

Linear Regression

Logistic Regression

Softmax & Cross Entropy Loss

BOAZ

Softmax & Cross Entropy Loss

BOAZ

Cost function Gradient descent LOSS LOSS Cost D(S(WX+6), Li) STEP TRAINING SET

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

A small learning rate requires many updates before reaching the minimum point

 θ

Just right

The optimal learning rate swiftly reaches the minimum point

 θ

Too high

Too large of a learning rate causes drastic updates which lead to divergent behaviors

Overfitting & Underfitting & Regularization

Overfitting & Underfitting & Regularization

Linear regression with regularization

$$\text{Model: } h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \frac{\theta_4 x^4}{4} \\ J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^m \theta_j^2$$
 Regularization

Large λ High bias (underfit) $\lambda = 10000$. $\theta_1 \approx 0, \theta_2 \approx 0, \dots$

$$h_{ heta}(x) pprox heta_0$$

Intermediate λ "Just right"

Small λ High variance (overfit)

$$\lambda \approx 0$$

[Train / Val / Test로 나누는 이유]

Idea#1: Choose hyperparameters that work best on the data	BAD : K = 1 always works perfectly on training data		
Your Dataset			
Idea #2: Split data into train and test, choose hyperparameters that work best on test data		idea how alg orm on new da	
train		test	
Idea#3: Split data into train, val, and test; choo hyperparameters on val and evaluate on test	se Bett	er!	
train	validation	test	

Neural Network

BOAZ

Backpropagation

[Backpropagation 예세]

Backpropagation은 CS231n Lecture4에서 자세히

Activation Function

[Activation Function]

Activation Function은 CS231n Lecture6에서 자세히

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Weight Initialization

[Weight Initialization]

Weight Initialization은 CS231n Lecture6에서 자세히

Xavier/He initialization

- Makes sure the weights are 'just right', not too small, not too big
- Using number of input (fan_in) and output (fan_out)

```
# Xavier initialization
# Glorot et al. 2010
W = np.random.randn(fan_in, fan_out)/np.sqrt(fan_in)
# He et al. 2015
W = np.random.randn(fan_in, fan_out)/np.sqrt(fan_in/2)
```


Dropout & Model Ensemble

[Dropout]

Deep Learning에서 Overfitting을 줄이는 1가지 방법

(a) Standard Neural Net

(b) After applying dropout.

Dropout & Model Ensemble

[Model Ensemble] 마지막에 모델의 성능을 조금 더 향상시키기 위한 방법

BOAZ

[Max Pooling 계산 방법]

Convolution Layer와 같이 활용되기도 함.

Single depth slice

X

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

y

[CNN 모델 예시]

Conv - Batch Normalization - ReLU - Pooling 순서로 사용됨.

[**AlexNet**] CS231n Lecture9에서 자세히

[VGG16] CS231n Lecture9에서 자세히

BOAZ

[Inception 또는 GoogleNet]

CS231n Lecture9에서 자세히

[ResNet]

CS231n Lecture9에서 자세히

모두의 딥러닝 : https://hunkim.github.io/ml/

Andrew Ng Machine Learning: https://ko.coursera.org/learn/machine-learning

CS231n: http://cs231n.stanford.edu/syllabus.html

