EKSAMENINLIGTINGSBLAD VIR DIE FISIESE WETENSKAPPE (FISIKA)

TABEL 1 FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Versnelling as gevolg van gravitasie	g	9,8 m⋅s ⁻²
Spoed van lig in 'n vakuum	С	$3.0 \times 10^8 \mathrm{m \cdot s^{-1}}$
Universele gravitasiekonstante	G	$6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
Coulomb se konstante	k	$9.0 \times 10^9 \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Grootte van lading op 'n elektron	е	$1,6 \times 10^{-19} \mathrm{C}$
Massa van 'n elektron	m _e	$9,1 \times 10^{-31} \text{kg}$
Planck se konstante	h	$6.6 \times 10^{-34} \text{ J.s}$
1 elektron volt	eV	$1,6 \times 10^{-19} \mathrm{J}$

TABEL 2 FISIKA FORMULES

BEWEGING

$v = u + at$ of $V_f = V_i + a\Delta t$	$s = \left(\frac{v+u}{2}\right)t \text{ of } \Delta x = \left(\frac{v_f + v_i}{2}\right)\Delta t$
$v^2 = u^2 + 2as$ of $v_f^2 = v_i^2 + 2a\Delta x$	$s = ut + \frac{1}{2}at^2 \text{ of } \Delta x = v_i \Delta t + \frac{1}{2}a(\Delta t)^2$

KRAG EN MOMENTUM

$F_{net} = ma$	$F_{net} = rac{\Delta p}{\Delta t}$ of $F_{net} \Delta t = m \Delta v$	$J = \Delta p = mv - mu$ of $J = \Delta p = mv_f - mv_i$	
p = mv	$F_g = mg$	$m{\mathcal{F}_{fs}^{maks}} = \mu m{\mathcal{F}_{N}}$ $m{\mathcal{F}_{fk}} = m{\mu_k} m{\mathcal{F}_{N}}$	

WERK, ENERGIE EN DRYWING

$W = Fs$ of W of $W = F\Delta x$			$P = \frac{W}{t}$	P = Fv
$E_p = mgh$	$E_k = \frac{1}{2}$	mv²	$W_{net} = \Delta E_{K}$	$effektiwiteit = \frac{drywing_{uit}}{drywing_{in}} \times 100$

IEB Copyright © 2019 BLAAI ASSEBLIEF OM

GRAVITASIE- EN ELEKTRIESE VELDE

$F = G \frac{m_1 m_2}{r^2}$	$g = \frac{F}{m}$	$g = G\frac{M}{r^2}$
$F = k \frac{q_1 q_2}{r^2}$	$E = \frac{F}{q}$	$E = \frac{kQ}{r^2}$

ELEKTRONIESE STROOMBANE

$I = \frac{q}{t}$	$V = \frac{W}{q}$		
$R = \frac{V}{I}$	$emk = I(R_{eks} + r)$ of $emk = V_{lading} + V_{interne weerstand}$		
$R_{S} = R_{1} + R_{2} + \dots$	$\frac{1}{R_{\rho}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots$		
$P = \frac{W}{t}$ of			
W = VIt of $W =$	I^2Rt of $W = \frac{V^2}{R}t$		
P = VI of $P =$	I^2R of $P = \frac{V^2}{R}$		

ELEKTRODINAMIKA

$\Phi = BA\cos\theta$	$emk = -\frac{N\Delta\Phi}{\Deltat}$	$F = IB\ell \sin \theta$	
$V_{p}I_{p}=V_{s}I_{s}$		$\frac{N_s}{N_p} = \frac{V_s}{V_p}$	

FOTONE EN ELEKTRONE

$c = f \lambda$	E=t	of $E = \frac{hc}{\lambda}$	
$E = W_0 + E_{K(maks)}$	$W_0 = hf_0$	$E_{K(maks)} = \frac{1}{2} m v_{maks}^2$	