PAT-NO:

in the state of

JP410254054A

DOCUMENT-IDENTIFIER:

JP 10254054 A

TITLE:

CAMERA

PUBN-DATE:

September 25, 1998

INVENTOR-INFORMATION:
NAME
MATSUMOTO, HIROYUKI
OSADA, HIDEKI
MUKAI, HIROSHI
KONO, TETSUO

ASSIGNEE - INFORMATION:

NAME

COUNTRY

MINOLTA CO LTD

N/A

APPL-NO:

JP09055133

APPL-DATE:

March 10, 1997

INT-CL (IPC): G03B019/07, H04N005/225

ABSTRACT:

PROBLEM TO BE SOLVED: To make a camera body at the time of non-photographing compact by increasing the degree of freedom in terms of constitution for making the camera body at the time of non-photographing compact in an electronic still camera.

SOLUTION: At the time of switching to a photographing state from a non-

photographing state, a CCD holding barrel 34 is moved from the outside of the

optical axis of a photographing lens 31 onto the optical axis interlocked with

moving (extending) a lens holding barrel 32 in an optical axis direction. At

the time of switching to the non-photographing state from the

photographing

state, the barrel 34 is moved from the optical axis of the lens 31 to the

outside of the optical axis interlocked with moving (collapsing) the barrel 32

in the optical axis direction. Thus, the camera body at the time of non-photographing is made compact.

COPYRIGHT: (C) 1998, JPO

(19) 日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-254054

(43) 公開日 平成10年(1998) 9月25日

(51) Int.Cl.

識別記号

FΙ

G 0 3 B 19/07

H04N 5/225

Z

G03B 19/07 HO4N 5/225

審査請求 未請求 請求項の数3 OL (全 10 頁)

(21)出願番号

· 特顯平9-55133

(22)出顧日

平成9年(1997) 3月10日

(71)出願人 000006079

ミノルタ株式会社

大阪府大阪市中央区安土町二丁目3番13号

大阪国際ビル

(72)発明者 松本 博之

大阪市中央区安土町二丁目3番13号 大阪

国際ビル ミノルタ株式会社内

(72) 発明者 長田 英喜

大阪市中央区安土町二丁目3番13号 大阪

国際ビル ミノルタ株式会社内

(74)代理人 弁理士 板谷 康夫

最終頁に続く

(54) 【発明の名称】 カメラ

(57)【要約】

【課題】 電子スチルカメラにおいて、非撮影時におけ るカメラボディのコンパクト化に対する構成上の自由度 を大きくして、非撮影時におけるカメラボディをコンパ クトにする。

【解決手段】 非撮影状態から撮影状態への切り替え時 には、レンズ保持筒32の光軸方向への移動(繰り出 し)と連動して、CCD保持筒34が撮影レンズ31の 光軸外から光軸上に移動し、また、撮影状態から非撮影 状態への切り替え時には、レンズ保持筒32の光軸方向 への移動(沈胴)と連動して、CCD保持筒34が撮影 レンズ31の光軸上から光軸外に移動するようにした。 これにより、非撮影時におけるカメラボディをコンパク トにすることができる。

【特許請求の範囲】

【請求項1】 被写体を結像させる撮影光学系と、前記 撮影光学系を通って結像した像を電気信号に変換する光 電変換素子とを備えたカメラにおいて、

非撮影状態から撮影状態への切り替え時には、前記光電 変換素子が前記撮影光学系の光軸外から光軸上に移動 し、撮影状態から非撮影状態への切り替え時には、該光 電変換素子が該撮影光学系の光軸上から光軸外に移動す るようにしたことを特徴とするカメラ。

【請求項2】 前記撮影光学系は、前記光電変換素子の 10 移動に伴い、該光電変換素子の移動方向とは異なる向き に移動するように構成されていることを特徴とする請求 項1 に記載のカメラ。

【請求項3】 前記撮影光学系及び前記光電変換素子はいずれか一方が該撮影光学系の光軸方向に移動し、他方が光軸以外の方向に移動するように構成されていることを特徴とする請求項2に記載のカメラ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子スチルカメラ、ムービーカメラ等の光電変換素子を撮像素子として用いるカメラ(以下、「電子スチルカメラ等」という)に係わり、特に非撮影時におけるカメラボディのコンパクト化を図る技術に関する。

[0002]

【従来の技術】従来、銀塩フイルムを用いるレンズシャッターカメラでは、非撮影時におけるカメラボディのコンパクト化を図るために、いわゆるレンズ鏡胴を沈胴させる方式が一般的に行われている。ところが、この従来の沈胴方式は撮影光学系のみを移動させるものであり、撮像素子である銀塩フイルムを移動させることは行われていない。一方、電子スチルカメラ等については、非撮影時におけるカメラボディのコンパクト化を図るために、撮影光学系を光軸方向以外の軸を中心に回転させて収納する例がある。

[0003]

【発明が解決しようとする課題】しかしながら、上記のような従来の撮影光学系を光軸方向以外の軸を中心に回転させて収納する電子スチルカメラ等では、撮影光学系と光電変換素子を一体的に回転移動させることはあっても、非撮影時に光電変換素子を撮影光学系と分離して移動させることはなかった。このため、非撮影時におけるカメラボディのコンパクト化に対する構成上の制約が大きく、コンパクト化への寄与はわずかである。

【0004】本発明は、上述した問題点を解決するためになされたものであり、非撮影時におけるカメラボディのコンパクト化に対する構成上の自由度を大きくして、非撮影時におけるカメラボディがコンパクトなカメラを提供することを目的とする。

[000.5]

【課題を解決するための手段】上記目的を達成するために請求項1記載の発明は、被写体を結像させる撮影光学系と、前記撮影光学系を通って結像した像を電気信号に変換する光電変換索子とを備えたカメラにおいて、非撮影状態から撮影状態への切り替え時には、光電変換索子が撮影光学系の光軸外から光軸上に移動し、撮影状態から非撮影状態への切り替え時には、光電変換素子が撮影光学系の光軸上から光軸外に移動するようにしたものである。

【0006】上記構成においては、非撮影状態から撮影 状態への切り替え時には、光電変換素子が撮影光学系の 光軸外から光軸上に移動し、撮影状態から非撮影状態へ の切り替え時には、光電変換素子が撮影光学系の光軸上 から光軸外に移動する。これにより、非撮影時に撮影光 学系と光電変換素子を一体的に回転移動させる従来の電 子スチルカメラ等に比べて、非撮影状態におけるカメラ ボディのコンパクト化に対する構成上の自由度が大きく なるので、非撮影時におけるカメラボディをコンパクト にすることができる。

20 【0007】また、請求項2記載の発明は、請求項1に 記載のカメラであって、撮影光学系は、光電変換素子の 移動に伴い、光電変換素子の移動方向とは異なる向きに 移動するように構成されているものである。

【0008】上記構成においては、撮影状態から非撮影状態への切り替え時に、撮影光学系が光電変換素子と異なる向きの移動を行うことにより、光電変換素子のみを移動した場合に比べて非撮影状態におけるカメラボディのコンパクト化に対する構成上の自由度がより大きくなる。

30 【0009】また、請求項3記載の発明は、請求項2に 記載のカメラであって、撮影光学系及び光電変換素子は いずれか一方が撮影光学系の光軸方向に移動し、他方が 光軸以外の方向に移動するように構成されているもので ある。この構成においても、撮影状態から非撮影状態へ の切り替え時に、請求項2記載の発明と同等の作用が得 られる。

[0010]

【発明の実施の形態】以下、本発明の一実施形態による電子スチルカメラについて図面を参照して説明する。図1(a)(b)はそれぞれ本実施形態による電子スチルカメラの撮影時(使用時)と非撮影時(非使用時)の外観図、図2は撮影ブロックの分解斜視図、図3(a)

(b)はそれぞれ撮影プロックの撮影状態及び非撮影状態の縦断面図を示す。これらの図において、電子スチルカメラ10は、薄型偏平形状のカメラボディ20の前面視右側部に、撮影時に繰り出され非撮影時に沈胴されるレンズ鏡胴を有する撮影ブロック30を備えている。また、カメラボディ20には、ファインダ22、シャッタボタン23、メモリカード24のカード挿入口25及び

50 各種データの記憶・演算及び装置全体の動作制御を行う

CPU26 (図4参照) が設けられている。撮影ブロッ ク30は、被写体を結像させる撮影レンズ31(撮影光 学系)、撮影レンズ31を保持する鏡胴に相当するレン ズ保持筒32、CCD保持筒34、レンズ保持筒32及 びCCD保持筒34を保持するカバー33、天板35a を有するカバー35等から構成されている。CCD保持 筒34には電源スイッチ兼マニュアル繰り出しレバー3 4 a (以下、繰り出しレバーと称する) が設けられてお り、これを押し下げることによって電源をON状態へ切 り換え、鏡胴に相当するレンズ保持筒32のマニュアル 10 繰り出しを行う。

【0011】レンズ保持筒32は、角筒形状で背面が開 口し、側面視で上辺が下辺より短い台形状にカットされ ており(カット面32e)、前面中心部に撮影レンズ3 1を保持し、底面に左右二列に配されたスライド片32 aが設けられている。カバー33は、上面及び背面が開 口した角筒形状とされ、その内側にレンズ保持筒32を 案内保持し、前面下部にはレンズ保持筒32の繰り出し 及び沈胴を行うための開口33cが、側部には繰り出し レバー34 aを案内するレバースライド孔33 hがそれ 20 ぞれ設けられている。また、カバー33の底板内壁面に はレンズ保持筒32を案内するスライド溝331が、前 部内壁面にはスライド溝33gが、それぞれ左右二列に 設けられている。CCD保持筒34は、角筒形状で前面 が開口し、側面視で上辺が下辺より長い台形状にカット されており(カット面34 e)、側面には繰り出しレバ ー34aが設けられ、前面にはカバー33のスライド溝 33g内をスライドするスライド片34bが、背面には スライド片34cが、それぞれ左右二列に設けられてい る。CCD保持筒34の内部には、撮影レンズ31を通 30 って結像した像を電気信号に変換するであるCCD(光 電変換素子)を有したCCDバッケージ36が設けられ ている。このCCDバッケージ36は、CCD36a と、シリコンベース部366と、これを保持する取付台 36cとから構成されている。カバー35は、カバー3 3の上部を覆う天板35aと、カバー33の背面を覆う 背面板35bからなり、この背面板35bにはCCD保 持筒34のスライド片34cを案内保持するスライド溝 35fが設けられている。

【0012】上記カバー33及びカバー35から構成さ れる空間内にCCD保持筒34及びレンズ保持筒32は 縦方行に積み上げ状態で収納され、上記両者のカット面 32e, 34eは、互いに摺動し合うように配置されて いる。そして、上記CCD保持筒34とレンズ保持筒3 2とは、カメラの撮影状態と非撮影状態とで、相互に移 動し得るように構成されている。

【0013】すなわち、図3(a)に示されるように、 非撮影状態では、レンズ保持筒32はカバー33内に収 納され、CCD保持筒34はレンズ保持筒32の上方に

ら外れた位置にある。この手撮影状態から撮影状態に切 り替える時は、繰り出しレバー34aを押し下げる。こ の操作により、CCD保持簡 34とレンズ保持簡32と の各カット面34e、32eが互いに摺動して、CCD 保持筒34の下方移動に伴い、図3(b)に示されるよ うに、レンズ保持筒32はカバー33から繰り出され る。このように、非撮影状態から撮影状態への切り替え 時には、レンズ保持筒32の光軸方向への移動(繰り出 し)と連動して、CCD保持筒34は撮影レンズ31の 光軸外から光軸上に移動する。

【0014】逆に、撮影状態から非撮影状態へ切り替え る時は、レンズ保持筒32を手でカバー33内に押し込 むと、レンズ保持筒32の移動に伴い、両者のカット面 34e.32eが互いに摺動して、CCD保持筒34は 上方へ押し上げられ、レンズ保持筒32、つまり、鏡胴 は沈胴状態となる。このように、撮影状態から非撮影状 態への切り替え時には、レンズ保持筒32の光軸方向へ の移動(沈胴)と連動して、CCD保持筒34は撮影レ ンズ31の光軸上から光軸外に移動する。

【0015】従来の撮影光学系を光軸方向以外の軸を中 心に回転させて収納する電子スチルカメラ等では、非撮 影時に光電変換素子を撮影光学系と分離して移動するこ とはなかったが、上述のように本実施形態の電子スチル カメラ10においては、撮影状態から非撮影状態への切 り替え時に、レンズ保持筒32が光軸方向に移動して沈 胴され、CCD保持筒34が光軸上から光軸外へ移動す る。このため、非撮影時におけるカメラボディ20をコ ンパクトにすることができる。

【0016】図4は、本実施形態による電子スチルカメ ラ10の制御系のプロック図である。電子スチルカメラ 10には、制御用のCPU26が設けられている。CP U26は、繰り出しレバー34aが操作されたことによ る電源スイッチのON・OF F信号を検知する。また、 CPU26は、撮影可能状態において、シャックボタン 23が押されると、これによってONとなるレリーズス イッチ23aからの信号を検知して、CCD36a上に 結像した像の情報を電気信号で受け取り、メモリカード 24(記憶装置)に記録する。

【0017】図5は第2の実施形態による電子スチルカ 40 メラ10を示し、(a) (b) は、それぞれ撮影時(使 用時)と非撮影時(非使用時)の外観図、図6は同電子 スチルカメラ10の撮影プロック40の分解斜視図、図 7(a)(b)はそれぞれ撮影プロックの撮影状態と非 撮影状態の縦断面図を示す。これらの図において、前述 と同等の部材には同番号を付している。この第2の実施 形態による電子スチルカメラ 10は、カメラボディ20 の光軸と垂直方向の厚みが薄い形とされ、第1の実施形 魍のファインダ22に代えて、液晶ファインダ27が用 いられ、この液晶ファインダ27は、ボディ天板28に 位置しており、CCD36aは撮影レンズ31の光軸か 50 設けられている。また、撮影時にケース43の側部に設

けられた電源スイッチ兼マニュアル繰り出しレバー48 a (以下、繰り出しレバーと称する)を図示の左下方向 に押し下げることによって、撮影レンズ41を有するレ ンズ保持筒42の繰り出しと連動してCCD保持筒45 が撮影プロック40のケース43から下方へ突出する構 造になっている。

【0018】前記撮影ブロック40において、レンズ保 持简42は角筒形状で、前面中心部に撮影レンズ41を 保持する。撮影レンズ41は近接から無限遠までピント の合うパンフォーカスのものを用いている。ケース43 10 は、前面及び上面が開口した角筒形状とされ、その内側 にレンズ保持筒42を案内保持する。天板44は、ケー ス43の上面を覆う。CCD保持筒45は、非撮影時に はケース43の内部に収納され、撮影時には底板に設け られた底穴43gより突き出される。このCCD保持筒 45の内部には、撮影レンズ41を通って結像した像を 電気信号に変換する光電変換素子であるCCD46aよ りなるCCDパッケージ46が保持されている。このC CDバッケージ46は、CCD46aと、シリコンベー ス部466と、これを保持する取付台46cとから構成 20 されている。可動ミラーブロック47は、前面中央部に ミラー47eを有し、左右外側下部に設けられたピン4 7c, 47dをケース43の掛止穴43a, 43bに嵌 入することによって、ケース43に係合され、また、前 面の左右側端部に設けられた摺動面47 fが、撮影状態 と非摄影状態の切り替え時におけるCCD保持簡45の 上下移動に合わせて、CCD保持筒45の上部後端縁に 設けられたカット面45cと摺動し、これにより、可動 ミラーブロック47はピン47cと47dを結ぶ線を軸 として回動する構造になっている。

【0019】ガイドバー48及び49は、ほぼ対になっ た形状とされており、各両端にピン及びレバーが設けら れ、これらを介して可動ミラーブロック47とレンズ保 持筒42が連結され、また、ケース43にスライド自在 に連結される, 具体的には、可動ミラーブロック47の 左右外側上部に設けられた係合孔47a.47bにガイ ドバー48のピン48b、ガイドバー49のピン49b をそれぞれ嵌入させ、また、レンズ保持筒42の左右外 側部に設けられた係合孔42a.42bにガイドバー4 8のピン48d、ガイドバー49のピン49dをそれぞ 40 れ嵌入させる。また、ケース43右側部のガイド孔43 cにガイドバー48の繰り出しレバー48aを、ケース 43左側部のガイド溝43dにガイドバー49のピン4 9aをそれぞれスライド可能な状態で嵌入させ、また、 ケース43の右側部のスライド溝43eにガイドバー4 8のピン48cを、ケース43の左側部のスライド溝4 3fにガイドバー49のピン49cをそれぞれスライド 可能な状態で嵌入させる。

【0020】上記構成において、レンズ保持筒42とC CD保持筒45は、可動ミラーブロック47及びガイド 50 影ブロックの分解斜視図、図11(a)(b)(c)は

バー48, 49を介して連結され、図7(b)に示され るように、非撮影状態では、レンズ保持筒42及びCC D保持筒45はケース43内に収納され、CCD46a は撮影レンズ41の光軸から外れた位置にある。この非 撮影状態から撮影状態に切り替える時は、繰り出しレバ -48aを押し下げる。この操作により、可動ミラーブ ロック47の摺動面47fとCCD保持筒45のカット 面45cが互いに摺動して、可動ミラーブロック47の 反時計回り方向への回動に伴い、図7 (a)に示される ように、CCD保持筒45がケース43の下方へ突き出 されると共に、ガイドバー48の図示左方向への移動に 伴い、レンズ保持筒42がケース43から繰り出され る。この撮影状態においては、撮影レンズ41からの光 東がミラー47eに反射されて、CCD 46 a上に結像 される。すなわち、CCD46aは撮影レンズ41の光 軸上に位置する。こうして、非撮影状態から撮影状態へ の切り替え時には、レンズ保持筒42の光軸方向への移 動(繰り出し)と連動して、CCD保持筒45のCCD⁻ 4 5 a は撮影レンズ 4 1 の光軸外から光軸上に移動す 8.

【0021】逆に、撮影状態から非撮影状態に切り替え る時は、CCD保持筒45を手でケース43内に押し込 むと、この上方向への移動に伴い、CCD保持筒45の カット面45cと可動ミラーブロック47の摺動面47 fとが互いに摺動して、可動ミラーブロック47は時計 回り方向へ回動すると共に、ガイドバー48は図示で右 方向へ移動され、これに伴ってレンズ保持筒42、つま り、鏡胴がケース43内に収納されて、沈胴状態とな る.こうして、撮影状態から非撮影状態への切り替え時 30 には、レンズ保持筒42の光軸方向への移動(沈胴)と 連動して、CCD保持筒45のCCD45aは撮影レン ズ41の光軸上から光軸外に移動する。

【0022】このように、第2の実施形態においては、 レンズ保持筒42の沈胴と連動してCCD保持筒45が 撮影ブロック40の外部から内部に収納されることによ り、非撮影時におけるカメラボディ20をコンパクトに することが容易になる。

【0023】図8は第2の実施形態による電子スチルカ メラ10の制御系のブロック図である。 図4に示した第 1の実施形態のブロック図とほぼ同じであるが、第2の 実施形態の場合は液晶ファインダ27が用いられてお り、CPU26は、繰り出しレバー48aが押し下げら れて、電源スイッチがONされ、撮影可能状態になり、 シャックボクン23が半押しされると、 レリーズスイッ チ23aからその信号が入力され、撮影レンズ41を通 してCCD46a上に結像した像の情報を液晶ファイン ダ27に出力表示する。

【0024】図9は第3の実施形態による電子スチルカ メラ10の外観図、図10は電子スチルカメラ10の撮

撮影ブロック内部における撮影レンズからCCDへ至る 撮影光束を示し、それぞれテレ(撮影)状態、ワイド (撮影)状態、非撮影状態を示している。この第3の実 施形態による電子スチルカメラ10は、第2の実施形態 と同様に、カメラボディ20の光軸と垂直方向の厚みが 薄い形とされ、液晶ファインダ27が用いられている。 前述の第2の実施形態による電子スチルカメラでは、撮 影光学系を1種類しか備えていなかったが、第3の実施 形態による電子スチルカメラ10では、撮影ブロック5 Oにテレ用とワイド用の2種類の撮影レンズ51a, 5 10 1 b を保持したテレ用レンズ保持筒52a,ワイド用レ ンズ保持筒52bを備えている。また、撮影ブロック5 0のケース53の上部には、操作テーブル54が設けら れ、この操作テーブル54上に設けられた電源スイッチ 兼操作つまみ54 a (以下、操作つまみと称す)を回転 させることによって電源をON状態へ切り換え、また、 テレ用とワイド用の2種類の撮影レンズを選択する.従 って、上述の第1及び第2の実施形態とは違い、撮影時 は鏡胴の繰り出しを行わない構造になっている。

【0025】上記撮影ブロック50の構成について説明 20 する。テレ用レンズ保持筒52a、ワイド用レンズ保持 简52bがケース53の凹部53a,53bに収納さ れ、また、ワイド用撮影レンズ51bから入射した光を 反射するミラー53cが凹部53aに対面した位置に設 けられ、また、凹部53bに対面する空間53dに、C CDパッケージ56を保持するターンテーブル55が、 回転軸53eとターンテーブル55の係合穴55aの嵌 合により回転自在に保持されている。CCDパッケージ 56はターンテーブル55の上面に接合保持され、CC D56aを支持するシリコンベース部56bと、これを 30 保持する取付台56cとからなり、この取付台56cの 左右両側部にはCCD56aの正面方向以外からの入射 光を遮光する遮光片56 dが設けられている。ターンテ ーブル55は操作つまみ54aを操作して操作テーブル 54を回転させると、回転軸53eの回りに回動し、従 ってCCD56aの向きも変化する。

【0026】次に、撮影ブロック50におけるCCD5 6 aへの撮影光束について図11(a)~(c)を参照 して説明する。図11(c)に示す非撮影状態において は、操作つまみ54 aは"OFF"の位置になってお り、CCD56aは撮影光束を受光しない方向に向き、 テレ用撮影レンズ51a及びワイド用撮影レンズ51b の入射光の光軸から外れた位置にある。この非撮影状態 から撮影状態へ切り替える時は、操作つまみ54 aを操 作して操作テーブル54を回転させ、" T" (テレ)又 は"W"(ワイド)の位置に合わせる。この操作によ り、ターンテーブル55が回動し、CCDバッケージ5 6の前面に設けられたCCD 56aの向きが変化し、図 11(b)のようにワイド用撮影レンズ51bの入射光

ズ51aの入射光のミラー53cにより反射された光の 光軸上に向きを変える。逆に、撮影状態から非撮影状態 へ切り替える時は、操作つまみ54 aを操作して操作テ ーブル54を回転させ、"OFF"の位置に合わせる。 この操作により、CCD56aは向きが変化し、ワイド 用撮影レンズ51b又はテレ用撮影レンズ51aの入射 光の光軸上から光軸外に向きを変える。

【0027】上記第3の実施形態の電子スチルカメラ1 0においては、非撮影状態からワイド(撮影)状態への 切り替え時に、CCD56aをワイド用撮影レンズ51 bの光軸外から光軸上に移動し、ワイド(撮影)状態か らテレ(撮影)状態への切り替え時に、CCD56aを ワイド用撮影レンズ51bの光軸上からテレ用撮影レン ズ51 aの光軸上に移動するようにしているので、従 来、多焦点カメラにおいて必要とされたレンズ鏡胴の繰 り出し、沈胴のための駆動用部材が不要になる。これに より、コンパクト化を図る上で構成上の自由度が大きく なり、非撮影時におけるカメラボディ20をコンパクト にすることが容易になる。

【0028】本発明は、上記の実施形態に限られるもの ではなく、様々な変形が可能である。例えば、上述の三 つの実施形態による電子スチルカメラ10では、レンズ 保持筒32,42、CCD保持筒34,45及びターン テーブル55の移動をマニュアルで行ったが、モータを 使用してこれらを駆動するようにしてもよい。また、記 憶装置としては、メモリカード 2.4 に代えて、フロッピ ーディスクや電子スチルカメラ10の本体に内蔵するR AMやE² PROMを使用するようにしてもよい。

[0029] 【発明の効果】以上のように請求項1に記載の発明に係 る電子スチルカメラによれば、非撮影状態から撮影状態 への切り替え時には、光電変換素子が撮影光学系の光軸 外から光軸上に移動し、撮影状態から非撮影状態への切 り替え時には、光電変換素子が撮影光学系の光軸上から 光軸外に移動するようにしたので、非撮影時に撮影光学 系と光電変換素子を一体的に回転移動させる従来の電子 スチルカメラ等に比べて、非撮影状態におけるカメラボ ディのコンパクト化に対する構成上の自由度が大きくな り、非撮影時におけるカメラボディをコンパクトにする ことが容易になる。また、これを多焦点の電子スチルカ メラに採用し、焦点距離の切り替え時に、光電変換素子 を或る焦点距離を持つ撮影光学系の光軸上から他の焦点 距離を持つ撮影光学系の光軸上に移動させ、撮影状態か ら非撮影状態への切り替え時に、光電変換素子を全ての |撮影光学系の光軸外に移動させることによって、従来、 多焦点のカメラにおいて必要とされたレンズ鏡胴の繰り 出し、沈胴を必要としない多焦点の電子スチルカメラが 実現できる。これにより、多焦点のカメラにおいてレン ズ鏡胴の繰り出し、沈胴のための駆動用部材が不要とな の光軸上、又は、図11(a)のようにテレ用撮影レン 50 るので、コンパクト化を図る上で構成上の自由度がより

q

大きくなり、非撮影時におけるカメラボディをコンパクトにすることがより容易になる。

【0030】また、請求項2に記載の発明に係る電子スチルカメラによれば、撮影状態から非撮影状態への切り替え時に、光電変換素子の移動に伴い、撮影光学系と光電変換素子が異なる向きに移動され、光電変換素子のみを移動した場合に比べて非撮影状態におけるカメラボディのコンパクト化に対する構成上の自由度がより大きくなるので、請求項1記載の発明の効果が的確に得られる。

【0031】また、請求項3に記載の発明に係る電子スチルカメラによれば、撮影状態から非撮影状態への切り替え時に、撮影光学系及び光電変換素子はいずれか一方が撮影光学系の光軸方向に移動され、他方が光軸以外の方向に移動されるので、請求項2記載の発明と同等の効果が得られる。

【図面の簡単な説明】

【図1】(a)(b)は、それぞれ本発明の第1の実施 形態による電子スチルカメラの撮影時と非撮影時の外観 図である。

【図2】上記電子スチルカメラの撮影ブロックの分解斜 視図である。

【図3】(a)(b)はそれぞれ上記撮影ブロックの撮影状態及び非撮影状態における縦断面図である。

【図4】上記電子スチルカメラの制御系のブロック図である。

【図5】(a)(b)は、それぞれ本発明の第2の実施

10 形態による電子スチルカメラの撮影時と非撮影時の外観 図である。

【図6】上記電子スチルカメラの撮影ブロックの分解斜 視図である。

【図7】(a)(b)は、それぞれ上記撮影プロックの 撮影時と非撮影時の縦断面図である。

【図8】上記電子スチルカメラの制御系のブロック図である。

[図9] 本発明の第3の実施形態による電子スチルカメ 10 ラの外観図である。

【図10】上記電子スチルカメラの撮影ブロックの分解 斜視図である。

【図11】(a)(b)(c)は、それぞれ上記撮影ブロックの撮影レンズからCCDへ至るテレ状態、ワイド状態及びオフ状態における撮影光路を示す図である。

【符号の説明】

- 10 電子スチルカメラ
- 31 撮影レンズ (撮影光学系)
- 36a CCD (光電変換素子)
- 20 41 撮影レンズ(撮影光学系)
 - 45 CCD保持筒
 - 46a CCD (光電変換素子)
 - 47e ミラー
 - 51a テレ用撮影レンズ(撮影光学系)
 - 51b ワイド用撮影レンズ (撮影光学系)
 - 53c ミラー
 - 56a CCD (光電変換素子)

【図2】

C83f

10 (図4) 1

【図5】

[图7]

【図8】

10

[図11]

フロントページの続き

(72)発明者 向井 弘

大阪市中央区安土町二丁目3番13号 大阪 国際ビル ミノルタ株式会社内 (72)発明者 河野 哲生

大阪市中央区安土町二丁目 3 番13号 大阪 国際ビル ミノルタ株式会社内