1

Assignment 2

AI1110: Probability and Random Variables Indian Institute of Technology Hyderabad

Bonthu Mani Hemanth Reddy CS22BTECH11013

12.13.2.13 Question: Two balls are drawn at random with replacement from a box containing 10 black balls and 8 red balls. Find the probability that

- (i) both balls are red
- (ii) first ball is black and second is red
- (iii) one of them is black and other is red

Solution:

Let *X* and *Y* be two random variables which describe the color of first and second ball drawn from the box respectively according to table I:

Variable	Event
X = 0	1st ball is red
X = 1	1 st ball is black
Y = 0	2 nd ball is red
Y = 1	2 nd ball is black

TABLE I

Since we are drawing balls with replacement, *X* and *Y* are independent of each other.

Probability	Value
Pr(X=0)	$\frac{8}{18} = \frac{4}{9}$
Pr(X=1)	$\frac{10}{18} = \frac{5}{9}$
Pr(Y=0)	$\frac{4}{9}$
Pr(Y=1)	5 9

TABLE II

(i) Since both balls are red, the required probability is Pr(X = 0, Y = 0)

$$Pr(X = 0, Y = 0) = Pr(X = 0) \times Pr(Y = 0)$$

$$= \frac{4}{9} \times \frac{4}{9} \tag{2}$$

$$=\frac{16}{81}\tag{3}$$

$$\therefore \Pr(X = 0, Y = 0) = \frac{16}{81}$$
 (4)

(ii) The required probability is Pr(X = 1, Y = 0)

$$Pr(X = 1, Y = 0) = Pr(X = 1) \times Pr(Y = 0)$$
(5)

 $=\frac{5}{9}\times\frac{4}{9}\tag{6}$

$$=\frac{20}{81}$$
 (7)

$$\therefore \Pr(X = 1, Y = 0) = \frac{20}{81}$$
 (8)

(iii) Let event E be one of them is black and other is red.

The required probability, Pr(E) is

$$Pr(E) = Pr(X = 1, Y = 0) + Pr(X = 0, Y = 1)$$
(9)

From (8),

$$\Pr(X = 1, Y = 0) = \frac{20}{81} \tag{10}$$

$$Pr(X = 0, Y = 1) = Pr(X = 0) \times Pr(Y = 1)$$
(11)

$$=\frac{4}{9}\times\frac{5}{9}\tag{12}$$

$$=\frac{20}{81}$$
 (13)

From (10) and (13),

$$\Pr(E) = \frac{20}{81} + \frac{20}{81} \tag{14}$$

$$=\frac{40}{81}$$
 (15)

$$\therefore \Pr(E) = \frac{40}{81} \tag{16}$$