PHYS 509C Assignment 3

Callum McCracken, 20334298

November 1, 2022

Code for this assignment is here:

 $\verb|https://github.com/callum-mccracken/PHYS-509C-A3|$

1 S&P 500

 ${\bf A}.$ Fit a Gaussian with ML

В.

 \mathbf{C} .

how to deal with the correlation thing

3 Supernovae

A. Fit a Gaussian with ML

 \mathbf{B} .

 \mathbf{C} .

$$D = \frac{1}{H_0} \left(z + \frac{1}{2} z^2 (1 - q_0) \right)$$

$$q_0 = \frac{\Omega_M}{2} - \Omega_{\Lambda}$$

$$\Omega_M + \Omega_{\Lambda} = 1 : \Omega_M, \Omega_{\Lambda} > 0$$

$$L = \frac{L_0}{D^2}$$

$$m = -2.5 \log_{10}(L)$$

$$\sigma_m = \pm 0.1$$

Using data file, (col1 = z, col2 = m), find the best-fit and 1σ uncertainty for $\Omega_{\Lambda}.$

$$D = \frac{1}{H_0} \left(z + \frac{1}{2} z^2 (1 - q_0) \right)$$

$$q_0 = \frac{\Omega_M}{2} - \Omega_{\Lambda}$$

$$\Omega_M + \Omega_{\Lambda} = 1 : \Omega_M, \Omega_{\Lambda} > 0$$

$$L = \frac{L_0}{D^2}$$

$$m = -2.5 \log_{10}(L)$$

$$\sigma_m = \pm 0.1$$