

70mΩ, 5V USB 高侧可调门限限流负载开关

概述

BL2556是一款适用于5V应用的可调限流门限的 USB接口输出保护芯片。芯片内部集成了过流保护、短 路保护、过温保护、欠压保护等功能,在输出发生过流、短 路或带大电容负载启动等情况时可以限制电流输出,从 而保护前级电源。

应用场合

- USB总线/自供电集线器
- USB周边
- 笔记本电脑, 平板电脑
- 电池充电器

特点

- 70mΩ导通电阻
- 限流门限通过外置电阻可调
- 全工作范围内限流门限偏差: ±15%
- 输出短路时能快速反应保护, 抑制尖峰电流
- 无衬底二极管,芯片关断时可防止反向电流。

封装形式

• 5-pin SOT23-5

典型应用图

图.1 典型应用电路

订货信息

型号	封装	数量	EN 使能
BL2556ACB5TR	S0T23-5	3000	高使能
BL2556CCB5TR	S0T23-5	3000	低使能

芯片脚位图

SOT23-5

脚位功能说明

管脚(SOT23-5)	符号	管脚定义描述		
1	VOUT	输出脚, 接 USB 口 VBUS		
2	GND	芯片地		
3	RSET	限流门限设置脚,外接电阻到地设置限流门限。 loc=60K/Rset		
4	EN	芯片使能脚,高或低使能		
5	VIN	电源输入脚		

芯片功能框图

图.2 内部模块框图

绝对最大额定值

参数	符号	极限值	单位
电源电压	VIN	6	V
输出电压	VOUT	-0.3 to VIN	V
耗散功率 SOT23-5	P_{D}	600	mW
封装热阻 SOT23-5	$ heta_{JA}$	210	°C/W
结温	T_J	-40~+150	$^{\circ}$
存储温度范围	T_{STG}	-55~+150	$^{\circ}$
焊锡温度(5秒内)	T_{LEAD}	260	$^{\circ}$

注意: 绝对最大额定值是本产品能够承受的最大物理伤害极限值,请在任何情况下勿超出该额定值。

推荐工作条件

参数	符号	最小值	典型值	最大值	单位
电源电压	VIN	2.7	5.0	5.5	V
工作环境温度范围	Та	-40	25	85	${\mathbb C}$

电气特性

无特殊说明(Ta=25℃, Rset=30K,VIN=5V)

参数	条件	最小值	典型值	最大值	单位
输入电压范围		2.7		5.5	V
静态工作电流	EN=0	30	50	80	uA
关断电流	EN=5V	0	0.01	1.0	uA
导通电阻	lout=500mA		70		mΩ
限流门限	输出电流递增(<0.1A/mS) VIN: 2.7~ 5V Ta: -40℃~ 85℃ Rset = 30K	1.7	2.0	2.3	А
短路电流	Rset=30K,VOUT短路到地		1.2		Α
欠压锁定	VIN上升	1.8	2.2	2.6	V
欠压锁定迟滞	VIN下降		0.2		V
使能高电平		1.6			V
使能低电平				0.4	V
过温保护门限			155		$^{\circ}$
过温保护迟滞			20		${\mathbb C}$

典型性能参数

无特殊说明(Ta=25℃, VIN=5V, RSET=22K)

原理描述

● 启动、关断、导通电阻

EN 脚施加使能电平, 且 VIN 电压高于 UVLO 门限时芯片启动, VIN 和 VOUT 间的功率管打开,呈现低阻状态,导通电阻典型值为 70mohm。

EN 脚施加关断电平,或 VIN 电压低于 UVLO 门限时芯片关断,VIN 和 VOUT 间的功率管断开,呈现高阻状态。 芯片关断时, VOUT 端有下拉功能, 加速释放输出电容上的电荷。

在启动时内部限流电路即开始工作,因此在接大负载电容的情况下启动时能够限制启动电流。

● 限流

当输出电流超过限流门限时,内部功率管导通电阻增大,VOUT 下降,从而限制输出电流的继续增大,芯片进入恒流状态。 所设定的恒流值与 VOUT 电压有关,如果负载持续加重, VOUT 持续下降,则恒流值将减小。 直至 VOUT 短路, 恒流值降至最小, 即短路电流。 限流门限可以通过 RSET 脚外接电阻到地来设置,限流门限 loc 与 Rset 电阻阻值之间的关系为: loc = 60K / Rset。

● 过温保护

在进入限流状态后,由于 VOUT 下降, VIN 和 VOUT 压差增大,芯片内部耗散功率增加导致结温上升,当超过过温保护门限后功率管将被关断,电流降为零,当芯片结温降至过温保护回滞温度后恢复启动,如此循环。

● 欠压保护

VIN 电压在上升时,如果小于欠压保护门限,则功率管保持关断状态,当超过欠压保护门限后功率管被打开。 当 VIN 电压下降时, 当降至欠压保护回滞电压以下时,则关断功率管。

应用注意事项

- Cin 和 Cout 电容尽可能靠近管脚放置。
- VIN 和 VOUT 走线路径尽可能宽。
- Rset 电阻应该尽可能靠近 RSET 脚放置,以减小寄生电阻和电容。
- 尽可能增大 PCB 覆铜面积。

封装说明

● 封装形式: SOT23-5

参数	尺寸 (mm)		尺寸 (Inch)		
	最小值	最大值	最小值	最大值	
А	1.05	1.45	0.0413	0.0571	
A1	0	0.15	0.0000	0.0059	
A2	0.9	1.3	0.0354	0.0512	
A3	0.6	0.7	0.0236	0.0276	
b	0.25	0.5	0.0098	0.0197	
С	0.1	0.23	0.0039	0.0091	
D	2.82	3.05	0.1110	0.1201	
e1	1.9(TYP)		0.0748(TYP)		
Е	2.6	3.05	0.1024	0.1201	
E1	1.5	1.75	0.0512	0.0689	
е	0.95(TYP)		0.0374	I(TYP)	
L	0.25	0.6	0.0098	0.0236	
L1	0.59(TYP)		0.0232(TYP)		
θ	0	8°	0.0000	8°	
c1	0.2(TYP)		0.0079	0.0079(TYP)	

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路 示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械 、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。