DEVOIR SURVEILLÉ N° 2

Samedi 21 septembre

Temps de composition : 4h

Vous attacherez la plus grande importance à la clarté, à la précision et à la concision de la rédaction. L'usage d'une calculatrice est interdit.

Théorème des deux carrés

1. Soit $p \in \mathcal{P}$ tel qu'il existe $(a, b) \in \mathbb{N}^2$ tel que $p = a^2 + b^2$. Montrons que p = 2 ou $p \equiv 1$ [4]. On suppose donc que $p \neq 2$ et on souhaite montrer que $p \equiv 1$ [4]. Le tableau suivant nous donne a^2 et b^2 modulo 4 en fonction de a et b modulo 4:

On en déduit que $p = a^2 + b^2$ est congru modulo 4 à 0, 1 ou 2. Comme p est un nombre premier différent de 2, il n'est pas pair, donc $p \equiv 1$ [4]. En conclusion :

Si un nombre premier différent de 2 est somme de deux carrés, alors il est congru à 1 modulo 4.

- 2. Soit $p \in \mathcal{P}$ un nombre premier congru à 1 modulo 4.
 - (a) Montrons que S est non vide. Puisque $p \equiv 1$ [4], il existe $k \in \mathbb{N}$ tel que p = 4k + 1. Donc $p = 4 \times 1 \times k + 1^2$, donc $(k, 1, 1) \in S$. En conclusion:

$$S$$
 n'est pas vide.

- (b) Soit $(a, b, c) \in S$. Montrons que $a \neq 0$, $b \neq 0$ et $c \neq 0$.
 - Montrons que $a \neq 0$ et $b \neq 0$. On raisonne par l'absurde et on suppose que a=0 ou que b=0. Alors ab=0 donc $p=c^2$ donc |c||p. Or p est premier donc |c|=1 ou |c|=p. Dans le premier cas, $p=c^2=1$ ce qui est absurde et dans le second cas, $p=c^2=p^2$ ce qui est aussi absurde. Donc $a\neq 0$ et $b\neq 0$.
 - Montrons que $c \neq 0$. On raisonne par l'absurde et on suppose que c = 0. Alors p = 4ab donc 4|p. C'est absurde car p est premier. Donc $c \neq 0$.

En conclusion:

$$S \subset \mathbb{N}^{*2} \times \mathbb{Z}^*$$

Montrons que S est fini. Soit $(a,b,c) \in S$. Alors $p=4ab+c^2$. En particulier $4ab \leqslant p$ donc $ab \leqslant p$. Or $b \geqslant 1$, donc $a \leqslant p$. De même $b \leqslant p$. Enfin, $p=4ab+c^2$ donc $c^2 \leqslant p$ donc $|c| \leqslant p$. Et donc $(a,b,c) \subset [\![0,p]\!]^2 \times [\![-p,p]\!]$. Comme cet ensemble est fini, on en déduit que S est fini.

$$S$$
 est fini.

- 3. On pose
 - (a) Montrons que S_1 et S_2 forment une partition de S.
 - Il est immédiat que $S_1 \cap S_2 = \emptyset$.

— Montrons que $S = S_1 \cup S_2$. Soit $(a, b, c) \in S$. Montrons que $(a, b, c) \in S_1$ ou $(a, b, c) \in S_2$. On raisonne par l'absurde et on suppose que ce n'est pas le cas. Alors a = b + c, donc

$$p = 4ab + c^2 = 4ab + (a - b)^2 = (a + b)^2$$

donc p est un carré. On a déjà vu que c'était absurde. Donc $(a,b,c) \in S_1$ ou $(a,b,c) \in S_2$.

En conclusion:

$$S_1$$
, S_2 réalise une partition de S .

Conformément au cours, on devrait démontrer que S_1 et S_2 ne sont pas vides. Cependant, il est inutile de le faire dans ce problème. Comme pour certaines personnes, une partition peut être formée d'ensembles vides, nous n'avons pas cherché à montrer cela dans cette question.

(b) Commençons par montrer que φ est bien définie. Soit $(a,b,c) \in S_1$. Montrons que $(b,a,-c) \in S_2$. Puisque $(a,b,c) \in S_1$, $p=4ab+c^2$ donc $p=4ba+(-c)^2$. De même a < b+c donc b > a+(-c). Donc $(b,a,-c) \in S_2$. Donc φ est bien définie. Montrons que φ est bijective. Pour cela, on introduit la fonction

$$\begin{array}{ccc} \alpha: S_2 & \longrightarrow & S_1 \\ (a, b, c) & \longmapsto & (b, a, -c) \end{array}$$

On vérifie que α est bien définie et on remarque que $\alpha \circ \varphi = \mathrm{Id}_{S_1}$ et $\varphi \circ \alpha = \mathrm{Id}_{S_2}$. Donc φ est bijective.

$$\varphi$$
 est bien définie et bijective.

 S_1 et S_2 sont des ensembles finis comme partie de S. Comme ils sont en bijection, ils ont même cardinal. Comme, ils forment une partition de S, on en déduit que :

$$\operatorname{Card} S = \operatorname{Card} S_1 + \operatorname{Card} S_2 = 2 \operatorname{Card} S_1$$

$$\boxed{\operatorname{Card} S = 2 \operatorname{Card} S_1}$$

(c) Montrons que f est bien définie. Soit $(a, b, c) \in S_1$. Montrons que $(a-b-c, b, -2b-c) \in S_1$. En effet

$$4(a-b-c)b + (-2b-c)^2 = 4ab - 4b^2 - 4cb + 4b^2 + c^2 + 4bc = 4ab + c^2 = n$$

 $\operatorname{car}(a,b,c) \in S$. De plus

$$(a-b-c) - (b-2b-c) = a > 0$$

donc $(a-b-c,b,-2b-c) \in S_1$. On en déduit que f est bien définie.

Montrons que $f \circ f = \text{Id}$. Ces deux applications ont bien évidemment même ensemble de départ et même ensemble d'arrivée. De plus, pour $(a, b, c) \in S_1$

$$(f \circ f)(a,b,c) = f(a-b-c,b,-2b-c)$$

$$= ((a-b-c)-b-(-2b-c),b,-2b-(-2b-c))$$

$$= (a,b,c)$$

Donc $f \circ f = Id$.

(d) Soit $(a, b, c) \in S_1$. Alors

$$f(a,b,c) = (a,b,c) \iff \begin{cases} a - b - c = a \\ b = b \\ -2b - c = c \end{cases}$$

$$\iff \begin{cases} -b - c = 0 \\ -2b - 2c = 0 \end{cases}$$

$$\iff b + c = 0$$

$$\iff \exists t_1 \in \mathbb{N} \quad \exists t_2 \in \mathbb{Z} \quad \begin{cases} a = t_1 \\ b + c = 0 \\ c = t_2 \end{cases}$$

$$\iff \exists t_1 \in \mathbb{N} \quad \exists t_2 \in \mathbb{Z} \quad \begin{cases} a = t_1 \\ b = -t_2 \\ c = t_2 \end{cases}$$

Donc, si (a, b, c) est un point fixe de f, il existe $t_2 \in \mathbb{Z}$ et $t_1 \in \mathbb{N}$ tels que $a = t_1$, $b = -t_2$ et $c = t_2$. Comme $(a, b, c) \in S$, on a $4t_1(-t_2) + t_2^2 = p$. Donc $t_2(t_2 - 4t_1) = p$.

- Si $t_2 = -1$, alors, puisque p est premier, $t_2 4t_1 = -p$, donc $t_1 = (p-1)/4$. Donc (a, b, c) = ((p-1)/4, 1, -1).
- Si $t_2 = 1$, alors $t_2 4t_1 = p$ donc $t_1 = (1 p)/4 < 0$, ce qui est absurde car $t_1 \in \mathbb{N}$.
- Si $t_2 = p$, alors $t_2 4t_1 = 1$ donc $t_1 = (p-1)/4$. Donc (a, b, c) = ((p-1)/4, -p, p). Or b = -p > 0, ce qui est absurde.
- Si $t_2 = -p$, alors $t_2 4t_1 = -1$ donc $t_1 = (p+1)/4$. Donc (a, b, c) = ((1-p)/4, p, -p). Or a = (1-p)/4 > 0, ce qui est absurde.

En conclusion ((p-1)/4, 1, -1) est le seul candidat possible pour le point fixe de f. Réciproquement, c'est bien un élément de S (le vérifier) et (p-1)/4 > 1 + (-1) = 0. Donc c'est un élément de S_1 .

En conclusion, ((p-1)/4, 1, -1) est le seul point fixe de f.

(e) Montrons que

$$\mathcal{H}_k = \langle \langle f^{2k} \rangle \rangle = \mathrm{Id} \rangle$$

est vraie quel que soit $k \in \mathbb{N}$.

- \mathcal{H}_0 est vraie : En effet $f^{2\times 0} = f^0 = \mathrm{Id}$.
- $\mathcal{H}_k \Longrightarrow \mathcal{H}_{k+1}$: Soit $k \in \mathbb{N}$. On suppose que \mathcal{H}_k est vraie. Montrons que \mathcal{H}_{k+1} est vraie. On a

$$f^{2(k+1)} = f^{2k+2} = f^{2k+1} \circ f = f^{2k} \circ f \circ f = f^{2k} \circ f^2 = f^{2k} \circ \mathrm{Id} = f^{2k}$$

Or $f^{2k} = \text{Id}$ puisque \mathcal{H}_k est vraie. On en déduit que $f^{2(k+1)} = \text{Id}$. Donc \mathcal{H}_{k+1} est vraie.

Par récurrence sur k, \mathcal{H}_k est vraie pour tout $k \in \mathbb{N}$.

- (f) Montrons que \mathcal{R} est une relation d'équivalence.
 - \mathcal{R} est reflexive : En effet, soit $(a, b, c) \in \mathcal{S}_1$. Alors

$$(a, b, c) = f^0(a, b, c)$$

donc $(a, b, c)\mathcal{R}(a, b, c)$.

— \mathcal{R} est transitive : En effet, soit $((a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)) \in \mathcal{S}_1^3$ tels que $(a_1,b_1,c_1)\mathcal{R}(a_2,b_2,c_2)$ et $(a_2,b_2,c_2)\mathcal{R}(a_3,b_3,c_3)$. Alors il existe $(k_1,k_2) \in \mathbb{N}^2$ tels que :

$$(a_1, b_1, c_1) = f^{k_1}(a_2, b_2, c_2)$$
 et $(a_2, b_2, c_2) = f^{k_2}(a_3, b_3, c_3)$

Alors

$$(a_1, b_1, c_1) = f^{k_1}(f^{k_2}(a_3, b_3, c_3)) = f^{k_1 + k_2}(a_3, b_3, c_3)$$

En effet, une récurrence sur k_2 permet de montrer que $f^{k_1+k_2} = f^{k_1} \circ f^{k_2}$. Puisque $k_1 + k_2 \in \mathbb{N}$, on en déduit que $(a_1, b_1, c_1)\mathcal{R}(a_3, b_3, c_3)$.

— \mathcal{R} est symétrique : En effet, soit $((a_1,b_1,c_1),(a_2,b_2,c_2)) \in \mathcal{S}_1^2$ tel que $(a_1,b_1,c_1)\mathcal{R}(a_2,b_2,c_2)$. Alors il existe $k \in \mathbb{N}$ tel que

$$(a_1, b_1, c_1) = f^k(a_2, b_2, c_2)$$

Donc, en appliquant f^k à l'égalité précédente

$$f^{k}(a_{1}, b_{1}, c_{1}) = f^{k}(f^{k}(a_{2}, b_{2}, c_{2}))$$

Or $f^k \circ f^k = f^{2k} = \text{Id}$, donc

$$(a_2, b_2, c_2) = f^k(a_1, b_1, c_1)$$

Donc $(a_2, b_2, c_2)\mathcal{R}(a_1, b_1, c_1)$.

(g) Soit $(a, b, c) \in \mathcal{S}_1$. Montrons que

$$Cl(a, b, c) = \{(a, b, c), f(a, b, c)\}$$

On procède par double inclusion.

- $(a,b,c)\mathcal{R}(a,b,c)$ car \mathcal{R} est reflexif. De plus, $f(a,b,c)\mathcal{R}(a,b,c)$. En effet, $f(a,b,c)=f^1(a,b,c)$. Donc (a,b,c) et f(a,b,c) sont des éléments de $\mathrm{Cl}((a,b,c))$.
- Réciproquement, soit $(u, v, w) \in Cl((a, b, c))$. Alors $(u, v, w)\mathcal{R}(a, b, c)$. Il existe donc $k \in \mathbb{N}$ tel que

$$(u, v, w) = f^k(a, b, c)$$

On effectue la division euclidienne de k par 2. Il existe donc $q \in \mathbb{N}$ et $r \in \{0, 1\}$ tel que k = 2q + r. Donc $f^k = f^{2q+r} = f^{2q} \circ f^r = \operatorname{Id} \circ f^r = f^r$. Donc

$$(u, v, w) = f^r(a, b, c).$$

On en déduit que (u, v, w) = (a, b, c) ou (u, v, w) = f(a, b, c).

On a vu que f n'admettait qu'un seul point fixe. On en déduit que \mathcal{R} a une unique classe d'équivalence ayant un seul élément et que toutes les autres classes d'équivalence ont deux éléments. Comme les classes d'équivalence forment une partition de S_1 , on en déduit que $\operatorname{Card}(S_1)$ est impair. Il existe donc $u \in \mathbb{N}$ tel que $\operatorname{Card}(S_1) = 1 + 2u$. Donc $\operatorname{Card}(S) = 2\operatorname{Card}(S_1) = 2 + 4u$.

4. Pour être propre, il fallait introduire la relation

$$\forall (a_1, b_1, c_1), (a_2, b_2, c_2) \in S_3 \quad (a_1, b_1, c_1) \mathcal{R}(a_2, b_2, c_2) \quad \iff$$

$$(a_1, b_1, c_1) = (a_2, b_2, c_2)$$
 ou (b_2, a_2, c_2) ou $(a_2, b_2, -c_2)$ ou $(b_2, a_2, -c_2)$

vérifier que c'est une relation d'équivalence, et montrer que les classes d'équivalence ont toutes 4 éléments.

5. À vous de jouer.

Minimum d'une partie de N

- 1. Il s'agit donc de montrer que $(2p)! > p^p$. Mais (2p)! = 1.2.3....p(p+1)...(2p) et chaque terme p+1, p+2,..., 2p est strictement supérieur à p et il y a p termes donc le produit (p+1)...(2p) est strictement supérieur à p^p . Ainsi, à plus forte raison, $1.2.3....p(p+1)...(2p) > p^p$ i.e. $(2p)! > p^p$ donc $p \in E_p$.
- 2. E_p est par définition une partie de \mathbb{N} . La question précédente montre que c'est une partie non vide. Ainsi, E_p admet un plus petit élément donc $u_p = \min E_p$ existe.
- 3. $E_2 = \{n \in \mathbb{N}/(2n)! > 2^n\}$. $0 \notin E_2$ car 0! = 1 et $2^0 = 1$. $1 \notin E_2$ car 2! = 2 et $2^1 = 2$. Par contre $2 \in E_2$ car 4! = 24 et $2^2 = 4$. Ainsi, $2 = \min E_2$ i.e. $u_2 = 2$.

On raisonne de la même manière : $E_3 = \{n \in \mathbb{N}/(2n)! > 3^n\}$. $0 \notin E_3$ et $1 \notin E_3$ mais $2 \in E_3$ donc $u_3 = 2$.

$$E_4 = \{n \in \mathbb{N}/(2n)! > 4^n\}. \ 0 \notin E_4 \text{ et } 1 \notin E_4 \text{ mais } 2 \in E_4 \text{ donc } \boxed{u_4 = 2}.$$

$$E_5 = \{n \in \mathbb{N}/(2n)! > 5^n\}. \ 0 \notin E_5, \ 1 \notin E_5 \text{ et } 2 \notin E_5 \text{ mais } 3 \in E_5 \text{ donc } \boxed{u_5 = 3}.$$

- 4. Soit $n \in E_p$. Alors $((2n)(2n-1))((2n-2)(2n-3))\cdots(4\times 3)(2\times 1)>p^n$. Mais il y a n termes entre parenthèse et chacun de ces termes est inférieur ou égal au terme (2n)(2n-1) donc $(2n)! \leq ((2n)(2n-1))^n$. On a donc $((2n)(2n-1))^n>p^n$ d'où 2n(2n-1)>p.
- 5. $u_p \in E_p$ puisque c'est son minimum donc d'après ce qui précède, $2u_p(2u_p-1)>p$. Mais $2u_p(2u_p-1)<2u_p2u_p=4u_p^2$ donc $4u_p^2>p$ ce qui donne bien $u_p>\frac{\sqrt{p}}{2}$ puisque $u_p\geqslant 0$.
- 6. Soit $n \in E_p$. Alors $(2n)! > p^n$ donc $(2n+2)(2n+1)(2n)! > (2n+2)(2n+1)p^n$ i.e. $(2n+2)! > (2n+2)(2n+1)p^n$. Mais comme $n \in E_p$, on sait que 2n(2n-1) > p et donc (2n+2)(2n+1) > 2n(2n-1) > p. Ainsi $(2n+2)! > pp^n = p^{n+1}$. Donc $(2(n+1))! > p^{n+1}$ ce qui signifie exactement que $n+1 \in E_p$.

On peut donc en déduire que $E_p = \{n \in \mathbb{N}/n \ge u_p\}$. En effet, u_p est le minimum de E_p et d'après ce qui précède, tous les entiers plus grands que u_p sont dans E_p .

7. Remarquons que si $n \in E_{p+1}$ alors $(2n)! > (p+1)^n$ et comme p+1 > p on a aussi $(2n)! > p^n$ i.e. $n \in E_p$ (on a donc $E_{p+1} \subset E_p$). Comme $u_{p+1} \in E_{p+1}$ on a donc $u_{p+1} \in E_p$. Mais u_p est le minimum de E_p donc $u_p \le u_{p+1}$. On remarquera que la suite n'est pas strictement croissante comme le montrent les premiers termes calculés.

Constante d'Euler

Soit $H_n = \sum_{k=1}^n \frac{1}{k}$ pour $n \in \mathbb{N}^*$.

1. Soit $n \in \mathbb{N}^*$. On remarque fort judicieusement que $\ln(n+1) - \ln(n) = \int_n^{n+1} \frac{dx}{x}$. On va donc encadrer cette intégrale.

Soit $x \in [n, n+1]$. On a donc $n \leqslant x \leqslant n+1$ et donc $\frac{1}{n+1} \leqslant \frac{1}{x} \leqslant \frac{1}{n}$ par décroissance de $x \mapsto 1/x$ sur \mathbb{R}_+^* . On intègre alors entre n et n+1 ce qui donne $\int_n^{n+1} \frac{1}{n+1} dx \leqslant \int_n^{n+1} \frac{1}{x} dx \leqslant \int_n^{n+1} \frac{1}{n} dx$ d'où

$$\boxed{\frac{1}{n+1} \leqslant \ln(n+1) - \ln(n) \leqslant \frac{1}{n}}$$

2. Remplaçons n par k dans cet encadrement. On a donc pour $k \in \mathbb{N}^*$

$$\frac{1}{k+1} \leqslant \ln(k+1) - \ln(k) \leqslant \frac{1}{k}$$

Renversons maintenant l'encadrement pour avoir le terme $\frac{1}{k}$ au milieu : on a déjà $\ln(k+1) - \ln(k) \leqslant \frac{1}{k}$. Pour l'autre inégalité, on change k+1 en k ce qui donne $\frac{1}{k} \leqslant \ln k - \ln(k-1)$. Mais attention, cette fois-ci on doit avoir $k \geqslant 2$. On a finalement

$$\ln(k+1) - \ln(k) \leqslant \frac{1}{k} \leqslant \ln k - \ln(k-1)$$

Sommons maintenant cet encadrement pour k allant de 2 à n avec $n \geqslant 2$:

$$\sum_{k=2}^{n} \ln(k+1) - \ln(k) \leqslant \sum_{k=2}^{n} \frac{1}{k} \leqslant \sum_{k=2}^{n} \ln k - \ln(k-1)$$

On reconnait au milieu $H_n - 1$ (car il manque le terme k = 1) et les deux autres sommes sont télescopiques ce qui donne avec télescopage

$$\ln(n+1) - \ln 2 \leqslant H_n - 1 \leqslant \ln n$$

en ajoutant 1 partout et en remarquant que $1 - \ln 2 \ge 0$ on a bien

$$\ln(n+1) \leqslant H_n \leqslant \ln(n) + 1$$

3. Comme $\ln(n+1)$ tend vers $+\infty$ quand n tend vers $+\infty$ et comme $\ln(n+1) \leqslant H_n$, on en déduit que $\lim H_n = +\infty$.

4. Soit $n \in \mathbb{N}^*$. Comme $\ln n \leq \ln(n+1) \leq H_n$, on a $u_n \geq 0$

Calculons $u_{n+1} - u_n = H_{n+1} - H_n - \ln(n+1) + \ln n = \frac{1}{n+1} - \ln(n+1) + \ln n$ qui est négatif d'après l'inégalité de gauche de la première question. Ainsi, $u_{n+1} \leq u_n$.

5. Soit $n \in \mathbb{N}^*$. Partons de $H_{2n+1} = \sum_{p=1}^{2n+1} \frac{1}{p}$. Nous allons couper cette somme en deux suivant la parité de p:

$$H_{2n+1} = \sum_{p=1, p \text{ pair}}^{2n+1} \frac{1}{p} + \sum_{p=1, p \text{ impair}}^{2n+1} \frac{1}{p}$$

Mais quand p est pair, il peut s'écrire p=2k avec k variant de 1 à n et quand p est impair, il peut s'écrire p=2k+1 avec k variant de 0 à n. D'où

$$H_{2n+1} = \sum_{k=1}^{n} \frac{1}{2k} + \sum_{k=0}^{n} \frac{1}{2k+1}$$

La deuxième somme vaut K_n+1 et la première peut s'écrire $\frac{1}{2}\sum_{k=1}^n\frac{1}{k}$ ce qui donne $\frac{1}{2}H_n$. On a donc $H_{2n+1}=\frac{1}{2}H_n+K_n+1$ et donc

$$K_n = H_{2n+1} - \frac{1}{2}H_n - 1$$

6. Soit $n \in \mathbb{N}^*$. Alors

$$\frac{a}{n} + \frac{b}{n+1} + \frac{c}{2n+1} = \frac{a(n+1)(2n+1) + bn(2n+1) + cn(n+1)}{n(n+1)(2n+1)}$$
$$= \frac{(2a+2b+c)n^2 + (3a+b+c)n + a}{n(n+1)(2n+1)}$$

Il suffit donc de choisir $(a, b, c) \in \mathbb{R}^3$ tels que a = 1, 3a + b + c = 0 et 2a + 2b + c = 0. La résolution de ce système conduit à choisir a = 1, b = 1 et c = -4. 7. D'après ce qui précède,

$$L_n = \sum_{k=1}^n \frac{1}{k(k+1)(2k+1)}$$

$$= \sum_{k=1}^n \frac{1}{k} + \frac{1}{k+1} - \frac{4}{2k+1}$$

$$= \sum_{k=1}^n \frac{1}{k} + \sum_{k=1}^n \frac{1}{k+1} - 4\sum_{k=1}^n \frac{1}{2k+1}$$

$$= H_n + H_{n+1} - 1 - 4K_n$$

$$= H_n + H_{n+1} - 1 - 4(H_{2n+1} - \frac{1}{2}H_n - 1)$$

$$= 3H_n + H_{n+1} - 4H_{2n+1} + 3$$

$$= 4H_n - 4H_{2n+1} + \frac{1}{n+1} + 3$$

8. On ne peut pas passer à la limite directement car on a une forme indéterminée. Il faut utiliser u_n . On cherche en fait la limite de la suite de terme général $H_n - H_{2n+1}$. Ecrivons

$$H_n - H_{2n+1} = H_n - \ln n - (H_{2n+1} - \ln(2n+1)) + \ln n - \ln(2n+1)$$
$$= u_n - u_{2n+1} + \ln \frac{n}{2n+1}$$

Mais comme u_n converge vers γ , u_{2n+1} aussi, donc $u_n - u_{2n+1}$ tend vers 0. Puis, $\frac{n}{2n+1}$ tend vers $\frac{1}{2}$ donc $\ln \frac{n}{2n+1}$ tend vers $\ln \frac{1}{2} = -\ln 2$.

Finalement, $H_n - H_{2n+1}$ converge vers $-\ln 2$. On obtient donc enfin que L_n tend vers

$$3 - 4 \ln 2$$
, ce que l'on note
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)(2k+1)} = 3 - 4 \ln 2$$
.

Système linéaire

Soit $m \in \mathbb{R}$. Alors

$$\begin{cases} x + y + (1 - m)z = m + 2 \\ (1 + m)x - y + 2z = 0 \\ 2x - my + 3z = m + 2 \end{cases}$$

$$\iff \begin{cases} x + y + (1 - m)z = m + 2 \\ - (2 + m)y + (m^2 + 1)z = -(m + 1)(m + 2) & L_2 \leftarrow L_2 - (1 + m)L_1 \\ - (2 + m)y + (2m + 1)z = -(m + 2) & L_3 \leftarrow L_3 - 2L_1 \end{cases}$$

$$\iff \begin{cases} x + y + (1 - m)z = m + 2 \\ - (2 + m)y + (m^2 + 1)z = -(m + 1)(m + 2) \\ - m(m - 2)z = m(m + 2) & L_3 \leftarrow L_3 - L_2 \end{cases}$$

Si m=0, le système est équivalent à

$$\begin{cases} x + y + z = 2 \\ -2y + z = -2 \end{cases} \iff \exists t \in \mathbb{R} \begin{cases} x + z + y = 2 \\ z - 2y = -2 \\ y = t \end{cases}$$
$$\iff \exists t \in \mathbb{R} \begin{cases} x = 4 - 3t \\ z = -2 + 2t \\ y = t \end{cases}$$

Si m=-2, le système est équivalent à

$$\begin{cases} x+y+3z=0\\ z=0 \end{cases} \iff \begin{cases} x+3z+y=0\\ z=0\\ \end{cases} \Leftrightarrow \exists t \in \mathbb{R} \begin{cases} x+3z+y=0\\ z=0\\ y=t \end{cases}$$

$$\Leftrightarrow \exists t \in \mathbb{R} \begin{cases} x=-t\\ z=0\\ y=t \end{cases}$$

Si m=2, le système est équivalent à

$$\begin{cases} x + y - z = 3 \\ -3y + 5z = -12 \\ 0 = 8 \end{cases}$$

Il n'a donc aunc une solution. Enfin, dans le cas où $m \in \mathbb{R} \setminus \{0, 2, -2\}$, le système admet une unique solution :

$$\begin{cases} x = \frac{1}{m-2} \\ y = -\frac{m+3}{m-2} \\ z = -\frac{m+2}{m-2} \end{cases}$$