Exercice 1 **

On considère le circuit suivant alimenté par une source de tension :

$$e(t) = E_{eff} \cdot \sqrt{2} \cdot \cos(\omega t)$$

Question

1) Calculer l'impédance complexe équivalente $\underline{Z_{AD}}$.

Indice

Solution

Question

2) Quelle relation doit-il exister en L, R, C et ω pour que le dipôle AD soit équivalent à une résistance (impédance purement réelle) R_{eq} telle que $\underline{Z_{AD}} = R_{eq} + jX$

Indice

Solution

Question

3) On donne $R=1\,k\Omega$, $C=rac{100}{3}\,\mu F$, $\omega=400\,rad/s$. Calculer la valeur de L.

Solution

Question

4) Calculer le courant circulant dans la bobine $i_L(t)$. Pour cela, on prendra : $E_{eff}=180\,V$.

Indice

Solution

Question

5) Calculer le courant circulant dans la résistance $i_R(t)$.

Indice

Solution

Question

6) Calculer la puissance consommée par la résistance ${m R}$.

Indice

Solution