Regression Trees

Previous class & Announcements

Classification Trees

Today's class

- Recap on Classification Tree
- Regression Tree

Recap of Classification Tree

Trees

- Flexible data-driven method
- Used for
 - Classification (called Classification Tree)
 - Regression (called Regression Tree)
- Transparent
- Easy interpretation
- Doesn't require enormous effort
- Method
 - ➤ **Recursive Partitioning**: Separating records into subgroups by creating splits on predictors

Recursive Partitioning

- Outcome variable Y
- Predictor variables $X_1, X_2, X_3, \dots X_p$
- Recursive Partitioning
 - Divides the p-dimensional space of predictors into non-overlapping multidimensional rectangles
- Accomplished recursively
 - > Operating on the results of prior division
- Idea is to divide the entire variable-space up into rectangles such that
 each rectangle is as homogeneous or pure
- Homogeneous or Pure meaning containing records mostly of one class

Data on Riding Mowers

 Riding-mower manufacturer would like to find a way of classifying families in a city into an owner or non-owner

Attributes

Income: Income of the household in thousand of dollars

Lot Size: Lot size in thousand of square foot

> Ownership : Owner or Non-owner

Income	Lot_Size	Ownership
60	18.4	Owner
85.5	16.8	Owner
64.8	21.6	Owner
61.5	20.8	Owner

:

•

Scatter plot of entire data

First split at Income = 60

First split at Income = 60

Second split at Lot Size = 20

Second split at Lot Size = 20

Third split at Income = 85

Third split at Income = 85

Exhaustive splits

Fully grown tree

Today's class mandatory steps

- Create a folder name "o. regression_tree" within the folder
 "oba_455_555_ddpm_r/rproject"
- Download "regression_tree_code.R", and all CSV files from canvas
- Place all downloaded files in
 - "oba_455_555_ddpm_r /rproject/o. regression_tree"
- Open RStudio project
- Open "regression_tree_code.R" file within RStudio

Example: Acceptance of Personal Loan

- Response : Bank customer accepting a loan (1) or not (0)
- Predictors (X)
 - Age, Experience, Income, Family Size, Education
 - ➤ Spending on Credit cards
 - ➤ Mortgage, Securities account
 - ➤ Online banking
 - >

Regression Trees

Data on used Toyota Corolla cars

- Output : Price
- Attributes
 - ➤ age_08_04 : age in months as of august 2004
 - km: accumulated kilometers on the odometer
 - fuel_type : fuel type (petrol, diesel, cng)
 - > hp:horse power
 - Automatic, Doors, Quarterly tax

Pruning a tree

- Step 1: Set the seed, data partition train & validation
- Step 2: Run a tree with options cp = 0.001, minsplit = 5 or 10, xval = 5 or 10
- Step 3: Plot the cp or relative error
- Step 4: Find the optimal cp where the error starts stabilizing
- Step 5: Prune the tree with the optimal cp
- Step 6: Predict the output variable in validation data
- Step 6: Generate accuracy measures

Pruning – Key options

- Complexity parameter (cp)
 - Any split that does not improve the fit by cp is not attempted
 - > Saves computing time by pruning off splits that are not worthwhile
- minsplit
 - > minimum number of observations that must exist in a node in order for a split to be attempted.

(Dis) Advantages of Trees

- Simple; Requires little effort from users
- Useful for variable selection with most important predictors usually showing up at top of the tree
- Models non-linear and non-parametric
- Intrinsically robust to outliers
- Handle missing data without having to impute or delete records
- Sensitive to changes in the data even a slight change can cause different splits
- Trees are relatively expensive to grow; Pruning adds a lot of time

Final Project (40%)

- Specify a business problem
- Identify a relevant dataset
- Business context could be in any area or function
- Assessment
 - \triangleright Report (30%) + Presentation (10%)
- Presentation
 - ➤ 15-minute presentation on one of the classes of last week
 - **Presentation date(s) in the syllabus file**

Final Report

- Formal report
 - > Introduction, Problem description, Approach (Regression / Classification)
 - Data Analysis, Results, Inference
 - > Conclusions, recommendations
- Regression: k-NN as Regression, Linear Regression & Regression Tree
- Classification: k-NN as classification, Logistic Regression & Classification Tree
- Assess the performance & recommend the best predictive model
- 8-10 pages including any tables and graphs (excluding code)
- Two or Three key insights from the entire analysis
- Submit the code with comments at end of the report

Public datasets for final project

kaggle

- https://www.kaggle.com/
- Online community of data scientists and machine learners
- Owned by Google Inc.
- Register yourself, and you can download datasets for free
- As of June 2017, Kaggle passed over 1,000,000 registered users
- Variety of datasets
- Your imagination only limits possibilities

Final Project presentation

- Presentation (10%)
 - ➤ 15-minute presentation followed by a 10-minute Q&A
 - ➤ May 31st (Tue) & Jun 02nd (Thu)
 - Groups are randomly assigned to the 2 days
 - For Groups should send the ppt file by 8 am on their presentation date
 - Each member of the group should **mention the contribution** of their work in the last slide of the presentation file
- Everyone must be present in the class on the presentation days
 - > Zero scores for presentation assessment if absent

May 31st presentations

- ACB
- ATJ
- HJJ
- P

Jun 02nd presentations

- AJA
- DJK
- MRV
- TAP

Next class

Cluster Analysis

Thank You