

Visual Perception

Lecture 5 Pattern Projection Techniques

Joaquim Salvi Universitat de Girona

- 5.1 Passive vs active stereo
- 5.2 Coded structured light
- 5.3 Classification: Time multiplexing
- 5.4 Classification: Spatial codification
- 5.5 Classification: Direct codification
- 5.6 Optimising De Bruijn patterns
- 5.7 Implementation of a De Bruijn pattern

- 5.1 Passive vs active stereo
- 5.2 Coded structured light
- 5.3 Classification: Time multiplexing
- 5.4 Classification: Spatial codification
- 5.5 Classification: Direct codification
- 5.6 Optimising De Bruijn patterns
- 5.7 Implementation of a De Bruijn pattern

Lecture 5: Pattern Projection Techniques

Passive Stereo

Arrange correspondence points

- **Ordered Projections**
- Projections bad order

Occlusions

Points without homologue

Lecture 5: Pattern Projection Techniques

Active Stereo

Lecture 5: Pattern Projection Techniques

- 5.1 Passive vs active stereo
- 5.2 Coded structured light
- 5.3 Classification: Time multiplexing
- 5.4 Classification: Spatial codification
- 5.5 Classification: Direct codification
- 5.6 Optimising De Bruijn patterns
- 5.7 Implementation of a De Bruijn pattern

- 5.1 Passive vs active stereo
- 5.2 Coded structured light
- 5.3 Classification: Time multiplexing
- 5.4 Classification: Spatial codification
- 5.5 Classification: Direct codification
- 5.6 Optimising De Bruijn patterns
- 5.7 Implementation of a De Bruijn pattern

The correspondence problem is reduced :

- Single dot :
 - No correspondence problem.
 - Scanning both axis.
- Single slit :
 - No correspondence problem.
 - Scanning the axis orthogonal to the slit.

- Stripe patterns :
 - No scanning.
 - Correspondence problem among slits.
- Grid, multiple dots :
 - No scanning.
 - Correspondence problem among all the imaged features (points, dots, segments,...).
- The matching between the projected pattern and the captured one can be uniquely solved codifying the pattern.

 A pattern is encoded when after projecting it onto a surface, a set of regions of the observed projection can be easily matched with the original pattern.
 Example: pattern with two-encoded-columns

- The process of matching an image region with its corresponding pattern region is known as pattern decoding → similar to searching correspondences
- Decoding a projected pattern allows a large set of correspondences to be easily found thanks to the *a priori* knowledge of the light pattern

 Two ways of encoding the correspondences: single axis and two axes codification ⇒ it determines how the triangulation is calculated

• **Decoding the pattern** means locating points in the camera image whose corresponding point in the projector pattern is *a priori* known

AXIS CODIFICATION

- Single Axis
 - Row-coded patterns
 - Column-coded patterns
- Both Axes

PIXEL DEPTH

- Binary
- Grey Levels
- Colour

SCENE APPLICABILITY

- Static Scenes
 - Projection of a set of patterns.
- Moving Scenes
 - Projection of a unique pattern.

CODING STRATEGY

- Periodical
 - The codification of the tokens is repeated periodically.
- Absolute
 - Each token is uniquely encoded

	Binary codes	Posdamer et al., Inokuchi et al., Minou et al., Trobina, Valkenburg and McIvor, Skocaj and Leonardis Rocchin et al.,				
TIME- MULTIPLEXING	n-ary codes	Caspi et al., Horn and Kiryati, Osawa et al.,				
	Gray code + Phase shifting	Bergmann, Sansoni et al., Wiora, Gühring,				
	Hybrid methods	K. Sato, Hall-Holt and Rusinkiewicz, Wang et al.,				
SPATIAL CODIFICATION	Non-formal codification	Maruyama and Abe, Durdle et al., Ito and Ishii, Boyer and Kak, Chen et al.,				
	De Bruijn sequences Hügli and Maître, Monk Vuylsteke and Oosterling al. Lavoi et al., Zhang e					
	M-arrays	Morita et al., Petriu et al., Kiyasu et al., Spoelder et al., Griffin and Yee, Davies and Nixon, Morano et al.,				
DIRECT CODIFICATION	Grey levels	Carrihill and Hummel, Chazan and Kiryati, Hung,				
	Colour Tajima and Iwakawa, Smu Pajdla, Geng, Wust and Ca Sato,					

- 5.1 Passive vs active stereo
- 5.2 Coded structured light
- 5.3 Classification: Time multiplexing
- 5.4 Classification: Spatial codification
- 5.5 Classification: Direct codification
- 5.6 Optimising De Bruijn patterns
- 5.7 Implementation of a De Bruijn pattern

- 5.1 Passive vs active stereo
- 5.2 Coded structured light
- 5.3 Classification: Time multiplexing
- 5.4 Classification: Spatial codification
- 5.5 Classification: Direct codification
- 5.6 Optimising De Bruijn patterns
- 5.7 Implementation of a De Bruijn pattern

5.3 Classification: Time multiplexing

	Binary codes	Posdamer et al., Inokuchi et al., Minou et al., Trobina, Valkenburg and McIvor, Skocaj and Leonardis, Rocchin et al.,						
TIME-	n-ary codes	Caspi et al., Horn and Kiryati, Osawa et al.,						
MULTIPLEXING Gray code + Phase shifting		Bergmann, Sansoni et al., Wiora, Gühring,						
	Hybrid methods	K. Sato, Hall-Holt and Rusinkiewicz, Wang et al.,						
	Non-formal codification	Maruyama and Abe, Durdle et al., Ito and Ishii, Boyer and Kak, Chen et al.,						
SPATIAL CODIFICATION	De Bruijn sequences	Hügli and Maître, Monks et al., Vuylsteke and Oosterlinck, Salvi et al. Lavoi et al., Zhang et al.,						
CODIFICATION	M-arrays	Morita et al., Petriu et al., Kiyasu et al., Spoelder et al., Griffin and Yee, Davies and Nixon, Morano et al.,						
DIRECT CODIFICATION	Grey levels	Carrihill and Hummel, Chazan and Kiryati, Hung,						
	Colour	Tajima and Iwakawa, Smutny and Pajdla, Geng, Wust and Capson, T. Sato,						

5.3 Time multiplexing

- The time-multiplexing paradigm consists in projecting a series of light patterns so that every encoded point is identified with the sequence of intensities that receives
- The most common structure of the patterns is a sequence of stripes increasing its length by the time -> single-axis encoding

Advantages:

- high resolution \rightarrow a lot of 3D points
- High accuracy (order of μm)
- Robustness against colorful objects (using binary patterns)

Drawbacks:

- Static objects only
- Large number of patterns → High computing time

UdG 5.3 Time-multiplexing: Binary codes (I)

UdG 5.3 Time-multiplexing: Binary codes (II)

• **Coding redundancy**: every edge between adjacent stripes can be decoded by the sequence at its left or at its right

	Posdamer et al.		1	1		1
	Inokuchi et al.		1	1		1
	Minou et al.		1	1		1
Binary codes	Trobina		1	1		1
	Valkenburg and McIvor		1	1		1
	Skocaj and Leonardis		1	1		1
	Rocchini et al.		1		1	1
	Scene applicability	Static				
	эсене аррисавиту	Moving				
Binary Pixel depth Grey levels	Binary					
	Grey levels					
Colour Coding strategy Colour		Colour				
		Periodical				
	County strategy	Absolute				

Lecture 5: Pattern Projection Techniques

UdG 5.3 Time-multiplexing: N-ary codes (I)

- n-ary codes reduce the number of patterns by increasing the number of projected intensities (grey levels/colours) → increases the basis of the code
- The number of patterns, the number of grey levels or colours and the number of encoded stripes are strongly related \rightarrow fixing two of these parameters the reamaining one is obtained

Using a binary code, 6 patterns are necessary to encode 64 stripes

Using a 4-ary code, 3 patterns are used to encode 64 stripes (Horn & Kiryati)

5.3 Time-multiplexing: N-ary codes (II)

• n-ary codes reduce the number of patterns by increasing the number of projected intensities (grey levels/colours)

	Caspi et al.						
N-ary codes	N-ary codes Horn and Kiryati						
	Osawa et al.						
	Scene applicability						
	Эсене аррисавніцу	Moving					
		Binary					
	Pixel depth Grey levels Colour Coding strategy						
	couning strategy	Absolute					

UdG 5.3 Time-multiplexing: Gray code+Phase shifting (I)

• A sequence of binary patterns (Gray encoded) are projected in order to divide the object in regions

Example: three binary patterns divide the object in 8 regions

- An additional periodical pattern is projected
- The periodical pattern is projected several times by shifting it in one direction in order to increase the resolution of the system \rightarrow similar to a laser scanner

Without the binary patterns we would not be able to distinguish among all the projected slits

Every slit always falls in the same region

Gühring's line-shift technique

UdG 5.3 Time-multiplexing: Gray code+Phase shifting (II)

- A periodical pattern is shifted and projected several times in order to increase the resolution of the measurements
- The Gray encoded patterns permit to differentiate among all the periods of the shifted pattern

UdG 5.3 Time-multiplexing: Hybrid methods (I)

• In order to decode an illuminated point it is necessary to observe not only the sequence of intensities received by such a point but also the intensities of **few** (normally 2) adjacent points

• The number of projected patterns reduces thanks to the spatial information that is

taken into account

Hall-Holt and Rusinkiewicz technique:

4 patterns with 111 binary stripes

Edges encoding: 4x2 bits (every adjacent stripe is a bit)

5.3 Time-multiplexing: Hybrid methods (II)

5.3 Time-multiplexing: Results

Gühring

Lecture 5: Pattern Projecti

5.3 Time-multiplexing: Conclusions

Types of techniques		
Time-multiplexing	 Highest resolution High accuracy Easy implementation	Large number of patternsOnly motionless objects

- 5.1 Passive vs active stereo
- 5.2 Coded structured light
- 5.3 Classification: Time multiplexing
- 5.4 Classification: Spatial codification
- 5.5 Classification: Direct codification
- 5.6 Optimising De Bruijn patterns
- 5.7 Implementation of a De Bruijn pattern

- 5.1 Passive vs active stereo
- 5.2 Coded structured light
- 5.3 Classification: Time multiplexing
- 5.4 Classification: Spatial codification
- 5.5 Classification: Direct codification
- 5.6 Optimising De Bruijn patterns
- 5.7 Implementation of a De Bruijn pattern

5.4 Spatial Codification

	Binary codes	Posdamer et al., Inokuchi et al., Minou et al., Trobina, Valkenburg and McIvor, Skocaj and Leonardis, Rocchin et al.,
TIME-	n-ary codes	Caspi et al., Horn and Kiryati, Osawa et al.,
MULTIPLEXING	Gray code + Phase shifting	Bergmann, Sansoni et al., Wiora, Gühring,
	Hybrid methods	K. Sato, Hall-Holt and Rusinkiewicz, Wang et al.,
	Non-formal codification	Maruyama and Abe, Durdle et al., Ito and Ishii, Boyer and Kak, Chen et al.,
SPATIAL CODIFICATION	De Bruijn sequences	Hügli and Maître, Monks et al., Vuylsteke and Oosterlinck, Salvi et al. Lavoi et al., Zhang et al.,
CODITICATION	M-arrays	Morita et al., Petriu et al., Kiyasu et al., Spoelder et al., Griffin and Yee, Davies and Nixon, Morano et al.,
DIRECT	Grey levels	Carrihill and Hummel, Chazan and Kiryati, Hung,
CODIFICATION	Colour	Tajima and Iwakawa, Smutny and Pajdla, Geng, Wust and Capson, T.

5.4 Spatial Codification

- Spatial codification paradigm encodes a set of points with the information contained in a neighborhood (called window) around them
- The codification is condensed in a unique pattern instead of multiplexing it along time
- The size of the neighborhood (**window size**) is proportional to the number of encoded points and inversely proportional to the number of used colors
- The aim of these techniques is to obtain a one-shot measurement system ⇒ moving objects can be measured

Advantages:

- Moving objects supported
- Possibility to condense the codification into a unique pattern

Drawbacks:

- Discontinuities on the object surface can produce erroneous window decoding (occlusions problem)
- The higher the number of used colours, the more difficult to correctly identify them when measuring non-neutral coloured surfaces

UdG 5.4 Spatial Codification: Non-formal codification (I)

- The first group of techniques that appeared used codification schemes with no mathematical formulation.
- Drawbacks:
 - the codification is not optimal and often produces ambiguities since different regions of the pattern are identical

Durdle et al. → periodic pattern

-the structure of the pattern is too complex for a good image processing

Maruyama and Abe → complex structure based on slits containing random cuts

5.4 Spatial Codification: Non-formal codification (II)

5.4 Spatial Codification: De Bruijn sequences (I)

• A De Bruijn sequence (or pseudorrandom sequence) of order m over an alphabet of n symbols is a circular string of length n^m that contains every substring of length m exactly once (in this case the windows are unidimensional).

$$1000010111101001 \begin{cases} m=4 \text{ (window size)} \\ n=2 \text{ (alphabet symbols)} \end{cases}$$

• Formulation:

Given $P=\{1,2,...,p\}$ set of colours.

• We want to determine $S = \{s_1, s_2, ..., s_n\}$ sequence of coloured slits.

```
Node: \{ijk\} \in VR_p^3
                                                        m = 3 (window size)
Number of nodes: p^3 nodes.
                                                        n = p (alphabet symbols)
Transition {ijk} \land {rst} \Rightarrow j = r, k = s
```

- The problem is reduced to obtain the path which visits all the nodes of the graph only once (a simple variation of the Salesman's problem).
 - Backtracking based solution.
 - Deterministic and optimally solved by Griffin.

UdG 5.4 Spatial Codification: De Bruijn sequences (II)

Example:

Path: (111),(112),(122),(222),(221),(212),(121),(211).

Slit colour sequence: $111,2,2,2,1,2,1,1 \Rightarrow$ Maximum 10 slits.

 $1' \rightarrow \text{Red}$

2 \rightarrow Green

UdG 5.4 Spatial Codification: De Bruijn sequences (III)

- The De Bruijn sequences are used to define coloured slit patterns (single axis codification) or grid patterns (double axis codification)
- In order to decode a certain slit it is only necessary to identify one of the windows in which it belongs to

Zhang et al.: 125 slits encoded with a De Bruijn sequence of 5 colors and window size of 3 slits

Salvi et al.: grid of 29×29 where a De Bruijn sequence of 3 colors and window size of 3 slits is used to encode the vertical and horizontal slits

5.4 Spatial Codification: De Bruijn sequences (IV)

	Hügli and M	laître	1		1	√	1
De Bruijn sequences	Monks et al.		1		√	√	
	Salvi et al.		1		√	√	
	Lavoie et al.		1		√	√	
	Zhang et al. $\sqrt{}$				1	√	
	Scene applicability	Static					
	Seeme applicability	Moving					
		Binary					
	Pixel depth	Grey levels					
	Colour Coding strategy Absolute						
					•		

UdG 5.4 Spatial Codification: M-arrays (I)

• An m-array is the bidimensional extension of a De Bruijn sequence. Every window of w×h units appears only once. The window size is related with the size of the m-array and the number of symbols used

0	0	1	0	1	0
0	1	0	0 1	1	0
1	1	0	0	1	1
0	0	1	0	1	0

Example: binary marray of size 4×6 and window size of 2×2

Morano et al. M-array represented with an array of coloured dots

M-array proposed by Vuylsteke et al. Represented with shape primitives

5.4 Spatial Codification: M-arrays (II)

Lecture 5: Pattern Projection Techniques

5.4 Spatial Codification: Results

5.4 Spatial Codification: Results

Types of techniques		P
Time-multiplexing	 Highest resolution High accuracy Easy implementation	Large number of patternsOnly motionless objects
Spatial codification	A unique pattern is requiredCan measure moving objects	 Lower resolution than time- multiplexing More complex decoding stage Occlusions problem

5. Pattern Projection Techniques

- 5.1 Passive vs active stereo
- 5.2 Coded structured light
- 5.3 Classification: Time multiplexing
- 5.4 Classification: Spatial codification
- 5.5 Classification: Direct codification
- 5.6 Optimising De Bruijn patterns
- 5.7 Implementation of a De Bruijn pattern

5. Pattern Projection Techniques

- 5.1 Passive vs active stereo
- 5.2 Coded structured light
- 5.3 Classification: Time multiplexing
- 5.4 Classification: Spatial codification
- 5.5 Classification: Direct codification
- 5.6 Optimising De Bruijn patterns
- 5.7 Implementation of a De Bruijn pattern

5.5 Direct Codification

CODIFICATION	Colour	Tajima and Iwakawa, Smutny and Pajdla, Geng, Wust and Capson, T. Sato,
DIRECT	Grey levels	Carrihill and Hummel, Chazan and Kiryati, Hung,
CODITICATION	M-arrays	Morita et al., Petriu et al., Kiyasu et al., Spoelder et al., Griffin and Yee, Davies and Nixon, Morano et al.,
SPATIAL CODIFICATION	De Bruijn sequences	Hügli and Maître, Monks et al., Vuylsteke and Oosterlinck, Salvi et al. Lavoi et al., Zhang et al.,
	Non-formal codification	Maruyama and Abe, Durdle et al., Ito and Ishii, Boyer and Kak, Chen et al.,
	Hybrid methods	K. Sato, Hall-Holt and Rusinkiewicz, Wang et al.,
MULTIPLEXING	Gray code + Phase shifting	Bergmann, Sansoni et al., Wiora, Gühring,
TIME-		
	Binary codes	Posdamer et al., Inokuchi et al., Minou et al., Trobina, Valkenburg and McIvor, Skocaj and Leonardis, Rocchin et al.,

5.5 Direct Codification

- Every encoded pixel is identified by its own intensity/colour
- Since the codification is usually condensed in a unique pattern, the **spectrum** of intensities/colours used is very large
- Additional **reference patterns** must be projected in order to differentiate among all the projected intensities/colours:
 - Ambient lighting (black pattern)
 - Full illuminated (white pattern)
 - ...

Advantages:

- Reduced number of patterns
- High resolution can be teorically achieved (all points are coded)

Drawbacks:

- Very noisy in front of reflective properties of the objects, non-linearities in the camera spectral response and projector spectrum

 non-standard light emitters are required in order to project single wave-lengths
- Low accuracy (order of 1 mm)

5.5 Direct Codification: Grey levels (I)

Every encoded point of the pattern is identified by its intensity level

Carrihill and Hummel
Intensity Ratio Sensor: fade
from black to white

Requirements to obtain high resolution

- Every slit must be projected using a single wave-length
- Cameras with large depth-per-pixel (about 11 bits) must be used in order to differentiate all the projected intensities

5.5 Direct Codification: Grey levels (II)

UdG 5.5 Direct Codification: Colour (I)

Every encoded point of the pattern is identified by its colour

Tajima and Iwakawa rainbow pattern

(the rainbow is generated with a source of white light passing through a crystal prism)

T. Sato patterns capable of cancelling the object colour by projecting three shifted patterns

(it can be implemented with an LCD projector if few colours are projected → drawback: the pattern becomes periodic in order to maintain a good resolution)

5.5 Direct Codification: Colour (II)

	Tajima and Iw	vakawa	1			1		1
Colour	Smutny and Pajdla		1			1		1
	Geng			1		1		1
	Wust and Capson			1		1	1	
	T. Sato		√			1	1	
	Scene applicability	Static						
	occine appricability	Moving						
		Binary						
	Pixel depth Grey levels Colour Periodical							
	Coding strategy	Absolute						

5.5 Direct Codification: Results

5.5 Direct Codification: Conclusions

Types of techniques		
Time-multiplexing	 Highest resolution High accuracy Easy implementation	Large number of patternsOnly motionless objects
Spatial codification	A unique pattern is requiredCan measure moving objects	 Lower resolution than time-multiplexing More complex decoding stage Occlusions problem
Direct codification	 Very sensitive to image description High resolution Few patterns Sensitive to limited LCD projectors → spendevices are usually redevices objectives Only motionless objectives 	

5. Pattern Projection Techniques

- 5.1 Passive vs active stereo
- 5.2 Coded structured light
- 5.3 Classification: Time multiplexing
- 5.4 Classification: Spatial codification
- 5.5 Classification: Direct codification
- 5.6 Optimising De Bruijn patterns
- 5.7 Implementation of a De Bruijn pattern

5. Pattern Projection Techniques

- 5.1 Passive vs active stereo
- 5.2 Coded structured light
- 5.3 Classification: Time multiplexing
- 5.4 Classification: Spatial codification
- 5.5 Classification: Direct codification
- 5.6 Optimising De Bruijn patterns
- 5.7 Implementation of a De Bruijn pattern

Guidelines

Requirements	Best technique		
 High accuracy Highest resolution Static objects No matter the number of patterns 	Phase shift + Gray code → Gühring's line-shift technique		
 High accuracy High resolution Static objects Minimum number of patterns	N-ary pattern → Horn & Kiryati Caspi et al.		
High accuracyGood resolutionMoving objects	Optimised Bruijn pattern → Salvi and Pagés.		

Presentation outline

- 2.- An Optimised one-shot technique
 - Typical one-shot patterns
 - Optimal pattern
 - A new coding strategy
 - Implementation design
 - Experimental results
 - Conclusions

Typical one-shot patterns

Stripe pattern

Array of dots

De Bruijn codification

Multi-slit pattern
M-array codification

Array of shape primitives

Grid pattern

Checkerboard pattern

Best one-shot patterns

	Stripe patterns	High resolution and good accuracy
De Bruijn patterns	Multi-slit patterns	High accuracy and good resolution
	Grid patterns	Low resolution
M-array patterns	Array of dots	Low resolution and inaccurate sub-pixel localisation of the dots
	Shape primitives	Low accuracy and difficult sub-pixel localisation of shape primitives
	Checkerboard	Low resolution

Optimising De Bruijn patterns: interesting features

Optimisation	Advantages
Maximising resolution	Larger number of correspondences in a single shot
Maximising accuracy	Better quality in the 3D reconstruction
Minimising the window size	More robustness against discontinuities in the object surface
Minimising the number of colours	More robustness against non-neutral coloured objects and noise

Optimisation: maximising resolution

Ideal pattern: the one which downsamples the projector resolution so that all the projected pixels are perceived in the camera image → in fact only columns or rows must be identified in order to triangulate 3D points.

Stripe patterns: achieve maximum resolution since they are formed by adjacent bands of pixels.

Multi-slit patterns: the maximum resolution is not achieved since black gaps are introduced between the slits

Optimisation: maximising accuracy

Ideal pattern: multi-slit patterns allow intensity peaks to be detected with precise sub-pixel accuracy

Multi-slit pattern

Stripe pattern

RGB channels intensity profile of a row of the image

Edge detection between stripes: need to find edges in the three RGB channels
the location of the edges does not coincide

Optimisation: minimising the window 64 size and the number of colours

	Maximising	Minimising
Number of colours	 Larger resolution Smaller distance in the Hue space → more difficult colour identification 	 Smaller resolution Larger distance in the Hue space → Easier colour identification
Window size	 Larger resolution Danger to violate the local smoothness assumption 	Smaller resolutionMore robustness against surface discontinuities

If both the number of colours and the window size are minimised the resolution decreases

Optimising De Bruijn patterns: summary

Optimisation	Best pattern	
Maximising resolution	Stripe pattern	
Maximising accuracy	Multi-slit pattern	
Minimising the window size and the number of colours preserving a good resolution	Stripe pattern + multi-slit pattern	

A new hybrid pattern

Lecture 5: Pattern Projection Techniques

The new coding strategy

Given n different values of Hue and a window size of length m

A pattern with 2n^m stripes is defined with a square Luminance profile with alternating full-illuminated and half-illuminated stripes

The half-illuminated stripes of every period are coloured according to a De Bruijn sequence of order m-1 and the same n Hue values

The new coding strategy

Lecture 5: Pattern Projection Techniques

Implementation design of the coded so structured light technique

Most of the processes of this schema are valid for any one-shot technique based on colour structured light

Offline processing: RGB channel misalignment calibration

Lecture 5: Pattern Projection Techniques

UdG Offiline processing: geometric calibration

coordinate

system

- Camera: Pinhole + Radial lens distortion

Projector: like a reverse camera

Offline processing: colour selection (I)

Each RGB channel has different sensitivity → the intensity perceived is

in function of the projected Hue

Example: selection of n=3 colours

1) Select n equi-spaced Hue levels

2) Project the n Hue values with different Luminance values and interpolate their response curve.

3) Given the maximum and minimum levels of luminances that we want to perceive → the corresponding projecting luminances for every Hue can be chosed

Offline processing: colour selection (II)

The projector-camera system introduces a strong colour cross-talk which makes colour identification difficult.

The highest cross-talk exists between the green and the red channel

The cross-talk can be reduced with a calibration procedure:

- a pure red, green and blue patterns are projected over a colourneutral panel.
- a linear mapping is calculated between the colour instructions and the perceived ones → a cross-talk matrix is obtained
- this matrix approximates the behaviour of the projector-camera system → This matrix will be used online to reduce the cross-talk.

Offline processing: peak compensation calibration

Every peak of luminosity is affected by the colours of the surrounding stripes \rightarrow the detected peak position is affected by an offset

Peak compensation calibration: the pattern containing both full and halfilluminated stripes is projected and then the pattern only containing the full-illuminated stripes is also projected

Lecture 5: Pattern Projection Techniques

Experimental results (I)

Lecture 5: Pattern Projection Techniques

Experimental results (II)

Conclusions

- A new coding strategy for one-shot patterns has been presented.
- The new pattern combines the high resolution of stripepatterns and the high accuracy of multi-slit patterns.
- A pattern with 2n^m stripes is achieved with only n levels of Hue and a window property equal to m. (ex. 2*4³ = 128 stripes)
 - Given the same parameters, stripe-patterns encoded with classical De Bruijn sequences have a resolution of n^m (ex. 4³ = 64 stripes)
 - The resolution has been doubled.
- The pattern has a sinusoidal profile in the luminance channel so that maximum and minimum peaks can be accurately detected with classical peak detectors.

n = Number of colours (4), m = Window size (3)

Published Material

Journals

- J. Pagés, J. Salvi, J. Forest. Optimised De Bruijn patterns for one-shot shape acquisition. Image and Vision Computing. 23(8), pp 707-720, August 2005.
- J. Salvi, J. Pagés, J. Batlle. Pattern Codification Strategies in Structured Light Systems.
 Pattern Recognition 37(4), pp 827-849, April 2004.
- J. Batlle, E. Mouaddib and J. Salvi. A Survey: Recent Progress in Coded Structured Light as a Technique to Solve the Correspondence Problem. Pattern Recogniton 31(7), pp 963-982, July 1998.
- J. Salvi, J. Batlle and E. Mouaddib. A Robust-Coded Pattern Projection for Dynamic 3D Scene Measurement. Pattern Recognition Letters 19, pp 1055-1065, September 1998.

Recent Conferences

- J. Pagès, J. Salvi and J. Forest. Optimised De Bruijn Patterns for One-Shot Shape Acquisition. IEEE Int. Conf. on Pattern Recognition, ICPR 2004, Cambridge, Great Britain, 2004.
- J. Pagès, J. Salvi and C. Matabosch. Implementation of a robust coded structured light technique for dynamic 3D measurements. IEEE Int. Conf. on Image Processing, ICIP 2003, Barcelona, Spain, Septembre 2003.
- J. Pagès, J. Salvi, R. García and C. Matabosch. Overview of coded light projection techniques for automatic 3D profiling. IEEE Int. Conf. on Robotics and Automation, ICRA 2003, Taipei, Taiwan, May 2003.

More Information: http://eia.udg.es/~qsalvi/