

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO COORDENADORIA DE INICIAÇÃO CIENTÍFICA E INTEGRAÇÃO ACADÊMICA PROGRAMA DE INICIAÇÃO CIENTÍFICA E EM DESENVOLVIMENTO TECNOLÓGICO E INOVAÇÃO

LUCAS ERNESTO LEMOS

RELATÓRIO FINAL

INICIAÇÃO CIENTÍFICA:

PIBIC CNPq (), PIBIC CNPq Ações Afirmativas (), PIBIC UFPR TN (), PIBIC Fundação Araucária (), PIBIC Voluntária (X), Jovens Talentos (), PIBIC EM ().

(Período no qual esteve vinculado ao Programa 12/2015 a 07/2016)

Projeto e leiaute de retificador integrado CMOS para RFID

Relatório apresentado à Coordenadoria de Iniciação Científica e Integração Acadêmica da Universidade Federal do Paraná por ocasião da conclusão das atividades de Iniciação Científica ou Iniciação em desenvolvimento tecnológico e Inovação - Edital 2015/2016

Orientador Prof. Bernardo Rego Barros de Almeida Leite Departamento de Engenharia Elétrica

Projeto de Circuitos Integrados e Componentes Passivos para Sistemas de Comunicação Sem Fio BANPESQ/THALES 2012006108

CURITIBA 2016

RESUMO

Este trabalho visa a continuação de um projeto em tecnologia CMOS 130nm, da IBM, de um retificador UHF, edital PIBIC 2014/2015, cujo tema foi o projeto de circuito integrado de recuperação de energia para aplicação NFC, abordando novas topologias para contornar os problemas decorrentes da tensão de limiar dos transistores. O retificador deverá possuir sensibilidade maior ou igual a -14,35 dBm, ser capaz de fornecer uma tensão de 1,2 V para uma corrente de carga de 10μA. Além disso, deve ocupar uma área de implementação de, no máximo, 0,013mm².

Inicialmente, três novas topologias com dois modelos de transistor foram estudadas e comparadas com a topologia clássica já estudada de modo a validar seus desempenhos. Após esta etapa, simulações paramétricas foram realizadas para encontrar o tamanho ideal de transistor para cada topologia e modelo de transistor. Por último, simulações com carga em aberto e com carga drenando 10 µA foram feitas para tomada de decisão sobre qual modelo de transistor e topologia teriam melhor desempenho.

Os resultados obtidos mostram que, apesar das tentativas feitas com novas topologias e modelos diferentes de transistor, não foi possível alcançar uma tensão de 1,2 V na saída para sensibilidade desejada.

SUMÁRIO

1. INTRODUÇÃO	2
2. REVISÃO DA LITERATURA	3
2.1 POLARIZAÇÃO DE CORPO	3
2.2 POLARIZAÇÃO DE CORPO COM TENSÃO CONTÍNUA	4
2.3 CONEXÃO CRUZADA	5
2.4 MODELOS DE TRANSISTOR	6
3. MATERIAIS E MÉTODOS	7
4. RESULTADOS	9
5. CONSIDERAÇÕES FINAIS	13
6. REFERÊNCIAS BIBLIOGRÁFICAS	14
7. APRECIAÇÃO DO ORIENTADOR SOBRE	15

1. INTRODUÇÃO

A função de um retificador consiste, basicamente, na transformação de um sinal alternado em um sinal contínuo. Esse circuito pode possuir diversas topologias, que variam de acordo com a aplicação na qual ele será inserido.

Trazendo esse conceito de retificação para o universo da microeletrônica, tem-se uma problemática em torno da tensão de limiar do transistor MOS (V_{th}), que consiste na tensão mínima necessária, entre a porta e a fonte, para o início da condução. [1]

Este projeto, nesse sentido, busca alternativas em duas topologias para minimizar a influência do V_{th} , permitindo que o processo de retificação seja iniciado com sinais de entrada de intensidades pequenas, para que os requisitos do projeto sejam cumpridos. Estas propostas são baseadas em [2].

Uma opção para redução do V_{th} é o controle da tensão entre fonte e corpo do transistor (V_{SB}). Outra possibilidade é o aproveitamento da tensão alternada nos terminais do transistor, de modo que haja uma defasagem de 180° entre eles. Assim, a diferença de tensão entre os terminais cresceria mais rapidamente, vencendo o V_{th} num período de tempo menor.

Nesse sentido, as opções serão implementadas e testadas, de modo a compará-las e, por fim, será realizado o leiaute do circuito que apresentar os melhores resultados, bem como simulações pós-leiaute e, eventualmente, a confecção do circuito integrado para comparação entre resultados teóricos e práticos.

2. REVISÃO DA LITERATURA

Nesta etapa do trabalho, foram estudadas as três topologias propostas em [2] para retificadores RFID.

2.1 POLARIZAÇÃO DE CORPO

Esta técnica faz uso da dependência que a tensão de limiar (V_{th}) possui com a tensão fonte-corpo (V_{SB}) do transistor. Essa dependência está representada na equação 1:

$$V_{th} = V_{th0} + \gamma \left(\sqrt{2|\varphi_S| + V_{SB}} - \sqrt{2|\varphi_S|} \right) \tag{1}.$$

 V_{th0} é a tensão de limiar do canal com substrato não polarizado; γ corresponde ao coeficiente de polarização do corpo e φ_S é o potencial da superfície. Todos são referentes à tecnologia na qual se está trabalhando. Assim, se V_{SB} for negativo, tem-se uma diminuição de V_{th} .

É importante salientar que, ao operar na região sublimiar, a corrente de fuga possui também relação com o V_{th} , conforme equação 2.

$$I_D \approx I_{D0} \cdot e^{\frac{k(V_G - V_{th}) - V_S}{V_T}} \tag{2}.$$

O fator k está relacionado as capacitâncias das camadas de depleção e óxido, V_T é a tensão térmica, que depende de k e da temperatura e I_{D0} é a corrente quando $V_{GS} = V_{th}$.

Pode-se, portanto, concluir que, neste caso, quanto maior V_{th} , menor seria a corrente de fuga.

Nesse sentido, o ideal seria possuir um baixo V_{th} , ao operar em saturação, e um V_{th} mais elevado, ao operar em corte. No entanto, para realizar tal lógica, seriam necessários circuitos adicionais, aumentando a área do projeto. Assim, será utilizada uma solução passiva, que é a conexão do corpo com a porta. A figura 1 mostra, para um estágio, como seria a configuração, utilizando apenas transistores NMOS.

 V_{IN} M_1 M_2 C_{OUT} V_{OUT}

Figura 1. Retificador de meia onda de um estágio com polarização de corpo.

Fonte: Tese de doutorado - Dean Karolak. [2]

Desta maneira, aproveita-se, ao utilizar mais estágios para retificação, a tensão contínua gerada no estágio anterior como referência para o corpo de um dos transistores do estágio atual.

2.2 POLARIZAÇÃO DE CORPO COM TENSÃO CONTÍNUA

Uma variação para a técnica acima é a utilização da tensão contínua produzida nos estágios internos, como referência para ambos os transistores de um mesmo estágio. Não é interessante, porém, utilizar a tensão contínua do último estágio, por exemplo, para o corpo de todos os transistores, pois, degradaria muito a performance do retificador devido a criação de junções PN, formando diodos parasitas. Assim, opta-se pelo uso da tensão contínua do estágio anterior para polarização do corpo dos transistores do estágio atual, mesmo resultando em um V_{SB} menor na região de condução, comparado ao método da polarização de corpo, ou seja, numa redução menor do V_{th} . Desse modo, as perdas por corrente de fuga são reduzidas na região sublimiar, fazendo que a eficiência do circuito como um todo seja melhor. [2]

A figura 2 exemplifica como ficaria o esquemático para mais de um estágio.

Figura 2. Retificador meia onda de N estágios com polarização de corpo com tensão contínua.

Fonte: Tese de doutorado - Dean Karolak. [2]

2.3 CONEXÃO CRUZADA

Esta topologia utiliza a retificação em onda completa, fazendo com que as zonas nas quais não há condução devido a $V_{GS} < V_{th}$ fiquem menores. Para tal, as formas de onda V_G e V_S estão em oposição de fase e, com isso, a diferença de tensão V_{GS} ultrapassa mais rapidamente o V_{th} . A tensão de saída, para esta topologia, não é relacionada ao mesmo potencial da tensão de entrada e, além disso, são combinados transistores NMOS e PMOS. A vantagem deste método é o rápido início do período de condução. Este circuito, no entanto, possui correntes de fuga mais altas no momento que há troca de polaridade dos transistores. A figura 3 mostra como esta conexão é realizada.

VIN VCG- M4

VCG- VCG- M4

Figura 3. Retificador meia onda de um estágio com conexão cruzada.

Fonte: Tese de doutorado – Dean Karolak. [2]

2.4 MODELOS DE TRANSISTOR

Conforme fora explicado na introdução, uma das problemáticas da retificação de pequenos sinais é a tensão de limiar do transistor. Além das três topologias apresentadas acima para amenizar este fator, essas topologias serão implementadas com dois tipos de transistor: ZVTNFET e LVTNFET.

O primeiro deles foi utilizado em toda a primeira parte do projeto para os modelos tradicionais de retificadores [1]. É um transistor nativo, o que significa que já possui tensões de limiar reduzidas, na faixa de dezenas de milivolts. A desvantagem deste modelo é o aumento das correntes de fuga, podendo comprometer seu desempenho dependendo do caso de uso.

O segundo tipo é um transistor com baixa tensão de limiar. Desta maneira, possui V_{th} mais alto que o transistor nativo, na ordem de centenas de milivolts, porém tende a possuir menos perdas devido a correntes de fuga.

Nesse sentido, além de novas topologias, novos modelos de transistor estão sendo utilizados com o objetivo de verificar qual a melhor combinação para atingir os objetivos do projeto.

3. MATERIAIS E MÉTODOS

Pela elaboração de esquemáticos serão utilizados o ambiente de desenvolvimento Cadence Virtuoso e o simulador Spectre, que será responsável por todas as simulações.

A primeira das simulações foi do tipo paramétrica. Nela, para cada tipo de transistor e topologia, as dimensões dos transistores (comprimento[W] e largura[L]) foram variados de valores mínimos para esta tecnologia e aumentados progressivamente para encontrar qual combinação traria o melhor desempenho. A figura 4 apresenta o resultado de uma das simulações paramétricas realizadas, com transistor LVTNFET, com polarização de corpo e circuito aberto.

Figura 4. Simulação paramétrica com topologia polarização de corpo com transistor LVTNFET.

Fonte: O autor.

Pela figura 4, pode-se observar que a tensão de saída, mesmo com circuito aberto, está distante dos desejados 1,2 V. Assim, faz-se necessário o cascateamento de vários estágios para aumentar a tensão de saída. Esta técnica consiste na conexão de estágios adjacentes, de modo que a saída do estágio anterior seja conectada com a entrada do estágio atual. A figura 5 mostra um modelo de simulação com mais de um estágio, que pode ser aplicado às três topologias estudadas, com um espelho de corrente Wilson na saída, que reflete a corrente de 10 μA, gerada pela fonte. As tensões e correntes de saída são medidas de acordo com o local indicado na figura 5. Por último, com a fonte de potência (PORT), representada nesta figura, é possível definir potência de entrada em dBm e sua impedância.

Retificador

Voust

Retificador

Voust

Voust

Retificador

Voust

PORT

Voust

Voust

Retificador

Voust

Figura 5. Modelo de simulação utilizado em todas as topologias.

Fonte: O autor.

Foram simulados vários estágios cascateados, verificado a tensão em cada um deles, para atestar que a resposta siga uma curva semelhante e, desta maneira, validar que o dimensionamento está correto, não sobrecarregando nenhum estágio. Por último, foi realizado o casamento de impedância e simulado diferentes estágios, já com a carga de 10 µA na saída, para verificar qual topologia apresentava melhor resultado.

4. RESULTADOS

A topologia conexão cruzada apresentou resultado bastante inferiores ao modelo tradicional já estudado anteriormente e às topologias com polarização de corpo. Diferente do que foi apresentado em [2], a retificação apresentada se dá num grau muito menor do que os outros modelos. A figura 6 mostra seu desempenho com diferentes dimensões com 1 estágio.

Figura 6. Desempenho da topologia conexão cruzada para 1 estágio.

Fonte. O autor.

Com isso, os modelos comparados foram as duas topologias com polarização de corpo e a topologia tradicional. As dimensões para cada uma delas podem ser vistas na tabela 1.

Tabela 1. Dimensionamento para as três topologias avaliadas.

-	Polarização de Corpo		Tradio	cional	Polarização de Corpo com Tensão Contínua		
	ZVTNFET	LVTNFET	ZVTNFET	LVTNFET	ZVTNFET	LVTNFET	
W	3 µm	3,39 µm	3 µm	3,98 µm	3 µm	3,56 µm	
L	788 nm	439 nm	797,8 nm	510 nm	802,2 nm	1,02 µm	

Fonte: O autor.

Após o dimensionamento, verificou-se a resposta de cada estágio ao se cascatear estágios. A figura 7 mostra o resultado deste teste para o transistor ZVTNFET, com polarização de corpo com tensão contínua e 4 estágios.

Polarização de Corpo com Tensão Contínua - ZVTNFET 1.8 1° Estágio 1.6 2° Estágio 3° Estágio 1 4 4° Estágio 1.2 Tensão [V] 8.0 0.6 0.4 0.2 2 2.5 0 0.5 1.5 Tempo [µs]

Figura 7. Tensão de saída para os diferentes estágios do cascateamento.

Fonte: O autor.

Como as curvas apresentam formatos semelhantes, foi entendido que os estágios estão bem dimensionados, sem que nenhum deles forme uma espécie de gargalo. A próxima etapa foi a realização do casamento de impedância entre a fonte de potência e o circuito retificador. Isso se faz necessário para que a máxima transferência de potência ocorra entre a fonte e o circuito. Para validar o casamento, a potência de entrada adotada foi de -5 dBm para isolar o impacto que a baixa potência de entrada requisitada poderia causar. A figura 8 mostra, para a topologia polarização de corpo com transistor LVTNFET, a comparação do desempenho do circuito antes e depois do casamento de impedância.

Fonte: O autor.

É importante ressaltar que com 8 µs a carga de 10 µA é inserida na saída, pois o circuito necessita de um tempo para estabilizar a tensão de saída.

Ao utilizar a potência de -14,35 dBm, observou-se que as topologias e o transistores possuem respostas bastante semelhantes, independente do número de estágios cascateados. Todas as combinações obtiveram resultados inferiores aos obtidos no projeto anterior [1]. As figuras 9 e 10 mostram os resultados obtidos com polarização de corpo, transistor LVTNFET, com 2 e 5 estágios, respectivamente. É interessante notar que, mesmo com um consumo de corrente inferior a 10 μA, a tensão de saída se estabiliza em uma valor quase igual para os dois modelos. As figuras 11 e 12 mostram os mesmos resultados, utilizando transistor ZVTNFET. Percebe-se que, antes do início do consumo de corrente, este transistor entrega uma tensão de saída maior que seu concorrente, no entanto, após o consumo, seu desempenho, apesar de melhor, ainda está longe do desejado.

Figura 9. Polarização de Corpo, transistor LVTNFET com 2 estágios.

Figura 11. Polarização de Corpo, transistor ZVTNFET com 2 estágios.

Figura 10. Polarização de Corpo, transistor LVTNFET com 5 estágios.

Figura 12. Polarização de Corpo, transistor ZVTNFET com 5 estágios.

Ao utilizar a topologia com polarização com tensão contínua, os resultados foram ainda piores. As figuras 13 e 14 mostram o desempenho com transistor LVTNFET, 2 e 5 estágios, respectivamente. O consumo do espelho de corrente ainda está longe dos 10 μA desejados e os resultados, mesmo assim, são ruins. Pode-se notar nas figuras 15 e 16 que, assim como no caso anterior, o desempenho ao utilizar o transistor ZVTNFET melhora, temse tensões maiores antes do consumo de corrente, contudo, a tensão final continua longe do ideal.

Figura 13. Polarização de Corpo com tensão contínua, transistor LVTNFET com 2 estágios.

Figura 15. Polarização de Corpo com tensão contínua, transistor ZVTNFET com 2 estágios.

Figura 14. Polarização de Corpo com tensão contínua, transistor LVTNFET com 5 estágios.

Figura 16. Polarização de Corpo com tensão contínua, transistor ZVTNFET com 5 estágios.

5. CONSIDERAÇÕES FINAIS

As novas topologias estudadas não apresentaram resultados satisfatórios. Não foi possível ser testado o modelo de conexão cruzada, devido a sua resposta ter sido bastante inferior aos resultados já obtidos e as outras topologias.

Os modelos de polarização de corpo se mostraram mais interessante de início, com melhores resultados com saída sem carga e com potências de entrada mais elevadas. No entanto, ao serem testados sob o prisma dos requisitos deste projeto, que são a potência de entrada de -14,35 dBm e carga consumindo corrente de 10 µA na saída, tiveram desempenho inferior.

É interessante fazer uma análise dos capacitores que são utilizados no circuito de todos os modelos de retificador. Em ambos os projetos desenvolvidos, eles tiveram seu valor fixado e não foram alterados. Nesse sentido, uma abordagem futura poderia focar em seu estudo.

Como os resultados foram bem abaixo dos desejados, o leiaute do circuito não foi confeccionado e o requisito da área máxima para implementação não pode ser mensurado.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Lemos, L. E. "Projeto de Circuito Integrado de Recuperação de Energia para Aplicação NFC". No 23° EVINCI, Curitiba, 2015.
- [2] Karolak, D. B. "Design of Radiofrequency Energy Harvesters in CMOS Technology for Low-power Applications". Tese (Doutorado em Eletrônica) Universidade de Bordeaux, Bordeaux. 2015.

APRECIAÇÃO DO ORIENTADOR:

O bolsista demonstrou excelente capacidade de assimilar os conceitos necessários às diferentes etapas do trabalho, incluindo estudo bibliográfico, projeto do esquemático do circuito e simulações, atingindo a maior parte dos objetivos propostos

O bolsista está bem inserido no grupo de pesquisa e soube conciliar suas atividades de iniciação científica com um rendimento acadêmico de excelente nível.

UNIVERSIDADE FEDERAL DO PARANÁ

Data: 02/08/2016 Hora: 14:30

11.02.05.99.34 Histórico Escolar (IRA por Aluno)

Curso: 102A - Curso de Engenharia Elétrica - Sistemas Eletrônicos Embarcados - Noturno Versão: 2009

Matrícula: GRR20128529

Nome Aluno: LUCAS ERNESTO LEMOS

S.D. Código	Nome Disciplina/Atividade	C.H.	Média	Freq.	Situação Loca
Período:	1o. Semestre de 2012				
A TE200	Engenharia e Sociedade I	30	100,00	100,00	Aprovado
A TE201	Laboratório Matemático para Engenharia Elétrica I	30	88,00	100,00	Aprovado
A TE203	Fundamentos Matemáticos para a Engenharia Elétrica I	60	85,00	100,00	Aprovado
A TE205	Fundamentos de Sistemas Eletromecânicos	60	69,00	96,67	Aprovado
A TE206	Análise Vetorial na Engenharia Elétrica	60	94,00	96,67	Aprovado
A TE207	Técnicas de Programação em Engenharia Elétrica I	60	85,00	93,33	Aprovado
	Carga Horária no Período:	300		Índice	de Rendimento Acad.: 0,8540
Período:	2o. Semestre de 2012				
A TE202	Laboratório Matemático para Engenharia Elétrica II	30	100,00	100,00	Aprovado
A TE204	Fundamentos Matemáticos para a Engenharia Elétrica II	60	96,00	100,00	Aprovado
A TE208	Técnicas de Programação em Engenharia Elétrica II	60	90,00	96,67	Aprovado
A TE209	Circuitos Lógicos	60	83,00	96,67	Aprovado
A TE210	Fundamentos para Análise de Circuitos Elétricos	60	70,00	100,00	Aprovado
A TE219	Comunicação e Expressão para Engenheiros	30	69,00	86,67	Aprovado
	Carga Horária no Período:	300		Índice	de Rendimento Acad.: 0,8470
Período:	1o. Semestre de 2013				
A TE211	Análise de Circuitos Elétricos I	60	57,00	100,00	Aprovado
A TE213	Introdução à Expressão Gráfica na Engenharia Elétrica	30	93,00	100,00	Aprovado
A TE214	Fundamentos da Eletrônica	30	79,00	100,00	Aprovado
A TE215	Laboratório de Eletrônica I	30	98,00	100,00	Aprovado
A TE218	Análise de Sinais	60	100,00	100,00	Aprovado
A TE223	Introdução à Eletroquímica	30	85,00	100,00	Aprovado
A TE229	Introdução aos Processos Estocásticos em Engenharia Elétrica	60			Aprovado
	Carga Horária no Período:	300		Índice	de Rendimento Acad.: 0,8550
Período:	2o. Semestre de 2013				
A TE212	Análise de Circuitos Elétricos II	60	80,00	100,00	Aprovado
A TE216	Laboratório de Eletrônica II	30	80,00	93,33	Aprovado
A TE220	Dinâmica de Fenômenos Ondulatórios	60	80,00	96,67	Aprovado
A TE221	Fenômenos de Transporte I	30	88,00	93,33	Aprovado
A TE225	Introdução à Teoria Eletromagnética	60	84,00	93,33	Aprovado
A TE227	Análise, Modelagem e Simulação de Sistemas Dinâmicos I	60	82,00	100,00	Aprovado
	Carga Horária no Período:	300		Índice	de Rendimento Acad.: 0,8200
Período:	1o. Semestre de 2014				
A TE217	Laboratório de Eletrônica III	30	74,00	76,67	Aprovado
A TE226	Eletromagnetismo Aplicado à Engenharia Elétrica	60	88,00	100,00	Aprovado
A TE228	Eletrônica Aplicada I	60		96,67	Aprovado
A TE230	Microprocessadores e Microcontraladores	60		83,33	Aprovado
A TE231	Métodos Numéricos em Engenharia Elétrica	60	84,00		Aprovado
A TE232	CAD para Eletrônica	30	100,00		Aprovado
	Carga Horária no Período:	300		Índice	de Rendimento Acad.: 0,8880
Período:	2o. Semestre de 2014				
Д ТЕ233	Eletrônica de Potência	60	78,00	90,00	Aprovado
A TE234	Eletrônica Aplicada II	30			Aprovado
A TE235	Eletricidade Aplicada I	60			Aprovado
,,	1		, - 0	,	

UNIVERSIDADE FEDERAL DO PARANÁ

Data: 02/08/2016 Hora: 14:30

11.02.05.99.34 Histórico Escolar (IRA por Aluno)

Curso: 102A - Curso de Engenharia Elétrica - Sistemas Eletrônicos Embarcados - Noturno Versão: 2009

Matrícula: GRR20128529

Nome Aluno: LUCAS ERNESTO LEMOS

S.D. Código	Nome Disciplina/Atividade	C.H.	Média	Freq.	Situação Loc
A TE236	Laboratório de Eletrônica IV	30	100,00	100,00	Aprovado
A TE237	Sensores e Instrumentação Eletrônica	60	77,00		Aprovado
A TE238	Análise, Modelagem e Simulação de Sistemas Dinâmicos II	60	87,00	90,00	Aprovado
	Carga Horária no Período:	300		Índice	de Rendimento Acad.: 0,8410
Período:	1o. Semestre de 2015				
A TE224	Mecânica dos Sólidos para Engenharia Elétrica	60	50,00	100,00	Aprovado
A TE239	Introdução às Redes de Comunicação	60	77,00	96,67	Aprovado
A TE240	Controle e Servomecanismo	60	75,00	100,00	Aprovado
A TE241	Técnicas de Modulação	60	76,00	93,33	Aprovado
A TE243	Eletricidade Aplicada II	60	80,00	86,67	Aprovado
	Carga Horária no Período:	300		Índice	de Rendimento Acad.: 0,7160
Período:	2o. Semestre de 2015				
TE091	PROGRAMACAO ORIENTADA A OBJETO - ELETRONICA	60	97,00	86,67	Aprovado
A TE222	Fenômenos de Transporte II	30	84,00	93,33	Aprovado
A TE242	Ciência e Tecnologia dos Materiais Elétricos	60	93,00	93,33	Aprovado
A TE244	Sistemas Operacionais Embarcados	60	95,00	93,33	Aprovado
A TE246	Microeletrônica I	60	97,00	93,33	Aprovado
A TE247	Construção Eletrônica	30	77,00	100,00	Aprovado
A TE248	Teoria da Informação e Codificação	60	87,00	93,33	Aprovado
A TE293	Projeto Integrado A	30	70,00	100,00	Aprovado
	Carga Horária no Período:	390		Índice	de Rendimento Acad.: 0,8992
Período:	1o. Semestre de 2016				
A TE249	Segurança em Instalações e Serviços em Eletricidade	60	91,00	100,00	Aprovado
A TE250	Introdução a Projetos de Pesquisa Científica e Tecnológica	30	90,00	100,00	Aprovado
A TE251	Microeletrônica II	60	86,00	90,00	Aprovado
A TE252	Robótica Aplicada	30	89,00	100,00	Aprovado
A TE254	Testabilidade e Segurança de Software Embarcado	60	92,00	100,00	Aprovado
A TE294	Projeto Integrado B	30	70,00	100,00	Aprovado
	Carga Horária no Período:	270		Índice	de Rendimento Acad.: 0,8744
Período:	2o. Semestre de 2016				
PC001	MOBILIDADE ACADÊMICA INTERNACIONAL I	0			Matricula
	Carga Horária no Período:	0		Índice	de Rendimento Acad.: 0.0000
Período:	1o. Semestre de 2017				
PC002	MOBILIDADE ACADÊMICA INTERNACIONAL II	0			Matricula
	Carga Horária no Período:	0		Índice	de Rendimento Acad.: 0.0000
Período:	2o. Semestre de 2017				
PC003	MOBILIDADE ACADÊMICA INTERNACIONAL III	0			Matricula
	Carga Horária no Período:	0		Índice	de Rendimento Acad.: 0.0000
Período:	1o. Semestre de 2018				
PC004	MOBILIDADE ACADÊMICA INTERNACIONAL IV	0			Matricula
		0		,	de Rendimento Acad.: 0.0000

A = Ativa I = Inativa Página: 2

UFPR

UNIVERSIDADE FEDERAL DO PARANÁ

Data: 02/08/2016 Hora: 14:30

11.02.05.99.34 Histórico Escolar (IRA por Aluno)

Curso: 102A - Curso de Engenharia Elétrica - Sistemas Eletrônicos Embarcados - Noturno Versão: 2009

D. Código Nome Disciplina/Atividade		C.H. Média	Freq. Situação	Loc
	Total Carga Horária:	2760	Índice de Rend. Acad. Geral:	0,8453
ocal Dispensa				