Sol	Marks	Remarks	
<u>.</u>			
l. y ≈ xe [±]			
$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{\frac{1}{x}} + xe^{\frac{1}{x}}(-\frac{1}{x^2})$		1,,,,,,,	IM for product rule
		IM+IM	IM for chain rule
$= e^{\frac{1}{x}} - \frac{1}{x} e^{\frac{1}{x}}$		1]
*		IA.	
$\frac{d^2 y}{dx^2} = -\frac{1}{x^2} e^{\frac{1}{x}} + \frac{1}{x^2} e^{\frac{1}{x}} + \frac{1}{\sqrt{3}} e^{\frac{1}{x}}$,,	
		l IA	1
$=\frac{1}{\omega^3}e^{\frac{1}{x}}$			
*			
$\therefore x^4 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - y = x^4 \left(\frac{1}{x^3} e^{\frac{1}{x}} \right) - x e^{\frac{1}{x}}$			
= 0		` <u> </u>	accept $\frac{d^2y}{dx^2} = \frac{y}{x^4}$
•		(5)	dx' x'
•		"	,
(a) (1,)-4 , (-4)(-5)	(-4)(-5)(-6)		
(a) $(1+ax)^{-4} = 1 + (-4)(ax) + \frac{(-4)(-5)}{2!}$	₽ 1	IM	For any 3 terms or correct coefficients
$= 1 - 4ax + 10a^2x^2 - 20a^3$	3x3+		or contest contributed
$160 = -20a^3$		Į į	
a = -2 b = -4a = 8		IA I	
$c = 10a^2 = 40$		IA IA	
45 m		"	
(b) The expansion is valid when −1 < ax < 1	(or ax <1, -ax <1)	I IM	
-1 < -2x < 1	(0) (22/21,1-22/21)	I IM	can be omitted
i.e. $-\frac{1}{2} < x < \frac{1}{2}$	(or $ x < \frac{1}{2}, -0.5 < x < 0.5$)	,,	
2 2	(0, 1)		
		(6)	
] [
		1	
		1	
AS-M&S-15			

		Solution	Marks	Remarks
3. (a) M	edian = $\frac{161+162}{2}$ cm		
		= 161.5 cm	1A	ignore unit
(b)	The probability that a student with a height greater than 170 cm is selected	ļ	
		9/40 (0.225)	1A	
	(i)	Probability required = $(1-\frac{9}{40})^3(\frac{9}{40})$	1M	
		≈ 0.1047 (or $\frac{268119}{2560000}$)	1A	a-1 for r.t. 0.105
	(ii)	Probability required = $C_3^5 (\frac{9}{40})^3 (1 - \frac{9}{40})^2$	1M	
		= 0.0684 (or $\frac{700569}{10240000}$)	1A	a-1 for r.t. 0,068
		10240000	(6)	
		f		
4. (a)		\$650e ^{-0.004} dr	lA ,	pp-1 for missing de
	-	-162500e ^{-0,004t} + c	1A	pp-1 for missing c pp-1 for missing x
	sine	c = 219500	IM+IA	pp 1 to timestig x
	÷	$x = 219500 - 162500e^{-0.004i}$		
(b)		$57000 \times 2 = 219500 - 162500e^{-0.004t}$ $\ln t = \frac{1}{-0.004} \ln \left(\frac{219500 - 114000}{162500} \right)$	IM	
	,:.	= 108 (or 107.9918) the number of customers will be doubled in 108 days after the start of the campaign.	1A	r.t. 108
		too asys and the same of the campaign.	(6)	
5. (a)	(i)	No. of arrangements = 10! = 3628800	1A	
	(ii)	No. of arrangements = 2! 9! = 725760	lA+lA	1A for 9!
(b)	(i)	No. of arrangements = 101 = 3628800	1A	
	(ii)	No. of arrangements = 2!(9! - 8!) = 645120	1A+1A	IA for (9! - \$!)
		Alternatively. No. of arrangements = $C_3^8 4! 2! 5! 2!$ (or $8 \cdot 2 \cdot 8!$) = 645120	1A+1A	1A for C ₃ *4!2!5!
			-(6)	
			1	

1.					J. 1
Solution	Marks	Remarks	Solution	Marks	Remarks
6. Let E be the event that an ice-cream bar is contaminated. 1 8 A 0.008 E			7. (a) Under Poisson (λ), $\frac{100\lambda^3 e^{-\lambda}}{3!} \approx 19.5$ and $\frac{100\lambda^4 e^{-\lambda}}{4!} \approx 19.5$	IA	AVIIIIIA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1A	For the tree diagram or all parts in (a) being	Therefore $\frac{100\lambda^{3}e^{-\lambda}}{3!} = \frac{100\lambda^{4}e^{-\lambda}}{4!}$ $\lambda \approx 1$ Since λ is a size of λ .	lM	can be omitted
5 0.998 E' C 0 E		correct	Since λ is an integer, $\lambda = 4$. Alternatively,	1A	
<u>I</u> E'			By calculating the expected frequencies under $Po(\lambda)$ when $\lambda = 1, 2, 3,$, Number of "over- weight" children Po(1) Po(2) Po(3) Po(4) 3 6.1 18.0 22.4 19.5 4 1.5 9.0 16.8 19.5	1M	
(a) (i) $P(A)P(E' A) = \frac{1}{8} \times 0.992$			5 0.3 3.6 10.1 15.6 From the table above, $\lambda = 4$.	2A	
= 0.124	la i	(p_1)			1A for just writing $\lambda = 4$
(ii) $P(E') = P(A) P(E' A) + P(B) P(E' B) + P(C) P(E' C)$			(b) If $\lambda = np$, then $p = \frac{\lambda}{n}$		
$=0.124+\frac{2}{8}\times0.998+\frac{5}{8}\times1$	1M	for $p_1 + \frac{2}{8}p_2 + \frac{5}{8}p_3$	$=\frac{4}{50}$	1M	
= 0.9985	IA ,	a-1 for r.t. 0.999	= 0.08	- <u>1A</u> (5)	
(b) $P(A \mid E) = \frac{P(A)P(E \mid A)}{1 \cdot P(E')}$:			; (3)	
$= \frac{\frac{1}{8} \times 0.008}{1 - 0.9985} \qquad \text{(or } \frac{\frac{1}{8} \times 0.8\%}{\frac{1}{8} \times 0.8\% + \frac{2}{8} \times 0.2\%} \text{)}$	1M				
,					
≃ 0.6667	— <u>IA</u> (6)	a-1 for r.t. 0.667			
•					
]				
				ļ	
	}			İ	
				ļ	
]	- [
				i	
98-AS-M&S17	i		98-AS-M&S-18	İ	
17 79 466T 45 88 COD TC 4 OUCDOL	HCE OF	H V			

8. (a) (i) If $\frac{5000e^{43\lambda}}{15} = \frac{5000e^{93\lambda}}{95}$ then $e^{40\lambda} = \frac{19}{3}$ $\lambda = \frac{1}{80} \ln(\frac{19}{3})$ $= 0.0231$ (ii) $N = \frac{5000e^{4\lambda}}{\epsilon} = \frac{5000e^{93231\lambda}}{\epsilon}$ $\frac{dN}{dt} = \frac{5000e^{4\lambda}(\lambda t - 1)}{\epsilon}$ $= \frac{5000e^{4\lambda}(\lambda t - 1)}{\epsilon^2}$ $= 0 \text{ when } 0 < t < \frac{1}{\lambda}$ $= 0 \text{ when } t = \frac{1}{\lambda} (= 43.3410)$ $> 0 \text{ when } \frac{1}{\lambda} < t < 120$ $\therefore N \text{ attains its minimum when } t = 43.3410$ (The number of fish decreased to the minimum in about 43 days after the spread of the disease.) (b) $\int_0^{15} \frac{dW}{dt} dt$ $= \int_0^{15} \frac{3}{50} \left(e^{\frac{t}{20}} - e^{\frac{t}{10}}\right) dt$ $= 0.1670$ $\therefore \text{ The increase in the mean weight of fish in the first 15 days is 0.1670 kg. If \int_0^{e} \frac{dV}{dt} dt = 0.5, then \frac{3}{50} \left[-20e^{\frac{t}{20}} + 10e^{\frac{t}{10}} \right]_0^{10} = 0.5 then \frac{3}{50} \left[-20e^{\frac{t}{20}} + 10e^{\frac{t}{10}} \right]_0^{10} = 0.5 10e^{\frac{t}{10}} - 20e^{\frac{t}{20}} + \frac{2}{3} = \frac{25}{3} - 10 \left(e^{\frac{t}{20}}\right)^2 - 2\left(e^{\frac{t}{20}}\right)^4 + \frac{1}{6} = 0 e^{\frac{t}{20}} = 0.0871 or 1.9129$	Solution	Marks	Remarks
$\lambda = \frac{1}{80} \ln \left(\frac{19}{3}\right)$ ~ 0.02311 (ii) $N = \frac{5000e^{tt}}{t} = \frac{5000e^{0.0231t}}{t}$ $\frac{dN}{dt} = 5000 \left(\frac{\lambda te^{3t} - e^{3t}}{t^2}\right)$ $= \frac{5000e^{3t}(\lambda t - 1)}{t^2}$ $\left\{\begin{array}{c} < 0 \text{ when } 0 < t < \frac{1}{\lambda} \\ = 0 \text{ when } t = \frac{1}{\lambda} (= 43.3410) \\ > 0 \text{ when } \frac{1}{\lambda} < t < 120 \\ \therefore N \text{ attains its minimum when } t = 43.3410 \\ \text{(The number of fish decreased to the minimum in about } 43 \text{ days after the spread of the disease.)} \end{array}\right\}$ (b) $\int_{0}^{13} \frac{dW}{dt} dt$ $= \int_{0}^{13} \frac{3}{50} (e^{-\frac{t}{10}} - e^{-\frac{t}{10}}) dt$ $= \frac{3}{50} \left[-20e^{-\frac{t}{20}} + 10e^{-\frac{t}{10}} \right]_{0}^{15}$ $= 0.1670$ $\therefore \text{ The increase in the mean weight of fish in the first 15 days is 0.1670 kg.}$ If $\int_{0}^{a} \frac{dW}{ds} ds = 0.5.$ then $\frac{3}{50} \left[-20e^{-\frac{t}{20}} + 10e^{-\frac{t}{10}} \right]_{0}^{4} = 0.5$ $10e^{-\frac{t}{10}} - 20e^{-\frac{t}{20}} + \frac{25}{3} - 10$ $\left(e^{-\frac{a}{10}}\right)^{2} - 2\left(e^{-\frac{a}{20}}\right) + \frac{1}{6} = 0$ $e^{-\frac{a}{20}} = 0.0871 \text{ or } 1.9129$	·	1A	
$\frac{dN}{dt} = 5000 \left(\frac{\lambda t e^{2t} - e^{2t}}{t^2} \right)$ $= \frac{5000 e^{2t} (\lambda t - 1)}{t^2}$ $= 0 \text{ when } 0 < t < \frac{1}{\lambda}$ $= 0 \text{ when } t = \frac{1}{\lambda} (= 43.3410)$ $> 0 \text{ when } \frac{1}{\lambda} < t < 120$ $N \text{ attains its minimum when } t = 43.3410$ (The number of fish decreased to the minimum in about 43 days after the spread of the disease.) (b) $ \int_0^{15} \frac{dW}{dx} dx $ $= \int_0^{15} \frac{3}{50} \left(e^{-\frac{t}{20}} - e^{-\frac{t}{10}} \right) dx $ $= \int_0^{15} \frac{3}{50} \left(e^{-\frac{t}{20}} - e^{-\frac{t}{10}} \right) dx $ $= 0.1670$ $The increase in the mean weight of fish in the first 15 days is 0.1670 kg. If \int_0^{\infty} \frac{dW}{dx} dx = 0.5 . then \frac{3}{50} \left[-20e^{-\frac{t}{20}} + 10e^{-\frac{t}{10}} \right]_0^{3} = 0.5 10e^{-\frac{t}{10}} - 20e^{-\frac{t}{20}} + 10e^{-\frac{t}{10}} \right]_0^{3} = 0.5 10e^{-\frac{t}{10}} - 20e^{-\frac{t}{20}} + 10e^{-\frac{t}{10}} \right]_0^{4} = 0.5 1M$	$\lambda = \frac{1}{80} \ln{(\frac{19}{3})}$	lM+1A	
N attains its minimum when $t = 43.3410$ (The number of fish decreased to the minimum in about 43 days after the spread of the disease.) (b) $\int_0^{15} \frac{dW}{ds} ds$ $= \int_0^{15} \frac{3}{50} (e^{-\frac{z}{20}} - e^{-\frac{z}{10}}) ds$ $= \frac{3}{50} \left[-20e^{-\frac{z}{20}} + 10e^{-\frac{z}{10}} \right]_0^{15}$ $= 0.1670$ The increase in the mean weight of fish in the first 15 days is 0.1670 kg. If $\int_0^a \frac{dW}{ds} ds = 0.5$. then $\frac{3}{50} \left[-20e^{-\frac{z}{20}} + 10e^{-\frac{z}{10}} \right]_0^a = 0.5$ $10e^{-\frac{z}{10}} - 20e^{-\frac{z}{20}} = \frac{25}{3} - 10$ $\left(e^{-\frac{z}{20}}\right)^2 - 2\left(e^{-\frac{z}{20}}\right) + \frac{1}{6} = 0$ $e^{-\frac{z}{20}} \approx 0.0871$ or 1.9129	$\frac{dN}{dt} = 5000 \left(\frac{\lambda t e^{\lambda t} - e^{\lambda t}}{t^2} \right)$ $= \frac{5000 e^{\lambda t} (\lambda t - 1)}{t^2}$	IM+IA	
N attains its minimum when $t = 43.3410$ (The number of fish decreased to the minimum in about 43 days after the spread of the disease.) (b) $\int_0^{15} \frac{dW}{ds} ds$ $= \int_0^{15} \frac{3}{50} (e^{-\frac{z}{20}} - e^{-\frac{z}{10}}) ds$ $= \frac{3}{50} \left[-20e^{-\frac{z}{20}} + 10e^{-\frac{z}{10}} \right]_0^{15}$ $= 0.1670$ The increase in the mean weight of fish in the first 15 days is 0.1670 kg. If $\int_0^a \frac{dW}{ds} ds = 0.5$. then $\frac{3}{50} \left[-20e^{-\frac{z}{20}} + 10e^{-\frac{z}{10}} \right]_0^a = 0.5$ $10e^{-\frac{z}{10}} - 20e^{-\frac{z}{20}} = \frac{25}{3} - 10$ $\left(e^{-\frac{z}{20}}\right)^2 - 2\left(e^{-\frac{z}{20}}\right) + \frac{1}{6} = 0$ $e^{-\frac{z}{20}} \approx 0.0871$ or 1.9129	$ < 0 \text{ when } 0 < t < \frac{1}{\lambda} $ $ = 0 \text{ when } t = \frac{1}{\lambda} (= 43.3410) $ $ > 0 \text{ when } \frac{1}{\lambda} < t < 120 $	IM+IA	
$= \int_{0}^{15} \frac{3}{50} \left(e^{-\frac{s}{20}} - e^{-\frac{t}{10}}\right) ds$ $= \frac{3}{50} \left[-20e^{-\frac{s}{20}} + 10e^{-\frac{t}{10}} \right]_{0}^{15}$ $= 0.1670$ The increase in the mean weight of fish in the first 15 days is 0.1670 kg. If $\int_{0}^{\sigma} \frac{dW}{ds} ds = 0.5$ then $\frac{3}{50} \left[-20e^{-\frac{s}{20}} + 10e^{-\frac{s}{10}} \right]_{0}^{d} = 0.5$ $10e^{-\frac{a}{10}} - 20e^{-\frac{a}{20}} = \frac{25}{3} - 10$ $\left(e^{-\frac{a}{20}}\right)^{2} - 2\left(e^{-\frac{a}{20}}\right) + \frac{1}{6} = 0$ $e^{-\frac{a}{20}} = 0.0871$ or 1.9129	.: N attains its minimum when t = 43.3410 (The number of fish decreased to the minimum in about	1A	r.t. 43
$= \frac{3}{50} \left[-20e^{-\frac{x}{20}} + 10e^{-\frac{x}{10}} \right]_{0}^{15}$ $= 0.1670$ $\therefore \text{ The increase in the mean weight of fish in the first 15 days is } 0.1670 \text{ kg.}$ If $\int_{0}^{\sigma} \frac{dW}{ds} ds = 0.5$, then $\frac{3}{50} \left[-20e^{-\frac{x}{20}} + 10e^{-\frac{x}{10}} \right]_{0}^{\sigma} = 0.5$ $10e^{-\frac{\alpha}{10}} - 20e^{-\frac{\alpha}{20}} = \frac{25}{3} - 10$ $\left(e^{-\frac{\alpha}{20}}\right)^{2} - 2\left(e^{-\frac{\alpha}{20}}\right) + \frac{1}{6} = 0$ $e^{-\frac{\alpha}{20}} \approx 0.0871 \text{or} 1.9129$	(b) $\int_0^0 \frac{\mathrm{d}s}{\mathrm{d}s} \mathrm{d}s$		
L J ₀ ⇒ 0.1670 ∴ The increase in the mean weight of fish in the first 15 days is 0.1670 kg. If $\int_0^{\sigma} \frac{dW}{ds} ds = 0.5$. then $\frac{3}{50} \left[-20e^{-\frac{\pi}{20}} + 10e^{-\frac{\pi}{10}} \right]_0^{\sigma} = 0.5$ IM $10e^{-\frac{\alpha}{10}} - 20e^{-\frac{\alpha}{20}} = \frac{25}{3} - 10$ $\left(e^{-\frac{\alpha}{20}}\right)^2 - 2\left(e^{-\frac{\alpha}{20}}\right) + \frac{1}{6} = 0$ IM $e^{-\frac{\alpha}{20}} \approx 0.0871 \text{or} 1.9129$		1A	
The increase in the mean weight of fish in the first 15 days is 0.1670 kg. If $\int_0^a \frac{dW}{ds} ds = 0.5$, then $\frac{3}{50} \left[-20e^{-\frac{x}{20}} + 10e^{-\frac{x}{10}} \right]_0^a = 0.5$ IM $10e^{-\frac{a}{10}} - 20e^{-\frac{a}{20}} = \frac{25}{3} - 10$ $\left(e^{-\frac{a}{20}}\right)^2 - 2\left(e^{-\frac{a}{20}}\right) + \frac{1}{6} = 0$ IM $e^{-\frac{a}{20}} \approx 0.0871 \text{or} 1.9129$	$=\frac{3}{50}\left[-20e^{-\frac{x}{20}}+10e^{-\frac{x}{10}}\right]_{0}^{15}$	IA	}
then $\frac{3}{50} \left[-20e^{-\frac{x}{20}} + 10e^{-\frac{x}{10}} \right]_0^a = 0.5$ $10e^{-\frac{a}{10}} - 20e^{-\frac{a}{20}} = \frac{25}{3} - 10$ $\left(e^{-\frac{a}{20}} \right)^2 - 2\left(e^{-\frac{a}{20}} \right) + \frac{1}{6} = 0$ $e^{-\frac{a}{20}} \approx 0.0871 \text{or} 1.9129$ 1A	· · · · · · · · · · · · · · · · · · ·	1A	
$10e^{-\frac{\alpha}{10}} - 20e^{-\frac{\alpha}{20}} = \frac{25}{3} - 10$ $\left(e^{-\frac{\alpha}{20}}\right)^2 - 2\left(e^{-\frac{\alpha}{20}}\right) + \frac{1}{6} = 0$ $1M$ $e^{-\frac{\alpha}{20}} = 0.0871 \text{or} 1.9129$	If $\int_0^{\sigma} \frac{\mathrm{d}W}{\mathrm{d}s} \mathrm{d}s = 0.5 ,$		
$\left(e^{-\frac{a}{20}}\right)^2 - 2\left(e^{-\frac{a}{20}}\right) + \frac{1}{6} = 0$ $e^{-\frac{a}{20}} \approx 0.0871 \text{or} 1.9129$ 1A	Г 70	IM	
	$(-4)^2$ (-4)	1 M	
2 40.8073 Ot -12.5721 (16).)	$e^{\frac{a}{20}} \approx 0.0871$ or 1.9129 $a \approx 48.8073$ or -12.9721 (rej.)	1A 1A	
∴ It takes about 49 days for the mean weight of the fish to increase 0.5 kg from the <i>Recovery Day</i> .	It takes about 49 days for the mean weight of the fish to increase 0.5 kg from the Recovery Day.		

只限教師參閱 FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
9. (a) $I = \int_{0.5}^{2.5} e^{-x} dx$		
$=\left[-e^{-x}\right]_{0.5}^{2.5}$	l IA	
■ e ^{-0.5} - e ^{-2.5}	1A	
≈ 0.5244 (0.524446)	'^	ł
(b) $y = ae^{-x} + bxe^{-x}$		
∴ y-intercept is -3	-	•
$\therefore a = -3$ $y' = -ae^{-x} + be^{-x} - bxe^{-x}$	IA.	
$= (-a+b-bx)e^{-x}$	1A	neglecting the value of a
y attains its maximum when $x = \frac{3}{2}$		
$\therefore -a+b-\frac{3}{2}b=0$	1M	
$3 - \frac{1}{2}b = 0$		
b = 6	1A	
Hence $y = -3e^{-x} + 6xe^{-x}$	1	,
(c) If $y = 0$, $3e^{-x}(2x-1) = 0$		
$x = \frac{1}{2}$	1A	
$\therefore \text{The } x\text{-intercept of the curve is } \frac{1}{2}.$		
$y' = 9e^{-x} - 6xe^{-x}$		
$y^{*} = -9e^{-x} - 6e^{-x} + 6xe^{-x}$		
$= -15e^{-x} + 6xe^{-x}$	1M	
$=3(2x-5)e^{-x}$,
$y^* \begin{cases} <0 & \text{if } 0 \le x < \frac{5}{2} \\ =0 & \text{if } x = \frac{5}{2} \\ >0 & \text{if } x > \frac{5}{2} \end{cases}$]	
$\left(\frac{v}{v} \right) = 0 \text{ if } v = \frac{5}{2}$,,	
3 3	IM	
>0 if $x>\frac{\pi}{2}$		
The point of inflection is $(\frac{5}{2}, 12e^{-\frac{5}{2}})$ [or $(\frac{5}{2}, 0.9850)$]	1A	
(1) (2)		
(d) (i) $\begin{array}{c c c c c c c c c c c c c c c c c c c $	İ	
$J_0 = \frac{0.5}{2} [0.303265 + 0.205212 + 2(0.367879 + 0.334695 + 0.270671)]$	IM+IA	
≈ 0.6137 (0.613742)		
$A_0 \approx -3 \times 0.524446 + 6 \times 0.613742$ $\approx 2.1091 (2.109114)$		
, , , ,	IA	
 (ii) The argument is not correct because the trapezoidal rule was used to approximate the value of J only. 		
The convexity of the function xe^{-x} should be considered instead of		IA for either reason
the function $-3e^{-x} + 6xe^{-x}$.	1A+1	l for both

98-AS-M&S-20

Solution	Marks	Remarks	Solution Marks Remarks
(i) (i): $\ln r(t) = \ln \alpha + \beta \ln t$ (ii): $\ln r(t) = \ln \gamma + \lambda t$ (ii) $\frac{t}{r(t)} = \frac{2}{6.4} = \frac{3}{15.7} = \frac{4}{29.5} = \frac{5}{48.3} = \frac{6}{72.2} = \frac{7}{101.2}$	1A 1A		In r(t) 5
In t 0.69 1.10 1.39 1.61 1.79 1.95 In r(t) 1.86 2.75 3.38 3.88 4.28 4.62	IA IA	Correct to 1 d.p. Correct to 1 d.p.	4
(I) In r(t) 5			3
			tA for any 2 points being correct for all the 6 points being correct 2
2	1A 1A	for any 2 points being correct for all the 6 points being correct	1
	:		From the graphs, equation (I) would be a better model and $\ln \alpha \approx 0.3$ Accept 0.3 - 0.4 Accept 1.3 - 1.5
0 0.5 1.5 2 In/			$\beta \approx \frac{4.62 - 1.86}{1.95 - 0.69} \approx 2.2$
	1		(b) $\int_0^{14} \alpha t^{\beta} dt$ where $\alpha \approx 1.3$, $\beta \approx 2.2$ $= \frac{\alpha}{\beta + 1} [t^{\beta + 1}]_0^{14} \qquad (\approx \frac{1.3}{3.2} [t^{3.2}]_0^{14})$ ≈ 1889 Accept $\alpha \in [1.3, 1.5]$ $\beta \in [2.0, 2.4]$
			1889 hundred of trees would be destroyed in the first 14 days. 1A Accept 1498 - 3015 Consider $\int_0^k at^\beta dt = 1889 \times 2$
			$\frac{1.3}{3.2} \left[r^{3.2} \right]_0^k = 3778$ $k^{3.2} \approx 9299.69$ $k \approx e^{\frac{\ln 9299.69}{3.2}} \approx 17.3839$
S-M&5-21	1		The total number of trees destroyed will be doubled in 4 days more.

		OOL O	141.
• •	Solution	Marks	Remarks
11. (a)	Let X be the no. of printing mistakes on P.23, then $X \sim Po(0.2)$.		
	$P(X=0)=e^{-0.2}$	IM+1A	
	= 0.8187	11/11/17	
(b)	(i) Let p be the probability that there are printing mistakes on a page, then		
	$p = 1 - e^{-0.2}$ Hence N - Geometric (p) and	1M	
	P($N \le 3$) = P($N = 1$) + P($N = 2$) + P($N = 3$)	lM	
	$= p + p(1-p) + p(1-p)^2$		
		IM+1A	
	- i - (1 - p) ¹		
	= 1-e ^{-0.6}		
	≈ 0.4512	1 A	
	1 1	- 1	
	(ii) Mean of $N = \frac{1}{D} = \frac{1}{1 - e^{-0.2}} \approx 5.5167$	1A	
	, · · ·		
	Variance of $N = \frac{1-p}{p^2} = \frac{e^{-0.2}}{(1-e^{-0.2})^2} \approx 24.9168$	1A	
	$p^* = (1-e^{-\alpha x})^x$		
	14 Pi 14 (000) 1		
(c)	M – Binomial (200, p) where $p = 1 - e^{-0.2}$.	ľ	
	Mean of $M = np = 200(1 - e^{-0.2}) \approx 36.2538$	īΑ	
	Variance of $M = np(1-p) = 200e^{-0.2}(1-e^{-0.2}) \approx 29.6821$	1A	
	,		
(d)	(i) $Y \sim \text{Binomial}(40, \frac{1}{200})$.	IA+IA	
	200		
	(1)40		
	(ii) $P(Y=0) = \left(1 - \frac{1}{200}\right)^{40} \approx 0.8183$	1M+1A	
	. 2007	1	
		}	•
		J	
	1	1	
	1		
		•	
	!	1	
	j	i	
	ļ]	
	Ì	j	
	•	ļ	
	1		
	<u> </u>	}	
AS-M&S	3–23	ı	
	口四地体数则 COD TEACHEDS	Her ON	II V

			Solution		Marks	Remarks
	Sample mean = Sample varianc	e = 1.2924	IA IA			
t	since the sampl the results do no	le mean is approx of point to any ob	1	or objection as sample mean and sample variance are not equal		
(р)				,		
	mber of cars litted speeding	Observed Frequency (f _o)	Expected Frequency $(f_E)^*$	Absolute Discrepancy f _o -f _E •		
	0	56	55.49	0.51	1A	For any entry being
	ı	71	71.70	0.70		correct in the f _E column
	2	46	46.32	0.32	1A	For any entry being correct in the $ f_0 - f_{\epsilon} $
	3	20	19.95	0.05		column
	4	7	6.44	0.56	IA	For all entries being correct
	5	2	1.67	0.33	ľ	Confect
	is acceptable. i) P(2 cars		is 0.70 which is le	ss than 1, the Poisson	1	accept contrary conclusion due to wrong entries in the table
	$= (0.4)^2$ = 0.16				1A	
(f them are private o	ars)		
	$= C_2^3(0.4)$ = 0.288	² (1-0.4)			IA IA	
(d) 1	Let X be the nu	umber of private of	"			
Y	be the total nu	umber of cars spe				
(and $Y=2$)				
	= P(X = 2) = 0.16 × 0.	Y=2)P(Y=2)			1M	
		(0.036688)			IA	
(i		and $Y=3$)				
		Y = 3) P(Y = 3)			1	•
	≈ 0.288 × 0 ≈ 0.0284				IA	accept 0.0285
(i	iii) $P(X=2)$	Y < 4)				
	$=\frac{P(\lambda+2)}{P(\lambda+2)}$	and $Y < 4$) $Y < 4$)				
		and $Y = 2$) + P($X = 4$)			lМ	
	<u> </u>	8+0.028442				
	0.9 ≈ 0.0680	957691			1A	accept 0.0678 - 0.0681
	- 0.000				10	2000pt 0.0070 - 0.0001
AS-M&S-	-24				ļ	l
		□ 7/9 1/ /0∓	松月 月 「	OR TEACHERS	e Her r	NU V

只限教師參閱 FOR TEACHERS' USE ONLY

	Solution	Marks	Remarks
. I	Let X , Y be the weights of the randomly selected boxes in parts 1 and 2 of a test espectively.		
(a) P(X < 490 or X > 510)	1	
`	$= 1 - P(\frac{490 - 500}{5} \le Z \le \frac{510 - 500}{5})$ $= 1 - P(-2 \le Z \le 2)$	1A	deduct I mark once for the whole question for any wrong inequality sign
	$= 1 - 2 \times 0.4772$]	
	= 0.0456	1A	
(t		l IA	
	$= P(\frac{490-500}{5} \le Z < \frac{492-500}{5}) + P(\frac{508-500}{5} < Z \le \frac{510-500}{5})$	1A	
	$P(-2 \le Z \le -1.6) + P(1.6 \le Z \le 2)$ $(0.4772 - 0.4452) \times 2$		ļ
	± 0.0640	1A	
	Alternatively.		
	P(X < 492) + P(X > 508) - P(a black signal is generated in the first part) $492 - 500$ $508 - 500$	1A	
	$= P(Z < \frac{492 - 500}{5}) + P(Z > \frac{508 - 500}{5}) - 0.0456$	1A	
	= 0.0548 + 0.0548 - 0.0456 = 0.0540	1A	
(¢	P(black)		
	= P(black in part 1) + P(black in part 2)		[
	≈ 0.0456 + 0.0540 × 0.0456 ≈ 0.0485	IM+IM	
		IA	
(d	,		
	$P(508 < X \le 510) P(508 < Y \le 510)$		
	$P(490 \le X < 492) + P(508 < X \le 510)$		
	0.0320×0.0320 0.0320+0.0320	IM+IM	
	0.0320+0.0320 ≈ 0.0160	TA	
(e)	P(red part 2)		
(E	= $P(508 < X \le 510 \text{ and } 508 < Y \le 510 490 \le X < 492 \text{ or } 508 < X \le 510)$		
	+ $P(490 \le X < 492 \text{ and } 490 \le X < 492 490 \le X < 492 \text{ or } 508 < X \le 510)$		
	≈2×0.0160	iM	
	≖ 0.0320	1A	
(f)	P(red) = P(red part 2) P(part 2)		
•	≈ 0.0320 × 0.0 64 0	1M	
	≈ 0.0020	1A	
	Alternatively,		
	$P(\text{red}) = P(508 < X \le 510 \text{ and } 508 < Y \le 510)$		Į
	+ $P(490 \le X < 492 \text{ and } 490 \le Y < 492)$		ţ
	≈ 0.0320 ³ × 2 = 0.0020	IM IA	
	= 0.0020	1/4	

98-AS-M&S-25