© Laurent Garcin MP Dumont d'Urville

Devoir à la maison $n^{\circ}05$

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – ESSEC 2000

Dans l'ensemble du problème, on désigne par n un nombre entier naturel non nul et par $\mathbb{R}_n[x]$ l'espace vectoriel des fonctions polynômes de degré inférieur ou égal à n. On note \mathcal{P}_n le sous-ensemble de $\mathbb{R}_n[x]$ formé des polynômes unitaires de degré n, c'est-à-dire de degré n et dont le coefficient de x^n est égal à 1.

L'objectif du problème est de déterminer des polynômes $P \in \mathcal{P}_n$ réalisant le minimum sur \mathcal{P}_n de chacune des trois expressions suivantes :

$$N_1(P) = \int_{-1}^{1} |P(x)| dx \qquad N_2(P) = \left(\int_{-1}^{1} |P(x)|^2 dx\right)^{1/2} \qquad N_{\infty}(P) = \sup_{-1 \le x \le 1} |P(x)|$$

Les trois parties du problème sont consacrées à la résolution des trois problèmes ainsi définis. La partie I est indépendante des deux suivantes.

I Minimisation de $N_2(P)$ pour $P \in \mathcal{P}_n$

On associe à tout couple (P, Q) de polynômes de $\mathbb{R}_n[x]$ le nombre réel suivant :

$$\langle P, Q \rangle = \int_0^1 P(t)Q(t) dt.$$

- 1 Montrer que l'application $(P, Q) \mapsto \langle P, Q \rangle$ définit un produit scalaire sur $\mathbb{R}_n[x]$.
- 2 On considère la fonction f associant à tout n-uplet $(x_0, ..., x_{n-1}) \in \mathbb{R}^n$:

$$f(x_0, \dots, x_{n-1}) = \int_0^1 (t^n - x_{n-1}t^{n-1} - \dots - x_1t - x_0)^2 dt$$

2.a Citer le théorème garantissant l'existence et l'unicité de $(a_0, ..., a_{n-1})$ réalisant le minimum m_n de f sur \mathbb{R}^n , et montrer que ces réels $a_0, a_1, ..., a_{n-1}$ vérifient :

$$\forall k \in [0, n-1], \int_0^1 (t^n - a_{n-1}t^{n-1} - \dots - a_1t - a_0) t^k dt = 0$$

On explicitera ces relations en claclulant ces intégrales.

2.b On pose, pour tout $x \in \mathbb{R} \setminus \{-1, -2, \dots, -n-1\}$:

$$F(x) = \frac{1}{x+n+1} - \frac{a_{n-1}}{x+n} - \frac{a_{n-2}}{x+n-1} - \dots - \frac{a_1}{x+2} - \frac{a_0}{x+1}.$$

Établir l'existence d'un réel a tel que pour tout $x \in \mathbb{R} \setminus \{-1, -2, ..., -n-1\}$:

$$(x+n+1)(x+n)(x+n-1)\cdots(x+1)F(x) = ax(x-1)\cdots(x-n+1),$$

puis déterminer a en fonction de n! et (2n)!.

© Laurent Garcin MP Dumont d'Urville

2.c Établir:

$$m_n = f(a_0, \dots, a_{n-1}) = \int_0^1 (t^n - a_{n-1}t^{n-1} - \dots - a_1t - a_0)t^n dt$$

2.d En déduire que

$$m_n = \frac{(n!)^4}{(2n)!(2n+1)!}$$

3 On résout maintenant le problème de la minimisation de $N_2(P)$ pour $P \in \mathcal{P}_n$.

3.a Pour tout $P \in \mathcal{P}_n$, effectuer le changement de variable x = 2t - 1 dans l'intégrale de $N_2(P)$ et en déduire que :

$$N_2(P) \geq 2^{-n} \sqrt{m_n}$$
.

3.b En déduire le minimum de $N_2(P)$ lorsque P décrit \mathcal{P}_n .

II Minimisation de $N_{\infty}(P)$ pour P décrivant \mathcal{P}_n

On considère la suite de polynômes (T_k) définis par $T_0(X)=1$, $T_1(X)=X$, et pour $k\geq 1$:

$$T_{k+1}(X) = 2XT_k(X) - T_{k-1}(X).$$

 $\boxed{\mathbf{4}}$ Étude des propriétés de T_k .

4.a Montrer que T_k est un polynôme de degré k, de coefficient dominant 2^{k-1} pour $k \ge 1$.

4.b Pour un réel θ , montrer que $T_k(\cos \theta) = \cos(k\theta)$ pour tout $k \in \mathbb{N}$.

5 Minimisation de $N_{\infty}(P)$ lorque P décrit \mathcal{P}_n .

5.a Supposons qu'il existe $P \in \mathcal{P}_n$ tel que :

$$N_{\infty}(P) = \sup_{-1 \le x \le 1} |P(x)| < 2^{1-n}.$$

Préciser le signe de $2^{1-n}T_n\left(\cos\left(\frac{k\pi}{n}\right)\right) - P\left(\cos\left(\frac{k\pi}{n}\right)\right)$ pour $0 \le k \le n$, puis montrer une contradiction.

5.b En déduire le minimum de $N_{\infty}(P)$ lorsque P décrit \mathcal{P}_n .

III Minimisation de $N_1(P)$ pour P décrivant \mathcal{P}_n

On considère la suite (U_k) définie par $U_0(X)=1,\,U_1(X)=2X,$ et pour $k\geq 1$:

$$U_{k+1}(X) = 2XU_k(X) - U_{k-1}(X).$$

6 Étude de propriétés de U_k .

6.a Montrer que U_k est un polynôme, préciser son degré et son coefficient dominant. Etablir de plus que $U_k(-X) = (-1)^k U_k(X)$.

6.b Déterminer les suites (u_k) vérifiant $u_{k+1} - 2\cos\theta u_k + u_{k-1} = 0$. En déduire pour tout nombre $\theta \in]0, \pi[$ l'expression de $U_k(\cos\theta)$ en fonction $\sin((k+1)\theta)$ et $\sin\theta$ puis déterminer les valeurs $U_k(1)$ et $U_k(-1)$.

6.c En dérivant $T_k(\cos \theta) = \cos(k\theta)$, exprimer $(k+1)U_k$ en fonction de T'_{k+1} .

7 Pour $x \in \mathbb{R}$, on définit sgn(x) par :

$$sgn(x) = \begin{cases} -1 & x < 0, \\ 0 & x = 0, \\ 1 & x > 0. \end{cases}$$

On suppose qu'il existe $P \in \mathcal{P}_n$ tel que :

$$\forall k \in [0, n-1], \int_{-1}^{1} x^k \operatorname{sgn}(P(x)) dx = 0$$
 (*)

7.a Prouver que, pour tout $Q \in \mathcal{P}_n$,

$$\int_{-1}^{1} (Q(x) - P(x)) \operatorname{sgn}(P(x)) dx = 0$$

- **7.b** En déduire que $N_1(P) \le N_1(Q)$.
- **7.c** Calculer $N_1(U_n)$ par le changement de variable $x = \cos \frac{\theta}{n+1}$. En admettant que le polynôme $U_n/2^n$ satisfait l'hypothèse (\star) , en déduire le minimum de $N_1(P)$ lorsque P décrit \mathcal{P}_n .
- 8 On démontre pour terminer que $U_n/2^n$ satisfait bien l'hypothèse (*). On introduit $c_j = \cos \frac{j\pi}{n+1}$ où $0 \le j \le n+1$.
 - **8.a** Déterminer $U_n(c_j)$ et le signe de U_n sur chaque intervalle $]c_{j+1}, c_j[$.
 - **8.b** Pour $0 \le k < n$, on pose

$$I_k = \int_{-1}^1 x^k \operatorname{sgn}(U_n(x)) \, \mathrm{d}x.$$

Déterminer I_k lorsque n + k est impair

8.c On suppose que n + k est pair. Pouver que

$$I_k = \frac{2}{k+1} \sum_{i=0}^{n} (-1)^j c_j^{k+1}$$

En déduire que $I_k = 0$ puis que $U_n/2^n$ satisfait bien l'hypothèse (\star) .