ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΦΙΛΟΜΑΘΕΙΑ

Συνάρτηση	Παράγουσα	Ορισμένο ολοκλήρωμα
С	cx	$\int_{a}^{\beta} c dx = [cx]_{a}^{\beta} = c(\beta - a)$
Х	$\frac{x^2}{2}$	$\int_{a}^{\beta} x dx = \left[\frac{x^{2}}{2} \right]_{a}^{\beta} = \frac{\beta^{2}}{2} - \frac{a^{2}}{2}$
x^{ν}	$\frac{x^{\nu+1}}{\nu+1}$	$\int_{a}^{\beta} x^{\nu} dx = \left[\frac{x^{\nu+1}}{\nu+1} \right]_{a}^{\beta} = \frac{\beta^{\nu+1}}{\nu+1} - \frac{a^{\nu+1}}{\nu+1}$
$\frac{1}{2\sqrt{x}}$	\sqrt{x}	$\int_{a}^{\beta} \frac{1}{2\sqrt{x}} dx = \left[\sqrt{x}\right]_{a}^{\beta} = \sqrt{\beta} - \sqrt{a}$
$\sqrt[\nu]{x^{\mu}}$	$\frac{x^{\frac{\mu}{\nu}+1}}{\frac{\mu}{\nu}+1}$	$\int_{a}^{\beta} \sqrt[\nu]{x^{\nu}} dx = \left[\frac{x^{\frac{\mu}{\nu} + 1}}{\frac{\mu}{\nu} + 1} \right]_{a}^{\beta} = \frac{\beta^{\frac{\mu}{\nu} + 1}}{\frac{\mu}{\nu} + 1} - \frac{a^{\frac{\mu}{\nu} + 1}}{\frac{\mu}{\nu} + 1}$
$\frac{1}{x^2}$	$-\frac{1}{x}$	$\int_{a}^{\beta} \frac{1}{x^2} \mathrm{d}x = \left[-\frac{1}{x} \right]_{a}^{\beta} = -\frac{1}{\beta} + \frac{1}{a}$
ημχ	– συν <i>x</i>	$\int_{a}^{\beta} \eta \mu x dx = [-\sigma v x]_{a}^{\beta} = -\sigma v \beta + \sigma v a$
συνχ	ημχ	$\int_{a}^{\beta} \operatorname{συν} x dx = [\eta \mu x]_{a}^{\beta} = \eta \mu \beta - \eta \mu a$
$\frac{1}{\sigma v^2 x}$	εφχ	$\int_{a}^{\beta} \frac{1}{\text{duv}^{2} x} dx = [\epsilon \varphi x]_{a}^{\beta} = \epsilon \varphi \beta - \epsilon \varphi a$
$\frac{1}{\eta \mu^2 x}$	σφχ	$\int_{a}^{\beta} \frac{1}{\eta \mu^{2} x} dx = [-\sigma \varphi x]_{a}^{\beta} = -\sigma \varphi \beta + \sigma \varphi a$
e^x	e^x	$\int_{a}^{\beta} e^{x} dx = \left[e^{x}\right]_{a}^{\beta} = e^{\beta} - e^{a}$
a^x	$\frac{a^x}{\ln a}$	$\int_{a}^{\beta} \mu^{x} dx = \left[\frac{\mu^{x}}{\ln a} \right]_{a}^{\beta} = \frac{\mu^{\beta}}{\ln \mu} - \frac{\mu^{a}}{\ln \mu}$
$\frac{1}{x}$	$\ln x $	$\int_{a}^{\beta} \frac{1}{x} dx = \left[\ln x \right]_{a}^{\beta} = \ln \beta - \ln a $