cCode No: R1921023

II B. Tech I Semester Regular Examinations, March - 2021 ELECTRONIC DEVICES AND CIRCUITS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75 Answer any FIVE Questions each Question from each unit All Questions carry **Equal** Marks 1 [9M] Explain Hall effect. Derive expression of Hall voltage and state its applications. b) If the energy band gap is 1.1 eV and electron mobility in silicon is [6M] 0.13 m^2 / volt-sec, hole mobility is is 0.05 m^2 / volt-sec and N=3 x $10^{25}/\text{m}^3$ at 300K. Find the intrinsic carrier concentration and conductivity of silicon. a) Explain about V-I characteristics of PN junction diode in forward bias & reverse [8M] bias conditions. [7M] Draw and explain the energy band diagram of PN junction diode. [3M] List the salient features of Tunnel diode. [6M] Explain the V-I characteristics of Photodiode. [6M] Explain the construction and operation of LED. 4 a) Define ripple factor and derive an expression for ripple factor in a full-wave [7M] rectifier. [5M] b) Give the comparison of various filter circuits in terms of ripple factors. c) What are the advantages of a full-wave bridge rectifier as compared to a full-[3M] wave centre-tapped rectifier? 5 Draw and explain the input and output characteristics of BJT in common base [9M] configuration. b) Calculate the α_{dc} and β_{dc} for the given transistor for which $I_C=5mA$, $I_B=50\mu A$ and [6M] $I_{CO} = 1 \mu A$. Or [5M] Explain how a FET is used as a voltage variable resistor. b) Define the following terms of a FET: [8M] (i) I_{DSS} (ii) Tran conductance (iii) Pinch-off voltage (iv) Amplification factor c) List the applications of FET. [2M] [6M] Define stability factor. Explain the need of biasing. b) A silicon transistor with β =80 is used in self biasing arrangement with V_{CC} = [6M]

Or

[3M]

15V, $R_C = 4.7K\Omega$. The operating point Q is at $V_{CE} = 8.2V$, $I_C = 1.2mA$. Find the

c) What is the condition for thermal stability in CE configuration?

values of R_1 and R_2 .

8	a)	Explain diode compensation against variation in base-emitter voltage V_{BE} .	[6M]
	b)	Draw a fixed bias circuit and derive an expression for the stability factor.	[6M]
	c)	Write a brief note on Thermal runaway.	[3M]
9		Derive the expressions for voltage gain, current gain, input impedance and output impedance of CE amplifier using exact and approximate analysis.	[15M]
		Or	
10	a)	Determine the current gain, input impedance and voltage gain when the transistor is connected in CB configuration with a load R_L =10KΩ, V_{CB} =10V, I_C =1mA, h_{ib} =20Ω, h_{rb} =5x10 ⁻⁴ , h_{fb} =-0.98, h_{ob} =10 ⁻⁷ \mho .	[6M]
	b)	From the low frequency small signal FET model, derive the FET parameters.	[9M]

II B. Tech I Semester Regular Examinations, March - 2021 ELECTRONIC DEVICES AND CIRCUITS

(Electrical and Electronics Engineering)

Tiı	me: 3	3 hours Max. Marks: 75	
	Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks		
1	a)	Briefly explain about Fermi Dirac function and Fermi level in intrinsic and	[9M]
		extrinsic semiconductors.	
	b)	Find the conductivity of silicon atom when the donor impurities of 1 in 10^8 is applied. The intrinsic value of silicon atom is 1.5×10^{10} cm ⁻³ at 300^0 K. The mobility of the electrons and holes are 1300 cm^2 /V-s and 500 cm^2 /V-s respectively. The number of silicon atoms is 5×10^{25} cm ⁻³ .	[6M]
		Or	
2	a)	State and explain Mass Action law.	[6M]
	b)	The current flow through a PN-junction diode is 0.75 mA at forward-biased voltage 350 mV and 20 mA at forward-biased voltage 500 mV. Determine the value of η if the junction operates at 295 K.	[6M]
	c)	List the applications of PN-junction diode.	[3M]
3	a)	Explain in detail about principle of operation and characteristics of Tunnel diode.	[10M]
	b)	List the salient features and applications of LED.	[5M]
		Or	
4	a)	A centre-tapped single-phase full-wave rectifier has two diodes and the forward resistance of each diode is 25 ohms. The transformer secondary voltage from centre to each half of the secondary winding is $30 \sqrt{2} \sin \omega t$ and the load resistance is 2000 ohms. Determine (i) the average value of load current, and (ii) the peak inverse voltage of each diode.	[6M]
	b)	Sketch the circuit of a bridge rectifier and explain its operation	[7M]
	c)	Why are filters used in a dc power supply?	[2M]
5	a)	Explain the various current components in a transistor.	[6M]
	b)	Give the comparison between CB, CE and CC configurations of BJT.	[5M]
	c)	Write a brief note on Photo transistor.	[4M]
		Or	
6	a)	Explain the drain characteristics of JFET.	[5M]
	b)	Derive the relationship between trans conductance, drain resistance and amplification factor.	[4M]
	c)	An N-channel FET has the following parameters: $I_{DSS} = 12\text{mA}$, $V_P = -8\text{V}$ and $g_{mo} = 4000 \mu\text{s}$ Determine the drain current and trans conductance at $V_{GS} = -5\text{V}$	[6M]

7	a)	Explain about Thermal stability.	[5M]
	b)	Design a collector to base bias circuit for the given specifications: $V_{CC} = 15V$, $V_{CE} = 5V$, $I_{CE} = 5mA$ and $\beta=100$.	[8M]
	c)	What are the factors affecting the Q-point?	[2M]
		Or	
8	a)	Define Q-point.	[2M]
	b)	Give the comparison between fixed bias, collector to base bias and self-bias circuits.	[6M]
	c)	Draw a circuit which uses a diode to compensate for changes in I_{CO} . Explain how stabilization is achieved in the circuit	[7M]
9	a)	Obtain CB parameters in terms of CE parameters.	[12M]
	b)	Define the various h-parameters and give their units.	[3M]
		Or	
10	a)	Draw the h-parameter equivalent circuit for a typical common base amplifier and derive expressions for A_i and A_v .	[8M]
	b)	Draw the small signal model of an FET and explain the significance of each element.	[7M]

II B. Tech I Semester Regular Examinations, March - 2021 ELECTRONIC DEVICES AND CIRCUITS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions each Question from each unit All Questions carry **Equal** Marks [9M] 1 Explain energy band diagram of insulator, semiconductor and conductor. b) At room temperature of 300K, the Fermi level is 0.35 eV above the valence [6M] bond in a P-type semiconductor. When the temperature is increased to (i) 350K, and (ii) 400K, calculate the position of Fermi level. Or 2 [7M] Discuss in brief about the current components in PN junction diode. [8M] Explain the volt-ampere characteristics of PN junction diode. [8M] Explain the breakdown mechanisms in semiconductor diodes. Briefly explain about the different operating regions of SCR. [7M] Or 4 Draw the circuit diagram of a full-wave rectifier using center-tap transformer. [7M] Explain its working principle. b) A sinusoidal voltage whose $V_m = 24V$ is applied to a half-wave rectifier. The [8M] diode may be considered to be ideal and R_L = 1.8 K Ω is connected as load. Determine the following: Peak value of current (i) (ii) RMS value of current (iii) DC value of current Ripple factor (iv) 5 Draw and explain the input and output characteristics of BJT in common emitter [9M] configuration. [6M] Explain about Ebers-Moll model of a transistor. Or 6 [8M] a) With the help of neat sketches explain the operation of JFET. b) What is the importance of SiO₂ layer in MOSFET? [3M] [4M] What is MOSFET? What are the different types of MOSFETs? 7 [4M] Explain the importance of biasing. b) Briefly explain about stabilization against variations in V_{BE} and β for the self-[7M] bias circuit. [4M] Write a brief note on Stability factors.

Or

8	a)	Derive an expression for the condition to avoid thermal runaway.	[6M]
	b)	What are the disadvantages of fixed bias?	[2M]
	c)	Design a voltage divider bias circuit for specified condition $V_{CC} = 12V$, $V_{CE} = 6V$, $I_C = 1$ mA, $S = 20$, $\beta = 100$ and $V_E = 1V$.	[7M]
9	a)		[8M]
	b)	Explain how to calculate CE h-parameters from the input and output characteristics.	[7M]
		Or	
10	a)	A CE amplifier is drawn by a voltage source of internal resistance $r_s = 800 \Omega$, and the load impedance is a resistance $R_L = 1000\Omega$. The h-parameters are $h_{ie}=1K\Omega$, $h_{re}=2x10^{-4}$, $h_{fe}=50$ and $h_{oe}=25\mu$ A/V. Compute the current gain, input	[10M]
		resistance, voltage gain and output resistance.	
	b)	Name the three small signal models used for a BJT. Which of the three models of a BJT provide accurate analysis and why?	[5M]

II B. Tech I Semester Regular Examinations, March - 2021 ELECTRONIC DEVICES AND CIRCUITS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	
1	a)	Write notes on the following terms: (i) electron (ii) hole (iii) conductivity (iv) mobility	[8M]
	b)	Derive an expression for continuity equation and explain its importance.	[7M]
		Or	
2	a)	The current flow through a PN-junction germanium diode is 50 mA for a forward biased voltage of 0.5V at 300K. Calculate the static and dynamic resistances of the diode.	[4M]
	b)	Discuss in brief about the effect of temperature on V-I characteristics of a diode.	[7M]
	c)	Differentiate between transition and diffusion capacitances.	[4M]
3	a)	Explain how a zener diode acts as a voltage regulator.	[4M]
	b)	Write a brief note on Zener breakdown mechanism in a zener diode.	[5M]
	c)	Draw and explain the V-I characteristics of the UJT.	[6M]
		Or	
4	a)	Draw the circuit diagram of half-wave rectifier. Explain its working principle. Determine the following parameters: (i) dc output voltage	[10M]
	b)	(ii) rms output voltage Determine the ripple factors of an L-section filter and Capacitive filter with C=50 μ F, V _{dc} =12v, R _L =10 K Ω , f=50Hz and L=10H used with FWR.	[5M]
5	a)	Explain about transistor as an amplifier.	[7M]
	b)	Define α , β and γ of a transistor. Show how they are related to each other.	[8M]
		Or	
6	a)	Give the comparison between JFET and MOSFET.	[4M]
	b)	Explain the principle of operation of enhancement MOSFET.	[6M]
	c)	Explain the transfer characteristics of JFET.	[5M]
7	a)	Derive an expression for the stability factor of a self bias circuit.	[6M]
	b)	Explain the operation of collector to base bias.	[7M]
	c)	Define stability factor 'S'.	[2M]
		Or	

8	a)	Explain how thermistor is used for bias compensation.	[7M]
	b)	Explain about stabilization against variations in V_{BE} , I_{C} and β .	[8M]
9	a)	Draw and explain the h-parameter model of a BJT for CC configuration.	[7M]
	b)	Explain the determination of h-parameters from transistor characteristics.	[8M]
		Or	
10	a)	$h_{re}=2x10^{-4}$, $h_{fe}=100$ and $h_{oe}=20\mu$ A/V. If $R_c=5K\Omega$ and $R_s=1K\Omega$, determine A_I ,	[10M]
	b)	A_V , R_I and R_O . Give the comparison of FET amplifiers.	[5M]