Semester: 4 Year: 2022-23

Department: Artificial Intelligence & Data	Course Type: Core
Science	
Course Title: Database Management Systems Lab	Course Code: 21ADL48
<i>L-T-P:</i> 0 -0-2	Credits:03
Total Contact Hours: 30 hours	Duration of SEE:03 hours
SEE Marks: 50	CIE Marks: 50

At the end of the course, a student shall be able to:

Cos	Course Outcome Description	Blooms Level
1	Describe the components of database systems.	L1
3	Explain the principles of database design and implementation.	L2
4	Design a database system for a given application	L3
5	Implement a database using DBMS and interface it with an application	L3
6	Test and validate the developed database system	L3

Course Content of Database Management Systems Lab course:

Exercises in the specified problems shown below will be performed by students.

- Analyze and perform data modeling for a given application
- Convert the data model into a relational model
- Use DDL and DML commands in SQL queries
- Develop SQL commands to create and maintain database structure
- Interface application to the developed database system
- Multidimensional data modelling.

Exercise 1: Consider the following schema of a library database.

Book (Book_id, Title, Pub_name, Pub_year)

Book_Author (Book_id, Author_Name)

- a) Retrieve book names published in 2017
- b) Delete data having book name "Harry porter"
- c) Insert a row into "Book" schema
- d) Check whether insertion possible in table "Book Author"

Solution:

Schema Diagram:

Book

_	Book_id	Title	Pub_name	Pub_year
	Book_Author			
	Book_id		Author	_Name

Creation of Database:

create database library;

Table creation:

Create table Book (Book_id int primary key, title varchar(50), pub_name varchar(50), Pub_year year);

Create table Book_Authors (Book_id int, Author_Name varchar(50), foreign key (Book_id) references Book(Book_id) on delete cascade);

Insertion into table:

Book:

```
Insert into Book ( Book_id, title, pub_name, Pub_year)
Values( 1000, 'DBMS', 'Pearson', 2017),
(1001, 'Fundamentals of DB', 'Penguin', 1997),
(1002, 'Harry Potter', 'Book Hound', 2017);
Book_Authors:

Insert into Book_Authors(Book_id, Author_Name)
Values(1000, 'B Navathe'),
(1001, 'B Navathe'),
(1002, 'JK Rowling');
a) Retrieve book names published in 2017

select title
from Book
where Pub_year = 2017;
```

b) Delete data having book name "Harry potter"

```
delete
from book
where title = 'Harry Potter';
c) Insert a row into "Book" schema
Insert into Book ( Book_id, title, pub_name, Pub_year)
values(1003, 'Operating System', 'Wiley', 1960);
```

d) Check whether insertion possible in table "Book_Author"

i. Insertion in child table (Book_author) is possible if primary key of parent table (Book) is same with foreign key of child table (Book_author). Following query will insert values into Book_Author:

Insert into Book_Authors(Book_id, Author_Name),
values(1003, 'Galvin');

ii. Insertion in child table (Book_author) is not possible if primary key of parent table (Book) is not same with foreign key of child table (Book_author).

Insert into Book_Authors(Book_id, Author_Name),
values(1004, 'Galvin');

Exercise 2: Consider the following schema for a Library Database:

BOOK (Book_ id, Title, Publisher_ Name, Pub_ Year)

BOOK_AUTHORS (Book_ id, Author_ Name)

PUBLISHER (Name, Address, Phone)

BOOK_COPIES (Book_ id, Branch_ id, No_ of_ Copies)

BOOK_LENDING (Book_ id, Branch_ id ,Card_ No, Date_ Out, Due_ Date)

LIBRARY_BRANCH (Branch_ id, Branch_ Name, Address)

- a) Retrieve details of all books: title, name of publisher, authors, number of copies in each branch.
- b) Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017.
- c) Delete a book from Book table, update the contents of other tables to reflect this data manipulation operation.
- d) Create a view of all books and its number of copies that are currently available in the library.

α	· •	
	11111	an:
Sol		

ER Digram:

Schema Diagram:

Table Creation:

CREATE TABLE PUBLISHER(NAME VARCHAR(20) PRIMARY KEY,ADDRESS VARCHAR(20),PHONE REAL);

CREATE TABLE BOOK(BOOK_ID INT PRIMARY KEY,TITLE CHAR(10),PUBLISHER_NAME CHAR(15),PUBLISHER_YEAR INT,FOREIGN KEY(PUBLISHER_NAME) REFERENCES PUBLISHER(NAME) ON DELETE CASCADE);

CREATE TABLE LIBRARY_BRANCH(BRANCH_ID INT PRIMARY KEY,BRANCH_NAME CHAR(10),ADDRESS VARCHAR(15));

CREATE TABLE BOOK_AUTHORS(BOOK_ID INT,AUTHOR_NAME CHAR(10),FOREIGN KEY(BOOK_ID) REFERENCES BOOK(BOOK_ID) ON DELETE CASCADE);

CREATE TABLE BOOK_LENDING(BOOK_ID INT,BRANCH_ID INT,CARD_NO INT,DATE_OUT DATE,DUE_DATE DATE,PRIMARY KEY(BOOK_ID,BRANCH_ID,CARD_NO),FOREIGN KEY(BOOK_ID) REFERENCES BOOK(BOOK_ID) ON DELETE CASCADE,FOREIGN KEY(BRANCH_ID) REFERENCES LIBRARY BRANCH(BRANCH_ID) ON DELETE CASCADE);

CREATE TABLE BOOK_COPIES(BOOK_ID INT,BRANCH_ID INT,NO_OF_COPIES INT,FOREIGN KEY(BOOK_ID) REFERENCES BOOK(BOOK_ID) ON DELETE CASCADE,FOREIGN KEY(BRANCH_ID) REFERENCES LIBRARY_BRANCH(BRANCH_ID) ON DELETE CASCADE,PRIMARY KEY(BOOK_ID,BRANCH_ID));

Insertion of values to tables:

INSERTINTO PUBLISHER

VALUES('ANUAMMUBOOKS', 'SRIRAMRKNAGAR', 8797546021), ('BHAVANISTORE', 'KARNATAKABAR', 9900778821), ('RAJBOOKSTALL', 'SATALLITE@12', 9252459821), ('SNEHABANDHU', 'MANDYA123', 9380577730), ('SPOO@SHBOOKS', 'NEARBEMLARCH', 8969361282), ('SRI SAI', 'DEVEGOWDANAHUNDI', '7090454640');

INSERT INTO BOOK VALUES(100,'OOMD','SRI SAI',1996), VALUES(101,'CMPTRNTWK','SNEHABANDHU',1992), (102,'AUTOMATA','RAJBOOKSTALL',2000), (103,'CSHARP','SPOO@ASHBOOKS',2012), (104,'MANAGEMENT','SRI SAI',1996), (105,'DATABASEMS','BHAVANISTORE',1899);

INSERT INTO LIBRARY_BRANCH VALUES(1000,'BRANCH1','GROUNDFLOAR'), (1001,'BRANCH2','GFROWF'), (1002,'BRANCH1','LFTSIDEROW7'), (1003','BRANCH3','RGHTSIDEROW7'), ('1004','BRANCH4','OPPOSITEFLOAR'), ('1005','BRANCH5','ECEFLOAR');

INSERT INTO BOOK_AUTHORS VALUES(100,'NAWATHI'), (100,'NAWATHI'), ('101','THRIPATI'), ('102','PADMAREDDY'), (103,"KRISHNA");

INSERT INTO BOOK_LENDING

VALUES("100","1000","50","2017/01/03","2017/06/26"), ("101","1001","50","2017/01/26","2017/06/26"), ("102","1002","50","2017/01/15","2017/06/26"), ("103","1003","50","2018/01/26","2018/06/03"),

```
("104","1004","54","2017/01/03","2017/06/03");
INSERT INTO BOOK COPIES
VALUES("101","1000","3"),
("100","1004","4"),
("101","1006","2"),
("103","1003","5"),
("104","1002","5");
a) Retrieve details of all books: title, name of publisher, authors, number of copies in each
branch.
Select title, Pub_name, Author_name, No_of_copis
From Book, Book_copies, Book_Author
Where Book.Book_id = Book_copies.Book_id and Book.Book_ID = Book_Author.Book_id;
b) Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017
to Jun 2017.
SELECT CARD_NO
FROM BOOK LENDING
WHERE DATE_OUT BETWEEN "2017/01/03" AND "2017/06/26"
GROUP BY CARD_NO
HAVING COUNT(*)>=3;
c) Delete a book from Book table, update the contents of other tables to reflect this data
manipulation operation.
Delete from Book
Where Book_id = 100;
Updating those tables which are related to "Book" table:
Select *
From Book_authors;
Select *
From Publisher;
Select *
From Book_copies;
Select *
From Book_lending;
Select *
From Library_branch;
```

d) Create a view of all books and its number of copies that are currently available in the library.

Create view book_avail as
Select title, no_of_copies
From Book, Book_copies, Library_branch
Where Book_copies.branch_id = Library_branch.branch_id and Book.book_id =
Book_copies.book_id;

Exercise 3: Consider the following schema foe Order Database:

SALESMAN(Salesman_ id, Name, City, Commission)
CUSTOMER(Customer_ id, Customer_ name, Grade, Salesman_ id)
ORDERS(Order_ no, Purchase_ amount, Order_ date, Customer_ id, Salesman_ id)

- a) List all salesman and indicate those have and don't have customers in their cities (use UNION operation).
- b) Update the age to NULL for Name = 'rajeshwari'. Note that the NULL used here is MySQL NULL and not string NULL.
- c) Retrieve the commission of salesman who has 'oo' in their names.
- d) Among parent table and child table check for which table deletion is possible or not. Justify your answer.

Solution:

ER – Diagram:

Schema Digram:

Table creation:

CREATE TABLE SALESMAN(SALESMAN_ID INT PRIMARY KEY,NAME CHAR(20),CITY CHAR(20),COMMISSION REAL);

CREATE TABLE CUSTOMER(CUSTOMER_ID INT PRIMARY KEY, CUSTOMER_NAME CHAR(20), CITY CHAR(20), GRADE INT, SALESMAN_ID INT, FOREIGN KEY(SALESMAN_ID) REFERENCES SALESMAN(SALESMAN_ID) ON DELETE SET NULL);

CREATE TABLE ORDERS(ORDER_NO INT PRIMARY KEY,PURCHASE_AMOUNT REAL,ORDER_DATE DATE,CUSTOMER_ID INT,FOREIGN KEY(CUSTOMER_ID) REFERENCES CUSTOMER(CUSTOMER_ID),SALESMAN_ID INT,FOREIGN KEY(SALESMAN_ID) REFERENCES SALESMAN(SALESMAN_ID) ON DELETE CASCADE);

Insertion into table:

INSERT INTO SALESMAN

```
VALUES(1000,'BHUVANESH K','BANGLORE',12000), (1001,'PRAGATHI','BANGLORE','15000'), (1002,'VASUDEVAPRASAD','MANGLORE',10000), (1003,'GURUPRASADKONDI','MYSORE@123',19000), (1004,'SRISAI SALERS','MANDYA',25000), (1005,'BOOKTRIBUTERS','HANUMANTHNAGAR',16200), (1006,'SHOWROOMGALAXY','BIDAR',14900);
```

INSERT INTO CUSTOMER

VALUES(100,'SPOORTHIASHWIN','BIDAR',10,1000), (101,'AMRUTHANUKASHYAP','MANGLORE',8,1000), (102,'RAJESHWARI','MANGLORE',5,1002), (103,'NISHAKGOWDA','MANGLORE',9,1001), (104,'SATHWIK','MANDYA','10','1004'), (105,'GURUDEVANAYAK','BIDAR',7,1002), (106,'VASUMURTHI','MYSORE@123',9,1003);

INSERT INTO ORDERS

VALUES(10,23000,'2019-09-17',100,1000), (11,26455,'2019-06-03',102,1001), (12,30002,'2019-01-03',103,1002), (13,17003,'2019-07-17',105,1003), (14,45255,'2019-05-13',106,1004), (15,32000,'2019-07-23',101,1000), (16,27000,'2019-05-23',104,1002), (17,26255,'2019-09-17',104,1000);

To list all salesmen and indicate those who have and don't have customers in their cities using the UNION, operation we need to perform following steps:

Step 1: Retrieve the salesmen who have customers in their cities.

SELECT S.Name AS SalesmanName, S.City AS SalesmanCity, 'Has Customers' AS Status FROM SALESMAN S natural JOIN CUSTOMER C where S.city = C.city;

Step 2: Retrieve the salesmen who don't have customers in their cities.

SELECT S.Name AS SalesmanName, S.City AS SalesmanCity, 'No Customers' AS Status FROM SALESMAN S JOIN CUSTOMER C ON S.SALESMAN_ID = C.SALESMAN_ID where S.City != C.City;

Step 3: Combine the results using the UNION operation to get a single result set.

SELECT S.Name AS SalesmanName, S.City AS SalesmanCity, 'Has Customers' AS Status FROM SALESMAN S natural JOIN CUSTOMER C where S.city = C.city UNION
SELECT S.Name AS SalesmanName, S.City AS SalesmanCity, 'No Customers' AS Status

FROM SALESMAN S JOIN CUSTOMER	C ON S.SALESMAN_ID = C.SALESMAN_ID
where S.City != C.City;	

b) Update the city to NULL for Name = 'rajeshwari'. Note that the NULL used here is MySQL NUI	LL
and not string NULL.	

UPDATE CUSTOMER
SET city = NULL
WHERE CUSTOMER_NAME LIKE 'rajeshwari';

C) Retrieve the commission of salesman who has 'oo' in their names.

SELECT Commission FROM SALESMAN WHERE Name LIKE '%oo%';

d) Among parent table and child table check for which table deletion is possible or not. Justify your answer.

DROP TABLE salesman;

DROP TABLE customer;

DROP TABLE orders;