Math Math!

Time Limit	0.2s
Memory Limit	16MB

Description

We notice that there is one of your friend named Farras who has won an International Mathematics of Olympiad this year. So we are tempted to give a math problem to test the level of cleverness in math of you all. You are given a function F(X) with X is a positive integer number and F(X) is the product of factorials of the number's digits. For instance, $F(12) = 1! \times 2!$.

You will be given a positive integer that may contain a leading zero but there is at least one digit in the number that is more than 1. Your task is to find a number, Y, that there is no 0 and 1 in its digit and F(X) = F(Y). As number Y can be more than one, you are required to find the largest number Y.

Input Format

First line contains 1 number N denoting the number of digits of number, then the next line contains number X that has length of N digits.

Output Format

A number Y.

Constraint

• $1 \le N \le 15$

Sample Input 1

 $\begin{array}{c} 2 \\ 26 \end{array}$

Sample Output 1

532