Let A be arbitrary commutative unital ring and \mathfrak{m} be its ideal. Denote by B the ring $\mathfrak{m}[t^{-1}] + A[t]$ with the obvious \mathbb{Z} -grading. Clearly, the k-th homogeneous component B_k of B equals $A \cdot t^k$ for $k \geq 0$ or $B_k = \mathfrak{m} \cdot t^k$ for k < 0.

For $n \geq 1$ consider the following collections of generators:

$$\mathcal{X}_n = \{x_\alpha(\xi) \mid \xi \in B_k, \text{ for } k \le n\}.$$

It is obvious that $\mathcal{X}_n \subseteq \mathcal{X}_{n+1}$, denote by \mathcal{X}_{∞} the union of all \mathcal{X}_n 's.

Let Φ be a simply-laced irreducible root system of rank ≥ 3 . Denote by G_m the group presented by generators \mathcal{X}_m and the set of relations \mathcal{R}_m consisting of the following three families of relations:

$$(a_m) x_{\alpha}(\xi)x_{\alpha}(\eta) = x_{\alpha}(\xi + \eta), \xi, \eta \in B_k, \ k \le m;$$

$$(b_m)$$
 $[x_{\alpha}(\xi), x_{\alpha'}(\eta))] = 1,$ in the case $\alpha + \alpha' \notin \Phi \cup \{0\},$

$$\xi \in B_k, \ \eta \in B_l, \ l, k \le m;$$

$$(c_m) \qquad [x_{\alpha}(\xi), x_{\alpha'}(\eta)] = x_{\alpha+\alpha'}(N_{\alpha,\alpha'}\xi\eta), \qquad \text{in the case } \alpha + \alpha' \in \Phi,$$

$$\xi \in B_k, \ \eta \in B_l, \ l, k, l+k \le m.$$

The aim of this subsection is to the following analogue of [3, Lemma 3.3].

Lemma 1. For all simply-laced root systems of rank ≥ 3 the natural inclusion of generators induces an isomorphism $G_1 \to \operatorname{St}(\Phi, B)$.

Unfortunately, the lemma cannot be proved by a slight modification of the original short argument of Tulenbayev. Instead, we have to employ a variant of much longer argument of U. Rehmann and C. Soulé, see [1, 2].

To prove Lemma 1 it suffices to show that the natural map $\theta_m \colon G_m \to G_{m+1}$ is an isomorphism for $m \geq 1$. Indeed, this would give the required isomorphism $G_1 \cong \operatorname{St}(\Phi, B)$ since $\langle \mathcal{X}_{\infty} \mid \mathcal{R}_{\infty} \rangle$ is evidently isomorphic to $\operatorname{St}(\Phi, B)$.

Remark 2. There are two reasons why we can't simply refer to [1] or [2] for the proof of Lemma 1. The first is that Rehmann and Soulé prove that $G_m \to G_{m+1}$ is an isomorphism for $m \geq 2$, while we want to establish this fact starting from m = 1. The second is that they prove their results only in the special case B = A[t], moreover, they make assumptions about the ground ring A (it is assumed that A = k is a field in [1] and that $A = \mathbb{Z}$ in [2]).

We will use the following commutator identities (cf. [1, H1]):

$$[ab, c] = {}^{a}[b, c] \cdot [a, c];$$

(2)
$$[a, c] = 1 \text{ implies } [a, [b, c]] = [[a, b], {}^b c].$$

The following lemma is reminiscent of [1, Proposition 1.1] and [2, Proposition 3.2.2].

Lemma 3. Suppose $m \ge 1$. Let $\alpha, \beta, \alpha', \beta'$ be such that $\alpha + \beta = \alpha' + \beta'$. Assume, moreover, that $\xi \in B_k$, $\xi' \in B_{k'}$, $\eta \in B_l$, $\eta' \in B_{l'}$ are such that $N_{\alpha,\beta}\xi\eta = N_{\alpha',\beta'}\xi'\eta'$ for some $k, k', l, l' \le m$ satisfying k + l = k' + l' = m + 1. Then in the group G_m the following relations hold:

$$[x_{\alpha}(\xi), x_{\beta}(\eta)] = [x_{\alpha'}(\xi'), x_{\beta'}(\eta')]$$

(4)
$$[[x_{\gamma}(\zeta), [x_{\alpha}(\xi), x_{\beta}(\eta)]] = 1$$
 in the case $\gamma \in \{\alpha, \beta, \alpha + \beta\},$
 $\zeta \in B_{k''}, k'' < m.$

Proof. Notice that $k+l=m+1,\ k,l\leq m$ imply k,l>0, hence $B_i=t^i\cdot A$ for i=k,k',l,'l'. Therefore, we can repeat the argument of [1, Proposition 1.1] verbatim.

To prove that θ_m is an isomorphism we construct the missing generators of G_{m+1} in G_m and then show that they satisfy relations \mathcal{R}_{m+1} .

For every $\xi \in B_{m+1}$ and $\alpha \in \Phi$ there exist $\xi' \in B_m$ and $\alpha' \in \Phi$ such that $\xi = t\xi'$ and $\alpha - \alpha' \in \Phi$. Thus, we can make the following definition:

(5)
$$x_{\alpha}(\xi) := [x_{\alpha-\alpha'}(N_{\alpha-\alpha',\alpha'}\xi'), x_{\alpha'}(t)],$$

and from (3) its correctness (i.e. the independence of the choice of α') follows.

We now turn to the verification of relations (a_{m+1}) , (b_{m+1}) , (c_{m+1}) . Notice first that (1) and (4) immediately imply (a_{m+1}) and hence (b_{m+1}) in the special case $\alpha = \alpha'$.

To verify relations (c_{m+1}) it suffices to show that

(6)
$$[x_{\alpha}(\xi), x_{\alpha'}(at^{m+1})] = [x_{\alpha}(t\xi), x_{\alpha'}(at^{m})], \ a \in A, \ \xi \in B_{k}, \ k \le 0.$$

We can find root subsystem $\Psi \subseteq \Phi$ of type A_3 containing the roots α, α' . Choose basis $\{\alpha, \beta, \gamma\}$ of Ψ so that $\alpha' = \beta$ and the Dynkin diagram of Ψ looks as follows:

$$\circ_{\alpha} - - \circ_{\beta} - - \circ_{\gamma}.$$

Let us verify (6):

$$\begin{split} [x_{\alpha}(\xi), x_{\beta}(at^{m+1})] &= [x_{\alpha}(\xi), [x_{\beta+\gamma}(t), x_{-\gamma}(a't^m)]] \text{ by (5) for a suitable } a' \in A \\ &= [x_{\alpha+\beta+\gamma}(\epsilon t \xi), x_{\beta+\gamma}(t) x_{-\gamma}(a't^m)] \text{ by (2), for } \epsilon = N_{\alpha,\beta+\gamma} \\ &= x_{\beta+\gamma}(t) [x_{\alpha+\beta+\gamma}(\epsilon t \xi), x_{-\gamma}(a't^m)] \text{ by (b_1)} \\ &= x_{\beta+\gamma}(t) [x_{\alpha+\beta+\gamma}(\epsilon t^2 \xi), x_{-\gamma}(a't^{m-1})] \text{ by (3) if } k = 0 \text{ or } (c_m) \text{ if } k < 0 \\ &= [[x_{\alpha}(t \xi), x_{\beta+\gamma}(t)], x_{\beta+\gamma}(t) x_{-\gamma}(a't^{m-1})] \text{ by (b_2), (c_2) or by (4),(5) if } m = 1 \\ &= [x_{\alpha}(t \xi), x_{\beta}(at^m)] \text{ by (2).} \end{split}$$

Now, let us show that relations (b_{m+1}) hold. Without loss of generality we may also assume $k \leq l = m+1$, thus $\eta = bt^{m+1}$ for some $b \in A$.

- (1) First consider the case $k \leq 0$. There are two further subcases.
 - (a) Case $\alpha \not\perp \alpha'$. As before, without loss of generality we may assume that α, α' are contained in a root system Ψ of type A_3 , whose simple roots are labeled as in (7) and, moreover, $\alpha' = \alpha + \beta$. Using (2) and (b_m) we get (recall that $\xi \in B_k$):

$$\begin{split} [x_{\alpha}(\xi),x_{\alpha+\beta}(bt^{m+1})] &= [x_{\alpha}(\xi),[x_{\alpha+\beta+\gamma}(bt^m),x_{-\gamma}(t)]] = \\ &= [[x_{\alpha}(\xi),x_{\alpha+\beta+\gamma}(bt^m)],^{x_{\alpha+\beta+\gamma}(bt^m)}x_{-\gamma}(t)] = 1. \end{split}$$

(b) Case $\alpha \perp \alpha'$. As before, we set $\alpha' = \gamma$ and use (2), (b_m) and (c_m) :

$$\begin{aligned} &[x_{\alpha}(\xi), x_{\gamma}(bt^{m+1})] = [x_{\alpha}(\xi), [x_{\beta+\gamma}(bt^{m}), x_{-\beta}(t)]] = \\ &= [[x_{\alpha}(\xi), x_{\beta+\gamma}(bt^{m})], x_{\beta+\gamma}(bt^{m})x_{-\beta}(t)] = x_{\beta+\gamma}(bt^{m})[x_{\alpha+\beta+\gamma}(bt^{m}\xi), x_{-\beta}(t)] = 1. \end{aligned}$$

(2) Now assume $1 \le k \le m+1$. At first we want to prove (b_{m+1}) only in the special case $\xi = t^k$. We proceed by induction on k starting with k = 1. Again, there are two cases.

REFERENCES

3

(a) Case $\alpha \not\perp \alpha'$ is handled similarly to the Case (1a) with the only difference that we have to refer to the inductive assumption rather than (b_m) in the case k = m + 1.

$$\begin{split} [x_{\alpha}(t^k), x_{\alpha+\beta}(bt^{m+1})] &= [x_{\alpha}(t^k), [x_{\alpha+\beta+\gamma}(bt^m), x_{-\gamma}(t)]] = \\ &= [[x_{\alpha}(t^k), x_{\alpha+\beta+\gamma}(bt^m)], {}^{x_{\alpha+\beta+\gamma}(bt^m)} x_{-\gamma}(t)] = 1. \end{split}$$

(b) Case $\alpha \perp \alpha'$. As before, we may assume $\alpha' = \gamma$.

$$\begin{split} x_{\gamma}(t^{k})x_{\alpha}(bt^{m+1}) &= {}^{x_{\gamma}(t^{k})}[x_{-\beta}(b't^{m+1}),x_{\alpha+\beta}(1)] \text{ by } (c_{m+1}) \\ &= [x_{-\beta}(b't^{m+1}),{}^{x_{\gamma}(t^{k})}x_{\alpha+\beta}(1)] \text{ by Case (2a) since } \gamma \not\perp -\beta \\ &= [[x_{-\beta-\gamma}(b''t^{m+1-k}),x_{\gamma}(t^{k})],{}^{x_{\gamma}(t^{k})}x_{\alpha+\beta}(1)] \text{ by } (c_{m+1}) \\ &= [x_{-\beta-\gamma}(b''t^{m+1-k}),[x_{\gamma}(t^{k}),x_{\alpha+\beta}(1)]] \text{ by (2) and } (b_{m}) \text{ since } m+1-k \leq m \\ &= x_{\alpha}(b'''t^{m+1}) \text{ by } (c_{m+1}). \end{split}$$

Usual identities for structure constants imply (cf. [1, p. 12]):

$$b''' = N_{-\beta-\gamma,\alpha+\beta+\gamma} \cdot N_{\gamma,\alpha+\beta} \cdot N_{-\beta-\gamma,\gamma} \cdot N_{-\beta,\alpha+\beta} \cdot b = b,$$

Thus we have demonstrated (b_{m+1}) in the special case a = 1.

- (3) Now let us prove (b_{m+1}) for arbitrary $\xi = at^k$, $a \in A$ and $1 \le k \le m+1$. Again, there are two subcases.
 - (a) Case $\alpha \not\perp \alpha'$.

$$[x_{\alpha}(at^{k}), x_{\alpha+\beta}(bt^{m+1})] = [x_{\alpha}(at^{k}), [x_{\alpha+\beta+\gamma}(t^{m+1}), x_{-\gamma}(b)]] \text{ by } (c_{m+1})$$

$$= [[x_{\alpha}(at^{k}), x_{\alpha+\beta+\gamma}(t^{m+1})], x_{\alpha+\beta+\gamma}(t^{m+1}), x_{-\gamma}(b)] \text{ by } (b_{k}) \text{ or Case } (1) \text{ if } k = m+1$$

$$= 1 \text{ by Case } (2).$$

(b) Case $\alpha \perp \alpha'$. The required identity follows from the following chain of equalities:

$$\begin{aligned} x_{\alpha+\beta+\gamma}(abt^{m+1}) &= {}^{x_{-\beta}(t^k)}\!x_{\alpha+\beta+\gamma}(abt^{m+1}) \text{ by Case } (2) \\ &= {}^{x_{-\beta}(t^k)}\![x_{\alpha+\beta}(bt^{m+1-k}), x_{\gamma}(at^k)] \text{ by } (c_{m+1}) \\ &= [x_{\alpha}(bt^{m+1})x_{\alpha+\beta}(bt^{m+1-k}), x_{\gamma}(at^k)] \text{ by } (b_k) \text{ or Case } (2) \text{ if } k = m+1 \\ &= {}^{x_{\alpha}(bt^{m+1})}\!x_{\alpha+\beta+\gamma}(abt^{m+1})[x_{\alpha}(bt^{m+1}), x_{\gamma}(at^k)] \text{ by } (1) \text{ and } (c_{m+1}) \\ &= x_{\alpha+\beta+\gamma}(abt^{m+1})[x_{\alpha}(bt^{m+1}), x_{\gamma}(at^k)] \text{ by Case } (3a). \end{aligned}$$

References

- [1] U. Rehmann. "Präsentationen von Chevalley-Gruppen über k[t]". Preprint Univ. Bielefeld (1975).
- [2] U. Rehmann and C. Soulé. "Finitely presented groups of matrices". In: Algebraic K-Theory. Vol. 551. Lect. Notes. Math. Springer, 1976, pp. 164–169.
- [3] M. Tulenbaev. "The Steinberg group of a polynomial ring". Math. USSR Sb. Vol. 45, (1983), pp. 131–144.