Исследование статистических свойств метода Монте-Карло SSA

Бояров Андрей Александрович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Голяндина Н.Э. Рецензент: аспирант Шлемов А.Ю.

Санкт-Петербург 2012г.

Постановка задачи

- $F_N=(f_0,\dots,f_{N-1})$ исходный ряд, $F_N=R_N+S_N$, $R_N=(r_0,\dots,r_{N-1})$ красный шум, $r_i=u+\gamma(r_{i-1}-u)+\delta\varepsilon_i,\ 0<\gamma<1,\delta>0,\ \varepsilon_i\sim N(0,1)$ S_N сигнал
- $H_0: S_N = 0, H_1: S_N \neq 0$
- $S_N = (s_0, \dots, s_{N-1}), \ s_i = A\sin(2\pi\omega i + \varphi), \ i = 0, \dots, N-1$
- Критерий: Монте-Карло SSA из статьи Allen, Smith (1996)
- Проблемы: Недостаточная формализация, построение новых корректных критериев, сравнение по мощности

Гусеница-SSA

Исходный ряд: $F_N = (f_0, \dots, f_{N-1})$

- $m{\Phi}$ L длина окна, $K=N-L+1,\ X_i=(f_{i-1},\dots,f_{i+L-2})^{\mathrm{T}}, i=1,\dots,K,$ $m{X}=[X_1:\dots:X_K]$ L-траекторная матрица F_N
- $oldsymbol{egin{aligned} oldsymbol{S} &= \mathbf{X}\mathbf{X}^{\mathrm{T}}, \; \lambda_1 \geqslant \ldots \geqslant \lambda_d > 0 \mathsf{coбctвehhie} \; \mathsf{числa} \; \mathbf{S}, \ U_1,\ldots,U_d \mathsf{coбctbehhie} \; \mathsf{bektopa} \; \mathbf{S}, \; V_i &= \mathbf{X}^{\mathrm{T}}U_i/\sqrt{\lambda_i}, \ \mathbf{X}_i &= \sqrt{\lambda_i}U_iV_i^{\mathrm{T}}, \ i &= 1,\ldots,d. \ \mathbf{X} &= \mathbf{X}_1 + \ldots + \mathbf{X}_d, \ (\sqrt{\lambda_i},U_i,V_i) i$ -ая $\mathsf{coбctbehhag} \; \mathsf{tpoйka} \end{aligned}$
- Группировка собственных троек
- Диагональное усреднение

Результат: $F_N = F_N^{(1)} + \ldots + F_N^{(m)}$

Одномерный Монте-Карло SSA

- $F_N = (f_0, \dots, f_{N-1}), H_0 : S_N = 0$
- Входные данные: α уровень значимости, L, $W \in \mathbf{R}^L$, $\mathbf{X} L$ -траекторная матрица, G число повторов Монте-Карло
- ullet Статистика критерия: $t = \|\mathbf{X}^{\mathrm{T}}W\|^2$
- Использование м. Монте-Карло:
 - ullet $\xi_N^i=(\xi_0^i,\ldots,\xi_{N-1}^i)$ AR(1), Ξ_i его L-траек. матрица
 - ullet $p_i = \|oldsymbol{\Xi}_i^{\mathrm{T}} W\|^2$ проекция на W, $i=1,\ldots,G$
- Доверительная область:
 - ullet ((lpha/2)-квантиль, (1-lpha/2)-квантиль) по (p_1,\ldots,p_G)
 - ullet $(-\infty,(1-lpha)$ -квантильullet по (p_1,\ldots,p_G)
- Ситуации:
 - ullet Реальная: параметры красного шума оцениваются по F_N
 - Модельная: параметры красного шума известны

Многомерный Монте-Карло SSA

- ullet Выбираем систему векторов W_1,\dots,W_H
- ullet Статистика критерия ar t:
 - $oldsymbol{ar{t}}^{ ext{sing}}=(t_1^{ ext{sing}},\ldots,t_H^{ ext{sing}})$, где $t_k^{ ext{sing}}=\|\mathbf{X}^{ ext{T}}W_k\|^2$
 - ullet $ar{t}^{\min}=(t_1^{\min},\ldots,t_{H-1}^{\min})$, где $t_k^{\min}=\min(t_k^{\mathrm{sing}},t_{k+1}^{\mathrm{sing}})$
 - $oldsymbol{ar{t}}$ sum $=(t_1^{ ext{sum}},\ldots,t_{H-1}^{ ext{sum}})$, где $t_k^{ ext{sum}}=(t_k^{ ext{sing}}+t_{k+1}^{ ext{sing}})$
- ullet Распределение ar t по м. Монте-Карло. Матрица проекций ${f P}=(p_{ij})_{i=i-1}^{H,G}$, где P_k ее строка:
 - ullet $P_k^{
 m sing}=(p_{k1}^{
 m sing},\ldots,p_{kG}^{
 m sing})^{
 m T}$, где $p_{ki}^{
 m sing}=\|oldsymbol{\Xi}_i^{
 m T}W_k\|^2$
 - $P_k^{\min}=(p_{k1}^{\min},\ldots,p_{kG}^{\min})^{\mathrm{T}}$, где $p_{ki}^{\min}=\min(p_{ki}^{\mathrm{sing}},p_{(k+1)i}^{\mathrm{sing}})$
 - ullet $P_k^{ ext{sum}}=(p_{k1}^{ ext{sum}},\ldots,p_{kG}^{ ext{sum}})^{ ext{T}}$, где $p_{ki}^{ ext{sum}}=(p_{ki}^{ ext{sing}}+p_{(k+1)i}^{ ext{sing}})$
- ullet Проблема: построение критерия: $lpha_Ipproxlpha$

Методы выбора системы векторов

- ullet С.век.AR(1) (Allen, Smith (1996)): $W_k=W_k(\gamma)-k$ -ый собственный вектор ${f S}_R={f \Gamma}$, где $\Gamma_{ij}=\gamma^{|i-j|}$
- ullet sin,cos: W_1,\ldots,W_H чередующиеся синусы и косинусы с шагом по частоте: $1/(2L),\ 1/(4L),\ 1/(8L)$
- С.в., порожденные рядом (Allen, Smith (1996)):
 - $W_k = U_k$
 - ullet t_k собственные числа F_N
 - ullet p_{ki} собственные числа реализации красного шума

Проблема множественных сравнений

- Односторонний критерий
- ullet Одномерная доверительная область для каждого W_k
- ullet Попадание в критическую область хотя бы на одном W_k
- Параметры: $\gamma=0.72,~\delta=1,~u=0,~N=200,~L=40,~G=1000,~M=1000$ число повторов метода

Оценка вероятности ошибки первого рода, $lpha=0.05$						
\bar{t}	С.век.АR(1)	sin, cos(1/2L)	sin, cos(1/4L)	sin, cos(1/8L)		
$ar{t}^{ m sing}$	0.543	0.503	0.573	0.606		
$ar{t}^{ ext{min}}$	0.539	0.533	0.610	0.608		
$ar{t}^{ m sum}$	0.477	0.477	0.563	0.582		

ullet Критерий нельзя применять, $lpha_I >> lpha$

Теоретический эллипсоид в нормальной модели

- Модель: $\bar{s} \in \mathcal{N}(\mu, \Sigma)$
- ullet Преобразование: $ar t\mapsto ar s$
 - $\bar{s} = \log(\bar{t})$
- ullet Статистика критерия: $ho_{
 m Mahalanobis}^2(ar s,\hat\mu)\sim T_m^2(G-1)$, где $\hat\mu$ вектор средних, m размерность
- Аналог двустороннего критерия

Оценка вероятности ошибки первого рода							
Tеоретический эллипсоид, $lpha=0.1$							
\bar{t}	С.век. $AR(1)$ sin, $cos(1/2L)$ sin, $cos(1/4L)$ sin, $cos(1/8L)$						
$ar{t}^{ m sing}$	0.114	0.107	0.202	0.260			
$ar{t}^{ ext{min}}$	0.143						
$ar{t}^{ m sum}$	0.147	0.149	0.155	0.206			

• Критерий неприменим, $\alpha_I > \alpha$: $\bar{s} = \log(\bar{t}) \not\in \mathcal{N}(\mu, \Sigma)$

Доверительные области, построенные по выборке

- ullet Обозначения: $\hat{\mu}=(\hat{\mu}_1,\dots,\hat{\mu}_H)$ вектор средних, $ar{\sigma}=(\sigma_1,\dots,\sigma_H)$, где σ_k стандартное отклонение по P_k
- Метод:
 - **1** $t = f(\bar{t}) \in \mathbf{R}^1$
 - Монте-Карло для построения доверительной области
- Преобразование (f):
 - Доверительный эллипсоид: расстояние Махаланобиса
 - ullet Доверительный «куб»: $\max(|t_i \hat{\mu}_i|/\sigma_i)$, $i=1,\ldots,H$
 - ullet Доверительный «полукуб»: $\max((t_i-\hat{\mu}_i)/\sigma_i)$, $i=1,\ldots,H$

Двумерный случай

- Доверительный «полукуб», $\alpha = 0.05$
- ullet Доверительный «куб», lpha=0.1
- ullet Доверительный эллипсоид, lpha=0.1

Проверка применимости критериев

Оценка вероятности ошибки первого рода						
Полукубы, $lpha=0.05$						
\bar{t}	С.век. $AR(1)$ sin,cos $(1/2L)$ sin,cos $(1/4L)$ sin,cos $(1/8L)$					
$ar{t}^{ m sing}$	0.048	0.048	0.044	0.048		
$ar{t}^{ ext{min}}$	0.043	0.044	0.044	0.048		
$ar{t}^{ m sum}$	0.045	0.051	0.044	0.045		

Трудоемкости методов:

- $\sin,\cos(1/8L)$ большая
- $\sin,\cos(1/4L)$ средняя
- С.в.АR(1) меньше
- $\sin,\cos(1/2L)$ меньше

Основной пример

- ullet Параметры метода: N=200, L=40, G=1000, M=1000
- ullet Параметры красного шума: $\gamma=0.72$, $\delta=1$, u=0
- ullet Параметры сигнала: A=0.5, T=5.5, arphi=0

Сравнение критериев по мощности

Оценка мощности \hat{eta} , сигнал $s(x)=0.5\sin(2\pi x/5.5)$						
	\bar{t}^{sing} , $\alpha = 0.1$					
Метод	С.век.АR(1)	sin, cos(1/2L)	sin, cos(1/4L)	С.ч.		
Куб	0.651	0.656	0.691	0.249		
Эллипс.	0.586	0.577	0.596	0.225		

• Лучше «куб» \Rightarrow «полукуб» как аналог одностороннего критерия

	Полукубы, $lpha=0.05$					
\bar{t}	С.век.АR(1)	sin, cos(1/2L)	sin, cos(1/4L)	С.ч.		
$\bar{t}^{ m sing}$	0.719	0.709	0.744	0.214		
$ar{t}^{ ext{min}}$	0.710	0.745	0.756	0.225		
$ar{t}^{\mathrm{sum}}$	0.743	0.733	0.743	0.222		

• Критерий «С.ч.» маломощен, остальные одинаковы

Изменение параметров сигнала

Оценка мощности \hat{eta} для различных сигналов					
Полукубы, $lpha=0.05$					
\bar{t}	T = 5.5	T = 5.5	T=5	T=5	T=5
	$\varphi = 0$	$\varphi = \pi/4$	$\varphi = 0$	$\varphi = \pi/2$	$\varphi = \pi/4$
$ar{t}^{ m sing}$	0.709	0.715	0.845	0.847	0.872
$ar{t}^{ ext{min}}$	0.745	0.758	0.631	0.635	0.632
$ar{t}^{ m sum}$	0.733	0.737	0.787	0.798	0.793

- ullet Вычисления для $\sin,\cos(1/2L)$
- Выводы:
 - ullet Наибольшая минимальная мощность у $ar{t}^{\mathrm{sum}}$
 - ullet T=5.5: лучший $ar{t}^{\min}$
 - ullet T=5: лучший $ar{t}^{
 m sing}$
 - ullet Изменение arphi не влияет на результат

Изменение параметра красного шума

	Оценка мощности \hat{eta} , сигнал $s(x) = 0.5 \sin(2\pi x/10)$						
Полукубы, $ar{t}^{ m sing}$, $lpha=0.05$							
γ	С.век. $AR(1)$ sin, $cos(1/2L)$ sin, $cos(1/4L)$ sin, $cos(1/8L)$						
0.1	0.680	0.703	0.684	0.688			
0.4	0.350	0.399	0.372	0.371			
0.7	0.219	0.227	0.214	0.219			

Красный шум

- ullet Красный шум: $\xi_i=u+\gamma(\xi_{i-1}-u)+\delta arepsilon_i,$ $0<\gamma<1,\delta>0,\; {\sf E}arepsilon_i=0,\; {\sf D}\,arepsilon_i=1$
- Алгоритмы оценок γ , δ :
 - $m{0}$ \hat{c}_l оценка автоковариации, $\hat{\gamma}=\hat{c}_1/\hat{c}_0$, $\hat{\delta}=\sqrt{(\hat{c}_0^2-\hat{c}_1^2)/\hat{c}_0}$
 - Алгоритм из статьи Allen, Smith (1996)
 - Алгоритм из статьи Gardner, Harvey, Phillips (1980)
- Сравнение алгоритмов

Критерий с оцениванием параметров красного шума

	Оценка вероятности ошибки первого рода						
Полукубы, $ar{t}^{ m sing}$, $lpha=0.05$							
	С.век.А R(1)	sin, cos(1/2L)	sin, cos(1/4L)	sin, cos(1/8L)			
γ	0.048	0.048	0.044	0.048			
$\hat{\gamma}$	0.020	0.026	0.031	0.026			

	Оценка мощности \hat{eta} , сигнал $s(x) = 0.5 \sin(2\pi x/5.5)$						
Полукубы, $ar{t}^{ m sing}$, $lpha=0.05$							
\bar{t}	C.Bek.AR(1) $\sin,\cos(1/2L)$ $\sin,\cos(1/4L)$ $\sin,\cos(1/8L)$						
γ	0.719	0.709	0.744	0.753			
$\hat{\gamma}$	0.560	0.589	0.622	0.636			

ullet $\hat{lpha_I}$ и \hat{eta} уменьшились по сравнению с модельной ситуацией

Заключение

- Формализована задача из Allen, Smith (1996)
- Предложены различные корректные модификации метода
- Модификации метода сравнены с помощью мощности
 Лучшие модификации:
 - Полукуб в качестве доверительной области
 - Равномерная решетка по частоте
- Рассмотрено влияние изменения различных параметров на результаты работы метода
 - ullet $ar{t}^{\mathrm{sum}}$ наиболее устойчив к изменению периода сигнала
 - Свойства критерия не зависят от фазы сигнала
- Рассмотрено применение метода в реальных условиях
 - Использование оценок параметров шума уменьшает мощность критерия примерно в 1.5 раза