## PROVA SCRITTA DI ELETTRONICA 1 7 SETTEMBRE 2017

1) Nel circuito in figura, il transistore bipolare può essere descritto da un modello "a soglia", con  $V_{\gamma}$ =0.75 V e  $V_{CE,sat}$ =0.2 V, mentre il transistore MOS è caratterizzato dalla tensione di soglia  $V_{T1}$  e dal coefficiente  $\beta_1$ . Il segnale d'ingresso abbia il seguente andamento:

t<0:  $V_i = 0$ t>0:  $V_i = Vdd$ 

Si determini il ritardo di propagazione tp,HL relativo al segnale d'uscita vu, definito come il tempo necessario a compiere il 50% dell'escursione totale del segnale di uscita.



 $V_{dd} = 3.5 \text{ V}, V_{T1} = 0.5 \text{ V}, \beta_1 = 5\text{mA/V}^2, \beta_F = 100, R_1 = 500 \Omega, R_2 = 10 \text{ k}\Omega, R_3 = 1 \text{ k}\Omega, C = 10\text{nF}.$ 

2) Nel circuito in figura, i transistori MOS sono caratterizzati dalla tensione di soglia  $V_{T}$  e dai coefficienti  $\beta_{1}$  e  $\beta_{2}$ . Il diodo è descritto da un modello a soglia, con  $V_{\gamma}$ =0.75 V.

Si determinino i valori "nominali" VH e VL della rete.

 $V_{dd} = 3.3V$ ,  $V_T = 0.25 V$ ,  $\beta_1 = 1.8 \text{ mA/V}^2$ ,  $\beta_2 = 0.6 \text{ mA/V}^2$ ,  $R = 2k\Omega$ .



Esame di ELETTRONICA AB (mod. B): svolgere l'esercizio 1 (tempo disponibile 1h 15m). Esame di ELETTRONICA DEI SISTEMI DIGITALI A: l'esercizio 2 (tempo disponibile 1h 15m).

Esame di ELETTRONICA 1 / FONDAMENTI DI ELETTRONICA A: svolgere gli esercizi 1 e 2 (tempo disponibile 2h e 30m).

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

OSS. PRELIMINARI: Quando M1 è on è SAT. M1 on quando vdd-vu>vt1, sse vu< 3V.

1) t<0, vi=0, allora Q1 OFF. Si ipotizza anche M1 off (da verificare), sse vu>3 V.

| Vu=vdd*r2/(r2+r3) = 3.182 V | Tale valore soddisfa l'ipotesi di spegnimento di M1.<br>Quindi per t< 0s, vu=3.182V |
|-----------------------------|-------------------------------------------------------------------------------------|
|                             |                                                                                     |

2) Per t ->  $\infty$ , vi=vdd, quindi Q1 on e sat (sse vu=vcesat – da verificare) e M1 on e sat.

| 2) Per t -> \infty, vi=vad, quindi Q1 on e sat (sse vu=vcesat – da verificare) e ivi1 on e sat. |                                                |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------|--|
| Verifica ipotesi di saturazione di Q1.                                                          | Da cui si ricava che:                          |  |
|                                                                                                 | ic1=0.011 A                                    |  |
| Se Q1 sat, allora vu=vcesat                                                                     |                                                |  |
| $ib1=ir1=(vdd-v_{\gamma})/r1$                                                                   | Q1 è sat sse $\beta_F$ *ib1>ic1                |  |
| ir3=(vdd-vcesat)/r3                                                                             | ,                                              |  |
| ir2=vcesat/r2                                                                                   | ma $\beta_F$ *ib1=0.55 A                       |  |
| $id1sat=\beta_1/2*(vdd-vcesat-vt_1)^2$                                                          | ,                                              |  |
|                                                                                                 | Allora l'Hp di saturazione di Q1 è verificata. |  |
| Allora                                                                                          |                                                |  |
| ic1=ir3+id1sat-ir2                                                                              | Per t -> $\infty$ , vi=vdd e vu=vcesat         |  |
|                                                                                                 | ,                                              |  |

Per t=0+ vi=vdd, e vu(0+)=vu(0-)=3.812V. Il tp<sub>HL</sub> è il tempo che il segnale d'uscita vu impiega per compiere il 50% della transizione totale, dove vu(iniziale)=3.812V, vu(t-> $\infty$ )=vcesat=0.2V, allora vu(finale)=2.006 V

Si noti che durante tutto questo transitorio, Q1 rimane in AD, mentre M1 dapprima è off (per 3 V < vu < 3.182V), poi SAT (per 2.006 V < vu < 3 V). Il transitorio va allora diviso in due tratti.

| I) per 3 V <vu<3.182v, ad,="" m1="" off<="" q1="" th=""><th>II) 2.006 V&lt; vu&lt; 3 V, Q1 AD, M1 SAT</th></vu<3.182v,>                                                              | II) 2.006 V< vu< 3 V, Q1 AD, M1 SAT                                                                                                                                                                                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $ir1 = (vdd-v_{\gamma})/r1$ $ir2 = vu/r2$ $ir3 = (vdd-vu)/r3$ $Cdvu/dt = ir3 - ir2 - ir1*\beta_F$ $t_{p,HL-1} = \int_{3.182}^{3} \frac{C}{ir3 - ir2 - \beta_F * ir1} dvu$ $= 3.31ns$ | $ir1 = (vdd-v_{\gamma})/r1$ $ir2 = vu/r2$ $ir3 = (vdd-vu)/r3$ $id1sat = \beta_1/2*(vdd-vu-vt_1)^2$ $Cdvu/dt = ir3 + id1sat-ir2-ir1*\beta_F$ $t_{p,HL-2} = \int_3^{2.006} \frac{C}{ir3 + id1sat - ir2 - \beta_F * ir1} dvu$ $= 18.11ns$ |  |
| $t_{p,HL} = t_{p,HL-1} + t_{p,HL-2} = 21.42 \text{ ns}$                                                                                                                              |                                                                                                                                                                                                                                        |  |

## 7.9.2017 - Esercizio 2

Il circuito è un invertitore nMOS, con pull-up costituito da un transistore nMOS saturato ( $V_{GS2} = V_{DS2}$ ), in serie al parallelo fra resistore R e diodo D.

I valori cercati  $V_H$  e  $V_L$  possono essere ottenuti intersecando la caratteristica statica  $V_u(V_I)$  con la curva simmetrica rispetto alla diagonale del primo quadrante. Ovviamente, si ha

$$V_H = V_u(V_L)$$
$$V_L = V_u(V_H)$$

Nel caso di ingresso basso, Ipotizzando (\*) che sia  $V_L < V_T$ , si ha:

$$V_i = V_L \rightarrow M_1 OFF \rightarrow I_{D1} = 0 \xrightarrow{I_{D1} = I_{D2}} I_{D2} = 0 \xrightarrow{I_{D2} = I_D + I_R} I_D + I_R = 0$$

La somma di  $I_D$ e  $I_R$  può annullarsi o perché entrambe nulle o perché uguali ed opposte. La seconda condizione è evidentemente assurda:

$$I_D > 0 \rightarrow V_D = V_{\gamma} > 0 \xrightarrow{V_R = V_D} V_R > 0 \xrightarrow{I_R = \frac{V_R}{R}} I_R > 0$$

quindi necessariamente

$$I_D = I_R = 0 \xrightarrow{I_R = \frac{V_R}{R}} V_R = 0 \rightarrow V_x = V_{dd} - V_R = V_{dd}$$

 $M_2$ , se ON, è necessariamente saturo ( $V_{GS2}=V_{DS2}$ ). La corrente si annulla per:

$$I_{D2} = \frac{\beta_2}{2} (V_{dd} - V_u - V_T)^2 = 0 \rightarrow V_u = V_{dd} - V_T = V_H$$

Nel caso di ingresso alto, quindi, si ha:

$$V_i = V_H > V_T \rightarrow M_1 ON \rightarrow I_{D1} > 0 \xrightarrow{I_{D1} = I_{D2}} I_{D2} > 0 \xrightarrow{I_{D2} = I_D + I_R} I_D + I_R > 0$$

Ipotizzando D ON (\*\*) e  $M_1$ LIN (\*\*\*), con  $M_2$  necessariamente SAT, si ottiene:

$$V_D = V_{\nu} \rightarrow V_{x} = V_{dd} - V_{\nu}$$

e quindi:

$$I_{D1} = \beta_1 \left( (V_H - V_T) V_u - \frac{{V_u}^2}{2} \right)$$

$$I_{D2} = \frac{\beta_2}{2} (V_x - V_u - V_T)^2$$

$$I_{D2} = \frac{\beta_2}{2} (V_x - V_u - V_T)^2$$

Il secondo valore non è compatibile con le ipotesi ( $V_{GS2} = V_x - V_u < 0 < V_T$ ), mentre il primo soddisfa tutte le ipotesi formulate:

$$V_I = 0.184V < V_T (*)$$

$$I_{D1} = \beta_1 \left( (V_H - V_T) V_L - \frac{{V_L}^2}{2} \right) = 895.7 \ \mu A = I_{D2}$$

$$I_R = \frac{V_{\gamma}}{R} = 375 \ \mu A$$

$$\Rightarrow I_D = I_{D2} - I_R = 520.7 \ \mu A > 0 \ (**)$$

$$\begin{cases}
V_{GS1} = V_H \\
V_{DS1} = V_L
\end{cases} \to V_{GS1} > V_{DS1} + V_T \quad (***)$$