Christian B. Mendl, Irene López Gutiérrez, Keefe Huang

due: 24 January 2022, 08:00 on Moodle

Tutorial 11 (Bloch sphere interpretation of rotations¹) In this tutorial, we show that the Bloch sphere representation of a general single-qubit rotation operator

$$R_{\vec{n}}(\theta) = \mathrm{e}^{-i\theta(\vec{n}\cdot\vec{\sigma})/2} = \cos(\theta/2)I - i\sin(\theta/2)(\vec{n}\cdot\vec{\sigma})$$

is a conventional rotation (in three dimensions) by angle θ about axis $\vec{n}\in\mathbb{R}^3.$ Let \vec{r} denote the Bloch vector of the quantum state. It will be convenient to work with the following relation between \vec{r} and the density matrix ρ of the quantum state:

$$\rho = \frac{I + \vec{r} \cdot \vec{\sigma}}{2}.$$

(By exercise 11.2 below, this coincides with the hitherto definition of the Bloch vector in case $\rho = |\psi\rangle\langle\psi|$ corresponds to a pure quantum state $|\psi\rangle$.)

(a) First verify the following commutation relation of the Pauli matrices: for any $j,k\in\{1,2,3\}$,

$$[\sigma_j, \sigma_k] = 2i \sum_{\ell=1}^3 \epsilon_{jk\ell} \, \sigma_\ell,$$

where [A,B]=AB-BA is the *commutator* of A and B, and the *Levi-Civita symbol* $\epsilon_{ik\ell}$ is defined by

$$\epsilon_{jk\ell} = \begin{cases} 1 & (j,k,\ell) \text{ is an even (cyclic) permutation of } (1,2,3) \\ -1 & (j,k,\ell) \text{ is an odd permutation of } (1,2,3) \\ 0 & \text{otherwise} \end{cases}$$

Conclude that, for any $\vec{a}, \vec{b} \in \mathbb{R}^3$,

$$\left[\vec{a} \cdot \vec{\sigma}, \vec{b} \cdot \vec{\sigma} \right] = 2i(\vec{a} \times \vec{b}) \cdot \vec{\sigma}.$$

(b) Derive the relation

$$\left\{ \vec{a}\cdot\vec{\sigma},\vec{b}\cdot\vec{\sigma}\right\} = 2(\vec{a}\cdot\vec{b})I$$

for any $\vec{a}, \vec{b} \in \mathbb{R}^3$, where $\{A, B\} = AB + BA$ is the anti-commutator of A and B.

(c) Show that the Bloch vector of the rotated quantum state is obtained by applying Rodrigues' rotation formula:

$$\vec{r}' = \cos(\theta)\vec{r} + \sin(\theta)(\vec{n} \times \vec{r}) + (1 - \cos(\theta))(\vec{n} \cdot \vec{r})\vec{n}.$$

Remark: The interpretation as rotation applies to an arbitrary single-qubit gate U (when ignoring global phases), since it can always be represented as $U=\mathrm{e}^{i\alpha}R_{\vec{n}}(\theta)$ with $\alpha\in\mathbb{R}$ and a suitable rotation operator $R_{\vec{n}}(\theta)$.

¹M. A. Nielsen, I. L. Chuang: Quantum Computation and Quantum Information. Cambridge University Press (2010), Exercise 4.6

Exercise 11.1 (von Neumann equation and time evolution with density operators)

(a) Based on the Schrödinger equation (cf. tutorial 3), derive the following von Neumann equation for a density matrix $\rho(t) = \sum_{i} p_{j} |\psi_{j}(t)\rangle \langle \psi_{j}(t)|$:

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = [H, \rho(t)].$$

Here $[\cdot, \cdot]$ is the matrix commutator.

Hint: Use the product rule for computing the time derivative of each term $|\psi_j(t)\rangle\,\langle\psi_j(t)|$.

- (b) What is the formal solution for $\rho(t)$ expressed in terms of the time evolution operator $U(t) = e^{-iHt/\hbar}$?
- (c) We consider the specific single-qubit Hamiltonian operator

$$H = JX$$

with parameter $J\in\mathbb{R}$. Compute the time-dependent density matrix $\rho(t)$ starting from the initial state $\rho_0=\left(\begin{smallmatrix} 2/3 & 0 \\ 0 & 1/3 \end{smallmatrix} \right)$ at t=0. For simplicity, you can set $\hbar=1$.

(d) Since the map $\rho \mapsto [H, \rho]$ is linear, we can represent it as matrix-vector multiplication after "vectorizing" ρ , i.e., collecting its entries in a vector, denoted $\vec{\rho}$ in the following. For the commutator, this leads to

$$\vec{\rho} \mapsto \text{vec}([H, \rho]) = (H \otimes I - I \otimes H^T) \vec{\rho},$$

where the identity matrix has the same dimension as H. Thus we can represent the von Neumann equation equivalently in the "superoperator" form

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \vec{
ho}(t) = \mathcal{H} \vec{
ho}(t), \quad \mathcal{H} = H \otimes I - I \otimes H^T.$$

Write down the formal solution of this differential equation, and determine \mathcal{H} for the Hamiltonian from (c).

Exercise 11.2 (Bloch sphere for mixed state qubits²)

(a) Show that an arbitrary density operator ρ for a qubit may be written as

$$\rho = \frac{I + \vec{r} \cdot \vec{\sigma}}{2},$$

where $\vec{r} \in \mathbb{R}^3$ is a real vector such that $||\vec{r}|| \le 1$. (\vec{r} is called the *Bloch vector* of ρ .)

Hint: Note that $\{I,\sigma_1,\sigma_2,\sigma_3\}$ forms a basis of 2×2 matrices. Argue that the corresponding coefficients to represent a density matrix are real. Why is the coefficient of I equal to $\frac{1}{2}$? Finally, compute the eigenvalues of the above representation and use the positivity of ρ to derive the condition $||\vec{r}|| \leq 1$.

- (b) Show that a state ρ is pure if and only if $\|\vec{r}\| = 1$.
- (c) Verify that for pure states $\rho = |\psi\rangle\langle\psi|$, the above definition of the Bloch vector \vec{r} coincides with the Bloch vector of $|\psi\rangle$ (cf. exercise 2.1).

Hint: Insert $|\psi\rangle = \mathrm{e}^{i\gamma}(\cos\frac{\theta}{2}|0\rangle + \mathrm{e}^{i\varphi}\sin\frac{\theta}{2}|1\rangle)$ into $|\psi\rangle\langle\psi|$, read off the entries of \vec{r} based on $|\psi\rangle\langle\psi| = (I + \vec{r} \cdot \vec{\sigma})/2$, and verify that $\vec{r} = (\cos(\varphi)\sin(\theta), \sin(\varphi)\sin(\theta), \cos(\theta))$.

²M. A. Nielsen, I. L. Chuang: *Quantum Computation and Quantum Information*. Cambridge University Press (2010), Exercise 2.72