Local All-Pass Filters for Optical Flow Estimation - Extra Material

Christopher Gilliam and Thierry Blu

Department of Electronic Engineering The Chinese University of Hong Kong

22th April 2015

Demonstrating LAP Consistency

(a) Constant Flow

(b) Raw LAP Estimate

(c) Lucas-Kanade Estimate

Estimating a Smoothly Varying Optical Flow

Input Images (584 \times 388 pixels)

Synthetic Optical Flow

Maximum displacement of flow = 15 pixels

Estimating a Smoothly Varying Optical Flow

Image Interpolation using Flow:

Median EE = 0.010 pixels and Median AE = 0.072 degrees Computation Time = 6.23 seconds

Estimating a Smoothly Varying Optical Flow

Interpolation using LAP Estimate:

Interpolation using HS Estimate:

PSNR = 49.3dB

 $\mathsf{PSNR} = 28.6\mathsf{dB}$

Real Conditions - Dimetrodon Images

Input Images (584 × 388 pixels)

Ground Truth Optical Flow:

Maximum displacement of flow = 4.67 pixels

Real Conditions - Dimetrodon Images

LAP Estimate:

Median EE = 0.071 pixels and Median AE = 1.664 degrees Computation time = 7.76 seconds

Real Conditions - Dimetrodon Images

Interpolation using LAP Estimate, PSNR = 41.9dB

Real Conditions - RubberWhale Images

Input Images (584 × 388 pixels)

Ground Truth Optical Flow:

Maximum displacement of flow = 4.62 pixels

Real Conditions - RubberWhale Images

Ground Truth Optical Flow:

LAP Estimate:

Median EE = 0.039 pixels and Median AE = 1.512 degrees Computation time = 7.76 seconds

Real Conditions - RubberWhale Images

Interpolation using LAP Estimate, PSNR = 41.9dB

Real Conditions - Hydrangea Images

Input Images (584 \times 388 pixels)

Ground Truth Optical Flow:

Maximum displacement of flow = 11.12 pixels

Real Conditions - Hydrangea Images

Ground Truth Optical Flow:

LAP Estimate:

Median EE = 0.050 pixels and Median AE = 0.386 degrees Computation time = 8.03 seconds

Real Conditions - Hydrangea Images

Interpolation using LAP Estimate, PSNR = 31.8dB

Real Conditions - Walking Images

Input Images (640 \times 480 pixels)

LAP Estimate of Optical Flow:

No ground truth flow \implies Assess via image interpolation Computation time = 9.69 seconds

Real Conditions - Walking Images

Middle Image Interpolation using LAP Estimate, PSNR = 37.4dB

Real Conditions - Walking Images

The result as a video

Real Conditions - MiniCooper Images

Input Images (640 \times 480 pixels)

LAP Estimate of Optical Flow:

No ground truth flow \implies Assess via image interpolation Computation Time = 9.81 seconds

Real Conditions - MiniCooper Images

Middle Image Interpolation using LAP Estimate, PSNR = 32.7dB

Real Conditions - MiniCooper Images

The result as a video

