MATH 320/321 (Real Analysis) Notes

Rio Weil

This document was typeset on May 10, 2021

${\bf Contents}$

1	The Real and Complex Number Systems 1.1 The Naturals, Integers, and Rationals	2 2
2	Basic Topology	2
3	Numerical Sequences and Series	2
4	Continuity	2
5	Differentiation	2
6	The Riemann-Stieltjes Integral	2
7	Sequences and Series of Functions	2
8	Some Special Functions	2
9	Functions of Several Variables	2

1 The Real and Complex Number Systems

1.1 The Naturals, Integers, and Rationals

We begin by a review of number systems which are already familiar.

The **Naturals**, denoted by \mathbb{N} , is the set $\{1, 2, 3, \ldots\}$. For $x, y, \in \mathbb{N}$, we have that $x + y \in \mathbb{N}$ and $xy \in \mathbb{N}$, so the naturals are closed under addition and multiplication. However, we note that it is not closed under subtraction; take for example $2 - 4 = -2 \notin \mathbb{N}$.

The **Integers**, denoted by \mathbb{Z} , is the set $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$. It is closed under addition, multiplication, and subtraction. However, it is not closed under division; for example, $1/2 \notin \mathbb{Z}$.

The **Rationals**, denoted by \mathbb{Q} , does not have as obvious of a denumeration. A first attempt would be $\left\{\frac{m}{n}: m \in \mathbb{Z}, n \in \mathbb{N}\right\}$, where $\frac{m_1}{n_1}$ and $\frac{m_2}{n_2}$ are identified if $m_1n_2 = m_2n_1$. This is a good definition if we already have the same rigorous idea of what a rational number is in our mind; i.e. it works because we have a shared preconceived understanding of a rational number.

If this is not the case, it may help to define the rational numbers more rigorously/formally (even if the definition may be slightly harder to parse). As a second attempt at a definition, we can say that \mathbb{Q} is the set of ordered pairs $\{(m,n): m \in \mathbb{Z}, n \in \mathbb{N}\}$. However, this is not quite enough as we need a notion of equivalence between two rational numbers (e.g. (1,2)=(2,4)). Hence, a complete and rigorous definition would be $\mathbb{Q} = \{(m,n): m \in \mathbb{Z}, n \in \mathbb{N}\} / \sim$ where $(m_1,n_1) \sim (m_2,n_2)$ if $m_1n_2 = m_2n_1$.

- 2 Basic Topology
- 3 Numerical Sequences and Series
- 4 Continuity
- 5 Differentiation
- 6 The Riemann-Stieltjes Integral
- 7 Sequences and Series of Functions
- 8 Some Special Functions
- 9 Functions of Several Variables