2. kolokvij iz Linearne algebre - teorija 28. 5. 2025

Pri nalogah, ki imajo možnost **P**(ravilno)/**N**(epravilno) napišite P oziroma N in kratko utemeljitev. Pri ostalih nalogah odgovorite na zastavljeno vprašanje.

Čas pisanja je 20 minut.

(1) Naj bo
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 linearna preslikava, za katero velja $T\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$ in $T\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$.

Izračunaj $T\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

$$T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = T\begin{pmatrix} \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} = \frac{1}{2} T\begin{pmatrix} 1 \\ -1 \end{pmatrix} + \frac{1}{2} T\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{2} T\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$

(2) Za linearno neodvisne vektorje $v_1, v_2, v_3 \in \mathbb{R}^3$ in linearno preslikavo $T: \mathbb{R}^3 \to \mathbb{R}^3$ velja $T(v_1) = v_2, T(v_2) = v_3$ in $T(v_3) = v_1 + v_2 + v_3$. Zapiši matriko, ki pripada preslikavi T v bazi $\{v_1, v_2, v_3\}$.

(3) **(P/N)** Če so $v_1, \ldots, v_5 \in \mathbb{R}^5$ linearno neodvisni vektorji in za linearno preslikavo $T \colon \mathbb{R}^5 \to \mathbb{R}^4$ velja $T(v_1) = T(v_3) = T(v_5)$ in $T(v_2) = T(v_4)$, potem je dimenzija jedra preslikave T enaka vsaj 3.

(4) (P/N) Če za matriko $A \in \mathbb{R}^{n \times n}$ velja $A^2 = 0$, potem je 0 edina lastna vrednost matrike A.

(5) **(P/N)** Če sta edini lastni vrednosti matrike $A \in \mathbb{R}^{3\times3}$ enaki 0 in 1, ranga matrik A in A-I pa sta enaka 2, potem se A ne da diagonalizirati.

$$\begin{array}{ll}
\text{P} & \Delta(0) + \Delta(1) = 3 \\
g(0) = 3 - \Lambda(A) = 1 \\
g(1) = 3 - \Lambda(A - I) = 1
\end{array}$$

(6) Za matriko $A \in \mathbb{R}^{2 \times 2}$ velja $\det(A) = 2$ in sled(A) = 3. Zapiši njen karakteristični polinom.

(7) Za matriko $A \in \mathbb{R}^{4\times 4}$ velja rang(A+I)=2, rang(A-I)=3 in rang(A)=3. Zapiši njen karakteristični polinom.

(8) (P/N) Če je obrnljiva matrika A diagonalizabilna, je tudi A^{-1} diagonalizabilna matrika.

(9) **(P/N)** Vse lastne vrednosti matrike $\begin{bmatrix} \sqrt{2} & \sqrt{3} & \sqrt{5} \\ \sqrt{3} & \sqrt{7} & \sqrt{11} \\ \sqrt{5} & \sqrt{11} & \sqrt{13} \end{bmatrix}$ so realna števila.

(10) **(P/N)** Če je $Q \in \mathbb{R}^{n \times n}$ ortogonalna matrika, potem je ||Qx|| = ||x|| za vsak $x \in \mathbb{R}^n$.

(P)
$$||Qx|| = \sqrt{(Qx)^T(Qx)} = \sqrt{x^TQ^TQ)x} = \sqrt{x^Tx} = ||x||$$