C-MARL

C-MARL: Communicative Reinforcement Learning Agents for

Landmark Detection in Brain Images

Guy Leroy, Daniel Rueckert, and Amir Alansary

Imperial College London, UK

ONM

MLCN 2020

Novel communicative multi-agent reinforcement learning (C-MARL) system to automatically detect landmarks in 3D medical scans

Motivation

Accurate detection of the landmarks is a vital step for several medical applications such as:

- Image registration
- Biometric measurements of anatomical structure
- Extraction of 2D clinical standard planes

Imperial College London

Challenges

- Noisy scans, large inter- and intra-observer errors
- Requires a lot of scans annotated by expert clinicians

- Multi-agents interact with the 3D image environment E
- At every step, each agent takes an action a towards a target landmark
- Sequential actions are taken based on the maximum accumulated reward signals r
- The optimized policy is formed by the path between the starting points and the target landmarks
- The policy is learned using the Deep Q-network (DQN) [Mnih et al. 2013] algorithm:

$$L_i(\theta_i) = E_{s,a,r,s'} \left[\left(r + \gamma \max_{a'} \hat{Q}(s', a'; \hat{\theta}_i) - Q(s, a; \theta_i) \right)^2 \right]$$

 Agents learn to communicate during their search for different landmarks

Environment - 3D medical brain image

States - 4 stacked RoI per agent

Action space - Step in one of six directions (left, right, up, down, forward, and backward)

Reward - Euclidean distance difference between the agent's previous distance to the landmark and its current one

Terminal state - The state with the lowest q-values when the agents oscillate [Riedmiller 1998]

Implicit communication - Convolution layers are shared for all agents, allowing them to collectively learn image features

Explicit communication - Each agent has its own fully connected layer, which shares information with other agents via communication channels

Training

- 1. Select random positions for the agents
- 2. Follow ε-greedy policy
- 3. When agents oscillate, reduce their RoI and step size (if at lowest scale, end episode)

Evaluation

• <u>Distance error</u> between anatomical landmarks and their respective agents

Runtime (GPU: GTX 1080)

- Training: 2-4 days
- Testing: 2-5 seconds per scan (3-5 agents respectively)

Datasets

- Dataset I: 832 T1-weighted 1.5T MRI brain scans from the ADNI dataset
- Dataset II: 72 3D fetal head ultrasound scans from the iFIND project

32@21x21x21 32@9x9x9 4@45x45x45 conv pool conv pool conv fc 32@43x43x43 32@19x19x19 64@8x8x8 64@2x2x2

C-MARL Architecture (with 2 agents)

64@4x4x4

Agent 3 From Agent 4: 1777mm From Agent 4: 1777mm

Fetal Head Ultrasound

[Experiment-I] Brain MRI - Multiple agents search for different landmarks

- Each of the 3/5/8 agents look for their respective landmarks
- AC/PC: anterior/posterior commissure, SCC: splenium of the corpus callosum
- All distance errors are in mm
- C-MARL outperforms other methods in most of the landmarks

	Single	${f Collab-DQN}$ [17]		C-MARL			
Landmark	agent [2]	3 agents	5 agents	8 agents	3 agents	5 agents	8 agents
\mathbf{AC}	1.14 ± 0.53	1.16 ± 0.59	1.13 ± 0.64	1.21 ± 0.92	$1.04{\pm}0.58$	1.12 ± 0.65	1.84 ± 0.91
PC	1.18 ± 0.55	1.25 ± 0.57	1.19 ± 0.61	1.22 ± 0.93	1.13 ± 0.66	$1.25{\pm}0.55$	1.38 ± 0.64
Outer SCC	1.47 ± 0.64	1.38 ± 0.75	$1.51 {\pm} 0.77$	1.46 ± 0.90	$1.35 {\pm} 0.66$	1.62 ± 0.79	5.20 ± 13.49
Inferior SCC	2.40 ± 1.13	-	$1.39 {\pm} 0.85$	1.53 ± 0.87	-	1.50 ± 0.89	$1.87{\pm}1.28$
Inner SCC	1.46 ± 0.73	-	1.53 ± 0.97	2.09 ± 3.65	-	$1.53 {\pm} 0.76$	3.56 ± 9.42

[Experiment-III] Brain MRI & Fetal Ultrasound - 5 agents search for the same landmark

- All five agents look for the same landmark
- The final location is calculated using the mean of all agents' final location
- C-MARL outperforms previous methods
- Communicating on the same landmark outperforms communication across landmarks

Landmarks	Single agents [2]	Collab-DQN [17]	C-MARL
\mathbf{AC}	$0.97{\pm}0.40$	$0.81{\pm}0.36$	$0.75 {\pm} 0.34$
CSP	$10.43{\pm}4.28$	$6.66{\pm}4.19$	$5.10{\pm}4.25$

[Experiment-II] Fetal Head Ultrasound - Multiple agents search for different landmarks

- Each of the 3/5/8 agents look for their respective landmarks
- RC/LC: right/left cerebellum, CSP: cavum septum pellucidum, CH/AH: center/anterior head
- C-MARL outperforms other methods in 2 landmarks

Single	Collab-DQN [17]			C-MARL		
agent [2]	3 agents	5 agents	8 agents	3 agents	5 agents	8 agents
7.23 ± 3.54	$2.73{\pm}1.71$	4.20 ± 3.76	$3.39{\pm}2.36$	6.53 ± 4.21	$4.06{\pm}2.95$	4.75 ± 3.28
$4.37{\pm}1.45$	$4.20{\pm}2.87$	5.98 ± 8.58	$5.42{\pm}4.50$	5.10 ± 3.66	4.43 ± 32.26	4.64 ± 3.16
9.90 ± 3.13	$5.18{\pm}2.05$	8.02 ± 5.34	5.74 ± 5.07	5.78 ± 3.04	$5.13{\pm}3.51$	7.08 ± 4.13
29.43 ± 17.83	-	$14.45{\pm}5.25$	16.83 ± 12.54	-	$13.00{\pm}4.97$	16.29 ± 8.94
5.73 ± 2.88	-	8.11 ± 5.22	4.10±2.26	-	$4.33{\pm}2.96$	8.89 ± 4.91
	agent [2] 7.23 ± 3.54 4.37 ± 1.45 9.90 ± 3.13 29.43 ± 17.83	agent [2]3 agents 7.23 ± 3.54 2.73 ± 1.71 4.37 ± 1.45 4.20 ± 2.87 9.90 ± 3.13 5.18 ± 2.05 29.43 ± 17.83 -	agent [2]3 agents5 agents 7.23 ± 3.54 2.73 ± 1.71 4.20 ± 3.76 4.37 ± 1.45 4.20 ± 2.87 5.98 ± 8.58 9.90 ± 3.13 5.18 ± 2.05 8.02 ± 5.34 29.43 ± 17.83 - 14.45 ± 5.25	agent [2]3 agents5 agents8 agents 7.23 ± 3.54 2.73 ± 1.71 4.20 ± 3.76 3.39 ± 2.36 4.37 ± 1.45 4.20 ± 2.87 5.98 ± 8.58 5.42 ± 4.50 9.90 ± 3.13 5.18 ± 2.05 8.02 ± 5.34 5.74 ± 5.07 29.43 ± 17.83 - 14.45 ± 5.25 16.83 ± 12.54	agent [2]3 agents5 agents8 agents3 agents 7.23 ± 3.54 2.73 ± 1.71 4.20 ± 3.76 3.39 ± 2.36 6.53 ± 4.21 4.37 ± 1.45 4.20 ± 2.87 5.98 ± 8.58 5.42 ± 4.50 5.10 ± 3.66 9.90 ± 3.13 5.18 ± 2.05 8.02 ± 5.34 5.74 ± 5.07 5.78 ± 3.04 29.43 ± 17.83 - 14.45 ± 5.25 16.83 ± 12.54 -	agent [2]3 agents5 agents8 agents3 agents5 agents 7.23 ± 3.54 2.73 ± 1.71 4.20 ± 3.76 3.39 ± 2.36 6.53 ± 4.21 4.06 ± 2.95 4.37 ± 1.45 4.20 ± 2.87 5.98 ± 8.58 5.42 ± 4.50 5.10 ± 3.66 4.43 ± 32.26 9.90 ± 3.13 5.18 ± 2.05 8.02 ± 5.34 5.74 ± 5.07 5.78 ± 3.04 5.13 ± 3.51 29.43 ± 17.83 - 14.45 ± 5.25 16.83 ± 12.54 - 13.00 ± 4.97

[Experiment-IV] Brain MRI - 4 agents look for 2 landmarks

- Two agents search for the same landmark (Total: 4 agents, 2 landmarks)
- The final location is calculated using the mean of all agents' final location
- Four agents communicating on two landmarks outperform one agent per landmark, but is worse than all agents on the same landmark

Landmarks	Single agents [2]	C-MARL
\mathbf{AC}	$1.17{\pm}0.61$	$\boxed{0.95{\pm}0.43}$
\mathbf{PC}	$1.12{\pm}0.55$	$0.97{\pm}0.46$

Conclusion

- Novel communicative multi-agent reinforcement learning system for detecting multiple anatomical landmarks
- Experiments on several landmarks from adult MRI and fetal head ultrasound
- Results show that allowing the agents to communicate can improve the accuracy of finding the target landmark, compared to previous single- and multi-agents approaches

Future Work

- Optimal number of agents and combination of landmarks
- Adaptive communication channels based on distance between agents

More complex communication channels (e.g. skip connections

and temporal units)

Competitive approaches for communication instead of

collaboration between the agents

Find Me

EMAIL

g.m.leroy@outlook.com

Error - Agent 4 - 0.0mm

Code

https://github.com/gml16/rl-medical https://github.com/amiralansary/rl-medical