

Exercise 9A

Question 13:

Let A = 50 be the assumed mean, we have

Marks	Frequency	Mid value	Deviation	$f_i \times d_i$
	fi	×i	d; = (x; - 50)	
0 - 20	20	10	-40	-800
20 - 40	35	30	-20	-700
40 - 60	52	50 = A	0	0
60 - 80	44	70	20	880
80 - 100	38	90	40	1520
100 - 120	31	110	60	1860
	Σ f _i = 220			∑f _i × d _i = 2760

$$\therefore = A + \frac{\sum (f_i \times d_i)}{\sum f_i}$$

$$= 50 + \frac{2760}{220}$$

Question 14:

Marks	Frequency	Mid value	$u_i = \left(\frac{x_i - A}{h}\right)$	$(f_i \times u_i)$
	fi	×i		
0-10	12	5	-2	-24
10 - 20	18	15	-1	-18
20 - 30	27	25 = A	0	0
30 - 40	20	35	1	20
40 - 50	17	45	2	34
50 - 60	6	55	3	18
	Σ f _i = 100			$\Sigma (f_i \times u_i) = 30$

We have h = 10 and let assumed mean = 25.

A = 25, h = 10,
$$\sum f_i = 100$$
 and $\sum (f_i \times u_i) = 30$

Mean,
$$\overline{x} = A + \left[h \times \frac{\sum (f_i \times u_i)}{\sum f_i} \right]$$

= 25 + $\left(10 \times \frac{30}{100} \right) = 25 + 3 = 28$

Hence the mean of given frequency distribution is 28.

^{= 50 + 12.55}

^{= 62.55}

******* END ********