Universidade Federal do Rio de Janeiro | Escola de Química

EQE 535 Modelagem e Simulação Molecular | 2025.1

Lista da Aula 03 - Distribuição de Maxwell Bolztmann

Prof. Elvis Soares e Prof. Fred Tavares

 Na tabela abaixo é dada a distribuição de velocidades de velocidades de quinze partículas idênticas.

N_v	v(m/s)
1	2,00
2	3,00
3	5,00
4	7,00
3	9,00
2	12,00

Determine: (a) a velocidade média; (b) a velocidade quadrática média; (c) a velocidade mais provável;

2. A distribuição de Maxwell para a velocidade das moléculas de um gás em uma direção é dada por

$$f(v_x) = C \exp\left\{ \left(-\beta \frac{mv_x^2}{2} \right) \right\}$$

e dado que a distribuição deve ser normalizada, ou seja, $\int f(v_x)dv_x = 1$. (a) Determine a constante C como função de β . (b) Sabendo que para cada direção temos $\langle mv_x^2/2 \rangle = k_BT/2$, determine β .

3. A partir da distribuição de Maxwell-Boltzmann,

$$F(v) = 4\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2} v^2 e^{-\frac{mv^2}{2k_B T}}$$

mostre que: (a) a velocidade mais provável é dada por $v_{\rm p}=\sqrt{2k_BT/m};$ (b) a velocidade

média é
$$v_{\rm m}=\langle v\rangle=\sqrt{8k_BT/m};$$
 (c) a velocidade quadrática média é $v_{\rm qm}=\sqrt{\langle v^2\rangle}=\sqrt{3k_BT/m}.$

4. A atmosfera terrestre consiste principalmente de oxigênio (21%) e nitrogênio (78%). A velocidade quadrática média $v_{\rm qm}$ das moléculas de oxigênio (O₂) num certo local da atmosfera vale 484 m/s. (a) Qual é a temperatura da atmosfera nessa região? (b) Qual a velocidade quadrática média $v_{\rm qm}$ das moléculas de nitrogênio (N₂), nessa mesma região?