Job No.: EHB 249-1 Address: 2983 Mossburn Wreys Bush Highway, Southland, New Date: 29/07/2024

Zealand

Latitude: -45.747814 **Longitude:** 168.190234 **Elevation:** 271 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N5	Ground Snow Load	0.9 KPa	Roof Snow Load	0.63 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4.1 m
Wind Region	NZ2	Terrain Category	1.07	Design Wind Speed	43.69 m/s
Wind Pressure	1.15 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp, i = 0.6532

For roof CP,e from 0 m To 4.10 m Cpe = -0.9 pe = -0.58 KPa pnet = -1.09 KPa

For roof CP,e from 4.10 m To 8.20 m Cpe = -0.5 pe = -0.32 KPa pnet = -0.83 KPa

For wall Windward Cp, i = 0.6532 side Wall Cp, i = -0.5631

For wall Windward and Leeward CP,e from 0 m To 24 m Cpe = 0.7 pe = 0.72 KPa pnet = 1.42 KPa

For side wall CP,e from 0 m To 4.10 m Cpe = pe = -0.67 KPa pnet = 0.03 KPa

Maximum Upward pressure used in roof member Design = 1.09 KPa

 $\label{eq:maximum Downward pressure used in roof member Design = 0.91~KPa$

Maximum Wall pressure used in Design = 1.42 KPa

Maximum Racking pressure used in Design = 1.24 KPa

Design Summary

Rafter Design Internal

Internal Rafter Load Width = 4800 mm Internal Rafter Span = 8850 mm Try Rafter 2x360x63 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 5.90 S1 Upward = 5.90

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	15.86 Kn-m	Capacity	60.82 Kn-m	Passing Percentage	383.48 %
$M_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	56.86 Kn-m	Capacity	81.1 Kn-m	Passing Percentage	142.63 %
Mo.9D-WnUp	-40.65 Kn-m	Capacity	-101.38 Kn-m	Passing Percentage	249.40 %

Second page

$V_{1.35D}$	7.17 Kn	Capacity	77.32 Kn	Passing Percentage	1078.38 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	25.70 Kn	Capacity	103.08 Kn	Passing Percentage	401.09 %
V _{0.9D-WnUp}	-18.37 Kn	Capacity	-128.86 Kn	Passing Percentage	701.47 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 20.545 mm

Deflection under Dead and Service Wind = 36.335 mm

Limit by Woolcock et al, 1999 Span/240 = 37.50 mm Limit by Woolcock et al, 1999 Span/100 = 90.00 mm

Reactions

Maximum downward = 25.70 kn Maximum upward = -18.37 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 4

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 126 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 58.22 Kn > -18.37 Kn

Girt Design Front and Back

Girt's Spacing = 650 mm

Girt's Span = 4800 mm

Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.75 S1 Downward =11.27 S1 Upward =18.41

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	2.66 Kn-m	Capacity	2.79 Kn-m	Passing Percentage	104.89 %
$ m V_{0.9D ext{-}WnUp}$	2.22 Kn	Capacity	16.08 Kn	Passing Percentage	724.32 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 41.24 mm

Limit by Woolcock et al, 1999 Span/100 = 48.00 mm

Sag during installation = 32.19 mm

Reactions

Maximum = 2.22 kn

Girt Design Sides

Girt's Spacing = 650 mm

Girt's Span = 4500 mm

Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.78 S1 Downward =11.27 S1 Upward =17.82

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	2.34 Kn-m	Capacity	2.90 Kn-m	Passing Percentage	123.93 %
$ m V_{0.9D ext{-}WnUp}$	2.08 Kn	Capacity	16.08 Kn	Passing Percentage	773.08 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 31.86 mm

Limit by Woolcock et al. 1999 Span/100 = 45.00 mm

Sag during installation =24.86 mm

Reactions

Maximum = 2.08 kn

Middle Pole Design

Geometry

225 SED H5 (Minimum 250 dia. at Floor Level)	Dry Use	Height	4340 mm
Area	44279 mm2	As	33209.1796875 mm2
Ix	156100441 mm4	Zx	1314530 mm3
Iy	156100441 mm4	Zx	1314530 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 21.6 m2

Dead	5.40 Kn	Live	5.40 Kn
Wind Down	19.66 Kn	Snow	13.61 Kn
Moment wind	18.71 Kn-m	Moment snow	4.42 Kn-m
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	$\mathbf{E} =$	9257 MPa

Capacities

PhiNcx Wind	637.62 Kn	PhiMnx Wind	38.17 Kn-m	PhiVnx Wind	78.64 Kn
PhiNcx Dead	382.57 Kn	PhiMnx Dead	22.90 Kn-m	PhiVnx Dead	47.18 Kn
PhiNcx Snow	510.09 Kn	PhiMnx Snow	30.54 Kn-m	PhiVnx Snow	62.91 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.54 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.29 < 1 \text{ OK}$

Deflection at top under service lateral loads = 32.38 mm < 43.40 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30))/(1+\sin(30))$				

 $K0 = \frac{(1-\sin(30))}{(1+\sin(30))}$ $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds =	0.6 mm	Pile Diameter
L =	1800 mm	Pile embedment

L= 1800 mm Pile embedment length f1 = 3075 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind =	18.71 Kn-m	Moment Snow =	Kn-m
Shear Wind =	6.09 Kn	Shear Snow =	4.42 Kn

Pile Properties

Safety Factory 0.55

Hu = 10.66 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 19.87 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.94 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of

internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1800) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1800)

Skin Friction = 26.17 Kn

Weight of Pile + Pile Skin Friction = 30.29 Kn

Uplift on one Pile = 18.68 Kn

Uplift is ok