Support Vector Machine (支持向量机)

1. Overview of SVM

Hard-margin SVM: max margin (w,b) data is linearly separable

Soft-margin SVM: data is linearly separable and allow a little bit outlier

Kernel SVM: linearly inseparable

2. Hard margin SVM(硬间隔分类器)

Suppose the data is linear separable, then we can use the hard margin SVM, the key point is to find the largest possible geometric margin.

$$T = \{(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\}$$

$$x_i \in \mathcal{X} = \mathbb{R}^n, \ y_i \in \mathcal{Y} = \{+1, -1\}, \ i = 1, 2, \cdots, N$$

$$f(x) = \operatorname{sign}(w^* \cdot x + b^*)$$

$$\text{Margin } (w, b) = \min_{\substack{y \in \mathbb{N} \\ y \in \mathbb{N} \\ y \in \mathbb{N}}} \inf_{\substack{y \in \mathbb{N} \\ y \in \mathbb{N} \\ y \in \mathbb{N}}} \frac{1}{\|w\|} \|w^T x_i + b\|$$

$$\text{Margin marcin}$$

$$\text{Most marcin}$$

Moreover, lambda, w, b satisfies Karush-Kuhn-Tucker (KKT) conditions:

$$f(x) = \operatorname{sign}\left(\sum_{i=1}^{N} \alpha_i^* y_i(x \cdot x_i) + b^*\right)$$

3. Soft margin SVM (软间隔分类器)

Allow some outliers, but most of the data is linear separable.

loss = max {0, 1-y:(w\(^{1}x:tb\)}
$$\rightarrow$$
 if y:(w\(^{1}x:tb\) $>$ | loss =0
hinge loss

if y:(w\(^{1}x:tb\) $<$ | loss =1-y:(w\(^{1}x:tb\))

$$\min_{w,b,\xi} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \xi_i$$
s.t.
$$y_i(w \cdot x_i + b) \geqslant 1 - \xi_i, \quad i = 1, 2, \dots, N$$

$$\xi_i \geqslant 0, \quad i = 1, 2, \dots, N$$

Same procedure as the hard margin SVM

$$L(w,b,\xi,\alpha,\mu) \equiv \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i (y_i(w \cdot x_i + b) - 1 + \xi_i) - \sum_{i=1}^{N} \mu_i \xi_i \quad \alpha_i \geqslant 0, \mu_i \geqslant 0.$$

Similarly,

$$\begin{aligned} & \min_{w,b,\xi} \ L(w,b,\xi,\alpha,\mu) = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (x_i \bullet x_j) + \sum_{i=1}^{N} \alpha_i \\ & \max_{\alpha} \ -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (x_i \bullet x_j) + \sum_{i=1}^{N} \alpha_i \\ & \text{s.t.} \quad \sum_{i=1}^{N} \alpha_i y_i = 0 \\ & C - \alpha_i - \mu_i = 0 \\ & \alpha_i \geqslant 0 \\ & \mu_i \geqslant 0, \quad i = 1, 2, \cdots, N \end{aligned}$$

4. Kernel SVM (核分类器/非线性分类)

Suppose the data is not linearly separable. This method is essentially kernel function+ hard margin Svm.

The kernel function here is

positive definite kernel function:
$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

$$\forall \mathcal{X}, \mathcal{Z} \in \mathcal{X}, \ \mathcal{A}k(\mathcal{X}, \mathcal{Z}) \ \text{deg} = \exists \ \phi: \mathcal{X} \to \mathbb{R}, \ \phi \in \mathcal{H} \ \text{s.t.} \ k(\mathcal{X}, \mathcal{Z}) = \langle \phi(\mathcal{X}), \phi(\mathcal{X}) \rangle$$

$$\Rightarrow \text{def}: \quad k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

$$\forall \mathcal{X}, \mathcal{Z} \in \mathcal{X}, \ \mathcal{A}k(\mathcal{X}, \mathcal{Z}), \text{if} \ k \ \text{satisfy}: \ \text{Osymetric} \ \text{@positive definite such that} \ k(\mathcal{X}, \mathcal{Z}) \text{ is a positive definite kernel function}$$

$$\text{① Symmetric}: \ k(\mathcal{X}, \mathcal{Z}) = k(\mathcal{Z}, \mathcal{X})$$

$$\text{② positive definite:} \ \text{$1 \pm \infty$} \ \mathcal{X}_1, \dots, \mathcal{X}_N \in \mathcal{X}_N, \ \text{$N \to \infty$} \ \mathcal{A}_N \text{$N \to \infty$} \ \mathcal{A}_N$$

Used in SVM:

$$W(\alpha) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(x_i, x_j) - \sum_{i=1}^{N} \alpha_i$$
$$f(x) = \operatorname{sign} \left(\sum_{i=1}^{N_s} a_i^* y_i \phi(x_i) \cdot \phi(x) + b^* \right)$$
$$= \operatorname{sign} \left(\sum_{i=1}^{N_s} a_i^* y_i K(x_i, x) + b^* \right)$$