Yulai Zhao

Homepage LinkedIn GitHub ORCID Google Scholar

yulaiz@princeton.edu

Research Interests

Machine Learning, Reinforcement Learning, Non-convex Optimization

EDUCATION

Princeton University

2022 - Present

- Ph.D in Machine Learning, Department of Electrical and Computer Engineering
- Advisors: Jason D. Lee, S. Y. Kung

Tsinghua University

2018 - 2022

- B.Eng. in Electronic Information Science and Technology, Department of Electronic Engineering
- Advisors: Simon S. Du, Hongwei Chen

RESEARCH EXPERIENCES

Princeton University, Department of Electrical and Computer Engineering

2022 - Present

- Graduate Researcher
- Focused on the theory of multi-agent reinforcement learning.
- Presented the first provable multi-agent PPO algorithm with convergence rates.
- Completed a first-author paper accepted by ICML 2023.

ETH Zürich, Institute for Machine Learning

Summer 2021

- Visiting Student
- Studied performative prediction, a model in which predictions influenced future data distribution.
- Different from most works studying stable points, directly focused on global optima.
- Showed weak convexity of the performative risks under mild assumptions
- Completed a first-author paper accepted by OPT 2022 (NeurIPS 2022 Workshop).

University of Washington, School of Computer Science & Engineering

2021 - 2022

- Research Assistant (remote)
- Presented a new statistical theory aiming to explain the superior achievements of NLP pre-training.
- Proved that pre-training could significantly improve sample efficiency of downstream tasks.
- Completed a first-author paper accepted as an oral presentation at AISTATS 2023.

University of Washington, School of Computer Science & Engineering

2020 - 2021

- Research Assistant (remote)
- Studied reinforcement learning theory in two-player zero-sum games.
- Investigated policy gradient methods and applied them to both players.
- Provided convergence rates to the Nash equilibrium for the algorithm.
- Completed a first-author paper accepted by AISTATS 2022.

PUBLICATIONS

- * denotes equal contribution or alphabetical ordering.
- 1. Yulai Zhao, Zhuoran Yang, Zhaoran Wang, Jason D. Lee

Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning In International Conference on Machine Learning (ICML) 2023 2. Yulai Zhao, Jianshu Chen, Simon S. Du

Blessing of Class Diversity in Pre-training

In International Conference on Artificial Intelligence and Statistics (AISTATS) 2023 (Oral presentation & notable paper, 2% acceptance rate)

3. Yulai Zhao

Optimizing the Performative Risk under Weak Convexity Assumptions

In NeurIPS 2022 Workshop on Optimization for Machine Learning

4. Yulai Zhao, Yuandong Tian, Jason D. Lee, Simon S. Du

Provably Efficient Policy Gradient Methods for Two-Player Zero-Sum Markov Games

In International Conference on Artificial Intelligence and Statistics (AISTATS) 2022

AWARDS/HONORS

	${\bf International\ Conference\ on\ Artificial\ Intelligence\ and\ Statistics\ (AISTATS)\ Notable\ Paper}$	2023
	Scholarship of Academic Excellence Awarded to Tsinghua students ranking top 5 %.	2020
	Scholarship of Academic Excellence Awarded to Tsinghua students ranking top 5 %.	2019
	Toyota Scholarship Awarded to the department's top 3 out of 260+ students.	2019
	Top 10 in the <i>Infinity of Math</i> Competition Awarded to students outperforming 150+ participants in the school-wide calculus contest.	2018
R	OGRAMMING AND COMPUTING SKILLS	

C/C++, Python (NumPy, PyTorch, pandas), MATLAB, Kdb+