Appendix: Computer codes

A.1 INTRODUCTION

The diskette included in the volume contains the Fortran implementations of the most effective algorithms described in the various chapters. Table A.1 gives, for each code, the problem solved, the approximate number of lines (including comments), the section where the corresponding procedure (which has the same name as the code) is described, and the type of algorithm implemented. Most of the implementations are exact branch-and-bound algorithms which can also be used to provide approximate solutions by limiting the number of backtrackings through an input parameter (notation Exact/Approximate in the table).

Table A.1 Fortran codes included in the volume

Code	Problem	Lines	Section	Type of algorithm
MT1	0-1 Knapsack	280	2.5.2	Exact
MT1R	0-1 Knapsack	300	2.5.2	Exact (real data)
MT2	0-1 Knapsack	1400	2.9.3	Exact/Approximate
MTB2	Bounded Knapsack	190	3.4.2	Exact/Approximate
		(+1400)*		_
MTU2	Unbounded Knapsack	1100	3.6.3	Exact/Approximate
MTSL	Subset-Sum	780	4.2.3	Exact/Approximate
MTC2	Change-Making	450	5.6	Exact/Approximate
MTCB	Bounded Change-Making	380	5.8	Exact/Approximate
MTM	0-1 Multiple Knapsack	670	6.4.3	Exact/Approximate
MTHM	0-1 Multiple Knapsack	590	6.6.2	Approximate
MTG	Generalized Assignment	2300	7.3	Exact/Approximate
MTHG	Generalized Assignment	500	7.4	Approximate
MTP	Bin Packing	1330	8.5	Exact/Approximate

^{*} MTB2 must be linked with MT2.

All programs solve problems defined by integer parameters, except MT1R which solves the 0-1 single knapsack problem with real parameters.

All codes are written according to PFORT, a portable subset of 1966 ANSI Fortran, and are accepted by the PFORT verifier developed by Ryder and Hall (1981) at Bell Laboratories. The codes have been tested on a Digital VAX 11/780 and a Hewlett-Packard 9000/840.

With the only exception of MTB2 (which must be linked with MT2), the codes are completely self-contained. Communication to the codes is achieved solely through the parameter list of a "main" subroutine whose name is that of the code.

The following sections give, for each problem and for each code, the corresponding comment and specification statements.

A.2 0-1 KNAPSACK PROBLEM

A.2.1 Code MT1

SUBROUTINE MT1 (N, P, W, C, Z, X, JDIM, JCK, XX, MIN, PSIGN, WSIGN, ZSIGN)

This subroutine solves the 0-1 single knapsack problem

maximize
$$Z = P(1) X(1) + ... + P(N) X(N)$$

subject to $W(1) X(1) + ... + W(N) X(N) \le C$, $X(J) = 0$ or 1 for $J=1, ..., N$

The program implements the branch-and-bound algorithm described in Section 2.5.2, and derives from an earlier code presented in S. Martello, P. Toth, "Algorithm for the solution of the 0-1 single knapsack problem", *Computing*, 1978.

The input problem must satisfy the conditions

- (1) $2 \le N \le JDIM 1$;
- (2) P(J), W(J), C positive integers;
- (3) $\max (W(J)) < C$;
- (4) W(1) + ... + W(N) > C;
- (5) P(J)/W(J) > P(J+1)/W(J+1) for J = 1, ..., N-1.

MT1 calls 1 procedure: CHMT1.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MT1.

No machine-dependent constant is used.

MT1 needs 8 arrays (P, W, X, XX, MIN, PSIGN, WSIGN and ZSIGN) of length at least N + 1.

Meaning of the input parameters:

N = number of items;

P(J) = profit of item J (J = 1, ..., N);

W(J) = weight of item J(J = 1, ..., N);

C = capacity of the knapsack;

JDIM = dimension of the 8 arrays;

JCK = 1 if check on the input data is desired, = 0 otherwise.

Meaning of the output parameters:

Z = value of the optimal solution if Z > 0,
 = error in the input data (when JCK = 1) if Z < 0:
 condition -Z is violated:

X(J) = 1 if item J is in the optimal solution, = 0 otherwise.

Arrays XX, MIN, PSIGN, WSIGN and ZSIGN are dummy.

All the parameters are integer. On return of MT1 all the input parameters are unchanged.

INTEGER P(JDIM), W(JDIM), X(JDIM), C, Z INTEGER XX(JDIM), MIN(JDIM) INTEGER PSIGN(JDIM), WSIGN(JDIM), ZSIGN(JDIM)

A.2.2 Code MT1R

SUBROUTINE MT1R (N, P, W, C, EPS, Z, X, JDIM, JCK, XX, MIN, PSIGN, WSIGN, ZSIGN, CRC, CRP)

This subroutine solves the 0-1 single knapsack problem with real parameters

maximize
$$Z=P(1)$$
 $X(1)+\ldots+P(N)$ $X(N)$ subject to
$$W(1)$$
 $X(1)+\ldots+W(N)$ $X(N)\leq C,$
$$X(J)=0 \text{ or } 1 \text{ for } J=1,\ldots,N.$$

The program implements the branch-and-bound algorithm described in Section 2.5.2, and is a modified version of subroutine MT1.

The input problem must satisfy the conditions

- (1) $2 \le N \le JDIM 1$;
- (2) P(J), W(J), C positive reals;
- (3) $\max (W(J)) < C$;
- (4) W(1) + ... + W(N) > C;
- (5) P(J)/W(J) > P(J+1)/W(J+1) for J = 1, ..., N-1.

MT1R calls 1 procedure: CHMT1R.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MT1R. No machine-dependent constant is used.

MT1R needs 10 arrays (P, W, X, XX, MIN, PSIGN, WSIGN, ZSIGN, CRC and CRP) of length at least N + 1.

Meaning of the input parameters:

N = number of items;

P(J) = profit of item J (J = 1, ..., N);

W(J) = weight of item J(J = 1, ..., N);

C = capacity of the knapsack;

EPS = tolerance (two positive values Q and R are considered equal if $ABS(Q - R)/max (Q, R) \le EPS$);

JDIM = dimension of the 10 arrays;

JCK = 1 if check on the input data is desired, = 0 otherwise.

Meaning of the output parameters:

Z = value of the optimal solution if Z > 0,
 = error in the input data (when JCK = 1) if Z < 0:
 condition -Z is violated;

X(J) = 1 if item J is in the optimal solution, = 0 otherwise.

Arrays XX, MIN, PSIGN, WSIGN, ZSIGN, CRC and CRP are dummy.

Parameters N, X, JDIM, JCK, XX and ZSIGN are integer. Parameters P, W, C, Z,

MIN, PSIGN, WSIGN, CRC, CRP and EPS are real. On return of MT1R all the input parameters are unchanged.

REAL P(JDIM), W(JDIM)
INTEGER X(JDIM)
INTEGER XX(JDIM), ZSIGN(JDIM)
REAL MIN(JDIM), PSIGN(JDIM), WSIGN(JDIM), CRC(JDIM), CRP(JDIM)

A.2.3 Code MT2

This subroutine solves the 0-1 single knapsack problem

maximize
$$Z = P(1) X(1) + ... + P(N) X(N)$$

subject to $W(1) X(1) + ... + W(N) X(N) \le C$, $X(J) = 0$ or 1 for $J = 1, ..., N$.

The program implements the enumerative algorithm described in Section 2.9.3.

The input problem must satisfy the conditions

- (1) 2 < N < JDIM 3;
- (2) P(J), W(J), C positive integers;
- (3) $\max (W(J)) < C$;
- (4) W(1) + ... + W(N) > C;

and, if JFS = 1,

(5)
$$P(J)/W(J) \ge P(J+1)/W(J+1)$$
 for $J = 1, ..., N-1$.

MT2 calls 9 procedures: CHMT2, CORE, CORES, FMED, KP01M, NEWB, REDNS, REDS and SORTR.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MT2.

No machine-dependent constant is used.

MT2 needs 8 arrays (P, W, X, IA1, IA2, IA3, IA4 and RA) of length at least N+3.

Meaning of the input parameters:

N = number of items;

P(J) = profit of item J (J = 1, ..., N);

W(J) = weight of item J(J = 1, ..., N);

C = capacity of the knapsack;

JDIM = dimension of the 8 arrays;

JFO = 1 if optimal solution is required,

= 0 if approximate solution is required;

JFS = 1 if the items are already sorted according to decreasing profit per unit weight,

= 0 otherwise:

JCK = 1 if check on the input data is desired,

= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,

= error in the input data (when JCK = 1) if Z < 0: condition -Z is violated;

X(J) = 1 if item J is in the solution found,

= 0 otherwise;

JUB = upper bound on the optimal solution value (to evaluate Z when JFO = 0).

Arrays IA1, IA2, IA3, IA4 and RA are dummy.

All the parameters but RA are integer. On return of MT2 all the input parameters are unchanged.

INTEGER P(JDIM), W(JDIM), X(JDIM), C, Z DIMENSION IA1(JDIM), IA2(JDIM), IA3(JDIM), IA4(JDIM) DIMENSION RA(JDIM)

A.3 BOUNDED AND UNBOUNDED KNAPSACK PROBLEM

A.3.1 Code MTB2

SUBROUTINE MTB2 (N, P, W, B, C, Z, X, JDIM1, JDIM2, JFO, JFS, JCK, JUB, ID1, ID2, ID3, ID4, ID5, ID6, ID7, RD8)

This subroutine solves the bounded single knapsack problem

maximize
$$Z = P(1) X(1) + \ldots + P(N) X(N)$$

subject to $W(1) X(1) + \ldots + W(N) X(N) \leq C$, $0 \leq X(J) \leq B(J)$ for $J = 1, \ldots, N$, $X(J)$ integer for $J = 1, \ldots, N$.

The program implements the transformation method described in Section 3.2.

The problem is transformed into an equivalent 0-1 knapsack problem and then solved through subroutine MT2. The user must link MT2 and its subroutines to this program.

The input problem must satisfy the conditions

- (1) $2 < N \le JDIM1 1$;
- (2) P(J), W(J), B(J), C positive integers;
- (3) $\max (B(J)W(J)) \leq C$;
- (4) B(1)W(1) + ... + B(N)W(N) > C;
- (5) $2 \le N + (LOG2(B(1)) + ... + LOG2(B(N))) \le JDIM2 3;$

and, if JFS = 1,

(6)
$$P(J)/W(J) > P(J+1)/W(J+1)$$
 for $J = 1, ..., N-1$.

MTB2 calls 4 procedures: CHMTB2, SOL, TRANS and MT2 (external).

Communication to the program is achieved solely through the parameter list of MTB2.

No machine-dependent constant is used.

MTB2 needs

```
4 arrays (P, W, B and X) of length at least JDIM1;
```

8 arrays (ID1, ID2, ID3, ID4, ID5, ID6, ID7 and RD8) of length at least JDIM2.

Meaning of the input parameters:

N = number of item types;

P(J) = profit of each item of type J(J = 1, ..., N);

W(J) = weight of each item of type J (J = 1, ..., N);

B(J) = number of items of type J available (J = 1, ..., N);

C = capacity of the knapsack;

JDIM1 = dimension of arrays P, W, B, X;

JDIM2 = dimension of arrays ID1, ID2, ID3, ID4, ID5, ID6, ID7, RD8;

JFO = 1 if optimal solution is required,

= 0 if approximate solution is required;

JFS = 1 if the items are already sorted according to decreasing profit per unit weight (suggested for large B(J) values),

= 0 otherwise:

JCK = 1 if check on the input data is desired,

= 0 otherwise.

Meaning of the output parameters:

Z =value of the solution found if Z > 0.

= error in the input data (when JCK = 1) if Z < 0: condition -Z is violated;

X(J) = number of items of type J in the solution found;

JUB = upper bound on the optimal solution value (to evaluate Z when JFO = 0).

Arrays ID1, ID2, ID3, ID4, ID5, ID6, ID7 and RD8 are dummy.

All the parameters but RD8 are integer. On return of MTB2 all the input parameters are unchanged.

INTEGER P(JDIM1), W(JDIM1), B(JDIM1), X(JDIM1), C, Z INTEGER ID1(JDIM2), ID2(JDIM2), ID3(JDIM2), ID4(JDIM2) INTEGER ID5(JDIM2), ID6(JDIM2), ID7(JDIM2) REAL RD8(JDIM2)

A.3.2 Code MTU2

SUBROUTINE MTU2 (N, P, W, C, Z, X, JDIM, JFO, JCK, JUB, PO, WO, XO, RR, PP)

This subroutine solves the unbounded single knapsack problem

maximize
$$Z = P(1) X(1) + ... + P(N) X(N)$$

subject to $W(1) X(1) + ... + W(N) X(N) \le C$, $X(J) > 0$ and integer for $J = 1, ..., N$.

The program implements the enumerative algorithm described in Section 3.6.3.

The input problem must satisfy the conditions

- (1) 2 < N < JDIM 1;
- (2) P(J), W(J), C positive integers;
- (3) $\max (W(J)) \leq C$.

MTU2 calls 5 procedures: CHMTU2, KSMALL, MTU1, REDU and SORTR. KSMALL calls 8 procedures: BLD, BLDF, BLDS1, DETNS1, DETNS2, FORWD, MPSORT and SORT7.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MTU2.

No machine-dependent constant is used.

MTU2 needs 8 arrays (P, W, X, PO, WO, XO, RR and PP) of length at least JDIM.

Meaning of the input parameters:

N = number of item types;

P(J) = profit of each item of type J(J = 1, ..., N);

W(J) = weight of each item of type J(J = 1, ..., N);

C = capacity of the knapsack;

JDIM = dimension of the 8 arrays;

JFO = 1 if optimal solution is required, = 0 if approximate solution is required;

JCK = 1 if check on the input data is desired,

= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,

= error in the input data (when JCK = 1) if Z < 0: condition -Z is violated;

X(J) = number of items of type J in the solution found;

JUB = upper bound on the optimal solution value (to evaluate Z when JFO = 0).

Arrays PO, WO, XO, RR and PP are dummy.

All the parameters but XO and RR are integer. On return of MTU2 all the input parameters are unchanged.

INTEGER P(JDIM), W(JDIM), X(JDIM) INTEGER PO(JDIM), WO(JDIM), PP(JDIM), C, Z REAL RR(JDIM), XO(JDIM)

A.4 SUBSET-SUM PROBLEM

A.4.1 Code MTSL

SUBROUTINE MTSL (N, W, C, Z, X, JDN, JDD, ITMM, JCK, WO, IND, XX, WS, ZS, SUM, TD1, TD2, TD3)

This subroutine solves the subset-sum problem

maximize
$$Z = W(1) X(1) + ... + W(N) X(N)$$

subject to $W(1) X(1) + ... + W(N) X(N) \le C$, $X(J) = 0$ or 1 for $J = 1, ..., N$.

The program implements the mixed algorithm described in Section 4.2.3.

The input problem must satisfy the conditions

- (1) 2 < N < JDN 1;
- (2) W(J), C positive integers;
- (3) $\max (W(J)) < C$;
- (4) W(1) + ... + W(N) > C.

MTSL calls 8 procedures: CHMTSL, DINSM, MTS, PRESP, SORTI, TAB, UPSTAR and USEDIN.

If not present in the library of the host, the user must supply an integer function JIAND(I1, I2) which sets JIAND to the bit-by-bit logical AND of I1 and I2.

Communication to the program is achieved solely through the parameter list of MTSL.

No machine-dependent constant is used.

MTSL needs

- 2 arrays (W and X) of length at least JDN;
- 6 arrays (WO, IND, XX, WS, ZS and SUM) of length at least ITMM;
- 3 arrays (TD1, TD2 and TD3) of length at least JDD \times 2.

Meaning of the input parameters:

N = number of items;

W(J) = weight of item J(J = 1, ..., N);

C = capacity;

JDN = dimension of arrays W and X;

JDD = maximum length of the dynamic programming lists (suggested value JDD = 5000);

ITMM = (maximum number of items in the core problem) + 1; ITMM = JDN in order to be sure that the optimal solution is found. ITMM < JDN (suggested value ITMM = 91) produces an approximate solution which is almost always optimal (to check optimality, see whether Z = C);

JCK = 1 if check on the input data is desired,

= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
 = error in the input data (when JCK = 1) if Z < 0:
 condition -Z is violated:

X(J) = 1 if item J is in the solution found, = 0 otherwise.

Meaning of the internal variables which could be altered by the user:

IT = length of the initial core problem (suggested value IT = 30);

ID = increment of the length of the core problem (suggested value ID = 30);

M2 = number of items to be used for the second dynamic programming list; it must be $2 \le M2 \le \min(31, N-4)$ (suggested value M2 = $\min(2.5 \text{ ALOG10 (max (W(J)))}, 0.8 \text{ N)})$). M1, the number of items to be used for the first dynamic programming list, is automatically determined;

PERS = value used to determine \overline{c} according to the formula given in Section 4.2.2 (suggested value PERS = 1.3).

Arrays WO, IND, XX, WS, ZS, SUM, TD1, TD2 and TD3 are dummy.

All the parameters are integer. On return of MTSL all the input parameters are unchanged.

INTEGER W(JDN), X(JDN), C, Z INTEGER WO(ITMM), IND(ITMM), XX(ITMM) INTEGER WS(ITMM), ZS(ITMM), SUM(ITMM) INTEGER TD1(JDD,2), TD2(JDD,2), TD3(JDD,2)

A.5 BOUNDED AND UNBOUNDED CHANGE-MAKING PROBLEM

A.5.1 Code MTC2

SUBROUTINE MTC2 (N, W, C, Z, X, JDN, JDL, JFO, JCK, XX, WR, PR, M, L)

This subroutine solves the unbounded change-making problem

minimize
$$Z = X(1) + ... + X(N)$$

subject to $W(1) X(1) + ... + W(N) X(N) = C$,
 $X(J) > 0$ and integer for $J = 1, ..., N$.

The program implements the enumerative algorithm described in Section 5.6.

The input problem must satisfy the conditions

- (1) 2 < N < JDN 1;
- (2) W(J), C positive integers;
- (3) $\max (W(J)) < C$.

MTC2 calls 5 procedures: CHMTC2, COREC, MAXT, MTC1 and SORTI.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MTC2.

No machine-dependent constant is used.

MTC2 needs

5 arrays (W, X, XX, WR and PR) of length at least JDN;

2 arrays (M and L) of length at least JDL.

Meaning of the input parameters:

N = number of item types;

W(J) = weight of each item of type J (J = 1, ..., N);

C = capacity;

JDN = dimension of arrays W, X, XX, WR and PR;

JDL = dimension of arrays M and L (suggested value JDL = max (W(J)) - 1; if the core memory is not enough, JDL should be set to the largest possible value);

JFO = 1 if optimal solution is required, = 0 if approximate solution is required

(at most 100 000 backtrackings are performed);

JCK = 1 if check on the input data is desired, = 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,

= no feasible solution exists if Z = 0,

= error in the input data (when JCK = 1) if Z < 0: condition -Z is violated;

X(J) = number of items of type J in the solution found.

Arrays XX, M, L, WR and PR are dummy.

All the parameters are integer. On return of MTC2 all the input parameters are unchanged.

INTEGER W(JDN), X(JDN), C, Z INTEGER XX(JDN), WR(JDN), PR(JDN) INTEGER M(JDL), L(JDL)

A.5.2 Code MTCB

This subroutine solves the bounded change-making problem

minimize
$$Z = X(1) + \ldots + X(N)$$

subject to $W(1) X(1) + \ldots + W(N) X(N) = C$,
 $0 \le X(J) \le B(J)$ for $J = 1, \ldots, N$,
 $X(J)$ integer for $J = 1, \ldots, N$.

The program implements the branch-and-bound algorithm described in Section 5.8.

The input problem must satisfy the conditions

- (1) $2 \le N \le JDN 1$;
- (2) W(J), B(J), C positive integers;
- (3) $\max (W(J)) < C;$

- (4) $B(J) W(J) \le C \text{ for } J = 1, ..., N;$
- (5) B(1) W(1) + ... + B(N) W(N) > C.

MTCB calls 3 procedures: CHMTCB, CMPB and SORTI.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MTCB.

No machine-dependent constant is used.

MTCB needs

7 arrays (W, B, X, XX, WR, BR and PR) of length at least JDN; 2 arrays (M and L) of length at least JDL.

Meaning of the input parameters:

N = number of item types;

W(J) = weight of each item of type J(J = 1, ..., N);

B(J) = number of available items of type J (J = 1, ..., N);

C = capacity;

JDN = dimension of arrays W, B, X, XX, WR, BR and PR;

JDL = dimension of arrays M and L (suggested value JDL = max (W(J)) - 1; if the core memory is not enough, JDL should be set to the largest possible value);

JFO = 1 if optimal solution is required,

= 0 if approximate solution is required (at most 100 000 backtrackings are performed);

JCK = 1 if check on the input data is desired,

= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,

= no feasible solution exists if Z = 0,

= error in the input data (when JCK = 1) if Z < 0: condition -Z is violated;

X(J) = number of items of type J in the solution found.

Arrays XX, M, L, WR, BR and PR are dummy.

All the parameters are integer. On return of MTCB all the input parameters are unchanged.

INTEGER W(JDN), B(JDN), X(JDN), C, Z INTEGER XX(JDN), WR(JDN), BR(JDN), PR(JDN) INTEGER M(JDL), L(JDL)

A.6 0-1 MULTIPLE KNAPSACK PROBLEM

A.6.1 Code MTM

SUBROUTINE MTM (N, M, P, W, C, Z, X, BACK, JCK, JUB)

This subroutine solves the 0-1 multiple knapsack problem

The program implements the enumerative algorithm described in Section 6.4.3, and derives from an earlier code presented in S. Martello, P. Toth, "Algorithm 632. A program for the 0-1 multiple knapsack problem", *ACM Transactions on Mathematical Software*, 1985.

The input problem must satisfy the conditions

- (1) $2 \le N \le MAXN$ and $1 \le M \le MAXM$, where MAXN and MAXM are defined by the first two executable statements;
- (2) P(J), W(J) and C(I) positive integers;
- (3) $\min (C(I)) \ge \min (W(J));$
- (4) $max(W(J)) \leq max(C(I));$
- (5) $\max (C(I)) < W(1) + ... + W(N);$
- (6) $P(J)/W(J) \ge P(J+1)/W(J+1)$ for J = 1, ..., N-1;
- (7) $C(I) \le C(I+1)$ for I = 1, ..., M-1.

MTM calls 5 procedures: CHMTM, PAR, PI, SIGMA and SKP.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MTM.

No machine-dependent constant is used.

MTM needs

```
5 arrays (C, F, PBL, Q and V) of length at least M;
8 arrays (P, W, X, UBB, BS, XS, LX and LXI) of length at least N;
3 arrays (B, PS and WS) of length at least N + 1;
3 arrays (BB, XC and XL) of length at least M × N;
1 array (BL) of length at least M × (N + 1);
5 arrays (D, MIN, PBAR, WBAR and ZBAR) of length at least N (for internal
```

5 arrays (D, MIN, PBAR, WBAR and ZBAR) of length at least N (for internal use in subroutine SKP).

The arrays are currently dimensioned to allow problems for which $M \leq 10$ and $N \leq 1000$. Changing such dimensions also requires changing the dimension of BS, PS, WS, XS, LX and LXI in subroutine SIGMA, of BB, BL, XL, BS, PS, WS and XS in subroutine PI, of BB, LX and LXI in subroutine PAR, of D, MIN, PBAR, WBAR and ZBAR in subroutine SKP. In addition, the values of MAXN and MAXM must be conveniently defined.

Meaning of the input parameters:

```
N = number of items;
```

M = number of knapsacks;

P(J) = profit of item J (J = 1, ..., N);

W(J) = weight of item J(J = 1, ..., N);

C(I) = capacity of knapsack I (I = 1, ..., M);

BACK = -1 if exact solution is required,

= maximum number of backtrackings to be performed, if heuristic solution is required;

JCK = 1 if check on the input data is desired, = 0 otherwise

Meaning of the output parameters:

```
    Z = value of the solution found if Z > 0,
    = error in the input data (when JCK = 1) if Z < 0:</li>
    condition -Z is violated;
```

X(J) = 0 if item J is not in the solution found (Y(I, J) = 0 for all I), = knapsack where item J is inserted, otherwise (Y(X(J), J) = 1);

JUB = upper bound on the optimal solution value (to evaluate Z when BACK > 0 on input).

All the parameters are integer. On return of MTM all the input parameters are unchanged except BACK (= number of backtrackings performed).

INTEGER P(1000), W(1000), C(10), X(1000), Z, BACK INTEGER BB(10,1000), BL(10,1001), XC(10,1000), XL(10,1000) INTEGER B(1001), UBB(1000), F(10), PBL(10), Q(10), V(10) INTEGER BS, PS, WS, XS COMMON /SNGL/ BS(1000), PS(1001), WS(1001), XS(1000) COMMON /PUB/ LX(1000), LXI(1000), LR, LRI, LUBI

A.6.2 Code MTHM

SUBROUTINE MTHM (N, M, P, W, C, Z, X, JDN, JDM, LI, JCK, CR, MIN, XX, X1, F)

This subroutine heuristically solves the 0-1 multiple knapsack problem

The program implements the polynomial-time algorithms described in Section 6.6.2, and derives from an earlier code presented in S. Martello, P. Toth, "Heuristic algorithms for the multiple knapsack problem", *Computing*, 1981.

The input problem must satisfy the conditions

- (1) 2 < N < JDN 1 and 1 < M < JDM 1;
- (2) P(J), W(J) and C(I) positive integers;
- (3) $\min (C(I)) > \min (W(J));$
- (4) $\max (W(J)) \leq \max (C(I));$
- (5) $\max (C(I)) < W(1) + ... + W(N);$
- (6) P(J)/W(J) > P(J+1)/W(J+1) for J = 1, ..., N-1;
- (7) C(I) < C(I+1) for I = 1, ..., M-1.

MTHM can call 6 subroutines:

CHMTHM to check the input data; MGR1 or MGR2 to find an initial feasible solution; REARR to re-arrange a feasible solution; IMPR1 and IMPR2 to improve on a feasible solution. The user selects the sequence of calls through input parameters.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MTHM.

The only machine-dependent constant is used to define INF (first executable statement), which must be set to a large positive integer value.

MTHM needs

```
6 arrays (P, W, X, MIN, XX and X1) of length at least JDN;
2 arrays (C and CR) of length at least JDM;
1 array (F) of length at least JDM × JDM.
```

In addition, subroutine MGR2 uses

```
7 arrays of length 5;
1 array of length 201;
1 array of length 5 \times 200.
```

Subroutine MGR2 is called only when M < 5 and N < 200.

Meaning of the input parameters:

```
N = number of items;
```

M = number of knapsacks;

P(J) = profit of item J (J = 1, ..., N);

W(J) = weight of item J(J = 1, ..., N);

C(I) = capacity of knapsack I(I = 1, ..., M);

JDN = dimension of arrays P, W, X, MIN, XX and X1;

JDM = dimension of arrays C, CR and F;

LI = 0 to output the initial feasible solution,

= 1 to also perform subroutines REARR and IMPR1,

= 2 to also perform subroutines REARR, IMPR1 and IMPR2;

JCK = 1 if check on the input data is desired,

= 0 otherwise.

Meaning of the output parameters:

```
    Z = value of the solution found if Z > 0,
    = error in the input data (when JCK = 1) if Z < 0:</li>
    condition -Z is violated:
```

Arrays CR, MIN, XX, X1 and F are dummy.

All the parameters are integer. On return of MTHM all the input parameters are unchanged.

INTEGER P(JDN), W(JDN), X(JDN), C(JDM), Z INTEGER MIN(JDN), XX(JDN), X1(JDN), CR(JDM) INTEGER F(JDM, JDM)

A.7 GENERALIZED ASSIGNMENT PROBLEM

A.7.1 Code MTG

This subroutine solves the generalized assignment problem

opt Z =
$$P(1, 1) X(1, 1) + ... + P(1, N) X(1, N) + ... + P(M, N) X(M, N) + ... + P(M, N) X(M, N)$$

(where opt = min if MINMAX = 1, opt = max if MINMAX = 2)

subject to W(I, 1) X(I, 1) + ... + W(I, N) X(I, N)
$$\leq$$
 C(I) for I = 1,..., M,
X(1, J) + ... + X(M, J) = 1 for J = 1,..., N.

$$X(1, J) + ... + X(M, J) = 1$$
 for $J = 1, ..., N$,
 $X(I, J) = 0$ or 1 for $I = 1, ..., M$, $J = 1, ..., N$.

The program implements the branch-and-bound algorithm described in Sections 7.3–7.5.

The input problem must satisfy the conditions

- (1) $2 \le M \le JDIMR$;
- (2) $2 \le N \le JDIMC$ (JDIMR and JDIMC are defined by the first two executable statements);
- (3) $M \le JDIMPC$ (JDIMPC, defined by the third executable statement, is used for packing array Y, and cannot be greater than (number of bits of the host) -2; if

a higher value is desired, subroutines YDEF and YUSE must be re-structured accordingly);

- (4) P(I, J), W(I, J) and C(I) positive integers;
- (5) $W(I, J) \le C(I)$ for at least one I, for J = 1, ..., N;
- (6) $C(I) > \min(W(I, J))$ for I = 1, ..., M.

In addition, it is required that

(7) (maximum level of the decision-tree) \leq JNLEV. (JNLEV is defined by the fourth executable statement.)

MTG calls 24 procedures: CHMTG, DEFPCK, DMIND, FEAS, GHA, GHBCD, GHX, GR1, GR2, HEUR, KPMAX, KPMIN, PEN0, PEN1, PREPEN, SKP, SORTI, SORTR, TERMIN, TRIN, UBFJV, UBRS, YDEF and YUSE.

If not present in the library of the host, the user must supply an integer function JIAND(I1, I2) which sets JIAND to the bit-by-bit logical AND of I1 and I2. Such function is used in subroutines YDEF and YUSE.

Communication to the program is achieved solely through the parameter list of MTG.

No machine-dependent constant is used.

MTG needs

- 17 arrays (C, DD, UD, Q, PACKL, IP, IR, IL, IF, WOBBL, KQ, FLREP, DMYR1, DMYR2, DMYR3, DMYR4 and DMYR5) of length at least M:
- 25 arrays (XSTAR, XS, BS, B, KA, XXS, IOBBL, JOBBL, BEST, XJJUB, DS, DMYC1, DMYC2, DMYC3, DMYC4, DMYC5, DMYC6, DMYC7, DMYC8, DMYC9, DMYC10, DMYC11, DMYC12, DMYC13 and DMYCR1) of length at least N;
 - 4 arrays (PS, WS, DMYCC1 and DMYCC2) of length at least N + 1;
 - 6 arrays (E, CC, CS, TYPE, US and UBL) of length at least JNLEV;
 - 7 arrays (P, W, A, X, PAK, KAP and MIND) of length at least $M \times N$;
 - 5 arrays (D, VS, V, LB and UB) of length at least JNLEV × M;
 - 1 array (Y) of length at least JNLEV \times N;
- 2 arrays (MASK1 and ITWO) of length at least JDIMPC.

The arrays are currently dimensioned to allow problems for which

 $M \le 10,$ $N \le 100,$ JNLEV < 150, on a 32-bit computer (so, in the calling program, arrays P and W must be dimensioned at (10,100)). Changing such limits necessitates changing the dimension of all the arrays in subroutine MTG and in COMMON /PACK/ (which is included in subroutines MTG, YDEF and YUSE), as well as the four first executable statements.

Meaning of the input parameters:

N = number of items;

M = number of knapsacks;

P(I, J) = profit of item J if assigned to knapsack I(I = 1,..., M; J = 1,..., N);

W(I, J) = weight of item J if assigned to knapsack I (I = 1,..., M; J = 1,..., N);

C(I) = capacity of knapsack I(I = 1, ..., M);

MINMAX = 1 if the objective function must be minimized, = 2 if the objective function must be maximized;

BACK = -1 if exact solution is required,

= maximum number of backtrackings to be performed, if heuristic solution is required;

JCK = 1 if check on the input data is desired, = 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,

= 0 if no feasible solution exists,

= error in the input data (when JCK = 1) if Z < 0: condition -Z is violated;

XSTAR(J) = knapsack where item J is inserted in the solution found;

JB = lower bound (if MINMAX = 1) or upper bound (if MINMAX = 2) on the optimal solution value (to evaluate Z when BACK ≥ 0 on input).

All the parameters are integer. On return of MTG all the input parameters are unchanged, with the following two exceptions. BACK gives the number of backtrackings performed; P(I, J) is set to 0 for all pairs (I, J) such that W(I, J) > C(I).

INTEGER P(10,100), W(10,100), C(10), XSTAR(100), Z, BACK INTEGER DD(10), UD(10), Q(10), PAKL(10), IP(10), IR(10)

```
INTEGER IL(10), IF(10), WOBBL(10), KQ(10), FLREP(10)
INTEGER XS(100), BS(100), B(100), KA(100), XXS(100)
INTEGER IOBBL(100), JOBBL(100), BEST(100), XJJUB(100)
REAL DS(100)
INTEGER PS(101), WS(101)
INTEGER E(150), CC(150), CS(150)
INTEGER TYPE(150), US(150), UBL(150)
INTEGER A(10,100), X(10,100)
INTEGER PAK(10,100), KAP(10,100), MIND(10,100)
INTEGER D(150,10), VS(150,10)
INTEGER V(150,10), LB(150,10), UB(150,10)
INTEGER Y
INTEGER DMYR1(10), DMYR2(10), DMYR3(10)
```

INTEGER DMYR4(10), DMYR5(10)

INTEGER DMYC1(100), DMYC2(100), DMYC3(100)

INTEGER DMYC4(100), DMYC5(100), DMYC6(100)

INTEGER DMYC7(100), DMYC8(100), DMYC9(100)

INTEGER DMYC10(100), DMYC11(100), DMYC12(100)

INTEGER DMYC13(100)

INTEGER DMYCC1(101), DMYCC2(101)

REAL DMYCR1(100)

COMMON /PACK/ MASK1(30), ITWO(30), MASK, Y(150,100)

A.7.2 Code MTHG

This subroutine heuristically solves the generalized assignment problem

opt Z =
$$P(1, 1) X(1, 1) + ... + P(1, N) X(1, N) + ... + P(M, N) X(M, N) + ... + P(M, N) X(M, N)$$

(where opt = min if MINMAX = 1, opt = max if MINMAX = 2)

subject to
$$W(I, 1) \ X(I, 1) + \ldots + W(I, N) \ X(I, N) \le C(I)$$
 for $I = 1, \ldots, M$,
$$X(1, J) + \ldots + X(M, J) = 1 \quad \text{for } J = 1, \ldots, N,$$

$$X(I, J) = 0 \text{ or } 1 \text{ for } I = 1, \ldots, M, \ J = 1, \ldots, N.$$

The program implements the polynomial-time algorithms described in Section 7.4.

The input problem must satisfy the conditions

- (1) 2 < M < JDIMR;
- (2) $2 \le N \le JDIMC$ (JDIMR and JDIMC are defined by the first two executable statements);
- (3) P(I, J), W(I, J) and C(I) positive integers;
- (4) $W(I, J) \le C(I)$ for at least one I, for J = 1, ..., N;
- (5) $C(I) \ge \min(W(I, J))$ for I = 1, ..., M.

MTHG calls 6 procedures: CHMTHG, FEAS, GHA, GHBCD, GHX and TRIN.

Communication to the program is achieved solely through the parameter list of MTHG.

No machine-dependent constant is used.

MTHG needs

- 6 arrays (C, DMYR1, DMYR2, DMYR3, DMYR4 and DMYR5) of length at least JDIMR;
- 7 arrays (XSTAR, BEST, DMYC1, DMYC2, DMYC3, DMYC4 and DMYCR1) of length at least-JDIMC;
- 3 arrays (P, W and A) of length at least JDMR \times JDIMC.

The arrays are currently dimensioned to allow problems for which

$$M \le 50, \\ N < 500$$

(so, in the calling program, arrays P and W must be dimensioned at (50,500)). Changing such limits necessitates changing the dimension of all the arrays in subroutine MTHG, as well as the first two executable statements.

Meaning of the input parameters:

N = number of items;

M = number of knapsacks;

$$P(I, J) = profit of item J if assigned to knapsack I $(I = 1, ..., M; J = 1, ..., N);$$$

$$W(I, J)$$
 = weight of item J if assigned to knapsack I $(I = 1, ..., M; J = 1, ..., N);$

$$C(I)$$
 = capacity of knapsack $I(I = 1, ..., M)$;

MINMAX = 1 if the objective function must be minimized, = 2 if the objective function must be maximized;

JCK = 1 if check on the input data is desired,= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
 = 0 if no feasible solution is found,
 = error in the input data (when ICK = 1) if Z < 0.

= error in the input data (when JCK = 1) if Z < 0: condition -Z is violated;

XSTAR(J) = knapsack where item J is inserted in the solution found.

All the parameters are integer. On return of MTHG all the input parameters are unchanged, but P(I, J) is set to 0 for all pairs (I, J) such that W(I, J) > C(I).

INTEGER P(50,500), W(50,500), C(50), XSTAR(500), Z INTEGER BEST(500) INTEGER A(50,500) INTEGER DMYR1(50), DMYR2(50), DMYR3(50) INTEGER DMYR4(50), DMYR5(50) INTEGER DMYC1(500), DMYC2(500), DMYC3(500) INTEGER DMYC4(500) REAL DMYCR1(500)

A.8 BIN-PACKING PROBLEM

A.8.1 Code MTP

SUBROUTINE MTP (N, W, C, Z, XSTAR,

JDIM, BACK, JCK, LB,

WR, XSTARR, DUM, RES, REL, X, R, WA,

WB, KFIX, FIXIT, XRED, LS, LSB, XHEU)

This subroutine solves the bin packing problem

$$\label{eq:minimize} \begin{array}{ll} \mbox{minimize } Z = & Y(1) + \ldots + Y(N) \\ \mbox{subject to} & W(1) \; X(I, \, 1) + \ldots + W(N) \; X(I, \, N) \leq C \; Y(I) \\ & & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(1, \, J) + \ldots + X(M, \, J) = 1 & \mbox{for } J = 1, \ldots, \; N, \\ \mbox{} & Y(I) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N, \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{for } I = 1, \ldots, \; N \\ \mbox{} & X(I, \, J) = 0 \; \mbox{or} \; 1 & \mbox{or} \; 1 & \mbox{or} \; 1 & \mbox{or} \; 1 \\ \mbox{} & X(I, \, J$$

(i.e., minimize the number of bins of capacity C needed to allocate N items of size $W(1), \ldots, W(N)$).

The program implements the branch-and-bound algorithm described in Section 8.5.

The input problem must satisfy the conditions

- (1) 2 < N < JDIM;
- (2) W(J) and C positive integers;
- (3) $W(J) \le C$ for J = 1, ..., N;
- (4) W(J) > W(J + 1) for J = 1, ..., N 1.

In the output solution (see below) the Z lowest indexed bins are used.

MTP calls 14 procedures: CHMTP, ENUMER, FFDLS, FIXRED, HBFDS, INSERT, LCL2, L2, L3, MWFDS, RESTOR, SEARCH, SORTI2 and UPDATE.

Communication to the program is achieved solely through the parameter list of MTP.

No machine-dependent constant is used.

MTP needs

17 arrays (W, XSTAR, WR, XSTARR, DUM, RES, REL, X, R, WA, WB, KFIX, FIXIT, XRED, LS, LSB and XHEU) of length at least JDIM.

Meaning of the input parameters:

N = number of items:

W(J) = weight of item J;

C = capacity of the bins;

JDIM = dimension of the 17 arrays;

BACK = -1 if exact solution is required,

= maximum number of backtrackings to be performed, if heuristic solution is required;

JCK = 1 if check on the input data is desired,

= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,

= error in the input data (when JCK = 1) if Z < 0: condition -Z is violated:

XSTAR(J) = bin where item J is inserted in the solution found;

LB = lower bound on the optimal solution value (to evaluate Z when BACK ≥ 0 on input).

All the arrays except W and XSTAR are dummy.

All the parameters are integer. On return of MTP all the input parameters are unchanged except BACK, which gives the number of backtrackings performed.

INTEGER W(JDIM), XSTAR(JDIM), C, Z, BACK INTEGER WR(JDIM), XSTARR(JDIM), DUM(JDIM) INTEGER RES(JDIM), REL(JDIM), X(JDIM), R(JDIM) INTEGER WA(JDIM), WB(JDIM), KFIX(JDIM) INTEGER FIXIT(JDIM), XRED(JDIM), LS(JDIM) INTEGER LSD(JDIM), XHEU(JDIM)

Glossary

```
O(f(n))
                                        order of f(n)
                                        cardinality of set S
S
r(A)
                                        worst-case performance ratio of algorithm A
                                        worst-case relative error of algorithm A
\varepsilon(A)
                                        worst-case performance ratio of bound B
\rho(B)
|a|
                                        largest integer not greater than a
\lceil a \rceil
                                        smallest integer not less than a
z(P)
                                        optimal solution value of problem P
C(P)
                                        continuous relaxation of problem P
L(P, \lambda)
                                        Lagrangian relaxation of problem P through multiplier \lambda
S(P, \pi)
                                        surrogate relaxation of problem P through multiplier \pi
i \pmod{j}
                                        i - |i/j| j (i, j positive integers)
arg max \{s_1, \ldots, s_n\}
                                        index k such that s_k \ge s_i for i = 1, ..., n
\max \{s_1, \ldots, s_n\}
                                        S_{\text{arg max}} \{s_1 \dots s_n\}
                                        arg max (\{s_1, ..., s_n\} / \{s_{arg max} \{s_1, ..., s_n\} \})
arg max_2 \{s_1, \ldots, s_n\}
\max_2 \{s_1, \ldots, s_n\}
                                        S_{\text{arg max}} \{s_1 \dots s_n\}
```

arg min, min, arg min2, min2 are immediate extensions of the above

- A.V. Aho, J.E. Hopcroft, J.D. Ullman (1983). Data Structures and Algorithms, Addison-Wesley, Reading, MA.
- J.H. Ahrens, G. Finke (1975). Merging and sorting applied to the 0-1 knapsack problem. *Operations Research* **23**, 1099–1109.
- L. Aittoniemi (1982). Computational comparison of knapsack algorithms, Presented at XIth International Symposium on Mathematical Programming, Bonn, August 23–27.
- L. Aittoniemi, K. Oehlandt (1985). A note on the Martello-Toth algorithm for onedimensional knapsack problems. *European Journal of Operational Research* **20**, 117.
- R.D. Armstrong, D.S. Kung, P. Sinha, A.A. Zoltners (1983). A computational study of a multiple-choice knapsack algorithm. ACM Transactions on Mathematical Software 9, 184–198.
- G. d'Atri (1979). Analyse probabiliste du problème du sac-à-dos. Thèse, Université de Paris VI.
- G. d'Atri, C. Puech (1982). Probabilistic analysis of the subset-sum problem. *Discrete Applied Mathematics* **4**, 329–334.
- D. Avis (1980). Theorem 4. In V. Chvátal. Hard knapsack problems, *Operations Research* 28, 1410–1411.
- L.G. Babat (1975). Linear functions on the N-dimensional unit cube. *Doklady Akademiia Nauk SSSR* **222**, 761–762.
- A. Bachem, M. Grötschel (1982). New aspects of polyhedral theory. In B. Korte (ed.), Modern Applied Mathematics, Optimization and Operations Research, North Holland, Amsterdam, 51–106.
- B.S. Baker, E.G. Coffman Jr. (1981). A tight asymptotic bound for next-fit-decreasing bin packing. SIAM Journal on Algebraic and Discrete Methods 2, 147-152.
- E. Balas (1967). Discrete programming by the filter method. *Operations Research* 15, 915–957.
- E. Balas (1975). Facets of the knapsack polytope. Mathematical Programming 8, 146–164.
- E. Balas, R. Jeroslow (1972). Canonical cuts on the unit hypercube. SIAM Journal of Applied Mathematics 23, 61–69.
- E. Balas, R. Nauss, E. Zemel (1987). Comment on 'some computational results on real 0-1 knapsack problems'. *Operations Research Letters* **6**, 139.
- E. Balas, E. Zemel (1978). Facets of the knapsack polytope from minimal covers. *SIAM Journal of Applied Mathematics* **34**, 119–148.
- E. Balas, E. Zemel (1980). An algorithm for large zero-one knapsack problems. *Operations Research* 28, 1130–1154.
- R.S. Barr, G.T. Ross (1975). A linked list data structure for a binary knapsack algorithm. Research Report CCS 232, Centre for Cybernetic Studies, University of Texas.
- R. Bellman (1954). Some applications of the theory of dynamic programming—a review. *Operations Research* **2**, 275–288.
- R. Bellman (1957). Dynamic Programming, Princeton University Press, Princeton, NJ.
- R. Bellman, S.E. Dreyfus (1962). *Applied Dynamic Programming*, Princeton University Press, Princeton, NJ.
- R.L. Bulfin, R.G. Parker, C.M. Shetty (1979). Computational results with a branch and

bound algorithm for the general knapsack problem. *Naval Research Logistics Quarterly* **26**, 41–46.

- A.V. Cabot (1970). An enumeration algorithm for knapsack problems. *Operations Research* **18**, 306–311.
- G. Carpaneto, S. Martello, P. Toth (1988). Algorithms and codes for the assignment problem. In B. Simeone, P. Toth, G. Gallo, F. Maffioli, S. Pallottino (eds), Fortran Codes for Network Optimization, Annals of Operations Research 13, 193–223.
- L. Chalmet, L. Gelders (1977). Lagrange relaxation for a generalized assignment-type problem. In M. Roubens (ed.), Advances in Operations Research, North-Holland, Amsterdam, 103–109.
- S.K. Chang, A. Gill (1970a). Algorithmic solution of the change-making problem. *Journal of ACM* 17, 113–122.
- S.K. Chang, A. Gill (1970b). Algorithm 397. An integer programming problem. *Communications of ACM* 13, 620–621.
- L. Chang, J.F. Korsh (1976). Canonical coin-changing and greedy solutions. *Journal of ACM* **23**, 418–422.
- N. Christofides, A. Mingozzi, P. Toth (1979). Loading problems. In N. Christofides, A. Mingozzi, P. Toth, C. Sandi (eds), *Combinatorial Optimization*, Wiley, Chichester, 339–369.
- V. Chvátal (1980). Hard knapsack problems. Operations Research 28, 402–411.
- E.G. Coffman Jr., M.R. Garey, D.S. Johnson (1984). Approximation algorithms for bin-packing—an updated survey. In G. Ausiello, M. Lucertini, P. Serafini (eds), *Algorithm Design for Computer System Design*, Springer, Vienna, 49–106.
- J. Cord (1964). A method for allocating funds to investment projects when returns are subject to uncertainty. *Management Science* **10**, 335–341.
- H. Crowder, E.L. Johnson, M.W. Padberg (1983). Solving large-scale zero-one linear programming problems. *Operations Research* **31**, 803–834.
- G.B. Dantzig (1957). Discrete variable extremum problems. *Operations Research* 5, 266–277.
- A. De Maio, C. Roveda (1971). An all zero-one algorithm for a certain class of transportation problems. *Operations Research* **19**, 1406–1418.
- R.S. Dembo, P.L. Hammer (1980). A reduction algorithm for knapsack problems. *Methods of Operations Research* **36**, 49–60.
- B.L. Dietrich, L.F. Escudero (1989a). More coefficient reduction for knapsack-like constraints in 0-1 programs with variable upper bounds. IBM T.J. Watson Research Center. RC-14389, Yorktown Heights (NY).
- B.L. Dietrich, L.F. Escudero (1989b). New procedures for preprocessing 0-1 models with knapsack-like constraints and conjunctive and/or disjunctive variable upper bounds. IBM T.J. Watson Research Center. RC-14572, Yorktown Heights (NY).
- K. Dudzinski, S. Walukiewicz (1984a). Upper bounds for the 0-1 knapsack problem. Report MPD-10-49/84, Systems Research Institute, Warsaw.
- K. Dudzinski, S. Walukiewicz (1984b). A fast algorithm for the linear multiple-choice knapsack problem. *Operations Research Letters* **3**, 205–209.
- K. Dudzinski, S. Walukiewicz (1987). Exact methods for the knapsack problem and its generalizations. *European Journal of Operational Research* **28**, 3–21.
- M.E. Dyer (1984). An O(n) algorithm for the multiple-choice knapsack linear program. *Mathematical Programming* 29, 57–63.
- M.E. Dyer, N. Kayal, J. Walker (1984). A branch and bound algorithm for solving the multiple-choice knapsack problem. *Journal of Computational and Applied Mathematics* 11, 231–249.
- S. Eilon, N. Christofides (1971). The loading problem. *Management Science* 17, 259–267.
- B. Faaland (1973). Solution of the value-independent knapsack problem by partitioning. *Operations Research* **21**, 332–337.
- D. Fayard, G. Plateau (1975). Resolution of the 0-1 knapsack problem: comparison of methods. *Mathematical Programming* **8**, 272–307.

D. Fayard, G. Plateau (1982). An algorithm for the solution of the 0-1 knapsack problem. Computing 28, 269–287.

- M. Fischetti (1986). Worst-case analysis of an approximation scheme for the subset-sum problem. *Operations Research Letters* **5**, 283–284.
- M. Fischetti (1989). A new linear storage, polynomial time approximation scheme for the subset-sum problem. *Discrete Applied Mathematics* (to appear).
- M. Fischetti, S. Martello (1988). A hybrid algorithm for finding the kth smallest of n elements in O(n) time. In B. Simeone, P. Toth, G. Gallo, F. Maffioli, S. Pallottino (eds), Fortran Codes for Network Optimization, Annals of Operations Research 13, 401–419.
- M. Fischetti, P. Toth (1988). A new dominance procedure for combinatorial optimization problems. *Operations Research Letters* **7**, 181–187.
- M.L. Fisher (1980). Worst-case analysis of heuristic algorithms. *Management Science* **26**, 1–17.
- M.L. Fisher (1981). The Lagrangian relaxation method for solving integer programming problems. *Management Science* 27, 1–18.
- M.L. Fisher, R. Jaikumar, L.N. Van Wassenhove (1986). A multiplier adjustment method for the generalized assignment problem. *Management Science* 32, 1095–1103.
- J.C. Fisk, M.S. Hung (1979). A heuristic routine for solving large loading problems. *Naval Research Logistics Quarterly* **26**, 643–650.
- A.M. Frieze (1986). On the Lagarias-Odlyzko algorithm for the subset sum problem. *SIAM Journal on Computing* **15**, 536–539.
- M.R. Garey, D.S. Johnson (1975). Complexity results for multiprocessor scheduling under resource constraints. *SIAM Journal on Computing* **4**, 397–411.
- M.R. Garey, D.S. Johnson (1978). "Strong" NP-completeness results: motivation, examples and implications. *Journal of ACM* **25**, 499–508.
- M.R. Garey, D.S. Johnson (1979). Computers and Intractability: a Guide to the Theory of NP-Completeness, Freeman, San Francisco.
- R.S. Garfinkel, G.L. Nemhauser (1972). *Integer Programming*, John Wiley and Sons, New York.
- G.V. Gens, E.V. Levner (1978). Approximation algorithms for scheduling problems. *Izvestija Akademii Nauk SSSR*, Engineering Cybernetics **6**, 38–43.
- G.V. Gens, E.V. Levner (1979). Computational complexity of approximation algorithms for combinatorial problems. In J. Beċvar (ed.), *Mathematical Foundations of Computer Science 1979*, Lecture Notes in Computer Science 74, Springer, Berlin, 292–300.
- G.V. Gens, E.V. Levner (1980). Fast approximation algorithms for knapsack type problems. In K. Iracki, K. Malinowski, S. Walukiewicz (eds), *Optimization Techniques, Part 2*, Lecture Notes in Control and Information Sciences 23, Springer, Berlin, 185–194.
- A. Geoffrion (1969). An improved implicit enumeration approach for integer programming. *Operations Research* 17, 437–454.
- P.C. Gilmore, R.E. Gomory (1961). A linear programming approach to the cutting stock problem I. *Operations Research* **9**, 849–858.
- P.C. Gilmore, R.E. Gomory (1963). A linear programming approach to the cutting stock problem II. *Operations Research* 11, 863–888.
- P.C. Gilmore, R.E. Gomory (1965). Multi-stage cutting stock problems of two and more dimensions. *Operations Research* 13, 94–120.
- P.C. Gilmore, R.E. Gomory (1966). The theory and computation of knapsack functions. *Operations Research* **14**, 1045–1074.
- F. Glover (1965). A multiphase dual algorithm for the zero-one integer programming problem. *Operations Research* 13, 879–919.
- F. Glover, D. Klingman (1979). A $o(n \log n)$ algorithm for LP knapsacks with GUB constraints. *Mathematical Programming* 17, 345–361.
- A.V. Goldberg, A. Marchetti-Spaccamela (1984). On finding the exact solution to a zero-one knapsack problem. *Proc. 16th Annual ACM Symposium Theory of Computing*, 359–368.
- E.S. Gottlieb, M.R. Rao (1988). Facets of the knapsack polytope derived from disjoint and

- overlapping index configurations. Operations Research Letters 7, 95–100.
- E.S. Gottlieb, M.R. Rao (1989a). The generalized assignment problem: valid inequalities and facets. *Mathematical Programming* (to appear).
- E.S. Gottlieb, M.R. Rao (1989b). (1,k)-configuration facets for the generalized assignment problem. *Mathematical Programming* (to appear).
- H. Greenberg (1985). An algorithm for the periodic solutions in the knapsack problem. Journal of Mathematical Analysis and Applications 111, 327–331.
- H. Greenberg (1986). On equivalent knapsack problems. *Discrete Applied Mathematics* 14, 263–268.
- H. Greenberg, I. Feldman (1980). A better-step-off algorithm for the knapsack problem. *Discrete Applied Mathematics* **2**, 21–25.
- H. Greenberg, R.L. Hegerich (1970). A branch search algorithm for the knapsack problem. *Management Science* **16**, 327–332.
- M.M. Guignard, S. Kim (1987). Lagrangean decomposition: A model yielding stronger Lagrangean bounds. *Mathematical Programming* **39**, 215–228.
- M.M. Guignard, K. Spielberg (1972). Mixed-integer algorithms for the (0,1) knapsack problem. *IBM Journal of Research and Development* **16**, 424–430.
- P.L. Hammer, E.L. Johnson, U.N. Peled (1975). Facets of regular 0-1 polytopes. *Mathematical Programming* **8**, 179–206.
- D. Hartvigsen, E. Zemel (1987). On the complexity of lifted inequalities for the knapsack problem. Report 740, Department of Managerial Economics and Decision Sciences, Northwestern University, Evanston, Illinois.
- D.S. Hirschberg, C.K. Wong (1976). A polynomial-time algorithm for the knapsack problem with two variables. *Journal of ACM* **23**, 147–154.
- E. Horowitz, S. Sahni (1974). Computing partitions with applications to the knapsack problem. *Journal of ACM* **21**, 277–292.
- T.C. Hu (1969). Integer Programming and Network Flows, Addison-Wesley, New York.
- T.C. Hu, M.L. Lenard (1976). Optimality of a heuristic solution for a class of knapsack problems. *Operations Research* **24**, 193–196.
- P.D. Hudson (1977). Improving the branch and bound algorithms for the knapsack problem. Queen's University Research Report, Belfast.
- M.S. Hung, J.R. Brown (1978). An algorithm for a class of loading problems. *Naval Research Logistics Quarterly* **25**, 289–297.
- M.S. Hung, J.C. Fisk (1978). An algorithm for 0-1 multiple knapsack problems. *Naval Research Logistics Quarterly* **24**, 571–579.
- O.H. Ibarra, C.E. Kim (1975). Fast approximation algorithms for the knapsack and sum of subset problems. *Journal of ACM* 22, 463–468.
- G.P. Ingargiola, J.F. Korsh (1973). A reduction algorithm for zero-one single knapsack problems. *Management Science* **20**, 460–463.
- G.P. Ingargiola, J.F. Korsh (1975). An algorithm for the solution of 0-1 loading problems. *Operations Research* **23**, 1110–1119.
- G.P. Ingargiola, J.F. Korsh (1977). A general algorithm for one-dimensional knapsack problems. *Operations Research* **25**, 752–759.
- D.S. Johnson (1973). Near-optimal bin packing algorithms. Technical Report MAC TR-109, Project MAC, Massachusetts Institute of Technology, Cambridge, MA.
- D.S. Johnson (1974). Approximation algorithms for combinatorial problems. *Journal of Computer and System Sciences* **9**, 256–278.
- D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, R.L. Graham (1974). Worst-case performance bounds for simple one-dimensional packing algorithms. *SIAM Journal on Computing* 3, 299–325.
- S.C. Johnson, B.W. Kernighan (1972). Remarks on algorithm 397. *Communications of ACM* 15, 469.
- K. Jörnsten, M. Näsberg (1986). A new Lagrangian relaxation approach to the generalized assignment problem. *European Journal of Operational Research* 27, 313–323.

R. Kannan (1980). A polynomial algorithm for the two-variables integer programming problem. *Journal of ACM* 27, 118–122.

- S. Kaplan (1966). Solution of the Lorie-Savage and similar integer programming problems by the generalized Lagrange multiplier method. *Operations Research* **14**, 1130–1136.
- R.M. Karp (1972). Reducibility among combinatorial problems. In R.E. Miller, J.W. Thatcher (eds), *Complexity of Computer Computations*, Plenum Press, New York, 85–103.
- R.M. Karp, J.K. Lenstra, C.J.H. McDiarmid, A.H.G. Rinnooy Kan (1985). Probabilistic analysis. In M. O'hEigeartaigh, J.K. Lenstra, A.H.G. Rinnooy Kan (eds), *Combinatorial Optimization: Annotated Bibliographies*, Wiley, Chichester, 52–88.
- T.D. Klastorin (1979). An effective subgradient algorithm for the generalized assignment problem. *Computers and Operations Research* **6**, 155–164.
- D.E. Knuth (1973). The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley, Reading, MA.
- P.J. Kolesar (1967). A branch and bound algorithm for the knapsack problem. *Management Science* **13**, 723–735.
- N.W. Kuhn (1955). The Hungarian method for the assignment problem. *Naval Research Logistics Quarterly* 2, 83–97.
- J.C. Lagarias, A.M. Odlyzko (1983). Solving low-density subset sum problems. *Proc. 24th Annual IEEE Symposium Foundations of Computer Science*, 1–10.
- B.J. Lageweg, J.K. Lenstra (1972). Algoritmend voor knapzack problemen. Report BN 14/72, Stichting Mathematisch Centrum, Amsterdam.
- M. Laurière (1978). An algorithm for the 0-1 knapsack problem. *Mathematical Programming* 14, 1–10.
- E.L. Lawler (1976). Combinatorial Optimization: Networks and Matroids, Holt, Rinehart & Winston, New York.
- E.L. Lawler (1979). Fast approximation algorithms for knapsack problems. *Mathematics of Operations Research* **4**, 339–356.
- E.V. Levner, G.V. Gens (1978). Discrete Optimization Problems and Approximation Algorithms. Moscow, CEMI (Russian).
- G.S. Lueker (1975). Two NP-complete problems in nonnegative integer programming. Report No. 178, Computer Science Laboratory, Princeton University, Princeton, NJ.
- G.S. Lueker (1982). On the average difference between the solutions to linear and integer knapsack problems. In R.L. Disney, T.J. Ott (eds), *Applied Probability—Computer Science: the Interface, Vol. I*, Birkhauser, Basel, 489–504.
- N. Maculan (1983). Relaxation Lagrangienne: le problème du knapsack 0-1. INFOR (Canadian Journal of Operational Research and Information Processing) 21, 315–327.
- M.J. Magazine, J.L. Nemhauser, L.E. Trotter Jr. (1975). When the greedy solution solves a class of knapsack problems. *Operations Research* 23, 207–217.
- M.J. Magazine, O. Oguz (1981). A fully polynomial approximate algorithm for the 0-1 knapsack problem. *European Journal of Operational Research* **8**, 270–273.
- A. Marchetti-Spaccamela, C. Vercellis (1987). Efficient on-line algorithms for the knapsack problem. In T. Ottman (ed.), *Automata, Languages and Programming*, Lecture Notes in Computer Science 267, Springer, Berlin, 445–456.
- S. Martello, P. Toth (1977a). An upper bound for the zero-one knapsack problem and a branch and bound algorithm. *European Journal of Operational Research* 1, 169–175.
- S. Martello, P. Toth (1977b). Computational experiences with large-size unidimensional knapsack problems. Presented at the TIMS/ORSA Joint National Meeting, San Francisco.
- S. Martello, P. Toth (1977c). Solution of the bounded and unbounded change-making problem. Presented at the TIMS/ORSA Joint National Meeting, San Francisco.
- S. Martello, P. Toth (1977d). Branch and bound algorithms for the solution of the general unidimensional knapsack problem. In M. Roubens (ed.), *Advances in Operations Research*, North-Holland, Amsterdam, 295–301.

S. Martello, P. Toth (1978). Algorithm for the solution of the 0-1 single knapsack problem. *Computing* **21**, 81–86.

- S. Martello, P. Toth (1979). The 0-1 knapsack problem. In N. Christofides, A. Mingozzi, P. Toth, C. Sandi (eds), *Combinatorial Optimization*, Wiley, Chichester, 237–279.
- S. Martello, P. Toth (1980a). Solution of the zero-one multiple knapsack problem. *European Journal of Operational Research* **4**, 276–283.
- S. Martello, P. Toth (1980b). Optimal and canonical solutions of the change-making problem. European Journal of Operational Research 4, 322–329.
- S. Martello, P. Toth (1980c). A note on the Ingargiola–Korsh algorithm for one-dimensional knapsack problems. *Operations Research* **28**, 1226–1227.
- S. Martello, P. Toth (1981a). A bound and bound algorithm for the zero-one multiple knapsack problem. *Discrete Applied Mathematics* 3, 275–288.
- S. Martello, P. Toth (1981b). Heuristic algorithms for the multiple knapsack problem. *Computing* 27, 93–112.
- S. Martello, P. Toth (1981c). An algorithm for the generalized assignment problem. In J.P. Brans (ed.), *Operational Research '81*, North-Holland, Amsterdam, 589–603.
- S. Martello, P. Toth (1984a). A mixture of dynamic programming and branch-and-bound for the subset-sum problem. *Management Science* **30**, 765–771.
- S. Martello, P. Toth (1984b). Worst-case analysis of greedy algorithms for the subset-sum problem. *Mathematical Programming* **28**, 198–205.
- S. Martello, P. Toth (1985a). Approximation schemes for the subset-sum problem: survey and experimental analysis. *European Journal of Operational Research* **22**, 56–69.
- S. Martello, P. Toth (1985b). Algorithm 632. A program for the 0-1 multiple knapsack problem. ACM Transactions on Mathematical Software 11, 135-140.
- S. Martello, P. Toth (1987). Algorithms for knapsack problems. In S. Martello, G. Laporte, M. Minoux, C. Ribeiro (eds), *Surveys in Combinatorial Optimization, Annals of Discrete Mathematics* 31, North-Holland, Amsterdam, 213–257.
- S. Martello, P. Toth (1988). A new algorithm for the 0-1 knapsack problem. *Management Science* **34**, 633–644.
- S. Martello, P. Toth (1989). An exact algorithm for the bin packing problem. Presented at EURO X, Beograd.
- S. Martello, P. Toth (1990a). An exact algorithm for large unbounded knapsack problems. *Operations Research Letters* (to appear).
- S. Martello, P. Toth (1990b). Lower bounds and reduction procedures for the bin packing problem. *Discrete Applied Mathematics* (to appear).
- J.B. Mazzola (1989). Generalized assignment with nonlinear capacity interaction. *Management Science* **35**, 923–941.
- M. Meanti, A.H.G. Rinnooy Kan, L. Stougie, C. Vercellis (1989). A probabilistic analysis of the multiknapsack value function. *Mathematical Programming* (to appear).
- H. Müller-Merbach (1978). An improved upper bound for the zero-one knapsack problem: a note on the paper by Martello and Toth. *European Journal of Operational Research* 2, 212–213.
- R.A. Murphy (1986). Some computational results on real 0-1 knapsack problems. *Operations Research Letters* **5**, 67–71.
- R.M. Nauss (1976). An efficient algorithm for the 0-1 knapsack problem. *Management Science* 23, 27–31.
- R.M. Nauss (1978). The 0-1 knapsack problem with multiple choice constraints. *European Journal of Operational Research* 2, 125–131.
- A. Neebe, D. Dannenbring (1977). Algorithms for a specialized segregated storage problem. Technical Report 77–5, University of North Carolina.
- G.L. Nemhauser, L.E. Trotter (1974). Properties of vertex packing and independence system polyhedra. *Mathematical Programming* **6**, 48–61.

G.L. Nemhauser, Z. Ullmann (1969). Discrete dynamic programming and capital allocation. *Management Science* **15**, 494–505.

- G.L. Nemhauser, L.A. Wolsey (1988). *Integer and Combinatorial Optimization*, Wiley, Chichester.
- M.W. Padberg (1975). A note on zero-one programming. *Operations Research* 23, 833–837.
- M.W. Padberg (1979). Covering, packing and knapsack problems. *Annals of Discrete Mathematics* **4**, 265–287.
- M.W. Padberg (1980). (1,k)-configurations and facets for packing problems. *Mathematical Programming* 18, 94–99.
- C.H. Papadimitriou, K. Steiglitz (1982). Combinatorial Optimization, Prentice-Hall, Englewood Cliffs, NJ.
- G. Plateau, M. Elkihel (1985). A hybrid algorithm for the 0-1 knapsack problem. *Methods of Operations Research* **49**, 277–293.
- W.R. Pulleyblank (1983). Polyhedral combinatorics. In A. Bachem, M. Grötschel, B. Korte (eds), *Mathematical Programming: the State of the Art–Bonn 1982*, Springer, Berlin, 312–345
- A.H.G. Rinnooy Kan (1987). Probabilistic analysis of algorithms. In S. Martello, G. Laporte,
 M. Minoux, C. Ribeiro (eds), Surveys in Combinatorial Optimization, Annals of Discrete Mathematics 31, North-Holland, Amsterdam, 365–384.
- G.T. Ross, R.M. Soland (1975). A branch and bound algorithm for the generalized assignment problem. *Mathematical Programming* **8**, 91–103.
- B.F. Ryder, A.D. Hall (1981). The PFORT verifier. Computer Science Report 2, Bell Laboratories.
- S. Sahni (1975). Approximate algorithms for the 0-1 knapsack problem. *Journal of ACM* **22**, 115–124.
- S. Sahni, T. Gonzalez (1976). P-complete approximation problems. *Journal of ACM* 23, 555–565.
- H.M. Salkin (1975). Integer Programming, Addison-Wesley, New York.
- H.M. Salkin, C.A. de Kluyver (1975). The knapsack problem: a survey. *Naval Research Logistics Quarterly* 22, 127–144.
- A. Schrijver (1986). Theory of Linear and Integer Programming, Wiley, Chichester.
- P. Sinha, A.A. Zoltners (1979). The multiple-choice knapsack problem. *Operations Research* 27, 503–515.
- V. Srinivasan, G.L. Thompson (1973). An algorithm for assigning uses to sources in a special class of transportation problems. *Operations Research* 21, 284–295.
- U. Suhl (1978). An algorithm and efficient data structures for the binary knapsack problem. *European Journal of Operational Research* **2**, 420–428.
- M.M. Syslo, N. Deo, J.S. Kowalik (1983). Discrete Optimization Algorithms with Pascal Programs, Prentice-Hall, Englewood Cliffs, NJ.
- K. Szkatula, M. Libura (1987). On probabilistic properties of greedy-like algorithms for the binary knapsack problem. Report 154, Instytut Badan Systemowych, Polska Akademia Nauk, Warsaw.
- H.A. Taha (1975). Integer Programming, Academic Press, New York.
- B.N. Tien, T.C. Hu (1977). Error bounds and the applicability of the greedy solution to the coin-changing problem. *Operations Research* **25**, 404–418.
- G. Tinhofer, H. Schreck (1986). The bounded subset sum problem is almost everywhere randomly decidable in O(n). Information Processing Letters 23, 11–17.
- M. Todd (1980). Theorem 3. In V. Chvátal. Hard knapsack problems, *Operations Research* 28, 1408–1409.
- P. Toth (1976). A new reduction algorithm for 0-1 knapsack problems. Presented at the ORSA/TIMS Joint National Meeting, Miami.
- P. Toth (1980). Dynamic programming algorithms for the zero-one knapsack problem. *Computing* **25**, 29–45.

G.P. Veliev, K.Sh. Mamedov (1981). A method of solving the knapsack problem. *USSR Computational Mathematics and Mathematical Physics* 21, 75–81.

- A. Verebriusova (1904). On the number of solutions of indefinite equations of the first degree with many variables. *Mathematicheskii Sbornik* **24**, 662–688.
- P.R.C. Villela, C.T. Bornstein (1983). An improved bound for the 0-1 knapsack problem. Report ES31-83, COPPE-Federal University of Rio de Janeiro.
- H.M. Weingartner (1963). *Mathematical Programming and the Analysis of Capital Budgeting Problems*, Prentice-Hall, Englewood Cliffs, NJ.
- H.M. Weingartner (1968). Capital budgeting and interrelated projects: survey and synthesis. *Management Science* 12, 485–516.
- H.M. Weingartner, D.N. Ness (1967). Methods for the solution of the multi-dimensional 0-1 knapsack problem. *Operations Research* 15, 83–103.
- L.A. Wolsey (1975). Faces of linear inequalities in 0-1 variables. *Mathematical Programming* **8**, 165–178.
- J.W. Wright (1975). The change-making problem. Journal of ACM 22, 125-128.
- E. Zemel (1978). Lifting the facets of zero-one polytopes. *Mathematical Programming* 15, 268–277.
- E. Zemel (1980). The linear multiple choice knapsack problem. *Operations Research* **28**, 1412–1423.
- E. Zemel (1984). An O(n) algorithm for the linear multiple choice knapsack problem and related problems. *Information Processing Letters* 18, 123–128.
- E. Zemel (1988). Easily computable facets of the knapsack polytope. Report 713, Department of Managerial Economics and Decision Sciences, Northwestern University, Evanston, Illinois.
- A.A. Zoltners (1978). A direct descent binary knapsack algorithm. *Journal of ACM* 25, 304–311.

Author index

Note: listing in references section is indicated by bold page numbers.

Aho, A. V., 15, 18, 223, 275 Ahrens, J. H., 29, 39, 43, 107, 129, 130, 275 Aittoniemi, L., 88, 275 Armstrong, R. D., 80, 275 d'Atri, G., 56, 126, 275

Avis, D., 128, 275

Babat, L. G., 56, 275
Bachem, A., 74, 275
Baker, B. S., 223, 275
Balas, E., 14, 17, 47, 57, 58, 59, 60, 62, 68, 75, 76, 163, 275
Barr, R. S., 30, 275
Bellman, R., 37, 275
Bornstein, C. T., 22, 282
Brown, J. R., 237, 278
Bulfin, R. L., 88, 275

Cabot, A. V., 96, 276
Carpaneto, G., 191, 276
Chalmet, L., 191, 276
Chang, L., 145, 276
Chang, S. K., 142, 143, 145, 151, 276
Christofides, N., 168, 237, 276
Chvátal, V., 128, 276
Coffman, E. G., Jr., 222, 223, 275, 276
Crod, J., 276
Crowder, H., 13, 276

Dannenbring, D., 168, **280**Dantzig, G. B., 14, 16, 37, 162, **276**DeMaio, A., 191, **276**Dembo, R. S., 47, **276**Demers, A., 10, 223, 233, **278**Deo, N., 5, 32, **281**Dietrich, B. L., 13, 106, **276**Dreyfus, S. E., **275**Dudzinski, K., 5, 23, 24, 26, 80, **276**Dyer, M. E., 80, **276**

Eilon, S., 237, **276** Elkihel, M., 36, 116, **281** Escudero, L. F., 13, 106, **276**

Faaland, B., 107, **276**Fayard, D., 22, 30, 47, 48, 60, 68, **276**, **277**Feldman, I., 96, **278**Finke, G., 29, 39, 43, 107, 129, 130, **275**Fischetti, M., 102, 122, 124, 176, **277**Fisher, M. L., 9, 20, 197, 206, 213, 218, 219, **277**Fisk, J. C., 179, 185, **277**Frieze, A. M., 128, **277**

Garey, M. R., 6, 8, 10, 177, 178, 222, 223, 233, **276**, **277**, **278** Garfinkel, R. S., 5, 96, 277 Gelders, L., 191, 276 Gens, G. V., 56, 125, 126, 131, 277, 279 Geoffrion, A., 163, 277 Gill, A., 142, 143, 145, 151, **276** Gilmore, P. C., 14, 88, 95, 96, 146, 277 Glover, F., 80, 81, 158, 277 Goldberg, A. V., 57, 59, 277 Gomory, R. E., 14, 88, 95, 96, 146, 277 Gonzalez, T., 10, 281 Gottlieb, E. S., 76, 191, 277, 278 Graham, R. L., 10, 223, 233, 278 Greenberg, H., 29, 88, 96, 278 Grötschel, M., 74, 275 Guignard, M. M., 30, 201, 278

Hall, A. D., 248, Hammer, P. L., 47, 75, **276**, Hartvigsen, D., 77, Hegerich, R. L., 29, 88, Hirschberg, D. S., 92, Hopcroft, J. E., 15, 18, 223, Horowitz, E., 29, 32, 39, 43, 68, 284 Author index

Hudson, P. D., 22, **278** Hung, M. S., 163, 168, 179, 184, 185, 237, **277**, **278** Hu, T. C., 5, 95, 96, 142, 144, 145, **278**, **281**

Ibarra, O. H., 14, 53, 54, 56, 95, 125, **278** Ingargiola, G. P., 14, 45, 88, 91, 176, 184, **278**

Jaikumar, R., 197, 206, 213, 218, 219, 277

Jeroslow, R., 75, 275

Johnson, D. S., 6, 8, 10, 14, 120, 131, 177, 178, 222, 223, 233, 276, 277, 278

Johnson, E. L., 13, 75, **276**, **278** Johnson, S. C., 145, **278** Jörnsten, K., 201, 203, 206, 218, **278**

Kannan, R., 92, Kaplan, S., Karp, R. M., 6, 10, 50, Kayal, N., 80, Kernighan, B. W., 145, Kim, C. E., 14, 53, 54, 56, 95, 125,

Kim, C. E., 14, 53, 54, 56, 95, 125, 278

Kim, S., 201, 278

Kim, S., 201, 278

Klastorin, T. D., 209, 279

Klingman, D., 80, 277

de Kluyver, C. A., 5, 281

Knuth, D. E., 107, 279

Kolesar, P. J., 14, 29, 279

Korsh, J. F., 14, 45, 88, 91, 145, 176, 184, 276, 278

Kowalik, J. S., 5, 32, 281

Kuhn, N. W., 191, 279

Kung, D. S., 80, 275

Lagarias, J. C., 126, **279**Lageweg, B. J., 30, **279**Laurière, M., 30, 48, **279**Lawler, E. L., 56, 95, 125, 126, 131, 191, **279**Lenard, M. L., 95, 144, **278**Lenstra, J. K., 10, 30, 50, **279**Levner, E. V., 56, 125, 126, 131, **277**, **279**Libura, M., 57, **281**Lueker, G. S., 56, 92, 137, **279**

Maculan, N., 20, **279** Magazine, M. J., 56, 95, 142, 143, **279** Mamedov, K. Sh., 30, **282** Marchetti-Spaccamela, A., 57, 59, 277, 279 Martello, S., 5, 14, 20, 22, 24, 32, 36, 48, 60, 61, 68, 85, 88, 91, 93, 96, 98, 100, 101, 102, 107, 109, 116, 118, 119, 121, 122, 131, 135, 139, 145, 146, 149, 154, 159, 162, 168, 169, 170, 172, 175, 176, 179, 180, 182, 184, 185, 191, 195, 204, 206, 209, 212, 213, 218, 228, 233, 237, 248, 261, 263, 276, 277, 279, 280 Mazzola, J. B., 209, 280 McDiarmid, C. J. H., 10, 50, 279 Meanti, M., 57, 280 Mingozzi, A., 168, 276 Müller-Merbach, H., 23, 280 Murphy, R. A., 47, 280

Näsberg, M., 201, 203, 206, 218, 278
Nauss, R., 47, 275

Nauss, R. M., 32, 68, 80, **280** Neebe, A., 168, **280** Nemhauser, G. L., 5, 74, 76, 88, 96, **277**, **280**, **281**

Nemhauser, J. L., 95, 142, 143, **279** Ness, D. N., **282**

Odlyzko, A. M., 126, **279** Oehlandt, K., 88, **275** Oguz, O., 56, **279**

Padberg, M. W., 13, 76, 276, 281
Papadimitriou, C. H., 5, 281
Parker, R. G., 88, 275
Peled, U. N., 75, 278
Plateau, G., 22, 30, 36, 47, 48, 60, 68, 116, 276, 277, 281
Puech, C., 126, 275
Pulleyblank, W. R., 74, 281

Rao, M. R., 76, 191, 277, 278
Rinnooy Kan, A. H. G., 10, 50, 57, 279, 280, 281
Ross, G. T., 30, 163, 192, 193, 197, 204, 213, 218, 275, 281
Roveda, C., 191, 276
Ryder, B. F., 248, 281

Sahni, S., 10, 29, 32, 39, 43, 50, 68, 71, 121, **278, 281**Salkin, H. M., 5, **281**Schreck, H., 128, **281**Schrijver, A., 5, 74, **281**

Author index 285

Shetty, C. M., 88, 275 Sinha, P., 80, 275, 281 Soland, R. M., 163, 192, 193, 197, 204, 213, 218, 281 Spielberg, K., 30, 278 Srinivasan, V., 191, 281 Steiglitz, K., 5, 281 Stougie, L., 57, 280 Suhl, U., 32, 281 Syslo, M. M., 5, 32, 281 Szkatula, K., 57, 281

Taha, H. A., 5, **281**Thompson, G. L., 191, **281**Tien, B. N., 142, 145, **281**Tinhofer, G., 128, **281**Todd, M., 128, **281**Toth, P., 5, 14, 20, 22, 24, 32, 36, 38, 39, 44, 45, 48, 60, 61, 68, 85, 88, 91, 93, 96, 98, 100, 101, 107, 109, 116, 118, 119, 121, 122, 131, 135, 139, 145, 146, 149, 154, 159, 162, 168, 169, 170, 172, 175, 179, 180, 182, 184, 185, 191, 195, 204, 206, 209, 212, 213, 218, 228, 233, 237, 248, 261, 263, **276**, **277**, **279**, **280**, **281**

Trotter, L. E., 76, **280** Trotter, L. E., Jr., 95, 142, 143, **279**

Ullman, J. D., 10, 15, 18, 223, 233, **275**, **278**

Ullmann, Z., 88, 281

Van Wassenhove, L. N., 197, 206, 213, 218, 219, 277
Veliev, G. P., 30, 282
Vercellis, C., 57, 279, 280
Verebriusova, A., 107, 282
Villela, P. R. C., 22, 282

Walker, J., 80, 276
Walukiewicz, S., 5, 23, 24, 26, 80, 276
Weingartner, H. M., 282
Wolsey, L. A., 5, 74, 75, 76, 281, 282
Wong, C. K., 92, 278
Wright, J. W., 146, 151, 282

Zemel, E., 14, 17, 47, 57, 58, 59, 60, 62, 68, 76, 77, 80, 275, 278, 282
Zoltners, A. A., 32, 60, 80, 275, 281, 282

Note: abbreviations used in the text and in this index;

BCMP = Bounded Change-Making Problem
BKP = Bounded Knapsack Problem
BPP = Bin-Packing Problem
CMP = Change-Making Problem
GAP = Generalized Assignment Problem
KP = 0-1 Knapsack Problem

MCKP = Multiple-Choice Knapsack Problem
MKP = 0-1 Multiple Knapsack Problem

SSP = Subset-Sum Problem

UEMKP = Unbounded Equality Constrained Min-Knapsack Problem

UKP = Unbounded Knapsack Problem

Additional constraints, bounds from, 20–23 ADJUST procedure, 198–200

example using, 200 Ahrens–Finke (dynamic programming) algorithm, 107

computational experiments using, 129

Approximate algorithms

BKP solved using, 86–87 BPP solved using, 222–224

GAP solved using, 206-209

KP solved using, 50–57

computational experiments involving, 71–74

MKP solved using, 177-182

SSP solved using, 117–128 computational experiments for, 130–136

UKP solved using, 93–95

Assignment problems *see* Generalized Assignment Problem; LEGAP;

MINGAP; XYGAP Asymptotic worst-case performance ratio,

AVIS problem, 129

223

Balas-Zemel algorithm, 58-60 computational experiments using, 70

Best-Fit (BF) algorithm, 223, 224 Best-Fit Decreasing (BFD) algorithm, 223–224, 238

Bibliography, 275

Binary knapsack problem see 0-1 Knapsack Problem (KP)

Binary tree, upper bound of KP, 26

Bin-Packing Problem (BPP), 5, 221–245 approximate algorithms used, 222–224 worst-case performance ratio of, 222,

223

continuous relaxation of, 224

definition of, 221

Fortran-coded algorithm used, 247, 270–272

Lagrangian relaxation of, 226–227 lower bounds for, 224–233

worst-case performance ratio for, 224, 228, 232

NP-hardness of, 9

reduction algorithms used, 233–237 relaxations-based lower bounds for,

224-228

computational experiments using, 241–244

relaxations of, 224-227

stronger lower bound for, 228–233 surrogate relaxation of, 225–226

Bound-and-bound algorithm, 171	SSP experiments run on, 129, 130,
MKP solved using, 172–176	132–134
Bound-and-bound method, 170–172	Change-Making Problem (CMP), 4,
Bounded Change-Making Problem	137–156
(BCMP), 153–156	BCMP as generalization of, 153
branch-and-bound algorithm used, 155	branch-and-bound algorithms used,
computational experiments for solution	146–149
of, 156	computational experiments for solution
continuous relaxation of, 153–154	of, 151–153
definition of, 153	definition of, 137
Fortran-coded algorithm used, 247,	dynamic programming used, 145–146
259–261	exact algorithms used, 145–149
greedy algorithm used, 155	Fortran-coded algorithms used, 247,
lower bound for, 154	258–259
Bounded Knapsack Problem (BKP), 3,	greedy algorithms used, 140–142
81–91	large-size problems, 149–151
approximate algorithms used, 86-87	lower bounds for, 138–140
branch-and-bound algorithms used,	NP-hardness of, 7
88–89	recursive formulae for, 8
computational experiments for solution	Combinatorial Optimization, 13
of, 89–91	Computational experiments
definition of, 81	BCMP-solving algorithm, 156
dynamic programming used, 88	BKP-solution algorithms, 89–91
exact algorithms used, 87–89	CMP-solution algorithms, 151–153
Fortran-coded algorithm used, 247,	Fayard–Plateau algorithm used, 70
252–254	GAP-solving algorithms, 213–220
NP-hardness of, 6	KP-solution algorithms, 67–74
recursive formulae for, 7	MKP-solving algorithms, 182–187
special case of, 91–103	SSP-solution algorithms, 128–136
transformation into KP, 82–84	UKP-solution algorithms, 102–103
upper bounds of, 84–86	Continuous Knapsack Problem, 16
Branch-and-bound algorithms	solutions of, 17, 19
BCMP solved using, 155	Continuous relaxations, 11
BKP solved using, 88–89	BCMP, 153–154
CMP solved using, 146–149	BPP, 224
compared with dynamic programming	GAP, 192
algorithms, 70	KP, 16–17
GAP solved using, 204–206	MKP, 160–162
Greenberg-Hegerich approach, 29, 30	CORE algorithm, 63-64, 72
Kolesar algorithm, 29	Core problem
KP solved using, 14, 26–27, 29–36	KP, 14, 57
MKP solved using, 168–170	SSP, 116
Branch-and-bound tree, upper bound of	UKP, 98
KP, 27	Critical item
BZ algorithm, 60	finding in nominated time, 17–19, 25
BZC algorithm, 58–59	meaning of term, 16
	CRITICAL_ ITEM algorithm, 18
Canonical inequalities, 75	BCMP solved using, 155
Canonical vectors, 142	Critical ratio, definition of, 17
CDC-Cyber 730 computer	
CMP experiments run on, 151	Dantzig bound, 17, 24, 45, 59, 162, 197
KP experiments run on, 68–71	Decision-trees
MKP experiments run on, 183, 184,	BPP lower bounds, 239
185	HS algorithm, 33

MT1 algorithm, 37	Fayard-Plateau algorithm, 60-61
MTC1 algorithm, 149	computational experiments using, 70
MTM algorithm, 175	First-Fit Decreasing (FFD) algorithm,
MTRG1 algorithm, 212	223–224, 238, 240
MTS algorithm, 115	First-Fit (FF) algorithm, BBP solved
MTU1 algorithm, 99	using, 222–223, 224
MTU2 algorithm, 102	Fisher-Jaikumar-Van Wassenhove
Depth-first algorithm, meaning of term,	algorithm, GAP solved using,
29	computational experiments for,
Depth-first branch-and-bound algorithms,	214–218
168	Fisher–Jaikumar–Van Wassenhove bound,
GAP solved using, 204–206	197, 200–201
Diophantine equation, SSP related to,	FPDHR reduction algorithm, 47
105	FS(k) algorithm, 124
Dominance criteria, MCKP, 78–80	compared with $MTSS(k)$ algorithm,
Dominated states	125
elimination of, 39–42	Fully polynomial-time approximation
meaning of term, 39	schemes, 10, 14
DP1 algorithm, 39	computational inferiority of, 72
compared with DP2, 44	KP solved using, 53–57
example using, 42	not possible for MKP, 178
DP2 algorithm, 41–42	SSP solved using, 125–126
compared with DP1, 44	Constalized Assignment Problem (CAD)
example using, 42, 44	Generalized Assignment Problem (GAP), 4, 189–220
states of, 42, 44	approximate algorithms used, 206–209
DPS algorithm, 109 Dudzinski–Walukiewicz bound, 24	branch-and-bound algorithms used,
Dynamic programming	204–206
algorithms compared with branch-and-	computational experiments for solution
bound algorithms, 70	of, 213–220
BKP solved using, 88	definition of, 189
CMP solved using, 145–149	exact algorithms used, 204–206
combined with tree-search to solve	Fortran-coded algorithms used, 247,
SSP, 109–116	265–270
knapsack problems first solved by, 14	Lagrangian relaxation of, 193–194
KP solved using, 36–45	minimization version of, 190
meaning of term, 37–38	NP-hardness of, 8
SSP solved using, 106–109	reduction algorithms used, 209-213
2,	relaxation of capacity constraints for,
Exact algorithms	192–195
BKP solved using, 87–89	relaxation of semi-assignment
CMP solved using, 145–149	constraints for, 195-197
GAP solved using, 204–206	relaxations of, 192–204
KP solved using, 57–67	upper bounds of, 192–204
computational experiments	Gens–Levner algorithm see $GL(\epsilon)$
involving, 68–71	algorithm
large-size CMP solved using, 149–151	$GL(\epsilon)$ algorithm, 125–126
large-size UKP solved using, 98,	computational experiments using,
100–102	131–134
MKP solved using, 167–176	example using, 126, 127
SSP solved using, 106–117	Glossary, 272
computational experiments	GREEDY algorithm, 28–29
involving, 129–130	Greedy algorithms, 28
UKP solved using, 95–98	BCMP solved using, 155

Greedy algorithms (cont.)	Ibarra-Kim polynomial-time approximate
classes of knapsack problems solved	algorithm, 53
by, 142–145	see also $IK(\epsilon)$ algorithm
CMP solved using, 140–142	IBM-7094 computer, BKP solved on, 88
computational experiments	$IK(\epsilon)$ algorithm, 53–54
involving, 151	example using, 55
KP solved using, 27–29	KP solved using, 54–55
MKP solved using, 166–167	SSP solved using, 125
SSP solved using, 117–119	IKR algorithm, 46
GREEDYB algorithm, 86–87	compared with Martello-Toth
computational experiments using,	algorithm, 48
89–91	example using, 46–47
GREEDYS algorithm, 179	time complexity of, 47
use in MTHM, 180, 181	IKRM algorithm, 176
GREEDYU algorithm, 95	computational experiments using, 183,
GREEDYUM algorithm, 141	184
BCMP solved using, 155	time complexity of, 177
example using, 141	Ingargiola-Korsh algorithm
GS algorithm, 118, 50	BKP solved using, 89–90
, ,	computational experiments using,
Heuristic procedures used	89–90
Balas–Zemel algorithm for KP, 59	Ingargiola-Korsh reduction algorithms,
Martello-Toth algorithm for GAP,	45–46, 176
206–208, 268–270	see also IKR algorithm; IKRM
Martello-Toth algorithm for MKP,	algorithm
180–182, 263–265	Integer Linear Programming problem, 13
Horowitz–Sahni branch-and-bound	Investments, knapsack problem solution
algorithm, 30–32	for, 1
compared with Martello–Toth	,
algorithm, 32–34	J(k) algorithm, 120, 122
computational experiments using,	compared with procedure $MTSS(K)$,
69	122–123
notations used, 30	computational experiments using,
Horowitz–Sahni dynamic programming	131–135
algorithm, 43	example using, 121
example using, 43	Johnson algorithm see $J(k)$ algorithm
states of, 43	voimbon argorium see v(x) argorium
HP 9000/840 computer	Knapsack polytope, 74-77
BKP experiments run on, 89–91	0-1 Knapsack Problem (KP), 2, 13–80
BPP experiments run on, 240–244	approximate algorithms used, 50–57
CMP experiments run on, 152, 156	BKP as generalization of, 81
GAP experiments run on, 214–220	BKP transformed into, 82–84
KP experiments run on, 71–73	bounds from additional constraints,
MKP experiments run on, 185, 186	20–23
225	bounds from partial enumeration,
UKP experiments run on, 130	24–27
HS algorithm, 30–31	branch-and-bound algorithms used, 29
decision-tree of, 33	continuous relaxation of, 16–17
example using, 32	definition of, 13
Hung–Fisk branch-and-bound algorithms	dynamic programming used, 36–45
branching strategy for, 168	exact algorithms used, 57–67
computational experiments using, 183,	Fortran-coded algorithms used, 247,
184 MVD calved using 169	248–252
MKP solved using, 168	fractions handled for, 14

with Generalized Upper Bound (GUB) Constraints, 77	computational experiments using, 131–134
greedy algorithms used, 27-29	LBFD algorithm
improved bounds of, 20–27	BPP lower bound using, 233
Lagrangian relaxation of, 19–20	computational experiments using,
bounds from, 23–24	241–244
linear programming relaxation of,	LEGAP, 190–191
16–17	Linear Min-Sum Assignment Problem,
minimization version of, 15	191
solution of, 29	0-1 Linear Programming Problem (ZOLP)
nonpositive values handled for, 14	algorithm for solution of, 171
NP-hardness of, 6	definition of, 170
probabilistic result for, 56–57	lower bound on, 171
reasons for study of, 13	Linear programming relaxation, KP,
recursive formulae for, 7	16–17
reduction algorithms used, 45–50	LISTS algorithm, 110–111
relaxations of, 16–20 SSP as special case of, 105	example using, 111 Lower bounds, 9
upper bounds of, 16–20	BCMP, 154
see also Bounded Knapsack Problem;	BPP, 224–233
Multiple Knapsack Problem;	CMP, 138–140
Multiple-Choice Knapsack	ZOLP, 171
Problem; Unbounded Knapsack	LOWER procedure, 173
Problem	,
Knapsack problems	Martello-Toth algorithms
literature reviews on, 5	GAP solved using, 204–206, 212
meaning of term, 1–2	computational experiments for,
terminology used, 2-5	214–218
	Martello-Toth bound, 195, 197
L1 lower bound (for BPP), 225–228	Martello-Toth branch-and-bound
computational experiments using,	algorithm, 32–36
241–244	branching strategy for, 169
L2 algorithm, 231–232	compared with Horowitz–Sahni
example using, 236	algorithm, 32–34
main variables in, 231	computational experiments using, 183, 184
worst-case performance ratio of, 232–233	Fortran implementation of, 248
L3 algorithm, 235–236	MKP solved using, 168–170
computational experiments using,	Martello–Toth exact algorithm, 61–67
241–244	Martello—Toth polynomial-time algorithm
example using, 236, 240	Fortran implementation of, 263–265
Lagrangian relaxations, 11	MKP solved using, 179–182
bounds from, 23–24	Martello-Toth reduction algorithm, 48
BPP, 226–227	compared with Ingargiola-Korsh
GAP, 193–194	algorithm, 48
KP, 23–24	MINGAP, 190
MKP, 162–165	Minimal covers, meaning of term, 75
Large-size CMP, algorithm for, 149–151	MNT algorithm, 144–145
Large-size KP, algorithms for, 57–67	example using, 145
Large-size SSP, algorithm for, 116–117	MT1 algorithm, 34–36
Large-size UKP, algorithm for, 98,	computational experiments using, 69,
100–102	70
Lawler (polynomial-time approximation)	decision-tree of, 37
scheme, 125, 126	example using, 36

MT1 algorithm (cont.)	example using, 175
Fortran implementation of, 247,	Fortran implementation of, 247,
248–249	261–263
MT1' algorithm, 64	modified version of, 176
MT1R algorithm, 247, 249-251	MTP algorithm, 237–238
MT2 algorithm, 66–67	computational experiments using,
computational experiments using, 70,	244–245
71	decision-tree produced by, 239
Fortran implementation of, 247,	example using, 238–240
251–252	Fortran implementation of, 247, 270–272
heuristic version of, 72	MTR algorithm, 48–49
MTB2 algorithm computational experiments using,	computational experiments using,
89–91	69
Fortran implementation of, 247,	example using, 49
252–254	MTR' algorithm, 64–65
MTC1 algorithm, 147–148	MTRG1 algorithm, 209–210
computational experiments using,	decision-tree when used, 212
151–153	example using, 211–213
decision-tree for, 149	MTRP algorithm, 234
example using, 149	example using, 236, 240
MTC2 algorithm, 150	time complexity of, 237
computational experiments using, 152	MTS algorithm, 113–114
Fortran implementation of, 247,	decision-tree for, 115
258–259	example using, 115
MTCB algorithm, 155	MTSL algorithm, 116–117
computational experiments using, 156	computational experiments using,
Fortran implementation of, 247,	129–130
259–261	Fortran implementation of, 129–130
MTG algorithm	MTSS(k) algorithm, $121-122$
computational experiments using,	compared with procedure $J(k)$,
214–217 development of 205, 206	122–123
development of, 205–206 Fortran implementation of, 247,	computational experiments using, 131–136
265–268	example using, 123
MTGS algorithm, 118, 121	worst-case performance ratio of, 122
MTGSM algorithm, 123–124	MTU1 algorithm, 96–97
example using, 124	computational experiments using, 103
MTHG algorithm, 206–207	decision-tree for, 99
computational experiments using,	example using, 98
219–220	MTU2 algorithm, 100
example using, 208	computational experiments using, 103
Fortran implementation of, 247,	decision-tree for, 102
268–270	example using, 101
MTHM algorithm, 180–181	Fortran implementation of, 247,
computational experiments using,	254–255
185–187	Müller-Merbach bound, 23
example using, 182	Multiple-Choice Knapsack Problem
Fortran implementation of, 247,	(MCKP), 3, 77–80
263–265 MTM algorithms 173, 174	0-1 Multiple Knapsack Problem (MKP),
MTM algorithm, 173–174	157–187
computational experiments using, 183–186	approximate algorithms used, 177–182 branch-and-bound algorithms used,
decision-tree for, 175	168–170
	100-170

computational experiments for solution of, 182–187	computational experiments using, 129, 133
continuous relaxation of, 160-162	TODD, 128
definition of, 157	computational experiments using,
exact algorithms used, 167-176	129, 134
Fortran-coded algorithms used, 247,	Procedures
261–265	ADJUST, 198–200
greedy algorithms used, 166–167	example using, 200
Lagrangian relaxation of, 162–165	BOUND AND BOUND, 171
LEGAP as generalization of, 191	BZ, 60
NP-hardness of, 8	BZC, 58–59
polynomial-time approximation	CORE, 63–64, 72
algorithms used, 179–182	CRITICAL_ITEM, 18
reduction algorithms used, 176–177	BCMP solved using, 155
relaxations of, 158–165	DP1, 39
surrogate relaxation of, 158–162	compared with DP2, 44
upper bounds of	example using, 42
techniques to obtain, 158–165	DP2, 41–42
worst-case performance of, 165–166	compared with DP1, 44
Multiple knapsack problems, see also	example using, 42, 44
Bin-Packing Problem (BPP);	states of, 42 DPS, 109
Generalized Assignment Problem (GAP); 0-1 Multiple Knapsack	example using, 83–84
Problem (MKP)	$GL(\epsilon)$, 125–126
Multiplier adjustment method, GAP upper	computational experiments using,
bound determined by, 197–201	131–134
Nauss exact algorithm, computational	example using, 126, 127
experiment using, 69	GREEDY, 28–29
Next-Fit Decreasing (NFD) algorithm,	SSP solved using, 117 GREEDYB, 86–87
223–224	computational experiments using,
Next-Fit (NF) algorithm, 222, 224	89–91
NP-hard problems, 6–9	GREEDYS, 179
44.	use in MTHM, 180, 181
(1,k)-configuration, 76	GREEDYU, 95
One-point theorem, 144	GREEDYUM, 141
Partial enumeration, KP bounds from, 24	BCMP solved using, 155
Performance of algorithms, 9	example using, 141
Polynomial-time approximation schemes,	GS, 50, 118
10, 14	Н, 59
KP solved using, 50–53	HS, 30–31
computational experiments, 71–74	decision-tree of, 33
MKP solved using, 179–182	example using, 32
SSP solved using, 120–125	$IK(\epsilon)$, 53–54
computational experiments, 131–136	dynamic programming phase of, 53,
Polytope, meaning of term, 74	55
Probabilistic analysis, 10	example using, 55
KP, 56–57	greedy phase of, 54, 56
SSP, 126, 128	SSP solved using, 125
Problems	IKR, 46
AVIS, 129	example using, 46-47
computational experiments using,	IKRM, 176
129	computational experiments using,
EVEN/ODD, 128	183, 184

IKRM (cont.)	MTGS, 118, 121
time complexity of, 177	MTGSM, 123–124
J(k), 120, 122	example using, 124
compared with procedure MTTS	MTHG, 206–207
(K), 122–123	computational experiments using,
computational experiments using,	219–220
131–135	example using, 208
example using, 121	Fortran implementation of, 247,
L2, 231–232	268–270
computational experiments using,	MTHM, 180–181
241–244	computational experiments using,
example using, 236	185–187
main variables in, 231	example using, 182
worst-case performance ratio of,	Fortran implementation of, 247,
232–233	263–265 MTM 173 174
L3, 235–236	MTM, 173–174
computational experiments using, 241–244	computational experiments using, 183–186
example using, 236, 240	decision-tree for, 175
LISTS, 110–111	example using, 175
example using, 111	Fortran implementation of, 247,
LOWER, 173	261–263
MNT, 144–145	modified version of, 176
example using, 145	MTR, 48–49
MT1, 34–36	computational experiments using, 69
computational experiments using, 69,	example using, 49
70	MTR', 64–65
decision-tree of, 37	MTRG1, 209–210
example using, 36	decision-tree when used, 212
Fortran implementation of, 247, 248–249	example using, 211–213 MTRG2, 210–211
MT1 ['] , 64	MTRO2, 210–211 MTRP, 234
MT17, 04 MT1R, 247, 249–251	
MT1K, 247, 247–231 MT2, 66–67	example using, 236, 240 time complexity of, 237
computational experiments using, 70,	MTS, 113–114
71	decision-tree for, 115
Fortran implementation of, 247,	example using, 115
251–252	MTSL, 116–117
heuristic version of, 72	computational experiments using,
MTC1, 147–148	129–130
computational experiments using,	Fortran implementation of, 247,
151–153	256–257
decision-tree for, 149	MTSS(k), 121–122
example using, 149	compared with procedure $J(k)$,
MTC2, 150	122–123
computational experiments using,	computational experiments using, 131–136
Fortran implementation of, 247,	example using, 123
258–259	worst-case performance ratio of, 122
MTCB, 155	MTU1, 96–97
computational experiments using,	computational experiments using,
156	103
Fortran implementation of, 247,	decision-tree for, 99
259–261	example using, 98

MTU2, 100	computational experiments using,
computational experiments using,	72–73
103	Sequential lifting procedure, 76
decision-tree for, 102	Simultaneous lifting procedure, 76
example using, 101	Single knapsack problems
Fortran implementation of, 247, 254–255	see Bounded Change-Making Problem;
R, 59	Bounded Knapsack Problem;
REC1, 38–39	Change-Making Problem; Multiple-Choice Knapsack
REC2, 40–41	Problem; Subset–Sum Problem;
dynamic programming algorithm	Unbounded Equality Constrained
using, 41–42	Min–Knapsack Problem;
example using, 44	Unbounded Knapsack Problem
RECS, 108	S(k) algorithm, 51
S(k), 51	examples using, 52
example using, 52	see also Sahni polynomial-time
TB01, 83	approximation scheme
UPPER, 172–173	States
Pseudo-polynomial algorithm, 7	meaning of term, 38
Pseudo-polynomial transformation, 8	procedure DP2, 42
	Stickstacking Problem, 105
REC1 procedure, 38–39	see also Subset-Sum Problem (SSP)
REC2 procedure, 40–41	Subset-Sum Problem (SSP), 3, 105–136
dynamic programming algorithm using,	approximate algorithms used, 117-128
41–42	computational experiments for,
example using, 44	130–136
Recognition problem, 6	computational experiments for solution
RECS procedure, 108	of, 128–136
Reduction algorithms	core problem of, 116
BPP solution involving, 233–237	definition of, 105
GAP solution involving, 209–213	dynamic programming used, 106–109
KP solution involving, 45–50	exact algorithms used, 106–117
MKP solution involving,	computational experiments for,
176–177	• 129–130
Reduction procedures	Fortran-coded algorithm used, 247,
Balas–Zemel method use of, 59	256–257
first used, 14 References listed, 275	fully polynomial-time approximation schemes used, 125–126
Relaxations, 11	greedy algorithm used, 117–119
BCMP, 153–154	hybrid algorithm used, 109–116
BPP, 224–227	large-size problems solved, 116–117
GAP, 192–204	NP-hardness of, 6
KP, 16–20	polynomial-time approximation
MKP, 158–165	schemes used, 120–125
see also Continuous relaxations;	computational experiments
Lagrangian relaxations; Surrogate	involving, 131–136
relaxations	probabilistic result for, 126, 128
Ross-Soland algorithm, GAP	recursive formulae for, 7
computational experiments using,	Surrogate relaxations, 11
214–218	BPP, 225–226
Ross-Soland bound, 193, 197, 201	MKP, 158–162
Sahni polynomial-time approximation	TB01 algorithm, 83
scheme, 51, 53, 56	example using, 83–84

Terminology, 2–5 KP, 16-20 TODD problem, 128, 129, 133 **MKP** Toth dynamic programming algorithm, 44 techniques to obtain, 158-165 computational experiments using, 69 worst-case performance of, 165-166 Tree-search, combined with dynamic UKP, 92-94 programming to solve SSP, 109-116 UPPER procedure, 172-173 Unbounded Change-Making Problem, 4 Value Independent Knapsack Problem, Fortran-coded algorithms used, 247, 105 258-259 see also Subset-Sum Problem (SSP) see also Change-Making Problem Variable splitting method, GAP relaxed by, 201-204 (CMP) Unbounded Equality Constrained Min-Knapsack Problem (UEMK), 141 Worst-case analysis, 9-10 Unbounded Knapsack Problem (UKP), 3, Worst-case performance ratio 91 - 103BPP algorithms, 222 BPP lower bounds, 224, 228, 232 approximate algorithms used, 93-95 computational experiments for solution definition of, 9 of, 102-103 L2 algorithm, 232-233 core problem of, 98 MKP upper bounds, 165-166 definition of, 91-92 MTSS(k) algorithm, 122 exact algorithms used, 95-98 Worst-case relative error, 10 Fortran-coded algorithm used, 247, Worst-Fit Decreasing (WFD) algorithm, 254-255 238 large-size problems, 98, 100-102 Wright algorithm, 146 minimization form of, UEMK computational experiments using, containing, 141 151 upper bounds of, 92-94 Upper bounds, 11 XYGAP, 201 BKP, 84-86 GAP, 192-204 Zoltners algorithm, 60