

Institute for Bioinformatics and Medical Informatics

BIO-4372 Cheminformatics

L04 Topological Structure Comparison

Part I: Exact and Substructure Methods

Winter Semester 2022-23 Philipp Thiel

- Exact structure searching
- Identity of molecules
- Molecule identity as a graph-based problem
- Efficient identity testing using line notations
 - Problem of uniqueness
 - Canonical labeling of molecular graphs
- Substructure searching
- Subgraph isomorphism problem
- Algorithmic approaches for substructure matching
- Efficient substructure searching on large databases

- A lot of databases with chemical information are available
 - Cf. L01 Introduction
 - Fine chemical suppliers
 - General chemical information resources
 - Experimental data
- Scientists often require information on a specific molecule
- For example information on ...

Availability and pricing

• Synthesis route(s)

Biological activity

Basic Problem

Task to perform in all given examples:

Exact Structure Searching

Basic problem:

Decide if two given molecules A and B are identical?

- Identity testing is very important
- It can be described using molecular graph theory
 - Problem rather complex
- We will also discuss more efficient approaches for this problem

Graph-Based Identity

- If molecules A and B are identical
 - ⇒ molecular graphs **A** and **B** are **isomorphic**

$$+$$

Graph-Based Identity

Graph Isomorphism (GI)

• Given: $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$

with $|V_1| = |V_2|$

• Problem: \exists f: $V_1 \rightarrow V_2$, an edge-preserving bijection,

such that: $(u,v) \in E_1 \Leftrightarrow (f(u), f(v)) \in E_2$?

Graph-Based Identity

- Graph Isomorphism (GI)
- In general, one of the few problems in NP of which it is not yet known whether it is in P or NP-complete ¹
 - So far no proof of NP-completeness
 - So far no polynomial-time algorithm
- Bounded node degree: can be solved in polynomial time ²
 - Thus, problem for molecular graphs in P
- Gl alone not sufficient for molecular graphs
 - Node and edge labels have to be considered as well
 - Labeled Graph Isomorphism problem (LGI)

1. [GJ]

Graph-Based Identity

- Labeled Graph Isomorphism (LGI)
- Given: G₁=(V₁, E₁) and G₂=(V₂, E₂) with |V₁| = |V₂| and a node labeling function μ: V₁∪ V₂→∑
- G_1 is isomorphic to G_2 w.r.t to labels if \exists bijection f: $V_1 \rightarrow V_2$ such that: $(u,v) \in E_1 \Leftrightarrow (f(u), f(v)) \in E_2$ and $\mu(u) = \mu(f(u)) \quad \forall \quad u \in V_1$

Graph-Based Identity

- Labeled Graph Isomorphism (LGI)
- An easier problem than GI
 - Labeling reduces number of possible node permutations
 - Testing for the numbers of equivalent labels is trivial
 - Comparison of elemental compositions: e.g. C₆H₆ ≠ C₆H₅O
 - Can exclude existence of LGI
- For larger structures LGI is still a hard problem
 - Efficient implementations can take several seconds.
- Pairwise comparison of large databases (>10⁶) infeasible
 - Often requires 10¹² or more individual pair comparisons
 - Thus, too slow!

Line Notations

- Efficient identity check possible with line notations
 - Simply by **string comparison**
- General problem of line notations: not unique
- Remember SMILES for ethanol:
 - CCO = OCC = CC[OH] = C1.C12.O2 = ...
- Key requirement for string-based molecule comparison:
 - **Employed line notation is unique (= canonical)**

Line Notations

- Uniqueness achieved by computing a canonical numbering of the molecular graph
- Canonical numbering allows to generate unique line notations
- Example: Unique SMILES (USMILES)
 - USMILES for ethanol: CCO
- Most important algorithm: Morgan Algorithm ¹
 - Most applications use variants of it

Overview

- Idea
 - Numbering based on connectivity (node degree)
 - Node degree alone insufficient to construct a unique numbering
 - So-called extended connectivities (EC) used
 - Include information of adjacent nodes
- Two-step algorithm
 - 1. **Relaxation**: node classification by iterative generation of EC labels
 - Canonical enumeration: node numbering based on EC labels and resolving of remaining ambiguities

Preprocessing

- Algorithm works on unlabeled heavy atom graph
 - Remove hydrogen atoms
 - Ignore atom types
 - Ignore bond orders

Relaxation

In : G = (V, E) preprocessed molecular graph

Out: G = (V, E) with EC node labels

```
EC_0(v) = 1 \forall v \in V;
c = 1;
i = 1;
```

while true do

end

Relaxation

```
In : G = (V, E) preprocessed molecular graph Out: G = (V, E) with EC node labels EC_0(v) = 1 \ \forall \ v \in V; c = 1; i = 1;
```

while true do

end

Relaxation

```
In : G = (V, E) preprocessed molecular graph

Out: G = (V, E) with EC node labels

EC_0(v) = 1 \ \forall \ v \in V;

c = 1;

i = 1;
```

while true do

end

Relaxation

```
In : G = (V, E) preprocessed molecular graph Out: G = (V, E) with EC node labels EC_0(v) = 1 \,\,\forall\,\, v \in V; c = 1; i = 1;
```

while true do

end

Relaxation

```
In : G = (V, E) preprocessed molecular graph

Out: G = (V, E) with EC node labels

EC_0(v) = 1 \ \forall \ v \in V;

c = 1;

i = 1;
```

while true do

1. Morgan H.L. (1965) *J. Chem. Doc.*, 5, 107-13

i = i + 1;

Relaxation

```
In : G = (V, E) preprocessed molecular graph
Out: G = (V, E) with EC node labels
EC_0(v) = 1 \ \forall \ v \in V;
c = 1;
i = 1;
while true do
      \mathcal{C} = \emptyset;
      for each v in V do
            EC_i(v) = \sum EC_{i-1}(u);
                         (v,u)\in E
            if EC_i(v) \notin \mathcal{C} then
                  C = C \cup EC_i(v);
            end
      end
      if |\mathcal{C}| \leq c then
            EC = EC_{i-1};
            break;
      end
      c = |\mathcal{C}|;
      i = i + 1;
```


end

Canonical Enumeration

In : G = (V, E) with EC node labels

Out: G = (V, E) with canonical node labels

$$label(v) = 0 \ \forall \ v \in V;$$

 $v_a = \operatorname{argmax}_{v \in V} EC(v);$

 $label(v_a) = 1;$

c = 2;

while $\{v \in V \mid label(v) == 0\} \neq \emptyset$ do

$$\mathcal{N} = \{ v \in V \mid (v, v_a) \in E \land label(v) == 0 \};$$

for each v in \mathcal{N} with decreasing EC label do

if
$$\not\exists u \in \mathcal{N} \text{ with } EC(u) == EC(v) \text{ then}$$

$$label(v) = c;$$

 $c = c + 1;$

else

prioritizeAndLabel(v, u);

end

end

$$v_a = v \in V \text{ with } label(v) == label(v_a) + 1;$$

end

Canonical Enumeration

```
In : G = (V, E) with EC node labels
```

Out: G = (V, E) with canonical node labels

$$label(v) = 0 \ \forall \ v \in V;$$

```
v_a = \operatorname{argmax}_{v \in V} EC(v);
label(v_a) = 1;
```

$$c = 2;$$

while $\{v \in V \mid label(v) == 0\} \neq \emptyset$ do

$$\mathcal{N} = \{ v \in V \mid (v, v_a) \in E \land label(v) == 0 \};$$

for each v in \mathcal{N} with decreasing EC label do

if
$$\not\exists u \in \mathcal{N} \text{ with } EC(u) == EC(v)$$
 then
$$\begin{vmatrix} label(v) = c; \\ c = c + 1; \end{vmatrix}$$

else

prioritizeAndLabel(v, u);

end

end

$$v_a = v \in V \text{ with } label(v) == label(v_a) + 1;$$

end

Canonical Enumeration

```
In : G = (V, E) with EC node labels

Out: G = (V, E) with canonical node labels

label(v) = 0 \,\forall \, v \in V;

v_a = \operatorname{argmax}_{v \in V} EC(v);

label(v_a) = 1;

c = 2;

while \{v \in V \mid label(v) == 0\} \neq \emptyset do
```


end

Canonical Enumeration

```
In : G = (V, E) with EC node labels

Out: G = (V, E) with canonical node labels

label(v) = 0 \,\,\forall\,\, v \in V;

v_a = \mathrm{argmax}_{v \in V} EC(v);

label(v_a) = 1;

c = 2;

while \{v \in V \mid label(v) == 0\} \neq \emptyset do
```


end

Canonical Enumeration

```
In : G = (V, E) with EC node labels
Out: G = (V, E) with canonical node labels
label(v) = 0 \ \forall \ v \in V;
v_a = \operatorname{argmax}_{v \in V} EC(v);
label(v_a) = 1;
c=2;
while \{v \in V \mid label(v) == 0\} \neq \emptyset do
      \mathcal{N} = \{ v \in V \mid (v, v_a) \in E \land label(v) == 0 \};
       for each v in \mathcal{N} with decreasing EC label do
              if \exists u \in \mathcal{N} \text{ with } EC(u) == EC(v) \text{ then }
                    label(v) = c;

c = c + 1;
              else
                    prioritizeAndLabel(v, u);
              end
       end
      v_a = v \in V \text{ with } label(v) == label(v_a) + 1;
```


end

Canonical Enumeration

```
In : G = (V, E) with EC node labels

Out: G = (V, E) with canonical node labels

label(v) = 0 \,\,\forall\,\, v \in V;

v_a = \mathrm{argmax}_{v \in V} EC(v);

label(v_a) = 1;

c = 2;

while \{v \in V \mid label(v) == 0\} \neq \emptyset do
```


end

Canonical Enumeration

```
In : G = (V, E) with EC node labels

Out: G = (V, E) with canonical node labels

label(v) = 0 \,\,\forall\,\, v \in V;

v_a = \mathrm{argmax}_{v \in V} EC(v);

label(v_a) = 1;

c = 2;

while \{v \in V \mid label(v) == 0\} \neq \emptyset do
```


end

Canonical Enumeration

```
In : G = (V, E) with EC node labels
Out: G = (V, E) with canonical node labels
label(v) = 0 \ \forall \ v \in V;
v_a = \operatorname{argmax}_{v \in V} EC(v);
label(v_a) = 1;
c=2;
while \{v \in V \mid label(v) == 0\} \neq \emptyset do
      \mathcal{N} = \{ v \in V \mid (v, v_a) \in E \land label(v) == 0 \};
       for each v in \mathcal{N} with decreasing EC label do
              if \exists u \in \mathcal{N} \text{ with } EC(u) == EC(v) \text{ then }
                    label(v) = c;

c = c + 1;
              else
                    prioritizeAndLabel(v, u);
              end
       end
      v_a = v \in V \text{ with } label(v) == label(v_a) + 1;
```


end

Canonical Enumeration

```
In : G = (V, E) with EC node labels

Out: G = (V, E) with canonical node labels

label(v) = 0 \,\forall \, v \in V;

v_a = \operatorname{argmax}_{v \in V} EC(v);

label(v_a) = 1;

c = 2;

while \{v \in V \mid label(v) == 0\} \neq \emptyset do
```


end

Canonical Enumeration

```
In : G = (V, E) with EC node labels

Out: G = (V, E) with canonical node labels

label(v) = 0 \,\,\forall\,\, v \in V;

v_a = \mathrm{argmax}_{v \in V} EC(v);

label(v_a) = 1;

c = 2;

while \{v \in V \mid label(v) == 0\} \neq \emptyset do
```


end

Canonical Enumeration

```
In : G = (V, E) with EC node labels

Out: G = (V, E) with canonical node labels

label(v) = 0 \,\forall \, v \in V;

v_a = \operatorname{argmax}_{v \in V} EC(v);

label(v_a) = 1;

c = 2;

while \{v \in V \mid label(v) == 0\} \neq \emptyset do
```

 $v_a = v \in V$ with $label(v) == label(v_a) + 1$;

Resolving ambiguities

Implementation has to define rules to resolve such ambiguities. Rules can be like:

- Atomic type priority:
 - C > N > P > ...
- Bond order priority:
 single > double > triple > ...
- ...

end

Canonical Enumeration

```
In : G = (V, E) with EC node labels

Out: G = (V, E) with canonical node labels

label(v) = 0 \,\forall \, v \in V;

v_a = \operatorname{argmax}_{v \in V} EC(v);

label(v_a) = 1;

c = 2;
```

while $\{v \in V \mid label(v) == 0\} \neq \emptyset$ do

 $v_a = v \in V$ with $label(v) == label(v_a) + 1$;

Resolving ambiguities

Implementation has to define rules to resolve such ambiguities. Rules can be like:

- Atomic type priority:
 - C > N > P > ...
- Bond order priority:
 single > double > triple > ...
- •

end

Canonical Enumeration

```
In : G = (V, E) with EC node labels

Out: G = (V, E) with canonical node labels

label(v) = 0 \,\,\forall\,\, v \in V;

v_a = \operatorname*{argmax}_{v \in V} EC(v);

label(v_a) = 1;

c = 2;

while \{v \in V \mid label(v) == 0\} \neq \emptyset do
```


end

Canonical Enumeration

```
In : G = (V, E) with EC node labels
Out: G = (V, E) with canonical node labels
label(v) = 0 \ \forall \ v \in V;
v_a = \operatorname{argmax}_{v \in V} EC(v);
label(v_a) = 1;
c=2;
while \{v \in V \mid label(v) == 0\} \neq \emptyset do
      \mathcal{N} = \{ v \in V \mid (v, v_a) \in E \land label(v) == 0 \};
       for each v in \mathcal{N} with decreasing EC label do
              if \exists u \in \mathcal{N} \text{ with } EC(u) == EC(v) \text{ then }
                    label(v) = c;

c = c + 1;
              else
                    prioritizeAndLabel(v, u);
              end
       end
      v_a = v \in V \text{ with } label(v) == label(v_a) + 1;
```


end

Canonical Enumeration

In : G = (V, E) with EC node labels

Out: G = (V, E) with canonical node labels

```
label(v) = 0 \ \forall \ v \in V;

v_a = \operatorname{argmax}_{v \in V} EC(v);

label(v_a) = 1;

c = 2;

while \{v \in V \mid label(v)\}
```

while $\{v \in V \mid label(v) == 0\} \neq \emptyset$ do

```
\mathcal{N} = \{ v \in V \mid (v, v_a) \in E \land label(v) == 0 \};
```

foreach v in \mathcal{N} with decreasing EC label do

$$\label{eq:continuous} \begin{array}{ll} \textbf{if} \ \not\exists \ u \in \mathcal{N} \ with \ EC(u) == EC(v) \ \textbf{then} \\ \\ \ label(v) = c; \\ \\ \ c = c+1; \end{array}$$

else

 $\verb|prioritizeAndLabel|(v,u);$

end

end

$$v_a = v \in V \text{ with } label(v) == label(v_a) + 1;$$

end

1. Morgan H.L. (1965) J. Chem. Doc., 5, 107-13

Known Problems

- No provably unique enumeration!
- Relaxation step: oscillations
 - Oscillating values of $c \rightarrow$ algorithm does not terminate!
- Canonical enumeration step: ambiguities
 - Not all ambiguities can be resolved
- A few improved variants of the algorithm have been proposed.
 Problems not entirely resolved but less likely.

Use case: Canonical SMILES

- Also termed Unique SMILES (USMILES)
- David Weininger proposed an algorithm for unique SMILES ¹
 - Also based on Morgan's algorithm
 - Same problems
 - Since 1989 the algorithm had to be changed a few times
 - Algorithmic details of Daylight's USMILES not published
- Canonical SMILES guidelines:
 - 1. Always use the same implementation
 - 2. Don't trust other people's canonical SMILES

1. Weininger D. et al. (1989) J. Chem. Inf. Comput. Sci., 29, 97-101

Closing Remarks

- Generic canonical enumeration of a molecular graph
- One of the most important algorithms for this task
- Mainly used to canonize line notations
 - SMILES
 - InChi
- Can also be used for tasks such as
 - Atom numbering in Ctab formats
 - Reaction mapping applications
 - Unique registration of stereoisomers

Motivation

- Searching for substructures in molecules is more important
- Basic question: Is molecule A contained in molecule B?

- Single problem instance: substructure matching
- Applied on a database: substructure searching
- Problem can be defined using molecular graph theory
 - ⇒ Subgraph isomorphism problem (SI)

Motivation

- In order to perform substructure searching on molecular databases we require:
 - 1. An algorithm for substructure matching
 - 2. An efficient screening procedure
- We will discuss these steps in detail on the following slides

 Identification of interesting substructures to search for will be addressed in L05 Topological Structure Comparison II

Problem Definition

Labeled Subgraph Isomorphism

• **Given**: Molecular graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$.

Functions $\mu: V_1 \cup V_2 \rightarrow A$ and $\gamma: E_1 \cup E_2 \rightarrow B$

assigning labels to nodes (atoms) and edges (bonds).

• **Problem**: \exists f: $V_1 \rightarrow V_2$, an **injective function**, mapping each

 $v \in V_1$ to a unique vertex of V_2 such that

if $(u,v) \in E_1 \Rightarrow (f(u), f(v)) \in E_2$ and

 $\mu(u) = \mu(f(u))$ and $\mu(v) = \mu(f(v))$ and

 $\gamma((u,v)) = \gamma((f(u),f(v)))$

Problem Definition

Labeled Subgraph Isomorphism

• Given: Molecular graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$.

Functions $\mu: V_1 \cup V_2 \rightarrow A$ and $\gamma: E_1 \cup E_2 \rightarrow B$

assigning labels to nodes (atoms) and edges (bonds).

• **Problem**: \exists f: $V_1 \rightarrow V_2$, an **injective function**, mapping each

 $v \in V_1$ to a unique vertex of V_2 such that

if $(u,v) \in E_1 \Rightarrow (f(u), f(v)) \in E_2$ and

 $\mu(u) = \mu(f(u))$ and $\mu(v) = \mu(f(v))$ and

 $\gamma((u,v)) = \gamma((f(u),f(v)))$

Problem Definition

Labeled Subgraph Isomorphism

- Problem is NP-complete
- Algorithms scale exponentially with problem size
 - Number of nodes in the graphs
 - Number of atoms in molecules
- No such elegant solution as for identity testing using line notations
- Only a few algorithms have been described
- Existing approaches comprise exact algorithms and heuristics
- We first introduce concepts and sketch a brute-force approach

Overview

• **Given**: Labeled molecular graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$

with $|V_1| = n$, $|V_2| = m \ge n$ represented by their

corresponding adjacency matrices A_1 and A_2 .

 G_1 is our query and G_2 our target molecule.

Problem: Find all subgraphs of G₂ that are isomorphic to G₁

Definition: An SI can be defined by a n×m permutation matrix P.

Idea: Enumerate all possible permutation matrices P_i of dimension n×m and test every P_i if it defines

an SI for G_1 and G_2

Permutation Matrix

- In a permutation matrix P rows correspond to nodes in G₁ and columns to nodes in G₂.
- P has the following properties:

$$\forall v_i \in V_1 : \sum_{v_i \in V_2} p_{ij} = 1$$

$$\forall v_j \in V_2 : \sum_{v_i \in V_1} p_{ij} \le 1$$

$$G_{1} \qquad A_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$A_{2} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} v_{21} & v_{22} & v_{23} & v_{24} \\ v_{11} & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ v_{13} & 0 & 0 & 1 \end{pmatrix}$$

Subgraph Isomorphism Criterion

Not every permutation matrix P defines an SI.

- How to check if P defines an SI for G₁ and G₂?
- Algebraic check for subgraph isomorphisms exists!
- If a given P defines an SI for G₁ and G₂
 the following equation is satisfied:

$$A_1 = P(PA_2)^T$$

Brute-Force Enumeration Algorithm

- Given G₁ and G₂ as adjacency matrices A₁ and A₂
- Enumerate all P of dimension n×m and test for SI

More Efficient Approaches

- Brute-Force enumeration infeasible
 - Grows exponentially with input graph sizes
- Exact methods gain efficiency by
 - Search space reduction
 - Relaxations of the problem
- In cheminformatics two algorithms are mainly used
 - Ullmann algorithm (1976) ¹
 - VF2 algorithm (2004) ²

1. Ullmann J.R. (1976) *J. Assoc. Comput. Mach.*, 23, 31-42 2. Cordella L.P. et al. (2004) *IEEE Trans. Pattern Anal. Mach. Intell.*, 26, 1367-72

Overview

- Ullmann proposed an algorithm that works well in practice
- Tree-traversal with backtracking
- Enumerates all substructure matches

- Main ideas:
 - Start by initially excluding impossible subtrees
 - Recursively traverse remaining subtrees
 - Perform refinement step for every internal node to reduce the search space

Overview

Same conditions as for the brute-force approach:

• **Given**: Labeled molecular graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ with $|V_1| = n$, $|V_2| = m \ge n$ represented by their corresponding **adjacency matrices** A_1 and A_2 . G_1 is our query and G_2 our target molecule.

Problem: Find all subgraphs of G₂ that are isomorphic to G₁

An SI can be defined by a n×m permutation matrix P.

Compatibility Matrices

- A series of n compatibility matrices of size n×m is constructed
 - Binary matrices
 - M^0 , ..., M^{n-1} are inner nodes and no permutation matrices
 - Leafs Mⁿ are permutation matrices
- Mⁿ define valid SI for G₁ and G₂

- Questions:
 - 1. How to construct initial compatibility matrix M^0 ?
 - 2. How to generate inner node compatibility matrices?
 - 3. How to refine inner node compatibility matrices?

Compatibility Matrices: M⁰

$$M_{ij}^{0} = \begin{cases} 1 & \mu(v_{1i}) == \mu(v_{2j}) \text{ and } deg(v_{1i}) \leq deg(v_{2j}) \\ 0 & \text{otherwise} \end{cases}$$

- Initial compatibility matrix M⁰:
 - Label matching condition is obvious
 - Target node degree must have at least degree of query node

Compatibility Matrices: M⁰

$$M_{ij}^{0} = \begin{cases} 1 & \mu(v_{1i}) == \mu(v_{2j}) \text{ and } deg(v_{1i}) \leq deg(v_{2j}) \\ 0 & \text{otherwise} \end{cases}$$

- Initial compatibility matrix M^0 :
 - Label matching condition is obvious
 - Target node degree must have at least degree of query node

Compatibility Matrices: M⁰

$$M_{ij}^{0} = \begin{cases} 1 & \mu(v_{1i}) == \mu(v_{2j}) \text{ and } deg(v_{1i}) \leq deg(v_{2j}) \\ 0 & \text{otherwise} \end{cases}$$

Recursive Ullmann

- Algorithm starts with M⁰
- Row by row is processed and all possible subtrees are evaluated
- Internal nodes are refined
 - Subtree pruning for search space reduction
 - This effectively means: set as many as possible $m_{ij} = 0$ that are 1
- If current node is a leaf:
 - 1. Print SI for G_1 and G_2
 - 2. Backtrack
- If refinement invalidates current node:
 - 1. Backtrack

Recursive Ullmann

Recursive Ullmann: Refinement

- Given: compatibility matrix M and row index k
- F

- Refine all rows of M with row index i > k
 - 1. Visit every mapped node pair $(m_{ij} = 1)$
 - 2. If node pair is **invalid** set $m_{ij} = 0$
- Repeat until M does not change anymore
- Question:

When is an existing node mapping invalid?

Recursive Ullmann: Refinement

• For a valid m_{ij} mapping v_{1i} onto v_{2j} the following condition has to hold:

All nodes adjacent to v_{1i} must have ≥ 1 valid mapping option.

Thus, for all (v_{1i}, v_{1r}) we have to find at least one (v_{2j}, v_{2s}) with $m_{rs} == 1$ and $\gamma(v_{1i}, v_{1r}) == \gamma(v_{2j}, v_{2s})$.

F

Ullmann Algorithm

Recursive Ullmann: Further Ingredients

- Binary Vector f of length m (size of G₂)
 - $f_i == 0$: v_{2i} not mapped in a higher recursion
 - $f_i == 1$: v_{2i} already mapped in a higher recursion
- filter(M,f,k,l)
 - Set row k and column l of M to 0
 - Set $M_{kl} = f_l = 1$
 - Example: Selected M₀₂

f: 00000000 00100000 11110000 00100000

M: 11110000 11010000 00001100 00001100

Recursive Ullmann: Further Ingredients

- initializeCompatibilityMatrix(A₁,A₂)
 - Function to generate M⁰ from adjacency matrices
- printSubgraphIsomorphism(M,A₁,A₂)
 - Print SI defined by M for A₁ and A₂
- createBackup(M,f)
 - Store a copy of M and f
- restoreBackup(M,f)
 - Restore M and f from copy

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0;
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k+1, \mathbf{f});
                end
                restoreBackup(M, \mathbf{f});
           end
     end
```


$$k = -1$$

f_o 00000000 11110000 M_o 11110000 00001100

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0;
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                 createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k + 1, \mathbf{f});
                 end
                restoreBackup(M, \mathbf{f});
           end
     end
```


f'	00000000
M'	11110000
	11110000
	00001100

k = -1

M 01110000 00001100

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True:
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False:
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


k = 0M changed = False

M 01110000 00001100

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                      if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                      break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
```


$$k = 0$$
 $M \text{ changed} = \text{False}$

$$\begin{array}{ccc}
 & 10000000 \\
 & 01110000 \\
 & 00001100
\end{array}$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

return True;

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                      if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                      break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
```


$$k = 0$$
 $M \text{ changed} = \text{False}$

$$\begin{array}{ccc}
 & 10000000 \\
 & 01110000 \\
 & 00001100
\end{array}
\right] > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

return True;

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                      if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                      break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
```


k = 0 M changed = False

 $\begin{array}{ccc}
 & 10000000 \\
M & 0110000 \\
00001100
\end{array}$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

return True;

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M,k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                      if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                      break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

$$\begin{array}{ccc}
 & 10000000 \\
 & 00110000 \\
 & 00001100
\end{array} > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

return True;

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                      if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False:
                      break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
```

 G_1 G_2 G_2

$$k = 0$$
 $M \text{ changed} = \text{True}$

$$\begin{array}{ccc}
 & 10000000 \\
 & 00110000 \\
 & 00001100
\end{array}$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

return True;

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                      if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False:
                      break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
```



```
k = 0
M \text{ changed} = \text{True}
```

$$\begin{array}{ccc}
 & 10000000 \\
 & 00110000 \\
 & 00001100
\end{array} > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

return True;

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                      if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False:
                      break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

$$\begin{array}{ccc}
 & 10000000 \\
 & 00110000 \\
 & 0000 \\
 & 100
\end{array} \right] > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

return True;

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M,k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                      if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False:
                      break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

$$\begin{array}{ccc}
 & 10000000 \\
 & 00110000 \\
 & 00000100
\end{array}
\right] > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

return True;

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                      if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False:
                      break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

$$\begin{array}{ccc}
 & 10000000 \\
 & 00110000 \\
 & 00000100
\end{array}
\right] > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

return True;

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                      if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False:
                      break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

$$\begin{array}{ccc}
 & 10000000 \\
 & 00110000 \\
 & 000000000
\end{array}
\right] > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

return True;

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0;
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                 createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k + 1, \mathbf{f});
                 end
                restoreBackup(M, \mathbf{f});
           end
     end
```


k = -	1	
f'	00000000	
M'	11110000 11110000 00001100	
f	00000000	
М	11110000 11110000	

00001100

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0;
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                 createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k + 1, \mathbf{f});
                 end
                restoreBackup(M, \mathbf{f});
           end
     end
```


1
00000000
11110000 11110000 00001100

	01000000
Μ	1 <mark>0</mark> 110000
	0 <mark>0</mark> 001100

01000000

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True:
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{False}$

$$\begin{array}{ccc}
M & \begin{array}{c}
01000000 \\
10110000 \\
00001100
\end{array}
\right] > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True:
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True:
```


$$\begin{array}{ccc}
01000000 \\
10110000 \\
00001100
\end{array} > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True:
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{False}$

$$\begin{array}{ccc}
 & 01000000 \\
 & 10110000 \\
 & 00001100
\end{array}$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M,k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True:
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{False}$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M,k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True:
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

$$\begin{array}{ccc}
 & 01000000 \\
 & 10110000 \\
 & 00000100
\end{array}
\right] > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M,k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2j} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                     return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0;
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                 createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k + 1, \mathbf{f});
                 end
                restoreBackup(M, \mathbf{f});
           end
     end
```


	6	
k = -	-1	
f'	00000000	
M'	11110000 11110000 00001100	
f	00000000	
М	11110000 11110000 00001100	

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0;
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                 createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k + 1, \mathbf{f});
                 end
                restoreBackup(M, \mathbf{f});
           end
     end
```


	6	G
k = -	1	
f'	00000000	
M'	11110000 11110000 00001100	
f	00100000	
М	00100000 11 <mark>010000 000</mark> 01100	

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True:
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{False}$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M,k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True:
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{False}$

$$\begin{array}{ccc}
 & 00100000 \\
 & 11010000 \\
 & 00001100
\end{array}$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

$$\begin{array}{ccc}
M & 10010000 \\
00001100 & > k
\end{array}$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

$$\begin{array}{ccc}
00100000 \\
10010000 \\
00001100
\end{array} > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True:
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

$$M = \begin{bmatrix} 00100000 \\ 10010000 \\ 00001 \\ 100 \end{bmatrix} > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True:
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M,k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True:
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$M = \begin{bmatrix} 00100000 \\ 10010000 \\ 00000100 \end{bmatrix} > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True:
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

$$M = \begin{bmatrix} 00100000 \\ 00010000 \\ 00000100 \end{bmatrix} > k$$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M,k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True;
```


$$k = 0$$
 $M \text{ changed} = \text{True}$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
     forall M_{ij} with i > k and M_{ij} == 1 do
           valid = True;
           forall v_{1r} adjacent to v_{1i} do
                found = False;
                forall v_{2s} adjacent to v_{2i} do
                     if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                           found = True;
                           break:
                      end
                end
                if not found then
                      valid = False;
                     break:
                end
           end
          if not valid then
                M_{ij} = 0;
                if M_{ih} = 0 for 0 \le h \le m-1 then
                      return False;
                end
           end
     end
while M has been modified;
return True:
```


$$k = 0$$
 $M \text{ changed} = \text{False}$

$$\begin{array}{ccc}
00100000 \\
00010000 \\
00000100
\end{array} > k$$

1. Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42 2. Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
          forall M_{ij} with i > k and M_{ij} == 1 do
                valid = True:
                forall v_{1r} adjacent to v_{1i} do
                     found = False;
                     forall v_{2s} adjacent to v_{2i} do
                           if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                                found = True;
                                break:
                           end
                     end
                     if not found then
                           valid = False:
                           break:
                     end
                end
                if not valid then
                     M_{ij} = 0;
                     if M_{ih} = 0 for 0 \le h \le m-1 then
                           return False;
                     end
                end
          end
     while M has been modified;
     return True;
end
```


Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0;
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                 createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k + 1, \mathbf{f});
                 end
                restoreBackup(M, \mathbf{f});
           end
     end
```


k = -1

f'	00000000
M'	11110000 11110000 00001100

t	00100000
	00100000
М	00010000
	00000100

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0;
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                 createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k + 1, \mathbf{f});
                 end
                restoreBackup(M, \mathbf{f});
           end
     end
end
```


$$k = 0$$

f 00100000 00100000 M 00010000 00000100

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0;
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                 createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k + 1, \mathbf{f});
                 end
                restoreBackup(M, \mathbf{f});
           end
     end
```


	6	02
k = 0		
f'	00100000	
M'	00100000 00010000 00000100	
f	00110000	
М	00100000 00010000 000 <mark>0</mark> 0100	

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
          forall M_{ij} with i > k and M_{ij} == 1 do
                valid = True:
                forall v_{1r} adjacent to v_{1i} do
                     found = False;
                     forall v_{2s} adjacent to v_{2i} do
                           if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                                found = True;
                                break:
                           end
                     end
                     if not found then
                           valid = False:
                           break:
                     end
                end
                if not valid then
                     M_{ij} = 0;
                     if M_{ih} = 0 for 0 \le h \le m-1 then
                           return False;
                     end
                end
          end
     while M has been modified;
     return True;
end
```


k = 1M changed = False

 $\begin{array}{ccc}
00100000 \\
M & 00010000 \\
00000100 & \} > k
\end{array}$

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0:
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                 createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k + 1, \mathbf{f});
                 end
                restoreBackup(M, \mathbf{f});
           end
     end
```


k = 0

f' 00100000 00100000 M' 00010000 00000100

f 00110000 00100000 M 00010000 00000100

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0;
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                 createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k + 1, \mathbf{f});
                 end
                restoreBackup(M, \mathbf{f});
           end
     end
end
```


$$k = 1$$

f 00110000 00100000 M 00010000 00000100

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0;
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                 createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k + 1, \mathbf{f});
                 end
                restoreBackup(M, \mathbf{f});
           end
     end
```


k = 1

f' 00110000

M' 0010000

00000100

f 00110100

00100000

M 00010000

00000100

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

In : M by reference, k

Out: True if all nodes of A_1 can be mapped onto nodes of A_2

Function refine (&M, k)

```
repeat
          forall M_{ij} with i > k and M_{ij} == 1 do
                valid = True;
                forall v_{1r} adjacent to v_{1i} do
                     found = False;
                     forall v_{2s} adjacent to v_{2i} do
                           if M_{rs} == 1 and (v_{1i}, v_{1r}) == (v_{2i}, v_{2s}) then
                                 found = True;
                                break:
                           end
                     end
                     if not found then
                           valid = False;
                           break:
                     end
                end
                if not valid then
                     M_{ij} = 0;
                     if M_{ih} = 0 for 0 \le h \le m-1 then
                           return False;
                     end
                end
           end
     while M has been modified;
     return True:
end
```


k = 2

M changed = False

00100000 М 00010000 00000100

1. Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42 2. Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0;
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                 createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k + 1, \mathbf{f});
                 end
                restoreBackup(M, \mathbf{f});
           end
     end
```


k = 1

f'	00110000
M'	00100000 00010000 00000100

f	00110100
	00100000
Μ	00010000
	00000100

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Ullmann Algorithm

Recursive Ullmann

```
In : A_1, A_2
Out: All substructure matches for G_1 and G_2
M = initilizeCompatibilityMatrix(A_1, A_2);
k = -1;
\mathbf{f} = 0;
Function ullmann (M, k, f)
     if k == n-1 then
           printSubgraphIsomorphism(M, A_1, A_2);
     else
           for l = 0 to m - 1 with M_{k+1,l} == 1 and f_l == 0 do
                createBackup(M, \mathbf{f});
                filter(M, \mathbf{f}, k+1, l);
                if refine(M, k+1) then
                      Ullmann(M, k+1, \mathbf{f});
                end
                restoreBackup(M, \mathbf{f});
           end
     end
end
```


k = 2

f 00110100 00100000 M 00010000

00000100

SI: (0,2), (1,3), (2,5)

Ullmann J.R. (1976) J. Assoc. Comput. Mach., 23, 31-42
 Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Ullmann Algorithm

Benchmark

- Ehrlich and Rarey benchmarked Ullmann and VF2
- Both algorithms have average matching times below 1ms
- VF2 has less outliers but sensitive to SMARTS formulation
- Ullmann has more outliers but is insensitive to SMARTS formulation
- VF2 (left) and Ullmann (right) for all occurrences matching:

1. Ehrlich H.C. and Rarey M. (2012) J. Cheminf., 4, 13

Substructure Matching

Closing Remarks

- Efficiency acceptable for small data sets
- Substructure matching too slow for database search
 - On average 1 ms per structure
 - 100M (PubChem) structures take ~27 hours
- Thus, an efficient search / screening procedure required!

Efficient Database Searching

Overview

- Substructure search on databases has to be efficient.
- Usually, a two step search procedure is applied ¹
- Idea: given a substructure query do
 - 1. Fast elimination search to remove impossible matchings
 - 2. Apply subgraph matching on remaining candidates
- First step ideally eliminates vast majority of molecules

Overview

Problem:

Efficient identification of database structures that cannot contain query substructure.

Idea:

- Use set of predefined fragments
 - I.e. substructures, also referred to as features
- Enumerate presence of features in every database molecule
- Enumerate presence of features in query molecule
- Test every database molecule for a missing query feature

Example

Example

Feature Lists

- Feature lists: collection of predefined fragments
 - Small substructures < 10 non-hydrogen atoms
 - Often functional groups
- Desired fragment properties
 - Independent of each other
 - No frequent fragments
 - Not discriminating
 - No infrequent fragments
 - Discriminating but by definition a rare case
 - Thus not very useful

Feature Lists

- Much work spent on generation of effective fragment sets
 - E.g. based on database analysis ¹
 - Only efficient on a certain applicability domain
 - Organic database feature list inefficient on inorganic database
- Efficient encoding as bitstrings or bitvectors
 - Each position corresponds to one fragment
 - 0-bit := corresponding fragment is absent
 - 1-bit := corresponding fragment is present
- This special type is known as structural keys

Feature Lists: Example

Closing Remarks

- Searching with bitvectors can be implemented efficiently
- A compact representation of a molecule
- Can be precalculated for all database molecules
- Possible problem:

No fragment in feature list matching our query structure

Summary

- Molecular identity can be described as LGI: complex problem
- Identity check with line notations is fast: string comparison
- Canonical labeling of molecular graph required
- Morgan's graph canonization is the major algorithm
- Substructure search is more important
- Subgraph isomorphism: NP-complete
- Ullmann algorithm frequently used and rather efficient
- Large scale substructure search must be more efficient
- Fast elimination search using structural keys

Text Books:

• GJ Garey M. and Johnson D.S., W. H. Freeman & Co., New York, 1979

Computers and Intractability: A Guide to the Theory of NP-Completeness

GE Gasteiger J. and Engel T. (Eds.), 1st Ed., Wiley-VCH, 2003

Chemoinformatics - A Textbook

KA Kerber A. et al.

Mathematical Chemistry and Chemoinformatics, De Gruyter, 2014

Acknowledgments:

2D structure drawings were generated with ChemAxon MarvinSketch

- https://www.chemaxon.com/products/marvin/marvinsketch

3D structures were generated with BALLView

http://www.ball-project.org

- Hildebrandt A. et al. (2010) BMC Bioinformatics, 11, 531

- Moll A. et al. (2006) Bioinformatics, 22, 365-6