MAC - Labo 3 : Indexing and Search with Elasticsearch

Olivier D'Ancona & Hugo Huart & Nelson Jeanrenaud

Contents

2.2 Indexing	2
D.1	3
D.2	4
D.3	5
D.4	5
D.5	5
2.3 Reading Index	6
D.6	6
D.7	
2.4 Using different Analyzers	7
D.8	7
D.9	
D.10	
D.11	.3

2.2 Indexing

Using the following pipeline:

```
PUT _ingest/pipeline/my_pipeline
  "processors": [
      "csv": {
        "field": "_row",
        "target_fields": [
          "id",
          "author",
          "title",
          "date",
          "summary"
        ],
        "separator": "\t",
        "quote": "§"
      }
    },
      "split": {
        "field": "author",
        "separator": ";",
        "ignore_missing": true
      }
    },
      "remove": {
        "field": "_row"
      }
    }
 ]
}
```

API requests to create cacm_standard:

Mappings:

```
PUT /cacm_standard
{
  "mappings": {
    "properties": {
      "author": {
        "type": "keyword"
      },
      "date": {
        "type": "date"
      },
      "id": {
        "type": "unsigned_long"
      },
      "summary": {
        "type": "text",
        "fielddata": true
      },
      "title": {
        "type": "text",
        "fielddata": true
      }
    }
  }
}
Reindex:
POST _reindex
  "source": {
    "index": "cacm raw"
  "dest": {
    "index": "cacm_standard",
    "pipeline": "my_pipeline"
  }
}
```

API requests to create cacm_termvector:

Mappings:

```
PUT /cacm_termvector
{
  "mappings": {
    "properties": {
      "author": {
        "type": "keyword"
      },
      "date": {
        "type": "date"
      },
      "id": {
        "type": "unsigned_long"
      },
      "summary": {
        "type": "text",
        "term_vector": "with_positions"
      },
      "title": {
        "type": "text"
    }
 }
Reindex:
POST _reindex
{
  "source": {
    "index": "cacm_raw"
  },
  "dest": {
```

"index": "cacm_termvector",
"pipeline": "my_pipeline"

} }

API request to query a term vector:

GET /cacm_termvector/_termvectors/gNa1ZYAB7VfE5TWZZFs7

gNa1ZYAB7VfE5TWZZFs7 being the ID of a document that has a summary field

D.4

The official documentation of Elasticsearch describes a term vector as the following:

Term vectors contain information about the terms produced by the analysis process, including:

- A list of terms.
- The position (or order) of each term.
- The start and end character offsets mapping the term to its origin in the original string.
- Payloads (if they are available) user-defined binary data associated with each term position.

D.5

Sizes of the indexes:

• $cacm_raw: 1.34MB$

• cacm_standard : 1.48MB • cacm_termvector : 2.07MB

2.3 Reading Index

D.6

Using the following request, we observe that **Thacher Jr.**, **H. C.** is the author with the highest number of publications. He has **38** publications.

Request:

```
GET /cacm_standard/_search
{
    "aggs": {
        "genres": {
            "field": "author",
            "size": 1
        }
     }
}
```

D.7

Using the following request, we observe that the top 10 terms are:

- 1. *of*
- $2. \ algorithm$
- 3. a
- 4. *for*
- 5. the
- 6. *and*
- 7. in
- 8. *on*
- 9. *an*
- 10. computer

Request:

```
GET /cacm_standard/_search
{
    "aggs": {
        "genres": {
            "field": "title",
            "size": 10
        }
    }
}
```

2.4 Using different Analyzers

D.8

The following requests create indexes with the required analyzers.

whitespace analyzer

```
PUT /cacm_standard_whitespace
  "settings": {
    "analysis": {
      "analyzer": "whitespace"
  },
  "mappings": {
    "properties": {
      "id":{"type": "unsigned_long"},
      "author": {"type": "keyword"},
      "title":{"type": "text", "fielddata": true},
      "date":{"type": "date"},
      "summary":{"analyzer" : "whitespace", "type": "text", "fielddata" : true}
    }
  }
}
POST _reindex
{
  "source": {
    "index": "cacm_raw"
  },
  "dest": {
    "index": "cacm_standard_whitespace",
    "pipeline": "my pipeline"
  }
}
```

english analyzer

```
PUT /cacm_standard_english
  "settings": {
    "analysis": {
      "analyzer": "english"
  },
  "mappings": {
    "properties": {
      "id":{"type": "unsigned long"},
      "author": {"type": "keyword"},
      "title":{"type": "text", "fielddata": true},
      "date":{"type": "date"},
      "summary":{"analyzer": "english", "type": "text", "fielddata" : true}
   }
  }
}
POST _reindex
{
  "source": {
   "index": "cacm_raw"
  },
  "dest": {
    "index": "cacm_standard_english",
    "pipeline": "my_pipeline"
  }
}
```

standard analyzer with shingles of size 1 and 2

```
PUT /cacm_standard_myanalyzer1
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer1": {
          "type": "custom",
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "custom_shingle"
        }
      },
      "filter": {
        "custom_shingle": {
          "type": "shingle",
          "max shingle size": 2
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "id": { "type": "unsigned_long" },
      "author": { "type": "keyword" },
      "title": { "type": "text",
        "fielddata": true },
      "date": { "type": "date" },
      "summary": { "analyzer": "my_analyzer1", "type": "text", "fielddata": true }
    }
  }
}
POST _reindex
{
  "source": {
    "index": "cacm raw"
  },
  "dest": {
    "index": "cacm_standard_myanalyzer1",
    "pipeline": "my pipeline"
  }
}
```

standard analyzer with shingles of size 3

```
PUT /cacm_standard_myanalyzer2
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer2": {
          "type": "custom",
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "custom shingle"
        }
      },
      "filter": {
        "custom_shingle": {
          "type": "shingle",
          "min shingle size": 3,
          "max shingle size": 3
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "id": { "type": "unsigned long" },
      "author": { "type": "keyword" },
      "title": { "type": "text", "fielddata": true },
      "date": { "type": "date" },
      "summary": {"analyzer": "my_analyzer2", "type": "text", "fielddata": true }
    }
  }
}
POST _reindex
{
  "source": {
    "index": "cacm raw"
  },
  "dest": {
    "index": "cacm_standard_myanalyzer2",
    "pipeline": "my pipeline"
  }
}
```

stop analyzer

```
PUT /cacm_standard_stopwords
  "settings": {
    "analysis": {
      "analyzer": {
        "stopwords": {
          "tokenizer": "lowercase",
          "filter": [ "custom stopwords" ]
        }
      },
      "filter" : {
        "custom_stopwords" : {
          "type" : "stop",
          "stopwords_path" : "data/common_words.txt"
        }
      }
    }
  "mappings": {
    "properties": {
      "id": { "type": "unsigned_long" },
      "author": { "type": "keyword" },
      "title": { "type": "text", "fielddata": true },
      "date": { "type": "date" },
      "summary": { "analyzer" : "stopwords", "type": "text", "fielddata": true }
    }
  }
}
POST _reindex
{
  "source": {
   "index": "cacm_raw"
  "dest": {
    "index": "cacm_standard_stopwords",
    "pipeline": "my_pipeline"
  }
}
```

Explanation of the analyzers, according to the Elasticsearch documentation:

- whitespace: Breaks text into terms whenever a whitespace is encountered.
- english: Targeted for english text. It features relevant stop words, plural to singular conversion and other similar language-specific filters.
- standard with shingles of size 1 and 2: Produce shingles (or word n-gram) up to a size of two,

The text "I Love MAC" would produce ["I", "I Love", "Love", "Love MAC", "MAC"].

- standard with shingles of size 3 only: Produce shingles (or word n-gram) of size 3, The text "I Love MAC" would produce ["I", "I Love MAC", "Love", "MAC"].
- stop: Uses a list of words as stop words that will be removed from the the requested text.

D.10

Using the Index stats and search APIs with the following types of requests:

GET /\${INDEX_NAME}/_stats

GET /\${INDEX_NAME}/_search

The results are:

Analyzer type:	whitespace	english	standard shingles 1-2	standard shingles 3	stop
a)	3'202 docs	3'202 docs	3'202 docs	3'202 docs	3'202 docs
b)	103'275 terms	72'298 terms	237'189 terms	242'248 terms	59'988 terms
c)	of	which	the	the	computer
	the	us	of	of	system
	is	comput	a	a	paper
	and	program	is	is	presented
	a	system	and	and	time
	to	present	to	to	program
	in	describ	in	in	data
	for	paper	for	for	method
	The	can	are	are	algorithm
	are	gener	of the	this	discussed
d)	13'542'719 B	19'859'606 B	2'597'942 B	3'615'184 B	2'833'980 B
e)	350 ms	250 ms	340 ms	300 ms	340 ms

Several statements can be made regarding the previous results, here are our 3 concluding ones:

- 1. All the indexes have the same number of document.
- 2. The shingle-based indexes have the most terms.