Predicting Pneumonia from Chest X-ray Images

Using Neural Networks to Diagnose Better than Human Experts

The Problem

- Chest X-rays are an extremely common first line diagnostic tool
 - Have poor sensitivity for many pathologies including pneumonia
 - Overall sensitivity of 48%
 - Pneumonia sensitivity between 38 and 76%
- Either pathologies are not being picked up by the imaging or radiologists are not able to see them

Solution

- CNN model predicts
 pneumonia with high accuracy
- Sensitivity higher than human experts
- CNN models should be used in the field to ensure radiologists are not missing anything
 - If not, ERs should at least switch to chest Ultrasound as it has much higher sensitivity than chest X-rays

The Data

- 5863 chest X-ray images from the Guangzhou Women and Children's Medical Center
 - Pediatric patients 1-5 years old
- Images broken up into 3 sets:
 - Train, Test and Validation sets
 - Each of these sets broken down into NORMAL and PNEUMONIA images
- Class distribution was not balanced for Train and Test sets

Processing the Images

Raw Images

- Each image has unique size/dimensions
- Also unique in mean pixel value and pixel standard deviation

Normalizing

- All images reshaped to same size
- All images pixel intensity range reduced from 255 to

Augmentation

- ImageDataGenerator used to alter image rotation, zoom, height shift and width shift
- Also normalize pixel mean and standard deviation
- Provide CNN with batches of images

200 -

250 -

50

100

150

200

250

40000

20000

-3

-1

Pixel Intensity

-1.0

- -1.5

Building the Model

- 5 convolutional/pooling pair layers
- Dropouts to minimize overfitting
- 2 callbacks
 - Learning rate
 - Early stopping

Model Metrics

Accuracy: 0.88

Loss: 0.33

Sensitivity: 83%

ROC_AUC: 0.966

Conclusion

- 2 possible solutions:
 - start using CNN models in the field of medicine or
 - start using different diagnostic tools that have higher sensitivity when observed by human experts.