Теория случайных процессов

Основные понятия:

- состояние процесса
- переход из одного состояния в другое

Случайные процессы могут быть:

- с дискретными состояниями (число возможных состояний может быть конечным или бесконечным)
- с непрерывными состояниями
- с дискретным временем (случайные цепи)
- с непрерывным временем

Марковский случайный процесс

Случайный процесс называется марковским, если вероятность любого состояния в будущем зависит только от его состояния в настоящем и не зависит от того, когда и каким образом процесс оказался в этом состоянии.

- Марковский процесс с дискретным временем называется **цепью Маркова**.
- Марковский процесс с непрерывным временем: интервалы времени между соседними переходами из состояния в состояние распределены по экспоненциальному закону.

Параметры марковского процесса

перечень состояний E_1 , ..., E_n ; начальные вероятности состояний $p_1(0)$,..., $p_n(0)$ матрица вероятностей переходов (если t - дискретно)

$$\mathbf{Q} = [q_{ij} \mid i, j = \overline{1, n}],$$

$$0 \le q_{ij} \le 1; \quad \sum_{i=1}^{n} q_{ij} = 1 \qquad (i, j = \overline{1, n})$$

матрица интенсивностей переходов (если t - непрерывно)

$$\mathbf{G} = [g_{ij} \mid i, j = \overline{1, n}], \quad \sum_{j=1}^{n} g_{ij} = 0 \quad g_{ii} = -\sum_{j=1}^{n} g_{ij}$$

$$g_{ij} = \lim_{\Delta \tau \to 0} \frac{P_{ij}(\Delta \tau)}{\Delta \tau} \qquad (i, j = \overline{1, n}; i \neq j),$$

Характеристики марковского процесса

Вероятности состояний $p_1(t),...,p_n(t)$ -вероятности того, что в момент времени t система находится в том или ином состоянии.

$$\sum_{i=1}^{n} p_i(t) = 1$$
 - нормировочное условие

$$P(t) = \{p_1(t), ..., p_n(t)\}, \quad 0 \le p_i(t) \le 1$$
 - вектор вероятностей состояний

Расчет для Марковского процесса с дискретным временем:

$$p_j(k) = \sum_{i=1}^n p_i(k-1) q_{ij}$$
 $p_j = \sum_{i=1}^n p_i q_{ij}$ $\sum_{i=1}^n p_i = 1$

Характеристики марковского процесса

Расчет для Марковского процесса с дискретным временем: реккурентное соотношение

$$p_j(k) = \sum_{i=1}^n p_i(k-1) q_{ij}$$

$$\sum_{i=1}^n p_i = 1$$

Для случая, когда доказано, что процесс является эргодическим:

$$p_j = \sum_{i=1}^{n} p_i q_{ij}$$
 $\sum_{i=1}^{n} p_i = 1$

Характеристики марковского процесса

Расчет для Марковского процесса с непрерывным временем: система ДУ Колмогорова

$$\frac{dp_{j}(t)}{dt} = \sum_{i=1}^{n} p_{i}(t) g_{ij} \qquad \sum_{i=1}^{n} p_{i} = 1$$

Для случая, когда доказано, что процесс является эргодическим:

$$\sum_{i=1}^{n} p_i g_{ij} = 0 \quad (j = \overline{1, n}), \qquad \sum_{i=1}^{n} p_i = 1$$

Марковские цепи (с дискретным временем):

1. Эргодические

- описываются сильно связанным графом, т.е. возможен переход из любого состояния *Si* в любое состояние *Sj* (*i,j*=1,...,*n*) за конечное число шагов;
- вероятности перехода не меняются со временем (цепь однородная)

- содержат невозвратные или поглощающие состояния, из которых нельзя перейти ни в какое другое. В установившемся режиме поглощающему состоянию соответствует вероятность, равная 1.

Пример использования Марковской цепи

Задача о погоде:

В одной волшебной стране хорошо все, но только не погода. Там никогда не бывает двух ясных дней подряд. Если сегодня ясно, то завтра с одинаковой вероятностью пойдет дождь или снег. Если сегодня дождь или снег, то с вероятностью 0,5 погода не изменится. Если все же она изменится, то в половине случаев снег заменится дождем или наоборот, и лишь в половине случаев на следующий день будет ясная погода.

$$X = \{ \mathcal{A}, C, \mathcal{A} \}$$

$$P = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.25 & 0.5 & 0.25 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.25 & 0.5 & 0.25 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

Пример расчета Марковской цепи с помощью СЛАУ

Задача о погоде

$$u^{T} = (u_{1}, u_{2}, u_{3})^{T} \sum_{j=1}^{n} u_{j} = 1$$

$$u_{1} = 0.25u_{2} + 0.25u_{3}$$

$$u_{2} = 0.5u_{1} + 0.5u_{2} + 0.25u_{3}$$

$$u_{3} = 0.5u_{1} + 0.25u_{2} + 0.5u_{3}$$

$$u_{1} + u_{2} + u_{3} = 1$$

$$\begin{cases} 4u_{1} - u_{2} - u_{3} = 0 \\ 2u_{1} - 2u_{2} + u_{3} = 0 \\ u_{1} + u_{2} + u_{3} = 1 \end{cases}$$

$$\begin{cases} u_{1} = \frac{1}{2} \\ u_{2} = \frac{2}{2} \\ u_{3} = \frac{2}{2} \end{cases}$$

$$P = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.25 & 0.5 & 0.25 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

Пример расчета Марковской цепи с помощью реккурентного соотношения

Задача о погоде

Шаг 2:

$$\mathbf{P}^2 = \begin{bmatrix} 0.25 & 0.375 & 0.375 \\ 0.188 & 0.438 & 0.375 \\ 0.188 & 0.375 & 0.438 \end{bmatrix} \quad 0.5 \subset$$

Шаг 5:

$$\mathbf{P}^{5} = \begin{bmatrix} 0.199 & 0.4 & 0.4 \\ 0.2 & 0.4 & 0.399 \\ 0.2 & 0.399 & 0.4 \end{bmatrix} \quad \mathbf{P}^{10} = \begin{bmatrix} 0.2 & 0.4 & 0.4 \\ 0.2 & 0.4 & 0.4 \\ 0.2 & 0.4 & 0.4 \end{bmatrix} \quad \boldsymbol{u}^{T} = \left(\frac{1}{5}, \frac{2}{5}, \frac{2}{5}\right)^{T}$$

Шаг 10:

$$\mathbf{P}^{10} = \begin{bmatrix} 0.2 & 0.4 & 0.4 \\ 0.2 & 0.4 & 0.4 \\ 0.2 & 0.4 & 0.4 \end{bmatrix}$$

$$\boldsymbol{u}^T = \left(\frac{1}{5}, \frac{2}{5}, \frac{2}{5}\right)^T$$

Марковские процессы с непрерывным временем:

переход системы из состояния в состояние происходит не в фиксированные, а в случайные моменты времени.

Если в системе устанавливается **предельный стационарный режим**, в ходе которого она переходит из состояния в состояние, но вероятности уже не меняются, то такая **система называется эргодической**.

Марковский однородный процесс с непрерывным временем и конечным числом состояний, среди которых нет невозвратных и поглощающих состояний, всегда обладает эргодическим свойством.

Составление системы дифференциальных уравнений Колмогорова по размеченному графу состояний

Для того чтобы составить дифференциальное уравнение системы Колмогорова, надо в левой части записать производную вероятности состояния, а в правой части:

со знаком минус - произведение вероятности этого состояния на сумму интенсивностей переходов у **выходящих** стрелок;

со знаком плюс - сумму произведений интенсивностей переходов у **входящих** стрелок, на вероятности состояний, из которых эти стрелки выходят.

При этом плотности вероятностей переходов, соответствующие отсутствующим стрелкам на графе, равны 0.

$$\underbrace{\mathbf{E}_{0}}^{\lambda_{0}} \underbrace{\mathbf{E}_{1}}^{\lambda_{1}} \underbrace{\mathbf{E}_{1}}^{\lambda_{1}} \underbrace{\cdots} \underbrace{\frac{\lambda_{n-1}}{\mu_{n}}}^{\lambda_{n-1}} \underbrace{\mathbf{E}_{n}} \underbrace{\underbrace{dp_{i}(t)}_{dt} = -(\sum_{j=1}^{n} g_{ij})p_{i}(t) + \sum_{j=1}^{n} g_{ji}p_{j}(t)}_{i}$$

Составление системы дифференциальных уравнений Колмогорова по матрице интенсивностей переходов

сумму произведений элементов i-того столбца на соответствующие им вероятности состояний.

а в правой части:

$$\frac{dp_{j}(t)}{dt} = \sum_{i=1}^{n} p_{i}(t) g_{ij} \qquad \sum_{i=1}^{n} p_{i} = 1$$

Последнее уравнение системы - нормировочное условие!

Моделирование СМО с помощью Марковских моделей

Разработка Марковской модели исследуемой системы в терминах случайных процессов предполагает:

- кодирование состояний случайного процесса;
- построение размеченного графа переходов;
- формирование матрицы интенсивностей переходов;
- обоснование существования стационарного режима;
- составление системы линейных алгебраических уравнений для расчёта стационарных вероятностей состояний Марковского процесса.

Моделирование СМО с помощью Марковских моделей

	\mathbf{E}_{i}	0	1	2	 N-1	N
	0	$-\lambda$	λ	0	 0	0
	1	μ	$-(\lambda + \mu)$	λ	 0	0
G =	2	0	2μ	$0 \\ \lambda \\ -(\lambda + 2\mu)$	 0	0
	 N-1 N	0	0	0	 $-(\lambda + (N-1)\mu)$	λ
	N	0	0	0	 $N\mu$	$-N\mu$

$$\begin{array}{l} \lambda \, p_0 = \mu \, p_1 \\ (\lambda + \mu) \, p_1 = \lambda p_0 + 2 \mu p_2 \\ \dots \\ (\lambda + k \mu) \, p_k = \lambda p_{k-1} + (k+1) \mu p_{k+1} \\ \dots \\ N \mu p_N = \lambda p_{N-1} \\ p_0 + p_1 + \dots + p_N = 1 \end{array}$$

Пример использования непрерывной Марковской модели

Задача из теории надежности:

Технологическая система S состоит из двух устройств, каждое из которых в случайный момент времени может выйти из строя, после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время.

Кодирование состояний системы:

 S_0 – оба устройства исправны, система работает в полную мощность;

 S_1 – первое устройство в ремонте, система работает в половину мощности;

 S_2 – второе устройство в ремонте, система работает в половину мощности;

 S_3 – оба устройства в ремонте, система не работает.

Переходы системы S из состояния в состояние происходят мгновенно, в случайные моменты выхода из строя того или другого устройства, или окончания ремонта. Вероятностью одновременного выхода из строя обоих устройств можно пренебречь.

Пример использования непрерывной Марковской модели

Задача из теории надежности

Составление размеченного графа системы:

 λ_{ij} — интенсивности потока отказов; μ_{ij} — интенсивности потока восстановлений. Пусть система находится в состоянии S_0 . В состояние S_1 ее переводит поток отказов первого устройства. Интенсивность этого потока равна λ_{01} = 1/ a_1 , где a_1 — среднее время безотказной работы первого устройства. Из состояния S_1 в S_0 систему переводит поток восстановлений первого устройства. Интенсивность этого потока равна μ_{10} = 1/ b_1 , где b_1 — среднее время ремонта первого устройства. Аналогично вычисляются интенсивности потоков событий, переводящих систему по всем дугам графа.

Матрица интенсивностей переходов:

$$G = \begin{bmatrix} -(\lambda_{01} + \lambda_{02}) & \lambda_{01} & \lambda_{02} & 0 \\ \mu_{10} & -(\mu_{10} + \lambda_{13}) & 0 & \lambda_{13} \\ \mu_{20} & 0 & -(\mu_{20} + \lambda_{23}) & \lambda_{23} \\ 0 & \mu_{31} & \mu_{32} & -(\mu_{31} + \mu_{32}) \end{bmatrix}$$

Пример расчета непрерывной Марковской модели

Задача из теории надежности

$$G = \begin{bmatrix} -(\lambda_{01} + \lambda_{02}) & \lambda_{01} & \lambda_{02} & 0 \\ \mu_{10} & -(\mu_{10} + \lambda_{13}) & 0 & \lambda_{13} \\ \mu_{20} & 0 & -(\mu_{20} + \lambda_{23}) & \lambda_{23} \\ 0 & \mu_{31} & \mu_{32} & -(\mu_{31} + \mu_{32}) \end{bmatrix}$$

Система ДУ Колмогорова:

$$\begin{cases} \frac{dp_0}{dt} = -(\lambda_{01} + \lambda_{02})p_0 + \mu_{10}p_1 + \mu_{20}p_2 \\ \frac{dp_1}{dt} = -(\mu_{10} + \lambda_{13})p_1 + \lambda_{01}p_0 + \mu_{31}p_3 \\ \frac{dp_2}{dt} = -(\mu_{20} + \lambda_{23})p_2 + \lambda_{02}p_0 + \mu_{32}p_3 \\ \frac{dp_3}{dt} = -(\mu_{31} + \mu_{32})p_3 + \lambda_{13}p_1 + \lambda_{23}p_2 \\ p_0 + p_1 + p_2 + p_3 = 1 \end{cases}$$

$$\begin{cases} \text{интенсивности потока отказов восстановления постоянны, мо к СЛАУ для расчета финальных вероятностей состояний систем $\begin{pmatrix} (\lambda_{01} + \lambda_{02})p_0 = \mu_{10}p_1 + \mu_{20}p_2 \\ (\mu_{10} + \lambda_{13})p_1 = \lambda_{01}p_0 + \mu_{31}p_3 \\ (\mu_{20} + \lambda_{23})p_2 = \lambda_{02}p_0 + \mu_{32}p_3 \\ (\mu_{31} + \mu_{32})p_3 = \lambda_{13}p_1 + \lambda_{23}p_2 \\ p_0 + p_1 + p_2 + p_3 = 1 \end{cases}$$$

Поскольку в системе не предусмотрено невозвратных и поглощающих состояний, а интенсивности потока отказов и восстановления постоянны, можно перейти к СЛАУ для расчета финальных вероятностей состояний системы:

$$\begin{cases} (\lambda_{01} + \lambda_{02})p_0 = \mu_{10}p_1 + \mu_{20}p_2 \\ (\mu_{10} + \lambda_{13})p_1 = \lambda_{01}p_0 + \mu_{31}p_3 \\ (\mu_{20} + \lambda_{23})p_2 = \lambda_{02}p_0 + \mu_{32}p_3 \\ (\mu_{31} + \mu_{32})p_3 = \lambda_{13}p_1 + \lambda_{23}p_2 \\ p_0 + p_1 + p_2 + p_3 = 1 \end{cases}$$