

Credentials:

- Data Scientist with 20 + years of IT consulting experience.
- Holds an Engineering degree and and MBA.
- Experience in handling data analysis for multi-billion dollar capital development projects
 - O Burj Khalifa tower in Dubai
 - Pentagon Renovation project,
 Arlington Virginia.

- Problem Statement
- Bird's eye view
- Findings
 - Data overview EDA
 - Feature Engineering
 - Model evaluation
- Conclusions and recommendations

Problem Statement

Business Objective

To help Property
Managers run their
business effectively by
predicting if a Tenant is
Churned or a
Non-Churned tenant.

Challenges

With the thin margins and lots of pro-tenant regulations in place Property Management companies need to have a clear insights on the expected vacancy (tenant churn) to plan their cash flow

Desired Outcome

- Use date from Property
 Management System to
 engineer data
- Train the models to predict Churned
 Tenant.
- Evaluate the model using <u>Accuracy</u> as the criteria

Birds eye view

Qualitative data 1

Real Estate Data sets

Resident history from Property Management System

Qualitative data 2

• Time scale

Five years of Resident data

Qualitative data 3

Baseline Score

0.67

Qualitative data 4

Models / Classifiers Explored

Logistic Reg, Random Frst, Extra trees.

EDA - Rent fields

EDA - Real Estate Listings - Using Carto py

EDA - Real Estate Listings - Sao Paulo

Combination of the two datasets allow us to have more data covering the whole city.

Model Evaluation Criteria:

- Main Metric Testing Accuracy
 - Confusion Matrix
 - ROC with AUC curve
 - Model coefficients

Model Performance - overview

Model	Train Score	Test Score
Base Line	0.78	
Logistic Regression	0.78	0.77
Decision Tree	1.0	0.90
Random Frst.	1.0	0.90
Extra trees	1.0	0.90
Voting clsfr.	0.99	0.87

Model Evaluation - Confusion Matrix

Model Evaluation - ROC AUC Curve

- ROC AUC of close to 1
- Positive and Negative classes are perfectly separated

Model Evaluation - Feature Importance (Extra trees)

Extra Trees Model

- Distance to closest apartments is the most important feature of the model
- Number of listings is less important to the model

Model Evaluation - Model Coefficients

- Distance to closest apartments is the Sao Paulo dataset biggest indicator of no favela
- Distance to closest store listing is biggest indicator of favelas in the census tract

Conclusion

- Extra trees model performed the best (at 100% accuracy).
- Our model will help to differentiate the Churned and Non Churned tenants for the Property Managers.
- Would like to get more data from Social Media, Work Order Review to aid the predictive models.
- Time based predictions to be done using Generalized Linear Models.
- Develop an API between Machine Learning Models and the Property Management Application.

Thanks - Questions? The Team

