Homework Assignment 6

Due: 16:00pm Tuesday, Match 14, 2021

Problem 1. A baseband signal m(t) is the periodic sawtooth signal shown in Fig. 1, where $T_0 =$ 1, A = 1.

- (a) Sketch the FM wave for this signal m(t) if $f_c = 4$ and $k_f = 10$.
- (b) Estimate the bandwidth of the FM wave. Assume the bandwidth of m(t) is defined by the fifth harmonic frequency of m(t).

Figure 1: Message signal in Problem 1.

(a) Estimate the bandwidth of FM and PM waves using Carson's rule.

- (b) Repeat part (a) if the message signal amplitude is doubled.
- (c) Repeat part (anithmessage signal frequency is doubted.
- (d) Comment on the sensitivity of FM and PM bandwidths to the spectrum of m(t).

Problem 3. (Haykin and Moher Problem 4.11) The sinusoidal wave

$$m(t) = A_m \cos(2\pi f_m t)$$

is applied to a phase modulator with phase sensitivity k_p . The unmodulated carrier wave has frequency f_c and amplitude A_c . Find the spectrum of the resulting phase-modulated (PM) wave, assuming that the maximum phase deviation $\beta = k_p A_m$ is sufficiently small.

Note: Use the approximations $\sin x \approx x$ and $\cos x \approx 1$ for $|x| \ll 1$.

Problem 4. (Haykin and Moher Problem 4.24 modified) An FM wave is given as

$$s(t) = A_c \cos \left(2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau \right),$$

where the message bandwidth is W and the maximum frequency deviation is $\Delta f_{\rm max}$. Consider a memoryless channel characterized by the following non-linear input-output relationship:

$$v_0(t) = a_1 s(t) + a_2 s^2(t) + a_3 s^3(t),$$

where $v_0(t)$ is the system output and s(t) is the input.

(a) By using the generalized Carson's rule, show that if

$$f_c > 3\Delta f_{\max} + 2W,$$

the effect of the non-linear distortion can be removed by band-pass filtering. In other words, by applying $v_0(t)$ to a band-pass filter, the FM wave s(t) can be recovered.

(b) How to design the pass-band of the filter in Part (a)?

Note:
$$\cos^2 x = \frac{1}{2}[1 + \cos(2x)]$$
. $\cos^3 x = \frac{1}{4}[3\cos(x) + \cos(3x)]$.

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs