

S Nagasundari

Department of Computer Science and Engineering

Unit – 5 Link Layer and LAN Roadmap

- Introduction
- Error detection, correction
- Multiple access protocols
- LANs
 - Addressing, ARP
 - Ethernet
 - switches
- Physical layer
- Wireless LANs: IEEE 802.11
- A day in the life of a web request

Class 49: Switched LAN: Learning Objectives

- Link layer Addressing
- Address Resolution Protocol

MAC Addresses

- 32-bit IP address:
 - network-layer address for interface
 - used for layer 3 (network layer) forwarding
 - e.g.: 128.119.40.136
- MAC (or LAN or physical or Ethernet) address:
 - function: used "locally" to get frame from one interface to another physically-connected interface (same subnet, in IP-addressing sense)
 - 48-bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - e.g.: 1A-2F-BB-76-09-AD

hexadecimal (base 16) notation (each "numeral" represents 4 bits)

MAC Addresses

Each interface on LAN

- has unique 48-bit MAC address
- has a locally unique 32-bit IP address (as we've seen)

MAC Addresses

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - MAC address: like Social Security Number
 - IP address: like postal address
- MAC flat address: portability
 - can move interface from one LAN to another
 - recall IP address not portable: depends on IP subnet to which node is attached

ARP: Address Resolution Protocol

Question: how to determine interface's MAC address, knowing its IP

address?

ARP table: each IP node (host, router) on LAN has table

- IP/MAC address mappings for some LAN nodes:
 - < IP address; MAC address; TTL>
- TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP Protocol in action

Example: A wants to send datagram to B

• B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address

ARP Protocol in action

Example: A wants to send datagram to B

• B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address

ARP Protocol in action

Example: A wants to send datagram to B

• B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address

Routing to another Subnet: Addressing

Walkthrough: sending a datagram from A to B via R

- Focus on addressing at IP (datagram) and MAC layer (frame) levels
- Assume that:
 - A knows B's IP address
 - A knows IP address of first hop router, R (how?)
 - A knows R's MAC address (how?)

- A creates IP datagram with IP source A, destination B
- A creates link-layer frame containing A-to-B IP datagram
 - R's MAC address is frame's destination

- frame sent from A to R
- frame received at R, datagram removed, passed up to IP

- R determines outgoing interface, passes datagram with IP source A, destination Bives
 to link layer
- R creates link-layer frame containing A-to-B IP datagram. Frame destination address: B's MAC address

Routing to another Subnet: Addressing

PES UNIVERSITY ONLINE

- R determines outgoing interface, passes datagram with IP source A, destination B to link layer
- R creates link-layer frame containing A-to-B IP datagram. Frame destination address: B's MAC address

- B receives frame, extracts IP datagram destination B
- B passes datagram up protocol stack to IP

THANK YOU

S Nagasundari

Department of Computer Science and Engineering

nagasundaris@pes.edu