Correlated-Q Learning

Greenwald & Hall, 2003

and Cooperation In Strategic Games, Revisited

Kalai & Kalai

Adam Abeshouse, Betsy Hilliard and Eric Sodomka December 12, 2012

A
\$

A
\$

A
\$

A	B \$a
	\$a
	\$ b

A
\$

A
\$

A
\$

A	B \$a
	\$a
	\$ b

Correlated-Q Learning

Greenwald and Hall, 2003

- Describes an algorithm to extend Q-learning (and VI) to multiagent settings
- Uses "solution concepts" because "max" no longer makes sense
- But agents in the real world have more options...

Correlated (Greenwald, Hall, 2003) no proof of convergance

Hot Dog Stand Game

LITTLE DANNY'S
HOT DOGS &
SMOKIES

P

		beach	park
A	park	120, 40	240, 200
	beach	600, 80	300, 100

Coco Value

Cooperative

	beach	park
park	130, 130	220, 220
beach	340, 340	200, 200

B

	beach	park
park	120, 40	240, 200
beach	600, 80	300, 100

A+B, A+B 2

<u>A - B</u>, <u>B - A</u> 2

Competitive

		beach	park
-	park	45, -45	20, -20
-	beach	270, -270	100, -100

Coco Value Solution

Cooperative

	beach	park	
park	130, 130	220, 220	COCO =(340+100, 340+-100)= value
beach	340, 340	200, 200	Inte many such values
	But o	ne cou	d calculate many such values Yellow Park

COCO value (340+100, 340+-100) = (440,240)

park 45, -45 20, -20 270, -270 100, -100

park 240, 200 120, 40 600,80 300, 100

A then pays B \$240

Cooperation In Strategic Games, Revisited Kalai and Kalai, 2011 Axioms

- I. Pareto Optimality: max sum of values
- 2. Payoff dominance: if an agent always dominate, value greater
- 3. Shift invariance: additive shift by c changes value by c
- 4. Redundant mixed strategies: convex combinations of moves can be removed with no effect on the value
- 5. Monotonicity in strategies: adding a strategy can only increase your value

Also: unique and efficiently computable and the **only** value that satisfies 1-5

Original Table:

Figure 2. Convergence in the grid games: all algorithms are converging. The CE-Q algorithm shown is uCE-Q.

Grid Games		GG1	GG2			GG3		
Algorithm	Con	Como				Can	100	Comoa
Q	\$b	\$a [1	\$a, \$b			\$a, \$b	I 1
Foe-Q		Ψα					Ψ•••, Ψ•	
Foe- Q Friend- Q								
uCE- Q e CE- Q r CE- Q								Π
eCE- Q			_					
	\mathbf{A}	B	$ lap{A}$		B	I A		B
lCE-Q	100,10	,, <u>L</u> [100,	91 	บบบบ	<u> </u>	<u> </u>	<u> </u>

Table 2. Grid Games played repeatedly, allowing 10⁴ moves. Average scores are shown. The number of games played varied with the agents' policies: some move directly to the goal, while others digress.

Original Table:

Figure 2. Convergence in the grid games: all algorithms are converging. The CE-Q algorithm shown is uCE-Q.

Grid Games	GG1		GG2	2	GG3		
Algorithm	Score	Games	Score	Games	Score	Games	
Q	100,100	2500	49,100	3333	100,125	3333	
Foe-Q	0,0	0	67,68	3003	120,120	3333	
Friend- Q	$-10^4, -10^4$	0	$-10^4, -10^4$	0	$-10^4, -10^4$	0	
uCE- Q	100,100	2500	50,100	3333	116,116	3333	
eCE- Q	100,100	2500	51,100	3333	117,117	3333	
rCE- Q	100,100	2500	100,49	3333	125,100	3333	
lCE-Q	100,100	2500	100,51	3333	$-10^4, -10^4$	0	

Table 2. Grid Games played repeatedly, allowing 10⁴ moves. Average scores are shown. The number of games played varied with the agents' policies: some move directly to the goal, while others digress.

Original Table:

Figure 2. Convergence in the grid games: all algorithms are converging. The CE-Q algorithm shown is uCE-Q.

Grid Games	GG1		GG_2	2	GG3		
Algorithm	Score	Games	Score	Games	Score	Games	
Q	100,100	2500	49,100	3333	100,125	3333	
Foe- Q	0,0	0	67,68	3003	120,120	3333	
Friend- Q	$-10^4, -10^4$	0	$-10^4, -10^4$	0	$-10^4, -10^4$	0	
uCE- Q	100,100	2500	50,100	3333	116,116	3333	
eCE- Q	100,100	2500	51,100	3333	117,117	3333	
rCE- Q	100,100	2500	100,49	3333	125,100	3333	
lCE- Q	100,100	2500	100,51	3333	$-10^4, -10^4$	0	

Table 2. Grid Games played repeatedly, allowing 10⁴ moves. Average scores are shown. The number of games played varied with the agents' policies: some move directly to the goal, while others digress.

Our Table:

Grid Games	GG1		GG2		GG3	
Algorithm	Score	Games	Score	Games	Score	Games
Friend-Q	$-10^4, -10^4$	0	$-10^4, -10^4$	0	$-10^4, -10^4$	0
uCE-Q	100,100	2500	50,100	3333	117,117	3333
eCE-Q	100,100	2500	100,50	3333	117,117	3333
rCE-Q	100,100	2500	49,100	3333	100,125	3333
lCE-Q	100,100	2500	52, 100	3333	$-10^4, -10^4$	0

Grid Games

Coco Agents for Grid Games

Coco Results

Comparing Solution Concepts

Future work

- What about more than 2 agents?
- Coco in the real world:
 - asymmetric transfer payments?
 - coco vs. negotiation?
- What if humans are allowed (encouraged? forced?) to play games with coco values?

Citations and References

- http://www.istockphoto.com/stock-illustration-14738687-family-fun-beach-hot-dog-stand-couple-serving-to-children.php
- http://mayordave.org.uk/en/article/2010/430632/scores-on-the-doors-puts-knowledge-in-the-hands-of-local-restaurant-goers
- [1] Enrique Munoz de Cote and Michael L. Littman. A polynomial-time nash equilibrium algorithm for repeated stochastic games. CoRR, abs/1206.3277, 2012.
- [2] Amy Greenwald and Keith Hall. Correlated-q learning. In In AAAI Spring Symposium, pages 242–249. AAAI Press, 2003.
- [3] Amy Greenwald, Keith Hall, and Martin Zinkevich. Correlated q-learning, 2005.
- [4] Adam Kalai and Ehud Kalai. Cooperation in two person games, revisited. SIGecom Exch., 10(1):13–16, March 2011.
- [5] Adam Tauman Kalai and Ehud Kalai. Cooperation and competition in strategic games with private information. In *Proceedings of the 11th ACM conference on Electronic commerce*, EC '10, pages 345–346, New York, NY, USA, 2010. ACM.
- [6] Adam Tauman Kalai and Ehud Kalai. A cooperative value for bayesian games, 2010.