

Chapter 2 Foundations of Probability

2.1 (COMPOSING RANDOM ELEMENTS) Show that if f is \mathcal{F}/\mathcal{G} -measurable and g is \mathcal{G}/\mathcal{H} -measurable for sigma algebras \mathcal{F},\mathcal{G} and \mathcal{H} over appropriate spaces, then their composition, $g \circ f$ (defined the usual way: $(g \circ f)(\omega) = g(f(\omega)), \omega \in \Omega$), is \mathcal{F}/\mathcal{H} -measurable.

Proof. Since g is \mathcal{G}/\mathcal{H} -measurable, therefore $\forall C \in \mathcal{H}$, $\exists B = g^{-1}(C) \in \mathcal{G}$. Similarly, since f is \mathcal{F}/\mathcal{G} -measurable, $\forall B \in \mathcal{G}$, $\exists A = f^{-1}(B) \in \mathcal{F}$. Thus $\forall C \in \mathcal{H}$, $\exists A = f^{-1}(g^{-1}(C)) = (g \circ f)^{-1}(C) \in \mathcal{F}$ and the proof is complete.

2.2 Let X_1, \ldots, X_n be random variables on (Ω, \mathcal{F}) . Prove that $X = (X_1, \ldots, X_n)$ is a random vector.

Proof. Since X_i is a random variable $(\forall i=1,2,...,n)$, it holds that X_i is $\mathcal{F}/\mathcal{B}(\mathbb{R})$ -measurable, which means that $\forall B \in \mathcal{B}(\mathbb{R}), \ X_i^{-1}(B) \in \mathcal{F}$. We first prove that X is $\mathcal{F}/(\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) \times \cdots \mathcal{B}(\mathbb{R}))$ -measurable (totally $n \in \mathcal{B}(\mathbb{R})$). $\forall A = A_1 \times A_2 \times \cdots \times A_n \in \mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) \times \cdots \mathcal{B}(\mathbb{R}), \ X^{-1}(A) = X_1^{-1}(A_1) \cap X_2^{-1}(A_2) \cap \cdots \cap X_n^{-1}(A_n) \in \mathcal{F}$, which holds since $X_i^{-1}(A_i) \in \mathcal{F}, \forall i=1,2,...,n$ and \mathcal{F} is a σ -algebra. Thus we conclude that X is $\mathcal{F}/(\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) \times \cdots \mathcal{B}(\mathbb{R}))$ -measurable.

By definition $\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) \times \cdots \mathcal{B}(\mathbb{R}))$ (totally $n \mathcal{B}(\mathbb{R})$ s). And according to the property in 2.5(b), we can get that X is $\mathcal{F}/\mathcal{B}(\mathbb{R}^n)$ -measurable, thus it is a random vector.

2.3 (RANDOM VARIABLE INDUCED σ -ALGEBRA) Let \mathcal{U} be an arbitrary set and (\mathcal{V}, Σ) a measurable space and $X : \mathcal{U} \to \mathcal{V}$ an arbitrary function. Show that $\Sigma_X = \{X^{-1}(A) : A \in \Sigma\}$ is a σ -algebra over \mathcal{U} .

Proof. (i) We need to show that Σ_X is closed under countable union. Let $U_i = X^{-1}(A_i), A_i \in \Sigma, i \in \mathbb{N}$. It follows that $\bigcup_{i=1}^{\infty} U_i = \bigcup_{i=1}^{\infty} X^{-1}(A_i) = X^{-1}(\bigcup_{i=1}^{\infty} A_i)$. Since $\bigcup_{i=1}^{\infty} A_i \in \Sigma, \bigcup_{i=1}^{\infty} U_i \in \Sigma_X$.

- (ii) We need to show that Σ_X is closed under set subtraction -. $\forall U_1, U_2 \in \Sigma_X, U_1 U_2 = X^{-1}(A_1) X^{-1}(A_2) = X^{-1}(A_1 A_2)$. Since $A_1 A_2 \in \Sigma$, $U_1 U_2 \in \Sigma_X$.
- (iii) We need to show that Σ_X is closed to \mathcal{U} itself. Since $\mathcal{U} = X^{-1}(\mathcal{V})$ and $\mathcal{V} \in \Sigma$, it follows that $\mathcal{U} \in \Sigma_X$.

2.4 Let (Ω, \mathcal{F}) be a measurable space and $A \subseteq \Omega$ and $\mathcal{F}_{|A} = \{A \cap B : B \in \mathcal{F}\}.$

Proof. (a) (i) We need to show that $\mathcal{F}|_A$ is closed under countable union. Let $X_1 = A \cap B_1, X_2 = A \cap B_2, ...$ and $X' = \bigcup_{i=1}^{\infty} X_i$ and $B' = \bigcup_{i=1}^{\infty} B_i$ where $B_1, B_2, ... \in \mathcal{F}$. Since \mathcal{F} is sigma algebra, $B' \in \mathcal{F}$. Furthermore, since $X' = \bigcup_{i=1}^{\infty} X_i = \bigcup_{i=1}^{\infty} A \cap B_i = A \cap \left(\bigcup_{i=1}^{\infty} B_i\right) = A \cap B'$, we can see that $X' \in \mathcal{F}|_A$.

(ii) We need to show that $\mathcal{F}|_A$ is closed under set subtraction -. $\forall X_1, X_2 \in \mathcal{F}|_A$, $X_1 - X_2 = (A \cap B_1) - (A \cap B_2) = A \cap (B_1 - B_2)$. Since $B_1 - B_2 \in \mathcal{F}$, it follows that $X_1 - X_2 \in \mathcal{F}|_A$.

- (iii) We need to show that $\mathcal{F}|_A$ is closed to A itself. Since $\emptyset \in \mathcal{F}$, we have $\emptyset = A \cap \emptyset \in \mathcal{F}|_A$ and $A = \emptyset^C \in \mathcal{F}|_A$.
- (b) Let $P = \{A \cap B : B \in \mathcal{F}\}, Q = \{B : B \subset A, B \in \mathcal{F}\}.$
 - (i) We claim that $P \subset Q$. Let $X = A \cap B$, $B \in \mathcal{F}$. Since $A \in \mathcal{F}$, $X = A \cap B \in \mathcal{F}$. Furthermore, $X \in Q = \{B : B \subset A, B \in \mathcal{F}\}$.
 - (ii) We claim that $Q \subset P$. $\forall X \in Q$, we have $X \subset A$ and $X \in \mathcal{F}$, which means that $X = X \cap A$ and $X \in \mathcal{F}$. It follows that $X \in P$.

- (iii) Take both (i)(ii) into consideration, we can see that P = Q.
- **2.5** Let $\mathcal{G} \subseteq 2^{\Omega}$ be a non-empty collection of sets and define $\sigma(\mathcal{G})$ as the smallest σ -algebra that contains \mathcal{G} . By 'smallest' we mean that $\mathcal{F} \in 2^{\Omega}$ is smaller than $\mathcal{F}' \in 2^{\Omega}$ if $\mathcal{F} \subset \mathcal{F}'$.
 - (a) Show that $\sigma(\mathcal{G})$ exists and contains exactly those sets A that are in every σ -algebra that contains \mathcal{G} .
 - (b) Suppose (Ω', \mathcal{F}) is a measurable space and $X : \Omega' \to \Omega$ be \mathcal{F}/\mathcal{G} -measurable. Show that X is also $\mathcal{F}/\sigma(\mathcal{G})$ -measurable. (We often use this result to simplify the job of checking whether a random variable satisfies some measurability property).
 - (c) Prove that if $A \in \mathcal{F}$ where \mathcal{F} is a σ -algebra, then $\mathbb{I}\{A\}$ is \mathcal{F} -measurable.
- *Proof.* (a) Let $\mathcal{K} = \{\mathcal{F} | \mathcal{F} \text{ is a } \sigma\text{-algebra and contains } \mathcal{G}\}$, It holds obviously that \mathcal{K} is not an empty set since it contains $2^{\mathcal{G}}$.

Then $\bigcap_{\mathcal{F} \in \mathcal{K}} \mathcal{F}$ contains exactly those sets that are in every σ -algebra that contains \mathcal{G} . Given its existence, we only need to prove that $\bigcap_{\mathcal{F} \in \mathcal{K}} \mathcal{F}$ is the smallest σ -algebra that contains \mathcal{G} .

First we show $\bigcap_{\mathcal{F} \in \mathcal{K}} \mathcal{F}$ is a σ -algebra. Since \mathcal{F} is a σ -algebra and therefore $\Omega \in \mathcal{F}$ for all $\mathcal{F} \in \mathcal{K}$, it follows that $\Omega \in \bigcap_{\mathcal{F} \in \mathcal{K}} \mathcal{F}$. Next, for any $A \in \bigcap_{\mathcal{F} \in \mathcal{K}} \mathcal{F}$, $A^c \in \mathcal{F}$ for all $\mathcal{F} \in \mathcal{K}$. Since they are all σ -algebras, $A^c \in \mathcal{F}$ for all $\mathcal{F} \in \mathcal{K}$. Hence $A^c \in \bigcap_{\mathcal{F} \in \mathcal{K}} \mathcal{F}$. Finally, for any $\{A_i\}_i \subset \bigcap_{\mathcal{F} \in \mathcal{K}} \mathcal{F}$, $\{A_i\}_i \subset \mathcal{F}$ for all $\mathcal{F} \in \mathcal{K}$. Since they are all σ -algebras, $\bigcup_i A_i \in \mathcal{F}$ for all $\mathcal{F} \in \mathcal{K}$. Hence $\bigcup_i A_i \in \bigcap_{\mathcal{F} \in \mathcal{K}} \mathcal{F}$.

Next we want to prove $\bigcap_{\mathcal{F} \in \mathcal{K}} \mathcal{F}$ is the smallest σ -algebra that contains \mathcal{G} . It is quite obvious that $\bigcap_{\mathcal{F} \in \mathcal{K}} \mathcal{F} \subseteq \mathcal{F}'$ for all $\mathcal{F}' \in \mathcal{K}$.

Above all, we have $\sigma(\mathcal{G}) = \bigcap_{\mathcal{F} \in \mathcal{K}} \mathcal{F}$.

(b) Define $\mathcal{H} = \{A : X^{-1}(A) \in \mathcal{F}\}$. To show X is $\mathcal{F}/\sigma(\mathcal{G})$ -measurable, it is sufficient to prove $\sigma(\mathcal{G}) \subseteq \mathcal{H}$. First we prove that \mathcal{H} is a σ -algebra. It holds that $\Omega \in \mathcal{H}$ since $X^{-1}(\Omega) = \Omega' \in \mathcal{F}$. For any $A \in \mathcal{H}$, we have $X^{-1}(A) \in \mathcal{F}$, thus $X^{-1}(A^c) = X^{-1}(A)^c \in \mathcal{F}$, which holds since \mathcal{F} is a σ -algebra. Thus $A^c \in \mathcal{H}$. For any $A_i \in \mathcal{F}$, $i = 1, 2, ..., X^{-1}(A_i) \in \mathcal{F}$, $X^{-1}(\cup_i A_i) = \cup_i X^{-1}(A_i) \in \mathcal{F}$. We can then conclude $\cup_i A_i \in \mathcal{H}$ and \mathcal{H} is a σ -algebra.

Also, since X is \mathcal{F}/\mathcal{G} -measurable, we have $\mathcal{G} \subseteq \mathcal{H}$. Thus \mathcal{H} is σ -algebra that contains \mathcal{G} . By applying the result of (a), we have $\sigma(\mathcal{G}) \subseteq \mathcal{H}$, which completes the proof.

- (c) The idea is to show $\forall B \in \mathfrak{B}(\mathbb{R}), \mathbb{I}\{A\}^{-1}(B) \in \mathcal{F}.$
 - If $\{0,1\} \in B$, $\mathbb{I}\{A\}^{-1}(B) = \Omega \in \mathcal{F}$. If $\{0\} \in B$, $\mathbb{I}\{A\}^{-1}(B) = A^c \in \mathcal{F}$. If $\{1\} \in B$, $\mathbb{I}\{A\}^{-1}(B) = A \in \mathcal{F}$. If $\{0,1\} \cap B = \emptyset$, $\mathbb{I}\{A\}^{-1}(B) = \emptyset \in \mathcal{F}$.

2.6 (KNOWLEDGE AND σ -ALGEBRAS: A PATHOLOGICAL EXAMPLE) In the context of Lemma 2.5, show an example where Y = X and yet Y is not $\sigma(X)$ measurable.

HINT As suggested after the lemma, this can be arranged by choosing $\Omega = \mathcal{Y} = \mathcal{X} = \mathbb{R}, X(\omega) = Y(\omega) = \omega, \mathcal{F} = \mathcal{H} = \mathfrak{B}(\mathbb{R})$ and $\mathcal{G} = \{\emptyset, \mathbb{R}\}$ to be the trivial σ -algebra.

Proof. As the hint suggests, Let $\Omega = \mathcal{Y} = \mathcal{X} = \mathbb{R}, X(\omega) = Y(\omega) = \omega, \mathcal{F} = \mathcal{H} = \mathfrak{B}(\mathbb{R})$. In this case, $\sigma(X) = \{X^{-1}(A) : A \in \mathcal{G}\} = \{\emptyset, \mathbb{R}\}$, we can find that $Y^{-1}((0,1)) = (0,1) \notin \sigma(X)$, thus Y is not $\sigma(X)$ -measurable.

2.7 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $B \in \mathcal{F}$ be such that $\mathbb{P}(B) > 0$. Prove that $A \mapsto \mathbb{P}(A|B)$ is a probability measure over (Ω, \mathcal{F}) .

Proof. First we have $\mathbb{P}(\Omega \mid B) = \frac{\mathbb{P}(\Omega \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1$. Then, for any $A \in \mathcal{F}$, $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \geq 0$. Next, for any $A \in \mathcal{F}$, $\mathbb{P}(A^c \mid B) = \frac{\mathbb{P}(A^c \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}((\Omega - A) \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B) - \mathbb{P}(A \cap B)}{\mathbb{P}(B)} = 1 - \mathbb{P}(A \mid B)$. Finally, for all countable collections of disjoint sets $\{A_i\}_i$ with $A_i \in \mathcal{F}$ for all i, we have $\mathbb{P}(\bigcup_i A_i \mid B) = \frac{\mathbb{P}((\bigcup_i A_i) \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(\bigcup_i (A_i \cap B))}{\mathbb{P}(B)} = \sum_i \mathbb{P}(A_i \mid B)$.

2.8 (Bayes law) Verify (2.2).

Proof. With the definition of conditional probability, we have $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}$.

- **2.9** Consider the standard probability space $(\Omega, \mathcal{F}, \mathbb{P})$ generated by two standard, unbiased, six-sided dice that are thrown independently of each other. Thus, $\Omega = \{1, ..., 6\}^2$, $\mathcal{F} = 2^{\Omega}$ and $\mathbb{P}(A) = |A|/6^2$ for any $A \in \mathcal{F}$ so that $X_i(\omega) = \omega_i$ represents the outcome of throwing dice $i \in \{1, 2\}$.
 - (a) Show that the events $X_1 < 2$ and $X_2 = 1$ is even are independent of each other.
 - (b) More generally, show that for any two events, $A \in \sigma(X_1)$ and $B \in \sigma(X_2)$, are independent of each other.
- $\begin{array}{ll} \textit{Proof.} & \text{(a) The event } \{X_1 < 2\} = \{1\} \times \{1,2,3,4,5,6\}, \ \{X_2 \text{ is even }\} = \{1,2,3,4,5,6\} \times \{2,4,6\}, \\ \{X_1 < 2, X_2 \text{ is even }\} = \{(1,2),(1,4),(1,6)\}. \\ & \text{Thus } \mathbb{P}(X_1 < 2) = \frac{6}{36} = \frac{1}{6}, \ \mathbb{P}(X_2 \text{ is even }) = \frac{18}{36} = \frac{1}{2}, \ \mathbb{P}(X_1 < 2, X_2 \text{ is even }) = \frac{3}{36} = \frac{1}{12}, \ \text{which satisfies } \mathbb{P}(X_1 < 2, X_2 \text{ is even }) = \mathbb{P}(X_1 < 2) \times \mathbb{P}(X_2 \text{ is even }). \ \text{These two events are independent of each other.} \end{array}$
 - (b) $\sigma(X_1) = \{X_1^{-1}(A'), A' \subseteq [6]\} = \{A' \times [6] : A' \subseteq [6]\}, \ \sigma(X_2) = \{X_2^{-1}(B'), B' \subseteq [6]\} = \{[6] \times B' : B' \subseteq [6]\}.$ Thus $\forall A \in \sigma(X_1), B \in \sigma(X_2), \ \mathbb{P}(A) = \frac{|A'| \times 6}{36} = \frac{|A'|}{6}, \ \mathbb{P}(B) = \frac{6 \times |B'|}{36} = \frac{|B'|}{6} \ \text{and} \ \mathbb{P}(A \cap B) = \frac{|A'| \times |B'|}{36} = \mathbb{P}(A) \times \mathbb{P}(B).$ So A and B are independent of each other.
- **2.10** (SERENDIPITOUS INDEPENDENCE) The point of this exercise is to understand independence more deeply. Solve the following problems:
 - (a) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Show that \emptyset and Ω (which are events) are independent of any other event. What is the intuitive meaning of this?
 - (b) Continuing the previous part, show that any event $A \in \mathcal{F}$ with $\mathbb{P}(A) \in \{0,1\}$ is independent of any other event.
 - (c) What can we conclude about an event $A \in \mathcal{F}$ that is independent of its complement, $A^c = \Omega \setminus A$? Does your conclusion make intuitive sense?
 - (d) What can we conclude about an event $A \in \mathcal{F}$ that is independent of itself? Does your conclusion make intuitive sense?
 - (e) Consider the probability space generated by two independent flips of unbiased coins with the smallest possible σ -algebra. Enumerate all pairs of events A, B such that A and B are independent of each other.

- (f) Consider the probability space generated by the independent rolls of two unbiased three-sided dice. Call the possible outcomes of the individual dice rolls 1, 2 and 3. Let X_i be the random variable that corresponds to the outcome of the *i*th dice roll $(i \in \{1,2\})$. Show that the events $\{X_1 \leq 2\}$ and $\{X_1 = X_2\}$ are independent of each other.
- (g) The probability space of the previous example is an example when the probability measure is uniform on a finite outcome space (which happens to have a product structure). Now consider any n-element, finite outcome space with the uniform measure. Show that A and B are independent of each other if and only if the cardinalities |A|, |B|, $|A \cap B|$ satisfy $n|A \cap B| = |A| \cdot |B|$.
- (h) Continuing with the previous problem, show that if n is prime, then no non-trivial events are independent (an event A is **trivial** if $\mathbb{P}(A) \in \{0,1\}$).
- (i) Construct an example showing that pairwise independence does not imply mutual independence.
- (j) Is it true or not that A, B, C are mutually independent if and only if $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$? Prove your claim.

Proof. (a) Empty sets and complete sets are independent of any event:

$$P(A \cap \Omega) = P(A) = 1 * P(A) = P(\Omega) * P(A)$$
$$P(A \cap \phi) = P(\phi) = 0 = P(\phi) * P(A)$$

(b) Prove when P(A) = 0 or 1, A is independent of any event: for any $B \in \Omega$ $P(A) \in \{0,1\}$

When
$$P(A)=1$$
, $P(A^c \cap B) \leq P(A^c)=1-P(A)=0$,
we have $P(A \cap B)=P(A \cap B)+P(A^c \cap B)=P(B)=P(A)P(B)$
When $P(A)=0$, we have $P(A \cap B) \leq P(A)=0=P(A)P(B)$

- (c) $P(A^c \cap A) = P(A)P(A^c)$ we have $0 = P(A)(1 - P(A)) \Rightarrow P(A) \in \{0, 1\}$
- (d) $P(A \cap A) = P(A)P(A), P(A) = 0, 1$
- (e) $\Omega = \{(1,1),(1,0),(0,1),(0,0)\}.A,B \subseteq \Omega$ denote the events.

First of all, if either A or B is trival, then A and B are independent to each other.

Then, we only need to enumerate $A, B \notin \Omega, \emptyset$ satisfied that $P(A \cap B) = P(A)P(B)$. Since $P(A \cap B) = \frac{|A \cap B|}{|\Omega|} = \frac{|A \cap B|}{4}$ and $P(A)P(B) = \frac{|A||B|}{16}$, we can conclude that |A| = 2, |B| = 2 and $|A \cap B| = 1$ is the only situation satisfying the condition.

Thus, besides trival A or B, all A, B satisfying |A| = 2, |B| = 2 and $|A \cap B| = 1$ are the solution.

- (f) $P(X_1 \le 2) = 2/3$ $P(X_1 = X_2) = 3/9 = 1/3$ $P(X_1 \le 2, X_1 = X_2) = P(X_1 = X_2 = 1) + P(X_1 = X_2 = 2) = 1/9 + 1/9 = 2/9$ So, $P(X_1 \le 2, X_1 = X_2) = P(X_1 = X_2)P(X_1 \le 2)$
- (g) Necessity : $\frac{|A \cap B|}{n} = P(A \cap B) = P(A)P(B) = \frac{|A|}{n} \frac{|B|}{n}$ $\Rightarrow |A \cap B| * n = |A||B|$ Sufficiency : $|A \cap B| * n = |A||B| \Rightarrow \frac{|A|}{n} \frac{|B|}{n} = \frac{|A \cap B|}{n}$ $\Rightarrow P(A \cap B) = P(A)P(B)$

- (h) If A, B are two non-trival events independent to each other, $|A \cap B| * n = |A||B| \Rightarrow n||A||B| \Rightarrow n||A||B$
- (i) Let $\Omega = \{1, 2, 3, 4\}$, $A = \{1, 2\}$, $B = \{1, 3\}$, $C = \{1, 4\}$. A, B, C are pairwise independent but $P(A \cap B \cap C) = \frac{1}{4} \neq P(A)P(B)P(C) = \frac{1}{8}$.
- (j) Let's take a counter example: roll a die and set the A event to $\{1, 2, 3\}$, B event is set to $\{1, 2, 4\}$, C event is set to $\{1, 4, 5, 6\}$

$$P(X_1 X_2 X_3) = \frac{1}{6}$$

$$P(X_1) P(X_2) P(X_3) = (1/2) * (1/2) * (2/3) = 1/6$$
while $P(X_1 \cap X_2) = 1/3 \neq \frac{1}{2} * \frac{1}{2}$

2.11

(a) $X:\Omega \to x$

Because X, Y are independent equivalent $to\sigma(X), \sigma(Y)$ are independent; For any $A \in \sigma(Y)$,

$$P(\phi \bigcap A) = P(\phi) = 0 = P(\phi)P(A)$$
$$P(\Omega \bigcap A) = P(A) = P(\Omega)P(A)$$

(b) We know that P(X = x) = 1

$$P(X = x|Y) = \frac{P((X = x) \cap Y)}{P(Y)} = 1 = P(X = x)$$

$$P(X \neq x|Y) = 1 - P(X = x|Y) = 0 = P(X \neq x)$$

(c) Notice the relation: P(A) = P(X(A) = 1)

$$P(B) = P(X(B) = 1)$$

$$P(A \cap B) = P(X(A \cap B) = 1)$$

The first two formulas follow the definition. Let's prove the third equation:

$$P(X(A \cap B) = P(X(A) + X(B) - X(A \cup B) = 1)$$

Let's discuss $X(A), X(B), X(A \mid JB)$:

X(A)	X(B)	X(AUB)	$X(A) + X(B) - X(A \bigcup B)$
1	1	1	1
1	0	1	0
0	1	1	0
0	0	0	0

We can see that, $P(X(A \cap B) = P(X(A) + X(B) - X(A \cup B) = 1)$, this is only one case of the first row of the table.

that is
$$P(X(A \bigcap B) = 1) = P(X(A) = 1, X(B) = 1) = P(A \bigcap B)$$

that is
$$P(X(A \cap B) = 1) = P(A \cap B)$$

So,
$$P(A \cap B) = P(A)P(B)$$
 is equivalent to $P(X(A \cap B) = 1) = P(X(A) = 1)P(X(B) = 1)$

(d) A_i pairwise i $\Leftrightarrow I\{A_i\}$ pairwise i

mutual i
$$\Leftrightarrow P(\bigcap_i A_i) = \prod_i P(A_i)$$

$$\Leftrightarrow P(\bigcap_{i \in K^I} A_i \bigcap \bigcap_{i \in K^I} A_i^c)$$

$$=\prod_{i\in K^I} P(A_i)\prod_{i\in K^I} P(A_i^c)$$

$$\Leftrightarrow \{\phi, \Omega, A_i, A_i^c\} \text{ mutual independent}$$

$$\Leftrightarrow \sigma(I\{w \in A_i\}) \text{mutual i}$$

$$\Leftrightarrow I\{w \in A_i\} \text{ mutual i}$$

2.12 X integrable |X| integrable

(a) For any
$$A \in B(R) \Rightarrow A$$
 is open,
so, $f^{-1}(A)$ is open, so $f^{-1}(A) \in B(R)$

(b) X is known to be a random variable f(x) = |x| continuous. r.v. X is $\mathbf{F}/\mathbf{B}(R)$ -measurable $\Rightarrow |X|$ is $\mathbf{B}(R)/\mathbf{B}(R)$ -measurable $\Rightarrow |X|$ is $\mathbf{F}/\mathbf{B}(R)$ -measurable $\Rightarrow |X|$ is r.v.

From (a)(b),X integrable $\Leftrightarrow |X|$ integrable.

2.14

(a) Assume $\forall i, X_i$ is simple function.

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]$$

$$= \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i,j} \mathbb{I}_{A_{i,j}} \{\omega\}\right]$$

$$= \int_{\Omega} \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i,j} \mathbb{I}_{A_{i,j}} \{\omega\} d\mathbb{P}(\omega)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i,j} \int_{\Omega} \mathbb{I}_{A_{i,j}} \{\omega\} d\mathbb{P}(\omega)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i,j} \mathbb{P}(A_{i,j})$$

$$= \sum_{i=1}^{n} \mathbb{E}[X_{i}]$$

(b) Assume $\forall i, X_i$ is non-negative random variable.

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]$$

$$= \sup\left\{\int_{\Omega} h d\mathbb{P} : h \text{ is simple and } 0 \leq h \leq X = \sum_{i=1}^{n} X_{i}\right\}$$

$$= \sum_{i=1}^{n} \sup\left\{\int_{\Omega} h_{i} d\mathbb{P} : h_{i} \text{ is simple and } 0 \leq h_{i} \leq X_{i}\right\}$$

$$= \sum_{i=1}^{n} \mathbb{E}[X_{i}]$$

(c) Assume $\forall i, X_i$ is arbitrary random variable.

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]$$

$$= \mathbb{E}\left[\sum_{i=1}^{n} (X_{i}^{+} - X_{i}^{-})\right]$$

$$= \mathbb{E}\left[\sum_{i=1}^{n} X_{i}^{+}\right] - \mathbb{E}\left[\sum_{i=1}^{n} X_{i}^{-}\right]$$

$$= \sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{+}\right] - \sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{-}\right]$$

$$= \sum_{i=1}^{n} (\mathbb{E}[X_{i}^{+}] - \mathbb{E}[X_{i}^{-}])$$

$$= \sum_{i=1}^{n} \mathbb{E}[X_{i}]$$

2.15

(a) Assume X is simple function.

$$\mathbb{E}[cX] = \mathbb{E}\left[c\sum_{i=1}^{n} \alpha_{i} \mathbb{I}_{A_{i}}\{\omega\}\right]$$

$$= \int_{\Omega} c\sum_{i=1}^{n} \alpha_{i} \mathbb{I}_{A_{i}}\{\omega\} d\mathbb{P}(\omega)$$

$$= c\int_{\Omega} \sum_{i=1}^{n} \alpha_{i} \mathbb{I}_{A_{i}}\{\omega\} d\mathbb{P}(\omega)$$

$$= c\mathbb{E}[X]$$

(b) Assume X is non-negative random variable.

$$\mathbb{E}[cX] = \sup \left\{ \int_{\Omega} h d\mathbb{P} : h \text{ is simple and } 0 \le h \le cX \right\}$$
$$= c \sup \left\{ \int_{\Omega} h' d\mathbb{P} : h' \text{ is simple and } 0 \le h' \le X \right\}$$
$$= c \mathbb{E}[X]$$

(c) Assume X is arbitrary random variable.

(i)
$$c \ge 0$$

$$\mathbb{E}[cX] = \mathbb{E}[(cX)^+] - \mathbb{E}[(cX)^-]$$

$$= \mathbb{E}[c(X)^+] - \mathbb{E}[c(X)^-]$$

$$= c\mathbb{E}[(X)^+] - c\mathbb{E}[(X)^-]$$

$$= c\mathbb{E}[X]$$

(ii)
$$c < 0$$

By definition, we have

$$(cX)^+ = cX\mathbb{I}\{cX > 0\}$$

= $cX\mathbb{I}\{x < 0\}$ (since ci0)
= $(-c)(-X)\mathbb{I}\{X < 0\}$
= $(-c)(X)^-$

Along the similar line, we have

$$(cX)^{-} = -cX\mathbb{I}\{cX < 0\}$$
$$= -cX\mathbb{I}\{X > 0\}$$
$$= -c(X)^{+}$$

Now we can see that

$$\mathbb{E}[cX] = \mathbb{E}[(cX)^+] - \mathbb{E}[(cX)^-]$$

$$= \mathbb{E}[(-c)(X)^-] - \mathbb{E}[-c(X)^+]$$

$$= -c\mathbb{E}[(X)^-] + c\mathbb{E}[(X)^+]$$

$$= c\mathbb{E}[X]$$

2.16

(a) Assume $X = \sum_{i=1}^n \alpha_i \mathbb{I}_{A_i} \{\omega\}, Y = \sum_{j=1}^m \beta_j \mathbb{I}_{B_j} \{\omega\}$ are simple functions.

$$\begin{split} \mathbb{E}[XY] &= \mathbb{E}[\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i}\beta_{j} \mathbb{I}_{A_{i}} \{\omega\} \mathbb{I}_{B_{j}} \{\omega\}] \\ &= \int_{\Omega} \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i}\beta_{j} \mathbb{I}_{A_{i}} \{\omega\} \mathbb{I}_{B_{j}} \{\omega\} d\mathbb{P}(\omega) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i}\beta_{j} \mathbb{P}(A_{i} \bigcap B_{j}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i}\beta_{j} \mathbb{P}(A_{i}) \mathbb{P}(B_{j}) \text{ (by the definition of independence)} \\ &= \left(\sum_{i=1}^{n} \alpha_{i} \mathbb{P}(A_{i})\right) \left(\sum_{j=1}^{m} \beta_{j} \mathbb{P}(B_{i})\right) \\ &= \mathbb{E}[X] \mathbb{E}[Y] \end{split}$$

(b) Assume X, Y are non-negative random variables.

$$\begin{split} \mathbb{E}[XY] &= \sup \left\{ \mathbb{E}[h] : h \text{ h is simple and } 0 \leq h \leq XY \right\} \\ &= \sup \left\{ \mathbb{E}[h_1 h_2] : h_1, h_2 \text{ are simple and } 0 \leq h_1 \leq X, 0 \leq h_2 \leq Y \right\} \\ &= \sup \left\{ \mathbb{E}[h_1] \mathbb{E}[h_2] : h_1, h_2 \text{ are simple and } 0 \leq h_1 \leq X, 0 \leq h_2 \leq Y \right\} \\ &= \sup \left\{ \mathbb{E}[h_1] : h_1 \text{ is simple and } 0 \leq h_1 \leq X \right\} \cdot \sup \left\{ \mathbb{E}[h_2] : h_2 \text{ is simple and } 0 \leq h_2 \leq Y \right\} \\ &= \mathbb{E}[X] \mathbb{E}[Y] \end{split}$$

(c) Assume X, Y are arbitrary random variables.

$$\begin{split} \mathbb{E}[XY] &= \mathbb{E}[(X^{+} - X^{-})(Y^{+} - Y^{-})] \\ &= \mathbb{E}[X^{+}Y^{+} - X^{+}Y^{-} - X^{-}Y^{+} + X^{-}Y^{-}] \\ &= \mathbb{E}[X^{+}]\mathbb{E}[Y^{+}] - \mathbb{E}[X^{+}]\mathbb{E}[Y^{-}] - \mathbb{E}[X^{-}]\mathbb{E}[Y^{+}] + \mathbb{E}[X^{-}]\mathbb{E}[Y^{-}] \\ &= (\mathbb{E}[X^{+}] - \mathbb{E}[X^{-}])(\mathbb{E}[Y^{+}] - \mathbb{E}[Y^{-}]) \\ &= \mathbb{E}[X]\mathbb{E}[Y] \end{split}$$

2.17 Before proving Ex.2.17, we need to make minor changes to the definition of conditional expectation and give a small lemma.

Definition 1. Assume $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. $\mathcal{G} \subset \mathcal{F}$ is a sub- σ -algebra of \mathcal{F} . $X : \Omega \to \mathbb{R}$ is a random variable. The conditional expectation of X given \mathcal{G} is denoted by any random variable Y which satisfies the following 2 properties:

- Y is G-measurable
- $\forall A \in \mathcal{G}$,

$$\int_{A} Y d\mathbb{P} = \int_{A} X d\mathbb{P}$$

Formally, we denoted Y by notation $\mathbb{E}[X|\mathcal{G}]$.

Lemma 1. If X is \mathcal{G} -measurable, then $\mathbb{E}[X|\mathcal{G}] = X$ holds a.s.

Proof. Since X is \mathcal{G} -measurable, property 1 holds. And property 2 holds trivially.

We can now handily prove Ex.2.17. Since $\mathbb{E}[X|\mathcal{G}_1]$ is \mathcal{G}_1 -measurable and $\mathcal{G}_1 \subset \mathcal{G}_2$, we can see that $\mathbb{E}[X|\mathcal{G}_1]$ is \mathcal{G}_2 -measurable. By Lemma 1, $\mathbb{E}[\mathbb{E}[X|\mathcal{G}_1]|\mathcal{G}_2] = \mathbb{E}[X|\mathcal{G}_1]$ holds almost surely.

- $\textbf{2.18} \text{ Suppose } X = Y \text{ with } \mathbb{V}[X] \neq 0. \text{ Then, we have } \mathbb{E}[XY] = \mathbb{E}[X^2] = \mathbb{V}[X] + \mathbb{E}[X]^2 \neq \mathbb{E}[X]^2 = \mathbb{E}[X]\mathbb{E}[Y].$
- **2.19** As the hint suggests, $X(\omega) = \int_{[0,\infty)} \mathbb{I}\{[0,X(\omega)]\}(x)dx$. Hence, we have

$$\mathbb{E}[X(\omega)] = \mathbb{E}\left[\int_{[0,\infty)} \mathbb{I}\{[0, X(\omega)]\}(x) dx\right]$$

$$= \int_{[0,\infty)} \mathbb{E}\left[\mathbb{I}\{[0, X(\omega)]\}(x)] dx$$

$$= \int_{[0,\infty)} P(X(\omega) > x) dx$$
(1)

where the second equality is given by Fubini-Tonell theorem.

- **2.20** We prove the following properties all by contradiction (for the sake of rigor).
 - (1) Let $G = \{\omega : \mathbb{E}[X \mid \mathcal{G}](\omega) < 0\}$. Then $G \in \mathcal{G}$ since $\mathbb{E}[X \mid \mathcal{G}]$ is \mathcal{G} -measurable by definition. Now suppose $\mathbb{P}(G) > 0$, then

$$\int_{G} X d\mathbb{P} = \int_{G} \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P}$$

$$< 0$$
(2)

where the equality holds by the definition of conditional expectation. Now we can find it contradictory as $X \geq 0$. Therefore $\mathbb{P}(G) = 0$, and $\mathbb{E}[X \mid \mathcal{G}] \geq 0$ a.s.

(2) Let $G = \{\omega : \mathbb{E}[1 \mid \mathcal{G}](\omega) \neq 1\}$. Then $G \in \mathcal{G}$ since $\mathbb{E}[1 \mid \mathcal{G}]$ is \mathcal{G} -measurable by definition. Now suppose $\mathbb{P}(G) > 0$, then

$$\int_{G} 1d\mathbb{P} = \int_{G} \mathbb{E}(1 \mid \mathcal{G})d\mathbb{P}$$

$$\neq 1$$
(3)

where the equality holds by the definition of conditional expectation. Now we can find it contradictory as $\int_G 1d\mathbb{P} = 1$. Therefore $\mathbb{P}(G) = 0$, and $\mathbb{E}[1 \mid \mathcal{G}] = 1$ a.s.

(3) Let $G = \{\omega : \mathbb{E}[X + Y \mid \mathcal{G}](\omega) \neq \mathbb{E}[X \mid \mathcal{G}](\omega) + \mathbb{E}[Y \mid \mathcal{G}](\omega)\}$. Then $G \in \mathcal{G}$ since $\mathbb{E}[X + Y \mid \mathcal{G}]$, $\mathbb{E}[X \mid \mathcal{G}]$, and $\mathbb{E}[Y \mid \mathcal{G}]$ are all \mathcal{G} -measurable by definition. Now suppose $\mathbb{P}(G) > 0$, then

$$\int_{G} (X+Y)d\mathbb{P} = \int_{G} \mathbb{E}(X+Y\mid\mathcal{G})d\mathbb{P}
\neq \int_{G} [\mathbb{E}(X\mid\mathcal{G}) + \mathbb{E}(Y\mid\mathcal{G})]d\mathbb{P}
= \int_{G} \mathbb{E}(X\mid\mathcal{G})d\mathbb{P} + \int_{G} \mathbb{E}(Y\mid\mathcal{G})d\mathbb{P}
= \int_{G} Xd\mathbb{P} + \int_{G} Yd\mathbb{P}$$
(4)

where the first equality and the last one hold by the definition of conditional expectation. It contradicts the linearity of expectation in that $\int_G (X+Y)d\mathbb{P} \neq \int_G Xd\mathbb{P} + \int_G Yd\mathbb{P}$. Therefore $\mathbb{P}(G)=0$, and $\mathbb{E}(X+Y\mid\mathcal{G})=\mathbb{E}(X\mid\mathcal{G})+\mathbb{E}(Y\mid\mathcal{G})$ a.s.

(4) Let $G = \{\omega : \mathbb{E}[XY \mid \mathcal{G}](\omega) \neq Y(\omega)\mathbb{E}[X \mid \mathcal{G}](\omega)\}$. Then $G \in \mathcal{G}$ since $\mathbb{E}[XY \mid \mathcal{G}]$, Y, and $\mathbb{E}[X \mid \mathcal{G}]$ are all \mathcal{G} -measurable by definition. Now suppose $\mathbb{P}(G) > 0$, then

$$\int_{G} XY d\mathbb{P} = \int_{G} \mathbb{E}(XY \mid \mathcal{G}) d\mathbb{P}
\neq \int_{G} Y \mathbb{E}[X \mid \mathcal{G}] d\mathbb{P}$$
(5)

Now our target is to show it is contradictory. This is a bit tricky, so we start from the simplest case and then generalize it step by step.

a. Suppose $Y = \mathbb{I}_A$ for some $A \in \mathcal{G}$. Then

$$\int_{G} XY d\mathbb{P} = \int_{G \cap A} X d\mathbb{P} \tag{6}$$

and

$$\int_{G} Y \mathbb{E}[X \mid \mathcal{G}] d\mathbb{P} = \int_{G \cap A} \mathbb{E}[X \mid \mathcal{G}] d\mathbb{P}$$

$$= \int_{G \cap A} X d\mathbb{P}$$
(7)

Hence it holds that $\int_{\mathcal{C}} XY d\mathbb{P} = \int_{\mathcal{C}} Y\mathbb{E}[X \mid \mathcal{C}] d\mathbb{P}$.

b. Suppose Y is non-negative and let $\{Y_n\}$ be sequence of non-negative simple functions converging to Y from below. Then by linearity, it holds that

$$\int_{G} X^{+} Y_{n} d\mathbb{P} = \int_{G} Y_{n} \mathbb{E}[X^{+} \mid \mathcal{G}] d\mathbb{P}$$
(8)

and

$$\int_{G} X^{-} Y_{n} d\mathbb{P} = \int_{G} Y_{n} \mathbb{E}[X^{-} \mid \mathcal{G}] d\mathbb{P}$$

$$\tag{9}$$

Applying the monotone convergence we end up with

$$\int_{G} X^{+} Y d\mathbb{P} = \int_{G} Y \mathbb{E}[X^{+} \mid \mathcal{G}] d\mathbb{P}$$
(10)

and

$$\int_{G} X^{-} Y d\mathbb{P} = \int_{G} Y \mathbb{E}[X^{-} \mid \mathcal{G}] d\mathbb{P}$$
(11)

Hence,

$$\int_{G} XY d\mathbb{P} = \int_{G} X^{+} Y d\mathbb{P} - \int_{G} X^{-} Y d\mathbb{P}$$

$$= \int_{G} Y (\mathbb{E}[X^{+} \mid \mathcal{G}] - \mathbb{E}[X^{-} \mid \mathcal{G}]) d\mathbb{P}$$

$$= \int_{G} Y \mathbb{E}[X^{+} - X^{-} \mid \mathcal{G}] d\mathbb{P}$$

$$= \int_{G} Y \mathbb{E}[X \mid \mathcal{G}] d\mathbb{P}$$
(12)

c. Finally, for arbitrary Y, we can separate $Y = Y^+ - Y^-$ and the contradiction still holds by linearity of expectation.

Therefore, in any case Eq.5 is contradictory. So $\mathbb{P}(G) = 0$, and $\mathbb{E}[XY \mid \mathcal{G}] = Y\mathbb{E}[X \mid \mathcal{G}]$ a.s.

(5) Let $G = \{\omega : \mathbb{E}[X \mid \mathcal{G}_1](\omega) \neq \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}_2] \mid \mathcal{G}_1](\omega)\}$. Then $G \in \mathcal{G}_1$ since both $\mathbb{E}[X \mid \mathcal{G}_1]$ and $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}_2] \mid \mathcal{G}_1]$ are \mathcal{G}_1 -measurable by definition. Now suppose $\mathbb{P}(G) > 0$, then

$$\int_{G} X d\mathbb{P} = \int_{G} \mathbb{E}(X \mid \mathcal{G}_{1}) d\mathbb{P}$$

$$\neq \int_{G} \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}_{2}] \mid \mathcal{G}_{1}] d\mathbb{P}$$

$$= \int_{G} \mathbb{E}(X \mid \mathcal{G}_{2}) d\mathbb{P}$$

$$= \int_{G} X d\mathbb{P}$$
(13)

The last equality stands since $G \in \mathcal{G}_1$ and $\mathcal{G}_1 \subset \mathcal{G}_2$, which suggests $G \in \mathcal{G}_2$. Now we can find it contradictory. Therefore $\mathbb{P}(G) = 0$, and $\mathbb{E}[X \mid \mathcal{G}_1] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}_2] \mid \mathcal{G}_1]$ a.s.

$$\int_{G} X d\mathbb{P} = \int_{G} \mathbb{E}(X \mid \mathcal{G}_{1}) d\mathbb{P}$$

$$\neq \int_{G} \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}_{2}] \mid \mathcal{G}_{1}] d\mathbb{P}$$

$$= \int_{G} \mathbb{E}(X \mid \mathcal{G}_{2}) d\mathbb{P}$$

$$= \int_{G} X d\mathbb{P}$$
(14)

(6) Let $G = \{\omega : \mathbb{E}[X \mid \sigma(\mathcal{G}_1 \cup \mathcal{G}_2)](\omega) \neq \mathbb{E}[X \mid \mathcal{G}_1](\omega)\}$. Notice that $\mathbb{E}[X \mid \mathcal{G}_1]$ is not only \mathcal{G}_1 -measurable but also $\sigma(\mathcal{G}_1 \cup \mathcal{G}_2)$ -measurable. Thus we have $G \in \sigma(\mathcal{G}_1 \cup \mathcal{G}_2)$. Now suppose $\mathbb{P}(G) > 0$, then

$$\int_{G} X d\mathbb{P} = \int_{G} \mathbb{E} \left[X \mid \sigma \left(\mathcal{G}_{1} \cup \mathcal{G}_{2} \right) \right] d\mathbb{P}
\neq \int_{G} \mathbb{E} \left[X \mid \mathcal{G}_{1} \right] d\mathbb{P}$$
(15)

To show it is contradictory, we want to prove that $\forall G \in \sigma (\mathcal{G}_1 \cup \mathcal{G}_2)$,

$$\int_{G} X d\mathbb{P} = \int_{G} \mathbb{E} \left[X \mid \mathcal{G}_{1} \right] d\mathbb{P} \tag{16}$$

The following techniques are closely related to 'Dynkin system', which is beyond my knowledge. The main idea is that if we assume X is non-negative, which can be generalized by linearity, it is enough to establish Eq.16 for some π -system that generates $\sigma(\mathcal{G}_1 \cup \mathcal{G}_2)$.

One possibility is $\mathcal{H} = \{G_1 \cap G_2 : G_1 \in \mathcal{G}_1, G_2 \in \mathcal{G}_2\}$. Then, $\forall G_1 \cap G_2 \in \mathcal{H}$,

$$\int_{G_1 \cap G_2} \mathbb{E} \left[X \mid \mathcal{G}_1 \right] d\mathbb{P} = \int_{\Omega} \mathbb{E} \left[X \mid \mathcal{G}_1 \right] \mathbb{I}_{G_1} \mathbb{I}_{G_2} d\mathbb{P}
= \int_{\Omega} \mathbb{E} \left[X \mid \mathcal{G}_1 \right] \mathbb{I}_{G_1} d\mathbb{P} \int_{\Omega} \mathbb{I}_{G_2} d\mathbb{P}
= \int_{\Omega} X \mathbb{I}_{G_1} d\mathbb{P} \int_{\Omega} \mathbb{I}_{G_2} d\mathbb{P}
= \int_{\Omega} X \mathbb{I}_{G_1} \mathbb{I}_{G_2} d\mathbb{P}
= \int_{G_1 \cap G_2} X d\mathbb{P}$$
(17)

where the second and fourth equality holds due to independence between $\sigma(X)$ and \mathcal{G}_2 given \mathcal{G}_1 . Hence, we find it contradictory. So $\mathbb{P}(G) = 0$ and $\mathbb{E}[X \mid \sigma(\mathcal{G}_1 \cup \mathcal{G}_2)] = \mathbb{E}[X \mid \mathcal{G}_1]$ a.s.

- (7) Let $G = \{\omega : \mathbb{E}[X \mid \mathcal{G}](\omega) \neq \mathbb{E}[X]\}$. Then $G \in \mathcal{G}$ since $\mathbb{E}[X \mid \mathcal{G}]$ is \mathcal{G} -measurable by definition. And because \mathcal{G} is trivial, $G = \emptyset$ or $G = \Omega$.
 - a. If $G = \emptyset$, P(G) = 0 for sure.
 - b. If $G = \Omega$, which suggests $\mathbb{E}[X \mid \mathcal{G}] \neq \mathbb{E}[X]$ always holds, we have

$$\int_{G} X d\mathbb{P} = \int_{G} \mathbb{E}[X \mid \mathcal{G}] d\mathbb{P}$$

$$\neq \int_{G} \mathbb{E}[X] d\mathbb{P}$$

$$= \int_{\Omega} \mathbb{E}[X] d\mathbb{P}$$

$$= \mathbb{E}[X]$$
(18)

which is obviously contradictory since $\int_G X d\mathbb{P} = \int_{\Omega} X d\mathbb{P} = \mathbb{E}[X]$.

Therefore, P(G) = 0 and hence $\mathbb{E}[X \mid \mathcal{G}] = \mathbb{E}[X]$ a.s.

Chapter 3 Stochastic Processes and Markov Chains

3.1

(a) $On([0,1], \mathcal{B}, \lambda)$, for any $x \in [0,1]$

Let $F_1(x), F_2(x), F_3(x),...$ be the binary expansion of x.

$$F_t(x) = \begin{cases} 1, A \\ 0, \overline{A} & (\overline{A} \text{ is the opposite case of } A) \end{cases}$$

 $F_t(x)$ is Bernoulli random variable.

(b)
$$\begin{cases} F_1 = 0 : 0 \le x < 0.5 \\ F_1 = 1 : 0.5 \le x < 1 \end{cases}$$
$$\begin{cases} F_2 = 0 : 0 \le x' < 0.5 \\ F_2 = 1 : 0.5 \le x' < 1 \end{cases}$$
$$\dots$$
$$\begin{cases} F_t = 0 : 0 \le x^t < 0.5 \Rightarrow \mathbb{P}(F_t = 0) = \frac{1}{2} \\ F_t = 1 : 0.5 \le x^t < 1 \Rightarrow \mathbb{P}(F_t = 1) = \frac{1}{2} \end{cases}$$

- (c) It is obviously that $(F_t)_{t=1}^{\infty}$ are independent. It satisfies independent equation: $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
- (d) $(X_{m,t})_{t=1}^{\infty}$ is a subsequence of $(F_t)_{t=1}^{\infty}$ and $(X_{m,t})_{t=1}^{\infty}$ are mutually exclusive.
- (e) Such as(d).
- (f) Such as(d).

3.2

(a)
$$S_t = \sum_{s=1}^t X_s 2^{s-1}$$

 X_t is a F-adapted martingale.

$$(1)\mathbb{E}[X_t|\mathcal{F}_{t-1}] = X_{t-1}.$$

 $(2)X_t$ is integrable $\Rightarrow S_t$ is integrable.

$$\mathbb{E}[S_t|\mathcal{F}_{t-1}] = \mathbb{E}[S_{t-1} + X_t 2^{t-1}|\mathcal{F}_{t-1}]$$

$$= S_{t-1} + \mathbb{E}[X_t 2^{t-1}|\mathcal{F}_{t-1}]$$

$$= S_{t-1} + 2^t \times (1) \times \frac{1}{2} + 2^t \times (-1) \times \frac{1}{2}$$

$$= S_{t-1}$$

$$\Rightarrow (S_t)_{t=1}^{\infty}$$

(b) t=1 , if
$$S_t \neq 1 \Rightarrow X_1 = -1, S_t = -1$$

t=2 , if $S_t \neq 1 \Rightarrow X_1 = -1, S_t = -3$
t=3 , if $S_t \neq 1 \Rightarrow X_1 = -1, S_t = -7$

If avoid $S_t=1$, the X_s sequence must be -1.

$$\tau = \min\{t : S_t = 1\} = \min\{t : X_T = 1\}$$

$$\Rightarrow \mathbb{P}(\tau < n) = 1 - \mathbb{P}(\tau \ge n) = 1 - \frac{1}{2^n}$$

$$\Rightarrow \mathbb{P}(\tau < \infty) = 1 - \lim_{n \to \infty} \mathbb{P}(\tau \ge n) = 1 - \frac{1}{2^n} = 1 - \lim_{n \to \infty} \frac{1}{2^n}$$

- (c) If $t=\tau$, then $S_t=1$, so $S_\tau \equiv 1$ $\Rightarrow \mathbb{E}[S_{\tau}] = 1$
- (d) Doob's(a)can be proved by 3.2(b)

$$\tau = 1 \Rightarrow X_1 = 1 \Rightarrow \mathbb{P}(\tau = 1) = \frac{1}{2}$$
 $\tau = 2 \Rightarrow X_1 = -1X_2 = 1 \Rightarrow \mathbb{P}(\tau = 1) = \frac{1}{4}$
 $\tau = 3 \Rightarrow X_1 = -1X_2 = -1X_3 = 1 \Rightarrow \mathbb{P}(\tau = 1) = \frac{1}{8}$

$$\mathbb{P}(\tau < \infty) = \mathbb{P}(\tau = 1) + \mathbb{P}(\tau = 2) + \mathbb{P}(\tau = 3) + \dots = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$$

because of $n \neq \infty$, $\mathbb{P}(\tau = n) = \frac{1}{n^2} \neq 0$. Doob's(b)(c)can also be proved by 3.2(b)

t=1 , if
$$S_t \neq 1 \Rightarrow X_1 = -1, S_t = -1$$

$$t=2$$
, if $S_t \neq 1 \Rightarrow X_1 = -1, S_t = -3$

$$t=3$$
, if $S_t \neq 1 \Rightarrow X_1 = -1, S_t = -7$

It can be concluded that $-S_t$ — and $-S_{t-1}$ — can not be bounded, so $\mathbb{E}[|X_{t+1}|\mathcal{F}]$ and $|4X_{t\wedge\tau}|$ can not be bounded neither.

3.4 If $X_t \geq 0$ is dropped, $\mathbb{E}[X_\tau | \{\tau \leq n\}] \geq \mathbb{E}[\varepsilon | \{\tau \leq n\}]$ not always true.

Chapter 4 Stochastic Bandits

4.1 By definition

$$R_n(\pi, v) = n\mu^*(v) - \mathbb{E}[\sum_{t=1}^n X_t]$$

$$= \sum_{t=1}^n \mu^*(v) - \sum_{t=1}^n \mathbb{E}[X_t]$$

$$= \sum_{t=1}^n [\mu^* - \mu_{A_t}]$$

- (a) $\mu^* = \max \mu_a \ge \mu_{A_t} \Rightarrow R_n(\pi, v) = \sum_{t=1}^n [\mu^* \mu_{A_t}] \ge 0.$
- (b) If π choose $A_t \in \arg \max_a \mu_a$ for all $t \in [n] \Rightarrow \sum_{t=1}^n [\mu^* \mu_{A_t}] = 0$.
- (c) If $R_n(\pi, v) = 0$ for some policy π , then $A_t \in \arg \max_a \mu_a \Rightarrow \mathbb{P}(\mu_{A_t} = \mu^*) = 1$.
- **4.3** Denote $h_t = a_1, x_1, \dots, a_t, x_t$.
- (a) According to the definition of conditional probability and marginal distribution, we have

$$p_{v\pi}(a_n \mid h_{n-1}) = \frac{p_{v\pi}(h_{n-1}, a_n)}{p_{v\pi}(h_{n-1})}$$

$$= \frac{\int_{\mathbb{R}} p_{v\pi}(h_n) dx_n}{p_{v\pi}(h_{n-1})}$$

$$= \frac{\int_{\mathbb{R}} \prod_{t=1}^n \pi(a_t \mid h_{t-1}) p_{a_t}(x_t) dx_n}{p_{v\pi}(h_{n-1})}$$

$$= \frac{\prod_{t=1}^{n-1} \pi(a_t \mid h_{t-1}) p_{a_t}(x_t)}{p_{v\pi}(h_{n-1})} \int_{\mathbb{R}} \pi(a_n \mid h_{n-1}) p_{a_n}(x_n) dx_n$$

$$= \pi(a_n \mid h_{n-1}) \int_{\mathbb{R}} p_{a_n}(x_n) dx_n$$

$$= \pi(a_n \mid h_{n-1})$$

(b) According to the definition of conditional probability and marginal distribution, we have

$$p_{v\pi}(x_n \mid h_{n-1}, a_n) = \frac{p_{v\pi}(h_n)}{p_{v\pi}(h_{n-1}, a_n)}$$

$$= \frac{p_{v\pi}(h_n)}{\int_{\mathbb{R}} p_{v\pi}(h_n) dx_n}$$

$$= \frac{p_{v\pi}(h_n)}{\int_{\mathbb{R}} \left[\prod_{t=1}^n \pi \left(a_t \mid h_{t-1}\right) p_{a_t}(x_t)\right] dx_n}$$

$$= \frac{p_{v\pi}(h_n)}{\prod_{t=1}^{n-1} \pi \left(a_t \mid h_{t-1}\right) p_{a_t}(x_t)} \frac{1}{\int_{\mathbb{R}} \pi \left(a_n \mid h_{n-1}\right) p_{a_n}(x_n) dx_n}$$

$$= \pi \left(a_n \mid h_{n-1}\right) p_{a_n}(x_n) \frac{1}{\pi \left(a_n \mid h_{n-1}\right)}$$

$$= p_{a_n}(x_n)$$

4.4 Denote $h_t = a_1, x_1, \dots, a_t, x_t$. The policy that mixes the policies can be defined as

$$\pi_{t}^{\circ}\left(a_{t} \mid h_{t-1}\right) = \frac{\sum_{\pi \in \Pi} p(\pi) \prod_{s=1}^{t} \pi_{s}\left(a_{s} \mid h_{s-1}\right)}{\sum_{\pi \in \Pi} p(\pi) \prod_{s=1}^{t-1} \pi_{s}\left(a_{s} \mid h_{s-1}\right)}$$

By the definition of the canonical probability space and the product of probability kernels,

$$\mathbb{P}_{v\pi^{\circ}}(B) = \sum_{a_{1}=1}^{k} \int_{\mathbb{R}} \cdots \sum_{a_{n}=1}^{k} \int_{\mathbb{R}} \mathbb{I}_{B}(h_{n}) v_{a_{n}}(dx_{n}) \pi_{n}^{\circ}(a_{n} \mid h_{n-1}) \cdots v_{a_{1}}(dx_{1}) \pi_{1}^{\circ}(a_{1})$$

$$= \sum_{\pi \in \Pi} p(\pi) \sum_{a_{1}=1}^{k} \int_{\mathbb{R}} \cdots \sum_{a_{n}=1}^{k} \int_{\mathbb{R}} \mathbb{I}_{B}(h_{n}) v_{a_{n}}(dx_{n}) \pi_{n}(a_{n} \mid h_{n-1}) \cdots v_{a_{1}}(dx_{1}) \pi_{1}(a_{1})$$

$$= \sum_{\pi \in \Pi} p(\pi) \mathbb{P}_{v\pi}(B),$$

where the second equality follows by substituting the definition of π_n° and induction.

Chapter 5 Concentration of Measure

5.1

$$V(\hat{\mu}) = E((\hat{\mu} - \mu)^2) = E((\frac{1}{n} \sum_{t=1}^n X_t - \mu)^2) = E(\frac{1}{n^2} \sum_{t=1}^n (X_t - \mu)^2) = \frac{1}{n^2} \sum_{t=1}^n E(X_t - \mu)^2 = \frac{1}{n^2} \sum_{t=1}^n \sigma^2 = \frac{\sigma^2}{n}$$
(19)

5.4

(a)

$$P(|X| \ge \varepsilon) = P(X \ge \varepsilon)I\{X \ge 0\} + P(X \le -\varepsilon)I\{X < 0\} = \int_{\varepsilon}^{\infty} \frac{x}{2}exp\{\frac{-x^2}{2}\}dx + \int_{-\infty}^{\varepsilon} \frac{-x}{2}exp\{\frac{-x^2}{2}\}dx$$

$$(20)$$

Calculate the above formula and get the result,

Calculate the above formula and get the
$$P(|X| \ge \varepsilon) = \frac{1}{2} exp\{\frac{-\varepsilon^2}{2}\} + \frac{1}{2} exp\{\frac{-\varepsilon^2}{2}\}$$

$$= exp\{\frac{-\varepsilon^2}{2}\}$$

(b)

Let's start with a lemma:

If X is σ -subgaussian, then $P(|X| > t) \le \exp\{-b\varepsilon^2\}$, where $b = \exp\{-\sigma^2\}$

The proof of lemma is omitted.

It can be seen from the first question , $P(|X| \ge \varepsilon) = exp\{\frac{-\varepsilon^2}{2}\}$

The comparison of the two formulas shows that , $0 < b \le 1/2$. That is, $\sigma \ge \sqrt{\ln 2}$

By topic condition, $\sigma = \sqrt{2-\varepsilon}$

Hence, $\varepsilon \leq 2 - ln2$, this is in contradiction with the arbitrariness of ε

5.7

(a) If X is $\sigma-\text{subgaussian}$, then $E(X)=0,\!E(X^2)\leq\sigma^2$ proof:

$$E(e^{\lambda X}) = \sum_{n=0}^{\infty} \frac{\lambda^n E(X^n)}{n!} = 1 + \lambda E(X) + \frac{\lambda^2 E(X^2)}{2} + O(\lambda^2)$$
 (21)

By definition,

$$E(e^{\lambda X}) \le e^{\frac{\lambda^2 \sigma^2}{2}} = 1 + \frac{\lambda^2 \sigma^2}{2} + O(\lambda^2)$$
(22)

By comparing the above two formulas and discussing the case that a approaches to 0 from above and below 0, we get the conclusion that ,

$$E(X) = 0, E(X^2) \le \sigma^2$$

(b)

If X is
$$\sigma$$
-subgaussian , then $E(X) = 0$, $E(X^2) \le \sigma^2$. $E(e^{c\lambda x}) = 1 + \lambda E(cx) + \frac{\lambda^2 E(c^2 x^2)}{2} + O(\lambda^2)$ $\le 1 + c\lambda E(x) + \frac{\lambda^2 E(c^2 x^2)}{2} + O(\lambda^2)$ $\le 1 + c\lambda E(x) + \frac{\lambda^2 E(c^2 x^2)}{2} + O(\lambda^2)$ $\le 1 + \frac{\lambda^2 E(c^2 x^2)}{2} = O(\lambda^2)$ $\le \frac{1 + \lambda^2 E(c^2 x^2)}{2} = O(\lambda^2)$ Hence , cX is $|c|\sigma$ -subgaussian . (c) If X_1 is σ_1 -subgaussian , X_2 is σ_2 -subgaussian then $E(X_1) = 0$, $E(X_1^2) \le \sigma_1^2$, $E(X_2) = 0$, $E(X_2^2) \le \sigma_2^2$ $E(e^{\lambda(x_1 + x_2)}) = 1 + \lambda E(x_1 + x_2) + \frac{\lambda^2 E((x_1 + x_2)^2)}{2} + O(\lambda^2)$ $= 1 + \frac{\lambda^2}{2} Var(x_1 + x_2) + O(\lambda^2)$ $= 1 + \frac{\lambda^2}{2} Var(x_1) + var(x_2) + 2cov(x_1, x_2)) + O(\lambda^2)$ Because x_1, x_2 are independent , $= 1 + \frac{\lambda^2}{2} (E(x_1^2) + E(x_2^2))(\lambda^2)$ $= 1 + \frac{\lambda^2}{2} (E(x_1^2) + E(x_2^2))(\lambda^2)$ (23) If the conclusion is true, then the above formula satisfies $= 1 + \frac{\lambda^2}{2} (\frac{(b-a)^2}{2}) + O(\lambda^2)$ So just prove: $= E(x_1^2) + \frac{\lambda^2}{2} (\frac{(b-a)^2}{2}) + O(\lambda^2)$ The conclusion is proved. (b) The proof of Hoeffding's Inequality: Let $= 1 + \frac{\lambda^2}{2} (\frac{(b-a)^2}{2}) + \frac{\lambda^2}{2} (\frac{(b-a)^2}{2}) + O(\lambda^2)$ The conclusion is proved. (b) The proof of Hoeffding's Inequality: Let $= 1 + \frac{\lambda^2}{2} (\frac{(b-a)^2}{2}) + \frac{\lambda^2}{2} (\frac{(b-a)^2}{2}) + O(\lambda^2)$ So just prove $= 1 + \frac{\lambda^2}{2} (\frac{(b-a)^2}{2}) + O(\lambda^2)$ So $= 1 + \frac{\lambda^2}{2} ($

So,
$$E(e^{\lambda X}) = \prod_{i=1}^{m} E(e^{\frac{\lambda X_i}{m}})$$

$$E(e^{\frac{\lambda X_i}{m}}) < e^{\frac{\lambda^2(b-a)^2}{8m^2}}$$

So,
$$P(\bar{X} \ge \varepsilon) \le e^{-\lambda \varepsilon} \prod_{i=1}^{m} E(e^{\frac{\lambda X_i}{m}})$$

 $\le e^{-\lambda \varepsilon} e^{\frac{\lambda^2 (b-a)^2}{8m}}$
 $\le e^{-\lambda \varepsilon} + \frac{\lambda^2 (b-a)^2}{8m}$

$$\leq e^{-\lambda \varepsilon} e^{\frac{\lambda (b-a)^2}{8m}}$$

$$\leq e^{-\lambda \varepsilon + \frac{\lambda^2 (b-a)^2}{8m}}$$

Let
$$\lambda = \frac{4m\varepsilon}{(b-a)^2}$$
, then $P(\bar{X} \ge \varepsilon) \le e^{\frac{-2m\varepsilon^2}{(b-a)^2}}$

Similarly, we can prove the other side of the inequality.

5.16 By assumption $Pr(X_t \leq x) \leq x$, which means that for $\lambda < 1$,

$$\mathbb{E}\left[exp(\lambda log(\frac{1}{x_t}))\right] = \int_0^\infty P(exp(\lambda log(\frac{1}{x_t})) \ge x) dx = 1 + \int_1^\infty P(X_t \le x^{-\frac{1}{\lambda}}) dx \tag{24}$$

Applying the Cramer-Chernoff method,

$$P\left(\sum_{t=1}^n log(\frac{1}{X_t}) \geq \epsilon\right) = P\left(exp(\lambda \sum_{t=1}^n log(\frac{1}{X_t})) \geq exp(\lambda \epsilon)\right) \leq \left(\frac{1}{1-\lambda}\right)^n exp(-\lambda \epsilon)$$

choosing $\lambda = \frac{\epsilon - n}{\epsilon}$ completes the claim. **5.18(a)** Let $\lambda > 0$. Then,

$$\exp(\lambda \mathbb{E}[Z]) \leq \mathbb{E}[\exp(\lambda Z)] \leq \sum_{t=1}^{n} \mathbb{E}[\exp(\lambda X_{t})] \leq nexp(\frac{\lambda^{2}\sigma^{2}}{2})$$

Rearranging shows that,

$$\mathbb{E}(Z) \leq \frac{\log(n)}{\lambda} + \frac{\lambda \sigma^2}{2}$$

Choosing $\lambda = \frac{1}{\sigma} \sqrt{2log(n)}$ shows that $\mathbb{E}(Z) \leq \sqrt{2\sigma^2 log(n)}$

Chapter 11 The Exp3 Algorithm

11.2 Let π be a deterministic policy, and we define $x_{ti} = 0$ if $A_t = i$ otherwise $x_{ti} = 1$. The deterministic policy collects zero rewards all time,

$$\max_{i \in [k]} \sum_{t=1}^{n} x_{ti} \ge \frac{1}{k} \sum_{t=1}^{n} \sum_{i=1}^{k} x_{ti} = \frac{n(k-1)}{k}$$

11.5 Let P be a probability vector with nonzero components and let $A \sim P$. Suppose \hat{X} is a function such that for all $x \in \mathbb{R}^k$,

$$\mathbb{E}\left[\hat{X}\left(A, x_A\right)\right] = \sum_{i=1}^{k} P_i \hat{X}\left(i, x_i\right) = x_1$$

Show that there exists an $a \in \mathbb{R}^k$ such that $\langle a, P \rangle = 0$ and for all i and z in their respective domains, $\hat{X}(i,z) = a_i + \frac{\mathbb{I}\{i=1\}z}{P_1}$

Proof. Let x, x' be arbitrary but agree on the first component $x_1 = x'_1$. Let $f(x) = \sum_{i=1}^k P_i \hat{X}(i, x_i)$ Note that,

$$0 = f(x) - f(x') = \sum_{i=j}^{k} P_j \hat{X}(j, x_j)$$

for all j > 1. Since x, x' are arbitrary, $\hat{X}(j, j) = const.$ Let a_j equal to $\hat{X}(j, j)$.

Further, let $a_1 = \hat{X}(1,0)$ and then given any $x_1 \in \mathbb{R}$, $\hat{X}(1,x_1) = a_1 + x_1/P_1$. Finally, let x be such that $x_1 = 0$. Then $0 = f(x) = \sum_i P_i a_i$.

11.7 First, note that if $G = -\log(-\log(U))$ then $\mathbb{P}(G \leq g) = e^{-\exp(-g)}$.

$$\mathbb{P}\left(\log a_i + G_i \ge \max_{j \in [k]} \log a_j + G_j\right) = \mathbb{E}\left[\prod_{j \neq i} \mathbb{P}\left(\log a_j + G_j \le \log a_i + G_i \mid G_i\right)\right]$$

$$= \mathbb{E}\left[\prod_{j \neq i} \exp\left(-\frac{a_j}{a_i} \exp\left(-G_i\right)\right)\right]$$

$$= \mathbb{E}\left[U_i^{\sum_{j \neq i} \frac{a_j}{a_i}}\right]$$

$$= \frac{1}{1 + \sum_{j \neq i} \frac{a_j}{a_i}}$$

$$= \frac{a_i}{\sum_{j=1}^k a_j}$$

11.8 Let $Z_t i$ be a standard Gambel. The follow-theoreturbed-leader algorithm chooses

$$A_t = \operatorname{argmax}_{i \in [k]} \left(Z_{ti} - \eta \sum_{s=1}^{t-1} \hat{Y}_{si} \right)$$

is the same as EXP3. Given (11.7)

$$\mathbb{P}\left(\log\left(a_{i}\right)+G_{i}=\max_{j\in\left[k\right]}\left(\log\left(a_{j}\right)+G_{j}\right)\right)=\frac{a_{i}}{\sum_{j=1}^{k}a_{j}}$$

Just simply take a_i as $-\eta \sum_{s=1}^{t-1} \hat{Y}_{si}$, then the form is identical.

Chapter 18

18.1

(a) By Jensen's inequality,

$$\sum_{c \in \mathcal{C}} \sqrt{\sum_{t=1}^{n} \mathcal{I}\{c_{t} = c\}} = ||C|| \sum_{c \in \mathcal{C}} \frac{1}{||C||} \sqrt{\sum_{t=1}^{n} \mathcal{I}\{c_{t} = c\}}$$

$$\leq ||C|| \sqrt{\sum_{c \in \mathcal{C}} \frac{1}{||C||} \sum_{t=1}^{n} \mathcal{I}\{c_{t} = c\}}$$

$$= \sqrt{||C||n}$$

(b) When each context occurs $\frac{n}{\|C\|}$ times we have

$$\sum_{c \in \mathcal{C}} \sqrt{\sum_{t=1}^{n} \mathcal{I}\{c_t = c\}} = \sqrt{n \|C\|}$$