

Prof. Dr.-Ing. Frank Neitzel, Dr.-Ing. Sven Weisbrich

Exercise 10: Adjustment Calculation - part V - Levelling network -						
Group:	Surname, First name:	Matriculation number:	Signature*:			
* With my signature I declare that I was involved in the elaboration of this homework.						
Submission until: 26.01.2024						

Objective

This exercise deals with the adjustment of levelling networks.

Figure 1: Interlocking levelling network

Table 1: Measured height differences

Line	Height differences [m]	
1	5.10	
2	2.34	
3	-1.25	
4	-6.13	
5	-0.68	
6	-3.00	
7	1.70	

Table 2: Benchmarks

Point	Height [m]	
100	100.00	
200	107.50	

Task 1:

The measurements of the levelling network depicted in Figure 1 are listed in Table 1. The points 100 and 200 are benchmarks (error free) and their heights are given in Table 2. Calculate the adjusted heights of points A, B and C using least-squares adjustment.

- The measurements are uncorrelated and were obtained with the same standard deviation.
- Set up an appropriate functional model as well as the observation equations.
- Set up the stochastic model.
- Solve the normal equation system and determine the heights of points A, B and C as well as their standard deviations.
- Calculate the residuals and the adjusted observations as well as their standard deviations.

Figure 2: Levelling network

Table 3: Measured height differences and their standard deviations

From	То	$\Delta oldsymbol{h}_i$ [m]	$\sigma_{\Delta m h_i}$ [mm]
Α	В	10.509	6
В	С	5.360	4
С	D	-8.523	5
D	Α	-7.348	3
В	D	-3.167	4
Α	С	15.881	12

Task 2 (Homework):

A levelling network is depicted in Figure 2 and the related measurements as well as their standard deviations are listed in Table 3. The measurements are uncorrelated.

- Perform two different adjustments for the given levelling network:
 - \circ 1. Adjustment: Use point A as a benchmark and all other points as new points.
 - \circ 2. Adjustment: Use point B as a benchmark and all other points as new points.
- The error free height for each benchmark is derived from your matriculation number (one per group)
 - o e.g., Matr.-No.: 123456
 - 1. Adjustment (number forward): $H_A = 123.456 \text{ m}$.
 - 2. Adjustment (number backward): $H_B = 654.321 \text{ m}$.
- Set up an appropriate functional model as well as the observation equations.
- Set up the stochastic model.
- For the final check choose an appropriate value δ and justify your decision.
- Solve the normal equation system and determine the heights for the remaining points as well as their standard deviations.
- Calculate the residuals and the adjusted observations as well as their standard deviations.
- Compare the adjusted unknowns, adjusted observations and residuals as well as their standard deviations of both adjustments. Present all results in one table and comment them.