Universidade de Brasília Engenharia de Reatores Químicos – IQD0048 Avaliação HW_2 – Turma 01 - 2023/1 - 06/07/2023 – Prof. Alexandre Umpierre

Instruções Gerais:

Esta avaliação **deve ser realizada individualmente ou em duplas**. Não serão consideradas avaliações realizadas por grupos maiores.

A avaliação deve ser entregue **até às 23h59 de 08/07/2023**. Respostas enviadas posteriormente serão desconsideradas. A avaliação deve ser elaborada **rigorosamente de acordo com os** *templates* **e com as instruções** disponibilizados na página da disciplina. Desvios do *tempate* e das regras implicarão em descontos na nota final, de acordo com cada caso. O documento com as respostas deve ser entregue **anexo em formato .pdf**. **Não serão aceitos links de repositórios em nuvem.**

O documento com as respostas deve enviado por um dos autores, de seu email institucional, para aumpierre@unb.br.

O documento entregue deve ser intitulado ERQ_T01_20231_HW2_20230706_matriculasonumeros.pdf.

Indícios de cópia implicarão a anulação das questões em tela de todos os envolvidos.

O documento entregue não pode ultrapassar 10 páginas (incluindo o cabeçalho do tempalate).

A correção levará em consideração a adequação e consistência das respostas com relação ao conteúdo abordado.

- 1) Um reator tubular deve ser usado para conduzir a reação $A \rightarrow B$. A taxa de consumo de A é dada por kc^n , em que $k = 0.87 \, (\text{mol/L})^{-0.7} \text{min}^{-1}$ é a constante cinética, n é a ordem de reação e c é a concentração de A. O reator tem 125 L e a alimentação é uma corrente de 30 L/min com 0,54 mol/L de A. O reator é submetido a um ensaio com traçador. Uma determinada quantidade do traçador é introduzida de uma vez à corrente de alimentação. A Tabela 1 apresenta a concentração do traçador registrada à saída do reator. Apresente uma avaliação crítica e a melhor estimativa possível para a conversão de A no reator. $(2.5 \, \text{pontos})$
- 2) Um reator de tanque agitado deve ser posto em operação. Inicialmente, ele se encontra vazio. A operação deve ser realizada em duas etapas. Na primeira etapa, a saída do tanque deve ser mantida fechada, enquanto o volume de operação de 1,2 L é preenchido com uma corrente de 4,7 L/h com 2,3 mol/L do reatante. Na segunda etapa, a saída do tanque é aberta mantendo a alimentação. A constante cinética da taxa de consumo é 0,15 min⁻¹. Determine o tempo necessário para que o reator atinja 98 % da conversão esperada para o estado estacionário. (2,5 pontos)

Tabela 1. Concentração c de traçador à saída do tanque em função do tempo t de ensaio para a Questão 1.

<i>t</i> (s)	c (mg/L)
0	0,061
2	0,98
4	1,82
7	8,35
9	20,8
11	36,3
13	59,3
14	69,1
16	92,0
18	110,2
21	126,1
24	133,5
27	126,3
30	112,4
35	80,1
40	52,3
45	30,4
50	18,3
55	10,4
60	6,00
65	1,39
70	0,15
75	1,04

- 3) Um reator de tanque agitado produz conversão inferior ao esperado de um reator ideal. Deseja-se avaliar o ajuste ao modelo de volume de troca. 51,4 g de traçador foram alimentados de uma vez ao tanque. A Tabela 2 apresenta a concentração de traçador registrada à saída do tanque. A corrente de alimentação é de 30 L/min e o volume do meio reacional é 1250 L. Apresente uma análise crítica sobre o ensaio e estime a conversão esperada para a reação $A \rightarrow B$, cuja constante cinética é 0,098 min⁻¹. (2,5 pontos)
- 4) Um reator de tanque agitado com 45 L deve ser usado para conduzir a reação

$$A + B \rightarrow P$$
 $\Delta H = -480 \text{ kJ/mol}$

A alimentação é uma corrente de 66 L/h com 0,68 mol/L de *A*, 0,59 mol/L de *B* e 2,8 mol/L de um inerte *Q*, a 32 °C. As capacidades térmicas de *A*, *B*, *P* e *Q* são, respectivamente, 33 J/mol/°C, 38 J/mol/°C, 44 J/mol/°C e 67 J/mol/°C. Calor é removido do reator por uma camisa de resfriamento de 210 cm² a -5 °C com coeficiente de troca térmica global estimado em 1260 W/m²/°C. A taxa de consumo de *A* é dada por

$$-r_A = kc_A^{1,5}c_B^{1,1}$$
.

em que k é a constante cinética, dada por

$$\frac{k}{\frac{\text{mol}^{-1.6}}{\text{L}^{-1.6}\min}} = 41.2 \times 10^{6} \exp{-\frac{6849}{\frac{T}{\text{K}}}}.$$

Determine conversão máxima esperada para *A* (2,5 pontos)

Tabela 2. Concentração c de traçador à saída do tanque em função do tempo t de ensaio para a Questão 3.

t(s)	c (mg/L)
0	74,8
1	70,8
2	67,1
5	57,2
7	51,4
10	43,8
15	33,8
20	26,2
30	16,2
40	10,4
50	6,94
60	4,94
70	3,71
80	2,89
100	2,00
120	1,54
150	1,09
180	0,84
200	0,68
220	0,57
230	0,53
240	0,46
250	0,43