Probability and Statistics for JMC Exercises 8 — Convergence Concepts

1. Suppose that X is a continuous random variable with pdf

$$f_X(x) = \exp \left[-(x+2) \right], \text{ for } -2 < x < \infty.$$

Find the mgf of X and then use it to find the expectation and variance of X.

- 2. Using the Central Limit Theorem, construct normal approximations to each of the following random variables,
 - (a) a Binomial distribution $X \sim \text{Binomial}(n, \theta)$;
 - (b) a Poisson distribution $X \sim \text{Poisson}(\lambda)$.
- 3. Show that for any random variable, X with mean μ and variance σ^2 ,

$$P(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}.$$

4. Suppose $X_1, \ldots, X_n \sim \text{Poisson}(\lambda)$. Let

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- (a) Show that \overline{X} is a consistent estimator of λ .
- (b) Suppose $T_n = \exp(-\overline{X})$, show that $T_n \xrightarrow{\mathcal{P}} \exp(-\lambda)$.
- 5. Markov's inequality states that, for any r > 0, and for an arbitrary random variable Y,

$$P(|Y| > \delta) \le \frac{E(|Y|^r)}{\delta^r},$$

for all $\delta > 0$. Use this result to show that for independent and identically distributed random variables $X_1, \ldots X_n$ with mean μ and variance $\sigma^2 < \infty$, the sample mean \overline{X} converges in probability to μ as $n \to \infty$.

1

6. Find the moment generating function of the random variable X which has density function

$$f_X(x) = \begin{cases} \frac{1}{2}x & 0 < x < 2, \\ 0 & \text{otherwise.} \end{cases}$$

Write down the moment generating function (MGF) of X, and by expanding the MGF as a power series in t, find the mean and variance of X.

Partial answers:

- 1. $M(t) = -\exp(-2t)/(t-1)$; E(X) = -1; Var(X) = 1.
- 2. (a) $N(n\theta, n\theta(1-\theta))$; (b) $N(\lambda, \lambda)$.
- 6. E(X) = 4/3, Var(X) = 2/9.