Unidad 2: Lógica de predicados

Lógica (IA1.1)

Tecnicatura Universitaria en Inteligencia Artificial

Branco Blunda

${\rm \acute{I}ndice}$

1.	Introducción	2
2.	Lógica de Predicados	2
	2.1. Cuantificador Universal (\forall)	
	2.3. Verdad y Falsedad de Proposiciones Cuantificadas2.4. Cuantificadores Anidados	
3.	Deducción Natural con Cuantificadores 3.1. Reglas de Inferencia para Cuantificadores	5
4.	Equivalencias Lógicas con Cuantificadores	6

1. Introducción

La lógica proposicional permite formalizar y validar razonamientos, pero es insuficiente para razonamientos simples que dependen de la estructura interna de las proposiciones.

Ejemplo 1.1 (Razonamiento de Sócrates). "Todos los hombres son mortales. Sócrates es un hombre. Por lo tanto, Sócrates es mortal.. En lógica proposicional: $(p \land q) \to r$, donde p= "Sócrates es un hombre", q= "Todos los hombres son mortales", r= "Sócrates es mortal". La validez no se captura bien, depende de la estructura interna y la relación "Todos los A son B", \mathbb{C} es un A", \mathbb{C} es un B".

Para analizar esta estructura, extendemos la lógica proposicional con:

- Predicados.
- Cuantificadores universal (\forall) y existencial (\exists) .
- Reglas para cuantificadores.

Esta nueva lógica se llama lógica de predicados o lógica de primer orden.

2. Lógica de Predicados

Consideremos proposiciones como "Nico es albañil", "Bruno es albañil". Tienen en común afirmar que un individuo tiene una propiedad.

Podemos definir una función (predicado) a(x) = "x es albañil. Al sustituir x por nombres (Nico, Bruno), obtenemos las proposiciones originales: a(Nico), a(Bruno).

Definición 2.1. Un **predicado** es una función f que devuelve un valor de verdad (1 para Verdadero, 0 para Falso). Se escribe $f: A \to \{1, 0\}$, donde A representa un conjunto (universo).

Ejemplo 2.1. • f(x) = x > 5 (predicado unario, universo podría ser \mathbb{R} o \mathbb{Z})

- $g(x) = \text{div } x \ 2 = 0$ (es decir, "x es par", predicado unario)
- h(x,y) ="x es múltiplo de y (predicado binario)
- m(x) ="x es mortal
- h(x) ="x es un hombre

Aplicados a valores específicos, los predicados forman proposiciones: f(6) es V, f(3) es F, h(S'ocrates), m(Pepe).

2.1. Cuantificador Universal (\forall)

Para expresar "todos los hombres son mortales", necesitamos cuantificar sobre la variable x. Usamos el **cuantificador universal** (\forall) , que se lee "para todo".

Ejemplo 2.2. Usando h(x) = "x es un hombre y m(x) = "x es mortal:

$$\forall x.(h(x) \to m(x))$$

Se lee "Para todo x, si x es un hombre, entonces x es mortal".

Definición 2.2. El cuantificador universal (\forall) se antepone a una variable y se lee "para todo x", "para cada x.º "para cualquier x". La variable x pertenece a un conjunto universo U (ej. números, personas). A menudo, definimos U aparte en lugar de escribir $x \in U$.

Ejemplo 2.3 (Formalizaciones con \forall). \blacksquare "Para todo número real x, si x>0, entonces $x^2>0$."

- Universo $U = \mathbb{R}$
- Predicados: $p(x) = x > 0, t(x) = x^2 > 0$
- Formalización: $\forall x.(p(x) \rightarrow t(x))$
- Cualquier número real positivo no es par."
 - Universo $U = \mathbb{R}$
 - Predicados: p(x) = x > 0, par(x) = "x es par
 - Formalización: $\forall x.(p(x) \rightarrow \neg par(x))$
- .^{El} cuadrado de un número entero es mayor a 2 o el número es par."
 - Universo $U = \mathbb{Z}$
 - Predicados: $c(x) = x^2 > 2$, par(x) = "x es par
 - Formalización: $\forall x.(c(x) \lor par(x))$
- "No todos los números pares son positivos." (Equivale a: Es falso que todos los números pares son positivos)
 - Universo $U = \mathbb{Z}$
 - Predicados: par(x) = "x es par, p(x) = x > 0
 - Formalización: $\neg(\forall x.(par(x) \rightarrow p(x)))$

Observación 2.1. La formalización de este tipo de proposiciones tiene 3 partes:

- 1. Definición de universo (si lo hubiera).
- 2. Definición de predicados.
- 3. Traducción de la expresión.

Ejemplo 2.4 (Razonamiento de Sócrates Formalizado). Universo: Seres. Predicados: h(x)="x es hombre", m(x)="x es mortal".

$$\frac{\forall x. (h(x) \to m(x)) \quad h(\text{S\'ocrates})}{\therefore m(\text{S\'ocrates})}$$

2.2. Cuantificador Existencial (∃)

Para expresar .^Algún hombre es técnico en inteligencia artificial", necesitamos el **cuantificador** existencial (∃), que se lee .^{ex}iste".

Ejemplo 2.5. Usando h(x)="x es hombre", t(x)="x es técnico en IA":

$$\exists x.(h(x) \land t(x))$$

Se lee . Existe un x tal que x es hombre y x es técnico en IA". (Nota: Se usa \land , no \rightarrow).

Definición 2.3. El cuantificador existencial (\exists) se antepone a una variable y se lee .existe x", "para algún x.º "para al menos un x".

Ejemplo 2.6 (Formalizaciones con ∃). ■ .^{Ex}iste un número real par distinto de dos."

- Universo $U = \mathbb{R}$
- Predicados: par(x), $q(x) = (x \neq 2)$
- Formalización: $\exists x.(par(x) \land q(x))$
- .^Algunos animales tienen garras o dientes afilados."
 - Universo U = Animales
 - Predicados: g(x)="x tiene garras", d(x)="x tiene dientes afilados"
 - Formalización: $\exists x.(g(x) \lor d(x))$
- . Existe un número x positivo que es solución de la ecuación $x^2 3x 4 = 0$."
 - Universo $U = \mathbb{R}$
 - Predicados: $pos(x) = (x > 0), s(x) = (x^2 3x 4 = 0)$
 - Formalización: $\exists x.(pos(x) \land s(x))$
- "Ningún número x positivo es solución de la ecuación $x^2 3x 4 = 0$." (Equivale a: Es falso que existe un x positivo...)
 - Mismos U, predicados.
 - Formalización: $\neg(\exists x.(pos(x) \land s(x)))$

2.3. Verdad y Falsedad de Proposiciones Cuantificadas

Proposición	¿Cuándo es Verdadera?	¿Cuándo es Falsa?
$\exists x.p(x)$	p(a) es V para al menos un a	p(a) es F para cualquier a del
	del universo.	universo.
$\forall x.p(x)$	Para $cada$ reemplazo de a en	Existe al menos un reemplazo
	el universo, $p(a)$ es V.	a en el universo para el cual
		p(a) es F.

Ejemplo 2.7 (Evaluación de Verdad). Universo $U = \mathbb{Z}$. Predicado $f(x,y) = (x \ge y)$.

- $\forall x. f(x,0)$ ("Todos los enteros son ≥ 0 "): Falso (contraejemplo: x=-3, f(-3,0) es F).
- $\exists x. \neg f(0,x)$ (.Existe un entero x tal que 0 < x"): Verdadero (ejemplo: $x = 3, \neg f(0,3)$ es V).
- $\neg(\forall x.\neg f(0,x))$ ("No todos los enteros son ≤ 0 "): Verdadero (es la negación de una falsedad).
- $\forall x.(\exists y.f(x,y))$ (Çualquier entero es mayor o igual a algún entero"): Verdadero (para cualquier x, podemos elegir y = x, y f(x,x) es V).
- $\neg(\exists x.(\forall y.f(x,y)))$ ("Ningún entero es mayor o igual a todos los enteros"): Verdadero (no existe un entero máximo).

2.4. Cuantificadores Anidados

Es necesario cuantificar sobre múltiples variables para ciertas proposiciones.

Ejemplo 2.8. • "La suma de dos números reales positivos es positiva."

- Universo $U = \mathbb{R}$
- Predicado: pos(x) = (x > 0)

- Formalización: $\forall x. \forall y. ((pos(x) \land pos(y)) \rightarrow pos(x+y))$
- El orden de $\forall x. \forall y$ se puede intercambiar sin cambiar el significado: $\forall y. \forall x. (...)$.
- "Todos aman a alguna otra persona."
 - Universo U = Personas
 - Predicado: a(x,y) = "x ama a y
 - Formalización: $\forall x. \exists y. a(x,y)$
- .^Alguien es amado por todos."
 - Mismos U, predicado.
 - Formalización: $\exists y. \forall x. a(x,y)$

Importante: El orden de cuantificadores distintos $(\forall y \exists)$ altera el significado. $\forall x.\exists y.P(x,y)$ no es lo mismo que $\exists y. \forall x.P(x,y)$.

3. Deducción Natural con Cuantificadores

Las tablas de verdad no son viables para la lógica de predicados. Extendemos el sistema de deducción natural.

3.1. Reglas de Inferencia para Cuantificadores

■ Introducción de \forall (i_{\forall}) : $\begin{vmatrix} a \\ \vdots \\ p(a) \end{vmatrix}$

$$\overline{ \cdot \cdot \forall x.p(x)}$$

Restricción: La constante a (que representa un elemento arbitrario del universo) **no** debe ocurrir fuera de la çaja" (subdemostración).

• Eliminación de \forall (e_{\forall}) :

$$\frac{\forall x.p(x)}{\therefore p(a)}$$

Donde a es cualquier elemento (constante o término) del universo.

■ Introducción de \exists (i_{\exists}):

$$\frac{p(a)}{\exists x.p(x)}$$

Donde a es un elemento (constante o término) del universo para el cual se sabe p(a).

■ Eliminación de \exists (e_{\exists}) : $\begin{vmatrix} a & [p(a)] \\ \vdots & \end{vmatrix}$

 $\exists x.p(x)$

Restricciones:

• La constante a **no** debe ocurrir fuera de la caja.

- a no debe ocurrir en $\exists x.p(x)$.
- a **no** debe ocurrir en q.

(Idea: Si sabemos que existe un x tal que p(x), podemos llamarlo a temporalmente. Si de suponer p(a) podemos derivar q (sin usar a en q), entonces q se sigue de $\exists x.p(x)$.)

Ejemplo 3.1 (Demostración Razonamiento Sócrates). 1. $\forall x.(h(x) \rightarrow m(x))$ (Premisa)

- 2. $h(S\'{o}crates)$ (Premisa)
- 3. $h(\text{S\'ocrates}) \to m(\text{S\'ocrates})$ (e_{\forall} (1), instanciando con a = S'ocrates)
- 4. $m(\text{S\'ocrates}) \ (e_{\rightarrow} \ (3), \ (2))$

Ejemplo 3.2 (Demostración 2 del PDF). Premisas: $\forall x.(p(x) \rightarrow q(x)), \ \forall x.p(x)$. Conclusión: $\forall x.q(x)$.

- 1. $\forall x.(p(x) \rightarrow q(x))$ (Premisa)
- 2. $\forall x.p(x)$ (Premisa)

```
3. [resume]p(a) (e_{\forall} (2)) p(a) \rightarrow q(a) (e_{\forall} (1)) q(a) (e_{\rightarrow} (5), (4))
```

4) $\forall x.q(x) \ (i_{\forall} \ (3-6))$

Ejemplo 3.3 (Demostración 3 del PDF). Premisa: $\forall x.p(x)$. Conclusión: $\exists x.p(x)$. (Requiere universo no vacío).

- 1. $\forall x.p(x)$ (Premisa)
- 2. p(a) (e_{\forall} (1), para algún a del universo)
- 3. $\exists x.p(x) \ (i \exists (2))$

Ejemplo 3.4 (Demostración 4 del PDF). Premisas: $\forall x.(p(x) \rightarrow q(x)), \exists x.p(x)$. Conclusión: $\exists x.q(x)$.

- 1. $\forall x.(p(x) \rightarrow q(x))$ (Premisa)
- 2. $\exists x.p(x)$ (Premisa)

```
3.  [p(a)] \text{ (Hipótesis para } e_{\exists}, \ a \text{ es fresh)}   [resume] p(a) \rightarrow q(a) \ (e_{\forall} \ (1)) \ q(a) \ (e_{\rightarrow} \ (4), \ (3)) \ \exists x. q(x) \ (i_{\exists} \ (5))
```

4) $\exists x.q(x) \ (e_{\exists} \ (2), \ (3-6))$

4. Equivalencias Lógicas con Cuantificadores

Existen equivalencias lógicas conocidas que involucran cuantificadores. Se pueden probar con las herramientas vistas (deducción natural).

- Negación de Cuantificadores:
 - $\neg(\forall x.p(x)) \Leftrightarrow \exists x.\neg p(x)$ (Ej: "No todas las aves vuelan" \Leftrightarrow . Existe un ave que no vuela")
 - $\neg(\exists x.p(x)) \Leftrightarrow \forall x.\neg p(x)$ (Ej: "Ningún ave vuela" \Leftrightarrow Çualquier ave no vuela")

- Leyes Distributivas (parciales):
 - $\forall x.(p(x) \land q(x)) \Leftrightarrow (\forall x.p(x)) \land (\forall x.q(x))$
 - $\exists x.(p(x) \lor q(x)) \Leftrightarrow (\exists x.p(x)) \lor (\exists x.q(x))$
 - Nota: \forall no distribuye sobre \lor , \exists no distribuye sobre \land .

Ejemplo 4.1 (Uso de Equivalencias en Deducción). Demostrar: $\forall x.(p(x) \lor q(x)), \neg(\forall x.p(x)) \implies \exists x.q(x).$

- 1. $\forall x.(p(x) \lor q(x))$ (Premisa)
- 2. $\neg(\forall x.p(x))$ (Premisa)
- 3. $\exists x. \neg p(x)$ (Negación de \forall (2))
- 4. $[\neg p(a)] \text{ (Hipótesis para } e_{\exists}, a \text{ es fresh)}$ $[\text{resume}] p(a) \lor q(a) \ (e_{\forall} \ (1)) \ q(a) \ (\text{Silogismo Disyuntivo (SD)} \ (5), \ (4)) \ \exists x. q(x) \ (i_{\exists} \ (6))$
- **b)** $\exists x.q(x) \ (e_{\exists} \ (3), \ (4-7))$