Lösungen der Übungsaufgaben von Kapitel 4

zu 4.1

4.1.1 Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ sei als Nullfunktion für $x \leq 0$ und als $x \mapsto x^2$ für $x \geq 0$ definiert. Beweisen Sie, dass f einmal, aber nicht zweimal differenzierbar ist.

Finden Sie allgemeiner für beliebiges vorgegebenes k eine Funktion, die k-mal, aber nicht (k+1)-mal differenzierbar ist.

Also zunächst ist f an jeder Stelle $x \neq 0$ unendlich oft differenzierbar, da ja dann f in einer Umgebung von x ein Polynom ist. Es bleibt zu zeigen, dass f in 0 ein– aber nicht zweimal differenzierbar ist:

An der Stelle 0 ist aber:

$$\lim_{h \to 0^{+}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^{+}} \frac{h^{2}}{h}$$

$$= \lim_{h \to 0^{+}} h$$

$$= 0$$

$$\lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{0}{h}$$

$$= 0$$

Die erste Ableitung von f ist also:

$$f': x \mapsto \left\{ \begin{array}{cc} 2x & x \ge 0 \\ 0 & x \le 0 \end{array} \right.$$

und f ist einmal differenzierbar, es bleibt zu zeigen, dass f' in 0 nicht differenzierbar ist, es gilt:

$$\lim_{h \to 0^{+}} \frac{f'(0+h) - f'(0)}{h} = \lim_{h \to 0^{+}} \frac{2h}{h}$$

$$= 2$$

$$\lim_{h \to 0^{-}} \frac{f'(0+h) - f'(0)}{h} = \lim_{h \to 0^{-}} \frac{0}{h}$$

$$= 0$$

Also ist f' in 0 nicht differenzierbar und f ist einmal aber nicht zweimal differenzierbar.

Betrachte nun für $k \in \mathbb{N}_0$ die Funktion

$$f_k : \mathbb{R} \to \mathbb{R}, \quad x \mapsto \begin{cases} x^{k+1} & x \ge 0\\ 0 & x \le 0 \end{cases}$$

Man zeigt, dass f_k das Gewünschte leistet, d.h. k-mal, aber nicht (k+1)-mal differenzierbar ist durch Induktion nach k:

• Induktionsanfang: Für k=0 wurde oben schon gezeit, dass f_0 (= f'/2) nicht differenzierbar ist, also gilt das auch für f_0 .

- Induktionsvoraussetzung: Für ein $k \in \mathbb{N}_0$ sei gezeigt, dass f_k k-mal, aber nicht (k+1)-mal differenzierbar ist.
- Induktionsschluss: Nun ist f_{k+1} für $x \neq 0$ als Polynom differenzierbar, in x = 0 gilt:

$$\lim_{h \to 0^{+}} \frac{f_{k+1}(0+h) - f_{k+1}(0)}{h} = \lim_{h \to 0^{+}} \frac{h^{k+2}}{h}$$

$$= \lim_{h \to 0^{+}} h^{k+1}$$

$$= 0$$

$$\lim_{h \to 0^{-}} \frac{f_{k+1}(0+h) - f_{k+1}(0)}{h} = \lim_{h \to 0^{-}} \frac{0}{h}$$

$$= 0$$

Also ist f_{k+1} differenzierbar mit

$$f'_{k+1}: x \mapsto \begin{cases} (k+2)x^{k+1} & x \ge 0\\ 0 & x \le 0 \end{cases}$$

d.h. $f'_{k+1} = (k+2)f_k$, nach Induktionsvoraussetzung, ist also f'_{k+1} weitere k-mal differenzierbar, aber nicht weitere k+1 Mal, d.h. es ist f_{k+1} (k+1)-mal, aber nicht k+2-mal differenzierbar.

4.1.2 $f: \mathbb{R} \to \mathbb{R}$ sei Null auf den irrationalen Zahlen, für (gekürzte) rationale Zahlen p/q (mit $p \in \mathbb{Z}$ und $q \in \mathbb{N}$) soll der Wert $1/q^2$ zugeordnet werden. Gibt es Punkte, an denen f differenzierbar ist?

Sie dürfen ausnutzen, dass es zu jeder irrationalen Zahl x unendlich viele rationale Zahlen p/q so gibt, dass $|x-p/q| \le 1/q^2$.

Beh.: f ist nirgends differenzierbar.

Sei zunächst $x = p/q \in \mathbb{Q}$, wegen $(\mathbb{R} \setminus \mathbb{Q})^- = \mathbb{R}$ gibt es $x_n \in \mathbb{R} \setminus \mathbb{Q}$ mit $x_n \to x$, es ist aber

$$f(x_n) = 0 \not\to f(x) = \frac{1}{q^2} > 0$$

also ist f in x nicht stetig, erst recht nicht differenzierbar.

Sei nun $x \in \mathbb{R} \setminus \mathbb{Q}$. Man zeigt, dass es eine Folge $(x_n) = (p_n/q_n)$ in \mathbb{Q} gibt, so dass

$$\bigvee_{n \in \mathbb{N}} \left| x - \frac{p_n}{q_n} \right| \le \frac{1}{q_n^2}$$

und $x_n \to x$ gilt.

Nach obiger Bemerkung ist

$$\left\{ \frac{p}{q} \mid p \in \mathbb{N}, q \in \mathbb{Z}, \left| x - \frac{p}{q} \right| \le \frac{1}{q^2} \right\}$$

unendlich. Also gibt es eine streng monotone Folge (q_n) in \mathbb{N} und $p_n \in \mathbb{Z}$ so dass

$$\bigvee_{n \in \mathbb{N}} \left| x - \frac{p_n}{q_n} \right| \le \frac{1}{q_n^2}.$$

Da (q_n) streng monoton ist, folgt $q_n \geq n \to \infty$ (durch Induktion: $q_1 \in \mathbb{N}$, also $q_1 \geq 1$ und $q_{n+1} > q_n \geq n$, also wegen $q_{n+1} \in \mathbb{N}$ sicher $q_{n+1} \geq n+1$) und damit

$$\left| x - \frac{p_n}{q_n} \right| \le \frac{1}{q_n^2} \to 0$$

d.h. $x_n := p_n/q_n \to x$.

Nun ist zunächst, da p_n , q_n nicht notwendig teilerfremd sein müssen:

$$f(x_n) = f\left(\frac{p_n}{q_n}\right) = \frac{1}{q_n^2/\text{ggT}(p_n, q_n)^2} = \frac{\text{ggT}(p_n, q_n)^2}{q_n^2} \ge \frac{1}{q_n^2}$$

$$\left|\frac{f(x_n) - f(x)}{x_n - x}\right| \ge \frac{1/q_n^2}{|p_n/q_n - x|}$$

$$\ge \frac{1/q_n^2}{1/q_n^2}$$

Also ist insbesondere $(f(x_n)-f(x))/(x_n-x)$ keine Nullfolge. Für jede irrationale Folge $y_n \to x, y_n \neq x$ ist aber

$$\lim_{n \to \infty} \frac{f(y_n) - f(x)}{y_n - x} = \lim_{n \to \infty} 0 = 0$$

also stimmt nicht für alle Folgen $z_n \to x$ der Grenzwert des Differenzenquotienten überein, d.h. f ist in x nicht differenzierbar.

4.1.3 Finden Sie eine differenzierbare Funktion von $\mathbb R$ nach $\mathbb R$, für die f' nicht stetig ist.

Betrachte $f: x \mapsto x^2 \sin \frac{1}{x} \text{ mit } f(0) := 0$. f ist in $x \neq 0$ sicher differenzierbar, in x = 0 gilt:

$$\left| \frac{f(h) - f(0)}{h} \right| = \left| \frac{h^2 \sin(1/h)}{h} \right|$$
$$= |h| \left| \sin \frac{1}{h} \right|$$
$$\leq |h| \to 0, \quad h \to 0$$

Also ist f differenzierbar mit

$$f': \mathbb{R} \to \mathbb{R}, \quad x \mapsto \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

f' ist aber in 0 nicht stetig: Betrachte die Folge (x_n) , gegeben durch $x_n := 1/(2\pi n)$, sicher ist (x_n) eine Nullfolge, aber es ist

$$\lim_{n \to \infty} f'(x_n) = \lim_{n \to \infty} \left(2 \cdot \frac{1}{2\pi n} \cdot \sin(2\pi n) - \cos(2\pi n) \right)$$
$$= \lim_{n \to \infty} (-1) = -1 \neq 0 = f'(0).$$

Also ist f' in x = 0 nicht stetig.

zu 4.2

4.2.1 f und g seien auf \mathbb{R} definierte differenzierbare Funktionen. Wenn dann f'' = g'' ist, so unterscheiden sich f und g nur durch eine Funktion der Form a + bx.

Betrachte zunächst f' und g'. Wegen (f')' = (g')', gibt es ein $b \in \mathbb{R}$, so dass f'(x) = g'(x) + b für alle $x \in \mathbb{R}$. Betrachte nun die Funktionen f und $h : x \mapsto g(x) + bx$, dann ist h differenzierbar mit h' = g' + b = f', also unterscheiden sich f und h nur um eine Konstante $a \in \mathbb{R}$, es gilt also

$$\bigvee_{x \in \mathbb{R}} f(x) = h(x) + a = g(x) + bx + a = g(x) + (a + bx).$$

Das war aber zu zeigen.

zu 4.3

4.3.1 Berechnen Sie das dritte Taylorpolynom der Funktion f bei x_0 , wenn

- (a) $f(x) = \ln x$ und $x_0 = 2$ bzw.
- (b) $f(x) = 1/x \text{ und } x_0 = 1$

und geben Sie eine Abschätzung des Fehlers, wenn man f(x) für $|x-x_0|<0.1$ durch den Wert dieses Taylorpolynoms an der Stelle x ersetzt. Berechnen Sie weiter die Taylorpolynome 2. Grades bei x_0 von

- (c) $x \mapsto \sqrt[3]{1-x}$ für $x_0 = 0$ und
- (d) $x \mapsto \exp(1/x)$ für $x_0 = 1$.
- (a) $f(x) = \ln x, x_0 = 2$

Die Funktion $f: \mathbb{R}^+ \to \mathbb{R}$ ist auf ihrem ganzen Definitionsbereich beliebig oft differenzierbar. Man bestimmt nun zur Bestimmung des Taylorpolynoms 3. Grades an der Stelle 2 die ersten 3 Ableitungen der Funktion f:

$$f(x) = \ln x$$

$$f'(x) = 1/x$$

$$f''(x) = -1/x^2$$

$$f'''(x) = 2/x^3$$

Die letzen beiden Zeilen folgen wegen $(x^r)' = r \cdot x^{r-1}, r \in \mathbb{R}$. Die Werte der Funktion und ihrer Ableitungen an der Stelle 2 sind also:

$$f(2) = \ln 2$$
, $f'(2) = \frac{1}{2}$, $f''(2) = -\frac{1}{4}$, $f'''(2) = \frac{1}{4}$.

Für das Taylorpolynom 3. Grades an der Stelle $x_0 = 2$ folgt:

$$p_3(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3$$

$$= \ln 2 + \frac{1}{2}(x - 2) - \frac{1}{8}(x - 2)^2 + \frac{1}{24}(x - 2)^3$$

$$= \ln 2 + \frac{1}{2}x - 1 - \frac{1}{8}x^2 + \frac{1}{2}x - \frac{1}{2} + \frac{1}{24}x^3 - \frac{1}{4}x^2 + \frac{1}{2}x - \frac{1}{3}$$

$$= \left(\ln 2 - \frac{11}{6}\right) + \frac{3}{2}x - \frac{3}{8}x^2 + \frac{1}{24}x^3$$

Für alle $x \in \mathbb{R}^+$ gilt nach dem Satz von Taylor (Restgliedformel), da ln, also f beliebig oft differenzierbar ist (also auch 4 mal), dass ein ξ zwischen $x_0 = 2$ und x existiert, also mit $|\xi - 2| < |x - 2|$, so dass

$$f(x) = p_3(x) + \frac{f^{(4)}(\xi)}{4!}(x-2)^4.$$

Es sei $R_3(x) := f(x) - p_3(x)$. Wegen

$$f^{(4)}(x) = -\frac{6}{r^4}$$

gilt für $x \in]1.9, 2.1[$, i.e. x mit $|x - x_0| < 0.1$, dass ein ξ zwischen x und 2 existiert (also $1.9 < \xi < 2.1$), so dass

$$|R_3(x)| = \left| \frac{6}{\xi^4 \cdot 4!} (x - 2)^4 \right|$$

$$\stackrel{\xi \ge 0}{<} \frac{6}{\xi^4 \cdot 4!} |(x - 2)|^4$$

$$\stackrel{\xi > 1.9}{<} \frac{6}{1.9^4 \cdot 4!} |(x - 2)|^4$$

$$\stackrel{|x - 2| < 0.1}{<} \frac{6}{1.9^4 \cdot 24} \cdot 0.1^4$$

$$\approx 1.92 \cdot 10^{-6}.$$

Also wird beim Ersetzen von f(x) durch $p_3(x)$ für |x-2| < 0.1 ein Fehler von höchstens $1.92 \cdot 10^{-6}$ gemacht.

(b)
$$f(x) = 1/x, x_0 = 1$$

Die Funktion $f: \mathbb{R}^+ \to \mathbb{R}$ ist auf ihrem Definitionsbereich unendlich oft differenzierbar und es gilt

$$f(x) = 1/x$$
, $f'(x) = -1/x^2$, $f''(x) = 2/x^3$, $f'''(x) = -6/x^4$

an der Stelle $x_0=1$ gilt also für die Funktion f und ihre ersten drei Ableitungen:

$$f(1) = 1$$
, $f'(1) = -1$, $f''(1) = 2$, $f'''(1) = -6$

Somit gilt für das Taylorpolynom 3. Grades an der Stelle $x_0=2$:

$$p_3(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3$$

$$= 1 - (x - 1) + (x - 1)^2 - (x - 1)^3$$

$$= 1 - x + 1 + x^2 - 2x + 1 - x^3 + 3x^2 - 3x + 1$$

$$= 4 - 6x + 4x^2 - x^3.$$

Wiederum gilt nach dem Taylorschen Satz, dass für alle x mit |x-1|<0.1 ein ξ zwischen x und $x_0=1$ existiert, so dass

$$f(x) - p_3(x) = \frac{f^{(4)}(\xi)}{4!}(x - x_0)^4 =: R_3(x).$$

Wegen $|\xi - 1| < |x - 1| < 0.1$ folgt $x, \xi \in]0.9, 1.1$ [weiterhin gilt

$$f^{(4)}(x) = \frac{24}{x^5}$$

also gilt für alle x mit |x-1| < 0.1:

$$|R_{3}(x)| = \left| \frac{24}{\xi^{5} \cdot 24} (x-1)^{4} \right|$$

$$\stackrel{\xi \ge 0}{<} \frac{1}{\xi^{5}} |x-1|^{4}$$

$$\stackrel{\xi > 0.9}{<} \frac{1}{0.9^{5}} |x-1|^{4}$$

$$\stackrel{|x-1| < 0.1}{<} \frac{1}{0.9^{5}} \cdot 0.1^{4}$$

$$\approx 1.69 \cdot 10^{-4}$$

Also kann der Fehler beim Ersetzen von f durch p_3 für |x-1| < 0.1 durch $1.69 \cdot 10^{-4}$ nach oben abgeschätzt werden.

(c)
$$f(x) = \sqrt[3]{1-x}, x_0 = 0$$

Man bestimmt zunächst die ersten beiden Ableitungen von f (f ist auf $]-\infty,1[$ beliebig oft differenzierbar). Es gilt:

$$f(x) = \sqrt[3]{1-x}$$

$$f'(x) \stackrel{\text{Kettenregel}}{=} \frac{1}{3 \cdot \sqrt[3]{(1-x)^2}} \cdot (-1)$$

$$= -\frac{1}{3} \cdot (1-x)^{-\frac{2}{3}}$$

$$f''(x) = -\frac{1}{3} \cdot \left(-\frac{2}{3}\right) \cdot (1-x)^{-\frac{5}{3}} \cdot (-1)$$

$$= -\frac{2}{9} \cdot (1-x)^{-\frac{5}{3}}.$$

Nun bestimmt man den Wert der Funktion und ihrer ersten beiden Ableitungen an der Stelle $x_0=0$. Es ist

$$f(0) = \sqrt[3]{1} = 1$$
, $f'(0) = -\frac{1}{3}$, $f''(x) = -\frac{2}{9}$.

Für das Taylorpolynom 2. Grades von f an der Stelle $x_0 = 0$ erhält man:

$$p_2(x) = f(0) + \frac{f'(0)}{1!}(x - x_0) + \frac{f''(0)}{2!}(x - x_0)^2$$
$$= 1 - \frac{x}{3} - \frac{x^2}{9}$$

(d)
$$f(x) = \exp(1/x)$$

Man bestimmt zunächst die ersten drei Ableitungen von f $(f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ ist beliebig oft differenzierbar). Es ist

$$f(x) = \exp(1/x)$$

$$f'(x) \stackrel{\text{Kettenregel}}{=} -\frac{1}{x^2} \cdot \exp(1/x)$$

$$f''(x) = \frac{2}{x^3} \cdot \exp(1/x) - \frac{1}{x^2} \cdot \left(-\frac{1}{x^2}\right) \exp(1/x)$$

$$= \left(\frac{2}{x^3} + \frac{1}{x^4}\right) \cdot \exp(1/x).$$

Man berechnet nun den Wert der Funktion und der ersten beiden Ableitungen an der Stelle $x_0=1$. Es gilt

$$f(1) = \exp(1) = e$$
, $f'(1) = -1 \cdot e = -e$, $f''(1) = (2+1) \cdot e = 3e$

Damit ergibt sich das Taylorpolynom zweiten Grades von fan der Stelle $x_0=1$ zu

$$p_2(x) = f(0) + \frac{f'(0)}{1!}(x - x_0) + \frac{f''(0)}{2!}(x - x_0)^2$$

$$= e - e(x - 1) + \frac{3e}{2}(x - 1)^2$$

$$= e - ex + e + \frac{3e}{2}x^2 - 3ex + \frac{3e}{2}$$

$$= \frac{7e}{2} - 4ex + \frac{3e}{2}x^2$$

4.3.2 Entwickeln Sie das Polynom $1 + 2x - 3x^3$ an der Stelle $x_0 = -1$.

Man bestimmt dazu, da $p:x\mapsto 1+2x-3x^3$ dritten Grades ist, das dritte Taylorpolynom von p in x_0 , die Ableitungen von p sind

$$p'(x) = 2 - 9x^{2}$$

 $p''(x) = -18x$
 $p'''(x) = -18$
 $p^{(4)}(x) = 0$.

Im Punkte $x_0 = -1$ hat man:

$$p(-1) = 1-2+3=2$$

 $p'(-1) = 2-9=-7$
 $p''(-1) = 18$
 $p'''(-1) = -18$

Wegen $p^{(4)} \equiv 0$ verschwindet das Restglied, es gilt also:

$$p(x) = p(x_0) + p'(x_0)(x - x_0) + \frac{p''(x_0)}{2}(x - x_0)^2 + \frac{p'''(x_0)}{6}(x - x_0)^3$$
$$= 2 - 7(x + 1) + 9(x + 1)^2 - 3(x + 1)^3.$$

zu 4.4

4.4.1 Bestimmen Sie die Konvergenzradien von

(a)
$$\sum_{n=1}^{\infty} \frac{n^3+n}{n^2} x^n, \quad \text{(b)} \quad \sum_{n=0}^{\infty} \binom{2n}{n} x^n \text{ und } \quad \text{(c)} \quad \sum_{n=0}^{\infty} a^{n^2} x^n, a \in \mathbb{R}.$$

(a) Es sei $a_n := \frac{n^3+n}{n^2}$, dann gilt für diese Reihe $R_a = \lim_{n\to\infty} \left|\frac{a_n}{a_{n+1}}\right|$, da dieser Grenzwert existiert:

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{(n^3 + n)/n^2}{\left((n+1)^3 + (n+1) \right)/(n+1)^2}$$

$$= \lim_{n \to \infty} \frac{(n^3 + n)(n+1)^2}{n^2 [(n+1)^3 + (n+1)]}$$

$$= \lim_{n \to \infty} \frac{n^3 (1 + 1/n^2) \cdot n^2 (1 + 1/n)^2}{n^2 \cdot n^3 [(1 + 1/n)^3 + 1/n^2 + 1/n^3]}$$

$$= \lim_{n \to \infty} \frac{(1 + 1/n^2) \cdot (1 + 1/n)^2}{(1 + 1/n)^3 + 1/n^2 + 1/n^3}$$

$$= \frac{(1 + 1/n^2) \cdot (1 + 1/n)^2}{(1 + \lim_{n \to \infty} 1/n^3 + \lim_{n \to \infty} 1/n^2 + \lim_{n \to \infty} 1/n^3}$$

$$= \frac{(1 + 0) \cdot (1 + 0)^2}{(1 + 0)^3 + 0 + 0} = 1.$$

Der Konvergenzradius dieser Reihe ist also $R_a = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = 1.$

(b) Auch für diese Reihe existiert obiger Grenzwert, denn es gilt:

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{\binom{2n}{2n+2}}{\binom{2n+2}{n+1}}$$

$$= \lim_{n \to \infty} \frac{(2n)![(n+1)!]^2}{(n!)^2(2n+2)!}$$

$$= \lim_{n \to \infty} \frac{(n+1)^2}{(2n+1)(2n+2)}$$

$$= \lim_{n \to \infty} \frac{n^2(1+1/n)^2}{n(2+1/n) \cdot n(2+2/n)}$$

$$= \lim_{n \to \infty} \frac{(1+1/n)^2}{(2+1/n) \cdot (2+2/n)}$$

$$\stackrel{\text{GWS}}{=} \frac{(1+\lim_{n \to \infty} 1/n)^2}{(2+\lim_{n \to \infty} 1/n) \cdot (2+\lim_{n \to \infty} 2/n)}$$

$$= \frac{(1+0)^2}{(2+0) \cdot (2+0)} = \frac{1}{4}.$$

Also ist der Konvergenzradius dieser Potenzreihe $R_a = \frac{1}{4}$.

(c) Bei dieser Reihe unterscheidet man drei Fälle $(b_n := a^{n^2})$:

$$- |a| < 1$$

In diesem Fall gilt

$$\lim_{n \to \infty} \sqrt[n]{|b_n|} = \lim_{n \to \infty} \sqrt[n]{|a|^{n^2}}$$

$$= \lim_{n \to \infty} |a|^n$$

$$|a| \le 1 \qquad 0.$$

Es folgt: $\limsup_{n\to\infty} \sqrt[n]{|b_n|} = 0$ und damit $R_a = +\infty$.

$$- |a| = 1$$

In diesem Fall gilt

$$\limsup_{n \to \infty} \sqrt[n]{1^{n^2}} = \limsup_{n \to \infty} 1 = 1, \quad \text{also} \quad R_a = 1.$$

$$- |a| > 1$$

In diesem Fall gilt

$$\lim_{n \to \infty} \sqrt[n]{|b_n|} = \lim_{n \to \infty} \sqrt[n]{|a|^{n^2}}$$

$$= \lim_{n \to \infty} |a|^n$$

$$\stackrel{|a| > 1}{=} +\infty.$$

Es folgt: $\limsup_{n\to\infty} \sqrt[n]{|b_n|} = +\infty$ und damit $R_a = 0$.

4.4.2 Man zeige, dass die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} e^{-1/x^2} & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases}$$

unendlich oft differenzierbar ist und alle ihre Ableitungen im Nullpunkt verschwinden.

Tipp: Zunächst sollte man zeigen, dass für $x \neq 0$

$$f^{(n)}(x) = p_n\left(\frac{1}{x}\right)e^{-1/x^2}$$

gilt, wobei p_n ein geeignetes Polynom ist.

Als erstes zeigt man zur Vorbereitung, dass: Für jedes Polynom $p:\mathbb{R} \to \mathbb{R}$ gilt

$$\lim_{x \to \infty} p(x) \cdot e^{-x} = 0$$

Beweis:

Sei $n \in \mathbb{N}$ und

$$p: \mathbb{R} \to \mathbb{R}, x \mapsto \sum_{k=0}^{n} a_k x^k, \quad a_k \in \mathbb{R}$$

ein Polynom n-ten Grades. Sei x>0 beliebig, dann gilt

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \stackrel{x>0}{>} \frac{x^{n+1}}{(n+1)!}$$

Daraus ergibt sich

$$|p(x) \cdot e^{-x}| = \left| \frac{p(x)}{e^x} \right|$$

$$< \left| \frac{\sum_{k=0}^n a_k x^k}{x^{n+1}/(n+1)!} \right|$$

$$= \left| (n+1)! \cdot \sum_{k=0}^n a_k x^{k-(n+1)} \right|$$

$$\stackrel{x > 0}{\leq} (n+1)! \cdot \sum_{k=0}^n |a_k| x^{k-(n+1)}.$$

Die Behauptung folgt wegen

$$\lim_{x \to \infty} \sum_{k=0}^{n} |a_k| x^{k-(n+1)} \qquad \overset{\mathrm{GWS}}{=} \qquad \sum_{k=0}^{n} (|a_k| \lim_{x \to \infty} x^{k-(n+1)}) = \sum_{k=0}^{n} (|a_k| \cdot 0) = 0.$$

Als Nächstes zeigt man, dass

$$\lim_{x \to \infty} p(x) \cdot e^{-x^2} = 0$$

für alle Polynome p ist.

Für x > 1 ist $x < x^2$, also $-x^2 < -x$, es folgt

$$|p(x) \cdot e^{-x^2}| \stackrel{x > 1}{\leq} |p(x) \cdot e^{-x}|$$

und aus obigem dann die Behauptung. Analog ergibt sich

$$\lim_{x \to -\infty} p(x) \cdot e^{-x^2} = 0$$

Ersetzt man in den letzten beiden Gleichungen x durch $1/\xi$ (dies ist möglich, da der Grenzwert gegen $\pm \infty$ betrachtet wird, so folgt

$$\lim_{\substack{\xi \to 0 \\ \xi > 0}} p(1/\xi) \cdot e^{-1/\xi^2} = 0 \quad \text{und} \quad \lim_{\substack{\xi \to 0 \\ \xi < 0}} p(1/\xi) \cdot e^{-1/\xi^2} = 0$$

Aus der Existenz dieser beiden Funktionsgrenzwerte folgt

$$\lim_{\xi \to 0} p(1/\xi) \cdot e^{-1/\xi^2} = 0$$

für alle Polynome p.

Man zeigt nun durch vollständige Induktion, dass für $n \in \mathbb{N} \cup \{0\}$ (hierbei sei $f^{(0)} = f$) gilt:

$$f^{(n)}(x) = \left\{ \begin{array}{ll} p_n(1/x) \cdot \mathrm{e}^{-1/x^2} & \quad \text{für } x \neq 0, \, p_n \text{ ein geeignetes Polynom} \\ 0 & \quad \text{für } x = 0 \end{array} \right.$$

• Induktionsanfang:

Für n=0 gilt die Behauptung mit $p_0(x)=1$ nach der Definition von f.

• Induktionsvoraussetzung: Für ein $n \in \mathbb{N} \cup \{0\}$ gelte:

$$f^{(n)}(x) = \begin{cases} p_n(1/x) \cdot \mathrm{e}^{-1/x^2} & \text{für } x \neq 0, \, p_n \text{ ein geeignetes Polynom} \\ 0 & \text{für } x = 0. \end{cases}$$

• Induktionsschluss:

Zu zeigen ist, dass $f^{(n)}$ auf ganz \mathbb{R} differenzierbar ist mit

$$f^{(n+1)}(x) = \left\{ \begin{array}{ll} p_{n+1}(1/x) \cdot \mathrm{e}^{-1/x^2} & \quad \text{für } x \neq 0, \, p_{n+1} \text{ ein Polynom} \\ 0 & \quad \text{für } x = 0. \end{array} \right.$$

Sei also $x_0 \in \mathbb{R}$ beliebig, sei zunächst $x_0 \neq 0$. $f^{(n)}$ ist als Kompositum auf $\mathbb{R} \setminus \{0\}$ differenzierbar bei x_0 . Die Ableitung erhält man durch Anwendung der Ketten- und der Produktregel:

$$f^{(n)}(x_0) = p_n(1/x_0) \cdot e^{-1/x_0^2}$$

$$\Rightarrow f^{(n+1)}(x_0) = p'_n(1/x_0) \cdot \left(-\frac{1}{x_0^2}\right) \cdot e^{-1/x_0^2}$$

$$+ p_n(1/x_0) \cdot e^{-1/x_0^2} \cdot \frac{2}{x_0^3}$$

$$= \left(\frac{2}{x_0^3} p_n(1/x_0) - \frac{1}{x_0^2} p'_n(1/x_0)\right) \cdot e^{-1/x_0^2}.$$

Man setze nun

$$\bigvee_{x \in \mathbb{R}} p_{n+1}(x) := 2x^3 \cdot p_n(x) - x^2 \cdot p_n'(x).$$

Da nach Induktionsvoraussetzung p_n und damit auch p'_n Polynome sind, ist offenbar auch p_{n+1} ein Polynom. Für $x = \frac{1}{x_0}$ gilt:

$$p_{n+1}(1/x_0) = \frac{2}{x_0^3} \cdot p_n(1/x_0) - \frac{1}{x_0^2} \cdot p_n'(1/x_0)$$

Damit folgt weiter

$$f^{(n+1)}(x_0) = p_{n+1}(1/x_0) \cdot e^{-1/x_0^2}$$

Zu betrachten bleibt noch $x_0 = 0$, zu zeigen ist, dass $f^{(n)}$ bei 0 mit $f^{(n+1)}(0) = 0$ differenzierbar ist. Es gilt:

$$\lim_{h \to 0} \frac{f^{(n)}(h) - f^{(n)}(0)}{h} \qquad \stackrel{\text{Ind.Vor}}{=} \qquad \lim_{h \to 0} \frac{p_n(1/h) \cdot e^{-1/h^2}}{h}$$

$$= \qquad \lim_{h \to 0} \frac{p_n(1/h) \cdot e^{-1/h^2}}{h}$$

Man definiert nun $\tilde{p}_n : \mathbb{R} \to \mathbb{R}$ durch $\tilde{p}_n(x) := x \cdot p_n(x)$. Also ist \tilde{p}_n auch ein Polynom und es gilt

$$\lim_{h \to 0} \frac{f^{(n)}(h) - f^{(n)}(0)}{h} = \lim_{h \to 0} \frac{p_n(1/h)}{h} \cdot e^{-1/h^2}$$

$$= \lim_{h \to 0} \tilde{p}_n(1/h) \cdot e^{-1/h^2}$$

$$\stackrel{\text{s.o.}}{=} 0$$

Also ist $f^{(n+1)}(0) = 0$, das war aber zu zeigen.

fist also auf ganz $\mathbb R\,$ beliebig oft differenzierbar und im Nullpunkt verschwinden alle Ableitungen.

4.4.3 Sei (a_n) eine Folge in $\hat{\mathbb{R}}$. Man beweise, dass

$$\lim \sup a_n = \inf_m \sup_{n \ge m} a_n.$$

Es sei $a:=\inf_m\sup_{n\geq m}a_n\in\hat{\mathbb{R}}$, man unterscheidet drei Fälle:

• $a = +\infty$: Zu zeigen ist, dass $\limsup a_n = +\infty$, d.h. dass es eine gegen $+\infty$ konvergente Teilfolge gibt. Man wählt induktiv eine Teilfolge (a_{n_k}) mit $a_{n_k} \geq k$, diese leistet sicher das gewünschte:

Zunächst ist $a=\inf_m\sup_{n\geq m}a_n=+\infty$, also ist für jedes $m\in\mathbb{N}$ sicher $\sup_{n\geq m}a_n=+\infty$, insbesondere gibt es $n_1\geq 1$, so dass $a_{n_1}\geq 1$. Damit ist n_1 gewählt. Sei nun n_k bereits gewählt, wähle wegen $\sup_{n\geq n_k+1}a_n=+\infty$ ein $n_{k+1}>n_k$ mit $a_{n_{k+1}}\geq k+1$.

Nun ist $\lim a_{n_k} = +\infty$, damit ist $\limsup a_n = +\infty = a$.

• $a \in \mathbb{R}$: Zu zeigen ist $\limsup a_n = a$, man zeigt zunächst, dass für $\varepsilon > 0$ nur endlich viele Folgenglieder $\geq a + \varepsilon$ sind.

Sei also $\varepsilon > 0$. Nun ist $a + \varepsilon > \inf_m \sup_{n \ge m} a_n$, d.h. es gibt ein $m \in \mathbb{N}$ mit $a + \varepsilon > \sup_{n \ge m} a_n$, d.h. für alle $n \ge m$ ist $a + \varepsilon > a_n$, also sind höchstens die m-1 Folgenglieder a_k mit $1 \le k \le m-1$ größer als $a+\varepsilon$.

Nun zeigt man noch, dass für $\varepsilon > 0$ stets unendlich viele Folgenglieder $\geq a - \varepsilon$ sind: Sei $\varepsilon > 0$, dann ist für jedes $m \in \mathbb{N}$ sicher

$$a - \varepsilon < a = \inf_{m} \sup_{n \ge m} a_n \le \sup_{n \ge m} a_n$$

d.h. zu jedem $m \in \mathbb{N}$ gibt es ein $n \geq m$ mit $a_n \geq a - \varepsilon$, insbesondere sind unendlich viele $a_n \geq a - \varepsilon$.

Zusammen ist damit, da der limes superior durch diese Eigenschaften charakterisiert wird, gezeigt, dass $a = \limsup a_n$.

• $a = -\infty$: Man zeigt, dass dann notwendig $\lim a_n = -\infty$ gilt, denn dann ist auch $\limsup a_n = -\infty$.

Sei also $R \in \mathbb{R}$ beliebig, wegen

$$-\infty = \inf_{m} \sup_{n \ge m} a_n < R$$

gibt es $m \in \mathbb{N}\,,$ so dass $\sup_{n \geq m} a_n < R,$ d.h. $a_n < R$ für alle $n \geq m,$ da $R \in \mathbb{R}$ beliebig war, folgt $a_n \to -\infty$.

Stets gilt $a = \limsup a_n$, das war aber zu zeigen.

zu 4.5

4.5.1 Berechnen Sie die komplexen Lösungen der Gleichung $z^6 = 1$ (man nennt sie die sechsten Einheitswurzeln) und zeigen Sie, dass sie die Ecken eines regulären Sechsecks bilden.

Zunächst schreibt man $z = re^{i\phi}$ und $1 = 1e^{2i\pi n}$, man erhält:

$$z^6 = r^6 e^{6i\phi}$$

also liefert Koordinatenvergleich:

$$z^6 = 1 \iff r^6 = 1 \land 6i\phi = 2i\pi n$$

es folgt r=1 (da $r\geq 0$), und man erhält für $0\leq n\leq 5$ die Winkel

$$\phi_n := \frac{\pi n}{3}$$

Die 6. Einheitswurzeln $\zeta_n := e^{i\phi_n}$ sind also

$$\zeta_0 = e^{i0} = e^0 = 1$$

$$\zeta_1 = e^{i\pi/3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$\zeta_2 = e^{2i\pi/3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$\zeta_3 = e^{i\pi} = -1$$

$$\zeta_4 = e^{4i\pi 3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

$$\zeta_5 = e^{5i\pi 3} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

Um zu zeigen, dass sie die Ecken eines regelmäßigen Sechsecks bilden, zeigt man, dass

$$\bigvee_{0 \le k \le 5} |\zeta_k - \zeta_{k+1}| = 1$$

(dann bilden nämlich je ζ_k, ζ_{k+1} mit dem Nullpunkt ein regelmäßiges Dreieck und sechs solche bilden ein regelmäßiges Schechseck), dabei ist

$$\zeta_6 := e^{6i\pi 3} = e^{2i\pi} = 1 = \zeta_0$$

Sei also $0 \le k \le 5$, es ist

$$\begin{aligned} |\zeta_k - \zeta_{k+1}| &= \left| e^{ki\pi/3} - e^{(k+1)i\pi/3} \right| \\ &= \left| e^{ki\pi/3} \cdot (1 - e^{i\pi/3}) \right| \\ &= \left| 1 - e^{i\pi/3} \right| \\ &= \left| 1 - \frac{1}{2} - \frac{\sqrt{3}}{2} i \right| \\ &= \frac{1}{4} + \frac{3}{4} \\ &= 1 \end{aligned}$$

Das war aber zu zeigen.

4.5.2 Beweisen Sie das Additionstheorem für die Tangensfunktion: Wann immer $\tan \alpha$, $\tan \beta$ und $\tan(\alpha + \beta)$ definiert sind, gilt

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

Seien also $\alpha, \beta \in \mathbb{C}$ so, dass $\tan \alpha, \tan \beta$ und $\tan(\alpha + \beta)$ definiert sind. Dann

ist also $\cos \alpha, \cos \beta \neq 0$ und $\cos(\alpha + \beta) \neq 0$, es folgt

$$\tan(\alpha + \beta) \qquad \stackrel{\text{Def von tan}}{=} \qquad \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}$$

$$= \qquad \frac{\sin \alpha \cos \beta + \sin \beta \cos \alpha}{\cos \alpha \cos \beta - \sin \alpha \sin \beta}$$

$$\cos \alpha \cos \beta \neq 0 \qquad \frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{\cos \alpha \sin \beta}{\cos \alpha \cos \beta}$$

$$= \qquad \frac{\frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta} - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}}{1 - \frac{\sin \alpha}{\cos \alpha} \cdot \frac{\sin \beta}{\cos \beta}}$$

$$= \qquad \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

Das war aber zu zeigen.

4.5.3 Man finde alle komplexen Zahlen z mit

(a)
$$z^2 - z + 1 = 0$$
,

(b)
$$z^7 = 5$$
,

(c)
$$z^{15} = -z^6$$
.

(a)
$$z^2 - z + 1 = 0$$

Es gibt höchstens zwei $z \in \mathbb{C}$, die diese Gleichung erfüllen, mit Hilfe der p-q-Formel folgt wegen 1/4 - 1 < 0:

$$z^{2} - z + 1 = 0$$

$$\iff z_{1,2} = \frac{1}{2} \pm i \cdot \sqrt{\left|\frac{1}{4} - 1\right|}$$

$$= \frac{1}{2} \pm i \cdot \sqrt{\frac{3}{4}}$$

$$= \frac{1}{2} \pm i \cdot \frac{\sqrt{3}}{2}$$

$$\iff z_{1} = \frac{1}{2} + \frac{\sqrt{3}i}{2} \quad \forall \quad z_{2} = \frac{1}{2} - \frac{\sqrt{3}i}{2}$$

(b)
$$z^7 = 5$$

z=0ist keine Lösung dieser Gleichung, da $0^7=0\neq 5$ ist. Sei also $z\in\mathbb{C}$ eine Lösung der Gleichung $z^7=5$ und sei $z=r\cdot \mathrm{e}^{ix}$ mit r>0 und $x\in\mathbb{R}$. Wegen $5=5\cdot \mathrm{e}^{i\cdot 2k\pi}$ f.a. $k\in\mathbb{Z}$ folgt, dass $z_k\in\mathbb{C}$ mit

$$z_k = \sqrt[7]{5} \cdot \mathrm{e}^{i \cdot \frac{2k\pi}{7}}$$

für jedes $k \in \mathbb{Z}$ Lösung der Gleichung $z^7 = 5$ ist.

Nun ist aber für alle $k \in \mathbb{Z}$

$$z_{k+7} = \sqrt[7]{5} \cdot e^{i \cdot (\frac{2k\pi}{7} + 2\pi)} = \sqrt[7]{5} \cdot e^{i \cdot \frac{2k\pi}{7}} = z_k$$

Also gibt es 7 verschiedene Lösungen der Gleichung $z^7 = 5$, nämlich

$$\begin{array}{rcl} z_0 & = & \sqrt[7]{5} \cdot \mathrm{e}^{i \cdot 0} = \sqrt[7]{5} \\ z_1 & = & \sqrt[7]{5} \cdot \mathrm{e}^{i \cdot \frac{2}{7}\pi} \\ z_2 & = & \sqrt[7]{5} \cdot \mathrm{e}^{i \cdot \frac{4}{7}\pi} \\ z_3 & = & \sqrt[7]{5} \cdot \mathrm{e}^{i \cdot \frac{6}{7}\pi} \\ z_4 & = & \sqrt[7]{5} \cdot \mathrm{e}^{i \cdot \frac{8}{7}\pi} \\ z_5 & = & \sqrt[7]{5} \cdot \mathrm{e}^{i \cdot \frac{17}{7}\pi} \\ z_6 & = & \sqrt[7]{5} \cdot \mathrm{e}^{i \cdot \frac{12}{7}\pi} \end{array}$$

(c)
$$z^{15} = -z^6$$

Zunächst gilt

$$z^{15} = -z^{6}$$

$$\iff z^{15} + z^{6} = 0$$

$$\iff z^{6} \cdot (z^{9} + 1) = 0$$

$$\iff z^{6} = 0 \quad \lor \quad z^{9} = -1$$

$$\iff z = 0 \quad \lor \quad z^{9} = -1$$

Zunächst ist also z=0 Lösung der Gleichung. Sei nun $z=r\cdot {\rm e}^{ix}\in\mathbb{C}$ mit $r>0,x\in\mathbb{R}$ Lösung von $z^9=-1$. Analog zu (b) folgt, dass z dann die Form

$$z = e^{i \cdot \frac{\pi + 2k\pi}{9}} = e^{i \cdot (\frac{\pi}{9} + \frac{2k\pi}{9})}$$

mit $k \in \mathbb{Z}$ hat. Die sich ergebenden 9 verschiedenen Lösungen sind also

$$\begin{array}{rclcrcl} z_0 & = & \mathrm{e}^{i \cdot \frac{1}{9}\pi} \\ z_1 & = & \mathrm{e}^{i \cdot \frac{3}{9}\pi} \\ z_2 & = & \mathrm{e}^{i \cdot \frac{5}{9}\pi} \\ z_3 & = & \mathrm{e}^{i \cdot \frac{7}{9}\pi} \\ z_4 & = & \mathrm{e}^{i \cdot \frac{9}{9}\pi} = \mathrm{e}^{i\pi} = -1 \\ z_5 & = & \mathrm{e}^{i \cdot \frac{11}{9}\pi} \\ z_6 & = & \mathrm{e}^{i \cdot \frac{15}{9}\pi} \\ z_7 & = & \mathrm{e}^{i \cdot \frac{15}{9}\pi} \\ z_8 & = & \mathrm{e}^{i \cdot \frac{17}{9}\pi} \end{array}$$

4.5.4 Man zeige:

(a) Für $f: \mathbb{R} \to \mathbb{C}$, $f(x) = e^{ix}$ gilt die Aussage des Satzes von Rolle nicht.

(b) Die L'Hôpitalschen Regeln gelten für komplexwertige Funktionen nicht: Als Beispiel setze man $f: [0,1] \to \mathbb{C}, f(x) = x, g: [0,1] \to \mathbb{C},$ $g(x) = x + x^2 \exp(i/x^2)$ und berechne unter Beachtung von $\lim_{x\to 0} f(x) =$ $\lim_{x\to 0} g(x) = 0$ die Grenzwerte

$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{f(x)}{g(x)} , \qquad \lim_{\substack{x \to 0 \\ x \neq 0}} \frac{f'(x)}{g'(x)}.$$

(a) Es ist $f(0) = e^0 = 1 = e^{2\pi i} = f(2\pi)$. Gälte die Aussage des Satzes von Rolle für f, so müßte ein $\xi \in]0,2\pi[$ existieren, so dass $f'(\xi)=0$ ist. Es ist aber für beliebiges $x \in \mathbb{R}$:

$$|f'(x)|^2 = |ie^{ix}|^2$$

$$= |i|^2 \cdot \sin^2 x + \cos^2 x$$

$$= 1 \neq 0$$

Also ist $f'(x) \neq 0$ für alle $x \in \mathbb{R}$. Die Aussage des Satzes von ROLLE gilt also für f nicht.

(b) Es seien $f, g: [0,1] \to \mathbb{C}$ wie oben definiert. Offenbar ist

$$\frac{f(x)}{g(x)} = \frac{x}{x + x^2 \exp(i/x^2)}$$
 $\stackrel{x \neq 0}{=}$ $\frac{1}{1 + x \exp(i/x^2)}$

Weiterhin ist für $x \in [0, 1]$:

$$|x \exp(i/x^2)| = |x| \cdot |\exp(i/x^2)| = |x|$$

Wegen $\lim_{x\to 0}|x|=0$ folgt $\lim_{\substack{x\to 0\\x\neq 0}}x\cdot \exp(i/x^2)=0$ und die Anwendung der

Grenzwertsätze ergibt:

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{1 + x \cdot \exp(i/x^2)}$$

$$\stackrel{\text{GWS}}{=} \frac{1}{1 + \lim_{x \to 0} x \cdot \exp(i/x^2)}$$

$$= \frac{1}{1 + 0}$$

$$= 1$$

Zur Bestimmung von $\lim_{x\to 0}\frac{f'(x)}{g'(x)}$ bestimmt man zunächst die Ableitungen von f und g:

$$f(x) = x$$

$$\Rightarrow f'(x) = 1$$

$$g(x) = x + x^2 \cdot \exp(i/x^2)$$

$$\Rightarrow g'(x) = 1 + 2x \cdot \exp(i/x^2) + x^2 \cdot \exp(i/x^2) \cdot (-2i/x^3)$$

$$= 1 + \exp(i/x^2) \cdot (2x - 2i/x)$$

Man zeigt als nächstes, dass

$$\bigvee_{R>0} \prod_{x_0 \in [0,1]} |g'(x_0) - 1| \ge R$$

Sei R > 0 beliebig, wähle $x_0 := \min\{1, 2/R\}$ dann ist

$$|g'(x_0) - 1| = \left| \exp(i/x_0^2) \right| \cdot |2x_0 - 2i/x_0|$$

$$= |2x_0 - 2i/x_0|$$

$$\geq \frac{2}{|x_0|}$$

$$\geq \frac{2}{2/R}$$

$$= R$$

Man zeigt nun noch, dass $\chi: x \to |g'(x)-1|^2$ auf] 0,1] monoton fällt, dazu bestimmt man nun die Ableitung:

$$\chi'(x) = \left(4x^2 + \frac{4}{x^2}\right)'$$
$$= 8x - \frac{8}{x^3}$$
$$= 8 \cdot \left(x - \frac{1}{x^3}\right)$$

Für $x \in]0,1]$ ist $x^3 \le 1$, also $1/x^3 \ge 1$ und $x \le 1$ und somit $\chi'(x) = 8 \cdot (x-1/x^3) \le 0$, somit fällt χ und wegen der Monotonie der Quadratwurzelfunktion auch |g'(x)-1| monoton auf]0,1].

Sei nun (x_n) eine Nullfolge in]0,1], zu zeigen ist

$$\lim_{n \to \infty} \frac{f'(x_n)}{g'(x_n)} = \lim_{n \to \infty} \frac{1}{g'(x_n)} = 0$$

Es reicht zu zeigen:

$$\lim_{n \to \infty} g'(x_n) = \infty \quad \text{(in } \hat{\mathbb{C}} \text{)}$$

dies ist aber Gleichwertig mit

$$\lim_{n \to \infty} (g'(x_n) - 1) = \infty$$

also

$$\bigvee_{R>0} \prod_{n_0 \in \mathbb{N}} \bigvee_{n>n_0} |g'(x_n) - 1| \ge R$$

Sei R > 0, wähle (s.o.) $x_0 \in]0,1]$ mit $|g'(x_0) - 1| > R$ und $n \in \mathbb{N}$ mit $x_n < x_0$ f.a. $n \ge n_0$ (x_n ist Nullfolge), es folgt für alle $n \ge n_0$, da |g'(x) - 1| auf]0,1] monoton fällt:

$$|g'(x_n) - 1| \stackrel{x_n < x_0}{\geq} |g'(x_0) - 1| > R$$

Also ist

$$\lim_{n \to \infty} \frac{f'(x_n)}{g'(x_n)} = 0$$

Das war aber zu zeigen.

Also gilt die Regel von l'Hôpital für komplexe Funktionen im Allgemeinen nicht, denn es ist

$$1 = \lim_{x \to 0} \frac{f(x)}{g(x)} \neq \lim_{x \to 0} \frac{f'(x)}{g'(x)} = 0$$

zu 4.6

4.6.1 Man zeige:

$$\sum_{k=0}^{n} \cos(kx) = \frac{\cos(nx/2)\sin((n+1)x/2)}{\sin(x/2)}.$$

Tipp: $\cos x = (e^{ix} + e^{-ix})/2$, $\sin x = (e^{ix} - e^{-ix})/2i$.

Sei $n \in \mathbb{N}$, $x \in \mathbb{R} \setminus \{2\ell\pi\ell \in \mathbb{Z}\}$ beliebig. Dann ist $e^{ix} \neq 1$, $e^{-ix} \neq 1$ und es gilt:

$$\begin{split} \sum_{k=0}^{n} \cos(kx) &= \sum_{k=0}^{n} \left[\frac{1}{2} (\mathrm{e}^{ikx} + \mathrm{e}^{-ikx}) \right] \\ &= \frac{1}{2} \left(\sum_{k=0}^{n} \mathrm{e}^{ikx} + \sum_{k=0}^{n} \mathrm{e}^{-ikx} \right) \\ &= \frac{1}{2} \sum_{k=0}^{n} (\mathrm{e}^{ix})^{k} + \frac{1}{2} \sum_{k=0}^{n} (\mathrm{e}^{-ix})^{k} \\ &= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{\mathrm{e}^{ix}}{\mathrm{e}^{ix} - 1} + \frac{1}{2} \cdot \frac{\mathrm{e}^{-ix}}{\mathrm{e}^{-ix} - 1} \\ &= \frac{1}{2} \cdot \frac{\mathrm{e}^{i(n+1)x} - 1}{\mathrm{e}^{ix} - 1} + \frac{1}{2} \cdot \frac{1 - \mathrm{e}^{-i(n+1)x}}{\mathrm{e}^{-ix} - 1} \\ &= \frac{1}{2} \cdot \frac{\mathrm{e}^{\frac{i(n+1)x}{2}} - \mathrm{e}^{\frac{-i(n+1)x}{2}}}{\mathrm{e}^{\frac{ix}{2}} - \mathrm{e}^{\frac{-i(n+1)x}{2}}} \\ &= \frac{1}{2} \cdot \frac{\mathrm{e}^{\frac{inx}{2}} - \mathrm{e}^{\frac{-i(n+1)x}{2}}}{\mathrm{e}^{\frac{ix}{2}} - \mathrm{e}^{\frac{-i(n+1)x}{2}}} \\ &= \frac{1}{2} \cdot \left(\mathrm{e}^{\frac{inx}{2}} + \mathrm{e}^{\frac{-inx}{2}} \right) \cdot \frac{\mathrm{e}^{\frac{i(n+1)x}{2}} - \mathrm{e}^{\frac{-i(n+1)x}{2}}}{\mathrm{e}^{\frac{ix}{2}} - \mathrm{e}^{\frac{-i(n+1)x}{2}}} \\ &= \cos(nx/2) \cdot \frac{2\sin((n+1)x/2)}{\sin(x/2)} \\ &= \frac{\cos(nx/2)\sin((n+1)x/2)}{\sin(x/2)} \end{split}$$

Das war aber zu zeigen.

Im Fall
$$x \in \{2\ell \pi \ell \in \mathbb{Z}\}$$
 ist $\sum_{k=0}^{n} \cos(kx) = n+1$.

4.6.2 Sei l>0 gegeben. Für welche Zahlen k>0 besitzt $y''+k^2y=0$ eine nicht triviale Lösung mit den Randwerten

$$y(0) = 0, \quad y'(l) = 0$$
 ?

(Das kleinste derartige k bestimmt die so genannte $Eulersche\ Knicklast$; bei dieser kann ein einseitig eingespannter Stab der Länge l ausknicken.)

Aus der Differenzialgleichung $y'' + k^2 y = 0$ erhält man mit Hilfe des Exponentialansatzes ihr charakteristisches Polynom

$$P(\lambda) = \lambda^2 + k^2 = 0$$

Man bestimmt nun mit Hilfe der p-q-Formel seine Nullstellen:

$$\lambda^{2} + k^{2} = 0$$

$$\iff \lambda_{1,2} = 0 \pm i \cdot \sqrt{|0 - k^{2}|}$$

$$\iff \lambda_{1} = k \cdot i \quad \forall \quad \lambda_{2} = -k \cdot i$$

Man erhält also als Basis des Lösungsraumes obiger Differenzialgleichung

$$\{\sin(k \cdot x), \cos(k \cdot x)\}$$

Also ist die allgemeine Lösung $(c_1, c_2 \in \mathbb{R} \text{ sind bel. Konstanten})$:

$$y(x) = c_1 \cdot \sin(k \cdot x) + c_2 \cdot \cos(k \cdot x)$$

Man ermittelt nun aus den Randwerten die Werte der Konstanten:

$$0 = y(0) = c_1 \cdot \sin(k \cdot 0) + c_2 \cdot \cos(k \cdot 0)$$

$$\iff 0 = c_1 \cdot 0 + c_2 \cdot 1$$

$$\iff c_2 = 0$$

 $y'(x) = kc_1 \cdot \cos(k \cdot x)$

Mit dem anderen Randwert erhält man wegen $c_2 = 0$ und

$$0 = y'(\ell) = kc_1 \cdot \cos(k \cdot \ell)$$

$$\iff 0 = kc_1 \cdot \cos(k\ell)$$

$$\stackrel{k \ge 0}{\iff} c_1 = 0 \quad \lor \quad \cos(k\ell) = 0$$

$$\stackrel{k > 0, \ell > 0}{\iff} c_1 = 0 \quad \lor \quad \prod_{m \in \mathbb{N}_0} k\ell = \frac{\pi}{2} + m\pi$$

$$\stackrel{\ell > 0}{\iff} c_1 = 0 \quad \lor \quad \prod_{m \in \mathbb{N}_0} k = \frac{\pi}{2\ell} + \frac{m\pi}{\ell}$$

Im Fall $c_1=0$ ergibt sich die triviale Lösung $y(x)\equiv 0$, nicht triviale Lösungen existieren also nur für k>0 der Form

$$k = \frac{\pi}{2\ell} + \frac{m\pi}{\ell} \quad \text{mit } m \in \mathbb{N}_0$$

das kleinste derartige k ist $k_{\min} = \frac{\pi}{2\ell}$.

4.6.3 Man zeige:

- (a) Ist $x \neq 0$ eine algebraische Zahl, so auch 1/x und x + q für alle $q \in \mathbb{Q}$.
- (b) $\sqrt{2} + \sqrt{5}$ ist algebraisch.

(Allgemein kann man zeigen, dass die Menge der algebraischen Zahlen ein Körper ist.)

(a) Sei $x \in \mathbb{R} \setminus \{0\}$ algebraisch, und seien $n \in \mathbb{N}, a_k \in \mathbb{Z}$ für $0 \le k \le n$ so gewählt, dass

$$\sum_{k=0}^{n} a_k x^k = 0$$

Wegen $x \neq 0$ ist auch $x^n \neq 0$ und es gilt

$$\sum_{k=0}^{n} a_k x^k = 0$$

$$\iff \frac{1}{x^n} \sum_{k=0}^{n} a_k x^k = 0$$

$$\iff \sum_{k=0}^{n} a_k x^{k-n} = 0$$

$$\iff \sum_{\kappa=0}^{n-k} a_{n-\kappa} x^{-\kappa} = 0$$

$$\iff \sum_{\kappa=0}^{n} a_{n-\kappa} \left(\frac{1}{x}\right)^{\kappa} = 0$$

Also ist auch 1/x Nullstelle eines Polynoms mit ganzen Koeffizienten, nämlich von

$$\sum_{\kappa=0}^{n} a_{n-\kappa} y^{\kappa}$$

und damit eine algebraische Zahl.

Sei nun $q \in \mathbb{Q}$, $x \in \mathbb{R}$ algebraisch und $p = \sum_{k=0}^{n} a_k x^k$ ein Polynom mit rationalen $a_k \in \mathbb{Q}$, so dass p(x) = 0. Betrachte nun r(x) := p(x - q), es ist

$$\begin{split} r(x) &= \sum_{k=0}^n a_k (x-q)^k \\ &= \sum_{k=0}^n a_k \sum_{i=0}^k \binom{k}{i} x^i (-q)^{k-i} \\ &= \sum_{i=0}^n \underbrace{\left(\sum_{k=i}^n a_k \binom{k}{i} (-q)^{k-1}\right)}_{\in \mathbb{Q}} x^i \end{split}$$

Also ist r ein rationales Polynom und wegen r(x+q) = p(x+q-q) =p(x) = 0 ist x + q algebraisch.

(b) $\sqrt{2} + \sqrt{5}$ ist algebraisch.

Betrachte die Abbildung

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto (x^3 - 11x)^2 - 72$$

f ist ein Polynom mit ganzen Koeffizienten, und es ist

$$f(\sqrt{2} + \sqrt{5}) = [(\sqrt{2} + \sqrt{5})^3 - 11\sqrt{2} - 11\sqrt{5}]^2 - 72$$

$$= (2\sqrt{2} + 6\sqrt{5} + 15\sqrt{2} + 5\sqrt{5} - 11\sqrt{2} - 11\sqrt{5})^2 - 72$$

$$= (6\sqrt{2})^2 - 72$$

$$= 72 - 72$$

$$= 0$$

Also ist $\sqrt{5} + \sqrt{2}$ algebraisch.

4.6.4 $z_0 \in \mathbb{C}$ heißt n-fache Nullstelle des Polynoms P, wenn es ein Polynom Q mit $P(z) = (z - z_0)^n Q(z)$ gibt.

(a) z_0 ist genau dann n-fache Nullstelle von P, wenn gilt:

$$P(z_0) = P'(z_0) = \dots = P^{(n-1)}(z_0) = 0.$$

(b) P habe reelle Koeffizienten. Dann gilt für $z_0 \in \mathbb{C}$:

$$P(z_0) = 0 \iff P(\overline{z_0}) = 0.$$

(c) Ein Polynom $\neq 0$ mit reellen Koeffizienten zerfällt in ein Produkt aus Polynomen (über \mathbb{R}) vom Grad ≤ 2 :

$$P(x) = a_n(x - x_1) \cdots (x - x_r)(x^2 + A_1x + B_1) \cdots (x^2 + A_sx + B_s)$$
(alle $x_i, A_i, B_i \in \mathbb{R}$).

- (a) Sei P ein Polynom über \mathbb{C}
 - \implies Sei also $z_0 \in \mathbb{C}$ eine *n*-fache Nullstelle von P und sei Q so gewählt, dass $P(z) = (z z_0)^n Q(z)$.

z.Z:
$$P(z_0) = P'(z_0) = \cdots = P^{(n-1)}(z_0) = 0.$$

Man zeigt zunächst durch vollständige Induktion nach k, dass für $0 \le k \le n$ die k-te Ableitung von P gerade

$$P^{(k)}(z) = \sum_{\ell=0}^{k} {k \choose \ell} \frac{n!}{(n-\ell)!} (z-z_0)^{n-\ell} Q^{(k-\ell)}(z)$$

ist:

* Induktionsverankerung: Für k = 0 gilt:

$$P(z) = \binom{0}{0} \frac{n!}{n!} (z - z_0)^n Q^{(0-0)}(z) = (z - z_0)^n Q(z)$$

Diese Aussage ist n.V. wahr.

* Induktionsvoraussetzung: Für ein kmit $0 \le k < n$ gelte

$$P^{(k)}(z) = \sum_{\ell=0}^{k} {k \choose \ell} \frac{n!}{(n-\ell)!} (z-z_0)^{n-\ell} Q^{(k-\ell)}(z)$$

* Induktionsschluß: Zu zeigen ist, dass dann für $0 < k+1 \le n$ gilt:

$$P^{(k+1)}(z) = \sum_{\ell=0}^{k+1} {k+1 \choose \ell} \frac{n!}{(n-\ell)!} (z-z_0)^{n-\ell} Q^{(k+1-\ell)}(z)$$

Es ist $P^{(k+1)} = [P^{(k)}]'$. Mit Hilfe der Induktionsvoraussetzung

$$\begin{split} P^{(k+1)}(z) &= \sum_{\ell=0}^k \binom{k}{\ell} \frac{n!}{(n-\ell)!} (n-\ell) (z-z_0)^{n-\ell-1} Q^{(k-\ell)}(z) \\ &+ \sum_{\ell=0}^k \binom{k}{\ell} \frac{n!}{(n-\ell)!} (z-z_0)^{n-\ell} Q^{(k+1-\ell)}(z) \\ &= \sum_{\ell=0}^k \binom{k}{\ell} \frac{n!}{(n-\ell-1)!} (z-z_0)^{n-\ell-1} Q^{(k-\ell)}(z) \\ &+ \sum_{\ell=0}^k \binom{k}{\ell} \frac{n!}{(n-\ell)!} (z-z_0)^{n-\ell} Q^{(k+1-\ell)}(z) \\ &= \sum_{\ell=1}^{k+1} \binom{k}{\ell-1} \frac{n!}{(n-\ell)!} (z-z_0)^{n-\ell} Q^{(k+1-\ell)}(z) \\ &+ \sum_{\ell=0}^k \binom{k}{\ell} \frac{n!}{(n-\ell)!} (z-z_0)^{n-\ell} Q^{(k+1-\ell)}(z) \\ &= \sum_{\ell=0}^{k+1} \binom{k+1}{\ell} \frac{n!}{(n-\ell)!} (z-z_0)^{n-\ell} Q^{(k+1-\ell)}(z) \end{split}$$

Man betrachte nun für $0 \le k < n$ die k-te Ableitung von P an der Stelle z_0 :

$$P^{(k)}(z_0) = \sum_{\ell=0}^{k} {k \choose \ell} \frac{n!}{(n-\ell)!} (z_0 - z_0)^{n-\ell} Q^{(k+1-\ell)}(z_0)$$

$$\stackrel{\ell \leq k < n!}{=} \sum_{\ell=0}^{k} \frac{n!}{(n-\ell)!} \cdot 0 \cdot Q^{(k+1-\ell)}(z_0)$$

$$= 0$$

Also verschwinden an der Stelle z_0 die ersten n-1 Ableitungen von P. Das war aber zu zeigen.

← Man zeigt dies durch logische Umkehr, i.e. man zeigt:

$$z_0 \in \mathbb{C}$$
keine $n\text{-fache Nullstelle von } P \Rightarrow \displaystyle \bigcap_{0 \leq k \leq n-1} P^{(k)} \neq 0$

Sei also $z_0 \in \mathbb{C}$ keine n-fache Nullstelle von P, o.B.d.A. sei aber z mindestens einfache Nullstelle von P (im Fall $P(z_0) \neq 0$ folgt die Behauptung mit k=0), sei also $1 \leq r \leq n-1$ so gewählt, dass z_0 r-fache, aber nicht r+1-fache Nullstelle ist, dann läßt sich also P in der Form

$$P(z) = (z - z_0)^r \cdot Q(z)$$
 mit $Q(z_0) \neq 0$

schreiben.

Wie oben gezeigt, gilt dann für die r-te Ableitung von P:

$$P^{(r)}(z) = \sum_{\ell=0}^{r} {r \choose \ell} \frac{r!}{(r-\ell)!} (z-z_0)^{r-\ell} Q^{r-\ell}(z)$$

und damit gilt

$$P^{(r)}(z_0) = Q(z_0) + \sum_{\ell=0}^{r-1} {r \choose \ell} \frac{r!}{(r-\ell)!} (z_0 - z_0)^{r-\ell} Q^{r-\ell}(z_0)$$

$$= Q(z_0)$$

$$\neq 0 \quad \text{(Wahl von } r\text{)}$$

Man wählt also k := r, wegen $r \le n-1$ folgt die Behauptung. Das war aber zu zeigen.

(b) Sei $P(z)=\sum_{k=0}^n a_k z^k$ ein Polynom mit Koeffizienten aus \mathbb{R} . Sei $z_0\in\mathbb{C}$ beliebig, dann ist

$$P(z_0) = 0$$

$$\iff \sum_{k=0}^{n} a_k z_0^k = 0$$

$$\iff \sum_{k=0}^{\overline{n}} a_k z_0^k = \overline{0} = 0$$

$$\iff \sum_{k=0}^{n} \overline{a_k} \overline{z_0}^k = 0$$

$$\iff \sum_{k=0}^{n} a_k \overline{z_0}^k = 0$$

$$\iff P(\overline{z_0}) = 0$$

Das war aber zu zeigen.

(c) Sei P ein Polynom n-ten Grades über \mathbb{R} . Da \mathbb{R} ein Unterkörper von \mathbb{C} ist, kann P auch als Polynom über $\mathbb C$ aufgafasst werden. Nach dem Hauptsatz der Algebra zerfällt P über \mathbb{C} in Linearfaktoren, i.e. es gilt

$$P(z) = a_n \cdot \prod_{k=1}^{n} (z - z_k), \quad z_k \in \mathbb{C}$$

Da P reele Koeffizienten hat, ist nach (b) mit jeder nicht reinrellen Nullstelle z_i auch $\overline{z_i}$ Nullstelle von P. Daher kann P als

$$P(z) = a_n \cdot \prod_{\kappa=1}^{s} (z - x_{\kappa}) \cdot \prod_{\tau=1}^{t} (z - z_{\tau})(z - \overline{z_{\tau}}) \quad \text{mit } x_{\kappa} \in \mathbb{R}, z_{\tau} \in \mathbb{C}$$

geschrieben werden. Also ist

$$P(z) = a_n \cdot \prod_{\kappa=1}^s (z - x_\kappa) \cdot \prod_{\tau=1}^t (z^2 - (z_\tau + \overline{z_\tau})z + z_\tau \overline{z_\tau}$$
$$= a_n \cdot \prod_{\kappa=1}^s (z - x_\kappa) \cdot \prod_{\tau=1}^t (z^2 - 2\Re(z_\tau) + |z_\tau|^2)$$

Setzt man nun für $\tau = 1, \dots, t$: $A_{\tau} := -2\Re(z_{\tau}) \in \mathbb{R}$ und $B_{\tau} := |z_{\tau}|^2 \in \mathbb{R}$, so erhält man

$$P(z) = a_n \cdot \prod_{\kappa=1}^{s} (z - x_{\kappa}) \cdot \prod_{\tau=1}^{t} (z^2 + A_{\tau}z + B_{\tau})$$

d.h. P zerfällt über \mathbb{R} in Polynome höchstens zweiten Grades.

4.6.5 Man betrachte das Anfangswertproblem (AWP)

$$y'' = y$$
, $y(0) = y_0$.

- (a) Was kann man (ohne die Differentialgleichung zu lösen!) qualitativ über den Verlauf von y in der Nähe von $(0, y_0)$ sagen, wenn y_0 gleich 1, 0 bzw. -1 ist?
- (b) Man löse das AWP für allgemeines y_0 .
- Im Fall $y(0) = y_0 = -1$ ist wegen y'' = y auch y''(0) = -1, also ist fällt die Ableitung von y(x) in einer Umgebung von 0 streng monoton, daher ist der Graph von y(x) im Punkte (0, -1) und in einer Umgegbung dieses Punktes rechtsgekrümmt.
 - Im Fall $y(0) = y_0 = 0$ ist also auch y''(0) = 0, also ist der Graph der Funktion y(x) im Punkt (0,0) nicht gekrümmt. Links bzw. rechts des Punktes (0,0) kann der Graph von y links- oder rechtsgekrümmt sein, darüber läßt sich in diesem Fall nichts aussagen.
 - Im Fall $y(0) = y_0 = 1 = y''(0)$ steigt die Ableitung in einer Umgebung von 0 streng monoton, also ist der Graph von y(x) in einer Umgebung von (0,1) linksgekrümmt.

(b) Zur Lösung der Differentialgleichung bestimmt man zunächst ihr charakteristisches Polynom, man erhält

$$P(\lambda) = \lambda^2 - 1 = (\lambda - 1)(\lambda + 1)$$

dieses Polynom hat offensichtlich die beiden Nullstellen 1,-1. Als Basis der Lösungsraumes der o.a. Differentialgleichung erhält man

$$\{e^x, e^{-x}\}$$

Die allgemeine Lösung der Differentialgleichung ist also (dabei sind $a,b\in\mathbb{R}$ bel. Konstanten):

$$y(x) = ae^x + be^{-x}$$

Man bestimmt nun mit Hilfe der gegebenen Anfangsbedingung eine Beziehung zwischen a und b:

$$y_0 = y(0) = ae^0 + be^0$$

 $\iff y_0 = a + b$
 $\iff b = y_0 - a$

Eine Lösung des AWP ist also für bel. $a \in \mathbb{R}$:

$$y(x) = ae^{x} + (y_0 - a)e^{-x} = y_0e^{-x} + a(e^{x} - e^{-x})$$

4.6.6 Finden Sie alle y mit $y' = x^3y^4$.

Man bestimmt die Lösungen nach dem bekannten Schema: Die gegebene Gleichung ist von der Form y' = g(x)h(y), man bestimmt also zunächst G, H mit G' = g und H' = 1/h und muss dann G(x) + c = H(y) nach y auflösen.

Offenbar leisten $G: x \mapsto x^4/4$ und $H: y \mapsto -1/3y^3$ das gewünschte, und es gilt:

$$\frac{x^4}{4} + c = -\frac{1}{3y^3} \iff y^3 = -\frac{4}{3x^4 + 12c} \iff y = \sqrt[3]{-\frac{4}{3x^4 + 12c}}.$$

Die Probe liefert:

$$y' = \frac{1}{3} \cdot \left(-\frac{4}{3x^4 + 12c} \right)^{-2/3} \cdot \frac{12x^3 \cdot 4}{(3x^4 + 12c)^2}$$
$$= \frac{1}{3} \cdot y^{-2} \cdot 3x^3 \cdot y^6$$
$$= x^3 y^4.$$

Weiterhin ist auch y = 0 Lösung dieser Gleichung.