

Construction d'arbre couvrants Auto-stabilisants

M2

Lélia Blin

lelia.blin@irif.fr

Spécification du problème de l'arbre couvrant

Soit G(V,E) un graphe non-dirigé connecté. Un sous-graphe acyclique qui relie tous les noeuds de G est appelé un arbre couvrant de G, noté ST(G).

Notion de pointeur

Dans un arbre couvrant, la propriété acyclique garantit l'absence de cycles, tandis que l'obligation pour chaque nœud d'avoir un pointeur unique vers un voisin garantit un chemin distinct et sans ambiguïté entre les nœuds.

Construction d'un arbre couvrants autostabilisants

Principales difficultés

- Casser de cycle
- Pointeur de nœud vide (Fausses racines)

Arbres couvrants sous contrainte

- Arbre couvrant BFS
- Arbre couvrant DFS
- Arbre couvrant de poids minimum
- Arbre couvrant de degré minimum
- Arbre couvrant à diamètre minimum

• ...

Un algorithme auto-stabilisant pour la construction d'arbres couvrants

1991 Chen Yu Huang IPL

Modèle

- Semi-uniforme \rightarrow nœud racine noté r
- Anonyme
- Connaissance : n
- Ordonnanceur : central (un seul nœud est activé à chaque étape)

Variables locales

- ullet Level $: L_v \in \{1, \ldots, n\}$ ullet Parent $: p_v \in \{0, \ldots, n\}$
- Remarque : r n'a pas de parent et son niveau est zéro.
- Ces variables utilisent $O(\log_2 n)$ bits de mémoire par noeud

Algorithme

 $egin{cases} R_0: L_v
eq n \wedge L_v
eq L_{p_v} + 1 \wedge L_{p_v}
eq n \longrightarrow L_v = L_{p_v} + 1 \ R_1: L_v
eq n \wedge L_{p_v} = n \longrightarrow L_v = n \ R_2: L_v = n \wedge \exists u \in N(v) | L_u < n-1 \longrightarrow L_v = L_u + 1; p_v = u \end{cases}$

Exemple

Exemple

Configuration légale

$$GST \equiv (orall v \in V \setminus \{r\} | L_v = Lp_v + 1)$$

Définitions

• Un pointeur parent est dit Well-Formed (WF) pointeur si

$$L_v
eq n \wedge L_{p_v}
eq n \wedge L_v = L_{p_v} + 1$$

- ullet $S_v^{L_v}$ pour désigner l'ensemble WF enraciné en v (structure arborescente)
 - \circ Ex Fig1 initial $S_c^0=\{c\}$, $S_a^1=\{a,b,e\}$, $S_d^5=\{d\}$.

interblocage 5no deadlock)

Lemme 1: Avant que GST soit vrai, il existe au moins un noeud activable.

Preuve : Avant que GST soit vrai, il doit exister un ensemble WF $S_v^{L_v}$, avec $v \neq r$. Deux cas à considérés

- 1. Nous considérons v
 eq r si $L_v
 eq n$ v est activable par R_0 ou R_1 parce que $L_{p_v}
 eq n$ ou $L_{p_v} = n$.
- 2. $L_v=n$ pour tout ensemble WF $S_v^{L_v}$, $v \neq r$. Puisque G est connexe, il existe au moins une arête entre un noeud u dans S_r^0 et un noeud v, $v \neq r$ et $S_v^{L_v} = S_v^n = \{v\}$. Comme $L_r=0$ et $|S_r^0| < n$, nous avons $L_u < n-1$. Par conséquent, le nœud v peut appliquer R_2 pour effectuer un déplacement. \square

Définitions de la fonction F

- Soit γ une configuration et soit t_k : $0 \le k \le n$ le nombre d'ensembles WF $S_v^{L_v}$ tels que $L_v = k$.
- $F(\gamma) = (t_0, t_1, \ldots, t_n)$ avec $0 \leq i < n$
- ullet La comparaison de F est lexicographique.
- F est une fonction bornée dont la valeur maximale est $(1, n_1, 0, \ldots, 0)$ et la valeur minimale $(1, 0, \ldots, 0)$.

Step 0: $S_c^0 = \{c\}, S_a^1 = \{a, b, e\}, S_d^5 = \{d\}$ $F = \{1, 1, 0, 0, 0, 1\}$ Step 1: $S_c^0 = \{c\}, S_b^2 = \{b, e\}, S_a^5 = \{a\}, S_d^5 = \{d\}$ $F = \{1, 0, 1, 0, 0, 2\}$ Step 2: $S_c^0 = \{c\}, S_e^3 = \{e\}, S_a^5 = \{a\}, S_b^5 = \{b\}, S_d^5 = \{d\}$ $F = \{1, 0, 0, 1, 0, 3\}$ Step 3: $S_c^0 = \{c, b\}, S_e^3 = \{e\}, S_a^5 = \{a\}, S_d^5 = \{d\}$ $F = \{1, 0, 0, 1, 0, 2\}$ Step 4: $S_c^0 = \{c, b, d\}, S_e^3 = \{e\}, S_a^5 = \{a\}$ $F = \{1, 0, 0, 1, 0, 1\}$ Step 5: $S_c^0 = \{c, b, d, e\}, S_a^5 = \{a\}$ $F = \{1, 0, 0, 0, 0, 1\}$ Step 6: $S_c^0 = \{c, b, d, e, a\}$ $F = \{1, 0, 0, 0, 0, 0, 0\}$

Step 0:
$$S_c^0 = \{c\}, S_a^1 = \{a, b, e\}, S_d^5 = \{d\}$$
 $F = (1, 1, 0, 0, 0, 1)$

Step 1:
$$S_c^0 = \{c\}, S_b^2 = \{b, e\}, S_a^5 = \{a\}, S_d^5 = \{d\}$$
 $F = (1, 0, 1, 0, 0, 2)$

Step 2:
$$S_c^0 = \{c\}, S_e^3 = \{e\}, S_a^5 = \{a\}, S_b^5 = \{b\}, S_d^5 = \{d\}$$
 $F = (1, 0, 0, 1, 0, 3)$

Step 3:
$$S_c^0 = \{c, b\}, S_e^3 = \{e\}, S_a^5 = \{a\}, S_d^5 = \{d\}$$
 $F = (1, 0, 0, 1, 0, 2)$

Step 4:
$$S_c^0 = \{c, b, d\}, S_e^3 = \{e\}, S_a^5 = \{a\}$$
 $F = \{1, 0, 0, 1, 0, 1\}$

Step 5:
$$S_c^0 = \{c, b, d, e\}, S_a^5 = \{a\}$$
 $F = (1, 0, 0, 0, 0, 1)$

Step 6:
$$S_c^0 = \{c, b, d, e, a\}$$
 $F = (1, 0, 0, 0, 0, 0)$

Règle R_0

Lemme 2 : F diminue monotonement à chaque fois que la règle R_0 est appliquée.

Exemple d'exécution

$$R_0: L_v
eq n \wedge L_v
eq L_{p_v} + 1 \wedge L_{p_v}
eq n \longrightarrow L_v = L_{p_v} + 1$$

$$\begin{split} \gamma : & S_r^0 = \{r\}, S_{p_v}^2 = \{p_v\}, S_x^3 = \{x\}, S_v^4 = \{v, u, w\} \\ \longrightarrow & F(\gamma) = (1, 0, 1, 1, 1, 0, 0) \\ \gamma' : & S_r^0 = \{r\}, S_{p_v}^2 = \{p_v, v\}, S_x^3 = \{x\}, S_u^5 = \{u, w\} \\ \longrightarrow & F(\gamma') = (1, 0, 1, 1, 0, 1, 0) \\ \text{conclusion } & F(\gamma') < F(\gamma) \end{split}$$

Preuve du lemme 2

- Considérons un noeud v, avec $k=L_v(\gamma)$ tel que $v\in S_v^k$ dans γ de sorte que t_k n'est pas nul dans γ ;
- Soit p_v le parent de v dans la configuration γ , si v peut exécuter R_0 : $k_p = L_{p_v}(\gamma)
 eq k-1.$
- Si le nœud v exécute R_0 dans la configuration γ , il devient un élément de $S_{p_v}^{k_p}$, de sorte que S_v^k disparaît dans γ' et $t_k(\gamma') < t_k(\gamma)$.

Preuve du lemme 2

- Soit dénotés par u_i les enfants de v dans la configuration γ telle que $L_{u_i}=k_i=k+1$, tous les enfants étaient dans $S_v^k(\gamma)$ mais dans γ' l'enfant $u_i\in S_{u_i}^{k_i}$, donc $t_{k_i}(\gamma')>t_k(\gamma)$, rappelons que $k_i=k+1$.
- En conséquence,

$$F(\gamma)=(1,\ldots,t_k(\gamma),t_{k_i}(\gamma),\ldots)< F(\gamma')=(1,\ldots,t_k(\gamma'),t_{k_i}(\gamma'),\ldots)$$
 car $t_k(\gamma)< t_k(\gamma')$ et $t_{k_i}(\gamma)> t_{k_i}(\gamma').$

Règle R_1

Lemme 3 : F diminue monotonement à chaque fois que la règle R_1 est appliquée.

Exemple d'exécution

 $R_1: L_v
eq n \wedge L_{p_v} = n \longrightarrow L_v = n$

$$\begin{split} \gamma &: S^0_r = \{r\}, S^3_x = \{x\}, S^4_v = \{v, u, w\}, S^6 = \{p_v\} \\ &\longrightarrow F(\gamma) = (1, 0, 0, 1, 1, 0, 1) \\ \gamma' &: S^0_r = \{r\}, S^3_x = \{x\}, S^5_u = \{u, w\}, S^6_{p_v} = \{p_v\}, S^6_v = \{v\} \\ &\longrightarrow F(\gamma') = (1, 0, 0, 1, 0, 1, 2) \\ &\text{conclusion: } F(\gamma') < F(\gamma) \end{split}$$

Preuve du lemme 3

- ullet Considérons un nœud v, avec $L_v(\gamma) = k$, k < n et $L_{p_v} = n$
- Dans γ nous avons donc $v\in S_k^v$ et $p_v\in S_{p_v}^n$ par conséquent $t_k(\gamma)$ et $t_n(\gamma)$ ne sont pas nuls ;
- Si le noeud v exécute R_1 dans la configuration γ , il devient dans γ' un élément de S_v^n , et S_v^k disparaît donc $t_k(\gamma') < t_k(\gamma)$ et $t_n(\gamma') > t_n(\gamma)$.
- Comme k < n on obtient $F(\gamma') < F(\gamma)$.

Règle R_2

Lemme 4 : F diminue monotonement à chaque fois que la règle R_2 est appliquée.

Auto-stabilisation M2 25/57

Exemple d'exécution de R_2 .

$$R_2: L_v = n \wedge \exists u \in N(v) | L_u < n-1 \longrightarrow L_v = L_u + 1; p_v = u$$

$$\begin{split} \gamma \colon & S^0_r = \{r\}, S^3_x = \{x\}, S^5_u = \{u,w\}, S^6_{p_v} = \{p_v\}, S^6_v = \{v\} \\ \longrightarrow & F(\gamma') = (1,0,0,1,0,1,2) \\ \gamma' \colon & S^0_r = \{r\}, S^3_x = \{x,p_v\}, S^5_u = \{u,w\}, S^6_v = \{v\} \\ \longrightarrow & F(\gamma') = (1,0,0,1,0,1,1) \\ \mathsf{Donc} \, F(\gamma') < & F(\gamma) \end{split}$$

Preuve du lemme 4

La preuve du lemme 4 : Considérons un nœud v tel que $v\in S^n_v$ dans γ de sorte que $t_n(\gamma)$ n'est pas nul dans γ ;

Après l'exécution de la règle R_2 par le noeud v dans γS_v^n disparaît et $t_n(\gamma')=t_n(\gamma)-1$, maintenant v est dans S_u^k et $t_k(\gamma')=t_k(\gamma')$ parce que v atteint un parent avec le bon niveau.

Par définition de R_2 k < n-1 on obtient donc $F(\gamma') < F(\gamma)$.

Théorème

Le système finit par atteindre une configuration légitime.

La preuve : Puisque la valeur initiale de F est finie, et que la plus petite valeur possible pour F est $(1,0,\ldots,0)$, par les Lemmas 2,3 et 4 les règles ne peuvent être appliquées qu'un nombre fini de fois. Par conséquent, d'après le lemme 1, GST est finalement vrai. \square

Conclusion

- Algorithme silencieux auto-stabilisant
- Ordonnanceur centralisé
- Connaissance: *n*
- $O(\log_2 n)$ bits de mémoire par noeud
- Complexité temporelle non fournie

Question: L'espace mémoire est-il optimal?

Algorithme auto-stabilisant pour la construction d'arbres BFS.

Chen Huang 1992

Modèle

- Semi-uniforme \rightarrow nœud racine désigné par r
- Anonyme
- Connaissance : n
- Ordonnanceur : Ordonnanceur équitable distribué

Variables locales

- ullet Level $: L_v \in \{1, \ldots, n\}$ ullet Parent $: p_v \in \{0, \ldots, n\}$
- Remarque : r n'a pas de parent et son niveau est zéro
- Ces variables utilisent $O(\log_2 n)$ bits de mémoire par noeud

Algorithme

- $ullet R_0: L_v
 eq L_{p_v} + 1 \wedge L_{p_v}
 eq n \longrightarrow L_v = L_{p_v} + 1$
- $R_1:L_v>k\longrightarrow L_v=k+1; p_v=k_{id};$ avec $k=\min\{L_u|u\in N(v)\}$ $k_{id}=\min\{id_u|u\in N(v)\land L_u=k\}$

Configuration legale

$$oxed{BFT} \equiv (orall v \in V \setminus \{r\} | L_v = Lp_v + 1 \wedge L_{p_v} = \min\{L_u | u \in N(v)\})$$

Remarque: $BTF(v) \equiv L_v = Lp_v + 1 \wedge L_{p_v} = \min\{L_u | u \in N(v)\}$

Interblocage

Lemma 1 : avant que BFT soit vrai, le système ne provoque jamais de blocage.

Autrement dit au moins un noeud est activable.

Auto-stabilisation M2 35/57

Preuve

- si $n \geq 2$ la preuve est triviale. Considérons pour n > 2.
- ullet Preuve par contradiction, supposons que BFT est faux et qu'aucun noeud ne peut appliquer une règle.
- ullet Pour tout v dans V, il y a un minimum de règles : $eg R_0(v) \wedge
 eg R_1(v) = true$
- ullet $BTF(v)\equiv L_v=Lp_v+1\wedge L_{p_v}=\min\{L_u|u\in N(v)\}=false$
 - 1. $L_v
 eq L_{p_v} + 1$ et $eg R_0(v)
 eg L_{p_v} = n$
 - 2. $L_{p_v} > \min\{L_u | u \in N(v)\}$ et $\neg R_1(v)$ contradiction
 - ightarrow (1) tous les noeuds v ont $L_v=n$, $L_r=0$ donc les voisins de r peuvent appliquer R_1 .

Modifications des règles de correction

- $ullet M_0: L_v \leq L_{p_v} < n \longrightarrow L_v = L_{p_v} + 1$
- $ullet M_1: L_v > L_{p_v} + 1 \longrightarrow L_v = L_{p_v} + 1$
- $ullet M_2: L_v
 eq k \longrightarrow p_v = k_{id};$
 - avec $k=\min\{L_u|u\in N(v)\}$ $k_{id}=\min\{id_u|u\in N(v)\land L_u=k\}$

Fonction potentielle

- $F\equiv (F_1,F_2)$
- $F_1=(t_2,t_3,\ldots,t_n)$ où t_i est un nombre de noeuds $v\in V$ tel que $L_v=i$ et $L_v\leq L_{p_v}$ le noeud v est appelé un i-turn.
- ullet $F_2 = \sum_{v \in V \setminus r} (L_v + L_{p_v})$

Exemples

Init. Config.

$$F_1 = (1, 1, 0, 0)$$

$$F_2\,{=}\,23$$

$$F_1 = (0, 2, 0, 0)$$

$$\mathbf{F_2} = \mathbf{27}$$

$$F_1 = (0, 2, 0, 0)$$

$$F_2 = 25$$

$$F_1 = (0, 2, 0, 0)$$

$$F_2 = 23$$

Exemples

$$F_1 = (0, 2, 0, 0)$$

$$F_2 = 22$$

$$F_1 = (0, 2, 0, 0)$$

$$F_{\,2}\!=20$$

$$F_i = (0, 1, 0, 0)$$

$$F_2 = 21$$

$$F_1 = (0, 1, 0, 0)$$

$$F_2 = 19$$

Exemples

$$F_1 = (0, 1, 0, 0)$$

$$F_2\!=\!17$$

$$\mathbf{F}_1 = (0, 0, 0, 0)$$

$$F_2 = 18$$

$$F_2 = 17$$

$$F_1 = (0, 0, 0, 0)$$

$$F_2 = 16$$

Remarque:

Pour calculer F_1 et F_2 , seul le tuple parent du noeud est pris en compte.

Schéma $2:F_1$ diminue à chaque fois que la règle M_0 est appliquée.

Rappelez-vous:

- $ullet M_0: L_v \leq L_{p_v} < n \longrightarrow L_v = L_{p_v} + 1$
- $F_1=(t_2,t_3,\ldots,t_n)$ où t_i est un nombre de noeuds $v\in V$ tel que $L_v=i$ et $L_v\leq L_{p_v}.$

Preuve du lemme 2 :

- Soit v un noeud k-turn où $k=L_v(\gamma)$, donc v peut exécuter M_0 dans la configuration γ par définition de M_0 et t, après l'exécution du noeud v, v ne reste pas un noeud k-turn.
- ullet Considérons maintenant un nœud u enfant du nœud v tel que
 - 0.5 $L_u(\gamma)=L_v(\gamma)+1$, donc dans $\gamma\,u$ n'est pas un noeud (k+1)-turn mais devient (k+1)-turn après l'activation de v, mais k+1>k donc dans nous obtenons $F_1(\gamma)< F_1(\gamma')$
 - $\circ \ L_u(\gamma) \leq L_v(\gamma)$
 - $\circ \ L_u(\gamma) > L_v + 1$

Lemme 3 : F_2 diminue à chaque fois que la règle M_1 ou M_2 est appliquée.

Remember:

 $ullet M_1: L_v > L_{p_v} + 1 \longrightarrow L_v = L_{p_v} + 1$

 $egin{aligned} ullet M_2: L_v
eq k \longrightarrow p_v = k_{id}; \ &\circ \mathsf{avec}\, k = \min\{L_u|u \in N(v)\}\, k_{id} = \min\{id_u|u \in N(v) \land L_u = k\}. \end{aligned}$

ullet $F_2 = \sum_{v \in V \setminus r} (L_v + L_{p_v})$

Preuve du lemme 3

Si un noeud v applique M_1 ou M_2 alors L(v) diminue, la seule façon d'augmenter F_2 est d'utiliser M_0 mais dans ce cas grâce au lemme 2 F_1 diminue donc F diminue.

Auto-stabilisation M2 46/57

Lemma 4 : F_1 n'augmente pas à chaque fois que la règle M_1 ou M_2 est appliquée.

Remember:

- $ullet M_1: L_v > L_{p_v} + 1 \longrightarrow L_v = L_{p_v} + 1$
- $M_2: L_v
 eq k \longrightarrow p_v = k_{id};$ $\circ ext{ with } k = \min\{L_u|u \in N(v)\}\ k_{id} = \min\{id_u|u \in N(v) \land L_u = k\}$
- ullet $F_2 = \sum_{v \in V \setminus r} (L_v + L_{p_v})$

Théorème : Le système finit par atteindre un état légitime.

Preuve: Directe par les lemmes 2,3,4.

Conclusion

- Algorithme silencieux auto-stabilisant
- Ordonnanceur équitable distribué
- Connaissance: *n*
- $O(\log_2 n)$ bits de mémoire par noeud
- Complexité temporelle non fournie

Question: L'espace mémoire est-il optimal?

Techniques pour casser les cycles

sans connaissance globale

Auto-stabilisation M2 50/57

Principale: Distance par rapport à la racine

Nombre d'enfants

Unicité de l'identité

Algorithme basé sur l'identité :

Freeze : La technique pour détruire le cycle

Blin Tixeuil 2017

Algorithm 4: Algorithm **Freeze**

```
\begin{array}{lll} \mathbb{R}_{\texttt{Error}} & : & \mathsf{ErCycle}(v) \vee \mathsf{ErST}(v) & \longrightarrow \mathsf{froz}_v := 1, \mathsf{p}_v := \varnothing; \\ \mathbb{R}_{\texttt{Froze}} & : & \neg \mathsf{ErCycle}(v) \wedge \neg \mathsf{ErST}(v) \wedge (\mathsf{frozp}_v = 1) \wedge (\mathsf{froz}_v = 0) & \longrightarrow \mathsf{froz}_v := 1; \\ \mathbb{R}_{\texttt{Prun}} & : & \neg \mathsf{ErCycle}(v) \wedge \neg \mathsf{ErST}(v) \wedge (\mathsf{frozp}_v = 1) \wedge (\mathsf{froz}_v = 1) \wedge (\mathsf{Ch}(v) = \varnothing) & \longrightarrow Reset(v); \end{array}
```

- ▶ **Theorem 14.** Algorithm **Freeze** deletes a cycle or an impostor-rooted sub spanning tree in n-nodes graph in a silent self-stabilizing manner, assuming the state model, and a distributed unfair scheduler. Moreover, Algorithm **Freeze** uses O(1) bits of memory per node.
- ▶ Lemma 15. Algorithm Freeze converges in O(n) steps.

Freeze

	Articles	Semi-unif.	Anonyme	Knowledge	Communications	Scheduler	Équité	Atomicité	Silent	Espace mémoire	Temps de convergence	Propriété
ST	ChenYuHuang91	✓		n	R	Central		0	✓	$O(\log n)$	non fourni	
	AggarwalK93	X	Х	Χ	R	С	f	0	✓	$O(\log n)$	O(D)	dyn
DFS	HuangC93	✓	✓	n	R&D					$O(\log \Delta n)$		
	CollinD94	✓	✓		R	С	f	0		$O(n\log \Delta)$	$O(Dn\Delta)$	
	HuangW97		✓	n	R	С	f			$O(\log n)$		
	DattaJPV00	✓	✓		R&D		f			$O(\log \Delta)$	$O(Dn\Delta)$	
BFS	DolevIM90	✓	✓		R	Central	f	0		$O(\Delta \log n)$	O(D)	dyn
	AroraG90			n	R	С				$O(\log n)$	$O(n^2)$	dyn
	AfekKY91				R&D		f	0		$O(\log n)$	$O(n^2)$	dyn
	HuangC92	✓	✓	n	R&D	Inéquitable		0	✓	$O(\log n)$	non fourni	
	Dolev93				R	С	f	0		$O(\Delta n \log n)$	$\Theta(D)$	dyn
	Johnen97	✓	✓		R			f	Χ	$O(\log \Delta)$	O(n)	
	AfekB98				M&D				✓	$O(\log n)$		O(n)
	HuangL02	✓	✓		R	С	I			$O(\log n)$		
	DattaLV08				R&D		f	⊕		$O(\log n)$	O(n)	
	CournierRV19											
	DattaDJL23	✓	✓		R		U	Φ	X	$O(\log \Delta)$	$O(D. n^2)$	

Auto-stabilisation M2 56/57

Espace mémoire

Avec la propriété de silence espace mémoire $\Omega(\log_2 n)$ bits (uniforme ou semi-uniforme)

Sans la propriété de silence: la meilleur complexité mémoire connue $O(\Delta + \log_2 \log_2 n)$ bits par noeud (uniforme).