

FCC PART 15.247 TEST REPORT

For

Shenzhen Rakwireless Technology Co., Ltd.

Room 506, Bldg B, New Compark, Pingshan First Road, Taoyuan Street, XiLi town, Nanshan District, Shenzhen, China

FCC ID: 2AF6B-RAK7258

Report Type: Product Type:

Original Report Indoor LoRa Gateway

Report Number: RSZ190308005-00C

Report Date: 2019-05-07

Rocky Kang

Reviewed By: RF Engineer

Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone,

Racky Kang

Shenzhen, Guangdong, China Tel: +86-755-33320018

Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EQUIPMENT MODIFICATIONS	5
EUT Exercise Software	5
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC §15.247 (I) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	9
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	
Applicable Standard	
Antenna Connector Construction	11
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	12
APPLICABLE STANDARD	12
EUT Setup	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	13
Test Results Summary	
TEST DATA	13
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	16
APPLICABLE STANDARD	16
EUT SETUP	16
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	17
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
Test Results Summary	
Trott DATA	1.0

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Indoor LoRa Gateway
Tested Model	RAK7258
Frequency Range	923.3-927.5 MHz
Transmit Power	12.70dBm
Modulation Technique	chirp –based Spread-Spectrum
Antenna Specification	3dBi
Voltage Range	DC 12.0V from adapter or DC 48V from POE
Date of Test	2019-03-25~ 2019-04-04
Sample serial number	190308005
Received date	2019-03-08
Sample/EUT Status	Good condition
Adapter information	Model: PSY1202000US Input: AC 100-240V, 50/60Hz, 1.3A Output: DC 12.0V, 2.0A

Objective

This report is prepared on behalf of *Shenzhen Rakwireless Technology Co., Ltd.* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS submissions with FCC ID: 2AF6B-RAK7258.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 3 of 21

Measurement Uncertainty

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	±5%
RF Output Power	with Power meter	±0.73dB
RF conducted test with spectrum		±1.6dB
AC Power Lines Conducted Emissions		±1.95dB
Emissions,	Below 1GHz	±4.75dB
Radiated	Above 1GHz	±4.88dB
Temperature		±1℃
Humidity		±6%
Supply	voltages	±0.4%

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

FCC Part 15.247 Page 4 of 21

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in testing mode, which was provided by manufacturer.

For LoRa mode, Detailed Frequency as below:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	923.3	5	925.7
2	923.9	6	926.3
3	924.5	7	926.9
4	925.1	8	927.5

EUT was tested with Channel 1, 4 and 8.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

"Xshell" software was used and power level is --dig 0 --mix 14 --pa 1.

Duty cycle

LoRa Mode

Date: 19.DEC.2018 18:41:27

FCC Part 15.247 Page 5 of 21

Band	Duty Cycle (%)	T(us)	1/T(kHz)	VBW Setting	10log(1/x)
LoRa	100	-	-	10Hz	-

Note: The LoRa module built in the EUT was identical to the certified module (FCC ID: 2AF6B-RAK2247) except the antenna. So the RF conducted data can refer to the report of the certified module.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Sandisk	U-disk	N/A	3491
DELL	Laptop	VOSTRO 220S	127BP2X

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable DC Cable	1.0	EUT	Adapter

Block Diagram of Test Setup

FCC Part 15.247 Page 6 of 21

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i) & §1.1310 & §2.1091	Maximum Permissible exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance*
§15.247(b)(3)	Maximum Conducted Output Power	Compliance*
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance*
§15.247(e)	Power Spectral Density	Compliance*

Compliance*: The LoRa module built in the EUT was identical to the certified module (FCC ID: 2AF6B-RAK2247) except the antenna, So the RF conducted data can refer to the report of the certified module, report No.: RSZ181207002-00B, which was tested by Bay Area Compliance Laboratories Corp. (Shenzhen).

FCC Part 15.247 Page 7 of 21

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	Conducted Emissions Test						
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2018-07-11	2019-07-11		
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2019-01-25	2020-01-25		
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2019-03-02	2020-03-02		
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR		
Unknown	Conducted Emission Cable	78652	UF A210B-1- 0720-504504	2018-11-12	2019-11-12		
	Radia	ated Emission T	`est				
Sunol Sciences	Horn Antenna	DRH-118	A052604	2017-12-22	2020-12-21		
Rohde & Schwarz	Signal Analyzer	FSEM	845987/005	2018-06-23	2019-06-23		
Rohde & Schwarz	Signal Analyzer	FSV40	101473	2019-01-09	2020-01-08		
COM-POWER	Pre-amplifier	PA-122	181919	2018-11-12	2019-11-12		
Sonoma Instrument	Amplifier	310N	186238	2018-11-12	2019-11-12		
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017-12-22	2020-12-21		
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03 -101746-zn	2018-07-11	2019-07-11		
Ducommun technologies	RF Cable	UFA147A- 2362-100100	MFR64639 231029-003	2018-11-12	2019-11-12		
Ducommun technologies	RF Cable	104PEA	218124002	2018-11-12	2019-11-12		
Ducommun technologies	RF Cable	RG-214	1	2018-11-19	2019-05-21		
Ducommun technologies	RF Cable	RG-214	2	2018-11-12	2019-11-12		
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR		
Sinoscite	Band Reject Filter	BSF2402- 2480MN- 0898-001	99632	2018-11-12	2019-11-12		

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 8 of 21

FCC §15.247 (I) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i) and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)	
0.3–1.34	614	1.63	*(100)	30	
1.34–30	824/f	2.19/f	*(180/f²)	30	
30–300	27.5	0.073	0.2	30	
300–1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

The worst case as below:

Frequency	Antenna Gain		Conducted Power		Evaluation	Power	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	(mW/cm ²)
2412-2472	3.0	2.0	17.5	56.23	20	0.02	1
923.3-927.5	2.0	1.58	13	19.95	20	0.006	0.6

FCC Part 15.247 Page 9 of 21

Consider the LoRa and WIFI transmitting simultaneously:

The ratio= MPE/Limit_{LoRa}+ MPE/Limit_{WIFI} = 0.006/0.6+0.02/1=0.03<1.0

Note: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliance

FCC Part 15.247 Page 10 of 21

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has an external antenna with a non-standard antenna jack which the maximum antenna gain is 2.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15.247 Page 11 of 21

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 12 of 21

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207,

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Haiguo Li on 2019-04-04.

Pre-test with POE power and adapter power, the worst case is by adapter.

EUT operation mode: Transmitting

FCC Part 15.247 Page 13 of 21

AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.347130	38.8	19.9	59.0	20.2	QP
0.391790	48.4	19.9	58.0	9.6	QP
0.396090	48.8	19.9	57.9	9.1	QP
0.455130	36.7	19.8	56.8	20.1	QP
1.128870	37.7	19.8	56.0	18.3	QP
7.934990	42.5	19.9	60.0	17.5	QP
0.347130	31.4	19.9	49.0	17.6	Ave.
0.391790	40.2	19.9	48.0	7.8	Ave.
0.396090	39.3	19.9	47.9	8.6	Ave.
0.455130	26.9	19.8	46.8	19.9	Ave.
1.128870	28.8	19.8	46.0	17.2	Ave.
7.934990	38.5	19.9	50.0	11.5	Ave.

FCC Part 15.247 Page 14 of 21

AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.294500	43.1	19.7	60.4	17.3	QP
0.336870	42.3	19.8	59.3	17.0	QP
0.391790	48.5	19.8	58.0	9.5	QP
0.392090	48.7	19.8	58.0	9.3	QP
1.085650	35.6	19.8	56.0	20.4	QP
7.931110	41.6	19.9	60.0	18.4	QP
0.294500	37.2	19.7	50.4	13.2	Ave.
0.336870	35.4	19.8	49.3	13.9	Ave.
0.391790	39.8	19.8	48.0	8.2	Ave.
0.392090	40.2	19.8	48.0	7.8	Ave.
1.085650	27.5	19.8	46.0	18.5	Ave.
7.931110	37.0	19.9	50.0	13.0	Ave.

Note:

- 1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
- 2) Corrected Amplitude = Reading + Correction Factor
 3) Margin = Limit Corrected Amplitude

FCC Part 15.247 Page 15 of 21

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

FCC Part 15.247 Page 16 of 21

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 10 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurements	
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP	
Above 1 GHz	1MHz	3 MHz	/	PK	
	1MHz	10 Hz Note 1	/	Average	
	1MHz	>1/T Note 2	/	Average	

Note 1: when duty cycle is no less than 98%

Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

FCC Part 15.247 Page 17 of 21

Test Data

Environmental Conditions

Temperature:	24 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Kong on 2019-03-25.

Test range 30MHz – 10GHz, please refer to the following tables and plots.

Pre-test with POE power and adapter power, the worst case is by Adapter.

Worst case at Low channel:

FCC Part 15.247 Page 18 of 21

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
42.191625	31.28	106.0	V	50.0	-15.3	40.00	8.72
45.869000	31.80	106.0	V	30.0	-17.7	40.00	8.20
51.268625	33.03	107.0	V	104.0	-19.7	40.00	6.97
85.438250	35.61	400.0	Н	31.0	-19.5	40.00	4.39
86.230875	32.58	381.0	Н	241.0	-19.4	40.00	7.42
255.893000	34.93	108.0	Н	271.0	-13.7	46.00	11.07

Frequency	Receiver		Turntable	Rx Antenna				FCC Part 15.247/205/209	
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree He	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)		Margin (dB)
Low Channel (923.3 MHz)									
902	20.6	QP	359	1.5	V	4.4	25.0	46	21.0
1504.00	46.37	PK	224	2.3	Н	-1.04	45.33	74	28.67
1504.00	41.12	Ave.	224	2.3	Н	-1.04	40.08	54	13.92
1846.60	54.62	PK	58	1.1	Н	-1.41	53.21	74	20.79
1846.60	50.84	Ave.	58	1.1	Н	-1.41	49.43	54	4.57
			Middle C	Channel	(925.1N	/IHz)			
1534.22	45.27	PK	268	1.9	Н	-0.94	44.33	74	29.67
1534.22	40.26	Ave.	268	1.9	Н	-0.94	39.32	54	14.68
1850.20	55.56	PK	122	1.8	Н	-1.34	54.22	74	19.78
1850.20	51.70	Ave.	122	1.8	Н	-1.34	50.36	54	3.64
			High Ch	annel(9	27.5 M	Hz)			
928	31.0	QP	169	2.5	V	7.4	38.4	46	7.6
1568.30	46.32	PK	329	1.5	Н	-0.84	45.48	74	28.52
1568.30	40.29	Ave.	329	1.5	Н	-0.84	39.45	54	14.55
1855.00	56.25	PK	122	1.8	Н	-1.34	54.91	74	19.09
1855.00	51.92	Ave.	122	1.8	Н	-1.34	50.58	54	3.42

Note:

 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$

Corrected Amplitude = Corrected Factor + Reading

Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded.

FCC Part 15.247 Page 19 of 21

Pre-scan with High channel for Peak Horizontal

Date: 25.MAR.2019 15:41:35

Vertical

Date: 25.MAR.2019 15:36:05

FCC Part 15.247 Page 20 of 21

Pre-scan for Average Horizontal

Date: 25.MAR.2019 15:44:27

Vertical

Date: 25.MAR.2019 15:39:18

***** END OF REPORT *****

FCC Part 15.247 Page 21 of 21