L'énergie électrique : centrale solaire

1. Rayonnement solaire

- 1.1. Réaction de fusion nucléaire. Formation d'un noyau d'hélium à partir de quatre atomes d'hydrogène (ou ses isotopes). L'énergie est libérée grâce au défaut de masse (un noyau He est moins lourd que 4 atomes H). L'énergie est libérée sous forme de rayonnement gamma et d'énergie cinétique des particules formées.
- **1.2.** $\vec{E}(M,t) = E_0 \cos(\omega t kz) \vec{e}_x$.
 - **1.2.1.** L'onde se propage suivant la direction Oz dans le sens des z croissants ($\vec{k} = k\vec{e}_z$ et $k = ||\vec{k}|| > 0$). Elle est plane, polarisée dans la direction \vec{e}_x .
 - 1.2.2. .

1.2.2.1.On a:
$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) - \vec{\nabla}^2 \vec{E} = \vec{0} - \vec{\nabla}^2 \vec{E} = \vec{\nabla} \times \left(-\frac{\partial \vec{B}}{\partial t} \right) = -\frac{\partial (\vec{\nabla} \times \vec{B})}{\partial t} = -\mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$$
.

D'où l'équation de propagation : $\vec{\nabla}^2 \vec{E}(M,t) - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}(M,t)}{\partial t^2} = \vec{0}$. Avec : $\mu_0 \varepsilon_0 c^2 = 1$.

1.2.2.2. On a :
$$\vec{\nabla}^2 \left(E(z,t) \vec{e}_x \right) = \vec{\nabla}^2 E(z,t) \vec{e}_x = \frac{\partial^2 E}{\partial z^2} \vec{e}_x = -k^2 \vec{E} \text{ et } \frac{\partial^2 \vec{E}}{\partial t^2} = -\omega^2 \vec{E}$$
. Donc d'après l'équation de propagation : $k^2 = \mu_0 \varepsilon_0$. soit : $k = \sqrt{\mu_0 \varepsilon_0}$.

1.2.3.
$$\vec{B}(M,t) = \frac{\vec{e}_z}{c} \times \vec{E}(M,t) = \frac{E_0}{c} \cos(\omega t - kz) \vec{e}_y$$
.

1.2.4. Transport d'énergie électromagnétique :

1.2.4.1.
$$\vec{\Pi}(M,t) = \vec{E}(M,t) \times \frac{\vec{B}(M,t)}{\mu_0} = \frac{E_0^2}{\mu_0 c} \cos^2(\omega t - kz) \vec{e}_z = \varepsilon_0 c E_0^2 \cos^2(\omega t - kz) \vec{e}_z$$
. $\vec{\Pi}$ est le vecteur densité de curant de l'énergie électromagnétique. La puissance électromagnétique traversant une surface est le flux de $\vec{\Pi}$ à travers cette surface. $\|\vec{\Pi}\|$ s'exprime en $W.m^{-2}$.

1.2.4.2. $\langle \vec{\Pi}(M,t) \rangle = \frac{E_0^2}{2\mu_0 c} \vec{e}_z = \frac{\varepsilon_0 c E_0^2}{2} \vec{e}_z$. $\langle \vec{\Pi} \rangle$ est de même direction et de même sens que \vec{k} : dans le vide, l'énergie électromagnétique se propage dans la même direction et dans le même sens que l'onde.

1.2.4.3.
$$\langle dW \rangle = \iint_{S} \langle \vec{\Pi} \rangle \cdot d\vec{s} dt = \frac{\varepsilon_0 c E_0^2}{2} S dt$$
.

1.2.4.4.
$$\langle dW \rangle = P_S dt \Rightarrow E_0 = \sqrt{\frac{2P_S}{\varepsilon_0 cS}}$$
. AN: $E_0 \# 900V.m^{-1}$.

- **1.2.5.** .
 - **1.2.5.1.** $P_S = 4\pi R_S^2 \sigma T_S^4$. AN: $P_S \# 4,5.10^{26} W$.
 - **1.2.5.2.** La puissance reçue par une surface élémentaire ds centrée autour d'un point M situé à une distance r du centre S du soleil ,vue, depuis S sous l'angle solide $d\Omega = \frac{ds}{r^2}$ est :

$$dP(M) = P_S \frac{d\Omega}{4\pi} = P_S \frac{ds}{4\pi r^2} = \varphi(M)ds \Rightarrow \varphi(M) = \frac{P_S}{4\pi r^2} = \varphi(r).$$

AN:
$$\varphi(d_{ST}) = \frac{P_S}{4\pi ST^2} #1,7kW.m^{-2}$$
.

1.2.5.3.
$$P_r = \varphi(d_{ST})\pi R_T^2 \# 7.10^{16} W$$
.

1.2.5.4. $P_{tot,r} = \frac{66}{100} P_r \# 4,7.10^{16} W$. L'énergie totale reçue par la surface de la terre pendant une année est : $E_{tot,r} \# 4.10^{17} \, kWh \approx 3000 E$: l'énergie solaire est assez suffisante pour couvrir 3000 fois les besoins de l'homme en énergie sur terre.

2. Principe d'une cellule photovoltaïque

2.1.
$$W_s = hv_s = \frac{hc}{\lambda_s} \Rightarrow \lambda_s = \frac{hc}{W_s}$$
. AN: $\lambda_s \#110,91nm$.

2.2.
$$P_{\rm \acute{e}t\acute{e}}=\varphi_{\rm \acute{e}t\acute{e}}S~\#1,2W$$
 . $P_{\rm hiver}=\varphi_{\rm hiver}S~\#0,06W$.

2.3.
$$E = \frac{hc}{\lambda} \# 3, 3.10^{-20} J \approx 0, 21 eV$$
. A midi, aux solstices d'été et d'hiver: $N_{\text{été}} = \frac{P_{\text{été}}}{E} \# 3, 6.10^{19} \ photons / s$ et $N_{\text{hiver}} = \frac{P_{\text{hiver}}}{E} \# 1, 8.10^{18} \ photons / s$.

2.4.On a :
$$I_{\text{max}} = N_{\text{eff}}e = \eta Ne$$
 . Ainsi : $I_{\text{max}, \text{\'et\'e}} = \eta N_{\text{\'et\'e}}e \# 0,8A$ et $I_{\text{max}, \text{hiver}} = \eta N_{\text{hiver}}e \# 0,04A$.

2.5.
$$I_{cc} = I_p(0) = \alpha \varphi S$$
. AN : $I_{cc,1} \# 0,042 A$ pour $\varphi_1 = 100 W.m^{-2}$ et $I_{cc,1} \# 0,42 A$ pour $\varphi_2 = 1000 W.m^{-2}$. I_{cc} est de l'ordre de $I_{max} / 2$ (effet Joule !).

2.6.
$$V_{co} = V_p \left(I_p = 0 \right) = V_T \ln \left(\frac{\alpha \varphi S}{I_s} \right)$$
. AN: $V_{co,1} \# -22, 4mV$ pour $\varphi_1 = 100W.m^{-2}$ et $V_{co,2} \# -37mV$ pour $\varphi_2 = 1000W.m^{-2}$.

2.7.
$$P_u = V_p . I_p = V_p \left[\alpha \varphi S - I_s \left(\exp \left(\frac{V_p}{V_T} \right) - 1 \right) \right] = V_p \left[I_{cc} - I_s \left(\exp \left(\frac{V_p}{V_T} \right) - 1 \right) \right]$$
. La cellule est génératrice pour $P_u > 0$.

2.8.
$$V_{pM} = R_c I_{pM} \Rightarrow R_c = \frac{V_{pM}}{I_{pM}}$$
. AN: $R_c \# 1,46\Omega$.

2.9. $\eta_c = \frac{P_u}{\varphi S}$. AN : η_c #14% . Une fraction de l'énergie non convertie en électricité est réfléchie ou diffusée, une autre est convertie en énergie interne de la cellule.

2.10. De la cellule au module solaire photovoltaïque.

2.10.1.
$$I_{cc_2}=I_{cc}=0,336A$$
 . $V_{co_2}=2V_{co}=0,98V$. $I_{cc_n}=I_{cc}=0,336A$. $V_{co_n}=nV_{co}$. L'association série a pour objectif l'augmentation de V_{co} .

2.10.2.
$$I_{cc_2}=2I_{cc}=0,672A$$
 . $V_{co_2}=V_{co}=0,49V$. L'association parallèle a pour objectif l'augmentation de I_{cc} .

2.10.3. .

2.10.3.1.
$$I_{cc} = N_p I_{cc_1} = 8,4A \cdot V_{co} = N_s V_{co_1} = 24,5V$$
.

2.10.3.2.
$$N_s V_{pM} = R \times N_p I_{pM} \Rightarrow R = \frac{N_s V_{pM}}{N_p I_{pM}} = 2R_c = 2,92\Omega$$
.

2.10.4. $S = \frac{P_u}{\varphi \eta} \# 6,4.10^6 m^2$: possible à réaliser surtout pour les pays qui disposent de vastes déserts.

3. Stockage de l'énergie électrique solaire

3.1.
$$i = i_N - \frac{v}{r_N} \Rightarrow v = r_N i_N - r_N i = e_{Th} - r_{Th} i \ \forall i, \forall v \Rightarrow r_{Th} = r_N \text{ et } e_{Th} = r_N i_N$$

3.2. une branche est équivalente à un générateur de Thévenin de f.e.m $N_g e_{Th}$ et de résistance interne $N_g r_{Th}$ soit un générateur de Norton de c.e.m $\eta_N = \frac{N_g e_{Th}}{N_\sigma r_{Th}} = \frac{e_{Th}}{r_{Th}}$ et de résistance interne $R_N = N_g r_{Th}$.

3.3.
$$\eta_{N\acute{e}q} = N_b \eta_N = N_b \frac{e_{Th}}{r_{Th}} \text{ et } \frac{1}{R_{N\acute{e}q}} = \sum_{k=1}^{N_b} \frac{1}{R_{N_k}} = \frac{N_b}{R_N} \Longrightarrow R_{N\acute{e}q} = \frac{N_g}{N_b} r_{Th}$$
.

3.4.
$$E_{Th\acute{e}q} = \eta_{N\acute{e}q} R_{N\acute{e}q} = N_g e_{Th}$$
 et $R_{Th\acute{e}q} = R_{N\acute{e}q} = \frac{N_g}{N_L} r_{Th}$.

3.5. .

3.5.1.
$$I = \frac{E_{Th\acute{e}q}}{R_{Th\acute{e}q} + R} = \frac{N_g N_b}{N_g r_{Th} + N_b R} e_{Th} = \frac{\left(N - N_b\right) N_b}{\left(N - N_b\right) r_{Th} + N_b R} e_{Th}.$$

3.5.2.
$$\frac{\partial I}{\partial N_{b}} = 0 \Rightarrow (N - 2N_{b}) [(N - N_{b})r_{Th} + N_{b}R] = (R - r_{Th})(N - N_{b})N_{b}$$

$$\Rightarrow (N - 2N_{b}) [Nr_{Th} + N_{b}(R - r_{Th})] = (R - r_{Th})(N - N_{b})N_{b} \Rightarrow N_{b}^{2}(R - r_{Th}) + 2N_{b}Nr_{Th} - N^{2}r_{Th} = 0.$$

$$N_{b} = N \frac{\sqrt{Rr_{Th}} - r_{Th}}{R - r_{Th}}.$$

4. Utilité de transporter l'énergie électrique en haute tension

4.1.
$$\underline{i} = \frac{\underline{u}}{\underline{Z}_l + \underline{Z}_u} \Rightarrow I = \frac{U}{|\underline{Z}|} \text{ et } \cos \varphi = \cos \left(\arg \left(\underline{Z}\right)\right) = \frac{\Re_e\left(\underline{Z}\right)}{|\underline{Z}|}.$$

4.2.
$$P_f = \langle u.i \rangle = \frac{1}{2} \Re_e \left(\underline{u}.\underline{i}^* \right) = \frac{1}{2} \Re_e \left(\underline{Z}.\underline{i}.\underline{i}^* \right) = UI \cos \varphi = \frac{U^2}{|\underline{Z}|} \cos \left(\arg \left(\underline{Z} \right) \right) = \Re_e \left(\underline{Z} \right) I^2.$$

4.3.
$$P_u = \frac{1}{2} \Re_e \left(\underline{Z}_u \cdot \underline{i} \cdot \underline{i}^* \right) = R_u I^2$$
. $\eta = \frac{P_u}{P_f} = \frac{R_u}{R_u + R_l}$ décroit avec R_l . Pour un bon rendement il faut minimiser R_l .

4.4.
$$P_{u} = R_{u} \frac{U^{2}}{\left|\underline{Z}\right|^{2}} = \frac{R_{u} U^{2}}{\left(R_{u} + R_{l}\right)^{2} + \left(X_{u} + X_{l}\right)^{2}}.$$

On a:
$$\frac{\partial P_u}{\partial X_u} = 0 \Rightarrow X_u + X_l = 0$$
 et $\frac{\partial P_u}{\partial R_u}\Big|_{X_u = -X_l} = 0 \Rightarrow (R_u + R_l)^2 = 2(R_u + R_l)R_u \Rightarrow R_u = R_l$.

C/C:
$$P_u$$
 est maximale pour $\underline{Z}_u = \underline{Z}_l^*$. Dans ce cas: $P_u = \frac{U^2}{4R_u}$ et $\eta = 50\%$.

- AN:
$$\eta # \frac{1}{3}$$
. $P_u # 2,65kW$. $P_f # 7,95kW$.

5. Etude d'un câble de transport de l'énergie électrique

5.1.
$$R = \frac{\rho l}{S}$$
.

5.2.
$$\delta$$
 #1,23 cm .

5.3.
$$\vec{j} = \frac{1}{\rho}\vec{E}$$
 est pratiquement nul à l'extérieur d'une couronne d'épaisseur δ . Donc R diminue par diminution de la section S que traverse le courant.

5.4.
$$S_e = \pi \left(a^2 - (a - \delta)^2 \right) = \pi \left(2a\delta - \delta^2 \right) \approx 2\pi a\delta$$
. $R_{\ell l} = \frac{\rho l}{S_e} = \frac{\rho l}{2\pi a\delta}$. $P_{J1} = R_{\ell l}I^2 = \frac{\rho l}{\pi \left(2a\delta - \delta^2 \right)}I^2$. Avec $a = \sqrt{\frac{S}{\pi}} \#1,95cm$. AN: $R_{\ell l} \#0,029\Omega$ et $P_{J1} \#41,7kW$. (la condition $\delta \ll a$ n'est pas vérifiée!)

5.5. l'effet de peau n'intervient plus ($\delta > a_{Nc}$). Pour un seul conducteur : $R_{eNc} = \frac{\rho l}{S_{Nc}} = \frac{N_c \rho l}{S} = N_c R$.

$$P_{JN_c}=N_cR_{eNc}I_{Nc}^2=RI^2\,.$$

5.6.AN:

AN:
$$R_{eNc} > R_{el} \text{ et } P_{JN_c} < P_{J1}$$

N_c	2	3	50
R_{eNc}	$0,05\Omega$	$0,075\Omega$	1, 25Ω
$P_{_{JN_c}}$	36 <i>kW</i>		

- **5.7.** On choisi la surface des fils telle que $\delta \ge a_{Nc}$.
- **5.8.** En alternatif, les pertes de puissance réactive par effet capacitif deviennent considérables sur de longues distances.
 - Le transport en continu ne nécessite que deux conducteurs au lieu de trois en alternatif triphasé, d'où l'économie en métal.