Percent Differences - Optimum Expansion

Oxidizer	Fuel	I_{opt}	r	T_c	d	C*
	H ₂	0.07%	-	0.53%	0.09%	0.13%
	H ₂ Be	0.90%	-	0.78%	253.35%	0.93%
	CH ₄	0.15%	-	0.33%	18.42%	0.13%
	C_2H_6	0.09%	-	0.24%	1.90%	0.13%
	C_2H_4	3.44%	-	0.19%	1.90%	1.53%
LOX	RP-1	0.16%	-	0.28%	0.57%	0.24%
LOX	N_2H_4	0.06%	-	0.18%	1.54%	0.05%
	B_5H_9	0.36%	-	0.03%	2.44%	0.48%
	B_2H_6	0.37%	-	0.35%	1.14%	0.34%
	CH ₄ &H ₂	0.90%	-	0.37%	2.85%	0.71%
	CH ₃ OH	0.08%	-	0.19%	0.15%	0.07%
	C ₂ H ₅ OH	0.07%	-	0.18%	0.59%	0.05%
GOX	CH₄	0.50%	-	0.57%	-	0.40%
	GH ₂	0.05%	-	0.34%	-	0.12%

Percent Differences - Vacuum Expansion

Oxidizer	Fuel	$I_{ m vac}$	r	T_c	d	C*
	H ₂	0.05%	-	8.06%	9.45%	1.14%
	H ₂ Be	0.04%	-	1.19%	238.63%	1.53%
	CH ₄	0.10%	-	5.43%	17.00%	0.88%
	C_2H_6	0.07%	-	5.41%	0.78%	0.74%
	C_2H_4	0.08%	-	5.50%	0.75%	0.90%
LOV	RP-1	0.14%	-	5.43%	0.57%	0.65%
LOX	N_2H_4	0.05%	-	6.08%	5.28%	0.57%
	B_5H_9	0.32%	-	5.24%	2.44%	0.43%
	B_2H_6	0.57%	-	5.46%	0.21%	0.42%
	CH ₄ &H ₂	0.11%	-	5.58%	1.42%	1.01%
	CH₃OH	0.20%	-	5.30%	0.15%	0.20%
	C ₂ H ₅ OH	0.04%	-	5.17%	0.59%	0.55%
GOX	CH ₄	0.35%	-	7.35%	-	0.88%
	GH ₂	3.69%	-	19.39%	-	1.13%

OPTIMUM EXPANSION, $P_c = 1000 \text{ psia} \rightarrow P_e = 14.7 \text{ psia}$

Oxidizer	Fuel	I_{opt}	r	T_c	d	C*
	H ₂	389.1	4.13	4938	0.29	7917
	H ₂ Be	454.9	0.87	4672	0.81	9207
	CH ₄	309.2	3.21	5880	0.97	6083
	C_2H_6	306.4	2.89	5994	0.92	6030
	C_2H_4	300.8	2.38	6295	0.90	6056
LOV	RP-1	299.6	2.58	6140	1.02	5888
LOX	N_2H_4	312.4	0.93	5661	1.06	6189
	B_5H_9	317.7	2.12	6935	0.90	6188
	B_2H_6	343.2	1.96	6334	0.75	6719
	CH ₄ &H ₂	321.9	3.36	5852	0.73	6343
	CH₃OH	283.9	1.36	5443	0.96	5556
	C ₂ H ₅ OH	289.3	1.80	5729	0.98	5658
GOX	CH ₄	315.8	3.10	5922	0.00	6217
	GH ₂	407.7	3.29	4653	0.00	8356

VACUUM EXPANSION, $P_c = 1000 \text{ psia -> } \epsilon = 40$

Oxidizer	Fuel	$I_{ m vac}$	r	T_c	d	C*
	H ₂	455.1	4.83	4957	0.29	7917
	H ₂ Be	540.1	0.91	4636	0.81	9207
	CH ₄	368.5	3.45	5631	0.97	6083
	C_2H_6	365.5	3.10	5736	0.92	6030
	C_2H_4	370.6	2.59	6019	0.90	6140
LOX	RP-1	357.7	2.77	5866	1.02	5888
	N_2H_4	369.9	0.98	5337	1.06	6189
	B_5H_9	382.3	2.16	6619	0.90	6188
	B_2H_6	407.5	2.06	6093	0.75	6661
	CH ₄ &H ₂	379.1	3.63	5617	0.73	6287
	CH ₃ OH	339.3	1.40	5174	0.96	5556
	C ₂ H ₅ OH	346.1	1.90	5461	0.98	5658
GOX	CH₄	373.2	3.40	5592	0.00	6171
	GH ₂	474.6	3.92	4179	0.00	8356

optimum expansion, Pc = 1000 psia -> Pe = 14.7 psia							
oxidizer	fuel	lopt	r	Tc	d	C*	
LOX	H2	389.4	4.13	4964	0.29	7927	
	H2Be	459	0.87	4636	0.23	9293	
	CH4	309.6	3.21	. 5900	0.82	6091	
	C2H6	306.7	2.89	6008	0.9	6038	
	C2H4	311.5	2.38	6307	0.88	6150	
	RP-1	300.1	2.58	6157	1.03	5902	
	N2H4	312.6	0.93	5671	1.08	6192	
	B5H9	318.8	2.12	6933	0.92	6218	
	B2H6	341.9	1.96	6312	0.74	6696	
	CH4 H2	319	3.36	5873	0.71	6298	
	СНЗОН	284.1	1.36	5453	0.96	5560	
	C2H5OH	289.5	1.8	5739	0.99	5661	
GOX	CH4	314.2	3.1	. 5956	-	6192	
	GH2	407.9	3.29	4669	-	8366	

vacuum expansion, Pc = 1000 psia -> e = 40

Vacuum expansion, 1 c = 1000 psia > c = 40							
oxidizer	fuel	lopt r	Tc	d	C*		
LOX	H2	455.3	4.83	5392	0.32	7828	
	H2Be	540.3	0.91	4692	0.24	9350	
	CH4	368.9	3.45	5954	0.83	6030	
	C2H6	365.7	3.1	6064	0.91	5986	
	C2H4	370.9	2.59	6370	0.89	6085	
	RP-1	358.2	2.77	6202	1.03	5850	
	N2H4	370.1	0.98	5683	1.01	6154	
	B5H9	383.5	2.16	6985	0.92	6215	
	B2H6	409.8	2.06	6445	0.75	6689	
	CH4 H2	379.5	3.63	5949	0.72	6224	
	СНЗОН	340	1.4	5464	0.96	5545	
	C2H5OH	346.2	1.9	5759	0.99	5627	
GOX	CH4	374.5	3.4	6036 -		6117	
	GH2	457.7	3.92	5184 -		8263	