Prednášky z Matematiky (4) – Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2017/2018

Výroková logika Literatúra

5. prednáška

Korektnosť a úplnosť tablového kalkulu

19. marca 2018

Obsah 5. prednášky

Výroková logika Tablový kalkul Korektnosť Tablový dôkaz splniteľnosti Hintikkova lema Úplnosť

Organizačné rozhodnutia a oznamy

Zrušenie stredajších praktických cvičení

Súhlasia študenti, ktorí prišli naposledy?

✓ odsúhlasené

Midterm

utorok 10. apríla o 18:10 v A

Náhrada cvičení 1. a 8. mája

1. možnosť: 💆 prijatá

stredy 2. a 9. mája

14:50 2AIN1 M-I

16:30 2AIN2 M-IX, 2AIN3 M-XI

2. možnosť: 🛱 zamietnutá

piatky 4. a 11. mája

Niekedy dopoludnia (8:10 — 12:20),

ideálne 9:50-11:30

2.8

Tablový kalkul

Výroková logika Literatúra

Opakovanie

J. Kľuka, J. Šiška

Označené formuly a ich sémantika

Definícia 2.57

Nech X je formula výrokovej logiky.

Postupnosti symbolov **T** *X* a **F** *X* nazývame *označené formuly*.

Definícia 2.58

Nech v je ohodnotenie výrokových premenných a X je formula. Potom

- v spĺňa T X vtt v spĺňa X;
- v spĺňa F X vtt v nespĺňa X.

Dohoda

Pre označené formuly budeme používať veľké písmená zo začiatku a konca abecedy s horným indexom + a prípadne s dolnými indexmi, napr. A^+, X_7^+ . Pre množiny označených formúl budeme používať písmená S, T s horným indexom + a prípadne s dolnými indexmi, napr. S^+, T_3^+ .

Jednotný zápis označených formúl $-\alpha$

Definícia 2.59 (Je	dnotný zápis ozr	načených form	úl typu $α$)
--------------------	------------------	---------------	---------------

Označená formula A^+ je $\emph{typu}~lpha$ vtt má jeden	α	α_1	α_2
z tvarov v ľavom stĺpci tabuľky pre nejaké	$T(X \wedge Y)$	ТX	ΤΥ
formuly X a Y.	$F(X \lor Y)$		
Takéto formuly budeme označovať	$\mathbf{F}(X \to Y)$		
písmenom α ;	T¬X		
$lpha_1$ bude označovať príslušnú označenú	F¬X		
formulu zo stredného stĺpca,	Γ ¬∧	1 /	1 /
α ₂ príslušnú formulu z pravého stĺpca.			

Pozorovanie 2.60 (Stručne vďaka jednotnému zápisu)

Nech v je ľubovoľné ohodnotenie výrokových premenných. Potom v spĺňa α vtt v spĺňa α_1 a v spĺňa α_2 .

Jednotný zápis označených formúl $-\beta$

Definícia 2.61 (Jednotný zápis označených formúl typu β)

Označená formula B^+ je **typu** β vtt má jeden z tvarov v ľavom stĺpci tabuľky pre nejaké formuly X a Y.

Takéto formuly budeme označovať písmenom β ;

 eta_1 bude označovať príslušnú označenú formulu zo stredného stĺpca,

 β_2 príslušnú formulu z pravého stĺpca.

β	eta_1	β_2
$F(X \wedge Y)$	FΧ	FΥ
$T(X \vee Y)$	TX	ΤY
$T(X \rightarrow Y)$	FX	TY

Pozorovanie 2.62 (Stručne vďaka jednotnému zápisu)

Nech v je ľubovoľné ohodnotenie výrokových premenných. Potom v spĺňa β vtt v spĺňa β_1 alebo v spĺňa β_2 .

Tablo pre množinu označených formúl

Definícia 2.63

Analytické tablo pre množinu označených formúl S^+ (skrátene tablo pre S^+) je binárny strom, ktorého vrcholy obsahujú označené formuly a ktorý je skonštruovaný podľa nasledovných rekurzívnych pravidiel:

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A⁺ z S⁺ je tablom pre S⁺.
- Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé **priame rozšírenie** \mathcal{T} ktoroukoľvek z operácií:
 - Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - B Ak sa na vetve π_y vyskytuje nejaká označená formula β , tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .
 - S^+ : Ako jediné dieťa y pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu $A^+ \in S^+$.

Nič iné nie je tablom pre S^+ .

Tablá, tablové pravidlá, operácie rozšírenia

Operácia priameho rozšírenia

Pravidlá a označené formuly v nich

Legenda: y je list v table \mathcal{T} , π_v je cesta od koreňa k y

Uzavretosť a otvorenosť vetvy a tabla

Definícia 2.64

Vetvou tabla \mathcal{T} je každá cesta od koreňa \mathcal{T} k niektorému listu \mathcal{T} .

Označená formula X^+ sa *vyskytuje na vetve* π v \mathcal{T} vtt sa nachádza v niektorom vrchole na π . Skrátene to budeme zapisovať $X^+ \in \text{formulas}(\pi)$.

Definícia 2.65

Vetva π tabla $\mathcal T$ **je uzavretá** vtt

na π sa súčasne vyskytujú označené formuly **F** X a **T** X pre nejakú formulu X. Inak je π **otvorená**.

Tablo \mathcal{T} je uzavreté vtt každá jeho vetva je uzavretá.

Naopak, \mathcal{T} je **otvorené** vtt *aspoň jedna* jeho vetva je otvorená.

2.8.1 Korektnosť

Korektnosť tablového kalkulu

Korektnosť (angl. soundness) kalkulu neformálne:

Ak v kalkule dokážeme nejaké tvrdenie, tak to tvrdenie je naozaj pravdivé.

Veta 2.66 (Korektnosť tablového kalkulu)

Nech S^+ je množina označených formúl a $\mathcal T$ je uzavreté tablo pre S^+ . Potom je množina S^+ nesplniteľná.

Dôsledok 2.67

Nech S je množina formúl a X je formula.

Ak existuje uzavreté tablo pre $\{TA \mid A \in S\} \cup \{FX\}$ (skr. $S \vdash X$), tak z S vyplýva X ($S \models X$).

Dôsledok 2.69

Nech X je formula.

Ak existuje uzavreté tablo pre $\{FX\}$ (skr. $\vdash X$), tak X je tautológia $(\models X)$.

Korektnosť – splnenie priameho rozšírenia tabla

Na dôkaz korektnosti potrebujeme pomocnú definíciu a dve lemy.

Definícia 2.70

Nech S^+ je množina označených formúl, nech \mathcal{T} je tablo pre S^+ a nech v je ohodnotenie množiny výrokových premenných. Potom:

- $v splina vetvu \pi v table \mathcal{T} vtt$ $v splina všetky označené formuly vyskytujúce sa na na vetve <math>\pi$.
- \mathbf{v} spĺňa tablo \mathcal{T} vtt v spĺňa niektorú vetvu v table \mathcal{T} .

Lema 2.71 (K1)

Nech S^+ je množina označených formúl, nech \mathcal{T} je tablo pre S^+ a nech v je ohodnotenie množiny výrokových premenných. Ak v spĺňa S^+ a v spĺňa \mathcal{T} , tak v spĺňa aj každé priame rozšírenie \mathcal{T} .

Korektnosť – splnenie priameho rozšírenia tabla

Dôkaz lemy K1.

Nech $v \models S^+$. Nech v spĺňa $\mathcal T$ a v ňom vetvu π . Nech $\mathcal T_1$ je rozšírenie $\mathcal T$. Nastáva jeden z prípadov:

- \mathcal{T}_1 vzniklo z \mathcal{T} operáciou A, pridaním nového dieťaťa z nejakému listu y v \mathcal{T} , pričom z obsahuje α_1 alebo α_2 pre nejakú formulu α na vetve π_y . Ak $\pi \neq \pi_y$, tak \mathcal{T}_1 obsahuje π a teda je splnené.
 - Ak $\pi=\pi_{\gamma}$, tak v spĺňa aj α , pretože spĺňa π . Potom v musí spĺňať aj α_1 a α_2 . Spĺňa teda vetvu π_z v table \mathcal{T}_1 , ktorá rozširuje splnenú vetvu π o vrchol z obsahujúci splnenú ozn. formulu α_1 alebo α_2 . Preto v spĺňa tablo \mathcal{T}_1 .
- \mathcal{T}_1 vzniklo z \mathcal{T} operáciou B, pridaním detí z_1 a z_2 nejakému listu y v \mathcal{T} , pričom z_1 obsahuje β_1 a z_2 obsahuje β_2 pre nejakú formulu β na vetve π_y . Ak $\pi \neq \pi_y$, tak \mathcal{T}_1 obsahuje π a teda je splnené.
 - Ak $\pi=\pi_y$, tak v spĺňa aj β , pretože spĺňa π . Potom ale v musí spĺňať aj β_1 alebo β_2 . Ak v spĺňa β_1 , tak spĺňa aj vetvu π_{Z_1} v table \mathcal{T}_1 , a preto v spĺňa tablo \mathcal{T}_1 . Ak v spĺňa β_2 , spĺňa aj π_{Z_2} , a teda aj \mathcal{T}_1 .
- \$\mathcal{T}_1\$ vzniklo z \$\mathcal{T}\$ operaciou Ax, pridaním nového dieťaťa z nejakému listu y v \$\mathcal{T}\$, pričom z obsahuje formulu \$X^+ \in S^+\$. Ak \$\pi \neq \pi_y\$, tak \$\mathcal{T}_1\$ obsahuje \$\pi\$ a teda je splnené.

 Ak \$\pi = \pi_y\$, tak v spĺňa vetvu \$\pi_z\$ v table \$\mathcal{T}_1\$, pretože je rozšírením splnenej vetvy \$\pi\$ o vrchol z obsahujúci splnenú formulu \$X\$ (pretože \$v \center \in S^+\$). Preto v spĺňa tablo \$\mathcal{T}_1\$. □

Korektnosť – splnenie množiny a tabla pre ňu

Lema 2.72 (K2)

Nech S^+ je množina označených formúl, nech $\mathcal T$ je tablo pre S^+ a nech v je ohodnotenie.

Ak v spĺňa S^+ , tak v spĺňa \mathcal{T} .

Dôkaz lemy K2.

Nech S^+ je množina označených formúl, nech v je ohodnotenie a nech v $\models S^+$. Úplnou indukciou na počet vrcholov tabla $\mathcal T$ dokážeme, že v spĺňa každé tablo $\mathcal T$ pre S^+ .

Ak má \mathcal{T} jediný vrchol, tento vrchol obsahuje formulu $X^+ \in S^+$, ktorá je splnená pri v. Preto je splnená jediná vetva v \mathcal{T} , teda aj \mathcal{T} .

Ak $\mathcal T$ má viac ako jeden vrchol, je priamym rozšírením nejakého tabla $\mathcal T_0$, ktoré má o 1 alebo o 2 vrcholy menej ako $\mathcal T$. Podľa indukčného predpokladu teda v spĺňa $\mathcal T_0$. Podľa predchádzajúcej lemy potom v spĺňa aj $\mathcal T$.

Korektnosť – dôkaz

Dôkaz vety o korektnosti.

Nech S^+ je množina označených formúl a \mathcal{T} je uzavreté tablo pre S^+ .

Sporom: Predpokladajme, že existuje ohodnotenie, ktoré spĺňa S^+ .

Označme ho v.

Potom podľa lemy K2 v spĺňa tablo \mathcal{T} , teda v spĺňa niektorú vetvu π v \mathcal{T} .

Pretože $\mathcal T$ je uzavreté, aj vetva π je uzavretá,

teda π obsahuje označené formuly **T** X a **F** X pre nejakú formulu X.

Ale
$$v \models TX \text{ vtt } v \models X \text{ a } v \models FX \text{ vtt } v \not\models X$$
, čo je spor.

J. Kľuka, J. Šiška

2.8.2

Tablový dôkaz splniteľnosti

Úplná vetva a tablo

Čo ak nevieme nájsť uzavreté tablo pre nejakú množinu ozn. formúl?

Definícia 2.73 (Úplná vetva a úplné tablo)

Nech S^+ je množina označených formúl a \mathcal{T} je tablo pre S^+ . **Vetva** π v table \mathcal{T} **je úplná** vtt má všetky nasledujúce vlastnosti:

- pre každú označenú formulu α, ktorá sa vyskytuje na π, sa obidve označené formuly α₁ a α₂ vyskytujú na π;
- pre každú označenú formulu β, ktorá sa vyskytuje na π,
 sa aspoň jedna z označených formúl β₁, β₂ vyskytuje na π;
- $každá X^+ \in S^+$ sa vyskytuje na π .

Tablo \mathcal{T} je úplné vtt každá jeho vetva je buď úplná alebo uzavretá.

Príklad 2.74

Vybudujme úplné tablo pre ${\bf F} X$, kde

$$X = (((p \lor q) \land (r \lor p)) \rightarrow (p \land (q \lor r))).$$

Otvorené tablo a splniteľnosť

Nech tablové pravidlá v príklade použijeme v akomkoľvek,

- nenájdeme uzavreté tablo, ale
- vyrobíme úplné otvorené tablo.

Z úplného otvoreného tabla pre S⁺ vieme vytvoriť ohodnotenie v:

- 1 nájdeme otvorenú vetvu π ,
- pre každú výrokovú premennú p
 - ightharpoonup ak sa v π nachádza Tp, definujeme v(p) = t;
 - A ak sa v π nachádza **F** p, definujeme v(p) = f;
 - inak definujeme v(p) ľubovoľne.

Toto v spĺňa π , a preto v spĺňa S^+ (všetky formuly z S^+ sa vyskytujú na π).

Otázka

- Dá sa vždy nájsť úplné tablo?
- Naozaj sa z úplného otvoreného tabla dá vytvoriť spĺňajúce ohodnotenie?

Existencia úplného tabla

Lema 2.75 (o existencii úplného tabla)

Nech S⁺ je konečná množina označených formúl. Potom existuje úplné tablo pre S⁺.

Dôkaz.

Vybudujme tablo \mathcal{T}_0 pre S^+ tak, že do koreňa vložíme niektorú formulu z S^+ a opakovaním operácie Ax postupne doplníme ostatné.

Potom tablo postupne rozširujeme tak, že vyberieme ľubovoľný list y tabla \mathcal{T}_i , ktorého vetva π_V je otvorená a nie je úplná. Potom nastane aspoň jedna z možností:

- Na π_{V} sa nachádza nejaká formula α , ale nenachádza sa niektorá z formúl α_{1} a α_{2} .
- Na π_V sa nachádza nejaká formula β , ale nenachádza sa ani jedna z formúl β_1 a β_2 .

Ak platí prvá alebo obe možnosti, aplikujeme operáciu A. Ak platí druhá možnosť, aplikujeme operáciu B. Získame tablo \mathcal{T}_{i+1} , s ktorým proces opakujeme.

Tento proces po konečnom počte krokov (prečo?) vytvorí nejaké tablo \mathcal{T}_n , v ktorom už neexistuje vetva, ktorá by bola otvorená a nebola úplná. Teda každá vetva v \mathcal{T}_n je buď uzavretá alebo úplná, čiže \mathcal{T}_n je úplné.

2.8.3 Hintikkova lema

Nadol nasýtené množiny a Hintikkova lemma

Definícia 2.76

Množina označených formúl S^+ sa nazýva **nadol nasýtená** vtt platí:

- \bigoplus v S^+ sa nevyskytujú naraz $\mathsf{T} p$ a $\mathsf{F} p$ pre žiadnu výrokovú premennú p;
- \bigoplus ak $\alpha \in S^+$, tak $\alpha_1 \in S^+$ a $\alpha_2 \in S^+$;
- \bigoplus ak $\beta \in S^+$, tak $\beta_1 \in S^+$ alebo $\beta_2 \in S^+$.

Pozorovanie 2.77

Nech π je úplná otvorená vetva nejakého tabla \mathcal{T} .

Potom množina všetkých formúl na π je nadol nasýtená.

Lema 2.78 (Hintikkova)

Každá nadol nasýtená množina S⁺ je splniteľná.

Dôkaz Hintikkovej lemy.

Chceme vytvoriť ohodnotenie v, ktoré splní všetky formuly z S^+ . Definujme v pre každú výrokovú premennú p takto:

- ak $\mathbf{T} p \in S^+$: v(p) = t,
- ak $\mathbf{F} p \in S^+$: v(p) = f,
- ak ani **T**p ani **F**p nie sú v S^+ , tak v(p) = t.

v je korektne definované vďaka H₀.

Indukciou na stupeň formuly dokážeme, že v spĺňa všetky formuly z S+:

- v očividne spĺňa všetky označené výrokové premenné z S⁺.
- $X^+ \in S^+$ je buď α alebo β :
 - Ak X^+ je α , potom obidve $\alpha_1, \alpha_2 \in S^+$ (H₁), sú nižšieho stupňa X^+ , a teda podľa indukčného predpokladu sú splnené pri v, preto v spĺňa aj α (podľa pozorovania 2.60).
 - Ak X^+ je β , potom aspoň jedna z β_1 , β_2 je v S^+ (H₂). Nech je to ktorákoľvek, je nižšieho stupňa ako X^+ , teda podľa IP ju v spĺňa, a preto v spĺňa β (podľa pozorovania 2.62).

2.8.4 Úplnosť

Úplnosť

Úplnosť kalkulu neformálne:

Ak je nejaké tvrdenie pravdivé, tak existuje jeho dôkaz v kalkule.

Veta 2.79 (o úplnosti)

Nech S^+ je konečná nesplniteľná množina označených formúl. Potom existuje uzavreté tablo pre S^+ .

Dôsledok 2.80

Nech S je konečná teória a X je formula.

 $AkS \models X$, $takS \vdash X$.

Dôsledok 2.81

Nech X je formula. $Ak \models X$, $tak \vdash X$.

Úplnosť platí aj pre nekonečné množiny, ale dôkaz je ťažší.

Úplnosť – dôkaz

Dôkaz vety o úplnosti.

Zoberme ľubovoľnú konečnú nesplniteľnú množinu označených formúl S^+ . Podľa lemy o existencii úplného tabla vieme pre S^+ nájsť úplné tablo \mathcal{T} , teda také, že každá vetva je buď uzavretá alebo úplná.

Ak by niektorá vetva bola otvorená, potom musí byť úplná, a teda nadol uzavretá. Podľa Hintikkovej lemy by bola splniteľná. Pretože obsahuje všetky formuly z S^+ , bola by aj S^+ splniteľná, čo je spor s nesplniteľnosťou S^+ .

Preto musia byť všetky vetvy tabla \mathcal{T} uzavreté.

J. Kľuka, J. Šiška

Literatúra

- Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.
- Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.
- Vítězslav Švejdar. *Logika*: *neúplnost*, *složitost*, *nutnost*. Academia, 2002. Prístupné aj na http://www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf.