Behaviour agreement

José Proença

Centrum voor Wiskunde en Informatica

CIC, 2007

Motivation

Distributed Reo Behaviour agreement Conclusions

Outline

Motivation

- Motivation
- Distributed Reo Model
- Behaviour agreement
- 4 Conclusions

2/15

Distributed Reo Behaviour agreement Conclusions oo o

Outline

Motivation

- Motivation
- Distributed Reo Mode
- Behaviour agreement
- Conclusions

3 / 15

Distributed Reo Behaviour agreement

Motivation

Motivation

Coordination

- How to implement it?
- Where to run it?

Distributed Coordination

Coordination:

- How to implement it?
- Where to run it?

Distributed Coordination

J. Proença (CWI)

Coordination:

- How to implement it?
- Where to run it?

Distributed Coordination

Designer

Deployment Resolver

Local Optimization

Instantiator

Designer

Use of tools, such as a GUI

Deployment Resolver

Local Optimization

Instantiator

Designer

Deployment Resolver

Unspecified locations are resolved. Constraints and policies need to be considered.

Local Optimization

Instantiator

Deployment Resolver

Local Optimization

Plugins: CA CC CSP

Instantiator

Designer

Deployment Resolver

Local Optimization

Instantiator

Creation of primitives

Kernel

5/15

J. Proença (CWI) Towards Distributed Reo

Designer

Deployment Resolver

Local Optimization

Instantiator

Kernel

Execution of the engine

Behaviour agreement

Distributed Reo

Outline

- Distributed Reo Model

6/15

Behaviour agreement Conclusions

Distributed Reo

Distributed: deals with partial knowledge.

Towards Distributed Reo J. Proenca (CWI) CIC, 2007 7/15

Behaviour agreement Conclusions

Distributed Reo

Distributed: deals with partial knowledge.

Implemention: Scala language

Integrates features of object-oriented and functional languages; Fully interoperable with Java;

Actor model for communication.

J. Proenca (CWI)

Distributed Reo

Primitives and nodes

Distributed Reo

Each port has a *location*. Must react to some messages:

- Request Behabiour
- Reply Behaviour
- Refuse (reason)
- Give Behaviour & Request/Give Data
- Reply Data

- has no state:
- can be distributed:
- propagates synchronous

Conclusions

Distributed Reo

Primitives and nodes

Each port has a *location*. Must react to some messages:

- Request Behabiour
- Reply Behaviour
- Refuse (reason)
- Give Behaviour & Request/Give Data
- Reply Data

Can be seen as a particular case of a primitive that:

- has no state;
- can be distributed;
- propagates synchronous constraints.

Behaviour What is it?

What each primitive can do

Which end points can flow data, and relation between data flowing in the end points.

Join of behaviours

Given the behaviour of two primitives, the behaviour of the composition of both can also be obtained.

Example: Connector Colouring

- Colouring tables provide the behaviour of each primitive;
- Join of colouring tables is defined

Behaviour agreement Conclusions

What is it?

Behaviour

What each primitive can do

Which end points can flow data, and relation between data flowing in the end points.

Join of behaviours

Given the behaviour of two primitives, the behaviour of the composition of both can also be obtained.

Example: Connector Colouring

- Colouring tables provide the behaviour of each primitive;
- Join of colouring tables is defined.

Distributed Reo Behaviour agreement Conclusions

Outline

Motivation

- Motivation
- Distributed Reo Mode
- Behaviour agreement
- 4 Conclusions

10 / 15

Locations are not relevant: Assume partial knowledge (know only neighbours); Two phase algorithm: Negotiation and Communication.

Behaviour agreement

Commit to a behaviour

Locations are not relevant;

Assume partial knowledge (know only neighbours);

Two phase algorithm: Negotiation and Communication.

J. Proença (CWI) Towards Distributed Reo

 Motivation
 Distributed Reo
 Behaviour agreement
 Conclusions

 ○○
 ○○
 ○●○
 ○

Commit to a behaviour Basic case

otivation Distributed Reo Behaviour agreement Conclusions

○ ○ ○ ○ ○ ○ ○ ○ ○

Commit to a behaviour Basic case

Motivation Distributed Reo Behaviour agreement Conclusions
oo oo oo oo oo oo

Commit to a behaviour Basic case

Motivation Distributed Reo Behaviour agreement Conclusions
oo oo oo oo oo oo

Commit to a behaviour Basic case

12 / 15

Motivation Distributed Reo Behaviour agreement Conclusions

○○ ○○ ○○ ○○ ○● ○ ○

Commit to a behaviour

Multiple starting points

 Motivation
 Distributed Reo
 Behaviour agreement
 Conclusions

 ○○
 ○○
 ○○
 ○

Commit to a behaviour

Multiple starting points

Motivation Distributed Reo Behaviour agreement Conclusions

○○ ○○ ○○ ○○ ○● ○

Commit to a behaviour

Multiple starting points

Motivation Distributed Reo Behaviour agreement Conclusions

○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Commit to a behaviour

Multiple starting points

2007 13 / 15

 Motivation
 Distributed Reo
 Behaviour agreement
 Conclusions

 ○○
 ○○
 ○○
 ○

Commit to a behaviour

Multiple starting points

Motivation Distributed Reo Behaviour agreement Conclusions

○○ ○○ ○○ ○○ ○○ ○○ ○ ○

Commit to a behaviour

Multiple starting points

Distributed Reo Behaviour agreement Conclusions

Outline

Motivation

- Motivation
- Distributed Reo Model
- Behaviour agreement
- 4 Conclusions

14 / 15

- Common architecture to include design and implementation;
- Implementation platform, where each (distributed) element knows only about its own neighbours;
- Resolve synchrony constraints (imposed by Reo) using asynchronous messages;
- The kernel supports messages for other purposes:
 - Fail/Abort;
 - Suspend to allow reconfiguration.
 - . . .
- How to determine the rank of the inititiators?
- A primitive(s) can be obtained from other coordination models other than Reo (e.g., Orc);
- Allow unification of more coordination models:

J. Proenca (CWI) Towards Distributed Reo CIC, 2007 15 / 15

- Common architecture to include design and implementation;
- Implementation platform, where each (distributed) element knows only about its own neighbours;
- Resolve synchrony constraints (imposed by Reo) using asynchronous messages;
- The kernel supports messages for other purposes:
 - Fail/Abort:
 - Suspend to allow reconfiguration.
 - ...
- How to determine the rank of the *inititiators*?
- A primitive(s) can be obtained from other coordination models
- Allow unification of more coordination models:

15 / 15

Towards Distributed Reo

- Common architecture to include design and implementation;
- Implementation platform, where each (distributed) element knows only about its own neighbours;
- Resolve synchrony constraints (imposed by Reo) using asynchronous messages;
- The kernel supports messages for other purposes:
 - Fail/Abort;
 - Suspend to allow reconfiguration.
 - ...
- How to determine the rank of the inititiators?
- A primitive(s) can be obtained from other coordination models other than Reo (e.g., Orc);
- Allow unification of more coordination models:

J. Proenca (CWI) Towards Distributed Reo CIC, 2007 15 / 15

- Common architecture to include design and implementation;
- Implementation platform, where each (distributed) element knows only about its own neighbours;
- Resolve synchrony constraints (imposed by Reo) using asynchronous messages;
- The kernel supports messages for other purposes:
 - Fail/Abort;
 - Suspend to allow reconfiguration.
 - ...
- How to determine the rank of the inititiators?
- A primitive(s) can be obtained from other coordination models other than Reo (e.g., Orc);
- Allow unification of more coordination models:

J. Proenca (CWI) Towards Distributed Reo CIC, 2007 15 / 15