Enterprise Ethereum Alliance Technical Roadmap

Bob Summerwill and Shahan Khatchadourian

Feb 28, 2017 Final

Building on the shoulders of giants

What is our tech focus within the EEA?

- Superset of public-chain Ethereum
- Covers additional Enterprise needs
 - Confidentiality, scalability, permissioning
- Real-world compatibility is key is measure of success
- Not building a product focus on specifications
- Looking to dogfood governance on the blockchain

Technical goals for 2017

- Create specification for EntEth 1.0
- Python reference client for that specification
- Benchmarking, compliance testing and tools
- Build roadmap to EntEth 2.0

Feature name (RPC API method) Test case name		go-eth master	go-eth storage-at	cpp-eth develop	parity master	pyeth develop
eth_getTransactionByHash	•	12/12	12/12	11/12	12/12	11/12
eth_getBlockByNumber	•	28/28	28/28	27/28	28/28	20/28
eth_getBlockByHash	٠	18/18	18/18	17/18	18/18	17/18
eth_getUncleByBlockNumberAndIndex	•	12/12	12/12	12/12	11/12	12/12
eth_getUncleCountByBlockNumber	•	12/12	12/12	12/12	12/12	10/12
eth_getBlockTransactionCountByNumber	•	16/16	16/16	16/16	16/16	14/16
eth_getUncleCountByBlockHash	٠	12/12	12/12	12/12	12/12	12/12
debug_storageRangeAt	•	8/14	14/14	9/14	8/14	8/14
eth_sign	•	13/13	12/13	8/13	12/13	8/13
eth_getBlockTransactionCountByHash	•	4/4	4/4	4/4	4/4	4/4
eth_getUncleByBlockHashAndIndex	•	12/12	12/12	12/12	11/12	12/12

Example: http://cdetr.io/eth-compat-table/

EntEth 1.0 reference client

- Use pyethapp as reference client
- Use Quorum to drive modularity on confidentiality
- Use a BFT algorithm to drive modularity on consensus
- Compliance tests and benchmarking
- Reference client experiments used to drive specification

Confidentiality capabilities

- JPM identified privacy/confidentiality as their key blocker
- Quorum is the current de-facto (multi-chain) solution
- Legal and regulatory compliance are common needs
- Our immediate focus is on "Quorum functionality"
- There are many possible options in the longer term

Pluggable consensus

- Pluggable consensus is a characteristic of a codebase
- Not all codebases have the same architecture
- We might need to define a microservices architecture
- There are baby-steps on our way to this goal (ie. modes)
- It will be an iterative process to refine this decoupling
- Ultimate aim is to enable BFT, POW and POS approaches

Permissioning model

- Build a framework for application, data, network and administrative permissions
- Restrict enterprise chains from public/open access
- Likely authentication / authorization and role based security based, inline with existing Enterprise approaches

Performance Evaluation

- Increase robustness and performance of Ethereum protocols
- Gain understanding of components and characteristics based on properties like client, contract execution, network, and scalability
- Replay transactional data from existing databases
- Leverage pre-existing real-world (big) data of public Ethereum network

Long-term goals

- The Holy Grail is a set of modules which can be dynamically composed to meet all use-cases, public and private
- Possible convergence of public and Enterprise roadmaps
- There are numerous potential avenues for exploration: data feeds, data management, instrumentation (i.e., EVM)

Next steps

- Continue our conversations with EEA technical community
- Blockchain governance and EIP process for Enterprise proposals
- We would love to receive feedback
 - Planning on having open communication channels such as mailing lists (very soon)

Appendix

Enterprise Ethereum Protocol Stack

Configurable Privacy and Security

A modular reference implementation supports development and comparison of trustless consortium paradigms

Benchmarking

Understanding features and performance of components helps to inform and integrate relevant enterprise use cases

