Homework 7

Problem 1. Let f be a measurable function and $\int_X f d\mu = 0$. Then f = 0 almost everywhere.

Proof. Suppose that $f \neq 0$ on a set A such that $\mu(A) \neq 0$. If f has a minimum on A, then take the characteristic function on A, χ_A . If f has no minimum on A, then we can take a subset $B \subseteq A$ which is closed and bounded such that f has a minimum on B. Then we can assume that f has a minimum on A. The function χ_A is a simple function, and given a scaling factor $\alpha \neq 0$, we have $\alpha \chi_A \leq f$ on A. But then

$$0<\alpha\mu(A)\leq \int_A \alpha\chi_A d\mu \leq \int_A f d\mu \leq \int_X f d\mu.$$

This is a contradiction and so f = 0 almost everywhere.

Problem 2. Let f be measurable, $\mu(X) < \infty$ and f^q is integrable for q > 0. Show f^p is integrable if $0 \le p \le q$.

Proof. Since f^q is integrable, we know that $|f|^q$ is integrable. It follows that since $|f|^p \le |f|^q$ that $|f|^p$ is integrable, and thus f^p is integrable.

Problem 3. Let f be a non-decreasing function on [0,1]. Show for all $t \in [0,1]$ and for all $A \subseteq [0,1]$ with m(A) = t,

$$\int_{[0,t]} f dx \le \int_A f dx.$$

Proof. We can take f to be positive by adding an appropriate constant. Note that since f is non-decreasing, if $A\setminus [0,t]\neq\emptyset$ then $\sup_{x\in [0,t]}f(x)\leq \sup_{x\in A}f(x)$. Then there exist simple functions s and s' such that $s\leq s'$ and $s\leq f$ on [0,t] and $s'\leq f$ on A. Taking the supremum over these simple functions we have

$$\int_{[0,t]} f dx = \int_{[0,t]} \sup_{s \le f} s dx \le \int_A \sup_{s' \le f} s' dx = \int_A f dx.$$

Problem 4. Let f be integrable on X and f > 0 on X. Show

$$\lim_{n \to \infty} \int_X f^{\frac{1}{n}} d\mu = \mu(X).$$

Proof. We know that f is integrable and that $|f^{1/n}| \leq f$ almost everywhere on X. Then by the dominated convergence theorem we have

$$\lim_{n\to\infty} \int_X f^{\frac{1}{n}} d\mu = \int_X \lim_{n\to\infty} f^{\frac{1}{n}} d\mu = \int_X d\mu = \mu(X).$$

Problem 5. Let f be integrable on \mathbb{R} and p > 0. Show

$$\lim_{n \to \infty} n^{-p} f(nx) = 0$$

almost everywhere.

Proof. Note that $(n^{-p}f(nx))$ is a sequence of measurable functions. Moreover, since $n^{-p} < 1$ we have $|n^{-p}f(nx)| \le |f(nx)| \le Mf(x)$ for some large M. Then using the dominated convergence theorem we have

$$\int_X \lim_{n \to \infty} n^{-p} f(nx) d\mu = \lim_{n \to \infty} n^{-p} \int_X f(nx) d\mu = \lim_{n \to \infty} n^{-p-1} \int_X f(x) d\mu = 0.$$

Thus by Problem 1, we know that $\lim_{n\to\infty} n^{-p} f(nx) = 0$ almost everywhere.

Problem 6. Suppose (f_n) is a sequence of measurable functions and g is integrable. Suppose $f_n \geq g$ for all n almost everywhere. Then

$$\int_X \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int_X f_n d\mu.$$

Proof. Create a new sequence of functions $h_n = f_n - g$. Then (h_n) is a sequence of nonnegative measurable functions and so Fatou's Lemma holds. Then since g is independent of n in this sequence we have

$$\int_{X} \liminf_{n \to \infty} f_n d\mu - \int_{X} g d\mu = \int_{X} \liminf_{n \to \infty} (f_n - g) d\mu$$

$$= \int_{X} \liminf_{n \to \infty} h_n d\mu$$

$$\leq \liminf_{n \to \infty} \int_{X} h_n d\mu$$

$$= \liminf_{n \to \infty} \int_{X} (f_n - g) d\mu$$

$$= \liminf_{n \to \infty} \int_{X} f_n d\mu - \int_{X} g d\mu.$$

The result follows by adding $\int_X g d\mu$ to each side.

Problem 7. Suppose f_n converges to f uniformly, and f_n is integrable for all n. 1) If $\mu(X) < \infty$, show f is integrable and $\int_X f_n d\mu$ converges to $\int_X f d\mu$.

Proof. Since $\mu(X) < \infty$ and since f_n is integrable, we know that f must be bounded because of uniform convergence. Then the bounded convergence theorem applies and so

$$\int_X f d\mu \int_X \lim_{n \to \infty} f_n d\mu = \lim_{n \to \infty} \int_X f_n d\mu.$$

2) If $\mu(X) = \infty$ show Part 1) is false.

Proof. Let $f_n = 1/n$. Then $\int_X f_n d\mu$ does not exist, as it's constantly infinite. But (f_n) converges to the zero function uniformly and $\int_X f d\mu = 0$ where f = 0.

Problem 8. Let $f \in L^p(X)$, then for all $\alpha > 0$, if $1 \le p \le \infty$ we have

$$\mu(\{x \in X \mid |f(x)| \geq \alpha\}) \leq \left(\frac{||f||_p}{\alpha}\right)^p.$$

Proof. Define the set $A_{\alpha} = \{x \in X \mid f(x) \geq \alpha\}$. Then we have

$$0 \le \alpha^p \chi_{A_\alpha} \le f^p \chi_{A_\alpha} \le f^p$$

and it follows that

$$\alpha^p \mu(A_\alpha) = \int_X \alpha^p \chi_{A_\alpha} d\mu \le \int_{A_t} f^p d\mu \le \int_X f^p d\mu = ||f||_p^p.$$

Dividing by α^p gives the result.

Problem 9. If $f \in L^1(X) \cap L^2(X)$ then

$$\lim_{p \to 1^+} \int_X |f|^p d\mu = \int_X |f| d\mu.$$

Proof. Note that since $f \in L^2(X)$, $f \in L^q(X)$ for $1 \le q \le 2$ by Problem 2). Let p = 1/n + 1. Then as p approaches 1, n approaches infinity. Thus we have

$$\lim_{p \to 1^+} \int_X |f|^p d\mu = \lim_{n \to \infty} \int_X |f|^{1 + \frac{1}{n}} d\mu$$

Since $|f|^{1/n}|f| \leq |f|^2$ for all n, we use the dominated convergence theorem and

$$\lim_{p \to 1^+} \int_X |f|^p d\mu = \int_X \lim_{n \to \infty} |f|^{1 + \frac{1}{n}} d\mu = \int_X |f|.$$

Problem 10. If $\mu(X) < \infty$ and $0 \le p_1 \le p_2 \le \infty$ then $L^{p_2}(X) \subseteq L^{p_1}(X)$.

Proof. Let $f \in L^{p_2}(X)$. Then $\int_X |f|^{p_2} d\mu < \infty$. The result follows from Problem 2 and Hölder's Inequality.

Problem 11. If $0 < r < p < s \le \infty$ and $f \in L^r(X) \cap L^s(X)$ then $f \in L^p(X)$ and

$$||f||_p \le ||f||_r^{\lambda} ||f||_s^{1-\lambda}$$

where

$$\frac{1}{p} = \frac{\lambda}{r} + \frac{1 - \lambda}{s}.$$

Proof. We use Hölder's inequality. We can choose $r' = p\lambda/r$ and $s' = p(1-\lambda)/s$ so that $||f||_1 \le ||f||_{r'} ||f||_{s'}$. Then this inequality can be modified, by taking powers of λ so that we obtain $||f||_p \le ||f||_r^{\lambda} ||f||_s^{1-\lambda} < \infty$. This shows that $f \in L^p$.