9$$
, $r_{32} = DL_{10}$, $r_{33} = DL_{11}$

 f_u and f_v are not known right now!

$$f_u = \frac{f}{\lambda_u}, \quad f_v = \frac{f}{\lambda_v}$$

Orthogonality again!

$$r_{11}^{2} + r_{12}^{2} + r_{13}^{2} = \frac{D^{2}[(u_{0}L_{9} - L_{1})^{2} + (u_{0}L_{10} - L_{2})^{2} + (u_{0}L_{11} - L_{3})^{2}]}{f_{u}^{2}} = 1$$

$$r_{21}^2 + r_{22}^2 + r_{23}^2 = \frac{D^2[(v_0 L_9 - L_5)^2 + (v_0 L_{10} - L_6)^2 + (v_0 L_{11} - L_7)^2]}{f_v^2} = 1$$

$$f_u^2 = D^2 [(u_0 L_9 - L_1)^2 + (u_0 L_{10} - L_2)^2 + (u_0 L_{11} - L_3)^2]$$

$$f_v^2 = D^2[(v_0 L_9 - L_5)^2 + (v_0 L_{10} - L_6)^2 + (v_0 L_{11} - L_7)^2]$$

DLT calibration, recap

- Calibration "pattern" $-> X_i, Y_i, Z_i, (i=1,...,N)$
 - Points should not be co-planar
 - Points should cover the working area well
- Calibration pattern image, processing -> u_i,v_i,(i=1,...,N)
- X_i,Y_i,Z_i,u_i,v_i,LS method -> L₁,...,L₁₁
- $L_1,...,L_{11} \rightarrow X_0,Y_0,Z_0$
- $L_1,...,L_{11}$, ortogonalnost -> u_0,v_0
- $L_1,...,L_{11},u_0,v_0,\perp -> f_u,f_v$
- $L_1,...,L_{11},u_0,v_0,f_u,f_v\perp -> R=[r_{ii}]$

Reconstruction: obtaining X, Y, Z

- Camera is now calibrated
 - We are interested in object (point) position:
 - We know parameters L
 - We know image coordinates u,v
 (point detection algorithms)
 - We want to find X,Y,Z in space
- But, DLT model goes from 3D into 2D
 - Thus, we need inverse transformation
 - How?

Reconstruction: obtaining X, Y, Z

- We need multiple cameras (m>1)
 - Multiple images of the same scene (per camera) are beneficial

$$\begin{bmatrix} (L_{1}-uL_{9})_{1} & (L_{2}-uL_{10})_{1} & (L_{3}-uL_{11})_{1} \\ (L_{5}-vL_{9})_{1} & (L_{6}-vL_{10})_{1} & (L_{7}-vL_{11})_{1} \\ \vdots & \vdots & \ddots & \vdots \\ (L_{1}-uL_{9})_{m} & (L_{2}-uL_{10})_{m} & (L_{3}-uL_{11})_{m} \\ (L_{5}-vL_{9})_{m} & (L_{6}-vL_{10})_{m} & (L_{7}-vL_{11})_{m} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} (L_{4}-u)_{1} \\ (L_{8}-v)_{1} \\ \vdots \\ (L_{4}-u)_{m} \\ (L_{4}-u)_{m} \\ (L_{8}-v)_{m} \end{bmatrix}$$

We again solve the system using LS

Reconstruction: obtaining X, Y, Z in practice

- We set up (calibrated) cameras
 - Need at least two (yes, that's called stereo system!)
- Capture images of the same scene
 - We don't NEED multiple images, but it helps with LS
- Analyze each image (each separately)
 - Find key points (good, distinctive points) in each image
- A key problem is:
 - Which points in different cameras correspond to same point in the scene (a.k.a. "correspondence problem")
- This is known as "stereo matching"

Literature

- http://kwon3d.com/theory/dlt/dlt.html
- E. Trucco, A. Verri, Introductory Techniques for 3D Computer
 Vision, Prentice Hall, 1998.
- M. Sonka, V. Hlavač, R. Boyle, Image Processing, Analysis, and Machine Vision, Thomson, 2008.
- Z. Zhang, "A flexible new technique for camera calibration", *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(11):1330–1334, 2000.

