

Dr. Francisco Arduh 2023

Dataset MNIST

- 70,000 imágenes pequeñas (28 x 28) de dígitos escritos a mano.
- Cada imagen tiene como etiqueta el número que le corresponde.
- Dataset muy utilizado en la comunidad de machine learning para probar algoritmos de clasificación.

Clasificador Binario

- Simplificamos el problema para detectar sólo un dígito.
- Por ej. Un detector de 5.
- Vamos a utilizar un clasificado "SGD Classifier" que maneja instancias de forma independiente y se puede utilizar para aprendizaje online.

```
>>> y_train_5 = (y_train == 5)
>>> y_test_5 = (y_test == 5)
>>> from sklearn.linear_model import SGDClassifier
>>> sgd_clf = SGDClassifier(random_state=42)
>>> sgd_clf.fit(X_train, y_train_5)
>>> sgd_clf.predict([some_digit])
array([ True])
```


Medición de Rendimiento

- Una parte importante del flujo de trabajo de Machine Learning es la evaluación del desempeño del modelo.
- En el mundo real, por lo general, es imposible tener un clasificador perfecto.
- Debemos entender el problema y entender que es lo importante del mismo, por ej:
 - Si estamos tratando de determinar si un tumor es maligno o benigno, nos interesa que la predicción incorrecta de que un tumor es maligno sea lo más pequeña posible.
 - Si estamos tratando de determinar que transacciones son fraudulentas, podríamos estar interesados en perder la menor cantidad posible de este tipo de transacciones.

Midiendo "Accuracy" usando validación cruzada

Se define accuracy como:

$$accuracy = \frac{\text{predicciones correctas}}{\text{total de predicciones}}$$

Es posible utilizar cross_val_score() para evaluar nuestro clasificador.

```
>>> from sklearn.model_selection import cross_val_score
>>> cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([0.96355, 0.93795, 0.95615])
```

El accuracy de un resultado por encima del 93%.

Midiendo "Accuracy" en Dummy Classifier

Utilizando un clasificador que siempre predice la clase más frecuente (en este caso no 5)

```
>>> from sklearn.dummy import DummyClassifier
>>> never_5_clf = DummyClassifier(strategy="most_frequent")
```

Mide el accuracy

```
>>> cross_val_score(never_5_clf, X_train, y_train_5, cv=3, scoring="accuracy") array([0.91125, 0.90855, 0.90915])
```

Esto da más del 90%!. No siempre es buena idea usar accuracy como métrica.

Implementación de Validación cruzada sin cross_val_score()


```
from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone
skfolds = StratifiedKFold(n_splits=3, random_state=42)
for train index, test index in skfolds.split(X train, y train 5):
   clone clf = clone(sqd clf)
   X train folds = X train[train index]
   y_train_folds = y_train_5[train_index]
   X_test_fold = X_train[test_index]
   y_test_fold = y_train_5[test_index]
   clone clf.fit(X train folds, y train folds)
   y_pred = clone_clf.predict(X_test_fold)
   n correct = sum(y pred == y test fold)
    print(n correct / len(y pred)) # prints 0.9502, 0.96565, and 0.96495
```

Matriz de confusión

Para computar, la matriz de confusión en necesario tener las predicciones y la etiqueta real de cada instancia.

Matriz de confusión en código


```
>>> from sklearn.model_selection import cross_val_predict
>>> from sklearn.metrics import confusion_matrix
>>>
>>> y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
>>> confusion_matrix(y_train_5, y_train_pred)
array([[53057, 1522],
[ 1325, 4096]])
```

"Precision" y "recall"

A partir de la matriz de confusión puede obtenerse métricas más concisas

$$precision = \frac{TP}{TP + FP}$$

"Precision" y "recall" en código

```
>>> from sklearn.metrics import precision_score, recall_score
>>> precision_score(y_train_5, y_train_pred) # == 4096 / (4096 + 1522)
0.7290850836596654
>>> recall_score(y_train_5, y_train_pred) # == 4096 / (4096 + 1325)
0.7555801512636044
```

- Algunas veces es conveniente combinar precision y recall en una sola métrica llamada F1 score.
- F1 score se define como la media armónica entre el recall y la precision:

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

Para computarlo en código:

```
>>> from sklearn.metrics import f1_score
>>> f1_score(y_train_5, y_train_pred)
0.7420962043663375
```

Uso de F1 score

- F1 score nos proveerá un clasificador con recall y precision similar, aunque no es siempre lo que queremos. Ej:
 - Detectar videos seguros para niños: en preferible descartar buenos videos (bajo recall), pero descartar los malos (alta presicion)
 - Clasificador para detectar "mecheras" en una tienda es importante que nuestro clasificador tenga un alto recall.

Precision/recall trade off

Tomemos el clasificador **SDGClassifier**, para cada instancia computa un puntaje basado en su función de decisión.

Precision/recall trade off en código

from sklearn.metrics import precision recall curve

```
precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)
def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
    plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
    plt.plot(thresholds, recalls[:-1], "g-", label="Recall")
    [...] # highlight the threshold and add the legend, axis label, and grid
```

plot_precision_recall_vs_threshold(precisions, recalls, thresholds)
plt.show()

Curva ROC

- La curva ROC (receiver operating characteristic) es otra métrica usada en clasificación binaria.
- Es similar a la curva precision/recall, pero utiliza las siguientes métricas:
 - True positive rate: otro nombre para recall.
 - False positive rate: se define como la tasa de instancia negativa que han sido clasificadas como positivas.

$$FPR = rac{FP}{FP + TN}$$

 A TPR se lo puede llamar sensitivity y al FPR también se lo denomina como 1-specificity.

Curva ROC en código


```
from sklearn.metrics import roc_curve
```

```
fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)
def plot_roc_curve(fpr, tpr, label=None):
    plt.plot(fpr, tpr, linewidth=2, label=label)
    plt.plot([0, 1], [0, 1], 'k--') # Dashed diagonal
    [...] # Add axis labels and grid

plot_roc_curve(fpr, tpr)
plt.show()
```


Curva ROC para comparar modelos

from sklearn.ensemble import RandomForestClassifier

```
forest clf = RandomForestClassifier(random state=42)
y probas forest = cross val predict(forest_clf, X_train, y_train_5, cv=3,
                                    method="predict proba")
y scores forest = y probas forest[:, 1] # score = proba of positive class
fpr forest, tpr forest, thresholds forest = roc curve(y train 5,y scores forest)
plt.plot(fpr, tpr, "b:", label="SGD")
plot_roc_curve(fpr_forest, tpr_forest, "Random Forest")
plt.legend(loc="lower right")
plt.show()
```


Clasificación multiclase

- ¿Qué pasa si queremos distinguir más de dos clases?
- Algunos algoritmos son capaces de manejar multiclase naturalmente (Random Forest, SGD Classifier, Naive Bayes), mientras que otros no (Logistic regression, Support Vector Machine)
- Es posible construir clasificadores multiclase a partir de clasificadores binarios:
 - One versus the rest (OvR): entreno clasificadores para detectar un dígito.
 - One versus one (0v0): entreno clasificadores para distinguir entre dos clases (por ej: 1 vs 2)

Clasificación multiclase en Sklearn.

En caso que el clasificador solo pueda manejar clasificación binaria se pueden utilizar las clases **OnevsOneClassifier** o **OnevsRestClassifier**.

```
>>> from sklearn.multiclass import OneVsRestClassifier
>>> ovr_clf = OneVsRestClassifier(SVC())
>>> ovr_clf.fit(X_train, y_train)
```

En el caso de **SDGClassifier** no es necesario las funciones anteriores porque puede manejar clasificación multiclase.

```
>>> sgd_clf.fit(X_train, y_train)
>>> cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring="accuracy")
array([0.8489802 , 0.87129356, 0.86988048])
Usando scaler

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler()
>>> X_train_scaled = scaler.fit_transform(X_train.astype(np.float64))
>>> cross_val_score(sgd_clf, X_train_scaled, y_train, cv=3, scoring="accuracy")
array([0.89707059, 0.8960948 , 0.90693604])
```

Análisis de error


```
>>> y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3)
>>> conf mx = confusion matrix(y train, y train pred)
>>> conf mx
array([[5578, 0, 22, 7, 8, 45,
                                    35, 5, 222,
                      26, 4,
        0, 6410,
                35,
                               44, 4, 8, 198,
                                                   13],
       28, 27, 5232, 100, 74, 27, 68,
                                         37,
                                             354.
            18, 115, 5254, 2, 209, 26,
                                         38, 373, 73],
       11,
            14,
               45, 12, 5219, 11, 33,
                                         26, 299,
                                                  172],
       26,
            16, 31, 173, 54, 4484, 76,
                                         14, 482, 65],
            17, 45, 2, 42, 98, 5556, 3, 123, 1],
       31,
            10, 53, 27, 50, 13, 3, 5696, 173,
       20,
                                                  220].
       17,
            64, 47, 91, 3, 125,
                                    24, 11, 5421,
       24,
            18, 29, 67,
                          116, 39, 1, 174, 329, 5152]])
```

Análisis de error: Gráfico

```
plt.matshow(conf_mx, cmap=plt.cm.gray)
plt.show()
```



```
row_sums = conf_mx.sum(axis=1, keepdims=True)
norm_conf_mx = conf_mx / row_sums
np.fill_diagonal(norm_conf_mx, 0)
plt.matshow(norm_conf_mx, cmap=plt.cm.gray)
plt.show()
```


Análisis de error: Gráfico


```
cl_a, cl_b = 3, 5
X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)]
X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)]
X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)]
X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)]
plt.figure(figsize=(8,8))
plt.subplot(221); plot_digits(X_aa[:25], images_per_row=5)
plt.subplot(222); plot_digits(X_ab[:25], images_per_row=5)
plt.subplot(223); plot_digits(X_ba[:25], images_per_row=5)
plt.subplot(224); plot_digits(X_bb[:25], images_per_row=5)
plt.show()
```

```
33333 333333
33333 33333
33333 33333
33333 353333
51555 55555
55555 55555
55555 55555
35555 55655
55555 S5555
```

Clasificación de múltiples etiquetas

Por ej: Se quiere saber si un número es mayor a 7 e impar.

0.976410265560605

```
from sklearn.neighbors import KNeighborsClassifier
 y train large = (y train >= 7)
y train odd = (y train % 2 == 1)
y multilabel = np.c [y train large, y train odd]
 knn clf = KNeighborsClassifier()
 knn clf.fit(X train, y multilabel)
KNeighborsClassifier()
 knn clf.predict([some digit])
array([[False, True]])
Warning: the following cell may take a very long time (possibly hours depending on your hardware).
y train knn pred = cross val predict(knn clf, X train, y multilabel, cv=3)
 fl score(y multilabel, y train knn pred, average="macro")
```

23

Clasificación de múltiples salidas

Ejemplo: se quiere limpiar el ruido de la imagen.

```
noise = np.random.randint(0, 100, (len(X_train), 784))
X_train_mod = X_train + noise
noise = np.random.randint(0, 100, (len(X_test), 784))
X_test_mod = X_test + noise
y_train_mod = X_train
y_test_mod = X_test
```

```
some_index = 0
plt.subplot(121); plot_digit(X_test_mod[some_index])
plt.subplot(122); plot_digit(y_test_mod[some_index])
save_fig("noisy_digit_example_plot")
plt.show()
```

Saving figure noisy digit example plot


```
knn_clf.fit(X_train_mod, y_train_mod)
clean_digit = knn_clf.predict([X_test_mod[some_index]])
plot_digit(clean_digit)
save_fig("cleaned_digit_example_plot")
```

Saving figure cleaned_digit_example_plot

Consideraciones finales

- El clasificador perfecto, por lo general, no es alcanzable.
- Entender qué es lo más importante y a partir de esto utilizar la métrica qué mejor se ajuste a esto.
- Entender las posibles fallas de nuestro algoritmo.

