Discriminant Analysis as an Example of Classification Techniques for Compositional Data

Manuel Pfeuffer

Seminar: Compositional Data Analysis

Humboldt-Universität zu Berlin

When do we need classification techniques?

Classification Problem

Given *n* observations $x_i = (x_{i1}, \dots, x_{ik})$ with known class labels $y_i \in \{1, \dots, g\}$, predict the class of an unlabelled observation.

A simple approach to classification

Discriminant Function and Classifier

$$\delta_j(x) = \|x - \hat{\mu}_j\|, \qquad D(x) = \begin{cases} \text{"class 1"}, & \text{if } \delta_1 < \delta_2 \\ \text{"class 2"}, & \text{otherwise} \end{cases}$$

A simple approach to classification

Problem:

- $\delta(x)$ only takes into account the μ_j 's
- ▶ This is problematic for correlated data
- \Rightarrow We should also take into account the Σ_j 's!

Bayes Discriminant Rule

Assumption

Class populations characterized by a density function f_i .

 \rightarrow Usually f_j assumed mutltivariate normal with (μ_j, Σ_j) .

Conditional probability that observation x comes from class k:

$$P(G = k|x) = \frac{f_k(x)p_k}{\sum_{j=1}^g f_j(z)p_j}$$
 (Bayes Theorem)

To compare conditional probabilities:

$$\delta_k(x) = \ln f_k(x) + \ln p_k \quad (\propto P(G = k|x))$$

 \Rightarrow Classify as class with the highest $\delta_k(x)$ (probability)!

Discriminant Analysis for CoDa —

Bayes Discriminant Rule: QDA and LDA

Plugging in the multivariate normal density for f_k :

$$\ln f_k(x) \propto -\frac{1}{2} \ln |\Sigma_k| - \frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)$$

Bayes Quadratic Discriminant Function

$$\delta_k^{QDA}(x) = -\frac{1}{2} \ln |\Sigma_k| - \frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) + \ln p_k$$

- ▶ "Quadratic" because $\delta_k^{QDA}(x)$ is quadratic in x.
- Linear discriminant analysis assumes $\Sigma_1 = \cdots = \Sigma_g$. \to The resulting $\delta_k^{LDA}(x)$ is linear in x.
- ▶ Bayes Discriminant Analysis gives probabilistic output.

Bayes Discriminant Rule: Visualization

Note: Estimate μ_i and Σ_i by group mean and empirical covariance.

Figure: LDA on simulated data using lda() from the MASS package. [To Check: Does that function really implement Bayes LDA?]

Fisher Discriminant Rule

Goal: Find a projection direction $a \in \mathbb{R}^k$ that:

1. Maximizes spread between the group means.

$$\mathsf{S}_{\mathsf{B}} = \frac{1}{n} \sum_{1=j}^{g} \mathsf{n}_{j} (\mu_{j} - \mu) (\mu_{j} - \mu)^{\mathsf{T}}$$

2. Minimizes the variance within the groups.

$$S_{\mathbf{W}} = \frac{1}{n} \sum_{1=i}^{g} n_{j} \Sigma_{j}$$

Maximization Problem

$$\max \frac{a^T \mathbf{S}_{\mathbf{B}} a}{a^T \mathbf{S}_{\mathbf{W}} a} \quad \text{for } a \in \mathbb{R}^k, a \neq 0$$

Fisher Discriminant Rule: Visualization

Bayes and Fisher Discriminant Rule — 2-6

Summary

