Tutorial 1 – Observational Cosmology

Acceleration and Dark Energy from Supernova Data

RECREATING THE 2011 NOBEL PRIZE

Complete this tutorial using the cloud.sagemath.com account supplied to you by email. Include text descriptions and answers as latex in the worksheet.

1. Download the Union2 SNIa data from http://supernova.lbl.gov/union/figures/SCPUnion2.1_mu_vs_z.txt.

The data is described at http://supernova.lbl.gov/union/descriptions.html#Magvsz.

- 2. Add an intrinsic scatter of *0.12 mag* in quadrature to the photometric errors (column three of the data file) on each supernova. This is now the appropriate error to use for each supernova for the rest of the tutorial.
- 3. Analytically derive the luminosity-redshift relation for a flat, matter-dominated universe with Ω_m = 1 (Einstein-de Sitter). Plot the corresponding distance modulus vs z for z < 2. Plot the Union 2 data, with error bars, on the same plot. What can you already deduce from the plot?
- 4. Make a plot of $\Delta\mu$ vs z with errorbars, where $\Delta\mu=\mu(z)-\mu_{empty}(z)$ is the distance modulus residual with respect to the Einstein-de Sitter universe you computed in 3.
- 5. On the same plot show:
 - a. a standard Λ CDM model with H_0 = 70, Ω_m = 0.3 and Ω_{Λ} = 0.7.
 - b. a flat model with no dark energy, $H_0 = 70$, $\Omega_m = 1$
 - c. a standard Λ CDM model with H_0 = 60, Ω_m = 0.3 and Ω_{Λ} = 0.7.
- 6. Explain briefly what is going on in your plot. Why do the various theoretical plots look like they do in terms of the parameters?
- 7. Write an MCMC code to fit for H_0 and Ω_{Λ} (assuming flatness) using the SNIa data.
- 8. Produce a 2D scatter plot for H_0 and Ω_{Λ} with at least 50,000 steps and a marginalized histogram for Ω_{Λ} . Describe the MCMC input choices you make in running your code (step sizes, starting values, priors etc...).
- 9. Produce 68% and 95% confidence limits for Ω_{Λ} and discuss your results and what they imply for dark energy. What does marginalizing over H_0 do to your constraints on Ω_{Λ} ?

10. Now extend your MCMC code to vary curvature as well (vary Ω_{Λ} and Ω_{m} separately). Show your chain in the $~\Omega_{\Lambda}$ and Ω_{m} plane. Explain the degeneracy that you see.