Insecurity of Voice Solution VoLTE in LTE Mobile Networks

Chi-Yu Li¹, <u>Guan-Hua Tu¹</u>, Chunyi Peng², Zengwen Yuan, Yuanjie Li¹, Songwu Lu¹, Xinbing Wang³

1: University of California, Los Angeles;

2: The Ohio State University;

3: Shanghai Jiao Tong University

The first two authors equally contribute to this work.

Voice: Vital Carrier Service All Along

30+ years support in cellular networks

Voice Evolved in 4G LTE

- Legacy voice solution: Circuit-Switched (CS)
 - **□** Carrier-grade quality

Voice over LTE (VoLTE):

Carry Voice in Packets

How to provide "Carrier-Grade" Voice in VolTE?

 Define "Bearer" with distinct QoS profile to deliver packets

	Delivery	Priority
VolTE Voice Bearer	Guaranteed-Bit-Rate	2
VoLTE Signaling Bearer [[[[]]	Best Effort	1
		(highest)
Data Service Bearer	Best Effort	6-9

Potential Security Threats in VolTE

#1: Carry "data" over VolTE Signaling bearer?

If yes, abuse its charging scheme (**free**) and higher-priority/QoS scheme for **"data"**?

Potential Security Threats in VolTE

If yes, authentic voice traffic will be blocked.

Overview of Our Findings

- Data: Carry data over VolTE signaling bearer
 - □ Free data service
 - Higher-priority data service
 - Overbilling
 - Data Denial-of-Service
- Voice: Inject junk data into VolTE voice bearer
 - Voice Denial-of-Service (muted voice)
- Vulnerabilities from
 - Volte standards
 - Carrier networks
 - Mobile devices (software and hardware)

Carry Data in VolTE Signaling Bearer

Q1: [Device]

Will the phone allow an app (user-space) to send data packets out into VoLTE signaling bearer?

Q2: [Network]

Will the network allow packets over VoLTE signaling bearer to non-VoLTE destinations (Internet)?

No Access Control on the Phone

#1: VolTE signaling functions are implemented in IP-based software (Open to OS and apps)

A system app

No Access Control on the Phone

- #2: No proper permission control to VolTE
 Signaling network interface in OS (software)
 - Given IP, app (w/Internet permission) send packets
- #3: No access control in chipset (hardware)

No Access Control in Network

- #4: Imprudent routing in network
 - Simply routing based on destination IP
 - US-I: Internet and Mobile ✓
 - US-II: Mobile 🗸

VoLTE

Signaling Servers

Finally, it works out!

Mobile-to-Internet

Example: ping Google

(a) Two interfaces

```
IP_SignalingServer
IP VoLTE
                                        IP GoogleDNS
            Destination
Source
                                   Protocol Info
2607: 1090: ... | fd00:976a:c206:1801::7 | SIP/SDP INVITE
fd00:976a: · · 2607:fb90:407: · · ·
                                   SIP/SDP Status 183
            2001:4860:4860::8888
                                   ICMPv6 Echo request
2001:4860: 2607:fb90:407: ···
                                   ICMPv6 Echo reply
                                   ICMPv6 Echo request
2607·fb90·.. 2001·4860·4860·8888
2001:4860: .. 2607:fb90:407: ...
                                   ICMPv6 Echo reply
```

(b) Mobile-to-Internet (Google DNS server)

Finally, it works out!

Mobile-to-Internet

- Mobile-to-Mobile
 - VoLTE-to-VoLTE
 - VoLTE-to-PS

4G-GW	
40-0 W	

 Mobile 1: IP_Volte
 Mobile 2: IP_Volte, IP_Data

 Source
 Destination
 Protocol Info

 2607:fb90:407: ...
 2607:fb90:406: ... ICMPv6 Echo request

 2607:fb90:406: ...
 2607:fb90:407: ... ICMPv6 Echo request

 2607:fb90:407: ...
 2607:fb90:280a: ... ICMPv6 Echo request

 2607:fb90:280a: ...
 2607:fb90:407: ... ICMPv6 Echo reply

 2607:fb90:280a: ...
 2607:fb90:280a: ... ICMPv6 Echo reply

 2607:fb90:407: ...
 2607:fb90:280a: ... ICMPv6 Echo request

 ...
 ...

 (b) Mobile-to-Mobile (M1 → M2)

Free for VolTE Signalings

- Volte Signaling free of charges
 - Voice calls: charged by minutes
 - Signaling: no charges (usually small volume)
 - Validated in two US major carriers
- Rational, but exploited for free data access

Free Data Service: Skype as Demo

http://web.cs.ucla.edu/~ghtu/myfiles/free-data-service.mp4

Free Data Service

There exists NO signs of limit on the volume, throughput and duration for free data service

Overbilling Attack

- Spamming via Mobile-to-Mobile (VoLTE-to-PS)
 - Bypass inbound traffic access control at border

Data Denial-of-Service Attack

- Spamming via Mobile-to-Mobile (VolTE-to-VolTE)
 - Exploit higher priority of VoLTE signaling bearer

Data Denial-of-Service Attack

- Spamming via Mobile-to-Mobile (VolTE-to-VolTE)
 - Exploit higher priority of VoLTE signaling bearer

	Delivery	Priority
VoLTE Signaling Bearer	Best Effort	1
Data Service Bearer	Best Effort	6-9

Data Denial-of-Service Attack

Inject Junk Data into VolTE Voice Bearer

Similar, but Seemingly More Secure

Inject (junk) data packets into **VolTE voice bearer** as to **VolTE signaling bearer**

But, voice bearer is designed for specific RTP/RTCP session (e.g., destIP, destPorts) – Such info is confidential (It varied with call and only delivered in encrypted VolTE signaling messages)

Insufficient VoLTE Voice Access Control

Port# is Secret, but can be Easily Leaked

- Share same IP among voice and signaling bearers
 - Port# matched, → VolTE voice bearer
 - Port# unmatched, → VoLTE signaling bearer
- Leaked through distinct behaviors caused by various QoS profiles
 - Guaranteed-Bit-Rate vs. High-Priority Best Effort
 - Low-rate voice traffic NOT affected by heavy VolTE signaling

	Delivery	Priority
VolTE Voice Bearer	Guaranteed-Bit-Rate	2
VoLTE Signaling Bearer [[[[]]	Best Effort	1

Infer RTP/RTCP Destination Ports

Voice DoS: Muted Call

http://web.cs.ucla.edu/~ghtu/myfiles/mute_voice_attack.mp4

Root Causes & Recommended Solutions

VolTE standards

■ Grant the singaling bearer with priority but no speed limit.

Carrier networks

- Imprudent routing & charging ploices for VoLTE signaling
- Fix: disable routing, enable VoLTE volume accounting

Mobile Devices

- Lack access control at both software (improper permission) and hardware (missing)
- Fix: VoLTE-specific permission, anomaly detection

Updates

- Report and work with 2 US carriers to fix problems
- Partial solutions in place (07/2015, 08/2015)
- □ US-I
 - Disable routing to Non-VoLTE destination
 - Fixed: free data, overbilling, data DoS
 - Not fixed: voice DoS
- US-II
 - Limit the speed of Mobile-to-Mobile to 600 kbps
 - Fixed: data DoS
 - Not fixed: voice DoS, free data, overbilling

Conclusion

- VolTE designed to carry voice can be exploited to carry data
 - Real threats: free data, overbilling, data DoS, voice DoS.
- Lessons at its early deployment
 - Carrier network, device OS, chipset vendors and standards have room to improve
- New opportunity for mobile industry security
 - Hardware-based Mobile Security
 - Require more close cooperation between various parties......

Thank you! Questions?

More details or updates about voice security in 4G LTE can be found in our UCLA-OSU cooperation project website