Dado el archivo clases/tp2/resolucion_espectral.txt que contiene 100 valores reales sampleados a Fs=200Hz, indique: 1) Resolución espectral. 2) Espectro en frecuencia de la señal. 3) A simple inspección que frecuencia(s) distingue. 4) Aplique alguna técnica que le permita mejorar la resolución espectral y tome nuevamente el espectro. 5) Indique si ahora los resultados difieren del punto 3 y argumente su respuesta. 6) Pegue el link a un pdf con los códigos, gráficos y comentarios.

Código.

```
import numpy as np
import scipy.signal as sc
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from scipy.signal import find peaks
class return_values_FFT:
    def __init__(self, fft,fft_fs):
        self.fft = fft
        self.fft_fs = fft_fs
def FFT(x,fs):
    fft = np.abs(np.fft.fftshift(np.fft.fft(x)/len(x)))
    fft_fs = np.fft.fftshift(np.fft.fftfreq(len(x), 1/fs))
    y = return values FFT(fft,fft fs)
    return y
fs = 200
file = 'resolucion espectral.txt'
with open(file) as Data:
    signalData = np.array(eval(Data.read()))
    time = np.arange(len(signalData)) * 1/fs
print("data", signalData)
# Opcion 1 con FTT
## Deteccion frecuencia con FFT.
fft
         = FFT(signalData,fs)
fft data = fft.fft
fft frec = fft.fft fs
peaks_ind, peaks = find_peaks(fft_data, height=0.15)
Frec = [ fft_frec[peaks_ind[0]], fft_frec[peaks_ind[1]] ]
print(" Frecuencia de la señal",Frec)
# Opcion 2 con cero Padding
# Deteccion frecuencia con FFT.
1 = len(fft data)
```

```
signal_p = np.concatenate((signalData, np.zeros(1*2)))
fft p = FFT(signal p,fs)
fft_p_data = fft_p.fft
fft_p_frec = fft_p.fft_fs
peaks_p_ind, peaks_p = find_peaks(fft_p_data, height=0.03)
print(" peaks_ind",peaks_p_ind)
Frec_p = [ fft_p_frec[peaks_p_ind[0]], fft_p_frec[peaks_p_ind[1]],
fft_p_frec[peaks_p_ind[2]], fft_p_frec[peaks_p_ind[3]]]
print(" Frecuencia de la señal con padding",Frec_p)
## Figura 1
plt.subplot(3,1,1)
plt.plot(time, signalData)
plt.title("Amplitud")
plt.grid()
# Grafica de la FFT 1
plt.subplot(3,1,2)
plt.plot(fft frec,fft data)
plt.title( "Frecuencia FFT")
plt.grid(True)
# Grafica de la FFT 2
plt.subplot(3,1,3)
plt.plot(fft_p_frec,fft_p_data)
plt.title( "Frecuencia FTT Padding")
plt.grid(True)
plt.show()
```

Señal de entrada -> resolucion_espectral.txt

En la siguiente figura se grafica la señal de entrada, de forma visual es posible indicar que la señal esta compuesta por varias componentes de frecuencia.

1. Resolución espectral.

Frecuencia de la señal [-50.0, 50.0]

Aplicando a FFT a los datos que representan la señal de entrada se pueden identificar que la señal tiene un componente en frecuencia de +-50Hz. Aplicando este método no se pueden identificar componentes adicionales de frecuencia de la señal.

2. Resolución Padding.

Frecuencia de la señal con padding [-52.6666666666664, -50.0, 50.0, 52.66666666666666]

Aplicando el método de Zero-Padding a los datos que representan la señal de entrada se pueden identificar que la señal de entrada se puede identificar que la señal tiene dos componentes de frecuencia en +-52Hz y +-50Hz. Utilizando este método es posible incrementar la resolución en frecuencia a un menos SNR, en este caso se pueden distinguir dos componentes de frecuencia de la señal.