Álgebra Linear Espaço Vetorial

Prof. André Tiba

akot@cin.ufpe.br

Baia 65, ramais: 4765 ou 4338

Espaço Vetorial

- 1. Definição
- 2. Subespaços Vetoriais
- 3. Combinação Linear
- 4. Dependência e Independência Linear
- 5. Base
- 6. Mudança de Base
- 7. Inversa da Matriz Mudança de Base
- 8. Exercícios

Definição: Um espaço vetorial real, é um conjunto V,
não vazio, com duas operações: soma, V x V → V, e
multiplicação por escalar, R x V → V, tais que, para quaisquer u, v, w ∈ V e a, b ∈ R, as seguintes
propriedades sejam satisfeitas:

• Propriedades:

- i. (u + v) + w = u + (v + w)
- ii. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- iii. Existe $\mathbf{0} \in V$ tal que $\mathbf{u} + \mathbf{0} = \mathbf{u}$
 - 0 é o vetor nulo
- iv. Existe $-\mathbf{u} \in V$ tal que $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- v. $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$, a escalar
- vi. $(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$, a, b escalares
- vii. $(ab)\mathbf{v} = a(b\mathbf{v})$
- viii. 1.**u** = **u**

- Designamos por *vetor* um elemento do espaço vetorial *V*.
- Espaço vetorial, é um termo genérico, que pode ser designado para representar diferentes tipos de conjuntos, tais como:
 - Conjuntos de pontos: no \mathbb{R}^2 , no \mathbb{R}^3 ou no \mathbb{R}^n ;
 - Conjuntos de matrizes: 2x2, mxn, diagonais, triangulares, etc...
 - Conjuntos de funções: polinômiais, trigonométricas, etc ...

- Exemplo 1: Seja V o espaço vetorial das matrizes reais 2x2, ou seja V = M(2,2).
 - Para que V seja, de fato, um espaço vetorial, devemos provar que as propriedades i)-viii) sejam satisfeitas.
 - Assuma que a operação de soma seja a adição de matrizes e a operação do produto como a multiplicação de matrizes por um escalar.
 - Dessa forma, sejam \mathbf{u} , \mathbf{v} e $\mathbf{w} \in V$, tal que:

$$u = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} \qquad v = \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} \qquad w = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix}$$

- e a e b valores reais, então,

• Exemplo 1(cont.):

- axioma 1:
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 (prova)

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} + \begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix} + \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} =$$

$$= \begin{pmatrix} (u_{11} + v_{11}) & (u_{12} + v_{12}) \\ (u_{21} + v_{21}) & (u_{22} + v_{22}) \end{pmatrix} + \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} =$$

$$= \begin{pmatrix} (u_{11} + v_{11}) + w_{11} & (u_{12} + v_{12}) + w_{12} \\ (u_{21} + v_{21}) + w_{21} & (u_{22} + v_{22}) + w_{22} \end{pmatrix} = \begin{pmatrix} u_{11} + (v_{11} + w_{11}) & u_{12} + (v_{12} + w_{12}) \\ u_{21} + (v_{21} + w_{21}) & u_{22} + (v_{22} + w_{22}) \end{pmatrix} =$$

$$= \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} + \begin{pmatrix} (v_{11} + w_{11}) & (v_{12} + w_{12}) \\ (v_{21} + w_{21}) & (v_{22} + w_{22}) \end{pmatrix} =$$

$$= \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} + \begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix} + \begin{pmatrix} w_{11} & w_{12} \\ v_{21} & v_{22} \end{pmatrix} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

- Exemplo 1(cont.):
 - axioma 2: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (prova)

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} u_{11} + v_{11} & u_{12} + v_{12} \\ u_{21} + v_{21} & u_{22} + v_{21} \end{bmatrix} =$$

$$= \begin{bmatrix} v_{11} + u_{11} & v_{12} + u_{12} \\ v_{21} + u_{21} & v_{21} + u_{22} \end{bmatrix} = \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} + \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \mathbf{v} + \mathbf{u}$$

- axioma 3: Existe um elemento $\mathbf{0}$ em V, chamado um **vetor nulo** para V, tal que $\mathbf{u} + \mathbf{0} = \mathbf{u}$ para todo \mathbf{u} em V. (prova)

Seja
$$\mathbf{0} \equiv \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix}$$
. Então,

$$\forall \mathbf{u} \in V, \quad \mathbf{u} + \mathbf{0} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \mathbf{u}$$

- Exemplo 1(cont.):
 - axioma 4: Para todo $\mathbf{u} \in V$, existe um objeto $-\mathbf{u} \in V$, chamado oposto, negativo ou simétrico de \mathbf{u} , tal que $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

Seja
$$-\mathbf{u} = \begin{bmatrix} -u_{11} & -u_{12} \\ -u_{21} & -u_{22} \end{bmatrix}$$
. Então,

$$\forall \mathbf{u} \in V, \quad \mathbf{u} + (-\mathbf{u}) = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{pmatrix} \begin{bmatrix} -u_{11} & -u_{12} \\ -u_{21} & -u_{22} \end{bmatrix} \end{pmatrix} = \begin{bmatrix} u_{11} + (-u_{11}) & u_{12} + (-u_{12}) \\ u_{21} + (-u_{21}) & u_{22} + (-u_{22}) \end{bmatrix} = \begin{bmatrix} u_{11} - u_{11} & u_{12} - u_{12} \\ u_{21} - u_{21} & u_{22} - u_{22} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{0}$$

- Exemplo 1(cont.):
 - axioma 5: $k (\mathbf{u} + \mathbf{v}) = k \mathbf{u} + k \mathbf{v}$, onde $k \in \mathbf{R}$

$$k(\mathbf{u} + \mathbf{v}) = k \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = k \begin{bmatrix} u_{11} + v_{11} & u_{12} + v_{12} \\ u_{21} + v_{21} & u_{22} + v_{21} \end{bmatrix} =$$

$$= \begin{bmatrix} kv_{11} + ku_{11} & kv_{12} + ku_{12} \\ kv_{21} + ku_{21} & kv_{21} + ku_{22} \end{bmatrix} = \begin{bmatrix} kv_{11} & kv_{12} \\ kv_{21} & kv_{22} \end{bmatrix} + \begin{bmatrix} ku_{11} & ku_{12} \\ ku_{21} & ku_{22} \end{bmatrix} = k\mathbf{v} + k\mathbf{u}$$

• Exemplo 1(cont.):

- axioma 6: $(k+l)\mathbf{u} = k \mathbf{u} + k \mathbf{u}$, onde $k, l \in \mathbf{R}$

$$(k+l)\mathbf{u} = (k+l)\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} (k+l)u_{11} & (k+l)u_{12} \\ (k+l)u_{21} & (k+l)u_{22} \end{bmatrix} =$$

$$= \begin{bmatrix} ku_{11} + lu_{11} & ku_{12} + lu_{12} \\ ku_{21} + lu_{21} & ku_{22} + lu_{22} \end{bmatrix} = \begin{bmatrix} ku_{11} & ku_{12} \\ ku_{21} & ku_{22} \end{bmatrix} + \begin{bmatrix} lu_{11} & lu_{12} \\ lu_{21} & lu_{22} \end{bmatrix} = k\mathbf{u} + l\mathbf{u}$$

- axioma 7: $k(l\mathbf{u}) = (kl)\mathbf{u}$, onde $k, l \in \mathbf{R}$

$$k(l\mathbf{u}) = k \begin{bmatrix} lu_{11} & lu_{12} \\ lu_{21} & lu_{22} \end{bmatrix} = \begin{bmatrix} klu_{11} & klu_{12} \\ klu_{21} & klu_{22} \end{bmatrix} =$$

$$= \begin{bmatrix} (kl)u_{11} & (kl)u_{12} \\ (kl)u_{21} & (kl)u_{22} \end{bmatrix} = (kl) \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = (kl)\mathbf{u}$$

- Exemplo 1(cont.):
 - axioma 8: $1\mathbf{u} = \mathbf{u}$

$$1\mathbf{u} = 1 \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} 1u_{11} & 1u_{12} \\ 1u_{21} & 1u_{22} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \mathbf{u}$$

• Como V = M(2,2) satisfaz as propriedades i)-viii), V é um espaço vetorial.

- Exemplo 2(contra-exemplo): um conjunto que **não** é um espaço vetorial:
 - Seja $\mathbf{u} = (u_1, v_1)$ e $\mathbf{v} = (v_2, v_2)$
 - Seja $V = \mathbb{R}^2$ tal que a adição e multiplicação são definidas como:
 - $\mathbf{u} + \mathbf{v} = (u_1 + u_2, v_1 + v_2)$
 - $k.\mathbf{u} = (ku_1, 0)$
 - Nesse caso, o axioma 8 não vale, pois:
 - $1\mathbf{u} = 1(u_1, u_2) = (u_1, 0) \neq \mathbf{u}$
 - Logo *V* não é um espaço vetorial.

Definição: Seja *V* um espaço vetorial e *W* um subconjunto de *V* não vazio. *W* será um *subespaço vetorial* de *V* se:

- \bullet i) Para quaisquer $\mathbf{u}, \mathbf{v} \in W$, tivermos $\mathbf{u} + \mathbf{v} \in W$.
- \bullet ii) Para quaisquer $a \in \mathbb{R}$, $\mathbf{u} \in W$, tivermos $a\mathbf{u} \in W$.

Observações decorrentes da definição do subespaço *W*:

- 1) Garante que ao realizar uma operação de soma ou multiplicação por um escalar, o vetor resultante sempre estará dentro de *W*.
 - Isso é suficiente para afirmar que W é <u>ele mesmo</u> um espaço vetorial, pois assim as operações ficam bem definidas.
 - Assim, não é preciso verificar novamente as propriedades (i) a (viii) de espaço vetorial porque como elas são válidas em *V*, também são válidas para *W* (que está contido em *V*).

Observações decorrentes da definição do subespaço W:

- 2) Qualquer subespaço W de V, precisa necessariamente conter o vetor nulo (por causa da condição (ii) da definição quando a = 0).
- 3) Todo espaço vetorial admite, pelo menos, dois subespaços (chamados de subespaços triviais):
 - O conjunto formado apenas pelo vetor nulo;
 - O próprio espaço vetorial.

Exemplo 1: $V = \mathbb{R}^3$ e $W \subset V$, um plano passando pela origem

A origem (0,0,0) necessariamente está contida em W. Se ela não tivesse, W não seria subespaço de V.

Seja o espaço vetorial do R^3 , seus possíveis subespaços W são:

- a) a origem (0,0,0);
- b) qualquer reta que passe pela origem;
- c) qualquer planos que contenha a origem.

- Exemplo 2: $V = \mathbb{R}^5$ e $W = \{(0, x_2, x_3, x_4, x_5); x_i \in \mathbb{R}\}$
 - W é o conjunto de vetores de \mathbb{R}^5 com a primeira coordenada nula;
 - Vamos verificar as condições (i) e (ii):
 - (i) Sejam $\mathbf{u} = (0, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5)$ e $\mathbf{v} = (0, \mathbf{y}_2, \mathbf{y}_3, \mathbf{y}_4, \mathbf{y}_5) \in W$ Então $\mathbf{u}+\mathbf{v}=(0, \mathbf{x}_2+\mathbf{y}_2, \mathbf{x}_3+\mathbf{y}_3, \mathbf{x}_4+\mathbf{y}_4, \mathbf{x}_5+\mathbf{y}_5) \in W$.
 - (ii) Seja $k \in \mathbb{R}$, então $k\mathbf{u} = (0, kx_2, kx_3, kx_4, kx_5) \in W$.
 - Portanto, W é subespaço vetorial de \mathbb{R}^5 .

- Exemplo 3 (contra-exemplo): $V = \mathbb{R}^2$ e $W = \{(x,x^2) \mid x \in \mathbb{R}\}$
 - Se W um subespaço vetorial de V, as operações de adição e multiplicação por escalar devem ser válidas. Vamos testar:
 - (i) Sejam $\mathbf{u} = (1, 1) \in W$, $\mathbf{e} \ \mathbf{v} = (2, 4) \in W$ Então $\mathbf{u}+\mathbf{v}=(1+2,1+4)=(3,5)$ mas $(3,5) \notin W$.
 - Como (i) não é satisfeito, W não é subespaço vetorial de V.

- Exemplo 4 (contra-exemplo): V = M(2,2) e W são as matrizes de V tal que $a_{11} \le 0$.
 - Sejam $u = \begin{bmatrix} -2 & 1 \\ 3 & 1 \end{bmatrix} \in W$ $v = \begin{bmatrix} -1 & 2 \\ 0 & 4 \end{bmatrix} \in W$ k = -3

(i)
$$u+v = \begin{bmatrix} -2-1 & 1+2 \\ 3+0 & 1+4 \end{bmatrix} = \begin{bmatrix} -3 & 3 \\ 3 & 5 \end{bmatrix} \in W$$

$$(ii) \quad ku = (-3)\begin{bmatrix} -2 & 1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -3 & -1 \end{bmatrix} \notin W$$

lacktriangle Como (ii) não é satisfeito, W não é subespaço vetorial de V.

Teorema (Interseção de subespaços): Dados W_1 e W_2 subespaços de um espaço vetorial V, a interseção $W_1 \cap W_2$ ainda é um subespaço de V.

Observe que $W_1 \cap W_2$ nunca é vazio já que eles sempre contêm, pelo menos, o vetor nulo.

```
Prova (i): sejam \mathbf{x}, \mathbf{y} \in W_1 e \mathbf{x}, \mathbf{y} \in W_2 como \mathbf{x}, \mathbf{y} \in W_1, então \mathbf{x} + \mathbf{y} \in W_1 como \mathbf{x}, \mathbf{y} \in W_2, então \mathbf{x} + \mathbf{y} \in W_2 assim, \mathbf{x} + \mathbf{y} \in W_1 \cap W_2
```

Prova (ii): sejam
$$k \in \mathbf{R}$$
 e $\mathbf{x} \in W_1$, $\mathbf{x} \in W_2$ como $\mathbf{x} \in W_1$, então $k\mathbf{x} \in W_1$ como $\mathbf{x} \in W_2$, então $k\mathbf{x} \in W_2$ assim, $k\mathbf{x} \in W_1 \cap W_2$

• Exemplo 5 : $V = \mathbb{R}^3$, $W_1 \cap W_2$ é a reta r de interseção dos planos W_1 e W_2 .

- Exemplo 6 : V = M(n,n)
 - $W_1 = \{\text{matrizes triangulares superiores}\}$
 - $W_2 = \{\text{matrizes triangulares inferiores}\}$
 - $W_1 \cap W_2 = \{\text{matrizes diagonais}\}$

Embora a interseção de subespaços vetoriais gere um subespaço vetorial, isso necessariamente não acontece com a união de subespaços vetoriais.

Teorema (Soma de subespaços vetoriais): Sejam W_1 e W_2 subespaços de um espaço vetorial V. Então o conjunto

$$W_1 + W_2 = \{ \mathbf{v} \in V; \ \mathbf{v} = \mathbf{w_1} + \mathbf{w_2}, \ \mathbf{w_1} \in W_1, \ \mathbf{w_2} \in W_2 \}$$

é subespaço de V

- Exemplo 7: se W_1 e W_2 são duas retas, $W = W_1 + W_2$ é o plano que contém estas retas.
- Exemplo 8: $W_1 = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \right\}$ $W_2 = \left\{ \begin{bmatrix} 0 & 0 \\ c & d \end{bmatrix} \right\}$ onde $a, b, c, d \in \mathbf{R}$

Então,
$$W_1 + W_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right\} = M(2,2)$$

Observação: Quando $W_1 \cap W_2 = \{\mathbf{0}\}$, então $W_1 + W_2$ é chamado soma direta de W_1 com W_2 , denotado por $W_1 \oplus W_2$.

Espaço Vetorial: combinação linear

• **Definição:** Sejam V um espaço vetorial real, e \mathbf{v}_1 , \mathbf{v}_2 , ..., $\mathbf{v}_n \in V$. Sejam ainda a_1 , a_2 , ..., a_n números reais. Então o vetor $\mathbf{v} \in V$ pode ser escrito como:

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n$$

onde \mathbf{v} é uma *combinação linear* dos vetores $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$.

- Uma vez escolhidos os vetores \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n de V, o conjunto W formado por todos os vetores de V que são combinações lineares dos n vetores, é um subespaço vetorial de V.
 - W é chamado de subespaço gerado por v₁, v₂, ..., v_n
 - $W = [\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}] = {\mathbf{v} \in V; \mathbf{v} = a_1 \mathbf{v_1} + ... + a_n \mathbf{v_n}, a_i \in \mathbf{R}, 1 \le i \le n}.$

Espaço Vetorial: combinação linear

- Exemplo 1: $V = \mathbb{R}^2$, $v_1 = (1, 0)$, $v_2 = (0, 1)$
 - Então, $V = [\mathbf{v_1}, \mathbf{v_2}]$, pois dados $\mathbf{v} = (\mathbf{x}, \mathbf{y}) \in V$, tem-se que: $\mathbf{v} = (\mathbf{x}, \mathbf{y}) = \mathbf{x}(1, 0) + \mathbf{y}(0, 1)$

• Exemplo 2:
$$\mathbf{v}_1 = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$$
 $\mathbf{v}_2 = \begin{bmatrix} 0 & 0 \\ b & 0 \end{bmatrix}$

Então,
$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \left\{ \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix} : a, b \in \mathfrak{R} \right\}$$

Espaço Vetorial: dependência e independência linear

• **Definição:** Sejam V um espaço vetorial e $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n} \in V$. Diz-se que o conjunto $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}$ é *linearmente independente* (LI), ou que o vetores $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}$ são LI, se a equação:

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n = \mathbf{0}$$

implica que $\mathbf{a}_1 = \mathbf{a}_2 = \dots = \mathbf{a}_n = \mathbf{0}$

• Caso exista algum $a_n \neq 0$, então diz-se que $\{v_1, v_2, ..., v_n\}$ é *linearmente dependente* (LD), ou que os vetores $v_1, v_2, ..., v_n$ são LD.

Espaço Vetorial: dependência e independência linear

- Exemplo 1: $V = \mathbb{R}^2$, $\mathbf{e}_1 = (1, 0)$, $\mathbf{e}_2 = (0, 1)$
 - \mathbf{e}_1 e \mathbf{e}_2 são LI pois, sejam duas constantes a_1 e a_2 , se:

$$a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 = \mathbf{0} \implies a_1 (1, 0) + a_2 (0, 1) = (0, 0) \implies$$

$$(a_1, 0) + (0, a_2) = (0, 0) \implies (a_1, a_2) = (0, 0)$$
ou seja, $a_1 = 0$ e $a_2 = 0$

- Exemplo 2: $V = \mathbb{R}^3$, $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$ e $\mathbf{e}_3 = (0,0,1)$
 - \mathbf{e}_1 , \mathbf{e}_2 e \mathbf{e}_3 são LI pelos mesmos argumentos do exemplo anterior

Espaço Vetorial: dependência e independência linear

- Exemplo 3: $V = \mathbb{R}^2$, $\mathbf{v}_1 = (1, -1)$, $\mathbf{v}_2 = (0, 1)$ e $\mathbf{v}_3 = (1, 1)$
 - { \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 } são LD pois, sejam três constantes a_1 , a_2 e a_3 , se: $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 = \mathbf{0} \implies$

$$a_1(1,-1) + a_2(0,1) + a_3(1,1) = (0,0) \implies$$

$$(a_1, -a_1) + (0, a_2) + (a_3, -a_3) = (0,0) \implies$$

$$(a_1 + a_3, -a_1 + a_2 - a_3) = (0,0)$$

ou seja,
$$a_1 = -a_3$$
 e $a_2 = a_1 + a_3$

Como a_1 , a_2 e a_3 podem assumir valores não nulos, o conjunto é LD.

Definição: Seja um conjunto $\{v_1,v_2,...,v_n\}$ de vetores de V.

Este conjunto será uma *base* de *V* se:

$$\bullet$$
ii) [$\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}$] = V

Todos os vetores de V, podem ser gerados a partir da combinação linear deste conjunto de vetores .

- Exemplo 1: $V = \mathbb{R}^2$, $\mathbf{e}_1 = (1, 0)$, $\mathbf{e}_2 = (0, 1)$
 - $\{e_1, e_2\}$ é base de V, conhecida como *base canônica* de \mathbb{R}^2 .
- Exemplo 2: $V = \mathbb{R}^2$, $\mathbf{v}_1 = (1,1)$, $\mathbf{v}_2 = (0,1)$
 - $\{\mathbf{v_1}, \mathbf{v_2}\}$ também é uma base de $V = \mathbf{R^2}$.
 - Se (0,0) = a(1,1) + b(0,1) = (a, a+b), então a = b = 0
 - Portanto, $\{v_1, v_2\}$ é LI.
 - Mais ainda, $[\mathbf{v_1}, \mathbf{v_2}] = V$ pois dado um vetor qualquer $\mathbf{u} = (\mathbf{x}, \mathbf{y}) \in V$, \mathbf{u} pode ser escrito como uma combinação linear de $\mathbf{v_1}$ e $\mathbf{v_2}$:

$$\mathbf{u} = (x,y) = x\mathbf{v_1} + (x-y)\mathbf{v_2} = x(1,1) + (x-y)(0,1) = (x,y)$$

- Exemplo 3: $V = \mathbb{R}^2$, $\mathbf{v}_1 = (0,1)$, $\mathbf{v}_2 = (0,-1)$
 - $\{\mathbf{v_1}, \mathbf{v_2}\}$ <u>não</u> é uma base de $V = \mathbf{R}^2$.
 - Se (0,0) = a(0,1) + b(0,-1) = (0, a b) então a = b, que pode ou não ser igual a 0 (zero).
 - Portanto, $\{v_1, v_2\}$ é LD.
- Exemplo 4: $V = \mathbb{R}^3$, $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$ e $\mathbf{e}_3 = (0,0,1)$
 - $\{e_1, e_2, e_3\}$ é base canônica do \mathbb{R}^3 .
 - i. $\{e_1, e_2, e_3\} \notin LI;$
 - ii. $\mathbf{u} \in \mathbf{R}^3$, $\mathbf{u} = (x, y, z) = x \cdot \mathbf{e_1} + y \cdot \mathbf{e_2} + z \cdot \mathbf{e_3}$

- Exemplo 5: $\{(1,0,0), (0,1,0)\}$ não é base de \mathbb{R}^3
 - é LI
 - ■mas não gera todo \mathbb{R}^3 , ou seja $[(1,0,0), (0,1,0)] \neq \mathbb{R}^3$.
- Exemplo 6: V = M(2,2)

$$e_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad e_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \quad e_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

- $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}\}$ é base canônica de V.
 - i. $\{e_1, e_2, e_3, e_4\}$ é LI;

ii.
$$u = \begin{bmatrix} x & y \\ z & w \end{bmatrix} = x.\mathbf{e_1} + y.\mathbf{e_2} + z.\mathbf{e_3} + w.\mathbf{e_4}$$

Teorema: Sejam $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}$ vetores não nulos que geram um espaço vetorial V. Então dentre esses vetores, podemos extrair uma base de V.

■ Isso independe de $v_1, v_2, ..., v_n$ serem LD ou LI.

Teorema: Seja um espaço vetorial V gerado por um conjunto finito de vetores $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}$. Então, qualquer conjunto com mais de n vetores é necessariamente LD (e, portanto, qualquer conjunto LI tem no máximo n vetores).

Corolário: Qualquer base de um espaço vetorial tem sempre o mesmo número de elementos. Este número é chamado *dimensão de V*, e denotado por *dim V*.

- Exemplo 7: $V = \mathbb{R}^2$, dim V = 2
 - $\{(1,0),(0,1)\}$ assim como $\{(1,1),(0,1)\}$, são bases de $V = \mathbb{R}^2$.
- Exemplo 8: $V = \mathbb{R}^3$, dim V = 3
- Exemplo 9: V = M(2,2), dim V = 4
 - Exemplo 6 mostra a base canônica para M(2,2).

Teorema: Qualquer conjunto de vetores LI de um espaço vetorial V de dimensão finita, pode ser completado de modo a formar uma base de V.

Corolário: Se dim V = n, qualquer conjunto de n vetores LI formará uma base de V.

Teorema: Se U e W são subespaços de um espaço vetorial V que tem dimensão finita, então $dim\ U \le dim\ V$ e $dim\ W \le dim\ V$. Além disso:

$$\triangleright dim(U+W) = dim\ U + dim\ W - dim(U\cap W)$$

Teorema: Dada uma base $\beta = \{v_1, v_2, ..., v_n\}$ de V, cada vetor de V é escrito de maneira *única* como combinação linear de $v_1, v_2, ..., v_n$.

Definição: Sejam $\beta = \{v_1, v_2, ..., v_n\}$ base de V, e $v \in V$ onde $v = a_1v_1 + ... + a_nv_n$. Chamamos esses números a_i de coordenadas de v em relação à base β e denotamos por:

$$\left[\mathbf{v}\right]_{\beta} = \left(\begin{array}{c} a_1 \\ \dots \\ a_n \end{array}\right)$$

• Exemplo 10: $V = \mathbb{R}^2$.

Seja a base canônica $\beta = \{(1,0), (0,1)\}$

Seja o vetor $\mathbf{u} = (5,-2)$, $\mathbf{u} \in \mathbf{R}^2$.

Então,
$$\mathbf{u} = (5, -2) = a_1(1,0) + a_2(0,1) \Rightarrow a_1 = 5 \text{ e } a_2 = -2$$

Logo,
$$[\mathbf{u}]_{\beta} = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$$

Para outra base $\beta' = \{(1,1), (0,1)\}$

$$\mathbf{u} = (5, -2) = a_1(1,1) + a_2(0,1) \implies a_1 = 5 \text{ e } a_2 = -7$$

Logo,
$$[\mathbf{u}]_{\beta} = \begin{bmatrix} 5 \\ -7 \end{bmatrix}$$

• Exemplo 11:

Observe que a ordem dos elementos de uma base *influi* na matriz das coordenadas de um vetor em relação à esta base.

Seja
$$u = (5,-2)$$
, $u \in \mathbb{R}^2$.

$$\beta = \{(1,0), (0,1)\}\ e\ \beta' = \{(0,1), (1,0)\}$$

Então,
$$[\mathbf{u}]_{\beta} = \begin{bmatrix} 5 \\ -2 \end{bmatrix} \qquad [\mathbf{u}]_{\beta}, = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$$

Por esse motivo, fica subentendido que uma base $\beta' = \{v_1, ..., v_n\}$, possui seus vetores ordenados, na ordem em que aparecem.

• Exemplo 12: Considere $V = \{(x, y, z); x + y - z = 0\}$ e $W = \{(x, y, z); x = y\}$. Determine V+W.

$$■V: x + y - z = 0 \Rightarrow z = x + y$$
 $(x, y, x + y) = x.(1, 0, 1) + y.(0, 1, 1)$
 $[(1, 0, 1), (0, 1, 1)] = V \rightarrow \text{não \'e uma base do } \mathbb{R}^3.$

- W: x = y (y, y, z) = y.(1, 1, 0) + z.(0, 0, 1) [(1, 1, 0), (0, 0, 1)] = $W \rightarrow$ não é uma base do \mathbb{R}^3 .
- V + W = [(1, 0, 1), (0, 1, 1), (1, 1, 0), (0, 0, 1)]

• Exemplo 12 (continuação):

$$V + W = [(1, 0, 1), (0, 1, 1), (1, 1, 0), (0, 0, 1)]$$

- Porém como V + W possui 4 vetores, mas os vetores são do \mathbb{R}^3 , um dos vetores de V + W deve ser combinação linear dos outros três.
- Vamos escalonar o sistema V + W

• Exemplo 12 (continuação):

- Logo V + W = [(1,0,1), (0,1,1), (0,0,1)]
- Assim, $V + W = \mathbb{R}^3$
- $\blacksquare \dim \mathbb{R}^3 = \dim V + \dim W \dim(V \cap W)$
 - $\dim(V \cap W) = 2 + 2 3 = 1$
- Mas quem é o conjunto $V \cap W$?

- Exemplo 12 (continuação):
 - Mas quem é o conjunto $V \cap W$?
 - $V \cap W = \{(x, y, z); x + y z = 0 \text{ e } x = y\} \rightarrow (x, x, 2x)$
 - $V \cap W = [(1, 1, 2)] \Rightarrow \dim(V \cap W) = 1$
 - dim \mathbb{R}^3 = dim V + dim W dim $V \cap W = 2 + 2 1 = 3$ como esperado!

Sejam $\beta = \{\mathbf{u_1}, ..., \mathbf{u_n}\}\$ e $\beta' = \{\mathbf{w_1}, ..., \mathbf{w_n}\}\$ duas bases ordenadas de um mesmo espaço vetorial V. Dado o vetor $\mathbf{v} \in V$, podemos escrevê-lo como:

$$\mathbf{v} = \mathbf{x}_1 \mathbf{u}_1 + \dots + \mathbf{x}_n \mathbf{u}_n$$

$$\mathbf{v} = \mathbf{y}_1 \mathbf{w}_1 + \dots + \mathbf{y}_n \mathbf{w}_n$$
Eq (01)

Deve haver uma maneira de relacionar as coordenadas de v em relação à base β

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\beta} = \begin{bmatrix} \mathbf{X}_1 \\ \dots \\ \mathbf{X}_n \end{bmatrix}$$

com as coordenadas do mesmo vetor v em relação à base β'

$$[\mathbf{v}]_{\beta}$$
, $= \begin{bmatrix} \mathbf{y}_1 \\ \dots \\ \mathbf{y}_n \end{bmatrix}$

Como $\{\mathbf{u_1},...,\mathbf{u_n}\}$ é base de V, qualquer vetor de V pode ser escrito como uma combinação dos vetores $\mathbf{u_i}$, i = 1, ... n, inclusive os vetores \mathbf{v} , $\mathbf{w_1}$, $\mathbf{w_2}$, ..., e $\mathbf{w_n}$. Assim:

$$\begin{cases} \mathbf{w}_{1} = \mathbf{a}_{11}\mathbf{u}_{1} + \mathbf{a}_{21}\mathbf{u}_{2} + ... + \mathbf{a}_{n1}\mathbf{u}_{n} \\ \mathbf{w}_{2} = \mathbf{a}_{12}\mathbf{u}_{1} + \mathbf{a}_{22}\mathbf{u}_{2} + ... + \mathbf{a}_{n2}\mathbf{u}_{n} \\ \\ \mathbf{w}_{n} = \mathbf{a}_{1n}\mathbf{u}_{1} + \mathbf{a}_{2n}\mathbf{u}_{2} + ... + \mathbf{a}_{nn}\mathbf{u}_{n} \end{cases}$$
Eq.(02)

$$\begin{cases} \mathbf{w}_{1} = \mathbf{a}_{11}\mathbf{u}_{1} + \mathbf{a}_{21}\mathbf{u}_{2} + ... + \mathbf{a}_{n1}\mathbf{u}_{n} \\ \mathbf{w}_{2} = \mathbf{a}_{12}\mathbf{u}_{1} + \mathbf{a}_{22}\mathbf{u}_{2} + ... + \mathbf{a}_{n2}\mathbf{u}_{n} \\ \\ \mathbf{w}_{n} = \mathbf{a}_{1n}\mathbf{u}_{1} + \mathbf{a}_{2n}\mathbf{u}_{2} + ... + \mathbf{a}_{nn}\mathbf{u}_{n} \end{cases}$$
Eq.(02)

Substituindo Eq.(02) em Eq.(01):

$$\mathbf{v} = \mathbf{y}_{1}\mathbf{w}_{1} + \mathbf{y}_{2}\mathbf{w}_{2} + \dots + \mathbf{y}_{n}\mathbf{w}_{n}$$

$$= \mathbf{y}_{1}(\mathbf{a}_{11}\mathbf{u}_{1} + \dots + \mathbf{a}_{n1}\mathbf{u}_{n}) + \mathbf{y}_{2}(\mathbf{a}_{12}\mathbf{u}_{1} + \dots + \mathbf{a}_{n2}\mathbf{u}_{n}) + \dots + \mathbf{y}_{n}(\mathbf{a}_{1n}\mathbf{u}_{1} + \dots + \mathbf{a}_{nn}\mathbf{u}_{n})$$

$$= \mathbf{u}_{1}(\mathbf{a}_{11}\mathbf{y}_{1} + \mathbf{a}_{12}\mathbf{y}_{2} + \dots + \mathbf{a}_{n1}\mathbf{y}_{n}) + \dots + \mathbf{u}_{n}(\mathbf{a}_{1n}\mathbf{y}_{1} + \mathbf{a}_{2n}\mathbf{y}_{2} + \dots + \mathbf{a}_{nn}\mathbf{y}_{n})$$

$$\mathbf{v} = \mathbf{u_1}(\mathbf{a_{11}y_1} + \mathbf{a_{12}y_2} + \dots + \mathbf{a_{n1}y_n}) + \dots + \mathbf{u_n}(\mathbf{a_{1n}y_1} + \mathbf{a_{2n}y_2} + \dots + \mathbf{a_{nn}y_n})$$

Mas $\mathbf{v} = \mathbf{x}_1 \mathbf{u}_1 + \dots + \mathbf{x}_n \mathbf{u}_n$, e como as coordenadas em relação a uma base são *únicas* tem-se que:

$$x_1 = a_{11}y_1 + a_{12}y_2 + ... + a_{n1}y_n$$

 $x_2 = a_{12}y_1 + a_{22}y_2 + ... + a_{n2}y_n$
...
 $x_n = a_{1n}y_1 + a_{n2}y_2 + ... + a_{nn}y_n$

Observe que as linhas viraram colunas!

Ou na forma matricial:

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Onde,

$$[I]_{\beta}^{\beta'} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

A matriz $[I]^{\beta'}_{\beta}$ é chamada de *matriz de mudança da base* β ' para a base β .

Um vetor v descrito na base β ' será descrito na base β como:

$$[\mathbf{v}]_{\beta} = [I]_{\beta}^{\beta'} [\mathbf{v}]_{\beta}$$

Observa-se que, ao se encontrar $\begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta'}$, pode-se encontrar as coordenadas de qualquer vetor v em relação à base β , multiplicando a matriz pelas coordenadas de v na base β' .

• Exemplo 1: sejam $\beta = \{\mathbf{u_1}, \mathbf{u_2}\} = \{(2,-1), (3,4)\}$ e $\beta' = \{\mathbf{w_1}, \mathbf{w_2}\} = \{(1,0), (0,1)\}$ bases de R², calcule $[I]_{\beta}^{\beta'}$

$$\mathbf{w_1} = (1,0) = \mathbf{a_{11}}(2,-1) + \mathbf{a_{21}}(3,4) = (2\mathbf{a_{11}} + 3\mathbf{a_{21}}, -\mathbf{a_{11}} + 4\mathbf{a_{21}})$$

$$\begin{cases}
1 = 2\mathbf{a_{11}} + 3\mathbf{a_{21}} \\
0 = -\mathbf{a_{11}} + 4\mathbf{a_{21}}
\end{cases} \Rightarrow \begin{cases}
1 = 8\mathbf{a_{21}} + 3\mathbf{a_{21}} \\
\mathbf{a_{11}} = 4\mathbf{a_{21}}
\end{cases} \Rightarrow \begin{cases}
\mathbf{a_{21}} = 1/11 \\
\mathbf{a_{11}} = 4/11
\end{cases}$$

$$\mathbf{w_2} = (0,1) = a_{12}(2,-1) + a_{22}(3,4) = (2a_{12} + 3a_{22}, -a_{12} + 4a_{22})$$

$$\begin{cases}
0 = 2a_{12} + 3a_{22} \\
1 = -a_{12} + 4a_{22}
\end{cases} \Rightarrow \begin{cases}
a_{12} = -3/2a_{22} \\
1 = 3/2a_{22} + 4a_{22}
\end{cases} \Rightarrow \begin{cases}
a_{21} = -3/11 \\
a_{22} = 2/11
\end{cases}$$

• Exemplo 1 (continuação):

$$\mathbf{w_1} = \mathbf{a_{11}}\mathbf{u_1} + \mathbf{a_{21}}\mathbf{u_2} = (4/11)\mathbf{u_1} + (1/11)\mathbf{u_2}$$

 $\mathbf{w_2} = \mathbf{a_{12}}\mathbf{u_1} + \mathbf{a_{22}}\mathbf{u_2} = (-3/11)\mathbf{u_1} + (2/11)\mathbf{u_2}$

$$[I]^{\beta'}_{\beta} = \begin{bmatrix} 4/11 & -3/11 \\ 1/11 & 2/11 \end{bmatrix}$$

Linhas tornam-se colunas!!!

• Exemplo 1 (continuação): Seja o vetor $\mathbf{v} = (2,5)$. Sabemos que ele é escrito na base $\beta' = \{\mathbf{w_1, w_2}\} = \{(1,0),(0,1)\}$ como $\mathbf{v} = 2\mathbf{w_1} + 5\mathbf{w_2}$ = 2(1,0) + 5(0,1) = (2,5). Mas como ele é escrito na base $\beta = \{\mathbf{u_1, u_2}\} = \{(2,-1),(3,4)\}$?

$$[\mathbf{v}]_{\beta} = [(2,5)]_{\beta} = [I]_{\beta}^{\beta'}[\mathbf{v}]_{\beta'}$$

$$[\mathbf{v}]_{\beta} = [(2,5)]_{\beta} = \begin{bmatrix} 4/11 & -3/11 \\ 1/11 & 2/11 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} -7/11 \\ 12/11 \end{bmatrix}$$

$$\mathbf{v} = -7/11\mathbf{u}_1 + 12/11\mathbf{u}_2 = (-7/11)(2, -1) + (12/11)(3, 4)$$
$$= (-14/11 + 36/11, 7/11 + 48/11) = (22/11, 55/11) = (2,5)$$

Espaço Vetorial: inversa da matriz mudança de base

Observe que a matriz de mudança de bases $\begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta'}$ foi obtida ao se escrever os vetores \mathbf{w}_i (i=1,...,n) da base β' , como combinações lineares dos vetores \mathbf{u}_i , (j=1,...,n) da base β .

De forma análoga, poderíamos obter a matriz de mudança de bases $\begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta}$, ao escrever os vetores \mathbf{u}_{j} , (j=1,...,n) como combinações lineares dos vetores \mathbf{w}_{i} (i=1,...n).

Espaço Vetorial: inversa da matriz mudança de base

As matrizes
$$[I]_{\beta}^{\beta'}$$
 e $[I]_{\beta'}^{\beta}$ são inversíveis e:

$$\left(\begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta'} \right)^{-1} = \begin{bmatrix} I \end{bmatrix}_{\beta'}^{\beta}$$

Espaço Vetorial: inversa da matriz mudança de base

• Exemplo 2: sejam $\beta = \{\mathbf{u_1}, \mathbf{u_2}\} = \{(2,-1), (3,4)\}$ e $\beta' = \{\mathbf{w_1}, \mathbf{w_2}\} = \{(1,0),(0,1)\}$ bases de \mathbb{R}^2 , calcule $[I]_{\beta'}^{\beta}$ e verifique que $([I]_{\beta'}^{\beta'})^{-1} = [I]_{\beta'}^{\beta}$

$$\mathbf{u_1} = (2,-1) = a_{11}(0,1) + a_{21}(0,1) = (a_{11},a_{21})$$

$$\mathbf{u_2} = (3,4) = a_{12}(1,0) + a_{22}(0,1) = (a_{12},a_{22})$$

$$\mathbf{a_{11}} = 2$$

$$a_{21} = -1$$

$$a_{12} = 3$$

$$a_{12} = 3$$

$$a_{22} = 4$$

$$[I]_{\beta}^{\beta'} = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} \quad \Box \qquad ([I]_{\beta}^{\beta'})^{-1} = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} 4/11 & -3/11 \\ 1/11 & 2/11 \end{bmatrix} = [I]_{\beta'}^{\beta}$$

- Problema 18: considere o subespaço de R⁴, gerado pelos vetores $\mathbf{v}_1 = (1,-1,0,0), \mathbf{v}_2 = (0,0,1,1), \mathbf{v}_3 = (-2,2,1,1), \mathbf{e} \mathbf{v}_4 = (1,0,0,0).$
 - a) O vetor $\mathbf{u} = (2, -3, 2, 2) \in [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4]$?
 - b) Exiba uma base para $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4]$? Qual sua dimensão?
 - c) $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4] = \mathbf{R}^4$?
- a) Existem constantes a, b, c, d tal que $\mathbf{u} = a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3 + d\mathbf{v}_4$?

$$(2, -3, 2, 2) = a(1, -1, 0, 0) + b(0, 0, 1, 1) + c(-2, 2, 1, 1) + d(1, 0, 0, 0)$$

$$2 = a - 2c + d$$
 $2 = b + c$

$$-3 = -a + 2c$$
 $2 = b + c$

• Problema 18 (continuação):

$$\begin{cases} a + 0b - 2c + d &= 2 \\ -a + 0b + 2c + 0d &= -3 \\ 0a + b + c + 0d &= 2 \\ 0a + b + c + 0d &= 2 \end{cases} \qquad \Rightarrow \begin{bmatrix} 1 & 0 & -2 & 1 & 2 \\ -1 & 0 & 2 & 0 & -3 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} L_2 = L_2 + L_1$$

$$\begin{bmatrix} 1 & 0 & -2 & 1 & 2 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} L_2 \leftrightarrow L_3 \qquad \begin{bmatrix} 1 & 0 & -2 & 1 & 2 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

• Problema 18 (continuação):

$$\begin{bmatrix} 1 & 0 & -2 & 0 & 3 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \Rightarrow \begin{array}{c} a-2c & = 3 \Rightarrow a = 3+2c \\ b+c=2 \Rightarrow b=2-c \\ d=-1 \\ assuma c=1 \Rightarrow a=5 e b=1 \end{array}$$

Como,

$$\mathbf{u} = (2, -3, 2, 2) = 5(1, -1, 0, 0) + I(0, 0, 1, 1) + I(-2, 2, 1, 1) - I(1, 0, 0, 0)$$

Então $\mathbf{u} \in [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4].$

- Problema 18 (continuação):
 - b) Exiba uma base para $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4]$? Qual sua dimensão?

Se $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4]$ formam uma base, em eles devem ser LI, ou seja:

$$a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 + a_4 \mathbf{v}_4 = 0$$
 se e somente se $a_1 = a_2 = a_3 = a_4 = 0$

$$a_1(1,-1,0,0) + a_2(0,0,1,1) + a_3(-2,2,1,1) + a_4(1,0,0,0) = (0,0,0,0)$$

$$a_{1} - 2a_{3} + a_{4} = 0$$
 $-a_{1} + 2a_{3} = 0$
 $a_{2} + a_{3} = 0$
 $a_{2} + a_{3} = 0$
 $a_{3} + a_{4} = 0$
 $a_{4} = 0$
 $a_{1} = -2a_{3}$
 $a_{2} = -a_{3}$
 $a_{2} = -a_{3}$
 $a_{3} + a_{4} = 0$
 $a_{4} = 0$
 $a_{5} = -2a_{5}$
 $a_{6} = -2a_{5}$
 $a_{7} = -2a_{7}$
 $a_{8} = -2a_{7}$
 $a_{8} = -2a_{8}$
 $a_{8} = -2a_{8}$

• Problema 18 (continuação):

Forma direta de se observar o vetor que é combinação linear dos demais: escalonar a matriz formada pelo vetores $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4]$.

• Problema 18 (continuação):

Existem duas bases possíveis para representar [v_1 , v_2 , v_3 , v_4]:

$$\beta_1 = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_4] \text{ ou } \beta_2 = [\mathbf{v}_1 \ \mathbf{v}_3 \ \mathbf{v}_4].$$

 $\dim \beta = \dim \beta' = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4] = 3 \neq \dim \mathbb{R}^4 = 4$

Observe que tanto $[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_4]$ quanto $[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_4]$ (verifique) são LI:

$$a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_4 \mathbf{v}_4 = \mathbf{0}$$
 se e somente se $a_1 = a_2 = a_4 = 0$

$$a_1(1,-1,0,0) + a_2(0,0,1,1) + a_4(1,0,0,0) = (0,0,0,0)$$

$$a_1 + a_4 = 0$$
 $a_2 = 0$

$$-a_1 = 0$$

Problema 19: Considere o subespaço de R³ gerado pelos vetores $\mathbf{v}_1 = (1,1,0), \ \mathbf{v}_2 = (0,-1,1) \ \mathbf{v}_3 = (1,1,1). \ \mathrm{Então} \ [\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3] = \mathbf{R}^3?$

Solução 1: dado um vetor qualquer do R^3 , $\mathbf{u} = (x,y,z)$, existem constantes a, b e c tal que $\mathbf{u} = a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3$?

$$(x, y, z) = a(1,1,0) + b(0,-1,1) + c(1,1,1)$$

$$\begin{cases} x = a + c \\ y = a - b + c \end{cases} \qquad \begin{cases} a = 2x - y - z \\ b = x - y \end{cases} \qquad \text{Portanto, } [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] \\ c = -x + y + z \end{cases} \qquad \text{podem representar qualquer vetor do } \mathbf{R}^3, \\ c = -x + y + z \qquad \text{ou seja } [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \mathbf{R}^3 \end{cases}$$

Problema 19 (continuação):

Solução 2: vamos tentar escalonar a matriz formada pelos vetores $[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix} L_3 = L_3 - L_1 \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix} L_1 = L_1 + L_2 \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} L_1 = L_1 - L_3 \\ L_2 = -L_2 \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} L_2 = L_2 + L_3$$

Como o escalonamento resultou na base canônica do R³, o conjunto $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ pode representar qualquer vetor do R^3 , ou seja $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = R^3$.

Espaço Vetorial

• Problemas Sugeridos: 2, 4, 6, 7, 8, 9, 11, 15, 25 e 29