THE WILL OF MICH

ASTROPHYSICAL JOURNAL

An International Review of Spectroscopy and Astronomical Physics

EDWIN B. FROST

GEORGE E. HALE

Yences Observatory of the University of Chicago

HENRY G. GALE

WITH THE COLLABORATION OF

ERNEST F. PICHOLS, Destruct Catego
de Posthova
ALFRED PEROT. Paris
EDWARD C. PICKERING, Harvard College Ob
ANNIBALE RICCO, Observatorio & Calastia
CARL RUNGE, Universitä Göttingen
ARTHUR SCHUSTER, The University, Manches
KARL SCHWARZSCHILD, Astrophysikalisches fortum, Potedam
FRANK SCHLESINGER, Alleghany Observatory

MARCH 1915

NILS CHRISTOFER DUNER ANDERS ANGSTROM	81
THE VARIATION WITH TEMPERATURE OF THE ELECTRIC FURNACE SPECTRA OF VANADIUM AND CHROMIUM - ARTHUR S. KING	86
THE FLASH SPECTRUM WITHOUT AN ECLIPSE REGION \$4000-\$6000 WALTER S. ADAMS AND CORA G. BURWELL ON THE SIMPLEST FORM OF THE STELLAR INTERFEROMETER FOR DETERMINING THE ANGULAR DIAMETERS OF STARS BY MEANS OF ELLIPTICALLY POLARIZED LIGHT S. POKROWSKY	
THE DIFFERENT CHARACTER OF SPECTRUM LINES BELONGING TO THE SAME SERIES	
A CRITERION FOR SPECTROSCOPIC BINARIES, WITH AN APPLICATION TO A LEONIS FRANK SCHLESINGER	268
MINOR CONTRIBUTIONS AND NOTES: The Soler Prominence of October 19-21, 1014, OLIVER J. LEE, 168; On the Non-Emistence of the Line of Wood-Longth	

REVIEW:

The Diform of the Columber, ALEXANDER PURISP (F. B. F.), irra-

THE UNIVERSITY OF CHICAGO PRESS

CHICAGO, ILLINOIS, U.S.A.

THE CAMBRIDGE UNIVERSITY PRESS, LOSDON AND EDGES THE KARL W. HIERSEMANN, LESSED THE MARUZEN-KABUSHIKI-KAISHA, TOUVO, CRARA, KNOW

THE

ASTROPHYSICAL JOURNAL

AN INTERNATIONAL REVIEW OF SPECTROSCOPY AND ASTRONOMICAL PHYSICS

VOL.	XLI	CONTE	NTS F	OR MA	RCH 1	1915		NO. 2
NILS	CHRISTOFE	R DUNÉR				- ANDER	ANGSTRÖM	81
THE	VARIATION SPECTRA O	WITH TE F VANADIU						
			F THE ST	WALTER TELLAR I AMETER	S. Adams INTERFE S OF ST	AND CORA C ROMETER ARS BY M	G. BURWELL FOR DE- MEANS OF	
THE	DIFFERENT SAME SERI		R OF SPE	CTRUM	LINES B		TO THE	154
A CR	ITERION FO	R SPECTRO						
MINO	R CONTRIB The Solar Promin Wase-Longth 6708			VER J. LER.	168; On the	Non-Enistence	of the Line of	
REVI	EW: The Reform of the	Colondor, ALEXA	idea Paulie (E. B. F.), 17				

The Astrophysical Journal is published by the University of Chicago at the University Press during each month except February and August. The subscription price is \$5.00 per year; the price of single copies is 65 cents. Orders for service of less than a half-year will be charged at the single-copy rate. Postage is prepaid by the publishers on all orders from the United States, Mexico, Cuba, Porto Rico, Panama Canal Zone, Republic of Panama, Hawaiian Islands, Philippine Islands, Guam, Samoan Islands, Shanghai. Postage is charged extra as follows: For Canada, 30 cents on annual subscriptions (fotal \$5.20), on single copies, 3 cents (total 68 cents); for all other countries in the Postal Union, 62 cents on annual subscriptions (total \$5.62), on single copies, 11 cents (total 76 cents). Remittances should be made payable to The University of Chicago Press, and should be in Chicago or New York exchange, postal or express money order. If local check is used, 10 cents must be added for collection.

The following agents have been appointed and are authorized to quote the prices indicated: For the British Empire: The Cambridge University Press, Fetter Lane, London, E.C. Yearly subscriptions, including postage, 23. each; single copies, including postage, 3s. 3d. each.

For the Continent of Europe: Karl W. Hiersemann, Königstrasse 29, Leipzig, Germany, Yearly subscriptions, including postage, M. 23.60 each; single copies, including postage, M. 3.20 each.

For Japan and Kores: The Maruzen-Kabushiki-Kaisha, 11 to 16 Nihonbashi Tori

For Japan and Korea: The Maruzen-Kabushiki-Kaisha, 11 to 16 Nihonbashi Tori Sanchome, Tokyo, Japan. Yearly subscriptions, including postage, Yen 11.25 each; single copies, including postage, Yen 1.50 each.

Claims for missing numbers should be made within the month following the regular month of publication. The publishers expect to supply missing numbers free only when they have been lost in transit.

cusiness correspondence should be addressed to The University of Chicago Press, Chicago, Ill. Communications for the editors and manuscripts should be addressed to the Editors of THE ASTROPHYSICAL JOURNAL, The University of Chicago, Chicago, Ill.

Entered as second-class matter, January 17, 1895, at the Post-office at Chicago, Ill., under the act of Congress of March 2, 1870

NILS CHRISTOFER DUNÉR

ASTROPHYSICAL JOURNAL

AN INTERNATIONAL REVIEW OF SPECTROSCOPY
AND ASTRONOMICAL PHYSICS

VOLUME XLI

MARCH 1915

NUMBER 2

NILS CHRISTOFER DUNÉR

By ANDERS ÅNGSTRÖM

By the death of Nils Christofer Dunér, late professor at the University of Upsala, who died on November 10, 1914, at the age of seventy-five years, the science of astronomy lost one of its most remarkable followers.

Dunér's career shows what important scientific work can be accomplished even with the aid of comparatively slight resources, provided that there is no lack of the necessary personal qualifications—unconquerable energy, capacity for scientific reasoning, and an ardent interest in the problem in hand.

The work of pioneers in the study of astronomy has often been carried on by the aid of the slender resources of small observatories. As an example of this may be adduced the career of Sir William Huggins, which was sketched not long ago in the pages of this Journal; another example is that of Dunér, whose work, especially in connection with double stars and the rotation of the sun, will always be looked upon as laying the foundations for future study in special departments of his science.

Dunér was born on May 21, 1839, at Billeberga, in the Swedish province of Scania, where his father was vicar. After having matriculated at Lund, he became extra assistant at the observatory there as early as 1858, and in 1864 he was appointed observer,

having taken his Doctor's degree earlier in the same year. This position provided Dunér with opportunities for developing considerable activity. After the newly established observatory at Lund had been provided with a larger refractor in 1864, Dunér began a systematic investigation of the double stars. The results of these comprehensive labors are brought together in his Mésures micrométriques d'etoiles doubles, faites à l'Observatoire de Lund, suivies de notes sur leurs mouvements relatifs, published in 1876. In this book Dunér discusses at length the results of earlier investigations, besides advancing a large number of new suggestions and describing many new investigations. The work is one of our principal authorities on double stars.

Probably it is in the choice of the problem to be attacked that scientific genius chiefly betrays itself. Methods grow antiquated and are improved upon, scientific results are modified and corrected, and, seen in the light of new discoveries, they get a new meaning. But as the most important task there always remains the keen sensing out of the real problems, on the solving of which science is built up, and which, vigorously debated and variously interpreted, incite succeeding generations to further investigations.

It is to this department that the following two great works of Dunér belong. These were Sur les Etoiles à Spectre de la troisième classe, published in 1884, and Recherches sur la rotation du soleil, published in 1891, after Dunér had been called to fill the chair of astronomy at Upsala. The latter of these two works proved to be his greatest triumph and suggested new problems. The former of them presents a penetrating investigation on the subject of the spectra of the red and reddish-colored stars (Vogel's third class). About twenty years after the appearance of this volume, Hale and Ellerman expressed themselves about it as follows: "In spite of the small aperture of his telescope, the low dispersion which was necessarily employed and the serious difficulties that are almost invariably encountered in visual observations of faint spectra, Dunér's results are of the highest value and have been confirmed in almost every particular by our photographs." In this work Dunér also presents an interesting and notable discussion regarding the development of the stars of the fourth order.

He shows that stars of type IV have a distinct tendency to collect in the Milky Way.

The work, however, upon which Dunér's reputation chiefly rests is his celebrated treatise on the rotation of the sun. Carrington (1853-1861), through a study of the movements of the sunspots, had made the remarkable discovery that the rotation period of the sun declines from the equator to the poles; but on account of the limited frequency of the occurrence of the sun-spots, this observation could be effected only for the portion of the sun's surface lying between the equator and 40° of latitude. Dunér attacked this problem in a new and brilliant way, employing Doppler's principle for determining the rotations in different parts of the sun's disk. By measuring the shifts of the lines λλ 6302.700 Fe and 6302.075 A(O) on the periphery relatively to the center, he corroborated, as we know, Carrington's observations and found that the rotation period at the equator was 25.5 days, while at 15° from the poles it was 38.5 days. Several years later Dunér resumed his investigations, this time with the collaboration of one of his pupils, the present director of the Upsala Observatory, Professor Östen Bergstrand, and the results gained confirmed, on the whole, those obtained in the previous investigations.

As is well known, Dunér's method of determining the sun's rotation by means of an application of Doppler's principle has since been more widely used. By the application of this principle, Hale and his associates, at Mount Wilson, and Deslandres, at Meudon, have arrived at a clear conception of the movement in different parts of the solar atmosphere.

With regard to Dunér's other work, it may be mentioned that he conducted painstaking and successful investigations with regard to the variable stars Y Cygni and Z Herculis, belonging to the Algol type. He showed that the path of the one component around the other is markedly eccentric, and that the line of apsides rotates around the common center of gravity.

Dunér's astronomical work proves him to have been a brilliant and original scientist. He was a painstaking investigator of uncommon ability. Neither his talents nor his inclinations lay in the direction of theoretical speculations or comprehensive hypotheses, and he accepted Newton's well-known hypotheses non fingo. For one who has accustomed himself to advance step by step, by means of painstaking scientific work, toward sure conclusions, the stride of theoretical speculation often seems to result in advances of slight worth. Dunér was bold in attacking important and exacting problems, but careful in the matter of drawing conclusions.

It is not only as an investigator that Dunér was active; he also rendered great service as a scientific organizer. Even as far back as 1861 and 1864, he took part in the Swedish expedition to Spitzbergen, where, in company with A. E. Nordenskiöld, he made preliminary investigations with the object of investigating the possibility of measuring a degree in those regions. Thanks to co-operation between Sweden and Russia, the measurement was effected, and Dunér took an active part in carrying on the work.

Further, he was one of the founders of the Astronomische Gesellschaft; he took an active part in astronomical meetings and the astro-photographic congresses, and he developed fruitful activity in the preparation of the international photographic map of the heavens. He was, besides, one of the editors of the Astro-physical Journal.

Among all the scientific distinctions that fell to the share of Dunér we may only mention that in 1887 he was awarded the Lalande Prize by the French Institute, and in 1892 the Rumford Gold Medal by the Royal Society in London.

Scientific investigation was, for Dunér, one of the necessities of life, and he devoted himself to his task with energy and zest. At the same time his work was stamped by that boyish curiosity which is such a remarkable trait in every great man of science. The writer remembers that the wall of his study was adorned by a French india-ink drawing representing an astronomer who, with every indication of enthusiasm, is telling a friend—who evidently does not share his joy—that he has discovered that, within a short time, the earth will collide with a comet. This astronomer might very well have been Dunér himself. He thought, with Poincaré, that the pursuit of truth is perhaps the most important object of our activities.

Dunér's interests were uncommonly all-embracing. He expressed himself with ease in most European languages, and as a boy he had taught himself Spanish, in order to be able to read *Don Quixote* in the original. After he had resigned his professorial chair in 1909, he occupied his leisure hours by translating Dante's *Divina Comedia*. His interest for comparative philology was so great that he was once known to have said that he would possibly have been a better linguist than astronomer. This we doubt, not because of his lack of ability in the study of languages, but because of his rare qualities as a scientist: his clear mind for inductive reasoning, and his great experimental genius.

UPSALA January 1915

THE VARIATION WITH TEMPERATURE OF THE ELECTRIC FURNACE SPECTRA OF VANADIUM AND CHROMIUM¹

By ARTHUR S. KING

The electric furnace spectra to be treated in this paper cover the range of wave-length from λ 3150 to λ 6850 for vanadium, and from λ 3550 to λ 7000 for chromium. The method of classification as to the initial temperature at which a spectrum line appears and its rate of increase in intensity as the temperature rises is similar to that used in previous studies of the spectra of iron² and titanium.³

APPARATUS AND METHODS

The tube resistance furnace was operated in vacuo according to the method described in previous papers. A distinct gain in the photography of the spectrum was obtained by the use of the vertical concave-grating spectrograph4 recently mounted in the Pasadena laboratory. The spectra under examination being very rich in lines, especially in the region of shorter wave-length, the second order of this 15-foot grating was used to advantage in the crowded region extending to about λ 4500. The scale is approximately 1 mm = 1.85 A, and a range of about 850 A is obtained on a single plate. The first order gives a spectrum of high intensity and its scale was sufficient for the region toward the red. Seed "Gilt-Edge 27" plates were used throughout the spectrum, being bathed with the Wallace solution of pinacyanol, pinaverdol, and homocol for the region from λ 5000 into the red. A number of photographs of the whole spectrum were also made with a 1-meter concave grating to record the lines most persistent at low temperature and to observe the general changes in intensity with wave-length for the several furnace temperatures and for the arc.

¹ Contributions from the Mount Wilson Solar Observatory, No. 94.

² Mt. Wilson Contr., No. 66; Astrophysical Journal, 37, 239, 1913.

³ Mt. Wilson Contr., No. 76; Astrophysical Journal, 39, 139, 1914.

⁴ Mt. Wilson Contr., No. 84; Astrophysical Journal, 40, 205, 1914.

The three temperatures on which the classification for both vanadium and chromium is based were given by a Wanner pyrometer as 2000–2150° C. for the low, 2300–2350° C. for the medium, and 2500–2600° C. for the high temperature plates. With vanadium, 2000° C. appears to be about the lower limit for the appearance of a spectrum, though the lines produced at this temperature are fairly numerous. The case is different for chromium, the melting-point of which is considerably lower. Temperatures between 1700° and 1800° C. sufficed to give a number of the most persistent lines in this spectrum, which are listed in a separate table. The somewhat richer spectrum given at 2000°, however, was better suited to show the development of the lines from this into the medium and high temperatures.

The metals used in the furnace were metallic vanadium and crystalline chromium, both supplied by Eimer and Amend. These substances were of fair purity and as the furnace tubes used were of regraphitized Acheson graphite, the spectra obtained showed but few impurity lines of sufficient strength to be disturbing.

EXPLANATION OF THE TABLES

Wave-lengths.—The wave-lengths in the first column of Tables I and II are those given by Exner and Haschek¹ for the arc spectrum, supplemented occasionally by those of Hasselberg,² indicated by H, usually in cases where close doublets were not resolved by Exner and Haschek. Several chromium lines which are very wide in the arc in air were sometimes found to be resolved into as many as three sharp lines by the vacuum furnace. A vacuum arc furnished by special fittings inside the furnace chamber also gave sharp lines in these cases, which were measured from neighboring chromium lines and the wave-lengths entered in the table.

An asterisk after the wave-length denotes that an explanatory remark for the given line is to be found at the end of the table.

Arc intensities.—These were estimated by the writer from arc spectra taken on the same plates as the furnace spectra, the vanadium arc being given by the metal in the carbon arc, while that

¹ Spektren der Elemente bei normalem Druck, Leipzig, 1911.

² Kgl. svenska vet. akad. handl., 26, 1894; 32, 1899; see also Kayser, Handbuch der Spectroscopie, 5, 337; 6, 750.

of chromium was formed between lumps of the metal. The arc photograph used was in each case of moderate exposure, the spectrum in general being comparable in intensity with that of the high-temperature furnace. Numerous nebulous lines, especially in the chromium table, are indicated by n after the intensity value. A vacuum source, either arc or furnace, serves in general to sharpen such lines. The letters R and r, both for arc and for furnace lines, indicate complete and partial self-reversal, respectively.

Furnace intensities.—In estimating the intensities of furnace lines an effort was made to obtain correct relative intensities for the lines for each temperature, a line distinctly outlined on the plate being given the intensity "I," a fainter appearance being indicated as "trace" (tr). The appearance of a line is usually much altered as the temperature rises, but the relative change of different lines with increase of temperature is shown in the tables.

Classification.—The method of assigning lines to classes is the same as that used for the titanium spectrum and is but slightly modified from the system used for iron. Class I lines are relatively strong at low temperatures and strengthen slowly at higher temperatures. Many of them are given the same intensity for the three temperatures and for the arc. Class II lines appear at low temperature but strengthen more rapidly than those of Class I as the tube becomes hotter. The basis of division between these classes, while sometimes rather arbitrary, is usually well defined. The lines of Class III are absent or faint at low temperature, appear at medium temperature, and are usually considerably stronger at high temperature. Class IV lines appear only at the highest furnace temperature, sometimes faintly at medium; while those of Class V are usually absent in the furnace or, if present, are faint compared to the arc intensity. For vanadium, as for titanium, this class is limited almost entirely to the enhanced lines, which are indicated by VE. Faint lines given in the arc tables are not entered in this list unless they appear also in the furnace.

The use of A after the class number indicates that the line in question is relatively weak in the arc, being usually not more than half as strong as in the high-temperature furnace. The significance of lines of this character will be considered in the discussion.

TABLE I
TEMPERATURE CLASSIFICATION OF VANADIUM LINES

		1	URNACI	E				1	FURNACI	E	
(EXNER AND HASCHEK)	Arc	High Temp	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS
3164.96	5				VE	3241.30	4	4	2		III
3168.25	6				VE	3242.14	1	2	tr		III .
3170.47	2	2	2	I	II	3243.42	3	4	2		III
3183.53	30r	50R	30R	IOL	II	3246.96	1	I			IV
3184.11	60R	100R	60R	201	II	3248.81	3	3	2		III
3185.51	40R	8oR	40R	15r	H	3249.69	10	8	6	5	II
3187.81	10	tr			VE	3250.12	2	2	I		III
188.21	3	1			IV	3250.90	4				VE
188.60	10	tr			VE	3252.01	4				VE
3189.16	I	I			IV	3253.00	1	I			IV
190.80	15	I			VE	3254.01	10	5	- 3	1	II
3194.07	6	5	4	2	II	3255.79	9	5	4	1	III
3194 . 53	2	I			IV	3256.60	1	I			IV
3104.70	1	tr			IV	3257.00	1	tr			IV
3195.05	I	tr			IV	3259.67	5	4	3	tr	III
3198.13	20	30R	15r	6	II	3261.21	6	3	I		III
3199.97	6	3	2		III	3262.20	5	4	I		III
3201.35	2	4	2	tr	III A	3263.39	15	15r	8	5	II
202.51	25	35R	18r	6	II	3266.02	5	2	tr	3	IV
				2	I	3266.20	4		2		III
3204.30	3	3 2	3		III	3267.83	20	3	-	****	VE
3205.36	5				II	0					VE
3205.69	15	6	4	3		3271.25	20	I			
3207.01	1	1	****	****	IV	3271.53	3	2	2	****	III
3207.51	20	30R	15r	5	II V E	3271.80	12	121	7	4	II
3208.46	6	* * * * *		****		3272.30	I	1	tr	****	III
3210.22	4	3	1		III	3273.16	7	4	3	1	II
3210.54	2	2	tr	*****	IV	3276.23	20	I			VE
3211.68	ĭ	1	tr		III	3278.02	5	IOI	6	3	II A
3212.57	15	6	4	3	II	3279.97	6				VE
3214.04	2	2	I		III	3281.25	3				VE
214.86	6				VE	3282.67	5				VE
215.47	4	4	3	2	II	3283.46	15	15r	8	6	II
217.20*	10	7?	5?	2?	II 5	3284.47	6	5	4	1	III
218.45	1	3	2	tr	III A	3288.55	2	2	I		III
218.98	5	3	2	tr	III	3289.51	6				VE
225.76	I	4	1		III A	3291.81	4	4	4	3	I
226.23	4	4	3	2	II	3295.56	I	I			IV
227.21	3	3	1		III	3298.28	15	15r	10	8	II
227.53	4	2	tr		IV	3298.85	6				VE
228.31	3	3	I.		III	3299.20	3	3	2		III
229.72	4	2	tr		IV	3299.32	I	I			IV
230.76	6	6	5	3	II	3300.08	2	2	I		III
232.07	2		3	3	VE	3308.36	3	4	4	1	III
3233 - 33	6	4	3	tr	III	3309.03	I	I			IV
	2	4	3	C.	VE	3309.30	8	4	3	I	II
233.68					VE	3313.14	2	2	1		III
3233.93	3 2		2	tr	III	3314.11		2	tr		IV
234.86	8	3	2		VE	00.	3				IV
238.00	-				IV	3316.01	I	I	1		III
239.06	ī	I			IV	3319.14	4	3	1		TIL

TABLE I-Continued

			FURNACI	Б				1	URNACI	E	
(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS
3319.91	1	1			IV	3408.13	3	3	2	tr	III
3320.30	3	3	2		III	3408.60	I	4	3	I	II A
3321.80	5	3	1		III	3409.21	4	3	I		III
3324 . 37	1	I			IV	3411.10	1	1			IV
3324.55	3	2	I		III	3413.90	1	1			IV
3326.52	1	I			IV	3414.32	5	5	4	2	II
3327.30	tr	tr			IV	3416.65	2	5	4	2	II A
3328.12	2	1			IV	3417.17	5	5	4	2	II
3328.54	2	I			IV	3418.63	5	5	4	2	II
3330.01	12	8	6	3	II	3424.00	3	3	1		III
3332.60	tr	tr			IV	3425.20	6	4	3	1	II
3333.70	2	2	I		III	3425.37	T	tr	3		IV
3334.28	tr	tr			IV	3426.06	ī	5	4	2	II A
3336.35	1	I			IV	3426.87	ī	2	ī		III A
3336.49	2	ī			IV	3427.60	ī	I			IV
3336.93	2	I			IV	3432.19	1	ī		****	IV
3340.31	I	ī			ÎV	3437.91	ī	I			IV
3342.42	2	I			ÎV	3430.13	tr	tr			IV
3345.15	tr	tr			ÎV	3442.14	2	I			IV
3356.50	10	7		2	II	3442.45	2	2	I		III
3362.2	I	tr	5		IV	3443.69	I	I			IV
	4			tr	III	3445.00	I	1		*****	IV
3363.70	10	5	3		II	0.10	2	2	tr		IV
3367.02	4	7 4	5	3	II	3445 · 93 · · · ·	tr	tr			IV
3367.18	1	1	3		IV	3453.12	tr	tr			ÍV
3360.1	I	ī			IV	3453.65	I	I			IV
3371.27	3	ī			IV	3455.02	3	2	tr		IV
3372.94	tr	I			IVA	3455.36	J.	I			IV
3374.17	3	4	2		III	3455.70	I	1			ÎV
3376.20	8	6	5	2	II	3455.95	tr	tr			IV
3377.51	10	8	6	3	II	3457.04	4	4	2		ш
3377.75	15	10	8	6	II	3457.23	3		-		VE
3379.49	2	1			IV	3460.23	1	3	I		III A
3384.71	5	5	4	I	III	3463.53	2	6	4	3	HA
3387.50	2	1			IV	3465.48	tr	tr	*	3	IV
3389.64	tr	tr			IV	3482.31	I	I			IV
3390.51	2	2	I		III	3486.05	6	2	I		III
3390.91	6	5	4	1	III	3487.14	2	2	1		III
3394.90	2	I			IV	3489.58	4	4	2		III
3395.64	3	3	1		III	3490.40	1	I			IV
3396.65	3	2	tr		IV	3491.54	tr	tr			IV
3397.70	6	5	4	1	III	3493.32	4				VE
3397 - 97	4	5	4	I	III	3496.40	I	I			IV
398.39	I	1			IV	3497.09	3	3	I		III
400.55	12	8	6	4	II	3498.34	3	3	1		III
401.49	2	2	ī		III	3500.47	1	1			IV
402.73	9	7	5	3	II	3500.96	3	2	2		III
403.51	5	4	1		III	3501.64	4	4	3	tr	III
405.00	2	2	4		IV	3503.31	4	1	tr	6.1	III
405.30	6	5	4	2	II	3504.60	12		6.4		VE
	e.	6	-9	-	III	3304.00	4.6				IV

TABLE I-Continued

		1	FURNACI	E				1	FURNACI	E	
(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS
3505.84	6	6	4	I	III	3580.97	3	3	I		Ш
3506.99	3	3	I		III	3582.97	3	3	1		III
3516.35	1	1			IV	3583.85*	8	12	8	3	II
3517.44	12	tr			VE	3586.34	2				V
3518.27	tr	tr			IV	3580.80	15	tr			VE
3519.31	3	3	1		III	3591.23	I	I	tr		III
3520.16	5				VE	3592.16	15	tr			VE
3522.00	2				VE	3592.32	1	4	3	I	II A
3522.73	3	3	I		III	3592.70	3	2	I		III
3524.86	6	3			VE	3593.49	12	-			VE
3525.90	I	I	tr		III	3595.75	I	I	tr		III
3528.35	I	I	tr		III	3598.26	I	I	tr		III
3520.80	10	8	6	4	II	3600.16	5	5	3	I	II
3530.91	10	0	3		VE	3604.24	5	tr			IV
	10	6	6	5	I	3605.77	3	I	tr		III
3533.87*	6	8	4	2	ÎI	3606.85*	8	6?	4?	3?	II ?
3534.85	I	4	2	I	IIA	3600.42	3	3	I	3.	III
3538.36	3		-		VE	3616.86	3	2	I		III
3540.66	1	5	3	1	HA	3617.44	1	1	tr		III
3542.77	1		2	1	II A	3621.35	2		-		VE
3543.62	8	3 6	1		II	3622.79	2	1	tr		III
	12	0	5	3	VE		ī	I	I		III
3545 . 32	8	6			II	3628.53	2	2	1		III
3545 . 49			5	3 tr	III	3634.06		_	2		III
3551.67	3	3	2 tr	LI.	III	3635.99	3	3 2	I		III
3553.43	6	6			II	3637.10	3	I	I		III
3555.31	3	5	5	3	III	3637.89	3	I			IV
3555.87	2	_	3	I	II	3638.50	2	2	1		III
3556.40	4	3 4	3	ī	II	3639.16	6			2	II
3556.96	15	tr			VE	3640.20	2	5 2	3		III
3557 - 34	2	2	1		III	3641.24	4	1		1	II
3560.74	3	I	tr		III	3643.25	4	4	3 tr		III
3561.55	1	1	tr		III	3643.99			3	1	II
562.29	2	2	I		III	3644.49	5	5 2	3		III .
3563.54	2	2	1		III	3644.87	8	8	6		II
3563.67	ï	I			IV	3645.68	3	3	I	3 tr	II
3565.20	I	3	2	tr	III A	3647.4	-		I	tr	II
3566.32	4	4	2	tr	III	3648.50	3 tr	3 tr			IV
3560.07	3 -	1	1	LI	III	3640.08				1	II
569.19	1	3	2	I	II A	3652.54	5 2	5 2	3	tr	III
3571.16	4	3	2	I	II	3654.82	2	1	tr		III
		4			III				-		II
3571.36	2	2	1	1	II	3656.81	6	6	2	I	LA
	5 I	5 2	3		III A	3657.62	2	-	5	4	III
3572.45	2	2 2	I	* * * * *	III	3659.60	_	I	tr		III
3572.77			1		II	3661.52	2	I	I		III
3573.65	5	5	3	I	II	3662.16	I	I	tr		II
574.90	3	4	2	I		3663.71	15	8	5	4	
3575 - 27	3	3	I		III	3665.28	8	6	3	2	II
3578.01	4	4	2	1	II	3667.89	15	8	5	4	II
3579.24	2	2	1		III	3669.58	2		****		VE
579.46	1	tr			IV	3071.37	10	8	6	6	1

TABLE I-Continued

		I	URNACI	3				F	URNACI	2	
(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLAS
3672.55	8	6	3	2	II	3737.60	1	5	4	2	II A
673.57	12	10	5	4	II	3738.11	5	4	3	1	II
675.64	3	3	I		III	3738.89	8	8	5	2	II
675.89	20	201	20	20	I	3740.39	6	5	3	1	II
	10	8	4	2	II	3741.63	6	5	3	I	II
676.84	2	6	6	6	IA	3744.04	1	I	I		III
677.23	15	6	5	3	II	3746.00	8				VF
680.25	-	30R	20	20	I	3747.26	3	4	4	2	II
683.30	30	40	2	1	II	3748.11	8n	5	3	ï	II
684.50	3 8	3 8	6	- 5	I	3750.27	X	I	tr		III
3686.42	1		tr	0	III	3751.07	6				VE
3686.89	I	6?	5?	3?	II 3	3751.95	5	8	6	4	II A
3687.63*	12?	-		20	II	3753 - 44	4	3	I	tr	II
3688.23	50	50R	30r		II	3755.85	4	3	I	tr	II
3690.49	40	40R	20	20	II	3756.18	3	5	4	2	II
3692.40	50	50R	3or	20	II	3757.04	tr	tr	-		IV
3694.79	3	4	2	1	II	3758.70	2	2	I	tr	II
3695.50	30	10	6	4	II	3758.95	ī	1	tr		III
3696.03	40	50R	25r	20	II		4		I	tr	II
3699.63	3	4	3	1	VE	3759.45		3 4	3	2	II
3700.49	3					3760.95	3		2	I	II
3700.78	tr	1	tr		III A	3761.56	3	8	5	2	II
3703.73		100R	4or	25	II	3763.29	2	I	tr	-	III
3704.16	2	3	2	1	II	3764.95	I	1	tr		III
3704.85		60R	25	20	II	3765.74 3766.55	2	2	I	tr	II
3705.20		30R	15	20	III	3769.21	4	4	3	1	II
3705.97		1	tr		II	3760.08	I	I	tr		III
3706.19		4	3	2 2	II	3770.15	2	I	I		III
3708.87		5	4		III	3770.67	3	6	5	2	II.
3711.56		1	tr		III	3771.11	8				VI
3713.46	I	1	tr		III	3771.32	I	4	3	1	II
3713.70	1	I	tr 8	8	IA	3771.81	1	5	5	4	IA
3714.11		8			Ш	3772.29	2	I	tr		III
3715.00		I	I		VE	3772.87	2	x	tr		III
3715.61			4-		III	3774.25	3	I	tr		III
3717.69		I	tr		VE	3775.33	3	5	3	I	II
3718.26					III	3775.82	4	3	2	tr	III
3719.05		2	I		III	3776.30	4	3	2	I	II
3721.07		I	tr		IA	3777.02	2	3	2	tr	III
3721.55		6	5	4	II	3777.30	2	6	6	6	IA
3722.14		4	2		III	3777.61	1	1	tr		III
3722.35		1	I	tr	III	3778.46	2				VI
3723.47		3	2		III	3778.82	25	25R	20	20	I
3723.71		1	tr		VE	3779.78	4	6	4	2	II
3727.48	10				VE	3781.55	3	5	3	2	II
3728.48					II	3781.89	1	I	I		III
3729.18	4	4	3	1 2	IIA	3782.71	3	3	2	I	II
3730.33*		6	4	_	III	3783.08	I	I	I		III
3731.17		I	tr		IIA	3784.83	2	5	7	6	IA
3732.21		5	4	2	VE	3784.95	I	3	tr		III
3732.90					H		5	4	3	I	II
3734 - 57	5	5	3	I	11	3787.30	3	4	3		

A		1	FURNACI	E				1	URNACI	E	
(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS
3787.68	3	3	- 3	1	II	3835.70	4	6	6	3	II
3788.93	1	1	I		III	3836.19	5	5	6.	4	I
3790.47	20	20R	20	20	I	3836.63	X	tr			IV
3790.62	8	8	5	3	II	3839.11	10	7	7	6	I
3791.46	2	8	6	5	IA	3839.52	8	5	4	2	II
3793.79	8	12	12	15	IA	3840.25	4	5	4	3	I
3794.51	2	Y	tr		III	3840.85	6or	60R	40R	30	II
3795.12	50	50R	35r	35	II	3842.02*	5	121	8	12	IA
3796.63	3	3	1 I	tr	II	3842.84	3	5	4	2	II
3798.39	4	4	4	4	I	3843.10	2	3	2	I	II
3798.80	2	4	1	4	III A	3843.61	4	6	5	2	II
0.7	ī				IV	3844.58	20	201	20	20	I
3799.41		tr	20	20	I	3845.01	4	4	4	2	II
3800.10	25	25R	1		III	3846.11	3	2	ī	I	II
3803.01	2	3	2	tr 20	I	3847.49	20	20R	20	20	I
3803.60	25	25R	20		II	3849.43	6		5	4	Ī
3803.93	6	6	5	2	IA			5 4	4		Ī
3804.03	6	10	8	10		3851.34	5 2			3 2	ΠA
3804.72	3	3	2		III	3852.25	1	4	3		III
3805.05	2	3	2	tr	III	3854.23		-			I
3806.92	8	6	5	4	II	3855.50	30	30R	3or	30	I
3807.63	20	20R	20	20	I	3856.08	6or	60R	50R	50	II A
3808.26	3	I	tr		III	3858.82	5	8	6	4	II
3808.67	40	40R	25r	25	II	3859.50.,	6	8	7	4	II
3809.23	I	I	tr		III	3861.77	6n	6	5	3	
3809.74	15	15	15	15	I	3862.40	12	121	12	15	I
3811.47	2	I	1		III	3864.02	6	6	5	3	II
3813.63	60	60R	25r	25	II	3864.26	3	3	3	4	I
3815.66	10	12	12	I 2	I	3864.70	I	I			IV
3818.00	8	12	12	15	IA	3865.05	35	30R	25T	25	I
3818.12	4	4	3	1	II	3867.48	2	4	3	I	II A
3818.41	60	60R	3or	30	II	3867.75	15	15T	15	15	I
3818.91	1	I	tr		III	3870.73	2	3	2	I	II
3820.11	15	151	15	15	I	3871.20	8	6	6	4	I
3821.65	15	151	15	15	I	3872.91	4n	6	4	2	II
3822.21	30	30R	2OT	20	I	3873.78	4	5	4	2	II
3822.85	I	I	tr		III	3874.50	1	I	1		III
3823.05	15	151	15	15	I	3875.22	35	30R	25F	25	I
3823.40	15	151	15	15	I	3875.55	3	5	6	4	I
3823.55	1	2	1		III A	3876.02	20	20R	2OT	20	I
3823.92	4	3	1	tr	II	3876.26	20	20R	2OT	20	I
3824.14	5	6	6	3	II	3876.84	ī	I	tr		III
3825.18	3	I	tr	3	III	3879.38*	2?	4?	3?	3	III?
	4		2	1	II	3879.80*	3?	23.	2?	2	III?
3825.47	6	3 8			II	3884.06	3	3	3	1	II
3826.90	6or	60R	5	3	II	3884.60	4	4	3	I	II
3828.70			3or	30	II	3885.00	2		3		VE
3828.93	4	3	2	1	III	3885.70	1	1			IV
3830.44	2	2	1		II		2	2	2	tr	III
3831.99	3	3	2	1		3885.93	6	6	1		I
3832.99	4	3	2		III	3886.74			5	4	iII
3833.36	3	3	2		III	3888.20	2	2	1	tr	III
3834.95	tr	tr			IV	3888.47	3	3	2	tr	LAA

TABLE I-Continued

		1	FURNAC	E				1	FURNACI	C	
(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS
3889.37	I	1	tr		III	3936.47	5	5	6	5	I
3890.39	25	25R	20	25	I	3937.69	3	3	2	I	II
3891.30*	14	3	2	1	II	3938.35	3	2	I	tr	II
3091.30	2	4	3	I	II A	3939.04	2П	2	I	tr	H
892.63	2	2	1	tr	II	3939 . 47	4	4	3	I	II
3893.03	25	25R	20	25	I	3940.75	2	2	I	tr	II
893.89	I	I	tr		III	3041.43	3	3	2	I	II
894.20	4	4	3	2	II	3042.18	6	6	5	3	II
896.31*	6	10	8	5	II	3943.80	12	10	10	8	I
896.80	2	2	1		III	3944.66	1	I	tr		III
3896.96	2	2	T		III	3945 . 32	2	2	T		III
897.23	6	4	2	2	II	3046.03	I	I	tr		III
898.08*	6	4?	3?	I	II	3050.39	4	4	2	tr	III
898.41	5	4	3	1	II	3952.13	6	-			VE
899.26	4				VE	3963.89	4	2	I	tr	H
1000.20	6	4	3	2	II	3964.65	2	I	tr		III
3901.29	6	4	3	2	II	3968.25	3				VE
3901.83	2	2	1	tr	II	3972.12	2	2	I		III
902.41	50r	50R	40R	40	Î	3973 - 53	2	2	ï		III
902.68	3	4	4	3	Î	3975.50	I	I	tr		III
903.38	4			3	VΕ	3979.30	4	3	2	tr	III
904.36	I	2	2	1	IIA	3979.56	4	3	2	tr	III
	ſ 2	3	I		III	3980.69		2	1		III
3904.59*	2	2	2	tr	III	3984.50	3 6	6		1	II
906.90	3	3 6	6	6	I	3984.76	6	6	3	2	II
3907.32	2n	I	I	tr	İI	3988.98	5	5		I	II
908.47	4n	_	2	tr	III	3990.77	20	15	3	10	I
900.55	tr	3 tr	4		IV	3991.24	1	13	tr	10	III
909.81		-	2	tr	III	3002.08	12	8	6	6	I
910.03*	4 20	4 20R	20r	25	I	3995.05	12	1	1		III
910.03		6	6	-	I	3997.28	3		1		VE
	5	8	8	5 8	I	3997.28	15	12	12	8	I
912.37		8	6		HA	4000.25	15	1	tr		III
	4 2	1	tr	4	III	4001.81	1	1			IV
913.71	1	2	2	I	HA	4003.10	2				VE
914.01					I		tr	tr			IV
914.46	5	5	5	3 tr	İI	4003.33	2	I			IV
	2	2	1	tr	II	4005.88	6	1			V
915.51				f.t	VE		2	1	1		III
916.53	3			I	II	4009.92			I		III
917.29	2	2	2		III	4011.45	3	3			IV
920.14	2	2	I		I	4015.21	I	tr			IV
920.64	5	5	5	4	I	4022.05	3	I 2			IV
922.09	6	6	6	6	I	4023.32	4				VE
922.61	12	12	12	12	II	4023.54	5	6		tr	III
924.83	10	8	5	4	I	4030.05	2	6	5	tr	IV
925.40	10	15r	15	20		4031.39	2	2			IV
926.82	I	I	1		III	4032.02	5	2			
930.13	10	6	6	6	I	4032.64	1	tr			IV
931.50	5	4	4	2	II	4033.00	2	6	6	tr	III
934.20	20	151	15	15	I	4034.86	1	4	2		III
935.30	6	6	4	2	II	4035.76	4				VE

TABLE I-Continued

		E	URNACI	E				1	FURNACI		
(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLA
036.90	2				VE	4124.24	5	6	3		III
040.46	2	I			IV	4128.30	60	60R	35	40	I
041.75	3				V	4129.01	5	4	2		III
042.80	5	3	1		III	4131.35	I	6	4		III
048.76	4	8	8	3	II A	4132.15	60	60R	35F	40	I
051.12	10	6	2		III	4133.95	3	6	3		III
051.58	12	6	2		III	4134.65	60	60R	35r	40	I
052.62	1	5	4	tr	III A	4136.25	4	3	I		III
053 . 43	3	2	tr		IV	4136.56	3	8	8	X	III
057.26	10	4	2		III	4130.42	4	4	tr		IV
064.13	10	5	I		IV	4141.52	2	I			IV
067.89	3	I			IV	4142.00	2	5	3	tr	III
068.15	4	8	8	3	II A	4142.81	*2	6	4	tr	III
070.93	4	6	5	2	II	4143.06	2	2	1		III
071.68	8	5	2		III	4140.01	2	5	5	tr	III
072.31		_	ī		III	4150.86	2	1	3		IV
	3	3	2		III	4152.84	2	1			IV
083.09	4	12	3	12	I	4153.50	2	7	6	tr	III
-	25	1			III		I		2	C.	III
092.11	3	3	1		III	4156.02	I	5	1		III
092.55	8	8 D	6		I	4158.15	8	3		10	I
092.89	50	50R	301	40	- 1	4159.85			15		iII
093.65	5	6	4		III	4160.56	I	5	_		IV
094.44	3	2			IV	4109.45	2	2	tr		IV
095.69	25	15	15	7	II	4171.49	3	4	tr		III
097.09	3	2			IV	4174.20	5	4	2		
099.99	60	60R	35r	40	I	4175.32	1	3	tr		IV
102.37	20	15	15	6	II	4177.26	2	1			IV
103.56	1	I			IV	4179.61	15	15	20	15	I
104.53	12	7	2		III	4181.05	1	1			IV
104.94	15	12	5		III	4182.26	2	2			IV
105.37	60	60R	3or	35	I	4182.81	10	8	12	10	I
107.63	4	4	2		III	4190.03	12	12	15	12	I
108.37	5	4	I		III	4191.71	10	10	9	4	II
109.20	2	2			IV	4195.77	I	I			IV
109.98	50	50R	3or	40	I	4197.86	2	2			IV
111.98	100R	100R	50R	50	I	4198.80	4	8	8	2	Ш
112.53	5	4	I		III	4200.35	4	7	7	I	III
113.70	12	12	10	tr	III	4201.05	1	6	5	tr	III
114.70	3	2			IV	4210.03	20	15	20	15	I
115.36	60	60R	3or	40	I	4216.54	I	4	2	I	H
115.6	2	3	I		III	4218.88	4	10	10	2	III
16.64H	50	50R	50r	30	I	4219.67	2	6	4	tr	III
16.85H	4	15	15	10	IA	4222.49	2	1			IV
118.37*	8	6	2	*****	III	4223.14	I	I			IV
118.81	8	8	8	tr	III	4224.28	5	3	1		III
119.25	1	I			IV	4227.90	4	4	1		III
110.62	8	8	10	1	III	4229.86	4	3	I		III
120.71	8	8	8	tr	III	4232.66	15	0	4		III
21.15	I	tr			IV	4233.15	12	7	3		III
123.34	6	4	I		III	4234.19	12	10	15	10	I
123.71	60	60R	35T	40	I	4234.70	8	8	15	10	I

TABLE I-Continued

,		1	FURNACI	Е				I	FURNACI	E	
(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLAS
1235.91	10	6	2		III	4355.14	5	5	1		IV
236.77	1	4	2		III A	4356.12	10	12	15	15	I
239.13	2	I			IV	4356.96	I	1			IV
240.25	3	3	tr		IV	4357.64	2	2			IV
240.52	4	6	2		III	4360.76	3	3			IV
241.48	3	3	1		III	4361.58	2	2			IV
246.85	I	I			IV	4363.52	ī	T			IV
252.96	1	I			IV	4363.70	5	12	12	4	II .
257.51	6	4	2		III	4364.39	4	2	1.0		IV
250.46	8	8	10	8	I	4365.00		2			IV
261.34	2	I	10		IV	4368.23	3	10	10	15	I
262.20	6	1	2		III						IV
265.28*	8n	5			III	4368.79	4	3			IV
266.06	1	tr	3		IV	4369.24	2	2			IV
	I	tr			IV	4373 . 42	4	4	tr		IV
267.47	-	-	8		1	4374.01	4	5	I		-
268.81	20	12		1	III	4375 - 25	I	I			IV
1269.90	5	4	I		III	4375.50	4	2			IV
1270.48	4	2			IV	4376.97	1	tr			IV
271.69	12	10	6	tr	III	4378.07	2	2			IV
277.13	12	8	6	tr	III	4379.41	150r	150R	75 r	60	II
279.10	2	4	1		III A	4380.74	4	5	I		IV
284.25	15	10	8	tr	III	4381.20	1	4	I		IV
286.57	5	5	2		III	4384.36	1	9	6	1	III
287.95	4	2			IV	4384.91		125R	6or	50	II
288.96	1	2			IV A	4385.50	1	I			IV
291.47	4	4	I		III	4387.40	3	8	3		III
292.00	15	10	4		III			100R	5or	40	II
296.29	15	6	3		III	4390.81	1	1			IV
297.82	I 2	5	3		III	4391.85	2	2			IV
298.19	12	8	3		III	4392.27	5	12	15	5	II A
302.28	tr	I			IV A	4393.26	4	4	1		III
303.68	3	I			IV	4394.03	4	8	5		III
305.61	3	3			IV	4394.99	3	4	2		III
306.40	15	12	15	15	I	4395 - 45	80	80R	40	35	II
307.36	12	10	12	12	I	4397 . 54	1	tr			IV
309.67	2	1			IV	4399 . 59	2	3	I		III
309.99	20	20r	20	15	I	4400.78	60	6or	30	30	II
314.06	3	2			IV	4403.85	4	5	2		III
330.26	30	3or	20	25	I	4405.23	4	10	8	I	III
332.56	I	I			IV	4406.30*	6	20	5		III
333.03	30	3or	20	20	I	4406.88	80	8oR	50r	50	I
334.28	4	8	2		III A	4407.80	70	70R	40F	40	I
336.30	2	1			IV	4408.35	70	70R	401	40	I
341.21	40	40F	20	25	I	4408.70	90	90R	6or	50	I
342.37	4	5	2		III	4412.33	12	12	15	10	I
343.00	6	4	2		III	4413.86	2	6	2.		III
350.88	1	I			IV	4414.73	2	2			IV
351.00	2	12	6	tr	III A	4416.63	20	20F	20	20	I
352.64	2	1			IV	4416.80	2	6	1		IV.
353 08	50	50R	3or	40	I	4420.12	12	12	15	12	1
353 51	2	I	-		IV	4421.70	20	201	20	20	I

TABLE I-Continued

		1	FURNAC	E				1	FURNACI	E	
(EXNER AND HASCHEK)	ARC	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLAS
1422.41	3	3			IV	4492.49*	1	2			IV
422.65	2	I			IV	4495.17	I	I			IV
423.39*	8	20	8	tr	III A	4496.25	8	8	2		III
424.10	2	I			IV	4497.03H.	5	6	2		III
424.75	4	10	2		III A	4497 . 55	2	I			IV
425.90	4	8	2		III A	4498.30	tr	I			IV.
426.20	20	2OT	20	20	I	4501.01	I	1			IV
427.48	5	4	2		III	4501.44	I	I			IV
428.70	15	12	15	15	I	4502.18	8	IO	6	tr	III
429.98	15	15	20	20	I	4506.30H	2	2			IV
430.71	3	4			IV	4506.41H	1	tr	* * * * *		IV
433.05*	1	6	1		IV A	4506.77	2	2			IV
434 · 73 · · · ·	5	7	2		III	4500.40	3	3			IV
436.30	15	15	15	20	I	4511.65	2	2			IV
438.01	20	2OF	20	25	I	4513.81	2	2			IV
439.15	1	1			IV	4514.39	6	5	2		III
441.80	25	25F	20	30	I	4515.74	2	2			IV
443.40	5	3			IV	4517.73*	3	I			IV
444.40	20	2OT	20	25	I	4520.35	3	10	2		III
445.98	I	I		-3	IV	4520.71	2				VE
449.73	5	7	3		III	4523.03	tr	tr			IV
451.10	4	3	3		IV	4524.41	15	10	5		III
452.23	20	12	12	I	III	4525.34	5	5	I		IV
452.80	2	3			IV	4528.18	5	2			IV
	I	1			IV	4529.47	4	2			IV
453.31 456.69		I			IV	4520.80	8	8	3		III
	3		20	30	I	4530.00	4	I	3		IV
457.67	15	8		-	III	4534.11	4	I			IV
457.96			3		IV		1	I			IV
458.58	1	I			I	4535 - 74	6	6	1		IV
459.99	30	30R	25	35	Ī	4537.84	6		ī		IV
460.58	50	50R	3or	40	IV	4540.19		5	8	1	III
461.20	4	3			III	4545 . 59	25	15			IV
462.59	20	I 2	10	1		4549.80	10	5			IV
464.44	2	2			IV	4552.04	3	4	tr		IV
464.94	2	3			IV	4553 - 25	7	4		4	III
465.69	2	3			IV	4560.95	20	12	6	tr	
467.05	2	4			IV A	4570.62	6	4	1		III
467.82	I	I			IV	4572.01	15	8	5		III
468.20	8	9	3		III	4577.38	40	3or	25	35	I
468.96	4	4	1		III	4578.90	15	10	4		III
469.91	15	10	8	1	III	4579.29	7	5	1		IV
471.95	X	I			IV	4580.62	40	30r	25	35	I
473 - 43	1	I			IV	4581.45	2	2			IV
474.26	10	10	3		III	4583.98	5	3	I		III
474.93	12	12	5	tr	III	4586.11	2	2	tr		IV
476.08	2	3			IV	4586.59	50	30R	30	40	I
480.21	6	6	2		III	4588.98	1	tr			IV
489.09	20	15	8	tr	III	4591.43	12	4	tr		IV
491.00	5	6	2		III	4594.36	60	40R	40	50	I
491.35	2	3	1		III	4603.17	2	1			IV
491.64	I	I			IV	4606.33	15	15	20	15	I

TABLE I-Continued

		3	FURNACE	2				1	FURNAC	E	
(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(Exner and Haschek)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS
4609.79	4	3	1		III	4784.68	5	15	15	5	II A
4611.08	2	4	2		III A	4786.72	20	8	4		III
4611.91	2	2			IV	4793.12	3	3			IV
4619.88	8	2			IV	4795.30	3	I			IV
619.97H.	25	20	20	15	I	4797.12	20	8	4		III
1624.55	8	12	8	I	III	4798.14	2	3			IV
1626.64	7	12	7	1	III	4799.20	1	I			IV
1635.34	15	10	20	15	I	4799.97	5	12	15	7	II A
636.32	2	2			IV	4807.72	25	8	5		III
640.25	8	10	6	tr	III	4819.20	2	1			IV
1640.92	7	10	5	tr	III	4827.63	30	25	30	30	I
1644.69	3	4	2		III	4828.99	1	1			IV
646.16	I	4	3		III A	4830.86	1	1			IV
4646.60	15	12	12	I	III	4831.82	35	35	30	30	I
4666.31*	4	3?	3?		III ?	4832.61	30	30	25	25	I
4670.70	25	15	20	3	III	4833.20	3	6	1		IV A
687.08*	6	3	3		3	4833.99	1	tr			IV
699.49*	3	?	3		?	4843.17	2	2			IV
705.26*	4	3	3		3	4848.78	3	4	1		III
706 35*	8	5?	?		?	4849.00	1	tr			IV
706.77*	12	5?	3		?	4851.60	40	401	30	30	I
707.63*	4	8?	2?		III A	4859.31	2	I			IV
709.91*	4	4?	3		?	4862.79	5	5	1		IV
1710.75	12	4?	3		?	4864.91	40	301	25	20	I
714.30*	10	3	3		?	4875.65	40	3or	25	25	I
716.10*	5	5?	3		?	4877.40	tr	1			IV A
717.89	10	5	I		IV	4880.74	8	12	5		III
721.75	6	3	I		III	4881.73	50	40R	30	30	I
723.09	8	4	I		III	4882.38	2	4	1		III A
729.71	6	5	2		III	4885.81	2	2			IV
730.59	3	3	I		III	4887.00	2	6	2		III A
737.92	1	I			IV	4800.20	1	I			IV
738.52	r	ï			IV	4801.41	1	ī			IV
739.29	I	2			IV A	4801.80	4	4	I		III
742.81	5	4	tr		IV	4894.41	4	4	I		III
746.81	5	5			IV	4896.60	I	4			IV A
747 - 33	I	I			IV	4000.21	tr	1			IV A
748.72	7	7			III	4000.81	6	4	tr		IV
751.22	8	9	2		III	4904.58*	12	12	4		III
751.80	6	6	2		III	4005.10	3	3	tr		IV
754.19	7	6			IV	4906.00	tr	I			IV A
757.55H.	4	4			III	4008.86	ī	2			IV A
757.68H	8	8	2		III	4016.42	2	1		*****	IV
758.94	2	4			III A	4925.84	10	10	8	1	III
765.86	I	I			IV	4032.21	4	8	4		III A
766.81	10	8	3		III	4933.80	1	I			IV
773.30	I	tr			IV	4942.98	1	2			IV A
776.54H.	10	8	3		III	4966.27	2	1			IV
776.70H.	5	4	-		III	5002.50	4	4	1		IV
778.61	tr	tr			IV	5014.79	5	3			III

			FURNAC	E					FURNA	Œ	
(EXNER AND HASCHEK)	Arc	High Temp	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLA
5051.81*		1			IV	5517.40	I	8	4	2	II A
5064.30*	. 3				V	5534.02	I	I			IV
5105.32*	. 2	3?	13		III ?	5542.91	1	6	4	2	II
5128.70*	7	63	4?		III	5446.13	2	7	4	tr	III
138.60*	5	3?	2?		III	5447.26	8	12	9	4	II
148.87*	4	2?	13		III ?	5557.67	I	6	5	2	II
159.52*	3	5	3		III ?	5558.98	3	5	3		III
166.93	I	I			IV	5561.90	2	4	2		III
170.11	I	I	tr		III	5574.20	I	4	2	I	II A
176.95	4	2	I		III	5584.77	10	10	10	8	I
5178.73	1	1			IV	5586.21	2	2	1		III
179.30	I	tr			IV	5588.6g	I	3	I		III
180.96	1	I			IV	5592.63	12	10	8	8	I
183.05	1	1	3		IV	5593 - 24	I	10	5	4	II A
192.22	1	I			IV	5508.10	1	2	1	*	Ш
193.20	7	5	4		III	5601.60	2	3	2		III
193.84	I	1	tr		III	5604.41	1	I			IV
195.00	10	7	2		III	5605.18	8	10	10	5	II
195.65	5	3			III	5624.87	20	12	12	-	I
206.80	I	I			III	5625.18	10	10	IO	15	iI
213.82	1	1			III	5626.27	8	12	10	5	II
216.76	3	2			IV	5627.85	30	12	15	20	I
225.90	3	2			III	5632.71	1	8	6	4	ÎLA
233.87	2	2			IV	5646.29	10	12	10	5	II
234.26	8	4	2		III	5651.70	I	I		3	IV
240.35	I	1			III	5657.10	1	1			IV
241.03	9	5	2		III	5657.70	12	10	10	6	II
261.12	1	1			IV	5665.40	X	-			IV
271 .20	I	I			IV	5668.55	12	12	IO	6	II
272.87	1	I			IV	5671.05	30	20	20	20	I
282.70	I	1			IV	5683.37	2	2			III
330.58	I	3	I .		III A	5687.93	I	I			IV
353.56	5	3	I .		III	5601.3	1	1			IV
383.61	2	1			IV	5698.71	60	30	30	40	I
385.33	3	I	tr .		III	5703.81	40	20	20	30	Ī
388.50	I	I	tr .		III	5704.6	2	I .	1		IV
398.12	I	tr			IV	5706.25	2	1 .			IV
102.17	8	5	2 .		III	5707.20	30	20	20	25	I
15.47	10	6	2 .		III	5707.95	I	I.			IV
18.29	2	1			IV	5700.11	2	2	I .		III
124.28	4	3	I .		III	5716.37	3	1 .			IV
34.40	3	2	tr .		IV	5725.80	6	5	2 .		III
37.89	I	I .			IV	5727.28	60	30	30	40	I
58.31	1	I .			IV	5727.89	20	20	20		II
87.42	2	3	1 .		III	5730.10	tr	I.			IV A
88.10	10	5	3 .		III	5731.50	30		30		II
90.19	2	2			III	5733.29	1				IV
05.09	2	3	I.		III	5733.63	1	tr .			IV
07.95	8	6	2 .		III	5734.21	5	4	2 .		III
11.40	X	1 .			IV	5737.25	25	20	20		II
15.27	I	15	10	6	HA	5743.66	18	20	20		II

TABLE I-Continued

		1	FURNACI	Е.				1	FURNACI	3	
(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLAS
5747.92	2	2	1		III	6135.49	15	15	15	10	II
5749.05	4	4	3		III	6150.32	15	20	25	30	I
750.89	2	2	1		III	6170.55	8	20	20	15 .	IA
752.92	3	4	2		III	6182.06	1	4	2		III
761.67	2	7	4	tr	III A	6189.55	3	15	15	4	II A
772.65	6	6	5		III	6190.70	I	4	2		III
776.90	4	15	10	3	IIA	6199.40	30	30	30	35	I
782.81	2	6	3		III A	6214.04	15	20	20	15	I
783.12	ī	1			IV	6214.93	I	I		-3	IV
783.81	2	2	I		III	6216.52	30	30	30	35	Î
			I		III	6218.52		2		33	IV
784.64	5	3			III		3				III
786.43	7	4	2			6221.39	I	7	3		I
788.80	3	4	3		III	6224.70	15	20	20	15	
790.80	I	2	I		III A	6230.92	30	25	25	30	I
800.2	2	2	tr		IV	6233.31	12	20	20	15	IA
807.38	3	2	I		III	6236.49	I	I			IV
815.00	I	I			IV	6238.38	tr	tr			IV
817.30	3	4	2		III	6240.30	6	15	15	8	II A
817.85	5	2	1		III	6243.02	15	20	20	25	I
826.83	1	1	I		III	6243.37	30	20	20	30	I
830.95	7	3	I		III	6243.70	3	8	4		III
846.65	8	4	1		III	6245.35	2	12	8	3	II A
850.57	2	4	2		III A	6249.37	tr	I		3	IV.
853.96	ī	2	tr		IVA	6252.02	30	30	30	30	Î
	tr	1	6.1		IVA	6257.03	8	20	20	10	II A
855.70	tr				IVA		8			10	II A
863.41		I			and the same of th	6258.73		25	30	6	II A
924.82	2	4	3	****	III A	6261.39	5	25	20	8	II A
979.11	2	4	2		III A	6266.49	7	20	20		
981.02	2	7	4	tr	III A	6268.98	8	25	30	10	II A
984.85	1	4	2		III A	6274.80	15	20	20	20	I
002.52	2	7	4	1	II A	6282.52	2	3	1		III
002.89	4	10	8	3	IIA	6285.32	20	20	20	25	I
008.90	tr	4	2		III A	6293.02	20	20	20	25	I
016.34	1	1			IV	6296.69	15	20	20	20	I
018.16	tr	4	2		III A	6298.89	tr	I			IV.
022.00	tr	tr			IV	6304.60	2	I			IV
025.64	I	2	1		III A	6309.89	I	1			IV
039.95	25	15	15	15	I	6311.70	3	2	1		III
048.89	tr	2	13	-	ÎII A	6318.59	tr	1			IV
					HA		2	I			IV
058.33	5	20	10	3		6321.49					III
063.57	tr	I	tr		III A	6324.87	2	3	I		
067.47	I	I	tr		III	6327.00	6	8	5	I	III
081.70	25	20	20	20	I	6339.23	5	7	4	tr	III
087.70	I	3	I		III A	6344.12	I	1			IV
090.45	50	25	25	25	I	6349.61	5	7	4	tr	III
104.91	tr	4	2		HI A	6355.72	1	2	I		II A
107.21	2	8	4	tr	III A	6357.47	4	6	4		III
111.90	25	25	25	12	II	6358.99	3	4	2		III
119.70	40	20	20	25	I	6361.42	3	4	2		III
128.49	2	6	4	tr	III A	6374.67	1	2	1		III
a mention of the second	-	-	**	2.5		-3/4.0/	-	-			

TABLE I-Continued

		1	URNACI	2				1	URNACI	E	
(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(Exner and Haschek)	ARC	High Temp.	Medi- um Temp.	Low Temp.	CLASS
6393.47	2	3	ĭ		III	6543.71	3	15	8	1	III A
6417.19	tr	1			IV A	6550.26	1	1			IV
6418.87	tr	1			IV A	6558.23	2	7	3	tr	III A
6423.50	tr	1			IV A	6566.10	2	8	4	tr	III A
6425.3	1	1			IV	6579.19	1	4	3		III A
6430.68	3	5	3		III	6606.22	5	15	15	3	III A
6431.82	2	4	3		III A	6608.06	2	5	3		III A
6433 . 37	I	3	2		III A	6623.80	tr	2	tr		IV A
6435.35	I	3	2		III A	6625.10	5	15	15	3	III A
6438.25	tr	I			IV A	6633.53	I	4	I		IIIA
6445 . 35	tr	I	*****		IV A	6644.02	tr	2	tr		IV A
6448.02	tr	I			IV A	6662.6	tr	2	tr		IV A
6451.20	tr	1			IV A	6753.20	5	15	15	3	III A
6452.55	8	20	15	4	II A	6766.70	4	12	12	2	III A
6467.19	X	4	2		III A	6785.19	3	10	10	1	III A
6488.22	2	2	tr		IV	6812.63	2	7	6	tr	III A
6490.94	1	1			IV	6830.16*	1	2	2		III A
6504.38	8	20	15	4	II A	6832.67*	I	3	3		III A
6508.96	1	I	tr		III	6842.11*	I	2	2		III A
6531.65	20	20	20	6	II						

REMARKS ON TABLE I

~					
3217.20	Furnace	line may	be	partly Ti	

- 3533.87 Components of double line about 0.07 A apart.
- 3583.85 Wide in furnace and arc. May be double.
- 3606.85 Blend with Fe.
- 3687.63 Blend with Fe.
- 3721.55 Probably double.
- 3730.33 Wide in furnace and arc. Probably double.
- 3842.02 Exceptionally strong at low temperature.
- 3879.38 Distribution
- 3879.80 Disturbed by carbon.
- 3891.30 Double line, not fully resolved.
- 3896.31 Probably double.
- 3898.08 Blend with Fe.
- 3904.59 Double line, not fully resolved.
- 3010.03 Probably double. Reversal is stronger on red side.
- 4090.80 Blended with impurity line on medium temperature plates.
- 4118.37 Double line, not resolved.
- 4265.28 Wide in furnace and arc.
- 4406.30 Probably double.
- 4423.39 Probably double.

ARTHUR S. KING

4433.05	Wide in furnace.
4492.49	Wide in furnace.
4517.73	Wide in furnace.
4666.31	Disturbed by carbon.
4687.08 to 4716.10	These lines are in a dense carbon fluting and intensities are uncertain. They are not strong in the furnace and probably belong in Classes III and IV.
4904.58	Probably double.
5047 . 45	1.00db.y double.
to }	Disturbed by carbon.
5159.52	
6830.16	
6832.67	λ's according to Shaw, Astrophysical Journal, 30, 127, 1909.
6842.11	

TABLE II
TEMPERATURE CLASSIFICATION OF CHROMIUM LINES

		1	FURNACI	E				1	FURNAC	E	
(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS
3550.81	4				V	3743.10	5	4	I		III
3558.66	8n	5	I		IV	3743.71	20	8	4	2	II
3566.28	ION	5	I		IV	3744.03	20	6	3	2	II
572.90	2	2			IV	3744.67	5	4	2		III
573.80	5	3	1		III	3747 . 42	2	1	tr		III
574.19	4	2	1		III	3748.75	5	3	I		III
574.97	5	2	1		III	3749.15	20	10	5	I	III
575.06	3	1			IV	3751.34	I	tr			IV
578.81*		400R	200R	TOOP	II		2	I	tr		III
	12n	400K	200K	1001	V	3755.99					III
584.47					v	3757.30	5	3	1	tr	III
587.12	2n	D	-6-D	0		3757.80	12	5	3	1	
3593.64*		320R	160R	8or	II	3758.18	6	4	2		III
3599 - 54	I	1			IV	3767.60	4	3	tr		IV
601.81	6	3	2		III	3768.23H	3n	3	I		III
602.70	I	I	tr		III	3768.37	12	8	3	I	II
603.89*	3	3	I		III	3768.86	5	4	1		III
605.49*	140R	280R	140R	70r	II	3769.14	I	1	tr		III
609.65	3	2	1		III	3786.38	2	1			IV
610.20	2	1	tr		III	3789.87	4	8	5	2	II A
613.80	I	1			IV	3790.35	2	I			IV
615.77	4	IOL	5	3	II A	3790.62	5	2	tr		IV
619.57	2	2			IV	3791.52	7	4	I		III
632.98	6	5	2		III	3792.29	7	4	I		III
636.70	10	5	3	I	II	3792.55	I	I			IV
639.97	15	5	4	1	II	3793 - 44	7	4	I		III
640.55	4	3	1		III	3794.00	7	4	1		III
641.61	3	3	I		III	3794.75	5	3	1		III
641.99	8	4	2		III	3797.29	7	4	I		III
646.30	1	I			IV	3797.85	12	6	3		III
648.66	2	3	1		III	3804.95	15	8	4	I	III
649.11	10	5	3	tr	III	3806.97	4	I			IV
654.07	8	4	2		III	3808.06	6	3	I		III
656.40	10	5	3	tr	III	3810.4	2n	I			IV
663.01	2	2	I		III	3812.36	5	2			IV
663.36	5	4	2		III	3814.71	4	1			IV
666.14	I	I			IV.	3815.60	10	5	3		III
666.78	3	1			IV	3817.96	4	3	2		III
676.45	2	1			IV	3818.62	8	5	2		III
679.18	1	1			IV	3819.72	15	6	3		III
679.97	2	2	1		III	3823.68	8	8	7	4	II
681.82	1	Ĭ			IV	3825.51	10	3	I		III
685.70	5n	5	3		III	3826.58	10	5	2		III
686.95	6n	5	2		III	3830.20	15n				V
687.42	5n	3	ī		III	3831.20	5	8	7	3	II A
687.66	4	4	2		III	3832.50	2	5	4	tr	III
713.10	1	1	-		IV	3834.94	8		2		III
716.68			*****	****	IV	3836.22	4	3 2	1		III
	3n	IOR	IOL	8	I		20			1	III
730.96	10	12R		8	Ī	3841.43		7	5	4	IV
732.19	12	121	121	0		3842.22	4n	2			TA

TABLE II-Continued

			FURNAC	E					FURNAC	E	
(EXNER AND HASCHEK)	ARC	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(Exner and Haschek)	ARC	High Temp.	Medi- um Temp.	Low Temp.	CLAS
3849.10	10	8	4	I	III	3963.85	30	12	9	5	II
3849.45	20H	8	3		III	3969.22	5	5	4	tr	III
849.60	8	10	7	6	I	3969.90	25	10	9	4	II
3850.20	20	12	4	I	III	3971.41	5	4	3	tr	III
3852.33	8	IO	7	6	I	3972.83	2	2	I		III
3853.30	3	2	1		III	3976.44	1	1			IV
3854.36	12	8	3		III	3976.85	25	20	12	4	II
3854.95	4n	I			IV	3978.80	4	5	3		III
3855.41	5	3	2		III	3979.95	3	4	2		III
855.73	8	5	3		III	3981.41	5	6	3		III
3856.41	5	3	2		III	3984.08	20	12	8	4	II
857.75	15	10	5	1	III	3984.50	10	8	5	I	III
3859.0	ion	6	3		III	3000.14	6	3	tr		IV
3862.69	3	I			IV	3001.30	20	12	8	4	II
868.40	2				V	3001.82	10	8	4	tr	III
870.4	3n	2	I		III	3992.29	I	I			IV
874.70	10	5	3		III	3002.00	15	10	4		III
875.3	4n	tr			IV	3004.13	4	4	2		III
879.39	8	5	2		III	4000.12	2				V
881.41	5n	2	1		III	4001.61	8	3	tr		IV
883.48	15	18r	15	10	I	4004.08	2	3			V
885.36	15	15r	12	8	i	4012.61	8	2			IV
886.92	15	151	12	8	Î	4014.81	3	1			IV
804.20	15	121	10	7	Î	4018.35	3	3	1		III
897.79	2	tr			IV	4022.40	8	2			IV
002.24	2				V	4023.90	2				V
903.05*	12	82	63	4?	III?	4025.18	7	6	3	tr	III
903.29	8	8	7	5	I	4025.63	I	1			IV
907.91	2	tr			IV	4026.31	10	10	5	1	III
908.91	25	25R	15	10	II	4027.23	8	8	4		III
911.97*		3	I		III	4028.21	I	I			IV
912.13*	ion	4	2		III	4033.44	3	3	2		III
015.08	6	5	2		III	4037.42	3	3	2		III
916.41	12	IOI	8	6	I	4030.20	10	4	I		III
917.19	2	I	tr		III	4041.97	2				V
917.80	4	3	I		III	4042.40	4	3	I		III
919.32	35r	35R	2OT	12	II	4043.86	3				V
921.21	20	15r	12	9	I	4046.93	3	2	tr		IV
926.82	3	I			IV	4048.91	10	4	tr		IV
928.82	25	2Or	15	10	I	4049.95	2	I			IV
941.67	20	15r	12	10	I	4050.20	2	I			IV
945.64	2	1			IV	4051.49	2				V
946.10	3	2	tr		IV	4056.19	3				V
949.00	I	tr			IV	4056.95	2				V
949.71	2	I			IV	4058.94	10	4	tr		IV
951.26	3	2	tr		IV	4060.82	2				V
951.93	2	1	tr		III	4065.88	6				V
952.55	4	3	I		III	4067.09	10	7	3		III
953.30	3	2	tr .		IV	4075.00	3	1			IV
958.22	I	tr			IV	4076.20	4	1			IV
960.91	I	I	tr .		III	4077.25	5	5	I		IV

TABLE II-Continued

		1	FURNAC	E			1	I	URNACE		
(EXNER AND HASCHEK)	ARC	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	ARC	High Temp.	Medi- um Temp.	Low Temp.	CLAS
1077.85	4	1			IV	4183.25	I	I			IV
081.90	3	2			IV	4185.10	3	4	I		III
085.20	2	1			IV	4185.53	2	2			IV
090.50	3	I			IV	4186.51	3	1			IV
092.35	3	1			IV	4190.31	3	1			IV
007.80*		5	2		III	4191.45	10	8	3	1	II
008.11*	20n	7	3	tr	III	4101.04	4	4	I		III
098.33*		7	3	tr	III	4192.27	5	I			IV
000.10	4	2	tr		IV	4193.80	8	3	tr		IV
101.33	4	2	tr		IV	4104.50	2	3	I		III
104.01	2	X			IV	4105.10	7	2	1		III
105.00	6	3	I		III	4107.40	7	2	tr		IV
106.22	2				V	4198.68	8	2	tr		IV
108.56	3	2	I		III	4200.26	5	3	I		III
100.73	8	4	2		III	4203.75	10	8	3		III
111.02*		8	4	tr	III	4204.43	3	4	I		III
111.51*	20n	6	3		III	4204.64	7	1			IV
111.82*		3	I		III	4207.10	4				V
120.78	8	5	2		III	4208.50	6	2			IV
121.45	4				V	4209.51	10	4	tr		IV
121.98	7	4	I		III	4200.02	6	5	2		III
122.35	5	3	1		III	4211.50*	6	5	1		IV
123.54	10	6	I		IV	4212.81	4n	I			IV
126.69	18	10	5	2	II	4213.36	4	3	tr		IV
127.10	3	3	1		III	4216.52	8	6	I		III
127.46	4	I			IV	4217.75	15	10	3		III
127.81	5	5	2		III	4221.73	8	2			IV
128.56	3				V	4222.90	6	6	2		III
129.36*	20n	10	5	tr	III	4224.68	4				V
131.55	10	2			IV	4230.68	4	4	I		III
134.55	3				V	4232.41	3	2	tr		IV
146.38	4	tr			IV	4233.05	2	2			IV
146.65	2	1			IV	4234.70	3	3	I		III
146.86	4	2			IV	4237.90	2	2	tr		IV
152.93	4	1			IV	4239.12	8	7	2		III
153.23	4	3	1		III	4240.80	10	8	2		III
154.00	20	10	5	I	III	4243.01	I	1			IV
161.55	12	1			IV	4248.45	2	2	tr		IV
163.79	20	4	I		III	4248.87	2	1			IV
165.70	10	1			IV	4252.30	2	1	tr		III
170.00	6	2			IV	4254.51	500R	1000 R	500R	25OF	II
170.40	4	I			IV	4255.70*	6	3	I		III
171.86	3	3	I		III	4257.54	2	I			IV
172.95	4	I			IV	4259.32	2	1			IV
174.36	1	I			IV	4261.51	8	8	3		III
174.53	1	1			IV	4261.80	4	2	tr		IV
175.01	15	15	5	I	III	4262.30	4	2	tr		IV
175.43	3	1			IV	4262.56	2	1	tr		III
176.16	5	4	I		IV	4263.30	12	5	I		IV
178.12	3n				V	4267.01	I	I			IV
179.42	12	6	1		IV	4268.95	2	tr			ÎV

TABLE II-Continued

		1	FURNAC	E				1	FURNACI	2	
(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	ARC	High Temp.	Medi- um Temp.	Low Temp.	CLASS
4270.15	4	2	tr		IV	4385.15	20	2OT	20	20	I
273.10	6	2	1		III	4387.54H	2	2	Y		III
275.00	400R	800R	400R	200r	II	4387.64H	5	4	2		III
280.57	12	4	I		III	4391.93	8	8	8	6	I
284.90		3	I		III	4392.50	I	I			IV
289.90	350R	700R	350R	175r	II ·	4393 - 74	2	I			IV
202.14	6	I			IV	4395.61	2	I			IV
293.71	4	3	I		III	4397 . 44	3	3	I		III
1205.01	15	15	4		III	4400.0I	3	3	1		III
1206.46	I	tr			IV	4403.55H	3	3	I		III
1206.80	1	tr			IV	4403.68H	5	1	tr		IV
1207.21	5	5	2		III	4406.46	2	I			IV
4207.80	12	2	tr		IV	4410.40	4	4	1		III
4299.85	4	3	2		III	4411.15H	2	I	tr		III
4301.35	6	2	tr		IV	4411.26H.	5	5	2		III
4305.61	5	4	2		III	4412.44	6	10	10	6	IA
4307.67	I	tr			IV	4414.02	5	3	1		III
4319.80	8	6	2		III	4422.8	2	1			IV
4320.78	4	3	1		III	4423.55	3	4	1		III
4321.44	3	2	tr		IV	4424.20H.	2	2	I		III
4321.81	-	2	tr		IV	4424.49	10	7	3	tr	III
	3	1			IV	4425.31	3	1			IV
4323.70	5	10	4		III	4428.66	5	5	2		III
4325.25	2	I	4		IV	4430.00	2	1			IV
4332.75	1	30R	0=	20	I	4430.72	4	ī	tr		III
4337 - 74	-	-	25		IV	4432.35			3		III
4338.56	3	1			IV		7 2	7 2	3		III
4338.95	3n	I			I	4434.15	4	2	I		III
4339.62	40	40R	3or	20	I	4442.45		_			IV
4339.90	20	2OT	20	12	III	4443.89	4	1			IV
4340.31	8	8	3		III	4450.5	3n	I		tr	III
4343 - 33	4	3	1			4458.72	12		4		III
4344.68	40	40R	35r	25	I IV	4459 . 57	4n	4 ?	5		3
4345 . 27	2	2				4459.92*	6				iII
4346.99	10	7	3		III	4460.90	4n	4	1		
4351.22	20	20T	20	15	I	4461.50	I	tr			IV
4351.98	60	60R	401	25	I	4462.91	3	3	I		III
4354.13	2	2	tr		IV	4464.85	2	2	tr		IV
4356.95	4	3	1		III	4465.09	4	4	1		III
4357.69	2	I	tr		III	4465.31H	2n	1			IV
4359.82	20	201	20	20	I	4465.53	5	5	2		III
4363.31	6	6	3		III	4466.35	3	2	tr		IV
1368.45	2	2	tr		IV	4467.74	4	3	1		III
1371.48	20	20r	20	20	I	4468.55	1	I			IV
1373 . 42	8	8	8	6	I	4469.99	1	1			IV
1373.81	2				V	4473.96	4n	4	2		III
374.32	12	8	4	1	II	4475.50	8n	8	3		III
1375 . 49	8	5	2		III	4477.20	2n	4	2		III
4376.95	3				V		1 2	2	tr		IV
4377.69	4	3	I		III	4480.45*	T	I	****	****	IV
4381.30	6	5	2		III	4483.02	5	3	I		III
4383.05	2	2	I		III	4488.21	5	5	2		III

TABLE II-Continued

		1	FURNAC	E				1	URNACI	E	
(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	Arc	High Temp.	Medi- um Temp.	Low Temp.	CLAS
1489.62	5	2	tr		IV	4595 - 79	6	1			IV
1490.8*	2n	I			IV	4600.30	5	5	3		III
4401.00	3n	5	3		III	4600.go	20	20	20	20	I
1402.01	3	2	I		III	4601.21	4	4	2		III
1492.50	6	3	2		III	4613.53	15	15	15	15	I
1495.50	2	1	-		IV	4616.28	25	25	25	25	Î
1497.03	25	25R	25r	25	Î	4610.70	8	5	2	-3	III
498.87	6	6			III	4622.10	10	10	4		III
	-		4		III	4622.62					III
500.42	7	6	4		III		5	3	ī		IV
501.25	0	5	3			4622.95	3	2	tr		-
501.90	3	3	2		III	4626.35	20	20	20	20	I
1502.43	I	I			IV	4632.39*	2	3			IV
503.25	2	1			IV	4633.49	2	I			IV
1506.99	4	I			IV	4637.36	4	4	2		III
512.10	10	8	3		III	4637.95	4	4	2		III
514.70	8	6	2		III	4639.78*	2	3			IV
515.60	4	3	1		III	4646.35	40	40	40	40	I
521.32	4	1			IV	4646.68*	3	2	tr		IV
525.00	2				V	4646.99	3	2	tr		IV
526.28	3	2			IV	4648.29	5	5	2		III
526.66	15	12	10	3	II	4640.01	5	3	tr		IV
	6	3	3		III?	4649.61	5	2	tr		IV
527.53H*.	-	5	3		III ?	4651.49	20	20	20	20	I
527.65H*.	4									1	I
530.02	5	5	2		III	4652.38	30	30	30	30	IV
530.91	20	15	10	3	II	4654.94	3	2	tr		
535 - 33	6	6	3		III	4656.38*	2	3			IV
535.89*	15	8?	63	2	II	4663.53	7	3	tr		IV
539.94	5	5	3		III	4664.05	8	4	I		III
540.64	12	8	5	2	II	4665.00	8	5	2		III
540.88	10	6	3		III	4666.10	4	1			IV
541.23	5	4	3		III	4666.40	4	3	I		III
541.65	4	2	I		III	4666.72	7	3	I		III
542.76	5	3	1		III	4667.34	2	1			IV
543.89	2	2	I		III	4669.52	6	3	1		III
544.78	12	10	6	2	II	4680.70	4	2	I		III
545 . 47	5	5	3		III	4681.10*	3	3	3		IV
546.10	20	20	20	20	I	4689.55	8	6	2		iII
	2	2			IV	4694.15	5		1		III
555.01	1	I			IV	4695.35*		3	13		III
555.30	-	1			III		3	1	1		III
556.35	6	3	I		IV	4697.25	5	4	2		III
563.89	2	2	tr			4698.71	20	12	5	1	
564.36	3				V	4700.80	4	3	tr		IV
565.70	12	12	12	12	I	4706.29	2	1			IV
569.80	8	6	2		III	4708.20	15	6	3 .	tr	III
571.28	1	X			IV	4718.63	20	8	4	1	III
571.89	10	8	4		III	4723.31	4	3	1		III
575.30	2	I			IV	4724.60	4.	3	1		III
580.26	20	20	20	20	I	4727.32	6	4	I		III
1584.30	2	1			IV	4729.92	2	1			IV
586.31	2	I			IV	4730.90	8	6	3		III

TABLE II—Continued

			FURNAC	E					FURNAC	E	
(EXNER AND HASCHEK)	ARC	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(EXNER AND HASCHEK)	ARC	High Temp	Medi- um Temp.	Low Temp.	CLA
1745 - 49	2	3	T		III	5122.27	4	5	4	3	I
752.29	6	2	tr		IV	5123.63	6	8	6	4	I
1754.92	2	2	tr		IV	5139.81	12	2			IV
755 - 33	2	2	tr		IV	5144.85*	7	3	3	I	II
756.30	15	10	6	I	III	5161.94*	3	3	3		III
764.48	5	3	I		III	5166.41	15	3	ī		III
764.87	I	1	tr		III	5177.57	7	2	tr		IV
766.88	2	1	tr		III	5184.73	10	3	1		III
767.47	1	tr			IV	5192.18	10	3	I		III
768.02	3	2	tr		IV	5193.67	4	I			IV
775.32	I	1			IV	5196.61	15	4	I		III
789.53	20	12	8	3	II	5200.37	6	2	tr		IV
790.55	2	4	2		III A	5204.71	15or	120R	70R	50	H
792.72	15	8	3		III	5206.24	200r	150R	80R	60	II
796.33	2	I			IV	5208.60	300r	200R	100R	7.5	II
801.24	15	9	4		III	5212.40	3	1			IV
806.48	I	3	I		III A	5214.27	6	2	tr		IV
810.95	1	2	tr		III A	5221.10	3	I			IV
814.50	X	2	tr		III A	5221.03	8	3	1		III
829.53	18	15	Q	2	II	5222.85	2	2	tr		IV
837.06	2	2	I		III	5224.24	3	1			IV
846.52	ī	1			IV	5224.70	3	I			IV
861.40	4	4	2		III	5225.19	25	10	3	tr	III
862.01	15	12	6	1	III	5226.00	4	3	I		III
870.99	20	10	4	ī	III	5227.00	4	2			IV
874.82	I	1			IV	5228.25	3	I			IV
880.21	1	1			IV	5230.35	2	2	I		III
885.13	I	3	I		III A	5239.12	5	5	2	tr	III
885.92H	4	5	3		III	5240.62	3	I			IV
886.11H	I	2	tr		IV A	5241.62H.	I	I			IV
887.20	20	6	4	1	II	5243 . 53	7	3	I		Ш
887.88	I	I	tr		III	5247.72	40	2OT	20	20	I
888.71	4	4	2		III	5255.08H	10	4	tr		IV
903.47	8	6	3		III	5255.27H	15	6	1		IV
921.15	3	2	A		IV	5261.91	6	2			IV
022.40	20	10	6	1	III	5264.35	50	30R	30	20	I
936.50	10	5	2		III	5265.33	8	4	I		III
942.68	8	30	20	10	HA	5265.90	25.	20F	20	12	I
954.99	10	5	2		III	5272.18	8	4	1		III
965.10	6	20	15	8	HA	5273.59	6	2	I		III
013.49	6	5			III	5275 . 33	20n	12	4	2	II
022.04	2	10	7	4	HA	5275.85H	15n	12	6	3	II
048.95	2	8	6	3	II A	5276.20H	20n	12	6	3	II
052.08	8	10	8	6	I	5278.39	2				V
066.06	5	2	1		III	5280.48	4	2			IV
067.87	10	3	1		III	5287.34	4	2			IV
068.45	2	8	6	3	HA	5296.86	50	25F	25	20	I
073.10	12	10	8	6	I	5297.48	20n	12	8	3	II
002.03	3	8	6	3	HA	5298.14H.	15n	10	6	2	II
110.03*	7	3	2?	13	II ?	5298.46	60	3or	30	25	I
113.30*	5	3	3	1?	II?	5300.80	25	15	15	12	I

TABLE II-Continued

		1	FURNAC	E					FURNAC	E	
(EXNER AND HASCHEK)	ARC	High Temp.	Medi- um Temp.	Low Temp.	CLASS	(Exner and Haschek)	ARC	High Temp.	Medi- um Temp.	Low Temp.	CLAS
5304 . 33	4	I			IV	5720.03	2	2	1		III
5313.02	5	2	tr		IV	5729.41	1	1			IV
318.92	4	2			IV	5738.75	1	I	tr		III
328.53	5on	15	10	6	II	5746.64	2	X	tr		III
329.33	20n	10	6	3	II	5753.89	2				V
329.95	5n	4	2	I	II	5781.42	8	5	3	tr	III
340.65*	4	3			IV?	5782.10	8	5	3	tr	III
345.00	2	2	I		III	5783.38	20	10	5	1	III
345.99	70	40R	40	30	I	5784.17	20	10	5	1	III
348.50	50	30R	30	20	I	5785.20	20	8	4	I	III
387.14	5	2	tr		IV	5785.95*	15	6	4	1	III
387.73*	3	?	tr		III	5786.19*	3	10	10	5	IA
390.60	3	I			IV	5787.25	3	3	2		III
391.56	2	3			IV	5788.22	40	12	8	2	III
400.75	8	3	I		III	5788.59	4	2	1		III
405.19	3	3			IV	5791.30	50	20	15	3	III
410.01		60R	60	40	I	5702.00	I	ī	tr		III
442.60	3	3			IV	5838.88	2	2	1		III
464.12	4	3			IV	5844.84	2	2	1		III
480.71	4	2			IV	6330.30	25	50	50	50	IA
628.82	8	4	2		III	6363.03	15	30	30	30	IA
638.37	1	I	tr		III	6501.43	2	15	10	10	IA
642.59	2	2	I		III	6529.36	2	13			V
648.40	1	1	tr		III	6538.12	3	18	15	15	IA
640.52	2	2	tr		IV	6573.10	2	12	12	12	IA
658.82	1	I	tr		III	6597.80	2		1.0		V
664.24	8	4	2		III	6630.25	4	20	20	20	LA
681.42	2n	4			V	6661.30	12				IV
682.63		2	1		iII	6669.50		3		*****	IV
	4n				III	6881.7	3		tr		III
594.94	10	4	2	4-	III		2	1	I		III
598.53	20	6	3	tr	III	6882.4	5	2			III
700.75	1	I	tr	* * * * *		6883.2	10	4	2		III
702.52	10	5	2		III	6924.4	10	5	2		
712.87	2				V	6925.4	6	3	I		III
712.98	6	7	3	tr	III	6978.75	15	8	2		III

REMARKS ON TABLE II

^	
3578.81	
3593.64	Widely reversed at high temperature.
3605.49	
3603.89	Concealed at high temperature by λ 3605.49.
3903.05	Difficult blend with Class II Fe line.
3911.97	Measured by writer in vacuum arc. Blend into wide and diffuse
3912.13	line in arc in air.

Disturbed by carbon.				
. 95.				

GENERAL CHARACTERISTICS OF THE VANADIUM AND CHROMIUM . SPECTRA

1. Low temperature lines of chromium.—As has been noted, some chromium lines appeared at a temperature lower than that used for the low-temperature column of Table II. Table III is a list of these lines with their intensities estimated from a photograph taken with the 1-meter concave grating, a bathed film with filter being used so that the spectrum from λ 3500 into the red was registered. The temperature read 1728° C. and the prolonged exposure made it probable that the spectrum for this temperature was fairly complete. Almost all of the lines as far as λ 5000 were

obtained also on a plate taken at the same temperature with the 15-foot concave grating.

The intensities in Table III are quite different from those in the low-temperature column of Table II, given at 2000-2100°. This is probably in some measure due to differences in contrast and color-curve between the film and the plate, but chiefly to the fact that the lines of Class I retain a high relative intensity at the minimum temperature for their appearance, while those of Class II, which make up the remainder of Table III, are weaker than in Table II.

TABLE III CHROMIUM LINES GIVEN BY A TEMPERATURE OF 1700-1800°

Α	1	λ	1	A	1
3578.81	25	4344.68	40	5048.95	tr
3593.64	20	4351.22	20	5052.08	3
3605.49	20	4351.98	30	5068.45	1
3615.77	I	4359.82	40	5073.10	5
3730.96	3	4371.48	50	5092.03	1
3732.19	3	4373.42	10	5122.27	1
3883.48	8	4385.15	40	5123.63	2
3885.36	7	4391.93	8	5204.71	70
886.92	7	4412.44	4	5206.24	80
894.20	6	4497.03	60	5208.60	100
.05	10	4546.10	60	5247.72	50
3903 (.29)	10	4565.70	25	5264.35	50
908.91	10	4580.26	50	5265.90	30
916.41	6	4591.61	35	5296.86	60
3010.32	12	4600.90	50	5298.46	60
3921.21	8	4613.53	40	5300.89	20
3928.82	8	4616.28	50	5328.53	1
3941.67	12	4626.35	50	5329.30	tr
1254.51	200	4646.35	60	5345.99	80
275.00	175	4651.49	40	5348.50	70
280.00	150	4652.38	50	5410.01	80
337 . 74	30	4942.68	10	6330.30	12
339.62	20	4965.10	6	6363.03	6
339.90	20	5022.04	tr	6630.25	3

2. Successive development of the classes.—The low-temperature spectrum, described for chromium in the preceding section, occurs for each of the elements which have been studied with the furnace at a stage probably not more than 200° above the melting-point. The medium temperature (about 2300°) produces a rich spectrum. The Class II lines are well developed and the Class III lines are present. Those lacking are the weaker arc lines, some lines which

are strong but diffuse in the arc, and the enhanced lines. At the highest temperatures used the number is increased by the addition of the Class IV lines, and in the case of vanadium, as with titanium, by the faint appearance of some of the stronger enhanced lines. A striking change produced by the high temperature is the general widening of the lines present at lower temperature, together with an increase in the number of reversals.

3. Changes with the wave-length.—Photographs made with the 1-meter concave grating showed the spectra of vanadium and chromium extending farther into the ultra-violet as the temperature rises, a condition also observed for iron and titanium. The limits of the vanadium spectrum on these films are roughly λ 3200, λ 2800, and λ 2500 for the three temperatures. The arc spectrum extends to shorter wave-length. Aside from the extension toward shorter waves nothing definite appears in the way of a general change. Low-temperature lines occur in groups throughout the spectrum, beginning with the limit in the ultra-violet. At the red end, while a number of lines occur in each spectrum for which the furnace is more favorable than the arc, these are not relatively strong at low temperature, but are for the most part in Class III.

The tendency in all light-sources for lines of shorter wave-length to reverse more easily is perhaps nowhere so striking as in the furnace spectra. If reversal were dependent merely on the presence of rarer vapor at a lower temperature, lines in the red region should reverse as easily as in the violet, since a number of red lines are given by the low-temperature furnace. Reversal is, however, clearly a function of wave-length. The high-temperature furnace gives numerous and wide reversals of lines in the region of shorter wave-length, presumably by reason of the cooler vapor near the ends of the tube; but in the green reversal becomes more difficult and in the yellow and red even the strong low-temperature lines of these elements remain hard and sharp in the furnace spectrum.

4. Absence of the band spectra.—The arc spectra of vanadium and chromium each show a series of bands shaded toward the red. The heads of these have been measured as approximately $\lambda\lambda$ 5470, 5737,

¹ Kayser, Handbuch der Spectroscopie, 5, 376; 6, 786.

6087, 6478 for vanadium, and $\lambda\lambda$ 5565, 5795, 6052, 6395 for chromium. These appear distinctly on my arc photographs but in none of the furnace spectra. The present evidence is that these bands are due to oxides formed in the arc and are not low-temperature spectra of the metals themselves.

5. Comparison with the arc spectrum.—In Tables I and II lines of intensity I in the arc are entered only when they occur also in the high-temperature furnace. The number of arc lines in Exner and Haschek's tables which are thus omitted from the furnace list is much greater for chromium than for vanadium. Of the stronger arc lines 35 chromium lines occur in Class V, while this class for vanadium is limited almost entirely to the enhanced lines (V E). In short, the relative behavior of the two elements is similar to that of titanium and iron, in that when the vanadium spectrum has once appeared (its high melting-point rendering the initial temperature higher than that of chromium), the furnace is highly efficient in producing a rich spectrum, giving at high temperature a spectrum closely comparable in number of lines with that of the arc.

The most interesting difference between the arc and furnace spectra is probably the large number of lines relatively much stronger in the furnace than in the arc and designated by A after the class number. It is difficult to reconcile the behavior of these lines with a continuous change in temperature alone between the arc and the furnace. It would appear that certain conditions needed for the emission of these lines are stronger in the furnace than in the arc. No discontinuity is apparent in the development of the spectrum from one furnace temperature to another. A line strong at low temperature is strong also at medium and high temperatures, but it may be a weak line in the arc, and the same is true for lines which develop at the successive temperature stages. A Class III line, for example, may show a normal increase from medium to high temperature and then drop to a low intensity in the arc. Further investigation may show that the emission of such lines is greatly localized in the arc and that the furnace is better suited to produce a vapor in the same condition as the given region of the arc, but at present the reason for the difference is obscure.

EXPLANATION OF THE PLATES

The two sections of Plate II show the vanadium spectrum from λ 4000 to λ 4050 for the arc and for three furnace temperatures. An interesting region in the red is reproduced in Plate III. The large changes in relative intensity of many lines are brought out, together with the maintenance of a high intensity at low temperature by the lines of Class I. The development of a typical carbon fluting is well shown in Plate II. The low temperature is barely able to produce the strong head at λ 4737.

Plate IV gives a similar series of arc and furnace spectra for chromium from λ 5100 to λ 5425. Most of the prominent lines here belong to Class I and the chief change in them is a widening at high temperature. Strong lines in other classes occur, however, at $\lambda\lambda$ 5197, 5225, 5255, and the groups at $\lambda\lambda$ 5276 and 5329. The growth of the strong carbon band λ 5165 is also shown in this plate.

SUMMARY

1. The electric furnace spectra of vanadium and chromium have been studied for the ranges λ 3150– λ 6850 and λ 3550– λ 7000, respectively, the classification of lines being based on a comparison of the spectra given by three furnace temperatures with reference to the temperature at which a line appears and its rate of strengthening with increase of temperature.

2. The leading features in the development of the vanadium and chromium spectra are similar to those observed for iron and titanium, the vanadium spectrum being very similar to the latter.

3. The chromium spectrum near the temperature at which the vapor begins to radiate shows a predominance of the lines of Class I, which change little at higher temperatures.

4. Certain chromium lines, very diffuse in the arc in air, may be resolved into sharp components in a vacuum source, either furnace or arc.

5. A large number of lines belonging to various furnace classes are relatively weak in the arc.

6. The extension of the spectrum into the ultra-violet increases as the temperature rises. In other respects the distribution of

FURNACE AND ARC SPECTRA OF VANADIUM

Spectrum of the electric furnace at 2600° C. Vanadium in carbon arc. a. b.

Spectrum of the electric furnace at 2350° C. Spectrum of the electric furnace at 2100° C.

FURNACE AND ARC SPECTRA OF VANADIUM

- Vanadium in carbon arc, Spectrum of the electric furnace at 2600° C. a.
- Spectrum of the electric furnace at 2350° C. Spectrum of the electric furnace at 2150° C. c. q.

0115 6#85-6288-1088 PLATE IV 9225-2504 2548 Sees 2500 2619-5815-9915otis.

9

9

FURNACE AND ARC SPECTRA OF CHROMIUM

P

S

- a. Arc spectrum of chromium. b. Spectrum of the electric furnace at 2600° C.
- c. Spectrum of the electric furnace at 2350° C. d. Spectrum of the electric furnace at 2100° C.

lines at different temperatures shows no definite relation to the wave-length.

- 7. The ability of lines to show self-reversal in the furnace distinctly increases with decreasing wave-length.
- 8. The absence from the furnace of the banded spectra which appear in the vanadium and chromium arcs indicates that they are probably due to oxides of the metals.

MOUNT WILSON SOLAR OBSERVATORY
November 1914

THE FLASH SPECTRUM WITHOUT AN ECLIPSE REGION λ 4800– λ 6600 $^{\text{\tiny I}}$

BY WALTER S. ADAMS AND CORA G. BURWELL

In a brief communication² published in 1909 Hale and Adams described the methods employed in photographing the chromospheric spectrum with the 60-foot tower telescope and the powerful spectrograph used in conjunction with it. Some results of the observations in two limited regions of the spectrum were given to indicate the character of the photographs obtained and the degree of accuracy of the measured wave-lengths. Observations made since that time by Mr. Hale with the 150-foot tower telescope have shown that the use of the larger solar image probably will lead to a distinct advance in the quality of the chromospheric photographs. In spite of this consideration, however, it has seemed desirable to publish the results already obtained, not only because they give some indication of the possibilities in the way of investigations of the chromospheric spectrum with the use of a solar image of moderate size, but also because the results almost certainly will differ to some extent from those obtained with the larger image on account of difference in the level of the observations. Since the slit is held rigorously tangent to the solar image during the exposures, it should be possible under the finest conditions of definition to reach a somewhat lower level in the chromosphere with the larger image.

The method employed in obtaining the photographs was that described in the communication by Hale and Adams already referred to. The light from the sun's limb falls upon a diagonal prism so placed as to reflect the light horizontally to a second prism immediately above the slit. The first prism is mounted upon a slide with a screw adjustment allowing of motion toward or away from the second prism. After the sun's image has been brought tangent to the slit the observer selects a bright line of the chromospheric spectrum and brings it into the field of view of an

¹ Contributions from the Mount Wilson Solar Observatory, No. 95.

² Mt. Wilson Contr., No. 41; Astrophysical Journal, 30, 222, 1909.

eyepiece, mounted in an opening near the end of the plate-holder. During the exposure this line is maintained at maximum brightness by guiding with the screw controlling the position of the first diagonal prism, thus moving the sun's image slightly on the slit. The objective employed in the 60-foot tower telescope is corrected for visual light and hence is not well adapted for photography in the blue and violet portions of the spectrum. For this reason, and on account of the difficulty of seeing with sufficient distinctness in this region the bright lines necessary for guiding, only a very few photographs have been obtained to the violet of λ 4800.

The second order of the grating was used for all of the photographs, corresponding to a linear scale on the negatives of about 1 mm=0.9 angstrom.

The exposure times varied from four minutes in the yellow and green region to eight minutes in the red.

Table I contains the results of the measures. The portion of the spectrum between λ 4800 and λ 5500 has been studied much more extensively than that to the red of λ 5500, and the wave-lengths given depend upon a larger number of determinations. For lines of greater wave-length than λ 5900 only two measures are available.

The photographs upon which these results are based were taken largely to test the methods employed, and in the case of some of the earlier photographs the diagonal prisms used were too small to give the full length of the brightest and longest chromospheric lines. As a result we have not attempted to measure the lengths of the lines and use them as a basis for discussion of level in the solar atmosphere. It is evident, however, that with a slit of sufficient length to admit the longest lines, measures of the size of the arcs made in this way would have a marked advantage over those from eclipse photographs taken without a slit in that the exposure times would be uniform for lines of all lengths and not progressively longer as in eclipse spectra for the lines of greatest length. The photographs taken without an eclipse have, moreover, the advantage of accurate guiding.

The results given in Table I are for the most part selfexplanatory. The measured wave-lengths of the bright lines are in the first column, and following these the lines in Rowland's table with the corresponding elements and intensities. We have preferred not to add a large number of somewhat questionable identifications to those made by Rowland, but have included several taken mainly from Hasselberg's arc tables which sun-spot observations have verified. The chromospheric intensity given in the fifth column is on an arbitrary scale extending from \circ , a line just visible on the continuous background, to $5\circ$, which is the intensity of D_3 on our photographs.

The abbreviations used in the last column are as follows:

dr=double reversal w = wide bf=bright fringes E = enhanced line

The term "bright fringes" is used in the case of dark lines which show a faint bright line on either side, in general too weak for measurement. They are true double reversals but very faint. These lines, on which no measurements have been made, are indicated in the first column of the table by the absence of figures beyond the decimal point, these being given in the second column (from Rowland's table).

THE LEVEL OF THE OBSERVATIONS

There are three features in these results that indicate a very low level in the solar atmosphere for the point under observation.

- 1. Essentially all of the stronger lines are double reversals, similar in type to those of the hydrogen lines, but of course very much narrower. This is an indication of low level.
- 2. A large proportion of the bright lines are very faint absorption lines in the solar spectrum. St. John has shown clearly that in general the fainter the line the lower the level of the gas producing the absorption.
- 3. The carbon fluting with its head at λ 5165 is very strong. This fluting is known from visual observations to originate at a very low level in the solar atmosphere.

In view of these facts, quite apart from the obvious consideration that a slit tangent to a solar image 16.8 cm in diameter under good conditions of definition should reach a point very close to the

TABLE I WAVE-LENGTHS AND INTENSITIES FOR CHROMOSPHERE LINES

OBSERVED		ROWLANI)	CHR.	REMARKS	OBSERVED		ROWLAN	D	CHR.	REMARKS
A	A	Element	Intensity	INT.	REM	λ	λ	Element	Intensity	INT.	REM
4802.888	.879		0000	I		4846.766				0	
4804.220	. 232	La	000	1		4848.121	.110		0000	0	
1804 . 530				101		4848.282	. 438	Cr	2	0	J. T
.802	.706	Co?	0	101	dr	.720	.605	Ti	0000	0	dr I
1805.301	. 285	Ti	3	2	dr E	4849.242				JI	
1805.605	.606	Ti	0	I		.453	.357		0	101	dr
1807.308	.000			0		4849.664	0			101	
1807.726	.725	Cr, V	000	1		50.073	. 845	Cr	00	0	dr
1807.720	.000	Fe	1		bf	4851.680	.689	Ca, V	1	I	W
	-	La		2	151	4852.	. 743		2		bf
1809 . 204		Zn	2	1		4854.584	- 535		0000	0	
1810.730	.724	Nd	3	2		4855.030	.059	Fe, Y	1	4	
4811.532	. 542			2		4855.	.600	Ni	3		bf
1813.670	.661	Со	1 000N	1		4856.195	. 203	Ti	1	0	1,71
4814.147	. 166		0001	0		4857.	. 579	Ni	ī		bf
4814.676							. 221	Nd	000	1	Di
4815.262	. 239		0000	0		4859.204	. 221	240	000	101	
4815.831	.820		0000	0		4859.803	.928	Fe	4	0	dr
4816.011	.013		0000	I		60.050				3 (
4817.856	. 988	Ni? Fe?	2	10	dr	4861.092	. 527	H, La	30	20	dr
4818.033				10		.898				15	
4819.173	. 205		0000	0		4862.621	. 783		0	0	dr
1819.818	. 830	Y	0000	0		.923				101	
4820.514	- 593	Ti	1	I		4864.356	. 362		0000	0	T
4823.543	.697	Mn	5	I	dr	4864.484	. 505	Cr	I	0	E
.856	.097	248.11	3	0		4864.506	.919	V	0	0	
4824.230	225	Fe, Cr	3	I	dr E	4865.793	. 798		I	0	
.484	. 325	,	3	10		4866.331	.465	Ni	2	0	dr
4825.664	. 666	Ti	000	3		. 593	.403			0	
4825.906	.907	P	000	0		4866.906	. 930		0000	0	
1827.917				0		4867.585	.724		00	10	dr
4828.729			*******	1		.847	. /4		-	101	100
4831.710				0		4868.048	. 056	Co	I	, 2	
4832.466	.460	Nd	0000	1		4868.252				1	
4834.548	6	Fe	I	10	dr	.442	.451	Ti	0	(2)	dr
.834	. 695	re	1	101	a	.700				I	
4835.890		E.		1 I	de	4870.316	. 323	Ti	I	I	
6.217	6.059	Fe	2	1 1	dr	4870.982	.996	Ni, Cr	3 -	0	
4836.310	.313	Ti	0000	0		4871.	.512	Fe	5		bf
4836.935				101	de	4872.	.332	Fe	4		bf
7.180	7.044	Cr	00	0	dr	4873.639	.630	Ni	2 .	0	
4838.543	. 699		2	2	dr	4874.189	. 196	Ti	0	I	E
.957	.837	Fe, Ni	1	1	ar	4874.368	.379		0000	0	
4839.594				10	de	4874.689	.693		0000	I	W
.869	- 734	Fe	3	0	dr	4875.668	.671	V	I	1	
1840.197	. 193		0000	0		4876.	. 586	Cr	I		bf l
4840.431	. 449	Co	2	1		4878.169	.313	Ca	3	1	J.
1840.925				101		.548	.407	Fe	4	I	dr
,	1.074	Ti	3	0	dr	4881.750	.739	V	iN	1	
1.250)	226	Fe	3	()	bf	4882.	.336	Fe	3		bf
	. 336	Mn	0000	1	W	4882.650	.670	Ce	000	1	
4844.401	. 408	74111	0000			4002.030	.010	-			

TABLE I-Continued

OBSERV	ED	- 1	ROWLA	ND		CHR		OBSERV	(frie		Rov	VLAND		1	99
		A EI	ement	Inten	sity	INT.	Dewas	λ	ED	λ	Eleme	ent	Intensity	CHR.	
4883.79		.				(2		40.00			-		intensity	-	2
.87	11	367	Y	2	1	(4)	dr	4920.5	51	.685	Fe	Ic	,	50	
4885.10						2		4921.1		. 147	La	1		1	dr
.42		64	Ti	2	1)	0	dr	4921.0		.963	La, T	-		3	
4885.		20	Fe		11	I		4922.4		.446	Cr			4	He?
4886.00	1 . X		Cr	3	1.		bf	4923.5		. 540	CI		ood	0	
4887.18.	2 .1	0	Cr	2		0		4924.0	12]				000	0	
4887.720	7			0000		0		. 18	395	.107	Fe	5		5	dr E
4880.	J. 13		e?	3			bf	4924.		.956	Fe	3		4 /	
	1.20		e	2			DI	4925.57	31	.746	Ni. V	-	1	101	bf
4890.	. 94	_	e	6			bf	.87	0)	. /40		I		I	dr
4891.	. 68	-	e	8			bf	4926.03						0	
4892.012				000		1	171	4928.51		.050	Fe	2			bf
4893.182	.03			I			bf	4933.30		.511	Ti, Co	0		2	~
4893.987	.99	~	1	000		0		.71		514	Fe	2	1	01	
4894.142	. I.4			00		1		4934.15	. 6.1	214		10		05	dr
4896.	.62			0000		0		. 38	2	277	Ba-Fe	3		1	dr
4900.102	.00			2			bí	4935.050	× * 1	048		. 00	00	4)	CII.
4900.300	.30			2		I		4936.01	2 .	015	Ni	2	30	0	
4900.814	. 808			000		3		4936.546		512	Cr	1	1	0	
4901.056	. 152	Ti			150	0	W	4937.		902	Ti	000			bf
. 270				0	180		$d\mathbf{r}$	4938.471		467	Ti?	000		1	DI
1902.248	. 257			0000	0	/		4938.708						0	
1903.	. 502	1		5		1 .	bf	4939.243		416	Fe	2	15	0 1	
1903.909	. 896		C	2000	0			· 575 4941 . 476	1					0 10	ir
.761	- 597		3		10	1	1	4941.763			Co, Sc	000		0	
905.143			3		0	11	lr	4942.548		752	Ti	000		0	
.487	.310	Fe	9 0		0	1	lr	. 793	.6	660	Cr	2		o d	-
908.032					0	1	11	4943.631	.6	23	Ce	200		0)	1
. 325	. 209		0.	N	10	d	lr	4944.049		87	Ce	0000		I	
908.628	.673	Co	Or	00	0	1		4944.784	-7		Ce	000		0	
009.439	. 566	Fe			50	7		4946.	- 5		Fe	3		1	c
. 703		1	2		0	d	r	4947.	-7	78		00	1	bi	
10.	. 505	Fe	2			. b	6	4950.150	. 20	nr l	Fe	2	150	1	
11.387	.952		. 00	N.oc	0			4052 252		,	10	2	10	11 250	
	.374	Ti	I		I	E		4953 . 251	. 39)2	Ni	2	10	5	
	. 199	Ni	I		0	1		.536 4954.878				-	10	dr	
	803	Ti	. 00	00	0			5.116	.98	36	Cr	2	50	1	
	150	Ni	2		I			4955.528					10	dr	
	583	Nd	2		0			4957.	.78	5	Fe	0	0		
	028	7468	. 000		2			4958.302				8		. bf	
7.	410	Fe	2		0	2.0		-5425	.43	I	Ti	00	1	dr	
18.536 .	543	Ni, Ti	2			bf		4959.282	. 320	0	Nd .	0000	10	1	
8.884	886	Ni	0		I			4961.100					Jo	3	
9.019	174	Fe	1		0)			.350	. 235		(00	10	dr	
.324)		re	6	1	0	dr		4961.583	. 564			0000	0	1	
	047 .		00	1	2			4962.486	.467			000	0		
0.220	241 .		000	0	0			4902.	.751		Fe 2	2		. bf	

TABLE I-Continued

OBSERVE	D	Row	LAND		CHR.	REMARKS	OBSERVI	ED		Row	LAND			0 3
	λ	Eleme	ent Intens	ity	INT.	REM	λ		λ	Eleme	ent Inten		CHR. Int.	
4965.23		ı Ni	0	15	0	dr	5009.6	33]				-	-	-
4968.	T/:			1	0	ar	10.00		. 829	Ti, C	0 00	13	I	dr
	.08	o Fe	3			bf	5011.92			Ce		1	1	CII.
4969.966		8 Fe	3	15	0	d-	5012.10	0.3	252	Fe			1	
70.220			3	1	0 5	dr	.43	2	335	1.6	4		I	dr
4970.564		La			2		5012.		625	Ni	I	1	I	
4971.374		I Ni, C	e i	15	0	de	5013.89		871	Ti	I			bf
.661	21	, , ,		1	I	dr	5013.96		953	Ce	0	-	I	
4973.146		Ti-Fe	4	15	0	-3-	5014.25	2	369	Ti	0000		0	
.411			4	1	05	dr	. 58	2		Fe	2	1	1	dr
4974.638		1 - 1 - 1 - 1	0000		I	W	5016.21		457	1.6	3		0 [u
4975.491	- 530		00		2		.460		340	Ti	2		0	dr
4976.169	2		0		0	1	5017.		762	Ni		11	0	
. 633			I		0 1	dr	5018.519		102	181	3	1		bf
4978.368	-372		00		I		.727		529	Fe	4	12	5	dr I
4978.	. 785	Fe	3			bf	5019.740					11.	4	ui 1
4979.366	-391		. 000		0		5020.050		2	*****			0	
4980.132	.352	Ni-	4	150	Co	1.	347	2 . 2	809	Ti	2		I	dr
. 588)			4	110	of	dr	5022.222					13 :	1 1	ur
4981.462	-453		. 0000	1	0		. 574	21 4	14	Fe	3	1		dr
4981.773	.912	Ti	4	150	1 (.1	5023.		2	Ti		10	1	
2.049 1984.				1) 0	0 1	dr	5024.242		52	11	2			bf
1985.	. 297	Ni	2			bf	5024.900					0		W
986.290	.730	Fe	3			bf	5.195		27	Ti	3	10		dr
	.403	Fe	x	50	1	dr	5025.725	.7.	40	Ti		10	11	u.
986.982		7	-	10	5	UF	5025.950	.9			I	0		
988.291		La		. I			5027.	.30		Fe	000	0		W
989.010	. 313	17-	. 000	1			5029.	. 80		Fe	3			bf
. 264	-	Fe	2	0	1 4	dr	5030.103	.00						of
990.106	.325	Ti	00	I	1	31	5031.084	.0		Sc	0000	1	1	N
990.544	. 147	Nd	000	I			5031.172	.10		SC		I	1	
.739	.625	Fe	0	10	11.	ir	5032.244	. 25		C	3	3		
991.115				0	51	A.K.	5033.700	.71			0000	I	1	V
.348	. 247	Ti	3	I	1 6	lr	5034.354	-35		C	000	I	11	V
991.	450	E. I.		0	51		5034.568	. 53			0000	0		
93.533	.452	Fe, La	2		. b	of	5034.982				0000	0	1	
93.333	. 531	Fe	0	2		. 1	5035.	- 54		Ni	5	. 0		
95.220	. 208	re	3		. b	f	5036.306	.33			0000		. b	1
97.148	. 200		0000Nd?				5037.968			Ce	0000	0		
.407	. 283	Ti	0	10	d		5038.202					. 0	1	
00 554				0	1 4		.890	- 579	9	Ti	2	1 0	di	r
.815	.689	Ti, La	3	I	di		5039.	. 428	3	Fe	3	(0)	
	. 165	Ti	0	0	1		5040.020					1	. bi	
	.654 .	1.1		1			. 275	. 138)	Ti	3	{ I	di	
	.044	Fe	000	0	1		5040.602	. 644		C	0000	I	220	
	510	V	5	* * 6 * 1	. bi		5040.926	1.069		Fe	3d?		W	
	581	,	0000	0			1.380	. 255		Fe	4	I	dr	
	806	Fe	000	I	1		5041.066	. 795		Ca	2	6		
6	306	Fe	4		bf		2.125	. 936		Fe	4	2	dr	
0 3	398	Ti			bf		5042.	. 367		Ni	T I	2)		
6 66	461	Fe	3	I			5043.	. 761		CWO T	00		bf	
	401	re	2	I				,			00		bf	

TABLE I-Continued

OBSERVED	-	Rowla	ND	CHR.	REMARKS	OBSERVED		ROWLAN	ND	CHR.	9 9
λ	λ	Element	Intensity	INT.	REM	λ	Α	Element	Intensity	INT.	Privatoro
5044 . 232	-394	Ni,	3	{ I }	dr	5078.544	- 541	C	000	0	
		(00-10)		1		5078.883	.891	F2	0000	I	
5045.451	-454	TT- 2	. 00	0		5079.003	.158	Fe	3	0	dr
5047.951		He?		0		. 528)	.409	Fe	4	I	ui
5048.464	.612	Fe	3	0	dr	5079.	.921	Fe	4		bf
.770)			1 -	101		5080.275	. 288	C	0000	2	
5050.	.008	Fe	6		bf	5080.599	1	Ni		101	
5050.905	.919	C	000	0		.843	./14	1/1	4	1	dr
(051.558)	.683	Ni	1	1	dr	5081.736	. 764	Sc	000	2	
.960	.825	Fe	4	I	ar	5081.943	.942	C	000	0	
052.352	. 338		oN	0	W	5083.180	. 205	C	oooNd?	1	
052.795	.803		00	0		5083.383			000144.	101	
053.038	.056	Ti	0	I		.635	-518	Fe	4	0	dr
053.771	. 756		ooN	0		5083.806	.877	Sc	000	1	
054.253	. 261	Ti	000	0		5084.	.279	Ni	3		bf
056.200	.307	C	000	0		5084.840	.876				DI
057.866	.875		0000	0		5085.601		80	000	1	
058.509	.0/5		0000				.668	Sc	0	0	
	.674	Fe	00	0	dr	5086.394	.422		00	1	
.809				0		5086.602	. 570	C	000	I	
059.407	.409		000	0		5087.096	. 104	Sc	0000	0	
060.096	. 258	Fe	3	I	dr	5087.592	.601	Y	I	4	
.413)				I		5088.202	.175		000	I	
061.899	.882	C	00	0		5089.390	. 387		oooNd?	Ĩ	W
062.297	. 285	Ti	0	2		5089.997	0.004	Sc, Nd	0000	0	
063.353	-355	C	00	1		5090.810		TP-		101	
063.468	-479	C	000	I		I.100	-954	Fe	5	101	dr
063.909	.927		0000	0		5002.503	.483	C	00	I	
064.244	. 244	Ti	00	0		5092.984	.977	Nd	000	2	
064.671		Tr:		101	1	5093.868	.858	C	0000N	0	
.974	.836	Ti	3	II	dr	5095.332	.348		ood?	I	
	. 207	Fe	3	1		5096.665	.660		0000	0	
065.	.380	Fe	2	1	bf	5096.930	.908	C, Sc	000	I	
1	6.008		00			5098.309	.302	C	ooN		
066.972	7.039		900	I	W	5098.480		Č		1	
68.573	1.039)		,				.492		000N	0	
68.800				0		5098.	.885	Fe	3		bf
9.000	. 944	Fe	5	0	dr	5099.947	.957		000	1	
	503	Ti	boood	101		5100.821	.827		00	0	
069 542	- 592	11		0		5101.245	. 251	C, Sc	000	0	
070.164	. 165		00	0		5101.652	.655		000	0	
71.954	. 969		000N	I		5102.580	. 599		000	0	W
72.029	. 257	Fe, C	3	I	dr	5103.319	. 297	C	0000	0	
.551)				I		5103.894	. 909	C	000	I	
72.	. 849	Fe	2		bf	5104.089	. 083	C	0000	0	
73.238		C		0		5105.371	.356		0000	0	
73.630	.637	Ti	00	I	W	5105.571		E.		(0)	1
74.714	022	Fe	- 1	0	de	.825	.718	Fe	4	0	dr
5.096	. 932		5	05	dr	5106.525	. 556	C	0000	0	
75.500	.480	Ce	00	2		5106.776	.773	C	000	1	
76.194			1		dr	5107.495	.610	Fe	4	0]	
.731	.450	Fe, Ce	3 .	2	8	.905	.823	Fe	4	0	dr
77.690		Co .		0		5108.066	.056	C	900	I	
, ,		-		-		3.00.000	.030		~~~	A	

^{*}Solar line double.

TABLE I-Continued

OBSERVED		ROWLAN	D	CHR.	IRKS	OBSERVED		ROWLAN	D	CHR.	REMARKS
A	λ	Element	Intensity	INT.	REMARKS	A	λ	Element	Intensity	INT.	REM
5109.277	. 291	C	cood?	1		5135.835	1.752	С,-	000	1	w
109.	.827	Fe	2		bf	3.33.033	.880	C,-	000		
110.182	. 188	C	0000	0		5136.411	.443		000	0	
110.	- 574	Fe	5d		bf	5136.614	.625	C	0000	1	
110.921	.938	Cr-C	00	0		5136.851	.835	C	0000	0	
111.420	.426		0000	0		5136.985	.969		000	1	
111.806	.802	C	000	I		5137.	. 250	Ni, Cr	3		bí E
112.440	.458		000	4		5137.756	-753	Ċ,-	000	1	
113.244	. 240	Cr-C	0	0	*	5138.260	. 279	C	0000	0	
5113.596	.617	Ti	0	0		5138.496	. 518	V	0000	0	
114.402	.431	C	oooNd	I		5138.645	.690	C	0000	0	
114.732	.43.	La		2		5139.	.427	Fe	4		bf
5115.251				101		5139.539				101	3-
.754	. 566	Ni	2	101	dr	.775	.644	Fe	4	II	dr
5116.014	.045	C	0000	0		5140.002	.004	C	0000	0	
5116.837	.849	C, Sc	0000	I		5140.566	- 553	Ce	0000	0	
5117.050	.071	C	000	0		5141.389	. 386	C,-	000	2	
		Ce	0000	0		5141.775			000	SIT	
3117.331	. 334	C	0000	I		2.052	.918	Fe	3	1	dr
5118.278	. 241	C, Y	00	I		5142.288	. 279		0000	0	
119.296	. 292	C	000	0			.693	Fe	4d?		bf
119.541	- 555	C				5142.		Ni	2	1	OI
119.815	.820	C	0000	0		5142.966	.958	Fe			bf
5120.556	.516		000	111111		5143.	.III	C	3		DI
	.592	Ti	0	2		5143.499	.511	C	000	0	
5120.833	.802	C	000	0		5143.748	. 764		000	0	
5121.586	. 609		0000	0		5144.214	. 203		0000	0	
5122.459	.481	C	0000	0		5144.742	.758	C,-	000	0	
5122.596	.613	C	0000	0		5144.852	. 847	Cr, C	00	0	
5122.962	. 968	Co-C	000	0		5145.004	.098	C	0000	I	
5123.163	.178	La	000	2		5145.386	.403	C	0000	0	
5123.364	. 390	Y	0	2		5145.652	.636	Ti-C	0	0	
5123.751	. 800	Fe	3	0	dr	5146.304	. 291	C,-	00	4	
4.002	.099		3	101	CE I	5146.656	.059	Ni-	3	0	
5124.200	. 219	C	000	0		5146.941	. 945	Co-C	oood?	1	
5124.901	. 939	C	0000	0		5147.841	.871	C,-	000	I	
5125.876		Co		0		5147.983	.992	C,-	000	I	
126.212		Fo Co		10	dr	Q	1.222	Fe	2		bf
.520	.371	Fe-Co	2	101	G1	5148.	.410	Fe	3		
5127.382		F. Ti		0	dr	5149.209		C-Co		1	
.698	- 533	Fe, Ti	3	05	di	5150.340	. 363		00	0	
120.165	. 336	Ti?	3	01	A. T.	5150.844	.842	C	0000	2	W
.701	. 546	Ni	2	I	dr E	5151.	.020	Fe	4		bf
130.763	-757	C, Nd	000	5		5151.657	.628	C	0000N	0	
31.779	.771	C	0000	2		5151.953				101	da
132.512	. 523	C, Nd	000	I		2.220	2.087	Fe	3	101	dr
132.857	.843	C	00	2		5153.335	-337	C	0000	1	
5133.655			00	(I)		5153.442	.414	Fe-C	1	0	
	.870	Fe	4	K I	dr	5154.171	.4-4			101	1 *
4.008	500	C	0000	0			. 244	Ti-Co	2	10	dr E
5134.506	. 505	C		0		.346)	570	C	000	2	w
5134.862	.849	Y	0000			5154.552	. 579	C	0000	0	
5135.347	.355	1	0000	0		5155.050	.028		3000	9	

^{*} Blend.

TABLE I-Continued

OBSERVED		ROWLAN	ND.	CHR.	REMARKS	OBSERVED		ROWLAN	ID .	CHR.	REMARKS
λ	λ	Element	Intensity	INT.	REM	λ	λ	Element	Intensity	INT.	REM
5155.701	.694	C,-	000	1		5179.948	.958	Nd	000	2	
5155.945	.935	Ni	2	0		5180.066	1	T.		101	Ja
5156.518	. 530	Co	000	0		.388)	. 233	Fe	I	100	dr
5156.728	.728	C	0000	I		5180.746	-747		000	0	
5156.927		La		I		5181.351	-334		000	0	
5157.779	. 783	C	000	I		5182.754	.761		0000	0	
	.915	C	000	I		5183.604	. 101		0000	161	
5157.944 5158.	.152	Ni	000		bf		. 791	Mg	30	5	dr
		C	000	2	DI	.935	445	Fe	2	0	
5158.702	. 701	Co-C	0000N	I		5184.356	.445		1	1	dr
5159.072	.026					.718	.738	Fe, Ni	1	I	
5159.627	.634	C	000	I		5185.962	6.073	Ti	2	(0)	dr :
5159.937	. 946		0000	I		6.218				10	
5160.730	.419	C,-	ooN	I		5187.624	.620	Ce	000	2	
5160.569	. 554	C	0000	0		5188.753	.863	Ti	2	2	dr
5161.199	. 194	C	000	I		.903	.503	2.4		I	-40
5161.362	.353	C	000	I		5189.726	. 744		000	0	
5161.907	.910	C	000	I		5191.537	.620	Fo Co		I I	dr
5162.161	. 153	C?	0000	0		.761	.029	Fe, Ce	4	2 1	ur
5162.	. 449	Fe, C	5		bf	5192.160	.155	Cr	00	X	
5162.716	.600	C	0000	I	1	5192.784	. 785	Nd	000	2	
5163.064	.074	Ti. C	000	0		5193.025				101	
5163.573		C,-	000	0			. 139	Ti	2	0	dr
	. 585	C, La	000	0		. 255)	.660	Cr	000	0	
5163.769	. 756	C				5193.657		CI		0	
5164.004	.007	Č	0000	0		5194.018	.027		0000	0 %	
5164.163	.172		0000	0		5196.120	.227	Fe	I	I	dr
5164.395	.404	С,-	000	1		.340)		0		10	
5164.564	. 562		0000	0		5196.630	.613	Cr	0	0	
5164.942	.950	C	0000	0		5197.735	- 743		2	9	
5165.201	. 209	C	0000	2		5198.769	.888	Fe	3	10	dr
5165.290	. 297	C	0000	I		9.002	.000		3	101	
5165.436	.416	C	0000	0		5200.320	-355	Cr	00	0	
5166.320		Cr-Fe		101	dr	5200.577	. 590	V, Y	0	3	
.578	-454	CI-L6	3	101	ur	5201.250	. 260	Ti	000	I	
3167.364	.497	Mg	15	2	.1	5202.314	-439	Fe?	2	1	-la
.780	.678	Fe	5	I	dr	.626	.516	Fe	4	I	dr
160.	.060	Fe	3		bf	5203.126	.118		0000	0	
160.140	-		3			5204.564	.680	Cr	5	1	
,328	. 220	Fe	4	$\left\{\begin{array}{c}5\\8\end{array}\right\}$	dr E	.875	. 768	Fe	3	I	dr
170.970	0.27	Fe	0	0		5205.887	.867	Y	0	/	
	. 937	re	0	101		5206.		Cr-Ti		5	bf
171.659	.778	Fe	6	(dr		. 215	V	5		
.925				0		5200.739	.712	V	000	0	
172.706	.856	Mg	20	5	dr	5207.650	.791		oooN	10	dr
3.004	3-			4		.985				0	
173.782	.917	Ti	2	0	dr	5208.028	. 111	Ti	00	I	dr
4.056	.9.7			2 1	-2.5	.218				101	
175.528	575		000	0	dr	5208.483	. 596	Cr	5	I	dr
.659	. 575		300	105	CE S	-933	.776	Fe	2	05	104
176.330	. 305	Co	000	0		5210.196	. 204	Co	0000	I	
176.475		Ni		101	dr	5210.433		Ti	2	101	dr
. 939	.735	INI	I	101	ur	.687	- 555	1.1	3	101	ui
178.421			********	0		5211.006	.015	*******	000	0	
178.682	.644	V	000	0		5211.600	.700	Fe	00	0	

TABLE I-Continued

OBSERVED		ROWLAND		CHR.	ARKS	OBSERVED		ROWLAN	D	CHR.	
À	λ	Element	Intensity	INT.	REMARKS	λ	λ	Element	Intensity	INT.	
212.497	. 503	Ti, Nd	0000	2		5246.320	.310		0000	0	
212.854	.859	Co	oooNd?	2		5246.972	. 946		000	X	
213.156	. 155		0000	0		5247.461	.466	Ti	000	ï	
214.292	. 286	Cr	00	I		5247.	- 737	Cr	2		b
215.	-353	Fe	3		bf	5249.747	.751	Nd	0000	4	-
		Fe			bf	5250.178	. 193	Co	0000	I	
216.	437	Fe	3		bf	'	. 193	CO	0000	101	
217.	. 552	Fe	3		DI	5250.241	. 385	Fe	2	. 5	d
218.328	. 369	re	1	0		. 508				0	
219.201	. 186		0000	I		5250.667	.817	Fe	3	10	d
220.289	1.250		000	2		.968	,		3	II	
	1.358)	Ni	0			5252.832		Ce		0	
221.058	.078		000	0		5253.	.633	Fe	2		b
221.	. 928	Cr	0		bf	5254.822	.830	Co	0000	I	
222.	. 556	Cr	00		bf	5255.028	. 121	Fe	3	0	d
222.846	.849	Ti, Cr	00	I		. 280	. 295	Cr	0	IS	C
223.789	.791	Ti	000	1		5255.674	.687	Nd	0000	4	
224.246	. 239	Cr	000N	0		5255.996	.973	Ti	0000	0	
224.603	.712	Ti, Cr	00	1		5257.104	. 100	Sr	00	2	
. 24.093	1.101	Cr	0			5257.760	.814	Co	0	I	
5225.154		Cr, Ti,	00	I		5259.900	.012	Ce	0000	2	
	1.198	CI, 11,	00	(-)		5250.113		Ti		0	
225.546	.695	Fe	2	0	dr	0	.142	- 1.1	000		
.833	,,,,			10		5260.438	. 561	Ca	0	10	d
220.010	. 707	Ti	2	1 4	dr E	.673				101	
. 785				3 /		5261.750	.876	Ca-Cr	3	10	d
227.	. 362	Fe	5d?		bf	.979	.070		3	101	-
228.258	. 268	Cr	000	0		5262.293	.321	Ti	1	I	
228.405	6		_	101	da	5262.	.419	Ca	3		b
.702	. 546		1	101	dr	5263.	.486	Fe	4		b
230.	.030	Fe	4		bf	5264.055	.038	Fe	0	0	
230.195	-			101		5264.195	. 329	Cr	4	01	9
. 554	. 382	Co, Cr	00	101	dr	.527	.415	Ca	3	0	d
231.144	. 151		0000	0		5264.974	.976		0	4	
			0000	0				Cr	00	0	
232.676	.681	Fa			bf	5265.321	.321	Ca			
233.	. 122	Fe	7		DI	5265.570	.729		3	0	d
234.216	- 255	37 37 1	0000	0		6.011	.893	Ni-Cr	2	0)	
234 - 374	. 380	V, Nd	000	1		5266.459	.482	Co	000	1	
234.788	.791		2	8	dr?	5266.622	. 738	Fe	6	0	d
235 - 459	. 557	Fe	I	0	dr	.844	. 730			10	-
.838	.672	Ni	00	05	ai	5267.284	445		00	101	d
237.240	. 254	Ce	0000	I		. 568	-447		00	105	u
237.488	493	Cr	I	2	E	5268.515	.515	Ni	0	0	
238.644				101	1.	5268.665	.670		000	0	
.892	.742	Ti	000N	101	dr	5268.713	-	0		II I	
- /	. 992	Sc	I			.834	. 784	Co	00	1	d
239.975	5.0	30	-	3		5260.115	Tar		000	0	
240.637	.639	v	000	0			. 125			1 2 1	
241.028	. 040		000	I		5269.602	.723	Fe	8d?		d
241.944		Ce		0		.838				1 1	
242.517	.658	Fe	2	10	dr	5270.293	.438	Ca	3	0	d
.804	.050		-	105	CII	.664	. 558	Fe	4	01	-
243.514	. 526	Cr	00	0		5271.206	. 228		00	0	
243.	. 946	Fe	1		bf	5272.198	. 171	Cr	00	0	
	24		0000	0				1			

TABLE I-Continued

OBSERVED		, ROWLAND	D	CHR.	RKS	OBSERVED		ROWLAN	D	CHR.	S M
A	λ	Element	Intensity	INT.	REMARKS	À	λ	Element	Intensity	INT.	REMARKS
5273.200	.339	Fe	3	0	d.	5313.042	.031	Cr	0	0	
.638	. 558	Fe-Cr	2	I	dr	5313.768	.758		I	I	
5274.407	.408	Ce	00	3		5316.735		Y3-		181	3 7
5275.141	. 148		0	0		.842	.790	Fe	4	8 1	dr I
5275.340	.340	Cr	00	I		5316.965	.958	Co-	2	6	
5275.	454		I		bf	5318.537	- 534	Sc	ooN	1	
5276.149	. 160	Fe?	3	IO	O.	5318.975	.955	Cr, Fe	0	0	
5276.384		Co	000	0		5310.276	.392	0.,10	000	01	
	- 344	Nd	000	1		.660			000	0	dr
5277.040	.047	Nd					. 502	37.4		/	
5280.054	.048		0	0		5320.005	9.999	Nd	00	3	1.0
5280.256	. 239		00	. 0		5320.	. 220	Fe	0		bf
5280.803	. 799	Co	00	2		5321.	. 293	Fe	2		bf
5281.647	.681		000N	0		5322.964	. 994		000	2	
5281.858	077	Fe	-	10	dr	5325.468	.460	Co	00	1	
2.121	.971	re	5	105	uı	5325 - 745	.738		2	3	
5283.640	0	T-		101	1-	5326.144	. 139	Co	000N	0	
.929	.802	Fe	6	101	dr	5328.123				SI 1	
5284.281	. 281		I	6		.367	. 236	Fe	8d?	I	dr
5287.349	.351	Cr	000	0		5328.	.722	Fe	4	1	bf
5287.713	.741	Co	0000N	0		5330.744	.748	Ce	000	2	D.
5287.058		Co	0000.4	0			.840	Co, Fe	I	01	
	.958	Co	000	1		5332.727		Fe		7	dr
5288.554	. 705	Fe	2	10	dr	3.222	.089		4	0 1	
.805		77		101		5333.849	.832	Co	000	1	
5289.976	. 988	Y	000	0		5334.391	.403	Sc	000	0	
	0.984	La	000	0		5335.033	.050	Co	I	I	
5292.365	. 388		000N	0		5336.361	.356	Co	000	0	
5292.803	.762	Fe	0	0		5336.698	.660	Nd	0000	0	
5293.071	.044		000	0		5336.922	.974	Ti,-	4	3	wE
5293 - 334	-34I	Nd	00	3		5337 - 517		Co		0	
5293.550	. 543		000	0		5337.897	.010	Ce	0	2	
5296.	.872	Cr	3		bf	5339.708	.710	Co	000	0	
297.399	.407	Cr, Ti	000	0		5340.	.121	Fe	6		bf
298.334	.40/		000	501		5340.651	.639	Cr	0	0	
	455	Cr	4	101	dr	5341.	.213	Fe	7		bf
.574)		Ti					-	Co	00	1	OL
300.150	.152	11	00	0		5341.490	.514	Ti			bf
300.784	.929	Cr	2	10	dr	5341.	.670		000		Di
1.062	,,-,			1 1		5342.892	.890	Co	I	3	
302.145		Sc, La		2	W	5343 - 552	.570	Co	0	I	
302.	.480	Fe	5		bf	5343	.622	Fe	2		bf
302.818	.829		000	0		5344 - 770	.767	Co	000N	0	
303.364	.401	Ce	0	0		5345 -	.991	Cr	5		bf
303.718	.738	La	000	2		5347.687	.712	Co	00	0	
306.035	.040		0	1		5348.	.511	Cr	4		bf
306.640	.665		000	I		5349.286	. 283	Co	000	0	
307.405				101		5349.506				101	1
.648	. 541	Fe	3	10	dr	.792	.653	Ca	4	101	dr
		Ce	0				050	Mn	00	0	
308.594	. 599			I		5350.052	.059	MIII	00		
310.392	.417	Co	000	0		5350.283	. 281			I	
310.882	.866	*******	0	0		5350.537	- 547		00	2	
311.634	.650	Nd	000	1		5351.253	. 261	Ti	00	0	
311.953	.962	*******	000	0		5352.237	. 234	Co	I	2	
312.838	.835	Co	00	1		5352.625	.591	******	000	0	

TABLE I-Continued

OBSERVED		ROWLAND	D	CHR.	REMARKS	OBSERVED		ROWLAN	D	CHR.	Deware
λ	λ	Element	Intensity	Int.	REM	A	λ	Element	Intensity	Int.	Dev
353.703	.702	Co	0	6		5406.391	. 388		0000N	0	
350.291	.270	Sc	000	0		5407.413	. 587	Mn	50 .	I	dr
357.160	.178	Nd	000	1		.824	.688	24111	0	I	CIL
358.167				101	1	5409.253		Fo Co		10	dr
.460	.306		00	101	dr	.444	-339	Fe, Ce	2	2 5	aı
359.098	.127	Co	000N	0		5400.833	.823	Ti	000	I	
359.386	. 389	Co	00	1		5410.	.000	Cr	4		bf
359.695	.714		000	0		5411.448	.428	Ni	1	1	W
361.666	.697	Nd	900	4		5411.774	. 764		0000	0	
363.052	.058	Co-	3	8		5412.868				101	1
366.947	.950	Co	000	0		3.152	997	Mn	00	105	dr
			000	0		5413.880	.889	Mn	ooN	0	W
368.729	.741	Со	0000	0		5414.205	. 279	Ce	00	3	
369.100	-	Cr	ooN	0		5415.	.416	Fe-V	5	3	bf
370.540	.522	Cr?		2		5416.618	.587	Nd	0000	I	291
371.534	.656	Fe	4	I	dr		. 307		0000	101	
.794)	-734)	Nd	3	1		5417.135	. 247	Fe	0	0	dr
372.120	.121	Nd	000	3		.362				0	
373.800	.905	Fe, Cr	2	10	dr	5418.211		Ti	I	2	W
4.033)				101		5418.972	.979	11			64
375.558	.516	Sc	000	. 0	1.0	5420.369	.510	Mn	ON	1	dr
377.	.028	Fe	0		bf	.756)	.613		ON		
377.798	. 800	Mn	2N	I	E	5421.176	.134	LTA.	00	I	w
379.652	.775	Fe	3	10	dr	5421.780	. 783	Nd	0000N	1	W
.883				101		5424.764	.860	Ni	I	0	dr
5380.	. 516		oN		bf	.982				101	
381.152	. 221	Ti, La	2	2	E	5425 - 473	.464		I	4	
381.468	-514	Co	0000	1		5428.704		******		0	
381.955	.980	Co	000	I		5429.362	.349	Ti	00	2	
383.201	. 209		000	0		5429.	.717		I		bf
386.092	.089	Nd	000	I		5429.802	.011	Fe	6d?	I	dr
386.977	. 989	Ce	0000	I		30.012	.911		ou.	I	
387.778	.769	Cr	00	0		5430.	.062		0		bf
390.194	. 203	Ti	000	0		5431.720	.747	Nd	000	1	W
390.600	. 573	Cr	000	0	W	5432.608	250	Mn	ıNd?	I	dr
391.535	.660	Fe	2	1	dr	.924	.753		1240.	I	4.
.921	.820	Fe	I	I	ui	5433.195	.160	Fe	2	, I	
393 - 573	. 584	Ce	000	3		5434.637	740	Fe	-	101	dr
394.	.876	Mn	2		bf	.855	.740	1.0	5	101	CIA
395.317				101	J.	5444.796	. 796	Co	00	3	
. 555	.422	******	0	101	dr	5446.425	.436	Sc	0000	0	
396.453	.448		00	0		5446.643		an:		101	-
397.229			10	11 I	1	.996	-797	Ti	2	1 1	dr
.459	-344	Fe	7d?	I	dr	7.245	7.130	Fe	6d?	0	
399.694	.675	Mn	rNd?	0		5447.726	.737		000	0	
400.802	.831	Cr	oN	0		5448.411	1			501	1.
402.158	.151	V	0000	1		.600	.582	******	00	100	dr
402.136			3000	0		5449.427		Ce, Nd		0	
402.080	.982	Y	0	2		5451.317	.330	Ce, Nd	000	I	
	.102	Cr	00 .	0		5452.	.300		00		bi
405.190	1	-	1	0	bf	5454.313	.326		000	0	1
405.	- 554	*******		101		5454.776	.783	Co	00	2	
5405.874	.989	Fe	6	0	dr		.834	Fe	4		bf
6.102				10)	1	5455	.034		-9		-

r E

REMARKS

E

TABLE I-Continued

OBSERVED		ROWLAN	D	CHR.	VRKS	OBSERVED		ROWLAN	D	CHR.	
λ	λ	Element	Intensity	INT.	REMARKS	A	λ	Element	Intensity	INT.	
457 -	.670	Mn	00		bf	5505.950	6	Ma		101	4
460.558	.721	Ti	00	[0]	dr	6.221	6.095	Mn	I	101	di
.897		Ni		0	bf	5506.697	.719	E-	000	0	1
462.	. 705		I	10	DI	5507.	.000	Fe V	5		b
464.390 .602	.490	Fe	0	0	dr	5508.852	. 840		000	0	
466.472		T.		10	1	5510.006	.120	Y	0	3	
.779	.609	Fe	3	101	dr	5510.832	.820		00	0	W
468.578	.601	Ce	oooNd?	2		5510.946	.942		00	0	
470.634	.802	Mn	50	I	dr	5511.653	.644		000	0	
1.018	.883		0	I	ai	5512.280	. 266	Ce	00	3	
472.499	. 503	Ce	000	2		5513.005	. 198	Ca	4	0	d
473.581	. 594	Ce	000	I		. 360	1	0.0		101	
473 - 955	4.113	Fe	3	0	dr	5513.780	.769	CROS	0000	0	
4.278				0		5514.427	. 563	Ti	2	0	d
474.278	.436	Ti?	00	0	dr	.890	-753	Ti Mn	2	0	
.628				0		5516.803	.950	Mn	0	0	d
7.248	7.123	Ni	5	0	dr	7.137)	.034		000	0	
477.929	. 901	Ti	00	0		5519.605	.633	Sc	ooN	0	
178.558	.578	**	00	0		5521.770	.799	Y	00.4	1	
180.916	-	W1		501		5522.483				101	
1.235	1.071	Fe	I	101	dr	.828	.665	Fe	2	101	d
181.	.652	Fe, Ti	I		bf	5523.810	. 783		000N	0	
81.925	2.078	Ti, Sc	00	101	dr	5524.686	.684		000	0	
2.186	2.0/0	,	00	105		5525.332	- 347	Co	00	I	
183.	. 307	Fe	I		bf	5525.	. 765	Fe	2		b
484.826	. 846	Sc	000	0		5526.427	.405		000.	0	
185.229	. 266	Nd	0000	0		5526.976	7.033	Sc	3	2	di
185.901	.915	Nd	0000	2	1.0	7.108				2 5	
187.	.354	Fe	I		bf	5527.776	.796	Y	oood	0	
87.799	. 959	Fe	3	0	dr	5528.092	.084	Ma	0000N 8	0	bi
188.306	.374	V-Ti	ooNd?	0		5528. 5530.892	.641	Mg	0	101	
89.879	.893	Co	000	2	W	1.100	.997	Ti	ooN	0	di
190.	. 367	Ti	0		bf	5532.336	-353		000	0	
90.892	.905		0	2		5532.794	.968		I	0 1	1
91.890	.807		0000	0	W	3.239	.002		0	0	dı
93.092	.095		00	I		5534.061	.011	Nd	oood	0	
193.584	700	Fe	1	501	dr	5534 - 527	. 504		000	0	
.814	.709		1	101	ui	5535.058	.061		2	7	
94.223	. 193	Nd	0000	0		5535 - 424	.644	Fe	2	101	di
97.607	.735	Fe	5	I	dr	.830		10		101	
.842				101		5536.304	.300	A	000	0	
98.107	. 105		000	0		5536.518	.492	Me	000	0	
98.931	955		0000	0		5537.824	. 928	Mn Mn	00	0	di
01.546	.683	Fe	5	0	dr	8.098	.025	MIII	0000	0	
.807				0		5540.210	.192	* * * * * * * *	0000	101	
433	. 286	Fe	I	1	dr	4.324	4.157	Fe	2	0	dr
1433)	.117	Ti, La	0	2		5544.834	.831	Y	000	2	

TABLE I-Continued

dr

bf

W

dr

dr $d\mathbf{r}$

dr

bf dr

bf dr

lr

lr

lr

lr

OBSERVED		ROWLAND	D	CHR.	REMARKS	OBSERVED		ROWLAND	D	CHR.	Danston
A	λ	Element	Intensity	INT.	REM	λ	λ	Element	Intensity	INT.	
546.164	. 147		000	1	W	5595.914	. 906		0000	0	
546.	.732	Fe	2		bf	5598.358	. 524	Fe	T	0	d.
547.108				101	1	.845	.711	Ca	4	I	dı
.323	. 215	Fe, V	I	101	dr	5599 - 533				0	
549.990				0		5601.348		0		101	
553.308	.346		oooN	0		.628	. 505	Ca	3	101	di
	.196	-	000	0		5602.923	.995	Fe	I	1	
557.137	. 287	Ce	000	0	dr	3-00.903	3.083	Ca	3	1	di
	.136		0	0		3.305	. 186	Fe	4	1	-
558.137	.068	V	ocoNd?	0		5603.867	.100	10	4	101	
559.080	.000		000.44:	1		1	.993		00	10	di
560.278	. 434	Fe	2	0	dr	4.131)			000	0	
.503)				101		5606.108	.122				1.4
560.896	.911		0000	0		5607.	.887	******	00		bi
562.773	.933	Fe	2	(0)	dr	5608.386	-393	Co	000	0	
3.004	750			0		5610.461	.467	Ce	000	1	
563.674	.824	Fe	3	0	dr	5612.556	. 573	Co	000	0	
.984				101		5613.904	.929	Ce	000N	0	
565.709	. 700	Ti	00	I		5614.992	.997	Ni, Ce	0	0	
565.	.931	Fe	3		bf	5618.144	. 130		000	0	
567.337	. 367		0000N	0		5618.712	.858	Fe	1	10	d
567.488	.621	Fe	2	10	dr	9.016	.030	10		0	44
.7325	.021	1.6	-	0	(III	5619.669	.824		0	10	d
569.249	. 249		0000	0		.931	.024		0	101	CI
569.662	0.0	Fe	6	101	dr	5620.506		Fe	0	101	d
.968	.848	re	0	105	dr	.850	.715	re	0	105	Q.
576.	. 320	Fe	4		bf	5621.422	.438		000N	0	
578.746		***		100	1-	5622.970	.996		000	0	
0.106	. 946	Ni	I	101	dr	5624.116		T.		101	.1.
580.663	.672		000	0		.373	. 245	Fe	I	0	di
882.063			-	(I		5625.102	.006	V	000	0	
	. 198	Ca	4	1	dr	5625.745	.755	,	000	0	
.324	. 186		000	0		5627.006	.034	1	000	0	
583.174	.720	V	000	0		5627.718	.723		000	I	
584.700	.988	Fe	0		bf	5628.190	. 239		000N	0	
584.		1.0	000	0	Di			Ce	000.4	0	
585.396	-397		000	SIZ		5633.351	* * * * * *			101	
586.886	.991	Fe	7	0	dr	5633.994	4.171	Fe	3	10	d
7.094		1		12 6		5636.		Fe	1	(0)	b
587.727	.800	Fe	0	0	dr		.045	1.0	1	101	O.
889				0		5638.365	.488	Fe	3	0	d
588.836	. 985	Ca	6	1	dr	.646)				(0)	1
9.122	9-3			1		5641.	. 206		1	2 3	b
589.431	. 582	Ni	0	0	dr	5641.551	.667	Fe	2	10	d
.768	. 302			0	-	.791)				10	
590.222	242	Ca	3	I	dr	5642.	.112	Ni	0		b
.465	. 343			1 1	1	5644.348	.365	Ti	0	2	
591.024	.039	Ti	000	0		5645.	.830	Si	I		b
591.574	. 586	Sc	000	0		5646.810	. 904		00	101	d
592.378	-375	Ni	0	I		.990	.904		00	101	d
592.	.487	Fe, Ni	I		bf	5648.792	. 796	Ti	00	I	
593.858				101	de	5649.652	.611	Cr	ooN	0	W
4.078	.961	Ni	0	0	dr	5649.	.898	Fe-Ni	od		b
41-1	.601	Ca	4	1	bf	0	1			1	1

TABLE I-Continued

OBSERVED		ROWLAN	D	CHR.	REMARKS	OBSERVED		ROWLAN	D	CHR.	D E MARKS
λ	λ	Element	Intensity	INT.	REM	λ	A	Element	Intensity	INT.	Drw
5651.532		r.		101	1	5698.754	. 746	V	I	2	
.817	.691	Fe	0	100	dr	5700.356	.402	Sc	00	0	
652.440		-		10		5701.	.323	Si	IN		bí
.640	- 542	Fe	1	101	dr	5702.455	.3-3			101	
653.934				101		.676	. 543	Cr	0	101	dr
4.268	4.001	Fe	I	10	dr	5702.857	.876	Ti	000	1	
				0		5703.580	.591	* * *	0000	0	
655.562	.715	Fe	2	0	dr			V	I	I	
.884)		Y, Sc			w	5703.785	- 797	,	1	101	
658.106	.007		2	I	W	5705.969	6.215	Fe, Nd	3	1	dr
658.578	. 561	Sc	0	3		6.424)		3.7		1	
658.643	.753	Fe	I	0		5707 202	. 204	V	0	0	
}	. 884	Cr	0	1	dr	5708.470	.622	Si, Nd	3N	1	dr
9.170	.052	Fe	4	0)		. 769				10	
661.402	.418		0000	0		5709.472	.601	Fe	5	0	dr
662.344	-374	Ti	0	ī		.947	.775	Ni	5	0	44.8
663.134	. 155	Ti, Fe, Y	I	3		5711.123	272	Mg	6	10	dr
664.	.218	Ni-Cr	IN		bf	.462	.313		0	10	ai
664.770	. 797		000	0		5712.	. 098	Fe	3		bf
665.632		e:	- 3"	I I	d.	5712.	.357	Fe	2		bf
.884	-775	Si	ıN	101	dr	5714.102	. 120	Ti	000	1	
667.364	. 368	Sc	0	2		5714.	. 380	Fe	0		bf
667.634				101		5715.473		Ce		X	
.855	- 739	Fe	2	101	dr	5716.653	.671	Ti	00	0	
668.586	502	V	000	0		5718.	.055	Fe	4		bf
	- 593	Ce, Nd	0000			5723.986	.033	10		101	
669.136	.130	Ni Co		I			4.107		0	0	dr
670.154	. 163	Ni, Ce	0	0		4.224)		Ti-V	2N		
671.066	.071	V	0	I		5727.242	. 271			2	
671.715	.712		00N	0		5729.122	.096	Y	ood;	0	
672.039	.047	Sc	0	I		5730.114	.116	***	0000	0	
677.732	.919	Ce	00	10	dr	5731.399	-437	V	00	I	W
8.095				101		5731.845	. 984	Fe	4	10	dr
679.	. 249	Fe	3		bf	2.146)				101	-
682.695	.860	Na	5	1	dr	5732.941	.948		000	0	
3.026	.009		3	1 1	41	5737.300	. 288	V	0	0	
684.415	.415	Sc	I	2		5740.182	. 195	Ti	0	0	
687.056	.063	Sc	000	1		5748.018	.176	Fe	2	10	dr
687.	.697		0		bf	.374)	.170	re	4	0	ai
688.267		37		[1]	J.	5750.757	.723		000	0	W
.619	. 436	Na	6	II	dr	5753.701		C	- 87	101	.1
688.736	.759	Nd	0000	3		.997	. 860	-Cr	ıN	101	dr
689.694	.694	Ti	0	I		5754 . 750	0.0	3.71		101	.1-
600.251	. 286		0000	0		5.024	.881	Ni	5	101	dr
690.484			3003	101		5756.390	.410		0000	0	
.770	. 646	Si	3	0	dr	5758.738				0	
				0		5758.967	.978		000	0	
693.669	.865	Fe	3	0	dr	5760.go8	.9/0		300	101	
4.056	060	Cr	0	1			1.052	Ni	2	0	dr
694.959	. 962		_	I		1.194				3 4	
695.180	. 207	Ni	2	0		5761.678	. 800		0	0	dr
696.905	. 869		0000N	0		.906)		Tr:		0	
698.051	.047		0000Nd?	0	1.0	5762.474	-479	Ti	oooNd?	3	
698.	. 242	Fe	0		bf	5763.084	.218	Fe	6	0	dr
598.	. 555	Fe, Cr	1		bf	.359)				I	

TABLE I-Continued

bf $d\mathbf{r}$

dr

dr dr dr bf

bf

of lr

lr

lr

lr

r.

OBSERVED	ROWLAND			CHR.	ARKS	OBSERVED	ROWLAND			ÇHR.	
	λ	Element	Intensity	INT.	REMARKS	À	λ	Element	Intensity	INT.	Dry
766.547	. 550	Ti	0	2		5857.518	.674	Ca	8	[0]	dı
769.094	.120	Ce	000.N	1		,820				101	
769.285	. 295	La	000	2	W	5862.	. 582	Fe	6		bi
	.714	Ce	oooNd?	I	W	5863.906	.933	La	0000	1	
770.741	.630	V	000	0		5866.548		Ti	2	I	d
772.628.		Ti	0	2		.800	.675	11	3	101	
5774 - 243	. 250	11	9	101		5867.	.785	Ca	2		b
5775.100	.304	Fe	4	10	dr	5875.838		He		50	
.422				1	w	5876.174		He		5	
775.970	. 969		0000	0	W		. 506		0000	0	
5780.922	1.024	Fe	0	0	dr	5879.514	.028	Fe	4		b
1.202	. 130	Cr, Ti	00	0		5884.		1.6	4	1	
5782.198	.313		3	0	dr	5889.979	0.186	Na	30	3	d
.507	. 390	Cu?	3	0		90.376				3	
5784.760		Ea		10	dr	5895.984	6.155	Na	20	3	d
.992	.879	Fe	1	0	CH	6.347	2.233			3 3	
5785.372		r.		10	dr	5905.725	.805	Fe	4	0	d
.625	. 498	Fe	3	1	dr	6.073	.093		4	10	1
5786.200	. 193	Ti, Cr	oN	3		5916.340		Fe	2	[1	d
		14, 04	000	I		.623	-475	1.6	3	0	
5786.416	373	Cr	4		bf	5930.	.406	Fe	6		b
5788.	. 141		000	1		5937.828		rm:		101	d
5788.572	.504	Cr	000	0	W	8.222	8.035	Ti	000	10	u
	1.611	Cr	,	-		5949	. 566	Fe	I		b
5789.551	. 565		0000	0			.943	Fe	4		b
5791.064	. 174	Cr	4	0	dr	5952.	.943		4	101	
.366	. 243	Fe	3	I		5956.770	.923	Fe	4	0	d
5793.127			2) 0	dr	7.084				2 4	
.421	. 292		3	0	(11	5965.864	6.055	Ti	2	0	d
5794.020		Fe		50	dr	6,231	33			I	-
. 243	. 137	re	2	1	di	5967.684	.720		0000	I	V
5797.816	.815	Ti, La	000	2		5978.696	. 768	Ti	T	0	d
5798.	.077		3		bf	.858	. 700	1.		10	
5804.473	.479	Ti	0	2		5983.760	.908	Fe	5	0	d
5804.473	.006	-	0000	I	w	4.040	. 900	10	3	10)	
	. 986	La	0	0		5985.	.040	Fe	6		b
5805.992		Fe			bf	5987.140		Fe	-	10	d
5809.	-439	Nd	oooNd?	I	W	.451		re	5	0	
5811.825	.823			1	bf	5991.605	.600		2	3	
5812.	. 139	Fe	0		bf	6003.079	.000	_	1	10	
5815.	.441	Fe	0	1	DI		. 239	Fe	6	0	C
5817.159	. 200	V	0	10	dr	.416			00	0	1
.456	. 299			10		6006.587	.605		00	101	
5817.726	.708		000	0		6008.632	. 785	Fe	6	0	d
5827.968	0		0	0	dr	.941					
8.253	8.097		0	10	Ca.	6013.556	.715	Mn	6	I	0
5830.891	.895	V	000	0		.878	1.1.3			I	
5835.482	.475	1	000	0		6016.700	.861	Mn	6	I	0
5842.619	.600	Nd	000	I		7.015	.001	248.00		l I	
				10		6018.000				. 0	
5845.346	.509		0	10	dr	6021.853	1	Mn	6	JI	1
.612		V	00	I	1	2.171	2.016	MIN	0	I	
5846.494	.487		00		1	6024.	. 281	Fe	7		. 1
5853.796	.002	Ba	5	I I	dr	6027.133				I I	1
4.012		273		(1	1.6			Fe	4	10	1
5855.	. 300	Fe	I		. bf	.421	1			1	-

TABLE I-Continued

		ROWLAND			S		ROWLAND			CHR.	REMARKS
OBSERVED			Intensity	CHR. INT.	REMARKS	OBSERVED	λ	Element	Intensity	INT.	REM
	λ	Element				6162.	.390	Ca	15		bf
5034.416	.440	Nd	0000	101	. 1	6165.	- 577	Fe	3		bf
5042.155	.315	Fe	3	101	dr E	6166.521	.651	Ca	5	0	dr
-447)	-	Ce		I		.790	-	Ca	6	(0)	bí
6043.580	227	Co	000N	I	W	6169.	. 249	Ca	7		bí
6049.327	-337			101	dr	6169.	.778			10	dr
6056.178	. 227	Fe	5	10	Ca.	6173.426	- 553	Fe	5	101	
6060.860	.853		0000	0		6180.	.420	Fe	5		bf
6065.557		Fe	7	I	dr	6188.080		Fo	4	0	dr
.852	.709	re		\ I)		.331	. 210	Fe	4	1	
6078.420	.410		0000N	0		6101.	. 393	Ni	6	1:	bf
6081.655	,665	V	oooNd?	0		6101.612		Fe	9	0	dr
6082.628	.640	Co			bf	.930	.779		1	1	,
6082.	.930	Fe	I	2		6199.392	. 398	V	0	1	1
6084.320	.325	Ti, Fe	2		bf	6200.370	. 527	Fe	6	K	dr
6085.	.470	Co	0000N	I	W	.680		Ni	1		. bf
6086.874	.429	Ti, V	2	0		6204	.825	Sc	ooN	0	
6090.406	,429			101	dr	6210.869	.895			SI	dr
6091.231	. 395	Ti	0	0		6213.497	.644	Fe	6	I	{
6092.114	.133		I	1		6215.241	. 360	Fe	5	0	dr
6098.864	.870		00	T		.489	.300	1.0	3	1	3
6102.780	.937	Ca	9	I I	dr	6219.378	.494	Fe	6	I	dr
3.105		Fe	4		bf	.660	.494			10	1
6103.	∫.400	Fe	1		bf E	6229.340	-437	Fe	I	10	dr
6108.164	1.514		6	I I	dr	.539		V-Fe	8		. bí
.500	-334	Ni	0	0)	6230.	.943	**		JI	dr
6111.	. 200	Ni	2		. bf	3.040		Fe	3	1	
6111.864	0		od;	I		6237	- 534		. 3		bi
6113.551	0		. 0	I		6238.592			2	3	
6119.736		V	I	0	E	6239.611	-		00	0	
6119.956		Ni	0	1	bf	6240.737		-	3	{ I	
6122.	-434	Ca	10	10	3	.988		,		0	
6125.054		Ni	I	0	dr E	6243.300			I	0	
.403	5)		ooN	I	1	6245.802		Sc-		f I	3
6135.562	. 580		0	J X	dr	6246.398		5 Fe	8	1	dr
6136.663		Fe	8	I		.666)	¥2	2	2	E
6137.	.91	Fe	7		bf	6247.777		*		5 1	
6141.810	67	D		{ 2	dr	6252.658		3 Fe	7	10	
2.06				2		6256.	-57	2 Ni-F	e 6		-
6146.42	se r	5 Ti	000	2	900	6265.198	3.7		5		dr
6147.93	2 .95		2	2	977			0 10	3	13	0 1
6149.45	7 .45	8 Fe, No	d 2 oNd?	0		6270.250		₂ Fe	3	12	di
6150.33			0000	1		.608	5)		-	1.7	1
6151.03		92.	4		1.6	6272.23		Ce			0
6151.	.83	4		50	3	6274.04					- 3
6154.31			2	10)]]	6280.67	- 21 .01	Fe		11	I J
6157.	. 94	5 Fe	5		bf	6287.02		og V	0000	1	0
6160.	.95		3		DI	0207.02	0			1	

TABLE I-Continued

319) 5298. 5301. 560 871 5302. 560 861 5305. 873 5311. 610 834 6314. 6318. 6322. 713 3.091 6324. 759 6324. 759 6327. 615 8. 034 6330. 126 489	λ .184 .007 .718 .709 .878 .722 .876 .028 .239 .907	ROWLAND Element Fe Fe Fe Fc Sc Fe Ni Fe	Intensity 4 5 7 5 0000 1 4	CHR. INT.	dr bf dr dr	085ERVED 6417.120 6420. 6421.402 .753 6430.870 1.251 6432.870	.133 .169 .570 1.066	Fe? Fe Fe Fe Fe	Intensity 1 4 7 5	3 (o) (o) (o)	E bf dr
319 3301.560 871 3302.560 871 3302.560 861 33031.610 834 6314.6315.805 6.241 6318.6322.713 3.091 6324.759 6324.759 6327.615 8.034 6330.126 489	.007 .718 .709 .878 .722 .876 .028	Fe Fe Sc Fe Ni	5 7 5 0000	{ o } { o }	bf dr dr	6420. 6421.402 .753 6430.870 1.251 6432.870	. 169 . 570 1. 066	Fe Fe	4 7 5	{ o } o }	bf dr
319 301. 560 871 302. 560 861 305. 873 3311. 610 834 315. 805 6. 241 6318. 3. 391 6322. 713 3. 991 6324. 759 6327. 615 8. 034 6630. 126 489	.007 .718 .709 .878 .722 .876 .028	Fe Fe Sc Fe Ni	5 7 5 0000	{ o } { o }	bf dr dr	6421.402 .753 6430.870 1.251 6432.870	.570	Fe Fe	7 5	{ o } o }	dr
1298	.718 .709 .878 .722 .876 .028	Fe Fe Sc Fe Ni	7 5 0000 1	0 { 0 } 0 } 1 0 }	dr dr	.753 6430.870 1.251 6432.870	1.066	Fe	5	0	
301.560 871 302.560 861 305.873 3311.610 834 6314. 3315.805 6.241 6318. 6322.713 3.091 6324.759 6327.615 8.034 6330.126 489	.718 .709 .878 .722 .876 .028	Fe Fe Sc Fe Ni	7 5 0000 1	0 { 0 } 0 } 1 0 }	dr	6430.870 1.251 6432.870	1.066	Fe	5	10	,
871 302 . 560 861 305 . 873 3311 . 610 834 6315 . 805 6 . 241 6 . 618 3 . 091 6 . 322 . 713 3 . 091 6 . 324 . 759 6 . 324 6 . 326 8 . 34 6 . 34 6 . 326 8 . 34 8 . 34	.709 .878 .722 .876 .028	Fe Sc Fe Ni	5 0000 1	{ o } i { o }	dr	1.251 6432.870	-				
0302 560 861 861 3305 873 0311 610 834 6314 6315 805 6 241 66318 6322 713 3 091 6324 759 6327 615 8 034 6330 126 489	.878 .722 .876 .028	Sc Fe Ni	0000	100		6432.870	-	Ea2			dr
861 3305, 873 3311, 610 834 6314, 6315, 805 6, 241 6318, 6322, 713 3, 091 6324, 759 6327, 615 8, 034 6330, 126 489	.878 .722 .876 .028	Sc Fe Ni	0000	1 0			. 005		I	6	
3311. 610 .834 6314. 6315. 805 6.241 6318. 6322. 713 3.091 6324. 759 6324. 759 6327. 615 8.034 6330. 126 .489	.722 .876 .028	Fe Ni	1	101	W		- 93			II I	dr
834 6314 6315 6316 6318 6322 713 3.091 6324 759 6327 6334 6330 126 489	.876	Ni				6439.113	. 293	Ca	8	1 1	ar
6314. 6315.805 6.241 6318. 6322.713 3.091 6324.759 6327.615 8.034 6330.126 .489	.876	Ni			dr	6449.844		0	6	101	dr
6315.805 6.241 6318. 6322.713 3.091 6324.759 6324.759 6327.615 8.034 6330.126 .489	.028		4	1	bf	50.253	0.033	Ca	6	105	CAL
6.241 6318. 6322.713 3.091 6324.759 6327.615 8.034 6330.126 .489	. 239	Fe		10		6455.218	. 230	Co	oN	I	
6.241) 6318. 6322.713 3.091) 6324.759 6327.615 8.034) 6330.126 .489	. 239		1	0	dr	6455.602		Ca	2	0	dr
6322.713 3.091 6324.759 6327.615 8.034 6330.126 .489		Fe	6	(0)	bf	6.043	.820	Ca	2	10	
3.001 6324.759 6327.615 8.034 6330.126 .489	007	re	U	[0]		6456.597	.603	Fe	3	5	E
6324.759 6327.615 8.034 6330.126 .489	.401	Fe	4	0	dr	6462.	.784	Ca	5		bf
6327.615 8.034 6330.126 .489				. 0		6469.	.408		2	7 - 3	bf
8.034 6330.126 .489				10	dr	6471.677	.885	Ca	5	I	dr
6330.126	.820	Ni	2	10	ar	2.109				1 1	bí
.489		0		50	dr	6475	.846	ero:	2	0	E
	.316	Cr	I	0		6491.810	.800	Ti	1	10	
033.	.c67	Fe	2		. bf	6493.805	4.004	Ca	6	10	di
6335.409		Fe	6	10	dr	4.232				1 2	
.689	- 554	re	0	0	[6496.978	7.128	Fe	4	2	di
6006 8001	200	Fe	7	10	dr	7.201	3			10	d
7.341	7.048	10		I		6498.995	9.168	Fe	1	10	G
6347 - 335	.310		2.	2	1	9.371 6499.676	1	0		10	d
6355.045	. 246	Fe	4	0	dr	6500.096		Ca	4	0	1
.488	4 -			0	3	6516.310		Fe	2	7	E
6358.722	.898	Fe	6	10	dr	6527.198	1		I	I	d
9.045)		Zn	1	0	1	.656			1	0	1
6362.579	. 560		1	10	1 .	6546.311	51	Ti-Fe	6	10	d
6362.630	3.090	Cr, Fe	2	10	dr	.675	-479	11-10		10	2
3.204		_		10	dr	6554.322		Ti	0	\{ I	d
6364.455	- 575	Fe	1	10) di	.625			ooooN	0	1
6369.663	.683	Fe	0	4		6555.087	.080		iN	0	
6371.592	. 573	Fe	rNd?	2		6555.718			114	10	1 .
6378.	.468	Ni	2		. bf	6559.659			0	10	d
6380.762		Fe	4	10	dr	. 949				20	1
1.140	.958	1.6		10)	6562.299		Н	40	10	10
6381.836	.844		. 0000	0	w E	3.618		**	-	10	
6383.916	.932	Fe	oN	I	w E	6569.	.460	Fe	5		. l
6390.706	.715	La	000	I	bf	6586.54		2.71	I	0	1
6393.	.820	Fe	ooNd?	0		6599.320		Ti	00	0	
6395.390	.378	Co	0000	0		0399.3	333				
6408.606	. 587	Co	0000	50	1 .						
2.070	.865	Fe	7	10							

sun's visible edge, it seems certain that the results of these observations relate to a very low level in the reversing layer. We are, therefore, quite unable to agree with Mitchell in his conclusion that the spectra taken without an eclipse are at a higher level than the eclipse photographs. In fact the arguments which he adduces, namely, the absence from the Mount Wilson negatives of some strong Fraunhofer lines, which are prominent as bright lines on the eclipse negatives, and, similarly, the strength as bright lines of certain faint Fraunhofer lines point to precisely the opposite conclusion and can be explained only on the basis of a lower level for the photographs taken without an eclipse.

COMPARISON WITH ECLIPSE RESULTS

In the course of the discussion of his admirable eclipse results Mitchell institutes a comparison with the values published by Hale and Adams in their preliminary account of the Mount Wilson observations. From this comparison Mitchell concludes:

1. The eclipse spectrum negatives show twice as many lines as the 60-foot tower telescope photographs.

2. The eclipse spectrum wave-lengths are quite as accurate as those obtained from the tower telescope photographs.

It is difficult to understand the basis for the first of these conclusions unless Mitchell has employed for comparison purposes the violet part of the spectrum in which the visual objective of the tower telescope performs to poor advantage. Certainly in the visual region no such conclusion is tenable on the evidence either of the short region between λ 5111 and λ 5198 previously published, or of the present more complete results. A comparison for the entire region between λ 4800 and λ 5880 shows the following number of bright lines, the double reversals being counted as single lines:

	Mitchell Eclipse	Mount Wilson
Bright lines (measured) Dark lines with bright fringes (not	901	894
measured)		133
Total	901	1027

The effect of the difference of level in the reversing layer for the two sets of photographs is seen clearly in these results. Nearly all of the lines with bright fringes on the Mount Wilson photographs appear on Mitchell's negatives as strong bright lines, and the same is true of a large proportion of the Mount Wilson double reversals. A considerable number of strong lines on the eclipse plates do not appear at all as bright lines on the tower telescope plates. This is due evidently to the low level at which the latter were taken. On the other hand, the tower telescope photographs show between one and two hundred lines not seen on the eclipse photographs, essentially all of which are very faint Fraunhofer lines and belong to a low level in the reversing layer. The two series of photographs, accordingly, may be said to represent the spectrum of two sections of the reversing layer at different elevations, to the higher of which the eclipse results belong.

The statement by Mitchell that the degree of accuracy attained for the eclipse and the tower telescope results is about the same is by no means borne out by a detailed comparison. For this purpose we have selected only the single lines common to both sets of measures, omitting all blends and double reversals. A comparison of all of the lines of this character between λ 4800 and λ 5300 gives for the average deviation from Rowland's wavelengths the following values:

Eclipse Results
0.029 A

Mount Wilson Results
O.OII A

For the entire region between λ 4800 and λ 5880 the results are

Eclipse Results
0.030 A

Mount Wilson Results
0.012 A

It appears, therefore, that the average deviation from Rowland's wave-lengths of the eclipse spectrum lines is about two and one-half times as great as that of the lines from the tower telescope photographs. The well-known very high degree of precision in the relative wave-lengths of Rowland's table necessitates ascribing essentially all of these differences to errors in the determination of the bright-line wave-lengths.

DISCUSSION OF THE RESULTS

In general the results obtained for the chromospheric spectrum agree with eclipse results as regards the elements represented by the largest proportion of bright lines. They differ widely, however, in the matter of the relative intensity of the bright lines as compared with the dark lines of the solar spectrum. With the exception of the hydrogen, magnesium, and sodium lines, and enhanced lines in general, only very few strong dark lines of the solar spectrum are represented by strong bright lines in the chromospheric spectrum taken without an eclipse. Such lines usually remain dark with a faint bright fringe on either edge. As already stated, this is almost certainly due to the low level of the point under observation. The stronger lines of the solar spectrum are accompanied by wings, similar in character to those of the H and K lines of calcium, though very much less in extent and intensity, which are due to the dense vapor at the base of the sun's reversing layer. In observations at the sun's edge these wings appear as faint emission lines, while the central portion of the line, due mainly to gas at a higher level, still remains dark. The phenomenon is in fact just the same as in the case of the well-known double reversals of the calcium and hydrogen lines at the sun's limb.

It seems probable that double reversal is a universal characteristic of all lines in the chromospheric spectrum at a low level, and that failure to observe it in any particular case is due to the faintness of the lines or insufficient resolving power of the spectroscope. Mitchell observed the effect for a few of the stronger lines, even at the level of his eclipse spectra, and several hundred examples are shown in these tables. In most cases the intensities of the two bright components are equal, and when unequal there seems to be no especial preponderance either of the violet or the red component.

The great number of very faint dark lines of the solar spectrum, which are represented by bright lines in the chromosphere, is in excellent accord with St. John's conclusions that such lines are produced at a low level in the solar atmosphere. A large number of these lines in the region λ 5050– λ 5165 may be ascribed to the green carbon fluting. Many others have been identified with

reasonable certainty with lines of cobalt, scandium, titanium, vanadium, and the heavy elements, all of which are very strongly represented in the chromospheric spectrum. It seems probable that a portion of the unidentified lines may be due to the fainter enhanced lines of elements which have as yet been but very imperfectly investigated in this portion of the spectrum.

Some special lines.—The two hydrogen lines which appear in this region are H_{α} and H_{β} . Both are strong double reversals in the chromosphere with the components of nearly equal intensity. A peculiar feature is the apparent doubling of the red component of H_{α} . This is without doubt due to the presence of the strong atmospheric line at λ 6563.763 (the photographs were taken at low sun) which falls upon the center of the bright component and so gives the appearance of a double line.

Of the three helium lines, those at λ 4922 and λ 5048 probably are present, but the first so nearly coincides with a strong La line that it cannot be distinguished with certainty. The D₃ line is the strongest bright line on our photographs, and the scale of the plates is sufficient to make the measurement of its two components possible. The separation found, 0.336 A, agrees closely with the laboratory results.

The D lines of sodium and the b lines of magnesium are very similar in their behavior, being broad double reversals with components of moderate intensity.

A peculiar feature of the results is the remarkable number of faint cobalt lines represented in the chromosphere. In this respect cobalt is to be classed rather with titanium and vanadium than with nickel, iron, and manganese.

The enhanced lines.—It appears from these results that the enhanced lines are of an exceptionally great intensity at a moderate level in the solar atmosphere, just as eclipse observations have shown them to be at a higher level. Upon our photographs they nearly always appear as double reversals, but the separation of the components is considerably less than in the case of arc lines which are doubly reversed. In discussing possible explanations of the prominence of enhanced lines in the flash spectrum Mitchell has referred to the suggestion made by Gale and Adams that it

may be due to the reduction of pressure in the upper portions of the solar atmosphere, laboratory observations having shown that in the case of several elements reduced pressure brings out the enhanced lines more strongly. A second suggestion made by the same writers may also be considered in this connection. It was found that in the spectrum of a spark under moderate pressures comparable with those at the base of the reversing layer the enhanced lines remained bright when the other lines became dark. It would appear probable, therefore, that in the solar spectrum the enhanced lines would be represented by dark lines relatively less intense than would the arc lines. The relative gain in intensity of the enhanced lines when appearing as bright lines in the chromosphere would, accordingly, be due to two causes: first, the actual increase in relative intensity of the enhanced lines due to reduction of pressure; second, the relative weakness of the dark lines in the solar spectrum with which the comparison is made.

Elements of high atomic weight.—The extraordinary prominence of the lines of certain elements of comparatively high atomic weight in the flash spectrum is a well-known feature of eclipse results. Without following Mitchell in his identification of a larger number of lines with those due to praesodymium, samarium, and erbium, we are certainly justified in concluding this behavior in the chromosphere on the part of yttrium, lanthanum, cerium, and probably neodymium.

According to the conclusions of St. John and others, elements of high atomic weight lie at low level in the solar atmosphere. Mitchell concludes from his measurement of the lengths of the arcs of the flash spectrum lines of the rare earths that these do not occur in shallow layers, but rather the reverse. It is, of course, evident that the two sets of results cannot be compared directly if Mitchell is to include among his rare earths scandium, with an atomic weight of 44, and omit barium with an atomic weight of 137. The evidence afforded by the results given here appears to be distinctly in favor of St. John's conclusions. The relative intensities of the bright lines of the heavy elements become greater as we pass from eclipse spectra to the lower level of the observations without an eclipse. Thus if we compare a lanthanum line of solar intensity 1

with an iron line of intensity I, we find a certain ratio of intensity for the two bright lines in eclipse spectra. In the spectra taken without an eclipse the lanthanum bright line is relatively stronger than in the eclipse spectra. This can hardly be interpreted in any other way than that the radiation of the heavy elements becomes relatively stronger at low levels. The case appears to us analogous to that of the carbon fluting, the individual bright lines of which show the more strongly the nearer the observations are made to the sun's visible edge.

It seems very probable that, as St. John has stated in his discussion of Mitchell's eclipse results, the explanation of the longer arcs found by Mitchell for the rare earths is to be found in the greater intensities of these lines. The average intensity given by Mitchell for the bright lines of the Fe group is 1.07; for those of the rare earths 3.10. There can be little doubt that a bright arc three times as strong as another would on the photographic plate have a considerably greater length. The case is entirely similar to that seen in the laboratory when a photograph is taken of the spectrum of a metallic arc. The strongest lines are the longest even when the lines compared are produced in just the same part of the arc.

Chromospheric wave-lengths and anomalous refraction.—In our determinations of the wave-lengths of the bright lines in the chromosphere we have used as standards of reduction the dark lines of the limb spectrum which appear upon the same photographs. Any differences of wave-length, therefore, are with reference to the lines at the sun's limb, and these, as is well known, are displaced slightly to the red when compared with the center of the sun. In the region covered by the observations this displacement amounts on the average to +0.008 A. Our chromospheric measures give for the average difference in wave-length between 512 identified bright lines and the corresponding dark lines at the limb -0.002 A. If we assume this small difference to be real, the bright lines in the chromosphere, therefore, will be displaced +0.006 A relative to the dark lines at the center of the sun.

¹ In the results given by Hale and Adams the same method was used, and the wave-lengths given were referred to the lines at the sun's limb. Apparently some

The ordinary absorption and emission theory of the origin of the solar lines would explain this result in a very simple way. The chromospheric bright lines are produced at nearly the same level and under nearly the same physical conditions as the dark lines at the sun's limb; hence their wave-lengths should be closely the same. On the whole we should perhaps expect the level of the chromospheric observations to be slightly above that of observations at the sun's limb. If such is the case the cause which produces the displacements of the lines at the limb relative to the center of the sun (which we are still inclined to consider in large part as pressure, in spite of Evershed's recent work on the subject) would operate to a less extent on the bright lines; and we might expect some such small negative difference as is found between their wave-lengths and those of the dark lines at the limb.

In the course of an extensive series of articles Julius has endeavored among other solar phenomena to account for the wavelengths of the chromospheric lines and for the displacements of the dark lines at the sun's limb on the basis of anomalous refraction and dispersion in the solar atmosphere. The principal feature of the explanation which he adopts is the assumption that the solar atmosphere is honeycombed with irregular density gradients, of which a sufficient number show increasing density outward to overcome wholly or mainly the effect of the well-known regular radial gradient. Most solar observers would desire some evidence tending to indicate the existence of such gradients apart from the necessity of postulating them in order to support the anomalous refraction hypothesis, more especially as they must be essentially permanent in character. If they fluctuated to any considerable

misapprehension has arisen in regard to this matter, as both Julius and Brunt (Monthly Notices, 73, June 1913) appear to consider the wave-lengths as referred to the center of the sun. No explicit statement was made because at the date the results were published the amount of the hypothetical anomalous dispersion effect, due to the regular density gradient, was supposed to be very large, amounting to one-half the width of the lines. The value given by Hale and Adams for chromosphere-limb wave-lengths was $+0.002\,\text{A}$; the result found here is $-0.002\,\text{A}$. We consider this agreement as quite satisfactory in view of the difficulty of the measurements.

""On the Origin of the Chromospheric Light," Proceedings Amsterdam Academy, December 23, 1909; "Regular Consequences of Irregular Refraction in the Sun," Proceedings Amsterdam Academy, October 28, 1909.

extent, both the displacements at the sun's limb and the wavelengths of the chromospheric bright lines should show marked systematic variations, and such has not been found to be the case. Assuming the existence of such irregular gradients, however, Julius accounts for the displacements of the dark lines at the limb as follows:

Indeed rays coming from the limb have, as a rule, accomplished a longer distance through the solar gases than rays coming from the center, and, therefore, were more subject to loss of intensity by the process of incurvation towards the photosphere. The amount of the irregular ray-curving depends on the absolute magnitude of Rm Δm (the refracting power of the mixture of gases), which near the weaker lines of the solar spectrum is sensibly greater with red than with violet light. So the lines must chiefly widen at their red-facing side, in proportion as the opportunity for losing light increases.

That is, the displacements are due to the widening of the lines toward the red owing to the relatively greater loss of red light by anomalous refraction. In this explanation the effect of the regular radial gradient is neglected completely, and in fact in another place¹ Julius states expressly that it would produce displacements toward the violet. Accordingly he is obliged tacitly to assume that the irregular gradients are sufficient to counteract this effect and to give in addition the observed displacements toward the red.

When he passes to the discussion of the chromospheric spectrum Julius again makes use of the irregular density gradients, but in this case he considers they will produce essentially symmetrical bright lines, violet and red light being refracted in nearly equal proportions. As already stated, Julius has not understood the fact that the chromospheric lines are displaced to the red relative to those at the center of the sun by about 0.006 A, since his explanation is intended to account for the absence of any displacement. The photospheric light which is refracted to form the chromospheric lines is supposed to come from near and just beyond the sun's visible edge.

It seems to us very doubtful whether the results found on our photographs can be accounted for by this hypothesis. Bright and

Astrophysical Journal, 31, 427, 1910.

dark lines appear on the same negatives and the character of the path through the irregular density gradients must be nearly the same in the two cases. If the displacements of the dark lines at the sun's limb are due to irregular density gradients which tend to produce a loss of light on the red side of the absorption lines and thus widen them toward the red, we must conclude that these gradients would have a marked effect upon the light which forms the chromospheric lines. Accordingly if the photospheric light which is refracted comes from beyond the sun's limb, we should expect a relative loss either of red or of violet light. If the former the chromospheric lines should be displaced to the violet with regard to the dark line at the limb; if the latter it should be displaced to the red. Neither is the case to any marked degree. Apparently the lack of symmetry in refraction which is introduced by Julius to account for the dark line displacements is directly opposed to the chromospheric results. A resort to the regular radial gradient to explain the displacements of the chromospheric lines with reference to the lines at the center of the sun could not be made unless the explanation of the limb displacements were abandoned, since this would require displacements to the violet.

The results of a comparison of the wave-lengths of the chromospheric lines with the corresponding dark lines at the sun's limb are given in Table II. Only such lines have been included as can be identified with certainty, and whose wave-lengths have been measured directly.

TABLE II

Element	No. Lines	Chromosphere-Lim		
Fe	157	-0.001 A		
C	90	-0.002		
Ti	87	-0.004		
Co	42	-0.008		
Cr	35	+0.002		
Ni	32	-0.001		
V	27	-0.003		
Ca	16	0.000		
Sc	13	-0.001		
Y	8	-0.004		
La	5	+0.006		
Mean	512	-0.002		

The preponderance of the negative sign in these residuals is rather striking, the only important exception being chromium. Since the average deviation for all of the lines measured amounts to $0.012 \,\mathrm{A}$, however, we do not feel justified in considering the slight mean residual of $-0.002 \,\mathrm{A}$ as certainly real.

One other characteristic of the chromospheric lines should be considered in connection with the anomalous dispersion theory. This is the phenomenon of double reversal. Although Julius admits that a portion of this effect may be due to common reversal by absorption, he introduces anomalous refraction and scattering of the light very close to the absorption lines to increase its amount. Two comments may be made in this connection. First, it would seem hardly necessary to bring anomalous refraction into question if the existence of absorption has to be assumed, since laboratory results have shown that it is easy to produce in the spectra of luminous gases just such reversals as are found in the chromospheric spectrum under conditions where only emission and absorption are involved. Second, it is difficult to understand why the double reversals should nearly always be symmetrical, although the refracting power of the solar atmosphere is greater on the red side of an absorption line.

It is a peculiar fact that the advocates of the anomalous dispersion hypothesis admit the existence of essentially all of the phenomena in the sun which are required by those who use the more usual explanation. Thus Julius is willing to admit the presence of ordinary selective absorption and emission to form the central portions of the Fraunhofer lines; double reversal may help to form the double lines in the chromosphere; the Doppler effect is essential in the convection currents required to produce his hypothetical irregular gradients; the existence of pressure can hardly be denied in any gaseous atmosphere; and variations in density are the fundamental basis of anomalous refraction theory. Apparently variations in temperature have not as yet been admitted by Julius, but it is certainly impossible to explain on the anomalous refraction theory the presence in sun-spots of a band spectrum not found at all in the solar spectrum. If the reduction in temperature is once admitted, the spectral characteristics of sun-spots

find not only a ready but a necessary explanation in this fact, as laboratory investigations have shown. Many of the solar applications of anomalous dispersion share this characteristic of being quite superfluous.

Some features of the absorption spectrum on the chromosphere photographs.—The dark lines which appear upon our chromospheric photographs are due to the light from just within the sun's limb and represent the limb spectrum in its most extreme form. In general the changes in the character and intensity of the lines as compared with the center of the sun are those described by Hale and Adams in their publication on the subject some years ago. They are, however, somewhat more pronounced, a result to be expected because of the closer proximity of the point under observation to the sun's limb. In one region of the spectrum, at least, its characteristics deserve a few words of comment.

Between the limits λ 5025 and λ 5150 there are some especially remarkable changes in the spectrum, consisting in the great intensification of certain very faint solar lines, the great weakening of some strong solar lines, and the appearance of several fairly strong lines which apparently are not present in the solar spectrum at all. The changes are such as to modify the spectrum completely and to render its comparison with the usual solar spectrum difficult.

The results of some measurements in this region are given in Table III.

There are some indications of the presence of a banded spectrum in certain portions of this region, especially near λ 5065, λ 5080, and λ 5100. It is possible that this is a trace of the band spectrum of magnesium hydride found by Fowler to be so prominent in the spectrum of sun-spots.

SUMMARY

1. Photographs of the flash spectrum taken with the 60-foot tower telescope show a slightly greater number of bright lines than the eclipse photographs of Mitchell in the same region.

¹ Mt. Wilson Contr., No. 17; Astrophysical Journal, 25, 300, 1907.

2. The degree of accuracy in the determination of wavelengths is between two and three times as high for the photographs taken without an eclipse.

3. The level of the observations is decidedly lower in the case of the tower telescope results.

4. Double reversal is probably a universal characteristic of the bright lines.

TABLE III

Wave-Lengths		Intensity		CHARACTER AT LIM
Limb	Sun	Limb	Sun	CHARACIER AT LIM
5034.259		1		
5034.737		2		Double
5035.506	. 542	3	5	Double
5036.105	.115	2	5	Blend in sun
5037.458	.436	2	000	Blend in sun
5037.869	.885	2	000	
5040.429	.422	1	000	
043.055		I		Narrow
043.218		2		Narrow
5043.758	.761	I	00	
044.107		1		
5056.608	.617	1	000	Narrow
5057.745	\[.665 \\ \]	2	{	Broad
5061.287		I	*********	
076.432	.450	I	3	
5076.595	1.504	2	∫000	
	.666		(0000	
086.791	- 794	1	0000	
5094.584	- 594	1	0	Broad
097.669	.668	1	0	
103.148	. 142	2	1	
149.037	.013	2	000	

5. The lines of the elements of high atomic weight are relatively stronger on the photographs taken without an eclipse. This indicates a low level for these elements in the solar atmosphere.

6. The average difference in wave-length between the bright lines of the chromospheric spectrum and the dark lines at the sun's limb is -0.002 A.

7. This close agreement in wave-length does not appear to be in accordance with the anomalous refraction theory of the chromosphere as developed by Julius.

8. Some remarkable differences have been found in the dark line spectrum at the sun's limb as compared with the ordinary solar spectrum. Several new lines appear in addition to great changes in intensity of certain solar lines. There is considerable evidence of the presence of a band spectrum in a portion of the green region of the spectrum.

MOUNT WILSON SOLAR OBSERVATORY
November 1914

ON THE SIMPLEST FORM OF THE STELLAR INTER-FEROMETER FOR DETERMINING THE ANGULAR DIAMETERS OF STARS BY MEANS OF ELLIPTICALLY POLARIZED LIGHT

By S. POKROWSKY

Two pencils of parallel rays, 1, 2, proceeding from any star fall at the angle of complete polarization upon transparent planeparallel glass plates, I and II. The pencil reflected by the plate I will be completely polarized in the plane of incidence; it will pass through the plane-parallel $\frac{\lambda}{2}$ plate of quartz, the principal section of which is at 45° with the plane of incidence; therefore the plane of its polarization will be rotated through 90° and it will be totally refracted through the plate II and superposed on the pencil 2 reflected by the latter. Since the vibrations in the rays 1 and 2 are coherent, at the instant when they reach the parallel plates as natural light they will give, after coincidence, rays elliptically polarized. On carefully adjusting the interferometer, the field of view will be homogeneous (teinte plate) when examined through a nicol. In consequence of the great angles of incidence of the rays 1 and 2 upon the plates I, II, there will be a very great difference of path between them. Consequently the pencil 2 must be previously reflected by the mirrors R and R_1 in such a manner that the path $R R_1 O_1$ will be equal to the path $O O_1$. After coincidence the rays follow the ordinary route through the objective, the Wollaston double-image prism W, the astrophotometer p, and finally the ocular O. V, V_1 are two plane-parallel plates of glass to compensate for the difference in path of the rays 1 and 2.

Passing to the evaluation of the optical sensitiveness of the above-described interferometer we can neglect the interference of light in each of the plane-parallel plates I and II; for we suppose that they are sufficiently thick.

S. Pokrowsky, Astrophysical Journal, 36, 156, 1912.

Let us estimate the intensity of the beam transmitted by the interferometer to the eye, when natural light of unit intensity is incident upon the plate V; through it will pass

$$\frac{1-\rho}{1+\rho}$$
,

where

 ρ is the coefficient of reflection = $\left(\frac{\mu - 1}{\mu + 1}\right)^2$ μ is the refractive index for the glass plate V.

The plate I will reflect at the angle of complete polarization

$$\frac{1-\rho}{1+\rho} \times \frac{2r}{1+r}$$

where

$$r = \frac{1}{2} \binom{n^2 - 1}{n^2 + 1}^2$$

and n is the refractive index of the glass plate I. Through the plate marked $\frac{\lambda}{2}$ will pass approximately

$$\frac{1-\rho}{1+\rho} \times \frac{2r}{1+r} \left[1 - \left(\frac{\mu^{1}-1}{\mu^{1}+1} \right)^{2} \right]^{2} = \frac{1-\rho}{1+\rho} \times \frac{2r}{1+r} \times 0.95^{2};$$

 $\mu' \doteq 1.5$ is the average refractive index for quartz. This quantity of rays polarized perpendicularly to the plane of incidence will be totally refracted through the second plate II.

In order to simplify the calculations, we assume that through each of the following eleven surfaces, namely, the three surfaces of the objective; the three surfaces of the double refracting prism; the three surfaces of the astrophotometer, and finally the two surfaces of the eyepiece, passes 95 per cent of the light falling on it, and that moreover about 5 per cent of the light will be absorbed in this apparatus; then the energy that reaches the eye will be

$$\frac{1-\rho}{1+\rho} \times \frac{2r}{1+r} \circ .95^{14}$$
.

This value must be doubled because the plate II also gets the same quantity of luminous energy. Consequently we shall have

$$\gamma = 2 \times 0.95^{14} \frac{1-\rho}{1+\rho} \frac{2r}{1+r}$$
.

For the approximate calculation we will take

$$\mu = 1.5$$
; $n = 1.487$.

Then

$$\log \gamma = 9.07608.$$

The minimum value of the angular diameter ω to be discovered by the proposed interferometer will be determined by the expression¹

$$\omega = \frac{4}{\pi} \frac{\lambda}{D} 2.5 - \left[\frac{K - p}{2} + 1.25 \log \frac{S}{\sigma} \gamma \right]$$

where

D is the distance between the pencils 1 and 2;

K is the magnitude of a star of the minimum intensity perceptible to the eye;

p is the magnitude of the observed star;

S is the effective area of the objective, determined by the dimensions of the quartz plate;

 σ is the area of the pupil of a normal eye; and

 γ is the coefficient indicating what fraction of the luminous energy falling on the interferometer reaches the eye.

Assuming

$$\lambda = 5.6 \times 10^{-5} \text{ cm}$$

$$D = 100 \text{ cm}$$

$$k = 6$$

$$S = 10 \times 10 \text{ cm}^2 = 10^4 \text{ mm}^2$$

$$= 4\pi \text{ mm}^2$$

$$\log \gamma = 9.07608$$

$$1'' = 4.84 \times 10^{-6} \text{ in angular measure,}$$

we shall find

for stars of the first magnitude
$$(p=1.0)$$

 $\omega_1 = 0.0016$
for stars of 0.0 magnitude $(p=0.0)$
 $\omega_0 = 0.0009$;
for Sirius $(p=-1.7)$
 $\omega_0 = 0.0006$.

The above-mentioned values of ω , which can be discovered by means of the described interferometer, were obtained on the assumption that the laws of reflection and refraction of polarized light are expressed very approximately by Fresnel's formulae. As may be seen from the few results which we have at present,

¹ S. Pokrowsky, op. cit., p. 163.

these formulas are confirmed with a precision of 1 to 2 per cent. The condition of the surface-layer of glass and the kind of polish exert a very considerable influence. Lord Rayleigh has shown that only freshly polished glass surfaces give the results in accordance with those of Fresnel; some months later the divergence between theory and practice may amount to as much as 10 to 30 per cent.

Immediate observation shows that rays reflected at the angle of complete polarization will not be entirely polarized in the plane of incidence; but there will be added a small quantity of rays polarized perpendicularly to the plane of incidence; for abbreviation let us name them "residual" rays. The ratio of the amplitudes of the luminous vibrations in these rays to the amplitudes of the luminous vibrations in the rays polarized in the plan of incidence (that is to say, of the principal rays), proportional to the coefficient of ellipticity, was determined by Jamin for a great number of solid and liquid substances; for different kinds of glass this coefficient varies from 0.03 to 0.007. Knowing this coefficient we can easily determine the ratio of the intensities of the two rays which will be exceedingly small since it is proportional to the square of this coefficient.

The residual rays, polarized perpendicularly to the plane of incidence, after traversing the $\frac{\lambda}{2}$ plate will be polarized in this plane; after refraction through the plate II they will be superposed on the analogous rays polarized perpendicularly to the plane of incidence and will therefore produce rays elliptically polarized. Consequently the double refracting prism W will again yield two images of the star exceedingly feeble and coinciding with the first two. The ratio of their intensities will be the inverse of that which existed for the images already examined and formed by the rays polarized in the plane of incidence (that is to say, the principal rays), because the planes of polarization of the two residual rays will be respectively perpendicular to the planes of polarization of the principal rays. In this manner the more intense image formed by the residual rays will coincide with the feebler one produced by the principal rays and will introduce some error in the ratio of the

¹ Winkelmann, Handbuch der Physik, 6, "Optik," pp. 1260-1264, 1906.

intensities of the principal images. Now it is necessary to calculate approximately the intensity (in stellar magnitudes) of the more intense image of the star formed by the residual rays. It will be advisable to employ in the proposed interferometer those kinds of glass which have the smallest coefficients of ellipticity. Consequently before inserting the glass plates, I and II, in the interferometer it will be necessary to determine carefully their coefficient of ellipticity η . I will take

$$\eta = 0.0075$$
; $n = 1.487$.

If the star under observation is of a magnitude p for the naked eye, when we observe it in the interferometer telescope the more intense of its two images will appear to be a star of the magnitude $\left(p-2.5\log\frac{S}{\sigma}\gamma\right)$. Since the ratio of the residual amplitudes to the principal ones is equal to

$$\epsilon = \frac{\eta}{2} \sqrt{1 + n^2}$$

it will be necessary to take $\gamma\epsilon^2$ instead of γ and the intensity of the more intense image of the star in the residual rays will be of magnitude $p-2.5\log\frac{S}{\sigma}\gamma\epsilon^2$.

Assuming

$$S = 10^4 \text{ mm}^2$$

$$\sigma = 4\pi \text{ mm}^2$$

$$\log \gamma = 0.07608,$$

we shall find

$$2.5 \log \frac{S}{\sigma} \gamma \epsilon^2 = -5.92,$$

that is to say, if the star under observation has a magnitude p for the naked eye, the more intense of its two images formed by residual rays will, when observed in the interferometer telescope, appear to be a star of magnitude

but will introduce an error into the ratio of the intensities of the principal images only in the case of Sirius and of the stars of the magnitude o.o.

In this case, we must accordingly diminish the aperture S of the objective, which will in turn slightly diminish the optical power of the interferometer.

Physical Laboratory, Electro-technical Institute
Petrograd
September 1914

THE DIFFERENT CHARACTER OF SPECTRUM LINES BELONGING TO THE SAME SERIES

By T. ROYDS

It has been generally assumed that the spectrum lines belonging to the same series are similar in character and in behavior under varying experimental conditions. Indeed the similarity in sharpness or diffuseness, or in the direction of unsymmetrical widening. has been a valuable aid in the detection of series relationships in spectra. If, for example, the strong lines of a series were unsymmetrically widened toward the red, the continuation of the series would be looked for in lines widened in the same direction, the widening becoming greater as the higher members were reached. It is therefore of considerable importance to note that there is at least one well-authenticated series in which the character of the lines changes in the course of the series. This is the first subordinate "triplet" series of barium whose lines are given in Table I. column 4. In this series the first members (λλ 5819, 5800, 5777, 5536, 5510, 5424), consisting of a triplet and satellites, are all unsymmetrically widened toward the red; the second members (λλ 4493, 4489, 4333, 4323, 4264) and probably all succeeding are, on the contrary, unsymmetrically widened toward the violet. This is so surprising and important that it is necessary before proceeding farther to make quite sure of our facts. First, there can be little doubt that the first members do really belong to the same series as the higher members; they fit into a formula of the usual type and have the full complement of satellites analogous to the higher members and to the first subordinate series of calcium and strontium. Secondly, the character of the lines seems equally certain. Although previous investigators of the barium spectrum have not noted the character of the first members of the first subordinate series, the reversals of these lines are in my photographs very eccentrically placed on the violet side of the emission line, indicating unsymmetrical widening toward the red. The character

of the second members is obvious and is given by Kayser and Runge as unsymmetrical toward the violet. There is also the evidence of the displacement at the negative pole compared with the center of the arc. I have previously shown that lines are displaced at the negative pole in the direction of their greater widening. Investigating the displacement of the barium lines, I find that all the first members of the first subordinate series are displaced to the red (λ 5536.07 is interfered with by an adjacent line), and all the second members to the violet; this is complete confirmation of their opposite character.

It is interesting to examine also the analogous first subordinate series of calcium and strontium. Of the calcium series the first members are in the infra-red and their character is not known; the second members are quite symmetrical so far as can be judged from the symmetry of their reversals and from the smallness of their displacements at the negative pole of the arc,3 but the higher members are unsymmetrical toward the violet4 according to Kayser and Runge⁵ and Eder and Valenta.⁶ The calcium series is therefore not so extreme a case as that of barium but is still a noteworthy exception to the general run of series. The strontium series is, on the other hand, quite normal if we exclude the infra-red lines whose character is not known. I find that the second members have their reversals slightly eccentrically placed to the red side of their emission lines and that they are displaced to the violet at the negative pole of the arc. These facts indicate that they are unsymmetrical toward the violet and therefore uniform with the higher members whose character has already been observed.7

¹ Kayser, Handbuch der Spectroscopie, 5.

² Royds, Kodaikanal Observatory Bulletin, No. XL.

³ Ibid.

⁴ Saunders (Astrophysical Journal, 32, 153, 1910) gives the third members as unsymmetrical toward the red. This is probably a mistake. The photograph of Crew and McCauley of the arc in air (Astrophysical Journal, 39, 29, 1914) shows them to be unsymmetrical toward the violet in agreement with Eder and Valenta's observation of the spark lines and mine of the arc lines.

⁵ Handbuch der Spectroscopie, 5.

⁶ Royds, Kodaikanal Observatory Bulletin, No. XL.

⁷ Kayser, op. cit., 6.

In brief, the higher members of the first subordinate "triplet" series of calcium, strontium, and barium are unsymmetrical toward the violet; the first members of the barium series are unsymmetrical toward the red, the second members of the calcium series are symmetrical, while the second members of the strontium series are already unsymmetrical toward the violet.

For convenience of reference I have collected in Table I the lines of the first subordinate "triplet" series of calcium, barium, and strontium.

The chief purpose of the present paper is to point out the importance of determining the pressure-shifts of the first subordinate series of calcium and barium, in which, as we have seen, the character of the lines changes. The interest in these first subordinate series lies in the question whether their lines unsymmetrical toward the violet are, like those of iron, displaced by pressure to the violet, i.e., in the contrary direction to the other lines although belonging to the same series. St. John and Miss Ware, as well as Fabry and Buisson, have shown that the iron lines which widen unsymmetrically toward the violet undergo large displacements to the violet with increased pressure, and Gale and Adams have confirmed this,2 while those which widen unsymmetrically toward the red undergo large displacements to the red. At present the only evidence available on the point is the difference in the wave-lengths of the calcium arc in air (Holtz3) and in vacuo (Crew and Mc-Cauley4). These differences, which are given in Table I, while they should be accepted with some reserve, show that the lines unsymmetrical toward the violet are displaced to the violet by pressure, and the symmetrical lines of the same series, as was found previously by Humphreys, to the red. It has not been doubted until recently5 that, as discovered by Humphreys, the pressure displacement $\delta \lambda / \lambda$ was constant for all lines belonging to the same series, and this fact has been recommended for the detection of

¹ Astrophysical Journal, 36, 14, 1912; 31, 111, 1910.

² Ibid., 37, 301, 1013.

³ Zeitschrift für wissenschaftliche Photographie, 12, 101, 1913.

⁴ Astrophysical Journal, 39, 29, 1914.

⁵ Swaim, ibid., 40, 137, 1914.

TABLE I THE FIRST SUBORDINATE "TRIPLET" SERIES OF CALCIUM, STRONTIUM, AND BARIUM

	CAL	CIUM	STRONTIUM	BARTUM	
ORDER IN SERIES	λ	λ(Arc in Air) -λ(Arc in Vacuo)*	λ	λ	
First members.	19916.0 19864.6 19777.4 19507.1 19452.9 19310.6		30110.7 29225.9 27356.2 26915.4 26024.5	5819.21 (ur) 5800.48 (ur) 5777.84 (ur) 5536.07 (ur) 5519.37 (ur) 5424.82 (ur)	
Second members	4456.81 (s) 4456.08 (s) 4454.97 (s) 4435.86 (s) 4435.13 (s) 4425.61	+0.011 + .018 + .016 + .009 + .016 + .021	\begin{cases} 4971.85 \ (uv) \\ 4968.11 \ (uv) \\ 4962.45 \ (uv) \\ 4872.66 \ (uv) \\ 4832.23 \ (uv) \end{cases}	4493.82 (uv) 4489.50 (uv) 4333.04 (uv) 4323.15 (uv) 4264.45 (uv)	
Third members.	{ 3645.14* 3644.86 (uv)† 3644.50 (uv)† 3631.10 (uv) 3630.83 (uv)† 3624.15 (uv)†	003 + .003 015 010 001	4033.25 4032.51 (uv) 4030.45 (uv) 3970.15 (u) 3969.42 3940.91 (uv)	4087 . 53 (u) 4084 . 94 (u) 3947 . 6 (u) 3945 . 6 (u)	
Fourth members	3362.42* 3362.27* 3361.92 (uv) 3350.50* 3350.22 (uv) 3344.49 (uv)	014 010 017	3705.88 (u) 3653.90 (u) 3653.32 (u) 3629.15 (u)	3895.2 (u) 3767.5 (u)	
Fifth members.	3226.26* 3225.74 (uv) 3215.46* 3215.15 (uv) 3209.68 (uv)	021 019 038	3547 · 92 (u) 3499 · 40 (u) 3477 · 33 (u)	3787 (u)	
Sixth members.	3151.41* 3150.85 (u) 3141.29* 3140.91 (u) 3136.00 (u)	030 062 -0.135	3457.70 (u) 3411.62 (u) 3390.00 (u)		
Seventh members	3101.87 (u)		3400.39 (u)		

(s) denotes symmetrical, (ur) unsymmetrically widened toward the red, (uv) unsymmetrically widened toward the violet, and (u) hazy or diffuse. Those given in italic are new observations; those in roman type are as recorded by other observers.

† These lines are given by Saunders as unsymmetrical toward the red, probably by mistake. See footnote on p. 155.

‡ Taken from Crew and McCauley's paper.

series. Judging from the analogy of the iron lines and from the foregoing results for calcium, however, it appears probable that, so far from being constant, the pressure-shift may even be in opposite directions for different lines of the same series.

This brings up the whole question of the relationship between pressure-shift and series. Humphreys found² that the pressure-shift $(\delta \lambda/\lambda)$ was constant for all the lines of the same series, and that the shifts for the principal, the first and second subordinate series were in the ratio 1:2:4. Although these ratios seem to hold for the majority of cases, about one-third of the total number are exceptions. These exceptions are given in Table II; the mean shifts reduced to λ 4000 at the same pressure for the different series of the same element are quoted from Humphreys' tables. Where data at the same pressure are not available the shift has been calculated from that at a neighboring pressure and is given in parentheses.

TABLE II

EXCEPTIONS TO HUMPHREYS' SERIES LAW

Series	Mean Shift	Ratio	Series	Mean Shift	Ratio
Al First subordinate Second subordinate	50 (40)	1:0.8	Hg{First subordinate Second subordinate.	70 66	1:0.9
Li{Principal First subordinate	66 (96)	1:1.5	Na{Principal	73 312	1:4.3
Mg First subordinate Second subordinate	35 45	1:1.3			

^{*}By an unfortunate error or misprint, Humphreys has classed the lines AA 5682, 5688 as belonging to the second subordinate series of sodium instead of to the first, making it appear as though they conformed to his law.

The shifts were reduced to λ 4000 by Humphreys on the assumption that the absolute pressure-shifts are proportional to the wavelength. If the shifts are proportional to some other power of the wave-length than the first, some of these exceptions might be brought into line, but on the other hand new ones would be introduced.

¹ Kayser, Handbuch der Spectroscopie, 2, 327, 579.

² Astrophysical Journal, 6, 169, 1897.

Recently Swaim has arrived at entirely different series relationships in studying the pressure-shifts of the zinc lines. He finds that the shifts of the lines in the first subordinate series are *inversely* proportional to the cube of the wave-length, in the second subordinate series *inversely* proportional to the first power of the wave-length, and of non-series lines *directly* proportional to the square of the wave-length. There is therefore no direct relation between the first and second subordinate series.

It seems to me exceedingly probable that all these inconsistencies are due to the existence of a density effect superposed on the true pressure effect. When the arc is placed under pressure there is probably not only an increase in the pressure of the atmosphere surrounding the arc but also an increase in the density of the vapor in the arc owing to a more rapid production of vapor, or other cause. The effect of an increase of density is to displace the unsymmetrical lines in the direction of their greater widening, and by an amount apparently dependent only on the degree of unsymmetrical widening.² This might explain Swaim's curious results mentioned above. He noted that the amount of displacement under pressure depended on the diffuseness of the line, and, since the series lines he measured are unsymmetrical toward the red, it seems probable that the large displacements to the red he obtained for the higher and more unsymmetrical members of the series are due, at any rate in part, to increased vapor density.

Many of the anomalous results obtained by Duffield in the arc under pressure are also probably due to density effects. Duffield found that when unsymmetrical lines are reversed the displacement of the reversal falls to half of that of the unreversed line, while the reversals of symmetrical lines remain normally displaced.³ Now the unsymmetrical lines are those sensitive to density-shift and it would be expected that at the lower density of the absorption line their displacement would be smaller, while symmetrical lines would be unaffected. He also finds that the displacement of a line may have two alternative values at one and

Astrophysical Journal, 40, 137, 1914.

² Royds, Kodaikanal Observatory Bulletin, No. XL.

³ Phil. Trans. Roy. Soc., A 208, 151, 1908.

the same pressure.¹ Duffield says: "Whatever the nature of the disturbing cause, Group III and then Group II [of the iron lines] are most susceptible to it."² The lines of Group III, all unsymmetrically widened toward the red, are those most susceptible to density-shift,³ while the lines of Group II, much widened but not unsymmetrically by pressure, have not been sufficiently investigated. He further says: "On the photographs showing abnormal displacements [approximately twice the normal values], the reversals are more numerous and broader than they are on plates giving normal values";⁴ this observation is direct evidence of increased density. I admit, however, that there is no obvious reason why the ratio of the larger displacement to the smaller should be approximately 2:1.

An additional interest for the investigation of the calcium lines under pressure is the question of the behavior of Fowler's series of narrow triplets (λλ 4586, 4581, 4578, etc.). According to Moore⁵ the Zeeman effect for these lines is either zero or at least very small, and therefore their pressure displacement would be expected to be small also.⁶ It will, however, not be conclusive if they prove to have large displacements in the *arc* under pressure, since these lines are easily displaced by density.⁷

For the elucidation of the relationship between pressure-shift and series, as well as for the solution of solar problems, it seems essential to isolate the pressure effect from the density effect. The means of doing this are not obvious, and the only hope seems to lie in investigating the furnace spectrum under pressure rather than the arc spectrum, for in the furnace the vapor density, dependent on the rate of production and of disappearance of vapor, is almost certainly influenced by pressure to a much less degree than in the arc. All that we know at present is that since the density effect

¹ Phil. Trans. Roy. Soc., A 209, 216, 1909. 2 Ibid.

³ Royds, Kodaikanal Observatory Bulletin, Nos. XXXVIII and XL.

⁴ Duffield, Phil. Trans. Roy. Soc., A 208, 161, 1908.

⁵ Astrophysical Journal, 33, 385, 1911.

⁶ See King, Astrophysical Journal, 31, 433, 1910; and Humphreys, ibid., 23, 233, 1906; 26, 18, 297, 1907; 27, 194, 1908.

⁷ Royds, Kodaikanal Observatory Bulletin, No. XL.

is very small for symmetrical lines, their shifts in the arc under pressure are probably due to the pressure only, but that the shifts of unsymmetrical lines are, partly at least, due to density. Evershed suggests to me that the shift to the violet found in the arc under pressure for certain iron lines may be entirely a density effect, and an observation of Humphreys¹ supports this view. It certainly seems probable that many of the laws of pressure-shifts will be modified, and it is hoped simplified, if experiments can be conducted under conditions of constant vapor density. The elimination of density effects in order to obtain true pressure-shifts is one of the most pressing problems for those interested in the displacements in the sun's spectrum.

KODAIKANAL OBSERVATORY September 29, 1914

Astrophysical Journal, 31, 459, 1910.

A CRITERION FOR SPECTROSCOPIC BINARIES, WITH AN APPLICATION TO ρ LEONIS

By FRANK SCHLESINGER

It not infrequently happens that an observer of spectroscopic binaries has accumulated a large number of plates of a single star without being able to determine the period or even to decide whether the object is really a binary. This difficulty occurs when the amplitude of the star is small and of the same order as the accidental errors of observation.

The writer has found the following process to be of considerable service in such cases. The method consists in first constructing a frequency-curve for the velocities: this is done by dividing the total range exhibited by the measured velocities into successive groups of equal extent, say 3 km each, and then counting the number of velocities that fall within these groups. Regarding these numbers as ordinates, we plot them and join the ends by a smooth curve, which is the frequency-curve for these velocities. We next compare the shape of this curve with that of the well-known errorcurve. If the two are reasonably the same, we conclude that the star is not a spectroscopic binary (within the limits that our measurements are capable of defining), but that the differences in the measured velocities are errors of observation. This conclusion entails the assumption that the orbits of all binaries, whatever their shape and situation may be, will yield frequency-curves for the velocities that differ decidedly from the error-curve. This assumption accords with the facts, for although the frequencycurves differ greatly from each other for various types of orbits, there is no type that corresponds to the error-curve.

If the frequency-curve is such as to indicate that we are not dealing solely with errors of observation but that the object is really a binary, we can in general go somewhat farther and infer something as to the character of the orbit. For this purpose we divide orbits into four classes:

r. Circular orbits.—In this case the velocity-curve (that is, the curve that shows the relation between the velocity and the time)

is a sine-curve as drawn in Fig. 1. Let us divide the total range of velocity into ten equal parts as indicated by the horizontal lines. For a large number of observations the frequency with which any

Fig. 1.—Velocity-curve for a circular orbit

velocity occurs will be proportionate to the time-interval during which the velocity is between these successive limits. Consequently the frequencies are proportionate to the lengths (1, 2),

Fig. 2.—Frequency-curve for a circular orbit

(3, 4), (5, 6), etc. The frequency-curve is the full line in Fig. 2. Making allowance for the presence of accidental error, the kind of curve that we should expect in practice is shown by the dotted line.

For a circular orbit, then, high and low velocities occur with the maximum frequency, while intermediate velocities occur more rarely.

2. Eccentric orbits with periastron near the descending node.— This velocity-curve is shown in Fig. 3. The frequencies are proportional to the lengths (1, 2), (3, 4), etc., and the frequency-curve therefore has the general appearance shown in Fig. 4. High velocities greatly predominate in number, while low and intermediate velocities are rare.

Fig. 3.—Velocity-curve for eccentric orbit with periastron at descending node

3. Eccentric orbits with periastron near the ascending node.— The velocity-curve for this case can be obtained by inverting Fig. 3, and the frequency-curve by turning Fig. 4 end for end. Low velocities predominate, while high and intermediate velocities are rare.

4. Eccentric orbits with periastron removed 90° from the nodes.— Fig. 5 shows the velocity-curve for the case in which periastron follows the ascending node by 90° , or, expressed in accordance with the usual conventions, the longitude of periastron is 90° . The frequencies are now proportional to (1, 2), (3, 4)+(5, 6), (7, 8)+(9, 0), etc. The corresponding frequency-curve comes out practically the same as Fig. 2. For the opposite kind of orbit, that in which the longitude of periastron is 270°, the velocity-curve can

Fig. 4.—Frequency-curve for eccentric orbit with periastron at descending node

be obtained by turning Fig. 5 end for end, but the frequency-curve is precisely the same. The present criterion does not enable us to

Fig. 5.-Velocity-curve for eccentric orbit with periastron at 90°

distinguish between these two orbits, nor to distinguish either of them from a circular orbit. Consequently if we obtain in any particular case a frequency-curve like that in Fig. 2, we infer either that the orbit is circular or else that the longitude of periastron is about 90° from the nodes.

The writer has applied this criterion to advantage in a number of cases; the most instructive of these is that presented by ρ Leonis $(10^h28^m, +9^\circ49')$, a helium star of the fourth magnitude. This star was first suspected of varying in its radial velocity by the Lick observers, but later it was removed from their list of spectroscopic binaries. In 1910 and the two following years Mr. Harper obtained sixty-five plates of the star with the single-prism spectrograph of the Ottawa Observatory. From these he was unable to decide whether the object is a spectroscopic binary, though he inclines to believe that it is. Not succeeding in finding a period that will fit the observations, he has (in a very commendable spirit) published his measures and the other data for the plates, in order that they may be available to other astronomers.

The measured velocities for these sixty-five plates range from +26 km to +57 km. Dividing them into groups with 3 km limits, and counting the number of velocities that fall within each group, we have:

3	velocities	less than	+30 km		
4.0	velocity				+33 km
	velocities		+33	66	+36
6	66	66	+36	66	+39
8	4.6	66	+39	66	+42
14	66	6.6	+42	66	+45
20	6.6	66	+45	66	+48
6	6.6	66	+48	66	+51
3	66	66	+51	66	+54
	velocity	between	+54	and	+57

The frequency-curve that these numbers give is very different from the error-curve. The greatest number of velocities is found between 45 km and 48 km; below these limits there are altogether thirty-five velocities, while above them there are only ten. We conclude that the star is a spectroscopic binary, and furthermore, since this is an example of what we have described as Case 2, that the orbit is one of high eccentricity with the longitude of

Publications of the Dominion Observatory, 1, 337, 1914.

periastron (always reckoned from the ascending node) in the neighborhood of 180° .

If this conclusion is correct, a search for the period would most profitably concern itself only with the lowest velocities. Computers of the orbits of spectroscopic binaries are only too familiar with the difficulty in deciding upon which branch of the curve certain velocities belong, when they are trying to ascertain the period. In the present instance this additional difficulty is removed for the lowest velocities, because these must all be in approximately the same phase, as the reader may see by referring to Fig. 3.

Acting upon this hint, I examined the seven velocities lower than +33 km and found that with the period 12.28 days all seven of them fall within a day of the phase 7.3 days, the date of Mr. Harper's first plate being taken as the initial epoch. Furthermore, I found that not one of the highest eighteen velocities falls within these same limits. There can therefore be no doubt that 12.28 days is a close approximation to the period of this binary.

An inspection of the velocity-curve obtained by plotting the Ottawa results on this period enables us to estimate that the semi-amplitude of oscillation is 10 km or more, that the eccentricity is probably greater than 0.5, and that the longitude of periastron probably lies between 150° and 210°. Closer approximations to these elements could doubtless be deduced from the present material by a thorough computation, but this work would hardly be repaid. Now that the period of the binary has been established it is possible to secure additional plates near periastron, and these are indispensable for a more accurate determination of the orbit.

In conclusion I may remark that the present criterion is of wider application than the title of this paper implies. For example, we may by its help sometimes infer the character of the variations in the light of a star before the period has been determined. The test is in fact applicable to all periodic phenomena.

ALLEGHENY OBSERVATORY UNIVERSITY OF PITTSBURGH November 21, 1914

MINOR CONTRIBUTIONS AND NOTES

THE SOLAR PROMINENCE OF OCTOBER 19-21, 1914

The first observation of this prominence with the Rumford spectroheliograph was made on October 19 at 3h10m G.M.T. On account of thin, hazy clouds covering the sky the prominence is only very faintly visible as a pyramid about 120" high, its base in position angle 230–240°. On October 20 seven photographs, made in the light of the calcium line H, were obtained. Two of these are shown in the accompanying plate. On October 21 thirteen plates of this prominence were obtained between 3h17m and The last photograph shows the floating cloud at an elevation of 430" or 308,000 km, but so faintly that no attempt has been made to reproduce it here. A plate exposed at 5h41m shows only the low eruptions near the bases of the former prominence and another plate exposed at 7h10m shows hardly a trace of activity on this portion of the sun's limb. Although the prominence occurred on the west limb of the sun and its base must have been on the visible hemisphere for at least one of the three days of observation, there is no indication of any eruption shown on spectroheliograms of the disk which were also taken in the H line of calcium.

The change in the character of the prominence from quiescent on October 20 to violently eruptive on October 21 is perhaps its most interesting feature. As a result of the rapidity of the changes and the general faintness of structure, identification of measurable points from one plate to the next is uncertain.

The photographs reproduced in Plate V are reduced about 22 per cent from the originals. The diameter of the sun's image on the scale of the reproductions is 142 mm.

From 5^h40^m to 7^h27^m G.M.T. the low prominence at the extreme right has drifted tangentially to the sun's limb about 50,000 km at a rate of 7.6 km per second. The current 20,000 km higher up is in the other direction, as indicated by the main prominence. If the

THE SOLAR PROMINENCE OF OCTOBER 19-21, 1914

a) 20 October $5^{\rm h}40^{\rm m}$ G.M.T. e) 21 October $4^{\rm h}17^{\rm m}$ G.M.T.

3 56

- 7 27
- c) 21 October 3 17
- d)

- 1) 4 49
- g) 4 57
- h)5 07

negatives in the series taken on October 21 be superposed consecutively on that exposed at 3h17m, using the base of the main eruption as the fiducial point, the cloud forms are seen to retreat radially from a point on the limb of the sun about 100,000 km toward the left from the base. From 3h56m to 4h17m this motion of the lefthand base of the arch was 7 km per second tangentially. From 4h17m to 4h49m it was 26 km per second. From 3h56m to 4h17m the motion of the densest part of the floating cloud away from the limb was 18 km per second. Two condensations are visible at 4h17m in the left stem of the arch. They are faintly visible at 4h49m. Their velocity meantime was 31 km per second in the normal to the limb and 17 km per second in the line joining them with the base of the main eruption. In the same interval the crest flowing toward the right from the main stem had a velocity of 21 km per second. The total area inclosed by the enormous arch shown at 4h49m exceeds 145 times the total area of the earth.

20 October	5h40m G.M.T.	21 October 4h17m G.M.T.
	7 27	4 49
21 October	3 17	4 57
	3 56	5 7
		OLIVER J. LEE

ON THE NON-EXISTENCE OF THE LINE OF WAVE-LENGTH 6708 A IN THE ARC SPECTRUM OF CALCIUM

According to Meisenbach,¹ the line spectrum of calcium contains a line of wave-length 6708.157 A, and this line is also listed as present in the spectrum of calcium in Kayser's *Handbuch der Spectroscopie*.² What seems to be the same line, of wave-length 6708.13 A, was found by Hale and Adams³ to be present in the spectra of sun-spots. For the same line in the spectrum of the sun they give the wave-length as 6708.18. However, while they class this as a calcium line, they state⁴ that "it is not certain that this line is due to calcium, as it appears strongly on plates of several other elements." It is well known that a line of the wave-length

¹ Zeitschrift für wissenschaftliche Photographie, 6, 258, 1908.

² Ibid. ³ Astrophysical Journal, 25, 31, 1907. ⁴ Ibid.

given is the strongest line in the spectrum of lithium, and since in preliminary experiments with ordinary calcium salts it was found that the relative brightness of this line and the calcium line λ 6717.040 varied greatly, it was considered that the supposed presence of the line λ 6708 in the spectrum of calcium might be due entirely to the presence in the calcium salts of lithium in varying amounts as an impurity. This was confirmed by photographing the arc spectrum of gypsum prepared by a diffusion method, when it was found that the line became extremely faint, and not materially brighter than the same line as given by the carbon electrodes themselves. Before use these carbon electrodes had been repeatedly washed in concentrated hydrochloric acid and distilled water, but this was not sufficient to remove all of the lithium originally present in the carbon electrodes. It was found, however, that by allowing the arc to burn for about half an hour before putting in the calcium salt, the lithium could be entirely removed.

When carbon electrodes which did not give a trace of the line λ 6708 were used, it was found that a sample of Kahlbaum's analyzed calcium carbonate gave in the arc no trace of this line, which therefore does not belong in the spectrum of calcium.

This line was then measured in the arc spectrum given by lithium chloride, by comparison with Rowland's value for the calcium line \(\lambda\) 6717.940, and was found to have a wave-length of 6708.040 A. No line near enough to be mistaken for this line appears in Rowland's Table of the Solar Spectrum Wave-Lengths. In order to make a better comparison with Rowland's table, the arc was inclosed, and the pressure-shift of the line λ 6708 with respect to λ 6717 was determined from 9 to 167 cm of mercury. The pressure-shift per atmosphere was found to be -0.048 A. Assuming the pressure-shift to be a straight line function, and that the pressure on the sun where such light might be emitted is 5.5 atmospheres, which is according to Fabry and Buisson, it was computed that the wave-length of this line in the solar spectrum, if lithium were present in the sun, would be 6707.782 A. This again is too far from any line given in Rowland's table to be mistaken for it. The nearest lines given in Rowland's table are

¹ Comples rendus, 148, 688, 1909.

 $\lambda\lambda$ 6707.695 and 6708.176. Since this is by far the strongest line in the spectrum of lithium, these results furnish additional evidence that lithium is not present in the sun.

According to Kayser the lithium line λ 6103.77 is of the same brightness as the line λ 6708, but it was found that the commercial calcium chloride used in this laboratory gave no trace of the line λ 6103.77 on plates which showed λ 6708 very distinctly. This shows that the line λ 6708 is a very much more sensitive indicator of lithium than the other.

It was believed by Ramsey that lithium was a decomposition product of copper. Photographs were taken of the arc spectrum of copper using electrolytic copper for electrodes in the first case and bars sawed from samples of Lake Superior native copper, in the second. In the former the lithium line λ 6708 was observed but not in the latter. This is evidence that lithium is a foreign impurity and not a decomposition product.

In conclusion, the writer wishes to thank Dr. H. G. Gale and Dr. W. D. Harkins of this University for their inspiration and assistance in this investigation.

H. G. WOODWARD

University of Chicago August 1914

REVIEWS

The Reform of the Calendar. By ALEXANDER PHILIP. London: Kegan Paul, French, Trübner & Co., Ltd. (New York: E. P. Dutton & Co.). 8vo, pp. 127. \$1.50 net.

This is a thoroughly sensible presentation of the arguments in favor of the amendment of some of the absurdities of our present calendar. These defects, both direct and indirect, are clearly pointed out, and the leading proposals for reform are given. By excluding New Year's Day from monthly and weekly enumeration, and by evening up the months so that each quarter shall have 91 days, in the order 31, 30, 30, the year would always begin on the same day of the week, and each quarter would similarly have a fixed week day for its commencement. Leap Year would be cared for by having the extra day fall between June 30 and July 1, without being counted as a day of the week, and being known only as "Leap Day." The advantages of a fixed date for Easter, which greatly affects manufacturing interests and the schedules of railways and of all educational institutions, are explained. The Congress of Chambers of Commerce of the world unanimously adopted in London in 1910 resolutions in favor of a fixed international calendar and a fixed date of Easter, which resolutions were reaffirmed by the next Congress held at Boston in 1912.

As modern astronomy touches practical life at none too many points, it might be regarded a duty by astronomers to give their influence in favor of a more rational calendar. The adoption of such a reform could not be better emphasized than by having it go into effect on the first day of the year following the conclusion of peace after the horrible war now devastating Europe.

E. B. F.