Fluïdummechanica

Gelijkvormigheid en dimensieloze getallen

Brecht Baeten¹

¹KU Leuven, Technologie campus Diepenbeek, e-mail: brecht.baeten@kuleuven.be

18 oktober 2016

Inhoud

- Inleiding
- 2 Gelijkvormigheid
- 3 Dimensieloze getaller
- 4 Buckingham-Pi

Bron: http://www.nasa.gov/

Bron: http://www.autodesk.com/

Inhoud

- Inleiding
- 2 Gelijkvormigheid
- 3 Dimensieloze getallen
- 4 Buckingham-Pi

Bron: http://7-themes.com/

• Gelijke verhoudingen van afstanden

- Gelijke verhoudingen van afstanden
- Gelijke verhoudingen van snelheden

Inhoud

- Inleiding
- 2 Gelijkvormigheid
- 3 Dimensieloze getallen
- 4 Buckingham-Pi

$$\rho \frac{\partial v}{\partial t} + \rho v \frac{\partial v}{\partial s} = -\frac{\partial p}{\partial s} + \rho g_s + \mu \frac{\partial^2 v}{\partial s^2}$$

$$\rho \frac{\partial v}{\partial t} + \rho v \frac{\partial v}{\partial s} = -\frac{\partial p}{\partial s} + \rho g_s + \mu \frac{\partial^2 v}{\partial s^2}$$

$$s = s^* D_{\text{ref}}$$

$$v = v^* v_{\text{ref}}$$

$$t = t^* t_{\text{ref}}$$

$$p = p^* p_{\text{ref}}$$

$$\rho \frac{\partial v^* v_{\text{ref}}}{\partial t^* t_{\text{ref}}} + \rho v^* v_{\text{ref}} \frac{\partial v^* v_{\text{ref}}}{\partial s^* D_{\text{ref}}} = -\frac{\partial p^* p_{\text{ref}}}{\partial s^* D_{\text{ref}}} + \rho g_s + \mu \frac{\partial^2 v^* v_{\text{ref}}}{\partial s^{*2} D_{\text{ref}}^2}$$

$$\rho \frac{\partial v}{\partial t} + \rho v \frac{\partial v}{\partial s} = -\frac{\partial p}{\partial s} + \rho g_s + \mu \frac{\partial^2 v}{\partial s^2}$$

$$s = s^* D_{\text{ref}}$$

$$v = v^* v_{\text{ref}}$$

$$t = t^* t_{\text{ref}}$$

$$p = p^* p_{\text{ref}}$$

$$\rho \frac{\partial v^* v_{\mathsf{ref}}}{\partial t^* t_{\mathsf{ref}}} + \rho v^* v_{\mathsf{ref}} \frac{\partial v^* v_{\mathsf{ref}}}{\partial s^* D_{\mathsf{ref}}} = -\frac{\partial p^* p_{\mathsf{ref}}}{\partial s^* D_{\mathsf{ref}}} + \rho g_s + \mu \frac{\partial^2 v^* v_{\mathsf{ref}}}{\partial s^{*2} D_{\mathsf{ref}}^2}$$

$$\frac{\rho v_{\mathsf{ref}}^2}{D_{\mathsf{ref}}} \frac{\partial v^*}{\partial t^*} + \frac{\rho v_{\mathsf{ref}}^2}{D_{\mathsf{ref}}} v^* \frac{\partial v^*}{\partial s^*} = -\frac{p_{\mathsf{ref}}}{D_{\mathsf{ref}}} \frac{\partial p^*}{\partial s^*} + \rho g_s + \frac{\mu v_{\mathsf{ref}}}{D_{\mathsf{ref}}^2} \frac{\partial^2 v^*}{\partial s^{*2}}$$

$$\frac{\partial v^*}{\partial t^*} + v^* \frac{\partial v^*}{\partial s^*} = -\frac{p_{\text{ref}}}{\rho v_{\text{ref}}^2} \frac{\partial p^*}{\partial s^*} + \frac{g_s D_{\text{ref}}}{v_{\text{ref}}^2} + \frac{\mu}{\rho v_{\text{ref}} D_{\text{ref}}} \frac{\partial^2 v^*}{\partial s^{*2}} \tag{1}$$

$$\frac{\partial v^*}{\partial t^*} + v^* \frac{\partial v^*}{\partial s^*} = -\frac{p_{\text{ref}}}{\rho v_{\text{ref}}^2} \frac{\partial p^*}{\partial s^*} + \frac{g_s D_{\text{ref}}}{v_{\text{ref}}^2} + \frac{\mu}{\rho v_{\text{ref}} D_{\text{ref}}} \frac{\partial^2 v^*}{\partial s^{*2}}$$
(1)

$$\frac{\partial v^*}{\partial t^*} + v^* \frac{\partial v^*}{\partial s^*} = -\mathsf{Eu} \frac{\partial p^*}{\partial s^*} + \frac{1}{\mathsf{Fr}^2} + \frac{1}{\mathsf{Re}} \frac{\partial^2 v^*}{\partial s^{*2}} \tag{2}$$

$$\frac{\partial v^*}{\partial t^*} + v^* \frac{\partial v^*}{\partial s^*} = -\mathsf{Eu} \frac{\partial p^*}{\partial s^*} + \frac{1}{\mathsf{Fr}^2} + \frac{1}{\mathsf{Re}} \frac{\partial^2 v^*}{\partial s^{*2}} \tag{2}$$

Dimensieloze getallen zijn verhoudingen van referentiewaarden voor krachten

$$\frac{\partial v^*}{\partial t^*} + v^* \frac{\partial v^*}{\partial s^*} = -\mathsf{Eu} \frac{\partial p^*}{\partial s^*} + \frac{1}{\mathsf{Fr}^2} + \frac{1}{\mathsf{Re}} \frac{\partial^2 v^*}{\partial s^{*2}} \tag{2}$$

Dimensieloze getallen zijn verhoudingen van referentiewaarden voor krachten

$$\begin{aligned} \text{Re} &= \frac{\rho v D}{\mu} = \frac{v D}{\nu} = \frac{\text{traagheidskracht}}{\text{viskeuze krachten}} \\ \text{Eu} &= \frac{p}{\rho v^2} \\ \text{Fr} &= \frac{v}{\sqrt{q D}} \end{aligned} = \frac{\frac{\text{drukkracht}}{\text{traagheidskracht}}}{\frac{\text{traagheidskracht}}{\text{zwaartekracht}}} \end{aligned}$$

Dimensieloze getallen en gelijkvormigheid

- Gelijke verhoudingen van afstanden
- Gelijke verhoudingen van snelheden

Dimensieloze getallen en gelijkvormigheid

- Gelijke verhoudingen van afstanden
- Gelijke verhoudingen van snelheden
- Gelijke verhoudingen van krachten

$$(x_i, y_i) \qquad F_a|_{x_i, y_i} \qquad F_b|_{x_i, y_i} \quad (x_j, y_j) \qquad (x'_i, y'_i) \qquad (x'_j, y'_j)$$

Dimensieloze getallen en gelijkvormigheid

- Gelijke verhoudingen van afstanden
- Gelijke verhoudingen van snelheden
- Gelijke verhoudingen van krachten

$$Re = Re'$$
, $Eu = Eu'$, $Fr = Fr'$

$$\begin{aligned} & \operatorname{Re} = \frac{\rho v D}{\mu} \\ & \operatorname{Eu} = \frac{p}{\rho v^2} \\ & \operatorname{Fr} = \frac{v}{\sqrt{g D}} \\ & \operatorname{Ma} = \frac{v}{c} \\ & \operatorname{St} = \frac{f D}{v} \end{aligned}$$

$$\begin{split} \text{Re} &= \frac{\rho v D}{\mu} \qquad \text{Pr} = \frac{\nu}{\alpha} \\ \text{Eu} &= \frac{p}{\rho v^2} \qquad \text{Nu} = \frac{h D}{k} \\ \text{Fr} &= \frac{v}{\sqrt{g D}} \qquad \text{Gr} = \frac{g \beta (T_s - T_\infty) D^3}{\nu^2} \\ \text{Ma} &= \frac{v}{c} \qquad \text{Ra} = \text{GrPr} \\ \text{St} &= \frac{f D}{v} \end{split}$$

$$\begin{split} \operatorname{Re} &= \frac{\rho v D}{\mu} & \operatorname{Pr} = \frac{\nu}{\alpha} & C_p = \frac{p}{\frac{1}{2}\rho v^2} \simeq \frac{p}{\rho N^2 D^2} \\ \operatorname{Eu} &= \frac{p}{\rho v^2} & \operatorname{Nu} = \frac{h D}{k} & C_F = \frac{F}{\frac{1}{2}\rho v^2 A} \simeq \frac{F}{\frac{1}{2}\rho v^2 D^2} \\ \operatorname{Fr} &= \frac{v}{\sqrt{g D}} & \operatorname{Gr} = \frac{g \beta (T_s - T_\infty) D^3}{\nu^2} & C_P = \frac{P}{\frac{1}{2}\rho v^3 D^2} \simeq \frac{P}{\rho N^3 D^5} \\ \operatorname{Ma} &= \frac{v}{c} & \operatorname{Ra} = \operatorname{GrPr} & C_{\dot{V}} = \frac{\dot{V}}{v D^2} \simeq \frac{\dot{V}}{N D^3} \end{split}$$

Inhoud

Inleiding

- 2 Gelijkvormigheid
- 3 Dimensieloze getallen
- 4 Buckingham-Pi

Meting	N	D	v	F
	(rpm)	(m)	(m/s)	(kN)
1	100	0.20	2.5	1.0
2	200	0.20	2.5	1.5
3	300	0.20	2.5	1.5
4	100	0.40	2.5	4.6
5	200	0.40	2.5	4.3
6	300	0.40	2.5	2.7
7	100	0.60	2.5	9.0
8	200	0.60	2.5	3.2
9	300	0.60	2.5	0.2
10	100	0.20	5.0	1.8
11	200	0.20	5.0	3.1
12	300	0.20	5.0	4.0
13	100	0.40	5.0	8.1
14	200	0.40	5.0	11.8
15	300	0.40	5.0	11.0
16	100	0.60	5.0	19.1
17	200	0.60	5.0	19.8
18	300	0.60	5.0	14.3
19	100	0.20	7.5	2.1
20	200	0.20	7.5	3.7
21	300	0.20	7.5	5.7
22	100	0.40	7.5	10.5
23	200	0.40	7.5	17.6
24	300	0.40	7.5	22.2
25	100	0.60	7.5	23.8
26	200	0.60	7.5	41.5
27	300	0.60	7.5	34.7

Eenheden

Grootheid	Dimensie	Eenheid
Lengte	L	m
Massa	${ m M}$	kg
Tijd	${ m T}$	\mathbf{S}
Dichtheid	$\mathrm{ML^{-3}}$	$\mathrm{kg/m^3}$
Druk	$\mathrm{ML^{-1}T^{-2}}$	N/m^2
Dynamische viscositeit	$\mathrm{MT^{-1}L^{-1}}$	Pas
Energie (arbeid)	$ m ML^2T^{-2}$	J
Impuls	$ m MLT^{-1}$	kgm/s
Kinematische viscositeit	L^2T^{-1}	m^2/s
Kracht	$ m MLT^{-2}$	N
Snelheid	${ m LT^{-1}}$	m/s
Vermogen	$\mathrm{ML^2T^{-3}}$	J/s
Versnelling	LT^{-2}	m/s^2
Volume	L^3	m^3

Buckingham-Pi theorema

Een relatie:

$$a = f\left(a_1, a_2, \dots, a_n\right)$$

 $\operatorname{met} k$ grootheden met onafhankelijke dimensies

Buckingham-Pi theorema

Een relatie:

$$a = f\left(a_1, a_2, \dots, a_n\right)$$

met k grootheden met onafhankelijke dimensies

kan herschreven worden als:

$$\pi = f\left(\pi_1, \pi_2, \dots, \pi_{n-k}\right)$$

met $\pi, \pi_1, \dots, \pi_{n-k}$ dimensieloze grootheden

