Setting an Exponential Separation between Quantum and Classical Computation

Renato Neves

Table of Contents

Overview

Global and local phases

Phase Kickback

Bernstein-Vazirani's problem

Deutsch-Josza's problem

Renato Neves Overview 2 / 30

Previously...

The Problem

Take a function $f: \{0,1\} \rightarrow \{0,1\}$

Either f(0) = f(1) or $f(0) \neq f(1)$

Tell us whether the first or second case hold

Classically, need to run f twice. Quantumly, once is enough

Overview 3 / 30

Previously...

The Problem

Take a function $f: \{0,1\} \rightarrow \{0,1\}$

Either f(0) = f(1) or $f(0) \neq f(1)$

Tell us whether the first or second case hold

Classically, need to run f twice. Quantumly, once is enough

Can we have more impressive differences in complexity?

Overview 3 / 30

Table of Contents

Overview

Global and local phases

Phase Kickback

Bernstein-Vazirani's problem

Deutsch-Josza's problem

Global Phase Factor

Definition

Let $v, u \in \mathbb{C}^{2^n}$ be vectors. If $u = e^{i\theta}v$ we say that it is equal to v up to global phase factor $e^{i\theta}$

Theorem

 $e^{i\theta}v$ and v are indistinguishable in the world of quantum mechanics

Proof sketch

Show that equality up to global phase is preserved by operators and normalisation + show that probability outcomes associated with v and $e^{i\theta}v$ are the same

Renato Neves Global and local phases 5 / 30

Relative Phase Factor

Definition

We say that vectors $\sum_{x \in 2^n} \alpha_x |x\rangle$ and $\sum_{x \in 2^n} \beta_x |x\rangle$ differ by a relative phase factor if for all $x \in 2^n$

$$\alpha_{x} = e^{i\theta_{x}}\beta_{x}$$
 (for some angle θ_{x})

Example

Vectors $|0\rangle + |1\rangle$ and $|0\rangle - |1\rangle$ differ by a relative phase factor

Relative Phase Factor

Definition

We say that vectors $\sum_{x \in 2^n} \alpha_x |x\rangle$ and $\sum_{x \in 2^n} \beta_x |x\rangle$ differ by a relative phase factor if for all $x \in 2^n$

$$\alpha_{x} = e^{i\theta_{x}}\beta_{x}$$
 (for some angle θ_{x})

Example

Vectors $|0\rangle + |1\rangle$ and $|0\rangle - |1\rangle$ differ by a relative phase factor

Vectors that differ by a relative phase factor are distinguishable

Table of Contents

Overview

Global and local phases

Phase Kickback

Bernstein-Vazirani's problem

Deutsch-Josza's problem

The Phase Kickback Effect pt. I

Recall that every quantum operation $\frac{n}{U}$ gives rise to a controlled quantum operation, which is depicted below

Let v be an eigenvector of U (i.e. $Uv = e^{i\theta}v$) and calculate

$$cU((\alpha|0\rangle + \beta|1\rangle) \otimes v)$$

$$= cU(\alpha|0\rangle \otimes v + \beta|1\rangle \otimes v)$$

$$= \alpha|0\rangle \otimes v + \beta|1\rangle \otimes e^{i\theta}v$$

$$= (\alpha|0\rangle + e^{i\theta}\beta|1\rangle) \otimes v$$

Renato Neves Phase Kickback 8 / 30

The Phase Kickback Effect pt. II

What just happened?

The Phase Kickback Effect pt. II

What just happened?

• Global phase $e^{i\theta}$ (introduced to v) was 'kickedback' as a relative phase in the control qubit

Phase Kickback 9 / 30

The Phase Kickback Effect pt. II

What just happened?

- Global phase $e^{i\theta}$ (introduced to v) was 'kickedback' as a relative phase in the control qubit
- Some information of U is now encoded in the control gubit

In general kickingback such phases causes interference patterns that give away information about U

Phase Kickback 9 / 30

The Phase Kickback Effect pt. III

Consider the controlled-not operation

X has $|-\rangle$ as eigenvector with associated eigenstate -1. It thus yields the equation

$$cX |b\rangle |-\rangle = (-1)^b |b\rangle |-\rangle$$

with $|b\rangle$ an element of the computational basis

Renato Neves Phase Kickback 10 / 30

Back to Deutsch's Problem

Renato Neves Phase Kickback 11 / 30

Back to Deutsch's Problem

 U_f can be seen as a generalised controlled not-operation

Renato Neves Phase Kickback 11 / 30

 U_f can be seen as a generalised controlled not-operation

Recall that $|-\rangle$ is an eigenvector of X with eigenstate -1. Thus analogously to before we deduce

$$U_f |x\rangle |-\rangle = (-1)^{f(x)} |x\rangle |-\rangle$$

Renato Neves Phase Kickback 12 / 30

Renato Neves Phase Kickback 13 / 30

Table of Contents

Overview

Global and local phases

Phase Kickback

Bernstein-Vazirani's problem

Deutsch-Josza's problem

Going Beyond the Current Separation

Albeit looking almost magical how we handled Deutsch's problem, the corresponding complexity difference between quantum and classical is unimpressive

Can we come up with a more impressive separation?

Setting the Stage

Lemma

For $a, b \in \{0, 1\}$ the equation $(-1)^a(-1)^b = (-1)^{a \oplus b}$ holds

Prook sketch

Build a truth table for each case and compare the corresponding contents

Definition

Given two bit-strings $x, y \in \{0, 1\}^n$ we define their product $x \cdot y \in \{0, 1\}$ as $x \cdot y = (x_1 \wedge y_1) \oplus \cdots \oplus (x_n \wedge y_n)$

Setting the Stage

Lemma

For any three binary strings x, a, $b \in \{0,1\}^n$ the equation $(x \cdot a) \oplus (x \cdot b) = x \cdot (a \oplus b)$ holds

Proof sketch

Follows from the fact that for any three bits $a,b,c\in\{0,1\}$ the equation $(a\wedge b)\oplus(a\wedge c)=a\wedge(b\oplus c)$ holds

Setting the Stage

Lemma

For any element $|b\rangle$ in the computational basis of \mathbb{C}^2 we have $H|b\rangle=\frac{1}{\sqrt{2}}\sum_{z\in 2}(-1)^{b\wedge z}|z\rangle$

Proof sketch

Build a truth table and compare the corresponding contents

Theorem

For any element $|b\rangle$ in the computational basis of \mathbb{C}^{2^n} we have $H^{\otimes n}|b\rangle=\frac{1}{\sqrt{2^n}}\sum_{z\in 2^n}(-1)^{b\cdot z}|z\rangle$

Proof sketch

Follows from induction on the size of n

Bernstein-Vazirani

The Problem

Take a function $f: \{0,1\}^n \rightarrow \{0,1\}$

You are promised that $f(x) = s \cdot x$ for some fixed bit-string s

Find s

Classically, we run f n-times by computing

$$f(1 \dots 0) = (s_1 \wedge 1) \oplus \dots \oplus (s_n \wedge 0) = s_1$$

$$\vdots$$

$$f(0 \dots 1) = (s_1 \wedge 0) \oplus \dots \oplus (s_n \wedge 1) = s_n$$

Quantumly, we discover s by running f only once

The Circuit

The Computation

N.B. In order to not overburden notation we omit $|-\rangle$

$$\begin{split} &H^{\otimes n} \left| 0 \right\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{z \in 2^n} \left| z \right\rangle & \qquad \qquad \{ \text{Theorem slide 18} \} \\ & \overset{U_f}{\mapsto} \frac{1}{\sqrt{2^n}} \sum_{z \in 2^n} (-1)^{f(z)} \left| z \right\rangle & \qquad \{ \text{Definition slide 12} \} \\ & \overset{H^{\otimes n}}{\mapsto} \frac{1}{2^n} \sum_{z \in 2^n} (-1)^{f(z)} \Big(\sum_{z' \in 2^n} (-1)^{z \cdot z'} \left| z' \right\rangle \Big) & \qquad \{ \text{Theorem slide 18} \} \\ &= \frac{1}{2^n} \sum_{z \in 2^n} \sum_{z' \in 2^n} (-1)^{(z \cdot s) \oplus (z \cdot z')} \left| z' \right\rangle & \qquad \{ \text{Lemma slide 16} \} \\ &= \frac{1}{2^n} \sum_{z \in 2^n} \sum_{z' \in 2^n} (-1)^{z \cdot (s \oplus z')} \left| z' \right\rangle & \qquad \{ \text{Lemma slide 17} \} \end{split}$$

The Computation pt. II

Probability of measuring s at the end given by

$$\begin{aligned} &\left| \frac{1}{2^n} \sum_{z \in 2^n} (-1)^{z \cdot (s \oplus s)} \left| s \right\rangle \right|^2 \\ &= \left| \frac{1}{2^n} \sum_{z \in 2^n} (-1)^{z \cdot 0} \left| s \right\rangle \right|^2 \\ &= \left| \frac{1}{2^n} \sum_{z \in 2^n} 1 \left| s \right\rangle \right|^2 \\ &= \left| \frac{2^n}{2^n} \right|^2 \\ &= 1 \end{aligned}$$

This means that somehow all values yielding wrong answers were completely cancelled

T.P.C. Show exactly how all the wrong answers were cancelled

Going Even Further Beyond

We went from running f n times to running just once

Going Even Further Beyond

We went from running f n times to running just once Still not very impressive (at least for the Computer Scientist :-))

Going Even Further Beyond

We went from running f n times to running just once Still not very impressive (at least for the Computer Scientist :-)) Can we do even better?

Table of Contents

Overview

Global and local phases

Phase Kickback

Bernstein-Vazirani's problem

Deutsch-Josza's problem

Deutsch-Josza

The Problem

Take a function $f: \{0,1\}^n \rightarrow \{0,1\}$

You are promised that f is either constant or balanced

Find out which case holds

Classically, we evaluate half of the inputs $(\frac{2^n}{2} = 2^{n-1})$, evaluate one more and run the decision procedure,

- output always the same ⇒ constant
- otherwise ⇒ balanced

which requires running $f 2^{n-1} + 1$ times

Quantumly, we know the answer by running f only once

The Circuit

The Computation

N.B. In order to not overburden notation we omit $|-\rangle$

$$H^{\otimes n} |0\rangle$$

$$= \frac{1}{\sqrt{2^n}} \sum_{z \in 2^n} |z\rangle \qquad \qquad \text{{Theorem slide 18}}$$

$$\stackrel{U_f}{\mapsto} \frac{1}{\sqrt{2^n}} \sum_{z \in 2^n} (-1)^{f(z)} |z\rangle \qquad \qquad \text{{Definition slide 12}}$$

$$\overset{H^{\otimes n}}{\mapsto} \ \tfrac{1}{2^n} \textstyle \sum_{z \in 2^n} (-1)^{f(z)} \Big(\textstyle \sum_{z' \in 2^n} (-1)^{z \cdot z'} \, |z'\rangle \, \Big) \qquad \{ \text{Theorem slide 18} \}$$

We then proceed by case distinction. Assume that f is constant

$$\frac{1}{2^{n}} \sum_{z \in 2^{n}} (-1)^{f(z)} \Big(\sum_{z' \in 2^{n}} (-1)^{z \cdot z'} |z'\rangle \Big)
= \frac{1}{2^{n}} (\pm 1) \sum_{z \in 2^{n}} \Big(\sum_{z' \in 2^{n}} (-1)^{z \cdot z'} |z'\rangle \Big)$$

The Computation pt. II

Probability of measuring $\left|0\right\rangle$ at the end given by

$$\begin{aligned} & \left| \frac{1}{2^{n}} (\pm 1) \sum_{z \in 2^{n}} (-1)^{z \cdot 0} |0\rangle \right|^{2} \\ & = \left| \frac{1}{2^{n}} (\pm 1) \sum_{z \in 2^{n}} 1 |0\rangle \right|^{2} \\ & = \left| \frac{2^{n}}{2^{n}} \right|^{2} \\ & = 1 \end{aligned}$$

So if f is constant we measure $|0\rangle$ with probability 1. Now if f is balanced...

The Computation pt. III

$$\frac{1}{2^{n}} \sum_{z \in 2^{n}} (-1)^{f(z)} \left(\sum_{z' \in 2^{n}} (-1)^{z \cdot z'} | z' \rangle \right)
= \frac{1}{2^{n}} \left(\sum_{z \in 2^{n}, f(z) = 0} (-1)^{f(z)} \left(\sum_{z' \in 2^{n}} (-1)^{z \cdot z'} | z' \rangle \right) \right)
+ \sum_{z \in 2^{n}, f(z) = 1} (-1)^{f(z)} \left(\sum_{z' \in 2^{n}} (-1)^{z \cdot z'} | z' \rangle \right) \right)
= \frac{1}{2^{n}} \left(\sum_{z \in 2^{n}, f(z) = 0} \left(\sum_{z' \in 2^{n}} (-1)^{z \cdot z'} | z' \rangle \right) \right)
+ \sum_{z \in 2^{n}, f(z) = 1} (-1) \left(\sum_{z' \in 2^{n}} (-1)^{z \cdot z'} | z' \rangle \right) \right)$$

The Computation pt. IV

Probability of measuring $|0\rangle$ at the end given by

$$\begin{aligned} &\left| \frac{1}{2^{n}} \left(\sum_{z \in 2^{n}, f(z) = 0} (-1)^{z \cdot 0} |0\rangle + \sum_{z \in 2^{n}, f(z) = 1} (-1) (-1)^{z \cdot 0} |0\rangle \right) \right|^{2} \\ &= \left| \frac{1}{2^{n}} \left(\sum_{z \in 2^{n}, f(z) = 0} |0\rangle + \sum_{z \in 2^{n}, f(z) = 1} (-1) |0\rangle \right) \right|^{2} \\ &= \left| \frac{1}{2^{n}} \left(\sum_{z \in 2^{n}, f(z) = 0} |0\rangle - \sum_{z \in 2^{n}, f(z) = 1} |0\rangle \right) \right|^{2} \\ &= 0 \end{aligned}$$

So if f is balanced we measure $|0\rangle$ with probability 0