Midterm 2 (22C:123), Spring 2000

Open Books and Notes

1. (50) (Fixed Point Semantics) The function F is defined as follows:

$$F = \lambda g.\lambda n.$$
 (if $(n = 1)$ then 2 else if $even(n)$ then $n + g(n/2)$ else $g(2n - 3)$)

(a) Please list the functions $F \perp$, $F^2 \perp$, $F^3 \perp$, in their simplest form.

Answer:

- $F \perp n =$ if n = 1 then 2 else \perp ;
- $F^2 \perp n =$ if $n = 1 \lor n = 2$ then 2n else \perp ;
- $F^3 \perp n =$ if $n = 1 \lor n = 2 \lor n = 4$ then 2n else \perp .
- (b) Please provide the function $F^i \perp$ and prove by induction on i that your $F^i \perp$ is correct.

Answer:

 $F^i \perp n = \mathbf{if} \ n = 2^j \ (0 \le j < i) \ \mathbf{then} \ 2n \ \mathbf{else} \ \perp.$ $F^0 \perp = \perp$ is the base case when n = 0.

For the inductive case,

$$F^{i+1} \perp n = \mathbf{if} \ (n=1) \ \mathbf{then} \ 2 \ \mathbf{else}$$

 $\mathbf{if} \ even(n) \ \mathbf{then} \ n + F^i \perp (n/2) \ \mathbf{else} \ F^i \perp (2n-3)$
 $= \mathbf{if} \ n = 2^j \ (0 \le j \le i) \ \mathbf{then} \ 2n \ \mathbf{else} \ \perp.$

(c) Please find the least fixed point f_1 of F.

Answer: $f_1 n = \mathbf{if} n = 2^j \ (0 \le j)$ then 2n else \perp .

(d) Please find two other different fixed points f_2 and f_3 of F such that $f_1 \subseteq f_2 \subseteq f_3$, where \subseteq is the partial order on functions as given in the textbook.

Answer:

- $f_2 n = \mathbf{if} \ n = 0 \lor n = 2^j \ (0 \le j) \ \mathbf{then} \ 2n \ \mathbf{else} \ \bot$.
- $f_3 n = \mathbf{if} \ n = 0 \lor n = 2^j \lor n = 3 * 2^j (0 \le j) \mathbf{then} \ 2n \mathbf{ else } \bot.$

We can verify that F $f_i = f_i$ for i = 1, 2, 3 and $f_1 \subseteq f_2 \subseteq f_3$.

- 2. (50) (Denotational Semantics) We like to add into Wren two features of C language.
 - (a) One is the C-style conditional expression:

Please provide denotational semantics for the conditional expression in Wren and use your definition to prove the semantic equivalence of the following two commands:

$$m := e_1? e_2 : e_3;$$

and

if
$$e_1$$
 then $m := e_2$ else $m := e_3$;

Answer: Please see the answer to Problem 9.3.1 b).

(b) The other is the operators ++ and --: ++i in an expression will return one plus the value of i; i++ will return the value of i. In both cases, the value of i will be increased by one. The meaning for -- is similar.

Please modify Wren's denotational sementics to handle ++ and -- (both before and after an integer identifier).

Answer: The store needs to be updated and the updated store should be returned by evaluate. Please see the answer to Problem 9.3.1 c).