

A Validation Suite/Simple Alignment Algorithm for Muon Chambers

Jim Pivarski

Texas A&M University

27 October, 2006

Context

Three sophisticated alignment algorithms have been developed over the past 3 years:

HIP iterative χ^2 minimization of residuals Millepede matrix inversion, at least in spirit Kalman coupled track-fitting and alignment

Possible disadvantage: they are all global fits, it may be hard to diagnose problems with individual chambers

Misalignment distribution may be very non-Gaussian due to static friction: some chambers stick while others slip. . .

Si-Vertex Alignment at the CLEO Experiment

- Global fit did not reliably reduce χ^2
- ▶ Plotted residuals for and corrected each wafer individually

Five Degrees of Freedom from a 2D Sensor

 $r_x = \text{track-hit residual in local coordinate } x$

x: offset in r_x

y: offset in r_v

z: inaccessible

 ϕ_{x} : r_{v} linear in y

 $(slope = 1 - cos \phi_x)$

 $\phi_{\mathbf{v}}$: $r_{\mathbf{x}}$ linear in \mathbf{x}

 $(slope = 1 - cos \phi_v)$

 ϕ_z : r_x linear in y and r_v linear in x $(slope = sin \phi_z)$

Example from CLEO

Take this plot to be r_x versus y (ignore the different axis label convention)

- 1. Linear fit to profile plot
- 2. Shift x position to correct offset
- 3. Rotate ϕ_z to correct slope
- Apply similar corrections to the degrees of freedom not shown
- 5. Iterate to resolve correlations

Not an efficient or an elegant alignment procedure, but you can see what's happening

Muons: Simpler with Segments?

Muon code reconstructs local 4D segments (2D position + 2D direction)

Angular track—segment difference in x-z plane is ϕ_v Angular track—segment difference in y-z plane is ϕ_x

Replace weak $\mathcal{O}(\phi^2)$ dependencies!

But,

- need to propagate to segment's local coordinate system (center of chamber, not the layer plane)
- may require substantial re-working of CommonAlignment
- other subtleties I don't understand yet...

Another Useful Diagnostic

Local consistency of the overlap regions (track has hits in two chambers in the same layer)

Easy way to implement: residual_{chamber 1} - residual_{chamber 2}

(track cancels, effectively a "ruler" curved in the \vec{B} field)

But,

- hard to interpret as a correction: diagnostic only
- low statistics

Possible Future Timeline

- 1. Test Residuals Algorithm in MuonAlignmentAnalyzer
- 1. Add muon chambers to CommonAlignment
- 2. Incorporate Residuals Algorithm into CommonAlignment
- 3. Apply Residuals Algorithm to early data, possibly only the largest outliers
- 3. Use it to debug global fits, if necessary
- 4. Use residuals plots to monitor global fits, which do the real alignment