Universidade Estadual Paulista "Júlio de Mesquita Filho"

Notas de aula Sistemas p-fuzzy

Prof. Dr. Vinícius Francisco Wasques viniciuswasques@gmail.com

31 de janeiro de 2022

Princípio de extensão de Zadeh

Hoje falaremos sobre o princípio de extensão de Zadeh, que estende o conceito de função clássica para uma função fuzzy. Uma função fuzzy pode ser determinada de várias formas:

- $F: \mathbb{R}_F \to \mathbb{R}_F$. Exemplo: F((a; b; c)) = 2(a; b; c).
- $F: \mathbb{R} \to \mathbb{R}_F$. Exemplo: F(x) = x(a; b; c).

A extensão de Zadeh produz uma função fuzzy do primeiro tipo, mas para isso é necessário ter em mãos uma função clássica $f:X\to Y$. Assim, dado um subconjunto fuzzy $A\subseteq X$, temos que o princípio de extensão de Zadeh produz o subconjunto fuzzy $\hat{f}(A)$ de Y. Em outras palavras, esse princípio produz uma função do tipo $\hat{f}:\mathcal{F}(X)\to\mathcal{F}(Y)$.

Dessa forma, Zadeh propos a seguinte definição:

Definição: Seja $f: X \to Y$ uma função clássica e $A \subseteq X$ subconjunto fuzzy. O conjunto fuzzy $\hat{f}(A)$ de Y é definido pela seguinte função de pertinência:

$$\varphi_{\hat{f}(A)}(y) = \sup_{f(x)=y} \varphi_A(x)$$

É importanto observar que, se não existir $x \in X$ de tal forma que f(x) = y, então atribuímos a pertinência igual a 0. Para isso é necessário estudar a pré-imagem de y, isto é, $f^{-1}(y)$.

A fim de simplificar a notação, é comum ver nas referências, o seguinte:

$$\hat{f}(A)(y) = \sup_{f(x)=y} A(x)$$

Exemplo: Sabe-se que um conjunto fuzzy A tem a seguinte propriedade: $\varphi_A(-2) = 0.5$, $\varphi_A(-1) = 0.25$, $\varphi_A(0) = 1$, $\varphi_A(1) = 0.25$, $\varphi_A(2) = 0.45$, $\varphi_A(3) = 0.75$. Considere a função f(x) = 2x.

• Qual a pertinência de y=6 no conjunto fuzzy $\hat{f}(A)$?

Note que x=3 é o único elemento na pré-imagem de $y=6. \; {\rm Ent} {\rm \tilde ao},$

$$\hat{f}(A)(6) = \sup_{f(x)=6} A(x) = \sup\{A(3)\} = \sup\{0.75\} = 0.75.$$

Agora considere $f(x) = x^2$.

• Qual a pertinência de y=9 no conjunto fuzzy $\hat{f}(A)$?

Note que x=3 é o único elemento na pré-imagem de y=9. Então,

$$\hat{f}(A)(9) = \sup_{f(x)=9} A(x) = \sup\{A(3)\} = \sup\{0.75\} = 0.75.$$

• Qual a pertinência de y=1 no conjunto fuzzy $\hat{f}(A)$? Nesse caso temos dois elementos na préimagem de y=1, isto é, x=-1 e x=1. Assim,

$$\hat{f}(A)(1) = \sup_{f(x)=1} A(x) = \sup\{A(-1), A(1)\} = \sup\{0.25, 0.25\} = 0.25$$

• Qual a pertinência de y=4 no conjunto fuzzy $\hat{f}(A)$? Nesse caso temos dois elementos na préimagem de y=4, isto é, x=-2 e x=2. Assim,

$$\hat{f}(A)(4) = \sup_{f(x)=4} A(x) = \sup\{A(-2), A(2)\} = \sup\{0.5, 0.45\} = 0.5$$

É possível determinar os α -níveis da extensão de Zadeh de um conjunto fuzzy, através de uma função f. Se a função f for contínua e bijetiva, então os α -níveis de $\hat{f}(A)$ são dados por:

$$[\hat{f}(A)]^{\alpha} = f([A]^{\alpha}), \quad \forall \alpha \in [0, 1].$$

Em termos gerais, é possível determinar os α -níveis da seguinte forma:

$$[\hat{f}(A)]^{\alpha} = \left[\inf_{x \in [A]^{\alpha}} f(x), \sup_{x \in [A]^{\alpha}} f(x) \right], \quad \forall \alpha \in [0, 1].$$

Exemplo: Considere o seguinte conjunto fuzzy A, dado por

$$arphi_A(x) = egin{cases} 4(x-x^2), & ext{se } x \in [0,1] \ 0, & ext{caso contrário} \end{cases}.$$

Os α -níveis de A são dados por

$$[A]^{\alpha} = \left[\frac{1}{2}(1 - \sqrt{1 - \alpha}), \frac{1}{2}(1 + \sqrt{1 - \alpha})\right].$$

Considere a seguinte função clássica $f(x)=x^2$. Como a função f, restrita ao intervalo [0,1] é uma função contínua e bijetiva, então temos que

$$[\hat{f}(A)]^{\alpha} = \left[f\left(\frac{1}{2}(1-\sqrt{1-\alpha})\right), f\left(\frac{1}{2}(1+\sqrt{1-\alpha})\right) \right]$$
$$= \left[\left(\frac{1}{2}(1-\sqrt{1-\alpha})\right)^2, \left(\frac{1}{2}(1+\sqrt{1-\alpha})\right)^2 \right]$$

Exemplo: Considere o número fuzzy triangular A=(-1;0;1) e a função clássica $f(x)=x^2$. Note que f, restrita ao intervalo [-1,1] não é injetora. Portanto, a primeira expressão para o cálculo de α -níveis não pode ser utilizada.

Perceba que de fato isso é verdade. Os α -níveis de A são dados por $[A]^{\alpha} = [-1 + \alpha, 1 - \alpha]$. Se fosse possível a primeira expressão, então teríamos:

$$[\hat{f}(A)]^{\alpha}$$
 = $[f(-1+\alpha), f(1-\alpha)]$
 = $[(-1+\alpha)^2, (1-\alpha)^2]$
 = $[\alpha^2 - 2\alpha + 1, \alpha^2 - 2\alpha + 1]$

Note que a expressão acima não é compatível para conjuntos fuzzy. Lembre-se que todo conjunto fuzzy A deve satisfazer o seguinte: Se $\beta \geq \alpha$, então $[A]^{\beta} \subseteq [A]^{\alpha}$. Perceba agora que

$$[\hat{f}(A)]^1 = [0,0] \not\subset [1,1] = [\hat{f}(A)]^0.$$

Dessa forma é preciso resolver o problema utilizando a segunda expressão, isto é,

$$[\hat{f}(A)]^{\alpha} = \left[\inf_{x \in [-1+\alpha, 1-\alpha]} x^2, \sup_{x \in [-1+\alpha, 1-\alpha]} x^2 \right], \quad \forall \alpha \in [0, 1].$$

A função $f(x)=x^2$ vai assumir os valores de máximo e mínimo em três possível valores: $x\in\{-1+\alpha,1-\alpha,0\}$. Como $f(-1+\alpha)=f(1-\alpha)=\alpha^2-2\alpha+1\geq 0=f(0)$, segue que:

$$[\hat{f}(A)]^{\alpha} = [0, \alpha^2 - 2\alpha + 1], \quad \forall \alpha \in [0, 1].$$

Exercício (para entregar): Determine os α -níveis da extensão de Zadeh do conjunto fuzzy

$$\varphi_A(x) = \begin{cases} 4(x-x^2), & \text{se } x \in [0,1] \\ 0, & \text{caso contrário} \end{cases}.$$

pela função clássica $f(x) = x^2$.