# **Data Science with PySpark**

**David Kearney** 

# **CONTENTS**

| 1 | Pysp       | ark Regression with Fiscal Data                                                 | 3               |
|---|------------|---------------------------------------------------------------------------------|-----------------|
|   | 1.1        | Bring in needed imports                                                         | 3               |
|   | 1.2        | Load data from CSV                                                              | 3               |
|   | 1.3        | Describing the Data                                                             | 4               |
|   | 1.4        | Cast Data Type                                                                  | 4               |
|   | 1.5        | printSchema                                                                     | 4               |
|   | 1.6        | Linear Regression in Pyspark                                                    | 4               |
| 2 | Grou       | ip By and Aggregation with Pyspark                                              | 7               |
|   | 2.1        | Read CSV and inferSchema                                                        | 7               |
|   | 2.2        | Using groupBy for Averages and Counts                                           | 7               |
|   | 2.3        | Choosing Significant Digits with format_number                                  | 8               |
|   | 2.4        | Using orderBy                                                                   | 8               |
| 3 | Hand       | dling Missing Data with Pyspark                                                 | 9               |
|   | 3.1        | Dropping Columns without non-null values                                        | 9               |
|   | 3.2        | Dropping any row that contains missing data                                     | 9               |
|   | 3.3        | Imputation of Null Values                                                       | 10              |
| 4 | Data       | frame Filitering and Operations with Pyspark                                    | 11              |
|   | 4.1        | Filtering on values in a column                                                 | 11              |
|   | 4.2        | Filtering on values in 2+ columns                                               | 11              |
| 5 | Data       | frames, Formatting, Casting Data Type and Correlation with Pyspark              | 13              |
|   | 5.1        | Casting Data Types and Formatting Significant Digits                            | 13              |
|   | 5.2        | New Columns generated from extant columns using withColumn                      | 14              |
|   | 5.3        | Finding the Mean, Max, and Min                                                  | 14              |
|   | 5.4        | Finding the max value by Year                                                   | 14              |
|   |            |                                                                                 |                 |
| 6 |            | os and Schemas and Data Types with Pyspark                                      | 15              |
|   | 6.1        | Setting Data Schema and Data Types                                              | 15              |
|   |            | Applying the Data Schema/Data Types while reading in a CSV                      | 16              |
|   | 6.3        | Using select with RDDs                                                          | 16              |
|   | 6.4        | Renaming Columns using withColumnRenamed                                        | 16              |
|   | 6.5        | New Columns by Transforming extant Columns using withColumn                     | 16              |
|   | 6.6        | Spark SQL for SQL functionality using createOrReplaceTempView                   | 17              |
|   |            |                                                                                 |                 |
| 7 | Wind       | dow functions and Pivot Tables with Pyspark                                     | 19              |
| 7 | 7.1        | dow functions and Pivot Tables with Pyspark  Using toPandas to look at the data | <b>19</b><br>19 |
| 7 | 7.1<br>7.2 |                                                                                 | 19<br>20        |
| 7 | 7.1        | Using toPandas to look at the data                                              | 19              |

|   | 7.4<br>7.5<br>7.6<br>7.7<br>7.8<br>7.9<br>7.10<br>7.11<br>7.12 | Sorting RDDs by Columns Casting Data Types Aggregating using groupBy, .agg and sum/max Exponentials using exp Window functions Lagging Variables Looking at windows within the data Pivot Dataframes Unpivoting RDDs | 20<br>20<br>20<br>21<br>21<br>21<br>21<br>22<br>22 |
|---|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 8 | Linea                                                          | ar Regression and Random Forest/GBT Classification with Pyspark                                                                                                                                                      | 23                                                 |
|   | 8.1                                                            | Regression and Classification with Pyspark ML                                                                                                                                                                        | 23                                                 |
|   | 8.2                                                            | Imputation of mean values to prepare the data                                                                                                                                                                        | 24                                                 |
|   | 8.3                                                            | Creating binary target feature from extant column for classification                                                                                                                                                 | 24                                                 |
|   | 8.4                                                            | Using StringIndexer for categorical encoding of string type columns                                                                                                                                                  | 24                                                 |
|   | 8.5                                                            | Using VectorAssembler to prepare features for machine learning                                                                                                                                                       | 25                                                 |
|   | 8.6                                                            | Spliting data into train and test                                                                                                                                                                                    | 25                                                 |
|   | 8.7                                                            | Regression with Pyspark ML                                                                                                                                                                                           | 25                                                 |
|   | 8.8                                                            | Fitting the linear regression model to the training data                                                                                                                                                             | 26                                                 |
|   | 8.9                                                            | Coefficients and Intercept of the linear regression model                                                                                                                                                            | 26                                                 |
|   | 8.10                                                           | Evaluating trained linear regression model on the test data                                                                                                                                                          | 26                                                 |
|   | 8.11                                                           | Metrics of trained linear regression model on the test data (RMSE, MSE, R2)                                                                                                                                          | 26                                                 |
|   | 8.12                                                           | Looking at correlations with corr                                                                                                                                                                                    | 26                                                 |
|   | 8.13                                                           | Classification with Pyspark ML                                                                                                                                                                                       | 26                                                 |
|   | 8.14                                                           | DecisionTreeClassifier, RandomForestClassifier and GBTClassifier                                                                                                                                                     | 26                                                 |
|   | 8.15                                                           | Selecting features and binary target                                                                                                                                                                                 | 27                                                 |
|   | 8.16                                                           | Fitting the Classifiers to the Training Data                                                                                                                                                                         | 27                                                 |
|   | 8.17                                                           | Classifier predictions on test data                                                                                                                                                                                  | 27                                                 |
|   | 8.18                                                           | Evaluating Classifiers using pyspark.ml.evaluation and MulticlassClassificationEvaluator                                                                                                                             | 27                                                 |
|   | 8.19                                                           | Classifier Accuracy Metrics                                                                                                                                                                                          | 27                                                 |
|   | 8.20                                                           | Classification Correlation with Corr                                                                                                                                                                                 | 28                                                 |

Data Science with PySpark, written by David R. Kearney.

**Note:** Data Science with PySpark Includes code adapted from Spark and Python for Big Data udemy course and Spark and Python for Big Data notebooks.

CONTENTS 1

2 CONTENTS

ONE

#### PYSPARK REGRESSION WITH FISCAL DATA

"A minimal example of using Pyspark for Linear Regression"

• toc: true- branch: master- badges: true

· comments: true

• author: David Kearney

• categories: [pyspark, jupyter]

• description: A minimal example of using Pyspark for Linear Regression

• title: Pyspark Regression with Fiscal Data

## 1.1 Bring in needed imports

```
from pyspark.sql.functions import col
from pyspark.sql.types import StringType,BooleanType,DateType,IntegerType
from pyspark.sql.functions import *
```

#### 1.2 Load data from CSV

```
#collapse-hide

# Load data from a CSV

file_location = "/FileStore/tables/df_panel_fix.csv"

df = spark.read.format("CSV").option("inferSchema", True).option("header", True).

$\to$load(file_location)

display(df.take(5))
```

```
df.createOrReplaceTempView("fiscal_stats")

sums = spark.sql("""
select year, sum(it) as total_yearly_it, sum(fr) as total_yearly_fr
from fiscal_stats
group by 1
order by year asc
""")
sums.show()
```

## 1.3 Describing the Data

```
df.describe().toPandas().transpose()
```

## 1.4 Cast Data Type

```
df2 = df.withColumn("gdp",col("gdp").cast(IntegerType())) \
.withColumn("specific",col("specific").cast(IntegerType())) \
.withColumn("general",col("general").cast(IntegerType())) \
.withColumn("year",col("year").cast(IntegerType())) \
.withColumn("fdi",col("fdi").cast(IntegerType())) \
.withColumn("rnr",col("rnr").cast(IntegerType())) \
.withColumn("rr",col("rr").cast(IntegerType())) \
.withColumn("i",col("i").cast(IntegerType())) \
.withColumn("fr",col("i").cast(IntegerType()))
```

### 1.5 printSchema

```
df2.printSchema()
```

```
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression

assembler = VectorAssembler(inputCols=['gdp', 'fdi'], outputCol="features")
train_df = assembler.transform(df2)
```

```
train_df.select("specific", "year").show()
```

## 1.6 Linear Regression in Pyspark

```
lr = LinearRegression(featuresCol = 'features', labelCol='it')
lr_model = lr.fit(train_df)

trainingSummary = lr_model.summary
print("Coefficients: " + str(lr_model.coefficients))
print("RMSE: %f" % trainingSummary.rootMeanSquaredError)
print("R2: %f" % trainingSummary.r2)
```

```
print("R Squared (R2) on test data = g" % lr_evaluator.evaluate(lr_predictions))
```

```
print("numIterations: %d" % trainingSummary.totalIterations)
print("objectiveHistory: %s" % str(trainingSummary.objectiveHistory))
trainingSummary.residuals.show()
```

```
predictions = lr_model.transform(test_df)
predictions.select("prediction","it","features").show()
```

```
from pyspark.ml.regression import DecisionTreeRegressor
dt = DecisionTreeRegressor(featuresCol ='features', labelCol = 'it')
dt_model = dt.fit(train_df)
dt_predictions = dt_model.transform(train_df)
dt_evaluator = RegressionEvaluator(
    labelCol="it", predictionCol="prediction", metricName="rmse")
rmse = dt_evaluator.evaluate(dt_predictions)
print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)
```

```
from pyspark.ml.regression import GBTRegressor
gbt = GBTRegressor(featuresCol = 'features', labelCol = 'it', maxIter=10)
gbt_model = gbt.fit(train_df)
gbt_predictions = gbt_model.transform(train_df)
gbt_predictions.select('prediction', 'it', 'features').show(5)

gbt_evaluator = RegressionEvaluator(
    labelCol="it", predictionCol="prediction", metricName="rmse")
rmse = gbt_evaluator.evaluate(gbt_predictions)
print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)
```

**TWO** 

#### GROUP BY AND AGGREGATION WITH PYSPARK

"Group By and Aggregation with Pyspark"

• toc: true- branch: master- badges: true

· comments: true

· author: David Kearney

• categories: [pyspark, jupyter]

• description: Group By and Aggregation with Pyspark

• title: Group By and Aggregation with Pyspark

#### 2.1 Read CSV and inferSchema

```
df.printSchema()
```

# 2.2 Using groupBy for Averages and Counts

```
df.groupBy("province")

df.groupBy("province").mean().show()

df.groupBy("reg").mean().show()

# Count
df.groupBy("reg").count().show()
```

```
# Max
df.groupBy("reg").max().show()

# Min
df.groupBy("reg").min().show()

# Sum
df.groupBy("reg").sum().show()

# Max it across everything
df.agg(('specific':'max')).show()

grouped = df.groupBy("reg")
grouped.agg(("it":'max')).show()

df.select(countDistinct("reg")).show()

df.select(countDistinct("reg").alias("Distinct Region")).show()

df.select(avg('specific')).show()
```

## 2.3 Choosing Significant Digits with format\_number

```
from pyspark.sql.functions import format_number

specific_std = df.select(stddev("specific").alias('std'))
specific_std.show()

specific_std.select(format_number('std',0)).show()
```

## 2.4 Using orderBy

df.select(stddev("specific")).show()

```
df.orderBy("specific").show()

df.orderBy(df["specific"].desc()).show()
```

#### **THREE**

#### HANDLING MISSING DATA WITH PYSPARK

df.show()

# 3.1 Dropping Columns without non-null values

```
# Has to have at least 2 NON-null values
df.na.drop(thresh=2).show()
```

# 3.2 Dropping any row that contains missing data

```
df.na.drop().show()

df.na.drop(subset=["general"]).show()
```

df.na.drop(how='any').show()

```
df.na.drop(how='all').show()
```

# 3.3 Imputation of Null Values

```
df.na.fill('example').show()
```

#### 3.3.1 Imputation of 0

```
df.na.fill(0).show()
```

```
df.na.fill('example', subset=['fr']).show()
```

```
df.na.fill(0, subset=['general']).show()
```

#### 3.3.2 Imputation of the Mean

```
from pyspark.sql.functions import mean
mean_val = df.select(mean(df['general'])).collect()
```

```
mean_val[0][0]
```

```
mean_gen = mean_val[0][0]
```

```
df.na.fill(mean_gen,["general"]).show()
```

```
df.na.fill(df.select(mean(df['general'])).collect()[0][0],['general']).show()
```

#### **FOUR**

#### DATAFRAME FILITERING AND OPERATIONS WITH PYSPARK

#### 4.1 Filtering on values in a column

```
df.filter("specific<10000").show()

df.filter("specific<10000").select('province').show()

df.filter("specific<10000").select(['province','year']).show()

df.filter(df["specific"] < 10000).show()</pre>
```

## 4.2 Filtering on values in 2+ columns

```
df.filter((df["specific"] < 55000) & (df['gdp'] > 200) ).show()

df.filter((df["specific"] < 55000) | (df['gdp'] > 20000) ).show()

df.filter((df["specific"] < 55000) & ~(df['gdp'] > 20000) ).show()

df.filter(df["specific"] == 8964.0).show()

df.filter(df["province"] == "Zhejiang").show()

df.filter(df["specific"] == 8964.0).collect()
```

#### **Data Science with PySpark**

```
type(result[0])

row = result[0]

row.asDict()

for item in result[0]:
    print(item)
```

**FIVE** 

# DATAFRAMES, FORMATTING, CASTING DATA TYPE AND CORRELATION WITH PYSPARK

```
df.columns
```

```
df.printSchema()
```

```
# for row in df.head(5):
#    print(row)
#    print('\n')
```

```
df.describe().show()
```

```
df.describe().printSchema()
```

# 5.1 Casting Data Types and Formatting Significant Digits

```
from pyspark.sql.functions import format_number
```

## 5.2 New Columns generated from extant columns using withColumn

```
df2 = df.withColumn("specific_gdp_ratio", df["specific"]/(df["gdp"]*100))#.show()
```

```
df2.select('specific_gdp_ratio').show()
```

```
df.orderBy(df["specific"].asc()).head(1)[0][0]
```

#### 5.3 Finding the Mean, Max, and Min

```
from pyspark.sql.functions import mean
df.select(mean("specific")).show()
```

```
from pyspark.sql.functions import max, min
```

```
df.select(max("specific"), min("specific")).show()
```

```
df.filter("specific < 60000").count()</pre>
```

```
df.filter(df['specific'] < 60000).count()</pre>
```

```
from pyspark.sql.functions import count
result = df.filter(df['specific'] < 60000)
result.select(count('specific')).show()</pre>
```

```
(df.filter(df["gdp"]>8000).count()*1.0/df.count())*100
```

```
from pyspark.sql.functions import corr
df.select(corr("gdp","fdi")).show()
```

# 5.4 Finding the max value by Year

```
from pyspark.sql.functions import year
#yeardf = df.withColumn("Year", year(df["year"]))
```

```
max_df = df.groupBy('year').max()
```

```
max_df.select('year','max(gdp)').show()
```

```
from pyspark.sql.functions import month
```

```
#df.select("year", "avg(gdp)").orderBy('year').show()
```

SIX

#### RDDS AND SCHEMAS AND DATA TYPES WITH PYSPARK

### 6.1 Setting Data Schema and Data Types

```
from pyspark.sql.types import StructField, StringType, IntegerType, StructType
```

```
data_schema = [
StructField("_c0", IntegerType(), True)
,StructField("province", StringType(), True)
,StructField("specific", IntegerType(), True)
,StructField("general", IntegerType(), True)
,StructField("year", IntegerType(), True)
,StructField("gdp", IntegerType(), True)
,StructField("fdi", IntegerType(), True)
,StructField("rnr", IntegerType(), True)
,StructField("rr", IntegerType(), True)
,StructField("i", IntegerType(), True)
,StructField("fr", IntegerType(), True)
,StructField("reg", StringType(), True)
,StructField("reg", StringType(), True)
,StructField("it", IntegerType(), True)
,StructField("it", IntegerType(), True)
]
```

```
final_struc = StructType(fields=data_schema)
```

# 6.2 Applying the Data Schema/Data Types while reading in a CSV

```
df = spark.read.format("CSV").schema(final_struc).load(file_location)

df.printSchema()

df.show()

df['fr']

type(df['fr'])

df.select('fr')

df.select('fr')

df.select('fr').show()

df.head(2)
```

#### 6.3 Using select with RDDs

```
df.select(['reg','fr']).show()

df.withColumn('fiscal_revenue',df['fr']).show()

df.show()
```

## 6.4 Renaming Columns using withColumnRenamed

```
df.withColumnRenamed('fr','new_fiscal_revenue').show()
```

# 6.5 New Columns by Transforming extant Columns using withColumn

```
df.withColumn('double_fiscal_revenue',df['fr']*2).show()

df.withColumn('add_fiscal_revenue',df['fr']+1).show()

df.withColumn('half_fiscal_revenue',df['fr']/2).show()
```

df.withColumn('half\_fr',df['fr']/2)

# 6.6 Spark SQL for SQL functionality using createOrReplaceTempView

df.createOrReplaceTempView("economic\_data")

sql\_results = spark.sql("SELECT \* FROM economic\_data")

sql\_results

sql\_results.show()

spark.sql("SELECT \* FROM economic\_data WHERE fr=634562").show()

#### WINDOW FUNCTIONS AND PIVOT TABLES WITH PYSPARK

```
from pyspark.sql import SparkSession
from pyspark.sql.types import StructField,StringType,IntegerType,StructType,
→DoubleType, FloatType
from pyspark.sql.functions import *
data_schema = [
StructField("_c0", IntegerType(), True)
,StructField("province", StringType(), True)
,StructField("specific", DoubleType(), True)
,StructField("general", DoubleType(), True)
,StructField("year", IntegerType(), True)
,StructField("gdp", FloatType(), True)
,StructField("fdi", FloatType(), True)
,StructField("rnr", DoubleType(), True)
,StructField("rr", FloatType(), True)
,StructField("i", FloatType(), True)
,StructField("fr", IntegerType(), True)
,StructField("reg", StringType(), True)
,StructField("it", IntegerType(), True)
final_struc = StructType(fields=data_schema)
file_location = "/FileStore/tables/df_panel_fix.csv"
df = spark.read.format("CSV").schema(final_struc).option("header", True).load(file_
→location)
#df.printSchema()
df.show()
```

## 7.1 Using toPandas to look at the data

```
df.limit(10).toPandas()
```

## 7.2 Renaming Columns

```
df = df.withColumnRenamed("reg", "region")
```

```
df.limit(10).toPandas()
```

```
# df = df.toDF(*['year', 'region', 'province', 'gdp', 'fdi', 'specific', 'general',

'it', 'fr', 'rnr', 'rr', 'i', '_c0', 'specific_classification', 'provinceIndex',

'regionIndex'])
```

### 7.3 Selecting Columns of Interest

```
df = df.select('year','region','province','gdp', 'fdi')
```

```
df.sort("gdp").show()
```

#### 7.4 Sorting RDDs by Columns

```
from pyspark.sql import functions as F
df.sort(F.desc("gdp")).show()
```

# 7.5 Casting Data Types

```
from pyspark.sql.types import IntegerType, StringType, DoubleType
df = df.withColumn('gdp', F.col('gdp').cast(DoubleType()))
```

```
df = df.withColumn('province', F.col('province').cast(StringType()))
```

```
df.filter((df.gdp>10000) & (df.region=='East China')).show()
```

## 7.6 Aggregating using groupBy, .agg and sum/max

```
from pyspark.sql import functions as F

df.groupBy(["region","province"]).agg(F.sum("gdp") ,F.max("gdp")).show()
```

```
df.groupBy(["region", "province"]).agg(F.sum("gdp").alias("SumGDP"), F.max("gdp").alias(
→"MaxGDP")).show()
```

```
df.groupBy(["region", "province"]).agg(
   F.sum("gdp").alias("SumGDP"),\
   F.max("gdp").alias("MaxGDP")\
   ).show()
```

```
df.limit(10).toPandas()
```

#### 7.7 Exponentials using exp

```
df = df.withColumn("Exp_GDP", F.exp("gdp"))
df.show()
```

#### 7.8 Window functions

Note: Window functions

```
# Window functions

from pyspark.sql.window import Window
windowSpec = Window().partitionBy(['province']).orderBy(F.desc('gdp'))
df.withColumn("rank",F.rank().over(windowSpec)).show()
```

```
from pyspark.sql.window import Window
windowSpec = Window().partitionBy(['province']).orderBy('year')
```

## 7.9 Lagging Variables

```
dfWithLag = df.withColumn("lag_7",F.lag("gdp", 7).over(windowSpec))
```

```
df.filter(df.year>'2000').show()
```

### 7.10 Looking at windows within the data

```
from pyspark.sql.window import Window
windowSpec = Window().partitionBy(['province']).orderBy('year').rowsBetween(-6,0)
```

```
dfWithRoll = df.withColumn("roll_7_confirmed",F.mean("gdp").over(windowSpec))
```

```
dfWithRoll.filter(dfWithLag.year>'2001').show()
```

```
from pyspark.sql.window import Window
windowSpec = Window().partitionBy(['province']).orderBy('year').rowsBetween(Window.
unboundedPreceding,Window.currentRow)
```

```
dfWithRoll = df.withColumn("cumulative_gdp",F.sum("gdp").over(windowSpec))
```

```
dfWithRoll.filter(dfWithLag.year>'1999').show()
```

#### 7.11 Pivot Dataframes

Note: Pivot Dataframes

```
pivoted_df.columns
```

```
newColnames = [x.replace("-","_") for x in pivoted_df.columns]
```

```
pivoted_df = pivoted_df.toDF(*newColnames)
```

```
expression = ""
cnt=0

for column in pivoted_df.columns:
    if column!='year':
        cnt +=1
        expression += f"'{column}' , {column},"

expression = f"stack({cnt}, {expression[:-1]}) as (Type,Value)"
```

## 7.12 Unpivoting RDDs

```
unpivoted_df = pivoted_df.select('year',F.expr(expression))
unpivoted_df.show()
```

# LINEAR REGRESSION AND RANDOM FOREST/GBT CLASSIFICATION WITH PYSPARK

### 8.1 Regression and Classification with Pyspark ML

```
from pyspark.sql import SparkSession
from pyspark.sql.types import StructField, StringType, IntegerType, StructType,...
→DoubleType, FloatType
from pyspark.sql.functions import *
data_schema = [
StructField("_c0", IntegerType(), True)
,StructField("province", StringType(), True)
,StructField("specific", DoubleType(), True)
,StructField("general", DoubleType(), True)
,StructField("year", IntegerType(), True)
,StructField("gdp", FloatType(), True)
,StructField("fdi", FloatType(), True)
,StructField("rnr", DoubleType(), True)
,StructField("rr", FloatType(), True)
,StructField("i", FloatType(), True)
,StructField("fr", IntegerType(), True)
,StructField("reg", StringType(), True)
,StructField("it", IntegerType(), True)
final_struc = StructType(fields=data_schema)
file_location = "/FileStore/tables/df_panel_fix.csv"
df = spark.read.format("CSV").schema(final_struc).option("header", True).load(file_
\hookrightarrowlocation)
#df.printSchema()
df.show()
```

```
df.groupBy('province').count().show()
```

### 8.2 Imputation of mean values to prepare the data

```
mean_val = df.select(mean(df['general'])).collect()
mean_val[0][0]
mean_gen = mean_val[0][0]
df = df.na.fill(mean_gen,["general"])
```

```
mean_val = df.select(mean(df['specific'])).collect()
mean_val[0][0]
mean_gen = mean_val[0][0]
df = df.na.fill(mean_gen,["specific"])
```

```
mean_val = df.select(mean(df['rr'])).collect()
mean_val[0][0]
mean_gen = mean_val[0][0]
df = df.na.fill(mean_gen,["rr"])
```

```
mean_val = df.select(mean(df['fr'])).collect()
mean_val[0][0]
mean_gen = mean_val[0][0]
df = df.na.fill(mean_gen,["fr"])
```

```
mean_val = df.select(mean(df['rnr'])).collect()
mean_val[0][0]
mean_gen = mean_val[0][0]
df = df.na.fill(mean_gen,["rnr"])
```

```
mean_val = df.select(mean(df['i'])).collect()
mean_val[0][0]
mean_gen = mean_val[0][0]
df = df.na.fill(mean_gen,["i"])
```

# 8.3 Creating binary target feature from extant column for classification

# 8.4 Using StringIndexer for categorical encoding of string type columns

```
from pyspark.ml.feature import StringIndexer
```

```
indexer = StringIndexer(inputCol="province", outputCol="provinceIndex")
df = indexer.fit(df).transform(df)
```

```
indexer = StringIndexer(inputCol="reg", outputCol="regionIndex")
df = indexer.fit(df).transform(df)
```

```
df.show()
```

### 8.5 Using VectorAssembler to prepare features for machine learning

```
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
```

```
df.columns
```

```
assembler = VectorAssembler(
inputCols=[
'provinceIndex',

# 'specific',
'general',
'year',
'gdp',
'fdi',
#'rnr',
#'rr',
#'i',
#'fr',
'regionIndex',
'it'
],
outputCol="features")
```

```
output = assembler.transform(df)
```

```
final_data = output.select("features", "specific")
```

### 8.6 Spliting data into train and test

```
train_data,test_data = final_data.randomSplit([0.7,0.3])
```

# 8.7 Regression with Pyspark ML

```
from pyspark.ml.regression import LinearRegression
lr = LinearRegression(labelCol='specific')
```

# 8.8 Fitting the linear regression model to the training data

```
lrModel = lr.fit(train_data)
```

### 8.9 Coefficients and Intercept of the linear regression model

```
print("Coefficients: {} Intercept: {}".format(lrModel.coefficients,lrModel.intercept))
```

## 8.10 Evaluating trained linear regression model on the test data

```
test_results = lrModel.evaluate(test_data)
```

# 8.11 Metrics of trained linear regression model on the test data (RMSE, MSE, R2)

```
print("RMSE: {}".format(test_results.rootMeanSquaredError))
print("MSE: {}".format(test_results.meanSquaredError))
print("R2: {}".format(test_results.r2))
```

# 8.12 Looking at correlations with corr

```
from pyspark.sql.functions import corr
```

```
df.select(corr('specific','gdp')).show()
```

### 8.13 Classification with Pyspark ML

# 8.14 DecisionTreeClassifier, RandomForestClassifier and GBTClassifier

# 8.15 Selecting features and binary target

```
final_data = output.select("features", "specific_classification")
train_data,test_data = final_data.randomSplit([0.7,0.3])
```

#### 8.16 Fitting the Classifiers to the Training Data

```
rfc_model = rfc.fit(train_data)
gbt_model = gbt.fit(train_data)
dtc_model = dtc.fit(train_data)
```

### 8.17 Classifier predictions on test data

```
dtc_predictions = dtc_model.transform(test_data)
rfc_predictions = rfc_model.transform(test_data)
gbt_predictions = gbt_model.transform(test_data)
```

## 8.18 Evaluating Classifiers using pyspark.ml.evaluation and MulticlassClassificationEvaluator

```
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
```

#### 8.18.1 Classifier Accuracy

## 8.19 Classifier Accuracy Metrics

```
dtc_acc = acc_evaluator.evaluate(dtc_predictions)
rfc_acc = acc_evaluator.evaluate(rfc_predictions)
gbt_acc = acc_evaluator.evaluate(gbt_predictions)
```

```
print('-'*80)
print('Decision tree accuracy: {0:2.2f}%'.format(dtc_acc*100))
print('-'*80)
print('Random forest ensemble accuracy: {0:2.2f}%'.format(rfc_acc*100))
print('-'*80)
print('GBT accuracy: {0:2.2f}%'.format(gbt_acc*100))
print('-'*80)
```

# 8.20 Classification Correlation with Corr

```
df.select(corr('specific_classification','fdi')).show()
```

df.select(corr('specific\_classification','gdp')).show()