Production Planning

Production Planning

Let's consider this (simplified) decision problem

- We need to select from a set production jobs
- Performing a job provides a value
- We have a minimum value that we need reach
- Every job has an associated cost

Problem Formulation

We provide a mathematical formulation for this problem

$$z^* = \operatorname{argmin}_{z} \sum_{j=1}^{n} y_j z_j$$
subject to:
$$\sum_{j=1}^{n} v_j z_j \ge v_{min}$$

$$z_j \in \{0, 1\} \qquad \forall j = 1..n$$

Where:

- z=1 iff we pick the j-th job, and 0 otherwise
- $lackbox{v}_{i}$ is the value for the j-th job
- lacksquare v_{min} is the minimum required value
- is the cost for the j-th job

Solution Approaches

Optimization problems can be address via several approaches

Some come from th AI fields, other from Mathematics

- Mathematical Programming (e.g. MILP)
- Constraint Programming
- SAT Modulo Theories
- •••

Problems in this class can be very challenging

...But mature tools to address them exist, e.g.:

- The <u>Gurobi</u> solver
- Google <u>or-tools</u>
- The Z3 theorem prover by Microsoft

Uncertainty

In some real world scenarios the costs would be unknown

...Typically, beucase they are subject to uncertainty

- In other words, we know how much we gain
- ...But we don't know how much we pay

We will assume that at least some information is available

- \blacksquare In particular that y is not observable
- \blacksquare ...But also correlated with some quantity x that we can observe

E.g. some kind of economic indicator

We will also assume that we have historical data

■ In particular, by keeping track of what happened in the past

Adjusted Formulation and Solution Strategy

How does this change our formulation?

Under uncertainty, we'll want to maximize the expected profit:

$$z^* = \operatorname{argmin}_{z} \sum_{j=1}^{n} \mathbb{E}_{y \sim P(Y)}[y_j] z_j$$
subject to:
$$\sum_{j=1}^{n} v_j z_j \ge v_{min}$$

$$z_i \in \{0, 1\} \qquad \forall j = 1..n$$

- The notation E represents an expectation
- I.e. a mean over all possible outcomes
- Basically, we want to do well on average

More risk-averse formulations are possible, but we'll not cover them

Predict, the Optimize

A possible solution strategy consists in:

- \blacksquare Based on x, obtaining an estimate for the expected costs
- ...Then we can solve the decision problem as before

This strategy is known as "predict, then optimize"

- We can use Machine Learning to train an estimator
- With the estimator, we can predict the expected costs
- ...Then we can use optimization to find the best decisions

We can view the estimation as a regression problem

- ...And this is a sound strategy
- In fact, under the right conditions
- regressor actually tries to estimate a mean

Data Generation

We will use synthetic data for this use case

First, we generate the know parameters for the knapsack problem

```
In [2]: nitems, rel_req, seed = 20, 0.5, 42
prb = util.generate_problem(nitems=nitems, rel_req=rel_req, seed=seed)
display(prb)

ProductionProblem(values=[1.14981605 1.38028572 1.29279758 1.23946339 1.06240746 1.06239781 1.02323344 1.34647046 1.240446  1.28322903 1.0082338 1.38796394 1.33297706 1.08493564 1.07272999 1.0733618 1.1216969 1.20990257 1.17277801 1.11649166], requirement=11.830809153591138)
```

- The jobs
- The values
- The minimum requirement on the total value

Data Generation

The we generate a collection of historical data

- \blacksquare On the x axis we have the market indicator
- Every color corresponds to the cost for a different investment option

Data Generation

We also generate a second collection of data for testing

- We will not use this data for training
- So we can use to assess the performance on unseen examples

Training the Estimator

We can not train our estimator

```
In [5]: pfl 1s = util.build nn model(input shape=1, output shape=nitems, hidden=[16], name='pfl 1s', out
        %time history = util.train_nn_model(pfl_1s, data_tr.index.values, data_tr.values, epochs=1000,
        util.plot training history(history, figsize=figsize, print final scores=False)
        util.print ml metrics(pfl 1s, data tr.index.values, data tr.values, label='training')
        util.print ml metrics(pfl 1s, data ts.index.values, data ts.values, label='test')
        CPU times: user 9.19 s, sys: 339 ms, total: 9.53 s
        Wall time: 7.13 s
         0.25
         0.15
         0.10
         0.05
         0.00
                                                                                                     1000
                                                         epochs
```


R2: 0.90, MAE: 0.049, RMSE: 0.06 (training)
R2: 0.90, MAE: 0.05, RMSE: 0.06 (test)

Estimation Accuracy

Our estimator is quite accurate, despite the presence of uncertainty

Evaluating the Decisions

Our final evaluation, however, should be in terms of cost

We can do it like this:

- Let $z^*(\hat{y})$ be the solution we compute based on the cost estimates \hat{y}
- Let $z^*(y)$ be the solution we compute based on the true costs y
- Then, we can measure how well we are doing by computing:

$$\frac{\cos t(z^*(\hat{y})) - \cos t(z^*(y))}{\cos t(z^*(y))}$$

This is called relative (post-hoc) regret

- It's the different between the cost that we actually payed
- ...And the cost we could have paid with the benefit of hindsight

Post-hoc Regret Evaluation

Let's check how well we're doing in terms of post-hoc regret

```
In [7]: r tr 1s = util.compute regret(prb, pfl 1s, data tr.index.values, data tr.values)
        r_ts_1s = util.compute_regret(prb, pfl_1s, data_ts.index.values, data_ts.values)
        util.plot histogram(r tr 1s, figsize=figsize, label='training', data2=r ts 1s, label2='test', pr
                           0.02
                                                   0.06
                                                               0.08
                                                                          0.10
                                                                                      0.12
                                                                                                  0.14
               0.00
                                       0.04
        Mean: 0.023 (training), 0.020 (test)
```


Limits of this Approach

The "predict, then optimize" approach work well on one condition

Our ML model should effective at estimating the expected costs

- However, this is not always possible
- Sometimes you lack clear statistical information on the data
- ...Or sometimes you are forced to use a simpler model
- ...For example to provide explainability

We will run an experiment to test this condition

We will restrict ourselves to using a Linear Regressor

- As an ML model, this is much easier to interpret
- ...But also considerably less accurate in many cases

Training a Linear Regressor

Let's try our new, simpler, model

```
In [8]: pfl 1s l = util.build nn model(input shape=1, output shape=nitems, hidden=[], name='pfl 1s l', o
        %time history = util.train_nn_model(pfl_1s_l, data_tr.index.values, data_tr.values, epochs=1000,
        util.plot training history(history, figsize=figsize, print final scores=False)
        util.print_ml_metrics(pfl_1s_1, data tr.index.values, data tr.values, label='training')
        util.print ml metrics(pfl 1s l, data ts.index.values, data ts.values, label='test')
        CPU times: user 8.08 s, sys: 278 ms, total: 8.35 s
        Wall time: 6.71 s
         0.20
         0.10
         0.05
                                                                                                    1000
                                                         epochs
```


Regret Evaluation

Let's check how the model fares in terms of (post-hoc) regret

A Hybrid Method

In this kind of situation, using a hybrid method can close the gap

A hybrid method is one that meld elements to different fields

- We are already using learning and optimization in sequence
- ...But hybrid methods do it at the same time

The method we will use is called Decision Focused Learning

...And consists in minimizing regret at training time:

- lacksquare Given the current network parameters heta
- We solve one optimization problem for every training example
- We identify an improvement direction for the parameters
- ...And we adjust the parameters in that direction

Training a DFL Approach

Let's train a DFL approach

```
In [10]: spo_1s = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden=[], name=
         %time history = util.train dfl model(spo 1s, data tr.index.values, data tr.values, epochs=200, values)
         util.plot training history(history, figsize=figsize, print final scores=False)
         util.print ml metrics(spo 1s, data tr.index.values, data tr.values, label='training')
         util.print ml metrics(spo 1s, data ts.index.values, data ts.values, label='test')
         CPU times: user 2min 48s, sys: 11min 9s, total: 13min 57s
         Wall time: 1min 23s
          0.49
          0.48
          0.45
          0.44
          0.43
                                                                        125
                                                             100
                                                                                   150
                                                                                              175
                                                                                                         200
                                                            epochs
```


R2: 0.66, MAE: 0.089, RMSE: 0.12 (training) R2: 0.67, MAE: 0.089, RMSE: 0.12 (test)

Estimation Accuracy

In terms of prediction quality, DFL approaches are considerably worse

...Since their goal is not accuracy, but cost minimization

Regret Evaluation

We get a main advantage in terms of regret

Despite the model simplicity, we are almost matching our original results

