Redes Neurais (Inteligência Artificial) Support Vector Machines (SVM)

Prof. Luiz Alberto Bordignon

Formas de Aprendizado

- Aprendizado Supervisionado
 - Árvores de Decisão.
 - K-Nearest Neighbor (KNN).
 - Support Vector Machines (SVM).
 - Redes Neurais.
- Aprendizado Não Supervisionado
- Aprendizado Por Reforço

Aprendizado Supervisionado

• Observa-se alguns pares de exemplos de entrada e saída, de forma a aprender uma função que mapeia a entrada para a saída.

 Damos ao sistema a resposta correta durante o processo de treinamento.

• É eficiente pois o sistema pode trabalhar diretamente com informações corretas.

- Proposto em 1995 pelo russo Vladimir Vapnik.
- Consiste em um método de aprendizado que tenta encontrar a maior margem para separar diferentes classes de dados.
- Pertence à classe de algoritmos de aprendizado supervisionado.
- A essência do SVM é a construção de um hiperplano ótimo, de modo que ele possa separar diferentes classes de dados com a maior margem possível.

• Como separar essas duas classes?

- Como separar essas duas classes?
 - Existem diversas retas que podem ser traçadas para separar os dados.

• Qual delas é a melhor opção?

- Como separar essas duas classes?
 - Existem diversas retas que podem ser traçadas para separar os dados.

- Qual delas é a melhor opção?
 - Hiperplano ótimo!

Vetores de Suporte

- Servem para definir qual será o hiperplano.
- São encontrados durante a fase de treinamento.
- Os vetores de suporte são os exemplos de treinamento realmente importantes. Os outros exemplos podem ser ignorados.

- Hiperplano:
 - Espaço 1D = Ponto

– Espaço 3D = Plano

Espaço 2D = Reta

- A aplicação de um método puramente linear para classificar um conjunto de dados pode sofrer com dois problemas bastante comuns:
 - Outliers
 - Exemplos rotulados erroneamente

 Mesmo assim o SVM ainda assim pode ser aplicado através do uso do parâmetro C (soft margin - variáveis de folga)

Soft Margin

• Em alguns problemas não é possível separar as classes linearmente mesmo utilizando a margem de folga.

• Na realidade, a grande maioria dos problemas reais não são separáveis linearmente.

• O que fazer?

SVM Não-Linear

• O que fazer quando os dados não são linearmente separáveis?

• A abordagem utilizada pelo SVM para resolver esse tipo de problema consistem em mapear os dados para um espaço de dimensão maior:

SVM Não-Linear

• O espaço de atributos original pode ser mapeado em um espaço de atributos de dimensão maior onde o conjunto de treinamento é linearmente separável:

SVM Não-Linear Exemplo

• Considerando o seguinte conjunto de exemplos de treinamento que não são linearmente separáveis:

• Elevando para uma dimensão linearmente separável (R1 \rightarrow R2):

• Kernel: $\phi(x) = (x, x2)$

SVM Não-Linear Exemplo

 A mesma metodologia pode ser aplicada em um espaço 2D de características (R2 → R3).

 A única diferença é a necessidade de uma nova função de kernel. Um exemplo de função de kernel aplicável nesse caso seria:

Funções de Kernel

Kernel	Função $\phi(x_i,x_j)$
Polinomial	$(\delta(x_i \cdot x_j) + k)^d$
Gaussiano	$\exp(-\sigma \ x_i - x_j\ ^2)$
Sigmoidal	$\tanh(\delta(x_i \cdot x_j) + k)$

- O SVM foi originalmente concebido para lidar com classificações binarias.
- Entretanto, a maior parte dos problemas reais requerem múltiplas classes.
- Para se utilizar uma SVM para classificar múltiplas classes é necessário transformar o problema multi-classe em vários problemas da classes binarias
 - Um contra o resto.

Vantagens e Desvantagens

Vantagens:

- Consegue lidar bem com grandes conjuntos de exemplos.
- Trata bem dados de alta dimensão.
- O processo de classificação é rápido.

Desvantagens:

- É necessário definir um bom Kernel.
- O tempo de treinamento pode ser bem longo dependendo do número de exemplos e dimensionalidade dos dados.

Atividade

• Alterar tipo de kernel do algoritmo SVM e avaliar resultados;

• Implementar a base de dados utilizada no projeto da aula passada para SVM e comparar resultados.

Referências

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html