Parametarska estimacija gustine raspodele verovatnoće

- Uvod
- Maksimalna izglednost
 - Osnovni pojmovi
 - Primeri
- Kvalitet procene pristrasnost i varijansa
- Bayesova estimacija

Uvod

- Prethodna predavanja su se bavila klasifikacijom (određivanjem regiona odlučivanja) uz pretpostavku da je gustina raspodele verovatnoće poznata
 - Bayesova teorija odlučivanja je formalno definisala problem
 - Kvadratni klasifikatori su rešenje za slučaj klasa sa normalnom raspodelom
- Najčešće ne poznajemo pravu gustinu raspodele verovatnoće već se ona mora proceniti na osnovu eksperimentalnih podataka
 - Parametarska estimacija
 - Neparametarska estimacija
- Parametarska estimacija gustine raspodele verovatnoće
 - Pretpostavlja se određeni oblik raspodele (npr. normalna raspodela), pa se problem svodi na određivanje parametara
 - Estimacija na osnovu maksimalne izglednosti
 - Bayesova estimacija
- Neparametarska estimacija gustine raspodele verovatnoće
 - Estimacija gustine verovatnoće pomoću kernela
 - Metoda najbližeg suseda

Maksimalna izglednost i Bayesova estimacija

- Maksimalna izglednost (maximum likelihood ML)
 - □ Pretpostavka je da su parametri *fiksni,* ali nepoznati
 - ML usvaja vrednosti parametara koje se najbolje "slažu" sa skupom uzoraka X nepoznate raspodele

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} p(X | \boldsymbol{\theta})$$

- Bayesova estimacija
 - Pretpostavka je da su parametri slučajne promenljive sa poznatom apriornom raspodelom
 - Estimira se aposteriorna raspodela $p(\theta|X)$ (raspodela parametara θ ako je dat skup uzoraka X nepoznate raspodele)
 - Gustina raspodele verovatnoće u tački x dobija se zatim integracijom po celom prostoru parametara:

$$p(\mathbf{x}|X) = \int p(\mathbf{x}|\mathbf{\theta})p(\mathbf{\theta}|X)d\mathbf{\theta}$$

Maksimalna izglednost

- Neka se estimira gustina raspodele verovatnoće $p(\mathbf{x})$ koja zavisi od određenog broja parametara $\boldsymbol{\theta} = [\vartheta_1 \ \vartheta_2 \ ... \ \vartheta_p]^T$
 - □ Za 1-D Gaussovu raspodelu $\vartheta_1 = \mu$, $\vartheta_2 = \sigma^2$ i $p(x) = \mathcal{N}(\mu, \sigma^2)$
 - \Box Notacija $p(\mathbf{x} | \mathbf{\theta})$ naglašava eksplicitnu zavisnost raspodele od parametara $\mathbf{\theta}$
 - □ Pri estimaciji **θ** za više klasa pretpostavka je da su parametri različitih klasa međusobno nezavisni
- Neka se parametri $\boldsymbol{\theta}$ ocenjuju na osnovu skupa od N međusobno nezavisnih uzoraka $X = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(N)}\}$ izvučenih iz raspodele $p(\mathbf{x} | \boldsymbol{\theta})$ na slučajan način:

$$p(X \mid \mathbf{\theta}) = \prod_{i=1}^{N} p(\mathbf{x}^{(i)} \mid \mathbf{\theta})$$

 \Box ML estimacija parametara θ je ona vrednost koja maksimizuje izglednost $p(X|\theta)$

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} p(X | \boldsymbol{\theta})$$

 Ovo odgovara intuitivno utemeljenoj ideji da se za vektor parametara θ bira ona vrednost koja se najbolje slaže sa uzorcima dobijenim slučajnim izvlačenjem iz nepoznate raspodele

Maksimalna izglednost

Isti uzorci za različite pretpostavljene vrednosti θ različito su izgledni:

Iz praktičnih razloga često se umesto same izglednosti maksimizuje njen logaritam $I(\theta) = \ln p(X|\theta)$, čime se smisao maksimizacije ne menja:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} p(X \mid \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln p(X \mid \boldsymbol{\theta})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln \prod_{i=1}^{N} p(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{N} \ln p(\mathbf{x}^{(i)} \mid \boldsymbol{\theta})$$

Maksimalna izglednost

- Ako je $p(X|\theta)$ diferencijabilna, $\hat{\theta}$ se može naći pomoću diferencijalnog računa, izjednačavanjem izvoda $I(\theta) = \ln p(X|\theta)$ po svakoj komponenti θ sa 0
 - Na ovaj način dobija se lokalni minimum, lokalni maksimum ili (retko) prevojna tačka /(θ)
- Gradijent u prostoru parametara definiše se kao:

$$\nabla_{\boldsymbol{\theta}} = \begin{bmatrix} \partial / \partial \boldsymbol{\vartheta}_1 \\ \partial / \partial \boldsymbol{\vartheta}_2 \\ \vdots \\ \partial / \partial \boldsymbol{\vartheta}_p \end{bmatrix}$$

tako da se maksimizacija log-izglednosti $I(\theta)$ u opštem slučaju svodi na:

$$\nabla_{\boldsymbol{\theta}} I(\boldsymbol{\theta}) = \sum_{i=1}^{N} \nabla_{\boldsymbol{\theta}} \ln p(\mathbf{x}^{(i)} | \boldsymbol{\theta}) = \mathbf{0}$$

 Maksimum funkcije više promenljivih može se naći i kroz iterativnu proceduru ekvivalentnu metodi gradijentnog silaska (samo treba ići u pravcu gradijenta)

Primer: 1-D Gaussova raspodela, nepoznato μ

- Za 1-D Gaussovu raspodelu sa nepoznatom srednjom vrednošću μ i poznatom varijansom σ^2 , potrebno je odrediti optimalnu ML procenu μ na osnovu skupa uzoraka $X = \{x^{(1)}, x^{(2)}, ..., x^{(N)}\}$
- Za jedan uzorak x⁽ⁱ⁾ važi:

$$p(x^{(i)}|\mu) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x^{(i)}-\mu)^2}{2\sigma^2}}$$

$$\ln p(x^{(i)}|\mu) = -\frac{1}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}(x^{(i)}-\mu)^2$$

pa se ML procena na čitavom skupu od N uzoraka dobija na osnovu:

$$I(\mu) = \sum_{i=1}^{N} \ln p(x^{(i)}|\mu) = -\frac{N}{2} \ln(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{N} (x^{(i)} - \mu)^{2}$$
$$\frac{dI(\mu)}{d\mu} = \frac{d}{d\mu} \sum_{i=1}^{N} \ln p(x^{(i)}|\mu) = \frac{1}{\sigma^{2}} \sum_{i=1}^{N} (x^{(i)} - \mu) = 0$$

odakle se dobija:

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)}$$

Primer: 1-D Gaussova raspodela, nepoznato μ i σ^2

- Za 1-D Gaussovu raspodelu sa nepoznatom srednjom vrednošću μ i poznatom varijansom σ^2 , potrebno je odrediti optimalnu ML procenu μ na osnovu skupa uzoraka $X = \{x^{(1)}, x^{(2)}, ..., x^{(N)}\}$
 - □ Elementi vektora parametara $\boldsymbol{\theta}$ su $\vartheta_1 = \mu$ i $\vartheta_2 = \sigma^2$
- Za jedan uzorak x⁽ⁱ⁾ važi:

$$p(x^{(i)} | \boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x^{(i)} - \mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}\sqrt{\vartheta_2}} e^{-\frac{(x^{(i)} - \vartheta_1)^2}{2\vartheta_2}}$$

$$\ln p(x^{(i)} | \boldsymbol{\theta}) = -\frac{1}{2} \ln(2\pi\vartheta_2) - \frac{(x^{(i)} - \vartheta_1)^2}{2\vartheta_2}$$

pa se ML procena na čitavom skupu od N uzoraka dobija na sledeći način:

$$I(\mathbf{\theta}) = \sum_{i=1}^{N} \ln p(\mathbf{x}^{(i)} \mid \mathbf{\theta}) = -\frac{N}{2} \ln(2\pi\vartheta_{2}) - \frac{1}{2\vartheta_{2}} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \vartheta_{1})^{2}$$

$$\nabla_{\mathbf{\theta}} I(\mathbf{\theta}) = 0 \implies \begin{cases} \frac{\partial I(\mathbf{\theta})}{\partial \vartheta_{1}} = \sum_{i=1}^{N} \frac{1}{\vartheta_{2}} (\mathbf{x}^{(i)} - \vartheta_{1}) = 0 \\ \frac{\partial I(\mathbf{\theta})}{\partial \vartheta_{2}} = -\frac{N}{2\vartheta_{2}} + \sum_{k=1}^{N} \frac{(\mathbf{x}^{(i)} - \vartheta_{1})^{2}}{2\vartheta_{2}^{2}} = 0 \end{cases} \implies \begin{cases} \hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)} \\ \hat{\sigma}^{2} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \hat{\mu})^{2} \end{cases}$$

Primer: Gaussova raspodela, nepoznato µ

- Za *d*-dimenzionu Gaussovu raspodelu sa nepoznatom srednjom vrednošću μ i poznatom kovarijansnom matricom Σ , potrebno je odrediti optimalnu ML procenu μ na osnovu skupa uzoraka $X = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(N)}\}$
- Za jedan uzorak x⁽ⁱ⁾ važi:

$$p(\mathbf{x}^{(i)}|\,\mathbf{\mu}) = \frac{1}{(2\pi)^{d/2} \,|\,\mathbf{\Sigma}\,|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}^{(i)} - \mathbf{\mu})^{\mathsf{T}}\mathbf{\Sigma}^{-1}(\mathbf{x}^{(i)} - \mathbf{\mu})}$$

$$\ln p(\mathbf{x}^{(i)}|\mathbf{\mu}) = -\frac{1}{2} \ln \left[(2\pi)^d |\mathbf{\Sigma}| \right] - \frac{1}{2} (\mathbf{x}^{(i)} - \mathbf{\mu})^\mathsf{T} \mathbf{\Sigma}^{-1} (\mathbf{x}^{(i)} - \mathbf{\mu})$$

pa se ML procena na čitavom skupu od *N* uzoraka dobija na osnovu:

$$I(\boldsymbol{\mu}) = \sum_{i=1}^{N} \ln p(\mathbf{x}^{(i)} | \boldsymbol{\mu}) = -\frac{N}{2} \ln \left[(2\pi)^{d} | \boldsymbol{\Sigma} | \right] - \frac{1}{2} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}^{(i)} - \boldsymbol{\mu})$$

$$\nabla_{\boldsymbol{\theta}} I(\boldsymbol{\mu}) = \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{N} \ln p(\mathbf{x}^{(i)} | \boldsymbol{\mu}) = \sum_{i=1}^{N} \mathbf{\Sigma}^{-1} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) = 0$$

odakle, nakon množenja obe strane sa Σ : $\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}$

 Procena na osnovu uzoračke srednje vrednosti u osnovi je procena na osnovu maksimizacije izglednosti

Diferenciranje matrica i vektora

$$\alpha = \mathbf{y}^{\mathsf{T}} \mathbf{A} \mathbf{x} \implies \frac{d\alpha}{d\mathbf{x}} = \mathbf{y}^{\mathsf{T}} \mathbf{A}$$

$$\alpha = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \implies \frac{d\alpha}{d\mathbf{x}} = \mathbf{x}^{\mathsf{T}} (\mathbf{A} + \mathbf{A}^{\mathsf{T}})$$

Za simetrične matrice:

$$\alpha = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \implies \frac{d\alpha}{d\mathbf{x}} = 2\mathbf{x}^{\mathsf{T}} \mathbf{A}$$

(sve pod pretpostavkom da su **A** i **y** nezavisni od **x**)

Primer: Gaussova raspodela, nepoznato μ i Σ

- Za *d*-dimenzionu Gaussovu raspodelu sa nepoznatom srednjom vrednošću μ i nepoznatom kovarijansnom matricom Σ , potrebno je odrediti optimalnu ML procenu μ i Σ na osnovu skupa uzoraka $X = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(N)}\}$
 - \square Elementi vektora parametara θ su elementi vektora μ i matrice Σ

$$\nabla_{\boldsymbol{\theta}} I(\boldsymbol{\theta}) = \sum_{i=1}^{N} \nabla_{\boldsymbol{\theta}} \ln p(\mathbf{x}^{(i)} | \boldsymbol{\theta}) = \mathbf{0} \Longrightarrow \begin{cases} \hat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)} \\ \hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}}) (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}})^{\mathsf{T}} \end{cases}$$

- Procena srednje vrednosti je ponovo uzoračka srednja vrednost, a procena kovarijansne matrice je aritmetička sredina matrica oblika $(\mathbf{x}^{(i)} \hat{\boldsymbol{\mu}})(\mathbf{x}^{(i)} \hat{\boldsymbol{\mu}})^T$
 - Ovo je logično jer je prava kovarijansna matrica očekivana vrednost $(\mathbf{x} \hat{\mathbf{\mu}})(\mathbf{x} \hat{\mathbf{\mu}})^{\mathsf{T}}$

Pristrasnost i varijansa procene

- Postavlja se pitanje kako definisati kvalitet neke procene
 - Pristrasnost (necentriranost) procene govori
 o tome koliko procena u proseku odstupa od
 tačne vrednosti na različitim skupovima uzoraka

bias
$$(\hat{\vartheta}) = E(\hat{\vartheta}) - \vartheta$$

procene dobijene na različitim skupovima uzoraka

- U praksi treba postići da pristrasnost i varijansa budu što manje
 - Obično je nemoguće ispuniti oba uslova i obično se jedna od te dve veličine minimizuje na račun druge

Pristrasnost i varijansa procene

- Postavlja se pitanje kako definisati kvalitet neke procene
 - Pristrasnost (necentriranost) procene govori o tome koliko procena u proseku odstupa od tačne vrednosti na različitim skupovima u

bias
$$(\hat{\vartheta}) = E(\hat{\vartheta}) - \vartheta$$

- Varijansa procene govori o tome koliko s procena menja na različitim skupovima uz
- U praksi treba postići da pristrasnost i va
 - Obično je nemoguće ispuniti oba uslova i na račun druge

pristrasnost

Kvalitet ML procene μ i σ^2

• ML procena srednje vrednosti μ je centrirana:

$$E\{\hat{\mu}\} = E\left\{\frac{1}{N}\sum_{i=1}^{N}x^{(i)}\right\} = \frac{1}{N}\sum_{i=1}^{N}E\{x^{(i)}\} = \frac{1}{N}\sum_{i=1}^{N}\mu = \mu$$

dok ML procena varijanse σ^2 nije centrirana:

$$E\{\hat{\sigma}^2\} = E\left\{\frac{1}{N}\sum_{i=1}^{N}(x^{(i)} - \hat{\mu})^2\right\} = E\left\{\frac{1}{N}\sum_{i=1}^{N}\left(x^{(i)} - \frac{1}{N}\sum_{j=1}^{N}x^{(j)}\right)^2\right\} = \frac{N-1}{N}\sigma^2 \neq \sigma^2$$

iako jeste asimptotski centrirana, pošto dobijeni izraz teži σ^2 kada $N o \infty$

- □ Problem je u tome što ML estimacija varijanse koristi ML estimaciju srednje vrednosti umesto prave srednje vrednosti, i taj problem dolazi do izražaja za relativno malo *N*
- Postoji i centrirana procena varijanse (kao i kovarijansne matrice)

$$\hat{\sigma}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x^{(i)} - \hat{\mu})^2$$

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}}) (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}})^{\mathsf{T}}$$

 Nijedna od navedenih procena ne može se smatrati ispravnom ili pogrešnom, bolje pitanje je da li vodi do dobrih rezultata klasifikatora

Bayesova estimacija

- Pretpostavka je da su parametri nepoznate raspodele **θ** slučajne promenljive sa poznatom apriornom raspodelom
 - Ova raspodela je po pravilu veoma široka, jer je apriorno znanje o θ
 najčešće skromno
- Na osnovu raspoloživog uzorka X nepoznate raspodele estimira se aposteriorna raspodela $p(\theta|X)$
 - Ova raspodela je po pravilu znatno oštrija jer očekujemo da uzorci smanje neodređenost 6

Pri tome ne treba izgubiti iz vida da je krajnji cilj da se izračuna $p(\mathbf{x})$, ili tačnije $p(\mathbf{x}|X)$, što je gustina raspodele *ako su poznate vrednosti uzoraka*

Bayesova estimacija

Tražena raspodela $p(\mathbf{x}|X)$ može se dobiti marginalizacijom $p(\mathbf{x},\boldsymbol{\theta}|X)$ po $\boldsymbol{\theta}$

$$p(\mathbf{x}|X) = \int p(\mathbf{x}, \mathbf{\theta}|X) d\mathbf{\theta}$$

$$= \int p(\mathbf{x}|\mathbf{\theta}, X) p(\mathbf{\theta}|X) d\mathbf{\theta} \quad \text{(na osnovu definicije uslovne verovatnoće)}$$

$$= \int p(\mathbf{x}|\mathbf{\theta}) p(\mathbf{\theta}|X) d\mathbf{\theta} \quad \text{(pošto } X \text{ postaje irelevantno ako je poznato } \mathbf{\theta})$$

Jedina nepoznata veličina ovde je $p(\theta|X)$, a ona se može dobiti na osnovu Bayesove teoreme:

$$p(\mathbf{\Theta}|X) = \frac{p(X|\mathbf{\Theta})p(\mathbf{\Theta})}{p(X)} = \frac{p(X|\mathbf{\Theta})p(\mathbf{\Theta})}{\int p(X|\mathbf{\Theta})p(\mathbf{\Theta})d\mathbf{\Theta}}$$

gde je $p(\theta)$ apriorna gustina raspodele verovatnoće za θ

 $p(X|\theta)$ može da se izračuna uz pretpostavku da su uzorci međusobno nezavisni

$$p(X|\mathbf{\theta}) = p(x^{(1)}, x^{(2)}, ..., x^{(N)}|\mathbf{\theta}) = \prod_{i=1}^{N} p(x^{(i)}|\mathbf{\theta})$$

Veza između ML i Bayesove procene

- Bayesov pristup zahteva računanje višedimenzionalnih integrala, što je po pravilu složenije od primene diferencijalnog računa i gradijentne pretrage koju zahteva ML pristup
- U graničnoj situaciji ova dva pristupa gotovo uvek daju isti rezultat što se tiče procenjene $p(\mathbf{x})$
- Razlike se javljaju kada je skup uzoraka relativno mali
 - Bayesova estimacija koristi potpunu estimaciju $p(\theta|X)$, pa koristi više informacija iz skupa za obuku nego ML estimacija
 - Bayesova estimacija više odgovara načinu na koji ljudi uče, i ima intuitivnu interpretaciju kroz tzv. inkrementalno učenje, koje se obavlja s pristizanjem novih uzoraka
 - Počev od $p(\theta)$, rekurzivno se ocenjuju raspodele $p(\theta | \mathbf{x}^{(1)})$, $p(\theta | \mathbf{x}^{(1)}, \mathbf{x}^{(2)})$, $p(\theta | \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)})$...

Bayesova procena i inkrementalno učenje

- Kako novi uzorci pristižu, procena parametra je sve preciznija
 - Prikazani primer odnosi se na procenu nepoznate srednje vrednosti μ 1-D Gaussove raspodele poznate varijanse σ na osnovu skupa uzoraka (pri čemu je i za parametar $\vartheta = \mu$ pretpostavljeno da podleže 1-D Gaussovoj raspodeli)

Po pristizanju N-tog uzorka procena parametra μ definisana je Gaussovom raspodelom s parametrima:

$$\mu_N = \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \overline{X}_N + \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0$$

$$\sigma_N^2 = \frac{\sigma_0^2 \sigma^2}{N\sigma_0^2 + \sigma^2}$$

gde su μ_0 i σ_0 srednja vrednost i varijansa priora, a \overline{x}_N uzoračka srednja vrednost (što veće N, prior sve manje utiče)