

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

ANNÉE 2020 - 2021

C1 : Performances statiques et cinématiques des systèmes composés de chaine de solides

TD 19 - Modélisation des systèmes logiques numériques (C9-1)

8 Juin 2021

Compétences

- Analyser; Appréhender les analyses fonctionnelle et structurelle : Architectures fonctionnelle et structurelle : diagrammes de définition de blocs; chaîne directe; système asservi; commande
- Analyser; Caractériser des écarts : Systèmes à évènements discrets : diagrammes de séquence et d'état
- Modéliser; Proposer un modèle de connaissance et de comportement : Identification des écarts
- Concevoir : Quantification des écarts

1 Commande d'un robot anthropomorphe : codeur de position absolue et transcodage Graybinaire

L'entreprise FANUC développe des robot de type anthropomorphe destiné à l'industrie de pointe. L'illustration cidessous présente un robot 5 axes. Afin de garantir une stabilité dans le mouvement du robot l'ensemble des actionneur sont asservis à l'aide de capteurs d'angles de rotation. L'objectif ici est de comparer deux solutions techniques :

- codeur incrémental relatif;
- · codeur absolu;

Les moteurs peuvent atteindre 5000 tr/min. On souhaite une précision de 0,1° sur chaque moteur.

Codeur absolu 10 pistes

Codeur relatif 2 pistes

a) Utilisation d'un codeur absolu

On étudie ici le codage d'un capteur angulaire du type codeur absolue. Il permet de mesurer la position angulaire dans un repère absolu d'un axe en rotation sur une plage angulaire d'un tour. Il est constitué de n pistes transparentes qui sont liées à l'axe en rotation. Chacune de ces piste est liée à une fourche optique constituée de LED qui délivre une information vrai (1) si la lumière passe de part et d'autre de la piste.

Le codage des pistes est réalisé en code binaire réfléchi (ou Gray) afin d'éviter les risque de mauvaise lecture en cas de mesalignement des n fourches optiques.

On note:

- G, le mot binaire renvoyé en code Gray, composé de 3 bits : $G = (g_2g_1g_0)$;
- B, le mot binaire recherché correspondant au numéro de secteur angulaire codé en binaire naturel, composé également de 3 bits $B = (b_2 b_1 b_0)$.

Q 1 : Compléter la table de vérité suivante donnant le codage binaire réfléchi et binaire naturel sur 3 bits.

	Codage binaire réfléchi		Codage binaire naturel			
Numéro de secteur	g ₂	g_1	g ₀	b_2	b_1	b_0
0	?	?	?	?	?	?
1	?	?	?	?	?	?
2	?	?	?	?	?	?
3	?	?	?	ş.	?	?
4	?	?	?	?	?	?
5	ş.	?	?	ş.	?	?
6	?	?	?	ş.	?	?
7	?	?	?	?	?	?

Q 2 : Griser les deux disques suivants en utilisant le codage binaire naturel et le codage binaire réfléchi.

Q 3 : Le disque tourne dans le sens horaire et il y a un changement d'état à chaque unité de temps. Compléter les chronogrammes des informations logiques g_2 , g_1 et g_0 puis ceux de b_2 , b_1 et b_0 .

Q 4 : Conclure sur l'intérêt du code réfléchi, notamment lorsqu'une des LED de la rampe est décalée.

Afin de décoder l'information, il est nécessaire de décoder l'information renvoyée par le codeur absolu. Il est nécessaire de réaliser un transcodeur pour passer du code Gray au code binaire naturel.

- Soit *G*, le mot binaire renvoyé en code Gray, composé de 3 bits : $G = (g_2 g_1 g_0)$.
- Soit B, le mot binaire recherché correspondant au numéro de secteur angulaire codé en binaire naturel, composé également de 3 bits $B = (b_2 b_1 b_0)$.
- **Q** 5 : Exprimer les fonctions logiques b_2 , b_1 et b_0 en fonction de g_2 , g_1 et g_0 .
- Q 6: Donner le nombre de pistes pour obtenir la précision souhaitée.

b) Utilisation du codeur incrémental relatif.

On étudie ici la solution d'un codeur incrémental constitué d'un disque muni de deux pistes ainsi que de trois sous-systèmes permettant de repérer les fentes sur les pistes : une DEL et un photorécepteur. Les deux pistes extérieures sont composées de 1000 fentes. Deux photorécepteurs (A et B) détectent le passage des fentes sur cette piste. La piste intérieure est percée d'une seule fente. Le détecteur noté Z permet de détecter le passage de cette fente. Il permet de fixer une référence (POM : Prise d'Origine Machine) permettant alors connaître la position absolue.

- O 7 : Donner la résolution du capteur.
- Q 8: Quelle doit être la fréquence d'échantillonnage minimal du système d'acquisition pour traiter l'information?
- Q 9 : Les deux LED sont décalées « d'un quart de fente ». Réaliser le chronogramme des sorties A et B lorsque le codeur tourne dans le sens direct puis dans le sens indirect. Réaliser un troisième graphe indiquant l'état du compteur.
 - Q 10: Expliquer comment détecter le sens de rotation du codeur.

Q 11: Expliquer comment la gestion des fronts permet d'obtenir une meilleure résolution du codeur.

2 Commande logique d'un robot aspirateur

a) Présentation

L'étude repose sur la conception d'une commande d'un aspirateur robot autonome. On donne ci-dessous un diagramme des exigences partiel du robot.

On étudie ici la commande logique devant permettre le retour sur le dock du robot aspirateur. Dès la fin d'une séquence de nettoyage, ou en cas de niveau de batterie d'accumulateurs faible, le robot doit pouvoir automatiquement retourner sur sa borne de recharge, nommée Dock dans la suite de ce sujet. Le cahier des charges fonctionnel fait apparaître une exigence : **Permettre un retour automatique â la borne de recharge** (Tableau 1).

Exigence technique tech-	Critère d'appréciation	Niveau	Variabilité
nique			
Permettre un retour auto-	niveaux logiques de centrage vers la cible	6 zones	Aucune
matique â la borne de re-			
charge			

TABLE 1 - Extrait du CdCF

Le robot possède un capteur infrarouge à démodulateur de 38 kHz logé dans une tourelle ainsi que six détecteurs de proximité sur le pare-choc avant (Cf. Figure 1). Le Dock possède 3 leds d'émission infrarouge : 2 leds situées en face avant du Dock et séparées par une cloison et une led située dans une tourelle sur le dessus du Dock (Cf Figure 1). Les lobes d'émission des leds du Dock sont présentés à la Figure 2. Chaque led émet une trame créant un code binaire sur 8 bits. Les codes des trames sont les suivants :

Leds	Code binaire		
Led droite	1010 0100		
Led gauche	1010 1000		
Led tourelle	1010 0001		

Une trame est définie comme suit :

- chaque bit est codé sur une durée de 4 ms.
- la première milliseconde est à "0" et la dernière à "1".

Une acquisition d'une trame traitée par le robot est présentée à la figure suivante :

b) Codage de l'information

Q 12: Dans le cas du chronogramme de la figure précédente, déterminer quel est le code reçu par le robot. Le signal décodé par le robot est-il en logique négative (un état vrai est représenté par "0" et un état faux par "1") ou positive (un état vrai est représenté par "1" et un état faux par "0")?

Q 13 : Déterminer en hexadécimal le code binaire 1010 0100 délivré par la led droite.

Q 14 : Déterminer en hexadécimal le code binaire 1010 1000 délivré par la led gauche.

L'obtention du lobe led gauche et led droite est obtenue par le recouvrement des lobes d'émission des leds droite et gauche. Cela correspond à l'addition des 2 codes donnant un résultat formaté sur 8 bits.

Q 15 : Déterminer le résultat en binaire du recouvrement de ces 2 lobes. En déduire un résultat en décimal.

Il existe aussi un recouvrement des lobes led tourelle et led gauche et des lobes led tourelle et led droite. Suivant la position du capteur infrarouge du robot au niveau des lobes d'émission des leds du Dock, le robot peut récupérer les lobes en acquisition suivant :

Lobe led tourelle		
Lobe recouvrement led tourelle et led gauche		
Lobe led gauche		
Lobe recouvrement led gauche et led droite		
Lobe led droite		
Lobe recouvrement led droite et led tourelle		

Q 16: Déterminer les codes binaires reçus pour chacun des cas.

FIGURE 1 – Présentation des capteurs du robot

FIGURE 2 - Lobes d'émissions des leds du Dock

c) Programmation de l'additionneur

On considère un additionneur de 2 mots de 2 bits.

Q 17: Écrire la table de vérité donnant les valeurs des bits de sortie S_0 , S_1 et S_2 en fonction des bits d'entrée a_0 , a_1 du mot A et b_0 , b_1 du mot B.

Q 18 : Donner les expressions simplifiées des sorties S_0 , S_1 et S_2 .

Q 19 : Tracer le schéma de S_2 en utilisant des cellules NON-ET à deux entrées.

Q 20 : Donner l'équation de la fonction indiquant un résultat supérieur ou égal à 4.

FIGURE 3 - Additionneur