SOLUTION TO CORRECTED HOMEWORK SET 9

Impose the grid as shown. There are 6 relevant locations, z = 0, $z = \pi/2$ and z_k , with k = 0, 1, 2, 3. Let f represent the unknown function f(z). We are given the values of f at z = 0 and $z = \pi/2$. Our task is to find f_k , with k = 0, 1, 2, 3, the values of f at the points z_k .

With $h \equiv z_{k+1} - z_k = \pi/10$ the finite difference representation of the second derivitive is

$$\frac{f_{k+1} - 2f_k + f_{k-1}}{h^2} = f''(z_k) + \mathcal{O}(h^2) \tag{1}$$

where the $\mathcal{O}(h^2)$ term is proportional to the 4th derivative of f somewhere on the interval z_{k-1}, z_{k+1} .

We can now write out 4 equations representing the finite difference approximation to the differential equation at the points z_k :

At z_0 :

$$\frac{f(0) - 2f_0 + f_1}{h^2} + f_0 = z_0^2 + 2$$

At z_1 :

$$\frac{f_0 - 2f_1 + f_2}{h^2} + f_1 = z_1^2 + 2$$

At z_2 :

$$\frac{f_1 - 2f_2 + f_3}{h^2} + f_2 = z_2^2 + 2$$

At z_2 :

$$\frac{f_2 - 2f_3 + f(\pi/2)}{h^2} + f_2 = z_3^2 + 2$$

These can be written in the following matrix form (in which the known values of f(0) and $f(\pi/2)$ have been inserted.

$$\begin{bmatrix} 1 - \frac{2}{h^2} & \frac{1}{h^2} & 0 & 0\\ \frac{1}{h^2} & 1 - \frac{2}{h^2} & \frac{1}{h^2} & 0\\ 0 & \frac{1}{h^2} & 1 - \frac{2}{h^2} & \frac{1}{h^2} \\ 0 & 0 & \frac{1}{h^2} & 1 - \frac{2}{h^2} & \frac{1}{h^2} \\ \end{bmatrix} \begin{bmatrix} f_0\\ f_1\\ f_2\\ f_3 \end{bmatrix} = \begin{bmatrix} 2 + h^2 - \frac{1}{h^2}\\ 2 + 4h^2\\ 2 + 9h^2\\ 2 + 16h^2 - \frac{1}{h^2}\left(1 + \left(\frac{\pi}{2}\right)^2\right) \end{bmatrix}$$

These are the numbers (with h taken to be $\pi/10$ that are used in the input files A.dat and B.dat.