Matrici

Una tabella di numeri reali disposti su m righe e n colonne è detta una matrice $m \times n$ di reali.

L'insieme di tutte le matrici di reali con m righe e n colonne viene denotato con $\mathbb{R}^{m \times n}$.

La generica matrice $m \times n$ è

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

che indichiamo anche come $A = (a_{ij})$.

Per comodità di notazione useremo indifferentemente uno tra i simboli a_{ij} , o A_{ij} , o A[i,j] per indicare la stessa cosa, cioè: l'elemento in riga i, colonna j di A.

Esempi di matrici

$$A = \begin{pmatrix} 2 & -\pi & 4 \\ 1 & 3 & -\sqrt{2} \end{pmatrix} \quad B = \begin{pmatrix} 0 & -\pi & 1 \\ 7 & -3 & 2 \\ 1 & 1 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 0 & 1 & 1 \end{pmatrix}$$

A è una matrice 2×3 , B è una matrice 3×3 , mentre C è una matrice 1×4 .

Se m=n diciamo che A è una matrice quadrata di ordine n. Quindi B è una matrice quadrata di ordine 3.

Esempi di matrici

Consideriamo le città di New York, Roma, Rio de Janeiro e Stoccolma e le temperature medie in tali città nei vari mesi dell'anno.

Numerando le città da 1 a 4 e i mesi da 1 a 12, possiamo rappresentare i valori di temperatura di ogni città in ogni mese con una matrice $A=\left(a_{ij}\right)$ di 4 righe e 12 colonne, in cui

 $a_{ij} = \text{temperatura media nella città } i \text{ nel mese } j$

Tale matrice (con valori in gradi Celsius) risulta essere

Vettori-riga e vettori-colonna

Una matrice $A \in \mathbb{R}^{1 \times s}$ è detta un vettore-riga. Ad esempio

$$(3 -\pi \frac{1}{2} 0 7)$$

Una matrice $A \in \mathbb{R}^{t \times 1}$ è detta un vettore-colonna. Ad esempio

$$\left(\begin{array}{c} -3\\\sqrt{2}\\0\end{array}\right)$$

Ad ogni vettore-riga o vettore-colonna corrisponde una n-pla. Le n-ple corrispondenti ai vettori di cui sopra sono $(3,-\pi,\frac{1}{2},0,7)$ e $(-3,\sqrt{2},0)$.

Righe e colonne

Data la matrice $A=(a_{ij})\in\mathbb{R}^{m\times n}$, indichiamo con A_i , per $i=1,\ldots,m$, il vettore-riga corrispondente alla riga i-ma di A:

$$A_i = \left(\begin{array}{cccc} a_{i1} & a_{i2} & \dots & a_{in} \end{array}\right)$$

Indichiamo con A^j , per $j=1,\ldots,n$, il vettore-colonna corrispondente alla colonna j-ma di A:

$$A^{j} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \dots \\ a_{mj} \end{pmatrix}$$

Righe e colonne

Possiamo allora pensare alla matrice A come ad un (super)vettore-colonna, le cui componenti sono le righe di A:

$$A = \begin{pmatrix} A_1 \\ A_2 \\ \dots \\ A_m \end{pmatrix}$$

o come un (super)vettore-riga, le cui componenti sono le colonne di ${\cal A}$

$$A = \left(\begin{array}{cccc} A^1 & A^2 & \dots & A^n \end{array} \right)$$

Diagonale principale e traccia

Sia $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ una matrice quadrata.

Gli elementi a_{ii} costituiscono la diagonale principale di A.

La loro somma viene detta la traccia di A,

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$$

$$\operatorname{tr} \left(\begin{array}{cccc} -4 & -1 & 5 & 5 \\ 1 & 2 & 3 & -8 \\ 0 & -3 & -1 & -9 \\ 7 & -\pi & \sqrt{2} & 2 \end{array} \right) = -1$$

Matrici diagonali

Una matrice $A \in \mathbb{R}^{n \times n}$ si dice diagonale se ogni elemento che non si trova sulla diagonale principale è 0:

$$\operatorname{diag}(c_1, c_2, \dots, c_n) = \begin{pmatrix} c_1 & 0 & \dots & 0 \\ 0 & c_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & c_n \end{pmatrix}$$

La matrice identità, denotata con I_n (I quando n è chiaro), è la matrice diagonale in cui tutti gli elementi della diagonale hanno valore 1:

$$I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Matrici triangolari

Una matrice $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ si dice triangolare superiore se $a_{ij} = 0$ per ogni $1 \le j < i \le n$.

Una matrice $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ si dice triangolare inferiore se $a_{ij} = 0$ per ogni $1 \le i < j \le n$.

Una matrice si dice triangolare se è triangolare superiore o triangolare inferiore.

$$\begin{pmatrix}
-4 & -1 & 15 & 5 \\
0 & 0 & 3 & -8 \\
0 & 0 & -1 & -9 \\
0 & 0 & 0 & 2
\end{pmatrix}
\qquad
\begin{pmatrix}
-4 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
1 & \pi & 16 & 0 \\
-7 & -2 & 5 & -3
\end{pmatrix}$$

Matrice trasposta

Sia $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ una matrice.

Diciamo che $B=(b_{hk})\in\mathbb{R}^{n\times m}$ è la matrice trasposta di A se $b_{ij}=a_{ji}$ per ogni $1\leq i\leq n$ e $1\leq j\leq m$.

La trasposta di A viene indicata con tA .

Se
$$A = \begin{pmatrix} 2 & -1 & 4 & 0 \\ 6 & 1 & -3 & 3 \end{pmatrix}$$
 allora ${}^{t}A = \begin{pmatrix} 2 & 6 \\ -1 & 1 \\ 4 & -3 \\ 0 & 3 \end{pmatrix}$

Se $B={}^tA$, allora $B_i={}^t(A^i)$ per ogni $i=1,\ldots,n$, e $B^j={}^t(A_j)$ per ogni $j=1,\ldots,m$.

- \bullet $t(^tA) = A.$
- A è triangolare superiore se e solo se tA è triangolare inferiore.
- A è diagonale se e solo se tA è diagonale.

Matrici simmetriche e antisimmetriche

Una matrice quadrata $A=(a_{ij})\in\mathbb{R}^{n\times n}$ si dice simmetrica se $a_{ij}=a_{ji}$ per ogni $1\leq i\leq n$ e $1\leq j\leq n$.

$$\begin{pmatrix} 2 & -1 & 4 & 0 \\ -1 & 1 & 3 & -\pi \\ 4 & 3 & 4 & 0 \\ 0 & -\pi & 0 & 3 \end{pmatrix}$$
 è simmetrica

La matrice A si dice antisimmetrica se $a_{ij}=-a_{ji}$ per ogni $1\leq i\leq n$ e $1\leq j\leq n$.

$$\begin{pmatrix} 0 & -1 & 4 & 5 \\ 1 & 0 & 3 & -\pi \\ -4 & -3 & 0 & -9 \\ -5 & \pi & 9 & 0 \end{pmatrix}$$
 è antisimmetrica

Proprietà delle matrici simmetriche e antisimmetriche

- Ogni matrice diagonale è simmetrica.
- Una matrice triangolare è simmetrica soltanto se è diagonale.
- Ogni matrice antisimmetrica ha diagonale nulla perché $a_{ii}=-a_{ii}$ implica $a_{ii}=0$.
- La traccia di una matrice antisimmetrica è 0.

Somma di matrici

Definiamo un'operazione

$$(+): \mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$$

che prende in input due matrici delle stesse dimensioni e produce una matrice delle medesime dimensioni.

Scriviamo A + B al posto di (+)(A, B).

La somma di $A=(a_{ij})\in\mathbb{R}^{m\times n}$ e $B=(b_{ij})\in\mathbb{R}^{m\times n}$ è la matrice $C=(c_{ij})\in\mathbb{R}^{m\times n}$ definita da:

$$c_{ij} = a_{ij} + b_{ij}$$
 $\forall i = 1, \dots, m \quad \forall j = 1, \dots, n$

$$\left(\begin{array}{ccc} 3 & 0 & -1 \\ -5 & 8 & 1 \end{array}\right) + \left(\begin{array}{ccc} 2 & 0 & -2 \\ 2 & -2 & -1 \end{array}\right) = \left(\begin{array}{ccc} 5 & 0 & -3 \\ -3 & 6 & 0 \end{array}\right)$$

L'elemento neutro

La matrice nulla, denotata con $\mathbf{0}_{mn}$ ($\mathbf{0}$ quando m e n sono chiari), è la matrice $m \times n$ in cui tutti gli elementi hanno valore 0:

$$\mathbf{0}_n = \left(\begin{array}{cccc} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 \end{array} \right)$$

 $\mathbf{0}_{mn}$ è l'elemento neutro rispetto alla somma di matrici in $\mathbb{R}^{m\times n}$: per ogni $A\in\mathbb{R}^{m\times n}$

$$\mathbf{0}_{mn} + A = A + \mathbf{0}_{mn} = A$$

Prodotto di matrici per scalare

Definiamo un'operazione

$$(\cdot): \mathbb{R} \times \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$$

che prende in input un numero reale e una matrice e produce una matrice delle stesse dimensioni di quella di partenza. Scriviamo cA al posto di $(\cdot)(c,A)$.

Il prodotto di $c \in \mathbb{R}$ con $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ è la matrice $B = (b_{ij}) \in \mathbb{R}^{m \times n}$ definita da:

$$b_{ij} = c a_{ij}$$
 $\forall i = 1, \dots, m \quad \forall j = 1, \dots, n$

$$-3\left(\begin{array}{rrr} 3 & 0 & -1 \\ -5 & 8 & 1 \end{array}\right) = \left(\begin{array}{rrr} -9 & 0 & 3 \\ 15 & -24 & -3 \end{array}\right)$$

Ovviamente 1A=A e $0A=\mathbf{0}_{mn}$ per ogni $A\in\mathbb{R}^{m\times n}$

Proprietà della matrice trasposta

Teorema

Per ogni $A,B\in\mathbb{R}^{m imes n}$ e $c\in\mathbb{R}$ si ha

$$(1)^{t}(A+B) = {}^{t}A + {}^{t}B$$

2
$$^{t}(cA) = c(^{t}A).$$

Prodotto matriciale

Definiamo un'operazione

$$(\cdot): \mathbb{R}^{m \times r} \times \mathbb{R}^{r \times n} \to \mathbb{R}^{m \times n}$$

che prende in input due matrici tali che la prima ha tante colonne quante le righe della seconda e produce una matrice con il numero di righe della prima e il numero di colonne della seconda. Scriviamo AB al posto di $(\cdot)(A,B)$.

Il prodotto matriciale di $A=(a_{ij})\in\mathbb{R}^{m\times r}$ e $B=(b_{ij})\in\mathbb{R}^{r\times n}$ è la matrice $C=(c_{ij})\in\mathbb{R}^{m\times n}$ definita da:

$$c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj}$$
 $\forall i = 1, \dots, m \quad \forall j = 1, \dots, n$

Prodotto matriciale e prodotto scalare

Se $A=(a_{ij})\in\mathbb{R}^{m\times r}$ e $B=(b_{ij})\in\mathbb{R}^{r\times n}$ allora $AB=(c_{ij})\in\mathbb{R}^{m\times n}$ è definita da:

$$c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj} = \langle A_i, B^j \rangle$$
 $\forall i = 1, \dots, m \quad \forall j = 1, \dots, n$

Il prodotto è effettuato righe per colonne:

 c_{ij} è ottenuto prendendo la riga A_i di A, la colonna B^j di B, e sommando i prodotti fra gli elementi di A_i e i corrispondenti elementi di B^j .

Se m=n=1 (cioè A è un vettore-riga e B è un vettore-colonna) il prodotto matriciale AB è la matrice 1×1 il cui elemento è $\langle A,B\rangle$.

Se $A=(a_{ij})\in\mathbb{R}^{m\times r}$ e $B=(b_{ij})\in\mathbb{R}^{r\times n}$ abbiamo definito AB. Perché sia possibile calcolare anche BA è necessario e sufficiente che n=m. Allora $AB\in\mathbb{R}^{m\times n}=\mathbb{R}^{m\times m}$ e $BA\in\mathbb{R}^{r\times r}$.

Perché AB=BA è quindi necessario che anche m=r, cioè che A e B siano entrambe matrici quadrate di ordine m=n=r.

$$A = \begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$
$$AB = \begin{pmatrix} -1 & -1 \\ 2 & 8 \end{pmatrix} \qquad BA = \begin{pmatrix} 1 & 3 \\ 4 & 6 \end{pmatrix}$$

Quindi il prodotto matriciale non è commutativo.

Associatività e distributività

Ж

 \mathbf{H}

- Se A, B e C hanno le stesse dimensioni A + (B + C) = (A + B) + C;
- se A e B hanno le stesse dimensioni c(A+B)=cA+cB;
- se AB esiste allora c(AB) = (cA)B = A(cB);
- se AB e BC esistono allora A(BC) = (AB)C;
- se B e C hanno le stesse dimensioni e AB esiste allora
 A(B+C) = AB + AC;
- se B e C hanno le stesse dimensioni e BA esiste allora (B+C)A=BA+CA.

L'elemento neutro rispetto al prodotto matriciale

La matrice identità I_n è l'elemento neutro rispetto al prodotto di matrici in $\mathbb{R}^{n\times n}$: per ogni $A\in\mathbb{R}^{n\times n}$

$$I_n A = AI_n = A$$

Dimostriamo $AI_n=A$: ricordiamo che se $B=I_n$ allora $b_{jj}=1$ e $b_{kj}=0$ quando $k\neq j$. Quindi

$$(AI_n)[i,j] = \sum_{k=1}^{r} a_{ik} b_{kj} = a_{ij}$$

Potenze di matrici

Se $A \in \mathbb{R}^{n \times n}$ possiamo definire $A^2 = AA$, $A^3 = AAA$, ecc. In generale la potenza k-ma della matrice A è definita da $A^0 = I$, $A^{k+1} = A^kA$.

Una matrice quadrata A tale che $A^2=A$ (e quindi $A^k=A$ per ogni k>0) è idempotente.

I è idempotente, ma esistono altre matrici idempotenti, come ad esempio

$$\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$

Polinomi di matrici

Se $a_0, a_1, \ldots, a_k \in \mathbb{R}$ e $X \in \mathbb{R}^{n \times n}$ l'espressione

$$p(X) := a_0 I + a_1 X + a_2 X^2 + \dots + a_k X^k$$

viene detta un polinomio della matrice X.

Se $A \in \mathbb{R}^{n \times n}$ è tale che $p(A) = \mathbf{0}$ allora A viene detta una radice di p(X).

Applicazioni del prodotto di matrici

Consideriamo n azionisti che possiedono stock-options (azioni che non possono essere vendute prima di un anno) di p compagnie. Conoscendo il valore medio dell'azione di ogni compagnia in ciascun mese dell'anno, vogliamo valutare il capitale virtuale posseduto da ognuno degli azionisti in ogni mese.

Sia $A=(a_{ij})\in\mathbb{R}^{12 imes p}$ tale che a_{ij} è il valore medio di un'azione della compagnia j nel mese i.

Sia $B = (b_{jk}) \in \mathbb{R}^{p \times n}$ tale che b_{jk} è il numero di stock-options della compagnia j possedute dall'azionista k (fisso durante l'anno).

Sia
$$C = AB = (c_{ik}) \in \mathbb{R}^{12 \times n}$$
.

Per ogni $i=1,\ldots,12$ e $k=1,\ldots,n$, $c_{ik}=\sum_{j=1}^p a_{ij}b_{jk}$ è il valore nel mese i delle stock-options possedute dall'azionista j.

La matrice ${\cal C}$ contiene il capitale virtuale posseduto da ognuno degli azionisti in ogni mese.

Applicazioni del prodotto di matrici

Siano p_1, \ldots, p_m stazioni di partenza da cui si può partire per arrivare a stazioni di destinazione d_1, \ldots, d_n .

Ogni viaggio da p_i a d_j attraversa esattamente una delle stazioni intermedie $s_1,\ldots,s_t.$

Supponendo di conoscere il numero di percorsi tra p_i e s_k e tra s_k e d_j calcoliamo il numero di percorsi tra p_i e d_j .

Siano $A=(a_{ik})\in\mathbb{R}^{m\times t}$ e $B=(b_{kj})\in\mathbb{R}^{t\times n}$ tali che a_{ik} è il numero di percorsi tra p_i e s_k e b_{kj} è il numero di quelli tra s_k e d_j . Il numero di percorsi possibili tra p_i e d_j è

Thurselo di percorsi possibili tra p_i e a_j

$$\sum_{k=1}^{t} a_{ik} b_{kj}.$$

Quindi la matrice prodotto AB contiene le informazioni desiderate.

Un caso particolare

Siano $A \in \mathbb{R}^{m \times n}$ e $X \in \mathbb{R}^{n \times 1}$ (X è un vettore-colonna). Il prodotto è un vettore-colonna $m \times 1$:

$$AX = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix}.$$

Sia $\mathbf{e}_i \in \mathbb{R}^{n \times 1}$ definito da $x_i = 1$ e $x_j = 0$ per $j \neq i$. Allora il prodotto $A\mathbf{e}_i$ restituisce il vettore-colonna A^i .

Sia
$$\mathbf{1} = {}^{t}(1 \ 1 \ \cdots \ 1).$$

Allora $A\mathbf{1}$ ha nella riga *i*-esima la somma degli elementi di A_i .

Applicazioni della potenza di matrici

Sia G=(V,E) un grafo non orientato con $V=\{1,\ldots,n\}$. La matrice di adiacenza di G è la matrice $A=(a_{ij})\in\mathbb{R}^{n\times n}$ tale che

$$a_{ij} = 1 \text{ se } ij \in E; \quad a_{ij} = 0 \text{ se } ij \notin E.$$

A è simmetrica e la sua diagonale consiste di 0.

Sia $\mathbf{1} = {}^t(11\cdots 1)$ e consideriamo il prodotto $A\mathbf{1}$. Abbiamo

$$A\mathbf{1} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \dots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} + \dots + a_{1n} \\ \vdots \\ a_{n1} + \dots + a_{nn} \end{pmatrix} = \begin{pmatrix} d(1) \\ \vdots \\ d(n) \end{pmatrix}$$

Ogni d(i) è il grado del nodo i in G.

Vogliamo dimostrare che per $k \geq 1$, se $A^k = (a_{ij}^k)$, si ha che

 a_{ij}^k = numero di cammini di lunghezza k tra $i \in j$ in G.

Procederemo per induzione su k.

$\forall k \geq 1(a_{ij}^k \ \mathbf{\grave{e}} \ \mathbf{il} \ \mathbf{numero} \ \mathbf{di} \ \mathbf{cammini} \ \mathbf{di} \ \mathbf{lunghezza} \ k \ \mathbf{tra} \ i \ \mathbf{e} \ j)$

Caso base: i cammini di lunghezza 1 sono gli archi. Quindi $A^1 = A$ è la matrice che, per ogni coppia di nodi i e j, conta quanti cammini di lunghezza 1 esistono fra i e j in G (1 o 0).

Passo induttivo: Sia vero che a_{ij}^k è il numero di cammini di lunghezza k fra i e j.

Un cammino di lunghezza k+1 fra i e j è dato da un cammino di lunghezza k tra i e v, con v un nodo adiacente a j, più l'arco vj. Per ogni v tale che $a_{vj}=1$ ogni cammino di lunghezza k fra i e v produce un cammino di lunghezza k+1 fra i e j. Il numero di cammini di lunghezza k da i a j è

$$\sum_{v=1}^{n} a_{iv}^{k} a_{vj} = a_{ij}^{k+1}.$$

I cammini contati in A^k possono non essere elementari e semplici: l'arco ij produce il ciclo (non semplice) di lunghezza 2 (i, j, i).

Applicazioni della potenza di matrici

Consideriamo il grafo

$$G = (\{1, 2, 3, 4\}, \{12, 13, 14, 24, 34\})$$

con matrice di adiacenza

$$A = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right).$$

Allora

$$A^{3} = \left(\begin{array}{cccc} 4 & 5 & 5 & 5 \\ 5 & 2 & 2 & 5 \\ 5 & 2 & 2 & 5 \\ 5 & 5 & 5 & 4 \end{array}\right).$$

Quindi ci sono 5 cammini di lunghezza 3 tra 1 e 2: (1,2,1,2), (1,3,1,2), (1,4,1,2), (1,3,4,2) e (1,2,4,2).

Prodotto e trasposizione

Teorema

Siano $A \in \mathbb{R}^{m \times n}$ e $B \in \mathbb{R}^{n \times m}$. Allora ${}^t(AB) = {}^tB{}^tA$.

Dimostrazione.

Siano C = AB, $D = {}^tC$ e $E = {}^tB{}^tA$. Vogliamo D = E.

Per ogni $i=1,\ldots,m$ e $j=1,\ldots,m$ abbiamo

$$D_{ij} = C_{ji} = \sum_{k=1}^{n} A_{jk} B_{ki}$$
$$= \sum_{k=1}^{n} ({}^{t}A)_{kj} ({}^{t}B)_{ik}$$
$$= \sum_{k=1}^{n} ({}^{t}B)_{ik} ({}^{t}A)_{kj} = E_{ij}.$$

Matrici di permutazione

Una matrice di permutazione è una matrice quadrata $P=(p_{ij})\in\mathbb{R}^{n\times n}$ in cui compaiono solo 0 e 1 ed inoltre

$$\forall i = 1, \dots, n \, \forall j = 1, \dots, n \, \sum_{k=1}^{n} p_{ik} = \sum_{k=1}^{n} p_{kj} = 1,$$

cioè ogni riga e ogni colonna di P contengono esattamente un "1". Il nome delle matrici di permutazione è dovuto al fatto che la moltiplicazione di una matrice $A \in \mathbb{R}^{n \times n}$ a sinistra o a destra per una matrice di permutazione ha l'effetto di permutare le righe o, rispettivamente, le colonne di A.

Esempio di matrice di permutazione

Siano

$$P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad A = \begin{pmatrix} 3 & \pi & -1 \\ 1 & -8 & 0 \\ -2 & 6 & e \end{pmatrix}.$$

Abbiamo

$$PA = \begin{pmatrix} -2 & 6 & e \\ 3 & \pi & -1 \\ 1 & -8 & 0 \end{pmatrix} \quad AP = \begin{pmatrix} \pi & -1 & 3 \\ -8 & 0 & 1 \\ 6 & e & -2 \end{pmatrix}.$$

La moltiplicazione a destra per P permuta le righe di A, la moltiplicazione a sinistra per P permuta le colonne di A.

Permutazioni e matrici

Ad ogni $\pi \in S_n$ corrisponde una matrice di permutazione $P_{(\pi)}$: $P_{(\pi)}[i,j]=1$ se $j=\pi(i)$ e $P_{(\pi)}[i,j]=0$ altrimenti. Se $\pi=(2,4,1,3)$ abbiamo

$$P_{(\pi)} = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

 π^{-1} è la permutazione inversa di π , ossia la permutazione tale che $\pi^{-1}(\pi(i))=i \text{ per ogni } i=1,\dots,n.$

Se $\pi = (2,4,1,3)$ allora $\pi^{-1} = (3,1,4,2)$.

Permutazioni e matrici

$$P_{(\pi)}A = \begin{pmatrix} A_{\pi(1)} \\ A_{\pi(2)} \\ \dots \\ A_{\pi(n)} \end{pmatrix}$$

Sia $B=P_{(\pi)}A$: B_{ij} è il prodotto della riga i di $P_{(\pi)}$ con A^j . Siccome nella riga i di $P_{(\pi)}$ ogni elemento vale 0 tranne quello in colonna $\pi(i)$, che vale 1, si ha $B_{ij}=A_{\pi(i)j}$.

$$AP_{(\pi)} = \begin{pmatrix} A^{\pi^{-1}(1)} & A^{\pi^{-1}(2)} & \cdots & A^{\pi^{-1}(n)} \end{pmatrix}.$$

Sia $C=AP_{(\pi)}$: C_{ij} è il prodotto di A_i con la colonna j di $P_{(\pi)}$. Siccome nella colonna j di $P_{(\pi)}$ ogni elemento vale 0 tranne quello in riga $\pi^{-1}(j)$, che vale 1, si ha $C_{ij}=A_{i\pi^{-1}(j)}$.

Scomposizione in blocchi: esempio

$$A = \begin{pmatrix} 0 & 2 & 3 & 1 & 3 & 8 & 9 \\ 5 & 9 & 4 & 7 & 6 & 5 & 0 \\ 2 & 1 & 5 & 1 & 5 & 0 & 1 \\ 5 & 9 & 0 & 4 & 0 & 3 & 0 \\ 0 & 9 & 3 & 1 & 2 & 7 & 2 \\ 6 & 1 & 0 & 1 & 0 & 2 & 4 \\ 8 & 0 & 9 & 2 & 6 & 3 & 1 \end{pmatrix} \leadsto \begin{pmatrix} 0 & 2 & 3 & 1 & 3 & 8 & 9 \\ 5 & 9 & 4 & 7 & 6 & 5 & 0 \\ 2 & 1 & 5 & 1 & 5 & 0 & 1 \\ 5 & 9 & 0 & 4 & 0 & 3 & 0 \\ \hline 0 & 9 & 3 & 1 & 2 & 7 & 2 \\ 6 & 1 & 0 & 1 & 0 & 2 & 4 \\ 8 & 0 & 9 & 2 & 6 & 3 & 1 \end{pmatrix}$$

A è vista come una matrice 2×3 i cui elementi sono matrici B_{ij} :

$$A = \left(\begin{array}{ccc} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{array}\right)$$

Ad esempio
$$B_{13} = \begin{pmatrix} 1 & 3 & 8 & 9 \\ 7 & 6 & 5 & 0 \\ 1 & 5 & 0 & 1 \\ 4 & 0 & 3 & 0 \end{pmatrix}$$
 e $B_{21} = \begin{pmatrix} 0 & 9 \\ 6 & 1 \\ 8 & 0 \end{pmatrix}$

Sottomatrici

Sia $A=(a_{ij})\in\mathbb{R}^{m\times n}$, e siano i_1,i_2,j_1,j_2 tali che $1\leq i_1\leq i_2\leq m$ e $1\leq j_1\leq j_2\leq n$.

La matrice $B \in \mathbb{R}^{(i_2-i_1+1)\times(j_2-j_1+1)} = (b_{hk})$ contenuta tra le righe i_1 e i_2 (comprese) e le colonne j_1 e j_2 (comprese) di A è una sottomatrice di A.

Per ogni $k = 1, \dots, i_2 - i_1 + 1$ e $h = 1, \dots, j_2 - j_1 + 1$ si ha

$$b_{hk} = a_{i_1+h-1,j_1+k-1}.$$

$$A = \begin{pmatrix} 0 & 2 & 3 & 1 & 3 & 8 & 9 \\ 5 & 9 & 4 & 7 & 6 & 5 & 0 \\ 2 & 1 & 5 & 1 & 5 & 0 & 1 \\ 5 & 9 & 0 & 4 & 0 & 3 & 0 \\ 0 & 9 & 3 & 1 & 2 & 7 & 2 \\ 6 & 1 & 0 & 1 & 0 & 2 & 4 \\ 8 & 0 & 9 & 2 & 6 & 3 & 1 \end{pmatrix} \qquad i_1 = 3$$

$$i_2 = 5$$

$$j_1 = 4$$

$$j_2 = 5$$

Scomposizione in blocchi

Una scomposizione in blocchi di $A \in \mathbb{R}^{m \times n}$ è definita prendendo $p \geq 1$ naturali positivi c_1, \ldots, c_q tali che

$$r_1 + \cdots + r_p = m$$
 e $c_1 + \cdots + c_q = n$.

La scomposizione ripartisce A in $p \times q$ sottomatrici (blocchi):

$$A = \left(\begin{array}{ccc} B_{11} & \cdots & B_{1q} \\ \cdots & \cdots & \cdots \\ B_{p1} & \cdots & B_{pq} \end{array}\right)$$

dove la sottomatrice B_{hk} ha dimensioni $r_h \times c_k$, ed è contenuta in A tra le righe $\sum_{i=1}^{h-1} r_i + 1$ e $\sum_{i=1}^h r_i$ e tra le colonne $\sum_{j=1}^{k-1} c_j + 1$ e $\sum_{j=1}^k c_j$.

Matrice diagonale a blocchi

Fissiamo $A \in \mathbb{R}^{n \times n}$ e d_1, \ldots, d_k naturali positivi con $\sum_i d_i = n$. Sia $D_i \in \mathbb{R}^{d_i \times d_i}$ la sottomatrice quadrata di A la cui prima riga e prima colonna hanno indice $1 + \sum_{j=1}^{i-1} d_j$.

Se $A_{uv}=0$ per ogni elemento uv che non appartiene alle sottomatrici D_i , A è una matrice diagonale a k blocchi, con blocchi D_1,\ldots,D_k .

$$A = \begin{pmatrix} 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 5 & 4 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 7 & 8 & 5 & 4 & 0 \\ 0 & 0 & 6 & 0 & 7 & 3 & 0 \\ 0 & 0 & 1 & 1 & 6 & 9 & 0 \\ 0 & 0 & 0 & 8 & 2 & 4 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 9 \end{pmatrix} \qquad d_1 = 2$$

Compatibilità per la somma

Le operazione tra matrici vengono generalizzate ad operazioni tra matrici scomposte in blocchi quando le scomposizioni sono compatibili con l'operazione.

Siano $A, B \in \mathbb{R}^{m \times n}$ e scomponiamo

$$A$$
 in $p \times q$ blocchi di righe r_1, \ldots, r_p e colonne c_1, \ldots, c_q ,

$$B$$
 in $s \times t$ blocchi di righe r'_1, \ldots, r'_s e colonne c'_1, \ldots, c'_t .

Le scomposizioni sono compatibili con la somma di A e B se "le due scomposizioni usano gli stessi blocchi", cioè

1
$$p = s e q = t;$$

$$\mathbf{2} \ r_i = r_i'$$
 e $c_j = c_j'$ per ogni $i = 1, \ldots, p$ e $j = 1, \ldots, q$.

Se
$$A = \begin{pmatrix} C_{11} & \cdots & C_{1q} \\ \cdots & \cdots & \cdots \\ C_{p1} & \cdots & C_{pq} \end{pmatrix}$$
 e $B = \begin{pmatrix} D_{11} & \cdots & D_{1q} \\ \cdots & \cdots & \cdots \\ D_{p1} & \cdots & D_{pq} \end{pmatrix}$

allora
$$A+B=\left(\begin{array}{cccc} C_{11}+D_{11} & \cdots & C_{1q}+D_{1q} \\ \cdots & \cdots & \cdots \\ C_{p1}+D_{p1} & \cdots & C_{pq}+D_{pq} \end{array}\right)$$

Siano $A \in \mathbb{R}^{m \times t}$ e $B \in \mathbb{R}^{t \times n}$.

Scomponiamo
$$A$$
 in $r \times 1$ blocchi: $A = \begin{pmatrix} X_{11} \\ \cdots \\ X_{r1} \end{pmatrix}$.

Allora

$$AB = \left(\begin{array}{c} X_{11}B \\ \cdots \\ X_{r1}B \end{array}\right).$$

Ogni elemento di AB è il prodotto di una riga di A e una colonna di B. Per ogni $i=1,\ldots,r$, le righe di A in X_{i1} producono $X_{i1}B$.

Se scomponiamo B in $1 \times c$ blocchi $B = (Y_{11} \cdots Y_{1c})$ allora

$$AB = (AY_{11} \cdots AY_{1c}).$$

Siano $A \in \mathbb{R}^{m \times t}$ e $B \in \mathbb{R}^{t \times n}$.

Scomponiamo A in $p \times q$ blocchi di righe r_1, \ldots, r_p e colonne c_1, \ldots, c_q e B in $s \times l$ blocchi di righe r'_1, \ldots, r'_s e colonne c'_1, \ldots, c'_l .

Le scomposizioni sono compatibili con il prodotto di A e B se

- **2** $c_j = r'_j$ per ogni j = 1, ..., q.

$$\mathsf{Se}\; A = \left(\begin{array}{ccc} C_{11} & \cdots & C_{1q} \\ \cdots & \cdots & \cdots \\ C_{p1} & \cdots & C_{pq} \end{array} \right) \; \mathsf{e}\; B = \left(\begin{array}{ccc} D_{11} & \cdots & D_{1l} \\ \cdots & \cdots & \cdots \\ D_{q1} & \cdots & D_{ql} \end{array} \right)$$

poniamo
$$C_i = (C_{i1} \ C_{i2} \ \cdots C_{iq})$$
 e $D^j = \begin{pmatrix} D_{1j} \\ \cdots \\ D_{qj} \end{pmatrix}$.

Allora
$$AB = \begin{pmatrix} C_1 \\ \cdots \\ C_p \end{pmatrix} B = \begin{pmatrix} C_1B \\ \cdots \\ C_pB \end{pmatrix} = \begin{pmatrix} C_1(D^1 \cdots D^l) \\ \cdots \\ C_p(D^1 \cdots D^l) \end{pmatrix} = \begin{pmatrix} C_1D^1 \cdots C_1D^l \\ \cdots \\ C_nD^1 \cdots C_nD^l \end{pmatrix}.$$

Il prodotto AB è la matrice a blocchi

$$AB = \begin{pmatrix} \sum_{h=1}^{q} C_{1h} D_{h1} & \cdots & \sum_{h=1}^{q} C_{1h} D_{hl} \\ \cdots & \cdots & \cdots \\ \sum_{h=1}^{q} C_{ph} D_{h1} & \cdots & \sum_{h=1}^{q} C_{ph} D_{hl} \end{pmatrix}.$$

Questo prodotto a blocchi ricorda il prodotto matriciale "normale". Gli elementi del prodotto matriciale sono dati dalla somma dei prodotti degli elementi di una riga di A con gli elementi di una colonna di B, mentre gli elementi del prodotto a blocchi sono dati dalla somma dei prodotti matriciali dei blocchi di una riga della scomposizione di A con i blocchi di una colonna della scomposizione di B.

Matrice inversa

Sia $A \in \mathbb{R}^{m \times n}$.

- $B \in \mathbb{R}^{n \times m}$ è un'inversa sinistra di A se $BA = I_n$;
- $B \in \mathbb{R}^{n \times m}$ è un'inversa destra di A se $AB = I_m$;
- Se $m=n, B \in \mathbb{R}^{n \times n}$ è un'inversa di A se $AB=BA=I_n$;
- Se una matrice $A \in \mathbb{R}^{n \times n}$ possiede un'inversa $B \in \mathbb{R}^{n \times n}$, allora diciamo che A è invertibile e scriviamo $B = A^{-1}$.

$$AB = \begin{pmatrix} 2 & 3 & 0 \\ 0 & -2 & 4 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \\ 0 & 0 \\ 0 & 1/4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Quindi A è un'inversa sinistra di B e B è un'inversa destra di A. Non essendo quadrate, nè A nè B sono matrici invertibili.

Le inverse delle matrici rettangolari non sono uniche

(3 - 1) ha (almeno) due inverse destre:

$$\begin{pmatrix} 3 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix} \qquad \begin{pmatrix} 3 & -1 \end{pmatrix} \begin{pmatrix} -1 \\ -4 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix}$$

Non tutte le matrici quadrate sono invertibili

 $\mathbf{0}_{n,n}$ non ha inversa: $\mathbf{0}_{n,n}B=B\mathbf{0}_{n,n}=\mathbf{0}_{n,n}$ per ogni $B\in\mathbb{R}^{n\times n}.$

Se
$$A=\begin{pmatrix} 1 & -1 \\ 3 & -3 \end{pmatrix}$$
 sia $B=\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ una sua ipotetica inversa.

Da AB = I otteniamo

$$\begin{cases} x - z = 1, \\ y - w = 0, \\ 3x - 3z = 0, \\ 3y - 3w = 1 \end{cases}$$

condizioni ovviamente impossibili.

Alcune matrici quadrate sono invertibili

Chiaramente II = I e quindi $I^{-1} = I$.

Siano
$$A=\begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$$
 e $B=\begin{pmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$

Abbiamo AB = BA = I e quindi $B = A^{-1}$ e $A = B^{-1}$.

Se A è invertibile allora anche A^{-1} lo è e si ha $(A^{-1})^{-1} = A$.

Inverse delle matrici quadrate

Ogni matrice quadrata A con un'inversa destra e un'inversa sinistra è invertibile.

Sia L un'inversa sinistra di A e R un'inversa destra di A:

$$R = IR = (LA)R = L(AR) = LI = L.$$

Quindi se A è invertibile l'inversa A^{-1} è unica.

Per verificare che $B=A^{-1}$, basta verificare una sola tra le condizioni che BA=I e AB=I.

Le matrici di permutazione sono invertibili

Sia $A=P_{(\pi)}$ una matrice di permutazione, dove π è una permutazione di $\{1,\dots,n\}$. Sia $B=P_{(\pi^{-1})}$.

Nel prodotto AB, le righe di B vengono riordinate secondo la permutazione π , ossia $(AB)_i=B_{\pi(i)}$.

Tale riga ha un unico 1, in posizione $\pi^{-1}(\pi(i))=i$. Quindi

$$P_{(\pi)}P_{(\pi^{-1})} = I$$

Nel prodotto BA, le righe di A vengono riordinate secondo la permutazione π^{-1} , ossia $(BA)_i=A_{\pi^{-1}(i)}$.

Tale riga ha un unico 1, in posizione $\pi(\pi^{-1}(i)) = i$. Quindi

$$P_{(\pi^{-1})}P_{(\pi)} = I$$

Quindi $P_{(\pi)}$ è invertibile e $(P_{(\pi)})^{-1} = P_{(\pi^{-1})}$.

Le matrici di permutazione sono invertibili

Consideriamo la permutazione $\pi=(3,1,2,4)$ con $\pi^{-1}=(2,3,1,4)$:

$$P_{(\pi)} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad P_{(\pi^{-1})} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Si può verificare che $P_{(\pi)}P_{(\pi^{-1})} = P_{(\pi^{-1})}P_{(\pi)} = I$.

L'inversa di una matrice di permutazione

Teorema

Sia A una matrice di permutazione. Allora $A^{-1} = {}^tA$.

Dimostrazione.

L'elemento ij di tAA è il prodotto scalare di $({}^tA)_i$ e di A^j . Dato che $({}^tA)_i=A^i$ il prodotto scalare vale 1 se e solo se i=j.

Quindi ${}^tAA = I$ e perciò ${}^tA = A^{-1}$.

Otteniamo anche

$$P_{(\pi^{-1})} = {}^t P_{(\pi)}$$

per ogni permutazione π .

Matrici ortogonali

 $A \in \mathbb{R}^{n \times n}$ è una matrice ortogonale se A è invertibile e si ha

$$A^{-1} = {}^{t}A$$
.

Quindi ogni matrice di permutazione è una matrice ortogonale.

$$A_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

è una matrice ortogonale per ogni $\alpha \in \mathbb{R}$, e $A_{\alpha}^{-1} = A_{-\alpha}$.

Se $\alpha \neq 2k\pi$ per ogni $k \in \mathbb{Z}$, A_{α} non è di permutazione.

Inversa del prodotto

Teorema

Siano $A, B \in \mathbb{R}^{n \times n}$ matrici invertibili. Allora AB è invertibile e

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Dimostrazione.

$$(AB)(B^{-1}A^{-1}) = A(B^{-1}B)A^{-1} = AIA^{-1} = AA^{-1} = I.$$

Quindi l'inversa di un prodotto è il prodotto delle inverse, ma nell'ordine inverso.

Questa proprietà si generalizza a

$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}\dots$$

Matrici simili

Siano $A, B \in \mathbb{R}^{n \times n}$. Diciamo che A è simile a B se esiste una matrice invertibile $Q \in \mathbb{R}^{n \times n}$ tale che

$$A = Q^{-1}BQ.$$

La similitudine tra matrici in $\mathbb{R}^{n \times n}$ è una relazione di equivalenza:

Riflessività $A = I^{-1}AI$, e quindi A è simile ad A.

Simmetria sia A simile a B perché $A=Q^{-1}BQ$. Sia $R=Q^{-1}$: $R^{-1}AR=Q\,A\,Q^{-1}=Q(Q^{-1}\,B\,Q)Q^{-1}=B.$ Quindi B è simile ad A.

Transitività siano A simile a B e B simile a C perché $A=Q^{-1}BQ \text{ e } B=R^{-1}CR$:

$$A = Q^{-1}BQ = Q^{-1}(R^{-1}CR)Q = (Q^{-1}R^{-1})C(RQ)$$

= $(RQ)^{-1}C(RQ)$.

Quindi A è simile a C.

Matrici simili

Consideriamo la matrice ortogonale $A_{\pi/4} = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix}$.

Allora
$$A_{\pi/4}^{-1} = \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ -\sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix} = A_{-\pi/4}.$$

$$\begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ -\sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix} = \begin{pmatrix} -\sqrt{2} & \sqrt{2} \\ -\sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ -\sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ -1 & -1 \end{pmatrix}$$

e quindi
$$\begin{pmatrix} -2 & 1 \\ 0 & -1 \end{pmatrix}$$
 e $\begin{pmatrix} -2 & 0 \\ -1 & -1 \end{pmatrix}$ sono matrici simili.