

Gabriel Rodrigues Munhoz RA 162053541

Laboratório de Física II 2º Relatório

Ilha Solteira, São Paulo Abril de 2017

Sumário

0.1	Objetivo
0.2	Resumo
0.3	Introdução Teórica
0.3.1	Rolamento
0.3.2	Energia cinética de rolamento
0.4	Procedimento Experimental
0.4.1	Materiais
0.4.2	Método
0.5	Resultados e Discussão
0.6	Conclusão
0.7	Referências Bibliográficas

0.1 Objetivo

Determinar as equações do deslocamento, velocidade e aceleração angular de uma esfera rolante num plano inclinado

0.2 Resumo

O experimento realizado consistiu em determinar equações do deslocamento, velocidade e aceleração para um corpo que se deslocava em um plano inclinado com atrito. Após realizado todos os cálculos verificamos uma diferença de momento de inércia de 272% e uma diferença de energia mecânica final e inicial de 45%. Os erros foram colocados como sendo causados principalmente pelo atrito e pela velocidade de reação humana na demarcação do tempo, pois foi se utilizado cronômetro manual.

0.3 Introdução Teórica

0.3.1 Rolamento

Para uma melhor analise do movimento de rotação , tomaremos como exemplo uma roda de bicicleta. Quando uma roda move-se sobre uma pista plana, seu centro de massa desloca-se para frente em um movimente de translação. Considere um roda de raio R, rolando sem deslizar em uma superfície plana. Quando a roda gira um ângulo θ , o ponto de contato do aro com a superfície horizontal se desloca uma distancia s, tal que:

$$S = R * \theta (1)$$

O centro de massa da roda deslocou-se a mesma distância, assim a velocidade do centro de massa (Vcm) pode ser escrita da seguinte forma:

$$Vcm=ds/dt(2)$$

A velocidade angular ω em torno do centro pode ser representada da seguinte forma:

$$\omega = d\theta/dt$$
 (3)

Assim derivando a equação (1) em função do tempo, e adotando que R é uma constante , temos:

$$Vcm = \omega * R (4)$$

0.3.2 Energia cinética de rolamento

Para calcular a energia cinética de roda em movimento , considere um ponto P na roda. A energia cinética é dada por:

$$K = 1/2 * Ip \omega^2 (5)$$

Onde ω é o modulo da velocidade angular e Ip é o momento de inercia em relação ao ponto P. Pelo teorema de eixos paralelos temos:

$$Ip = Icm + M * R^2 (6)$$

Na qual M e a massa da roda e Icm o momento de inercia do centro de massa. Para uma esfera, o Icm e representado da seguinte forma:

Icm=
$$(2 * M * R^2)/5$$
 (7)

Assim a energia cinética pode ser representada da seguinte forma :

$$K = (M * Vcm + Icm\omega^2)/2$$
 (8)

0.4 Procedimento Experimental

0.4.1 Materiais

Nesse experimento foi usado os seguinte materiais:

- -esfera de aço;
- -trilho com marcações;
- -trena e régua;
- -cronômetro:
- -paquímetro;
- -balança semi-analitica;

0.4.2 Método

Primeiramente o trilho foi dividido em oito partes iguais, cada uma com 10 cm de comprimento. O trilho foi colocado em uma posição inclinada, apoiada em um suporte de madeira e medimos a altura da barra e a distância do suporte de madeira até o fim da barra, e obtivemos o valores de 10 cm e 89,2cm ,respectivamente.

Com isso, soubemos que o ângulo de inclinação formado era de θ = 6,4 graus. Em seguida medimos o diâmetro da esfera (d=0,031m) e também a pesamos (M= 0,111kg).

A seguir a esfera foi solta do início do trilho, e foram feitas, com o auxílio do celular, as medições de tempo da esfera ao se deslocar por cada marcação. Após realizado isso foram feitas as marcações do tempo nos gráficos e calculadas as equações de deslocamento, velocidade e aceleração

0.5 Resultados e Discussão

A partir do gráfico espaço em função do tempo no papel dilog, obtivemos a coeficiente linear onde o gráfico cortava o eixo das coordenas:

a=0,38

E por meio de cálculos conseguimos o coeficiente angular:

n= (logyf - logyi) / (logxf - logxi)

 $n = (\log 0.45 - \log 0.10) / (\log 1.1 - \log 0.45)$

n = 1.68

Portanto a equação horaria (S x t):

 $S = 0.38t^{1.68}$

Por meio da derivada dessa função obtemos a equação da velocidade:

 $V=0.64t^{0.68}$

E a partir da derivada segunda da função horaria obtivemos a equação da aceleração:

 $a=0,43t^{-0,32}$

Utilizando a equação (4) adquirimos a equação da velocidade angular:

 $0.64t^{0.68} = \omega * 0.0155$

 $\omega = 41.3t^{0.68}$

E derivando essa equação para encontrarmos a aceleração angular temos:

 α = 28,1 $t^{-0,32}$

Substituindo o valor do tempo no instante B na equação da velocidade angular, temos que:

 $\omega = 41.3 * 1.6^{0.68}$

 $\omega = 56.8 \text{rad/s}$

Pela formula (7) calculamos o momento de inercia que a esfera deveria apresentar teoricamente:

 $Icm = (2 * 0.111 * 0.0155^2)/5$

 $Icm = 1.1 * 10^{-5}$

Porém, experimentalmente calculamos o momento de inercia através da equação da energia mecânica. Sabendo que a energia mecânica inicial, segundo a teoria, deve ser igual a energia mecânica final, tiramos que:

Em1 = Em2

Ep1 + Ec1 = Ep2 + Ec2
$$M*g*h = K$$
 A partir da formula (8):
$$K=\omega^2 (Icm + m*R^2)/2$$

$$M*g*h = \omega^2 (Icm + mR^2)/2$$

$$0,111*9,8*0,1 = 56,8^2 (Icm + 0,111*0,0155^2)/2$$

$$Icm = 4,1*10^{-5}$$

Para verificarmos se a energia se conserva calculamos a energia mecânica inicial e a final:

Em1 = Ep1 + Ec1
Em1 = m * g * h
Em1 = 0,111 * 9,8 * 0,1
Em1 = 0,11 J
Em2 = Ep2 + Ec2
Em2 =
$$\omega^2$$
 (M * R² + Icm)/2
Em2 = $56,8^2$ (0,111 * 0,0155² + 1,1 * 10⁻⁵)/2
Em2 = 0,06J

Tabela com Resultados!

Colocar as equações encontradas do deslocamento, velocidade, aceleração linear, velocidade e aceleração angular e comparar valores de momento de inercia e energia mecanica

A partir dos dados obtidos concluímos que houve uma perda de energia mecânica no sistema e com isso o momento de inercia aumentou. As causas para esse acontecimento foram principalmente o atrito e tempo de reação humana por termos utilizado cronometro manual. E as medidas também podem ser considerados como não exatas.

0.6 Conclusão

O experimento realizado demonstrou um movimento variável de acordo com as equações:

$$S = 0.38t^{1.68}$$

$$V = 0.64t^{0.68}$$

$$a = 0.43t^{-0.32}$$

$$\omega = 41,3t^{0.68}$$

$$\alpha = 28,1t^{-0,32}$$

E ao compararmos o momento de inercia teórico com o experimental notamos um erro percentual de: 272%

E ao observarmos a conservação na energia vimos uma perde de 0,05J gerando um erro percentual em comparação com a teoria de: 45%

0.7 Referências Bibliográficas

- 1) Apostila de Laboratório de Física, 2008
- 2) Halliday & Resnick, Fundamentos de Física, vol. 1

