Functional Analysis Homework 4, Fall 2016

Problem 1. Let $T \in \mathcal{B}_0(H)$ be a compact, self-adjoint operator on a seperable Hilbert space H, and suppose T is *positive*:

$$\langle Tx, x \rangle \ge 0, \quad \forall \ x \in H.$$

Show that T has only real, non-negative eigenvalues, which can be arranged in a weakly decreasing sequence

$$\lambda_1 \geq \lambda_2 \geq \cdots$$

either finite or with limit 0. (Note: here we represent eigenvalues with multiplicity, i.e., we repeat λ_i according to the dimension of the associated eigenspace.)

Moreover, show that if $M \subset H$ is a subspace of dimension n, then

$$\min_{x \in M, \|x\| = 1} \langle Tx, x \rangle \le \lambda_n, \quad n = \dim(M).$$

Problem 2. With the same hypotheses on T, show that the decreasing sequence of eigenvalues are given by the $minimax\ formula$

$$\lambda_j(T) = \max_{M \subset H, \dim(M) = n} \left(\min_{x \in M, ||x|| = 1} \langle Tx, x \rangle \right).$$

Problem 3. Let $A \in \mathcal{B}(H)$ be an operator on a seperable Hilbert space with the property that for some orthonormal basis $\{e_n\}$,

$$||A||_{HS}^2 := \sum_{n=1}^{\infty} ||Ae_n||^2 < \infty.$$

- (a) Show that $||A^*||_{HS}^2$ is also finite. (Hint: show that $||A||_{HS}^2$ is equivalently given by $\sum_{i,j} a_{ij}^2$, where $a_{ij} = \langle Ae_i, e_j \rangle$.)
- (b) Show that if $B \in \mathcal{B}(H)$ is a bounded operator then $||BA||_{HS} \le ||B|| \, ||A||_{HS}$.
- (c) Show that $||A||_{HS}$ is independent of the choice of orthonormal basis $\{e_n\}$ used above. In particular, if A is normal, then

$$||A||_{HS}^2 = \sum_{n=1}^{\infty} |\lambda_n|^2$$

where $\{\lambda_n\}$ are the eigenvalues of A.

- (d) Show that A is a compact operator. (Hint: show it is the norm limit of a sequence of finite rank operators.)
- (e) The set $\mathcal{B}_2(H)$ of operators satisfying $||A||_{HS} < \infty$ are called the *Hilbert-Schmidt operators*. We conclude that $\mathcal{B}_2(H)$ is a 2-sided, *-closed ideal in $\mathcal{B}(H)$ which is contained inside the compact operators: i.e. $\mathcal{B}_2(H) \subset \mathcal{B}_0(H)$.

Problem 4. Show that, for any choice of orthonormal basis $\{e_n\}$,

$$\langle A, B \rangle_{\mathrm{HS}} = \sum_{n=1}^{\infty} \langle Ae_n, Be_n \rangle$$

is an inner product on $\mathcal{B}_2(H)$ with respect to which it is a Hilbert space.