Felipe Augusto Lima Reis

felipe.reis@ifmg.edu.br

- Introdução
- Similaridade
- Clustering
- 4 Redes Neurais

- Muitos algoritmos de aprendizado de máquinas necessitam de dados rotulados para treinamento
 - Rótulos são úteis, porém podem ser difíceis ou caros de serem produzidos:

Clustering

- Muitos rótulos são gerados manualmente, por um especialista humano, o que encarece a construção de uma base de dados;
- Para casos onde os rótulos inexistem, são úteis os algoritmos de aprendizado não supervisionados.

- Aprendizado n\u00e3o supervisionado pode ser utilizado em tarefas de classificação
 - Tarefas de regressão não podem ser realizadas por esse tipo de algoritmo;

Clustering

- Uma vez que não existem classes corretas, o algoritmo irá avaliar a similaridade dos elementos:
- As similaridades serão utilizadas para clusterizar (agrupar) elementos similares, provendo classificação [Marsland, 2014].

- Segundo [Cha, 2007], podemos dividir as similaridades nas seguintes famílias:
 - Família Minkowski L_p ;
 - **2** Família L_1 ;
 - Família de Interseção;
 - Família de Produto Interno;
 - § Família de Fidelidade ou Família Squared-chord;
 - Família Quadrática L₂;
 - Família de Entropia de Shannon;
 - 8 Combinações;

Família Minkowski L_p

- Família originada a partir da distância Euclidiana;
 - A distância City Block¹, corresponde à distância absoluta entre coordenadas cartesianas;
 - A generalização da distância City Block corresponde à distância Minkowski [Cha, 2007].

Table 1. L_p Minkowski family		
1. Euclidean L ₂	$d_{Euc} = \sqrt{\sum_{i=1}^{d} P_i - Q_i ^2}$	(1)
2. City block L ₁	$d_{CB} = \sum_{i=1}^{d} P_i - Q_i $	(2)
3. Minkowski L _p	$d_{Mk} = \sqrt[p]{\sum_{i=1}^{d} P_i - Q_i ^p}$	(3)
4. Chebyshev L_{∞}	$d_{Cheb} = \max_{i} P_i - Q_i $	(4)

Fonte: [Cha, 2007]

 $^{^{1}}$ Também conhecida como Manhattan Distance, Distância L_{1} ou Taxicab metric.

2 Família L_1

Introdução

- Família utilizada para cálculo da diferença absoluta (L_1) ;
 - Sørensen e Canberra são destaques da classe, e usadas na área de biologia:

Clustering

- Gower realiza escala do espaço vetorial no espaço normalizado para cálculo da distância [Cha, 2007].
- Família de Interseção
 - A interseção entre duas Funções Densidade de Probabilidade são muito usadas para similaridades onde não há sobreposição;
 - A maioria das distâncias do grupo podem ser transformadas em distâncias da família L_1 [Cha, 2007].

Família de Produto Interno

- Família de similaridades onde há produto interno entre os elementos $P \in Q$:
 - O produto interno normalizado é chamado coeficiente Cosseno, devido ao ângulo entre os dois vetores;
 - Dice é realicionado a uma série de outras medidas, como Sørensen e Czekanowski, e é frequentemente usado para taxonomias biológicas [Cha, 2007].

Família de Fidelidade

 A soma da média geométrica é conhecida como Similaridade de Fidelidade, e métricas relacionadas a essa medida podem ser agrupadas nesta classe [Cha, 2007].

Introdução

- **6** Família Quadrática L₂
 - Família agrupa métricas usando a distância Euclidiana Quadrática:
 - Formas alternativas das distâncias de Jaccard e Dice pertencem a essa família [Cha, 2007];
- Família de Entropia de Shannon
 - A família corresponde ao conceito de incerteza ou entropia, proposto por Shannon [Cha, 2007];
- 8 Combinações
 - A família contém medidas de distância que contém múltiplas ideias ou medidas [Cha, 2007].

Introdução

- Podemos indicar a força e a direção entre duas medidas de distâncias pela imagem abaixo
 - Se as distâncias não são similares, o valor tende a 0;
 - Caso contrário, os valores tendem a 1.

Fonte: [Cha, 2007]

Similaridade

000000000000

 Métricas de similaridade podem ainda serem agrupadas com o auxílio do dendrograma abaixo.

MÉTRICAS DE SIMILARIDADE EM DADOS CATEGÓRICOS

Introdução

000

Redes Neurais

Métricas de Similaridade - Dados Categóricos

 Segundo [Santos, 2014], as medidas de similaridade em dados categóricos podem ser classificadas em 3 tipos:

Clustering

- Medidas que atribuem valor 1 para matching e 0 para mismatching;
- Atribuem valor 1 para para matching e valores entre 0 e 1 para mismatching;
- Medidas que atribuem valores entre 0 e 1 quando ocorrem matching e mismatching;

Introdução

Métricas de Similaridade - Dados Categóricos

- São exemplos de métricas de similaridade para dados categóricos: [Santos, 2014]
 - Métricas do Tipo 1
 - Similaridades de Gower (GOW);
 - Similaridades de Eskin (ESK)
 - Similaridades de Gambaryan (GAM);
 - Métricas do Tipo 2
 - Inverse Occurrence Frequency (IOF);
 - Métricas do Tipo 3
 - Similaridade de Lin (LIN);
 - Similaridade de Smirnov (SMI).

CLUSTERING

- Clusterização (clustering) ou agrupamento é uma das técnicas mais amplamente utilizadas para análise exploratória de dados [Shalev-Shwartz and Ben-David, 2014];
 - O método busca agrupar elementos similares e separar elementos dissimilares;
 - A distância entre elementos de um mesmo grupo devem ser a menor possível, enquanto a distância entre elementos de grupos distintos devem ser a maior possível².

²Esse mesmo objetivo foi apresentado previamente na seção de Redução de Dimensionalidade.

- Uma das dificuldades da clusterização é que o processo pode ser entendido como uma relação de equivalência³
 - Dentre as características das relações de equivalência, destaca-se a transitividade;
 - Para transformar uma relação não transitiva em um relação transitiva é necessário adicionar novos elementos⁴;
 - No entanto, a medida em que novos elementos são adicionados à relação, esta precisa ser revisada, para verificar se os novos elementos não irão causar efeitos colaterais;
 - Novos passos podem ser necessários até que a relação se torne de equivalência ou que um limite de passos seja executado e o algoritmo termine [Shalev-Shwartz and Ben-David, 2014].

 $^{^3\}mathrm{Em}$ matemática discreta, uma relação de equivalência deve ser simétrica, reflexiva e transitiva.

⁴Conceitualmente, esses elementos fazem parte de um fecho transitivo.

Clustering

- O método mais simples para criação de clusters é utilizando Algoritmos de Clusterização Baseados em Ligação⁵;
- Outro método popular é a definição de uma função de custo, com objetivo de encontrar uma partição (cluster) de menor custo possível [Shalev-Shwartz and Ben-David, 2014]
 - Nesta técnica, destaca-se o algoritmo *k-means*;
 - Outros algoritmos similares, como k-medoides, k-median e k-modes também são utilizados.

Linkage-Based Clustering Algorithms

- Esses algoritmos realizam em uma sequência de iterações;
- Começam com um agrupamento trivial, considerando cada ponto no conjunto de dados como um *cluster* de um único elemento;
- Repetidamente, adicionam clusters "mais próximos", fazendo fusão de clusters
 - Consequentemente, o número de clusters diminui a cada iteração;
 - Parâmetros são utilizados para definir a distância máxima entre clusters e limitar o número máximo de iterações [Shalev-Shwartz and Ben-David, 2014].

Linkage-Based Clustering Algorithms

- A distância d entre elementos avaliados pelos algoritmos de clusterização podem ser calculadas de diversas formas: [Shalev-Shwartz and Ben-David, 2014]
 - Single Linkage Clustering: a distância entre clusters é definida como a distância mínima entre membros de dois clusters;
 - Average Linkage Clustering: a distância entre clusters é definida como a distância média entre um ponto em um dos clusters e um ponto no outro cluster;
 - Max Linkage Clustering: a distância entre clusters é definida como a distância máxima entre seus elementos.

Linkage-Based Clustering Algorithms

- Os algoritmos de clusterização baseados em ligação são classificados como aglomerativos
 - Iniciam seu processo a partir de dados fragmentados;
 - Clusters adicionam novos elementos à medida em que o algoritmo é executado.
- São critérios de parada dos algoritmos de clusterização: [Shalev-Shwartz and Ben-David, 2014]
 - Número fixo de clusters;
 - Distância máxima entre clusters.

Nota: Além dos algoritmos aglomerativos, existem ainda algoritmos divisivos, no qual o procedimento inicia com um cluster de tamanho máximo, que é dividido durante as iterações.

Redes Neurais

Algoritmo k-means

- O algoritmo k-means é um método de clusterização com objetivo de particionar *n* elementos em *k* grupos, de modo que cada elemento pertença ao grupo mais próximo da média
 - É definida uma função de custo e cada cluster deve ter custo mínimo;

Clustering

- O problema de clusterização é transformado em um problema de otimização:
- O problema pode ser classificado como NP-difícil, porém, existem heurísticas comumente empregadas para solução mais rápida [Shalev-Shwartz and Ben-David, 2014].

 O algoritmo k-means requer a definição à priori da quantidade de clusters que serão utilizados para separação dos grupos;

Clustering

- O algoritmo pode ser dividido nas seguintes etapas:
 - Inicialização:
 - Atribuição de Elementos aos *Clusters*;
 - Movimentação de Centroides;
 - Otimização dos Centroides;

Algoritmo k-means

Introdução

- Inicialização
 - São escolhidos o número de *clusters k*:
 - São escolhidas k posições aleatórias no espaço de dados;
 - Os centros de cada um dos k clusters são associadas às k posições aleatórias escolhidas
 - Os pontos centrais dos *clusters* são chamados de centroides.
- Atribuição de Elementos aos Clusters
 - Para cada elemento do conjunto de dados, são computadas as distâncias (Euclidianas) em relação aos centroides;
 - Cada elemento é atribuído ao centroide mais próximo [Marsland, 2014].

- Movimentação de Centroides
 - Após atribuição de elementos, a posição dos centroides é recalculada;
 - O novo ponto médio é definido como o valor médio entre os elementos do *cluster* [Marsland, 2014].

Fonte: [Santana, 2017]

Algoritmo k-means

• Otimização dos Centroides

- O algoritmo executa repetidamente a atribuição de elementos ao *cluster* e a movimentação de centroides;
- O algoritmo finaliza quando o centro do cluster para se mover ou quando o algoritmo atinge algum critério de parada.

• Avaliação de Desempenho e Uso

- Após o término do aprendizado, o algoritmo pode ser avaliado em um conjunto de testes para análise de desempenho;
- O algoritmo também pode ser aplicado diretamente a uma situação real, de forma a classificar elementos [Marsland, 2014].

Algoritmo k-means

• O algoritmo *k*-means pode ser resumido em:

The k-Means Algorithm

Initialisation

- choose a value for k
- choose k random positions in the input space
- assign the cluster centres \(\mu_i\) to those positions

Learning

- repeat

- * for each datapoint \mathbf{x}_i :
 - · compute the distance to each cluster centre
- assign the datapoint to the nearest cluster centre with distance

$$d_i = \min_i d(\mathbf{x}_i, \boldsymbol{\mu}_j).$$

- $\ast\,$ for each cluster centre:
 - move the position of the centre to the mean of the points in that cluster (N_j is the number of points in cluster j):

$$\boldsymbol{\mu}_j = \frac{1}{N_j} \sum_{i=1}^{N_j} \mathbf{x}_i$$

- until the cluster centres stop moving

Usage

- for each test point:
- * compute the distance to each cluster centre
 - * assign the datapoint to the nearest cluster centre with distance

$$d_i = \min_i d(\mathbf{x}_i, \boldsymbol{\mu}_j).$$

Fonte: [Marsland, 2014]

Algoritmo k-means - Escolha Parâmetro k

- Como informado previamente, o algoritmo *k*-means precisa, obrigatoriamente, de um valor fixo *k*;
 - Em alguns problemas o número de clusters já é previamente definido;
 - No entanto, em alguns cenários, o número de clusters precisa ser descoberto pelo próprio algoritmo;
- Em problemas sem um valor de *k* previamente definido, como escolher, de forma ideal, a quantidade de *clusters*?
 - Uma regra prática é utilizar o Elbow Method⁶.

⁶Tradução literal: "Método do Cotovelo".

Flbow Method

32 / 43

- O Elbow Method é uma heurística para determinar o número de *clusters* em uma base de dados;
 - Consiste em variar o número de *clusters*, e testar a variância dos dados:
 - Os registros são plotados em um gráfico e é escolhido o ponto que representa o "cotovelo (ou joelho)" da curva.

Fonte: [Santana, 2017]

Prof. Felipe Reis

- k-medoids, k-median e k-modes são variações do k-means, usando métricas diferentes para definição dos centroides:
 - k-medoids:
 - Utiliza um exemplar (medoid) como centro do cluster;
 - Possui como vantagem a melhor interpretabilidade do centro do cluster, uma vez que o ponto representa um elemento real, e não um local onde pode não haver nenhum elemento;

Clustering

- ▲ k-median:
 - Calcula a mediana para definicão dos centroides:
 - ullet Possui como vantagem a minimização da distância L_1 (1-norm ou City Block) e a menor susceptibilidade a ruídos;
- k-modes:
 - Utiliza a moda para definição do centroide;
 - Para alguns cenários pode ser usado para representar os elementos mais comuns.

Introdução

Redes Neurais Não SUPERVISIONADAS

Clustering

Redes Não Supervisionadas

- Redes neurais podem ser utilizadas para tarefas de Aprendizado Não Supervisionado:
- As redes devem descobrir por si só padrões, características, correlações ou categorias a partir dos dados de entrada;

Clustering

 Os padrões descobertos devem ser reproduzidos na saída da rede [Barreto, 1998].

Aplicações

- Segundo [Barreto, 1998], as redes não supervisionadas podem ter as seguintes aplicações:
 - Agrupamento (clustering): agrupa as entradas em classes, de acordo com a similaridade (retorna apenas uma classe);
 - Prototipação: semelhante ao anterior, porém gera um protótipo (exemplo) da classe apropriada;
 - Codificação: gera uma versão codificada da entrada⁷, mantendo a informação mais relevante;
 - Mapas auto-organizáveis: organiza dimensionalmente dados complexos em grupos, de forma a manter a representação com propriedades relevantes a partir da entrada.

⁷possivelmente com menos bits

Aprendizagem Competitiva

- Neurônios de cada camada competem pelo direito de responder a uma determinada entrada [Coppin, 2004] [Barreto, 1998];
- A resposta é dada pelo neurônio que tiver o maior valor de ativação [Coppin, 2004];
 - Modelo "vencedor-leva-tudo" (the winner-take-all, WTA);
 - A unidade vencedora tem sua saída fixada em 1, enquanto as demais são fixadas em 0 [Barreto, 1998];
- Problema comum: unidades mortas (dead units)
 - Unidades mal inicializadas podem nunca ganhar competições;
 - Para solução, podem ser criados mecanismos para limitar a vitória de neurônios [Barreto, 1998].

Mapas de Kohonen

Mapa de Kohonen

- Corresponde a uma arquitetura de rede proposta por Teuvo Kohonen em 1982 [Coppin, 2004];
 - Também chamado de mapa de *features* (características) auto-organizado;
 - Utiliza o algoritmo "Vencedor-leva-tudo";
 - Busca subdividir as entradas em clusters;
 - A rede é alimentada com vetores de exemplo e a distância
 Euclidiana entre eles é calculada e os pesos são computadas;
- A rede possui, basicamente, 2 camadas: [Coppin, 2004]
 - Camada de entrada:
 - Camada de *clusterização* (ou Kohonen), que serve à saída.

Mapa de Kohonen - Treinamento

- O neurônio cujo vetor de pesos é mais parecido (semelhante) à entrada é chamado de melhor unidade de "melhor unidade correspondente" (Best Matching Unit, BMU);
- Os pesos do BMU e dos neurônios são ajustados com base no vetor de entrada.

Fonte: [Wikipedia contributors, 2020b]

Link: versão animada do Mapa de Kohonen [Wikipedia contributors, 2020a]

Link: animação do treinamento Mapa de Kohonen [Wikipedia contributors, 2020a]

Referências I

Introdução

Barreto, G. d. A. (1998).

Redes Neurais não-supervisionadas para processamento de sequências temporais.

PhD thesis, Universidade de São Paulo - Escola de Engenharia de São Carlos. [Online]: acessado em 07 de Setembro de 2020. Disponível em: https://teses.usp.br/teses/ disponiveis/18/18133/tde-25112015-111953/publico/Dissert Barreto GuilhermeA.pdf.

Cha. S.-H. (2007).

Comprehensive survey on distance/similarity measures between probability density functions.

International Journal of Mathematical Models and Methods in Applied Sciences, 1(4):300-307. [Online]; acessado em 23 de Março de 2021. Disponível em: https://www.naun.org/main/NAUN/ijmmas/mmmas-49.pdf.

Coppin, B. (2004).

Artificial Intelligence Illuminated.

Jones and Bartlett illuminated series, Jones and Bartlett Publishers, 1 edition,

Kopec, D. (2019).

Classic Computer Science Problems in Python.

Manning Publications Co. 1 edition.

Marsland, S. (2014).

Machine Learning: An Algorithm Perspective.

CRC Press. 2 edition.

Disponível em: https://homepages.ecs.vuw.ac.nz/ marslast/MLbook.html.

Richert, W. and Coelho, L. P. (2013).

Building Machine Learning Systems with Python.

Santana, F. (2017).

Entenda o algoritmo k-means e saiba como aplicar essa técnica.

[Online]; acessado em 24 de Marco de 2021. Disponível em:

https://minerandodados.com.br/entenda-o-algoritmo-k-means.

Santos, T. (2014).

Uma Análise comparativa de Medidas de Similaridade para Agrupamento de dados Categóricos.

PhD thesis, Pontifícia Universidade Católica de Minas Gerais- Programa de Pós-Graduação em Informática. [Online]: acessado em 23 de Marco de 2021. Disponível em:

Clustering

http://www.biblioteca.pucminas.br/teses/Informatica SantosTRL 1.pdf.

Shalev-Shwartz, S. and Ben-David, S. (2014).

Understanding Machine Learning: From Theory to Algorithms.

Cambridge University Press, 1 edition.

Disponível em: http://www.cs.huji.ac.il/ shais/UnderstandingMachineLearning.

Wikipedia contributors (2020a).

Mapas de kohonen.

[Online]; acessado em 07 de Setembro de 2020. Disponível em:

https://pt.wikipedia.org/wiki/Mapas_de_Kohonen.

Referências III

Introdução

000

Wikipedia contributors (2020b).

Self-organizing map.

[Online]; acessado em 07 de Setembro de 2020. Disponível em: https://en.wikipedia.org/wiki/Self-organizing_map.