Transformer

Reporter: Bowen Xu

Background

Traditional translation model

Drawbacks:

- Sequential nature precludes paralleliazation
- Information loss in long term

Introduction

Based entirely on Attention Mechanism

Advantages:

- Allowing for parallelization
- Allowing modeling of dependencies without regard to distance

Model Architecture

Embedding Input

- Word Embedding: word2vec, GloVe, onehot, etc.
- Positional Embedding:

$$PE(pos, 2i) = sin(\frac{pos}{10000^{\frac{2i}{d_{model}}}})$$

$$PE(pos, 2i + 1) = cos(\frac{pos}{10000^{\overline{d}_{model}}})$$

- d_{model} : dimension of input
- pos: position of words

Encoder

Encoder has N=6 identical layers

Structure of one layer:

- Multi-Head Attention
- Feed Forward
- Add & Norm

Self-Attention Mechanism

Self-Attention(without mask):

$$Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_{k}}})V$$

• d_k : Number of columns (dimension) of Q and K

Self-Attention Input

- X: Input of each layer of encoder
- W^Q , W^K , W^V : Linear transformation matrix

Multi-Head Attention

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^0$

• where $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

Multi-Head attention ensures the parallelism

Feed Forward

$$FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$$

Add & Norm

- Add: Residual connection
- Norm: Layer normlization

Residual Connection

Layer Normalization

- Layer norm: Normalization between different dimensions in the same sample
- Batch norm: Normalization between different samples in the same dimension

Decoder

Decoder has N=6 identical layers

Structure of one layer:

- Masked Multi-Head Attention
- Multi-Head Attention
- Feed Forward
- Add & Norm

Mask Operation

Sequence Mask:

- Why: The decoder cannot see the future information.
- How: Setting masked position to -∞.

Masked Multi-Head Attention

Mask matrix is a lower triangular matrix (non-0 elements are all 1).

Multi-Head Attention In Decoder

Output

Structure of output block:

- Linear layer
- Softmax

Output

How to predict a word:

Conclusion

Advantages:

- Avoid sequence model and can realize parallelization.
- Solves the problem of long distance dependence.
- Self-attention can produce more interpretable models.

Disadvantages:

- Loss of position information (Compare with RNN)
- Lost the ability to capture local features (Compare with CNN)

Transformer is widely used in Deep Learning fields (NLP, CV, etc.).

Thank