NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	$_{ m mpito}$					C)				
	Eserci	izio	1	2	3	4	5	6	7	8]
	Rispos	sta									

Esercizio 1. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- D) non ha poli
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$$

B)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

C)
$$\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

A)
$$\frac{3z^2-z^3}{(z-1)^3}$$

B) non esiste

C)
$$\frac{z}{(z-1)}$$

$$\mathbf{D)} \ \sum_{i=1}^n z^i$$

E)
$$\frac{z^2+z}{(z-1)^3}$$

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

A) per valori di t diversi da quelli specificati nelle altre risposte

- **B)** per t = 1
- **C**) per t = -1
- **D)** per t = 0

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 7. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

- A) nessuna delle altre risposte è corretta
- B) $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- C) $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **D**) 4
- **E**) 8

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					1					
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **B**) 4
- C) nessuna delle altre risposte è corretta
- **D)** $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **E**) 8

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{z^2+z}{(z-1)^3}$
- B) non esiste
- C) $\sum_{i=1}^n z^i$

- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 4. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) Nessuna delle altre risposte.

Esercizio 5. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- B) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$
- D) non ha poli
- E) ha uno zero nell'origine e un polo reale semplice in z=-0.3

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 7. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t=1
- B) può solo assumere valori compresi tra -1 e +1
- C) ha un massimo per t=0
- **D)** può solo assumere i tre valori $0, +1 e^{-1}$

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

B)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

C)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

D)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 2. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- **D)** Nessuna delle altre risposte.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 3/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non positivo

D) per t = 2k + 1, con k intero non negativo

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \left\{ \begin{array}{ll} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{array} \right.$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $18\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- **B)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- **C**) 18
- D) nessuna delle altre risposte è corretta
- **E**) 9

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{z^2+z}{(z-1)^3}$
- B) non esiste
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D)** $\sum_{i=1}^{n} z^{i}$
- $\mathbf{E)} \ \frac{z}{(z-1)}$

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- C) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					3	3				
	Eserci	izio	1	2	3	4	5	6	7	8	j
	Rispos	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) $\frac{1}{4}$
- B) nessuna delle altre risposte è corretta
- C) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t kT)$
- **D**) $\frac{1}{2}$
- **E)** $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t kT)$

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- $\mathbf{B)} \ \ \tfrac{z}{(z-1)}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- E) non esiste

Esercizio 3. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.5$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.5$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- E) non ha poli

Esercizio 4. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$

Esercizio 6. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t = 0
- B) può solo assumere valori compresi tra -1 e +1
- C) può solo assumere i tre valori $0, +1 e^{-1}$
- **D)** ha un massimo per t=1

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f=0 non nulla.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4	Ŀ				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 3/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k + 1, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) non esiste
- **B)** $\sum_{i=1}^{n} z^{i}$
- C) $\frac{z^2+z}{(z-1)^3}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{E)} \ \ \tfrac{z}{(z-1)}$

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **B)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- B) nessuna delle altre risposte è corretta
- C) $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **D**) 4
- **E**) 8

Esercizio 8. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- B) ha uno zero nell'origine e un polo reale semplice in z=-0.5
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- E) non ha poli

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Coı	mpito					5)				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Diano	nt 0									

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f = 0 e per f = 1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) non esiste

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- B) Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- $\mathbf{B)} \ 18 \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **C**) 18
- **D**) 9
- E) nessuna delle altre risposte è corretta

Esercizio 6. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

Esercizio 7. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k, con k intero non negativo

Esercizio 8. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- C) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm i0.7$
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					6	j				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 2. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) Nessuna delle altre risposte.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 3. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.25$
- B) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- D) non ha poli
- E) ha uno zero nell'origine e un polo reale semplice in z=-0.25

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

A)
$$\frac{z}{(z-1)}$$

B)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

C) non esiste

D)
$$\frac{3z^2-z^3}{(z-1)^3}$$

E)
$$\frac{z^2+4z}{(z-1)^3}$$

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- **A)** per t = 2k + 1, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k + 3/2, con k intero non negativo
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$$

B)
$$\sigma_Y^2(t) = e^{-0.5bt} (1 + 3e^{-0.5b\tau})$$

C)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B)** $18 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- C) $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- **D**) 9
- **E)** 18

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					7	7				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- E) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 3/2, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k + 1, con k intero non negativo
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{3z^2-z^3}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$

E)
$$\frac{z^2+z}{(z-1)^3}$$

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) 8
- B) nessuna delle altre risposte è corretta
- **C**) 4
- **D)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **E)** $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$

Esercizio 7. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- B) non ha poli
- C) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.7
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					8	3				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- A) può solo assumere valori compresi tra -1 e +1
- **B)** ha un massimo per t=1
- C) ha un massimo per t=0
- **D)** può solo assumere i tre valori $0, +1 e^{-1}$

Esercizio 2. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Risposta

- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- E) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

- **A)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- B) 8
- C) nessuna delle altre risposte è corretta
- **D**) 4

E)
$$8\sum_{k=-\infty}^{\infty}r^2(t-kT)$$

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{1}{(z-1)^2}$
- **B**) $\frac{z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D)** $\sum_{i=1}^{n} z^{i}$
- E) non esiste

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos \left[\frac{2\pi}{T} t + \phi(t) \right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$

Esercizio 8. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- B) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.7
- E) non ha poli

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					S)				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) Nessuna delle altre risposte.

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A) 18

B)
$$18 \sum_{k=-\infty}^{\infty} r^2 (t - kT)$$

C) nessuna delle altre risposte è corretta

D)
$$9\sum_{k=-\infty}^{\infty} r(t-kT)$$

E) 9

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

A)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

B)
$$\frac{-z^3+2z^2+z}{(z-1)^3}$$

C) non esiste

D)
$$\frac{z^2+4z}{(z-1)^3}$$

E)
$$\frac{z}{(z-1)}$$

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 3/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k + 1, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

B)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$$

C)
$$\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

Esercizio 8. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) non ha poli
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- E) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					1	0				
	Eserci	izio	1	2	3	4	5	6	7	8	ĺ
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_h}(y) = 2e^{-2y}u(y)$$

A)
$$\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t - kT)$$

- B) $\frac{1}{4}$
- C) $\frac{1}{2}$
- D) nessuna delle altre risposte è corretta

E)
$$\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$$

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- D) non esiste
- **E**) $\frac{-z^3+2z^2+z}{(z-1)^3}$

Esercizio 5. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- B) non ha poli
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.25

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- **A)** per t = 2k, con k intero non positivo
- B) per t = 2k + 3/2, con k intero non negativo
- C) per t = 2k + 1, con k intero non negativo
- **D)** per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	11
Fsorc	izio 1 2 3 4 5 6 7 8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]
- B) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]
- C) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- **B**) $\frac{z^2+z}{(z-1)^3}$
- C) $\sum_{i=1}^n z^i$
- D) non esiste
- $\mathbf{E)} \ \frac{z}{(z-1)}$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

1

La varianza di x(t), $\sigma_x^2(t)$, vale:

A) nessuna delle altre risposte è corretta

- **B**) 9
- **C**) 18
- **D)** $18 \sum_{k=-\infty}^{\infty} r^2(t kT)$
- E) $9\sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 5. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- B) non ha poli
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.7
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 3/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non positivo
- **D)** per t = 2k + 1, con k intero non negativo

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) Nessuna delle altre risposte.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	ricola										
Cor	mpito					1:	2				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- **D)** Nessuna delle altre risposte.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

B)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

C)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

D)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

A)
$$4\sum_{k=-\infty}^{\infty} r(t-kT)$$

- **B**) 4
- **C**) 8
- D) nessuna delle altre risposte è corretta

E)
$$8 \sum_{k=-\infty}^{\infty} r^2(t - kT)$$

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- \mathbf{A}) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 2k, con k intero non negativo
- C) per t = 2k + 5/2, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- **D)** non ha zeri e ha due poli semplici reali in $z = \pm 0.25$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.25$

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

A)
$$\frac{z}{(z-1)}$$

$$\mathbf{B)} \ \sum_{i=1}^n z^i$$

- C) non esiste
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- E) $\frac{z^2+z}{(z-1)^3}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					1	3				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

A)
$$\frac{z^2+4z}{(z-1)^3}$$

C)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

$$\mathbf{D)} \ \ \frac{z}{(z-1)}$$

E)
$$\frac{-z^3+2z^2+z}{(z-1)^3}$$

Esercizio 3. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- C) non ha poli
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.5

Esercizio 4. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **D)** $\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 7. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- A) può solo assumere valori compresi tra -1 e +1
- **B)** ha un massimo per t = 0
- C) può solo assumere i tre valori 0, +1 e -1
- **D)** ha un massimo per t=1

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

- A) $\frac{2}{9}$
- **B)** $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- C) nessuna delle altre risposte è corretta
- **D)** $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- E) $\frac{1}{9}$

$\begin{array}{c} 4 \text{ luglio } 2014 \\ \text{Teoria ed elaborazione dei segnali (INF)} \end{array}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					1	4				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z=-0.25
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- **D)** non ha zeri e ha due poli semplici reali in $z = \pm 0.25$
- E) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{B}) \sum_{i=1}^{n} z^{i}$
- C) $\frac{z^2+z}{(z-1)^3}$
- D) non esiste
- E) $\frac{z}{(z-1)}$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

- **A**) 9
- **B**) 18
- C) $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- D) nessuna delle altre risposte è corretta
- E) $18\sum_{k=-\infty}^{\infty}r^2(t-kT)$

Esercizio 4. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-bt}(1 + e^{-b\tau})$$

B)
$$\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- E) Nessuna delle altre risposte.

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 8. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- A) può solo assumere valori compresi tra -1 e +1
- **B)** ha un massimo per t=0
- C) ha un massimo per t=1
- **D)** può solo assumere i tre valori $0, +1 e^{-1}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome							
Cognome							
Matricola							
Compito			1.	5			
	 - 4	1 0				Ι ο	i

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) $\frac{z}{(z-1)}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- E) non esiste

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

- A) nessuna delle altre risposte è corretta
- B) $\frac{2}{9}$
- C) $\frac{2}{9}\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- $\mathbf{D)} \ \ \tfrac{1}{9} \sum_{k=-\infty}^{\infty} r(t kT)$
- **E**) $\frac{1}{9}$

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = 1
- **B)** per t = -1
- \mathbf{C}) per valori di t diversi da quelli specificati nelle altre risposte
- **D**) per t = 0

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 8. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- B) non ha poli
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome							
Cognome							
Matricola							
Compito				1	6		
	 -1	0	0			 -	i

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) non esiste
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 2. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

- **A)** 9
- **B**) 18
- C) nessuna delle altre risposte è corretta

- $\mathbf{D)} \ 18 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- **E)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 4. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- E) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm i0.3$

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 8. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = 0
- \mathbf{B}) per valori di t diversi da quelli specificati nelle altre risposte
- **C**) per t = 1
- **D)** per t = -1

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					1	7				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- E) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_h}(y) = 2e^{-2y}u(y)$$

A)
$$\frac{1}{2}\sum_{k=-\infty}^{\infty}r^2(t-kT)$$

- B) nessuna delle altre risposte è corretta
- C) $\frac{1}{4}$
- $\mathbf{D}) \ \ \frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- **E**) $\frac{1}{2}$

Esercizio 4. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- \mathbf{A}) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k + 3/2, con k intero non negativo
- **D)** per t = 2k + 1, con k intero non negativo

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f=0 non nulla.

Esercizio 7. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- C) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- **D)** non ha poli
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) non esiste
- B) $\frac{z}{(z-1)}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					18	8				
	Eserci	zio	1	2	3	4	5	6	7	8	j

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k, con k intero non negativo

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

Risposta

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$

Esercizio 4. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.

- **D)** Nessuna delle altre risposte.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) 8
- **B**) 4
- C) nessuna delle altre risposte è corretta

D)
$$8 \sum_{k=-\infty}^{\infty} r^2(t - kT)$$

E)
$$4\sum_{k=-\infty}^{\infty} r(t-kT)$$

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- B) non ha poli
- C) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.5
- E) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.5$

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) non esiste
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **E**) $\frac{z}{(z-1)}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					1	9				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	$_{ m sta}$									

Esercizio 1. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- C) non ha poli
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 3/2, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k + 1, con k intero non negativo

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- B) non esiste
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$

$$\mathbf{E)} \ \frac{z}{(z-1)}$$

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $18\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- **B)** 18
- C) nessuna delle altre risposte è corretta
- **D)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- **E**) 9

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]

Esercizio 8. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **E)** Nessuna delle altre risposte.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					2	0				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z=-0.25
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.25$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.25$

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{1}{(z-1)^2}$
- C) non esiste
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E**) $\frac{z}{(z-1)^3}$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) $\frac{1}{4}$
- B) nessuna delle altre risposte è corretta
- C) $\frac{1}{2}$
- **D)** $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- E) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t kT)$

Esercizio 4. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$$

B)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$$

D)
$$\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$$

Esercizio 5. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 8. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k, con k intero non negativo
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	$_{ m mpito}$					2	1				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_h}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) $\frac{2}{9}$
- $\mathbf{B)} \ \ \tfrac{2}{9} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- C) nessuna delle altre risposte è corretta
- **D)** $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- \mathbf{E}) $\frac{1}{9}$

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- D) non esiste
- E) $\frac{z}{(z-1)}$

Esercizio 3. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) Nessuna delle altre risposte.

Esercizio 4. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- B) non ha poli
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- **D)** non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k + 1, con k intero non negativo
- **D)** per t = 2k + 3/2, con k intero non negativo

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- B) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					2	2				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A)
$$18\sum_{k=-\infty}^{\infty} r^2(t-kT)$$

B)
$$9\sum_{k=-\infty}^{\infty} r(t-kT)$$

- C) nessuna delle altre risposte è corretta
- **D**) 9
- **E**) 18

Esercizio 3. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t = 0
- **B)** può solo assumere i tre valori $0, +1 e^{-1}$
- C) può solo assumere valori compresi tra -1 e +1

D) ha un massimo per t=1

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 5. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.25$
- B) non ha poli
- C) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.25
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- E) non esiste

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					2	3				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- $\mathbf{B)} \ \ \frac{z}{(z-1)}$
- C) non esiste
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f = 0 e per f = 1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- C) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per valori di t diversi da quelli specificati nelle altre risposte
- B) per t = 2k + 3/2, con k intero non negativo
- C) per t = 2k + 1, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 6. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- B) non ha poli
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- E) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{2}{9}$
- B) nessuna delle altre risposte è corretta
- C) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- **D**) $\frac{1}{9}$
- **E)** $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t kT)$

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$

Esercizio 2. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \left\{ \begin{array}{ll} 1 & 0 \leq t \leq \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{array} \right.$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- **B**) $\frac{1}{2}$
- C) $\frac{1}{4}$
- D) nessuna delle altre risposte è corretta
- **E)** $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **E**) $\frac{-z^3+2z^2+z}{(z-1)^3}$

Esercizio 8. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- C) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.7
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$

$\begin{array}{c} 4 \ \mathrm{luglio} \ 2014 \\ \mathrm{Teoria} \ \mathrm{ed} \ \mathrm{elaborazione} \ \mathrm{dei} \ \mathrm{segnali} \ (\mathrm{INF}) \end{array}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					2	5				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A**) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{B}) \sum_{i=1}^{n} z^{i}$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 2. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.5

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) $\frac{1}{4}$
- B) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- C) $\frac{1}{2}$
- D) nessuna delle altre risposte è corretta
- E) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = 0
- **B)** per t = 1
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D**) per t = -1

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** Nessuna delle altre risposte.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con riga in f=0 non nulla.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t + \tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t + T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

B)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

C)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

D)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- B) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm i0.7$
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- D) non ha poli
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.7

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) $\frac{z}{(z-1)}$
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D)** non esiste
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = 0
- B) per valori di t diversi da quelli specificati nelle altre risposte
- **C**) per t = -1
- **D)** per t = 1

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) 9
- $\mathbf{B)} \ 18 \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **C**) 18
- **D)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- E) nessuna delle altre risposte è corretta

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **B)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 8. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

- **A)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- D) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- E) Nessuna delle altre risposte.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	27

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- C) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.25$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- E) non ha poli

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **B)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- C) nessuna delle altre risposte è corretta
- **D**) 8
- **E**) 4

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non positivo
- **D)** per t = 2k, con k intero non negativo

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- B) non esiste
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- **E)** Nessuna delle altre risposte.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					2	8				
	Esercizio		1	2	3	4	5	6	7	8]
	Risposta										

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- B) nessuna delle altre risposte è corretta
- C) $\frac{1}{2}\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- **D**) $\frac{1}{4}$
- **E**) $\frac{1}{2}$

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **B)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 3. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- B) non ha poli
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.25$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.25

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 5. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- **A)** per t = 2k, con k intero non positivo
- **B)** per t = 2k + 1, con k intero non negativo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k + 3/2, con k intero non negativo

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- **B**) $\sum_{i=1}^{n} z^{i}$
- C) $\frac{z}{(z-1)^3}$
- **D**) $\frac{1}{(z-1)^2}$
- **E**) $\frac{z}{(z-1)}$

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f = 0 e per f = 1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Cognome Matricola	Nome	
Matricola	Cognome	
	Matricola	
Compito 29	Compito	29

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

B)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 3. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t=0
- **B)** può solo assumere i tre valori $0, +1 e^{-1}$
- C) può solo assumere valori compresi tra -1 e +1
- **D)** ha un massimo per t=1

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

A)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

B)
$$\frac{3z^2-z^3}{(z-1)^3}$$

C) non esiste

D)
$$\frac{z^2+4z}{(z-1)^3}$$

E)
$$\frac{z}{(z-1)}$$

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) 8
- **B**) 4
- C) nessuna delle altre risposte è corretta
- $\mathbf{D)} \ 8 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- **E)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 7. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- **A)** per t = 2k, con k intero non positivo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k + 5/2, con k intero non negativo
- **D)** per t = 2k, con k intero non negativo

Esercizio 2. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- C) non ha poli
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.25$

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- B) non esiste
- C) $\frac{z^2+z}{(z-1)^3}$
- $\mathbf{D)} \ \sum_{i=1}^n z^i$
- **E)** $\frac{z}{(z-1)}$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) $\frac{1}{9}$
- B) $\frac{2}{9}$
- C) $\frac{2}{9}\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- **D)** $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- E) nessuna delle altre risposte è corretta

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Coı	mpito					3	1				
	Eserci	izio	1	2	3	4	5	6	7	8	j
	Risposta										

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A)
$$\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$$

B)
$$\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2 (t - kT)$$

C) nessuna delle altre risposte è corretta

- **D**) $\frac{1}{9}$
- E) $\frac{2}{9}$

Esercizio 2. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- A) per t=0
- B) per valori di t diversi da quelli specificati nelle altre risposte
- **C**) per t = 1
- **D**) per t = -1

Esercizio 3. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- **D)** Nessuna delle altre risposte.

E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{z^2+z}{(z-1)^3}$
- B) $\sum_{i=1}^n z^i$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 6. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- E) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]
- B) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]
- C) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					3	2				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A)
$$\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t - kT)$$

B) nessuna delle altre risposte è corretta

C)
$$\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$$

- **D**) $\frac{1}{2}$
- E) $\frac{1}{4}$

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f=\pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 3. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- D) non ha poli

E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) non esiste
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- \mathbf{E}) $\frac{z}{(z-1)}$

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- **D)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- $\mathbf{A)} \text{ per } t = -1$
- **B)** per t = 1
- **C**) per t = 0
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 7. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) Nessuna delle altre risposte.

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	33

Ī	Esercizio	1	2	3	4	5	6	7	8
	Risposta								

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{z^2+z}{(z-1)^3}$
- B) $\sum_{i=1}^n z^i$
- C) non esiste
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 2. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- C) non ha poli
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- B) 8
- C) $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **D**) 4
- E) nessuna delle altre risposte è corretta

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- B) per t = 2k, con k intero non positivo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k, con k intero non negativo

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 8. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- \mathbf{A}) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k + 5/2, con k intero non negativo
- **D)** per t = 2k, con k intero non negativo

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** 8
- $\mathbf{B)} \ 4 \sum_{k=-\infty}^{\infty} r(t kT)$
- C) nessuna delle altre risposte è corretta
- $\mathbf{D)} \ 8 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- **E**) 4

Esercizio 4. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 5. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- D) non ha poli
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{z}{(z-1)^3}$
- B) $\frac{z}{(z-1)}$
- **C**) $\frac{1}{(z-1)^2}$
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- E) non esiste

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cognome											
Matricola											
Compito		35									
	Esercizio		1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 2. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k + 5/2, con k intero non negativo

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

A)
$$\frac{z}{(z-1)}$$

B)
$$\sum_{i=1}^{n} z^{i}$$

C) non esiste

$$\mathbf{D)} \ \ \frac{z}{(z-1)^3}$$

E)
$$\frac{1}{(z-1)^2}$$

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B)** $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- \mathbf{C}) $\frac{1}{9}$
- **D)** $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- E) $\frac{2}{9}$

Esercizio 6. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **B)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$

Esercizio 8. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- B) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.3$
- C) non ha poli
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.3
- E) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm i0.3$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					3	6				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe in k/T, con k intero.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- **B)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

Esercizio 3. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

A) per t = 2k, con k intero non negativo

- B) per t = 2k + 5/2, con k intero non negativo
- C) per t = 2k, con k intero non positivo
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $18\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **B)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- C) nessuna delle altre risposte è corretta
- **D**) 18
- **E**) 9

Esercizio 6. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- C) non ha poli
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- **E)** ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.5$

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- **B**) $\frac{z^2+z}{(z-1)^3}$
- C) non esiste
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) $\sum_{i=1}^n z^i$

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 3. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- $\mathbf{B)} \ \ \tfrac{2}{9} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- C) $\frac{2}{9}$
- D) nessuna delle altre risposte è corretta
- **E**) $\frac{1}{9}$

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **B)** $\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{z^2+z}{(z-1)^3}$
- B) non esiste
- C) $\sum_{i=1}^n z^i$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- \mathbf{E}) $\frac{z}{(z-1)}$

Esercizio 7. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non positivo
- **D)** per t = 2k, con k intero non negativo

Esercizio 8. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.5
- E) non ha poli

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					38	8				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- \mathbf{A}) per valori di t diversi da quelli specificati nelle altre risposte
- B) per t=1
- **C**) per t = -1
- **D)** per t = 0

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 3. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- B) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- E) non ha poli

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- **B**) $\sum_{i=1}^{n} z^{i}$
- C) $\frac{1}{(z-1)^2}$

- **D**) $\frac{z}{(z-1)^3}$
- $\mathbf{E)} \ \ \tfrac{z}{(z-1)}$

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B**) 9
- **C**) 18
- **D)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- E) $18\sum_{k=-\infty}^{\infty}r^2(t-kT)$

Esercizio 7. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- C) Nessuna delle altre risposte.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Cor	mpito					3	9				
	Eserci	izio	1	2	3	4	5	6	7	8	j
	Rispos	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) 4
- **B)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- C) nessuna delle altre risposte è corretta
- $\mathbf{D)} \ 8 \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **E**) 8

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 3. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 4. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

B)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

C)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

D)
$$\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$$

Esercizio 5. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha poli
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- E) ha uno zero nell'origine e un polo reale semplice in z=-0.5

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{z}{(z-1)}$
- B) non esiste
- C) $\sum_{i=1}^n z^i$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 7. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- A) può solo assumere valori compresi tra -1 e +1
- **B)** ha un massimo per t = 0
- C) può solo assumere i tre valori $0, +1 e^{-1}$
- **D)** ha un massimo per t=1

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4	0				
	Eserci	izio	1	2	3	4	5	6	7	8	

 Esercizio
 1
 2
 3
 4
 5
 6
 7
 8

 Risposta

 <td

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 3. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- D) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) non esiste
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **E**) $\frac{z}{(z-1)}$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B**) 4
- C) $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **D**) 8
- E) $8\sum_{k=-\infty}^{\infty}r^2(t-kT)$

Esercizio 7. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t=1
- **B)** ha un massimo per t=0
- C) può solo assumere i tre valori $0, +1 e^{-1}$
- **D)** può solo assumere valori compresi tra -1 e +1

Esercizio 8. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha poli
- B) non ha zeri e ha due poli semplici reali in $z = \pm 0.25$
- C) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm i0.25$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.25

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4	1				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \left\{ \begin{array}{ll} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{array} \right.$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **B**) 4
- **C**) 8
- **D)** $8 \sum_{k=-\infty}^{\infty} r^2(t kT)$
- E) nessuna delle altre risposte è corretta

Esercizio 2. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- A) può solo assumere valori compresi tra -1 e +1
- **B)** ha un massimo per t=0
- C) può solo assumere i tre valori $0, +1 e^{-1}$
- **D)** ha un massimo per t=1

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 4. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 5. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- B) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.7
- E) non ha poli

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

B)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

C)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- $\mathbf{B)} \ \ \frac{z}{(z-1)}$
- C) $\frac{1}{(z-1)^2}$
- **D**) $\frac{z}{(z-1)^3}$
- E) non esiste

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4:	2				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- E) Nessuna delle altre risposte.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t kT)$
- **B**) $\frac{2}{9}$
- C) $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- \mathbf{D}) $\frac{1}{9}$
- E) nessuna delle altre risposte è corretta

Esercizio 3. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- D) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$

E) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- **A)** per t = 2k + 1, con k intero non negativo
- \mathbf{B}) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k + 3/2, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{z^2+z}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

B)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

C)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4	3				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{1}{(z-1)^2}$
- **B**) $\frac{z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- E) non esiste

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- $\mathbf{B)} \ 18 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- **C**) 18
- **D)** nessuna delle altre risposte è corretta
- **E**) 9

Esercizio 3. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.7

Esercizio 4. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- **A)** per t = 2k, con k intero non positivo
- B) per t = 2k + 3/2, con k intero non negativo
- C) per t = 2k + 1, con k intero non negativo
- **D)** per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f = 0 e per f = 1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t + \tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t + T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$$

B)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

C)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

D)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					4	4				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{1}{(z-1)^2}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{z}{(z-1)^3}$
- $\mathbf{E)} \ \sum_{i=1}^n z^i$

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **B)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- C) $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B**) 8
- C) $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **D)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **E**) 4

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 5. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- B) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- C) non ha poli
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.7
- E) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- A) per t=0
- **B**) per t = -1
- **C**) per t = 1
- **D)** per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 7. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso—uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4	5				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{2}{9}$
- B) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- C) $\frac{1}{2}$
- D) nessuna delle altre risposte è corretta
- **E)** $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t kT)$

Esercizio 2. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- B) non ha poli
- C) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- E) non ha zeri e ha due poli semplici reali in $z = \pm 0.25$

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

D) Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 5. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t=1
- B) può solo assumere valori compresi tra -1 e +1
- C) può solo assumere i tre valori $0, +1 e^{-1}$
- **D)** ha un massimo per t = 0

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) non esiste
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- $\mathbf{E)} \ \frac{z}{(z-1)}$

Esercizio 7. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$$

B)
$$\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

C)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

D)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4	6				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]

Esercizio 2. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k, con k intero non negativo
- **D)** per t = 2k + 5/2, con k intero non negativo

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\sum_{i=1}^n z^i$
- B) non esiste
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{D)} \ \frac{z}{(z-1)}$
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 5. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- D) non ha poli
- E) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$

Esercizio 6. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{2}{9}$
- B) $\frac{1}{9}$
- C) $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- **D)** $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t kT)$
- E) nessuna delle altre risposte è corretta

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 2. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

Esercizio 3. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.3$
- C) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- **D)** ha uno zero nell'origine e un polo reale semplice in z=-0.3
- E) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

A)
$$\frac{z^2+4z}{(z-1)^3}$$

B)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

C)
$$\frac{-z^3+2z^2+z}{(z-1)^3}$$

$$\mathbf{D)} \ \ \frac{z}{(z-1)}$$

E) non esiste

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** 18
- B) nessuna delle altre risposte è corretta
- C) $18\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- **D**) 9
- **E)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 8. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

2

- A) può solo assumere valori compresi tra -1 e +1
- **B)** ha un massimo per t=1
- C) può solo assumere i tre valori 0, +1 e -1
- **D)** ha un massimo per t=0

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Coı	mpito					4	8				
	Eserci	izio	1	2	3	4	5	6	7	8	Ì
	Rispos	sta									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\frac{z}{(z-1)^3}$
- $\mathbf{B)} \ \frac{z}{(z-1)}$
- C) non esiste
- **D**) $\frac{1}{(z-1)^2}$
- E) $\sum_{i=1}^n z^i$

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **B)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- C) $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

Esercizio 4. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

E) Nessuna delle altre risposte.

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 6. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.25

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** 8
- **B**) 4
- C) $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **D)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- E) nessuna delle altre risposte è corretta

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

2

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Compito						4	9				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_h}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- B) $\frac{1}{0}$
- C) $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- \mathbf{D}) $\frac{2}{9}$
- E) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

B)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- \mathbf{A}) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k + 3/2, con k intero non negativo
- **D)** per t = 2k + 1, con k intero non negativo

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.25$
- C) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.25
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- B) $\frac{z}{(z-1)}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- E) non esiste

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	50
Eserc	izio 1 2 3 4 5 6 7 8

Risposta Risposta

Esercizio 1. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** può solo assumere i tre valori $0, +1 e^{-1}$
- **B)** ha un massimo per t=1
- C) può solo assumere valori compresi tra -1 e +1
- **D)** ha un massimo per t = 0

Esercizio 2. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- E) ha uno zero nell'origine e un polo reale semplice in z=-0.3

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **B)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- **D)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

A) Nessuna delle altre risposte.

- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- D) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \left\{ \begin{array}{ll} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{array} \right.$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** 18
- **B**) 9
- C) $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- D) nessuna delle altre risposte è corretta

E)
$$18\sum_{k=-\infty}^{\infty}r^2(t-kT)$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	Compito					5	1				
	Esercizio		1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- $\mathbf{B)} \ \frac{z}{(z-1)}$
- C) $\frac{z}{(z-1)^3}$
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- **E**) $\frac{1}{(z-1)^2}$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** 18
- B) nessuna delle altre risposte è corretta
- C) $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- $\mathbf{D)} \ 18 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- **E**) 9

Esercizio 3. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) Nessuna delle altre risposte.

Esercizio 4. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.25

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- A) per t=1
- **B)** per t=0
- \mathbf{C}) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = -1

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **B)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	Compito					5:	2				
	Esercizio		1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) non esiste
- B) $\frac{z}{(z-1)}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 4. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- B) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.3$
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$

- D) non ha poli
- E) ha uno zero nell'origine e un polo reale semplice in z=-0.3

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- **A)** per t = 2k, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k + 5/2, con k intero non negativo
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- B) $\frac{1}{2}$
- C) nessuna delle altre risposte è corretta
- **D**) $\frac{1}{4}$
- **E)** $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t kT)$

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					5	3				
	Esercizio		1	2	3	4	5	6	7	8	
	Rispo	Risposta									

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- \mathbf{A}) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k, con k intero non negativo
- **D)** per t = 2k + 5/2, con k intero non negativo

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$$

B)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{z^2+z}{(z-1)^3}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) non esiste

Esercizio 4. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

E) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** 8
- **B**) 4
- C) $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- D) nessuna delle altre risposte è corretta
- **E)** $8 \sum_{k=-\infty}^{\infty} r^2(t kT)$

Esercizio 6. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Cor	mpito					5	4				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- $\mathbf{B)} \ \ \frac{z}{(z-1)}$
- C) non esiste
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

1

La varianza di x(t), $\sigma_x^2(t)$, vale:

A)
$$8\sum_{k=-\infty}^{\infty} r^2(t-kT)$$

B) nessuna delle altre risposte è corretta

- **C**) 8
- **D**) 4
- E) $4\sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 4. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- **D)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = 0
- **B)** per t = -1
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 1

Esercizio 6. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- C) non ha poli
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.7

Esercizio 7. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome							
Cognome							
Matricola							
Compito			5.	5			
	- 1	۱ ۵	- 1			0)

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f = 0 e per f = 1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{2}{9}$
- B) nessuna delle altre risposte è corretta
- C) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- **D)** $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t kT)$
- \mathbf{E}) $\frac{1}{0}$

Esercizio 4. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- E) Nessuna delle altre risposte.

Esercizio 5. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- E) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = 1
- **B)** per t = -1
- **C**) per t = 0
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- B) $\frac{z}{(z-1)}$
- C) $\frac{1}{(z-1)^2}$
- **D**) $\frac{z}{(z-1)^3}$
- $\mathbf{E)} \ \sum_{i=1}^n z^i$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	56

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = 0
- **B)** per t = 1
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = -1

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{9}$
- B) nessuna delle altre risposte è corretta
- C) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- D) $\frac{2}{9}$
- **E)** $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t kT)$

Esercizio 4. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) Nessuna delle altre risposte.

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\frac{z}{(z-1)}$
- B) non esiste
- C) $\frac{1}{(z-1)^2}$
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- **E**) $\frac{z}{(z-1)^3}$

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 8. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.3$
- E) non ha poli

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Cor	$_{ m mpito}$					5	7				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$$

B)
$$\sigma_Y^2(t) = e^{-bt}(1 + e^{-b\tau})$$

C)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 3. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- C) ha uno zero nell'origine e un polo reale semplice in z=-0.5
- **D)** non ha zeri e ha due poli semplici reali in $z = \pm 0.5$
- E) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** 18
- **B**) 9
- C) $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- D) nessuna delle altre risposte è corretta
- **E)** $18 \sum_{k=-\infty}^{\infty} r^2 (t kT)$

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{1}{(z-1)^2}$
- **B**) $\frac{z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D)** $\sum_{i=1}^{n} z^{i}$
- E) non esiste

Esercizio 7. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 8. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t=0
- **B)** può solo assumere i tre valori 0, +1 e -1
- C) ha un massimo per t=1
- **D)** può solo assumere valori compresi tra -1 e +1

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					5	8				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_{k}}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- B) $\frac{1}{2}$
- C) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t kT)$
- **D**) $\frac{1}{4}$
- **E)** $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t kT)$

Esercizio 2. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- **A)** per t = 2k, con k intero non positivo
- **B)** per t = 2k, con k intero non negativo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k + 5/2, con k intero non negativo

Esercizio 3. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 4. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- C) $\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) non esiste

Esercizio 6. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- B) non ha poli
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.7
- E) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					5	9				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

A) non esiste

B)
$$\frac{z}{(z-1)}$$

C)
$$\frac{3z^2-z^3}{(z-1)^3}$$

$$\mathbf{D}) \sum_{i=1}^{n} z^{i}$$

E)
$$\frac{z^2+z}{(z-1)^3}$$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B**) 8
- C) $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **D)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **E**) 4

Esercizio 4. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- D) non ha poli
- E) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

Esercizio 6. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) Nessuna delle altre risposte.

Esercizio 7. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t=0
- **B)** può solo assumere i tre valori 0, +1 e -1
- C) ha un massimo per t=1
- **D)** può solo assumere valori compresi tra -1 e +1

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Coı	mpito					60	0				
	Eserci	izio	1	2	3	1	5	6	7	Q)
ļ	Eserci	izio	1		3	4	9	U	'	0	Į
	Rispos	sta									

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

B)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

C)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

D)
$$\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$$

Esercizio 3. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- **A)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- **E)** Nessuna delle altre risposte.

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

A)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

B)
$$\frac{z}{(z-1)}$$

C)
$$\frac{-z^3+2z^2+z}{(z-1)^3}$$

D)
$$\frac{z^2+4z}{(z-1)^3}$$

E) non esiste

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- B) nessuna delle altre risposte è corretta
- C) $\frac{1}{4}$
- $\mathbf{D}) \ \ \tfrac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- **E**) $\frac{1}{2}$

Esercizio 6. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- B) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- D) non ha poli
- E) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con riga in f=0 non nulla.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 8. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- **B)** per t = 2k, con k intero non negativo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k, con k intero non positivo

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome										
Cognome										
Matricola										
Compito					6	1				
Eserc	izio	1	2	3	4	5	6	7	8	Ī

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t=0
- B) può solo assumere valori compresi tra -1 e +1
- C) ha un massimo per t=1
- **D)** può solo assumere i tre valori $0, +1 e^{-1}$

Esercizio 2. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- B) non ha poli
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- **D)** non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.7

Esercizio 3. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- **E)** Nessuna delle altre risposte.

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** $18\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **B**) 9
- **C**) 18
- D) nessuna delle altre risposte è corretta
- **E)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					6	2				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) 9
- **B**) 18
- C) nessuna delle altre risposte è corretta
- **D)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- **E)** $18 \sum_{k=-\infty}^{\infty} r^2 (t kT)$

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) $\frac{z}{(z-1)}$
- C) non esiste
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 3. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) Nessuna delle altre risposte.

- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

Esercizio 4. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- C) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- D) non ha poli
- E) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 6. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- A) può solo assumere valori compresi tra -1 e +1
- **B)** ha un massimo per t=1
- C) può solo assumere i tre valori $0, +1 e^{-1}$
- **D)** ha un massimo per t=0

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

B)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

C)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

D)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					6	3				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- **A)** per t = 2k + 1, con k intero non negativo
- B) per t = 2k + 3/2, con k intero non negativo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k, con k intero non positivo

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **B)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{1}{(z-1)^2}$
- B) non esiste
- C) $\sum_{i=1}^n z^i$
- $\mathbf{D)} \ \ \frac{z}{(z-1)^3}$
- $\mathbf{E)} \ \ \frac{z}{(z-1)}$

Esercizio 4. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- C) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- **D)** non ha poli
- **E)** non ha zeri e ha due poli semplici reali in $z=\pm 0.25$

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- **B**) 9
- **C**) 18
- $\mathbf{D)} \ 18 \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- E) nessuna delle altre risposte è corretta

Esercizio 7. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) Nessuna delle altre risposte.

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	64

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

B)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

C)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

D)
$$\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 4. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- A) può solo assumere i tre valori $0, +1 e^{-1}$
- **B)** ha un massimo per t=0
- C) può solo assumere valori compresi tra -1 e +1
- **D)** ha un massimo per t=1

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{B)} \ \sum_{i=1}^n z^i$
- C) non esiste
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 6. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- D) non ha poli
- E) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B**) 8
- **C**) 4
- **D)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- E) $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

2

- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- E) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					6	5				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_h}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **B**) $\frac{1}{2}$
- C) $\frac{1}{4}$
- **D)** $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t kT)$
- E) nessuna delle altre risposte è corretta

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 3/2, con k intero non negativo
- B) per t = 2k + 1, con k intero non negativo
- C) per valori di t diversi da quelli specificati nelle altre risposte

D) per t = 2k, con k intero non positivo

Esercizio 4. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- **B)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- B) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- D) non ha poli
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) $\frac{3z^2-z^3}{(z-1)^3}$
- B) $\frac{z}{(z-1)}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- E) non esiste

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					6	6				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \left\{ \begin{array}{ll} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{array} \right.$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A) nessuna delle altre risposte è corretta

B)
$$4\sum_{k=-\infty}^{\infty} r(t-kT)$$

C)
$$8\sum_{k=-\infty}^{\infty} r^2(t-kT)$$

- **D**) 4
- **E**) 8

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

A)
$$\frac{z^2+4z}{(z-1)^3}$$

B)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

C)
$$\frac{-z^3+2z^2+z}{(z-1)^3}$$

$$\mathbf{D)} \ \ \frac{z}{(z-1)}$$

E) non esiste

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

A) Lo spettro di x(t) ha righe in k/T, con k intero.

- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 1, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k + 3/2, con k intero non negativo

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.5$
- B) non ha poli
- C) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.5

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	67

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- B) $\frac{1}{9}$
- C) $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- \mathbf{D}) $\frac{2}{9}$
- E) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 2k + 1, con k intero non negativo
- C) per t = 2k, con k intero non positivo
- **D)** per t = 2k + 3/2, con k intero non negativo

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f=\pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **D)** $\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- B) non ha poli
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- E) non esiste

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					6	8				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{z}{(z-1)^3}$
- C) $\frac{1}{(z-1)^2}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) non esiste

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** 8
- **B)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **C**) 4
- D) nessuna delle altre risposte è corretta
- **E)** $8 \sum_{k=-\infty}^{\infty} r^2(t kT)$

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

B)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

C)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 6. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t=0
- **B)** può solo assumere i tre valori 0, +1 e -1
- C) ha un massimo per t=1
- **D)** può solo assumere valori compresi tra -1 e +1

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- D) non ha poli
- E) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- E) Nessuna delle altre risposte.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					6	9				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Pigno	1t o									

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 2. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- B) non ha poli
- C) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.7
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-bt}(1 + e^{-b\tau})$$

B)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

C)
$$\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$$

D)
$$\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$$

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

A)
$$\frac{z}{(z-1)}$$

B)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

C)
$$\frac{z^2+4z}{(z-1)^3}$$

D) non esiste

E)
$$\frac{3z^2-z^3}{(z-1)^3}$$

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** 18
- **B)** $18 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- C) nessuna delle altre risposte è corretta
- **D**) 9
- **E)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 7. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- E) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 8. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

2

- **A)** può solo assumere i tre valori 0, +1 e -1
- **B)** ha un massimo per t=0
- C) può solo assumere valori compresi tra -1 e +1
- **D)** ha un massimo per t=1

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	70

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm i0.3$
- C) ha uno zero nell'origine e un polo reale semplice in z=-0.3
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

B)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

C)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

D)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) $\frac{z}{(z-1)}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- E) non esiste

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso—uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non positivo
- **D)** per t = 2k + 5/2, con k intero non negativo

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $18\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- B) nessuna delle altre risposte è corretta
- **C**) 18
- **D**) 9
- **E)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 8. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	71

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z}{(z-1)}$
- **D)** $\frac{z^2+4z}{(z-1)^3}$
- E) non esiste

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- B) $\frac{1}{4}$
- C) $\frac{1}{2}$
- D) nessuna delle altre risposte è corretta
- E) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- C) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 6. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- C) non ha poli
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- E) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$

Esercizio 7. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 8. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- \mathbf{C}) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k, con k intero non negativo

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					7:	2				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha poli
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.25$

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{B)} \ \ \tfrac{z}{(z-1)}$
- C) $\sum_{i=1}^n z^i$
- **D)** non esiste
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A) nessuna delle altre risposte è corretta

B) 4

C)
$$8\sum_{k=-\infty}^{\infty} r^2(t-kT)$$

D)
$$4\sum_{k=-\infty}^{\infty} r(t-kT)$$

E) 8

Esercizio 5. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t = 0
- **B)** ha un massimo per t=1
- C) può solo assumere valori compresi tra -1 e +1
- **D)** può solo assumere i tre valori $0, +1 e^{-1}$

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

B)
$$\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$$

C)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- **B)** Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	73

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- D) non ha poli
- E) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

B)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

A)
$$\frac{z}{(z-1)}$$

B)
$$\frac{3z^2-z^3}{(z-1)^3}$$

C) non esiste

D)
$$\frac{z^2+4z}{(z-1)^3}$$

E)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

A) per
$$t = 0$$

- **B)** per t = -1
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 1

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{2}{9}$
- **B)** $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t kT)$
- C) nessuna delle altre risposte è corretta
- **D)** $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t kT)$
- **E**) $\frac{1}{9}$

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					7	4				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rieno	et o									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- $\mathbf{B)} \ \ \frac{z}{(z-1)}$
- C) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- E) non esiste

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 3. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) non ha poli
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- E) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **B**) $\frac{1}{9}$
- C) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- D) nessuna delle altre risposte è corretta
- E) $\frac{2}{9}$

Esercizio 6. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

Esercizio 7. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k, con k intero non negativo

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					7.	5				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- E) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** non esiste
- **E**) $\frac{-z^3+2z^2+z}{(z-1)^3}$

Esercizio 3. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- E) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- C) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

B)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) 4
- B) nessuna delle altre risposte è corretta
- C) $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **D)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **E**) 8

Esercizio 7. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non positivo
- **D)** per t = 2k, con k intero non negativo

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					7	6				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rienos	et o									

Esercizio 1. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- B) non ha poli
- C) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.5$

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A)
$$\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t - kT)$$

$$\mathbf{B)} \ \ \tfrac{1}{2} \sum_{k=-\infty}^{\infty} r^2 (t - kT)$$

C) $\frac{1}{4}$

D) $\frac{1}{2}$

E) nessuna delle altre risposte è corretta

Esercizio 4. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) $\frac{z}{(z-1)}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D)** non esiste
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 2k, con k intero non negativo
- C) per t = 2k, con k intero non positivo
- **D)** per t = 2k + 5/2, con k intero non negativo

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- C) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					7	7				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** 9
- **B)** $18 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- **C**) 18
- **D)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- E) nessuna delle altre risposte è corretta

Esercizio 2. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.3$
- B) non ha poli
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.3

Esercizio 3. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- **A)** per t = 2k + 5/2, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k, con k intero non negativo

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- B) $\frac{z}{(z-1)}$
- C) $\frac{1}{(z-1)^2}$
- **D**) $\frac{z}{(z-1)^3}$
- E) $\sum_{i=1}^n z^i$

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- B) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					73	8				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- E) Nessuna delle altre risposte.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) $\frac{1}{2}$
- **B)** $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- C) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- \mathbf{D}) $\frac{1}{4}$
- E) nessuna delle altre risposte è corretta

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

A)
$$\frac{-z^3+2z^2+z}{(z-1)^3}$$

B)
$$\frac{z^2+4z}{(z-1)^3}$$

C)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

- D) non esiste
- $\mathbf{E)} \ \ \frac{z}{(z-1)}$

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 6. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** può solo assumere i tre valori $0, +1 e^{-1}$
- B) può solo assumere valori compresi tra -1 e +1
- C) ha un massimo per t=1
- **D)** ha un massimo per t = 0

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

B)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

C)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

D)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

Esercizio 8. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- B) non ha poli
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- E) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					7	9				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

B)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

C)
$$\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_h}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A)
$$\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$$

B)
$$\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2 (t - kT)$$

- C) $\frac{1}{9}$
- D) nessuna delle altre risposte è corretta
- E) $\frac{2}{9}$

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 4. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 5. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- B) non ha poli
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- **B)** per t = 2k, con k intero non negativo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k, con k intero non positivo

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- B) non esiste
- C) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					8	0				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_h}(y) = 3e^{-3y}u(y)$$

La varianza di $x(t),\,\sigma_x^2(t),$ vale:

- A) $\frac{1}{9}$
- **B)** $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- C) $\frac{2}{9}$
- **D)** $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- E) nessuna delle altre risposte è corretta

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- **B)** per t = 2k, con k intero non negativo
- \mathbf{C}) per valori di t diversi da quelli specificati nelle altre risposte

D) per t = 2k, con k intero non positivo

Esercizio 4. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- **D)** Nessuna delle altre risposte.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- C) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- **B**) $\frac{z}{(z-1)}$
- C) non esiste
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 8. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) non ha poli
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome										
Cognome										
Matricola										
Compito					8	1				
Eserc	izio	1	2	3	4	5	6	7	8	j

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$

Esercizio 2. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- A) per t=0
- **B)** per t = -1
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D**) per t = 1

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A**) $\frac{z^2+z}{(z-1)^3}$
- **B**) $\frac{3z^2-z^3}{(z-1)^3}$
- C) $\sum_{i=1}^n z^i$
- D) non esiste

E)
$$\frac{z}{(z-1)}$$

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.5
- E) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.5$

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A) nessuna delle altre risposte è corretta

B)
$$18 \sum_{k=-\infty}^{\infty} r^2 (t - kT)$$

C) 18

D)
$$9\sum_{k=-\infty}^{\infty} r(t-kT)$$

E) 9

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

No	ome										
Cog	nome										
Mat	ricola										
Con	npito					8	2				
	Eserci	izio	1	2	3	4	5	6	7	8	Ì
	Rispos	sta									
	Eserci		1	2	3	4	5	6	7	8	

Esercizio 1. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) non esiste
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- $\mathbf{E)} \ \ \frac{z}{(z-1)}$

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per valori di t diversi da quelli specificati nelle altre risposte
- B) per t = 2k + 5/2, con k intero non negativo
- C) per t = 2k, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

Esercizio 4. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- B) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- C) ha uno zero nell'origine e un polo reale semplice in z=-0.5
- D) non ha poli

E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

B)
$$\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) 18
- **B)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- C) $18 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- D) nessuna delle altre risposte è corretta
- **E**) 9

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Compito						8	3				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** Nessuna delle altre risposte.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- A) per t=1
- **B)** per t = -1
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 0

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

B)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

C)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

D)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- B) $\frac{1}{9}$
- C) $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- \mathbf{D}) $\frac{2}{6}$
- E) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.5$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- C) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- D) non ha poli
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

A)
$$\frac{z}{(z-1)}$$

B)
$$\frac{z^2+z}{(z-1)^3}$$

C)
$$\frac{3z^2-z^3}{(z-1)^3}$$

- **D)** non esiste
- **E)** $\sum_{i=1}^n z^i$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	$_{ m mpito}$					8	4				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A)
$$\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2 (t - kT)$$

B) $\frac{2}{9}$

C)
$$\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t - kT)$$

D) nessuna delle altre risposte è corretta

E) $\frac{1}{9}$

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = -1
- B) per valori di t diversi da quelli specificati nelle altre risposte
- **C**) per t = 0
- **D**) per t = 1

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

A)
$$\frac{z}{(z-1)}$$

- **B**) $\frac{3z^2-z^3}{(z-1)^3}$
- C) $\sum_{i=1}^n z^i$
- **D**) $\frac{z^2+z}{(z-1)^3}$
- E) non esiste

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- **B)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- B) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.5
- E) non ha poli

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- D) Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					8	5				
	Eserci	izio	1	2	3	4	5	6	7	8	j
	Rispos	sta									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- B) nessuna delle altre risposte è corretta
- C) $18\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- **D**) 9
- **E**) 18

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

B)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

C)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

D)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

Esercizio 4. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- C) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe in k/T, con k intero.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- B) non ha zeri e ha due poli semplici reali in $z = \pm 0.25$
- C) non ha poli
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- E) ha uno zero nell'origine e un polo reale semplice in z=-0.25

Esercizio 8. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** può solo assumere i tre valori $0, +1 e^{-1}$
- B) può solo assumere valori compresi tra -1 e +1
- C) ha un massimo per t=0
- **D)** ha un massimo per t=1

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					8	6				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f = 0 e per f = 1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = -1
- **B**) per t = 1
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 0

Esercizio 4. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- **E)** Nessuna delle altre risposte.

Esercizio 5. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z=-0.25
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- C) non ha poli
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.25$

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) non esiste
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- **B**) $\frac{1}{4}$
- C) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **D**) $\frac{1}{2}$
- E) nessuna delle altre risposte è corretta

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome									
Cognome									
Matricola									
Compito				8	7				
Eserc	1	2	3	4	5	6	7	8	
Eserc	1	2	3	4	5	6	7	8	

Esercizio 1. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t kT)$
- **B**) $\frac{1}{4}$
- C) $\frac{1}{2}$
- D) nessuna delle altre risposte è corretta
- E) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{z}{(z-1)}$
- B) non esiste
- C) $\frac{3z^2-z^3}{(z-1)^3}$

- **D**) $\frac{z^2+z}{(z-1)^3}$
- E) $\sum_{i=1}^n z^i$

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 6. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- B) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.25$
- D) non ha poli
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$

Esercizio 7. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t=0
- B) può solo assumere valori compresi tra -1 e +1
- C) può solo assumere i tre valori 0, +1 e -1
- **D)** ha un massimo per t=1

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

B)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

C)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

D)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	88

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- \mathbf{A}) per valori di t diversi da quelli specificati nelle altre risposte
- B) per t = 2k + 1, con k intero non negativo
- C) per t = 2k + 3/2, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- $\mathbf{B)} \ \ \tfrac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- C) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- $\mathbf{D}) \ \frac{1}{4}$
- \mathbf{E}) $\frac{1}{2}$

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$

Esercizio 4. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

Esercizio 5. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- B) non ha poli
- C) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.5$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.5
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

A)
$$\frac{1}{(z-1)^2}$$

B)
$$\frac{z}{(z-1)}$$

C)
$$\frac{z}{(z-1)^3}$$

$$\mathbf{E)} \sum_{i=1}^{n} z^{i}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Cor	mpito					8	9				
	Eserci	izio	1	2	3	1	5	6	7	8	
	Listic	1210	1		0	-	0	U	'	U	
	Rispos	sta									

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = 1
- **B**) per t = -1
- \mathbf{C}) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 0

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- D) non esiste
- E) $\frac{z}{(z-1)}$

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f = 0 e per f = 1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 4. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

B)
$$\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$$

C)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

D)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

Esercizio 6. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.3$
- B) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- C) non ha poli
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.3
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) $\frac{1}{4}$
- **B)** $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- C) nessuna delle altre risposte è corretta
- **D**) $\frac{1}{2}$
- E) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					9	0				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- **B)** per t = 2k, con k intero non negativo
- C) per t = 2k, con k intero non positivo

 \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

A)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

B)
$$\frac{z^2+4z}{(z-1)^3}$$

C) non esiste

$$\mathbf{D)} \ \ \frac{z}{(z-1)}$$

E)
$$\frac{-z^3+2z^2+z}{(z-1)^3}$$

Esercizio 6. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- B) non ha poli
- C) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- E) ha uno zero nell'origine e un polo reale semplice in z=-0.5

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \left\{ \begin{array}{ll} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{array} \right.$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- **B)** 18
- C) $18\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **D**) 9
- E) nessuna delle altre risposte è corretta

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

B)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

C)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					9	1				
	Eserc	izio	1	2	3	4	5	6	7	8	1
	Rispo	sta									1

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 3/2, con k intero non negativo
- B) per t = 2k + 1, con k intero non negativo
- C) per t = 2k, con k intero non positivo
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 4. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.25

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B**) 4
- C) $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **D**) 8
- **E)** $8 \sum_{k=-\infty}^{\infty} r^2(t kT)$

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) non esiste
- B) $\frac{z}{(z-1)}$
- C) $\frac{z^2+z}{(z-1)^3}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- E) $\sum_{i=1}^n z^i$

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	92

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- B) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- E) non ha poli

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- \mathbf{B}) $\frac{1}{9}$
- C) $\frac{2}{9}$
- **D)** $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2 (t kT)$

E)
$$\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$$

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\frac{z}{(z-1)}$
- **B**) $\frac{1}{(z-1)^2}$
- C) $\frac{z}{(z-1)^3}$
- D) non esiste
- E) $\sum_{i=1}^n z^i$

Esercizio 5. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t = 0
- **B)** può solo assumere i tre valori 0, +1 e -1
- C) può solo assumere valori compresi tra -1 e +1
- **D)** ha un massimo per t=1

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- E) Nessuna delle altre risposte.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	93

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 2. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t=1
- **B)** ha un massimo per t=0
- C) può solo assumere valori compresi tra -1 e +1
- **D)** può solo assumere i tre valori $0, +1 e^{-1}$

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) $\frac{1}{4}$
- B) $\frac{1}{2}$
- C) nessuna delle altre risposte è corretta
- **D)** $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- E) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 6. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z=-0.5
- B) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- D) non ha poli
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$

Esercizio 7. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- E) Nessuna delle altre risposte.

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{z}{(z-1)}$
- **B**) $\frac{3z^2-z^3}{(z-1)^3}$
- C) non esiste
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					9	4				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** $\frac{1}{0}$
- B) nessuna delle altre risposte è corretta
- C) $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- \mathbf{D}) $\frac{2}{9}$
- E) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 4. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) $\frac{z}{(z-1)}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- D) non esiste
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 3/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k + 1, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- **D)** non ha poli
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Ma	tricola										
Co	mpito					9.	5				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta.									

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{-z^3+2z^2+z}{(z-1)^3}$
- $\mathbf{B)} \ \ \frac{z}{(z-1)}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- E) non esiste

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t kT)$
- **B**) $\frac{1}{4}$
- C) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- D) nessuna delle altre risposte è corretta
- **E**) $\frac{1}{2}$

Esercizio 6. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- B) non ha poli
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.7

Esercizio 7. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- **E)** Nessuna delle altre risposte.

Esercizio 8. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- A) per t=0
- **B**) per t = 1
- **C**) per t = -1
- **D)** per valori di t diversi da quelli specificati nelle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Ma	tricola										
Co	mpito					9	6				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- C) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.5$
- D) non ha poli
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$

Esercizio 2. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- C) Nessuna delle altre risposte.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- **B**) 9
- C) nessuna delle altre risposte è corretta
- **D)** 18
- **E)** $18 \sum_{k=-\infty}^{\infty} r^2(t kT)$

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **B)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-b\tau})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k + 5/2, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- C) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{z}{(z-1)^3}$
- C) $\frac{1}{(z-1)^2}$
- **D)** non esiste
- $\mathbf{E)} \ \ \frac{z}{(z-1)}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					9	7				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

Esercizio 2. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- B) non ha poli
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.5

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha \nu}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- B) nessuna delle altre risposte è corretta
- C) $\frac{1}{9}$
- **D)** $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- $\mathbf{B)} \ \frac{z}{(z-1)}$
- C) $\sum_{i=1}^n z^i$
- **D**) $\frac{z}{(z-1)^3}$
- **E)** $\frac{1}{(z-1)^2}$

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- A) per t=1
- **B)** per t = 0
- \mathbf{C}) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = -1

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					9	8				
	Eserc	izio	1	2	3	4	5	6	7	8	
			_	-		-					
	Rispo	$_{ m sta}$									

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\frac{z}{(z-1)^3}$
- **B**) $\frac{1}{(z-1)^2}$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- E) $\sum_{i=1}^n z^i$

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 5. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) Nessuna delle altre risposte.

Esercizio 6. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- D) non ha poli
- E) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$

Esercizio 7. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 1, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k + 3/2, con k intero non negativo

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) 9
- B) nessuna delle altre risposte è corretta
- C) $18\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **D)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- **E**) 18

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					9	9				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) Nessuna delle altre risposte.

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

B)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non positivo
- **D)** per t = 2k, con k intero non negativo

Esercizio 5. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.3$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) non ha poli
- D) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) 4
- **B)** $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- C) $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **D)** 8
- E) nessuna delle altre risposte è corretta

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- B) $\frac{z}{(z-1)^3}$
- C) $\sum_{i=1}^n z^i$
- **D)** $\frac{1}{(z-1)^2}$
- $\mathbf{E)} \ \frac{z}{(z-1)}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	Compito					10	00				
	Eserci	izio	1	2	3	4	5	6	7	8]

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$
- D) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.3$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) $\frac{1}{4}$
- $\mathbf{B)} \ \ \tfrac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- C) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **D**) $\frac{1}{2}$
- E) nessuna delle altre risposte è corretta

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- $\mathbf{A)} \ \ \frac{z}{(z-1)}$
- **B**) $\frac{z}{(z-1)^3}$
- C) non esiste
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- **E**) $\frac{1}{(z-1)^2}$

Esercizio 4. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

B)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k, con k intero non negativo
- B) per t = 2k + 5/2, con k intero non negativo
- C) per t = 2k, con k intero non positivo
- **D)** per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					10)1				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{z}{(z-1)}$
- **B**) $\frac{3z^2-z^3}{(z-1)^3}$
- C) non esiste
- **D)** $\frac{z^2+z}{(z-1)^3}$
- E) $\sum_{i=1}^n z^i$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $18\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- **B**) 18
- C) $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- **D**) 9
- E) nessuna delle altre risposte è corretta

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

Esercizio 5. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) Nessuna delle altre risposte.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

B)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- B) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.25$
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- D) non ha poli
- E) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm i0.25$

Esercizio 8. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = 1
- **B)** per t = -1
- C) per t=0
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Coı	mpito					10)2				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = -1
- $\mathbf{B)} \text{ per } t = 0$
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t=1

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 4. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- B) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- C) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.7
- E) non ha poli

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) $\frac{1}{2}$
- **B)** $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t kT)$
- C) nessuna delle altre risposte è corretta
- **D)** $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- \mathbf{E}) $\frac{1}{4}$

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\frac{z}{(z-1)}$
- B) non esiste
- C) $\sum_{i=1}^n z^i$
- **D**) $\frac{1}{(z-1)^2}$
- **E**) $\frac{z}{(z-1)^3}$

Esercizio 8. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	Compito					10)3				
	Esercizio		1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 2. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 3/2, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k + 1, con k intero non negativo
- **D)** per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- B) $\frac{z}{(z-1)}$
- C) non esiste
- **D**) $\frac{z^2+4z}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 4. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

D) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

Esercizio 5. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t kT)$
- \mathbf{B}) $\frac{1}{4}$
- C) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- D) nessuna delle altre risposte è corretta
- **E**) $\frac{1}{2}$

Esercizio 8. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome												
Cog	gnome												
Mat	Matricola												
Cor	Compito			104									
	Eserci	izio	1	2	3	4	5	6	7	8]		
	Rispos	sta											

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- B) non esiste
- C) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- \mathbf{A}) $\frac{1}{2}$
- $\mathbf{B)} \ \ \tfrac{1}{4} \sum_{k=-\infty}^{\infty} r(t kT)$
- C) $\frac{1}{4}$

- **D)** $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t kT)$
- E) nessuna delle altre risposte è corretta

Esercizio 4. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1-|t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- \mathbf{A}) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 1
- C) per t=0
- **D)** per t = -1

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]

Esercizio 8. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- D) non ha poli
- **E)** ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm i0.5$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	Matricola										
Co	Compito					10)5				
	Esercizio		1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 3. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- C) non ha poli
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.3$
- E) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- A) per t=1
- B) per valori di t diversi da quelli specificati nelle altre risposte
- **C**) per t = -1
- **D)** per t=0

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A) nessuna delle altre risposte è corretta

- **B)** $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **C**) 4
- **D**) 8
- **E)** $8 \sum_{k=-\infty}^{\infty} r^2(t kT)$

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- B) Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{z}{(z-1)^3}$
- $\mathbf{B)} \ \ \frac{z}{(z-1)}$
- C) $\frac{1}{(z-1)^2}$
- D) non esiste
- E) $\sum_{i=1}^n z^i$

$\begin{array}{c} 4 \text{ luglio } 2014 \\ \text{Teoria ed elaborazione dei segnali (INF)} \end{array}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome										
Cognome										
Matricola										
Compito					10)6				
Eserc	izio	1	2	3	4	5	6	7	8	j

 Esercizio
 1
 2
 3
 4
 5
 6
 7
 8

 Risposta

 <td

Esercizio 1. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- E) Nessuna delle altre risposte.

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) $\frac{3z^2-z^3}{(z-1)^3}$
- **B**) $\frac{z^2+z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- $\mathbf{D)} \ \sum_{i=1}^{n} z^{i}$
- E) non esiste

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) 9
- B) nessuna delle altre risposte è corretta

C)
$$18 \sum_{k=-\infty}^{\infty} r^2 (t - kT)$$

- **D**) 18
- E) $9\sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- **B)** $\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- C) $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 7. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- C) ha uno zero nell'origine e un polo reale semplice in z=-0.3
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm i0.3$
- E) non ha poli

Esercizio 8. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t=0
- B) può solo assumere valori compresi tra -1 e +1
- C) può solo assumere i tre valori $0, +1 e^{-1}$
- **D)** ha un massimo per t=1

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome												
Cog	gnome												
Mat	tricola												
Co	Compito			107									
	Eserci	izio	1	2	3	4	5	6	7	8]		
	Rispos	sta											

Esercizio 1. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) Nessuna delle altre risposte.

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

B)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

C)
$$\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

A) per valori di t diversi da quelli specificati nelle altre risposte

- B) per t = 2k, con k intero non positivo
- C) per t = 2k + 1, con k intero non negativo
- **D)** per t = 2k + 3/2, con k intero non negativo

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D)** non esiste
- **E)** $\frac{z^2+4z}{(z-1)^3}$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- B) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- C) nessuna delle altre risposte è corretta
- **D**) $\frac{1}{2}$
- E) $\frac{1}{4}$

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 8. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- **D)** non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm i0.3$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome											
	gnome											
Mat	tricola											
Con	Compito		108									
	Eserci	izio	1	2	3	4	5	6	7	8		
	Rispos	sta										

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 2. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- \mathbf{C}) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k + 5/2, con k intero non negativo

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **B**) 8
- C) nessuna delle altre risposte è corretta
- **D**) 4

E) $4\sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 4. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- C) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.3
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- E) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

B)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

C)
$$\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

D)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

A)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

B)
$$\frac{z^2+4z}{(z-1)^3}$$

C)
$$\frac{3z^2-z^3}{(z-1)^3}$$

$$\mathbf{D)} \ \ \frac{z}{(z-1)}$$

E) non esiste

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					10	9				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- $\mathbf{B)} \ \frac{z}{(z-1)}$
- C) non esiste
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 3. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $18\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- **B**) 18
- C) $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- **D**) 9
- E) nessuna delle altre risposte è corretta

Esercizio 5. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- B) non ha poli
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.3$

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 1, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k + 3/2, con k intero non negativo
- **D)** per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	ognome										
Mat	tricola										
Co	mpito					11	.0				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) non esiste

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f = 0 e per f = 1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 4. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) Nessuna delle altre risposte.

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 1, con k intero non negativo
- B) per t = 2k + 3/2, con k intero non negativo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k, con k intero non positivo

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{2}{9}$
- B) $\frac{1}{9}$
- C) $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t kT)$
- D) nessuna delle altre risposte è corretta
- E) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

Esercizio 8. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.7
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Cor	mpito					11	.1				
	Eserci	zio	1	2	3	4	5	6	7	8	

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

Risposta

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 2. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha poli
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- C) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- D) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.5

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = -1
- \mathbf{B}) per valori di t diversi da quelli specificati nelle altre risposte
- **C**) per t = 1
- **D)** per t = 0

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{z}{(z-1)}$
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- D) non esiste

E)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

B)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

C)
$$\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

D)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B**) $\frac{1}{2}$
- C) $\frac{1}{4}$
- $\mathbf{D)} \ \ \tfrac{1}{2} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- E) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 8. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- **A)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	112
Eserc	izio 1 2 3 4 5 6 7 8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

B)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

A)
$$\frac{1}{(z-1)^2}$$

C)
$$\sum_{i=1}^{n} z^i$$

$$\mathbf{D)} \ \ \frac{z}{(z-1)}$$

E)
$$\frac{z}{(z-1)^3}$$

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 5. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha poli
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- C) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.7
- E) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.7$

Esercizio 6. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t=1
- **B)** può solo assumere i tre valori $0, +1 e^{-1}$
- C) ha un massimo per t=0
- **D)** può solo assumere valori compresi tra -1 e +1

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B**) 9
- C) $18\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- **D)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- **E**) 18

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	Cognome										
Mat	tricola										
Co	mpito					11	.3				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 2. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k, con k intero non positivo
- \mathbf{B}) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non negativo
- **D)** per t = 2k + 5/2, con k intero non negativo

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C) y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]

Esercizio 5. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- B) non ha poli
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{1}{(z-1)^2}$
- $\mathbf{B)} \ \ \frac{z}{(z-1)}$
- C) non esiste
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- $\mathbf{E)} \ \frac{z}{(z-1)^3}$

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- C) $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **B**) 4
- **C**) 8
- D) nessuna delle altre risposte è corretta
- **E)** $8 \sum_{k=-\infty}^{\infty} r^2(t kT)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					11	.4				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{z}{(z-1)^3}$
- B) non esiste
- C) $\sum_{i=1}^{n} z^i$
- **D**) $\frac{1}{(z-1)^2}$
- E) $\frac{z}{(z-1)}$

Esercizio 2. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- B) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- C) non ha poli
- **D)** ha uno zero nell'origine e un polo reale semplice in z=-0.3
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f = 0 e per f = 1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{2}{9}$
- B) nessuna delle altre risposte è corretta
- C) $\frac{2}{9}\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- **D**) $\frac{1}{9}$
- E) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **B)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 8. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- \mathbf{B}) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non positivo
- **D)** per t = 2k, con k intero non negativo

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	115

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 2. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$
- D) non ha poli
- E) ha uno zero nell'origine e un polo reale semplice in z=-0.3

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k + 5/2, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

Esercizio 4. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- E) Nessuna delle altre risposte.

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) non esiste
- B) $\sum_{i=1}^{n} z^{i}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **D)** $\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** 18
- **B)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- C) $18\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **D**) 9
- E) nessuna delle altre risposte è corretta

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Coı	mpito					11	.6				
	Eserci	izio	1	2	3	4	5	6	7	8	j
	Rispos	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_{k}}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- B) $\frac{2}{9}$
- C) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- \mathbf{D}) $\frac{1}{9}$
- E) $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t-kT)$

Esercizio 2. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 2k + 1, con k intero non negativo
- C) per t = 2k, con k intero non positivo
- **D)** per t = 2k + 3/2, con k intero non negativo

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 4. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- B) non ha poli

- C) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.25

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- D) non esiste
- **E**) $\frac{z}{(z-1)}$

Esercizio 7. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) Nessuna delle altre risposte.

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

2

A)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

B)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

C)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

D)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	117

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = 1
- **B)** per t = -1
- \mathbf{C}) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 0

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) non esiste
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **B)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B)** $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t kT)$
- C) $\frac{1}{9}$
- $\mathbf{D}) \ \ \tfrac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- E) $\frac{2}{9}$

Esercizio 7. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) Nessuna delle altre risposte.

Esercizio 8. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- C) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.7$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	118

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **B)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 3. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- B) non ha poli
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.25
- E) non ha zeri e ha due poli semplici reali in $z = \pm 0.25$

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **B**) $\frac{z}{(z-1)}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** $\frac{-z^3+2z^2+z}{(z-1)^3}$

E) non esiste

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B)** 18
- C) $18\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- **D**) 9
- E) $9\sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 7. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k, con k intero non negativo

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) Nessuna delle altre risposte.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito 119	
Esercizio 1 2 3 4 5 6 7 8	

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$

Esercizio 2. (1 punto) Sia dato il processo casuale

Risposta

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) $\frac{1}{4}$
- B) $\frac{1}{2}$
- C) nessuna delle altre risposte è corretta
- **D)** $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t kT)$
- **E)** $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t kT)$

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non positivo
- **D)** per t = 2k, con k intero non negativo

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D)** non esiste
- \mathbf{E}) $\frac{z}{(z-1)}$

Esercizio 5. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- C) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.5$
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- E) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$

Esercizio 6. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- E) Nessuna delle altre risposte.

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

2

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Con	$_{ m mpito}$					12	20				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rieno	eta									

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- B) per t = 2k, con k intero non negativo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k, con k intero non positivo

Esercizio 2. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- D) non ha poli
- E) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

Esercizio 4. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

B)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

C)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

D)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- B) nessuna delle altre risposte è corretta
- C) $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **D**) 8
- **E**) 4

Esercizio 6. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 7. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- D) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{1}{(z-1)^2}$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- E) $\frac{z}{(z-1)^3}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Cognome	
Matricola	
Compito	121

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- B) nessuna delle altre risposte è corretta
- **C**) 9

$$\mathbf{D)} \ 18 \sum_{k=-\infty}^{\infty} r^2 (t - kT)$$

Esercizio 4. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** Nessuna delle altre risposte.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 5. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- A) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = -1
- **C**) per t = 1
- **D)** per t = 0

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{B)} \ \ \tfrac{z}{(z-1)}$
- **C)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **D)** non esiste
- **E)** $\frac{z^2+4z}{(z-1)^3}$

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 8. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- E) ha uno zero nell'origine e un polo reale semplice in z=-0.5

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	122

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

B)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

C)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

D)
$$\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) 9
- **B)** $18 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- C) $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- D) nessuna delle altre risposte è corretta
- **E**) 18

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- **B**) $\frac{3z^2-z^3}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- D) non esiste
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 7. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- B) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- E) non ha poli

Esercizio 8. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = -1
- $\mathbf{B)} \text{ per } t = 1$
- C) per t=0
- **D)** per valori di t diversi da quelli specificati nelle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	123

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 2. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha poli
- B) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- E) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$$

B)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

C)
$$\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 4. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- A) può solo assumere i tre valori 0, +1 e -1
- **B)** ha un massimo per t=0
- C) ha un massimo per t=1
- **D)** può solo assumere valori compresi tra -1 e +1

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{9}$
- B) nessuna delle altre risposte è corretta
- C) $\frac{2}{9}\sum_{k=-\infty}^{\infty}r^2(t-kT)$
- \mathbf{D}) $\frac{2}{9}$
- E) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 7. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- **D)** Nessuna delle altre risposte.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) non esiste
- **B)** $\frac{z}{(z-1)}$
- C) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					12	24				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- **B**) $\frac{z}{(z-1)}$
- C) $\frac{1}{(z-1)^2}$
- **D**) $\frac{z}{(z-1)^3}$
- E) non esiste

Esercizio 2. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

A)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

B)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k, con k intero non negativo
- **D)** per t = 2k + 5/2, con k intero non negativo

Esercizio 7. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- B) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm i0.7$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- **D)** non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- E) non ha poli

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A)
$$\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$$

- B) $\frac{1}{9}$
- C) $\frac{2}{9}$
- **D)** $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t kT)$
- E) nessuna delle altre risposte è corretta

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome											
Cognome											
Matricola											
Compito		125									
	Esercizio		1	2	3	1	5	6	7	8	
	Liberenzio		1	-	0	-	-	0	'	0	
	Risposta										

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-b\tau})$

Esercizio 2. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{z}{(z-1)^3}$
- **B**) $\frac{1}{(z-1)^2}$
- C) $\frac{z}{(z-1)}$
- **D)** non esiste
- E) $\sum_{i=1}^n z^i$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \left\{ \begin{array}{ll} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{array} \right.$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- B) 8
- C) $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **D**) 4

E)
$$4\sum_{k=-\infty}^{\infty} r(t-kT)$$

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- **A)** per t = 2k, con k intero non positivo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non negativo
- **D)** per t = 2k + 5/2, con k intero non negativo

Esercizio 5. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- B) non ha poli
- C) ha uno zero nell'origine e un polo reale semplice in z=-0.25
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$

Esercizio 6. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- **E)** Nessuna delle altre risposte.

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	126

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$

Esercizio 2. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- C) non ha poli
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A)** $18 \sum_{k=-\infty}^{\infty} r^2(t kT)$
- **B**) 9
- C) $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- D) nessuna delle altre risposte è corretta
- **E**) 18

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per valori di t diversi da quelli specificati nelle altre risposte
- B) per t = 2k + 5/2, con k intero non negativo
- C) per t = 2k, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{3z^2-z^3}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso—uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Coı	mpito					12	27				
	Esercizio			2	3	4	5	6	7	8	
	Diano	14.0									

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t=1
- **B)** per t = -1
- **C**) per t = 0
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 2. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- C) Nessuna delle altre risposte.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

Esercizio 4. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$

- C) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.7
- E) non ha poli

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$$

B)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$$

C)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$$

D)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B**) 9
- **C**) 18
- **D)** $18 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- E) $9\sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

A)
$$\frac{z^2+4z}{(z-1)^3}$$

B)
$$\sum_{i=1}^{n} (i-1)z^{i}$$

C)
$$\frac{z}{(z-1)}$$

D) non esiste

E)
$$\frac{3z^2-z^3}{(z-1)^3}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome						
Cognome						
Matricola						
Compito			12	28		
					 _	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$

Esercizio 2. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- C) non ha poli
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- E) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) $\frac{1}{2}$
- B) nessuna delle altre risposte è corretta
- C) $\frac{1}{4}$
- $\mathbf{D)} \ \ \frac{1}{4} \sum_{k=-\infty}^{\infty} r(t kT)$
- E) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 1, con k intero non negativo
- B) per t = 2k + 3/2, con k intero non negativo
- C) per t = 2k, con k intero non positivo
- **D)** per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{z}{(z-1)}$
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- **D)** non esiste
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 8. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					12	29				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 3. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- B) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- D) non ha poli
- E) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- A) per t=1
- **B)** per t = -1
- C) per t=0
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

A) non esiste

B)
$$\frac{z}{(z-1)^3}$$

C)
$$\frac{z}{(z-1)}$$

$$\mathbf{D}) \sum_{i=1}^{n} z^{i}$$

E)
$$\frac{1}{(z-1)^2}$$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A) nessuna delle altre risposte è corretta

B)
$$\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$$

C) $\frac{1}{4}$

$$\mathbf{D}) \ \ \tfrac{1}{4} \sum_{k=-\infty}^{\infty} r(t - kT)$$

E) $\frac{1}{2}$

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

Esercizio 8. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					13	80				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = -1
- B) per t=1
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 0

Esercizio 2. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha \nu}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A)
$$\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t - kT)$$

$$\mathbf{B)} \ \ \tfrac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$$

- C) nessuna delle altre risposte è corretta
- \mathbf{D}) $\frac{2}{9}$

E) $\frac{1}{9}$

Esercizio 4. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- **D)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 5. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$
- B) non ha poli
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.7
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.7$
- E) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) non esiste
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, ed ha modulo dispari.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					13	81				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di $x(t),\,\sigma_x^2(t),$ vale:

A) nessuna delle altre risposte è corretta

B)
$$4\sum_{k=-\infty}^{\infty} r(t-kT)$$

C) 8

$$\mathbf{D)} \ 8 \sum_{k=-\infty}^{\infty} r^2(t-kT)$$

E) 4

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) non esiste
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 6. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** ha un massimo per t = 0
- **B)** ha un massimo per t=1
- C) può solo assumere valori compresi tra -1 e +1
- **D)** può solo assumere i tre valori $0, +1 e^{-1}$

Esercizio 7. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- B) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- D) non ha poli
- E) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **B)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	132

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- E) Nessuna delle altre risposte.

Esercizio 2. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- C) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.5$
- **D)** non ha poli
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.5

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

D) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\frac{z}{(z-1)^3}$
- **B**) $\sum_{i=1}^{n} z^{i}$
- C) $\frac{1}{(z-1)^2}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) non esiste

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = -1
- **B)** per t = 0
- **C)** per t = 1
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **B**) $\frac{1}{4}$
- C) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- D) nessuna delle altre risposte è corretta
- \mathbf{E}) $\frac{1}{2}$

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					13	3				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_Y^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{-z^3+2z^2+z}{(z-1)^3}$
- $\mathbf{B)} \ \ \frac{z}{(z-1)}$
- C) $\sum_{i=1}^{n} (i-1)z^{i}$
- **D)** non esiste
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 4. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non negativo

D) per t = 2k, con k intero non positivo

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A) nessuna delle altre risposte è corretta

- $\mathbf{B)} \ \ \tfrac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- C) $\frac{1}{4}$
- **D**) $\frac{1}{2}$
- **E)** $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 6. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.3$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.3$
- E) non ha poli

Esercizio 7. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Cor	mpito		134								
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **B**) $\frac{2}{9}$
- C) $\frac{1}{9}$
- D) nessuna delle altre risposte è corretta
- E) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 2. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.

Esercizio 3. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha poli
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$

E) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) $\sum_{i=1}^n z^i$
- B) $\frac{z}{(z-1)}$
- C) $\frac{1}{(z-1)^2}$
- D) non esiste
- **E**) $\frac{z}{(z-1)^3}$

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-0.5b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$
- **B)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 7. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- **A)** può solo assumere i tre valori $0, +1 e^{-1}$
- **B)** ha un massimo per t=1
- C) può solo assumere valori compresi tra -1 e +1
- **D)** ha un massimo per t=0

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					13	35				
	Eserc	izio	1	2	3	1	5	6	7	8	
	Listrelizio		1	-	0	1	0	0	'	0	ļ
	Risposta										

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- A) non esiste
- B) $\sum_{i=1}^n z^i$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- **D)** $\frac{z^2+z}{(z-1)^3}$
- $\mathbf{E)} \ \frac{z}{(z-1)}$

Esercizio 2. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 3/2, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non positivo
- **D)** per t = 2k + 1, con k intero non negativo

Esercizio 3. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- **A)** Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$$

B)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$$

D)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

Esercizio 7. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- D) non ha poli
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A)
$$\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$$

$$\mathbf{B}$$
) $\frac{1}{9}$

C)
$$\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t - kT)$$

- D) nessuna delle altre risposte è corretta
- E) $\frac{2}{9}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Ma	tricola										
Compito						13	36				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- **A**) 9
- B) nessuna delle altre risposte è corretta
- C) $9\sum_{k=-\infty}^{\infty} r(t-kT)$
- $\mathbf{D)} \ 18 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- **E**) 18

Esercizio 2. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f = 0 e per f = 1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

Esercizio 3. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) Nessuna delle altre risposte.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- B) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 5. Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso h(t) = u(t) - u(t-3), l'uscita y(t)

- A) può solo assumere valori compresi tra -1 e +1
- **B)** può solo assumere i tre valori $0, +1 e^{-1}$
- C) ha un massimo per t=0
- **D)** ha un massimo per t=1

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{z^2+z}{(z-1)^3}$
- **B**) $\frac{3z^2-z^3}{(z-1)^3}$
- C) $\frac{z}{(z-1)}$
- $\mathbf{D}) \sum_{i=1}^{n} z^{i}$
- E) non esiste

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 8. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- B) non ha poli
- C) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.7
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.7$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome											
	gnome											
Mat	tricola											
Co	Compito			137								
	Eserci	izio	1	2	3	4	5	6	7	8		
	Rispos	sta										

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \left\{ \begin{array}{ll} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{array} \right.$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$
- B) nessuna delle altre risposte è corretta
- C) $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **D**) 8
- **E**) 4

Esercizio 2. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- \mathbf{A}) per valori di t diversi da quelli specificati nelle altre risposte
- B) per t = 2k + 3/2, con k intero non negativo
- C) per t = 2k + 1, con k intero non negativo
- **D)** per t = 2k, con k intero non positivo

Esercizio 3. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 4. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.5
- B) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- D) non ha poli
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.5$

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- B) non esiste
- C) $\frac{z^2+4z}{(z-1)^3}$
- $\mathbf{D)} \ \frac{z}{(z-1)}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **B)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- B) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					13	88				
	Esercizio		1	2	3	4	5	6	7	8	

Esercizio 1. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Risposta

- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- E) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.

Esercizio 2. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha poli
- B) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_h}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A)
$$\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$$

B)
$$\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$$

- C) nessuna delle altre risposte è corretta
- **D**) $\frac{1}{2}$

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]

Esercizio 6. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 2k, con k intero non negativo

Esercizio 7. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-b\tau})$
- **B)** $\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- A) non esiste
- **B**) $\frac{1}{(z-1)^2}$
- C) $\frac{z}{(z-1)}$
- **D**) $\frac{z}{(z-1)^3}$
- E) $\sum_{i=1}^n z^i$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Cor	mpito					13	89				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 1, con k intero non negativo
- B) per valori di t diversi da quelli specificati nelle altre risposte
- C) per t = 2k, con k intero non positivo
- **D)** per t = 2k + 3/2, con k intero non negativo

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-0.5b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5b\tau})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-0.5bt}(1 + 3e^{-0.5bT})$

Esercizio 3. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) Nessuna delle altre risposte.
- C) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- **E)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 4. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

1

A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

- **B)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{2}{9}$
- B) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$
- C) nessuna delle altre risposte è corretta
- **D)** $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t kT)$
- **E**) $\frac{1}{9}$

Esercizio 7. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.7. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine, uno zero reale in z=-0.7 e due poli complessi coniugati in $z=\pm j0.7$
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.7$
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.7$
- D) non ha poli
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.7

Esercizio 8. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- B) non esiste
- C) $\frac{z}{(z-1)}$
- **D)** $\sum_{i=1}^{n} (i-1)z^{i}$
- **E**) $\frac{3z^2-z^3}{(z-1)^3}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Matricola											
Co	Compito					14	10				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B**) 8
- C) $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- $\mathbf{D)} \ 8 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- **E**) 4

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) ha righe in k/T, con k intero.

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

Esercizio 4. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- C) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- E) non ha poli

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- C) Nessuna delle altre risposte.
- **D)** La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$

Esercizio 7. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) non esiste
- **B**) $\frac{z^2+4z}{(z-1)^3}$
- C) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 8. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- **A)** per t = -1
- **B)** per t = 0
- C) per valori di t diversi da quelli specificati nelle altre risposte
- **D)** per t = 1

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	Cognome										
Mat	Matricola										
Co	Compito					14	1				
	Esercizio		1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $4\sum_{k=-\infty}^{\infty}r(t-kT)$
- **B**) 8
- **C**) 4
- D) nessuna delle altre risposte è corretta
- **E)** $8\sum_{k=-\infty}^{\infty} r^2(t-kT)$

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per t = 2k + 5/2, con k intero non negativo
- **B)** per t = 2k, con k intero non negativo
- C) per valori di t diversi da quelli specificati nelle altre risposte

D) per t = 2k, con k intero non positivo

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n] \frac{n(n-1)}{2}$$

- **A)** $\frac{1}{(z-1)^2}$
- $\mathbf{B}) \sum_{i=1}^{n} z^{i}$
- C) $\frac{z}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- E) non esiste

Esercizio 5. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **B)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 6. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- C) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- **D)** non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- E) ha uno zero nell'origine e un polo reale semplice in z = -0.25

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- C) Lo spettro di x(t) è a righe equispaziate di 1/T.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

Esercizio 8. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	$_{ m mpito}$					14	2				
	Esercizio		1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- $\mathbf{B)} \ \ \tfrac{1}{2} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- C) $\frac{1}{4}$
- **D**) $\frac{1}{2}$
- E) nessuna delle altre risposte è corretta

Esercizio 3. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- **B)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.

D) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 4. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 5. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- E) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- A) non esiste
- **B**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- C) $\frac{z^2+4z}{(z-1)^3}$
- $\mathbf{D)} \ \ \frac{z}{(z-1)}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 7. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- B) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm i0.25$
- C) non ha zeri e ha due poli semplici reali in $z = \pm 0.25$
- D) non ha poli
- E) ha uno zero nell'origine e un polo reale semplice in z=-0.25

Esercizio 8. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- **A)** per t = 2k, con k intero non positivo
- B) per t = 2k + 3/2, con k intero non negativo
- C) per t = 2k + 1, con k intero non negativo
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	143

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 2. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 3. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a 1 - |t| per -1 < t < +1 e vale 0 altrove. Nel caso in cui h(t) = x(t-1), y(t) assume il suo valore massimo

- A) per valori di t diversi da quelli specificati nelle altre risposte
- B) per t=1
- C) per t = -1
- **D)** per t = 0

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A) nessuna delle altre risposte è corretta

B) $\frac{1}{6}$

C) $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t-kT)$

 $\mathbf{D}) \frac{2}{9}$

E) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$

Esercizio 5. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

A) non ha poli

B) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm i0.25$

C) ha uno zero nell'origine e un polo reale semplice in z = -0.25

D) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$

E) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$

Esercizio 6. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

A) $\frac{3z^2-z^3}{(z-1)^3}$

B) non esiste

C) $\frac{z^2+z}{(z-1)^3}$

 $\mathbf{D)} \ \ \frac{z}{(z-1)}$

E) $\sum_{i=1}^n z^i$

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f = 0 e per f = 1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A) y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]

B) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]

C) y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]

Esercizio 8. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

A) Nessuna delle altre risposte.

B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

C) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.

E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome											
Cog	gnome											
Mat	tricola											
Co	Compito		144									
	Esercizio		1	2	3	4	5	6	7	8		
	Rispos	sta										

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- \mathbf{A}) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k, con k intero non negativo
- **D)** per t = 2k + 5/2, con k intero non negativo

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B**) 18
- C) $18 \sum_{k=-\infty}^{\infty} r^2(t kT)$
- $\mathbf{D)} \ 9 \sum_{k=-\infty}^{\infty} r(t kT)$
- **E**) 9

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - n - 1)$$

- **A)** $\frac{z^2+4z}{(z-1)^3}$
- **B**) $\frac{z}{(z-1)}$
- C) non esiste
- **D**) $\frac{-z^3+2z^2+z}{(z-1)^3}$
- **E)** $\sum_{i=1}^{n} (i-1)z^{i}$

Esercizio 4. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha poli
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- C) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$

Esercizio 5. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- E) Nessuna delle altre risposte.

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-2b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **B)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- C) $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$

Esercizio 7. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 1/2y[n-2]
- **B)** y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]
- C) y[n] = x[n] x[n-1] + x[n-2] x[n-3] 2y[n-2]

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, ed ha modulo dispari.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) ha righe in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	145

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 2y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 1/2y[n-2]$$

Esercizio 2. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$
- B) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- C) non ha poli
- **D)** ha uno zero nell'origine e un polo reale semplice in z = -0.25
- E) ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- **A**) $\frac{z^2+4z}{(z-1)^3}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{z}{(z-1)}$
- **D)** $\frac{3z^2-z^3}{(z-1)^3}$
- E) non esiste

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

A) $\frac{2}{9}$

B) nessuna delle altre risposte è corretta

C) $\frac{1}{9}$

D) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$

E) $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2(t - kT)$

Esercizio 5. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- **A)** Nessuna delle altre risposte.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- E) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

A)
$$\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$$

B)
$$\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$$

C)
$$\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$$

D)
$$\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

Esercizio 7. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.
- **B)** Lo spettro di x(t) ha righe in k/T, con k intero.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.

Esercizio 8. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a sgn(t) = t/|t| per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

A) per t = 2k, con k intero non positivo

B) per t = 2k, con k intero non negativo

C) per t = 2k + 5/2, con k intero non negativo

D) per valori di t diversi da quelli specificati nelle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	146

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{z^2+z}{(z-1)^3}$
- $\mathbf{B}) \sum_{i=1}^{n} z^{i}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- D) non esiste
- **E**) $\frac{z}{(z-1)}$

Esercizio 2. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 1, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k + 3/2, con k intero non negativo
- **D)** per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 3. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **D)** $\sigma_Y^2(t) = e^{-bt}(1 + e^{-bT})$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \left\{ \begin{array}{ll} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{array} \right.$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{3}e^{-\frac{y}{3}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B**) 18
- **C**) 9
- $\mathbf{D)} \ 9 \sum_{k=-\infty}^{\infty} r(t kT)$
- **E)** $18 \sum_{k=-\infty}^{\infty} r^2 (t kT)$

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- C) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 6. (1 punto) Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.25. La trasformata z di x[n], X(z):

- A) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.25$
- B) non ha poli
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.25
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.25 e due poli complessi coniugati in $z=\pm j0.25$
- E) non ha zeri e ha due poli semplici reali in $z=\pm 0.25$

Esercizio 7. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- B) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- C) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.
- E) Nessuna delle altre risposte.

Esercizio 8. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) ha righe non nulle in k/T, con k intero.
- **D)** Lo spettro di x(t) è a righe equispaziate di 1/T.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	147

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha poli
- B) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- **D)** ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$
- E) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$

Esercizio 2. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) ha righe in k/T, con k intero.
- **B)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/2T$ nulle.
- C) Lo spettro di x(t) è a righe, ed ha modulo dispari.
- **D)** Lo spettro di x(t) è a righe, con le righe in $f = \pm 2/T$ nulle.

Esercizio 3. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

- **A)** $\frac{3z^2-z^3}{(z-1)^3}$
- $\mathbf{B}) \sum_{i=1}^{n} z^{i}$
- C) $\frac{z}{(z-1)}$
- **D)** non esiste
- **E**) $\frac{z^2+z}{(z-1)^3}$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 2e^{-2y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $\frac{1}{2} \sum_{k=-\infty}^{\infty} r^2(t-kT)$
- **B**) $\frac{1}{2}$
- C) $\frac{1}{4} \sum_{k=-\infty}^{\infty} r(t-kT)$
- **D**) $\frac{1}{4}$
- E) nessuna delle altre risposte è corretta

Esercizio 5. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

- **A)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] + y[n-1] 0.1y[n-2]
- **B)** y[n] = x[n] x[n-1] + x[n-2] x[n-3] 0.5y[n-2]
- C) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] 1/2y[n-2]

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t) = 0 per t < 0. Il processo è a media nulla e la sua autocorrelazione $R_X(t, t + \tau)$ è nota per t > 0 e per $\tau \ge 0$, dove vale $R_X(t, t + \tau) = e^{-b(t+\tau)}$ per b > 0. Si costruisca il processo Y(t) = X(t) + X(t+T), dove T > 0. La varianza di Y(t) per t > 0 vale

- **A)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$
- **B)** $\sigma_Y^2(t) = e^{-bt} + 2e^{-bT}$
- C) $\sigma_Y^2(t) = e^{-bt}(1 + 3e^{-bT})$
- **D)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-b\tau})$

Esercizio 7. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- B) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- C) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- D) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- **E)** Nessuna delle altre risposte.

Esercizio 8. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- A) per valori di t diversi da quelli specificati nelle altre risposte
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k + 5/2, con k intero non negativo
- **D)** per t = 2k, con k intero non negativo

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome												
Cog	gnome												
Mat	tricola												
Co	Compito			148									
	Esercizio		1	2	3	4	5	6	7	8			
	Risposta												

Esercizio 1. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \sin\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- A) Lo spettro di x(t) ha righe non nulle in k/T, con k intero-
- **B)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- C) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- **D)** Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.

Esercizio 2. (2 punti) Un filtro FIR causale ha cinque zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$ $w_5 = 1$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 5.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro è non nulla nell'origine e ha fase lineare.
- B) La risposta in frequenza del filtro ha fase lineare ed è nulla nell'origine.
- C) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.
- **D)** Nessuna delle altre risposte.
- E) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.

Esercizio 3. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

Esercizio 4. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z=\pm 0.3$
- B) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- C) ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$

- D) non ha poli
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$

Esercizio 5. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n](n^2 - 1)$$

- A) $\frac{z}{(z-1)}$
- **B)** $\sum_{i=1}^{n} (i-1)z^{i}$
- C) $\frac{3z^2-z^3}{(z-1)^3}$
- D) non esiste
- **E**) $\frac{z^2+4z}{(z-1)^3}$

Esercizio 6. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq 0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-2b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

- **A)** $\sigma_V^2(t) = e^{-bt}(1 + e^{-bT})$
- **B)** $\sigma_V^2(t) = e^{-bt} + 2e^{-b(2t+T)}$
- C) $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2b\tau})$
- **D)** $\sigma_V^2(t) = e^{-2bt}(1 + 3e^{-2bT})$

Esercizio 7. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore minimo

- A) per t = 2k + 1, con k intero non negativo
- **B)** per t = 2k, con k intero non positivo
- C) per t = 2k + 3/2, con k intero non negativo
- **D)** per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = 3e^{-3y}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) nessuna delle altre risposte è corretta
- **B)** $\frac{2}{9} \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- C) $\frac{2}{9}$
- D) $\frac{1}{9}$
- E) $\frac{1}{9} \sum_{k=-\infty}^{\infty} r(t-kT)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome												
Cog	gnome												
Mat	tricola												
Co	Compito		149										
	Eserci	izio	1	2	3	4	5	6	7	8			
	Rispos	sta											

Esercizio 1. (1 punto) Sia y(t) l'uscita di una trasformazione lineare e tempo-invariante, caratterizzata da una risposta all'impulso h(t), alla quale è applicato in ingresso il segnale x(t). x(t) è uguale a $\operatorname{sgn}(t) = t/|t|$ per -1 < t < +1 e vale 0 altrove. Nel caso $h(t) = u(t) \cos(\pi t)$, y(t) assume il suo valore massimo

- **A)** per t = 2k, con k intero non positivo
- **B)** per t = 2k, con k intero non negativo
- C) per t = 2k + 5/2, con k intero non negativo
- \mathbf{D}) per valori di t diversi da quelli specificati nelle altre risposte

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k r(t - kT)$$

dove

$$r(t) = \begin{cases} 1 & 0 < t < \frac{T}{2} \\ -1 & \frac{T}{2} < t < T \\ 0 & \text{altrove} \end{cases}$$

e le α_k sono variabili casuali tra loro statisticamente indipendenti, tutte con la stessa densità di probabilità

$$f_{\alpha_k}(y) = \frac{1}{2}e^{-\frac{y}{2}}u(y)$$

La varianza di x(t), $\sigma_x^2(t)$, vale:

- A) $4\sum_{k=-\infty}^{\infty} r(t-kT)$
- **B**) 4
- **C)** $8 \sum_{k=-\infty}^{\infty} r^2 (t kT)$
- D) nessuna delle altre risposte è corretta
- **E**) 8

Esercizio 3. (2 punti) Un filtro FIR causale ha quattro zeri

$$w_1 = re^{j\phi}$$
 $w_2 = re^{-j\phi}$ $w_3 = (1/r)e^{j\phi}$ $w_4 = (1/r)e^{-j\phi}$

dove 0 < r < 1. I coefficienti b_i del filtro sono nulli per i > 4.

Dire quali delle seguenti affermazioni è vera:

- A) La risposta in frequenza del filtro ha fase lineare ed è non nulla nell'origine.
- B) La risposta in frequenza del filtro è nulla nell'origine e ha fase non lineare.
- C) Nessuna delle altre risposte.
- D) La risposta in frequenza del filtro è sempre nulla nell'origine e ha fase lineare.

E) La risposta in frequenza del filtro ha fase lineare per qualsiasi valore di r, mentre il modulo è nullo nell'origine soltanto per r = 0.5.

Esercizio 4. (1.5 punti) Calcolare la trasformata z del seguente segnale:

$$x[n] = u[n]n^2$$

A)
$$\frac{3z^2-z^3}{(z-1)^3}$$

B)
$$\sum_{i=1}^{n} z^{i}$$

C)
$$\frac{z^2+z}{(z-1)^3}$$

- D) non esiste
- **E**) $\frac{z}{(z-1)}$

Esercizio 5. (1.5 punti) Si consideri un segnale determinato del tipo

$$x(t) = \cos\left[\frac{2\pi}{T}t + \phi(t)\right]$$

dove $\phi(t)$ è un'onda quadra definita, nel suo periodo, come segue:

$$\phi(t) = \begin{cases} 0 & \text{per } 0 < t < T \\ \pi & \text{per } T < t < 2T \end{cases}$$

- **A)** Lo spettro di x(t) è a righe equispaziate di 1/T.
- B) Lo spettro di x(t) è a righe, con le righe in $f = \pm 1/T$ non nulle.
- C) Lo spettro di x(t) è a righe, con riga in f = 0 non nulla.
- **D)** Lo spettro di x(t) ha righe non nulle in k/T, con k intero.

Esercizio 6. (1.5 punti) Un filtro numerico reale stabile ha una risposta in frequenza $H(e^{j2\pi f})$ nulla per f=0 e per f=1/4. Dire quali delle seguenti relazioni non può rappresentare la sua relazione ingresso-uscita

A)
$$y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] + y[n-1] - 0.1y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + y[n-1] - 1/2y[n-2]$$

C) y[n] = x[n] - x[n-1] + x[n-2] - x[n-3] - 0.5y[n-2]

Esercizio 7. (1 punto)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.3. La trasformata z di x[n], X(z):

- A) non ha zeri e ha due poli semplici reali in $z = \pm 0.3$
- B) non ha poli
- C) ha uno zero nell'origine e un polo reale semplice in z = -0.3
- **D)** ha uno zero nell'origine, uno zero reale in z=-0.3 e due poli complessi coniugati in $z=\pm j0.3$
- E) ha uno zero nell'origine e due poli complessi coniugati in $z = \pm j0.3$

Esercizio 8. (1.5 punti) Si consideri un processo casuale X(t) tale per cui X(t)=0 per t<0. Il processo è a media nulla e la sua autocorrelazione $R_X(t,t+\tau)$ è nota per t>0 e per $\tau\geq0$, dove vale $R_X(t,t+\tau)=\mathrm{e}^{-b(t+\tau)}$ per b>0. Si costruisca il processo Y(t)=X(t)+X(t+T), dove T>0. La varianza di Y(t) per t>0 vale

2

A)
$$\sigma_V^2(t) = e^{-bt}(1 + 3e^{-bT})$$

B)
$$\sigma_Y^2(t) = e^{-2bt}(1 + 3e^{-2bT})$$

C)
$$\sigma_V^2(t) = e^{-bt} + 2e^{-bT}$$

D)
$$\sigma_Y^2(t) = e^{-bt}(1 + e^{-b\tau})$$