

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190505504

FCC REPORT

Applicant: Telecell Mobile(H.K) Ltd.

Address of Applicant: RM 801 Metro Ctr II,21 Lam Hing Street Kln Bay, Hong Kong

Equipment Under Test (EUT)

Product Name: mobile phone

Model No.: A9

FCC ID: 2ADX3A9

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 15 May, 2019

Date of Test: 16 May, to 28 May, 2019

Date of report issued: 29 May, 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	29 May, 2019	Original

Tested by: Mike OU Date: 29 May, 2019

Test Engineer

Reviewed by: Date: 29 May, 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5		IERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	_
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	_
	6.5	POWER SPECTRAL DENSITY	20
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	2 Radiated Emission Method	46
7	TES	T SETUP PHOTO	54
8	FUT	CONSTRUCTIONAL DETAILS	55

4 Test Summary

Test Items	Section in CFR 47	Result		
Antenna requirement	15.203 & 15.247 (b)	Pass		
AC Power Line Conducted Emission	15.207	Pass		
Conducted Peak Output Power	15.247 (b)(3)	Pass		
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass		
Power Spectral Density	15.247 (e)	Pass		
Band Edge	15.247 (d)	Pass		
Spurious Emission	15.205 & 15.209	Pass		
Pass: The FLIT complies with the assential requirements in the standard				

Pass: The EUT complies with the essential requirements in the standard.

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Telecell Mobile(H.K) Ltd.
Address:	RM 801 Metro Ctr II,21 Lam Hing Street KIn Bay, Hong Kong
Manufacturer/Factory:	Telecell Mobile(H.K) Ltd.
Address:	RM 801 Metro Ctr II,21 Lam Hing Street KIn Bay, Hong Kong

5.2 General Description of E.U.T.

Product Name:	mobile phone
Model No.:	A9
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)) 2422MHz~2452MHz (802.11n(HT40))
Channel numbers:	11 for 802.11b/802.11g/802.11(HT20) 7 for 802.11n(HT40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.05 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-2000mAh
AC adapter:	Model: J9 Input: AC100-240V, 50/60Hz, 150mA Output: DC 5.0V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Report No: CCISE190505504

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.			
Mode	Data rate		
802.11b	1Mbps		
802.11g	6Mbps		
802.11n(HT20)	6.5Mbps		
802.11n(HT40)	13.5Mbps		

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.54 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.84 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:	Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	\	Version: 6.110919	b	
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.05 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 kHz			
Limit:	Frequency range	Limit (c	HRuV)	
LIITIIC.	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5 56 46			
	5-30	60	50	
	* Decreases with the loga	arithm of the frequency.		
Test procedure	line impedance stab 50ohm/50uH coupling 2. The peripheral device through a LISN that with 50ohm terminal setup and photograph 3. Both sides of A.C. light interference. In order positions of equipments	 through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted 		
Test setup:	LISN	40cm 80cm LISN Fi	Iter — AC power	
	Remark E.U.T: Equipment Under 1 LISN: Line Impedence Sta	Fest abilization Network		
Test Instruments:	Remark E.U.T: Equipment Under T LISN: Line Impedence Sta Test table height=0.8m Refer to section 5.8 for d	Test bilization Network letails		
Test Instruments: Test mode: Test results:	Remark E.U.T: Equipment Under T LISN: Line Impedence Sta Test table height=0.8m	Test bilization Network letails		

Measurement Data:

Product name:	Mobile phone	Product model:	A9
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Kead Level	Factor	Loss	Level	Limit	Over Limit	Remark
-	MHz	dBu∜	₫B	dB	dBu₹	−−dBuV	<u>d</u> B	
1	0.150	50.31	-0.45	10.78	60.64	66.00	-5.36	QP
2	0.154	44.36	-0.45	10.78	54.69	55.78	-1.09	Average
3	0.162	40.84	-0.44	10.77	51.17	55.34	-4.17	Average
4 5 6 7	0.190	34.98	-0.42	10.76	45.32	54.02	-8.70	Average
5	0.417	40.64	-0.37	10.73	51.00	57.51	-6.51	QP
6	0.417	29.75	-0.37	10.73	40.11	47.51	-7.40	Average
7	0.505	43.08	-0.39	10.76	53.45	56.00	-2.55	QP
8	0.535	32.29	-0.39	10.76	42.66	46.00	-3.34	Average
9	0.570	43.52	-0.39	10.76	53.89	56.00	-2.11	QP
10	0.759	37.78	-0.38	10.80	48.20	56.00	-7.80	QP
11	0.759	26.14	-0.38	10.80	36.56	46.00	-9.44	Average
12	1.037	28.88	-0.38	10.87	39.37	56.00	-16.63	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Mobile phone	Product model:	A9
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB	₫B	₫BuV	dBu∜	<u>dB</u>	
1	0.154	51.50	-0.68	10.78	61.60	65.78	-4.18	QP
2	0.154	45.30	-0.68	10.78	55.40	55.78	-0.38	Average
3	0.162	39.01	-0.68	10.77	49.10	55.34	-6.24	Average
4	0.198	41.75	-0.69	10.76	51.82	63.71	-11.89	QP
5	0.417	22.67	-0.64	10.73	32.76	47.51	-14.75	Average
6	0.497	37.75	-0.65	10.76	47.86	56.05	-8.19	QP
1 2 3 4 5 6 7 8	0.641	28.56	-0.64	10.77	38.69	46.00	-7.31	Average
8	0.644	44.18	-0.64	10.77	54.31	56.00	-1.69	QP
9	0.708	26.10	-0.64	10.77	36.23	46.00	-9.77	Average
10	1.027	33.75	-0.63	10.87	43.99	56.00	-12.01	
11	1.043	16.82	-0.63	10.88	27.07	46.00	-18.93	Average
12	2.461	30.19	-0.67	10.94	40.46		-15.54	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Took CI I	M	laximum Conduc	Lineit(dDne)	Decult			
Test CH	802.11b	802.11g	802.11n(HT20) 802.11n(HT40)		Limit(dBm)	Result	
Lowest	15.36	12.75	12.78	13.86		Pass	
Middle	15.31	13.95	14.11	14.23	30.00		
Highest	14.76	13.71	14.33	13.76			

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH		6dB Emission	l imit/k∐z\	Dogult			
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(kHz)	Result	
Lowest	10.16	15.52	16.56	35.68			
Middle	10.08	15.92	16.48	35.68	>500	Pass	
Highest	10.08	15.60	16.48	35.68			
Test CH		99% Occupy I	Limit/kU=)	Result			
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(kHz)	Result	
Lowest	12.72	16.48	17.60	36.00			
Middle	12.80	16.48	17.68	36.00	N/A	N/A	
Highest	13.12	16.56	17.68	36.00			

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH		Limit(dDm)	Result				
Test CH	802.11b	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)			Limit(dBm)	Result	
Lowest	5.88	0.54	0.74	-1.39			
Middle	5.09	2.91	2.10	-1.30	8.00	Pass	
Highest	5.79	2.03	1.96	-1.75			

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

6.6.2 Radiated Emission Method

0.0.2	6.2 Nadiated Lillission Method							
	Test Requirement:	FCC Part 15 C	Section '	15.20	9 and 15.205			
	Test Method:	ANSI C63.10:	ANSI C63.10: 2013 and KDB 558074					
	Test Frequency Range:	2.3GHz to 2.50	GHz					
	Test Distance:	3m						
	Receiver setup:	Frequency	Detec	tor	RBW	V	BW	Remark
	·	Above 1GHz	Pea		1MHz		ИНz	Peak Value
			RMS		1MHz		MHz	Average Value
	Limit:	Frequen	су	Lin	nit (dBuV/m @	3m)	Λ,	Remark
		Above 1G	Hz		54.00 74.00			verage Value Peak Value
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 					ted 360 degrees ce-receiving e-height antenna meters above eld strength. nna are set to d to its worst n 1 meter to 4 s to 360 degrees nction and OdB lower than I the peak values ons that did not ing peak, quasi-	
	Test setup:		(Tumtab	** W	Ground Reference Plane	rn Antenna	Antenna Tow	wer
	Test Instruments:	Refer to sectio	n 5.8 for o	detail	s			
	Test mode:	Refer to section 5.3 for details						
	Test results:	Passed						

802.11b mode:

Product Name:	Mobile phone	Product Model:	A9
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile phone	Product Model:	A9
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000		27.08 27.08						

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name: Mobile phone		Product Model:	A9		
Test By:	Mike	Test mode: 802.11b Tx mode			
Test Channel:	hannel: Highest channel Polaris		Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		
110 Level (dBuV	m)				

	Freq		Antenna Factor						
8	MHz	dBu∜	dB/m	d₿	dB	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile phone	Product Model:	A9
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	Mobile phone	Product Model:	A9
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
- 1	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000					52.96 40.23			

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile phone Product Model:		A9	
Test By:	Mike	Test mode:	802.11g Tx mode	
Test Channel:	Lowest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	
110 Level (dBu	V/m)			
100				
80			CC PART 15 (PK)	
60		mmmm	FCC PART 15 (AV)	
40		2		
20				
02310 232	20 2350 Frequency	(MHz)	2422	
Fre	ReadAntenna Cable Pream q Level Factor Loss Factor	p Limit r Level Line	Over Limit Remark	
ME	Iz dBuV dB/m dB di	B dBuV/m dBuV/m		

2390,000

2390.000

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

27.08

20.06 27.08

8.11

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.69

4.69

0.00 51.83 74.00 -22.17 Peak

0.00 39.88 54.00 -14.12 Average

Product Name:	Mobile phone	Product Model:	A9
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile phone	Product Model:	A9	
Test By:	Mike	e Test mode:		
Test Channel:	Highest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

	Freq	ReadAntenn Level Facto		ntenna Cable Factor Loss		Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Product Name:	Mobile phone	Product Model:	A9
Test By:	Mike	Test mode:	
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq			Cable Preamp Loss Factor					
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Limit Remark

74.00 -22.03 Peak

39.97 54.00 -14.03 Average

Product Name: Test By: Test Channel: Test Voltage:		Mobile phone Mike			Product N	lodel:	A9	
					Test mode	e:	802.11n(HT20) Tx mode	
		Lowest channe	el		Polarization	on:	Horizontal	
		AC 120/60Hz		Environm	ent:	Temp: 24°C Huni: 57%		
110 Le	evel (dBuV/n	n)						_
100								
2003018							- ~~	
80)
							FCC PART 15 (PI	0)
60							J	
00	man	Manual Contraction of the Contra	~~~~~	Lorenza proprie	marim	~1M~	FCC PART 15 (A)	/)
		V .		4		2		
40								
20								
023	310 2320		2350				2	422
				quency (M	Hz)			
				_				
		ReadAnte	nna Cable	Pream		Limit	Over	

Loss Factor

0.00

0.00

dB

4.69

4.69

Level

51.97

dB dBuV/m dBuV/m

Line

Remark:

Freq

MHz

2390.000

2390,000

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

dB/m

27.08

27.08

Level Factor

20.20

8.20

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile phone	Product Model:	A9
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile phone	Product Model:	A9
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq	ReadAntenna Freq Level Factor		Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	dB	₫B	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	Mobile phone	Product Model:	A9
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	Read Level	Antenna Factor	ntenna Cable Factor Loss		Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name	t Name: Mobile phone Produ		Product M	odel:	A9	A9			
est By:		Mike			•	Test mode):	802.11	n(HT40) Tx mode
Test Channel:		Lowest cha	annel		ı	Polarization: Horizontal			ntal
Test Voltage:		AC 120/60	Hz		ı	Environme	ent:	Temp:	24℃ Huni: 57%
110 Le	vel (dBuV/m)							
100									
***							Comm	mayor.	women
80								FCC	PART 15 (PK)
							1		
60					. 0	Mw	~~	FCC	PART 15 (AV)
~		- man	mun	momm	- Mary Mary				
40						f			
20									
023	10 2320		2350						2442
				Fre	equency (Mi	Hz)			
	Freq		ntenna Factor		Preamp	Level	Limit	Over	Remark
222									Nemaik
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
	390.000	29.09	27.08	4.69			74.00		
2 2	390.000	9.29	27.08	4.69	0.00	41.06	54.00	-12.94	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile phone	Product Model:	A9	
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode	
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

	Freq	Readântenna Level Factor		Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Nan	ne:	Mobile pho	ne			Product M	lodel:	A9			
est By:	P	Vike				Test mode:			802.11n(HT40) Tx mode		
est Channe	el: F	lighest ch	annel		ı	Polarizatio	n:	Horizo	ntal		
est Voltage): /	AC 120/60	Hz			Environme	ent:	Temp:	24℃ Huni: 57		
								•			
110	Level (dBuV/m)									
100											
	~~~	~~~~			m	~					
80	/					1		FCC	PART 15 (PK)		
60	/					ham	~~~	1			
00								Tec	PART 15 (AV)		
40								2			
20											
0	2432		2450	1200					2500		
				Fr	equency (M	IHz)					
	Freq		intenna Factor			Level	Limit Line	Over Limit	Remark		
8 <del>-</del>	MHz	dBu∜	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	āB			
			27.35	4.81		F0 FF	74 00	-15.45	Deele		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.7 Spurious Emission

# 6.7.1 Conducted Emission Method

0.7.1 Conducted Emission							
Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB 558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.						
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:							
	Refer to section 5.3 for details						
Test results:	Passed						



# Test plot as follows:









# 6.7.2 Radiated Emission Method

6.7.2 Radiated Emission M	etiloa								
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:201	3							
Test Frequency Range:	9kHz to 25GHz								
Test Distance:	3m								
Receiver setup:	Frequency	RBW	VB'	W	Remark				
·	30MHz-1GHz	Quasi-peak	120KHz	300k	KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MI		Peak Value			
		RMS	1MHz	3MI	Hz	Average Value			
Limit:	Frequency		nit (dBuV/m @3	m)	0	Remark			
	30MHz-88MH 88MHz-216MH		40.0 43.5			uasi-peak Value uasi-peak Value			
	216MHz-960M		46.0			uasi-peak Value			
	960MHz-1GH		54.0			uasi-peak Value			
			54.0			Average Value			
	Above 1GHz		74.0			Peak Value			
Test Procedure:	1GHz)/1.5m The table was highest radia value.  2. The EUT was antenna, who tower.  3. The antennathe ground to Both horizon make the means and the meters and the meters and to find the most of the test-reconspecified Basis of the limit specified by have 10dB meters and the limit specified by the l	(above 1GHz as rotated 36 ation. s set 3 meterich was mount to determine to determi	of degrees to do degrees to do degrees to do degrees to do de se away from the top degree of the maximum version, the EUT has a was turned from the degree of the degree o	tound a etermine the interpolation of a voneter to value of a voneter to value of a value of the control of the	at a 3 ine the reference of four of the fe ante extra from the fe and the fe	meter chamber. e position of the ce-receiving e-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees nction and OdB lower than d the peak values ons that did not sing peak, quasi-			
Test setup:	Below 1GHz  EUT Turn Table  Ground I	0.511	m A		_				







# Measurement Data (worst case):

# **Below 1GHz:**

Product Name:	Mobile phone	Product Model:	A9
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor						Remark
	MHz	dBu∜		dB	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	40.702	40.62	12.39	1.22	29.89	24.34	40.00	-15.66	QP
2	51.121	38.74	11.99	1.27	29.82	22.18	40.00	-17.82	QP
3	97.798	42.53	11.95	1.98	29.54	26.92	43.50	-16.58	QP
4	145.861	45.83	9.12	2.46	29.24	28.17	43.50	-15.33	QP
1 2 3 4 5 6	161.474	40.47	9.34	2.60	29.12	23.29	43.50	-20.21	QP
6	827.493	29.33	22.13	4.26	28.09	27.63	46.00	-18.37	QP

# Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile phone	A9			
Test By:	Mike	Test mode:	Wi-Fi Tx mode		
Test Frequency:			uency: 30 MHz ~ 1 GHz Polarization: Horizontal		
Test Voltage:			Temp: 24°C Huni: 57%		
80 Level (dBu	V/m)				
70					
60			FCC PART 15.247		



	Freq			ReadAntenna Cable Level Factor Loss							Remark
-	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB			
1	98.142	39.46	12.04	1.97	29.54	23.93	43.50	-19.57	QP		
2	126.772	40.05						-20.15	QP		
3	164.908					22.29					
4	209.313	38.13	11.04	2.86	28.77	23.26	43.50	-20.24	QP		
2 3 4 5 6	269.428	35.07	13.08								
6	833.317		22.29			27.83			The state of the s		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





# **Above 1GHz**

Above 1GHz											
				802.11b							
			Test ch	nannel: Lowe	est channel						
		ı	De	tector: Peak	Value		T				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	47.66	30.94	6.81	41.82	43.59	74.00	-30.41	Vertical			
4824.00	50.30	30.94	6.81	41.82	46.23	74.00	-27.77	Horizontal			
	Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	38.75	30.94	6.81	41.82	34.68	54.00	-19.32	Vertical			
4824.00	41.35	30.94	6.81	41.82	37.28	54.00	-16.72	Horizontal			
			Test ch	nannel: Mido	dle channel						
				tector: Peak							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	47.38	31.20	6.85	41.84	43.59	74.00	-30.41	Vertical			
4874.00	50.24	31.20	6.85	41.84	46.45	74.00	-27.55	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	38.67	31.20	6.85	41.84	34.88	54.00	-19.12	Vertical			
4874.00	40.98	31.20	6.85	41.84	37.19	54.00	-16.81	Horizontal			
			Test ch	annel: High	est channel						
				tector: Peak							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	47.52	31.46	6.89	41.86	44.01	74.00	-29.99	Vertical			
4924.00	50.73	31.46	6.89	41.86	47.22	74.00	-26.78	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	36.73	31.46	6.89	41.86	33.22	54.00	-20.78	Vertical			
4924.00	39.65	31.46	6.89	41.86	36.14	54.00	-17.86	Horizontal			

# Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





	802.11g									
Test channel: Lowest channel										
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	46.75	30.94	6.81	41.82	42.68	74.00	-31.32	Vertical		
4824.00	49.38	30.94	6.81	41.82	45.31	74.00	-28.69	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	38.12	30.94	6.81	41.82	34.05	54.00	-19.95	Vertical		
4824.00	39.72	30.94	6.81	41.82	35.65	54.00	-18.35	Horizontal		
				nannel: Mido						
		1		tector: Peal	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	47.56	31.20	6.85	41.84	43.77	74.00	-30.23	Vertical		
4874.00	50.31	31.20	6.85	41.84	46.52	74.00	-27.48	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	38.43	31.20	6.85	41.84	34.64	54.00	-19.36	Vertical		
4874.00	39.53	31.20	6.85	41.84	35.74	54.00	-18.26	Horizontal		
			Test ch	annel: High	est channel					
				tector: Peal						
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	Dalarization		
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization		
4924.00	46.83	31.46	6.89	41.86	43.32	74.00	-30.68	Vertical		
4924.00	49.37	31.46	6.89	41.86	45.86	74.00	-28.14	Horizontal		
				ector: Avera	ge Value		1			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	36.85	31.46	6.89	41.86	33.34	54.00	-20.66	Vertical		
4924.00	39.64	31.46	6.89	41.86	36.13	54.00	-17.87	Horizontal		
Remark:										
1 Finalla	al - Poocina	r Dood loval	Antonno Fo	otor , Cabla	Loop Droop	anlifiar Easter				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





	802.11n(HT20)									
				nannel: Lowe						
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	46.52	36.06	6.81	41.82	47.57	74.00	-26.43	Vertical		
4824.00	48.86	36.06	6.81	41.82	49.91	74.00	-24.09	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	36.95	36.06	6.81	41.82	38.00	54.00	-16.00	Vertical		
4824.00	38.43	36.06	6.81	41.82	39.48	54.00	-14.52	Horizontal		
	Test channel: Middle channel									
				tector: Peal						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	46.89	36.32	6.85	41.84	48.22	74.00	-25.78	Vertical		
4874.00	37.95	36.32	6.85	41.84	39.28	74.00	-34.72	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	37.09	36.32	6.85	41.84	38.42	54.00	-15.58	Vertical		
4874.00	38.34	36.32	6.85	41.84	39.67	54.00	-14.33	Horizontal		
				annel: High						
		T		tector: Peal	v Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	46.75	36.58	6.89	41.86	48.36	74.00	-25.64	Vertical		
4924.00	49.52	36.58	6.89	41.86	51.13	74.00	-22.87	Horizontal		
,			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	36.83	36.58	6.89	41.86	38.44	54.00	-15.56	Vertical		
4924.00	39.67	36.58	6.89	41.86	41.28	54.00	-12.72	Horizontal		
Remark:	ral Dagairra	r Dood lovel	Antonno Fo	estar i Cabla	l oss – Pream	anlifiar Footor				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





				000 44 / / !	740)					
	802.11n(HT40)									
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	46.53	36.06	6.81	41.82	47.58	74.00	-26.42	Vertical		
4844.00	47.92	36.06	6.81	41.82	48.97	74.00	-25.03	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	36.74	36.06	6.81	41.82	37.79	54.00	-16.21	Vertical		
4844.00	37.49	36.06	6.81	41.82	38.54	54.00	-15.46	Horizontal		
				nannel: Midd						
I	Dand	A		tector: Peak	k value		1			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	46.55	36.32	6.85	41.84	47.88	74.00	-26.12	Vertical		
4874.00	47.24	36.32	6.85	41.84	48.57	74.00	-25.43	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	36.86	36.32	6.85	41.84	38.19	54.00	-15.81	Vertical		
4874.00	37.19	36.32	6.85	41.84	38.52	54.00	-15.48	Horizontal		
				annel: High						
		1 - 1		tector: Peal	k Value		1			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	46.87	36.45	6.87	41.85	48.34	74.00	-25.66	Vertical		
4904.00	47.53	36.45	6.87	41.85	49.00	74.00	-25.00	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	36.92	36.45	6.87	41.85	38.39	54.00	-15.61	Vertical		
4904.00	37.89	36.45	6.87	41.85	39.36	54.00	-14.64	Horizontal		
Remark:										
1 Finalle	el = Receive	r Read level 4	- Antenna Fa	ctor + Cable	Loss - Pream	nnlifier Factor				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.