Übung "Grundbegriffe der Informatik"

Karlsruher Institut für Technologie

Matthias Schulz, Gebäude 50.34, Raum 247

email: schulz@ira.uka.de

Matthias Janke, Gebäude 50.34, Raum 249

email: matthias.janke@kit.edu

$$R(\epsilon) = \epsilon$$

 $\forall w \in A^* \forall x \in A : R(wx) = xR(w)$

2

$$R(\epsilon) = \epsilon$$

 $\forall w \in A^* \forall x \in A : R(wx) = xR(w)$

$$R(abcd) = dR(abc) = dcR(ab) = dcbR(a) = dcbaR(\epsilon) = dcba$$

$$R(\epsilon) = \epsilon$$

 $\forall w \in A^* \forall x \in A : R(wx) = xR(w)$

$$R(abcd) = dR(abc) = dcR(ab) = dcbR(a) = dcbaR(\epsilon) = dcba$$

→ Spiegelung des Wortes!

$$R(\epsilon) = \epsilon$$

 $\forall w \in A^* \forall x \in A : R(wx) = xR(w)$

$$R(abcd) = dR(abc) = dcR(ab) = dcbR(a) = dcbaR(\epsilon) = dcba$$

→ Spiegelung des Wortes!

Leicht zu zeigen: $R(w_1w_2) = R(w_2)R(w_1)$.

$$w \in L \subseteq \{a, b\}^* \iff R(w) = w \land |w| \mod 2 = 0$$

$$w \in L \subseteq \{a, b\}^* \iff R(w) = w \land |w| \mod 2 = 0$$

Palindrome gerader Länge: $aaaa, abba, baab, abaaba, \dots$

$$w \in L \subseteq \{a, b\}^* \iff R(w) = w \land |w| \mod 2 = 0$$

Rekursive Definition?

$$w \in L \subseteq \{a, b\}^* \iff R(w) = w \land |w| \mod 2 = 0$$

• Erstes und letztes Zeichen gleich

$$w \in L \subseteq \{a, b\}^* \iff R(w) = w \land |w| \mod 2 = 0$$

• Erstes und letztes Zeichen gleich

ullet Wort in Mitte ebenfalls aus L

$$w \in L \subseteq \{a, b\}^* \iff R(w) = w \land |w| \mod 2 = 0$$

- Erstes und letztes Zeichen gleich
- Wort in Mitte ebenfalls aus L
- \bullet $\epsilon \in L$

$$w \in L \subseteq \{a, b\}^* \iff R(w) = w \land |w| \mod 2 = 0$$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$

$$w \in L \subseteq \{a, b\}^* \iff R(w) = w \land |w| \mod 2 = 0$$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$

$$L_0 = \{\epsilon\}$$

$$\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$$

$$w \in L \subseteq \{a, b\}^* \iff R(w) = w \land |w| \mod 2 = 0$$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

$$\text{L\"osung}: L' = \bigcup_{i=0}^{\infty} L_i$$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

Zeige:
$$L' \subseteq \{\epsilon\} \cup \{a\}L'\{a\} \cup \{b\}L'\{b\}$$

Sei
$$w \in L' \Rightarrow \exists n \in \mathbb{N}_0 : w \in L_n \Rightarrow n = 0 \lor w \in (\{\epsilon\} \cup \{a\}L_{n-1}\{a\} \cup \{b\}L_{n-1}\{b\}$$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

Zeige:
$$L' \subseteq \{\epsilon\} \cup \{a\}L'\{a\} \cup \{b\}L'\{b\}$$

Sei
$$w \in L' \Rightarrow \exists n \in \mathbb{N}_0 : w \in L_n \Rightarrow n = 0 \lor w \in (\{\epsilon\} \cup \{a\}L_{n-1}\{a\} \cup \{b\}L_{n-1}\{b\}$$

Da
$$L_{n-1} \subseteq L'$$
 gilt, folgt $\{a\}L_{n-1}\{a\} \cup \{b\}L_{n-1}\{b\} \subseteq \{a\}L'\{a\} \cup \{b\}L'\{b\}.$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$

$$L_0 = \{\epsilon\}$$

$$\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$$

Zeige:
$$L' \subseteq \{\epsilon\} \cup \{a\}L'\{a\} \cup \{b\}L'\{b\}$$

Sei
$$w \in L' \Rightarrow \exists n \in \mathbb{N}_0 : w \in L_n \Rightarrow n = 0 \lor w \in (\{\epsilon\} \cup \{a\}L_{n-1}\{a\} \cup \{b\}L_{n-1}\{b\}$$

Da
$$L_{n-1} \subseteq L'$$
 gilt, folgt $\{a\}L_{n-1}\{a\} \cup \{b\}L_{n-1}\{b\} \subseteq \{a\}L'\{a\} \cup \{b\}L'\{b\}.$

$$n = 0 \Rightarrow w = \epsilon \Rightarrow w \in \{\epsilon\} \cup \{a\} L'\{a\} \cup \{b\} L'\{b\}$$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

Zeige:
$$L' \supseteq \{\epsilon\} \cup \{a\} L'\{a\} \cup \{b\} L'\{b\}$$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$

$$L_0 = \{\epsilon\}$$

$$\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$$

Zeige:
$$L' \supseteq \{\epsilon\} \cup \{a\}L'\{a\} \cup \{b\}L'\{b\}$$

Sei
$$w \in \{\epsilon\} \cup \{a\} L'\{a\} \cup \{b\} L'\{b\}.$$

- 1. Fall: $w \in \{\epsilon\}$
- 2. Fall: $w \in \{a\}L'\{a\}$
- 3. Fall: $w \in \{b\}L'\{b\}$ analog zum zweiten Fall

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

Zeige:
$$L' \supseteq \{\epsilon\} \cup \{a\}L'\{a\} \cup \{b\}L'\{b\}$$

Sei
$$w \in \{\epsilon\} \cup \{a\} L'\{a\} \cup \{b\} L'\{b\}.$$

1. Fall:
$$w \in \{\epsilon\} \Rightarrow w = \epsilon \in L_0 \subseteq L'$$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

Zeige:
$$L' \supseteq \{\epsilon\} \cup \{a\}L'\{a\} \cup \{b\}L'\{b\}$$

Sei
$$w \in \{\epsilon\} \cup \{a\} L'\{a\} \cup \{b\} L'\{b\}.$$

2. Fall:
$$w \in \{a\}L'\{a\} \Rightarrow \exists w' \in L' : w = aw'a$$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

Zeige:
$$L' \supseteq \{\epsilon\} \cup \{a\}L'\{a\} \cup \{b\}L'\{b\}$$

Sei
$$w \in \{\epsilon\} \cup \{a\} L'\{a\} \cup \{b\} L'\{b\}.$$

2. Fall:
$$w \in \{a\}L'\{a\} \Rightarrow \exists w' \in L' : w = aw'a \Rightarrow \exists n \in \mathbb{N}_0 : w' \in L_n \land aw'a = w$$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

Zeige:
$$L' \supseteq \{\epsilon\} \cup \{a\}L'\{a\} \cup \{b\}L'\{b\}$$

Sei
$$w \in \{\epsilon\} \cup \{a\}L'\{a\} \cup \{b\}L'\{b\}.$$

2. Fall:
$$w \in \{a\}L'\{a\} \Rightarrow \exists w' \in L' : w = aw'a \Rightarrow \exists n \in \mathbb{N}_0 : w' \in L_n \land aw'a = w \Rightarrow w \in \{\epsilon\} \cup \{a\}L_n\{a\} \cup \{b\}L_n\{b\}$$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

Zeige:
$$L' \supseteq \{\epsilon\} \cup \{a\}L'\{a\} \cup \{b\}L'\{b\}$$

Sei
$$w \in \{\epsilon\} \cup \{a\} L'\{a\} \cup \{b\} L'\{b\}.$$

2. Fall:
$$w \in \{a\}L'\{a\} \Rightarrow \exists w' \in L' : w = aw'a \Rightarrow \exists n \in \mathbb{N}_0 : w' \in L_n \land aw'a = w \Rightarrow w \in \{\epsilon\} \cup \{a\}L_n\{a\} \cup \{b\}L_n\{b\} \Rightarrow w \in L_{n+1} \subseteq L'$$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$
 gelte.

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

$$L' = \bigcup_{i=0}^{\infty} L_i$$

Zeige: $L' \subseteq L$. (Also: L' "kleinste" Sprache, die Gleichung erfüllt.)

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$
 gelte.

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

$$L' = \bigcup_{i=0}^{\infty} L_i$$

Zeige: $\forall n \in \mathbb{N}_0 : L_n \subseteq L$.

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$
 gelte.

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

Zeige: $\forall n \in \mathbb{N}_0 : L_n \subseteq L$.

IA:
$$n = 0$$
: $w \in L_0 \Rightarrow w = \epsilon \rightarrow w \in \{\epsilon\} \cup \{a\} L\{a\} \cup \{b\} L\{b\} = L$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$
 gelte.

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

Zeige: $\forall n \in \mathbb{N}_0 : L_n \subseteq L$.

IV: Für ein beliebiges, aber festes $n \in \mathbb{N}_0$ gelte $L_n \subseteq L$.

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$
 gelte.

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

Zeige: $\forall n \in \mathbb{N}_0 : L_n \subseteq L$.

IS: $n \to n+1$: Zu zeigen: $L_{n+1} \subseteq L$.

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$
 gelte.

$$L_0 = \{\epsilon\}$$

 $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$

Zeige: $\forall n \in \mathbb{N}_0 : L_n \subseteq L$.

IS: $n \to n+1$: Zu zeigen: $L_{n+1} \subseteq L$.

$$w \in L_{n+1} \Rightarrow w = \epsilon \in L \lor \exists w' \in L_n : w = aw'a \in \{a\}L\{a\} \text{ (nach IV)} \lor \exists w' \in L_n : w = bw'b \in \{b\}L\{b\} \text{ (nach IV)}$$

$$L = \{\epsilon\} \cup \{a\}L\{a\} \cup \{b\}L\{b\}$$
 gelte.

$$L_0 = \{\epsilon\}$$

$$\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup \{a\} L_i \{a\} \cup \{b\} L_i \{b\}$$

Zeige: $\forall n \in \mathbb{N}_0 : L_n \subseteq L$.

IS: $n \to n+1$: Zu zeigen: $L_{n+1} \subseteq L$.

$$w \in L_{n+1} \Rightarrow w = \epsilon \in L \lor \exists w' \in L_n : w = aw'a \in \{a\}L\{a\} \text{ (nach IV)} \lor \exists w' \in L_n : w = bw'b \in \{b\}L\{b\} \text{ (nach IV)}$$

$$\Rightarrow w \in L \Rightarrow L_{n+1} \subseteq L$$
. \square

Wörter über $\{a,b\}$, die keine Palindrome sind?

Wörter über $\{a,b\}$, die keine Palindrome sind?

Erstes und letztes Zeichen gleich: Wort in Mitte kein Palindrom.

Wörter über $\{a,b\}$, die keine Palindrome sind?

Erstes und letztes Zeichen gleich: Wort in Mitte kein Palindrom.

Erstes und letztes Zeichen verschieden: Beliebiges Wort in Mitte.

Wörter über $A = \{a, b\}$, die keine Palindrome sind?

$$L = \{a\}L\{a\} \cup \{b\}L\{b\} \cup \{a\}A^*\{b\} \cup \{b\}A^*\{a\}$$

Wörter über $A = \{a, b\}$, die keine Palindrome sind?

$$L = \{a\}L\{a\} \cup \{b\}L\{b\} \cup \{a\}A^*\{b\} \cup \{b\}A^*\{a\}$$

Grammatik
$$G=(N,T,S,P)$$
 mit $N=\{S,A\},T=\{a,b\},$ $P=\{S\rightarrow aSa\mid bSb\mid aAb\mid bAa,$ $A\rightarrow AA\mid a\mid b\mid \epsilon\}$

Wörter über $A = \{a, b\}$, die keine Palindrome sind?

$$L = \{a\}L\{a\} \cup \{b\}L\{b\} \cup \{a\}A^*\{b\} \cup \{b\}A^*\{a\}$$

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow AA \mid a \mid b \mid \epsilon\}$

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaAbba \Rightarrow abaAAbba \Rightarrow abaabbba$

Wörter über $A = \{a, b\}$, die keine Palindrome sind?

$$L = \{a\}L\{a\} \cup \{b\}L\{b\} \cup \{a\}A^*\{b\} \cup \{b\}A^*\{a\}$$

Grammatik
$$G=(N,T,S,P)$$
 mit $N=\{S,A\},T=\{a,b\},$ $P=\{S\rightarrow aSa\mid bSb\mid aAb\mid bAa,$ $A\rightarrow AA\mid a\mid b\mid \epsilon\}$

Beweis der Korrektheit?

Wörter über $A = \{a, b\}$, die keine Palindrome sind?

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Für alle
$$n \in \mathbb{N}_0$$
 gilt: $\forall w \in \{a, b, A, S\}^*$
 $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T
 $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

Wörter über $A = \{a, b\}$, die keine Palindrome sind?

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Für alle $n \in \mathbb{N}_0$ gilt: $\forall w \in \{a, b, A, S\}^*$ $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

IA: n = 0: $S \Rightarrow^0 w \Rightarrow w = S \Rightarrow$ für $w_1 = w_2 = \epsilon \in T^0$ gilt $w = w_1 S w_2 \checkmark$

Wörter über $A = \{a, b\}$, die keine Palindrome sind?

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Für alle
$$n \in \mathbb{N}_0$$
 gilt: $\forall w \in \{a, b, A, S\}^*$
 $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T
 $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

IV: Für ein beliebiges, aber festes $n \in \mathbb{N}_0$ gilt: $\forall w \in \{a, b, A, S\}^*S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

Wörter über $A = \{a, b\}$, die keine Palindrome sind?

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Für alle $n \in \mathbb{N}_0$ gilt: $\forall w \in \{a, b, A, S\}^*$ $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

IS: $n \to n+1$: $S \Rightarrow^{n+1} w' \Rightarrow \exists w \in \{a, b, A, S\}^* : S \Rightarrow^n w \Rightarrow w'$.

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Für alle $n \in \mathbb{N}_0$ gilt: $\forall w \in \{a, b, A, S\}^*$ $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

IS: $n \to n+1$: $S \Rightarrow^{n+1} w' \Rightarrow \exists w \in \{a, b, A, S\}^* : S \Rightarrow^n w \Rightarrow w'$.

Nach IV gilt: $\exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2)).$

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Für alle
$$n \in \mathbb{N}_0$$
 gilt: $\forall w \in \{a, b, A, S\}^*$
 $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T
 $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

1. Fall: $w = w_1 S w_2 \Rightarrow w' \in \{w_1 a S a w_2, w_1 b S b w_2, w_1 a A b w_2, w_1 b A a w_2\}.$

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Für alle
$$n \in \mathbb{N}_0$$
 gilt: $\forall w \in \{a, b, A, S\}^*$
 $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T
 $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

- 1. Fall: $w = w_1 S w_2 \Rightarrow w' \in \{w_1 a S a w_2, w_1 b S b w_2, w_1 a A b w_2, w_1 b A a w_2\}.$
- 1. Unterfall: $w' \in \{w_1 a S a w_2, w_1 b S b w_2\} \Rightarrow \exists w'_1, w'_2 \in T^{n+1}: w' = w'_1 S w'_2$

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Für alle
$$n \in \mathbb{N}_0$$
 gilt: $\forall w \in \{a, b, A, S\}^*$
 $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T
 $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

- 1. Fall: $w = w_1 S w_2 \Rightarrow w' \in \{w_1 a S a w_2, w_1 b S b w_2, w_1 a A b w_2, w_1 b A a w_2\}.$
- 2. Unterfall: $w' \in \{w_1aAbw_2, w_1bAaw_2\} \Rightarrow \exists w'_1, w'_2 \in T^{n+1}: w' = w'_1Aw'_2 \land w'_1 \neq R(w'_2) \text{ (da letzte Zeichen verschieden!)}$

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Für alle
$$n \in \mathbb{N}_0$$
 gilt: $\forall w \in \{a, b, A, S\}^*$
 $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T
 $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

2. Fall:
$$w = w_1 A w_2 \wedge w_1 \neq R(w_2) \Rightarrow$$
 $w' \in \{w_1 a A a w_2, w_1 b A b w_2, w_1 a A b w_2, w_1 b A a w_2, w_1 b w_2, w_2 \}.$

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Für alle
$$n \in \mathbb{N}_0$$
 gilt: $\forall w \in \{a, b, A, S\}^*$
 $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T
 $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

- 2. Fall: $w = w_1 A w_2 \wedge w_1 \neq R(w_2) \Rightarrow w' \in \{w_1 a A a w_2, w_1 b A b w_2, w_1 a A b w_2, w_1 b A a w_2, w_1 b w_2, w_2 \}.$
- 1. Unterfall: $w' \in \{w_1 a A a w_2, w_1 b A b w_2, w_1 a A b w_2, w_1 b A a w_2, \}$.

Für alle $n \in \mathbb{N}_0$ gilt: $\forall w \in \{a, b, A, S\}^*$ $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

- 2. Fall: $w = w_1 A w_2 \wedge w_1 \neq R(w_2) \Rightarrow$ $w' \in \{w_1 a A a w_2, w_1 b A b w_2, w_1 a A b w_2, w_1 b A a w_2, w_1 b w_2, w_2 \}.$
- 1. Unterfall: $w' \in \{w_1 a A a w_2, w_1 b A b w_2, w_1 a A b w_2, w_1 b A a w_2, \}$.

Für $w_1' \in \{w_1a, w_1b\}$ und $w_2' \in \{aw_2, bw_2\}$ gilt $w_1' \in \{w_1a, w_1b\} \neq R(w_2') \in \{R(w_2)a, R(w_2)b\}$, da Präfixe der Länge n verschieden sind.

Für alle
$$n \in \mathbb{N}_0$$
 gilt: $\forall w \in \{a, b, A, S\}^*$
 $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T
 $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

- 2. Fall: $w = w_1 A w_2 \wedge w_1 \neq R(w_2) \Rightarrow w' \in \{w_1 a A a w_2, w_1 b A b w_2, w_1 a A b w_2, w_1 b A a w_2, w_1 b w_2, w_2 \}.$
- 1. Unterfall: $w' \in \{w_1 a A a w_2, w_1 b A b w_2, w_1 a A b w_2, w_1 b A a w_2, \}$.

Für $w_1' \in \{w_1a, w_1b\}$ und $w_2' \in \{aw_2, bw_2\}$ gilt $w_1' \in \{w_1a, w_1b\} \neq R(w_2') \in \{R(w_2)a, R(w_2)b\}$, da Präfixe der Länge n verschieden sind.

$$\Rightarrow \exists w_1', w_2' \in T^{n+1} : w' = w_1' A w_2' \land w_1' \neq R(w_2')$$

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Für alle
$$n \in \mathbb{N}_0$$
 gilt: $\forall w \in \{a, b, A, S\}^*$
 $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T
 $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

- 2. Fall: $w = w_1 A w_2 \wedge w_1 \neq R(w_2) \Rightarrow w' \in \{w_1 a A a w_2, w_1 b A b w_2, w_1 a A b w_2, w_1 b A a w_2, w_1 b w_2, w_2 \}.$
- 2. Unterfall: $w' \in \{w_1 a w_2, w_1 b w_2, w_1 w_2\}.$

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Für alle
$$n \in \mathbb{N}_0$$
 gilt: $\forall w \in \{a, b, A, S\}^*$
 $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T
 $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

- 2. Fall: $w = w_1 A w_2 \wedge w_1 \neq R(w_2) \Rightarrow w' \in \{w_1 a A a w_2, w_1 b A b w_2, w_1 a A b w_2, w_1 b A a w_2, w_1 b w_2, w_2 \}.$
- 2. Unterfall: $w' \in \{w_1 a w_2, w_1 b w_2, w_1 w_2\}$.

Es gilt
$$R(w') \in \{R(w_2)\}\{a, b, \epsilon\}\{R(w_1)\}$$

Für alle
$$n \in \mathbb{N}_0$$
 gilt: $\forall w \in \{a, b, A, S\}^*$
 $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T
 $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

- 2. Fall: $w = w_1 A w_2 \wedge w_1 \neq R(w_2) \Rightarrow w' \in \{w_1 a A a w_2, w_1 b A b w_2, w_1 a A b w_2, w_1 b A a w_2, w_1 b w_2, w_2 \}.$
- 2. Unterfall: $w' \in \{w_1 a w_2, w_1 b w_2, w_1 w_2\}$.

Es gilt
$$R(w') \in \{R(w_2)\}\{a, b, \epsilon\}\{R(w_1)\}$$

Präfix von R(w') der Länge n ist immer $R(w_2) \neq w_1 =$ Präfix der Länge n von w'

Für alle
$$n \in \mathbb{N}_0$$
 gilt: $\forall w \in \{a, b, A, S\}^*$
 $S \Rightarrow^n w \Rightarrow w$ ist ein Nicht-Palindrom über T
 $\forall \exists w_1, w_2 \in T^n : w = w_1 S w_2 \lor (w = w_1 A w_2 \land w_1 \neq R(w_2))$

- 2. Fall: $w = w_1 A w_2 \wedge w_1 \neq R(w_2) \Rightarrow w' \in \{w_1 a A a w_2, w_1 b A b w_2, w_1 a A b w_2, w_1 b A a w_2, w_1 b w_2, w_2 \}.$
- 2. Unterfall: $w' \in \{w_1 a w_2, w_1 b w_2, w_1 w_2\}$.

Es gilt
$$R(w') \in \{R(w_2)\}\{a, b, \epsilon\}\{R(w_1)\}$$

Präfix von R(w') der Länge n ist immer $R(w_2) \neq w_1 =$ Präfix der Länge n von $w' \Rightarrow w'$ ist ein Nicht-Palindrom über T.

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Fertig?

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Noch zu zeigen: Jedes Nicht-Palindrom über T ableitbar.

_

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Noch zu zeigen: Jedes Nicht-Palindrom über T ableitbar.

Schritt 1: Jedes Wort aus T^* kann aus A abgeleitet werden.

Schritt 2: Jedes Nicht-Palindrom über T kann aus S abgeleitet werden.

Jeweils vollständige Induktion mit angepasster Behauptung.

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Noch zu zeigen: Jedes Nicht-Palindrom über T ableitbar.

Schritt 1: Jedes Wort aus T^* kann aus A abgeleitet werden.

Schritt 2: Jedes Nicht-Palindrom über T kann aus S abgeleitet werden.

Jeweils vollständige Induktion mit angepasster Behauptung.

$$\forall n \in \mathbb{N}_0 : \forall w \in T^* : |w| \le n + 1 \Rightarrow A \Rightarrow^* w.$$

Grammatik G = (N, T, S, P) mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

 $\forall n \in \mathbb{N}_0 : \forall w \in T^* : |w| \le n + 1 \Rightarrow A \Rightarrow^* w.$

IA: n = 0: $|w| \le 1 \Rightarrow w \in \{a, b, \epsilon\} \Rightarrow (A \Rightarrow w) \Rightarrow A \Rightarrow^* w \checkmark$

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

$$\forall n \in \mathbb{N}_0 : \forall w \in T^* : |w| \le n + 1 \Rightarrow A \Rightarrow^* w.$$

IV: Für ein beliebiges, aber festes $n\in\mathbb{N}_0$ gelte: $\forall w\in T^*: |w|\leq n+1\Rightarrow A\Rightarrow^* w$

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

$$\forall n \in \mathbb{N}_0 : \forall w \in T^* : |w| \le n + 1 \Rightarrow A \Rightarrow^* w.$$

IS:
$$n \Rightarrow n+1$$
: Zu zeigen: $\forall w \in T^* : |w| \le n+2 \Rightarrow A \Rightarrow^* w$.

1. Fall: $|w| \le n + 1 \Rightarrow A \Rightarrow^* w$ folgt nach IV.

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

$$\forall n \in \mathbb{N}_0 : \forall w \in T^* : |w| \le n + 1 \Rightarrow A \Rightarrow^* w.$$

IS:
$$n \Rightarrow n+1$$
: Zu zeigen: $\forall w \in T^* : |w| \le n+2 \Rightarrow A \Rightarrow^* w$.

2. Fall:
$$|w| = n + 2 \Rightarrow \exists w' \in T^n \exists x, y \in T : w = xw'y$$
.

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

$$\forall n \in \mathbb{N}_0 : \forall w \in T^* : |w| \le n + 1 \Rightarrow A \Rightarrow^* w.$$

IS:
$$n \Rightarrow n+1$$
: Zu zeigen: $\forall w \in T^* : |w| \le n+2 \Rightarrow A \Rightarrow^* w$.

2. Fall:
$$|w| = n + 2 \Rightarrow \exists w' \in T^n \exists x, y \in T : w = xw'y$$
.

Dann gilt:
$$A \Rightarrow xAy \stackrel{IV}{\Rightarrow}^* xw'y = w \square$$
.

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Wie kann man Wörter der Form $a^nb^{2m+1}a^{n+1}$ mit $n,m\geq 1$ ableiten?

Grammatik
$$G = (N, T, S, P)$$
 mit $N = \{S, A\}, T = \{a, b\},$ $P = \{S \rightarrow aSa \mid bSb \mid aAb \mid bAa,$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \epsilon \mid a \mid b\}$

Wie kann man Wörter der Form $a^nb^{2m+1}a^{n+1}$ mit $n,m\in\mathbb{N}_0$ aus S ableiten?

- n mal S durch aSa ersetzen.
- Einmal S durch bAa ersetzen.
- m mal A durch bAb ersetzen.
- A durch ϵ ersetzen.