Brain Tumor Detection Rubric

DS 4002 - Fall 2024 - Instructor: Ashley Whitehouse

Due: TBD

Submission format: Upload a link to your GitHub repository on Canvas

Individual Assignment

General Description: Submit a link to your GitHub repository containing your completed case study, which demonstrates your ability to use convolutional neural networks to classify MRI brain scan images.

Preparatory Assignments – Everything you have learned thus far as a 2nd year data science student.

Why am I doing this? This is your opportunity to apply what you've learned to a real-world scenario that you may encounter in future classes or in your career. This will also be a great learning opportunity for you to develop your analytical and technical skills and to gain experience working with convolutional neural networks (CNNs).

What am I going to do? You will obtain the data for this project from the GitHub repository, which can be found here: https://github.com/awhitehouse1/DS4002-CS3. You will then build a CNN of your choosing using the provided dataset to classify MRI brain scans as "tumor" or "no tumor". You will also document your methodology and results in a PDF. Finally, you will create a README containing the GitHub file structure, instructions for running your code, and your references.

Tips for success:

- Experiment with hyperparameters, such as the number of epochs, batch size, number of filters, etc. to increase the accuracy of your model.
- If your accuracy is low even after trying to optimize your model, don't worry! You can reflect on reasons the accuracy of your model might be low, such as overfitting/underfitting or model architecture, in your PDF report.

How will I know I have Succeeded? You will meet expectations on this brain tumor detection case study when you follow the criteria in the rubric below.

Spec Category	Spec Details
Formatting	GitHub Repository: Make sure it includes the following
	 The MRI images dataset provided to you in the GitHub link
	 Your code source file
	 PDF report with your methodology and key findings
	 A README.md with project structure, instructions for
	replication, and references
Source Code File	Goal: Write well commented code that classifies MRI brain scan
	images as tumor or no tumor

_	
	Write your code in Python using Google Colab or a Jupyter Notebook.
	Turn in as a Python script or notebook (.py or. ipynb file)
	Include preprocessing, such as data augmentation and feature scaling
	 Build a CNN using TensorFlow/Keras, using an architecture of your choice. You will explain the modeling choices you make in the PDF report. Some CNN architectures you may consider are ResNet50, VGG19, MobileNet, etc. Include comments that explain how your code works. Make sure to describe any preprocessing steps and hyperparameters.
	 Create and include visualizations showing the accuracy and loss of your training and validation sets over multiple epochs. You will interpret these graphs in your PDF report.
PDF Report	 Goal: Explain your methodology and present the results (PDF format) Methodology section:
	 Explain the following:
	 Preprocessing steps (data augmentation, feature scaling, etc.)
	 Train-test split
	 Why you chose your CNN model
	 Any model optimizations you applied
	 Any callbacks or checkpoints you used
	Results section:
	 Explain the key findings
	 Interpret your model's performance using accuracy and loss. If your model's performance is low (below 60%), reflect on possible causes for this and how it could be improved in the future.
	 Include and discuss visualizations from your Python source file
README.md	 Goal: Orient people to your repository and give credit to your references Use markdown headers to divide content Section 1: Project Structure Provide an outline of the files included in your repository. You should briefly explain the contents of each file.

 Section 2: Instructions for replicating your results Give explicit step-by-step instructions for reproducing the results of the case study. Explain where to find the data, which code should be run, and how to run it.
Section 3: References
 All references should be listed
 Use IEEE Documentation style

Acknowledgements: Special thanks to Jess Taggart from UVA CTE for coaching on making this rubric. This structure is pulled from Streifer & Palmer (2020).