「計算モデルの数理」試験(2005年度夏学期)

2005年8月1日8時30分~10時00分

工学部6号館61号室

問題1 [ラムダ計算] Church 数 c_0, c_1, c_2, \ldots を次のように定義する.

$$c_n \equiv \lambda f x. f^n x$$

ここで、 $f^n x$ が $\underbrace{f(f\cdots(fx))}_n$ を表す。 $E \equiv \lambda x y. yx$ とする。

すべての自然数n, mについて、以下が成り立つことを証明せよ。

- (1) $(c_n x)^m y =_{\beta} x^{n \times m} y$
- (2) $(c_n)^m x =_{\beta} c_{(n^m)} x \quad (m > 0)$
- (3) $E c_n c_m =_{\beta} c_{(n^m)} \quad (m > 0)$

問題**2** [Scott 理論] 整数の全体からなる平坦な完備半順序集合 (CPO, complete partial order) を Z とする。 $Z \times Z$ 上の関数の定義

$$f(x,y) = \text{if } x = y \text{ then } y + 1 \text{ else } f(x, f(x-1, y+1))$$

に対する汎関数

$$F(f)(x,y) =$$
if $x = y$ **then** $y + 1$ **else** $f(x, f(x - 1, y + 1))$

に関して、以下の問いに答えよ。ただし、 $Z\times Z$ 上の算術演算+,-, および $Z\times Z$ から平坦 $CPO\{True,False,\bot\}$ への述語=, \geq は、いずれも、どの引数についても正格 (strict) であるものとする。すなわち、これらの 2 項演算子 \oplus は、任意の $z\in Z$ に対して、

$$z \oplus \bot = \bot \oplus z = \bot$$

である. また, 条件式については,

if
$$\perp$$
 then p else $q = \perp$

if
$$True$$
 then p else $q = p$

if False then p else q = q

である.

- (1) h(x,y) = x + 1 は、上の汎関数 F の不動点であるかどうかをその理由とともに答えよ.
- (2) 上の汎関数 F の一つの不動点として,

$$g(x,y) = \mathbf{if} \ x \ge y \ \mathbf{then} \ x + 1 \ \mathbf{else} \ y - 1$$

が存在することを示せ.

- (3) $f_0(x,y) = \bot$ とし、 $f_{i+1} = F(f_i)$ による関数列の極限を求めることにより、上の汎関数 F の最小不動点を示せ、
- **問題3** [Hoare **論理**] 関数 fb(n) が次のように定義される.

$$fib(0)$$
 = 0
 $fib(1)$ = 1
 $fib(n+2)$ = $fib(n+1) + fib(n)$

以下のプログラムの部分的正当性を証明せよ.

$$\{N \ge 1\}$$

 $x := 0;$
 $y := 1;$
 $n := 1;$
While $n < N$ **Do**
 $t := x;$
 $x := y;$
 $y := t + y;$
 $n := n + 1$
End
 $\{y = fib(N)\}$

問題4 [**言語理論**] アルファベット $\{a, +, \times\}$ 上に、次の生成規則によって定義される言語について、以下の問いに答えよ。ただし、S が文法の開始記号である。

- (1) 上の文法は正規文法 (regular grammar), 文脈自由文法 (context-free grammar), 文脈依存文法 (context-sensitive grammar) のいずれであるか, 理由とともに答えよ.
- (2) 上の文法によって定義される言語が正規言語 (regular language) であることを示せ.
- (3) 上の文法によって定義される言語を定義する正規表現 (regular expression) を示せ.

説明:

- 教科書, ノートを持ち込み可.
- 講義のアンケートを取る.
- 各間に一枚の解答用紙を使う. (合計4枚の解答用紙を配る)