Lecture 10: Fast Reinforcement Learning ¹

Emma Brunskill

CS234 Reinforcement Learning

Winter 2022

Refresh Your Knowledge. Policy Gradient

- Policy gradient algorithms change the policy parameters using gradient descent on the mean squared Bellman error
 - True
 - Palse.
 - Not sure
- Select all that are true
 - In tabular MDPs the number of deterministic policies is smaller than the number of possible value functions
 - Policy gradient algorithms are very robust to choices of step size
 - Baselines are always functions of state and actions and do not change the bias of the value function
 - On Not sure

Refresh Your Knowledge. Policy Gradient Answers

- Policy gradient algorithms change the policy parameters using gradient descent on the mean squared Bellman error
 - True
 - Palse.
 - Not sure
- Select all that are true
 - In tabular MDPs the number of deterministic policies is smaller than the number of possible value functions
 - Policy gradient algorithms are very robust to choices of step size
 - Saselines are always functions of state and actions and do not change the bias of the value function
 - 4 Not sure

Class Structure

• Last time: Policy Gradient

• This time: Fast Learning

Next time: Fast Learning

Up Till Now

• Discussed optimization, generalization, delayed consequences

Computational Efficiency and Sample Efficiency

Computational Efficiency Sample Efficiency

Algorithms Seen So Far

• How many steps did it take for DQN to learn a good policy for pong?

Evaluation Criteria

- How do we evaluate how "good" an algorithm is?
- If converges?
- If converges to optimal policy?
- How quickly reaches optimal policy?
- Mistakes make along the way?
- Will introduce different measures to evaluate RL algorithms

Settings, Frameworks & Approaches

- Over next couple lectures will consider 2 settings, multiple frameworks, and approaches
- Settings: Bandits (single decisions), MDPs
- Frameworks: evaluation criteria for formally assessing the quality of a RL algorithm
- Approaches: Classes of algorithms for achieving particular evaluation criteria in a certain set
- Note: We will see that some approaches can achieve multiple frameworks in multiple settings

Today

- Setting: Introduction to multi-armed bandits & Approach: greedy methods
- Framework: Regret
- Approach: ϵ -greedy methods
- Approach: Optimism under uncertainty
- Framework: Bayesian regret
- Approach: Probability matching / Thompson sampling

Multiarmed Bandits

- Multi-armed bandit is a tuple of (A, R)
- A: known set of m actions (arms)
- $\mathcal{R}^a(r) = \mathbb{P}[r \mid a]$ is an unknown probability distribution over rewards
- ullet At each step t the agent selects an action $a_t \in \mathcal{A}$
- ullet The environment generates a reward $r_t \sim \mathcal{R}^{a_t}$
- Goal: Maximize cumulative reward $\sum_{ au=1}^t r_ au$

Toy Example: Ways to Treat Broken Toes¹

- Consider deciding how to best treat patients with broken toes
- Imagine have 3 possible options: (1) surgery (2) buddy taping the broken toe with another toe, (3) do nothing
- Outcome measure / reward is binary variable: whether the toe has healed (+1) or not healed (0) after 6 weeks, as assessed by x-ray

¹Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

Check Your Understanding: Bandit Toes ¹

- Consider deciding how to best treat patients with broken toes
- Imagine have 3 common options: (1) surgery (2) buddy taping the broken toe with another toe (3) doing nothing
- Outcome measure is binary variable: whether the toe has healed (+1) or not (0) after 6 weeks, as assessed by x-ray
- Model as a multi-armed bandit with 3 arms, where each arm is a Bernoulli variable with an unknown parameter θ_i
- Select all that are true
 - Pulling an arm / taking an action corresponds to whether the toe has healed or not
 - A multi-armed bandit is a better fit to this problem than a MDP because treating each patient involves multiple decisions
 - **3** After treating a patient, if $\theta_i \neq 0$ and $\theta_i \neq 1 \ \forall i$ sometimes a patient's toe will heal and sometimes it may not
 - Mot sure

 $^{^1}$ Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

Check Your Understanding: Bandit Toes Solution ¹

- Consider deciding how to best treat patients with broken toes
- Imagine have 3 common options: (1) surgery (2) buddy taping the broken toe with another toe (3) doing nothing
- Outcome measure is binary variable: whether the toe has healed (+1) or not (0) after 6 weeks, as assessed by x-ray
- ullet Model as a multi-armed bandit with 3 arms, where each arm is a Bernoulli variable with an unknown parameter $heta_i$
- Select all that are true
 - Pulling an arm / taking an action corresponds to whether the toe has healed or not
 - ② A multi-armed bandit is a better fit to this problem than a MDP because treating each patient involves multiple decisions
 - **3** After treating a patient, if $\theta_i \neq 0$ and $\theta_i \neq 1 \ \forall i$ sometimes a patient's toe will heal and sometimes it may not
 - On the sure of the sure of

¹Note:This is a made up example. This is not the actual expected efficacies of the

Greedy Algorithm

- ullet We consider algorithms that estimate $\hat{Q}_t(a)pprox Q(a)=\mathbb{E}\left[R(a)
 ight]$
- Estimate the value of each action by Monte-Carlo evaluation

$$\hat{Q}_t(a) = \frac{1}{N_t(a)} \sum_{i=1}^{t-1} r_i \mathbb{1}(a_i = a)$$

The greedy algorithm selects the action with highest value

$$a_t^* = rg \max_{a \in \mathcal{A}} \hat{Q}_t(a)$$

Toy Example: Ways to Treat Broken Toes¹

- Imagine true (unknown) Bernoulli reward parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$

¹Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

Toy Example: Ways to Treat Broken Toes, Greedy¹

- Imagine true (unknown) Bernoulli reward parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- Greedy
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get 0, $\hat{Q}(a^1) = 0$
 - Take action a^2 $(r \sim \text{Bernoulli}(0.90))$, get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 $(r \sim \text{Bernoulli}(0.1))$, get 0, $\hat{Q}(a^3) = 0$
 - What is the probability of greedy selecting each arm next? Assume ties are split uniformly.

¹Note: This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

Toy Example: Ways to Treat Broken Toes, Greedy²

- Imagine true (unknown) Bernoulli reward parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- Greedy
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get 0, $\hat{Q}(a^1) = 0$
 - Take action a^2 $(r \sim \text{Bernoulli}(0.90))$, get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 ($r \sim \text{Bernoulli}(0.1)$), get 0, $\hat{Q}(a^3) = 0$
 - Will the greedy algorithm ever find the best arm in this case?

²Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

Greedy Algorithm

- ullet We consider algorithms that estimate $\hat{Q}_t(a)pprox Q(a)=\mathbb{E}\left[R(a)
 ight]$
- Estimate the value of each action by Monte-Carlo evaluation

$$\hat{Q}_t(a) = \frac{1}{N_t(a)} \sum_{t=1}^{T} r_t \mathbb{1}(a_t = a)$$

The greedy algorithm selects the action with highest value

$$a_t^* = \arg\max_{a \in \mathcal{A}} \hat{Q}_t(a)$$

Greedy can lock onto suboptimal action, forever

Today

- Setting: Introduction to multi-armed bandits & Approach: greedy methods
- Framework: Regret
- Approach: ϵ -greedy methods
- Approach: Optimism under uncertainty
- Framework: Bayesian regret
- Approach: Probability matching / Thompson sampling

Assessing the Performance of Algorithms

- How do we evaluate the quality of a RL (or bandit) algorithm?
- So far: computational complexity, convergence, convergence to a fixed point, & empirical performance performance
- Today: introduce a formal measure of how well a RL/bandit algorithm will do in any environment, compared to optimal

Regret

• Action-value is the mean reward for action a

$$Q(a) = \mathbb{E}[r \mid a]$$

Optimal value V*

$$V^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a)$$

Regret is the opportunity loss for one step

$$I_t = \mathbb{E}[V^* - Q(a_t)]$$

Regret

• Action-value is the mean reward for action a

$$Q(a) = \mathbb{E}[r \mid a]$$

Optimal value V*

$$V^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a)$$

Regret is the opportunity loss for one step

$$I_t = \mathbb{E}[V^* - Q(a_t)]$$

Total Regret is the total opportunity loss

$$L_t = \mathbb{E}[\sum_{\tau=1}^t V^* - Q(a_\tau)]$$

Maximize cumulative reward ←⇒ minimize total regret

Evaluating Regret

- Count $N_t(a)$ is number of times action a has been selected
- **Gap** Δ_a is the difference in value between action a and optimal action a^* , $\Delta_i = V^* Q(a_i)$
- Regret is a function of gaps and counts

$$egin{aligned} L_t &= \mathbb{E}\left[\sum_{ au=1}^t V^* - Q(a_ au)
ight] \ &= \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)](V^* - Q(a)) \ &= \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)]\Delta_a \end{aligned}$$

 A good algorithm ensures small counts for large gap,s but gaps are not known

→ロト →同ト → 三ト → 三 → りへ○

- True (unknown) Bernoulli reward parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- Greedy

Action	Optimal Action	Observed Reward	Regret
a^1	a^1	0	
a^2	a^1	1	
a^3	a^1	0	
a^2	a^1	1	
a^2	a^1	0	

True (unknown) Bernoulli reward parameters for each arm (action) are

• surgery:
$$Q(a^1) = \theta_1 = .95$$

• buddy taping: $Q(a^2) = \theta_2 = .9$

• doing nothing: $Q(a^3) = \theta_3 = .1$

Greedy

Action	Optimal Action	Observed Reward	Regret
a^1	a^1	0	0
a^2	a^1	1	0.05
a^3	a^1	0	0.85
a^2	a^1	1	0.05
a^2	a^1	0	0.05

 Regret for greedy methods can be linear in the number of decisions made (timestep)

Greedy

2.004)				
Action	Optimal Action	Observed Reward	Regret	
a^1	a^1	0	0	
a^2	a^1	1	0.05	
a^3	a^1	0	0.85	
a^2	a^1	1	0.05	
a^2	a^1	0	0.05	

- Note: in real settings we cannot evaluate the regret because it requires knowledge of the expected reward of the true best action.
- Instead we can prove an upper bound on the potential regret of an algorithm in **any bandit** problem

Today

- Setting: Introduction to multi-armed bandits & Approach: greedy methods
- Framework: Regret
- Approach: ϵ -greedy methods
- Approach: Optimism under uncertainty
- Framework: Bayesian regret
- Approach: Probability matching / Thompson sampling

ϵ -Greedy Algorithm

- The ϵ -greedy algorithm proceeds as follows:
 - With probability 1ϵ select $a_t = \arg\max_{a \in \mathcal{A}} \hat{Q}_t(a)$
 - ullet With probability ϵ select a random action
- ullet Always will be making a sub-optimal decision ϵ fraction of the time
- Already used this in prior homeworks

Toy Example: Ways to Treat Broken Toes, ϵ -**Greedy**¹

- Imagine true (unknown) Bernoulli reward parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- ϵ -greedy
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 $(r \sim \text{Bernoulli}(0.90))$, get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 ($r \sim \text{Bernoulli}(0.1)$), get 0, $\hat{Q}(a^3) = 0$
 - **2** Let $\epsilon = 0.1$
 - **3** What is the probability ϵ -greedy will pull each arm next? Assume ties are split uniformly.

 $^{^1}$ Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

- True (unknown) Bernoulli reward parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)

,				
Action	Optimal Action	Regret		
a^1	a^1			
a^2	a^1			
a^3	a^1			
a^1	a^1			
a^2	a^1			

• Will ϵ -greedy ever select a^3 again? If ϵ is fixed, how many times will each arm be selected?

Recall: Bandit Regret

- Count $N_t(a)$ is expected number of selections for action a
- Gap Δ_a is the difference in value between action a and optimal action a^* , $\Delta_i = V^* Q(a_i)$
- Regret is a function of gaps and counts

$$egin{aligned} L_t &= \mathbb{E}\left[\sum_{ au=1}^t V^* - Q(a_ au)
ight] \ &= \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)](V^* - Q(a)) \ &= \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)]\Delta_a \end{aligned}$$

 A good algorithm ensures small counts for large gap, but gaps are not known

Check Your Understanding: ϵ -greedy Bandit Regret

- Count $N_t(a)$ is expected number of selections for action a
- Gap Δ_a is the difference in value between action a and optimal action a^* , $\Delta_i = V^* Q(a_i)$
- Regret is a function of gaps and counts

$$L_t = \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)] \Delta_a$$

- Informally an algorithm has linear regret if it takes a non-optimal action a constant fraction of the time
- Select all
 - **1** $\epsilon = 0.1 \epsilon$ -greedy can have linear regret
 - 2 $\epsilon = 0$ ϵ -greedy can have linear regret
 - Not sure

Check Your Understanding: ϵ -greedy Bandit Regret Answer

- Count $N_t(a)$ is expected number of selections for action a
- **Gap** Δ_a is the difference in value between action a and optimal action a^* , $\Delta_i = V^* Q(a_i)$
- Regret is a function of gaps and counts

$$L_t = \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)] \Delta_a$$

- Informally an algorithm has linear regret if it takes a non-optimal action a constant fraction of the time
- Select all
 - **1** $\epsilon = 0.1 \epsilon$ -greedy can have linear regret
 - 2 $\epsilon = 0$ ϵ -greedy can have linear regret
 - Not sure

"Good": Sublinear or below regret

- Explore forever: have linear total regret
- Explore never: have linear total regret
- Is it possible to achieve sublinear (in the time steps/number of decisions made) regret?

Types of Regret bounds

- **Problem independent**: Bound how regret grows as a function of T, the total number of time steps the algorithm operates for
- Problem dependent: Bound regret as a function of the number of times we pull each arm and the gap between the reward for the pulled arm a*

Lower Bound

- Use lower bound to determine how hard this problem is
- The performance of any algorithm is determined by similarity between optimal arm and other arms
- Hard problems have similar looking arms with different means
- This is described formally by the gap Δ_a and the similarity in distributions $D_{KL}(\mathcal{R}^a || \mathcal{R}^{a^*})$
- Theorem (Lai and Robbins): Asymptotic total regret is at least logarithmic in number of steps

$$\lim_{t\to\infty} L_t \geq \log t \sum_{a|\Delta_a>0} \frac{\Delta_a}{D_{\mathit{KL}}(\mathcal{R}^a\|\mathcal{R}^{a^*})}$$

Promising in that lower bound is sublinear

Today

- Setting: Introduction to multi-armed bandits & Approach: greedy methods
- Framework: Regret
- Approach: ϵ -greedy methods
- Approach: Optimism under uncertainty
- Framework: Bayesian regret
- Approach: Probability matching / Thompson sampling

Approach: Optimism in the Face of Uncertainty

- Choose actions that that might have a high value
- Why?
- Two outcomes:

Approach: Optimism in the Face of Uncertainty

- Choose actions that that might have a high value
- Why?
- Two outcomes:
 - Getting high reward: if the arm really has a high mean reward
 - Learn something: if the arm really has a lower mean reward, pulling it will (in expectation) reduce its average reward and the uncertainty over its value

Upper Confidence Bounds

- Estimate an upper confidence $U_t(a)$ for each action value, such that $Q(a) \leq U_t(a)$ with high probability
- ullet This depends on the number of times $N_t(a)$ action a has been selected
- Select action maximizing Upper Confidence Bound (UCB)

$$a_t = \arg\max_{a \in \mathcal{A}} [U_t(a)]$$

Hoeffding's Inequality

• Theorem (Hoeffding's Inequality): Let X_1, \ldots, X_n be i.i.d. random variables in [0,1], and let $\bar{X}_n = \frac{1}{n} \sum_{\tau=1}^n X_{\tau}$ be the sample mean. Then

$$\mathbb{P}\left[\mathbb{E}\left[X\right] > \bar{X}_n + u\right] \leq \exp(-2nu^2)$$

UCB Bandit Regret

• This leads to the UCB1 algorithm

$$a_t = \arg\max_{a \in \mathcal{A}} \left[\hat{Q}(a) + \sqrt{\frac{2 \log t}{N_t(a)}} \right]$$

Toy Example: Ways to Treat Broken Toes, Thompson Sampling¹

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- Optimism under uncertainty, UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once

¹Note: This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$), get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 ($r \sim \text{Bernoulli}(0.1)$), get 0, $\hat{Q}(a^3) = 0$

 $^{^1}$ Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$), get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 $(r \sim \text{Bernoulli}(0.1))$, get 0, $\hat{Q}(a^3) = 0$
 - ② Set t = 3, Compute upper confidence bound on each action

$$UCB(a) = \hat{Q}(a) + \sqrt{\frac{2 \log t}{N_t(a)}}$$

¹Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$), get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 $(r \sim \text{Bernoulli}(0.1))$, get 0, $\hat{Q}(a^3) = 0$
 - ② Set t = 3, Compute upper confidence bound on each action

$$UCB(a) = \hat{Q}(a) + \sqrt{\frac{2 \log t}{N_t(a)}}$$

- 3 t = 3, Select action $a_t = \arg \max_a UCB(a)$,
- Observe reward 1
- Ompute upper confidence bound on each action

1 Note: This is a made up example. This is not the actual expected efficacies of the

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 $(r \sim \text{Bernoulli}(0.90))$, get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 $(r \sim \text{Bernoulli}(0.1))$, get 0, $\hat{Q}(a^3) = 0$
 - ② Set t = 3, Compute upper confidence bound on each action

$$UCB(a) = \hat{Q}(a) + \sqrt{\frac{2 \log t}{N_t(a)}}$$

- \bullet t = t + 1, Select action $a_t = \arg \max_a UCB(a)$,
- Observe reward 1
- Ompute upper confidence bound on each action

1 Note: This is a made up example. This is not the actual expected efficacies of the

Toy Example: Ways to Treat Broken Toes, Optimism, Assessing Regret

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)

Action	Optimal Action	Regret
a^1	a^1	
a ²	a^1	
a ³	a^1	
a^1	a^1	
a^2	a^1	

High Probability Regret Bound for UCB Multi-armed Bandit

• Any sub-optimal arm $a \neq a^*$ is pulled by UCB at most $\mathbb{E}N_T(a) \leq C' \frac{\log T}{\Delta_a^2} + \frac{\pi^2}{3} + 1$. So the regret of UCB is bounded by $\sum_a \Delta_a \mathbb{E}N_T(a) \leq \sum_a C' \frac{\log T}{\Delta_a} + |A|(\frac{\pi^2}{3} + 1)$. (Arm means $\in [0, 1]$)

$$P\left(|Q(a) - \hat{Q}_t(a)| \ge \sqrt{\frac{Clogt}{N_t(a)}}\right) \le \frac{\delta}{T}$$
 (1)

High Probability Regret Bound for UCB Multi-armed Bandit

• Any sub-optimal arm $a \neq a^*$ is pulled by UCB at most $\mathbb{E}N_T(a) \leq C' \frac{\log T}{\Delta_a^2} + \frac{\pi^2}{3} + 1$. So the regret of UCB is bounded by $\sum_a \Delta_a \mathbb{E}N_T(a) \leq \sum_a C' \frac{\log T}{\Delta_a} + |A| (\frac{\pi^2}{3} + 1)$. (Arm means $\in [0,1]$)

$$Q(a) - \sqrt{\frac{Clogt}{N_t(a)}} \le \hat{Q}_t(a) \le Q(a) + \sqrt{\frac{Clogt}{N_t(a)}}$$
 (2)

$$\hat{Q}_t(a) + \sqrt{\frac{Clogt}{N_t(a)}} \ge \hat{Q}_t(a^*) + \sqrt{\frac{Clogt}{N_t(a^*)}} \ge Q(a^*)$$
 (3)

$$Q(a) + 2\sqrt{\frac{Clogt}{N_t(a)}} \ge Q(a^*) \tag{4}$$

$$2\sqrt{\frac{C\log t}{N_t(a)}} \ge Q(a^*) - Q(a) = \Delta_a \tag{5}$$

$$N_t(a) \le \frac{4C \log t}{\Delta_a^2} \tag{6}$$

UCB Bandit Regret

This leads to the UCB1 algorithm

$$a_t = \arg\max_{a \in \mathcal{A}} \left[\hat{Q}(a) + \sqrt{\frac{2 \log t}{N_t(a)}} \right]$$

 Theorem: The UCB algorithm achieves logarithmic asymptotic total regret

$$\lim_{t\to\infty} L_t \le 8\log t \sum_{a|\Delta_a>0} \Delta_a$$

Optional Check Your Understanding

- An alternative would be to always select the arm with the highest lower bound
- Why can this yield linear regret?
- Consider a two arm case for simplicity

Today

- Setting: Introduction to multi-armed bandits & Approach: greedy methods
- Framework: Regret
- Approach: ϵ -greedy methods
- Approach: Optimism under uncertainty
- Note: bandits are a simpler place to see these ideas, but these ideas will extend to MDPs
- Next time: more fast learning