DS $N^{\circ}3$ (le 25/10/2008)

Idéaux de $\mathcal{M}_n(\mathbb{R})$. Bases stables de $\mathcal{M}_n(\mathbb{R})$ d'après ESIM 2002 et ENSAE 1983

Notations et définitions :

n et p étant deux entiers naturels non nuls, on désigne par $\mathcal{M}_{(p,n)}(\mathbb{R})$ l'espace vectoriel des matrices à p lignes et n colonnes à coefficients réels.

 $\mathcal{M}_n(\mathbb{R})$ désigne l'algèbre des matrices carrées d'ordre n à coefficients réels.

On rappelle que deux matrices A et B appartenant à $\mathcal{M}_{(p,n)}(\mathbb{R})$ sont équivalentes si et seulement s'il existe une matrice P carrée inversible d'ordre p et une matrice Q, carrée, inversible d'ordre n telles que B = PAQ.

A étant élément de $\mathcal{M}_{(p,n)}(\mathbb{R})$, on appelle noyau de A, noté $\operatorname{Ker}(A)$, le sous-espace vectoriel de $\mathcal{M}_{(n,1)}(\mathbb{R})$:

$$Ker(A) = \{ X \in \mathcal{M}_{(n,1)}(\mathbb{R}) / AX = 0 \}.$$

On appelle image de A, notée $\operatorname{Im}(A)$, le sous-espace vectoriel de $\mathcal{M}_{(p,1)}(\mathbb{R})$: $\operatorname{Im}(A) = \{AX, X \in \mathcal{M}_{(n,1)}(\mathbb{R})\}.$

Un sous-groupe \mathcal{J} de $(\mathcal{M}_n(\mathbb{R}), +)$ est appelé un *idéal à droite* de $\mathcal{M}_n(\mathbb{R})$ si et seulement si : $\forall A \in \mathcal{M}_n(\mathbb{R}), \ \forall M \in \mathcal{J}, \ MA \in \mathcal{J}.$

Un sous-groupe \mathcal{J} de $(\mathcal{M}_n(\mathbb{R}), +)$ est appelé $id\acute{e}al$ à gauche de $\mathcal{M}_n(\mathbb{R})$ si et seulement si : $\forall A \in \mathcal{M}_n(\mathbb{R}), \ \forall M \in \mathcal{J}, \ AM \in \mathcal{J}.$

Si \mathcal{J} est à la fois un idéal à gauche et un idéal à droite, on dit que \mathcal{J} est un *idéal bilatère* de $\mathcal{M}_n(\mathbb{R})$.

On désigne par I_n la matrice identité d'ordre n.

I) Résultats préliminaires.

Soit A appartenant à $\mathcal{M}_n(\mathbb{R})$; on suppose A de rang r non nul.

- 1°) Soit u l'endomorphisme de matrice A dans la base canonique de \mathbb{R}^n .
 - a) Soit $(e_{r+1}, e_{r+2}, \dots, e_n)$ une base du noyau de u; montrer l'existence d'une famille de vecteurs (e_1, e_2, \dots, e_r) tel que : $(e_1, e_2, \dots, e_r, e_{r+1}, e_{r+2}, \dots, e_n)$ soit une base de \mathbb{R}^n .
 - **b)** Montrer que le sous-espace vectoriel de \mathbb{R}^n engendré par (e_1, e_2, \ldots, e_r) est isomorphe à $\operatorname{Im}(u)$. En déduire que $(u(e_1), u(e_2), \ldots, u(e_r))$ est une base de $\operatorname{Im}(u)$.
 - c) Dire pourquoi on peut compléter la famille $(u(e_1), u(e_2), \ldots, u(e_r))$ en une base de \mathbb{R}^n

.

En déduire que A est équivalente à la matrice $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$, où I_r désigne la matrice identité d'ordre r et 0 une matrice nulle de taille convenable.

- **2°)** a) Soit B une matrice de $\mathcal{M}_n(\mathbb{R})$. Montrer que A est équivalente à B si et seulement si le rang de B est égal à r.
 - b) Soit D une matrice diagonale d'ordre n telle que : r éléments de la diagonale sont égaux à 1, les n-r autres sont nuls. Montrer que A est équivalente à D.

II) Application.

On considère une application f de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} , différente des constantes 0 et 1, telle que : $\forall (A,B) \in (\mathcal{M}_n(\mathbb{R}))^2, \ f(AB) = f(A)f(B)$

- 1°) Montrer que pour toute matrice inversible A de $\mathcal{M}_n(\mathbb{R})$, f(A) est non nul.
- 2°) A est une matrice de rang r strictement inférieur à n.
 - a) Montrer l'existence de r+1 matrices, notées $A_1, A_2, \ldots, A_{r+1}$, toutes équivalentes à A et telles que le produit $A_1A_2 \ldots A_{r+1}$ soit nul.
 - **b)** En déduire que f(A) = 0.
- **3°)** Que peut-on en conclure pour l'application f? Donner un exemple d'une telle application.

III) Idéaux bilatères de $\mathcal{M}_n(\mathbb{R})$.

Soit \mathcal{J} un idéal bilatère de $\mathcal{M}_n(\mathbb{R})$.

- 1°) Montrer que, si $I_n \in \mathcal{J}$, alors $\mathcal{J} = \mathcal{M}_n(\mathbb{R})$.
- **2°)** Montrer que si \mathcal{J} contient une matrice inversible, alors $\mathcal{J} = \mathcal{M}_n(\mathbb{R})$.
- **3°)** On suppose que \mathcal{J} n'est pas réduit au vecteur nul de $\mathcal{M}_n(\mathbb{R})$. Soit A une matrice de rang r (non nul) appartenant à \mathcal{J} .
 - **a)** Montrer que \mathcal{J} contient la matrice $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$
 - **b)** Montrer l'existence de n-r+1 matrices, notées $A_1, A_2, \ldots, A_{n-r+1}$, toutes équivalentes à A et telles que la somme $A_1 + A_2 + \ldots + A_{n-r-1}$ soit une matrice inversible.
- **4°)** Quelle conclusion peut-on en tirer pour les idéaux bilatères de $\mathcal{M}_n(\mathbb{R})$?

IV) Idéaux à droite de $\mathcal{M}_n(\mathbb{R})$.

1°) Soit E un sous-espace vectoriel de $\mathcal{M}_{(n,1)}(\mathbb{R})$. On désigne par \mathcal{J}_{E} le sous-ensemble de $\mathcal{M}_{n}(\mathbb{R})$: $\mathcal{J}_{E} = \{ A \in \mathcal{M}_{n}(\mathbb{R}) / E \text{ contient } Im(A) \}.$

Montrer que \mathcal{J}_{E} est un idéal à droite de $\mathcal{M}_{n}(\mathbb{R})$.

2°) Soit A un élément de $\mathcal{M}_{(n,p)}(\mathbb{R})$ et B un élément de $\mathcal{M}_{(n,q)}(\mathbb{R})$. On suppose que $\mathrm{Im}(B)$ est contenue dans $\mathrm{Im}(A)$. On veut montrer qu'il existe une matrice C appartenant à $\mathcal{M}_{(p,q)}(\mathbb{R})$ telle que B = AC.

On fixe un supplémentaire S de Ker(A) dans $\mathcal{M}_{(p,1)}(\mathbb{R})$.

- a) Justifier que l'application ϕ définie par : $X \mapsto AX$ définit un isomorphisme de S dans $\operatorname{Im}(A)$.
- b) Soit (e_1, e_2, \ldots, e_q) la base canonique de $\mathcal{M}_{(q,1)}(\mathbb{R})$. Justifier l'existence, pour tout i compris entre 1 et q, d'un unique élément ε_i de S tel que $A\varepsilon_i = Be_i$.
- c) Soit C l'élément de $\mathcal{M}_{(p,q)}(\mathbb{R})$ dont les colonnes sont les matrices $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_q$ soit $C = [\varepsilon_1 \ \varepsilon_2 \ \ldots \ \varepsilon_q]$. Montrer que B = AC.
- 3°) Soient A, B et C trois éléments de $\mathcal{M}_n(\mathbb{R})$ tels que : $\operatorname{Im}(A) + \operatorname{Im}(B)$ contient $\operatorname{Im}(C)$.
 - a) On désigne par $D = [A \ B]$ la matrice de $\mathcal{M}_{(n,2n)}(\mathbb{R})$ obtenue en juxtaposant les matrices A et B, c'est-à-dire que les n premières colonnes de D sont celles de A et les n dernières celles de B.

Montrer que Im(D) = Im(A) + Im(B).

- b) En déduire l'existence d'une matrice W appartenant à $\mathcal{M}_{(2n,n)}(\mathbb{R})$ telle que : C = DW.
- c) En déduire l'existence de deux matrices U et V appartenant à $\mathcal{M}_n(\mathbb{R})$ telles que : C = AU + BV.
- **4°**) Soif \mathcal{J} un idéal à droite de $\mathcal{M}_n(\mathbb{R})$.
 - a) Montrer qu'il existe un entier naturel r tel que :

$$\forall M \in \mathcal{J}, \operatorname{rang}(M) \leqslant r.$$

Montrer qu'il existe $M_0 \in \mathcal{J}$ tel que rang $(\mathcal{M}_0) = r$.

- b) Soit M un élément quelconque de \mathcal{J} .
 - On suppose que Im(M) n'est pas contenue dans $\text{Im}(M_0)$.
 - En utilisant le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$: $\operatorname{Im}(M) + \operatorname{Im}(M_0)$, montrer l'existence d'un élément de \mathcal{J} de rang strictement supérieur à r.
- c) Déduire des questions précédentes que \mathcal{J} est contenu dans $\mathcal{J}_{\text{Im}(M_0)}$
- 5°) Montrer que $\mathcal{J} = \mathcal{J}_{Im(\mathcal{M}_0)}$.
- **6°)** Conclure : quels sont les idéaux à droite de $\mathcal{M}_n(\mathbb{R})$?

V) Idéaux à gauche de $\mathcal{M}_n(\mathbb{R})$.

1°) Soit F un sous-espace vectoriel de $\mathcal{M}_{(n,1)}(\mathbb{R})$. On désigne par \mathcal{K}_F le sous-ensemble de $\mathcal{M}_n(\mathbb{R})$: $\mathcal{K}_F = \{ M \in \mathcal{M}_n(\mathbb{R}) / \text{Ker}(M) \text{ contient } F \}.$

Montrer que \mathcal{K}_F est un idéal à gauche de $\mathcal{M}_n(\mathbb{R})$.

- **2°)** a) On désigne par u un morphisme de \mathbb{R}^n dans \mathbb{R}^p , v un morphisme de \mathbb{R}^n dans \mathbb{R}^q . On suppose que $\operatorname{Ker}(v)$ contient $\operatorname{Ker}(u)$.

 Montrer qu'il existe un morphisme w de \mathbb{R}^p dans \mathbb{R}^q tel que : v = wou.
 - b) Soit $A \in \mathcal{M}_{(p,n)}(\mathbb{R})$, $B \in \mathcal{M}_{(q,n)}(\mathbb{R})$, telles que $\operatorname{Ker}(B)$ contient $\operatorname{Ker}(A)$. Déduire de la question précédente qu'il existe $C \in \mathcal{M}_{(q,p)}(\mathbb{R})$ telle que B = CA.
- **3°)** Soient A, B et C trois matrices carrées d'ordre n telles que : Ker(C) contient $Ker(A) \cap Ker(B)$.

Montrer qu'il existe deux matrices carrées d'ordre n, U et V, telles que : C = UA + VB.

- **4°)** Déterminer les idéaux à gauche de $\mathcal{M}_n(\mathbb{R})$.
- 5°) Soient E, F deux sous-espaces vectoriels de $\mathcal{M}_{(n,1)}(\mathbb{R})$. Montrer que : $\dim(\mathcal{K}_F \cap \mathcal{J}_E) = \dim(E) \times (n - \dim(F))$. Retrouver ainsi le résultat de III.4.

VI) Application : bases stables de $\mathcal{M}_n(\mathbb{R})$.

On suppose ici $n \ge 2$. Une base \mathcal{B} de $\mathcal{M}_n(\mathbb{R})$ est dite *stable* si elle vérifie : $\forall A, B \in \mathcal{B}$ ou AB = 0.

1°) Donner un exemple de telle base.

Soit \mathcal{B} une base stable de $\mathcal{M}_n(\mathbb{R})$, et r le minimum du rang des éléments de \mathcal{B} . Soit \mathcal{B}' l'ensemble des éléments de \mathcal{B} de rang égal à r.

- **2°)** a) Montrer que, pour toute $A \in \mathcal{B}$ et toute $B \in \mathcal{B}'$: $(BA \in \mathcal{B}' \text{ ou } BA = 0)$ et $(AB \in \mathcal{B}' \text{ ou } AB = 0)$
 - **b)** En utilisant III.4, montrer que $\operatorname{Vect}(\mathcal{B}') = \mathcal{M}_n(\mathbb{R})$, puis que $\mathcal{B}' = \mathcal{B}$.

Ainsi, tous les éléments de \mathcal{B} ont même rang r.

- 3°) On se propose ici de démontrer que r < n.
 - a) Montrer que, si l'élément $M \in \mathcal{M}_n(\mathbb{R})$ vérifie : $\forall N \in \mathcal{M}_n(\mathbb{R}) , MN = NM$ alors : $\exists \lambda \in \mathbb{R} \text{ tq } M = \lambda I_n$.
 - **b)** Soit $M = \sum_{A \in \mathcal{B}} A$. Montrer que, si l'on avait r = n, on aurait : $\forall B \in \mathcal{B} \ . \ MB = BM = M$.

c) Conclure.

On note désormais \mathcal{E} l'ensembles des sous-espaces vectoriels E de $\mathcal{M}_{(n,1)}(\mathbb{R})$ tels que il existe au moins un élément $A \in \mathcal{B}$ vérifiant Im(A) = E; on note \mathcal{F} l'ensemble des sous-espaces vectoriels F de $\mathcal{M}_{(n,1)}(\mathbb{R})$ tels que il existe au moins un élément $A \in \mathcal{B}$ vérifiant Ker(A) = F.

Pour tout $E \in \mathcal{E}$ et tout $F \in \mathcal{F}$, on note \mathcal{B}_{E} l'ensemble des éléments $A \in \mathcal{B}$ tels que Im(A) = E, et on note \mathcal{B}^{F} l'ensemble des éléments $A \in \mathcal{B}$ tels que Ker(A) = F.

- **4°)** a) Montrer que $\text{Vect}(\mathcal{B}_{E}) = \mathcal{J}_{E}$ et que $\text{Vect}(\mathcal{B}^{F}) = \mathcal{K}_{F}$ pour tout $E \in \mathcal{E}$ et tout $F \in \mathcal{F}$.
 - b) Montrer que $\mathcal{M}_n(\mathbb{R})$ est la somme directe des \mathcal{J}_E lorsque E décrit \mathcal{E} .
 - c) Montrer que $\mathcal{M}_{(n,1)}(\mathbb{R})$ est la somme directe des E lorsque E décrit \mathcal{E} (on pourra utiliser la décomposition de I_n dans la somme directe de la question précédente).
- 5°) a) Soit $F \in \mathcal{F}$. Montrer que \mathcal{K}_F est la somme directe des sous-espaces vectoriels engendrés par les $\mathcal{B}_E \cap \mathcal{B}^F$ lorsque E décrit \mathcal{E} .
 - **b)** En déduire que : $\forall E \in \mathcal{E}$, $\forall F \in \mathcal{F}$, $\operatorname{Vect}(\mathcal{B}_{E} \cap \mathcal{B}^{F}) = \mathcal{K}_{F} \cap \mathcal{J}_{E}$.
- **6°)** a) Soit $A \in \mathcal{B}_{E} \cap \mathcal{B}^{F}$. Montrer que : $A^{2} = 0$ ou $A^{2} \in \mathcal{B}_{E} \cap \mathcal{B}^{F}$.
 - **b)** En déduire que : $\forall E \in \mathcal{E}$, $\forall F \in \mathcal{F}$, ou bien $E \subset F$, ou bien $E \oplus F = \mathcal{M}_{(n,1)}(\mathbb{R})$.
 - c) Montrer que, pour tout $F \in \mathcal{F}$, il existe au moins un $E \in \mathcal{E}$ tel que $E \oplus F = \mathcal{M}_{(n,1)}(\mathbb{R})$.
- 7°) Soient $E \in \mathcal{E}$ et $F \in \mathcal{F}$ tels que $E \oplus F = \mathcal{M}_{(n,1)}(\mathbb{R})$. Soit $(e_1, e_2, \dots, e_r, e_{r+1}, e_{r+2}, \dots, e_n)$ une base de $\mathcal{M}_{(n,1)}(\mathbb{R})$ telle que (e_1, e_2, \dots, e_r) soit une base de E.
 - a) Pour toute $A \in \mathcal{K}_F \cap \mathcal{J}_E$, on peut considérer l'application linéaire de E dans E qui transforme la base (e_1, e_2, \ldots, e_r) de E en la famille $(Ae_1, Ae_2, \ldots, Ae_r)$. On notera \hat{A} la matrice de cette application linéaire dans la base (e_1, e_2, \ldots, e_r) de E.

 Montrer que l'application $A \mapsto \hat{A}$ est un isomorphisme d'espaces vectoriels de $\mathcal{K}_F \cap \mathcal{J}_E$ sur $\mathcal{M}_r(\mathbb{R})$
 - b) Montrer que l'image de $\mathcal{B}_{\mathrm{E}} \cap \mathcal{B}^{\mathrm{F}}$ par cet isomorphisme est une base stable de $\mathcal{M}_r(\mathbb{R})$.
 - c) Déduire alors de VI.3 que : r = 1.
 - d) Montrer que $\mathcal{B}_{\mathrm{E}} \cap \mathcal{B}^{\mathrm{F}}$ a pour unique élément la projection d'image E et de noyau F.