Linear Algebra, EE 10810/EECS 205004

1st Exam (Dated: Fall, 2021)

Total scores: 120%

-6

- 1. $(\pm 30\%)$ [True or False] Note that: a Correct answer gaining $\pm 3\%$; but a Wrong answer loosing $\pm 3\%$ (答錯倒扣).
 - (1) : In any vector space, $a\vec{x} = b\vec{x}$ implies that a = b. Fig. 14.
 - (2) The zero vector space has no basis.
 - (3) Any set containing the zero vector is linearly dependent.
 - (4) If \hat{T} is linear, then $\hat{T}(\vec{0}_V) = \vec{0}_W$.
 - (5) $\overline{\overline{A}}^2 = \overline{\overline{I}}$ implies that $\overline{\overline{A}} = \overline{\overline{I}}$ or $\overline{\overline{A}} = -\overline{\overline{I}}$.
- (10°) (10°) = (0 1
- (6) If $\overline{\overline{A}}$ is invertible, then $(\overline{\overline{A}}^{-1})^{-1} = \overline{\overline{A}}$. \top
- (7) Every change of coordinate matrix is invertible.
- (8) A linear functional defined on a field may be represented as a 1×1 matrix.
- (9) The transpose of an elementary matrix is an elementary matrix.
- (10) If $\overline{\overline{AB}} = \overline{\overline{0}}$, then either $\overline{\overline{A}} = \overline{\overline{0}}$ or $\overline{\overline{B}} = \overline{\overline{0}}$, where $\overline{\overline{0}}$ is the zero matrix.
- 2. (10%) [Linearly dependent]

Let \mathcal{V} be a vector space, and let $\mathcal{S}_1 \subseteq \mathcal{S}_2 \subseteq \mathcal{V}$. If \mathcal{S}_1 is linear dependent. Prove that \mathcal{S}_2 is linearly dependent.

3.~(10%) [Matrix representation]

Let $\hat{\mathcal{T}}: \mathcal{R}^2 \to \mathcal{R}^3$ be defined by

$$-\frac{9}{3} + \frac{4}{3} = -\frac{3}{3} = -\frac{1}{3} + \frac{4}{3}$$

$$\hat{T}(a_1, a_2) = (a_1 - a_2, a_1, 2a_1 + a_2). \tag{1}$$

Let $\alpha = \{(1,2),(2,3)\}$ be the basis for \mathbb{R}^2 and $\gamma = \{(1,1,0),(0,1,1),(2,2,3)\}$. Compute $\left[\hat{\mathcal{T}}\right]_{\alpha}^{\gamma}$.

4. (15%) [Basis and Dimension]

Let S be the set of all positive real numbers. Now, we want to make S as a vector space in V by asking the following definitions for vectors, vector addition and scalar multiplication:

- ullet Each element of S will be considered as a "vector" in $\mathcal V$.
- For $A, B \in S$, a "vector sum" is defined as

$$A + B \equiv A B, \tag{2}$$

where the product on the right is the usual product of two real numbers.

• For $c \in \mathcal{R}(\text{real})$, and $A \in S$, a "scalar multiplication" is defined as

$$c \cdot A \equiv A^c$$
, (3)

that is the real number A raised to the c power.

Now the questions are

- (a) (5%) What is the zero vector in \mathcal{V} ?
- (b) (5%) Give an example of a set of basis vectors for $\mathcal V$
- (c) (5%) What is the dimension of \mathcal{V} ?

5. (15%) [System of Linear Equations]

Find the solution(s) of the following system of linear equations

6. (20%) [Linear Transformation]

Let V be the subspace of 2 × 2 real matrices defined by Find the solution(s) of the following system of linear equations

$$V = \left\{ \overline{\overline{A}} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \text{ where } a - 2b - 3c - 4d = 0 \right\}$$
 (5)

and let Find the solution(s) of the following system of linear equations

$$W = \left\{ f(x) = l e^x + m e^{2x} + n e^{3x}, \text{ where } l, m, n \in \mathbb{R} \text{ and } 0 \le x \le 1 \right\}.$$
 (6)

Also, define a linear transformation $\hat{T}: V \to W$ by Find the solution(s) of the following system of linear equations

$$\hat{T}\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a - 2b)e^{x} + (a - 3c)e^{2x} + (a - 4d)e^{3x}. \tag{7}$$

$$\hat{T}.$$

$$\text{Rest} \hat{T}.$$

- (a) (5%) Find the range of \hat{T} .

7. (20%) [Parabola transformation with a Rotation]

As shown in FIG. 1(a), let \hat{T}_0 be the transformation sending every horizontal line y=c into the parabola $y=x^2+c$

- (a) (5%) Find \hat{T}_0 , i.e., $\begin{pmatrix} x' \\ y' \end{pmatrix} = \hat{T}_0 \begin{pmatrix} x \\ y \end{pmatrix}$. Try to have the matrix representation of $\left[\hat{T}_0\right]_{\beta}^{\beta'}$ in the standard ordered basis. If not, explain why.
- (b) (5%) Now, if we rotation the x-y coordinate by an angle Θ , find the corresponding matrix for the change of coordinate.
- (c) (10%) Let \hat{T}_1 be the parabola transformation about the new coordinate, i.e., about the line in Red-color shown in FIG. 1(b). Find the corresponding transformation \hat{T}_1 , i.e., $\begin{pmatrix} x' \\ y' \end{pmatrix} = \hat{T}_1 \begin{pmatrix} x \\ y \end{pmatrix}$

FIG. 1: Problem 7.