Accuracy of genomic prediction by singular value decomposition of the genotype matrix

L. Ayres, M.P.L. Calus, J. Ødegård, T. Meuwissen

74th EAAP Annual Meeting - Lyon

August 30, 2023

Authors

- Lucas Ayres, Wageningen University & Research
- Mario Calus, Wageningen University & Research
- Jørgen Ødegård, Norwegian University of Life Sciences and AquaGen AS
- Theo Meuwissen, Norwegian University of Life Sciences

Aim

 \hookrightarrow Evaluate the effect of the number of components in singular value decomposition (SVD) of the genotype matrix on the accuracy of genomic prediction.

Definition: Orthogonal matrix

A matrix $\mathbf{U} \in \mathbb{R}^{n \times m}$ is said to be *orthogonal* iff

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}_m$$

Definition: Eigenvector and eigenvalue

A non-null vector \mathbf{v} is called an *eigenvector* of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ when there is a scalar λ such that

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$

 λ is said to be the *eigenvalue* of **A** associated to the eigenvector **v**.

Theorem: SVD

For every matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$, there exist two orthogonal matrices $\mathbf{U} \in \mathbb{R}^{n \times n}$ and $\mathbf{V} \in \mathbb{R}^{m \times m}$ such that

$$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}}$$

where $\mathbf{S} \in \mathbb{R}^{n \times m}$ is a diagonal matrix whose non-zero values are the square roots of the eigenvalues of $\mathbf{A} = \mathbf{X}^{\mathsf{T}}\mathbf{X}$.

We call the diagonal values of **S** the singular values of **X**.

Principal Component Ridge Regression

$$\begin{aligned} \mathbf{y} &= \mathbf{X}\mathbf{b} + \mathbf{e} \\ &[\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I}] \, \hat{\mathbf{b}} = \mathbf{X}^{\mathsf{T}}\mathbf{y} \\ &\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}} \\ &\mathbf{T} = \mathbf{U}^{\mathsf{T}}\mathbf{S} \\ &[\mathbf{S}^{\mathsf{T}}\mathbf{S} + \lambda \mathbf{I}] \, \hat{\mathbf{s}} = \mathbf{T}^{\mathsf{T}}\mathbf{y} \\ &\hat{\mathbf{b}} = \mathbf{V}\hat{\mathbf{s}} \end{aligned}$$
 Truncated-SVD version of SNP-BLUP
$$\mathbf{X} \approx \mathbf{U}_k \mathbf{S}_k \mathbf{V}_k^{\mathsf{T}} \\ &\mathbf{T} = \mathbf{U}_k^{\mathsf{T}}\mathbf{S}_k \\ &[\mathbf{S}_k^{\mathsf{T}}\mathbf{S}_k + \lambda \mathbf{I}] \, \hat{\mathbf{s}}_k = \mathbf{T}^{\mathsf{T}}\mathbf{y} \\ &\hat{\mathbf{b}} = \mathbf{V}_k \, \hat{\mathbf{s}}_k \end{aligned}$$

Materials and methods

- Genotypes* from 1,927 Atlantic Salmon (Salmo salar) fish
 - 16,454 SNP markers (all on chromosome 1)

^{*}Data provided by AquaGen AS.

Simulation

■
$$b_1, \ldots, b_{1000}$$
 i.i.d. $b_i \sim N(0, V_m)$, where $V_m = \frac{h^2}{2 \sum_{i=1}^{1000} p_i (1-p_i)}$

- $h^2 = \{0.1/29, 0.3/29, 0.5/29\}$
- 1,000 QTL randomly positioned along the 16,454 SNP loci
- mask the QTL from the genotype matrix
- calculate true breeding values g = Xb
- lacktriangle predict breeding values with PCRR $\hat{f g}={f X}\hat{f b}={f X}{f V}_k\hat{f s}_k$
 - (10-fold cross-validation)
- lacksquare estimate correlation coefficient $\hat{r}=rac{Cov(g,\hat{g})}{\hat{\sigma}_g\hat{\sigma}_{\hat{g}}}$
- lacksquare run 100 replicates and obtain average accuracy $ar{r} = \sum_{j=1}^{100} \hat{r}_j/100$

 $k = \{2, 5, 10, 20, 40, 60, 80, 100, 125, 150, 200, 400, 600, 800, 1000, 1500, 1700\}$

Discussion

- reduction of statistical noise
- accuracy not always an increasing function of the number of SVD components
- higher accuracy using APY (e.g., 0.5% gain)
- higher accuracy using PCRR/PCIG (e.g., 1.8% gain)

Conclusions

- SVD is useful for data reduction of the genotype matrix
- PCRR can be used for genomic prediction
 - good accuracies obtained with few components
- PCRR can provide higher accuracies than SNP-BLUP with certain numbers components
 - within replicates, maximum accuracy at 50–250 components
 - across replicates, maximum mean accuracy at 400–600 components

References

Ødegård, J., Indahl, U., Strandén, I., & Meuwissen, T. 2018. Large-scale genomic prediction using singular value decomposition of the genotype matrix. *Genetics Selection Evolution*, 50, 6.

Ayres, L. L. 2022. *The accuracy of genomic prediction by singular value decomposition of the genotype matrix*. Master's thesis. Ås: Norwegian University of Life Sciences.