COMP90051 Statistical Machine Learning

Semester 2, 2015

Lecturer: Ben Rubinstein

4. Regularisation as conditioning; Regularisation as limiting model complexity

Ill-Conditioned Learning and Regularisation

Many machine learning methods can overfit or take a long time to train if given too many features or features that are too similar (i.e. irrelevant features). These learning problems are called by some, ill-posed inverse problems. Regularisation re-conditions them.

Irrelevant Features: An Xtreme Example

- Linear model on *d*=3 features, first two same
 - * If **X** is *n* x 3 matrix of the *n* instances
 - * First two columns of X identical
 - * Feature 2 is irrelevant (alt. 1)
 - * Model: $f(\mathbf{x}) = \mathbf{x}'\mathbf{w} = \sum_{i=1}^d w_i x_i$

3	3	7
6	6	9
21	21	79
34	34	2

- Effect of perturbations on model predictions?
 - * Add Δ to w_1
 - * Subtract Δ from w_2

...identical predictions

...no interpretability

Irrelevant Features in General

- Xtreme case: features complete clones
- For linear models, more generally
 - * Feature **X**._i is irrelevant if
 - * \mathbf{X}_{i} is a linear combination of other columns

$$\mathbf{X}_{\cdot i} = \sum_{j \neq i} \alpha_j \, \mathbf{X}_{\cdot j}$$

... for any constants α_i

- Even *near*-irrelevance can be problematic
- Not just a pathological xtreme; easy to happen!

Irrelevant Features: ...and the ugly

Ugly: computation

- Linear regression fits $\min_{\mathbf{w}} \sum_{i} (y_i \mathbf{X}_i \cdot \mathbf{w})^2$
- Solution: $\mathbf{w}^* = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$, an inverse problem
- Irrelevance

No uniqueness

→ rank deficient

i.e. some eigenvalues zero/negative

 \rightarrow no inverse $(X^{\prime}X)^{-1}$ This is an ill-posed inverse problem

What can we do about it?

Re-Condition (aka Regularise)

"Re-condition' X'X:

- I.e. use $\mathbf{w}^* = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}'\mathbf{y}$
- Adds $\lambda > 0$ to each eigenvalue
- For big enough λ we are

This is ridge regression!

$$\min_{\mathbf{w}} \sum_{i} (y_i - \mathbf{X}_i \cdot \mathbf{w})^2 + \lambda ||\mathbf{w}||_2^2$$

Added part is a regularisation term

Regularisation is a win-win

- Good for inference (lowers variance)
- Good computation ("convex" like a bowl)

Equivalent View: Regulariser as Constraint

$$\min_{\mathbf{w}} \sum_{i} (y_i - \mathbf{X}_i \cdot \mathbf{w})^2 \text{ s.t.} \|\mathbf{w}\|_2 \le \mu$$

 L_1 -regularisation encourages solutions \mathbf{w}^* to sit on axes $\rightarrow \mathbf{w}^*$ will have components equal zero $\rightarrow \mathbf{w}^*$ will be sparse!

Sparsity-Regularised Learning

Lasso a special case of "compressed sensing"

- Encourage sparsity through regulariser
- Many learners can be modified

State-of-the-art for high-dim. data

- Where *d>>n*
- Cannot hope to even have O(d) parameters
- Sparsity like simultaneous feature selection and learning

Many applications (e.g. tomography)

Regularised Linear Regression

Algorithm	Minimises	Regulariser on w?	Notes
Linear regression	$\sum_{i=1}^{n} (y_i - \mathbf{X}_{i} \cdot \mathbf{w})^2$	None	Solution is $(X'X)^{-1}X'y$ if inverse exists
Ridge regression	$\sum_{i=1}^{n} (y_i - \mathbf{X}_{i} \cdot \mathbf{w})^2 + \lambda \ \mathbf{w}\ _2^2$	Sum of squares	Solution is $(\mathbf{X}'\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}'\mathbf{y}$
Lasso	$\sum_{i=1}^{n} (y_i - \mathbf{X}_{i \cdot} \mathbf{w})^2 + \lambda \mathbf{w} _1$	Sum of absolutes	No closed-form, but solutions are sparse and suitable for high-dim data

Exercise: How would you do this for logistic regression?

Model Complexity and Regularisation

Model complexity measures "number of effective parameters". More complexity requires more data, lest we overfit. Limiting the "complexity" – regularisation – limits overfitting!

Example regression problem

How complex a model should we use?

Underfitting (linear regression)

Model class Θ can be **too simple** to possibly fit true model.

Overfitting (non-parametric smoothing)

Model class Θ can be so complex it can fit true model + noise

Actual model ($x\sin x$)

The **right model class** Θ will sacrifice some training error, for test error.

Model complexity

Test error == Expected loss == Risk

Bayes risk

• Best possible risk R^* ? How far is estimate? $R(\widehat{\theta}) - R^*$

$$\frac{\left(R(\hat{\theta}) - \min_{\theta \in \Theta} R(\theta)\right) + \left(\min_{\theta \in \Theta} R(\theta) - R^*\right)}{\text{estimation error}}$$

But how do we "vary" model complexity?

- Regularise, baby, regularise (change that λ parameter)
- Cross-validate to set amount of regularisation
 - 1. Split training data into D_{train} , $D_{validation}$ sets
 - 2. For each potential parameter value
 - a) Train using parameter on D_{train}
 - b) Test on D_{validation}
 - 3. Pick parameter with best test score
 - 4. Retrain using best parameter, on all data

One more slide: Bayesians regularise too!

- Know $X|\theta \sim N(\theta, 1)$, find θ
- Candidate priors
 - * Conservative $\theta \sim N(0,1)$
 - * Aggressive $\theta \sim N(0.0.2)$
- Train on observed $X_1,...,X_{10}$
 - * Really came from $\theta = 0$
 - * -1.159, 1.578 1.451, -0.020, 1.385, 0.759, 1.061, -0.876, -1.244, 0.215
- More concentrated (less variable) priors regularise posteriors more

Summary

- Regularisation
 - * What can go wrong with irrelevant features
 - * Regularisation as conditioning ill-posed problems
 - * What is model complexity? What happens with low/high?
 - * How regularisation controls model complexity
 - Regularised linear regressors (ridge, lasso); logisticR too!
 - Priors as Bayesian regularisation