Procesarea semnalelor Semnale trece-jos și trece bandă.

Paul Irofti

Universitatea din București Facultatea de Matematică și Informatică Departmentul de Informatică Email: paul.irofti@fmi.unibuc.ro

Discretizare și eșantionare

Continuu:

$$x(t) = \sin(2\pi f_0 t) \tag{1}$$

Discret:

$$x(n) = \sin(2\pi f_0 n t_s) \tag{2}$$

unde

- $ightharpoonup f_0$ frecvența (Hz) măsoară numărul de oscilații într-o secundă
- \triangleright n eşantionul, indexul în şirul de timpi $0, 1, 2 \dots$
- ▶ t_s perioada de eșantionare; constantă (ex. la fiecare secundă)
- nt_s orizontul de timp (s)
- ▶ f₀nt_s numărul de oscilații măsurat
- \triangleright $2\pi f_0 nt$ unghiul măsurat în radiani (vezi note de curs)

Aliasing

Fenomenul de aliere (aliasing) apare când:

$$x(n) = \sin(2\pi f_0 n t_s) = \sin(2\pi (f_0 + k f_s) n t_s)$$
 (3)

Teoremă

Fie frecvența de eșantionare f_s (eșantioane / secundă) și k un număr întreg nenul. Atunci nu putem distinge eșantioanele unei sinusoide de frecvență f_0Hz de eșantioanele unei siunsoide de $f_0 + kf_sHz$.

Cum putem fi siguri că ce am măsurat reprezintă realitatea?

Ambiguitate în domeniul frecvenței

Duplicare (replici) în domeniul frecvenței

Semnalul $f_0 = 7kHz$ eșantionat cu $f_s = 6kHz$ produce o secvență a cărui spectru reprezintă simultan semnalele (tonurile): 1kHz, 7kHz, 13kHz, 19kHz,

Semnale trece-jos (lowpass)

Definiție

Semnalele limitate în bandă sunt semnalele a căror amplitudine spectrală este nulă în afara intervalului [-BHz,+BHz]. Altfel spus, semnalul are o frecvență maximă.

Definiție

Un semnal trece-jos este un semnal limitat în bandă și centrat în jurul frecvenței zero.

Semnale trece-jos: de la analog la digital

Semnalul continuu este discretizat apărând duplicatele în spectrul frecvenței.

$$x(n) = \sin(2\pi f_0 n t_s) = \sin(2\pi (f_0 + k f_s) n t_s).$$

Se observă că $f_s \geq 2B$ a.î. duplicatele sunt separate la $\pm \frac{f_s}{2}$.

Semnale trece-jos (lowpass): frecvența Nyquist

Definitie

Frecvența de eșantionare $f_s \ge 2B$ este criteriul Nyquist de eșantionare, rezultat din teorema Nyquist-Shannon, ce asigură separarea duplicatelor în domeniul frecvenței.

Definitie

Frecvențele $\pm \frac{f_s}{2}$ se numesc frecvențe de pliere (folding frequencies) sau frecvențe Nyquist.

Ce se întâmplă când eșantionăm sub frecvența Nyquist?

Semnale trece-jos (lowpass): eșantionare sub Nyquist

Ce se întâmplă când eșantionăm sub frecvența Nyquist?

Semnale trece-jos (lowpass): observații

- ▶ informația în interavul $[-B, -\frac{B}{2}] \cup [\frac{B}{2}, B]$ este coruptă
- valorile amplitudinilor în cazul suprapunerii sunt nedefinite
- ▶ informația spectrală a semnalului original continuu este conținută complet în banda $\left[-\frac{f_s}{2},\frac{f_s}{2}\right]$
- ultima observație este foarte importantă în practică

Zgomot

Ce se întâmplă dacă semnalul continuu este însoțit de zgomot?

Semnale trece-jos (lowpass): zgomot

(b)

Pentru un semnal trece-jos eșantionat corect:

- ▶ nu avem suprapuneri are duplicatelor în banda B
- dar duplicate ale zgomotului sfârșesc și ele în banda de interes!

Sursă: (Lyons 2004)

Freq

Semnale trece-jos (lowpass): eliminarea zgomotului

Profităm de faptul că avem de a face cu semnal trece-jos și eliminăm cu un filtru trece-jos orice este în afara benzii *B*Hz după care discretizăm.

Semnale trece-bandă (bandpass)

Definitie

Semnalele limitate în bandă sunt semnalele a căror amplitudine spectrală este nulă în afara intervalului [-BHz,+BHz]. Altfel spus, semnalul are o frecvență maximă.

Definitie

Un semnal trece-bandă este un semnal limitat în bandă și centrat în jurul unei frecvențe nenule f_c . Frecvența f_c se mai numește și carrier frequency.

Sursă: (Lyons 2004)

- ightharpoonup semnalul este centrat la $f_c = 20 \mathrm{MHz}$
- ightharpoonup are o bandă de B = 5 MHz
- semnalul este limitat în bandă
- care este frecvența maximă?
- care este frecvența de eșantionare necesară conform Nyquist?
- putem eșantiona mai eficient în acest caz? sub-Nyquist?

Sursă: (Lyons 2004)

- centrat la $f_c = 20 \text{MHz}$ cu banda B = 5 MHz
- care este frecvenţa maximă? 22.5MHz
- eșantionare conform Nyquist? $f_s = 45MHz$
- **>** putem eșantiona sub-Nyquist? Da. Putem exploata duplicarea centrând semnalul în zero cu $f_{s'}=17.5 \mathrm{MHz}$

Observații:

- lacktriangle componentele spectrale originale sunt în continuare centrate f_c
- am exploatat spațiul dintre origine și f_c inserând o dublură cu ajutorul ecuației (3)
- duplicatele sunt centrate exact la origine (baseband)
- $k = ? \hat{n} (3)$
- ightharpoonup eșantionare la $f_s = 45 MHz$ nu este necesară pentru a evita efectele de aliere

Fie un semnal trece-bandă centrat în f_c , de bandă B, și eșantionat sub-Nyquist cu $f_{s'}$ astfel încât între $-f_c$ Hz și $+f_c$ Hz apar m replici.

Care este frecvența de eșantionare $f_{s'}$ astfel încât dublura pozitivă P și, respectiv, cea negativă Q să fie centrate în zero?

Sursă: (Lyons 2004)

Fie un semnal trece-bandă centrat în f_c , de bandă B, și eșantionat sub-Nyquist cu $f_{s'}$ astfel încât între $-f_c$ Hz și $+f_c$ Hz apar m replici.

Care este frecvența de eșantionare $f_{s'}$ astfel încât dublura pozitivă P și, respectiv, cea negativă Q să fie centrate în zero?

Sursă: (Lyons 2004)

$$mf_{s'} = 2f_c - B \implies f_{s'} = \frac{2f_c - B}{m}$$
 (4)

Ce se întâmplă dacă scad frecvența de eșantionare?

$$f_{s'} \le \frac{2f_c - B}{m} \tag{5}$$

Ce se întâmplă dacă scad frecvența de eșantionare?

$$f_{s'} \le \frac{2f_c - B}{m} \tag{5}$$

Sursă: (Lyons 2004)

Ce se întâmplă dacă scad frecvența de eșantionare?

$$f_{s'} \le \frac{2f_c - B}{m} \tag{5}$$

Sursă: (Lyons 2004)

Dar dacă cresc frecvența de eșantionare?

Până când pot să scad frecvența de eșantionare?

$$f_{s''} = \min(f_{s'}) < \frac{2f_c - B}{m}$$
 (6)

Până când pot să scad frecvența de eșantionare?

$$f_{s''} = \min(f_{s'}) < \frac{2f_c - B}{m}$$
 (6)

Până când pot să scad frecvența de eșantionare?

$$f_{s''} = \min(f_{s'}) < \frac{2f_c - B}{m}$$
 (6)

$$(m+1)f_{s''} = 2f_c + B \implies f_{s''} = \frac{2f_c + B}{m+1}$$
 (7)

Semnal trece-bandă: constrângeri

Fie un semnal trece-bandă cu centrat în f_c de bandă B eșantionat sub-Nyquist cu $f_{s'}$ astfel încât între $-f_c$ Hz și $+f_c$ Hz apar m replici.

Atunci frecvența de eșantionare sub-Nyquist trebuie să îndeplinească următoarele condiții pentru a evita alierea:

$$\frac{2f_c - B}{m} \ge f_s \ge \frac{2f_c + B}{m + 1} \tag{8}$$

$$f_s > 2B \tag{9}$$

Considerăm frecvența de eșantionare optimă cea în care dublurile sunt centrate în zero.

$$\frac{m}{1} \frac{(2f_c - B)/(m)}{35,00 \text{ MHz}} \frac{(2f_c + B)/(m+1)}{22,50 \text{ MHz}} \frac{\text{Optimum}}{22,50 \text{ MHz}}$$

Sursă: (Lyons 2004)

m	$(2f_c-B)/(m)$	$(2f_c+B)/(m+1)$	Optimum
1	35,00 MHz	22,50 MHz	22,50 MHz
2	17,50 MHz	15,00 MHz	17,50 MHz

Sursă: (Lyons 2004)

m	$(2f_c-B)/(m)$	$(2f_c+B)/(m+1)$	Optimum
1	35,00 MHz	22,50 MHz	22,50 MHz
2	17,50 MHz	15,00 MHz	17,50 MHz
3	11,66 MHz	11,25 MHz	11,25 MHz

Sursă: (Lyons 2004)

m	$(2f_c-B)/(m)$	$(2f_c+B)/(m+1)$	Optimum
1	35,00 MHz	22,50 MHz	22,50 MHz
2	17,50 MHz	15,00 MHz	17,50 MHz
3	11,66 MHz	11,25 MHz	11,25 MHz
4	8,75 MHz	9,00 MHz	- MHz

Sursă: (Lyons 2004)

m	$(2f_c-B)/(m)$	$(2f_c+B)/(m+1)$	Optimum
1	35,00 MHz	22,50 MHz	22,50 MHz
2	17,50 MHz	15,00 MHz	17,50 MHz
3	11,66 MHz	11,25 MHz	11,25 MHz
4	8,75 MHz	9,00 MHz	- MHz
5	7,00 MHz	7,50 MHz	- MHz

Semnal trece-bandă: inversare

Definiție

Spectrul discretizat al oricărui semnal este inversat prin înmulțirea fiecărui eșantion cu $(-1)^n$.

Înmulțirea cu $(-1)^n$ rotește banda în intervalul $0 - f_c/2$ Hz în jurul axei de la $f_s/4$ Hz.

Semnal trece-bandă: zgomot

Ce se întâmplă cu trucul nostru sub-Nyquist când apare zgomot?

Semnal trece-bandă: zgomot

Ce se întâmplă cu trucul nostru sub-Nyquist când apare zgomot?

Semnal trece-bandă: zgomot

Ce se întâmplă cu trucul nostru sub-Nyquist când apare zgomot?

Signal-to-Noise Ratio (SNR)

Definiție

SNR reprezintă raportul dintre puterea semnalului pe care dorim să-l măsurăm și puterea zgomotului de fundal nedorit.

$$SNR = \frac{P_{signal}}{P_{noise}} \tag{10}$$

$$P_{dB} = 10 \log(P) = 20 \log(M)$$
 (11)

$$SNR_{dB} = 10\log(SNR) \tag{12}$$

În cazul semnalelor trece-bandă puterea zgomotului crește de (m+1)-ori când folosim eșantionarea sub-Nyquist. Deci SNR-ul scade cu D_{SNR} decibeli:

$$D_{SNR} = 10\log(m+1)dB \tag{13}$$

Exemplu: pentru m = 1 scade cu 3dB (reducere semnificativă).

Cum trecem în frecvență și înapoi în timp?

Transformata Fourier și Transformata Fourier Inversă ne ajută să trecem din domeniul timpului în domeniul frecvenței și vice-versa.

Transformata Fourier

Definiție

Transformata Fourier a unui semnal discret:

$$X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nm/N}$$

$$= \sum_{n=0}^{N-1} x(n) \left[\cos(2\pi mn/N) - j\sin(2\pi mn/N) \right]$$
(14)

- ightharpoonup X(m) componenta m DFT (ex. $X(0), X(1), X(2), \dots$)
- ▶ m indicele componentei DFT în domeniul frecvenței (m = 0, 1, ..., N 1)
- \triangleright x(n) eșantioanele în timp (ex. x(0), x(1), x(2), ...)
- ▶ n indicele eşantioanelor în domeniul timpului
- N numărul eșantioanelor în timp la intrare și numărul componentelor în frecvență la ieșire

Transformata Fourier inversă

Transformata Fourier a unui semnal discret:

$$X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nm/N}$$

$$= \sum_{n=0}^{N-1} x(n) \left[\cos(2\pi mn/N) - j\sin(2\pi mn/N) \right]$$

Definitie

Transformata Fourier inversă a unui semnal discret (IDFT):

$$x(n) = \frac{1}{N} \sum_{m=0}^{N-1} X(m) e^{j2\pi nm/N}$$

$$= \frac{1}{N} \sum_{m=0}^{N-1} X(m) \left[\cos(2\pi mn/N) + j \sin(2\pi mn/N) \right]$$
(15)