semestre 3

- Seules les calculatrices sont autorisées.
- Le barème est donné à titre indicatif.

 $\underline{\text{Exercice 1}}:$ 4 points.

La densité de probabilité d'une v.a. X est donnée par

$$f_X(x) = \begin{cases} \lambda x(x+1) & \text{si} \quad x \in [0,2] \\ 0 & \text{sinon} \end{cases}$$

- 1. Déterminer λ pour que f_X soit bien une densité de probabilité (dans toute la suite λ sera supposé égal à cette valeur).
- 2. Calculer la fonction de répartition de X.
- 3. Calculer $\mathbb{P}(X < 2)$, $\mathbb{P}(X \ge -1)$ et $\mathbb{P}(-1 \le X < 1)$.
- 4. Calculer $\mathbb{E}(X)$.

Exercice 2: 6 points.

Soit X une variable aléatoire de densité f_X avec

$$f_X = \begin{cases} 1+t & \text{si} \quad t \in [-1,0] \\ \alpha & \text{si} \quad t \in [0,2] \\ 0 & \text{sinon} \end{cases}$$
 (1)

- Déterminer α pour que f_X soit bien une densité.
- Calculer et représenter la fonction de répartition de X
- Calculer $\mathbb{P}(X > 1/2)$.
- Calculer $\mathbb{E}(X)$.
- Calculer la fonction de répartition F_Y de la variable aléatoire $Y = X^2$.
- En déduire sa densité f_Y .

Exercice 3: 4 points.

Soit X une v.a. qui suit une loi de densité f_X donnée par

$$f_X(t) = \begin{cases} 0 & \text{si} \quad t \in]-\infty, 1[\\ \frac{\alpha}{t} & \text{si} \quad t \in [1, 2[\\ 0 & \text{si} \quad t \in [2, +\infty[\end{cases}]$$

- 1. Déterminer α pour que f_X soit une densité de probabilité (dans toute la suite α sera supposé égal à cette valeur).
- 2. Calculer la fonction de répartition de X.
- 3. Calculer $\mathbb{P}(X < 2)$, $\mathbb{P}(X \ge -1)$ et $\mathbb{P}(-1 \le X < 1)$.
- 4. Calculer $\mathbb{E}(X)$.

Exercice $\underline{4}$:

Soient $\alpha, \beta \in \mathbb{R}$ et f la fonction définie par :

$$\begin{cases} \alpha x^2 & \text{si } x \in [0, 1] \\ \beta & \text{si } x \in [2, 3] \\ 0 & \text{ailleurs} \end{cases}$$

- 1. Sachant que f est la densité de probabilités d'une variable aléatoire X, donner les conditions vérifiées par α et β .
- 2. Donner l'allure de la courbe représentative de f.
- 3. On sait de plus que

$$\mathbb{P}\left(\frac{1}{2} \le X \le \frac{5}{2}\right) = \frac{5}{8}$$

déterminer alors α et β (on utilisera bien-sûr les résultats de la première question).

- 4. Calculer $\mathbb{E}(X)$ (vous pouvez la calculer en fonction de α et β si vous n'avez pas réussi les premières questions).
- 5. Calculer la fonction de répartition F_X de X.
- 6. Soit $\gamma \in]-\infty, \frac{1}{3}]$, résoudre dans $\mathbb R$ (en fonction de γ) l'équation

$$\mathbb{P}(X \le t) = \gamma$$