Analisi Matematikoa

Zenbaki-multzoak

Zenbaki Konplexuak

December 20, 2016

Aurkibidea

1	Zen	enbaki-multzoak		
	1.1	Zenba	ki konplexuak	. 1
		1.1.1	Adierazpideak	. 1
		1.1.2	Eragiketak	. 3
		1.1.3	Ariketak	. 6

1. Gaia

Zenbaki-multzoak

1.1 Zenbaki konplexuak

- 1.1. Definizioa. Zenbaki konplexuen $\mathbb C$ multzoa honako hau da:
 - 1. $\mathbb{C} = \{a + bi/a, b \in \mathbb{R}, i = \sqrt{-1}\}$ a zati erreala, b zati irudikaria eta i unitate irudikaria dira.
- **1.2. Definizioa.** $z = a + bi \in \mathbb{C}$ zenbaki konplexua emanik,
 - 1. $\sqrt{a^2+b^2}$ balioari z-ren modulua deritzo eta ρ edo |z| idazten da.
 - 2. $\arctan \frac{b}{a}$ balioari z-ren argumentu deritzo eta θ edo $\arg(z)$ idazten da.
 - 3. $\theta \in [0, 2\pi)$ edo $\theta \in (-\pi, \pi]$ badago, argumentu nagusia dugu eta $\operatorname{Arg}(z)$ idazten da.
- **1.3. Definizioa.** \mathbb{C} multzoan, z = a + bi eta w = c + di zenbakiak berdinak dira, z = w, a = c eta b = d direnean.
- **1.4. Definizioa.** z = a + bi emanik, $\overline{z} = a bi$ zenbakiari z-ren konjugatu deritzo.
 - 1. $|\overline{z}| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2} = |z|$, hav da, modulu bera dute.
 - 2. $\operatorname{Arg}(\overline{z}) = \arctan \frac{-b}{a} = -\arctan \frac{b}{a} = -\operatorname{Arg}(z)$, hots, argumentuak zeinuz aurkakoak dituzte.

1.1.1 Adierazpideak

1.1.1.1 Binomiala

z = a + bi z-ren adierazpen binomiala da.

1.1.1.2 Geometrikoa

Pentsa dezakegu z = a+bi zenbakia OXY planoko (a,b) puntua dela, non a OX ardatzean kokatzen den, eta b OY ardatzean.

Orduan, (c,0) zenbakia OX ardatzean dago eta $c \in \mathbb{R}$ da. Hortik, beraz, $\mathbb{R} \subset \mathbb{C}$ ondoriozta dezakegu. Horregatik deritzo OX ardatzari ardatz erreala.

Bestalde, $(0,d) \in \mathbb{C}$ zenbakia OY ardatzean dago eta irudikari puru deritzo. Horregatik deritzo OY ardatzari ardatz irudikaria.

$$(0,1)=i$$
 unitate irudikaria da.

1.1.1.3 Polarra

 $z=a+bi\subset\mathbb{C}$ zenbakia ρ eta θ parametroen bidez ere koka daiteke OXY planoan.

 $a = \rho \cos \theta$ eta $b = \rho \sin \theta$ izanik, ρ_{θ} z-ren adierazpen polar deritzo.

1.1.1.4 Trigonometrikoa

z-ren adierazpen binomialean a-ren eta b-ren balioak ordezkatuz, $z=a+bi=\rho\cos\theta+(\rho\sin\theta)i=\rho(\cos\theta+i\sin\theta), \ z\text{-ren adierazpen trigonometrikoa lortzen dugu.}$

1.1.1.5 Esponentziala

Euler-en formula: $e^{bi} = \cos b + \sin b$.

z-ren adierazpen trigonometrikoan Euler-en formula erabiliz, $z = \rho(\cos \theta + i \sin \theta) = \rho e^{\theta i}$ z-ren adierazpen esponentziala dugu.

a, b	$ ho \;, heta$
a + bi	$ ho_{ heta}$
(a,b)	$\rho(\cos\theta + i\sin\theta)$
	$ ho e^{ heta i}$
$\rho = \sqrt{a^2 + b^2}$	$a = \rho \cos \theta$
$\theta = \arctan \frac{b}{a}$	$b = \rho \sin \theta$
$a, b \in \mathbb{R}$	$0 \le \rho$
	$\theta \in \mathbb{R} , \theta \in (-\pi, \pi]$
	$\theta \in [0, 2\pi)$

1.1.2 Eragiketak

- 1.5. Definizioa. z eta w zenbakien arteko batuketa/kenketa honela definitzen da:
 - 1. Adierazpen binomiala: $z \pm w = (a+bi) \pm (c+di) = (a \pm c) + (b \pm d)i$.
- **1.6.** Adibidea. $z + w = (1 + \sqrt{3}i) + (-2 + 2i) = -1 + (\sqrt{3} + 2)i$.
- 1.7. Definizioa. z eta w zenbakien biderketa honela definitzen da:
 - 1. Adierazpen binomiala: $z \cdot w = (a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i$.
 - 2. Adierazpen polarra: $z \cdot w = (\rho_{\theta}) \cdot (\rho'_{\theta'}) = \rho \cdot \rho'_{\theta+\theta'}$.
 - 3. Adierazpen esponentziala: $z \cdot w = (\rho e^{\theta i}) \cdot (\rho' e^{\theta' i}) = \rho \cdot \rho' \ e^{-(\theta + \theta')i}$.

1.8. Adibidea.

1.
$$z * w = (1 + \sqrt{3}i) * (-2 + 2i) = -2 + 2i - 2\sqrt{3}i + 2\sqrt{3}i^2 = -2 + 2i - 2\sqrt{3}i - 2\sqrt{3} = (-2 - 2\sqrt{3}) + (2 - 2\sqrt{3})i$$
.

- 2. $z * w = (2\frac{\pi}{3}) * (2\sqrt{2}\frac{3\pi}{4}) = 4\sqrt{2}\frac{13\pi}{12}$.
- 1.9. Definizioa. z eta w zenbakien arteko zatiketa honela definitzen da:
 - 1. Adierazpen binomiala: $\frac{z}{w} = \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac-bd)+(bc-ad)i}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + \frac{(bc-ad)i}{c^2+d^2}.$
 - 2. Adierazpen polarra: $\frac{z}{w} = \frac{\rho_{\theta}}{\rho'_{\theta'}} = \frac{\rho}{\rho'_{\theta-\theta'}}$.
 - 3. Adierazpen esponentziala: $\frac{z}{w} = \frac{\rho e^{\theta}}{\rho' e^{\theta'}} = \frac{\rho}{\rho'} e^{(\theta \theta')i}$.

1.10. Adibidea.

1.
$$\frac{z}{w} = \frac{1+\sqrt{3}i}{-2+2i} = \frac{(1+\sqrt{3}i)(-2-2i)}{(-2+2i)(-2-2i)} = \frac{(-2+2\sqrt{3})+(-2-2\sqrt{3})i}{4+4} = \frac{-2+2\sqrt{3}}{8} + \frac{-2-2\sqrt{3}}{8}i.$$

2.
$$\frac{z}{w} = \frac{2\frac{\pi}{3}}{2\sqrt{2}\frac{3\pi}{4}} = \left(\frac{2}{2\sqrt{2}}\right)_{\frac{\pi}{3} - \frac{3\pi}{4}} = \frac{1}{\sqrt{2}\frac{-5\pi}{12}}.$$

- **1.11. Definizioa.** z zenbakiaren berreketa honela definitzen da, $n \in \mathbb{N}$ izanik:
 - 1. Adierazpen polarra: $z^n = (\rho_\theta)^n = \rho^n_{n\theta}$.
 - 2. Adierazpen trigonometrikoa: $z^n = [\rho(\cos\theta + i\sin\theta)]^n = \rho^n(\cos n\theta + i\sin n\theta)$.
- **1.12.** Adibidea. z'' kalkulatuko dugu: $z'' = [2(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})]^4 = 16(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3})$
- **1.13. Definizioa.** z zenbakiaren erroketa honela definitzen da, $n \in \mathbb{R}$ izanik:
 - 1. Adierazpen polarra: $\sqrt[n]{z} = \sqrt[n]{\rho_{\theta}} = \sqrt[n]{\rho_{\frac{\theta+2k\pi}{n}}}$, $k \in \mathbb{Z}$ edo k = 0, 1, ..., n-1

1.14. Adibidea. $\sqrt{w} = \sqrt{-2 + 2i} = x + yi \Rightarrow -2 + 2i = (x + yi)^2 = (x^2 - y^2) + 2xyi \Rightarrow \begin{cases} -2 = x^2 - y^2 \\ 2 = 2xy \end{cases} \Rightarrow y = \frac{1}{x} \ , = x = 0 \ delako; \ beraz \ x^2 - (\frac{1}{x})^2 = -2 \Rightarrow x^4 + 2x^2 - 1 = 0 \Rightarrow x^2 = t, \ hartuz, \ t^2 + 2t - 1 = 0 \Rightarrow t = \frac{-2 \pm \sqrt{4 + 4}}{2} = \frac{-2 \pm 2\sqrt{2}}{2} = -1 \pm \sqrt{2} \Rightarrow x^2 = -1 \pm \sqrt{2}$ izateko, kenketa baztertu behar dugu, beraz, $x^2 = -1 + \sqrt{2} \Rightarrow x = \pm \sqrt{\sqrt{2} - 1}$

Hortik,
$$y = \pm \frac{1}{\sqrt{\sqrt{2}-1}}$$
.

Ondorioz, bi soluzio hauek ditugu: $\sqrt{\sqrt{2}-1} + \frac{1}{\sqrt{\sqrt{2}-1}}$ eta $-\sqrt{\sqrt{2}-1} - \frac{1}{\sqrt{\sqrt{2}-1}}$

1.15. Adibidea.
$$\sqrt[5]{z}$$
 kalkulatuko dugu: $z = 2\frac{\pi}{3}$, $\sqrt[5]{z} = \sqrt[5]{2\frac{\pi}{3}} = \sqrt[5]{2\frac{\pi}{3} + 2k\pi} = \sqrt[5]{2\frac{\pi+6k\pi}{15}}$, $k \in \mathbb{Z}$; $k = 0, 1, ..., n - 1$

$$\begin{array}{c} k \in \mathbb{Z} \ ; \ k = 0, 1, ..., n-1 \\ \hline \left[k = 0\right] \ z_1 = \sqrt[5]{2} \frac{\pi}{15} \ \overline{\left[k = 1\right]} \ z_2 = \sqrt[5]{2} \frac{7\pi}{15} \ \overline{\left[k = 2\right]} \ z_3 = \sqrt[5]{2} \frac{13\pi}{15} \ \overline{\left[k = 3\right]} \ z_4 = \sqrt[5]{2} \frac{19\pi}{15} \\ \hline \left[k = 4\right] \ z_5 = \sqrt[5]{2} \frac{\pi}{15} \end{array}$$

- **1.16.** Definizioa. z zenbakiaren logaritmo nepertarra honela definituko dugu, $z = \rho_e^{\theta i}$ bada:
 - 1. Adierazpen exponentziala: $\ln z = \ln \rho_e^{\theta i} = \ln \rho + \ln e^{\theta i} = \ln \rho + (\theta + 2k\pi)i$, $k \in \mathbb{Z}$.
- $*\ Emaitza\ adierazpen\ binomialean\ ematen\ da.$
- $* \ In finitu \ logaritmo \ nepertar \ daude.$
- * Infinitu logaritmoek zati erreal bera dute. Hortaz, denak daude zuzen bertikal batean: $x = \ln e$
- * Infinitu logaritmoen artean 2π aldea dago.

1.17. Adibidea. $z = 2\frac{\pi}{3} = 2e^{\frac{\pi}{3}i}$

 $\ln z = \ln(2e^{\frac{\pi}{3}i}) = \ln 2 + \left(\frac{3\pi}{3} + 2k\pi i\right) , \ k \in \mathbb{Z}$

k=0 denean, logaritmo nepertarraren balio nagusia lortzen da: $\ln 2 + \frac{\pi}{3}i$.

1.1.3 Ariketak

1.18. Adibidea.

14. Froga ezazu berdintza hauek betetzen direla $(z_1, z_2 \in \mathbb{C})$:

$$3) \ \overline{z_1 z_2} = \overline{z_1} \ \overline{z_2}$$

EZKERREKO ATALA:

$$\overline{z_1 z_2} = \overline{[(a+bi)(c+di)]} = \overline{ac + adi + bci + bdi^2} = \overline{(ac - bd) + (ad + bi)i} = \overline{(ac - bd) - (ad + bi)i}$$

ESKUINEKO ATALA:

$$\overline{z_1} \ \overline{z_2} = \overline{a+bi} \ \overline{c+di} = (a-bi)(c-di) = ac-adi-bci-bd = \boxed{(ac-bd)-(ad+bi)i}$$

Ondorioz, froga dezakegu berdintza, $\overline{z_1z_2} = \overline{z_1} \ \overline{z_2}$, betetzen dela.

1.19. Adibidea.

18. Irudika itzazu planoan erlazio hauek betetzen dituzten zenbaki konplexuen multzoak:

19)
$$\{z \in \mathbb{C}/|z - 2i| \le \text{Re }(z) \text{ eta Re }(z) \ge 1\}, z = a + bi$$

$$|z-2i| = 2 \Rightarrow |a+bi-2i| = 2 \Rightarrow |a+(b-2)i| = 2 \Rightarrow \sqrt{a^2+(b-2)^2} = 2 \Rightarrow (\sqrt{a^2+(b-2)^2})^2 = 2^2 \Rightarrow a^2+(b-2)^2 = 2^2 \Rightarrow \boxed{(a-0)^2+(b-2)^2=2^2} \begin{cases} zentroa:(0,2) & erradioa: 2 \end{cases}$$

Honako irudian azter dezakegunez, urdinez marraztatuta dagoen esparrua izango litzateke eskatutako erlazioak betetzen dituzten zenbaki konpletxuen multzoa; hau da, $|z-2i| \leq \text{Re }(z)$ eta Re $(z) \geq 1$ betetzen dutenen multzoa.

1.20. Adibidea.

20. Ebatz itzazu ekuazio hauek eta adieraz itzazu grafikoen bidez soluzioak:

13)
$$z^{3/4} = 1$$

$$z^{3/4} = 1 \Rightarrow z = \sqrt[3]{1^4} \Rightarrow z = \sqrt[3]{1}$$

$$\boxed{Polarrean} \Rightarrow \sqrt[3]{1_0} \Rightarrow \sqrt[3]{1_{\frac{0+2k\pi}{3}}}$$

K=0,1,2 kasuak analizatu behar ditugu orain:

$$k=0$$
 $\Rightarrow \sqrt[3]{1}_{\frac{0+2*0*\pi}{3}} = 1_0$

$$k=1$$
 $\Rightarrow \sqrt[3]{1}_{\frac{0+2*1*\pi}{3}} = 1_{\frac{2\pi}{3}}$

$$\begin{array}{c|c} \hline k = 0 \\ \Rightarrow \sqrt[3]{1}_{\frac{0+2*0*\pi}{3}} = 1_0 \\ \hline k = 1 \\ \Rightarrow \sqrt[3]{1}_{\frac{0+2*1*\pi}{3}} = 1_{\frac{2\pi}{3}} \\ \hline k = 2 \\ \Rightarrow \sqrt[3]{1}_{\frac{0+2*2*\pi}{3}} = 1_{\frac{4\pi}{3}} \\ \end{array}$$

1.21. Adibidea.

21. Ebatz ezazu $z^3 = 1 + i$ ekuazioa logaritmoa erabiliz.

$$z^3 = 1 + i$$

$$\ln z^3 = \ln(1+i) \Rightarrow 3 \ln z = \ln(1+i) \Rightarrow \ln z = \frac{\ln(1+i)}{3}$$

$$\begin{array}{l} 1+i=\sqrt{2}\frac{\pi}{4} \text{ da.} \\ z=e^{\frac{\ln(1+i)}{3}} \Rightarrow z=e^{\frac{\ln\sqrt{2}+(\frac{\pi}{4}+2k\pi)i}{3}} \Rightarrow z=e^{\frac{\ln\sqrt{2}+(\pi+8k\pi)i}{4}} \Rightarrow z=e^{\frac{\ln\sqrt{2}+\frac{\pi(1+8k)i}{4}}{3}} \Rightarrow z=e$$

K-ren balioak ondorioztatzeko, $\theta = \frac{\pi(1+8k)}{12}$ garatu beharko dugu.

$$\theta = \frac{\pi(1+8k)}{12} = \frac{\pi}{12} + \frac{8k\pi}{12}$$

Orain, K-ri balio desberdinak emanaz, kalkulatu behar dugu bira osoa eman baino lehen zenbat balio desberdin har ditzakeen.

$$\begin{array}{|c|c|c|}\hline \text{K=0 denean} \Rightarrow \theta = \frac{\pi}{12} + 0 = \frac{\pi}{12} = 15^{\circ} \\ \hline \text{K=1 denean} \Rightarrow \theta = \frac{\pi}{12} + \frac{8\pi}{12} = \frac{9\pi}{12} = \frac{3\pi}{4} = 135^{\circ} \\ \hline \text{K=2 denean} \Rightarrow \theta = \frac{\pi}{12} + \frac{16\pi}{12} = \frac{17\pi}{12} = 255^{\circ} \\ \hline \text{K=3 denean} \Rightarrow \theta = \frac{\pi}{12} + \frac{24\pi}{12} = \frac{25\pi}{12} = 375^{\circ} \\ \hline \end{array}$$

Beraz, ondoriozta dezakegu K=3 denean errepikatzen dela bira; eta, ondorioz, K=0,1,2 denean lehen biran gaudela.