Sinais e Sistemas

2ª aula – Sistemas de tempo contínuo e tempo discreto

Introdução

- Os sistemas físicos, no sentido mais amplo, são uma interconexão de componentes, dispositivos ou subsistemas
- Um sistema pode ser visto como um processo no qual sinais de entrada são transformados pelo sistema resultando em outros sinais de saída
- Um sistema de tempo contínuo é um sistema no qual são aplicados sinais de entrada contínuos no tempo, resultando sinais contínuos no tempo na saída

Introdução

 Um sistema de tempo discreto, transforma entradas discretas no tempo em saídas discretas no tempo

Introdução

- Exemplo Modelo simples para o saldo de uma conta bancária de mês para mês:
 - -y[n] = 1.01y[n-1] + x[n]
 - x[n] -> depósito líquido (depósitos menos levantamentos)
 - 1.01 *y*[*n* 1] -> representa o juro mensal
- Interligações entre sistemas (exemplo):
 - Sistema de áudio, que envolve a interligação de um receptor de rádio, um leitor de CD com um amplificador a um ou mais alto-falantes

Interligações entre sistemas

Interligações entre sistemas

Interligação com realimentação (feedback)

• Exemplo:

- Sistemas com e sem memória
- Um sistema é chamado sem memória ou estático se a saída y(t), num determinado instante, depender da entrada x(t) apenas naquele instante, i.e., não depende de entradas anteriores nem posteriores. No caso contrário, o sistema é dito com memória ou dinâmico

Ex: O sistema identidade y(t) = x(t), é um exemplo de sistema sem memória pois uma saída num determinado instante t_0 , $y(t_0)$, depende apenas do valor da entrada nesse mesmo instante, isto é, de $x(t_0)$

• Sistemas com e sem memória (cont.)

Ex: Um sistema especificado por y(t) = x(t - 1) + 2x(t + 2), constitui um sistema com memória, pois a saída no instante $t_2 = 2s$, por exemplo, depende das entradas em $t_1 = 1s$ e em $t_3 = 4s$

Ex: Um exemplo prático de sistema sem memória é o divisor resistivo:

• Sistemas com e sem memória (cont.)

Ex: A relação entre a tensão e a corrente num condensador representa um sistema com memória, pois a tensão depende não só da corrente no instante atual t, mas também de todos os valores de correntes desde - ∞ até t:

$$x(t) = \frac{1}{C} \int_{-\infty}^{t} x(\tau) d\tau$$

Ex: Um exemplo de um sistema discreto com memória é um acumulador ou somador:

$$y[n] = \sum_{k=-\infty}^{n} x[k],$$

- Invertibilidade e sistemas inversos
- Um sistema é chamado inversível se entradas distintas levam a saídas distintas. Sabendo a saída, determina-se a entrada de maneira única

Ex: Sistema inversível: y(t) = 2x(t), cujo sistema inverso é: z(t) = y(t) / 2 = x(t)

Ex: Sistema não-inversível: $y(t) = x^2(t)$. Para uma saída, há ambiguidade nas entradas. À saída y = 4, correspondem as entradas x = -2 ou x = +2

- Invertibilidade e sistemas inversos
 - O conceito de invertibilidade é importante em muitos contextos:
 - Ex: Sistemas de codificação em telecomunicações
 - O sinal a transmitir é previamente aplicado como entrada num sistema chamado codificador
 - Existem muitas razões para codificar (encriptar, controlar erros, etc)
 - Nos casos em que a codificação não tem perdas (lossless coding), a entrada de um codificador deve ser possível de ser recuperada de forma exacta através da sua saída, i.e., o codificador deve ser inversível

- Sistemas causais
- Um sistema é causal ou realizável se a saída no instante t depende apenas de valores da entrada para instantes de tempo menores ou igual a t, ou seja, a saída não pode depender de valores futuros da entrada

Ex: Sistema causal:
$$y(t) = x(t) + x(t-2)$$

Ex: Sistema não causal:
$$y(t) = x(t+1)$$

Sistemas causais

- Todos os sistemas físicos são causais.
- Um filtro ideal é um sistema não-causal ou nãorealizável fisicamente, e portanto não pode ser implementado com componentes reais. No projeto de um filtro prático, procura-se uma aproximação para um filtro ideal, mas respeitando-se o princípio da causalidade.
- A causalidade é importante quando se trabalha com sistemas que operam em tempo real, como em sistemas de comunicações e sistemas de controlo

Sistemas causais

- Em aplicações onde não é necessário processamento em tempo real, podem aparecer sistemas não causais
- Por exemplo, em sinais gravados (e.g. voz, imagem), podemos utilizar toda a informação armazenada para determinar uma saída num determinado instante, o que pode ser considerado uma operação não-causal
- Um sistema causal também é normalmente referido como não antecipativo - a saída não antecipa valores futuros da entrada

- Estabilidade
- -Um sistema estável é aquele onde pequenas entradas (de baixa amplitude) produzem saídas que não divergem
- -Uma outra definição é que entradas limitadas produzam saídas limitadas (BIBO -Bounded Input Bounded Output)

- Estabilidade
 - Exemplo: Pêndulo

— A entrada x(t) é a força aplicada e a saída é o desvio angular y(t) a partir da vertical

Estabilidade

- A gravidade aplica uma força que tende a retornar o pêndulo à posição vertical
- As perdas por atrito devidas ao arrasto tendem a desacelerá-lo
- Consequentemente, se uma pequena força x(t) for aplicada, a deflexão resultante da vertical também será pequena

- Estabilidade
 - Exemplo: Pêndulo invertido

— A entrada x(t) é a força aplicada e a saída é o desvio angular y(t) a partir da vertical

Estabilidade

- No caso do pêndulo invertido, o efeito da gravidade é aplicar uma força que tende a aumentar o desvio da vertical
- Deste modo, uma pequena força aplicada produz uma grande deflexão vertical, fazendo com que o pêndulo tombe, apesar das forças de retardo devido ao atrito
- O pêndulo é o exemplo de um sistema estável, enquanto que o pêndulo invertido é o exemplo de um sistema instável

Estabilidade

- É muito mais fácil provar que um sistema não é estável, do que o contrário, uma vez que basta apresentar um único contra-exemplo para comprovar a negação.
- Para provar que um dado sistema é estável (ou sem memória, ou inversível, ou causal, etc), devem-se apresentar argumentos que sejam válidos para todos os instantes de tempo e para todos os sinais de entrada possíveis e imagináveis.

- Invariância no tempo
- Um sistema é invariante no tempo se o comportamento e as características do sistema são fixos ao longo do tempo
- Um sistema variante no tempo é um sistema cujas características são alteradas com o tempo como, por exemplo, as alterações das propriedades de um circuito eletrónico quando a temperatura varia significativamente

- Invariância no tempo
 - A propriedade da variação no tempo pode ser descrita de maneira muito simples em termos da linguagem de sinais e sistemas
 - Um sistema é invariante no tempo se um desvio temporal no sinal de entrada resultar num desvio temporal idêntico no sinal de saída
 - Consideremos o sistema de tempo contínuo definido por:
 - y(t) = sen[x(t)]

- Invariância no tempo
 - Para verificar se o sistema é invariável no tempo, devemos determinar se a propriedade invariância do tempo é válida para qualquer entrada e qualquer mudança de tempo t_0
 - Se $x_1(t)$ for uma entrada arbitrária no sistema, e se:

$$y_1(t) = \sin[x_1(t)]$$

– for a saída correspondente e se se considerar uma segunda entrada $x_2(t)$ que é obtida através de um desvio temporal de $x_1(t)$:

$$x_2(t) = x_1(t - t_0)$$

- Invariância no tempo
 - A saída resultante será:

$$y_2(t) = \sin[x_2(t)] = \sin[x_1(t-t_0)]$$

– de forma semelhante:

$$y_1(t-t_0) = \sin[x_1(t-t_0)]$$

- Como: $y_2(t) = y_1(t t_0)$
- O sistema é invariante

Linearidade

- Um sistema linear é aquele onde se pode aplicar o teorema da sobreposição:
- Se a entrada é uma combinação linear de diversos sinais, a saída será a combinação linear das respostas do sistema a cada um dos sinais de entrada
- As duas propriedades que definem um sistema linear podem ser combinadas numa única expressão:
 - Tempo contínuo: $ax_1(t) + bx_2(t) --> ay_1(t) + by_2(t)$
 - Tempo discreto: $ax_1[n] + bx_2[n] --> ay_1[n] + by_2[n]$
 - a e b são constantes complexas

Linearidade

- Exemplo de sistema linear
- Considere um sistema S cuja entrada x(t) e saída y(t) são relacionadas por: y(t) = tx(t)
- Para determinar se S é linear ou não, consideramos duas entradas arbitrárias $x_1(t)$ e $x_2(t)$:
 - $x_1(t) --> y_1(t) = tx_1(t)$
 - $x_2(t) --> y_2(t) = tx_2(t)$
- Seja $x_3(t)$ uma combinação linear de $x_1(t)$ e $x_2(t)$. Isto é:
 - $x_3(t) = ax_1(t) + bx_2(t)$
 - a e b são escalares arbitrários

Linearidade

- Exemplo de sistema linear (cont.)
- Se $x_3(t)$ é a entrada de S, a saída correspondente pode ser expressa como:

$$y_3(t) = tx_3(t)$$

= $t(ax_1(t) + bx_2(t))$
= $atx_1(t) + btx_2(t)$
= $ay_1(t) + by_2(t)$

em que se conclui que S é linear

Linearidade

- Exemplo de sistema não linear
- Vamos aplicar o procedimento de verificação de linearidade do exemplo anterior a outro sistema cuja entrada x(t) e saída y(t) são relacionadas por:

$$y(t) = x^2(t)$$

- Definindo $x_1(t)$, $x_2(t)$ e $x_3(t)$ como no exemplo anterior, temos:

$$x_1(t) \to y_1(t) = x_1^2(t)$$

$$x_2(t) \rightarrow y_2(t) = x_2^2(t)$$

Linearidade

- Exemplo de sistema não linear (cont.)
- e também:

$$x_3(t) \to y_3(t) = x_3^2(t)$$

$$= (ax_1(t) + bx_2(t))^2$$

$$= a^2 x_1^2(t) + b^2 x_2^2(t) + 2abx_1(t)x_2(t)$$

$$= a^2 y_1(t) + b^2 y_2(t) + 2abx_1(t)x_2(t)$$

- Não é possível encontrar $x_1(t)$, $x_2(t)$, a e b de forma a que $y_3(t)$ seja igual a $ay_1(t) + by_2(t)$
- O sistema S não é linear

Linearidade

- Exercício: Dos seguintes sistemas quais são lineares?
- a) y(t) = sen[x(t)]
- b) y(t) = x(t) . sen (t)
- c) y(t) = ax(t) + b

- Exercícios para resolver em casa
 - Pagina 57 Livro: Signals and Systems
 - Fim do capítulo 1

Sistemas Lineares e Invariantes

- Uma grande parte dos sistemas possuem a propriedade de serem Lineares e Invariantes no tempo:
 - LTI Linear Time-Invariant
 - SLIT Sistemas Lineares e Invariantes no Tempo
- Uma das principais razões pelas quais os sistemas LTI são fáceis de analisar é porque em qualquer um deles se pode aplicar o teorema da sobreposição

Sistemas Lineares e Invariantes

- Como consequência, se pudermos representar a entrada de um sistema LTI em termos de uma combinação linear de um conjunto de sinais básicos, poderemos calcular a saída do sistema em função das respostas a esses mesmos sinais básicos
 - uma das características do impulso unitário, quer em tempo discreto quer em tempo contínuo, é que sinais genéricos podem ser representados como combinações lineares de impulsos atrasados

Sistemas Lineares e Invariantes

- Estas propriedades permitem desenvolver uma teoria que permite caracterizar um sistema LTI em função da sua resposta ao impulso unitário
- A representação da resposta de um sistema ao impulso unitário é designada por convolução
 - No caso de tempo discreto corresponde a um somatório – Convolution Sum
 - Em tempo contínuo corresponde a um integral –
 Convolution Integral

Convolução de sinais

• A convolução entre dois sinais $x_1(t)$ e $x_2(t)$ é definida pelo integral:

$$\mathbf{x}_1(t) * \mathbf{x}_2(t) = \int_{-\infty}^{\infty} \mathbf{x}_1(\tau) \cdot \mathbf{x}_2(t - \tau) d\tau$$

- O integral de convolução é executado em relação à variável muda τ, sendo t considerada como constante.
- O resultado da convolução resulta sempre numa função temporal

Convolução de sinais

- A operação convolução usa normalmente a notação simplificada $x_1(t)*x_2(t) = x_1*x_2(t)$ para indicar que a função resultante x_1*x_2 depende de t
- Consideram-se agora as funções $x_1(t)$, $x_2(t)$ e $x_3(t)$. A partir da definição, podem ser demonstradas as seguintes propriedades:
 - a) Propriedade Comutativa:

$$x_1(t) * x_2(t) = x_2(t) * x_1(t) = \int_{-\infty}^{\infty} x_2(\tau) \cdot x_1(t - \tau) d\tau$$

- Propriedades da convolução (cont.):
 - b) Propriedade Associativa:

$$X_1 * (X_2 * X_3) = (X_1 * X_2) * X_3$$

– c) Propriedade Distributiva:

$$X_1 * (X_2 + X_3) = (X_1 * X_2) + (X_1 * X_3)$$

– d) Derivada do produto:

$$\frac{d}{dt}(x_1 * x_2) = x_1 * \frac{dx_2}{dt} = \frac{dx_1}{dt} * x_2$$

• Exemplo: - Calcular a convolução $v^*w(t)$ para os sinais v(t) e w(t) descritos por:

•
$$v(t) = u(t+1) - u(t-1)$$

•
$$w(t) = u(t + 2) - u(t - 2)$$

- Assim:
- $v(\tau).w(t-\tau) = [u(\tau+1)-u(\tau-1)] \cdot [u(t-\tau+2)-u(t-\tau-2)]$

Aplicando a definição:

$$\begin{split} v^* \, w(t) &= \int_{-\infty}^{+\infty} \!\! u(\lambda+1).u(t-\lambda+2).d\lambda - \int_{-\infty}^{+\infty} \!\! u(\lambda+1).u(t-\lambda-2).d\lambda - \\ &- \int_{-\infty}^{+\infty} \!\! u(\lambda-1).u(t-\lambda+2).d\lambda + \int_{-\infty}^{+\infty} \!\! u(\lambda-1).u(t-\lambda-2).d\lambda \\ &\text{Como } u(\lambda+1) = \begin{cases} 0, \quad \lambda < -1 \\ 1, \quad \lambda > -1 \end{cases} e \ u(\lambda-1) = \begin{cases} 0, \quad \lambda < 1 \\ 1, \quad \lambda > 1 \end{cases}, \text{ então} \\ v^* \, w(t) &= \int_{-1}^{+\infty} \!\! u(t-\lambda+2).d\lambda - \int_{-1}^{+\infty} \!\! u(t-\lambda-2).d\lambda - \int_{1}^{+\infty} \!\! u(t-\lambda+2).d\lambda \end{cases} \end{split}$$

$$+ \int_1^\infty u(t-\lambda-2).d\lambda$$

$$Também \ u(t-\lambda+2) = \begin{cases} 0, & \lambda>t+2\\ 1, & \lambdat-2\\ 1, & \lambda< t-2 \end{cases}$$

• Então:

$$\begin{split} & \int_{-1}^{\infty} u(t-\lambda+2).d\lambda = \int_{-1}^{t+2} \ d\lambda = t+3 \ \text{desde que } t+2>-1, \text{ i.e., } t>-3, \\ & \int_{-1}^{\infty} u(t-\lambda-2).d\lambda = \int_{-1}^{t-2} \ d\lambda = t-1 \ \text{desde que } t-2>1, \text{ i.e., } t>1, \\ & \int_{1}^{\infty} u(t-\lambda+2).d\lambda = \int_{1}^{t+2} \ d\lambda = t+1 \ \text{desde que } t+2>1, \text{ i.e., } t>-1 \ \text{e} \end{split}$$

• Portanto, a expressão final da convolução é:

$$v * w(t) = (t+3).u(t+3) - (t-1).u(t-1) - (t+1).u(t+1) + (t-3).u(t-3)$$

- Conforme se observa no exemplo anterior, o gráfico da convolução v*w(t) tem largura final igual à soma das larguras das funções individuais v(t) e w(t)
- Este resultado também se aplica para funções v(t) e w(t) arbitrárias, indicando que a operação de convolução produz um alargamento temporal
- Além disso, a função resultante torna-se mais "suave" que as funções individuais

- Embora esta operação possa ser executada analiticamente (em alguns poucos casos e com certa dificuldade) ou numericamente, torna-se interessante discutir o processo de determinação gráfica, o qual pode simplificar sensivelmente os cálculos
 - Convolução gráfica

• Ex: - Executar a convolução dos sinais x(t) e y(t)

• A convolução entre x(t) e y(t) é dada por:

$$c(t) = x(t)*y(t) = \int_{-\infty}^{\infty} x(\tau) \cdot y(t-\tau) d\tau$$

- Para cada instante de tempo t, o sinal c(t) é o integral (área) do sinal que é obtido da multiplicação de x(τ) por y(t τ)
- Como se está integrando em τ, deve-se realizar em y uma inversão seguida de um deslocamento de t
- Os sinais $x(\tau)$ e $y(-\tau)$, para t=0:

- Observa-se facilmente que a multiplicação entre as funções é igual a zero, e portanto c(t=0) = 0
- Para t < 0, $y(t-\tau)$ é deslocado para a esquerda, então c(t) = 0
- Para t > 0, nota-se que a multiplicação entre $x(\tau)$ e $y(t-\tau)$ será igual a zero (x e y não se vão sobrepor) até o instante t = 1, e portanto, c(t)=0 para t < 1

No instante t = 1, tem-se a figura abaixo:

 No instante t = 1 + Δt, a multiplicação entre x e y não será mais zero, conforme esquematizado nas figuras abaixo:

• a área sombreada é igual ao valor de $c(t = 1 + \Delta t)$, que é igual a $(\Delta t)^2/2$. Para $1 \le t \le 2$, tem-se que y está a se sobrepor a x

Deste modo:

$$c(t = 1 + \Delta t) = \frac{\Delta t^2}{2} , 0 \le \Delta t \le 1$$

ou, na variável t:

$$c(t) = \frac{(t-1)^2}{2}$$
, $1 \le t \le 2$

• Para $t = 2 + \Delta t$, a ponta do triângulo começa a "sair" do quadrado, e os sinais ficam:

• e a região sombreada tem área:

$$\frac{1+2\Delta t}{2}$$
, $2 \le t = (2+\Delta t) \le 3$ e em t : $c(t) = t - \frac{3}{2}$, $2 \le t \le 3$

• Para $t = 3 + \Delta t$ os sinais ficam:

área sombreada começa a diminuir, com valor:

$$\frac{(2+1+\Delta t)(1-\Delta t)}{2} = \frac{3-2\Delta t - \Delta t^2}{2}, \ 3 \leq t = (3+\Delta t) \leq 4$$

ou:

$$c(t) = \frac{4t - t^2}{2}, 3 \le t \le 4$$

- Depois de t > 4 os sinais não mais se sobrepõem,
 e c(t) = 0 para t > 4
- Resumindo:

$$c(t) = \begin{cases} 0, & t < 1 \\ \frac{(t-1)^2}{2}, & 1 \le t \le 2 \\ t - \frac{3}{2}, & 2 \le t \le 3 \\ \frac{4t - t^2}{2}, & 3 \le t \le 4 \\ 0, & t > 4 \end{cases}$$

- A função impulso unitário $\delta(t)$ apresenta a importante propriedade relacionada com a amostragem
- Uma outra propriedade importante é obtida considerando-se a convolução:

$$x(t)*\delta(t) = \int_{-\infty}^{\infty} x(\tau) \cdot \delta(t-\tau) d\tau$$

• Como já foi visto, o integral acima é igual ao valor da função $x(\tau)$ em $\tau = t$, ou seja:

$$x(t) * \delta(t) = \int_{-\infty}^{\infty} x(\tau) \cdot \delta(t - \tau) d\tau = x(t)$$

- O resultado é que a convolução de um sinal com um impulso é igual à própria função
- Esta propriedade é denominada de replicação
- Se o impulso estiver deslocado de t_0 :

$$x(t)*\delta(t-t_0) = \int_{-\infty}^{\infty} x(\tau) \cdot \delta(t-t_0-\tau) d\tau = x(t-t_0)$$

• ou seja, faz-se um deslocamento de t_0 na função x(t)

Bibliografia

- Oppenheim, A.V., Willsky, A.S. and Young, I.T., Signals and Systems, Prentice- Hall Signal Processing Series, 1983
- Isabel Lourtie, Sinais e Sistemas, Escolar Editora, 2007 (2ª edição)

