1 Sum from 1 to n

We want to prove that 1+2+...+n can be calculated with $\frac{n(n+1)}{2}$

1.1 Definitions

We will define a function to let us talk about the sum of numbers from 1 to n. Let:

$$F(n) = 1 + 2 + \dots + n \tag{1}$$

We will define a predicate to let us talk about the relationship between F(n) and the shortcut calculation. Let:

$$P(n): F(n) = \frac{n(n+1)}{2}$$
 (2)

Note that P(n) evaluates to a boolean. It can be true or false for any particular n. It is true for a particular value of n if F(n) does in fact equal $\frac{n(n+1)}{2}$ and it is false if these two things are not equal.

1.2 Goal

Our goal is to prove that P(n) holds (is true) for all values of n greater than 0. Prove:

$$\forall n \in N : P(n) \tag{3}$$

1.3 Proof by induction

1.3.1 Base case

To show our base case P(1) is true, we will state the base case, then show that the left side does in fact equal the right side. Prove:

$$P(1): F(1) = \frac{1(1+1)}{2}$$

$$F(1) = 1$$

$$\frac{1(1+1)}{2} = \frac{2}{2} = 1$$

$$(4)$$

1.3.2 Inductive step

We will prove that **if** P(k) holds (is true) for some $k \in N$, **then** P(k+1) is also true. Prove:

$$P(k) \implies P(k+1), \forall k \in N$$
 (5)

We start with the *inductive hypothesis*, we assume for the time that P(k) holds. Assume:

$$P(k): F(k) = \frac{k(k+1)}{2}$$
 (6)

Now, assuming that P(k) is true, prove:

$$P(k+1): F(k+1) = \frac{(k+1)((k+1)+1)}{2} \tag{7}$$

By definition:

$$F(k+1) = 1 + 2 + \dots + k + (k+1)$$

which is by definition:

$$F(k+1) = F(k) + (k+1)$$

which by our inductive hypothesis is:

$$F(k+1) = \frac{k(k+1)}{2} + (k+1)$$

simplifying is:

$$F(k+1) = (k+1)(\frac{k}{2}+1)$$

which is equivalent to:

$$F(k+1) = (k+1)(\frac{k}{2} + \frac{2}{2})$$

which simplifies to:

$$F(k+1) = \frac{(k+1)(k+2)}{2}$$

which is clearly:

$$F(k+1) = \frac{(k+1)((k+1)+1)}{2}$$

And so we have proved P(k+1) (7) by showing that the left side is equal to the right side (assuming that P(k) is true).

1.4 Conclusion

We have proved that P(n) holds for a base case of P(1) and that for all $k \in N$, P(k) being true implies that P(k+1) is also true. Therefore P(n) holds for all n > 0 (all natural numbers).

$$P(1): F(1) = \frac{1(1+1)}{2}$$

$$P(k) \implies P(k+1), \forall k \in \mathbb{N}$$

$$\therefore P(n), \forall n \in \mathbb{N}$$

2 Making postage with 3 and 5 cent stamps

We want to prove that all postage amounts greater than 7 cents can be made with combinations of 3 and 5 cent stamps

2.1 Definitions

We will define a predicate to talk about whether a particular number can be represented as a summation of a non-negative multiple of 3 and a non-negative multiple of 5.

$$P(n): n = 3a + 5b \mid a, b \in \mathbb{Z}_{\geq 0}$$
 (8)

Note that P(n) may be true or false for any given number n. For example, P(2) is false, as 2 cents of postage cannot be made with 3 and 5 cent stamps. However, P(11) is true, because 11 cents of postage can be made with a 5 cent stamp and two 3 cent stamps.

2.2 Goal

Our goal is to prove that P(n) holds for all values of n greater than 7.

$$\forall n \in \mathbb{Z}_{>7} : P(n) \tag{9}$$

2.3 Proof by induction

2.3.1 Base case

To show that the base case P(8) is true, we will state the base case, then show that we can find suitable non-negative integers a and b. Prove:

$$P(8): 8 = 3a + 5b$$

$$a.b = 1$$
(10)

2.3.2 Inductive step

We will prove that if P(k) holds (is true) for some $k \in \mathbb{Z}_{>7}$, then P(k+1) is also true. Prove:

$$P(k) \implies P(k+1), \forall k \in \mathbb{Z}_{>7}$$
 (11)

We start with the *inductive hypothesis*, we assume for the time that P(k) holds. Assume:

$$P(k): k = 3a + 5b \mid a, b \in \mathbb{Z}_{>0}$$
 (12)

Now, assuming that P(k) is true, prove:

$$P(k+1): k+1 = 3c + 5d \mid c, d \in \mathbb{Z}_{>0}$$
(13)

If b > 0, then d = b - 1 and c = a + 2 results in:

$$3c + 5d = 3(a + 2) + 5(b - 1) = 3a + 5b + 1 = k + 1$$

By our inductive hypothesis, we assumed that a and b were non-negative integers, and so c and d will be too.

If b = 0, then k must be a multiple of 3. The smallest multiple of 3 in $\mathbb{Z}_{>7}$ is 9, which is 3*3. All other multiples of 3 in $\mathbb{Z}_{>7}$ will have a greater or equal

number of 3 in their all-3 representation (b=0). Therefore if b=0, then $a \ge 3$. So d=b+2 and c=a-3 results in:

$$3c + 5d = 3(a - 3) + 5(b + 2) = 3a + 5b + 1 = k + 1$$

By our inductive hypothesis and our reasoning that a must be greater than or equal to 3 in the case where b=0, then c and d will be non-negative integers too.

And so we have proved P(k+1) (13) by assuming P(k) (12) was true. If P(k), then P(k+1) (11).

2.4 Conclusion

We have proved that P(n) holds for a base case of P(8) and that for all $k \in \mathbb{Z}_{>7}$, P(k) being true implies that P(k+1) is also true. Therefore P(n) holds for all n > 7.

$$P(8): 8 = 3(1) + 5(1)$$

$$P(k) \implies P(k+1), \forall k \in \mathbb{Z}_{>7}$$

$$\therefore P(n), \forall n \in \mathbb{Z}_{>7}$$

3 Proof with inequality

We want to prove that for any integer n greater than 6, n! is greater than 3^n .

$$n! > 3^n \mid n > 6$$

3.1 Definitions

We will define a predicate to let us talk about an inequality relationship between n! and 3^n . Let:

$$P(n): n! > 3^n \tag{14}$$

Note that P(n) may be true or false for any particular choice of n. For example, P(2) is false because 2! is not greater than 3^2 . But P(7) is true because 7! (5040) is greater than 3^7 (2187).

3.2 Goal

Our goal is to prove that P(n) holds for all values of n greater than 6.

$$\forall n \in \mathbb{Z}_{>6} : P(n) \tag{15}$$

3.3 Proof by induction

3.3.1 Base case

To show that the base case P(7) is true, we will state the base case, then show that the inequality is true. Prove:

$$P(7): 7! > 3^7$$
 (16)
 $7! = 5040 > 2187 = 3^7$

3.3.2 Inductive step

We will prove that if P(k) holds (is true) for some $k \in \mathbb{Z}_{>6}$, then P(k+1) is also true. Prove:

$$P(k) \implies P(k+1), \forall k \in \mathbb{Z}_{>6} \tag{17}$$

We start with the *inductive hypothesis*, we assume for the time that P(k) holds. Assume:

$$P(k): k! > 3^k \mid k \in \mathbb{Z}_{>6} \tag{18}$$

Now, assuming that P(k) is true, prove:

$$P(k+1): (k+1)! > 3^{k+1}$$
(19)

Starting with the left side:

$$(k+1)! = (k+1)k!$$

Using our inductive hypothesis:

$$(k+1)! > (k+1)3^{k}$$

$$(k+1)! > \frac{1}{1}(k+1)3^{k}$$

$$(k+1)! > \frac{3}{3}(k+1)3^{k}$$

$$(k+1)! > \frac{k+1}{3}3 * 3^{k}$$

$$(k+1)! > \frac{k+1}{3}3^{1} * 3^{k}$$

$$(k+1)! > \frac{k+1}{3}3^{k+1}$$

And if $\frac{k+1}{3}$ is greater than 1:

$$(k+1)! > \frac{k+1}{3}3^{k+1} > 3^{k+1}$$

therefore:

$$(k+1)! > 3^{k+1}$$

Since $k \in \mathbb{Z}_{>6}$, we know that $\frac{k+1}{3}$ will always be greater than $\frac{6}{3}$ which is greater than 1. And so we have proved P(k+1) (19) by assuming P(k) (18) was true. If P(k), then P(k+1) (17).

3.4 Conclusion

We have proved that P(n) holds for a base case of P(7) and that for all $k \in \mathbb{Z}_{>6}$, P(k) being true implies that P(k+1) is also true. Therefore P(n) holds for all n > 6.

$$P(7): 7! > 3^{7}$$

$$P(k) \implies P(k+1), \forall k \in \mathbb{Z}_{>6}$$

$$\therefore P(n), \forall n \in \mathbb{Z}_{>6}$$

4 Proof of divisibility

This is related to our stamp problem. We want to prove that for any integer n greater than or equal to $0, 3^{2n} - 1$ is divisible by 8.

$$3^{2n} - 1 \equiv 0 \mod 8$$

4.1 Definitions

We will define a predicate to let us talk about the divisibility of our expression. Let:

$$P(n): 3^{2n} - 1 \equiv 0 \mod 8 \tag{20}$$

Note that P(n) may be true or false for any particular choice of n. For example, P(0) is true because $3^0 - 1 = 0$ is divisible by 8. But P(-1) is false because $3^{-2} - 1 = -\frac{8}{9}$ is not divisible by 8.

4.2 Goal

Our goal is to prove that P(n) holds for all values of n greater than or equal to 0.

$$\forall n \in \mathbb{Z}_{>0} : P(n) \tag{21}$$

4.3 Proof by induction

4.3.1 Base case

To show that the base case P(0) is true, we will state the base case, then show it is true. Prove:

$$P(0): 3^{2(0)} - 1 \equiv 0 \mod 8$$

$$3^0 - 1 = 0$$
(22)

4.3.2 Inductive step

We will prove that if P(k) holds (is true) for some $k \in \mathbb{Z}_{\geq 0}$, then P(k+1) is also true. Prove:

$$P(k) \implies P(k+1), \forall k \in \mathbb{Z}_{\geq 0}$$
 (23)

We start with the *inductive hypothesis*, we assume for the time that P(k) holds. Assume:

$$P(k): 3^{2k} - 1 \equiv 0 \mod 8 \mid k \in \mathbb{Z}_{>0}$$
 (24)

Now, assuming that P(k) is true, prove:

$$P(k+1): 3^{2(k+1)} - 1 \equiv 0 \mod 8 \tag{25}$$

Starting with the left side:

$$3^{2(k+1)} - 1 = 3^{2k+2} - 1$$
$$3^{2(k+1)} - 1 = 3^{2k} * 9 - 1$$
$$3^{2(k+1)} - 1 = 3^{2k} * (8+1) - 1$$
$$3^{2(k+1)} - 1 = 3^{2k} * 8 + 3^{2k} - 1$$

The left expression, $(3^{2k} * 8)$ is clearly divisible by 8 because any whole number multiplied by 8 is divisible by 8. (We know it is a whole number because k is non-negative). And the right expression $(3^{2k} - 1)$ is, by our *inductive hypothesis*, divisible by 8. So

$$3^{2(k+1)} - 1 = 8a + 8b \mid a, b \in \mathbb{Z}$$
$$3^{2(k+1)} - 1 = 8(a+b) \mid a, b \in \mathbb{Z}$$

Therefore $3^{2(k+1)} - 1$ is divisible by 8, because any whole number times 8 is divisible by 8. And so we have proved P(k+1) (25) by assuming P(k) (24) was true. If P(k), then P(k+1) (23).

4.4 Conclusion

We have proved that P(n) holds for a base case of P(0) and that for all $k \in \mathbb{Z}_{\geq 0}$, P(k) being true implies that P(k+1) is also true. Therefore P(n) holds for all $n \geq 0$.

$$P(0): 3^{2(0)} - 1 \equiv 0 \mod 8$$

$$P(k) \implies P(k+1), \forall k \in \mathbb{Z}_{\geq 0}$$

$$\therefore P(n), \forall n \in \mathbb{Z}_{\geq 0}$$

5 Another summation

We want to prove that 1+4+7+...+(3n-2) can be calculated with $\frac{n(3n-1)}{2}$