EE2703: Applied Programming Lab

Final Exam

Magnetic Field due to a current in loop

T.M.V.S GANESH EE19B124

June 1, 2021

Introduction

The assignment is about

- Calculating the z component of magnetic field due to a current carrying wire in the x-y plane
- The variation of field along the z-axis at a constant x and y.

Description:

Current Equation:

A cuurent carrying circular wire is placed on the x-y plane with origin as the centre and radius of 10cm .

The current varies with the polar angle and time as

$$I(\phi) = \frac{4\pi}{\mu_0} \cos(\phi) e^{j\omega t} \tag{1}$$

The time variance of the current is not considered during the calculation and is calculated at time t = 0.

Where ϕ is the polar coordinate in (r, ϕ, z)

Vector Potential

The Vector potential due to the current is given by:

$$\vec{A}(r,\phi,z) = \frac{\mu_0}{4\pi} \int \frac{I(\phi)\vec{\phi}e^{-jkR}ad\phi}{R}$$
 (2)

where $R = |\vec{r} - \vec{r_l}|$, \vec{r} is the point at which potential is being calculated and $\vec{r_l}$ is the point on the wire at a particular ϕ .

The integral can be written as a sum of values sigma at various ϕ values divided into N equal sections in the xy plane.

Thus A(potential) at a certain (i,j,k) point can be calculated as:

$$\vec{A}_i j k = \sum_{l=0}^{N-1} \frac{\cos(\phi_l) e^{-jkR_{ijkl}} \vec{dl}}{R_{ijkl}}$$
(3)

Magnetic Field thus can be calculated from the potential vector as:

$$\vec{B} = \nabla X \vec{A} \tag{4}$$

As the magnetic potential is along $\vec{\phi}$ the x and y components of the magnetic field goes to zero and z-component can be calculated from the A vector as:

$$B_z(z) = \frac{A_y(\Delta x, 0, z) - A_x(0, \Delta y, z) - A_y(-\Delta x, 0, z) + A_x(0, -\Delta y, z)}{4\Delta x \Delta y}$$
 (5)

Q1 - Pseudo Code:

- 1. Divide the volume into a 3 by 3 by 1000 mesh with points separated by 1cm.
 - The use of meshgrid function creates a $3 \times 3 \times 1000$ Matrix of X,Y,Z coordinates and can be used to compute the Value of R
- 2.Break the loop in the X-Y axis into N sections so that the integration can be approximated as a sum of values at these points.
 - The value of ϕ can be linearly divided between 0 and 2π
 - Radius vector $(\vec{r_l})$ and the tangential vector (\vec{dl}) the direction of the current can be calculate from ϕ vector.
 - Thus Current vector can be computed from \vec{dl} and plotted
- 3.Define a function calc(l) which then used to calculate R and the x and y component of potential at a particular l.
 - These can be added over all values of l to obtain the x and y components of the magnetic potential.
- 4. The Magnetic Field is calculated using the x and y components of potential from the equation above.
 - plot Magnetic Field vs z using loglog plot.
- 5. Fit the data to a exponential using Least Squares approach.

Q2 Meshgrid

xx,yy,zz denote meshpoints of the respective i,j,k coordinates.

since the field is symmetrical and net sum of the current adds to zero. The magnetic field along the z-axis is zero thus I have considered a different axis that is x=1,y=1,z from 1 to 1000 i.e the axis in the equations are shifted.

Q3 - Dividing loop

phi is array of the angles of the N sections of the loop and x,y denotes the X,Y coordinates of the sections of loop at particular ϕ

$\mathbf{Q5}$ - $\vec{r_l}$ and \vec{dl}

 $\vec{r_l}$ is the radius vector i.e the vector connecting origin and the section point for a particular ϕ and \vec{dl} is the tangential direction i.e the direction of current flow in the loop. r_l and dl are the arrays(column wise) representing the x,y,z components of these vectors.

Q4 - Current in the loop

```
#Q4- plot of Current Flowing in the Loop
 1
 2
   u = 4*np.pi*(10**-7)
 3
               #permeability of free space
   I_x = ((4*np.pi)/u)*np.cos(phi)*dl.T[0]
               #X - component of Current in the loop
   I_y = ((4*np.pi)/u)*np.cos(phi)*dl.T[1]
 5
               #Y - component of Current in the loop
 6
   figure("Current in the loop",figsize = (8,8))
               #Figure
   quiver(x, y, I_x, I_y,headlength=5,headwidth = 5,width=0.003,pivot = 'mid')
8
               #Quiver plot of Current in loop
9
   #colorbar()
   xlabel("X-coordinates",fontsize = 15)
   ylabel("Y-Cordinates",fontsize = 15)
11
12 | title("Current Vector in the loop", fontsize = 15)
13 | xticks(np.arange(-10, 11, step=1))
   yticks(np.arange(-10, 11, step=1))
   grid()
```

Lx and Ly represent the x and y components of current. The z-component of the current is zero.

Plot:

Figure 1: Quiver plot of current in the loop

Q6,7 - calc function and calculating Potential Vector

```
\#Q6,7 Defining the calc function to calculate R_ijkl and extending it to find A
 1
       vector
 2
   def calc(1):
 3
                #function to calculate R, A matrices
       R_{ijkl} = np.sqrt(((xx-r_1[1][0])**2)+((yy-r_1[1][1])**2)+(zz**2))
 4
               #The value of R_{ij}kl all over the 3X3X1000 meshgrid for a particular l
       A_{ijkl_x} = (np.cos(phi[1])*(dl[1][0]) * (1/R_{ijkl}))* (np.exp(-1j*0.1*R_{ijkl}))
 5
               \#The\ x\ component\ of\ potential\ all\ over\ mesh\ grid\ for\ a\ particular\ l
        A_{ijkl_y} = (np.cos(phi[1])*(dl[1][1])*(1/R_{ijkl}))*(np.exp(-1j*0.1*R_{ijkl}))
 6
                #The y component of potential all over mesh grid for a particular l
 7
       return A_ijkl_x,A_ijkl_y,R_ijkl
 8
   def potential():
                #Function to calculate the potential Vector
10
       A_x = calc(0)[0]
               #Initialing A_x 3X3X1000 matrix with l = 0 from calc fn
11
        A_y = calc(0)[1]
                #Initialing A_y 3X3X1000 matrix with l= 0 from calc fn
```

```
for l in range(1,N):
    A_x += calc(1)[0]
    #X component of potential for all (i,j,l)

A_y += calc(1)[1]
    #X component of potential for all (i,j,l)

return A_x,A_y

A_x,A_y= potential()
```

The calc function returns the value of R and the term to get added for potential calculation at a particular l all over the meshgrid and potential() function uses for loop to add these terms for all ϕ of sections to get the Magnetic Potential.

Q8 - Computing B_z

From the above equation 5, We can consider that $\Delta x = \Delta y = 1$ cm and shift the values by 1cm since we are considering the axis as (x=1,y=1) instead of z-axis, The indices in the potential don't change with the shifting of axis

Vectorised Code:

```
#Q8 - Calculating Z component of Magnetic field
B_z = (A_y[2,1,:]-A_x[1,2,:]-A_y[0,1,:]+A_x[1,0,:])/(4)
#Magnetic field according to equation 2 in the pdf
```

This creates a array of size 1000 and contains the values of z component of Magnetic field at corresponding value of z from 1 to 1000cm.

Q9 - Plotting the Magnetic Field

Code:

```
8 legend(loc = 'upper right', fontsize = 15)
9 grid()
10 #show()
```

Log log plot of the Magnetic Field vs z :

Plot:

Figure 2: Loglog plot of $B_z vsz$

Q10 - Fitting data to a exponential

Since the loglog plot appears to be a straight line for most part of the graph we try to fit the data to a exponential $B_z = c^*(z^b)$ using the least square approach. Code:

```
c = np.exp(p[0][0])
 7
   b = (p[0][1])
   print("The Value of c and b are:")
8
   print(c,b)
9
   B_fit = c*(k**b)
10
               #value of fitted data
   figure("least square Fit",figsize = (8,6))
11
               #Graph to compare both the plots
   loglog(k, np.abs(B_z),label = "Original")
12
13
   loglog(k, np.abs(B_fit),label = "fit")
   xlabel("Z-Cordinates(log)",fontsize = 15)
   ylabel("Z comp of Magnetic field(B_z)",fontsize = 15)
16
   title("Magnetic field fit vs original",fontsize = 15)
   legend(loc = 'upper right',fontsize = 15)
17
18
   grid()
   show()
```

Result:

```
The Value of c and b are:
[9.01341317] [-1.83256729]
```

Plot:

Figure 3: Loglog plot of B_z and the obtained exponential

Q11 - Conclusion

1. The usage of arrays increases the efficiency of the code as it replaces the nested for loops and execution actually is done in C language.

- 2. We observe that the magnetic field is nearly zero along the z-axis due to symmetry of the current and one cancels out the effect of another.
- 3. For a different axis i.e along x=1,y=1 in this case the magnetic field remains constant upto a certain distance and decays exponentially as z increases.
- 4. For a spatially non varying current we expect the decay rate to be -3 for large values of z and is approximately constant for small values of z.
- 5.In this case we observe that it is constant for smaller values of z but the decay rate is nearly -2 instead of the expected -3.
- 6. The difference in the decay rate is due to $\cos(\phi)$ term in the current expression.