一个多节点声纳系统中同步时钟机制的可 靠性评估和系统优化问题

519030910115 李春一

摘要

在主从通信系统中,有时会发生系统故障,导致系统的平均寿命/可靠性有限。

节点数量对系统的平均寿命/可靠性起决定性作用,节点过少会导致工作的主从节点数量不足,节点过多可能由于一个节点的故障导致全局崩溃。因此,若想让系统的正常工作时间尽可能长,需要选取合适的节点个数。

针对不同种类的故障及其影响,本文建立了数学模型,将切换器、节点、系统的工作状态视为马尔科夫过程。通过数值模拟方法(包括定步长与变步长两种),验证了不同节点数目下,系统的平均寿命/可靠性。

在本文声纳系统的物理条件下,20个节点平均寿命最长、15个节点可靠性最高。同时,本文分析了A,B两种节点各自的重要性,证明了其中一个切换器的性能进行提升,都会增加整体的平均寿命/可靠性,从而为系统中切换器、节点的设计指明了方向。

关键词: 系统可靠性 主从通信系统 数值模拟方法 马尔科夫链

目录

1.	7	概述	1
	1.1.	引言	1
	1.2.	寿命物理模型	1
	,	1.2.1. 切换器对节点	
	,	1.2.2. 节点对系统	2
	1.3.	优化目标	2
2.	算法	选择	3
	2.1.	定步长	3
	2.2.	变步长	3
	2.3.	算法合理性说明	4
3.	最大	可靠性	4
4.	最大	平均工作寿命	5
5.	拓展	部分	5
	5.1.	概述	5
	5.2.	元件角度:提升切换器性能	5
	5.3.	节点角度: 改变节点内部构造	6
	5.4.	系统角度:提升最大限定寿命	7
6.	总结.		8
	6.1.	当下的优缺点、优化方向	8
	6.2.	结论	8

1. 概述

1.1.引言

在多节点声纳监听系统中,会发生切换器故障,导致系统无法正常工作。然而,水下的雷达系统不便于修复,因此,设法延长系统的寿命至关重要。

声纳系统由以下三级组成:

● 切换器: 分为A, B两种

● 节点: 共n个, 每个节点包含A, B两种切换器

● 系统: *n*个节点共同组成完整的声纳系统

图 1 系统组成示意图

1.2.寿命物理模型

1.2.1. 切换器对节点

切换器 A 状态	切换器 B 状态	节点状态	别名
	g_{B0}	g_{N0}	g_{PF}
g_{A0}	g_{B1}	g_{N3}	9м0
	$g_{\scriptscriptstyle B2}$	g_{N1}	g_{so}
	g_{B0}	g_{N1}	g_{so}
g_{A1}	g_{B1}	$g_{\scriptscriptstyle N5}$	g_{FB}
	$g_{{\scriptscriptstyle B2}}$	g_{N1}	g _{so}
	g_{B0}	g_{N2}	$g_{\scriptscriptstyle DM}$
g_{A2}	g_{B1}	g_{N3}	$g_{\scriptscriptstyle MO}$
	$g_{\scriptscriptstyle B2}$	g_{N4}	$g_{\scriptscriptstyle DN}$
	g_{B0}	g_{N4}	$g_{\scriptscriptstyle DN}$
g_{A3}	g_{B1}	g_{N4}	$g_{\scriptscriptstyle DN}$
	$g_{{\scriptscriptstyle B2}}$	${g_{N4}}$	$g_{\scriptscriptstyle DN}$

表 1 节点状态对应表[1]

以上为切换器与节点状态的对应表,切换器 A, B 分别有 3, 2 种异常状态,这(3+1)×(2+1) = 12种工作状态的组合,会产生 6 种不同的节点状态,这些状态的具体情况如下:

• g_{N0} : 节点性能完好

● g_{N1} : 只能作为从节点

• g_{N2} : 或者作为主节点,或者作为不阻塞总线的失效节点

● *g_{N3}*: 只能作为主节点, 否则就会阻塞总线

● g_{N4}: 成为不阻塞总线的失效节点

● *g*_{N5}: 节点总是阻塞总线

1.2.2. 节点对系统

本题中,只有k=5个节点工作(包含1个主节点),且总线不被阻塞时,系统正常工作。基于 1.2.1 中 6 种不同的节点状态,可以将t时刻六种节点的个数记为 $Q_{N0}(t)\sim Q_{N5}(t)$,可知节点与系统工作状态的关系。[2]

系统在以下任意情况下不能工作:

• C1: 任一节点处于 g_{N5} , 即 $Q_{N5}(t) \ge 1$

● C2: 有两个或以上节点处于 g_{N3} , 即 $Q_{N3}(t) \ge 2$

● C3: 无法找到适合工作于主模式的节点, 即 $Q_{N0}(t) + Q_{N2}(t) + Q_{N3}(t) = 0$

• C4: 能构成有效主从系统的节点总数少于k个, $Q_{N0}(t)+Q_{N1}(t)+u(Q_{N2}(t)+Q_{N3}(t))< k$

系统满足在 $C5 \cap (C6 \cup C7)$ 时能工作:

• C5: 无节点处于 g_{N5} , 即 $Q_{N5}(t) = 0$

● C6: 有且仅有一个节点处于 g_{N3} , 即 $Q_{N3}(t) = 1$ 且 $Q_{N0}(t) + Q_{N1}(t) \ge k - 1$

● C7: 无节点处于 g_{N3} ,至少一个节点处于 g_{N0} 且该节点担当主节点,其余可工作于 从模式的节点数不少于k-1,即 $Q_{N3}(t)=0$ 的前提下满足 $Q_{N0}(t)\geq 1$ 且 $Q_{N0}(t)+Q_{N1}(t)\geq k-1$,或满足 $Q_{N0}(t)=0$ 且 $Q_{N2}(t)\geq 1$ 且 $Q_{N1}(t)\geq k-1$

系统在同时满足以下情况时有概率能工作:

• C8: 无节点处于 g_{N5} , 即 $Q_{N3}(t) + Q_{N5}(t) = 0$

● C9: 处于 g_{N0} 的节点大于等于 1, 且处于 g_{N0} 和 g_{N1} 的节点总数恰好为k-1, 另有若干节点处于 g_{N2} , 即 $Q_{N0}(t) \ge 1$ 且 $Q_{N0}(t) + Q_{N1}(t) = k-1$ 且 $Q_{N2}(t) \ge 1$

由于主节点随机选取, $p(\vec{L} \, \ddot{r} \, T \, f) = \frac{Q_{N_2}(t)}{Q_{N_0}(t) + Q_{N_2}(t)}$

1.3. 优化目标

● 系统可靠性

若系统在[0,25000*h*]内均可靠工作,则判定系统为可靠。 令系统的工作寿命尽量大于25000*h*,即进行多次模拟,使得寿命超过25000*h*的次数尽可能多(概率尽可能大)。

■ 系统平均工作寿命令系统的工作寿命尽可能大、即进行多次模拟、使得平均寿命尽可能大。

2. 算法选择

2.1. 定步长

按照以下步骤设计算法:

图 2 定步长算法示意图

设定步长为1h,每步改变各元件的状态,改变概率 $p=1-e^{-\lambda}$,由此得到各节点的状态,最后模拟出系统的状态。

- 若系统正常,则将寿命增加1h
- 若系统异常,或总时间大于90000h,输出寿命

此方法可以得出正确结果,但耗时较长。在 20 个节点的情况下,每尝试 100 个样本,需要运行133s。由于使用数值模拟方法,样本数至少为 10^5 ,因此一次计算会耗时接近37h,因此需要探索速度更快的方法。

2.2.变步长

按照以下步骤设计算法:

图 3 变步长算法示意图

在n个节点中,依次模拟2n个切换器A,B的状态,得到各个切换器发生故障的时间T, $f(T) = \lambda e^{-\lambda T}$,将最短的时间记为 ΔT ,从而得到最先发生故障的切换器。由此得到各节点的状态,最后模拟出系统的状态。

- 若系统正常,则将寿命增加ΔT
- 若系统异常,或总时间大于90000h,输出寿命

此方法可以得出正确结果,且耗时较短。在20个节点的情况下,一次计算耗时约300s。

因此,本文采用变步长算法,设定仿真颗粒度为10⁵。

2.3. 算法合理性说明

2.2 中的算法可以规避以下两问题:

- 系统失效又复活 当系统异常时,算法会直接跳出循环,时间*T*不会继续增加,即系统不会"复活"。
- 系统永生不死 当寿命大于90000*h*时,算法自动跳出循环,输出*T* = 90000*h*,故系统不存在永生 不死的问题。

因此,本文的算法具有合理性。

3. 最大可靠性

对5~20个节点进行仿真,得到结果如下:

图 4 最大可靠性图

节点个数	13	14	15	16	17
可靠性	94.649%	95.086%	95.176%	94.959%	94.620%

表 2 最大可靠性图

可以看出, 节点个数较少时, 系统容易发生"工作节点不足"的情况, 导致寿命小于25000h; 节点个数较多时, 总体故障概率增大, 更有可能在25000h前发生"总线阻塞"情况。因此, 可靠性在节点个数适中时最大。

节点个数: 15

最大可靠性: 95.176%

4. 最大平均工作寿命

对5~20个节点进行仿真,得到结果如下:

图 5 最大工作寿命图

节点个数	16	17	18	19	20
寿命 (h)	70326	71531	72749	73707	73572

表 3 最大工作寿命表

可以看出,工作寿命随节点个数增多而增大,增速渐渐放缓,一方面是因为最大寿命90000h的限制,另一方面则是节点个数增多导致"总线阻塞"情况更容易发生。

节点个数: 19

最大平均工作寿命: 73707h

5. 拓展部分

5.1. 概述

本文希望通过不同方法、提升系统性能、包括可靠性与最大寿命这两方面。

对此,本文根据元件、节点、系统的"三步走"策略,提出了提升切换器性能,改变节点内部构造,增加最大限定寿命这三种方案。

5.2.元件角度: 提升切换器性能

每个节点由切换器 A, B 构成, 如果能减小切换器的故障概率, 即可减小每一个节点的

故障概率,从而增加整个系统的预期寿命。

切换器 A, B 发生故障的情况与 λ_A , λ_B 有关。因此,将 λ_A , λ_B 的值调整为原来的1.1, 1.2 倍,再调用 $exprnd(\lambda)$ 函数,可以提升整体的预期寿命与可靠性。在此,默认节点个数为20,以平均寿命的提升为例,以下热力图展示了这一方法的效果:

73,000 1.2λΑ 76027 74.000 A元件寿命提升倍数 1.1λΑ 75157 76093 75.000 λΑ 73572 74546 75361 77,000 1.1λΒ 1.2λΒ B元件寿命提升倍数

A, B元件性能提升效果

Highcharts.com.

图 6 切换器寿命与总体寿命的关系

可以看出,提高 λ_A , λ_B 可以提高单个切换器的性能,从而提升整体性能,其中提升 A 切换器性能的效果更为出色。同时,实验结果中的(76093 > 76027)说明,与其专注于提升单个切换器性能,不如同时关注两个切换器,将其性能分别进行适度的提升。

5.3. 节点角度: 改变节点内部构造

初始的节点设计中,包含一个A切换器和一个B切换器,根据[3]中的分析可知,"总线阻塞"对系统寿命影响大,它主要跟切换器B故障有关。因此,额外设置一个切换器B,通过两个B串联的方式,可以有效地减少总线阻塞。

图 7 传统节点构造与新节点构造

可以看出,当传统节点的B掷刀无法与触点脱离时,若A也存在故障,容易发生总线阻塞。然而,新接线方式中,即使 B_1 处于常闭合状态, B_2 的工作状态不受任何影响,因此发生总线阻塞的概率大大降低。

将 B_1 与 B_2 视为一个统一的元件,其工作状态的组合会决定整体的状态:

B_1	B_2	正常工作	常闭合状态	常断开状态
正常工作		正常工作	正常工作	常断开状态
常闭合状态		正常工作	常闭合状态	常断开状态
常断开状态		常断开状态	常断开状态	常断开状态

表 4整体工作状态与 B_1 , B_2 的关系

同时使用新旧节点构造,对比18,19,20个节点状态下的工作寿命与可靠性:

节	点数	旧寿命(h)	新寿命(h)	提升比例	旧可靠性	新可靠性	提升比例
	18	72749	81413	11.914%	94.386%	99.949%	5.894%
	19	73707	82798	12.333%	94.192%	99.985%	6.150%
	20	73572	83998	14.171%	93.665%	99.988%	6.751%

表 5 新旧节点构造效果对比

可以看出,改变节点内部构造的作用在于"防止系统寿命过短",即防止总线阻塞的情况发生。因此,系统寿命有了大幅度的提升。值得一提的是,由于总线阻塞的情况发生概率大大减少,系统的寿命通常大于25000h,因此提升可靠性效果显著,可以获得接近100%的可靠性。

5.4.系统角度:提升最大限定寿命

在进行了20节点情况的模拟后,本文发现有系统近一半,其失效不是因为内部故障导致,而是因为寿命触及了最大值90000h,强制失效。

因此,本文希望通过提升最大限定寿命,减少系统寿命触及最大值的概率,从而提升系统的平均寿命。在接下来的模拟中,保持节点个数为20,每次将最大限定寿命提升10000*h*,直到系统寿命触及最大值的概率小于20%。

工程建模与仿真 96000 h 56% ···· 触及最大值概率 最大平均工作寿命 90000 h 48% 但 # 84000 h 40% 大子均工作未 28000 h 32% 72000 h 24% 66000 h 16% 90000h 100000h 110000h 120000h 130000h Highcharts.com.cn

提升最大寿命对平均寿命的影响

图 8 提升最大寿命对平均寿命的影响

可以看出,随着最大限定寿命的增加,系统触及最大值的概率减小,因此系统的平均寿命增大。然而,当最大限定寿命足够大时,触及最大值的概率减小幅度不会很大,因此该方法在前期效果明显,后期对平均寿命的提升不足。因此,需要了解整体的寿命分布情况,才可以选择合适的最大限定寿命,尽量减少强制失效。

依然以节点个数20为例,以下为系统寿命的分布图(在原始设置下,系统寿命73572h),可以看出,系统的寿命曲线类似于高斯分布。因此,采用取点法,分别强制丢弃20%,10%,5%的系统,观察寿命提升效果:

图 9 系统寿命分布

	强制失效	最大限定寿命 (h)	系统平均寿命 (h)	提升比例
	20%	129300	86982	11.823%
ĺ	10%	153900	90393	12.286%
ĺ	5%	177500	91787	12.476%

表 6 不同丢弃比例对平均寿命的影响

结论显示,最大限定寿命越大,强制失效比例越小,系统的平均寿命越大,符合预期。

6. 总结

6.1. 当下的优缺点、优化方向

优点:

- 选择了变步长方案,并证明了其时间远远优于定步长方法
- 规避了算法中"复活"与"永生"的漏洞
- 得出了稳定性与平均寿命最大情况下的结点个数,并进行了分析
- 提出元件-节点-系统三级方案优化系统寿命,并采用多种可视化方式展示优化结果不足:
- 系统角度的优化方案只能提升寿命,无法像元件、节点角度方案一样提升可靠性
- 运行时间仍有优化空间,运行计时中显示exprnd函数占用了运行时间的一半
- 不同方案下的结点数说明

优化方向:

• 当 λ_A , λ_B 变化, 或最大限定寿命升高时, 最优节点数不一定为20个, 应在三种优化方案中, 对节点数为5~20的情况依次尝试。(因算力问题只以20节点为例)

6.2.结论

通过本文研究发现,在题目条件下,节点数为15时,可靠性95.176%最大;节点数为19时,寿命73707h最大。

从元件维度,可以通过提升A,B各自的性能来提高整体寿命与可靠性,效果较好;从节点维度,可以增加一个B元件提升寿命与可靠性,其中可靠性增至近100%;从系统维度,可以提升最大限定寿命从而大幅提升平均寿命,但对可靠性无作用。

附录

参考文献

```
[1]上海交通大学 电子工程系 工程问题建模和仿真讲座 15
[2]上海交通大学 电子工程系 案例 2 系统可用性数值的理论求解方法介绍
[3]上海交通大学 电子工程系 工程问题建模与仿真讲座 16
```

变步长代码

```
Nsample=100000;
k=5;
        %工作结点数
pA=[0.26,0.26,0.48];
pB=[0.35,0.65];
pointOutput=zeros(1,n);
resOutput=zeros(1,n);
for numOfPoint=5:20 %总结点数
    life=zeros(1,Nsample);
    for t=1:Nsample
        stateSystem=0;
        stateComp=zeros(1,numOfPoint);
        stateItemA=zeros(1,numOfPoint);
        stateItemB=zeros(1,numOfPoint);
        while stateSystem==0
[stateItemA,stateItemB,T]=changeStateItemT(stateItemA,stateItemB,pA,pB,numOfPoint);
             stateComp=changeStateComp(stateItemA,stateItemB);
             stateSystem=judgeSystem(stateComp);
             life(t)=life(t)+T;
             if life(t)>=90000
                 life(t)=90000;
                 break
             end
        end
    %if mod(t,100) = = 0
         fprintf('%d sample,meanLife=%f \n',t,sum(life)/t)
    %end
    end
    pointOutput(numOfPoint)=mean(life);
    resOutput(numOfPoint)=sum((life-25000)>=0)*100/Nsample;
    fprintf('numOfPoint=%d, meanLife=%f \n',numOfPoint,pointOutput(numOfPoint))
    fprintf('numOfPoint=%d, meanRes=%f %% \n',numOfPoint,resOutput(numOfPoint))
end
function [stateItemA,stateItemB,∏=changeStateItemT(stateItemA,stateItemB,pA,pB,n)
```

```
lambdaA=37000;
%lambdaA=lambdaA*1.1;
lambdaB=480000;
%lambdaB=lambdaB*1.1;
T1=exprnd(lambdaA,n,1);
T2=exprnd(lambdaB,n,1);
T1min=min(T1);
T2min=min(T2);
T1Index=find(T1==T1min);
T2Index=find(T2==T2min);
if T1min<=T2min && stateItemA(T1Index)==0
    path=rand(1);
    if path<pA(1)
        stateItemA(T1Index)=1;
    elseif pA(1) \le path \le (pA(1) + pA(2))
        stateItemA(T1Index)=2;
    else
        stateItemA(T1Index)=3;
    end
end
if T1min>=T2min && stateItemB(T2Index)==0
    path=rand(1);
    if path < pB(1)
        stateItemB(T2Index)=1;
    else
        stateItemB(T2Index)=2;
    end
end
T=min(T1min,T2min);
end
function stateComp=changeStateComp(stateItemA,stateItemB)
%AB工作状态决定整体
changeMat=[0 3 1;1 5 1;2 3 4;4 4 4];
p=length(changeMat);
stateComp=changeMat(stateItemA+stateItemB*p+1);
end
```