南京大学数学系 2016--2017 学年第二学期期末试题答案

考试科目: 复变函数 年级: 2015 级 适用专业: 应用数学时间: 120 分钟 考试方式: 闭卷 试卷类别: A卷 试题满分: 100 分

注意: 答案全部写在答题纸上, 写清题号, 不必抄题.

- 二。填空题(每题5分).
- (1) $\cos \ln 2 + i \sin \ln 2$

(2)
$$\frac{\sqrt{34}}{2}$$

- (3) 0
- (4) πi
- (5) 3
- (6) 2
- (7) 9

二•计算题(每题 10 分).

1.解: 考虑辅助函数 $f(x) = \frac{1}{(x-2)\sqrt[5]{z^2(1-z)^3}}$, 其中 $\sqrt[5]{z^2(1-z)^3} = F(z)$ 是多值函数,只

以 z=0 及 z=1 为支点, ∞ 不是支点,作割线 [0,1], F(z) 在其外部能分出 5 个单值解析分支,选取在 z=2 取负值的那一支,从而对应的单值解析函数 f(z)在 [0,1]外部只以 z=2 为一阶极点, $z=\infty$ 为可去奇点.以原点 O 为圆心,画 z=0 为圆心,并经可无限小.因 z=0 的半径大于 z=0 的为圆心,半径可无限小.因 z=0 和 z=0 和 z=0 的去心邻域内的洛朗展式从 z=0 项开始, 无 z=0 和 z=0 和 z=0 和 z=0 是 z=0 : z=0 z=0 是 z=0

$$\therefore \int_{C_2} f(z) = -2\pi i \left(-\frac{\sqrt[5]{8}}{2} \right) = \sqrt[5]{8}\pi i , \quad \text{$$ \mathbb{Z} in $} \mp \lim_{r \to 0} \left(\int_{C_2} f(z) dz + \int_{AB} f(z) dz + \int_{B'A'} f(z) dz \right) = 0 ,$$

且 f(z)沿 2 个小圆周的积分为 0.于是 $\lim_{r\to 0} \left(\int_{AB} f(z) dz + \int_{BA} f(z) dz \right) = -\int_{C_2} f(z) dz = -\sqrt[5]{8}\pi i$

当 小 圆 的 半 径
$$r \rightarrow 0$$
 时 ,

$$-\sqrt[5]{8}\pi i = \int_0^1 \frac{dx}{(x-2)\sqrt[5]{x^2(1-x)^3}} + \int_1^0 \frac{dx}{(x-2)\sqrt[5]{x^2(1-x)^3}} = \int_0^1 \frac{e^{-\frac{8\pi i}{5}} - e^{-\frac{2\pi i}{5}}}{(x-2)\sqrt[5]{x^2(1-x)^3}} dx$$

$$= \int_0^1 \frac{e^{\frac{2\pi i}{5}} - e^{-\frac{2\pi i}{5}}}{(x-2)^5 \sqrt{x^2 (1-x)^3}} dx \cdot \text{th} \, \text{stath} \, \frac{-\sqrt[5]{8}\pi}{2\sin\frac{2\pi}{5}}. \tag{10 } \text{ftath}$$

2. 令 $u(x,y) = mx^3 - 3xy^2 + 2x, v(x,y) = lx^2y + ny^3 + 2y$. 显然 u_x, u_y, v_x, v_y 连续,且

$$u_x = 3mx^2 - 3y^2 + 2, u_y = -6xy, v_x = 2lxy, v_y = lx^2 + 3ny^2 + 2.$$
 (5 \(\frac{1}{2}\))

由于
$$f$$
 是解析函数,则满足 $u_x = v_y$, $v_x = -u_y$,带入得 $l = 3, m = 1, n = -1$. (10 分)

3. 函数 $w_1 = f_1(z) = \frac{z-1}{z+1}$,将 L_1 上的点 -1,i,1 分别映为 ∞ ,i,0,由此可知 L_1 的像 $C_1 = f_1(L_1)$ 是由 $w_1 = 0$ 出发经 $w_1 = i$ 的射线,即上半虚轴. L_2 的像 $C_2 = f_1(L_2)$ 显然也是由 $w_1 = 0$ 出发的射线。由于在 z = 1 处 L_1 到 L_2 的转角为 $-\frac{\pi}{3}$,因而由 $w_1 = f_1(z) = \frac{z-1}{z+1}$ 的保角性可知由 $C_1 = f_1(L_1)$ 绕 $w_1 = 0$ 转动 $-\frac{\pi}{3}$ 即得 $C_2 = f_1(L_2)$. (5分)

转动时所扫过的角形区域即为 D 的像 G_1 ,此时 $f_1(\sqrt{3}i) = \frac{\sqrt{3}i-1}{\sqrt{3}i+1} = \frac{1+\sqrt{3}i}{2} \in G_1$. 再作

$$w_2 = f_2(w_1) = (e^{-\frac{\pi}{6}}w_1)^3 = -iw_1^3$$
 , 它 把 G_1 共 形 变 换 成 上 半 平 面
$$G_2: \operatorname{Im} w_2 > 0, \, \exists f_2(\frac{1+\sqrt{3}i}{2}) = i \in G_2. \tag{10 分}$$

三.证明题(每题15分).

1.不妨设
$$f(0) = a, (a \neq 0)$$
,作 $\varphi(z) = \frac{z - a}{1 - za}$, $\varphi(z)$ 映单位圆到单位圆,且 $\varphi(a) = 0$ (5 分) 则 $\varphi \circ f$ 映单位圆到单位圆目 $\varphi \circ f(0) = 0$.

由 Schwarz 引理知
$$|(\varphi \circ f)'(0)| \le 1$$
.即 $\frac{|f'(0)|}{1-|f(0)|^2} \le 1$. (15 分)

2.若
$$\lim_{r\to\infty} \frac{M(r,f)}{r^q} = a < \infty$$
 ,则存在 $r_i \to \infty$,使得 $\frac{M(r,f)}{r^q} = a + 1 < \infty$. (5 分)

由于
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 的系数的表达式 $a_n = \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z)}{z^{n+1}} dz$, 立即可得柯西不等式

$$\left|a_{n}\right| \leq \frac{M(r,f)}{r^{n}}, \text{ } \exists f \left|a_{n}\right| \leq (a+1)r_{i}^{q-n} \text{ } \Rightarrow r_{i} \rightarrow \infty \text{ } \exists n > q \text{ } \forall f \text{ } a_{n} = 0 \text{ }$$
 (15 分)