Homework 1 (due on Sept 12th, Wednesday, 10am)

Consider a simple system with a single arrival stream and a single server. The following are data recorded for 10.0 minutes.

Time t	Event
0.0	Customer 1 arrives and enters service
2.3	Customer 1 departs
4.0	Customer 2 arrives and enters service
5.4	Customer 3 arrives and waits
6.1	Customer 4 arrives and waits
7.3	Customer 2 departs
7.3	Customer 3 enters service
8.4	Customer 5 arrives and waits
9.5	Customer 3 departs
10.0	Simulation ends

Question 1:

Based on the above information compute the following (show the intermediate steps):

- 1. The average waiting time in queue;
- 2. The average waiting time in system;
- 3. The average number of customers in queue;
- 4. The average number of customers in system;
- 5. The server utilization.

Answer 1:

Figure 1. This shows the final event of the simulation.

1. The average waiting time in the queue = $\frac{Total \text{ of times in queue}}{\# \text{ of times in queue}}$

Number of completed waiting times in queue 4	Total of waiting times in queue 5.3	
--	-------------------------------------	--

$$\frac{Total\ of\ times\ in\ queue}{\#\ of\ times\ in\ queue} = \frac{5.3\ minutes}{4\ customers} = \frac{1.325\ minutes\ per\ customer}$$

2. The average waiting time in the system = $\frac{\text{Total of times in system}}{\text{# of times in system}}$

num compl	eted syste	m = 3			
customer	waiting time in system (departure time - arrival time)				
1	2.3				
2	3.3				
3	4.1				
total	9.7				

$$\frac{Total\ of\ times\ in\ system}{\#\ of\ times\ in\ system} = \frac{9.7\ minutes}{3\ customers} = \frac{3.233\ minutes\ per\ customer}{3\ customers}$$

3. The average # of customers in the queue = $\frac{1}{10-0}\int_0^{10}Q(t)dt$

$$\frac{1}{10-0} \int_0^{10} Q(t)dt = \frac{1}{10} \left(Area \ under \ Q(t) \right) = \frac{1}{10} (6.9) = \frac{0.69 \ customers}{0.69 \ customers}$$

4. The average # of customers in the system = $\frac{1}{10-0} \int_0^{10} n(t) dt$

$$n(t) = Q(t) + B(t), so \frac{1}{10 - 0} \int_0^{10} n(t)dt = \frac{1}{10 - 0} \int_0^{10} Q(t)dt + \frac{1}{10 - 0} \int_0^{10} B(t)dt$$

$$= \frac{1}{10-0} \int_0^{10} Q(t) dt + \frac{1}{10-0} \int_0^{10} B(t) dt = \frac{1}{10} \left(Area \ under \ Q(t) \right) + \frac{1}{10} \left(Area \ under \ B(t) \right)$$

$$=\frac{1}{10}(6.9+8.3)=\frac{15.2}{10}=\frac{1.52\ customers}{1.52\ customers}$$

5.
$$server\ utilization = \frac{Area\ under\ B(t)}{Final\ Clock\ Value} = \frac{8.3}{10} = 0.83 = 83\%\ utilization$$

Question 2:

Make a plot for n(t) vs. t, where n(t) is the number of customers in the system at t.

Answer 2:

$$n(t) = Q(t) + B(t)$$

of customers in the system = # of customers in the queue + # of customers being served

part	time	event	Q(t)	B(t)	n(t)
1	0	arrives	0	1	1
1	2.3	dep	0	0	0
2	4	arr	0	1	1
3	5.4	arr	1	1	2
4	6.1	arr	2	1	3
2	7.3	dep	1	1	2
5	8.4	arr	2	1	3
3	9.5	dep	1	1	2
_	10	End	1	1	2

N(t) vs t

Question 3:

Create an ARENA model for the above problem. Suppose interarrival times are uniformly distributed between 1 and 5 minutes and service times are uniformly distributed between 2 and 3 minutes. Run the simulation model for 100 minutes and provide a summary for the following:

- 1. The average waiting time in queue;
- The average waiting time in system;
- The average number of customers in queue;
- 4. The average number of customers in system;
- The server utilization;
- 6. Please upload this ARENA .doe file in Dropbox.

Answer 3:

- 1. The average waiting time in the queue = 0.2553 minutes
- 2. The average waiting time in the system = 2.8016 minutes
- 3. The average # of customers in the queue = $\frac{0.07915317}{0.07915317}$ customers
- 4. The average # of customers in the system =

```
avg. # queue + avg. # served = 0.7894 + 0.07915317 = 0.86855317 customers
```

- 5. The server utilization = $0.7894 = \frac{78.94\%}{10.000}$ utilized
- 6. ARENA file name = 431 hwk1.doe