

ALJABAR LINEAR

Dr. Eng. Sulfayanti

Pertemuan 5

Prodi Informatika
Fakultas Teknik
UNIVERSITAS SULAWESI BARAT

Sub-CPMK

Mampu menyelesaikan masalah ruang vector

REVIEW Operasi Vektor

DEFINITION 3 If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ and $\mathbf{w} = (w_1, w_2, \dots, w_n)$ are vectors in \mathbb{R}^n , and if k is any scalar, then we define

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)$$
 (10)

$$k\mathbf{v} = (kv_1, kv_2, \dots, kv_n) \tag{11}$$

$$-\mathbf{v} = (-v_1, -v_2, \dots, -v_n) \tag{12}$$

$$\mathbf{w} - \mathbf{v} = \mathbf{w} + (-\mathbf{v}) = (w_1 - v_1, w_2 - v_2, \dots, w_n - v_n)$$
(13)

**

REVIEW Operasi Vektor

THEOREM 3.1.1 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k and m are scalars, then:

- (a) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- (b) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- (c) u + 0 = 0 + u = u
- (*d*) $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- (e) $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- (f) $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$
- $(g) \quad k(m\mathbf{u}) = (km)\mathbf{u}$
- (h) $1\mathbf{u} = \mathbf{u}$

REVIEW Norm of Vektor

THEOREM 3.2.1 If **v** is a vector in \mathbb{R}^n , and if k is any scalar, then:

- (a) $\|\mathbf{v}\| \ge 0$
- (b) $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$
- $(c) \quad ||k\mathbf{v}|| = |k| ||\mathbf{v}||$

REVIEW Standar Unit Vektor

Standar unit vektor = satuan vektor dalam arah positif sumbu koordinat.

Notasi dalam ruang 2-d:

$$i = (1, 0)$$
 and $j = (0, 1)$

Notasi dalam ruang 3-d:

$$\mathbf{i} = (1, 0, 0), \quad \mathbf{j} = (0, 1, 0), \quad \text{and} \quad \mathbf{k} = (0, 0, 1)$$

. :

(b)

REVIEW Standar Unit Vektor

Dengan menggeneralisasi standar unit vektor dalam ruang berdimensi-n diperoleh

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \quad \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \quad \mathbf{e}_n = (0, 0, 0, \dots, 1)$$

Yangmana vektornya dapat di ekspresikan seperti berikut:

$$\mathbf{v} = (v_1, v_2, \dots, v_n) = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$$

DEFINITION 3 If \mathbf{u} and \mathbf{v} are nonzero vectors in R^2 or R^3 , and if θ is the angle between \mathbf{u} and \mathbf{v} , then the *dot product* (also called the *Euclidean inner product*) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined as

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta \tag{12}$$

If $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$, then we define $\mathbf{u} \cdot \mathbf{v}$ to be 0.

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Contoh:

Tentukan hasil perkalian dot **u.v** berikut!

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

The companion formula for vectors in 2-space is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$$

THEOREM 3.2.2 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

(a)
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$
 [Symmetry property]

(b)
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$
 [Distributive property]

(c)
$$k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$$
 [Homogeneity property]

(d)
$$\mathbf{v} \cdot \mathbf{v} \ge 0$$
 and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$ [Positivity property]

THEOREM 3.2.3 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

- (a) $\mathbf{0} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = 0$
- (b) $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- (c) $\mathbf{u} \cdot (\mathbf{v} \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} \mathbf{u} \cdot \mathbf{w}$
- (d) $(\mathbf{u} \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} \mathbf{v} \cdot \mathbf{w}$
- (e) $k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$

Orthogonality (Ortogonalitas)

Sudut θ antara 2 vektor yang tidak nol **u** dan **v** adalah:

$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

Maka Ortogonalitas dapat di definisikan sebagai berikut:

DEFINITION 1 Two nonzero vectors \mathbf{u} and \mathbf{v} in R^n are said to be *orthogonal* (or *perpendicular*) if $\mathbf{u} \cdot \mathbf{v} = 0$. We will also agree that the zero vector in R^n is orthogonal to *every* vector in R^n .

Orthogonality (Ortogonalitas)

Contoh 1:

Show that $\mathbf{u} = (-2, 3, 1, 4)$ and $\mathbf{v} = (1, 2, 0, -1)$ are orthogonal vectors in \mathbb{R}^4 .

DEFINITION 1 If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are vectors in 3-space, then the *cross product* $\mathbf{u} \times \mathbf{v}$ is the vector defined by

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$$

or, in determinant notation,

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{pmatrix} \tag{1}$$

Contoh 2:

Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = (1, 2, -2)$ and $\mathbf{v} = (3, 0, 1)$.

THEOREM 3.5.2 Properties of Cross Product

If **u**, **v**, and **w** are any vectors in 3-space and k is any scalar, then:

(a)
$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$

(b)
$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$$

(c)
$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$$

(d)
$$k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$$

$$(e) \quad \mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$$

$$(f)$$
 $\mathbf{u} \times \mathbf{u} = \mathbf{0}$

DEFINITION 2 If **u**, **v**, and **w** are vectors in 3-space, then

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$$

is called the scalar triple product of u, v, and w.

Contoh 3:

Calculate the scalar triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ of the vectors

$$u = 3i - 2j - 5k$$
, $v = i + 4j - 4k$, $w = 3j + 2k$

Contoh 4:

let $\mathbf{u} = (3, 2, -1)$, $\mathbf{v} = (0, 2, -3)$, and $\mathbf{w} = (2, 6, 7)$.

Compute the indicated vectors.

(a) $\mathbf{v} \times \mathbf{w}$

(b) $\mathbf{w} \times \mathbf{v}$

(c) $(\mathbf{u} + \mathbf{v}) \times \mathbf{w}$

- (d) $\mathbf{v} \cdot (\mathbf{v} \times \mathbf{w})$
- (e) $\mathbf{v} \times \mathbf{v}$
- (f) $(\mathbf{u} 3\mathbf{w}) \times (\mathbf{u} 3\mathbf{w})$

Thanks! Any questions?

You can find me at sulfayanti@unsulbar.ac.id

More info on how to use this template at www.slidescarnival.com/help-use-presentation-template
This template is free to use under Creative Commons Attribution license. You can keep the Credits slide or mention SlidesCarnival and other resources used in a slide footer.