BÀI 5. ĐẠO HÀM CẤP HAI

A. LÝ THUYẾT

1. Định nghĩa

Giả sử hàm số y = f(x) có đạo hàm tại mỗi điểm $x \in (a;b)$. Khi đó, hệ thức y' = f'(x) xác định một hàm số mới trên khoảng (a;b). Nếu hàm số y' = f'(x) lại có đạo hàm tại x thì ta gọi đạo hàm của y' là đạo hàm cấp hai của hàm số y = f(x) và kí hiệu là y'' hoặc f''(x).

Chú ý:

+ Đạo hàm cấp 3 của hàm số y=f(x) được định nghĩa tương tự và kí hiệu là y"' hoặc f'''(x) hoặc $f^{(3)}(x)$.

+ Cho hàm số y = f(x) có đạo hàm cấp n-1, kí hiệu $f^{(n-1)}(x)$ ($n \in \mathbb{N}$, $n \ge 4$). Nếu $f^{(n-1)}(x)$ có đạo hàm thì đạo hàm của nó được gọi là đạo hàm cấp n của f(x), kí hiệu $y^{(n)}$ hoặc $f^{(n)}(x)$.

$$f^{(n)}(x) = (f^{(n-1)}(x))$$
.

Ví dụ 1. Với
$$y = 7x^4 + 8x + 12$$
. Tính $y^{(5)}$

Lời giải

Ta có:
$$y' = 28x^3 + 8$$
, $y'' = 84x^2$, $y''' = 168x$, $y^{(4)} = 168$, $y^{(5)} = 0$.
Vậy $y^{(5)} = 0$.

2. Ý nghĩa cơ học của đạo hàm cấp hai

Xét chuyển động xác định bởi phương trình s = f(t), trong đó s = f(t) là một hàm số có đạo hàm đến cấp hai. Vận tốc tức thời tại t của chuyển động là v(t) = f'(t).

Lấy số gia Δt tại t thì v(t) có số gia tương ứng là Δv .

Tỉ số $\frac{\Delta v}{\Delta t}$ được gọi là gia tốc trung bình của chuyển động trong khoảng thời gian Δt . Nếu

tồn tại:
$$v'(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \gamma t$$
.

Ta gọi v' t $= \gamma$ t là gia tốc tức thời của chuyển động tại thời điểm t.

Vì
$$v(t) = f'(t)$$
 nên: $\gamma t = f'' t$.

Đao hàm cấp hai f''(t) là gia tốc tức thời của chuyển động s = f(t) tại thời điểm t.

Ví dụ 2. Tính gia tốc tức thời của sự rơi tự do $s = \frac{1}{2}gt^2$.

Lời giải

Ta có: s' = gt.

Gia tốc tức thời của sự tơi tự do là: $\gamma\!=\!s\text{" }t\ =\!s\text{'}(t)\!=\!g\approx\!9,8\ \text{m/s}^2$.

Vậy gia tốc tức thời của sự rơi tự do là: $g \approx 9.8 \text{m/s}^2$.

B. BÀI TẬP

Bài 1. Tính đạp hàm cấp hai của các hàm số sau:

a) $y = \sin 5x \cdot \cos 2x$;

b)
$$y = x\sqrt{x^2 + 1}$$
;

c)
$$y = (1 - x^2)\cos x$$
;

d)
$$y = y = \frac{2x+1}{x^2 + x - 2}$$
.

Lời giải

a)
$$y' = (\sin 5x \cdot \cos 2x)' = 5\cos 5x \cdot \cos 2x - 2\sin 5x \cdot \sin 2x$$

$$\Rightarrow$$
 y" = $(5\cos 5x.\cos 2x - 2\sin 5x.\sin 2x)$

= -25sin5x.cos2x - 10cos5xsin2x - 10cos5xsin2x - 4sin5x.cos2x.

b)
$$y' = x\sqrt{x^2 + 1}' = x'\sqrt{x^2 + 1} + x.\frac{2x}{2\sqrt{x^2 + 1}} = \sqrt{x^2 + 1} + \frac{x^2}{\sqrt{x^2 + 1}} = \frac{2x^2 + 1}{\sqrt{x^2 + 1}}$$

$$\Rightarrow y'' = \left(\frac{2x^2 + 1}{\sqrt{x^2 + 1}}\right)' = \frac{4x\sqrt{x^2 + 1} - 2x^2 + 1 \cdot \frac{2x}{2\sqrt{x^2 + 1}}}{\sqrt{x^2 + 1}} = \frac{2x^3 + 3x}{\sqrt{x^2 + 1}}.$$

c)
$$y' = [(1 - x^2)\cos x]' = -2x.\cos x - (1 - x^2).\sin x$$

$$\Rightarrow$$
 y" = [-2x.cosx - (1-x²).sinx]' = -2cosx + 2xsinx + 2xsinx - (1-x²).cosx.

d)
$$y' = \left(\frac{2x+1}{x^2+x-2}\right)' = \frac{2x^2+x-2-2x+1}{x^2+x-2}$$

$$=\frac{2x^2+2x-4-4x^2-4x-1}{x^2+x-2}=\frac{-2x^2-2x-5}{x^2+x-2}$$

$$y'' = \left[\frac{-2x^2 - 2x - 5}{x^2 + x - 2} \right]' = \frac{-4x - 2 \cdot x^2 + x - 2 \cdot 2 - 2x^2 - 2x - 5 \cdot 2 \cdot x^2 + x - 2 \cdot 2x + 1}{x^2 + x - 2 \cdot 2}$$

Bài 2. Cho hàm số $y = (3x - 4)^6$. Tính y''(2) và $y^{(4)}(2)$.

Lời giải

Ta có:
$$y' = 6(3x - 4)^5 .3 = 18(3x - 4)^5$$

 $\Rightarrow y'' = 18.5(3x - 4)^4 .3 = 270(3x - 4)^4$
 $\Rightarrow y''' = 270.4.(3x - 4)^3 .3 = 3240(3x - 4)^3$
 $\Rightarrow y^{(4)} = 3240.3.(3x - 4)^2 .3 = 29160(3x - 4)^2$

Khi đó, ta có:

y" 2 =
$$270(3.2-4)^4 = 4320;$$

$$y^{(4)} 2 = 29160(3.2-4)^2 = 116640.$$

Vậy y''(2) = 4320 và
$$y^{(4)}(2) = 116640$$
.