#### Convergence tests for MCMC

Elena Sellentin

Sterrewacht Leiden University, NL

Imperial Data Analysis Workshop (2018)

### **Bayesian Inference**

$$\mathcal{P}(\theta, \mathcal{M}|\mathbf{x}) = \frac{L(\mathbf{x}|\theta, \mathcal{M})\pi(\theta)}{\epsilon(\mathbf{x}|\mathcal{M})} \tag{1}$$

- $\mathcal{P}(\theta, \mathcal{M}|x)$ : the posterior.
- $L(x|\theta, \mathcal{M})$ : the likelihood.
- $\pi(\theta)$ : the priors.
- $\epsilon(x|\mathcal{M})$ : the evidence ('marginal likelihood').

The posterior can be difficult to obtain. Need sampling techniques (MCMC, Gibbs...)

Ln(a) Sellentin Leiden University 1 /

# **Examples**









#### **Detailed Balance**

Equilibrium between the occupation of two states  $\mathcal{P}_{i,j}$  is reached if

$$r_{i \to i} \mathcal{P}_i = r_{i \to i} \mathcal{P}_i, \tag{2}$$

and the transition probability from  $\mathcal{P}_i$  to state  $\mathcal{P}_i$  has rate  $r_{i \to i}$ .

- ⇒ MCMC uses the same principle as e.g. in photon emisson/absorption from electronic shells in atoms
- Reaching equilibrium takes time!

### Convergence

If the chain ran for long enough ('has converged'), then

$$n(\boldsymbol{\theta}) \propto \mathcal{P}(\boldsymbol{\theta}).$$

It is  $n(\theta)$  which matters, so the entire chain, and not single points.

Ln(a) Sellentin Leiden University 4 / 10

### **Burn-in period**

#### Reaching equilibrium needs interactions.

- Thermodynamics: put cold object into warmer environment
- Radiation physics: put a phosphorescent object into the dark
- MCMC: burn-in period (searching for the peak)



Plot: K. Wolz

### **Burn-in**

#### Cut away the unrepresentative burn-in period:

- Rat tails in likelihood plots
- log-likelihood steadily increases



Plot: K. Wolz

## **Monitor convergence**

- measure the correlation length of chains
- thin highly correlated chains



Neil 2012, arXiv: 1206.1901

## **Convergence Diagnostics**

Gelman-Rubin Test: Intra-Chain variance vs. Inter-chain variance.

- Run M different chains with different starting points, let  $m \in [1, M]$ .
- mth chain:  $\theta_1^m, \theta_2^m, \theta_3^m, .... \theta_{N_m}^m$
- Discard the burnins.
- Calculate for each parameter  $\theta$ , the posterior mean

 $\hat{\theta}_m = \frac{1}{N_m} \sum_{i}^{N_m} \theta_i^m,$ 

- ...and the intra-chain variance  $\sigma_m^2 = \frac{1}{N_m-1} \sum_i^{N_m} (\theta_i^m \hat{\theta}_m)^2.$
- Calculate  $\hat{\theta}$ , the mean of all chains  $\hat{\theta} = \frac{1}{M} \sum_{m}^{M} \hat{\theta}_{m}$ .



### Gelman-Rubin cntd.

Compute how the individual means vary around the joint mean

$$B = \frac{N}{M-1} \sum_{m=1}^{M} (\hat{\theta}_m - \hat{\theta})^2$$

- Compute the averaged variances of the chains  $W = \frac{1}{M} \sum_{m=1}^{M} \sigma_m^2$
- Define  $\hat{V} = \frac{N-1}{N}W + \frac{M+1}{MN}B$ ; under convergence, this is an unbiased estimator of the true variance. But if the chains have converged, then W is also an unbiased estimate of the true variance. Hence...
- ...test whether  $R = \sqrt{\hat{V}/W} \approx 1$ . If it is not, convergence has not been reached.
- Various refinements exist, see Gelman & Rubin (1992), Brooks & Gelman (1997).

## Summary of equations

- mth chain:  $\theta_1^m, \theta_2^m, \theta_3^m, .... \theta_{N_m}^m$ .
- For each parameter  $\theta$ , the posterior mean  $\hat{\theta}_m = \frac{1}{N_m} \sum_{i}^{N_m} \theta_i^m$ ,
- For each parameter compute the intra-chain variance  $\sigma_m^2 = \frac{1}{N_m-1} \sum_i^{N_m} (\theta_i^m \hat{\theta}_m)^2$ .
- Calculate  $\hat{\theta}$ , the mean of all chains  $\hat{\theta} = \frac{1}{M} \sum_{m}^{M} \hat{\theta}_{m}$ .
- Compute how indiv. means scatter around the joint mean  $B = \frac{N}{M-1} \sum_{m=1}^{M} (\hat{\theta}_m \hat{\theta})^2$
- Compute the averaged variances of the chains  $W = \frac{1}{M} \sum_{m=1}^{M} \sigma_m^2$
- Compute  $\hat{V} = \frac{N-1}{N}W + \frac{M+1}{MN}B$
- ...test whether  $R = \sqrt{\hat{V}/W} \approx 1$ . If it is not, convergence has not been reached.