ЗУБОРЕЗНЫЕ ГРЕБЕНКИ

Зуборезные гребенки применяются для нарезания цилиндрических прямозубых, косозубых и шевронных зубчатых колес методом обкатки на специальных зубострогальных станках.

Гребенки делятся на прямозубые и косозубые. Прямозубые бывают двух типов . Тип 1- это гребенки, которые не имеют конструктивного переднего угла, а угол получают за счет установки гребенки на станке. Гребенки типа 2 выполняются с передним углом γ, равным 4° и устанавливается в плоскости, перпендикулярной направлению резания.

Рисунок 1.1- Положение зуборезных гребенок в работе а)- тип 1; б)- тип 2.

Прямозубая гребенка представляет собой исходную зуборезную рейку (рис 1.2), сопряженную с нарезаемым зубчатым колесом, превращенную в режущий инструмент заточкой под углом у передней плоскости (рис. 1.2, б) и образованием задней поверхности (рис. 1.2, в), обеспечивающей получение на режущих кромках положительных задних углов.

Рисунок 1.2- Схема прямозубой гребенки

Режущая кромка гребенки создается в результате пересечения передней плоскости и боковой поверхности исходной зуборезной рейки. Схема образования задней поверхности зуба гребенки следующая: заставим переднюю плоскость с расположенной в ней режущей кромкой двигаться прямолинейно-поступательно. Если скорость этого движения будет параллельна образующим исходной рейки, то режущая кромка опишет в пространстве боковую поверхность рассматриваемой зуборезной рейки и

задние углы у гребенки будут равны нулю. Поэтому при образовании задней поверхности зуба гребенки передней плоскости сообщают прямолинейнопоступательное движение, скорость вектор V_3 которого направляют под углом α_В к образующим исходной рейки. В результате режущая кромка описывает заднюю поверхность, которая не совпадает с поверхностью исходной зуборезной рейки, что и обеспечивает создание на режущей части гребенки положительных задних углов. Заднюю поверхность можно рассматривать как совокупность режущих кромок, сдвинутых относительно другой. По аналогии с затылованными фрезами при заточке гребенок по передней плоскости удаляется изношенная режущая кромка и обнаруживается новая той же самой формы. Это обеспечивает обработку новой и переточенной гребенками одних и тех же зубчатых колес. Гребенка этой точки зрения, идеальным теоретически инструментом, ее переточка не вносит никаких погрешностей в профиль нарезаемого зубчатого колеса.

При проектировании гребенок для обработки заданного зубчатого колеса определяется форма режущей кромки и профиль гребенки в нормальном сечении. Известным считается профиль исходной зуборезной рейки.

РАСЧЕТ.

Исходные данные:

Модуль зубчатого колеса -т

Угол зацепления α=20°

Толщина зуба по делительной прямой –Ѕ

Радиальный зазор – с

Расчет:

Расчет профиля производится в трех сечениях (рис 2.1):

- 1) В сечении основной плоскостью (плоскость 1-1), где располагается проекция режущего контура гребенки, совпадающая с профилем исходной рейки;
- 2) В передней плоскости (плоскость 2-2), где производится измерение профиля зубьев;

3) В сечении нормальной плоскостью (плоскость 3-3), в которой осуществляется профилирование инструмента для изготовления гребенки.

Рисунок 2.1- Определение размеров зубьев гребенки в разных сечениях.

Расчет элементов профиля зуба гребенки в передней плоскости (сечение 2-2).

1. Рассчитаем угол профиля

$$\tan\alpha_{\rm u}=\tan\alpha\cos\gamma$$
 Где γ =6°30' (гребенка типа 1)
$$\gamma$$
=4° (гребенка типа 2)

2. Шаг гребенки $t = \pi \times m$ Точность расчета 0,001 мм.

3. Толщина зуба

$$S = \frac{\pi m}{2}$$

4. Высота головки зуба гребенки рассчитывается с точностью 0,01 мм

$$h_{\Gamma} = \frac{1,25m}{\cos \gamma}$$

5. Высота ножки зуба гребенки определяется по формуле

$$h_{\rm H} = \frac{m + \delta}{\cos \gamma}$$

 Γ де δ- величина, зависящая от модуля, принимается равной

	,			1	1	
m, mm	1-2	2,25-	4-6,5	7-10	11-16	18-24
		3,75				
δ, мм	0,6	0,8	1,0	1,5	2,0	2,5

6. Общая высота зуба гребенки

$$h = h_{\scriptscriptstyle \Gamma} + h_{\scriptscriptstyle
m H}$$

7. Толщина зуба по вершине гребенки определяется по формуле

$$S_{\scriptscriptstyle\rm B} = S - 2h_{\scriptscriptstyle \Gamma} \tan \alpha_{\scriptscriptstyle \rm H}$$

8. Угол фланкирования (рис. 2.2) определяется

$$\tan \alpha_{\Phi}' = \tan \alpha_{\Phi} \cos \gamma$$

Где α_{φ} — угол франкирования в основной плоскости. Величина углов выбирается из таблицы (табл. 2.1).

Рисунок 2.1- Фланкированный профиль гребенки.

Таблица 2.1- Величины углов α_{φ} для зуборезных гребенок

Гребенка	н класса А	Гребенка	класса Б
т, мм	$lpha_{\Phi}$	т, мм	$lpha_{\Phi}$
2	1°40'	2-2,75	2°13'
2,25-3,5	1°20'	3-4,25	1°55'
3,75-5	1°07'	4,5-5	1°40'
5,5-7	1°	5,5-9	1°20'
8-11	0°54'	10-20	1°07'
12-20	0°40'	-	-

9. Расстояние от делительной прямой до начала фланкирования вычисляется по формуле

$$h'_{\Phi} = \frac{h_{\Phi}}{\cos \gamma}$$

Где h_{φ} — расстояние от делительной прямой до начала фланкирования в основной плоскости. Величина h_{φ} вычисляется по формуле

$$h_{\Phi} = 0.55m + \Delta h + \frac{\delta h}{2}$$

Где Δh - величина наименьшего смещения исходного контура в тело зубчатого колеса.

δh – допуск на смещение.

Величины Δh и δh принимают согласно ГОСТ 1643-86. Данные приведены в таблице 2.2.

Таблица 2.2- Величины наименьших смещений исходного контура и допуски на смещение.

	Диаметры зубчатого колеса, мм										
т,мм	От 40	Св.100	Св. 200	Св.400	Св.800						
	До 100	До 200	До 400	До 800	До 1200						
	Δh , мкм										
12,25	70	90	130	190	-						
2,254	80	90	130	190	260						
46	80	100	130	200	260						
68	90	110	140	200	260						
810	110	110	140	210	270						
1014	-	120	150	220	280						
1420	-	140	170	230	290						
		Δh,	MKM	I	1						
12,25	50	50	60	80	-						
2,254	50	60	70	90	110						
46	50	60	70	90	120						
68	60	70	80	90	120						
810	60	70	80	100	130						
1014	-	70	80	110	130						
1420	-	80	90	110	140						

10. Ширина впадины между зубьями в начале фланкирования определяется по формуле

$$S_{\phi}' = (t - S) - 2h_{\phi} \tan \alpha$$

Расчет профиля зуба в нормальной плоскости.

Расчет элементов профиля зуба в нормальном сечении (3-3) ведется следующим образом:

11. Угол профиля определяется из выражения

$$\tan \alpha_{\text{MN}} = \frac{\tan \alpha \cos \gamma}{\cos(\gamma + \alpha_{\text{B}})}$$

При использовании данной формулы необходимо учитывать, что задний угол в рабочем положении для гребенок типа 1 равен α_B =5°30', для гребенок типа 2 равен α_B =6°52' (рис. 1.1).

12.Высота головки зуба определяется по формуле

$$h_N' = \frac{h_{\rm H}\cos(\gamma + \alpha_{\rm B})}{\cos\gamma}$$

Расчеты проводить с тонностью 0,01 мм.

13. Высота ножки зуба определяется по формуле

$$h_N^{\prime\prime} = \frac{(h_{\rm r} + \delta)\cos(\gamma + \alpha_{\rm B})}{\cos\gamma}$$

Расчет проводить с точностью 0,01 мм.

14.Общая высота зуба

$$h_N = h_N' + h_N''$$

15. Радиус закругления вершин зубьев

$$r_1 = 0.4m$$

16. Радиус закругления впадин

$$r_2 = (0.2 - 0.3)m$$

Таблица 2.3- Конструктивные размеры зуборезных гребенок.

т, мм	t	Н	В	L	Z	a	a_1	К
1	3,142	50	20	77	24	15	6	0,5
1,25	3,927	50	20	80	20	15	7	0,5
1,5	4,712	50	20	81	17	15	8	0,5
1,75	5,498	50	20	83	15	16	9	0,5
2	6,283	50	20	82	13	16	9	0,5
2,25	7,069	50	20	85	12	17	10	0,5
2,5	7,854	50	20	87	11	18	10	1
2,75	8,639	50	20	96	11	18	11	1
3	9,425	50	20	95	10	20	11	1
1			1				l	l

3,25	10,210	50	20	103	10	20	12	1
3,5	10,996	50	20	110	10	22	13	1
3,75	11,781	50	20	106	9	22	14	1
4	12,566	50	20	113	9	22	14	1
4,25	13,352	50	20	121	9	24	15	1,5
4,5	14,137	50	20	128	9	24	15	1,5
5	15,708	50	22	126	8	26	16	1,5
5,5	17,279	60	22	137	8	26	18	1,5
6	18,850	60	22	150	8	28	19	1,5
6,5	20,420	60	22	165	8	28	20	2,5
7	21,991	60	22	177	8	32	21	2,5
8	25,133	60	22	177	7	34	23	2,5
9	28,274	70	25	170	6	35	26	3
10	31,416	70	25	188	6	37	29	3
11	34,557	70	25	208	6	40	31	4
12	37,699	70	25	226	6	42	33	4
13	40,841	80	25	245	6	44	36	4
14	43,982	80	25	220	5	47	37	4
15	47,124	80	25	236	5	50	40	5
16	50,265	80	25	251	5	52	43	5
18	56,549	90	25	281	5	56	48	5
20	62,832	90	25	311	5	60	52	5

17. Диаметр калибра для контроля толщины зуба гребенки. $d = (t - S_{\scriptscriptstyle \rm B}) \tan \frac{90 - \alpha_{\scriptscriptstyle \rm MN}}{2}$

$$d = (t - S_{\scriptscriptstyle \mathrm{B}}) \tan \frac{90 - lpha_{\scriptscriptstyle \mathrm{H}N}}{2}$$

Точность расчета 0,001 мм. Шаг и толщина зубьев в нормальном сечении соответственно равны шагу и толщине зубьев в передней плоскости (рис. 2.2)

Рисунок 2.2- Определение диаметра калибра для прямозубых гребенок.

Определение конструктивных размеров гребенок выбирать по таблице 2.3

Определение углов заточки прямозубых гребенок.

Углы заточки даются в плоскости А-А, перпендикулярной к основной плоскости и к проекции режущей кромки на основную плоскость (рис.2.3)

Рисунок 2.3- Определение углов заточки гребенки.

Боковой задний угол рассчитывают по формуле:

$$\tan \alpha_{6} = \frac{\sin \alpha_{B} \sin \alpha \cos \gamma}{\cos(\alpha_{B} + \gamma) + \sin \alpha_{B} \sin^{2} \alpha \sin \gamma}$$

Передний угол на боковых режущих кромках подсчитывается по формуле

$$\tan \gamma_1 = \tan \gamma \sin \alpha_B$$

Существует два метода заточки прямозубых гребенок. Первый метод применяется для заточки гребенок с модулем 10мм. При этом методе заточка производится шлифовальным кругом по всей передней поверхности.

Угол наклона оси шлифовального круга определяется из выражения

$$\sin \gamma_1 = \frac{\tan \alpha_{_{\rm H}} \frac{S}{2}}{\sqrt{R^2 - \left(\frac{S}{2}\right)^2}}$$

Где R – радиус шлифовального круга.

Полученный при такой заточке передний угол является переменным вдоль боковой режущей кромки, причем минимальная величина переднего угла будет расположена на вершине, а максимальная величина будет находится у основании зуба. Минимальная и максимальная величины углов вычисляются по формуле

$$; \sin \gamma' = \frac{S_{\rm B}}{2R} \sin \gamma'_{\rm MAX} = \frac{S_{\rm BII}}{2R},$$

Где $S_{\mbox{\tiny BII}}-$ толщина зуба у основания.

Величины передних углов, расположенных в плоскости, перпендикулярной к режущей кромке, определяются по формулам

$$\tan \gamma_{\min} = \tan \gamma_{\min}' \cos \alpha_{\text{\tiny M}}$$

$$\tan \gamma_{\max} = \tan \gamma_{\max}' \cos \alpha_{\text{\tiny M}}$$

Суммарные передние углы (передние углы в процессе резания) определяются по формуле

$$\gamma_{c min} = \gamma_1 + \gamma_{min}$$

$$\gamma_{c max} = \gamma_1 + \gamma_{max}$$

Где γ_1 - передний угол от установки гребенки;

 $\gamma_{min}, \gamma_{max}$ - передние углы от заточки.

В гребенках, заточенных по первому методу, режущие кромки работают в разных условиях из-за переменной величины угла γ_c в различных точках режущей кромки. Это приводит к неравномерному износу кромок и является недостатком данного метода.

Второй метод заточки применяется для гребенок при модуле более 10 мм. В этом случае передние поверхности зубьев снабжаются двумя канавками, идущими параллельно боковым сторонам профиля. Передний угол имеет постоянную величину и определяется по формуле

$$\sin \gamma = \frac{b}{D}$$

Где b – ширина канавки.

Передний угол в процессе резания равен $\gamma_{\rm c}=\gamma_1+\gamma$

Рекомендуемые величины геометрических параметров заточки и диаметров шлифовальных кругов для заточки приведены в таблице 2.4.

Таблица 2.4- Величины геометрических параметров заточки и диаметры шлифовального круга

Модуль, мм	10-14	15-17	18-21	22-24
Диаметр круга D, мм	35	50	60	70
Ширина канавки b, мм	7	10	13	15
Передний угол заточки ү	11°32'	11°32'	12°32'	12°25'
Суммарный угол γ _с	13°45'	13°45'	14°44'	14°38'

Зуборезные гребенки

Рисунок - Зуборезная гребенка.

Допуски на основные элементы.

Элемен-	Тип гребен-	Допускаемые отклонения при модуле							
TBI	ки	1-2,25	2,5-4,0	4,25-6	6,5-8,0	9,0-10,0	11,0- 14,0	15,0-20,0	
Шаг	Чисто- вые	±0,004	±0,005	±0,006	±0,007	±0,008	±0,009	±0,010	
	Черно- вые	±0,03	±0,04	±0,045	±0,050	±0,050	$\pm 0,070$	±0,090	
Допуск на про- филь	Чисто- вые	0,006	0,007	0,009	0,010	0,012	0,012	0,015	
ı	Черно- вые	0,04	0,045	0,050	0,060	0,075	0,075	0,090	
// вершин зубьев	Чисто-	0,015	0,015	0,015	0,020	0,025	0,025	0,030	
относ. опорной плоскос ти	Черно- вые	0,04	0,040	0,040	0,060	0,080	0,080	0,100	

- 1. Допускаемая непараллельность широких плоскостей гребенок на длине 100 мм:
- для гребенок m=1-5,5......0,01 мм
- для гребенок m=6 и выше0,015 мм.
- 2. Допускаемое занижение вершин режущих кромок у гребенок относительно передней плоскости 0,5 мм.
- 3. Допускаемое отклонение угла фланкирования 10'.
- 4. Допускаемое отклонение заднего угла ± 10 '.
- 5. Допускаемое отклонение толщины гребенок $\pm 0,5$ мм.
- 6. Допускаемое отклонение ширины гребенок -± 2,0 мм.
- 7. Допускаемое отклонение длины равно:
- для гребенок m=1-5,0..... \pm 0,5 мм
- для гребенок m= свыше $5.....\pm 1,0$ мм.