

Forecasting

Unemployment Rate

OPIM-5671
Data Mining and Business Intelligence

GROUP 4
Abhinav Dubey
Jiaxuan Wang
Marina Suberlyak
Shaista Usman

Table Of Contents

- Problem Statement
- Goal
- Data Description
- Methodology:
 - Sample
 - Explore
 - Modify
 - Model & Results
 - Assess
- Conclusions
- Recommendations

Background

Unemployment rate is a proportion calculated by

number of unemployed persons
total number of persons in the labour force

People are classified as unemployed if they fulfill the following three criteria:

- Do not have a job
- Have actively looked for work in the prior four weeks
- Are currently available for work

Problem Statement

Unemployment rate allows policy makers to examine health of the labor market and the economy. Understanding and forecasting patterns in unemployment are key to:

- inform government unemployment insurance budgets and incentives
- devise fiscal policies to remedy the causes of unemployment, particularly during economic downturns
- identify when governments should increase asset purchases and investments

Goal

We will model historical unemployment rate using available time series for unemployment in the United States.

The analysis will seek to model trend, seasonality, irregularity and any useful events from the historical unemployment rate, plus explore any regressors, and then forecast near-term unemployment rate to inform policymakers in devising government and economic response.

Data Description - sources

- The Official U.S. unemployment statistics ¹ are produced by the U.S. Bureau of Labor Statistics, and released on the first Friday of every month
- Additional time series considered:
 - Job Openings and Labor Turnover Survey ²
 - Initial Claims for Unemployment Insurance ³
 - Dow Jones Industrial average 4 as measure of stock market performance
 - Consumer Price Index 5 as measure of inflation

¹ Federal Reserve Economic Data | FRED | St. Louis Fed

⁴ Stooq, historical stock market data available for download

² <u>Job Openings</u>, ³ <u>Initial Claims</u>

⁵ US Inflation Calculator

Data Description - data elements

- Observation date, monthly
- Unemployment rate, as percentage of total labour force, monthly
- ICSA, as absolute jobless claims per month
- Job openings, as absolute job openings per month
- DJI, as close level on last day of month
- CPI, as average price of a basket of goods indexed against same basket price of 1982-84

Methodology

- 1. Sample the time series
 - visual inspection & research
- **2.** Explore and diagnose
 - interventions, stationary analysis
- 3. Modify
 - define time periods to model, holdout and any missing values
- 4. Model and examine the results
 - attempt multiple approaches
- **5.** Assess and conclude
 - compare models and discuss recommendations

Sample - many events, or none

History of Unemployment Rate in the US

Explore - regressors

Explore - cross correlation

Cross	Cross Correlation Plots: Output Series - UnemploymentRate										
	Corr vs.						Corr vs.			Corr	
Lag	DJI close	8642 0 .2 .4 .6 .8	Lag	Corr vs. CPI	8642 0 .2 .4 .6 .8	Lag	JTSJOL	8642 0 .2 .4 .6 .8	Lag	vs. ICSA	8642 0 .2 .4 .6 .8
-10	-0.2979		-10	0.0156		-10	-0.2873		-10	-0.0492	
-9	-0.2623		-9	0.0406		-9	-0.3396		-9	-0.0183	
-8	-0.2364		-8	0.0575		-8	-0.3851		-8	0.0059	
-7	-0.2187		-7	0.0715		-7	-0.4313		-7	0.0208	-
-6	-0.2209		-6	0.0797		-6	-0.4682		-6	0.0427	
-5	-0.2187		-5	0.0863		-5	-0.5072		-5	0.0651	
-4	-0.2189		-4	0.0899		-4	-0.5442		-4	0.0948	
-3	-0.2256		-3	0.0925		-3	-0.5689		-3	0.1442	-
-2	-0.2323		-2	0.0943		-2	-0.5221		-2	0.2067	-
-1	-0.2407		-1	0.0943		-1	-0.4901		-1	0.3315	
0	-0.2521		0	0.0947		0	-0.4767		0	0.5628	
1	-0.2720		1	0.0885		1	-0.4643		1	0.4696	
2	-0.2750		2	0.0840		2	-0.4618		2	0.3758	
3	-0.2648		3	0.0790		3	-0.4663		3	0.3157	
4	-0.2547		4	0.0734		4	-0.4772		4	0.2498	
5	-0.2472		5	0.0687		5	-0.4827		5	0.2179	-::::: !
6	-0.2450		6	0.0636		6	-0.4962		6	0.1866	-
7	-0.2431		7	0.0582		7	-0.5212		7	0.1755	
8	-0.2420		8	0.0526		8	-0.5515		8	0.1665	
9	-0.2385		9	0.0471		9	-0.5586		9	0.1506	
10	-0.2346		10	0.0423		10	-0.5436		10	0.1430	

will attempt Job Openings and Initial Claims as standard regressors; DJI showed no significance during analysis

Model 1 - with events

Timeline:

January 1948

to

February 2021

Stationary or Non-Stationary

The Autocorrelation Plots, White Noise tests and Unit Root tests indicate:

- Presence of Trend.
- Absence of Seasonality.
- The series is not White Noise.

Therefore, the Time Series is Non-Stationary.

Modeling Trend, Events and Irregularity

orecast Model	Model Title Root Mean Square Erro	or
	Linear Trend + Historical events X 1950-60s + AR(2)	0.29736
V	COVID + AR(2)	0.30202
	Linear Trend + COVID + AR(2)	0.30567
	Linear Trend + Every historical event captured as interventio	1.18238
	Linear Trend + Historical events X 1950-60s captured	1.21678
	Linear Trend + Historical events X 1950-70s captured	1.26928
Forecast Model		
	t	Criterion
	t Model Title Schwarz Bayesian Information	Criterion
Mode 1	t Model Title Schwarz Bayesian Information Linear Trend + Historical events X 1950-60s + AR(2)	-2030.5
Mode 1	Model Title Schwarz Bayesian Information Linear Trend + Historical events X 1950-60s + AR(2) COVID + AR(2) Linear Trend + COVID + AR(2) Linear Trend + Every historical event captured as interventio	
Mode 1	t Model Title Schwarz Bayesian Information Linear Trend + Historical events X 1950-60s + AR(2) COVID + AR(2) Linear Trend + COVID + AR(2)	-2030.5 -2075.3 -2049.7

We modelled all the events from 1948 to 2020 and trend without including regressors. The best two models with all parameters significant and in limits are

- 1. Linear Trend + COVID + AR(2)
- 2. COVID + AR(2)

Model Evaluation

Conclusion: COVID + AR(2) is the best model based on RMSE, AIC and SBC.

Comparison of Statistics of Fit

Model 1: COVID + AR(2)
Model 2: Linear Trend + COVID + AR(2)

NAME	LABEL	MODEL1	MODEL2
MSE	Mean Square Error	0.091214	0.093437
RMSE	Root Mean Square Error	0.302017	0.305675
MAPE	Mean Absolute Percent Error	2.903763	2.961561
MAE	Mean Absolute Error	0.165624	0.167593
RSQUARE	R-Square	0.968523	0.967790
AIC	Akaike Information Criterion	-2094 411456	-2073.640309
SBC	Schwarz Bayesian Information Criterion	-2075.300870	-2049.746384

Model Evaluation (Cont'd)

Reasoning: model achieves random residuals, clean Autocorrelation plots and White Noise. All parameters are significant.

Model 2 with Regressors

Timeline:

April 2000 to Feb 2021

Modify

- The **historical data on the Time series was pruned**, to align it with the data for Regressors that were available from 2000 onwards.
- The weekly data for Initial Claims for Unemployment Insurance (ICSA) was aggregated over a period of 4 weeks (in the same way as UNRATE data is collected) to align it with the available monthly UNRATE data.

Stationary or Non-Stationary

The Autocorrelation Plots, White Noise tests and Unit Root tests indicate:

- Presence of Trend.
- Absence of Seasonality.
- The series is not White Noise.

Therefore, the Time Series is Non-Stationary.

Modeling Regressors, Trend and Irregularity

Model includes:

- 1. Regressors: Initial Claims for Unemployment Insurance (ICSA) and Job Openings and Labor Turnover (JTSJOL)
- 2. Trend
- **3. Irregularity** via autoregressive model

Model Evaluation

ICSA + JTSJO	UNF	eter Estimate RATE: UNRATE) / D(1)] +		nd + AR(1)
Model Parameter	Estimate	Std. Error	T	Prob> T
Intercept	10.22987	0.6103	16.7611	<.0001
Autoregressive, Lag 1	0.93813	0.0223	42.0214	<.0001
ICSA	4.41593E-7	1.0151E-8	43.5045	<.0001
JTSJ0L[Lag(9) N(1) / D(1)] Lag9	-0.0006099	0.000058	-10.5009	<.0001
JTSJ0L[Lag(9) N(1) / D(1)] Lag9 Num1	0.0003763	0.000085	4.4466	<.0001
JTSJ0L[Lag(9) N(1) / D(1)] Lag9 Den1	0.37986	0.0780	4.8710	<.0001
Linear Trend	0.01954	0.0032	6.0662	<.0001
Model Variance (sigma squared)	0.04980			

Statistics of FitStatistics of Fit UNRATE: UNRATE ICSA + JTSJOL[Lag(9) N(1) / D(1)] + Linear Tre		
Statistic of Fit	Value	
Mean Square Error	0.05443	
Root Mean Square Error	0.23331	
Mean Absolute Percent Error	2.66916	
Mean Absolute Error	0.15247	
R-Square	0.986	
Schwarz Bayesian Information Criterion	-663.09948	

- The model has all significant parameters and a low RMSE and SBC.
- The model captures enough variance from the data while still being less complex and not overfitting the data.

Assess

We will evaluate our 2 models on:

- RMSE
- SBC & AIC
- Complexity
- Forecast reasonableness
- Inclusion of data available

Results

MODEL 1

RMSE: 0.3020

SBC: -2075.3

AIC: -2094.41

Forecast: believable

Period: more comprehensive

MODEL 2

RMSE: 0.2333

SBC: -663.1

AIC: -687.5

Forecast: unreasonable

Period: only recent decades

Recommendations

Improve accuracy:

- 1. Add interventions appropriately
- 2. Regressors worthwhile to explore if more historical data is available
- 3. Validate against domain expert knowledge and intuition, e.g. post COVID forecast

Improve labor market:

- 1. Change fiscal policy and develop an expansionary monetary policy
- 2. Provide education and training to the labor force

Conclusion

Lastly, it is critical to model unemployment rate in the context of:

- Other economic factors, especially leading indicators for unemployment
- Ample, complete data for additional variables

