09743885 . 102201

SEQUENCE LISTING

<110> CREEMERS, Jantina ANGENENT, Gerrit KATER, Martin

<120> Process to collect metabolites from modified nectar by
insects

<130> U-13212-4

<140> 09/743885

<141> 2001-01-16

<160> 29

<170> PatentIn Ver. 2.1

<210> 1

<211> 265

<212> PRT

<213> Petunia x hybrida

<220>

<223> strain: W115

<220>

<223> tissue type: nectar gland

<220>

<223> NEC1 amino acid sequence

<400> 1

Met Ala Gln Leu Arg Ala Asp Asp Leu Ser Phe Ile Phe Gly Leu Leu 1 5 10 15

Gly Asn Ile Val Ser Phe Met Val Phe Leu Ala Pro Val Pro Thr Phe 20 25 30

Tyr Lys Ile Tyr Lys Arg Lys Ser Ser Glu Gly Tyr Gln Ala Ile Pro 35 40 45

Tyr Met Val Ala Leu Phe Ser Ala Gly Leu Leu Leu Tyr Tyr Ala Tyr 50 55 60

Leu Arg Lys Asn Ala Tyr Leu Ile Val Ser Ile Asn Gly Phe Gly Cys 65 70 75 80

Ala Ile Glu Leu Thr Tyr Ile Ser Leu Phe Leu Phe Tyr Ala Pro Arg 85 90 95

Lys Ser Lys Ile Phe Thr Gly Trp Leu Met Leu Glu Leu Gly Ala 100 105 110

Leu Gly Met Val Met Pro Ile Thr Tyr Leu Leu Ala Glu Gly Ser His

Arg Val Met Ile Val Gly Trp Ile Cys Ala Ala Ile Asn Val Ala Val 130 135 140

Phe Ala Ala Pro Leu Ser Ile Met Arg Gln Val Ile Lys Thr Lys Ser 145 150 155 160

Val Glu Phe Met Pro Phe Thr Leu Ser Leu Phe Leu Thr Leu Cys Ala 165 170 175

Thr Met Trp Phe Phe Tyr Gly Phe Phe Lys Lys Asp Phe Tyr Ile Ala 180 185 190

Phe Pro Asn Ile Leu Gly Phe Leu Phe Gly Ile Val Gln Met Leu Leu 195 200 205

Tyr Phe Val Tyr Lys Asp Ser Lys Arg Ile Asp Asp Glu Lys Ser Asp 210 215 220

Pro Val Arg Glu Ala Thr Lys Ser Lys Glu Gly Val Glu Ile Ile 225 230 235 240

Asn Ile Glu Asp Asp Asn Ser Asp Asn Ala Leu Gln Ser Met Glu Lys 245 250 255

Asp Phe Ser Arg Leu Arg Thr Ser Lys 260 265

<210> 2

<211> 221

<212> PRT

<213> Petunia x hybrida

<220>

<223> strain: W115

<220>

<223> tissue type: nectar gland, secretory cell

<220>

<223> FBP15 amino acid sequence

<400> 2

Met Gly Arg Gly Lys Ile Glu Ile Lys Arg Ile Glu Asn Thr Thr Asn 1 5 10 15

Arg Gln Val Thr Phe Cys Lys Arg Arg Asn Gly Leu Leu Lys Lys Ala 20 25 30

Tyr Glu Leu Ser Val Leu Cys Asp Ala Glu Val Ala Leu Ile Val Phe 35 40 45

Ser Ser Arg Gly Arg Leu Tyr Glu Tyr Ala Asn Asn Ser Val Lys Ala 50 55 60

Thr Ile Asp Arg Tyr Lys Lys Ala Ser Ser Asp Ser Ser Asn Thr Gly 65 70 75 80

Ser Thr Ser Glu Ala Asn Thr Gln Phe Tyr Gln Glu Ala Ala Lys 85 90 95

Leu Arg Val Gln Ile Gly Asn Leu Gln Asn Ser Asn Arg Asn Met Leu 100 105 110

Gly Glu Ser Leu Ser Ser Leu Thr Ala Lys Asp Leu Lys Gly Leu Glu 115 120 125

Thr Lys Leu Glu Lys Gly Ile Ser Arg Ile Arg Ser Lys Lys Asn Glu 130 135 140

Leu Leu Phe Ala Glu Ile Glu Tyr Met Arg Lys Arg Glu Ile Asp Leu 145 150 155 160

His Asn Asn Asn Gln Met Leu Arg Ala Lys Ile Ala Glu Ser Glu Arg 165 170 175

Asn Val Asn Met Met Gly Gly Glu Phe Glu Leu Met Gln Ser His Pro 180 185 190

Tyr Asp Pro Arg Asp Phe Phe Gln Val Asn Gly Leu Gln His Asn His
195 200 205

Gln Tyr Pro Arg Gln Asp Asn Met Ala Leu Gln Leu Val 210 215 220

<210> 3

<211> 18

<212> PRT

<213> Calluna vulgaris

<220>

<223> tissue type: flower

<220>

<223> Calluna vulgaris signal peptide

<400> 3

Met Phe Leu Pro Ile Leu Phe Thr Ile Ser Leu Leu Phe Ser Ser Ser 1 5 10 15

His Ala

<210> 4

<211> 1205

<212> DNA

<213> Petunia x hybrida

<220>

<223> strain: W115

<220>

```
<223> tissue type: nectar gland
<220>
<223> NEC1
<400> 4
tegageggee geeegggeag gtatteaaca agagtattea ceaettgaac teaaaaqqqq 60
cttcactaaa aaaaaatcat ggcgcaatta cgtgctgatg acttgtcttt catatttggc 120
cttcttggta atattgtatc attcatggtc ttcctagcac ccgtgccaac attttacaaa 180
atatataaaa ggaaatcatc agaaggatat caagcaatac catatatggt agcactgttc 240
agegeeggae tattgetata ttatgettat eteaggaaga atgeetatet tategteage 300
attaatggct ttggatgtgc cattgaatta acatatatct ctctgtttct cttttacgcg 360
cccagaaagt ctaagatttt cacagggtgg ctgatgctct tagaattggg agccctagga 420
atggtgatgc caattactta tttattagca gaaggctcac atagagtgat gatagtggga 480
tggatttgtg cagctatcaa tgttgctgtc tttgctgctc ctttaaqcat catqaqqcaa 540
gtaataaaaa caaagagtgt agagttcatg cccttcactt tatctttgtt cctcactctc 600
tgtgccacta tgtggttttt ctatgggttt ttcaagaagg acttttacat tgcgtttcca 660
aatatactgg gctttctatt cggaatcgtt caaatgctat tatattttgt ttacaaggat 720
tcaaagagaa tagatgatga aaaatctgat cctgttcgag aagctacaaa atcaaaagaa 780
ggtgtagaaa tcattatcaa cattgaagat gataattctg ataacgcatt gcagtccatg 840
gagaaggatt tttccagact gcggacatca aaataagcaa gaagatgatc aaaaaatgac 900
aaagctaagg agtttgaagt aaggcaagga acttgacact gaatatctaa gctaattagc 960
aagactttag cagcttgtaa tatttagtgt ttgtgaggtg ttaccttata attagcttgt 1020
agcatagect teccactaat aattetgett agegaatett atatatggga aataettaca 1080
ctagtatgca tcttctatat acatgtttgg cacttgacta tacatagaaa aattaacaag 1140
catttctcac ctcaatttgt cacttactta taagtagctg aataatataa tgcaattttc 1200
acccc
                                                                  1205
<210> 5
<211> 1157
<212> DNA
<213> Petunia x hybrida
<220>
<223> strain: W115
<220>
<223> tissue type: nectar gland
<223> cDNA library of nectaries from Petunia hybrida
      flowers
<220>
<223> FBP15
<400> 5
tctgaataca agctgtgtgt gtagagagat ttcataaaga cagcaaacat cccttcttt 60
tgttctgttt taaaagttcc cttcttcaac cagctctttt cctcatcagg gtaagttgca 120
aataaagggg atgttccaga atcaagaaga gaagatgtca gactcgcctc agaggaagat 180
gggaagagga aagattgaga ttaagaggat tgaaaataca acaaatcgtc aagtcacttt 240
ctgtaagaga agaaatgggt tgcttaaaaa agcttatgaa ctttctgttc tttgtgatgc 300
tgaagttgct ctcatcgttt tctcaagccg tggccgcctc tatgaatatg ctaacaacag 360
tgtgaaggca acaattgata gatataagaa agcatcctca gattcctcca acactggatc 420
tacttctgaa gctaacactc agttttatca acaagaagct gccaaactcc gagttcagat 480
tggtaactta cagaactcaa acaggaacat gctaggcgag tctctaagtt ctctgactgc 540
aaaagatctg aaaggcctgg agaccaaact tgagaaagga attagtagaa ttaggtccaa 600
```

```
aaagaatgaa ctcctgtttg ctgagattga gtatatqcga aaaaqqqaaa ttqatttqca 660
caacaacaat cagatgcttc gggcaaagat agctgagagt gaaagaaatg tgaacatgat 720
gggaggagaa tttgagctga tgcaatctca tccgtacgat ccaagagact tcttccaagt 780
gaacggctta cagcataatc atcaatatcc acgccaagac aacatggctc ttcaattagt 840
ataagtttat aataaaatgc atggtttgaa gcactctgat tgtggtggat ttggattatg 900
tataagggag tgcaggccat ttgccaatta ttgaaaggta ctcaaacagg aagttgaaga 960
agttcatcat ctctctcatc tatatgtctt aacaaaagtc ttagcttatg gactctaaaa 1020
caaagactta atttaacata taaatataat tgtgtaatgc tgttgtattg tatggtatgt 1080
atccaaaaac attaataacc tatctttttc ttcaaattat gtctcctttg atacaaacta 1140
ctaacatatt ttcttat
                                                                  1157
<210> 6
<211> 54
<212> DNA
<213> Calluna vulgaris
<220>
<221> sig_peptide
<222> (1)..(54)
<400> 6
atgtttcttc caattctctt caccatttcc ctcctcttct cctcctcca tqct
                                                                  54
<210> 7
<211> 2141
<212> DNA
<213> Petunia x hybrida
<220>
<223> strain: W115
<220>
<223> NEC1 promoter
<400> 7
cctaggagaa atcaagccta ctcttaagat ggatgactca cttgccccga tggtaaggtg 60
aaggatctgt tgattagagt tgggaagttc atgttctctg ctgattttat tattctagac 120
tatgaagagg accaagaagc tccaataatt ttgggaagag cattcttaat cacatcgatg 180
gcaattattg acatggaact tggggagatg actgtgagag cgcatggaga aaaggttact 240
ttcaaggttt ataataaaaa ggatcatatg gctaagtttg aagagtgttc tttgatagaa 300
tgtgtcagac gagaacatga aagtaaaccg aaagaggtgt ttgagcggaa tgtagaacaa 360
agtgaccacg gcacaataat tgacaagttg aaggaaaatt cacctaaagg aaggaagaag 420
acaaaagttc gtcgtaacaa gaggagacgt aaatgctgga agtgagctta aaggtgttgt 480
cgtactacga cgttaactaa ggcgcttgtc gggaggcaac cctagctttg tatgtaaatg 540
taaaagtaaa aaatatatat atagaaaaag gaaaatacaa aaagagtegt geegegaegt 600
taaatcaagc gcttgttgga aggcaaccca atttttattg ttttagttgt tttacttatt 660
tagtattacg tagtttcttg ttgtttttgt agggctcggg actttcggaa ggtgaggtaa 720
tttcaaggca tcgcggtgtg tattgcagcg aggtaagtgt aagagttgag ttggaagcgt 780
ttggccaagt gttgcaccgt gagaggcttt caacctgttg cgacacgtga aaaattaaga 840
gccagatctg ctacattagc actgaagcat cgcttggcca atagcttgga atggaagcaa 900
gaattcaaac caaaatcaga aacgccacaa gagatgtgtc gcacactgca aagctttgtg 960
caaactaqtq aacqcaqaaa tagaaatgct acagcccatg cgtcgcttgg cttatggcag 1020
gcaqcaaaaa ttcaqcaqca aaacagaaac gctgcgagaa acgcgtcgca tacgccatag 1080
ctttgtgtca aacagaacgt ccagaaattg aaaagctata agcctgcgtc gcttggctca 1140
tggcgtgcag actagaaaag ctctagcaga tgcgtcgcgt attgtatagc ttggtgtgaa 1200
acagaaagtt cgaaacttgg aaaacgataa cccagcgtcg cctcttcaac cgcgtccagg 1260
```

```
taagttcaag attcttacgg gttgacccat taacccattg atcgqctqat tataaacaat 1320
aaaacatcac cttcaactat cacatgattt cataagtttg acctaggata ttttatatat 1380
atatatat atatacacac acacaccatt tccagcgatc ttacctcatt tttattcaaa 1440
ccatttttct gcttcaaaag tttaaattat taatatgata agtcatccat agtcaaacaa 1500
gattttctat actattttgt cccttgtaat tttaaaaaaa aaatgagcga tgqtaagata 1560
aacattgttt gcaagtgtac aattttagta tatgcaaacc aacgcttctt cttccaacta 1620
tcacctaaaa ctacatcatt tatggcgggc ggactagacg tagccaaata taaaaacgca 1680
atggccattc agttcatgtc atttttatat ccttcatcca ataatattac tcaaaattga 1740
tgtacagttt ggtctctgat gtgcacttta ctatacgtaa tacggaattt acattataat 1800
taaagagaac tgttccacta aattttaatg atttaattaa tttaactcgg ttacttgtat 1860
tattattatt gctgtatttg tttgtcattt gaatttggca ccgcagattt ttgtatgcaa 1920
ttaaccctca tatatctttt ggccaaataa agaaaaagtc tgcatatttc ttgccaaaca 1980
tttatcatac tttaccgaat tcttgttttt tgtttctctg ttgttgttct ccactataaa 2040
taacatttgc agtgagtaaa gtttcttcag gtctcttttg tagattcaac aagagtattc 2100
agcacttgaa ctcaaaaggg gcttcactaa aaaaaatcat g
                                                                   2141
<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer prat
      122
<400> 8
                                                                   22
gtgggaaggc tatgctacaa gc
<210> 9
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer prat
      119
<400> 9
ccttctccat ggactgcaat gcg
                                                                   23
<210> 10
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer prat
      129
gggatccatg gcgcaattac gtgctgatg
                                                                   29
<210> 11
```

<211> 24

DNA													
Artificial Sequence													
Description of Artificial Sequence: primer prat													
148													
11 -													
aaggc caaatatgaa agac	24												
·													
•													
> DNA > Artificial Seguence													
Artificial Sequence													
Description of Artificial Company, primar prot													
- · · -													
12													
	24												
acoug cacgeaaceg eges	24												
13													
35													
DNA													
Artificial Sequence													
-													
•													
Description of Artificial Sequence: primer prat													
169													
13													
cagcg ccatggtttt ttttagtgaa gcccc	35												
Calluna Vulgaris													
CVII FO N terminal geomenae													
CAN DO M-CETHITHET SEGRENCE													
14													
ly Tyr Ser Cys Thr Glu Pro Ser Thr Val Thr Ser Gln Asp Phe													
20 25 30													
	Description of Artificial Sequence: primer prat 148 11 aaaggc caaatatgaa agac 12 24 DNA Artificial Sequence Description of Artificial Sequence: primer prat 149 12 atcag cacgtaattg cgcc 13 35 DNA Artificial Sequence Description of Artificial Sequence: primer prat 169 12 atcag cacgtaattg tcgcc 13 35 DNA Artificial Sequence Description of Artificial Sequence: primer prat 169 13 cagcg catggtttt ttttagtgaa gcccc 14 32 PRT Calluna vulgaris CVH 50 N-terminal sequence 14 14 Leu Asp Phe Cys Val Ala Asp Pro Ser Leu Pro Asp Gly Pro 5 10 15 Ly Tyr Ser Cys Thr Glu Pro Ser Thr Val Thr Ser Gln Asp Phe												

```
<211> 40
<212> PRT
<213> Calluna vulgaris
<220>
<223> CVH 29 N-terminal sequence
Ser Val Leu Asp Phe Cys Val Ala Asp Pro Ser Leu Pro Asp Gly Pro
                  5
                                      10
Ala Gly Tyr Ser Cys Lys Glu Pro Ala Lys Val Thr Val Asp Asp Phe
Val Phe His Gly Leu Gly Thr Ala
<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer prat
    · 176
<400> 16
gayttytgyg tngcngaycc
                                                                   20
<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer prat
      177
<400> 17
                                                                   20
ccrtgraana craartcrtc
<210> 18
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer prat
      207
<400> 18
ggtgacttta gagggctcct tgc
                                                                   23
```

```
<210> 19
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer prat
      206
<400> 19
gctccttgca ggagtagcct gc
                                                                   22
<210> 20
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer prat
      247
<400> 20
ggctgcagga gtgttctttg atagaatg
                                                                   28
<210> 21
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer prat
      248
<400> 21
cgccatatgt ttttttatgg aagcccc
                                                                   27
<210> 22
<211> 70
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer prat
      245
tatgttcctt ccaattcttt tcactatttc tcttcttttc tcttcttctc atgcttctgt 60
tcttgatttc
                                                                   70
<210> 23
<211> 73
<212> DNA
<213> Artificial Sequence
```

<220> <223> Description of Artificial Sequence: primer prat <400> 23 gatccgaaat caagaacaga agcatgagaa gaagagaaaa gaagagaaat agtgaaaaga 60 <210> 24 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer prat 251 <400> 24 gggagctcga gtcgttcaaa catttggcaa taaag 35 <210> 25 <211> 33 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: primer prat 252 <400> 25 cgaattcccg ggatctagta acatagatga cac 33 <210> 26 <211> 29 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: primer prat 249 <400> 26 ccggatccat gttacgtcct gtagaaacc 29 <210> 27 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer prat 250 <400> 27

....

WO 00/04176

65

SEQUENCE LISTING

<110> CPRO-DLO <120> Process to collect metabolites from modified nectar by insects <130> 159782 <140> pct/nl99/00453 <141> 1999-07-15 <160> 10 <170> PatentIn Ver. 2.1 <210> 1 <211> 265 <212> PRT <213> Petunia x hybrida <220> <223> strain: W115 <220> <223> tissue type: nectar gland <220> <223> NEC1 amino acid sequence Met Ala Gln Leu Arg Ala Asp Asp Leu Ser Phe Ile Phe Gly Leu Leu 5 10 Gly Asn Ile Val Ser Phe Met Val Phe Leu Ala Pro Val Pro Thr Phe 20 25 30 Tyr Lys Ile Tyr Lys Arg Lys Ser Ser Glu Gly Tyr Gln Ala Ile Pro 35 40 45 Tyr Met Val Ala Leu Phe Ser Ala Gly Leu Leu Leu Tyr Tyr Ala Tyr 50 55 Leu Arg Lys Asn Ala Tyr Leu Ile Val Ser Ile Asn Gly Phe Gly Cys

Ala Ile Glu Leu Thr Tyr Ile Ser Leu Phe Leu Phe Tyr Ala Pro Arg 85 90 95

75

80

70

Lys Ser Lys Ile Phe Thr Gly Trp Leu Met Leu Leu Glu Leu Gly Ala 100 105 110

Leu Gly Met Val Met Pro Ile Thr Tyr Leu Leu Ala Glu Gly Ser His
115 120 125

Arg Val Met Ile Val Gly Trp Ile Cys Ala Ala Ile Asn Val Ala Val 130 135 140

Phe Ala Ala Pro Leu Ser Ile Met Arg Gln Val Ile Lys Thr Lys Ser 145 150 155 160

Val Glu Phe Met Pro Phe Thr Leu Ser Leu Phe Leu Thr Leu Cys Ala 165 170 175

Thr Met Trp Phe Phe Tyr Gly Phe Phe Lys Lys Asp Phe Tyr Ile Ala 180 185 190

Phe Pro Asn Ile Leu Gly Phe Leu Phe Gly Ile Val Gln Met Leu Leu 195 200 205

Tyr Phe Val Tyr Lys Asp Ser Lys Arg Ile Asp Asp Glu Lys Ser Asp 210 215 220

Pro Val Arg Glu Ala Thr Lys Ser Lys Glu Gly Val Glu Ile Ile Ile 225 230 235 240

Asn Ile Glu Asp Asp Asn Ser Asp Asn Ala Leu Gln Ser Met Glu Lys 245 250 255

Asp Phe Ser Arg Leu Arg Thr Ser Lys 260 265

<210> 2

<211> 221

<212> PRT

<213> Petunia x hybrida

<220>

<223> strain: W115

<220>

<223> tissue type: nectar gland, secretory cell

<220>

<223> FBP15 amino acid sequence

<400> 2

- Met Gly Arg Gly Lys Ile Glu Ile Lys Arg Ile Glu Asn Thr Thr Asn
 1 5 10 15
- Arg Gln Val Thr Phe Cys Lys Arg Arg Asn Gly Leu Leu Lys Lys Ala
 20 25 30
- Tyr Glu Leu Ser Val Leu Cys Asp Ala Glu Val Ala Leu Ile Val Phe 35 40 45
- Ser Ser Arg Gly Arg Leu Tyr Glu Tyr Ala Asn Asn Ser Val Lys Ala
 50 55 60
- Thr Ile Asp Arg Tyr Lys Lys Ala Ser Ser Asp Ser Ser Asn Thr Gly
 65 70 75 80
- Ser Thr Ser Glu Ala Asn Thr Gln Phe Tyr Gln Gln Glu Ala Ala Lys 85 90 95
- Leu Arg Val Gln Ile Gly Asn Leu Gln Asn Ser Asn Arg Asn Met Leu 100 105 110
- Gly Glu Ser Leu Ser Ser Leu Thr Ala Lys Asp Leu Lys Gly Leu Glu 115 120 125
- Thr Lys Leu Glu Lys Gly Ile Ser Arg Ile Arg Ser Lys Lys Asn Glu 130 135 140
- His Asn Asn Asn Gln Met Leu Arg Ala Lys Ile Ala Glu Ser Glu Arg 165 170 175
- Asn Val Asn Met Met Gly Gly Glu Phe Glu Leu Met Gln Ser His Pro 180 185 190
- Tyr Asp Pro Arg Asp Phe Phe Gln Val Asn Gly Leu Gln His Asn His
 195 200 205
- Gln Tyr Pro Arg Gln Asp Asn Met Ala Leu Gln Leu Val 210 215 220

<211> 18

<212> PRT

<213> Calluna vulgaris

<220>

<223> tissue type: flower

<220>

<223> Calluna vulgaris signal peptide

<400> 3

His Ala

<210> 4

<211> 1205

<212> DNA

<213> Petunia x hybrida

<220>

<221> CDS

<222> (79)..(873)

<220>

<223> strain: W115

<220>

<223> tissue type: nectar gland

<220>

<223> NEC1

<400> 4

tcgagcggcc gcccgggcag gtattcaaca agagtattca ccacttgaac tcaaaagggg 60

cttcactaaa aaaaaatc atg gcg caa tta cgt gct gat gac ttg tct ttc 111

Met Ala Gln Leu Arg Ala Asp Asp Leu Ser Phe

1 5 10

ata ttt ggc ctt ctt ggt aat att gta tca ttc atg gtc ttc cta gca 159
Ile Phe Gly Leu Leu Gly Asn Ile Val Ser Phe Met Val Phe Leu Ala
15 20 25

ccc	gtg	cca	aca	ttt	tac	aaa	ata	tat	aaa	agg	aaa	tca	tca	733	99 2	202
Pro	Val	Pro	Thr	Phe	Tyr	Lys	Ile	Tyr	Lys	Arg	Lys	Ser	Ser	Glu	gga Gly	207
		30					35					40				
tat	caa	gca	ata	cca	tat	atg	gta	gca	ctg	ttc	agc	gcc	gga	cta	ttg	255
Tyr	Gln 45	Ala	Ile	Pro	Tyr		Val	Ala	Leu	Phe		Ala	Gly	Leu	Leu	
	43					50					55					
cta	tat	tat	gct	tat	ctc	agg	aag	aat	gcc	tat	ctt	atc	gtc	agc	att	303
Leu 60	Tyr	Tyr	Ala	Tyr	Leu 65	Arg	Lys	Asn	Ala		Leu	Ile	Val	Ser		
					03					70					75	
aat	ggc	ttt	gga	tgt	gcc	att	gaa	tta	aca	tat	atc	tct	ctg	ttt	ctc	351
Asn	Gly	Phe	GIA	Cys 80	Ala	Ile	Glu	Leu	Thr 85	Tyr	Ile	Ser	Leu		Leu	
									03					90		
ttt	tac	gcg	ccc	aga	aag	tct	aag	att	ttc	aca	ggg	tgg	ctg	atg	ctc	399
Pne	Tyr	Ala	Pro 95	Arg	Lys	Ser	Lys	Ile 100	Phe	Thr	Gly	Trp		Met	Leu	
								100					105			
tta	gaa	ttg •	gga	gcc	cta	gga	atg	gtg	atg	cca	att	act	tat	tta	tta	447
ren	Glu	110	GTA	Ala	Leu	Gly	Met 115	Val	Met	Pro	Ile		Tyr	Leu	Leu	
							113					120				
gca	gaa	ggc	tca	cat	aga	gtg	atg	ata	gtg	gga	tgg	att	tgt	gca	gct	495
Ата	Glu 125	GIA	Ser	His	Arg	Val 130	Met	Ile	Val	Gly		Ile	Cys	Ala	Ala	
						130					135					
atc	aat	gtt	gct	gtc	ttt	gct	gct	cct	tta	agc	atc	atg	agg	caa	gta	543
11e	Asn	Val	Ala	Val	Phe 145	Ala	Ala	Pro	Leu	Ser 150	Ile	Met	Arg	Gln		
										130					155	
ata	aaa	aca	aag	agt	gta	gag	ttc	atg	ccc	ttc	act	tta	tct	ttg	ttc	591
116	Lys	inr	гуs	Ser 160	Val	GIu	Phe	Met	Pro 165	Phe	Thr	Leu	Ser		Phe	
									103					170		
ctc	act	ctc	tgt	gcc	act	atg	tgg -	ttt	ttc	tat	ggg	ttt	ttc	aag	aag	639
red	Thr	Leu	175	Ата	Thr	Met	Trp	Phe 180	Phe	Tyr	Gly	Phe	Phe 185	Lys	Lys	
gac	ttt	tac	att	gcg	ttt	cca -	aat	ata	ctg	ggc	ttt	cta	ttc	gga	atc	687
nsp	Phe	190	ıre	Ата	Pne	Pro	195	lle	Leu	Gly	Phe	Leu 200	Phe	Gly	Ile	
gtt Val	caa Gln	atg Me+	cta	tta	tat	ttt	gtt	tac	aag	gat	tca	aag	aga	ata	gat	735
	Gln 205	. 10 6	Ten	rea	ıyı	210	val	ıyr	rÀ2	Asp	Ser 215	Lys	Arg	Ile	Asp	

gat gaa aaa tot gat oot gtt oga gaa got aca aaa toa aaa gaa ggt	783											
Asp Glu Lys Ser Asp Pro Val Arg Glu Ala Thr Lys Ser Lys Glu Gly 220 225 230 235												
gta gaa atc att atc aac att gaa gat gat aat tct gat aac gca ttg Val Glu Ile Ile Asn Ile Glu Asp Asp Asn Ser Asp Asn Ala Leu	831											
240 245 250												
cag too atg gag aag gat ttt too aga otg ogg aca toa aaa												
Gln Ser Met Glu Lys Asp Phe Ser Arg Leu Arg Thr Ser Lys	873											
255 260 265												
taagcaagaa gatgatcaaa aaatgacaaa gctaaggagt ttgaagtaag gcaaggaact												
tgacactgaa tatctaagct aattagcaag actttagcag cttgtaatat ttagtgtttg												
tgaggtgtta ccttataatt agcttgtagc atagccttcc cactaataat tctgcttagc :	1053											
gaatettata tatgggaaat aettaeacta gtatgeatet tetatataea tgtttggeae												
ttgactatac atagaaaaat taacaagcat ttctcacctc aatttgtcac ttacttataa 1	1173											
gtagctgaat aatataatgc aattttcacc cc	1205											
<210> 5												
<211> 265 <212> PRT												
<213> Petunia x hybrida												
<223> NEC1												
<400> 5												
Met Ala Gln Leu Arg Ala Asp Asp Leu Ser Phe Ile Phe Gly Leu Leu 1 5 10 15												
1 10 15												
Gly Asn Ile Val Ser Phe Met Val Phe Leu Ala Pro Val Pro Thr Phe												
20 25 30												
Tyr Lys Ile Tyr Lys Arg Lys Ser Ser Glu Gly Tyr Gln Ala Ile Pro												
35 40 45.												
40 45 .												
Tyr Met Val Ala Leu Phe Ser Ala Gly Leu Leu Leu Tyr Tyr Ala Tyr												
45												
Tyr Met Val Ala Leu Phe Ser Ala Gly Leu Leu Leu Tyr Tyr Ala Tyr												

6

Ala Ile Glu Leu Thr Tyr Ile Ser Leu Phe Leu Phe Tyr Ala Pro Arg

90 95

Lys Ser Lys Ile Phe Thr Gly Trp Leu Met Leu Leu Glu Leu Gly Ala
100 105 110

Leu Gly Met Val Met Pro Ile Thr Tyr Leu Leu Ala Glu Gly Ser His
115 120 125

Arg Val Met Ile Val Gly Trp Ile Cys Ala Ala Ile Asn Val Ala Val 130 135 140

Phe Ala Ala Pro Leu Ser Ile Met Arg Gln Val Ile Lys Thr Lys Ser 145 . 150 . 155 . 160

Val Glu Phe Met Pro Phe Thr Leu Ser Leu Phe Leu Thr Leu Cys Ala 165 170 175

Thr Met Trp Phe Phe Tyr Gly Phe Phe Lys Lys Asp Phe Tyr Ile Ala 180 185 190

Phe Pro Asn Ile Leu Gly Phe Leu Phe Gly Ile Val Gln Met Leu Leu 195 200 205

Tyr Phe Val Tyr Lys Asp Ser Lys Arg Ile Asp Asp Glu Lys Ser Asp 210 215 220

Pro Val Arg Glu Ala Thr Lys Ser Lys Glu Gly Val Glu Ile Ile 225 230 235 240

Asn Ile Glu Asp Asn Ser Asp Asn Ala Leu Gln Ser Met Glu Lys
245 250 255

Asp Phe Ser Arg Leu Arg Thr Ser Lys 260 265

<210> 6

<211> 1157

<212> DNA

<213> Petunia x hybrida

<220>

<221> CDS

<222> (179)..(841)

<220>

<223> strain: W115

562

WO 00/04176 PCT/NL99/00453

<220)>															
	-	ssue	e typ	oe: r	necta	ar gl	Land	:								
								:								
<220>																
<223> cDNA library of nectaries from Petunia hybrida flowers																
		OWEI	. 3													
<220)>															
<223> FBP15																
-400																
<400> 6 tetgaataca agetgtgtgt gtagagagat tteataaaga eageaaacat eeettettt 60																
	,		iget	gege	ge ge	ayaç	gayat		Jacad	aga	cago	caaac	cat	CCCTI	ctttt	60
tgtt	ctgt	tt t	aaaa	agtto	cc ct	tctt	caac	caç	gctct	ttt	cct	catca	agg ·	gtaaq	gttgca	120
aata	aagg	ggg a	atgtt	ccaç	ga at	caaç	gaaga	a gaa	agato	gtca	gact	cgc	ctc .	agago	gaag	178
atg	gga	aga	gga	aag	att	gag	att	aag	agg	att	gaa	aat	aca	aca	aa+	226
														Thr		220
1				5					10					15		
														aaa		274
nra	GIII	vaı	20	File	Cys	гух	Arg	25	Asn	сту	Leu	Leu	Lys 30	Lys	Ala	
													30			
														gtt		322
Tyr	Glu		Ser	Val	Leu	Cys		Ala	Glu	Val	Ala	Leu	Ile	Val	Phe	
		35					40					45				
tca	agc	cgt	ggc	cgc	ctc	tat	gaa	tat	qct	aac	aac	agt	ata	aag	gca	370
														Lys		3,0
	50					55					60					
aca	2++	ast.	202	+-+	224		~~~									
														act Thr		418
65		•	5	- 3 -	70	-1-		001	001	75	501	Ser	ASII	1111	80 80	
														gcc		466
Ser	Thr	Ser	Glu		Asn	Thr	Gln	Phe		Gln	Gln	Glu	Ala	Ala	Lys	
				85					90					95		
ctc	cga	gtt	cag	att	ggt	aac	tta	cag	aac	tca	aac	agg	aac	atg	cta	514
			Gln											Met		
			100					105					110			

ggc gag tct cta agt tct ctg act gca aaa gat ctg aaa ggc ctg gag

Gly Glu Ser Leu Ser Ser Leu Thr Ala Lys Asp Leu Lys Gly Leu Glu

					٠.										
	115					120					125				
acc aa Thr Ly 13	/s Leu														610
ctc ct Leu Le 145	g ttt eu Phe	gct Ala	gag Glu	att Ile 150	gag Glu	tat Tyr	atg Met	cga Arg	aaa Lys 155	agg Arg	gaa Glu	att Ile	gat Asp	ttg Leu 160	658
cac aa His As	ac aac an Asn	aat Asn	cag Gln 165	atg Met	ctt Leu	cgg Arg	gca Ala	aag Lys 170	ata Ile	gct Ala	gag Glu	agt Ser	gaa Glu 175	aga Arg	706
aat gt Asn Va															754
tac ga Tyr As	at cca sp Pro 195	aga Arg	gac Asp	ttc Phe	ttc Phe	caa Gln 200	gtg Val	aac Asn	Gly ggc	tta Leu	cag Gln 205	cat His	aat Asn	cat His	802
caa ta Gln Ty 21	r Pro											taaq	gttta	ıta	851
ataaaa	itgca i	ggtt	tgaa	ag ca	ctct	gatt	gto	ggtgg	gatt	tgga	ttat	gt a	ataaç	ıg g agt	911
gcaggo	catt 1	gcca	atta	at to	gaaaq	ggtad	tca	aaaca	agga	agtt	gaaq	gaa q	gttca	itcatc	971
tetete	atct a	atatç	gtctt	a ac	caaaa	agtct	: taç	gctta	atgg	acto	taaa	aac a	aaga	ıcttaa	1031
tttaac	atat a	aaata	ataat	t gt	gtaa	atgct	gtt	gtat	tgt	atgo	gtato	gta t	ccaa	aaaca	1091
ttaata	acct a	atctt	tttc	ct to	aaat	tato	g tct	cctt	tga	taca	aact	ac t	aaca	tattt	1151
tcttat	:														1157
<210>	•														

<211> 221

<212> PRT

<213> Petunia x hybrida

<223> FBP15

<400> 7

Met Gly Arg Gly Lys Ile Glu Ile Lys Arg Ile Glu Asn Thr Thr Asn 1 5 10 15

Arg Gln Val Thr Phe Cys Lys Arg Arg Asn Gly Leu Leu Lys Lys Ala 20 25 30

Tyr Glu Leu Ser Val Leu Cys Asp Ala Glu Val Ala Leu Ile Val Phe 35 40 45

Ser Ser Arg Gly Arg Leu Tyr Glu Tyr Ala Asn Asn Ser Val Lys Ala 50 55 60

Thr Ile Asp Arg Tyr Lys Lys Ala Ser Ser Asp Ser Ser Asn Thr Gly
65 70 75 80

Ser Thr Ser Glu Ala Asn Thr Gln Phe Tyr Gln Gln Glu Ala Ala Lys 85 90 95

Leu Arg Val Gln Ile Gly Asn Leu Gln Asn Ser Asn Arg Asn Met Leu 100 105 110

Gly Glu Ser Leu Ser Ser Leu Thr Ala Lys Asp Leu Lys Gly Leu Glu 115 120 125

Thr Lys Leu Glu Lys Gly Ile Ser Arg Ile Arg Ser Lys Lys Asn Glu 130 135 140

Leu Leu Phe Ala Glu Ile Glu Tyr Met Arg Lys Arg Glu Ile Asp Leu 145 150 155 160

His Asn Asn Asn Gln Met Leu Arg Ala Lys Ile Ala Glu Ser Glu Arg 165 170 175

Asn Val Asn Met Met Gly Gly Glu Phe Glu Leu Met Gln Ser His Pro 180 185 190

Tyr Asp Pro Arg Asp Phe Phe Gln Val Asn Gly Leu Gln His Asn His
195 200 205

Gln Tyr Pro Arg Gln Asp Asn Met Ala Leu Gln Leu Val 210 215 220

<210> 8

<211> 54

<212> DNA

<213> Calluna vulgaris

<220>

```
<221> CDS
<222> (1)..(54)
<220>
<221> sig_peptide
<222> (1)..(54)
<400> 8
48
Met Phe Leu Pro Ile Leu Phe Thr Ile Ser Leu Leu Phe Ser Ser
 1
cat gct
                                                             54
His Ala
<210> 9
<211> 18
<212> PRT
<213> Calluna vulgaris
<400> 9
Met Phe Leu Pro Ile Leu Phe Thr Ile Ser Leu Leu Phe Ser Ser Ser
                5
                                  10
                                                    15
His Ala
<210> 10
<211> 2141
<212> DNA
<213> Petunia x hybrida
<220>
<223> strain: W115
<220>
<223> NEC1 promoter
<400> 10
cctaggagaa atcaagccta ctcttaagat ggatgactca cttgccccga tggtaaggtg 60
aaggatctgt tgattagagt tgggaagttc atgttctctg ctgattttat tattctagac 120
tatgaagagg accaagaagc tccaataatt ttgggaagag cattettaat cacategatg 180
```

gcaattattg acatggaact tggggagatg actgtgaga cgcatggaga aaaggttact 240 ttcaaggttt ataataaaaa ggatcatatg gctaagtttg aagagtgttc tttgatagaa 300 tgtgtcagac gagaacatga aagtaaaccg aaagaggtgt ttgagcggaa tgtagaacaa 360

WO 00/04176

PCT/NL99/00453

agtgaccacg gcacaataat tgacaagttg aaggaaaatt cacctaaagg aaggaagaag 420 acaaaagttc gtcgtaacaa gaggagacgt aaatgctgga agtgagctta aaggtgttgt 480 cgtactacga cgttaactaa ggcgcttgtc gggaggcaac cctagctttg tatgtaaatg 540 taaaagtaaa aaatatatat atagaaaaag gaaaatacaa aaagagtcgt gccgcgacgt 600 taaatcaagc gcttgttgga aggcaaccca atttttattg ttttagttgt tttacttatt 660 tagtattacg tagtttcttg ttgtttttgt agggctcggg actttcggaa ggtgaggtaa 720 tttcaaggca tcgcggtgtg tattgcagcg aggtaagtgt aagagttgag ttggaagcqt 780 ttggccaagt gttgcaccgt gagaggcttt caacctgttg cgacacgtga aaaattaaga 840 gccagatctg ctacattagc actgaagcat cgcttggcca atagcttgga atggaagcaa 900 gaattcaaac caaaatcaga aacgccacaa gagatgtgtc gcacactgca aagctttgtg 960 caaactagtg aacgcagaaa tagaaatgct acagcccatg cgtcgcttgg cttatggcag 1020 gcagcaaaaa ttcagcagca aaacagaaac gctgcgagaa acgcgtcgca tacgccatag 1080 ctttgtgtca aacagaacgt ccagaaattg aaaagctata agcctgcgtc gcttggctca 1140 tggcgtgcag actagaaaag ctctagcaga tgcgtcgcgt attgtatagc ttggtgtgaa 1200 acagaaagtt cgaaacttgg aaaacgataa cccagcgtcg cctcttcaac cgcgtccagg 1260 taagttcaag attettacgg gttgacccat taacccattg atcggctgat tataaacaat 1320 aaaacatcac cttcaactat cacatgattt cataagtttg acctaggata ttttatatat 1380 atatatatat atatacacac acacaccatt tccagcgatc ttacctcatt tttattcaaa 1440 ccatttttct gcttcaaaag tttaaattat taatatgata agtcatccat agtcaaacaa 1500 gattttctat actattttgt cccttgtaat tttaaaaaaa aaatgagcga tggtaagata 1560 aacattgttt gcaagtgtac aattttagta tatgcaaacc aacgcttctt cttccaacta 1620 tcacctaaaa ctacatcatt tatggcgggc ggactagacg tagccaaata taaaaacgca 1680 atggccattc agttcatgtc atttttatat ccttcatcca ataatattac tcaaaattga 1740 tgtacagttt ggtctctgat gtgcacttta ctatacgtaa tacggaattt acattataat 1800 taaagagaac tgttccacta aattttaatg atttaattaa tttaactcgg ttacttgtat 1860 tattattatt gctgtatttg tttgtcattt gaatttggca ccgcagattt ttgtatgcaa 1920 ttaaccctca tatatctttt ggccaaataa agaaaaagtc tgcatatttc ttgccaaaca 1980 tttatcatac tttaccgaat tcttgttttt tgtttctctg ttgttgttct ccactataaa 2040 taacatttgc agtgagtaaa gtttcttcag gtctcttttg tagattcaac aagagtattc 2100 agcacttgaa ctcaaaaggg gcttcactaa aaaaaatcat g 2141