Let $X_1, ..., X_n$ be an i.i.d. sample drawn from a normal distribution $N(\mu, 1)$ where $\mu \in \mathbb{R}$ is an unknown parameter.

Consider a test for H_0 : $\mu \leq 1$ against H_1 : $\mu > 1$ which rejects H_0 if and only if $\bar{X} > 2$.

a) Compute the size of this test.

Power (µ=2) = 0.5

Power (N=3) = 1- I (-Jn) > 0.5

b) Determine the power of this test as a function of μ , for $\mu > 1$.

(a) Size of test,
$$\alpha = P(Reject Ho | H_0)$$

$$= \sup_{\mu \in \mathcal{I}} P(\overline{X} > 2) \qquad \frac{\nabla \overline{n}(\overline{X} - \mu)}{\overline{\sigma}} \sim N(0, 1)$$

$$= \sup_{\chi \in \mathcal{I}} P(\overline{X} > 2) \qquad \frac{\nabla \overline{n}(\overline{X} - \mu)}{\overline{\sigma}} \sim N(0, 1)$$

$$= \sup_{\chi \in \mathcal{I}} P(\overline{X} > 2) \qquad \frac{\nabla \overline{n}(\overline{X} - \mu)}{\overline{\sigma}} \sim N(0, 1)$$

$$= P(\overline{X} > \overline{n}) \qquad (\mu = 1)$$

$$= | -\overline{I}(\overline{In}) \qquad \text{where} \qquad \overline{I} \text{ is } CDF \text{ of } N(0, 1)$$

(b) Power: $P(Reject Ho | H_1) = P(\overline{X} > 2 | H_1)$

$$= P(\overline{X} > \overline{In}(2 - \mu))$$

Ho: $\mu \in \mathcal{I}$, $H_1 : \mu > 1$

$$= P(\overline{X} > \overline{In}(2 - \mu))$$

 $= (- \underline{\Phi} (f_n(z-m))$

Let X_1, X_2 be i.i.d. $U(\theta, \theta + 1)$. Show that the CDF of $Y = X_1 + X_2$ is,

$$F_Y(y) = \begin{cases} 0, & \text{if } y < 2\theta \\ \frac{1}{2}(y - 2\theta)^2, & \text{if } 2\theta \le y < 2\theta + 1 \\ 1 - \frac{1}{2}(2\theta + 2 - y)^2, & \text{if } 2\theta + 1 \le y < 2\theta + 2 \\ 1, & \text{if } y \ge 2\theta + 2 \end{cases}$$

PDF of
$$Y: f_Y(y) = \int_{\theta}^{\theta+1} f_{\chi_2}(y-x) f_{\chi_1}(x) dx$$

CDF of
$$Y: F_Y(y) = \int_{\infty}^{y} \int_{A}^{0+1} f_{X_2}(t-x) \left(\int_{X_1}^{x} (x) dx \right) dx dt$$

$$= \int_{20}^{y} \int_{0}^{0+1} f_{\chi_{2}}(t-x) dx dt$$

$$= \int_{20}^{y} (t-10) dt$$

$$\frac{\text{Example}}{\int_{Y} (y) = 2y}$$

$$F_{Y}(y) = \int_{-\infty}^{y} 2t dt$$

$$\int_{X_i} (x) = \begin{cases} 1 & x \in [0, 0+1] \\ 0 & \text{else} \end{cases}$$

$$\int_{K_2} (t-x) = 1$$

When
$$\theta \leq t - x \leq 0+1$$

$$\int_0^{0+1} f_{x_2}(t-x) dx = integrate 1$$

when
$$0 \le t - x \le 0 + 1$$

$$= \iiint_{\theta} \frac{1}{y} \int_{0}^{\theta+1} \frac{1}{y} \int_{0}^{\theta$$

$$= \int_{20+1}^{1} \int_{0}^{1} \int_{x_{2}}^{1} \int_{0}^{1} \int_{x_{2}}^{1} \int_{0}^{1} \int_{x_{2}}^{1} \int_{0}^{1} \int_{0}^{1} \int_{x_{2}}^{1} \int_{0}^{1} \int_{$$

$$t \text{ starts from 20.}$$

$$|t| = t - 20$$

$$\frac{1}{\theta} \qquad 0+1 \\
t-(0+1) \qquad t-\theta$$

For testing H_0 : $\theta = 0$ against H_1 : $\theta > 0$, we have two competing tests:

$$\phi_1(X_1)$$
: Reject H_0 if $X_1 > 0.92$
 $\phi_2(X_1, X_2)$: Reject H_0 if $X_1 + X_2 > C$

- a) Find the value of C so that ϕ_2 has the same size as ϕ_1 .
- b) Calculate the power function of the test ϕ_1 . Draw a graph of this power function.

Let X_1, X_2 be i.i.d. $U(\theta, \theta + 1)$. Show that the CDF of

$$F_{Y}(y) = \begin{cases} 0, & \text{if } y < 2\theta \\ \frac{1}{2}(y - 2\theta)^{2}, & \text{if } 2\theta \leq y < 2\theta + 1 \\ 1 - \frac{1}{2}(2\theta + 2 - y)^{2}, & \text{if } 2\theta + 1 \leq y < 2\theta + 2 \\ 1, & \text{if } y \geq 2\theta + 2 \end{cases}$$

$$P(X_1+X_2>c \mid \theta=0)$$

$$\Rightarrow 1 - F_{Y}(c) = 0.08 \Rightarrow F_{Y}(c) = 0.92 = P(Y \le c)$$

$$\Rightarrow 1 - \frac{1}{2} (xy + z - c)^{2} = 0.92$$

$$(2-c)^2 = 0.16$$
 $c = 0.6$

(a) Size of P1

X12 Unif (0,1)

= 0.08

= P (Reject Ho | Ho is true)

= P (K1 > 0.92 | 0 = 0)

Power of
$$\phi_1 = P(Reject Ho | H_1) = P(X_1 > 0.92 | 0 > 0)$$

$$= \begin{cases} \frac{1}{0+1-0.92} & \text{(i): } 0.92 < 0 \\ \frac{0+1-0.92}{0+1-0} & \text{(ii): } 0 \le 0.92 \le 0+1 \\ \hline & \text{(iii): } 0+1 < 0.92 \end{cases}$$

$$X_{1},...,X_{n} \sim N(\mu, 1)$$

$$\Lambda(\chi_{1},...,\chi_{n}) = \frac{L(\chi_{1},...,\chi_{n}|_{H_{0}})}{L(\chi_{1},...,\chi_{n}|_{H_{1}})} \leq t$$

NP-Lemma: MP Test rejects Ho when $\Lambda \leq t$ for some t.

Test statistic: \overline{X} , $\Lambda(X_1,...,X_n)$ is increasing in \overline{X}

MP Test rejects Ho if $\Lambda(\overline{X}) \leq t$ $\overline{X} \leq \Lambda^{-1}(t) = t^*$

 $\Lambda(X_1,...,X_n)$ is dec in \overline{X}

MP Test rejects Ho if $\Lambda(\bar{X}) \leq t \implies \bar{X} \geq \Lambda^{-1}(t) = t$

Let $X_1, ..., X_n$ be an i.i.d. sample drawn from a normal distribution $N(\mu, 1)$ where $\mu \in \mathbb{R}$ is an unknown parameter.

Consider a test for H_0 : $\mu \le 1$ against H_1 : $\mu > 1$ which rejects H_0 if and only if $\bar{X} > 2$.

- a) Compute the size of this test.
- b) Determine the power of this test as a function of μ , for $\mu > 1$.

Problem 11.2

Let X_1, X_2 be i.i.d. $U(\theta, \theta + 1)$. For testing H_0 : $\theta = 0$ against H_1 : $\theta > 0$, we have two competing tests:

$$\phi_1(X_1)$$
: Reject H_0 if $X_1 > 0.92$
 $\phi_2(X_1, X_2)$: Reject H_0 if $X_1 + X_2 > C$

- a) Find the value of C so that ϕ_2 has the same size as ϕ_1 .
- b) Calculate the power function of the test each test ϕ_1 . Draw a graph of this power function.

Hint: Notice that the joint distribution of X_1 and X_2 has a uniform distribution over the $(\theta, \theta+1) \times (\theta, \theta+1)$ square. Therefore, letting $Y=X_1+X_2$,

$$F_{Y}(y) = \begin{cases} 0, & \text{if } y < 2\theta \\ \frac{1}{2}(y - 2\theta)^{2}, & \text{if } 2\theta \leq y < 2\theta + 1 \\ 1 - \frac{1}{2}(2\theta + 2 - y)^{2}, & \text{if } 2\theta + 1 \leq y < 2\theta + 2 \\ 1, & \text{if } y \geq 2\theta + 2 \end{cases}$$

Problem 11.3

Let
$$f_0(x) = \begin{cases} 1, \text{ for } 0 \le x \le 1 \\ 0, \text{ otherwise} \end{cases}$$
 and $f_1(x) = \begin{cases} 12\left(x - \frac{1}{2}\right)^2, \text{ for } 0 \le x \le 1 \\ 0, \text{ otherwise} \end{cases}$

be two probability density functions.

Let X be a random variable whose PDF is either $f_0(\cdot)$ or $f_1(\cdot)$. Based on a single observation of X, construct the MP test of the hypothesis H_0 : $f(x) = f_0(x)$ against H_1 : $f(x) = f_1(x)$ with size $\alpha = 0.05$. What is the power of this test?

Let X_1,\ldots,X_n be an i.i.d. sample drawn from a normal distribution $N(\mu,\sigma^2)$ where μ is known. Consider the test statistic $T = \sum_{i=1}^{n} (X_i - \mu)^2$.

- a) For testing H_0 : $\sigma^2=\sigma_0^2$ against H_1 : $\sigma^2=\sigma_1^2$, with $\sigma_1^2>\sigma_0^2$, find a MP test with size
- b) Find a size α , UMP test for testing H_0 : $\sigma^2 = \sigma_0^2$ against H_1 : $\sigma^2 > \sigma_0^2$. c) Is there a UMP for testing H_0 : $\sigma^2 \leq \sigma_0^2$ against H_1 : $\sigma^2 > \sigma_0^2$, with size α ?