Méthodes non paramétriques

Introduction à l'apprentissage automatique – GIF-4101 / GIF-7005

Professeur: Christian Gagné

Semaine 4

4.1 Estimation par histogramme

Méthodes non paramétriques

- Méthodes paramétriques (incluant densité-mélange)
 - ullet Densités de probabilité $(p(\mathbf{x}))$ posées à l'avance (typiquement, $\mathbf{x} \sim \mathcal{N}_D(oldsymbol{\mu}, oldsymbol{\Sigma}))$
 - Recherche de la paramétrisation de ces densités
- Méthodes non paramétriques
 - Estimer la densité de probabilité directement à partir des données
 - Aucune hypothèse a priori sur la distribution des données
- Approches principales
 - Estimation par histogramme
 - Estimation par noyau
 - *k*-plus proches voisins (*k*-PPV)

Estimation non paramétrique de densités

- Probabilité que valeur x inférieure ou égale à a
 - $P(x \le a) = \int_{x=-\infty}^{a} p(x) dx$
 - Estimation avec échantillonnage $\{x^t\}_{t=1}^N: \hat{P}(x \leq a) = \frac{\#\{x^t \leq a\}}{N}$
- Estimation de valeur x dans l'intervalle [a, a + h]

$$\hat{P}(a \le x \le (a+h)) = \frac{\#\{x^t \le (a+h)\} - \#\{x^t \le a\}}{N}$$

• Approximation de densité p(x) dans [a,a+h] par valeur constante $\hat{p}(x|x \in [a,(a+h)]) \approx \hat{p}(a)$

$$\hat{P}(a \le x \le (a+h)) = \int_{x=a}^{a+h} \hat{p}(x) \, dx \approx \hat{p}(a)(a+h-a) = h\hat{p}(a)$$

$$\hat{p}(x|x \in [a,(a+h)]) \approx \frac{1}{h} \left[\frac{\#\{x^t \le (a+h)\} - \#\{x^t \le a\}}{N} \right]$$

Estimation par histogramme

- Estimation par histogramme (1D)
 - Diviser l'espace d'entrée en compartiments de tailles égales (bins)
 - Chaque compartiment est de largeur h et positionné par rapport à une origine x_0

$$]x_0 + mh, x_0 + (m+1)h]$$
, avec m un nombre naturel

• Estimation en 1D, à partir d'un jeu $\{x^t\}_{t=1}^N$

$$\hat{p}(x) = \frac{\#\{x^t \text{ dans même compartiment que } x\}}{Nh}$$

- Choix de l'origine x₀ peut affecter légèrement l'estimateur (discontinuités aux frontières)
- Choix de la largeur h affecte significativement l'estimateur
 - Valeur de h faible, de nombreux pics dans l'estimation
 - Valeur de *h* grande, estimation plus douce (moins précise)

Densité d'estimation par histogramme

Densité d'estimation par histogramme

Estimation selon plusieurs dimensions

- Estimation en plusieurs dimensions par histogramme
 - Compartiments correspondant à des hypercubes d'hypervolumes égaux
 - Souffre gravement de la malédiction de la dimensionnalité
- Conditions générales pour estimations convergent vers véritables densités de probabilité, p̂(x) → p(x)
 - Volume V_n de chaque compartiment réduit

$$\lim_{n\to\infty}V_n=0$$

ullet Nombre d'observations k_n par compartiment très grand

$$\lim_{n\to\infty} k_n = \infty$$

 Ratio du nombre d'observations par compartiment avec le nombre d'observations total élevé

$$\lim_{n\to\infty}\frac{k_n}{n}=0$$

Densités d'estimation en 2D

Densités par estimation naïve d'histogramme

- Estimateur naïf d'histogramme (aussi connu comme une fenêtre de Parzen)
 - Estimer la densité autour de x dans un hypercube de largeur 2h
 - Formulation en 1D

$$\hat{\rho}(x) = \frac{\#\{(x-h) < x^t \le (x+h)\}}{2Nh}$$

$$= \frac{1}{2Nh} \sum_{t=1}^{N} w\left(\frac{x-x^t}{h}\right)$$
où $w(u) = \begin{cases} 1 & \text{si } |u| < 1 \\ 0 & \text{autrement} \end{cases}$

- Évite de devoir poser une origine x_0
- L'estimation n'est pas continue et comporte des marches à $x^t \pm h$

Densités par estimation naïve d'histogramme

4.2 Estimation par noyau

Estimation par noyau

- Estimation par noyau : estimation plus douce que l'estimateur naïf d'histogramme
 - Utiliser un noyau adoucissant, typiquement un noyau gaussien

$$K(u) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{u^2}{2}\right]$$

• Convolution du noyau adoucissant avec les données $\{x^t\}_{t=1}^N$

$$\hat{\rho}(x) = \frac{1}{Nh} \sum_{t=1}^{N} K\left(\frac{x - x^{t}}{h}\right)$$

- Noyau K(⋅) détermine la forme de l'influence des données
- Largeur de fenêtre h détermine la largeur de l'influence des données
- Généralise l'estimation naïve, qui utilise une boîte rectangulaire comme noyau

Densités d'estimation par noyau

Qualité de l'estimation par noyau

- Largeur de la fenêtre influence grandement l'estimation
 - h petit : chaque donnée a un effet local important
 - h grand : estimation plus douce, avec du recoupement entre les noyaux
- Estimation $\hat{p}(x) \to p(x)$ lorsque $N \to \infty$
 - ullet II faut que h o 0, mais plus lentement que N (c'est-à-dire $Nh o \infty$)
 - Typiquement, on pose que $h_N=h_1/\sqrt{N}$, utilisant une fenêtre de h_N pour un jeu de taille N

Variation du nombre d'observations

Propriétés des noyaux adoucissants

- Propriétés désirables d'un noyau adoucissant
 - 1. Valeurs positives ou nulles

$$K(x) \geq 0, \, \forall x$$

2. Aire sous la courbe unitaire

$$\int_{-\infty}^{\infty} K(x) \ dx = 1$$

3. Centré sur l'origine

$$\int_{-\infty}^{\infty} x \, K(x) \, dx = 0$$

- Si propriétés 1 et 2 sont respectées, K(u) correspond à une fonction de densité valide et donc $\hat{p}(x)$ l'est également
- De plus, si K(u) est continue et différentiable, $\hat{p}(x)$ l'est également
- Support : étalement des valeurs de u pour lequel K(u) est non-nul

Exemples de noyaux adoucissants

- Gaussien
 - Dérivable, mais support n'est pas borné
- Boxcar / TopHat : Estimation naive d'histogramme
 - Support borné, mais fonction non dérivable
- Epanechnikov : $K(u) = (3/4)(1 u^2)$ pour $u \in [-1,1]$
 - Support borné, fonction non dérivable
- Linéaire / triangle : K(u) = 1 |u| pour $u \in [-1,1]$
 - Support borné, fonction non dérivable
- Cosinus : $K(u) = \cos(u \pi/2)$ pour $u \in [-1,1]$
 - Support borné, fonction non dérivable

Estimation par noyau, cas multidimensionnel

• Équation générale de l'estimation par noyau en D dimensions

$$\hat{p}(\mathbf{x}) = \frac{1}{Nh^D} \sum_{t=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^t}{h}\right)$$

- Contrainte sur le noyau : $\int_{\mathbb{R}^D} K(\mathbf{x}) \ d\mathbf{x} = 1$
- Noyau gaussien multivarié

$$K(\mathbf{u}) = \left(\frac{1}{\sqrt{2\pi}}\right)^D \exp\left[-\frac{\|\mathbf{u}\|^2}{2}\right]$$

- Sensible à la dimensionnalité et à la normalisation des valeurs selon les différentes dimensions
- ullet Noyau incluant une normalisation selon l'estimation de la covariance Σ

$$K(\mathbf{u}) = \frac{1}{(2\pi)^{0.5D} |\mathbf{\Sigma}|^{0.5}} \exp\left[-0.5\mathbf{u}^{\top}\mathbf{\Sigma}^{-1}\mathbf{u}\right]$$

Estimation par noyau pour le classement

• Estimation de $\hat{p}(\mathbf{x}|C_i)$ par noyau

$$\hat{p}(\mathbf{x}|C_i) = \frac{1}{N_i h^D} \sum_{t=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^t}{h}\right) r_i^t$$

• Fonction discriminante correspondante

$$\hat{P}(C_i) = \frac{N_i}{N}
h_i(\mathbf{x}) = \hat{p}(\mathbf{x}|C_i)\hat{P}(C_i)
= \frac{1}{Nh^D} \sum_{t=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^t}{h}\right) r_i^t$$

Effet de largeur du noyau pour classement

4.3 *k*-plus proches voisins

Estimation de densité par k-PPV

- *k*-plus proches voisins (*k*-PPV)
 - Ensemble de référence $\mathcal{X} = \{x^t\}_{t=1}^N$
 - Adapter la largeur de la fenêtre selon la densité locale des données (k données les plus proches)

$$\hat{p}(x) = \frac{k}{2Nd_k(x,\mathcal{X})}$$

- $h = d_k(x, \mathcal{X})$: distance du k-ième voisin à la donnée x dans \mathcal{X}
- Estimateur non continu, similaire à l'estimateur naïf par histogramme, avec largeur *h* adaptative

Paramètres de k-PPV

- Les k-PPV définis par trois paramètres principaux
 - Nombre de voisins k
 - k faible : découpage de l'espace fin selon l'ensemble de référence
 - k élevé : découpage plus doux, moyennage selon le voisinage
 - Mesure de distance $D(\mathbf{x},\mathbf{y})$
 - Définit la relation de voisinage entre les données
 - ullet Ensemble de données de référence ${\mathcal X}$
 - Taille de l'ensemble de données
 - Densité de la répartition dans l'espace des données
 - Représentativité des données (filtrage)

Classement par k-PPV

- Classement par k-plus proches voisins (k-PPV)
 - Ensemble de référence (d'entraı̂nement) $\mathcal{X} = \{\mathbf{x}^t, r^t\}_{t=1}^N$
 - Pour classer une donnée inconnue x, calculer les k-plus proches voisins dans \mathcal{X} en utilisant une mesure de distance (ex. distance euclidienne)
 - Assigner à \mathbf{x} l'étiquette la plus fréquente parmi celles des k-plus proches voisins
- Méthode très simple et directe pour le classement
- ullet Avec k=1, divise l'espace d'entrée selon un diagramme de Voronoï basé sur ${\mathcal X}$

Classement par les k-PPV

 $Par\ Antti\ Ajanki,\ CC-BY-SA\ 3.0,\ https://en.wikipedia.org/wiki/File:KnnClassification.svg$

Diagramme de Voronoï (1-PPV)

Régions et frontière pour 1-PPV

Par Agor153, CC-BY-SA 3.0, https://en.wikipedia.org/wiki/File:Map1NN.png

Régions et frontière pour 5-PPV

 ${\sf Par\ Agor153,\ CC-BY-SA\ 3.0,\ https://en.wikipedia.org/wiki/File:Map5NN.png}$

4.4 Notions sur les *k*-PPV

Bornes du classifieur k-PPV

- Taux d'erreur bayésien optimal (E_{bayes})
 - Taux d'erreur lorsqu'on connaît les véritables densités de probabilité par classe
 - Optimal, impossible de faire mieux en généralisation
- Deux bornes sur le taux d'erreur du k-PPV
 - Avec k = 1 et $N \to \infty$ alors $E_{1\text{-ppv}} \le 2E_{\text{baves}}$
 - Avec $k \to \infty$ et $N \to \infty$ alors $E_{k\text{-ppv}} \to E_{\text{bayes}}$

Classement bayésien optimal (N = 2000)

Variation du nombre d'observations, k = 1, N = 2000

Variation du nombre de voisins, k = 1, N = 1000

Variation du nombre de voisins, k = 3, N = 1000

Variation du nombre de voisins, k = 11, N = 1000

Variation du nombre de voisins, k = 23, N = 1000

Variation du nombre de voisins, k = 57, N = 1000

Distances

- La mesure de distance donne la relation de voisinage entre les données
- Définition mathématique d'une métrique $D: X \times X \mapsto \mathbb{R}$
 - Non-négativité : $D(\mathbf{x},\mathbf{y}) \geq 0$
 - Réflexivité : $D(\mathbf{x},\mathbf{y}) = 0$ ssi $\mathbf{x} = \mathbf{y}$
 - Symétrie : $D(\mathbf{x},\mathbf{y}) = D(\mathbf{y},\mathbf{x})$
 - Inégalité du triangle : $D(\mathbf{x},\mathbf{z}) \leq D(\mathbf{x},\mathbf{y}) + D(\mathbf{y},\mathbf{z})$
- Différentes mesures de distance possibles
 - Distance euclidienne
 - Distance de Minkowsky
 - Distance de Tanimoto (distance entre ensembles)
 - Distance tangente

Distance de Minkowsky

Distance de Minkowsky

$$D_p(\mathbf{x},\mathbf{y}) = \left(\sum_{i=1}^D |x_i - y_i|^p\right)^{1/p}$$

- ullet Paramètre p contrôle l'accent sur les dimensions où la magnitude est la plus grande
- Distance de Manhattan (p=1), pondération égale de toutes les dimensions : $D_1(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{D} |x_i y_i|$
- Distance D_{∞} , uniquement la dimension où la différence est de magnitude maximale : $D_{\infty}(\mathbf{x},\mathbf{y}) = \max_{i=1}^{D} |x_i y_i|$
- Distance euclidienne (p=2), compromise dans ces extrêmes : $D_2(\mathbf{x},\mathbf{y}) = \sqrt{\sum_{i=1}^D (x_i-y_i)^2}$

Illustration de la distance de Minkowsky

= 1.414

$$p = 2^1$$

$$= 2$$

$$p = 2^{1.5}$$

= 2.828

$$p = 2^2$$

= 4

$$p = 2^{\infty}$$

$$=\infty$$

Normalisation des données

- Mesure de distance sensible à l'échelle des données selon les différentes dimensions
 - Valeurs selon une dimension où l'échelle est grande relativement aux autres dimensions vont « absorber » la valeur selon ces dimensions

$$|x_j - y_j| \gg |x_i - y_i|, \ \forall i \neq j \quad \Rightarrow \quad \mathrm{D}(\mathbf{x}, \mathbf{y}) \approx |x_j - y_j|$$

- Normalisation des données nécessaire si les échelles sont différentes selon les dimensions
 - Normalisation selon le sens des données (unités physiques)
 - Normalisation selon valeur max-min de chaque dimension
 - Transformation blanchissante

Évaluation des performances leave-one-out

- Pas d'entraînement nécessaire avec k-PPV
 - ullet Entraînement correspondant à stocker le jeu de données ${\mathcal X}$
- Évaluation des performances de type leave-one-out
 - Tirer avantage du coût d'entraînement nul
 - Correspond à la validation croisée à K plis, avec K = N
- 1. Pour chaque donnée $\mathbf{x}^t \in \mathcal{X}$:
 - 1.1 Calculer les k-PPV de \mathbf{x}^t parmi l'ensemble $\mathcal{X} \setminus \{\mathbf{x}^t\}$
 - 1.2 Déterminer l'étiquette majoritaire de ces k plus proches voisins comme étiquette de classement de \mathbf{x}^t
- 2. Retourner comme taux d'erreur le ratio entre le nombre de données mal classées dans $\mathcal X$ et la taille de $\mathcal X$

4.5 Efficacité computationnelle de

k-PPV

Complexité algorithmique de k-PPV

- Entraînement : stockage des données en mémoire
 - Complexité en temps et en mémoire : O(N)
- Traitement des données (test/validation) : obtenir les k voisins
 - Obtenir les k plus proches voisins de \mathbf{x} dans \mathcal{X} : complexité en temps $O(N \log N)$ (algorithme naïf)
 - Classer M données : complexité en temps $O(MN \log N)$
- Optimisation des calculs possibles par méthodes plus sophistiquées

KD-Tree

- Structure/topologie des données dans l'espace peut être exploitée pour la recherche des k-PPV
 - Éviter de calculer la distance avec certaines données, qui sont de toute façon trop loin de la donnée à tester
- KD-tree : structure de données en arbre capturant la topologie des données dans un espace euclidien
 - Construction du KD-Tree pour N données : $O(N \log N)$
 - Espace de stockage nécessaire du KD-Tree : O(N)
 - Requête des k-PPV d'une donnée dans un KD-Tree
 - $O(N^{\frac{D-1}{D}} + k)$ en D dimensions
 - $O(\sqrt{N} + k)$ en 2D
 - $O(\log N)$ avec k=1
 - Traitement de M données : $O(M(N^{\frac{D-1}{D}} + k))$
- Implémentations efficaces de KD-tree disponibles (ex. CGAL en C++, scipy.spatial.KDTree en Python)

 $Par\ User_A1,\ CC-BY-SA\ 3.0,\ https://commons.wikimedia.org/wiki/File: KDTree-animation.gif$

Par User_A1, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:KDTree-animation.gif

 $Par\ User_A1,\ CC-BY-SA\ 3.0,\ https://commons.wikimedia.org/wiki/File:KDTree-animation.gif$

 $Par\ User_A1,\ CC-BY-SA\ 3.0,\ https://commons.wikimedia.org/wiki/File:KDTree-animation.gif$

 $Par\ User_A1,\ CC-BY-SA\ 3.0,\ https://commons.wikimedia.org/wiki/File:KDTree-animation.gif$

 $Par\ User_A1,\ CC-BY-SA\ 3.0,\ https://commons.wikimedia.org/wiki/File: KDTree-animation.gif$

4.6 Sélection de prototypes

Taille de la banque d'entraînement

- Compromis à faire sur la taille de la banque d'entraînement
 - Avec $N \to \infty$, algorithme tend vers des performances optimales
 - Mais avec $N \to \infty$, temps de traitement et besoins en stockage faramineux
- Selon la position, la densité des données peut varier
 - Loin des frontières de décision, la densité des points peut être réduite
 - Données aberrantes ou bruitées dans une région de classe différente pourraient être retirées
- Approximation des frontières de décision par la sélection de quelques prototypes représentatifs des données

Condensation de Hart

- Condensation de Hart
 - ullet Objectif : sélectionner seulement des données de ${\mathcal X}$ contribuant au classement
 - Heuristique faisant une construction incrémentale de l'ensemble de prototypes
- Approche suivie
 - Démarrer avec un ensemble quasi vide de prototypes (une donnée choisie au hasard)
 - Ajouter les données seulement si elles sont mal classées selon le PPV
 - Répéter tant qu'il y a des données non sélectionnées mal classées

Condensation de Hart

- 1. Créer un ensemble de prototypes sélectionnés à partir d'une donnée \mathbf{x} choisie aléatoirement dans \mathcal{X} , $\mathcal{Z} = \{\mathbf{x}\}$
- 2. Tant que l'ensemble $\mathcal Z$ est modifié relativement à l'itération précédente :
 - 2.1 Pour chaque donnée $\mathbf{x}^t \in \mathcal{X}$, traitée dans un ordre aléatoire :
 - 2.1.1 Déterminer le plus proche voisin de \mathbf{x}^t dans \mathcal{Z}

$$\mathbf{x}' = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{Z}} \|\mathbf{x}^t - \mathbf{x}\|$$

- 2.1.2 Si l'étiquette de classe de \mathbf{x}' ne correspond pas à celle de \mathbf{x}^t ($r' \neq r^t$), alors sélectionner la donnée comme prototype, $\mathcal{Z} = \mathcal{Z} + \{\mathbf{x}^t\}$
- 3. Retourner l'ensemble ${\mathcal Z}$ comme les prototypes sélectionnés dans ${\mathcal X}$

Édition de Wilson

- Édition de Wilson
 - ullet Heuristique pour retirer les données mal classées de ${\mathcal X}$ selon leave-one-out
 - Permet d'éliminer les données que l'on croit aberrantes ou bruitées
- 1. Créer l'ensemble de prototypes $\mathcal Z$ à partir de toutes les données, $\mathcal Z=\mathcal X$
- 2. Pour chaque donnée $\mathbf{x}^t \in \mathcal{Z}$, traitée dans un ordre aléatoire :
 - 2.1 Déterminer V, soit les k-PPV de \mathbf{x}^t dans $\mathcal{Z}\setminus\{\mathbf{x}^t\}$
 - 2.2 Établir l'étiquette de classement $r_{\mathcal{V}}^t$ de \mathbf{x}^t selon l'étiquette majoritaire des données dans \mathcal{V}
 - 2.3 Si l'étiquette $r_{\mathcal{V}}^t$ est différent de l'étiquette r^t de \mathbf{x}^t , alors retirer la donnée de \mathcal{Z} , $\mathcal{Z} = \mathcal{Z} \setminus \{\mathbf{x}^t\}$
- 3. Retourner l'ensemble ${\mathcal Z}$ comme les prototypes sélectionnés dans ${\mathcal X}$

Autres approches pour générer des prototypes

- Sélection agressive de prototypes : édition de Wilson suivie d'une condensation de Hart
 - Filtrer \mathcal{X} en éliminant d'abord les données aberrantes ou bruitées (édition de Wilson)
 - Sélectionner seulement les données contribuant au classement (condensation de Hart)
- Construction de prototypes
 - ullet Déterminer des prototypes qui ne sont pas des données dans ${\mathcal X}$
 - Approche possible (non supervisé) : K-means de $\mathcal X$ avec valeur de K élevée

Illustration de Wilson + Hart

 ${\tt Par\ Agor153,\ CC-BY-SA\ 3.0,\ https://en.wikipedia.org/wiki/File:Map1NNReducedDataSet.png}$

imes : données retirée par Wilson (k=3) \square : prototypes sélectionné par Hart ; ${f O}$: données retirées par Hart

4.7 Méthodes non paramétriques

dans scikit-learn

Scikit-learn : estimation de densités

- neighbors.KernelDensity : estimation par noyau de densités
 - Paramètres
 - bandwidth (float) : largeur du noyau
 - algorithm (string): algorithme de voisinage à utiliser, peut être 'kd_tree',
 'ball_tree' ou 'auto' (défaut : 'auto')
 - kernel (string): noyau utilisé, peut être 'gaussian', 'tophat', 'epanechnikov',
 'exponential', 'linear' ou 'cosine' (défaut: 'gaussian')
 - Méthodes
 - fit(X) : apprendre la densité sur les données
 - sample(n_samples=1) : génère des échantillons de la distribution (seulement pour noyaux gaussien et tophat)
 - score (X) : retourne la log-vraisemblance des données
 - score_samples(X) : retourne la densité des données

Scikit-learn : k-plus proches voisins

- ullet neighbors.KNeighborsClassifier: classement par les k-plus proches voisins
 - Paramètres
 - n_neighbors (int) : nombre de voisins utilisés (défaut : 5)
 - algorithm (string): algorithme de voisinage à utiliser, peut être 'kd_tree', 'ball_tree', 'brute' ou 'auto' (défaut : 'auto')
 - metric (string ou objet neighbors.DistanceMetric): métrique de distance utilisée.
 Par défaut 'minkowski' avec p = 2, qui revient à une distance euclidienne. Pour autres métriques, voir documentation de neighbors.DistanceMetric.
 - p (int) : valeur de p pour la distance de Minkowski (défaut : 2)
 - Méthodes
 - fit(X,y) : apprendre modèle de classement sur les données
 - kneighbors (X, n_neighbors) : retourne les k-plus proches voisins aux données
 - predict(X) : fait le classement des données
- ullet neighbors.KNeighborsRegressor : régression par les k-plus proches voisins