Санкт-Петербургский национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 «Программная инженерия» Дисциплина «Вычислительная математика»

Отчет По лабораторной работе №3 «Метод Ньютона»

Выполнил студент: Бабушкин А.М. (Р3221) Преподаватель: Перл О.В.

Описание численного метода:

Решение нелинейных уравнений методом Ньютона основывается на построении матрицы Якоби путем нахождения частных производных.

- Матрица Якоби:

$$J(x) = \begin{pmatrix} \frac{\partial u_1}{\partial x_1}(x) & \frac{\partial u_1}{\partial x_2}(x) & \cdots & \frac{\partial u_1}{\partial x_n}(x) \\ \frac{\partial u_2}{\partial x_1}(x) & \frac{\partial u_2}{\partial x_2}(x) & \cdots & \frac{\partial u_2}{\partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial u_m}{\partial x_1}(x) & \frac{\partial u_m}{\partial x_2}(x) & \cdots & \frac{\partial u_m}{\partial x_n}(x) \end{pmatrix}$$

- Затем нам нужно сформировать СЛАУ: J(x) * dx = -F(x) Решив эту СЛАУ мы получим второе приближение, потом третье и т.д. пока оно не будет удовлетворять нашему условию.

Блок-схема:

Метод реализованный на языке Java:

```
class Result {
    public static List<Double> solve_by_fixed_point_iterations(int_system_id, int_number_of_unknowns, List<Double> initial_approximations) {
    List<Function<List<Double>, Double>> functions = SNAEFunctions.get_functions(system_id);
          List<Double> currentApproximations = initial_approximations;
          double epsilon = 1e-5;
         while (true) {
    List<Double> nextApproximations = new ArrayList<>();
               for (int i = 0; i < number_of_unknowns; i++) {
                   double sum = 0.0;
                   for (Function<List<Double> Double> function : functions) {
    List<Double> updatedArgs = new ArrayList<>(currentApproximations);
                         updatedArgs.set(i, function.apply(updatedArgs));
                        sum += updatedArgs.get(i);
                    nextApproximations.add(currentApproximations.get(i) - sum / functions.size());
               boolean isConverged = true;
               for (int i = 0; i < number_of_unknowns; i++) {</pre>
                    \  \  \text{if } \  (\texttt{Math.abs}(\texttt{currentApproximations.get(i)} \ - \ \texttt{nextApproximations.get(i)}) \ > \ \texttt{epsilon}) \ \ \{
                        isConverged = false;
               if (isConverged) {
                   return nextApproximations;
               } else {
                    currentApproximations = nextApproximations;
```

Тесты:

Тест 1 Ввод 1 2 3 4	Вывод -1.1839731744105369E-6 0.9999988160268257
Тест 2 Ввод 2 2 0.66 0.33	Вывод 0.7002303562721797 0.3702303562721795
Тест 3 Ввод 5 3 4 2 0	Выво д 4.0 2.0 0.0
Тест 4 Ввод 3 3 0.001 0.5 0.99	Вывод 0.17152339140053463 0.6705233914005344 1.1605233914005346
Тест 5 Ввод 4 3 2 5 2	Выво д -Infinity -Infinity -Infinity

Вывод:

В ходе лабораторной работы был реализован метод Ньютона для решения нелинейных уравнений. Метод основывается на построении матрицы Якоби и последующем решении системы линейных алгебраических уравнений (СЛАУ).

Сравнение с другими методами:

Метод Ньютона имеет более быструю сходимость, чем метод итераций по простой точке, но он может быть менее устойчивым.

Анализ применимости метода:

- Метод Ньютона применим для решения нелинейных уравнений и систем нелинейных уравнений.
- Метод может не сходиться, если начальное приближение слишком далеко от решения.

Алгоритмическая сложность:

Алгоритмическая сложность метода Ньютона составляет $O(n^4)$, где n - размер системы уравнений.

Общие выводы:

Метод Ньютона является мощным инструментом для решения нелинейных уравнений. Метод имеет ряд ограничений, которые необходимо учитывать при его использовании. Для достижения наилучших результатов важно выбрать подходящее начальное приближение и использовать методы контроля численной ошибки.