BECA / Dr. Huson / Geometry Unit 10: Trigonometry 4 May 2023

Name: Solunins

## 10.9 Classwork: Inverse trigonometric functions

HSG.SRT.C.8

1. Given right  $\triangle ABC$  with  $AC=4, BC=5, AB=6.4, \, m\angle C=90^{\circ}$ . Express each trig ratio as a fraction, then as a decimal to the nearest thousandth. (1a is an example)

(a) 
$$\sin A = \frac{5}{6.4} = 0.78125 \approx 0.781$$

(b) 
$$\cos A = \frac{4}{64} = 0.625$$

(c) 
$$\tan A = \frac{5}{4} = 1.250$$



- 2. Isosceles right triangle  $\triangle ABC$  is shown with base AC = 1 length marked.
  - (a) Write down the length of side BC.



(b) Find the length of the hypotenuse AB.  $AB = \sqrt{1^2 + t^2} = \sqrt{2}$ 



10

B

7

- (c) Write down the angle measures of  $\angle A$  and  $\angle B$ .
- (d) Write down  $\tan A$ . = /

(e) Write down 
$$\cos A$$
. =  $\frac{1}{\sqrt{2}} = 0.707106...$   $\approx 0.707$ 

3. Use the inverse tangent function to find  $m \angle A = \theta$  for right  $\triangle ABC$  as shown.



4. Triangle ABC is shown with  $AB=20.0,\,BC=12.5,\,$  and  $m\angle C=90^{\circ}.$  Find  $m\angle A.$ 

$$Sin A = \frac{12.5}{20.0}$$

$$A = Sin^{-1} \left(\frac{12.5}{20}\right)$$

$$= 38.68218... \approx 39^{\circ}$$



5. Given right  $\triangle JKL$  with  $\overline{JK} \perp \overline{KL}$ , JL = 12.5, JK = 10.9. Find  $m \angle J$  in degrees, rounded to three significant figures.



6. Given right  $\triangle DEF$  with DE = 7, EF = 3, DF = 7.6,  $m \angle E = 90^{\circ}$ . Express each trig ratio as a fraction, then as a decimal rounded to three significant figures.



(a) 
$$\sin F =$$

(d) 
$$\sin D =$$

(b) 
$$\cos F =$$

(e) 
$$\cos D =$$

(c) 
$$\tan F =$$

(f) 
$$\tan D =$$