CS/COE 1501

www.cs.pitt.edu/~nlf4/cs1501/

Graphs

Graphs

- A graph G = (V, E)
 - Where V is a set of vertices
 - E is a set of edges connecting vertex pairs
- Example:
 - \circ V = {0, 1, 2, 3, 4, 5}
 - \circ E = {(0, 1), (0, 4), (1, 2), (1, 4), (2, 3), (3, 4), (3, 5)}

Why?

Can be used to model many different scenarios

Some definitions

- Undirected graph
 - Edges are unordered pairs: (A, B) == (B, A)
- Directed graph
 - Edges are ordered pairs: (A, B) != (B, A)
- Adjacent vertices, or neighbors
 - Vertices connected by an edge

Graph sizes

- Let v = |V|, and e = |E|
- Given v, what are the minimum/maximum sizes of e?
 - Minimum value of e?
 - Definition doesn't necessitate that there are any edges...
 - So, 0
 - Maximum of e?
 - Depends...
 - Are self edges allowed?
 - Directed graph or undirected graph?
 - In this class, we'll assume directed graphs have self edges
 while undirected graphs do not

More definitions

• A graph is considered *sparse* if:

$$\circ$$
 e <= v lg v

 A graph is considered *dense* as it approaches the maximum number of edges

• A complete graph has the maximum number of edges

Question:

• ?

Representing graphs

- Trivially, graphs can be represented as:
 - List of vertices
 - List of edges
- Performance?
 - Assume we're going to be analyzing static graphs
 - I.e., no insert and remove
 - So what operations should we consider?

Using an adjacency matrix

Rows/columns are vertex labels

○
$$M[i][j] = 1$$
 if $(i, j) \in E$

○
$$M[i][j] = 0$$
 if $(i, j) \notin E$

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	1	0	1	0
2	0	1	0	1	0	0
3	0	0	1	0	1	1
4	1	1	0	1	0	0
5	0	0	0	1	0	0

Adjacency matrix analysis

- Runtime?
- Space?

Adjacency lists

- Array of neighbor lists
 - o A[i] contains a list of the neighbors of vertex i

Adjacency list analysis

- Runtime?
- Space?

Comparison

 Where would we want to use adjacency lists vs adjacency matrices?

• What about the list of nodes/list of edges approach?

Even more definitions

- Path
 - A sequence of adjacent vertices
- Simple Path
 - A path in which no vertices are repeated
- Simple Cycle
 - A simple path with the same first and last vertex
- Connected Graph
 - A graph in which a path exists between all vertex pairs
- Connected Component
 - Connected subgraph of a graph
- Acyclic Graph
 - A graph with no cycles
- Tree
 - ?
 - A connected, acyclic graph
 - Has exactly v-1 edges

Graph traversal

- What is the best order to traverse a graph?
- Two primary approaches:
 - Depth-first search (DFS)
 - "Dive" as deep as possible into the graph first
 - Branch when necessary
 - Breadth-first search (BFS)
 - Search all directions evenly
 - I.e., from i, visit all of i's neighbors, then all of their neighbors, etc.

DFS

- Already seen and used this throughout the term
 - For tries...
 - For Huffman encoding...
- Can be easily implemented recursively
 - For each node, visit first unseen neighbor
 - Backtrack at dead ends (i.e., nodes with no unseen neighbors)
 - Try next unseen neighbor after backtracking

DFS example

DFS example 2

BFS

- Can be easily implemented using a queue
 - For each node visited, add all of its neighbors to the queue
 - Vertices that have been seen but not yet visited are said to be the *fringe*
 - Pop head of the queue to be the next visited vertex
- See example

BFS example

Shortest paths

 BFS traversals can further be used to determine the shortest path between two vertices

Analysis of graph traversals

At a high level, DFS and BFS have the same runtime

- Each node must be seen and then visited, but the order will differ between these two approaches
- How will the representation of the graph affect the runtimes of of these traversal algorithms?

DFS and BFS would be called from a wrapper function

- If the graph is connected:
 - dfs()/bfs() is called only once and returns a spanning tree
- Else:
 - A loop in the wrapper function will have to continually call dfs()/bfs() while there are still unseen vertices
 - Each call will yield a spanning tree for a connected component of the graph

DFS pre-order traversal

DFS in-order traversal

DFS post-order traversal

Biconnected graphs

- A biconnected graph has at least 2 distinct paths (no common edges or vertices) between all vertex pairs
- Any graph that is not biconnected has one or more articulation points
 - Vertices, that, if removed, will separate the graph
- Any graph that has no articulation points is biconnected
 - Thus we can determine that a graph is biconnected if we look for, but do not find any articulation points

Finding articulation points

- Variation on DFS
- Consider building up the spanning tree
 - Have it be directed
 - Create "back edges" when considering a node that has already been visited in constructing the spanning tree
 - Label each vertex v with with two numbers:
 - num(v) = pre-order traversal order
 - low(v) = lowest-numbered vertex reachable from v using 0 or more spanning tree edges and then at most one back edge
 - Min of:
 - o num(v)
 - Lowest num(w) of all back edges (v, w)
 - Lowest low(w) of all spanning tree edges (v, w)

Finding articulation points example

So where are the articulation points?

- If any (non-root) vertex v has some child w such that low(w) ≥ num(v), v is an articulation point
- What about if we start at an articulation point?
 - If the root of the spanning tree has more than one child, it is an articulation point