Admissible Heuristics for Multi-Objective Planning

Sylvie Thiébaux Patrik Haslum Felipe Trevizan Florian Geißer

Australian National University

Multi-Objective (MO) Planning

- Multi-objective planning/optimisation problems have k > 1 metrics.
- No a priori specified trade-off
- Plan cost is a vector of k values.
- There may not be a single optimal cost, but a set of incomparable non-dominated cost vectors.
- We will call this a Pareto (cover) set.
- \vec{v} dominates \vec{w} ($\vec{v} \prec \vec{w}$) if \vec{v} is at least as good as \vec{w} on every metric, and strictly better on at least one.

MO Heuristic Search

- There exist MO heuristic search algorithms that compute a Pareto cover set. • e.g., NAMOA* and its refinements.
- An MO heuristic value of a state is a set of cost vectors (like the Pareto set).
- Such a heuristic is admissible iff, for every state, every non-dominated cost vector of a plan from there is dominated by or equal to some cost vector in the heuristic set.
- $H^* = \{(2, 16), (6, 12)\}$
- $H = \{(1, 16), (2, 14), (4, 13), (5, 10)\}$
- $H = \{(3,5), (6,2)\}$ (not admissible).
- $H = \{(2, 12)\}$

Ideal Point Heuristic

- The ideal point heuristic is obtained by applying a classical (single-objective) heuristic for each metric in isolation, and combining their values into a single vector.
- General scheme, but weak fails to account for any necessary trade-off between objectives.

$$H_{\text{ideal}}^{h^*} = \{(0,0)\}$$

 $H_{MO}^{\text{max}} = \{(2,0), (0,2)\}$

Contribution

We derive informative MO heuristics from the same principles as classical planning heuristics

- Canonical abstraction heuristics
- Critical path heuristics
- (I)LP-based operator counting heuristics

We present methods of combining single-objective heuristics into MO heuristics that are more informed than the ideal point

MO Maximum – Candidate Definitions

 $comax(A, B) = \{ (max(\vec{a}^1, \vec{b}^1), \dots, max(\vec{a}^k, \vec{b}^k)) \mid \vec{a} \in A, \vec{b} \in B \}$

 $\operatorname{admax}(A, B) = \{ \vec{a} \in \operatorname{ND}(A) \mid \forall \vec{b} \in \operatorname{ND}(B) : \vec{a} \not\prec \vec{b} \}$

MO Maximum - Candidate Definitions

 $\cup \{\vec{b} \in ND(B) \mid \forall \vec{a} \in ND(A) : \vec{b} \not\prec \vec{a}\}\$

Not yet quite as general as we would like

No unique maximum of sets of cost vectors.

Component-wise maximum

Anti-dominance maximum

Both have some natural properties:

Both preserve heuristic admissibility.

• if $A \prec B$, then comax(A, B) = admax(A, B) = B.

• comax preserves consistency, admax does not.

associative and commutative;

Not yet practical

MO Abstraction Heuristics

- Compute a Pareto cover set for each abstract state.
- Selecting (PDB) abstractions: Simple methods (e.g., enumeration) can be applied as-are.
- Canonical heuristic combining abstractions by using MO maximum and (admissible) sum.

MO Cost Partitioning

• $\vec{c}_1, \ldots, \vec{c}_n$ such that $\vec{c}_1(a) + \cdots + \vec{c}_n(a) \leq \vec{c}(a)$ (vector sum) for each action a.

 $H_{\mathrm{iter}}^{h^+}$

Sum of cost vector sets is component-wise:

 $H_{
m ideal}^{h^+}$

$$A + \dots + Z = \{ (\vec{a}^1 + \dots + \vec{z}^1, \dots, \vec{a}^k + \dots + \vec{z}^k) \mid \vec{a} \in A, \vec{b} \in B \}$$

- Sum of cost partitioned heuristics is admissible.
- Evaluated only with 0/1 partitionings for disjoint abstractions.
- How to adapt more advanced cost partitionings is an open question.

(4 pushes, 16 moves total)

H_{max} Hwax H_{max} H_{max} 10 1 $H_{ m mo,comax}^{ m max}$

• comax has worst-case quadratic size ($|comax(A, B)| \le |A| \times |B|$).

• admax has worst-case linear size ($|admax(A, B)| \le |A| + |B|$).

- Expansions Runtime in seconds Expansions $H_{\mathrm{ideal}}^{h^+}$ $H_{
 m ideal}^{h^{
 m seq}}$ $H_{\mathrm{ideal}}^{h^{\mathsf{seq}}}$
 - EXPLODING BW BLOCKS WORLD Driverlog-2 Triangle-Tireworld SOKOBAN-EASY Driverlog-4 VISITALL Driverlog-k SOKOBAN-MEDIUM Critical Dath Abstractions Operator Counting

	Critical Path						ADS	tracti	ons		Operator Counting							
	blind	$H_{\mathrm{ideal}}^{h^{\mathrm{max}}}$	$h_{\mathrm{ideal}}^{\mathrm{max}} = H_{\mathrm{MO}}^{\mathrm{max}}$		H^2_{mo}	$H_{\mathrm{ideal}}^{h_2^C}$	H_2^C		$H_{\mathrm{ideal}}^{h_3^C}$	H_3^C	$H_{ideal}^{h^+}$	$H_{\mathrm{iter}}^{h^+}$	$H_{\mathrm{ideal}}^{h^{\mathrm{seq}}}$	$H_{\mathrm{iter}}^{h^{\mathrm{seq}}}$	$H_{ideal}^{h_{lp}^+}$	$H_{\mathrm{iter}}^{h_{\mathrm{lp}}^{+}}$	$H_{\mathrm{ideal}}^{h_{\mathrm{rel}}^+}$	$H_{\mathrm{ideal}}^{h_{\mathrm{lp}}^{\mathrm{seq}}}$
momax operator			adm.	com.	com.		adm.	com.		com.								
Driverlog-2 (52)	22	44	26	42	6	22	40	40	22	49	1	1	10	_	1	1	8	37
Driverlog-4 (68)	18	46	12	37	2	18	29	31	18	43	_	_	4	_	1	1	1	17
Driverlog-k (111)	22	46	14	39	1	22	43	43	22	66	_	_	37	2	10	1	25	43
Sokoban-E (26)	25	26	26	26	_	26	26	26	26	25	_	_	2	_	_	_	_	10
Sokoban-M (28)	_	18	11	13	_	12	18	18	9	10	_	_	_	_	_	_	_	2
Exploding BW (107)	13	46	33	46	24	26	79	79	26	70	39	34	14	_	38	12	31	25
Blocks World (20)	6	10	5	5	_	6	14	20	6	18	10	3	19	13	6	1	14	20
T-Tireworld (11)	1	2	2	2	1	1	11	11	1	11	_	_	1	_	_	_	_	1
VisitAII (13)	3	4	9	6	6	3	7	7	3	6	_	_	_	_	_	_	_	3
Sum (436)	110	242	138	216	40	136	267	275	133	298	50	38	87	15	56	16	79	158

• We are hiring: https://tinyurl.com/planning-at-anu

