Module 2 Data Science Project King County property price predictor

By Naweed and Jim

Intro & Project Outcomes

Our aim with this project is to produce effective pricing models for the domestic housing market within the King County area. We have investigated a number of parameters available to us to give accurate predictions of house prices in different cases. We have been guided by the demand for information by different sections of the domestic housing market - homeowners, developers, investors and agents looking for more insight. We developed the following guide to inform our work:

- 1. Create and demonstrate an accurate tool to predict house prices within the King County Area by zip-code.
- 2. Provide a guide to current homeowners who are considering adding value to their property and would like to understand if it is worth the initial outlay.
- 3. Provide a guide to prospective homeowners who would like to know whether a property is under or over-valued.

How do average property prices rank across King County?

Does living by the waterfront add value?

Does Grade add value to property? If so is it worth buying low grade properties and renovating?

Final Regression Model

$$price = 293 * \beta_{sqft_living} + 124,077 * \beta_{renovate_15} + 26,368 * \beta_{waterfront} - 26,368 * \beta_{yr_built} + 4,100,000$$

OLS Regression Results						
Dep. Vari	able:	price	R-squared:		d: 0	.559
Me	odel:	OLS	Adj. R	-square	d: 0	.559
Met	t hod: Le	ast Squares	F-statistic:		c: 6	853.
ı	Date: Fri, 2	27 Mar 2020	Prob (F-	statistic):	0.00
Т	Time:	03:33:12	Log-Li	kelihoo	d: -2.9851e	e+05
No. Observat	ions:	21595		Ale	5.970e	e+05
Df Resid	uals:	21590		ВІ	5 .971e	e+05
Df M	odel:	4				
Covariance T	уре:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	4.103e+06	1.18e+05	34.828	0.000	3.87e+06	4.33e+06
sqft_living	293.9264	1.929	152.348	0.000	290.145	297.708
renovate_15	1.241e+05	1.28e+04	9.692	0.000	9.9e+04	1.49e+05
waterfront	8.188e+05	2.04e+04	40.132	0.000	7.79e+05	8.59e+05
yr_built	-2121.9655	60.396	-35.134	0.000	-2240.347	-2003.584

Baseline Regression Model

$$price = 270 * \beta_{sqft_living} + 862,256 * \beta_{waterfront} + 26,363 * \beta_{basement} - 37,390$$

		OLS Regression Results								
	Dep. Varia	ble:		price	R	-square	ed:	0.531		
	Мо	del:		OLS	Adj. R	-square	ed:	0.531		
	Met	hod:	Lea	st Squares	F	-statist	tic: 8	8139.		
	D	ate:	Fri, 2	7 Mar 2020	Prob (F-	statisti	c):	0.00		
	Т	ime:		10:43:45	Log-L	ikelihoo	od: -2.9921	e+05		
	No. Observati	ons:		21596		Α	IC: 5.984	e+05		
	Df Residu	ıals:		21592		В	IC: 5.985	e+05		
	Df Mo	del:		3						
Covariance Type:		уре:		nonrobust						
			coef	std err	t	P> t	[0.025	0.975]		
	const -	3.739	e+04	4291.221	-8.713	0.000	-4.58e+04	-2.9e+04		
	sqft_living	270.	0042	1.914	141.083	0.000	266.253	273.755		
	waterfront	8.623	e+05	2.1e+04	41.021	0.000	8.21e+05	9.03e+05		
	basement	2.636	e+04	3593.738	7.336	0.000	1.93e+04	3.34e+04		

Test - Train Split (80/20 split)

Train Dataset

Test Dataset

OLS Regression Results						
Dep. Variable:	price	R-squared:	0.568			
Model:	OLS	Adj. R-squared:	0.568			
Method:	Least Squares	F-statistic:	5681.			
Date:	Fri, 27 Mar 2020	Prob (F-statistic):	0.00			
Time:	03:42:47	Log-Likelihood:	-2.3895e+05			
No. Observations:	17276	AIC:	4.779e+05			
Df Residuals:	17271	BIC:	4.779e+05			
Df Model:	4					
Covariance Type:	nonrobust					

	OLS Regression Results				
Dep. Variable:	price	R-squared:	0.524		
Model:	OLS	Adj. R-squared:	0.524		
Method:	Least Squares	F-statistic:	1189.		
Date:	Fri, 27 Mar 2020	Prob (F-statistic):	0.00		
Time:	03:45:05	Log-Likelihood:	-59523.		
No. Observations:	4319	AIC:	1.191e+05		
Df Residuals:	4314	BIC:	1.191e+05		
Df Model:	4				
Covariance Type:	nonrobust				

OLC Degraceian Degulta

Recommendations

1. For anyone looking to invest in property in King County, it seems that waterfront properties do command a premium.

2. There seems to be a case for buying lower grade properties, renovating it and then selling it on.

Future Work

In order to expand our work going forward, it would be good to get access to data from a longer period to assess trends and make stronger recommendations.

It would be good to be able to get access to more location data and incorporate it into the model. As slide 3 shows, there does seem to be a few locations in King County, namely around downtown Seattle where prices are higher on average.