Obligatorisk innlevering 1, dat102

OPPGAVE 2

Oppgave 2a

- i) On^2
- ii) On
- iii) On^3
- iii) $O(\log(n^2))$

Oppgave 2b

Effektiviteten uttrykt i O-notasjon er On. Fordi det er kun en for-løkke.

<u>Antall tilordninger</u>: T(n) = 1 + 1n. Fordi den første operasjonen representeres med 1 fordi det er en konstant. Deretter representeres for-løkka med en operasjon inni med 1n, fordi for-løkker utføres n-ganger.

Oppgave 2c

<u>Effektiviteten uttrykt i O-notasjon er On^2 .</u> Fordi det er en for-løkke inne i en for-løkke.

Antall tilordninger: $T(n) = 1 + 1n^2$. Fordi den første operasjonen representeres med 1 fordi det er en konstant. Deretter representeres en for-løkke i en for-løkke, med en operasjon inni med $1n^2$, fordi for-løkkene utføres n-ganger.

Oppgave 2d

O-notasjonen for Areal vil være Or^2 .

O-notasjonen for Omkrets vil være Or.

Oppgave 2e

<u>Effektiviteten uttrykt i O-notasjon er On^3 .</u> Fordi det er to for-løkker og et if-statement som alle representeres med n og dermed blir hele operasjonen gitt som n^3 .

Antall tilordninger: $T(n) = 1n^3 + 1$. Fordi den først operasjonen som består av to for-løkker og et if-statement har en operasjon inni dermed får vi $1n^3$. Så retunerer vi til slutt som gir +1.

Oppgave 2f

- i) $0n^3$
- ii) $O(\log(n))$
- iii) O(nlogn)
- iv) On

Frå best til værst er ii, iv, iii, i

Oppgave 2g

O-notasjonen til tid()-metoden T(n) er lik n, og O-notasjonen til cn er likn n siden veksten er konstant på begge.

Siden begge funksjonene har n som O-notasjon vil begge funksjonene få en linear vekstfunksjon.

```
T(n) = cn der c = 5

T(1) = 1*5 = 5  v   k = k+5 = 0+5 = 5
```

Resultatet blir ikkje lineært med vekstfunksjonen fordi tiden me øker med er ikkje lineær. Ellers skulle det blitt lineær slik som T(n) = n er.

```
OPPGAVE 3
i)

public int antall(Sjanger sjanger) {
    int typeSjanger = 0;
    for(int i = 0; i <antall; i++) {
        if(filmer[i].getSjanger().equals(sjanger)) {
            typeSjanger++;
        }
    }
    return typeSjanger;</pre>
```

O-notasjonen for denne metoden blir: On^2 , fordi metoden blir først O(n) for for-løkken og så blir det O(n) for if løkken og dermed blir det $O(n^2)$.

ii)

public void skrivUtStatistikk FilmarkivADT filma) System *out* println "Action filmer totalt: "filma antall *Sjanger ACTION*

System.out.println "Drama filmer totalt: "filma.antall(Sjanger.DRAMA

System out println "Historie filmer totalt: " + filma antall (Sjanger HISTORY)

System.out.println "Scifi filmer totalt: " + filma.antall(Sjanger.SCIFI));

 $\underline{\text{O-notasjonen blir: O(1)}}$, fordi k er en konstant og n som er antall filmer er kjent så blir det O(1) uavhengig av kor mange filmer vi legg til.