EXAMPLE OF A RENEWAL APPROACH TO RO Suppose that a time τ after injection, an included makes injections contacts at a rate $\beta\lambda(\tau)$ where we have normalised λ s.t. $\int \lambda(\tau) d\tau = 1$. One such x is the Weiball $\lambda(z) = \frac{k}{t} \left(\frac{z}{t}\right)^{k-1} e^{-(z/e)k}$ which has $\Delta(t) = \int_0^t \lambda(z) dz = 1 - \exp(-(x/e)^k)$. Suppose each individual has a particiting p of lexting at time T and sneed fully reducing their infectivity to zero. Then Ro = 500 BX(t) dt = B $R_T = \beta \left((+\beta) \int_0^{\infty} \lambda(\tau) d\tau + \beta \int_0^{\infty} \lambda(\tau) d\tau \right)$ = Ro(1- p + p (1- oxp(-(+))) (for the weakout) This can be relatively straightforwally extended to multiple times a pobabilities, if we let pi = 100 tests at time Ti 4 not earlier times $R_{I} = R_{o} \left(1 - \frac{1}{2} \dot{p} \dot{u} + \frac{1}{2} \dot{p} \dot{u} \Lambda(T_{i}) \right)$ or with a reduction to ϵA in featurity refer a successful RI = Ro [+ Epi + E[pi((Ti) + E(1-1))]) basically, this approach shifts calculation from Eigensysten -> Integral

suppose the trajectories are suitabled awarding to a state process, i.e. if in the ath state there is overall infections rate & Ba. Ro = IE SBx Alt) dt] letting Tra = Pr(X = a) wy compressionst distribution of this strebatic process, ve have that Ro = PI Sox(2)dz Nas, has this interacts with tearling on different trys is not birish if we let people more betreen behavioral classes during betrieve (at EgM?)