심층 신경망

Deep Neural Network (DNN)

Agenda

History of MLP

- Neural Net(NN)
 - Perceptron
 - Multi-Layer Perceptron (MLP)
 - Backpropagation

Problem: Perceptron

• One logistic regression unit cannot separate XOR

[실습] Perceptron for XOR

$$\overline{Y} = H(X) = sigmoid(X \cdot w_1 + b_1)$$

X ₁	X ₂	\overline{Y}
0	0	0
0	1	1
1	0	1
1	1	0

Problem: Perceptron

XOR using NN

X1	X2	XOR	
0	0	0	-
0	1	1	+
1	0	1	+
1	1	0	-

• Multiple logistic regression units can separate XOR

- <u>Multiple logistic regression units</u> can separate XOR
- But! "No one on earth had found a viable way to train"

- XOR using NNs
 - toy-examples

X ₁	X ₂	Y ₁	Y ₂	\overline{Y}	XOR
0	0				0
0	1				1
1	0				1
1	1				0

XOR using NNs

X ₁	X ₂	Y ₁	Y ₂	\overline{Y}	XOR
0	0	0	1	0	0
0	1	0	0	1	1
1	0	0	0	1	1
1	1	1	0	0	0

• Forward Propagation을 통한 XOR 문제 풀이 가능 검증 완료

• Forward Propagation을 통한 XOR 문제 풀이 가능 검증 완료

Solution: MLP for XOR

$$K(X) = sigmoid(X \cdot W_1 + b_1)$$

$$\overline{Y} = H(X) = sigmoid(K(x) \cdot w_2 + b_2)$$

How can we learn W1, W2, B1, B2 from training data?

$$K(X) = sigmoid(X \cdot W_1 + b_1)$$

$$\overline{Y} = H(X) = sigmoid(K(x) \cdot w_2 + b_2)$$

X ₁	X ₂	¥
0	0	0
0	1	1
1	0	1
1	1	0

Remind

 We try to find a minimum value using a gradient descent method.

Remind

 But, MLP is too complex to apply gradient descent method for finding optimal parameters.

Remind

Backpropagation (1974, 1982 by Paul Werbos, 1986 by Hinton)

- 1) W, b 초기화
- 2) Forward 계산 & Error 측정
- 3) Error 값 을 Backward 하면서 w, b 업데이트

[실습] MLP for XOR

How can we learn W1, W2, B1, B2 from training data?

$$K(X) = sigmoid(X \cdot W_1 + b_1)$$

$$\overline{Y} = H(X) = sigmoid(K(x) \cdot w_2 + b_2)$$

X ₁	X ₂	¥
0	0	0
0	1	1
1	0	1
1	1	0

END