Zhengdong Zhang

Homework - Week 2 Exercises

Email: zhengz@uoregon.edu Course: MATH 616 - Real Analysis Instructor: Professor Weiyong He

Due Date: Oct 15th, 2025

ID: 952091294

Term: Fall 2025

Exercise 1.0

Let $f_n(x) = (nx)^{-2}(1 - \cos(nx))$. Find the value of

$$\lim_{n\to\infty} \int_0^\infty f_n(x) \, dx$$

Solution: Note that for any $n \geq 1$ and $x \in (0, +\infty)$, we have

$$|f_n(x)| \le \frac{2}{n^2 x^2}$$

Thus, for any $x \in (0, +\infty)$,

$$\lim_{n \to \infty} f_n(x) = 0.$$

When $x \in (0,1)$, note that for all $n \geq 1$

$$|f_n(x)| = \frac{|1 - \cos nx|}{n^2 x^2} \le \frac{\frac{1}{2}n^2 x^2 + \frac{1}{4}n^4 x^4 + o(x^4)}{n^2 x^2} \le \frac{1}{2}.$$

And for $x \in (1, +\infty)$, note that for all $n \ge 1$

$$|f_n(x)| = \frac{|1 - \cos nx|}{n^2 x^2} \le \frac{1}{x^2}$$

Define

$$g(x) = \mathbb{1}_{(0,1)} \frac{1}{2} + \mathbb{1}_{(1,+\infty)} \frac{1}{x^2}$$

where 1 is the characteristic function. We observe that

$$|f_n(x)| \le g(x)$$

for all $n \geq 1$. Here g is measurable and positive and

$$\int_0^{+\infty} g(x)dx = \int_0^1 \frac{1}{2}dx + \int_1^{+\infty} \frac{1}{x^2}dx = \frac{1}{2} + 1 < +\infty.$$

So g is integrable, and by Lebesgue's Dominated Convergence Theorem, we have

$$\lim_{n \to \infty} \int_0^{+\infty} f_n(x) dx = \int_0^{+\infty} \lim_{n \to \infty} f_n(x) dx = 0.$$

Exercise 1.1

Does there exist an infinite σ -algebra which has only countably many members?

Solution: No, such σ -algebra does not exist. Assume a σ -algebra \mathfrak{M} has only countably many members on a set X. Write

$$\mathfrak{M} = \{X_1, X_2, \dots, X_n, \dots\}$$

For any $x \in X$, let $A_x := \bigcap_{x \in X_i} X_i$. A_x is not empty and $A_x \in \mathfrak{M}$ because it is the countable intersection of members in \mathfrak{M} . By definition, if $x \in X_i$ for any X_i , then we must have $A_x \subset X_i$. Suppose $y \in X$ and $y \neq x$. If $y \in A_x$, then $A_y = A_x$. Indeed, A_x is a member of \mathfrak{M} , so $A_y \subseteq A_x$. If $x \notin A_y$, then $x \in A_x \setminus A_y$ which is not contained in A_x . This contradicts that A_x is the intersection of all sets containing x. So $x \in A_y$, and this implies $A_x \subseteq A_y$, thus $A_x = A_y$.

Write $X = \bigcup_{x \in X} A_x$. From what we discuss above, for $x \neq y$, either $A_x = A_y$ or $A_x \cap A_y = \emptyset$. Thus, we can write $X = \bigcup_{i \in I} A_{x_i}$ where I is the index set and $A_{x_i} \cap A_{x_j} = \emptyset$ for $i \neq j$ in I.

Assume I is finite. For any $Y \in \mathfrak{M}$, we have $Y = \bigcup_{x \in Y} A_x$. So Y can be written in the form $\bigcup_{i \in J} A_{x_i}$ for some $J \subseteq I$. Since I is finite, this implies that \mathfrak{M} only has finitely many members.

Assume I is countably infinite. Note that for $I_1, I_2 \subset I$,

$$\bigcup_{i \in I_1} A_{x_i} = \bigcup_{j \in I_2} A_{x_j}$$

if and only if $I_1 = I_2$. The cardinality of the power sets of I must be uncountably many, so \mathfrak{M} has at least uncountably many memebrs.

Assume I is uncountably infinite. Note that every A_{x_i} is a different member of \mathfrak{M} by our choice, so again \mathfrak{M} has uncountably many members.

This is a contradiction. Hence, we conclude that such σ -algebra \mathfrak{M} does not exist.

Exercise 1.3

Prove that if f is a real function on a measurable space X such that $\{x : f(x) \ge r\}$ is measurable for every rational r, then f is measurable.

Solution: Let $O \subset \mathbb{R}$ be an open set. We know that O can be written as the countable union of disjoint open intervals. To prove f is measurable, we only need to prove that $f^{-1}(a, b)$ is measurable for any open interval (a, b). Note that

$$(a,b) = (a,+\infty) \cap [b,+\infty)^c$$
.

So we need to show that $f^{-1}(a, +\infty)$ and $f^{-1}[b, +\infty)$ is measurable. If a is a rational number, then $f^{-1}(a, +\infty)$ is already measurable. If a is an irrational number, consider a decreasing sequence of rational numbers $\{a_n\}_{n=1}^{\infty} \subseteq \mathbb{Q}$ such that

$$a_1 > a_2 > \cdots > a_n > \cdots > a$$

and $\lim_{n\to\infty} a_n = a$. Such sequence exists because the rational numbers are dense in \mathbb{R} . Therefore, we have

$$f^{-1}(a, +\infty) = f^{-1}(\bigcup_{n=1}^{\infty} (a_n, +\infty)) = \bigcup_{n=1}^{\infty} f^{-1}(a_n, +\infty).$$

Here $f^{-1}(a_n, +\infty)$ is measurable for all $n \ge 1$, so $f^{-1}(a, +\infty)$ is also measurable. Similarly, choose an increasing sequence $\{b_n\}_{n=1}^{\infty} \subseteq \mathbb{Q}$ such that

$$b_1 \le b_2 \le \dots \le b_n \le \dots \le b$$

and $\lim_{n\to\infty} b_n = b$. We have

$$f^{-1}[b, +\infty) = f^{-1}(\bigcap_{n=1}^{\infty} (b_n, +\infty)) = \bigcap_{n=1}^{\infty} f^{-1}(b_n, +\infty).$$

Here $f^{-1}(b_n, +\infty)$ is measurable for all $n \ge 1$, so $f^{-1}[b, +\infty)$ is also measurable.

Exercise 1.5

(a) Suppose $f: X \to [-\infty, \infty]$ and $g: X \to [-\infty, \infty]$ are measurable. Prove that the sets

$${x : f(x) < g(x)}, {x : f(x) = g(x)}$$

are measurable.

(b) Prove that the set of points at which a sequence of measurable real-valued functions converges (to a finite limit) is measurable.

Solution:

(a) If we can prove the function

$$f - g: X \to \mathbb{R},$$

 $x \mapsto f(x) - g(x)$

is measurable, then the two sets

$$\{x: f(x) < q(x)\}, \{x: f(x) = q(x)\}$$

are measurable because $(-\infty,0)$ is an open set, and

$$\{x: f(x) - g(x) = 0\} = \{x: f(x) - g(x) < 0\}^c \cap \{x: f(x) - g(x) > 0\}^c$$

where both are measurable.

To see that f - g is measurable, consider the following two functions

$$F: X \to \mathbb{R}^2,$$
 $h: \mathbb{R}^2 \to \mathbb{R},$ $x \mapsto (f(x), g(x)).$ $(u, v) \mapsto u - v.$

We can see that $f - g = h \circ F$ where F is measurable (we proved it in class) and h is continuous, so f - g is also measurable.

(b) Given a sequence of measurable functions $\{f_n\}_{n=1}^{\infty}$, we know that the functions

$$\limsup_{n \to \infty} f_n(x), \quad \liminf_{n \to \infty} f_n(x)$$

are measurable. Consider the set

$$E = \left\{ x \in X : \liminf_{n \to \infty} f_n(x) = \limsup_{n \to \infty} f_n(x) \right\}.$$

This is exactly the set of points on which $\{f_n\}$ is converging pointwise. Thus, E is measurable from what we proved in (a).