Introducción al Aprendizaje Supervisado

- 1.- Qué es el aprendizaje supervisado.
- 2.- El problema de regresión.

Que es el aprendizaje supervisado.

Aprendizaje supervisado

¿Qué es aprendizaje supervisado y ML?

¿Qué es un patrón?

Es una abstracción, representada por un conjunto de mediciones que describen un objeto "físico"

Existen de diversos tipos:

Visuales, temporales, sónicos, lógicos, ...

¿Qué es la clase de un patrón?

(también llamada categoría o clase informacional)

Es un conjunto de patrones que comparten características en común Una colección de objetos "similares", no necesariamente idénticos Al reconocer un patrón, se le asigna una clase prescrita.

Aprendizaje Supervisado

Un maestro provee conjuntos de entrenamiento etiquetados, usados para <u>entrenar</u> un clasificador

Las columnas serán nuestras: variables (features en ingles) independientes.

Tendremos una variables especial que será nuestra variable: **TARGET** (o variable dependiente) Dependiendo del tipo de problema, será la naturaleza de esa variable.

Fuente: https://www.geeksforgeeks.org/ml-types-learning-supervised-learning/

En esta clase revisaremos el problema de regresión.

Mediante variables independientes, intentaremos calcular el valor de la variable dependiente.

Aplicaciones como:

- » Predicción de valor divisas.
- » Predicción del clima.
- » Estimación de valores faltantes.
- » Estimación de nivel de alguna proteína en la sangre.

Todo esto siempre será en base a otras variables que nos entregaran información para realizar la estimación o predicción.

El problema de regresión.

El problema de regresión se basa, de manera simplista, en encontrar la relación que tienen una o varias variables con otra.

Tendremos la o las variables independientes como X. Tendremos la o las variables dependientes como Y.

En este curso, nos centraremos en el escenario donde tendremos 1 o muchas variables X y solo una variable Y.

Matemáticamente hablando, tendremos:

Y: Variable dependiente

$$X = (X_1, X_2, \dots, X_D)$$
: Las D variables independientes

$$Y = f(X) + \varepsilon$$

Puedo modelar la variable Y mediante la función f() más un término de error (que en la práctica se omite).

La idea es encontrar la función f()

Un ejemplo:

"La fragilidad del acero (medida como la energía de un golpe necesaria para romperlos) depende de la temperatura"

Medimos la fragilidad(F) de una pieza de acero y medimos la temperatura de dicha pieza (T):

T: 50°

F: 53.2

...e indicamos la medición con un punto de coordenadas x=50, y=53.2.

Agregamos otro...

Agregamos 1 punto

¿Vemos una relación?

Existe una forma de medir si existe relación o no.

A esto le llamaremos:

CORRELACIÓN

C

Regresión: Correlación

Correlación lineal o de Pearson

no confundir con el: Coeficiente de determinación (R2)

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$r = \cos(lpha) = rac{\displaystyle\sum_{i=1}^{N} (x_i - ar{x}) \cdot (y_i - ar{y})}{\sqrt{\displaystyle\sum_{i=1}^{N} (x_i - ar{x})^2} \cdot \sqrt{\displaystyle\sum_{i=1}^{N} (y_i - ar{y})^2}}$$

r: 0.93

El comportamiento de la métrica r:

La correlación la usaremos, entre otras métricas, para medir qué tan bueno es el modelo de regresión.

Cuarteto de Ascombe

(misma correlación lineal, distintas relaciones funcionales)

Es importante inspeccionar gráficamente (cuando se puede) los datos.

Existe una relación, pero queremos saber cuál:

$$Y = f(X) + \epsilon$$

La regresión lineal.

Modelo básico, pero que nos ayudará a entender otros algoritmos más sofisticados.

¿Donde estamos en CRISP-DM?

CRISP-DM

Fuente: https://www.proglobalbusinesssolutions.com/six-steps-in-crisp-dm-the-standard-data-mining-process/