1 Degree of Connectedness

We would like to have a measure of how well connected is the graph. Viewed as a whole, a network with a lot of disconnected cliques should score lower than a loosely connected network. From the perspective of a single player, this measure can be expressed as the expected mean indirect trust, defined incrementally as follows:

$$Tr(A) = \sum_{B \in \mathcal{V} \setminus \{A\}} Tr_{A \to B} \text{ (Total indirect trust for player } A)$$

$$ETr(A) = \frac{Tr(A)}{|\mathcal{V} \setminus \{A\}|} = \frac{Tr(A)}{|\mathcal{V}| - 1} \text{ (Expected indirect trust for player } A)$$

$$EMTr = \frac{1}{|\mathcal{V}|} \sum_{A \in \mathcal{V}} ETr(A) \text{ (Expected mean indirect trust)}$$

Here we can see several possible network health measures. A combination of them will probably do the job.

1.
$$n := |\mathcal{V}|$$
 How many players
2. $e := |\mathcal{E}| - |\{A : DTr_{A \to A} > 0\}|^1$ How many direct trust lines
3. $\frac{e}{n}$ Mean direct trust lines per player
4. $DTr := \sum_{A,B \in \mathcal{V}} DTr_{A \to B}$ How much direct trust in total
5. $\mu := \frac{DTr}{n}$ Mean direct trust per player
6. $Cap := \sum_{A \in \mathcal{V}} DTr_{A \to A}$ Total capital
7. $\frac{Cap}{n}$ Mean capital per player
8. $\frac{DTr - Cap}{n}$ Mean direct trust minus capital per player
9. $\frac{1}{n} \sum_{A \in \mathcal{V}} \left(\sum_{B \in V} DTr_{A \to B} - \mu \right)^2$ Outgoing direct trust variance

10.
$$\frac{1}{n} \sum_{B \in \mathcal{V}} \left(\sum_{\substack{A \in V \\ A \neq B^1}} DTr_{A \to B} - \mu \right)^2$$
 Incoming direct trust variance

11. $\frac{Cap}{DTr}$ Total capital to total direct trust ratio

¹ Maybe it makes sense to include looped direct trusts (Capital) as well.