Let Y_1, \ldots, Y_n be independent and identically distributed random variables.

Assume: Data are sampled from a distribution with density $f(y|\theta_0)$ for some (unknown but fixed) parameter θ_0 in a parameter space Θ .

Definition Given the data Y, the likelihood function $L_n(\theta|Y)$ is

$$L_n(\theta|Y) = f_Y(Y|\theta) = \prod_{i=1}^n f_{Y_i}(Y_i|\theta)$$

More generally, we may define $L_n(\theta|Y)$ as any function of $\theta \in \Theta$ proportional to $f_Y(Y|\theta)$.

Definition The log-likelihood function $l_n(\theta|Y)$ is the (natural) logarithm of the likelihood function $L_n(\theta|Y)$,

$$l_n(\theta|Y) = \log L_n(\theta|Y) = \sum_{i=1}^n \log f_{Y_i}(Y_i|\theta).$$

Example: For $Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu_0, \sigma_0^2)$, the likelihood function is

$$L_n(\mu, \sigma^2 | Y) = f_Y(Y | \mu, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \mu)^2\right)$$

and the log-likelihood function is (ignoring the additive constant)

$$l_n(\mu, \sigma^2 | Y) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \mu)^2.$$

The parameter is $\theta = (\mu, \sigma^2)$ and the parameter space is $\Theta = \mathbb{R} \times \mathbb{R}^+$.

Definition A maximum likelihood estimator (MLE) $\hat{\theta}_{ML}$ of θ maximizes the likelihood $L_n(\theta|Y)$, or equivalently, the log-likelihood $l_n(\theta|Y)$:

$$\hat{\theta}_{\mathrm{ML}} = \operatorname*{argmax}_{\theta \in \Theta} l_n(\theta|Y).$$

Assume: $L_n(\theta|Y)$ differentiable and bounded above (in θ)

 \rightsquigarrow solve the likelihood equation

$$S(\theta|Y) = \frac{\partial l_n(\theta|Y)}{\partial \theta} = 0.$$

 $(S(\theta|Y) \text{ is called } score function)$

Example: $Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu_0, \sigma_0^2)$

The log-likelihood function is:

$$l_n(\mu, \sigma^2 | Y) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \mu)^2$$

Differentiation with respect to μ :

$$\frac{\partial l_n(\mu, \sigma^2 | Y)}{\partial \mu} = 0 \iff \frac{n}{\sigma^2} (\bar{Y} - \mu) = 0 \implies \hat{\mu}_{ML} = \bar{Y}$$

Differentiation with respect to σ^2 :

$$\frac{\partial l_n(\mu, \sigma^2 | Y)}{\partial \sigma^2} = 0 \Leftrightarrow -\frac{1}{\sigma^2} + \frac{1}{\sigma^4} \sum_{i=1}^n (Y_i - \mu)^2 = 0$$
$$\Rightarrow \hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y})^2$$

Large-sample Properties

For large n (and under certain regularity conditions), the MLE is approximately normally distributed:

$$\hat{\theta}_{\mathrm{ML}} - \theta_0 \approx \mathcal{N}(0, C)$$

Assume: Model is correctly specified (Y is sampled from density $f(\cdot|\theta_0)$).

Then the covariance matrix C is given by

$$C = I(\theta_0)^{-1}$$

where $I(\theta_0)$ is the expected (Fisher) information (matrix)

$$I(\theta) = \mathbb{E}(I(\theta|Y)|\theta) = \int I(\theta|y)f_Y(y|\theta) dy$$

and

$$I(\theta|Y) = -\frac{\partial^2 l_n(\theta|Y)}{\partial \theta^2}$$

is the observed information (matrix).

Example: $Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu_0, \sigma_0^2)$

$$I(\mu, \sigma^{2}|Y) = \begin{pmatrix} \frac{n}{\sigma^{2}} & \frac{n}{\sigma^{4}}(\bar{Y} - \mu) \\ \frac{n}{\sigma^{4}}(\bar{Y} - \mu) & -\frac{n}{2\sigma^{4}} + \frac{1}{\sigma^{6}}\sum_{i=1}^{n}(Y_{i} - \mu)^{2} \end{pmatrix}$$

Note that at $(\hat{\mu}, \hat{\sigma}^2)$, the observed Fisher information becomes

$$I(\hat{\mu}, \hat{\sigma}^2 | Y) = \begin{pmatrix} \frac{n}{\hat{\sigma}^2} & 0\\ 0 & \frac{n}{2\hat{\sigma}^4} \end{pmatrix}.$$

The expected information matrix is

$$I(\mu, \sigma^2) = \begin{pmatrix} \frac{n}{\sigma^2} & 0\\ 0 & \frac{n}{2\sigma^4} \end{pmatrix}.$$

Confidence interval for θ :

An approximate $(1 - \alpha)$ confidence interval for θ_j is

$$\hat{\theta}_j \pm z_{\alpha/2} \sqrt{I(\hat{\theta}|Y)_{jj}^{-1}}$$

or

$$\hat{\theta}_j \pm z_{\alpha/2} \sqrt{I(\hat{\theta})_{jj}^{-1}}$$

Incorrect specified model

If the model is incorrectly specified and the data Y are sampled from a true density f^* then the ML estimate converges to the value θ^* which minimizes the Kullback-Leibler information

$$\mathbb{E}\left[\log\left(\frac{f(Y|\theta)}{f^*(Y)}\right)\right].$$

In this case, we have

$$\hat{\theta}_{\mathrm{ML}} - \theta^* \approx \mathcal{N}(0, C^*)$$

where

$$C^* = I(\theta^*)^{-1} K(\theta^*) I(\theta^*)^{-1}$$

and

$$K(\theta) = \mathbb{E}(S(\theta|Y)S(\theta|Y)^{\mathsf{T}}).$$

In that case, the covariance matrix can be estimated by the estimator

$$\hat{C}^* = I(\hat{\theta}|Y)^{-1}\hat{K}(\hat{\theta})I(\hat{\theta}|Y)^{-1}.$$

where

$$\hat{K}(\theta) = S(\theta|Y)S(\theta|Y)^{\mathsf{T}}.$$

Aim: Find $\hat{\theta}$ such that

$$S(\hat{\theta}|Y) = \frac{\partial l_n(\theta|Y)}{\partial \theta}\Big|_{\theta=\hat{\theta}} = 0.$$

Problem: Analytic solution of likelihood equations not always available.

Example: Randomly censored normal data

$$L_n(\theta|Y_{\text{obs}}, R) = \prod_{i=1}^m \frac{1}{\sigma} \varphi\left(\frac{Y_i - \mu}{\sigma}\right) \prod_{i=m+1}^n \left[1 - \Phi\left(\frac{c - \mu}{\sigma}\right)\right]$$

Example: Bivariate normal data, both variables subject to nonresponse

$$L_n(\theta|Y_{\text{obs}}) = \prod_{i=1}^l f_{Y_i}(Y_i|\mu, \Sigma) \prod_{i=l+1}^m f_{Y_{i1}}(Y_{i1}|\mu_1, \sigma_1^2) \prod_{i=m+1}^n f_{Y_{i2}}(Y_{i2}|\mu_2, \sigma_2^2)$$

Computational approach: Solve likelihood equation iteratively

Let $\theta^{(k)}$ be the current estimate. Taylor expansion of the score function about $\theta^{(k)}$ yields

$$S(\hat{\theta}|Y) \approx S(\theta^{(k)}|Y) - I(\theta^{(k)}|Y)(\hat{\theta} - \theta^{(k)})$$

Since $S(\hat{\theta}|Y) = 0$ ($\hat{\theta}$ maximizes $l_n(\theta|Y)$) we obtain

$$\hat{\theta} \approx \theta^{(k)} + I(\theta^{(k)}|Y)^{-1}S(\theta^{(k)}|Y).$$

This suggests the following iteration:

Newton-Raphson method:

$$\hat{\theta}^{(k+1)} = \hat{\theta}^{(k)} + I(\hat{\theta}^{(k)}|Y)^{-1}S(\hat{\theta}^{(k)}|Y)$$

Example: Censored exponentially distributed observations Suppose that $T_i \stackrel{\text{iid}}{\sim} \text{Exp}(\theta)$ and that the censored times

$$Y_i = \begin{cases} T_i & \text{if } T_i \le C \\ C & \text{otherwise} \end{cases}$$

are observed. Let m be the number of uncensored observations. Then

$$l_n(\theta|Y) = m \log(\theta) - \theta \sum_{i=1}^n Y_i$$

with first and second derivative

$$\frac{\partial l_n(\theta|Y)}{\partial \theta} = \frac{m}{\theta} - \sum_{i=1}^n Y_i$$
 and $\frac{\partial^2 l_n(\theta|Y)}{\partial \theta^2} = -\frac{m}{\theta^2}$

Thus we obtain for the observed and expected information

$$I(\theta|Y) = I(\theta) = \frac{m}{\theta^2}.$$

Thus the MLE can be obtained be the Newton-Raphson iteration

$$\hat{\theta}^{(k+1)} = \hat{\theta}^{(k)} + \frac{(\hat{\theta}^{(k)})^2}{m} \cdot \left(\frac{m}{\hat{\theta}^{(k)}} - \sum_{i=1}^n Y_i\right)$$

Numerical example: Choose starting value in (0,1)

	Starting value		
Iteration k	0.01	0.4	0.6
1	0.0196	0.0764	-0.1307
2	0.0374	0.1264	-0.3386
3	0.0684	0.1805	-1.1947
4	0.1157	0.2137	-8.8546
5	0.1708	0.2209	-372.3034
6	0.2097	0.2211	-627630.4136
7	0.2205	0.2211	*
8	0.2211	0.2211	*
9	0.2211	0.2211	*
10	0.2211	0.2211	*

Implementation in R:

```
#Log-likelihood, 1st & 2nd derivative
ln<-function(p,Y,R) {</pre>
  m<-sum(R==1)
  ln < -m * log(p) - p * sum(Y)
  attr(ln, "gradient") <-m/p-sum(Y)</pre>
  attr(ln, "hessian") <--m/p^2
}
#Newton-Raphson method
newmle<-function(p,ln,...) {</pre>
  1 < -\ln(p, \ldots)
  pnew<-p-attr(1, "gradient")/attr(1, "hessian")</pre>
  pnew
}
#Simulate censored data Exp(1/5)
Y < -rexp(10, 1/5)
R<-ifelse(Y>10,0,1)
Y[R==0]=10
#Plot first derivative of the log-likelihood
x < -seq(0.05, 0.6, 0.01)
plot(x,attr(ln(x,Y,R),"gradient"),type="1",
  xlab=expression(theta),ylab="Score function")
abline(0,0)
#Apply Newton-Raphson iteration 3 times
#Starting value p=0.3
p < -0.3
p<-newmle(p,ln,Y=Y,R=R)
p<-newmle(p,ln,Y=Y,R=R)
p<-newmle(p,ln,Y=Y,R=R)
p
```

Example: t distribution

Suppose that Y_1, \ldots, Y_n are independently sampled from the density

$$f_{Y_i}(y|\mu) = \frac{1}{\sqrt{\pi}\Gamma(\frac{1}{2})} (1 + (y - \mu)^2)^{-1}$$

(t distribution with one degree of freedom and noncentrality parameter μ). The log-likelihood function and its first and second derivative are given by

$$l_n(\mu|Y) = -\sum_{i=1}^n \log \left(1 + (Y_i - \mu)^2\right)$$

$$\frac{\partial l_n(\mu|Y)}{\partial \mu} = 2\sum_{i=1}^n (Y_i - \mu) \left(1 + (Y_i - \mu)^2\right)^{-1}$$

$$\frac{\partial^2 l_n(\mu|Y)}{\partial \mu^2} = 2\sum_{i=1}^n \left[2(Y_i - \mu)^2 \left(1 + (Y_i - \mu)^2\right)^{-2} - \left(1 + (Y_i - \mu)^2\right)^{-1}\right]$$

Now suppose that $Y = (-1.318, 0.613, -6.004, -22.687)^{\mathsf{T}}$.

Alternative Methods

Quasi-Newton methods

Use iterative approximation

$$\hat{\theta}^{(k+1)} = \hat{\theta}^{(k)} - A^{-1}S(\hat{\theta}^{(k)}|Y),$$

where A is an approximation to the Hessian matrix $-I(\hat{\theta}^{(k)}|Y)$.

Modified Newton methods

 \circ Fisher's scoring method: Replace observed information $I(\hat{\theta}^{(k)}|Y)$ by expected information

$$I(\hat{\theta}^{(k)}) = \mathbb{E}\left(I(\hat{\theta}^{(k)}|Y)|\hat{\theta}^{(k)}\right)$$

• Variant: If the model is correctly specified

$$I(\theta_0) = \text{var}(S(\theta_0|Y)S(\theta_0|Y)^{\mathsf{T}}).$$

For iid data, this suggests to approximate $I(\hat{\theta}^{(k)})$ by

$$\sum_{i=1}^{n} S(\hat{\theta}^{(k)}|Y_i) S(\hat{\theta}^{(k)}|Y_i)^{\mathsf{T}} - \frac{1}{n} S(\hat{\theta}^{(k)}|Y) S(\hat{\theta}^{(k)}|Y)^{\mathsf{T}},$$

where $S(\hat{\theta}^{(k)}|Y_i)$ is the score function based on a single observation.