SCALAR PROXY

VICENTE V. FIGUEIRA

1. Cut solutions

Of course in each amplitude we have different cut solutions. Now let us solve them,

1.1. all massless. The cut condition is,

$$k_1^2 = k_2^2 = (3 - k_1)^2 = (3 - k_1 - k_2)^2 = (3 + 4 - k_1 - k_2)^2 = 0$$

The first and third condition enforces $k_1 = -|k_1|\langle 3|$. But the fourth and fifth conditions enforces $3 - k_1 - k_2 = n$, with $n \cdot 4 = 0$ & $n^2 = 0$. Lastly, the second condition imposes $(3 - k_1 - n)^2 = -23 \cdot n + 2k_1 \cdot n = 0$, that is,

$$[3n]\langle n3\rangle = [k_1n]\langle n3\rangle$$

which has two solutions, $|n| = |k_1| - |3| \& |n\rangle = z|4\rangle$ or $|n\rangle = |3\rangle \& |n| = z|4|$. When working with scalar particles it's better to choose the first solution, as this avoids singularities in denominators such as $(k_1 \cdot k_2)^{-1}$. Hence, the solution we're going to choose is,

$$\begin{cases} k_1 &= -|k_1|\langle 3| \\ k_2 &= -|3|\langle 3| + |k_1|\langle 3| + z(|k_1| - |3|)\langle 4| \end{cases}$$

1.2. **massive legs first topology.** Our approach to massive legs is to shift the solution with massless, in order to obtain a well behaved solution in the $m^2 \to 0$ limit. For this topology the cut constrains are,

$$l_1^2 = l_2^2 = (3 - l_1)^2 = -m^2 & (3 - l_1 - l_2)^2 = (3 + 4 - l_1 - l_2)^2 = 0$$

The ideia here is to define, $l_i = k_i + \alpha_i q_i$ (no sum), with $q_i^2 = 0$ and $\alpha_i = -m^2 (2k_i \cdot q_i)^{-1}$, then, q_i, k_i are not allowed to have any dependence on m^2 . The first and second constrains are already satisfied. The third one gives,

$$-23 \cdot l_1 = 0 \rightarrow 3 \cdot (k_1 + \alpha_1 q_1) = 0 \rightarrow 3 \cdot q_1 = 0$$

As $|q_1\rangle = |3\rangle$ is forbidden, $|q_1| = |3|$. The fourth and fifth constrains imposes,

$$\begin{cases} -n \cdot (\alpha_1 q_1 + \alpha_2 q_2) + \alpha_1 \alpha_2 q_1 \cdot q_2 &= 0\\ 4 \cdot (\alpha_1 q_1 + \alpha_2 q_2) &= 0 \end{cases}$$

This imposes actually $q_1 \cdot q_2 = 0$, for this to be true we have to options, either $|q_2| = |3|$, or $|q_2\rangle = |q_1\rangle$. If we choose the first, we can shift k_1 by 3 such to make $|q_1\rangle = |4\rangle$, this imposes further $|q_2\rangle = |4\rangle$. Hence, a possible solution is,

$$q_1 = q_2 = -|3|\langle 4|$$

1.3. massive legs second topology. The constrains now are slightly different,

$$l_1^2 = (3 - l_1)^2 = 0 \& l_2^2 = (3 - l_1 - l_2)^2 = (3 + 4 - l_1 - l_2)^2 = -m^2$$

Which has as solution $q_2 = -|4|\langle 3|$

1.4. massive legs third topology. Now the constrain is difficult to solve

$$l_2^2 = 0 \& l_1^2 = (3 - l_1)^2 = (3 - l_1 - l_2)^2 = (3 + 4 - l_1 - l_2)^2 = -m^2$$

The first, second and third constrains give, $l_2 = -|l_2|\langle l_2|, l_1 = -|l_1|\langle 3|-\alpha|3|\langle l_1|, \text{ which is get by shifting }|l_1|$. Now, the fourth constrain gives,

$$l_2 \cdot (3 - l_1) = 0$$

Expanding $|l_2| = x|l_1| + y|3|$,

$$x[l_13]\langle 3l_2\rangle - y[3l_1]\langle 3l_2\rangle - x\alpha[l_13]\langle l_1l_2\rangle = 0$$
$$(x+y)\langle 3l_2\rangle = x\alpha\langle l_1l_2\rangle$$

The fifth constrain gives,

$$4 \cdot (3 - l_1 - l_2) = 0$$

$$[4|(-|3|\langle 3| + |l_1|\langle 3| + \alpha|3|\langle l_1| + x|l_1|\langle l_2| + y|3|\langle l_2|)|4\rangle = 0$$

$$-[43|\langle 34\rangle + [4l_1|\langle 34\rangle + \alpha[43|\langle l_14\rangle + x[4l_1]\langle l_24\rangle + y[43|\langle l_24\rangle = 0$$

$$[4l_1|(\langle 34\rangle + x\langle l_24\rangle) + [43](y\langle l_24\rangle - \langle 34\rangle + \alpha\langle l_14\rangle) = 0$$

This fixes, $x\langle l_2 4 \rangle = -\langle 34 \rangle = -y\langle l_2 4 \rangle - \alpha \langle l_1 4 \rangle$, hence, $|l_2\rangle = -\frac{1}{x}|3\rangle + \mu|4\rangle$, & $|l_1\rangle = \frac{1}{\alpha} \left(1 + \frac{y}{x}\right)|3\rangle + \nu|4\rangle$ Plugging this back on the other constrain gives,

$$\begin{split} (x+y)\mu\langle 34\rangle &= x\alpha\Big(\frac{\mu}{\alpha}\Big(1+\frac{y}{x}\Big)\langle 34\rangle - \frac{\nu}{x}\langle 43\rangle\Big)\\ (x+y)\mu\langle 34\rangle &= \mu(x+y)\langle 34\rangle - \alpha\nu\langle 43\rangle \end{split}$$

This forces $\nu=0$, which is not a possible solution. The only way to get around this is to impose $|l_1\rangle=|l_2\rangle$. This imposes x+y=0 and $|l_2\rangle=z|4\rangle$. But this itself is only a solution if we shift $|l_1|\to |l_1|+|3|$. That is,

$$\begin{cases} l_1 &= -|3]\langle 3| - |l_1]\langle 3| - \frac{m^2}{[l_1 3]\langle 43\rangle} |3]\langle 4| \\ l_2 &= -z(|3] - |l_1])\langle 4| \end{cases}$$