Számelmélet Megoldások

- 1) Egy számtani sorozat második tagja 17, harmadik tagja 21. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 25 863. b) Igaz-e, hogy 25 863 számjegyeit tetszőleges sorrendben felírva mindig hárommal osztható számot kapunk? (Válaszát indokolja!) (3 pont) c) Gábor olyan sorrendben írja fel 25 863 számjegyeit, hogy a kapott szám néggyel osztható legyen. Milyen számjegy állhat a tízes helyiértéken? (Válaszát indokolja!) (4 pont) Megoldás: a) Lásd: Sorozatok 2. feladat b) Alkalmazzuk a hárommal való oszthatóság szabályát. (1 pont) 25863 számjegyeinek összege 24, így osztható 3-mal. (1 pont) Tetszőleges sorrend esetén az összeg nem változik, tehát az állítás igaz. (1 pont) c) Alkalmazzuk a néggyel való oszthatóság szabályát. (1 pont) Ebben az esetben ez akkor teljesül, ha az utolsó két számjegy: 28; 32; 36; 52; (1 pont) A tízes helyiértéken tehát 2; 3; 5; vagy 6 állhat. (1 pont) Összesen: 12 pont 2) Peti felírt egy hárommal osztható hétjegyű telefonszámot egy cédulára, de az utolsó jegy elmosódott. A barátja úgy emlékszik, hogy az utolsó jegy nulla volt. A kiolvasható szám: 314726∆. Igaza lehetett-e Peti barátjának? Válaszát indokolja! (2 pont) Megoldás: Megvizsgáljuk, hogy a szám osztható-e hárommal. (1 pont) A számjegyek összege nem három többszöröse (a 0 az összegen nem változtat), tehát nem volt igaza. (1 pont) 3) Tekintse a következő állításokat, és a táblázatban mindegyik betűjele mellé írja oda, hogy igaz, vagy hamis állításról van-e szó! a) Két pozitív egész közül az a nagyobb, amelyiknek az abszolút-értéke nagyobb. (1 pont) b) Két egész szám közül az a nagyobb, amelyiknek az abszolút-értéke c) Negatív szám egész kitevőjű hatványai között pozitívak és negatívak is vannak. (1 pont) **Megoldás**: a) igaz (1 pont) b) **hamis** (1 pont) igaz (1 pont) Összesen: 3 pont 4) Összeadtunk ötvenöt egymást követő pozitív páratlan számot, az összeg
- 4) Osszeadtunk otvenot egymast koveto pozitiv paratian szamot, az osszeg értéke 3905.
 - a) Melyik volt az összegben az első, illetve az ötvenötödik páratlan szám?
 (8 pont)

b) Melyik az összeadottak között a legkisebb olyan szám, amelynek a prímtényezős felbontásában két különböző prímszám szerepel, és a négyzete ötre végződik? (4 pont)

<u>Megoldás</u>:

a)	Az	összeadott	páratlan	számok	egy	d = 2	differenciájú	számtani	sorozat
	szomszédos tagjai.								(1 pont)

Legyen az összeg legkisebb tagja a_1 , ekkor $a_{55} = a_1 + 54 \cdot 2$ (1 pont)

A számtani sorozat első n elemének összegére vonatkozó képletet alkalmazva:

$$S_{55} = 55 \cdot \frac{2a_1 + 54 \cdot 2}{2} \implies 3905 = 55(a_1 + 54)$$
 (2 pont)

$$a_1 = 17 \tag{1 pont}$$

$$a_{55} = 125$$
 (1 pont)

Tehát a keresett páratlan számok a 17 és a 125. (1 pont)

Ellenőrzés: az összes valóban 3905. (1 pont)

b) A keresett számnak 5-re kell végződnie. (1 pont)

A 17 után a legkisebb ilyen szám a 25, de ez nem felel meg. (1 pont)

A következő szám 35, és ez jó, mert $35 = 5 \cdot 7$. (1 pont)

Tehát a keresett szám a 35.

Összesen: 12 pont

5) A pozitív egészeket növekvő sorrendbe állítjuk. Melyik szám nagyobb: a hetedik 13-mal osztható pozitív egész, vagy a tizenharmadik 7-tel osztható pozitív egész? (2 pont)

Megoldás:

A két szám egyenlő.
$$(7 \cdot 13 = 91)$$
 (2 pont)

6) Háromjegyű számokat írtunk fel a 0; 5 és 7 számjegyekkel. Írja fel ezek közül azokat, amelyek öttel oszthatók, és különböző számjegyekből állnak! (2 pont)

Megoldás:

A keresett számok: **570; 750; 705**. (2 pont)

- 7) Döntse el, hogy az alábbi állítások közül melyik igaz és melyik hamis!
 - a) Ha egy természetes szám osztható hattal és tízzel, akkor osztható hatvannal. (1 pont)
 - b) A 20-nál kisebb pozitív prímszámok összege páratlan. (1 pont)
 - c) A deltoid átlói felezik a belső szögeket. (1 pont)

Megoldás:

a) **hamis** (1 pont)

b) igaz (1 pont)

c) hamis (1 pont)

Összesen: 3 pont

8) Adja meg a $\left| -\frac{3}{8}; -\frac{1}{8} \right|$ nyílt intervallum két különböző elemét! (2 pont)

Megoldás:

Például:
$$\mathbf{M} = \left\{ -\frac{3}{10}; -\frac{1}{5} \right\}$$
 (2 pont)

Összesen: 2 pont

9)	Írja fel két egész szám hányadosaként a $2+\frac{2}{3}$ szám reci	prokának						
	értékét!	(2 pont)						
Ме	egoldás:	(2 pone)						
	A $2+\frac{2}{3}$ reciproka: $\frac{1}{2+\frac{2}{3}}$	(1 pont)						
	A reciprok értéke: $\frac{3}{8} \left(= \frac{375}{1000} \right)$	(1 pont)						
		n: 2 pont						
10	Az 1, 2, 3, 4, 5, 6 számjegyek felhasználásával ötjegyű számjegyek töl							
	készítünk az összes lehetséges módon (egy számjegyet töl felhasználhatunk). Ezek között hány olyan szám van,	ODSZOT 1S						
	a) amely öt azonos számjegyből áll;	(3 pont)						
	b) amelyik páros;	(4 pont)						
	c) amelyik 4-gyel osztható?	(5 pont)						
<u>Ме</u> а)	egoldás: 6 ilyen szám van.	(0)						
b)	Az utolsó számjegy páros szám (2, 4, vagy 6),	(3 pont)						
Σ)	az első 4 számjegy $6^4 = (1296)$ -féleképpen alakulhat.	(1 pont)						
	_	(2 pont)						
c)	3·6³ (= 3888)-féle páros szám lehet. (A 4-gyel való oszthatósági szabály értelmében) a két utolsó helyen 1 32, 36, 44, 52, 56, 64 állhat,	(1 pont) 2, 16, 24, (2 pont)						
	az első 3 számjegy pedig $6^3 = (216)$ -féleképpen alakulhat.	(2 pont)						
	Tehát $9 \cdot 6^3$ (= 1944) féle 4-gyel osztható szám lehet.	(1 pont)						
	•	: 12 pont						
11) Adja meg a 24 egyjegyű pozitív osztóinak halmazát!	(2 pont)						
<u>Megoldás</u> :								
A keresett halmaz: {1; 2; 3; 4; 6; 8}. (2 pont)								
14) Írja fel 24 és 80 legkisebb közös többszörösét! Számítását részle	(3 pont)						
Ме	egoldás:	(o po)						
	$24 = 2^3 \cdot 3$	(1 pont)						
	$80 = 2^4 \cdot 5$	(1 pont)						
	A legkisebb közös többszörös: $2^4 \cdot 3 \cdot 5 (= 240)$.	(1 pont)						
10		n: 3 pont						
13	Sorolja fel a 2010-nek mindazokat a pozitív osztóit, prímszámok!	amelyek (2 pont)						
Me	egoldás:	(~ pont)						
	2, 3, 5 és 67.	(2 pont)						
14) Döntse el, hogy az alábbi állítások közül melyik igaz és melyik h	` - '						
_ •	I. Minden prímszám páratlan.	(1 pont)						
	II. Létezik páratlan prímszám.	(1 pont)						
	III. Minden egész szám racionális szám. IV. Van olyan irracionális szám, amelyik felírható két egé	(1 pont)						
	hányadosaként	(1 pont)						

I. hamis
 II. igaz
 III. igaz
 IV. hamis
 Összesen: 4 pont

15) Adottak a következő számok: $a = 2^3 \cdot 5 \cdot 7^2 \cdot 11^4$ és $b = 2 \cdot 5^2 \cdot 11^3 \cdot 13$. Írja fel a és b legnagyobb közös osztóját és legkisebb közös többszörösét! A kért számokat elegendő prímtényezős alakban megadni. (2 pont)

Megoldás:

A legnagyobb közös osztó: $2 \cdot 5 \cdot 11^3 (= 13310)$ (1 pont)

A legkisebb közös többszörös: $2^3 \cdot 5^2 \cdot 7^2 \cdot 11^4 \cdot 13 = 1865263400$ (1 pont)

Összesen: 2 pont

16) Döntse el az alábbi állítások mindegyikéről, hogy igaz-e vagy hamis!

A: Ha két szám négyzete egyenlő, akkor a számok is egyenlők. (1 pont)

B: A kettes számrendszerben felírt 10100 szám a tízes számrendszerben 20. (1 pont)

C: Egy hatoldalú konvex sokszögnek 6 átlója van. (1 pont)

Megoldás:

A: hamis
B: igaz
C: hamis
(1 pont)
(1 pont)
(1 pont)

Összesen: 3 pont

(2 pont)

17) Írja fel prímszámok szorzataként a 420-at!

<u>Megoldás</u>:

$$420 = \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{3} \cdot \mathbf{5} \cdot \mathbf{7} \left(= \mathbf{2}^2 \cdot \mathbf{3} \cdot \mathbf{5} \cdot \mathbf{7} \right)$$
 (2 pont)

18) Bontsa fel a 36000-et két részre úgy, hogy a részek aránya 5:4 legyen! (2 pont)

<u>Megoldás</u>:

20 000 és **16 000**. (2 pont)

- 19) Adja meg a következő állítások logikai értékét (igaz vagy hamis)!
 - A) A $\{0;1;2;3;4\}$ adathalmaz szórása 4.
 - B) Ha egy sokszög minden oldala egyenlő hosszú, akkor a sokszög szabályos.
 - C) A 4 és a 9 mértani közepe 6.

(2 pont)

<u>Megoldás</u>:

- A) hamis
- B) hamis
- C) igaz (2 pont)
 Összesen: 2 pont
- 20) Döntse el, melyik állítás igaz, melyik hamis!
 - a) A valós számok halmazán értelmezett f(x) = 4 hozzárendelési szabállyal megadott függvény grafikonja az x tengellyel párhuzamos egyenes. (1 pont)

- b) Nincs két olyan prímszám, amelyek különbsége prímszám. (1 pont)
- c) Az 1 cm sugarú kör kerületének cm-ben mért számértéke kétszer akkora, mint területének cm²-ben mért számértéke. (1 pont)
- d) Ha egy adathalmaz átlaga 0, akkor a szórása is 0. (1 pont)

<u>Megoldás</u>:

a) igaz (1 pont)
b) hamis (1 pont)
c) igaz (1 pont)
d) hamis (1 pont)

Összesen: 4 pont

21) Egy érettségiző osztály félévi matematika osztályzatai között elégtelen nem volt, de az összes többi jegy előfordult. Legkevesebb hány tanulót kell kiválasztani közülük, hogy a kiválasztottak között biztosan legyen legalább kettő, akinek azonos volt félévkor a matematika osztályzata?

(2 pont)

<u>Megoldás</u>:

A kiválasztandó tanulók száma: 5.

(2 pont)

22)

- a) Iktasson be a 6 és az 1623 közé két számot úgy, hogy azok a megadottakkal együtt egy számtani sorozat szomszédos tagjai legyenek! (5 pont)
- b) Számítsa ki a 6 és az 1623 közötti néggyel osztható számok összegét! (7 pont)

Megoldás:

a) Lásd: Sorozatok 25. feladat

b) A feltételeknek megfelelő számok: 8; 12; 16; ...; 1620 (2 pont) Ezek a számok egy számtani sorozat egymást követő tagjai (1 pont) $1620 = 8 + 4 \cdot (n-1)$ (1 pont) n = 404 (1 pont)

 $S_n = \frac{8 + 1620}{2} \cdot 404 \tag{1 pont}$

 $S_n = 328856$ (1 pont)

Összesen: 12 pont

- 23) Adja meg az alábbi állítások logikai értékét (igaz vagy hamis)! (2 pont)
 - a) Két különböző pozitív egész szám legnagyobb közös osztója mindig kisebb mindkét számnál.
 - b) Két különböző pozitív egész szám legnagyobb közös osztója mindig osztója a két szám összegének.
 - c) Két különböző pozitív egész szám legnagyobb közös osztója nem lehet 1.

<u>Megoldás</u>:

- a) Hamis
- b) **Igaz**
- c) **Hamis** (1 pont-két helyes válasz, 2 pont-3 helyes válasz)
- 24) Adja meg annak az eseménynek a valószínűségét, hogy egy szabályos dobókockával egyszer dobva a dobott szám osztója a 60-nak! Válaszát indokolja! (3 pont)

A szabályos dobókockán szereplő számok mindegyike osztója a 60-nak,(2 pont) így a kérdezett esemény (a biztos esemény, melynek) valószínűsége 1. (1 pont)

Összesen: 3 pont

25) Legyen A halmaz a 8-nál nem nagyobb pozitív egész számok halmaza, B pedig a 3-mal osztható egyjegyű pozitív egész számok halmaza.

Elemeinek felsorolásával adja meg az A, a B, az $A \cap B$ és az $A \setminus B$ halmazt! (4 pont)

Megoldás:

$$A = \{1; 2; 3; 4; 5; 6; 7; 8\}$$
 (1 pont)
 $B = \{3; 6; 9\}$ (1 pont)
 $A \cap B = \{3; 6\}$ (1 pont)
 $A \setminus B = \{1; 2; 4; 5; 7; 8\}$ (1 pont)

Összesen: 4 pont

26) Melyik számjegy állhat a $\overline{2582X}$ ötjegyű számban az X helyén, ha a szám osztható 3-mal? Válaszát indokolja! (3 pont)

Megoldás:

Egy szám akkor osztható 3-mal, ha számjegyeinek összege osztható 3-mal.

2+5+8+2=17 (1 pont) Így X lehetséges értékei: **1; 4; 7**. (1 pont)

Összesen: 3 pont

27) Jelölje $\mathbb N$ a természetes számok halmazát, $\mathbb Z$ az egész számok halmazát és \varnothing az üres halmazt! Adja meg az alábbi halmazműveletek eredményét!

- a) $\mathbb{N} \cap \mathbb{Z}$
- b) $\mathbb{Z} \cup \emptyset$
- c) $\varnothing \setminus \mathbb{N}$ (3 pont)

<u>Megoldás</u>:

a) \mathbb{N} (1 pont) (1 pont) c) \emptyset (1 pont)

Összesen: 3 pont

28) Adja meg az alábbi állítások logikai értékét (igaz vagy hamis)!

A: Minden valós szám abszolút értéke pozitív.

B: $16^{\frac{1}{4}} = 2$

C: Ha egy szám osztható 6-tal és 9-cel, akkor biztosan osztható 54-gyel is.
 (2 pont)

Megoldás:

A: Hamis

B: Igaz

C: **Hamis** (2 pont)

29) Milyen számjegy állhat az X helyén, ha a négyjegyű $\overline{361X}$ szám 6-tal osztható? (2 pont)

X = 2 vagy X = 8

(1+1 pont)

Összesen: 2 pont

30) Két különböző színű szabályos dobókockával egyszerre dobunk. Adja meg annak a valószínűségét, hogy a dobott számok szorzata prímszám lesz! Megoldását részletezze! (4 pont)

Megoldás:

Az összes eset száma 36.

(1 pont)

Akkor lesz prímszám a sorozat, ha az egyik kockával 1-et és a másikkal 2-t, 3-t vagy 5-öt dobunk. (1 pont)

Ezt összesen $2 \cdot 3 = 6$ -féleképpen tehetjük meg (ez a kedvező esetek száma).

(1 pont)

(1 pont)

A keresett valószínűség: $\frac{6}{36} = \frac{1}{6}$.

Összesen: 4 pont

31) Az A halmaz elemei a 28 pozitív osztói, a B halmaz elemei a 49 pozitív osztói. Adja meg az $A \cap B$ és a $B \setminus A$ halmazokat elemeik felsorolásával! Megoldását részletezze! (3 pont)

Megoldás:

A halmaz elemei: $A = \{1, 2, 4, 7, 14, 28\}$

B halmaz elemei: $B = \{1, 7, 49\}$

(1 pont)

$$A \cap B = \{1; 7\}$$

(1 pont) (1 pont)

 $B \setminus A = \{49\}$

Összesen: 3 pont

32) Az 50-nél nem nagyobb pozitív páros számok közül egyet véletlenszerűen kiválasztunk. Mennyi a valószínűsége annak, hogy néggyel osztható számot választunk? Válaszát indokolja! (3 pont)

Megoldás:

Az 50-nél nem nagyobb pozitív páros számokból 25 db van, ez az összes eset száma. (1 pont)

Ezek közül 12 db osztható néggyel, ez a kedvező esetek száma. (1 pont)

Így a kérdéses valószínűség $P = \frac{12}{25} = 0,48$.

(1 pont)
Összesen: 3 pont

33) Adja meg az alábbi állítások logikai értékét (igaz vagy hamis)!

A: Ha egy szám osztható 6-tal és 8-cal, akkor osztható 48-cal is.

B: Ha egy pozitív egész szám minden számjegye osztható 3-mal, akkor a szám is osztható 3-mal.

C: A 48 és a 120 legnagyobb közös osztója a 12.

(2 pont)

<u>Megold</u>ás:

- A) Hamis, hiszen fordítva lenne igaz.
- B) A 3-mal való oszthatóság feltétele, hogy a számjegyeinek összege osztható 3-mal, és ha az összeadásban minden tag osztható 3-mal, akkor az összeg is osztható. Tehát az állítás **igaz**.
- C) 48 és 120 legnagyobb közös osztója 24, így az állítás **hamis**. (2 pont)

Összesen: 2 pont

34) Milyen számjegyeket írhatunk a c helyére, hogy a 64c39c hatjegyű szám osztható legyen 3-mal? Válaszát indokolja! (3 pont)

Megoldás:

A számjegyek összege 22+2c

(1 pont)

Egy szám (pontosan) akkor osztható 3-mal, ha számjegyeinek összege osztható 3-mal.

(1 pont)

Így c lehetséges értékei **1; 4; 7**.

(1 pont)

Összesen: 3 pont

35) Ma kedd van. A hét melyik napja lesz 100 nap múlva?

(2 pont)

Megoldás:

 $\frac{100}{7}$ ≈ 14,29 tehát a 100 nap 14 hétből és $100 - (14 \cdot 7) = 2$ napból áll. Keddi naptól számolunk, így 98 nap elteltével újra kedd lesz, ehhez hozzáadva még két napot pedig **csütörtök.** (2 pont)

Összesen: 2 pont

36) Anna dominókészletében a dominókövek egyik oldala egy vonallal két részre van osztva. Az egyes részeken a pöttyök száma 0, 1, 2, 3, 4, 5 vagy 6 lehet. A készletben minden lehetséges pöttyözésű dominóból pontosan egy darab van. Az ábrán a 2-6-os (6-2-es) dominó látható.

a) Hány olyan dominó van a készletben, amelyen a két részen lévő pöttyök számának szorzata prímszám? (4 pont)

iátékban dominó két csatlakozhat egymáshoz, ha a két érintkező részen ugyanannyi pötty van. (Lásd az ábrát.)

Anna egy lapra elhelyezte dominókészletének azt a hat dominóját, amelyek mindkét részén van legalább 1, de legfeljebb 3 pötty. Ezután összekötötte azokat a dominókat, amelyeket a játékban csatlakoztatni lehetne egymáshoz. Az alábbi ábra a hat dominót és az összekötő

vonalakat mutatja, de csak két részen adtuk meg a pöttyöket.

b) Rajzolja be a tíz üres részre a hiányzó pöttyöket az összekötésnek megfelelően!

(4 pont) Anna a teljes 28 darabos készletből kihúzta a 2-6-os dominót. Ezután véletlenszerűen kihúz még egy dominót.

c) Számítsa ki annak a valószínűségét, hogy a másodiknak kihúzott dominót csatlakoztatni tudja az elsőhöz! (5 pont)

Egy játékbemutatóra Anna és Balázs 1800 dominót szeretne felállítani a földre úgy, hogy a legelsőt meglökve az összes dominó sorban eldőljön. Anna egyedül 6 óra alatt, Balázs pedig 9 óra alatt építené meg a dominóláncot.

d) Ha Anna és Balázs - tartva a saját tempójukat - együtt dolgozna, akkor hány óra alatt végeznének az 1800 dominó felállításával?

(4 pont)

a) Azoknak a dominóknak a számát kell meghatározni, amelyeken az egyik részen 1, a másik részen 2, 3 vagy 5 pötty van. (3 pont) Összesen tehát három ilyen dominó van.

(1 pont)

- b) Lásd: Logika, gráfok 31. feladat
- c) Lásd: Valószínűségszámítás 60. feladat
- d) Lásd: Szöveges feladatok 46. feladat

Összesen: 17 pont

37) Az alábbi hat szám közül válassza ki az összes olyan számot, amely osztható 3-mal, de nem osztható 5-tel!

895; 1222; 1458; 1526; 1848; 1990

(2 pont)

Megoldás:

3-mal oszthatók azok a számok, amelyek számjegyeinek összege osztható 3mal, ezek az 1458 és az 1848. Egyikük sem osztható 5-tel, mivel nem 0-ra vagy 5-re végződnek. Így a feladat szövegének megfelelő számok az 1458 és az 1848. (2 pont)

Összesen: 2 pont

38) Adjon meg egy olyan összetett számot, amely relatív prím a 6-hoz! (2 pont)

Megoldás:

Összetett számot legalább két prímszám szorzatából állítunk elő. (1 pont)

Az, hogy egy szám relatív prím a 6-hoz, azt jelenti, hogy legnagyobb közös osztójuk az 1 (vagyis a szám nem osztható se 2-vel, se 3-mal). (1 pont)

Bármely szám, amely ennek a két kritériumnak megfelel jó megoldás (p1.:25).

Összesen: 2 pont

39) Egy szerencsejáték a következőképpen zajlik:

A játékos befizet 7 forintot, ezután a játékvezető feldob egy szabályos dobókockát. dobás eredményének ismeretében abbahagyhatja a játékot; ez esetben annyi Ft-ot kap, amennyi a dobott szám volt.

Dönthet azonban úgy is, hogy nem kéri a dobott számnak megfelelő pénzt, hanem újabb 7 forintért még egy dobást kér. A játékvezető ekkor újra feldobja a kockát. A két dobás eredményének ismeretében annyi forintot fizet ki a játékosnak, amennyi az első és a második dobás eredményének szorzata. Ezzel a játék véget ér.

Zsófi úgy dönt, hogy ha 3-nál kisebb az első dobás eredménye, akkor abbahagyja, különben pedig folytatja a játékot.

- a) Mennyi annak a valószínűsége, hogy Zsófi tovább játszik? (4 pont)
- megkezdése előtt b) Zsófi játékának számítsuk ki, mekkora valószínűséggel fizet majd neki a játékvezető pontosan 12 forintot?

Barnabás úgy dönt, hogy mindenképpen két dobást kér majd. Áttekinti a két dobás utáni lehetséges egyenlegeket: a neki kifizetett és az általa befizetett pénz különbségét.

c) Írja be a táblázat üres mezőibe a két dobás utáni egyenlegeket!

(4 pont)

		második dobás eredménye					
		1	2	3	4	5	6
ıye	1	-13					
mén	2						
ered	3						
bás	4						10
első dobás eredménye	5						
els	6						

d) Mekkora annak a valószínűsége, hogy Barnabás egy (két dobásból álló) játszmában nyer? (3 pont)

Megoldás:

a) Lásd: Valószínűségszámítás 17. feladat

b) Lásd: Valószínűségszámítás 17. feladat

c)

		második dobás eredménye					
		1	2	3	4	5	6
ıye	1	-13	-12	-11	-10	-9	-8
eredménye	2	-12	-10	-8	-6	-4	-2
ered	3	-11	-8	-5	-2	1	4
bás	4	-10	-6	-2	2	6	10
első dobás	5	-9	-4	1	6	11	16
els	6	-8	-2	4	10	16	22

(4 pont)

d) Lásd: Valószínűségszámítás 17. feladat

Összesen: 17 pont

40) Adja meg az alábbi állítások logikai értékét (igaz vagy hamis)!

A: Ha egy pozitív egész szám osztója 24-nek, akkor osztója 12-nek is.

B: Ha egy pozitív egész szám osztható 12-vel akkor osztható 6-tal is.

C: Ha egy pozitív egész szám osztható 2-vel és 4-gyel, akkor osztható 8-cal is. (2 pont)

Megoldás:

A: Hamis

B: Igaz

C: Hamis

(2 pont)

Összesen: 2 pont

41) Tudjuk, hogy az $\frac{5}{7}$ = 0,714285 végtelen szakaszos tizedes tört.

Adja meg a tizedesvessző utáni századik számjegyet! Válaszát indokolja! (3 pont)

Megoldás:

A végtelen szakaszos tizedes törtben a szakasz hossza 6 számjegy. (1 pont)

 $100 = 6 \cdot 16 + 4$ (1 pont)

Így a 100. számjegy a **2**. (1 pont)

Összesen: 3 pont

42) Milyen számjegyet írjunk x helyére, hogy a $\overline{202x}$ négyjegyű szám osztható legyen 12-vel? (2 pont)

<u>Megoldás</u>:

Az adott szám osztható 12-vel amennyiben a szám osztható 3-mal és 4-gyel. Így a megoldás $\mathbf{x} = \mathbf{8}$ lesz. (2 pont)

Összesen: 2 pont

- 43) Egy osztályban kétszer annyian járnak matematikafakultációra, mint fizikafakultációra. Összesen 15 olyan diák van az osztályban, aki a két fakultáció közül valamelyikre jár. A 15 diák közül 6-an mindkét fakultációra járnak.
 - a) Hány olyan diák van az osztályban, aki matematikafakultációra jár, de fizikára nem? (4 pont)

A távoktatás időszakában ennek az osztálynak a tagjai a tanárral együtt 24-en vesznek részt az alapmatematikaórákon. Az órákon használt online alkalmazás 4 sorban és 6 oszlopban rendezi el a résztvevőket megjelenítő egybevágó kis téglalapokat úgy, hogy ezek kitöltik a teljes képernyőt. Stefi számítógépén a

képernyő vízszintes és függőleges oldalának aránya 16: 9.

b) Adja meg egy kis téglalap vízszintes és függőleges oldalának arányát két egész szám hányadosaként! (5 pont)

Az alkalmazás a bejelentkező személyekhez tartozó 24 téglalapot véletlenszerűen rendezi el a képernyőn.

 c) Számítsa ki annak a valószínűségét, hogy a következő órán Stefit és barátnőjét, Cilit megjelenítő téglalap is a képernyő első sorába fog kerülni! (A 24 kis téglalapot az alkalmazás mindig 4 sorban és 6 oszlopban rendezi el.)

A 24 bejelentkező személyt a képernyőn 24!-féleképpen lehet elrendezni.

d) Mutassa meg, hogy a 24! osztható 10 000-rel!

(3 pont)

Megoldás:

- a) Lásd: Halmazok 46. feladat
- b) Lásd: Szöveges feladatok 65. feladat
- c) Lásd: Valószínűségszámítás 82. feladat
- d) A 24! szorzatban tényezőként szerepel az 5, a 10, a 15 és a 20, valamint például a 2. (1 pont)

Ezek szorzata: $2 \cdot 5 \cdot 10 \cdot 15 \cdot 20 = 30000$.

(1 pont)

Ez osztható 10 000-rel, következésképpen a 24! is. **QED**

(1 pont)

44) Egy biztonsági őr először 4 egymás utáni napon dolgozik, utána 2 napot pihen, majd újra 4 nap munka és 2 pihenőnap következik, és így tovább. Ha az őr január 1-jén kezdett dolgozni, akkor az év 100. napján dolgozik vagy pihen? Válaszát indokolja! (3 pont)

Megoldás:

 $100 = 16 \cdot 6 + 4$. (1 pont) Azaz a 100-at 6-tal osztva 4 maradékot kapunk. (1 pont) Tehát az őr a kérdéses napon **dolgozik**. (1 pont)

Összesen: 3 pont