

CPU, RAM, kernel

Datum zpracování: 10.10.2023

Zpracovali: Knespl Daniel

Zadání

- 1. Pomocí výše uvedených zdrojů a příkazů zjistěte maximum údajů o CPU, relevantní část výstupů zkopírujte do elaborátu, souhrn okomentujte.
- 2. Pomocí výše uvedených zdrojů a příkazů zjistěte maximum údajů o RAM, relevantní část výstupů zkopírujte do elaborátu, souhrn okomentujte.
- 3. Pomocí výše uvedených zdrojů a příkazů zjistěte následující informace o jádru systému:
 - 1. instalované moduly porovnejte výstupy z různých zdrojů
 - 2. moduly využívané modulem i915
 - 3. detailní informace o modulech drm, i2c_core a video

Postup

CPU - Iscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Address sizes: 39 bits physical, 48 bits virtual

Byte Order: Little Endian

CPU(s): 4

On-line CPU(s) list: 0-3

Vendor ID: GenuineIntel

Model name: Intel(R) Core(TM) i5-6400 CPU @ 2.70GHz

CPU family: 6
Model: 94
Thread(s) per core: 1
Core(s) per socket: 4

Socket(s): 1

CPU max MHz: 3300,0000 CPU min MHz: 800,0000 BogoMIPS: 5399.81

Virtualization features:

Virtualization: VT-x

Caches (sum of all):

L1d: 128 KiB (4 instances)
L1i: 128 KiB (4 instances)
L2: 1 MiB (4 instances)
L3: 6 MiB (1 instance)

Vulnerabilities:

Gather data sampling: Not affected

Itlb multihit: KVM: Mitigation: VMX disabled

L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT disabled

Mds: Mitigation; Clear CPU buffers; SMT disabled

Meltdown: Mitigation; PTI

Mmio stale data: Mitigation; Clear CPU buffers; SMT disabled

Retbleed: Mitigation; IBRS

Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl

Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization

Spectre v2: Mitigation; IBRS, IBPB conditional, STIBP disabled, RSB filling, PBRSB-eIBRS Not

affected

Srbds: Mitigation; Microcode

Tsx async abort: Not affected

CPU

Jedná se o 4 jádrový procesor Intel(R) Core(TM) i5-6400 CPU @ 2.70GHz, lze využít v 32/64bitových operačních systémech. Systém má pouze jeden socket pro CPU. Zvládá +- 5400 MIPS/Million instrukcí za sekundu. Takt procesoru se může pohybovat mezi 800Mhz a 3.3 GHz. Procesor podporuje virtualizaci pomocí Intel Virtualization Technology. Procesor má L1 a L2 cache pro každé z jader a jednu sdílenou L3 cache.

Pokud bychom použili **cat /proc/cpuinfo**, získali bychom velice podobný výpis pro každé z fyzických jader procesoru.

Bezpečnostní trhliny:

iTLB mutlihit

L1TF

MDS - Microarchitectural Data Sampling

Meltdown

Processor MMIO Stale Data

Retbleed

Speculative store bypass

Spectre v1

Spectre v2

Srbds

RAM

(kB) Total used free shared buff/cache available

Mem: 16228968 1058564 8545332 192052 6625072 14636932

Swap: 2097148 0 2097148

RAM – cat /proc/meminfo

Buffers: 680452 kB
Cached: 5715548 kB
SwapCached: 0 kB
Active: 4239888 kB
Inactive: 2782632 kB

•••

Dirty: 1080 kB

..

Percpu: 4640 kB

•••

DirectMap4k: 231732 kB DirectMap2M: 3823616 kB DirectMap1G: 12582912 kB

Příkazem **free** můžeme získat informace o velikosti a aktuálním zaplnění paměti a swapovacího prostoru. Příkazem **cat /proc/meminfo** můžeme získat daleko obsáhlejší informace paměti. Například můžeme narozdíl od free vidět rozděleně vyrovnávací paměť(Buffers) a cache(Cached), velikost cache pro CPU(Percpu), paměť čekající na zapsání na disk(Dirty), či velikost namapované paměti se stránkami různých velikostí(DirectMap4k, DirectMap2M, DirectMap1G). Běžně ale stačí informace z **free**.

Kernel

1. Instalované moduly jsem zjistil pomocí **Ismod | grep -o '^[^]*'** i **cat/proc/modules | grep -o '^[^]*'**. Oba příkazy mi vrátili stejné výsledky (**Ismod** měl i hlavičku). Bez zaměření na pouze názvy, obsahovaly oba výpisy stejná data, ale **/proc/modules** obsahovali navíc u každého modulu Live 0x000000000000000. Live ukazuje, v jakém stavu je modul – Live/Loading /Unloading. 0x0000000000000000 je offset v paměti pro načtené moduly.

tls	xt_CHECKSUM	nf_defrag_ipv4	bnep	intel_rapl_msr
nfsv3	xt_MASQUERADE	nf_tables	snd_hda_codec_hdn i	nsnd_pcm_dmaengine
rpcsec_gss_krb5	xt_conntrack	libcrc32c	snd_ctl_led	intel_rapl_common
nfsv4	ipt_REJECT	nfnetlink	snd_soc_avs	intel_tcc_cooling
nfs	nf_reject_ipv4	bridge	snd_soc_hda_codec	x86_pkg_temp_ther mal
fscache	xt_tcpudp	stp	snd_hda_codec_real ek	tintel_powerclamp
netfs	nft_compat	IIc	snd_hda_ext_core	snd_hda_intel
vboxnetadp	nft_chain_nat	cmac	snd_hda_codec_gen eric	snd_intel_dspcfg
vboxnetflt	nf_nat	algif_hash	snd_soc_core	snd_intel_sdw_acpi
vboxdrv	nf_conntrack	algif_skcipher	snd_compress	snd_hda_codec
rfcomm	nf_defrag_ipv6	af_alg	ac97_bus	coretemp
snd_hda_core	btbcm	dell_wmi	dell_smbios	soundcore
binfmt_misc	irqbypass	snd_rawmidi	dell_wmi_aio	mei
mei_pxp	rapl	mac80211	wmi_bmof	mac_hid
mei_hdcp	snd_seq_midi	ecdh_generic	dcdbas	acpi_pad
snd_hwdep	btintel	snd_seq	sparse_keymap	sch_fq_codel
kvm_intel	btmtk	libarc4	cfg80211	nfsd
nls_iso8859_1	iwlmvm	ecc	snd	auth_rpcgss
snd_pcm	snd_seq_midi_even	t snd_seq_device	dell_wmi_descriptor	msr
kvm	bluetooth	ledtrig_audio	mei_me	parport_pc

btusb	input_leds	iwlwifi	intel_wmi_thunderb olt	nfs_acl
btrtl	intel_cstate	snd_timer	ee1004	ppdev
lp	x_tables	drm_kms_helper	crypto_simd	xhci_pci
lockd	autofs4	crct10dif_pclmul	cryptd	dca
parport	hid_generic	crc32_pclmul	i2c_i801	idma64
grace	usbhid	polyval_clmulni	e1000e	xhci_pci_renesas
ramoops	hid	polyval_generic	igb	i2c_algo_bit
efi_pstore	i915	ghash_clmulni_intel	ahci	video
reed_solomon	drm_buddy	syscopyarea	drm	wmi
pstore_blk	ttm	sha512_ssse3	i2c_smbus	pinctrl_sunrisepoint
pstore_zone	drm_display_helper	sysfillrect	libahci	
sunrpc	cec	aesni_intel	intel_lpss_pci	
ip_tables	rc_core	sysimgblt	intel_lpss	

2. Moduly využívané modulem **i915** jsem našel pomocí **lsmod | grep i915 | grep -o '^[^]*'**. Jinak se dá stejné moduly najít pomocí **modinfo i915 | grep depends**.

drm_buddy; ttm; drm_display_helper; cec; drm_kms_helper; drm; i2c_algo_bit; video

3. Detailní výpisy modulů se dají zjistit pomocí **modinfo <nazev_modulu>**. Zde jsou výpisy pro zadané moduly:

filename: /lib/modules/6.2.0-33-generic/kernel/drivers/gpu/drm/drm.ko

license: GPL and additional rights description: DRM bridge infrastructure

author: Ajay Kumar <a jaykumar.rs@samsung.com>

license: GPL and additional rights description: DRM shared core routines

author: Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl

import ns: DMA BUF

license: GPL and additional rights description: DRM panel infrastructure

author: Thierry Reding < treding@nvidia.com> srcversion: FB874D1ACD4ACA3BAA44DD9

depends:
retpoline: Y
intree: Y
name: drm

vermagic: 6.2.0-33-generic SMP preempt mod_unload modversions

...

name: i2c_core filename: (builtin) license: GPL

file: drivers/i2c/i2c-core

description: I2C-Bus main module

author: Simon G. Vogl < simon@tk.uni-linz.ac.at >

filename: /lib/modules/6.2.0-33-generic/kernel/drivers/acpi/video.ko

license: GPL

description: ACPI Video Driver

author: Bruno Ducrot

srcversion: FBF3CDB89BC82DDD96455A8

alias: acpi*:LNXVIDEO:*

depends: wmi retpoline: Y intree: Y

name: video

vermagic: 6.2.0-33-generic SMP preempt mod_unload modversions

...

Závěr

Celkově se nejednalo o složité úkoly. Při vypracovávání jsem si ověřil několika způsoby informace o počítači a0320.nti.tul.cz. Většina příkazů vracela informace stejné s jinými, někdy však vraceli velice podrobné informace, které jiné příkazy zamlčovaly. Nejtěžší částí tohoto cvičení bylo vypracování tohoto elaborátu. Data byla sice často jednoduše interpretovatelná, ale jejich množství bylo nepříjemnou překážkou.

