Independent Study Complexity Theory

Ryan Dougherty

Table of Contents

Introduction & Preface	3
Review	4
2.1 (Un)Decidability	4
Polynomial Hierarchy, Alternating TMs	6
Boolean Circuits	7
Randomization	8
Interactive Proofs	9
Quantum Computation	10
PCP Theorem	11
Decision Trees	12
Communication Complexity	13
Algebraic Computation Models	14
Counting Complexity	15
Average-Case Complexity	16
Hardness Amplification	17
Derandomization	18
Expanders/Extractors	19
PCP and Fourier Transform	20
Parameterized Complexity	21
	Review 2.1 (Un)Decidability Polynomial Hierarchy, Alternating TMs Boolean Circuits Randomization Interactive Proofs Quantum Computation PCP Theorem Decision Trees Communication Complexity Algebraic Computation Models Counting Complexity Average-Case Complexity Hardness Amplification Derandomization Expanders/Extractors PCP and Fourier Transform

1 Introduction & Preface

Welcome to this series of lecture notes! The main book that the material comes from is Arora and Barak's *Computational Complexity* book [AB09]. Some material that is assumed from the reader (and is referenced in Section 2) is from Sipser's *Introduction to the Theory of Computation* book [Sip12]. We assume that the reader has a reasonable understanding of the following material:

- {Regular, Context-free, Turing-decidable, Turing-recognizable} languages, and their machine counterparts
- (Un)decidability
- Reducibility
- Recursion theorem
- Time complexity: $\mathcal{P}, \mathcal{NP}, \mathcal{EXPTIME}$, and their -complete versions
- Space complexity: \mathcal{PSPACE} , $\mathcal{EXPSPACE}$, \mathcal{L} , \mathcal{NL} , and their -complete versions

2 Review

This section highlights many of the key definitions and theorems studied in a first-year graduate (or advanced undergraduate) course in complexity theory. We assume the reader knows about finite automata (DFAs/NFAs), grammars (CFGs), and Turing machines (TMs), and their respective language classes.

2.1 (Un)Decidability

Definition 1. A TM is a decider if it halts (accepts or rejects) on every input.

Definition 2. A language B is decidable if there exists a decider D such that L(D) = B. A language C is undecidable if C is not decidable.

Theorem 1. The following are decidable:

```
 \begin{array}{l} -A_{DFA} = \{\langle M, w \rangle : M \ \ is \ a \ DFA \ \ that \ \ accepts \ w \}. \\ -E_{DFA} = \{\langle M \rangle : M \ \ is \ a \ DFA \ \ whose \ language \ is \ empty \}. \\ -ALL_{DFA} = \{\langle M \rangle : M \ \ is \ a \ DFA \ \ whose \ \ language \ \ is \ \Sigma^* \}. \\ -EQ_{DFA} = \{\langle M_1, M_2 \rangle : M_1 \ \ and \ M_2 \ \ are \ DFAs \ \ and \ L(M_1) = L(M_2) \}. \\ -A_{CFG} = \{\langle G, w \rangle : G \ \ is \ \ a \ \ CFG \ \ that \ \ generates \ w \}. \\ -E_{CFG} = \{\langle G \rangle : L(G) \ \ is \ \ empty \}. \end{array}
```

Theorem 2. The following are undecidable:

```
- ALL_{CFG} = \{\langle G \rangle : G \text{ is a } CFG \text{ and } L(G) = \Sigma^* \}.

- EQ_{CFG} = \{\langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are } CFGs \text{ and } L(G_1) = L(G_2) \}.

- A_{TM} = \{\langle M, w \rangle : M \text{ is a } TM \text{ that } accepts w \}.
```

Theorem 3. The class of decidable languages is closed under complement.

Definition 3. A language B is Turing-recognizable if there exists a TM that recognizes B. A language C is co-Turing-recognizable (or co-recognizable) if it is the complement of some Turing-recognizable language.

Theorem 4. A_{TM} is not co-recognizable.

Theorem 5. A language B is decidable if and only if B is recognizable and co-recognizable.

Definition 4. A function $f: \Sigma^* \to \Sigma^*$ is a computable function if there exists a TM that, on input w, halts with f(w) on its tape.

2.2 Reducibility

Definition 5. A language A is mapping-reducible to language B, written $A \leq_m B$, if there exists a computable function such that $w \in A$ if and only if $f(w) \in B$.

Theorem 6. If $A \leq_m B$ and B is decidable, then A is decidable; if A is undecidable, then B is undecidable.

Corollary 1. $HALT_{TM} = \{\langle M, w \rangle : M \text{ is a TM that halts on input } w \}$ is undecidable.

Definition 6. A TM's language has a property P (a subset of all TM descriptions) such that whenever M_1, M_2 are TMs, and $L(M_1) = L(M_2), \langle M_1 \rangle \in P$ if and only if $\langle M_2 \rangle \in P$. A property P is nontrivial if some TM has property P and some other TM does not.

(Rice's Theorem) 7. Deciding whether a TM has a nontrivial property P of its language is undecidable.

- 6 Independent Study Complexity Theory
- ${\bf 3}\quad {\bf Polynomial\ Hierarchy,\ Alternating\ TMs}$

4 Boolean Circuits

- 8 Independent Study Complexity Theory
- 5 Randomization

6 Interactive Proofs

7 Quantum Computation

8 PCP Theorem

- 12 Independent Study Complexity Theory
- 9 Decision Trees

10 Communication Complexity

- 14 Independent Study Complexity Theory
- 11 Algebraic Computation Models

12 Counting Complexity

13 Average-Case Complexity

14 Hardness Amplification

15 Derandomization

$16\quad Expanders/Extractors$

17 PCP and Fourier Transform

18 Parameterized Complexity

References

- [AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge University Press, 2009.
- [Sip12] Michael Sipser. Introduction to the Theory of Computation. Course Technology, 2012.