MV011 Statistika I

6. Transformace náhodné veličiny

Jan Koláček (kolacek@math.muni.cz)

Ústav matematiky a statistiky, Přírodovědecká fakulta, Masarykova univerzita, Brno

Motivační příklad

Příklad 1

Do výroby pracovních nástrojů vstupuje tyč délky X cm. Ta je dále strojově opracována tak, že se její délka zdvojnásobí a je přišroubována k dalšímu dílu délky $10\,\mathrm{cm}$. Jaká bude celková délka pracovního nástroje?

Zápis:
$$X \sim f_X$$
, $Y = 2X + 10 \Rightarrow Y \sim$?, víme $E(Y) = E(2X + 10) = 2E(X) + 10$ např. $X \sim N(50,1)$, $Y = 2X + 10 \Rightarrow Y \sim$?; $E(Y) = 2 \cdot 50 + 10 = 110$, $D(Y) = 2^2 \cdot D(X) = 4$

Další otázky:

Z ... délka druhého dílu, tj. $X \sim f_X$, $Z \sim f_Z$, Y = 2X + Z, $\Rightarrow Y \sim ?$ A ... koeficient prodloužení tyče, tj. $X \sim f_X$, $Z \sim f_Z$, $A \sim f_A$, Y = AX + Z Obecně:

$$X \sim f_X$$
, $Y = h(X) \Rightarrow f_Y = ?$

nebo

$$\mathbf{X} = (X_1, \dots, X_n)' \sim f_{\mathbf{X}}, \ Y = h(\mathbf{X}) \Rightarrow f_Y = ?$$

Jan Koláček (PřF MU) MV011 Statistika I 2 / 33

Obecná transformace

Věta 1

Nechť $X \sim f_X(x)$ a transformace y=h(x) je vzájemně jednoznačná (prostá a na), tj. když existuje derivace $\frac{d}{dy}h^{-1}(y)$ a je spojitá. Pak platí

$$f_{Y}(y) = f_{X}\left(h^{-1}(y)\right) \left| \frac{dh^{-1}(y)}{dy} \right|. \tag{1}$$

Příklad 2 (Lognormální rozdělení, Lognormal distribution)

Náhodná veličina $X \sim N(0,1)$. Vypočtěte hustotu náhodné veličiny $Y = e^X$.

$$X \sim N(0,1) \Rightarrow f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \ x \in \mathbb{R}$$

$$y = \underbrace{e^x}_{h(x)} \Rightarrow x = \underbrace{\ln(y)}_{h^{-1}(y)}, \ y > 0; \ \text{derivace:} \ \frac{dh^{-1}(y)}{dy} = \frac{d\ln(y)}{dy} = \frac{1}{y}$$

$$f_Y(y) = f_X(h^{-1}(y)) \left| \frac{dh^{-1}(y)}{dy} \right| = \frac{1}{\sqrt{2\pi}} e^{-\frac{\ln^2 y}{2}} \cdot \frac{1}{y}, \ y > 0$$

Jan Koláček (PřF MU)

MV011 Statistika I

Lineární transformace

Příklad 3 (Lineární transformace)

Nechť náhodná veličina X je absolutně spojitá s hustotou $f_X(x)$. Nalezněte hustotu transformované náhodné veličiny

$$Y = a + bX$$
, kde $a, b \in \mathbb{R}$, $b \neq 0$.

Dva způsoby řešení:

Dosazení do vzorce (1)

K transformaci y=a+bx existuje inverzní transformace $h^{-1}(y)=\frac{y-a}{b}$, která má derivaci $\frac{dh^{-1}(y)}{dy}=\frac{1}{b}$, takže

$$f_Y(y) = f_X\left(h^{-1}(y)\right) \left| \frac{dh^{-1}(y)}{dy} \right| = f_X\left(\frac{y-a}{b}\right) \frac{1}{|b|}$$

Jan Koláček (PřF MU) MV011 Statistika I 4 / 33

Lineární transformace

Výpočet přes distribuční funkci

$$\begin{split} F_Y(y) &= P(Y \leq y) \\ &= P(a+bX \leq y) = \left\{ \begin{array}{ll} P\left(X \leq \frac{y-a}{b}\right) = F_X\left(\frac{y-a}{b}\right) & \text{pro } b > 0 \\ P\left(X \geq \frac{y-a}{b}\right) = 1 - F_X\left(\frac{y-a}{b}\right) & \text{pro } b < 0 \end{array} \right. \end{split}$$

Hustotu pak dostaneme jako derivaci distribuční funkce

$$\begin{split} f_Y(y) &= \frac{dF_Y(y)}{dy} = \left\{ \begin{array}{rl} F_X'\left(\frac{y-a}{b}\right)\frac{1}{b} = f_X\left(\frac{y-a}{b}\right)\frac{1}{b} & \text{pro } b > 0 \\ -F_X'\left(\frac{y-a}{b}\right)\frac{1}{b} = -f_X\left(\frac{y-a}{b}\right)\frac{1}{b} & \text{pro } b < 0 \end{array} \right. \\ &= f_X\left(\frac{y-a}{b}\right)\frac{1}{|b|} \end{split}$$

Jan Koláček (PřF MU) MV011 Statistika I 5 / 33

Lineární transformace

Věta 2 (Lineární transformace normálního rozdělení)

Mějme náhodnou veličinu s normálním rozdělením $X \sim N(\mu, \sigma^2)$. Dále nechť $a,b \in \mathbb{R}, b \neq 0$ jsou reálné konstanty. Potom náhodná veličina, která je lineární transformací původní, má opět normální rozdělení, a to

$$Y = a + bX \sim N(a + b\mu, b^2\sigma^2).$$

Speciálně náhodná veličina

$$U = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

má standardizované normální rozdělení.

Jan Koláček (PřF MU) MV011 Statistika I 6 / 33

Příklad 4 (Standardizace normálního rozdělení)

Při prodeji vánočních kaprů má hmotnost kapra v jedné z kádí přibližně normální rozdělení s parametry $\mu=2,3$ a $\sigma^2=0,3^2$.

- a) Jaký podíl kaprů přesáhne svou hmotností 2,6 kg?
- b) Jaký podíl kaprů má hmotnost mezi 2,1 kg a 2,6 kg?
- c) Jak volit hmotnostní hranici, aby podíl kaprů přesahujících tuto hranici byl 10 %?

$$X \dots \mathsf{hmotnost} \; \mathsf{kapra} \Rightarrow X \sim N(2,3;0,3^2)$$

a) Jaký podíl kaprů přesáhne svou hmotností 2,6 kg?

$$P(X > 2, 6) = 1 - P(X \le 2, 6) = 1 - P\left(\frac{X - \mu}{\sigma} \le \frac{2, 6 - 2, 3}{0, 3}\right)$$
$$= 1 - P(U \le 1) = 1 - \Phi(1) = 1 - 0, 84 = 0, 16$$

Jan Koláček (PřF MU) MV011 Statistika I 7 / 33

b) Jaký podíl kaprů má hmotnost mezi 2,1 kg a 2,6 kg?

$$P(2,1 < X \le 2,6) = P\left(\frac{2,1-2,3}{0,3} < \frac{X-\mu}{\sigma} \le \frac{2,6-2,3}{0,3}\right)$$
$$= P\left(-\frac{2}{3} < U \le 1\right) = \Phi(1) - \Phi(-2/3)$$
$$= \Phi(1) - (1 - \Phi(2/3)) = 0,84 + 0,74 - 1 = 0,58$$

c) Jak volit hmotnostní hranici, aby podíl kaprů přesahujících tuto hranici byl 10 %?

$$0,1 = P(X > c) = 1 - P\left(\frac{X - \mu}{\sigma} \le \frac{c - 2,3}{0,3}\right) = 1 - \Phi\left(\frac{c - 2,3}{0,3}\right)$$

$$\Phi\left(\frac{c - 2,3}{0,3}\right) = 0,9$$

$$\frac{c - 2,3}{0,3} = u_{0,9} = 1,28 \Rightarrow c = 0,3 \cdot 1,28 + 2,3 = 2,684$$

Jan Koláček (PřF MU) MV011 Statistika I 8 / 33

Střední hodnota transformované n. v.

Věta 3

Nechť h(x) je borelovská funkce. Potom střední hodnota transformované náhodné veličiny Y=h(X) existuje právě když existuje a je konečný integrál

$$\int\limits_{-\infty}^{\infty}h(x)dF(x)<\infty.$$
 V tomto případě platí $EY=Eh(X)=\int\limits_{-\infty}^{\infty}h(x)dF(x)$.

▶ Nechť $X \sim (M,p)$ je diskrétního typu, pak platí $Y \in \mathcal{L}_1(\Omega,\mathcal{A},P) \Leftrightarrow \sum\limits_{x \in M} h(x)p(x)$ absolutně konverguje. V tomto případě

$$EY = Eh(X) = \sum_{x \in M} h(x)p(x)$$
.

Nechť $X \sim f(x)$ je absolutně spojitého typu. Potom EY existuje právě když je funkce h(x)f(x) integrovatelná vzhledem k Lebesgueově míře a přitom platí

$$EY = Eh(X) = \int_{-\infty}^{\infty} h(x)f(x)dx$$
, $tj. EY = Eh(X) \in \mathcal{L}_1(\Omega, \mathcal{A}, P) \Leftrightarrow h(x)f(x) je$

integrovatelná vzhledem k Lebesgueově míře.

Př.
$$Y = X^2 \Rightarrow EY = EX^2 = \int x^2 f(x) dx$$
 nebo $EY = EX^2 = \sum x^2 p(x)$

Jan Koláček (PřF MU) MV011 Statistika I

Příklad 5

Náhodná veličina X má binomické rozdělení $X \sim Bi(n,\theta)$. Vypočtěte střední hodnotu náhodné veličiny $Y = e^{2X}$.

$$\begin{split} EY &= E(e^{2X}) = \sum_{x=0}^n e^{2x} \binom{n}{x} \theta^x (1-\theta)^{n-x} \\ &= \sum_{x=0}^n \binom{n}{x} \left(\theta e^2\right)^x (1-\theta)^{n-x} \\ &\stackrel{\text{binom. věta}}{=} \left(\theta e^2 + 1 - \theta\right)^n \end{split}$$

Jan Koláček (PřF MU) MV011 Statistika I 10 / 33

Momentová vytvořující funkce

Definice 4

Nechť X je náhodná veličina definovaná na (Ω, \mathcal{A}, P) . Pak funkce $m: \mathbb{R} \to \mathbb{R}$ daná vztahem $m(t) = Ee^{tX}$, $t \in \mathbb{R}$, se nazývá momentovou vytvořující funkcí náhodné veličiny X (moment-generating function).

Definice 5

Nechť X je náhodná veličina definovaná na (Ω, \mathcal{A}, P) . Pak funkce $\psi: \mathbb{R} \to \mathbb{C}$ daná vztahem $\psi(t) = Ee^{itX}$, $t \in \mathbb{R}$, se nazývá **charakteristickou funkcí náhodné veličiny** X (**characteristic function**). Tj. $\psi(t) = m(it)$.

Věta 6

Za předpokladu, že existují příslušné momenty náhodné veličiny X, tak existují i příslušné derivace momentové vytvořující funkce a platí

$$m^{(k)}(0) = EX^k.$$

Jan Koláček (PřF MU) MV011 Statistika I 11 ,

Příklad 6

Náhodná veličina X má binomické rozdělení $X \sim Bi(n,\theta)$. Vypočtěte střední hodnotu náhodné veličiny X pomocí momentové vytvořující funkce.

Z Příkladu 5 máme

$$m(t) = \left(\theta e^t + 1 - \theta\right)^n.$$

Podle předchozí věty je EX = m'(0).

Derivujeme

$$m'(t) = n \left(\theta e^t + 1 - \theta\right)^{n-1} \theta e^t.$$

Takže

$$EX = m'(0) = n \left(\theta e^{0} + 1 - \theta\right)^{n-1} \theta e^{0} = n\theta.$$

Jan Koláček (PřF MU) MV011 Statistika I 12 / 33

Příklad 7

Náhodná veličina X má geometrické rozdělení $X \sim Ge(\theta)$. Vypočtěte střední hodnotu náhodné veličiny X.

Pravděpodobnostní funkce geometrického rozdělení je tvaru

$$p(x) = \begin{cases} (1-\theta)^x \theta & x = 0, 1, 2, \dots, \\ 0 & jinak \end{cases} \quad \theta \in (0, 1)$$

Z definice

$$EX = \sum_{x=0}^{\infty} xp(x) = \sum_{x=0}^{\infty} x(1-\theta)^x \theta = \dots? \text{ (viz tabule)}.$$

Momentová vytvořující funkce

$$m(t) = \sum_{x=0}^{\infty} e^{tx} (1-\theta)^x \theta = \theta \sum_{x=0}^{\infty} [e^t (1-\theta)]^x = \frac{\theta}{1 - e^t (1-\theta)}.$$

Jan Koláček (PřF MU) MV011 Statistika I 13 / 33

Derivujeme

$$m'(t) = \frac{\theta(1-\theta)e^t}{(1-e^t(1-\theta))^2}.$$

Takže

$$EX = m'(0) = \frac{1 - \theta}{\theta}.$$

Transformace náhodného vektoru

Obecně:
$$Y = h(X_1, ..., X_n) \Rightarrow Y \sim$$
?
Konkrétně: $Y = X_1 + X_2 \Rightarrow Y \sim$?

Věta 7

Jestliže náhodné veličiny spojitého typu $X_1 \sim f_{X_1}$ a $X_2 \sim f_{X_2}$ jsou **nezávislé**, pak náhodná veličina $Y = X_1 + X_2$ má hustotu

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X_1}(y - x_2) f_{X_2}(x_2) dx_2 = \int_{-\infty}^{\infty} f_{X_1}(x_1) f_{X_2}(y - x_1) dx_1$$

Hustotu $f_Y(y)$ potom nazýváme **konvolucí** (convolution) hustot f_{X_1} a f_{X_2} a značíme $f_Y(y) = f_{X_1} * f_{X_2}$.

Jan Koláček (PřF MU) MV011 Statistika I 15 / 33

Definice 8 (χ^2 rozdělení, Chi-square distribution)

Řekneme, že náhodná veličina X má χ^2 **rozdělení** s $\nu>0$ stupni volnosti, pokud její hustota má tvar

$$f_X(x) = \begin{cases} \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} x^{\frac{\nu}{2} - 1} e^{-\frac{1}{2}x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

a budeme psát

$$X \sim \chi^2(\nu)$$
.

Jan Koláček (PřF MU) MV011 Statistika I 16 / 33

Věta 9 (Součet n nezávislých χ^2 veličin)

Nechť U_1, \ldots, U_n jsou **nezávislé** náhodné veličiny se standardizovaným normálním rozdělením, t.j.

$$U_i \sim N(0,1)$$
 pro $i = 1, \ldots, n$.

Pak náhodná veličina

$$K = \sum_{i=1}^{n} U_i^2 \sim \chi^2(n)$$

má χ^2 rozdělení o n stupních volnosti.

Jan Koláček (PřF MU) MV011 Statistika I 17 / 33

Definice 10 (Studentovo rozdělení, Student's distribution)

Řekneme, že náhodná veličina X má **Studentovo** t **rozdělení o** $\nu>0$ **stupních volnosti**, pokud její hustota je tvaru

$$f_X(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{\nu}{2}\right)} \nu^{-\frac{1}{2}} \left(\frac{x^2}{\nu} + 1\right)^{-\frac{\nu+1}{2}} \quad \text{ pro } x \in \mathbb{R}$$

Pak píšeme

$$X \sim t(\nu)$$
.

Jan Koláček (PřF MU) MV011 Statistika I 18 / 33

Student

- William Sealy Gosset (13.6.1876 16.10.1937)
 - vystudoval Winchester College a poté matematiku a chemii na New College v Oxfordu
- hlavní sládek v pivovaru Arthur Guinness & Son v Dublinu
- zkoumal možnosti, jak statisticky testovat kvalitu surovin – zejména ječmene a chmele
- ▶ 1906 1907 pracoval v laboratoři K. Pearsona
- vypracoval vlastní t-test pro malou velikost statistického souboru
 - nesměl publikovat pod vlastním jménem, používal pseudonym **Student**

"Posílám Vám kopii Studentových tabulek, protože jste zřejmě jediný člověk, který je kdy použije."

W. Gosset v dopise R. A. Fisherovi

19 / 33

Věta 11 (Podíl standardizovaného normálního a χ^2)

Nechť náhodné veličiny $U \sim N(0,1)$ a $K \sim \chi^2(\nu)$ jsou **nezávislé**. Pak náhodná veličina

$$T = \frac{U}{\sqrt{K/\nu}} \sim t(\nu)$$

má Studentovo t-rozdělení o ν stupních volnosti.

 Jan Koláček (PřF MU)
 MV011 Statistika I
 20 / 33

Definice 12 (Fisherovo–Snedecorovo F rozdělení)

Řekneme, že náhodná veličina X má **Fisherovo–Snedecorovo** F **rozdělení o** $\nu_1>0$ a $\nu_2>0$ **stupních volnosti**, pokud její hustota je tvaru

$$f_X(x) = \begin{cases} \frac{\Gamma\left(\frac{\nu_1 + \nu_2}{2}\right)}{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} y^{\frac{\nu_1}{2} - 1} \left(\frac{\nu_1}{\nu_2} y + 1\right)^{-\frac{\nu_1 + \nu_2}{2}} & y \ge 0, \\ 0 & y < 0. \end{cases}$$

Pak píšeme

$$X \sim F(\nu_1, \nu_2)$$
.

Jan Koláček (PřF MU) MV011 Statistika I 21 / 33

Věta 13 (Podíl dvou nezávislých χ^2)

Nechť K₁ a K₂ jsou nezávislé náhodné veličiny a

$$K_i \sim \chi^2(\nu_i), \qquad i = 1, 2.$$

Pak náhodná veličina

$$F = \frac{K_1/\nu_1}{K_2/\nu_2} \sim F(\nu_1, \nu_2)$$

má Fisherovo–Snedecorovo F rozdělení o v_1 a v_2 stupních volnosti.

Motivační příklad

Příklad 8

Nechť náhodná veličina X_1 značí výsledek hodu kostkou. Popište rozdělení této veličiny.

Nechť X_2 značí výsledek hodu druhou kostkou. Popište rozdělení veličiny X_1+X_2 . Dále popište rozdělení veličiny $X_1+X_2+X_3$.

:

$$X_1 + X_2 + X_3$$
:

3	_	_	6	7	8	9	10	11	12	13	14	15	16	17	18
$\frac{1}{6^3}$	$\frac{3}{6^3}$	$\frac{6}{6^3}$	$\frac{10}{6^3}$	$\frac{15}{6^3}$	$\frac{21}{6^3}$	$\frac{25}{6^3}$	$\frac{27}{6^3}$	$\frac{27}{6^3}$	$\frac{25}{6^3}$	$\frac{21}{6^3}$	$\frac{15}{6^3}$	$\frac{10}{6^3}$	$\frac{6}{6^3}$	$\frac{3}{6^3}$	$\frac{1}{6^3}$

Jan Koláček (PřF MU)

Značení

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Věta 14 (Lindebergova-Lévyho CLV, Central Limit Theorem)

Nechť $\{X_n\}_{n=1}^{\infty}$ je posloupnost **nezávislých** náhodných veličin se stejným rozdělením se střední hodnotou μ a nenulovým rozptylem σ^2 . Potom náhodné veličiny

$$U_{\overline{X}_n} = \frac{(\overline{X}_n - \mu)\sqrt{n}}{\sigma}$$

mají asymptoticky standardizované normální rozdělení N(0,1), což budeme značit

$$U_{\overline{X}_n} \stackrel{A}{\sim} N(0,1).$$

Jan Koláček (PřF MU) MV011 Statistika I 25 / 33

Příklad 9

Zatížení letadla s 64 místy nemá překročit $6\,000~kg$. Jaká je pravděpodobnost, že při plném obsazení bude tato hodnota překročena, má-li hmotnost cestujícího střední hodnotu 90~kg a směrodatnou odchylku 10~kg?

$$X_i$$
 ... hmotnost *i*-tého cestujícího, $E(X_i) = 90$, $D(X_i) = 100$, $i = 1, ..., 64$

$$Y = X_1 + \dots + X_{64} = \sum_{i=1}^{64} X_i, \ P(Y > 6000) = ?$$

$$\sum_{i=1}^{n} X_i \approx N(nE(X_i), nD(X_i)) \Rightarrow \frac{\sum_{i=1}^{n} X_i - nE(X_i)}{\sqrt{nD(X_i)}} \approx N(0, 1)$$

Proto

$$P(Y > 6000) = 1 - P\left(\sum_{i=1}^{64} X_i \le 6000\right) = 1 - P\left(\frac{Y - 64 \cdot 90}{\sqrt{64 \cdot 100}} \le \frac{6000 - 64 \cdot 90}{\sqrt{64 \cdot 100}}\right)$$
$$= 1 - \Phi(3) = 1 - 0,9985 = 0,0015$$

Jan Koláček (PřF MU) MV011 Statistika I 26 / 33

Příklad 10

Předpokládejme, že žák má při písemce stejnou šanci dostat kteroukoli ze známek 1–5. Jaká je pravděpodobnost, že průměr známek ve třídě se 40 žáky bude lepší než 2,5?

$$X_i$$
 ...známka i -tého žáka, $E(X_i)=\frac{1}{5}(1+2+3+4+5)=3$, $D(X_i)=\frac{1}{5}(2^2+1+0+1+2^2)=2$, $i=1,\ldots,40$ $Y=\frac{1}{40}\sum_{i=1}^{40}X_i$, $P(Y<2,5)=?$

CLV
$$\Rightarrow \sum_{i=1}^{n} X_i \approx N(nE(X_i), nD(X_i)) \Rightarrow \frac{\frac{1}{n} \sum\limits_{i=1}^{n} X_i - E(X_i)}{\sqrt{\frac{D(X_i)}{n}}} \approx N(0, 1)$$

Proto

$$P(Y < 2,5) = P\left(\frac{Y-3}{\sqrt{\frac{2}{40}}} \le \frac{2,5-3}{\sqrt{\frac{2}{40}}}\right) = \Phi(-\sqrt{5})$$
$$= 1 - \Phi(\sqrt{5}) = 1 - 0,98713 = 0,013$$

Jan Koláček (PřF MU) MV011 Statistika I 27 / 33

Věta 15 (Integrální věta Moivre-Laplaceova)

Nechť náhodná veličina Y_n udává **počet úspěchů** v posloupnosti délky **n** nezávislých alternativních pokusů s pravděpodobností úspěchu θ . Pak náhodné veličiny

$$\frac{Y_n - n\theta}{\sqrt{n\theta(1-\theta)}} \stackrel{A}{\sim} N(0,1).$$

Příklad 11 (Anketa)

Při anketě rozdáme 160 dotazníků. Pravděpodobnost, že se nám vrátí dotazník vyplněný, je 0,7. Jaká je pravděpodobnost, že se nám vrátí alespoň 100 vyplněných dotazníků?

$$X_i \dots i$$
-tý dotazník se vrátí vyplněný, $X_i \in \{0,1\}$, $X_i \sim A(0,7)$, $i=1,\dots,160$ $Y \dots$ počet vyplněných dotazníků ze 160 rozdaných, $Y \sim Bi(160;0,7)$, $Y = \sum\limits_{i=1}^{160} X_i$ $E(Y) = 160 \cdot 0,7 = 112$, $D(Y) = 160 \cdot 0,7 \cdot 0,3 = 33,6$

$$P(Y \ge 100) = \binom{160}{100}0, 7^{100}0, 3^{60} + \binom{160}{101}0, 7^{101}0, 3^{59} + \dots + \binom{160}{160}0, 7^{160}0, 3^0 = ?$$

Oprava na spojitost a užití CLV:

$$P(Y \ge 100) = P(Y > 99) \doteq P(Y \ge 99, 5) = 1 - P\left(\frac{Y - 112}{\sqrt{33, 6}} \le \frac{99, 5 - 112}{\sqrt{33, 6}}\right)$$
$$= 1 - \Phi\left(\frac{-12, 5}{\sqrt{33, 6}}\right) = \Phi(2, 0702) = 0, 98$$

Jan Koláček (PřF MU) MV011 Statistika I 29 / 33

Příklad 12 (Anketa)

Kolik lístků musíme v předchozím příkladě rozdat, aby pravděpodobnost, že se jich vrátí minimálně 100 vyplněných byla alespoň 0,99?

$$Y_n$$
 ... počet vyplněných dotazníků z n rozdaných, $Y_n \sim Bi(n;0,7)$ $E(Y_n)=n\cdot 0,7,\ D(Y_n)=n\cdot 0,7\cdot 0,3$

$$P(Y_n \ge 100) = P(Y_n > 99) \doteq P(Y_n \ge 99, 5)$$

Řešíme perovnici

$$P(Y_n \ge 99, 5) \ge 0,99$$

$$1 - P\left(\frac{Y_n - n \cdot 0, 7}{\sqrt{n \cdot 0, 7 \cdot 0, 3}} \le \frac{99, 5 - n \cdot 0, 7}{\sqrt{n \cdot 0, 7 \cdot 0, 3}}\right) \ge 0,99$$

$$\Phi\left(\frac{99, 5 - n \cdot 0, 7}{\sqrt{n \cdot 0, 7 \cdot 0, 3}}\right) \le 0,01$$

$$\Rightarrow \frac{99,5-n\cdot0,7}{\sqrt{n\cdot0,7\cdot0,3}} \le u_{0,01} = -u_{0,99} = -2,326$$

$$\Leftrightarrow 0,7 \cdot n - 2,326 \cdot \sqrt{0,21}\sqrt{n} - 99,5 \ge 0 \Rightarrow \sqrt{n_{1,2}} = \frac{1.07 \pm 16,72}{1.4} \Rightarrow n \ge 161,5$$

Příklad 13 (Oslava)

Kupujeme chlebíčky na oslavu, které se zúčastní 100 lidí. Označíme X_i počet snědených chlebíčků i-tého účastníka oslavy a ze zkušenosti víme, že $E(X_i)=3$ a $D(X_i)=3$. Kolik musíme koupit chlebíčků, aby s pravděpodobností 0,95 nedošly?

 $X_i \dots$ počet snědených chlebíčků i-tého účastníka oslavy, $E(X_i)=3,\,D(X_i)=3,\,i=1,\dots,100$

$$Y = X_1 + \cdots + X_{100} = \sum\limits_{i=1}^{100} X_i \ldots$$
 počet všech snědených chlebíčků

Hledáme c tak, aby $P(Y \le c) = 0.95$.

$$0.95 = P(Y \le c) = P\left(\frac{Y - 100 \cdot 3}{\sqrt{100 \cdot 3}} \le \frac{c - 100 \cdot 3}{\sqrt{100 \cdot 3}}\right) = \Phi\left(\frac{c - 300}{\sqrt{300}}\right)$$

$$\Phi\left(\frac{c - 300}{\sqrt{300}}\right) = 0.95$$

$$\frac{c - 300}{\sqrt{300}} = u_{0.95} = 1.645 \Rightarrow c = 300 + 1.645 \cdot \sqrt{300} = 328.49.$$

Jan Koláček (PřF MU) MV011 Statistika I 31 / 33

Příklad 14 (Pojišťovna)

Pojišťovna má 1000 klientů stejné věkové skupiny. Pravděpodobnost úmrtí klienta této skupiny v daném roce je 0,01. Každý klient zaplatí pojistné 1200 Kč ročně. Jaká je pravděpodobnost, že pojišťovna nebude mít daném roce zisk, když v případě úmrtí klienta vyplatí jeho rodině 80000 Kč?

$$\begin{array}{l} X_i \, \dots i\text{-t\'y klient zem\'re}, \, X_i \in \{0,1\}, \, \, X_i \sim A(0,01), \, \, i=1,\dots,1\,000 \\ Y \, \dots \text{počet \'umrt\'i v dan\'em roce}, \, Y \sim Bi(1\,000;0,01), \, \, Y = \sum\limits_{i=1}^{1000} X_i \\ E(Y) = 1000 \cdot 0,01 = 10, \, D(Y) = 1000 \cdot 0,01 \cdot 0,99 = 9,9 \end{array}$$

Oprava na spojitost a užití CLV:

$$\begin{split} P(80000 \cdot Y &\geq 1000 \cdot 1200) = P(Y \geq 15) \doteq P(Y > 14,5) \\ &= 1 - P\left(U \leq \frac{14,5 - 10}{\sqrt{9,9}}\right) \\ &= 1 - \Phi\left(\frac{4,5}{\sqrt{9,9}}\right) = \Phi(1,43) = 0,0763. \end{split}$$

Příklad 15 (Síťový disk)

Počítačový správce poskytuje 100 uživatelům neomezené místo na síťovém disku. Označme X_i počet MB obsazených i-tým uživatelem. Z předchozích zkušeností víme, že $EX_i=1\,200$ a $DX_i=160\,000$. Jakou kapacitu musí mít síťový disk, aby byla překročena s pravděpodobností 0,01?

 $X_i \dots$ počet MB obsazených i-tým uživatelem, $EX_i = 1200$, $DX_i = 160000$.

$$Y = X_1 + \cdots + X_{100} = \sum\limits_{i=1}^{100} X_i \ldots$$
obsazené místo na disku

Hledáme \overline{c} tak, aby $P(Y \le c) = 0.99$.

$$0,99 = P(Y \le c) = P\left(\frac{Y - 100 \cdot 1200}{\sqrt{100 \cdot 160000}} \le \frac{c - 100 \cdot 1200}{\sqrt{100 \cdot 160000}}\right) = \Phi\left(\frac{c - 120000}{4000}\right)$$

$$\Phi\left(\frac{c - 120000}{4000}\right) = 0,99$$

 $\frac{c - 120\,000}{4\,000} = u_{0,99} = 2,326 \Rightarrow \mathbf{c} = 120\,000 + 2,326 \cdot 4\,000 = \mathbf{129\,304\,MB}.$

Jan Koláček (PřF MU) MV011 Statistika I 33 / 33