<u>Home</u>

Tree: terminology

Drag and drop the given terms from the list below into the correct spaces to complete the text.	
A tree is a graph, which means that there always exists a path from a node to	
any other node. In fact, in a tree there is only one possible path between any two nodes	
because a tree doesn't have	
which makes a tree an graph.	
There is a set of terms that describe the hierarchy of the nodes in a tree:	
The topmost node of a tree is called the	
Nodes are connected by parent-child relationships. If you think of a path from the root towards a node, then a parent node is a node that comes directly before another connected node, which is called its child node.	
A is a node with no children.	
A is a path from the root to a leaf.	
The of a tree is equal to the number of edges that connect the root node to	
the leaf node that is furthest away from it (ie the longest branch).	
Items:	
cycles height undirected connected leaf root branch	

All teaching materials on this site are available under a CC BY-NC-SA 4.0 license, except where otherwise stated.

Tree: rooted tree definition

Which of these properties will prevent a graph being classified as a rooted tree?
The root node has more than two children.
There is only one path between two nodes.
There is a unique cycle between two nodes.
It has an even number of leaves.
Quiz: STEM SMART Computer Science Week 25

All teaching materials on this site are available under a CC BY-NC-SA 4.0 license, except where otherwise stated.

As Santa's reindeer are brought in from the icy tundra, they are added to a binary search tree (in the order that they arrive in). Dasher is the first to arrive, followed by Dancer, Prancer, Vixen, Comet, Cupid, Donner, and Blitzen.

The reindeer's logical position in the tree is decided by comparing the names alphabetically.

The tree is stored as three one-dimensional arrays:

- Array D stores the data (the name of the reindeer)
- Array L stores the left 'pointer' (index numbers)
- Array R stores the right 'pointer' (index numbers)

The table below shows the three arrays with several missing values (indicated by shaded cells).

	0
	1
	2
	3
	4
	5
	6
	7
D	
Dasher	
Dancer	
Prancer	
Vixen	
Comet	
Cupid	
Donner	
Blitzen	
L	

1
4
[a]
R
2
-1
[b]
Part A
What is the missing value for [a]?
Part B
What is the missing value for [h]?
What is the missing value for [b]?

Binary tree: array of records 1

Challenge 2

A binary tree can be implemented as an array of records. The record for each node will contain:

- The data
- · A left child pointer
- · A right child pointer

Index pointers are used because the data is stored in an array. There will be a separate index pointer to indicate the root node.

The table that follows represents a binary tree. The value of the root index pointer is 0.

Index	Data	Left	Right
0	1	1	2
1	4	4	5
2	3	Null	3
3	8	6	Null
4	12	Null	Null
5	6	7	8
6	2	Null	Null
7	10	Null	Null
8	5	Null	Null

What are the data values of the child node(s) of the node that has the data value $6?$

2 and 10
7 and 8
0 and 5
2 and Null

Quiz:

STEM SMART Computer Science Week 25

Binary tree: array of records 2

Challenge 2

The image below shows a binary tree with nine nodes: B, C, D, F, G, K, L, M, and N. The root of the tree is node B.

A binary tree with nine nodes

A binary tree can be implemented as an array of records. The following table represents the array of records for the binary tree in the image.

Drag and drop the given values in the correct spaces to complete the array. Each value can be used more than once.

Index	Data	Left	Right
0	В	1	2
1	С	3	
2	D		
3	F		7
4	G	Null	Null
5	К	Null	
6	L	Null	Null
7	М	Null	Null
8	N		

l	6 5 Null 4 8		

Quiz:

STEM SMART Computer Science Week 25

All teaching materials on this site are available under a <u>CC BY-NC-SA 4.0</u> license, except where otherwise

Practice 2

Tree: rooted tree traversal 1

Akram is designing a content management system (CMS) application. He is using a file system to organise the files (that hold the content) in folders so that each file can be retrieved easily. To do that, the folders are structured as a **rooted tree**.

A diagram of the tree is presented in the image below. For example, the folder assigned to node G is stored inside the folder assigned to node C, which is stored in the root folder assigned to node A.

A tree data structure with nine nodes.

Drag and drop the given letters into the correct spaces to complete the following text.

To access a file that is stored in the folder assigned to node G, an algorithm needs to follow the path starting from the root of the tree down to node G. On its way it visits all the other nodes in the path. One way to do that is to use a depth-first traversal algorithm.

In this example, the tree in the image above is traversed from left to right. In which order will the nodes of the tree be visited using a depth-first traversal?

110110400	01 1110 1100	DO VIGILOGIA	asing a aoptin ii	iot trave	nodi.		
The nodes	will be visi	ted in the fo	ollowing order:)()()
)(
Items:							
A B	C D (E F G	H				

Tree: rooted tree traversal 2

Challenge 2

Akram is designing a content management system (CMS) application. He is using a file system to organise the files (that hold the content) in folders so that each file can be retrieved easily. To do that, the folders are structured as a **rooted tree**.

A diagram of the tree is presented in the image below. For example, the folder assigned to node G is stored inside the folder assigned to node C which is stored in the root folder assigned to node A.

A tree data structure with nine nodes.

Drag and drop the given terms in the correct spaces to complete the following text.

Akram is exploring how the nodes of the rooted tree will be processed using the pre-order, post-order, and in-order tree traversals.

,	
In a pre-order traversal, each node is visited	either of the node's subtrees
are visited	
In an in-order traversal, each node is visited	each of its subtrees
In a post-order traversal, each node is visited	both of its subtrees are
visited	
In this example, the tree in the image above is tra	versed from left to right.
·	•
• With a pre-order traversal, the order that the node	es of the tree are visited is
• With an in-order traversal, the order that the node	es of the tree are visited is
• With a post-order traversal, the order that the noc	des of the tree are visited is

Items:						
before	between	after	ABDEFCGHI	DBFEAGHCI	DFEBHGICA	
						_
						_

Quiz:

STEM SMART Computer Science Week 25

All teaching materials on this site are available under a CC BY-NC-SA 4.0 license, except where otherwise stated.

Tree: trace traversal

Challenge 2

A tree has been set up as a set of nodes, where each node contains three attributes:

- data
- left (a pointer to the node's left child)
- right (a pointer to the node's right child)

An algorithm has been written that carries out a **post-order traversal** of the tree. This algorithm is expressed in pseudocode below.

```
Pseudocode
1
  FUNCTION traverse(node)
      IF node.data == Null THEN
2
          RETURN
3
4
      ELSE
          traverse(node.left)
          traverse(node.right)
6
7
          PRINT(node.data)
      ENDIF
9
 ENDFUNCTION
```


Figure 1: A binary tree

Select the correct results of tracing the pseudocode against the tree shown in Figure 1.

50, 32, 43, 36, 81, 75, 84, 82, 93
36, 43, 32, 75, 82, 93, 84, 81, 50

36, 43, 32, 50, 81, 75, 84, 82, 93

All teaching materials on this site are available under a CC BY-NC-SA 4.0 license, except where otherwise stated.

