

Experiment:-4

Student Name: Chanpreet Singh UID: 20BCS9688

Branch: CSE Section/Group: 20BCS_WM_615/B

Semester: 5th Date of Performance: 19/09/2022

Subject Code: 20CSP-317

Subject Name: MACHINE LEARNING LAB

Aim/Overview of the practical:

Classifying data using Support Vector Machines(SVMs) in Python

Task to be done:

To perform Classification using Support Vector Machines(SVMs) on any standard dataset.

Apparatus/Simulator used:

- Jupyter Notebook/Google Collab
- Python
- pandas Library
- seaborn Library
- Standard Dataset

Code and Output:

```
#importing necessary libraries
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
from sklearn import svm
#Import Dataset
data1 = pd.read_csv('Social_Network_Ads.csv')
data1.head()
data1.corr()
X = data1.iloc[:,[2,3]].values
y = data1.iloc[:,4].values
#Splitting dataset to test and train set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
#Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_{train} = sc.fit_{transform}(X_{train})
X_{\text{test}} = \text{sc.transform}(X_{\text{test}})
#Create a model for SVM
from sklearn.svm import SVC
classifier = SVC(kernel='linear',random_state=0)
```

#classifier = SVC(kernel='poly',degree=5,random_state=0) //Poly kernel will predict less accurate since our data is


```
linear. We use Linear kernel for SVM
classifier.fit(X_train,y_train)
# get prediction values for train data
from sklearn.model_selection import cross_val_score, cross_val_predict
lModel = svm.SVC(kernel = 'linear')
lModel.fit(X_train,y_train)
Y_pred = cross_val_predict(lModel,X_train,y_train,cv = 3)
Y_pred
#Prediction of test data set
y_pred = classifier.predict(X_test)
y_pred
#Making the confusion matrix
from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score
cm = confusion_matrix(y_test,y_pred)
cm
plt.scatter(X_train[:,0], X_train[:,1],c=y_train)
plt.show
plt.scatter(X_test[:,0], X_test[:,1],c=y_test)
plt.show
# instantiate model with kernel = 'linear'
lModel = svm.SVC(kernel = 'linear')
lModel.fit(X_train,y_train)
# cross validation to get avg accuracy and std
from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict
score = cross_val_score(lModel,X_train,y_train,cv = 10, scoring = 'accuracy')
print("avg accuracy:\t{0:,.4f}".format(np.mean(score)))
print("avg std:\t{0:,.4f}".format(np.std(score)))
```


Learning outcomes (What I have learnt):

- 1. To understand Support Vector Machines(SVMs)
- 2. Learn about pandas', matplotlib and seaborn library/package of python.
- 3. Learn about the different methods/functions that are needed to generate different types of graphs, charts and plots of the given dataset.

Evaluation Grid (To be created as per the SOP and Assessment guidelines by the faculty):

Sr. No.	Parameters	Marks Obtained	Maximum Marks
1.			
2.			
3.			

