Considering the tape symbol as a tuple - Multiple tracks Turing Machine

- 1. Can a multi-track Turing machine can be converted to single track Turing machine (**TRUE** /FALSE)?
- 2. Are Multi-tape and multi-track Turing machine same? (TRUE /FALSE)
- 3. The value of m if Turing machine is defined using m-tuple
 - A. 6
 - B. 7
 - C. 8
 - D. 5
- 4. In multi tape Turing machine, the head of the first tape is at the end of the input
 - A. Left
 - B. Right
 - C. Middle
 - D. Corner
- 5. S1: There exists a deterministic Turing machine corresponding to each non-deterministic Turing Machine
 - S2: There exists a single tape Turing machine corresponding to each multi-tape Turing machine.

Which of the following is correct?

- A. Both S1 and S2 are true
- B. Neither S1 and S2 are true
- C. Only S1 is true
- D. Only S2 is true
- 6. The below transition diagram accept the _____string

- A. $0^{n}1^{n}$
- B. $0^{n}0^{n}1^{n}$
- C. 0ⁿ0ⁿ
- D. 1ⁿ1ⁿ

Scenario based- Considering the state as a tuple

1. An equity trader invested in two stocks with same quantities where the quantity is represented as n. He then realized that during market crash, whenever he invested in a third stock with the same quantity as that of his first stock, he could make a reasonable profit and so he invested in a third stock of quantity n. Help the investor with a diagrammatic

representation of suitable turing machine that would accept only if the investments would yield a reasonable profit by satisfying the above mentioned criteria.

Sol: Turing Machine for L = { aⁿbⁿcⁿ}

Descriptive Question

- 2. Describe the following Turing machine and their working. Are they more powerful than the Basic Turing Machine?
 - Multi-tape (Multiple Track) Turing Machine
 - Multi-Dimensional Turing Machine
 - Two-Way infinite tape TM

Considering the tape symbol as a tuple is equivalent to multi track TM

3. Construct a TM to accept $\{0^n1^n / n \ge 1\}$ using Multi track TM concept Sol: We explicitly think of the tape as if it was composed of tracks. TM \hat{M} is

$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

where δ is given by the table in Fig. 8.9.

			Symbol		
State	0	1	X	Y	В
q_0	(q_1, X, R)	_	_	(q_3, Y, R)	_
q_1	$(q_1, 0, R)$	(q_2, Y, L)	_	(q_1, Y, R)	_
q_2	$(q_2, 0, L)$	_	(q_0, X, R)	(q_2, Y, L)	_
q_3	_	-	_	(q_{3}, Y, R)	(q_4, B, R)
q_4	_	_	_	_	_