```
In [1]: import numpy as np
    import pandas as pd
    from mpl_toolkits.mplot3d import Axes3D
    from sklearn.preprocessing import StandardScaler
    import matplotlib.pyplot as plt
```

/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.p y:3267: DtypeWarning: Columns (0) have mixed types. Specify dtype optio n on import or set low_memory=False. exec(code_obj, self.user_global_ns, self.user_ns)

In [3]: NonNurse.head()

Out[3]:

	PROVNUM	PROVNAME	CITY	STATE	COUNTY_NAME	COUNTY_FIPS	CY_Qtr	Wor
0	15009	BURNS NURSING HOME, INC.	RUSSELLVILLE	AL	Franklin	59	2020Q1	202
1	15009	BURNS NURSING HOME, INC.	RUSSELLVILLE	AL	Franklin	59	2020Q1	202
2	15009	BURNS NURSING HOME, INC.	RUSSELLVILLE	AL	Franklin	59	2020Q1	202
3	15009	BURNS NURSING HOME, INC.	RUSSELLVILLE	AL	Franklin	59	2020Q1	202
4	15009	BURNS NURSING HOME, INC.	RUSSELLVILLE	AL	Franklin	59	2020Q1	202

5 rows × 81 columns

There are 5122558 rows and 81 columns

```
In [5]: Nurse.head()
```

Out[5]:

	PROVNUM	PROVNAME	CITY	STATE	COUNTY_NAME	COUNTY_FIPS	CY_Qtr	Wor
0	15009	BURNS NURSING HOME, INC.	RUSSELLVILLE	AL	Franklin	59	2020Q1	202
1	15009	BURNS NURSING HOME, INC.	RUSSELLVILLE	AL	Franklin	59	2020Q1	202
2	15009	BURNS NURSING HOME, INC.	RUSSELLVILLE	AL	Franklin	59	2020Q1	202
3	15009	BURNS NURSING HOME, INC.	RUSSELLVILLE	AL	Franklin	59	2020Q1	202
4	15009	BURNS NURSING HOME, INC.	RUSSELLVILLE	AL	Franklin	59	2020Q1	202

5 rows × 33 columns

```
In [6]: nRow, nCol = Nurse.shape
    print(f'There are {nRow} rows and {nCol} columns')
```

There are 5158867 rows and 33 columns

```
In [7]: prov_num.head()
```

Out[7]:

	our_provnum
0	56360
1	465072
2	55505
3	65321
4	55744

```
In [8]: prov_num.describe()
```

Out[8]:

	our_provnum
count	218.000000
mean	338487.509174
std	255630.410026
min	35014.000000
25%	56342.750000
50%	440483.500000
75%	555707.500000
max	676426.000000

Out[21]:

	PROVNUM	PROVNAME	CITY	STATE	COUNTY_NAME	COUNTY_FIPS	CY_Qtr	WorkDa
0	56360	ARBOR GLEN CARE CENTER	GLENDORA	CA	Los Angeles	37	2020Q1	202001
1	56360	ARBOR GLEN CARE CENTER	GLENDORA	CA	Los Angeles	37	2020Q1	202001
2	56360	ARBOR GLEN CARE CENTER	GLENDORA	CA	Los Angeles	37	2020Q1	202001
3	56360	ARBOR GLEN CARE CENTER	GLENDORA	CA	Los Angeles	37	2020Q1	202001
4	56360	ARBOR GLEN CARE CENTER	GLENDORA	CA	Los Angeles	37	2020Q1	202001

5 rows × 81 columns

In [11]: NonNurseDf.describe()

Out[11]:

	COUNTY_FIPS	WorkDate	MDScensus	Hrs_Admin	Hrs_Admin_emp	Hrs_Admin_ctr
count	56021.000000	5.602100e+04	56021.000000	56021.000000	56021.000000	56021.0
mean	105.521626	2.020068e+07	77.974635	5.154014	5.154014	0.0
std	108.505046	3.428332e+02	32.162763	4.032845	4.032845	0.0
min	1.000000	2.020010e+07	4.000000	0.000000	0.000000	0.0
25%	37.000000	2.020041e+07	54.000000	0.000000	0.000000	0.0
50%	71.000000	2.020071e+07	76.000000	8.000000	8.000000	0.0
75%	135.000000	2.020100e+07	93.000000	8.000000	8.000000	0.0
max	469.000000	2.020123e+07	234.000000	16.330000	16.330000	0.0

8 rows × 75 columns

In [22]: NurseDf = pd.merge(prov_num, Nurse, left_on='our_provnum', right_on='PROVNU

del NurseDf['our_provnum'] NurseDf.describe()

Out[22]:

	COUNTY_FIPS	WorkDate	MDScensus	Hrs_RNDON	Hrs_RNDON_emp	Hrs_RNDON_
count	38101.000000	3.810100e+04	38101.000000	38101.000000	38101.000000	38101.0000
mean	126.242015	2.020069e+07	78.104932	5.476742	5.475651	0.0010
std	117.159477	3.507833e+02	31.111128	4.021543	4.020250	0.0699
min	1.000000	2.020010e+07	13.000000	0.000000	0.000000	0.0000
25%	45.000000	2.020040e+07	55.000000	0.000000	0.000000	0.0000
50%	73.000000	2.020072e+07	77.000000	8.000000	8.000000	0.0000
75%	167.000000	2.020101e+07	92.000000	8.000000	8.000000	0.0000
max	469.000000	2.020123e+07	234.000000	16.000000	16.000000	8.0000

8 rows × 27 columns

```
In [23]: NurseDf.head()
```

Out[23]:

	PROVNUM	PROVNAME	CITY	STATE	COUNTY_NAME	COUNTY_FIPS	CY_Qtr	WorkDate
0	55505	ARROYO VISTA NURSING CENTER	SAN DIEGO	CA	San Diego	73	2020Q1	20200101
1	55505	ARROYO VISTA NURSING CENTER	SAN DIEGO	CA	San Diego	73	2020Q1	20200102
2	55505	ARROYO VISTA NURSING CENTER	SAN DIEGO	CA	San Diego	73	2020Q1	20200103
3	55505	ARROYO VISTA NURSING CENTER	SAN DIEGO	CA	San Diego	73	2020Q1	20200104
4	55505	ARROYO VISTA NURSING CENTER	SAN DIEGO	CA	San Diego	73	2020Q1	20200105

5 rows × 33 columns

```
In [24]: # Distribution graphs (histogram/bar graph) of column data
         def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow):
             nunique = df.nunique()
             df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50
         ]] # For displaying purposes, pick columns that have between 1 and 50 un
         ique values
             nRow, nCol = df.shape
             columnNames = list(df)
             nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow
             plt.figure(num = None, figsize = (6 * nGraphPerRow, 8 * nGraphRow),
         dpi = 80, facecolor = 'w', edgecolor = 'k')
             for i in range(min(nCol, nGraphShown)):
                 plt.subplot(nGraphRow, nGraphPerRow, i + 1)
                 columnDf = df.iloc[:, i]
                 if (not np.issubdtype(type(columnDf.iloc[0]), np.number)):
                     valueCounts = columnDf.value counts()
                     valueCounts.plot.bar()
                 else:
                     columnDf.hist()
                 plt.ylabel('counts')
                 plt.xticks(rotation = 90)
                 plt.title(f'{columnNames[i]} (column {i})')
             plt.tight_layout(pad = 1.0, w_pad = 1.0, h_pad = 1.0)
             plt.show()
```

```
In [38]: # Correlation matrix
         def plotCorrelationMatrix(df, graphWidth):
             df = df.dropna('columns') # drop columns with NaN
             df = df[[col for col in df if df[col].nunique() > 1]] # keep columns
         where there are more than 1 unique values
             if df.shape[1] < 2:
                 print(f'No correlation plots shown: The number of non-NaN or con
         stant columns ({df.shape[1]}) is less than 2')
                 return
             corr = df.corr()
             plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facec
         olor='w', edgecolor='k')
             corrMat = plt.matshow(corr, fignum = 1)
             plt.xticks(range(len(corr.columns)), corr.columns, rotation=90)
             plt.yticks(range(len(corr.columns)), corr.columns)
             plt.gca().xaxis.tick_bottom()
             plt.colorbar(corrMat)
             plt.title(f'Correlation Matrix', fontsize=15)
             plt.show()
In [26]: # Scatter and density plots
```

```
def plotScatterMatrix(df, plotSize, textSize):
    df = df.select_dtypes(include =[np.number]) # keep only numerical co
    # Remove rows and columns that would lead to df being singular
    df = df.dropna('columns')
    df = df[[col for col in df if df[col].nunique() > 1]] # keep columns
where there are more than 1 unique values
    columnNames = list(df)
    if len(columnNames) > 10: # reduce the number of columns for matrix
 inversion of kernel density plots
        columnNames = columnNames[:10]
    df = df[columnNames]
    ax = pd.plotting.scatter matrix(df, alpha=0.75, figsize=[plotSize, p
lotSize], diagonal='kde')
    corrs = df.corr().values
    for i, j in zip(*plt.np.triu_indices_from(ax, k = 1)):
        ax[i, j].annotate('Corr. coef = %.3f' % corrs[i, j], (0.8, 0.2),
xycoords='axes fraction', ha='center', va='center', size=textSize)
    plt.suptitle('Scatter and Density Plot')
    plt.show()
```

In [27]: plotPerColumnDistribution(NonNurseDf, 10, 5)

In [28]: plotPerColumnDistribution(NurseDf, 10, 5)

Scatter and Density Plot

Scatter and Density Plot


```
In [45]: NonNurseDf.to_excel('NonNurse.xlsx')
    NurseDf.to_excel('Nurse.xlsx')
```