Гомоморфизмы колец, идеалы, фактор-кольца

Определение 1.1 (Гомоморфизм колец). $h:R\to S$ - гомоморфизм, определённый так: $a\equiv b\Leftrightarrow h(a)=h(b)$

Определение 1.2 (Ядро кольца). $h:R\to S$ - гомоморфизм, тогда ядро кольца $\operatorname{Ker} h=\{a\in R:h(a)=0\}$

Теорема 1.3. Ядро кольца - подкольцо

Доказательство. Пусть $\operatorname{Ker} h$ - ядро кольца R по гомоморфизму $R \to S$, тогда

- 1. Ker $h \neq \emptyset$
- 2. $\forall x,y \in \text{Ker } h: h(x+(-y)) = h(x) + h(-y) \stackrel{??}{=} h(x) h(y) \stackrel{1.2}{=} 0 \Rightarrow x+(-y) \in \text{Ker } h$

П

3. $\forall x, y \in \text{Ker } h : h(x \circ y) = h(x) \circ h(y) = 0 \circ 0 = 0 \Rightarrow x \circ y \in \text{Ker } h$

По ?? ядро Кег h является группой

Определение 1.4 (Идеал). R - кольцо, $\mathcal{I} \subseteq R$ - идеал (левый, правый, двусторонний), если

- 1. \mathcal{I} подкольцо
- 2. для любого $x \in R$ $x\mathcal{I} \subseteq \mathcal{I}$ (левый идеал), $\mathcal{I}x \subseteq \mathcal{I}$ (правый идеал)

Теорема 1.5. Ядро кольца - идеал

Доказательство. Пусть $\operatorname{Ker} h$ - ядро кольца R по гомоморфизму $R \to S$, тогда

- 1. по теореме 1.3
- 2. (a) $\forall x \in R, y \in \text{Ker } h: h(xy) = h(x)h(y) = h(x)*0 = 0 \Rightarrow xy \in \text{Ker } h \Rightarrow x \text{ Ker } h \subseteq \text{Ker } h$
 - (b) $\forall x \in R, y \in \text{Ker } h : h(yx) = h(y)h(x) = 0 * h(x) = 0 \Rightarrow yx \in \text{Ker } h \Rightarrow \text{Ker } h * x \subseteq \text{Ker } h$

По определению идеала ядро $\operatorname{Ker} h$ является идеалом

Пример 1.6 (Пример идеалов).

Теорема 1.7. Пусть R, S - кольца, $h: R \to S$ - гомоморфизм. Если $\operatorname{Ker} h = \{0\}$, то h - вложение

Доказательство. Пусть $\ker h = \{0\}, \, x,y \in A.$ Пусть h(x) = h(y) = b, тогда

$$h(x) - h(y) = b - b$$

$$= 0$$

$$\Rightarrow \qquad h(x - y) = 0$$

$$\Rightarrow \qquad (x - y) \in \operatorname{Ker} h$$

$$\Rightarrow \qquad x - y = 0h$$

$$\Rightarrow \qquad x = y$$

Так как x, y были произвольными, то h - вложение

Лемма 1.8. Если R - кольцо, $a \neq 0, \ a \in R$ и $1 \in aR$, то aR = R

Доказательство. Так как $1 \in aR$, то a обратим, то есть существует $a^{-1} \in R$,следовательно

$$aR \supseteq aa^{-1}R = R$$

Так как $R \subseteq aR$ и $aR \subseteq R$, то aR = R

Теорема 1.9. R - ассоциативное кольцо c единицей или R - тело или R тогда и только тогда когда в R Нет других идеалов, кроме $\{0\}$ и R

Доказательство. Так как R - ассоциативное кольцо с единицей или или тело, то для каждого a существует обратное a^{-1} . По лемме 1.8 для всех $a \neq 0$ aR = R. Остаётся только a = 0, который образует идеал $\{0\}$

Определение 1.10 (Булевое кольцо).

Теорема 1.11. Пусть I - двухсторонний идеал в R, тогда отношение \equiv : $x \equiv y \Leftrightarrow x - y \in I$ является конгруэнтностью

Доказательство.

Следствие 1.12. Существует фактор-алгебра $R/_{\equiv}$, такая что ???

Следствие 1.13. $I = \text{Ker } h, \; \text{где } h : R \to R /_{\equiv}$

Доказательство.

Определение 1.14 (Простой идеал). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда I - простой идеал, если $ab \in I \Leftrightarrow a \in I$ или $b \in I$

Определение 1.15 (Максимальный идеал). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда I - максимальный идеал, если для любого идеала $J:I\subseteq J,I\neq J$ выполняется J=R

Определение 1.16 (Главный идеал). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда I - главный идеал, если для некоторого $a \in R$ I = aR

Пример 1.17 (??????).

Лемма 1.18. Если I и J - идеалы, то I+J тоже идеал

Доказательство.

Теорема 1.19. Пусть R - ассоциативное, коммутативное кольцо c единицей, I - идеал, тогда

- 1. I простой идеал $\Leftrightarrow R/I$ целостное
- 2. I максимальный идеал $\Leftrightarrow R/_I$ поле

Доказательство.