MOLE CONCEPT

Units, Atoms, Molecules, Atomic mass, Molecular mass, Gram atomic mass, Gram molecular mass, RAM, Average atomic

1	Molecular weight o	of SOo is						
'	(1) 64 gm (2		(3) 32 gm	(4) 32 a	amu			
2.	Centigrade and Fa	áhrenheit scales a	()	. ,	(4) None of these			
3.	The modern atom	ic weight scale is	based on :					
	(1) ¹² C	(2) ¹⁶ O	(3) ¹ H		(4) ¹⁸⁰			
4.	1 amu is equal to (1) $\frac{1}{12}$ of C – 12	(2) $\frac{1}{14}$ of C) – 16 (3) 1	g of ${\sf H_2}$	(4) 1.66 × 10 ⁻²³ kg			
5.	Avogadro number is: (1) Number of atoms in one gram of the element (2) Number of mililitre which one mole of a gaseous substance occupies at NTP (1 atm 8 0°C) (3) Number of molecules present in one gram molecular mass of a substance. (4) All are correct							
6.	At what temperatu	re, both Celsius a	and Fahrenheit scale	e read the same va	alue :			
	(1) 100° -40°	(2)) 130°	(3) 60°	(4)			
7.	The weight of one	atom of Uranium	is 238 amu. Its actu	ıal weight is g.				
	(1*) 3.95 × 10 ⁻²² 10 ⁻²⁰	(2)	3.96 × 10 ⁻²²	(3) 2.95 × 10 ⁻²²	(4) 3.98 ×			
Relat	Relation between Mole, Mass and Gaseous volume.							

(1) 1	(2) 2	(3) 2.3	(4) 4.6

9. How many atoms are there in 100 amu of He?

8.

 (1) 25
 (2) 50
 (3) 75
 (4) 100

If the atomic mass of Sodium is 23, the number of moles in 46 g of sodium is :

10.	The largest number of r	molecules is present in 1	g of			
	(1) CO ₂	(2) H ₂ O	(3) C ₂ H ₅ OH	(4) N ₂ O ₅ .		
11.	The number of sodium	atoms in 2 moles of sodi	um ferrocyanide (Na ₄ [Fe	e(CN) ₆]) is :		
12.	(1) 12 × 23 The total number of g-n	(2) 26×10^{23} nolecules of SO_2Cl_2 in 13	(3) 34×10^{23} (4) 48×10^{23} 13.5 g of sulphuryl chloride is			
13.	(1*) 0.1 Total number of atoms	(2) 0.2 in 196 amu H ₂ SO ₄ are :	(3) 0.3	(4) 0.4		
	(1) 14 N _A	(2) 14	(3) 7 N _A	(4) 7		
14.	The number of molecul	es of CO ₂ present in 44 (g of CO ₂ is :			
15.	(1) 6.0×10^{23} One mole of P ₄ molecu	` '	(3) 12×10 ²³	(4) 3×10^{10}		
	(1) 1 molecule		(2) 4 molecules			
	(3) $\frac{1}{4} \times 6.022 \times 10^{23}$ ato	ms	(4) 24.088 × 10 ²³ atoms			
16.	Which has maximum no (1) 24 g of C (12)	umber of atoms : (2) 56 g of Fe (56)	(3) 27 g of Al (27)	(4) 108 g Ag (108)		
17.		n has a mass of 54.0 c (At. wt. Al = 27, Mg = 24	4.0 g. What is the mass of the same number of = 24)			
	(1) 12 g	(2) 24 g	(3) 48 g (4) 96	g.		
18.	The number of atoms in (1) Twice that in 60 g c (3) Half in 8 g He	n 558.5 g of Fe (at wt.= 5 arbon	= 55.85) is : (2) 6.022 × 10 ²² (4) 558.5 × 6.023 × 10 ²³			
19.	The total number of ele	ctrons present in 8.0 g o	f methane is			
	$(1) 4.8 \times 10^{24}$	$(2) 3.01 \times 10^{24}$	$(3) 4.8 \times 10^{25}$	$(4)\ 3.01\times 10^{23}.$		
20.	Under the same conditi (1) be noble gases (3) have a volume of 22	ons, two gases have the 2.4 dm³ each	same number of molecution (2) have equal volumes (4) have an equal number of molecution (2) have an equal number of molecution (2) have an equal number of molecution (2) have an equal number of molecution (3) have an equal number of molecution (4) have an equal number of molecution (4) have an equal number of molecution (4) have equal number of molecution (5) have equal number of molecution (6) have equal number of molecut	3		
21.	If V ml of the vapours of is:	of substance at NTP wei	ght W g. Then molecula	r weight of substance		
	(1) (W/V) × 22400	(2) $\frac{V}{W} \times 22.4$	(3) (W–V) × 22400	$(4) \ \frac{W \times 1}{V \times 22400}$		

22.	16 g of an ideal gas SO_x occupies 5.6 L. at STP. The value of x is					
	(1) x = 3	(2) x = 2	(3) x = 4	(4) none of these		
23.	4.4 g of an unknown g (1) N ₂ O	gas occupies 2.24 litres o (2) CO	f volume at STP, the gas (3) CO ₂	may be : (4) 1 & 3 Both		
	sity and Vapour density of a ga (1) 0.178	nsity as if its density is 0.178 g (2) 2	ı/L at NTP is : (3) 4	(4) 0.089		
25.	` '	` '	VD is 70 the value of x m	` '		
	(1) 7	(2) 4	(3) 5	(4) 6		
26.	Number of electrons	in 1.8 mL of $H_2O(\ell)$ is ab	out :			
	[Book_RCMı	ıkerjee_2004_1.103]				
	$(1) 6.02 \times 10^{23}$	$(2)\ 3.011\times 10^{23}$	$(3) \ 0.6022 \times 10^{21}$	$(4) 60.22 \times 10^{20}$		
27.	The density of liquid r the metal ? (Atomic m		ow many moles of mercu	ry are there in 1 litre of		
	(1)68 mole	(2)69 mole	(3)70 mole	(4)71 mole		
28.	of:		nsed to water occupies a	an approximate volume		
	(Given : density of wa (1) 18 litre	ter = 1 g/ml) (2) 1 litre	(3) 1 ml	(4) 18 ml		
	(1) 10 1110	(2) 1 11110	(0) 1 1111	(4) 10 1111		
Perc	entage compositio	n and Molecular fo	rmula			
29.	A hydrocarbon contain	ns 75% of carbon. Then	its molecular formula is :			
	(1) CH ₄	(2) C ₂ H ₄	(3) C ₂ H ₆	(4) C ₂ H ₂		
30.	The percentage value	of nitrogen in urea is ab	out			
31.	(1) 46 The empirical formula of the compound is:	(2) 85 of a compound of molec	(3) 18 cular mass 120 is CH₂O.	(4) 28 The molecular formula		
	(1) $C_2H_4O_2$	(2) $C_4H_8O_4$	$(3) C_3 H_6 O_3$	(4) all of these		
32.	The percentages of C empirical formula of the		compound are 40%, 13.3	% and 46.7%. The		
	(1) CH ₂ N	(2) CH ₄ N	(3) CH₅N	(4) $C_3H_9N_3$.		

33.	The simplest formula of a compound containing 50% of element 'A' (Atomic weight = 10) and 50% of element 'B' (Atomic weight = 20) is						
	(1) AB	(2) A ₂ B	(3) A2B2	(4) A2B3			
34.	Insulin constans 3.4% (1) 941.176	sulphur. The minii (2) 944	mum mol. wt. of insulin (3) 945.27	is – (4) None			
35.	64 g of an organic comempirical formula of the		carbon and 8 g hydrog	en and the rest is oxygen. The			
	(1) CH₄O	(2) CH ₂ O	(3) C2H4O	(4) None			
36.	Percentage of Se in p			by weight (at. wt. = 78.4) then			
	(1) 1.568 × 10 ⁴	$(2) 1.568 \times 10^3$		(4) 2.136 × 10 ⁴			
Dolor	and abominal agus	rtion onalysis					
37.	nced chemical equated How many moles of post. N.T.P.	_	e need to be heated t	o produce 11.2 litre oxygen at			
	(1) $\frac{1}{2}$ mol	(2) $\frac{1}{3}$ mol	(3) $\frac{1}{4}$ mol	(4) $\frac{2}{3}$ mol			
38.	For the reaction 2P + 0 (1) 8 mol of R	$Q \rightarrow R$, 8 mol of F (2) 5 mol of R	and excess of Q will ړ (3) 4 mol of R				
39.	For the complete com	bustion of 4 litre e (2) 4 litre	ethane, how much oxyg (3) 8 litre	en is required ? (4) 12 litre			
40.	What volume of CO ₂ w (1) 11.2 L	vill be liberated at (2) 22.4 L	NTP if 12 g of carbon i (3) 2.24 L	s burnt in excess of oxygen? (4) 1.12 L			
41.	The volume of oxygen (1) 40 litre	necessary for the (2) 60 litre	complete combusion (3) 80 litre	of 20 litre of propane is : (4*) 100 litre			
42.	The number of moles of oxygen obtained by the electrolytic decomposition of 90 g water is : $2H_2O \longrightarrow 2H_2 + O_2$						
43.	(1) 2.5 At same temperature a 20 ml of ethene is	(2) 5 and pressure the v	(3) 7.5 volume of oxygen requi	(4) 10 red for complete combustion of			
	(1) 30 ml	(2) 60 ml	(3) 40 ml	(4) 50 ml			

44.	The moles of O ₂ required for reacting with 6.8 g of ammonia							
	(NH ₃ + O ₂ —	→ NO + H ₂ O) is						
	(1) 5	(2) 2.5	(3) 1	(4) 0.5				
45.	The weight of lime (Cac [AFMC 1999]	o) obtained by heating 20	00 kg of 95% pure lime s	tone (CaCO ₃) is :				
	(1) 98.4 kg	(2) 106.4 kg	(3) 112.8 kg	(4) 122.6 kg				
46.	The volume of gas at N	TP produced by 100g of	CaC ₂ with water					
	$CaC_2 + H_2O \longrightarrow Ca$	$(OH)_2 + C_2H_2$						
	(1) 70 litre	(2) 35 litre	(3) 17.5 litre	(4) 22.4 litre				
47.	20 gm. CaCO ₃ on de [RPMT 2003]	ecomposition gives CO	at STP if yield of	reaction is 75% only				
	(1) 3.36 litre	(2) 22.4 litre	(3) 2.24 litre	(4) None of these				
	Eiple of atomic conv . X g of Ag was dissolve 2.87 g of AgCl was pre-		ution was treated with e	excess of NaCl. When				
	(1) 1.08 g	(2) 2.16 g	(3) 2.70 g	(4) 1.62 g				
49.		ydrocarbon when burnt nder same conditions. M	-	=				
50.		$(2) C_4H_{10}$ dissolved in HNO $_3$. When weight of AgCl is four						
	(1) 50%	(2) 75%	(3) 100%	(4) 15%				
51.	=	4.2g of chlorine are mad number of moles of ICl a		yield a mixture of ICI				
	(1) 0.1 mole, 0.1 mole mole	(2) 0.1 mole, 0.2 mole	(3) 0.5 mole, 0.5 mole	(4) 0.2 mole, 0.2				
Limit	ting reagent							
	r the reaction $2P + Q \rightarrow I$ (1) 8 mol of R	R, 8 mol of P and 5 mol (2) 5 mol of R	of Q will produce (3) 4 mol of R	(4) 13 mol of R				
53.	For the reaction : A + 2 5 mole of A and 8 mole (1) 5 mole of C		(3) 8 mole of C	(4) 12 mole of C				

54.	If 30 ml of H ₂ and	20 ml of O ₂ react to f	m water, what is left at the end of the reaction?			
	(1) 10 ml of $\rm H_2$	(2) 5 ml of H_2	(3) 10 ml of O ₂	(4) 5 ml of $\rm O_2$		
55.	How many mole of	of Zn(FeS ₂) can be ma	ade from 2 mole zinc, 3 mole	iron and 5 mole sulphur.		
	(1) 2 mole	(2) 3 mole	(3) 4 mole	(4) 5 mole		
56.	2AI (s) + 3 (1) Which is limitin (2) How many mo	$BCl_2(g) \longrightarrow 2AICI$	d	3:		
	(1) (1) AI, (2) 1.0	(3) 1.5	(2) (1) Cl ₂ , (2) 2.0	(3) 2.0		
	(3) (1) AI, (2) 0.5	5 (3) 1.5	(4) (1) Cl ₂ , (2) 1.0	(3) 1.5		
57 .	Zn(s) + 2H If 0.30 mole of Zn of H ₂ are produced (1) 0.26 (2) When a mixture of was formed. How	d? 2) 1.04 of 10 mole of SO_2 , 15 many mole of SO_2 and 2, 11 moles of O_2	$\text{Cl}_2(\text{aq.}) + \text{H}_2(\text{g})$ hloric acid containing 0.52 mo (3) 0.52 (4) 0 5 mole of O_2 was passed over d O_2 did not enter into combinations.	0.13 catalyst , 8 mole of SO_3 ation ? 11.5 moles of O_2		
Conc	centration terms	3				
59.	500 mL of a gluco (1) 0.1 M	se solution contains 9 (2) 1.0 M	90 g of glucose. The concentra (3) 0.2 M	ation of the solution is (4) 2.0 M		
60.	The amount of sa (1) 0.05 mole	It required to prepare (2) 0.02 mole	10 dm ³ of decimolar solution is (3) 0.01 mole	s: (4) 1.00 mole		
61.	A solution of FeCl	$_{3}$ is $\frac{M}{30}$ its molarity fo	r CI- ion will be :			
	(1) $\frac{M}{90}$	(2) $\frac{M}{30}$	(3) $\frac{M}{10}$	$(4) \ \frac{M}{5}$		

62.	11.1 g $\mathrm{CaCl_2}$ is used to prepare a 500 mL solution then molarity of $\mathrm{Cl^-}$ in solution will be :							
	(1) 0.4 M	(2) $\frac{M}{30}$	(3) 0.1 M	(4) 0.2 M				
63.	The mole fraction of water is ?	water in a solution cont	aining 117 g sodium ch	lloride and 900 g of				
	(1) 0.0632	(2) 0.038	(3) 0.9615	(4) 1.000				
64.	0.01 mole of a non-elec	ctrolyte is dissolved in 10	g of water. The molality	of the solution is:				
	(1) 0.1 m	(2) 0.5 m	(3) 1.0 m	(4) 0.18 m				
65.	Which of the following (1) Molarity	concentration factor is aff (2) Molality	ected by change in temp (3) Mole fraction	perature ? (4) Weight fraction				
66.	The molar concentratio	n of pure water at 4°C ar	d 1 atm pressure is					
	(1) 1	(2) 5.5	(3) 18	(4) 55.5				
67.	Equal moles of H ₂ O and	d NaCl are present in a s	olution. Hence, molality	of NaCl solution is:				
	(1) 0.55	(2) 55.5	(3) 1.00	(4) 0.18				
Dilution, Mixting of solutions, Interconversion of concentration terms and Acid base reactions								
	· •	tions, Interconversi	on of concentration	n terms and Acid				
base ı	reactions	tions, Interconversi						
base ı	reactions 0 ml of 0.5 M KCl is dilu							
base ı	reactions 0 ml of 0.5 M KCl is diluresulting solution are (1) 6.02 × 10 ²³	ted with water to 500 ml	of solution, the number (3) 1×10^{24}	of chloride ions in the				
68. 250	reactions 0 ml of 0.5 M KCl is diluresulting solution are (1) 6.02 × 10 ²³	ted with water to 500 ml (2) 7.5 × 10 ²²	of solution, the number (3) 1×10^{24}	of chloride ions in the				
68. 250	reactions O ml of 0.5 M KCl is diluresulting solution are (1) 6.02 × 10 ²³ The molarity of the solution (1) M/10	ted with water to 500 ml (2) 7.5 × 10 ²² ution containing 2.8% w/v	of solution, the number (3) 1×10^{24} solution of KOH is (3) M/5 (4) 1 M	of chloride ions in the				
68. 250 69.	reactions O ml of 0.5 M KCl is diluresulting solution are (1) 6.02 × 10 ²³ The molarity of the solution (1) M/10	ted with water to 500 ml (2) 7.5 × 10 ²² ution containing 2.8% w/v (2) M/2	of solution, the number (3) 1×10^{24} solution of KOH is (3) M/5 (4) 1 M	of chloride ions in the				
68. 250 69.	reactions O ml of 0.5 M KCl is diluresulting solution are (1) 6.02 × 10 ²³ The molarity of the solution (1) M/10 The molality of the solution (1) 4.5 m	ted with water to 500 ml (2) 7.5 × 10 ²² ution containing 2.8% w/v (2) M/2 ution containing 20% w/w	of solution, the number (3) 1 × 10 ²⁴ solution of KOH is (3) M/5 (4) 1 M solution of NaOH is: (3) 0.3 m	of chloride ions in the (4) 3.76 × 10 ²³				
68. 250 69.	reactions O ml of 0.5 M KCl is diluresulting solution are (1) 6.02 × 10 ²³ The molarity of the solution (1) M/10 The molality of the solution (1) 4.5 m	ted with water to 500 ml (2) 7.5 × 10 ²² ution containing 2.8% w/v (2) M/2 ution containing 20% w/w (2) 6.25 m	of solution, the number (3) 1 × 10 ²⁴ solution of KOH is (3) M/5 (4) 1 M solution of NaOH is: (3) 0.3 m	of chloride ions in the (4) 3.76 × 10 ²³				

	(1) 1.79		(2) 2.	(2) 2.143		(3) 1.	(3) 1.951		(4) N	(4) None of these.		
73.		3Ag (solume of) + 4HN	NO ₃ (aq) HNO ₃ (─	ording to 3AgNO ₃ (iired to re	aq) + N act with	O (g) +			5.3 mL	
74.	The av	verage o	xidatior	n state o	f Fe in F	e ₃ O ₄ is:						
	(1) – 8	3/3		(2*) 8	(2*) 8/3		(3) 2			(4) 3		
Oxida	ation r	numbei	•									
75 .	The ox	kidation i	number	of Phos	phorus	in Mg ₂ P ₂ 0	D ₇ is :					
	(1) + 3	3		(2) +	(2) + 2		(3) +	(3) + 5		(4) –	(4) – 3	
76.	The oxidation states of Sulphur in the anions SO_3^{2-} , $S_2O_4^{2-}$ and $S_2O_6^{2-}$ follow the order : (1) $S_2O_6^{2-} < S_2O_4^{2-} < SO_3^{2-}$ (2) $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$											
	(3) SC	$S_3^{2-} < S_2^{-}$	$S_4^{2-} < S_2^{2-}$	O ₆ ²⁻			$(4) S_2 O_4^2 < S_2 O_6^{2-} < SO_3^{2-}$					
77.		List-I (C des give				(Oxidatio	n state	s of Nitr	ogen) a	nd seled	ct answer	using
	(1)	NaN ₃			(1)	+5						
	(2)	N_2H_2			(2)	+2						
	(3)	NO			(3)	-1/3						
	(4)	N_2O_5			(4)	–1						
	(Code)										
		(1)	(2)	(3)	(4)			(1)	(2)	(3)	(4)	
	(1)	3	4	2	1		(2)	4	3	2	1	
	(3)	3	4	1	2		(4)	4	3	1	2	
Balan	Balancing of redox reaction											

78. In the reaction $\,$ xHI + yHNO $_{_3}$ $\,$ $\,$ NO + $\rm I_{_2}$ + $\rm H_{_2}O$, upon balancing with whole number

(1) x = 3, y = 2 (2) x = 2, y = 3 (3) x = 6, y = 2 (4) x = 6, y = 1

coefficients:

72. An aqueous solution of ethanol has density 1.025 g/mL and it is 2M. What is the molality of this

For the redox reaction xP_4 + $yHNO_3$ \longrightarrow H_3PO_4 + NO_2 + H_2O , upon balancing with whole 79. number coefficients:

$$(1) x = 1, y = 5$$

$$(2) x = 2, y = 10$$

$$(3) x = 1, y = 20$$

(1)
$$x = 1$$
, $y = 5$ (2) $x = 2$, $y = 10$ (3) $x = 1$, $y = 20$ (4) $x = 1$, $y = 15$

In the reaction $X^- + XO_3^- + H^+ \longrightarrow X_2 + H_2O$, the molar ratio in which X^- and XO_3^- react is : 80.

Solutions

Units, Atoms, Molecules, Atomic mass, Molecular mass, Gram atomic mass, Gram molecular mass, RAM, Average atomic

- **1.** sol(b)
- 2.
- **Sol.** This is the required relation in Centigrade and Fahrenheit scales.
- 3. sol(a)
- 4. sol(a)
- 5. sol(c)
- 6.
 - **Sol.** (4); $\frac{F-32}{9} = \frac{C}{5}$

Let temperature be t, same on two scale

$$\therefore$$
 $t-32 = \frac{9t}{5}$ or $t = -40$

- 7.
- **Sol.** 1 amu = 1.66×10^{-24} gm

Relation between Mole, Mass and Gaseous volume.

- 8.
- **Sol.** mole = $\frac{\text{mass}}{\text{at. wt.}} = \frac{46}{23} = 2 \text{ mole.}$
- 9.
- **Sol.** We know that, 1 amu = $\frac{1}{12}$ × weight of one ¹²C atom or weight of one ¹²C atom = 12 amu (at. wt. of C = 12 amu).

Similarly, as the atomic weight of He is 4 amu, weight of one He atom = 4 amu.

Thus, the number of atoms in 100 amu of He = $\frac{100}{4}$ = 25.

10.

Sol. mole =
$$\frac{w}{m} = \frac{1}{m}$$

for largest no. of molecule m should be lowest.

13.

Sol. molecule of
$$H_2SO_4 = \frac{196}{98} = 2$$
.

Hence : H = 4 atoms, S = 2 atoms, O = 8 atoms.

$$H_2SO_4 = \frac{196}{98} = 2.$$

$$: H = 4 , S = 2 , O = 8$$

15.

Sol. 1 mole
$$P_4 = N$$
 molecules of $P_4 = 4$ N atoms of P_4 .

16.

Sol. (1) moles of C =
$$24/12 = 2$$
, So no. of atoms = $2N_A$

(2) moles of Fe =
$$56/56 = 1$$
, So no. of atoms = N_A

(3) moles of AI =
$$27/27 = 1$$
, So no. of atoms = N_A

(4) moles of Fe =
$$108/108 = 1$$
, So no. of atoms = N_A

18.

Sol. 558.5 g Fe =
$$\frac{558.5}{55.85}$$
 mole Fe = 10 mole Fe

=
$$2 \times 5$$
 mole C = $2 \times \frac{60}{12}$ mole C

19.

Sol.
$$\frac{1}{2} \times 6.023 \times 10^{23} = 3.0125 \times 10^{23}$$

20.

Sol. Statement of avogadro's hypothesis.

Sol. Mol. wt. of gas is
$$=$$
 $\frac{16 \times 22.4}{5.6} = 64 \text{ g}$
 $32 + 16x = 64$
 $x = 2$

Density and Vapour density

Sol. Number of electrons =
$$\frac{1.8 \times 10}{18} \times N_A$$

Sol. 1 litre Hg metal volume = 1000
$$d = \frac{m}{v} \qquad \text{mass} = d \times V = 13.6 \times 1000$$
No of mole of Hg metal = $\frac{13.6 \times 1000}{0.000} = 68$ mol

No of mole of Hg metal =
$$\frac{13.6 \times 1000}{200}$$
 = 68 mole

Percentage composition and Molecular formula

8

mass

$$\frac{24}{12}$$
 $\frac{8}{1}$

$$\frac{24}{12}$$

$$\frac{32}{16}$$

1

Simple integer ratio

Hence empirical formula is CH₄O

sol(a)

Balanced chemical equation analysis

Sol.
$$KCIO_3$$
 $KCI + \frac{3}{2} O_2$

$$\frac{3}{2}\,$$
 mole or 33.6 litre $\mathrm{O_2}\,\mathrm{from}\;\mathrm{1}\;\mathrm{mole}\;\mathrm{KCIO_3}$

11.2 litre of
$$O_2$$
 formed by $\frac{1}{3}$ mole $KCIO_3$

38. sol(c)

Principle of atomic conversation

48. sol(b)

49. sol(d)

50.sol(a)

51.

Limitting reagent

52. For the reaction 2P + Q \rightarrow R, 8 mol of P and 5 mol of Q will produce

(1) 8 mol of R

(2) 5 mol of R

(3) 4 mol of R

(4) 13 mol of R

53. sol(b)

54. sol(d)

55.

Sol.
$$Zn + Fe + 2S \longrightarrow Zn (FeS_2)$$
 initial mole
$$2 \qquad 3 \qquad 5 \qquad 0$$
 final mole
$$0 \qquad 3-2 \qquad 5-4 \qquad 2$$

$$= 1 \qquad = 1$$

56. sol(a)

57. sol(a)

58.

Sol.
$$2 \text{ SO}_2 + O_2 \longrightarrow 2 \text{ SO}_3$$
 Initial mole
$$10 \qquad 15 \qquad 0$$
 Final mole
$$(10-2x) \qquad (15-x) \qquad 2x$$

$$\therefore \text{ Given } 2x=8$$

∴ x = 4

.. Mole of SO_2 left = $10 - 2 \times 4 = 2$ Mole of O_2 left = 15 - 4 = 11

Concentration terms

59.

Sol. Molarity =
$$\frac{6.02 \times 10^{22}}{6.02 \times 10^{23}} \times \frac{1}{1/2} = 0.2$$

60. sol(d)

61.sol(c)

62. sol(a)

63.sol(c)

- **64.** sol(c)
- **65.** sol(a)
- **66.** sol(d)
- **67.** sol(b)

Dilution, Mixting of solutions, Interconversion of concentration terms and Acid base reactions

68. sol(b)

69. sol(b)

70.

Sol. Weight of NaOH = 20 gram Weight of solvent = 80 g

 $M = \frac{20 \times 1000}{40 \times 80} = 6.25 \text{ m}$

71.

 $\textbf{Sol.} \qquad M = \frac{10 \times 1.14 \times 20}{98}$

M = 2.32

72. sol(b)

Sol. 1000 mL solution contain 2 mole of ethanol or 1000 × 1.025 g

solution contain 2 mole of ethanol

wt. of solvent = $1000 \times 1.025 - 2 \times 46$

$$m = \frac{2}{1000 \times 1.025 - 2 \times 46} \times 1000$$

$$m = \frac{2}{933} \times 1000 = 2.143$$

73.

Sol. Moles of HNO₃ required =
$$\frac{0.784}{108}$$
 = 0.0072 × $\frac{4}{3}$ = 0.00968.
Vol. of HNO₃ = $\frac{0.00963}{1.15}$ × 1000 = 8.41 ml.

74.

Sol. Fe₃O₄ can be written as FeO.Fe₂O₃. In FeO , Fe has oxidation state + 2 , in Fe₂O₃ has oxidation state + 3. resultant oxidation number = $\frac{1 \times 2 + 2 \times 3}{3} = \frac{8}{3}$.

Oxidation number

75.

Sol.
$$2(+2) + 2x + 7(-2) = 0$$

 $x = +5$

76.

Sol.
$$SO_3^{2-} \Rightarrow 1(x) + 3(-2) = -2 : x = +4$$

 $S_2O_4^{2-} \Rightarrow 2(x) + 4(-2) = -2 : x = +3$
 $S_2O_6^{2-} \Rightarrow 2(x) + 6(-2) = -2 : x = +5$

77.

Sol. NaN₃
$$\Rightarrow$$
 1(+1) + 3(x) = 0 \therefore x = -1/3
N₂H₂ \Rightarrow 2(x) + 2(+1) = 0 \therefore x = -1
NO \Rightarrow 1(x) + 1(-2) = 0 \therefore x = + 2
N₂O₅ \Rightarrow 2(x) + 5(-2) = 0 \therefore x = + 5

Balancing of redox reaction

78.

Sol. Valency factor ratio is inversely related to molar ratio. $(V.f.)HI: (V.f.)HNO_3 = 1:3 = 2:6$ \therefore Molar ratio = 6:2

79.

80

Sol.
$$X^{-} + XO_{3}^{-} + H^{+} \longrightarrow X_{2} + H_{2}O$$

V.f. = 1 V.f. = 5
∴ Molar ratio = 5 : 1