

DTU Health Technology Bioinformatics

Data basics

Shyam Gopalakrishnan Associate Professor Section of Evolutionary Genomics, KU Section of Bioinformatics, DTU shyam.g@gmail.com

About me

- PhD in Biostatistics Population genetics, University of Michigan
- Postdoc at University of Chicago
- Associate Professor at Globe Institute, KU
- Associate Professor at Bioinformatics, Health Tech, DTU

Current Biology

Interspecific Gene Flow Shaped the Evolution of the Genus Canis

Graphical Abstract

Authors

Shyam Gopalakrishnan, Mikkel-Holger S. Sinding, Jazmín Ramos-Madrigal, ..., Øystein Wiig, Anders J. Hansen, M. Thomas P. Gilbert

IIVPVII

Correspondence

shyam@snm.ku.dk

In Brie

Gopalakrishnan et al. present evidence of pervasive gene flow among species of the genus Canis. In addition to previously known admixture events, they find evidence of gene flow from a "ghost" canid, related to the dhole, into the ancestor of the gray wolf and coyote. Further, they suggest that the African golden wolf is a species of hybrid origin.

MOLECULAR ECOLOGY RESOURCES

RESOURCE ARTICLE 🙃 Open Access 💿 🕦

Using DNA metabarcoding for simultaneous inference of common vampire bat diet and population structure

Kristine Bohmann , Shyam Gopalakrishnan, Martin Nielsen, Luisa dos Santos Bay Nielsen, Gareth Jones, Daniel G. Streicker, M. Thomas P. Gilbert

First published: 19 April 2018 | https://doi.org/10.1111/1755-0998.12891 | Cited by: 2

Ancient genomes from Iceland reveal the making of a human population

S. Sunna Ebenesersdóttir^{1,2,*}, Marcela Sandoval-Velasco³, Ellen D. Gunnarsdóttir^{1,2}, Anuradha Jagadeesan^{1,2}, Valdís B. G... + See all authors and affiliations

Science 01 Jun 2018: Vol. 360, Issue 6392, pp. 1028-1032 DOI: 10.1126/science.aar2625

Outline

- Starting point what we learned yesterday
- Sequence data storage

Fasta format

Fastq format

- Quality scores
- Multiplexing/Demultiplexing
- Sequencing read types

Single end

Paired end

Generalized NGS analysis

How would you store sequencing data?

+ Sequencing technologies

How would you store sequencing data?

- + Sequencing technologies
- Key concepts
 - Read length
 - Error types
 - Throughput

How would you store sequencing data?

- Sequencing technologies
- Key concepts

Read length

Error types

Throughput

rc

3 generation sequencing

Storing sequence data – Fasta format

Sequences are stored in fasta-files

Header

>gi|218693476|ref|NC_011748.1| Escherichia coli 55989 chromosome, complete genome

Sequence ---

E.coli ~ 4.5 - 6 Mbases

Human ∼ 3.2 **Gbases**

Storing output from sequencing machines

Fastq

Header

@ILLUMINA-C90280_0030_FC:5:1:2675:1090#NNNNNN/1

Sequence ATTCCCGGCCTTTTTCCAGGCCTGCTCGAGC

+

Qualities BAAAGECEE<EEDFEDF3DBDBB=A+==>9>>88?

(probability that base call is wrong)

Millions to billions of these reads per experiment

Quality score encoding

- Quality score is the combination of these two (Illumina):
- Quality predictor values of clusters:
 Intensity profiles, phasing and SNR
 Quality model/table:
 - Pre-calculated combinations of the above
 - Depend on machine, chemistry, software

Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at time.

ECE/BioE 416 Lecture 24

Illumina

5. juni 2019

DTU Sundhedsteknologi

A closer look at the qualities

Header

(prob. that base call is wrong)

One character encodes a number using ascii table (0-255)

This number (Q) can be converted to P

Phred-scale

$$Q = -10 * log 10 P$$

$$P = 10^{(-Q/10)}$$

Phred scale

@ILLUMINA-C90280_0030_FC:5:1:2675:1090#NNNNNN/1

ATTCCCGGCCTTTTTCCAGGCCTGCCTGCTCGAGC

+

BAAAGECEE<EEDFEDF3DBDBB=A+==>9>>88?

Q ~ Prob

10 ~ 0.1

20 ~ 0.01

 $30 \sim 0.001$

40 ~ 0.0001

ASC	II BASE=3	3 Illumina	a, Ic	n Torrent	, PacBio	and S	anger				
Q	Perror	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

Q	P_error	ASCII									
0	1.00000	64 @	11	0.07943	75 K	22	0.00631	86 V	33	0.00050	97 a
1	0.79433	65 A	12	0.06310	76 L	23	0.00501	87 W	34	0.00040	98 b
2	0.63096	66 B	13	0.05012	77 M	24	0.00398	88 X	35	0.00032	99 c
3	0.50119	67 C	14	0.03981	78 N	25	0.00316	89 Y	36	0.00025	100 d
4	0.39811	68 D	15	0.03162	79 0	26	0.00251	90 Z	37	0.00020	101 e
5	0.31623	69 E	16	0.02512	80 P	27	0.00200	91 [38	0.00016	102 f
6	0.25119	70 F	17	0.01995	81 Q	28	0.00158	92 \	39	0.00013	103 g
7	0.19953	71 G	18	0.01585	82 R	29	0.00126	93]	40	0.00010	104 h
8	0.15849	72 H	19	0.01259	83 S	30	0.00100	94 ^	41	0.00008	105 i
9	0.12589	73 I	20	0.01000	84 T	31	0.00079	95	42	0.00006	106 j
LO	0.10000	74 J	21	0.00794	85 U	32	0.00063	96 -			

Phred-scaled probabilities

- Base qualities, read mapping qualities, variant qualities, ...
- Straight-forward, except for when they are used in reads!
 - Offset: Sanger = 33 ("Phred+33"), Illumina = 64 ("Phred+64")

```
@ILLUMINA-C90280 0030 FC:5:1:2675:1090#NNNNNN/1
ATTCCCGGCCTTTTTCCAGGCCTGCCTGCTCGAGC
BAAAGECEE<EEDFEDF3DBDBB=A+==>9>>88?
```

Sanger: 333232 ~0.001

Illumina: 2 1 1

HUGE difference!

Q ~ Prob

 $10 \sim 0.1$

 $20 \sim 0.01$

 $30 \sim 0.001$

 $40 \sim 0.0001$

Sanger vs. Illumina vs. Solexa

- 454, Ion Torrent, Pac Bio, Nanopore, Sanger: "Sanger" encoding
- Illumina reads: "Illumina" or "Sanger" encoding. New reads are all "Sanger"
- Solexa data: Solexa encoding (bought by Illumina)
- All data from SRA/ENA: "Sanger"

Read types

Single end

Paired end

Ins: 200-800 bp

Mate pair

Ins: 2kb - 40kb (~5kb)

Protocol/technology dependent

Example sequencing read

DNA Fragment 32 bp: AGGTGTGAGCTCTACCCTAGCCCAGTTGGACC

Single end (R1) 10 bp: AGGTGTGACC

Paired end R1 10 bp: AGGTGTGAGC

R2 10 bp:

GTCAACCTGG

What would happen if the reads were 30 bp long? What are the effects of variation in the insert sizes?

Insert size distribution

Insert size distribution

read r

distribution

Read orientation

Single end Forward Paired end Illumina: Forward - Reverse Mate pair Illumina: Reverse - Forward

Different for other technologies!

What is multiplexing?
Why would you multiplex?
Advantages and challenges?

Uses of multiplexing

- Environmental DNA studies
 Lots of samples and replicates
 Short target size
- Targeted sequencing
- Ancient DNAScreening

Exercise time!

http://teaching.healthtech.dtu.dk/22126/index.php/Data basics exercise