

Accelerating MCAE with GPUs

Information Sciences Institute

15 Sept 2010

Bob Lucas, Gene Wagenbreth, Dan Davis, Roger Grimes
 {rflucas,genew,ddavis}@isi.edu and grimes@lstc.com

Report Documentation Page			Form Approved OMB No. 0704-0188	
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>				
1. REPORT DATE 15 SEP 2010	2. REPORT TYPE	3. DATES COVERED 00-00-2010 to 00-00-2010		
4. TITLE AND SUBTITLE Accelerating MCAE with GPUs		5a. CONTRACT NUMBER		
		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)		5d. PROJECT NUMBER		
		5e. TASK NUMBER		
		5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Information Sciences Institute, , ,		8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited				
13. SUPPLEMENTARY NOTES This material is based on research sponsored by the U.S. Joint and Forces Command via a contract with the Lockheed Martin Corporation and SimIS, Inc., and on research sponsored by the Air Force Research Laboratory under agreement numbers F30602-02- C C-0213 and FA8750-05-2-0204.				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT Public Release	18. NUMBER OF PAGES 34
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified		

MCAE Sparse Solver Bottleneck
Review of Multifrontal Method
Adding a GPU
Performance Results
Future Directions

Mechanical Computer Aided Engineering

ISVs ABAQUS, ANSYS, LS-DYNA, & NASTRAN

GOTS Alegra, ALE3D, CTH, & ParaDYN

Broad range of capabilities

Static analysis

Vibration analysis

Crash analysis

Defense Examples

Shaped charge
Courtesy FEA Info & LSTC

CH47 Landing
Courtesy FEA Info & Boeing

Computational Bottleneck

Total time
Linear solver
Factorization

2057 sec.
1995 sec.
1981 sec.

97%
96%

Test Problem: cylinders cyl1f6

AWE benchmark
230K 3D Finite Elements
Courtesy LSTC

Toy Sparse Matrix

1

```

do 4 k = 1, 9
do 1 i = k + 1, 9
  a(i, k) = a(i,k) / a(k,k)
1  continue
do 3 j = k + 1, 9
  do 2 i = k + 1, 9
    a(i,j) = a(i,j) -
1          a(i,k) *
2          a(k,j)
2  continue
3  continue
4  continue

```

1		4	7
2	5		8
3	6		9

1	X	X	X
3	XX		X
2	XXX	*X*	*
7	X	XX	
9		XX	X
8	XXX	*X*	
4	X	*X	*XX*
5	X		XXXX
6	X*	X**XX	

Multifrontal View of the Toy Matrix

Duff and Reid, ACM TOMS 1983

A Real Problem : “Hood”

Automotive Hood Inner Panel
Springback using LS-DYNA

“Hood” Elimination Tree

Each frontal matrix's triangle scaled by operations required to factor it.

Concurrency within frontal matrices

Small P => column wrap

Large P => 2D (ala LINPACK benchmark)

Concurrency across elimination tree

Frontal matrices only dependent on children

“Subtree – subcube” typically used

Limits communication

Level 1

DOALL

Level 2

DOALL

Level 3

DOALL

Why Explore GPUs?

Ubiquitous, cheap, high performance!

Figure 1-1. Floating-Point Operations per Second for the CPU and GPU

Courtesy NVIDIA

Multiple SIMD cores

Multithreaded
O(1000) per GPU

Banked shared memory
16 Kbytes C1060
48 Kbytes C2050

Simple thread model
Only sync at host

A set of SIMD multiprocessors with on-chip shared memory.

Figure 3-1. Hardware Model

Courtesy NVIDIA

Fortran vs CUDA

```
do j = jl, jr
    do i = jr + 1, ld
        x = 0.0
        do k = jl, j - 1
            x = x + s(i, k) * s(k, j)
        end do
        s(i, j) = s(i, j) - x
    end do
end do
```

```
ip=0;
for (j = jl; j <= jr; j++) {
    if(ltid <= (j-1)-jl){
        gpulskj(ip+ltid) = s[IDXs(jl+ltid,j)];
    }
    ip = ip + (j - 1) - jl + 1;
}

__syncthreads();

for (i = jr + 1 + tid; i <= ld;
     i += GPUL_THREAD_COUNT) {
    for (j = jl; j <= jr; j++) {
        gpuls(j-jl,ltid) = s[IDXs(i,j)];
    }
    ip=0;
    for (j = jl; j <= jr; j++) {
        x = 0.0f;
        for (k = jl; k <= (j-1); k++) {
            x = x + gpuls(k-jl,ltid) * gpulskj(ip);
            ip = ip + 1;
        }
        gpuls(j-jl,ltid) -= x;
    }
    for (j = jl; j <= jr; j++) {
        s[IDXs(i,j)] = gpuls(j-jl,ltid);
    }
}
```

Initial Experiment

Assemble frontal matrix on host CPU

Initialize by sending panel of assembled frontal matrix

Only large frontal matrices due to high cost of sending data to and from GPU

Eliminate panels

Factor diagonal block

Note: host is faster, but its better to avoid data transfer

Eliminate panels

Eliminate off-diagonal panel

Earlier CUDA code

Fill Upper Triangle

Update Schur Complement

Update panels with DGEMM

DGEMM is extremely fast!

**We've observed >100 GFlop/s
Tesla C2050 (i4r8)**

Update Schur Complement

Wider panels in Schur complement

DGEMM is even faster

Return Entire Frontal Matrix

Return error if diagonal of 0.0 encountered or pivot threshold exceeded

Otherwise complete frontal matrix is returned

Schur complement added to initial values on host CPU

Factoring a Frontal Matrix Timing on C1060 (i4r4)

Method Name	GPU msec	%GPU time
Copy data to and from GPU	201.0	32.9%
Factor 32x32 diagonal blocks	42.6	7.0%
Eliminate off diagonal panels	37.0	6.1%
Update with SGEMM	330.6	54.1%
Total time	611.4	100.0%

Calibrating Expectations Dense Kernel Performance

Intel Nehalem Host

2 sockets * 4 cores * {4,2} ALUs * 2.6 GHz

We get ~80 GFlop/s (r4) and 53 GFlop/s (r8)

NVIDIA Tesla C1060

30 processors * {8,1} ALUs * 1.3 GHz

We get 170 GFlop/s (r4)

NVIDIA Tesla C2050 (aka, Fermi)

28 processors * {16,8} ALUs * 1.15 GHz

We get 97 GFlop/s (r8)

Kernel Performance (i4r8)

C2050 vs 8 Nehalem Cores

Upper GPU, lower CPU - red means GPU is faster

		Update	Order	
Degree	1024	2048	3072	4096
512	N/A	23.5	32.3	42.0
	22.8	47.0	49.9	51.5
1024	22.3	42.5	57.0	66.7
	43.2	48.1	50.5	51.8
1536	36.2	55.5	68.8	77.3
	42.2	49.0	49.9	52.0
2048	47.9	66.6	78.2	86.1
	46.8	49.8	51.2	52.2
2560	57.0	73.9	83.6	91.5
	48.0	50.3	51.5	52.0
3072	65.6	80.1	89.0	97.4
	49.0	50.8	51.4	52.6

What goes on GPU?

Handful of large supernodes near the root of the tree

Computational Bottleneck

Total time
Linear solver
Factorization
Suitable for GPU?

2057 sec.
1995 sec.
1981 sec.
88%

Test Problem: cylinders cyl1f6

AWE benchmark
230K 3D Finite Elements
Courtesy LSTC

Number of Supernodes & Factor Operations in Tree

Multicore Performance (i4r4) vs. the Elimination Tree

LS-DYNA Implicit CPU vs. CPU & GPU (i8r8)

Near-term Future Bigger Problems

- Problems that don't fit in GPU memory
 - Out-of-core to host memory?
- Performance Optimization
 - Better NVIDIA libraries
 - Re-optimize our CUDA kernel
 - Overlap computation & communication
- Pivoting for numerical stability
- Distributed memory (e.g., MPI)
 - One GPU per Supernode
 - Kernel with MPI and GPUs

CUBLAS 3.2 is Faster

CUBLAS 3.2 based on UTK's MAGMA

We've seen:

SGEMM 398 Gflop/s

DGEMM 231 Gflop/s

Longer-term Future Smaller Problems

- Factor smaller frontal matrices on GPU
 - Maintain real stack on GPU
 - Assemble initial values on GPU
- If the entire matrix fits on the GPU
 - Forward and back solves
 - Exploit GDRAM memory B/W

Summary

Factoring large frontal matrices on Nvidia C2050

Sped up LS-DYNA implicit

Another factor of 2X likely

Explicit will be much harder

Similar results for other implicit MCAE codes

BCSLIB-GPU too

ISVs slowly to come to market

Modest speedup

Support and pricing issues

Research Partially Funded by JFCOM and AFRL

This material is based on research sponsored by the U.S. Joint Forces Command via a contract with the Lockheed Martin Corporation and SimIS, Inc., and on research sponsored by the Air Force Research Laboratory under agreement numbers F30602-02-C-0213 and FA8750-05-2-0204. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S. Government. Approved for public release; distribution is unlimited.