LABORATORIO DI PROGRAMMAZIONE 1 CORSO DI LAUREA IN MATEMATICA UNIVERSITÀ DEGLI STUDI DI MILANO

2019–2020

Indice

Parte 1. Esperimenti con l'output formattato di printf	3					
Esercizio 1	3					
Il primo programma in C: Ciao Mondo	3					
Tempo: 10 min.	3					
Esercizio 2						
Ritorno a capo	3 3					
Tempo: 10 min.	3					
Esercizio 3	4					
Tabulazione orizzontale	4					
Tempo: 10 min.	4					
Esercizio 4	5					
Codice ASCII	5					
Tempo: 10 min.	5					
Parte 2. Overflow & Underflow	5					
Esercizio 5	5					
Range dei tipi integrali	5					
Tempo: 10 min.	5					
Esercizio 6	5					
Range dei tipi reali	5					
Tempo: 10 min.	5					
Esercizio 7						
Overflow (con gli interi)	6					
Tempo: 10 min.	6					
Esercizio 8	6					
Underflow (con i numeri in virgola mobile a precisione singola)	6					
Tempo: 10 min.	6					
Parte 3. Primi passi coi tipi primitivi	6					
Esercizio 9	7					
Eco di int e double dalla console	7					
Tempo: 20 min.	7					
Esercizio 10	7					
Le quattro operazioni con int	7					
Tempo: 15 min.	7					

Ultima revisione: 12 febbraio 2020.

Esercizio 11	8
Le quattro operazioni con double	8
Tempo: 15 min.	8

Parte 1. Esperimenti con l'output formattato di printf

Sequenze di escape

Negli esercizi di questa prima parte sperimenterete con l'output formattato di printf. Fate riferimento alla seguente tabella di sequenze escape del linguaggio C.

Escape	Nome	Effetto
\n	newline	va a capo
\r	carriage return	sposta il cursore a inizio riga
\t	horizontal tab	tabulazione orizzontale
\v	vertical tab	tabulazione verticale
\b	backspace	sposta il cursore indietro di un carattere
\'	single quote	visualizza un apice
\"	double quote	visualizza doppio apice
\?	question mark	visualizza punto interrogativo
\000	octal code	carattere in notazione ottale
\xh	hexadecimal code	carattere in notazione esadecimale
\u <i>hhhh</i>	Unicode	carattere in notazione esadecimale Unicode

Alcune sequenze di escape saranno illustrate negli esercizi di questa dispensa.

Esercizio 1

Il primo programma in C: Ciao Mondo.

Tempo: 10 min.

Si scriva un programma che produca in uscita la scritta Ciao Mondo.

Esercizio 2

Ritorno a capo.

Tempo: 10 min.

Si scriva un programma che produca in uscita:

Ciao

Mondo

Si scriva una prima versione usando due chiamate a printf, e una seconda versione che usa una sola chiamata a printf.

Cosa succede se si tenta di scrivere il programma con una sola chiamata a printf, spezzandola però su due righe nel modo seguente?

printf("Ciao
Mondo")

Il programma compila senza errori? In caso di risposta negativa, che errore è segnalato?

Decimal	Hexadecimal	Binary	Octal	Char	Decimal	Hexadecimal	Binary	Octal	Char	Decimal	Hexadecimal	Binary	Octal	Char
0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	`
1	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001	141	a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	C
4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENQUIRY]	53	35	110101	65	5	101	65	1100101	145	e
6	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110	146	f
7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111	147	g
8	8	1000	10	[BACKSPACE]	56	38	111000	70	8	104	68	1101000	150	h
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001	71	9	105	69	1101001	151	i
10	Α	1010	12	[LINE FEED]	58	3A	111010	72		106	6A	1101010	152	j
11	В	1011	13	[VERTICAL TAB]	59	3B	111011	73	;	107	6B	1101011	153	k
12	С	1100	14	[FORM FEED]	60	3C	111100		<	108	6C	1101100		1
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101	75	=	109	6D	1101101	155	m
14	E	1110	16	[SHIFT OUT]	62	3E	111110	76	>	110	6E	1101110	156	n
15	F	1111	17	[SHIFT IN]	63	3F	111111	77	?	111	6F	1101111	157	0
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000		@	112	70	1110000		р
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001		Α	113	71	1110001		q
18	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010	102	В	114	72	1110010	162	r
19	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011	103	C	115	73	1110011	163	S
20	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100		D	116	74	1110100		t
21	15	10101	25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101		E	117	75	1110101		u
22	16	10110	26	[SYNCHRONOUS IDLE]	70	46	1000110	106	F	118	76	1110110	166	v
23	17	10111	27	[ENG OF TRANS. BLOCK]	71	47	1000111	107	G	119	77	1110111	167	w
24	18	11000	30	[CANCEL]	72	48	1001000		н	120	78	1111000		x
25	19	11001	31	[END OF MEDIUM]	73	49	1001001		1	121	79	1111001		У
26	1A	11010	32	[SUBSTITUTE]	74	4A	1001010		J	122	7A	1111010		Z
27	1B	11011	33	[ESCAPE]	75	4B	1001011		K	123	7B	1111011		{
28	1C	11100	34	[FILE SEPARATOR]	76	4C	1001100		L	124	7C	1111100		1
29	1D	11101	35	[GROUP SEPARATOR]	77	4D	1001101		М	125	7D	1111101		}
30	1E	11110	36	[RECORD SEPARATOR]	78	4E	1001110		N	126	7E	1111110		~
31	1F	11111		[UNIT SEPARATOR]	79	4F	1001111		0	127	7F	1111111	177	[DEL]
32	20	100000		[SPACE]	80	50	1010000		P					
33	21	100001		1	81	51	1010001		Q					
34	22	100010			82	52	1010010		R					
35	23	100011		#	83	53	1010011		S					
36	24	100100		\$	84	54	1010100		Т					
37	25	100101		%	85	55	1010101		U					
38	26	100110		&	86	56	1010110		V					
39	27	100111			87	57	1010111		W					
40	28	101000		(88	58	1011000		X					
41	29	101001)	89	59	1011001		Υ					
42	2A	101010		•	90	5A	1011010		Z					
43	2B	101011		+	91	5B	1011011		Į.					
44	2C	101100		F	92	5C	1011100		Ī					
45	2D	101101		•	93	5D	1011101		1					
46	2E	101110		1	94	5E	1011110		^					
47	2F	101111	57	I	95	5F	1011111	137	-	I				

FIGURA 1. Il codice ASCII.

Esercizio 3

Tabulazione orizzontale.

Tempo: 10 min.

Si scriva un programma che visualizzi sul terminale tre colonne di dati i cui campi siano allineati a sinistra, come in questo esempio:

Lun	10.30	Programmazione	1
Mar	14.00	Algebra	
Mer	8.30	Geometria	

Si usi la sequenza di escape \t per incolonnare i dati. Si provi poi a raddoppiare ciascuna occorrenza di \t per ottenere una maggiore spaziatura fra le colonne.

Il codice ASCII

I caratteri che si digitano tramite terminale hanno una rappresentazione numerica interna al calcolatore. Una delle codifiche storiche è nota come codice ASCII, acronimo di American Standard Code for Information Interchange. Sebbene oggi sia comune l'uso di codifiche più estese, come lo standard Unicode, il codice ASCII è compatibile con i nuovi standard. La Figura 1 riporta il codice ASCII.

Esercizio 4

Codice ASCII.

Tempo: 10 min.

Si scriva un programma che produca in uscita la scritta Ciao usando una sola chiamata a printf, e usando solo sequenze di escape della forma $\oldsymbol{\colored}$ (Si veda l'Avvertenza all'inizio della sezione.) Si ripeta l'esercizio usando solo sequenze di escape della forma αh .

Cosa succede se si tenta di compilare un programma la cui funzione main contiene solo l'istruzione seguente?

printf("\xFFFF");

Il programma compila senza errori? In caso di risposta negativa, che errore è segnalato? *Sperimentate* con le sequenze di escape $\oldsymbol{\colored}$ ooo e \xspace h, provando a generare altre situazioni anomale.

Parte 2. Overflow & Underflow

Esercizio 5

Range dei tipi integrali.

Tempo: 10 min.

Includendo il file di intestazione limits.h della libreria standard, e usando le costanti CHAR_MAX, CHAR_MIN, INT_MAX, e INT_MIN lì definite, appurate il range dei tipi integrali char e int sul vostro sistema. Sulla base del risultato, quanti bit ritenete che siano usati, sul vostro sistema, per codificare un valore int?

Esercizio 6

Range dei tipi reali.

Tempo: 10 min.

Includendo il file di intestazione float. In della libreria standard, e usando le costanti FLT_MAX e DBL_MAX lì definite, appurate il massimo valore dei tipi float e double rappresentabile sul vostro sistema. Usate poi le costanti FLT_MIN e DBL_MIN per appurare il minimo valore positivo dei tipi float e double rappresentabile sul vostro sistema.

Negli Esercizi 6 e 8, usate %g invece di %f nella chiamata a printf per visualizzare i valori float e double. D'ufficio, %f visualizza solo 6 cifre decimali — troppo poco per distinguere FLT_MIN da 0, per esempio.

Tipi primitivi e variabili

A partire dal prossimo esercizio farete i primi passi nell'uso delle variabili e dei tipi primitivi. Ricordate che, per esempio, l'istruzione

int x;

dichiara la variabile di nome x e di tipo int; e che l'istruzione

x=-2;

assegna alla variabile (già dichiarata!) di nome x il valore intero -2. Dichiarazione e assegnamento si possono mettere assieme, volendo, in questo modo:

int x=-1;

Idem per i tipi primitivi float, double e char, mutatis mutandis.

Esercizio 7

Overflow (con gli interi).

Tempo: 10 min.

Scrivete un programma che assegni alla variabile intera num il valore INT_MAX definito in limits.h. Visualizzate il valore di num. Sommate la costante 1 a num. Visualizzate di nuovo il valore di num. Datevi una spiegazione del risultato.

Esercizio 8

Underflow (con i numeri in virgola mobile a precisione singola).

Tempo: 10 min.

Scrivete un programma che assegni alla variabile num di tipo float il valore FLT_MIN definito in float.h. Visualizzate il valore di float. Dividete num per una costante reale grande,¹ per esempio FLT_MAX. Visualizzate di nuovo il valore di num.

Parte 3. Primi passi coi tipi primitivi

Lettura di numeri con scanf

Negli esercizi di questa terza parte avrete bisogno di leggere numeri inseriti dall'utente. Per ora vi basterà usare in modo elementare la funzione scanf di stdio.h. La Figura 2 riporta un esempio che potrete usare come guida.

 $^{^{1}}$ Vi è un motivo per cui non basta qui dividere per 2, diciamo, per osservare in modo ovvio il fenomeno dell'underflow. Non approfondiremo l'argomento.

```
scannum.c
1
    /* Leggere numeri dal terminale con scanf */
2
3
    #include <stdio.h>
4
5
    int main(void)
6
7
            int i; float f; double d;
            printf("Digita un int, un float, un double: ");
8
             /* & e' necessario. */
9
            scanf("%d%f%lf",&i,&f,&d);
10
11
            printf("Hai digitato: %d,%g,%g.\n",i,f,d);
12
13
            return 0;
14
    }
15
```

FIGURA 2. Uso di scanf per leggere int, float e double.

Esercizio 9

Eco di int e double dalla console.

Tempo: 20 min.

Si scriva un programma che chieda all'utente di inserire un valore di tipo int, e lo riscriva subito dopo sul terminale. Il programma prosegue facendo la stessa cosa per un valore di tipo double.

Sperimentate con la funzione scanf usata in questo esercizio. Cosa succede se l'utente digita degli spazi o delle tabulazioni prima o dopo il numero? Cosa succede se, alla richiesta di un numero, l'utente immette J.S. Bach? E se invece immette 1685J.S. Bach? Fate altri esperimenti, fino a quando non vi sentiate relativamente a vostro agio con la semantica di scanf riguardo alla lettura di numeri.

Esercizio 10

Le quattro operazioni con int.

Tempo: 15 min.

Si scriva un programma che chieda all'utente di inserire due valori di tipo int, e visualizzi poi la loro somma, il valore del primo meno il secondo, il loro prodotto, il valore del primo diviso il secondo (divisione intera /), e il valore del resto della divisione del primo per il secondo. Per quel che riguarda l'ultimo punto, usate l'operatore binario di modulo %: l'espressione a%b, con a e b espressioni di tipo intero, vale il resto della divisione di a per b.

In relazione al programma che avete scritto per risolvere l'Esercizio 10, cosa succede se il secondo valore intero inserito dall'utente è zero?

Esercizio 11

Le quattro operazioni con double.

Tempo: 15 min.

Si ripeta l'Esercizio 10 sostituendo double a int, mutatis mutandis.

Cosa succede se si tenta di eseguire a%b con a o b di tipo double?

Dipartimento di Matematica Federigo Enriques, Università degli Studi di Milano, via Cesare Saldini, 50, I-20133 Milano