PFN Researcher Interview

Lekan Molu

Background

Technical Presentation

Approach

Results

PFN Researcher Interview

Lekan Molu

Smilow Center for Translational Research,
The University of Pennsylvania, Philadelphia, PA

Sept. 11, 2019

Personal Background

PFN Researcher Interview

Lekan Molu

Personal Background

Technical Presentation Research Overview

Approach
Problem Setup

Result

- PhD in Electrical and Computer Engineering, University of Texas at Dallas, Richardson, USA. 2014–2019
 - "A Multi-DOF Soft Robot Mechanism for Patient Motion Correction and Beam Orientation Selection in Cancer Radiation Therapy."
- Master of Science in Engineering in Control Systems, The University of Sheffield, Sheffield, United Kingdom. 2012
 - "Autonomous Navigation of a Rotorcraft Unmanned Aerial Vehicle using Machine Vision."

Select Publications

PFN Researcher Interview

Lekan Molu

Personal Background Select Publications

Technical
Presentation
Research Overview

Approach
Problem Setup

- Mechanism and Constitutive Model of a Continuum Robot for Head and Neck Cancer Radiotherapy.
 - **Olalekan Ogunmolu**, Xinmin Liu, Nicholas Gans, and Rodney Wiersma
 - Submitted to *Robotics and Automation Letters (ICRA 2020)*, September 2019.
- A Fast Deep Learning Approach for Beam Orientation Selection Using Supervised Learning with Column Generation on IMRT Prostate Cancer Patients
 - Azar Sadeghnejad Barkousaraie, **Olalekan Ogunmolu**, Steve Jiang, and Dan Nguyen.
 - Submitted to Medical Physics (An AAPM Journal), May 2019.
- More on my online publications page.

Select Publications

PFN Researcher Interview

Lekan Molu

Personal
Background
Select Publications

Technical
Presentation
Research Overview

Approach
Problem Setup

 Deep BOO: Automating Beam Orientation Selection in Intensity Modulated Radiation Therapy

Olalekan Ogunmolu, Michael Folkerts, Dan Nguyen, Nicholas Gans, and Steve Jiang.

Algorithmic Foundations of Robotics XIII, International Workshop (WAFR), Mérida, Mexico. December 2018.

 Minimax Iterative Dynamic Game: Application to Nonlinear Robot Control Tasks

Olalekan Ogunmolu, Nicholas Gans, and Tyler Summers. *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, Madrid, Spain. October 2018. DOI: 10.1109/IROS.2018.8594037.

Select Experience

PFN Researcher Interview

Lekan Molu

Personal Background Select Publications

Technical
Presentation
Research Overview

Approach
Problem Setup

Results

- Visiting Postdoctoral Scholar, Department of Radiation and Cellular Oncology, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA. Summer 2019.
- Postdoctoral Scholar, Perelman School of Medicine, The University of Pennsylvania, Philadelpia, PA, USA. 2019 -Present.
- Hardware Integration Intern, Amazon Robotics LLC, North Reading, MA, USA. 2016.

Technical Presentation Overview

PFN Researcher Interview

Lekan Molu

Personal Background

Technical Presentation

Presentation

nescuren overvie

Problem Setu

The robustness conundrum

PFN Researcher Interview

Lekan Molu

Personal Background Select Publications

Technical Presentation Research Overview

Approach
Problem Setur

Results

■ How to know a priori a policy's robustness limits?

How to inculcate robustness into multistage decision policies?

Problem Setup

PFN Researcher Interview

Lekan Molu

Personal
Background
Select Publication

Technical
Presentation
Research Overview

Problem Setup

Results

■ To quantify the brittleness, we optimize the stage cost

$$\max_{\mathbf{v}_t \sim \psi \in \Psi} \left[\sum_{t=0}^T \underbrace{c(\mathbf{x}_t, \mathbf{u}_t)}_{\text{nominal}} - \gamma \underbrace{g(\mathbf{v}_t)}_{\text{adversarial}} \right]$$

■ To mitigate lack of robustness, we optimize the *cost-to-go*

$$\mathcal{J}_t(\mathbf{x}_t, \pi, \psi) = \min_{\mathbf{u}_t \sim \pi} \max_{\mathbf{v}_t \sim \psi} \left(\sum_{t=0}^{T-1} \ell_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{v}_t) + L_T(\mathbf{x}_T) \right),$$

and seek a saddle point equilibrium policy that satisfies

$$\mathcal{J}_t(\mathbf{x}_t, \pi^*, \psi) \leq \mathcal{J}_t(\mathbf{x}_t, \pi^*, \psi^*) \leq \mathcal{J}_t(\mathbf{x}_t, \pi, \psi^*),$$

Results: Brittleness Quantification

PFN Researcher Interview

Lekan Molu

Personal Background

Background
Select Publications

Presentation

Research Overview

Problem Setu

Results

ILQG Algorithm Example

PFN Researcher Interview

Lekan Molu

Personal Background

Technical Presentation

Research Overview

Problem Setu

Results

Results: Iterative Dynamic Game

PFN Researcher Interview

Lekan Molu

Personal Background Select Publication

Technical Presentation Research Overvie

Approach
Problem Setup

Results

Table: *

End pose of the KUKA platform with our iDG formulation given different goal states and γ -values

