Car sales project

Showcasing skills: upload data to BigQuery, data cleaning and analysis using SQL

Dataset source: https://archive.ics.uci.edu/ml/datasets/Automobile

Task: The dataset contains historical car sales data from 1985, including details such as car features and prices. Clean the dataset and report the main characteristics of the top 5 most expensive cars.

Steps:

- 1) Data sourcing
- 2) Upload data to BigQuery
- 3) Data cleaning strategies using SQL language
- 4) Data analysis and reporting

1) Data sourcing

Relevant CSV datafile downloaded from data source

2) Upload data to BigQuery

Project, dataset and table creation in BigQuery and upload of the CSV datafile

3) Data cleaning strategies using SQL language

• Check for duplicates:

```
SELECT
  DISTINCT *
FROM
  `portfolio-382611.CarProject.sales_info_1985`
```

We have 1 duplicate. Returned 202 distinct entries, but there are 203 rows.

Inspect fuel_type column

```
SELECT
DISTINCT fuel_type
FROM
`portfolio-382611.CarProject.sales_info_1985`

Job information Results

Row fuel_type

1 gas
2 diesel
```

As described in the data description table: "gas" and "diesel".

• Inspect car length column

```
SELECT
MIN(length) AS min_length,
MAX(length) AS max_length
FROM
`portfolio-382611.CarProject.sales_info_1985`

Row min_length max_length

1 141.1 208.1
```

Car length range as described.

• Fill in missing data

```
SELECT
  *
FROM
  `portfolio-382611.CarProject.sales_info_1985`
WHERE
  num_of_doors IS NULL
```

Row	make	fuel_type	num_of_doors	body_style
1	dodge	gas	null	sedan
2	mazda	diesel	null	sedan

Two entries have NULL values. Was told that Dodge gas sedans and Mazda diesel sedans where all 4-doors, so carried on with replacing the NULL value with "four" doors, for both entries.

```
UPDATE
   `portfolio-382611.CarProject.sales_info_1985`
SET
   num_of_doors = "four"
WHERE
   make = "dodge"
   AND fuel_type = "gas"
   AND body_style = "sedan";
```

Inspect num_of_cylinders column

```
SELECT
  DISTINCT num_of_cylinders
FROM
  `portfolio-382611.CarProject.sales_info_1985`
```

JOB IN	IFORMATION	RESULTS
Row	num_of_cylinders	
1	four	,
2	six	
3	five	
4	three	
5	twelve	
6	two	
7	tow	
8	eight	

Found a typo in row 7. Proceeded to fix it.

```
UPDATE
   `portfolio-382611.CarProject.sales_info_1985`
SET
   num_of_cylinders = "two"
WHERE
   num_of_cylinders = "tow"
```

• Inspect compression_ratio column

```
SELECT
  MIN (compression_ratio) AS min_compr_ratio,
  MAX (compression_ratio) AS max_compr_ratio
FROM
```

`portfolio-382611.CarProject.sales_info_1985`

Found an error. Data description gives 7-23 as the range for compression ratio. 70 was most likely meant to be a 7. Running a new query excluding the value 70 to make sure that the rest of the values fall within the expected range of 7 to 23.

This confirms that 70 was a typo and that the rest of the values fall within the expected range. Before deleting it, I checked how many rows contain wrong value.

```
SELECT
COUNT(*) AS rows_wrong_value
FROM
`portfolio-382611.CarProject.sales_info_1985`
WHERE
compression_ratio = 70

JOB INFORMATION RESULTS

Row rows_wrong_value

1 1
```

Only one row contains the wrong value in the compression_ratio column. It can be deleted

```
DELETE
    `portfolio-382611.CarProject.sales_info_1985`
WHERE
    compression_ratio = 70
```

• Inspect drive wheels column

```
SELECT
DISTINCT drive_wheels
FROM
`portfolio-382611.CarProject.sales_info_1985`

JOB INFORMATION RESULTS

Row drive_wheels
1 rwd
2 fwd
3 4wd
4 4wd
```

4wd is reported twice. I checked for extra white spaces.

```
SELECT
  DISTINCT drive_wheels,
  LENGTH (drive_wheels) AS string_length
FROM
  `portfolio-382611.CarProject.sales_info_1985`
 JOB INFORMATION
                   RESULTS
                              JSON
Row
                            string_length
      drive_wheels
                                    3
  2 fwd
   3
      4wd
                                    4
                                    3
   4
```

Error found. In row three the length of the string is 4 when it should be 3. Preceding with trimming the extra white spaces.

```
UPDATE
   `portfolio-382611.CarProject.sales_info_1985`
SET
   drive_wheels = TRIM(drive_wheels)
WHERE TRUE
```

4) Data analysis and reporting

Objective: Find out characteristics of the top 5 most expensive cars

```
SELECT
  *
FROM
  `portfolio-382611.CarProject.sales_info_1985`
ORDER BY price DESC
LIMIT 5
```

I then exported the results in Google Sheets and made the following table that summarises the features of the top 5 most expensive cars.

Make	Price (\$)	Body style	Num. of doors	Engine location	Num. of cylinders	Horsepower	City mpg
Mercedes-Benz	45400	hardtop	two	front	eight	184	14
BMW	41315	sedan	two	front	six	182	16
Mercedes-Benz	40960	sedan	four	front	eight	184	14
Porsche	37028	convertible	two	rear	six	207	17
BMW	36880	sedan	four	front	six	182	15