Lil Lisa v2 Support Chatbot

Carlos Escobar

Introduction

- One critical aspect in enhancing the functionality of LLMs lies in their ability to access and integrate information from external sources
- To address this limitation with Lil Lisa v2, I created a
 Retrieval-Augmented Generation (RAG) system with the capability to
 query a database, enhancing answers to a given query from a user
- In this study, I explored several chunking and indexing methods, aiming to evaluate its impact on response quality and efficiency

Background

- Vector Search
 - Computes the similarity between words and phrases by computing the difference of vectors in a space
- Keyword Search
 - Relies on matching exact words between phrases to compute relevancy
- Bi-Encoders vs. Cross-Encoders
 - Cross-Encoders are more accurate, but slower and not meant for large datasets because of the high computational intensity required

Things I tested

[FOUND ONLINE] Diagram of how leaf nodes are merged

- Chunking Methods
 - Hierarchical
 - Sentence
 - Semantic

- Embedding Models
 - OpenAl's text-embedding-3-large (3072 dimensions)
 - o BAAI's bge-large-en-v1.5 (1024 dimensions)
 - Sentence Transformers' all-MiniLM-L12-v2 (384 dimensions)

Comparison of Chunking Strategies Across Embedding Models (Lexus Document)

- Key Findings:
 - o OpenAI and BAAI embeddings are superior
 - Semantic chunking requires too much preprocessing with less reliable outcomes
- Conclusion:
 - Top Variations:
 - OpenAl Hierarchical
 - BAAI Hierarchical
 - OpenAl Sentence
- Next Steps: Discontinue semantic chunking for larger sets of documents

Comparison of Searching Strategies Across Embedding Models (SQuAD v2 dataset)

- Key Findings:
 - Slightly better retrieval with OpenAI embeddings for an increased time-per-query
 - Colbert seems to worsen results
- Conclusion:
 - Next Steps: Try another dataset

Comparison of Chunking Strategies Across Embedding Models (Radiant Logic documents)

Key Findings:

- OpenAl Sentence is considerably better than the other two
- OpenAl Hierarchical is marginally better than BAAl Hierarchical

Conclusion:

Next Steps: Find the best reranking strategy

Comparison of Chunking and Indexing Strategies (Radiant Logic documents)

Method	Average Rank	MRR	Recall@5	Recall@10	Recall@20	NDCG@5	NDCG@10	NDCG@20	Time Per Query (s)
Chunking Variation 1 + Hybrid Search	3.865	0.622	0.838	0.865	1.000	0.668	0.677	0.710	1.020
Chunking Variation 1 + Hybrid Search + Cross-Encoder	1.703	0.858	0.973	0.973	1.000	0.885	0.885	0.892	2.034
Chunking Variation 1 + Hybrid Search + ColBERT v2.0	1.892	0.765	0.946	1.000	1.000	0.805	0.823	0.823	10.293
Chunking Variation 1 + Hybrid Search + Cross-Encoder + ColBERT v2.0	1.865	0.786	0.973	0.973	0.973	0.832	0.832	0.839	4.018
Chunking Variation 2 + Hybrid Search	4.162	0.570	0.865	0.892	0.946	0.637	0.646	0.661	1.200
Chunking Variation 2 + Hybrid Search + Cross-Encoder	1.946	0.858	0.946	0.946	1.000	0.877	0.877	0.891	2.466
Chunking Variation 2 + Hybrid Search + ColBERT v2.0	2.378	0.793	0.919	0.973	0.973	0.818	0.836	0.836	13.738
Chunking Variation 2 + Hybrid Search + Cross-Encoder + ColBERT v2.0	2.135	0.814	0.946	0.946	1.000	0.844	0.844	0.858	4.61

Entries highlighted in **green** indicate the best performance, entries highlighted in **blue** indicate the second best performance and entries highlighted in **red** indicate the third best performance.

- Top Variations (in order):
 - 1) Chunking Variation 1 + Hybrid Search + Cross-Encoder
 - 2) Chunking Variation 2 + Hybrid Search + Cross-Encoder
 - 3) Chunking Variation 2 + Hybrid Search + Cross-Encoder + ColBERT v2.0

Comparison of Chunking and Indexing Strategies (Radiant Logic documents)

Method	Answer Correctness	Contextual Precision	Contextual Recall	F1 Score	Time Per Query (s)
Chunking Variation 1 + Hybrid Search + Cross-Encoder	0.877	0.971	0.944	0.948	3.19
Chunking Variation 2 + Hybrid Search + Cross-Encoder	0.822	0.983	0.899	0.905	3.440
Chunking Variation 2 + Hybrid Search + Cross-Encoder + ColBERT v 2.0 $$	0.849	0.961	0.918	0.920	4.468

Entries highlighted in green indicate the best performance.

Conclusion:

- 'Chunking Variation 1 + Hybrid Search + Cross-Encoder' had the best overall performance
- OpenAl's text-embedding-3-large 3072 dimensions were sufficient in retaining the semantic meaning of large chunks

Architecture/Diagram

Improvements over Lil Lisa v1

- No need to tag the bot when you want an answer to your question (unless 2+ people in conversation)
- Multi-turn conversation
- If relevant context doesn't exist in the documentation, the agent is capable of telling a user the question is out of scope
- An "Expert" is invited into the conversation if user gives an "SOS" reaction
- Bot can be integrated outside of Slack, such as web portals
- We now have Lil Elvis! (for IDA queries)
- "/" commands have been streamlined making it easy for "expert" to review and update QA pairs accordingly
 - "/get_conversations" command has 3 options:
 - Option 1: "user". Gets all of the conversations endorsed by non-experts
 - Option 2: "expert". Gets all of the conversations endorsed by experts
 - Option 3: "unendorsed". Gets all of the conversations that were not endorsed
- Knowledge base is connected to active github repositories, allowing the "/rebuild_docs" method to access up-to-date information
- The answer provides relevant documentation links used to generate the answer
- Version-specific answers
- Bot deterministically returns an expert answer if it is found

Preprocessing

- The first step in the process is to extract versions, if any
- Filter QA Pairs and Documentation based on the versions extracted
- If a query is almost an exact match to an existing QA pair, this will bypass searching through the documentation and return the QA pair instead

Postprocessing

- If a query is relevant but not an exact match to existing QA pairs, it will be prepended to the LLM generated answer
- If a query is only somewhat relevant, it will be appended to the LLM generated answer
- The answer provides relevant documentation links used to generate the answer

Future Enhancements

- Allow users to provide screenshots with their questions
- Return screenshots/images with answers
- Response streaming
- Citations
- Remove documentation links from answer if query is out of scope

Appendix

LlamaIndex overview: https://docs.llamaindex.ai/en/stable/

LanceDB start guide: https://lancedb.github.io/lancedb/basic/

DeepEval start guide: https://docs.confident-ai.com/docs/getting-started

Ragas overview: https://docs.ragas.io/en/latest/index.html

BERT Paper: https://arxiv.org/abs/1810.04805
ReACT Paper: https://arxiv.org/abs/2210.03629

Github repository:

https://medium.com/@carlos-a-escobar/deep-dive-into-the-best-chunking-indexing-method

-for-rag-5921d29f138f

Medium.com blog:

https://medium.com/@carlos-a-escobar/deep-dive-into-the-best-chunking-indexing-method-for-rag-5921d29f138f