DanilovVA 30112024-105800

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 0.4 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 11 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 10.7 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 5.6 дБ 2) 6.2 дБ 3) 6.8 дБ 4) 7.4 дБ 5) 8 дБ 6) 8.6 дБ 7) 9.2 дБ 8) 9.8 дБ 9) 10.4 дБ

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 276 МГц, частота ПЧ 30 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 30 MΓ_{II}
- 2) 552 MΓ_{II}
- 3) 798 MΓ_{II}
- 4) 246 MΓ_{II}.

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 3. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 2?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 3 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{4;-15\} \qquad 2) \ \{16;-71\} \qquad 3) \ \{4;-15\} \qquad 4) \ \{7;-29\} \qquad 5) \ \{4;-15\} \qquad 6) \ \{7;-29\} \qquad 7) \ \{7;-29\}$$

8) {16; -71} 9) {13; -99}

Для полного подавления **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 21 градусов.

Чему равна индуктивность компонента фазовращателя, если частота ПЧ равна 80 МГц?

Варианты ОТВЕТА:

1) 106.5 нГн 2) 144.7 нГн 3) 92.9 нГн 4) 68.4 нГн

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = -0.33441 - 0.11531i, \, s_{31} = 0.11624 - 0.33708i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -39 дБн 2) -41 дБн 3) -43 дБн 4) -45 дБн 5) -47 дБн 6) -49 дБн 7) -51 дБн 8) -53 дБн 9) 0 дБн

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 1908 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 13 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 425 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 2 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 4280 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 2334 МГц до 2368 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -74 дБм 2) -77 дБм 3) -80 дБм 4) -83 дБм 5) -86 дБм 6) -89 дБм 7) -92 дБм 8) -95 дБм 9) -98 дБм