73 Term Urban Lagrangian Dispersion Model

- Equations and Background on Lag. model
- Assumptions for Equations consider Eularian vs. Lagrangian quantities
- Term by term analysis
 - 1st bulk/general
 - -2^{nd} look at actual terms broken to see for example what different terms (ie. τ_{ij} 's mean)
- Turbulence Model

Breakdown of Each Subroutine

Proposed Turbulence models??

Plan for validation

- Proposed Test Problems
- Comparison to QP
- Bug's Experimental data

The following 2 slides will cover basic Lagrangian model description and equations (Its incomplete, I just want to know whether I am going in the right direction or not)

Lagrangian Particle Motion

- ❖Particles move under the influence of:
 - lacksquare Mean wind components (\overline{U} , \overline{V} and \overline{W}).
 - \Box Fluctuating wind components (u', v' and w').
 - >Drift forcing due to turbulent stresses.
 - >Random forcing due to molecular bombardments.

Mathematical Formulation of Particle Translation

$$x = x_p + U\Delta t + \frac{u'_p + u'}{2}\Delta t$$

$$y = y_p + V\Delta t + \frac{v'_p + v'}{2}\Delta t$$

$$z = z_p + W\Delta t + \frac{w'_p + w'}{2}\Delta t$$

where U, V and W are mean interpolated velocities, Subscript 'p' refers to "previous" positions, & Δt is the time step.

❖ The Fluctuating components of the velocities are calculated as:

$$u' = u'_p + du$$

$$v' = v'_p + dv$$

$$w' = w'_p + dw$$

[Williams, M.D. and M.J. Brown, (2002) "Description of the QUIC-PLUME model", Los Alamos National Laboratory report LA-UR-02-1246.).]

Basic Langevin equation for stochastic processes

Memory term is proportional to Lagrangian time scale (T_I).

Drift term is proportional to the standard deviation of winds (σ_U , σ_V and σ_W).

Random forcing is proportional to the random pressure fluctuation.

Assumptions:

- Three dimensional stationary and inhomogeneous turbulence.
- ❖High Reynold's number flow.
- ❖Valid for inertial sub range only.
- Velocities of tracer and fluid are identical.

Langevin Equation in one-dimension

$$du = -\frac{u}{\tau_L}dt + \frac{1}{2}\left(1 + \frac{u^2}{\sigma_u^2}\right)\frac{\partial\sigma_u^2}{\partial z}dt + \left(\frac{2\sigma_u^2}{\tau_L}\right)^{1/2}\xi(t)dt$$
Memory term

Drift term

Random forcing

..... (2)

Where,

 \mathcal{U} = Total wind speed in streamwise direction.

 τ_I = Lagrangian time scale.

 σ_{y} = Standard deviation of total wind in streamwise direction.

Z = Vertical dimension.

 $\xi(t)$ = Random function

dt = Time step

Eulerian Vs. Lagrangian quantities

$$du = -\frac{u}{\tau_L}dt + \frac{1}{2}\left(1 + \frac{u^2}{\sigma_u^2}\right)\frac{\partial\sigma_u^2}{\partial z}dt + \left(\frac{2\sigma_u^2}{\tau_L}\right)^{1/2}\xi(t)dt$$
Memory term

Drift term

Random forcing

......(2)

Eulerian quantities:

Lagrangian quantities:

In the following slides I added description of various subroutines.

ReadFiles.f90

- Reads all the input files required for dispersion modeling:
- ❖ Mean wind data from QUIC-URB (\overline{U} , \overline{V} and \overline{W})
- ❖Information regarding buildings in the domain.
- Dispersion simulation parameters:
 - > Release location.
 - ➤ Release type.
 - >Number of particles released.
 - ➤ Collecting box dimensions.

□Called by following subroutine:

InitVars.f90

□Initialize variables to their initial values. □Set values for constants like π, von karman etc.
□Called by following subroutine:
❖Main.f90

Turbulence.f90

□Calculates turbulence parameters (Eularian reference) for the whole domain using zeroth order turbulence model.

□Called by following subroutine:

❖Main.f90

Dispersion.f90

□Initialize particles from the source location. □Assign initial fluctuating component of velocity to particles based on turbulence parameters. □Estimates concentration based on averaging time.
□Called by following subroutine:
❖ Main.f90
□Calls the following subroutine:
MoveParticles.f90 [For incrementing already released particles]
MoveParticles.f90
\square Estimates the turbulence stresses (τ_{ij}) from the standard deviation of
winds $(\sigma_{\mathbf{U}}, \sigma_{\mathbf{V}})$ and $\sigma_{\mathbf{W}}$. \square Estimates fluctuating component of winds by solving Langevin
equations. □Estimates next position of particles from the previous position, interpolated mean wind, fluctuating wind components and time step.
□Called by following subroutine:
❖Dispersion.f90
□Calls the following subroutines:

- ❖WindInterp.f90 [For calculating interpolated mean wind]
- ❖Random.f90 [For calculating random forcing components of winds]
- ❖Reflection.f90 [For estimating surface reflection of particles]

Random.f90

Generates Gaussian (Normal) random number distribution for the random forcing component of Lagevin equations.

□Called by following subroutine:

❖MoveParticles.f90

Reflection.f90

□Accounts for reflection from all the surfaces encountered by the particle.

☐ The approach to reflection is analogous to billiard ball type reflections.

□Called by following subroutine:

❖MoveParticles.f90

WindInterp.f90

□Estimates velocity at particle position by interpolating between cell center velocities around the particle position.

WriteFiles.f90

- □Writes out all the output from the dispersion model.
- □Output includes:
 - Concentration field.
 - ❖Turbulence field.

□Called by following subroutine:

❖Main.f90

DeallocateVars.f90

Deallocate all the arrays to free the computer memory allocated for running the dispersion model.

□Called by following subroutine:

❖Main.f90