$$\phi'(\alpha) = \frac{1}{2}(1 - \frac{\alpha}{x^2})\Big|_{X=\alpha} = \sqrt{\alpha}$$

$$= \frac{1}{2}(1 - \frac{\alpha}{\alpha})$$

$$= 0$$

$$\phi''(x) = \frac{\alpha}{x^3} \Big|_{x=x=\sqrt{\alpha}}$$

$$= \frac{\alpha}{(\sqrt{\alpha})^3}$$

$$=\frac{1}{\sqrt{a}} \neq 0$$

So by (4.71),
$$x_{n+1} = \frac{1}{2}(x_n + \frac{\alpha}{x_n})$$
 converges with order $p = 2$.

$$X_1 = \frac{\alpha}{X_0}$$

$$x_2 = \frac{\alpha}{x_1} = \frac{\alpha}{\left(\frac{\alpha}{x_0}\right)} = x_0$$

This means that $X_{2k} = X_0$ \forall $k \ge 0$, and in general does not converge to \sqrt{a} , unless $X_0 = \sqrt{a}$.

$$\phi'(\alpha) = 2 + \frac{\alpha}{x^2} \Big|_{X=\alpha} = \sqrt{\alpha}$$

$$=$$
 2 + $\frac{a}{a}$

So by
$$(4.71)$$
, $x_{n+1} = 2x_n - \frac{\alpha}{x_n}$ does not converge unless $x_0 = \sqrt{\alpha}$.

3) Let
$$D = [-1, 1]$$
, and $x, y \in D$ with $\phi(x') = \cos(x)$. From (4.87) , ϕ is a contraction map on D if $\exists x \in (0,1)$ s.t

$$|\phi(x) - \phi(y)| \leq x |x-y|$$

$$|\phi(x) - \phi(y)| \leq x |x-y|$$

$$|\phi(x) - \phi(y)| \leq x |x-y|$$

$$\Rightarrow x \Rightarrow y \mid \frac{(x) - (y)}{(x) - (y)} \mid \leq x$$

This means if the magnitude of the derivative of ϕ is bounded above by $\chi \in (0,1)$, on D, then ϕ is a contraction map on D. When $\phi = \cos(x)$, $|\phi| = |\sin(x)|$, plotting we see that,

 $|\phi'| \leq \sin(1) \langle 1, so + that on D = [-1, 1],$ $\phi = \cos(x)$ is a contraction. So by (Theorem 4.9.1) as D is a closed subset of R,

 $\lim_{n\to\infty} X_n = \lim_{n\to\infty} \cos(x_{n-1}) = \infty$

for some $\alpha \in [-1,1]$. Noting, if you start with $x_0 \notin D$, $x_1 = \cos(x_0) \in D$, so we will always end up in D, and once we are in D we are stuck there, what is the value of α ? Plugging into my calculator with $x_0 = \frac{T}{2}$, we get $\alpha \approx 0.739085...$, $\alpha \approx [-1,1] = D$

4) We have,
$$j=0: \int_{0}^{1} x \, dx = \frac{1}{2} = \alpha_{0} + \alpha_{1}$$

$$j=1: \int_{0}^{1} x^{2} \, dx = \frac{1}{3} = \alpha_{0} x_{0} + \alpha_{1} x_{1}$$

$$j=2: \int_{0}^{1} x^{3} \, dx = \frac{1}{4} = \alpha_{0} x_{0}^{2} + \alpha_{1} x_{1}^{2}$$

$$j = 3 : \int_{0}^{1} x^{4} dx = \frac{1}{5} = \alpha_{0} x_{0}^{3} + \alpha_{1} x_{1}^{3}$$

$$a_0 + a_1 - \frac{1}{2} = 0$$
 $a_0 \times_0 + a_1 \times_1 - 1/3 = 0$
 $a_0 \times_0^2 + a_1 \times_1^2 - 1/4 = 0$
 $a_0 \times_0^3 + a_1 \times_1^3 - 1/5 = 0$

So that,
$$\frac{1}{f}\left(\begin{bmatrix} a_0 \\ a_1 \\ x_0 \\ x_1 \end{bmatrix}\right) = \begin{bmatrix} a_0 + a_1 - 1/2 \\ a_0 x_0 + a_1 x_1 - 1/3 \\ a_0 x_0^2 + a_1 x_1^2 - 1/4 \\ a_0 x_0^3 + a_1 x_1^3 - 1/5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The Jacobian is,

$$J_{f} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ x_{0} & x_{1} & \alpha_{0} & \alpha_{1} \\ x_{0}^{2} & x_{1}^{2} & 2\alpha_{0}x_{0} & 2\alpha_{1}x_{1} \\ x_{0}^{3} & x_{1}^{3} & 3\alpha_{0}x_{0}^{2} & 3\alpha_{1}x_{1}^{2} \end{bmatrix}$$

Using NumPy, with
$$\begin{bmatrix} a_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1/4 + \sqrt{6}/36 \\ 1/4 - \sqrt{6}/36 \\ 1/4 - \sqrt{6}/36 \end{bmatrix}$$

we get $\det(T_f) \approx -0.00333... \neq 0$, so
that T_f is non-singular. If you put
$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ x_1 \end{bmatrix}$$
then $T_f = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
which
has Zero determinant, and hence is singular,

5) we have for
$$i=1,...,n-1$$
 $(\theta_0=\alpha, \theta_n=\beta)$

$$\int \frac{1}{h^2} (\theta_{i-1}-2\theta_i+\theta_{i+1})+\sin(\theta_i)=0$$

The Jacobian, It, has entries,

$$(J_f)_{ij} = \frac{\partial f_i}{\partial \theta_j} = \begin{cases} 1 & j=i-1 \\ -2+h^2\cos(\theta_i) & j=i \\ 1 & j=i+1 \end{cases}$$

$$0 & \text{else}$$

To solve with Newton's method, we need to solve (iterate) for n=0,1,...

$$\begin{cases} T_f(x_n) \Delta_n = -f(x_n) \\ x_{n+1} = x_n + \Delta_n \end{cases}$$
See below for plots | discussions.

were each Volume E R'-'.