

Real Sequences:Level 3- Tutorial Problems

- 1. We say that a sequence (a_n) does NOT converge to l if
 - (a) $\forall \varepsilon > 0, \ \forall n_0 \in \mathbb{N}, \ \forall n \geq n_0 \text{ we have } |a_n l| > \varepsilon$
 - (b) $\forall \varepsilon > 0, \ \forall n_0 \in \mathbb{N}, \ \exists n \geq n_0 \text{ such that } |a_n l| > \varepsilon$
 - (c) $\exists \varepsilon > 0, \ \forall n_0 \in \mathbb{N}, \ \exists n \geq n_0 \text{ such that } |a_n l| > \varepsilon$
 - (d) $\exists \varepsilon > 0, \ \forall n_0 \in \mathbb{N}, \ \forall n \geq n_0 \text{ we have } |a_n l| > \varepsilon$
- 2. Consider a sequence (a_n) of positive numbers satisfying the condition $a_n a_{n+2} \leq a_{n+1}^2, \forall n \in \mathbb{N}$ then (a_n) is a
 - (a) convergent sequence if $a_1 \neq 2a_2$
 - (b) monotonically increasing sequence if $a_1 \neq 2a_2$
 - (c) convergent sequence if $a_1 = 2a_2$
 - (d) monotonically increasing sequence if $a_1 = 2a_2$
- 3. Consider a sequence (a_n) of real numbers. Which of the following conditions imply that (a_n) is convergent?
 - (a) $|a_{n+1} a_n| < \frac{1}{n}, \ \forall n \in \mathbb{N}$
 - (b) $|a_{n+1} a_n| < \frac{1}{3^n}, \ \forall n \in \mathbb{N}$
 - (c) $a_n > 0$, $\forall n \in \mathbb{N}$ and a_n is monotonically increasing
 - (d) $a_n > 0$, $\forall n \in \mathbb{N}$ and a_n is monotonically decreasing
- 4. If $\{a_n\}$ is a sequence converging to l. Let $b_n = \begin{cases} a_{2n}, & \text{if } n \text{ is odd,} \\ a_{3n}, & \text{if } n \text{ is even} \end{cases}$. Then the sequence $\{b_n\}$
 - (a) need not converge
 - (b) should converge to 0
 - (c) should converge to 2l or to 3l
 - (d) should converge to l
- 5. Let $\{x_n\}$ and $\{y_n\}$ be two sequence in \mathbb{R} such that $\lim_{n\to\infty}x_n=2$ and $\lim_{n\to\infty}y_n=-2$. Then
 - (a) $x_n \ge y_n$ for all $n \in \mathbb{N}$
 - (b) $x_n^2 \ge y_n$ for all $n \in \mathbb{N}$
 - (c) there exists an $m \in \mathbb{N}$ such that $|x_n| \leq y_n^2$ for all n > m
 - (d) there exists an $m \in \mathbb{N}$ such that $|x_n| = |y_n|$ for all n > m
- 6. Let $\{x_n\}$ be an increasing sequence of irrational numbers in [0,2]. Then
 - (a) $\{x_n\}$ converges to 2
 - (b) $\{x_n\}$ converges to $\sqrt{2}$
 - (c) $\{x_n\}$ converges to some number in [0,2]
 - (d) $\{x_n\}$ may not converges
- 7. Write the logical negation of the following statement about a sequence $\{a_n\}$ of real numbers: "For all $n \in \mathbb{N}$ there exists an $m \in \mathbb{N}$ such that m > n and $a_m \neq a_n$."
 - (a) There exists an $n \in \mathbb{N}$ such that $a_m = a_n$ for all m > n

- (b) For all $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that m > n and $a_m = a_n$
- (c) There exists $n \in \mathbb{N}$ such that $a_m \neq a_n$, for all m > n
- (d) There exists $n \in \mathbb{N}$ such that $a_m = a_n$, for all $m \leq n$
- 8. $\lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{3n} \right) =$
 - (a) 0
 - (b) $\log 2$
 - (c) log 3
 - (d) ∞
- 9. Consider the following two statements.

 S_1 : If (a_n) is any real sequence, then $\left(\frac{a_n}{1+|a_n|}\right)$ has a convergent subsequence.

 S_2 : If every subsequence of (a_n) has a convergent subsequence, then (a_n) is bounded. Which of the following statements is true?

- (a) Both S_1 and S_2 are true
- (b) Both S_1 and S_2 are false
- (c) S_1 is false but S_2 is true
- (d) S_1 is true but S_2 is false
- 10. Let $\ell \in \mathbb{R}$, and (a_n) be a real sequence. Then which of the following is equivalent to ' $(a_n) \to \ell$ as $n \to \infty$ '?
 - (a) $\forall \epsilon > 0, \exists n_0 \in \mathbb{N} \text{ such that } |a_n \ell| < 2\epsilon \text{ whenever } n \geq n_0$
 - (b) $\forall \epsilon > 0, \ \exists n_0 \in \mathbb{N} \text{ such that } |a_n \ell| < \epsilon \text{ whenever } n \geq 2n_0$
 - (c) $\forall \epsilon > 0, \exists n_0 \in 3\mathbb{N} \text{ such that } |a_n a_m| < 2\epsilon \text{ whenever } m, n \geq n_0$
 - (d) $\forall \epsilon > 0, \ \exists n_0 \in \mathbb{N} \text{ such that } |a_n a_m| < 2\epsilon \text{ whenever } m, n \geq n_0$
- 11. The non-zero values for x_0 and x_1 such that the sequence defined by the recurrence relation $x_{n+2} = 2x_n$, is convergent are
 - (a) $x_0 = 1$ and $x_2 = 1$
 - (b) $x_0 = \frac{1}{2}$ and $x_1 = \frac{1}{4}$
 - (c) $x_0 = \frac{1}{10}$ and $x_1 = \frac{1}{20}$
 - (d) none of the above
- 12. Which of the following sequences converges to e?
 - (a) $\left(1 + \frac{1}{2n}\right)^r$
 - (b) $\left(2 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}\right)$
 - (c) $\left(1+\frac{1}{n}\right)^n$
 - (d) $\left(\frac{2n+1}{2n-2}\right)^n$
- 13. Let (a_n) be a sequence where all rational numbers are terms (and all terms are rational). Then
 - (a) no subsequence of (a_n) converges
 - (b) there are uncountably many convergent subsequence of (a_n)
 - (c) every limit point of (a_n) is a rational number
 - (d) no limit point of (a_n) is a rational number

- 14. Which of the following statements is false?
 - (a) Every bounded sequence is convergent
 - (b) Every convergent sequence is bounded
 - (c) Every bounded sequence has a limit point
 - (d) Every convergent sequence has a unique point
- 15. $\lim_{n\to\infty} \frac{2n-3}{n+1}$ equals
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) e
- 16. If a sequence is not a Cauchy sequence then it is a
 - (a) divergent sequence
 - (b) convergent sequence
 - (c) bounded sequence
 - (d) none of these
- 17. $\lim_{n \to \infty} \frac{1}{n} \left(1 + 2^{\frac{1}{2}} + 3^{\frac{1}{3}} + \dots + n^{\frac{1}{n}} \right)$ is
 - (a) 1
 - (b) 2
 - (c) 0
 - (d) none of these
- 18. Let $\{a_n\}$ and $\{b_n\}$ be sequence of real numbers defined as $a_1 = 1$ for $n \ge 1$, $a_{n+1} = a_n + (-1)^n 2^{-n}$, $b_n = \frac{2a_{n+1} a_n}{a_n}$. Then
 - (a) $\{a_n\}$ converges to zero and $\{b_n\}$ is a Cauchy sequence
 - (b) $\{a_n\}$ converges to a non-zero number and $\{b_n\}$ is a Cauchy sequence
 - (c) $\{a_n\}$ converges to zero and $\{b_n\}$ is not a convergent sequence
 - (d) $\{a_n\}$ converges to a non-zero number and $\{b_n\}$ is not a convergent sequence
- 19. If sequences of real numbers $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ and $\{c_n\}_{n=1}^{\infty}$ are such that, $b_n = a_{2n}$ and $c_n = a_{2n+1}$, then $\{a_n\}_{n=1}^{\infty}$ is convergent implies
 - (a) $\{b_n\}_{n=1}^{\infty}$ is convergent but $\{c_n\}_{n=1}^{\infty}$ need not be convergent
 - (b) $\{c_n\}_{n=1}^{\infty}$ is convergent but $\{b_n\}_{n=1}^{\infty}$ need not be convergent
 - (c) both $\{b_n\}_{n=1}^{\infty}$ and $\{c_n\}_{n=1}^{\infty}$ are convergent
 - (d) both $\{b_n\}_{n=1}^{\infty}$ and $\{c_n\}_{n=1}^{\infty}$ are divergent
- 20. $\lim_{n\to\infty} (2^n + 3^n)$ is equal to
 - (a) 2
 - (b) 3
 - (c) 5
 - (d) 6