Module 3: Metric Spaces and Sequences I Operational math bootcamp

Emma Kroell

University of Toronto

July 14, 2022

Outline

- More on set theory
- Cardinality of sets
- Metrics and norms
- Open and closed sets

Recall

Definition (Image and pre-image)

Let $f: X \to Y$ and $A \subseteq X$ and $B \subseteq Y$.

- The *image* of f is the set $f(A) := \{f(x) : x \in A\}$.
- The pre-image of f is the set $f^{-1}(B) := \{x : f(x) \in B\}.$

Definition (Surjective, injective and bijective)

Let $f: X \to Y$, where X and Y are sets. Then

- f is injective if $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$
- f is surjective if for every $y \in Y$, there exists an $x \in X$ such that y = f(x)
- f is bijective if it is both injective and bijective

Proposition

Let $f: X \to Y$ and $A \subseteq X$. Prove that $A \subseteq f^{-1}(f(A))$, with equality iff f is injective.

Proof.

Cardinality

Intuitively, the *cardinality* of a set A, denoted |A|, is the number of elements in the set. For sets with only a finite number of elements, this intuition is correct. We call a set with finitely many elements finite.

We say that the empty set has cardinality 0 and is finite.

Proposition

If X is finite set of cardinality n, then the cardinality of $\mathcal{P}(X)$ is 2^n .

Proof.

Definition

Two sets A and B have same cardinality, |A| = |B|, if there exists bijection $f : A \to B$.

Example

Which is bigger, \mathbb{N} or \mathbb{N}_0 ?

Cantor-Schröder-Bernstein

Definition

We say that the cardinality of a set A is less than the cardinality of a set B, denoted $|A| \le |B|$ if there exists an injection $f : A \to B$.

Theorem (Cantor-Bernstein)

Let A, B, be sets. If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

Example

 $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$

Proof.

Definition

Let A be a set.

- **1** A is *finite* if there exists an $n \in \mathbb{N}$ and a bijection $f : \{1, \dots, n\} \to A$
- **2** A is countably infinite if there exists a bijection $f: \mathbb{N} \to A$
- 3 A is countable if it is finite or countably infinite
- **4** A is *uncountable* otherwise

Example

The rational numbers are countable, and in fact $|\mathbb{Q}| = |\mathbb{N}|$.

Proof.

First we show $|\mathbb{N}| \leq |\mathbb{Q}^+|$.

Proof.

Next, we show that $|\mathbb{Q}^+| \leq |\mathbb{N} \times \mathbb{N}|$.

Since we already proved $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$, this means $|\mathbb{N}| = |\mathbb{Q}^+|$.

Proof. We can extend this to $\mathbb Q$ as follows:.

14/33

Theorem

The cardinality of \mathbb{N} is smaller than that of (0,1).

Proof.

First, we show that there is an injective map from $\mathbb N$ to (0,1).

Next, we show that there is no surjective map from $\mathbb N$ to (0, 1). We use the fact that every number $r \in (0, 1)$ has a binary expansion of the form $r = 0.\sigma_1\sigma_2\sigma_3...$ where $\sigma_i \in \{0, 1\}, i \in \mathbb N$.

Proof.

Now we suppose in order to derive a contradiction that there does exist a surjective map f from $\mathbb N$ to (0, 1)., i.e. for $n \in \mathbb N$ we have $f(n) = 0.\sigma_1(n)\sigma_2(n)\sigma_3(n)\ldots$ This means we can list out the binary expansions, for example like

$$f(1) = 0.00000000...$$

$$f(2) = 0.11111111111...$$

$$f(3) = 0.0101010101...$$

$$f(4) = 0.1010101010...$$

We will construct a number $\tilde{r} \in (0,1)$ that is not in the image of f.

Proof.

Define $\tilde{r} = 0.\tilde{\sigma}_1 \tilde{\sigma}_2 \dots$ where we define the *n*th entry of \tilde{r} to be the the opposite of the nth entry of the nth item in our list:

$$\tilde{\sigma}_n = \begin{cases} 1 & \text{if } \sigma_n(n) = 0, \\ 0 & \text{if } \sigma_n(n) = 1. \end{cases}$$

Then \tilde{r} differs from f(n) at least in the *n*th digit of its binary expansion for all $n \in \mathbb{N}$. Hence, $\tilde{r} \notin f(\mathbb{N})$, which is a contradiction to f being surjective. This technique is often referred to as Cantor's diagonal argument.

17 / 33

Proposition

(0,1) and \mathbb{R} have the same cardinality.

Proof.

We have shown that there are different sizes of infinity, as the cardinality of $\mathbb N$ is infinite but still smaller than that of $\mathbb R$ or (0,1). In fact, we have

$$|\mathbb{N}|$$
 $|\mathbb{N}_0|$ $|\mathbb{Z}|$ $|\mathbb{Q}|$ $|\mathbb{R}|$.

Because of this, there are special symbols for these two cardinalities: The cardinality of \mathbb{N} is denoted \aleph_0 , while the cardinality of \mathbb{R} is denoted \mathfrak{c} .

Metric Spaces

Definition (Metric)

A *metric* on a set X is a function $d: X \times X \to \mathbb{R}$ that satisfies:

- (a) Positive definiteness:
- (b) Symmetry:
- (c) Triangle inequality:

A set together with a metric is called a metric space.

Example (\mathbb{R}^n with the Euclidean distance)

Definition (Norm)

A *norm* on an \mathbb{F} -vector space E is a function $\|\cdot\|:E\to\mathbb{R}$ that satisfies:

- (a) Positive definiteness:
- (b) Homogeneity:
- (c) Triangle inequality:

A vector space with a norm is called a normed space. A normed space is a metric space using the metric d(x, y) = ||x - y||.

Example (p-norm on $\mathbb{R}^n)$

The *p*-norm is defined for $p \ge 1$ for a vector $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ as

The infinity norm is the limit of the *p*-norm as $p \to \infty$, defined as

Example (p-norm on $C([0,1];\mathbb{R})$)

If we look at the space of continuous functions $C([0,1];\mathbb{R})$, the p-norm is

and the $\infty-$ norm (or sup norm) is

Definition

A subset A of a metric space (X, d) is bounded if there exists M > 0 such that d(x, y) < M for all $x, y \in A$.

25 / 33

Definition

Let (X, d) be a metric space. We define the *open ball* centred at a point $x_0 \in X$ of radius r > 0 as

$$B_r(x_0) := \{x \in X : d(x,x_0) < r_0\}.$$

Example

In $\mathbb R$ with the usual norm (absolute value), open balls are symmetric open intervals, i.e.

Example: Open ball in \mathbb{R}^2 with different metrics

Figure: $B_r(0)$ for different metrics

27 / 33

Definition (Open and closed sets)

Let (X, d) be a metric space.

- A set $U \subseteq X$ is open if for every $x \in U$ there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq U$.
- A set $F \subseteq X$ is *closed* if $F^c := X \setminus F$ is open.

Proposition

Let (X, d) be a metric space.

- **1** Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are open, then $A_1 \cap A_2$ is open.
- **2** If $A_i \subseteq X$, $i \in I$ are open, then $\bigcup_{i \in I} A_i$ is open.

Proof.

(1) Let $A_1,A_2\subseteq X.$ If A_1 and A_2 are open, then $A_1\cap A_2$ is open.

(2) If $A_i \subseteq X$, $i \in I$ are open, then $\bigcup_{i \in I} A_i$ is open.

Using DeMorgan, we immediately have the following corollary:

Corollary

Let (X, d) be a metric space.

- **1** Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are closed, then $A_1 \cup A_2$ is closed.
- **2** If $A_i \subseteq X$, $i \in I$ are closed, then $\bigcap_{i \in I} A_i$ is closed.

Definition (Interior and closure)

Let $A \subseteq X$ where (X, d) is a metric space.

- The *closure* of A is $\overline{A} :=$
- The *interior* of A is $\mathring{A} :=$
- The boundary of A is $\partial A :=$

Example

Let $X=(a,b]\subseteq\mathbb{R}$ with the ordinary (Euclidean) metric. Then

Proposition

Let $A \subseteq X$ where (X, d) is a metric space. Then $\mathring{A} = A \setminus \partial A$.

Proof.

References

Runde ,Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). *Lecture notes in Mathematics for Economics and Statistics*. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

