Theoretische Informatik: Blatt 6

 Abgabe bis 9. Oktober 2015 Assistent: Sacha Krug, CHN D $42\,$

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe 16

Wir wollen zeigen, dass $L_{q_i} \notin \mathcal{L}_R$, also nicht rekursiv, ist. Dazu machen wir einen Widerspruchsbeweis. Annahme: L_{qi} sei rekursiv. Wir zeigen $L_u \leq_R L_{q_i}$.

Algorithums B für L_U

Für ein Wort w entscheiden wir zuerst, ob die Syntax einem Wort in L_u entspricht. Falls nein, ist $w \notin L_u$. Falls ja, wählen wir als i die Nummer des Zustands q_{accept} in der Kodierung von M und erzeugen daraus w'. Falls die Anzahl Zustände der TM M nicht $\geq i+1$ ist, verwerfen wir w (diese Arbeit führt der Algorithmus A aus). Ansonsten fahren wir wie folgt fort: Da eine TM aus q_{accept} nicht mehr herausgeht, ist $w \in L_u$, falls M_{q_i} w' akzeptiert, also M den i-ten Zustand erreicht. Falls M_{q_i} w' verwirft, akzeptiert M also w nicht. Da A immer hält und nach Annahme M_{q_i} immer hält (da rekursiv), hält auch B immer. Also gilt $L_u \leq_R L_{q_i}$. Aus $L_{q_i} \in \mathcal{L}_R$ folgt also $L_u \in \mathcal{L}_R$. Aber wir wissen $L_u \notin \mathcal{L}_R$. Das ist ein Widerspruch, womit $L_{qi} \notin \mathcal{L}_R$ gilt.

Aufgabe 17

Wir wollen zeigen, dass $L'_{q_i} \not\in \mathcal{L}_R$. Dazu machen wir einen Widerspruchsbeweis. Annahme: L'_{q_i} sei rekursiv. Wir zeigen $L_{q_i} \leq_R L'_{q_i}$.

Algorithums B für L_{qi}

Für ein Wort w entscheiden wir zuerst, ob die Syntax einem Wort in L_{qi} entspricht. Falls nein, ist $w \notin L_{qi}$. Falls ja, vertauscht der Algorithmus A x mit 0^i und erzeugt daraus w'. Nun lassen wir M'_{qi} auf x laufen. Da A immer hält und nach Annahme M'_{qi} immer hält (da rekursiv), hält auch B immer. Also gilt $L_{qi} \leq_R L'_{qi}$. Aus $L'_{qi} \in \mathcal{L}_R$ folgt also $L_{qi} \in \mathcal{L}_R$. Aber wir wissen $L_{qi} \notin \mathcal{L}_R$. Das ist ein Widerspruch, womit $L'_{qi} \notin \mathcal{L}_R$ gilt.

Aufgabe 18

Wir wollen zeigen, dass $L_{Eq,\lambda} \notin \mathcal{L}_R$. Dazu nehmen wir an, dass $L_{Eq,\lambda}$ rekursiv ist, und zeigen für $L_{H,\lambda} = \{\text{Kod}(M) \mid x \in \{0,1\}^* \text{ und } M \text{ hält auf } \lambda\}$, dass $L_{H,\lambda} \leq_R L_{Eq,\lambda}$.

Algorithums B für $L_{H,\lambda}$

Für ein Wort w testet der Algorithmus A zunächst die Syntax, ob w = Kod(M) für eine TM M, sonst wird w von B verworfen und $w \notin L_{H,\lambda}$.

Ist hingegen $w = \operatorname{Kod}(M)$, konstruiert der Algorithmus A $w' = \operatorname{Kod}(M) \# \operatorname{Kod}(M)$ als Spezialfall von $\operatorname{Kod}(M) \# \operatorname{Kod}(\overline{M})$ und gibt es als Eingabe für die TM E weiter. Verwirft E w', hat M nicht auf λ gehalten. Also ist $w \notin L_{H,\lambda}$. Akzeptiert E, dann gilt die Tautologie $\lambda \in L(M) \leftrightarrow \lambda \in L(M)$. Um zu sagen, dass $\lambda \in L(M)$ oder $\lambda \notin L(M)$, muss M auf λ gehalten haben.

Nach der Annahme hält E immer, und damit auch B. Also gilt $L_{H,\lambda} \leq_R L_{Eq,\lambda}$.

Aus $L_{Eq,\lambda} \in \mathcal{L}_R$ folgt also $L_{H,\lambda} \in \mathcal{L}_R$. Aber wir wissen $L_{H,\lambda} \notin \mathcal{L}_R$. Damit haben wir unseren Widerpsruch und die Annahme war falsch $\Rightarrow L_{Eq,\lambda} \notin \mathcal{L}_R$.