Duração: 1h30

Álgebra Linear e Geometria Analítica

2.ª Prova de Avaliação Mista - 29/11/2010

Nome:								N.º mecanográfico:	
Declaro que desisto								$N.^{o}$ de folhas suplementares:	
	Questão	1	2	3	4	Total		Classificação final	
	Cotação	65	50	40	45	200	+		
	Classificação							valores	

Justifique convenientemente todas as suas respostas e indique os cálculos que efectuar.

- 1. Sejam X=(0,1,1) e Y=(1,1,-1) vectores de \mathbb{R}^3 . Seja \mathcal{W} o espaço gerado por X e Y.
 - (a) Calcule o produto vectorial $X \times Y$ e indique uma base ortogonal de \mathbb{R}^3 contendo $X \times Y$.
 - (b) Determine uma base ortonormada de \mathcal{W} .
 - (c) Calcule a projecção ortogonal de (1,1,1) sobre \mathcal{W} .

2. Sejam

$$A = \begin{bmatrix} 0 & 1 & -1 & 1 \\ 1 & 1 & 1 & 0 \\ 2 & 3 & 1 & 1 \end{bmatrix} \qquad e \qquad B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

- (a) Determine a característica da matriz $[A \mid B]$.
- (b) Indique, justificando, se B pertence ao espaço das colunas de A.
- (c) Determine o espaço nulo de A.

3. Considere o conjunto

$$S = \{(x, y, z, t) \in \mathbb{R}^4 : x + y = z = 0\}.$$

- (a) Mostre que S é um subespaço de $\mathbb{R}^4.$
- (b) Determine uma base e a dimensão de S.

- 4. Seja $\mathcal{T}=(X_1,X_2)$ uma base de \mathbb{R}^2 e $\mathcal{S}=(X_1+X_2,X_1-X_2)$.
 - (a) Mostre que \mathcal{S} é uma base de \mathbb{R}^2 .
 - (b) Determine $[X]_{\mathcal{S}}$, sabendo que $[X]_{\mathcal{T}} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.
 - (c) Mostre que $X_1 + X_2$ é ortogonal a $X_1 X_2$ se e só se $||X_1|| = ||X_2||$.