- **Определение 1.** Пусть $m \in \mathbb{N}$. Для каждого целого r множество целых чисел, сравнимых с r по модулю m, называется классом вычетов по модулю m и обозначается через $[r]_m$ (или просто [r], если понятно, о каком m идёт речь). Множество всех классов вычетов по модулю m обозначается \mathbb{Z}_m . Класс $[0]_m$ называется n
- **Задача 1. а)** Докажите, что $[r]_m = \{mq + r \mid q \in \mathbb{Z}\}$. **б)** Сколько элементов в множестве \mathbb{Z}_m ?
- **Задача 2.** Для любых классов вычетов [r] и [s] по модулю m определим их cymmy и npouseedenue, положив [r] + [s] = [r+s] и $[r] \cdot [s] = [r \cdot s]$. Докажите, что сложение и умножение в \mathbb{Z}_m определены корректно.
- **Замечание.** Можно представлять себе \mathbb{Z}_m как множество чисел $0, 1, 2, \ldots, m-1$, которые складываются и умножаются «по модулю m» (как остатки от деления на m).
- **Задача 3.** а) Составьте таблицы сложения и умножения в \mathbb{Z}_2 , \mathbb{Z}_3 и \mathbb{Z}_4 . б) Найдите сумму всех элементов \mathbb{Z}_m .
- **Задача 4.** Пусть p простое число. Докажите, что в \mathbb{Z}_p выполнено тождество $([a]+[b])^p=[a]^p+[b]^p$.
- **Задача 5.** Приведите пример, когда произведение двух ненулевых классов вычетов по модулю m является нулевым классом. Такие классы называют делителями нуля в \mathbb{Z}_m .
- **Задача 6.** Докажите, что натуральное число m простое если и только если в \mathbb{Z}_m нет делителей нуля.
- **Задача 7.** Докажите, что целое m > 1 простое если и только если для любого ненулевого класса $[a]_m$ найдётся такой класс $[b]_m$, что $[a]_m \cdot [b]_m = [1]_m$ (при этом [b] называется *обратным* (по умножению) к [a]).
- **Задача 8.** Пусть p простое число. **a)** Найдите все такие [a] из \mathbb{Z}_p , что $[a]^2 = 1$ (то есть [a] обратен (по умножению) сам себе). **б)** Чему равно произведение всех ненулевых элементов \mathbb{Z}_p ?
- **Задача 9.** (Теорема Вильсона) Докажите, что целое m > 1 простое если и только если $(m-1)! + 1 \equiv 0 \pmod{m}$.
- **Задача 10.** Пусть p простое, $a \in \mathbb{Z}_p$, $a \neq 0$. **a)** Домножим все элементы \mathbb{Z}_p на a. Докажите, что снова получатся все элементы \mathbb{Z}_p . **6)** Выведите из пункта a) малую теорему Ферма: $a^{p-1} \equiv 1 \pmod p$.
- **Задача 11.** а) Пусть простое p имеет вид 4k+3. Найдется ли такое целое число x, что $x^2 \equiv -1 \pmod{p}$?
- **б)** Докажите, что если $x^2 + 1$ делится на нечётное простое число p, то p имеет вид 4k + 1.
- **в)** Докажите, что простых чисел вида 4k+1 бесконечно много.

Представимость чисел в виде суммы двух квадратов

- **Задача 12.** Пусть p простое вида 4k+1, и пусть x=(2k)!. Докажите, что $x^2\equiv -1\pmod p$.
- **Задача 13.** Пусть p простое вида 4k+1, и пусть x удовлетворяет сравнению $x^2 \equiv -1 \pmod{p}$. Докажите, что **a)** $(a+xb)(a-xb) \equiv a^2+b^2 \pmod{p}$ при $a,b \in \mathbb{Z}$;
- **б)** среди чисел вида m+xn, где $m,n\in\mathbb{Z},\,0\leqslant m,n\leqslant [\sqrt{p}]$, найдутся два с равными остатками от деления на p;
- в) найдётся ненулевое число вида a+bx, делящееся на p, где $a,b\in\mathbb{Z}$, причем $|a|<\sqrt{p}$ и $|b|<\sqrt{p}$;
- \mathbf{r}) p представимо в виде суммы двух квадратов целых чисел.
- **Задача 14.** Пусть p простое число вида 4k+3, числа a и b целые и a^2+b^2 делится на p. Докажите, что a делится на p и b делится на p. Указание: воспользуйтесь задачей 11, а).
- **Задача 15.** Докажите, что произведение чисел, представимых в виде суммы двух квадратов целых чисел, само представимо в виде суммы двух квадратов целых чисел.
- **Задача 16.** Сформулируйте и докажите теорему о том, как по разложению числа на простые множители узнать, представимо ли это число в виде суммы двух квадратов целых чисел.

Теорема Эйлера и китайская теорема об остатках

- Задача 17. Изобразим элементы \mathbb{Z}_n точками, зафиксируем остаток $a \in \mathbb{Z}_n$, и из каждой точки $x \in \mathbb{Z}_n$ проведём стрелку в точку $a \cdot x$. Докажите, что если a обратим (по умножению), то на этой картинке движение по стрелкам распадается на непересекающиеся циклы, причём каждый цикл, содержащий хоть одно обратимое число, весь состоит из обратимых чисел, и циклы, состоящие из обратимых чисел, имеют одинаковую длину.
- **Задача 18.** (*Теорема Эйлера*) Пусть $m \in \mathbb{N}$, $\varphi(m)$ количество натуральных чисел, меньших m и взаимно простых с m. Докажите, что $a^{\varphi(m)} \equiv 1 \pmod{m}$, если $a \in \mathbb{Z}$ и (a, m) = 1.
- **Задача 19.** Существует ли **a)** 3^k , заканчивающееся на 0001; **б)** $2^n 1$, делящееся на данное нечётное m?
- **Задача 20.** а) Найдите $\varphi(p^{\alpha})$, где p простое, $\alpha \in \mathbb{N}$. б) Докажите, что $\varphi(ab) = \varphi(a)\varphi(b)$, если (a,b) = 1.
- **Задача 21.** (Китайская теорема об остатках) а) Пусть натуральные m_1, \ldots, m_k попарно взаимно просты. Докажите, что для любых целых b_1, \ldots, b_k существует такое целое x, что $x \equiv b_1 \pmod{m_1}, \ldots, x \equiv b_k \pmod{m_k}$, и это x можно выбрать так, что $0 \le x < m_1 \cdot m_2 \cdot \ldots \cdot m_k$. б) С помощью задачи 18 явно укажите такое x.
- **Задача 22.** Найдите такое целое a>0, что a/2 точный квадрат, a/3 точный куб, a/5 точная 5-я степень.
- Задача 23*. Существует ли а) сколь угодно длинная; б) бесконечная арифметическая прогрессия, каждый член которой степень натурального числа с целым показателем, большим 1?