# Лабораторная работа №2. Задача о погоне

Вариант 28

Смородова Дарья Владимировна 2022 Feb 19th

# Содержание

| 1 | Цель работы                    | 5  |
|---|--------------------------------|----|
| 2 | Задание                        | 6  |
| 3 | Теоретическое введение         | 7  |
| 4 | Выполнение лабораторной работы | 10 |
| 5 | Выводы                         | 18 |
| 6 | Список литературы              | 19 |

## **List of Tables**

# **List of Figures**

| 4.1  | Задание расстояния, разницы в скорости и угла fi            | 11 |
|------|-------------------------------------------------------------|----|
| 4.2  | Начальные условия для случая 1 и уравнение                  | 12 |
| 4.3  | Начальные условия для случая 2 и уравнение                  | 12 |
| 4.4  | Функция движения катера береговой охраны и функция движения |    |
|      | браконьерской лодки                                         | 12 |
| 4.5  | График                                                      | 12 |
| 4.6  | Весь код решения задачи                                     | 13 |
| 4.7  | График для первого случая                                   | 14 |
| 4.8  | Увеличенный график для первого случая                       | 15 |
| 4.9  | График для второго случая                                   | 16 |
| 4.10 | Увеличенный график для второго случая                       | 17 |

## 1 Цель работы

Целью данной работы является построение математической модели для выбора правильной стратегии при решении задач поиска на примере задачи о преследовании браконьеров береговой охраной.

#### 2 Задание

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 15 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4 раза больше скорости браконьерской лодки.

- 1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Постройте траекторию движения катера и лодки для двух случаев.
- 3. Найдите точку пересечения траектории катера и лодки.

#### 3 Теоретическое введение

- 1. Примем за  $t_0=0$ ,  $x_{l0}=0$  место нахождения лодки браконьеров в момент обнаружения,  $x_{k0}=k$  место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.
- 2. Введем полярные координаты. Считаем, что полюс это точка обнаружения лодки браконьеров  $x_{l0}(\theta=x_{l0}=0)$  а полярная ось r проходит через точку нахождения катера береговой охраны.
- 3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса  $\theta$ , только в этом случае траектория катера пересечется с траекторией лодки.
  - Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.
- 4. Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер k-x (или k+x в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или k-x/nv (во втором

случае x + k/nv). Так как время одно и то же, то эти величины одинаковы. [1] Тогда неизвестное расстояние x можно найти из следующего уравнения:

В первом случае:

$$\frac{x}{v} = \frac{k - x}{nv}$$

Во втором случае:

$$\frac{x}{v} = \frac{x+k}{nv},$$

где n - во сколько раз скорость катера больше скорости лодки.

5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие:  $v_r$  - радиальная скорость и  $v_{/tao}$  - тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса. Нам нужно, чтобы эта скорость была равна скорости лодки. Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости на радиус.

Учитывая, что радиальная скорость равна v, то получим следующую формулу для тангенциальной скорости:

$$v_t = \sqrt(n^2 * v^2 - v^2)$$

где n - во сколько раз скорость катера больше скорости лодки.

6. Решение задачи сводится к решению системы из двух дифференциальных уравнений:

$$\begin{cases} \frac{dr}{dt} = v \\ \frac{d\theta}{dt} = \sqrt{(n^2 - 1) * v} \end{cases}$$

с начальными условиями:

В первом случае:

$$\left\{ \begin{array}{l} \theta_0=0 \\ r_0=x_1 \end{array} \right.$$

Во втором случае:

$$\left\{ \begin{array}{l} \theta_0 = -\pi \\ r_0 = x_2 \end{array} \right.$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению:

$$\frac{dr}{d\theta} = \frac{r}{\sqrt(n^2 - 1)}$$

Решив это уравнение, мы получим траекторию движения катера в полярных координатах. [1]

## 4 Выполнение лабораторной работы

1. Проведем вывод дифференциальных уравнений, если скорость катера больше скорости лодки в 4 раза, а лодка обнаруживается на расстоянии 15 км от катера.

Тогда получим следующие начальные условия:

Для первого случая:

$$\frac{x}{v} = \frac{15 - x}{4v}$$

Домножив на 4v получаем:

$$4x = 15 - x$$

Отсюда

$$x_1 = \frac{15}{5} = 3$$

Для второго случая:

$$\frac{x}{v} = \frac{15 + x}{4v}$$

Домножив на 4v получаем:

$$4x = 15 + x$$

Отсюда

$$x_1 = \frac{15}{3} = 5$$

Тангенциальная скорость будет равна:

$$v_t = \sqrt(4^2 * v^2 - v^2) = \sqrt(15) * v$$

Решение задачи сводится к решению системы из двух следующих дифференциальных уравнений:

$$\begin{cases} \frac{dr}{dt} = v \\ \frac{d\theta}{dt} = \sqrt{(4^2 - 1)} * v \end{cases}$$

с начальными условиями:

В первом случае:

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{15}{5} = 3 \end{cases}$$

Во втором случае:

$$\left\{ \begin{array}{c} \theta_0 = -\pi \\ r_0 = \frac{15}{3} = 5 \end{array} \right.$$

Исключая из полученной системы производную по t, переходим к следующему уравнению:

$$\frac{dr}{d\theta} = \frac{r}{\sqrt(15)}$$

- 2. Построим траекторию движения катера и лодки для двух случаев в системе SciLab.
  - Зададим некоторые общие значения (рис. 4.1)

```
s-=-15; -//-начальное-расстояние-от-лодки-до-катера
v=-4; -//-скорость-катера-больше-скорости-лодки
fi=3*%pi/4;
```

Figure 4.1: Задание расстояния, разницы в скорости и угла fi

• Зададим начальные условия и уравнение для случая 1 (рис. 4.2)

```
//начальные условия в случае 1
r0=s/(v+1);
tetha0=0;
tetha=0:0.01:2*%pi;
r=ode(r0,tetha0,tetha,f);
```

Figure 4.2: Начальные условия для случая 1 и уравнение

• Зададим начальные условия и уравнение для случая 2 (рис. 4.3)

```
//начальные-условия-в-случае-2
r0=s/(v-1);
tetha0=-%pi;
tetha=0:0.01:2*%pi;
r=ode(r0,tetha0,tetha,f);
```

Figure 4.3: Начальные условия для случая 2 и уравнение

• Опишем функцию для движения катера береговой охраны и функцию для движения лодки браконьеров (рис. 4.4)

```
//\phi yнкция, - описывающая - движение - катера - береговой - охраны function - dr = f(tetha, r) dr = r/sqrt(v*v-1); endfunction; //\phi yнкция, - описывающая - движение - лодки - браконьеров function - xt = f2(t) - xt = tan(fi)*t; endfunction
```

Figure 4.4: Функция движения катера береговой охраны и функция движения браконьерской лодки

• Построим график (рис. 4.5)

```
t=0:1:30;

<u>polarplot(tetha,r,style</u> == color('blue')); ·//построение · траектории · движения · катера · в

· полярных · координатах

plot2d(t,f2(t),style ·= ·color('red'));
```

Figure 4.5: График

• Весь код решения задачи в SciLab (рис. 4.6)

```
|s = 15; //-начальное-расстояние-от-лодки-до-катера
|v = -4; -//-скорость-катера-больше-скорости-лодки
|fi=3*%pi/4;
//начальные-условия-в-случае-1
 r0=s/(v+1);
tetha0=0;
tetha=0:0.01:2*%pi;
r=ode(r0, tetha0, tetha, <u>f</u>);
//начальные условия в случае 2
//r0=s/(v-1);
//tetha0=-%pi;
//tetha=0:0.01:2*%pi;
//r=ode(r0,tetha0,tetha,f);
//функция, описывающая движение катера береговой охраны function dr=f(tetha, r)
dr=r/sqrt(v*v-1);
endfunction;
//функция, описывающая движение лодки браконьеров function \mathbf{xt} = \underline{f2}(\mathbf{t})
 xt=tan(fi)*t;
endfunction
polarplot(tetha, r, style == color('blue')); -//построение-траектории-движения-катера-в
-полярных-координатах
plot2d(t,f2(t),style = color('red'));
```

Figure 4.6: Весь код решения задачи

- 3. Определим по графику точки пересечения катера и лодки:
  - График для первого случая (красным движение браконьерской лодки, синим движение катера): (рис. 4.7)



Figure 4.7: График для первого случая

При увеличении графика координаты точки пересечения : X = 8,772, Y = -8,772: (рис. 4.8)





Figure 4.8: Увеличенный график для первого случая

• График для второго случая (красным - движение браконьерской лодки, синим - движение катера): (рис. 4.9)



Figure 4.9: График для второго случая

При увеличении графика координаты точки пересечения : X = 32,9, Y = -32,9: (рис. 4.10)



Figure 4.10: Увеличенный график для второго случая

#### 5 Выводы

В ходе выполнения данной лабораторной работы мы построили математическую модель для выбора правильной стратегии при решении задач поиска на примере задачи о преследовании браконьеров береговой охраной. Мы вывели необходимые дифференциальные уравнения для решения данной задачи, построили графики для определения траекторий движения лодки и катера, а также определили точки пересечения траекторий для двух случаев в зависимости от начального положения катера относительно полюса.

## 6 Список литературы

- 1. Кулябов, Д.С. Задача о погоне [Текст] / Д.С.Кулябов. Москва: 4 с.
- 2. Wikipedia: Кривая погони (https://clck.ru/bmFxa)