CLUSTERING

What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups (understanding & summarization)

Notion of a Cluster can be Ambiguous

Types of Clusterings

- □ A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Other Distinctions Between Sets of Clusters

- Exclusive versus non-exclusive
 - In non-exclusive clusterings, points may belong to multiple clusters.
 - Can represent multiple classes or 'border' points
- □ Fuzzy versus non-fuzzy
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights must sum to 1
 - Probabilistic clustering has similar characteristics

Types of Clusters: Well-Separated

Well-Separated Clusters:

A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

3 well-separated clusters

Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

Contiguous Cluster (Nearest neighbor or Transitive)

A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by lowdensity regions, from other regions of high density.
- Used when the clusters are irregular and when noise and outliers are present.

6 density-based clusters

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

K-means

K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'

K-means Clustering – Details

- centroid can vary, depending on the proximity measure for the data and the goal of the clustering
- goal of the clustering is typically expressed by an objective function that depends on the proximities of the points to one another or to the cluster centroids
- e.g., minimize the squared distance of each point to its closest centroid

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- $lue{\Gamma}$ x is a data point in cluster C_i and m_i is the representative point for cluster C_i
 - \blacksquare can show that m_i corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error

Common choices

Table 8.2. K-means: Common choices for proximity, centroids, and objective functions.

Proximity Function	Centroid	Objective Function
Manhattan (L_1)	median	Minimize sum of the L_1 distance of an ob-
		ject to its cluster centroid
Squared Euclidean (L_2^2)	mean	Minimize sum of the squared L ₂ distance
		of an object to its cluster centroid
cosine	mean	Maximize sum of the cosine similarity of
		an object to its cluster centroid
Bregman divergence	mean	Minimize sum of the Bregman divergence
		of an object to its cluster centroid

Importance of Choosing Initial Centroids ...

Solutions to Initial Centroids Problem

- perform multiple runs, each with a different set of randomly chosen initial centroids, and then select the set of clusters with the minimum SSE
- Sample and use hierarchical clustering to determine initial centroids
- Select the first point at random
- * For each successive initial centroid, select the point that is farthest from any of the initial centroids already selected
- Outliers & expensive

Handling Empty Clusters

- Basic K-means algorithm can yield empty clusters
- Several strategies
 - Choose the point that contributes most to SSE
 - Choose a point from the cluster with the highest SSE

Pre-processing and Post-processing

- Pre-processing
 - Normalize the data
 - Eliminate outliers
- Post-processing
 - Eliminate small clusters that may represent outliers
 - Split 'loose' clusters, i.e., clusters with relatively high SSE
 - Merge clusters that are 'close' and that have relatively low SSE

Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

 K-means has problems when the data contains outliers.

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Hierarchical Clustering

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram

A tree like diagram that records the sequences of

merges or splits

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - 6. Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

Intermediate Situation

After Merging

The question is "How do we update the proximit^{©2}matrix?"

	рl	p2	р3	p4	p5	<u> </u>
p 1						
<u>p2</u>						
<u>р2</u> р3						
<u>р4</u> <u>р5</u>						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	р2	р3	p4	p5	<u> </u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> p3						
<u>р4</u> р5						
•						

- MAX
- Group Average
- Distance Between Centroids

	p1	p2	рЗ	p4	р5	<u>.</u>
p 1						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>р4</u> р5						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	рl	р2	рЗ	p4	p5	<u> </u>
<u>p1</u>						
<u>р2</u>						
<u>p2</u> <u>p3</u>						
p4 p5						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	p5	<u>.</u>
p 1						
p2						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids

Example: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
- Determined by one pair of points, i.e., by one link in the proximity graph

Figure 8.15. Set of 6 two-dimensional points.

Point	x Coordinate	y Coordinate
p1	0.40	0.53
p2	0.22	0.38
р3	0.35	0.32
p4	0.26	0.19
p5	0.08	0.41
p6	0.45	0.30

Table 8.3. xy coordinates of 6 points.

Example: MIN or Single Link

	p1	p2	р3	p4	p_5	р6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p_5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Table 8.4. Euclidean distance matrix for 6 points.

(b) Single link dendrogram.

(a) Single link clustering.

Example: MAX or Complete Linkage

✓ Similarity of two clusters is based on the two least similar (most distant) points in the different clusters

✓ Determined by all pairs of points in the two clusters

	p1	p2	p3	p4	p_5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p_5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Table 8.4 Fuelidean distance matrix for 6 points

$$\begin{array}{rcl} dist(\{3,6\},\{4\}) & = & \max(dist(3,4),dist(6,4)) \\ & = & \max(0.15,0.22) \\ & = & 0.22. \\ dist(\{3,6\},\{2,5\}) & = & \max(dist(3,2),dist(6,2),dist(3,5),dist(6,5)) \\ & = & \max(0.15,0.25,0.28,0.39) \\ & = & 0.39. \\ dist(\{3,6\},\{1\}) & = & \max(dist(3,1),dist(6,1)) \\ & = & \max(0.22,0.23) \\ & = & 0.23. \end{array}$$

Group Average

proximity of two clusters is defined as the average pairwise proximity among all pairs of points in the different clusters.

$$proximity(C_i, C_j) = \frac{\sum_{\mathbf{y} \in C_i} proximity(\mathbf{x}, \mathbf{y})}{m_i * m_j}$$

	p1	p2	p3	p4	p_5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p_5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Table 8.4. Euclidean distance matrix for 6 points.

$$\begin{aligned} dist(\{3,6,4\},\{1\}) &= (0.22 + 0.37 + 0.23)/(3*1) \\ &= 0.28 \\ dist(\{2,5\},\{1\}) &= (0.2357 + 0.3421)/(2*1) \\ &= 0.2889 \\ dist(\{3,6,4\},\{2,5\}) &= (0.15 + 0.28 + 0.25 + 0.39 + 0.20 + 0.29)/(6*2) \\ &= 0.26 \end{aligned}$$

Cluster Similarity: Ward's Method

- Proximity between two clusters is based on the increase in squared error when two clusters are merged
 - used to initialize K-means

	p1	p2	p3	p4	p_5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p_5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Table 8.4. Euclidean distance matrix for 6 points.

Density based Clustering:DBSCAN

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

DBSCAN

Algorithm 8.4 DBSCAN algorithm.

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

DBSCAN

- Resistant to Noise
- Can handle clusters of different shapes and sizes

DBSCAN: Determining EPS and MinPts

how to determine the parameters *Eps* and *MinPts*

MinPts:

- ❖ MinPts=K too small, noise or outliers will be incorrectly labeled as clusters
- \diamondsuit k is too large, small clusters are likely to be labeled as noise (k = 4)

Eps:

- look at the behavior of the distance from a point to its kth nearest neighbor(k-dist)
- Points belong to some cluster, the value of k-dist small if k is not larger than the cluster size
- \diamond points not in a cluster, such as noise points, the k-dist relatively large
- \diamond compute the k-dist for all the data points for some k
- sort them in increasing order, and then plot the sorted values
- \diamond a sharp change at the value of k-dist

DBSCAN: Determining EPS and MinPts

Clusters of Varying Density

DBSCAN can have trouble with density if the density of clusters varies widely

- Figs threshold is low enough that DBSCAN finds C and D as clusters, then A and B and the points surrounding them will become a single cluster
- ➤ Eps threshold high enough that DBSCAN finds A and B as separate clusters, and the points surrounding them are marked as noise, then C and D and the points surrounding them will also be marked as noise

Cluster Validity

Cluster Validity

- For supervised classification we have a variety of measures to evaluate how good our model is
 - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
 - To compare two clusters

Clusters found in Random Data

Measures of Cluster Validity

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following three types.
 - Unsupervised(Internal Index): Used to measure the goodness of a clustering structure without respect to external information.
 - Supervised(External Index): Used to measure the extent to which cluster labels match externally supplied class labels.
 - Relative Index: Used to compare two different clusterings or clusters.
 - Often an external or internal index is used for this function
- criteria

$$overall\ validity = \sum_{i=1}^{K} w_i\ validity(C_i)$$

- Cluster Cohesion: Measures how closely related are objects in a cluster
 - Example: SSE
- Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters

Graph- based View

proximity graph has data objects as nodes, a link between each pair of data objects, and a weight assigned to each link that is the proximity between the two data objects connected by the link

$$cohesion(C_i) = \sum_{\substack{\mathbf{x} \in C_i \\ \mathbf{y} \in C_i}} proximity(\mathbf{x}, \mathbf{y})$$

(a) Cohesion.

(b) Separation.

 $separation(C_i, C_j) = \sum_{\substack{\mathbf{x} \in C_i \\ \mathbf{y} \in C_j}} proximity(\mathbf{x}, \mathbf{y})$

Figure 8.27. Graph-based view of cluster cohesion and separation.

Center-Based View

Figure 8.28. Prototype-based view of cluster cohesion and separation.

$$cohesion(C_i) = \sum_{\mathbf{x} \in C_i} proximity(\mathbf{x}, \mathbf{c}_i)$$

$$separation(C_i, C_j) = proximity(\mathbf{c}_i, \mathbf{c}_j)$$

 $separation(C_i) = proximity(\mathbf{c}_i, \mathbf{c})$

In some cases, there is also a strong relationship between cohesion and separation

$$TSS = \sum_{i=1}^{K} \sum_{x \in C_i} (x - c)^2$$

- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE)

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

Separation is measured by the between cluster sum of squares

$$BSS = \sum_{i} |C_{i}| (m - m_{i})^{2}$$

■ Where $|C_i|$ is the size of cluster i

Measuring Cluster Validity Via Correlation

- Two matrices
 - Proximity Matrix
 - "Incidence" Matrix
 - One row and one column for each data point
 - An entry is 1 if the associated pair of points belong to the same cluster
 - An entry is 0 if the associated pair of points belongs to different clusters
- Compute the correlation between the two matrices
 - Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be calculated.
- High correlation indicates that points that belong to the same cluster are close to each other.
- Not a good measure for some density based clusters.

Measuring Cluster Validity Via Correlation

Correlation of incidence and proximity matrices for the K-means clusterings of the following two data sets.

$$Corr = 0.9235$$

$$Corr = 0.5810$$

 Order the similarity matrix with respect to cluster labels and inspect visually.

Clusters in random data are not so crisp

Clusters in random data are not so crisp

K-means

Clusters in random data are not so crisp

Complete Link

Fuzzy Clustering

Fuzzy Clustering

- data objects are distributed in well-separated groups, disjoint clusters seems like an ideal approach.
- in most cases, the objects in a data set cannot be partitioned into well-separated clusters
- an object that lies near the boundary of two clusters
- assign a weight to each object and each cluster
- ❖ wij is the weight with which object xi belongs to cluster Cj
 - √ Fuzzy Approach
 - ✓ Probabilistic Approach

Fuzzy clustering

$$\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$$

A collection of fuzzy clusters, C1, C2, ..., Ck is a subset of all possible fuzzy subsets of λ

fuzzy psuedo-partition

1. All the weights for a given point, x_i , add up to 1.

$$\sum_{j=1}^{k} w_{ij} = 1$$

2. Each cluster, C_j , contains, with non-zero weight, at least one point, but does not contain, with a weight of one, all of the points.

$$0 < \sum_{i=1}^{m} w_{ij} < m$$

Fuzzy c-means

Algorithm 9.1 Basic fuzzy c-means algorithm.

- 1: Select an initial fuzzy pseudo-partition, i.e., assign values to all the w_{ij} .
- 2: repeat
- Compute the centroid of each cluster using the fuzzy pseudo-partition.
- 4: Recompute the fuzzy pseudo-partition, i.e., the w_{ij} .
- 5: until The centroids don't change.

(Alternative stopping conditions are "if the change in the error is below a specified threshold" or "if the absolute change in any w_{ij} is below a given threshold.")

Fuzzy c-means

- ✓ As with K-means, FCM can be interpreted as attempting to minimize the sum of the squared error (SSE)
- √ FCM is based on a fuzzy version of SSE
- √ K-means regarded as a special case of FCM

$$SSE(C_{1,C_{2},\ldots,C_{k}}) = \sum_{j=1}^{k} \sum_{i=1}^{m} w_{ij}^{p} dist(\mathbf{x}_{i},\mathbf{c}_{j})^{2}$$

To minimize objective function, repeat the following:

Fix $oldsymbol{c_j}$ and determine W_{ij}

Fix W_{ij} and recompute $oldsymbol{c}$

Fuzzy c-means

Computing Centroids

$$c_j = \sum_{i=1}^{m} w_{ij}^p \mathbf{x}_i / \sum_{i=1}^{m} w_{ij}^p$$

Updating the Fuzzy Pseudo-partition

weight update formula can be derived by minimizing the SSE subject to the constraint that the weights sum to 1

$$w_{ij} = \left(1/dist(\mathbf{x}_i, \mathbf{c}_j)^2\right)^{\frac{1}{p-1}} / \sum_{q=1}^k \left(1/dist(\mathbf{x}_i, \mathbf{c}_q)^2\right)^{\frac{1}{p-1}}$$

$$w_{ij} = 1/dist(\mathbf{x}_i, \mathbf{c}_j)^2 / \sum_{q=1}^k 1/dist(\mathbf{x}_i, \mathbf{c}_q)^2$$

Weights and p

$$w_{ij} = \left(1/\operatorname{dist}(\mathbf{x}_i, \mathbf{c}_j)^2\right)^{\frac{1}{p-1}} / \sum_{q=1}^k \left(1/\operatorname{dist}(\mathbf{x}_i, \mathbf{c}_q)^2\right)^{\frac{1}{p-1}}$$

- \diamond as p goes to infinity, the exponent tends to 0 and weights tend to the value 1/k.
- As p goes to 1, the membership weight goes to 1 for the closest cluster and to 0 for all the other clusters.

Fuzzy K-means Applied to Sample Data

Clustering Using Mixture Models

clustering based on statistical models

- assume that data has been generated as a result of a statistical process
- describe the data by finding the statistical model that best fits the data
- deciding on a statistical model for the data
- Estimating the parameters of that model from the data
- one distribution corresponds to a cluster
- parameters of each distribution a description of that cluster
- * mixture models, which model the data by using a number of statistical distributions

Mixture Models

Mixture models view the data as a set of observations from a mixture of different probability distributions

- Given several distributions, usually of the same type, but with different parameters
- 2. randomly select one of these distributions
- 3. Generate an object from it
- 4. Repeat the process m times, where m is the number of objects. assume that there are K distributions and m objects, jth distribution have parameters θj

$$\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_m\} \qquad \Theta = \{\theta_1, \dots, \theta_K\}$$

$$prob(\mathbf{x}_i|\Theta) = \sum_{j=1}^{K} w_j p_j(\mathbf{x}_i|\theta_j)$$

- √ We cannot use one single Gaussian distribution to model real data sets.
- √A linear combination of Gaussians can give rise to very complex densities densities.
- ✓ By using a sufficient number of Gaussians, and by adjusting their parameters as well as the coefficients in the linear combination, almost any continuous density can be approximated.

 \checkmark Let's consider a random process x_i that follows a Gaussian mixture distribution with M component

$$x_i \sim GM(w, \mu, \sigma)$$

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_M \end{pmatrix} \quad \sigma = \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_M \end{pmatrix}, \quad w = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_M \end{pmatrix}$$

$$f_{x_i}(x_i) = \sum_{j=1}^{M} \frac{w_j}{\sqrt{2\pi}\sigma_j} \exp \frac{-(x_i - m_j)^2}{2\sigma_j^2}.$$

example

$$prob(x_i|\Theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$prob(x|\Theta) = \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x+4)^2}{8}} + \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x-4)^2}{8}}$$

How estimate the parameters of these distributions from the data and find (clusters)

(b) 20,000 points generated from the mixture model.

Mixture Models

objects are generated in an independent manner

$$prob(\mathcal{X}|\Theta) = \prod_{i=1}^{m} prob(\mathbf{x}_i|\Theta) = \prod_{i=1}^{m} \sum_{j=1}^{K} w_j p_j(\mathbf{x}_i|\theta_j)$$
 each distribution describes a different cluster

Estimating Model Parameters Using Maximum Likelihood

a set of *m* points that are generated from a one dimensional Gaussian distribution

$$prob(\mathcal{X}|\Theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - u)^2}{2\sigma^2}}$$

estimate u and σ

$$\log \operatorname{prob}(\mathcal{X}|\Theta) = -\sum_{i=1}^{m} \frac{(x_i - u)^2}{2\sigma^2} - 0.5m \log 2\pi - m \log \sigma$$

choose the values of the parameters for which the data is most probable (most likely): maximum likelihood estimation (MLE)

$$likelihood(\Theta|\mathcal{X}) = L(\Theta|\mathcal{X}) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

$$log\ likelihood(\Theta|\mathcal{X}) = \ell(\Theta|\mathcal{X}) = -\sum_{i=1}^{m} \frac{(x_i - \mu)^2}{2\sigma^2} - 0.5m\log 2\pi - m\log \sigma$$

Example

Finding the parameters of Gaussian Distribution

(a) Histogram of 200 points from a Gaussian distribution.

(b) Log likelihood plot of the 200 points for different values of the mean and standard deviation.

$$u = -4.1 \text{ and } \sigma = 2.1$$

Graphing the likelihood of the data for different values of the parameters is not practical: Optimization

for a Gaussian distribution, it can be shown that the mean and standard deviation of the sample points are the maximum likelihood estimates of the corresponding parameters

Estimating Mixture Model Parameters Using Maximum Likelihood

- simplest case:we know which data objects come from which distributions
- For most common distributions, the maximum likelihood estimates of the parameters are calculated from simple formulas involving the data.
- ❖ In a more general (and more realistic) situation, we do not know which points were generated by which distribution
- solution is the EM algorithm
 - 1. given a guess for the parameter values, the EM algorithm calculates probability that each point belongs to each distribution
 - 2. uses these probabilities to compute a new estimate for the parameters

EM algorithm

Algorithm 9.2 EM algorithm.

- Select an initial set of model parameters.
 (As with K-means, this can be done randomly or in a variety of ways.)
- 2: repeat
- 3: **Expectation Step** For each object, calculate the probability that each object belongs to each distribution, i.e., calculate $prob(distribution j|\mathbf{x}_i, \Theta)$.
- 4: Maximization Step Given the probabilities from the expectation step, find the new estimates of the parameters that maximize the expected likelihood.
- 5: until The parameters do not change. (Alternatively, stop if the change in the parameters is below a specified threshold.)

example

(b) 20,000 points generated from the mixture model.

- ✓ assume that we know that the standard deviation of both distributions is 2.0
- ✓ points were generated with equal probability from both distributions

guess
$$\mu_1 = -2$$
 and $\mu_2 = 3$
 $\theta_1 = (-2, 2)$ and $\theta_2 = (3, 2)$ $\Theta = \{\theta_1, \theta_2\}$

$$prob(distribution \ j|x_i, \theta) = \frac{0.5 \ prob(x_i|\theta_j)}{0.5 \ prob(x_i|\theta_1) + 0.5 \ prob(x_i|\theta_2)},$$

$$prob(0|\theta_1) = 0.12$$
 $prob(0|\theta_2) = 0.06$
 $prob(distribution 1|0,\Theta) = 0.12/(0.12+0.06) = 0.66$

example

After computing the cluster membership probabilities for all 20,000 points, we compute new estimates for μ_1 and μ_2

new estimate for the mean of a distribution is just a weighted average of the points

$$\mu_1 = \sum_{i=1}^{20,000} x_i \frac{prob(distribution \ 1 | x_i, \Theta)}{\sum_{i=1}^{20,000} prob(distribution \ 1 | x_i, \Theta)}$$

$$\mu_2 = \sum_{i=1}^{20,000} x_i \frac{prob(distribution \ 2|x_i, \Theta)}{\sum_{i=1}^{20,000} prob(distribution \ 2|x_i, \Theta)}$$

Iteration	μ_1	μ_2
0	-2.00	3.00
1	-3.74	4.10
2	-3.94	4.07
3	-3.97	4.04
4	-3.98	4.03
5	-3.98	4.03

EM Algorithm on Sample Data Sets

- We modeled this data as a mixture of three two-dimensional Gaussian distributions with different means and identical covariance matrices.
- Lach point was assigned to the cluster in which it had the largest membership weigh

EM clustering of a two-dimensional point set with two clusters of differing density

(a) Clusters produced by mixture model clustering.

(b) Clusters produced by K-means clustering.