Fondamenti di Automatica

Giorgio Battistelli

Dipartimento di Ingegneria dell'Informazione, Università di Firenze

UNIVERSITÀ
DEGLI STUDI
FIRENZE
DINFO
DIPARTIMENTO DI
INGEGNERIA
DELL'INFORMAZIONE

2 Analisi dei sistemi dinamici

Stabilità

Stabilità: robustezza delle traiettorie del sistema rispetto a **perturbazioni** di varia natura

Idea intuitiva: comportamento stabile quando **piccole perturbazioni** comportano **piccole variazioni** della soluzione

- Stabilità interna: robustezza rispetto a perturbazioni delle condizioni iniziali x(0)
- ullet Stabilità esterna: robustezza rispetto a perturbazioni dell'ingresso u
- stabilità strutturale: robustezza rispetto a perturbazioni dei parametri del sistema (matrici A, B, C, D)

2.6 Stabilità interna

Stabilità interna

- Stabilità asintotica: l'effetto di perturbazioni nelle condizioni iniziali svanisce, ovvero converge a 0
- Stabilità marginale: l'effetto di perturbazioni nelle condizioni iniziali non svanisce ma si mantiene comunque limitato
- Instabilità: se esistono perturbazioni delle condizioni iniziali il cui effetto non si mantiene limitato.

Mappa di transizione globale

Consideriamo un sistema LTI TC

$$\begin{array}{rcl}
x & = & Ax + Bu \\
y & = & Cx + Du
\end{array}$$

- Dati
 - condizione iniziale $x(0) = x_0$
 - segnale di ingresso u(t), $t \ge 0$

indichiamo la risposta nello stato al tempo t con la notazione

$$x(t) = \Phi(t, x_0, u)$$

Per un sistema LTI TC vale

$$\Phi(t, x_0, u) = e^{At} x_0 + \int_0^t e^{A(t-\tau)} B u(\tau) d\tau$$

• $\Phi(t, x_0, u)$ è detta mappa di transizione globale dello stato.

Effetto della perturbazione

• Consideriamo una condizionale iniziale nominale x_0 e la corrispondente **traiettoria nominale**

$$x(t) = \Phi(t, x_0, u)$$

• Consideriamo una condizionale iniziale perturbata $x_0 + \tilde{x}_0$ e la corrispondente traiettoria perturbata

$$x(t) = \Phi(t, x_0 + \tilde{x}_0, u)$$

• effetto della perturbazione = traiettoria perturbata – traiettoria nominale

$$\Phi(t, x_0 + \tilde{x}_0, u) - \Phi(t, x_0, u)
= \left[e^{At} (x_0 + \tilde{x}_0) + \int_0^t e^{A(t-\tau)} B u(\tau) d\tau \right] - \left[e^{At} x_0 + \int_0^t e^{A(t-\tau)} B u(\tau) d\tau \right]
= e^{At} \tilde{x}_0$$

Stabilità interna

• Effetto della perturbazione

$$\Phi(t, x_0 + \tilde{x}_0, u) - \Phi(t, x_0, u) = e^{At} \, \tilde{x}_0$$

- Effetto di una pertubazione sulla condizione iniziale dipende da
 - matrice A
 - perturbazione \tilde{x}_0

 ${f non}$ dipende dalla condizione iniziale x_0 né dall'ingresso u \Rightarrow non dipende dalla particolare traiettoria nominale considerata

Fatto 2.8 Per un sistema LTI **tutte** le traiettorie del sistema hanno le **stesse proprietà** di stabilità rispetto a perturbazioni delle condizioni iniziali.

Si può quindi parlare in modo generale di **stabilità interna del sistema**

Nota: per un sistema LTI, la stabilità interna è una proprietà della **sola** evoluzione libera dello stato $x_\ell(t)$

Stabilità interna

Un sistema LTI TC si dice

• Asintoticamente stabile se l'effetto di perturbazioni \tilde{x}_0 nelle condizioni iniziali svanisce, ovvero converge a 0

$$\lim_{t \to \infty} e^{At} \tilde{x}_0 = 0 \qquad \forall \tilde{x}_0$$

• Marginalmente stabile se non ho stabilità asintotica, ma l'effetto di perturbazioni \tilde{x}_0 nelle condizioni iniziali si mantiene comunque limitato

$$\forall \tilde{x}_0 \quad \exists M: \quad \left\| e^{At} \tilde{x}_0 \right\| \le M \quad \forall t \ge 0$$

• Internamente instabile se non ho stabilità asintotica né marginale, ovvero se esistono perturbazioni \tilde{x}_0 il cui effetto non si mantiene limitato

Perturbazione \tilde{x}_0 **arbitraria** \Rightarrow per studiare la stabilità interna del sistema devo studiare l'andamento nel tempo di e^{At}

• Consideriamo gli **autovalori** della matrice *A*

$$\lambda_1,\ldots,\lambda_k$$

con le loro molteplicità nel polinomio minimo m(s)

$$m_1,\ldots,m_k$$

ullet Gli elementi di e^{At} sono una **combinazione lineare dei modi naturali**

$$t^{\ell} e^{\lambda_i t}$$

$$\ell = 0, \dots, m_i - 1$$
$$i = 1, \dots, k$$

La stabilità interna del sistema dipende dai modi naturali

Stabilità asintotica
$$\Leftrightarrow \lim_{t \to \infty} e^{At} = 0$$

- \Leftrightarrow tutti gli elementi di e^{At} sono convergenti a 0
- tutti i modi naturali sono convergenti \Leftrightarrow

Stabilità marginale

$$\Leftrightarrow \exists M: \quad \left\| e^{At} \right\| \le M \quad \forall t \ge 0$$

- \Leftrightarrow tutti gli elementi di e^{At} sono limitati
- tutti i modi naturali sono limitati

Instabilità interna

- $\Leftrightarrow e^{At}$ non si mantiene limitata
- \Leftrightarrow esiste almeno un elementi di e^{At} non limitato
- esiste almeno un modo naturale divergente

Fatto 2.9 Un sistema LTI TC è

- asintoticamente stabile ⇔ tutti i modi naturali del sistema sono convergenti
- internamente instabile ⇔ esiste almeno un modo naturale divergente

ullet Ricordiamo la classificazione dei modi $t^\ell e^{\lambda_i t}$

	$\operatorname{Re}(\lambda_i) < 0$	$\operatorname{Re}(\lambda_i) = 0$	$\operatorname{Re}(\lambda_i) > 0$
$\ell = 0$	convergente	limitato	divergente
$\ell > 0$	convergente	divergente	divergente

• Un autovalore λ_i con molteplicità m_i come radice del polinomio minimo m(s) dà origine ai modi naturali

$$t^{\ell} e^{\lambda_i t} \qquad \ell = 0, 1, \dots, m_i - 1$$

Modi naturali associati ad un autovalore λ_i tutti convergenti

$$\Leftrightarrow \operatorname{Re}\{\lambda_i\} < 0$$

se e solo se la parte reale di λ_i è < 0

• Modi naturali associati ad un autovalore λ_i tutti **limitati**

$$\Leftrightarrow$$
 Re $\{\lambda_i\} \leq 0$

e, nel caso tale parte reale sia 0, la molteplicità m_i sia unitaria

Negli altri casi esiste almeno un modo naturale divergente

Condizioni per la stabilità interna

- Autovalori del sistema = autovalori della matrice A
- Per un sistema LTI, la stabilità interna dipende dalla posizione degli autovalori nel piano complesso e dalla loro molteplicità

Teorema 2.3 Un sistema LTI TC è

- asintoticamente stabile
 - \Leftrightarrow tutti gli autovalori del sistema hanno parte reale < 0
- marginalmente stabile
 - \Leftrightarrow tutti gli autovalori del sistema hanno parte reale ≤ 0 **AND** quelli con parte reale = 0 hanno molteplicità = 1 come radici del polinomio minimo
- internamente instabile negli altri casi
 - \Leftrightarrow esiste almeno un autovalore con parte reale >0 **OR** con parte reale =0 e molteplicità >1 nel polinomio minimo

Studio della stabilità interna

Per studiare la stabilità interna: calcoliamo il polinomio caratteristico $\varphi(s) = \det(sI - A)$ e distinguiamo 4 casi

- Se tutte le radici di $\varphi(s)$ hanno parte reale < 0 \Rightarrow sistema asintoticamente stabile
- **③** Se esiste almeno una radice di $\varphi(s)$ con parte reale > 0 \Rightarrow sistema internamente instabile
- $\textbf{ § Se tutte le radici di } \varphi(s) \text{ hanno parte reale } \leq 0 \text{ AND quelle con parte reale } = 0 \\ \text{ hanno molteplicità unitaria come radici di } \varphi(s)$
 - ⇒ sistema marginalmente stabile
 - [Infatti tali radici dovranno necessariamente avere molteplicità unitaria anche come radici del polinomio minimo m(s), in quanto $1 < m_i < \mu_i$]
- ① Se invece tutte le radici di $\varphi(s)$ hanno parte reale ≤ 0 **AND** ne esiste almena una con parte reale = 0 e molteplicità > 1 come radice di $\varphi(s)$
 - \Rightarrow dobbiamo calcolare il polinomio minimo m(s) e distinguere 2 sottocasi
 - se tutte le radici con parte reale = 0 hanno molteplicità unitaria come radici di $m(s) \Rightarrow$ sistema marginalmente stabile
 - ullet se invece esiste almeno una radice con parte reale =0 e molteplicità >1 come radice di m(s) \Rightarrow sistema internamente instabile

Consideriamo un sistema LTI TC con

$$A = \left[\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array} \right]$$

Polinomio caratteristico

$$\varphi(s) = \det(sI - A) = \det\begin{bmatrix} s & -1 \\ 1 & s+1 \end{bmatrix} = s^2 + s + 1$$

Autovalori

$$\lambda_1 = -\frac{1}{2} + j\frac{\sqrt{3}}{2}$$
, $\lambda_2 = -\frac{1}{2} - j\frac{\sqrt{3}}{2}$

- $\operatorname{Re}\{\lambda_1\} = \operatorname{Re}\{\lambda_2\} = -\frac{1}{2} < 0 \quad \Rightarrow \quad \text{stabilità asintotica}$
- Infatti i modi naturali

$$\sin\left(\frac{\sqrt{3}}{2}t\right)e^{-\frac{1}{2}t}, \qquad \cos\left(\frac{\sqrt{3}}{2}t\right)e^{-\frac{1}{2}t}$$

sono entrambi convergenti

Nota: in questo caso non serve calcolare il polinomio minimo m(s)

Consideriamo un sistema LTI TC con

$$A = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right]$$

Polinomio caratteristico

$$\varphi(s) = \det(sI - A) = \det\begin{bmatrix} s & -1\\ 1 & s \end{bmatrix} = s^2 + 1$$

Autovalori

$$\lambda_1 = j$$
, $\lambda_2 = -j$

- $\operatorname{Re}\{\lambda_1\} = \operatorname{Re}\{\lambda_2\} = 0$ **AND** $\mu_1 = \mu_2 = 1$ \Rightarrow stabilità marginale
- Infatti i modi naturali

$$\sin(t)$$
, $\cos(t)$

sono entrambi limitati

Nota: in questo caso non serve calcolare il polinomio minimo m(s) perché molteplicità $\mu_i=1$ in $\varphi(s)$ \Rightarrow molteplicità $m_i=1$ in m(s)

Consideriamo un sistema LTI TC con

$$A = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

Polinomio caratteristico

$$\varphi(s) = \det(sI - A) = \det\begin{bmatrix} s & -1 \\ 0 & s \end{bmatrix} = s^2$$

- Autovalore $\lambda_1 = 0$ con molteplicità $\mu_1 = 2$
- $\operatorname{Re}\{\lambda_1\} = 0$ **AND** $\mu_1 = 2$ \Rightarrow devo calcolare il polinomio minimo m(s)
- Calcolando l'inversa

$$(sI - A)^{-1} = \begin{bmatrix} \frac{1}{s} & \frac{1}{s^{\frac{2}{2}}} \\ 0 & \frac{1}{s} \end{bmatrix}$$

$$\Rightarrow m(s) = s^2$$

- $\operatorname{Re}\{\lambda_1\} = 0$ **AND** $m_1 = 2$ \Rightarrow instabilità interna
- Infatti i modi naturali

sono uno limitato e uno divergente

Consideriamo un sistema LTI TC con

$$A = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

Polinomio caratteristico

$$\varphi(s) = \det(sI - A) = \det \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} = s^2$$

- Autovalore $\lambda_1=0$ con molteplicità $\mu_1=2$
- $\operatorname{Re}\{\lambda_1\} = 0$ **AND** $\mu_1 = 2$ \Rightarrow devo calcolare il polinomio minimo m(s)
- Calcolando l'inversa

$$(sI - A)^{-1} = \begin{bmatrix} \frac{1}{s} & 0\\ 0 & \frac{1}{s} \end{bmatrix}$$

$$\Rightarrow m(s) = s$$

- $\operatorname{Re}\{\lambda_1\} = 0$ **AND** $m_1 = 1$ \Rightarrow stabilità marginale
- Infatti ho un solo modo naturale

1

limitato

Stabilità interna – considerazioni finali

• Per un sistema LTI TC l'evoluzione libera dello stato è del tipo

$$x_{\ell}(t) = e^{At}x(0)$$

Per un sistema LTI asintoticamente stabile

$$\lim_{t \to \infty} x_{\ell}(t) = 0 \qquad \forall x(0)$$

⇒ l'effetto della condizione iniziale **svanisce** asintoticamente

Per un sistema LTI **marginalmente stabile**, l'evoluzione libera $x_\ell(t)$, in generale, non tende a zero ma comunque si mantiene **limitata**

2.7 Risposta forzata e funzione di trasferimento

Consideriamo un sistema LTI TC

$$\begin{array}{rcl} \dot{x} & = & Ax + Bu \\ y & = & Cx + Du \end{array}$$

Risposta forzata nel dominio di Laplace

$$Y_f(s) = [C(sI - A)^{-1}B + D]U(s)$$

Nel dominio di Laplace, la relazione ingresso-uscita è espressa dalla **funzione di trasferimento**

$$G(s) = C(sI - A)^{-1}B + D$$

- In generale ingresso u e uscita y sono vettori $\Rightarrow G(s)$ matrice di dimensione $\dim(y) \times \dim(u)$
- Elemento (i,ℓ) di G(s) esprime la relazione tra l' ℓ -esimo ingresso e l'i-esima uscita

Ipotesi: il sistema ha un singolo ingresso e una singola uscita

$$\dim(y) = \dim(u) = 1$$

- Indichiamo sistemi di questo tipo con l'acronimo SISO (single input single output)
- Per sistemi SISO, la funzione di trasferimento è una funzione razionale

$$G(s) = \frac{b(s)}{a(s)}$$

con b(s) e a(s) polinomi coprimi (senza radici comuni)

- Radici di a(s) =poli del sistema
- Radici di b(s) =zeri del sistema

Funzione di trasferimento

$$G(s) = C(sI - A)^{-1}B + D$$
$$= \frac{1}{\varphi(s)}CAdj(sI - A)B + D$$

Per sistemi SISO

 $D \quad \text{costante} \\ \varphi(s) \quad \text{polinomio di grado } \dim(x) \\ \text{Adj}(sI - A) \quad \text{matrice di polinomi di grado} < \dim(x) \\ C\text{Adj}(sI - A)B \quad \text{polinomio di grado} < \dim(x) \\ \frac{1}{\varphi(s)} C\text{Adj}(sI - A)B \quad \text{funzione razionale } \textbf{strettamente propria} \\ \text{(grado del numeratore)} < \text{grado del numeratore)}$

Definiamo il polinomio

.
$$r(s) = C \mathrm{Adj}(sI - A)B$$
 con grado $r(s) < \mathrm{grado} \; \varphi(s)$

Funzione di trasferimento

$$G(s) = C(sI - A)^{-1}B + D = \frac{r(s)}{\varphi(s)} + D$$
$$= \frac{r(s) + D\varphi(s)}{\varphi(s)}$$

Semplificando fattori comuni tra numeratore e denominatore, otteniamo

$$G(s) = \frac{b(s)}{a(s)}$$

Sulla base delle considerazioni precedenti

$$\begin{array}{ll} \operatorname{grado}\,b(s) < \,\operatorname{grado}\,a(s) & \,\operatorname{se}\,D = 0 \\ \operatorname{grado}\,b(s) = \,\operatorname{grado}\,a(s) & \,\operatorname{se}\,D \neq 0 \end{array}$$

Relazione tra poli e autovalori del sistema

Al denominatore di

$$G(s) = \frac{r(s) + D\varphi(s)}{\varphi(s)} = \frac{b(s)}{a(s)}$$

si trova il polinomio caratteristico $\varphi(s)$ **ma** possono esserci semplificazioni \Rightarrow in generale a(s) sottomultiplo di $\varphi(s)$

• Dato il polinomio caratteristico

$$\varphi(s) = \prod_{i=1}^{k} (s - \lambda_i)^{\mu_i}$$

il denominatore di G(s) è del tipo

$$a(s) = \prod_{i=1}^{k} (s - \lambda_i)^{\nu_i}$$

• Tra le molteplicità μ_i e ν_i vale la relazione

$$0 \le \nu_i \le \mu_i$$

Relazione tra poli e autovalori del sistema

 Per effetto delle moltiplicazioni per B e C, un autovalore del sistema può anche essere completamente cancellato nella funzione di trasferimento

$$G(s) = C(sI - A)^{-1}B + D$$

Fatto 2.9 Per un sistema LTI TC, i poli del sistema [radici di a(s)] sono un **sottoinsieme** degli autovalori del sistema [radici di $\varphi(s)$]

 $\{ \text{ poli del sistema } \} \subseteq \{ \text{ autovalori del sistema } \}$

- Gli autovalori del sistema che **non** compaiono come poli di G(s) sono detti autovalori nascosti
- Possiamo definire il polinomio degli autovalori nascosti

$$\varphi_{\rm h}(s) = \frac{\varphi(s)}{a(s)}$$

h sta per *hidden*

- $\bullet \ \, {\rm Carrello} \,\, {\rm di} \,\, {\rm massa} \,\, M \,\, {\rm soggetto} \,\, {\rm ad} \,\, {\rm una} \,\, \\ {\rm forza} \,\, {\rm esterna} \,\, u(t) \,\, \\$
- ullet y(t) posizione del carrello al tempo t
- b coefficiente di attrito viscoso

Scegliamo come stato

$$x(t) = \left[\begin{array}{c} x_1(t) \\ x_2(t) \end{array} \right] = \left[\begin{array}{c} y(t) \\ \dot{y}(t) \end{array} \right]$$

⇒ equazioni di stato

$$\begin{array}{lll} \dot{x}(t) & = & \underbrace{\left[\begin{array}{cc} 0 & 1 \\ 0 & -b/M \end{array} \right]}_{A} x(t) + \underbrace{\left[\begin{array}{c} 0 \\ 1/M \end{array} \right]}_{B} u(t) \\ y(t) & = & \underbrace{\left[\begin{array}{cc} 1 & 0 \\ 0 \end{array} \right]}_{C} x(t) \end{array}$$

• Fissiamo M=1 e b=1

$$\begin{array}{lll} A & = & \left[\begin{array}{cc} 0 & 1 \\ 0 & -b/M \end{array} \right] = \left[\begin{array}{cc} 0 & 1 \\ 0 & -1 \end{array} \right] & \quad B = \left[\begin{array}{cc} 0 \\ 1/M \end{array} \right] = \left[\begin{array}{cc} 0 \\ 1 \end{array} \right] \\ C & = & \left[1 & 0 \right] & \quad D = 0 \\ \end{array}$$

Polinomio caratteristico

$$\varphi(s) = s(s+1)$$

Funzione di trasferimento

$$G(s) = C(sI - A)^{-1}B = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s & -1 \\ 0 & s+1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$= \frac{1}{s(s+1)} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s+1 & 1 \\ 0 & s \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{s(s+1)}$$

In questo caso

$$a(s) = s(s+1) \qquad b(s) = 1$$

⇒ **non** ci sono autovalori nascosti

• Prendiamo ora come uscita la velocità x_2

$$C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

La funzione di trasferimento diventa

$$G(s) = C(sI - A)^{-1}B = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} s & -1 \\ 0 & s+1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$= \frac{1}{s(s+1)} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} s+1 & 1 \\ 0 & s \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{s}{s(s+1)} = \frac{1}{s+1}$$

In questo caso

$$a(s) = s + 1 \qquad b(s) = 1$$

 \Rightarrow L'autovalore $\lambda_1 = 0$ è **nascosto**

Nota: il sistema internamente **non** cambia, **ma** cambia la quantità che sto osservando (misurando): in un caso la posizione nell'altro la velocità.

Gli autovalori nascosti dipendono dalle matrici $B \in C$, ovvero da **come** l'ingresso agisce sul sistema (matrice B) e da **quali** quantità sto osservando (matrice C).

Risposta impulsiva

Definizione: Dato un sistema LTI TC con funzione di trasferimento G(s) si definisce **risposta impulsiva** il segnale

$$g(t) = \mathcal{L}^{-1} \left\{ G(s) \right\}$$

Funzione di trasferimento

$$G(s) = C(sI - A)^{-1}B + D$$

Risposta impulsiva

$$g(t) = \mathcal{L}^{-1} \left\{ C(sI - A)^{-1}B + D \right\} = Ce^{At}B + D\delta(t)$$

con $\delta(t)$ l'impulso di Dirac

g(t) contiene una **componente impulsiva** \iff $D \neq 0$

Risposta impulsiva

- In generale: G(s) matrice di funzioni razionali $\dim(y) \times \dim(u)$ \Rightarrow risposta impulsiva g(t) matrice di segnali nel tempo
- **Per sistemi SISO** con $\dim(y) = \dim(u) = 1$: G(s) funzione razionale \Rightarrow risposta impulsiva g(t) segnale nel tempo
- Per sitemi SISO, se prendiamo come ingresso un impulso unitario

$$u(t) = \delta(t) \quad \Rightarrow \quad U(s) = \mathcal{L}\{\delta(t)\} = 1$$

la risposta forzata diventa

$$Y_f(s) = G(s)U(s) = G(s) \Rightarrow y_f(t) = g(t)$$

Per sistemi SISO: **risposta impulsiva** = **risposta forzata** del sistema quando l'ingresso è un **impulso unitario**

Risposta impulsiva

• Per sistemi SISO, funzione di trasferimento

$$G(s) = \frac{b(s)}{a(s)} = \frac{b(s)}{\prod_{i=1}^{k} (s - \lambda_i)^{\nu_i}}$$

• Risposta impulsiva $g(t) = \mathcal{L}^{-1}\{G(s)\}$ evolve secondo i modi naturali

$$e^{\lambda_i t}$$
, $t e^{\lambda_i t}$, ..., $t^{\nu_i - 1} e^{\lambda_i t}$

per
$$i=1,\ldots,k$$
 tale che $\nu_i\neq 0$

• **Solo** gli autovalori che compaiono come **poli** (per cui $\nu_i \neq 0$) danno un contributo alla risposta impulsiva

Fatto 2.11 La risposta impulsiva g(t) evolve secondo un sottoinsieme dei modi naturali del sistema (quelli corrispondenti agli autovalori **non** nascosti)

 I modi naturali che non compaiono nella risposta impulsiva sono detti modi nascosti

Per il sistema meccanico

$$\varphi(s) = s(s+1)$$

 \Rightarrow autovalori $\lambda_1 = 0$ e $\lambda_2 = -1$

modi naturali

$$e^{\lambda_1 t} = 1 , \qquad e^{\lambda_2 t} = e^{-t}$$

uno limitato e uno convergente

• Prendiamo come uscita la velocità x_2 \Rightarrow risposta impulsiva

$$G(s) = \frac{1}{s+1}$$
 \Rightarrow $g(t) = e^{-t} 1(t)$

- Il modo naturale 1 associato a $\lambda_1 = 0$ è **nascosto**

Forma della risposta forzata

• Consideriamo la risposta forzata

$$Y_f(s) = G(s) U(s)$$

- Se u(t) un segnale con trasformata di Laplace U(s) razionale
 - \Rightarrow poli di $Y_f(s)$ = poli della funzione di trasferimento + poli dell'ingresso
 - \Rightarrow modi di $y_f(t)=$ modi della risposta impulsiva g(t)+ modi dell'ingresso u(t)

Attenzione!

- alcuni modi possono **non** comparire a seguito di **cancellazioni** tra zeri e poli nel prodotto $G(s)\ U(s)$ (vedere esempio 2);
- possono comparire **nuovi** modi di evolvere dovuti ad un **aumento di molteplicità** quando G(s) e U(s) hanno poli coincidenti (vedere esempio 3)

Calcolo della risposta forzata: esempio 1

Consideriamo un sistema LTI con funzione di trasferimento

$$G(s) = \frac{1}{s+1}$$

• Consideriamo un ingresso a gradino

$$u(t) = 1(t) \quad \Rightarrow \quad U(s) = \frac{1}{s}$$

Risposta forzata

$$Y_f(s) = G(s)U(s) = \frac{1}{s(s+1)} = \frac{1}{s} - \frac{1}{s+1} \implies y_f(t) = 1(t) - e^{-t}1(t)$$

Nota: La risposta forzata evolve secondo una combinazione lineare dei modi

- ullet 1(t) associato al polo in 0 dell'ingresso
- $e^{-t} 1(t)$ associato al polo in -1 della funzione di trasferimento

Calcolo della risposta forzata: esempio 2

Consideriamo un sistema LTI con funzione di trasferimento

$$G(s) = \frac{1}{s-1}$$

Consideriamo un ingresso oscillante

$$u(t) = [\cos(t) - \sin(t)] 1(t) \implies U(s) = \frac{s-1}{s^2+1}$$

Risposta forzata

$$Y_f(s) = G(s)U(s) = \frac{1}{s-1} \frac{s-1}{s^2+1} = \frac{1}{s^2+1} \implies y_f(t) = \sin(t) 1(t)$$

ullet Nella risposta forzata compare solo il modo $\sin(t)\,1(t)$ associato all'ingresso

Nota: Il polo della funzione di trasferimento è **cancellato** da uno zero dell'ingresso \Rightarrow il modo e^t associato al polo in 1 della funzione di trasferimento **non** compare nella risposta forzata

 \bullet Cambiando ingresso il modo e^t comparirebbe nella risposta forzata $y_f(t)$ [verificare nel caso u(t)=1(t)]

Calcolo della risposta forzata: esempio 3

Consideriamo un sistema LTI con funzione di trasferimento

$$G(s) = \frac{1}{s}$$

• Consideriamo un ingresso a gradino

$$u(t) = 1(t) \quad \Rightarrow \quad U(s) = \frac{1}{s}$$

Risposta forzata

$$Y_f(s) = G(s)U(s) = \frac{1}{s^2} \quad \Rightarrow \quad y_f(t) = t \cdot 1(t)$$

Nota: Nella risposta forzata compare il modo $t\cdot 1(t)$ che **non** era presente nella risposta all'impulso g(t)=1(t) né nell'ingresso u(t)=1(t).

Il modo $t \cdot 1(t)$ compare perché, per questo particolare ingresso, si ha un **aumento di molteplicità** del polo in zero di G(s)

2.8 Stabilità esterna

Mappa di transizione globale dell'uscita

Consideriamo un sistema LTI TC

$$\begin{array}{rcl}
 x & = & Ax + Bu \\
 y & = & Cx + Du
 \end{array}$$

- Dati
 - condizione iniziale $x(0) = x_0$
 - segnale di ingresso u(t), $t \ge 0$

indichiamo la risposta nell'uscita al tempo t con la notazione

$$y(t) = \Psi(t, x_0, u)$$

Per un sistema LTI TC vale

$$\Psi(t, x_0, u) = Ce^{At} x_0 + \int_0^t Ce^{A(t-\tau)} B u(\tau) d\tau + D u(t)$$

ullet $\Psi(t,x_0,u)$ è detta mappa di transizione globale dell'uscita

Effetto della perturbazione

• Consideriamo un segnale di ingresso nominale u e la corrispondente **traiettoria nominale**

$$y(t) = \Psi(t, x_0, u)$$

ullet Consideriamo un segnale di ingresso perturbato $u+\tilde{u}$ e la corrispondente traiettoria perturbata

$$y(t) = \Psi(t, x_0, u + \tilde{u})$$

• Effetto della perturbazione = traiettoria perturbata – traiettoria nominale

$$\begin{split} \Psi(t,x_0,u+\tilde{u}) &- \Psi(t,x_0,u) \\ &= \left\{ Ce^{At} \, x_0 + \int_0^t Ce^{A(t-\tau)} \, B \left[u(\tau) + \tilde{u}(\tau) \right] d\tau + D[u(t) + \tilde{u}(t)] \right\} \\ &- \left\{ Ce^{At} \, x_0 + \int_0^t Ce^{A(t-\tau)} \, B \, u(\tau) \, d\tau + Du(t) \right\} \\ &= \int_0^t Ce^{A(t-\tau)} \, B \, \tilde{u}(\tau) \, d\tau + D \, \tilde{u}(t) \end{split}$$

Stabilità esterna

Effetto della perturbazione

$$\Psi(t, x_0, u + \tilde{u}) - \Psi(t, x_0, u) = \int_0^t Ce^{A(t-\tau)} B \, \tilde{u}(\tau) \, d\tau + D \, \tilde{u}(t)$$

Nel dominio di Laplace

$$\mathcal{L} \{ \Psi(t, x_0, u + \tilde{u}) - \Psi(t, x_0, u) \} = [C(sI - A)^{-1}B + D] \tilde{U}(s) = G(s) \tilde{U}(s)$$

- Effetto di una pertubazione sull'ingresso dipende da
 - funzione di trasferimento G(s)
 - ullet perturbazione $ilde{u}$

non dipende dalla condizione iniziale x_0 né dall'ingresso u \Rightarrow non dipende dalla particolare traiettoria nominale considerata

Per un sistema LTI **tutte** le traiettorie del sistema hanno le **stesse proprietà** di stabilità rispetto a perturbazioni dell'ingresso.

Si può quindi parlare in modo generale di **stabilità esterna del sistema**

Stabilità esterna

Definizione: Un sistema LTI TC si dice **esternamente stabile** se una perturbazione dell'ingresso \tilde{u} limitata implica una variazione limitata dell'uscita y

$$\exists M: \ \|\tilde{u}(t)\| \leq M \quad \forall t \quad \Longrightarrow \quad \exists L: \ \|\Psi(t,x_0,u+\tilde{u}) - \Psi(t,x_0,u)\| \leq L \cdot M \quad \forall t$$

- L rappresenta la massima amplificazione possibile di un perturbazione sull'ingresso (guadagno del sistema)
- $\bullet\,$ Per un sistema LTI, l'effetto della perturbazione coincide con la risposta forzata all'ingresso \tilde{u}

$$\mathcal{L}\left\{\Psi(t, x_0, u + \tilde{u}) - \Psi(t, x_0, u)\right\} = G(s)\,\tilde{U}(s)$$

 \Rightarrow stabilità esterna è una proprietà della **sola** risposta forzata $y_f(t)$

Stabilità esterna

 $\bullet\,$ Per un sistema LTI, l'effetto della perturbazione coincide con la risposta forzata all'ingresso \tilde{u}

$$\mathcal{L}\left\{\Psi(t, x_0, u + \tilde{u}) - \Psi(t, x_0, u)\right\} = G(s)\,\tilde{U}(s)$$

Fatto 2.12 Sistema LTI è stabile esternamente ⇔ risposta forzata ad un ingresso limitato è sempre limitata.

• Per questo motivo la stabilità esterna di sistemi LTI viene anche detta

stabilità ingresso-limitato uscita-limitata (ILUL)

o anche

stabilità BIBO (bounded input bounded output)

Condizioni per la stabilità esterna

Consideriamo un sistema LTI tempo continuo SISO con funzione di trasferimento

$$G(s) = \frac{b(s)}{a(s)}$$

con b(s) e a(s) polinomi coprimi (senza radici comuni)

• Poli di G(s) = radici di a(s)

Teorema 2.4 Sistema LTI TC SISO **stabile esternamente** \Leftrightarrow tutti i poli di G(s) hanno parte reale <0

Dimostrazione: condizione sufficiente

- ullet Dimostriamo per prima cosa la **condizione sufficiente**: tutti i poli di G(s) con parte reale <0 \Rightarrow stabilità esterna
- ullet Consideriamo un ingresso u limitato

$$\exists M: \quad |u(t)| \le M \quad \forall t \ge 0$$

Consideriamo la corrispondente risposta forzata

$$y_f(t) = \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$
$$= \int_0^t Ce^{A\tau}Bu(t-\tau)d\tau + Du(t)$$

dove la seconda eguaglianza si ottiene con il cambio di variabile au o t - au

• Devo dimostrare che tutti i poli di G(s) con parte reale <0 \Rightarrow $y_f(t)$ limitata

Dimostrazione: condizione sufficiente

• Possiamo maggiorare il modulo della risposta forzata nel seguente modo

$$|y_f(t)| = \left| \int_0^t Ce^{A\tau} Bu(t-\tau) d\tau + Du(t) \right|$$

$$\leq \left| \int_0^t Ce^{A\tau} Bu(t-\tau) d\tau \right| + |D| \cdot |u(t)|$$

$$\leq \int_0^t \left| Ce^{A\tau} B \right| \cdot |u(t-\tau)| d\tau + |D| \cdot |u(t)|$$

$$\leq M \left(\int_0^t \left| Ce^{A\tau} B \right| \cdot d\tau + |D| \right)$$

dove la prima disequazione si ottiene sfruttando la diseguaglianza triangolare

• Ricordiamo ora che il segnale $Ce^{A\,t}B$ evolve secondo i modi corrispondenti ai poli della funzione di trasferimento G(s) (modi non nascosti del sistema)

Dimostrazione: condizione sufficiente

- Tutti i poli di G(s) con parte reale < 0
 - \Rightarrow tutti i modi di $Ce^{A\,t}B$ sono covergenti
 - \Rightarrow il segnale $Ce^{A\,t}B$ converge esponenzialmente a zero
- Di conseguenza

$$\int_0^t \left| Ce^{A\tau} B \right| \cdot d\tau \le \int_0^{+\infty} \left| Ce^{A\tau} B \right| \cdot d\tau = N < +\infty$$

con N costante finita

• Di conseguenza possiamo maggiorare la risposta forzata come

$$|y_f(t)| \le (N + |D|) M \quad \forall t \ge 0$$

La quantità

$$L = N + |D|$$

rappresenta la massima amplificazione possibile dell'ingresso

Dimostrazione: condizione necessaria

- Dimostriamo ora la **condizione necessaria**: stabilità esterna \Rightarrow tutti i poli di G(s) con parte reale < 0
- In particolare, dimostriamo l'implicazione equivalente: se G(s) ha almeno un polo con parte reale ≥ 0 \Rightarrow esistono ingressi limitati che fanno divergere l'uscita
- Distinguiamo 3 casi (non mutuamente esclusivi):
 - CASO 1: G(s) ha almeno un polo con parte reale > 0
 - CASO 2: G(s) ha almeno un polo in 0
 - ullet CASO 3: G(s) ha almeno una coppia di poli puramente immaginari $\pm j\omega_0$
- CASO 1: qualunque ingresso limitato che non cancella il polo con parte reale > 0
 fa divergere l'uscita

Esempio: gradino unitario $u(t)=\mathbf{1}(t)$

$$G(s) = \frac{1}{s-1}$$
 $U(s) = \frac{1}{s}$
$$Y_f(s) = G(s)U(s) = \frac{1}{s(s-1)} \Rightarrow y_f(t) = (e^t - 1)1(t)$$

Dimostrazione: condizione necessaria

• CASO 2: Supponiamo che G(s) abbia un polo in 0 anche di molteplicità unitaria Esempio:

$$G(s) = \frac{1}{s}$$

Se scelgo come ingresso un gradino

$$u(t) = 1(t) \quad \Rightarrow \quad U(s) = \frac{1}{s}$$

- \Rightarrow aumento di molteplicità il polo in 0 di G(s)
- \Rightarrow compare un modo divergente in $Y_f(s)$

Nell'esempio:

$$Y_f(s) = G(s)U(s) = \frac{1}{s^2} \quad \Rightarrow \quad y_f(t) = t \cdot 1(t)$$

Nota: nel caso della stabilità esterna, anche un polo in 0 con molteplicità 1 comporta instabilità, perché posso aumentarne la molteplicità con un ingresso a gradino (**fenomeno della risonanza**)

Dimostrazione: condizione necessaria

• CASO 3: Supponiamo che G(s) abbia una coppia di poli immaginari in $\pm j\omega_0$ anche di molteplicità unitaria Esempio:

$$G(s) = \frac{1}{s^2 + \omega_0^2}$$

Se scelgo come ingresso un seno

$$u(t) = \sin(\omega_0 t) 1(t) \quad \Rightarrow \quad U(s) = \frac{\omega_0}{s^2 + \omega_0^2}$$

- \Rightarrow aumento di molteplicità i poli in $\pm j\omega_0$ di G(s)
- \Rightarrow compaiono modi divergenti in $Y_f(s)$

Nell'esempio:

$$Y_f(s) = G(s)U(s) = \frac{\omega_0}{(s^2 + \omega_0^2)^2} \quad \Rightarrow \quad y_f(t) = \frac{1}{2\omega_0^2}\sin(\omega_0 t)1(t) - \frac{1}{2\omega_0}t\cos(\omega_0 t)1(t)$$

Nota: nel caso della stabilità esterna, anche una coppia di poli $\pm j\omega_0$ con molteplicità 1 comporta instabilità, perché posso aumentarne la molteplicità con un ingresso sinusoidale avente frequenza ω_0 (**fenomeno della risonanza**)

Osservazione sul'instabilità esterna

Nota: Per un sistema esternamente instabile la risposta forzata non diverge sempre (dipende dal particolare ingresso)!

Considerismo ad esempio un sitema con funzione di trasferimento

$$G(s) = \frac{1}{s^2 + 1}$$

- ullet Due poli puramente immaginari in $\pm j \quad \Rightarrow \quad$ sistema esternamente instabile
- Infatti per un ingresso del tipo $u(t) = \sin(t) 1(t)$ si ha **divergenza**

$$Y_f(s) = G(s) \, U(s) = \frac{1}{(s^2+1)^2} \quad \Rightarrow \quad y_f(t) = \frac{1}{2} \sin(t) \, 1(t) - \frac{1}{2} \, t \, \cos(t) \, 1(t)$$

- ⇒ l'ingresso va in risonanza con i modi naturali del sistema aumentandone la molteplicità

$$Y_f(s) = G(s)\,U(s) = \frac{2}{(s^2+1)(s^2+4)} \quad \Rightarrow \quad y_f(t) = \frac{2}{3}\sin(t)\,1(t) - \frac{1}{3}\,\sin(2\,t)\,1(t)$$

Tabella riassuntiva sulla stabilità

STABILITÀ	Quantità di interesse	Condizione
Asintotica	Polinomio caratteristico $\varphi(s)$	$Re(\lambda_i) < 0$ per ogni λ_i tale che $arphi(\lambda_i) = 0$
Marginale	Polinomio minimo $m(s)$	${ m Re}(\lambda_i) \leq 0$ per ogni λ_i tale che $arphi(\lambda_i)=0$ & $m_i=1 \ { m nel \ caso \ in \ cui \ Re}(\lambda_i)=0$
Esterna	Funzione di trasferimento $G(s) = \frac{b(s)}{a(s)}$	$Re(\lambda_i) < 0$ per ogni λ_i tale che $a(\lambda_i) = 0$

Nota: conoscere G(s) **non** è sufficiente per concludere sulla stabilità interna del sistema!

Relazione tra stabilità interna e stabilità esterna

Ricordiamo che

```
\{ \text{ poli del sistema } \} \subseteq \{ \text{ autovalori del sistema } \} \{ \text{ autovalori del sistema } \} - \{ \text{ poli del sistema } \} = \{ \text{ autovalori nascosti } \}
```

 Di conseguenza autovalori con parte reale $<0\quad\Rightarrow\quad$ poli con parte reale <0

Tra stabilità interna ed esterna vale la relazione

STABILITÀ ASINTOTICA \implies STABILITÀ ESTERNA

Nota: L'implicazione inversa in generale **non** vale! Ci possono essere sistemi stabili esternamente (tutti poli con Re < 0) ma non asintoticamente stabili. Questo succede quando ci sono autovalori nascosti con Re ≥ 0 !

Relazione tra stabilità interna e stabilità esterna: esempio

Consideriamo un sistema LTI TC con matrici

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] \quad B = \left[\begin{array}{c} 1 \\ 1 \end{array} \right] \quad C = \left[\begin{array}{cc} 0 & 1 \end{array} \right] \quad D = 0$$

Polinomio caratteristico

$$\varphi(s) = \det \begin{bmatrix} s-1 & 0 \\ 0 & s+1 \end{bmatrix} = (s-1)(s+1)$$

- \Rightarrow autovalori $\lambda_1 = 1$ e $\lambda_1 = -1$
- \Rightarrow modi naturali e^t (divergente) e e^{-t} (convergente)
- ⇒ sistema internamente instabile
- Funzione di trasferimento

$$G(s) = \frac{1}{(s-1)(s+1)} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} s+1 & 0 \\ 0 & s-1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \frac{1}{(s-1)(s+1)} \begin{bmatrix} 0 & s-1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \frac{s-1}{(s-1)(s+1)} = \frac{1}{s+1}$$

- \Rightarrow polo $p_1 = -1 \Rightarrow$ sistema **esternamente stabile**
- autovalore $\lambda_1=1$ nascosto [non compare come polo di G(s)]

2.9 Criteri algebrici per la stabilità

Criteri algebrici per la stabilità

- ullet Stabilità asintotica $\ \Leftrightarrow$ tutte le radici di arphi(s) hanno parte reale < 0
- Stabilità esterna \Leftrightarrow tutte le radici di a(s) hanno parte reale < 0
- $\bullet\,$ Consideriamo un generico polinomio a coefficienti reali di grado n

$$p(s) = a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0$$

- Determinare le radici di p(s) **non** è sempre semplice!
 - **formule analitiche** solo in casi particolari (esempio: n = 2)
 - **algoritmi iterarivi** per determinare le radici in modo approssimato \Rightarrow non sempre accurati soprattutto per n grande e/o radici multiple

 $\mbox{\bf Obiettivo}$ Data un polinomio p(s) determinare se tutte le radici appartengono alla regione di stabilità

$$\mathbb{C}_s = \{ s \in \mathbb{C} \text{ tali che } \operatorname{Re}[s] < 0 \}$$

senza calcolare la radici esplicitamente

 $\bullet\,$ Possiamo studiare il segno delle radici di p(s) senza calcolarle mediante i cosiddetti **criteri algebrici**

Condizione necessaria per la stabilità

Consideriamo un polinomio

$$p(s) = a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0$$

 $con a_n \neq 0$

Fatto 2.13 (condizione necessaria per la stabilità)

Tutte le radici di p(s) hanno parte reale < 0

 \Rightarrow tutti i coefficienti $a_n, a_{n-1}, \ldots, a_1, a_0$ sono non nulli e hanno lo stesso segno.

Per polinomi fino al secondo grado vale il se e solo se (**Regola di Cartesio**):

Tutte le radici di p(s) con $n \le 2$ hanno parte reale < 0

⇔ tutti i coefficienti sono non nulli e hanno lo stesso segno.

Condizione necessaria per la stabilità: dimostrazione

• Date le radici $\lambda_1, \ldots, \lambda_n$ di p(s), possiamo scrivere

$$p(s) = a_n \prod_{i=1}^{n} (s - \lambda_i)$$

ullet Supponiamo, per semplicità, che tutte le radici siano reali e < 0

$$\lambda_i = -r_i \quad \text{con } r_i > 0$$

⇒ Possiamo scrivere

$$p(s) = a_n \prod_{i=1}^{n} (s + r_i)$$

- Tutti gli $r_i > 0$
 - \Rightarrow la produttoria dà luogo a un polinomio con tutti coefficienti >0
 - \Rightarrow tutti i coefficienti di p(s) hanno lo stesso segno (quello di a_n)
- ullet La dimostrazione può essere estesa al caso di radici complesse con Re < 0
- $\bullet\,$ Il criterio di Cartesio può essere facilmente verificato scrivendo le radici del polinomio per n=2

Studio della stabilità con la regola di Cartesio

• Per n=2

$$p(s) = a_2 s^2 + a_1 s + a_0$$

possiamo usare la regola di Cartesio per concludere sulla stabilità

Esempio 1:

$$p(s) = s^2 + s + 1$$

tutti coefficienti con lo stesso segno \Rightarrow tutte radici con Re< 0

• Esempio 2:

$$p(s) = s^2 - s - 1$$

variazione di segno \Rightarrow **non** tutte radici con Re< 0

• Esempio 3:

$$p(s) = s^2 + 1$$

manca un termine \Rightarrow **non** tutte radici con Re< 0

Studio della stabilità con la condizione necessaria

- ullet Per n>2 possiamo usare la condizione necessaria per una prima verifica
 - almeno uno dei coefficienti è nullo ${\bf OR}$ almeno una variazione di segno \Rightarrow non tutte radici con ${\bf Re} < 0$
 - tutti coefficenti non nulli AND con lo stesso segno
 ⇒ non possiamo concludere nulla
- Esempio 1:

$$p(s) = s^3 + s^2 + s + 1$$

tutti coefficienti con lo stesso segno \Rightarrow non possiamo concludere

• Esempio 2:

$$p(s) = s^3 + s^2 - s - 1$$

variazione di segno \Rightarrow **non** tutte radici con Re< 0

• Esempio 3:

$$p(s) = s^3 + s + 1$$

manca un termine \Rightarrow **non** tutte radici con Re< 0

Tabella di Routh

 Condizione necessaria e sufficiente per la stabilità: costruzione della Tabella di Routh del polinomio

$$p(s) = a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0$$

- ullet Tabella di Routh: n+1 righe (numerate in ordine decrescente) in cui
 - prime 2 righe costruite mettendo a zig-zag i coefficienti del polinomio e completando con degli 0
 - righe successive costruite iterativamente a partire dalle prime 2: riga ℓ costruita partendo dalle righe $\ell+1$ e $\ell+2$
 - man mano che si costruisce la tabella il numero di elementi non nulli di ciascuna riga diminuisce

Tabella di Routh – caso n=3

• Consideriamo un polinomio di terzo grado

$$p(s) = a_3 s^3 + a_2 s^2 + a_1 s + a_0$$

Tabella di Routh

con

$$E_{1,1} = -\frac{1}{a_2} \det \left[\begin{array}{cc} a_3 & a_1 \\ a_2 & a_0 \end{array} \right]$$

Nota: la tabella non si pò costruire quando $a_2=0$. In questo caso si dice che la tabella di Routh è **non regolare**

Tabella di Routh – caso generale

- ullet Consideriamo un polinomio di grado n
- Tabella di Routh

dove

$$E_{n-2,1} = -\frac{1}{a_{n-1}} \det \left[\begin{array}{cc} a_n & a_{n-2} \\ a_{n-1} & a_{n-3} \end{array} \right] \qquad E_{n-2,2} = -\frac{1}{a_{n-1}} \det \left[\begin{array}{cc} a_n & a_{n-4} \\ a_{n-1} & a_{n-5} \end{array} \right]$$

e in generale

$$E_{\ell,i} = -\frac{1}{E_{\ell+1,1}} \det \left[\begin{array}{cc} E_{\ell+2,1} & E_{\ell+2,i+1} \\ E_{\ell+1,1} & E_{\ell+1,i+1} \end{array} \right]$$

Nota: la costruzione della tabella non può essere continuata quando per una certa riga ℓ il primo elemento $E_{\ell,1}$ risulta nullo. In questo caso si dice che la tabella è **non regolare**.

Criterio di Routh-Hurwitz

• Consideriamo la tabella di Routh del polinomio p(s)

- variazione di segno nella prima colonna \Rightarrow radice con Re > 0
- ullet permanenza di segno nella prima colonna \Rightarrow radice con Re < 0

Fatto 2.14 (Criterio di Routh-Hurwitz)

Tutte le radici di p(s) hanno parte reale < 0

- \Leftrightarrow la tabella di Routh è regolare (tutti gli elementi della prima colonna \neq 0) **AND** tutti gli elementi della prima colonna hanno lo stesso segno
 - ullet Criterio di Routh-Hurwitz: generalizza regola di Cartesio a n generico

Esempio: studio della stabilità con il criterio di Routh-Hurwitz

Consideriamo un sistema LTI TC con funzione di trasferimento

$$G(s) = \frac{1}{s^3 + 3s^2 + s + 2}$$

- • Sistema esternamente stabile \Leftrightarrow tutte le radici di $a(s)=s^3+3\,s^2+s+2$ hanno parte reale <0
- Condizione necessaria non mi consente di concludere
 ⇒ per studiare il segno delle radici utilizzo Routh-Hurwitz
- Tabella di Routh di a(s)

con

$$E_{1,1} = -\frac{1}{a_2} \det \begin{bmatrix} a_3 & a_1 \\ a_2 & a_0 \end{bmatrix} = -\frac{1}{3} \det \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} = \frac{1}{3}$$

Tutti elementi della prima colonna >0 ⇒ tutte radici con Re < 0
 ⇒ sistema stabile esternamente

Esercizi proposti

Studiare la stabilità esterna dei sistemi LTI TC aventi le seguenti funzioni di trasferimento

$$G(s) = \frac{s-1}{s^3 + 3s^2 + 2s + 4}$$

$$G(s) = \frac{s}{s^3 + 2s^2 + s}$$

$$G(s) = \frac{s+3}{s^4+1}$$

$$\label{eq:G} \mathbf{G}(s) = \frac{s+3}{s^3+s^2+s+\alpha} \ \mathrm{con} \ \alpha \ \mathrm{parametro} \ \mathrm{reale}$$

2.10 Analisi dei sistemi LTI in rappresentazione ingresso/uscita

Analisi dei sistemi LTI in rappresentazione ingresso/uscita

• Consideriamo un sistema LTI TC in rappresentazione ingresso/uscita

$$y^{(n)}(t) = \alpha_{n-1} y^{(n-1)}(t) + \dots + \alpha_1 \dot{y}(t) + \alpha_0 y(t) + \beta_n u^{(n)}(t) + \dots + \beta_1 \dot{u}(t) + \beta_0 u(t)$$

$$\text{dove } y^{(i)}(t) = \frac{d^i y(t)}{dt^i}$$

Obiettivo: scrivere la forma della soluzione e studiare le proprietà di stabilità interna ed esterna di un sistema in rappresentazione ingresso-uscita

- Lo studio può essere effettuato
 - direttamente sulla rappresentazione ingresso-uscita
 - scrivendo le equazioni di stato e procedendo come già visto

Trasformata di Laplace e derivazione nel tempo

• Ricordiamo che vale la proprietà

$$\mathcal{L}\{\dot{y}(t)\} = sY(s) - y(0)$$

Applicando tale proprietà più volte

$$\mathcal{L}\{\ddot{y}(t)\} = \mathcal{L}\left\{\frac{d}{dt}\dot{y}(t)\right\} = s\,\mathcal{L}\{\dot{y}(t)\} - \dot{y}(0) = s^2\,Y(s) - s\,y(0) - \dot{y}(0)$$

$$\vdots$$

$$\mathcal{L}\{y^{(i)}(t)\} = s^i\,Y(s) - s^{i-1}\,y(0) - \dots - s\,y^{(i-2)}(0) - y^{(i-1)}(0)$$

 Possiamo utilizzare questa proprietà per trovare la soluzione Esempio:

$$\dot{y}(t) = u(t) \quad \Rightarrow \quad sY(s) - y(0) = U(s)$$

Risolvendo rispetto a Y(s)

$$Y(s) = \frac{y(0)}{s} + \frac{1}{s}U(s) \quad \Rightarrow \quad y(t) = \underbrace{y(0)\,1(t)}_{y_{\ell}(t)} + \underbrace{\int_{0}^{t}u(\tau)d\tau}_{y_{f}(t)}$$

Funzione di trasferimento

• Per calcolare la risposta forzata $Y_f(s)$ possiamo porre a 0 le condizioni iniziali \Rightarrow possiamo scrivere

$$\mathcal{L}\{y_f^{(i)}(t)\} = s^i Y_f(s)$$
 $\mathcal{L}\{u^{(i)}(t)\} = s^i U(s)$

Data la relazione ingresso-uscita

$$y^{(n)}(t) = \alpha_{n-1} y^{(n-1)}(t) + \dots + \alpha_1 \dot{y}(t) + \alpha_0 y(t) + \beta_n u^{(n)}(t) + \dots + \beta_1 \dot{u}(t) + \beta_0 u(t)$$

 \Rightarrow nel dominio di Laplace per la risposta forzata $Y_f(s)$ vale

$$s^{n} Y_{f}(s) = \alpha_{n-1} s^{n-1} Y_{f}(s) + \ldots + \alpha_{1} s Y_{f}(s) + \alpha_{0} Y_{f}(s) + \beta_{n} s^{n} U(s) + \ldots + \beta_{1} s U(s) + \beta_{0} U(s)$$

• Risolvendo tale equazione rispetto a $Y_f(s)$ si ottiene

$$Y_f(s) = \underbrace{\frac{\beta_n \, s^n + \beta_{n-1} \, s^{n-1} + \dots + \beta_1 \, s + \beta_0}{s^n - \alpha_{n-1} \, s^{n-1} - \dots - \alpha_1 \, s - \alpha_0}}_{G(s)} U(s)$$

Funzione di trasferimento

• Per un sistema in rappresentazione ingresso-uscita

$$y^{(n)}(t) = \alpha_{n-1} y^{(n-1)}(t) + \ldots + \alpha_1 \dot{y}(t) + \alpha_0 y(t) + \beta_n u^{(n)}(t) + \ldots + \beta_1 \dot{u}(t) + \beta_0 u(t)$$

funzione di trasferimento

$$G(s) = \frac{\beta_n s^n + \beta_{n-1} s^{n-1} + \dots + \beta_1 s + \beta_0}{s^n - \alpha_{n-1} s^{n-1} - \dots - \alpha_1 s - \alpha_0}$$

Nota: come sempre dobbiamo fare le semplificazioni tra numeratore e denominatore!

Funzione di trasferimento

$$G(s) = \frac{b(s)}{a(s)}$$

con i b(s) e a(s) ottenuti semplificando fattori comuni tra $\beta_n \, s^n + \beta_{n-1} \, s^{n-1} + \ldots + \beta_0 \quad \text{e} \quad s^n - \alpha_{n-1} \, s^{n-1} - \ldots - \alpha_0$

• Data G(s) possiamo studiare la stabilità esterna

Rappresentazione ingresso/uscita e equazioni di stato

• Consideriamo un sistema LTI TC in rappresentazione ingresso/uscita

$$y^{(n)}(t) = \alpha_{n-1} y^{(n-1)}(t) + \dots + \alpha_1 \dot{y}(t) + \alpha_0 y(t) + \beta_n u^{(n)}(t) + \dots + \beta_1 \dot{u}(t) + \beta_0 u(t)$$

• Se l'ingresso non compare derivato

$$\beta_n = 0, \ldots, \beta_1 = 0$$

⇒ possiamo scrivere le equazioni di stato scegliendo come stato

$$x(t) = \begin{bmatrix} y(t) \\ \dot{y}(t) \\ \vdots \\ y^{(n-1)}(t) \end{bmatrix}$$

Per sistemi LTI, esiste un metodo sistematico (**forma canonica di osservazione**) per passare da rappresentazione ingresso-uscita a equazioni di stato anche quando l'ingresso compare derivato.

Forma canonica di osservazione

• Consideriamo un sistema LTI TC in rappresentazione ingresso/uscita

$$y^{(n)}(t) = \alpha_{n-1} y^{(n-1)}(t) + \dots + \alpha_1 \dot{y}(t) + \alpha_0 y(t) + \beta_n u^{(n)}(t) + \dots + \beta_1 \dot{u}(t) + \beta_0 u(t)$$

• Equazioni di stato in forma canonica di osservazione

$$\begin{array}{rcl}
\dot{x} & = & Ax + Bu \\
y & = & Cx + Du
\end{array}$$

con

$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 & \alpha_0 \\ 1 & 0 & \cdots & 0 & \alpha_1 \\ 0 & 1 & \cdots & 0 & \alpha_2 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & \alpha_{n-1} \end{bmatrix} B = \begin{bmatrix} \beta_0 + \beta_n \alpha_0 \\ \beta_1 + \beta_n \alpha_1 \\ \beta_2 + \beta_n \alpha_2 \\ \vdots \\ \beta_{n-1} + \beta_n \alpha_{n-1} \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} D = \beta_n$$

Forma canonica di osservazione: cenno di dimostrazione

La forma canonica di osservazione si ottiene scegliendo come stato

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{bmatrix} = \begin{bmatrix} y^{(n-1)} - \alpha_{n-1} y^{(n-2)} - \dots - \alpha_1 y - \beta_n u^{(n-1)} - \dots - \beta_1 u \\ \vdots \\ \dot{y} - \alpha_{n-1} y - \beta_n \dot{u} - \beta_{n-1} u \\ y - \beta_n u \end{bmatrix}$$

- La corrispondenza tra relazione ingresso/uscita e forma canonica di osservazione può essere verificata derivando ciascuna componente dello stato
- Ad esempio per x_n vale

$$\dot{x}_{n} = \dot{y} - \beta_{n} \dot{u} = x_{n-1} + \alpha_{n-1} y + \beta_{n-1} u
= x_{n-1} + \alpha_{n-1} y + \beta_{n-1} u - \alpha_{n-1} \beta_{n} u + \alpha_{n-1} \beta_{n} u
= x_{n-1} + \alpha_{n-1} (y - \beta_{n} u) + (\beta_{n-1} + \alpha_{n-1} \beta_{n}) u
= x_{n-1} + \alpha_{n-1} x_{n} + (\beta_{n-1} + \alpha_{n-1} \beta_{n}) u$$

Esempio: forma canonica di osservazione

Consideriamo un sistema LTI TC descritto dalla relazione ingresso/uscita

$$\ddot{y}(t) = -2\,\dot{y}(t) + 3\dot{u}(t)$$

• Sistema di ordine n=2

$$\ddot{y}(t) = \alpha_1 \, \dot{y}(t) + \alpha_0 \, y(t) + \beta_2 \, \ddot{u}(t) + \beta_1 \, \dot{u}(t) + \beta_0 \, u(t)$$

con

$$\alpha_1 = -2$$
, $\alpha_0 = 0$, $\beta_2 = 0$, $\beta_1 = 3$, $\beta_0 = 0$

Forma canonica di osservazione

$$A = \begin{bmatrix} 0 & \alpha_0 \\ 1 & \alpha_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & -2 \end{bmatrix} B = \begin{bmatrix} \beta_0 + \beta_2 \alpha_0 \\ \beta_1 + \beta_2 \alpha_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 1 \end{bmatrix} D = \beta_2 = 0$$

Analisi dei sistemi LTI in rappresentazione ingresso/uscita

• Consideriamo un sistema LTI TC in rappresentazione ingresso/uscita

$$y^{(n)}(t) = \alpha_{n-1} y^{(n-1)}(t) + \ldots + \alpha_1 \dot{y}(t) + \alpha_0 y(t) + \beta_n u^{(n)}(t) + \ldots + \beta_1 \dot{u}(t) + \beta_0 u(t)$$

Fatto 2.15 Per un sistema LTI TC in rappresentazione ingresso/uscita vale

$$\varphi(s) = s^{n} - \alpha_{n-1} s^{n-1} - \dots - \alpha_{1} s - \alpha_{0}
m(s) = \varphi(s)
G(s) = \frac{\beta_{n} s^{n} + \beta_{n-1} s^{n-1} + \dots + \beta_{1} s + \beta_{0}}{s^{n} - \alpha_{n-1} s^{n-1} - \dots - \alpha_{1} s - \alpha_{0}}$$

• Data la rappresentazione ingresso/uscita possiamo direttamente studiare stabilità interna ed esterna senza scrivere le equazioni di stato

Esempio: analisi di un sistema LTI in rappresentazione i/u

• Consideriamo un sistema LTI TC descritto dalla relazione ingresso/uscita

$$\ddot{y}(t) = -2\,\dot{y}(t) + 3\dot{u}(t)$$

- Per tale sistema n = 2, $\alpha_1 = -2$, $\alpha_0 = 0$, $\beta_2 = 0$, $\beta_1 = 3$ e $\beta_0 = 0$.
- Polinomio minimo e caratteristico

$$m(s) = \varphi(s) = s^2 - \alpha_1 s - \alpha_0 = s^2 + 2 s = s (s+2)$$

tutti autovalori con Re ≤ 0 e quello con Re = 0 ha molteplicità $1 \Rightarrow$ sistema marginalmente stabile

Funzione di trasferimento

$$G(s) = \frac{\beta_2 s^2 + \beta_1 s + \beta_0}{s^2 - \alpha_1 s - \alpha_0} = \frac{3 s}{s (s+2)} = \frac{3}{s+2}$$

un unico polo con parte reale $< 0 \implies$ sistema esternamente stabile