Section	13.2. Th	e prod	uet c	md G	Juotient
• The	Produck (Rule:			
Let	u= f(x)	and s	= g(x)	, be	differentiab
700100100	N > .		Aa		
۵۵	ULV	۵	UDV		
v	uv	r	50U		
	A2		A 0.4		
	2 - (x4 4x)		M		
AV =	g (x+ax)-0	/(x)			
A1 =	U.V				
	(n+ sn)(5+05)			
Change	in the a	rea:			
D(200		•			vaua +uav
	V(na)	· u AV	+ 5 AV	- +bu	AU AX
\ a\ Av	. > 0 . The				

$$\frac{d}{dx}(xy) = x \frac{dy}{dx} + y \frac{dy}{dx} + 0. \frac{dy}{dx}$$

$$\frac{d}{dx}(xy) = x \frac{dy}{dx} + y \frac{dy}{dx}$$
The Product Rule:

If f and g are both differentiable, then
$$\frac{d}{dx}(f \cdot g) = f(x) \frac{d}{dx}(g(x)) + g(x) \frac{d}{dx}(f(x))$$
The Quotient Rule:

Let $u = f(x)$ and $y = g(x)$ be differentiable tunctions. Then
$$\Delta\left(\frac{xy}{y}\right) = \frac{x+6x}{y+ay} - \frac{y}{y} = \frac{y+6y}{y+ay} - \frac{y}{y} = \frac{y+6y}{y+ay}$$
So
$$\frac{d}{dx}\left(\frac{y}{y}\right) = \lim_{ax\to 0} \Delta\left(\frac{y}{y}\right) = \frac{y+6y}{y+ay} - \frac{y}{y} = \frac{y+6y}{y+ay} - \frac{y}{y} = \frac{y+6y}{y+ay} - \frac{y}{y} = \frac{y+6y}{y+ay} - \frac{y}{y} = \frac{y+6y}{y+ay} - \frac{y+6y}$$

Quotient Rule: If f and g are differentiable, then $\frac{d}{dx}\left(\frac{e}{3}\right) = \frac{g(x)}{dx} \frac{df}{dx} - f(x) \frac{dg}{dx}$ Table of Differentiation Formulas 1. $\frac{d}{dx}(c)=0$ 5. (4+3) = 4+91 6. (2-9)=19-19 2. (cf) = cf' 3. (f.g)=fg+fg 7. $\frac{d}{dx} (e^x) = e^x$ 8. (\frac{\xi}{9}) = \frac{9\xi^1 - \xi_0^1}{9^2}