Types and Programming Language

枫聆

2022年4月20日

目录

1	Inti	roduction	3				
2	Untyped Systems						
	2.1	Syntax	4				
	2.2	Induction	5				
	2.3	Semantic Styles	6				
	2.4	Evaluation	7				
	2.5	The Untyped Lambda-Calculus	8				
	2.6	Programming in the Lambda-Calculus	11				
	2.7	Normal Forms	15				
	2.8	Recursion	16				
3	Sim	Simple Types					
	3.1	Typed Arithmetic Expressions	18				
	3.2	Simply Typed Lambda-Calculus	20				
4 Type Extensions		pe Extensions	23				
	4.1	Known Types	23				
	4.2	Known Features	25				
	4.3	Normalization	27				
	4.4	References					
	4.5	Recursion	32				

5	Subtyping		
	5.1 STLC		34
	5.2 Coercion Semantics	;	36
6 Type Reconstruction			38
	6.1 Type Inference		38
	6.2 Let Polymorphism	,	42

Introduction

Definition 1 A type system is a tractable syntactic method for proving the absence of certain program behaviors by classlying phrases according to the kinds of value they compute.

type system 是一种用于证明某些确定的程序行为不会发生的方法,它怎么做呢?通过它们计算出值的类型来分类,有点抽象... 我想知道 the kinds of value they compute 是什么?如何分类?分类之后接下来该怎么做?

Annotation 2 Being static, type systems are necessarily also conservative: they can categorically prove the absence of some bad program behaviors, but they cant prove their presence.

Example 3

1 if <complex test> then 5 else <type error>

上面这个 annotation 在说 type system 只能证明它看到的一些 bad program behavior 不会出现,但是它们可能会 reject 掉一些 runtime time 阶段运行良好的程序,例如在 runtime 阶段上面的 else 可能永远都不会进.即 type system 无法证明它是否真的存在.

Untyped Systems

Syntax

Definition 4 The set of terms is the smallest set $\mathcal T$ such that

- 1. $\{\text{true}, \text{false}, 0\} \subseteq \mathcal{T};$
- 2. if $t_1 \in \mathcal{T}$, then {succ t_1 , pred t_1 , iszero t_1 } $\subseteq \mathcal{T}$;
- 3. if $t_1 \in \mathcal{T}, t_2 \in \mathcal{T}, t_3 \in \mathcal{T}$, then ift_1 then t_2 else $t_3 \in \mathcal{T}$.

Definition 5 The set of terms is defined by the following rules:

$$\begin{array}{ccc} \operatorname{true} \in \mathcal{T} & \operatorname{false} \in \mathcal{T} & 0 \in \mathcal{T} \\ \frac{t_1 \mathcal{T}}{\operatorname{succ} t_1 \in \mathcal{T}} & \frac{t_1 \mathcal{T}}{\operatorname{succ} t_1 \in \mathcal{T}} & \frac{t_1 \mathcal{T}}{\operatorname{succ} t_1 \in \mathcal{T}} \\ & \underbrace{t_1 \in \mathcal{T} \quad t_2 \in \mathcal{T} \quad t_3 \in \mathcal{T}}_{\mathbf{if} t_1 \mathbf{then} t_2 \mathbf{else} t_3} & \end{array}$$

Definition 6 For each natural number i, define a S(X) as follow:

$$S_0(X) = X$$

$$S_1(X) = \{ \text{ succ } t, \text{ prev } t, \text{ iszero } t \mid t \in X \} \cup \{ \text{ if} t_1 \text{then} t_2 \text{else} t_3 \mid t_1, t_2, t_3 \in X \}$$

$$\vdots$$

$$S_{i+1}(X) = S(S_i(X)).$$

Proposition 7 $\mathcal{T} = \bigcup_{i=0}^{\omega} S_i(\{\text{true}, \text{false}, 0\}).$

PROOF 我们设 $\bigcup_{i=0}^{\omega} S_i(\{\text{true}, \text{false}, 0\}) = S$ 和 $\{\text{true}, \text{false}, 0\} = T$, 证明过程分两步走 (1)S follow Definition2.1 (2) S is smallest.

proof (1). {true, false, 0} $\in S$ 这是显然的. 若 $t_1 \in S$, 那么 $t_1 \in S_i(T)$, 考虑 succ t_1 , pred t_1 , iszero $t_1 \in S_{i+1}(T)$. 同理 Definition2.1(3).

proof (2). 考虑任意 follow Definition2.1 的集合 S', 我们需要证明 $S \subseteq S'$. 我们考虑任意的 $S_i \subseteq S$, 若都有 $S_i \subseteq S'$, 那么则有 $S \subseteq S'$. 这里我们使用 induction 来证明,首先有 $S_0(T) \subseteq S'$,假设 $S_n(T) \subseteq S'$.那么 考虑 $S_{n+1}(T) = S(S_n(T))$,任意的 $t_1 t_2, t_3 \in S_n(T)$,那么 Definition2.1(1)(2)(3) 得到的结果都是属于 S',因此 $S_{n+1}(T) \subseteq S'$.

Definition 8 The depth of a term t is the smallest i such that $t \in S_i(X)$.

Definition 9 If a term $t \in S_i(X)$, then all of its immediate subterms must be in $S_{i-1}(X)$.

Theorem 10 Structural induction Suppose P is a predicate on terms. If for each term s, given P(r) for all immediate subterms r of s, we can show P(s), then P(s) holds for all s.

Induction

Semantic Styles

Annotation 11 有三种方法来形式化语义:

- 1. Operational semantics(操作语义) 定义程序是如何运行的? 所以你需要一个 abstract machine 来帮助解释, 之所以 abstract 是因为它里面的 mechine code 就是 the term of language. 其中又分为两种类型, big-step 和 small-step.
- 2. Denotational semantics(指称语义) 就是给定一个 semantic domain 和一个 interpretation function, 通过这个 function 把 term 映射到 semantic domain 里面,这个 domain 里面可能是一堆数学对象. 它的优势是对求值进行抽象,突出语言的本质. 我们可以在 semantic domain 里面做运算,只要 interpretation function建立的好,运算结果可以表征程序本身的性质.
- 3. Axiomatic semantics(公理语义) 拿 axioms 堆起来的程序? 类似 Hoare logic.
- 4. Alegbraic semantics(代数语义) 把程序本身映射到某个代数结构上,转而研究这个代数?

Evaluation

Annotation 12 这一章在讲 operational semantic of boolean expression, 这个过程会清晰的告诉你我们求值的 结果是什么? 当我们对 term 求值时, term 之间的转换规则应该是什么? 既然有了转换, 那么一定有终止的时候, 这个终止的时刻就是我们求值的结果, 那我们要问什么时候停止呢? 开头的表格告诉了关于前面这些问题的答案. 当然有一些东西也没有出现在表格里面, 但是它们同样重要, 例如不能在对 false, true, 0 这些东西再求值; 求值的顺序等等.

Definition 13 An instance of an inference rule is obtained by consistently replacing each metavariable by the same term in the rule's conclusion and all its premises (if any).

一个推导规则的实例,就是把里面的 metavariable 替换成具体的 terms,但是一定需要注意对应关系.

Definition 14 Evaluation relations: 一步求值 (基本 evaluation relation); 多步求值 (evaluation relation 的传 递闭包产生的新的 relation, 这个 relation 包含原来的所有 evaluation relation);

Definition 15 A term t is in normal form if no evaluation rule applies to it.

范式是一个 term 无法继续求值的状态.

Definition 16 A closed term is stuck if it is in normal form but not a value, we often call it neutral form. 受阻项是一种特殊的范式,这个范式不是一个合法的值.

The Untyped Lambda-Calculus

Annotation 17 过程抽象 Procedural (or functional) abstraction is a key feature of essentially all pro-gramming languages

Definition 18 λ 演算的定义 The lambda-calculus (or -calculus) embodies this kind of function defi-nition and application in the purest possible form. In the lambda-calculus everything is a function: the arguments accepted by functions are themselves functions and the result returned by a function is another function.

The syntax of the lambda-calculus comprises just three sorts of terms.

$$\begin{array}{c} \mathsf{t} ::= \\ & \mathsf{x} \\ & \lambda x. \ \mathsf{t} \\ & \mathsf{t} \ \mathsf{t}. \end{array}$$

A variable x by itself is a term; the abstraction of a variable x from a term t_1 , written λx . t_1 , is a term; and the application of a term t_1 to another term t_2 , written t_1 to a term.

在 pure lambda-calculus 里面所有的 terms 都是函数,第一个 term 表示变量,第二个 term 表示 abstraction, 第三个 term 表示 application. 言下之意一个 lambda 函数的参数和返回值也都是函数.

Definition 19 两个重要的约定 First, application associates to the left, means

$$s t u = (s t) u.$$

Second, the bodies of abstractions are taken to extend as far to the right as possible.

$$\lambda x$$
. λy . $x y x = \lambda x$. $(\lambda y$. $((x y) x))$.

第一个是说函数的 apply 操作是左结合, 第二是说 lambda 函数的抽象体尽量向右扩展.

Definition 20 作用域 scope An occurrence of the variable x is said to be bound when it occurs in the body t of an abstraction λx . t.(More precisely, it is bound by this abstraction. Equivalently, we can say that λx is a binder whose scope is t.) An occurrence of x is free if it appears in a position where it is not bound by an enclosing abstraction on x. i.e. x in λy . x y and x y are free.

A term with no free variables is said to be closed; closed terms are also called combinators. The simplest combinator, called the identity function,

$$id = \lambda x. \ x.$$

Definition 21 α 等价 A basic form of equivalence, definable on lambda terms, is alpha equivalence. It captures the intuition that the particular choice of a bound variable, in an abstraction, does not (usually) matter.

$$\lambda x. \ x \cong \lambda y. \ y$$

简而言之,同时对一个 lambda 函数替换所有 bound variable 得到的 term 是等价的, α 变换在进行 β 规约的时候,用于解决变量名冲突特别有用).

Definition 22 操作语义 Each step in the computation consists of rewriting an application whose left-hand component is an abstraction, by substituting the right-hand component for the bound variable in the abstraction's body. Graphically, we write

$$(\lambda x. \ t_{12}) \ t_2 \to [x \mapsto t_2] \ t_{12},$$

where $[x \mapsto t_2]$ means "the term obtainted by replacing all free occurrences of x in t_{12} by t_2 ".

Definition 23 可约表达式 A term of the form $(\lambda x.\ t_{12})$ t_2 is called redex (reducible expression), and the operation of rewriting a redex according to the above rule is called β -reduction.

Definition 24 几种规约策略 Each strategy defines which redex or redexes in a term can fire on the next step of evaluation.

1. Undering full β -reduction, any redex may be reduced at any time. i.e., consider the term

$$(\lambda x. \ x) \ ((\lambda x. \ x) \ (\lambda z. \ (\lambda x. \ x) \ z)),$$

we can write more readably as id $(id(\lambda z. id z))$. This term contains three redexes:

$$\frac{\mathrm{id} \ (\mathrm{id} \ (\lambda z. \ \mathrm{id} \ z))}{\mathrm{id} \ (\underline{\mathrm{id}} \ (\lambda z. \ \mathrm{id} \ z))}$$
$$\mathrm{id} \ (\mathrm{id} \ (\lambda z. \ \mathrm{id} \ z))$$

under full β -reduction, we might choose, for example, to begin with the innermost index, then do the one in the middle, then the outermost:

$$\begin{array}{c} \operatorname{id} \; (\operatorname{id} \; (\lambda z. \; \operatorname{\underline{id}} \; \underline{z})) \\ \to \operatorname{id} \; (\operatorname{\underline{id}} \; (\lambda z. \; \underline{z})) \\ \to \operatorname{\underline{id}} \; (\lambda z. \; \underline{z}) \\ \to \lambda z. \; \underline{z} \\ \to \end{array}$$

2. Undering the normal order strategy, the leftmost, outermost redex is always reduced first. Under this strategy, the term above would be reduced as follows

$$\underline{\operatorname{id} \left(\operatorname{id} \left(\lambda z. \operatorname{id} z\right)\right)} \\
\to \underline{\operatorname{id} \left(\lambda z. \operatorname{id} z\right)} \\
\to \lambda z. \operatorname{\underline{id} z} \\
\to \lambda z. z$$

3. The call by name strategy is yet more restrictive, allowing no reductions inside abstractions.

$$\frac{\operatorname{id} \ (\operatorname{id} \ (\lambda z. \ \operatorname{id} \ z))}{\rightarrow \operatorname{id} \ (\lambda z. \ \operatorname{id} \ z)}$$

$$\rightarrow \lambda z. \ \operatorname{id} \ z$$

4. Most languages use a call by value strategy, in which only outermost redexes are reduced and where a redex is reduced only when its right-hand side has already been reduced to a value-a term that is finished computation and cannot be reduced and further.

$$\begin{array}{c} \operatorname{id} \ (\operatorname{id} \ (\lambda z. \ \operatorname{id} \ z)) \\ \to \operatorname{id} \ (\lambda z. \ \operatorname{id} \ z) \\ \to \lambda z. \ \operatorname{id} \ z \\ \xrightarrow{} \end{array}$$

注意 call by name 和 call by value 的区别, call by name 是在 λ 函数调用前不对参数进行规约而直接替换 到函数 body 内,换言之如果一个参数不会被用到,那么它永远都不会被 evaluated, call by value 是其对立情况,先对参数进行规约.

Evaluation strategies are used by programming languages to determine two things—when to evaluate the arguments of a function call and what kind of value to pass to the function.

Programming in the Lambda-Calculus

Definition 25 高阶函数 A higher order function is a function that takes a function as an argument, or returns a function.

$$f^{\circ n} = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}.$$

Annotation 26 Define o itself as a function:

$$\circ = \lambda f. \ \lambda g. \ \lambda x. \ f(g(x)).$$

So function composition can be denoted by

$$\circ f g = \lambda x. \ f(g(x)).$$

非常漂亮.

Annotation 27 多参数柯里化 Motivation is that the lambda-calculus provides no built-in support for multi-argument functions. The solution here is higher-order functions.

Instead of writing $f = \lambda(x, y)$. s, as we might in a richer programming language, we write $f = \lambda x$. λy . s. we then apply f to it arguments one at times, write f v w, which reduces to

$$f \ v \ w \to \lambda y. \ [x \mapsto v] \ s \to [x \mapsto v] \ [y \mapsto w] \ s.$$

This transformation of multi-arguments function into higher-order function is called currying in honor of Haskell Curry, a contemporary of Church.

Annotation 28 Church 形式的布尔代数 Define the terms tru and fls as follows:

$$tru = \lambda t$$
. λf . t

$$fls = \lambda t. \ \lambda f. \ f$$

The terms \mathbf{tru} and \mathbf{fls} can be viewed as representing the boolean values "true" and "false," then define a combinator \mathbf{test} with the property that test $b\ v\ w$ reduces to v when b is \mathbf{tru} and reduces w when b is \mathbf{fls} .

test =
$$\lambda l$$
. λm . λn . $l m n$;

The **test** combinator does not actually do much: $test\ b\ v\ w$ reduces to $b\ v\ w$. i.e., the term test tru $v\ w$ reduces

as follows:

test tru
$$v$$
 w

$$= \text{tru } v w$$

$$\to \underline{(\lambda t. \ \lambda f. \ t) \ v} w$$

$$\to \underline{(\lambda f. \ v) \ w}$$

$$\to v.$$

We can also define boolean operator like logical conjunction as functions:

and =
$$\lambda b$$
. λc . b c fls = λb . λc . b c b

Define logical **or** and **not** as follows:

or =
$$\lambda b$$
. λc . b tru $c = \lambda b$. λc . b b c
not = λb . b fls tru
$$xor = \lambda b$$
. λc . b (not c) c

$$tru = \lambda t$$
. λf . t

$$xor = \lambda a$$
. λb . a (not b) b

$$xor tru $b = tru$ (not b) b

$$= not b$$$$

Annotation 29 有序对 Using booleans, we can encode pairs of values as terms.

pair =
$$\lambda f$$
. λs . λb . b f s fst = λp . p tru snd = λp . p fls

pair 变成了一个函数,它可以接收一个 tru 或者 fls 来返回第一个值或者第二个值, fst 和 snd 就是 pair 的一个 applying 过程, 比较有趣.

Annotation 30 Church 形式的序数 Define the Church numerals as follows

$$c_0 = \lambda s. \ \lambda z. \ z$$

$$c_1 = \lambda s. \ \lambda z. \ s \ z$$

$$c_2 = \lambda s. \ \lambda z. \ s \ (s \ z)$$

$$c_3 = \lambda s. \ \lambda z. \ s \ (s \ (s \ z))$$

. . .

这里我们使用高阶函数来描述这一性质

Number	Function definition	Lambda expression
0	0 f x = x	$0 = \lambda f. \ \lambda x. \ x$
1	$ \begin{vmatrix} 0 & f & x = x \\ 1 & f & x = f & x \end{vmatrix} $	$0 = \lambda f. \ \lambda x. \ x$ $1 = \lambda f. \ \lambda x. \ f \ x$
2	2 f x = f (f x)	$2 = \lambda f. \ \lambda x. \ f \ (f \ x)$
3	3 f x = f (f (f x))	$3 = \lambda f. \ \lambda x. \ f \ (f \ (f \ x))$
:	:	:
n	$n f x = f^n x$	$n = \lambda f. \ \lambda x. \ f^{\circ n} \ x$

参考皮亚诺公理,对应这里我们构建自然数需要有一个 0 和一个后继函数 f. 你会注意到 c_0 和 \mathbf{fls} 是同一个 \mathbf{term} ,常规编程语言里面很多情况下 0 和 \mathbf{false} 确实也是一个东西.

Annotation 31 Church 形式序数的运算符 We can define the successor function on Church numerals as follows

$$succ = \lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z)$$

注意这里的后继函数接受对象是一个 Church numeral, 从而返回新的 Church numeral, 和我们构造 Church number 中的后继不是一个东西,它的作用就是让对应具体的数再复合一次 f. 因此分解一下上面的 apply 过程,首先是 $(n \ s \ z)$ 得到相对应的数,然后在对它复合一次 f.

另外一种形式

$$succ = \lambda n. \ \lambda s. \ \lambda z. \ n \ s \ (s \ z)$$

这个方式也很巧妙,相当于把0'=0+1作为新的零元.

Annotation 32 The addition of Church numerals can be preformed by a term **plus** that takes two Church numerals m and n, as arguments, and yields another Church numeral.

plus =
$$\lambda m$$
. λn . λs . λz . $m s (n s z)$

这里遵循函数复合的结合律 $f^{\circ (m+n)}(z) = f^{\circ m}(f^{\circ n}(x))$,相对于把其中的一个 Church number 对应的具体数当做了另一个 Church numeral 的 zero.

Annotation 33

times =
$$\lambda m$$
. λn . m (plus n) c_0

这个就非常有趣了,这里先固定 m,把它 succ 设为 plus n 和 zero 设为 c_0 ,相当于 (plus n) $^m(c_0)$. 另一种更简洁的形式:

times =
$$\lambda m$$
. λn . λs . λz . $m(n s) z$

这里的 $(n \ s)$ 变成了一个特殊 abstraction $s^{\circ n} = \lambda z$. $s(s(\cdots (s \ z) \cdots))$, 它并不是一个标准的 succ 形式

Annotation 34

$$\exp = \lambda m$$
. λn . n m

推一个来看看,注意其中的几次 α 变换,避免产生变量名的冲突.

Normal Forms

Annotation 35 前面提到的 neural term-"neutral terms contain a free variable at a 'head' position", 它是对 normal form 更细致的一种刻画,形如 x y, 其中 x 是一个 free variable, 而 y 是一个 lambda abstraction.

Definition 36 In untyped lambda calculus, the neutral terms and the normal form are generated in the following rules.

$$\frac{\mathsf{t} \ \mathit{nf}}{\lambda \mathsf{x}. \ \mathsf{t} \ \mathit{nf}} \qquad \frac{\mathsf{t} \ \mathit{ne}}{\mathsf{t} \ \mathit{nf}} \qquad \frac{\mathsf{t}_1 \ \mathit{ne} \ \mathsf{t}_2 \ \mathit{nf}}{\mathsf{t}_1 \ \mathsf{t}_2 \ \mathsf{ne}} \qquad \frac{\mathsf{x} \ \mathsf{ne}}{\mathsf{x} \ \mathsf{ne}}$$

Annotation 37 定义上述 normal form 的 generator 本想是根据它们来证明一些依赖 normal form 的命题,例 如 false 和 true 的刻画"if $\vdash e: \alpha \to (\alpha \to \alpha)$ and e is normal form, then e = true or e = false",对 e 使用 normal form structure induction,仅仅使用上面第一个 inference rule,实际上就可以了. 注意 normal form 的 定义并不依赖 type system,显然 neutral term 这种东西在 STLC 根本不可能出现…

Recursion

Annotation 38 首先经历几个思考 recurison 历程. 首先给出一个标准 recurison 过程, 阶乘过程

fact
$$\overline{n} = \text{if (iszero } \overline{n})(\overline{1}) \text{ then (mult } \overline{n} \text{ (fact (pred } \overline{n}))).}$$

其中 \bar{n} 代表 church number. 因此 fact 表示的 abstraction 为

fact =
$$\lambda n$$
. if (iszero n)($\overline{1}$) then (mult n (fact (pred n)))

这里我们只有一个等式,那么我们应当如何准确地给出 fact 的定义呢?如果我们尝试给左边的 fact 提出来,即

fact =
$$(\lambda f. \ \lambda n. \ \text{if (iszero} \ n)(\overline{1}) \ \text{then (mult } n \ (f(\text{pred } n)))) \ \text{fact}$$

将左边括号里面的 abstraction 看做一个函数,那么 fact 实际上就是它的一个 fixed point. 我们的下一个目标就是想办法构造出这个函数的不动点,如果这个不动点正好就是我们需要的 fact 那就太好了.

Definition 39 A self-application abstraction is

$$\omega = \lambda x$$
. x x .

The divergent omega combinator is

$$\Omega = \omega \omega = (\lambda x. \ x \ x) \ (\lambda x. \ x \ x).$$

Definition 40 A call-by-name Y combinator is

$$\mathbf{Y} = \lambda f. \ (\lambda x. \ f \ (x \ x)) \ (\lambda x. \ f \ (x \ x)).$$

Theorem 41 For all abstractions $F \in \Lambda$, we have

$$\mathbf{Y}F = F(\mathbf{Y}F)$$

PROOF 只需要对 YF 做两次 application 即可

$$\mathbf{Y}F = (\lambda x. \ F \ (x \ x)) \ (\lambda x. \ F \ (x \ x))$$
$$= F((\lambda x. \ F \ (x \ x)) \ (\lambda x. \ F \ (x \ x))$$
$$= F(\mathbf{Y}F).$$

Annotation 42 我们将使用 Y combinator 继续 fact 的 definition, 我们使

$$F = (\lambda f. \ \lambda n. \ \text{if (iszero} \ n)(\overline{1}) \ \text{then (mult } n \ (f(\text{pred } n)))).$$

由前述的 theorem, 现在我们有一个 fixed point YF. 我们使 fact = YF, 显然有

$$\begin{split} &\text{fact } n = \mathbf{Y}F \ n \\ &= F(YF) \ n \\ &= \text{if (iszero} \ \ n)(\overline{1}) \text{ then (mult } n \ (\mathbf{Y}F(\text{pred } n))) \\ &= \text{if (iszero} \ \ n)(\overline{1}) \text{ then (mult } n \ (\text{fact(pred } n))) \end{split}$$

当我们思考 $\mathbf{Y}F$ 是不是我们想要的那个 fixed point 呢? 实际上它就是 fact 的准确定义. 这个问题我们这样思考: 对于每一个 church number \overline{n} , fact 都有对应的形式 $\mathrm{fact}_{\overline{n}}$, 展开 $\mathbf{Y}F\overline{n}=F^n(\mathbf{Y}F)\overline{n}$ 也可以得到相同的结果. 那么整个定义就是 well-defined.

Example 43 如果 $F = \lambda x$. x, 我们可以得到什么东西呢? 所有 term x 都是其 fixed point. 即

$$x = \lambda x$$
. $xx \Rightarrow x = x$

Nothing we have done.

Simple Types

Typed Arithmetic Expressions

Definition 44 The typing relation for arithmetic expressions, written

t:T

is defined by a set of inference rules assigning types to terms.

true:bool false:bool $\underline{t_1:bool} \quad \underline{t_2:T} \quad \underline{t_3:T}$ $\mathbf{if} \ t_1 \ \mathbf{then} \ t_2 \ \mathbf{else} \ t_3:T$ 0:nat $\underline{t_1:nat}_{succ} \ \underline{t_1:nat}$ $\underline{t_1:nat}_{pred} \ \underline{t_1:nat}$ $\underline{t_1:nat}_{pred} \ \underline{t_1:nat}$ $\underline{t_1:nat}_{pred} \ \underline{t_1:nat}$ $\underline{t_1:nat}_{pred} \ \underline{t_1:nat}_{pred} \ \underline{t_1:nat}_{pred} \ \underline{t_1:nat}_{pred} \ \underline{t_1:nat}_{pred}$

Annotation 45 注意分支 terms 中的 T 表示任意的 types 即可能包括 bool 和 nat. 理论上两个分支的表达式的 type 可以不一样,但是这一样以来似乎就不是 well-typed, 处理这样的情况需要等到我们学习更多的类型的 type 之后才能来重新构造.

Annotation 46 使用 inference rule 来描述 type 是为了更方便地证明 inductive theorem.

Definition 47 A term t is typed or well typed if there is some T such that t: T. If t is typable, then its type is unique(uniquness of types).

Annotation 48 这里很重要是理解如果给定一个 type relation t: T, 那么肯定是由上述 inference rule 推导出来的, 所以我们会经常看到从 conclude 推 premise 的过程, 也就是寻找合适的 inference rule 反向推导, 这个过程我们称其为derivation, 其中反向寻找合适的 inference rule 的方法是利用了所谓 inversion lemma.

Theorem 49 progress A well-typed term is not stuck.

PROOF 我们利用 structural induction 来证一下 progress. 首先基本的 terms false, true, 0, succ nv 都是明显的 values, 其中 nv 表示一个 numeric value.

Case 1 $t = if t_1 then t_2 else t_3$ $t_1 = bool t_2 = T t_3 = T$.

由归纳假设当 t_1 = true 或者 t_1 = false 时,我们对 t 一步 evaluation 得到 t_2 或者 t_3 . 另外当 $t_1 \to t_1'$ 时,我们也可以得到 $t \to if$ t_1' then t_2 else t_3 .

Case 2 $t = succ t_1$ $t_1 = nat.$

由归纳假设当 $t_1 = nv$ 时, 那么 $succ\ t_1$ 还是一个 $numeric\ value$. 另外当 $t_1 \to t_1'$, 我们也可以得到 $t \to succ\ t_1'$

Case 3 $t = pred t_1 \quad t_1 = nat.$

同上.

Case $4 t = iszero t_1 t_1 = nat.$

同上.

Annotation 50 换言之 progress 保证是任意一个 well-typed term, 它可能是一个 value 或者可以进一步根据 evaluation rules 推导.

Theorem 51 preservation If a well-typed term takes a step of evaluation, then the resulting term is also well typed.

Definition 52

safty = progress + preservation.

Simply Typed Lambda-Calculus

Definition 53 Define the type of λ -abstraction(function) as follow

$$\lambda x. t: T_1 \to T_2$$

it classifies function that expect agrument of type T_1 and return result of type T_2 . The type constructor \rightarrow is right-associative.

Annotation 54 试想我们应该怎样给一个 function 赋予一个 type 呢? 首先要解决是这个 function 需要的 argument 的 type 是怎样的? 这里自然地会想到两种方法,一是直接给 argument 打上 annotation,而是从 function body 推出 argument 的 type. 第一种 type annotation 通常称为 explicitly typed,第二种则称其为 implicitly typed. 我们如果采用第一种方法,假设给定 $x:T_1$,同时将 t_2 中的所有出现的 x 的 type 都表示为 T_1 得到 $x:T_2$,那么显然此时就可以构造出一个 abstraction 和它对应 type 为 λx . $t_2:T_1 \to T_2$,形式化的描述这个 type rule 即为

$$\frac{\mathsf{x}: T_1 \vdash \mathsf{t}_2: T_2}{\lambda \mathsf{x}. \ \mathsf{t}_2: T_1 \to T_2}$$

其中 \vdash 可以解释为 under, 即 obtain some type relations under some assumptions. 特别地 \vdash x : T 表示 assumptions 是空的.

Definition 55 A typing context Γ is a sequence of distinct variables and thier types as follow

$$\Gamma = x_1 : T_1, x_2 : T_2, x_3 : T_3, \cdots$$

Annotation 56 rule of typing abstractions 如果考虑上 nested abstraction 的情况,我们扩展一下前面提到的 type inference

$$\frac{\Gamma, \mathsf{x}: T_1 \vdash \mathsf{t}_2: T_2}{\Gamma \vdash \lambda \mathsf{x}. \ \ \mathsf{t}_2: T_1 \to T_2}.$$

这里我们规定 t_2 中除 x 外的 free variables 均在 Γ 中.

Annotation 57 rule of variables A variable has whatever type we are currently assuming it to have,

$$\frac{\mathsf{x}:T\in\Gamma}{\Gamma\vdash\mathsf{x}:T}$$

Annotation 58 rule of applications

$$\frac{\Gamma \vdash \mathsf{t}_1 : T_1 \to T_2 \quad \Gamma \vdash \mathsf{t}_2 : T_2}{\Gamma \vdash \mathsf{t}_1 \mathsf{t}_2 : T_2}$$

Annotation 59 rule of conditionals

$$\frac{\Gamma \vdash t_1 : bool \quad \Gamma \vdash t_2 : T \quad \Gamma \vdash t_3 : T}{\Gamma \vdash \textbf{if} \ t_1 \ \textbf{then} \ t_2 \ \textbf{else} \ t_3 : T}$$

Annotation 60 We often use λ_{\rightarrow} to refer to the simply typed lambda-calculus.

Theorem 61 uniqueess of types In a given typing context Γ , a term t has at most one type. That is, if a term is typable, then it's type is unique.

Lemma 62 canonical forms

- 1. If v is a value of type bool, then v is either true or false;
- 2. If v is a value of type $T_1 \to T_2$, then $v = \lambda x : T_1$. t_2 .

Lemma 63 weakening If $\Gamma \vdash t : T$ and $x \notin dom(\Gamma)$, then $\Gamma, x : S \vdash t : T$.

Theorem 64 progress Suppose t is a closed, well-typed term(that is \vdash t : T). Then either t is a value or else there is some t' with t \rightarrow t'.

Proof proved by structural induction.

Q. E. D.

Theorem 65 preservation under substitution If $\Gamma, x : S \vdash t : T$ and $\Gamma \to s : S$, then $\Gamma \vdash [x \to s]t : T$.

PROOF 写几步 structural induction 找找感觉,因为 substitution 是第一次出现. 这里我们依然对 t 来进行归纳. Case 1 若 t = v,其中 v 为一个 variable.

分两种情况: $(1 \ \text{若} \ \text{v} = \text{x}, \ \text{则} \ [\text{x} \to \text{s}]\text{t} = [\text{x} \to \text{s}]\text{v} = \text{s}, \ \text{而根据命题条件} \ \Gamma \to \text{s} : S, \ 显然成立. (2 其他情况下, 则有 <math>[\text{x} \to \text{s}]\text{v} = \text{v}, \ \text{即这个 substitution 没起作用, 显然还是成立.}$

Annotation 66 对于一个 language 有两种特别的刻画形式:

• Curry-style 首先我们定义 terms, 再定义关于它们的求值规则 (evaluation rules),来确定 terms 的语义. 然后我们在定义一个类型系统来拒绝一些不符合我们预期的 terms. 因此语义刻画是在类型之前,即它是一种 implicit typing,也可以看做一种 ploymorphism. 例如对于 identity abstraction,在 curry-style 下可以使用一种 type variables,它可以代指所有可能的 type,

$$I = \lambda x. \ x: \sigma \to \sigma$$

• Church-style 首先我们定义 terms, 再确定一些 well-typed 的 terms. 然后只给 well-typed terms 制定求值规则,来确定其语义. 因此类型先于语义,即它是一种 explicit typing. 例如对于 identity abstraction,对每一种可能 type,在 church-style 下我们都可以得到 family of identity,

$$I_A = \lambda x : A. \ x : A \to A.$$

它们两个最大的不同就是我们在谈论一个 term 的语义的时候到底是否关系它此时是 well-typed. Curry-style 通常适用于刻画 implicitly typed system,而 Church-style 通常用于刻画 explicitly typed system.

Type Extensions

Known Types

Definition 67 base type Something like bool, nat, float and string, these type are for describing simple and unstructured values and approriate primitive operation for manipulating these values.

Definition 68 unit type a constant unit with unique type Unit, the type can be only from this constant. we often use * for the unique unit term and 1 for the unit type

$$\overline{\Gamma \vdash * : 1}$$

Definition 69 The sequencing notation t_1 ; t_2 has the effect of evaluating t_1 , throwing away its trivial result(unit), and going on to evaluate t_2 .

Annotation 70 first way to formalize sequencing Add t_1 ; t_2 as a new alternative in the syntax of terms, and then add two evaluation rules

$$rac{\mathsf{t}_1
ightarrow \mathsf{t}_1'}{\mathsf{t}_1; \mathsf{t}_2
ightarrow \mathsf{t}_1'; \mathsf{t}_2}$$
 unit; $\mathsf{t}_2
ightarrow \mathsf{t}_2$

and a typing rule

$$\frac{\Gamma \vdash t_1 : \mathrm{Unit} \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash t_1; t_2 : T_2}$$

Annotation 71 second way to formalize sequencing Regard t_1 ; t_2 as an abbreviation for the term (λx : Unit. t_2) t_1 , where $x \in \mathrm{FV}(t_2)$.

Theorem 72 Suppose λ^E for the simply typed lambda-calculus with the first way of sequencing formalization and λ^I for the simply typed lambda-calculus with Unit. Let $e: \lambda^E \to \lambda^I$ be the elaboration function that translates from the λ^E to λ^I by replacing every occurrence of $t_1; t_2$ with $(\lambda x : \text{Unit. } t_2) t_1$, where $x \in \text{FV}(t_2)$. Then for each t of λ^E , we have

- 1. $t \rightarrow_E t'$ iff $e(t) \rightarrow_I e(t')$;
- 2. $\Gamma \vdash_E \mathsf{t} : \mathsf{T} \text{ iff } \Gamma \vdash_I e(\mathsf{t}) : \mathsf{T}.$

Annotation 73 这个 sequencing 目前来说和我们现代下的语言里面对应的概念还是有差别的. 根据第一个 formalization, 也就是我们定义里面提到的它是依赖 t_1 的 evaluation result, 我们对一个 sequencing 能做的就是 首先对 t_1 进行 evaluating, 只有它的 result 是一个 Uint 的时候,我们可以尝试丢掉它转而去处理 t_2 . 显然当 t_1 不是 trivial 的时候, t_2 永远得不到的 evaluating,就停在了某个 t_1' ; t_2 . 这是就目前而言的我们可以做的事情.

再关于第二个 formalization 而言,它是一个很特别的带注解的 application,会有一个自然地疑问,如果此 时 t_1 的 evaluation result 不是 Unit,怎么让这个 application make sense? 是卡在这里,还是怎样? 显然在前述 的 corresponding theorem 下我更倾向于是卡在这里.

Known Features

Definition 74 Ascription is simple feature for ascribe a particular type to a given term. We write "t as T" for the "the term t, to which we ascribe the type T".

Definition 75 Let Bindings let $x = t_1$ in t_2 , 它们的 evaluation rule 和 type rule 根 lambda abstraction 是差不多的,即

let
$$x = t_1$$
 in $t_2 = (\lambda x : T_1, t_2) t_1$.

Definition 76 Pair Pairing, written $t = \langle t_1, t_2 \rangle$ and projection, written t.1 for the t_1 and t.2 for the t_2 . One new type constructor, $T_1 \times T_2$, called the product of T_1 and T_2 .

Definition 77 Tuple is general formalization of Pair.

Definition 78 Record Recording, written $\{I_1 = t_1, \dots, I_n = t_n\}$ and thier type $\{I_1 : T_1, \dots, I_1 : T_1\}$.

Definition 79 pattern matching Given two kinds of patterns, varible pattern x and record pattern $\{I_1 = p_1, \dots, I_n = p_n\}$ (so it can be nested). Plus a match function $match: P \times V \rightarrow Subs \cup Fail$, where P are patterns, V is values, Subs are substitutions and Fail means matching fails. The matching rules as follow

$$\begin{aligned} \mathit{match}(\mathsf{x},\mathsf{v}) &= [\mathsf{x} \to \mathsf{v}] & \mathit{M} - \mathit{Var} \\ \mathit{for each } \mathit{i} \; \mathit{match}(\mathsf{p}_{\mathit{i}},\mathsf{v}_{\mathit{i}}) &= \sigma_{\mathit{i}} \\ \\ \overline{\mathit{match}(\{\mathsf{l}_{1} = \mathsf{p}_{1}, \cdots, \mathsf{l}_{n} = \mathsf{p}_{n}\}, \{\mathsf{l}_{1} = \mathsf{v}_{1}, \cdots, \mathsf{l}_{n} = \mathsf{v}_{n}\}) = \sigma_{1} \circ \cdots \circ \sigma_{n}} & \mathit{M} - \mathit{Rcd} \end{aligned}$$

The computation rule for pattern matching generalizes the let-binding as follow

let
$$p = v$$
 in $t = match(p, v) t_1$.

Definition 80 A sum type is written as $T_1 + T_2$, there are two terms can be desribed this type:

- 1. Assume $t_1 : T_1$, then inl $t_1 : T_1 + T_2$;
- 2. Assume $t_2 : T_2$, then inr $t_2 : T_1 + T_2$.

There is a case construct that allows us to distinguish whether a given value comes from the left or right branch of a sum,

$$\frac{\Gamma \vdash \mathsf{t}_0 : \mathsf{T}_1 + \mathsf{T}_2 \quad \Gamma, x_1 : \mathsf{T}_1 \vdash \mathsf{t}_1 : \mathsf{T} \quad \Gamma, x_2 : \mathsf{T}_2 \vdash \mathsf{t}_2 : \mathsf{T}}{\mathbf{case} \ \mathsf{t}_0 \ \mathbf{of} \ \mathrm{inl} \ x_1 \mapsto \mathsf{t}_1 : \mathsf{T} \mid \mathrm{inr} \ x_2 \mapsto \mathsf{t}_2 : \mathsf{T}}$$

where $x_1 \mapsto \mathsf{t}_1 : \mathsf{T}$ means $[x_1 \to \mathsf{T}_1] \mathsf{t}_1$, another one is similar.

Annotation 81 上述 case 分几步理解

- 1. 首先得有一个 $t_0: T_1 + T_2$,
- 2. 然后我们有两个 type 相同的 terms $t_1: T$ 和 $t_2: T$,它们分别各自都有一个 bounded variables $x_1:: T_1$ 和 $x_1:: T_1$,因此这里实际上一个隐含的 abstraction,最后
- 3. 我们确定 t_0 是 inlx 和 inry, 根据其选择 t_1 和 t_2 apply 上对应的 x 和 y, 这里我们使用 x 和 y 目的是将 其和两个 bounded variables 区分开来.

Annotation 82 这里存在一个类型唯一性的问题,如果 $t_1: T_1$,那么对于任意 T_2 ,都有 inl $t_1: T_1+T_2$,显然 inl t_1 的类型就不唯一了.

这里有三种解决办法

- 1. 留着 T_2 符号化, typechecker 继续往后推, 如果遇到某个地方 T_2 可能在当前 context 需要成为某个特定的值;
- 2. 给所有可能的 T₂ 一个 unified representation(ocaml);
- 3. 在语法上要求显式地给 T_2 一个 type annotation.

Definition 83 variant is generalization of sum $\langle I_1 : T_1, I_2 : T_2 \rangle$.

Definition 84 option (none : Unit, some : Nat).

Definition 85 enumeration An enumerated type (or enumeration) is a variant type in which the field type associated with each label is Unit.

Definition 86 single-field variant $\langle I : T \rangle$.

Annotation 87 single-field variant 的主要作用由一个 type 构造出多个不一样的 types 但是仅仅是用附加的 labels 来刻画的,这就可以描述具有相同 type 但是不同对象.

Definition 88 void type An emptyset of term with unique type void¹, we often use 0 for the unique void type. When we reach a void type, we have reached an error, and thus we can throw any typed exception.

$$\frac{t_1:0}{\vdash \text{abort}_A \ t_1:A}$$

Annotation 89 The abort rule extracts a term of any type from the void type.

¹There is no term for void type

Normalization

Theorem 90 If $\vdash t : T$, then $t \to^* v$, where v is a value, or abbreviate $t \downarrow t$.

Remark 91 上述 normalization theorem 使用是 simply typed lambda calculus.

Annotation 92 Normalization 又名 termination,它在描述一个 well-typed 的 term 通过 evaluation 最终可以变成一个 value.这里 values 包括 false, true 和 lambda abstraction.自然地,这里考虑使用 induction hypothesis 来证明,但是处理不了 application。对于 application 我们需要使用 reduction rule

$$\frac{\Gamma \vdash \mathsf{t}_1 : T_1 \to T_2 \quad \Gamma \vdash \mathsf{t}_2 : T_2}{\Gamma \vdash \mathsf{t}_1 \mathsf{t}_2 : T_2}$$

根据假设 t_1, t_2 都是 normalizable, 那么设 $t_1 \to^* t_1' = \lambda x : T_1$. t_3 (这里用了一下 value of function type 的 canonical form) 和 $t_2 \to^* t_2'$, 其中 t_2' 是 normalized. 再来一个 β reduction, 则有

$$\mathsf{t}_1'\mathsf{t}_2' = [x \to \mathsf{t}_2']\mathsf{t}_3'$$

这里有两个问题: (1)t₃ 是一个怎样的形式? (2) substitution 干了什么?

Definition 93 Suppose the logical predicate for strong normalization as follow

$$\begin{split} \mathrm{SN_A}(\mathsf{t}) &\iff \vdash \mathsf{t} : \mathrm{A} \ \land \ \mathsf{t} \ \Downarrow, \\ \mathrm{SN_{T_1 \to T_2}}(\mathsf{t}) &\iff \vdash \mathsf{t} : \mathrm{T_1} \to \mathrm{T_2} \ \land \ \mathsf{t} \ \Downarrow \land \ \forall \mathsf{t_1}. \ \mathrm{SN_{T_1}}(\mathsf{t_1}) \Rightarrow \mathrm{SN_{T_2}}(\mathsf{t} \ \mathsf{t_1}) \end{split}$$

where A is base type.

Annotation 94 观察上述 definition 是加强了 application 的 conclude(?),可以通过这两个 logical predicate 来继续我们的证明,接下来的证明分两步走:

- 1. 首先证明 \vdash t : T \Rightarrow SN_T(t), 即所有 closed well-typed 的 term 都复合上述定义的 logical predicate,
- 2. 然后 $SN_T(t) \Rightarrow t \downarrow$.

这种手法就是所谓logical relation证明方法.

Lemma 95 $SN_T(t) \Rightarrow t \Downarrow$

PROOF 根据定义这是显然的.

Q. E. D.

Annotation 96 证明过程的第一步又会拆成两步:

1. $SN_T(t)$ 将会在 t 的 evalution 过程中保持,

2. 再做根据 type derivations 的 induction, 但是于证明 abstraction $t = \lambda x : T_1$. t_2 满足 $SN_{T_1 \to T_2}(t)$ 的时候, 注意这里我们 SN 对 closed term 而言的,因此我们这里根据 derivation 是

$$\frac{\mathsf{x}: T_1 \vdash \mathsf{t}_2: T_2}{\vdash \lambda x: T_1. \ \mathsf{t}_2}$$

问题来了这个 inference rule 的 premise 不是 empty,因此我们没法继续用 induction hypothesis 来继续我们的证明,这里需要做一个推广 (generalization),即 $\Gamma \vdash t : T \Rightarrow SN_T(t)$. 这里又会出现一个问题是的 t 可能不是 closed 了,因此我们考虑将这个 open term t 实例化,即从 Γ 出发构造 substitution 给 t ,让它重新变成 closed. 最终我们所需要的结论只是 generalization 的一个推论.

Lemma 97 If t : T and $t \to t'$, then $SN_T(t) \iff SN_T(t')$

PROOF 首先由 $t \to t'$, 那么有 $t \downarrow \iff t' \downarrow$. 再分情况,若 T = A, 证明就结束了; 若 $T = T_1 \to T_2$, 由 $t t_1 \to t' t_1$, 则 $t t_1 \downarrow \iff t' t_1 \downarrow$,又回到第一种情况,证明了 function type 额外需要的条件. Q. E. D.

Lemma 98 If $x_1 : T_1, x_2 : T_2, \dots, x_n : T_n \vdash t : T$ and v_1, v_1, \dots, v_1 are closed values of T_1, T_2, \dots, T_n with $SN_{T_i}(v_i)$, then $SN_{T}([x_1 \rightarrow v_1, x_2 \rightarrow v_2, \dots, x_n \rightarrow v_n]t)$

Proof structural induction as follow

Case 1

$$t = x_i$$
 $T = T_i$

显然成立.

Case 2

$$\begin{split} \mathbf{t} &= \lambda \mathbf{x} : \mathbf{S}_1. \ \mathbf{s}_2 \\ \mathbf{T} &= \mathbf{S}_1 \rightarrow \mathbf{S}_2 \\ \mathbf{x}_1 : \mathbf{T}_1, \mathbf{x}_2 : \mathbf{T}_2, \cdots, \mathbf{x}_n : \mathbf{T}_n, \mathbf{x} : \mathbf{S}_1 \vdash \mathbf{s}_2 : \mathbf{S}_2 \end{split}$$

显然此时 $[x_1 \to v_1, x_2 \to v_2, \cdots, x_n \to v_n]$ t 已经一个 value 了,因为 t 本来就是一个 abstraction. 此时需要额外证明 applying 过程,即给定任意的 $SN_{S_1}(s)$,有 $SN_{S_2}(([x_1 \to v_1, x_2 \to v_2, \cdots, x_n \to v_n]t) s)$. 根据 Lemma95,我们有 $s \to^* v$,根据归纳假设即有

$$\mathrm{SN}_{\mathrm{S}_2}([\mathsf{x}_1 \to \mathsf{v}_1, \mathsf{x}_2 \to \mathsf{v}_2, \cdots, \mathsf{x}_n \to \mathsf{v}_n, \mathsf{x} \to \mathsf{v}]\mathsf{t})$$

而

$$([\mathsf{x}_1 \to \mathsf{v}_1, \mathsf{x}_2 \to \mathsf{v}_2, \cdots, \mathsf{x}_n \to \mathsf{v}_n]\mathsf{t}) \mathsf{s} \to^* [\mathsf{x}_1 \to \mathsf{v}_1, \mathsf{x}_2 \to \mathsf{v}_2, \cdots, \mathsf{x}_n \to \mathsf{v}_n, \mathsf{x} \to \mathsf{v}]\mathsf{t},$$

再用一下 Lemma 97, 即可得到我们想要的.

 $Case\ 3$

$$\begin{split} \mathbf{t} &= \mathbf{t}_1 \mathbf{t}_2 \\ \mathbf{x}_1 &: \mathbf{T}_1, \mathbf{x}_2 : \mathbf{T}_2, \cdots, \mathbf{x}_n : \mathbf{T}_n \vdash \mathbf{t}_1 : \mathbf{T}_{11} \rightarrow \mathbf{T}_{12} \\ \mathbf{x}_1 &: \mathbf{T}_1, \mathbf{x}_2 : \mathbf{T}_2, \cdots, \mathbf{x}_n : \mathbf{T}_n \vdash \mathbf{t}_2 : \mathbf{T}_{11} \\ \mathbf{T} &= \mathbf{T}_{12} \end{split}$$

根据归纳假设有 $SN_{T_{11}\to T_{12}}([x_1\to v_1,x_2\to v_2,\cdots,x_n\to v_n]t_1)$ 和 $SN_{T_{11}}([x_1\to v_1,x_2\to v_2,\cdots,x_n\to v_n]t_2)$. 再根据 $SN_{T_{11}\to T_{12}}$ 的 definition,有

$$\begin{split} &\mathrm{SN}_{\mathrm{T}_{12}}([\mathsf{x}_1 \rightarrow \mathsf{v}_1, \mathsf{x}_2 \rightarrow \mathsf{v}_2, \cdots, \mathsf{x}_n \rightarrow \mathsf{v}_n] t_1 [\mathsf{x}_1 \rightarrow \mathsf{v}_1, \mathsf{x}_2 \rightarrow \mathsf{v}_2, \cdots, \mathsf{x}_n \rightarrow \mathsf{v}_n] t_2) \\ &= \mathrm{SN}_{\mathrm{T}_{12}}([\mathsf{x}_1 \rightarrow \mathsf{v}_1, \mathsf{x}_2 \rightarrow \mathsf{v}_2, \cdots, \mathsf{x}_n \rightarrow \mathsf{v}_n] t_1 \ t_2) \end{split}$$

得证.

Annotation 99 Lemma 98中 substitution 可以记为 $\gamma = [\mathsf{x}_1 \to \mathsf{v}_1, \mathsf{x}_2 \to \mathsf{v}_2, \cdots, \mathsf{x}_n \to \mathsf{v}_n]$,也可以直接记为 $\gamma \models \Gamma$,理解为"the substitution γ statisfies the type environment, Γ ".

Corollary 100 $\vdash t : T \Rightarrow SN_T(t)$.

PROOF 直接从 Lemma98可得.

Q. E. D.

References

Definition 101 A reference value represents mutable cell. The basic operations on reference are allocation, dereferencing and assignment.

To allocate a reference, we use the ref operator, providing an initial value for the new cell

$$r = ref 5 \Rightarrow r : Ref Nat.$$

To read a current value of this cell, we use the derefencing operator!

$$!r \Rightarrow 5 : Nat.$$

To change the value stored in the cell, we use the assignment operator

$$r := 7 \Rightarrow unit : Unit.$$

The result of the assignment is the trivial unit value.

Definition 102 The references r and s are said to be aliases for the same cell.

Annotation 103 在这里就正式的引入了 sequencing 带来的 side effort, 关于 references 的 evaluation rule 非常冗余,这里简单记关键几点

- 1. references 会被抽象成 location indexs $l \in \mathcal{L}$. states 会被抽象成 store function $\mathcal{L} \to \text{values}$;
- 2. 之前的所有 evaluation 都会附近上额外 store function;
- 3. dereference 一个不存在的 location, 会给出一个错误. dereference operator 要等到它右边的 term 被 evaluated 成一个 value 才能起作用,同理 allocation 也一样;
- 4. 对于 assignment, 需要先 evaluate 左边 term.

Definition 104 A store typing is a finite function mapping locations to types, we use the metavariable Σ to range over such functions. the typing rule for locations can be formalized as follow

$$\frac{\Sigma(l) = T_1}{\Gamma | \Sigma \vdash l : \text{Ref T}}$$

Annotation 105 这里为什么要构造一个这样的 function 呢? 因为自然地考虑 l 应该依赖于 store function μ , 这里对应的 typing rule 为

$$\frac{\Gamma|\mu \vdash \mu(l) : \mathbf{T}_1}{\Gamma|\mu \vdash l : \mathrm{Ref}\ \mathbf{T}}$$

如果 μ 的结构是这样

$$(l_1 \rightarrow \lambda x : \text{Nat. } !l_2 \times, l_2 \rightarrow \lambda x : \text{Nat. } !l_1 \times)$$

这里 cyclic reduction 的过程, l_1 的 type 依赖 l_2 的 type 依赖,反过来 l_2 的 type 依赖 l_1 的 type. 那么如何构造这样一个 $\Sigma: \mathcal{L} \to T$ 的 map 呢? 它是可以在 evaluation 过程动态构造的,因为只要一个 location 第一次被 allocated,那么在它对应的位置上一定有一个具体的 type,同样无论后面经历 assignment 多少次都只有唯一的 type 对应,这样我们可以一开始就将 Σ 置为一个 empty map,再根据对应的操作是维护它就可以了.

Definition 106 (Connection between μ and Σ) A store μ is said to be well typed with respect to a typing context Γ and a store typing Σ , written $\Gamma \mid \Sigma \vdash \mu$, if $dom(\mu) = dom(\mu)$ and $\Gamma \mid \Sigma \vdash \mu(l) : \Sigma(l)$ for every $l \in dom(\mu)$.

Theorem 107 Preservation If

$$\begin{split} \Gamma \mid \Sigma \vdash \mathsf{t} : \mathsf{T} \\ \Gamma \mid \Sigma \vdash \mu \\ \mathsf{t} \mid \mu \to \mathsf{t}' \mid \mu' \end{split}$$

then, for some $\Sigma' \supseteq \Sigma$,

$$\Gamma \mid \Sigma' \vdash \mathsf{t}' : \mathsf{T}$$

$$\Gamma \mid \Sigma' \vdash \mu'$$

Annotation 108 其中 $\Sigma' \supseteq \Sigma$ 产生的原因是 allocation operator 会带来新的 location,同时不用考虑 assignment operator,因为 sequencing 没有在当前的语法中,它的 side effort 也无法起作用,所以一个包含关系就够了.

Theorem 109 Progress Suppose t is closed, well-typed term, that is $\cdot \mid \Sigma \vdash t : T$ for some T and Σ . Then either t is a value or else, for any store μ such that $\cdot \mid \Sigma \vdash \mu$, there is some term t' and store μ' with t $\mid \mu \to t' \mid \mu'$.

Recursion

Definition 110 There are two basic approaches to recursive types.

- 1. equi-resursive approach: given two types expression as definition-ally equal-interchangeable in all contexts.
- 2. iso-resurisive approach: takes a recursive type and its unfolding as diffrent, but isomorphic.

Definition 111 An explicit recursion operator μ for types:

$$\mu\alpha.\tau$$

it has two interepretion from above tow approaches.

- 1. equi-resursive: A recursive type $\mu\alpha.\tau$ is the infinite type satisfying the equation $\alpha = \tau$.
- 2. iso-resursive: A recursive type $\mu\alpha.\tau$ was regarded as an infinite type and consider equal to its unfolding $[\alpha \to \mu\alpha.\tau]\tau$.

Annotation 112 equi-recursive 性质可以告诉 typechecker 对应的 recursion type 它可以适当的转换,例如我们可以 recursion type T 满足等式 $X = X \to X$, 给定两个 type 均为 T 的 terms M, N, 当考虑 application 时 MN, typechecker 就知道 $M: T \to T$ 和 N: T.

而 iso-resursive 性质就是将 equi-recurisve 里面隐式的转换用 unfolding 和 unfold 变成显式的了. 这里有一个小小问题探讨,以上的所有 recursion 的描述都是针对 type 而言的,不是之前在 untyped λ -calculus 里面针对 term 而言的. 但是 unfold 和 fold 会作为 primilitives 出现在 terms 里面,那么这里需要对它们有一个准确的描述.

首先每个 recursive typeun 都有 unfold 和 fold, 因此它们形式化的定义如下

unfold[
$$\mu\alpha.\tau$$
] : $\mu\alpha.\tau \to [\alpha \to \mu\alpha.\tau]\tau$
fold[$\mu\alpha.\tau$] : $[\alpha \to \mu\alpha.\tau]\tau \to \mu\alpha.\tau$

例如某个 term 具有 unfolded formation, 对其进行 fold 可以写作 fold $[\mu\alpha.\tau]$ t. 那么它们的 isomorphism 体现在

$$fold[\mu\alpha.\tau](unfold[\mu\alpha.\tau]\ t) = t$$

Example 113 The type natural list are defined as follow

$$NatList = \mu\alpha. \langle nil : Unit, cons : \{Nat, \alpha\} \rangle.$$

Definition 114 A fixed constructor for function type τ is defined as follow

$$\operatorname{fix}_{\tau} = \lambda f : \tau \to \tau. \ (\lambda x : (\mu \alpha . \alpha \to \tau). \ f \ (x \ x)) \ (\lambda x : (\mu \alpha . \alpha \to \tau). \ f \ (x \ x)).$$

Annotation 115 去掉 fix_{τ} 中所有的 type annotation, 就可以得到在 untyped lambda calculus 里面的 fix constructor. 这里 x 必须是一个 arrow type, 同时它的 domain 也是 x 它自己, 显然我们找不到这样 finite type, recursion operator 在这里就神奇的起作用了.

Definition 116 A well-typed term whose evalutaion will diverge.

$$\operatorname{diverge}_{\tau} = \lambda : Unit. \operatorname{fix}_{\tau} \operatorname{id}$$

Annotation 117 这意味 recursive type 的引入将会破坏 strong normalization.

Example 118 利用 recursive type 可以完美地将 untyped lambda calculus Λ (only include variables, abstraction and application) 变成 typed. 给每个在 Λ 里面的 term 都 assign 上一个 recursive type D

$$D = \mu \alpha . \alpha \rightarrow \alpha.$$

因为 arrow type 的天然存在,会导致出现 $D\to D$,因此我们需要一个 unifier. 其中 abstraction 对应了 fold 操作,我们需要将 $D\to D$ 变成 D 保持一致,即

$$lam = \lambda f : D \to D$$
. f as D ,

而 application 对应 unfold 操作, 我们需要将第一个 term 从 D 变成 $D \to D$, 这样才能 apply, 即

$$ap = \lambda f : D. \ \lambda x : D. \ f \ a.$$

给定 closed term $M \in \Lambda$, 用 M^* 表示 M 对应的 typed term, 两者对应如下

$$x^* = x$$
$$(\lambda x. \ M)^* = \text{lam } (\lambda x: D. \ M^*)$$
$$(MN)^* = \text{ap } M^*N^*$$

Subtyping

STLC

Annotation 119 Motivation 考虑下面 application

$$(\lambda r : \{x : Nat\}. \ r.x) \ \{x = 0, y = 1\},$$

它在前面的 STLC 里面不是 typable 的,显然 argument 不满足 abstraction 里面的 explicit annotation,我们希望兼容这种问题.

Definition 120 Let S, T be any terms, S is a subtype of T if any term of type S can safely be used in a context where a term of type T is expected, simply written S <: T.

Annotation 121 首先举个例子 $\{x: \tau_1, y: \tau_2\} <: \{x: \tau_1\}$,你如果直接思考两个 record 的势来比较显然是不符合直接的,但是这个你得用 cast 的想法来理解,这就相当于 S 的类型蕴含着 T 的类型,这个理解在逻辑上其实比较好理解,S 里面的 limits 实际上要比 T 多,因此"the element of S are a subset of the elements of T".

Definition 122 Subsumpting rule

$$\frac{\Gamma \vdash t : S \quad S <: T}{\Gamma \vdash t : T}.$$

Lemma 123 Subtype relation satisfies reflexivity and transitivity.

Definition 124 Let type Top satisfies S <: Top for any type S.

Definition 125 Subtyping rule for records.

$$\begin{split} \{l_1: T_1, l_2: T_2, \cdots, l_n: T_n\} <: \{l_1: T_1, l_2: T_2, \cdots, l_{n+k}: T_{n+k}\} & \text{ width subtyping } \\ \frac{\forall i. \ S_i <: T_i}{\{l_1: S_1, l_2: S_2, \cdots, l_n: S_n\} <: \{l_1: T_1, l_2: T_2, \cdots, l_n: T_n\}} & \text{ depth subtyping } \end{split}$$

Definition 126 Subtyping rule for functions.

$$\frac{T_1 <: S_1 \quad T_2 <: S_2}{S_1 \to S_2 <: T_1 \to T_2}.$$

Annotation 127 关于 function 的 subtyping,通常描述为"the function arguments are contravariant and the function results are covariant",其中 covariant 的意思就是说如果原本我们有 $T_2 <: S_2$ 做为 premise,那么由上述 inference rule 的 conclude 里面同样保持这个 relation,即 T_2 在 <: 左边,而 S_2 在右边; 类似地 contravariant 得到的结果是相反的.

上述的 inference rule 可以解释为:

- 1. 一个函数我可以 accept 相比于 original argument type 所含 elements 更多的 new argument type, 这是 safe 的. 因为假设 function 的 input 不变,我现在可以接受更多的元素,其中原来可以元素也可以 cover 到,显然是安全的.
- 2. 一个函数我们可以 return 相比于 original result type 所含 elements 更少一点的 new argument, 这是 safe 的. 因为假设 function 的 requirements of result 不变, 我现在 dom(Res_{new}) 是原来 dom(Res_{old}) 的一个子集, 原来可以满足前述的 requirement, 那么现在当然可以满足,显然是安全的.

Lemma 128 If $\Gamma \vdash \lambda x : S_1$. $s_2 : T_1 \to T_2$, then $T_1 <: S_1$ and $\Gamma, x : S_1 \vdash s_2 : T_2$.

PROOF 直接根据 typing derivations

$$\frac{\Gamma, x : S_1 \vdash s_2 : T_2}{\Gamma \vdash \lambda x : S_1. \ s_2 : S_1 \to T_2} \quad \frac{T_1 <: S_1 \quad T_2 <: T_2}{S_1 <: T_2 \to T_1 <: T_2} \\ \Gamma \vdash \lambda x : S_1. \ s_2 : T_1 \to T_2$$

关键是将 $\Gamma \vdash \lambda x : S_1$. $s_2 : T_1 \to T_2$ 看做一个 abstraction,它的 argument annotation 显然和它的 type 里面的 不一样,不能直接拆,因此首先整体要用一下 function subtyping. Q. E. D.

Lemma 129 If $\Gamma \vdash \{(k_j = s_j)_{j \in 1...m}\} : \{(l_i = T_i)_{i \in 1...n}\}$, then $\{(l_i)_{i \in 1...n}\} \subseteq \{(k_j)_{j \in 1...m}\}$ and $\forall l_i = k_j$. $\Gamma \vdash s_j : T_i$.

Annotation 130 上面两个 lemma 更进一步告诉你了一个 term 的 type 不唯一了, polymorphism 要来了, 之前 STLC 里面保持的 properties 可能需要重新证明了...

Coercion Semantics

Annotation 131 前面提到的 subtyping 只不一种针对类型的 extension, 并没有影响到我们的 evaluation 过程, 但是在实际操作可能会出问题. 假设我们给定 T <: S, 在实际中 T 和 S 可能有不一样的 internal structure, 例 如常见的 bool 和 int 类型,那么在实际 evaluation 的过程我们应当实现类型转换过程的结构转换. 其中有一种 想法就是将带有 subtyping 语法的 language 翻译成不带 subtyping language, 还是使用原来的 evaluation 过程. 通常来说编译器里面的这种翻译是从 high-level language 到 low-level language 的过程.

这里的翻译过程需要配合 subtyping derivation 和 normal typing derivation. 例如给定一个 source language (带 subtyping) 里面的 term e 和对应的 type T,我们要将他翻译成 target language 里面的 term e'. 那么我们需要将 e 按照 derivation 把 e 里面的所有 subterm 也都要翻译到 target language 里面. 其中涉及到 subtyping derivation 的翻译,每一个 subtyping rule 对应一个一个 abstraction,例如 $\lambda x:T$. $s:T\to S$,我们 再将需要做 type 转换的 term 作为 argument 传入就行. 还有一个比较特殊点就是两个 language 之间的 type 可能不一致,例如前面提到了 Top 这一类型,对应目标语言里面它就是 Unit,因此我们还需要构造一下两个语言里面类型的映射.

下述 translation 的 source language 为 pure STLC 带上 record 和 subtyping, target language 为 pure STLC 只有 record 和 type *Unit*.

Definition 132 Function [-] of type translation

$$[\![Top]\!] = Unit$$

$$[\![T_1 \to T_2]\!] = [\![T_1]\!] \to [\![T_2]\!]$$

$$[\![\{(l_i:T_i)_{i \in 1...n}\}]\!] = \{(l_i:[\![T_i]\!])_{i \in 1...n}\}$$

Definition 133 If C is a subtying derivation tree whose conclusion is S <: T, then we have C :: S <: T. Similarly, D :: S <: T for typing derivation.

Definition 134 Coercion for subtyping.

$$\begin{split}
& \left[\left[\overline{T <: T} \right] = \lambda x : \left[\left[T \right] \right]. x \\
& \left[\left[\overline{S <: Top} \right] \right] = \lambda x : \left[\left[S \right] \right]. unit \\
& \left[\left[\frac{C_1 :: S <: U \quad C_2 :: U <: T}{S <: T} \right] \right] = \lambda x : \left[\left[S \right] \right]. \left[\left[C_2 \right] \right] \left(\left[\left[C_1 \right] \right] x \right) \\
& \left[\left[\frac{C_1 :: T_1 <: S_2 \quad C_2 :: S_2 <: T_2}{S_1 \to S_2 <: T_1 \to T_2} \right] = \lambda f : \left[\left[S_1 \to S_2 \right] \right]. \lambda x : \left[\left[T_1 \right] \right]. \left[\left[C \right] \right] \left(f \left(\left[\left[C \right] \right]_1 \right) \right) \\
& \left[\left[\overline{\{(l_i : T_i)_{i \in 1 ... n + k}\} <: \{(l_i : T_i)_{i \in 1 ... n}\}} \right] = \lambda r : \left\{ (l_i : \left[\left[T_i \right] \right])_{i \in 1 ... n + k} \right\}. \left\{ (l_i = r.i)_{i \in 1 ... n} \right\}
\end{split}$$

36

Definition 135 Function $[\![-]\!]$ of typing derivation

$$\begin{bmatrix}
\frac{x:T\in\Gamma}{\Gamma\vdash x:T}
\end{bmatrix} = x$$

$$\begin{bmatrix}
\frac{\mathcal{D}::\Gamma,x:T_1\vdash t_2:T_2}{\Gamma\vdash \lambda x:T_1.\ t_2:T_1\to T_2}
\end{bmatrix} = \lambda x: \llbracket T_1 \rrbracket.\ \mathcal{D}$$

$$\begin{bmatrix}
\frac{\mathcal{D}::\Gamma\vdash t:S\quad\mathcal{C}::S<:T}{\Gamma\vdash t:T}
\end{bmatrix} = \llbracket \mathcal{C} \rrbracket \llbracket \mathcal{D} \rrbracket$$

Theorem 136 If $\mathcal{D} :: \Gamma \vdash t : T$, then $\llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket : \llbracket T \rrbracket$, where $\llbracket \Gamma \rrbracket$ is the pointwise extension of the type translation to contexts $\llbracket \emptyset \rrbracket = \emptyset$ and $\llbracket \Gamma, x : T \rrbracket = \llbracket \emptyset \rrbracket, x : \llbracket T \rrbracket$.

Annotation 137 如果我们有关于 $\tau_1 <: \tau_2, \ \tau_1 <: \tau_3, \ \tau_2 <: \tau_4 \ and \ \tau_3 <: \tau_4 \ b)$ primitive coercions, 那么显然 关于 $\tau_1 <: \tau_4 \ b)$ subtyping derivation 就有两种,有一个疑问是它们翻译到 target language 经过 evaluation 之后是不是有一样的结果呢?

Definition 138 A translation $\llbracket - \rrbracket$ from typing derivations in one language to term in another is coherent if, for every pair of derivations \mathcal{D}_1 and \mathcal{D}_2 with same conclusion $\Gamma \vdash t : T$, the translations $\llbracket \mathcal{D}_1 \rrbracket$ and $\llbracket \mathcal{D}_2 \rrbracket$ are behaviorally equivalent terms of the target language.

Type Reconstruction

Type Inference

Annotation 139 注意到前面讨论 typechecker 的时候,出现了很多 annotations,这些 annotations 帮助我们解决了一些问题,特别是对 abstraction 的 argument annotation,那么这里要探讨一类 typechecker 会建立在没有这些 annotation 的基础上,作为 polymorphism 的前奏.

Definition 140 [1] Type templates are ductively generated by

TypeTemp ::=
$$\tau$$
 | Tvar | TypeTemp \rightarrow TypeTemp.

where τ is base type and Tvar is type variable.

Definition 141 A type substitution f is any function from type variables to type templates. Any type substitution f can be extended to a function between type templates and defined inductively by

$$f(T) = \begin{cases} T & \text{if } T \text{ is any basic type } \tau \\ f(T) & \text{if } T \text{ is any type variable } x \\ f(A) \to f(B) & \text{if } T \text{ is } A \to B \text{ for any two type templates } A \text{ and } B \end{cases}$$

Annotation 142 一个 type substitution 相当于是对缺少 annotations 的补全,从此我们又可以尝试使用之前的 typechecker 欢快的玩耍了. 同时一个含 type variables 的 term 如果它是 well-typed, 那么它的所有 instance 也是 well-typed.

Theorem 143 If $\Gamma \vdash t : T$, then for any type substitution σ we have $\sigma\Gamma \vdash \sigma t : \sigma T$.

Annotation 144 上述 theorem 中的 σt 表示给 t 加上 annotation.

Annotation 145 Suppose that t is a term containing type variables and Γ is an associated context(possibly also containing type variables). There are two quite different questions that can ask about t:

- 1. for every σ , do we have $\sigma\Gamma \vdash \sigma t : T$? i.e. $\lambda f : X \to X$. $\lambda a : X$. f(f a) for any concrete type T, the instance is well typed, that is actually parametric polymorphism.
- 2. for some σ , do we have $\sigma\Gamma \vdash \sigma t : T$? i.e. $\lambda f : Y$. $\lambda a : X$. f(f a) is not typable as it stands, but if replace Y by $X \to X$, we obtain well typed term.

Annotation 146 上面提到的第二类问题就是这里需要探究的问题,尽管我们没有了 term 里面的存在的 annotation,但是 term 里面依然暗含一些 constraints. 例如给定一个 application e_1 e_2 和对应的 $\Gamma \vdash e_1 : \tau_1$ and $\Gamma \vdash e_2 : \tau_2$,那么这里就有一个 constraint 用等式来描述就是 $\tau_1 = \tau_2 \to X$,其中 X 是一个 fresh variable. 因此我们需要注意到这些 constraints 来限定可用的 substitutions,于是就提出了 unifer 的概念.

Definition 147 A type template to be more general than other if the latter can be obtained by applying a substitution to the former. That is, if type templates A is more general than type template B, then there exists a substitution σ such that $B = \sigma A$.

Definition 148 A substitution f is called an unifier of two sequences of type templates A_1, \dots, A_n and B_1, \dots, B_n if $f(A_i) = f(B_i)$ for all $i = 1, \dots, n$. We say that it is the most general unifier if given any other unifier g exists a substitution h such that $g = h \circ f$.

Annotation 149 这里的 the most general unifier 刻画应该是这样一个性质,

如果存在两种 unifier, 那么显然它们是上述这种关系, 当考虑所有 unifier 的时候, 就存在一个 most general unifier(?).

Lemma 150 (how to construct the most general unifier) If an unifier of A_1, \dots, A_n and B_1, \dots, B_n exists, the most general unifier is unify $(A_1, \dots, A_n, B_1, \dots, B_n)$, which is partially defined by induction as follow, where x is any type variable.

- 1. $\operatorname{unify}(x; x) = \operatorname{id} \text{ and } \operatorname{unify}(\tau; \tau) = \operatorname{id};$
- 2. unify $(x; B) = (x \to B)$, the substitution that only changes x by B; if x does not occur in B. The algorithm fails if x occurs in B;
- 3. unify(A; x) is defined symmetrically;
- 4. $\operatorname{unify}(A \to A'; B \to B') = \operatorname{unify}(A, A'; B, B');$
- 5. $\operatorname{unify}(A, A_1, \dots, A_n; B, B_1, \dots, B_n) = f \circ g \text{ where } g = \operatorname{unify}(A_1, \dots, A_n; B_1, \dots, B_n) \text{ and } f = \operatorname{unify}(g(A); g(B)).$

6. unify fails in any other case.

PROOF 这里需要证明 3 个部分:(1 上述描述的确实是一个 unifier (2 the most general unifier (3 termination.

对于 (3 termination, 我们需要 model 一个 degree 关于当且需要解决的 constraints, 这个 degree 用两个维度来表示: the number of distinct type variables 和 the number of whole types. 对于上述算法的每一步只会出现两种情况: (1 要么直接结束了 i.e. step1 或者 step6 (2 要么就是 degree 在减少 i.e. step2,3,5 比较明显, step4 中减少了两个 arrow type. step 5 相当于从一堆 constraints 里面取一个出来接近. 因此我们的 degree 是 finite, 最终算法会停止.

对于(2 还是通常手法 hypothesis induction,对 constraints 的规模做归纳. Base: 对于 empty sequence, unfier 实际上得到的是一个 identity id, 那么对于任意的 substitution δ , 都有 $\delta = \delta \circ$ id. Induction: 当 n+1 规模时,即 $\mathcal{C} = (A,B) \cup \mathcal{C}'$,其中 $\mathcal{C}' = (A_1,\cdots,A_n;A_1,\cdots,A_n)$. 根据假设我们有 $\sigma' = \mathrm{unify}(\mathcal{C}')$,这里要对 $(\sigma'A,\sigma'B)$ 的结构继续按照 unfier 算法讨论,现在仅考虑 $\sigma'A = x$ 时,即 step2. 对于任意 δ unifies \mathcal{C} ,也有 δ unifies \mathcal{C}' ,那么这里存在 γ 使得 $\delta = \gamma \circ \sigma'$,这里提前假设给我们带来的. 而这里的 $\sigma = \mathrm{unify}(\mathcal{C}) = (\sigma'A \to \sigma'B) \circ \sigma'$,要是能证明

$$\delta = \gamma \circ (\sigma' A \to \sigma' B) \circ \sigma'$$

就好了. 对于任意的 type variable x, 当 $\sigma' x \neq \sigma' A$ 时,有 $(\gamma \circ (\sigma' A \to \sigma' B) \circ \sigma') x = (\gamma \circ \sigma') x = \delta x$; 当 $\sigma' x = \sigma' A$ 时,有

$$(\gamma \circ (\sigma' A \to \sigma' B) \circ \sigma') x = \gamma(\sigma' B) = \delta(B),$$

而
$$\delta(A) = \delta(B)$$
, 因此 $\delta(B) = (\gamma \circ \sigma')A = \delta(x)$. Q. E. D.

Annotation 151 你可能会在评估 unifier 算法的时候,想如果不同的 type templates 含有相同的 type variables 是否出现问题? 只要对应 type templates,不出现上面提到的那种问题,就不会有问题. 因为我们处理的过程是 one by one, 那么处理下一个的时候,前面的所有已经被某个 σ 给弄成一样了,这样其中一个变,全部都得变,最后还是一样的.

Theorem 152 (type inference) The function type infer(M, B), partially defined as follows, finds the most general substitution σ such that $x_1 : \sigma A_1, \dots, x_n : \sigma A_n \vdash M : \sigma B$ is a valid typing judgment if it exists; and fails otherwise.

- 1. (var) typeinfer($\Gamma, x_i : A_i \vdash x_i : B$) = unify(A_i, B);
- 2. (app) typeinfer($\Gamma \vdash MN : B$) = $f \circ g$, where $g = \text{typeinfer}(\Gamma \vdash M : X \to B)$ and $f = \text{typeinfer}(g\Gamma \vdash N : gX)$ for a fresh type variable X.
- 3. (abs) typeinfer($\Gamma \vdash \lambda x$. M:B) = $f \circ g$ where $g = \text{unify}(B, z \to z')$ and $f = \text{typeinfer}(g\Gamma, x: gz \vdash M: gz')$ for fresh type variables z, z'.

Annotation 153 关于 type inference 有两种方法, 但实质都是一样的.

- 1. 我们上述提到的方法实际上在一边构造 constraints of types, 同时也在解决这些 constrains.
- 2. 另外一种方法是首先把某个 term 对应的 constraints 都构造出来,最后我们可以得到一个关于该 term 的一个 shape of type S,然后我们再去找到满足该 constraints 的 σ ,最后对应 term 的 type 为 σS . 构造 constraints 的过程采用 inference rules.

无论哪种方法,我们都需要证明该算法的 soundness 和 completeness. 其中

- 1. soundness 指该算法得到的 σ 和 σB 是 well-defined.
- 2. completeness 指任意一个满足上述 σ ,有一个利用上述算法得到的 σ' 使得 $\sigma B = \sigma' B$.

Definition 154 Suppose $\Gamma \vdash M : \pi$, where pi is type template. If every possible type T for M is a instance of π , that is, $T = \sigma \pi$, we say π is a principle type of M.

Theorem 155 If $\Gamma \vdash M : B$ has possible solution, then M has principle type.

Let Polymorphism

Annotation 156 如果想要实现如下语法

let double =
$$\lambda f : \tau \to \tau$$
. $\lambda x : \tau$. $f(f(x))$ in let $a =$ double $(\lambda x : nat$. succ (succ x)) 1 in let $b =$ double $(\lambda x : bool. x)$ false in \cdots

在现有 let 语义下有些问题,这里会给出两个矛盾的 constraints 即

$$\tau \to \tau = nat \to nat, \, \tau \to \tau = bool \to bool.$$

出现这种问题的原因在于 let 本身的 typing inference rule

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma, x : \tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau_2} \text{ T-Let}$$

这里将 e_1 和 x 的 type 绑定起来了,因此首先我们首先去掉这种绑定状态.

Definition 157 Let-polymorphism typing rule as follow

$$\frac{\Gamma \vdash [x \to e_1]e_2 : \tau_2}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau_2} \text{ T-LETPOLY}$$

Annotation 158 这样我们直接将 let-body 中的 x 替换成 e_1 , 去掉了单独关于 e_1 的单独 typechecking, 等到它在 let-body 中出现的时候在考虑其 type.

这样还是有一点问题就是 double 里面还是存在 argument annotation, 还是解决不了问题, 我们得想办法 把不同 case 里面的 argument annotation 用不同的 variables 表示. 这里我们在语法上引入不带 annotation 的 lambda abstraction, 在 parser typing 阶段再给 assign 一个 annotation. 这样做的好处就是对同一个 abstraction, 我们能拷贝不同 annotation 的 abstraction.

Definition 159 Typing rule for unannotated abstration.

$$\frac{X \notin \mathcal{X} \quad \Gamma, x : A \vdash e_1 : B|_{\mathcal{X}}}{\Gamma \vdash \lambda x. \ e_1 : A \to B}$$

where \mathcal{X} represents type variable used in Γ , e_1 and B.

Annotation 160 现在就可以正常工作了, 但是还有一些不那么明显的问题:

1. 如果 e_1 没有在 let-body 中出现,那么它永远不会被 typecheck. 我们可以改写一下 let-poly 来解决这个问题:

$$\frac{\Gamma \vdash [x \to e_1]e_2 : \tau_2 \quad \Gamma \vdash e_1 : \tau_1}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau_2} \text{ T-LetPoly}$$

2. 因为 e_1 将会被替换到 let-body 每一处它出现的地方,那么每个地方都会经历 typecheck,无论其是否含有 type variables. 我们最好首先对 e_1 做一个 simplify,可以先把 e_1 提出来,构造关于 e_1 的 principle type π ; 然后 generalize π 里面出现的 type variables X_1, \dots, X_2 , 注意不包含 Γ 里面出现的 type variables,仅仅是 对 e_1 的刻画,利用这些 type variables 构造一个 type scheme ∀ $X_1, \dots, X_2\pi$; 最后开始 typecheck let-body, 对于每一个 x 出现的地方,我们都实例化一下这个 type scheme,即给里面每个 type variables 都 assign 一个 fresh variables 得到一个 type,再把这个 type 给 x.

参考文献

[1] Mario Román García. Category Theory and Lambda Calculus. https://mroman42.github.io/ctlc/ctlc.pdf