The Link Layer

Introduction to the Link Layer

- The link layer is responsible for transferring datagrams from one node to another physically adjacent node over a link.
- When working at the link layer, we refer to hosts and routers as nodes.
- When working at the link layer, we refer to communication channels that connect adjacent nodes as links.
 - These links can be wired and wireless.
- When working at the link layer, frames are the unit of data we are interested in transferring; they encapsulate packets.
- Different types of links have different transfer protocols. Different protocols provice different services (eg one may be reliable, the other may not be reliable).

Link Layer Services

- The **framing service** is responsible for **encapsulating datagrams** into frames (adding headers, etc). If there is a shared medium, the channel access needs to be specified. MAC addresses are used in frame headers to identify devices.
- The reliable deliver service is responsible for ensuring every frame is correctly delivered.
- The flow control service is responsible for pacing sending and receiving rates.
- The error detection service is responsible for detecting errors caused by frame drops, noise, signal attenuation, etc.
- The error correction service is responsible for identifying incorrect bits, and correcting them without the need for retransmission.
- With a half-duplex service both nodes can transmit and receive, but not both operations at the same time.
- With a full-duplex service both nodes can transmit and receive at the same time.

Link Layer Implementation

- The link layer is implemented in each and every node.
- Implementations are located in the node's Network Interface Card (NIC). These cards implement the link and physical layer.
- The implementations are connected to the system's bus which allow for data transfer. And a combination of hardware, software, and firmware control the NIC.

Error Detection

- An Error Correction and Detection (EDC) bit is used.
- If an error is detected, the device will either correct the error, or request a retransmission.
- Error detection is not 100% reliable, but it is still useful. Larger EDC fields result in better detection and correction.
- Parity checking is also used.
- Cyclic Redundancy Check (CRC) is a good way of detecting errors.

Multiple Access Protocols

- There are two types of links:
 - 1. **Point-To-Point** Two devices connected directly by a link (for example ethernet between two devices).
 - Broadcast Several devices connected by a shared medium that can communicate (for example a shared wire, a shared radio, a switch).
 - 3. When two or more nodes simultaneously transmit, interference can occur.
 - 4. Collision occurs if a single node receives two or more signals at the same time.
 - 5. There are **protocols** to **avoid interference and collision**; they involve a **distributed algorithm** that determins **how nodes share a channel**.
 - 6. Communication about how to use a channel must be on the channel, out-of-band coordination is not allowed in these protocols.

The Media Access Control (MAC) Protocol

- In the MAC protocol, there are three classifications of channel access control:
 - 1. **Channel Partitioning** Channels are divided into smaller pieces (time slots, requency, code, etc), and pieces of the channel are allocated to nodes for exclusive use.
 - 2. Random Access Channels are not divided, and allow collision, and provides a way to recover from collisions.
 - 3. **Taking Turns** Nodes take turns using the channel, but nodes with more to send can take longer turns.

MAC Channel Partitioning Protocols

- Time Division Multiple Access (TDMA) gives nodes access to the channel in rounds, each node gets a fixed length slot (length = packet transmission time) in each round.
 - Unused slots go idle.
- Frequency Division Multiple Access (FDMA) divides the channel into frequency bands, and each nodes gets a fixed frequency band.
 - Unused frequency bands go idle.

MAC Channel Random Access Protocols

- When a **node has a packet to send**, it transmits to the **full channel** at a data rate *R* without any prior coordination.
- If two nodes transmit at the same time, collision occurs.
- The Random Access protocol specifies how to detect and recover from collisions.
- Exampels of Random Access protocols:

1. **ALOHA**:

- Assumptions:
 - (a) All frames are the same size.
 - (b) Time is divided into equal size transmission slots.
 - (c) Nodes can only start transmitting at a slot beginning.
 - (d) The nodes are all time-synchronized.
 - (e) If two or more nodes transmit in a slot, all nodes detect the collision.

- When a node obtains a fresh frame, it will transmit it in the next slot, if collision occurs, retransmit, otherwise send the next frame.
- Suppose N nodes with many frames to send, each transmit in a slot with probability P, each time a node attempts to transmit, 37% ($\frac{100}{e}\%$) of the time, nodes will be able to transmit without collision.
- Pros:
 - (a) Single active node can continuously transmit at full rate.
 - (b) Highly decentralized.
 - (c) Simple.
- Cons:
 - (a) Collision occurs, wasting time slots.
 - (b) Some slots are idle.
 - (c) Nodes may be able to detect collision in lass than time to transmit a packet.
 - (d) Clock synchronization is difficult.

2. Pure ALOHA:

- Pure ALOHA is ALOHA without the timeslots. When a frame first arrives, nodes can attempt to transmit it immediately.
- The probability for collision increases with no synchronization.
- Suppose N nodes with many frames to send, each transmit with probability P, each time a node attempts to transmit, 18% ($\frac{100}{2e}\%$) of the time, nodes will be able to transmit without collision.

3. Simple Carrier Sense Multiple Access (Simple CSMA):

- CSMA requires nodes to listen before they transmit. If the channel is idle, they can transmit the entire frame. If the channel is busy, they can defer the transmission.

4. CSMA/CD:

- CSMA/CD is Simple CSMA with Collision Detection.
- Collision can be detected within a short period of time.
- Colliding transmissions are aborted, and rescheduled, reducing channel waste.
- Collision detection is easy in wired links, but difficult in wireless links.
- CSMA/CD is more efficient than ALOHA.

MAC Taking Turns Protocols

- Taking turns uses polling, a master invites other nodes to transmit in turn.
- Concerns with this type of protocol are: polling overhead, latency, and a single point of failiure (master).
- Another way to implement taking turns is with token passing. A control token is passed sequentially from one node to the next.
- Concerns with token passing are: token overhead, latency, single point of failiure (token).

Local Area Networks (LANs)

MAC Addresses

•