Explizite Berechnung der Levelt-Turrittin-Zerlegung für spezielle \mathcal{D} -Moduln

vorgelegt von Maximilian Huber am Institut für Mathematik der Universität Augsburg betreut durch Prof. Dr. Marco Hien abgegeben am 04.07.2013

stand: 21. Juni 2013

Inhaltsverzeichnis

Ei	Einleitung				
1	Moduln über \mathcal{D}_k				
	1.1	Weyl-Algebra und der Ring \mathcal{D}_k	2		
		1.1.1 Alternative Definition / Sichtweise	4		
	1.2	Holonome \mathcal{D}_k -Moduln	6		
2	Meromorphe Zusammenhänge				
	2.1	Meromorphe Zusammenhänge	10		
	2.2	Äquivalenz zu holonomen lokalisierten \mathcal{D} -Modul n	13		
	2.3	Newton-Polygon	15		
3	Оре	Operationen auf meromorphen Zusammenhängen			
	3.1	Tensorprodukt	21		
	3.2	Pullback und Pushforward	22		
	3.3	Fouriertransformation	33		
	3.4	Betrachtung bei Unendlich	34		
	3.5	Twisten von meromorphen Zusammenhängen	34		
4	Leve	elt-Turrittin-Theorem	42		
	4.1	Elementare meromorphe Zusammenhänge	42		
	4.2	Definition in [Sab07]	44		
	4.3	Die Filtrierung ${}^\ell V\mathcal{D}_{\widehat{K}}$ und das ℓ -Symbol	44		
	4.4	Levelt-Turrittin-Theorem	47		
		4.4.1 Sabbah's Refined version	49		
5	Explizite Berechnung einer Levelt-Turrittin-Zerlegung				
	5.1	Betrachte \mathcal{M}_{φ} für allgemeine φ	51		
	5.2	Levelt-Turrittin-Zerlegung für \mathcal{M}_{φ} mit $\varphi_1 := \frac{a}{x}$	56		
		5.2.1 Konvergenz der Summanden	64		

In halts verzeichn is

Sc	Schluss			
Ar	nhang	72		
A Aufteilung von $t\varphi'(t)$				
В	Quelltexte	73		
	B.1 ComplRat.hs	73		
	B.2 Koeffs.hs	74		
	B.3 SaveToFile.hs	78		

Abbildungsverzeichnis

2.1	Newton-Polygon zu $P_1 = x \partial_x^2$	17
2.2	Newton-Polygon zu P_2	17
2.3	Newton-Polygon zu $P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$	19
2.4	Newton-Polygon zu P	20
3.1	Newton-Polygon zu $P = x^3 \partial_x^2 - 4x^2 \partial_x - 1 \dots \dots \dots \dots \dots$	31
3.2	Newton-Polygon zu $\rho^* P = \frac{1}{4} t^4 \partial_t^2 - \frac{1}{2} t^3 \partial_t - 1$	31
3.3	Newton-Polygon zu P	34
3.4	Newton-Polygon zu \mathcal{F}_P	34
3.5	Newton-Polygon zu P	35
3.6	Newton-Polygon zu P^{∞}	35
4.1	Zu Bemerkung 4.12	45
4.2	Zu Beispiel 4.15	46
5.1	Newton-Polygon zu P_{φ} zusammen mit $H(x^{2(q-m)}\partial_x^{q-m})$	53
5.2	Newton-Polygon zu P_{φ}	57
5.3	Newton-Polygon zu $\rho^* P_{\varphi}$	57
5.4	Newton-Polygon zu $\mathcal N$	59
5.5	Newton-Polygon zu Q_1	61
5.6	Newton-Polygon zu Q_2	61
5.7	Die Beträge der v_n in Abhängigkeit von n für unterschiedliche u_{-2}	68
5.8	Wurzlkriterium angewendet auf die Koeffizienten	69
5.9	Quotientenkriterium angewendet auf die Koeffizienten	70

Tabellenverzeichnis

B.1	Numerisch	berechnete Koeffiziente	en von $v(t)$ für v	$u_{-2} = i$ bzw. $a = i$	$=\frac{1}{9}$.	 77

Listings

B.1	ComplRat.hs	73
B.2	Koeffs.hs	74
В.3	testKoeffs.hs	75
R 1	SavaTaFila ha	78

Einleitung

Kommentar: Ziel der Arbeit

In dieser Arbeit soll zunächst die Theorie der meromorphen Zusammenhänge eingeführt werden.

Kommentar: Vorraussetzungen

Kommentar: Aufbau / inhalt der Kapitel

Im ersten Kapitel wird die Theorie der \mathcal{D} -Moduln eingeführt.

Im zweiten Kapitel werden die meromorphen Zusammenhänge definiert, diese sind das wichtigste Objekt, das in dieser Arbeit diskutiert werden soll. Ein wichtiges Resultat, in diesen Kapiteln, ist die Äquivalenz von meromorphen Zusammenhängen zu holonomen lokalisierten \mathcal{D} -Moduln, da man mit letzteren gut rechnen kann.

Das dritte Kapitel beschäftigt sich ausschließlich mit Operationen auf meromorphen Zusammenhängen.

Im vierten Kapitel soll das Levelt-Turrittin-Theorem vorgestellt werden, welches

Das letzte Kapitel wendet die Levelt-Turrittin-Zerlegung auf einen meromorphen Zusammenhang an.

Kommentar:

1 Moduln über \mathcal{D}_k

In diesem Kapitel wird die Weyl Algebra, wie in [Sab90, Chapter 1] oder in [AV09, Kapittel 2], in einer Veränderlichen einführen. Allgemeiner und in mehreren Veränderlichen wird die Weyl-Algebra beispielsweise in [Cou95, Chapter 1] definiert.

Definition 1.1 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a, b] := a \cdot b - b \cdot a$$

als der Kommutator von a und b definiert.

Proposition 1.2. Sei $k = \mathbb{C}[x]$ (bzw. $\mathbb{C}\{x\}$ bzw. $\mathbb{C}[x]$) ein Ring der Polynome (bzw. der konvergenten Potenzreihnen bzw. der formalen Potenzreihen) in x über \mathbb{C} . Sei $\partial_x : k \to k$ der gewohnte Ableitungsoperator nach x, so gilt

1.
$$[\partial_x, x] = \partial_x x - x \partial_x = 1$$

2. $f\ddot{u}r \ f \in k \ ist$

$$[\partial_x, f] = \frac{\partial f}{\partial x}. \tag{1.1}$$

3. Es gelten die Formeln

$$\left[\partial_x, x^k\right] \stackrel{(1.1)}{=} \frac{\partial x^k}{\partial x} = kx^{k-1} \tag{1.2}$$

$$[\partial_x^j, x] = j\partial_x^{j-1} \tag{1.3}$$

$$[\partial_x^j, x^k] = \sum_{i>1} \frac{k(k-1)\cdots(k-i+1)\cdot j(j-1)\cdots(j-i+1)}{i!} x^{k-i} \partial_x^{j-i}$$
 (1.4)

Beweis. Die erste Aussage ist klar. Für die zweite Aussage gilt für ein Testobjekt $g \in k$:

$$[\partial_x, f] \cdot g = \underbrace{\partial_x (fg) - f \partial_x g}_{= (\partial_x f)g + \underbrace{f(\partial_x g) - f(\partial_x g)}_{=0}}$$

$$=(\partial_x f)g$$
.

Der Rest der Proposition wird beispielsweise in [Sab90, 1.2.4.] oder [AV09, Kor 2.8] bewiesen.

1.1 Weyl-Algebra und der Ring \mathcal{D}_k

Sei dazu $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in \mathbb{C}[x]$ (bzw. $\mathbb{C}[x]$). Man hat die folgende Kommutationsrelation zwischen dem *Ableitungsoperator* und dem *Multiplikationsoperator* f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x},\tag{1.5}$$

wobei die rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$, also dem bereits abgeleiteten f, darstellt. Dies bedeutet, für alle $g \in \mathbb{C}[x]$ hat man

$$[\frac{\partial}{\partial x}, f] \cdot g = \underbrace{\frac{\partial (fg)}{\partial x} - f \cdot \frac{\partial g}{\partial x}}_{= \underbrace{\frac{\partial f}{\partial x} \cdot g + \underbrace{f \cdot \frac{\partial g}{\partial x} - f \cdot \frac{\partial g}{\partial x}}_{= 0}}_{= 0}$$
$$= \underbrace{\frac{\partial f}{\partial x} \cdot g}_{= 0}.$$

Definition 1.3. Definiere nun den Ring \mathcal{D}_k als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring in k zusammen mit dem Element ∂_x erzeugt wird, modulo der Relation (1.5). Wir schreiben diesen Ring auch als:

- $A_1(\mathbb{C})$, falls $k = \mathbb{C}[x] := \{\sum_{i=0}^N a_i x^i \mid N \in \mathbb{N}\}$, und nennen ihn die Weyl Algebra.
- \mathcal{D} , falls $k = \mathbb{C}\{x\} := \{\sum_{i=0}^{\infty} a_i x^i \mid \text{pos. Konvergenz adius}\}$ die konvergenten Potenzreihen.
- $\widehat{\mathcal{D}}$, falls $k = \mathbb{C}[x] := \{\sum_{i=0}^{\infty} a_i x^i\}$ die formalen Potenzreihen.
- \mathcal{D}_K , falls $k = K := \mathbb{C}(\{x\}) := \mathbb{C}\{x\}[x^{-1}]$ der Ring der Laurent Reihen.
- $\mathcal{D}_{\widehat{K}}$, falls $k = \widehat{K} := \mathbb{C}(\!(x)\!) := \mathbb{C}[\![x]\!][x^{-1}]$ der Ring der formalen Laurent Reihen^[1].

Bemerkung 1.4. 1. Es bezeichnet der Hut (^) das jeweils formale Pendant zu einem konvergenten Objekt. Dementsprechend könnte man auch $\widehat{\mathbb{C}\{x\}}$ für $\mathbb{C}[\![x]\!]$ schreiben.

 $^{^{[1]} \}text{Wird in [AV09] mit } \widehat{\mathcal{D}}_{\widehat{K}} \text{ bezeich$ $net.}$

- 2. Es gilt $\mathcal{D}[x^{-1}] = \mathcal{D}_K$ und $\widehat{\mathcal{D}}[x^{-1}] = \mathcal{D}_{\widehat{K}}$.
- 3. Offensichtlich erhält \mathcal{D}_k in kanonischer Weise eine nichtkommutative Ringstruktur, dies ist in [AV09, Kapittel 2 Section 1] genauer ausgeführt.

Bemerkung 1.5. Jede Aussage bzw. Definition, die in dieser Arbeit über K bzw. \mathcal{D}_K getroffen wird, gilt auch über \widehat{K} bzw. $\mathcal{D}_{\widehat{K}}$. Die andere Richtung gilt im Allgemeinen nicht.

Proposition 1.6. Jedes Element in \mathcal{D}_k kann auf eindeutige Weise als $P = \sum_{i=0}^n a_i(x) \partial_x^i$, mit $a_i(x) \in k$, geschrieben werden.

Beweis. Siehe [Sab90, Proposition 1.2.3].

Kommentar: Gilt das folgende??

$$\alpha_i(x)\partial_x^i \equiv \frac{\alpha_i}{x^i}(x\partial_x)^i \mod F_{i-1}\mathcal{D}$$

Kommentar: Besser?:

erst Filtrierung definieren und dadurch dann den Grad?

Definition 1.7. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, wie in Proposition 1.6 gegeben, so definiere

$$\deg P := \max \left\{ \left\{ i \mid a_i \neq 0 \right\} \cup \left\{ -\infty \right\} \right\}$$

als den Grad (oder den ∂_x -Grad) von P.

 κ_{ommentar} : In natürlicher Weise erhält man die aufsteigende Filtrierung $F_N\mathcal{D}:=\{P\in\mathcal{D}|\deg P\leq N\}$ mit

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte $gr_k^F \mathcal{D} \stackrel{\text{def}}{=} F_N \mathcal{D}/F_{N-1} \mathcal{D} = \{P \in \mathcal{D} | \deg P = N\} \cong \mathbb{C}\{x\}.$

Beweisidee. Sei $P \in F_N \mathcal{D}$, so betrachte den Isomorphismus $F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}$ definiert durch $[P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$.

Proposition 1.8. Es gilt:

$$gr^F \mathcal{D} := \bigoplus_{N \in \mathbb{Z}} gr_N^F \mathcal{D} = \bigoplus_{N \in \mathbb{N}_0} gr_N^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cong \mathbb{C}\{x\}[\xi] = \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$$

$$isomorph \ als \ grad. \ Ringe$$

also $gr^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$ als gradierte Ringe.

Kommentar:

1.1.1 Alternative Definition / Sichtweise

[Kas03, Chap 1.1.] Sei X eine 1-dimensionale komplexe Mannigfaltigkeit und \mathcal{O}_X die Garbe der holomorphen Funktionen auf X. Ein (holomorpher) Differenzialoperator auf X ist ein Garben-Morphismus $P: \mathcal{O}_X \to \mathcal{O}_X$, lokal in der Koordinate x und mit holomorphen Funktionen $a_n(x)$ als

$$(Pu)(x) = \sum_{n>0} a_n(x)\partial_x^n u(x)$$

geschrieben (für $u \in \mathcal{O}_X$). Zusätzlich nehmen wir an, dass $a_n(x) \equiv 0$ für fast alle $n \in \mathbb{N}$ gilt. Wir setzten $\partial_x^n u(x) = \frac{\partial^n u}{\partial x^n}(x)$. Wir sagen, ein Operator hat höchstens Ordnung m, falls $\forall n \geq m : \alpha_n(x) \equiv 0$.

Definition 1.9. Mit \mathcal{D}_X bezeichnen wir die Garbe von Differentialoperatoren auf X.

Die Garbe \mathcal{D}_X hat eine Ringstruktur mittels der Komposition als Multiplikation und \mathcal{O}_X ist ein Unterring von \mathcal{D}_X . Sei Θ_X die Garbe der Vektorfelder über X. Es gilt, dass Θ_X in \mathcal{D}_X enthalten ist. Bemerke auch, dass Θ_X ein Links- \mathcal{O}_X -Untermodul, aber kein rechts \mathcal{O}_X -Untermodul ist.

Proposition 1.10. [Ark12, Exmp 1.1] Sei $X = \mathbb{A}^1 = \mathbb{C}$, $\mathcal{O}_X = \mathbb{C}[t]$ und $\Theta_X = \mathbb{C}[x]\partial_x$, wobei ∂_x als $\partial_x(x^n) = nx^{n-1}$ wirkt, dann sind die Differentialoperatoren

$$\mathcal{D}_X = \mathbb{C}[x, \partial_x],$$
 mit $\partial_x x - x \partial_x = 1.$

Somit stimmt die alternative Definition bereits mit der einfachen überein.

Kommentar:

Definition 1.11. [Ark12, Defn 2.1] Sei $X = \mathbb{A}^1$, $\mathcal{O}_X = \mathbb{C}[x]$ und $\mathcal{D}_X = [x, \partial_x]$ mit der Relation $[\partial_x, x] = 1$. Dann definieren wir die Links- \mathcal{D} -Moduln über \mathbb{A}^1 als die $\mathbb{C}[x, \partial_x]$ -Moduln. Sie werden geschrieben als $\mathcal{D} - mod(\mathbb{A}^1)$

Da \mathcal{D} ein nichtkommutativer Ring ist, muss man vorsichtig sein und zwischen Links- und Rechts- \mathcal{D} -Moduln unterscheiden. Wenn im Folgendem von \mathcal{D} -Moduln gesprochen wird, sind immer Links- \mathcal{D} -Moduln gemeint.

Beispiel 1.12. Hier einige Beispiele für (Links-) \mathcal{D} -Moduln

- 1. \mathcal{D} ist ein Links- und Rechts- \mathcal{D} -Modul.
- 2. $\mathcal{M} = \mathbb{C}[x]$ oder $\mathcal{M} = \mathbb{C}[x, x^{-1}]$ mit jeweils $x \cdot x^m = x^{m+1}$ und $\partial_x(x^m) = mx^{m-1}$ ist ein Links- \mathcal{D} -Modul.
- 3. Führt man formal, also ohne analytischen Hintergrund, ein Objekt $\exp(\lambda x)$ ein, mit $\partial(f(x)\exp(\lambda x)) = \frac{\partial f}{\partial x}\exp(\lambda x) + f\lambda\exp(\lambda x)$, so ist $\mathcal{M} = \mathbb{C}[x]\exp(\lambda x)$ ein \mathcal{D} -Modul.

Kommentar: [Ark12, Exmp 2.2]

4. Führt man analog ein Symbol $\log(x)$ mit den Eigenschaften $\partial_x \log(x) = \frac{1}{x}$ ein, so erhält man nun den \mathcal{D} -Moduln $\mathbb{C}[x] \log(x) + \mathbb{C}[x, x^{-1}]$. Dieses Modul ist über \mathcal{D} durch $\log(x)$ erzeugt und es gilt

$$\mathbb{C}[x]\log(x) + \mathbb{C}[x, x^{-1}] = \mathcal{D} \cdot \log(x) = \mathcal{D}/\mathcal{D}(\partial_x x \partial_x).$$

Kommentar: TODO: prüfen

Kommentar: [Gin98, Exmp 3.1.4]

Kommentar:

Lemma 1.13. [Sab90, Lem 2.3.3.] Sei \mathcal{M} ein Links- \mathcal{D} -Modul von endlichem Typ, welches auch von endlichem Typ über $\mathbb{C}\{x\}$ ist. Dann ist \mathcal{M} bereits ein freies $\mathbb{C}\{x\}$ -Modul.

Beweis. Siehe [Sab90, Lem 2.3.3.].

Korollar 1.14. [Sab90, Cor 2.3.4.] Falls \mathcal{M} ein Links- \mathcal{D} -Modul von endlichem Typ, welches außerdem ein endlich dimensionaler Vektorraum ist, so ist schon $\mathcal{M} = \{0\}$.

1.2 Holonome \mathcal{D}_k -Moduln

In diesem Abschitt werden die Holonomen \mathcal{D}_k -Moduln nur sehr einfach und ohne großen Hintergrund eingeführt, da wir diese Theorie nicht benötigen. Eine detailreichere Definition ist bei [Sab90, Def. 3.3.1] zu finden.

Definition 1.15. Sei \mathcal{M}_k ein Links- \mathcal{D}_k -Modul ungleich \mathcal{D}_k . \mathcal{M}_k heißt *holonom*, falls es ein Torsionselement $m \in \mathcal{M}_k$ gibt, das \mathcal{M}_k als \mathcal{D}_k -Moduln erzeugt. Im Speziellen folgt damit, dass $\mathcal{M}_k \cong \mathcal{D}_k/\mathfrak{a}$ für ein $0 \neq \mathfrak{a} \triangleleft \mathcal{D}_k$.

Bemerkung 1.16. Kommentar: Dies hier ist eine sehr vereinfachte, aber für unsere Zwecke völlig ausreichende, Definition von holonom.

In [Cou95] wird der Begriff holonom über die Dimension definiert und bei [Sab90] über die charakteristische Varietät. Letzteres ist die übliche Definition, da sich diese gut verallgemeinern lässt.

Bemerkung 1.17. Nach [Cou95, Prop 10.1.1] gilt

- ullet Submoduln und Quotienten von holonomen \mathcal{D}_k -Moduln sind holonom
- ullet sowie endliche Summen von holonomen \mathcal{D}_k -Moduln sind holonom

und laut [Sab90, Thm. 4.2.3] gilt, dass

• für einen holonomen $\mathcal{D}_{\mathbb{C}\{x\}}$ -Modul $\mathcal{M}_{\mathbb{C}\{x\}}$ (bzw. einen $\mathcal{D}_{\mathbb{C}[\![x]\!]}$ -Moduln $\mathcal{M}_{\mathbb{C}[\![x]\!]}$) ist die Lokalisierung

$$\mathcal{M}_{\mathbb{C}\{x\}}[x^{-1}] := \mathcal{M}_{\mathbb{C}\{x\}} \otimes_{\mathbb{C}\{x\}} K \qquad \text{(bzw. } \mathcal{M}_{\mathbb{C}[\![x]\!]}[x^{-1}] := \mathcal{M}_{\mathbb{C}[\![x]\!]} \otimes_{\mathbb{C}[\![x]\!]} \widehat{K} \text{)},$$

mit der $\mathcal{D}_{\mathbb{C}\{x\}}$ – (bzw. $\mathcal{D}_{\mathbb{C}[x]}$ -) Modul-Struktur durch

$$\partial_x(m\otimes x^{-k})=((\partial_x m)\otimes x^{-k})-km\otimes x^{-k-1}$$

wieder holonom.

Satz 1.18. Sei \mathcal{M}_k ein holonomes \mathcal{D}_k -Modul, dann gilt, dass seine Lokalisierung isomorph zu $\mathcal{D}_k/\mathcal{D}_k \cdot P$, mit einem $P \in \mathcal{D}_k$ ungleich Null, ist.

Beweis. Siehe [Sab90, Cor 4.2.8].

Kommentar:

Alternative Definition B

Definition 1.19. [Sab90, Def 3.3.1.] Sei \mathcal{M} lineares Differentialsystem (linear differential system) . Man sagt, \mathcal{M} ist holonom, falls $\mathcal{M} = 0$ oder falls $\operatorname{Car} \mathcal{M} \subset \{x = 0\} \cup \xi = 0$.

Lemma 1.20. [Sab90, Lem 3.3.8.] Ein \mathcal{D} -Modul ist holonom genau dann, wenn $\dim_{gr^F\mathcal{D},0}gr^F\mathcal{M}=1.$

Beweis. Siehe [Sab90, Lem 3.3.8.]

Kommentar:

Alternative Definition A

Definition 1.21 (Holonome \mathcal{D} -Moduln). [Cou95, Chap 10 §1] Ein endlich generierter \mathcal{D} -Modul \mathcal{M} ist holonom, falls $\mathcal{M} = 0$ gilt, oder falls es die Dimension 1 hat.

Bemerkung 1.22. [Cou95, Chap 10 §1] Sei $\mathfrak{a} \neq 0$ ein Links-Ideal von \mathcal{D} . Es gilt nach [Cou95, Corollary 9.3.5], dass $d(\mathcal{D}/\mathfrak{a}) \leq 1$. Falls $\mathfrak{a} \neq \mathcal{D}$, dann gilt nach der Bernstein's inequality [Cou95, Chap 9 §4], dass $d(\mathcal{D}/\mathfrak{a}) = 1$. Somit ist \mathcal{D}/\mathfrak{a} ein holonomes \mathcal{D} -Modul.

2 Meromorphe Zusammenhänge

In diesem Kapitel werden wir das Konzept der meromorphen Zusammenhänge einführen und die folgenden zwei Eins-zu-Eins Koerspondenzen besprechen:

Zum Schluss des Kapitels werden noch die Newton-Polygone eingeführt, welche als Invarianten für meromorphe Zusammenhänge fungieren sollen.

 κ_{ommentar} : Sei \mathcal{M} ein \mathcal{D} -Modul ungleich Null von endlichem Typ. Falls die links-Multiplikation mit x bijektiv ist, so nennen wir \mathcal{M} einen meromorphen Zusammenhang. [Sab90, Chap 4]

Wir beginnen mit der klassischen Theorie von gewöhnlichen Differentialgleichungen. Sei V ein geeigneter Funktionenraum, beispielsweise der Raum der holomorphen Funktionen.

Definition 2.1 (Systeme von ODEs). Für eine Matrix $A = (a_{ij}(x))_{ij} \in M(n \times n, K)^{[1]}$ definieren wir das System von gewöhnlichen Differentialgleichungen (kurz System von ODEs) als

$$\frac{d}{dx}u(x) = Au(x), \qquad (2.1)$$

wobei $u(x) = {}^t(u_1(x), \ldots, u_n(x))$ ein Spaltenvektor^[2] von unbekannten Funktionen ist. Wir sagen $v(x) = {}^t(v_1(x), \ldots, v_n(x))$ ist eine *Lösung* von (2.1), falls $v_i \in V$ für alle $i \in \{1, \ldots, n\}$ und v die Gleichung (2.1), auf einer Umgebung um die 0, erfüllt.

[2] Für
$$v=(v_1,\ldots,v_n)$$
 ein Vektor, bezeichnet ${}^tv:=\begin{pmatrix}v_1\\\vdots\\v_n\end{pmatrix}$ den transponierten Vektor.

 $^{^{[1]}}$ Es bezeichnet $M(n \times m, k)$ die Menge der $n \times m$ -Matrizen mit Einträgen in k.

Durch Setzen von w(x) := Tu(x), für eine invertierbare Matrix $T \in GL(n,K)^{[3]}$, erhält man aus 2.1 das äquivalente System

$$\frac{d}{dx}w(x) = (T^{-1}AT - T^{-1}\frac{d}{dx}T)w(x),$$

und damit erhalten wir die folgende Definition.

Definition 2.2 (Differenziell Äquivalent). Man nennt A und $B \in M(n \times n, K)$ (differenziell) äquivalent $(A \sim B)$ genau dann, wenn es ein $T \in GL(n, K)$ gibt, mit $B = T^{-1}AT - T^{-1}\frac{d}{dx}T$. Dementsprechend sind zwei Systeme von ODEs äquivalent, wenn ihre zugeordneten Matrizen differenziell äquivalent sind.

Kommentar:
$$1 = TT^{-1} \rightsquigarrow T'T^{-1} + T(T^{-1})' = 0$$

 $1 = T^{-1}T \rightsquigarrow (T^{-1})'T + T^{-1}T' = 0$

Mit elementarer Theorie über gewöhnliche Differentialgleichungen lässt sich ein System von ODEs in eine einzige ODE der Form

$$\underbrace{\left(\underline{a_n\partial_x^n + a_{n-1}\partial_x^{n-1} + \dots + a_1\partial_x + a_0}\right) \cdot u(t) = 0}_{=:P} \cdot u(t) = 0,$$
(2.2)

mit $a_i \in K$ für alle $i \in \{0, ..., n\}$, umschreiben. Dieses so erhaltene $P \in \mathcal{D}_K$ ist ein sogenannter linearer Differentialoperator und es gilt

$$v(x)$$
 ist Lösung von $P \cdot u(x) = 0 \quad \Rightarrow \quad \forall Q \in \mathcal{D}_K$ ist $v(x)$ Lösung von $QP \cdot u(x) = 0$.

Also ist eine Lösung von $P \cdot u(x) = 0$ auch eine Lösung von $\tilde{Q} \cdot u(x) = 0$ für alle $\tilde{Q} \in \mathcal{D}_K \cdot P \lhd \mathcal{D}_K$. Diese Eigenschaft, dass ein linearer Differentialoperator P ein Ideal bestimmt, wollen wir nun nutzen, um das Problem der Differentialgleichungen algebraisch zu betrachten.

Kommentar: Sei P ein linearer Differentialoperator mit Koeffizienten in $a_i(x) \in \mathbb{C}\{x\}$ geschrieben als $P = \sum_{i=0}^d a_i(x) \partial_x^i$. Man sagt eine Funktion $u \in \mathcal{F}$ ist Lösung von P, falls u die Gleichung Pu = 0 erfüllt. Man sagt 0 ist ein singulärer Punkt falls $a_d(0) = 0$. Falls 0 kein singulärer Punkt ist, hat P genau d über \mathbb{C} Unabhängige Lösungen in $\mathbb{C}\{x\}$.

 $^{^{[3]}}GL(n,K)$ bezeichnet die Menge der invertierbaren Matrizen in $M(n \times n,K)$.

2.1 Meromorphe Zusammenhänge

Nun wollen wir dieses klassische Gebilde in die moderne Sprache der meromorphen Zusammenhänge übersetzen.

Definition 2.3 (Meromorpher Zusammenhang). Ein (konvergenter) meromorpher Zusammenhang (bei x = 0) ist ein Tupel (\mathcal{M}_K, ∂) und besteht aus folgenden Daten:

- \mathcal{M}_K , ein endlich dimensionaler K-Vektorraum und
- einer \mathbb{C} -linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt Derivation oder Zusammenhang, welche für alle $f \in K$ und $u \in \mathcal{M}_K$ die Leibnitzregel

$$\partial(fu) = f'u + f\partial u \tag{2.3}$$

erfüllen soll.

Bemerkung 2.4. Analog definiert man einen formalen meromorphen Zusammenhang $(\mathcal{M}_{\widehat{K}}, \partial)$ bestehend, genau wie in Definition 2.3, aus folgenden Daten:

- $\mathcal{M}_{\widehat{K}}$, ein endlich dimensionaler \widehat{K} -Vektorraum und
- einer \mathbb{C} -linearen Derivation $\partial: \mathcal{M}_{\widehat{K}} \to \mathcal{M}_{\widehat{K}}$, welche die Leibnitzregel (2.3) erfüllen soll.

Bemerkung 2.5. Alle in dieser Arbeit vorgestellten Resultate, welche für konvergente meromorphe Zusammenhänge gelten, gelten, analog wie in Bemerkung 1.5, auch für formale meromorphe Zusammenhänge. Die Rückrichtung hiervon gilt aber nicht, ein Beispiel hierfür ist Satz 2.34.

Bemerkung 2.6. Später wird man auf die Angabe von ∂ verzichten und einfach \mathcal{M}_K als den meromorphen Zusammenhang bezeichnen. Auch wird manchmal auf die Angabe von K im Subscript verzichtet, sofern klar ist welches K gemeint ist.

Definition 2.7. Seien $(\mathcal{M}, \partial_{\mathcal{M}})$ und $(\mathcal{N}, \partial_{\mathcal{N}})$ zwei meromorphe Zusammenhänge über K. Eine K-lineare Abbildung $\varphi: \mathcal{M} \to \mathcal{N}$ ist ein Morphismus von meromorphen Zusammenhängen, falls sie $\varphi \circ \partial_{\mathcal{M}} = \varphi \circ \partial_{\mathcal{N}}$ erfüllt. In diesem Fall schreiben wir auch $\varphi: (\mathcal{M}, \partial_{\mathcal{M}}) \to (\mathcal{N}, \partial_{\mathcal{N}})$. Ein solcher Morphismus ist ein Isomorphismus, falls die Abbildung $\varphi: \mathcal{M} \to \mathcal{N}$ ein Isomorphismus von K-Vektorräumen ist.

Kommentar: TODO: entfernen

Definition 2.8. Wir erhalten damit die Kategorie der meromorphen Zusammenhänge über K mit

Objekte: (M, ∂) meromorpher Zusammenhang über K

Morphismen: $(M,\partial) \stackrel{f}{\to} (M',\partial')$ Morphismus von meromorphen Zusammenhängen.

Lemma 2.9. Sei \mathcal{M}_K ein endlich dimensionaler K-Vektor Raum mit ∂_1 und ∂_2 zwei darauf definierte Derivationen, so gilt: Die Differenz zweier Derivationen ist K-linear.

Beweis. Seien ∂_1 und ∂_2 zwei Derivationen auf \mathcal{M}_K . Da ∂_1 und ∂_2 \mathbb{C} -linear, ist $\partial_1 - \partial_2$ \mathbb{C} -linear, also muss nur noch gezeigt werden, dass $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u) \ \forall f \in K$ und $u \in \mathcal{M}_K$ gilt.

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$

$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$

$$= \underbrace{f'u - f'u}_{=0} + f \cdot (\partial_1 u - \partial_2 u)$$

$$= f \cdot (\partial_1 - \partial_2)(u).$$

Dieser lineare Unterschied zweier Derivationen lässt sich als Matrix darstellen, und so kommt man zur folgenden Definition

Kommentar: [HTT07, Seite 129]

Definition 2.10 (Zusammenhangsmatrix). Sei $(\mathcal{M}_K, \partial)$ ein meromorpher Zusammenhang so wähle eine K-Basis $\{e_i\}_{i\in\{1,\dots,n\}}$ von \mathcal{M} . Dann ist die Zusammenhangsmatrix bzgl. der Basis $\{e_i\}_{i\in\{1,\dots,n\}}$ die Matrix $A = (a_{ij}(x))_{i,j\in\{1,\dots,n\}} \in M(n \times n,K)$ definiert durch

$$a_{ij}(x) := -^t e_i \partial e_j .$$

Damit ist, bezüglich der Basis $\{e_i\}_{i\in\{1,\ldots,n\}}$, die Wirkung von ∂ auf $u=:{}^t(u_1,\ldots,u_n)$ beschrieben durch $\partial(u)=u'(x)-Au(x)$, denn

$$\partial(u) = \partial\left(\sum_{i=1}^{n} u_i(x)e_i\right)$$
$$= \sum_{i=1}^{n} \left(u'_i(x) - \sum_{j=1}^{n} a_{ij}u_j(x)\right)e_i$$

$$= \sum_{i=1}^{n} u'_{i}(x)e_{i} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}u_{j}(x)e_{i}$$
$$= u'(x) - Au(x).$$

Somit ist die Bedingung $\partial u(x)=0,$ für $u(x)=\sum_{i=1}^n u_i e_i$ äquivalent zur Gleichung

$$u'(x) = Au(x)$$

für $u(x) = {}^t(u_1(x), \ldots, u_n(x))$. Damit haben wir gesehen, dass jeder meromorphe Zusammanhang (\mathcal{M}, ∂) ausgestattet mit einer K-Basis $\{e_i\}_{i \in \{1, \ldots, n\}}$ von \mathcal{M} zu einem System von gewöhnlichen Differentialgleichungen zugeordnet werden kann.

Kommentar:

Proposition 2.11 (Transformationsformel). [HTT07, Chap 5.1.1] In der Situation

mit φ, ψ und T K-Linear und $\partial, (\frac{d}{dx} + A)$ und $(\frac{d}{dx} + B)$ \mathbb{C} -Linear, gilt: Der meromorphe Zusammenhang. $\frac{d}{dx} + A$ auf K^r wird durch Basiswechsel $T \in GL(r, K)$ zu

$$\frac{d}{dx} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dx} + B$$

Definition 2.12. Wenn wir umgekehrt mit einer Matrix $A = (a_{ij}(x)) \in M(n \times n, K)$, welche eine System von ODEs beschreibt, beginnen, können wir durch

$$\mathcal{M}_A := \bigoplus_{i=1}^n Ke_i$$
 und $\partial_A \sum_{i=1}^n u_i e_i := \sum_{i=1}^n \left(\frac{\partial u_i}{\partial x} - \sum_{j=1}^n a_{ij}(x) u_j \right) e_i$

den assoziierten meromorphen Zusammenhang $(\mathcal{M}_A, \partial_A)$ definieren.

комментат: TODO: zueinander inverse bijektionen?

Lemma 2.13. Sind A_1 , $A_2 \in M(n \times n, K)$ zwei Matrizen, die zwei Systeme von ODEs beschreiben, dann gilt

$$\frac{d}{dx}u(x) = A_1u(x) \qquad ist \ \ddot{a}quivalent \ zu \qquad \frac{d}{dx}u(x) = A_2u(x)$$

genau dann, wenn

$$(\mathcal{M}_{A_1}, \partial_{A_1})$$
 ist äquivalent zu $(\mathcal{M}_{A_2}, \partial_{A_2})$.

Damit haben wir eine Eins-zu-Eins-Beziehung zwischen meromorphen Zusammenhängen und Systemen von ODEs. Genauer wird dies beispielsweise in [HTT07, Sec 5.1] oder auch in [Sab90, Sec 3] betrachtet.

2.2 Äquivalenz zu holonomen lokalisierten \mathcal{D} -Moduln

Lemma 2.14 (Lemma vom zyklischen Vektor). Sei $(\mathcal{M}_K, \partial)$ ein meromorpher Zusammenhang. Es existiert ein Element $m \in \mathcal{M}_K$ und eine ganze Zahl d so dass $m, \ldots, \partial^{d-1}m$ eine K-Basis von \mathcal{M}_K ist.

Beweis. Ein Beweis ist beispielsweise in [Sab90, Thm 4.3.3] oder ausführlicher in [AV09, Satz 4.8] zu finden. \Box

Lemma/Definition 2.15. Ist \mathcal{M}_K ein meromorpher Zusammenhang, dann existiert ein $P \in \mathcal{D}_K$, so dass $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$. Solch P wird als Minimalpolynom von \mathcal{M}_K bezeichnet.

Beweis. Siehe dazu [AV09, Satz 4.12].

Bemerkung 2.16. Dieses so definierte Minimalpolynom ist nicht eindeutig.

Proposition 2.17. In der Situation von Lemma 2.14 sei

$$\partial^d m = \alpha_{d-1} \partial^{d-1} m + \alpha_{d-2} \partial^{d-2} m + \dots + \alpha_1 \partial m + \alpha_0 m, \qquad \alpha_i \in K$$

eine Basisdarstellung von $\partial^d m$, dann ist

$$\mathcal{M}_K \cong \mathcal{D}_K / \mathcal{D}_K \left(\underbrace{\partial_x^d - \alpha_{d-1} \partial_x^{d-1} - \alpha_{d-2} \partial_x^{d-2} - \dots - \alpha_1 \partial_x - \alpha_0}_{=:P} \right).$$

Kommentar: Da der ∂_x -Grad von P gleich d ist, folgt, dass P ein Minimalpolynom ist. Also gilt damit $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$.

Beweisskizze. Betrachte die surjektive Abbildung

$$\varphi: \mathcal{D}_K \to \mathcal{D}_K, \sum_{i=0}^{\infty} a_i(x) \partial_x^i \mapsto \sum_{i=0}^{\infty} a_i(x) \partial_x^i m.$$

Nachdem gezeigt wurde, das φ K-Linear ist, reicht es zu zeigen, dass $\ker(\varphi) = \mathcal{D} \cdot P$. Nun folgt die Behauptung nach dem Homomorphiesatz. Vergleiche dazu [AV09, Satz 4.12].

Kommentar

Proposition 2.18. In der Situation von Lemma 2.14 gibt es ein $P \in \mathcal{D}_K$ mit ∂ -Grad von P ist gleich d und $P \cdot m = 0$, in diesem Fall ist P ein Minimalpolynom zu \mathcal{M}_K , also gilt $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$.

Beweis. Explizit ergibt sich aus der Basisdarstellung

$$\partial_x^d m = \alpha_{d-1} \partial_x^{d-1} m + \alpha_{d-2} \partial_x^{d-2} m + \dots + \alpha_1 \partial_x m + \alpha_0 m \qquad \alpha_i \in K$$

von $\partial_r^d m$, dass

$$\mathcal{M}_K \cong \mathcal{D}_K / \mathcal{D}_K \cdot (\underbrace{\partial^d - \alpha_{d-1} \partial_x^{d-1} - \alpha_{d-2} \partial_x^{d-2} - \dots - \alpha_1 \partial_x - \alpha_0}_{=:Q})$$

gilt und damit P := Q so ein Minimalpolynom ist.

Satz 2.19. Ist $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ so gilt

$$\mathcal{D}_K/\mathcal{D}_K \cdot P \cong \mathcal{D}_K/\mathcal{D}_K \cdot P_1 \oplus \mathcal{D}_K/\mathcal{D}_K \cdot P_2$$
.

Beweis. Bewiesen wird dies in [AV09, Seite 57-64] oder auch in [Sab90, Seite 30-32]. \Box

Korollar 2.20. Sei $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ wie in Satz 2.19, so gilt

$$\mathcal{D}_K/\mathcal{D}_K\cdot (P_1\cdot P_2)\cong \mathcal{D}_K/\mathcal{D}_K\cdot (P_2\cdot P_1)$$
.

Kommentar: TODO: verweise auf dieses Korollar

Beweis. Denn:

$$\mathcal{D}_K/\mathcal{D}_K \cdot P = \mathcal{D}_K/\mathcal{D}_K \cdot (P_1 \cdot P_2)$$

$$\cong \mathcal{D}_K/\mathcal{D}_K \cdot P_1 \oplus \mathcal{D}_K/\mathcal{D}_K \cdot P_2$$

$$= \mathcal{D}_K/\mathcal{D}_K \cdot P_2 \oplus \mathcal{D}_K/\mathcal{D}_K \cdot P_1$$

$$\cong \mathcal{D}_K/\mathcal{D}_K \cdot (P_2 \cdot P_1).$$

Satz 2.21. Ein meromorpher Zusammenhang bestimmt einen holonomen lokalisierten \mathcal{D}_K Moduln und umgekehrt.

Beweis. Dies wird beispielsweise in [Sab90, Thm 4.3.2] bewiesen.

2.3 Newton-Polygon

Jedes $P \in \mathcal{D}_{\widehat{K}}$, also insbesondere auch jedes $P \in \mathcal{D}_K$, lässt sich nach Proposition 1.6 eindeutig als

$$P = \sum_{k=0}^{n} a_k(x) \partial_x^k = \sum_{k=0}^{n} \left(\sum_{l=-N}^{\infty} \alpha_{kl} x^l \right) \partial_x^k$$

mit $a_k(x) \in \widehat{K}$ bzw. $\alpha_{kl} \in \mathbb{C}$ schreiben. Betrachte das zu P dazugehörige

$$\begin{split} H(P) :&= \bigcup_{m,l \text{ mit } \alpha_{ml} \neq 0} \left((m,l-m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2 \\ &= \bigcup_{m \text{ mit } a_m \neq 0} \left((m,deg(a_m) - m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2 \,. \end{split}$$

Definition 2.22. Das Randpolygon der konvexen Hülle conv(H(P)) von H(P) heißt das Newton-Polygon von P und wird mit N(P) bezeichnet.

Bemerkung 2.23. Claude Sabbah definiert das Newton-Polygon in [Sab90, 5.1] auf eine andere Weise. Er schreibt

$$P = \sum_{k=0}^{n} a_k(x) (x \partial_x)^k$$

mit $a_k(x) \in \mathbb{C}\{x\}$ und definiert das Newton-Polygon als das Randpolygon der konvexen Hülle von

$$H'(P) := \bigcup_{m \text{ mit } a_m \neq 0} \left((m, deg(a_m)) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2.$$

Er bemerkt auch, dass seine Definition, bis auf möglicherweise vertikale Verschiebung, zu Definition 2.22 äquivalent ist.

Definition 2.24. Die Menge slopes(P) (genannt *Slopes von P*) sind die nicht-vertikalen Steigungen von N(P), die sich in der rechten Halbebene befinden.

- P heißt regulär oder regulär singulär : \Leftrightarrow slopes $(P) = \{0\}$ oder deg P = 0, sonst irregulär singulär.
- Ein meromorpher Zusammenhang $\mathcal{M}_{\widehat{K}}$ (bzw. \mathcal{M}_K) heißt regulär singulär, falls es ein regulär singuläres $P \in \mathcal{D}_{\widehat{K}}$ (bzw. $P \in \mathcal{D}_K$) gibt, mit $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ (bzw. $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$).
- Schreibe $\mathcal{P}(\mathcal{M})$ für die Menge der zu \mathcal{M} gehörigen Slopes.

Beispiel 2.25. 1. Ein einfaches Beispiel ist $P_1 = x^1 \partial_x^2$. Es ist abzulesen, dass

$$m=2$$
 und $l=1$,

so dass

$$H(P_1) = ((2, 1-2) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0}) = \{(u, v) \in \mathbb{R}^2 | u \leq 2, v \geq -1\}.$$

In Abbildung 2.1 ist der Quadrant, der zum Monom $x\partial_x^2$ gehört (blau) sowie das Newton-Polygon eingezeichnet. Offensichtlich ist slopes $(P_1) = \{0\}$ und damit ist P_1 regulär singulär.

2. Sei $P_2 = x^4(x+1)\partial_x^4 + x\partial_x^2 + \frac{1}{x}\partial_x + 1$. Das Newton-Polygon wurde in Abbildung 2.2 visualisiert. Man erkennt, dass $\mathcal{P}(P_2) = \{0, \frac{2}{3}\}$ ist. Also ist P_2 irregulär singulär.

Abbildung 2.1: Newton-Polygon zu $P_1 = x\partial_x^2$

Abbildung 2.2: Newton-Polygon zu P_2

Kommentar

Bemerkung 2.26. Zur vorstellung der Eigenschaft Regulär ...

- $P_1 = x(x\partial_x + 1)$ regulär mit Lösung $\frac{1}{x}$
- $P_2 = x^2 \partial_x + 1$ irrregulär mit Lösung $e^{\frac{1}{x}}$

Bemerkung 2.27. Sei P ein Minimalpolynom zu \mathcal{M}_K . Für jedes $f \in \mathcal{D}_K^{\times [4]}$ gilt, dass $f \cdot P$ ebenfalls ein Minimalpolynom von \mathcal{M}_K ist, denn $\mathcal{D}_K \cdot P = \mathcal{D}_K \cdot (f \cdot P) \triangleleft \mathcal{D}_K$. Allerdings sind die zugehörigen Newton-Polygone möglicherweise vertikal verschoben.

Nach [Sab90, Seite 25] gilt, dass das Newton-Polygon, bis auf vertikales Verschieben, nur vom assoziierten meromorphen Zusammenhang abhängt. Dies wird auch in [AV09, Bem 5.4] thematisiert.

Definition 2.28. Seien $\varepsilon x^p \partial_x^q$ und $\varepsilon' x^{p'} \partial_x^{q'}$ zwei Monome aus \mathcal{D}_K , also mit $\varepsilon, \varepsilon' \in \mathbb{C}$, $p, p' \in \mathbb{Z}$ und $q, q' \in \mathbb{N}_0$. Man sagt, dass $\varepsilon' x^{p'} \partial_x^{q'}$ ein *Term im Quadranten* von $\varepsilon x^p \partial_x^q$ ist, falls $p' \geq p$ und $q' \leq q$ gilt.

Kommentar: In einem Polynom $P = \varepsilon x^p \partial_x^q + \sum_{k=0}^n \left(\sum_{l=-N}^\infty \alpha_{kl} x^l \right) \partial_x^k$, mit $\alpha_{kl} \in \mathbb{C}$ sind die restlichen Monome Terme im Quadranten von $\varepsilon x^p \partial_x^q$, falls für alle einzelnen Monome schon Terme im Quadranten von $\varepsilon x^p \partial_x^q$ sind.

Bemerkung 2.29. • Anschaulich bedeutet dies, dass

$$H(\varepsilon x^p \partial_x^q) = \left((q, p - q) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \supset \left((q', p' - q') + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) = H(\varepsilon' x^{p'} \partial_x^{q'}).$$

 $^{^{[4]}}$ Für einen Ring R, bezeichnet R^\times die Einheitengruppe von R.

• Sei P ein Polynom, bei dem alle Koeffizienten im Quadranten von $\varepsilon x^p \partial_x^q$ sind, dann gilt:

$$H(P) = H(\varepsilon x^p \partial_x^q + \text{T.i.Q. von } x^p \partial_x^q) = H(\varepsilon x^p \partial_x^q)$$

 $\Rightarrow N(P) = N(\varepsilon x^p \partial_x^q).$

Also können Terme, die sich bereits im Quadranten eines anderen Terms befinden und nicht der Term selbst sind, vernachlässigt werden, wenn das Newton-Polygon gesucht ist. Das T.i.Q. ist eine hier die Abkürzung für "Terme im Quadranten".

Bemerkung 2.30. Nach [Sab90] gilt sogar, dass beim Kommutieren von zwei Elementen $a,b\in\mathcal{D}_{\widehat{K}}$ nur Elemente im gemeinsamen Quadranten auftauchen. Es gilt also

$$a \cdot b = b \cdot a + \text{T.i.Q. von } b \cdot a$$
.

Damit sieht man auch, dass Kommutieren innerhalb von P das Newton-Polygon von P nicht ändert.

Kommentar:

Beispiel 2.31.

$$(x^a \partial_x^b)^c = x^{ac} \partial_x^{bc} + \text{T.i.Q. von } x^{ac} \partial_x^{bc}$$

und somit gilt

$$\begin{split} N((x^a\partial_x^b)^c) &= N(x^{ac}\partial_x^{bc} + \text{T.i.Q. von } x^{ac}\partial_x^{bc}) \\ &= N(x^{ac}\partial_x^{bc}) \end{split}$$

Kommentar: Nach [Sab90, Sec 5.1] gelten die folgenden zwei Aussagen

Lemma 2.32. 1. $\mathcal{P}(\mathcal{M}_K)$ ist nicht Leer, wenn $\mathcal{M}_K \neq \{0\}$

2. Wenn man eine exakte Sequenz $0 \to \mathcal{M}'_K \to \mathcal{M}_K \to \mathcal{M}''_K \to 0$ hat, so gilt $\mathcal{P}(\mathcal{M}_K) = \mathcal{P}(\mathcal{M}'_K) \cup \mathcal{P}(\mathcal{M}''_K)$.

Kommentar: Siehe auch [Sab90, Thm 5.3.4], Dort Steht:

Wir erhalten die Exakte Sequenz

$$0 \to \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_1 \to \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P \to \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_2 \to 0$$

Korollar 2.33. [Sab90, Thm 5.3.4] $\mathcal{P}(P) = \mathcal{P}(P_1) \cup \mathcal{P}(P_2)$ und $\mathcal{P}(P_1) \cap \mathcal{P}(P_2) = \emptyset$

Ein erster Schritt zur Levelt-Turrittin-Zerlegung ist der folgende Satz. Dieser erlaubt es meromorphe Zusammenhänge "entlang der Slopes" zu zerlegen.

Satz 2.34. Sei $\mathcal{M}_{\widehat{K}}$ ein formaler meromorpher Zusammenhang und sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \dots, \Lambda_r\}$ die Menge seiner Slopes. Es existiert eine (bis auf Permutation) eindeutige Zerlegung

$$\mathcal{M}_{\widehat{K}} \cong \bigoplus_{i=1}^r \mathcal{M}_{\widehat{K}}^{(i)}$$

in formale meromorphe Zusammenhänge mit $\mathcal{P}(\mathcal{M}_{\widehat{K}}^{(i)}) = \{\Lambda_i\}.$

Beweis. Einen Beweis hierfür findet man in [Sab90, Thm 5.3.1] oder [AV09, 5.15].

Bemerkung 2.35. In Satz 2.34 ist es wirklich notwendig formale meromorphe Zusammenhänge zu betrachten, denn das Resultat gilt nicht für konvergente meromorphe Zusammenhänge.

Kommentar:

Beispiel 2.36. [Sab90, Ex 5.3.6] Sei $P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$. So sieht das Newton-Polygon wie folgt aus

Abbildung 2.3: Newton-Polygon zu $P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$

mit den Slopes $\mathcal{P}(P) = \{0,1\} =: \{\Lambda_1, \Lambda_2\}$. Nach dem Satz **2.34** existiert eine Zerlegung $P = P_1 \cdot P_2$ mit $\mathcal{P}(P_1) = \{\Lambda_1\}$ und $\mathcal{P}(P_2) = \{\Lambda_2\}$. Durch scharfes hinsehen erkennt man, dass

$$P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$$
...
$$= (x(x\partial_x) + \dots) \cdot (x\partial_x + \dots)$$
...
$$= P_1 \cdot P_2$$

anders geschrieben

$$P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$$

$$= xx\partial_x x\partial_x + x\partial_x + \frac{1}{2}$$

$$= x^2(x\partial_x + 1)\partial_x + x\partial_x + \frac{1}{2}$$

$$= x^3\partial_x^2 + x^2\partial_x + x\partial_x + \frac{1}{2}$$

$$= x^3\partial_x^2 + (x^2 + x)\partial_x + \frac{1}{2}$$

So sieht das Newton-Polygon wie folgt aus

Abbildung 2.4: Newton-Polygon zu ${\cal P}$

3 Operationen auf meromorphen Zusammenhängen

3.1 Tensorprodukt

Kommentar:

Definition 3.1 (Tensorprodukt). [Sta12, 3(Algebra).11.21]

Für eine Abbildung $f: M \to M'$ definiere das Tensorprodukt davon über R mit N als

$$\operatorname{id}_N \otimes f : N \otimes_R M \to N \otimes_R M'$$

 $n \otimes m \mapsto n \otimes f(m)$

Bemerkung 3.2. Hier einige Rechenregeln für das Tensorprodukt,

$$(M \otimes_R N) \otimes_S L \cong M \otimes_R (N \otimes_S L) \tag{3.1}$$

$$M \otimes_R R \cong M \tag{3.2}$$

Sei $f:M'\to M$ eine Abbildung, so gilt

$$N \otimes_R (M/\operatorname{im}(f)) \cong (N \otimes_R M)/\operatorname{im}(\operatorname{id}_R \otimes f) \tag{3.3}$$

Proposition 3.3. Seien $(\mathcal{M}, \partial_{\mathcal{M}})$ und $(\mathcal{N}, \partial_{\mathcal{N}})$ meromorphe Zusammenhänge. Sei $n \otimes n \in \mathcal{M} \otimes_K \mathcal{N}$. Durch Setzten von

$$\partial_{\otimes}(m\otimes n) = \partial_{\mathcal{M}}(m)\otimes n + m\otimes \partial_{\mathcal{N}}(n) \tag{3.4}$$

als die Wirkung von ∂ auf dem K-Moduln $\mathcal{M} \otimes_K \mathcal{N}$, wird $(\mathcal{M} \otimes_K \mathcal{N}, \partial)$ zu einem meromorphen Zusammenhang.

Kommentar: [Sch94, Prop 4.1.1]

Kommentar: TODO: Zeige universelle Eigenschaft

Kommentar:

Beweis. Klar

Lemma 3.4. Falls \mathcal{N} regulär und nicht Null, dann ist die Menge der Slopes von $\mathcal{M} \otimes \mathcal{N}$ genau die Menge der Slopes von \mathcal{M} .

Beweis. Siehe [Sab90, Ex 5.3.7].

Kommentar: TODO

3.2 Pullback und Pushforward

Kommentar: Nach [Sab07, 1.a] und [HTT07, 1.3].

Es sei

$$\rho: \mathbb{C} \to \mathbb{C}, \ t \mapsto x := \rho(t) \qquad \in t\mathbb{C}[\![t]\!]$$

eine polynomielle Abbildung mit Bewertung $p \ge 1$. Hier werden wir meistens $\rho(t) = t^p$ für ein $p \in \mathbb{N}$ betrachten. Diese Funktion induziert eine Abbildung

$$\rho^*: \mathbb{C}\{x\} \hookrightarrow \mathbb{C}\{t\}, \ f \mapsto f \circ \rho \qquad \text{bzw.} \qquad \rho^*: \mathbb{C}[\![x]\!] \hookrightarrow \mathbb{C}[\![t]\!], \ f \mapsto f \circ \rho.$$

Analog erhalten wir

$$\rho^* : K \hookrightarrow L := \mathbb{C}(\{t\}), \ f \mapsto f \circ \rho \qquad \text{bzw.} \qquad \rho^* : \widehat{K} \hookrightarrow \widehat{L} := \mathbb{C}((t)), \ f \mapsto f \circ \rho,$$

wobei L (bzw. \widehat{L}) eine endliche Körpererweiterung von K (bzw. \widehat{K}) ist.

Kommentar: TODO: damit wird \widehat{L} zu einem \widehat{K} Vektorraum.

Kommentar: TODO: zu ∂_x ????? dann $\partial_t = \rho^* \partial_x$????

Sei $\mathcal{M}_{\widehat{K}}$ ein endlich dimensionaler $\mathbb{C}(\!(x)\!)$ Vektorraum ausgestattet mit einem Zusammenhang ∇ .

Definition 3.5 (Pullback). Kommentar: [Sab07, 1.a] und [Sab90, Page 34]

Der Pullbackoder das $inverse~Bild~\rho^+\mathcal{M}_{\widehat{K}}$ von $(\mathcal{M}_{\widehat{K}},\nabla)$ ist der Vektorraum

$$\rho^*\mathcal{M}_{\widehat{K}} := \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \stackrel{\mathrm{def}}{=} \mathbb{C}(\!(t)\!) \otimes_{\mathbb{C}(\!(x)\!)} \mathcal{M}_{\mathbb{C}(\!(x)\!)}$$

mit dem Pullback Zusammenhang $\rho^* \nabla$ definiert durch

$$\partial_t(1\otimes m) := \rho'(t)\otimes \partial_x m. \tag{3.5}$$

Bemerkung 3.6. • Wir sagen ein Pullback ist vom Grad q, falls $deg(\rho) = q$.

• Für ein allgemeines $\varphi \otimes m \in \rho^* \mathcal{M}_{\widehat{K}}$ gilt

$$\partial_t(\varphi \otimes m) := \rho'(t)(\varphi \otimes \partial_x m) + \frac{\partial \varphi}{\partial t} \otimes m.$$
(3.6)

комментат: Nun wollen wir uns noch genauer mit dem Pullback beschäftigen, und stellen uns die Frage:

Wie sieht die Wirkung der Derivation auf dem Pullback Zusammenhang aus? Für $\rho(t) = t^p$ betrachten wir beispielsweise ein Element der Form $f(x)m = f(\rho(t))m \in \rho^*\mathcal{M}_{\widehat{K}}$, dann gilt

$$\partial_x(f(x)m) = \partial_{\rho(t)}(f(\rho(t))m)$$

$$= f'(\rho(t)) \cdot \underbrace{\frac{\partial(f(t))}{\partial(f(t))}}_{=1} m + f(\rho(t)) \underbrace{\partial_{\rho(t)}m}_{=\partial_x}$$

$$= f'(\rho(t))m + f(\rho(t))\partial_x m = (\star)$$

$$\rho'(t)^{-1}\partial_t(f(x)m) = \frac{1}{pt^{p-1}}\partial_t(f(t^p)m)$$

$$= f'(t^p)m + f(t^p)\frac{1}{pt^{p-1}}\partial_t m = (\star)$$

Also gilt $\partial_t(f(t)m) = \rho'(u)^{-1}\partial_u(f(t)m)$ und somit lässt sich vermuten, dass die Wirkung von ∂_x gleich der Wirkung von $\rho'(t)^{-1}\partial_t$ ist. In der Tat stimmt diese Vermutung, wie das folgende Lemma zeigt.

Kommentar: Sei
$$f(x)m = f(\rho(t))m \in \rho^* \mathcal{M}_{\widehat{K}}$$
. Es gilt, dass $\partial_x (f(x)m) = \partial_{\rho(t)} (f(\rho(t))m)$

$$= f'(\rho(t)) \cdot \underbrace{\frac{\partial (f(t))}{\partial (f(t))}}_{=1} m + f(\rho(t)) \underbrace{\partial_{\rho(t)}}_{=\partial_x} m$$

$$= f'(\rho(t))m + f(\rho(t))\partial_x m$$

$$= f'(t^p)m + f(t^p) \frac{1}{pt^{p-1}} \partial_t m$$

$$= \frac{1}{pt^{p-1}} \partial_t (f(\underline{t}^p)m)$$

$$= \rho'(t)^{-1} \partial_t (f(\overline{x})m)$$

und damit lässt sich vermuten, dass die Wirkung von ∂_x genau die Wirkung von $\rho'(t)^{-1}\partial_t$ ist. In der Tat ist dies, nach dem folgenden Satz, wahr.

Der folgende Satz zeigt, wie sich mit dem Pullback rechnen lässt, bzw. wie man konkret ein entsprechendes Minimalpolynom berechnen kann.

Satz 3.7. In der Situation von Lemma 3.5, mit $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x)$ für ein $P(x, \partial_x) \in \mathcal{D}_{\widehat{K}}$, gilt

$$\rho^* \mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t).$$

Für $P(\rho(t), \rho'(t)^{-1}\partial_t)$ werden wir auch $\rho^*P(t, \partial_t)$ schreiben.

Kommentar: [Cou95, Seite 130] Holonomic modules are preserved under this construction.

Kommentar: [Sab90, Page 34] Sei $\mathcal{M}_{\widehat{K}}$ ein formaler meromorpher Zusammenhang. Man definiert $\pi^*\mathcal{M}_{\widehat{K}}$ als den Vektor Raum über $\widehat{L}: \pi^*\mathcal{M}_{\widehat{K}} = \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}$. Dann definiert man die Wirkung von ∂_t durch: $t\partial_t \cdot (1 \otimes m) = q(1 \otimes (x\partial_x \otimes m))$ und damit

$$t\partial_t \cdot (\varphi \otimes m) = q(\varphi \otimes (x\partial_x \cdot m)) + ((t\frac{\partial \varphi}{\partial t}) \otimes m).$$

Man erhält damit die Wirkung von $\partial_t = t^{-1}(t\partial_t)$.

Für den Beweis von Satz 3.7 werden zunächst einige Lemmata bewiesen.

Lemma 3.8. Es gilt $\rho^*\mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}$ als $\mathcal{D}_{\widehat{L}}$ -Vektorräume, mittels

Kommentar: TODO: VR oder Moduln??

$$\Phi: \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\cong} \mathcal{D}_{\widehat{L}}$$
$$f(t) \otimes Q(x, \partial_x) \longmapsto f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t)$$

Kommentar

Beweis. Wir wollen zeigen, dass $\mathcal{D}_{\widehat{L}}$ die universelle Eigenschaft für das Tensorprodukt $\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$ erfüllt, in diesem Fall folgt die Behauptung. Zunächst sei die bilineare Abbildung

$$\kappa: \widehat{L} \times \mathcal{D}_{\widehat{K}} \to \mathcal{D}_{\widehat{L}}, (f(t), Q(x, \partial_x)) \mapsto f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t)$$

gegeben, und nach der universellen Eigenschaft des Tensorproduktes gibt es genau eine lineare Abbildung, so dass das folgende Diagramm kommutiert.

$$\widehat{L} \times \mathcal{D}_{\widehat{K}} \xrightarrow{\otimes} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$$

$$\downarrow \exists !$$

$$\mathcal{D}_{\widehat{L}}$$

Dieser so erhaltene eindeutige Morphismus ist genau unser Φ .

Beweis. Prüfe zunächst die Injektivität. Sei $f(t) \otimes Q(x, \partial_x) \in \ker(\Phi)$ so, dass

$$0 = \Phi(f(t) \otimes Q(x, \partial_x))$$
$$= f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t)$$

und, da hier alles nullteilerfrei ist, ist die Bedingung äquivalent zur Folgenden

$$\Leftrightarrow 0 = f(t) \qquad \text{oder} \qquad 0 = Q(\rho(t), \rho'(t)^{-1}\partial_t)$$

$$\Leftrightarrow 0 = f(t) \qquad \text{oder} \qquad 0 = Q(x, \partial_x)$$

$$\Leftrightarrow 0 = f(t) \otimes Q(x, \partial_x).$$

Kommentar: TODO: korrekt?

Nun zur Surjektivität. Sei $g(t, \partial_t) = \sum_k a_k(t) \partial_t^k \in \mathcal{D}_{\widehat{L}}$, so gilt

$$g(t, \partial_t) = \sum_k a_k(t) \partial_t^k$$

$$= \sum_k a_k(t) (\underbrace{\rho'(t)\rho'(t)^{-1}}_{=1})^k \partial_t^k$$

$$= \sum_k a_k(t)\rho'(t)^k (\rho'(t)^{-1} \partial_t)^k$$

und zerlege $a_k(t)\rho'(t)^k = \sum_{i=0}^{p-1} t^i a_{k,i}(t^p).$ Damit gilt dann

$$g(t, \partial_t) = \sum_{k} \sum_{i=0}^{p-1} t^i a_{k,i}(t^p) (\rho'(t)^{-1} \partial_t)^k$$

$$= \sum_{i=0}^{p-1} t^i \left(\sum_k a_{k,i}(t^p) (\rho'(t)^{-1} \partial_t)^k \right)$$
$$= \Phi\left(\sum_{i=0}^{p-1} t^i \otimes \left(\sum_k a_{k,i}(x) (\partial_x)^k \right) \right).$$

Somit haben wir ein Urbild gefunden und die Surjektivität gezeigt.

Lemma 3.9. Das in Lemma 3.8 definierte Φ ist sogar ein Morphismus von meromorphen Zusammenhängen, also gilt sogar $\rho^*\mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}$ als meromorphe Zusammenhänge.

Beweis. Sei ∂_t wie gewohnt und ∂_{\otimes} der Zusammenhang auf $\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$, welcher wie in Proposition 3.3 definiert sei. Wir wollen noch zeigen, dass $\partial_t \circ \Phi = \Phi \circ \partial_{\otimes}$ gilt, also dass Φ ein Morphismus von meromorphen Zusammenhängen ist. Betrachte dazu das Diagramm

$$\begin{array}{cccc} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} & \xrightarrow{\partial_{\otimes}} & \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \\ \downarrow & & \downarrow & & \downarrow \\ \mathcal{D}_{\widehat{L}} & \xrightarrow{\partial_{t}} & \mathcal{D}_{\widehat{L}} \end{array}$$

und für einen Elementartensor $f(t)\otimes Q(x,\partial_x)\in \widehat{L}\otimes_{\widehat{K}}\mathcal{D}_{\widehat{K}}$

Kommentar: Q wie in großen Beweis später, Namenskollision

folgt dann

$$f(t) \otimes Q(x, \partial_x) \longmapsto \partial_t f(t) \otimes Q(x, \partial_x) + \rho'(t) \otimes \partial_x Q(x, \partial_x)$$

$$\downarrow \Phi \qquad \qquad \partial_t f(t) Q(x, \partial_x) + \underbrace{\rho'(t) \cdot \rho'(t)^{-1}}_{=1} \partial_t Q(\rho(t), \rho'(t)^{-q} \partial_t)$$

$$\downarrow f(t) Q(\rho(t), \rho'(t)^{-1} \partial_t) \longmapsto \partial_t f(t) Q(x, \partial_x) + \partial_t Q(\rho(t), \rho'(t)^{-q} \partial_t)$$

also kommutiert das Diagramm.

Kommentar:

Bemerkung 3.10. BENÜTZT BEREITS DAS NÄCHSTE LEMMA...

Das soeben, in Lemma 3.8, definierte Φ erfüllt für Elementartensoren $1\otimes m\in \widehat{L}\otimes_{\widehat{K}}\mathcal{D}_{\widehat{K}}$

$$\partial_{u}(1 \otimes m) \stackrel{\text{def}}{=} \rho'(t) \otimes \partial_{x} m$$

$$\stackrel{\Phi}{\mapsto} \underbrace{\rho'(t)\rho'(t)^{-1}}_{=1} \partial_{t} m(\rho(t), \rho'(t)^{-1} \partial_{t})$$

$$= \partial_{t} m(\rho(t), \rho'(t)^{-1} \partial_{t})$$

$$= \dots$$

und somit (3.5) wie gewollt.

Lemma 3.11. Sei $P(x, \partial_x) \in \mathcal{D}_{\widehat{K}}$. In der Situation

$$\begin{array}{ccc} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{-} \cdot P(x, \partial_{x})} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \\ \downarrow & & \downarrow \\ \mathcal{D}_{\widehat{L}} \xrightarrow{\alpha} & \mathcal{D}_{\widehat{L}} \end{array}$$

mit Φ wie in Lemma 3.8 macht $\alpha := \underline{} \cdot P(\rho(t), \rho'(t)^{-1}\partial_t)$ das Diagramm kommutativ.

Beweis. Betrachte ein $f(t) \otimes Q(x, \partial_x) \in \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$, so gilt

$$f(t) \otimes Q(x, \partial_x) \xrightarrow{\operatorname{id} \otimes_{-} \cdot P(x, \partial_x)} f(t) \otimes Q(x, \partial_x) \cdot P(x, \partial_x)$$

$$\downarrow \Phi$$

$$f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \cdot P(\rho(t), \rho'(t)^{-1}\partial_t)$$

und

$$f(t) \otimes Q(x, \partial_x)$$

$$\downarrow^{\Phi}$$

$$f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \longmapsto^{-\cdot P(\rho(t), \rho'(t)^{-1}\partial_t)} f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \cdot P(\rho(t), \rho'(t)^{-1}\partial_t),$$

also kommutiert das Diagramm mit $\alpha = \underline{} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t)$.

Beweis zu Satz 3.7. Sei $P \in \mathcal{D}_{\widehat{K}}$ und $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$. Wir wollen zeigen, dass

$$\rho^* \mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot Q$$

für $Q=P(\rho(t),\rho'(t)^{-1}\partial_t)$ gilt. Betrachte dazu die kurze Sequenz

$$0 \longrightarrow \mathcal{D}_{\widehat{K}} \xrightarrow{-\cdot P} \mathcal{D}_{\widehat{K}} \xrightarrow{\pi_{\widehat{K}}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$u \longmapsto u \cdot P$$

$$u \longmapsto u \mod \mathcal{D}_{\widehat{K}} \cdot P.$$

Diese ist exakt, da $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P = \operatorname{coker}(_\cdot P)$. Weil \widehat{L} flach über dem Körper \widehat{K} ist, ist auch, nach Anwenden des Funktors $\widehat{L} \otimes_{\widehat{K}}$, die Sequenz

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \underline{\cdot} P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \pi_{\widehat{K}}} \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\rho^* \mathcal{M}_{\widehat{K}}$$

exakt.

Kommentar: Deshalb ist
$$\rho^* \mathcal{M}_{\widehat{K}} \cong \operatorname{coker}(\operatorname{id} \otimes_{_} \cdot P) \qquad \qquad (\text{weil exakt})$$

$$\cong \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} / \left((\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}) \cdot (\operatorname{id} \otimes_{_} \cdot P) \right) \qquad (\text{nach def. von coker})$$

Also mit Φ wie in Lemma 3.8 und $Q(t,\partial_t):=P(\rho(t),\rho'(t)^{-1}\partial_t)$ nach Lemma 3.11 ergibt sich

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{-} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \longrightarrow \rho^{*} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\downarrow \\ \cong \Phi \qquad \qquad \downarrow \\ \downarrow \\ \mathcal{D}_{\widehat{L}} \xrightarrow{-\cdot Q} \mathcal{D}_{\widehat{L}}$$

als kommutatives Diagramm. Nun, da $_\cdot Q$ injektiv ist, lässt sich die untere Zeile zu einer exakten Sequenz

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{-} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \pi_{\widehat{K}}} \rho^{*} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

fortsetzen und damit folgt, wegen Isomorphie der Kokerne, die Behauptung.

Lemma 3.12. Sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \dots, \Lambda_r\}$ die Menge der Slopes von $\mathcal{M}_{\widehat{K}}$ und $\rho : t \mapsto x := t^p$, dann gilt für $\mathcal{P}(\rho^*\mathcal{M}_{\widehat{K}}) = \{\Lambda'_1, \dots, \Lambda'_r\}$, dass $\Lambda'_i = p \cdot \Lambda_i$.

Beweis. Siehe [Sab90, 5.4.3] für einen Beweis.

Beweis. Sei
$$\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$$
 mit $P = \sum a_i(x)\partial_x^i$, dann ist $\rho^*\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P'$ mit

$$H(P'(t, \partial_t)) = H(P(\rho(t), \rho'(t)^{-1}\partial_t))$$

$$= H(\sum_i a_i(\rho(t))(\rho'(t)^{-1}\partial_t)^i i)$$

$$= H(\sum_i a_i(\rho(t))(\rho'(t)^{-1}\partial_t)^i i)$$

$$= H(\sum_i a_i(t^p)((p \cdot t^{p-1})^{-1}\partial_t)^i)$$

$$= H(\sum_i a_i(t^p)(p \cdot t^{p-1})^{-i}\partial_t^i)$$

$$= H(\sum_i a_i(t^p)t^{-i(p-1)}\partial_t^i)$$

$$= \dots$$

Hier nun ein explizit berechneter Pullback.

Beispiel 3.13. Wir wollen $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ mit $P := x^3 \partial_x^2 - 4x^2 \partial_x - 1$ betrachten. Unser Ziel ist es ganzzahlige Slopes zu erhalten. Es gilt $\mathcal{P}(P) = \{\frac{1}{2}\}$ (siehe Abbildung 3.1). Wende den Pullback mit $\rho: t \to x := t^2$ an. Zunächst folgt eine Nebenrechnung, damit wir Satz 3.7 einfacher anwenden können:

$$(\frac{1}{2t}\partial_t)^2 = \frac{1}{2t}\partial_t(\frac{1}{2t}\partial_t) = \frac{1}{2t}(-\frac{1}{2t^2}\partial_t + \frac{1}{2t}\partial_t^2) = \frac{1}{4t^2}\partial_t^2 - \frac{1}{4t^3}\partial_t.$$

Also ergibt Einsetzen

$$\rho^* P = (t^2)^3 (\frac{1}{4t^2} \partial_t^2 - \frac{1}{4t^3} \partial_t) - 4(t^2)^2 \frac{1}{2t} \partial_t - 1$$

$$= \frac{1}{4} t^4 \partial_t^2 - t^3 \frac{1}{4} \partial_t - 4t^3 \frac{1}{2} \partial_t - 1$$

$$= \frac{1}{4} t^4 \partial_t^2 - 2\frac{1}{4} t^3 \partial_t - 1.$$

Also gilt $\rho^*P = \frac{1}{4}t^4\partial_t^2 - \frac{1}{2}t^3\partial_t - 1$ mit slopes $(\rho^*P) = \{1\}$ (siehe Abbildung 3.2) und somit $\rho^*\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\frac{1}{4}t^4\partial_t^2 - \frac{1}{2}t^3\partial_t - 1).$

Abbildung 3.1: Newton-Polygon zu

$$P = x^3 \partial_x^2 - 4x^2 \partial_x - 1$$

Abbildung 3.2: Newton-Polygon zu

$$\rho^* P = \frac{1}{4} t^4 \partial_t^2 - \frac{1}{2} t^3 \partial_t - 1$$

Sei $\mathcal{N}_{\widehat{L}}$ ein endlich dimensionaler \widehat{L} -Vektorraum mit Zusammenhang, so definiere den Pushforward wie folgt.

Kommentar: TODO: korregieren, besser formulieren

Definition 3.14 (Pushforward). Der Pushforward oder das direkte Bild $\rho_+ \mathcal{N}_{\widehat{L}}$ von $\mathcal{N}_{\widehat{L}}$ ist:

- Der \widehat{K} -Vektorraum $\rho_*\mathcal{N}$ ist definiert als der \mathbb{C} -Vektorraum $\mathcal{N}_{\widehat{L}}$ mit der \widehat{K} -Vektorraumstruktur durch die skalare Multiplikation $\cdot: \widehat{K} \times \mathcal{N}_{\widehat{L}} \to \mathcal{N}_{\widehat{L}}$, $(f(x), m) \mapsto f(x) \cdot m := f(\rho(t))m.$
- Die Wirkung von ∂_x ist gegeben durch $\rho'(t)^{-1}\partial_t$.

Newton-Polygon zu ${\cal P}$

Beispiel 3.15 (Pushforward). Für $\rho:t\to u^2,\, \varphi=\frac{1}{u^2}$ betrachte

$$\mathscr{E}^{\varphi} \cong \widehat{\mathcal{D}}/\widehat{\mathcal{D}} \cdot (\partial_u + \partial_u \frac{1}{u^2})$$
$$= \widehat{\mathcal{D}}/\widehat{\mathcal{D}} \cdot (\partial_u + \frac{2}{u^3})$$

mit slopes $(P)=\{2\}$ (siehe Abbildung 3.2). Bilde nun das Direkte Bild über ρ , betrachte dazu

$$\partial_u + \frac{2}{u^3} = 2u(\frac{1}{2u}\partial_u + \frac{1}{u^4})$$
$$= 2u(\rho'(u)^{-1}\partial_u + \frac{1}{u^4})$$
$$= 2u(\partial_t + \frac{1}{t^2})$$

Also ist $\rho_+ \mathscr{E}^{\varphi} \cong \widehat{\mathcal{D}}/\widehat{\mathcal{D}} \cdot (\partial_t + \frac{1}{t^2})$ mit $\rho_+ P = \partial_t + \frac{1}{t^2}$ und slopes $(\rho_+ P) = \{1\}$ (siehe Abbildung 3.2)

Satz 3.16. Kommentar: [Sab07, 1.a]

Es gilt die Projektionsformel

$$\rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) \cong \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}. \tag{3.7}$$

Beweis.

$$\rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) \stackrel{\text{def}}{=} \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} (\widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{L}}))$$

$$\stackrel{(3.1)}{\cong} \rho_{+}((\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \widehat{L}) \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}})$$

$$\stackrel{(3.2)}{\cong} \rho_{+}((\mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}})$$

$$= \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}.$$

3.3 Fouriertransformation

Definition 3.17 (Fouriertransformation). Sei $P = \sum_{i=0}^{d} a_i(x) \partial_x^i$, dann ist die Fouriertransformierte von P gegeben durch

$$\mathcal{F}_P := \mathcal{F}_P(z, \partial_z) = \sum_{i=0}^d a_i(\partial_z)(-z)^i$$
.

Kommentar: [Blo04, Def 3.1] [GL04] [AV09, Def 6.1]

Definition 3.18. Ist $\mathcal{M}_{\widehat{K}} \cong \widehat{K}/\widehat{K} \cdot P$, so ist die Fouriertransformierte von $\mathcal{M}_{\widehat{K}}$ definiert als ${}^{\mathcal{F}}\mathcal{M}_{\widehat{K}} := \widehat{K}/\widehat{K} \cdot \mathcal{F}_P(x, \partial_x)$.

Beispiel 3.19. Sei $P=x^3\partial_x^4+x^2\partial_x^2+x$ dann ist die Fouriertransformierte davon

$$\begin{split} \mathcal{F}_{P} &= \partial_{z}^{3}(-z)^{4} + \partial_{z}^{2}(-z)^{2} + \partial_{z} \\ &= \partial_{z}^{2}z^{2} + \partial_{z}^{3}z^{4} + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + \left[\partial_{z}^{3}, z^{4}\right] + z^{2}\partial_{z}^{2} + \left[\partial_{z}^{2}, z^{2}\right] + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + \sum_{i=1}^{3} \frac{4 \cdot 3 \dots (5-i) \cdot 3 \cdot 2 \dots (4-i)}{i!} z^{4-i}\partial_{z}^{3-i} + z^{2}\partial_{z}^{2} \\ &+ \sum_{i=1}^{2} \frac{2 \cdot 1 \dots (3-i) \cdot 2 \cdot 1 \dots (3-i)}{i!} z^{2-i}\partial_{z}^{2-i} + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + 12z^{3}\partial_{z}^{2} + \frac{72}{2}z^{2}\partial_{z} + \frac{144}{6}z + z^{2}\partial_{z}^{2} + 4z\partial_{z} + \frac{4}{2} + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + (12z^{3} + z^{2})\partial_{z}^{2} + (36z^{2} + 4z + 1)\partial_{z} + 24z + 2 \end{split}$$

mit den Newton-Polygonen wie in Abbildung 3.3 und 3.4.

Abbildung 3.3: Newton-Polygon zu P

Abbildung 3.4: Newton-Polygon zu \mathcal{F}_P

3.4 Betrachtung bei Unendlich

Sei $P \in \mathcal{D}_{\widehat{K}}$ ein Minimalpolynom zum meromorphen Zusammenhang $\mathcal{M}_{\widehat{K}}$. Wir wollen den Übergang $x \leadsto z^{-1}$ durchführen. Dieser ist formal wie folgt definiert.

Definition 3.20. Wir definieren den Zusammenhang bei Unendlich $\mathcal{M}_{\widehat{K}}^{\infty}$ von $\mathcal{M}_{\widehat{K}}$ als den zu P^{∞} assoziierten Zusammenhang, wobei wir $P^{\infty}(z,\partial_z):=P(z^{-1},-z^2\partial_z)$ setzen.

Kommentar:

$$\partial_x(f(\frac{1}{x})) = \partial_z(f) \cdot (-\frac{1}{x^2}) = -\partial_z(f) \cdot z^2 = -z^2 \cdot \partial_z(f)$$

also $\partial_x \leadsto -z^2 \partial_z$, und somit erhalten wir

$$P_{\varphi}(x, \partial_x) := \mathcal{F}_Q(x^{-1}, -x^2 \partial_x) \in \mathbb{C}[t] < \partial_t > .$$

Vergleiche dazu beispielsweise [Sab90, Seite 70 Exmp. 2].

Beispiel 3.21. Sei $P = x^3 \partial_x^4 + x^2 \partial_x^2 + x$, dann ist P^{∞} gegeben durch

$$\begin{split} P^{\infty} &= \underbrace{x^{-3} (-x^2 \partial_x)^4 + x^{-2} (-x^2 \partial_x)^2 + x^{-1}}_{= \underbrace{x^{-3+8} \partial_x^4 + \text{T.i.Q} + x^{-2+4} \partial_x^2 + \text{T.i.Q} + x^{-1}}_{= \underbrace{x^5} \partial_x^4 + \text{T.i.Q} + \underbrace{x^2} \partial_x^2 + \text{T.i.Q} + x^{-1} \end{split}$$

mit den Newton-Polygonen wie in Abbildung 3.5 und 3.6.

3.5 Twisten von meromorphen Zusammenhängen

Definition 3.22. Sei $\varphi \in \widehat{K}$. Wir schreiben $\mathscr{E}_{\widehat{K}}^{\varphi}$ für den (formalen) Rang-1-Vektorraum $e \cdot \widehat{K}$, wobei $e \in \mathscr{E}_{\widehat{K}}^{\varphi}$ eine Basis ist, ausgestattet mit $\partial_x (f \cdot e) = (\frac{\partial f}{\partial x} + f \cdot \frac{\partial \varphi}{\partial x}) \cdot e$, im Speziellen also

Abbildung 3.5: Newton-Polygon zu P

Abbildung 3.6: Newton-Polygon zu P^{∞}

$$\partial_x \mathbf{e} = \varphi'.$$

Kommentar: nach [Sab07, 1.a]

Bemerkung 3.23. 1. Auf die Angabe des Rang 1 Vektorraums im Subscript wird, falls dieser klar ist, meist verzichtet.

- 2. Das hier definierte $\mathscr{E}_{\widehat{K}}^{\varphi}$ entspricht $\mathcal{F}_{\widehat{K}}^{\varphi(x^{-1})}$ in der Notation von [Sab90, 5.4.4] und \widehat{E}_{φ} in [Hei10, Def 5.8].
- 3. Es ist $\mathscr{E}^{\varphi} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (\partial_x \varphi'(x))$, denn für den zyklischen Vektor e gilt, dass $\partial_x \cdot e = \varphi'(x) \cdot e$.
- 4. Wir werden oft e = 1 als Basis nehmen.

$$\mathbf{Lemma 3.24.} \ F\ddot{u}r \, \varphi(x) = \sum_{i=-p}^{\infty} a_i x^i \in \widehat{K} \ mit \ a_{-p} \neq 0 \ gilt, \ dass \ \mathcal{P}(\mathscr{E}_{\widehat{K}}^{\varphi}) = \begin{cases} \{p\} &, \ wenn \ p \geq 0 \\ \{0\} &, \ wenn \ p < 0 \end{cases}.$$

Beweis. Es ist

$$\varphi'(x) = \sum_{i=-p}^{\infty} i a_i x^{i-1} = \sum_{i=-(p+1)}^{\infty} (i+1) a_{i+1} x^i = \underbrace{-p a_{-p}}_{\neq 0} x^{-(p+1)} + \sum_{i=-p}^{\infty} (i+1) a_{i+1} x^i$$

und damit wissen wir, dass die einzigen zwei Punkte, die Ecken des Newton Polygons sein können, (1,-1) und (0,-(p+1)) sind. Da einer der relevanten Punkte auf der vertikalen Achse liegt, kann es insgesamt nur einen Slope Λ geben, welcher sich wie folgt berechnet:

$$\Lambda = \max \left\{ 0, \frac{-1 - (-(p+1))}{1} \right\} = \max \{ 0, p \} = \begin{cases} p & \text{, wenn } p \ge 0 \\ 0 & \text{, wenn } p < 0 \end{cases}.$$

Bemerkung 3.25. Nach [Sab07, 1.a] gilt $\mathscr{E}^{\varphi} \cong \mathscr{E}^{\psi}$ genau dann wenn $\varphi \equiv \psi \mod \mathbb{C}[x]$.

Kommentar: [Cou95, Chap 5 §2]

Lemma 3.26. Sei $\mathcal{M} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ ein meromorpher Zusammenhang mit P von Grad q und sei e ein zyklischer Vektor. So ist $e \otimes 1$ ein zyklischer Vektor für $\mathcal{N} := \mathcal{M} \otimes_{\widehat{K}} \mathscr{E}_{\widehat{K}}^{\psi}$.

Beweis. Da der Grad von P gleich q ist, ist nach Lemma 3.27 auch Q von Grad q und somit $\dim_{\widehat{K}} \mathcal{N} = q$. Also reicht es zu zeigen, dass $\mathbf{e} \otimes 1$, $\partial_x(\mathbf{e} \otimes 1)$, $\partial_x^2(\mathbf{e} \otimes 1)$,..., $\partial_x^{q-1}(\mathbf{e} \otimes 1)$ ein linear unabhängiges System ist. Es gilt

$$\partial_x(e \otimes 1) = (\partial_x e) \otimes 1 + x \otimes \partial_x 1$$

$$= (\partial_x e) \otimes 1 + e \otimes \psi'(x)$$

$$= (\partial_x e) \otimes 1 + \psi'(x)(e \otimes 1)$$

$$\partial_x^2(e \otimes 1) = \partial_x((\partial_x e) \otimes 1 + \psi'(x)(e \otimes 1))$$

$$= (\partial_x^2 e) \otimes 1 + (\partial_x e) \otimes \psi'(x) + \psi''(x)(e \otimes 1) + \psi'(x)((\partial_x e) \otimes 1 + e \otimes \psi'(x))$$

$$= (\partial_x^2 e) \otimes 1 + \psi'(x)(\partial_x e) \otimes 1 + \psi''(x)(e \otimes 1) + \psi'(x)(\partial_x e) \otimes 1 + \psi'(x)^2(e \otimes 1)$$

$$= (\partial_x^2 e) \otimes 1 + 2\psi'(x)(\partial_x e) \otimes 1 + (\psi''(x) + \psi'(x)^2)(e \otimes 1)$$

$$\vdots$$

$$\partial_x^{q-1}(e \otimes 1) = (\partial_x^{q-1} e) \otimes 1 + \lambda_{q-2}(\partial_x^{q-2} e) \otimes 1 + \dots + \lambda_1(\partial_x e) \otimes 1 + \lambda_0(e \otimes 1)$$

mit $\lambda_0, \ldots, \lambda_{q-2} \in \widehat{K}$. Somit gilt dann

$$\begin{pmatrix} \boldsymbol{e} \otimes 1 \\ \partial_x(\boldsymbol{e} \otimes 1) \\ \partial_x^2(\boldsymbol{e} \otimes 1) \\ \vdots \\ \partial_x^{q-2}(\boldsymbol{e} \otimes 1) \\ \partial_x^{q-1}(\boldsymbol{e} \otimes 1) \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \psi'(x) & 1 & 0 & & \vdots \\ \star & \star & 1 & 0 & & \vdots \\ \star & \cdots & \ddots & \ddots & \vdots \\ \star & \cdots & \cdots & \star & 1 & 0 \\ \lambda_0 & \lambda_1 & \cdots & \lambda_{q-2} & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{e} \otimes 1 \\ (\partial_x \boldsymbol{e}) \otimes 1 \\ (\partial_x^2 \boldsymbol{e}) \otimes 1 \\ \vdots \\ (\partial_x^{q-2} \boldsymbol{e}) \otimes 1 \\ (\partial_x^{q-1} \boldsymbol{e}) \otimes 1 \end{pmatrix}.$$

Da bekanntlich $e \otimes 1$, $(\partial_x e) \otimes 1$, $(\partial_x^2 e) \otimes 1$,..., $(\partial_x^{q-1} e) \otimes 1$ linear unabhängig sind, gilt dies auch für $e \otimes 1$, $\partial_x (e \otimes 1)$, $\partial_x^2 (e \otimes 1)$,..., $\partial_x^{q-1} (e \otimes 1)$. Damit folgt die Behauptung.

Lemma 3.27. Sei $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x)$ und sei $\varphi \in \widehat{K}$. So gilt

$$\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}^{\varphi} = \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot Q(x, \partial_x)$$

$$mit \ Q(x, \partial_x) = P(x, \partial_x - \frac{\partial \varphi}{\partial x}).$$

Beweisidee. Zeige, dass $P(x, \partial_x - \frac{\partial \varphi}{\partial x})\mathbf{e} \otimes 1 = 0$ gilt. Da $\mathbf{e} \otimes 1$ eine zyklischer Vektor ist folgt aus Gradgründen die Behauptung. Genauer ausgeführt wird dies in [Hei10, Seiten 39 bis 44].

Kommentar:

$$P(x, \partial_x - \frac{\partial \varphi}{\partial x})e \otimes 1 = TODO$$

Korollar 3.28. Sei $\mathcal{M}_{\widehat{K}}$ und φ wie in 3.27, so gilt

$$\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}^{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} = \mathcal{M}_{\widehat{K}}.$$

Beweis. Es gilt

$$\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}^{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} = \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x) \otimes_{\widehat{K}} \mathscr{E}^{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{-\varphi}$$

$$= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x - \frac{\partial \varphi}{\partial x}) \otimes_{\widehat{K}} \mathscr{E}^{-\varphi}$$

$$= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x - \frac{\partial \varphi}{\partial x} - \frac{\partial (-\varphi)}{\partial x})$$

$$= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x) = \mathcal{M}_{\widehat{K}}.$$

Nun wollen wir noch das folgenden Lemma aus [Sab07, Lem 2.4] beweisen.

Kommentar: TODO: text löschen?

Dieses Lemma wird im Weiteren nicht weiter verwendet, deshalb kann ein Leser, der nur an den letzten Kapiteln interessiert ist, diesen Beweis überspringen. Jedoch werden im Beweis mehrere interessante Tricks verwendet, die diesen auf jeden Fall lesenswert machen.

Lemma 3.29. Sei $\rho: t \mapsto x := t^p$ und $\mu_{\xi}: t \mapsto \xi t$. Für alle $\varphi \in \widehat{L}$ gilt

$$\rho^+ \rho_+ \mathscr{E}^{\varphi} = \bigoplus_{\xi^p = 1} \mathscr{E}^{\varphi \circ \mu_{\xi}}.$$

Beweis. Wir wollen zeigen, dass das folgende Diagramm für einen passenden Isomorphismus kommutiert:

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}
\downarrow \partial_{t} \qquad \qquad \downarrow \partial_{t}
\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

Es sei oBdA $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$. Dies ist nach Bemerkung 3.25 erlaubt. Wir wählen eine \widehat{L} Basis e des Rang-1- \widehat{L} -Vektorraum \mathscr{E}^{φ} und damit erhält man die Familie $e, te, ..., t^{p-1}e$ als \widehat{K} -Basis von $\rho_+\mathscr{E}^{\varphi}$. Es gilt

$$\partial_x t^k \mathbf{e} = \rho'(t)^{-1} \partial_t t^k \mathbf{e}$$

$$= \rho'(t)^{-1} (t^k \partial_t + k t^{k-1}) \mathbf{e}.$$
(3.8)

Durch die Setzung $e_k := t^{-k} \otimes_{\widehat{K}} t^k e$ wird die Familie $\underline{e} := (e_0, ..., e_{p-1})$ eine \widehat{L} -Basis von $\rho^+ \rho_+ \mathscr{E}^{\varphi}$. Zerlege nun $t \varphi'(t)$ wie in Anhang A beschrieben in

$$t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p) \qquad \in t^{-2} \mathbb{C}[t^{-1}]$$
(3.9)

mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$. Damit gilt

$$t\partial_t \boldsymbol{e}_k = \sum_{i=0}^{p-1-k} t^i \psi_i(t^p) \boldsymbol{e}_{k+1} + \sum_{i=p-k}^{p-1} t^i \psi_i(t^p) \boldsymbol{e}_{k+i-p} \,,$$

denn:

$$t\partial_{t}e_{k} = t\partial_{t}(t^{-k} \otimes_{\widehat{K}} t^{k}e)$$

$$\stackrel{(3.4)}{=} t(-kt^{-k-1} \otimes_{\widehat{K}} t^{k}e + pt^{p-1} \cdot t^{-k} \otimes_{\widehat{K}} \partial_{x}(\underbrace{t^{k}e}_{)}))$$

$$\stackrel{(3.8)}{=} -kt^{-k} \otimes_{\widehat{K}} t^{k}e + pt^{p-1}t^{-k+1} \otimes_{\widehat{K}} (pt^{p-1})^{-1}(kt^{k-1}e + t^{k}\varphi'(t)e)$$

$$= -kt^{-k} \otimes_{\widehat{K}} t^{k}e + t^{-k+1} \otimes_{\widehat{K}} (kt^{k-1}e + t^{k}\varphi'(t)e)$$

$$= \underbrace{-kt^{-k} \otimes_{\widehat{K}} t^{k}e + t^{-k+1} \otimes_{\widehat{K}} kt^{k-1}e}_{=0} + t^{-k+1} \otimes_{\widehat{K}} t^{k}\varphi'(t)e$$

$$= t^{-k} \otimes_{\widehat{K}} t^{k}t\varphi'(t)e$$

$$\stackrel{(3.9)}{=} t^{-k} \otimes_{\widehat{K}} t^{k}\sum_{i=0}^{p-1} t^{i}\psi_{i}(t^{p})e$$

$$= \sum_{i=0}^{p-1} \psi_{i}(t^{p})(t^{-k} \otimes_{\widehat{K}} t^{k}t^{i}e)$$

$$= \sum_{i=0}^{p-1} t^{i} \psi_{i}(t^{p})(t^{-k-i} \otimes_{\widehat{K}} t^{k+i} e)$$

$$= \sum_{i=0}^{p-1-k} t^{i} \psi_{i}(t^{p}) e_{k+i} + \sum_{i=p-k}^{p-1} t^{i} \psi_{i}(t^{p}) e_{k+i-p}.$$

Sei

$$V := \begin{pmatrix} 0 & & & 1 \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{pmatrix},$$

so dass $\underline{e} \cdot V = (e_1, ..., e_{p-1}, e_0)$ gilt. Es gilt

$$t\partial_t \underline{e} = \underline{e} \left[\sum_{j=0}^{p-1} t^j \psi_j V^j \right] ,$$

denn:

Die Wirkung von ∂_t auf die Basis \underline{e} von $\rho^+\rho_+\mathscr{E}^{\varphi(t)}$ wird also beschrieben durch

$$\partial_t \underline{e} = \underline{e} \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j V^j \right] .$$

Da V das Minimalpolynom $\chi_V(X)=X^p-1$ hat, können wir diese Matrix durch Transformation mit T auf die Form

$$D := TVT^{-1} = \begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix},$$

mit $\xi^p = 1$, bringen. Sei so ein ξ ab jetzt fixiert. So gilt:

da $\varphi'(t) = pt^{p-1}$. Damit wissen wir bereits, dass im Diagramm

k-te Stelle

der mit (\star) bezeichnete Teil kommutiert, wobei $\Phi:(0,\ldots,0,\ 1\ ,0,\ldots,0)\mapsto \boldsymbol{e}_k$ der kanonische

Basisisomorphismus ist und e_k Basis von $\mathcal{E}^{\varphi \circ \mu_{\xi^{k-1}}}$ ist. Um zu zeigen, dass das vollständige Diagramm kommutiert, zeigen wir noch, dass

$$\partial_t(v) = \Phi\left(\Phi^{-1}(v) \cdot \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) D^j\right]\right) \qquad \forall v \in \bigoplus_{i=0}^{p-1} \mathscr{E}^{\varphi \circ \mu_{\xi^i}}$$

gilt. Es reicht zu zeigen, dass die Aussage für alle Basiselemente e_k erfüllt ist. Nach Definition 3.22 gilt

$$\partial_t e_k = (\varphi \circ \mu_{\xi^{k-1}})'(t)e_k$$

$$= \varphi(\mu'_{\xi^{k-1}}) \cdot \varphi'(t)e_k$$

$$= (\xi^{k-1})^p \cdot (pt^{p-1})e_k$$

$$= p(\xi^{k-1}t)^{p-1}\xi^{k-1}e_k$$

und auf dem anderen Weg gilt:

$$\Phi^{-1}(e_k) = (\dots, 0, 1, 0, \dots) \longleftarrow \Phi^{-1} \qquad e_k$$

$$\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) D^j$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\dots, 0, p(\xi^{k-1}t)^{p-1}, 0, \dots) \longmapsto \Phi \qquad \varphi'(\xi^{k-1}t) \xi^{k-1} e_k$$

Also kommutiert das Diagramm und damit ist die Aussage gezeigt.

4 Levelt-Turrittin-Theorem

Nun zum wichtigsten Satz in dieser Arbeit. Das Levelt-Turrittin-Theorem besagt, dass sich jeder meromorphe Zusammenhang \mathcal{M} , nach einem möglicherweise nötigen Pullback, in eine direkte Summe von "elementaren" meromorphen Zusammenhängen zerlegen lässt.

Zunächst soll geklärt werden, welche Zusammenhänge die "richtigen" elementaren meromorphen Zusammenhänge sind.

4.1 Elementare meromorphe Zusammenhänge

Definition 4.1. Ein elementarer regulärer (formaler) meromorpher Zusammenhang ist ein Zusammenhang \mathcal{M} , welcher isomorph zu $\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (x\partial_x - \alpha)^p$, mit passendem $\alpha \in \mathbb{C}$ und $p \in \mathbb{N}$, ist.

Bemerkung 4.2. Es ist leicht zu sehen, dass jeder elementare reguläre meromorphe Zusammenhang tatsächlich auch regulär ist.

Lemma 4.3. Es existiert eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} mit der Eigenschaft, dass die Matrix, die $x\partial_x$ beschreibt, nur Einträge in $\mathbb{C}[\![x]\!]$ hat.

Kommentar: [Sab90, Lem 5.2.1.]

Beweisskizze. Wähle einen zyklischen Vektor $m \in \mathcal{M}_{\widehat{K}}$ und betrachte die Basis $m, \partial_x m, \dots, \partial_x^{d-1} m$ (siehe Lemma 2.14). Schreibe $\partial_x^d m = \sum_{i=0}^{d-1} (-b_i(x)) \partial_x^i m$ mit Koeffizienten $b_i \in \widehat{K}$. Also erfüllt m die Gleichung $\partial_x^d m + \sum_{i=0}^{d-1} b_i(x) \partial_x^i m = 0$.

Kommentar: TODO: bis hier schon klar

Tatsächlich kann man, wegen Regularität, $b_i(x) = x^i b_i'(x)$ mit $b_i' \in \mathbb{C}[\![x]\!]$ schreiben. Dies impliziert, dass $m, x \partial_x m, \ldots, (x \partial_x)^{d-1} m$ ebenfalls eine Basis von $\mathcal{M}_{\widehat{K}}$ ist. Die Matrix von $x \partial_x$ zu dieser neuen Basis hat nur Einträge in $\mathbb{C}[\![x]\!]$.

Nach [Sab90, Thm 5.2.2] gilt sogar das folgende Lemma.

Lemma 4.4. Es existiert sogar eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} , so dass die Matrix zu $x\partial_x$ Einträge in \mathbb{C} hat, also konstant ist.

Durch nutzen von Lemma 4.4 erhält man eine Konstante Matrix, welche in Jordan Normalform gebracht werden kann. Ausgeführt wurde das in [Sab90, Cor. 5.2.6]. Damit erhält man den folgenden Satz.

Satz 4.5. Ein regulärer formaler Zusammenhang $\mathcal{M}_{\widehat{K}}$ ist isomorph zu einer direkten Summe von elementaren regulären meromorphen Zusammenhängen.

Durch Twisten der elementaren regulären meromorphen Zusammenhänge erhält man wie folgt die elementaren meromorphen Zusammenhänge.

Definition 4.6. Ein elementarer (formaler) meromorpher Zusammenhang ist ein Zusammenhang $\mathcal{M}_{\widehat{K}}$, für den es $\psi \in \widehat{K}$, $\alpha \in \mathbb{C}$ und $p \in \mathbb{N}$ gibt, so dass

$$\mathcal{M} \cong \mathscr{E}^{\psi} \otimes R_{\alpha,p}$$
,

mit $R_{\alpha,p} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}}(x\partial_x - \alpha)^p$, also ein elementarer regulärer meromorpher Zusammenhang ist.

Lemma 4.7. In der Situation von Definition 4.6 gilt $\mathscr{E}^{\psi} \otimes R_{\alpha,p} \cong \mathcal{D}/\mathcal{D} \cdot (x\partial_x - (\alpha + x\frac{\partial \psi}{\partial x}))^p$.

Beweis. Es gilt

$$\mathscr{E}^{\psi} \otimes R_{\alpha,p} = \mathscr{E}^{\psi} \otimes \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} (x \partial_{x} - \alpha)^{p}$$

$$\stackrel{3.27}{=} \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} (x (\partial_{x} - \frac{\partial \psi}{\partial x}) - \alpha)^{p}$$

$$= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} (x \partial_{x} - (\alpha + x \frac{\partial \psi}{\partial x}))^{p}.$$

Kommentar:

4.2 Definition in [Sab07]

Definition 4.8 (Elementarer formaler Zusammenhang). [Sab07, Def 2.1] Zu einem gegebenen $\rho \in t\mathbb{C}[\![t]\!], \varphi \in \widehat{L} \stackrel{\text{def}}{=} \mathbb{C}(\!(t)\!)$ und einem endlich dimensionalen \widehat{L} -Vektorraum R mit regulärem Zusammenhang ∇ , definieren wir den assoziierten elementaren endlich dimensionalen \widehat{K} -Vektorraum mit Zusammenhang, durch:

$$El(\rho, \varphi, R) = \rho_{+}(\mathscr{E}^{\varphi} \otimes R)$$

[Sab07, nach Def 2.1] Bis auf Isomorphismus hängt $El(\rho, \varphi, R)$ nur von φ mod $\mathbb{C}[\![t]\!]$ ab.

Lemma 4.9. | Sab07, Lem 2.2 |

Lemma 4.10. [Sab07, Lem 2.6.] Es gilt $El([t \mapsto t^p], \varphi, R) \cong El([t \mapsto t^p], \psi, S)$ genau dann, wenn

- es ein ζ gibt, mit $\zeta^p = 1$ und $\psi \circ \mu_{\zeta} \equiv \varphi \mod \mathbb{C}[\![t]\!]$
- und $S \cong R$ als \hat{L} -Vektorräume mit Zusammenhang.

Beweis. Siehe [Sab07, Lem 2.6.]

Proposition 4.11. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale \widehat{K} -Vektorraum \mathcal{M} mit Zusammenhang ist isomorph zu $\rho_+(\mathscr{E}^{\varphi}\otimes L)$, wobei $\varphi\in t^{-1}\mathbb{C}[t^{-1}]$, $\rho:t\to t^p$ vom Grad $p\geq 1$ und ist minimal unter φ . (siehe [Sab07, Rem 2.8]) und L ist ein Rang 1 \widehat{L} -Vektrorraum mit regulärem Zusammenhang.

Beweis. Siehe [Sab07, Prop 3.1]

4.3 Die Filtrierung ${}^\ell V\mathcal{D}_{\widehat{K}}$ und das $\ell ext{-Symbol}$

Dieser Abschnitt bezieht sich auf [Sab90, Seite 25] und beschreibt das ℓ -Symbol, welches im Beweis des Levelt-Turittin-Theorems Verwendung findet.

Zu einer rationalen Zahl $\Lambda \geq 0$ seien $\lambda_0 \in \mathbb{N}_0$ und $\lambda_1 \in \mathbb{N}$ relativ prim, so dass $\Lambda = \frac{\lambda_0}{\lambda_1}$. Definiere die Linearform $\ell(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1$. Sei $P \in \mathcal{D}_{\widehat{K}}$. Falls $P = x^a \partial_x^b$ mit $a \in \mathbb{Z}$ und

 $b \in \mathbb{N}$, setzen wir

$$\operatorname{ord}_{\ell}(P) := \ell(b, b - a)$$

und falls $P = \sum_{i=0}^{d} b_i(x) \partial_x^i$ mit $b_i \in \widehat{K}$, setzen wir

$$\operatorname{ord}_{\ell}(P) := \max_{\{i \mid a_i \neq 0\}} \ell(i, i - v(b_i)).$$

Kommentar: Der Korrekturfaktor $-\underbrace{\min\{y\in\mathbb{R}\mid (0,y)\in H(P)\}}_{\text{Korrekturfaktor}}$ ist, anderst wie in der Definition von [Sab90, Seite 25], weil in unserer Schreibweise das Newton-Polygon nicht immer den Punkt (0,0) enthält.

Die folgende Bemerkung soll helfen, $\operatorname{ord}_{\ell}(P)$ bildlich zu verstehen.

Bemerkung 4.12. Sei $\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1$ gegeben und P ein linearer Differentialoperator. Betrachte die Geradenschar $g_a(x) := \frac{\lambda_0}{\lambda_1} + a$. Dann gibt es genau ein a, welches minimal unter der Eigenschaft ist, dass $g_a(x)$ das Newton-Polygon zu P schneidet. Dieses so gefundene a entspricht genau $\operatorname{ord}_{\ell}(P)$.

In Abbildung 4.1 ist dies für $P = x^3 \partial_x^2 + 1$ und $\lambda_0 = \lambda_1 = 1$ bildlich dargestellt. Man liest ab, dass $\operatorname{ord}_{\ell}(P) = -1$ gilt.

Abbildung 4.1: Zu Bemerkung 4.12.

Bemerkung 4.13. Nach [Sab90, Seite 25] gilt, dass man $\operatorname{ord}_{\ell}(PQ) = \operatorname{ord}_{\ell}(P) + \operatorname{ord}_{\ell}(Q)$ hat und falls $\lambda_0 \neq 0$, hat man auch, das $\operatorname{ord}_{\ell}([P,Q]) \leq \operatorname{ord}_{\ell}(P) + \operatorname{ord}_{\ell}(Q) - 1$.

Nun können wir die aufsteigende Filtration ${}^{\ell}V\mathcal{D}_{\widehat{K}}$, welche mit $\mathbb Z$ indiziert ist, durch

$${}^{\ell}V_{\lambda}\mathcal{D}_{\widehat{K}} := \{ P \in \mathcal{D}_{\widehat{K}} \mid \operatorname{ord}_{\ell}(P) \leq \lambda \}$$

definieren. Falls $\lambda_0 \neq 0$, ist der gradierte Ring $gr^{\ell V} \mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \bigoplus_{\lambda \in \mathbb{Z}} gr_{\lambda}^{\ell V} \mathcal{D}_{\widehat{K}}$ ein kommutativer Ring. Bezeichne die Klasse von ∂_x in dem Ring durch ξ , dann ist der Ring isomorph zu $\widehat{K}[\xi]$.

Definition 4.14 (ℓ -Symbol). Sei $P \in \mathcal{D}_{\widehat{K}}$, so ist $\sigma_{\ell}(P)$ definiert als die Klasse von P in $gr_{\mathrm{ord}_{\ell}(P)}^{\ell V}\mathcal{D}_{\widehat{K}}$ und wird als das ℓ -Symbol bezeichnet.

Beispiel 4.15. Zum Beispiel ist $\sigma_{\ell}(x^a \partial_x^b) = x^a \xi^b$ für alle $a \in \mathbb{Z}$, $b \in \mathbb{N}$. Ein komplexeres Beispiel ist $P = x^2 \partial_x + 1$. Betrachte dazu ein $\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1$ mit $\lambda_0 \neq 0$ und unterscheide die folgenden drei Fälle:

- $\lambda_0 \lambda_1 > 0$, so ist $\sigma_\ell = x^2 \xi$.
- $\lambda_0 = \lambda_1$, so ist $\sigma_\ell = x^2 \xi + 1$.
- $\lambda_0 \lambda_1 < 0$, so ist $\sigma_\ell = 1$.

In Abbildung 4.2 sind, für jeden der Fälle, jeweils das Newton-Polygon, zusammen mit $g_{\mathrm{ord}_{\ell}(P)}(x) = \frac{\lambda_0}{\lambda_1} + \mathrm{ord}_{\ell}(P)$ in Braun, eingezeichnet. Das ℓ -Symbol von P sind, bildlich vorgestellt, jeweils die Monome, die auf $g_{\mathrm{ord}_{\ell}(P)}(x)$ "liegen". Mit dieser Vorstellung ist es klar, dass $\sigma_{\ell}(P)$ genau dann aus mehr als einem Monom besteht, wenn $\Lambda := \frac{\lambda_0}{\lambda_1}$ ein Slope von P ist.

Abbildung 4.2: Zu Beispiel 4.15.

Bemerkung 4.16. Ist $P \in \mathcal{D}_{\widehat{K}}$ geschrieben als $P = \sum_{i} \sum_{j} \alpha_{ij} x^{j} \partial_{x}^{i}$. So erhält man $\sigma_{\ell}(P)$ durch die Setzung

$$\sigma_{\ell}(P) = \sum_{\{(i,j)|\ell(i,i-j) = \operatorname{ord}_{\ell}(P)\}} \alpha_{ij} x^{j} \xi^{i}.$$

Bemerkung 4.17. Bei [Sab90] wird der Buchstabe L anstatt ℓ für Linearformen verwendet, dieser ist hier aber bereits für $\mathbb{C}(\{t\})$ reserviert. Dementsprechend ist die Filtrierung dort als ${}^LV\mathcal{D}_{\widehat{K}}$ und das ℓ -Symbol als L-Symbol zu finden.

Bemerkung 4.18 (Stützfunktion). Die Funktion

$$\omega_P : [0, \infty) \to \mathbb{R}, \omega_P(t) := \inf\{v - tu \mid (u.v) \in N(P)\}$$

heißt Stützfunktion und wird in [AV09] als Alternative zur hier definierten Filtrierung verwendet. Wenn $\ell(s_0, s_1)$ wie oben aus Λ entstanden ist, so gilt

$$\omega_P(\Lambda) = ord_\ell(P)$$
.

4.4 Levelt-Turrittin-Theorem

Kommentar: Das Levelt-Turrittin-Theorem ist ein Satz, der hilft, meromorphe Zusammenhänge in ihre irreduziblen Komponenten zu zerlegen.

Satz 4.19 (Levelt-Turrittin-Theorem). Sei $\mathcal{M}_{\widehat{K}}$ ein formaler meromorpher Zusammenhang, so gibt es eine ganze Zahl p, so dass der Zusammenhang $\rho^+\mathcal{M}_{\widehat{K}}$, mit $\rho: t \mapsto x := t^p$, isomorph zu einer direkten Summe von formalen elementaren meromorphen Zusammenhänge ist.

```
Kommentar: [Sab90, Thm 5.4.7]
```

Bemerkung 4.20. Man kann auch allgemeiner für ρ ein beliebiges Polynom, vom grad p nehmen.

Kommentar:	Der	folgende	Beweis	stammt	hauptsächlich	aus	[Sab 90,	Seite
35].								

Beweisskizze. Zum Beweis wird Induktion auf die lexicographisch geordnetem Paare $(\dim_{\widehat{K}} \mathcal{M}_{\widehat{K}}, \kappa)$ angewendet. Wobei $\kappa \in \mathbb{N} \cup \{\infty\}$ dem größtem Slope von $\mathcal{M}_{\widehat{K}}$, falls dieser ganzzahlig ist, entspricht. Sonsts wird $\kappa = \infty$ gesetzt. In jedem Induktionsschritt wird entweder die Dimension oder das κ verringert.

коmmentar: TODO: Induktionsanfang und -schritt kennzeichnen

Wir nehmen oBdA an, dass $\mathcal{M}_{\widehat{K}}$ genau einen Slope Λ hat, sonst Teile $\mathcal{M}_{\widehat{K}}$ mittels Satz 2.34 in meromorphe Zusammenhänge mit je einem Slope und wende jeweils die Induktion an. Mit $\Lambda =: \frac{\lambda_0}{\lambda_1}$ (vollständig gekürtzt) definieren wir die dem Slope entsprechende Linearform $\ell(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1$. Wir nehmen oBdA auch an, dass $\operatorname{ord}_{\ell}(P) = 0$. Dies geht nach Bemerkung 2.27. Da ℓ zu einem Slope von P gehört, besteht $\sigma_{\ell}(P)$ aus zumindest zwei Monomen. Schreibe

$$\sigma_{\ell}(P) = \sum_{\ell(i,i-j) = \text{ord}_{\ell}(P)} \alpha_{ij} x^{j} \xi^{i}$$
$$= \sum_{\ell(i,i-j) = 0} \alpha_{ij} x^{j} \xi^{i}$$

und setze $\theta := x^{\lambda_0 + \lambda_1} x i^{\lambda_1}$ so erhalten wir

$$\sigma_{\ell}(P) = \sum_{k \ge 0} \alpha_k \theta^k \,,$$

wobei $\alpha_0 \neq 0$ ist.

Erster Fall: $\lambda_1 = 1$. Das bedeutet, dass der Slope ganzzahlig ist. Betrachte die Faktorisierung

$$\sigma_{\ell}(P) = \varepsilon \prod_{\beta \text{ Nullstelle}} (\theta - \beta)^{\gamma_{\beta}}.$$

Wobei $\varepsilon \in \mathbb{C}^{\times}$ eine Konstante ist. Sei β eine der Nullstellen, so setze $\psi(x) := (\beta_0/\lambda_0)x^{-\lambda_0}$ und betrachte $\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}_{\widehat{K}}^{\psi}$. Sei P ein Minimalpolynom von $\mathcal{M}_{\widehat{K}}$, dann ist nach Lemma 3.27 ein Minimalpolynom von $\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}_{\widehat{K}}^{\psi}$ gegeben durch

$$P'(x, \partial_x) = P(x, \partial_x - \frac{\partial \psi}{\partial x})$$
$$= P(x, \partial_x + \frac{\beta}{x^{\lambda_0 + 1}})$$

mit Koeffizienten in $\mathbb{C}[x]$. Des weiteren ist $\sigma_{\ell}(P') = \sum_{k \geq 0} \alpha_k (\theta + \beta_0)^k$. Wir unterscheiden nun 2 Unterfälle:

1. Die Determinanten Gleichung $\sigma_{\ell}(P)$ hat nur eine Nullstelle. In diesem fall wurde die maximale Steigung echt verringert.

Kommentar: TODO: Hier weiter

2. Die Determinanten Gleichung $\sigma_{\ell}(P)$ hat mehrere Nullstellen. In diesem fall hat $\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}_{\widehat{K}}^{\psi}$ mehr als einen Slope und kann deshalb mit Satz 2.34 in eine direkte Summe von Meromorphen Zusammenhängen, mit echt niedrigerer Dimension, zerlegt werden.

Kommentar: TODO: Hier weiter

In beiden Unterfällen muss danach das Twisten, nach Anwenden der Induktion, durch ein tensorieren mit $\mathscr{E}_{\widehat{K}}^{-\psi}$ rückgängig gemacht werden.

Zweiter Fall: $\lambda_1 \neq 1$ (bzw. $\kappa = +\infty$). In diesem Fall ist einzige Slope Λ nicht ganzzahlig. Mache deshalb einen Pullback mit λ_1 . Sei $\rho: t \mapsto x := t^{\lambda_1}$ und erhalte P' so dass $\rho^* \mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P'$. Nach Lemma 3.12 hat P' den einen Slope $\Lambda' = \Lambda \cdot \lambda_1 = \lambda_0 \in \mathbb{N}$.

 κ_{ommentar} : Damit können wir nun die zugehörige Linearform $\ell' := \lambda_0 s_0 + s_1$ definieren. Es gilt dass

$$\sigma_{\ell'}(P') = \dots$$

ist, welches zumindest zwei unterschiedliche Nullstellen hat. Nun wendet man den zweiten Unterfall des ersten Fall an.

Bemerkung 4.21. Das Levelt-Turrittin-Theorem ist auch in [Sab90, Thm 5.4.7], aber ohne ausführlichen Beweis, zu finden. Eine sehr detailierte Version dieses Beweises, ist beispielsweise in [Hei10, Thm 5.16] ausformuliert.

Kommentar:

4.4.1 Sabbah's Refined version

Proposition 4.22. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale formale meromorphe Zusammenhang $\mathcal{M}_{\widehat{L}}$ ist isomorph zu $\rho_+(\mathscr{E}^{\varphi}\otimes_{\widehat{K}}S)$, wobei $\varphi\in x^{-1}\mathbb{C}[x^-1]$, $\rho:x\mapsto t=x^p$ mit grad $p\geq 1$ minimal bzgl. φ (siehe [Sab07, Rem 2.8]), und S ist ein Rang 1 \widehat{K} -Vektor Raum mit regulärem Zusammenhang.

Satz 4.23 (Refined Turrittin-Levelt). [Sab07, Cor 3.3] Jeder endlich dimensionale meromorphe Zusammenhang $\mathcal{M}_{\widehat{K}}$ kann in eindutiger weiße geschrieben werden als direkte Summe $\bigoplus El(\rho, \varphi, R) \stackrel{\text{def}}{=} \bigoplus \rho_{+}(\mathcal{E}^{\varphi}) \otimes R$, so dass jedes $\rho_{+}\mathcal{E}^{\varphi}$ irreduzibel ist und keine zwei $\rho_{+}\mathcal{E}^{\varphi}$ isomorph sind.

Beweis. [Sab07, Cor 3.3] \Box

5 Explizite Berechnung einer Levelt-Turrittin-Zerlegung

In diesem Kapitel soll für spezielle meromorphe Zusammenhänge, zunächst allgemein und ab Abschnitt 5.2 für einen konkreten Zusammenhang, die Levelt-Turrittin-Zerlegung berechnet werden.

Hier wird zunächst ein allgemeines Rezept gegeben, welches zu gegebenem φ einen meromorphen Zusammenhang liefert:

Schritt 1: Wähle zunächst ein $\varphi \in \{\varphi = \sum_{k \in I} \frac{a_k}{t^k} | I \subset \mathbb{N} \text{ endlich}, a_k \in \mathbb{C}\}$ aus

Schritt 2: und beginne mit \mathcal{E}^{φ} . Es gilt

$$\begin{split} \mathscr{E}^{\varphi} &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\partial_{t} - \frac{d}{dt}\varphi(t)\right) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\underbrace{\mathbf{Hauptnenner von} \ \frac{d}{dt}\varphi(t)}_{\in \mathbb{C}[t] \subset \mathcal{D}_{\widehat{L}}^{*}} \cdot \left(\partial_{t} - \frac{d}{dt}\varphi(t)\right)\right) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\underbrace{t^{\max(I)+1} \cdot \left(\partial_{t} - \frac{d}{dt}\varphi(t)\right)}_{=:Q(t,\partial_{t}) \in \mathbb{C}[t] < \partial_{t}>}\right). \end{split}$$

Schritt 3: Fouriertransformiere \mathscr{E}^{φ} und erhalte

$$\begin{split} {}^{\mathcal{F}}\!\mathscr{E}^{\varphi} &= \mathcal{D}_{\mathbb{C}(\!(z)\!)}/\mathcal{D}_{\mathbb{C}(\!(z)\!)} \cdot \mathcal{F}_{Q}(z,\partial_{z}) \\ \stackrel{\mathrm{def}}{=} \mathcal{D}_{\mathbb{C}(\!(z)\!)}/\mathcal{D}_{\mathbb{C}(\!(z)\!)} \cdot \underbrace{Q(\partial_{z},-z)}_{\in\mathbb{C}[z]<\partial_{z}>}. \end{split}$$

Schritt 4: Betrachte den Zusammenhang bei Unendlich und somit erhalte das entsprechende Minimalpolynom

$$P_{\varphi}(x,\partial_x) := \mathcal{F}_Q^{\infty}(x,\partial_x) \stackrel{\text{def}}{=} \mathcal{F}_Q(x^{-1},-x^2\partial_x) \in \mathbb{C}[x] < \partial_x > .$$

Im folgendem werden wir den zum Minimalpolynom P_{φ} assoziierten formalen meromorphen Zusammenhang $\mathcal{M}_{\varphi} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}$ betrachten.

 κ_{ommentar} : Im laufe des Kapitels werden dazu immer speziellere φ betrachtet und zuletzt wird für ein konkretes Beispiel eine explizite Rechnung gegeben.

5.1 Betrachte \mathcal{M}_{arphi} für allgemeine arphi

Lemma 5.1. Zu einem $\varphi = \sum_{k \in I} \frac{a_k}{t^k} \in \{ \varphi = \sum_{k \in I} \frac{a_k}{t^k} | I \subset \mathbb{N} \text{ endlich}, a_k \in \mathbb{C} \}$ ist das Minimalpolynom von \mathcal{M}_{φ} explizit gegeben durch

$$P_{\varphi}(x,\partial_x) = (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k \in I} ka_k(-x^2\partial_x)^{\max(I)-k} \qquad \in \mathbb{C}[x] < \partial_x > .$$

Beweis. Sei $\varphi = \sum_{k \in I} \frac{a_k}{t^k}$, so ist

$$Q(t, \partial_t) = t^{\max(I)+1} (\partial_t - \frac{d}{dt} \varphi(t))$$

$$= t^{\max(I)+1} \left(\partial_t + \sum_{k \in I} k \frac{a_k}{t^{k+1}} \right)$$

$$= t^{\max(I)+1} \partial_t + \sum_{k \in I} k a_k t^{\max(I)-k} \qquad \in \mathbb{C}[t] < \partial_t >$$

$$\mathcal{F}_Q(z, \partial_z) = Q(\partial_z, -z)$$

$$= -\partial_z^{\max(I)+1} z + \sum_{k \in I} k a_k \partial_z^{\max(I)-k}$$

und damit ist

$$\begin{split} P_{\varphi}(x,\partial_x) &= \mathcal{F}_Q(x^{-1},-x^2\partial_x) \\ &= \underbrace{-(-x^2\partial_x)^{\max(I)+1}x^{-1}}_{k\in I} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= \underbrace{(-x^2\partial_x)^{\max(I)}x^2\partial_x x^{-1}}_{k\in I} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}\underbrace{x^2(x^{-1}\partial_x - x^{-2})}_{k\in I} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}\underbrace{(x\partial_x - 1)}_{k\in I} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}\underbrace{(x\partial_x - 1)}_{k\in I} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &\in \mathbb{C}[x] < \partial_x > 0 \end{split}$$

Bemerkung 5.2. Nach [Com74, Chap 4] lässt sich $(x^2\partial_x)^k$, mittels ausnutzen der Stirling-Zahlen, wie folgt umschreiben:

$$(x^2 \partial_x)^k = \sum_{i=1}^k \binom{k-1}{i-1} \frac{k!}{i!} x^{k+i} \partial_x^i$$

Diese Formel schön genug, um erwähnt zu werden, wird aber im weiteren so nicht verwendet.

Kommentar: TODO: prüfen für kleine zahlen!!!

Lemma 5.3. Zu einem $\varphi = \sum_{k \in I} \frac{a_k}{t^k}$ gilt $\mathcal{P}(\mathcal{M}_{\varphi}) = \{\frac{q}{q+1}\}$, wobei $q = \max(I)$.

Beweis. Kommentar: [Sab07, 5.b.]

Um zu zeigen, dass die Behauptung gilt, formen wir P_{φ} um und isolieren die Monome, die für das Newton-Polygon nicht von Bedeutung sind und deshalb vernachlässigt werden können. Betrachte dazu die konvexe Hülle zu P_{φ} , die wie in Abschnitt 2.3 konstruiert wird.

$$H\left(P_{\varphi}(x,\partial_{x})\right) = H\left(\underbrace{(-x^{2}\partial_{x})^{q}(x\partial_{x}-1) + \sum_{k\in I}ka_{k}(-x^{2}\partial_{x})^{q-k}}\right)$$

$$= H\left(\underbrace{(-1)^{q}(x^{2q}\partial_{x}^{q} + \underbrace{\mathbf{T.i.Q. von}}_{\text{liefern keinen Beitrag}}x^{2q}\partial_{x}^{q})(x\partial_{x}-1) + \sum_{k\in I}ka_{k}(-x^{2}\partial_{x})^{q-k}}\right)$$

$$= H\left(\underbrace{(-1)^{q}}_{\text{liefert keinen Beitrag}}x^{2q}\partial_{x}^{q}(x\partial_{x}-1) + \sum_{k\in I}ka_{k}(-x^{2}\partial_{x})^{q-k}\right)$$

$$= H\left(x^{2q}\partial_{x}^{q}x\partial_{x} - x^{2q}\partial_{x}^{q} + \sum_{k\in I}ka_{k}(-x^{2}\partial_{x})^{q-k}\right)$$

$$= H\left(x^{2q}(x\partial_{x}^{q}+q\partial_{x}^{q-1})\partial_{x} - x^{2q}\partial_{x}^{q} + \sum_{k\in I}ka_{k}(-x^{2}\partial_{x})^{q-k}\right)$$

$$= H\left(x^{2q+1}\partial_{x}^{q+1} + \underbrace{qx^{2q}\partial_{x}^{q} - x^{2q}\partial_{x}^{q}}_{\text{sind also vernachlässigbar}} + \sum_{k\in I}ka_{k}(-x^{2}\partial_{x})^{q-k}\right)$$

$$= H\left(x^{2q+1}\partial_{x}^{q+1} + qa_{q} + \underbrace{\sum_{k\in I\setminus\{q\}}ka_{k}(-x^{2}\partial_{x})^{q-k}}\right)$$

Nun wollen wir noch zeigen, dass die Summe (\star) auch vernachlässigt werden kann.

Behauptung: Es gilt

$$H\left(x^{2q+1}\partial_x^{q+1} + qa_q + \sum_{k \in I \setminus \{q\}} ka_k(-x^2\partial_x)^{q-k}\right) \subset H\left(x^{2q+1}\partial_x^{q+1} + qa_q\right)$$

Denn: Betrachte zu einem $m \in I \setminus \{q\}$, einen Summanden $ma_m(-x^2\partial_x)^{q-m}$ aus der Summe:

$$H(ma_m(-x^2\partial_x)^{q-m}) = H(ma_m(-1)^q(x^{2(q-m)}\partial_x^{q-m} + \mathbf{T.i.Q. von} \ x^{2(q-m)}\partial_x^{q-m}))$$

$$= H(x^{2(q-m)}\partial_x^{q-m})$$

$$= (q-m, q-m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0}$$

In Abbildung 5.1 ist die Situation, die wir gerade betrachten, mit $N(x^{2q+1}\partial_x^{q+1}+qa_q)$ in der gewohnten Farbe und $H(x^{2(q-m)}\partial_x^{q-m})$ in Blau, dargestellt. Man sieht also, dass die Behauptung gilt.

Abbildung 5.1: Newton-Polygon zu P_{φ} zusammen mit $H(x^{2(q-m)}\partial_x^{q-m})$

Mit der Behauptung gilt dann, dass

$$\begin{split} H\Big(P_{\varphi}(x,\partial_x)\Big) &= H\Big(x^{2q+1}\partial_x^{q+1} + qa_q + \sum_{k \in I \setminus \{q\}} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &\stackrel{\text{Beh.}}{=} H\Big(x^{2q+1}\partial_x^{q+1} + qa_q\Big) \,. \end{split}$$

Also ist

$$N\Big(P_{\varphi}(x,\partial_x)\Big) = N\Big(x^{2q+1}\partial_x^{q+1} + qa_q\Big).$$

womit die Behauptung des Lemmas folgt und das Newton-Polygon wie in Abbildung 5.1 aussieht. $\hfill\Box$

Also ist, nach Lemma 3.12, ein Pullback mit Grad q+1 hinreichend, um einen ganzzahligen Slope zu bekommen. Denn wir wissen, dass nach Anwenden eines solchem Pullbacks die Slopes mit q+1 multipliziert werden, also gilt $\mathcal{P}(\rho^+\mathcal{M}_\varphi)=\{q\}\subset\mathbb{N}.$

Lemma 5.4. Im Fall $\varphi = \frac{a}{t^q}$ ist mit $\rho : t \mapsto x := -(q+1)t^{q+1}$ der Pullback gegeben durch

$$\rho^{+}\mathcal{M}_{\varphi} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((t^{q+2}\partial_{t})^{q}(t\partial_{t} - (q+1)) + (q+1)qa).$$

Beweis. Sei $\varphi = \frac{a}{t^q}$, so ist P gegeben durch

$$P_{\varphi}(x,\partial_x) = (-x^2\partial_x)^q(x\partial_x - 1) + qa,$$

und sei $\rho: t \mapsto x := -(q+1)t^{q+1}$. Damit gilt

$$\begin{split} \rho^{+}\mathcal{M}_{\varphi} &= \rho^{+}(\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}(x,\partial_{x})) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \rho^{*}P_{\varphi}(t,\partial_{t}) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P_{\varphi}(\rho(t),\rho'(t)^{-1}\partial_{t}) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P_{\varphi}\Big(-(q+1)t^{q+1},-\frac{1}{(q+1)^{2}t^{q}}\partial_{t}\Big) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\left(-(-(q+1)t^{q+1})^{2}\frac{-1}{(q+1)^{2}t^{q}}\partial_{t}\right)^{q} \left(-(q+1)t^{q+1}\frac{-1}{(q+1)^{2}t^{q}}\partial_{t} - 1\right) + qa \right) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\underbrace{\left(\frac{(q+1)^{2}}{(q+1)^{2}}t^{2(q+1)-q}\partial_{t}\right)^{q}}_{=1} \left(\frac{1}{q+1}t\partial_{t} - 1\right) + qa \right) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left((t^{q+2}\partial_{t})^{q}(t\partial_{t} - (q+1)) + (q+1)qa \right) \end{split}$$

Kommentar:

Korollar 5.5. Ordnung vom Pullback ist 0

Das so erhaltene $\rho^+\mathcal{M}_{\varphi}$ wollen wir, wenn nötig, noch weiter zerlegen. Dazu würden wir gerne den Satz 2.34 anwenden, leider haben wir momentan genau einen Slope. Hier hilft uns aber ein Trick, nach Korollar 3.28 gilt $\rho^+\mathcal{M}_{\varphi} = \rho^+\mathcal{M}_{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{\psi} \otimes_{\widehat{K}} \mathscr{E}^{-\psi}$, wobei $\mathcal{N} := \mathcal{M}_{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{\psi}$ möglicherweise mehr als einen Slope hat. Genau diesen Sonderfall wollen wir, um mit Satz 2.34 die Zerlegung $\mathcal{N} = \bigoplus_i \mathcal{N}_i$ zu erhalten und damit ist dann

$$\rho^+ \mathcal{M}_{\varphi} = \bigoplus_{i} \mathcal{N}_i \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{-\psi}.$$

Definiere dazu, mittels $q = \frac{q}{1} =: \frac{\lambda_0}{\lambda_1}$, die Linearform

$$\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1 = q s_0 + s_1.$$

Schreibe $\rho^* P_{\varphi} = \sum_i \sum_j \alpha_{ij} t^j \partial_t^i$ und berechne die *Determinanten Gleichung* $\sigma_{\ell}(\rho^* P_{\varphi}) \in \widehat{L}[\xi]$.

Kommentar: Schon gezeigt, das $ord_{\ell} = 0$?

$$\sigma_{\ell}(\rho^* P_{\varphi}) = \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | \ell(i,i-j) = 0\}} \alpha_{ij} t^j \xi^i$$
$$= \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | (q+1)i-j = 0\}} \alpha_{ij} t^j \xi^i$$

Da $\widehat{L}[\xi]$ kommutativ ist, gilt hier, dass $(t^j\xi^i)^k=t^{jk}\xi^{ik}$ ist. Setze $\theta=t^{\lambda_0+\lambda_1}\xi^{\lambda_1}=t^{q+1}\xi$ so, können wir

$$\sigma_{\ell}(\rho^* P_{\varphi})(\theta) = \sum_{k>0} \alpha_k \theta^k \qquad \alpha_k \in \mathbb{C}$$

schreiben.

Kommentar: , welches wir als nächsten Schritt faktorisieren

$$\sigma_{\ell}(\rho^* P_{\varphi}) = \varepsilon \prod_{\beta \text{ Nullstelle}} (\theta - \beta)^{\gamma_{\beta}}.$$

Wobei $\varepsilon \in \mathbb{C}^{\times}$ eine Konstante ist.

Sei β eine der Nullstellen von $\sigma_{\ell}(\rho^*P_{\varphi})(\theta)$. Da $\operatorname{ord}_{\ell}(\rho^*P_{\varphi}) = 0$ und der einzige Slope von ρ^*P_{φ} nicht gleich 0 ist, gilt offensichtlich, dass $\alpha_0 \neq 0$. Also ist 0 keine Nullstelle von $\sigma_{\ell}(\rho^*P_{\varphi})$. Setze $\psi(x) := (\beta/\lambda_0)t^{-\lambda_0} = (\beta/q)t^{-q}$ und betrachte

$$\begin{split} \mathcal{N} &:= \rho^{+} \mathcal{M}_{\varphi} \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{\psi} \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \left(\rho^{*} P_{\varphi}(t, \partial_{t}) \right) \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{\psi} \\ &\stackrel{3.27}{=} \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \left(\rho^{*} P_{\varphi}(t, \partial_{t} - \frac{\partial \psi}{\partial t}) \right) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \left(\rho^{*} P_{\varphi}(t, \partial_{t} + \frac{\beta}{t^{q+1}}) \right) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \left(\left(t^{q+2} (\partial_{t} + \frac{\beta}{t^{q+1}}) \right)^{q} (t(\partial_{x} + \frac{\beta}{t^{q+1}}) - (q+1)) + (q+1)qa \right) \end{split}$$

Kommentar: TODO: hier weiter vereinfachen

Zerlege nun wie in Satz 2.34 den meromorphen Zusammenhang \mathcal{N} in $\mathcal{N} = \bigoplus_i \mathcal{N}_i$ wobei \mathcal{N}_i meromorphe Zusammenhänge mit genau einem Slope sind. Zerlege jedes reguläre \mathcal{N}_i möglichst weit mittels dem Satz 4.5.

Kommentar: TODO: hier weiter umformulieren, $\tilde{\mathcal{N}}_i$ einführen.

Nutze Korollar 3.28 und twiste die \mathcal{N}_i jeweils mit $\mathscr{E}_{\widehat{L}}^{-\psi}$ und somit ist dann

$$\rho^{+}\mathcal{M}_{\varphi} = \bigoplus_{i} \mathcal{N}_{i} \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{-\psi}.$$

Für jeden Summanden lässt sich nun, falls dieser nicht schon ein elementarer meromorpher Zusammenhang ist, Induktion anwenden.

Kommentar: nicht elementar, sondern regulär otimes E

5.2 Levelt-Turrittin-Zerlegung für \mathcal{M}_{arphi} mit $arphi_1:=rac{a}{x}$

Kommentar: rechtfertigen, das mehr gerechnet wird, als nötig

Als konkreten Fall betrachten wir nun \mathcal{M}_{φ} bezüglich $\varphi_1 := \frac{a}{x}$. Es ist das zugehörigen Minimalpolynom gegeben durch

$$P_{\varphi}(x, \partial_x) = -x^2 \partial_x (x \partial_x - 1) + a$$

$$= -x^2 \partial_x x \partial_x + x^2 \partial_x + a$$

$$= -x^2 (x \partial_x + 1) \partial_x + x^2 \partial_x + a$$

$$= -x^3 \partial_x^2 - x^2 \partial_x + x^2 \partial_x + a$$

$$= -x^3 \partial_x^2 + a.$$

Erhalte daraus das Newton-Polygon mit den Slopes $\mathcal{P}(\mathcal{M}_{\varphi}) = \{\frac{1}{2}\}.$

Abbildung 5.2: Newton-Polygon zu P_{φ}

Berechne nun zu $\rho:t\mapsto x:=-2t^2$ ein Minimalpolynom ρ^*P_φ zu $\rho^+\mathcal{M}_\varphi$:

$$\rho^* P_{\varphi}(x, \partial_x) = t^3 \partial_t (t \partial_t - 2) + 2a$$

$$= t^3 \partial_t t \partial_t - 2t^3 \partial_t + 2a$$

$$= t^3 (t \partial_t + 1) \partial_t - 2t^3 \partial_t + 2a$$

$$= t^4 \partial_t^2 + t^3 \partial_t - 2t^3 \partial_t + 2a$$

$$= t^4 \partial_t^2 - t^3 \partial_t + 2a$$

und erhalte einen meromorphen Zusammenhang $\rho^+ \mathcal{M}_{\varphi} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \rho^* P_{\varphi}$ mit genau dem Slope $1 = \frac{1}{1} =: \frac{\lambda_0}{\lambda_1}$.

Abbildung 5.3: Newton-Polygon zu ρ^*P_φ

Definiere die Linearform $\ell(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1 = s_0 + s_1$. Wir suchen nun ein ψ , so dass der Twist $\rho^+ \mathcal{M}_{\varphi} \otimes_{\widehat{L}} \mathscr{E}^{\psi}$ mehr als einen Slope hat, damit wir entlang der Slopes zerlegen können. Berechne dazu die *Determinanten Gleichung* $\sigma_{\ell}(\rho^* P_{\varphi}) \in \widehat{L}[\xi]$ von $\rho^* P_{\varphi}$.

$$\sigma_{\ell}(\rho^* P_{\varphi}) = \sum_{\{(i,j)|2i-j=0\}} \alpha_{ij} x^j \xi^i$$

$$= t^4 \xi^2 + 2a$$

Setze $\theta := t^{\lambda_0 + \lambda_1} \xi^{\lambda_1} = t^2 \xi$, so erhalten wir

$$\sigma_{\ell}(\rho^* P_{\varphi}) = \theta^2 + 2a \,,$$

mit den Nullstellen $i\sqrt{2a} =: \beta$ und $-i\sqrt{2a}$. Setze $\psi(x) := (\beta/\lambda_0)t^{-\lambda_0} = i\sqrt{2a}t^{-1}$ und betrachte den Twist $\mathcal{N} := \rho^+\mathcal{M}_{\varphi} \otimes_{\widehat{L}} \mathscr{E}^{\psi}$ von $\rho^+\mathcal{M}_{\varphi}$. Es ist $e \otimes 1$ ein zyklischer Vektor, wobei e ein zyklischer Vektor von $\rho^+\mathcal{M}$ ist. Mit dem Lemma vom Zyklischen Vektor, bzw. der Proposition 2.17, wollen wir nun ein Minimalpolynom zu \mathcal{N} berechnen^[1]:

$$\partial_{t}^{2}(e \otimes 1) = \partial_{t}(\underbrace{\partial_{t}(e \otimes 1)})$$

$$\stackrel{(3.4)}{=} \partial_{t}((\partial_{t}e) \otimes 1 + e \otimes \psi'(t))$$

$$\stackrel{(3.4)}{=} (\partial_{t}^{2}e) \otimes 1 + (\partial_{t}e) \otimes \psi'(t) + (\partial_{t}e) \otimes \psi'(t) + e \otimes \underbrace{(\psi''(t) + \psi'(t)^{2})}_{\in K}$$

$$= \underbrace{((t^{-1}\partial_{t} - 2at^{-4})e) \otimes 1}_{\in K} + 2\psi'(t)(\partial_{t}e) \otimes 1 + \underbrace{(\psi''(t) + \psi'(t)^{2})e \otimes 1}_{\in K}$$

$$= \underbrace{(t^{-1}\partial_{t}e) \otimes 1 - 2at^{-4}e \otimes 1}_{\in K} + 2\psi'(t)(\partial_{t}e) \otimes 1 + \underbrace{(\psi''(t) + \psi'(t)^{2})e \otimes 1}_{\in K}$$

$$= \underbrace{(t^{-1} + 2\psi'(t))(\partial_{t}e) \otimes 1}_{\in K} + (-2at^{-4} + \psi''(t) + \psi'(t)^{2})e \otimes 1$$

$$= \underbrace{(t^{-1} + 2\psi'(t))\partial_{t}(e \otimes 1) - e \otimes \psi'(t)}_{\in K} + (-2at^{-4} + \psi''(t) + \psi'(t)^{2})e \otimes 1$$

$$= \underbrace{(t^{-1} + 2\psi'(t))\partial_{t}(e \otimes 1) - (\psi'(t)t^{-1} + 2\psi'(t)^{2})e \otimes 1}_{\in K}$$

$$= \underbrace{((t^{-1} + 2\psi'(t))\partial_{t} - \psi'(t)t^{-1} - 2\psi'(t)^{2} - 2at^{-4} + \psi''(t) + \psi'(t)^{2})e \otimes 1}_{\in K}$$

$$= \underbrace{((t^{-1} + 2\psi'(t))\partial_{t} - \psi'(t)t^{-1} - 2at^{-4} + \psi''(t) - \psi'(t)^{2})e \otimes 1}_{\in K}$$

also

$$0 = \underbrace{\left(\partial_t^2 - (t^{-1} + 2\psi'(t))\partial_t + \psi'(t)t^{-1} + 2at^{-4} - \psi''(t) + \psi'(t)^2\right)}_{=:P'} e \otimes 1$$

und mit $\psi(t) = i\sqrt{2a}t^{-1}$ ist $\psi'(t) = -i\sqrt{2a}t^{-2}$ und $\psi''(t) = 2i\sqrt{2a}t^{-3}$. Also durch Einsetzen ergibt sich

$$P' = \partial_t^2 - (t^{-1} + 2\psi'(t))\partial_t + \psi'(t)t^{-1} + 2at^{-4} - \psi''(t) + \psi'(t)^2$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - i\sqrt{2a}t^{-3} + 2at^{-4} - 2i\sqrt{2a}t^{-3} + \underbrace{(-i\sqrt{2a}t^{-2})^2}_{=0}$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3} + \underbrace{2at^{-4} - 2at^{-4}}_{=0}$$

 $^{^{[1]}}$ Dies wäre auch schneller, aber weit weniger interessant, mit Lemma 3.27 möglich.

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3}$$

mit, wie gewünscht, mehr als einem Slope (siehe Abbildung 5.4).

Abbildung 5.4: Newton-Polygon zu $\mathcal N$

Kommentar

Bemerkung 5.6. Alternativ ließe sich ein Minimalpolynom von \mathcal{N} mit der Formel aus Lemma 3.27 berechnen. Denn mit $\rho^*P(t,\partial_t)=t^4\partial_t^2-t^3\partial_t+2a$, ist

$$\rho^* P(t, \partial_t - \frac{\partial \psi}{\partial t}) = \rho^* P(t, \partial_t - \frac{-i\sqrt{2a}}{t^2})$$

$$= t^4 (\partial_t + \frac{i\sqrt{2a}}{t^2})^2 - t^3 (\partial_t + \frac{i\sqrt{2a}}{t^2}) + 2a$$

$$= t^4 (\partial_t + i\sqrt{2a}t^{-2})(\partial_t + i\sqrt{2a}t^{-2}) - t^3 \partial_t - i\sqrt{2a}t + 2a$$

$$= t^4 (\partial_t^2 + i\sqrt{2a}t^{-2}\partial_t + \partial_t i\sqrt{2a}t^{-2} + (i\sqrt{2a}t^{-2})^2) - t^3 \partial_t - i\sqrt{2a}t + 2a$$

$$= t^4 \partial_t^2 + i\sqrt{2a}t^2 \partial_t + i\sqrt{2a}t^4 \partial_t t^{-2} - 2at^{-4}t^4 - t^3 \partial_t - i\sqrt{2a}t + 2a$$

$$= t^4 \partial_t^2 + i\sqrt{2a}t^2 \partial_t + i\sqrt{2a}t^4 (t^{-2}\partial_t - 2t^{-3}) - t^3 \partial_t - i\sqrt{2a}t$$

$$= t^4 \partial_t^2 + i\sqrt{2a}t^2 \partial_t + i\sqrt{2a}t^2 \partial_t - 2i\sqrt{2a}t - t^3 \partial_t - i\sqrt{2a}t$$

$$= t^4 \partial_t^2 - (t^3 - 2i\sqrt{2a}t^2) \partial_t - 3i\sqrt{2a}t$$

$$= t^4 P'(t, \partial_t)$$

Nachdem wir jetzt ein Minimalpolynom gefunden haben, ist unser nächstes Ziel, $\mathcal{N} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}}$. P' in zwei meromorphe Zusammenhänge mit nur einem Slope zerlegen. Betrachte hierzu das Minimalpolynom und zerlege dieses in ein Produkt $P'(t, \partial_t) = Q_1(t, \partial_t) \cdot Q_2(t, \partial_t)$.

Da der ∂_t -Grad von P' genau 2 ist, müssen die Q_i jeweils den Grad 1 haben, um eine echte nichttriviale Zerlegung zu bekommen. Allgemein haben dir Q_i also die Form

$$Q_1 := \bar{v}(t)\partial_t + v(t) \qquad \qquad Q_2 := \bar{u}(t)\partial_t + u(t) \qquad \qquad \text{mit } \bar{v}(t), v(t), \bar{u}(t), u(t) \in \widehat{L}.$$

Beobachtung 5.7. Ist Q_1 und Q_2 so ein solches Paar, dann ist für $\sigma \in \hat{L}$ das Paar $\bar{Q}_1 := Q_1 \cdot \sigma^{-1}$ und $\bar{Q}_2 := \sigma \cdot Q_2$ ebenfalls eine Zerlegung, denn

$$P' = Q_1 \cdot Q_2 = Q_1 \cdot \underbrace{\sigma^{-1} \cdot \sigma}_{=1} \cdot Q_2 = \bar{Q}_1 \cdot \bar{Q}_2.$$

Mit der Beobachtung 5.7 ist klar, dass wir den Faktor vor ∂_t in Q_2 frei wählen können. Setze $\bar{u}(t) := 1$ und erhalte

$$Q_1 = \bar{v}(t)\partial_t + v(t)$$
 $q_2 = \partial_t + u(t)$ mit $\bar{v}(t), v(t), u(t) \in \hat{L}$

und somit ist ist das Produkt gegeben durch

$$Q_{1} \cdot Q_{2} = \bar{v}(t)\partial_{t}^{2} + \bar{v}(t)\partial_{t}u(t) + v(t)\partial_{t} + v(t)u(t)$$

$$\stackrel{!}{=} \partial_{t}^{2} - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_{t} - 3i\sqrt{2a}t^{-3}.$$
(5.1)

Damit ist ebenfalls $\bar{v}(t) = 1$.

Durch das Wissen über die Slopes der Q_i erhalten wir noch Informationen über die Reihen $v(t) := \sum_n v_n t^n$ und $u(t) := \sum_n u_n t^n$. Die beiden Polynome Q_1 und Q_2 enthalten ∂_t als einziges Monom vom ∂_t -Grad 1, deshalb ist (1,-1) in beiden zugehörigen Newton-Polygonen enthalten. Da Q_1 nur den Slope 0 hat, muss das Newton-Polygon wie in Abbildung 5.5 aussehen und somit wissen wir, dass $v_n = 0$ für alle n < -1. Da Q_2 genau den Slope 1 hat, ist das Newton-Polygon gegeben durch Abbildung 5.6. Damit ist $u_n = 0$ für alle n < -2 und $u_{-2} \neq 0$.

Mit diesen Informationen erhalten wir aus (5.1) die Gleichung

$$Q_1 \cdot Q_2 = \partial_t^2 + \partial_t \sum_{n=-2}^{\infty} u_n t^n + \sum_{n=-1}^{\infty} v_n t^n \partial_t + \left(\sum_{n=-1}^{\infty} v_n t^n\right) \left(\sum_{n=-2}^{\infty} u_n t^n\right)$$

$$(5.2)$$

und mit denn Kommutatorregeln gilt

$$\partial_t \sum_{n=-2}^{\infty} u_n t^n = \sum_{n=-2}^{\infty} (u_n t^n \partial_t + [\partial_t, u_n t^n])$$

Abbildung 5.5: Newton-Polygon zu Q_1

Abbildung 5.6: Newton-Polygon zu Q_2

$$\stackrel{(1.1)}{=} \sum_{n=-2}^{\infty} (u_n t^n \partial_t + n u_n t^{n-1})$$

$$= \sum_{n=-2}^{\infty} u_n t^n \partial_t + \sum_{n=-2}^{\infty} n u_n t^{n-1}$$

Wenn wir dieses Ergebnis nun in (5.2) einsetzen, ergibt sich

$$Q_{1} \cdot Q_{2} = \partial_{t}^{2} + \sum_{n=-2}^{\infty} u_{n} t^{n} \partial_{t} + \sum_{n=-2}^{\infty} n u_{n} t^{n-1} + \sum_{n=-1}^{\infty} v_{n} t^{n} \partial_{t} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

$$= \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n}) t^{n} \partial_{t} + \sum_{n=-3}^{\infty} (n+1) u_{n+1} t^{n} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right).$$
(5.3)

Betrachte nun das letzte Glied, auf welches wir die Cauchy-Produktformel anwenden wollen:

$$\left(\sum_{n=-1}^{\infty} v_n t^n\right) \left(\sum_{n=-2}^{\infty} u_n t^n\right) = t^{-3} \left(\sum_{n=0}^{\infty} v_{n-1} t^n\right) \left(\sum_{n=0}^{\infty} u_{n-2} t^n\right)$$

$$= t^{-3} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} t^k u_{n-k-2} t^{(n-k)}\right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} u_{n-k-2} t^{k+(n-k)-3}\right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} u_{n-k-2}\right) t^{n-3}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n+3} v_{k-1} u_{n-k+1}\right) t^n$$

Wenn wir auch diese Rechnung in (5.3) integrieren, erhalten wir

$$Q_{1} \cdot Q_{2} = \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n})t^{n}\partial_{t} + \sum_{n=-3}^{\infty} (n+1)u_{n+1}t^{n} + \sum_{n=-3}^{\infty} \left(\sum_{k=0}^{n+3} v_{k-1}u_{n-k+1}\right)t^{n}$$

$$= \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n})t^{n}\partial_{t} + \sum_{n=-3}^{\infty} \left((n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1}\right)t^{n}$$

$$\stackrel{!}{=} \partial_{t}^{2} - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_{t} - 3i\sqrt{2a}t^{-3}.$$

Damit haben wir ein Ergebnis, das sich Koeffizientenweise mit der gewünschten Formel vergleichen lässt:

$$2i\sqrt{2a}t^{-2} - t^{-1} = \sum_{n=-2}^{\infty} (u_n + v_n)t^n$$
(5.4)

$$-3i\sqrt{2a}t^{-3} = \sum_{n=-3}^{\infty} \left((n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1} \right) t^n$$
(5.5)

Nun können wir mit (5.4) und (5.5) jeweils nochmals einen Koeffizientenvergleich durchführen und erhalten zunächst aus (5.4), die Bedingungen

$$2i\sqrt{2a} = u_{-2} + \underbrace{v_{-2}}_{=0} = u_{-2} \tag{5.6}$$

$$-1 = u_{-1} + v_{-1} (5.7)$$

$$0 = u_n + v_n \qquad \forall n \ge 0 \tag{5.8}$$

welche wir als nächstes mit (5.5) kombinieren wollen. Betrachte zunächst die Vorfaktoren vor t^{-3} :

$$-3i\sqrt{2a} = (-2)u_{-2} + \sum_{k=0}^{0} v_{k-1}u_{-3-k+1}$$

$$= -2u_{-2} + v_{-1}u_{-2}$$

$$\stackrel{(5.6)}{=} -2 \cdot 2i\sqrt{2a} + v_{-1}2i\sqrt{2a}$$

$$\stackrel{a\neq 0}{\Rightarrow} v_{-1} = \frac{4i\sqrt{2a} - 3i\sqrt{2a}}{2i\sqrt{2a}}$$

$$= \frac{1}{2}$$

und somit

$$\stackrel{(5.7)}{\Rightarrow} -1 = u_{-1} + v_{-1}$$
$$= u_{-1} + \frac{1}{2}$$

$$\Rightarrow u_{-1} = -\frac{3}{2} \,.$$

Nun zum allgemeinem Koeffizienten vor t^n mit n > -3:

$$0 = (n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1}$$

$$= (n+1)u_{n+1} + (\sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}) + v_{n+3-1}u_{n-(n+3)+1}$$

$$= (n+1)u_{n+1} + (\sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}) + \overline{v_{n+2}u_{-2}}$$

$$\Rightarrow v_{n+2}u_{-2} = -\left((n+1)u_{n+1} + \sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}\right)$$

$$\stackrel{u_{-2}\neq 0}{\Rightarrow} v_{n+2} = -\frac{1}{u_{-2}}\left((n+1)u_{n+1} + \sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}\right)$$

und nach passendem Indexshift folgt

Kommentar:
$$n+2 \rightarrow n$$

$$\Rightarrow v_n = -\frac{1}{u_{-2}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right)$$

$$\stackrel{(5.6)}{=} -\frac{1}{2i\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right)$$

$$= \frac{i}{2\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right)$$

Also ist $\mathcal{N} = \mathcal{N}_1 \oplus \mathcal{N}_2$ mit $\mathcal{N}_1 = \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\partial_t + \sum_{n=-1}^{\infty} v_n t^n)$ und $\mathcal{N}_2 = \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\partial_t + \sum_{n=-2}^{\infty} u_n t^n)$ Zusammen mit $u_{-2} = 2i\sqrt{2a}$, $u_{-1} = -\frac{3}{2}$ und $v_{-1} = \frac{1}{2}$ sind durch

$$v_n = -u_n = \frac{i}{2\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right) \qquad \forall n \ge 0$$
 (5.9)

die Koeffizienten von v(t) und u(t) vollständig bestimmt.

Nun lässt sich diese Zerlegung mit $\mathscr{E}^{-\psi(t)}$ zurücktwisten und wir erhalten damit die Zerlegung

$$\rho^{+}\mathcal{M}_{\varphi} \stackrel{3.28}{=} \rho^{+}\mathcal{M}_{\varphi} \otimes \mathscr{E}^{\psi(t)} \otimes \mathscr{E}^{-\psi(t)}$$
$$= \overline{(\mathcal{N}_{1} \oplus \mathcal{N}_{2})} \otimes \mathscr{E}^{-\psi(t)}$$

$$\begin{split} &= \underbrace{\mathcal{N}_{1}}_{1} \otimes \mathscr{E}^{-\psi(t)} \oplus \underbrace{\mathcal{N}_{2}}_{2} \otimes \mathscr{E}^{-\psi(t)} \\ &= (\overleftarrow{\mathcal{D}_{\widehat{L}}}/\mathcal{D}_{\widehat{L}} \cdot Q_{1} \otimes \mathscr{E}^{-\psi(t)}) \oplus (\overleftarrow{\mathcal{D}_{\widehat{L}}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2} \otimes \mathscr{E}^{-\psi(t)}) \end{split}$$

wobei Q_1 bereits regulär. Betrachte also noch $\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}}\cdot Q_2\otimes \mathscr{E}^{-\psi(t)}$:

$$\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2} \otimes \mathscr{E}^{-\psi(t)} \stackrel{3.27}{=} \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2}(t, \partial_{t} - i\sqrt{2a}t^{-2})$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} - i\sqrt{2a}t^{-2} + u(t))$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} + i\sqrt{2a}t^{-2} + \sum_{n=-1}^{\infty} u_{n}t^{n})$$

$$\stackrel{3.27}{=} \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} + \sum_{n=-1}^{\infty} u_{n}t^{n}) \otimes \mathscr{E}^{\psi(t)}$$
regulär

Kommentar: Damit ist der zweite Summand also auch ein elementarer meromorpher Zusammenhang.

Also zerlegt sich \mathcal{M} , nach einem Pullback mit $\rho: t \mapsto x = -2t^2$, in

$$\rho^{+}\mathcal{M}_{\varphi} = \left(\underbrace{\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\partial_{t} + \sum_{n=-1}^{\infty} v_{n} t^{n}\right)}_{=:\mathcal{R}_{1}} \otimes \mathscr{E}^{-\psi(t)}\right) \oplus \left(\underbrace{\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\partial_{t} + \sum_{n=-1}^{\infty} u_{n} t^{n}\right)}_{=:\mathcal{R}_{2}} \otimes \mathscr{E}^{\psi(t)}\right).$$

Nach Zerlegen von \mathcal{R}_1 und \mathcal{R}_2 in eine direkte Summe von elementaren formalen meromorphen Zusammenhängen, wie in Satz 4.5, ist die Levelt-Turrittin-Zerlegung vollständig gegeben.

5.2.1 Konvergenz der Summanden

Kommentar: TODO: text

Es ist klar, dass die Potenzreihen nicht konvergent sein dürfen, trotzdem wollen wir die Potenzreihen auf Konvergenz untersuchen

Für n > 0 gilt $v_{n-1} \stackrel{(5.8)}{=} -u_{n-1}$ und damit wollen wir die Formel (5.9) noch weiter vereinfachen, um eine Version zu bekommen, die sich gut implementieren lässt. Aus (5.9) ergeben sich zunächst für n = 0 die Koeffizienten

$$v_0 = -\frac{1}{u_{-2}}((-1)u_{-1} + \sum_{k=0}^{0} v_{k-1}u_{-k-1})$$

$$= -\frac{1}{u_{-2}} \left(\frac{3}{2} - \frac{3}{4} \right)$$

$$= -\frac{3}{4u_{-2}}$$

$$\stackrel{(5.6)}{=} \frac{3i}{8\sqrt{2a}} = -u_0$$

Kommentar: Somit ergeben sich für n=1 die Koeffizienten

$$v_{1} = -\frac{1}{u_{-2}}((1-1)u_{1-1} + \sum_{k=0}^{1} v_{k-1}u_{1-k-1})$$

$$= -\frac{1}{u_{-2}}(v_{-1}u_{0} + v_{0}u_{-1})$$

$$= -\frac{v_{0}}{u_{-2}}(-v_{-1} + u_{-1})$$

$$= \frac{3}{u_{-2} \cdot 4u_{-2}}(-\frac{1}{2} - \frac{3}{2})$$

$$= \frac{3}{4u_{-2}^{2}}(-2)$$

$$= -\frac{3}{2u_{-2}^{2}}$$

$$= \frac{3}{16a} = -u_{1}$$

$$\stackrel{a=\frac{1}{8}}{=} 1.5$$

und für n=2 ist

$$v_{2} = -\frac{1}{u_{-2}}((2-1)u_{2-1} + \sum_{k=0}^{2} v_{k-1}u_{2-k-1})$$

$$= -\frac{1}{u_{-2}}(u_{1} + v_{-1}u_{1} + v_{0}u_{0} + v_{1}u_{-1})$$

$$= -\frac{1}{u_{-2}}(\frac{3}{2u_{-2}^{2}} + \frac{1}{2}\frac{3}{2u_{-2}^{2}} + \frac{-3}{4u_{-2}}\frac{3}{4u_{-2}} + \frac{-3}{2u_{-2}^{2}}\frac{-3}{2})$$

$$= -\frac{1}{u_{-2}}(\frac{24}{16} + \frac{12}{16} - \frac{9}{16} + \frac{36}{16})$$

$$= -\frac{63}{16u_{-2}^{3}}$$

$$= -\frac{63}{16(2i\sqrt{2a})^{3}}$$

$$= \frac{63}{256ia\sqrt{2a}}$$

$$= -\frac{63}{256a\sqrt{2a}} = -u_{2}$$

und für
$$n = 3$$
 ist
$$v_3 = -\frac{1}{u_{-2}}((3-1)u_{3-1} + \sum_{k=0}^{3} v_{k-1}u_{3-k-1})$$

$$\approx -u_{-2}^{-4}(-\frac{63}{8} - \frac{1}{2}v_2 - v_0v_1 - v_1v_0 - \frac{3}{2}v_2)$$

$$= -u_{-2}^{-4}(-\frac{(4-1)63}{32} - 2\frac{-3}{4}\frac{-3}{2} - \frac{3}{2}\frac{-63}{16})$$

$$= -\frac{-(4-1)63 - 8 \cdot 9 + 3 \cdot 63}{32u_{-2}^4}$$

$$= -\frac{-8 \cdot 9}{8 \cdot 4u_{-2}^4}$$

$$= \frac{9}{4u_{-2}^4}$$

Kommentar: und analog, für n = 1 und n = 2

$$v_1 = -\frac{3}{2u_{-2}^2} = \frac{3}{16a} = -u_1$$
 und $v_2 = -\frac{63}{16u_{-2}^3} = -\frac{63i}{256a\sqrt{2a}} = -u_2$.

Die letzten zwei Paare sind für die Berechnung nicht von Bedeutung und dienen nur dazu, das Programm zu prüfen.

Nun vereinfachen wir die Formel:

$$\begin{split} v_n &= -\frac{1}{u_{-2}} \Big((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \Big) \\ &= -\frac{1}{u_{-2}} \Big((n-1)u_{n-1} + v_{-1}u_{n-1} + (\sum_{k=1}^{n-1} v_{k-1}u_{n-k-1}) + v_{n-1}u_{-1} \Big) \\ &\stackrel{(5.8)}{=} -\frac{1}{u_{-2}} \Big(-(n-1)v_{n-1} + v_{-1}(-v_{n-1}) + (\sum_{k=1}^{n-1} v_{k-1}(-v_{n-k-1}) + v_{n-1}u_{-1} \Big) \\ &= -\frac{1}{u_{-2}} \Big(-(n-1)v_{n-1} - \frac{1}{2}v_{n-1} - \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} - \frac{3}{2}v_{n-1} \Big) \\ &= \frac{1}{u_{-2}} \Big((n-1+\frac{1}{2}+\frac{3}{2})v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \Big) \\ &= \frac{1}{u_{-2}} \Big((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \Big) \end{split}$$

Zu gegebenem $u_{-2}=2i\sqrt{2a}$, sind die Koeffizienten gegeben durch:

$$v_{-1} = \frac{1}{2}$$

$$v_{0} = -u_{0} = -\frac{3}{4u_{-2}}$$

$$v_{n} = -u_{n} = \frac{1}{u_{-2}} \left((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \right)$$

$$\forall n > 0$$

Kommentar: WEITER VEREINFACHEN:

$$v_{-1} = \frac{1}{2}$$

$$v_{0} = -u_{0} = -\frac{3}{4u_{-2}}$$

$$v_{n} = -u_{n} = \frac{1}{u_{-2}} \left((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \right)$$

$$\forall n > 0$$

Dies können wir, wie folgt, weiter umschreiben und setzte dazu

$$v_i := \frac{1}{u_{-2}^{i+1}} \tilde{v}_i$$
 $u_i := \frac{1}{u_{-2}^{i+1}} \tilde{u}_i$ $\forall n > -1$

Dann gilt:

$$\tilde{v}_{-1}:=\frac{1}{2}$$

$$\tilde{v}_0:=-\tilde{u}_0:=-\frac{3}{4}$$

$$\tilde{v}_0:=0$$

und mit

$$\begin{split} v_n &= \frac{1}{u_{-2}} \left((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \right) \\ &= \frac{1}{u_{-2}} \left((n+1)\frac{1}{u_{-2}^n} \tilde{u}_{n-1} + \sum_{k=1}^{n-1} \frac{1}{u_{-2}^k} \tilde{v}_{k-1} \frac{1}{u_{-2}^{n-k}} \tilde{v}_{n-k-1} \right) \\ &= \frac{1}{u_{-2}^{n+1}} \left(\underbrace{(n+1)\tilde{u}_{n-1} + \sum_{k=1}^{n-1} \tilde{v}_{k-1} \tilde{v}_{n-k-1}}_{=:\tilde{v}_n = :-\tilde{u}_n} \right) \end{split}$$

definieren wir

$$\tilde{v}_n := -\tilde{u}_n := (n+1)\tilde{v}_{n-1} + \sum_{k=1}^{n-1} \tilde{v}_{k-1}\tilde{v}_{n-k-1}$$
 $\forall n > 0$

Im Anhang wird in Abschnitt B.2 eine Haskell Modul vorgestellt, welches zu gegebenem u_{-2} die Werte von v(t) und u(t) berechnet.

In der Abbildung 5.7 sind die Beträge der Koeffizienten von v(t) in Abhängigkeit von n für verschiedene u_{-2} angetragen.

Abbildung 5.7: Die Beträge der v_n in Abhängigkeit von n für unterschiedliche u_{-2} .

Nun wollen wir das Konvergenzverhalten genauer betrachten. Es gilt, dass

$$Q_1 \in \mathcal{D}_{\widehat{L}} \backslash \mathcal{D}_L \Leftrightarrow v(t) \in \widehat{L} \backslash L$$
 bzw. $(\partial_t + \sum_{n=-1}^{\infty} u_n t^n) \in \mathcal{D}_{\widehat{L}} \backslash \mathcal{D}_L \Leftrightarrow u(t) \in \widehat{L} \backslash L$.

Außerdem gilt, dass $v(t) \in \widehat{L} \setminus L \Leftrightarrow u(t) \in \widehat{L} \setminus L$. Also reicht es eine der beiden Potenzreihen zu untersuchen. Wir betrachten die folgenden zwei klassischen Konvergenzkriterien.

Satz 5.8 (Wurzlkriterium nach Cauchy). Sei $\sum_n a_n x^n$ eine Potenzreihe. Es gilt:

$$\limsup_{n\to\infty} \sqrt[n]{|a_n|} = +\infty \Rightarrow \ \ die \ Potenzreihe \ ist \ nirgends \ konvergent.$$

Beweis. Siehe [Kno64, §18, Satz 94].

In der Abbildung 5.8 sind, für verschiedene u_{-2} die numerischen Werte von $\sqrt[n]{|a_n|}$ in Abhängigkeit von n angetragen.

Kommentar: Der graue Bereich ist leider außerhalb der Rechengenauigkeit, da mit zu großen Fließkommazahlen gerechnet werden muss. Der graue Bereich ist hier näherungsweise gegeben durch $\{(x,n)\in\mathbb{R}\times\mathbb{N}\mid x>10^{300/n}\}$, da die größte Zahl im Zahlenbereich näherungsweise 10^{300} entspricht.

Abbildung 5.8: Wurzlkriterium angewendet auf die Koeffizienten

Satz 5.9 (Quotientenkriterium). Sei $\sum_n a_n x^n$ eine Potenzreihe. Es gilt:

$$\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}=0 \Rightarrow \ \ die \ Potenzreihe \ ist \ nirgends \ konvergent.$$

Kommentar:

Beweis. Es gilt, dass $\sum_n a_n x^n$ für ein $x \in \mathbb{C}$ konvergent ist, falls

$$\exists N \in \mathbb{N} : \forall n > N : \left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| \le \eta < 1$$

und das ist äquivalent zu
$$\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| |x| < 1 \,.$$
 Also konvergiert die Reihe für alle x mit $|x| < \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|$.

In Abbildung 5.9 sind, analog wie in Abbildung 5.8, die Werte von $\frac{|a_n|}{|a_{n+1}|}$ in Abhängigkeit von n eingezeichnet. Auch hier sieht es so aus, als konvergieren die Werte, wie erwartet, für jedes u_{-2} gegen 0.

Abbildung 5.9: Quotientenkriterium angewendet auf die Koeffizienten

Schluss

Kommentar: Es wurde gezeigt...

 $\kappa_{\rm ommentar}$: Stokes Struktur ausrechen? Dazu die Lösung asymptotisch approximieren \leadsto offensichtlich schwer

deshalb suche andere Lösung

Als nächstes Ziel könnte man haben, die Stokes Struktur des zerlegten meromorphen Zusammenhangs zu berechnen. Dazu möchte man die Lösungen der einzelnen Summanden asymptotisch approximieren.

A Aufteilung von $t \varphi'(t)$

Sei $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$, so ist $\varphi' \coloneqq \sum_{i=2}^N a_{-i}t^{-i} \in t^{-2}\mathbb{C}[t^{-1}]$ also $u\varphi'(t) = \sum_{i=1}^N a_{-i-1}t^{-i} \in t^{-1}\mathbb{C}[t^{-1}]$, welches wir zerlegen wollen. Zerlege also $t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p)$ mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$:

also:

$$\psi_0(t^p) = a_{-(p+1)}t^{-p} + a_{-(2p+1)}t^{-2p} + \dots$$

$$\psi_1(t^p) = a_{-p}t^{-p} + a_{-2p}t^{2p} + \dots$$

$$\vdots$$

$$\psi_{p-1}(t^p) = a_{-2}t^p + a_{-(p+2)}t^{2p} + \dots$$

B Quelltexte

B.1 ComplRat.hs

Das Modul Compl
Rat implementiert die Zahlen $\mathbb{Q}(i)$.

Listing B.1: ComplRat.hs

```
1 -- | Dieses Modul stellt den Datentyp 'ComplRat' komplexrationaler
   -- Zahlen, also den Elementen von /Q(i)/, bereit.
3 module ComplRat
       ( ComplRat(..)
       , realPart
       , imagPart
       , magnitude
       , magnitudeSq
8
       ) where
9
10 import Data. Ratio
11
  -- | Typ für komplexrationale Zahlen in kartesischer Darstellung.
   -- Der Konstruktor ist strikt in seinen beiden Argumenten.
14 data ComplRat = !Rational :+: !Rational
       deriving (Eq)
16
17
   -- Funktionen
20 -- | Gibt den reelen Teil einer gegebenen complexen Zahl zurück
21 realPart :: ComplRat -> Rational
22 realPart (x :+: _{-}) = x
24
   -- | Gibt den imaginären Teil einer gegebenen complexen Zahl zurück
25 imagPart :: ComplRat -> Rational
26 imagPart (_ :+: y) = y
27
28 -- | Der nichtnegative Betrag einer complexen Zahl
   -- nur für rein reele oder complexe Zahlen, da es sonst, aufgrund der fehlenden
30 -- Wurzel, zu problemen kommt
31 magnitude :: ComplRat -> Rational
32 magnitude (x :+: 0) = abs x
33 magnitude (0 :+: y) = abs y
```

```
magnitude (_ :+: _) = error "Oops! Use magnitudeSq instead."
   \{-\text{magnitude} (x :+: y) = P.\text{sqrt} ( \text{sqr} x P.+ (\text{sqr} y) )-\}
35
     \{-\text{where sqr } z = z P.* z-\}
36
37
   -- | Das quadrat des Betrags einer complexen Zahl
38
   -- ist für alle complexen zahlen geeignet
  magnitudeSq :: ComplRat -> Rational
   magnitudeSq (x :+: y) = x*x + y*y
43
   -- Instanzen von ComplRat
45
   instance Show ComplRat where
46
       show (x :+: y) | y == 0
                                    = show x
47
                        | otherwise = "(" ++ show x ++ "+i" ++ show y ++ ")"
48
49
   instance Num ComplRat where
50
       (x :+: y) + (x' :+: y') = (x+x') :+: (y+y')
51
52
       (x :+: y) * (x' :+: y') = (x*x' - y*y') :+: (x*y' + y*x')
                                = negate x :+: negate y
       negate (x :+: y)
53
54
       fromInteger i
                               = fromInteger i :+: 0
55
       abs z
                               = magnitude z :+: 0
       signum (0:+:0)
56
       {-signum z@(x:+:y)
                                   = x P./ r :+: y P./ r where r = magnitude z-
57
58
59 instance Fractional ComplRat where
                        = fromRational r :+: 0
    fromRational r
     (a :+: b)/(c :+: d) = ((a*c + (b*d))/n) :+: ((b*c - (a*d))/n)
61
       where n = c*c + d*d
```

Hier ist :+: ein Infix-Konstruktor der Klasse ComplRat und erzeugt mit einem Aufruf der Form a :+: b eine Imaginärzahl, die a + ib entspricht.

B.2 Koeffs.hs

Dieses Modul Koeffs stelle die Funktionen vKoeffs und uKoeffs bereit, welche zu einem gegebenem Wert von $u_{-2} =: uMin2$ eine unendliche Liste der Koeffizienten generieren. Die Einträge in der Liste sind vom Typ ComplRat. Dies ermöglicht es, dass die Berechung ohne numerische Fehler erfolgt, da nie gerundet wird.

Listing B.2: Koeffs.hs

```
1 -- | Dieses Modul stellt Funktionen bereit, welche die zu einem Startwert
2 -- gehörigen Koeffizienten von v(t) und u(t) generieren
3 module Koeffs
4 ( vKoeffs
5 , uKoeffs
```

```
) where
   import ComplRat
   import Data.MemoTrie (memo) -- https://github.com/conal/MemoTrie
   -- returns array with the coefficients of v(t)
10
   -- first element in array is koefficient from t^{-1}
  vKoeffs :: ComplRat -> [ComplRat]
   vKoeffs uMin2 = 1/2:+:0 : [koeff i|i <- [0..]]
     where koeff :: Int -> ComplRat
14
           koeff = memo koeff'
15
           koeff' :: Int -> ComplRat
           koeff' n \mid n > 0 = (koeff (n-1)*(fromIntegral n+1)+summe)/uMin2
17
                     | n == 0
                                = -3/(uMin2*4)
                    | n == -1
                                = 1/2
19
                    | otherwise = 0
20
21
                    where summe = sum [koeff (k-1)*(koeff (n-k-1))|k <- [1..n-1]]
22
   -- returns array with the coefficients of u(t)
23
   -- first element in array is koefficient from t^{-2}
  uKoeffs :: ComplRat -> [ComplRat]
  uKoeffs uMin2 = uMin2 : -3/2:+:0 : (map negate (tail $ vKoeffs uMin2))
```

Beispielhaft kann man mit dem folgendem Programm die Koeffizienten von v(t), zu $a = \frac{1}{8}$ also $u_{-2} = i = 2i\sqrt{2a}$, erzeugen lassen.

Listing B.3: testKoeffs.hs

```
module Main where
2 import ComplRat
   import Koeffs
   import System. Environment
  uMin2=(0:+:1)
  main :: IO()
   main = do x \leftarrow getArgs
             putStrLn $ "n \t| v_n\n----+"++(replicate 70 '-')
10
              main' \ head \ map (\xspace x -> read x :: Int) x
11
     where main' :: Int -> IO()
12
            main' end = mapM_ addLine $ zip [-1..end] $ vKoeffs uMin2
13
              where addLine (i,a) = putStrLn $ show i ++ "\t| " ++ show a
```

Ist der Code in einer Datei /**Pfad**/**zu**/**testKoeffs.hs** gespeicher, so lässt er sich in Unix-Artigen Systemen beispielsweise mit den folgenden Befehlen compilieren und ausführen.

```
1 $ ghc --make /Pfad/zu/testKoeffs.hs
2 $ /Pfad/zu/testKoeffs 15
```

Durch das Ausführen berechnet das Programm die Koeffizienten von v bis zum Index 15 und gibt in der Konsole das folgende aus

```
1 n | v_n
3 -1
           1 1 % 2
           | (0 % 1+i3 % 4)
5 1
           | 3 % 2
           | (0 % 1+i(-63) % 16)
7 3
           | (-27) % 2
           | (0 % 1+i1899 % 32)
8 4
9
           | 324 % 1
10 6
          | (0 % 1+i(-543483) % 256)
11 7
          | (-32427) % 2
          | (0 % 1+i72251109 % 512)
12 8
           | 2752623 % 2
13 9
14
   10
           | (0 % 1+i(-30413055339) % 2048)
15 11
           | (-175490226) % 1
16 12
           | (0 % 1+i9228545313147 % 4096)
17 13
           | 31217145174 % 1
           | (0 % 1+i(-30419533530730323) % 65536)
18 14
           | (-14741904895227) % 2
```

Übersetzt in unsere Zahlenschreibweise ergibt sich daraus die folgende Tabelle:

n	v_n
-1	$\frac{1}{2}$
0	$\frac{3}{4}i$
1	$\frac{3}{2}$
2	$-\frac{63}{16}i$
3	$-\frac{27}{2}$
4	$\frac{1899}{32}i$
5	342
6	$-\frac{543483}{256}i$
7	$-\frac{32427}{2}$
8	$\frac{72251109}{512}i$
9	$\frac{2752623}{2}$
10	$-\frac{30413055339}{2048}i$
11	-175490226
12	$\frac{9228545313147}{4096}i$
13	31217145174
14	$-\frac{30419533530730323}{65536}i$
15	$-\frac{14741904895227}{2}$

Tabelle B.1: Numerisch berechnete Koeffizienten von v(t) für $u_{-2}=i$ bzw. $a=\frac{1}{8}$

$$v(t) = \frac{1}{2}t^{-1} + \frac{3}{4}it^{0} + \frac{3}{2}t^{1} + \frac{-63}{16}it^{2} + \frac{-27}{2}t^{3} + \frac{1899}{32}it^{4} + \frac{324}{1}t^{5} + \frac{-543483}{256}it^{6} + \frac{-32427}{2}t^{7} + \frac{72251109}{512}it^{8} + \frac{2752623}{2}t^{9} + \frac{-30413055339}{2048}it^{10} + \frac{-175490226}{1}t^{11} + \frac{9228545313147}{4096}it^{12} + \frac{31217145174}{1}t^{13} + \frac{-30419533530730323}{65536}it^{14} + \frac{-14741904895227}{2}t^{15} + \frac{16317191917079376129}{131072}it^{16} + \frac{4456057685561073}{2}t^{17} + \frac{-22082325223708363779009}{524288}it^{18} + \frac{-1677161966915352627}{2}t^{19} + \frac{18391039987731669876160557}{1048576}it^{20} + \frac{384452768592440499024}{1}t^{21} + \frac{-73930258776609869550094166319}{8388608}it^{22} + \frac{-210878717949731493002826}{1}t^{23} + \frac{88204980719873920964105544038937}{16777216}it^{24} + \frac{136346686011011135869054074}{1}t^{25} + \frac{-246474684300724210330466557670749827}{67108864}it^{26} + \frac{1}{1048576}it^{26} + \frac{1}{10485$$

```
\frac{-102614997677451303311734530276}{1}t^{27} + \\ \frac{398608966820777951112056743321778108571}{134217728}it^{28} + \\ \frac{88929857099067937229443324337874}{1}t^{29} + \\ \frac{-11819876688678190917510659802435441505814403}{4294967296}it^{30} + \dots
```

B.3 SaveToFile.hs

Listing B.4: SaveToFile.hs

```
1 module Main where
2 import ComplRat
3 import Koeffs
5 -- from numbers
   import Data.Number.CReal (CReal)
8 -- from monad-parallel
  import qualified Control.Monad.Parallel as P (sequence_)
10
   -- for writing to file
12 import System. Environment
13 import System. IO
14
  import Data.Time
15
   main = do x <- getArgs; P.sequence_ $ main' $ (read $ head x :: Int)</pre>
17
18
       main' x = map (saveData x) [ ("./data/u_-2=i"
                                                         , (0:+:1))
                                   , ("./data/u_-2=1.0e-5i" , (0:+:1.0e-5))
20
                                    , ("./data/u_-2=1.0e-4i" , (0:+:1.0e-4))
^{21}
                                    , ("./data/u_-2=1.0e-3i" , (0:+:1.0e-3))
                                    , ("./data/u_-2=1.0e-2i" , (0:+:1.0e-2))
23
                                    , ("./data/u_-2=1.0e-1i" , (0:+:1.0e-1))
24
                                    , ("./data/u_-2=10000i" , (0:+:10000))
25
                                    , ("./data/u_-2=1000i" , (0:+:1000))
26
                                                          , (0:+:100))
                                     ("./data/u_-2=100i"
                                     ("./data/u_-2=10i" , (0:+:10))
28
29
30
       saveData :: Int -> (String, ComplRat) -> IO()
31
       saveData end (fn, uMin2) =
32
         do start <- getCurrentTime</pre>
33
```

```
withFile fn WriteMode (\handle -> do
34
               hPutStr handle (concat $ take end $ map genLine triples))
35
             stop <- getCurrentTime</pre>
36
             putStrLn $ fn ++ " " ++ (show $ diffUTCTime stop start)
37
          where vals
                        = vKoeffs uMin2
38
                triples = zip3 [0..] (tail vals) vals
39
40
41
        genLine :: (Int, ComplRat, ComplRat) -> String
42
        genLine (i,v1,v2) = concat [ show i
                                    , genItemBetrag (i,v1,v2) , "\t^{"}
43
                                    , genItemCauchy (i,v1,v2) , "\t"
44
                                                             , "\n" ]
                                    , genItemQuot (i,v1,v2)
45
          where realMag = fromRational $ magnitude v1 :: CReal
46
47
                genItemBetrag :: (Int, ComplRat, ComplRat) -> String
48
                genItemBetrag (_,v,_) = show $ realMag
49
50
                genItemCauchy :: (Int, ComplRat, ComplRat) -> String
51
52
                genItemCauchy (i,v,_)
                  l i == 0
                            = show $ realMag
53
                  | otherwise = show $ realMag**(1 / (fromIntegral i))
54
55
                genItemQuot :: (Int, ComplRat, ComplRat) -> String
56
                genItemQuot (_,v1,v2) = show $ sqrt $ fromRational $ genItemQuot'
                  where genItemQuot' = magnitudeSq v2 / magnitudeSq v1
58
```

In diesem Modul werden zusätzlich die Module Data.Number.CReal und Control.Monad.Parallel eingebunden. Die Datentyp CReal des ersten Moduls implementiert die Reellen Zahlen und wird verwendet, da die berechneten Zahlen den Zahlenbereich des Floating Datentypes übersteigen. Das zweite Modul stellt eine veränderte Version von sequence_ bereit, welches automatisch die ausführungen parallelisiert.

```
Kommentar: Beide Pakete lassen sich mittels dem Cabal Befehl

1 cabal install numbers monad-parallel

installieren
```

Literaturverzeichnis

- [Ara] D. Arapura, Notes on d-modules and connections with hodge theory.
- [Ark12] S. Arkhipov, *D-modules*, unpublished lecture notes available online, May 2012.
- [AV09] B. Alkofer and F. Vogl, Lineare differentialgleichungen und deren fouriertransformierte aus algebraischer sicht / lineare differentialgleichungen aus algebraischer sicht, 2009.
- [Ayo09] J. Ayoub, Introduction to algebraic d-modules, Vorlesungsskript, 2009.
- [BD04] A. Beilinson and V.G. Drinfeld, *Chiral algebras*, Colloquium Publications American Mathematical Society, no. Bd. 51, American Mathematical Society, 2004.
- [Blo04] Spencer Bloch, Local fourier transforms and rigidity for d-modules, Asian J. Math (2004), 587–605.
- [Com74] L. Comtet, Advanced combinatorics: The art of finite and infinite expansions, D. Reidel Publishing Company, 1974.
- [Cou95] S.C. Coutinho, A primer of algebraic d-modules, London Mathematical Society Student Texts, Cambridge University Press, 1995.
- [Ell10] C. Elliott, *D-modules*, unpublished notes available online, April 2010.
- [Gin98] V. Ginzburg, Lectures on d-modules, Vorlesungsskript, 1998.
- [GL04] Ricardo García López, Microlocalization and stationary phase, Asian J. Math. 8 (2004), no. 4, 747–768. MR MR2127946 (2005m:32014)
- [Har77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, 1977.
- [Hei10] Hedwig Heizinger, Verschwindungszykel regulär singulärer D-Moduln und Fouriertransformation, 2010.
- [HTT07] R. Hotta, K. Takeuchi, and T. Tanisaki, *D-modules, perverse sheaves, and representation theory*, Progress in Mathematics, Birkhäuser Boston, 2007.
- [Hut07] Graham Hutton, Programming in Haskell, Cambridge University Press, January 2007.

- [Kas03] M. Kashiwara, *D-modules and microlocal calculus*, Translations of Mathematical Monographs, American Mathematical Society, 2003.
- [Kno64] Konrad Knopp, Theorie und anwendung der unendlichen reihen, Die Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 1964.
- [MR89] H. Matsumura and M. Reid, *Commutative ring theory*, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
- [Sab90] C. Sabbah, Introduction to algebraic theory of linear systems of differential equations, Vorlesungsskript, 1990.
- [Sab07] _____, An explicit stationary phase formula for the local formal Fourier-Laplace transform, June 2007.
- [Sch94] J.P. Schneiders, An introduction to d-modules, unpublished lecture notes available online, 1994.
- [Sta12] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, December 2012.