Agrégation interne

Séries entières de matrices

Ce problème est l'occasion de revoir quelques points de cours :

- espaces normés, suites, séries, ouverts, fermés, applications linéaires continues, compacité, espaces de Banach;
- polynôme d'interpolation de Lagrange;
- matrices nilpotentes, valeurs propres, rayon spectral, normes matricielles, diagonalisation, trigonalisation, décomposition de Dunford, réduction de Jordan;
- calcul différentiel.

 $\mathbb C$ désigne le corps des nombres complexes et les espaces vectoriels considérés sont sur le corps $\mathbb C$.

- I - Algèbres de Banach

Une algèbre de Banach unitaire E est un espace vectoriel normé $(E, \|\cdot\|)$ complet muni d'une structure d'anneau unitaire et tel que $\|xy\| \le \|x\| \|y\|$ pour tous x, y dans E (on dit que la norme est sous-multiplicative) et $\|1_E\| = 1$, en désignant par 1_E l'élément neutre pour la multiplication interne de E.

On rappelle qu'une série de terme général x_n est dite normalement convergente dans un espace normé $(E, \|\cdot\|)$ si la série réelle de terme général $\|x_n\|$ est convergente.

- 1. Soit $(E, \|\cdot\|)$ un espace vectoriel normé.
 - (a) Montrer qu'une suite de Cauchy dans $(E, \|\cdot\|)$ qui admet une sous-suite convergente est convergente.
 - (b) Soit $(x_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans E.
 - i. Montrer qu'on peut en extraire une sous-suite $(x_{\varphi(n)})_{n\in\mathbb{N}}$ telle que :

$$\forall m \ge \varphi(n), \|x_m - x_{\varphi(n)}\| \le \frac{1}{2^n}$$

- ii. En déduire que la série $\sum ||x_{\varphi(n+1)} x_{\varphi(n)}||$ est convergente.
- (c) Montrer que $(E, \|\cdot\|)$ est complet si, et seulement si, toute série normalement convergente dans $(E, \|\cdot\|)$ est convergente.
- 2. Soit $(E, \|\cdot\|)$ une algèbre de Banach.

Montrer que l'application $(x, y) \mapsto xy$ est continue de $E \times E$ dans E (on munit l'espace produit $E \times E$ de la norme $(x, y) \mapsto \max(||x||, ||y||)$).

En particulier, pour tout y fixé dans E, l'application $x \mapsto xy$ est continue de E dans E.

- 3. Soit $(H, \|\cdot\|)$ une algèbre de Banach unitaire et H^{\times} l'ensemble de tous les éléments inversibles (pour le produit) de H. On vérifie facilement que H^{\times} est un groupe multiplicatif.
 - (a) Montrer que pour tout $u \in H$ tel que ||u|| < 1, $1_H u$ est inversible d'inverse $\sum_{k=0}^{+\infty} u^k$.
 - (b) Montrer que H^{\times} est ouvert dans H.
 - (c) Montrer que l'application $u \mapsto u^{-1}$ est continue sur H^{\times} .

Pour $H = \mathcal{L}(E) = \{u : E \to E \text{ continue}\}$, où E est un espace de Banach (de dimension finie ou infinie), $H^{\times} = GL(E)$ est un ouvert de $\mathcal{L}(E)$ et $u \mapsto u^{-1}$ est continue sur GL(E). Pour E de dimension finie, GL(E) est un ouvert dense de $\mathcal{L}(E)$.

1

- II - Rayon spectral des matrices complexes

 $\mathcal{M}_n(\mathbb{C})$ est l'algèbre des matrices carrées d'ordre n à coefficients dans \mathbb{C} , $GL_n(\mathbb{C})$ est le groupe multiplicatif des matrices inversibles dans $\mathcal{M}_n(\mathbb{C})$.

Une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est identifiée à l'endomorphisme de \mathbb{C}^n qu'elle définit dans la base canonique.

Une matrice diagonale de termes diagonaux $\lambda_1, \dots, \lambda_n$ est notée diag $(\lambda_1, \dots, \lambda_n)$.

On se donne une norme vectorielle $x \mapsto ||x||$ sur \mathbb{C}^n et on lui associe la norme matricielle induite sur $\mathcal{M}_n(\mathbb{C})$ qui est définie par :

$$\forall A \in \mathcal{M}_n \left(\mathbb{C} \right), \ \|A\| = \sup_{x \in \mathbb{C}^n \setminus \{0\}} \frac{\|Ax\|}{\|x\|} = \sup_{\substack{x \in \mathbb{C}^n \\ \|x\| = 1}} \|Ax\|$$

Cette norme est une norme d'algèbre (vérification immédiate) et $\mathcal{M}_n(\mathbb{C})$ ainsi normé est une algèbre de Banach (puisque $\mathcal{M}_n(\mathbb{C})$ est de dimension finie).

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on désigne par sp(A) l'ensemble de toutes les valeurs propres complexes de A et par :

$$\rho\left(A\right) = \max_{\lambda \in \operatorname{sp}(A)} |\lambda|$$

le rayon spectral de A.

On rappelle le résultat suivant.

Théorème 1 (Dunford) Pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, il existe un unique couple de matrices (D,V) tel que D soit diagonalisable, V soit nilpotente, D et V commutent et A=D+V. De plus D et V sont des polynômes en A et les valeurs propres de D sont celles de A avec les mêmes multiplicités.

On note:

$$\mathcal{U}_{n}\left(\mathbb{C}\right)=\left\{ A\in\mathcal{M}_{n}\left(\mathbb{C}\right)\mid U^{*}U=I_{n}\right\}$$

le sous groupe de $GL_n(\mathbb{C})$ formé des matrices unitaires, où $U^* = {}^t\overline{U}$ est la matrice adjointe de U. On rappelle qu'une matrice unitaire est la matrice de passage de la base canonique de \mathbb{C}^n à une base orthonormée, où \mathbb{C}^n est muni de sa structure hermitienne canonique.

- 1. Soient $A \in \mathcal{M}_n(\mathbb{C})$ et k un entier naturel.
 - (a) Montrer $\rho(A) \leq ||A||$, l'inégalité pouvant être stricte.
 - (b) Montrer que sp $(A^k) = \{\lambda^k \mid \lambda \in \operatorname{sp}(A)\}$.
 - (c) Montrer $\rho(A^k) = \rho(A)^k$.
- 2. Soient $A \in \mathcal{M}_n(\mathbb{C})$.
 - (a) Montrer que :

$$\forall k \ge 1, \ \rho(A) \le \left\| A^k \right\|^{\frac{1}{k}}$$

(b) On suppose ici que A est diagonalisable. Montrer qu'il existe une constante réelle $\alpha>0$ telle que :

$$\forall k \ge 1, \ \left\| A^k \right\|^{\frac{1}{k}} \le \alpha^{\frac{1}{k}} \rho \left(A \right)$$

et en déduire que :

$$\rho\left(A\right) = \lim_{k \to +\infty} \left(\left\|A^{k}\right\|^{\frac{1}{k}} \right)$$

(c) En utilisant la décomposition de Dunford A = D + V, montrer qu'il existe une constante réelle $\beta > 0$ telle que :

$$\forall k \ge n, \ \left\| A^k \right\| \le \beta k^n \left\| D^{k-n} \right\|$$

et en déduire que :

$$\rho\left(A\right) = \lim_{k \to +\infty} \left(\left\|A^{k}\right\|^{\frac{1}{k}} \right) = \inf_{k \in \mathbb{N}^{*}} \left(\left\|A^{k}\right\|^{\frac{1}{k}} \right) \tag{1}$$

(formule de I. Guelfand).

- 3. Montrer que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on a $\rho(A) = \lim_{k \to +\infty} \left(N\left(A^k\right)^{\frac{1}{k}} \right)$ où $A \mapsto N(A)$ est une norme quelconque sur $\mathcal{M}_n(\mathbb{C})$ (non nécessairement induite par une norme vectorielle).
- 4. Soit $A \in \mathcal{M}_n(\mathbb{C})$.

 Montrer que la série $\sum A^k$ est convergente dans $\mathcal{M}_n(\mathbb{C})$ si, et seulement si, $\rho(A) < 1$.

 En cas de convergence de $\sum A^k$, montrer que $I_n A$ est inversible d'inverse $\sum_{k=0}^{+\infty} A^k$.
- 5. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que $\lim_{k \to +\infty} A^k = 0$ si, et seulement si, $\rho(A) < 1$.
- 6. Montrer que $\mathcal{U}_n\left(\mathbb{C}\right)$ est compact dans $\mathcal{M}_n\left(\mathbb{C}\right)$.
- 7. Montrer que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, il existe une matrice unitaire $U \in \mathcal{U}_n(\mathbb{C})$ telle que U^*AU soit triangulaire supérieure, ce qui revient à dire que A se trigonalise dans une base orthonormée (théorème de Schur).
- 8. On se propose de montrer que l'application ρ qui associe à toute matrice de $\mathcal{M}_n(\mathbb{C})$ son rayon spectral est continue, ce qui revient à montrer que si $(A_k)_{k\in\mathbb{N}}$ est une suite de matrices qui converge vers la matrice A dans $\mathcal{M}_n(\mathbb{C})$, alors la suite $(\rho(A_k))_{k\in\mathbb{N}}$ converge vers $\rho(A)$. dans \mathbb{R} .
 - (a) Montrer le résultat pour une suite $(T_k)_{k\in\mathbb{N}}$ de matrices triangulaires supérieures qui converge vers une matrice T.
 - (b) Montrer qu'une suite réelle est convergente si, et seulement si, elle est bornée et n'a qu'une seule valeur d'adhérence.
 - (c) Soit $(A_k)_{k\in\mathbb{N}}$ une suite de matrices qui converge vers la matrice A dans $\mathcal{M}_n(\mathbb{C})$.
 - i. Montrer que la suite $\left(\rho\left(A_{k}\right)\right)_{k\in\mathbb{N}}$ est bornée dans $\mathbb{R}.$
 - ii. Montrer que la suite $(\rho(A_k))_{k\in\mathbb{N}}$ admet $\rho(A)$ pour unique valeur d'adhérence et conclure.
- 9. Montrer que, pour tout réel R > 0, l'ensemble $\{A \in \mathcal{M}_n(\mathbb{C}) \mid \rho(A) < R\}$ est un ouvert de $\mathcal{M}_n(\mathbb{C})$.

10.

- (a) Montrer que, pour toute matrice $P \in GL_n(\mathbb{C})$, l'application $x \mapsto ||x||_P = ||P^{-1}x||$ définit une norme sur \mathbb{C}^n .
- (b) Montrer que la norme induite sur $\mathcal{M}_n(\mathbb{C})$ par $x \mapsto ||x||_P$ est $A \mapsto ||A||_P = ||P^{-1}AP||$.
- (c) Pour tout réel $\delta > 0$, on note :

$$D_{\delta} = \operatorname{diag}\left(1, \delta, \delta^{2}, \cdots, \delta^{n-1}\right)$$

Montrer que pour toute matrice triangulaire supérieure $T = ((t_{ij}))_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$, on a :

$$\lim_{\delta \to 0} D_{\delta}^{-1} T D_{\delta} = \operatorname{diag} (t_{11}, t_{22}, \cdots, t_{nn})$$

- (d) Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, il existe une suite de matrices $(P_k)_{k \in \mathbb{N}^*}$ dans $GL_n(\mathbb{C})$ telle que $\lim_{k \to +\infty} P_k^{-1} A P_k = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$.
- (e) Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$ et tout réel $\varepsilon > 0$, il existe une norme d'algèbre N sur $\mathcal{M}_n(\mathbb{C})$ telle que $N(A) < \rho(A) + \varepsilon$.

- III - Séries matricielles

On rappelle qu'une fonction φ définie sur un ouvert non vide \mathcal{O} d'un espace normé E et à valeurs dans un espace normé F est dite différentiable en $a \in \mathcal{O}$ s'il existe une forme linéaire continue L de E dans F (en dimension finie, linéaire suffit) telle que :

$$\varphi(a+h) = \varphi(a) + L(h) + o(||h||)$$

pour tout h dans un voisinage de 0 (ce qui signifie que $\lim_{h\to 0} \frac{1}{\|h\|} (\varphi(a+h) - \varphi(a) - L(h)) = 0$). On note alors $d\varphi(a) = L$.

On désigne par $\sum_{k=0}^{+\infty} a_k z^k$ une série entière à coefficients complexes de rayon de convergence R > 0 et on note $f(z) = \sum_{k=0}^{+\infty} a_k z^k$ sa somme pour $z \in \mathbb{C}$ tel que |z| < R.

1.

- (a) Soit $A \in \mathcal{M}_n(\mathbb{C})$ diagonalisable de valeurs propres $\lambda_1, \dots, \lambda_n$ distinctes ou confondues dans \mathbb{C} . Montrer que si $\rho(A) < R$, la série $\sum a_k A^k$ est alors convergente et sa somme, $f(A) = \sum_{k=0}^{+\infty} a_k A^k$, est diagonalisable de valeurs propres $f(\lambda_1), \dots, f(\lambda_n)$.
- (b) Soit $A \in \mathcal{M}_n(\mathbb{C})$ nilpotente d'indice $r \geq 1$. Montrer que la série $\sum a_k A^k$ est convergente.
- (c) Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $\rho(A) < R$ et A = D + V sa décomposition de Dunford avec D diagonalisable qui commute à V nilpotente d'indice $r \ge 1$.
 - i. Montrer que, pour tout entier $j \ge 0$, la série $\sum_{k=j}^{+\infty} a_k \frac{k!}{(k-j)!} D^{k-j}$ est convergente. On notera $f^{(j)}(D)$ sa somme.
 - ii. Montrer que la série $\sum a_k A^k$ est convergente de somme :

$$f(A) = \sum_{k=0}^{+\infty} a_k A^k = \sum_{j=0}^{r-1} \frac{1}{j!} f^{(j)}(D) V^j$$

- iii. Montrer que la matrice f(A) est un polynôme en A (dont les coefficients dépendent de A).
- iv. Peut-on trouver un polynôme $R \in \mathbb{C}[X]$ tel que f(A) = R(A) pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$?
- (d) Montrer que si $A \in \mathcal{M}_n(\mathbb{C})$ est telle que $\rho(A) > R$, la série $\sum a_k A^k$ est alors divergente.
- 2. En utilisant la formule (1) de Guelfand, montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$ telle que $\rho(A) < R$, la série $\sum a_k A^k$ est normalement convergente.

3. Soit $D \in \mathcal{M}_n(\mathbb{C})$ diagonalisable telle que $\rho(D) < R$. Montrer qu'il existe un polynôme $R \in \mathbb{C}_{n-1}[X]$ (qui dépend de D) tel que f(D) = R(D).

4.

- (a) Montrer que l'application $f: A \mapsto f(A) = \sum_{k=0}^{+\infty} a_k A^k$ est continue sur l'ouvert $\mathcal{D}_R = \{A \in \mathcal{M}_n(\mathbb{C}) \mid \rho(A) < R\}$.
- (b) Montrer que la fonction f est différentiable en 0 avec $df(0) = a_1 I_d$.
- 5. Soit $A \in \mathcal{M}_n(\mathbb{C})$.
 - (a) Montrer que si $\rho(A) = 0$, la fonction $\varphi : t \mapsto f(tA)$ est alors de classe \mathcal{C}^{∞} sur $I = \mathbb{R}$ et préciser sa dérivée.
 - (b) Montrer que si $0 < \rho(A) < R$, la fonction $\varphi : t \mapsto f(tA)$ est alors de classe \mathcal{C}^{∞} sur $I = \left[-\frac{R}{\rho(A)}, \frac{R}{\rho(A)} \right]$ et préciser sa dérivée.

- IV - L'exponentielle matricielle. Propriétés

On suppose connues les principales propriétés de l'exponentielle complexe.

La série entière $\sum \frac{z^k}{k!}$ ayant un rayon de convergence infini, on peut définir la fonction exponentielle sur $\mathcal{M}_n(\mathbb{C})$ par :

$$\forall A \in \mathcal{M}_n(\mathbb{C}), \ \exp(A) = \sum_{k=0}^{+\infty} \frac{1}{k!} A^k$$

la série étant normalement convergente.

Cette application exp est continue sur $\mathcal{M}_n(\mathbb{C})$ et $\exp(A)$ est polynomiale en A.

On notera aussi e^A pour $\exp(A)$.

On remarque que pour $A \in \mathcal{M}_n(\mathbb{R})$, on a $e^A \in \mathcal{M}_n(\mathbb{R})$.

1. Soit $D \in \mathcal{M}_n(\mathbb{C})$ diagonalisable et μ_1, \dots, μ_p ses valeurs propres deux à deux distinctes. Montrer que :

$$e^{D} = \sum_{k=1}^{p} e^{\mu_k} \prod_{\substack{j=1\\j \neq k}}^{p} \frac{1}{\mu_k - \mu_j} (D - \mu_j I_n)$$

2. Soient a, b dans \mathbb{C} avec $a \neq 0$, $n \geq 3$ et $A(a, b) = ((a_{ij}))_{1 \leq i, j \leq n} \in \mathcal{M}_n(\mathbb{C})$ définie par :

$$\forall i \in \{1, 2, \dots, n\}, \begin{cases} a_{ii} = b, \\ a_{ij} = a \text{ si } j \in \{1, 2, \dots, n\} - \{i\}. \end{cases}$$

- (a) Calculer $\Delta(a, b) = \det(A(a, b))$.
- (b) Calculer le polynôme caractéristique et les valeurs propres avec leur multiplicité de $A\left(a,b\right)$.
- (c) Calculer le polynôme minimal de $A\left(a,b\right)$.
- (d) Justifier le fait que A(a,b) est diagonalisable et en déduire $e^{A(a,b)}$.
- (e) Calculer directement $e^{A(a,b)}$.
- 3. Soient θ un réel non nul et $A_{\theta} = \begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix} \in \mathcal{M}_{2}(\mathbb{R})$.
 - (a) Calculer $e^{A_{\theta}}$ de plusieurs manières.

- (b) En écrivant que $A_{\theta} = B_{\theta} + C_{\theta}$, avec $B_{\theta} = \begin{pmatrix} 0 & 0 \\ \theta & 0 \end{pmatrix}$ et $C_{\theta} = \begin{pmatrix} 0 & -\theta \\ 0 & 0 \end{pmatrix}$, vérifier que $e^{A+B} \neq e^A e^B$ en général.
- 4. Plus généralement, pour $B \in \mathcal{M}_n(\mathbb{C})$, on note $A = \begin{pmatrix} 0 & -B \\ B & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$. Calculer e^A .
- 5. Montrer que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on $\det\left(e^A\right) = e^{\operatorname{Tr}(A)}$ et e^A est inversible. L'exponentielle matricielle est donc une application continue de $\mathcal{M}_n(\mathbb{C})$ dans le groupe multiplicatif $GL_n(\mathbb{C})$.
- 6. L'application exp est-elle surjective de $\mathcal{M}_n(\mathbb{R})$ dans $GL_n(\mathbb{R})$?
- 7. Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, l'inverse de e^A est e^{-A} .
- 8. Montrer que si $A \in \mathcal{M}_n(\mathbb{C})$ est anti-hermitienne, alors e^A est unitaire.
- 9. Soient A, B dans $\mathcal{M}_n(\mathbb{C})$. Montrer que les matrices A et B commutent si, et seulement si, $e^{t(A+B)} = e^{tA}e^{tB}$ pour tout réel t.
- 10. Soient $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que $\lim_{t \to +\infty} e^{tA} = 0$ si, et seulement si, toutes les valeurs propres de A sont de partie réelle strictement négative.
- 11. Montrer que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, les solutions du système différentiel Y' = AY, où $Y \in \mathcal{C}^1(\mathbb{R}, \mathbb{C}^n)$, sont les fonction $Y : t \mapsto e^{tA}Y_0$, où $Y_0 \in \mathbb{C}^n$.
- 12. Soit $A: t \mapsto A(t)$ une fonction de classe \mathcal{C}^1 de \mathbb{R} dans $\mathcal{M}_n(\mathbb{C})$. L'égalité $\left(e^{A(t)}\right)' = A'(t) e^{A(t)}$ est-elle toujours vérifiée?

13.

- (a) Soit A, B dans $\mathcal{M}_n(\mathbb{R})$ diagonalisables. Montrer que si $e^A = e^B$, alors A = B.
- (b) Soit A dans $\mathcal{M}_n(\mathbb{R})$ diagonalisable. Montrer que A est diagonale si, et seulement si, e^A est diagonale.

14.

(a) Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on a :

$$e^{A} = \lim_{k \to +\infty} \left(I_n + \frac{1}{k} A \right)^k$$

(b) Montrer que si $(A_k)_{k\in\mathbb{N}}$ est une suite de matrices qui converge vers $A\in\mathcal{M}_n\left(\mathbb{C}\right)$, on a alors :

$$\lim_{k \to +\infty} \left(e^{A_k} - \left(I_n + \frac{1}{k} A_k \right)^k \right) = 0 \text{ et } \lim_{k \to +\infty} \left(I_n + \frac{1}{k} A_k \right)^k = e^A$$

- (c) En utilisant ce qui précède, montrer que si A et B commutent dans $\mathcal{M}_n(\mathbb{C})$, on a alors $e^{A+B}=e^Ae^B$.
- 15. Soient $A \in \mathcal{M}_n(\mathbb{C})$ et A = D + V sa décomposition de Dunford avec D diagonalisable et V nilpotente d'indice $r \geq 1$.
 - (a) Montrer que :

$$e^{A} = e^{D}e^{V} = e^{D}\sum_{k=0}^{r-1} \frac{1}{k!}V^{k}$$

(b) Montrer que la décomposition de Dunford de e^A est donnée par :

$$e^A = e^D + e^D \left(e^V - I_n \right),$$

avec e^D diagonalisable et $e^D (e^V - I_n)$ nilpotente.

16. Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est diagonalisable si, et seulement si, e^A l'est.

- V - Surjectivité et injectivité de l'exponentielle matricielle

On note $\mathcal{N}_n(\mathbb{C})$ le sous-ensemble de $\mathcal{M}_n(\mathbb{C})$ formé des matrices nilpotentes et $\mathcal{L}_n(\mathbb{C})$ le sousensemble de $\mathcal{M}_n(\mathbb{K})$ formé des matrices unipotentes (i. e. l'ensemble des matrices $A \in \mathcal{M}_n(\mathbb{C})$ telles que $A - I_n$ soit nilpotente).

La série entière $\sum \frac{(-1)^{k-1}}{k} z^k$ a un rayon de convergence égal à 1 et pour z réel dans]-1,1[, on sait que sa somme est $\ln(1+z)$.

On note donc naturellement pour z complexe :

$$\ln(1+z) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} z^k \ (|z| < 1)$$

et on peut définir la fonction $A \mapsto \ln (I_n + A)$ sur l'ouvert :

$$\mathcal{D}_{1} = \{ A \in \mathcal{M}_{n} \left(\mathbb{C} \right) \mid \rho \left(A \right) < 1 \}$$

par:

$$\ln(I_n + A) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} A^k$$

On sait alors que $\ln(I_n + A)$ est un polynôme en A (dont les coefficients dépendent de A). En particulier on a $\ln(I_n) = 0$ et pour toute matrice A nilpotente A d'indice $r \ge 2$, on a :

$$\ln (I_n + A) = \sum_{k=1}^{r-1} \frac{(-1)^{k-1}}{k} A^k$$

- 1. Montrer que l'application $\exp: z \mapsto e^z$ réalise un morphisme de groupes surjectif de $(\mathbb{C}, +)$ sur (\mathbb{C}^*, \cdot) de noyau $\ker(\exp) = 2i\pi\mathbb{Z}$.
- 2. Montrer que la matrice $B = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$ ne peut s'écrire $B = e^A$ avec $A \in \mathcal{M}_n(\mathbb{R})$.
- 3. Déterminer toutes les solutions dans $\mathcal{M}_n(\mathbb{C})$ de l'équation $e^A = I_n$.
- 4. Montrer que:

$$\forall A \in \mathcal{D}_1, \ e^{\ln(I_n + A)} = I_n + A$$

5. En utilisant la question précédente, montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on a :

$$e^{A} = \lim_{k \to +\infty} \left(I_n + \frac{1}{k} A \right)^k$$

6. Montrer que pour toute matrice $A \in \mathcal{N}_n(\mathbb{C})$ on a $e^A \in \mathcal{L}_n(\mathbb{C})$ et :

$$\forall t \in \mathbb{R}, \ln\left(e^{tA}\right) = tA$$

- 7. Montrer que l'exponentielle matricielle réalise une bijection de $\mathcal{N}_n(\mathbb{C})$ sur $\mathcal{L}_n(\mathbb{C})$ d'inverse le logarithme matriciel.
- 8. Montrer que pour tout nombre complexe λ non nul et pour toute matrice $A \in \mathcal{N}_n(\mathbb{C})$ il existe une matrice $X \in \mathcal{M}_n(\mathbb{C})$ telle que :

$$e^X = \lambda I_n + A$$

- 9. Soit $A \in GL_n(\mathbb{C})$ une matrice diagonalisable. Montrer qu'il existe un polynôme $R \in \mathbb{C}_{n-1}[X]$ tel que R(A) soit diagonalisable et $e^{R(A)} = A$.
- 10. Montrer que, pour toute matrice $A \in GL_n(\mathbb{C})$, il existe un polynôme $R \in \mathbb{C}[X]$ tel que $e^{R(A)} = A$ (l'exponentielle matricielle réalise une surjection de $\mathcal{M}_n(\mathbb{C})$ sur $GL_n(\mathbb{C})$).
- 11. Prouver la surjectivité de l'exponentielle matricielle de $\mathcal{M}_n(\mathbb{C})$ sur $GL_n(\mathbb{C})$ en utilisant le théorème de réduction de Jordan et la question $\mathbf{V.8}$.
- 12. En utilisant la surjectivité de l'exponentielle matricielle de $\mathcal{M}_n(\mathbb{C})$ sur $GL_n(\mathbb{C})$, montrer que $GL_n(\mathbb{C})$ est connexe par arcs.
- 13. Soit p un entier naturel non nul. Montrer que pour toute matrice $A \in GL_n(\mathbb{C})$ il existe une matrice $X \in GL_n(\mathbb{C})$ polynomiale en A telle que $X^p = A$ (on dit que X est une racine p-ème de A).
- 14. Pour $A \in \mathcal{M}_n(\mathbb{C})$ non inversible avec $n \geq 2$ et $p \geq 2$, peut-on toujours trouver une matrice $X \in \mathcal{M}_n(\mathbb{C})$ telle que $X^p = A$?
- 15. Montrer que:

$$\exp\left(\mathcal{M}_{n}\left(\mathbb{R}\right)\right) = \left\{B^{2} \mid B \in GL_{n}\left(\mathbb{R}\right)\right\}$$