华南师范大学期末课程试卷

《高等数学 A1》2018-2019 第二学期

- 一、填空题(每小题3分,共15分)

 - 2. 二次积分 $\int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x,y)dy$ 化成极坐标形式为_
 - 3. 设 L 是圆周 $x^2 + y^2 = 4$, 则曲线积分 $\oint (x^2 + y^2) ds = __$
 - 4. 若级数 $\sum_{n=0}^{\infty} a_n$ 收敛,则 $\lim_{n\to\infty} a_n =$ ______。
 - 5. 微分方程 y'' 3y' + 2y = 0 的通解为_
- 二、选择题(每小题3分,共15分)
 - 1. 对于函数 z = f(x,y), 下列结论正确的是(
 - (A) 若 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 都存在,则 z = f(x, y) 连续
 - (B) 若 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 都存在,则 z = f(x, y) 可微
 - (C) 若 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 都存在,则 z = f(x, y) 的极限存在
 - (D) 若 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 都连续,则 z = f(x, y) 可微
 - 2. 二次积分 $\int_{0}^{1} dy \int_{0}^{2y} f(x,y) dx$ 更换积分次序后为 (
 - (A) $\int_{0}^{2} dx \int_{0}^{1} f(x, y) dy$ (B) $\int_{0}^{1} dx \int_{0}^{\frac{1}{2}x} f(x, y) dy$
 - (C) $\int_{1}^{1} dx \int_{0}^{2x} f(x, y) dy$ (D) $\int_{0}^{2} dx \int_{0}^{2x} f(x, y) dy$
 - 3. 若曲面 Σ 是球面 $x^2 + y^2 + z^2 = 1$ 的外侧,则曲面积分 $\bigoplus 2xdydz + 3ydzdx 4zdxdy$ 的

值为(

- (A) 3π (B) $\frac{4\pi}{3}$ (C) 4π
- $(D)\frac{3\pi}{4}$
- 4. 部分和数列 $\{s_n\}$ 有界是正项级数 $\sum u_n$ 收敛的() 条件

- 必要不充分 (A)
- (B) 充分不必要

(C)充分必要

- (D) 既不充分也不必要
- 5. 方程 $y'' 4y' 5y = (x+1)e^x$ 的一个特解应具有形式(
- (A) $x^2(ax+b)e^x$

- (C) $x(ax+b)e^x$;
- (B) axe^x (D) $(ax+b)e^x$.

三、计算题(共50分)

- (7分)设z = f(xy, x + y),其中f具有一阶连续偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.
- 2. (7分) 计算 $\iint_D x^2 y dx dy$, 其中 D 是由抛物线 $y = x^2$ 及直线 y = 0, x = 1 所围区域。
- 3. (7分) 利用球面坐标计算 $\iiint (x^2+y^2+z^2)dv$, 其中 Ω 为上半球面 $x^2+y^2+z^2=1$ 与平面 z=0 所围成的区域。
- 4. (7分) 利用格林公式计算 $\int (e^x \sin y 2y) dx + (e^x \cos y 4) dy$, 其中 L 是从 B(1,0)

到 A(-1,0)的上半圆弧 $x^2 + y^2 = 1$ ($y \ge 0$), 方向为逆时针方向。

- 5. (7分) 求幂级数 $\sum_{n=1}^{\infty} \frac{3^n}{n} x^n$ 的收敛半径。
- 6. (7分) 在 (-1, 1) 内求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的和函数。
- 7. (8分) 求微分方程 $xy'-y+1+6x^2=0$ 的通解。

四、应用题(8分)

求曲面 $z = x^2 + 2y^2$ 在点(1, 1, 3)处的切平面及法线方程。

五、证明题 (每小题 6分, 共 12分)

- 1. 证明: 级数 $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$ 收敛。
- 2. ig $u = \sqrt{x^2 + y^2 + z^2}$, in θ : $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{2}{u}$.