2022 年度インテリジェントシステムレポート課題#1 (探索:解答例)

以下の問 $1\sim$ 問 3 に対する解答をレポートにまとめて(文書ファイルを)eALPS から提出せよ。提出するファイルは pdf であること。文書作成には latex, MS-Office などを用いることが望ましいが、手書きのレポートをスキャンして pdf に変換後提出してもよい。

1. 下の図1で示されるようなルーマニアの道路網を用いて、できるだけ移動距離を短くして、Bucharest まで旅行したいものとする。この経路探索に A*探索アルゴリズムを用いる。但し、 tree-like search を行い、冗長性のチェックは行わないものとする。また、ノードのゴールチェックは展開 のために frontier から取り出された際に実行するものとする。

図 1: ルーマニア道路網

A*探索を実行するためには各ノード(都市)<math>n からゴール(Bucharest)までの移動距離を評価するヒューリスティック関数が必要になる。このために、最短距離の値を図 2 に示すような各都市から Bucharest までの最短距離を用いるものとする。この表で与えられる都市n から Bucharest までの距離推定値を D(n) とおく。

A*探索アルゴリズムにおいては、開始状態からノード <math>n までのコスト g(n) とゴール(Bucharest)までのコストの推定値 h(n) により得られる評価関数 f(n)=g(n)+h(n) に基づいて探索を行う。いま、以下の 2 通りのヒューリスティック関数 $h_i(n)$ を用いて A*探索を実施することを考える。

$$h_1(n) = D(n), h_2(n) = 2 * D(n)$$

都市	直線距離	都市	直線距離
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

図 2: Bucharest までの直線距離

すなわち、ノードの評価関数は以下のようになる

$$f_1(n) = g(n) + D(n), f_2(n) = g(n) + 2 * D(n)$$

これらのヒューリスティック関数を用いた A*探索アルゴリズムを A1,A2 と呼ぶ。各アルゴリズム において、ノードは以下の情報を持つものとする

(ID, CITY, G, F, PARENT)

ここに ID はノードの番号であり、出発都市に相当するノードが ID:1、以降ノードの展開により新しいノードを生成する度に 1 ずつ加算していくものとする(このとき新しいノードを生成する際には都市名のアルファベット順(辞書式順)に従って生成を行うものとする)。CITY は都市名、Gはそのノードの g 値、F はそのノードの f 値、PARENT は親ノードの ID 値である。

このとき、以下の問(a),(b) に解答せよ。

(a) Arad から Bucharest までの経路を A1,A2 を用いて探索したとき、見つかったゴール (Buchsrest) のノード情報 (ID, CITY, G, F, PARENT) と見つかった経路 (都市の順) を示せ。 また、ゴールが見つかった時点の frontier 内にある全てのノードのノード情報を F 値の順番に列挙せよ。

A1 による探索

- ゴールノード:(14,Bucharest,418,418,10)
- 経路:

 $Arad {\rightarrow} Sibiu {\rightarrow} Rimnicu\ Vilcea {\rightarrow} Pitesi {\rightarrow} Bucharest$

• ゴール到達時の frontier 内ノード

```
(3,Timisoara,118,447,1), (4,Zerind,75,449,1), (12,Bucharest,450,450,6)
(9,Craiova,366,526,8), (11,Sibiu,300,553,8), (13,Sibiu,338,591,6)
(16,Rimnicu Vilcea,414,607,10), (15,Craiova,455,615,10) (5,Arad,280,646,2),
(7,Oradea,291,671,2)
```


A2による探索

- ゴールノード: (9,Bucharest,450,450,6)
- 経路:

 $Arad {\rightarrow} Sibiu {\rightarrow} Fagaras {\rightarrow} Bucharest$

ゴール到達時の frontier 内ノード
(8,Rimnicu Vilcea,220,606,2), (3,Timisoara,118,776,1), (4,Zerind,75,823,1)
(10,Sibiu,338,844,6), (5,Arad,280,1012,2), (7,Oradea,291,1051,2)

(b) Lugoj から Bucharest までの経路を A1,A2 を用いて探索したとき、見つかったゴール (Buchsrest) のノード情報 (ID, CITY, G, F, PARENT) と見つかった経路 (都市の順) を示せ。 また、ゴールが見つかった時点の frontier 内にある全てのノードのノード情報を F 値の順番に列挙せよ。

A1 による探索

- ゴールノード:(21,Bucharest,504,504,11)
- 経路:

 $Lugoj \rightarrow Mahadia \rightarrow Droveta \rightarrow Craiova \rightarrow Pitesi \rightarrow Bucharest$

• ゴール到達時の frontier 内ノード

```
(16,Lugoj,280,524,6), (15,Droveta,285,527,5), (19,Mahadia,292,533,14)
(18,Lugoj,290,534,9), (17,Droveta,295,537,9), (7,Timisoara,251,580,5)
(13,Arad,229,595,3), (12,Rimnicu Vilcea,411,604,8), (10,Droveta,385,627,8)
```


A2による探索

- ゴールノード: (13,Bucharest,504,504,11)
- 経路:

 $Lugoj{\rightarrow} Mahadia{\rightarrow} Droveta{\rightarrow} Craiova{\rightarrow}\ Pitesi{\rightarrow} Bucharest$

• ゴール到達時の frontier 内ノード

(6, Mahadia,210,692,5), (9, Mahadia,220,702,4), (3, Timisoara,111,769,1) (12,Rimnicu Vilcea,411,797,8), (14,Craiova,541,861,11), (10,Droveta,385,869,8),

(15,Rimnicu Vilcea,500,886,11), (7,Timisoara,251,909,5)

- 2. ヒューリスティック関数 $h_i(n)$ はどれも許容的 (admissible) である。このとき、以下の関数 $h_a \sim h_f$ は常に許容的となるか否か答え、許容的であるものはなぜそうなるか理由を示し、許容的でないも のは理由または反例を示せ。
 - $h_a(n) = \sum_{i=1}^k h_i(n) = h_1(n) + \dots + h_k(n)$
 - $h_b(n) = \max\{h_1(n), h_2(n), \dots, h_k(n)\}$
 - $h_c(n) = \min\{h_1(n), h_2(n), \dots, h_k(n)\}$
 - $h_d(n) = \prod_{i=1}^k h_i(n) = h_1(n) \times h_2(n) \times \cdots \cdot h_k(n)$
 - $h_e(n) = \frac{1}{k} \sum_{i=1}^k h_i(n) = \frac{1}{k} (h_1(n) + \dots + h_k(n))$
 - $h_f(n) = \sum_{i=1}^k w_i h_i(n) = w_1 h_1(n) + \dots + w_k h_k(n)$ 但し $0 < w_i, \sum_{i=1}^k w_i = 1$

各ノードnからゴールまでの最適経路のコストを $h^*(n)$ とおく。

 $h_i(n)$ は admissible だから、 $h_i(n) \leq h * (n)$ である。

これに注意すると、admissible なのは h_b , h_c , h_e , h_f である。

例えば h_b の場合、 $\max\{h_1(n),h_2(n),\cdots,h_k(n)\}=h_p(n)$ とすると h_p は admissible だから $h_p(n)\leq h^*(n)$ したがって $h_b(n)\leq h^*(n)$

 h_c も同様にして admissible であることを示すことができる。

 h_f の場合は上で使用した h_p を再度用いると $h_i(n) \leq h_p(n)$ だから

$$h_f(n) = \sum_{i=1}^k w_i h_i(n) \le \sum_{i=1}^k w_i h_p(n) = h_p(n) \sum_{i=1}^k w_i = h_p(n) \le h^*(n)$$

 $h_e(n)$ は h_f において $w_i = \frac{1}{k}$ とおいた場合だから (より一般的な h_f が admissible なので) admissible h_a, h_c については、たとえば $h_i(n) = h^*(n) = 2$ とおいて実際の数値を調べれば admissible でないことは容易に確認できる(反例を容易に作成できる)。

3. 連結されたグラフ上で、ノード S からノード G までの経路を A*アルゴリズムで探索することを考える。但し、グラフの各辺には正のコストが割り当てられているものとする。また、任意のノード n からゴール G までの最適(最小)コストを h*(n) と表す。

いま、hを許容的(admissible)ヒューリスティック関数としたとき、以下で与えられるヒューリスティック関数 \tilde{h} を用いて A*アルゴリズムを適用した場合の結果に関する問いに解答せよ。

(a) $\tilde{h}(n) = \frac{1}{2}h(n)$ を用いたとき、最適コストの経路が見つかるか解答し、なぜそのような結果が得られると考えられるか述べよ。

h は許容的であるから、任意のノードについて $h(n) \le h^*(n)$ である。したがって、

$$\tilde{h}(n) = \frac{1}{2}h(n) \le \frac{1}{2}h^*(n) < h^*(n)$$

より \tilde{h} も許容的であり、最適コストの経路が見つかる。

(b) $\tilde{h}(n) = \frac{4}{5}h(n) + \frac{1}{5}h^*(n)$ を用いたとき、最適コストの経路が見つかるか解答し、なぜそのような結果が得られると考えられるか述べよ。

h は許容的であるから、任意のノードについて $h(n) < h^*(n)$ である。したがって、

$$\tilde{h}(n) = \frac{4}{5}h(n) + \frac{1}{5}h^*(n) \le \frac{4}{5}h^*(n) + \frac{1}{5}h^*(n) = h^*(n)$$

となり、 \tilde{h} も許容的であり、最適コストの経路が見つかる。

(c) $\tilde{h}(n) = 2h(n)$ を用いたとき、最適コストの経路が見つかるか解答し、なぜそのような結果が得られると考えられるか述べよ。

許容的であることが保証されないので、最適経路が見つかる保証はない。

(d) 前の問 (c) のヒューリスティック関数 $\tilde{h}(n)=2h(n)$ の場合、A*アルゴリズムによって見つかる経路のコスト C と最適コスト C^* については $C\leq 2C^*$ という関係が成立することを示せ。ヒューリスティック関数 \tilde{h} を用いて見つけた経路を p、最適な経路を p^* とおく。また、経路 p 上でノード n まで到達するまでのコストを $g_p(n)$ と書く。 \tilde{h} を用いた A^* 探索によって経路 p が見つかったとすると、frontier 中では p に沿ってゴール G まで至ったコスト $C=g_p(G)$ が他のノードの f-値より小さいことになる。したがって、frontier 内にある最適経路上のノードを n とおくと、

$$C = g_p G$$
) $< f_{p^*}(n) = g_{p^*}(n) + \tilde{h}(n)$

が成立する。このとき h は adimissible であることから

$$\tilde{h}(n) = 2h(n) \le 2h^*(n)$$

となる。したがって、

$$g_{p^*}(n) + \tilde{h}(n) \le g_{p^*}(n) + 2h^*(n) \le 2(g_{p^*}(n) + h^*(n)) = 2C^*$$

すなわち、

$$C \le 2C^*$$

となることが分かる。