CSCI338 HW4

Brock Ellefson

March 31, 2017

Question 1

Let β be the set of all infinite sequences over $\{a,b\}$. Show that β is uncountable, using a proof by diagonalization.

Assume that β is countable, then we can list them as β_1 , β_2

i		f(i)	
1	b_{11}	b_{12}	b_{13}
2	b_{21}	b_{22}	b_{23}
3	b_{31}	b_{32}	b_{33}

Now construct an x such that the ith bit of x is \neq the ith bit of β

Lets define x as x = (b, b, a...) thus making $x \neq \beta$ for any i^{th} sequence in the i^{th} bit. Therefore β is uncountable.

Question 2

Let $T = \{(i,j,k) | i,j,k \in N \}$. Show that T is countable.

By definition, the set T is countable iff:

If there exists an injective function f from T to the natural numbers

If f is surjective

If T has a one-to-one correspondence with natural numbers

Question 3

Show that $INFINITE_{PDA}$ is decidable

To decide INFINITE $_{PDA}$ convert PDA into equivalent CFG, let P be the pumping length. Construct regular language R that accepts strings longer than P. Intersect of CFL and regular languages is a CFL. Test this intersection for emptiness, accept if L of the intersection is empty, reject otherwise.

Question 4

 $ODD_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and L(M) contains only strings of odd length} \}$ Prove that ODD_{TM} is undecidable.

Question 5

```
Show that \mathrm{EQ}_{CFG} is undecidable. Assume that \mathrm{EQ}_{CFG} is decideable \mathrm{EQ}_{CFG} = \{ <\mathrm{G,H}> \mid \mathrm{G,H} \text{ are CFG's and L(G)} = \mathrm{L(H)} \} Reduce \mathrm{ALL}_{CFG} to \mathrm{EQ}_{CFG} Such That: \mathrm{ALL}_{CFG} = \{ <\mathrm{G}> \mid \mathrm{G} \text{ is a CFG's and L(G)} = \Sigma^* \} Let R be a decider for \mathrm{EQ}_{CFG} and construct TM S to decide \mathrm{ALL}_{CFG}. Construct CFG T such that \mathrm{L(T)} = \Sigma^*
```

- 1. Run R on input $\langle G, T_0 \rangle$
- 2. If R accepts, accept.
- 3. If R rejects, reject

R decides if L(G) = L(T). S decides ALL_{CFG} but it is undecidable, therefore EQ_{CFG} must also be undecidable

Question 6

Show that EQ_{CFG} is co-Turing-recognizable.

A language is co-turning recognizable if and only if its complement is a turning-recognizable language.

Convert G and H into Chomsky normal form. Begin iterating through the strings in Σ^* . If both G or H can generate or not generate the string a TM will continue on the interation of strings, however, if one CFG accepts a string and the other does not, that means that the CFG's are not equivlent and the TM accepts. Therefore EQ_{CFG} is co-turning recognizeable.

Question 7