Anoressia Nervosa

Arianna Ruggiero, Gianluca Tori 14/6/2025

Contesto

Si vuole valutare se è possibile individuare i segni precoci di disfunzione articolare o muscolare caratteristici delle fasi iniziali di anoressia nervosa in strutture che non consentono le misurazioni di prova fisica utilizzando i parametri bioimpedenziometrici e altri marker clinici indiretti. Un'associazione tra i parametri di forza fisica e funzionalità motoria e i parametri BIA e marker clinici indiretti sarebbe potenzialmente utile nei centri sprovvisti di ergometria.

Si vuole quindi dimostrare che BIA e altri marker clinici indiretti e i parametri di forza muscolare e funzionalità motoria migliorano o peggiorano in parallelo e identificare quali marker clinici indiretti anticipano (o riflettono) il recupero funzionale.

Il nostro campione ha un totale di 23 osservazioni e 123 variabili.

Numero di pazienti con anoressia nervosa: 21

Numero di pazienti con bulimia nervosa: 2

Si rimuovono le seguenti colonne, al fine di non avere informazioni ridondanti e inoltre alcune rappresentano solo un calcolo intermedio usato per derivare altri indici:

h2 -> altezza al quadrato

data ricovero

data T0

data T1

data_T2

FFM, FFMp → si preferisce tenere FFMI perchè è più accurato, corregge in base alla statura, distingue soggetti apparentemente normopeso ma con massa magra ridotta

Si crea invece la variabile relativa al tempo, con modalità T0, T1 e T2 per il formato lungo

Tipologia variabile	variabile
covariate fisse nel tempo	patologia
	sintomo 1
	sintomo 2
	arto dominante
	altezza
	sesso
	età
covariate tempo dipendenti	peso_T0, peso_T1, peso_T2
	BMI_T0, BMI_T1, BMI_T2
	mkcal_T0, mkcal_T1, mkcal_T2
	variazmenu_T0, variazmenu_T1, variazmenu_T2
Marker clinici indiretti a T0, T1, T2	rq → quoziente respiratorio
	rmr → metabolismo basale o a riposo, quantità
	minima di energia di cui l'organismo ha bisogno
	per rimanere in vita

Tipologia variabile	variabile
	vo2 max \rightarrow volume di O2 consumata in un minuto
	durante l'attività fisica molto intensa
	Rx_ohm → resistenza
	Xc_ohm → reattanza
	FM → massa grassa
	FMp → % massa grassa
	FFMI → indice di massa magra normalizzato
	TBW → acqua corporea totale
	TBWp → % acqua corporea totale
	ECW → acqua extracellulare
	ECWp → % acqua extracellulare
	ICW acqua intracellulare
	ICWp % acqua intracellulare
	BCM → massa cellulare corporea
	pha → integrità delle membrane cellulari
	BCMI → massa cellulare corporea in rapporto alla statura
parametri di forza fisica e funzionalità motoria a T0, T1, T2	sx1, sx2, sx3, dx1, dx2, dx3 \rightarrow 3 prove di forza arti superiori
· -	mediasx, mediadx → media prove di forza arti
	superiori
	dssx, dsdx \rightarrow dev standard prove di forza arti
	superiori
	situptest
	squattest
	chairstandtest
	sitreachtest
Il compione he un totale di 22 coconyazioni e 116 verichili	

Il campione ha un totale di 23 osservazioni e 116 variabili.

Letteratura

- Un valore basso di pha riflette un cattivo stato nutrizionale e muscolare, tipico dei primi stati di anoressia, un angolo di fase elevato invece è associato ad una maggiore massa muscolare e ad una migliore salute cellulare
- Un rapporto elevato di ECW/ICW indica ritenzione cellulare e quindi segno di squilibrio
- Un valore basso di FFMI indica una minore resistenza muscolare e forza fisica
- Un valore basso di BCM indica il rischio di debolezza muscolare
- Un valore basso di RMR indica un adattamento metabolico da restrizione calorica cronica
- Un valore basso di VO2 indica una ridotta capacità dell'organismo di utilizzare ossigeno per l'attività fisica

Analisi esplorativa

Prove di forza lato sx e lato dx nel tempo per soggetto

Il grafico sopra mostra l'andamento della forza nel tempo (3 punti temporali) su entrambi i lati (dx = destro, sx = sinistro) per ciascun soggetto. Per ogni soggetto si hanno due pannelli, uno per ogni lato del corpo. Alcuni soggetti mostrano aumenti marcati nel tempo, altri mostrano una forza costante nel tempo. In alcuni casi, un lato è sistematicamente più forte o mostra un andamento diverso.

Il grafico sottostante mostra la forza media per ciascun soggetto, distinta per lato del corpo. In molti pazienti il lato destro (dx) presenta valori medi superiori al lato sinistro, indicando una possibile dominanza funzionale e si può anche osservare un'ampia variabilità tra soggetti.

Lattice plot per i test di performance fisica

Andamento del Sit-up Test nel tempo per soggetto

Andamento del Sit-up Test nel tempo per soggetto

Andamento del Sit-up Test nel tempo per soggetto

Andamento del Sit-up Test nel tempo per soggetto

Analisi delle componenti principali

La PCA consiste nella trasformazione lineare delle variabili originarie in un insieme di componenti principali, un numero inferiore rispetto a quello iniziale, che spiegano la massima varianza possibile dei dati, minimizzando la perdita di informazione e riducendo al contempo la dimensionalità del problema. La dimensionalità di un dataset corrisponde al numero di variabili (o caratteristiche) che descrivono ogni osservazione. Nel nostro caso, abbiamo due insiemi di variabili da voler confrontare per valutare se esiste un'associazione tra i due gruppi, a tal proposito si esegue la PCA su entrambi i gruppi e si considera la prima componente principale per entrambi con l'idea di confrontare la prima componente principale del primo gruppo e la prima componente principale del secondo gruppo. sie esegue prima una standardizzazione delle variabili perché la PCA si basa sulla varianza: se le variabili hanno scale diverse, dominerebbero quelle con varianze maggiori.

PCA sulle variabili riferite ai marcatori clinici

Heatmap dei loadings PCA delle variabili riferite ai marcatori biologici (componenti 1–6)

Visualizzazione della varianza totale spiegata da ciascuna componente principale

```
## Importance of components:
##
                             Comp.1
                                       Comp.2
                                                 Comp.3
                                                            Comp.4
                                                                        Comp.5
## Standard deviation
                          2.2717888 2.1252822 1.5809678 1.07836702 1.06400160
## Proportion of Variance 0.3035897 0.2656955 0.1470270 0.06840444 0.06659408
## Cumulative Proportion 0.3035897 0.5692852 0.7163122 0.78471665 0.85131073
##
                              Comp.6
                                         Comp.7
                                                    Comp.8
                                                               Comp.9
## Standard deviation
                          0.88433289 0.80212273 0.75011654 0.51488113 0.395159507
## Proportion of Variance 0.04600263 0.03784711 0.03309852 0.01559427 0.009185355
## Cumulative Proportion 0.89731336 0.93516047 0.96825899 0.98385326 0.993038614
##
                              Comp.11
                                           Comp.12
                                                        Comp.13
## Standard deviation
                          0.310333802 0.1056321999 0.0733202763 0.0571529671
## Proportion of Variance 0.005665122 0.0006563625 0.0003162272 0.0001921448
## Cumulative Proportion 0.998703736 0.9993600981 0.9996763253 0.9998684701
##
                               Comp.15
                                            Comp.16
                                                         Comp.17
## Standard deviation
                          3.800125e-02 2.753579e-02 5.804637e-03
## Proportion of Variance 8.494675e-05 4.460117e-05 1.981989e-06
## Cumulative Proportion 9.999534e-01 9.999980e-01 1.000000e+00
```

Screegraph

Si sceglie il numero minimo di componenti che spiegano abbastanza varianza nei dati, evitando di includerne troppi (overfitting) o troppo pochi (perdita di informazione), segnuendo la regola del gomito. All'inizio, la varianza spiegata cala molto velocemente, dopo un certo punto il "gomito", la riduzione nella varianza spiegata diventa più lenta e graduale. Il "gomito" è il punto dopo il quale aggiungere ulteriori componenti non porta grandi miglioramenti. Il numero di componenti prima del gomito è quello che conviene mantenere. Scegliamo di considerare solo le prime 3 componenti principali, perché sono quelle che spiegano la maggior parte della varianza totale.

Per valutare quanto ogni variabile contribuisce alla spiegazione complessiva della varianza considerata dalle prime tre componenti principali, consideriamo l'indice di contributo alla varianza totale spiegata.

L'indice di contributo per la variabile j è definito come:

$$ext{I}_j = \sum_{i=1}^k rac{(loading_{ji})^2}{\lambda_i}$$

I loadings sono i coefficienti che indicano quanto ciascuna variabile originale contribuisce a ciascuna componente principale. In termini geometrici dicono quanto ogni variabile "pesa" in ogni nuovo asse. Gli autovalori rappresentano la varianza spiegata da ciascuna componente principale. Più l'autovalore è alto, più quella componente spiega una parte importante dell'informazione nei dati.

Si osserva nella tabella seguente quanto ogni variabile conrtibuisce alla spiegazione complessiva della varianza spiegata dalle prime 3 componenti principali

	Variabile	Contributo
rx	rx	0.093135380
FMp	FMp	0.092539102
TBWp	TBWp	0.085308897
FM	FM	0.078818075
pha	pha	0.054478010
ECWp	ECWp	0.053973643
ICWp	ICWp	0.053644494
хс	хс	0.050851689
ICW	ICW	0.047848376
ECW	ECW	0.044153900
TBW	TBW	0.044007983
VO2	VO2	0.027832432
RMR	RMR	0.026841567
ВСМІ	BCMI	0.024026788
FFMI	FFMI	0.021348724
BCM	BCM	0.014469556
RQ	RQ	0.001962411

S procede rimuovendo la variabile con un indice più basso e si rieffettua la pca per valutare pian piano quanto migliora la varianza spiegata dalla prima componente. Dopo la rimozione delle ultime sei variabili ("RQ", "BCM", "FFMI", "BCMI", "RMR", "VO2")) ci si accorge che la prima componente riesce a spiegare circa il 40% della variabilità totale, considerando invece anche la seconda componente principale riusciremmo a spiegare circa il 70% della variabilità totale, che rappresenta un ottimo risultato.

map dei loadings PCA delle variabili riferite ai marcatori biologici (componenti 1-6

Visualizzazione della varianza totale spiegata da ciascuna componente principale

```
## Importance of components:
##
                             Comp.1
                                       Comp.2
                                                 Comp.3
                                                            Comp.4
                                                                        Comp.5
                          2.1055766 1.9518316 1.5121351 0.56451944 0.35783528
## Standard deviation
## Proportion of Variance 0.4030411 0.3463315 0.2078684 0.02897111 0.01164055
## Cumulative Proportion 0.4030411 0.7493727 0.9572411 0.98621217 0.99785273
##
                               Comp.6
                                            Comp.7
                                                         Comp.8
## Standard deviation
                          0.107655291 0.0757703865 0.0614813013 0.0407930234
## Proportion of Variance 0.001053606 0.0005219229 0.0003436319 0.0001512792
## Cumulative Proportion 0.998906333 0.9994282561 0.9997718879 0.9999231671
##
                               Comp.10
                                            Comp.11
## Standard deviation
                          2.833143e-02 6.518634e-03
## Proportion of Variance 7.296997e-05 3.862963e-06
## Cumulative Proportion 9.999961e-01 1.000000e+00
```

Screegraph

dati_long_mc_pca_ridotto

Scegliamo anche in questo caso in base alla regola del gomito, di considerare solo le prime 3 componenti principali, perché sono quelle che spiegano la maggior parte della varianza totale

Si osserva nella tabella seguente quanto ogni variabile contribuisce alla spiegazione complessiva della varianza spiegata dalle prime 3 componenti principali

	Variabile	Contributo
rx	rx	0.12325169
FMp	FMp	0.11303755
TBWp	TBWp	0.10712185
FM	FM	0.09983055
ICW	ICW	0.09117687
TBW	TBW	0.07224830
pha	pha	0.07082462
ECWp	ECWp	0.07056000
ICWp	ICWp	0.07040961
ECW	ECW	0.05426715
хс	хс	0.05266083

PCA sulle variabili riferite alla forza fisica

Visualizzazione della varianza totale spiegata da ciascuna componente principale

```
## Importance of components:
##
                             Comp.1
                                       Comp.2
                                                  Comp.3
                                                             Comp.4
                                                                         Comp.5
## Standard deviation
                          2.6879237 1.3217181 1.14130972 1.03760645 0.95073671
## Proportion of Variance 0.5160667 0.1247813 0.09304199 0.07690194 0.06456431
## Cumulative Proportion 0.5160667 0.6408481 0.73389006 0.81079200 0.87535630
##
                             Comp.6
                                        Comp.7
                                                   Comp.8
                                                              Comp.9
## Standard deviation
                          0.7554211 0.64812226 0.51922764 0.45370087 0.322391631
## Proportion of Variance 0.0407615 0.03000446 0.01925695 0.01470318 0.007424026
## Cumulative Proportion 0.9161178 0.94612227 0.96537922 0.98008240 0.987506422
##
                              Comp.11
                                          Comp.12
                                                       Comp.13
## Standard deviation
                          0.311693867 0.278849462 2.427736e-08 2.282854e-08
## Proportion of Variance 0.006939505 0.005554073 4.209931e-17 3.722445e-17
## Cumulative Proportion 0.994445927 1.000000000 1.000000e+00 1.000000e+00
```

Screegraph

Grafico relazione tra la prima componente principale ottenuta

dal blocco di variabili ridotto riferite ai marcatori biologici e il

secondo blocco di variabili riferite alla forza fisica

Andamento nel tempo delle componenti principali

16 di 16