

SEQUENCE LISTING

<110> LINDNER, Volkhard
FRIESEL, Robert F.

<120> COMPOSITIONS, METHODS AND KITS RELATING TO REMODEL

<130> 36-13 Lindner et al. (200036.0013)

<140> Not Yet Assigned

<141> 2000-10-19

<160> 9

<170> PatentIn Ver. 2.1

<210> 1

<211> 1192

<212> DNA

<213> Rattus sp.

<400> 1

atgcggccgg ccgcagagct gggccagacg ctgagcaggg cggggctctg ccgaccctt 60
tgcctcctgc tctgcgttc gcagctaccg cacacgatgc accccaagg cgcgcggcc 120
tccccacagc tgctgctcg cctttcctt gtgctactgc tgcttcgtca gctgtcccg 180
ccgtccagcg cctctgagaa tcccaaggtg aagcaaaaag cgctgtatccg gcagagggaa 240
gtggtagacc tgtataatgg gatgtgccta caaggaccag caggagttcc tggtcgcat 300
gggagccctg gggcaatgg cattcctggc acaccggaa tcccaggtcg ggatggattc 360
aaaggagaga aaggggagtg ctttaaggaa agctttgagg aatcctggac cccaaactac 420
aagcagtgtt catggagttc acttaattat ggcatacatc ttggaaaaat tgccgaatgt 480
acattcacaa agatgcgatc caacagcgct cttcgagttc tggtcaatgg ctcgcattcg 540
ctcaaattgca ggaatgcttg ctgtcaacgc tggtatattta ctttaatgg agctgaatgt 600
tcaggaccc ttccattga agctatcatc tatctggacc aaggaagccc ttagttaat 660
tcaactatta atattcatcg tacttcctcc gtggaggac tctgtgaagg gattggtgct 720
ggactggtag acgtggccat ctgggtcggc acctgttcag attacccaa aggagacgct 780
tctactgggt ggaattctgt gtcccgcatc atcattgaag aactaccaa ataaagcccc 840
tgaaggttt attccctgcc tcatttactt gttaaatcaa gcctctggat gggtcattta 900
aatgacattt cagaagtcac ttatgtgctc agccaaatga aaaagcaaag taaaatacgt 960
ttacagacca aagtgtgatc tcacacttta agatctagca ttatccattt tatttcaacc 1020
aaagatggtt tcaggatttt atttctcatt gattacttt tgagcctata taccggaatg 1080
ctgttatagt cttaatatt tcctactgtt gacatttga aacatataaa agttatgtct 1140
ttgtaaagac tggatagaat tattttatat gttaaataaa tgcttcaaac aa 1192

<210> 2

<211> 245

<212> PRT

<213> Rattus sp.

<400> 2
 Met His Pro Gln Gly Arg Ala Ala Ser Pro Gln Leu Leu Leu Gly Leu
 1 5 10 15

 Phe Leu Val Leu Leu Leu Leu Gln Leu Ser Ala Pro Ser Ser Ala
 20 25 30

 Ser Glu Asn Pro Lys Val Lys Gln Lys Ala Leu Ile Arg Gln Arg Glu
 35 40 45

 Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala Gly Val
 50 55 60

 Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Gly Ile Pro Gly Thr Pro
 65 70 75 80

 Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys Gly Glu Cys Leu
 85 90 95

 Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn Tyr Lys Gln Cys Ser
 100 105 110

 Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu Gly Lys Ile Ala Glu Cys
 115 120 125

 Thr Phe Thr Lys Met Arg Ser Asn Ser Ala Leu Arg Val Leu Phe Ser
 130 135 140

 Gly Ser Leu Arg Leu Lys Cys Arg Asn Ala Cys Cys Gln Arg Trp Tyr
 145 150 155 160

 Phe Thr Phe Asn Gly Ala Glu Cys Ser Gly Pro Leu Pro Ile Glu Ala
 165 170 175

 Ile Ile Tyr Leu Asp Gln Gly Ser Pro Glu Leu Asn Ser Thr Ile Asn
 180 185 190

 Ile His Arg Thr Ser Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala
 195 200 205

 Gly Leu Val Asp Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro
 210 215 220

 Lys Gly Asp Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile
 225 230 235 240

 Glu Glu Leu Pro Lys

<210> 3
 <211> 1220
 <212> DNA
 <213> Homo sapiens

<400> 3
 acgaggcg cctcgagcg cgccggagcc agacgctgac cacgttcctc tcctcggtct 60
 cctccgcctc cagctcccg cgccggcga gcccggagcc atgcgacccc agggccccgc 120
 cgcctccccg cagcgctcc gcggcctcct gctgctcctg ctgctgcagc tgcccgcc 180
 gtcgagcgcc tctgagatcc ccaagggaa gcaaaaaggcg cagctccggc agagggaggt 240
 ggtggacactg tataatggaa tgtgcttaca agggccagca ggagtgcctg gtcgagacgg 300
 gagccctggg gccaatggca ttccgggtac acctggatc ccaggtcgaa atggattcaa 360
 aggagaaaaag gggaaatgtc tgagggaaag ctttgaggag tcctggacac ccaactacaa 420
 gcagtgttca tggagttcat tgaattatgg catagatctt gggaaaattt cggagtgtac 480
 atttacaaaag atgcgttcaa atagtgtct aagagttttt ttcagtggct cacttcggct 540
 aaaatgcaga aatgcgttgc gtcagcggtt gtatccaca ttcaatggag ctgaatgttc 600
 aggacctctt cccattgaag ctataattt ttggaccaa ggaagccctg aaatgaattc 660
 aacaattaat attcatcgca cttcttctgt ggaaggactt tgtgaaggaa ttggtgctgg 720
 attagtggat gttgctatct ggggtggcac ttgtttagat tacccaaaag gagatgcttc 780
 tactggatgg aattcgtttt ctgcgttcat tattgaagaa ctacaaaaat aaatgttta 840
 attttcattt gctacctt tttttattt gccttggaat gtttactta aatgacattt 900
 taaataagtt tatgtataca tctgaatgaa aagcaaagct aaatatgttt acagacccaa 960
 gtgtgatttc acactgtttt taaatcttc attattcatt ttgcttcaat caaaagtgg 1020
 ttcaatattt ttttagttgg ttagaaatact ttcttcatac tcacattctc tcaacctata 1080
 atttggataa ttgttgtgg ctttgttt ttctcttagt atagcatttt taaaaaaaaata 1140
 taaaagctac caatcttgc acaatttgc aatgtttaa atttttta tatctgttaa 1200
 ataaaaattt tttccaacaa 1220

<210> 4
 <211> 243
 <212> PRT
 <213> Homo sapiens

<400> 4
 Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly Leu
 1 5 10 15

Leu	Leu	Leu	Leu
Leu	Leu	Leu	Leu

Gln Leu Pro Ala Pro Ser Ser Ala Ser Glu
 20 25 30

Ile	Pro	Lys	Gly
Lys	Gln	Lys	Ala

Gln Leu Arg Gln Arg Glu Val Val
 35 40 45

Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala Gly Val Pro Gly

50	55	60
Arg Asp Gly Ser Pro Gly Ala Asn Gly Ile Pro Gly Thr Pro Gly Ile		
65	70	75
Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys Gly Glu Cys Leu Arg Glu		
85	90	95
Ser Phe Glu Glu Ser Trp Thr Pro Asn Tyr Lys Gln Cys Ser Trp Ser		
100	105	110
Ser Leu Asn Tyr Gly Ile Asp Leu Gly Lys Ile Ala Glu Cys Thr Phe		
115	120	125
Thr Lys Met Arg Ser Asn Ser Ala Leu Arg Val Leu Phe Ser Gly Ser		
130	135	140
Leu Arg Leu Lys Cys Arg Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr		
145	150	155
Phe Asn Gly Ala Glu Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile		
165	170	175
Tyr Leu Asp Gln Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His		
180	185	190
Arg Thr Ser Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu		
195	200	205
Val Asp Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly		
210	215	220
Asp Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile Glu Glu		
225	230	235
Leu Pro Lys		

<210> 5
 <211> 277
 <212> PRT
 <213> Rattus sp.

<400> 5
 Met Arg Pro Ala Ala Glu Leu Gly Gln Thr Leu Ser Arg Ala Gly Leu
 1 5 10 15

Cys Arg Pro Leu Cys Leu Leu Leu Cys Ala Ser Gln Leu Pro His Thr
20 25 30

Met His Pro Gln Gly Arg Ala Ala Ser Pro Gln Leu Leu Leu Gly Leu
35 40 45

Phe Leu Val Leu Leu Leu Leu Gln Leu Ser Ala Pro Ser Ser Ala
50 55 60

Ser Glu Asn Pro Lys Val Lys Gln Lys Ala Leu Ile Arg Gln Arg Glu
65 70 75 80

Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala Gly Val
85 90 95

Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Gly Ile Pro Gly Thr Pro
100 105 110

Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys Gly Glu Cys Leu
115 120 125

Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn Tyr Lys Gln Cys Ser
130 135 140

Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu Gly Lys Ile Ala Glu Cys
145 150 155 160

Thr Phe Thr Lys Met Arg Ser Asn Ser Ala Leu Arg Val Leu Phe Ser
165 170 175

Gly Ser Leu Arg Leu Lys Cys Arg Asn Ala Cys Cys Gln Arg Trp Tyr
180 185 190

Phe Thr Phe Asn Gly Ala Glu Cys Ser Gly Pro Leu Pro Ile Glu Ala
195 200 205

Ile Ile Tyr Leu Asp Gln Gly Ser Pro Glu Leu Asn Ser Thr Ile Asn
210 215 220

Ile His Arg Thr Ser Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala
225 230 235 240

Gly Leu Val Asp Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro
245 250 255

Lys Gly Asp Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile
260 265 270

Glu Glu Leu Pro Lys

275

<210> 6

<211> 403

<212> RNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:REMODEL
antisense ribonucleoprobe

<400> 6

ccacccagua gaagcgucuc cuuuggggua aucugaacag gugccgaccc agauggccac 60
gucuaccagu ccagcaccaa ucccuucaca gaguccuucc acggaggaag uacgaugaau 120
auuaauaguu gaauuuuacu cagggcuucc uugguccaga uagaugauag cuucaauggg 180
aagagguccu gaacauucag cuccauuaaa gguaaaaauac cagcguugac agcaagcauu 240
ccugcauuug agccgaagcg agccacugaa cagaacucga agagcgcugu uggaucgc当地 300
cuuugugaaau guacauuccg caauuuuuccc aagaucuaug ccauaauuaa gugaacucca 360
ugaacacugc uuguaguuug ggguccagga uuccucaaag cuu 403

<210> 7

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial
Sequence:carboxy-terminal amino acids of REMODEL

<400> 7

Gly Trp Asn Ser Val Ser Arg Ile Ile Ile Glu Glu Leu Pro Lys

1

5

10

15

<210> 8

<211> 24

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:insulin signal
peptide

<400> 8

Met Ala Leu Leu Val His Phe Leu Pro Leu Leu Ala Leu Leu Ala Leu

1

5

10

15

Trp Glu Pro Lys Pro Thr Gln Ala
20

<210> 9
<211> 734
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:myc-tagged
REMODEL construct

<400> 9
atggcccca aggccgcgcc gcctccccac agctgctgct cggcctcttc cttgtgctac 60
tgctgcttct gcagctgtcc gcgcgcgtcca gcgcctctga gaatcccaag gtgaagcaaa 120
aagcgctgtat ccggcagagg gaagtggtag acctgtataa tggatgtgc ctacaaggac 180
cagcaggagt tcctggtcgc gatgggagcc ctggggccaa tggcatctt ggcacaccgg 240
gaatcccagg tcgggatgga ttcaaaggag agaaaaggga gtgcttaagg gaaagctttg 300
aggaatcctg gacccaaac tacaagcagt gttcatggag ttcacttaat tatggcatag 360
atcttggaa aattgcggaa tgtacattca caaagatgct atccaaacagc gotcttcgag 420
ttctgttcag tggctcgctt cggtctaaat gcaggaatgc ttgctgtcaa cgctggatt 480
ttacctttaa tggagctgaa tggcaggac ctctccat tgaagctatc atctatctgg 540
accaaggaag ccctgagtt aattcaacta ttaatattca tcgtacttcc tccgtgaaag 600
gactctgtga agggatttgt gctggactgg tagacgtggc catctgggtc ggcacctgtt 660
cagattaccc caaaggagac gcttctactg ggtgaaattc tgtgtccgc atcatcattg 720
aagaactacc aaaa 734