Quantile Functions in Neural Embedded Optimization

Two-stage Stochastic and Chance-Constrained Optimization

Taehyeon Kwon

Department of Industrial and Manufacturing Engineering
The Pennsylvania State University

1

Preview

Key Points

- 1. Quantile Functions Overview
 - Introduce the concept and significance.

2. Applications

- 1. Chance Constraint Optimization
- 2. Two-Stage Stochastic Optimization

Concepts

- Definition: Quantiles are values that divide a dataset into equal-sized, contiguous subgroups.
 They are a way to understand the distribution and spread of data.
- Purpose: Quantiles help in understanding the position of a particular value in a distribution and are commonly used in statistics to summarize data sets.

Examples:

- Quartiles: Divide data into four equal parts.
- Percentiles: Divide data into 100 equal parts.
- Deciles: Divide data into 10 equal parts.

Concepts

- Randomly sampled 1000 samples from gaussian distribution
- Red dash lines (from left -> right) indicates 25%, 50%, 75% percentiles respectively.

Mathematical Interpretation and Examples

• Quantile Formula: A quantile of a dataset divides the data into segments with respect to the cumulative distribution function.

$$p^{th}$$
 quantile = $(x : Pr(X \le x) = p)$

- **Examples**: Give dataset; [1,2,3,4,5,6,7,8,9,10]
 - First Quartile (25th Percentile): (2.5 + 3)/2 = 2.75; meaning 25% of the data is less than or equal to 2.75.
 - Third Quartile (75th Percentile): (7.5 + 8)/2 = 7.75; meaning 75% of the data is less than or equal to 7.75.

Definition

The quantile function $Q^{1-\epsilon}(\cdot)$, with quantile level $1-\epsilon$, where $\epsilon \in [0,1]$ can be defined as follow:

$$Q^{1-\epsilon}(X) = \inf\{x \in \mathbb{R} \mid \Pr(X \le x) \ge 1 - \epsilon\}$$

- X: Random variable, $x \in X$
- $\inf\{x : \text{condition of } x\}$: Infimum; the smallest value in the sets which is satisfying conditions for x
 - $\inf\{x \in \mathbb{R} : x > 2\} = 2$ vs $\min\{x \in \mathbb{R} : x > 2\} = ?$
 - $\inf\{x \in \mathbb{R} : x \ge 2\} = 2$ vs $\min\{x \in \mathbb{R} : x \ge 2\} = 2$

Example

- $X \sim N(0,1) \mid \epsilon = 0.05$
- $Q^{0.95}(X) = \inf\{x \in \mathbb{R} \mid \Pr(X \le x) \ge 0.95\} = 1.68$

The value **1.68** marks the 95th percentile helps in setting benchmarks, thresholds, or cutoffs in various problems (i.e., finance, quality control, and risk management)

What is Chance Constraint Optimization?

$$\min_{x \in \mathbb{R}^n} c(x) \tag{1}$$

s.t.
$$\Pr\left\{g(x,\xi) \le \gamma\right\} \ge 1 - \epsilon$$
 (2)

where the function $g(x, \xi)$ is a function of the decision variables x and the random variables ξ and γ is a threshold for $g(x, \xi)$.

Mathematical Formula: Basic

Let's consider F(x) is the cumulative distribution function (CDF) of probability density function (PDF) f(x)

$$F(x) = \Pr\{X \le x\} \qquad \text{Extend} \qquad F(x; \gamma) = \Pr\{g(x, \xi) \le \gamma\}$$

Extension is possible. Since ξ is random variable and $g(x, \xi)$ correspond to random variable X. Also $\gamma \in \mathbb{R}$ should be a specific value possible set of $g(x, \xi)$

Mathematical Formula: Modification

$$\Pr\left\{g(x,\xi) \le \gamma\right\} \ge 1 - \epsilon \iff F(\gamma,x) \ge 1 - \epsilon \tag{3}$$

$$F(\gamma, x) \ge 1 - \epsilon \iff Q^{1 - \epsilon}(g(x, \xi)) \le \gamma$$
 (4)

$$Q^{1-\epsilon}(g(x,\xi)) \le \gamma \iff \inf\{u \in \mathbb{R} \mid \Pr\{g(x,\xi)\} \le u\} \ge 1-\epsilon\} \le \gamma \tag{5}$$

Mathematical Formula: Final

$$\min_{x \in \mathbb{R}^n} c(x)$$
s.t. $Q^{1-\epsilon}(g(x,\xi)) \le \gamma$ (6)

 $Q^{1-\epsilon}(g(x,\xi))$ results specific value $u^* = \inf\{u \in \mathbb{R} \mid \Pr\{g(x,\xi)\} \le u) \ge 1 - \epsilon\}$

Learn the mapping $x \mapsto Q^{1-\epsilon}(g(x,\xi))$ by neural surrogates

Effectiveness

Fig. 1. Comparison of $1 - \alpha - \Pr\{h(u, \delta) \le 0\}$ and $Q^{1-\alpha}(h(u, \delta))$, where $h(u, \delta) = 1.5u^2 - 3 + \delta$ and $\delta \sim N(0, 1)$ ($\alpha = 0.1$).

Features:

- Quantile function is much less flat
- Feasible region is expanded; not bounced in [0,1]

Overview of Quantile Neural Network Methodology

 What is QNN? A QNN is a type of neural network used as a surrogates in two-stage stochastic optimization problems (2SP).

Original 2SP

$$\min_{x \in \mathcal{X}} c^{\mathsf{T}} x + \mathbb{E}_{\xi} \left[V(x, \xi) \right]$$
s.t.
$$V(x, \xi) := \min_{y \in \mathcal{Y}(x, \xi)} f(y)$$

Embed QNN into 2SP

$$\min_{x \in \mathcal{X}} c^{\mathsf{T}} x + Q_{NN}(x)$$

s.t.
$$Q_{NN}(x): x \mapsto Q^{1-\epsilon}(V(x,\xi))$$

Functional Mechanism of QNN in Optimization

- Training the QNN: The network is trained to estimate the "distribution of the second-stage value" function based on the first-stage decision variables.
- Input and Output:
 - Input: First-stage decision variables X
 - Output: Multiple quantiles to reconstruct the distribution of the second-stage value function.
 - $Q_{NN}(X) = \{ Q^{1-\epsilon^i}(V(X,\xi)) : \epsilon^i \in [0,1], \quad i = 1,...n^L \}$
- Network Structure:
 - QNN uses a multi-output, feed-forward structure.
 - ReLU (Rectified Linear Unit) as activation function.

QNN Structure for 2SP

Neur2SP Input Network not used in MIP-NN decision ReLU Network used in MIP-NN Intermediate representation Mean aggregation $\longrightarrow \sum_{k=1}^{K} p_k Q(\mathbf{x}, \boldsymbol{\xi}_k)$ $\{\boldsymbol{\xi}_k\}_{k=1}^K$ Network Scenario Post Aggregation Embedding Network Network Intermediate Final scenario Scenarios Aggregated scenario embedding scenario embeddings

Figure 2: NN-E architecture diagram.

Figure 1: QNN Structure for Two-stage Optimization Problems.

Dumouchelle et al., NeurlPS (2022), Alcántara et al., arXiv (2024)

Embedding QNN in Stochastic Optimization

• Embedding QNN: Once trained, QNN can be incorporated within the optimization problem as a set of piecewise-linear constraints.

Optimization Options:

- Optimizing over mean values for expected outcomes.
- Optimizing over tail mean values for risk-averse strategies.

Benefits of Using QNN:

- Allows for direct accounting of uncertainty without reliance on multiple scenarios.
- Provides a robust approach for managing variabilities in second-stage outcomes.

Performances: computing times

	QNN					IQNN				NN-E	NN-P	SAA
Problem	Data Generation	Training	Tolerance Selection	Problem Solving	Total Time	Data Generation	Training	Problem Solving	Total Time	Total Time	Total Time	Total Time
CFLP-10-10-100sc CFLP-10-10-500sc CFLP-10-10-1000sc	38.83	526.43	16.40	3.30	584.96	38.83	407.01	0.04	445.88	2,490.73 (0.38) 2,490.95 (0.60) 2,490.99 (0.64)	148.99 (8.28) 347.01 (206.30) 997.47 (856.77)	4,410.60 10,800.17 10,800.87
CFLP-25-25-100sc CFLP-25-25-500sc CFLP-25-25-1000sc	385.14	417.60	47.30	0.32	850.36	385.14	383.92	0.03		6,354.50 (0.44) 6,354.60 (0.54) 6,354.64 (0.58)	957.76 (4.86) 979.31 (26.41) 1,007.35 (54.45)	10,800.06 10,800.14 10,800.36
CFLP-50-50-100sc CFLP-50-50-500sc CFLP-50-50-1000sc	725.31	283.43	207.30	0.32	1,216.36	725.31	258.17	0.03	1,010.51	8,163.28 (1.66) 8,162.87 (1.25) 8,163.06 (1.44)	284.78 (21.10) 437.31 (173.63) 835.80 (572.12)	10,800.05 10,806.15 10,805.82
IP-I-H-441sc IP-I-H-1681sc IP-I-H-10000sc	15.46	259.28	4.20	0.06	279.00	15.46	270.00	0.09	285.55	9,338.79 (0.32) 9,338.80 (0.33) 9,338.85 (0.38)	1,409.06 (1,231.48) 10,994.47 (10,816.89) —	10,800.00 10,800.03 10,802.10

Table 2: Computing times (in seconds) for the (I)QNN framework and competitive approaches in risk-neutral optimization. NN-E, NN-P, and SAA times are reproduced from Patel et al. (2022). CPU times for solving the resulting optimization problems for NN-E and NN-P are shown in parentheses.

Performances: relative gaps QNN vs SAA

Problem	QNN	IQNN	NN-E	NN-P	SAA
CFLP-10-10-100sc	7,129.68 (1.93%)	7,124.11 (1.85%)	7,174.57 $7,171.79$ $7,154.60$	7,109.62	6,994.77
CFLP-10-10-500sc	7,136.43 (1.90%)	7,114.86 (1.59%)		7,068.91	7,003.30
CFLP-10-10-1000sc	7,108.05 (0.27%)	7,095.69 (0.10%)		7,040.70	7,088.56
CFLP-25-25-100sc CFLP-25-25-500sc CFLP-25-25-1000sc	11,967.66 (0.87%) 11,882.88 (-2.36%) 11,870.60 (0.02%)	11,999.41 (1.13%) 11,915.06 (-2.10%) 11,915.35 (0.40%)	11,773.01 $11,726.34$ $11,709.90$	11,773.01 $11,726.34$ $11,709.90$	11,864.83 12,170.67 11,868.04
CFLP-50-50-100sc	25,944.94 (2.35%)	27,603.63 (8.89%)	$25,236.33 \\ 25,281.13 \\ 25,247.77$	25,019.64	25,349.21
CFLP-50-50-500sc	25,906.90 (-7.60%)	27,324.21 (-2.54%)		24,964.33	28,037.66
CFLP-50-50-1000sc	25,881.86 (-14.53%)	27,178.49 (-10.25%)		24,981.70	30,282.41
IP-I-H-441sc	65.91 (-1.98%)	66.36 (-1.31%)	65.12	$65.12 \\ 65.34 \\$	67.24
IP-I-H-1681sc	65.60 (0.29%)	65.74 (0.50%)	65.63		65.41
IP-I-H-10000sc	65.89 (1.95%)	65.84 (1.87%)	65.66		64.63

Table 3: True objective results for risk-neutral optimization. Relative gaps between QNN and IQNN objective values and the SAA approach are shown in brackets. The best results are highlighted in bold. Results from NN-E, NN-P, and SAA are reproduced from Patel et al. (2022).