# Digital Image Processing

Morphological Image Processing

# What Is Morphology?

Morphological image processing (or *morphology*) describes a range of image processing techniques that deal with the shape (or morphology) of features in an image

Morphological operations are typically applied to remove imperfections introduced during segmentation, and so typically operate on bi-level images

#### Structuring Elements, Hits & Fits





**Fit:** All *on pixels* in the structuring element cover *on pixels* in the image

Hit: Any on pixel in the structuring element covers an on pixel in the image

All morphological processing operations are based on these simple ideas

## Structuring Elements

Structuring elements can be any size and make any shape

However, for simplicity we will use rectangular structuring elements with their origin at the middle pixel

| 1 | 1 | 1 |  |
|---|---|---|--|
| 1 | 1 | 1 |  |
| 1 | 1 | 1 |  |

| 0 | 1 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| 0 | 1 | 0 |

| 0 | 0 | 1 | 0 | 0 |
|---|---|---|---|---|
| 0 | 1 | ~ | ~ | 0 |
| 1 | ~ | ~ | ~ | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 |

#### Fundamental Operations

- Fundamentally morphological image processing is very like spatial filtering
- The structuring element is moved across every pixel in the original image to give a pixel in a new processed image
- The value of this new pixel depends on the operation performed
- There are two basic morphological operations: **erosion** and **dilation**

Erosion of image f by structuring element s is given by  $f \ominus s$ 

The structuring element s is positioned with its origin at (x, y) and the new pixel value is determined using the rule:

$$g(x, y) = \begin{cases} 1 & \text{if } s \text{ fits } f \\ 0 & \text{otherwise} \end{cases}$$

#### What Is Erosion For?

Erosion can split apart joined objects



Erosion can strip away extrusions



Watch out: Erosion shrinks objects

Dilation of image f by structuring element s is given by  $f \oplus s$ 

The structuring element s is positioned with its origin at (x, y) and the new pixel value is determined using the rule:

$$g(x, y) = \begin{cases} 1 & \text{if } s \text{ hits } f \\ 0 & \text{otherwise} \end{cases}$$

#### What Is Dilation For?

Dilation can repair breaks



Dilation can repair intrusions



Watch out: Dilation enlarges objects

## Compound Operations

More interesting morphological operations can be performed by performing combinations of erosions and dilations

The most widely used of these *compound* operations are:

- Opening
- Closing

## Opening

The opening of image f by structuring element s, denoted  $f \circ s$  is simply an erosion followed by a dilation

$$f \circ s = (f \ominus s) \oplus s$$



Note a disc shaped structuring element is used



## Closing

The closing of image f by structuring element s, denoted  $f \cdot s$  is simply a dilation followed by an erosion

$$f \cdot s = (f \oplus s) \ominus s$$



Note a disc shaped structuring element is used



# Morphological Algorithms

Using the simple technique we have looked at so far we can begin to consider some more interesting morphological algorithms

#### We will look at:

- Boundary extraction
- Region filling

#### There are lots of others as well though:

- Extraction of connected components
- Thinning/thickening
- Skeletonisation

# **Boundary Extraction**

Extracting the boundary (or outline) of an object is often extremely useful

The boundary can be given simply as

$$\beta(A) = A - (A \ominus B)$$









## Boundary Extraction Example

A simple image and the result of performing boundary extraction using a square 3\*3 structuring element





#### Region Filling (cont...)

The key equation for region filling is

$$X_{k} = (X_{k-1} \oplus B) \cap A^{c}$$
  $k = 1, 2, 3....$ 

Where X<sub>0</sub> is simply the starting point inside the boundary, B is a simple structuring element and A<sup>c</sup> is the complement of A

This equation is applied repeatedly until  $X_k$  is equal to  $X_{k-1}$ 

Finally the result is unioned with the original boundary

