Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М3215	К работе допущен
Студент Гаджиев С. И.	Работа выполнена
Преподаватель Тимофеева Э. О.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.01

"Исследование распределения случайной величины"

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений определённого интервала времени.

2. Задачи, решаемые при выполнении работы.

- 1) Провести гистограмму распределения результатов измерения.
- 2) Построить гистограмму распределения результатов измерения.
- 3) Вычислить среднее значение и дисперсию полученной выборки.
- 4) Сравнить гистограмму с графиком функции Гаусса с таким же, как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования.

Временной промежуток протяжённостью в 5 секунд.

4. Метод экспериментального исследования.

Было проведено сравнение 100 замеров на секундомере в течение 5 секунд.

5. Рабочие формулы и исходные данные.

$$\rho\left(t\right) = \lim_{\substack{N \to \infty \\ \Delta t \to 0}} \frac{\Delta N}{N\Delta t} = \frac{1}{N} \frac{dN}{dt}.$$

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right).$$

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i$$

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}.$$

$$\rho_{\rm max} = \frac{1}{\sigma\sqrt{2\pi}}.$$

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t)dt \approx \frac{N_{12}}{N}$$

$$t \in [\langle t \rangle - \sigma, \langle t \rangle + \sigma], \quad P_{\sigma} \approx 0.683$$

$$t \in [\langle t \rangle - 2\sigma, \langle t \rangle + 2\sigma], \quad P_{2\sigma} \approx 0.954$$

$$t \in [\langle t \rangle - 3\sigma, \langle t \rangle + 3\sigma], \quad P_{3\sigma} \approx 0.997$$

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$

$$\alpha = P\left(t \in \left[\langle t \rangle - \Delta t, \langle t \rangle + \Delta t\right]\right)$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	от 0 до 5 сек.	0,01

7. Схема установки (перечень схем, которые составляют Приложение 1).

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Nº	ti, c	+i	(ti - <t>)^2, c^2</t>
измерения	ti, C	ti - <t>, c</t>	(11 - <1>)^2, t^2
1	5,35	0,394	0,155
2	4,59	-0,366	0,134
3	4,45	-0,506	0,256
4	4,46	-0,496	0,246
5	4,57	-0,386	0,149

6	4,32	-0,636 0,404	
7	4,97	0,014	0,000
8	5,26	0,304	0,092
9	4,53	-0,426	0,181
10	4,3	-0,656	0,430
11	4,45	-0,506	0,256
12	4,32	-0,636	0,404
13	4,6	-0,356	0,127
14	4,75	-0,206	0,042
15	4,99	0,034	0,001
16	4,89	-0,066	0,004
17	4,71	-0,246	0,061
18	4,95	-0,006	0,000
19	4,46	-0,496	0,246
20	4,49	-0,466	0,217
21	4,91	-0,046	0,002
22	5,26	0,304	0,092
23	4,47	-0,486	0,236
24	5,14	0,184	0,034
25	4,84	-0,116	0,013
26	5,02	0,064	0,004
27	4,72	-0,236	0,056
28	4,53	-0,426	0,181
29	4,5	-0,456	0,208
30	4,66	-0,296	0,088
31	4,27	-0,686	0,471
32	4,62	-0,336	0,113
33	4,93	-0,026	0,001
34	5,12	0,164	0,027
35	4,74	-0,216	0,047
36	5,26	0,304	0,092
37	4,61	-0,346	0,120
38	5,12	0,164	0,027
39	4,77	-0,186	0,035
40	4,92	-0,036	0,001
41	5,03	0,074	0,005
42	5,24	0,284	0,081
43	4,84	-0,116	0,013
44	4,93	-0,026	0,001
45	5,17	0,214	0,046
46	4,86	-0,096	0,009
47	4,63	-0,326	0,106
48	5,01	0,054	0,003
49	4,74	-0,216	0,047
50	5,13	0,174	0,030
51	4,68	-0,276	0,076
52	5,24	0,284	0,081
53	5,22	0,264	0,070
54	4,82	-0,136	0,018
55	5,06	0,104	0,011
56	4,89	-0,066	0,004

57	4,84	-0,116	0,013	
58	5,67	0,714 0,510		
59	5,17	0,214 0,046		
60	5,26	0,304	0,092	
61	4,72	-0,236 0,056		
62	5,29	0,334 0,112		
63	4,96	0,004 0,000		
64	4,92	-0,036	0,001	
65	4,2	-0,756	0,572	
66	5,52	0,564	0,318	
67	5,1	0,144	0,021	
68	5,07	0,114	0,013	
69	5,11	0,154	0,024	
70	5,06	0,104	0,011	
71	5,27	0,314	0,099	
72	4,85	-0,106	0,011	
73	5,25	0,294	0,086	
74	5,19	0,234	0,055	
75	4,9	-0,056	0,003	
76	5,13	0,174	0,030	
77	5,01	0,054	0,003	
78	5,08	0,124	0,015	
79	5,32	0,364	0,132	
80	5,24	0,284	0,081	
81	5,09	0,134	0,081	
82	5,33	0,374	0,140	
83	5,67	0,714	0,510	
84	5,52	0,564	0,318	
85	5,13	0,174 0,030		
86	5,48	0,524 0,275		
87	5,27	0,314 0,099		
88	5,36	0,404 0,163		
89	4,87	-0,086 0,007		
90	5,43	0,474 0,225		
91	5,23	0,274	0,075	
92	5,18	0,224	0,050	
93	4,97	0,014	0,000	
94	5,05	0,094	0,009	
95	5,3	0,344	0,118	
96	4,83	-0,126	0,016	
97	5,11	0,154	0,024	
98	5,4	0,444	0,197	
99	5,11	0,154	0,024	
100	4,83	-0,126	0,016	
	$\langle t \rangle_N$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = \dots c$	$\sigma_N = \dots c$	
	4,956	0,000	0,325	
	-,555	5,555	$\rho_{max} = \dots c^{-1}$	
			1,227	
		·	·	

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Интервалы	ΔΝ	ΔN/N*Δt, c^(-1)	t, c	p(t)
[4,20; 4,35]	5	0,333	4,275	0,1370
[4,35; 4,50]	7	0,467	4,425	0,3236
(4,50; 4,65]	8	0,533	4,575	0,6176
[4,65; 4,80]	9	0,600	4,725	0,9531
[4,80; 4,95]	18	1,200	4,875	1,1891
(4,95; 5,10]	15	1,000	5,025	1,1992
(5,10; 5,25]	19	1,267	5,175	0,9778
(5,25; 5,40]	13	0,867	5,325	0,6445
(5,40; 5,55]	4	0,267	5,475	0,3434
[5,55; 5,70]	2	0,133	5,625	0,1479

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

	Интеј	овал, с	ΔΝ	ΔΝ/Ν	Р
	От	До	ΔΙΝ	ΔΙΝ/ΙΝ	
$\langle t \rangle N \pm \sigma N$	4,63	5,28	68	0,680	0,683
$\langle t \rangle N \pm 2\sigma N$	4,31	5,61	95	0,950	0,954
$\langle t \rangle N \pm 3\sigma N$	3,98	5,93	100	1,000	0,997

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

<t>n, c</t>	4,956
σn, c	0,325
$\rho max(t)$, c^-1	1,227
$\sigma\langle t\rangle$, c	0,0325
tlpha,n, c	1,9842
Δt, c	0,06

Границы доверительного интервала:

 $[<t> - \Delta t; <t> + \Delta t] = [4,89; 5,02]$

13. Выводы и анализ результатов работы.

В процессе данного эксперимента было проведено несколько измерений определенного временного интервала. На основании этих измерений была построена гистограмма, показывающая распределение полученных результатов. Были рассчитаны среднее значение и дисперсия выборки. Сравнение гистограммы с гауссовой функцией показало, что распределение случайной величины практически соответствует нормальному закону распределения. Диаграммы не противоречат друг другу, и любое несовпадение является результатом погрешностей в расчетах. Это объясняется тем, что при округлении значений теряются некоторые десятичные знаки, что приводит к возникновению погрешности.