Communities

Question 1:

For the following graph:

Write the adjacency matrix A, the degree matrix D, and the Laplacian matrix L. For each, find the sum of all entries and the number of nonzero entries.

sol:

Degree moter, D 12305678 2 0 3 0 60 30000 U 500002000 6 0 0 0 0 0 3 0 0 700000030 8 000 00003 Laplacian Matin L = D-A 12345673 2-1000000 2 -1 3 -1 00000 -1 3 0 -1 3 -100 -10 00-13-1-100 A has 27 non Zero 000-12-100 entices 6 0 0 0 -1 -13 -10 ohas 8 non-Zelo 0 0 = 1 0 0 - 13 -1 entices -1-100000-13 L has 30 non-200 enties. The sum of the enteres of A is 22

Question 2:

Consider the following undirected graph (i.e., edges may be considered bidirectional):

Run the "trawling" algorithm for finding dense communities on this graph and find all complete bipartite subgraphs of types $K_{3,2}$ and $K_{2,2}$. Note: In the case of $K_{2,2}$, we consider $\{\{W, X\}, \{Y, Z\}\}\}$ and $\{\{Y, Z\}, \{W, X\}\}$ to be identical.

sol:

	123 A and 1, , 2 123 and 1, , 2 123 and 1, , 2	1 kmah n = 98, E, C3 B = 90, E, D, C3 C = 90, A, E) P = 90, E) P = 90, E) Port Hunh(d = 3
20	1 3 U 3 2 E 1 4	item S-pport BE 3 B,C 2 E,C 2 A,E 2 A,E 2 A,C 2 B,E 3 B,E 3 B,E 3
2	1 bipartite ge	B, D 2 2 C, D 2 2 5

min support = 2 K2,2 Sipartile graph Support item BIE 3 B, C 2 E, c 2 A, E A,D 2 A,C 2 D, C 2 B,A C,D B 2 B)

Question 3:

We fit AGM to the network on the left, and found the parameters on the right:

Find the optimal values for p_{A} and p_{B} .

Sol:

Pa = Number of edges in the network / Total possible number of edges = 7/5c2 = 7/10.

Pb = Number of edges in the network / Total possible number of edges = 9/6c2 = 9/15.