Algebraic geometry 2 Exercise sheet 3

Solutions by: Esteban Castillo Vargas and David Čadež

June 13, 2024

Hey, sorry for submitting so weirdly, we usually submit to Robin, but this week I remembered a few minutes after midnight and the field for submittion was already closed in his group, and here it was still open. I also couldn't find his email immediately to send him the sheet. Could you please forward him this pdf, please:) Thank you

Exercise 1. We know that dominant morphisms between integral schemes map generic point to the generic point. So we get inclusion $k(\eta_X) \hookrightarrow k(\eta_Y)$.

Integral schemes are irreducible, so any non-empty open subset is dense. Therefore we can focus on some affine neighbourhood of $X = \operatorname{Spec}(A) \subset X$, which we also name X. Then take preimage and . . .

Exercise 2.

(i) Observe that for every $x \in X$ we have

$$\dim_{k(x)} H_i(C_{\bullet} \otimes_A k(x)) = \dim_{k(x)} \ker(d_i \otimes k(x)) - \dim_{k(x)} \operatorname{im}(d_{i+1} \otimes k(x))$$

A map of finite free A-modules can be represented by a matrix with values in A.

Let M be an $m \times n$ matrix representing a map $A^n \to A^m$. Localizing at $x \in X$, we get a map

$$k(x)^n \cong A^n \otimes_A k(x) \to A^m \otimes_A k(x) \cong k(x)^m$$

given by this "same" matrix, denoted by M_x , whose components are images of components in M under $A \to k(x)$.

Suppose now M has rank r at some point $x \in X$. Therefore there exists an invertible minor of size $r \times r$, call it N. That means that $\det N$ does not vanish in x. Then $D(\det N)$ is an open neighbourhood of x on which M has rank $\geq r$.

This shows that $x \mapsto \dim_{k(x)} \operatorname{im}(M \otimes k(x))$ is lower semicontinuous.

Multiplying function with -1 will switch upper and lower semicontinuity.

Also note that for a given matrix we have $n = \dim \ker + \dim \operatorname{im}$ for every x where n is the dimension of the source.

Considering all that we obtain that

$$x \mapsto \dim_{k(x)} \ker(d_i \otimes k(x)) - \dim_{k(x)} \operatorname{im}(d_{i+1} \otimes k(x))$$

is a sum of upper semicontinuous function, so itself upper semicontinuous.

- (ii) We have $\beta_i^{-1}(n) = \beta_i^{-1}((-\infty, n+1)) \cap \beta_i^{-1}([n, \infty))$, so intersection of an open and closed set, in particular it is constructible.
- (iii) Let $k = \bar{k}$ be a field and

$$C_{\bullet}: \cdots \to 0 \to k[t] \to k[t] \to 0 \to \cdots$$

be the complex of k[t]-modules, where the only nontrivial map is $1 \mapsto t$. We take homology at $k[t] \to k[t] \to 0$. We claim that it is not locally constant at closed point $(t) \in \mathbb{A}^1_k$.

Take x = (t - a) for $a \in k$, then

$$C_{\bullet} \otimes_{k[t]} k(x) \colon \cdots \to 0 \to k \to k \to 0$$

where the unique nontrivial map is $1 \mapsto a$. Clearly the image of $k \to k$ will be a 1-dimensional k-vsp for $a \neq 0$ and 0-dimensional for a = 0.

For x = (0) the generic point, we get a surjection $k(t) \to k(t), 1 \mapsto t$. So

$$\dim_{k(x)} H(C_{\bullet} \otimes_{k[t]} k(x)) = \begin{cases} 1 & x = (t) \\ 0 & x = (t-a) \text{ for } a \neq 0 \text{ or } x = (0) \end{cases}$$

Exercise 3.

1. We have

$$X = \operatorname{Spec}(A)$$

$$= \operatorname{Spec}(R[T, T_1, T_2]/I_1 \cap I_2)$$

$$= \operatorname{Spec}(R[T, T_1, T_2]/I_1) \cup \operatorname{Spec}(R[T, T_1, T_2]/I_2)$$

where

$$X_1 = \operatorname{Spec}(R[T, T_1, T_2]/I_1) = \operatorname{Spec}(R[\pi^{-1}, T_1, T_2])$$

$$= \operatorname{Spec}(R[\pi^{-1}][T_1, T_2])$$

$$= \operatorname{Spec}(K[T_1, T_2])$$

$$= \mathbb{A}_K^2$$

and

$$X_2 = \operatorname{Spec}(R[T, T_1, T_2]/I_2) = \operatorname{Spec}(R[T])$$
$$= \mathbb{A}_R^1.$$

To show that X is equidimensional, we have to check that both irreducible components have dimension 2. Clearly they both do; X_1 is an affine plane over a field, and from Alg 1 we know dim $\mathbb{A}^1_R = \dim R + 1 = 2$ since R is a PID that is not a field.

2. Clearly only prime ideal that contains $I_1 \cup I_2$ is $(\pi T - 1, T_1, T_2)$ which is consequently also a closed point. Denote $x = (\pi T - 1, T_1, T_2)$.

To calculate dim $\mathcal{O}_{X_1,x}$ we have to find ideals that are between I_1 and x. Those are exactly primes of $K[T_1,T_2]_{(T_1,T_2)}$, so dim $\mathcal{O}_{X_1,x}=2$.

And for dim $\mathcal{O}_{X_2,x}$ we have to find ideals that are between I_2 and x. Those are prime ideals of $R[T]_{(\pi T-1)}$. This is same as asking what is the height of $(\pi T-1)$, which is 1, so the localization has dimension 1.

width=!,height=!,pages=-