Group B Assignment - 2

Perform the following operations using Python on the Air quality and Heart Diseases data sets

- a. Data cleaning
- b. Data integration
- c. Data transformation
- d. Error correcting
- e. Data model building

Importing libraries

```
In [97]: import pandas as pd
import numpy as np
```

Reading the csv file

```
In [98]: data = pd.read_csv("airquality (1).csv")
data
```

Out[98]:

	Unnamed: 0	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
0	1	41.0	190.0	7.4	67	5	1	High
1	2	36.0	118.0	8.0	72	5	2	High
2	3	12.0	149.0	12.6	74	5	3	Low
3	4	18.0	313.0	11.5	62	5	4	NaN
4	5	NaN	NaN	14.3	56	5	5	High
148	149	30.0	193.0	6.9	70	9	26	Low
149	150	NaN	145.0	13.2	77	9	27	Low
150	151	14.0	191.0	14.3	75	9	28	High
151	152	18.0	131.0	8.0	76	9	29	Medium
152	153	20.0	223.0	11.5	68	9	30	Low

153 rows × 8 columns

Removing unnecessary columns

```
In [99]: data.drop(data.iloc[:,[0]], axis=1, inplace=True)
data
```

Out[99]:

	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
0	41.0	190.0	7.4	67	5	1	High
1	36.0	118.0	8.0	72	5	2	High
2	12.0	149.0	12.6	74	5	3	Low
3	18.0	313.0	11.5	62	5	4	NaN
4	NaN	NaN	14.3	56	5	5	High
148	30.0	193.0	6.9	70	9	26	Low
149	NaN	145.0	13.2	77	9	27	Low
150	14.0	191.0	14.3	75	9	28	High
151	18.0	131.0	8.0	76	9	29	Medium
152	20.0	223.0	11.5	68	9	30	Low

153 rows × 7 columns

Replacing null values by mean values

```
data["Ozone"].fillna(data["Ozone"].mean(), inplace=True)
           data["Solar.R"].fillna(data["Solar.R"].mean(), inplace=True)
           data["Wind"].fillna(data["Wind"].mean(), inplace=True)
Out[102]:
                  Ozone
                            Solar.R Wind Temp Month Day Humidity
              0 41.00000 190.000000
                                     7.4
                                            67
                                                    5
                                                               High
              1 36.00000 118.000000
                                                         2
                                     8.0
                                            72
                                                    5
                                                               High
              2 12.00000 149.000000
                                     12.6
                                            74
                                                    5
                                                         3
                                                               Low
              3 18.00000 313.000000
                                            62
                                                    5
                                                               NaN
              4 42.12931 185.931507
                                     14.3
                                            56
                                                    5
                                                        5
                                                               High
            148 30.00000 193.000000
                                     6.9
                                            70
                                                    9
                                                        26
                                                               Low
            149 42.12931 145.000000
                                            77
                                                       27
                                                               Low
            150 14.00000 191.000000
                                     14.3
                                            75
                                                       28
                                                    9
                                                               High
            151 18.00000 131.000000
                                     8.0
                                            76
                                                    9
                                                       29
                                                            Medium
            152 20.00000 223.000000
                                    11.5
                                            68
                                                       30
                                                               Low
           153 rows × 7 columns
In [103]: data["Humidity"].fillna("Medium", inplace=True)
In [104]: data.isnull().sum()
Out[104]: Ozone
                        0
           Solar.R
                        0
           Wind
                        0
                        0
           Temp
           Month
                        0
           Day
```

Performing label encoding on Humidity column to convert categorical data to continuous data

Humidity 6 dtype: int64

```
In [105]: from sklearn.preprocessing import LabelEncoder
In [106]: le = LabelEncoder()
In [107]: data["Humidity"] = le.fit_transform(data["Humidity"])
```

```
In [108]:
           data
Out[108]:
                  Ozone
                             Solar.R Wind Temp Month Day Humidity
              0 41.00000 190.000000
                                      7.4
                                             67
                                                    5
                                                         2
              1 36.00000 118.000000
                                      8.0
                                            72
                                                    5
                                                                  0
              2 12.00000 149.000000
                                     12.6
                                                    5
                                                                   1
              3 18.00000 313.000000
                                     11.5
                                             62
                                                    5
                                                         4
               42.12931 185.931507
                                     14.3
                                             56
                                                    5
                                                         5
                                                                  0
            148 30.00000 193.000000
                                      6.9
                                            70
                                                    9
                                                        26
                                                                   1
            149 42.12931 145.000000
                                     13.2
                                            77
                                                        27
                                                                   1
                                     14.3
                                            75
                                                                  0
            150 14.00000 191.000000
                                                    9
                                                        28
            151 18.00000 131.000000
                                      8.0
                                            76
                                                    9
                                                        29
                                                                   2
            152 20.00000 223.000000
                                     11.5
                                                        30
           153 rows × 7 columns
           Declaring dependent and independent variables
```

```
In [109]: # x = data.iloc[:, [0,1,2,3]]
# y = data["Humidity"]
x=data.iloc[:,:4]
y=data.iloc[:,4]
```

Splitting the data for training and testing

```
In [110]: from sklearn.model_selection import train_test_split
In [111]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
```

Creating the model

```
In [112]: from sklearn.linear_model import LinearRegression
In [113]: model = LinearRegression()
```

Training the model

Predicting the values

```
In [115]: predictions = model.predict(x_test)

In [116]: predictions

Out[116]: array([6.90092094, 6.8263338 , 6.6633515 , 7.15291569, 7.97613425, 7.71428955, 6.90833602, 6.94156525, 7.7366941 , 7.84569234, 6.71208764, 6.99398299, 7.00130619, 7.43888818, 6.97260696, 6.08581802, 7.04225697, 7.53206299, 6.61113791, 6.16899371, 5.08065398, 7.3168772 , 6.70695618, 6.95913271, 7.06821777, 7.50578449, 7.16076928, 6.7155374 , 5.8006455 , 7.49240097, 6.83360675])
```

Calculating the performance metrics

Model Visualization

```
In [125]: import matplotlib.pyplot as plt
   plt.title("Temperature prediction")
   plt.xlabel("Actual")
   plt.ylabel("Predicted")
   plt.scatter(y_test, predictions, color='red')
   plt.plot(y_test, model.predict(x_test), color='blue')
```

Out[125]: [<matplotlib.lines.Line2D at 0x192e566d790>]

