ENSAE AS1 (2023/2024) TRAVAUX DIRIGES D'ANALYSE II SÉRIE 4 (SÉRIES ENTIÈRES RÉELLES)

Exercice $1(\star\star)$

On considère la série entière $\sum_{n>1} a_n x^n$, avec $a_n = n^{\frac{1}{n}} - 1$

- (1) Montrer que $\ln(\sqrt[n]{a_n}) \sim \frac{1}{n} \ln[\frac{\ln(n)}{n}]$
- (2) En déduire le rayon convergence de la série.

Exercice $2(\star\star)$

Rayon de convergence et somme de la série entière $\sum_{n\in\mathbb{N}} (3n+1)x^{3n}$

Exercice $3(\star\star\star)$

Soit la série $\sum_{n\in\mathbb{N}} a_n x^n$, avec $a_n = \frac{(-1)^n}{n(n-1)}, \forall n\in\mathbb{N}, n\geq 2$

- (1) Rayon de convergence R de cette série. On pose $f(x) = \sum_{n\geq 2}^{+\infty} a_n x^n, \forall x\in]-R,R[$
- (2) Calculer f'(x), puis $f(x), \forall x \in]-R, R[$
- (3) Déduire de ce qui précède les valeurs de $\sum_{n\geq 2}^{+\infty} \frac{(-1)^n}{n(n-1)}$ et $\sum_{n\geq 2}^{+\infty} \frac{1}{n(n-1)}$

Exercice $4(\star\star\star\star)$

Soient la série entière $\sum_{n\geq 0} a_n x^n$ avec $a_n = \frac{n^3 + n + 3}{n+1}$ et R son rayon de convergence.

- (1) Déterminer R. On pose : $S(x) = \sum_{n>0}^{+\infty} a_n x^n, x \in]-R, R[.$
- (2) Montrer que $S(x) = \sum_{n\geq 0}^{+\infty} (n^2 n)x^n + 2\sum_{n\geq 0}^{+\infty} x^n + \sum_{n\geq 0}^{+\infty} \frac{x^n}{n+1}, \forall x/|x| < R$
- (3) En déduire l'expression simplifiée de la somme totale S(x) de la série.
- (4) Vérifier la continuité de f en 0.
- (5) Calculer la valeur de la somme $\alpha = \sum_{n\geq 0}^{+\infty} \frac{n^3+n+3}{(n+1)2^n}$.

Exercice $5(\star\star\star)$

- (1) Rayon de convergence et somme de la série $\sum_{n\geq 0} Un$, avec $U_n = \frac{x^n}{n!} \cdot \frac{n^2 + 3n 1}{n+3}$
- (2) En déduire la valeur numérique de la somme $A = \sum_{n\geq 0} \frac{(-1)^n (n^2 + 3n 1)}{(n+3)n!}$

Exercice $6(\star\star\star\star)$

Soit $x \in]-1,1[$

- (1) Convergence et somme de la série de terme général $x^n \cos^{2n}(t)$
- (2) On pose $f(x) = \int_0^{\frac{\pi}{2}} (\sum_{n=0}^{+\infty} x^n \cos^{2n}(t)) dt$
 - (a) Calculer f(x)
 - (b) Déterminer le DSE de f
- (3) Déduire de ce qui précède la valeur de l'intégrale $\int_0^{\frac{\pi}{2}} \cos^{2n}(t) dt$

Exercice $7(\star)$ par fonction

Déterminer, dans chacun des cas suivants, le DSE de la fonction f:

(1)
$$f(x) = \sin(x^2)$$
; (2) $f(x) = \sin^2(x)$; (3) $f(x) = \ln(1+x^2)$; (4) $f(x) = \frac{e^x}{1-x}$;

(5)
$$f(x) = \frac{\ln(1+x)}{1+x}$$
; (6) $f(x) = \arctan(\frac{1-x^2}{1+x^2})$; (7) $f(x) = \int_0^x \frac{e^t - 1}{t} dt$;

(8)
$$f(x) = \int_0^x \frac{\sin(t)}{t} dt$$
; (9) $f(x) = \frac{x^2}{(x-1)(2-x)^2}$ et (10) $f(x) = \frac{1-x^2}{1-x+x^2}$

Exercice $8(\star\star)$

Doamine de définition et epression de la fonction f telle que $f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(2n)!}$

Exercice $9(\star\star\star)$

Montrer qu'il existe une série entière $\sum_{n\geq 0} a_n x^n$ dont la somme S est solution de l'équation différentielle : 3xy' + (2-5x)y = x. En déduire son rayon de convergence.

Exercice $10(\star\star\star)$

Déterminer une fonction f admettant un DSE, et solution de l'équation différentielle : $2xf''(x) + f'(x) - f(x) = 0, \forall x \in \mathbb{R}$

Exercice $11(\star\star\star)$

Soient les séries entières $\sum_{n\geq 0} x^n$ et $\sum_{n\geq 1} \frac{x^n}{n}$

- (1) Préciser leurs rayons de convergence respectifs
- (2) Calculer de deux manières différentes le produit $(\sum_{n\geq 0} x^n)(\sum_{n\geq 1} \frac{x^n}{n})$
- (3) En déduire l'expression simplifiée et le domaine de définition de $S(x) = \sum_{n=1}^{+\infty} (\sum_{k=1}^{k=n} \frac{1}{k}) x^n$