CPSC 483 Support Vector Machines

Anand Panangadan apanangadan@fullerton.edu

What we will cover this week

- Support Vector Machines
- The "kernel trick"
- Support Vector Regression

The Data Science Process

SUPPORT VECTOR MACHINES (SVM)

Hard margin classification

Which line "best" separates the points to two classes?

Support Vector Machine (SVM)

What are the optimal linear separators?

- The linear decision surface is expressed by .
- Find , , such that for red points and for blue points.
- When there are many possible solutions for , , , the optimal separator is the line that separates the groups of data as clearly as possible.

Support Vector Machine (SVM) Vapnik, 1990

- A method invented by Vladimir Vapnik and colleagues at AT&T Bell Labs in the 1990s
- Support vectors and margin
 - Support vectors are the data points closest to the hyperplane. They have direct bearing on the optimal location of the decision surface and are the most difficulty to classify.
 - Margin is the width of separation between the support vectors.
- SVM finds the hyperplanes that maximizes the margin.
 - The decision function is fully specified by support vectors (a subset of training data).

Distance to Hyperplane

Data projection

 If the input data vector is projected onto the normal vector to the hyperplane, , what is the distance between the data point and hyperplane?

The distance to a hyperplane

- The signed orthogonal distance of a vector from the hyperplane:
 - If we use the hyperplane for classification, it is considered as decision surface.
- The distance from origin to the decision surface is
 - The bias determines the location of the decision surface.

Distances and Hard Margin

$$\mathbf{w}^T \mathbf{x} + \mathbf{w_0} = \mathbf{0}$$

X: data points in training data set

X': Any points on the hyperplane

: normal vector to the decision hyperplane

: the location of the hyperplane

y: a class value +1 or -1 in training data

- If y = 1, and if y = , (for each side hyperplane)
 - Support vectors are on or
- Combining both and cases, check
 - The distance between +/ point and decision hyperplane is or
 - The distance between origin and decision hyperplane is .
 - The distance between any data point and the decision hyperplane is
- The width of the margin area, called "hard margin" is

Width of margin

A smaller weight vector results in a larger margin

Primal Form of Linear SVM (Hard margin)

Find such that is **maximized subject** to (s.t) for all.

Primal Form of Linear SVM (Hard margin)

- means (for mathematical convenience from)
 - can be considered as s L2 regularization term.

Find such that is minimized s.t

for all.

This is a constrained optimization problem.

- We cannot directly use gradient descent since this is a constrained optimization problem
- Quadratic programming can be used to solve the constrained optimization problems by converting into an equivalent unconstrained optimization problem.
 - Method of Lagrange multipliers

Functional Margin and Support Vectors

Implication of minimizing

• We want smaller w. To see the effects of w, draw the following parallel lines:

- The <u>smaller</u> w (coefficients), the <u>larger</u> margin; The <u>larger</u> w, the <u>smaller</u> margin.
 - From the functional margin of x, y(), we can increase this margin simply by scaling w and.
- Moving a support vector moves the decision boundary

 Moving the other vectors has no effect

 The algorithm to generate the weights proceeds in such a way that only the support vectors determine the weights and thus the boundary

- What do we do with the support vectors?
 - For classification, we only need the support vectors.

Class work

- Write code to classify setosa vs virginica species in the Iris dataset using only Petal length and Petal width
 - Ignore the instances of versicolor
- What is the equation of the decision boundary?
- How many support vectors are needed to "support" this boundary?

Hard margin classification

Problems with hard margin

- **Not realistic** to assume that the data are perfectly separable by the hard margin while **all the constraints** satisfied
- sensitivity to outliers

Soft Margin with Slack Variables

Solution

- Add slack variables (for each x) to allow misclassification (violation of constraints) of difficult or noisy examples:
 - still on correct side of hyperplane but within the margin
 - wrong side of hyperplane
 - We still want to place a hyperplane with large margin to minimize the number of violations. How can we do that?

• Idea:

For each data point, if margin 1, don't care but if <1, pay a linear penalty, C.

Objective Function for Soft Margin

Soft margin objective function:

Maximize margin

s.t and

Separating hyperplane

- Smaller ||w||, wider margin for smoother decision boundary at the cost of misclassification errors (may underfit).
- Larger ||w||, smaller margin for complex decision boundary as less tolerant to outliers (may overfit).

Hyper parameters C and

- is a regularization parameter to control the penalty for misclassification errors.
 - Increasing decreases the tolerance for breaking the margin.
 - have to separate the data (hard margin)
 - ignore the data entirely as value can be anything.
 - Choose the penalty using cross-validation.
- is a slack variable that allows misclassification.
 - If margin ≥ 1, don't care, <1 pay linear penalty.
 - If = 0, the hard margin.

Soft margin classification

A hyperparameter to control how much margin violations are tolerated. Larger C: more violations allowed, less likely to overfit

Dealing with Imbalanced Data

Classifying imbalanced data

- In many practical applications we may have imbalanced data. In this case we want errors to be equally distributed between the positive and negative classes
- A slight modification to the SVM objective does the trick:

$$\min_{\mathbf{w},\;\mathbf{w_0}} ||w||_2^2 + \frac{CN}{2N_+} \sum_{j:y_j = +1} \xi_j + \frac{CN}{2N_-} \sum_{j:y_j = -1} \xi_j$$

Class-specific weighting of the slack variables

Scaling features

Note: changing the scale of the features (axes) will change the effect of the decision boundary.

Scale features before using margin-based classification

KERNEL METHODS

Linearly Separable and Not Separable

- Linearly separable and not separable
 - A linear decision boundary exists to separate the data.
 - No linear decision boundary exists to separate the data.
- SVM is a <u>linear</u> classifier using a hyperplane.
 - Hyperplane is a linear subspace of a vector space.
 - How can SVM classify the data that is not linearly separable?

Mapping Data to High Dimension

Points that were linearly non-separable on a line (1-D) **become** linearly separable in 2-D (provided an appropriate transformation was applied to the points:).

Mapping Data to High Dimension

Rationale:

Data that is linearly nonseparable in low dimensions may become linearly separable in high dimensions (provided sensible features are chosen).

Mapping Data to Higher Dimensions

Data is linearly separable in 3D.

The problem can still be solved by a linear classifier.

- (d < D)
 - maps to another dimensional space called "feature space".
 - Input data are transformed into a higher-dimensional feature space that can be separable.
 - An example mapping function (from 2D to 3D)
 - General quadratic mapping
- Learn a linear classifier in higher dimension :

Kernel Function (Feature Map)

- A kernel function where and
 - The <u>dot product of</u> is called "kernel", "kernel function", or "feature map" in "reproducing kernel Hilbert space".
 - Example kernel: ,
 - Kernel function as a dot product (), is a similarity measure between two
 objects and (for the same object)
 - If two vectors are independent (dissimilar), zero; if parallel = 1.
 - This idea can be generally applied (not just to SVM), but one problem:
 - If D >> d, many more parameters to learn for w. How can this be avoided?

Very high number of dimension

- Let the original data be m-dimensional
- Transforming to a polynomial space of degree d will result in how many features?

The "Kernel Trick"

• In the previous kernel example:

Finding:

- Instead of that takes lots of computation in the feature space, just one dot product and square in input space without computing and.
- Complexity of learning depends on # of examples N, typically for SVM not on the dimension D.

The kernel trick claims:

- Computing in the original input space without a feature transformation.
 - A computational trick in computing dot products in higher dimensional feature spaces

Polynomial Kernels

- Polynomials of degree exactly degree :
 - (linear kernel)
 - 2 (quadratic kernel)

- For any , (proof is skipped)
- All polynomial terms up to degree :
 - •

Common Kernels

Polynomials of degree exactly d

Gaussian

Region of similarity

- Polynomials of degree up to d
- Radial Basis Function (RBF) kernels
 - Gaussian:
 - is the squared Euclidean distance; when close; when dissimilar
 - The small (is large) behaves like linear SVM, large may cause overfitting.
 - Exponential:
- Sigmoid kernel

Building New Kernels

Building new kernels using valid kernels

- If and are two valid kernels, the following kernels are valid:
 - Linear combination:
 - Exponential:
 - Product:
 - Polynomial transformation: where is polynomial with non-negative coefficients.
 - Function product: where is any function.

Class work

- For the above 2-D dataset, can you think of a transformation
 - to (another) 2-D space
 - to 1-D space
- Where the blue/red points become linearly separable?

Kernel "trick"

- Why a "trick"?
- The dual problem formulation of the SVM optimization problem can make use of the kernel

Primal and Dual Forms of SVM to Solve the Optimization Problem

- From the original SVM problem:
 - => s.t for all
- The <u>primal</u> problem with Lagrange multipliers :

•

- The primal form of the optimization problem that can be solved by solving for the **dual** of this original problem if we can transform the primal problem into a simpler form.
- The <u>dual</u> problem to solve the primal problem:

 - s.t,
 - Why not just solve the original primal problem? Because we can solve the problem by computing just the <u>dot products</u> of pairs of samples and.

Solving the Dual Problem of SVM

- Solving
- s.t,

- This is a quadratic programming (QP) problem. A global maximum of can be found.
- Non-zero positive Lagrange coefficients corresponds to the support vectors.
 - Most will be zero. That means the other points play no role.
 - We only need to retain support vectors once model is trained.
- How do we know this solution is the optimal solution?
 - Karush-Kuhn-Tucker (KKT) conditions

•

SVM using Kernel Functions

- Training to learn w (by learning)
- s.t , for
- Classifier
- Predicting
 - where and
 - Only need to compute dot products between training examples and the new example
 This is true even if we map examples to a high dimensional space:
 - Prediction with high dimensional space using kernel trick

Interpreting the value of SVM discriminant function as probability

 Performing logistic regression on the SVM output of a set of data (validation set) that is not used for training

Steps for SVM Classification

- Prepare the pattern matrix.
- Select the kernel function.
- Select the parameter of the kernel function and the value of .
 - This is the trickiest part.
 - You can use the values suggested by the SVM software or set aside a validation set to determine the values of the parameter.
- Execute the training algorithm and obtain the .
- Prediction
 - Unseen data can be classified using the and the support vectors.

- SVM objective seeks a solution with large margin
 - Theory says that large margin leads to good generalization.
 - But everything overfits sometimes.
 - Large feature space with kernels (larger d in polynomial kernels)
- Model complexity can be controlled by:
 - Setting the parameter C
 - A better kernel
 - Varying parameters of the kernel (e.g., Gaussian)

Strength and Weakness of SVM

Strength of SVM

- Training is relatively easy
 - No local optimal unlike in neural networks
- Scale well to high dimensional data
 - Not suffer from the curse of dimensionality.
 - The model complexity is independent of the dimensionality with support vectors.
 - Tradeoff between classifier complexity and error can be controlled explicitly.
- Non-traditional data like strings and trees can also be used as input data.

Weakness of SVM

- Need to choose a "good" kernel function
- How to determine hyperparameters (C, ε)
 - Hyperparameter optimization by empirical studies (Xu et al. 2009), genetic algorithms, simulated annealing (Pai and Hong 2005), k-fold cross-validation.
- How to incorporate uncertainty (e.g., relevance vector machine)

- Write code to classify setosa vs virginica species in the Iris dataset using only Petal length and Petal width
 - Ignore the instances of versicolor
- Try different kernels (each with its own hyperparameters)
- Which kernel needed the least support vectors?

SUPPORT VECTOR REGRESSION (SVR)

Support Vector Regression (SVR)

- To use SVMs for regression instead of classification, tweak the objective:
- instead of maximizing the margin between two classes,
- SVM regression tries to fit as many instances as possible inside the margin.

Support Vector Regression (SVR)

Basic idea:

- Margin lines are chosen to cover all the data (hard margin) or allow for some violation (soft margin).
- Use slack variables for the data points outside of margin (red and blue stars)
- The rest is analogous to the classification.

SVR vs Linear Regression (LR)

- Unlike LR, SVR considers the support vectors (the outermost points).
 - SVR is less sensitive than LR for those data not on the regression line.
- Unlike LR, the error function is ε-insensitive loss function.
 - Any deviations $< \varepsilon$ is ignored (ε -SVR). This leads to a sparse solution like SVM.
- Non-linear regression in SVR is more efficient using Kernel trick.

Epsilon-Support Vector Regression

- The Primal Problem for ε-SVR:

 - Subject to
 - Like SVM, we can solve it using Quadratic Programming methods

Class work

- Load the iris dataset
- The goal is to classify instances as Species="virginica" or not given Petal.Length,
 Sepal.Length, Sepal.Length, and Sepal.Width
- Use logistic regression and experiment with different combinations of the features
- Use 3-fold cross-validation to evaluate models
 - Which combination of features gives the highest precision/recall?

```
from sklearn.linear_model import LogisticRegression
X = iris.data[["petal width (cm), ???"]].values
y = iris.target_names[iris.target] == 'virginica'

log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
log reg.predict(..., ...)
```


Textbook code

- <u>Textbook code</u>
- <u>Textbook code on Google Colab</u>
- Open 05_support_vector_machines.ipynb

Acknowledgement

- Many slides from Dr. Christopher Ryu
- Content based on "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow," Aurélien Géron, 3rd Edition (October 2022), O'Reilly Media, Inc.

