

Student Number	
M ark / 44	

Chemistry

HSC Course

Acidic Environment + Industrial Chemistry

Theory Test • 2007

General Instructions

- Reading time 5 minutes
- Working time 45 minutes
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A Data Sheet and a Periodic Table are provided
- Write your Student Number at the top of this page

Total Marks - 44

Part A - 12 marks

- Attempt Questions 1 12
- Allow about 10 minutes for this part

Part B - 32 marks

- Attempt Questions 13 20
- Allow about 40 minutes for this part

Part A - 12 marks Attempt Questions 1 - 12 Allow about 10 minutes for this part

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample: $2 + 4 = (A) \ 2 (B) \ 6 (C) \ 8 (D) \ 9$ $A \bigcirc B \bigcirc C \bigcirc D \bigcirc$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A ● B ★ C ○ D ○

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

Ans	wer Bo	x for Qu	uestions	s 1 – 12
1	A O	вО	СО	D O
2	A O	вО	C O	D O
3	A O	вО	c o	D O
4	A O	вО	C O	D O
5	A O	вО	C O	D O
6	A O	вО	C O	D O
7	A O	вО	c o	D O
8	A O	вО	c o	D O
9	A O	вО	C O	D O
10	A O	вО	c o	D O
11	A O	вО	c o	D O
12	A O	вО	c o	D O

HCOOH

CH₃OH

H₂O

 CH_4

Which of the following substance will have the lowest boiling point?

5

(A)

(B)

(C)

(D)

- 6 Identify the main product of the reaction between CH₃(CH₂)₄COOH and CH₃CH₂OH.
 - (A) pentyl ethanoate
 - (B) ethyl butanoate
 - (C) hexyl ethanoate
 - (D) ethyl hexanoate
- Which of the set-ups below is most appropriate to produce esters in the laboratory?

- Which of the following best describes a $2.0 \text{ mol } L^{-1}$ solution of acetic acid?
 - (A) a concentrated solution of a weak acid
 - (B) a weak solution of a dilute acid
 - (C) a strong solution of a concentrated acid
 - (D) a dilute solution of a strong acid
- 9 Which of the following chemists proposed that all acids contain hydrogen?
 - (A) Arrhenius
 - (B) Brønsted
 - (C) Davy
 - (D) Lavoisier

- 10 What is the pH of 3.6×10^{-3} mol L⁻¹ HNO₃?
 - (A) 0.0036
 - (B) 2.44
 - (C) 3.60
 - (D) 5.63
- 11 The table shows the colour ranges of several indicators.

Indicator	low range colour	pH of transition range	high range colour
thymol blue	red	1.2 - 2.8	yellow
bromophenol blue	yellow	3.0 – 4.6	blue
methyl orange	red	3.1 – 4.4	yellow
methyl red	red	4.8 – 6.0	yellow
litmus	red	4.7 – 8.2	blue
thymol blue	yellow	8.0 – 9.6	blue
phenolphthalein	colourless	8.3 – 10.0	red

The results of testing a substance with three of the indicators are shown in the table.

Indicator added to substance	Result (final colour of indicator)
methyl orange	red
thymol blue	yellow
phenolphthalein	colourless

Which is a possible pH of the substance?

- (A) 1
- (B) 3
- (C) 4.5
- (D) 8
- What is the purpose of concentrated sulfuric acid in the esterification reaction?
 - (A) To speed up the attainment of equilibrium
 - (B) To shift the equilibrium to the left
 - (C) To increase the yield of ester
 - (D) To increase the activation energy of the reaction

On	estion	13	(5 r	narks)
Vu	esuon	13	(3)	iiai ks <i>i</i>

Cloudy ammonia (a household cleansing product) is a solution of ammonia in water which is excellent for cleaning glass. The Amalgamated Ammonia Company regularly tests the concentration of its manufactured cloudy ammonia by a simple acid—base titration using standardised sulfuric acid.

(a)	Write the balanced chemical equation for the neutralisation of cloudy ammonia by sulfuric acid.
	(1 mark)

- (b) Suggest a suitable indicator for this acid–base titration and justify your answer. (2 marks)
- (c) A lab technician analyses a sample of cloudy ammonia from the production line. The table shows the titration data.

Concentration of standardised H ₂ SO ₄	0.155 mol L ⁻¹
Average titre of standardised H ₂ SO ₄	47.4 mL
Aliquot of cloudy ammonia	5.00 mL

Calculate the concentration of cloudy ammonia.	(2 marks)

Question 14 (3 marks)

The reaction of hydrogen chloride gas with ammonia gas,

$$HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)$$

is classified as an acid /base reaction according to Brønsted/Lowry theory, but not according to Arrhenius' theory of acids and bases.

Justify this statement.	

Question 15 (5 marks)

(a) Identify the following salts as acidic, basic or neutral. (2 marks)

Salt	Acidic, basic or neutral solution
NaCl	
NH ₄ Cl	
NaHCO ₃	
KCH₃COO	

- (b) Write an equation to show the action of an acidic salt in (a), in water. (1 mark)
- (c) Identify one conjugate acid/base pair in the reaction given in (b) above. (1 mark)
- (d) Identify an amphiprotic ion present in one of the salts listed in the table. (1 mark)

Question 16 (7 marks)

Assess the impact of this trend and include relevant balanced equations in your answer. (5 marks) Do not reproduce the reaction from part (b) below.
Copper may be extracted from copper(II) sulfide ore by roasting it in oxygen. Copper(II) oxide and sulfur dioxide are produced.
What volume of sulfur dioxide is produced when 191 g of copper(II) sulfide is roasted? (Volume measured at 25°C and 100 kPa). (2 marks)

Question 17 (3 marks)

A primary standard solution was prepared by dissolving 0.316 g of hydrated oxalic acid, (COOH)₂ • $2H_2O$ in water and making the solution up to 250.0 mL.

)	Calculate the concentration of the solution.	(2 marks)
)	Identify the piece of accurate glassware in w	which this solution is prepared. (1 mark)

Question 18 (2 marks)

An organic acid and an alcohol were allowed to react using the appropriate apparatus, producing an ester and water.

organic acid + alkanol
$$\frac{\text{conc. H}_2\text{SO}_4}{}$$
 ester + water $\Delta H = -58 \text{ kJ mol}^{-1}$

Certain changes are then made to this mixture. Considering each separately, state the effect that the change has on the equilibrium position by completing the table.

Change/Stress	Effect on the equilibrium position
(a) raising the temperature	
(b) increasing the pressure above the solution	
(c) adding alkanol to the mixture	
(d) adding a base	

Question 19 (3 marks)

Selected students from Hiuai High School were assigned to plan and perform an experiment to decarbonate a cola drink. Detailed below are the steps they took to address the problem.

- Placed a pre-weighed 400 mL beaker on a warm hot plate.
- Unscrewed a 375 mL bottle of JR cola and carefully transferred the contents to the beaker.
- *The beaker was weighed immediately after transfer and weighed every 2 minutes thereafter.*
- At intervals between weighings, the beaker was kept on the hot plate and stirred with a thermometer to monitor the temperature which was kept at 60°C for 10 minutes.

Assess the validity of the procedure.				
Question 20 (4 marks)				
Identify a non-fossil fuel natural product and the issues associated with the need to replace this natural product. Assess the viability of a possible replacement with respect to the issues.				
Assess the viability of a possible replacement with respect to the issues.				