What's in a good representation?

John Tan Chong Min

Aim

 Find a way to encode a suitable representation to perform decision making

 Such representation can also be how we store memories for use in the future

Autoencoders: Representation via Reconstruction

• Prioritises output clarity – may not disentangle well in latent space

Do you need to predict everything? (Recap)

• Some things in input space are not important to understand for your goals

Transformers: Representation via Prediction

Figure 1: The Transformer - model architecture.

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Taken from: Attention is all you need. Vaswani et al. (2017)

Large Self-Supervised Learning

 Self-supervised learning helps to learn better manifolds across large data

Can work zero-shot on a new sample

Manifold of having only 2 classes

Manifold of having 4 classes

JEPA - Only use whatever is necessary to predict

• Prediction is done in latent space

A Path towards Autonomous Machine Intelligence. Yann LeCun. 2022.

World Modelling

- Use hidden representations for prediction
- Latent space is discrete using latent space of categorical variables

Mastering Atari with Discrete World Models. Hafner et al. 2022.

Natural Fixed Biases: Faster learning by constraints

• Sound: frequency in cilia

• Vision:

- Local patches
- Cones for Red, Green, Blue
- · Rods for Black and White

Audio – Freq Modelling

Audio signal converted into frequencies

Images taken from: https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53

Use overlapping window to model waveform over time

Vision – Pixel Proximity

Vertical edge detection

1		1										
10	10	10	0	0	0				1			
10	10	10	0	0	0	*	1 0 -1 1 0 -1 1 0 -1	=	0	30	30	0
10	10	10	0	0	0				0	30	30	0
10	10	10	0	0	0				0	30	30	0
10	10	10	0	0	0		3 ×3		0	30	30	0
10	10	10	0	0	0					1	tx4	
		67	6							\	4	
						*	1 1 1	Andrew Ng				

Information Pipeline – Bias for Representation (Recap)

Vector Representation

Initial Reference + Movement

Could aid with generalization

Vector Representation of memory (my view)

Initial Reference + Movement

- Naturally represented by vectors
- Fits nicely with concepts
 - Science: Initial position/state of object + movement
 - Movement: Starting position + action
 - **Geography:** Start from one country and move to another
 - History: Starting time and moving up or down timeline
 - Mathematics: Starting number and moving up or down number line
 - Reinforcement Learning: Start state, action, end state

How we generalize from memory (my view)

- When we retrieve memories, the initial reference can be adjusted to suit the situation
- That way, the movement obtained can be applied to the new situation to get the desired outcome
- We can probably simulate various outcomes by retrieving from memory, applying the movement to current situation
- Current vectors don't disentangle between reference and movement – may be required for better memory referencing?

The next level

Hierarchical Prediction

Top level forms basis for interpretation of the bottom

Hierarchical Prediction is the future

- Hierarchical prediction of more than just next token, but broader prediction at higher levels
- Higher level prediction can be more abstract and less detailed than lower levels

Evidence of a predictive coding hierarchy in the human brain listening to speech.
Caucheteux. 2022. Nature Human Behaviour.

How to represent part-whole hierarchies in a neural network. Hinton, 2021.

Hierarchical Prediction – Jukebox (OpenAI)

- Hierarchical Quantization of sound from coarse-grained input to fine-grained layers
- Codebook entries are finite

Jukebox: A Generative Model for Music. Dhariwal et. al. 2020.

Hierarchical Prediction – Jukebox (OpenAI)

• Conditional generation of coarse-grained input to fine-grained layers

Residual Vector Quantization

- Hierarchical Quantization from coarse-grained input to fine-grained layers
- Akin to compositionality?

Optimized residual vector quantization for efficient approximate nearest neighbor search. Ai et al. 2015.

Hierarchical Prediction - Feature Pyramid Network

• Hierarchical prediction from coarse-grained image to fine-grained image

Feature Pyramid Networks for Object Detection. Lin et al. 2017.

Hierarchical JEPA

• Hierarchical prediction of actions from the highest level action to the lowest level action

A Path towards Autonomous Machine Intelligence. Yann LeCun. 2022.

Hierarchical Action Prediction

Hierarchical prompting of actions from broad action to specific actions

Figure 6: The memory stream comprises a large number of observations that are relevant and irrelevant to the agent's current situation. Retrieval identifies a subset of these observations that should be passed to the language model to condition its response to the situation.

Generative Agents: Interactive Simulacra of Human Behavior. Joon et al. 2022

Sequential Prompting

- You are a day-to-day activity planner. Here are the requirements:
- Objectives:
 - Buy **bread** for tomorrow's breakfast
 - Give a 2 hour lecture on Large Language Models and prompting
 - Have time for **breakfast**, **lunch**, **dinner**
 - Have a one hour games session at night
 - Have time for some 3 hour group discussion with students in the afternoon
- Constraints:
 - Only awake from 8am to 10pm, and the rest of the time will be sleeping
- Give the broad overview of the plan for the day
- Give a detailed breakdown of the plan, highlighting any special requirements or preparations and things to take note of

LLM's answer (ChatGPT - Broad)

• Here's a broad overview of the day's plan:

8:00 AM - Wake up and get ready.

8:30 AM - Have breakfast.

9:00 AM - Go out and buy bread for tomorrow's breakfast.

9:30 AM - Prepare for the 2-hour lecture on Large Language Models and prompting.

10:00 AM - Start the lecture.

12:00 PM - Finish the lecture and take a break for lunch.

12:30 PM - Have lunch.

1:00 PM - Gather with students for a 3-hour group discussion.

4:00 PM - End the group discussion and take a short break.

4:15 PM - Review and prepare for the evening game session.

5:00 PM - Start the one-hour game session.

6:00 PM - Wrap up the game session.

6:15 PM - Take a break and relax.

7:00 PM - Prepare and have dinner.

8:00 PM - Engage in personal activities or leisure time.

10:00 PM - Start winding down for bedtime.

LLM's answer (ChatGPT – Detailed)

• Now, let's break down the plan with more details, considering the special requirements and preparations:

8:00 AM - Wake up and get ready:

- 1. Set an alarm to wake up at 8:00 AM.
- 2. Ensure you have a comfortable sleep environment to get a good night's rest.

8:30 AM - Have breakfast:

- 1. Plan a nutritious and fulfilling breakfast to start the day.
- 2. Consider having bread or other breakfast options along with your preferred choices.

9:00 AM - Go out and buy bread for tomorrow's breakfast:

- 1. Make a shopping list to ensure you don't forget anything.
- 2. Check nearby grocery stores or bakeries for fresh bread.
- 3. If necessary, bring cash or payment methods for the purchase.

9:30 AM - Prepare for the 2-hour lecture on Large Language Models and prompting:

- 1. Gather your lecture materials, including slides, notes, and any relevant examples.
- 2. Review the content to ensure you're well-prepared to deliver the lecture effectively.

10:00 AM - Start the lecture:

- 1. Allocate sufficient time for the lecture, keeping in mind that it should last for approximately 2 hours.
- 2. Engage with the audience, encourage questions, and facilitate discussions as appropriate.

Hierarchical Representation of Actions

• Hierarchical chunking of sets of commonly done actions can help reduce sequence length to goal state

Figure 6: A sample maze environment of size 10x10. By default, the agent's start state is at the top left and the door is at the bottom right, but it can be varied. (**Left**) Obstacles before episode 50 form a vertical wall with a gap in the center across the mid-point. (**Right**) Obstacles after episode 50 from a horizontal wall with a gap in the center across the mid-point.

Hierarchical Memory Referencing in Text (my idea)

- Abstraction and Reasoning Corpus (ARC) Challenge
- **Broad Intent:** Reduce the input grid to a smaller size
 - Can reference/recite similar broad intents from memory to refine broad intent
- Detailed Steps (conditioned on Broad Intent):
 Remove every other square from the row and columns of the grid
 - Can reference/recite similar detailed steps from memory to refine detailed steps
- Execution: Perform the detailed steps on the test input to get the answer

Transformers:

Can a Transformer perform hierarchical generation?

Figure 1: The Transformer - model architecture.

Memorizing Transformers. Wu et al. 2022.

Attention is all you need. Vaswani et al. (2017)

Questions to Ponder

- Do we learn from experience, or from natural fixed bias? Or both?
- Should we do prediction whereby we map back to input space (like tokens in Transformers), or should we just predict the latent space? What are the benefits and drawbacks?
- Should we use hierarchical generation? Is our brain hierarchical or more flat like what Jeff Hawkins proposes in "Thousand Brains Theory"?
- How do we structure hierarchical abstractions? Could chunking or vector quantization help?
- For a given problem, how would we know which is the right hierarchy of abstraction to use?
- Should we represent latent space as continuous or discrete? Would an unbounded length of discrete tokens be sufficient to represent continuous spaces?