第三章复习重点: 1.文法与语言的对应关系

语言 L(G)=L(G')	文法 G	文法 G'
$\{b^n \mid n>0\}$	B→bB b	B→Bb b
$\{b^n \mid n \geq 0\}$	P→bP ε	P→Pb ε
{ab ⁿ n>0}	$ \begin{array}{c} S \rightarrow DB \\ D \rightarrow a \\ B \rightarrow bB \mid b \end{array} $	S→aB B→Bb b
{b ⁿ a n≥0}	T→PD D→a P→bP ε	T→Pa P→Pb ε
{(ab) ⁿ n>0}	U→EU E E→ab	U→Uab ab
${a^mb^n m>0,n>0}$	$\begin{vmatrix} V \rightarrow AB \\ A \rightarrow aA \mid a \\ B \rightarrow bB \mid b \end{vmatrix}$	$\begin{vmatrix} V \rightarrow aV \mid aB \\ B \rightarrow bB \mid b \end{vmatrix}$
$\{a^mb^n m\geq 0, n>0\}$	$ \begin{array}{c c} W \rightarrow AB \\ A \rightarrow aA \mid \varepsilon \\ B \rightarrow bB \mid b \end{array} $	$W \rightarrow aW \mid B$ $B \rightarrow bB \mid b$
$\{a^nb^n \mid n>0\}$	X→aXb ab	
{(a ^k cd) ⁿ b ⁿ k,n>0}		X→DXH DH D→Acd A→aA a H→b
$\{a^{2n+1}b^n n>=0\}$	Y→aaYb a	Y→KYH a K→aa H→b

思路要点: 注意结构拆分

技巧:如何将表示语言的通用字符串形式作适当的"切割"?

例:已知语言:L1 = $\{a^xb^{2x}c^y \mid x,y >= 0\}$,给出此语言的文法,并证明此语言是上 下文无关语言。

提示: 该题实际上要求为相应语言设计上下文无关文法。

一个文法设计好后, 严格来说应当证明此文法是否对应于该语言。

$$M: G[S]: S → AB$$
 $A → ε | aAbb$

$$A \rightarrow \varepsilon \mid aAbb$$

 $B \rightarrow \epsilon \mid cB$

推导过程:

$$S \Rightarrow AB + \Rightarrow a^{x}Ab^{2x}B$$
 /*使用 $A \rightarrow aAbb$ $x 次*/$
 $\Rightarrow a^{x}b^{2x}B$ /*使用 $A \rightarrow \epsilon$ 一次*/
 $\Rightarrow a^{x}b^{2x}c^{x}B$ /*使用 $B \rightarrow cB$ x 次*/
 $\Rightarrow a^{x}b^{2x}c^{x}$ /*使用 $B \rightarrow \epsilon$ 一次*/

举一反三:已知语言 $L2 = \{a^xb^2yc^y \mid x, y \ge 0\}$,给出此语言的文法,并证明此 语言是上下文无关语言。

$$\mathfrak{M}: G[S]: S \to AB \qquad A \to \varepsilon \mid aA \qquad B \to \varepsilon \mid bbBc$$

练习: 14: 写出下列语言对应的文法

 $(1).\{a^nb^na^mb^m|n,m\geq 0\}$

- 2. $\{1^n0^m1^m0^n|n,m\geq 0\}$
- 3. { $a^nb^mc^k|n,m,k \ge 0$ }

1. G1: S—>AA G2: S—>AB A—>aAb|
$$\epsilon$$
 A—>aAb| ϵ B—>aBb| ϵ

2. G: S->1S0

S->A

A->0A1

A---> ε

G: $S \rightarrow 1S0|A$ $S \rightarrow 1S0|0A1$ $A \rightarrow 0A1|01$ $A \rightarrow 0A1|\epsilon$

3. S \rightarrow ABC A->aA| ε B \rightarrow bB| ε C \rightarrow cC| ε

S-->aS|B B-->bB|c C-->cC| ε (正规文法)

例:给出语言{akbmcn|k,m,n≥1}的正规文法(3型)。

解: G: A→aA|aB B→bB|bC

C→cC l c

若不要求正规文法,则按例中上面分解的办法

- 2. 给出文法,证明文法符号串是否为文法的句型,若是句型,找出这个句型的所有短语、直接短语、句柄。
- 1. 令文法 G [E] 为:

Z→bMb

 $M\rightarrow a|(L$

L→Ma)

- ① 符号串 b(Ma)b 是否为该文法的一个句型,并证明。
- ② 若此符号串是句型,指出这个句型的所有短语、直接短语、句柄。
- 1) (5分) 证明: S=> bMb=>b(Lb=>b(Ma)b

所以,符号串 b(Ma)b 是该文法的一个句型。

(2)(5分)短语: Ma), (Ma), b(Ma)b 直接短语: Ma) 句柄: Ma)

练习:

(10 分) 已知文法 G[T]: $T \rightarrow T*F \mid F$; $F \rightarrow F \uparrow P \mid P$; $P \rightarrow (T) \mid i$

- (1) 用最右推导法证明 β: **T*P** ↑ (**T*F**) 是 **G**[**T**]的一个句型;
- (2) 画出β的语法树;
- (3) 写出 β 的全部短语、直接短语和句柄。
- (1) T=>T*F=>T*F↑P=>T*F↑(T)=>T*F↑(T*F) =>T*P↑(T*F) 证毕。
- (2) 如图

第3题 语法树

(3) 短语: T*P↑(T*F); P↑(T*F); (T*F); T*F; P 直接短语: T*F; P 句柄: P

3. 证明一个文法是二义性文法。

证明下述文法 G [S] 是二义的。 (5分)

S->iSeS|iS|i

解:

可见, 句型 iises 有两种不同的语法树, 所以 G[S]是二义的。

练习:证明下述文法 G:

$S\rightarrow aSbS|aS|d$

是二义性文法。

解:

一个文法,如果存在某个句子有不只一棵语法分析树与之对应,那么称这个 文法是二义性文法。

句子 aadbd 有两棵语法树。如下图:

由此可知, S→aSbS|aS|d 定义的文法是二义性文法。

第四章: 重点: 1. NFA→DFA 的确定化及 DFA 的最小化。

2. 试写出描述语言 L 的正规式,构造能识别该语言 L 等价的 NFA,再确定化将下图所示的 NFA 确定化,再最小化。(2010年出过)

用子集法确定化如下表:

编号	I	I_a	I_b
A	A{X,1,2,4}	B{1,2,3,4}	C{1,2,4,Y}
В	B{1,2,3,4}	B {1,2,3,4}	C{1,2,4,Y}
C	C{1,2,4,Y}	B {1,2,3,4}	C{1,2,4,Y}

由于对于非终态的状态 A 和 B 来说,它们输入 a、b 的下一个状态都是一样的,故状态 A 和 B 可以合并,将合并后的状态重命名为 A,而终态则重命名为 B,则合并后的状态转换矩阵为:

S	a	b
A	A	В
В	A	В

由此可以得到最小化的 DFA,如下图所示:

练习 1: 给出接受字母表 Σ ={a, b}, 语言为以 b 开头, 以 aa 结尾的字符串集合的正规表达式, 并构造与之等价状态的 DFA。(2010 年出过)

答: 依题意,以b开头,以aa 结尾的字符串集合的正规表达式可写为: b(a|b)*aa

画 NFA,如下图所示

用子集法确定化如下表

I	I_a	I_b
{X} A	-	{1}B
{1} B	{1,2}C	{1} B
{1,2}C	{1,2,Y}D	{1} B
{1,2,Y}D	{1,2,Y}D	{1} B

(10 分) 将下图的 NFA 确定化为 DFA。(2011 年重修卷 A 出过)

答: 用子集法确定化如下表

用子集法对所给图的确定化

I	Ia	Ib	状态		
{X,1,2}	{1,2}	{1,2,3}	X		
{1,2}	{1,2}	{1,2,3}	1		
{1,2,3}	{1,2,Y}	{1,2,3}	2		
{1,2,Y}	{1,2}	{1,2,3}	3		

确定化后如下图

第五章重点: 1.LL(1)的判别

要点: (1) 计算 First\Follow\Select 集, 然后判断是否是 LL(1)文法。

- (2) 如果是 LL(1)文法,则构造预测分析表。
- (3) 消除左递归和左公共因子!

例: (10分) 已给文法 G[S]:

$$S \rightarrow PS'$$

 $S' \rightarrow aPS'|fS'|\epsilon$

 $P \to \quad q P'$

 $P' \to bP \, | \epsilon$

- (1) 该文法是否是 LL(1) 文法,并说明理由。
- (2) 给出该文法的预测分析表。

答: (10 分)

(1) Select $(S \rightarrow PS') = first(P) = \{q\}$

Select(S' \rightarrow aPS')={a}

 $Select(S' \rightarrow fS') = \{f\}$

 $Select(S' \rightarrow \varepsilon) = follow(S') = follow(S) = \{\#\}$

Select($P \rightarrow qP'$)={q}

 $Select(P' \rightarrow bP) = \{b\}$

Select ($P' \rightarrow \varepsilon$) = follow(P')

=follow(P)={first(S')-{ ϵ }} \cup follow(S)={a,f} \cup {#}={a,f,#}

 $Select(S' \rightarrow aPS') \cap Select(S' \rightarrow fS') \cap Select(S' \rightarrow \epsilon) = \emptyset$

 $Select(P' \rightarrow bP) \cap Select \ (\ P' \rightarrow \epsilon) = \emptyset$

所以文法是 LL(1) 文法。 (7分)

(2) 预测分析表: (3分)

	a	b	f	q	#
S				PS'	
S'	aPS'		fS'		ε
P				qP'	
Ρ'	ε	bP	ε		3

(15分)写出下列文法中各候选式的 FIRST 集和各非终结符的 FOLLOW 集,构造该文法的 LL

(1)分析表,并说明它是否为LL(1)文法。(2011年重修卷A出过)

$$S \rightarrow aA|BA$$

$$B \rightarrow bB|\epsilon$$

各候选式的 FIRST 集 (4分)

FIRST
$$(aA) = \{a\}$$
 FIRST $(BA) = \{b, c, \epsilon\}$ FIRST $(cB) = \{c\}$

FIRST
$$(\varepsilon) = \{\varepsilon\}$$
 FIRST $(bB) = \{b\}$ FIRST $(\varepsilon) = \{\varepsilon\}$

各非终结符的 FOLLOW 集 (4分)

$$FOLLOW(S) = \{\#\}$$
 $FOLLOW(A) = \{\#\}$ $FOLLOW(B) = \{ c, \# \}$

(5分)

说明它是否为 LL(1) 文法 (2分) 判断 1分, 理由 1分 因为 LL(1) 分析表无冲突, 所以该文法是 LL(1) 文法。

2. 设文法 G(S):

$$S \rightarrow^{\wedge} |a|(T)$$

$$T\rightarrow T,S \mid S$$

- (1) 消除左递归;
- (2) 构造相应的 FIRST 和 FOLLOW 集合;
- (3) 构造预测分析表

解: (1)消除左递, 文法变为 G'[S]:

$$S \rightarrow ^{\wedge} |a|(T)'$$

T→ST' | S

$$T'$$
→, ST' |ε

此文法无左公共左因子。

(2)构造相应的 FIRST 和 FOLLOW 集合:

 $FIRST(S)=\{a, ^{,}(\}, FOLLOW(S)=\{\#, ,,)\}$ $FIRST(T)=\{a, ^{,}(\}, FOLLOW(T)=\{\}\}$

 $FIRST(T')=\{,, \epsilon\}$, $FOLLOW(F)=\{\}$

(3)构造预测分析表:

	a	٨	()	,	#
S	S→a	S→^	S→(T)'			
T	T→ST'	T→ST'	T→ST'			
T'				Τ'→ε	T'→,ST'	

- 2.给出预测分析表,要求写出某个串的分析过程
 - · 附加题 1: 对文法 G'[S]: (其实是习题 1 的第 (3) (4) 小题)
 - $S \rightarrow a | \land | (T)$ $T \rightarrow SU$ $U \rightarrow , SU | \epsilon$
 - 证明该文法是 LL(1)的,然后构造该文法的预测分析表,并判断(a, a)#是不是该文 法的句子。

各非终结符的 FIRST 集合如下:

 $FIRST(S) = \{a, \land, (\}$

FIRST (T) = FIRST (S) = $\{a, \land, (\}$

FIRST (U) = $\{,, \varepsilon\}$

各非终结符的 FOLLOW 集合如下:

 $FOLLOW(S) = \{ \# \} \cup FIRST(U) \cup FOLLOW(T) \cup FOLLOW(U) = \{ \#, , ,) \}$

 $FOLLOW(T) = \{\}$

 $FOLLOW(U) = FOLLOW(T) = \{\}$

每个产生式的 SELECT 集合如下:

SELECT $(S \rightarrow a) = \{a\}$

 $SELECT(S \rightarrow \land) = \{ \land \}$

SELECT (S \rightarrow (T)) = {(}

SELECT $(T \rightarrow SU) = FIRST(S) = \{a, \land, (\}$

SELECT $(U \rightarrow , SU) = \{, \}$

SELECT (U $\rightarrow \varepsilon$) =FOLLOW (U) = {)}

可见,相同左部产生式的 SELECT 集的交集均为空,所以文法 G'[S]是 LL(1)文法。

文法 G/[S]的预测分析表如下:

	a	\wedge	()	,	#
S	→a	$\rightarrow \wedge$	→ (T)			
T	→SU	→SU	→SU			
U				→ ε	→, SU	

(1) 给出输入串(a, a)#的分析过程

步骤	分析栈	剩余输入串	所用产生式
1	#S	(a, a)#	$S \rightarrow (T)$
2	#)T((a, a)#	(匹配
3	#) T	a, a)#	T→SU
4	#)US	a, a)#	S→a
5	#)Ua	a, a)#	a 匹配
6	#)U	, a)#	U→, SU
7	#)US,	, a)#	,匹配

8	#)US	a)#	S→a
9	#)Ua	a)#	a匹配
10	#)U)#	$U \rightarrow \varepsilon$
11	#))#) 匹配
12	#	#	接受

第七章重点: 1. 识别活前缀的有限自动机的构造,判断某个文法是否是 LR(0)文法,或 SLR (1) 文法或 LR (1) 文法,若不是,请说明理由,若是,构造相应的 LR 分析表。 2. 查 LR 分析表,进行句子的识别。

典型例题: 1. 文法 G[S]及其 LR 分析表如下,请给出串()()#的 LR 分析过程。

(1) $S \rightarrow S(S)$ (2) $S \rightarrow \varepsilon$

状态		ACTION		
1八心	()	#	S
0	r2		r2	1
1	S2		acc	
2	r2	r2		3
3	S4	S5		
4	r2	r2		6
5	r1		r1	
6	S4	S7		
7	r1	r1		

(注: 答案格式为 <u>步骤 状态栈 符号栈 输入串 ACTION GOTO</u>) 答案:

H //C*					
步骤	状态	符号	输入串	ACTION	GOTO
0	0	#	()()#	r2	1
1	01	#S	()()#	S2	
2	012	#S()()#	r2	3
3	0123	#S(S)()#	S5	
4	01235	#S(S)	()#	r1	1
5	01	#S	()#	S2	
6	012	#S()#	r2	3
7	0123	#S(S)#	S5	
8	01235	#S(S)	#	r1	1
9	01	#S	#	acc	

2. (8 分) 已知拓广文法 G[S']: $S' \rightarrow S$ $S \rightarrow AS \mid \varepsilon$ $A \rightarrow aA \mid b$ (1) 试构造以 LR (1) 项目集为状态的识别活前缀的有穷自动机;

(2) 试判断文法是否是 LR(1)文法,并说明理由。

I6:

(2) 有穷自动机所有的状态都不含有"移进一归约"、"归约一归约"冲突,因而该文法是LR(1)文法。

练习: .(20 分) 给定文法 G[S]:

 $S \rightarrow SaA|a$

 $A \rightarrow AbS|b$

- (1) (8 分) 请构造该文法的以 LR(0) 项目集为状态的识别规范句型活前缀的 DFA。
- (2) (4 分) 请构造该文法的 LR(0) 分析表。
- (3) (4 分) 什么是 LR(0) 文法? 该文法是 LR(0) 文法吗? 为什么?
- (4) (4 分) 什么是 SLR(1) 文法? 该文法是 SLR(1) 文法吗? 为什么?

答: (1)拓广文法 1 分

 $G[S']: S' \rightarrow S(1)$

 $S \rightarrow SaA(2)$

 $S \rightarrow a (3)$

 $A \rightarrow AbS$ (4)

 $A \rightarrow b$ (5)

该文法的以 LR(0) 项目集为状态的识别规范句型活前缀的 DFA:

(2) 该文法的 LR(0) 分析表:

状态	ACTION			GOTO	GOTO	
	a	b	#	S	A	
0	S 2			1		
1	S 3		acc			
2	r 3	r 3	r 3			
3		S 5			4	
4	r 2	r 2 /S 6	r 2			
5	r 5	r 5	r 5			
6	S 2			7		
7	r 4 /S 3	r 4	r 4			

(3) LR(0) 文法: 该文法的以 LR(0) 项目集为状态的识别规范句型活前缀的 DFA 中没有冲突状态。

该文法不是 LR(0) 文法

因为存在冲突状态: I4 和 I7

(4) SLR(1) 文法: 该文法的以 LR(0) 项目集为状态的识别规范句型活前缀的 DFA 中有冲突状态,冲突可用 FOLLOW 集解决。

该文法不是 SLR(1) 文法。

因为 $FOLLOW(S)=\{a,b,\#\}$,所以无法解决冲突 。

其它练习可以直接做书本上我们布置的作业!

第八章: 1.给出代码,写成代码对应的四元式(三地址码形式!),如 while 嵌套的翻译等。 2. 给出文法要求写语义规则,根据语法制导翻译方法

重点: (1). 赋值语句

- (2). For 语句
- (3) .if ...then 语句
- (4) 数组赋值
- (5) .while 语句

例:写出下面语句经语法制导翻译后所生成的四元式代码序列。 (共10分)

if $x \le y$ then while $e \ge c$ do c := c+1 else x := x+5

(依次翻译, 再考虑回填!)

解: 假设初始为100,则四元式代码序列为

```
100
                              if
                                      x < y
                                                   102
                                           goto
               101
                              goto
                                       107
                              if
                                                   104
               102
                                       e>c
                                            goto
               103
                                       109
                              goto
               104
                              M := C+1
               105
                              C:=M
               106
                              goto
                                       102
               107
                              N:=X+5
               108
                              X:=N
               109
(10分) 试完成下列语句翻译的四元式序列。(2010年出过)
  while (A>B) do
    if(C>D) then X:=Y*Z
    else X:=Y+Z;
  (1) if A>B goto (3)
  (2) goto (11)
  (3)
  (4) goto (8)
  (5) _____
  (6)X:=T1
  (7)__
  (8)T2 := Y + Z
  (9)X:=T2
  (10)
  (11)
答: (3) if C<D goto (5)
  (5)T1:=Y*Z
  (7) goto(1)
  (10) goto (1)
练习:已知源程序如下:
        prod:=0;
        i:=1;
        while i≤20 do
         begin
            prod:=prod+a[i]*b[i];
            i:=i+1
         end;
  (数组翻译3句
    T1:= VARPART(与数组元素占的字节数相关比如 4*i)
```

T2:=不变部分, 一般为起始地址 A 或者起始地址 A 减单个数组元素所占字节数比如

A-4 (如果 i 从 1 开始,而且上面写为 4*i,这里则需要写成 A-4)

T3 := T2[T1]

试按语法制导翻译法将源程序翻译成四元式序列(设 A 是数组 a 的起始地址, B 是数组 b 的起始地址; 机器按字节编址,每个数组元素占四个字节)。

四元式序列 100 prod:=0

- 101 i:=1
- 102 if i≤20 goto 104
- 103 goto 114
- 104 T1:=4*i
- 105 T2:=A-4
- 106 T3:=T2[T1]
- 107 T4:=4*i
- 108 T5:=B-4
- 109 T6:=T5[T4]
- 110 T7:=T3*T6
- 111 prod:=prod+T7
- 112 i:=i+1
- 113 goto 102
- 114 ...

for I := 1 step 1 until Y do X := X+1

将被翻译成如下的四元式序列(对照 P191):

- 100 I := 1
- 101 goto __
- 102 I := I + 1
- 103 if $I \leq Y$ goto __
- 104 goto __
- 105 T := X + 1
- 106 X := T
- 107 goto ___
- 108
- 2. 对以下文法,请写出关于<mark>括号嵌套层数</mark>的属性文法。(为 S, L 引入属性 h, 用来记录输出配对的括号个数)

文法规则	语 义 规 则
$S \rightarrow (T)$	
s→i	
T→T,S	
T→S	

文法规则	语义规则
$S \rightarrow (T)$	{S.h:=T.h+1;}
s→i	{s.h:=0}
T→T,S	{T.h:=T.h+S.h;}
T→S	{T.h:= S.h;}

令综合属性 val 给出在下面的文法中的 S 产生的二进制数的值 (如,对于输入 101.101 ,则 S. val=5.625)。

解 1: 提示画出对应于输入 101.101 的语法树, 然后设置相应的属性进行语义规则的创立。

产生式	语义规则
S ->L1. L2	$S.val := L1.val + L2.val/2^{L2 length}$
S->L	S. val:=L. val
L -> L1B	L. val:=L1. val*2+B. val
	L. length:=L1. length+1
L → B	L. val:=B. val
	L. length:=1
B -> 0	B. val:=0
B -> 1	B. val:=1

修改:

令综合属性 val 给出在下面的文法中的 S 产生的十进制数的值 (如,对于输入 101 ,则 S. val=5)。

$$S \rightarrow SB \mid B$$

 $B \rightarrow 0 \mid 1$

解 1: 提示画出对应于输入 101.101 的语法树,然后设置相应的属性进行语义规则的创立。

	B. val :=1
B → 0	B. va1 :=0
S-> B	S. val :=B. val
S -> SB	S. val=S. val*2+B. val
产生式	语义规则

```
第十章: 1. 程序的传值、传地址的结果
2. 活动记录(1)静态链、动态链的连接(2) Display 表
典型例题: 1. 当参数分别采用"传值"、"传地址"实现时,下面程序
      输出 a 的值分别是什么? (5 分)
     Program main(input,output)
     Procedure p(x,y,z);
     Begin y:=y+2;
          z:=z+x;
     End;
     Begin
          a:=2; b:=6; p(a+b, a, a);
          Print a;
     End.
   答: 2 12
行到第二个B过程的时刻,栈内静态链、动态链的指示情况。
```

2. 类 PASCAL 程序结构(嵌套过程)如下,该语言的编译程序采用栈式动态分 配策略管理目标程序存储空间。若过程调用情况为 Demo->A->B->B,画出程序运

```
Program Demo;
      Procedure A
           Procedure B
              Begin(*B*)
                ... ...
                If d then B else A;
              End(*B*)
        Begin(*A*)
           В;
        End(*A*)
    Begin(*Demo*)
      A
    End(*Demo *)
```



```
练习1: 考虑下面的程序:
  procedure p(x, y, z);
  begin
   y:=x+y;
   z:=z*z;
 end
 begin
   A := 2;
   B := A * 2;
   P(A, A, B);
   Print A, B
 end.
试问, 若参数传递的方式分别采用传地址和传值时, 程序执行后输出 A, B 的值是什么?
解: 传地址 A=6, B=16
   传值
          A=2, B=4
第十一章 重点: 1、基本块划分,并画出程序流程图
2.根据程序流程图,找出循环!
典型习题: (8分)将下面程序划分为基本块,并画出其基本块程序流图。(2009年出过)
 (1)
      if a < b goto (3)
 (2)
      halt
      if c < d goto (5)
 (3)
 (4)
      goto (8)
 (5)
      t1:=y+z
 (6)
      x := t1
 (7) goto (1)
      t2:=y-z
 (8)
 (9)
      x := t2
 (10) goto (1)
      (1) if a b goto (3) (2) halt (3) if c d goto (5)
         (4) *goto (8)
(5) t1:=y+z
        (6) x :=t1
(7) goto (1)
       (8) t2:=y-z
(9) x:=t2
(10) goto (1)
答:
2. 对以下给定流图,
                 (2010年出过)
(1) 求出流图中 B3、B4 和 B5 的必经结点集 D(n);
(2) 求出流图中的回边及其对应的循环。
```


答: (1) B_3 的必经结点集是 $\{B_1, B_2, B_3\}$ 。

B4的必经结点集是{B1, B2, B4}。

B5的必经结点集是{B1, B2, B4, B5}。

(2) 回边是 B_4 -> B_2 , 对应的循环是{ B_2 , B_3 , B_4 }。

其它的

第二章、第九章、第十二章均直接考 PL/0 的内容,所以代码阅读很重要重点: 1. PL/0 符号表的生成

2. PL/0 某一个语法成分的程序填空,如 if..then, while...do,++,+=,这部分在实验课里会讲,请大家要认真听。

典型习题: 练习 1: 8 分) 对 PL/0 语言扩充单词: (2009 年出过)

++ +=

请完成下列识别单词'+','++'和'+='(设单词内码分别为 PLUS, PLUSPLUS 和 PLUSBECOMES)的词法分析程序段:

2. PL/0 示意程序为:

var x;

```
procedure A;
  var d;
  begin (* A *)
    write(x);
  end (* A *);
procedure B;
  const n=7;
  var e,g;
  procedure D;
    var j,k;
    begin (* D *)
       read(j,k);
       x:=x+j*n;
       call A;
    end ;(* D *)
  begin (* B *)
    call D;
  end ;(* B *)
begin (* main *)
  read(x);
  call B;
end. (* main *)
```

给出 PL/0 示意程序编译到 D 过程体时 TABLE 表的内容。其中 TABLE 表的格式可为下表。 TABLE 表的格式

name	kind	level	val	adr	size

解:问答第5题 PL/0示意程序编译到D过程体时TABLE表的内容如下表。

TABLE 表的内容

name	kind	level	val	adr	size
main	procedure			0	4
x	variable	0		dx	
A	procedure	0		过程 A 的入口	4
В	procedure	0		过程 B 的入口 (待填)	(待填5)
n	constant		7		
e	variable	1		dx	
g	variable	1		dx+1	
D	procedure	1		过程 D 的入口	5
j	variable	2		dx	
k	variable	2		dx+1	

由于 A 和 B 是并列过程,当编译到 B 过程时 A 过程体已经编译结束,A 所定义的标识符不会再被使用,所以由 B 过程定义的标识符覆盖。