Problem Set 7

Student Name: Noah Reef

Problem 7.12

Part a

Consider the integral,

$$\int_{\mathbb{R}^d} (1+|\xi|^2)^{-s} d\xi = \int_{S_1(0)} \int_0^\infty (1+r^2)^{-s} r^{d-1} dr d\omega.$$

$$\leq \omega_d \int_0^\infty r^{(-2s)} r^{d-1} dr$$

$$= \omega_d \int_0^\infty r^{d-2s-1} dr$$

and since s > d/2, we have that d - 2s - 1 < d - d - 1 < -1. Thus, the integral converges.

Part b

Let $\phi \in \mathcal{S}$, then we see for $x \in \mathbb{R}^d$ that

$$\phi(x) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} e^{ix\cdot\xi} \hat{\phi}(\xi) \, d\xi = (2\pi)^{-d/2} \int_{\mathbb{R}^d} e^{ix\cdot\xi} (1+|\xi|^2)^{-s/2} (1+|\xi|^2)^{s/2} \hat{\phi}(\xi) \, d\xi.$$

and get that

$$|\phi(x)|^2 \le (2\pi)^{-d} \int_{\mathbb{R}^d} (1+|\xi|^2)^s |\hat{\phi}(\xi)|^2 d\xi \int_{\mathbb{R}^d} (1+|\xi|^2)^{-s} d\xi = C ||u||_{H^s}^2.$$

where

$$C = (2\pi)^{-d} \int_{\mathbb{R}^d} (1 + |\xi|^2)^{-s} d\xi.$$

Part c

Note that \mathcal{S} is dense in $H^s(\mathbb{R}^d)$, and hence for any $\phi \in H^s(\mathbb{R}^d)$, there exists a sequence of $\phi_n \in \mathcal{S}$ such that $\phi_n \to \phi$ in $H^s(\mathbb{R}^d)$. Additionally for each $\phi_n \in \mathcal{S}$ we have the result above that

$$||\phi_n||_{L^{\infty}(\mathbb{R}^d)} \le C ||\phi_n||_{H^s(\mathbb{R}^d)}.$$

and hence we have that

$$\phi_{L^{\infty}(\mathbb{R}^d)} \le C ||\phi||_{H^s(\mathbb{R}^d)}.$$

for $\phi \in H^s(\mathbb{R}^d)$. This proves the goal result that $H^s(\mathbb{R}^d) \hookrightarrow C_B^0(\mathbb{R}^d)$.

Problem 7.13

Part a

Let $f \in H^1(\mathbb{R}^d)$, then we see for $0 \le s \le 1$ we get that

$$\begin{aligned} ||f||_{H^{s}(\mathbb{R}^{d})}^{2} &= \int_{\mathbb{R}^{d}} (1 + |\xi|^{2})^{2} |\hat{f}(\xi)|^{2} d\xi = \int_{\mathbb{R}^{d}} \left((1 + |\xi|^{2}) |\hat{f}(\xi)|^{2} \right)^{s} \left(|\hat{f}(\xi)|^{2} \right)^{1-s} d\xi \\ &\leq \left(\int_{\mathbb{R}^{d}} (1 + |\xi|^{2}) |\hat{f}(\xi)|^{2} d\xi \right)^{s} \left(\int_{\mathbb{R}^{d}} |\hat{f}(\xi)|^{2} d\xi \right)^{1-s} \\ &= ||f||_{H^{1}(\mathbb{R}^{d})}^{2s} ||f||_{L^{2}(\mathbb{R}^{d})}^{2(1-s)} \end{aligned}$$

In general, we have that if $f \in H^r(\mathbb{R}^d)$ and $0 \le s \le 1$, we get that

$$\begin{aligned} ||f||_{H^{rs}(\mathbb{R}^d)}^2 &= \int_{\mathbb{R}^d} (1 + |\xi|^2)^{rs} |\hat{f}(\xi)|^2 d\xi = \int_{\mathbb{R}^d} \left((1 + |\xi|^2)^r |\hat{f}(\xi)|^2 \right)^s \left(|\hat{f}(\xi)|^2 \right)^{1-s} d\xi \\ &\leq \left(\int_{\mathbb{R}^d} (1 + |\xi|^2)^r |\hat{f}(\xi)|^2 d\xi \right)^s \left(\int_{\mathbb{R}^d} |\hat{f}(\xi)|^2 d\xi \right)^{1-s} \\ &= ||f||_{H^r(\mathbb{R}^d)}^{2s} ||f||_{L^2(\mathbb{R}^d)}^{2(1-s)} \end{aligned}$$

Part b

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with smooth boundary $\partial\Omega$. We can show this by using the trace theorem and showing that

$$||f||_{L^{2}(\partial\Omega)} = ||\gamma_{0}f||_{H^{0}(\partial\Omega)} \le C \, ||f||_{H^{1/2}(\Omega)} \le ||f||_{H^{1}(\Omega)}^{1/2} \, ||f||_{L^{2}(\Omega)}^{1/2}$$