## Algorytmy metaheurystyczne 3

# Paweł Cegieła, Wojciech Sęk 26 maja 2022

#### 1 Rodzaje algorytmu

Algorytm genetyczny można podzielić ze względu na dwie znaczące modyfikacje:

- algorytm może działać na jednej populacji lub na wielu populacjach żyjących na osobnych wyspach
- algorytm może działać całkowicie sekwencyjnie lub wykonywać część obliczeń równolegle

#### 2 Parametry algorytmów

Dla algorytmu sekwencyjnego z jedną populacją podajemy następujące parametry:

- matrix: macierz przechowująca odległości między miastami z problemu TSP
- gen\_rand: wartość logiczna mówiąca, czy pierwsze pokolenie ma być całkowicie losowe czy przybliżone innymi metaheurystykami
- gen\_size: liczność populacji na każdym etapie algorytmu
- elite\_num: liczność elity, czyli najlepszych rozwiązań, które przeżywają i przechodzą do następnego pokolenia
- cross\_op: wartość enumeratywna mówiąca o tym, jaki typ krzyżowania zostanie użyty w algorytmie. Możliwe wartości:
  - 0 HALF CROSSOVER: dziecko w każdym kroku generowania przyjmuje kolejne od jednego z rodziców miasto z prawdopodobieństwem 1/2, bierzemy najwcześniejsze miasto z rodzica, które nie występuje w dziecku
  - 1 ORDER CROSSOVER: pół dziecka to podciąg rodzica, drugie pół to podciąg drugiego rodzica składający się z nieużytych wcześniej miast i zaczynający od miasta występującego na tym miejscu w pierwszym rodzicu
  - 2 CYCLE CROSSOVER: bierzemy miasto z pierwszego rodzica, patrzymy na miasto pod danym indeksem w drugim rodzicu, idziemy do niego w pierwszym rodzicu, powtarzamy aż zamkniemy cykl. Resztę uzupełniamy drugim rodzicem.
  - 3 PARTIALLY MAPPED CROSSOVER: na danym podciągu indeksów tworzymy mapę między rodzicami, następnie używamy pociągu z jednego rodzica i zmapowanych wartości z drugiego.
- swap\_change: wartość logiczna decydująca o tym, czy w trakcie mutacji poruszamy się w sąsiedztwie swap czy reverse
- size\_of\_tournament: rozmiar turnieju przy losowaniu rodziców do tworzenia nowego pokolenia. Wartość ustawiona na 0 sprawia, że zamiast turnieju korzystamy z zasady ruletki, gdzie funkcja dopasowania jest odwrotnością wagi danej permutacji.
- mut\_chance: prawdopodobieństwo, że dany osobnik zmutuje.
- max\_time: ograniczenie czasowe, po którym algorytm kończy działanie. Wynik zwracany przez algorytm to najlepszy wynik znaleziony przed przekroczeniem limitu czasowego.

Dla algorytmu wyspowego podajemy także:

- *isles\_num*: liczba wysp
- migration\_freq: liczba iteracji, które dzielą od siebie moment wymiany genetycznej między wyspami

W algorytmach urównoleglonych podaje się również parametr  $num\_of\_threads$ , który mówi o liczbie wątków.

#### 3 Teoretyczna złożoność

Rozważmy złożoności poszczególnych etapów w algorytmie sekwencyjnym bez wysp. Niech n to liczba miast, a k to liczność pokolenia:

- Wyznaczanie populacji początkowej: w języku Rust losowanie permutacji ma złożoność O(1), zatem losowa generacja osobników ma złożoność O(k). Dla przybliżeń przez inne metaheurystyki co najwyżej  $\frac{k}{4}$  jest przybliżone, w naszym przypadku dajemy jeden raz 2 OPT ze złożonością  $O(n^3)$  i pozostałe to nearest neighbours od losowego miasta ze złożonością  $O(n^2)$ .
- Ewaluacja: Obliczanie wartości danej permutacji ma złożoność O(n), robimy to k razy, zatem cały krok ma O(kn).
- Selekcja: Wybieramy k rodziców. Przy ruletce wybór rodzica ma złożoność O(1), przy turnieju O(l), gdzie l to rozmiar turnieju. Zatem O(k) dla ruletki i O(kl) dla turnieju.
- **Krzyżowanie**: Każde z krzyżowań odbywa się w czasie liniowym względem długości permutacji, czyli O(n), przy tworzeniu całej permutacji mamy O(kn).
- Mutacja: mutacja typu swap ma złożoność  $\Theta(1)$ , a typu reverse  $\Theta(n)$ . Mutacji wykonujemy  $\Theta(pn)$ , gdzie p to prawdopodobieństwo mutacji. Zatem ta faza ma złożoność  $\Theta(pn)$  lub  $\Theta(pn^2)$ . W worst case możemu wylosować wszystkie, więc odpowiednio złożoności są O(n) i  $O(n^2)$ .

Ponadto w algorytmie wyspowym regularnie w niektórych iteracjach wymieniana jest informacja genetyczna ze złożonością  $O(k^2)$  (każda wyspa wymienia się z każdą jakimś osobnikiem).

Podsumowując, w najgorszym przypadku:

• Generacja początkowej populacji:

$$O(n^3 + kn^2 + k) = O((n+k)n^2)$$

• Właściwa iteracja:

$$O(kn) + O(kl) + O(kn) + O(n^2) + O(k^2) = O(k(n+l+k) + n^2)$$

#### 4 Wykonane eksperymenty

Strojenie algorytmu zostało wykonane na podstawie danych z TSPLIB. Wybrane zostały parametry, dla których algorytm najlepiej zachowywał się podczas testowania. Jeśli jeden z dwóch parametrów miał np. lepsze wyniki od drugiego dla jednych danych (np. dla mniejszych wielkości macierzy), a gorsze dla innych, wybierany był jeden z tych parametrów po przemyśleniu. Po strojeniu zostały przeprowadzone eksperymenty porównujące algorytm w wersji oraz z parametrami wybranymi jako domyślne: z innymi wersjami algorytmu oraz z tabu search, a także z różnymi wartościami parametrów. Nie w każdym eksperymencie czy nie dla każdego typu macierzy domyślny algorytm okazał się najlepszy, natomiast strojenie pomogło nam znaleźć taki algorytm oraz parametry, które średnio zachowują się najlepiej.

#### 4.1 Porównanie wersji algorytmu genetycznego i tabu search











#### 4.2 Przybliżenie początkowe





















## 4.4 Wielkość elity





















## 4.6 Swap i inverse











## 4.7 Turniej











#### 4.8 Szansa mutacji





















# 4.10 Liczba wysp











## 4.11 Częstotliwość migracji











## 4.12 Liczba wątków











## 5 Obserwacje i wnioski

• Obserwacje i wnioski - do zrobienia