**ABSTRAÇÃO DE DADOS** é a técnica de focar nos elementos principais dos dados, ou seja, no **significado**, nas **características** e como se **relacionam entre si** e menos em como **serão armazenados**, como podem ser retornados à aplicação, qual o **tipo do dado** e outras informações internas.

A **MODELAGEM DE DADOS** é exatamente a representação dos dados abstraídos em diferentes níveis, sendo o **modelo conceitual** o de maior abstração e o **físico de menor abstração**, por já se preocupar mais no formato do dado em sua camada final.

**MODELO**: **Abstração de um objeto ou evento** da realidade. Geralmente representado por diagramas.

**MODELOS DE DADOS**: São **representações visuais dos elementos** de dados de um ou mais sistemas e as conexões entre eles. Ajudam a definir e estruturar dados no contexto de processos empresariais relevantes.

**MODELAGEM DE DADOS**: Conjunto de **técnicas utilizadas para criar um modelo de dados** que explique as características de funcionamento e de comportamento dos dados em um determinado sistema ou aplicação.



#### Conceitual

Altamente abstrato

Independe de tecnologias

O principal diagrama é o DER

### Lógico

Abstração média

Ainda independe de tecnologia

Fase de escolha do paradigma: relacional, orientado a objetos, hierárquico

#### **Físico**

Baixa abstração

Escolha do SGBD de acordo com o paradigma escolhido

Detalhamento máximo do dado, com seus tipos e características técnicas

Respeita as restrições do SGBD escolhido



#### **Modelo Conceitual**

Maior nível de abstração e o mais próximo da realidade dos usuários

Usado para comunicação com área de negócio

Pode ter diferentes notações

Construído em tempo de levantamento de requisitos

Principal artefato é o MER – Modelo Entidade Relacionamento

O MER é representado pelo DER – Diagrama Entidade Relacionamento

Sem vínculo com tecnologia ou ferramenta, apenas entidades e relacionamentos

## Modelo Conceitual Modelo Entidade Relacionamento – MER

- Criado por Peter Chen (1976) baseado na teoria relacional de Edgar Codd (1970).
- Principais elementos: Entidade, atributos e relacionamentos.



# Modelo Conceitual Modelo Entidade Relacionamento – MER (Entidade)

- o **ENTIDADE** é o objeto básico do modelo ER, é algo no mundo real com uma existência independente.
- Conjunto de objetos da realidade modelada sobre os quais deseja-se manter informações no banco de dados.

# Modelo Conceitual Modelo Entidade Relacionamento – MER (Atributos)

- o **ATRIBUTOS** são características, propriedades específicas que descrevem as entidades.
- O Dado que é associado a cada ocorrência de uma entidade ou de um relacionamento.

## Modelo Conceitual MODELO ENTIDADE RELACIONAMENTO – MER (ATRIBUTOS)

| SIMPLES                              | COMPOSTO                                | MONOVALORADO                              | MULTIVALORADO                                      | CHAVE                                                      | ARMAZENADO                               | DERIVADO                              |
|--------------------------------------|-----------------------------------------|-------------------------------------------|----------------------------------------------------|------------------------------------------------------------|------------------------------------------|---------------------------------------|
| Atômicos, não<br>podem ser divididos | Podem ser divididos<br>em várias partes | Apenas uma<br>ocorrência por<br>Entidade. | Permite mais de<br>uma ocorrência por<br>Entidade. | Representa<br>unicamente uma<br>ocorrência da<br>entidade. | Valores fixos<br>persistidos em<br>banco | Valores obtidos<br>através de cálculo |



- RELACIONAMENTOS As entidades são relacionadas umas às outras através de um relacionamento. É uma associação entre uma ou mais entidades.
- o Em geral é expresso por verbo ou locução verbal.
- Restrições ou características de um relacionamento:
  - Cardinalidade: Quantidade de ocorrências (1:1, 1:n, n:n)
  - Obrigatoriedade: Se uma ocorrência de uma entidade é obrigatória ou não (0,1)
  - o **Grau:** Auto relacionamento/recursivo (unário), Binário, Ternário, ...

 CARDINALIDADE (1,1) – Uma ocorrência da Entidade só pode se relacionar com uma ocorrência de outra entidade.



Leitura: **Um** aluno ocupa **uma** mesa e **uma** mesa pode ser ocupada por **um** aluno.

 CARDINALIDADE (1,n) – Uma ocorrência da Entidade pode se relacionar com mais de uma ocorrência de outra entidade.



Leitura: **Um** funcionário trabalha em **um** departamento e **um** departamento pode ter **vários** (n) funcionários.

 CARDINALIDADE (n,n) – Uma ocorrência da Entidade pode se relacionar com mais de uma ocorrência de outra entidade.



Leitura: Um colaborador trabalha em vários (n) projetos e um projeto pode possuir vários (n) colaboradores.

- OBRIGATORIEDADE Define de uma ocorrência de uma entidade é obrigatória ou não.
- Notação (0,1) Sendo 0 para não obrigatório e 1 para obrigatório.

#### Modelo Conceitual

#### Modelo Entidade Relacionamento – MER (Relacionamentos)

Representação gráfica (Peter Chen)

Cardinalidade (1,1):



Cardinalidade (1,n):



esquerda representa a obrigatoriedade (0, 1) e o segundo a quantidade de ocorrências possíveis no relacionamento (1, N)

O primeiro valor à

Cardinalidade (n,n):



Exemplo de como é feita a leitura das cardinalidades do DER.

 De Funcionário para Departamento: Um funcionário trabalha em 1 (obrigatório) ou no máximo 1 (ocorrências) Departamento.



De Departamento para Funcionário: Um Departamento pode possuir 0 (não obrigatório) ou muitos (ocorrências) Funcionários.

#### **GRAU**

o Auto relacionamento: Relacionamento entre ocorrências de uma mesma entidade (unário).



Um funcionário pode <u>gerenciar</u> no mínimo 0 e no máximo N funcionários.

Um funcionário pode ser gerenciado no mínimo por 0 e no máximo por 1 funcionário.

#### Modelo Conceitual

#### Modelo Entidade Relacionamento – MER (Relacionamentos)

#### **GRAU**

o **Binário**: Relação entre 2 entidades.

Pedido (1,1) (1,n) Item Pedido

Um Pedido contem no mínimo 1 e no máximo N Itens Pedido.
Um Item Pedido pode estar contido no mínimo em 1 e no máximo em 1 pedido.

Ternário: Relação entre 3 entidades (dimensional).



Um disciplina em uma instituição pode ser ministrada no mínimo por 1 Docente ou no máximo n docente.

#### **ENTIDADE ASSOCIATIVA**

- Resultado de um relacionamento de n:n (n,n) e pode ter seus próprios atributos (pouco utilizado).
- o Pode ser resolvido usando uma entidade com relacionamentos para cada entidade envolvida.



#### GENERALIZAÇÃO ESPECIALIZAÇÃO

- Total: Para cada ocorrência de entidade genérica obrigatoriamente tenho pelo menos uma ocorrência de especializada (t).
- o **Parcial:** Nem toda a ocorrência da entidade genérica possui correspondência em uma entidade especializada (p).



# Modelo Entidade Relacionamento – DER Exercício

Sistema de seguros de automóveis: Cada cliente possui CPF, nome, sexo, endereço e telefones de contato (celular e fixo). Os carros possuem uma placa, marca, modelo, ano, chassi e cor. Cada carro tem um número de sinistros de acidentes associados a ele, sabendo que pode ter ocorrido múltiplos acidentes ou nenhum. Já os sinistros devem ser identificados por um código único, data e hora de ocorrência, local de ocorrência e condutor (que pode ou não ser titular da apólice). Um cliente pode possuir várias apólices (mínimo uma) vigente ou não, e cada apólice de seguro tem um identificador único e só pertence a um cliente e somente um carro, e tem data de início e fim da vigência, valor total assegurado, valor franquia associados a ela. É importante saber que o carro pode ter várias apólices vinculadas a ele, mas apenas uma vigente.

Identificar e nomear:

o Desenhar o DER

- Entidade
- Atributos
- Relacionamentos
- Cardinalidade

# Modelo Entidade Relacionamento – DER Exercício II



## Modelo Entidade Relacionamento – DER Exercício III

**Sistema de avaliação:** Você deverá construir um modelo de avaliação, similar ao modelo do AVA.

Cada aluno deverá ter um código único (autoincremento), nome completo e e-mail. Um aluno poderá ser muitas avaliações (não obrigatório).

Cada avaliação deverá ter um código único de identificação (autoincremento), descrição, data/hora de abertura da avaliação e data/hora de fechamento da avaliação.

Cada avaliação preenchida pelo aluno (resultado do relacionamento de aluno com avaliação) deverá ser identificada pelos códigos dos alunos e os códigos das avaliações, uma descrição, data/hora de início da avaliação e data/hora de finalização da avaliação.

Cada avaliação possui um conjunto de questões (perguntas), que por sua vez, devem ter um código único de identificação (autoincremento), descrição e tipo da questão (objetiva, múltipla escolha ou descritiva).

As questões do tipo objetiva e múltipla escolha devem possuir uma ou mais alternativas para resposta (itens da questão) que devem possuir um código único de identificação, descrição e um tipo de identificador binário para marcar de este item é o correto ou não.

Para este modelo, existem 2 tipos de respostas: resposta aberta (descritiva) e fechada (objetiva / múltipla escolha).

As respostas deverão ter relação com as questões/perguntas de cada avaliação de acordo o tipo. As respostas fechadas devem ter os códigos de identificação da avaliação, códigos de identificação do aluno, códigos de identificação dos itens de cada questão e data/hora da resposta. As respostas abertas devem ter os códigos de identificação da avaliação, códigos de identificação do aluno, códigos de identificação da questão, descrição (para preenchimento com a resposta descritiva) e uma data/hora da resposta.

- o Identificar e nomear: Entidade, Atributos, Relacionamentos, Cardinalidade
- Desenhar o DER

Enviar resolução por e-mail jorge.silva@satc.edu.br

### Modelo Lógico

O **MODELO LÓGICO** é um aprofundamento do modelo conceitual. Neste modelo ainda não se escolheu a tecnologia, mas sim o paradigma: se será relacional, orientado a objeto, hierárquico, de rede, e a lista dos possíveis atributos vinculados a cada entidade.



### Modelo Lógico MODELO RELACIONAL

- O MODELO RELACIONAL foi definido por Edgar Codd (1970).
- o Representa um banco de dados com base na **teoria dos conjuntos** e seus relacionamentos.
- Em um banco de dados relacional, os dados estão organizados na forma de tabelas, possuem linhas e colunas e se relacionam através de chaves.

- Uma TABELA é um conjunto não ordenado de linhas.
- Cada linha pode ter um ou mais colunas (atributos).
- Cada coluna possui um único domínio (tipo do dado).



- Uma CHAVE é utilizada para identificar linhas e estabelecer relações entre tabelas de um banco de dados relacional.
- São estruturas que identificam unicamente uma linha (chave primária e chave única/alternativa) ou promovem o relacionamento entre as tabelas (chave estrangeira).
- As tabelas se <u>relacionam</u> através de chaves.



#### CHAVE PRIMÁRIA ou PRIMARY KEY

- Recupera uma única linha de um conjunto de dados.
  - Único, não nulo.

#### CHAVE ÚNICA/ALTERNATIVA ou UNIQUE KEY

- Recupera uma única linha de um conjunto de dados e pode receber valores nulos.
  - Único, não nulo (ou nulo).

#### **CHAVE ESTRANGEIRA ou FOREIGN KEY**

- Atributo chave de uma relação, cujos valores estão presente em outra tabela ligada a ela.
  - Estabelece o relacionamento entre tabelas.

Todas podem ser chave simples (uma coluna) ou chave composta (mais de uma coluna).

No entanto, o mais comum é ter apenas a chave primária como composta.

#### **EXEMPLO DE CHAVE PRIMÁRIA E CHAVE ÚNICA / ALTERNATIVA**

| _ |        |     |              |     |           |              |   |              |
|---|--------|-----|--------------|-----|-----------|--------------|---|--------------|
|   | Código |     | Nome         | DDD | Celular   | Data Cadastr | ) | CPF          |
|   | 1      | All | erto Silva   | 32  | 988990988 | 2019-08-01   |   | 19468531578  |
|   | 2      | Die | go Moreira   | 56  | 912320923 | 2020-09-12   |   | 95864215874  |
|   | 3      | Ro  | berto Carlos | 48  | 901234832 | 2022-10-23   |   | 362564197582 |
| L |        |     |              |     |           |              |   |              |

Chave Primária Primary Key PK Chave Única / Alternativa
Unique Key
UK

#### **EXEMPLO DE CHAVE ESTRANGEIRA**

| Código (PK) | Aluno          | Celular   |
|-------------|----------------|-----------|
| 1           | Alberto Silva  | 988990988 |
| _2          | Diego Moreira  | 912320923 |
| 3           | Roberto Carlos | 901234832 |

| Código (PK) | Computador              | Ocupante (FK) - Código Aluno - |
|-------------|-------------------------|--------------------------------|
| 1           | Notebook 29 – Lab10.12  | 1                              |
| 2           | Desktop 18 – Lab 22.06  | (nulo)                         |
| 3           | Notebook 33 – Lab 10.04 | 2                              |



Outros exemplos de notação de relacionamentos (notação pé de galinha - engenharia da informação):



#### Modelo Lógico Restrições de Integridade (Constraints)

**RESTRIÇÕES DE INTEGRIDADE OU CONSTRAINTS** são regras criadas para garantir a integridade dos dados de uma tabela, ou seja, garantir que as informações representem corretamente a realidade modelada.

#### **Integridade de Chave**

Define que os valores não podem se repetir e nem nulos.

#### Integridade de Domínio

Define o conjunto de valores possíveis ou permitidos que um campo pode ter.
Podem pré-definidos ou definidos pelo usuário.

#### Integridade de vazio

Define que um campo pode ou não receber valor NULL (vazio).

#### **Integridade Referencial**

Define que os valores que aparecem em uma FK devem obrigatoriamente aparecer na PK da tabela referenciada.

### Modelo Lógico Normalização

- o **NORMALIZAÇÃO** é o processo que visa organizar os dados em um banco de dados.
- Este processo inclui regras para criação de tabelas e seus relacionamentos, a fim de proteger os dados e tornar o banco de dados mais flexível, eliminando a redundância e a dependência inconsistente.
- O Basicamente, é uma regra que deve ser estabelecida por uma tabela para que seja considerada "bem projetada".
- Existem 6 (seis) regras para normalização, mas normalmente se trabalha com as 3 (três) primeiras. Nós essas regras de formas normais (FN).
- A partir da 3ª forma normal diz-se que o banco de dados já se encontra normalizado.
- O Elas são acumulativas. Para se estar na 2ª forma normal, por exemplo, a 1ª deve ter sido também aplicada, assim como para a 3ª, a 1ª e a 2ª devem ter sido aplicadas também.

#### Modelo Lógico Primeira Forma Normal – 1FN

- A PRIMEIRA FORMA NORMAL (1FN) diz que todos os atributos de uma tabela devem ser atômicos, baseados em domínio simples, sem grupos ou valores repetidos.
- ✓ Possuir chave primária.
- ✓ Não possuir grupos repetitivos.
- ✓ Quebrar atributos compostos ou multivalorados em atributos atômicos.

### Modelo Lógico Exemplo Primeira Forma Normal – 1FN

| <u>codigo</u> | nome    | telefone                           | endereco                                                                        |
|---------------|---------|------------------------------------|---------------------------------------------------------------------------------|
| 1             | José    |                                    | Rua das Gaivotas, 796, Novo Horizonte,<br>Cariacica, ES, 29158-106              |
| 2             | Maria   | 39851795<br>985647526<br>934526987 | Avenida Dom Orlando Chaves, 742, Ponto<br>Nova, Várzea Grande, MT, 78116-130    |
| 3             | Joaquim | 36959288                           | Rua Lupicínio Rodrigues, 913, Vila<br>Cachoeirinha, Cachoeirinha, RS, 94910-160 |

Quebrar atributo composto

#### **Quebrar atributo** multivalorado

| <u>codigo</u> | nome    | telefone                           | rua                        | numero | bairro            | сер                   | cidade        | uf |
|---------------|---------|------------------------------------|----------------------------|--------|-------------------|-----------------------|---------------|----|
| 1             | José    | 35685248<br>985423658              | Rua das Gaivotas           | 796    | Novo Horizonte    | 29258-<br>958         | Cariacica     | ES |
| 2             | Maria   | 39851795<br>985647526<br>934526987 | Avenida Dom Orlando Chaves | 742    | Ponto Nova        | 78111-<br>589         | Várzea Grande | МТ |
| 3             | Joaquim | 36959288                           | Rua Lupicínio Rodrigues    | 913    | Vila Cachoeirinha | 94910-<br>9 <u>96</u> | Cachoeirinha  | RS |

| igo | telefone  | codigo | nome | rua              | numero | bairro         | сер    | cidade    |
|-----|-----------|--------|------|------------------|--------|----------------|--------|-----------|
| 0-  | 35685248  | 1      | José | Rua das Gaivotas | 796    | Novo Horizonte | 29258- | Cariacica |
|     | 985423658 |        |      |                  |        |                | 958    |           |
|     | 39851795  |        |      |                  |        |                | 78111- |           |

98564752 93452698 3695928

|          | 223162 |         |                            |     | 541116            | P             | 014440        |    |
|----------|--------|---------|----------------------------|-----|-------------------|---------------|---------------|----|
| 48<br>58 | 1      | José    | Rua das Gaivotas           | 796 | Novo Horizonte    | 29258-<br>958 | Cariacica     | ES |
| 95<br>26 | 2      | Maria   | Avenida Dom Orlando Chaves | 742 | Ponto Nova        | 78111-<br>589 | Várzea Grande | MT |
| 87<br>88 | 3      | Joaquim | Rua Lupicínio Rodrigues    | 913 | Vila Cachoeirinha | 94910-<br>996 | Cachoeirinha  | RS |
|          |        |         |                            |     |                   |               |               |    |

1FN

3

### Modelo Lógico Exemplo Primeira Forma Normal – 1FN

| <u>codigo</u> | nome    | telefone 1 | telefone 2             |
|---------------|---------|------------|------------------------|
| 1             | José    | 35685248   | 985423658              |
| 2             | Maria   | 39851795   | 985647526<br>934526987 |
| 3             | Joaquim | 36959288   | 988256901              |

Eliminar atributo repetido

| <u>codigo</u> | nome    | telefone                           |
|---------------|---------|------------------------------------|
| 1             | José    | 35685248<br>985423658              |
| 2             | Maria   | 39851795<br>985647526<br>934526987 |
| 3             | Joaquim | 36959288<br>988256901              |

Quebrar atributo multivalorado

| <u>codigo</u> | telefone 1 |
|---------------|------------|
| 1             | 35685248   |
| 1             | 985423658  |
| 2             | 39851795   |
| 2             | 985647526  |
| 2             | 934526987  |
| 3             | 36959288   |
| 3             | 988256901  |

| <u>codigo</u> | nome    |
|---------------|---------|
| 1             | José    |
| 2             | Maria   |
| 3             | Joaquim |

3

1FN

#### Modelo Lógico Segunda Forma Normal – 2FN

- A SEGUNDA FORMA NORMAL (2FN) diz que um conjunto de dados deve estar na 1FN e que todos os atributos não chaves devem depender unicamente da chave primária (não podendo ter dependências parciais).
- Desta maneira, na 2FN evitamos inconsistências devido a duplicidades.
- ✓ Estar na 1FN.
- ✓ Não possuir dependências parciais da chave primária.

### Modelo Lógico Exemplo Segunda Forma Normal – 2FN



Atributo não chave, **NÃO** depende unicamente da PK



2FN

#### Modelo Lógico Terceira Forma Normal – 3FN

- A TERCEIRA FORMA NORMAL (3FN) diz que um conjunto de dados deve estar na 1FN E 2FN os atributos não chave devem ser <u>mutuamente independentes</u> e <u>dependentes unicamente e exclusivamente da</u> <u>chave primária</u>.
- ✓ Estar na 1FN e 2FN;
- ✓ Garantir que todos os atributos não chave NÃO sejam funcionalmente dependentes de outros atributos não chave.

### Modelo Lógico Exemplo Terceira Forma Normal – 3FN



1

Atributo não chave, depende de outro(s) atributos não chave e não somente da PK

| numero pedido | codigo pedido | quantidade | valor unitario |  |  |
|---------------|---------------|------------|----------------|--|--|
| 13225         | PE-523        | 4          | 15,30          |  |  |
| 13226         | PE-102        | 3          | 200,50         |  |  |
| 13227         | PE-685        | 2          | 1050,12        |  |  |
| 13228         | PE-996        | 8          | 547,34         |  |  |

3FN

### Modelo Lógico Exercício Formas Normais

Exercício: Utilizando o Excel, normalize a tabela abaixo, com base no conteúdo passado.

Um exemplo da tabela abaixo, em Excel, se encontra no AVA.

| codigo | cod<br>cliente | nome cliente          | tel 1                  | tel 2                | endereco                                 | cod<br>produto | nome<br>produto | cod<br>fabricante | nome<br>fabricante | preco produto | quantidade<br>produto | Total  |
|--------|----------------|-----------------------|------------------------|----------------------|------------------------------------------|----------------|-----------------|-------------------|--------------------|---------------|-----------------------|--------|
| 1      | 1              | Sueli Mariane Vitória | 985632588              | 36589885             | Rua Ursa Menor, 189 - Criciuma - SC      | 3000           | Caneta          | 300               | Milar              | 50,00         | 2                     | 100,00 |
| 2      | 1              | Sueli Mariane Vitória | 985632588              | 36589885             | Rua Ursa Menor, 189 - Criciuma - SC      | 3411           | Lápis           | 400               | Clemu              | 150,00        | 3                     | 450,00 |
| 3      | 1              | Sueli Mariane Vitória | 985632588              | 36589885             | Rua Ursa Menor, 189 - Criciuma - SC      | 8000           | Borracha        | 300               | Milar              | 40,00         | 7                     | 280,00 |
| 4      | 2              | Luiz Jorge da Cunha   | 988010001<br>999965887 | 40045889             | Avenida da Esperança, 10, Içara - SC     | 3411           | Lápis           | 500               | Fabli              | 150,00        | 5                     | 750,00 |
| 5      | 3              | Cristiane Pietra      | 999975252              | 30095877<br>39658745 | Praça da Rota do Sol, 985 - Meleiro - SC | 4522           | Apontador       | 100               | Tous               | 70,00         | 2                     | 140,00 |
| 6      | 1              | Sueli Mariane Vitória | 985632588              | 36589885             | Rua Ursa Menor, 189 - Criciuma - SC      | 3000           | Caneta          | 100               | Tous               | 50,00         | 4                     | 200,00 |