Samenvatting [G0Q57A] - Modellering en simulatie

Arne Van Den Kerchove

21 januari 2019

${\bf Inhoud sopgave}$

1	Mo	dellen	en simulaties
2	Numerieke lineaire algebra en toepassingen		
	2.1	QR-fa	actorisatie
		2.1.1	Gram-Schmidt orthogonalisatie
		2.1.2	QR-factorisatie met Givens-rotaties
		2.1.3	QR-factorisatie met kolompivotering
	2.2	Singul	liere-waardenontbinding
		2.2.1	Lage rangeenadering
	2.3	Kleins	ste-Kwadratenbenadering
		2.3.1	Oplossing met QR-ontbinding
	2.4		
		2.4.1	Methode van de machten
		2.4.2	Deelruimte-iteratie
		2.4.3	QR-algoritme zonder shift
		2.4.4	Omvorming tot Hessenbergmatrix
		2.4.5	QR-algoritme met shift
	2.5	Toepa	assingen in de grafentheorie
		2.5.1	PageRank
		2.5.2	Meest centrale knoop

Modellen en simulaties 1

Dit hoofdstuk als er tijd over is

Numerieke lineaire algebra en toepassingen $\mathbf{2}$

QR-factorisatie

Definitie 1 De volle QR-factorisatie van de matrix A wordt gegeven door

$$A = QR$$

 $met\ q\ een\ m \times m\ orthogonale\ matrix\ en\ R\ een\ m \times n\ bovendriehoeksmatrix.$

Gram-Schmidt orthogonalisatie 2.1.1

Algorithm 1 Gram-Schmidt-algoritme

1: **procedure** QRGRAMSCHMIDT for j = 1 to n do 2: $v_j = a_j$ 3: for i = 1 to j - 1 do 4: 5:

 $r_{ij} = q_i^T a_j$ $v_j = v_j - r_{ij} q_i$ 6:

 $\begin{aligned} r_{jj} &= \left\| v_j \right\|_2 \\ q_j &= v_j/r_{jj} \end{aligned}$ 7:

Complexiteit: $\mathcal{O}(2mn^2)$ Stabiliteit: niet stabiel

QR-factorisatie met Givens-rotaties

Definitie 2 Een Givens-rotatie is een $m \times m$ orthogonale matrix van de vorm

$$G_{ij} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$$

met

$$c^2 + s^2 = 1$$

Om een Givens-rotatie op te stellen die plaats (j,k) 0 maakt in matrix A, kies dan een element in dezelfde kolom (bv. het element boven (j,k)) op oplaats (i,k) en maak G_{ij} met

$$c = \frac{a_{ik}}{\sqrt{a_{ik}^2 + a_{jk}^2}} \text{ en } s = \frac{a_{jk}}{\sqrt{a_{ik}^2 + a_{jk}^2}}$$

Algorithm 2 Givens-rotatie-algoritme

```
1: procedure QRGIVENS
  2:
                  Q = 1
                  R = A
  3:
                 for j = 1 to n do
  4:
                          for i = m to j + 1 do
  5:
                                 c = \frac{r_{i-1,j}}{\sqrt{r_{i-1,j}^2 + r_{i,j}^2}}
s = \frac{r_{i,j}}{\sqrt{r_{i-1,j}^2 + r_{i,j}^2}}
r_{i,j} = 0
  6:
  7:
  8:
                                  r_{i-1,j} = \sqrt{r_{i-1,j}^2 + r_{i,j}^2} for k = j+1 to n do
  9:
10:
11:
                                                                     \begin{bmatrix} r_{i-1,k} \\ r_{ik} \end{bmatrix} = \begin{bmatrix} c & s \\ -s & s \end{bmatrix} \begin{bmatrix} r_{i-1,k} \\ r_{i,k} \end{bmatrix} 
                                   for k = 1 to m do
12:
13:
                                                        \begin{bmatrix} q_{k,i-1} & q_{ki} \end{bmatrix} = \begin{bmatrix} q_{k,i-1} & q_{ki} \end{bmatrix} \begin{bmatrix} c & s \\ -s & s \end{bmatrix}
```

Complexiteit: $\mathcal{O}(3mn^2 - n^3)$

Stabiliteit: stabiel

2.1.3 QR-factorisatie met kolompivotering

Indien A niet van volle rang is, is het voor de stabiliteit beter om kolompivotering toe te passen. In stap j van het QR-algoritme met Givens-rotaties verwisselen we kolom j met de kolom p waarvan de 2-norm het grootst is.

Complexiteit: $\mathcal{O}(3mn^2 - n^3)$

Stabiliteit: stabieler voor rang-deficiënte matrices

2.2 Singuliere-waardenontbinding

Definitie 3 De singuliere-waardenontbinding van matrix A wordt gegeven door

$$A = \hat{U}\hat{\Sigma}V^T$$

waarbij \hat{U} orthonormale kolommen heeft, $\hat{\Sigma}$ een diagonaalmatrix met de singuliere waarden is en V een orthogonale matrix is.

Eigenschappen van de SVD:

• De rang van A is gelijk aan de rang van Σ is gelijk aan het aantal niet-nul singuliere waarden.

- \bullet De eerste r kolommen van U vormen een basis voor de kolomruimte van A.
- $\bullet\,$ De laatsten-r kolommen van V vormen een basis voor de nulruimte van A
- $A = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$
- $normA_2 = \sqrt{(\sigma_1^2 + \sigma_2^2 + ... + \sigma_r^2)}$
- De singuliere waarden zijn de vierkantswortels van de eigenwaarden van A^TA . De kolommen van V zijn de bijhorende eigenvectoren.
- De singuliere waarden zijn de vierkantswortels van de n grootste eigenwaarden van AA^T . De eerste n kolommen van U zijn de bijhorende eigenvectoren.
- Als A symmetrisch is, zijn de singuliere waarden de absolute waarden van de eigenwaarden van A.

2.2.1 Lage rangeenadering

Definitie 4 De ϵ -rang van een matrix A wordt gedefinieerd als

$$\operatorname{rang}(A,\epsilon) = \min_{\|A-B\|_2 \le \epsilon} \operatorname{rang}(B)$$

De matrix B ligt ϵ -dicht bij A als hij een rang heeft die de kleinste is onder alle matrices die ϵ -dicht bij A liggen.

Definitie 5 Een rang k-benadering A_k met $(k \le r)$ van A wordt berekend door de singuliere waardenontbinding te vermenigvuldigen, maar Σ te vervangen door een diagonaalmatrix met de k grootste singuliere waarden op de diagonaal.

Hierdoor geldt de eigenschap

$$||A - A_k||_2 = min_{B \in \mathbb{R}^{m \times m_{rang}(B) < k}} ||A - B||_2 = \sigma_k + 1$$

2.3 Kleinste-Kwadratenbenadering

Om de coëfficiënten te bepalen wordt een Vandermondematrix A opgesteld. De te minimaliseren fout bij KK-benadering wordt gegeven door

$$\min_{x \in \mathbb{R}^n} \|b - Ax\|_2 = \min_{x \in \mathbb{R}^n} \sqrt{\sum_{i=1}^m (b_i - \sum_{j=1}^n a_{i,j} x_j)^2}$$

met r = b - Ax de residuvector.

Dit probleem kan opgelost worden door x te bepalen in

$$A^T A x = A^T b$$

De Vandermondematrix A is slecht geconditioneerd. We zoeken dus andere manieren om het KK-probleem op te lossen.

2.3.1 Oplossing met QR-ontbinding

Indien de QR-factorisatie van A bekend is, kan deze gebruikt worden om een oplossing voor het KK-probleem te vinden:

$$\min_{x \in \mathbb{R}^n} \|b - Ax\|_2 = \min_{x \in \mathbb{R}^n} \|b - QRx\|_2 = \min_{x \in \mathbb{R}^n} \left\|Q^Tb - RAx\right\|_2$$

Aangezien vermenigvuldiging vooraan met een orthogonale matrix de norm behoudt.

De vector $Q^Tb = c$ kan opgesplitst worden in de volgende componenten: $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$

met $c_1 \in \mathbb{R}^n$ en $c_2 \in \mathbb{R}^{m-n}$

Hieruit volgt:

$$\min_{x \in \mathbb{R}^n} \|b - Ax\|_2 = \min_{x \in \mathbb{R}^n} \left\| \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} - \begin{bmatrix} \hat{R} \\ 0 \end{bmatrix} x \right\|_2$$

Volgens de stelling van Pythagoras geldt:

$$\min_{x \in \mathbb{R}^n} \|b - Ax\|_2^2 = \min_{x \in \mathbb{R}^n} (\left\| c_1 - \hat{R}x \right\|_2^2 + \left\| c_2 \right\|_2^2)$$

De vector x met coëfficiënten met minimale fout kan dus ook bekomen worden als x de oplossing van $\hat{R}x=c_1$

Complexiteit: $\mathcal{O}(mn) + \mathcal{O}n^2$ indien QR-factorisatie bekend.

Stabiliteit: stabiel indien A van volle rang.

2.4 Eigenwaardenproblemen

2.4.1 Methode van de machten

Deze methode vindt de eigenvector bij de grootste eigenwaarde en is geschikt voor ijle matrices.

Algorithm 3 Methode der machten

- 1: procedure EigenPowermethod
- 2: q_0 random
- 3: **for** k = 0, 1, 2, ... **do**
- 4: take γ_k such that $||q_{k+1}||_2 = 1$
- $5: q_{k+1} = \frac{Aq_k}{\gamma_k}$

 q_k zal convergeren naar $\gamma_1 x_1$

Voordelen:

- Eenvoudige berekeningen
- zeer efficiënt voor ijle matrices

Nadelen:

• Zeer trage convergentie als λ_1 niet sterk dominant is.

Convergentie: lineair, afhankelijk van afstand tussen grootste eigenwaarden.

2.4.2Deelruimte-iteratie

We itereren nu niet meer op één vector (methode der machten) maar op de volledige ruimte opgespannen door een orthonormaal stel vectoren.

Voor n eigenwaarden:

Algorithm 4 Deelruimte-iteratie

```
1: procedure EigenPartialSpace
```

- $\hat{Q}_0 = \begin{bmatrix} q_1^0 & q_2^0 & \dots & q_n^0 \end{bmatrix}$ random orthonormaal for $k=0,1,2,\dots$ do
- 3:
- $\hat{P}_k = A\hat{Q}_{k-1}$ 4:
- $\hat{Q}_k \hat{R}_k = \hat{P}_k$ door QR-factorisatie 5:

Convergentie: lineair, afhankelijk van afstand tussen eigenwaarden.

2.4.3QR-algoritme zonder shift

Algorithm 5 QR-algoritme zonder shift

- 1: procedure EigenQR
- for k = 1, 2, 3... do
- $A_k = Q_k R_k$ door QR-factorisatie 3:
- $A_{k+1} = R_k Q_k$ 4:

$$\tilde{Q}_k = \begin{bmatrix} \tilde{q}_1^{(k)} & \tilde{q}_2^{(k)} & \dots & \tilde{q}_i^{(k)} \end{bmatrix} \text{ convergeert naar de eigenvetoren van } A.$$

Complexiteit: $O(km^3)$

2.4.4Omvorming tot Hessenbergmatrix

Het aantal stappen in het QR-algoritme kan teruggebracht worden door eerst de matrix om te vormen naar een Hessenbergvorm m.b.v. Givens-rotaties.

Complexiteit van omvorming: $\mathcal{O}(m^3)$

QR-algoritme met shift

De convergentie van het QR-algoritme kan versneld worden door een shift toe te passen.

Algorithm 6 QR-algoritme met shift

```
1: procedure EIGENQRSHIFT
2: A = A_0 Hessenberg
3: for k = 1, 2, 3... do
4: \kappa = a_{m,m}^{(k)}
5: A_k - \kappa \mathbb{1} = Q_k R_k door QR-factorisatie
6: A_{k+1} = R_k Q_k + \kappa \mathbb{1}
```

$$\tilde{Q}_k = \begin{bmatrix} \tilde{q}_1^{(k)} & \tilde{q}_2^{(k)} & \dots & \tilde{q}_i^{(k)} \end{bmatrix} \text{ convergeert naar de eigenvetoren van } A.$$

Complexiteit: $O(km^3)$

Convergentie: kubisch indien symmetrisch, anders lineair, afhankelijk van afstand tussen eigenwaarden.

2.5 Toepassingen in de grafentheorie

2.5.1 PageRank

2.5.2 Meest centrale knoop