NASA CONTRACTOR REPORT

NASA CR-129010 CASE FILE
COPY

S-II STAGE 1/25 SCALE MODEL BASE REGION THERMAL ENVIRONMENT TEST

VOL. II: Test Data Tabulation, Statistical Analysis Results, and Heating Rate Contours

By J. A. Sadunas, E. P. French, and H. Sexton Rockwell International Corporation Space Division Downey, California

May 1, 1973

	TECHNICA	AL REPORT STANDARD TITLE PAGE
1. REPORT NO.	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
NASA CR-129010	·	
4. TITLE AND SUBTITLE S-TT Stage 1/25 Scale M	odel Base Region Thermal Environ-	5. REPORT DATE May 1, 1973
~ , -	Test Data Tabulation, Statistical	6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT #
J. A. Sadunas; E. P. Fr	ench; H. Sexton	SD73-SA-0061 Vol. II
9. PERFORMING ORGANIZATION NAME	10. WORK UNIT, NO.	
Rockwell International	Corporation	
Space Division	-	11. CONTRACT OR GRANT NO.
Downey, California		NAS 7-200
		13. TYPE OF REPORT & PERIOD COVERED
12. SPONSORING AGENCY NAME AND A	DORESS]
National Aeronautics an	NASA Contractor Report	
Washington, D. C. 2054		14. SPONSORING AGENCY CODE
15 SUPPLEMENTARY NOTES		

Volume I is NASA CR-129009

16. ABSTRACT

A 1/25 scale model S-II stage base region thermal environment test conducted at George C. Marshall Space Flight Center is presented. Analytical results are included which reflect the effect of engine operating conditions, model scale, turbo-pump exhaust gas injection on base region thermal environment. Comparisons are made between full scale flight data, model test data, and analytical results. The report is prepared in two volumes. Volume I presents the description of the test equipment, test procedures, discussion of the test results, analytical predictions and comparisons with flight data. Volume II contains the tabulation of the test data.

.7	•	KEY	_WOF	(U.S
----	---	-----	------	------

Base heating, reverse flow plume interaction, short duration model testing

18. DISTRIBUTION STATEMENT

Unclassified - Unlimited

E. D. Geissler, Director Aero-Astrodynamics Laboratory

19. SECURITY CLASSIF. (of this report)

20. SECURITY CLASSIF, (of this page)

21. NO. OF PAGES

22. PRICE

Unclassified

Unclassified

325

NTIS

FOREWORD

This report is submitted by the Rockwell International Corporation, Space Division to the National Aeronautics and Space Administration's George C. Marshall Space Flight Center at Huntsville, Alabama, in accordance with Task Authorization TA-68 issued persuant to NASA Contract NAS7-200.

This report presents the results of the 1/25 scale model S-II Stage base region thermal environment test conducted at MSFC under the direction of the Aero-Astrodynamics Laboratory with test engineering support provided by Space Division.

Analytical results are presented which reflect the effect of engine operating conditions, model scale, turbo-pump exhaust gas injection in the engine nozzle, and co-planar engine gimballing on the S-II base region thermal environment. Comparisons are made between full scale flight data, model test data, and the analytical results.

This report is prepared in two volumes. Volume I presents the description of the test equipment, test procedures, discussion of the test results, analytical predictions and comparisons with flight data. Volume II contains the tabulation of the test data.

The task activities were conducted with Mr. J. A. Sadunas, Task Manager, Dr. E. P. French, and Mr. H. Sexton, the responsible engineers from the Saturn Launch Vehicles Aerothermodynamics group, and Mr. D. C. Seymour as the technical coordinator for the Marshall Space Flight Center.

The authors wish to acknowledge the cooperation and valuable suggestions contributed by Messrs. D. C. Seymour and R. F. Elkin of S&E-Aero-Astrodynamics Laboratory and John Reardon of REMTECH, Inc.

CONTENTS

VOLUME II

		rage
1.0	INTRODUCTION	. 1
2.0	MODEL TEST DATA STATISTICAL ANALYSIS RESULTS	• 3
3.0	TABULATION OF NORMALIZED TEST DATA	• 112
4.0	HEAT SHIELD CONSTANT HEATING RATE CONTOURS	• 282

CONTENTS

VOLUME I

			Page
1.0	INTRO	DUCTION	. 1
2.0	SUMMA	RY	. 3
3.0	TEST :	EQUIPMENT	. 7
	3.1 3.2 3.3 3.4	High Altitude Facility	1215
4.0	TEST 1	PROCEDURE	• 41
	4.1	Calibration	
5.0	EXPER	MENTAL RESULTS	45
	5.1 5.2	Effect of Altitude	
		Pressure Variation	• 52
		5.2.1 Heat Shield Heating Rates	• 54
	5.3	Effect of Chamber Pressure Variation	. 58
		5.3.1 Heat Shield Heating Rates	
	5.4	Effect of Interstage	• 61
		5.4.1 Heat Shield Heating Rates	. 61
	5.5	Recovery Temperature	. 64
	5.6	Base Region Environment for the Nominal Configuration	. 65
		5.6.1 Heat Shield Heating Rates	· 75

					Page
	5.6.6	Thrust Cone Pressures	•	•	79
5.7		egion Environment with an			
	Outh	ooard-Engine-Out	•	٠	80
	5.7.1	Heat Shield Heating Rates			
	5.7.2	Thrust Cone Heating Rates			89
	5.7.3	Interstage Heating Rates			. 98
	5.7.4	Inoperative Engine Nozzle Heating Rates	•	•	98
5.8	Base Re	egion Environment with a Single			
	Actu	nator Failed Inboard	•	•	104
	5.8.1	Heat Shield Heating Rates			104
	5.8.2	Thrust Cone Heating Rates	•		112
	5.8.3	Interstage Heating Rates			
	5.8.4	Nozzle Heating Rates			112
	5.8.5	Heat Shield Pressures			
	3.0.5		٠	٠	
5.9		egion Environment with a Single			
	Actu	nator Failed Outboard	•	•	122
	5.9.1	Heat Shield Heating Rates			122
	5.9.2	Thrust Cone Heating Rates			129
	5.9.3	Interstage Heating Rates			
5.10	Base R	gion Environment with Dual Actuator			
		ure Inboard			143
•	5.10.1	Heat Shield Heating Rates			1/2
	5.10.2				
-	5.10.3				
	3.10.3	Engine Mozzie neating Nates	•	•	120
5.11		gion Environment with Nominal Trim and			
	Stru	ctural Compliance Engine Deflections	•	•	161
	5.11.1	Heat Shield Heating Rates	٠	٠	161
	5.11.2	Thrust Cone Heating Rates			161
	5.11.3				
5.12	Miscell	aneous Test Results	٠	•	174
	5.12.1			•	174
	5.12.2				
		With 210" and 256" Heat Shields			180

				Page
		5.12.3	Base Region Environment with S-IV	
		5.12.4	Type Heat Shield	180
			the Pitch Circle	187
		5.12.5		187
		5.12.6	Region Environment	107
			Environment of the Inoperative	
			Center Engine Nozzle	195
		5.12.8	Incident Radiative Heat Flux to the	
			Base Region	195
6.0	COMP	ARISON WI	THE ANALYTICAL PREDICTIONS	200
	6.1	Methodo	ology of Base Flow Analysis	200
		6.1.1		
			Field in the J-2 Nozzle	201
		6.1.2	Nozzle Boundary Layer Calculations	203
			6.1.2.1 Thermodynamic Properties	203
			6.1.2.2 Transport Properties	204
			6.1.2.3 TPE Injection Effects	204
			6.1.2.4 Boundary Layer Calculation	,
			Results	206
		6.1.3	Definition of Plume Flow Field	206
			6.1.3.1 Application of Shock Capturing to the Plume Problem	01.0
			6.1.3.2 Typical Plume Property	210
			Distributions for 1/25	
			Scale Model	212
			6.1.3.3 Property Distributions for	
			Full Scale Plumes	217
		6.1.4	Definition of the Impingement Flow Field	217
			6.1.4.1 Impingement Properties Based	
	-		on Newtonian Theory	217
			6.1.4.2 Flow Reversal After Impingement	
		6.1.5	Description of the Base Flow Field	221
			6.1.5.1 Off-Axis Impingement Effects	221
-			6.1.5.2 An Analytical Heat Transfer	441
			Paramatar	222

		•			Page
	6.2	Analyt	ical Resul	ts	. 223
		6.2.1 6.2.2		f Mixture Ratio	228 228
		6.2.3		of Plume Boundary Pressure	
		6.2.4		f Symmetrical Engine Deflections	
		6.2.5		le Results	236
7.0	COMPA	RISON W	TH FLIGHT	DATA	241
·	7.1	Flight	Data Norm	alization	241
4		7.1.1	Radiomet	er Correction	241
		. '	7.1.1.1	Interpretation of Radiometer Transients	241
•			7.1.1.2	Plume Radiation and Total Heat Transfer from Post-Ignition	
			7.1.1.3	•	244
				Gage Outputs	245
			7.1.1.4	Analysis of the Post-Shut-Off	
			7 1 1 5	Transient	246
			7.1.1.5	Typical Flight Radiometer Analysis Results	247
		7.1.2	Total He	at Transfer Calorimeter Correction .	250
			7.1.2.1	Heat Transfer Coefficients at the	
÷				Sensor Surface	250
			7.1.2.2	• •	050
			7122	History	252
			7.1.2.3 7.1.2.4	-	
			7.1.2.5	Typical Results	
		7.1.3	Gas Reco	very Temperature Probe Data	
				tion	255
		•	7.1.3.1	Cylinder Convective Heat Transfer	050
			7.1.3.2	Coefficient	258
				Recovery Temperature Probe Thermal Model	259
			7.1.3.3		
				Analysis Results	261

7.1.5 Nominal Steady State Gimbal Angle Correction							I	Page
7.2 Comparison of Flight, Model and Analytical Results		7.1.5 Nominal Steady State Gimbal		•	•	•	•	264
Results <		Angle Correction	,	•	•	•	•	264
7.2.1 Nominal Base Region Environment	7.	.2 Comparison of Flight, Model and Analytical						
7.2.1.1 Gas Recovery Temperature 7.2.1.2 Heat Shield Heating Rates 7.2.1.3 Thrust Cone Heating Rates 7.2.1.4 Base Region Pressures 7.2.1.4 Base Region Pressures 7.2.2.1 Heat Shield Heating Rates 7.2.2.2 Thrust Cone Heating Rates 7.2.2.3 Base Region Pressures 7.2.2.3 Effect of Center Engine Cut-Off 7.2.3.1 Gas Recovery Temperature 7.2.3.2 Heat Shield Heating Rates 7.2.3.3 Thrust Cone Heating Rates 7.2.3.4 Base Region Pressures 7.2.3.4 Base Region Pressures 7.2.4.5 Heat Shield Heating Rates 7.2.4.1 Gas Recovery Temperature 7.2.4.2 Heat Shield Heating Rates 7.2.4.3 Thrust Cone Heating Rates 7.2.4.4 Heat Shield Heating Rates 7.2.4.5 Thrust Cone Heating Rates 7.2.4.6 Heat Shield Heating Rates 7.2.4.7 Thrust Cone Heating Rates 7.2.4.8 Thrust Cone Heating Rates 7.2.4.4 Heat Shield Pressures 7.2.4.4 Heat Shield Pressures		Results	•	•	•	•	•	26.4
7.2.1.2 Heat Shield Heating Rates		7.2.1 Nominal Base Region Environment	•	•	•	•	•	278
7.2.1.3 Thrust Cone Heating Rates		7.2.1.1 Gas Recovery Temperature .		•				278
7.2.1.4 Base Region Pressures		7.2.1.2 Heat Shield Heating Rates .		•			•	278
7.2.2 Effect of Interstage		7.2.1.3 Thrust Cone Heating Rates .	,	•	•	٠	•	281
7.2.2.1 Heat Shield Heating Rates	, .	7.2.1.4 Base Region Pressures	•	•	•	•	•	281
7.2.2.2 Thrust Cone Heating Rates		7.2.2 Effect of Interstage	•	•	•	•	•	285
7.2.2.2 Thrust Cone Heating Rates		7.2.2.1 Heat Shield Heating Rates .	,	•				285
7.2.2.3 Base Region Pressures								285
7.2.3.1 Gas Recovery Temperature				•	•	•	•	288
7.2.3.2 Heat Shield Heating Rates		7.2.3 Effect of Center Engine Cut-Off		•	•	•	•	288
7.2.3.2 Heat Shield Heating Rates		7.2.3.1 Gas Recovery Temperature .		•	•			288
7.2.3.4 Base Region Pressures			,	•				288
7.2.4 Effect of PMR Shift		7.2.3.3 Thrust Cone Heating Rates .	•	•			•	291
7.2.4.1 Gas Recovery Temperature 2 7.2.4.2 Heat Shield Heating Rates 2 7.2.4.3 Thrust Cone Heating Rates 2 7.2.4.4 Heat Shield Pressures 2		7.2.3.4 Base Region Pressures	•	•	•	•	•	292
7.2.4.2 Heat Shield Heating Rates 2 7.2.4.3 Thrust Cone Heating Rates 2 7.2.4.4 Heat Shield Pressures 2		7.2.4 Effect of PMR Shift		•	•	•	•	293
7.2.4.2 Heat Shield Heating Rates 2 7.2.4.3 Thrust Cone Heating Rates 2 7.2.4.4 Heat Shield Pressures 2		7.2.4.1 Gas Recovery Temperature .	4					293
7.2.4.3 Thrust Cone Heating Rates 2 7.2.4.4 Heat Shield Pressures 2				•				293
7.2.4.4 Heat Shield Pressures 2								294
9 0 CONCLUSIONS AND DECOMMENDATIONS								297
6.0 CONCLUSIONS AND RECOMMENDATIONS	CO	ONCLUSIONS AND RECOMMENDATIONS			•	•		299
REFERENCES	RE	EFERENCES	,	•	•	•	•	300

1.0 INTRODUCTION

The documentation of the S-II Stage 1/25 Scale model base region thermal environment test program was prepared in two volumes. Volume I contains the description of the test equipment, test procedures, discussion of the test results, analytical predictions and comparisons with flight data. Volume II contains the test data tabulation, statistical analysis results and heat shield constant heating rate contours. This volume supplements the results of Volume I, and it is intended that it be used in conjunction with Volume I.

Page Intentionally Left Blank

2.0 MODEL TEST DATA STATISTICAL ANALYSIS RESULTS

The results of statistical analysis of the test data are presented in this section in tabular form. For each set of test runs, the number of samples, or test runs, the average test value, and the standard deviations were computed for each gage and printed out as shown using the following relationships.

$$\bar{x} = \frac{\sum x}{N}$$
(Sample Mean)
$$\sigma_{x} = \left[\left(\frac{x^{2}}{x^{2}} \right) - \left(\bar{x} \right)^{2} \right]^{1/2}$$
(Standard Deviation of Sample)
$$\sigma_{x} = C \quad \sigma_{x}$$
(Standard Deviation of Universe)
$$\sigma_{x} = \frac{\sigma_{x}}{1/2}$$
(Standard Deviation of Mean)

where

$$C = \frac{\left(\frac{2}{N}\right)^{1/2} \Gamma\left(\frac{N}{2}\right)}{\Gamma\left(\frac{N-1}{2}\right)} \longrightarrow \left[1 + \frac{1}{4(N-1)}\right] \left(\frac{N}{N-1}\right)^{1/2}$$

A summary of all the test cases run during this test program, and presented in this section, is given in Table 5-1, Volume I.

CASE ----- RUN SERIES CO1, LOG CO1

NO DEFLECTION MIXTURE RATIO ---- 5.(632.0 PSIA INTERSTAGE ----- OFF GIMBAL PATTERN ---NOMINAL PC ----- PRELIMINARY CHECKOUT FOR COMPARISON WITH PREVIOUS CAL RESULTS REMARKS:

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
ATION	MEAN
ARD DEVI	SMPL UNIV MEAN
STAND	SMPL
SAMPLE	MEAN
• 0F	MPLES
NO	SAMP
TRANS DUCER	10

(9) IN BTU/SQ-FT-SEC, (P) IN PSIA

.033	.031	2000	900.0	: •	1.599		5.113	5.168	0.012	0.013	0.018	1.067	.100	1.232
0.002	0.002	0.000	0.001 0	152	385	0.317 5	038	513	0.002 0	200	100	005	003	900
900	005	000	100	372	861	775	053	866	0.003	600	001	012	700	023
0.005	0.004	000 0	000.0	0.323	0.725	0.674	0.030	0.490	0.001	0.002	0.001	0.011	900.0	0.021
0.025	0.025	0.001	0.004	1.597	2.444	4.167	5.000	3,330	90000	2.007	0.017	0.053	0.091	0.207
9		2	2	9	2	9		2	2	<u> </u>	4	7	9	80
P007	P011	P015	P017	1000	0005	9003	4000	8000	0050	1200	4022	0023	4200	0025
1	-	4					:			SD	73	- S	A	00

. 1

CASE ------ RUN SERIES CO3, LOG CO3,1

5.00	OFF
0111	
MIXTURE RA	INTERSTAGE
NO DEFLECTION MIXTURE RATIO	632.0 PSIA
ATTERN	Jd
GIMBAL PATTERN	NOWINAL

REMARKS: TO EVALUATE MODEL OPERATION WITH VARIABLE OF RATIO

SUMMARY OF STATISTICAL ANALYSIS OF NOPMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)		0.050	0.024	0.003	0.003	2.699	0.129	0.325
ATION ME AN	IN PSTA	0.008	0.001	00000	00000	0.0	0.010	0.038
STANDARD DEVIATION SMP1. UNIV MEAN	SEČ, (P)	0.012	0.002	0.001	0.001	0.0	0.020	0.076
STAND! SMP1.	(Q) IN BTU/SO-FT-SEC, (P) IN PSIA	0.007	0.001	0.001	00000	0.0	0.016	0.061
SAMPLE MEAN	8 NJ (Ö)	0.025	0.021	0.002	0.002	669*2	660.0	0.210
NO. OF SAMPLES		2	4	3	E	-	4	4
TRANS DUCER ID		P007	P01-1	P01'5	P017	8000	0024	0025

RUN SERIES CO3, LOG CO3.2

CASE

NO DEFLECTION MIXTURE RATIO ---- 4.50 546.0 PSIA INTERSTAGE ----- OFF GIMBAL PATTERN ---NOMINAL PC -----

REMARKS: TO EVALUATE MODEL OPERATION WITH VARIABLE O/F RATIO

DATA	
ANALYSIS OF NORMALIZED DATA	The state of the s
P	
SIS	
ANALY	The second second
ISTICAL	
AT	1
OF ST	
SUMMARY OF STATISTICAL	
٠,	•

I KANS DUCER I D	SAMPLES	SAMPLE	STANDA	STANDARD DEVIATION SMPL UNIV MEAN	ATION	SAMPLE MEAN + 3(ST DEV MEAN)
		NI (0)	(Q) IN BTU/SQ-FT-SEC (P) IN PSIA	SEC (P) I	A 129 N	
P007	ı, ıçı	0.012	0.002	0.002	0.001	0.015
P011	4	0.002	0.000	00000	0.000	0.003
P015	5	0.002	00000	00000	0.000	0.002
P017	2	0.001	000.0	000.0	0.000	0.001
4000	2	1.665	0.071	0.126	0.089	1.932
0000	1	1.467	0.0	0.0	0.0	1.467
0024	7	990.0	0.019	0.022	0.008	0,091
0025	α ο.	0.155	0.072	0.080	0.028	0.240

CASE ----- RUN SERIES CO3, LOG CO3,3

NO DEFLECTION MIXTURE RATIO ---- 5.5 715.0 PSIA INTERSTAGE ----- OFF GIMBAL PATTERN ---

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

TRANS DUCER ID	NO. OF SAMPLES	SAMPLE MEAN	STAND	STANDARD DEVIATION SMPL UNIV MEAN	ATION ME AN	SAMPLE MEAN + 3(ST DEV MEAN)
-		(0) IN B	(0) IN BTU/SO-FT-SEC, (P) IN PSIA	SEC. (P)	IN PSIA	
F004	4	0.029	9.004	0.005	0.002	950-0
P01.1	9	0.034	0.007	0.008	0.003	440°0
P015	~	0.002	00000	0.001	00000	0.003
P017	r	0.002	000.0	00000	000.0	200°0
0007	5	3.031	0.316	0.375	0.168	345°C
0008	2	1.894	0.482	0.853	0.603	3.704
9025	6 0	0.209	0.037	0.041	0.015	0.253

REMARKS: TO EVALUATE MODEL OPERATION WITH VARIABLE O/F RATIO

CASE ----- RUN SERIES CO4, LOG CO4.1

NO DEFLECTION MIXTURE RATIO ----NOMINAL PC ----GIMBAL PATTERN ---

REMARKS: TO EVALUATE FLOW SYMMETRY AT NOZZLE EXITS

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
DARD DEVIATION	SMPL UNIV MEAN
,	
	SAMPLES MEAN
TRANSDUCER	01

(Q) IN BTU/SO-FT-SEC, (P) IN (PSIA)

.63	3.659	•65	• 75	984	90	.62	.68	.16	.85	43.86	22.10	67.50	71.50	98.25	22.20	76.12	39,35	.70	08,35
• 06	0.093	.11	.13	.18	.20	• 08	• 04	.18	.11	77.	5.42	.28	5.00	•94	3.31	.20	2.91	.56	.40
•16	0.227	.28	.32	77.	.50	.21	.10	• 46	.27	0.68	4.48	9.77	0.01	1.88	8.82	8.67	1.64	.52	6.19
.14	0.198	.24	.28	338	.43	. 18	• 09	.40	.23	06.	9.03	•64	9.97	9.49	0.65	0.56	6.51	10	7.81
.43	3,380	.31	•35	.30	.28	• 36	.55	.59	. 52	29.53	75.83	46.64	96.48	80.43	82.26	36.51	80.61	• 02	32.15
ø	9	\$	જ	9	9	\$.∳	9	9	. 2	S	m	4	4	~	2	m	9	'n
P020	P021	P022	P023	p024	P025	P026	P027	P028	P029	0900	0061	2900	6900	4900	9000	9900	1900	8900	6900
	_	8	_				:			SD	73	∽S	A-	00	61				i

CASE ----- RUN SERIES CO4, LOG CO4,3

INTERSTAGE ----- OFF NO DEFLECTION MIXTURE RATIO ----632.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

REMARKS: TO EVALUATE FLOW SYMMETRY AND EFFECT OF NOZZLE ENTRANCE AREA.
SPECIAL LARGE DIAMETER PASSAGE TO NOZZLE THROAT ON NOZZLE 1 (RUNS 577 AND 578), NOZZLE 5 (RUNS 579 AND 580), NOZZLE 3 (RUNS 581 AND 582)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
NOILVI	ME AN
ARD DEV	SMPL UNIV MEAN
STAND	SMPL
SAMPLE	MEAN
NO. OF	SAMPLES
TRANSDUCER	10

(Q) IN BTU/SQ-FT-SEC

.72	.86	.59	.53	4.8	5.1	7.9	.79	.13	21.23	14.07	46.87	86.90	26.47	67.34
0.053	0.113	0.035	0.061	0.042	0.038	0.022	0.070	0.083	4.152	5.181	11.879	5.930	1.965	12.828
0.131	0.277	0.085	0.149	0.102	0.093	0.054	0.172	0.203	10.170	12.690	29.097	14.526	3.929	28.684
0.113	0.241	0.074	0.130	0.089	0.081	0.047	0.149	0.177	8.842	11.033	5	2	3,141	24.146
. 56	52	48	35	35	40	.72	58	88	08.77	98,53	11.23	69,11	20.58	28.85
9	9	9	9	9	9	9	9	9	9	9	9	9	4	5
P021	P022	P023	P024	P025	P026	P027	P028	P029	0900	0061	0064	9000	0068	6900
	6 3.563 0.113 0.131 0.053 3.72	6 3.563 0.113 0.131 0.053 3.72 6 3.523 0.241 0.277 0.113 3.86	6 3.563 0.113 0.131 0.053 3.72 6 3.523 0.241 0.277 0.113 3.86 6 3.488 0.074 0.085 0.035 3.59	6 3.563 0.113 0.053 3.72 6 3.523 0.241 0.277 0.113 3.86 6 3.488 0.074 0.085 0.035 3.59 6 3.351 0.130 0.149 0.061 3.53	6 3.563 0.113 0.053 3.72 6 3.523 0.241 0.277 0.113 3.86 6 3.488 0.074 0.085 0.035 3.59 6 3.351 0.130 0.149 0.061 3.53 6 3.357 0.089 0.102 0.042 3.48	6 3.563 0.113 0.053 3.72 6 3.523 0.241 0.277 0.113 3.86 6 3.488 0.074 0.085 0.035 3.59 6 3.351 0.130 0.149 0.061 3.53 6 3.357 0.089 0.102 0.042 3.48 6 3.404 0.081 0.093 0.038 3.51	6 3.563 0.113 0.053 3.72 6 3.523 0.241 0.277 0.113 3.86 6 3.488 0.074 0.085 0.035 3.59 6 3.351 0.130 0.149 0.061 3.53 6 3.357 0.089 0.102 0.042 3.48 6 3.404 0.081 0.093 0.038 3.51 6 3.728 0.047 0.054 0.022 3.79	6 3.563 0.113 0.053 3.72 6 3.488 0.241 0.277 0.113 3.86 6 3.488 0.074 0.085 0.035 3.59 6 3.351 0.130 0.149 0.061 3.53 6 3.357 0.089 0.102 0.042 3.48 6 3.404 0.081 0.093 0.038 3.51 6 3.728 0.047 0.054 0.022 3.79 6 3.587 0.149 0.172 0.070 3.79	6 3.563 0.113 0.053 3.72 6 3.488 0.074 0.085 0.035 3.86 6 3.351 0.130 0.149 0.061 3.53 6 3.357 0.089 0.102 0.042 3.48 6 3.404 0.081 0.093 0.038 3.51 6 3.728 0.047 0.054 0.022 3.79 6 3.587 0.149 0.070 3.79 6 3.886 0.177 0.083 4.13	6 3.563 0.113 0.053 3.72 6 3.523 0.241 0.277 0.113 3.86 6 3.488 0.074 0.085 0.035 3.53 6 3.351 0.089 0.102 0.061 3.53 6 3.404 0.081 0.093 0.038 3.51 6 3.728 0.047 0.054 0.022 3.79 6 3.587 0.172 0.070 3.79 6 3.866 0.177 0.203 0.083 4.13 6 208.777 8.842 10.170 4.152 221.23	6 3.563 0.113 0.053 3.72 6 3.523 0.241 0.277 0.113 3.86 6 3.488 0.074 0.085 0.035 3.53 6 3.351 0.189 0.061 3.53 6 3.357 0.089 0.102 0.042 3.48 6 3.404 0.081 0.093 0.038 3.51 6 3.728 0.047 0.054 0.022 3.79 6 3.587 0.149 0.172 0.070 3.79 6 2.08.777 8.842 10.170 4.152 221.23 6 198.533 11.033 12.690 5.181 214.07	6 3.563 0.113 0.053 3.72 6 3.523 0.241 0.277 0.113 3.86 6 3.488 0.074 0.085 0.035 3.59 6 3.351 0.180 0.061 3.53 6 3.357 0.089 0.102 0.042 3.48 6 3.404 0.081 0.093 0.038 3.51 6 3.728 0.047 0.054 0.022 3.79 6 3.587 0.149 0.172 0.070 3.79 6 3.886 0.177 0.203 0.083 4.13 6 208.777 8.842 10.170 4.152 221.23 6 198.533 11.033 12.690 5.181 214.07 6 211.233 25.297 29.097 11.879 246.87	6 3.563 0.113 0.053 3.72 6 3.523 0.241 0.277 0.113 3.86 6 3.488 0.074 0.085 0.035 3.59 6 3.351 0.102 0.061 3.59 6 3.357 0.089 0.102 0.042 3.48 6 3.404 0.081 0.093 0.038 3.51 6 3.728 0.047 0.054 0.022 3.79 6 3.587 0.149 0.172 0.070 3.79 6 2.08.777 8.842 10.172 0.083 4.152 6 198.533 11.033 12.690 5.181 214.07 6 211.233 25.297 29.097 11.879 246.87 6 169.112 12.659 14.526 5.930 186.90	0.113 0.131 0.053 3 3 4 0.241 0.277 0.113 3 3 0.074 0.085 0.035 3 3 0.089 0.180 0.061 3 3 0.089 0.081 0.093 0.093 0.038 0.047 0.054 0.022 3 0.177 0.203 0.083 0.083 0.177 0.203 0.083 0.083 0.203 0.08

INTERSTAGE ----- OFF NO DEFLECTION MIXTURE RATIO ----632.0 PSIA GIMBAL PATTERN ---NOW INAL PC

REWARKS: ATTEMPT TO EVALUATE CAUSE OF THRUST STRUCTURE HEATING. DATA IS QUESTIONABLE OUE TO POSSIBLE NOZZLE ADAPTER LEAKS FORWARD OF THE HEAT SHIELD. 19 INCH DIAMETER INSTALLED AT STATION -5 (0.44 INCH FORWARD OF NOZZLE EXIT PLANE).

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
IATION	MEAN
ARD DEVIATION	ONIV
STANDARD	SMPL
SAMPLE	NATAN
NO. OF	SAMPLES
TRANSDUCER	10

(Q) IN BTU/SO-FT-SEC, (P) IN PSIA

0	0	0	3.5	6.	7.0	4.	~	4.	4.	5.504	6.		0	7.	0	0	0	0	0	0.003
0	0	0	•	ۍ.	4.	.5	6	5	6	0.853	.2	• 4	~	0	0	°	0	0	0	•
00.	0	0	.08	• 05	66.	.13	.70	.13	.82	1.706	.58	.86	•60	• 02	00.	900	00•	•	•	• 00
00	00	0	78	84	19	16	23	82	46	1.364	46	69	48	02	00	00	00	0	00	0.001
00•	.00	.00	69.	.41	.54	.75	.34	.47	.72	2.946	•04	44.	.10	.07	.01	.01	.03	.01	00.	• 00
8	2	-	E	4	*	4	'nι	m	4	4	4	4	4	4	4	4	2	-	4	2
0	0	0	0	0	0	0	0	0	0	0013	0	0	0	0	0	0	0	0	0	0

RUN SERIES 1+ LOG 1+1

5.00	OFF
10	OFF
NO DEFLECTIONMIXTURE RATIO	INTERSTAGE
NO DEFLECT	632.0 PSIA
GIMBAL PATTERN	Dd 7
₩19	ANIMON

REMAR

MINAL PC	9 Jd	32.0 PSIA	INTERSTA	GE	OFF	
MARKS: B	ASE LINE D	ATA FOR NOMINA	L COND!	TION		
SUMMARY	OF STAT	ISTICAL ANALY	SIS OF N	ORMAL I ZEI	D DATA	
ANS DUCER ID	NO. OF SAMPLES	SAMPLE	STAND	ARD DEVI UNIV	ATION ME AN	SAMPLE MEAN + 3(ST DEV MEAN)
		(Q) IN P	8TU/SQ-FT-9	SEC, P I	A PSTA	
	r	00	00	00	00	
P017	5	0.001	000.0	000.0	000.0	0.002
_	S	•00	• 00	• 00	• 00	00.
0	9	•67	• 05	.20	64.	.15
0	ις	.07	.71	.85	3.00	.22
0	~	• 41	• 44	. 78	. 55	.07
0	m	06.	.72	00.	.57	•64
0	9	• 25	.98	.12	•46	.63
0	9	• 04	• 07	• 23	• 50	.55
_	_	• 48	• 58	633	.12	.85
_	\$	• 40	• 44	• 50	.20	.02
_	~	• 25	• 15	. 84	• 32	.21
_	~	• 06	77.	• 40	. 18	.62
~	^	• 49	• 28	• 32	. 12	. 86
2	ς.	• 01	• 00	00.	• 00	.02
2	7	• 04	• 01	• 01	• 00	•06
2	_	• 05	• 01	01	• 00	.07
2	7	• 12	• 04	• 04	.01	.17
3	~	• 03	• 00	.00	.00	•04
3	_	• 04	• 01	• 01	• 00	90.
3	7	• 05	• 01	• ū5	• 00	.08

CASE ----- RUN SERIES 1, LOG 1.2

5.00 OFF INTERSTAGE -----NO DEFLECTION MIXTURE RATIO ---- 632.0 PSIA INTERSTAGE -----GIMBAL PATTERN ---NOMINAL PC ----- REMARKS: TEST FOR ALTITUDE EFFECTS ON BASE ENVIRONMENT. MAXIMUM SIMULATED ALT.

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA

• 00	000	.00	2.230	.87	.16	.50	.67	.61	.98	.92	.64	.71	.76	•03	•06	.07	•24	0.040	•05	40
0	0	0	w	N	_	4	0	9	7		2	~	7	0	0	0	0	0.004	0	<
c	0	0	•	2	5	•	6	œ	.3	4.	5	• 6	4	0	0	0	0	0.007	0	C
•		•	0.531	1 •	•	0.507	: •	•	•	: ●	•	•	•	•	•	; •	•	900.0	. •	
90	00•	900	•23	1.8	.80	•29	.72	• 59	• 50	.34	.87	.83	•10	• 02	• 03	• 04	.11	0.030	•04	40
÷	4	æ	4		4	ĸ	. 4	٣	r		2	Z.	S	S.	S	2	4	ţ		ır
P016	P017	P018	1000	2000	0003	4000	8000	6000	0011	0013	0015	0016	0010	0022	0023	0024	9005	0031	0035	9500
•	- :	12	-				:		SI)) 7:	3-:	SA-	÷0(06 :	L,	and efficient a stocker of the designation appet sufficiency.				

٠.

RUN SERIES 1, LOG 1.3 AND 1.4 CASE

į

:

į

:

5.00 OFF INTERSTAGE -----NO DEFLECTION MIXTURE RATIO 632.0 PSIA ! ---- Jd GIMBAL PATTERN NOMINAL

SHIFLD & HIGH ALT ADAPTERS. UNEXPL STRUCTURE HTG. TC HEATING RATES AND PRESSURES QUESTIONABLE DUE TO HOT GAS LEAKAGE FROM NOZZLE REMARKS: FOR COMPARISON OF 210 AND 256 INCH HEAT SHIELDS ON THRUST AINED INCREASES OCCURRED ON SOME TO GAGES (USUALLY 022 AND 0351. 210 INCH HEAT

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DAT

TRANSDUCER 10	NO. OF SAMPLES	SAMPLE MEAN	STAND	ARD DEVIA UNIV	ATION ME AN	SAMPLE MEAN + 3(ST DEV MEAN)
-		(Q) IN	BTU/SQ-FT-	SEC (P)	IN PSIA	
		:		·		
9104	ī.	• 00	• 00	00•	00	00.
P017	ĸ	• 00	• 00	• 00	.00	• 00
P018	4	0.001	0.000	00000	0.000	0
0001	m	• 93	.61	.84	• 48	.40
0000	9	66.	•56	• 64	.26	.78
0003	ĸ	.21	.03	.23	.55	.86
4000	9	.85	.37	.42	.17	.37
8000	9	.21	.83	96.	•39	.39
6000	Z.	.30	.51	.61	.27	•13
0011	9	.67	.25	•29	. 1.	• 0 2
0013	9	• 65	.30	.35	. 14	08
001.5	9	.87	•29	.33	.13	• 28
0016	9	• 64	.25	.29	.12	00.
0019	\$.87	.32	.37	.15	.33
2200	'n	• 05	.00	• 00	00.	•06
0023	9	.03	• 00	• 00	.00	•04
0024	9	•04	00.	.01	• 00	.05
9025	9	· 09	00.	• 00	00.	.10
0031	9	• 02	00.	•00	.00	•03
0035	ĸ	• 05	.00	00.	• 00	•06
9600		• 05	• 01	.01	• 00	.07

CASE ----- RUN SERIES 1, LOG 1.5

5.00 INTERSTAGE -----NO DEFLECTION MIXTURE RATIO ----GIMBAL PATTERN ---NOMINAL PC

POSSIBLE NOZZLE ADAPTER LEAKAGE FORWARD OF HEAT SHIELD DURING RUN 190. THRUST STRUCTURE DATA REMARKS: TO DETERMINE EFFECT OF HIGHER CHAMBER PRESSURE WITH D/F = 5. QUEST IONABLE.

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
ATTON	MEAN
ARD DEV	SMPL UNIV MEAN
STAND	SMPL
SAMPLE	MEAN
NO. OF	SAMPLES
TRANSDUCER	01

(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA

	,016	10	00.	00.	• 00	0	0
	1017	10	00	00.	00.	0	0
•	018	10	.00	00	00.	0	0
J	1001	10	. 93	111	.12	0	0
9	2001	10	.59	49	.53	7	-
•	0003	9	96.	.75	.87	6	0
•	1004	9	.45	10.	.16	4.	Φ.
	8000	10	. 79	96.	.43	Γ.	2
•	6000	10	.40	50	.55	-	6.
5	1011	10	.60	.23	.25	C	σ :
5	1013	10	. 25	52	.57	7	-
•	014	6	.61	.38	.41	7	C
•	016	10	.30	.20	.22	0	.5
ح	010	10	• 79	.25	.27	0	Ç
•	1022	80	.01	00.	• 00	0	0.01
ۍ	0023	10	0.046	0.015	0.016	0.005	0.06
2	1024	1.0	• 06	01	0.	0	0
.	1025	10	.07	404	• 04	0	7
9	080	7	00.	00	.00	0	0
3	033		00.	00	.00		0
5	1034	10	• 03	01	• 02	0	0
J	1035	10	• 05	0.1	.01	0	0
9	0036	10	• 05	0.	.01	0.004	C

CASE ------ RUN SERIES 2, LOG 2.1

INTERSTAGE ----- OFF NO DEFLECTION MIXTURE RATIO ---- 715.0 PSIA INTERSTAGE -----GIMBAL PATTERN -------- Dd TVNIWON

REMARKS: TO EVALUATE EFFECT OF HIGHER MIXTURE RATIO AND CHAMBER PRESSURE. LEAK FORWARD OF THE HEAT SHIELD OR ZERO SHIFT FROM SPARK NOISE. IC DATA QUESTIONABLE ON RUNS 124-136. O7H HEATED TO MEASURE TR. 0.6 DEG GIMBAL BLOCK ON NOZZLE 3 RUNS 282-285.050 @ PIT.051 @ PIS.

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

TRANSDUCER ID	NO. OF SAMPLES	SAMPLE	STAND! SMPL	ARD DEVI UNIV	ATION	SAMPLE MEAN + 3(ST DEV MEAN)
		8 NI (C)	BTU/SQ-FT-9	SEC. (P)	IN PSIA	
(,	(((1	,
P001	9	0.024	0.001	0.001	000.0	0.025
3 8	o 40					
00	· v o	03.	00			• · ·
00	·v	.03	00.	00.		03
00	Ç	.03	.00	• 00	00.	.03
00	Ŋ	.02	• 00	• 00	00.	.03
01	2	.03	• 00	00.	• 00	•03
0	13	• 00	• 00	• 00	00.	• 00
01	~	.00	• 00	• 00	• 00	.00
01	• ,	• 00	• 00	.00	• 00	• 00
00	16	.60	• 79	.83	.20	.22
00	•	.81	.83	.87	.21	.47
00		• 83	• 46	• 56	•45	.18
00	15	• 64	.07	.13	.29	.52
00	-	.72	• 23	.27	. 11	• 05
00		• 10	.27	• 35	•36	.27
00		.82	• 35	• 42	.35	.89
0		. 52	• 28	• 35	.17	• 06
01	15	• 94	• 48	.51	.13	.34
OI		• 12	• 63	.67	.18	.68
0		• 30	• 66	.70	.19	. 38
0	9	. 79	• 08	.10	•04	.92
0.1	14	• 54	•62	• 66	.17	.07

5.50 INTERSTAGE ----- OFF NO DEFLECTION MIXTURE RATIO ----715.0 PSIA NOWINAL PC -----GIMBAL PATTERN ---

THE HEAT SHIELD OR ZERO SHIFT FROM SPARK NOISE. TC DATA QUESTIONABLE ON RUNS 124-136. TO WEASURE TR. 0.6 DEG GIMBAL BLOCK ON NOZZLE 3 RUNS 282-285.050 @ PIT,051 @ PIS. REMARKS: TO EVALUATE FFFECT OF HIGHER MIXTURE RATIO AND CHAMBER PRESSURE. LEAK Q7H HEATED TO MEASURE TR. EURWARD OF

(CONTINUED FROM PREVIOUS PAGE)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

TRANSDUCER ID	NO. OF SAMPLES	SAMPLE MEAN	STAND/ SMPL	ARD DEVI	AT I ON ME AN	SAMPLE MEAN + 3(ST DEV MEAN)
		(O) IN B	TU/S0-FT-	SEC. (P)	IN PSIA	
						.*
0	14	• 05	• 03	• 03	.01	.08
0023	14	0.046	0.018	0.019	0.005	0.061
0	14	.05	.02	.02	00.	.07
0	14	.11	.05	.05	.01	.15
0		.01	• 00	•00	00.	10.
0	14	• 02	00.	• 00	00.	02
\circ	9	• 05	.01	.01	00.	•06
0	5	.01	00.	• 00	00.	.02
0	9	• 03	00.	10.	.00	.04
0	14	• 05	.02	.02	• 00	• 06
0	14	• 05	.02	.03	00.	.08
\circ	*	. 11	• 00	00.	00.	.12
0	4	• 03	• 00	• 00	00.	.04
0	ۍ.	• 03	.01	.01	00.	• 04
0	4	-1.	40.	• 05	• 0.5	.18
0	4	• 00	.00	• 00	.00	.00
0	9	.98	.14	•16	•06	. 18
0	2	.37	.30	•54	.38	. 52
0	æ	3	.71	.98	.57	S

CASE ------ RUN SERIES 2, LOG 2.2

	QUEST
0.0	DATA
N MIXTURE RATIO 4.5 INTERSTAGE OFF	STRUCTURE
RE RATE	THRUST
TXTCE	PC.
Σ̈́	AND
DEFLECTIO 6.0 PSIA	F LOW OZE
GIMBAL PATTERN NO DEFLECTION MIXTURE RATIO 4.50 NOMINAL PC 546.0 PSIA INTERSTAGE OFF	REMARKS: EVALUATION OF LOW O/F AND PC. THRUST STRUCTURE DATA QUEST
GIMBAL PA	R FWARKS:

ENG NOZZLE ADAPTER RE-FLOW RUNS 333,335,336. INNABLE RUNS 139-168 DUE TO APPARENT NDZZLE ADAPTER LEAKAGE FWD OF HEAT SHIELD. NO 3 PLACED RY 0.6 DES GIMBAL ADAPTER JUE TO LFAKAGE RUNS 293-298. PREMATURE

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

ION SAMPLE MEAN EAN + 3(ST DEV MEAN)	V PSIA		000	20.0	2000	•001 0•02	.001 0.02	.001 0.02	.002 0.02	00.00	0000 0000	00.00	.163 1.82	.276 3.05	.304 5.25	.251 5.17	.083 1.64	.326 4.14	.313 4.58	.118 2.13	.099	.184 3.14	70.0	- 1 - 1
DEVIATI JNIV ME	C+ (P) IN	,	001	200.	005	.001	.003	.002	•004	0000	0000	100.	.780	.293	•359	.151	.204	•344	.502	.514	165.	.759	.334	
STANDARD SMPL UN	SO-FT-SE	,	0.001	2003	.002	.001	.003	200*	.003	000.	000	000	.755	.248	.307	601.	.178	.284	.453	464.	.378	.725	.318	
SAMPLE	(0) IN BTU/		0.018	. 02	.02	.02	.02	.01	• 3 5	.00	.00	• 00	. 34	.22	.34	• 42	.30	.17	• 64	• 78	66.	• 59	• 02	
NO. OF SAMPLES		,	\$ 1	o «	¢	9	9	ر د	5	1.7	11	1.7	23	2.2	20	21	9	17	23	61	16	17	16	
TRANSDUCER ID		•	1006		00	00	00	00	10	0	<u>~</u>	0.1	00	Ċ	00	00	00	00	00	5	0	0	0	

INTERSTAGE -----NO DEFLECTION MIXTURE RATIO ---- 546.0 PSIA INTERSTAGE -----NOW IN AL PC -----GIMBAL PATTERN ---

REMARKS: EVALUATION OF LOW O/F AND PC. THRUST STRUCTURE DATA QUESTIONABLE RUNS 139-168 DUF TO APPARENT NOZZLE ADAPTER LEAKAGE FWD OF HEAT SHIELD. NO 3 ENG NOZZLE ADAPTER REPLACED BY 0.6 DEG GIMBAL ADAPTER DUE TO LEAKAGE RUNS 293-298. PREMATURE FLOW RUNS 333,335,336.

(CONTINUED FROM PREVIOUS PAGE)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)	:		.05	•	0.058	_	01	0	05	00	02	03	•04	9	.02	-
AT I ON MEAN	IN PSIA	٠	00	.00	0.007	.01	00.	.00	00.	•	.00	00.	00.	00.		.17
STANDARD DEVIATION SMPL UNIV MEAN	SEC, (P)		0	0	0.026	0	0	0	0		0	0	0	0.		0.398
STAND! SMPL	BTU/SQ-FI-SEC,		0.022	10	0.025	90	00	00	00	0	0.002	0	20	00	0.003	0.335
SAMPLE	NI (C)		•	.03	0.039	.07	00.	.01	.04	00.	.02	• 02	.03	• 05	.02	.93
NO. OF SAMPLES			16	17	16	16		15	9		9	17	17	9	9	5
TRANSDUCER ID			0022	9023	0054	90055	0030	4031	0032	0033	0034	9035	9000	0037	0041	0052

RUN SERIES 2, LOG 2.3 CASE ----

NO DEFLECTION MIXTURE RATIO ---715.0 PSIA INTERSTAGE -----GIMBAL PATTERN ---

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

TRANS DUCER ID	NO. OF SAMPLES	SAMPLE MEAN	STAND	ARD DEVI	I ATTON ME AN	SAMPLE MEAN + 3(ST DEV MEAN)
		8 NI (Q)	TU/S0-FT-	SEC, (P)	IN PSTA	
P016	m	.03	00	00	00	0.0
P01.7	4	0.028	0.003	0.004	0	.03
P018	S	• 03	00.	00.	00.	.03
1000	Ŋ	.81	.46	.55	.24	.55
0005	Ŋ	06.	.74	.88	.39	.09
6000	S	• 33	•65	.78	.35	.38
4000	2	.35	.77	.92	.41	5.9
8000	2	•16	.80	• 95	.42	. 43
6000	5	.65	. 60	.72	.32	.62
0011	ĸ	.90	.33	•39	.17	44
0013	5	.70	.35	. 42	£ .	.27
0015	ς.	• 00	.63	• 74	.33	00.
0016	S.	•46	.33	.39	.17	96.
6100	2	• 05	.45	.54	.24	. 78
0022	Z.	.31	• 07	• 0 •	.04	44.
0023	5	• 06	.21	.25	11.	17.
0024	₽.	• 15	44.	.53	.23	.86
0025	2	• 38	.12	.14	• 06	.57
0031	ς	.71	.20	.24	.10	ŤÚ.
0035	5	. 68	.39	.46	.20	.30
9600	ស	• 89	•29	•34	.15	3

REMARKS: EVALUATION OF INCREASED MIXTURE RATIO WITH INTERSTAGE SKIRT IN PLACE

CASE ----- RUN SERIES 2, LOG 2.4

5.50 MIXTURE RATIO ---- 5.5 Interstage ----- OFF 3C 715.0 PSIA NOMINAL PC -----GIMBAL PATTERN ---

REMARKS: TO DETERMINE THE EFFECT OF INCREASED MIXTURE RATIO WITH LARGE ENGINE DEFLECT IONS

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

PSIA
Z
(b)
-SEC.
SO-FT
BTU/
Z
(0)

000004000100000000	0.000 4.179 8.688 7.398 10.198 29.835 7.128 4.850 19.685 9.568 8.717 5.885 5.455 5.455 0.0060 0.0060	010000000000000000000000000000000000000
--------------------	---	---

RUN SERIES 3, LOG 3.1

VENTURI FLO VARIED	255, 258, 259, 261. HEAT	8 RNS 261-263
STEADY FLOW, HOWEVER, D/F UNCERTAIN SINCE VENTURI FLO VARIED	S AT START OF COMBUSTION RNS	7 LOC. FACING P16 RNS 258-260, FACING P18 RNS 261-263
REMARKS: PC INDICATES STEADY FLOW,	WITH TIME & DETONATION RUPTURED NOZ. DIAPHRAGMS AT START OF COMBUSTION RNS 255,258,259,261. HEAT	-ED COMP GTH REPLACED GT. Q50 @ P17 LOC. FACING

MIXTURE RATIO ---INTERSTAGE -----

3C 632.0 PSIA

GIMBAL PATTERN ---

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

TRANSDUCER ID	NO. OF SAMPLES	SAMPLE	STAND	ANDARD DEVIAT	ATION	SAMPLE MEAN + 3(ST DEV MEAN)
		(O)	BTU/SQ-FT-	SEC, (P)	IN PSIA	
	10	00	00	00	00	00
	2	00.	• 00	• 00	00.	00
	11	000.0	00000	00000	00000	0.000
	10	. 48	14.	44.	.14	.91
	10	.30	.77	• 00	.95	.15
	7	.01	00.	.00	00.	.01
	4	• 04	00.	00.	• 00	• 05
	10	• 06	.01	.01	.00	.07
	11	• 09	10.	.01	• 00	.10
	11	.01	• 00	• 00	• 00	.01
	11	• 02	00.	• 00	00.	•03
	11	. 02	.00	• 00	• 00	.02
	11	10.	• 00	• 00	00.	• 02
	11	.01	00.	• 00	00.	.02
	11	• 03	00.	00.	•00	•04
	11	• 04	.01	.01	00.	.05
	6	• 06	.01	.01	• 00	.07
	4	.02	.01	.01	00.	• 04
	9	.02	00.	.00	• 00	.03
	5	• 08	• 05	• 06	.03	.17
	Ş	.01	00.	• 00	.00	•02
	11	• 90	.61	•66	.20	0
	11	• 79	.92	.22	.27	.61

5.00 OFF MIXTURE RATIO ----INTERSTAGE -----3CA 632.0 PSIA NOMINAL PC -----GIMBAL PATTERN ---

REMARKS: Q7 REPLACED BY HEATED COMPONENT Q7H. ROD GAGES Q50 & Q51 ON THE THRUST AND P15 LOCATION RESPECTIVELY RUNS 454-458, AT P15 AND P17 RESPECTIVELY RUNS 459-461 CONE AT P17

CHAMARY OF STATISTICAL ANALYSIS OF SOUMSIIVED DATA

SUMMARY	H	STATISTICAL ANA	ANALYSIS OF N	NORMAL I ZED	DDATA	
TRANS DUCER I D	NO. OF SAMPLES	SAMPLE	STANDARD SMPL UN	DEVI	AT LON MEAN	SAMPLE MEAN + 3(ST DEV MEAN)
		NI (O)	8TU/SQ-FT-9	SEC, (P)	IN PSTA	
	80	00•	00.	0	00	00
	7	90.	00.	0	00.	• 00
	œ	• 06	• 00	0	00.	.07
	80	•00	.01	0	00.	.11
		.17	•04	0	0.	.23
	7	-	• 00	0	.00	02
	~	.02	00.	0	•00	.03
	9	• 03	90.	0	.00	• 04
	œ	• 00	• 00	0	00.	.01
	80	.01	00.	0	•00	.01
	9	• 04	.01	.0	00.	.07
	5	• 06	.01	0	00.	.07
	ĸ	• 02	00.	•	00.	.03
	80	10.	• 00	0	00.	.02
	6 0	• 08	.02	0	.01	.11
	œ	• 00	• 00	0	•00	.01
	7		1.876	2.110	0.798	14.292
	80	S	.83	0	.71	0

5.00 INTERSTAGE ----- OFF MIXTURE RATIO ----632.0 PSIA 3CA GIMBAL PATTERN ---NOWINAL PC -----

REWARKS: ATTEMPT TO DETERMINE RECOVERY TEMPERATURE FOR LARGE DEFLECTIONS. QTH DATA QUESTIONABLE DUE TO POORLY DEFINED GAGE PROPERTIES AT HIGH TEMP. OSI DATA WHEN INSTALLED AT P15 WAS POOR, READINGS REPORTED GENERALLY LESS THAN THE NOISE LEVEL. QSOAP15.Q51AP17 RNS 463-469

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
STANDARD DEVIATION	SMPL UNIV MEAN
SAMPLE	NAME
NO. OF	SAMPLES
TRANSDUCER	OI

(D) IN BTU/SQ-FT-SEC, (P) IN PSIA

1114.200	53.427	177.197	164.330	953.919	11	T07H
14.465	0.492	1.631	1.517	12.990	11	H200
610.0	0.002	100.0	0.007	0.012	σ	0051
0.091	0.005	0.018	0.017	0.075		0000
0.033	0.003	0.011	0.011	0.022	11	0041
0.025	0.003	0.010	600.0	0.015	01	0400
0.070	200.0	0.024	0.022	0.048	11	0037
0.061	900*0	0.018	0.017	0.044	 1	9£00
0.014	0.001	0.002	0.002	0.012	11	0034
0.008	0.001	0.003	0.003	0.005	-1	0033
0.040	0.002	0.005	0.005	0.035	11	2600
0.027	0.002	100.0	0.007	0.021	11	0031
0.015	0.001	0.003	0.003	0.012	7.	0000
0.216	0.005	910.0	0.015	0.202		0025
0.102	0.004	0.012	0.011	0.091	11	0024
0.068	0.002	0.007	900.0	0.062	11	0023
0.025	0.002	900.0	900.0	0.019	10	0022
0.001	000.0	0.000	0.000	0.001	10	P018
0.002	000.0	000.0	000.0	0.002	01	910 d
						-

CASE ------ RUN SERIES 3, LOG 3.3

INTERSTAGE ----- OFF MIXTURE RATIO ----3C 715.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

REMARKS: Q7 REPLACED BY HEATED COMPONENT Q7H. ROD GAGES Q50 & 51 MOUNTED ON TC. THIS SERIES CONSISTS OF 15 RUNS, 8 NOT REPORTED DUE TO POOR COMBUSTOR PERFORMANCE. Q50 AND Q51 AT P17 AND P15 RESPECTIVELY.

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

	+ 3(ST DEV MEAN)
IATION	SMPL UNIV MEAN
ARD DEV	>INO
STAND	SMPL
	•
SAMPLE	NEW
NO . OF	SAMPLES
TRANSDUCER	01

(Q) IN BTU/SQ-FT-SEC. (P) IN PSIA

P016	7	•	0	0	00.	0
P018		•	0	0	00.	0.00
4000	œ	.2		6	.13	•
0100	œ	27.674	1.850	2.049	0.724	8
0022		•		0	00	0.0
9023	9	0	٠	0	00.	0
4005	œ	0	9	0	00.	0
0025	: ∞	اسرا •	<u></u>	0	00.	·
0030	_	0	٧.	0	00.	0
1600	~	0.024	٧.	0	00.	•
0032	8	0	1	0	00.	0
0033	80	0	٦	0	• 00	0
0034	œ	0	÷	0	00.	0
0035	\	0	. ·	0	00.	0
9600	œ	0	٠,	0	• 00	0
9037	œ	0	3	0	00.	0
0400	8	0	9	0	00.	0
0041	œ	0	9	0	10.	0
0500	ĸ	1.	9	0		
1500				0	.01	0
Q07H	~	7	1.283	1.444	.54	1.
T07H	œ	110-775	20.579	22.786	205	136.96

RUN SERIES 3, LOGS 3.3A AND 3.4A CASE ------

MIXTURE RATIO 5.50 Interstage Off	774 REPLACES Q7. ROD GAGES Q50 AND Q51 INSTALLED ON THRUST CONE. ST GOAL,NO TEST VALUES RECORDED. Q50 & 51 POSN NOT SPECIFIED BUT OCATIONS RESPECTIVELY. DIFF RIWN 3.3A & 3.4A IS THE 17H TEMP DES
GIMBAL PATTERN 3CA NOMINAL PC 715.0 PSIA	REMARKS: HEATED Q7H EMPS TABULATED ARE PRETEST R TO BF AT PI7 AND PIS LOC
	APPEA

DESRD.

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

TRANSDUCER ID	NO. OF SAMPLES	SAMPLE MEAN	STAN	TANDARD DEVIATION ME	AT I ON MEAN	SAMPLE MEAN + 3(ST DEV MEAN)
-		N1 (0)	BTU/SQ-FT-	-SEC, (P)	IN PSIA	
0	m	• 00	• 00	• 00	00.	00
P018	4	0.001	0.000	000.0	0.000	0.002
02	5	.01	_	.01	• 00	.03
02	5	• 06	• 00	.01	• 00	• 08
02	2	• 10	• 00	00.	00.	.10
02	S	. 23	.01	•02	• 00	.25
03	5	.01	0	.00	00.	.02
03	5	.01	• 00	.00	.00	.02
03	ĸ	• 04	• 00	• 00	• 00	• 05
03	5	.00	• 00	• 00	.00	.01
03	5	.01	0	.00	• 00	.01
03	<u>د</u>	• 04	• 02	.02	.01	• 08
03	5	• 05	• 00	.00	00.	• 06
0	1 0	.03	• 00	00.	00.	.03
04	2	.01	• 00	00.	• 00	.02
05	2	.12	.02	.02	.01	.16
0.5	ς.	• 00	• 00	• 00	• 00	.01
07	4	C.	9	.32	•66	8
07	4	869.871	.02	.60	0	7

MIXTURE RATIO ----3C 715.0 PSIA NOMINAL PC -----GIMBAL PATTERN ---

BY HEATED COMPONENT Q7H. ROD GAGES Q50 AND Q51 DN THRUST Q7 REPLACED REMARKS:

STRUCTURE APPEAR TO BE LOCATED AT P17 AND P15 LOCATIONS RESPECTIVELY.

⋖	• • • • • • • • • • • • • • • • • • • •	
_	•	
Š	:	
\supset	:	
7		
_		
4	:	
¥		
ž	:	
L	•	
)	1	
<u>^</u>		
7	•	
_	-	
Š	١	
⋖	;	
۲	•	
ڌ		
=	į	
2	1	
-	:	
=		
	•	
5	:	
_	1	
¥	:	
Ē	:	
SUMMARY OF STATISTICAL ANALYSIS OF NURMALIZED DATA	THE RESERVE THE PARTY OF THE PA	

ē.	MEAN + 3(ST DEV MEAN)	
ARD DEV	SMPL UNIV MEAN	
STAND	SMPL	
SAMPLE	MEAN	
NO. OF	SAMPLES	
TRANSDUCER	01	

(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA

00.	00.	.22	.41	0.02	•06	• 09	.15	0.012	.03	•06	.01	.03	.07	• 08	.12	.04	•04	.19	.01	.54	• 43
00	00.	.08	.74	00.	• 00	• 00	00.	0.001	•00	00.	• 00	•00	• 00	•00	• 00	00.	00.	00.	00.	.36	105.203
0	0.	7.	•	0	•	0	?	0.003	0		•	•	0	0	0	0	•	0	0	0.737	
0	0.001	7	7	0	0	•	0	0.002	0	0	0	0	0	0.007	0	0.009	0	0.011	0	5	168.201
• 00	0.003	.97	• 16	.01	• 05	-07	.14	0.008	• 02	.05	.01	.02	• 06	.07	• 09	.03	.02	.18	.00	.43	2
5	*	m	m	. 2	2	S	2	2	\$	Ŋ	2	4	4	2	Ŋ	, ເ	4	ر. د	4	4	4 :
P016	P018	0000	0100	0022	0023	900	0025	0030	0031	0032	0033	0034	0035	9600	4037	0700	0041	0000	1500	H200	T07H

RUN SERIES 4, LOG 4.1 CASE ------

NO DEFLECTION MIXTURE RATIO --- 5.00 632.0 PSIA INTERSTAGE ----- OFF GIMBAL PATTERN ---

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

TRANSDUCER ID	NG. OF SAMPLES	SAMPLE MEAN	STAND! SMPL	INDARD DEVI	AT I ON ME AN	SAMPLE MEAN + 3(ST DEV MEAN)
		8 NI (O)	BTU/SQ-FT-9	SEC, (P)	IN PSIA	
-						
P018	m	00	000	• 00	00	00
0062	٣	• 78	.24	4	.19	9
7500	٣	.84	•	.31	•	.38
9000		0.730		0.0		0.730
9500		• 73	•	•	•	.73
2900	к	.58	• 06	• 09	.05	.74
8500	2	.59	.02	•04	.03	69.
00H1	2	.36	• 04	.07	• 05	.53
Q0H3	E	• 05	• 06	• 08	•04	. 20
00H4	m	.80	.13	.18	.10	.12
00H5	ĸ	.88	• 05	.07	•04	.01
00H7	ĸ	. 72	•	•	•	78
00H8	æ	.75	• 03	• 05	.03	.84
1600	٣	. 83	.13	•10	11.	.16
9f0b	m	• 65	• 07	.10	• 05	.82
7,00	m	• 38	.03	• 05	.02	.46
0008	3	. 75	• 06	•00	• 05	.91
6600	E	.11	. 34	•46	.27	.92
1000		. 56	0	0	0	• 56
00N2	2	• 79	.01	.02	.01	.85
6N00	2	16.	•		•	06
00N5	2	.34	.86	•30	.33	4

S REMARKS: TO DEFINE ENVIRONMENT ON THE EXTERIOR OF AN INOPERATIVE ENGINE NO

CASE ----- RUN SERIES 4. LOG 4.2

MIXTURE RATIO 632.0 PSIA GIMBAL PATTERN ---NOMINAL PC ----- REMARKS: TO DEFINE ENVIRONMENT OF INOPERATIVE ENGINE NO 3

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
IATION	MEAN
ARD DEVI	SMPL UNIV MEAN
STAND	SMPL
SAMPLE	MEAN
ND. OF	SAMPLES
RANSDUCER	01

00	.97	.60	.71	.90	.56	. 51	•00	.90	36	.03	•94	07	1.576	4	.84	.33	.08	.01	00.	4	.40	.52
00.	.14	• 05	.05	.10	.02	.02	.16	.08	.2	.05	0	0	0.052	0	0	7	~	.2	0	0	0	0
0	~	7	٦.	,	9	0	4	7	ະດ	0	0	0	0.091	7	0	•	4	4.	0	0	~	
00.	.23	.07	• 08	•16	.03	.02	.25	.14	•	• 06	0	• 04	0.066	.10	• 06	.35	•30	• 34	00.	.01	.12	•15
0	3	4	S	5	S.	4.	•	9	3	8	6	6.	1.418	9.	. 7	S	.5	6	.0	.2		0.246
4	; 4	ĸ	4	4	4	7	4	4	4	3		ĸ	'n	4	4	4	4	4	2	4	m	4
P018	0002	4000	4000	9000	4000	6900	1H00	Q0H3	Q0H4	Q0H5	9H00	Q0H7	00H8	1600	9000	4077	9600	6000	QONI	00N2	00N3	GNOD

RUN SERIES 4. LOG 4.2A CASE -----

	N OF EXTERIOR GAGE Exit Plane are		SAMPLE MEAN + 3(ST DEV MEAN)		28	0.785	.62	.33	.82	.37	• 94	• 64	.87	.25	.89	.81	.71	. 14	. 52	.19	.24	. 78	.01	• 10	.14	.25	.02	• 14
5.00 OFF	• LOCATIO F NOZZLE	D DATA	AT I ON MEAN		-12	0.075	•04	.12	.80	•	.33	.83	.22	.22	•26	•	• 10	• 02	•24	.08	.17	•38	•00	.02	.02	•04	00.	• 10
RATIO	RUMENTED. ES FWD OF	NORMAL I ZEI	STANDARD DEVI	SEC	. 22	0.131	• 08	.21	.14	•	• 58	.17	• 38	• 38	• 45		• 18	•04	• 42	•14	• 59	• 66	• 00	• 03	• 04	.07	• 00	.17
MIXTURE	ZZLE INST E DISTANC	SIS OF	STAND	8TU/SQ-FT-	9	0	• 05	•15	•64	•	• 45	• 66	.27	• 28	.32	•	• 13	• 03	•30	100	.21	• 48	• 00	.02	• 03	.05	• 00	.13
A 32.0 PSIA	IE DUT WITH ND UN. FULL SCAL ND QM8 (22)	TISTICAL ANALY	SAMPLE	NI (0)	6	S	.48	.95	.40	.37	94	• 14	.21	• 59	• 11	14.	• 39	• 06	• 79	• 54	• 72	• 64	• 00	• 04	• 06	• 13	0	.83
RN 2	2 ENGIN THIS R	OF STA	NO. OF SAMPLES		ķ	m	6	ĸ	2	-	60	2	٣	٣	w	2	æ	w	E.	ĸ	ĸ	m	m	m	٣	m	٤	6
GIMBAL PATTER	REMARKS: NO ED IN DATA FOR 1).QM6 (16).QM7	SUMMARY	TRANSDUCER ID		~	9 × 0 0	5	3	\circ	\circ	0	0	\circ	0	_		~	_	-		_	_	\sim	\sim	N.	\sim	3	ľ

CASE ----- RUN SERIES 4, LOG 4.3

5.00 OFF MIXTURE RATIO ----632.0 PSIA NOMINAL PC ----GIMBAL PATTERN ---

REMARKS: INVESTIGATION OF BASE ENVIRONMENT WITH A SINGLE 7.5 DEG ACTUATOR FAILURE INBOARD ON ENGINE NO 4. (RUNS 234 AND 234A LABLED THE SAME)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
IATION	MEAN
ARD DEV	SMPL UNIV MEAN
STAND	SMPL
SAMPLE	MEAN
NO . OF	SAMPLES
TRANSDUCER	10

RUN SERIES 4, LOG 4.4 CASE ------

5.00 DFF	ACTUATOR FAILURE ON ENGINE NO 3 AT 7.5 DEG WITH 210 INCH HEAT FETTON PATTERN DOFS NOT GIVE MAXIMIM HEATING FOR DUAL 7 5 DEG
MIXTURE RATIO	10 3 AT 7.5
MIXTURE FINTERSTAC	ON ENGINE N
4A 632.0 PSIA	ATOR FAILURE
1 !	DUAL ACTU
GIMBAL PATTERN NOMINAL PC	REMARKS: DUAL A

INIS VEFLECTIUN PATTERN DOES NOT GIVE MAXIMUM HEATING FOR DUAL 7.5 DEG FAIL. SHIELD

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

_						
TRANSDUCER ID	NJ. OF SAMPLES	SAMPLE MEAN	STANDARD SMPL UI	0EV	I AT I ON MEAN	SAMPLE MEAN + 3(ST DEV MEAN)
		8 NJ (0)	TU/SQ-FT-S	SEC. (P)	IN PSIA	
10	4	• 00	00	00.	00	00
01	4	.00	00.	00.	00.	00.
P018	4	00000	000.0	000.0	00000	000.0
00	4	. 92	.25	.57	.78	.29
00	4	.23	.07	•00	•04	.38
8	4	.61	.27	.33	.16	11.
00	4	.54	• 26	.33	• 16	• 05
10	4	• 94	.32	.40	.20	.54
01	4	•15	• 06	•07	.03	.26
10	4	.30	•16	.20	•10	.61
0	4	. 59	.18	.23	.11	.93
0	4	. 42	• 06	• 08	•04	.54
02	4	• 00	.00	00.	• 00	.00
02	4	• 08	• 01	10.	00.	.10
02	4	• 10	.00	• 00	00.	.12
0	4	.18	.02	•03	10.	.23
03	m	• 00	.00	.00	00.	10.
03	4	• 03	00.	10.	00.	• 05
03	m	• 04	10.	10.	000	• 06
03	4	.07	• 02	• 03	.01	.12
03	4	.07	.02	.02	.01	.11
9	4	• 10	•03	• 03	.01	• 15

CASE ------ RUN SERIES 4, LOG 4.5.1A

5.50 OFF MIXTURE RATIO ---INTERSTAGE 2 715.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

REMARKS: INVESIGATION OF OUTBOARD ENGINE OUT WITH DEFLECTION CASE WHICH DOES NOT INCLUDE THRUST STRUCTURE COMPLIANCE. ALSO SEE LOG 4.5.18 FOR ADDITIONAL DATA. NON FLOWING NOZZLE AT POSITION NO 3.

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
ATION	MEAN
STANDARD DEVIATION	NI N
STANDA	SMPL
SAMPLE	MEAN
NO. OF	SAMPLES
TRANSDUCER	01

.98	.58	66.	16.	.53	•62	.15	.96	.27	.05	.15	.91	.98	.12	.29	.07	• 09	.17	•00	.93	0.350	•14
.2	.3	.2	3	.3	4.	.	-	ú	.2	0		0	0	0	0	0	0	0	0	0.017	0
S	•	5	1	7.	6.	7.	6	•	3	0	.2	.2	0	0	0	•	0	0	-	0.038	0
.42	•46	.46	•63	.61	.83	19.	• 29	•	• 46	0	.20	.18	.01	.02	00.	• 00	.01	• 00	.10	0.032	00.
. 18	.47	.12	16.	.38	. 28	114	.50	.36	.19	.15	• 59	69.	.10	.26	• 05	.08	.15	.07	.77	0.300	.12
4	٣	4	5	4	5	2	2	5	4	-	5	5	S	ß	4	5	5	S	S	S	ς.
1000	9002	6000	4000	0000	0000	0100	1100	0013	4100	9015	9100	0017	0023	0025	0031	0032	0044	0053	0054	9005	024T

RUN SERIES 4, LOG 4.5.18

SUMMAKT						
TRANSDUCER ID	NO. OF SAMPLES	SAMPLE	STAND	ARD DEVI	AT I ON ME AN	SAMPLE MEAN + 3(ST DEV MEAN)
		8TU/SQ-FT-	FT-SEC			
0	9	.81	.31	•36	•14	.26
0	\$.60	.23	.27	11.	.93
0015	9	5.408	1.273	1.464	0.598	7.201
0	9	.25	. 42	.48	•19	.84
0	\$.00	• 00	00.	.00	00.
0	2	• 00	• 00	• 00	00.	.02
0	9	.02	.00	00.	• 00	.03
0	9	. 02	00.	• 00	00.	•03
0	9	.03	• 00	00.	00.	•04
0	\$	• 05	• 00	00.	00.	•06
0	9	.13	.00	00.	00.	.13
0	5	.11	.00	• 00	• 00	.12
0	5	.13	• 00	• 00	• 00	. 14
0	\$	• 00	• 00	.00	00.	.00
0	9	.02	00.	00.	• 00	• 03
0	9	• 02	• 00	.00	00.	.02
0	ĸ	.01	• 00	00.	•00	.01
0	9	• 96	• 44	.51	.20	.58
_	2	.71	•10	.34	•24	44.
_	2	• 36	0.0	•	•	• 36

------ RUN SERIES 4, LOG 4.5.2A

CASE

GIMBAL PATTERN --- 2 NOMINAL PC ----- 715.0 PSIA INTERSTAGE -----

5.50 ON REMARKS: OUTBOARD ENGINE OUT ENVIRONMENT WITH DEFLECTION CASES WHICH DO NOT INCLUDE THRUST STRUCTURE COMPLIANCE. SEE LOG 4.5.28 FOR ADDITIONAL DATA. NON-FLOWING NOZZLE AT POSITION NO. 3.

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
IATION	MEAN
ARD DEV	UNIV MEAN
STANDARD	SMPL
SAMPLE	MEAN
NO. OF	SAMPLES
TRANSDUCER	10

1000	7	• 07	.42	.47	7	.61	
0005	~	.81	•66	• 74	.2	•65	
0003	~	. 48	.61	.68	.2	.26	
0	~	.83	.43	649	7	•39	
00	· ~	.58	.26	. 29	7	16.	
00	9	.77	.21	.25	7	• 08	
00	_	.53	16.	• 02	.	69.	
0	1	.24	.71	.79	6	. 14	
0100	~	.23	.37	.42	1.	.71	
0	~	.11	649	. 55	2.	.74	
0	·~	• 79	.01	.14	4.	60.	
01	_	11.	64.	.55	.2	.81	
01	_	.54	.31	.48	Š	.21	
0	_	96.	.38	.43	~	.45	
10	~	.29	.13	.15	0	.46	
10	~	• 06	.57	.64	• 2	.80	
02	2	.97	.20	.23	7	.29	
02	~	.88	.05	.06	0	.95	
9	9	.39	.07	• 08	0	64.	
05	_	.39	.35	.40		.85	
05	7	0.964	0.113	0.127	0.048	1.109	
0110	4	.26	.17	.21	7	.59	
OILLA	2	. 51	_	.19	7	~	

CASE ------ RUN SERIES 4, LOG 4.5.28

COTBOARD ENGINE OUT ENVIRONMENT WITH DEFLECTION CASE WHICH DOES NOT	INCLUDE THRUST SRUCTURE COMPLIANCE. SEE LOG 4.5.2A FOR ADDITIONAL DATA. INTERSTAGE GAGES 26-29	AT 29.2 DEGREES. NON-FLOWING NOZZLE IN POSITION NO 3.
OUTBOARD ENGINE C	RE COMPLIANCE. SE	PLOWING NOZZLE IN
REMARKS:	THRUST SRUCTUR	DEGREES. NON-F
	INCLUDE	AT 29.2

5.50 ON

MIXTURE RATIO ----

2 715.0 PSIA

GIMBAL PATTERN ---NOMINAL PC ----- SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

TRANS DUCER I D	NO. OF SAMPLES	SAMPLE MEAN	STANDA	TANDARD DEVÍAT MPL UNIV M	ATION	SAMPLE MEAN + 3(ST DEV MEAN)
٠.		8TU/SQ-FT-	T-SEC	·		
0.2	9	• 02	.01	• 02	• 00	• 04
0022	9	0.144	0.033	0.038	0.016	0.191
02	4	.11	.39	64.	.24	. 86
02	m	.23	• 09	.12	.07	44
02	4	• 38	.45	.57	.28	.24
02	5	.71	.51	.61	.27	.53
02	9	•30	• 05	•06	.02	• 38
03	9	.07	.02	•02	.01	01.
03	9	.27	.12	.13	.05	44.
03	2	66.	.28	.34	.15	. 45
03	9	14.	• 04	• 05	.02	.54
03	9	. 32	.17	.20	•08	.57
03	9	.85	•35	.40	•16	.35
03	9	.22	• 06	• 06	•02	.30
04	9	. 88	11.	. 12	•05	• 04
04	8	.12	.02	• 02	.01	.15
04	9	.24	.07	• 08	.03	.34
12	2	. 52	.01	.02	.01	. 58
12	7	• 65	• 06	. 11	.08	.89
12	7	• 68	• 05	• 08	•06	.87

CASE ----- RUN SERIES 5, LOG 5.1

2.00	OFF	
MIXTURE RATIO	SSTAGE	
XIW S	. PC 632.0 PSIA INTER	::::
GIMBAL PATTERN 5	NOWINAL PC	
O I M	XOZ	

REMARKS: INVESTIGATION OF SINGLE ACTUATOR FAILURE EFFECTS. ACTUATOR FAILED AT 5 DEGREES INBOARD. NOTE CASES 216, 216A AND 218, 218A

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
IATION	MEAN
ARD DEV	SMPL UNIV MEAN
STAND	SMPL
SAMPLE	MEAN
NO. 0F	SAMPLES
TRANSDUCER	01

00.	00.	• 00	.37	6.920	.82	7.217	.46	9.183	64.	<u>.</u> 90	.46	.31	.77	.33	.77	. 42	.84	.02	.04	• 05	.07	.05	• 03
ō	Õ	Ö	~	2	~	0	.2	0.186	0	•19	•	0	.21	•	0	•	•00	• 00	00.	00.	• 00	. •	0
• 00	• 00	• 00	• 74		•65	0	•	0.589	0	.60		0	• 6	80	•	0	.3	.01	• 00	.01	.01	•	00.
0	0	0.	••	•	•	0	•	0.543	0	.55		0	•	.74	0		.29	.01	00.	•01	.01	0	0.004
• 00	.00	• 00	.63	.17	.20	.21	.82	8.625	.49	.333	.18	.31	.12	.56	.77	. 42	. 55	.01	.03	03	• 06	.03	0.034
01	10	11	6	01	01		10	01	_	10	01	-	10	10	-4	-	11	11	. 11	10	11	6	80
910d	0	0	00	00	00	00	00	6000	10	01	01	0	0	01	0	0.7	01	02	02	02	02	03	03
	-	3	6	-						SI	73)-S	SA-	-00	61	!					-¢.		

, 106 5.1
RUN SERIES 5,
CASE

	ACTUATOR FAILED AT
MIXTURE RATIO 5.00 INTERSTAGE OFF	IGATION OF SINGLE ACTUATOR FAILURE EFFECTS. ACTUATOR FAILED AT. 218A
ATTERN 5 PC 632.0 PSIA	INVESTIGATION OF SINGLE AND 218. 218A
GIMBAL PA NOMINAL R	REMARKS: 5 DEGREES INBOARD. NOTE CASES 216, 216A

(CONTINUED FROM PREVIOUS PAGE)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)		\$£0-0
ATION Mean	IN PSIA	0.001
STANDARD DEVIATION SMPL UNIV MEAN	SEC, (P)	0.004 0.004 0.001
STANDI	(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA	0.004
SAMPLE MEAN	(O) IN B	0.031
NO. OF SAMPLES		11
TRANSDUCER ID		9600
TRANSDUCER ID		2000

CASE ----- RUN SERIES 5, LOG 5.2

	٠	
MIXTURE RATIO 5.00	INTERSTAGE OFF	
!	!	:
- 01		:
RAT	EE	
URE	RSTA	
41XT	INTE	
-		•
	VI.	ŀ
	ď	
	2.0	i :
9	63	
1	NOMINAL PC 632.0 PSIA	
GIMBAL PATTERN		:
TEI	i	:
PAI	۵	:
٩F	NAL	
I WB	S	
ပ	Z	

TO INVESTIGATE THE EFFECTS OF SINGLE ACTUATOR FAILURE INBOARD. ACTUATOR REMARKS: Degrees. FAILED AT

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 31ST DEV MEAN)
IATION	MEAN
STANDARD DEVIATION	\ \ \ \ \
STAND	SMPL
SAMPLE	MEAN
NO. OF	SAMPLES
TRANSDUCER	10

00	0000	.00	.42	.48	.88	.87	.65	.22	.84	. 18	.50	.74	.24	.78	.86	.41	.38	.02	•06	.08	.12	• 0.6	• 0 4
00.	00000	900	.30	.43	.78	.31	.36	•38	.22	• 09	.21	• 48	.25	11.	E1.	.24	.26	00.	900	00.	00.	00.	00.
• 00	00000	•00	.97	.36	• 08	.88	•00	.22	•59	.23	.55	.97	.81	.34	.27	.54	.84	10.	.01	•02	0.	.01	• 00
00	00000	00.	96.	. 25	.85	. 79	66.	.13	.52	.21	649	.77	. 75	.32	.21	.46	. 78	.01	01	.01	.02	10	80
0	000.0	0	49	19	52	93	• 56	• 06	.17	.91	.87	• 28	.46	• 45	.45	• 68	. 58	10.	• 04	• 06	0	.03	0.040
80	6	01	01	10	~	80	6	01	7		~	4	10	01	4	2	01	01	01	5	01	4	m
P016	P017	P018	0001	0005	0003	4000	0008	6000	0100	0011	0013	5100	5100	9100	4000	0018	6100	0052	0023	9200	0025	0034	9035

5.2	
1 06	
5	
SERIES	
A NO N	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CASE	

	INBUARD. ACTUATOR
MIXTURE RATIO 5.00 INTERSTAGE OFF	GATE THE EFFECTS OF SINGLE ACTUATOR FAILURE INBUARD. ACTUATOR
GIMBAL PATTERN 6 NOMINAL PC 632.0 PSIA	REMARKS: TO INVESTIGATE THE EFF FAILED AT 3 DEGREES.

(CONTINUED FROM PREVIOUS PAGE)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
IATION	MEAN
STANDARD DEVIATION	^IND
STAND	SMPL
SAMPLE	4 EAN
NO. OF	SAMPLES
TRANSDUCER	10

RUN SERIES 6, LOG 6.1 CASE -----

5.00 OFF INTERSTAGE -----MIXTURE RATIO ----632.0 PSIA 44 GIMBAL PATTERN ---NOMINAL PC -----

REMARKS: INSTRUMENTED FLOWING NOZZLE INSTALLED WITH ONZ OPPOSITE ENGINE NO EVALUATE HEATING OF NOZZLE LIP WITH DUAL 7.5 DEG ACTUATOR FAILURE

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

NAMA H IGMAN	+ 3(ST DEV MEAN)
IATION	MEAN
DARD DEV	SMPL UNIV MEAN
STAN	SMPL
SAMPLE	MEAN
NO. OR	SAMPLES
TRANSDUCER	10

				Andrea . The state of the state of					•							THE STREET STATE BUILDINGS			:
.15	.19	• 07	3,921	.57	.14	.98	.08	.21	.54	.59	.01	•04	• 0 5	.08	.01	•04	•04	•06	0.0
•	•		0.328	: •	•	•	•			: •	•	•	•	•	•			•	•
•	. •	•	0.869	1 •	•	•	. •	•	•	: •	•	•	•	•	0.002	: •		•	. (
•	7	6	0.772	80	• 2	4	• 2	4.	•		0	0	·.	0	0	0	0	•	C
•	. •	•	2.936		3.869	2.633	1.821	2.771	•	1.426	•	•	•	•	0.017	•	•	•	•
5	10	C	7	2	01	6	10	10	6	61	တ	10	10	10	σ	6	10	80	α
1000	N002	0005	0003	0004	8000	0100	0013	0015	0016	6100	4022	0023	0024	0025	0034	0035	9600	0037	2700
•	_	40) -						9	D	73-	-S <i>I</i>	_ (006	61				

CASE ----- RUN SERIES 6, LOG 6.2

	INSTRUMENTED FLOWING NOZZLE INSTALLED WITH ONZ OPPOSITE ENGIV
- 0FF	H 0N2 0P
	EIT.
INTERSTAGE	INSTALLE
INTE	NOZZLE
632.0 PSIA	FLOW ING
- 63	ENTED
PC 632.0 PSIA INTERSTAGE OFF	INSTRUME
NOM INAL P	RKS:
	REMA

⁵ EVALUATE HEATING OF THE NOZZLE LIP WITH NO ENGINE DEFLECTIONS. LIP GAGES INSTALLED IN POSN

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

TRANS DUCER I D	NO. OF SAMPLES	SAMPLE MEAN	STANDARD SMPL UN	ARD DEVIATIONIV ME	TION ME AN	SAMPLE MEAN + 3(ST DEV MEAN)
			(0) IN BT	BTU/SQ-FT-S	EC	
G	ų	-	7	r	Č	C
) LC	. 44	• 7 •	, r	• C	• 0
0005	· •	2.200	0.628	0.722	0.295	4 to 000 to 0000
00	9	• 04	.51	. 5	. 24	. 75
00	9	649	.46	• 5	.21	41.
00	Ç	60.	.33	'n	.15	.56
01	4	96.	.31	Ψ,	.19	.54
01	\$	•39	.14		• 06	.59
01	9	.41	.92	0	. 43	.70
01	9	.16	.07	0	.03	• 26
0	9	• 04	.07	0	• 03	. 15
02	9	• 01	.00	0	• 00	.01
02	4	• 05	00.	C	.00	•06
02	٥.	• 06	00.	C	00	•07
02	9	.11	.02	0	.01	.14
03	9	• 02	• 00	0	00.	• 02
03	ዯ	• 04	.00	0	00.	•06
03	9	• 05	00.	0	• 00	• 0 6
03	Ą	• 07	.00	0	.00	• 0.8
04	9	.01	• 00	0	• 00	.01

5.00	OFF
MIXTURE RATIO	INTERSTAGE
NO DEFLECTION	632.0 PSIA
GIMBAL PATTERN	NOMINAL PC

REMARKS: TESTS TO DETERMINE THRUST STRUCTURE HEATING WITH A LARGE HEAT SHIELD INTENDED TO SIMULATE A HEAT SHIELD FROM THE 6 ENGINE S-IV CONFIGURATION. ALTHOUGH 0.338 WAS LISTED ON ALL DATA SHEETS, THE DIAM. USED WAS PROB. 0.388 AS LISTED IN RUNS 175-183, LOG 8.1

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
IATION	MEAN
ARD DEV	SMPL UNIV MEAN
STAND	SMPL
SAMPLE	MEAN
. 0F	LES
NO.	SAMP
TRANSDUCER	10

									į						{			
.76	•38	.22	.24	.72	•00	•39	.58	.13	.98	.26	640	•26	•03	• 04	.10	.02	.02	.70
.40	•29	. 55	.61	.20	.18	.36	• 05	.31	111	60.	• 15	•20	00.	00.	00.	00.	• 00	. 22
; ●	•	•	•	•	•	•	•	•	1 •	•	•	•	•	•		•	•	0.443
x	• 6	7	F.	6	63	1	~	•	3	• 1	.2	7.	0	0	P	0	0	6
•	•	•	; ●		•			•	(●		•		•	•	; •	•		•
9	9	9		2	9	9	\$	9	9	5	5	9	5	Ŋ	9	9	5	
0003	4000	0008	6000	0010	0011	0013	4100	0015	9100	0017	0018	0019	0023	9024	0025	0031	0032	0052
_	4	2 -	· · · · · · · · · · · · · · · · · · ·						S	D7 :	3-:	SA-	-0	06:	4			
	6 4.562 0.855 0.983 0.402 5.76	Q003 6 4.562 0.855 0.983 0.402 5.76 Q004 6 4.514 0.619 0.712 0.291 5.38	6 4.562 0.855 0.983 0.402 5.76 6 4.514 0.619 0.712 0.291 5.38 6 2.560 1.185 1.362 0.556 4.22	Q003 6 4.562 0.855 0.983 0.402 5.76 Q004 6 4.514 0.619 0.712 0.291 5.38 Q008 6 2.560 1.185 1.362 0.556 4.22 Q009 6 3.394 1.311 1.508 0.616 5.24	Q003 6 4.562 0.855 0.983 0.402 5.76 Q004 6 4.514 0.619 0.712 0.291 5.38 Q008 6 2.560 1.185 1.362 0.556 4.22 Q009 6 3.394 1.311 1.508 0.616 5.24 Q010 5 3.105 0.386 0.459 0.205 3.72	Q003 6 4.562 0.855 0.983 0.402 5.76 Q004 6 4.514 0.619 0.712 0.291 5.38 Q008 6 2.560 1.185 1.362 0.556 4.22 Q009 6 3.394 1.311 1.508 0.616 5.24 Q010 5 3.105 0.386 0.459 0.205 3.72 Q011 6 2.546 0.392 0.451 0.184 3.09	Q003 6 4.562 0.855 0.983 0.402 5.76 Q004 6 4.514 0.619 0.712 0.291 5.38 Q008 6 2.560 1.185 1.362 0.556 4.22 Q009 6 3.394 1.311 1.508 0.616 5.24 Q010 5 3.105 0.386 0.459 0.205 3.72 Q011 6 2.546 0.392 0.451 0.184 3.09 Q013 6 2.289 0.782 0.899 0.367 3.39	Q0003 6 4.562 0.855 0.983 0.402 5.76 Q0004 6 4.514 0.619 0.712 0.291 5.38 Q0008 6 2.560 1.185 1.362 0.556 4.22 Q009 6 3.394 1.311 1.508 0.616 5.24 Q010 5 3.105 0.386 0.459 0.205 3.72 Q011 6 2.546 0.392 0.451 0.184 3.09 Q013 6 2.289 0.782 0.899 0.367 3.39 Q014 6 1.437 0.107 0.123 0.050 1.58	0003 6 4.562 0.855 0.983 0.402 5.76 0004 6 4.514 0.619 0.712 0.291 5.38 0008 6 2.560 1.185 1.362 0.556 4.22 0009 6 3.394 1.311 1.508 0.616 5.24 0010 5 3.105 0.386 0.459 0.205 3.72 0011 6 2.546 0.386 0.451 0.184 3.09 0013 6 2.289 0.782 0.899 0.367 3.39 0014 6 1.437 0.107 0.123 0.050 1.58 0015 6 3.182 0.678 0.780 0.318 4.13	Q0003 6 4.562 0.8855 0.983 0.402 5.78 Q0004 6 4.514 0.619 0.712 0.291 5.38 Q0008 6 2.560 1.185 1.362 0.556 4.22 Q0009 6 3.394 1.311 1.508 0.616 5.24 Q010 5 3.105 0.386 0.459 0.205 3.72 Q011 6 2.546 0.392 0.451 0.184 3.09 Q013 6 2.289 0.782 0.899 0.367 3.39 Q014 6 1.437 0.107 0.123 0.050 1.58 Q015 6 2.451 0.375 0.432 0.176 2.98	Q0003 6 4.562 0.8855 0.983 0.402 5.78 Q0004 6 4.514 0.619 0.712 0.291 5.38 Q0008 6 2.560 1.185 1.362 0.556 4.22 Q0009 6 3.394 1.311 1.508 0.616 5.24 Q010 5 3.105 0.386 0.459 0.205 3.72 Q011 6 2.546 0.392 0.451 0.184 3.09 Q013 6 2.289 0.782 0.899 0.367 1.58 Q014 6 1.437 0.107 0.123 0.050 1.58 Q015 6 2.451 0.678 0.318 4.13 Q016 6 2.451 0.375 0.099 1.26 Q017 5 0.965 0.176 0.099 1.26	Q0003 6 4.562 0.855 0.983 0.402 5.76 Q0004 6 4.514 0.619 0.712 0.291 5.38 Q0008 6 2.560 1.185 1.362 0.556 4.22 Q000 6 3.394 1.311 1.508 0.616 5.24 Q010 5 3.105 0.386 0.459 0.616 5.24 Q011 6 2.546 0.382 0.451 0.184 3.99 Q013 6 2.289 0.782 0.899 0.367 3.39 Q014 6 1.437 0.107 0.123 0.050 1.58 Q015 6 2.451 0.050 0.367 2.98 Q016 6 2.451 0.050 0.176 2.98 Q017 5 0.965 0.176 0.099 1.499 Q017 5 0.099 0.155 1.499 Q018 5 1.034 0.221 0.099 1.499	Q0003 6 4.562 0.855 0.983 0.402 5.76 Q0004 6 4.514 0.619 0.712 0.291 5.38 Q0008 6 2.560 1.185 1.362 0.556 4.22 Q0009 6 3.394 1.311 1.508 0.616 5.24 Q010 5 3.105 0.386 0.459 0.616 5.24 Q011 6 2.546 0.392 0.451 0.184 3.09 Q014 6 2.289 0.782 0.899 0.367 3.39 Q014 6 1.437 0.107 0.123 0.050 1.58 Q015 6 2.451 0.678 0.367 2.98 Q015 6 2.451 0.375 0.432 0.176 2.98 Q018 5 0.965 0.186 0.221 0.099 1.499 Q019 6 1.639 0.291 0.511 0.509 2.26	Q003 6 4.562 0.855 0.983 0.402 5.76 Q004 6 4.514 0.619 0.712 0.291 5.38 Q008 6 2.560 1.185 1.362 0.556 4.22 Q010 6 3.394 1.311 1.508 0.616 5.24 Q010 5 3.105 0.386 0.459 0.205 3.72 Q011 6 2.546 0.392 0.451 0.184 3.39 Q013 6 2.289 0.782 0.899 0.367 3.39 Q014 6 1.437 0.107 0.123 0.050 1.58 Q015 6 2.451 0.678 0.367 2.98 Q017 5 0.056 0.176 0.376 0.176 2.98 Q018 5 0.067 0.176 0.099 1.24 Q019 6 1.639 0.0445 0.099 1.49 Q019 6 1.639 0.062 0.099 1.49 Q029 <t< td=""><td>Q003 6 4.562 0.855 0.983 0.402 5.76 Q004 6 4.514 0.619 0.712 0.291 5.38 Q008 6 2.560 1.185 1.362 0.556 4.22 Q009 6 3.394 1.311 1.508 0.616 5.24 Q010 5 3.105 0.386 0.459 0.616 5.24 Q011 6 2.546 0.392 0.451 0.184 3.09 Q013 6 2.289 0.782 0.899 0.367 3.39 Q014 6 1.437 0.107 0.123 0.050 1.58 Q015 6 3.182 0.678 0.367 3.38 Q016 6 2.451 0.375 0.432 0.176 2.98 Q018 5 0.965 0.186 0.209 0.126 0.099 1.413 Q019 6 2.451 0.375 0.099 0.126 0.099 1.413 Q019 6 1.639 0.067</td><td>Q003 6 4.562 0.855 0.983 0.402 5.76 Q004 6 4.514 0.619 0.712 0.291 5.38 Q008 6 2.560 1.185 1.362 0.556 4.22 Q009 6 3.394 1.311 1.508 0.616 5.24 Q010 5 3.105 0.386 0.459 0.616 5.24 Q011 6 2.546 0.382 0.451 0.184 3.09 Q013 6 2.289 0.782 0.899 0.367 3.39 Q014 6 1.437 0.107 0.123 0.050 1.58 Q015 6 3.182 0.678 0.367 3.39 Q016 6 2.451 0.346 0.318 4.13 Q018 5 0.985 0.186 0.346 0.176 2.26 Q019 6 1.634 0.221 0.099 1.49 Q024 5 0.005 0.005 0.005 0.005 Q024 <t< td=""><td>Q0003 6 4.562 0.855 0.993 0.402 5.38 Q0004 6 4.514 0.619 0.712 0.291 5.38 Q0008 6 2.560 1.185 1.362 0.556 4.22 Q010 5 3.394 1.311 1.508 0.616 5.24 Q011 6 2.546 0.386 0.459 0.205 3.72 Q013 6 2.589 0.782 0.084 3.39 Q014 6 2.289 0.782 0.084 3.39 Q015 6 3.182 0.678 0.367 3.13 Q015 6 2.451 0.489 0.367 1.26 Q018 5 0.945 0.186 0.318 4.13 Q018 5 1.034 0.205 0.099 1.45 Q024 5 0.040 0.004 0.009 0.009 0.009 Q024 5 0.040 0.001 0.003 0.004 0.009 0.003 0.009 Q024</td><td>Q0003 6 4.514 0.619 0.712 0.291 5 Q0004 6 2.560 1.185 1.362 0.291 5 Q0008 6 2.560 1.185 1.362 0.556 4 Q010 5 3.105 0.386 0.459 0.205 3 Q011 6 2.546 0.386 0.451 0.184 3 Q014 6 1.437 0.107 0.123 0.050 1 Q015 6 2.289 0.678 0.451 0.184 4 Q015 6 3.182 0.678 0.123 0.050 1 Q016 6 2.451 0.375 0.432 0.176 2 Q018 5 1.634 0.281 0.346 0.176 1 Q019 6 1.639 0.245 0.346 0.099 1 Q024 5 0.040 0.006 0.007 0.009 Q024 5 0.040 0.005 0.003 0.002 0.003</td></t<></td></t<>	Q003 6 4.562 0.855 0.983 0.402 5.76 Q004 6 4.514 0.619 0.712 0.291 5.38 Q008 6 2.560 1.185 1.362 0.556 4.22 Q009 6 3.394 1.311 1.508 0.616 5.24 Q010 5 3.105 0.386 0.459 0.616 5.24 Q011 6 2.546 0.392 0.451 0.184 3.09 Q013 6 2.289 0.782 0.899 0.367 3.39 Q014 6 1.437 0.107 0.123 0.050 1.58 Q015 6 3.182 0.678 0.367 3.38 Q016 6 2.451 0.375 0.432 0.176 2.98 Q018 5 0.965 0.186 0.209 0.126 0.099 1.413 Q019 6 2.451 0.375 0.099 0.126 0.099 1.413 Q019 6 1.639 0.067	Q003 6 4.562 0.855 0.983 0.402 5.76 Q004 6 4.514 0.619 0.712 0.291 5.38 Q008 6 2.560 1.185 1.362 0.556 4.22 Q009 6 3.394 1.311 1.508 0.616 5.24 Q010 5 3.105 0.386 0.459 0.616 5.24 Q011 6 2.546 0.382 0.451 0.184 3.09 Q013 6 2.289 0.782 0.899 0.367 3.39 Q014 6 1.437 0.107 0.123 0.050 1.58 Q015 6 3.182 0.678 0.367 3.39 Q016 6 2.451 0.346 0.318 4.13 Q018 5 0.985 0.186 0.346 0.176 2.26 Q019 6 1.634 0.221 0.099 1.49 Q024 5 0.005 0.005 0.005 0.005 Q024 <t< td=""><td>Q0003 6 4.562 0.855 0.993 0.402 5.38 Q0004 6 4.514 0.619 0.712 0.291 5.38 Q0008 6 2.560 1.185 1.362 0.556 4.22 Q010 5 3.394 1.311 1.508 0.616 5.24 Q011 6 2.546 0.386 0.459 0.205 3.72 Q013 6 2.589 0.782 0.084 3.39 Q014 6 2.289 0.782 0.084 3.39 Q015 6 3.182 0.678 0.367 3.13 Q015 6 2.451 0.489 0.367 1.26 Q018 5 0.945 0.186 0.318 4.13 Q018 5 1.034 0.205 0.099 1.45 Q024 5 0.040 0.004 0.009 0.009 0.009 Q024 5 0.040 0.001 0.003 0.004 0.009 0.003 0.009 Q024</td><td>Q0003 6 4.514 0.619 0.712 0.291 5 Q0004 6 2.560 1.185 1.362 0.291 5 Q0008 6 2.560 1.185 1.362 0.556 4 Q010 5 3.105 0.386 0.459 0.205 3 Q011 6 2.546 0.386 0.451 0.184 3 Q014 6 1.437 0.107 0.123 0.050 1 Q015 6 2.289 0.678 0.451 0.184 4 Q015 6 3.182 0.678 0.123 0.050 1 Q016 6 2.451 0.375 0.432 0.176 2 Q018 5 1.634 0.281 0.346 0.176 1 Q019 6 1.639 0.245 0.346 0.099 1 Q024 5 0.040 0.006 0.007 0.009 Q024 5 0.040 0.005 0.003 0.002 0.003</td></t<>	Q0003 6 4.562 0.855 0.993 0.402 5.38 Q0004 6 4.514 0.619 0.712 0.291 5.38 Q0008 6 2.560 1.185 1.362 0.556 4.22 Q010 5 3.394 1.311 1.508 0.616 5.24 Q011 6 2.546 0.386 0.459 0.205 3.72 Q013 6 2.589 0.782 0.084 3.39 Q014 6 2.289 0.782 0.084 3.39 Q015 6 3.182 0.678 0.367 3.13 Q015 6 2.451 0.489 0.367 1.26 Q018 5 0.945 0.186 0.318 4.13 Q018 5 1.034 0.205 0.099 1.45 Q024 5 0.040 0.004 0.009 0.009 0.009 Q024 5 0.040 0.001 0.003 0.004 0.009 0.003 0.009 Q024	Q0003 6 4.514 0.619 0.712 0.291 5 Q0004 6 2.560 1.185 1.362 0.291 5 Q0008 6 2.560 1.185 1.362 0.556 4 Q010 5 3.105 0.386 0.459 0.205 3 Q011 6 2.546 0.386 0.451 0.184 3 Q014 6 1.437 0.107 0.123 0.050 1 Q015 6 2.289 0.678 0.451 0.184 4 Q015 6 3.182 0.678 0.123 0.050 1 Q016 6 2.451 0.375 0.432 0.176 2 Q018 5 1.634 0.281 0.346 0.176 1 Q019 6 1.639 0.245 0.346 0.099 1 Q024 5 0.040 0.006 0.007 0.009 Q024 5 0.040 0.005 0.003 0.002 0.003

RUN SERIES 8, LOG 8.1 AND 8.2 CASE -----

REMARKS: NOZZLE EXIT PLANE BASE PRESSURE USING PROBES PARALLEL TO (SERIES 8.2 5.00 OFF INTERSTAGE -----MIXTURE RATIO GIMBAL PATTERN --- NO DEFLECTION 632.0 PSIA NOW INAL PC -----

RNS 179-183) AND NORMAL TO (SERIES 8.1 RUNS 175-178) THE NOZZIE CENTERLINE. PROBE MOUNTED BETWEEN ENGINES 2,3 AND 5.

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

TRANS DUC ER ID	NO. OF SAMPLES	SAMPLE MEAN	STANDAF	ARD DEVIAT	AT I ON ME AN	SAMPLE MEAN + 3(ST DEV MEAN)
		(O) IN	BTU/SQ-FT-	SEC, (P)	IN PSIA	
S	œ	.08	• 02	• 02	00	10
01	σ	• 00	• 00	00.	• 00	00.
P018	ው	000 • 0	0.000	00000	000.0	000.0
00	o.	.27	.33	•36	.12	€ 9 €
00	6	•69	.48	.53	.17	.22
00	6	.12	• 79	.87	.29	66.
00	Œ.	• 08	.83	.91	.30	00.
00	6	• 06	.52	.57	•19	•64
00	σ	.63	.54	600	• 19	.22
0	6	.50	.24	•26	• 08	• 76
0	О	• 19	• 48	• 53	.17	.72
01	6	.37	.27	•29	• 09	.67
0	σ	.13	•29	.32	.10	•46
0	æ	• 05	.13	•15	30.	.20
10	σ	.57	.36	.40	(()	16.
02	c	.01	• 00	• 00	00.	.01
02	σ	• 04	• 00	00.	00.	.05
02	6	• 09	.02	• 02	00.	.12
03	œ	.01	00.	00.	.00	.02
03	6	• 02	00.	.01	.00	.03
03	σ	\mathcal{C}	• 00	• 00	• 00	• 0.5

SD73-SA-0061 Rev July 6, 1973

VACUUM IN THIS REMARKS: INVESTIGATION OF POSSIBLE BOUNDARY LAYER EFFECTS. FILLER MATERIAL REMOVED FROM TURBINE EXHAUST MANIFOLD AND INJECTION HOLES, SO THAT THE INITIAL VOLUME WOULD TEND TO REMOVE A PORTION OF THE NOZZLE BOUNDARY LAYER

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

	P016	σ	00.	0.001	•	0000	Ō
: 	P017	6	00:	0.000	•	00000	•
44	P018	6	• 00	000.0	•	00000	0
. -	0001	6	1.006	0.326	0.356	0.119	1.36
	2000	6	•25	0.391	1 •	0.143	9
	0003	œ	90	0.715	•	0.280	•
	4000	ထ	.40	0.564	•	0.221	0
· · · · · · · · · · · · · · · · · · ·	8000	6	.01	0.422		0.154	4.
	6000	6	.31	0.468		0.171	Φ.
	0011	6	.55	0.219	•	0.080	7.
S D	0013		61.	0.304	•	0.129	10
73	0015	6	.81	0.398	•	0.145	.2
- \$	0016	9	.31	0.172	•	0.081	7.
A -	0017	6	.05	0.408	•	0.149	4.
00	0019	6	66.	0.285	•	0.104	Ψ,
61	0022	6	01	0.004	•	0.002	0
Company of a section of the section	0023	<u> </u>	.05	0.007	· •	0.003	•
	0024	6	.10	0.055	•	0.020	7
	0025	6	•16	0.059	•	0.021	.2
:	0030	.	00.	0.003	•	0.001	0
	0034	6	.02	0.004	•	0.002	•
	0035		• 06	0.004	•	0.002	•

CASE ------ RUN SERIES 9, LOG 9.1.2

5.00 OFF INTERSTAGE -----NO DEFLECTION MIXTURE RATIO ----632.0 PSIA NOMINAL PC -----GIMBAL PATTERN ---

REMOVED FROM TURBINE EXHAUST MANIFOLD AND INJECTION HOLES, SO THAT THE INITIAL VACUUM IN THIS VOLUME WOULD TEND TO REMOVE A PORTION OF THE NOZZLE BOUNDARY LAYER REMARKS: INVESTIGATION OF POSSIBLE BOUNDARY LAYER EFFECTS. FILLER MATERIAL

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

				1		
TRANSDUCER ID	NO. OF SAMPLES	SAMPLE MEAN	STANDA	ARD DEVIA UNIV	NT I ON ME AN	SAMPLE MEAN + 3(ST DEV MEAN)
		8 NI (C)	TU/S0-FT-	SEC, (P)	IN PSIA	
1004	œ	.02	Ü	Ċ	Ċ	,
P 002	· ~	0.031	0.004	0.00	200.0	0.027
P003	7	• 02	00	00	000	03
P005	~	• 02	.00	00	000	.02
P006	တ	• 02	.00	• 00	00.	• 02
P007	æ	• 02	.00	.00	00.	• 0 2
P008	œ	• 02	.00	• 00	00.	0.2
P011	9	• 02	00.	.00	00.	03
6000	σ	•13	.61	.67	.22	86
0000	σ	.42	.51	.56	.18	9 9
0008	6	• 04	.28	.30	.10	.35
1100	œ	.79	.34	.38	.13	919
0013	6.	9.1.	.43	.47	• 15	• 65
0015	6	• 03	.53	55.8	•19	.61
0016	5	• 62	.45	٠ ري ري	.24	.35
6100	ၹ	.58	.32	.35	.12	96.
00.30	~	.00	.00	00.	.00	.01
0031	σ	• 02	.01	.01	00.	03
0032	σ	• 05	.02	• 02	00.	.07
9600	80	• 05	• 01	.01	• 00	•06
0.03.7	80	• 07	~	.01	0	60 •

CASE ----- RUN SERIES 11, LOG 11.1

5.00	. OFF	
011	1 1 1 1	* 1900 - 100 100
MIXTURE RATIO 5.00	INTERSTAGE	The second secon
5 A	NOMINAL PC 632.0 PSIA	The state of the s
GIMBAL PATTERN 5A	1 1 1 1 1	
GIMBAL PAT	NOMINAL PC	

SIMULATION OF A 5 DEGREE ACTUATOR FAILURE OUTBOARD ON ENGINE NUMBER REMARKS:

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(S) DEV MEAN)
IATION	E A
STANDARD DEVIATION	>1 2 2 3
STANDA	1 1 1 1 1 1 1
SAMPLE	MERAN
NO. OF	SAMPLES
TRANSDUCER	2

										1									
.85	•64	.83	9.153	40	•02	.13	.27	•03	• 06	•08	.02	•03	-07	• 08	•00	.03	.11	• 0 2	.28
.13	.27	.03	0.489	:07	00.	.01	• 02	00.	• 00	00.	00.	00.	• 00	00.	.00	00.	.01	00.	.12
333	68	0.7	1.197	16	00.	.04	0.5	00.	.01	OI.	00.	.01	01	01	01	000	02	00	.29
•			1.041	i -	•	•		•	•			•		_		_		_	•
44.	.81	• 73	7.687	6.1.	.01	.07	.19	• 02	• 04	• 06	.01	.02	• 05	• 06	• 08	.02	• 08	.01	. 91
9	9	5	9		9	9	9	9	9	9	5	9	9	9	9	2	5	5	9
0001	0005	0003	4000	0019	0022	4007	0025	0600	0031	0032	0033	0034	0035	0036	0037	0000	0042	0043	9700

RUN SERIES 11, LOG 11.2 CASE ---

	NUMB
	ENGINE
	N C
- 0FF	FAILURE OUTROARD ON ENGINE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FAILURE
INTERSTAGE	ACTUATOR
PSIA	DEGREE
<u>а</u>	A 5
632.0	0F
# # # # # # # # # # # # # # # # # # #	REMARKS: SIMULATION C
يد	ة. أ
NOMINAL PC	REMARKS:
	WI WI X

AND MAXIMUM AL

	D ON ENGINE NUMBER		SAMPLE MEAN + 3(ST DEV MEAN)		• 74	4.676	.33	.79	666	•02	.11	•23	.02	.05	•07	.02	.03	.07	• 0 9	.10	.02	.12	.02	. A 4
5.00 OFF	E OUTBOAR	D DATA	ATION		.21	0.290	• 45	• 40	.22	00.	00.	.00	• 00	.00	• 00	• 00	.00	• 00	• 00	• 00	.00	.01	.00	• 05
RATIO	FAILUR	NORMAL I ZEI	ARD DEVI UNIV	-SEC	.51	0.710	.10	6.0	.50	• 00	.01	.01	• 00	• 00	• 00	00.	•00	.01	.01	• 01	• 00	.02	00.	• 13
MIXTURE RINTERSTAC	EE ACTUATOR	SIS OF	STAND	BTU/S0-FT	44.	0.617	• 95	• 86	. 42	• 00	• 00	.01	• 00	• 00	• 00	• 00	• 00	.01	.01	.01	• 00	.02	00.	.11
A 32.0 PSIA	OF A 5 DEGR	ISTICAL ANALY	SAMPLE MEAN		. 11	3.807	.98	.57	.31	• 01	.10	.22	.02	• 04	• 0 6	• 01	• 02	• 05	.07	• 08	.02	• 03	.01	• 68
RN 5	SIMULATION SIMULATED	Y OF STAT	NO. OF SAMPLES		•	9	9	¢	ζ.	9	9	9	9	¢.	9	4	\$	9	ć.	\$	9	9	ς.	\$
GIMBAL PATTER NOMINAL PC	REMARKS: SI ALTITUDE SIN	SUMMARY	TRANSDUCER ID	-	 0	0005	O	C	_	\sim	\sim	ΔI.	m	B	3	m	3	m	3	m	*	Ŧ	3	4

- 47 -

CASE KUN SERIES II. LUG II.3	MIXTURE RATIO	NOMINAL PC 632.0 PSIA INTERSTAGE
KON SEKIES	58	632.0 PSIA
CASE KUN SEKIES II. LUG II.3	GIMBAL PATTERN	NOMINAL PC

SIMULATION OF A 5 DEGREE ACTUATOR FAILURE OUTBOARD ON ENGINE NUMBER

5.00 OFF

REMARKS:

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)	
ATION	MEAN	
ARD DEVI	SMPL UNIV MEAN	
STANDA	SMPL	
SAMPLE	MPLES MEAN	
NO. OF	SAMPLES	
FRANS DUCER	01	

4.	æ	.2	6.	0	C		~	0	0	0.086	0		C			0	۳.	0	œ
.25	.18	.24	00.	.13	00.	.01	• 05	00.	00.	0.010	.00	.02	.01	.01	.02	00.	.01	00.	.01
4.	3	4.	7.	7	0	0	0	0	0	0.017	0	0	0	0	0	C	0	0	0•
0.319	0.231	0.311	1.264	0.170	900.0	0.016	0.040	0.002	0.011	0.012	0.002	0.034	0.018	0.016	0.017	0.003	0.013	0.002	0.023
•	. •	•		: •	•	•	•	•	•	0.057	•		•	•	•	•	•	•	•
6	د	m	m	r.	т	2	~	2	m	; ; ;	2	m	က	7	2	3	3	ĸ	
0001	0005	0003	4000	6100	9022	9000	0025	0000	4031	. 0032	0033	0034	0035	9600	0037	0400	0042	0043	9700

CASE ----- RUN SERIES 12, LOG 12.1

GIMBAL PATTERN NOMINAL PC	BAL PATTERN INAL PC	444 632.0 PSIA	•	MIXTURE RATIO INTERSTAGE	; ; ; ; ; ;	5.00 DFF	
REMARKS: ON THE CENTER NOZZLE	ARKS: EFFECT OF DUA	F DUAL /	ACTUATOR	MARKS: EFFECT OF DUAL ACTUATOR FAILURE 7.5 DEGREFS INBOARD (ENVIOUZZLE HEATING RATES	DEGREES	INBOARD	(EN

REMARKS: E	FFECT OF	DUAL ACTUATOR	R FAILURE	7.5 DEGR	EFS INBOARD	CENGINE NUMBER
Ë	A ING KA	s			,	
SUMMARY	RY OF STAT	ISTICAL ANALY	SIS OF	NORMAL I ZE	D DATA	
TRANS DUCER ID	NO. OF SAMPLES	SAMPLE MEAN	STAND	ARD DEVI UNIV	ATION MEAN +	SAMPLE MEAN 3(ST DEV MEAN)
-			RTU/SQ-FT	-sec		
K 00.2	7	. 1 1	• 39	• 29	φ: φ:	œ
K004	5	5.900	0.459	0	0.244	6.6
K 0.05	ις	.34	•29	.34	• 15	.81
K006	5	• 59	.20	.24	. 10	.91
K007	ĸ	66.	.20	.24	.11	.32
K009	9	• 79	.23	•26	.10	.12
L003	ç	.57	• 45	.52	.21	.21
L004	\$	• 03	.17	•20	08	28
1.005	9	• 36	.12	.14	• 06	.54
F005	9	•28	.10	.11	•04	.43
L007	9	44.	• 14	•16	• 06	•64
F008	\$	• 52	• 18	•22	•00	.79
M001	5	. 72	00.	•19	.53	.32
₩00¢	\$	• 14	.12	• 14	• 05	.31
M007	9	. 71	• 00	• 10	•04	9.94
M008	9	• 92	• 18	•21	• 08	.18
600W	9	• 73	01.	-	• 04	.87

12.1A	
907 .	
12,	
SERIES	
NO.	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The second secon

CASE	

GIMBAL PATTERN ---

		GIMBAL PATTERN NOMINAL PC	TTERN 4	484 715.0 PSIA	4AA MIXTURE RATIO 5.50 715.0 PSIA INTERSTAGE OFF		5.50 OFF			
		· CANALIA		DAL ACTUATUR	DUAL ACTOR OF THE LOKE (*) DECKEES INBOAKD (ENGINE NUMBER 4)	してしていたい	INBUARU	C TO C L NE	NOMBER	7
ON THE	: HE AT	SHIELD AND	ON THE HEAT SHIELD AND CENTER ENG	INE NOZZLE H	VGINE NOZZLE HEATING RATES					

MIXTURE RATIO ----

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)	
IATION	WE AN	
ARD DEV	SMPL UNIV MEAN	
STAND	SMPL	
,	,	
SAMPLE	NE AN	
NO. DF	SAMPLES	
TRANSDUCER	01	

										:									•
1.1		4.7		1.8	0.2	0	1.9	0.4	4.7	.2	0.5	1.6	7.3	8.6	5.7	9.8	4.7	C	0
~	4.		6.039	.2	6.	.2	0	7.	6	4.	3	63	6.	æ	. 7	9.	0	~	
5	ω •		10.459	0	.2	w.	5	7	·	7	S	S.	•	4			9	r.	
90	9.9	.21	7.591	• 54	•39	•26	•65	. 52	•39	.52	• 42	•41	•17	• 08	•94	.80	.61	.88	1.4
3	.73	.18	~	46.20	4.50	•43	5.75	.18	.83	.03	6.49	0.66	.50	90.9	3.50	06.	.50	9	• 66
m	(1)	m	М	3	ŀώ	m	~	m	e	3	æ	ĸ	m	ĸ	m	3	m	7	^
K001	K003	K 004	1007	Z00J	L 003	L004	M003	M004	000	0003	0004	8000	6000	0010	0011	0014	9015	0016	0017
	: - !	50	_	:			•			D.	73-	-S/	4 —(006	51				

RUN SERIES 12, LOG 12.2 CASE -----

	ī.
	10
	SWITCHED
00 F	15
5.00 OFF	ION
MIXTURE RATIO INTERSTAGE	ME AS SERIES 12.1 EXCEPT THE INSTRUMENTATION IS SWITCHED TO TH
TUR! ERS	THE
•	EXCEPT
A 1 S c	2•1
0	S 1.3
- 4AA - 632.0 PSIA	SER IE
. . . Z .	AS
ATTERN OC	SA
GIMBAL PATTE	AND THRUST CONE
	AND
	_

SHIELD

		100 0 0 1 H				
KEMAKKS: SZ HRUST CONE	AME AS SER	1ES 12.1 EXC	EPT THE I	NST P.CMENT	TATION IS	SWITCHED TO THE HEAT
SUMMAE	RY OF STAT	ISTICAL ANALY	SIS OF N	ORMAL I ZEI	D DATA	
TRANS DUCER I D	NO. OF SAMPLES	SAMPLE MEAN	STAND! SMPL	ARD DEVI	ATION MEAN	SAMPLE MEAN + 3(ST DEV MEAN)
-			RTU/SQ-FT-	-SEC		
				:		
00	\$	• 03	.20	• 23	00	. 32
00	9	• 44	• 2 I	.24	.10	•74
00	\$	649	.86	66.	04.	.70
00	\$	• 92	.47	.55	.22	.59
00	ĸ	.86	.85	.01	• 45	1.21
00	5	06.	.67	.80	• 36	96.
0	9	9.72	• 63	.87	• 76	2.02
0	9	• 76	•84	697	•39	95
0013	9	5.399	0.337	0.387	0.158	2.873
01	9	• 09	. 81	.93	.38	.23
0	9	•17	.81	6 6	• 38	.32
0	9	• 07	• 42	•49	• 20	.67
0	٠ø	• 46	.22	.25	.10	.77
0	9	• 68	• 33	.38	.15	.15
02	9	• 01	• 00	00.	.00	.01
02	4	• 04	• 00	• 00	00.	• 04
05	9	• 06	• 00	00.	• 00	•06
02	9	. 11	• 00	000	00.	.12
03	9	• 05	• 00	• 00	00.	.02
05	9	• 50	.28	.32	• 13	.83

CASE ------ RUN SERIES 12, LOG 12.3

MIXTURE RATIO INTERSTAGE 44B 632.0 PSIA GIMBAL PATTERN NOM INAL

SIMULATED DUAL ACTUATOR FAILURE INBOARD ON ENGINE NUMBER REMARKS:

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
ATION	MEAN
STANDARD DEVIATION	^INO
STAND	SMPL
SAMPLE	MEAN
NO. 0F	SAMPLES
TRANSDUCER	10

0.820 3.084 5.520 0.440 4.165 5.171 1.195 1.799 1.254 1.658
00004011111111000000000000000000000000
00044011111110000000000000000000000000
00440100000000000000000000000000000000
24-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
461911111111111111111111111111111111111
577867788
11 12 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15
1 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
200 200 200 200 200 200 200 200 200 200
25 4 4 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6
25 25 25 25 25 25 25
25 65 90 59
65 90 59
90
59
00
03
05
10
-

CASE ------ RUN SERIES 13, LOG 13.1.1

GIMBAL		†		MIXIUKE KAIIU 5.00	2.00
ANI MON			L PC 632.0 PSIA	INTERSTAGE	OFF
-	:		***************************************	and the second s	
QV WUO	אני ננננ	7 0 2	DIAL ACTUATOR	CEEECT OF DIAL ACTUATOR CATILLER AT 6 DECORDS ON NO 1 THATHE	

REMARKS: EFFECT OF DUAL ACTUATOR FAILURF AT 5 DEGREES ON NO 4 ENGINE ON CENTER ENGINE NOZZLĘ ENVIRONMENT

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

TRANS DUCER ID	NO. OF SAMPLES	SAMPLE MEAN	STANDARD SMPL UN	ARD DEVIATION WE	r I ON	SAMPLE MEAN + 3(ST DEV MEAN)
		BTU/SQ-F	T-SEC			
K001	5	77	. 85	• 33	.17	906
K 002	2	2.99	0.880	1.556	1.100	6.2.30
K003	4	12	.56	.71	.35	.18
K004	4	.52	.12	.16	• 08	• 76
1001	4	.11	• 54	.93	96.	00.
L002	4	.43	• 56	.05	.97	.36
1003	ι.	.47	• 79	• 94	.42	.73
1004	4	. 93	.11	.14	.07	• 14
M001	ĸ	.10	.34	647	.27	. 92
M003	4	•65	• 14	• 18	50 •	9.9
M00,4	4	.71	.16	.20	• 10	.01
0002	m	.10	.18	.26	.15	.55
0003	٣	.59	.16	.23	•13	66.
0000	7	.83	• 35	77.	.22	4.0
0008	8	• 56	• 64	.26	•30	• 48
6000	4	.72	• 58	.72	. 36	9.81
0100	4	96.	.36	.45	. 22	•64
0011	4	.91	.20	.25	.13	30
0014	4	7.37	• 05	.57	.28	1.23
0015	m	•66	.60	.82	.47	.10
0016	4	.01	• 33	.42	.21	S
0019	m	• 2	•43	• 59	• 34	.27

CASE ----- RUN SERIES 13, LOG 13.1.1A

5.50 OFF MIXTURE RATIO ----715.0 PSIA GIMBAL PATTERN ---

REMARKS: EFFECT OF DUAL ACTUATOR FAILURE AT 5 DEGRFES ON NO 4 ENGINE ON CENTER ENGINE ON CENTER

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

3 (ST DEV MEAN SAMPLE MEAN STANDARD DEVIATION SMPL UNIV MEAN SAMPLE MEAN NO. OF SAMPLES TRANSDUCER 01

			:						:									
11.	.51	3.84	5.55	.77	•73	01	• 02	•74	76.	66.	1.74	1.80	0.24	9.04	5.34	2.22	8.09	01
.40	• 08	•39	39	.35	.27	.35	.08	•16	90.	.12	.48	.14	.52	.38	.03	41	.21	35
.81	.17	.79	.78	.71	.55	.70	•16	•29	.12	.20	.97	•28	90	•76	.79	.83	.42	.70
2		0	2	5	J.	S	_	\sim	-	\sim	~	\sim	9	9	3	3	3	10
φ. •	• 2	0.6	C:	-	6	6		.2		•	.2	<u></u>	•	6	2.2	0.9	4.	6
7	4	4	7	4	4		4	m	7	m	4	; *	m	4	3	4	4	4
K003	K004	1001	1.002	L 003	F004	M003	M004	0005	0003	4000	0008	6000	0100	0011	5100	0015	0016	6100
-	54	-				•		;	\$D	7 3	- S.	A-	00	61				:
	K003 4 5.890 0.653 0.816 0.408 7.11	4 5.890 0.653 0.816 0.408 7.11 4 3.250 0.141 0.176 0.088 3.51	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.230 2.789 1.395 25.55	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.230 2.789 1.395 25.55 L003 4 7.707 0.567 0.710 0.355 8.77	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.230 2.789 1.395 25.55 L003 4 7.707 0.567 0.710 0.355 8.77 L004 4 3.905 0.441 0.552 0.276 4.73	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.230 2.789 1.395 25.55 L003 4 7.707 0.567 0.710 0.355 8.77 L004 4 3.905 0.441 0.552 0.276 4.73 M003 4 5.950 0.567 0.709 0.354 7.01	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.230 2.789 1.395 25.55 L003 4 7.707 0.567 0.710 0.355 8.77 L004 4 3.905 0.441 0.552 0.276 4.73 M003 4 5.950 0.567 0.709 0.354 7.01 M004 4 2.775 0.185 0.082 3.02	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.230 2.789 1.395 25.55 L003 4 7.707 0.567 0.710 0.355 8.77 M004 4 5.950 0.441 0.552 0.276 4.73 M004 4 2.775 0.165 0.082 3.02 W002 3 3.233 0.212 0.293 0.169 3.74	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.230 2.789 1.395 25.55 L003 4 7.707 0.567 0.710 0.355 8.77 L004 4 5.950 0.441 0.552 0.276 4.77 M003 4 5.950 0.567 0.709 0.354 7.01 M004 4 5.950 0.6567 0.165 0.082 3.02 M005 4 2.775 0.165 0.082 3.04 M006 4 4.777 0.103 0.169 0.064 4.97	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.230 2.789 1.395 25.55 L003 4 7.707 0.567 0.710 0.355 8.77 L004 4 3.905 0.441 0.552 0.276 4.77 M003 4 5.950 0.567 0.109 0.354 7.01 M004 4 2.775 0.165 0.082 3.02 Q003 3 3.233 0.165 0.082 3.74 Q004 3 5.633 0.151 0.208 0.120 5.99	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.230 2.789 1.395 25.55 L003 4 7.707 0.567 0.710 0.355 8.77 L004 4 3.905 0.441 0.552 0.276 4.73 M003 4 5.950 0.441 0.552 0.276 4.73 M004 4 2.775 0.132 0.165 0.082 3.02 Q005 3 23.233 0.212 0.293 0.169 3.74 4.97 Q006 4 4.777 0.103 0.120 0.064 4.97 4.97 Q006 3 5.633 0.151 0.979 0.9489 11.77 4.97 Q000 4 10.280 0.979 0.9489 0.157 4.97 4.97	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.2230 2.789 1.395 25.55 L003 4 7.707 0.567 0.710 0.355 25.55 L004 4 3.905 0.441 0.552 0.276 4.77 M003 4 2.775 0.165 0.354 7.01 M004 4 2.775 0.165 0.082 3.74 Q003 4 4.777 0.103 0.169 3.74 Q004 3 5.633 0.120 0.208 0.120 5.99 Q009 4 10.280 0.782 0.489 0.123 0.143 0.143 Q009 4 11.375 0.228 0.285 0.1489 0.1143 11.890	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.230 2.789 1.395 25.55 L003 4 7.77 0.567 0.710 0.355 8.74 M004 4 3.905 0.441 0.552 0.276 4.773 M004 4 2.775 0.165 0.082 3.02 M004 4 2.775 0.165 0.064 4.97 Q003 4 4.777 0.103 0.120 0.169 3.74 Q009 4 10.280 0.782 0.979 0.489 11.74 10.24 Q009 4 11.375 0.228 0.998 0.524 10.24 10.24	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.230 2.789 1.395 25.55 L003 4 7.707 0.567 0.710 0.355 8.77 L004 4 3.905 0.441 0.552 0.276 4.73 M003 4 2.775 0.165 0.082 3.02 M004 4 2.775 0.165 0.082 3.74 Q003 4 4.777 0.103 0.169 0.169 4.97 Q008 4 10.280 0.782 0.979 0.169 0.189 0.189 0.10.20 Q009 4 11.375 0.228 0.285 0.143 11.80 Q001 3 8.673 0.607 0.760 0.380 0.524 10.243 Q01 4 7.902 0.607	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.230 2.789 1.395 25.55 L003 4 7.707 0.567 0.710 0.355 8.77 L004 4 3.905 0.441 0.552 0.276 4.773 M004 4 2.775 0.132 0.165 0.082 3.74 M004 4 2.775 0.132 0.169 0.169 3.74 Q003 4 4.777 0.103 0.128 0.064 4.97 Q008 4 10.280 0.782 0.979 0.149 11.74 Q009 4 11.375 0.659 0.998 0.524 10.26 Q010 3 8.673 0.607 0.760 0.380 9.04 Q014 3 22.233 1.362 0.760<	K003 4 5.890 0.653 0.816 0.408 7.11 K004 4 3.250 0.141 0.176 0.088 3.51 L001 4 40.650 7.030 8.794 4.397 53.84 L002 4 21.375 2.230 2.789 1.395 25.55 L003 4 7.707 0.567 0.710 0.355 8.77 L004 4 5.950 0.641 0.552 0.276 4.73 M003 4 5.950 0.657 0.709 0.354 7.01 M004 4 5.950 0.6132 0.165 0.082 3.74 M005 3 3.233 0.165 0.082 3.74 Q006 4 10.280 0.782 0.064 4.97 Q009 4 11.375 0.285 0.143 11.74 Q010 3 8.673 0.659 0.986 0.524 10.24 Q014 3 22.223 1.794 1.036 9.04 Q015	K003 4 5.890 0.653 0.816 0.408 K004 4 3.250 0.141 0.176 0.088 L001 4 40.650 7.030 8.794 4.397 L002 4 21.375 2.230 2.789 1.395 L003 4 7.707 0.567 0.710 0.355 L004 4 3.905 0.441 0.552 0.276 M003 4 5.950 0.641 0.552 0.276 M004 4 2.775 0.165 0.082 M005 3 3.233 0.169 0.169 M004 4 10.280 0.189 0.169 M005 4 10.280 0.178 0.064 M006 4 10.280 0.178 0.298 0.149 M009 4 11.375 0.228 0.285 0.149 M010 3 8.673 0.699 0.908 0.524 M014 4 20.975 0.665 0.832 0.416

RUN SERIES 14, LOG 14.1 CASE -----

NO DEFLECTION MIXTURE RATIO ---- 5.00 630.0 PSIA INTERSTAGE ----- OFF GIMBAL PATTERN ---

REMAR

				ŧ		
SUMMARY	OF STAT	ISTICAL ANALY	SIS OF N	ORMALIZE	D DATA	
TRANS DUCER I D	NO. OF SAMPLES	SAMPLE MEAN	STAND/ SMPL	ARD DEVI	ATION ME AN	SAMPLE MEAN + 3(ST DEV MEAN
		BTU/S0-	-FT-SFC			
- -						
001	^	• 06	.22	. 25	60	35
002	7	.92	.50	• 56	.21	55
003	6	44	96.	• 08	.36	.52
4000	c	5.154	909.0	0.663	0.221	5.817
800	4	.08	.32	.40	•20	69.
022	5	.01	• 00	• 00	• 00	.01
023	7	• 05	.01	.01	• 00	•06
024	æ	• 07	.01	.01	00.	•00
025	9	• 16	• 01	• 02	• 00	•19
033	-	• 01	•	0	C•	.01
046	~	.50	.10	.11	• 04	.63
052	8	· 63	.17	• 24	• 14	• 05
010	٣	• 21	•	•	•	.31
071	٣	• 05	• 00	• 01	00.	.07
072	m	• 03	• 00	•01	00.	• 05
080	7	• 16	• 01	• 05	• 01	.21
081	æ	• 17	• 00	00.	• 00	• 19
082	3	• 12	•02	• 03	•01	.17
060	2	• 04	.01	.01	.01	• 0.8
160	3	• 0B	• 00	00.	00.	60 •
092	٤	• 06	• 00	• 00	00.	•07
100	3	• 07	• 01	.01	00.	.10
101	٣	• 07	• 01	.01	00.	.10
102	٣	• 04	• 01	• 01	• 00	•06

CASE ----- RUN SERIES 14, LOG 14.1.1A

5.00 OFF NO DEFLECTION MIXTURE RATIO ----GIMBAL PATTERN ---NOMINAL PC -----

REMARKS: TO DETERMINE ENGINE COMPONENT ENVIRONMENT. ENGINE RING GAGES ON NO ENGINE TO COMPARE WITH THOSE ON NO 1 ENGINE

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
IATION	MEAN
STANDARD DEVIATION	UNI <
STAND	SMPL
,	
SAMPLE	MEAN
0F	PLES
NON	SAM
TRANSDUCER	01

	:					•													
3.797			7.402	: •		•	. •	•	0.252			•			•		•	•	
• 26	I.731		1.337		0.002	600.0	100.0	0.004	0.026	0.002	0.005	0.001	0.756	0.022	0.031	260.0	0.007	0.0	
0.371	2.448	0.0	1.892	0.300	0.003	0.012	0.001	900.0	0.037	0.003	0.007	0.001	1.069	0.032	0.044	0.130	0.009	0.0	
0.210	1.385	0.0	1.070	0.170	0.002	0.007	100.0	0.003	0.021	200.0	0.004	0.001	0.605	0.018	0.025	0.074	0.005	0.0	
3.010	-	5.370	6	3,370	_	0.056	07	02	0.173		03	90	03	47	0.579	43	10	13	
7	2	-	7	- 2	7	2		~	2	- 2	7	7	2	7	7	2	7	7	
1000	2000	0003	4000	0015	9022	0023	00241	Q024R	0025	0038	0500	0041	0052	0053	0054	0055	0000	0800	THE RESERVE THE PARTY OF THE PA
		56	ó -	· · · · · · · · · · · · · · · · · · ·			:			SI) 7:	3-5	SA-	-00)61				

CASE ----- RUN SERIES 14, LOG 14.2

0	
5.00	NO
01	
RAT	AGE .
MIXTURE	INTERSTAGE
NO DEFLECTION MIXTURE RATIO -	632.0 PSIA
GIMBAL PATTERN	T PC
GIMBAL	NOWINAL

TO DETERMINE J-2 ENGINE COMPONENT ENVIRONMENT REMARKS:

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)	
IATION	MEAN	
ARO DEVI	SMPL UNIV MEAN	
SIAND	SMPL	
SAMPLE	MEAN	
NO. UF	SAMPLES	
SUUCER	10	

100	6	1.124	0.285	0.312	•	4. ن
200	6	2.087	0.427	0.467	•	5
503	0	3.583	0.704	0.770	•	35
700	6	5.684	0.422	0.462	•	7
308	7	2.379	0.378	0.425	. •	90
320	7	0.031	0.017	0.019	•	2
122	7	0.452	0.166	0.187		5.5
0023	7	1.647	0.125	0.141	0.053	1.807
124	9	0.541	0.268	0.309	•	92
725	\$	0.257	990.0	0.076	•	34
946	6	0.857	0.079	0.087		4
152	7	2.101	0.203	0.228	•	36
070	r	0.157	0.600	0.124	•	ω Ω
171	m	0.160	0.011	0.016	•	0
272	æ	0.198	0.111	0.153	•	46
080	m	0.166	0.017	0.023	•	20
. 180	.2	0.234	0.001	0.002	•	23
382	٣	0.828	0.135	0.186	•	15
060	m	0.493	0.109	0.150	•	75
160	m	1.036	0.206	0.284	•	52
260	m	0.980	0.085	0.117	•	_
101	m	0.224	950.0	0.130	•	45
. 02	m	0.278	0.109	0.150	0.087	1C

CASE ------ RUN SERIES 14, LOG 14,3

1

.....

	GIMBAL PATTERN	TTERN	38	MIXTURE RATIO	5.00
	NOMINAL PC		632.0 PSIA	INTERSTAGE	0FF
a management of a community when the community will	THE PROPERTY OF THE PROPERTY O	-			A PROPERTY OF THE PROPERTY OF
	RFM ARK C:	I-2 FNGIN	E COMPONENT E	O R C HITH INSMNOGIVE	REMARKS: 1-2 ENGINE COMPONENT ENVIRONMENT WITH 7 K DECORE CINCLE ACTUATOR CAT.

FAIL REMARKS: J-Z ENGINE COMPONENT ENVIRONMENT WITH 7.5 DEGREE SINGLE ACTUATOR ON ENGINE NO 1. Q70-72,Q80-82,Q90-92,Q100-102 DOUBTFUL BECAUSE OF FLOW INTERFERENCE

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

:							٠.								: :			AND THE PROPERTY OF THE PROPER							
SAMPLE MEAN 3 (ST DEV MEAN)		.10		•26	.26	.34	00.	.02	.13	.28	3	83	.72	•19	16.	.18	.13	040	.42	•33	.03	60.	-	91.	0.122
TION		0.8		10	.10	1.16	0	00.	00.	.03	00.	04	.23	.01	•15	.01	.01	• 04	00	.01	00.	00.	00	00	
RD DEVIAT	-SEC	•	9	• 36	•	.53	0	0	0	0	0	-	r.	.	2.	0	0	9	0	0	0	0	90000	9	0
STANDARD C SMPL UNI	8TU/SQ-FT	.27	1 -	• 33	•30	640	•	0	0	0	0	H	4.	0	1.	0	0	þ	•	0	0	0	0.004	P	0
SAMPLE		1.833	1	36.	5	85	• 00	• 01	12	.25	2	2	.01	.15	.46	.15	.10	92.	.40	.28	03	.08	0.103	1.	
NO. OF SAMPLES		11	11	11	10	11	,1	'n	10	10	ī.		9	œ	3	4	m	7	4	8	5	4	m	4	m
TRANS DUCER ID		0001	0005	0003	4000	0008	0050	0022	0024	9025	0041	0046	0052	0053	0.000	0071	0072	0080	0081	0082	0600	600	2600	1010	0102
:			-	5	8 -							S	D 7	3-	\$A	-0	06:						•		

!

CASE ----- RUN SERIES 14, LOG 14.4

38 MIXTURE RATIO 5.00 632.0 PSIA INTERSTAGE ON	PONENT ENVIRONMENT WITH SINGLE ACTUATOR FAILURE ON NÚMBER ONE
GIMBAL PATTERN 38	REMARKS: ENGINE COMPONENT ENVIR
NOMINAL PC 632.0 PSIA	ENGINE AT 7.5 DEGREES OUTBOARD

SUMMARY	OF ST	ATISTICAL ANA	ANALYSIS OF NO	NORMAL I 2 E O	D DATA	
TRANS DUCER ID	NO. OF SAMPLES	SAMPLE MEAN	STANDARD SMPL UN	ARD DEVIATIONIV ME	AT I UN ME AN	SAMPLE MEAN + 3(ST DEV MEAN
			BTU/SQ-FT-9	SEC		
		:	; ,	:		
0001	11	67	ന	• 2	_	00
0002	11	2.505	0.225	0.242	0.073	72
6000		85	32	6	. 1 1	61.
4000	10	16	39	4.	2	57
8000	10	12	65	7.	2	79
0000	4	05	01	0	00	-0
0022	7	99	15		90	86
0024		78	24	5	08	03
0025	11	31	90	0	0.2	39
0041	œ	1	01	0	00	13
0046	. 01	28	す	• 1	ın	.43
0052	ю	34	22		17	87
0053	9	56	0.175	• 2	x c	•

CASE ------ RUN SERIES 15, LOG 15.3.1

NO DEFLECTION MIXTURE RATIO -----715.0 P.SIA. INTERSTAGE -----GIMBAL PATTERN ---NOMINAL PC -----

REMARKS: DETERMINATION OF THRUST STRUCTURE HEATING RATES INTERSTAGE GAGES AT 0 DEGREES . ALSO SEE LOG 15.3.2

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
STANDARD DEVIATION	SMPL UNIV MEAN
SAMPLE	MERN
NO. OF	SAMPLES
TRANSPUCER	01

			•															:			•
.03	.02	.24	• 0.6	.41	.38	66.	.90	.74	.56	64.	.32	•00	• 29	.71	59	2.110	. 42	.12	. 26	.47	.12
00.	00.	•29	00.	•	.07	.29	.25	60.	60.	.32	.48	0	0	0	0	0.153	0	-	0	0	0
•	•	•	•		•	•	•	•		•	•			•	•	0.265	•		•	•	•
00	00.	.36	00.	•	60.	.23	.32	.12	0.7	.26	09.	0	•04	0.	12	0.192	.06	.21	.04	.08	-4
• 03	.02	.37	.05	25	• 16	• 09	• 13	• 45	. 28	.52	.87	60.	.13	• 68	3.6	1.651	.27	.62	• 15	.27	₹00
m	m	ĸ	2	ю	ĸ	2	m	٣	2	2	ĸ	:	2	3	3	W,	m	. 3	c.	'n	3
P015	P017	4000	0020	0021	0022	0023	0024	0025	0.026	0027	002R	0000	0600	1600	0032	0036	0037	0.040	0043	0044	0.046.

CASF ------ RUN SERIES 15, LOG 15.3.2

-

;

....

5.50	
75	NO
	1
RAJ	19E
NO DEFLECTION MIXTURE RATIO	INTERSTAGE
FLECTION	VISO
NO DE	715.0 PSIA
Nail	NOW I NAL PC
.TA	ن ص
GIMBAL PATTERN	JANIMON

REMARKS: DETERMINATION OF THRUST STPUCTURE HEATING RATES INTERSTAGE GAGES AT 45 DEGREES. ALSO SEE RUN SERIFS 15.3.1

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
ATION	MEAN
STANDARD DEVIATION	> I V O
STAND	SMPL
SAMPLE	MEDN
NO. OF	SAMPLES
TRANSOUCER	<u>0</u> 1

C	0.025	5	5	نی.	٦.	4.	0	တ	6	တ	-	• 6	0	.2	. 7	0	. 7	. 5	• 5	9		• 1.C	6.
00.	0.000	.53	.83	• 1.8	10.	•03	00.	.37	.26	1.	10.	.02	.06	.01	.15	. 11	.10	.28	.08	•04	.01	•04	•
00.	0.000	.75	.17	.37	.03	• 05	.00	.75	.45	.19	.03	•04	.13	.03	.25	.23	.20	.57	.16	60.	.02	.09	•
.00	0.000	.42	.66	.30	.02	.04	.00	.60	.33	.14	.03	.03	.10	.02	• 13	.13	.16	• 46	.13	.07	10.	.01	•
. 02	0.024	.93	• 02	• 64	• U8	33	• 08	• 75	.17	. 52	11.	• 6 L	. 91	. 1.8	.29	•66	.42	.71	.33	4.00	.12	11.	16.
2	2	~	2	7	4	4	۲.	4	к.	m	4	ţ	4	4	ĸ	4	4	. †	*	4	4	4	1
0	PJ17	00	00	00	02	02	02	02	02	0.2	02	02	02	02	03	03	03	03	03	04	04	* 0	04

5.50 -- 0N INTERSTAGE ---NO DEFLECTION MIXTURE RATIO 715.0 PSIA_ ---- Jd GIMBAL PATTERN NOMINAL

REMARKS: DETERMINATION OF THRUST STRUCTURE HEATING RAIFS GAGES AT 45 DEGREES. ALSO SEE PUN SERIES 15.3.1 INTERSTAGE

CONTINUED FROM PREVIOUS PAGE)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)	: : :	1.036
	IN PSIA	0.042
STANDARD DEVIATION SMPL UNIV MEAN	-SEC (P)	0.053 0.073 0.042
STAND	(Q) IN STU/SO-FT-SEC (P) IN PSIA	0.053
SAMPLE	VI (0)	016.0
NO. DE SAMPLES		m
TRANSOUCEP ID	:	0054

CASE ----- RUN SERIES 16 , LOG 16-1

	GIMBAL PA	TTEPN	38 715.0 PSIA	MIXTURE RATIO INTERSTAGE (TO 5.50	
i (REMARKS:	EFFECTS OF	SINGLE AC.	REMARKS: EFFECTS OF SINGLE ACTUATOR FAILURE	EFFECTS OF SINGLE ACTUATOR FAILURE OUTBOARD ON THRUST STRUCTU	TRUCTU

INTERSTAGE. INTERSTAGE GAGES 26-29 AT O DEGREES AZIMUTH

SUMMARY	NF STAT	ISTICAL AND	LYSIS OF N	NORMAL IZE	DATA .	
TRANS DUCER I D	NO. OF SAMPLES	SAMPLE MEAN	STAND	ARD DEVI UNIV	AT I ON MEAN	SAMPLE MEAN + 3(ST DEV MEAN)
-		_	BTU/SQ-FT-	SEC		
				;		
00	m	. 73	.40	55	.32	. 70
0320	m	0.031	0.007	600.0	0.005	0.047
02	٣١	.32	00.	. n.	00.	.35
02	m	•19	10.	• 02	.01	.23
02	2	• 94	.02	.03	.02	01
0	m	.01	.07	.10	•06	.20
02	٣	.47	• 09	.12	.07	.70
02	r r.	30	• 04	• 06	.03	4
02	m	.58	.31	•43	.24	.33
02	m	• 48	06.	.25	.72	•65
0.5	-	. 42	c.	0	e.	.42
03	۳	.12	.00	.00	00.	.12
03	۳.	69•	.08	. 11	•06	.89
03	~:	.53	.02	•04	.03	.63
03	ĸ	• 15	.03	• 05	.02	.24
03	ĸ	• 18	• 04	• 06	• 03	.30
03	2	• 50	.05	• 08	•06	.68
04	w	• 15	.03	•04	.02	. 22
04	~ 1	• 06	.02	.02	.01	<u>ب</u> س
40	٣	. 34	• 04	•06	.03	• 45
0	2	.10	•	•	.01	9
05	~	.59	•06	11.	.08	.83

CASE ----- RUN SERIES 16, LOG 16.3.1

GIMBAL PATTERN --- 3C MIXTURE RATIO --- 5.50 NOMINAL PC ---- 715.0 PSIA INTERSTAGE ---- GN GIMBAL PATTERN ---

RATES WITH INTERSTAGE ON. INTERSTAGE GAGES 026,27,28 AT 0 DEGREES AZIMUTH

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)
ATION MEAN
STANDARD DEVIATION SMPL UNIV MEAN
STAND
.·
SAMPLF MEAN
NO. OF SAMPLES
TRANSDUCER ID

BTU/SQ-FT-SEC

									:	_					:						
67	0.257	.51	. 75	.98	.15	• 02	.52	.22	.38	.22	.62	.78	. 95	.74	.16	.28	.54	. 56	.25	.37	5
				•					,						;						
.54	.043	• 05	. 18	.28	.16	0	• 05	00.	16.	.42	.10	•08	•04	.12	.07	.02	.03	•20	.03	.01	• 04
	0								i			1			;						4
.93	0.075	.08	.25	.50	.27	00·	• 08	.01	• 54	.72	.18	• 15	.07	.22	.12	.03	• 06	•29	• 05	.03	0.08
	. 4	5	5	'n	25	1(4.		2	8	-	6(4	ŭ	4	9	89	S	Ņ	4	6
. •	0.054	•	•	•	•	•	•	•	-	•	•	•		•	•	•	•	•	•	. •	0.05
															1						,
873	127	356	211	1117	676	017	370	197	437	1967	307	527	826	355	546	226	428	945	150	316	214
7	o	0	0	2.	o	Ö	Ö	0	6	•9	•	Ċ	0	0	0	0	0	o	0	•	1.
									,		-	,						:			
(4.5	ĸ	(C.)	~	(F)	Γ,		ינט. ינט	(T)	1.43	(7 1)	r	(a.):	מז	w)		(C)	(r)	:	m	in.	() ; ;
									;			•			·						
4000	0000	0021	0022	0023	4200	Q024R	0025	0026	20.27	0028	0059	0600	0031	0032	9600	0037	0038	0500	1400	0044	0054
															:					,:	!
			:						:						1						
-	- 6	4							S	D7	3-	·SA	·-0	06	1						:

RUN SERIES 18, LGG 18.1

5.00	OFF
MIXTUPE RATIO	INTERSTAGE C
8	632.0 PSIA . II
PATTEPN	PC
GIMBAL P.	NOWINAL

REMAP

APKS: NIJM SUMMARY	INAL STE	STATE D	LECTION SIS OF	S WITH 1.1 NORMALIZED	13 DEGREE D DATA	PITCH OR YAW
4S DUCER I D	NO. OF SAMPLES	SAMPLE	STANDI	ARD DEVI	ATION	SAMPLE MEAN + 3(ST DEV MEAN)
		_	8TU/SQ-FT-9	SEC ·	:	
0	4	.08	•34	• 43	.21	• 74
0	7	• 68	.5	•	•	.43
0	7	• 04	• 46	.52	• 19	.63
4004	Ç	6.330	0.414		19	6.913
0	-	• 06	c	0	c.	• 06
C	7	.01	•83	• 94	.35	• 08
0	7	. 41	• 45	• 48	• 13	• 95
_	÷	•0•		• 13	• 05	• 52
_	_	• 80	•24	.27	• 10	- 1 -
-	2	• 56	• 23	.26	60 •	• 86
	ç	16.	• 29	• (,)	• 13	.32
	7	• 65	•	•	•	. 13
	7	. 98	•14	• 16	•00	.17
_	¢	• 20	.21	• 24	• 00	• 50
	¢	.71	.29	φ. α.	• 13	. 12
\sim	7	• 05	• 01	10.	00.	• 06
\sim	7	• 07	00.	0.	• 00	• O A
\sim	,	• 15	• 05	• 0 2	.01	• 18
\sim	7	• 04	00.	00.	00.	.04
4	ĸ	• 04	00.	• 00	00.	• 05
4	s	- 1	.01	10.	00.	.13
4	9	.37	• 07	• 08	•03	.47
S.	4	• 43	•28	.35	.17	.01
Ľ.	ş	• 76	• 1 1	• . 3	• 05	.93

CASE ------ RUN SERIES 19, LOG 19.1

5.00	OFF
ATIO	
MIXTURE RATIO	INTERSTAG
6	632.0 PSIA INTERSTAGE OFF
LERN	
GIMBAL PATTERN	NOW I NAL PC
Ę,	=

PEMARKS: NOMINAL STEADY STATE WITH 0.8 DEGREE PITCH OR YAW DEFLECTION

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
STANDARD DEVIATION	SMPL UNIV MEAN
	S
NO. OF	SAMPLES
TRANSDUCER	<u>S</u>

TU/SO-FT-SEC

.88	.04	.35	. 58	• 04	7.765	.45	.48	• 19	96.	.41	.01	.83	.63	.30	.84	.07	•00	.20	.10	.50	.00	•29
.17	.30	.12	• 15	00.	0.243	.20	.14	.21	.13	. 1 1	.10	.28	.08	.07	. 13	• 00	00.	• 00	•00	•04	•00	•00
4	~	.2	4	0	0.594	4.	.	3	6	~	• 2	5	.2	۳.	<u>.</u>	C	0	0	0	0	١.	0
38	65	.23	.29	00.	0.517	,39	.31	.45	.27	.24	19	.45	.17	.16	.28	.00	00.	10	00.	∞	. 15	• 00
Ψ.	-	σ.	-	•	7.037	න •	0	.5	r.	Ç		5	4	0	4	0	0	-	0	6		•
9	9	ς.	ις;	•	ç	5	£	y	ý	9	5	4	9	9	Ç	9	•	9	5	ξ	4	2
1000	0005	0	0000	00048	9000	C	00	0	10	01	10	5100	10	2100	6100	00	02	C	04	9400	0054	0110

RUN SERIES 19, LOG 19.2

00	Y AW
- 5.00 - OFF	<u>م</u> ت
	РІТСН
MIXTUPE RATIOINTERSTAGE	DEGREES
X TUP TERS	α Ο
HZ EH	H H
9A 632.0 PSIA	STATE
	STEANY
GIMRAL PATTERN	REMARKS: NOMINAL STEADY STATE WITH 0.8 DEGREES PITCH OR YAW
GIMPAL PI	REMARKS:

ARKS: NOM SUMMARY	INAL ST	PY STAT	E WITH G.8 DEG	EGREES PI	TCH OR YAW	
NSDUCER ID	NO. DE SAMPLES	SAMPLE	STAND, SMPL	ARP DEVI	ATION MEAN +	SAMPLE MFAN 3(ST DEV MEAN
			8TU/S0-FT-	SEC		
00	ş	.22	7 7	•20	• 08	.47
0	.	.32	91	61.	.07	.56
0004	၁ ဇ	0.00 0.00 0.00 0.00	0.553		0.065	7.085
00	9	• 04	00	00.	00.	.04
C	9	64.	54	. 28	11.	.83
00	• •	.21	63	.72	• 50	• 10
8	¢,	08.	7:	.82	(A)	.81
0 0	υ (3.4	7		6. C	• 0.9 7
10) ၁	. 22	<u>, </u>	. 5	.05	.39
0	4	69.	13	.20	.08	• 95
10	\$ 0 (• R 3	35	.40	• 16	• 33
- -	ጥ ጥ	. 25	90	• 07	• 03	• 35
50	9	. 36	32	37	.15	32
02	4	• 04	10	• 02	.00	.07
02	¢	• 05	02	.02	.01	•00
02	9	• 12	05	•06	•02	• 19
7	9	. 11	02	• 0.2	00.	• 14
046	ν '	• 26	03	• 03	.01	.31
111	2	• 15	03	.05	÷0.	.27
<u> </u>	∾ ဂ	0.	00	• 0 •	00.	01.
021	7	÷	\ 	9 0	70.	٠١5

CASE RUN SERIES 19, LOG 19.2.2A & AB.

5.50 INTERSTAGE ---- ON. MIXTURE RATIO ----NOMINAL PC ---- 715.0 PSIA GIMBAL PATTERN ---

REMARKS: NOMINAL STEADY STATE WITH 0.8 DEGREES PITCH OR YAW DEFLECTIONS LOG A AND PUNS 548-550 LOG AB SEE LOG 19.2.28 536-541 LUG A RUNS A

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA.

SAMPLE MEAN	+ 3(ST DEV MEAN)
N C	N
VIATI	M.
RD DE	ONIV
STANDARD DEVIATION	SMPL
•	
SAMPLE	MEAN
O.F.	PLES
• ON	SAM
TRANSDUCER	10

RTU/SO-FT-SEC

		,		i	1		
	0005	C 1	. 41	. 7	.77	•25	•19
_	0003	6	.76	. 78	.85	.28	.62
68	6000	σ.	.53	.65	.71	.23	. 25
} ÷	0100	တ	16.	538	•64	.22	60
	0013	σ	.82	.47	.52	.17	.35
	9100	œ	.39	649	.54	•19	96
	9100	œ	.77	.23	.25	•00	.05
	0017	7	.07	.30	.34	.13	.47
	0023	~	• 48	.55	.76	44.	.80
	0024.	2	• 06	0.8	41.	• 10	36
SI	0025	8	.40	.13	.18	• 10	.72
73	0026	4	.15	• 03	• 04	• 02	. 21
)—S	0027	m	.17	.15	.21	.12	.54
A-	0028	. 4	.31	.16	.20	.10	.61
.00	0029	5	.17	.01	.01	• 00	• 19
61	0.031	2	.92	.25	44.	.31	87
•	0032	9	0.388	0.191	0.219	0.000	0.657
	0000	5	. 85	.32	.38	-17	.38
1	0054	3	.58	01.	.14	•08	.92
	10	5	• 24	.25	.30	.13	• 65
	01118	2	.91	• 06	.10	.07	3
*	12	2	.84	.24	0.441	.31	-

CASE ----- RUN SERIES 19, LNG 19.2.28

MIXTURE RATIO 5.50	INTERSTAGE ON
þó	715.0 PSIA
GIMBAL PATTERN	NOMINAL PC

PEMARKS: NOMINAL STEADY STATE DEFLECTION WITH 0.8 DEGREES PITCH OR YAW ALSO SEE LOG 19.2.24 & AB

RANSOUCER	NJ. OF SAMPLES	SAMPLE MEAN	STAND	ARD DEVI UNIV	ATION MEAN	SAMPLE MEAN + 3(ST OEV MEAN)
			9TU/S0-FT-	-SÉC		
-						
00		. 37	• 64	.72	.27	.70
00	7	.57	. 84	•94	•35	.65
00	7	• 22	.25	.28	.10	S
00	۳	.87	.63	.87	.50	.39
00	۷	.50	.85	96.	.36	.60
0	9	.81	. 52	.60	.24	.55
0.1	7	69.	643	64.	. I.8	• 25
01	7	040	.27	.30	.11	. 74
02	9	• 05	.02	.03	.01	•09
02	5	.10	• 04	• 0.5	.02	.17
0.2	9	.21	• 05	• 06	.02	.28
03	9	. 54	.19	.22	.09	80
60	2	.23	.00	.01	.00	. 25
03		.25	.05	• 05	• 02	.31
03	7	• 10	.23	.26	.10	640
6 1	9	.27	.26	90	.12	•65
03	7	.26	.12	• 1.4	.05	.42
03	2	.43	•00	.15		.76
04	2	.22	.02	.03	.02	.29
04	וני.	.15	• 03	+C4	.02	.23
04	3	.29	.06	60.	.05	• 45
0.5	2	.31	.81	5 5 6	.01	4.3
0043 0052	5 C	0.292 4.315	0.069	0.094		0.055

RUN SERIES 19, LDG 19.2.3A CASE

ALSO SEE LOG 19.2.38

.. SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
NOITE	MEAN
STANDARD DEVIATION	NI V
STAND	SMPL
SAMPLE	NV UW.
NO. C.F.	SAMPLES
TRANSDUCER	ID

RTU/SQ-FT-SEC

160 0.882 8.	103 0.493 10.	960 0.429 8.	د 270 م 146		833 0.373 4	833 0.373 4. 818 0.334 4.	833 0.373 4.4.4.4.4.4.39 0.179 3.	833 0.373 4.4.8 6.334 4.39 0.228 2.28	833 0.373 4.4.8.8.8.8 0.334 4.8.9 0.179 3.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	833 0.373 818 0.334 439 0.179 3.3 558 0.228 2.2 008 0.003 0.005	833 0.373 4.4.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	833 0.373 818 0.334 439 0.179 558 0.228 008 0.003 012 0.005 008 0.003	833 0.373 818 0.334 439 0.179 558 0.228 008 0.003 012. 0.005 003 0.001	833 0.373 818 0.334 439 0.179 558 0.228 008 0.003 012 0.005 003 0.001 103 0.042	0.833 0.373 4.882 0.818 0.334 4.807 0.439 0.179 3.003 0.558 0.228 2.582 0.008 0.003 0.078 0.012 0.005 0.124 0.003 0.001 0.041 0.005 0.002 0.065 0.103 0.042 0.065
	929 l.	808 0.	138 0.	0.702 0.83	712 0.	382 0.	485 0.	007 0.	010 0.	006 0.	003 0.	004 0.	060	0 0.	010
.708	•628	816	• 594	3.764	.805	. 465	868	.068	.1.08	.213	.037	• 059	. 665	.142	.095
9	5	5	7.	Ŋ	9	9	\$	ۍ	ĸ	ហ	٥	ç	ç		2
202	003	600	010	610	014	1016	1017	0023	9024	025	1031	032	1054	120g	11219

CASE ----- RUN SERIES 19, LOG 19.2.3P

	ه بد ع	PC	98 . 715.(98 715.0 PSIA	Y I	XTUR	MIXTURE RATIO INTERSTAGE		5.50 OFF	20	
ALSO SEE LOG	REMARKS: 1.0G 19.2.3A	NOMINAL STEADY STATE WITH 0.8 DEGREE PITCH OR YAW DEFLECTI	STEADY	STATE	I Z	တ •	DEGREE	H 1 L H	ж О	X	DEFLECTI

-				;		
REMARKS: N G 19.2.3A	NOMINAL STE	ADY STATE W	ITH 0.8 DEC	GREE PITO	CH OR YAW	DEFLECTIONS
		•			٠	
SUMMARY	RY OF STATE	STICAL ANA	LYSIS OF M	NORMAL I ZEI	D DATA	
TRANSDÜCER ID	NO. OF SAMPLES	SAMPLE	STANDI	ARD DEVI-	ATION	SAMPLE MFAN + 3(ST DEV MEAN)
			9TU/S0-FT-9	SEC		
-						
0	ç	11.	.38	6.43	.17	65
0	ţ¢.	18.	•33	.39	.17	.34
\mathbf{c}	9	• 02	• 45	.52	.21	•65
0	÷	.71	.50	.57	• 23	.42
0008	4	6.215	1.256	1.571	0.786	8.572
_	9	• 06	.53	.61	• 25	.82
	Ŀ	• 42	. 53	19.	.25	.17
_	Y	.12	.33	جن	•15	.59
2	4	• 00	• 00	00.	•00	.00
2	5	• 01	• 00	00.	•00	.02
m.	÷	.02	00.	.00	• 00	.02
~ .	ư .	• 01	• 00	.00	00.	.01
3	<u>ح</u>	• 03	00.	.00	•00	• 04
3	9	.07	.00	00.	. ეე	• 0.8
~	9	• 0 9	00.	.01	00.	. 10
3	4	-1-	• 00	.00	•00	.11
*	9	· 03	1C.	.01	.00	• 05
4	9	• 03	• 00	• 00	•00	• 03
4	9	• 05	00.	00.	• 00	.02
S	ټ	• 45	.77	.89	•36	• 52

CASE ------ RUN SERIES 19, LOG 19.3

5.00	OFF
01	1:
MIXTURE RATIO	INTERSTAGE
86	632.0_PSIAINTERSTAGE OFF
GIMBAL PATTERN	NOW INAL PC
GIMBAL	NOWINAL

REMARKS: NOMINAL STEADY STATE WITH 0.8 DEGREES PITCH OR YAW

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
ATION	MEAN
STANDARD DEVIATION	^IND
STANDA	Jaws
SAMPLE	MAN
NO. OF	SAMPLES
TRANSDUCER	10

BTU/SQ-FT-SEC

.53	.37	.93	.62	•04	•04	.42	.40	•04	• 29	.31	.63	.00	.51	.82	.25	.08	.08	.17	.16	.48	.32	0.139	.07
.21	•48	640	.22	00.	.24	.12	.22	.25	• 19	.10	•04	.23	• 00	.15	61.	.00	.00	00.	.02	.02	•02	0.010	• 00
.43	• 18	.20	. 55	.00	.54	.29	.54	.61	14.	.25	.10	.57	.23	.38	• 46	.01	.00	.00	.05	• 05	.03	0.014	• 00
• 34	.02	• 04	.47	00.	•45	.25	.47	.53	14.	.22	• 08	64.	• 20	• 33	0.40	.01	.00	• 00	• 04	•04	10.	0.008	• 00
.88	• 92	.45	96	• 04	.32	.06	. 73	• 29	, 71	.00	.50	.30	. 22	. 35	.68	• 06	.08	.17	• 10	• 42	25	0.109	• 07
4	9	\$	φ'	9	ις	9	9	9	9.	9	9	9	9	9	Ó	9	5	1	9	÷	2	2	2
1000	0002	0003	9000	Q004R	9000	0000	4000	0100	0011	0013	0014	0015	9100	4017	6100	0.023	9000	0025	0044	9500	01108	01118	01128

0.293

0.027

0.002 0.018

0.005

0.011

0.010

0.009

0.088

SERIES 20, LOG 20.1.1 AND LOG 20.1.2 N N CASE

5.50	OFF
MIXTURE RATIO	INTERSTAGE
28	715.0 PSIA
GIMBAL PATTERN	NOWINAL PC

EFFECT OF OUTBOARD ENGINE OUT ON BASE REGION HEATING RATES 571-576 20.1.2 RUNS 551-558, 106 REMARKS: NUMBER 3 ENGINE DUT L. F. G. 20.1.1 RUNS

STATISTICAL ANALYSIS OF NORMALIZED DATA SUMMARY OF

SAMPLE MEAN	+ 3(ST DEV MEAN)		4.880	5.229	5.776	066*4	5.144	8.670	9.124
TION	MEAN		0.398	0.210	0.203	0.369	0.288	0.350	0.204
RD DEVIA	SMPL UNIV MEAN		0.974	0.556	0.573	0.905	0.706	0.783	0.577
STANDA	SMPL	T-SEC	0.847	0.494	0.518	0.787	0.614	0.659	0.521
SAMPLE	NAM	BTU/S0-FT-SEC	3.687	4.599	5.167	3.882	4.280	7.620	8.512
NO. OF	SAMPLFS		9	~	œ	9	9	5	œ
TRANSDUCER	01		1000	2000	0003	0000	9000	0008	600¢

2.858

7.894

0.231

0.200

7.612

0.001 0.001

4567577666666577

0019

2017

0.001

0.002

0.026 0.001

0.004

0.009 0.022

0.013

0.066

0.109

9200 0025 0000

0022 0023

0021

0.238

0.021 0.041 0.076

00000

0.000 0.008 0.019 0.024 0.047 0.004 0.010

0.009 0.009

0.026

0.052

0.093 0.137

2.277 5.986

3.575

0.202

0.535 2.254

0.475

1.897 0.768 0.124

9.318

0013 2100 9100

1100

2.883

2.700

1.008 0.326 0.053 0.094 00000 00000

> 0.864 0.140

12.342 3.862

6.620

0.521 0.951

> 6000 0100

0.595 0.250 0.559

1.190

0.559

0.470

4.835

1.528 4.309 2.969

1.581

1.428

RUN SERIES 20, LOG 20.1.1 AND LOG 20.1.2 CASE ---

	EFFECT OF BUTBOARD ENGINE BUT ON BASE REGION HEATING RATES	
10 5. 0FF	REGION H	
MIXTURE RATIO 5.50 INTERSTAGE OFF	ON BASE	
MIXTU	IGINE OUT	11-576
28 715.0 PSIA	OUTBOARD EI	1.2 RUNS 5
PC		-558, LOG 20.1.2 RUNS 571-576
GIMBAL P NOMINAL	REMARKS: NUMBER 3 ENGINE DUT	LOG 20.1.1 RUNS 551-

(CONTINUED FROM PREVIOUS PAGE)

SAMPLE MEAN + 3(ST DEV MEAN)	:
/IATION MEAN	
STANDARD DEVIATION SMPL UNIV MEAN	
STAND	BTU/SQ-FT-SEC
SAMPLE MEAN	BTU/SQ-
NO. OF SAMPLES	
TRANSDUCER ID	

0.058	0.137	0.001	0.188	0.277	0.212	0.055	0.098	0.013
0.005	0.007	00000	0.008	0.017	0.034	0.008	0.0	0.0
0.012	0.017	00000	0.022	0.024	0.049	0.011	0.0	0.0
0.010	0.015	000-0	0.020	0.014	0.028	900.0	0.0	0.0
0.042	0.115	0.001	0.163	0.226	0.108	0.030	0.098	0.013
2	۪ڡ	ç	7	2	2	2	<u>,</u>	-
0034	0035	0038	0044	0110A	01110	Q112A	0121A	0122A

RUN SERIES 20, LOG 20A.1.2 CASE ---

	NOPEPATIVE
MIXTURE RATIO 5.50 INTERSTAGE OFF	OF OUTROARD ENGINE OUT ON BASE REGION HEATING RATES GIMBAL PATTERN 28 IS THE SAME AS 28 EXCEPT THAT THE INOPEPATIVE
	ENGINE OUT ON F FRN 28 IS THE S
RN 28-MOD 715.0 PSIA	FECT IFIED
GIMBAL PATTERN NOMINAL PC	REMARKS: EF 3 ENGINE OUT. MOD 15 ALSO GIMBALLED
·	NUMBER ENGINE

	,))			
TRANSDUCER 10	ND. OF SAMPLES	SAMPLE MEAN	STAND	STANDARD DEVLATION SMPL UNIV MEAN	ATION MFAN	SAMPLE MEAN + 3(ST DEV MEAN)
-			PTU/SQ-FT-SE	S ПС		
0001	'n	C.	0.766	•	.40	~
0000	4	æ	0.313	•	0.196	3 00
9000	4	6.	0.192	•	.12	. 3.5
0000	ιν	7	1.042	•	55	42
0011	ŀζ	4.	0.670	•	.35	49
6100	4	8.585	0.499	0.624	0.312	9.520
0050	m	0	0.0		0	00
1200	5	0	0.000	•	00.	00
0022	4	<u>਼</u>	0.005		00.	.02
0023	ις.	-	100.00		00.	. 11
0024	5	-	0.003	•	.00	.13
0600	2	0	0.009	•	.01	.07
0033	4	0	0.005	•	00.	.03
6400	5	0	0.001	•	00.	.01
0046	4	• 2	0.080	•	.05	.37

RUN SERIES 20, LOG 20.2.1 AND LOG 20.2.2 CASE

5.50	N O
MEXTURE RATIO 5.50	INTERSTAGE
2.8	715.0 PSIA
GIMBAL PATTERN	Jd -
GIMBAL	NOMINAL

REMARKS: EFFECT OF OUTBOARD ENGINE OUT ON BASE REGION HEATING RATES NUMBER 3 ENGINE OUT AND INTERSTAGE ON. INTERSTAGE 'A' GAGES AT 29, 'B' GAGES AT 0 DEGREES LOG 20.2.1 RUNS 559-564, LOG 20.2.2 RUNS 565-570

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)	
ATION	MEAN	
STANDARD DEVIATION	SMPL UNIV MEAN	Ú
STAND	SMPL	ATILICOLET LCEC
SAMPLE	MEAN	a
40 .CM	SAMPLES	
TRANSPUCER	01	

.49	.43	• 38	.33	.01	.05	.48	.43	.12	.36	.72	.03	.03	.16	. 75	.91	. 98	.10	.79	.79	.53	.50	0.385	•39
.23	•04	.32	.13	.20	.23	.23	.56	.60	•19	.18	00.	.00	.01	.10	• 28	•06	• 00	• 18	.18	•06	•06	0.025	.01
5	6	ω,	w	4.	5	5	~	4.	4.	6	0	0	0	.2	r.	٦.	0	4.	4.	7.	0	0.035	0
. 50	.97	.70	.27	.42	44.	.50	• 05	•29	.40	•29	00.	00.	.03	.22	.45	.12	.01	.33	.39	.11	.05	0.020	.01
. 78	.29	.39	.93	.41	.33	.77	. 74	.30	• 79	.18	.02	. 02	11.	.43	.05	• 70	.08	.26	.23	.35	29	0.310	36
9	ß	9	9		2	9	5	9	9	4	ĸ	72	9	\$	4	9	S	5	•	5	~ i,	2	2
0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	110	01110	112

76

RUN SERIES 20, LOG 20.2.1 AND LOG 20.2.2 CASE --

5.50 0N

MIXTURE RATIO ----

29 715.0 PSIA

GIMBAL PATTERN ---NOMINAL PC -----

	DEGREES	
HEATING RATES	"B" GAGES AT 0	
REGION	AT 29.	
REMARKS: EFFECT OF DUTBOARD ENGINE OUT ON BASE	NUMBER 3 ENGINE OUT AND INTERSTAGE ON. INTERSTAGE 'A' GAGES AT 29, 'B' GAGES AT 0 DEGREES	7.1 RUNS 559-564, LOG 20.2.2 RUNS 565-570
	NUMBER	L 0.6 20.

(CONTINUED FROM PREVIOUS PAGE)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

NAM R IOMAN	+ 3(ST DEV MEAN)
RD DEVIATION	SMPL UNIV MEAN
ACNATA	NAMS
SAMPLE	NAM
ON ON	SAMPLES
TRANSDUCER	<u>C</u>

BTU/SO-FT-SEC

	0.746	1.615	0.450	0.177	0.495	1.256	2.480	0.957	2.868	1.113
	0.094	0.075	0.0	0.018	0.039	0.132	0.178	0.130	0.222	0.072
	0.133	0.106	0.0	0.041	0.095	0.322	0.435	0.225	0.543	0.144
1	0.075	090.0	0.0	0.034	0.083	0.280	0.378	0.163	0.472	0.115
•	0.465	1.390	0.450	0.122	0.378	0.862	1.947	0.567	2.203	0.897
(7	?	_	ĸ	9	9	9	m	9	4
	01704	0121A	0.122A	Q26A	Q26R	. 027A	9278	029A	Q28B	0298

EFFECT OF SINGLE ACTUATOR FAILURE INBOARD AT 3 DEGREES ON BASE REGION FEN --- 6A MIXTURE RATIO -GIMBAL PATTERN ---

REMARKS:

SUMMARY OF SIAIISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)
STANDARD DEVIATION SMPL UNIV MEAN
OF SAMPLE PLES MEAN
TRANSDUCER NO. O

BTU/SQ-FT-SEC

10.468	6.872	12.547	11.039	3.226	3.183	5.551	4.660	7.345	2.490	3.335	3.459
0.572	0.236	0.321	0.395	0.360	0.076	0.188	0.297	0.261	0.0	0.216	0.100
1.279	0.528	0.787	0.883	0.805	0.187	0.421	0.728	0.584	0.0	0.432	0.244
1.077	94440	0.684	0.744	0.677	0.163	0.355	0.633	0.491	0.0	0.345	0.212
rvφ	5	9	5	'n	\$		9	ς.		4	9
0003	9000	0008	6000	0100	1100	0013	0014	0012	0016	0017	6100
	5 8.752 1.077 1.279 0.572 10. 6 7.265 0.688 0.791 0.323 8.	5 8.752 1.077 1.279 0.572 10. 6 7.265 0.688 0.791 0.323 8. 5 6.164 0.444 0.528 0.236 6.	5 8.752 1.077 1.279 0.572 10. 6 7.265 0.688 0.791 0.323 8. 5 6.164 0.444 0.528 0.236 6. 6 11.583 0.684 0.787 0.321 12.	5 8.752 1.077 1.279 0.572 10. 6 7.265 0.688 0.791 0.323 8. 6 11.583 0.684 0.787 0.321 12. 6 9.854 0.744 0.883 0.321 12.	5 8.752 1.077 1.279 0.572 10. 6 11.583 0.684 0.787 0.323 8. 6 11.583 0.684 0.787 0.321 12. 9.854 0.744 0.883 0.395 11. 5 2.146 0.677 0.805 0.360 3.	5 8.752 1.077 1.279 0.572 10. 6 7.265 0.688 0.791 0.323 8. 6 11.583 0.684 0.787 0.321 12. 5 9.854 0.744 0.883 0.395 11. 5 2.146 0.677 0.805 0.360 3. 6 2.953 0.163 0.187 0.076 3.	5 8.752 1.077 1.279 0.572 10. 6 7.265 0.688 0.791 0.323 8. 6 11.583 0.684 0.787 0.321 12. 6 11.583 0.684 0.787 0.321 12. 5 9.854 0.744 0.883 0.395 11. 5 2.146 0.677 0.805 0.360 3. 6 2.953 0.163 0.187 0.76 3. 5 4.986 0.355 0.421 0.188 5.	5 8.752 1.077 1.279 0.572 10. 6 7.265 0.688 0.791 0.323 8. 6 11.583 0.684 0.787 0.321 12. 6 11.583 0.684 0.787 0.321 12. 5 9.854 0.744 0.883 0.351 11. 5 2.146 0.677 0.805 0.360 3. 6 2.953 0.163 0.187 0.076 3. 6 3.768 0.633 0.728 0.297 4.	5 8.752 1.077 1.279 0.572 10. 6 7.265 0.688 0.791 0.323 8. 6 11.583 0.684 0.787 0.321 12. 5 9.854 0.784 0.883 0.321 11. 5 2.146 0.677 0.805 0.360 3. 6 2.953 0.163 0.187 0.076 3. 5 4.986 0.355 0.421 0.188 5. 6 3.768 0.633 0.728 0.297 4. 6 5.62 0.491 0.584 0.261 7.	5 8.752 1.077 1.279 0.572 10. 6 7.265 0.688 0.791 0.323 8 6 11.583 0.684 0.787 0.236 6 5 9.854 0.684 0.787 0.321 11 5 2.146 0.677 0.863 0.360 3 6 2.953 0.163 0.187 0.076 3 6 3.768 0.635 0.421 0.188 5 6 3.768 0.633 0.728 0.297 4 6 5.490 0.0 0.0 0.0 2	8.752 1.077 1.279 0.5 7.265 0.688 0.791 0.3 6.164 0.444 0.528 0.2 11.583 0.684 0.787 0.3 9.854 0.744 0.883 0.3 2.146 0.677 0.805 0.3 2.953 0.163 0.187 0.0 4.986 0.355 0.421 0.1 3.768 0.633 0.728 0.2 6.562 0.491 0.584 0.2 2.490 0.0 0.0

CASE ----- RUN SERIES 21, LOG 21.2

ATIO 5.50	E ON
MIXTURE RATIO	715.0. PSIA. INTERSTAGE
64	715.
TERN	NOW I WALL PC

EFFECT OF SINGLE ACTUATOR FALLUPE INBOARD AT 3 DEGREES WITH INTERSTAGE REMARKS:

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)	
ATION ME AN	
STANDARD DEVIATION SMPL UNIV MEAN	
STANDA	
SAMPLE MEAN	
NO. OF SAMPLES	
TRANSOUCER IO	-

RTU/SO-FT-SEC

6.108	8.934	10.267	8.379	8.102	12,589	10.860	3.647	4.276	7.827	4.988	8.987	3.734	3.307	4.432
273	,227	579	451	287	441	507	304	344	760	,437	,622	201	189	.261
			0											
0.723	0.601	1.418	1,104	0.704	1.168	1.241	0.680	0.911	1.861	1.156	1.646	0.403	0.500	069.0
0.642	0.534	1.233	0.960	0.612	1.038	1.079	0.573	0.810	1.618	1.027	1.463	0.322	777.0	0.613
			7.027											
~	7	c	9	9	_	ç	ιν	~	\$	7	7	4	7	_
 1000	0002	0003	4000	9000	8000	6000	0100	0011	0013	9100	0015	9100	4017	6100

RUM SERIES 22, LOG 22,1 CASE ----

01	-
SEG.	0
3 A S E	2 4 7 2
Z.	10
S	ā
DEGREE	> 10 4 2
3	2
ΔŢ	<
OF SINGLE ACTUATOR FAILURE OUTBOARD AT 3 DEGREES ON HASE REGION	CM ROFAK
AILURE C	OIADHDA
ц. ~	>
UATOR	a V u
ACT	<u> </u>
ui Li	Ē
SINC	A 9.1
J.	NOI.
FECT:	OUFSI
u. W	604
MARKS:	2 2 2
W	ATES
	Δ.
	SZILV
	-

MIXTURE RATIO

68 715.0 PSIA

GIMBAL PATTERN NOMINAL PC ----

IN TAKLY DIAPHKAGM BKHAK AND HAKLY HEAT

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)		c	600.0	.02	0	• 09	. 20	.01	• 04	.06	.06	•00	.07	. 18	3	.21	0.196
MEAN		00	0.002	00.	00.	.00	00.	• 00	00.	00.	• 00	.01	00.	.01	•26	.00	0.037
ARD DEVIAN	SEC	00	0.005	.01	10.	.01	.01	• 00	.01	.00	• 02	0.03	.01	.03	.37	.01	0.053
STANDARD SMPL UN	BTU/SQ-FT-SE	0	•	0.009	0	0	C	ဂ	•	0	•010	.033	0	0	5	0.007	0.030
SAMPLE	ω.	00	0.003	.01	• 04	.08	61.	• 00	.03	• 06	• 03	• 05	• 05	• 14	• 33	. 18	0.084
NO. OF SAMPLES		ç	9	9	<u>د</u>	9	9	9	9	\$	9	9	9	9	7	?	
TRANSDUCER ID		9020	0021	4022	0023	0024	0025	0030	0031	Q032	0034	0035	0037	0044	0110	0111	011.2

MIXTURE RATIO ----9UN SERIES 22, LNG 22.2 6B 715.0 PSIA PC -----GIMBAL PATTERN NOMINAL PC ----CASE

3 DEGREES WITH INTERSTAGE 5.50 REMARKS: EFFECT OF SINGLE ACTUATOR FAILURE DUTROAPD AT REGION HEATING RATES INTERSTAGE -----ON, ON BASE

STATISTICAL ANALYSIS OF NORMALIZED DATA SUMMARY OF

TRANSDUCER ID	NO. OF SAMPLES	SAMPLE	STANDARD SMPL U	0.00 NI V	IATION MEAN	SAMPLE MEAN + 3(ST DEV MEAN)
				•	j	
			BTU/SQ-FT-9	SEC		
0000	~	• 03	10.	.01	00•	.05
0021	7	990.0	•	0.031	0.012	0.102
0022	۲,	.15	•04	.04	.01	.21
0023	S	. 31	.16	.19	• 08	.07
0024	4	.17	01.	.12	•06	.36
0025	₽.	• 46	11.	.13	•06	•64
0026	9	• 16	.03	.04	.01	.20
0027	9	.23	• 06	.07	.02	.32
0029	9	. 28	.10	.12	• 05	.43
0600	7	•19		• 05	2	. 25
1600	9	• 45	.08	.09	£.0.	.56
2003	7	. 56	.11	.12	•04	.71
3044	7	. 22	.08	• 09	•03	.32
0110	2	.30	.03	.05	•04	.42
0111	~	. 28	.10	~	.12	99.
$\boldsymbol{\neg}$. 2	. 15		.03	2	.23

CASE ------ RUN SERIES 23, LOG 23,1,1

5.50	OFF
MIXTURE RATIO	INTERSTAGE
σc	715.0 PSIA
GIMBAL PATTERN	NOMINAL PC

PEMARKS: CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES INBOARD ON NO 4 FNGINE AT 1.6 DEGREES ROME AT 1.6 DEGREES ROME AT 1.6 DEGREES RETWEEN ENGINE 4 AND 5

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)			• 04	.03	.28	3.804	.62	.14	.01	. 73	.67	.34	.20	.35	.53	.76	.67	.50	.92	69.	• 06	. 43	.75	.54	.21	.21
ATION MEAN	IN PSIA		00.	00.	.25	0.236	.38	44.	•13	.37	7 ó .	.83	•29	.36	•04	•29	.54	.82	• 45	•46	.50	.63	0	.38	•	.02
RD DEVIA UNIV	EC, (P)		• 00	.00	.51	0.471	• 94	.07	• 30	• 75	.88	.87	• 65	. 31	• 10	. 59	•68	.02	. 11	.03	•13	• 54	·	•67	•	• 06
STANDA SMPL	BTU/SQ-FT-S	: :	00.	.00	00.	0.377	.82	.93	.26	.60	.10	.57	. 55	• 68	• 08	.47	• 78	• 76	16.	.87	• 95	.34	ှ	• 48	•	• 05
SAMPLE	N1 (0)		• 03	.02	.51	3.097	.46	.82	• 60	.60	• 35	.83	.32	.26	.40	.87	• 04	.01	• 55	.30	. 54	.53	• 75	.38	• 88	.13
ND. OF SAMPLES			5	4	4		9	9	ĸ	*	4	<u>:</u> د		ĸ.	<u>د</u>	4	ι	9	9	5	rv.	Q	-	3	5	5
TRANSDUCER ID			0	C	0	0K 02	0	0	0	0	O	0	0	0	C	C	C	0	0	0	0	C	0	_	_	2

23.1.1
907
23,
SERIES
NO.
ASE
•

INBUARD ON			
FAILURES			
ACTUATOR			
ILIS			
ENVIRONMENT WITH ACTUATOR FAILURES INBOARD ON			
1743			
INE NOZZLE			
ENGINE		4 AND 5	
CENTER ENG	GREES	NGINE 4	
PEMARKS:	NO 4 ENGINE AT 1.6 DEGREES	ROW L GAGES RETWEEN ENGINE	
	ENGINE	GAGES	
	NO 4	ROW L	

5.50 .0F.F

MIXTURE RATIO ---INTERSTAGE -----

8 715.0 PSIA

GIMBAL PATTERN ---NUMINAL PC -----

(CONTINUED FROM PREVIOUS PAGE)

0.001 0.433 0.156
0.0
0.0 0.167 0.022
0.0 0.121 0.018
0.001 0.143 0.127
e s
0024R 0025 0044

CASE ----- RUN SERIES 23, LOG 23,2

GIMBAL PATTERN 6A NOMINAL PC 715.0 PSJA JINTERSTAGE 0F9 REMARKS: CENTER NOZZLE WALL ENVIRONMENT WITH SINGLE ACTU NOTE: QKO3 AND QKO4 RUN 629 RESULTS QUESTIONABLE SINCE OSC COINCIDES OR OFF SCALE. M GAGES AT 315. L AT 292.5, K AT 270 DEGREES
--

SUMMARY DE STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
IATION	NA EM
STANDARD DEVIATION	SMPL UNIV MEAN
STAN	SMPL
SAMPLE	MEINN
NO. OF	SAMPLES
TRANSOUCER	G1

(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA

.03	• 03	9.71	.26	8.53	.42	.89	• 62	3.35	.10	4.88	2.86	2.47	1.87	4.22	7.80	.17	€6.	95	.98	.12	.80	611.6	• 10
.00	.03	.46	.54	.90	•29	•06	.17	α	•19	.18	•06	•19	.63	.56	44.	.38	.17	.16	.53	.36	47	0.176	.08
.00	.00	.52	.09	.21	.73	.14	.38	.49	8	.40	• 15	• 48	90	.42	.18	.02	.42	.40	.30	90	.25	0.394	. 52
00.	00.	.83	87	. 92	.63	11.	.32	.25	90.	.34	.12	.42	.24	66.	.05	06.	.37	.35	.13	• 78	1.1.	0.332	36
.03	.02	5.33	•62	5.82	.53	.70	.11	.71	.52	. 34	. 66	.88	.97	. 53	• 45	.01	.41	.45	.38	• 02	• 38	9.190	. 86
Ŋ	9	m	4	9	y	ß	2	œ	4	5	2	9	7	œ	~	7	9	9	9	9	7	5	2
P 005	900d	0K01	0K02	0K03	0K04	QK 05	0K 06	QL 02	01.04	QL 04	0105	90 JO	IOWO	0402	QM03	\$0M0	0405	0M06	6000	0004	0000	6000	0100

CASE ------ RUN SERIES 23, LOG 23.2

MIXTURE RATIO ----INTERSTAGE ----715.0 PSIA **6**A GIMBAL PATTERN ---

REMARKS: CENTER NOZZLE WALL ENVIRONMENT WITH SINGLE ACTUATOR FAILURE INBOAPD. NOTE: QKO3 AND QKO4 RUN 629 RESULTS QUESTIONABLE SINCE OSCILLOSCOPE TRACE EITHER CHINCIDES OR OFF SCALE, M GAGES AT 315, L AT 292.5, K AT 270 DEGREES.

(CONTINUED FROM PREVIOUS PAGE)

SAMPLE MEAN	+ 3(ST DEV MEAN)	ধ	
ATION	MEAN	I Sd NI	
STANDARD DEVIATION	SMPL UNIV MEAN	SEC. (P)	
STAND	SMPL	(Q) IN BTU/SO-FT-SEC, (P) IN PSIA	
SAMPLE	MFAN	21 (0)	
NO. OF	SAMPLES		
TRANSOUCER	01	-	

4.167	3,595	0.032
0.192	0.285	0.0
0.471	0.698	0.0
0.410	709.0	0.0
3.590	2.740	0.032
9	Q	-1
9100	0017	0044

RUN SERIES 23, LOG 23.3 CASE

5.50	OFF	
MIXTURE RATIO 5.50	INTERSTAGE	THE RESERVE THE PROPERTY OF TH
10	NOMINAL PC 715.0 PSIA I	
TTERN		
GIMBAL PATTERN	NOW INAL PI	*******
		·

CENTER NUZZLE ENVIRONMENT WITH DUAL ACTUATOR FAILURE INBOARD AT 0.9 DEG REMARKS:

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
DEVIATION	MEAN
AKD DEVI	SMPL UNIV
STANDAKD	SMPL
,	
SAMPLE	MEAN
NO. OF	SAMPLES
TRANSDUCER	01

(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA

03	03	80	96	23	39	14	9	51	04	44	05	83	63	59	02	46	37	88	03	05	52	26	3.388
										*													
• 00	.00	.37	• 45	.46	.32	.14	.34	0.167	.22	• 16	• 15	•19	.32	.25	.36	.62	.46	.43	.71	.67	.81	•95	.20
.00	.00	.83	.01	.02	.72	.24	.58	0.372	• 45	.29	.35	.33	•65	.51	.81	.08	•04	96.	.41	.34	•63	•64	0
• 00	00.	.70	. 85	98.	• 60	• 18	• 42	0.313	• 36	.21	•29	.24	. 52	.41	. 68	• 78	• 88	. 30	• 13	• 07	.30	• 18	• 32
0	٠.	• 6	i,	œ	4.	£.	ຸດ •	2.010		.Φ	·	?	٠ د	æ	Ç.	<u>بر.</u>	6	3	· 6		0	4	. 7
4	٣	5	Š		S	m	m	2	4	M	5	m	4	4	2	.m :	5	3	7	4	4	8	4
P005	P006	0X01	0K 02	QK 03	0X 04	QK 05	0K 06	0F 05	QL 03	010	OL 05	90 TO	QMO1	0M02	OM03	QM04	0M05	30MG	0003	4000	8000	6000	9100

CASE ------ RUN SERIES 23, LOG 23.3

5.50 UFF MIXTURE RATIO --715.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

CENTER NOZZLE ENVIRONMENT WITH DUAL ACTUATOR FAILURE INBUARD AT 0.9 DEG R.EMARKS:

(CONTINUED FROM PREVIOUS PAGE)

SUMAARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN (Q) IN BTU/SQ-FT-SEC, (P) IN PSIA STANDARD DEVIATION SMPL UNIV MEAN SAMPLE MEAN SAMPLES NO. OF TPANS DUCER

2.363 0.195 0.390 0.312 0.044 1.777 0025 0017

87

GIMBAL PATTERN --- 11 MIXTURE RATIO ---- NUMINAL PC ----- 715.0 PSIA INTERSTAGE -----

5.50

OFF

REMARKS: CENTER ENGINE NOZZLE ENVIRONMENT WITH DUAL ACTUATOR FAILURE INBOARD ON NOTE THAT ALL THE HEATING RATES ON RUN 697 ARE LOW IN COMPARISON WITH OTHER RUNS AT 6 DEGREES 4 ENGINE NO

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
IATION	MEAN
STANDARD DEVIATION	^INO
STAND	SMPL
SAMPLE	MEAN
- 0F	MPLES
0N	SAM
TRANSOUCER	10

(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA

1		1.58	.07	.13	96.	.42	25.406	64.	96.	.26	. 70	.89	.52	.52	.53	.86	.46	.56	.59	3.16	. 55	8.11	8.89	64.
	ر ا د	, 5 6	.24	.71	. 2 i	.03	0.808	.62	.36	11.	. 14	.35	.22	.11	.10	•00	.12	.59	.57	.36	• 75	• 26	• 05	• 18
	•	J.	• •	1.	.5	0	1.978	5	æ	• 2	ς,	8	5	?	.2	2	7.		4.	8	э	0	3.	4.
٠.	2 (17.	• 64	.51	.45	10.	1.720	.33	. 77	.23	.33	• 75	.48	.23	.22	.20	.40	.95	.22	69•	• 59	.68	.24	.38
7.0	• c	70.7	.35	0C.	.32	.31	22.983	.61	. 86	.93	.27	.82	.83	.19	.21	.57	.08	11	0.86	.06	4.30	4.33	5.73	.95
-	-4 <u>t</u>	.	,	٩	S	5	9	s	o	9	9	\$	9	S	9	9	: •	4	9	'S	9	9	9	9
3000	0.00	UK OI	QK 02	QK 03	0 X O 4	QK 0.5	0101	0F 05	0F 03	0L 04	00.05	10MD	0M02	QM03	0.40¢	QM 05	0008	6000	0100	0011	0013	0014	0015	9100
											:													

SD73-SA-0061

88 -

LOG 23.4	
23,	
SERIES	
S S	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CASE	

5.50 OFF	ACTUATOR FAILURE INBOARD ON	WITH OTHER RUNS
N 11 715.0 PSIA INTERSTAGE	TER ENGINE NOZZLE ENVIRONMENT WITH OUAL ACTUATOR FAILURE INBOARD ON	RATES ON RUN 697 ARE LOW IN COMPARISON WITH OTHER RUNS
GIMRAL PATTERN NOMINAL PC	REMARKS: CENTE ENGINE NO 4 AT 6 DEGREES	NOTE THAT ALL THE HEATING

(CONTINUED FROM PREVIOUS PAGE)

SAMPLE MEAN	3 (ST DEV MEAN)				2.645	0.251
	+					
ATION	MEAN	IN PSIA		•	907.0	0.029
ARD DEVI	^1ND	SEC, (P)		((0.505	0.072
STAND	SMPL	BTÚ/SQ-FT-		•	へのせ・0	0.063
SAMPLE	MEAN	Z1 (C)		•	7.70.7	0.163
NO. OF	SAMPLES			,	٥	9
TRANSDUCER	G.I	:		- 1	2103	0025
	SAMPLE	NO. OF SAMPLE STANDARD DEVLATION SAMPLES MEAN SMPL UNIV MEAN + 3	NO. OF SAMPLE STANDARD DEVIATION SAMPLES MEAN SMPL UNIV MEAN (Q) IN BTU/SQ-FT-SEC, (P) IN PSIA	NO. OF SAMPLE STANDARD DEVIATION SAMPLES MEAN SMPL UNIV MEAN (Q) IN BTU/SQ-FT-SEC, (P) IN PSIA	NO. OF SAMPLE STANDARD DEVIATION SAMPLES MEAN SMPL UNIV MEAN (Q) IN BTU/SQ-FT-SEC, (P) IN PSIA	NO. OF SAMPLE STANDARD DEVIATION SAMPLES MEAN SMPL UNIV MEAN (Q) IN BTU/SQ-FT-SEC, (P) IN PSIA 6 2.027 0.439 0.505 0.206

'n	
23.5	
907	
•	:
23,	:
N	:
SERIES	
$\overline{\simeq}$	
S	
z	
2 0 1	
ı	:
11111	;
1	
1	
CASE	

5.50	OFF
MIXTURE RATIO	NOMINAL PC 715.0 PSIA INTERSTAGE OFF
12	715.0 PSIA
GIMBAL PATTERN	NOWINAL PC

CENTER ENGINE NOZZLE ENVIRONMENT WITH TRANSIENT GIMBAL PATTERN DURING REMARKS:

SEPARATION

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
ATION	N A M
STANDARD DEVIATION	ONI V MEAN
STAND	SMPL
SAMPLE	MEAN
NO. OF	SAMPLES
TRANSDUCER	OJ

(0) IN 8TU/SQ-FT-SEC, (P) IN PSIA

04	3.945	.27	3.15	48	.29	.03	• 36	19.	.28	.38	.12	.87	.27	.86	.56	.36	.07	.55	- 97	.17	64.	<u>.</u>	• 62
00.	0.101	.10	• 75	.31	.31	13	.13	.12	. L &	90.	.02	.24	• 03	.26	01.	.06	.29	.46	. 19	69.	•29	00.	.37
00	0.174	• 18	.30	.85	• 54	.23	.18	.17	.31	.10	•04	.43	•06	• 45	11.	. 1.1	• 50	• 79	.36	.21	.50	.01	• 26
00	0.127	.13	00.	.05	.39	.17	.10	.10	.22	٠o.	.02	.31	•04	. 32	.12	.08	.36	.57	66.	87	.36	000	.50
.03	3.643	• 95	1.90	. 55	• 35	. 62	16.	.30	• 74	. 20	• 05	.13	.15	.08	.26	•16	• 19	.17	• 60	.07	.62	്ന	
m	: :	m	2	2	Μ	m	2	2	m	8	33	m	: : :	m	e n	3	m	n	т	M	€7	3	2
P005	P022	P023	QK 01	QK 02	QK 03	QK 04	QK 05	0L 02	00.03	01°04	9L 05	0M01	QM02	10M03	40 MC	QM05	8000	00100	0014	0015	9100	0025	. 0062
	-	90	-	: !			•		S	D 7	'3-	·SA	.– 0	06	1				•				

SEPARATION

RUN SERIES 23, LOG 23.5 CASE

715.0 PSIA GIMBAL PATTERN ---NOMINAL PC

MIXTURE RATIO INTERSTAGE ---

5.50 OFF

CENTER ENGINE NOZZLE ENVIRONMENT WITH TRANSIENT GIMBAL PATTERN DURING R.EMARKS:

(CONTINUED FROM PREVIOUS PAGE)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE NO. OF TRANSDUCER

STANDARD DEVIATION

+ 3(ST DEV MEAN) SAMPLE MEAN

> MEAN SAMPLES

MEAN **^ I NO**

(a) IN BIU/SQ-FI-SEC, (P) IN PSIA

6900

2.167

198.000

1.724 2.986

203.171

SD73-SA-0061

,	5.50	OF F
10 23.6	MIXTURE RATIO 5.50	NOMINAL PC 465.0 PSIA INTERSTAGE OFF
KUN SEKIES 23	12	465.0 PSIA
CASE TATTELL TON SERIES 23. LUG 23.6	GIMBAL PATTERN	NOMINAL PC

REMARKS: CENTER ENGINE NOZZLE ENVIRONMENT WITH DUAL ACTUATOR FAILURE AT 5 DEG AND LOW PC OF 465 PSIA

the contract of the second experience of the contract of the c	SAMPLE MEAN + 3(ST DEV MEAN)
SUMMARY UF STATISTICAL ANALYSTS OF NURMALIZED DATA	STANDARD DEVIATION SMPL UNIV MEAN
SIICAL ANA	SAMPLE
Y UF SIAL	NO. OF SAMPLES
SUMMARY	TRANSDUCEP. ID

<
-
10
PS
u,
-
Z
_
-
٥
Ξ
_
•
U
u
SE
-
÷
1
9
3
/ S.C
-
101
_
'n
ري
Z
-
_
C
_
-

							•			:												:	
.03	.57	2.481	7.13	• 79	.54	.71	14.	.21	•94	. 45	.50	.89	25	66.	0	.71	.81	• 04	6	.41	66.	.07	0
00.	.08	0.054	.61	4.1	• 16	.07	.03	.22	• 13	. 12	.03	•26	11.	•00	•03	• 04	•06	•07	.49	•00	.17	00.	.11
00.	.25	0.162	.83	.25	•33	61.	11.	.68	939	.38	•00	.78	.44	•29	.11	.12	• 18	• 18	.48	.25	.53	.02	.34
0	• 22	0.148	.67	14.	9	.17	• 1 Ö	.62	.36	.34	.08	.72	.40	.27	.10	-	• L6	.16	. 35.	.23	• 48	.01	8
.03	.31	2.319	.30	. 54	•0%	.51	.36	. 52	3	~	.40		. 81	Ì	a	9	2	. 32	_	•14	• 46	.04	3
9	ဆ	6	6	6	4	σ	6	6	5	6	œ	5	6	6	Ō.	6	8	7	<u>.</u>	80	6	7	6
P005	P022	P023	0K01	QK 02	QK 0.3	QK 04	QK 0.5	QL 02	01.03	01° 04	01.05	QMOI	QM02	QM03	QM04	QMOS	0000	0100	0014	0015	9100	0025	0062
	_	92	<u> </u>	:						D.	73-	-S	<u>4</u> –(006	51								

23.6	
106	
23,	
SERIES	
S U N	
CASE	

Λ	Λ
S: CENTER ENGINE NOZZLE ENVIRONMENT WITH DUAL ACTUATOR FAILURE A	REMARKS: CENTER ENG

AT 5 DEG AND LOW PC OF 465 PSIA

(CONTINUED FROM PREVIOUS PAGE)

SAMPLE MEAN + 3(ST DEV MEAN)		153.102
AT LON ME AN	IN PSIA	3.960
STANDARD DEVIATION SMPL UNIV MEAN	SEC, (P)	10.862 11.880 3.960
STAND SMPL	(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA	10.862
SAMPLF	NI (0)	146.222
NO. OF SAMPLES		6
TRANSOUGER ID		600

CASE ----- RUN SERIES 23, LOG 23.7

5.50 MIXTURE RATIO ----INTERSTAGE -----215.0 PSIA GIMBAL PATTERN ---NOMINAL PC ---- REMARKS: CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH DUAL ACTUATOR FAILURE AT DEGREES INROARD AND NOMINAL CHAMBER PRESSURE OF 215 PSIA

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
IATION	MEAN
STANDARD DEVIATION	SMPL UNIV MEAN
STAND	SMPL
SAMPLE	MEAN
NO . OF	SAMPLES
TRANSDUCER	10

(a) IN BTU/SQ-FT-SEC, (P) IN PSIA

									٠							•							
0.1	57	1.292	.67	.07	. 15	.42	.77	.50	57	.87	.47	.07	• 19	.60	.39	.89	.82	.95	.95	.11	.50	.36	.01
.00	.13	0.043	.18	• 19	.18	.08	.03	•1. •	.08	.13	•06	•06	.32	.13	•04	.01	•06	•03	•04	• 18	11.	.25	• 00
• 00	.30	160.0	14.	. 43	.31	.18	. 06	• 28	•16	.21	.13	.12	.73	.30	.10	.01	.13	.07	•00	.41	.24	• 58	.00
00.	.26	0.032	.34	.36	.23	.15	• 05	.23	.16	.17	.10	•00	19.	.25	. 08	01	. 1 1	.06	• 08	.35	.20	.48	0.001
10.	• 15	1.162	. 12	49	99.	.18	• 68	.07	.31	.55	.21	.89	.20	.19	.26	.86	• 64	.85	.81	. 55	.17	.58	.01
ις	5	5	S	5	3	5	S	4	Z.	4	4	7	G	5	z,	6	5	5		2	5	5	4
P005	P022	P023	0K01	QK 02	0K 03	QK 04	QK 05	90.01	01.02	00.03	000	QL 05	OWOI	0M02	QM03	0M04	QM05	0000	0100	0014	0015	9100	9025
	-	94	-						9	D7	'3-	·SÆ	 0	006	1		-						

CASE ------ RUN SERIES 23, LOG 23.7

5.50 MIXTURE RATIO --INTERSTAGE ---12 215.0 PSIA GIMBAL PATTERN ---

REMARKS: CENTER ENGINE NUZZLE WALL ENVIRONMENT WITH DUAL ACTUATOR FAILURE AT DEGREES INBOARD AND NUMINAL CHAMBER PRESSURE OF 215 PSIA

Ś

(CONTINUED FROM PREVIOUS PAGE)

SAMPLE MEAN + 3(ST DEV MEAN)	SIA	96•169	
MEAN	N N	2.140	1.667
STANDARD DEVIATION SMPL UNIV MEAN	SEC, (P)	4.279	3.727
STAND	(a) IN BTU/SQ-FT-SEC, (P) IN PSIA	3.421	3.137
SAMPLE	NI (0)	89.750	79.400
NO. OF SAMPLES		4	5
TRANSDUCER ID		 0062	0003

CASE ______ RUN SERIES 24, LOG 24.1.1

5.50 OFF NO DEFLECTION MIXTURE RATIO INTERSTAGE 715.0 PSIA GIMBAL PATTERN ---NOW IN AL PC

REMARKS: TO DETERMINE THRUST CONE RADIATIVE HEATING. FLOW-SYMMETRY NOZZLES USED IN THIS TEST P20,21 ENGINE NU 1, P22,23 ENGINE NO 2, P29 ENGINE NO 5

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)
STANDARD DEVIATION SMPL UNIV MEAN
SAMPLE MEAN
NO. OF SAMPLES
TRANS DUCER ID

(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA

4.050	4.082	5.195	777.7	4.783	0.018	0.091	0.139	0.023	0.237	0.033	0.053	0.090	0.044	0.163
0.044	0.036	0.208	0.070	0.133	0.002	0.008	600.0	900.0	0.007	900.0	0.003	0.007	0.010	0.000
0.076	0.063	0.360	0.121	0.231	0.004	0.014	0.015	0.008	0.012	0.008	0.005	0.011	0.016	0.013
0.055	0.046	0.261	0.088	0.167	0.003	0.010	0.011	0.005	600.0	0.005	0.004	0.008	6.012	0.010
3.917	3.973	4.572	4.235	4.384	110.0	190.0	0.113	900.0	0.216	0.016	0.044	0.010	0.015	0.140
m		3	30	3	3	m.	٣	2	3	2	6	3	m	M
P020	P021	P022	P023	620d	0022	0023	0024	Q024R	0025	0000	0031	0.032	0.033	4400
	- 9	96							SI	D 7 :	3-1	SA-	-0(061

CASE ------ RUN SERIES 25, LUG 25.1

	NOMINAL PC	71	715.0 PSIA	INTERSTAGE	110 5.50 OFF	
EFLECTION	REMARKS: HEAT SHIELD PRESSURES WITH ENGINE DEFLECTIONS. PATTERN ROTATED 180 DEGREES	SHIELD 180 DEG	PRESSURES REES	WITH ENGINE	DEFLECTIONS.	

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

TRANSDUCER	NO. 0F	SAMPLE	STAND	ARD DEVI	ATION	SAMPLE MEAN
	SAMPLES	MARINA	SMPL	SMPL UNIV MEAN	MEAN	+ 3(ST DEV MEAN)
			PSIA			
				٠		
1009	ĸ	0.066	700-0	010-0	0.066	600
P002	2 (0,056	0.002	0.004	0.003	0.000
P 0 0 3	m	760.0	0.010	0.013	0.008	7110
P005	2	0.065	0.005	0.000	0.007	0.085
P 0 0 6	m	0.063	0.008	0.012	100.0	0.083
P007	m	0.035	0.001	0.001	0.001	0.037
P008	2	0.033	0.002	0.004	0.003	0.041
P011	m	0.066	0.003	0.005	0.003	0.074

	5.50 DFF
5, LOG 25.2	6A MIXTURE RATIO 5.50 715.0 PSIA INTERSTAGE NFF
RUN SERIES 25, LOG 25.2	6A 715.0 PSIA
CASE	GIMBAL PATTERN

REMARKS: HEAT SHIELD PRESSURES WITH ENGINE DEFLECTIONS. DEFLECTIONS.

	SAMPLE MEAN + 3(ST DEV MEAN)		0.044	0.056	0.045	0.040	0.036	0.065	0.031	0.035
) DATA	AT LON MEAN		0.0	0.002	0.002	0.001	0.001	0.007	000.0	0.0
JRMAL I ZE	STANDARD DEVIATION SMPL UNIV MEAN		0.0	0.004	0.004	0.002	0.002	0.012	00000	0.0
180 DEGKEES F STATISTICAL ANALYSIS OF NORMALIZED DATA	STAND! SMPL	PSIA	0.0	0.003	0.003	0.002	100.0	0.008	000.0	0.0
OKEES	SAMPLE MEAN	·	0.044	0.050	0.038	0.037	0.033	0.045	0.031	0.035
	NO. OF SAMPLES		1	m	m	m	3	m	m	: !
SUMMARY O	TPANS DUCER I D		P001	P002	P003	P005	900d	P007	P 0 0 8	P011

CASE ------ QUN SERIES 26, LOG 26.1

esemble destruction of the second of the contrast of the second of the s

.

•

;

5.50 NO DEFLECTION MIXTURE RATIO ---715.0 PSIA INTERSTAGE -----NOMINAL PC -----GIMBAL PATTERN ---

SKIRT GAGES MUUNTED ON ENGINE NO 5

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)	
STANDARD DEVIATION SMPL UNIV MEAN	
SAMPLE MEAN	
NO. OF SAMPLES	
TRANSDÜCER ID	

(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA

• 03	• 02	• 16	.42	.39	• 04	•	.30	. 54	• 1.4	.85	• 03	.14	11.	.93	.26	16.	• 06	69.	00.	.60	•65	. 73	2.680
• 00	00.	.17	.25	60.	.12	0.216	.07	• 18	.12	.10	.14	.25	•03	• 28	.41	. 55	ç	4.	.37	•	•	•	•
0	• 00	.43	•63	• 16	.20	• 48	.15	.34	• 17	.22	.32	.56	•07	• 63	.92	.35	0	•	• 75	•	•	•	•
0.002	•		•	•	•	•		•	•	. •	•	•		•	•		•	•	•	•	•	•	•
0.029	• 02	. ú 3	• 65	• i i	.68	. 54	• 06	• 95	.77	• 54	.59	.38	• 06	.08	.02	. 25	• 06	• 38	.86	09.	• 65	. 73	• 68
2	4	9	9	m	ю	ïυ	4	m	7	ïV	5	5	4	2	J.	9	1	N	4		_	. —4	-
P 0 0 5	P 0 0 6	0K01	0K 02	QK 0.3	0K04	QK 05	0K 06	1070	QL 02	2F 03	21.04	91.05	9F 06	10M0	0M02	QMO3	0M04	0M05	90 M O	0003	4000	0008	0016

26.
106
26,
SES
Z SER
2
! ! ! ! ! ! ! ! ! ! ! ! !
CASE

5.50	OFF
RATIO	AGE
MIXTURE	INTERSTAGE
NU DEFLECTION MIXTURE RATIO -	715.0 PSIA
GIMHAL PATTERN	NOMINAL PC

REMARKS: NULL NOZZLE HEATING RATES SKIRT GAGES MOUNTED ON ENGINE NO 5

(CONTINUED FROM PREVIOUS PAGE)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN		2.220	0.140
ATION	IN PSIA	0.0	0.0
STANDARD DEVIATION	SEC, (P)	0.0	0.0
STAND	(a) IN BTU/SQ-FT-SEC, (P) IN PSIA	0.0	0.00
SAMPLE	(0) IN E	2.220	0.140
NO. OF			→ ·
TRANS DUCER) •	2000	0025

RUN SERIES 26, LOG 26.2 CASE

5.50 NO DEFLECTION MIXTURE RATIO ----INTERSTAGE ---715.0 PSIA GIMBAL PATTERN ---NOWINAL PC -----

SKIRT GAGES MUUNTED ON NO 4 ENGINE

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN	
IATION	MEAN	
STANDARD DEVIATION	> I N D	
STAND	SMPL	
SAMPLE	MEAN	
NO. OF	SAMPLES	
TRANSDUCER	01	

(0) IN BTU/SQ-FT-SEC, (P) IN PSIA

.07	• 04	.03	66.	.92	96.	. 56	0.989	.51	• 66	.28	• 0 •	.16	.25	.52	.19	.05	.84	.80	.48	.58	. 22	.60	.27
.01	00.	.07	• 05	•06	•06	•06	0.051	•03	• 00	• 15	•06	.12	.17	.01	.09	.21	.10	• 18	.13	44.	.24	.56	50.
0	Ç,	-	7.	- •	٦.	٦.	0.114	0	•	3	-	• 2	6	٠	•2	4.	-2	4.	• 2	6.	.5	. 7	٦.
.01	00.	•14	.11	. 11	01.	• 10	960.0	.02	• 00	.24	•10	.23	.32	• 02	.17	.40	• 16	.35	•24	.82	• 46	• 45	.82
.04	• 03	.80	.81	. 72	• 78	.36	0.837	.41	• 66	.82	.89	• 79	• 74	• 48	16.	. 41	. 53	.24	• 09	.26	• 48	. 92	• 30
m	S	S	S	4	4	4	5	2	n	4	4	ς.	N	30	5	5	4	S	ນ	ĸ	'n	2	3
P005	P006	QK 0 1	0K 02	QK 03	0K 04	0K 05	QK 06	0101	01 05	0L 03	JL 04	0F 0 2	9F 06	10w0	0M02	QM03	0M04	0M05	0M06	4003	000%	0008	6000

RUN SERIES 26, LOG 26.2 CASE ---

5.50 DFF NO DEFLECTION MIXTURE RATIO 715.0 PSIA INTERSTAGE ---GIMBAL PATTERN ---NOMINAL PC

REMARKS: NULL NOZZLE WALL HEATING RATES. MOUNTED ON NO 4 ENGINE SKIRT GAGES

(CONTINUED FROM PREVIOUS PAGE)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)		5.007	717.0
SAMPL + 3(ST D			
AT 10N MEAN	Alsa vi	0.408	\$10.0 0
STANDARD DEVIATION SMPL UNIV MEAN	SEC, (P)	0.913	0.000
STAND	(Q) IN BTU/SO-FT-SEC, (P) IN PSIA	0.769	0.025
SAMPLE MEAN	NI (C)	3.782	7/1.0
NO. OF SAMPLES		יט יט	n
TRANSDUCER 10	-	0010	6700

CASE ----- RUN SERIES 27, LUG 27.1

•

5.50	OFF
MIXTURE RATIO	INTERSTAGE
æ	715.0 PSIA
GIMBAL PATTERN	NCMINAL PC

REMARKS: OUTBOARD ENGINE NOZZLE ENVIRONMENT WITH ACTUATOR FAILURES INBOARD. SKIRT GAGES MOUNTED ON ENGINE NO 4.

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

NA HM H IN MA N	+ 3(ST DEV MEAN)		
ATION	MEAN		
STANDARD DEVIATION	SMPL UNIV MEAN		
STAND	SMPL		
SAMPLE	MEAN		
NO . OF	SAMPLES		
TRANSDUCER	01	-	

(a) IN BTU/SQ-FT-SEC, (P) IN PSIA

03	0.034	15	6	2	14	5	60	73	.81	.92	.86	98	.67	.39	.23	•04	.73	47	.74	\sim	.00	0	4.411
• 00	0.001	.08	.15	.12	.12	.16	.17	03	.02	.01	.02	.02	•04	•06	.16	•00	.07	• 02	.30	.25	.63	.30	0.569
0	0.002		• 2	.2	• 2	.7	£.	0	O	3	0	0	0	٦.	• 2	7		C.	Š	4.	ж	4.	0.804
• 00	0.001	11.	61.	.15	• 15	.21	.22	•04	.03	.01	.03	.03	.05	.07	.20	.12	• 00	.02	• 38	.32	• 05	.24	• 45
.03	0.030	.89	. 82	. 72	11	• 94	• 06	.62	. 73	.88	.79	.89	. 53	.21	. 75	. 74	. 50	.39	. 33	35	.13	• 48	0
m	m	ന	æ	m	m	e	d)	ĸ	m	2	m	٣	m	m	m	m	m	2	٣	ĸ	m	2	N
900 d	P006	0K01	0K 02	0K 03	QK 04	0K 05	0K 06	0L 02	0F 03	0	0F 0 2	90.70	10W0	0M02	QM03	QM04	0M05	90 M O	0003	0004	8000	6000	0010

5.50 OFF INTERSTAGE -----MIXTURE RATIO ---8 715.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

REMARKS: OUTBOARD ENGINE NOZZLE ENVIRONMENT WITH ACTUATOR FAILURES INBOARD. MOUNTED ON ENGINE NO 4. SKIRT GAGES

(CONTINUED FROM PREVIOUS PAGE)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

.

TRANSIDUCER	NO . OF	SAMPLE	STAND	STANDARD DEVIATION	ATION	SAMPLE MEAN
01	SAMPLES	MEAN	SMPL	SMPL UNIV MEAN	MEAN	+ 3(ST DEV MEAN)
	;	N] (0)	(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA	SEC, (P)	IN PSIA	
7100	2	1.885	0.125	0.221	0.156	2.354
0025	3	0.199	0.049	0.068	0.039	0.317

CASE ----- RUN SERIES 27, LOG 27.2.1

the constraint the same of the

5.50	OFF	
MIXTURE RATIO	INTERSTAGE	
6 A	715.0 PSIA	
GIMBAL PATTERN	NOMINAL PC	

REMARKS: OUTBOARD ENGINE NO 4 NOZZLE ENVIRONMENT WITH 3 DEGREE ACTUATOR FAILURE ON NO 4 ENGINE

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)			03	• 03	.38	2.068	.68	.68	•66	.52	.80	.01	.14	. 78	.08	.55	32	2	99		.37	∞	.86	.85	.71	.67
ATION MEAN	IN PSIA		00.	00.	.10	0.313	•20	• 18	•.08	•05	•04	.10	• 13	•24	.02	.07	• 18	.20	.13	•13	.08	.21	•74	.75	06.	•10
ARD DEVI	SEC, (P)		00.	• 00	.18	0.442	• 29	.26	• 15	.09	• 08	• 14	.23	.41	•04	.12	.31	.36	.23	.23	.12	.30	.29	• 06	.57	11.
STANDA S:MPL	BTU/SQ-FT-		• 00	.00	.13	0.250	• 16	• 15	11.	.07	• 05	• 08	.17	•30	• 02	60.	.22	• 26	• 17	.17	.07	11.	• 94	.60	• 14	•12
SAMPLE MEAN	NI (0)		.03	3	.07	1.130	9	12	.40	• 35	9	11.	• 73	• 06	.01	.33	. 78	67.	• 55	10	7	2	\sim	0	Š	.36
NO. OF SAMPLES		:	3	m	3	7	2	7	m	n	3	7	m	m	m	M	ю	٣.	· ••	~	2	~	m	2	~T	m
TRANSDUCER ID			P005	P006	0K01	QK.02	QK 33	0K04	0K 05	0K06	01.02	0103	0104	0L05	90 70	10W0	20M0	0 W 0 3	0M04	0M05	90W0	0003	0004	8000	600C	0100

- 105 -

5.50 OFF MIXTURE RATIO RUN SERIES 27, LOG 27.2.1 6A 715.0 PSIA GIMBAL PATTERN ---CASE ---NOM INAL

OUTBOARD ENGINE NO 4 NOZZLE ENVIRONMENT WITH 3 DEGREE ACTUATOR FAILURE REMARKS:

ON NO 4 ENGINE

(CONTINUED FROM PREVIOUS PAGE)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

3(ST DEV MEAN) SAMPLE MEAN MEAN STANDARD DEVIATION > I NO SMPL SAMPLE MEAN NO. OF SAMPLES TRANSDUCER

(0) IN BIU/SO-FI-SEC, (P) IN PSIA

5.095 0014 0025

6.464

0.456

0.645

0.365

CASE ------ RUN SERIES 27. LOG 27.2.2

MIXTURE RATIO INTERSTAGE ---715.0 PSIA **9** NUMINAL PC -----GIMBAL PATTERN

OUTBOARD ENGINE NO I NOZZLE ENVIRONMENT WITH 3 DEGREE ACTUATOR FAILURE REMARKS: ON NO 4 ENGINE

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN	+ 3(ST DEV MEAN)
ILTION	MEAN
STANDARD DEVIATION	NIN
STAND	SMPL
SAMPLE	MEAN
NO. UF	SAMPLES
TRANSPUCER	01

(Q) IN BTU/SO-FT-SEC, (P) IN PSIA

																			•			
. 0	60	44.	. 79	.50	.54	66.	.02	.01	.84	.87	.54	. 30	.87	.01	.82	.23	.70	.43	.93	.1.	.25	.24
	? ?	0		5	0	_	0	٦.	7	.2	-	0	• 2	.2	.2	0	.3	7.	2.	4.	6.	3
	9		-			.2	-	. 2	•2	3	7.	Ċ	.3	5	6	C	*	7.	4.	α	9.	0.564
		0		<u>ှ</u>		-	0	٦.	٦.	6 1	੍ਹ-	C	• 2	٠,	2.	਼	.2	٦.	~	ĵ.	2	0.409
03	. 03	.36	. 6Ū	.28	.30	• 45	.80	.43	14.	.03	.21	.97	.20	.12	.17	.23	• 74	.37	.21	. 78	.33	.26
ım	· m	m	į.	m	n	~	2	2	2	2	2	7	₹)	33	'n		2	7	n	٣	m	8
900d	900d	0001	0×02	QK 03	0K04	0K 05	(JK 06	01.03	UL 04	30.10	90 TO	10W0	0M02	0M03	0M04	QMOS	90 WO	0100	0013	0014	0015	0019
	3 0.031 0.002 0.003	3 0.031 0.002 0.002 0.001 0.03 3 0.031 0.002 0.001 0.03	3 0.031 0.002 0.002 0.001 0.03 3 0.031 0.002 0.001 0.03 3 1.367 0.033 0.045 0.026	3 0.031 0.002 0.002 0.001 0.03 3 0.031 0.002 0.002 0.001 0.03 3 1.367 0.033 0.045 0.026 1.44 3 1.607 0.078 0.107 0.062	3 0.031 0.002 0.002 0.001 0.03 3 0.031 0.002 0.002 0.001 0.03 3 1.367 0.033 0.045 0.026 1.44 3 1.607 0.078 0.107 0.062 1.79 3 1.283 0.095 0.130 0.075 1.50	3 0.031 0.002 0.002 0.001 0.03 3 0.031 0.002 0.002 0.001 0.03 3 1.367 0.033 0.045 0.026 1.44 3 1.607 0.078 0.107 0.062 1.79 3 1.283 0.095 0.130 0.075 1.50 3 1.300 0.104 0.183	3 0.031 0.002 0.002 0.001 0.03 3 0.031 0.002 0.002 0.001 0.03 3 1.367 0.033 0.045 0.026 1.44 3 1.607 0.078 0.107 0.062 1.79 3 1.283 0.095 0.130 0.075 1.50 3 1.300 0.104 0.144 0.083 1.54 1.455 0.145 0.256 0.181	3 0.031 0.002 0.002 0.001 0.03 3 0.031 0.002 0.002 0.001 0.03 1.367 0.033 0.045 0.026 1.44 3 1.567 0.078 0.107 0.062 1.79 3 1.283 0.095 0.130 0.075 1.50 2 1.455 0.145 0.256 0.181 1.99 2 1.800 0.060 0.106 0.075 2.02	3 0.031 0.002 0.002 0.001 0.03 3 0.031 0.002 0.002 0.001 0.03 1.367 0.033 0.045 0.026 1.44 3 1.283 0.095 0.130 0.075 1.50 1.300 0.104 0.144 0.083 1.54 2 1.455 0.156 0.181 1.99 2.02 4.435 0.155 0.274 0.194 5.01	3 0.031 0.002 0.002 0.001 0.03 3 0.031 0.002 0.002 0.001 0.03 1.367 0.033 0.045 0.026 1.44 1.607 0.095 0.130 0.075 1.50 1.300 0.104 0.144 0.083 1.54 2 1.455 0.156 0.181 1.99 2 1.800 0.060 0.106 0.075 2.02 4.435 0.155 0.203 0.144 4.84	3 0.031 0.002 0.002 0.001 3 0.031 0.002 0.002 0.001 3 1.367 0.033 0.045 0.026 1.44 3 1.607 0.078 0.107 0.062 1.79 3 1.283 0.095 0.130 0.075 1.50 3 1.283 0.095 0.144 0.083 1.54 2 1.455 0.104 0.144 0.083 1.99 2 1.800 0.060 0.106 0.075 2.02 4.435 0.155 0.203 0.144 4.84 2 4.415 0.155 0.203 0.144 4.84 4.87 0.203 0.203 0.144 4.87	3 0.031 0.002 0.002 0.001 0.03 3 0.031 0.002 0.002 0.001 0.03 1.367 0.033 0.045 0.026 1.44 3 1.507 0.095 0.130 0.075 1.59 1.300 0.104 0.144 0.083 1.59 2 1.455 0.145 0.181 1.99 2 4.435 0.155 0.274 0.194 4.87 4.415 0.203 0.144 4.85 2 4.415 0.203 0.144 4.85 3.54	3 0.031 0.002 0.001 0.03 3 0.031 0.002 0.001 0.03 3 1.367 0.033 0.045 0.026 1.44 3 1.507 0.078 0.107 0.062 1.79 3 1.283 0.095 0.130 0.075 1.50 3 1.300 0.104 0.144 0.083 1.50 2 1.455 0.145 0.181 1.99 2 4.415 0.155 0.274 0.194 5.01 2 4.415 0.115 0.203 0.144 4.84 2 4.415 0.115 0.203 0.144 4.84 2 4.035 0.090 0.164 0.194 4.84 2 4.035 0.090 0.003 0.144 4.87 2 4.035 0.090 0.093 0.012 3.54 3.210 0.090 0.012 0.012 1.001 2 0.990 0.090 0.090 0.090 0.090	3 0.031 0.002 0.002 0.001 0.033 0.033 0.045 0.002 0.001 0.033 0.045 0.026 11.44 0.033 0.045 0.026 11.44 1.50 0.033 0.045 0.026 11.44 0.035 0.0362 11.54 0.104 0.045 0.075 11.50 0.104 0.045 0.075 11.50 0.164 0.083 11.54 0.194 0.083 11.54 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.195 0.115 0.203 0.144 0.231 0.23	3 0.031 0.002 0.002 0.001 0.033 0.033 0.002 0.001 0.033 0.033 0.0045 0.0026 1.44 3 1.367 0.033 0.045 0.026 1.44 3 1.283 0.095 0.130 0.075 1.50 1.50 0.104 0.083 1.50 1.50 0.104 0.083 1.54 0.181 1.50 0.165 0.181 1.50 0.165 0.181 1.50 0.165 0.181 1.50 0.165 0.181 1.50 0.165 0.181 1.50 0.203 0.144 0.194 4.84 0.203 0.144 4.85 0.203 0.144 4.85 0.203 0.144 4.85 0.203 0.144 4.85 0.203 0.115 0.203 0.144 4.85 0.203 0.115 0.203 0.115 0.203 0.124 4.87 3.54 0.212 0.203 0.122 1.000 0.012 1.000 0.012 1.000 0.012 0.204 2.87 3.120 0.374 0.516 0.298 4.01	3 0.031 0.002 0.002 0.001 0.033 0.033 0.045 0.002 0.001 0.033 0.045 0.002 0.001 0.033 1.446 0.002 0.002 0.001 0.033 1.283 0.045 0.045 0.026 1.446 0.035 0.045 0.045 1.596 1.500 0.045 0.045 0.045 1.599 0.164 0.083 1.599 0.165 0.075 1.599 0.165 0.038 0.231 4.87 0.090 0.166 0.075 1.300 0.015 0.203 0.144 4.87 0.203 0.164 4.87 0.203 0.164 4.87 0.203 0.164 4.87 0.203 0.164 4.87 0.203 0.105 0.203 0.164 4.87 0.203 0.163 0.203 0.164 4.87 0.203 0.163 0.203 0.164 4.87 0.203 0.204 0.224 2.87 3.82 3.170 0.276 0.380 0.229 3.82	3 0.031 0.002 0.002 0.003 0.033 0.033 0.002 0.0031 0.003 0.003 0.002 0.0001 0.003 0.003 0.0045 0.0026 0.003 0.0045 0.0026 0.003 0.0045 0.0026 0.003 0.0045 0	3 0.031 0.002 0.001 0.033 0.033 0.045 0.002 0.001 0.033 0.033 0.045 0.0026 1.444 0.035 0.037 0.035 0.037 0.035 0.0380 0.022 0.389 0.220 0.389 0.220 0.	3 0.031 0.002 0.002 0.0031 3 1.367 0.002 0.002 0.0031 0.033 3 1.367 0.002 0.002 0.002 0.003 3 1.607 0.033 0.045 0.026 1.79 3 1.283 0.095 0.107 0.052 1.79 2 1.455 0.104 0.015 1.59 2 1.455 0.164 0.018 1.99 2 4.415 0.106 0.174 0.194 4.84 2 4.415 0.115 0.203 0.144 4.84 2 4.415 0.115 0.203 0.144 4.84 2 4.415 0.115 0.203 0.144 4.84 2 4.415 0.115 0.203 0.144 4.84 2 4.415 0.015 0.203 0.124 4.84 2 2.03 0.282 0.389 0.224 2.87 3 3.170 0.0 0.0 0.0 0.0	3 0.031 0.002 0.001 0.031 3 1.367 0.002 0.001 0.031 3 1.567 0.033 0.045 0.001 0.03 3 1.567 0.033 0.045 0.026 1.44 3 1.283 0.095 0.107 0.052 1.59 3 1.283 0.095 0.107 0.063 1.59 2 1.455 0.104 0.015 1.59 2 1.800 0.060 0.106 0.075 2.02 2 4.415 0.060 0.106 0.075 2.02 2 4.415 0.015 0.203 0.144 4.84 2 4.415 0.015 0.014 4.84 2 4.415 0.015 0.014 4.84 2 4.035 0.020 0.012 1.00 3 2.203 0.244 0.214 4.01 3 3.170 0.00 0.0 0.00 2 3.745 0.265 0.137 0.24	3 0.031 0.002 0.002 0.001 0.033 1.367 0.003 0.0031 0.003 0.0045 0.0026 1.444 0.003 0.0031 0.0033 0.0045 0.0026 1.799 1.283 0.0095 0.107 0.0052 1.799 1.300 0.104 0.104 0.0083 1.594 1.300 0.104 0.104 0.0083 1.594 1.300 0.105 0.106 0.075 1.999 1.300 0.105 0.106 0.075 1.999 1.300 0.105 0.203 0.112 2.202 0.399 0.281 4.844 4.845 0.293 0.112 0.298 0.281 4.814 4.845 0.282 0.389 0.224 2.887 0.274 0.194 0.224 2.203 0.274 0.194 0.224 2.303 0.275 0.389 0.224 2.303 0.275 0.389 0.220 2.383 0.276 0.389 0.220 2.383 0.276 0.389 0.220 2.383 0.276 0.389 0.220 2.383 0.276 0.389 0.220 2.383 0.276 0.389 0.220 2.383 0.276 0.389 0.224 2.383 0.276 0.389 0.220 2.244 2.393 0.225 0.389 0.220 2.244 2.393 0.225 0.389 0.220 2.244 2.393 0.225 0.389 0.220 2.244 2.393 0.225 0.389 0.220 2.244 2.393 0.225 0.389 0.220 2.244 2.393 0.225 0.389 0.220 2.244 2.393 0.225 0.389 0.220 2.244 2.393 0.225 0.389 0.220 2.244 2.393 0.225 0.389 0.220 2.244 2.393 0.225 0.389 0.220 2.244 2.393 0.225 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.393 0.220 2.244 2.244 2.393 0.220 2.244 2.393 2.244 2.393 2.244 2.244 2.393 2.244 2.244 2.393 2.244 2.244 2.393 2.244 2.244 2.393 2.244	031 0.002 0.001 031 0.002 0.001 031 0.002 0.001 0033 0.045 0.026 0078 0.107 0.045 00095 0.107 0.045 100060 0.107 0.045 100095 0.130 0.045 1100 0.104 0.045 1100 0.060 0.164 0.045 1100 0.060 0.164 0.044 1100 0.015 0.016 0.016 120 0.090 0.169 0.016 120 0.090 0.169 0.016 120 0.090 0.169 0.024 120 0.090 0.169 0.024 120 0.090 0.016 0.026 120 0.090 0.090 0.090 120 0.090 0.090 0.090 120 0.090 0.090 0.090 120 0.090 0.090 0.090 120 0.090 0.090 0.090

5.50 OFF MIXTURE RATIO 6A 715.0 PSIA GIMBAL PATTERN NOM INAL PC

OUTBOARD ENGINE NO 1 NOZZLE ENVIRONMENT WITH 3 DEGREE ACTUATOR FAILURE REMARKS: ON NO 4 ENGINE

(CONTINUED FROM PREVIOUS PAGE)

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN 3(ST DEV MEAN) STANDARD DEVIATION SMPL UNIV MEAN ^ 1 N O SAMPLE MEAN NO. OF SAMPLES TRANSDUCER ID

(Q) IN BIU/SQ-FT-SEC, (P) IN PSIA

0025

0.108

0.009

0.016

0.011

0.081

CASE ------ RUN SERIES 27, LOG 27.3

10 MIXIURE RATIO 5.50 715.0 PSIA INTERSTAGE OFF	REMARKS: OUTBOARD ENGINE WALL ENVIRONMENT WITH ACTUATOR FAILURES.
10 715.	N 1 5 N
NOMINAL POLICEN 10	OUTBOARD ENGINE W
GIMBAL PALIEKN NOMINAL PC	REMARKS: OU
	1

SKIRT GAGES ON NUZZLE 4.

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

SAMPLE MEAN + 3(ST DEV MEAN)		• 0 9	.05	.37	.73	39	.19	.63	61.	.39	.14	.22	.29	.36	.26	• 76	.81	.59	.65	.60	.42	.34	.55	.71	•
I AT I ON MEAN	IN PSIA	.01	00.	.20	.22	.21	•15	.18	.14	.21	.16	•14	.11	.12	.21	.25	•04	.29	.11	11.	.92	• 19	.18	.21	4
ARD DEV UNIV	SEC,(P)	.03	.01	.40	.45	43	.31	.37	.24	.43	.32	.24	.22	• 24	.42	.51	.08	.58	• 19	• 16	09.	.59	• 05	.37	•
STAND	BTU/SQ-FT-	02	00	32	.36	•	.25	.30	.17	.34	•26	.17	• 18	61.	33	14.	.07	14.	• 1 4	•00	•16	.27	64.	.27	.58
SAMPLE MEAN	VI (0)	• 04	.03	.76	• 05		.72	.07	.76	.74	• 65	.80	• 62	• 00	.63	66.	• 68	. 70	. 31	.24	• 65	. 95	66.	• 06	.36
NU. OF SAMPLES		4	ĸ	÷	+	4	4	. *	٣	4	7		4	4	4	7	4	4	ĸ	2	m	4	m	რ	3
TRANSDUCER ID		P 0 0 5	900d	0×01	QK 02	QK 03	0X 04	QK 05	0X 06	0102	0103	OL 04	91.05	90 JO	OMOI	10 M 0 2	0M03	0M04	0M05	90 M C	0003	0004	8000	0000	0100

		AILURES.	AGE)		SAMPLE MEAN + 3(ST DEV MEAN)		717 6	265.0
:	- 5.50 - OFF	UATOR F	VIOUS P	DATA	MEAN	N PSIA	0 173	0.119
	AT10	WITH ACT	FROM PRE	RMAL 1 ZED	STANDARD DEVIATION SMPL UNIV MEAN	EC, (P) I	37.6	0.168
7. LOG 27.3	MIXTURE RATIO	V I RONMENT	(CONTINUED FROM PREVIOUS PAGE	YSIS OF NO	STANDA	(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA	7200	0.095
RUN SERIES 27. LOG 27.3	10 715.0 PSIA	ARD ENGINE WALL ENVIRONMENT WITH ACTUATOR FAILURES		STATISTICAL ANALYSIS OF NORMALIZED DATA	SAMPLE	NI (0)	. a.	0.140
R.		T80,		· 11	NO. ÖF SAMPLES		4	2
CASE	GIMBAL PATTERN NOMINAL PC	REMARKS: On NOZZLE	- The state of the	SUMMARY OF	TRANSDUCER ID	: : : :	4100	0025
*		SKIRT GAGES	The state of the s				- 11	10 +

RUN SERIES 28, LOG 28.1 CASE --

......

,

.

5.50 OFF MIXTURE RATIO ---INTERSTAGE -----715.0 PSIA GIMHAL PATTERN ---NOMINAL PC -----REMARKS:

ENVIRONMENT OF THE INDPERATIVE OUTBOARD ENGINE WITH THE INOPERATIVE DOUBTFUL WHETHER ENGINE WAS DEFLECTED DURING THE TEST. ENGINE DEFLECTED.

SUMMARY OF STATISTICAL ANALYSIS OF NORMALIZED DATA

FRANSOUCER ID	NO. UF SAMPLES	SAMPLE MEAN	STANDARD SMPL UN	₩ 	DEVIATION V MEAN	SAMPLE MEAN + 3(ST DEV MEAN)
-		(0) IN B	810/50-61-5	SEC, (P)	VISA NI	
-						
P 0 0 5	m	10.	00.	00	00.	0
P006	m	2	.01	.01	70.	5
0K 0 1	4	.50	.02	02	.01	54
QK 02	B	0.563	0.066	160.0	0.053	0.721
QK03	Z.	.47	• 09	77.	.05	.62
QK 04	rJ.	**		<u>ب</u>	.06	62
0K 05	7	.51	.10	.12	90.	.70
QK06	4	• 60	.11	• 14	.07	.82
0L 02	4	• 42	60.	.12	.06	.61
0F 03	IJ	7	01.	.12	.05	4
OL 04	n	.50	• 15	• 18	.08	. 75
01.05	rc:	• 64	• 18	.22	01.	46.
90 TO	IJ	. 18	.22	.27	.12	1.
10MO	'n	.26	• 05	• 06	•03	.35
COMO	'n	.23	.08	.10	•04	.37
OMO3	2	•30	.01	•02	.00	.33
40M0	5	.32	.01	.02	• 01	35
0M05	3	• 38	• 02	90.	•05	.47
0M06	ĸ	.42	• 05	• 06	.02	.50
10NO	_	.01	·	0	0	.01
80 NO	ന	. 03	00.	.00	00.	03
6000	s)	.01	~	•	•	24
0015	М	.57	• 13	.57	05.	.29
0025		_	0.0	•	0.0	

3.0 TABULATIONS OF NORMALIZED TEST DATA

During the test program, it was intended to hold the chamber pressure and mixture ratio for each set of runs at a constant value. However, due to practical limitations, some variation of the measured chamber pressure occurred from run to run. Therefore, in the analysis of the model data, the test values are first normalized to the nominal chamber pressure value using the experimentally and analytically determined correlations, i.e.,

The following notation is used in the test data tabulation of this section.

PC	Chamber Pressure
ALT	Altitude corresponding to test chamber pressure
PO2	Oxygen charge tube pressure
PH2	Hydrogen charge tube pressure
TO2	Oxygen charge tube temperature
TH2	Hydrogen charge tube temperature
DO2	Oxygen charge tube venturi diameter
DH2	Hydrogen charge tube venturi diameter

A summary of all the test cases run during this test program, and presented in this section, is given in Table 5-1, Volume I.

CASE ----- RUN SERIES COI, LOG COI

NO DEFLECTION MIXTURE RATIO ---- 5.00 632.0 PSIA INTERSTAGE ----- OFF NOMINAL PC ----GIMBAL PATTERN ---

REMARKS: PRELIMINARY CHECKOUT FOR COMPARISON WITH PREVIOUS CAL RESULTS

		40.	27.	015.	1015.0	1	1 1		! ! !	. ,			.03	0.010	1	1 1 1	5	8	1	1 1 1	1 1 1	 	1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	1 1 1	0.197
•		29.	27.	015.	1015.0	1 1	1	1 1 1	1 1				0.024	1.	1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	5	23	1	1 1	3.820	1	1 1	1	1 1	1 1 1	0.251
		78.	27.	015.	1015.0	1	1 1	1	1 1				.02	0.027	1	1 1 1	.18	2.200	1	i ! !	2.840		† † †	1 1		1 1 1	0.711
	6	1	•	015.	1015.0	1	1	1	 			SIA	0.01	• 02	1	1	1.300	.32	• 64	.03	- 1	1	1 1 1	1 1 1 1	.05	0.091	• 19
AIA	œ	٠,	7	040	1040.0	-	1 1	1	1 1 1		-	2	0.023	• 03	1	1	_	• 29	.72	.97	1 1 1	1	1 1 1	1 1 1 1	.07	660 0	• 25
1 1 1 1 1 1 1 1	7		~	040		† † †	1 1 1	{	1 1 1		ω α	FT-SEC.		1 1 1	00	0.004	1	1 1	4.170	1 1	1 1 1	00	00	0.017	05	60	61
NUKMALIZED TEST DATA		ċ	~	040		1 1 1	! ! ! !	 	1 1		ANSDUC	BTU/SQ-	! ! !	1 1 1 1	0.001	0.003	1	-	5.180	1	1 1 1	• 00	.01	0.018	• 05	óû•	• 18
_	4	87.	7	055.	S	1 1	1	1 1 1	1		•	NI (0)	1	1 1 1	! ! ! !	1 1 1	1 1 1 1	1 1	4.180	1 1	1 1 1	1 1	00	0.016	• 05	• 08	• 20
	m		•	055.	1055.0	1 1		 	1 1 1				1	‡ † †	1 1	1 1 1	1 1 1	1 1	1 1 1	1 1	1 1 1	1 1	1 1 1	1 1	0.049	0.080	! ! !
	2	631.0	30.0	1040.0	1040.0	 	1 1 1	1 1	 				!!!!!	} ! !)]		1 1 1	1 1 1	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	1	910.0	0.032	1 1 1) 1 1 1
	-	642.0	27.0	1040.0	1040.0	1 1 1 1	1	1 1	1 1 1		_		0.030	0.025	1 1 1	1 1	1.850	1 1 1	3.110	 	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1	1 1	1 1 1	1 1 1	1
	N NUMB	(PSIA	 - -	1Sd) 2	2 (PSI	2	2	D02 (IN)	2 (IN	1:	ET RANS DUCER	01 -	F007	P011	P015	P017	1000	000 SI	6000 0000	4000	8000 GA-	0020	0021	0022	9023	0024	9025

RUN SERIES CO3, LOG CO3,1 CASE -----

NO DEFLECTION MIXTURE RATIO ---- 5.C 632.0 PSIA INTERSTAGE ----- OFF GIMBAL PATTERN --- REMARKS: TO EVALUATE MODEL OPERATION WITH VARIABLE O/F RATIO

THE STATE OF THE S			:																				
TA	•					•					TN PSIA						:		,			;	
D TEST DAT	13	661.0	27.0	1280.0	1315.0					R CHITPHT	-SEC, (P)	0.018	0.019	0.003	0.002	1 1 1	0.118	0.259	:				
NORMAL 1 ZED	52				1315.0		1 1 1	1 1 1		TRANSDUCER	8TU/S0-FT	0.018	1 1 1	0.002	0.001	1 1 1	0.109	0.220					
	51	655.0	25.0	280.	1315.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	1 1	. 1		(0) IN		~	1 1 1	0.002	1 1 1	960.0	0.254					
	64	637.0	30.0	1230.0	1295.0		1 1 1	 	! !		:	0.032	0.021	0.001	1 1	•	0.075	-					
	46	660.0	27.0	1280.0	1315.0		1 1 1					1 1 1	0.020	1	1 1 1	1		!					
	44	•	•	80.	1315.0	: 1	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	-				1	1	1 1	!!!!!!		!				***************************************	
ere i Champender, er i dem grægen ber brûnseplep op greiter op i krægen, et er en endere brûne.	3	PC (PSIA)	E		PH2 (PSIA)			_	, DH2 (IN)	11 TRANSDUCER	01	F007	P011	P015	P017	9000			3-	SA-	-00	61	

CASE ----- RUN SERIES CO3, LOG CO3.2

4.50	OFF
1	
NO DEFLECTION MIXTURE RATIO	546.0 PSIA INTER
! !	1
GIMBAL PATTERN	NOWINAL

REMARKS: TO EVALUATE MODEL OPERATION WITH VARIABLE 0/F RATIO

	<i>w</i>	26.	30.	190.0	- - -			!				10.	0.001	• 00	.00	9.79	.45	.05	•12
61	2.0	5.0	030.0 1		f 1 1 1 1 1 1 1 1 1	1		 			Sd N	0.012)))		1 + + + +	81	317
			030.0	C	†) 	1 1 1	† • •		R OUTPUT	S-1		1 1	0.001	! ! !	1 1	1 1 1	0	0.158
ĸ				1190.0	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1	!!!!	1 1		TRANSDUCE	BTU/S0-F	1 1	1 1 1	1 1	 	1 1 1	1 1 1	90	0.127
,	,	0	030.	1190.0	1	!!!!	1 1 1	i ! !			Z	0.013	00.	00		1.736	1 1 1	• 08	0.165
56	*	-	030.	1190.0		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	† † †	; ; ;				0.010	0.002	0.002	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	08	0•159
55	٠ د	ċ	130.	1305.0	1 1 1	; ; ;	1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!				‡ ‡ !	0.001	0.001	0.001	1 1 1	1 1 1 1	1	0.148
i	651.0	15.0	0		1 1 1	1 1 1	; ; ;	1 1 1				0.015	1 1 1	1	1 1	1 1 1 1	1 1	0	0.037
RUN NUMBER									1	TTRANSOUCER	01 '	P007	P011	P015	P017	4000			\$^ 00 3-SA-0061

CASE ----- RUN SERIES CO3, LOG CO3.3

NO DEFLECTION MIXTURE RATIO ---- 715.0 PSIA INTERSTAGE -----715.0 PSIA GIMBAL PATTERN ---NOMINAL PC ----- REMARKS: TO EVALUATE MODEL OPERATION WITH VARIABLE OF RATIO

RUN NUMBER	49	65	99	29	89	69	Ó. 7	7
	0.999	0.969		710.0	731.0	720.0	714.0	743.0
	24.0	29.0	28.0	•		27.0	27.0	24.0
	1330.0	380.	1380.0	380.	380.	1380.0	1365.0	1365.0
H2 (PSIA)	1260.0	ċ	•	•	1310.0	1310.0	5.	295
		1	1	1 1 1	1 1 1 1	1 1 1		. 1
H2 (F)	1 1	!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!	+	1 1 1	1 1
_	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	1 1 1 1		1 1 1		} } }	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
DH2 (IN)	-	!	! !	1	; ; ;	1	† † !	
FR. ANS DUCER					TRANSDUC	ER OUTPU	<u> </u>	
		:	•	ZI (C)	ATU/50-FT-S	T-SEC, (P)	Z	PSIA
1.004 1.			0.034	İ	0.026		0.02	0.031
P011	•	0.037	0.048	!!!!!!	0.032	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	03	0.027
P015	0.003	0.002	0.001	0.002	0.002	0.001	00	1
P017	1	0.002	0.001	0.002	0.002	1	00	1 1 1
0007	1	1 1 1	3.380	3.132	2.670	3.327	2.644	1 1
0008	: 1						41	2.377
9025	0.243	0.175	0.241	0.234	0.209	0.183	14	S

34.1	
RUN SERIES CO4, LOG CO4.	
S C04+	
SER IES	
X S S	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CASE	
ر	

5.00	OFF
MIXTURE RATIO	632.0 PSIA INTERSTAGE OFF
NO DEFLECTION	632.0 PSIA
GIMBAL PATTERN	NOMINAL PC

REMARKS: TO EVALUATE FLOW SYMMETRY AT NOZZLE EXITS

	(PSIA)	
	Z	
453 629.0 27.0 1140.0 1185.0 156.0 0.388	T-SEC. 3.32 3.32 3.45 3.65	2 1 2 1 2 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3
452 615.0 27.0 1140.0 1185.0 156.0 0.388	NSD 1 SQ 1 SQ 1 SQ 1 SQ 1 SQ 1 SQ 1 SQ 1 SQ	3.206 3.720 3.658 4.111 3.936 238.413 196.280 220.943 171.616
451 603.0 27.0 1140.0 1185.0 163.0 152.0 0.335	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.547 3.301 3.480 3.689 3.511 230.580 191.801 216.955 195.993 325.957
450 610.0 27.0 1140.0 1185.0 155.0 156.0 0.388		3.978 3.978 3.958 3.719 237.259 170.951 180.275 347.082
326 610.0 27.0 1140.0 170.0 170.0 0.338	. 22 . 99 . 84 . 11	2.746 3.129 3.616 2.911 3.274 121.220 123.292 153.338 173.023
634.0 11140.0 11185.0 1185.0 134.0 0.388		2.791 3.529 3.300 3.359 213.325 213.325 162.486 172.454
RUN NUMBER PC (PSIA) ALT (MU HG A) PO2 (PSIA) TO2 (F) TH2 (F) DO2 (IN)	LTR ANS DUCER 1 10 P020 P021 P022 P023 P023	\$2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

CASE ----- RUN SERIES CO4, LOG CO4.1

NO DEFLECTION MIXTURE RATIO ---- 5.06 632.0 PSIA INTERSTAGE ----- OFF GIMBAL PATTERN ---

REMARKS: TO EVALUATE FLOW SYMMETRY AT NOZZLE EXITS

NORMALIZED TEST DATA

UT (P) IN (PSIA)	OUTP SEC,		(Q) IN 248-398	241.403		138.562	TRANSDUCER ID Q069
	0.335	0.335	0,335	0.335	0.335	0.335	(IN) 18
	0.388	0.388	0.388	0.388	0.388	0.388	DO2 (IN)
	156.0	156.0	152.0	156.0	す	134.0	FH2 (F)
	166.0	166.0	163.0	165.0	70.	153.0	T02 (F)
	1185.0	1185.0	1185.0	1185.0	1185.0	1185.0	PH2 (PSIA)
	1140.0	1140.0	1140.0	1140.0	1140.0	1140.0	POZ (PSIA)
	27.0	27.0	27.0	27.0	27.0	27.0	ALT (MU HG A)
	629.0	615.0	603.0	610.0	610.0	634.0	PC (PSIA)
	453	452	451	450	326	325	RUN NUMBER

CASE ------ RUN SERIES CO4, LOG CO4,

INTERSTAGE ----- DEF NO DEFLECTION MIXTURE RATIO ----632.0 PSIA GIMBAL PATTERN ---NUMINAL PC -----

REMARKS: TO EVALUATE FLOW SYMMETRY AND FFFECT OF NOZZLE ENTRANCE AREA. SPECIAL LARGE DIAMETER PASSAGE TO NOZZLE THROAT ON NOZZLE 1 (RUNS 577 AND 578), NOZZLE 5 (RUNS 579 AND 580), NOZZLE 3 (RUNS 581 AND 582)

∞	<u>.</u>	2.	140.	85.	159.0	61.	.38	~		ū	÷	3.501	3.409	3.786	3.420	3.420	3.460	3.247	3.766	3,755	4.101	03.		2	54.	ښر	199.472
581	610.0	35.0	1140.0	1185.0	157.0	161.0	0.388	33		${f \circ}$	BTU/SQ-F	3.637	.60		.61	.41	3,357	• 45	• 68	. 80	.82	11,35	90.63	.29	88.56	1 1 1	1 1
58	•	9	ô	5	154.0		33	33			Z	3.535	•	•	•	•	•	•	•	•	•	6	199,363	•	•	•	•
57	9	6	140.	85.	160.0	61.	.38	3						•		•	3.271		•		•	95.	79.		65.	1 1 1	248.358
57	615.0		0	5.	160.0	62.	0.388	0.335				9	~	4	4	~	3,350	3	9	4	-	25.0	10.6	33.2	9	20.9	213,750
57	•	5	40.	85.	160.0	64.	.38	• 33		-		3.502	52	22	49	15	3.233	44	75	55	58	21	35	66	44	50	217.574
N NUMB	PC (PSIA)	O W	POS (PSIA)			_	DO2 (IN)	_	13	N S S	- 10	P020	P021	P022	P023	P024		P02	7 DO 3 -	P02	P02	900	900	4900	0065	0068	6 900

CASE ----- RUN SERIES CO5, LOG CO5

2.00	OFF
RATIO	4GE
ON MIXTURE	INTERSTAGE
NO DEFLECTION MIXTURE RATIO	632.0 PSIA
ATTERN	PC
GIMBAL PATTERN	NOW INAL PC -

REMARKS: ATTEMPT TO EVALUATE CAUSE OF THRUST STRUCTURE HEATING. DATA IS QUES-TIONARLE DUE TO POSSIBLE NOZZLE ADAPTER LEAKS FORWARD OF THE HEAT SHIELD. 19 INCH DIAMETER DISK INSTALLED AT STATION -5 (0.44 INCH FORWARD OF NOZZLE EXIT PLANE).

DOMAITZED TEST DATA

NORMALIZED TEST DATA											TRANSDUCER DUTPUT	BTU/SQ-FT-SEC, (P) IN																			
	149	9	÷	215.	٠	153.	133.0	1	1			_	0.002	.00	1	1 1 1	.82	5.676	.61	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	8	٦.		1.374	• 6	0	0	0	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
	4	676.0	•	215.	5	150.	120.0	1	1 1 1				0.001	1 1	1 1 1	.37	• 75	5.628	• 8 •	.46	.67	.02	. 54	.16	.31	.59	• 00	00.	00.	 	
	4	2	5	5	5	5	131.0	1					.00	00.	.00	0.593	.97	.31	. 24	. 78	. 38	.78	. 78	.54	• 54	.43	• 00	.01	.01	.03	1 . 1
	4	5.	æ	215.	55.	45.	Š	i	1 1 1				1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	! ! !	.12	• 00	• 54	.27	.80	.37	.25	•26	.76	.53	.71	.07	.02	.01	0.033	.01
	RUN NUMBER	(PSIA	OW.)				TH2 (F)			12	∀		P016	P017	P018	0001	6000					-00			9100	6100	0022	0023	0024	370°C	0031

CASE ----- RUN SERIES COS, LOG COS

INTERSTAGE ----- OFF NO DEFLECTION MIXTURE RATIO ----632.0 PSIA GIMBAL PATTERN ---1 1 1 1 1 NOW INAL PC

REWARKS: ATTEMPT TO EVALUATE CAUSE OF THRUST STRUCTURE HEATING. DATA IS QUES-TIONABLE DUE TO POSSIBLE NOZZLE ADAPTER LEAKS FORWARD OF THE HEAT SHIELD. 19 INCH DIAMETER DISK INSTALLED AT STATION -5 (0.44 INCH FORWARD OF NOZZLE EXIT PLANE).

NORMALIZED TEST DATA

									TRANSDUCER DUTPUT	CO IN BIOZSO-FI-SEC. (P) IN PSIA 0.003	
149	736.0	18.0	1215.0	1265.0	153.0	133.0	1 1	 	•	0° 003	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
148	676.0	26.0	1215.0	1265.0	150.0	120.0	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		0.003	1 1 1 1
147	682.0	25.0	1215.0	1265.0	165.0	131.0	1 1 1	 		0.006	0.001
146	645.0	28.0	1215.0	1265.0	145.0	132.0	1 1 1 1	‡ 		0.005	0.002
RUN NUMBER	(PSIA)	ALT (MU HG A)	PO2 (PSIA)	PH2 (PSIA)	TD2 (F)	TH2 (F)	1002 (IN)	(NI) 2HC 121	I TRANSDUCER	3500	9600

BASE LINE DATA FOR NOMINAL CONDITION REMARKS:

ATA	109. 638.0 28.0 1215.0 1265.0	0.00 0.00 0.00 0.00 0.00	191801 0000
ED TEST D	108 680.0 27.0 1215.0 1265.0	T-SEC. 1-SEC. 0.00 0.92 4.86	3. 773 2. 091 1. 896 2. 240 2. 026 0. 020 0. 085 0. 084
NORMALIZ	107 630.0 28.0 1215.0 1265.0	NSDUC 750-F 001 002 002 672 838	2. 618 2. 618 2. 629 3. 869 2. 438 0. 017 0. 026 0. 033
	106 669.0 27.0 1215.0 1265.0	000000000000000000000000000000000000000	1.965 2.966 2.447 2.522 3.779 2.154 0.012 0.055 0.032
	105 663.0 15.0 1215.0 1265.0	1 1 2 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4.957 2.488 2.841 4.242 3.003 2.774 0.015 0.059 0.059
	104 669.0 26.0 1215.0 1265.0	000 H 1 8 4	2.059 2.059 3.382 3.080 2.796 0.017 0.054 0.063
	103 641.0 27.0 1215.0 1265.0	000082	5.324 2.534 2.534 3.855 3.411 2.524 0.034 0.031
. ;	8		
	UN NUMBER C (PSIA) LT (MU HG OZ (PSIA) HZ (PSIA) HZ (F) OZ (IN) HZ (IN)	P01 P01 P01 P01 P01 000 000 000	0009 0011 0013 0015 0015 0022 0023 0024 0025
1	A D D D T T D D	122 - SD73	3-SA-0061

CASE ----- RUN SERIES 1, LOG 1.1

5.00	OFF
1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
NO DEFLECTIONMIXTURE RATIO	632.0 PSIA IN
GIMBAL PATTERN	
GIMBAL	NOWINAL

REMARKS: BASE LINE DATA FOR NOMINAL CONDITION

	-			2	ONTINGED	FROM PRE	CCONTINUED FROM PRECEDING PAGE)
N NUMBER	103	104	105	106	107	108	109
(PSIA)	641.0	0.699	663.0	0.699	630.0	680.0	638.0
T (MU HG A)	27.0	26.0	15.0	27.0	28.0	27.0	28.0
2 (PSIA)	1215.0	1215.0	1215.0	1215.0	1215.0	1215.0	1215.0
2 (PSIA)	1265.0	1265.0	1265.0	1265.0	1265.0	1265.0	1265.0
2 (F)	1 1	1 1	1 1	1 1	1 1 1	1 3 4	,
2 (F)	1	1	1	1 1 1	1 1 1 1	† † † †	1 1 1
002 (IN)	1 1 1	1 1 1	1 1	1	1	1 1 1	1 1 1
2 (IN)	 - -	† 	1 1 1	1 1	1 1	1 1 1	1 1 1
TRANSDUCER					TRANSPIR	HER CHITCH	TRANSPILER DITEIT
10				(O)	B TU/ S0-F	T-SEC. P	IN PSTA
9035	0.057	0.059	0.062	0.038	0.037	0.054	0.040
0036	0.087	0.069	0.069	0.034	0.042	0.056	0.031
))		•)	

:	5.
	RATIO
L06 1.2	MIXTURE
RUN SERIES 1, LOG 1.2	NO DEFLECTION MIXTURE RATIO 5.
CASE RUN SERIES 1, LOG 1.2	GIMBAL PATTERN
CASE	GIMBAL

INTERSTAGE ----- OFF 632.0 PSIA NOMINAL PC ----

REMARKS: TEST FOR ALTITUDE EFFECTS ON BASE ENVIRONMENT, MAXIMUM SIMULATED ALT.

	IN PSIA		
116 642.0 0.7 215.0 265.0		4000mm0004	03
115 659.0 0.6 1215.0 1265.0	TR TN BT	3.836 2.398 1.851 2.273 3.692 2.637 0.023	.042 .077 .025
114 681.0 0.6 1215.0 1265.0	0000000	5.062 1.967 2.088 3.137 1.958 2.218 0.032	. 03 . 08 . 03
112 649.0 0.5 1215.0 1265.0	0.002 0.002 0.002 7.824 4.830 5.901	000000000000000000000000000000000000000	.02
110 632.0 6.0 1215.0 1265.0	000	2.750 2.750 2.310 2.310 1.530 0.018	. 03 . 03
RUN NUMBER PC (PSIA) ALT (MU HG A) PO2 (PSIA) PH2 (PSIA) TO2 (F) TH2 (F) DO2 (IN)	178 ANSD 100 PO11 PO11 0000 0000 0000 0000 0000 0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9024 9025 9031

CASE ------ RUN SERIES 1, LOG 1.2

NO DEFLECTION MIXTURE RATIO ---- 5.00 632.0 PSIA INTERSTAGE ----- DFF GIMBAL PATTERN ---NOMINAL PC

REMARKS: TEST FOR ALTITUDE EFFECTS ON BASE ENVIRONMENT. MAXIMUM SIMULATED ALT.

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

										Z		
									10	(a)		
								٠	TRANSDUCER OUTPUT	FT-SEC,	0.042 0.040	
	642.0			1265.0		f 1 1	1 1 1	1 1	TRANSDU	BTU/SG-	0.040	0.040
115	659.0	0.6	1215.0	1265.0	1 1 1	1 1 1	1			N1 (0)	0.042	0.040
114	681.0	0.6	1215.0	1265.0	1 1 1	†		1 1 1			0.040	0.036
112	649.0	0.5	1215.0	1265.0	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	1 1 1			0.031	0.025
110	632.0	0.9	1215.0	1265.0	1 1 1	!	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			0.061	0.074
		A										
NUMBER	(PSIA)	CMU HG	(PSIA)	(PSIA)	(F)	(F)	(NI)	(NI) ZHO,	TR ANS DUCER	10	9035	3036
RUN) Jd	ALT	Þ02	PH2	T02	, TH2	700 12	5 OH2	TRAN			

PS I A

	i	
	•	
•		
_		
9	1	i
A	:	
. RUN SERIES 1, LOG 1.3 AND 1.4		
•		
~	F	i
ల్ల	;	
0	1	1
_	!	
1,		
S	;	
-	1	-
ä	•	
S	į	
Z	i	
\supseteq	•	1
Œ.	į	•
	;	
i		
!	i	
ij		
1		- 1
į		į
į		1
CASE	ı	
14:	1	
SE	4	:
A	!	
_		,

_		
5.0	OFF	
0	INTERSTAGE OFF	
RATI	AGE -	
MIXTURE	INTERST	
NO DEFLECTION MIXTURE RATIO 5.00	O PSIA	
0 0 0 0	632.	
ERN	* * * * * * * * * * * * * * * * * * * *	
PATI	ည	
GIMBAL PATTERN	NOMINAL PC 632.0 PSIA	

SHIFLD & HIGH ALT ADAPTERS. UNEXPL-STRUCTURE HTG. REMARKS: FOR COMPARISON OF 210 AND 256 INCH HEAT SHIELDS ON THRUST TO HEATING RATES AND PRESSURES QUESTIONABLE DUE TO HOT GAS LEAKAGE FROM NOZZLE AINED INCREASES OCCURRED ON SOME TO GAGES (USUALLY 022 AND 035). 210 INCH HEAT

		•		
	V I Sd		:	i ·
	Z			
1	SEC. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	2 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	50 40 40 40	. 10 . 03
1 1 1 1 0 1 1 0 5 1 0 1	750-F 001 001 001	2 2 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 6 4 6 8 6 6 6 6	44 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07
	000	18 18 60 60 89	80 76 70 70 70 70	. 10 . 02
	36	48 40 71 90 90	33	
	00116	40 9 8 6 9 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9 9	0.00 0.00 0.00 0.00	• 09
	000		13 13 01 05 03	0.09
TH2 (F) DO2 (IN) DH2 (IN)	TRANSDUCER 10 10 P016 P017 P018	0003 0004 0008 0009 0011	0015 0016 0022 0023	<u>0025</u> 0031
	2 (F)	ANSDUCER ANSDUCER 10 P016 0.001 0.002 0.002 0.001	2 (TN) 3 (TN) 4NSDUCER 10 10 10 10 10 10 10 10 10 10 10 10 10	2 (F) 2 (IN) 3 (IN) 3 (IN) 5 (

CASE ----- RUN SERIES 1, LOG 1.3 AND 1.4

INTERSTAGE ----- OFF NO DEFLECTION MIXTURE RATIO ----632.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

TO HEATING RATES AND PRESSURES QUESTIONABLE DUE TO HOT GAS LEAKAGE FROM NOZZLE ADAPTERS. UNEXPL-SHIFLD & HIGH ALT STRUCTURE HTG. REMARKS: FOR COMPARISON OF 210 AND 256 INCH HEAT SHIELDS ON THRUST AINED INCREASES OCCURRED ON SOME TO GAGES (USUALLY 022 AND 0351. 210 INCH HEAT

NORMALIZED TEST DATA

									Q.		
									Z		
654.0	2.0	1215.0	1265.0		1 ! !	1 1 1	 	ER OUTPUT	1-SEC (P)	0.064	0.072
653.0					1 1	1	1 1	TRANSDUC	810/SD-F	0.054	0.055
629.0	0.7	1215.0	1265.0	1 1	1	1 1	1		(3)	1 1 1 1	•
640.0	27.0	1215.0	1265.0	1	1	i 1 1	1			0.048	0.041
616.0	27.0	1215.0	1265.0	1 1	!!!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	; ! !			0.045	0.045
653.0	25.0	1215.0	1265.0	1 1 1	1 1	* * * *	1			0.054	0.052
PC (PSIA)	ALT (MU HG A)	PO2 (PSIA)	PH2 (PSIA)	T02 (F)	1 TH2 (F)	(NI) 20012	(NI) ZHO7	TRANSDUCER		36.00	9600
	653.0 616.0 640.0 629.0 653.0 65	653.0 616.0 640.0 629.0 653.0 65 A) 255.0 27.0 27.0 0.7 0.7	653.0 616.0 640.0 629.0 653.0 A) 25.0 27.0 27.0 0.7 0.7 1215.0 1215.0 1215.0 1215.0	653.0 616.0 640.0 629.0 653.0 A) 25.0 27.0 27.0 0.7 0.7 1215.0 1215.0 1215.0 1215.0 1255.0 1265.0 1265.0 1265.0	653.0 616.0 640.0 629.0 653.0 65 A) 25.0 27.0 27.0 0.7 0.7 0.7 1215.0 1215.0 1215.0 1215.0 1255.0 1265.0 1	653.0 616.0 640.0 629.0 653.0 27.0 27.0 0.7 0.7 0.7 1215.0 1215.0 1215.0 1215.0 1255.0 1265.0	653.0 616.0 640.0 629.0 653.0 27.0 27.0 0.7 0.7 0.7 1215.0 1215.0 1215.0 1255.0 1265.0	653.0 616.0 640.0 629.0 653.0 27.0 27.0 0.7 0.7 0.7 1215.0 1215.0 1215.0 1215.0 1265.0	(A) 653.0 616.0 640.0 629.0 653.0 654.0 J HG A) 25.0 27.0 0.7 0.7 2.0 SIA) 1215.0 1215.0 1215.0 1215.0 1215.0 SIA) 1265.0 1265.0 1265.0 1265.0 1265.0	653.0 616.0 640.0 629.0 27.0 27.0 0.7 1215.0 1215.0 1215.0 1265.0	A) 25.0 616.0 640.0 629.0 653.0 654.0 27.0 27.0 0.7 0.7 2.0 1215.0 1215.0 1215.0 1215.0 1215.0 1255.0 1265.

CASE ----- RUN SERIES 1, LOG 1.5

5.00 INTERSTAGE ----- OFF NO DEFLECTION MIXTURE RATIO ----715.0 PSIA GIMBAL PATTERN ---NOMINAL PC

POSSIBLE NOZZLE ADAPTER LEAKAGE FORWARD OF HEAT SHIELD DURING RUN 190. THRUST STRUCTURE DATA REMARKS: TO DETERMINE EFFECT OF HIGHER CHAMBER PRESSURE WITH O/F QUEST TONABLE.

ر ر	0	0	0	0	0	C	88	35			0.1	00																
	_	\sim	4	9	15	4	•	0.33		;	0	0.0	C	0.	r.	4	.5	• ()	•	~		α	•	S.	C	C	0.	-
	03.	24.	415.	65.	148.	30.	. 38	0.335			0	0.001	.00	.94	.27		1	. 14		. 55	• 28	.37	11.	• 54	• 00	• 05	.07	.14
13	42.	28.	415.	65.	176.	58°	.38	0.335			0.0	0.001	• 00	.83	• 22	1	1	69.		œ •	• 50	. 11	• 37	995	• 00	• 05	• 07	. 10
10	59.	28.	415.	65.	172.	33	.38	0.335		z	0.0	00	.00	16.	• 04	1	1	.37	.21	• 06	• 76	06.	• 38	• 95	• 00	• 06	• 08	.13
61	90	25.	415.	65.	156.	43.	.38	0,335	- -	EC.	001	0	• 00	• 82	• 15	• 60	.92	• 04	• <u>8</u> 9	.31	• 29	1	.43	• 26	1	• 02	• 03	• 03
18	01.	25.	415.	65.	158.	46.	.38	3	JI CO IV A	8 TU7 SO-F	0.00	00	00	908	60	88	43	84	46	42	25	, 14	. 75	62	1	0	02	, 02
1.8	85.	23.	415.	65.	156.	51.		•		NI	100	• 00	• 00	66.	.07	1	1	.78	8	• 56	• 68	.47	• 26	• 32	• 00	• 03	• 05	• 05
8	Š	27.	415.	65.	70.	55.	.38			;	00	0.001	• 00	• 75	• 25	. 71	• 14	• 68	.15	• 43	• 90	• 06	.27	.91	• 01	• 05	.07	.05
7		22.	295.	45.	63.	46.	0.388	• 33		1	• 00	0.001	00.	.15	• 68	• 32	.67	.10	.98	• 42	• 45	• 62	• 20	• 94	• 01	• 05	• 06	.03
28	45.	25.	65	15.	61.	43.	0.388	• 33		:	•	0.001	• 00	.95	•04	. 78	• 98	•67	• 30	• 50	69.	.97	16.	• 78	•01	•02	• 06	• 04
		A																			;	: !					į	
NUMBER	I A)	_ 	SIA	SIA	_	(F)	(N)	(N)	ASOLICER	10	P016	0	ÓĨ	9	00	00	00	00	00	01	0	01	01	01	02	02	02	02
<u>z</u>	ပ	_	0	I	0	I	005	E	128			_		_	~	~	•	_		_		:	_	_	•	_	٠	!

CASE ----- RUN SERIES 1, LOG 1.5

5.00 INTERSTAGE -----NO DEFLECTION MIXTURE RATIO ----715.0 PSIA NOMINAL PC -----GIMBAL PATTERN ---

REMARKS: TO DETERMINE EFFECT OF HIGHER CHAMBER PRESSURE WITH O/F ≈ 5. POSSIBLE NOZZLE ADAPTER LEAKAGE FORWARD OF HEAT SHIELD DURING RUN 190. THRUST STRUCTURE DATA QUESTIONABLE.

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

N NUMB	_	18	185	186	187	188	190	161	192	193	195
_		÷	651.0	5	2	701.0	706.0	659.0	642.0	703.0	
	A .	S	22.0	7	23.	25.0	25.0	0 0		•	
		245	, 0	- 4 - 7		· ·			• 0 7	* ·	• ;
		• (0)	7	410	412.	412.	1415.0	1415.0	415.	415.	41
	_	15.	1345.0	5.	5	1465.0	1465.0	1465.0	14650		Ľ
		61.	163.0	o	156.	158.	156.0	172.0	176		7 2 2
1 TH2 (F)		143.0	146.0	155.0	151.0	146.0	142	163.0		•	•
				• (•	0.0017	0 • 0 + 4	0.01	0.00	•	*
		38	0.388	3	ω Ω	0.388	0.388	0.388	0.388	80	8
		0.335	0.335	33	33	0.335	0.335	0.335	0.335	0.335	0.335
TRANCOLLER	_						: : : : : : : : : : : : : : : : : : :	,			
VIII OO CANANA						LKANSOCIC	EK COLPG				
10						BTU/50-F1	T-SEC. (P	ATZG NT (G	1 A		
6600		0.004	00000	01	1	1 1 1		0.0	ć	2	0
9600		0.030	0.027	0.033	0.022	0.040	_,	0.042		0.012	
0035		0.056	0.052	ر د	0.043	9 6 6	140	5 6			00000
) ·		0.00	100.00	5	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	S	2.CO .O
9500 5D7		0.053	0.058	90	0.048	0.032	0.042	90	0.076	90	0.055

W00000000

0000

NO DEFLECTION MIXTURE RATIO ---- 715.0 PSIA INTERSTAGE ------RUN SERIES 2, LOG 2.1 GIMBAL PATTERN ---CASE

NOWINAL PC ----

:

5.50

INTERSTAGE ----- OFF

REWARKS: TO EVALUATE EFFECT OF HIGHER MIXTURE RATIO AND CHAMBER PRESSURE. LEAK THE HEAT SHIELD OP ZERO SHIFT FROM SPARK NOISE. TO DATA QUESTIONABLE ON RUNS 124-136. TO WEASURE TR. 0.6 DES SIMBAL BLOCK ON NOZZLE 3 RUNS 282-285.050 @ P17.051 @ P15. 074 HEATED TO MEASURE TR. FURWARD OF

NORMALIZED TEST DATA

284 710.0 27.0 1285.0 165.0 146.0 0.398 0.398 0.335	6.425
283 700.0 27.0 1285.0 168.0 0.398 0.398 0.335	6.200
282 27.0 27.0 1285.0 172.0 172.0 0.398 0.335	4.234
136 693.0 26.0 1365.0 165.0 148.0 148.0 148.0 165.0 100.001	. 45 . 28 . 44 . 52
133 715.0 30.0 1295.0 1295.0 146.0 135.0 135.0 135.0 135.0	9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
-00000011 b 111111110000	
130 7.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	.59
129 09.0 27.0 655.0 955.0 1 I N 1 I	
128 703.0 27.0 1365.0 1295.0 	4011481
10000111111111000000000000000000000000	
800001111 11111111110000000000000000000	2.575 7.251 7.766 5.888 6.019
RUN NUMBER PC (PSIA) ALT (MU HG A) TO2 (PSIA) TO2 (F) TO2 (F) TO2 (F) TO3 (IN) - DH2 (IN) - DO3 PO05 PO05 PO05 PO06 PO07 PO010 PO016 PO017	000000000000000000000000000000000000000

CASE ------ RUN SERIES 2, LOG 2.1

NO DEFLECTION MIXTURE RATIO ---- 5.5 715.0 PSIA INTERSTAGE ----- OFF GIMBAL PATTERN ---NOMINAL PC -----

REWARKS: TO EVALUATE EFFECT OF HIGHER MIXTURE RATIO AND CHAMBER PRESSURE. LEAK FORWARD OF THE HEAT SHIELD OR ZERO SHIFT FROM SPARK NOISE. TO DATA QUESTIONABLE ON RUNS 124-136. 07H HEATED TO WEASURE TR. 0.6 DES SIMBAL BLOCK ON NOZZLE 3 RUNS 282-285.050 0 P17.051 0 P15.

NORMALIZED TEST DATA

ဆ	10.	27.	285.	35.	165.	46.	.39	0,335			1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	; ! !	1 1	1	.01	.05	.08	• 16	• 00	.03	• 05	.01	.03	.07	.08	.10	• 04	.02	0.116 EXT PAGE)
ဆ	000	27.	285.	35.	168.	46.	•39	0.335			1 1	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	1 1	.01	• 06	0.085	•16	• 00	.02	•05	.01	.03	.07	• 09	.12	.03	1	ON THE NE
œ	11.	27.	285.	5.	72.	52.	.39	<u>.</u>			1	1 1 1	1	1 1 1 1	1	• 02	• 04	• 06	• 0 9	.01	.02	.03	.01	• 02	.07	.07	.12	• 03	• 02	0.084
4	93.	26.	365.	1295.0	65.	48	1	1		۷I	1.66	• 09	.86	1	3.054	.08	•03	.03	• 0 7	1	.02	ı	!!!!	1		•		!!!!	1 1 1	TABLE CON
3	15.	0	365.	1295.0	146.	35.	1			N pS	2.520	. 18	.86	1	3.190	• 06	• 03	• 03	.07	# #	• 02	1		1 1 1	0	• 03	 	1 1 1		(1
3	. 46	27.	365.	1295.0	65.	46.	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	R OUTPU	-SEC. (.060	96.	• 00	1	2.421	• 04	• 03	.02	• 06	1	.02	1	1	1	0.036	0	f - - -	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	
~	04.	27.	365.	1295.0	56.	40.	1	1	RANSO	TU/50-F	3.6	.71	1	1	1.757	• 14	• 03	• 03	.07	1	• 02	1		1	9	• 03				-
~	6	7	365.	1295.0	1	1	1	1 1	-	z -	.21	1	• 03	1		.07	• 03	• 04	• 08	1	• 02	1	1	1	• 03	•	1		1 1 1	-
2	3.	27.	365.	1295.0	1	! ! !	1 1 1	1 1 1			• 06	.23	.52	1	5.909	.07	• 02	.03	• 06	1	.02	1	!!!!	1		.03		1 1	1 1 1	
2	83.	27.	65.	295	1	1 1 1	1 1 1				.37	44	.30	1	3.109	• 06	• 03	• 04	• 00	1	.01	1 1	1 1 1	1	.03	0.025	1	1 1 1	1 1 1	
~	÷	25.	365.	1295.0	1	! ! !) 				•93	.62	.42	1	2.303	• 02	• 03	• 04	• 0 7	-	02	1			03	• 03	1	1 1 1	1 1	
SMON	(PSIA)	T (MU H	2 (P	2 (PSIA	2 (F	2 u	2 (1	<i>Z</i>			0	0	0.1	100	6100 SD	005	005	005	402	003	003	03	03	03	03	03	0	04	04	0 2

INTERSTAGE ----- OFF NO DEFLECTION MIXTURE RATIO ----715.0 PSIA NOWINAL PC -----GIMBAL PATTERN ---

REMARKS: TO EVALUATE EFFECT OF HIGHER MIXTURF RATIO AND CHAMBER PRESSURE. LEAK
THE HEAT SHIELD OR ZERO SHIFT FROM SPARK NOISE. TO DATA QUESTIONABLE ON RUNS 124-136.
TO WEASURE TR. 0.6 DEG GIMBAL BLOCK ON NOZZLE 3 RUNS 282-285.050 @ P17,051 @ P15. Q7H HEATED TO MEASURE TR. FORWARD OF

NORMALIZED TEST DATA

284	710.0	27.0	1285.0	1235.0	165.0	146.0	0.398	0.335	٠.		0.000	1 1	1 1 1	100.704	NEXT PAGE)			
283	700.0	27.0	1285.0	1235.0	168.0	146.0	0.398	0.335			0.007	1 1	6.680	102-143	NO THE NO	!		:
282	711.0	7	1285.0	5	8	2	39	0.335		•	00000	1 1	6.064	100.563	CONTINUED			
136	693.0	26.0	36	1295.0	165.0	148.0	1) . ! !		A 1	1	1 1	1		(TABLE COM			•
133	715.0	30.0	1365.0	1295.0	146.0	135.0	1	1		(P) IN PSIA		1	1 1 1	. !	5	•		
131	694.0	27.0	1365.0	1295.0	165.0	146.0		! ! !	RANSDUCER DUTPUT			1 1 1	1	† † †				
130	704.0	27.0	1365.0	1295.0	156.0	140.0	1 1 1	 	TRANSDUCE	BIU/SO-FI-SEC,	1 1		1 1 1	 				
129	709.0	27.0	1365.0	1295.0	1 1	1	1 1	1 1	•	NI (0)	† † †	1 1	1 1 1	 				
128	703.0	27.0	1365.0	1295.0	1 1 1	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1				1 1 1	1 1 1	1 1 1				•
126	683.0	27.0	1365.0	1295.0	1 1 1	† - -	1 1 1	 			! ! ! !	 	1 1	 				
124	708.0	25.0	1365.0	1295.0	1 1 1 1	1 1 1	 	1			1 1 1	† †	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!				
	(A124) Ja								TRANSDUCER	OI	0051	0052	н200	T07H	73-	SA-	006	. 51

CASE ------ RUN SERIES 2, LOG 2.1

MIXTURE RATIO ---- 5.50 INTERSTAGE ----- OFF NO DEFLECTION MIXTURE RATIO ---715.0 PSIA INTERSTAGE -----NOW INAL PC -----GIMBAL PATTERN ---

REMARKS: TO EVALUATE FFFECT OF HIGHER MIXTURE RATIO AND CHAMBER PRESSURE. LEAK FORWARD OF THE HEAT SHIELD OR ZERO SHIFT FROM SPARK NOISE. TO DATA QUESTIONABLE ON RUNS 124-136. 07H HEATED TO WEASURE TR. 0.6 DEG GIMBAL BLOCK ON NOZZLF 3 RUNS 282-285.350 @ PI7.051 @ PIS.

NORMALIZED TEST DATA

4	04.	31.	285.	35.	155.	40.	• 39	0.335			0	.03	• 03	.03	0.035	.03	.02	.03	1	1 1 1 1	ĺ	• 65	.89	.17	.50	.71	.48	40	1	TINIED ON
4	04.	27.	285.	35.	161.	46.	.39	0.335		ΥI	0.02	• 03	.03	• 02		• 03	.02	• 03	1	-	1	• 65	58	.37	.62	•64	.87	. 22	1	ARIF CON
す	81.	30.	285.	35.	161.	46.	•39	0.335		N PS	0.023	.02	• 03	.03	03	.03	• 02	•03	1		1	.32	.37	1	. 55	.72	.20		1	
(1)	88.	26.	285.	35.	164.	46.	.39	0.335	R OUT	-SEC+ (0.023	.02	.03	.03	• 03	• 03	.03	.02	-			•64		• 19	.47	.58	• 94	.88		
3	.19	27.	285.	35.	165.	45.	.39	0.335	PANSDUC	TU/SQ		.03	.03	.03	.03	.02	1	1	1		1	.82	.20	.29	69.	.20	• 86	3.267	1	
(C)	82.	30.	285.	35.	170.	50.	.39	0.335	_	1	25	.03	.03	• 03	.03	• 02	• 02	• 03	1		1	. 93	.01	.56	1	. 45	. 53		1	
6	89.	24.	285.	35.	162.	42.	.39	0.335			1 1	1 1	; ! ! !	! ! !) ! ! !	1 1 1	1	• 00	1	0.003	.32	.88	.88	.53	1	1 1 1	4.307	i	
62	6	ۍ	285.	35.	70.	50.		•			į	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1		1	1	1	• 00	1	0.002	.72	• 13	 	• 48))	i j		1	
œ	•	7.	285.	35.	64.	50.	0.398	• 33] 	1 1 1	;	; ! !	1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1 1	1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1 1) 	; ! ! !	1 1 1	† 	4.965	; ; ; ;] - -	} 	3.654	
U M B		J (MU	02 (PSIA	HZ (PSIA	02 (F	H2 (F	(N1) 20C13	I	TRANSDUCER	10	00	00	ŪΟd	00d	00	00d	000	10d	P01	0	P018	00	00	00	00	00	00	00	0	

NO DEFLECTION MIXTURE RATIO GIMBAL PATTERN

NOMINAL PATIERN NO DEFLECTION MIXIORE KATTO 0.50 NOMINAL PC 715.0 PSIA INTERSTAGE OFF	REWARKS: TO EVALUATE FFFET OF HIGHER MIXTURE RATIO AND CHAMBER PRFSSURE. LEAK ORWARD OF THE HEAT SHIFLD OR ZERO SHIFT FROM SPARK NOISE. TO DATA QUESTIONABLE ON RUNS 124-136. OTH HEATED TO WEASURE TR. 0.6 DEG GIMBAL BLOCK ON NOZZLE 3 RUNS 282-285.050 @ PIT.QSI @ PIS.

PAGE 1 341 342 704.0 704.0 27.0 31.0 1285.0 1285.0 161.0 1235.0 161.0 155.0 1640.0 0.398 0.398 0.398 0.398 0.398 0.398 3.270 3.209 3.199 2.803 3.199 2.803 3.199 2.803 3.199 2.803 3.199 2.803 3.199 2.803 3.199 2.803 3.199 3.209 3.199 3.209 3.109 3.209 3.1						NORMAL 1 Z	ED TEST	DATA				
UN NUMBER (PSIA) 720.0 689.0 689.0 681.0 704.0 7					03)		ROM PRE	<u>c</u>	S			
C (PSIA) 720.0 689.0 689.0 681.0 688.0 681.0 704.0 704.0 1	UN NUMBE	28	29	59	~	~	3	4	4	4		
11 (W) HG A) 27.0 26.0 24.0 39.0 27.0 26.0 33.0 27.0 31.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	(VISA) 0	20.	89.	89.	82.	61.	88.	81.	04.	04.		
TRANSDUCEP 1285.0	LT (MU HG A	27.	26.	24.	0	-	•	0	_	-		
HZ (PSIA) 1235.0	02 (PSIA	285.	285.	285.	285.	285.	285.	285.	285.	285.		
PANS DUCEP	HZ (PSIA	235.	235.	235.	235.	235.	235.	235.	235.	235.		
H2 (F) 150.0 142.0 150.0 145.0 146.0 146.0 146.0 140.0 100.0	02 (F	164.	170.	62.	70.	65.	64.	61.	61.	55.		
## (IN) 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 ## (IN) 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 ## (IN) 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 ## (IN) 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 ## (IN) 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 ## (IN) 0.335 0.325 0.	H2 (F	50.	50.	42.	50.	45.	46.	46.	46.	40.		
H2 (IN) 0.335 0.235 0.345 0.346 0.377 0.346 0.377 0.346 0.377 0.346 0.377 0.346 0.377 0.346 0.377 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 <	02 (IN	.39	.39	•39	.39	.39	• 39	•39	.39	•39		
TRANSDUCER 1D 1D 1D 1D 1D 1D 1D 1D 1D 1	NI) 2H	• 33	• 6)	• 33	• 99	• 33	• 33	• 33	• 33	• 33		
0011 0011 0011 0011 0011 0012 0015 0015 0015 0015 0017 0018 0018 0019 0019 0010							F1.50	-			•	
0011 2.916 2.812 3.78 3.685 3.128 2.925 0013 3.912 3.310 3.083 4.552 3.270 3.209 0015 3.310 3.083 4.552 3.876 2.772 3.199 2.803 0015 2.359 1.958 3.856 1.596 2.752 1.731 0023 0.016 0.023 0.074 2.359 1.958 3.856 1.596 2.752 1.731 0023 0.016 0.023 0.074	7 ANS DOCE 10				1	THINGOLF THE	T-0017	VO NI (d				
0013 3.912 3.310 3.083 4.552 3.270 3.209 2.803 0015 3.260 2.772 3.199 2.803 0019 2.359 1.958 3.856 1.596 2.752 1.731 0019 0.016 0.023 0.074 2.359 1.958 3.856 1.596 2.752 1.731 0022 0.016 0.023 0.074	010	1	. 91	.81	.	2.802	3.378	3.685	3.12	92		
0015 3.260 2.772 3.199 2.803 0017 0.734 0.974 0.821 0.777 0.68C 0019 2.359 1.958 3.856 1.596 2.752 1.737 0022 0.016 0.023 0.074 0.077 2.359 1.958 3.856 1.596 2.752 1.737 0023 0.016 0.024 0.077 2.359 1.958 3.856 1.596 2.752 1.737 0023 0.016 0.077	0.1	1	.91	.31	t	.08	.55	1	.27	. 20		
Q017 0.734 0.974 0.821 0.777 0.762 0.686 Q019 0.016 0.023 0.024 1.958 3.856 1.596 2.752 1.737 Q022 0.016 0.024 0.077 2.359 1.958 3.856 1.596 2.752 1.737 Q023 0.006 0.077	01	ŀ	1	l l	.26	.70	.13	.77	• 19	80		
0019 2.359 1.958 3.856 1.596 2.752 1.737 0022 0.016 0.023 0.024	401	ı	1	1	. 7	.97	.82	.77	• 76	.68		
0022 0.016 0.023 0.077 0023 0.066 0.076 0.077 0024 0.092 0.075 0.104 0030 0.0193 0.194 0030 0.010 0.012 0.011 0031 0.012 0.011 0032 0.061 0.029 0033 0.062 0.060 0034 0.070 0.074 0.084 0034 0.092 0.098 0040 0.042 0040 0.042 0040 0.042 0040 0.042 0040 0.050 0041 0.050 0.023 0040 0.042 0050 0.023 0040 0.042 0050 0.0727	001	1	1	1		• 95	.85	• 59	• 75	. 73		
9023 9.066 0.076 0.077 9024 0.092 0.075 0.104 9025 0.092 0.075 0.0194 9030 0.010 0.012 0.011 9031 0.037 0.029 9032 0.061 0.062 0.060 9033 0.014 0.060 0.060 9034 0.030 0.042 0.052 9035 0.070 0.094 0.094 9036 0.087 0.098 0.098 9040 0.042 0.027 0.027 9041 0.050 0.027 0.027	005	.01	.02	.02	-1	1	!	!	Ì	İ	-	
0024 0.092 0.104	005	• 06	.07	.07		1	Ì		1 1			
0025 0.193 0.194	000	•00	.07	.10	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		1	1 1 1		
9030 0.010 0.011	002	• 15	• 10	• 13	1 1	1 1 1			!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		
031 0.031 0.029 032 0.061 0.062 0.060 033 0.014 0.000 034 0.030 0.042 0.052 035 0.070 0.074 0.084 036 0.087 0.092 0.098 037 0.111 040 0.042 041 0.050 0.027 050 0.0178	003	.01	.01	.01	1	1		1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1		
032 033 0.014 0.000 0.033 0.014 0.000 0.034 0.007 0.007 0.007 0.0087 0.092 0.098 0.092 0.098 0.092 0.098 0.0092 0.008 0.00	03	• 03	• 03	• 02			İ	1 1 1	† † †	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		
033 0.014 0.000	03	•06	•06	• 06	1	1		·		1 1 1		
034 0.030 0.042 0.052 035 0.070 0.074 0.084 036 0.087 0.092 0.098 040 0.042 041 0.050 0.027 050 0.178	03	.01	• 00	1	† † †	† 	† † † † †		! ! !			
035 0.070 0.074 0.084 035 0.087 0.092 0.098 037 0.111 040 0.042 041 0.050 0.023 0.027 050	03	.03	• 04	• 05	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	- 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!!!!		
036 0.087 0.092 0.098 0.037 0.111 0.098 0.040 0.042 0.050 0.027 0.050 0.178 0.050	03	.07	• 07	• 08		1 1	1	1	† † † †	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		
037 0.011	03	• 08	•00	•00	1 1	1 1 1		 	1 1 1	; ! !		
040 0.042 0.041 0.050 0.023 0.027 0.050 0.178	03	. 11	1 1	1	1 1 1		1 1 1	1	1 1 1			
041 0.050 0.023 0.027 050 0.178	04	• 04	1	1	1	† † † † † † † † † † † † † † † † † † †	f	† † † †	1 1 1			
8/1.0 050	40	.05	.02	•05				1 1 1	1	!!!!		
	2	1.) 	 				1100	10		

CASE ----- RUN SERIES 2, LOG 2.1

INTERSTAGE -----NO DEFLECTION MIXTURE RATIO ----715.0 PSIA GIMBAL PATTERN ---NOWINAL PC

THE HEAT SHIELD OR ZERO SHIFT FROM SPARK NOISE. TO DATA QUESTIONABLE ON RUNS 124-136. TO WEASURE TR. 0.6 DEG GIMBAL BLOCK ON NOZZLE 3 RUNS 282-285.050 @ PIT.051 @ P15. TO EVALUATE EFFECT OF HIGHER MIXTURE RATIO AND CHAMBER PRESSURE. LEAK Q7H HEATED TO MEASURE TR. REMARKS: FORMARD OF

NORMALIZED TEST DATA

342	704.0	31.0	1285.0	1235.0	155.0	140.0	0.398	0.335		1 1	2.092	1 1	1
341	704.0	27.0	1285.0	1235.0	161.0	146.0	0.398	0.335	⋖	1	1.991	1 1	1 1 1
340	681.0	30.0	1285.0	1235.0	161.0	146.0	0.398	0.335	UT (P) IN PSIA		2.184	1 1 1	1 1
339	688.0	26.0	1285.0	1235.0	164.0	146.0	0.398	0.335	TRANSDUCER OUTPUT BTU/SQ-FI-SEC, (P	1 1	1.819	1	1 1
338	661.0	27.0	1285.0	1235.0	165.0	145.0	0.398	0.335	TRANSDUCER OUTP BTU/SO-FI-SEC,	1 1 1	2.023	1 1	ŧ [!
337	682.0	30.0	1285.0	1235.0	170.0	150.0	0.398	0.335	(0)	† † † †	1.793	1 1] ! !
292	689.0	24.0	1285.0	1235.0	162.0	145.0	0.398	0.335		1 1	1 1 1	! ! !	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
162	689.0	26.0	1285.0	1235.0	170.0	150.0	0.398	0.335		1 1 1	1 1 1	1 1 1	1 1 1
285	0.027	27.0	1285.0	1235.0	164.0	150.0	0.298	0.335		0.005	† 	! ! ! -	
RUN NUMBER	P((BSTA)	ALI (MU HG A)	POZ (PSTA)	PH2 (PSIA)	1102 (F)	2H 2H 13	2005 (IN)	(IN)	TRANSDUCER ID	0051	0052	H 2 00	7401 73-

RUN SERIES 2, LOG 2.2

4.50	OFF
011b	3 OFF
MIXTURE RI	INTERSTAGE
NO DEFLECTION MIXTURE RATIO	546.0 PSIA
GIMBAL PATTERN	b(
GIMBAL	NOW IN AL

REMARKS: EVALUATION OF LOW O/F AND PC. THRUST STRUCTURE DATA QUESTIONABLE RUNS 139-168 DJE TO APPARENT NOZZLE ADAPTER LEAKAGE FWD OF HEAT SHIELD. NO 3 ENG NOZZLE ADAPTER RE-PLACED BY 0.6 DEG GIMBAL ADAPTER DJE TO LEAKAGE RUNS 293-298. PREMATURE FLOW RUNS 333,335,336.

NORMALIZED TEST DATA

	•	166.	43.	•36	•33) 	1	1 1	† 	 	1 1 1	1	0.001	• 00	.00	.58	.25	.32	.40	1	.36	6.196	.78	
167	• •	167.	45.	.36	.33			!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1	1	1 1 1	1 1	1 1 1	1 1	1 1 1	•	.00	00000	.14	• 00	.34	.07	1	11.	6.116	.25	
	•	163.	42.	.36	• 33			1 1	1 1	1 1	1 1 1	1 1 1	\$ 	1 1	Ţ	0	• 00	00000	.16	.74	• 39	.38	1	. 55	6.249	. 45	
	• •	•		.36	• 33		A		1 1	1 1	1 1	1	1 ! ! ! !		i	00	• 00	0	•69	• 16	.41	•00	1	•46		.24	
	• •	162.	40.	•36	•33		ISO NI (d		1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1	1 1		1 1	1 1	• 00	• 00	000.0	.13	•62	.55	.74	ł	6.	5.944	1	
	•	160.	40.	• 36	• 33		T-SEC.			1 1			1 1 1	1	1 1	0	• 00	000.0	. 71	.17	. 11	96.	-	36	.67	.08	
	• •	172.	48	.36	•33		BTU/SO-F	1 1	1 1	1 1 1	1	1		! ! !	1		• 00	00.	• 40	.82	• 16	.32	-	• 04	• 73	.57	
159 601.0	90.	•	52.	• 36	• 33	•	2	1	1 1 1	1 1	1 1 1	1 1 1	1	1 1 1	!		00.	.00	.82	.98	.23	.47	1	.84	•94	.65	
144 587.0 28.0	;	1	1 1 1	 	 			!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	1 1 1		 	1 1 1	j	1	0.001	• 00	• 00	• 26	• 73	• 34	• 35	1	• 56	13	• 30	
	• •	118.	04.	1	 			!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1	1 1 1	1 1	1 1 1	 	1	!	0.001	• 00	• 00	• 63	.40	.32	• 78	1	.52	.70	• 29	
	• •	152.	26.	1	1			1 1 1	1 1 1	1 1 1 1	1 1 1	1 1 1	1 1	1 1 1 1	1	•	• 00	00	.72	• 35	· 31	•39	1	•00	14	.37	
NUMBE (PSIA)	02 (PSIA) H2 (PSIA)	02 (F)	H2 (F)	02 (1	H2 (IN	č	ANSDOCE 10	00	00	00	00	00	00 d		P01	P01	P01	P01	000	00	00	00	00	00	00	01	

CASE ------ RUN SERIES 2, LOG 2.2

INTERSTAGE ----- OFF NO DEFLECTION MIXTURE RATIO ----546.0 PSIA NOW IN ALL PC -----GIMBAL PATTERN ---

REMARKS: EVALUATION OF LOW D/F AND PC. THRUST STRUCTURE DATA QUESTIONABLE RUNS 139-168 DUE TO APPARENT NOZZLE ADAPTER LEAKAGE FWD OF HEAT SHIELD. NO 3 ENG NOZZLE ADAPTER REPLACED BY 0.6 DEG GIMBAL ADAPTER DUE TO LEAKAGE RUNS 293-298. PREMATURE FLOW RUNS 333,335,336.

NORMALIZED TEST DATA

	90.	166.	43.	.36	• 33			.67	.85	2.746	1	1	1	.01	.02	03	1	•	 	1 1 1		.02	0.022		1 1 1 1		XT PAGE)
167 491.0 20.0	90.	167.	45.	.36	•33			00.	64	• 94	1	•	•06	05	• 05	1	† † † †] ! !	!!!!!!	 	1 6	02	0	; ; ; ;	\$ 1 1) 	ON THE NE
	• •	163.	42.	.36	• 33			.19	59	• 20	-	.27	.07	02	• 02	• 03	1	•	İ	!!!!	1 1 1	0	•	\$! ! !	1 1 1	1 1 1	ONTINUED C
165 480.0 22.0	• •	1	1	36	•		▼	.84	.70	• 20	1	1.536	• 06	.02	.02	• 04	1	0.		1 1 1	1	10	0	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	ABLE CON
	• •	162.	40.	.36	•33	_		1	96.	35	1	2.752	90.	02	.02	• 04	ŀ	•		! ! !	 	0.020	• 01	1	1	1	5
	• •	160.	40.	.36	• 33	A CITPU		.088	•94	• 01	1	34	• 05	.01	.02	• 04	1	•	-	1		02	•	-	1 1 1 1	1 1 1	
14	65. 65.	172.	48.	.36	• 33	JIOSNVA	1/S0-F	1.84	• 68	• 63	1	41	• 05	.02	.02	• 05	1		1 1	1	1 1	.02	0.	1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	
159 601.0 26.0	90.	176.	52.	• 36	• 33		Z	.744	.67	.85	1	69	• 04	.01	.01	• 04	1	1 1 1	1	1	1	.02	0.024	1	f 1 1 1	 	
	1 1	1	# ! !	 	 			.87	. 1.8	• 66	1	. 80	• 06	.02	.01	• 02	1	0.016	1	1	1	10.	• 00	1	‡] [1 1 1	
142 624.0 25.0	• •	118.	04.	1	1			.22	. 1.1	• 38	 	.33	• 05	.01	.01	.03	1	910.0	1	1	1	.01	.01	1	1 1 1 1 1	1 1 1	
	1015.0	152.	26.	l I F	1	_		•	• 6	_	ŀ	.3	0	·	C	•	1	0.014	1	ŧ	1	0	600.0	1	 - - 	1 1 1	
RUN NUMBER PC (PSIA) ALT (MU HG A)	02 (PSIA H2 (PSIA	rn2 (F)	7H2 (F	NI) 200	H2 (I	TPANSPILEE	01		_	001	001	\blacksquare	005	200	200	C05	~	0031	3	3	\sim	3	3	~	4	S	

CASE ------ RUN SERIES 2, LOG 2.2

4.50 INTERSTAGE ----- OFF NO DEFLECTION MIXTURE RATIO ----546.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

REWARKS: EVALUATION OF LOW O/F AND PC. THRUST STRUCTURE DATA QUESTIONABLE RUNS 139-168 DUE TO APPARENT NOZZLE ADAPTER LEAKAGE FWD OF HEAT SHIELD. NO 3 ENG NOZZLE ADAPTER REPLACED BY 0.6 DEG GIMBAL ADAPTER DUF TO LEAKAGE RUNS 293-298. PREMATURE FLOW RUNS 333,335,336.

NORMALIZED TEST DATA

																			٠								_
335 511.0 27.0	90.	155.	38.	.36	• 33			.01	• 02	.02	.02	\sim	• 02	.01	.02			1	. 53	83	1	• 13	.21	.78	.78	1	EXT PAGE
334 531.0 26.0	90.	155.	40.	.36	• 33			.01	.02	.01	.02	0.024	.02	.01	• 02		1	1 1	.50	.68	1	1	.58	.61	75	.24	Z H
333 575.0 27.0	85. 90.	152.	39.	.38	• 33			10	.02	.01	.02	.02	.01	.01	.01	İ	!!!	1	. 54		• 76	.25	.16	11.	44.	. 34	_
332 531.0 27.0	90.	154.	37.	• 36	• 33		14	.01	.02	.02	.02	0.024	.02	.02	•02			1	• 20) ! !	.11	• 25	•30	.25	.52	.60	TABLE CO
331 541.0 26.0	90.	163.	46.	.36	• 33	.	N PS	.017	.02	.02	.02	02	.01	1		1 1 1		1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	.43	969.0	.30	.31	• 64	.80	.43	• 59	
298 503.0 27.0	90.	165.	38.	• 36	• 33	9	-SEC, (1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	1 1 1	1 1 1	1		1	• 00	• 08	.07	•31	• 06		1	69	.97	
297 503.0 27.0	90.	58.	40.	.36	• 33	RANSDUC	BTU/S0-F1	1 1 1		1.	1	! !		 - - -	1.	0.001	1	• 00	• 03	∞	• 66	1		1	3.875	• 75	
	00	60.	45.	.36	• 33	•	*	1 1	1 1 1	1 1		!!!!	1 1 1	1	1	0.002	1	00.	•00	• 38	• 48	.42	1	F	∞	1	
		170.	45.	• 36	• 33			1 1 1	1 1 1	1 1 1	1 1 1	 	1 1 1	1 1 1	1	0.002	1	.00	.23	.81	• 19	•30	1		.23		-
294 511.0 26.0	90.	71.	51.	.36	• 33			1 1 1	1 !	1 1 1	1 1 1	1 1	1 1 1	† † † †	1 1 1	0	; !	.00	.35	5.236	.14	78	ŀ		.39	1.175	
293 500.0 27.0	90.	68.	50.	•36	• 33			 	1 1 1	1 1	1 1	1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	! ! !	• 00	1	C	.85	7.	1	4.936	-	1 1 1	4.630	1	
NUMBE (PSIA)	02 (PSI H2 (PSI	02 (F	H2 (F	02 (1	H2 (1N	TRANSDUCER	01	00	00	D 0 0	P 00	00	P00	P00	P01	9104	0	01	00	00	00	00	00	00	00	0.1	

CASE ----- RUN SERIES 2, LOG 2.2

NO DEFLECTION MIXTURE RATIO ---- 4.5 546.0 PSIA INTERSTAGE ------ OFF NOMINAL PC -----GIMBAL PATTERN ---

REMARKS: EVALUATION OF LOW O/F AND PC. THRUST STRUCTURE DATA QUESTIONABLE RUNS 139-168 DUE TO APPARENT NOZZLE ADAPTER LEAKAGE FWD OF HEAT SHIELD. NO 3 ENG NOZZLE ADAPTER RE-PIACED BY 0.6 DEG GIMBAL ADAPTER DUE TO LEAKAGE RUNS 293-298. PREMATURE FLOW RUNS 333,335,336.

NORMALIZED TEST DATA

		38.	333		1	.49	• 04	0.620	.15	1	1 1 1			1 1 1 1	1 1 1 1	1 1 1	1 1 1	1 1 1	1 1 1) } {		0.844	XT PAGE 1.
	0.0	40.	9.6		•	.54	.13	45	• 65	1) 1 1	1 1 1	1	; ! !	; ; ;	1	1 1 1 1 1 1 1	1 1	,	1 1 1	1 1 1	1 1 1	0.874	ON THE NE
	0 %	39°	333	·		• 66	.31	.53			1 1		1 1 1	1 1 1		1 1	1 1		1	1 1	1 1 1	1	0.598	CONTINUED C
	0.4	37.	.33	۷I	1	• 90	• 03	0.668	• 29	1	!	1 1 4	1 1 1	1 1	1 1 1	1 1 1	1	1 1 4 4	1	1 1 1	1 1 1	1 1	1	TABLE CON
331 541.0 26.0 1090.0	90.	46.	• 33	PS	.928	5	1		•10	1 1	1	1 1 1	1 1	+ + +				 	 	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!	1 1	0.797	C
	0 %	38°	. 33	ER OUTPU' T-SEC, (1 1		1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	.01	05	• 06	.13	• 00	.02	•04	1		• 05	• 06	• 06	10.	1 1	
	0 &	40.	.33	TRANSDUCI RTU/SQ-F)	 	• • • • • • • • • • • • • • • • • • • •	1 1 1	1	.01		• 06	• 13	• 00	.02	.03	1	0.021	• 03	• 05	• 05	.02		
296 522.0 27.0 1090.0	90.	45.	.33	NI (0)	1	1 1	} } 	1	1	10.	.04	1	.12	00.	01	03	1	0.019	• 04	.05	90.	.02	1	
295 511.0 25.0 1090.0	90.	45.	• 33		1.923	ł	1 1	1 1	1	10.	• 05	.07	• 15	.01	.02	•03	1	0.026	10.	• 04	.03	.02	1 1	
294 511.0 26.0 1090.0	90. 71.	51.	.33		1.624	1			1	.01	.05	• 06	.13	00.	• 02	• 05	1	0.024	• 04	• 05	• 05	• 02	1	
293 500.0 27.0 1090.0	90. 68.	50.	.33		1		ł	1	1	.02	.05	•00	.13	.01	.02	• 03	00.	0.024	• 05	• 05	• 05	.02	1	
RUN NUMBER PC (PSIA) ALT (MU HG A) PO2 (PSIA)	PH2 (PSIA	12 (F)	DH2 (1	TRANSDUCER ID		01	001	01	001	005	005	005	005	9	03	03	6	03	03	03	03	04	05	

CASE ----- RUN SERIES 2, LOG 2.2

INTERSTAGE ----- OFF NO DEFLECTION MIXTURE RATIO ---- 546.0 PSIA INTERSTAGE -----NOMINAL PC -----GIMBAL PATTERN ---

REMARKS: EVALUATION OF LOW O/F AND PC. THRUST STRUCTURE DATA QUESTIONABLE RUNS 139-168 DUE TO APPARENT NOZZLE ADAPTER LEAKAGE FWD OF HEAT SHIELD. NO 3 ENG NOZZLE ADAPTER RE-PLACED BY 0.6 DEG GIMBAL ADAPTER DUF TO LEAKAGE RUNS 293-298. PREMATURE FLOW RUNS 333,335,336.

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

	TRANSDUCER OUTO
336 511.0 27.0 1090.0 164.0 144.0 0.361	0.019 0.026 0.028 0.024 0.015 0.015 0.028 1.079 1.795 1.795 2.393
RUN NUMBER PC (PSIA) ALT (MU HG A) PO2 (PSIA) PH2 (PSIA) 1TO2 (F) OD02 (IN)	1 P A N S D U C E R 1 D 1 D 1 D 1 D 0 0 1 D 0 0 0 2 D 0 0 0 2 D 0 0 0 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AISO NI (9) .

CASE ------ RUN SERIES 2, LOG 2.2

4.50 INTERSTAGE ----- OFF NO DEFLECTION MIXTURE RATIO ----546.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

139-168 DUE TO APPARENT NOZZLE ADAPTER LEAKAGE FWD OF HEAT SHIELD. NO 3 ENG NOZZLE ADAPTER RE-PLACED BY 0.6 DEG GIMBAL ADAPTER DUE TO LEAKAGE RUNS 293-298. PREMATURE FLOW RUNS 333,335,336. PEMARKS: EVALUATION OF LOW O/F AND PC. THRUST STRUCTURE DATA QUESTIONABLE RUNS

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

336 511.0	1090°0 1090°0 1090°0	164.0 144.0 0.361	0 • 335
	٩		
NUMBER PSIA)	(PSTA)	(F) (T)	DHZ (IN) TRANSDUCER ID
NUN C	AL 1 PO2 PH2	102 247 2007	FOH2 I TRAN

(0) IN BTU/SO-FT-SEC. (P) IN PSIA

2.105 0.662

1.047

0010

0022 0023 0024 0024

SD73-SA-0061

 .581

1 1

0037 0041 0052

1111

0030

0031

1

[|

0034

0035

0032

2.233

0015 0016 0017

NO DEFLECTION MIXTURE RATIO ---- 5.50 715.0 PSIA INTERSTAGE ----- ON GIMBAL PATTERN ---

REMARKS: EVALUATION OF INCREASED MIXTURE RATIO WITH INTERSTAGE SKIRT IN PLACE NOMINAL PC

NORMALIZED TEST DATA

										*******																		· 《 · · · · · · · · · · · · · · · · · ·	
5	~	•	65.	5	68.	48.			ANSDUCER	RTU/SO-FT-SEC, (P) IN PSTA	1 * 1	.03	• 03	.07	• 02	. 83	.77	. 18	• 02	.17	.77	. 73	• 65	. 84	. 44	• 04	1.120	. 50	.87
S	697.0	•	65.	3	52.	31.	1	1	 -	z	• 02	02	.03	• 06	• 95	.58	. 98	45	.67	.27	.31	.73	•19	.87	.21	.90	0.657	.22	.36
S	693.0	24.	365.	5	160.	41.	-	1 1		1	0	0	0	S.	2.	0	7	.2	6	•		3	6.	7	. 2	œ	0.691	4.	æ
S	693.0	26.	365.	Š	153.	36.	1	į			1 1 1	1	.02	.02	.17	13	• 36	• 45	• 09	.15	.36	• 25	• 76	.89	.37	• 09	1.826	640	.87
S			365.	95.	156.	34.	1	-			.03	• 02	• 03	• 40	• 10	11.	•63	•46	• 46	.85	• 29	.74	•74	.54	.29	.45	1.458	.25	• 58
UN NUMB	PC (PSIA)	LT (MU	129) ZC	H2 (PSI	02 (F)	H2 (F	02 (1	H2 (I	TR ANS DUCER	01	P016	P017	P018	0001	000	000	000	000	6000 A-	001	001	001	9016	9019	9022	0023	9024	0025	0031

(TABLE CONTINUED ON THE NEXT PAGE)

CASE ------ RUN SERIES 2, LOG 2.3

5.50	_
	Ó
011	NO
RAI	E C
MIXTURE	INTERSTAGE
NO DEFLECTION MIXTURE RATIO	715.0 PSIA
S	7
1 1	* * * * * * * * * * * * * * * * * * * *
A	<u>۵</u>
GIMBAL PATTERN	NOMINAL

EVALUATION OF INCREASED MIXTURE RATIO WITH INTERSTAGE SKIRT IN PLACE REMARKS:

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

										Z		
				1295.0				\$ # # # # # # # # # # # # # # # # # # #	TRANSDUCER DUTPUT	BTU/SO-FT-SEC, (P)	0.472 0.429	0.429
157	697.0	25.0	1365.0	1295.0	152.0	131.0	* * *	 		N1 (0)	0.472	0.923
154	693.0	24.0	1365.0	1295.0	160.0	141.0	1 1 1	; ; ;			1,321	1,352
153	693.0	26.0	1365.0	1295.0	153.0	136.0	;	1 1			0.268	0.836
152	672.0	29.0	1365.0	1295.0	156.0	134.0		1			0.936	0.936
		A)										
NUMBER	PSIAI	SH UM)	(PSIA)	(PSIA)	(F)	(F)	(21)	COH2 (IN)	TRANSDUCER	01	9609	1036
RUN	٦ ۵	ALT	P02	2Hd	102	1 TH2	2001	2H03	TRAN		. T	<i>ب</i>

PSIA

KUN SEKIES 2, LUG 2,4	
2 2 2	
SER IT	:
Z S	
CASE	

5.50	. OFF	
MIXTURE RATIO 5.50	INTERSTAGE OFF	
30	715.0 PSIA	
GIMBAL PATTERN	NOMINAL PC	** * * * * * * * * * * * * * * * * * * *
GIMBAL	NOWINAL	

REMARKS: TO DETERMINE THE EFFECT OF INCREASED MIXTURE RATIO WITH LARGE ENGINE

DEFLECT IONS

	19	61	19	10	20	20	20	20	0
PC (PSIA)	658.0	•	79.	84.	90.	00	76.	91.	02.
_ (M)	27.	2	26.	24.	25.	28.	27.	35.	26.
2 (PSI	365.	295.	365.	390.	415.	415.	15.	415.	15.
2 (PSI	95.	95.	65.	90.	15.	15.	415.	15.	415.
2 (F	®	143.	150.	154.	163.	153.	143.	153.	151.
2 (F	31.	27.	32.	36.	47.	38.	28.	40.	41.
2 (1	.33	•39	.39	.39	95.	• 39	• 39	.39	.39
2 (• 33	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335
1.									
					RANSD	ER OUT	1		
01	:		! ! :	_	/ 50	T-SEC.	z		
01	00.	0	.00	00000			00000	ċ	• 00
00	• 56	∞	.27	.27	.03	4.21	69.	96.	. 22
00	• 58	.43	.54	.01	. 95	7.56	•30	.67	. 12
00	1	1	44.	• 59	1	6.94	• 42	7.19	7.78
00	2.21	44.	3.46	3.87	2.49	12.69	• 79	.72	.36
000	.55	.92	0.63	• 13	66.	9.62	1.38	9.65	68.6
001	4.44	• 59	8.66	8.16	2.52	35.60	1	7.19	65.6
01	•94	.83	.67	7.62	6.65	6.84	4.8	6.10	6.98
001	•07	.37	5.21	6.25	4.14	3.89	.91	5.22	4.56
001	• 55	.37	0.46	.47	640	22,32	• 66	2.06	• 75
001	.84	0.24	8.99	2.96	8.75	8, 75	9.68	9.40	7.46
00	9.106	8.707	7.898	9.33	. 95	9.16	44		7.853
01	• 43	• 42	.47	.42	• 04	7.20	• 75	• 44	.76
01	•29	.43	• 38	. 18	.71	5.61	• 73	• 04	69.
0	•43	. 52	.31	• 60	. 52	5.54	.48	.41	.88
02	• 04	• 05	• 05	.05	. 05	0.04	• 04	• 03	• 04
02	•06	• 06	• 06	.07	• 06	0.04	• 05	• 05	• 05
02	.08	. 10	• 13	•13	13	0.07	• 05	.07	. 10
5	5	C	2		2	0	5	5	-

CASE ----- RUN SERIES 2, LOG 2.4

MIXTURE RATIO 5.50	INTERSTAGE OFF
30	715.0 PSIA
PATTERN	NOMINAL PC

TO DETERMINE THE EFFECT OF INCREASED MIXTURE RATIO WITH LARGE ENGINE REMARKS: DEFLECT IONS

NORMALIZED TEST DATA

DIIN NIIM DE	101	101	-	00.	Ċ	7	,		•
	7.40	161	170	199	007	707	507	507	502
	658.0	652.0	679.0	684.0	0.069	700.0	676.0	691.0	702.0
	27.0	25.0	26.0	24.0	25.0	28.0	27.0	35.0	26.0
	1365.0	1295.0	1365.0	1390.0	1415.0	1415.0	1415.0	1415.0	1415.0
	1295.0	1295.0	1365.0	1390.0	1415.0	1415.0	1415.0	1415.0	1415.0
	148.0	143.0	150.0	154.0	163.0	153.0	143.0	153.0	151.0
	131.0	127.0	132.0	136.0	147.0	138.0	128.0	140.0	141.0
	0.338	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398
	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335
					TRANSDUC	ER OUTPU	<u>-</u>		
				Z1 (0)	BTU/S0-F	1-SEC, ((P) IN PSIA	ΙA	
	0.041	0.063	1 1 1	0.046	0.051 0.046	0.046	0.055	0.034	0.055
	1 1 1	7.271	1 1 1	8,530	6.715	6.813	7.118	7.688	6.956

CASE

INTERSTAGE ----- OFF MIXTURE RATIO ----632.0 PSIA 30 NOMINAL PC -----GIMBAL PATTERN ---

WITH TIME & DETONATION RUPTURED NOZ. DIAPHRAGMS AT START OF COMBUSTION RNS 255,258,259,261. HEAT REMARKS: PC INDICATES STEADY FLOW, HOWEVER, O/F UNCERTAIN SINCE VENTURI FLO VARIED -ED COMP GTH REPLACED 07. 050 @ PIT LOC. FACING PI6 RNS 258-260, FACING PI8 RNS 261-263

NORMALIZED TEST DATA

26 28.	1345.0 1335.0	66. 46.	.33	67.		. •	1	00.	.54	.88	0.012	1	• 06	. 11	.01	.01	.02	.01	.02	• 05	• 05	.07	• 03	.01
26 05•	1315.0	167. 146.	•33	67.	•	0	ı	00.	•	69.	-	1	•04	• 08	90.	.01	.02	00.	.01	• 04	• 05	1	3	1
26 72.	1315.0	65°	.33	67.		0		00.	•00	• 63	0.011		• 05	• 08	.01	• 02	•05	10.	.01	• 04	• 05	•05		0.031
26 11.	1315.0	163. 143.	• 33	67.		0.0	1	• 00	6.03	•64	0.016	• 03	• 05	• 08	.01	•02	.02	• 01	.01	• 04	• 04	•08	. 	2
25 05.	1315.0	66. 44.	.33	• 63	Z P S	0.001	!	00.	99.9	•00	0	• 04	• 05	11.	.01	.01	.01	• 00	.01	•03	•06	•06	:	• 01
25 69.	1315.0	170. 148.	•33	67.0) <u> </u>	0.002	1	• 00	•57	• 45	1	-	~	.11	•01	•03	.02	•01	.01	•04	• 04	• 06	•05	1.
25 97.	1315.0	168. 148.	•33	167.0	NSO-F	0.001	00.	• 00	6.64	96.	0.01		• 05	.07	.01	•02	.02	.01	.01	• 03	•04	• 06	00.	•02
25	1315.0	65. 46.	.33	163.	Z	100	00.	• 00	•24	. 45	00.	• 05	.07	• 00	.01	• 03	.02	•01	.01	.03	• 04	.07		• 02
25	1315.0	68. 45.	• 33	67.		1	00•	00000	•43	69•		1	• 08	• 06	0	.03	.02	• 01	.01	• 03	.02	• 03	. 1	1 1
25	1415.0	60. 46.	• 33	67.		0	• 00	• 00	6.38	.51	0.018	• 04	.07	• 00	.02	• 03	.02	• 02	• 02	• 04	• 05			† -
25 47.	1120.0	66. 45.	•38	3 C •		0.001	• 00	• 00	1		-	1 1 1	1	• 08	00000	• 02	00.	• 03	• 01	.01	• 02	.02	1	f 1 1
N NUMBE (PSIA)	A A	2 7 7	1) 200			P016	0	0	00	100	02	005	005	005	003	003	003	03	03	03	03	03	9	04

146

SD73-SA-0061

(TABLE CONTINUED ON THE NEXT PAGE)

CASE ----- RUN SERIES 3, LOG 3.1

WITH TIME & DETONATION RUPTURED NOT. DIAPHRAGMS AT START OF COMMISTION DNS 256 250 251 DEAT	DETONATION	RUPTUR	FD NO	DETONATION RUPTURED NOZ. DI	APHRAGA	IS AT C	TART	T CONCT	ALAIN.		755, 259	3 STEADT FEUNY HUMEVERYUZE UNCERTAIN SINCE VENIURI FEU VARIED NOZ. DIAPHRAGMS AT START DE COMBUSTION DNS 255,250,250,251, 457	EO
-ED COMP OTH REPLACED 07. 050 a PI	REPLACED	07. 050	1 d	7 100	FACIN	16 P16	RNS 2	58-260	FACT!	NG 018	17 LOC. FACING P16 RNS 258-260. FACING P18 RNS 261-263	1-263	400

MIXTURE RATIO ----

3C 632.0 PSIA

GIMBAL PATTERN ---

NORMALIZED TEST DATA

	-				 						
RUN NUMBER	253	254	255	256	257	258	259	260	761	262	263
PC (PSIA)	647.0	641.0	575.0	619.0	597.0	569.0	605.0	611.0	572.0	605	628.0
ALT (MU HG A)	24.0	26.	1 1 1	26.0	25.0	27.0	15.0	15.0	15.0	15.0	0.520
	1120.0	14	1315.0	1315.0	1315.0	1315.0	1315.0	1315.0	1315.0	_	1345.0
٥	1203.0	1405.	1305.0	1305.0		1305.0	1305.0	1305.0	1305.0		1335.0
T02 (F)	166.0	160.	168.0	165.0		170.0	166.0	163.0	165.0		166.0
	145.0	146.0	145.0	146.0	148.0	148.0	144.0	143.0	145.0	146.0	146.0
(NI) 7001	0.388	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335
	0.326	0.29	0.291	0.291	0.291	0.291	0.291	0.291	0.291	0.291	0.291
TRANSDUCER					TRANSDUC	TRANSDUCER OUTPUT					
C1				NI (0)	BTU/S0-F	:T-SEC, (BTU/SO-FT-SEC, (P) IN PSIA	IA			
0020	1 1	1 1 1	1 1 1	1 1 1	1 4 1		0.138	0.151	0.081	0.022	710.0
0051	0.025	† 	00000	0.006	0.007	0.016		f		0.008	
H 100	3.497	2.534	2.880	2.083	3.811	3.232	2.131	2.876	2.276	3.928	2.657
SD.	107.450	100.568		101.079	100.569	104.408		107.574	110.489	103.418	100.637
7											

5.00 OFF INTERSTAGE -----MIXTURE RATIO ----632.0 PSIA 3CA NOMINAL PC -----GIMBAL PATTERN ---

REMARKS: Q7 REPLACED BY HEATED COMPONENT Q7H. ROD GAGES Q50 & Q51 ON THE THRUST CONE AT P17 AND P15 LOCATION RESPECTIVELY RUNS 454-458, AT P15 AND P17 RESPECTIVELY RUNS 459-461

461 591.0 27.0	63.	.38	•	00.00	0.001	• 09	.15	00.	• 02	70.	.01	.05	• 05	•03	.01	•00	• 00	.80	6.93
460 590.0 27.0	85.	50°		.002	0.001	100	•10	.01	• 04	100	.01	.01	• 04	.02	.02	.10	• 00	.89	7.11
459 592.0 27.0	85. 65.	.38	OUT EC.	• 00	0.057	.05	11.	010	• 02	200	.01	•05	• 06	İ	•01	• 08	• 01	3	6.75
458 595.0 27.0	85. 65.	533 938 84	NSD /	0.00	000	90.	1		• 03	0.015	.02	• 05	•06	•03	• 02	.12	• 00	.12	6.21
457 608.0 27.0	85.	51. •38		• 00	0.001	• 09	• 18	10.	.02	00.	• 00	.03	1	.02	.02	.07	• 00	12.41	3.94
456 585.0 27.0	85. 58.	• 33 • 43 • 43 • 43 • 43 • 43 • 43 • 43		• 00	0.002	10	.21	10.	• 02	000	10.	1		1	.01	.04	• 00	11.678	8.03
455 613.0 27.0	85.	.38	•	• 00	0.001	80.	50	9	90.		.01		1111	1	• 02	• 06	00.	7.64	60
454 613.0 27.0	85. 62.	38		•00	0.001	.11	•23	00•		•	.02	.07	0.	.02	.02	.12	• 00	1	
NUMB (PSIA (MU	H2 (H2 (F 02 (I H2 (T	: <u>a</u> c	01	P018	02	005	003	003	03	003	003	003	9	9	05	05	07	0

5.00 INTERSTAGE ----- OFF MIXTURE RATIO ----632.0 PSIA 3CA GIMBAL PATTERN ---

REMARKS: ATTEMPT TO DETERMINE RECOVERY TEMPERATURE FOR LARGE DEFLECTIONS. Q7H
DATA QUESTIONABLE DUE TO POORLY DEFINED GAGE PROPERTIES AT HIGH TEMP. Q51 DATA WHEN INSTALLED AT
P15 WAS POOR, READINGS REPORTED GENERALLY LESS THAN THE NOISE LEVEL. Q500P15,0510P17 RNS 463-469

630.0 1140.0 1185.0 162.0 165.0 0.388 0.388 0.001 0.001 0.013 0.190 0.013	000000000000000000000000000000000000000
608.0 27.0 1140.0 1185.0 172.0 0.388 0.338 0.001 0.002 0.062 0.062 0.062 0.062 0.062 0.062	010 021 041 010 033 057 057
471 27.0 11140.0 1185.0 162.0 0.388 0.338 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	003
40000000000000000000000000000000000000	014 023 084 040 047 025 187
7 + 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	012 043 022 015 015 097 738
468 601.0 27.0 1140.0 1185.0 166.0 0.388 0.388 0.335 0.001 0.001 0.001 0.017 0.013 0.013	015 047 040 016 076 076 299
467 600.0 27.0 1140.0 1185.0 151.0 0.388 0.388 0.335 0.001 0.001 0.001 0.001 0.005 0.005 0.005	0011 047 0021 0018 0092 0011
466 614.0 27.0 1140.0 1185.0 167.0 0.388 0.388 0.024 0.024 0.024 0.024 0.028 0.015 0.015	0011 046 024 020 009 079 079
465 609.0 27.0 11.40.0 11.85.0 156.0 0.338 0.335 0.001 0.001 0.011 0.039 0.039	.012 .048 .052 .011 .020 .083 .083
464 600.0 27.0 11185.0 1185.0 142.0 0.388 0.388 0.024 0.002 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024	011 056 058 013 015 008 799
630.0 27.0 11145.0 1185.0 170.0 0.388 0.388 0.001 0.001 0.012 0.019 0.019 0.019	0011 0013 0008 0011 0062
PUN NUMBER PC (PSIA) PD2 (PSIA) PD2 (PSIA) TD2 (F) TD2 (F) DD2 (IN) DD2 (IN) DD2 (IN) DD2 (IN) DD2 (IN) DD2 (O023 D0025 D0030 D0033	0034 0034 0037 0040 0050 0051 007H

CASE ------ RUN SERIES 3, LOG 3.3

MIXTURE RATIO --- 5.50 INTERSTAGE ----- OFF 3C 715.0 PSIA GIMBAL PATTERN ---NOMINAL PC

REMARKS: Q7 REPLACED BY HEATED COMPONENT Q7H. ROD GAGES Q50 & 51 MOUNTED ON TC. THIS SERIES CONSISTS OF 15 RUNS, 8 NOT REPORTED DUE TO POOR COMBUSTOR PERFORMANCE. 050 AND 051 AT P17 AND P15 RESPECTIVELY.

281 705.0 27.0 1285.0	235. 163. 151.	9.80	IA	0.004	98	96	10.	40.	11.	• 00	.01	•04	0.	• 02	• 06	.07	.08	•04	.02	.31
280- 689-0 25-0 1285-0	235. 168. 148.	93.9	z	0.004	986.	• 00	0.01	• 05	.13	• 00	• 02	• 06	.02	• 04	.07	• 06	.07	.03	• 02	
279 717.0 27.0 1285.0	235. 166. 144.	0.39	OW	80	47	• 73	.01	• 05	•13	00.	• 03	90.	.01	• 03	• 05	• 07	•00	• 02	• 02	• 20
278 711.0 25.0 1285.0	35. 66.	0.398	TRANSDUC BTU/SQ-F		. 45	• 44	00	• 04	0.111	• 00	• 02	40.	10.	• 02	• 05	• 05	.07	• 05	• 00	.17
277 711.0 25.0 1285.0	35. 67.	•398 •335	N I	0.002	• 60	11.	• 00	• 03	10	• 00	• 02	• 05	.01	• 02	• 05	• 06	.07	.03	0	1
276 726.0 27.0 1285.0	235. 170. 150.	• 33 • 33	•	0.002	. 45	.51	.01	40.	0 -	.00	.02	• 04	.01	• 02	• 05	• 06	.08	.02	.07	1
273 733.0 24.0 1285.0	235. 166. 146.	•39		0.002	• 0 •	.54	• 02	100	. 14	• 00	10.	40.	.01	• 02	.07	• 06	• 00	.01	.01	• 10
272 722.0 27.0 1285.0	35.	0.398		0.002	75	0	00.	100	7	1	İ	• 03	0.01	•03	• 05	•04	60	.01	0.112	1 8
4												•								
N L S S S S S S S S S S S S S S S S S S	S	2 (IN) 2 (IN)	RANS	P016	40	_	005	200	2	003	003	003	003	3	3	3	3	4	4	S
		- TJ	•				ì	ן ענ	J-3	Λ-	w	بد ب :						.;		

RUN SERIES 3, LOG 3.3 CASE -----

MIXTURE RATIO 5.50	BY HEATED COMPONENT Q7H. ROD GAGES Q50 & 51 MOUNTED ON TC.
INTERSTAGE OFF	8 NOT REPORTED DUE TO POOR COMBUSTOR PERFORMANCE. Q50 AND Q51
GIMBAL PATTERN 3C NOMINAL PC 715.0 PSIA	REMARKS: Q7 REPLACED BY HEATED OF THIS SERIES CONSISTS OF 15 RUNS, 8 NOT REPORATE PIT AND P15 RESPECTIVELY.

NORMALIZED TEST DATA

101.418	103.773	99.721	100.563	119.669	162,500	97.544	101.011	T07H
4.635	5.479	4.527	5.913	1 1 1	3,733	2.526	2.288	007H
•	f 	1 1 1	0.082	1 1 1	0.014	0.007	00000	0051
T A	BTU/SQ-FT-SEC, (P) IN PSIA	T-SEC, (BTU/SQ-F	NI (0)				10
		ER OUTPUT	TRANSDUCER					TRANSDUCER
0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	(NI) 2HOL
0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398	(NI) 20015
151.0	148.0	144.0	149.0	146.0	150.0	146.0	1 1 1 1	1TH2 (F)
163.0	168.0	166.0	166.0	167.0	170.0	166.0	1 1	T02 (F)
1235.0	1235.0	1235.0	1235.0	1235.0	1235.0	1235.0	1235.0	PH2 (PSIA)
1285.0	1285.0	1285.0	1285.0	1285.0	1285.0	1285.0	1285.0	PO2 (PSIA)
27.0	25.0	27.0	25.0	25.0	27.0	24.0	27.0	ALT (MU HG A)
705.0	0.689	717.0	711.0	7111.0	726.0	733.0	722.0	PC (PSIA)
281	280	279	278	27.7	276	273	212	RUN NUMBER

MIXTURE RATIO 5.50	INTERSTAGE OFF
3CA	715.0 PSIA
GIMBAL PATTERN	NOMINAL PC

REMARKS: HEATED Q7H REPLACES Q7. ROD GAGES Q50 AND Q51 INSTALLED ON THRUST CONE.
TH TEMPS TABULATED ARF PRETEST GOAL, NO TEST VALUES RECORDED. Q50 & 51 POSN NOT SPECIFIED BUT
APPEAR TO BE AT P17 AND P15 LOCATIONS RESPECTIVELY. DIFF BTWN 3.3A & 3.4A IS THE T7H TEMP DESRD.

	Sd NI	
478 690.0 27.0 1285.0 1235.0 155.0 0.398	750 000 000 001	0.019 0.020 0.044 0.011 0.015 0.055 0.012 0.124 0.001 828.985
690.0 27.0 1285.0 1235.0 153.0 146.0 0.335	000.000.000	0.020 0.020 0.021 0.048 0.048 0.010 0.057 0.030 0.030 0.015 0.124 0.001 14.010
476 706.0 27.0 1285.0 1235.0 158.0 150.0 0.335	0000	0.010 0.016 0.016 0.011 0.015 0.015 0.010 0.010 0.010
475 707.0 27.0 1285.0 1235.0 157.0 150.0 0.335	0.05	0.015 0.016 0.036 0.004 0.054 0.054 0.036 0.018 0.124 0.007
474 685.0 27.0 1235.0 156.0 150.0 0.398	.00 .01 .01	0.005 0.020 0.047 0.010 0.017 0.035 0.019 0.171
RUN NUMBER PC (PSIA) ALT (MU HG A) PO2 (PSIA) PH2 (PSIA) TO2 (F) TH2 (F) DO2 (IN)	TRANSD 10 10 10 10 10 10 10 10 10 10 10 10 10	0 1 2 K 4 9 L 0 1 0 1 H H C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,4	•
•	1
u	1
a u	
2 2 2	•
	-
CASE	! !

5.50	7. T.
MIXTURE RATIO 5.50	INTERSTAGE OFF
3 C	715.0 PSIA
GIMBAL PATTERN	NOWINAL PC

REMARKS: Q7 REPLACED BY HEATED COMPONENT Q7H. ROD GAGES Q50 AND Q51 ON THRUST STRUCTURE APPEAR TO BE LOCATED AT P17 AND P15 LOCATIONS RESPECTIVELY.

											IN PSIA																			
59	2	25.	285.	35.	174.	55.	.39	0.335		ANSDUCER DUTPU	150-FT-SEC	0.004	• 00	.89	.08	.01	• 05	.10	.15	.00	.03	• 06	.01	• 03	• 06	.07	• 09	0.042	.02	11.
2	4	-	285.0	35.0	170.0	51.	•39	33			8	• 004	.00	.12	149.	.01	• 06	• 06	.13	.01	• 03	• 05	• 00	.02	• 05	• 08	.10	0.020	• 04	•19
2	ė	24.	285.	35.	170.	50.	• 39	3				.00	0.003	1	1	• 01	• 04	• 06	.13	00.	• 02	• 05	.01	.02	• 06	• 06	.07	0.045	.02	•17
	2.	25.	285.	35.	ċ	51.	•39	• 33				• 00	0.002	-	1 1 1	.02	• 05	• 06	. 14	.01	• 03	• 05	.01	• 03	• 06	• 08	.12	0.037	1	0.177
	ç	29.	285.	35.	•	46.	.39	•33				00		.90	27.780	.01	• 0 5	• 06	•14	• 00	.02	• 05	.01	1	1	.07	•00	0.035	•02	• 1 9
Σ,	(PSIA)	Ē	2 (P	7	2 (F	7 ?	7 2	2 (15	STRANSDUCER	01	_	_	0	$\boldsymbol{\vdash}$	005	005	005	005	3	003	003	003	3	3	3	3	0000	4	5

CASE ------ RUN SERIES 3, LOG 3.4

-- 5.50 -- OFF MIXTURE RATIO ----INTERSTAGE 715.0 PSIA 30 GIMBAL PATTERN ---NOM INAL PC REMARKS: Q7 REPLACED BY HEATED COMPONENT Q7H. ROD GAGES Q50 AND Q51 ON THRUST STRUCTURE APPEAR TO BE LOCATED AT P17 AND P15 LOCATIONS RESPECTIVELY.

NORMALIZED TEST DATA

	IN PSIA
290 705.0 25.0 1285.0 1235.0 174.0 155.0 0.398	TRANSDUCER DUTPUT BTU/SQ-FT-SEC, (P) 0.009 2.789 351.922
289 694.0 27.0 1285.0 1235.0 170.0 151.0 0.335	(Q) IN 0.000 1.494 813.905
288 706.0 24.0 1285.0 170.0 150.0 0.335	0.000 3.048 506.374
287 722.0 25.0 1285.0 170.0 170.0 151.0 0.398	2.426
286 706.0 29.0 1285.0 1235.0 166.0 0.398 0.335	0.000
RUN NUMBER PC (PSIA) ALT (MU HG A) PD2 (PSIA) PH2 (PSIA) 1TO2 (F) 1TH2 (F) 5D02 (IN)	TRANSDUCER 1D QO51 QO7H TO7H

1.4		
907		
IES 4.		
N VERIES		
YOY !!		
LASE		

5.00	OFF
RATIO	3E OFF
MIXTURE	INTERSTAGE
NO DEFLECTION MIXTURE RATIO	632.0 PSIA
GIMBAL PATTERN	NOWINAL PC

TO DEFINE ENVIRONMENT ON THE EXTERIOR OF AN INOPERATIVE ENGINE NO 5 REMARKS:

	TRANSDUCER OUTPUT (Q) IN BTU/SQ-FT-SEC, (P) IN PSIA
302 623.0 27.0 1271.0 1271.0 172.0 152.0 0.335	0.000 0.629 1.045 0.730 0.659 1.085 0.842 0.842 0.842 0.751 0.751 0.751 0.578 0.345
301 638.0 25.0 1271.0 172.0 155.0 0.335	0.000 1.129 0.525 0.525 0.495 0.971 0.802 1.644 0.852 0.367 1.595
300 632.0 27.0 1271.0 167.0 147.0 0.335	0.000 0.600 0.960 0.590 0.590 0.960 0.710 0.750 0.840
RUN NUMBER. PC (PSIA) ALT (MU HG A) PO2 (PSIA) PH2 (PSIA) TO2 (F) TH2 (F) OO2 (IN) 'OH2 (IN)	- TRANSDUCER 100 0000000000000000000000000000000000

CASE ------ RUN SERIES 4, LOG 4.1

NO DEFLECTION MIXTURE RATIO ---- 5.00 632.0 PSIA INTERSTAGE ----- OFF GIMBAL PATTERN ---NOMINAL PC -----

TO DEFINE ENVIRONMENT ON THE EXTERIOR OF AN INOPERATIVE ENGINE NO 5 REMARKS:

NORMALIZED TEST DATA

									TRANSDUCER DUTPUT	(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA			
302	623.0	27.0	1271.0	1271.0	172.0	152.0	0.335	0.291			0.812	4.048	5.478
301	638.0	25.0	1271.0	1266.0	172.0	155.0	0.335	0.291			0.783	7.776	9.213
300	632.0	27.0	1271.0	1271.0	167.0	147.0	0.335	0.291			1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RUN NUMBER	PC (PSIA)	ALT (MU HG A)	POZ (PSIA)	PH2 (PSIA)	T02 (F)	TH2 (F)	(NI) 2001	(NI) ZH05	TRANSDUCER	OI	00N2	6000	5N00

LOG 4.2	MIXTURE RATIO 5.00 Interstage OFF	F INOPERATIVE ENGINE NO 3								NORMALIZED TEST DATA		·c			0				0) to				בויט מ:	STATE OF THE STATE	BTU/SQ-FT-SEC,	0			•	0	6	•			C.	80	4					•	8	•			
N SERIES 4.	2.0 PSIA	NVIRONMENT OF									-	05 30		6.0 645.	7.0 24.	1761 0 1		0.0 1266.	8.0 165.	1.0 141.		333 0.33	.291 0.291			•		00 00 00	385 0.49		424	482 0.50	491 0.52	501 0.52	767	500	656 0.39	626 0.57	000	774 0.40	 0.94	44 1.02	425 1 49	433 1.48	.56	790 0.68	530 0.49	66 0.37	
RUN	ERN 2	O DEFINE EN	i									0	,	3.0	4.0	271.0 12		71 0.007	71.0	50.0	326	• 222	0 1					000	929	\	416.	•589	879	539	` } (ļ ! } !	• 028	.869	158	1	1 1 1	0	1 1		9	.769	278	270	0 14 •
CASE	GIMBAL PATTI	REMARKS: TO		-	-	-	-					0		•	2	271.	• •	•007	64.	777		00.	0.291	=		-		00.	32	,	• 24	.68		45	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•	.40	.48	5	 	1	.93	, ,	00.	767.0	.61	0 7	0.0)
		-										RUN NUMBER		AISAI	SH OM)	9		7	<u>u</u>	_	_	-	(NI) 2HO	_	AHOROGENA TE			P018	0062	7000	\$ 500°	6006	9000						-1-00H4			2H00	6H00	01107	100	9000	200	81.00)) b

RUN SERIES 4, LOG 4.2 CASE

MIXTURE RATIO INTERSTAGE ---632.0 PSIA PATTERN ---NOMINAL PC -----GIMBAL

TO DEFINE ENVIRONMENT OF INOPERATIVE ENGINE NO 3 REMARKS:

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

			:			•			
								* ***	
306	645.0	24.0	1271.0	1266.0	165.0	141.0	0.335	0.291	
		27.0	1			:			
304	633.0	24.0	1271.0	1266.0	171.0	150.0	0.335	0.291	
303	665.0	27.0	1271.0	1266.0	164.0	144.0	0.335	0.291	
NUMBER	(PSIA)	(MU HG A)	(PSIA)	(PSIA)	(F)	(F)	(IN)	DH2 (IN)	
NO.	<u>ာ</u>	AL T	P02	PH2	, T02	, TH2	2005 50.50	1 DH2	

(Q) IN BTU/SQ-FT-SEC, (P) IN PSIA TRANSDUCER DUTPUT 0.110 0.216 0.048 0.193 0.000 0.240 0.280 0.499 0.000 0.200 0.000 0.203 TRANSDUCER 00N2 00N3 00N5 00N1

SD73-SA-0061

., LOG 4.2A	
SERIES 4	
RUNS	
CASE	

5.00	- 0FF
01	
MIXTURE RATIO	INTERSTAGE
2A	632.0 PSIA
GIMBAL PATTERN	PC
GIMBAL	NOWINAL PC

REMARKS: NO 2 ENGINE OUT WITH NOZZLE INSTRUMENTED. LOCATION OF EXTERIOR GAGE ROW M NOT DEFINED IN DATA FOR THIS RUN. FULL SCALE DISTANCES FWD OF NOZZLE EXIT PLANE ARE QMI (1 INCH), QM6 (16), QM7 (19) AND QM8 (22)

											TRANSDUCER DUTPUT	(0) IN BTU/SQ-FT-SEC																			
	360		0	71.	266.	58.	3	.33					•	. 55	.47	0.819	•04	.37	•	1 1 1	•	2.216	•	1 1 1	•			•		1,753	•
	5			1271.0	266.			3	0.291				8	•	\sim	0.867	5	ŀ	26	48	9	89	83	19	58	02	17	63	96	2.168	0 1
-	358		•	1271.0		•	•	3	0.291	_			• 79	.67	0.564	•	1 1 1		6	8	6.	•	6.	0	.2	7	4	w.	۲.	1.009	0
	N NUMB	-		PO2 (PSIA)	ISd)	T.	T.	~	_	1	STRANSDUCER	01 -	1 WOO	9W00	7 MOQ	00 M 8	1000		800¢						0013	0014	0015	9100	2100	6100	0022

CASE ------ RUN SERIES 4, LOG 4.2A

MIXTURE RATIO ----INTERSTAGE -----632.0 PSIA NOMINAL PC GIMBAL PATTERN ---

5.00

REMARKS: ND 2 ENGINE OUT WITH NOZZLE INSTRUMENTED. LOCATION OF EXTERIOR GAGE ROW ON DEFINED IN DATA FOR THIS RUN. FULL SCALE DISTANCES FWD OF NOZZLE EXIT PLANE ARE QMI (1 INCH), QM6 (16), QM7 (19) AND QM8 (22)

NORMALIZED TEST DATA

		mande des auto des les estres de la companya de la companya de la companya de la companya de la companya de la									* vote (minimum tan . es			is and the confidence to the state of the st		***			destructions to the state of th	
		majora, is ire avecinis militalisti industrialisti and salaristi della salaristi industrialisti della salarist									2 · · · · · · · · · · · · · · · · · · ·			en deligioù de la companya de la companya de la companya de la companya de la companya de la companya de la co		# # # # # # # # # # # # # # # # # # #			ander seen is designed the seen seen seen seen seen seen seen se	
		AND THE TRANSPORM INTERNAL PROPERTY OF THE PRO							TRANSDUCER DUTPUT	(Q) IN BTU/SQ-FT-SEC				AND THE STATE OF T					er men de de la company de la company de la company de la company de la company de la company de la company de	
		and the statement of th												The state of the s					mode, and the second se	
360	656.0 30.0	1271.0	1266.0	158.0	143.0	0.335	0.291			•	0.007	0.021	0.059	0.013	3.854	:				
359	656.0 27.0	1271.0		167.0		3	0				05	08	15	0.018	67					
35	683.0 27.0	271.	66.	61.	44.	.33	•29	·			† ●	•	•	0.020	•				de entre de contra de la contra de la contra de contra de contra de contra de contra de contra de contra de co	
3	PC (PSIA) ALT (MU HG A)	(PSI	(PSI		TH2	(NI) 2001	DH2 (TRANSDUCER	01	9023	4005	9025	1600	Z500 73-	SA	· - 0	06:		

		i
		MIXTURE RATIO
4.3		URE
L06 4.3		MIXT
4		
SERIES		
R UN		30
J I		;
	_	GIMBAL PATTERN .
CASE		GIMBAL

5.00	OFF
MIXTURE RATIO	INTERSTAGE
30	632.0 PSIA
PATTERN 3C	Jd
GIMBAL PATTERN	NOM I NAL

REMARKS: INVESTIGATION OF BASE ENVIRONMENT WITH A SINGLE 7.5 DEG ACTUATOR FAILURE INROARD ON ENGINE NO 4. (RUNS 234 AND 234A LABLED THE SAME)

	A PS I A
23 621. 27. 1215. 1265. 161. 146. 0.38	1-SEC 3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-
23 680. 27. 27. 1215. 1265. 170. 155. 0.38	6.543 4.117 8.346 5.595 9.471 8.039 28.756 13.012 11.060 9.480 3.959 3.959 0.008
209 615.0 26.0 1215.0 1265.0 161.0 0.388	3.802 8.067 6.228 11.869 8.776 31.127 8.005 5.580 18.395 7.820 4.347 4.347 4.624
208 6111.0 25.0 1215.0 1265.0 132.0 0.388	0.000 5.162 7.592 5.979 12.630 8.999 31.031 7.541 4.737 15.722 8.389 4.262 4.696 4.561
207 610.0 27.0 1215.0 1265.0 163.0 0.388	0.000 1.957 6.040 10.558 8.921 7.170 7.843 7.843 7.843 6.037 0.037
206 626.0 22.0 1215.0 1265.0 160.0 143.0 0.388	0.000 4.170 7.017 5.795 9.995 7.612 19.899 6.441 4.139 16.830 7.077 7.077 7.077 6.830 7.077 6.830 7.077
α υ - · · · α	
UN NUMBE C (PSIA) LT (MU H O2 (PSIA H2 (PSIA O2 (F) H2 (F) H2 (IN) H2 (IN)	PO18 000018 00003 00009 00009 00013 00013 00023
- 161 ·	- SD73-SA-0061

RUN SERIES 4. LOG 4.3 CASE -----

MIXTURE RATIO ---INTERSTAGE ----NOMINAL PC ----- 632.0 PSIA GIMBAL PATTERN --- 3C

5.00

REMARKS: INVESTIGATION OF BASE ENVIRONMENT WITH A SINGLE 7.5 DEG ACTUATOR FAILURE INBOARD ON ENGINE NO 4. (RUNS 234 AND 234A LABLED THE SAME)

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

			•							IN PSIA				
234	621.0	27.0	1215.0	1265.0	161.0	146.0	0.388	0.355	R OUTPUT	-SEC. (P)	-	!!!!!!		1
234	0		0		170.0	155.0	0.388	0.355	TRANSDUCER OUTPUT	BTU/SQ-FT	0.033 0.052	-	1	1 1 1
209	615.0	26.0	1215.0	1265.0	161.0	143.0	0.388	0.355		NI (O)		† † † †	0.041	6.556
208	611.0	25.0	1215.0	1265.0	155.0	132.0	0.388	S			0.073	0.012	0.032	6.341
207	610.0	27.0	1215.0	1265.0	163.0	145.0	0.388	0.355			0.069	000.0	0.042	6.299
206	626.0	22.0	1215.0	1265.0	160.0	143.0	0.388	0.355			1	1 1	0.027	5.381
		A												
				12 (PSIA)					TRANSDUCER	10	0025	0030	9032	0052
æ ∩æ	ე ე	AL	PC	PH2	10	Ę	ម្ម	<u>ਨੂ</u>	- T					SI

7.7			
ر ا)		
•			
SHRIFS	!		
2)		
	-	-	
)		

5.00	OFF
011	!
44	632.0 PSIA
PATTERN	!

REMARKS: DUAL ACTUATOR FAILURE ON ENGINE NO 3 AT 7.5 DEG WITH 210 INCH HEAT SHIELD . NOTE THAT THIS DEFLECTION PATTERN DOES NOT GIVE MAXIMUM HEATING FOR DUAL 7.5 DEG FAIL.

NORMALIZED TEST DATA

							Z																			
						TOANCOLICED DILTOLIT	BTU/S0-FT-S																			
310 606.0 26.0		155.	34.	.33	• 29		_	0.001	0	0	7	~	8	5	6	2	-	6	4	0	0	0	0.183	0	0	1 1
30 %.	1345.0	43.	•	• 33	• 29			•			5.556	•	•	•	•	•	•	•	•	•		•	•		0.039	0.046
200	1345.0	œ.	\$	33	0.291			0	0	0	9	.2	6.	3	0		.5	4	4.	0	0	٦.	• 2	0	0.035	0
307 667.0 27.0	1345.0	63.	43.	.33	•29	-		0.001	00000	00000	3,354	3.155	2,227	3.155	2.445	2.208	3,174	1.516	1.488	0.007	0.085	0.108	0.144	1 1 1	0.024	
_	PO2 (PSIA) PH2 (PSIA)		~ 1	(N) 200	(NI) ZHO	E SUCONVOILS		P016	P017	810d	1000			800¢					9100	0021	0023	9054	9025	0600	0034	0035

PSIA

CASE ----- RUN SERIES 4, LOG 4.4

5.00 OFF MIXTURE RATIO ----4A 632.0 PSIA NOMINAL PC -----PATTERN ---GIMBAL

REMARKS: DUAL ACTUATOR FAILURE ON ENGINE NO 3 AT 7.5 DEG WITH 210 INCH HEAT SHIELD . NOTE THAT THIS DEFLECTION PATTERN DOES NOT GIVE MAXIMUM HEATING FOR DUAL 7.5 DEG FAIL.

NORMALIZED TEST DATA

									TRANSDUCER DUTPUT	BTU/SQ-FT-SEC, (P) IN PSIA				
310	0.909	26.0	1345.0	1335.0	155.0	134.0	0.335	0.291	L	8 NI (O)	0.091	0.088	0.058	,
309	579.0	27.0	1345.0	1335.0	143.0	126.0	0.335	0.291			0.091	0.092	0.131	
308	572.0	27.0	1345.0	1335.0	158.0	136.0	0.335	0.291			0.084	0.071	0.088	
307	0.199	27.0	1345.0	1335.0	163.0	143.0	0.335	0.291			0.033	0.034	0.129	
RUN NUMBER	PC (PSIA)	ALT (MU HG A)	POZ (PSIA)	PH2 (PSIA)	T02 (F)	1TH2 (F)	(NI) 2006	(NI) ZHQ4	TRANSDUCER	OI	9036	0037	0043	SI

⋖
۳.
Ŋ
4.
90
۲
•
4
S
ш
~
SER
S
Z
NO.
N O N
NOW RON
SER

5.50	OFF
MIXTURE RATIO 5.50	INTERSTAGE
2	715.0 PSIA
GIMBAL PATTERN	NOMINAL PC

REMARKS: INVESIGATION OF OUTBOARD ENGINE OUT WITH DEFLECTION CASE WHICH DOES NOT INCLUDE THRUST STRUCTURE COMPLIANCE. ALSO SEE LOG 4.5.18 FOR ADDITIONAL DATA. NON FLOWING NOZZLE AT POSITION NO 3.

									< OUTPUT																				
÷ 6	•	. 0	2.	6	2	36	29		TRANS	-FT-S	4.8	- 1	9	4.380	\sim	0	~	S	8	9	1 1 1	• 6	. 7	7.	.2	0	0.082	٦.	0.075
41		350.	32.	158.	3	.36	.29			BTU/SQ	1	,	1	6.	6	7.	3.790	8	0	1	1 1 1	1	0	0	• 2	0	0.081	-	0
44	0.000	350.	32.	60.	6	.36	. 29				.68	.85	5.720	• 04	1111	•	3.690	•	•	•	1	•	•		•	•	0.095	•	0.078
44	27.0	350.	32.	61.	0	.36	• 59				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		0.082	•	0.000
44	27.0	750.	0	0	•	38	33			-	.92	.81	.72	5.680	.63	96•	.33	•29	• 50	649	1	78	2.590	.10	•23	1 1 1 1	.07	0.134	•06
	(4																												
PUN NUMBER		18d) 2	18d) 2	2 (F	TH2 (F)	2 (1	(NI) 2HO	165	RANSOUCER	01	000	0005	6000	4000	000	000	0100	001	001	001	00	9100	2100	0023	0025	0031	0032	0044	0053

5.50 OFF INTERSTAGE -----MIXTURE RATIO 715.0 PSIA NOMINAL PC -----GIMBAL PATTERN ---

REMARKS: INVESIGATION OF DUTBOARD ENGINE OUT WITH DEFLECTION CASE WHICH DOES NOT INCLUDE THRUST STRUCTURE COMPLIANCE. ALSO SEE LOG 4.5.18 FOR ADDITIONAL DATA . NON FLOWING NOZZLE AT POSITION NO 3.

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

BTU/SQ-FT-SEC

1.790 0.320

1.760 0.330 0.115

0.240 1.900

0.310

1.820

1.590 0.300

Q054 Q055 **024T**

\$D73-SA-0061

	5.50
	10
9	RAT
t	MIXTURE RATIO
ون 1	XIW
+	
(<u>1 E</u>)	
Li O	
	2
]]	!
CASE TOTAL TOTAL TOTAL TENTES 4. LUG 4.5.1B	TERN
1000	GIMBAL PAT

	OES	T DOC
	WHICH D	A 717700
	CASE	CNT
OFF	GATION OF OUTBOARD FNGINE OUT WITH DEFLECTION CASE WHICH DOES	COMPLIANCE. ALSO SEE LOG 4.5.14 DATA. NON ELOWING NOTZLE AT DOC
; ; ;	I M I	A V
AGE -	IF OUT	4.5
INTERSTAGE	FNGIN	THE LOC
715.0 PSIA I	IF OUTBOARD	C USIV CHUI
715.0	TION 0	MPITAN
NOMINAL PC	-	
AL. PC	- S :	I STR
VINON	REMARKS:	THRUST
		INCLUDE THRUST STRUCTURE

NOT INCLUDE

522	25.	260.	45.	159.	53.	.36	59	R OUTPUT		•10	• 38	.80	. 74	• 00	1	.01	.02	.02	• 05	.13	11.	.12	00.	.01	.03	.01	2.110	1
521	27.	260.0	45.0	61.0	2.	.36	• 59	ANSDUCE	FT-SEC	4.360	4.	-	3	0	1 1 1	0	0	0.033	0	7	1 1	* * * *	† † †	.02	.02	.01		
520	27.	260.	45.	62.	ô	.36	• 29		TU/50-	0	.76	• 03	.60	1	1 1	• 02	.03	.02	• 04	.13	11.	.13	00.	• 02	.02	10.		.91
5		260.	45.	56.	ċ	• 36	• 29			. 20	• 38	5.690	. 62	1 1	1 1	.02	• 02	• 04	•06	.13	11.	.13	00•	.03	.02	.01	2.840	• 52
664	27.	295.	85.	56.	2.	.36	• 29			.82	• 65	• 76	.21	00.	• 00	0.031	• 04	• 03	• 05	• 13	• 10	. 13	00.	.02	.01	.01	4.	[]]
4 6	25.	95.	385.	60.	ċ	.36	• 29			.83	.02	.02	• 78	00.	.01	0.026	• 01	• 02	• 04	• 14	• 10	•15	- 1	03	.02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.020	
RUN NUMBER PC (PSIA)	T (MU H	2 (PSI	Z (PSIA	~	2	7)H2 (IN	TRANSDUCER	-	00	00	0	01	005	005	02	003	003	003	003	03	03	03	04	90	04	0052	1

RUN SERIES 4, LOG 4.5.18 CASE --

INTERSTAGE -----MIXTURE RATIO ----2 715.0 PSIA GIMBAL PATTERN ---NOMINAL PC

5.50

REMARKS: INVESTIGATION OF OUTBOARD ENGINE OUT WITH DEFLECTION CASE WHICH DOES THRUST STRUCTURE COMPLIANCE. ALSO SEE LOG 4.5.1A DATA. NON FLOWING NOZZLE AT POSI-

NOT INCLUDE TION NO 3.

NORMALIZED TEST DATA

	:	. :	
522 718.0	25.0 1260.0 1345.0 159.0	153.0 0.361 0.291	TRANSDUCER DUTPUT -FT-SEC
521	27.0 1260.0 1345.0 161.0	162.0 0.361 0.291	TRANSDUCER OUTPU BTU/SQ-FT-SEC
520	27.0 1260.0 1345.0 162.0	160.0 0.361 0.291	BTU/SQ
519	23.0 1260.0 1345.0 156.0	160.0 0.361 0.291	1 1 1 1
499	27.0 1295.0 1385.0 156.0	162.0 0.361 0.291	; 1 1 2
498	25.0 1295.0 1385.0 160.0	160.0 0.361 0.291	
RUN NUMBER PC (PSIA)	ALT (MU HG A) PO2 (PSIA) PH2 (PSIA) TO2 (F)	- TH2 (F) 891 D02 (IN) 80H2 (IN)	TRANSDUCER ID 0111

CASE ------ RUN SERIES 4, LOG 4.5.2A

5.50 ON MIXTURE RATIO ----INTERSTAGE -----715.0 PSIA GIMBAL PATTERN ---

REMARKS: OUTBOARD ENGINE OUT ENVIRONMENT WITH DEFLECTION CASES WHICH DO NOT INCLUDE THRUST STRUCTURE COMPLIANCE. SEE LOG 4.5.2B FOR ADDITIONAL DATA. NON-FLOWING NOZZLE AT POSITION NO. 3.

512	260.	45.	154.	60.	.36	. 29				. 18	.15	.52	4.480	.37	• 54	.39	• 75	66.	• 06	.76	.90	.68	.78	• 16	69.	.84	.86	.32
5111	260.	45.	164.	.09	• 36	• 29		ER OUTPUT		•68	.80	.80	5.350	.42	•62	• 06	.80	. 10	• 19	• 62	16.	• 66	• 48	.24	.21	.97	.92	.41
510	260.	45.	161.	58.	.36	.29		RANSDUC	-SEC		. 7	4.	9.	٠,	~	7.	Φ,	~~	. 7		. 7	3	• 6	.2	5	6	6.	.3
509 708.0	260.	45.	155.	55.	.36	•29			TU/SQ		• 73	.54	.86	.82	.92	• 56	.51	.89	.77	.83	.21	.41	.81	.24	.04	• 75	.89	• 34
508	60.	345.	58.	61.	.36	.29				•64	• 94	.61	4.300	.27	• 64	• 24	00.	16.	• 74	• 38	.83	.30	.93	.36	.71	.34	.80	• 43
507 675.0 27.0	50.	335.	160.	56.	.36	• 29				• 2	• 24	11.	4.630	44.	• 15	• 10	• 76	.43	. 12	.60	.26	.85	• 94	.23	. 55	1	.98	1
506 698.0	95.	385.	99	60.	•36	.29				.5	0	.3	4.630	0	1	۲.	•	0	• 6	•	.3	.3	7.	• 6	7.		φ	5
RUN NUMBER PC (PSIA) ALT (MU HG A)	02 (PSIA)	HZ (PSI	02 (F	H2 (F	02 (DH2 (I	16	OTRANS DUCER	_	1000	\circ	0	4000	0	00	œ	0	Ö	\circ	0	\circ	0	O	Ç	\circ	О	Ç	$^{\circ}$

CASE ------ RUN SERIES 4, LOG 4.5.2A

GIMBAL PATTERN --- 2 NOMINAL PC ----- 715.0 PSIA INTERSTAGE -----

5.50 ON REMARKS: OUTBOARD ENGINE OUT ENVIRONMENT WITH DEFLECTION CASES WHICH DO NOT INCLUDE THRUST STRUCTURE COMPLIANCE. SEE LOG 4.5.28 FOR ADDITIONAL DATA. NON-FLOWING NOZZLE AT POSITION NO. 3.

NORMALIZED TEST DATA

	506	ا ا	508		25	5	
TAIC.	698.0	Š	*	~	109.0	•	•
(MU HG A)	27.0	27.	~	2	20.	23.	27.
A	1295.0	50.	60.	9	0	60.	60.
(PSIA)	1385.0	35.	45.	45.	45.	4	45.
(F)	166.0	50.	58.	55.	-19	64.	54.
(F)	160.0	•	-	155.0	158.0	160.0	160.0
(ZI)	0.361	.36	.36	.36	.36	•	•36
(21)	0.291	.29	0.291	• 29	• '	. 29	• 29
TRANSDUCER					TRANSDUC	ER OUTPUT	J
ID				1	-FT-SEC		
4052	2	2.310	~	2.870		•	6
054	1.010	0.840	1.010	0		_	1.120
0110	1.330	4.	9	1		•	0
0111A		7	: 1 1	1.400		1.620	} <u>.</u>

CASE ------ RUN SERIES 4, LOG 4.5.28

5.50	ON
MIXTURE RATIO	INTERSTAGE
2	715.0 PSIA
GIMBAL PATTERN	NOMINAL PC

REMARKS: DUTBOARD ENGINE OUT ENVIRONMENT WITH DEFLECTION CASE WHICH DOES NOT INCLUDE THRUST SRUCTURE COMPLIANCE. SEE LOG 4.5.2A FOR ADDITIONAL DATA. INTERSTAGE GAGES 26-29 AT 29.2 DEGREES. NON-FLOWING NOZZLE IN POSITION NO 3.

51	6	~	26	45.	60.	9	.36	• 29	CD OHTBILL	c	• 05	.12	99	-	.87	1.400	.30	•00	•14	.40	• 50	• 26	•04	.23	.74	.08	0.381	1	
	0	8	260.	45.	156.	0	.36	•29	OF LOOK A	FT-SEC	0.0	٦.		٦.	4.	1.450	.2	-	7.	.39	4.	•	0		7 .	-	• 2	1 1 1	1
Ŋ	ċ	7	260.	45.	162.	·	.36	• 5 9		07.80	.009	.10	93	.15	1	1	.30	• 06	14.	.57	64.	• 15	2.170	.18	ω,	1 1 1	0.140	1 1	1.720
	.	÷	260.	45.	60.	0	. 36	• 29			10.	0.160	1 1	1 1 1 1	1 1 1	5	. 24	.07	S	.22	44.	• 48	1.240	.27	.98	.12	.27	† † †	1.590
Z.	æ	7	60.	245.	56.	•	.36	• 29			.01	11.	.74	.36	.58	1.400	.41	• 04	.23	.90	.40	.21	.11	.32	68.	.13	.22	~	1
51	2	8	9	245.	62.	• 9	• 36	• 29			.02		i	1 1 1	• 64	2.740	.32	.07	• 25	1	• 54	.21	.52	• 16	• 05	• 14	\mathbf{c}	• 54	[] ! !
		٩																											
NUMB	(PSIA		2 (PSI	2 (PSI	2 (F	2 (F	202 (1	DH2 (IN	71	10	02	02	02	02	005	00 5 8 7 0 5 8	005	003	003	003	003	03	03	03	04	04	04	12	12

REMARKS: OUTBOARD ENGINE OUT ENVIRONMENT WITH DEFLECTION CASE WHICH DOES NOT INCLUDE THRUST SRUCTURE COMPLIANCE. SEE LOG 4.5.2A FOR ADDITIONAL DATA. INTERSTAGE GAGES 26-29 AT 29.2 DEGREES. NON-FLOWING NOZZLE IN POSITION NO 3. 5.50 MIXTURE RATIO ----INTERSTAGE -----715.0 PSIA NOWINAL PC -----GIMBAL PATTERN ---

NORMALIZED TEST DATA

FRANSDUCER OUTPUT -FT-SEC 0.635 0.735	TRANSOUC BTU/SQ-FT-SEC 0.635	BTU/SQ	1 1 1	† - 	† 	TRANSDUCER 1D 0122
0.291	0.291	0.291	0.291	0.291	0.291	OH2 (IN)
0.361	0.361	0.361	0.361	0.361	0.361	(NI) 20017
156.0	160.0	160.0	160.0	160.0	156.0	TH2 (F)
160.0	156.0	162.0	160.0	156.0	162.0	T02 (F)
1245.0	1245.0	1245.0	1245.0	1245.0	1245.0	PH2 (PSIA)
1260.0	1260.0	1260.0	1260.0	1260.0	1260.0	P02 (PSIA)
22.0	28.0	27.0	24.0	27.0	28.0	ALT (MU HG A)
119.0	730.0	740.0	714.0	708.0	682.0	PC (PSIA)
518	517	916	515	514	513	RUN NUMBER
CONTINUED FROM PRECEDIT	NIINOED	03)				

RUN SERIES 5, LOG 5.1 5 GIMBAL PATTERN ---CASE -----

5.00 OFF MIXTURE RATIO ----632.0 PSIA NOMINAL PC -----

INVESTIGATION OF SINGLE ACTUATOR FAILURE EFFECTS. ACTUATOR FAILED AT REMARKS:

5 DEGREES INBOARD. NOTE CASES 216, 216A AND 218, 218A

NORMALIZED TEST DATA

233 627-0 23-0 1115-0 1165-0 152-0 129-0	66.00	6.864 7.217 10.685 9.878 2.641 4.223 9.314 6.280 4.425 4.647
218 615.0 23.0 1115.0 1165.0 156.0 0.388	0000	
218 607.0 23.0 1115.0 1165.0 156.0 143.0	000.	6.789 9.693 7.923 7.809 7.424 4.238 4.165
217 615.0 27.0 1115.0 1165.0 160.0 138.0		• • • • • • • • •
216 621.0 23.0 1115.0 1165.0 153.0 136.0	1N PS 000 000 325 854	• • • • • • • • • • • • • •
216 639-0 26-0 1190-0 1240-0 156-0 140-0	.555 OUTPU .002 .000 .000 .905	
215 639.0 25.0 1215.0 1265.0 160.0 0.388	NSDUC /SQ-F .000 .000 .000	8 34 46 170
214 626-0 21-0 1215-0 1265-0 162-0 145-0	100 000 000 000	7.007 10.328 8.067 3.806 5.290 6.926 2.887 5.310
213 632-0 25-0 1215-0 1265-0 163-0 145-0		1 0 - 1 4 - 1 0 0 1 1 0 0
212 623.0 24.0 1215.0 1265.0 156.0 135.0	000	6.087 9.384 8.318 3.094 5.437 5.843 2.465 6.843 7.4311
210 610.0 27.0 1215.0 1265.0 158.0 0.388	00011	6.071 6.071 4.372 4.486 6.952 4.952 6.959
RUN NUMBER PC (PSIA) ALT (MU HG A) PO2 (PSIA) PH2 (PSIA) TO2 (F) TH2 (F)	RANSDU RANSDU 1D PO16 PO17 PO18	E + 8 6 0 1 E + 5 9 L 8 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RUN SERIES 5, LOG 5.1 CASE ---

MIXTURE RATIO ----GIMBAL PATTERN --- 5 NOMINAL PC ----- 632.0 PSIA

5.00 OFF

PEMARKS: INVESTIGATION OF SINGLE ACTUATOR FAILURE EFFECTS. ACTUATOR FAILED AT 5 DEGREES INBOARD.
NOTE CASES 216, 2164 AND 218, 2184

NORMALIZED TEST DATA

	27.	23.	115.	65.	152.	29.	38	.33	٠.		0.046	1	0.089	1	1 1 1	0.036
7	Š	23.	15.	165.	56.	43.	.38	0.335			•04	0.049	• 06	.02	.03	• 03
21		23.	15.	165.	56.	43.	• 38	0.335			.03	0.041	•046	.02	•03	• 05
21	ŝ	27.	15.	165.	60.	38.	.38	0.335		V I	• 03	0.037	•04	.02	ŧ	0.028
7	21	23	2	165	53	36	6	0.335	J	N PS	0.027	0	0	0	0	•
21	6	26.	90.	240.	56.	• 0	.38	0.335	ER OUTPU	I-SEC, (0.027	•	•04	.01	.03	• 02
(4)	Un.	2	2	265	58	3	ניי	0.335	RANSDUC	150-F	0.044	0	.06	.02	• 0.	03
214	•	21.	15.	65.	62.	45.	8	.33		ZI O	0.046	01	0,0	0,0	03	0.3
	2.	25.	15.	265.	3.	45.	.38	(C)			0.038	0.013	0.062	0.069	0.029	0.040
21	'n	24.	15.	265.	56.	35.	8	. 3			•04	0.051	.07	.02	.04	• 03
210	•	27.	15.	265.	58.	38.	Ø	• 33			0.042	0.049	0.071	1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	0.031
RUN NUMBER	(PSIA)	I DW		(PSIA	Ŧ	_	(NI) 2007	_	TRANSDUCER	10	0023	400				9 6 0 0 5A-0061

2.5	
- 00	
5	
SERIES	
Z S Z	
CASE	

5.00	OFF
MIXTURE RATIO	INTERSTAGE
9	632.0 PSIA
GIMBAL PATTERN	NOMINAL PC

TO INVESTIGATE THE EFFECTS OF SINGLE ACTUATOR FAILURE INBOARD. ACTUATOR REMARKS: FAILED AT 3 DEGREES.

22	30.	1	115.	55.	158.	39.	.38	0.335				00.	00.	00000	.53	69.	1	1	•66	6	1		-	•63	.01	.43	.25	.07	2.949	• 01
22	68	20.	15.	165.	166.	46.	.38	0.335				900	00.	• 00	. 32	.77	.13	.77	.01	6.75	-	.20	.27	.79	.24	. 15	.82	.25	2.526	• 01
N	03.	27.	15.	165.	146.	32.	.38	0.335			ΥI	• 00	.00	00000	. 18	.71	0.32	8.99	.21	8.33	.56	1	1	.86	. 46	.90	• 39	00.	2.432	• 00
2	46.	18.	140	.06	160.	41.	.38	.33		-	z	.001	• 00	100.0	.25	.95	1	.60	.07	72	. 78	1		1	.01	.53	1	.98	3.111	.01
2	52.	24.	5	265.	158.	140.	.38	•33		R OUT	EC. (-	00.	00.	• 44	.83	!	.23	1	.88	1	•68	.20	.85	.23	.81	.35	• 00	2.976	• 01
22	35.	25.	1140.0	190.	155.	35.	.38	•33		RANSDUC	150-F	0.00	• 00	00000	•39	.51	• 90	•19	.54	.91	• 15	.80	.03	1	.02	.32	1	!	3.314	• 00
N	05.	23.	1140.0	190.	151.	31.	.38	•33				• 00	• 00	000.0	• 86	• 53	.31	.12	• 46	• 59	.51	.23	•62	İ	•67	3	1		3.865	• 00
2	20.	İ	40.	190.	1		• 38	6				00	• 00	0	• 56	.86	44.	• 75	• 62	1.00	.33	.71	61	!	. 18	• 29	1	-	1.825	04
N	0	28.	•	190.	40	26.	• 38					• 00	• 00	00000	• 86	• 76	.84	.77	• 12	• 26	.67	66.	61.	1	. 73	.52	1	1	1.407	• 01
21	36.	22.	5.	215.	55.	33.	• 38	0.335				1	1	0	• 55	27	69•	1	.32	• 55	• 19	• 78	8	1	•06	3	1	-	1.411	• 00
N NUMB	(PSIA	JW)	POZ (PSIA)	2 (PSI	2 (F)	2 (F)	2 (1	ZI	75	ANS	_	0	0	0	00	000	000	000	000	00	100	00	0	0	0	0	0	010	6100	02

RUN SERIES 5, 106 5.2 CASE -----

5.00 OFF MIXTURE RATIO ----632.0 PSIA NOMINAL PC -----GIMBAL PATTERN ---

TO INVESTIGATE THE EFFECTS OF SINGLE ACTUATOR FAILURE INBOARD. ACTUATOR REMARKS:

FAILED AT 3 DEGREES.

NORMALIZED TEST DATA

229	630.0	1	1115.0	1165.0	158.0	139.0	0.388	0.335			0.057		0.128	!	1 1	0.042
228	668.0	20.0	1115.0	1165.0	166.0	146.0	0.388	0.335			0.054	1	0.114	1	!	0.044
226	603.0	27.0	1115.0	1165.0	146.0	132.0	0.388	0.335		۱A	0.050	1	0.000		1	0.036
225	0.949	18.0	1140.0	1190.0	160.0	141.0	0.388	0.335		VISO NI (d)	0.055	-	0.104			0.033
224	652.0	24.0	1215.0	1265.0	158.0	140.0	0.388	0.335	R OUTPUT		0	1 1 1	0.125	1		0.049
223	635.0	25.0	1140.0	1190.0	155.0	135.0	0.388	0.335	TRANSDUCER OUTPUT	BTU/SQ-FT-SEC,	0.035	0.046	0.010	1 1 1	1 1	0.031
222	605.0	23.0	1140.0	1190.0	151.0	131.0	0.388	0.335	r			0.044	0.055	0.020	0.044	0.030
221	620.0		1140.0	1190.0	1 1 1	1 1	0.388	0.335			0.082	0.093	0.130	0.027	0.039	0.040
220	0.029	~	7	σ	4	126.0	•	•			0.044	0.062	0.088	0.059	0.038	0.040
516	636.0	22.0	1165.0	1215.0	155.0	133.0	0.388	0.335			0.013	0.062	960.0	0.034	1 1 1	0.037
RUN NUMBER	(AISIA)	2 .	٥	PH2 (PSIA)	<u>.</u>	LTH2 (F)	(NI) 2005	DH2 (IN)	TRANSDUCER	01	9023	9024				9600
					_	1	, 0	_					5	/ע	J-	SA-

RUN SERIES 6, LOG 6.1 CASE -----

MIXTURE RATIO ---INTERSTAGE -----GIMBAL PATTERN --- 4A NOMINAL PC ----- 632.0 PSIA

5.00 OFF

REMARKS: INSTRUMENTED FLOWING NOZZLE INSTALLED WITH QNZ OPPOSITE ENGINE NO 3 TO EVALUATE HEATING OF NOZZLE LIP WITH DUAL 7.5 DEG ACTUATOR FAILURE

	t	57.	27.	.060	40.	163.	45.	• 38	0.335			96	. 14	4.26	• 75	.46	3.915	• 29	.50	• 74	• 54	.47	.00	.03	.03	• 04	.01	• 03	.03	• 05
	4	46.	27.	115.	65.	168.	50.	• 38	0.335			1 1	•26	4.60	• 78	• 25	3.708	.23	• 45	• 06	• 54	• 29	.00	• 04	• 04	.08	.01	• 03	• 05	• 06
	4	40.	27.	115.	65.	166.	45.	.38	0.335				.12	4.42	• 05	• 07	4.217	• 18	• 80	• 15	• 46	• 48	.01	• 04	•04	• 08	.01	• 03	• 04	• 06
4	4	56.	27.	115.	65.	171.	46.	.38	0.335	J	-	. 28	.62	.41	o	. 78	4.258	• 59	.38	.83	• 52	• 53	.01	• 03	• 03	• 05	.01	• 02	• 04	• 05
י כיו ריי	4	55.	27.	15.	65.	63.	43.	0.388	• 33	č	FT-SEC	3.58	5.38	4.50	1	1	3.975	.81	• 19	• 06	• 46	• 29	• 01	• 03	• 04	• 02	• 01	• 03	• 04	• 04
7174 400	4	55.	25.	115.	65.	161.	42.	0.388	• 33	PANCELL	BTU/SQ-	4.77	2.91	3.80	• 12	1	.52	• 63	•27	• 24	• 46	• 41	1	• 03	• 04	• 06	• 01	• 03	• 04	• 06
	3	45.	26.	15.	165.	173.	50.		• 33			.01	. 77	• 19	• 17	1	3,527	• 72	• 74	• 00	• 45	.82	00.	• 04	• 05	• 07	• 01	• 03	• 04	• 06
	23	3.	7.	15.	165.	73.	50.		•			1	57.499	1	1	1	4.177	16.	96•	• 62	• 51	• 38	• 01	• 04	• 03	• 07	• 01	1	• 03	• 04
	(1)	642.0	10.	•	165.	1 1 1	1 1 1	0.388	• 33		:	ì	• 55	• 68	• 46	• 35	3,633	• 29	• 56	• 14	• 55	• 25	• 01	• 03	• 05	• 0 9	• 01	• 03	• 05	i
•	~	ô	27.	15.	265.	54.	41.	0.388	• 33		*	1	65.181	.47	1 1 1	1	3, 754	1		.83	1		1	• 03	• 03	• 05	1	• 06	• 03	
	UN NUMB	C (PSI	LT (MU	02 (PSIA	H2 (PSI	02 (F	H2 (F	(NI) ZOO	H2 (1	TRANSDU	01	00	00	00	00	000		001	001	001	001	001	02	02	02	02	03	03	03	03

CASE ----- RUN SERIES 6, LGG 6.1

5.00 OFF MIXTURE RATIO ----632.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

INSTRUMENTED FLOWING NOZZIE INSTALLED WITH QNZ OPPOSITE ENGINE NO 3 TO EVALUATE HEATING OF NOZZLE LIP WITH DUAL 7.5 DEG ACTUATOR FAILURE REMARKS:

NORMALIZED TEST DATA

245	657.0	27.0	1090.0	1140.0	163.0	145.0	0.388	0.335	0.010
244	646.0	27.0	1115.0	1165.0	168.0	150.0	0.388	0.335	0.015 0.013
243	640.0	27.0	1115.0	1165.0	166.0	145.0	0.388	0.335	0.015
2.42	656.0	27.0	1115.0	1165.0	171.0	146.0	0.388	0.335	0.014
241	655.0	27.0	1115.0	1165.0	163.0	143.0	0.388	0.335	TRANSDUCER OUTPUT BTU/SQ-FT-SEC 0.013 0.014
240	655.0	25.0	1115.0	1165.0	161.0	142.0	0.388	0.335	TRANSDUCI BTU/SQ-I O.013
533	645.0	26.0	1115.0	1165.0	173.0	150.0	0.388	0,335	000 •0
238	643.0	27.0	11115.0	1165.0	173.0	150.0	0.388	0.335	
236	642.0	10.0	1115.0	1165.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.338	0.335	0.026
235	670.0	27.0	1215.0	1265.0	154.0	141.0	0.388	0.335	
RUN NUMBER	PC (PSIA)	ALT (MU HG A)	PDZ [PSIA]	PH2 (PSIA)	T02 (F)	*	(NI) 200 17	- ;	TRANSDUCER ID 0043

	5.00	OFF
T06 6.2	NO DEFLECTION MIXTURE RATIO	INTERSTAGE
KUN SEKIES 6.	NO DEFLECTION	632.0 PSIA INTERS
CASE KUN SEKIES 6+ LUG 6.2	RN	NOMINAL PC

REMARKS: INSTRUMENTED FLOWING NOZZLE INSTALLED WITH QN2 OPPOSITE ENGINE 3 TO EVALUATE HEATING OF THE NOZZLE LIP WITH NO ENGINE DEFLECTIONS. LIP GAGES INSTALLED IN POSN 5.

										<u>-</u>	T-SEC																			
)	5		-	.050	35.	•	45.	.38	.33	ER O	BTU/	2.130	1.552	1.988	2.617	4.504	2.293	2.100	2.252	3.804	1.085	1.014	0.012	0.047	0.060	0.110	0.022	0.060	0.059	0.066
	3	ဆ	~	.060	35.	•	46.	.38	~	ANSDUC	ZI (.30	.53	.25	• 06	• 06	2.669		.50	.12	• 16	• 07	.01	• 05	• 06	œ	• 02	• 04	• 05	• 08
	S	6	-	.060	35.	170.	50.	.38				.38	.34	.87	• 05	.91	1.987	1	41	65	22	93	0	05	90	0.124	02	04	05	08
•	4		7	115.	65.	•	50.	.38	0.335			_	• 48	• 59	44.	.07	1.573	.63	.61	44.	.20	10	.01	• 06	.07	.15	• 02	• 05	•06	.08
	4	2	-	230.	87.	•	46.	• 36	.32			1.909	-	• 38	• 17	• 26	1.967	.70	• 39	• 38	• 24	.97	•01	• 05	• 05	• 0 9	.01	• 03	• 05	• 08
	4	∞	27.	215.	15.	172.	52.	• 36	.32			.15	•29	.11	.87	.12	2.063	0 † •	• 18	• 05	•04	• 15	00.	• 05	• 06	.12	.02	• 04	• 06	.07
			(A			•																								
	N NUMB	(PSIA	T (MU	2 (P	2 (PSI	2 (F	2 (F	2 (1	2 (1	ď	2	100N	N002	0005	0003	0004	0008	0010	0013	0015	0016	0019	.0052	0023	0024	9025	9034	0035	0036	0037
	∝	٥	<	α.	Q.	-	-	<u>۵</u>	<u>-</u>	9	-						SI	73	3-5	SA-	-00	61	.							

CASE ------ RUN SERIES 6, LNG 6.2

5.00 nFF NO DEFLECTION MIXTURE RATIO ----INTERSTAGE -----632.0 PSIA GIMBAL PATTERN ---NOMINAL REMARKS: INSTRUMENTED FLOWING NOZZLE INSTALLED WITH ONZ OPPOSITE ENGINE 3 TO EVALUATE HEATING OF THE NOZZLE LIP WITH NO ENGINE DEFLECTIONS. LIP GAGES INSTALLED IN POSN

NORMALIZED TEST DATA

A CARTE MANAGEMENT OF THE THE PARTY OF THE P

				00)	INTINUED	(CONTINUED FROM PRECEDING PAGE	(E)
RUN NUMBER	246	247	546	250	251		
PC (PSIA)	628.0	662.0	651.0	633.0	618.0	623.0	
ALT (MU HG A)	27.0	27.0	27.0	27.0	27.0	27.0	
POZ (PSIA)	1215.0	1230.0	11175.0	1090.0	1090.0	1090.0	
PH2 (PSIA)	1215.0	1287.0	1165.0	1135.0	1135.0	1135.0	
, TO2 (F)	172.0	170.0	171.0	170.0	168.0	169.0	
TH2 (F)	152.0	146.0	150.0	150.0	146.0	145.0	
8002 (IN)	0.361	0.361	0.388	0.388	0.388	0.388	
DH2 (IN)	0.326	0.326	0.335	0.335	0.335	0.335	: :
TRANSDUCER ID					TRANSDUC (0) IN	TRANSDUCER OUTPUT	
0043		0.014 0.011	0.015	0.011	0.013	0.014	

, LOG 7.1	
RUN SERIES 7	
CASE	

5.00	OFF
MIXTURE RATIO	INTERSTAGE
NO DEFLECTION	632.0 PSIA
1	Jd
GIMBAL PATTERN	NOWINAL

REMARKS: TESTS TO DETERMINE THRUST STRUCTURE HEATING WITH A LARGE HEAT SHIELD INTENDED TO SIMULATE A HEAT SHIELD FROM THE 6 ENGINE S-IV CONFIGURATION. ALTHOUGH 0.338 WAS LISTED ON ALL DATA SHEETS, THE DIAM. USED WAS PROB. 0.388 AS LISTED IN RUNS 175-183, LOG 8.1

174 620.0	• •		0.338 0.335	∞ +-	1.96	• •	.60	• 15	16.	•32	• 36	• 30	.21	• 56	• 03	.80	• 74	.02	• 04	• 08	.02	• 05
	• •		0.338 0.335		1.58	63	• 42	.12	• 03	• 41	697	• 41	• 74	• 16	• 06	.87	.50	.02	• 03	.08	.01	2
	• •	63. 45.	•33 •33	:	ش (21	.89	• 76	• 85	• 52	• 18	•37	• 79	• 05	• 25	16.	649	• 03	• 04	60.	. 02	
		6:0• 4:3•	• 33		.20	3. (36 4.405	. 93	• 35	• 86	• 56	• 18	• 43	• 34	• 34	. 71	.60	44.	ı		• 03	01	• 02
		60. 42.	•33		• 10	3.847	• 79	• 02	• 19	• 35	• 46	44.	• 56	• 36	.80	• 96	• 10	.02	• 04	• 08	.01	• 02
1 54 24	• •	66. 24.	• 33			5,180	.70	• 94	1	•00	• 56	• 65	• 43	• 20	I	1	• 54	• 02	•03	0.056	00.	• 01
MBE IA) UH	02 (PSI H2 (PSI	U2 (F) H2 (F)	002 (I DH2 (I	TRANSDUCER TRANSDUCER TO	0	0007	0	00	00	0	00	00	00	90	0	0	0	0	0	0	0	0

0		
5.0	JFF	
MIXTURE RATIO	INTERSTAGE	
NO DEFLECTION	632.0 PSIA	
PATTERN	NOWINAL PC	
GIMBAL	JANI MON	

INTENDED TO SIMULATE A HEAT SHIELD FROM THE 6 ENGINE S-IV CONFIGURATION. ALTHOUGH 0.338 WAS LISTED ON ALL DATA SHEETS, THE DIAM. USED WAS PROB. 0.388 AS LISTED IN RUNS 175-183, LOG 8.1 REMARKS: TESTS TO DETERMINE THRUST STRUCTURE HEATING WITH A LAKUE HEAL SMIELD SIMULATE A HEAT SHIELD FROM THE 6 ENGINE S-IV CONFIGURATION. ALTHOUGH 0.338 WAS

NORMALIZED TEST DATA

*				1
	30.0 1215.0 1265.0		0.335	
173	25.0 1215.0 1265.0	0.338	0.335	TRANSDUC BTU/SQ- 2.037
172 593.0	26.0 1215.0 1265.0	163.0 145.0 0.338	0.335	# # # # :
171 614.0	23.0 1215.0 1265.0	160.0 143.0 0.338	0.335	2.532
170	26.0 1215.0 1265.0	160.0 142.0 0.338	0.335	1,533
169	1215.0 1265.0	166.0 124.0 0.338	0.335	!
RUN NUMBER PC (PSIA)	ALT (MU HG A POZ (PSIA) PHZ (PSIA)	TO2 (F) - TH2 (F) - TH2 (F)	CDH2 (IN)	KANSDUCER 10 0052

CASE ----- RUN SERIES 8, LOG 8.1 AND 8.2

5.00	OFF
N NO DEFLECTION MIXTURE RATIO	INTERSTAGE
NO DEFLECTION	632.0 PSIA
PATTER	NOMINAL PC

8.2 REMARKS: NOZZLE EXIT PLANE BASE PRESSURE USING PROBES PARALLEL TO (SERIES RNS 179-183) AND NORMAL TO (SERIES 8.1 RUNS 175-178) THE NOZZLE CENTERLINE. PROBE MOUNTED BETWEEN ENGINES 2.3 AND 5.

	25.	190.	40.	160.	41.	.38	(1)			0.09	00000	00.00	0.86	1.03	4.78	3.94	1.69	2.76	2.40	2.26	2.79	2.90	1.06	1.89	0.01	0.04	0.08	0.01
182 633.0	27.	190.	40.	156.	41.	.38	3		1 4		00	00.	• 59	.32	.30	.32	647	.80	• 16	.67	•39	• 0 •	.91	44.	.01	•04	.07	• 01
	1	190.	40.	163.	40.	.38	~		Z	0.110	00	• 00	.10	• 00	.62	.72	• 08	٠ 4	• 66	.57	. 55	.17	.01	.37	.01	• 05	• 08	•01
180 622.0	16.	190.	40	165.	48	.38	$\boldsymbol{\alpha}$	٥		0.098	Ö	• 00	.84	.87	. 21	.71	• 06	• 86	• 38	• 38	.85	.82	. 91	.21	00.	• 02	• 06	• 01
	24.	90.	240.	160.	143.	.38	3		05/	0.088	• 00	• 00	.70	.47	• 17	. 52	66.	• 54	• 07	.23	• 13	66.	.20	.12	• 01	• 04	60.	• 01
	23.	•06	240.	160.	43.	.38	.33		_	0.063	• 00	• 00	• 08	• 42	•37	• 16	• 66	• 50	• 74	• 52	• 46	.18	1	• 75	.01	• 04	• 10	1
	26.	15.	265.	65.	•65	.38	3		;	• 05	0.000	• 00	• 74	.97	.25	• 86	.86	.91	.70	• 48	. 12	• 94	•00	.46	.01	• 04	1.	• 01
176	•	ς,	265.	65.	•	38	33			90	0.001	00	08	66.	• 09	. 24	92	• 10	• 62	• 16	• 62	.19	.93	62	01	04	10	10
175	25.	15.	265.	63.	• 0	.38	33			0.064	00	• 00	• 43	•03	. 25	• 30	.81	.72	• 75	• 41	• 41	06.	• 29	.28	• 01	• 05	•14	• 02
z o z	LT (MU	02 (PSI	H2 (PSI	02 (F	H2 (F	02 (IN	H2 (I	183	QI	P SPECIA	P017	\mathbf{c}	\mathbf{c}	\mathbf{c}	8	S	00	õ	00	Ö	00	Ö	0	O	Ö	00	00	0

5.00 MIXTURE RATIO ----INTERSTAGE -----GIMBAL PATTERN --- NO DEFLECTION 632.0 PSIA NOMINAL PC

8.2 NOZZLE EXIT PLANE BASE PRESSURE USING PROBES PARALLEL TO (SERIES RNS 175-178) AND NORMAL TO (SERIES 8.1 RUNS 179-183) THE NOZZLE CENTERLINE. PROBE MOUNTED BETWEEN ENGINES 2,3 AND 5. REMARKS:

NORMALIZED TEST DATA

183	611.0	25.0	1190.0	1240.0	160.0	141.0	0.388	0.335	1	0.022	0.041
182	633.0	27.0	1190.0	1240.0	156.0	141.0	0.388	0.335	V 1	0.022	0.042
181	1 1 1 2	1 1 1	1190.0	1240.0	163.0	140.0	0.388	0.335	UT (P) IN PSIA	0.026	0.052
180	622.0	16.0	1190.0	1240.0	165.0	148.0	0.388	0.335	; a.	0.021	0.051
179	634.0	24.0	0.0611	1240.0	160.0	143.0	0.388	0.335	TRANSDUCER OUTPUT BTU/SO-FT-SFC, (P	0.030	0.056
178	623.0	23.0	0.0611	1240.0	160.0	143.0	0.388	0.335	Z	0.027	0.055
177	650.0	26.0	1215.0	1265.0	165.0	149.0	0.388	0.335		0.028	0.052
176	639.0	24.0	1215.0	1265.0	165.0	146.0	0.388	_		•	0.057
175	643.0	25.0	1215.0	1265.0	163.0	140.0	0.388	0.335		0.054	0.046
RUN NUMBER	PC (PSIA)	ALT (MU HG A)	POZ (PSTA)	PH2 (PSIA)	T02 (F)	1 TH2 (F)	(NI) 20018		TRANSDUCER ID	0034	0035

CASE ------ RUN SERIES 9, LOG 9.1.1

1

00	- OFF	
5.00	O.	
GIMBAL PATTERN NO DEFLECTION MIXTURE RATIO	į	
NO DEFLECTION	632.0 PSIA	
GIMBAL PATTERN	NOMINAL PC 632.0 PSIA	The second secon
		ŧ

REMOVED FROM TURBINE EXHAUST MANIFOLD AND INJECTICN HOLES, SO THAT THE INITIAL VACUUM IN THIS VOLUME WOULD TEND TO REMOVE A PORTION OF THE NÖZZLE BOUNDARY LAYER

330 637.0 24.0 1140.0 1185.0	4 • • w w w • & w	000		2.322 0.734 2.302 0.012 0.055 0.072
329 615.0 27.0 1140.0 1185.0	137. 0.38 0.33 A	000		2.333 0.863 2.220 0.010 0.100 0.155
328 611.0 23.0 1140.0 1185.0	150. 0.38 0.33	0000	0 1 4 4 6 9 9 1 1 4 6 9 9 1 1 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1	2.358 0.569 2.420 0.004 0.051 0.068
327 620.0 26.0 1140.0 1185.0	137. 0.38. 0.33 R OUT	000000000000000000000000000000000000000	7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.548 1.030 1.774 0.010 0.055 0.082
315 614.0 23.0 1090.0 1135.0	137. 0.38 0.33 RANSD TU/SQ	90000	50 1 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.276 1.945 0.016 0.066 0.095
314 575.0 24.0 1375.0 1345.0	32. •33 •29	00 00 00 31 67		1.022 1.847 0.020 0.075 0.255
313 606.0 27.0 1375.0 1345.0		00 00 76 78	0.0000 0.0000 0.0000 0.0000	0.928 1.742 0.013 0.056 0.081 0.147
312 593.0 25.0 1345.0 1335.0	20 30 40 40 40 40 40 40 40 40 40 40 40 40 40	0000		1.972 2.076 1.524 0.011 0.054 0.079
294.0 25.0 1345.0 1586.0	33	000000000000000000000000000000000000000	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.373 0.968 2.213 0.014 0.062 0.076
(A	:			
(PSIA) T (MU HG C (PSIA) C (PSIA) C (PSIA)	2 (T 2 (T 2 (T 2 (T 1 TD		000000000000000000000000000000000000000	9016 9017 9019 9022 9023 9024
PC ALT PO2	IOI «;	Ş	D73-SA-0061	

CASE ----- RUN SERIES 9, LOG 9.1.1

5.00 OFF MIXTURE RATIO ----INTERSTAGE -----NO DEFLECTION 632.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

EXHAUST MANIFOLD AND INJECTION HOLES, SO THAT THE INITIAL VACUUM IN THIS INVESTIGATION OF POSSIBLE BGUNDARY LAYER EFFECTS. FILLER MATERIAL REMOVED FROM TURBINE EXHAUST MANIFOLD AND INJECTION HOLES, SO THAT VOLUME WOULD TEND TO REMOVE A PORTION OF THE NOZZLE BOUNDARY LAYER REMARKS:

•				00)	NTINUED	(CONTINUED FROM PRECEDING PAGE)	CEDING P	AGE)		
RUN NUMBER	311	_	313	314	315	327	328	329	330	:
PC (PSIA)	•		606.0	575.0	614.0	620.0	611.0	615.0	637.0	
	25.0	25.0	27.0	24.0	23.0	26.0	23.0		24.0	
POZ (PSIA)	1345.0		1375.0	1375.0	1.090.0	1140.0	1140.0		1140.0	<u>.</u>
PH2 (PSIA)	1335.0	•	1345.0	1345.0	1135.0	1185.0	1185.0		1185.0	
T02 (F)	158.0		153.0	145.0	153.0	153.0	163.0		160.0	
' TH2 (F)	143.0	•	136.0	132.0	137.0	137.0	150.0	137.0	143.0	
(NI) 70018	0.335	111	0.335	0.335	0.388	0.388	0.388		0.388	
90H2 (IN)	0.291	U,	0.291	0.291	0.335	0.335	0.335	0.335	0.335	:
TRANSDUCER					TRANSDUCER	ER OUTPUT	-			:
01				NI (0)	BTU/SQ-F	T-SEC, ((P) IN PSIA	IA		
0600	600.0	111111	0.008	0.012	0.010 0.004	0.004	0.007	0.003	900.0	;
0034	0.034	0.025	0.024	0.027	0.026	0.023	0.024	0.016	0.025	
0035	0.060		0.067	0.070	0.063	1 1	 		1 1 1 1	
		The Artists or the Market or the Park		Andrew Company of the Company of the Company	Appropriate the second contract of the second	Andrew Company and the second				;

	•
LOG 9.1.2	*****
6	1
SER IES	1
-	•
SE	•
χ Σ	:
_	,
ı	
1	1
	•
	:
1-	
•	:
W.	
CASE	
ت	

5.00	OFF
(E RATIO	TAGE
ION MIXTUR	INTERST
NO DEFLECTION MIXTURE R	632.0 PSIA
GIMBAL PATTERN	NOMINAL PC

INVESTIGATION OF POSSIBLE BOUNDARY LAYER EFFECTS. FILLER MATERIAL EXHAUST MANIFOLD AND INJECTION HOLES, SO THAT THE INITIAL VACUUM IN THIS REMOVE A PORTION OF THE NOZZLE BOUNDARY LAYER REMOVED FROM TURBINE REMARKS: VOLUME WOULD TEND TO

	170. 170. 150. 0.38		.02	02	020	• 15 • 66 • 85	.14 .71 .87	1.690 0.011 0.096
	162. 162. 142. 0.33	. · · · · · · · · · · · · · · · · · · ·	0.02	02	020	.15 .07 .54	0 0 0 0 0 0 0	1.142 0.000 0.075
322 642.0 26.0 1140.0	153. 153. 136. 0.38	NI.	.01	020	02	• 15 • 19 • 89	.96 .40 .66	1.772 0.000 0.013 0.024
	178. 155. 0.38	R OUT	0.02	02	02	. 81 . 15	.25	1.753 0.000 0.014 0.029
320 642.0 29.0 1185.0	155 155 138 0.38	RANSD TU/SQ	020	02	02	. 78	. 12 02 80 09	0.005
	156. 156. 140. 0.38	1.	.02	01	• 02	.01 .24 .78	. 22 . 77 . 98 . 10	1.012 0.036 0.020 0.040
	162 162 0 38	; (0.03	.02	. 02	. 79 . 90 . 28	03	1.937 0.009 0.038 0.047
	163. 143. 0.38		1	† † † 4 † † † †		.45 .34 .41	6.00	1.896 0.013 0.042 0.071
	10000000000000000000000000000000000000	: 6	0.037	• 02	03	.38	. 59 . 83 . 37	1.482 0.008 0.029 0.039
(A)		:						
(PSIA) (MU HG	E S S S S S S S S S S S S S S S S S S S	SOS		600	000	000	010	0019 0030 0031 0032
	T02 TH2 002	¥ 187 -			\$D73-S	A-0061		•

CASE ----- RUN SERIES 9, LOG 9.1.2

5.00 NO DEFLECTION MIXTURE RATIO ---INTERSTAGE -----632.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

REMONED FROM TURBINE EXHAUST MANIFOLD AND INJECTION HOLES, SO THAT THE INITIAL VACUUM IN THIS VOLUME WOULD TEND TO REMOVE A PORTION OF THE NOZZLE BOUNDARY LAYER

NORMALIZED TEST DATA

	•		:	# # # # # # # # # # # # # # # # # # #	;		:		
KUN NUMBER	316	317	318	319	320	321	322	323	324
PC (PSIA)	597.0	620.0	620.0			620.0	642.0	631.0	0.909
ALT (MU HG A)	26.0	25.0	26.0	27.0	29.0	27.0	26.0	26.0	26.0
PO2 (PSTA)	1090.0	1140.0	1140.0		;	1140.0	1140.0	1140.0	1140.0
PH2 (PSIA)	1135.0	1185.0	1135.0			1185.0	1185.0	1185.0	1185.0
, TO2 (F)	149.0	163.0	162.0			178.0	153.0	162.0	170.0
LTH2 (F)	133.0	143.0	143.0	140.0	138.0	155.0	136.0	142.0	150.0
88D02 (IN)	0.388	0.388	0.388		0.388	0.38R	0.388	0.388	0.388
DH2 (IN)	0.335	0.335	0.335		0,335	0.335	0.335	0.335	0.335
TRANSDUCER			į		TRANSDUCER DUT	ER OUTPUT	1	** *** . ** . *** * *** *** *** *** ***	Andreas de la companio e del la companio e del l
01				N (0)	BTU/SQ-F	T-SEC, (AISO NI (9)	ΙA	
0036	0.078	1	0.070	0.057	0.046 0.049	0.049	0.044	0.039	0.035
4037	0.092	1 1 1	0.091	0.083	0.076	0.054	0.071	0.063	0.047

-
•
Ä
_
S
90
_
•
-
_
SERIES
ш
-
ď
u
S
Z
\Rightarrow
R UN
1
i
Ţ
•
111
!
ŀ
1
1
1
1 1 1 -
1 -
t
W
S
_
ASE

5.00	OFF
MIXTURE RATIO	INTERSTAGE
5 A	632.0 PSIA
GIMBAL PATTERN	NOMINAL PC

SIMULATION OF A 5 DEGREE ACTUATOR FAILURE OUTBOARD ON ENGINE NUMBER 3 REMARKS:

43. 27. 15.	162.0 145.0 0.388 0.335	R OUT 2.28 3.12 3.12 6.76 9.31	0.021 0.115 0.0231 0.055 0.067 0.016 0.016	.02 .11
407 20.0 25.0	165.0 147.0 0.388 0.335	TRANSDUCE BTU/SQ=F 2.170 2.980 6.640 6.430 1.960	0.039 0.039 0.015 0.023 0.032 0.032 0.032	
40 26. 25. 15.	1510.0 157.0 140.0 0.388 0.335	94 94 97 93	0.014 0.108 0.228 0.026 0.050 0.053 0.034 0.062	02
40 42. 26. 15.	150.0 135.0 0.388 0.335	78 70 71 71 75	0.023 0.013 0.033 0.033 0.050 0.020 0.035 0.035	02 10 02
40 48. 27.	155.0 138.0 0.338		0.017 0.089 0.191 0.017 0.048 0.056 0.011 0.051	03
940	163.0 143.0 0.388 0.335		0.021 0.097 0.198 0.026 0.046 0.062 0.016 0.012 0.061	.05
UN NU C (PS ET (M	TO2 (F) TH2 (F) DO2 (IN) DH2 (IN)	SD 1000000000000000000000000000000000000	2002 2003 2003 2003 2003 2003 2003 2003	040

	!
11.1	
11 907	**** ****
11,	
SERIES 11,	:
RUN	
1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CASE	:

2.00	OFF
MIXTURE RATIO	INTERSTAGE
5A	632.0 PSIA
GIMBAL PATTERN	NOMINAL PC

SIMULATION OF A 5 DEGREE ACTUATOR FAILURE OUTBOARD ON ENGINE NUMBER REMARKS:

NORMALIZED TEST DATA

•			
	i	a construction of the cons	-
402	1215.0	145.0	TRANSDUCER OUTPUT
643.0	1210.0	0.388	BTU/SQ-FT-SEC
27.0	162.0	0.335	1.120 0.762
407	1215.0	147.0	TRANSDUCER OUT
620.0	1210.0	0.388	BTU/SQ-FT-SEC
25.0	165.0	0.335	1.120 0.76
406	1215.0	140.0	0.701 0.804
626.0	1210.0	0.388	
25.0	157.0	0.335	
405	1215.0	135.0	0.701
642.0	1210.0	0.388	
26.0	150.0	0.335	
404	1215.0	138.0	0.0 0.718
648.0	1210.0	0.388	
27.0	155.0	0.335	
403	1215.0	143.0	1.400
638.0	1210.0	0.388	
27.0	163.0	0.335	
RUN NUMBER PC (PSIA) ALT (MU HG A)	PDZ [PSIA] PH2 (PSIA) TO2 (F)	LD02 (IN) 60H2 (IN)	TRANSDUCER ID Q046

		V ENGINE NUMBER 3,											:																	
	TIO 5.00	FAILURE OUTROARD ON	D TEST DATA	413	613.0	1 5	1210.0		# 1 	6	3	Ē	i iii	.93	.52	6.150	• 25	1	.01	. 11	• 23		1)	3		œ	• 10	2	
L06 11.2	IXTURE RA NTERSTAGE	ACTUATOR !	NORMAL 12FC	412		15.0	210.0	166.0	68.	• 38	.33	ANSDUCE	B TU/SO-F	2.04	.43	.54	60	90	.01	60.	.22	0.015			.01	0.039	• 05	• 07	. 01	
IES 11,	N A IS	DEGREE	100 m 100 m	41	622.0	215.	10.	158.	54.	• 38	• 33			.10	• 59	66.	00.	. 11	• OI	•10	• 23	0.025	90	. 02	• 02	• 06	• 06	• 07	.03	
RUN SER	5A 632.0 P	N OF A 5		$\overline{}$	642.0	215.	10.	165.	62.	• 38	• 33			• 42	• 56	œ	. 26	. 71	.01	• 10	• 22	\$ 10°0	0.5	0.	.03	.07	.08	.10	.02	
	ERN	SIMULATIO IMULATED	. ;	40	656.0	715.	10.	161	64.	• 38	• 33			. 84	. 87	• 93	• 34	• 76	01	• 08	• 20	\$10.0 0.0	0.5	.01	• 03	• 04	.07	• 08	• 02	
щ 	GIMBAL PATTE	S ::		40	633.0	215.	10.	•	44.	38	• 33	-		.38	.87	• 21	• 00	. 10	.oI	60.	• 21	0.0 0.0 0.0	90	01	• 03	• 05	•07	• 00	.02	
CAS	M C Z				{			•					:																	
		MAX IMUM		NUMBER	۷ <u>-</u>		IS	(E)	(F)		2 Z	S	10	\circ	0	0	0	0	0	0	\sim (4030	\circ	ေဝ	\circ	0	\circ	0	\circ	
:		AND		R N	2 -	P02				005	Ĭ	2 2 19			-							1 –0		:		-	-			

. . .

		ON ENGINE NUMBER 3,		E)				194 - Out 1949 - Other Agreement and the Company of							
The second state of the second state of the second state of the second state of the second state of the second	MIXTURE RATIO 5.00 INTERSTAGE OFF	DEGREE ACTUATOR FAILURE OUTBOARD ON ENGINE NUMBER	NORMALIZED TEST DATA	(CONTINUED FROM PRECEDING PAGE)	412 413	637.0 613.0		1215.0 1215.0	0.0 1210.0	0.99	168.0		0.335 0.335	TRANSDUCER OUTPUT	81U/SQ-FT-SEC 0.478 0.855
	MIXTO PSIA INTE	5 DEGREE ACTU	NOR	(CONTIN	411	0			1210.0 121					TRAN	0. 707 0.
	5A 632.0	0F A	appe meret - and to any missalance		410			1215.	1210.	165.0	162.	0.38	0.33		0.759
	PATTERN	SIMULATION SIMULATED			403	656.0	5.0	1215.0	1210.0	161.0	164.0	0.388	0.335		0.623 0.656
	GIMBAL PAT	REMARKS: SALTITUDE S			408	633.0	7.0	1215.0	1210.0	164.0	144.0	0.388	0.335		0.623
	I S	RE AND MAXIMUM AL			RUN NUMBER	PC (PSIA)		ř	N	, TO2 (F)	Ni	<u>۔</u>	"OH2 (IN)	TRANSDUCER	9.500

RUN SERIES 11, LOG 11,2

CASE -

IO 5.00	ON OF A 5 DEGREE ACTUATOR FAILURE OUTBOARD ON ENGINE NUMBER 1		NORMALIZED TEST DATA										
RUN SERIES 11. LOG 11.3 58 MIXTURE RATIO 632.0 PSIA INTERSTAGE	REE ACTUATOR F		;					٠	*****************	-			
RUN SERIES 58 632.0 PSIA	IN OF A 5 DEG		engine de la la la la la la la la la la la la la	915	0.049	27.0	1215.0	1210.0		166.0	0.388	0.335	
	SIMULATIO			415	632.0	22.0	1215.0	1210.0	163.0	166.0	0.388	0.335	
E BAL PATT INAL PC	REMARKS: S	-		414	636.0	23.0	1215.0	1210.0	167.0	168.0	0.388	0.335	-
	RE		:	Z	C (PSIA)		POS (PSIA)			TH2 (F)	002 (IN)	42 (IN)	
			;	૪	م م	Αſ	P.	ā	1	Ė	ŏ.	ے د ۔	.9

	TRANSDUCER DUTPUT	BTU/SQ-FT-SEC																			
			3.120	4.660	5.410	6.050	4.520	0.012	0.097	0.189	1 1	0.024	0.040		0.015	0.030	0.041	0.052	0.019	0.123	0.019
			2.689	4.206	5.960	8.755	4.434	0.027	1 1 1	1	0.025	0.046	0.061	0.017	0.094	0.048	0.072	0.085	0.027	0.155	0.023
-		_	2.340	4.140	5.230	6.100	4.830	0.019	0.128	0.270	0.021	0.048	690.0	0.022	0.033	0.074	1 1	1 1	0.023	0.138	0.019
L9:	TRANSDUCER	10	0001	0005	0003	4000								0033	0034	0035	9600	4037	0000	0042	0043
	,						•	BD.	, J.	-01	<u>,-(</u>	<i>,</i> ((, 1	١.						•	

	:	
	•	
	i	
RUN SERIES 11, LOG 11,3		
11	!	
ي		
-0		
-		
11	;	
S	:	
H		
a H	;	
S		
N		
œ		
	•	
İ	:	
į		
į	;	
į	1	
ļ	;	
.i		
ASE		
S		
	i	
		•

5.00 OFF MIXTURE RATIO ---INTERSTAGE -----58 632.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

SIMULATION OF A 5 DEGREE ACTUATOR FAILURE OUTBOARD ON ENGINE NUMBER 1 REMARKS:

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

5D73-SA-0061

CASE ----- RUN SERIES 12, LOG 12.1

REMARKS: EFFECT OF DUAL ACTUATOR FAILURE 7.5 DEGREES INBOARD (ENGINE NUMBER 4)

ON THE CENTER NOZZLE HEATING RATES

•																							:					
												,											: #					
+	51.	28.	140.	85.	155.	40	.38	0.335		R 00	T-SE	49.50	5.82	.62	• 66	0.922	90.	00	• 15	• 37	• 22	• 43	940	.71	.31	• 79	• 10	• 75
· 4	61.	œ	140.	85.	56.	41.	.38	0.335		ANSOUC	N/S	6.726	6.091	.20	•29		.º64	.39	.93	.17	.28	.41	.51	.15	.13	.72	.01	•
4	5.	27.	140.	5.	164.	44.	• 38	0.335				1 1	1 1	11111		.87	.67	. 71	• 08	14.	• 33	• 46	69.	16.	.22	.80	• 05	Φ.
4	œ	27.	140.	•	155.	40.	.38					1	• 89	.52	.63	3	:65	• 74	• 05	• 2I	• 15	.17	.24	•46	• 04	• 62	• 83	0.702
+	4	27.	140.	_	58.	43.	.38	.				i	• 55	• 54	• 90	• 37	• 25	•94	• 26	.51	.31	.57	• 37	• 29	.21	.77	.97	0.597
343		27	25	11,70.0	58	41	6	3	-	-		 	n	83	1.466	- 1	_	4	.71	6	~	61	1.832	1	3	S	55	0.682
N N	(PSIA	Σ -	7	2 (P				H		TRA	01	K002	K004	K005	K006	K007	600X							M001	M006	M007	M008	W009

0.335

0.335

961 TRANSDUCER

671.0 27.0

685.0 27.0

d

CMU HG

(PSIA) (PSIA)

P02

PH2 707

NUMBER RUN NUMBER PC (PSIA)

441

335.0 345.0

335.0 345.0 167.0

164.0 180.0 0.398

172.0

0.398

(NI) (NI)

T

(F)

TH2 D02 DH2 4.350

4.330 315,000 154.000

12,000

64.400

67.700

K003 K004

K001

328,000

146.600

1002

1003

L001

46.800 13,300 27.400 9.800 3,270 10.300

45.500 13,800 9.240

M004

\$D73-SA-0061

9002 6000

L004 M003

1111

4.110 10.500

LOG 12.1A

RUN SERIES 12,

NOMINAL PC -----

ON THE HEAT

PATTERN ---

GIMBAL

CASE

13.400 8,750

14.700 8.140

0100

0014 0015

9011

001.0

4.900 5.400 12.400

11.200 12.900 27.600

9000 6000

0004

8.910 009.0

9.890

0.600

RUN SERIES 12, LGG 12.1A	4AA MIXTURE RATIO 5.50 715.0 PSIA INTERSTAGE OFF	EFFECT OF DUAL ACTUATOR FAILURE 7.5 DEGREES INBOARD (ENGINE NO CENTER ENGINE NOZZLE HEATING RATES
CASE	GIMBAL PATTERN 4AA NOMINAL PC 715.0	ANC
;	THE PERSON OF TH	REMARKS ON THE HEAT SHIELD

NORMALIZED TEST DATA

NUMBER 4)

(CONTINUED FROM PRECEDING PAGE)

	Companyon to			expense temperature property and the second of the expension of	TRANSDUCER	BIU/SQ-FI-SEC
442 730.0 27.0	1335.0 1345.0	160.0	0.398	0.335		
441 671.0 27.0	1335.0	164.0	0.398	0.335		
440 685.0 27.0	1335.0	167.0	0.398	0.335		
A)	:			· •		
RUN NUMBER PC (PSIA) ALT (MU HG	PO2 (PSIA) PH2 (PSIA)	T02 (F)		DH2 (IN)	TRANSDUCER	01

CUTPUT

2.810

2.520 3.260

0017 0019

SD73-SA-0061

5.00	OFF
MIXTURE RATIO	INTERSTAGE
444	632.0 PSIA
GIMBAL PATTERN	Jd
GIMBAL	NOM IN AL

REMARKS: SAME AS SERIES 12.1 EXCEPT THE INSTRUMENTATION IS SWITCHED TO THE HEAT SHIELD AND THRUST CONE

	and the second s		AMERICAN CONTRACTOR OF THE CON					The second of the second secon	· .				•	The second secon			The state of the s		- 4.1 							u b all bafty or b 'name to the da' attel attendant. Libera or 'static before begins being and anti-attendant or the second or the best attendant.	
354 5.0	0.7			•	Œ	335	UTPUT		2			3	393	N	2	_	-	2	714	-		528	-	4	S		12.2
	27.0 2	1185.0 118	162.0 16	142.0 14	0.388 0.	0.335 0.	ANSDUCER O	U/SQ-FT-S	2.328 2.	3.659 3.	.9 061.9	8.208 7.	10.566 8.	12.131 11.	21.621 20.	6.653 8.	2.534 2.	5.997 7.	6,369 6.	6.115 6.	2.720 2.	.818 2.	0.010 0.	0.042 0.	0.058 0.	0 011 0	0.024
351 35 8•0 637•	25.0 27.	0 1140. 0 1185.	162.0 166.	42.0 147.	.388 0.38	• 335 0 • 33			.697 2.03	.297 3.47	.871 6.51	.602 7.89	.533 10.41	1.704 11.01	9.701 18.95	.276 7.32	.175 2.71	.364 5.95	.607 5.27	•49I 6•38	.224 2.68	131 2.89	.005 C.01	.037 0.04	•059 0.06	0.10	.017 0.02
349	27.0 27.	185.0 1185.	160.0 172.	40.0 152.	.388 0.38	•335 0•33			•966 1•96	•377 3•11	•414 5.44	.738 8.04	04.6	13.05	•637 21.03	.950 6.38	.910 2.18	•473 5.94	.542 5.52	.605 5.51	. 343 2 . 63	2.067 2.672	.017 0.01	•040 0•05	•071 0.06	.126 0.11	.017 0.01
NUMBER (PSIA)	(MU HG A)	(PSIA)	(F)	(F)	DO2 (IN)	DHZ (IN)	8 TRANSDUCER	10			American C. S. P. ob. Willy Springspeed as a second		8000	6000	0010		4013	0014	0015	9100	•	6100					

CASE ----- RUN SERIES 12, LOG 12.2

5.00 INTERSTAGE -----MIXTURE RATIO ----632.0 PSIA 444 GIMBAL PATTERN ---NOMINAL PC -----

REMARKS: SAME AS SERIES 12.1 EXCEPT THE INSTRUMENTATION IS SWITCHED TO THE HEAT SHIELD AND THRUST CONE

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

			1			
PC (PSIA)	642.0	634.0	648.0	637.0	646.0	625.0
ALT (MU HG A)	27.0	27.0	25.0	27.0	. 27.0	27.0
PO2 (PSIA)	1140.0	1140.0	1140.0	1140.0	1140.0	1140.0
PH2 (PSIA)	11.85.0	1185.0	1135.0	1185.0	1185.0	1185.0
T02 (F)	1.60.0	172.0	162.0	166.0	162.0	166.0
TH2 (F)	140.0	152.0	142.0	147.0	142.0	146.0
2005 (IN)	0.388	0.388	0.388	0.388	0.388	0.388
OH2 (IN)	0.335	0.335	0,335	0.335	0.335	0.335

BTU/SQ-F1

1.487

1.697

0.977

1.359

1D 0052

	0 .0 LXX EU		DOAL ACTUALUR	TAILORE INDUARD ON ENGINE NOMBER 1
			and a second of the second of	
				NORMALIZED TEST DATA
	r.	356	r.	
(PSIA)	637.0	637.0	652.0	
UM)	25.	26	27.	
(PS	40	140	140.	
(PSI	185.	85	85.	
32 (F)	57.	09	67.	STATES OF THE PROPERTY OF THE
<u>u</u> :	43.	43	47.	
002 (IN)	œκ	m k	∞ r	The second secon
-	6.55	•	• 53	
RANSDUCER				TRANSDUCER OUTPUT
10	AND A 1971 ILLEANING CONTRACTOR C	and the second section of the second section is a second section of the second section	ppoppe of the few verse . Life (the majorithm description of the complete benefits to the complete facilities	BTU/SQ-FT-SEC
M001	ŧ	49	.42	
M006	• 79	.83	16.	
M008	.79	.80	.86	THE TOTAL THE PROPERTY OF THE
0001	•21	.87	• 16	
0005	3.403	3.334	3,354	
0003	• 58	85	.34	
000	• 22	689	44.	
4000	74.	40	• 46	
9000	.81	10	. 58	
6000	• 48	. 37	• 65	
0100	1	• 69	69•	
0011		18		The second secon
9013	• 00	09.	•64	
4014	•72	.92	• 74	
9015	76.	59	.22	والمراقب المساوم المسا
9016	.42	•94	• 59	
0017	.53	.83	.34	
6100	11.	.03	• 62	大学,在1987年,1987年,1988年,1
0022		5	5	

RUN SERIES 12, LOG 12,3

CASE -----

1SE	CASE RUN SERIES 12, LOG 12,3

5.00	054
MIXTURE RATIO	INTERSTAGE -
4 A B	632.0 PSIA
GIMBAL PATTERN	NOM INAL PC
GIMBAL	NOM INAL

SIMULATED DUAL ACTUATOR FAILURE INBOARD ON ENGINE NUMBER 1 REMARKS:

NORMALIZED TEST DATA

		TRANSDUCER OUTPUT BTU/SQ-FT-SEC	
357 652.0 27.0	1140.0 1185.0 167.0 147.0 0.388	0.038 0.050 0.110	0.022
356 637.0 26.0	1140.0 1185.0 160.0 143.0 0.388	0.037 0.066 0.109	3.284
355 637.0 25.0	1140.0 1185.0 157.0 143.0 0.388	0.034 0.061 0.105	0.030
	PO2 (PSIA) PH2 (PSIA) TO2 (F) 1 TH2 (F) 1 DH2 (IN)	TRANSDUCER 1D Q023 Q024 Q025	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

		The state of the s			
	0FF	INTERSTAGE	632.0 PSIA	1 1 1 1	NOM INAL PC
	5.00	MIXTURE RATIO 5	_	TERN	GIMBAL PATTERN

REMARKS: EFFECT OF DUAL ACTUATOR FAILURE AT 5 DEGREES ON NO 4 ENGINE ON CENTER ENGINE NOZZLE ENVIRONMENT

NORMALIZED TEST DATA

		THE REAL PROPERTY OF THE PROPE				AND THE THE PARTY OF A STATE OF THE PARTY OF THE TAXABLE STATE OF THE PARTY OF THE			The second secon			to the property of the state of						deministra (1/10-1), dak kymin afterdi sepantamentan melakat kinnymbakan menumpakan menumpakan menumpakan men						erende demande de des parts en la compassa de la co		
434 611.0	215.0 210.0		.0.388	0.335	TRANSDUCER OUT PUT	1	5.800	1 1 1	5.360	2.700	2.600	To 700 demand the property of the contract of	4.880	1 1 1 1		3.730	2.580	2.640	4.370	4.590	.2	8.610	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	and the state of t	1 1 1	
		160.	.38	.33	·	10/	49.600 2	-		1 1 1	1		• 04	3.980			1	• 26	.77	4.920	30	• 53	. 52	6	• 80	
432 599.0		9	38	33			.80	1	• 02	• 38	10.140	99.6	.28	• 94	60.	. 82	• 95	1	1 1	.37		• 86	.97	7.160	70	
431 610.0		1.	8	m		and the state of t	• 20	• 11	.14	.42	9.120	• 0.2	• 10	• 75	.53	.42	.77	22.	• 65	• 46	• 10	• 90	• 85	• 08	0	
430 622 • 0		66. 62.	93	.33		41.5 . PW-Things (& will carried and capability of 1.5	8	Φ.	6	.5	8.580	3	0	0	•	• 6	• 5	1	1 1 1	İ			•5	7	• 60	
N S S	2 (PSI 2 (PSI	2 (F)	D02 (IN	DH2 (I	TRANSDUCER	2	\circ		0		L001	007	007	0	MOOM	M00	MOO		0	0	0	0	_	-	_	

(TABLE CONTINUED ON THE NEXT PAGE)

RUN SERIES 13, LOG 13.1.1 CASE --

5.00 OFF MIXTURE RATIO ----INTERSTAGE -----632.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

REMARKS: EFFECT OF DUAL ACTUATOR FAILURE AT 5 DEGREES ON NO 4 ENGINE ON CENTER ENGINE NOZZLE ENVIRONMENT

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

			!						CUTPUT				
434	611.0	27.0	1215.0	1210.0	1 1 1	1 1	0.388	0.335	TRANSDUCER CUTPUT	-F I-SEC	17.500 16.400	1	6.820
433	607.0	27.0	1215.0	1210.0	160.0	166.0	0.388	0.335		BTU/SQ	17.500	6.710	1 1
432	599.0	27.0	1215.0	1210.0	166.0	171.0	0.388	0.335			16.100	7.530	5.780
431	610.0	27.0	1215.0	1210.0	165.0	165.0	0.388	0.335			1 1	6.710	6.140
430	622.0	25.0	1215.0	1210.0	166.0	162.0	0.388	0,335			1 1 1	7.110	f t f
RUN NUMBER	PC (PSIA)	ALT (MU HG A)	""PO2 [PSTA]"""	PH2 (PSIA)	T02 (F)	'TH2 (F)	(NI) Z0020	DH2 (IN)	TRANSDUCER	Q I	9015	9016	6100

		TAXABLE CONTRACTOR OF THE PROPERTY OF THE PROP
5.50	. OFF	Annual Control of the last of
MIXTURE RATIO 5	INTERSTAGE	THE PROPERTY OF THE PROPERTY O
. 2	715.0 PSIA	
GIMBAL PATTERN	NOMINAL PC	T and the second with the second temporary and
•		

REMARKS: EFFECT OF DUAL ACTUATOR FAILURE AT 5 DEGREES ON NO 4 ENGINE ON CENTER ENGINE NOZZLE ENVIRONMENT

NORMALIZED TEST DATA

				and in the second second second second second second second second second second second second second second s			many of the designation of the country of the count		and designations of the contraction of the contract	• •					entra de la completa de la completa de la completa de la completa de la completa de la completa de la completa			The second secon			and the same of the same and desired for attentions of the same of						the maniform representative from a summer december of a second of the dark of	
8			0	O	0	. 60	5	TRANSDUCER DUTPUT	YSQ-F1-SEC	. 0	Ó	O	0	00	Description of the state of the	0	0		•	C	Mark als in central description of the property of the special description and the laptices of the special induction of the special description of the speci		0	0	0	00	01	0
43	7.	335.	5	167.	2.	39			E	.30	• (C)	· •	9.8	20.10	7.6	Φ.	•	6	1	۲.	8.5	1.10	.40	8.97	8.69	98	0.00	• 90
437	-	335.	5	160.	4.	σ	3			.10	.31	• 13	5,30	21.400	7.65	96•	• 07	9.9	646	• 94	.63	1.00	1.60	5.59	• 26	00•	1.80	• 24
436	1 ●	335.		•	~	39	33			80	19	100	50	18.600	95	30	0.4	.62	. 24	70		, 70	8	76	52	90	08 0	03
435	. •	35.	345.	68.	74.	• 39	.33			.50	6.70	44.	5.00	24.800	8.55	• 54	• 00	.67	.97	• 68	• 45	• 32	• 50		7.140	-	21.300	9
RUN NUMBER PC (PSIA)	CMC	(PSI	(PSI	(F)	TH2 (F)	005 (1	OH2 (IN)	TRANSDUCER	01	K001	K003	K004	1001	<u>r</u> 1002			€00¥	!			4000	8000	6000	0100	0011	0014	4015	4016

(TABLE CONTINUED ON THE NEXT PAGE)

CASE ----- RUN SERIES 13, LOG 13.1.1A

5.50 OFF MIXTURE RATIO ---INTERSTAGE -----715.0 PSIA GIMBAL, PATTERN ---NOM INAL PC REMARKS: EFFECT OF DUAL ACTUATOR FAILURE AT 5 DEGREES ON NO 4 ENGINE ON CENTER ENGINE NOZZLE ENVIRONMENT

NORMALIZED TEST DATA

									OUT PUT
438	0.069	27.0	1335.0	1345.0	167.0	172.0	0.398	0.335	TRANSDUCER GUTPUT BTU/SQ-FT-SEC 7.140
437	717.0	27.0	1335.0	1345.0	160.0	174.0	0.398	0.335	9 300
436	0.969	27.0	1335.0	1345.0	159.0	167.0	0.398	0.335	6.610 7.780
435	0.699	27.0		1345.0	1.68.0	174.0	0.398	0.335	6.610
		A	:						į
RUN NUMBER	PSIA)	(MU HG	(PSIA)	(PSIA)	(F)	(F)	(Z)	CDH2 (IN)	TRANSDUCER ID 0019
RUN) Dd	AL T	P02	PH2	T02	I TH2	200 2	2H05	TRAN

CASE ------ RUN SERIES 14, LOG 14.1

5.00	OFF
rio 5.00	OFF
RA	1GE
MIXTURE	INTERSTAGE
NO DEFLECTION MIXTURE RATIO	630.0 PSIA
GIMBAL PATTERN	
ATI	ည သ
GIMBAL F	NOWINAL

REMARKS: TO DETERMINE ENGINE COMPONENT ENVIRONMENT

					A THE PARTY OF THE		-				٠.					menter of the section						STATES OF THE PROPERTY OF THE	•					THE CONTRACTOR OF A SECURE STATES OF THE SECURE STA	
~	0.449	27.	140.	85.	58.	43.	0.388	33			2	2.390	96.	5.420	!		• 03	0	.13	1	0.342	11	•		0.022	1		0.091	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
369	-	-	140.	•		•	0.388	3			1.440	9	2	5.990	1 1 1	10.	• 06	0.089	.17	1 1 1	1 1 1		1	1 1	0.042	1	1 1	0.146	
368	638.0	27.0	40	1185.0	29	42	0.388		.		1 1	1 1 1		5.600	1 1		1	0.088	0.170	1 1	1 1		1 1 1	1	0.034	1	1 1 1	0.130	1 1 1
367	4	27.0	140	1185.0	5	5	3	0.335	ER OUTPUT		1.220	2.270	4.720		1 1	010.0	0.044	0.084	0.158	1 1 1	0.595		1 1 1	• 06		1 1 1	.18		i 1 1 1
366	631.0	25.0	1140.0	1185.0	163.0	143.0	0.388	0.335	ANSDOC	-FT-SEC	. † 	1 1	4.860	3.860	1			960.0	0.163		0.607	1 1 1 1	1	0.064	11111	1 1	0.174	1	1 1 1
9	6	27.	140.	85.	64.	43.	0.388	• 33		TU/50	0	æ	6	7	2.290	0	0	į	0.192	1.	0.548		1 1	•	1	 			1 1
36	•	27.	140.	35.	155.	41.	0.388	• 33			0	3	0	4.	4	0	0	0		-	0.590	7	.2	1 1	1	0.178	1		1
36	4.	27.	140.	85.	.19	41.	0.388	• 33			φ	•	-	.2	6	10	0	0		1	4.		0.223	1	1	0.148	i	:	0.039
m	30	27	5	185	6	43	0.388	.			7.	• 1	9•	0	• 6		0	0		0	0.350		~	1	11111	 	1 1 1		0.000
RUN NUMBER	(PSIA	OM)	(PS	(PSI	~	~	DO2 (IN)	DH2	_	10	0001	0002	0003	4004		ļ		700 AS				2500	0000	9071	0072	0800	0081	0082	0600

CASE ----- RUN SERIES 14, LOG 14.1

5.00	. OFF
011	
MIXTURE RAI	INTERSTAGE
NO DEFLECTION MIXTURE RATIO	630.0 PSIA
PATTERN	L PC
GIMBAL P	NOM INAL

REMARKS: TO DETERMINE ENGINE COMPONENT ENVIRONMENT

NORMALIZED TEST DATA

NUMB	362	363	364	365	366	367	368	369	370
(PSIA	•	614.0	606.0	6	631.0	0.449	638.0	617.0	644
ALT (MU HG A)	27.0	27.0	27.0	27.0	25.0	27.0	27.0	27.0	27.0
(PST	1140.0	1140.0	1140.0	1140.0	1140.0	1140.0	1140.0	1140.0	1140.0
(PSI	1185.0	1185.0	1185.0	1185.0	1185.0	1185.0	1185.0	1185.0	1185.0
_	163.0	161.0	155.0	164.0	163.0	165.0	162.0	165.0	158.0
1 TH2 (F)	143.0	141.0	141.0	143.0	143.0	145.0	142.0	136.0	143.0
_	0.388	0.388	0.388	0.388	0.388	0.388	0.388	0.388	0.388
(NI) 2HO7	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335
TRANSDUCER					TRANSDUCER	ER OUTPUT	· •	•	
Q1				BTU/SQ	-FI-SEC				
1600	† † † 1.	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	0.082	0.086	0.000	1	1	1
0092		1 1 1	1 1 1	1 1	1 1 1	1 1 1	0.072	0.067	0.062
	0.061	0.074	0.088	1 1 1	1 1 1	1 1 1	; 	-	
1.010	; } ;] ;]			690.0	690.0	0.093	1	- 1	1
	; ; ;	1 1 1		1 1 1	1 1	1 1 1	0.043	0.056	0.031
SA									
00	,						•		
061									

	. Cathair an maight raightfuirfein i an tai tha ann an a tan ann an ann an taiteacht, ann an	6
	des a mine to the test of the manufacture of the manufacture of the second of the seco	E RING GAGES ON NO
5.00 OFF		IT. ENGIN
GIMBAL PATTERN NO DEFLECTION MIXTURE RATIO NOMINAL PC 632.0 PSIA INTERSTAGE	AND THE PROPERTY OF THE PROPER	REMARKS: TO DETERMINE ENGINE COMPONENT ENVIRONMENT. ENGINE RING GAGES ON NO
GIMBAL PATTERN	· mir applysiony marting market propagation between the state of the s	TO DETER
GIMBAL PA	THE PARTY OF THE P	REMARKS:

RUN SERIES 14, LOG 14.1.1A

CASE ------

ENGINE TO COMPARE WITH THOSE ON NO 1 ENGINE

		and well-reported the second desired desired as a second desired as a second desired reported to the second desired to the second de				THE RESTRICT THE PROPERTY OF THE ACTUAL PROPERTY, ASSESTED BESTREET, ASSESTED BESTRAFFER THE PROPERTY OF THE P	• .		and the second of the second o		, .	ent veget mannen entvier er sezen unversammente entvissammen entvissam						term spirit de literature et lett medite allementer, pessante.							
					TRANSDUCER OUTPUT	BTU/SQ/FT-SEC	-					della von einstellung jahren della den den den den den den den den den den													
443 44 03.0 605. 27.0 27.	15.0 1	63.0 168. 69.0 160.	•388 0.33	•335 0•33		op delications on designations of the contraction o	20 2.8	6.300 3.530	5.3	•460 2.3	.200 3.5	008 0.0	.063 0.0	.075 0.0	•017 0•0	.194 0.1	•008 0•0	038 0.0	•010 0.0	.640 1.4	.455 0.4	.554 0.6	.510 0.3	.107 0.0	.137 0.1
RUN NUMBER PC (PSIA) 6 ALT (MU HG A)	(PSIA) I	TOZ (F) 1	(IN)	0H2 (IN)	8 TRANSDUCER			0002 6	1	4	9015	00	Q023 0	00241 0	0024R 0	0	0038	D	0	2	D :	0	0	0	0

CASE ----- RUN SERIES 14, LOG 14.1.1A

5.00 OFF INTERSTAGE NO DEFLECTION MIXTURE RATIO 632.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

REMARKS: TO DETERMINE ENGINE COMPONENT ENVIRONMENT. ENGINE RING GAGES ON NO 3 ENGINE TO COMPARE WITH THOSE ON NO 1 ENGINE

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

			TRANSDUCER	TRA
				1
0.335	0.335		(NI)	SHO OH5
0.388	0.388		(Z)	200 2 0
160.0	169.0		(F)	I TH2
168.0	163.0		(F)	T02
1210.0	1210.0		(PSIA)	PH2
1215.0	1215.0	,	(PSIA)	P02
27.0	27.0	Ā	(MU HG	ALT
605.0	603.0		(PSIA)	PC
777	443		NUMBER	RUN

TRANSDUCER OUTPUT BTU/SQ/FT-SEC

0.049

0.044

0600

REMARKS: TO DETERMINE J-2 ENGINE COMPONENT ENVIRONMENT

NORMALIZED TEST DATA

		- Company of the state of the s		Alle Care and a second		And the second s												district the same of the same of the same to the same in							
		en i palant regente de large de continues con						-				the state of the s									:				
69	27.0	166	38	33			.98	• 12	. 13	.12	2.780		.76	. 59	.33	16		76	. 20	1			- 1		0.367
37	1140.0	155	.38	.33			.82	.91	60.	76 •	1.800	90.	ŀ	1	• 05	• 20	0.751	.88	• 04	1	4	4	1	· [0.633
ж Э.	27.0	146	9.00	33	-		.03	.17	.67	.80	2.190		• 32	72		1	87	• 23	• 25	1			1	1	0.479
37	240 40 85	, ,	.38	.33		نبز		. 13	.30	.21	•	10.	• 28	• 80	.67	• 28	.72	02.	1	.15		1	1 1 1		! ! !
37 1.	27.0	191	.38	• 33	SDUC	1U/SQ	1.310	.47	10	• 96	.98	• 02	•30	• 71	.62	• 28	• 93	• 05	1	.14		† 	0.235	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
m 4	27.0	291	, w	• 3			• 15	• 45	• 38	•39	2.410	• 02	• 46	•45	69.	• 23	• 83	640	1		1		0.233		1 1 1 1 1
37	1140.0	169.	9 9	• 33			• 70	.77	. 79	• 34	2.060	• 02	• 40	• 75	1	1	0.892	.92	1	1 1 1		1	1 1 1	0.850	
37	1140.0	165	9.0	. 33			• 42	2.660	• 45	• 03	-	0.047	ı		8	ϵ	•		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	0. I14	1 1 1	1 1 1 1	0.653	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
w 4	1140.0	165	1 6	33			06.	m	• 34	• 32	1	6	•62	• 54	١,	1 1 1		11	1	1	0.355	1 1	1 1 1	0.982	:
N NUMB	ALT (MU HG A) PO2 (PSIA) PH2 (PSIA)	2 (F)	2 (11	DH2 (T	OT RANS DUCER	91	0001	0002	0003	4000		005	005	005	005	005	400	2500	0000	0071	0072	0000	0081	0082	0600

(TABLE CONTINUED ON THE NEXT PAGE)

CASE ----- RUN SERIES 14, LOG 14.2

5.00	NO
OI1	NO
MIXTURE RA	INTERSTAGE -
NO DEFLECTION	632.0 PSIA INTERSTAGE
GIMBAL PATTERN	Jd
GIMBAL P	NOM INAL

TO DETERMINE J-2 ENGINE COMPONENT ENVIRONMENT REMARKS:

NORMALIZED TEST DATA

(CONTINUED FRCM PRECEDING PAGE)

000

CASE ----- RUN SERIES 14+ LOG 14-3

5.00 0FF INTERSTAGE -----MIXTURE RATIO ----632.0 PSIA NOMINAL PC -----GIMBAL PATTERN ---

SINGLE ACTUATOR ON ENGINE NO 1. 070-72,080-82,090-92,0100-102 DOUBTFUL BECAUSE OF FLOW INTERFERENCE REMARKS: J-2 ENGINE COMPONENT ENVIRONMENT WITH 7.5 DEGREE

NURMALIZED TEST DATA

398	27.	190.	35.	158.	43.	.38	33			primera and annual supplication of the state	.50	.23	44	1	5.080	1	1	. 11	.23	1		1	.21	61.	1		4		1 1	
397	1 .	140.	85.	165.	39.	.38	.33			age into delicate de la septembrio de padeda a seguingia usa,	.83	.11	. 14	.80	4.250		1	.14	.25	1	69	.79	.17	.54	1	- 1	0.278	1	1 1	
396	72	70	215	164	44	m	3			despies on a result of the last section of the section of	.24	. 73	. 78	.84	4.770	1	.02	.12	.25	.02	• 73	.14	.12	• 64	-	1	. 34	:1	1	
395) i •	170.	15.	155.	38.	.38	.33			and the name of the latest and the l	.35	.91	• 16	.60	4.480		.02	.12	.26	1	.88	.88	• 15	1	1	1	α	ı	1 1	
394.	27.0	70	215	58	42	6	6		}		.85	.16	• 65	. 75	4.820		-	08	18	ł	0.624	1	17	1	13	İ	-	39	i	
	27.0	140	85	157	39	6	3		5	-SE	.23	.21	• 68	• 68	5.400		1	.10	• 23	1	4		.11	1	.12	1	1	0.409	1	
	i •	140.	85.	158.	45.	.38	. 33		NSD OC	101	66.	• 24	. 70	. 84	4.840		.01	• 13	.25	• 02	• 75	1	.10	1	.17	1	1 1 1		1	
391 60 7 •0	27.	140.	5	64.	44.	• 38	.33				• 06	• 84	. 50	. 72	6.050		• 01	. 11	.22	• 02	.77		• 15	1	.16	1	į	0.399	i !	
	27.	140.	85.	175.	55.	• 38	33				.86	• 42	2	• 06	4.880		0.008	1	1	• 02	0.504	.42	1		1 1 1 1	0.120	1 1 1		0.317	
	27.0	40	185.	64.	43.	• 38	.33				• 59	.27	•14	• 06	4.620	00.	1	• 12	•27	• 02	• 53	.31		1 1 1	1 1 1 1 1		1		0.267	
380	27.	40	5	65.	45.	•38				Marian de la casa de l	• 66	• 16	• 74	• 13	4.240	1	1	•13	0	+	0.875	.57	1		1 1 1		1		0.278	•
RUN NUMBER PC (PSIA)	T (MU-	2 (PSI	2 (PSI	2 (F	2 (F	7	DH2 (1	1	TRANS	_	0	0	0	0	000	005	005	905	005	400	4	908	S	~	~	~	8	œ.	4082	

(TABLE CONTINUED ON THE NEXT PAGE)

4.3
L 00 1
14,
SER IES
RUN
CASE

•	-
MIXTURE RATIO 5.00 INTERSTAGE OFF	MARKS: J-2 ENGINE COMPONENT ENVIRONMENT WITH 7.5 DEGREE SINGLE ACTUATOR Q70-72,080-82,090-92,0100-102 DOUBTFUL BECAUSE OF FLOW INTERFERENCE
1 1	0 S
	7 • 5 S E
01	CAU
3 E	E E
MIXTURE RATIO INTERSTAGE	F C I
KTUI	JAMI JBTI
N N	/IRC
į	EN.
SI A	N 1
d	0.10
32.(COMPONENT ENVIRONMENT WITH 7.5 -92,0100-102 DOUBTFUL BECAUSE
38 63	VE (
1 3B 632.0 PSIA	461P
Z Z	2 E1
—	J-,
P A	S: 0-7
IMBAL PAT	1. 070
WON:	
<u>.</u>	N _O
	RE ON ENGINE NO
	ENG
†	Z O

NORMALIZED TEST DATA

:

(CONTINUED FRCM PRECEDING PAGE)

CASE ----- RUN SERIES 14, LOG 14.4

5.00 INTERSTAGE ----- ON MIXTURE RATIO ----3B 632.0 PSIA NOMINAL PC -----GIMBAL PATTERN ---

REMARKS: ENGINE COMPONENT ENVIRONMENT WITH SINGLE ACTUATOR FAILURE ON NUMBER ONE ENGINE AT 7.5 DEGREES OUTBOARD

		· •
44400111	24 33 50 50	4.820 0.054 0.520 1.050 0.267 1.400
400 610.0 27.0 1215.0 1260.0 143.0	33	4.540 0.056 0.581 0.212 0.120 1.320
399 611.0 27.0 1215.0 1260.0 162.0		
390 606.0 27.0 1140.0 1185.0 140.0	93	111001016
389. 601.0 27.0 1140.0 1185.0 164.0	. 38 . 33 . 56	4.170 0.058 0.756 0.721 0.321 0.117 1.140
388 599.0 27.0 1140.0 1185.0 163.0	0001 0001 070 070 070 070	5.280 0.933 0.571 0.268 0.110 1.190
387 606.0 27.0 1140.0 1185.0 145.0	NSD 750 133 134 150 150 150 150 150 150 150 150 150 150	1000
386 610.0 27.0 1140.0 1185.0 157.0	74	11
385 594.0 27.0 1140.0 1185.0 162.0	34	00111001111
384 610.0 25.0 1140.0 1185.0 158.0	300	4.780 0.759 0.923 0.391 0.136 1.510 2.660
383 606.0 27.0 1140.0 1185.0 165.0	22 33	5.130 0.702 0.834 0.501 0.099 1.360 2.200
RUN NUMBER PC (PSIA) ALT (MU HG A) PO2 (PSIA) PH2 (PSIA) TO2 (F) TH2 (F)	RANSD 000 000 000 000 000 000 000 000 000 0	0008 0020 0022 0024 0025 0041 0053
		SD73-SA-0061

- 'K'' 'S' - 'S' -	
2	
グルータルグ	
2 ~	;
	-
•	

NO DEFLECTION MIXTURE RATIO ---- 5.50 715.0 PSIA. INTERSTACE ----- ON GIMBAL PATTERN ---NOMINAL PC. -----

REMARKS: DETERMINATION OF THRUST STRUCTURE HEATING RATES INTERSTAGE GAGES AT 0 DEGREES . ALSO SEE LOG 15.3.2

									TRANSDUCER	(0) IN BTU/SO-FT-SEC (P) IN PSIA																			
71	27.	35.	295.	61.	64.	.39	33				.03	.02	• 94	.05	.16	• 10	.86	• 35	.51	.36	.26	.43	1	.17	.68	.42	1.450	.26	• 78
418	27.	35.	295.	48.	65.	.38	33				.02		• 83	1 1	.27	• 00	.33	• 36	.57	1	1	.02	•00	• 0 9	.67	74.	1.592	• 19	.76
417	24.	30.5	235.	52.	64.	-39	• 33	-	-		.02	.02	• 36	• 05	.32	• 29	1	.67	• 28	.21	• 78	• 16	 	i	.70	61.	1.910	•34	• 33
α. (Σ	<u>d</u>	٥	TO2 (F)	Ľ.	-	_	21	TRANSPUCEP	01	510a	710d	0004	0050		2200 07:	0023	9200 AA	6 00.25	9200	1200	0028	6200	0600	1 600	0032	9600	0037	040

CASE ----- RUN SERIES 15, LOG 15,3.1

5.50 NO DEFLECTION MIXTURE RATIO ---- 5. 715.0 PSIA INTERSTAGE ----- ON GIMBAL PATTERN ---NOW IN AL. PC. ----

REMARKS: DETERMINATION OF THRUST STRUCTURE HEATING RATES GAGES AT O DEGREES . ALSO SEE LOG 15.3.2 INTERSTAGE

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

	1.097	1.100	1.070	9400
	0.302	0.365	0.162	7700
	0.133	0.121	0.219	0043
(4) IN BTU/SQ-FT-SEC (P)				01
TRANSDUCER DUTPUT				TRANSDUCER
	0.335	0.335	0.335	(NI) ZHO t
	0.398	0.388	0.398	(NI) 200 16
	164.0	165.0	164.0	(H) CH12
	161.0	148.0	152.0	, TO2 (F)
	1295.0	1295.0	1235.0	PH2 (PSIA)
	1335.0	1335.0	1285.0	POS (PSIA)
	27.0	27.0	24.0	ALT (MU HG A)
	671.0	715.0	727.0	PC (PSIA)
	615	418	417	PUN NUMBER

AISA NI

	5.50
.3.2	RATIO
. 106 15	MIXTURE
I SERIES 15, LOG 15.3.2	NO DEFLECTION MIXTURE
NOa -	
	MBAL PATTERN
CASE	GIMBA

INTERSTAGE ----- UN NUMINAL PC ----- 715.3 PSIA

PEMBERS: DETERMINATION OF THAOST STOUCTURE HEAFING RATES INTERSTAGE GAGES AT 45 DEGREES. ALSO SEE PHA SERIES 15.3.1

										TRANSDUCER NUTPUT	RTU/S0-FT-																			
2		27.	335.	95.	164.	64.	.39	3			ZI (C)	!!!	† † †	1 1 1	1	•44	.11	.32	.08	.51	.71	.32	.07	• 56	• 94	• 1.8	• 55	0.830	.14	98
C 3	33.	27.	335.	95.	173.	68.	.39	0.335				1 1	1 1	.51	36	.47	_	. 41	-	.33	1	1	• 00	• 65	• 65	• 16	. 18	0.457	.41	• 23
ζ.	6	7.	335.	Š	2.	5.	30	0.335				.02	.02	.36	69.	.16	.07	.32	• 08	.02	.48	• 64	.12	.60	.85	.16	.13	0.500	.46	• 64
\sim	8	27.	335.	9.5	64.	66.	.39	0.335				.02		1	1	• 49	• 04	.28	• 08	.16	• 33	• 59	• 15	.62	.80	.22	1	0.860	.59	00.
RUN NUMBER	PC (PSIA)	-		2	2 (F	2	002 (IN)	10H2 (IN)	2:	LTP. ANS DUCER	C1 :	P015	P017	2000	€000	000	200	200	005	0053 -A	005	005	0026	0027	0028	0020	0030	0031	0032	9600

CASE ------ RUN SERIES 15, LOG 15.3.2

NO DEFLECTION MIXTURE RATIO ---- 5. Z.15.0 PSIA . INTERSTAGE ----- ON GIMBAL PATTERN ---NOW INAL PC

REMARKS: DETERMINATION OF THRUST STRUCTURE HEATING RATES INTERSTAGE GAGES AT 45 DEGREES. ALSO SEE PUN SERIES 15.3.1

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

								:		PSIA							
										Sd NI							
										[(d)							
								:	CUTPUT								
								;	 	T-SEC							
									NUCE	SQ-F			:				
		•							SNAS	RTU/SQ-FT-							
33	C	0	0	C	O,	0	98		-	Z		9	4.4	51	1	=	
423	694.0	27.	335.0	1295.0	164.0	164.0	0.398	0,33		(Ø)	0.501	0.4	0.144	0.0	1	0.841	
2	0	0	0	0	0	0	80	5.			~		7	5	!	69	
42	733.	27.	335	1295.	173.	168.0	0.39	0.33			0.40	0.37	0.117	0.19	1 1	96*0	
	O	C	0			0	83	35			2	7	₹.	တ	ŧ	: 	
42	0.669	27.0	335.	1295.0	142.	165.0	0.39	0.33		,	0.29	0.507	0.12	0.189	1	0.921	
0				_				·O				S.			0	ı	
420	678.0	27.0	335.	1295.0	164.0	166.0	0.398	0.33		٠	0.144	0.576	0.093	0.25	0.910		
	~		=				Ŭ	<u>;</u>						_	•	•	
∝		(A 5)	~	_				:	α								
NUMBER	(DSID)	MOM	DSIA	(PSIA)	<u>н</u>	<u>.</u>	Z	Z	TRANSDUCER	c	37	40	0043	7,	46	54	
N N N	_	ALT (_			_	_	RANS	-	00	00	00	00	00	C C	
2	ă	A	ď	ā.	-	2HF 2	č: 18	<u>-</u>	F				SD	73	-S	A-00	61

RUN SERIES 16 + LOG 16.1	MIXTURE RATIO 5.50 INTERSTAGE ON
IN SERIES I	38 715.0 PSIA
CASE RU	GIMBAL PATTEPN 39

エーニュ PEMARKS: EFFECTS OF SINGLE ACTUATOR FAILURE OUTBOARD ON THRUST STRUCTURE INTERSTAGE. INTERSTAGE GAGES 26-29 AT O DEGREES AZIMUTH

NORMALIZED TEST DATA

4 6 6 6 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1	33	0.324 0.324 1.960 1.040 0.396 0.259 3.140	25. 25. 25. 25. 25. 25. 25.
425 697.0 27.0 1335.0 167.0	6 € € € € € € € € € € € € € € € € € € €		555
424 681.0 27.0 1335.0 1295.0	W W	0.322 1.920 1.100 0.609 3.800 4.200	59.
Ā			
RUN NUMBEP PC (PSIA) ALT (MU HG PC2 (PSIA) PH2 (PSIA) TG2 (F)	H2 (1) H2 (1) H2 (1) H2 (0) H2 (0)	0023 0023 0023 0025 0025 0028	000000000000000000000000000000000000000
	- 219 -	SD73-SA-0061	

TRANSDUCER OUTPUT BTU/SO-FT-SEC

INTERSTAGE ----- ON MIXTURE RATIO ----715.0 PSIA NOMINAL PC ----GIMBAL PATTERN ---CASE

ILIX REMARKS: EFFECTS OF SINGLE ACTUATOR FAILURE OUTBOARD ON THRUST STRUCTURE INTERSTAGE. INTERSTAGE GAGES 26-29 AT 0 DEGREES AZIMUTH

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

426	703.0	27.0	1335.0	1320.0	1	. ! ! ! !	0.398	0.335
425	697.0	27.0.	1335.0	1320.0	167.0	176.0	0.398	0.335
454	681.0	27.0	1335.0	1295.0	162.0	171.0	0.398	0.335
RUN NUMBER	PC (PSIA)	ALT (MU HG A)	POS (PSIA)	PH2 (PSIA)	TO2 (F)	7H2 (F)	(NI) 20020	(NI) 2HQ+

0.406 1.090 0.658 0.330 0.528 1 1 1 1 1.120 0.298 TRANSDUCER 0046 0044 0054

TRANSDUCER DUTPUT BIU/SQ-FI-SEC

16, 100 16.3.1			
SON SERIES			•
CASE 1111111	_	_	

•

-

5.50	Z.
MIXTURE RATIO	INTERSTAGE
30	715.0 PSIA
	1 1 1 1 1 1
GIMBAL PATTERN	NOW I NAL PC

RATES WITH INTERSTAGE ON. INTERSTAGE GAGES 026,27,28 AT 0 DEGREES AZIMUTH

	TRANSDUCER OUTPUT RTU/SQ-FT-SEC		
429 681.0 27.0 1335.0 1320.0 161.0 170.0 0.398	82 93 33	2.300 0.442 0.346 0.346 0.190 6.800 0.475	2222
428 717.0 27.0 1335.0 161.0 172.0 0.398	. 25 . 09 . 26 . 06	1.610 0.935 0.018 0.457 0.188 0.550 0.525 0.841	91.
706.0 1335.0 1320.0 1	1 4 5 5 5	2. 4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400
RUN NUMBER PC (PSIA) ALT (MU HG A) PO2 (PSIA) PH2 (F) TH2 (F) DO2 (IN)	TRANSDUCER 10 0004 0020 0021 0022	SD73-SA-0061	0036 0037 0038 0040

CASE ------ RUN SERIES 16, LOG 16.3.1

5.50 MIXTURE RATIO ----INTERSTAGE -----715.0 PSIA NOWINAL PC -----GIMBAL PATTERN ---

EFFECT OF SINGLE ACTUATOR FAILURE INBOARD ON THRUST STRUCTURE HEATING RATES WITH INTERSTAGE ON. INTERSTAGE GAGES 026,27,28 AT 0 DEGREES AZIMUTH P.EMARKS:

NORMALIZED TEST_DATA_

(CONTINUED FROM PRECEDING PAGE)

TRANSDUC BTU/SQ-E				TRANSDUCER ID
	0.335	0.335	0.335	(IN) 2H
	0.398	0.398	0.398	(NI) 200 22
	170.0	172.0	1 1 1	
	161.0	161.0	1 1 1	
	1320.0	1320.0	1320.0	
	1335.0	1335.0	1335.0	PO2 (PSIA)
	27.0	27.0	!!!!	
	681.0	717.0	706.0	
	429	428	427	

TRANSDUCER NUTPUT 3TU/SQ-ET-SEC

	4
ص	• ;
<u>ر</u> د)
α	3
ر لا)
~	•
211	}
Ζ	
2)
œ ۱	•
۲ ۱ ا ا	·)
a	
Y	
Y	
Y	<u>.</u>
Y	<u></u>
Y	<u></u>
Y 45V	<u></u>

5.00	OF F
MIXTURE RATIO	INTERSTAGE
8	632.0 PSIA
GIMBAL PATTERN	NOMINAL PC

REMARKS: NOMINAL STEADY STATE DEFLECTIONS WITH 1.13 DEGPEE PITCH OR YAW

48 623. 27.	1125.0 1170.0 168.0) • • 1	-73 -85 -79	7.070 6.220 3.150 2.670 2.150 1.580 3.130	98.06.06.07
48 33. 27.	1125.0 1170.0 167.0	.38 .33 0UT	38 4. 64 7. 7. 7.	2.320 2.320 2.320 2.320 2.320 2.320	68 68 05 70 71
48 638• 27•	1125.0 1170.0 157.0	.335 .335 NSDUC	4.72 6.87 6.30	6.270 2.490 2.440 2.640 1.770 1.800	00000
48 632. 27.	1125.0 1170.0 170.0		.660 .580 .820	5.190 4.910 3.060 2.960 2.570 1.890 2.310	0.00
48 655• 27•	1125.0 1170.0 170.0	• \$ \$ \$ 7 \$ \$ 7 \$ \$.20 .57 .49 .75	4.550 5.220 2.710 2.900 2.680 2.040	0.0 40.0 40.0 50.0 60.3
48 621. 27.	1125.0 1170.0 168.0 150.0	• & W	74	5.830 3.020 2.750 2.450 1.900 1.900	55 59 06 07 17
47 638. 27.	1125.0 1170.0 169.0 152.0	• & M 4 M M 5 - • •	91.91	6.320 3.320 2.300 2.500 2.500 3.140	0.03
N NUM N	PO2 (PSIA) PH2 (PSIA) TO2 (F) TH2 (F)	100 Z	00000	SD73-SA-0061	しょりららる

CASE ----- RUN SERIES 18, LOG 18-1

MIXTURE RATIO --- 5.00 INTERSTAGE ----- OFF 8 632.0 PSIA GIMBAL PATTEPN ---

NOMINAL STEADY STATE DEFLECTIONS WITH 1.13 DEGREE PITCH OR YAW REMARKS:

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

ALT (MU HG PO2 (PSIA) PO2 (PSIA) TO2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TO2 (F) TO3 (F) TO3 (F) TO4 (F) TO4 (F)	628.0 27.0 1125.0 1170.0 169.0 152.0 0.338	621.0 27.0 1125.0 1170.0 168.0 150.0	655.0 27.0	ı			
(MU HG (PSIA) (F) (F) (F) (IN) (IN) (IN) 004R	1125 1170 1170 169 152 0•3	27. 125. 170. 168. 150.	7	?	œ	~	~
PO2 (PSIA) PH2 (PSIA) TH2 (F) TH2 (F) PH2 (TN) PH2 (TN) TPANSDUCER TPANSDUCER 0044	125 170 169 152 0•3	125. 170. 168. 150.		27.	27.	27	~
PH2 (PS1A) 102 (F) 1H2 (F) 1DH2 (IN) 1DH2 (IN) 1D 004R	170 169 152 0•3	170. 168. 150.	125.	25.	125.	2.5	125
TO2 (F) TH2 (F) DH2 (IN) TH4NS (IN) TPANS DUCER 004 R	9 10 10 m	$\alpha \in \alpha$	ċ	70.	70.	7.0	70
TH2 (F) DH2 (IN) TPANSDUCER 10 004R	0 mm	C	ċ	70.	157.	67	168
TP ANS DUCER 1002 (IN) 1000 (ER) 10000 (ER) 004 (ER)	W W	3	0	53.	55.	51	52
TPANSDUCER 10 0048 0044	~		33	.38	.38		6
TPANSDUCER 10 004R 0044		€.	33	0.335	0.335	0.335	0.33
10 004R 0044					RAN	ER COTPUT	 - -
004R 0044					RIU/SQ-F		
D044	1	1	1	!!!!	0.044	0.035	0.05
	.10	_	• 00	0.116	0.120	1 1	0.11
	.32	5	.37	0.341	0.382	1 1 1	0.52
	2.360	2.400	2.230	2.960		. 	
ታ 00 3- sa-006	† 	u r. •	• 75	0.807	0.873	0.748	0.88

REMARKS: NOMINAL STEADY STATE WITH 0.8 DEGREE PITCH OR YAW DEFLECTION

•	٠,	•
۱	•	-
	¢	Ĺ
Ć	_	2
۱		_
ţ		
Ł	į	J
۲	_	•
c		
L	1	ļ
r	•	ı
		4
		1
_	_	7
	7	٤
4	?	:
C	ž	:
(_	t
2	;	
-	_	•

NUMBELIZED IEST DATA	65 686 686 68	9.0 640.0 646.0 632	7.0 27.0 27.0 27.	125.0 1125.0 1125.0 1125.	0.0 1170.0 1170.0 1170.	.0 166.0 168.0 160.	8.0 153.0 154.0 152.	388 0.388 0.388 0.38	335 0.335 0.335 0.33		PANSDUCER	SO-FT-SEC	.560 3.440 3.830 3.43	070 5.840 7.240 6	.110 8.340 8.00	.250 7.350 6.75	.042 0.036 0.040 0.04	.010 7.020 7.780 6.13	.960 8.180 7.15	.110 5.980 5.460 5.91	.450 3.400 3.420 2.98	.450 3.110 2.520 2.25	.030 2.980 2.830 2.91	.850 1.580 1.41	3.640 3.48	.670 2.380 2.150 2.23	.910 2.250 2.220 2.18	.410 2.440 2.210 2.05	.057 0.064 0.074 0.05	0.085 0.094 0.07	169 0.189 0.203 0.16
	85	0.0	7.0 2	125.0 112	711 0.0	.0 16	3.0 15	388 0.	335 0.	-	•		.400 3.	5.890 6.3	.680 7.	.450 6.	.047 0.	.460 6.	.200 7.	.360 6.	.410 3.	.400 2.	.590 3.	.760 1.	•640 4.	.340 2.	.070	.770 2.	.062	.085 0.	.187
	N ON	(DISA) Dd)H ()W()	_	ISdJ	TO2 (F)	_	_	<i>z</i>	22	STRANSOUCER	10	1000	3000	2000	0000	000	9000 D7	000	000	100	001	100	0014	\$100	0016	2100	0019	00.23	0024	0025

CASE ------ RUN SERIES 19, LOG 19.1

MIXTURE RATIO ---- 5.00 INTERSTAGE ----- OFF 632.0 PSIA NOW IN ALL PC ----GIMBAL PATTERN ---

REMARKS: NOMINAL STEADY STATE WITH 0.8 DEGREE PITCH OR YAW DEFLECTION

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

RUN NUMBER PC (PSIA) ALT (MU HG PU2 (PSIA) TU2 (F) TH2 (F) TH2 (F) TH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN) PH2 (IN)	NUMBER (PSIA) (MU HG A) (PSIA) (F) (F) (F) (IN) (IN) (IN) (IN)	486 640.0 27.0 1125.0 1170.0 166.0 153.0 0.338	487 618.0 27.0 1125.0 1170.0 156.0 0.388 0.335	488 629.0 27.0 1125.0 1170.0 165.0 148.0 0.388 0.325		490 49 646.0 632. 27.0 27. 1125.0 1125. 1170.0 1170. 168.0 160. 154.0 152. 0.338 0.38 0.335 0.33 PANSDUCER PUT BTU/SO-FT-SEC.	490 491 646.0 632.0 27.0 27.0 1125.0 1125.0 1170.0 1170.0 168.0 160.0 154.0 152.0 0.388 0.388 0.388 0.388 0.385 0.335
0046		0.390	0.833	0.497	0.360	0.367	0.243
0116 SD73	ï)), 1 2 1 0 1 0 1	- 1		0.276	0.282

CASE

MIXTURE RATIO	
V6	632.0 PSIA
GIMBAL PATTERN	NOMINAL PC 632.0 PSIA

REMARKS: NOMINAL STEADY STATE WITH 0.8 DEGREES PITCH OR YAW

497 637.0 27.0 1125.0 1170.0 166.0 151.0 0.388	. 523 . 625 . 904	7.650 2.960 2.960 2.320 1.860 3.970 2.240 1.800 0.069
496 634.0 26.0 1125.0 1170.0 165.0 151.0 0.388	000000	000000000000000000000000000000000000000
495 621.0 27.0 1125.0 1170.0 165.0 151.0 0.338		8.050 7.770 3.030 2.080 1.900 4.250 2.150 2.130 3.450 0.061
494 616.0 24.0 1125.0 1170.0 165.0 151.0 0.338	40070 0070 0070 0000	7.250 7.130 2.890 2.470 2.080 1.650 3.950 2.220 1.930 0.051 0.061
493 637.0 26.0 1125.0 1170.0 160.0 0.388	391	6.990 2.530 2.270 1.440 3.170 2.330 1.740 0.063
639.0 24.0 1125.0 170.0 170.0 155.0 0.388	60.00 00.00 00.00	7.340 6.580 2.960 2.360 1.500 3.600 2.320 1.760 0.025
A :		
PUN NUMBER PC (PSIA) ALT (MU HG PO2 (PSIA) PH2 (PSIA) TO2 (F) TH2 (F) DO2 (IN)	TRANSD 000 000 000 000 000 000	0008 00010 00110 00111 0015 0017 0023
- 2	27 - SD73	-SA-0061

RUN SERIES 19, LOG 19.2 CASE

9A 632.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

MIXTURE RATIO ---- 5.00 INTERSTAGE ----- OFF

NOMINAL STEADY STATE WITH 0.8 DEGREES PITCH OR YAW P. EM ARKS:

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

													:						
164	637.0	27.0	1125.0	1170.0		151.0	38	0.335	ER CUTPUT	<u>1</u> -S	0.135	0.276	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1	0.095				
464	634.0	26.0	1125.0	1170.0	165.0		0.388	0.335	TRANSDUCER	BTU/S0-F	0.092	0.323			0.052				
495	621.0	. 27.0	1125.0	1170.0	165.0	151.0	0.388	0.335				0.278		0.080	1 1				
767	616.0	24.0		1170.0	165.0	151.0	0.388	0.335			0.117	0.222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.065					
493	637.0	Š	1125.0	1170.0	0	160.0	0.388	0.335.			13	0.248	0.13	1 1	† † ! !	:			
492	639.0	24.0	1125.0	1170.0	170.0	155.0	0.388	0 - 3 3 5			0.091	0.242	11	1 1 1	; ; ; ;				
AUM NOMBER			POS (PSIA)		T02 (F)	1TH2 (F)	(NI) ZOG22	_	TRANSDUCER	10	9400	0046	S 2111A		0120 A	SA	-00	D6:	L

	-
	1
	1
	!
	į
_	. (
	(

3 5.50	AGEON
MIXIUKE KATIC	LA INTERSTAGE
ži h	Sd 0.
CIMBAL PALLEKN	NOWINAL PC 715

REMARKS: NOMINAL STEADY STATE WITH 0.8 DEGREES PITCH OR YAW DEFLECTIONS RUNS. 536-541 LOG A AND RUNS. 548-550 LOG AB... ALSO SEE LOG 19-2-28

NORMALIZED TEST DATA

:

										,					,															
S	74.	26.	1270.0	20.	161.	59.	.39	.33			.45	.36	• 18	. 28	3.610	• 18	. 56	1	.82	•14	. 52	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		1	. 18	. 26	:	.62	
4	95.	24.	1270.0	20.	162.	60.	.39	.33	i	:	.80	• 15	.75	1	3.620	.72	0.0	1	.92	.98	.48	1	! ! !	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	.67	. 22		.61	
4	58	25.	1270.0	20.	157.	57.	.39	.33	:		.12	.70	.55	.74	3.620	•10	. 55	.12	• 70	1	.22	1	 	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	! ! !	j	2	•	3	
4	.66	25.	1270.0	20.	160.	59.	•39	.33	C)	SF	.83	0.50	6.97	.33	3.780	.82	.70	.74	1	1 1 1	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!!!!!!!!!		† ! !	1	 - - -	0.690	1	
4	88	20.	1270.0	20.	158.	58.	•39	.33	RANSDUC	TU/50-F	•65	.32	.68	.10	3,350	1	1	17	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1		1	36	. 15	1	.68	1.320	1	
m	93.	24.	1270.0	20.	159.	63.	•39	.33	- : :	S	• 85	.80	.89	.72		.13	• 05	• 46	1	} 	1.	.12	.30		•15	1	.29	1.160	1	
\sim	•66	25.	1270.0	20.	159.	62.	•39	.33			. 75	.10	.61	.86	5.050	• 56	• 56	• 15	1	1	1	.18	.27	1.400	.16	1	1		1	
53	5	-	1270.0	220.	57.	6	• 39	• 33			.20	• 65	.20	.48		• 10	• 64	.76	1	1	1	81.	96.		. 18	ļ	.63	0.448		
53	7	25.	1270.0	220.	60.	~	• 39	. 33	 		01.	• 30	.00	.81	3,540	• 45	• 15	- 53	1	1	1 1 -	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	1 1 1-1	161.0	1 1	1	1	 	
		<u>-</u>		:					ı						•															
E	۷	I.	(PSIA)	SIA	(F)	(F)	(ZI)	7			00	00	00	0	0	01	0	0	02	05	02	02	02	02	02	03	03	0040	0.5	
NO.	ပ	_	PŪ2	I	C	I	0	-	<	_	•		_	-	•				. - 0				_	_	_	•	_	~	المية	

CASE ------ RUN SEPIES 19, LOG 19, 2, 2A & AB

5.50 MIXTURE RATIO --715.0 PSIA NOW INAL PC -----GIMBAL PATTERN ---

REMARKS: NOMINAL STEADY STATE WITH 0.8 DEGREES PITCH OR YAW DEFLECTIONS 536-541 LOG A AND RUNS 548-550 LOG AR SEE LOG 19.2.28 ALSO RUNS

NORMALIZED TEST_DATA

(CONTINUED FROM PRECEDING PASE)

1							•			
Z ○ œ	RUN NUMBER	536	537	538	539	540	145	548	249	52
		6777.0	755.0	0.669	693.0	688.0	0.669	658.0	695.0	674.
ALT			27.0	25.0	24.0	20.0	25.0	25.0	24.0	26.
P02		1270.0	1270.0	1270.0	1270.0		1270.0	1270.0	1270.0	1270.
PH2		1220.0	1220.0	1220.0	1220.0	1220.0	1220.0	1220.0	1220.0	1220.
102	(F)	160.0	157.0	0.651	159.0	158.0	160.0	157.0	162.0	161.
TH2		157.0	159.0	162.0	163.0	158.0	159.0	157.0	160.0	159.
200 23 0		0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.39
орно Орно		338	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.33
TRA	TRANSDUCER					TRANSDUCER	ER OUTPUT TESEC	-		
	01108	1.270	1.730	; ; ;	!	730-11-50 (010		1.010	1.060	1.17
_	01118	1 1	 	0.850	0.970	† † †	!!!	1	1	
SD	01128	1.	1 .		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	165.0	1.090	1		f
73										

2

CASE _______ RUN SERIES_19. LOG 19.2.2B

GIMBAL PATTERN --- 98 MIXTURE RATIO ---- 5.50 NOMINAL PC ---- 715.0 PSIA INTERSTAGE ----- ON

REMARKS: NOMINAL STEADY STATE DEFLECTION WITH 0.8 DEGREES PITCH OR YAW ALSO SEE LOG 19.2.24 & AB

53 688 25.	1220.0	.80 .60 .76	6.600 4.270 3.970 2.370 0.024 0.190	32
53 656. 28. 270.	1220.0 155.0 161.0 0.398	0UT SEC • 15 • 60	6.290 3.460 3.460 2.420 0.031 0.059	18 32 32 37 24
53 680. 27.	1520.0 152.0 154.0 0.398.	NSDUC U/SQ- •960 •750	6.500 3.540 2.700 0.098 0.169 0.191	29.12.47.47.23
53 685. 27.	1220.0 155.0 156.0 0.398	. 89 . 15	7.290 3.650 3.130 2.450 	21.32.32.16.16.21
53 685. 27.	1220.0 160.0 158.0 0.398	. 57 . 53	3.770 3.220 4.540 2.740 0.027	
53 695. 27.	1220.0 153.0 156.0 0.398	.29 .41	2.360 3.110 3.870 2.250 0.074 0.113	22 29 11 11 26 26 26 26 26 26 26 26 26 26 26 26 26
52 676. 26. 270.	1520.0 154.0 159.0 0.398.	86 95 49	5.480 4.510 3.350 1.870 0.0137	300
UN NUM C (PSI LT (MU		S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000 00000000

CASE ------ RUN SERIES 19, LOG 19,2,28

715.0 PSIA INTERSIAGE ---- 5. GIMBAL PATTERN --- NOMINAL STEADY STATE DEFLECTION WITH 0.8 DEGREES PITCH OR YAW & AB REMARKS: ALSO SEE LOG 19.2.2A

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

-	FRANSDUCER DUTPUT	TRANSDUCER DUT					TRANSDUCER
0.335	0.335	0.335	0.335	0,335	0.335	0.335	DH2 (IN)
0.398	0.398	0.398	0.398	0.398	0.398	0.398	002 (IN)
	161.0	154.0	156.0	158.0	156.0	159.0	H2 (F)
	155.0	152.0	1.55.0	160.0	153.0	154.0	.02 (F)
1220.0	1220.0	_	1220.0	1220.0	1220.0	1220.0	7H2 (PS[A)
1270.0	1270.0	_	1270.0	1270.0	1270.0	1270.0	02 (PSIA)
25.0	28.0		27.0	27. 0	27.0	26.0	ILT (MU HG A)
688.0	656.0	0.089	685.0	685.0	695.0	676.0	(PSIA)
535	534	533	532	531	530	529	LON NOMBER

		1	
	0.112	0.198	
	0.165	0.360	ġ
	0.100	0.317	5.4130 3.5.5.C
:::::::::::::::::::::::::::::::::::::::	1400	0043	g 0052

CASE ----- RUN SERIES 19, LNG 19.2.3A

MIXTURE RATIO ----GIMBAL PATTERN --- 98 NOMINAL PC ---- 715.0 PSIA NOMINAL STEADY STATE WITH 0.8 DEGREES PITCH OR YAW REMARKS: ALSO SEE LOG 19.2.3R

									the																		
50.00	27.	285.	35.	158.	62.	•39	.33		ER DUTP	T-SEC	œ	1 1 1	1 1 1 1	•			•			•		0.038			•	 	1
R(C	26.	85.	235.	0	58.	.39	• 33		RANSDUC	BTU/SQ-F	5.850	8.900	.82	19.	1	.38	.20	.93	.07	.11	.21	0.037	• 05	0.750	1 1 1	!!!!!!!	1 1
545 699.0	24.	285.	35.	157.	59.	• 39	• 33		•	•	0	8.040	6.	4.	4	•	φ.	3	0	† † † † † † † † † † † † † † † † † † † †	1	0.039	•	0.700	† { !	0.085	1
η Ο	25.	85.	235.	3.	56.	.39	• 33				55	9.250	11	19	12	31	83	ς; 30	07	60	2.1	04	90	72	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	0.105) ! !
543 687.0	24.	85.	235.	&	56.	•39	• 33		!		• 38	7.160	• 55	1 1 1	• 16	_	• 78	• 25	•06	11.	.21	.03	• 05	0	1 1 2 3	1 1	0.048
5 ~	23.	85.	235.	•	60.	•39	• 33		:::		.70	9.790	01.	.83	.72	.42	.98	.63	• 05	.12	19	.03	.05	.73	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1	0.015
(PSIA)	_ (M) T	2 (PSI	2 (PS	2 (.	-) 20	OH2 (IN)	23	MEANSDUCER	01	0005	6000	6000	0100	Œ	71 00	œ	Œ	C)	C	G :	0031	0032	0054	2	01218	.01228

CASE ----- RUN SERIES 19, LDG 19.2.3B

5.50	OFF.
MIXTURE RATIO	INTERSTAGE (
дв	715.0 PSIA
GIMBAL PATTERN	NOWINAL PC

NOMINAL STEADY STATE WITH 0.8 DEGREE PITCH OR YAW DEFLECTIONS REMARKS: ALSO SEE LOG 19.2.3A

CASE ------- RUN SERIES 19, LOG 19.2.38

MIXTURE RATIO --GIMBAL PATTERN ---

NOMINAL STEADY STATE WITH O.8 DEGREE PITCH OR YAW DEFLECTIONS REMARKS: ALSO SEE LOG 19.2.34

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

528	695.0	26.0	1285.0	1235.0	157.0	162.0	0.398	0.335
527	708.0	27.0	1285.0	1235.0	160.0	158.0	0.398	0.335
528	703.0	28.0	1285.0	1235.0	162.0	156.0	0.398	0.335
525	713.0	27.0	1285.0	1235.0	157.0	157.0	0.398	0.335
524	0.669	27.0	1235.0	1235.0	163.0	161.0	0.398	0.335
523	680.0	26.0	1285.0	1235.0	161.0	161.0	0.398	0.335
ON NUMBER	(PSIA)	LT (MU HG_A)	02 (PSIA)	H2 (PSIA)	02 (F)	H2 (F)	ü2 (IN)	DH2 (IN)
ã	ā	A	ā	ā	Ē.	- Z	235	<u> </u>

TRANSDUCER OUTPUT BTU/SQ-FT-SEC 3.170 3.46 3,930 2.880 2.340 4.780 TRANSPUCER 1D 2052

M	
•	
σ. ⊶:	
9	
`نـــ	
19. LUG	
_	
S,	
<u> </u>	
X.	
N X	
Z. D.	
•	
ı	
!	
1	
į	
ľ	
<u> </u>	
i	
i 	
•	
ASI	
ڒ	

5.00	ÜFF
ATIO	
MIXTURE RATIO	PSIA INTERSTAGE
98	632.0 PSIA IN
1	
GIMBAL PATTERN	NOW IN AL PC

NOMINAL STEADY STATE WITH 0.8 DEGREES PITCH OR YAW REM ARKS:

NORMALIZED TEST DATA

į

<u>;</u>	
505 622.0 25.0 1125.0 1170.0 169.0 153.0 0.388	ER OUTPUT 3.080 5.920 8.820 6.360 7.240 7.240 7.240 3.160 3.160 3.160 2.480 2.480 2.480 0.080
504 615.0 24.0 1125.0 1170.0 167.0 151.0 0.388	18 ANSOUC 810/SO-F 5.670 8.230 7.140 0.041 7.080 6.300 2.720 3.580 3.680 2.450 1.960 1.960 1.960 0.087 0.087
503 616.0 20.0 1125.0 1170.0 170.0 150.0 0.338	2.290 2.290 5.950 6.250 0.041 7.570
502 623.0 27.0 1125.0 1170.0 169.0 151.0	3.100 5.520 7.160 7.820 0.041 7.150 6.640 6.910 7.150 7.150 7.150 7.150 7.150 7.150 7.150 7.150 7.150 7.150 7.150 7.150 7.150
501 650.0 24.0 1125.0 1170.0 171.0 150.0 0.338	3.070 5.240 6.940 6.940 7.150 6.260 3.230 2.230 2.230 1.370 0.062 0.081
500 650.0 25.0 1125.0 1,70.0 162.0 147.0	4.260 6.350 6.650 0.042 6.100 7.000 7.000 7.000 7.150 7.150 7.150 7.150 7.150 7.150 7.150 7.150 7.150 7.150 7.150 7.150 7.150 7.150
RUN NUMBER PC (PSIA) ALT (MU HG A) PD2 (PSIA) TD2 (F) TH2 (F) TH2 (F)	- TRANSDUCEP 1D 0001 0002 0003 0004 0004 0001 0011 0011 0015 0016 0017 0019 0023 0024

CASE ------ RUN SERIES 19, LUG 19,3

GIMBAL PATTERN 98 MIXTURE RATIO 5.00 NOMINAL PC 6.32.0 PSIA INTERSTAGE OFF		•
AL PATTERN 98 NAL PC 632.0 PSIA INTERSIA	5.00	OFF
AL PATTERN 98 NAL PC 632.0 PSIA INTERSIA		
AL PATTERN 98 NAL PC 632.0 PSIA	IXTIJRE RA	MIERS IA
AL PATTE		632.0 PSIA I
	DATTERN	NAL PC -

NOMINAL STEADY STATE WITH 0.8 DEGREES PITCH OR YAW REMARKS:

NDRMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

505	.622.0	- 1	1125.0	1170.0		153.0	0.388	0.335	TRANSDUCER OUTPUT	T-SEC	0.117
504	615.0	24.0	1125.0	1170.0	167.0	151.0	0.388	0.335	TRANSDUC	BTU/SQ-FT-SEC	0.153
503	616.0	20.0	1125.0	1170.0	170.0	150.0	0.388	0.335			0.013
505	623.0	27.0	1125.0	1170.0	169.0	151.0	0.388	0.335			0.094
501	650.0	24.0	1125.0	1170.0	171.0	0.051	0.388	0.335			0.119 0.112 0.094
200	650.0	. 25.0	1125.0	1170.0	162.0	147.0	0.388	0.335			0.119
RUN NUMBER	PC (PSIA)	. ALT (MU HG. A)	POZ (PSIA)	PH2 (PSIA)	,T02 (F)	TH2 (F)	(NI) 2003		TRANSDUCER	01	0044

TRANSDUCER DUTPU	T-SEC 0.117	0.435	1 1 1 .	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	0.070	
TRANSDUC	BTU/SQ-FT-SEC 0.153 0.13	0.455	1	1 1 1	0.072	
		0.390	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.117	1	
	0.094	0.370			 	
	0.112	0.405	.0.236	† † †	1 1	
	0.119	0.501	0.273	1 1 1 1	1	
TRANSDUCER	0044	0046	01108	01113	, 0112B	

RUN SERIES 20, LOG 20,1,1 AND LOG 20,1,2 CASE -----

MIXTURE RATIO ---- 5.50 INTERSTAGE ----- OFF 28 715.0 PSIA GIMBAL PATTERN ---NOMINAL PC -----

REMARKS: EFFECT OF NUTBOARD ENGINE OUT ON BASE REGION HEATING RATES NUMBER 3 ENGINE DUT LOG 20.1.1 RUNS 551-558, LOG 20.1.2 RUNS 571-576

NORMALIZED TEST DATA

~	27.	27.	260.	45.	153.	63.	.36	0.291				2.620	1			4.510	.36	- 1	1 1 1	0.940	1	1:	6.380	i		45	00.	0.001	0.01	
-	10.	29.	260.	45.	157.	59.	.36	0.291			•	œ			•5	38	1 1	1	1 1 4 1 1	1.540	1	1 1 1	1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 - 2 - 1	.39	00		1) 1 2
7	19.	4	260.	45.	160.	56.	.36	0.291				4	1	1	.42		• 69	1 1			1	1	11.600	1	1	.51	• 00	0.001	• 02	
5	25.	25.	260.	45.	156.	61.	• 36	0.291				Ì	5.300	70	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!	1	7.890	1	† 	6	3,010	1	.01		ı	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 ! ! ! ! ! !	0.069
S	24.	26.	0	345.	160.	63.	.36	0.291				! ! !	.2	82	!!!!!	1	 	9.210	1	† † †	6.	2.920		• 00	64	-	1 1 5	! ! ! !	!!!!!!!	1 1
5	30.	25.	1260.0	345.	153.	60.	0.36	0.29		EK UNIPUI				• 58	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	16	ļ	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	.85	3.340	1	80		1	1	1 1 1		0.047
5	34.	27.	1260.0	345.	160.	.09	.36	•29	6	KANSOUC	-FT-SEC	ļ	4.700	00	1		1 1 1	9.150	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	•62	2.510	1	•29	99.	1	1 1 1	1 1 1	ı.	0.071
S	00	26.	.09	345.	160.	56.	.36				TU/SQ	1 1	. 73	.47	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1		.77	1	.76	.89		.20	.82	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	 	0.093
S	33.	27.	60 •	345.	60.	57.	• 36	0.291				-	15	44.	!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1		.32	1	.82	• 69	1	.32	.88	1	1 1 1	ŀ	İ	0.081
5	28.	29.	.09	345.	62.	56.	.36	0.291				1 1 1	.46	-	ŀ	1 1	1 1 2 1		75	1	.34	1	1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	2.810	1 1 1	† ! !	1 1 1	 	† † †
55	22.	25.	0	345.	56.	56.	.36	• 29				1 1 1 1	! ! !	090•9	1 1 1	1 1	1	8.650	.50	ı	• 76	.42	1	• 56	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1 1	!!!!!	1 1 1 1	
N NUMB	(DSIA)	H OW) H	POS (PSIA)	2 (PSIA	2 (F	2 (F)	2 (1	2 (IN	•	Z Z	—	0	0	0	00	00	00	0	00	00	00	00	00	C	O	0	0	0021	0	0

(TABLE CONTINUED ON THE NEXT PAGE)

RUN SERIES 20, LOG 20.1.1 AND LOG 20.1.2 CASE -----

MIXTURE RATIO ---- 5.50 INTERSTAGE ---- OFF NOMINAL PC ---- 715.0 PSIA GIMBAL PATTERN ---

EFFECT OF DUTBOARD ENGINE OUT ON BASE REGION HEATING RATES NUMBER 3 ENGINE DUT LOG 20.1.1 RUNS 551-558, LOG 20.1.2 RUNS 571-576 REMARKS:

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

573 27.0 27.0 1260.0 1345.0 153.0 0.361 0.291 0.022	
572 710.0 29.0 1260.0 1345.0 157.0 0.361 0.291	
571 24.0 24.0 1260.0 1345.0 160.0 0.361 0.291 0.027	10.
558 725.0 25.0 1260.0 1345.0 156.0 0.361 0.291 0.038	02
557 724.0 26.0 1260.0 1345.0 163.0 0.361 0.279 0.044 0.094	
556 730.0 25.0 1260.0 1345.0 153.0 160.0 0.361 0.291 ER OUTPUT 0.073 0.073	.03
555 734.0 27.0 1260.0 1345.0 160.0 0.361 0.291 0.224 0.038 0.081	[]
554 700.0 26.0 1260.0 1345.0 160.0 156.0 0.361 0.291 0.070	
553 733.0 27.0 1260.0 1345.0 160.0 157.0 0.361 0.253 0.077 0.077	
552 728.0 29.0 11260.0 1345.0 162.0 0.361 0.291	1 1 1 1
551 722.0 25.0 1360.0 1345.0 156.0 0.361 0.291 0.063 0.074	
RUN NUMBER PC (PSIA) PDC (PSIA) P	111111111111111111111111111111111111111

(TABLE CONTINUED ON THE NEXT PAGE)

	CASE	RUN SERIES 20. LOG 20.1.1 AND LOG 20.1.2
	GIMBAL PATTERN NOMINAL PC	28 MIXTURE RATIO 5.50 715.0 PSIA INTERSTAGE OFF
MBER 3	REMARKS: EFFECT OF 3 ENGINE DUT	: EFFECT OF OUTBOARD ENGINE OUT ON BASE REGION HEATING RATES

NUMBER 3 ENGINE DUT LOG 20.1.1 RUNS 551-558, LOG 20.1.2 RUNS 571-576

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

	TRANSDUCER OUTPUT RTU/SQ-FT-SEC	
576 739.0 27.0 1260.0 1345.0 158.0 153.0 0.361	4.240 4.140 4.970 7.810	10.500 7.750 0.001 0.001
575 744.0 25.0 1260.0 1345.0 159.0 0.361	2.790	1.840 7.910 7.980 0.001
574 754.0 23.0 1260.0 1345.0 163.0 160.0 0.361	4.050 3.900 3.560 7.580	1.100 10.200 7.590 0.003 0.001
PUN NUMBER PC (PSIA) ALT (MU HG A) PO2 (PSIA) PH2 (PSIA) TO2 (F) TO2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F)	TR ANS DUCER 00003 CO 0000 0000 0000 0000 0000 0000	

------ RUN SERIES 20, LOG 20.1.1 AND LOG 20.1.2

CASE

28 MIXTURE RATIO ---- 5.50 715.0 PSIA INTERSTAGE ----- DEF NOM INAL PC ----GIMBAL PATTERN ---

REMARKS: EFFECT OF OUTBOARD ENGINE OUT ON BASE REGION HEATING RATES

NUMBER 3 ENGINE OUT LOG 20.1.1 RUNS 551-558, LOG 20.1.2 RUNS 571-576

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

					•			
739.0	27.0	1260.0	1345.0	158.0	153.0	0.361	0.291	
744.0	25.0	1260.0	1345.0	159.0	156.0	0.361	0.291	
754.0	23.0	1260.0	1345.0	163.0	160.0	0.361	0.291	
	A							
(PSIA)	ALT (MU HG							TPANCHICED
	754.0 744.0 73	(PSIA) 754.0 744.0 73 (MU HG A) 23.0 25.0 2	754.0 744.0 73 A) 23.0 25.0 2 1260.0 1260.0 126	754.0 744.0 73 A) 23.0 25.0 2 1260.0 1260.0 126 1345.0 1345.0 134	(PSIA) 754.0 744.0 73 (MU HG A) 23.0 25.0 2 (PSIA) 1260.0 1260.0 126 (PSIA) 1345.0 1345.0 134 (F) 163.0 159.0 15	(PSIA) 754.0 744.0 733	(PSIA) 754.0 744.0 733 (MU HG A) 23.0 25.0 2 (PSIA) 1260.0 1260.0 126 (PSIA) 1345.0 1345.0 134 (F) 160.0 156.0 15 (F) 160.0 156.0 15 (IN) 0.361 0.361 0.361	(PSIA) 754.0 (MU HG A) 23.0 (PSIA) 1260.0 (FSIA) 1345.0 (F) 163.0 (F) 160.0 (IN) 0.361

TRANSDUCER DUTPUT BTU/S0-FT-SEC

•			1 1 1	† 	0.015	1 1 1	1 1 1	0.048	0.110	0.001		1 1 1	1 1 1	 	1 1 1	1 1 1
			1 1 1	1 1 1	0.019	1 1 1 1	1 1 1	0.029	960.0	0.001	1 1 1 1		1 1 1	1 1 1	1 1 1	1 1 1
		-	† † †	1 1 1	0.020	1	1 1 1 1	0.031	0.103	0.001	1 1 1	 	1 1 1	1 1 1	0.098	1 1
	TRANSDUCER	10	0024	0025	0030	0031	9032	0034	0035	0038	0044	Q110A	0111A	0112A	0121A	0122A
-	1				S	D7 :	3-:	SA	-0	06:	1	•				

CASE ----- RUN SERIES 20, LOG 204-1,2

MIXTURE RATIO ---- 5.5 INTERSTAGE ----- OFF 715.0 PSIA 28-MOD GIMRAL PATTERN ---NOW INAL PC ----

REMARKS: EFFECT OF OUTBOARD ENGINE OUT ON RASE REGION HEATING RATES 3 ENGINF OUT. MODIFIED GIMBAL PATTEPN 2B IS THE SAME AS 2B EXCEPT THAT THE INOPERATIVE NUMBER 3 ENGINE OUT. MODSENGINE IS ALSO GIMBALLED

NORMALIZED TEST DATA

587 742.0 27.0 1260.0 1345.0 162.0 0.361 0.291	TRANSPUCER DUTPUT BTU/SQ-FT-SEC 4.760 4.200 3.720 6.740 1.310 8.960 0.001 0.027 0.101 0.126 0.028 0.032 0.032
586 730.0 26.0 1260.0 1345.0 163.0 156.0 0.361	2.700 6.460 0.820 8.590 0.001 0.013 0.103 0.103 0.023
585 708.0 27.0 1260.0 1345.0 156.0 0.361	4.260 3.600 4.250 5.490 1.520 0.001 0.001 0.033 0.010
584 736.0 22.0 1260.0 1345.0 161.0 160.0 0.361	4.590 4.220 8.670 0.830 7.770 0.001 0.019 0.022 0.022
583 731.0 20.0 1260.0 1345.0 160.0 0.361	3.490 3.570 3.940 6.480 9.020 0.001 0.019 0.129 0.046
· •	:
PUN NUMBER PC (PSIA) ALT (MU HG PO2 (PSIA) TO2 (F) TH2 (F) TH2 (F)	\$2000 \$2000 \$2000 \$2000 \$200 \$200 \$200

.

----- RUN SERIES 20, LOG 20.2.1 AND LOG 20.2.2

MIXTURE RATIO --- 5.50 INTERSTAGE ----- ON GIMBAL PATTERN --- 28 NOMINAL PC ----- 715.0 PSIA GIMBAL PATTERN ---

REMARKS: EFFECT OF OUTBOARD ENGINE OUT ON BASE REGION HEATING RATES NUMBER 3 ENGINE OUT AND INTERSTAGE ON. INTERSTAGE 'A' GAGES AT 29, 'B' GAGES AT 0 DEGREES LOG 20.2.1 RUNS 559-564, LOG 20.2.2 RUNS 565-570

9	729.0	24.0	1260.0	1345.	157.0	157.0	0.361	0.291				.58	16.	1	• 99	4.070	.80	1	ı	80		85	.02	.02	. 12		† † -	!	0.108	1	
568	730.0	27.0	1260.0	1345.0	162.0	160.0	0.361	0.291				.50	.47	!	.92	4.270	.85	!	!!	S	1	1	.02	0.025	11.	1			990.0	1	
•	51.	28.0	260.	45.	155.	56.	.36	.29				11.	78	!	.95	4.740	-	1 1 1	ł	.57	1	8.600	• 03	.03	.13	1	1 1 1	1 1 1		1	
566	723.0	25.0	26	1345.0	15	157.0	0.361	0.291				• 28	• 48	1	.80	4.300	• 28	-		40	1	8.290	.01	.02	• 14	1	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!!!!!!!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	
9	35.	25.0	260.	45.	156.	56.	.36	• 29				.31	. 75	1	.45	5.190	• 65		1	7	1		1	0.009	.13	1	1	1	0.063	İ	
56	19.	22.0	260.	45.	159.	61.	.36	0.29		ER OUTPU	-SEC	Ì	1	4.100	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	1	• 74	.57		. 26		† † † †	!!!!	1	.38	74	009.0	-	1.700	
9	15.	25.0	260.	45.	156.0	58.	.36	.29		TRANSDUCE	TU/SQ-F	-	1	7	 	1		.82	.32	1	59	1	† † †	!	1	.11	98	0.730	1	1.200	
9	6	24.0	260.	5.	158.	67.	• 36	0.29			•	!!!!	† †	• 56	İ		1	• 2		!	• 14	1	1	!	1	.18	.45	0.680	1	. 70	
9	4.	20.0	260.	Š.	160.	60	. 36	• 58				1 1 1	1	3.390	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	69.		1	.37	1 1 1 1	1 1	 		•62	• 06	0.630	1	1.500	
9	35.	27.0	60.	345.	61.	63.	•36	• 29				i i i	1	4.070		1	1	• 50	3.900	1	3.040		!!!	!!!!!!	1 1 1	9	1	0.970	: : : :	; ; ; ;	
55	6		60.	345.	63.	56.	•36	• 29				1 1 1	1	Ō	 		İ	7.720	1 1 1	1 1 1	3.340		1 1 1	1 1 1		1.670	i	019.0	1	1.200	
UN NUMB	C (PSIA)	ALT (MU HG A)	02 (PSIA	HZ (PSIA	02 (F	H2 (F	02 (1	H2 (IN		ET PANS DUCER	<u> </u>	00	00	00	00		000	000	001	001	001	0	005	02	02	02	02	02	03	03	

RUN SERIES 20, LOG 20.2.1 AND LOG 20.2.2 CASE -----

MIXTURE RATIO ---- 5.
INTERSTAGE ----- ON 28 715.0 PSIA NOW IN AL PC -----GIMBAL PATTERN ---

REMARKS: EFFECT DF OUTBOARD ENGINE OUT ON BASE REGION HEATING RATES NUMBER 3 ENGINE OUT AND INTERSTAGE ON. INTERSTAGE 'A' GAGES AT 29, 'B' GAGES AT 0 DEGREES LOG 20.2.1 RUNS 559-564, LOG 20.2.2 RUNS 565-570

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

•	729.0	4	260.	45.	157.	57.	•	• 29	٠.		! !]) 	1 1 1	;	1 0 0	!	•	} 	} † !	1.320	1	; ; !	!!!	
•	0	7.	260.	45.	162.	60.	36	•			1	† † † †	†*	1	1 1	1 1	1.330	1 1 1	0.140	1 1	1.120	- 1	0.370	1	1
9		28.	260.	45.	155.	56.	9	• 29			!		1 1	1 1 1	1	1 1 1	1.450	1 1 1	0.170	-	0.520	1 1 1	1 1 1	1 1 1	
•		25.	260.	45.	157.	57.	9	• 59			!!!!!	!!!!!!	1 1 1	1 1 1	1	0.390	 	1 1 1	0.130	1 1 1		 	0.560		!
9	5	25.	260.	45.	156.	56.	9	• 29			1 1		1 1	1 1 1	!!!!!!	0.540	1	1 1 1	0.070	- i	0.660	1	0.770		!!!!!!!
•	6	22.	• 09	345.	59.	61.	9	• 29	œ	T-SEC	. 26	0.360	.24	1 1	1 1 1	f 	!!!!!!!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		0.320	1 1 1	3	1	• 05	0.810
9		25.	60	345.	56.	58.	9	• 29	RANSDUC	1-05/	1.90	0.490	.35	-	1 1	1 1 1 1	 - - -	!!!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	0.310	1 1	1.740	!	.62	0.760
9	6	24.	60.	345.	58.	67.	.36	9	·		.870	0.150		• 33		 	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		ŧ	7	İ			_	1 1
-0		20.	60.	345.	60 •	60.	36	• 29			.40	• 43	† † †	•29	1 1 1	 	 	i i i	1 1 1	0.380	1 1 1	2.040	•	0	0
9		27.	60	345.	61.	63.	9	• 29			.34	0.320	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	0.370		1 1 1	1 1 1	1	5.	1	1.890	ļ	6.	066*0
5	729.0	23.	60	345.	63.	56.	9	•29			099.0	1	1 1 1	: : :	0.350	1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	1 1 1 1	0.450	1 1 1	1.360		2.450	1 1 1
		(V																							
NUMB	(PSIA)	⊃ x.	(PSIA	(PSIA			ZI		S.		03	940	110	111	112	120	0121A	122	26	26	27	27	28	28	59
N N	PC	AL 1	P03	PH2	_	2H2	_	- DH2	TRA				5	SD7	73-	-S <i>I</i>	i –0	00	51	•					

(TABLE CONTINUED ON THE NEXT PAGE)

CASE

MIXTURE RATIO GIMBAL PATTERN ---NOW IN AL PC

715.0 PSIA

5.50 ON INTERSTAGE _____

DEGREES 0 REGION HEATING RATES 'B' GAGES AT AT 29, NUMBER 3 FNGINE DUT AND INTERSTAGE DN. INTERSTAGE 'A' GAGES LOG 20.2.2 RUNS 565-570 EFFECT OF DUTBOARD ENGINE OUT ON BASE REMARKS:

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

RUN NUMBER PC (PSIA) ALT (MU HG A) PD2 (PSIA) PH2 (PSIA) TO2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F) TH2 (F)	1000

TRANSDUCER DUTPUT BTU/SQ-FI-SEC

> 8.110 11:100 7.980 0.039 2.410 3.510 3.930 ----1 1 1 -1 1 1 1 0.022 0.093 1111 ----1 1 1 0003 0100 6100 0020 0024 0002 4000 9000 0008 6000 0015 9017 9022 9023 0025 0021 0030 SD73-SA-0061

~
•
20.2.2
0
106
_
2
٩
_
•
20.2.1
907
\Box
20,
~
S
ш
α.
SF
SON
œ.
1
į
-
i
İ

CASE

INTERSTAGE ----- ON ! MIXTURE RATIO 715.0 PSIA 29 NOWINAL PC -----GIMBAL PATTERN ---

NUMBER 3 ENGINE DUT AND INTERSTAGE DN. INTERSTAGE 'A' GAGES AT 29, 'B' GAGES AT 0 DEGREES EFFECT OF OUTBOARD ENGINE OUT ON BASE REGION HEATING RATES 559-564, LUG 20.2.2 RUNS 565-570 REMARKS: LOG 20.2.1 RUNS

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

718.0 1260.0 1345.0 0.361 157.0 165.0 0.291 A SH UM) RUN NUMBER (PSIA) PSIA PC (PSIA) AL T 200 246 TH2 **2Hq** P02 **T02**

TRANSDUCER OUTPUT BTU/SQ-FT-SEC

TRANSDUCER

0032

A0110 0111A 01124 Q120A Q121A 0122A

4400

0.450 0.100

> 026A 0268

SD73-SA-0061

11111 1 1 0.880

---1111 1 1

0278

Q28A

027A

RUN SERIES 21, LOG 21.1 CASE ----- GIMBAL PATTERN --- 6A MIXTURE RATIO ---- 5.50
NOMINAL PC ---- 715.0 PSIA INTERSTAGE ----- OFF

REMARKS: EFFECT OF SINGLE ACTUATOR FAILURE INBOARD AT 3 DEGREES ON RASE REGION HEATING RATES

•	c	ľ	
ı		_	
	<	•	
,	-	:	
٩	•	-	
	-		
(/	7	
ι	į	ر	
ŀ	_	_	
,		•	
ì	-	4	
١		٠.	
r	۰	J	
	-		
	_	J	
٩	c	Ţ	
1	5	-	
c	Ý		
ř	-	٦	
:			
4	_	-!	

593 697.0 24.0 1285.0 1235.0 159.0	0.398 0.335 ER QUIPUT T-SEC	10.600 9.860 7.760 11.200 8.740 1.960 2.940 4.840	4.700 6.440 2.490 3.190
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		6.450 6.450 12.600 10.700 3.380 5.280	2.710 6.860 2.220 2.790
591 690.0 1285.0 1235.0 163.0	i	9.510 9.790 7.060 6.300 11.100 9.500 1.770 4.750	3.410
590 703.0 24.0 1285.0 153.0 153.0	66 . R.	8.150 8.510 6.170 12.200 9.670 1.380 2.800	
589 703.0 27.0 1285.0 160.0	9 K	7.700 7.050 7.050 5.320 11.800 10.660 2.240 2.950 5.510	
588 715.0 27.0 1285.0 158.0 158.0	33	7.260 6.810 6.583 10.600 2.990	4.260 6.370 2.620 3.410
₹ V	į		•
RUN NUMBER PC (PSIA) ALT (MU HG PO2 (PSIA) PH2 (PSIA) TO2 (F)	DUS DH2 DH2 TRANS	SD73-SA-00	0015 0015 0016 0017 0017
· :	- 247 - :	20/3-28-000	9 1 ;

RUN SERIES 21, LGG 21.2 CASE

5.50	NO
OI	
MIXTURE RATIO	INTERSTAGE
V V	715.0 PSIA
GIMBAL PATTERN 6A	NOMINAL PC 715.0 PSIA INTERSTAGE ON

EFFECT OF SINGLE ACTUATOR FAILURE INBOARD AT 3 DEGREES WITH INTERSTAGE

REMARKS:

A) 27.0 24. 1285.0 1285. 1235.0 1235. 162.0 156. 162.0 154. 0.398 0.39 0.335 0.33	25.0 1285.0 1235.0 158.0 157.0 36 0.338 35 0.335 36 0.335 37 0.335 38 0.000 7.920	26.0 1235.0 1235.0 162.0 156.0 0.398 0.335	27.0 85.0 35.0 55.0 55.0 .398 .335 750-F	25.0 1285.0 1235.0 160.0	۲.
35.0 1235 62.0 156 62.0 154 338 0.3 335 0.3	0 1235. 0 158. 0 157. 8 0.39 5 0.33 0 5.61 0 8.00	235 162 156 0.3 0.3 5.8	1235.0 153.0 155.0 0.398 0.335 TU/SQ-F	235. 160.	285.
62.0 154 338 0.3 335 0.3 .160 5.7	0 157° 5 0.33 5 0.33 0 3.00 0 8.00	170 m m	155.0 0.398 0.335 TU/SQ-F	62.	1235.0
.335 0.3 .335 0.3 .160 5.7	6 0.33 0.33 0.33 0.35 0.80 0.80	w w	0.335 0.335 TU/SO-F	i	62°
.335 0.3 .160 5.7	5 0.33 0 5.61 0 8.00	w &	0.335 RANSDUC TU/SQ-F	.39	39
.160 5.7 .920 7.8	0 5.61 0 8.00 0.87	8	RANSPUC TU/SQ-F	•33	• 33
.160 5.7 .9207.8	0 5.61 0 8.00 0.7.92	&	TU/SQ-		
.160 5.7 .9207.8	0 5.61 0 8.00 0 7.92	æ	0.7	w	
.920 7.8	0800		7	4	81
	7.92	0	.33	• 19	43
9.6 008.		1 1 1	• 14	• 19	02
.770 7.5	0 5.86	1 1 1 1	.14	• 19	•65
0.8 8.0	07.93	7.210	7.35	41	.54
.000 10.9	0 10.20	10.100	.10	• 90	.60
.600 10.2	0 8.10	1 1 1	0.40	.51	.21
.160 2.7	0 3.74	-	.20	1	.85
.100 3.7	0 2.43	4.100	.74	. 17	.42
.460 5.2	0 4.69		.20	19	•04
.100 2.7	02.59		. 56	.12	.33
.040 5.9	0 5.85	08.	.26	• 05	.40
.580 3.2	0		.37	!	.34
50 2.5	0 2.60	2.760		2.730	2.560
.340 3.0	0 3.26	• 04	• 04	.80	•04

5.50 INTERSTAGE ---- OFF MIXTURE RATIO ----715.0 PSIA **6**8 GIMBAL PATTERN ---

HEATING RATES. RUN 604 QUESTIONARLE DUE TO EARLY DIAPHRAGM BREAK AND EARLY BLAST WAVE RETURN REMARKS: EFFECT OF SINGLE ACTUATOR FAILURE OUTBOARD AT 3 DEGREES ON BASE REGION

	:			:		
69 691. 27.	1285.0 1235.0 162.0 158.0 0.398	•33 00T EC	000	0.081 0.180 0.006 0.047	0.01	.16
60 90. 24.	1235.0 1235.0 150.0 160.0	.33 NSD 7.89	00.00.00	0.190 0.190 0.009	0.05	.12
60 73. 25.	1285.0 1235.0 152.0 150.0 0.398	•335	00.00	0.083 0.202 0.004 0.029	.06 .01 .02	.19
60 17. 28.	1235.0 1235.0 160.0 155.0	•33		0.094 0.210 0.005	0.5	.12
60 22. 26.	1235.0 1235.0 163.0 158.0 0.398	33	000	0.093 0.186 0.018	.05 .06 .02 .03	12
- 60 01. 27.	1285.0 1235.0 162.0 162.0 0.398	33	01	0.092 0.188 0.011	.05 .05 .11	.55
N NU N (PS	PO2 (PSI PH2 (PSI TO2 (F) TH2 (F) DO2 (IN)	AN.S	0020 0021 0022 0023	\$500 \$500 \$500 \$500 \$500 \$500 \$500 \$500	0000	0044 0110 0111 0112

RUN SERIES_22. LOG_22.2 CASE -----

69 MIXTURE RATIO --- 5, T15.0 PSIA INTERSTAGE ---- 0N GIMBAL PATTERN --- EFFECT OF SINGLE ACTUATOR FAILURE OUTBOARD AT 3 DEGREES WITH INTERSTAGE REMARKS:

REGION HEATING RATES ON, ON BASE

union de la companya del la companya de la companya		•	0.	•	•		•	6	m		* * * * * * * * * * * * * * * * * * * *		09	~	2	3	_	9	w	4	8	4	58	6	7		1
T DATA	2 6	869 0	27	0 1285	0_1235	0 162	0 162	8 0.3	5 0.3	<u> </u>	- - -	7	46 0.0	8 0.	- 0.	0	- 0	•	- 1.	•	8 0.	- 0	· 0 · 9	7 0.	•		!
IZED TES	1 6	704	0 26	0 1285	0 1235	0 163	0 160	8 0.3	5 0.3		してになって	0.0	8 0.0	3 0.1	0	0. 1.2	0	5	0	0 0.1	4 0.2	5	4 0.6	0 0.17			;
NORMAL	9	704	0 27.	1285	1235	191	165	0.3	0.3	4	RTII/SO	0.0	C	0.1	1.0	1+2	0.3	0.1	1.1	0.2	0.5	♦. 0	0.4	0.3	0.3	İ	!
	61	687.	25.	1285.	1235.	160.	160.	0.39	0.33			0.02	0.09	0.24	0.92	1	0.45	0.20	1.16	0.30	0.18	0.53	0.40	0.27	!	0.38	1 1
	0	92.	27.0	285.	35.	158.	60.	.39	• 33			.02	0.055	.16	1	1	9.324	• 09	.23	•36	• 19	41	• 48	•	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	0.183	
	0	90.	27.0	285.	35.	163.	58.	939			:	• 04	0,040	. 18	. 78	1	1	14	• 34	14.	• 19	.57	.71	11.		1 1 1 1	0.135
****	0	2	25.0	285.	35	156.	56.	39	•33			• 05	0.121	• 13	.70	000	• 58	• 16	•29	ı	.21	~	• 66	3	1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	0.176
beld es a mai cale labeles de la c. a digmana administração de	Z	(PSIA		7	2 10	T02 (F)	TH2 (F)	DO2 (1N)	Ę		I KANSTOLER	\sim	4021	~	2	30°	005	005	005	305	003	003	3	ナ	_	\blacksquare	
and the second second second second second	Z	_	-	605 605	PH2	T02	TH2	1 002	ZH _U 25	C	4. A.	O	Ċ	С	œ		о D7						C		œ	O	O

FAILURES INBOARD ON				:			***					Minimal and the second of the case of the		: : : : : : : : : : : : : : : : : : : :			The same of a company way of the same of t					The state of the s								
CTUATOR		Α					; = ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					ISd NI	-			-	1						-					-		-
I L I M		ED TEST DAT	~	0	27.	85.	53	43.	.39	.33	α:	ü	•	1,	99•	60.	-20	. 20	. 92 . 53	.34	44.	00		. 53	522	• 15	• 20	52 52	.20	
ENV I RON		ORMAL 121	S	3	26.	85 K	55	55.	.39	.33	RANSOUC	TU/S	.03	.03	• 35	9.	30	• 4.3	• 42	.36	• 36	.73	0 0	.37	. 58	. 70	01.	.17	92	
LE WALL	**************************************	N	•	2.	25.	90 K	48	56.	•39	• 33	 		.03	.02	• 60	• 04	3.0	.50	• 80 0 1		\sim	9	ζ,		1	1 :	.46	• 92	.18	
NE NO		agan an registros. 't, , desaga	S C	0	24.	285. 225.	150.	60.	• 39	• 33			•03	• 03		1 1	99.	.33	.20	85	. 50	30	• 22	• 43	<u> </u>	. 20	• 20	• 42	• 43	
NTER EN	NE 4 AN		9	2.	23.	285.	153	56.	.39	• 33			.02	•02	• 43	• 66	gg	. 52	99.	1	.58	53	• 1 ¢	.27	.30	- 5. ·	55.5	50.3	.00	
S: C DEGR	TWEEN ENG		~	2.	23.	85°	50	59.	.39	• 533			 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 -	1 .	40	06.	1 1	.86	1	1 - 2 1 - 3 17	. / /	 - -		9.09	00.	80	- I	
4 ENGINE A	L GAGES B	dire replace and a second district and	NOW NO	C (PSIA	LT (MU	12d) 20	02 (F)	H2 (F	02 (1	H2 (I	RANS	_	0	O	0	0	0	0	\circ	0	0	0		0	0	0	0	oc	\circ	
	REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES NO 4 ENGINE AT 1.6 DEGREES	EMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES T 1.6 DEGREES ETWEEN ENGINE 4 AND 5	REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES NO 4 ENGINE AT 1.6 DEGREES ROW L GAGES BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA	REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA RUN NUMBER 625 665 667 668 669	REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUM NUMBER 625 666 667 668 669 PC (PSIA) 672.0 710.0 732.0 743.0 720.0	REMARKS: CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN NUMBER 625 665 666 667 668 669 PC (PSIA) 672.0 752.0 710.0 732.0 743.0 720.0 ALT (MU HG A) 23.0 23.0 24.0 25.0 26.0 27.0	REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN ENGINE 5 ROW L GAGES BETWEEN	REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUM NUMBER 625 665 666 667 668 669 RUN NUMBER 672.0 752.0 710.0 732.0 743.0 720.0 ALT (MU HG A) 23.0 23.0 24.0 25.0 26.0 27.0 POZ (PSIA) 1285.0 1285.0 1285.0 1235.0 1235.0 1535.0 153.0 153.0 153.0 153.0	REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUM L GAGES BETWEEN ENGINE 4 AND 5 RUM NUMBER 625 665 667 668 669 RUN NUMBER 623.0 23.0 23.0 24.0 25.0 26.0 27.0 POZ (PSIA) 1285.0 1285.0 1285.0 1285.0 1285.0 1285.0 1585.0 1593.0 1533.0 1533.0 1533.0 1533.0 1533.0 1533.0 1533.0 1533.0 1533.0 1533.0 1533.0 1533.0 1533.0 1553.0 1533.0 1533.0 1553.0 1533.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0 1553.0	REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN LOWBER 625 665 666 667 668 669 RUN NUMBER 672.0 710.0 732.0 743.0 720.0 ALT (MU HG A) 23.0 23.0 24.0 25.0 26.0 27.0 POZ (PSIA) 1285.0 1285.0 1285.0 1285.0 1285.0 1285.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0 1785.0	REMARKS: CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 NORMALIZED IEST DATA ROW NORMSER 625 665 666 667 668 669 PC (PSIA) 672.0 752.0 710.0 732.0 743.0 720.0 ALT (MU HG A) 23.0 23.0 24.0 25.0 77.0 POZ (PSIA) 1285.0 1285.0 1285.0 1285.0 TOZ (F) 150.0 153.0 1235.0 1235.0 153.0 THZ (F) 150.0 153.0 150.0 148.0 155.0 143.0 THZ (F) 159.0 156.0 160.0 156.0 155.0 143.0 DOZ (IN) 0.339 0.335 0.335 0.335 0.335	REMARKS: CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN L GAGES BETWEEN ENGINE 4 AND 5 RUN NUMBER 625 665 666 667 668 669 PC (PSIA) 672.0 752.0 710.0 732.0 743.0 720.0 ALT (MU HG A) 23.0 23.0 24.0 25.0 27.0 POZ (PSIA) 1285.0 1285.0 1285.0 1285.0 1285.0 TOZ (F) 150.0 153.0 1235.0 1235.0 1535.0 TOZ (F) 150.0 153.0 150.0 150.0 153.0 DOZ (IN) 0.335 0.335 0.335 0.335 0.335 TRANSDUCER OFFICE WALL ENVIRONMENT WITH ACTUATOR FAILURES NORMALIZED TEST DATA NORMALIZED TEST DATA NORMALIZED TEST DATA NORMALIZED TEST DATA NORMALIZED TEST DATA NORMALIZED TEST DATA NORMALIZED TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TEST DATA TE	REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN NUMBER 625 665 666 667 668 669 RUN NUMBER 625 665 666 667 743.0 720.0 RUN NUMBER 625 665 666 667 743.0 720.0 RUN NUMBER 625 665 666 667 743.0 720.0 RUN NUMBER 625 665 666 667 743.0 720.0 RUN NUMBER 625 665 666 667 743.0 720.0 RUN NUMBER 625 665 666 667 743.0 720.0 RUN NUMBER 625 665 666 667 743.0 720.0 RUN NUMBER 625 665 666 667 743.0 720.0 RUN NUMBER 625 665 666 667 743.0 720.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 1285.0 RUN NUMBER 625 665 665 666 667 743.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 1285.0 RUN NUMBER 625 665 666 667 743.0 743.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 1285.0 RUN NUMBER 625 0 1285.0 RUN NUMBER 625 0 1285.0 RUN NUMBER 625 0 1285.0 RUN NUMBER 625 0 1285.0 RUN NUMBER 625 0 1285.0 RUN NUMBER 625 0 1285.0 RUN NUMBER 625 0 1285.0 RUN NUMBER 625 0 1285.0 RUN NUMBER 625 0 1285.0 RUN NUMBER 625 0 1285.0 RUN NUMBER 625 0 1285.0 RUN NUMBER 625 0 1285.0 RUN NUMBER	REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN NUMBER 625 665 666 667 668 669 PC (PSIA) 672.0 752.0 710.0 732.0 743.0 720.0 ALT (MU HG A) 23.0 23.0 24.0 25.0 27.0 POZ (PSIA) 1285.0 1285.0 1285.0 1285.0 1285.0 TOZ (F) 159.0 1585.0 1235.0 1535.0 153.0 TH2 (F) 159.0 156.0 160.0 156.0 155.0 143.0 DOZ (IN) 0.398 0.398 0.398 0.398 0.398 LRANSDUCER TRANSDUCER TRANSDUCER TOZ (P) IN PSIA TOZ (P) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100	NO 4 ENGINE AT 1.6 DEGREES ROW L GAGES BETWEEN ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN NUMBER 625 665 666 667 668 669 PC (PSIA) 672.0 752.0 710.0 732.0 743.0 720.0 ALT (MU HG A) 23.0 24.0 25.0 26.0 27.0 POZ (PSIA) 1285.0 1285.0 1285.0 1285.0 1285.0 PHZ (PSIA) 1255.0 1235.0 1235.0 1235.0 1235.0 TOZ (F) 153.0 153.0 1235.0 1235.0 148.0 153.0 PHZ (F) 159.0 156.0 160.0 155.0 153.0 DOZ (IN) 0.338 0.338 0.338 0.338 0.338 IRANSQUCER DITOLOT	REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUM NUMBER 625 665 665 667 669 RUM NUMBER 625 665 665 667 669 RUM NUMBER 625 665 665 669 RUM NUMBER 625 665 665 667 669 RUM NUMBER 625 0 23.0 24.0 27.0 RUM NUMBER 626 1285.0 1285.0 1285.0 1285.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM NUMBER 627 0 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 1285.0 1285.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 27.0 RUM HG A) 23.0 24.0 RUM HG A) 23.0 24.0 RUM HG A) 23.0 24.0 RUM HG A) 24.0 26.0 33.0 RUM HG A) 24.0 26.0 33.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 24.0 RUM HG A) 24.0 26.0 2	NO 4 ENGINE REMARKS: CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN NUMBER 625 665 666 667 668 669 RC (PSIA) 672.0 752.0 710.0 732.0 743.0 720.0 ALT (MU HG A) 23.0 23.0 24.0 25.0 26.0 27.0 POZ (PSIA) 1285.0 1285.0 1285.0 1285.0 1285.0 TOZ (F) 1225.0 1235.0 1285.0 1285.0 1285.0 1285.0 TOZ (F) 1225.0 153.0 153.0 153.0 153.0 TOZ (IN) 0.398 0.398 0.398 0.398 0.398 0.398 DH2 (IN) 0.398 0.335 0.335 0.335 0.335 0.335 TRANSOUCER TRANSOUCER TOZ (PSIA) 1285.0 1285.0 1285.0 1285.0 1285.0 183.0 TOZ (TOZ) 150.0 150.0 150.0 150.0 150.0 150.0 160.0 150.0 160.0 160.0 150.0 160.0 150.0 160.0 160.0 160.0 150.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.	NO 4 ENGINE REMARKS: CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN NUMBER 625 665 666 667 668 669 RUN NUMBER 625 665 666 667 668 669 RUN NUMBER 625 665 666 667 669 RUN NUMBER 625 665 666 667 669 RUN NUMBER 625 665 666 667 669 RUN NUMBER 625 665 666 667 669 RUN NUMBER 625 665 666 667 669 RUN NUMBER 625 665 666 667 669 RUN NUMBER 625 665 666 667 669 RUN NUMBER 625 665 666 667 669 RUN NUMBER 625 665 666 667 669 RUN NUMBER 625 665 666 667 669 RUN 1285-0 1285-0 1285-0 1285-0 TOZ (PSIA) 1285-0 1285-0 1285-0 1285-0 TOZ (F) 159-0 1585-0 1285-0 158-0 158-0 TOZ (F) 159-0 158-0 158-0 158-0 158-0 TOZ (F) 159-0 158-0 158-0 158-0 158-0 TOZ (F) 159-0 158-0 158-0 158-0 158-0 TRANSDUCER (PSIA) 0.335 0.335 0.335 0.335 0.335 TRANSDUCER (PSIA) 0.395 0.033 0.037 0.037 RODOS (TN) 0.396 0.038 0.037 0.037 0.037 RODOS (TN) 0.396 0.038 0.037 0.037 0.037 RODOS (TN) 0.396 0.398 0.038 0.037 0.037 RODOS (TN) 0.396 0.398 0.038 0.037 0.037 RODOS (TN) 0.396 0.398 0.038 0.037 0.037 RODOS (TN) 0.396 0.398 0.038 0.037 RODOS (TN) 0.306 0.038 0.037 0.037 RODOS (TN) 0.037 0.037 RODOS (TN) 0.037 0.037 RODOS (TN) 0.037 0.037 RODOS 0.003 0.003 0.003 0.0037 RODOS 0.003 0.003 0.0037 RODOS 0.003 0.003 0.0037 RODOS 0.003 0.003 0.0037 RODOS 0.003 0.0037 RODOS 0.003 0.0037 RODOS 0.003 0.0037 RODOS 0.003 0.0037 RODOS 0.003 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODOS 0.0037 RODO	NO 4 ENGINE AT 1.6 DEGREES. ROW L GAGES BETWEEN ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN NUMBER 625 665 666 667 668 669 PC (PSIA) ALT (MU HG A) 23.0 23.0 24.0 25.0 27.0 PH2 (PSIA) 1285.0 1285.0 1285.0 1285.0 1285.0 1285.0 TOZ (F) 159.0 158.0 1285.0 1285.0 1285.0 1285.0 TOZ (F) 159.0 158.0 160.0 148.0 155.0 143.0 DDZ (IN) 0.339 0.339 0.339 0.339 0.339 LRANSDUCER POOS 0.026 0.038 0.037 0.037 POOS CACO 2.002 0.033 0.030 0.037 DOOS DOOZ (IN) DOOS 0.025 0.033 0.036 0.037 DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOOS DOO	ROW L GAGES BETWEEN ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA	ROW L GAGES BETWEEN ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN	NO 4 ENGINE REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES RIGHES BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA A	ROW L GAGES BETWEEN ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW L GAGES BETWEEN ENGINE 4 AND 5 ROW NUMBER 625 665 666 666 667 668 669 669 669 672.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	NO 4 ENGINE AT 1.6 DEGREES CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROH L GAGES BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA ALT (HU HG A) 23.0 23.0 24.0 25.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	NO 4 ENGINE AT 1.6 DECREES ROW L GAGES BETWEEN ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN HG A) 23.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 720.0 72	NO 4 ENGINE REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUM	NO 4 ENGINE REMARKS; CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN NUMBER RUN	NO 4 ENGINE AT 1.6 DECREES ROW L GAGES BETWEEN ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES ROW L GAGES BETWEEN ENGINE 4 AND 5 NORMALIZED IESI DATA RUN NUMBER ROW C (PSIA) ALT 1.6 DECREES ROW MUNDHER ROW C (PSIA) ALT 1.6 DECREES ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW MUNDHER ROW	NO 4 ENGINE AT 1.6 DECREES ROW L GAGES BETWEEN ENGINE HOUZZLE WALL ENVIRONMENT WITH ACTUATOR FAILLUPES ROW L GAGES BETWEEN ENGINE 4 AND 5 RUN NUMBER RUN NUMBER ROY (FSIA) AT 7 L6 DECREES ROY (FSIA) AT 7 L6 DECREES ROY (FSIA) AT 7 L6 DECREES AT 7 L6 DECREES ROY (FSIA) AT 7 L6 DECREES ROY (FSIA) AT 7 L6 DECREES ROY (FSIA) AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6 DECREES AT 7 L6	NO 4 ENGINE AT 1.6 DEGREES ROW L GAGES BETWEEN ENGINE AND 5 RUN NUMBER RUN NUMBER REAS BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA RUN NUMBER REAS BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA RUN NUMBER REAS BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA RUN NUMBER REAS BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA RUN NUMBER REAS BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA RUN NUMBER REAS BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA RUN NUMBER REAS BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA NORMALIZED TEST DATA RUN NUMBER REAS BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA NORMALIZED TEST DATA RUN NUMBER REAS BETWEEN ENGINE 4 AND 5 NORMALIZED TEST DATA NORMALIZED TEST DATA NORMALIZED TEST DATA ROBERT CROSS CONTROL TO STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONTROL TEST OF THE STATE ROBERT CROSS CONT

CASE ------ RUN SERIES 23. LOG 23.1.1

CASE ------ RUN SERIES 23, LOG 23.1.1

INTERSTAGE ---- 5.50 8 715.0 PSIA NOM IN AL PC -----GIMBAL PATTERN ---

REMARKS: CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH ACTUATOR FAILURES INBOARD ON NO.4 ENGINE AT 1.6 DEGREES ROME AT 1.6 DEGREES ROME A AND 5

. NORMALIZED TEST DATA

	A 189 MI
669 720.0 27.0 1285.0 1235.0 153.0 0.398	SEC, (P) 3.900 0.675 0.218 0.140
668 743.0 26.0 1285.0 1235.0 155.0 0.398	HTMANSDUCE 4.580 4.580 2.650 0.655 0.001 0.131
732.0 25.0 1285.0 1235.0 148.0 156.0 0.398	(9) IN 6.350 6.350 1.090 0.160 0.001 0.145
666 710.0 24.0 1285.0 1235.0 150.0 160.0 0.398	6.200 1.700 1.150 0.085
752.0 23.0 1285.0 1235.0 153.0 0.398	5.800 2.800 0.940 0.099
625 672.0 23.0 1285.0 1235.0 150.0 0.398	7.400 5.750 0.298
PUN NUMBER PC (PSIA) ALT (MU HG A) PO2 (PSIA) PH2 (PSIA) TO2 (F) TO2 (F)	TP ANS DUCER 10 0003 0004 0016 0017 0024 0024 0025

CASE ------- RUN SERIES 23. LOG 23.2 ...

5.50 OFF. NOMINAL PC ---- 715.0 PSIA INTERSTAGE -----MIXTURE RATIO ----40 GIMBAL |PATTERN ---

REMARKS: CENTER NOZZLE WALL ENVIRONMENT WITH SINGLE ACTUATOR FAILURE INROAPD. ... NOTE: QKO3 AND QKO4 RUN 629 RESULTS QUESTIONABLE SINCE OSCILLOSCOPE TRACE EITHER COINCIDES OR OFF SCALE. M GAGES AT 315, L AT 292.5, K AT 270 DEGREES.

												•									;								
~	15.	27.0	80.	35.	60.	60.	• 39	• 33			1	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	. 50	2.700	1	1.1	9.800			1 1 1		5.20	14.100	.40	.50		1 1
~	0 0	25.0	285.	35.	162.	56.	• 39	• 33		ΙΑ	1	f f f	1		.83	2.620	1	1 1	10.700	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	6.00	14.200	•65	. 60	-	= = =
~	00	26.0	285.	35.	160.	.09	•39	• 33		Sd NI Id	1 1 1	1	1 1 1	* * * * * * * * * * * * * * * * * * * *	1	1 1 1 1		1 1 1	9.200	1		1 1	1 1	1 1	• 00	6.750	.40	1	
S	2	0.61	1		143.0	53.	• 39	• 33	∝	-SEC. (•04	• 03	.80	5.40	.35	96.	• 66	.57	.20	• 55	.21	.72	.86	.22	.60	• 60	.80	4.000	.31
	Ö		1	1:	144.0	33.	• 39	• 33	RANSDUC	-	.02	03	1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	* * * * * * * * * * * * * * * * * * * *		31	.25	1	1	.01	.58	.98	. 79	.72	2.940	• 30
r	5	30.0	1		153.0	50.	•39	• 33			• 03	0.03	.40	4.20	.51	3.760	. 52	•19	.40	•30	• 42	• 56	.90	• 34	•42		1 1 1	3.260	•
2	6	27.0	1	1	2	45.	•39	• 33			1	.02	.80	5.50	.70	.27	.86	.32	• 70	00.	.97	. 80	.29	.40	. 14	• 95	. 18	3.300	• 33
Ç	C	27.0	ŀ			55.	.39	• 33			.03	0.027	1	.40	• 0.6	88	19.	96.	.40	1	.03	74.	•03	• 10	.80	• 04	.90	3.160	• 13
65	_	27.0	1	1	156.0	56.	.39	• 33	-		• 03	0.025	1	1 1 1	111111111111111111111111111111111111111	1 1 1 1	.80	2.510	-	‡ 	•.08	2:760	.21	1; 1 1 1,	1	 	1: 1: 1: 1:	3.820	.22
S NO NO	(ASIA)	H OW)	02 (PSI	HZ (PS.IA	02 (F	H2 (F	02 (1	H2 (I	TRANSDUCER	ΟI	00	00	X O	S C	Α. Ο	¥	0 ¥	S S	0	0	10	10	10	S	Θ	∑ 0	Σ. 0	0M05	Σ
u	•	_	_	٠.	_				53 -	•						SD7	/3-	S/	Y -0	06	1								

CASE ------ RUN SERIES 23, LOG 23.2

5.50 INTERSTAGE ---- OFF MIXTURE RATIO ----GIMBAL PATTERN --- 64 NOMINAL PC ----- 715.0 PSIA

PEMARKS: CENTER NOZZLE WALL ENVIRONMENT WITH SINGLE ACTUATOR FAILURE INBOARD. Note: QKO3 and QKO4 run 629_Results questionable since oscilloscope trace either COINCIDES OR OFF SCALE. M GAGES AT 315, L AT 292.5, K AT 270 DEBREES.

NORMALIZED TEST_DATA

RUN NUMBER PC (PSIA) PLZ (PSIA) TOZ (F) TOZ (F) TOZ (F) TOZ (IN) TOZ (IN) TOZ (IN) TOZ (IN) TOZ (OOG
--

س	
23.3	:
907	
ٽ	
23,	1
I E S	
SERIE	ı
S S S	,
_	1
1	
1	ļ
1	:
1	i
-	,
1	-
بنا	

5.50	OFF
MIXIURE RATIO	INTERSTAGE
10	715.0 PSIA
GIMBAL PATTERN	NOMINAL PC

REMARKS: CENTER NOZZLE ENVIRONMENT WITH DUAL ACTUATOR FAILURE INBOARD AT 0.9 DEG

	OUTPUT			
660 695.0 9.0 1270.0 150.0	50.0 .398 .335 NSDUCER	3.300 4.260 3.930	11. 11. 11. 11. 12. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	1.550 2.210 3.150 4.230 4.560 3.680
659 723.0 26.0 1270.0 1220.0	.33 .33	03 02 54 86	204440	
658 712.0 17.0 1270.0 1220.0	339	0.030 3.340 2.280 3.380	• 4 8 • 4 8 • 95	
657 695.0 22.0 1270.0 1220.0	5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.027 0.025 1.410 2.090 2.090	088	
656 690.0 24.0 1270.0 1520.0	3 3 4	. 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	910302	
RUN NUMBER PC (PSIA) ALT (MU HG A) PO2 (PSIA) PH2 (PSIA)	2 (F 2 (I 2 (I 2 (I	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	000000	0L06 0M01 0M02 0M03 0M05 0M05

CASE ----- RUN SERIES 23, LOG 23.3

5.50 OFF MIXTURE RATIO ---NOMINAL PC ----- 715.0 PSIA GIMBAL PATTERN ---

REMARKS: CENTER NOZZLE ENVIRONMENT WITH DUAL ACTUATOR FAILURE INBOARD AT 0.9 DEG

NORMALIZED TEST DATA

•	;		; ;	
:	;	IN PSIA	;	·
		OUTPUT EC. (P)		
660 695.0 9.0 1270.0 1220.0 150.0	0.335	TRANSDUCER DUTPUT BTU/SQ-FT-SEC, (P		1
659 723.0 26.0 1270.0 1220.0 153.0	0.338		4.240 4.660 5.500 2.830	1.260
658 712.0 17.0 1270.0 1220.0 153.0	0.335	5.840	7.040 8.200 8.100	1.920
657 695.0 22.0 1270.0 1220.0 153.0	0.335	7.090	5.600 5.600 5.630 2.840	1.840
656 690.0 24.0 1270.0 1220.0 150.0	0.335	6.600	5.830	2.090
NUMBER PSIA) (MU HG A) (PSIA) (F)		ر الله ا ا		
RUN NUM PC (PSI ALT (MU PG2 (PS PH2 (PS - TG2 (F)	1 DH2 (IN)	TRANSDU ID QOO3	\$000 8000 \$000 \$p73-	001 SA-0061

	5.50	OFF
KUN SEKIES 230 LUG 23.4	MIXTURE RATIO 5.50	INTERSTAGE
KUN SEKIES Z	11	715.0 PSIA
CASE	GIMBAL PATTERN	NUMINAL PC 715.0 PSIA

REMARKS: CENTER ENGINE NOZZLE ENVIRONMENT WITH DUAL ACTUATOR FAILURE INBOARD ON ENGINE NO 4 AT 6 DEGREES
NOTE THAT ALL THE HEATING RATES ON RUN 697 ARE LOW IN COMPARISON WITH DTHER RUNS

N NUMB	6	6	6	\$	2	6		
(PSIA	7	2	2	5.	-	0		
T (MU H	-	70	ຕ		27.	29.		
2 (PSI	35.	235.	85.	285.	285.	85.		
2 (PSIA	285.	85.	35.	35.	35.	35.		
2 (F)	62.	58.	60.	60.	60.	60.	•	
2 (F	53.	58.	58.	60.	.09	62.		
DO2 (IN)	0.398	0.398	0.398	0.398	0.398	0.398		
7 (1	33	• 33	• 33	33	33	. 33	1	
TRANS				•	RAN	E.R.		
1	-			NI (O)	150	T-SEC, (P	A IN PSIA	and the second s
0	1		1	1	0.07	İ		
0X01	i i	4.50	7.50	1.90	90.200	6.00	,	
0	.80	.80	.30	.50	. 70	.00		
0	9,05	7.70	.10	.40	6.80	00.9		
000	.92	• 60	.70	.70	.20	.80		
000	38	1.30	.40	.30	; [; [• 20	***	:
070	24:100		24.800	19.900	.60	22.200		
010	4:90	4.20	4.90	• 00	3.40	3.30		
070	00.	5.30	• 30	. 70	.80	• 10		
0	•30	00.	• 10	.60	.90	• 70		
000	.38	• 2	.90	• 10	16.	.10		
0	. 86	• 2	.80	.80	.80	.50	the state of Review and the state of the sta	and the same of the last and the same same to the same same to the same same to the same same to the same same to the same same to the same same to the same same to the same same to the same same to the same same to the same same to the same same same to the same same to the same same to the same same to the same same to the same same to the same same to the same same to the same same to the same same same to the same same to the same same to the same same to the same same to the same same same to the same same same same same same same sam
0	.82	α	•50	.00	.30	.60		
0	.35	4	.40	.70	.30	.10		
0	.36	.⁴.	.30	.80	.40	• 00		
0	. 17	٤.	• 50	0	.60	.30		
0.	500	۳,	.40	.80	.00	.50		
0	. 20	4	.50	1	00.	j	:	

106 23.4	
23,	
SERIES	
8. N	
CASE	

11 MIXTURE RATIO 5.50 715.0 PSIA INTERSTAGE OFF
URE RATIO
URE RAT
MIXT
11 715.0 PSIA
GIMBAL PATTERN 11 NOMINAL PC 715.0
GIMBAL

REMARKS: CENTER ENGINE NOZZLE ENVIRONMENT WITH DUAL ACTUATOR FAILURE INBUARD ON 4 AT 6 DEGREES ENGINE NO 4 AT 6 DEGREES NOTE THAT ALL THE HEATING RATES ON RUN 697 ARE LOW IN COMPARISON WITH OTHER RUNS

RUN NUMBER	969	969	969	697	698	669	
PC (PSIA)	727.3	722.0	722.0	725.0	711.0	710.0	
ALT (MU HG A)	27.0	28.0	23.0	27.0	27.0	29.0	
PU2 (PSIA)	1235.0	1235.0	1285.0	1285.0	1285.0	1285.0	
PH2 (PSIA)	1285.0	1285.0	1235.0	1235.0	1235.0	1235.0	
TO2 (F)	162.0	158.0	160.0	160.0	160.0	160.0	
TH2 (F)	153.0	158.0	158.0	160.0	160.0	162.0	
(NI) 200 58	0.398	0.398	0.398	0.398	0.398	0.398	
(NI) 2HC	0.335	0.335	0.335	0.335	0.335	0.335	

¥ 1.00	41CL N.1			· · · · · · · · · · · · · · · · · · ·				
TRANSDUCER OUTPUT	12.300	13.400	22.000	16.600	7.400	2.300	0.208	
TRANSDUC		12.700	27.600	14.600	7.000	2.500	0.181	
71 (0)	10.700	12.300	23.100	15,100	006.9	2.000	0.187	
	12.500	16.300	26.600	18.700	7.400	1.500	0.216	
	12.600	16.200	20.300	17.600	6.700	1.400	0.158	
	12.200	14.900	26.400	11.800	6.300	2.460	0.030	***************************************
TRANS DUCER ID	0011	0013	4100	0015	9100	100	0025	
-			3	D7	3-	SA	-0061	CANADA SANCE

LOG 23.5	MIXTURE RATIO 5.50 INTERSTAGE OFF	ENVIRONMENT WITH TRANSIENT GIMBAL PATTERN DURING	NORMALIZED TEST DATA										THANSON SECTION THAT IN THE SECTION SE	10											THE COMMISSION AND THE WORKSHIP COMMISSION FRANCISCO COMMISSION AND THE COMMISSION AND TH							
RUN SERIES	12 715.0 PSIA	INE NOZZLE	-	619	6	26.	1285.0	235.	~ ·	53.	.39	.33		(0)	.03	.58	.82	4.90	.50	• 06	40	γ. Σ	6.450	.09	.05	• 05	. 16	.50	.23	.21	• 76	
1:	Z	ENTER ENG	4	~	•	25.	1285.0	235.	•	56.	• 39	• 33		eran the makes stated the same of the same of	•04	.82	4.140	1		16.	.82	α Ο (7.000	.26	.02	.80	.21	• 05	• 12	• 24	• 66	C
BS:	GIMBAL PATTE	· · · · · ·	<u>.</u>	7	8	5.	1285.0	35.		3 (39	•33		A CHARLES TO SEAL STANDARD STA	.03	.53	16.	90	09.6	10	64	<	064.9	.25	90.	. 55	•00	.70	.43	0.5	16	
CAS	0.0 NO	REI SEPARATION		N NOMB	(PSIA)	T (MU	PD2 (PSIA)	2 (PSI	2 (F)	4) Z	2	2 (1	TRANSDUCE	ID	P005	P022	P023	0K01	OXO,	0 XC	0 X 0	o X	0003	OLO	070	QM01	QM02	0M03	QM04	QMOS	8000	0100

RUN SERIES 23, LOG 23.5 CASE -----

GIMBAL PATTERN ---

MIXTURE RATIO ----715.0 PSIA NOMINAL PC -----

5.50 0FF

REMARKS: CENTER ENGINE NOZZLE ENVIRONMENT WITH TRANSIENT GIMBAL PATTERN DURING

SEPARATION

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

,									TRANSDUCER DUTPUT	(0) IN BTU/SQ-FT-SEC, (P)								
619	119.0	26.0	1285.0	1235.0	153.0	153.0	0.398	0,335			10.800	4.650	4.350	0.078	192,000	199.000		•
678	0.907	25.0	1285.0	1235.0	150.0	156.0	0.398	0.335			13.000	6.300	4.370	0.084	177.000	200.002		:
677	722.0	25.0	1285.0	1235.0	0.781	137.0	0.398	0.335			11.000	4.280	5.140	0.095	1 1	195.000		
RUN NUMBER	PC (PSIA)	ALT (MU HG A)	POZ (PSIA)	PH2 (PSIA)	, TO2 (F)		(NI) 700 260		TRANSDUCER	01	0014	0015		0025		5900 S	A-006	ı,

IN PSIA

CASE ------ RUN SERIES 23, LOG 23.6

MIXTURE RATIO ----12 465.0 PSIA GIMBAL PATTERN ---NOM INAL PC

5.50

REMARKS: CENTER ENGINE NOZZLE ENVIRONMENT WITH DUAL ACTUATOR FAILURE AT 5 DEG AND LOW PC OF 465 PSIA

0.030 2.430 2.500 22.500 11.100 2.160 1.280 7.810	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.5.000 13.600 13.600 13.600 13.600 13.600 1.380 8.900 4.950	2 4 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8
1 IN PS 0.032 2.150 2.400 23.500 13.100 1.280 7.560 3.930	
P. OUTPU 0.035 2.390 2.380 27.900 14.200 14.200 1.430 9.560 4.800	ちぎ ロイ リ 4 まき ー
2.770 2.520 2.520 2.520 2.520 15.200 15.200 15.200 15.200	1.540 4.840 3.190 2.980 1.750 1.650 1.650
2.360 2.260 2.260 2.260 2.370 2.370 1.400 7.950	400488968 400488968
1.920 2.010 2.010 2.010 14.000 6.200 2.560 1.280 8.470	10 10 10 10 10 10 10 10 10 10 10 10 10 1
0.032 2.760 2.200 24.700 14.800 6.390 2.650 1.450 8.390 4.520	7 4 4 0 8 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.026 2.200 2.200 2.290 12.900 12.900 5.880 2.650 4.800	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
TRANSDUCER 10 10 10 10 10 10 10 10 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5	TRANSDUCER TRANSDUCER TO TO TO TO TRANSDUCER TRANSDUCER TO TRANSDUCER TRANSDUCER TRANSDUCER TRANSDUCER TO TO TO TO TO TO TO TO TO T

9.	
23,	
007	:
23, 106	*****
SERIES	
R S S	
	· · · · · · · · · · · · · · · · · · ·
CASE	

5.50	ÜFF
MIXTURE RATIO	465.0 PSIA INTERSTAGE
12	465.0 PSIA
TERM	1:
GIMBAL PATI	NOW I'N AL PC

REMARKS: CENTER ENGINE NOZZLE ENVIRONMENT WITH DUAL ACTUATOR FAILURE AT 5 DEG AND LOW PC OF 465 PSIA

NORMALIZED TEST DATA

PUN	NUMBER	ထ	189	m	683	684	685	686	687	688	
PC		485.0	465.0	472.0	431.0		455.0	474.0	470.0	474.0	
ALT	•	1 22.	27.		28.0	0.4	25.0		27.0	24.0	
P02		•	1250.0		1135.0	0	1235.0	12		1235.0	
PHZ		50.	50.	1250.0	1080.0		1180.0			1180.0	
T02		156.0	155.0	156.0	150.0		153.0		155.0	143.0	
2 TH2		9	•	153.0	143.0	0	156.0	16		156.0	
700 62		_	0.319	0.319	0.319		0.319	o	_	0.319	
_1_DH2		0.272	0.272	0.272	0.272		0.272	0.272	0.272	0.272	
TRA	ANSDUCER					TRANSDUCER	ER CUTPU	⊨			
	QI				NI (0)	6TU/SQ-F	-SEC,	Sd N1 (d)	PSIA		
	4100	9.160	5.920	10.500	7.420	8.550		7.080	~	8.050	
		3.280	1 1 1 1	3.250	010	2.570	3.170	3.240	3.260	3.340	
Ş	┛.	3.830	3.410	4.140	7.900	2.680		3.340	3.360	3.340	
D7	0025	•	0.037	0.039	043	0.038		0.063	. !	0.034	:
'3~	9	131,000		_	142.000	143.000	147.000	132.000	000	150.000	
-SA-006		136.000	41-000	125.000	149.000	147.000	163.000	153.000	158.000	144.000	
1	de propriet Symbol Symb		especialis successive designations and the contract of the con	to the second property of the second property	a de la conferencia de la como e	to a second on the contract of				a de la constitución de la const	

:	ĸ
	1
•	MIXTURE RATIO
23.	J.R.F.
907	MIX
23	
CASE THITTIES AND SERIES 23+ LUG 23+1	
Z ;	12
] ; [) !
	z
	GIMBAL PATTERN
	AL
CA)	GIMB

5.50 OFF INTERSTAGE ----215.0 PSIA NOMINAL PC ----

REMARKS: CENTER ENGINE NOZZLE WALL ENVIRONMENT WITH DUAL ACTUATOR FAILURE AT 5 DEGREES INBOARD AND NOMINAL CHAMBER PRESSURE OF 215 PSIA

								٠	•	(P) IN PSIA																			
6	20.	17.	235.	45.	158.	58.	.20		RANSDUCER OUTP	/SU-FT-SEC,	.017	90	.02	.30	.65	83,	.17	•69	.85	.30	•44	11.	.38	. 78	.37	.17	.88	0.680	• 78
692	25	25	235	45	160	50	0.202		•	I	.01	00.	.22	.00	6.020	. 29	• 05	.51	.83	.01	1	1 1	- i	.67	•24	.15	.86	0.670	.86
6		20.	35.	45.	54.	53.	0	• 16			.01	• 65	.23	6.	•30	.70	07.	• 70	.30	.40	• 40	40	.00	.79	.30	.30	1	0.700	.90
6		26.	235.	45.	58.	58.	0	.16		·	.01	7	.22	. 70	6.400	1	.13	. 70	• 30	• 50	.84	.35	• 95	.30	.70	.30	1	0.750	.80
œ	203.0	27.	235.	45.	156.	58.	0	• 10			0	12	12	7.0		1	• 48	• 74	1	• 35	• 54	• 16	• 74	• 48	38	.38	.85	0.420	• 95
z	(PSIA)	_	2	2	7	7	200	DH2	TRANSDUCER	1	0	7	2	0	000	0X0	0 V V	OXO:	070	0	010	0	0	0	0	0	0	0M05	0

RUN SERIES 23, LOG 23.7 CASE -----

5.50 UFF MIXTURE RATIO ----INTERSTAGE ---215.0 PSIA NOMINAL PC -----GIMBAL PATTERN ---

REMARKS: CENTER ENGINE NOZZLE WALL ENVIRGNMENT WITH DUAL ACTUATOR FAILURE AT DEGREES INBOARD AND NOMINAL CHAMBER PRESSURE OF 215 PSIA

NORMALIZED TEST DATA

		IN PSIA	;	
	·	~		
	<u>.</u>	ER OUTI		
693 220.0 17.0 1235.0	1245.0 158.0 158.0 0.202	TRANSDUCER OUTPUT BIU/SQ-FI-SEC, (P 0.780	2.540 2.150 1.270	0.013 88.000 75.000
692 225.0 25.0 1235.0	1245.0 160.0 150.0 0.202 0.167	(0) 0.860	2.200 2.490 1.430	93.000
691 216.0 20.0 1235.0	1245.0 154.0 153.0 0.202 0.167	0.800	2.200 2.300 1.500	0.015 93.000 80.000
690 214.0 26.0 1235.0	1245.0 158.0 158.0 0.202 0.167	0.700	2.700 1.900 1.200	0.014 85.000 81.000
639 203.0 27.0 1235.0	1245.0 156.0 158.0 0.202 0.167	0*620	3.140 2.010 2.540	0.016
A				
(PSIA) T (MU HG	2 (PSIA) 2 (F) 2 (F) 2 (F) 2 (IN) 2 (IN)	ANSDUCER 1D Q010	0014 0015 0016	5 2 9 5 9 0 0 7 0 0 0 0 73-SA-006
PC PC PO	200 200 200 200 200 200 200 200 200 200	1	SD	73-SA-006

24, LOG 24.1.1	ON MIXTURE RATIO 5.50 INTERSTAGE UFF	CONE RADIATIVE HEATING. 19 ENGINE NO 5	NORMALIZED TEST DATA									A POLICE NA A	SEC.														
ERIES	LECTION PSIA	RUST C ST 2, P29											(0)														
RUN SE	NO DEFL	E E0	•	19	26.0	85.	35.	ċ	64.	• 39	. 33			.93	96	.40	.35	~ 1 ~	00.	• 07	.10	00.	202.) 	0.058	.03	. 13
 	Z I	O DETERMINE . SED IN THIS .	£ .	9 0	27.0	85.	35.	0	58.	•39	• 33			.97	.03	.37	• 14	φ κ,	• 01	.01	0.128	1 0.	• 21	70	0.078	• 00	• 15
	AL PATTEI	S: T LES U	: 	19	25.0	85	35		58	ů-	· .			<u>*</u> 84	• 92	46.	• 20	• 58	0.	• 05	. 1 1	1 (• 22 • 03	7.0	0.074	0.1	• 13
CASE	GIMBAL	REMARK LOW-SYMMETRY ND221 20,21 ENGINE NO I	The state of the s	RUN NUMBER	N D W	(PSI		(F)				TRANSDUCER	ŢŌ.	2	~	2	\sim	Ò	\sim	2	24	V (7	חות	0032	30	4
		FL	· ·	· ·	. «	Δ.	<u>a</u> .	-	_	٥.	- 2	65						S	SD7	73-	-SA	- 0	06	1.			

.

:

. <u>-</u>*

201 609 50.1	MIXTURE RATIO	INTERSTAGE
1907 103 201 FOR 2011	30	715.0 PSIA
! !	GIMBAL PATTERN	- bC
, 1	GIMBAL	NOMINAL PC

5.50 UFF

WITH ENGINE DEFLECTIONS.

NORMALIZED TEST DATA

TRANSDUCER COTPUT

0.075

0.065 0.054 0.106

P001 P002 P003

0.083

0.059 0.059 0.093 0.072 0.036 0.031

> P005 P006 P007

P008 P011

SD73-SA-0061

0.065

0.063

0.052 0.034 0.035 0.071

TRAN					9 TRANSDUCER
	0.335	0.335	0.335		(NI) ZHQ 2
	0.398	0.398	0.398		DU2 (IN)
	158.0	160.0	160.0		TH2 (F)
	160.0	161.0	160.0		
	1235.0	1235.0	1235.0		
	1285.0	1285.0	1285.0		PO2 (PSIA)
	27.0	30.0	14.0	7	ALT (MU HG
	1	705.0	720.0		$\overline{}$
	619	819	219	-	RUN NUMBER
NORM		1 1 1 1 1 1	!		
	ROTATED 180 DEGREES	TED 180	PATTERN ROTA	7 Y C	DEFLECTION P
NH ILLIA	LU PRESSURES	EAT SHIE	ARKS: H	Z Wi	

INTERSTAGE	715.0 PSIA	NOMINAL PC
MIXTURE RATIO	6A	2381
.5, tog 25.2	RUN SERIES 25, LOG 25.2	CASE

5.50 OFF DEFLECTION PATTERN ROTATED 180 DEGREES

					•				TPANSDUCER OUTPUT	VISA											
622	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	27.0	1285.0	1235.0	160.0	157.0	0.398	0.335			0.044	0.052	0.035	0.036	0.035	0,033	0.031	0.035			:
621	1	26.0	1285.0	1235.0	162.0	163.0	0.398	0.335			1	0.046	0.041	0.035	0.033	0.052	0.030	1 1 1			
620	722.0	27.0	1285.0	1235.0	157.0	160.0	0.398	0.335			1	0.051	01039	0.039	0.032	0.049	0.031	 	-		
RUN NUMBER	PC (PSIA)	ALT (MU HG A)		PH2 (PSIA)	Ť0Ž (F)	TH2 (F)	_	0H2 (184NSDUCER		P001	P002	P003	P005		•	800d 73		A —(00	61,

:	ß	0
CASE LOS ESTADOS SENTES ESTADOS CASES	NO DEFLECTION MIXTURE RATIO	NOMINAL PC 715.0 PSIA INTERSTAGE
	GIMBAL PATTERN	NOM INAL PC

REMARKS: NULL NOZZLE HEATING RATES SKIRT GAGES MOUNTED ON ENGINE NO 5

NORMALIZED TEST DATA

:		• 1
; ·		
	PS1A	
	2	
635 30.0 1270.0 1520.0 151.0 162.0 0.398	ER OUTPUT 0.025 0.023 2.277 2.277 2.570 2.577 2.577 1.474 0.913 1.820 0.952 1.037 1.686 2.480	•06
634 27.0 1270.0 1220.0 157.0 153.0 0.398	TRANSDUC BTU/SO-F 0.029 0.021 1.962 1.150 2.024 1.76 1.561 0.834 0.834 1.257 1.840 1.608 2.303 2.303	.12
633 702.0 27.0 1270.0 1220.0 160.0 155.0 0.338	(0) IN 0.030 0.025 1.320 0.896 1.240 1.180 1.770 1.710 2.080 1.100 3.090	
632 26.0 1270.0 1220.0 159.0 158.0 0.398	0.032 1.637 1.532 1.532 1.920 2.040 2.881 4.100	1 1
631 701.0 27.0 1270.0 1520.0 153.0 157.0 0.398	0.030 1.300 1.750 1.690 0.973 0.674 1.290 1.290 1.020 0.975	.80
630 719.0 27.0 1270.0 1220.0 160.0 0.335	0.017 1.290 2.000 2.000 1.810 1.810 1.200 1.300 0.873 1.520 1.050 1.130 2.000 1.850	-63
RUN NUMBER PC (PSIA) ALT (MU HG A) PO2 (PSIA) PH2 (PSIA) TH2 (F) TH2 (F) OH2 (IN)	TRANS DUCER 1D 1D 0K02 0K02 0K02 0K02 0K05 0L01 0L04 0R05 0R05 0R05 0R06 0R0	\circ

(TABLE CONTINUED ON THE NEXT PAGE)

	:
26.1	
100	
26.	
SFRIES	•
S.C.N	
! ! ! !	:
1	
CASE	

5.50	OFF	
NO DEFLECTION MIXTURE RATIO	INTERSTAGE	
NO DEFLECTION	715.0 PSIA	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
GIMBAL PATTERN	NOMINAL PC 715.0 PSIA INTERSTAGE OFF	

REMARKS: NULL NOZZLE HEATING RATES SKIRT GAGES MOUNTED ON ENGINE NO 5

NORMALIZED TEST DATA

			V			
			IN PSIA	•		
635	1270.0	1,02,0 0,398 0,335	PUT (P)			
634	1270.0	0.398 0.335	TRANSDUCER OUT BIU/SQ-FI-SEC,) 		
633 702.0 27.0	1270.0 1220.0 160.0	0.398	(O) IN 1.940		† 	·
632	1270.0 1220.0 159.0	0.398	1 1			
631 701.0	1270.0	0.398	0.875			,
630 719.0	1220.0	0.898	2.470	4.600 5.650 5.730	2.680 2.220 0.140	<u>- i</u>
_	PO2 (PSIA) PH2 (PSIA) TO2 (F)		TRANS DUCER 1D QMO6	0003 0004 0008	9100 6017 73-SA-0	061,

: :

	5.50 OFF
LUG 26.2	MIXTURE RATIO
RUN SERIES 26, LUG 26.2	NO DEFLECTION MIXTURE RATIO 715.0 PSIA INTERSTAGE
CASE	GIMBAL PATTERN NOMINAL PC

REMARKS: NULL NOZZLE WALL HEATING RATES. SKIRT GAGES MOUNTED ON NO 4 ENGINE

1TA								IN PSIA) ;					:		•			;			,					
MA 6	36.	85.	235.	; -	.39	.33		BTU/SO-FT-SEC. (P)		• 02	66.	90	.86	• 94	.20	066*0	!	•66	63	!	.61	14.	.47	0.803	• 25	•34	• 05
639	25.	85.	235.	. 0	.39	• 33		j i		• 04	.57		•64	69•	!	19	• 43	• 66	1;	• 84	.77	.57	54.	6	• 03	• 45	• 28
	26.	85.	235.	000	•39	• 33		:	• 06	0.027	.89	66*	1			•		1	.53	• 75	• 48	.41	• 43	0.620	• 03		0.723
. 4	25.	85°	235.	600	•39	• 33			• 03	.02	.84	11.	5	• 68	24.	0.695	• 38	• 65	96	• 94	• 95	.02	•49	• 05	.77	• 74	∞
	30.	85.	ω η υ α	2 0	•39	•33		:	.03	.02	69•	• 73	.79	.82	• 45	0.841	1	1	• 1 +	• 04	• 13	• 23	• 50	010.1	10.	• 65	.37
RUN NUMBER PC (PSIA)	T (MU	2 (PSI	2. C P F F	2 (F	2 (1	H	27000NA 010		0	0	\circ	0	O X O	080	0X0	0K06	070	010	070 :	0	0	0	\circ	0	Ο.	0	0

CASE ----- RUN SERIES 26, LOG 26.2

5.50	OFF
011	1 1 1
MIXTURE RA	INTERSTAGE
NU DEFLECTION MIXTURE RATIO 5.50	NOMINAL PC 715.0 PSIA
GIMBAL PATTERN	Jd 7
GIMBAL	NOWINA

REMARKS: NULL NOZZLE WALL HEATING RATES. SKIRT GAGES MOUNTED ON NO 4 ENGINE

NORMALIZED TEST DATA

	IN PSIA	
1285.0 1235.0 150.0 151.0 0.398	TRANSDUCER DUTPUT BTU/SQ-FT-SEC, (P) I 0.920 4.360 4.950	7.200 4.190 2.330 0.193
1285.0 1235.0 159.0 160.0 0.398	_ 140	6.370 6.500 4.060 1.945 0.204
1285.0 1235.0 160.0 160.0 0.398	.73 .20 .61	5.200 2.420 2.070 0.172
1285.0 1235.0 160.0 160.0 0.398 0.335	1.340 5.080 5.650	1 1 20 1
1285.0 1235.0 158.0 162.0 0.398	1.370 6.270 5.210	. 47 . 56 . 70 . 16
PO2 (PSIA) PH2 (PSIA) 102 (F) 1142 (F) 1002 (IN)	TRANSDUCER 1D QM06 Q003 Q004	8 6 0 7 5 0 0 0 0 0 0 0 0 0 0 5073-SA-0061
	POZ (PSIA) 1285.0 1285.0 1285.0 1285.0 1285.0 1285.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 150.0 160.0 160.0 160.0 150.0 160.0 160.0 160.0 151.0 0.398 0.388 0.38	PUZ (PSIA) 1285.0 1285.0 1285.0 1285.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 1235.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 151.0 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.335 0

MIXTURE RATIO ---INTERSTAGE -----NOMINAL PC -----GIMBAL PATTERN ---

5.50 OFF 715.0 PSIA

REMARKS: OUTBOARD ENGINE NOZZLE ENVIRONMENT WITH ACTUATOR FAILURES INBOARD. SKIRT GAGES MOUNTED ON ENGINE NO 4.

RUN NUMBER	_	_	(PS	(PSI	_	TH2 (F)	005 (DH2 (TRANSDUCER		P005	900d	UKO1	QK02	•					0103 0103		01.05	90 TO	OMO 1		QM03	40M0	Ö	90W0
		(A													1	!											,		
149	_	-	270.	_	_	153.0	_				0	02	73	68	9/	11	86	96	၇	0.780	8	83	46	59	20	80	7.1	1.51	
	,	æ	70.	20.	50.	•	.39	• 33			•03	• 02	86.	.67	.51	• 59	• 74	87	• 65	0.706	8.	. 79	.88	.55	.31	.97	16	3	1.414
(2.	270.	•	53.	3	.39	33			. 02	0.032	• 95	0	9	96.	.24	6		.72	1	0.750	∞	4.	. 1	4.		•	
										NI (S)											:	:						•	
									TRANSDUCER DUTPUT	BTU/SO-FI-SEC, (P) IN																			

CASE ----- RUN SERIES 27, LOG 27.1

5.50 OFF MIXTURE RATIO INTERSTAGE 8 715.0 PSIA GIMBAL PATTERN ---NOWINAL

ENVIRONMENT WITH ACTUATOR FAILURES INBOARD. DUTBDARD ENGINE NOZZLE SKIRT GAGES MOUNTED ON ENGINE NO 4.

NURMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

TRANSOUCER			-	TRANSDUCER
	:	***		
	0.335	0.335	0.335	
	0.398	0.398	0.398	(NI) 200 27
	153.0	153.0	153.0	
	153.0	150.0	142.0	
	1220.0	1220.0	1220.0	PH2 (PSIA)
	1270.0	1270.0	1270.0	POZ (PSIA)
	32.0	28.0	30.0	ALT (MU HG A)
	0.169	724.0	712.0	PC (PSIA)
	643	642	149	RUN NUMBER
			-	

(0) IN BTU/SQ-FT-SEC, (P) IN PSIA

6.870 6.700 3.920

0.181

0.267

6.350 5.920 4.230 7.730

3.160

27.2.1
7, 106
SERIES 2
RON
3S
CAS

EE ACTUATOR FAILURE ON NO 4 ENGINE

NORMALIZED TEST DATA

	:			: 								****		1			; ; ;		
				!						:							:		
		·			•			and the second of the second		•		:					:		
	•		,		٠														
				IN PSIA				to go describe on a figure of the second of		:				;					
			ā	-SEC, (P)										:					
			TRANSDUCER OUT	8TU/SQ-FT-	:							:		•			:		
			• • • • • • • • • • • • • • • • • • •	8 NI (0)			;					* * * * * * * * * * * * * * * * * * * *			•				
646 705.0 30.0 1270.0 1220.0	151. 151.	.33		.03	0.033	. 88	90	97	• 45 • 45	• 63	. 63	.85	16.	• 24	• 92	• 33	29	• 23	• 04
645 691.0 27.0 1270.0	157. 156.	.33	, ,	035	0.033		1 1		∞	0.62	0.500	64.	\sim	•46	96.	• 43	44.	.22	• 18
644 718.0 27.0 1270.0	0.	.33	* * * * * * * * * * * * * * * * * * * *	.03	0.030	.38	.230	.270	.34	• 75	.79 .91	.84	•04	18.	•46	.83	<u>.</u> 02	• 8¢	-
RUN NUMBER PC (PSIA) ALT (MU HG A) PO2 (PSIA) PH2 (PSIA)	2 (F) 2 (F)	D02 (1	TRANSOUCER	10 P00	P006	\circ	OXO	0 20	0 Y 0	OLO	\circ	010	0	0	0	0	0	0	0

(TABLE CONTINUED ON THE NEXT PAGE)

RUN SERIES_27, LOG 27.2.1 CASE

GIMBAL PATTERN	PAT	TERN	6A	MIXTURE RATIO	5.50
NOM I NAL	کا م	1 1 1 1 1 1 1	NOMINAL PC 715.0 PSIA INTERSTA	INTERSTAGE	OFF

OUTBOARD ENGINE NO 4 NOZZLE ENVIRONMENT WITH 3 DEGREE ACTUATOR FAILURE REMARKS: ON NO 4 ENGINE

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

		7.140	7.420	5.300	0000
		7.906	!!!!!	7,550	0003
IN BTU/SQ-FT-SE	9			-	01
TRANSDUCER DI					TRANSDUCER
:		0.335	0.335	0.335	1 (IN) 2H05
-		0.398	0.398	0.398	(NI) 200 27
		151.0	156.0	147.0	
		151.0	157.0	140.0	
		1220.0	1220.0	1220.0	PH2 (PSIA)
to the rate of the contract of the second of the contract of t	:	1270.0	1270.0	1270.0	
		30.0	27.0	27.0	ALT (MU HG A)
		705.0	691.0	713.0	PC (PSIA)
•		949	645	449	RUN NUMBER
				-	

C. (P) IN PSIA UTPUT

SD73-SA-0061

0008 0009 0010 0014 0025

11.000 9.750 2.190

1.500

8.740 2,420

2.490

2.200

4.730

5.460

GIMBAL PATTERN ---

5.50 OFF MIXTURE RATIO ----6A 715.0 PSIA NOW IN AL PC

REMARKS: OUTBOARD ENGINE NO 1 NOZZLE ENVIRONMENT WITH 3 DEGREE ACTUATOR FAILURE On no 4 engine

					demand of the contract of the					TRANSDUCER OUTPUT	TU/50-FT						menter : Andrewerter regenerate traducture for a case : Andrewerter for the second of the second of the second				-		A ser demonstration days there is no a series of the serie						The contract of the contract o		
4	649.0		70.	20.	56.	2.	.39	•33			•	• 04	• 03	.03	• 36		.34				• 28	.30	.81	.12			.52	66.	, j	4.000	
4	∞	6	70.	20.	53.	3	.39	.33				.03	• 02	.02	.33	.51	.36	.41	.60	• 86	• 59	.53	• 26	• 30	96.	.87	. 22	.56	4.230	640	
4	0.969	.	70.	20.	59.	ю Ю	.39	.33		:		1 1 1 1	.03	.03	-	19.	1.150		-		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!		1 1 1	•98	2.180	.62	96.	1	1 1 1 1	
N O Z	PC (PSIA)			(PSI				45	27(∀		P005	P006	P006	0X01							1	0105	9070	10M0	0M02	CMO3	0M04	QMOS	90M0	

£06 27.2.2	MIXTURE RATIO 5.50 INTERSTAGE OFF	ENGINE NO I NOZZLE ENVIRONMENT WITH 3 DEGREE ACTUATOR FAILURE
RUN SERIES 27, 106 27.2	6A MIXTURE RATIO 715.0 PSIA INTERSTAGE	NGINE NO 1 NOZ
CASE		REMARKS: OUTBOARD F NE
CASE	GIMBAL PATTERN NOMINAL, PC	REMARKS:
	a de quante de tuga	ON NO

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

:	-
0.335	(NI) SHO
0.398	(NI) Z0027
158.0	, TH2 (F)
	T02 (F)
_	PH2 (PSIA)
_	PO2 (PSIA)
	ALT (MU HG A)
	PC (PSIA)
149	RUN NUMBER
700000000 m	14 4

Z
(a) IN BIU/SQ-FI-SEC, (P)

3.720 5.440 2.760 7.850

4.020 5.420 2.030 4.850

0010 0013 0014 0015 0019

4.790 3.510 6.300 3.620

3.480

2.690 0.039

\$D73-SA-0061

5.50	OFF
110	
MIXTURE RATIO -	INTERSTAGE
Σ	
	715.0 PSIA
10	715.0
TERN	
PAT	S I
GIMBAL PATTERN	NOW INAL PC

REMARKS: OUTBOARD ENGINE WALL ENVIRONMENT WITH ACTUATOR FAILURES. SKIRT GAGES ON NOZZLE 4.

NGRMALIZED TEST DATA

	PS 1
	Z
	TRANSDUCER OUTPUT BTU/SO-FT-SEC, (P)
664 743.0 25.0 1285.0 1235.0 137.0 146.0 0.398	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
663 738.0 28.0 1285.0 1235.0 151.0 155.0 0.398	0.027 0.027 0.600 0.830 0.850 0.850 0.850 0.620 0.620 0.835 0.835 0.835 1.020 1.350
662 748.0 23.0 1285.0 1235.0 156.0 153.0 0.398	0.032 0.038 0.364 1.396 0.373 0.460 0.700 0.575 0.630 1.570 1.570 1.570 1.570
661 694.0 13.0 1285.0 1235.0 148.0 155.0 0.398	0.093 1.220 1.390 1.390 1.340 1.340 1.340 1.360 0.835 0.835
~ ~	· •
RUN NUMBER PC (PSIA) ALT (MU HG PU2 (PSIA) PH2 (F) TU2 (F) TH2 (F) OU2 (IN)	THANSDUCEP 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D

۷I

(TABLE CONTINUED ON THE NEXT PAGE)

CASE ------ RUN SERIES 27, LOG 27.3

5.50	OFF
1	1
MIXTURE RATIO	INTERSTAGE
GIMBAL PATTERN 10	715.0 PSIA
ATTERN	Jd
GIMBAL P.	NOM I NAL

REMARKS: OUTBOAKD ENGINE WALL ENVIRONMENT WITH ACTUATOR FAILURES. SKIRT GAGES ON NOZZLE 4.

NORMALIZED TEST CATA

(CONTINUED FROM PRECEDING PAGE)

									•	TRANSDUCER CUTPUT	BTU/SQ-FT-SEC, (P)								
999	743.0	25.0	1285.0	1235.0	137.0	146.0	0.398	0.335			ZI (0)	6.050	6.850	1 1 1	6.850	1	2.000		
663	738.0	28.0	1285.0	1235.0	151.0	155.0	0.398	0.335				4.700	7.100	7.130	7.450	4.050	2.060	0.044	
662	748.0	23.0	1285.0	1235.0	. 156.0	153.0	0.398	0.335				3.200	000.9	4.080	6.900	3.400	1.420	: !	\$: :
661	694.0	13.0	1285.0	1235.0	148.0	155.0	0.398	0.335				!!!!	3.860	3.810		2.630	2.100	0.235	:
RUN NUMBER	PC (PSIA)		1 S d)	PHZ (PSIA)	T02 (F)	1TH2 (F)		(NI) ZHQ9	•	TRANSDUCER	01	0003	4000	8000				4 0025	0061

IN PSIA

—	
1.06 28.1	:
6 28	
9	
)	
•	
8.	
40	
Ë	
N I	
SE	
RUN SERIES 28,	i
¥	
ı	
İ	
į	
-	
į	1
į	
	•
CASE	
Ü	

5.50	OFF	
1)	
MIXTURE RATIO	AGE	
2B N	715.0 PSIA I	*
PATTERN	NOMINAL PC	
GIMBAL PATTERN	NOM IN AL	

WITH THE INOPERATIVE ENVIRONMENT OF THE INOPERATIVE OUTBOARD ENGINE WITH THE DOUBTFUL WHETHER ENGINE WAS DEFLECTED DURING THE TEST. REMARKS: ENGINE DEFLECTED.

NORMALIZED TEST DATA

S d	
2	
TRANSDUCER OUTPUT BTU/SQ-FT-SEC, (P) 0.009 0.550 0.400 0.340 0.340 0.350 0.530 0.520 0.800 0.310	0 W W W W
(0) 0.010 0.010 0.430 0.370 0.390 0.480 0.480 0.390 0.390	30 30 41 41
0.010 0.039 0.490 0.560 0.560 0.630 0.740 0.860 0.320	29 28 33 33 36
0.850 0.850 0.660 0.660 0.680 0.760 0.850 0.850 0.850	4490
0.013 0.011 0.370 0.370 0.350 0.580 0.580 0.590 0.590 0.690	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 ANSDUC 10 10 9006 9K02 9K03 9L02 9L03 9L03	0M03 0M04 0M05 0M06
	TRANSDUCER 10 0.013 0.010 0.010 0.011 0.039 0.009 0K01 0K02 0.370 0.490

RUN SERIES 28, LOG 28.1 CASE -----

5.50 OFF MIXTURE RATIO ----1 INTERSTAGE 715.0 PSIA NOMINAL PC ----GIMBAL PATTERN ---

ENVIRONMENT OF THE INOPERATIVE OUTBOARD ENGINE WITH THE INOPERATIVE DOUBTFUL WHETHER ENGINE WAS DEFLECTED DURING THE TEST. REMARKS: ENGINE DEFLECTED.

NORMALIZED TEST DATA

(CONTINUED FROM PRECEDING PAGE)

۷I

4.0 HEAT SHIELD CONSTANT HEATING RATE CONTOURS

Constant heating rate contours to the heat shield are presented in this section. The contours represent the mean $+3\sigma$ values tabulated in Section 3.0. Linear interpolation, between the gage locations indicated, was used to obtain the constant heating rate contours.

Contours were plotted only for the test cases where sufficient heat shield instrumentation was recorded. The units of the heating rates are BTU/ft — sec.

NO DEFLECTIONS O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

	PLOTTING SYM	BOL KEY	
SYMBOL	QDOT	SYMBOL	Q DOT
θ	1.5	•	4.0
×	2.0	•	4.5
8	2.5	0	5.0
+	3.0	S	5.5
•	3.5		

NO DEFLECTIONS O/F = 5.5 Pc = 715 PSIA INTERSTAGE OFF

┙

	PLO	OTTING SYMBO	L KEY	
SYMBOL	Q DOT		SYMBOL	QDOT
9	2.5		•	5.0
x	3.0		•	5.5
•	3.5		0	6.0
•	4.0		S	6.5

NO DEFLECTIONS O/F = 4.50 Pc = 546 PSIA INTERSTAGE OFF

	PLOTTI	NG SYMBOL KEY	
SYMBOL	Q DOT	SYMBOL	QDOT
8	1.5	•	4.0
X	2.0	•	4.5
8	2.5	0	5.0
•	3.0		
•	3.5		

NO DEFLECTIONS O/F = 5.5 Pc = 715 PSIA INTERSTAGE ON

	PLOTTING	SYMBOL KEY	
SYMBOL	QDOT .	SYMBOL	QDOT
8	3.0		5.5
X	3.5	•	6.0
•	4.0		
+	4.5		
•	5.0		

GIMBAL PATTERN 3C O/F = 5.5 Pc = 715 PSIA INTERSTAGE OFF

PLC	JIIING SYMBO	L KŁY	
Q DOT		SYMBOL	QDOT
5.0		•	10.0
6.0		•	11.0
7.0		0	12.0
8.0		5	13.0
9.0			
	QDOT 5.0 6.0 7.0 8.0	000T 5.0 6.0 7.0 8.0	5.0 6.0 7.0 8.0

GIMBAL PATTERN 2A O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

	PLO	TTING SYMBOL	KEY	
SYMBOL	QDOT		SYMBOL	QDOT
₽	3.0			5.5
X	3.5		•	6.0
9	4.0		•	6.5
•	4.5		S	7.0
•	5.0		A	7.5

GIMBAL PATTERN 3C O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

		PLOTTING	SYMBOL	KEY		
SYMBOL	QDOT				SYMBOL	QDOT
8	5.0				•	10.0
X	6.0				•	11.0
•	7.0				•	12.0
+	8.0					
•	9.0					

GIMBAL PATTERN 2 O/F = 5.5 Pc = 715 PSIA INTERSTAGE OFF

	PLOT	TING SYMBOL KEY	
SYMBOL	QDOT	SYMBOL	QDOT
θ	2.0		7.0
×	3.0	•	8.0
•	4.0	•	9.0
+	5.0	S	10.0
•	6.0		

GIMBAL PATTERN 2 O/F = 5.5 Pc = 715 PSIA INTERSTAGE OFF

	PLOTTI	NG SYMBOL KEY	
SYMBOL	Q DOT	SYMBOL	QDOT
6	4.0	•	6.5
X	4.5	•	7.0
8	5.0		
•	5.5		
•	6.0		

GIMBAL PATTERN 2 O/F = 5.5 Pc = 715 PSIA INTERSTAGE ON

	PL01	TTING SYMBOL	KEY	
SYMBOL	QDOT		SYMBOL	QDOT
9	2.0			7.0
X	3.0		•	8.0
9	4.0		8	9.0
+	5.0			
•	6.0			

GIMBAL PATTERN 5 O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

	P	LOTTING	SYMBOL	KEY		
SYMBOL	QDOT				SYMBOL	QDOT
8	5.0					7.5
X	5.5				•	8.0
	.6.0				•	8.5
•	6.5				S	9.0
•	7.0				Á	10.0

GIMBAL PATTERN 4 O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

	PL	OTTING	SYMBOL	KEY	
SYMBOL	1000			SYMBOL	COOT
θ	3.0			•	8.0
X	4.0			•	9.0
•	5.0			•	10.0
•	6.0			S	11.0
•	7.0				

GIMBAL PATTERN 4A O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

	1	PLOTTING	S SYMBOL	KEY		
SYMBOL	QDOT.			9	YMBOL	QDOT.
9	2.0					4.5
X	2.5				•	5.0
2	3.0				-	
•	3.5					
•	4.0					

NO DEFLECTION
O/F = 5.0
Pc = 632 PSIA
INTERSTAGE OFF

	PLOTTIN	G SYMBOL KEY	
SYMBOL	COOT	SYMBOL	QDOT.
θ .	1.5	•	4.0
×	2.0	•	4.5
8	2.5	•	5.0
+	3.0		
	7.5		

NO DEFLECTION $\Theta/F = 5.0$ Pc = 632 PSIA INTERSTAGE OFF

S-IV TYPE HEAT SHIELD

		PLOTTING	SYMBOL	KEY		
SYMBOL	QDOT				SYMBOL	QD0T
9	2.0					4.5
X	2.5				•	5.0
•	3.0				•	5.5
•	3.5					
•	4.0					

NO DEFLECTION O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

	PLOTTII	VG SYMBOL KEY	
SYMBOL	Q DOT	SYMBOL	Q DOT
8	1.5	•	4.0
X	2.0	•	4.5
•	2.5	•	5.0
•	3.0		
•	7.5		

GIMBAL PATTERN 4A-a O/F = 5.5 Pc = 715 PSIA INTERSTAGE OFF

	PLO	TTING SYM	BOL KE	Y	
SYMBOL	QDOT			SYMBOL	00 0T
θ	5.0				15.0
X	7.0		•	•	17.0
•	9.0				
+	11.0				
•	13.0				

GIMBAL PATTERN 4A-a O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

	PLOTTING S	SYMBOL KEY	
SYMBOL	COOT	SYMBOL	COOT
8	3.0		8.0
×	4.0	•	9.0
•	5.0	•	10.0
•	6.0	· s	11.0
•	7.0	A	12.0

GIMBAL PATTERN 4A-b O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

	PL	OTTING SYM	BOL KEY	
SYMBOL	QDOT		SYM80L	COOT
Θ	1.0		•	6.0
x	2.0		•	7.0
•	3.0		•	8.0
•	4.0			
•	5.0			

GIMBAL PATTERN 7 O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

•	PLOTTING	SYMBOL KEY	
SYMBOL	COOT	SYMBOL	QDOT
8	4.0		14.0
×	6.0	•	16.0
2	8.0	8	18.0
+	10.0		
•	12.0		

GIMBAL PATTERN 7 O/F = 5.5 Pc = 715 PSIA INTERSTAGE OFF

	Pt	.OTTING	SYMBOL	KEY			
SYMBOL	QDOT				SYMBOL	(TOO
Θ	4.0				8	1	4.0
X	6.0				•	. 1	6.0
8	8.0				0	1	8.0
	10.0				S	a	0.0
•	12.0				A	a	0.5

GIMBAL PATTERN 8 O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

_1

	PL01	TTING SYMBOL KEY	
SYMBOL	QDOT	SYMBOL	Q DOT
θ	3.0	•	5.5
X	3.5	•	6.0
8	4.0	0	6.5
•	4.5	S	7.0
•	5.0	A	7.5

GIMBAL PATTERN 9 O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

	P	LOTTING	SYMBOL	KĒY		
SYMBOL	QDOT				SYMBOL	QDOT
Θ	3.0					8.0
X	4.0					
Ð	5.0					
+	6.0					
•	7.0					

GIMBAL PATTERN 9A O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

	PLOTTING	SYMBOL KEY	
SYMBOL	2 00T	SYMBOL	TCOD
8	3.0	8	8.0
X	4.0		
Ð	5.0		
+	6.0		
•	7.0		

GIMBAL PATTERN 9B O/F = 5.5 Pc = 715 PSIA INTERSTAGE ON

	1	PLOTTING	SYMBOL	KEY		
SYMBOL	QDOT				SYMBOL	QDOT
θ	3.0				Đ	8.0
X	4.0					
8	5.0					
•	6.0					
•	7.0					

GIMBAL PATTERN 9B O/F = 5.5 Pc = 715 PSIA INTERSTAGE OFF

 \Box

	PL01	TTING SYMBOL KEY	
SYMBOL	Q DOT	SYMBOL	Q DOT
8	3.0	•	8.0
X .	4.0		-
8	5.0		
•	6.0	•	
•	7.0		•

GIMBAL PATTERN 9B O/F = 5.0 Pc = 632 PSIA INTERSTAGE OFF

PLOTTING S	SYMBOL KEY	
T	SYMBOL	QDOT
0	•	6.5
5	•	7.0
0	•	7.5
5	S	8.0
3	A	8.5
	PLOTTING S IT 0 5 0 5 0	0

GIMBAL PATTERN 2B 0/F = 5.5Pc = 632 PSIA INTERSTAGE OFF

	PH O	TTING SYMBOL KEY	
SYMBOL	QDOT PLU	SYMBOL KET	QDOT
6	3.0	3.11352	8.8
X	4.0	•	9.0
8	5.0	•	10.0
+	6.0	S	11.0
•	7.0	A	12.0

٢

GIMBAL PATTERN 2B- MOD O/F = 5.5 Pc = 715 PSIA INTERSTAGE OFF

	PLO	OTTING SYMB	OL KEY	
SYMBOL	QDOT		SYMBOL	Q DOT
9	3.0		•	8.0
×	4.0		•	9.0
	5.0			
+	6.0			
•	7.0			

GIMBAL PATTERN 2B O/F = 5.5 Pc=632 PSIA INTERSTAGE ON

	PLOTTING	SYMBOL KEY	
SYMBOL	7000	SYMBOL	QDOT
θ	5.0	•	10.0
X	6.0	•	11.0
8	7.0	9	12.0
+	8.0		
_			

GIMBAL PATTERN 6A O/F = 5.5 Pc = 715 PSIA INTERSTAGE OFF

	PLC	OTTING SYMBOL KEY	
SYMBOL	QDOT	SYMBOL	QDOT
8	4.0	•	9.0
X	5.0	•	10.0
•	6.0	8	11.0
•	7.0	S	12.0
•	8.0		

GIMBAL PATTERN 6A O/F = 5.5 Pc = 715 PSIA INTERSTAGE ON

_.;

1

	PLOTT	ING SYMBOL KEY	
SYMBOL	Q DOT	SYMBOL	Q DOT
Ð	4.0	8	9.0
X	5.0	•	10.0
•	6.0	0	11.0
•	7.0	S	12.0
•	8.0		

GIMBAL PATTERN 6A O/F = 5.5 Pc = 715 PSIA INTERSTAGE OFF

	PLOTT	ING SYMBOL KEY	
SYMBOL	QDOT .	SYMBOL	QDOT
9	5.0	•	10.0
x	6.0	•	11.0
•	7.0	•	12.0
•	8.0	S	13.0
•	9.0		

Page Intentionally Left Blank