Visualization: Part Two

Customizing the aesthetic in ggplot2 and mapmaking

Federal Reserve Board of Governors Howard University

Introduction

- Previously:
 - ▶ ggplot()
 - ▶ +
 - ▶ geom_
- ► Today:
 - ▶ Under the hood
 - Customization
 - ► Large data
 - Making maps

Data

- ACS data for California
 - This data is titled acs_large.csv
 - ▶ The data dictionary can be found here
 - ▶ Recall that California is a large, nationally representative state

Economic Question

- How wages change based on education level
 - ► Ex. do Bachelor's degree holders make more than Associate's degree holders over their lifetime?

Setup

Out:

tidyverse and scales

[1] 200000

Take a minute to library the needed packages and read in the dataset (acs_large.csv), call it "acs"

```
Out:
       [1] "PUMAOO"
                       "PUMA10"
                                   "AGEP"
Out:
       [4] "PINCP"
                       "PWGTP"
                                   "WAGP"
Out:
       [7] "sex"
                      "eduStat"
                                   "WKHP"
Out: [10] "empStat" "Occ"
                                   "mig00Stat"
     [13] "mig10Stat"
Out:
```

13

Review of previous plotting

- Create a plot of the weighted mean wage by education level and age, it should look like this:
 - ► PWGTP is the column of weights, WAGP is the wage, AGEP is age, and eduStat is the education level

Wages by Education Level

- ► Higher education = higher wages
- ▶ Wages level off and decline after ~50
 - ▶ Does this seem accurate? Why might this be?
- Always dig deeper
 - ▶ Full-time workers?

ggplot: a theoretical approach

► What do you need to know about a dataset in order to make a 2D line plot of it?

ggplot: example data

So for a lineplot ggplot would need something like the following:

Out:		X	У			color	size		-	linetype
Out:	1	18	3502.145		Ass	sociates	1		Ass	sociates
Out:	2	18	25210.625		Ва	achelors	1		Ва	achelors
Out:	3	18	2048.444		HS	Diploma	1		${\tt HS}$	Diploma
Out:	4	18	1211.964	No	HS	${\tt Diploma}$	1	No	HS	Diploma

Do you always specify all of these variables when plotting a line?

ggplot: what the program sees

- ► For a single group, ggplot only takes x and y
- ▶ Is "Associates" an R color value?
 - ▶ How does ggplot decide what color "Associates" should be?

ggplot: scale mapping

Scales map the data values to visuals

```
      Out:
      x
      y color size linetype

      Out:
      1 18 3502.145 red
      1 3

      Out:
      2 18 25210.625 green
      1 2

      Out:
      3 18 2048.444 blue
      1 5

      Out:
      4 18 1211.964 black
      1 6
```

How do we control this?

Scale functions

- Map a data value ("Associates"), to a displayed aesthetic ("red")
 - scale_manual functions gives us complete control
 - $\blacktriangleright \ \, \text{http://www.stat.columbia.edu/\simtzheng/files/Rcolor.pdf}$
- How data are visually represented
 - On the plot itself, (color of the line),
 - Interpretation: (labels for each color).
- Can set axis limits, tick distance etc...

Scale Functions in Action

Full-time Employees Only

Putting dollars on the axis

▶ ?dollar

In class Exercise: Color Guide

- Now change color legend
 - Order by degree
- We just saw a function used to change the tick marks on the x-axis
 - Using this information and the plots we already created, create a chart with a re-ordered color guide
- Hint: what other scale_color_ and scale_linetype_ functions are there?

Review

- Grammar of Graphics provides a framework to map data to displayed values
 - Scale functions for formatting axes, color groups, etc.
 - manual functions let you overwrite defaults
- Scales package also includes helpful formatting functions
 - ▶ dollar, percent, etc...

Introduction to Theming

- ► How do I center the title?
 - ► Change the font?
 - ► Change the color?

Themes in ggplot

- ▶ theme()
- Two parts of visualization:
 - mapping the data to the aesthetic
 - formatting
- Scale functions control data-dependent aspects of the plot
 - ▶ Which group is which color, axis limits
- ► Theme functions control data-independent aspects
 - ► Font size of the title does not depend on the number of lines plotted

How do Coders do?

▶ Let's take a look how full-time workers in Computer/Math do

How theme() works

- Like a layer, preceded by +
 - ► Ex. ggplot(...) + theme(...)
- ▶ We control the plot title within the theme() function with plot.title, legend labels with legend.text
 - ► Self descriptive system
 - ▶ legend.title
 - axis.title.x, etc...

Elements

- Each argument is an element_ or unit
 - ► Ex. theme(plot.title = element.text(...))
 - We'll talk about the element functions today
- Standardized arguments
 - Any text formatting is an element_text()

Element_text

- ?element_text()
- Change all aspects of our text on the plot:
 - ▶ The font family (times, comic sans, etc)
 - ▶ The font face (bold, italic, underlined)
 - ▶ The font color
 - ▶ The font size
 - ► The angle (diagonal text)
 - the justification (hjust is horizontal justification, and vjust is vertical justification)

Element_rect

- ▶ There are two main rectangles on the plot:
 - ▶ The panel: the rectangle where the data is displayed
 - ► The plot background: the rectangle containing the panel, legend, titles, etc (usually white)

In class exercise: Element_text and Element_rect

- Ok, now it's your turn, using the theme function to update the coder_plot ggplot we already made:
 - make your title green, bolded, and right justified
 - make your x axis text blue and vertical
 - make your y axis text red
 - make the panel lavender with a red outline
 - make the plot background honeydew
- Check out the help for theme, element_text, and element_rect if you get stuck

In class exercise: Element_text and Element_rect

What do the color and size arguments of element_rect() control?

Review

- Mapping data to visuals is done by the scale functions
- ► Formatting is controlled via the theme() function
 - element_text()
 - element_rect()
 - element_line()
 - element_blank()
 - Ex. theme(panel.grid = element_blank()) for no gridlines.

Faceting

- ► Allows us to compare different groups (gender, education level) across the same dimensions at once
- ► For example, let's look at educational attainment for men and women

Faceting in Action

Two plots side by side, facet_wrap()

Education Achievement for each Gender

What does this plot tell us about women under 40? How else can we improve this graph?

In Class exercise: Faceting

- ▶ What percent of the male/female populations have each degree level?
 - Use faceting to show a different plot for each level of education
- Restrict our dataset to indivudals who are at least 25 years old

Education as percent of total gender population

Review: faceting

- Faceting adds another dimension to our plots
 - ▶ Allows us to compare an extra variable
- ▶ Enforces good habits due to shared axes

Making Maps with GGplot

Very Exciting!!

Making our first map

- Heatmap of California
 - ▶ Let's look at average wage by geographic location
- ▶ We need wage data by geographic region
 - What are PUMA10 and PUMA00?
- We need a way to tell ggplot our geographic shapes

Setting up our geographic data

- We will want to use the following libraries in our maps: maps and viridis
- library() the packages if you haven't already and set up our wage_data

Map data file

- ▶ I've already set up a file that takes creates the correct mapping for our geographic areas, use the pumas_points csv file.
- ► Take a look at our wage_map_data: we've now added our column of wage values to dataset which had the longitude and latitudes for each PUMA.
 - Note that the id column has replaced PUMA10, as they are the same.

Making the map

Improving our Map

Wages for California 2012–2014 average

What did coord_map() do?

Concentration of Occupation

- Urban areas seem to have higher wages
- Could this be related to occupation type?
- ► Let's use ACS data to find percentage of people in high-wage occupations in each area

In class Exercise: Occupations

- Using our ACS data, find the 5 occupations with the highest full-time average salary
 - ► Aka working 35+ hours
 - Use weighted observations for count
- Call the data frame for your answer: high_paying_occs, it should look like this:

```
O11t.:
     # A tibble: 5 x 2
Out:
                               Осс
                                       wages
Out:
                             <chr>
                                       <dbl>
Out:
                            Legal 118211.59
                    Computer/Math 106919.68
\Omega11t:
        Architecture/Engineering
                                    91635.47
Out:
                                    86769.23
Out:
      4
                       Healthcare
         Physical/Social Science 72618.36
Out:
```

Data prep for our Occupations

- We need the percentage of employees in high-paying jobs in each PUMA
 - Let's call the data frame wealthy_worker_data

In class exercise: Occupation Map

- Using the code from our previous map as a template, and the wealthy_worker_data just created
 - Make a heatmap showing the percentage of each PUMA's full-time employed population that works in a high-wage industry.

Percentage of full-time population in high-wage occupations

How similar does this map look to our previous map showing geographic wage levels?

Challenge Exercises

- ► For the rest of class take a look at creating the following infographics:
 - We want to see how wages for men and women across the state of California
 - ► For your first chart show the average wages for full-time employed men and women in each PUMA for the entire state, graph these two maps side by side
 - Hint: What function did we look at earlier today that allows us to show multiple charts side by side?
 - For the second chart we want to look at the San Francisco area in particular and show the wage percentage that full-time employed women make compared to full-time employed men in each PUMA

Challenge Exercise 1

Average Wages
Sample limited to working at least 35 hours per week

What differences do you notice between the maps?

Challenge Exercise 2

Hint: You will need the xlim and ylim arguments to coord_map()