10 Left and right folds

The fold on lists, an instance of foldr, is

```
> fold :: (a -> b -> b) -> b -> [a] -> b
> fold cons nil [] = nil
> fold cons nil (x:xs) = cons x (fold cons nil xs)
```

and fold (:) [] = id. It captures a possible pattern of computation for many functions on lists

```
egin{array}{lcl} sum &=& fold \ (+) \ 0 \ product &=& fold \ (	imes) \ 1 \ concat &=& fold \ (++) \ [\ ] \ map \ f &=& fold \ ((:) \cdot f) \ [\ ] \end{array}
```

notice that none of these equations is recursive: only equations defining fold are recursive. We might hope to be able to prove things about the others, such as

```
sum (xs + ys) = sum xs + sum ys
product (xs + ys) = product xs \times product ys
concat (xs + ys) = concat xs + concat ys
map f (xs + ys) = map f xs + map f ys
```

without resorting to induction for every one of them.

What is needed is a proof that

```
fold\ c\ n\ (xs\ ++\ ys)\ =\ fold\ c\ n\ xs\oplus fold\ c\ n\ ys
```

Setting out to prove this, just once, will reveal what relationship has to exist between c, n and (\oplus) .

so these will be equal if $x = n \oplus x$ for all x.

```
fold c n ((x:xs) + ys) \qquad fold c n (x:xs) \oplus fold c n ys
= \{ definition of (+) \} \qquad = \{ definition of fold \}
fold c n (x:(xs + ys)) \qquad c x (fold c n xs) \oplus fold c n ys
= \{ definition of fold \}
c x (fold c n (xs + ys))
= \{ inductive hypothesis \}
c x (fold c n xs \oplus fold c n ys)
```

and these will be equal if $x'c'(y \oplus z) = (x'c'y) \oplus z$. Furthermore,

```
  fold\ c\ n\ (\bot + ys) \qquad \qquad fold\ c\ n\ \bot \oplus fold\ c\ n\ ys \\ = \ \{\ definition\ of\ (++)\ \} \qquad = \ \{\ fold\ c\ n\ \bot \oplus fold\ c\ n\ ys \\ = \ \{\ fold\ is\ strict\ in\ the\ list\ \}
```

and these will be equal if (\oplus) is strict, that is if the operator is strict in its left argument.

None of these three properties involves any recursion so they can be checked by induction-free proofs.

10.1 Fusion

The most generally useful property of folds is that, given the right properties of f, g, h, a, and b,

```
f \cdot fold \ g \ a = fold \ h \ b
```

These are functions of a list so the proof is by induction on an argument list

```
\begin{array}{ll} (f \cdot fold \ g \ a) \perp & fold \ h \ b \perp \\ \\ = \ \big\{ \mbox{definition of } (\cdot) \big\} & = \ \big\{ fold \ is \ strict \ in \ the \ list \big\} \\ \\ f \ (fold \ g \ a \perp) & \perp \\ \\ = \ \big\{ fold \ is \ strict \ in \ the \ list \big\} \\ \\ f \ \perp & \end{array}
```

so f must be strict.

so b = f a.

$$(f \cdot fold \ g \ a) \ (x : xs)$$
 $fold \ h \ b \ (x : xs)$
$$= \{ \text{definition of } (\cdot) \}$$

$$= \{ \text{definition of } fold \}$$

$$h \ x \ (fold \ h \ b \ xs)$$

$$= \{ \text{definition of } fold \}$$

$$= \{ \text{definition of } fold \}$$

$$f \ (g \ x \ (fold \ g \ a \ xs))$$

$$= \{ \text{definition of } (\cdot), \text{twice} \}$$

$$(h \ x \cdot f) \ (fold \ g \ a \ xs)$$

and these will be equal at least if $h \ x \ (f \ y) = f \ (g \ x \ y)$ or equivalently if $h \ x \cdot f = f \cdot g \ x$.

Most of the laws that we have used that are about functions that are folds have been instances of fusion. We have also been relying on a special case of fusion to show that some function f on lists is a fold, because

$$f$$

$$= \{ \text{unit of composition} \}$$
 $f \cdot id$

$$= \{ \text{fold of constructors} \}$$
 $f \cdot fold (:) []$

$$= \{ \text{fusion} \}$$
 $fold h (f [])$

provided f is strict, and f(x:xs) = h x (f xs).

10.2 Left and right folds

One intuition about *fold* is that it produces a right-heavy expression where the arguments replace the constructors of a list:

$$fold \ (\oplus) \ e \ [x_0, x_1, x_2, \dots x_n] = (x_0 \oplus (x_1 \oplus (x_2 \oplus \dots (x_n \oplus e) \dots)))$$

There is a predefined function foldr which when restricted to lists agrees with fold. We might compute a similar left-heavy expression

$$tailfold\ (\oplus)\ e\ [x_0,x_1,x_2,\ldots x_n]\ =\ (\cdots(((e\oplus x_0)\oplus x_1)\oplus x_2)\oplus\cdots x_n)$$

```
and might specify this by tailfold\ c\ n = fold\ (flip\ c)\ n \cdot reverse and calculate from this that it is strict; that tailfold\ c\ n\ []
```

```
tanyout to n []

= { specification }
    (fold (flip c) n · reverse) []

= { composition }
    fold (flip c) n (reverse [])

= { definition of reverse }
    fold (flip c) n []

= { definition of fold }
    n
```

and that

```
tailfold\ c\ n\ (x:xs)
= { specification }
    (fold (flip c) n \cdot reverse) (x : xs)
= {composition}
    fold (flip c) n (reverse (x:xs))
= { definition of reverse }
   fold (flip c) n (reverse xs + [x])
= { lemma (exercise 10.1 or 10.2) }
   fold (flip c) (fold (flip c) n [x]) (reverse xs)
= { definition of fold, twice }
    fold (flip c) (flip c x n) (reverse xs)
= { definition of flip }
    fold (flip c) (c n x) (reverse xs)
= { composition }
    (fold (flip c) (c n x) \cdot reverse) xs
= { specification }
    tailfold\ c\ (c\ n\ x)\ xs
```

This justifies defining

```
> tailfold c n [] = n
> tailfold c n (x:xs) = tailfold c (c n x) xs
```

and this is essentially the same as the predefined foldl (restricted to lists). The name is justified by the recusion being a tail call.

10.3 Scans 59

10.3 Scans

One commonly needs to think about 'partial sums'. The natual thing to think of first for lists is

```
scan c n = map (fold c n) \cdot tails
```

where the tails of a list are all the suffix segments, in decreasing order of length.

```
> tails :: [a] -> [[a]]
> tails [] = [[]]
> tails (x:xs) = (x:xs): tails xs
```

There is a very similar standard function tails in Data.List.

In the way you probably expect, tails can be cast as a fold because

```
tails (x:xs)
= \{ definition of tails \} 
(x:xs): tails xs
= \{ head (tails xs) = xs \} 
(x:head ys): ys where ys = tails xs
```

so $tails = fold \ g$ [[]] where $g \ x \ ys = (x : head \ ys) : ys$. This means that if the conditions of fusion are satisfied, scan can be expressed as a fold.

Firstly, map (fold c n) is strict; then

```
map (fold \ c \ n) \ [[]]
= \{ definition of \ map \} 
[fold \ c \ n \ []]
= \{ definition of \ fold \} 
[n]
```

and then

```
map (fold c n) (g x ys)
= \{definition of g\}
map (fold c n) ((x:head ys):ys)
= \{definition of map\}
(fold c n (x:head ys):map (fold c n) ys
= \{definition of fold\}
c x (fold c n (head ys)):map (fold c n) ys
= \{f \cdot head = head \cdot map f\}
c x (head zs):zs \text{ where } zs = map (fold c n) ys
```

from which conclude that

```
scan c n
= { specification }
    map (fold c n) · tails
= { fusion }
    fold h [n] where h x zs = c x (head zs) : zs
```

Notice that executing the specification directly gives a quadratic algorithm: for a list xs of length n there are about $\frac{1}{2}n^2$ applications of c. However there are only n applications of h, each of which calls c exactly once (and does a constant amount of consing). The result is a linear algorithm for

```
> scan c n = fold g [n] where g x zs = c x (head zs):zs
```

The predefined function scanr is equal to scan, and even has the same strictness.

10.4 Aside: strictness

The function tails defined above is strict, but Data.List.tails is not. However the implementation of scan as a fold is strict (as is the predefined scanr which is equal to scan), because folds are strict.

Had we defined tails to be non-strict,

it would not have been possible to implement it by a fold. The rest of the derivation of the implementation of scan as a fold is sound.

You might argue that the efficient implementation of scan is not a faithful implementation of $map \ (fold \ c \ n) \cdot tails$ if tails is not strict.