Линейные системы и рациональные поверхности

11 марта 2024 года

Базовые локусы линейных систем

ОПРЕДЕЛЕНИЕ: Базовым локусом линейной системы $V \subset \Gamma(L,X)$ называется множество, в котором зануляются все сечения из V.

ЗАМЕЧАНИЕ: Если X — кривая, то базовый локус не представляет трудности для отображения: на кривых частично определенное отображение в P^n продолжается в пропущенные точки. На поверхностях это уже неверно.

ПРИМЕР: Пусть $X=\mathsf{P}^2,\,V\subset \Gamma(0(1),\mathsf{P}^2)$ — двумерное подпространство. Тогда существует точка, в которой все его сечения зануляются. Можно считать, что это точка (0:0:1), а $V=\langle x,y\rangle$. Тогда отображение линейной системой задается как $(x,y)\mapsto x/y$. Оно не продолжается в (0,0), но становится корректно определенным, если **раздуть** эту точку. В таком случае это известное нам расслоение $\mathsf{BI}_{(0,0)}\,\mathsf{P}^2\to\mathsf{P}^1$ со слоями P^1 .

Пучки кривых

ПРИМЕР: Если $P^2 = P(V)$, то коники на ней — элементы $P \operatorname{Sym}^2(V^*) = P \Gamma(0(2), P^2)$, пятимерного проективного пространства. Выберем в нем двумерное подпространство, то есть пару коник Q_1, Q_2 . Эта линейная система задает отображение $P^2 \longrightarrow P^1$, $(x,y) \mapsto Q_1(x,y)/Q_2(x,y)$. Его базовый локус — четыре точки пересечения $Q_1 \cap Q_2$. Если их раздуть, оно становится расслоением на коники. У него есть четыре особых слоя (пары сторон и диагоналей четырехугольника).

ПРИМЕР: Аналогично, два сечения $0_{P^2}(3)$ определяют **две кубики.** Если раздуть их девять точек пересечения, получится **рациональная эллиптическая поверхность.** В общей ситуации у нее двенадцать особых слоев — нодальных кубик, но для специфической конфигурации их может быть меньше, а особые слои — быть более сложными.

ПРИМЕР: Рассмотрим треугольник в P^2 , например координатный, и возьмем линейную систему коник, проходящих через его вершины. Это трехмерное семейство, а потому оно задает отображение $P^2 \longrightarrow P^2$. В таких кониках можно выбрать базис $\langle xy, yz, zx \rangle$, а потому и отображение можно представить как $(x:y:z) \mapsto (yz:zx:xy)$, или же в неоднородных координатах $(x,y) \mapsto \left(\frac{1}{x}, \frac{1}{y}\right)$. Чтобы оно стало регулярным, надо раздуть вершины треугольника, после этого отображение стянет его стороны.

ПРИМЕР: Рассмотрим треугольник в P^2 , например координатный, и возьмем линейную систему коник, проходящих через его вершины. Это трехмерное семейство, а потому оно задает отображение $P^2 \longrightarrow P^2$. В таких кониках можно выбрать базис $\langle xy, yz, zx \rangle$, а потому и отображение можно представить как $(x:y:z) \mapsto (yz:zx:xy)$, или же в неоднородных координатах $(x,y) \mapsto \left(\frac{1}{x}, \frac{1}{y}\right)$. Чтобы оно стало регулярным, надо раздуть вершины треугольника, после этого отображение стянет его стороны.

ЗАМЕЧАНИЕ: Инволюция Кремоны меняет местами прямые и коники, описанные около треугольника. В других координатах она известна как изогональное сопряжение.

ПРИМЕР: Рассмотрим треугольник в P^2 , например координатный, и возьмем линейную систему коник, проходящих через его вершины. Это трехмерное семейство, а потому оно задает отображение $P^2 \longrightarrow P^2$. В таких кониках можно выбрать базис $\langle xy, yz, zx \rangle$, а потому и отображение можно представить как $(x:y:z) \mapsto (yz:zx:xy)$, или же в неоднородных координатах $(x,y) \mapsto \left(\frac{1}{x},\frac{1}{y}\right)$. Чтобы оно стало регулярным, надо раздуть вершины треугольника, после этого отображение стянет его стороны.

ЗАМЕЧАНИЕ: Инволюция Кремоны меняет местами прямые и коники, описанные около треугольника. В других координатах она известна как изогональное сопряжение.

ЗАМЕЧАНИЕ: Инволюция Кремоны с вершинами в точках (0:0:1), $(1:\sqrt{-1}:0)$ и $(1:-\sqrt{-1}:0)$ (общих точках всех евклидовых окружностей) называется **инверсией** плоскости. Она переводит прямые в окружности, проходящие через начало координат, и наоборот.

ПРИМЕР: Рассмотрим треугольник в P^2 , например координатный, и возьмем линейную систему коник, проходящих через его вершины. Это трехмерное семейство, а потому оно задает отображение $P^2 \longrightarrow P^2$. В таких кониках можно выбрать базис $\langle xy, yz, zx \rangle$, а потому и отображение можно представить как $(x:y:z) \mapsto (yz:zx:xy)$, или же в неоднородных координатах $(x,y) \mapsto \left(\frac{1}{x}, \frac{1}{y}\right)$. Чтобы оно стало регулярным, надо раздуть вершины треугольника, после этого отображение стянет его стороны.

ЗАМЕЧАНИЕ: Инволюция Кремоны меняет местами прямые и коники, описанные около треугольника. В других координатах она известна как изогональное сопряжение.

ЗАМЕЧАНИЕ: Инволюция Кремоны с вершинами в точках (0:0:1), $(1:\sqrt{-1}:0)$ и $(1:-\sqrt{-1}:0)$ (общих точках всех евклидовых окружностей) называется **инверсией** плоскости. Она переводит прямые в окружности, проходящие через начало координат, и наоборот.

TEOPEMA: (М. Нетер, Кастельнуово) Если k алгебраически замкнуто, группа бирациональных автоморфизмов P^2_k порождена инволюциями Кремоны.

Стереографическая проекция

Рассмотрим линейную систему V коник, проходящих через **две** точки p,q. Она четырехмерна, и определяет отображение в P^3 . Чтобы оно стало регулярным, нужно раздуть их. Если ℓ — прямая через эти точки, то коники, от которых она отщипывается, образуют гиперплоскость в V, и поэтому линейное отображение такой системой **стянет** ее.

ЗАМЕЧАНИЕ: Имеем: dim Sym² V=10. Заметим, что все суммы попарных произведений коник из V задают квартики с двумя особенностями в точках p,q, что составляет подпространство коразмерности **шесть** в $\Gamma(0(4), P^2)$, стало быть размерности девять. Итак, существует квадрика, на которой лежит образ вложения этой линейной системой (а потому он ей **и является**).

ЗАМЕЧАНИЕ: Стандартная стереографическая проекция квадрики на плоскость сначала раздувает центр проекции, а потом стягивает две прямые на квадрике, проходившие через раздутую точку. Значит, вложение такой линейной системой обратно стереографической проекции.

Поверхность Веронезе

ОПРЕДЕЛЕНИЕ: Образ вложения P^2 при помощи $\mathcal{O}(2)$ есть поверхность Веронезе. Это поверхность $S \subset P^5$.

ЗАМЕЧАНИЕ: По лемме, через нее проходит $\dim \operatorname{Sym}^2\Gamma(0(2), P^2) - \dim\Gamma(0(4), P^2) = \frac{6\cdot7}{2} - 15 = 6$ разных квадрик.

ПРЕДЛОЖЕНИЕ: Рассмотрим в пространстве всех квадрик локус двойных прямых $(ax+by+cz)^2=0$. Это **тоже поверхность Веронезе.** Точки **хорд** поверхности Веронезе представляют **вырожденные** квадрики.

ПРЕДЛОЖЕНИЕ: Многообразие секущих поверхности Веронезе есть детерминантальная гиперповерхность $\det \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} = 0.$

СЛЕДСТВИЕ: Любые две касательные плоскости к поверхности Веронезе пересекаются.

ТЕОРЕМА: (Ф. Севери, 1901) Поверхность Веронезе — единственная поверхность в P^5 , чьи секущие не наполняют собой все пространство.

Кубическая поверхность

ЗАМЕЧАНИЕ: Рассмотрим на P^2 линейную систему **кубик** (то есть $\mathbb{O}_{P^2}(3)$), и в ней — неполную подсистему кубик, проходящих через шесть точек $\{p_i\}_{i=1}^6$ общего положения. Она **четырехмерна**, и задает рациональное отображение $P^2 \longrightarrow P^3$ (не определенное в шести точках p_i). После их раздутия отображение становится регулярным. Плоские сечения его образа суть **кубические кривые.** Иначе говоря, образ такого вложения — **кубическая поверхность.**

Кубическая поверхность

ЗАМЕЧАНИЕ: Рассмотрим на P^2 линейную систему **кубик** (то есть $\mathcal{O}_{P^2}(3)$), и в ней — неполную подсистему кубик, проходящих через шесть точек $\{p_i\}_{i=1}^6$ общего положения. Она **четырехмерна**, и задает рациональное отображение $P^2 \longrightarrow P^3$ (не определенное в шести точках p_i). После их раздутия отображение становится регулярным. Плоские сечения его образа суть **кубические кривые.** Иначе говоря, образ такого вложения — **кубическая поверхность.**

ТЕОРЕМА: (А. Клебш, 1866) Всякая кубическая поверхность получается таким образом.

ЗАМЕЧАНИЕ: Способов выбрать шесть точек на P^2 имеется $6 \cdot 2 - 8 = 4$ -хмерное семейство, и выбрать кубику в $P^3 - \frac{4 \cdot 5 \cdot 6}{6} - 16 = 4$ -хмерное. Отсюда видно, что теорема Клебша верна для **общей кубики.**

Кубическая поверхность

ЗАМЕЧАНИЕ: Рассмотрим на P^2 линейную систему **кубик** (то есть $\mathfrak{O}_{\mathsf{P}^2}(3)$), и в ней — неполную подсистему кубик, проходящих через шесть точек $\{p_i\}_{i=1}^6$ общего положения. Она **четырехмерна**, и задает рациональное отображение $\mathsf{P}^2 \dashrightarrow \mathsf{P}^3$ (не определенное в шести точках p_i). После их раздутия отображение становится регулярным. Плоские сечения его образа суть **кубические кривые.** Иначе говоря, образ такого вложения — **кубическая поверхность.**

ТЕОРЕМА: (А. Клебш, 1866) Всякая кубическая поверхность получается таким образом.

ЗАМЕЧАНИЕ: Способов выбрать шесть точек на P^2 имеется $6 \cdot 2 - 8 = 4$ -хмерное семейство, и выбрать кубику в $P^3 - \frac{4 \cdot 5 \cdot 6}{6} - 16 = 4$ -хмерное. Отсюда видно, что теорема Клебша верна для **общей кубики.**

TEOPEMA: (Кэли — Сальмон, 1849) На гладкой кубической поверхности над $\mathbb C$ лежит ровно двадцать семь прямых.

ЗАМЕЧАНИЕ: Они получаются из раздутия следующим образом: 6 прямых добавляется при раздутии, $15 = \binom{6}{2}$ прямых соединяют раздутые точки, и еще 6 прямых возникают из коник, проходящих через пять раздутых точек.