Chapitre II Oscillations forcées des nystèmes à un degré de liberte II. 1 Equation differentielle Forme générale de l'équation de la grange: $\frac{d}{dt} \left[\frac{\partial L}{\partial \dot{q}} \right] - \frac{\partial L}{\partial \dot{q}} + \frac{\partial U}{\partial \dot{q}} = \frac{f}{g_{ext}} \qquad (1)$ où Frent et la force généralisée associéé à \vec{F}_{ext} fonction dussipation est $D = \frac{1}{2}\beta 3^2$ et où la Pour les oscillations de faible amplitude le la grangien Necut: $L = \frac{1}{2} g g^2 - \frac{1}{2} b_0 g^2$ Don l'équation différentielle du mouvement 909+199+109= Fert cette équation peut se mettre sous la forme d'une équations différentielle du second ordre à coefficient constantes, avec second membre.

g°+2Sg'+wsg=A(t) (2) $S = \frac{\beta}{2q_0}$, $w_0 = \sqrt{\frac{b_0}{a_0}}$ et $A(t) = \frac{t_q \cdot v_t}{q_0}$ (3) système marce-report-amortissem Iloxemple: l'équation déférentielle du mouvement s'écul: xy zk \tilde{n} + 25 \tilde{n} + $w_0^2 n = A(E)$ avec $S = \frac{\alpha}{2m}$, $w_0 = \sqrt{\frac{k}{m}}$ et $A(E) = \frac{F(E)}{m}$

(8)

II.3) Solution de l'equation différentielle

La polution de cette équation différentielle du second ordre et égale à la somme de la solution de l'equation sans se cond membre (ou solution homogène) $x_{H}(t)$ et d'une solution particulière de l'equation avec se cond membre $x_{p}(t)$.

 $\chi(t) = \chi_{\mu}(t) + \chi_{\mu}(t) \cdot (4)$

On sailque x_H(t) -> 0 si t 11 donc la solution homo give et alos pratiquement rule. Il ne restera que la solution particulière de l'equation avec second membre.

 $x(t) \simeq x_p(t)$ (5).

II.3.1) Cas particulier où A(t) = A, cos (at)

nombres complexes.

Soit le dépla cement complexe représente par le nombre complexe $X = X e^{j \cdot 2t}$, avec $X = X e^{j \cdot 2}$. Nous pouvous considérer que A(t) = Ao cos(et) constitue la partie réelle du nombre complexe A = A est. l'equation différentielle se transfaure en une simple équation algébrique en fonction de l'amplitude complexe X. $[(\omega_0^2 \Omega^2) + j 2S \Omega] X = A_0$ (6) dont la volution est

$$\underline{X} = \frac{Ao}{(\omega_0^2 - \Omega^2) + j \cdot 28 \cdot \Omega} \tag{7}$$

Non I'm tire l'amplitude X et la phase
$$e$$
:
$$\begin{cases}
X_0 = \frac{Ao}{\sqrt{(W_0^2 - \Omega^2)^2 + 48^2\Omega^2}} \\
Y_0 = -arty = \frac{28\Omega}{W_0^2 - \Omega^2}
\end{cases}$$
(8)

fonction de la pulsation de l'excitation

le maximum de l'amplitude et de la phase en
annule d's.

 $\Omega_{R} = \sqrt{w_{0}^{2} - 28^{2}}$ (9)

A cette pulsation appelée pulsation de résonance, ou dit que de système entre en résonance et l'amplitude X est maximale:

$$x_{\text{max}} = \frac{A \circ}{28 \sqrt{\omega_s^2 S^2}} \tag{10}$$

la figure representant les vouicitions de X en fonction de la pulsation d'excitation Ω est appelé combe de résonance en amplitude. On remarque qu'a la pulsation w, le déphasage \mathcal{L} est égal à $-\frac{t}{2}$ et qu'a la résonance $\mathcal{L}=-\operatorname{arctg}\left(\frac{\sqrt{w_3^2-38^2}}{8}\right)$.

Amplitude X en fondion de 2

