Decentralized Systems

Anonimity

Financial Privacy—the Good

- Which goods one buys
- Supply chains for businesses
- Financial status
 - Criminals target wealthy people
- Protecting against oppressive governments

Financial Privacy—the Bad

- Tax evasion
- Money laundering
- Criminal activities
- Financing sanctioned governments
- Unfortunately, very often, the good and the bad are technically undistinguishable

References

- Narayanan et al. Bitcoin and Cryptocurrency Technologies, Chapter 6 (free draft version).
- Narayanan et al. BTC-Tech: Bitcoin and Cryptocurrency Technologies. Princeton University online course, lecture 6 (also on Coursera).
- Andrei Savdeiev. Monero explanatory videos.

Anonymity

Pseudonimity and Anonymity

- Literally, "anonymous" = without a name
- We have seen public key hashes, not real names
 - In computer science, we call this **pseudonimity**
 - You can have as many pseudonyms as you want
- Unlinkability: different actions of the same user shouldn't be linkable to each other
- Anonymity = pseudonimity + unlinkability

Is Unlinkability Needed?

- Pseudonimity can be fragile
- Many cryptocurrency services require real identities
 - Know-Your-Consumer (KYC)
 - People interacting with you can get personal information
- Side channels, based on extra information leaked
 - E.g., you send payments when you're awake and online,
 and you also post on social media in the same periods
 - In the long run, this may uncover who you are

Unlinkability in Cryptocurrencies

- It should be hard to link
 - Different addresses of the same user
 - Different transactions of the same user
 - The sender of a payment/message to its recipient

Anonymity Set

- The crowd one is hiding into
- We need to define an adversary model
- What they
 - Know
 - Don't know
 - Can't know

So, Bitcoin and Ethereum?

- Transactions are pseudonymous
 - They are public forever
 - We'll see the problem of linkability
- Privacy bottleneck in exchanges
 - Converting cryptocurrency to fiat currency (€, \$)
 - And vice versa

Deanonymizing Bitcoin

Unlinkability

- Best practice: always receive payments at a fresh address
- Does this choice guarantee unlinkability?
- Not necessarily. This helps, but we can recover patterns to link addresses
 - When receiving (time, price, ...)
 - When spending

Alice Buys a Teapot

- Shared spending may indicate joint control (i.e., the same owner)
- Addresses can be linked transitively

Alice Needs Change

- Image from Narayanan et al.'s course

 How to determine which address is change?
- In this case, it wouldn't make sense to combine two inputs if the cost is 0.5
- Other features depend on how wallets are programmed
 - E.g., last output in the transaction

Transaction Graph Analysis (1)

Image from Reid and Harrigan 2012

- Associate addresses that spent currency together
- In this cases, if some nodes (colored) are identified you can spot histories of payments
- This paper checks the story of Bitcoin coming from a theft

Transaction Graph Analysis (2)

- Nodes are clusters of Bitcoin addresses, size proportional to the transaction volumes
- Edges are transactions
- Authors deanonymized clusters by transacting with actors

Image from Meiklejohn et al., IMC 2013

Deanonymizing Regular Users

- If one interacts with popular services
 - Authorities can **subpoena** them
 - Malicious entities can attack or corrupt them
- If one publicly posts one of their addresses
 - They can be linked with the others

Network Layer Deanonymization

Image from Narayanan et al.'s course

- Connect to as many machines as possible in the Bitcoin network
- Way easier than an Eclipse attack
- "The first node to inform you of a transaction is probably the source of it" (Dan Kaminsky, BlackHat 2011 talk (slides))
- Countermeasure: use Tor or similar software

Mixing

Centralized Mixers

- Services that receive money from a given set of addresses and return them to other addresses
- Different from exchanges in that they promise not to record identities
- Rely on trust and reputation

Decentralized Mixing: CoinJoin

- Users find each other and build a transaction that sends money to fresh addresses
- They can sign if they see that it sends "their" money to the right address
- Anybody can send the tx

From	То
1 coin address 17	1 coin address 33
1 coin	1 coin
address 42	address 67
1 coin	1 coin
address 73	address 73

- This is one mixing round
- One generally wants to use multiple ones to increase anonymity set size

CoinJoin: Problems

- How to find peers
- Peers know the mapping between inputs and outputs
 - With a Sybil attack, you can learn it even on multiple rounds
- Denial of Service
 - A node disappears before signing
 - A node double spends the input before it passes to CoinJoin

CoinJoin: Finding Peers

- Easy! Just use an untrusted server
- If you think about it, the worst thing the server can do is stop working

CoinJoin: Mapping Inputs and Outputs

- Nodes can use Tor (or another anonymity solution)
- They need to use
 different circuits when
 communicating the
 inputs and the outputs
 - That way, they should be unlinkable

CoinJoin: Denial of Service

Proof of work

- You must compute some hashes to talk to peers
- Proof of burn
 - You must destroy a small amount of currency (e.g. send to unspendable address)
- There are cryptographic alternatives that allow kicking non-cooperating users without revealing them

High-Level Flows

- Say Alice gets a weekly salary of 127.1425152 coins
- She puts 10% of it in a savings account right away
- This is a pattern that can be noticed no matter what

Merge Avoidance

Rather than a single transaction

- The receiver provides multiple output addresses
- The sender avoids combining different inputs

Image from the Princeton text book

Monero

Monero

- Esperanto for "coin"
- A proof-of-work cryptocurrency (XMR) designed for anonymity and fungibility
- Fungible goods are interchangeable
 - One may not accept bitcoins that are tainted because they come from theft, or a mix
 - Hence, Bitcoins may be **not fungible**
- Unsurprisingly, liked by criminals

Keys

- Each user has two asymmetric keypairs: view and send, which are not published on the blockchain
- To send XMR to Bob, Alice has to obtain both public keys of the recipient
- Bob's private view key allows reading all transactions sent to Bob
- Bob's private send key allows spending his XMR

Stealth Addresses

Crypto magic!

- With Bob's public and view keys plus some random data, Alice generates a stealth address for Bob
- Blockchain transactions are sent to this stealth address
 - She can later prove she sent money to Bob
 - The stealth address is unlinkable to Bob
- Bob scans the whole blockchain using his view key to find which transactions are for him
 - To spend them, he can compute a one-time secret for each of them to spend them that will be used together with his spend key

Ring Signatures

Crypto magic!

- Originally called group signatures (Rivest et al. 2001)
- Meaning: "this document has been signed by X, Y or Z"
 - You can't know who among them, though
- "This transaction is using funds from one output among A, B, C or D"
- How to prevent double spend? Using a key image
 - Unique crypto key derived from an output (and the send key)
 - Miners check it's never reused

Ring Confidential Transactions

Crypto magic!

- Hide the amount of the transaction
 - Before 2017, transactions could only have fixed amounts
 - Think cash: only 1, 2, 5, 10, 20, 50 euro notes...
- Old or newly-minted XMR need to be converted to RingCT outputs
- Miners verify a crypto proof that
 - The sum of inputs is equal to the sum of outputs
 - Every output is larger than zero

In Summary

- For a Monero transaction,
 - Ring signatures hide the **sender**
 - Ring confidential transactions hide the amount
 - Stealth addresses hide the recipient
- Moreover, Kovri (a Tor-like system) hides IP addresses