MODELOS DE COMPUTACIÓN

RELACION DE PROBLEMAS 1

1. Describir el lenguaje generado por la siguiente gramática:

$$S \to XYX$$

$$X \to aX \mid bX \mid \epsilon$$

$$Y \rightarrow bbb$$

2. Describir el lenguaje generado por la siguiente gramática:

$$S \to aX$$

$$X \to aX \mid bX \mid \epsilon$$

3. Describir el lenguaje generado por la siguiente gramática:

$$S \rightarrow XaXaX$$

$$X \to aX \mid bX \mid \epsilon$$

4. Describir el lenguage generado por la siguiente gramática:

$$S \rightarrow SS \mid XaXaX \mid \epsilon$$

$$X \to bX \mid \epsilon$$

- 5. Encontrar una gramática libre de contexto que genere el lenguaje sobre el alfabeto $\{a,b\}$ de las palabras que tienen más a que b (al menos una más).
- 6. Encontrar gramáticas de tipo 2 para los siguientes lenguajes sobre el alfabeto $\{a,b\}$. En cada caso determinar si los lenguajes generados son de tipo 3, estudiando si existe una gramática de tipo 3 que los genera.
 - $a)\,$ Palabras en las que el numero de b no es tres.
 - b) Palabras que tienen 2 ó 3 b.
 - c) Palabras que no contienen la subcadena ab
 - d) Palabras que no contienen la subcadena baa
- 7. Encontrar una gramática libre del contexto que que genere el lenguaje

$$L = \{1u1 \mid u \in \{0, 1\}^*\}.$$

- 8. Encontrar, si es posible, una gramática regular (o, si no es posible, una gramática libre del contexto) que genere el lenguaje L supuesto que $L \subset \{a,b\}^*$ y verifica:
 - a) $u \in L$ si, y solamente si, verifica que u no contiene dos símbolos b consecutivos.
 - b) $u \in L$ si, y solamente si, verifica que u contiene dos símbolos b consecutivos.
 - c) $u \in L$ si, y solamente si, verifica que contiene un número impar de símbolos a.
 - d) $u \in L$ si, y solamente si, verifica que no contiene el mismo número de símbolos a que de símbolos b.
- 9. a) Dado el alfabeto $A = \{a, b\}$ determinar si es posible encontrar una gramática libre de contexto que genere las palabras de longitud impar, y mayor o igual que 3, tales que la primera letra coincida con la letra central de la palabra.
 - b) Dado el alfabeto $A = \{a, b\}$ determinar si es posible encontrar una gramática libre de contexto que genere las palabras de longitud par, y mayor o igual que 2, tales que las dos letras centrales coincidan.
- 10. Determinar si el lenguaje generado por la gramática

$$S \to SS$$

$$S \to XXX$$

$$X \to aX|Xa|b$$

es regular. Justificar la respuesta.

- 11. Dado un lenguaje L sobre un alfabeto A, ¿es L^* siempre numerable? ¿nunca lo es? ¿o puede serlo unas veces sí y otras, no? Pon ejemplos en este último caso.
- 12. Dada la gramática $G = (\{S, A\}, \{a, b\}, P, S)$ donde $P = \{S \to abAS, abA \to baab, S \to a, A \to b\}$. Determinar el lenguaje que genera.
- 13. Sea la gramática G = (V, T, P, S) donde:
 - $\quad \blacksquare \ V = \{ < numero>, < digito> \}$
 - $T = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - \blacksquare S = < numero >
 - ullet Las reglas de producción P son:
 - \bullet < numero > \rightarrow < numero > < digito >
 - \bullet < numero > \rightarrow < digito >

• $< digito > \rightarrow 0|1|2|3|4|5|6|7|8|9$

Determinar el lenguaje que genera.

14. Sea la gramática $G = (\{A, S\}, \{a, b\}, S, P)$ donde las reglas de producción son:

$$S \to aS$$

$$S \to aA$$

$$A \rightarrow bA$$

$$A \rightarrow b$$

Determinar el lenguaje generado por la gramática

- 15. Dado un lenguaje L sobre un alfabeto A, caracterizar cuando $L^* = L$. Esto es, dar un conjunto de propiedades sobre L de manera que L cumpla esas propiedades si y sólo si $L^* = L$.
- 16. Dados dos homomorfismos $f: A^* \to B^*$, $g: A^* \to B^*$, se dice que son iguales si f(x) = g(x), $\forall x \in A^*$. ¿Existe un procedimiento algorítmico para comprobar si dos homomorfismos son iguales?
- 17. Sea $L \subseteq A^*$ un lenguaje arbitrario. Sea $C_0 = L$ y definamos los lenguajes S_i y C_i , para todo $i \ge 1$, por $S_i = C_{i-1}^+$ y $C_i = \overline{S_i}$.
 - a) ¿Es S_1 siempre, nunca o a veces igual a C_2 ? justifica la respuesta
 - b) Demostrar que $S_2 = C_3$, cualquiera que sea L. (Pista: Demuestra que C_2 es cerrado para la concatenación).
- 18. Demuestra que, para todo alfabeto A, el conjunto de los lenguajes finitos sobre dicho alfabeto es numerable.