Bootcamp Demo Day

Team 2022

Data Analytics

Models for Management of Congenital Heart Disease in Mexico (ABC Hospital)

Daniela Soto Alberto Valdez Galo Cazares

Models for Management of Congenital Heart Disease in Mexico (ABC Hospital)

Bootcamp Demo Day

Content

Bootcamp Demo Day

- 1 Introduction
- 2 Cleaning etl
- 3 Visualization
- 4 Machine Learning
- 5 Deployment

01 Introduction

Congenital Heart Diseases

Congenital heart diseases (CHD) are a relatively common problem with an incidence of 6/1000 newborns.

30% of CHD are never diagnosed and approximately 25% of diagnosed children require surgery during the first year of life.

In Mexico, approximately 18,000 to 21,000 children are born each year with a cardiac malformation. Only 5% to 8% of the population have access to private insurance and 40% have access to specific government-run hospitals.

6/1000

Newborn incidence worldwide

30%

are never diagnosed

5-8%

Have private insurance

40%

Have access to government run hospitals

State of Care for Congenital Heart Diseases

According to the Society of Thoracic Surgeons (STS) Congenital Heart Surgery Database, in the United States with almost 40,000 operations per year. The overall mortality after congenital heart surgery in the United States is 8.8% for neonates.

40K

operations per year in the United States

8.8%

mortality after surgery

90%

patients receive suboptimal treatment in LMICs

15%

mortality after surgery

In many Low and Middle Income Countries is estimated that 30% of CHD are never diagnosed and 90% receive suboptimal treatment or don't receive it at all.

Kardias Private-Public (Hybrid) Program

Kardias Foundation from Mexico has a specialized program in two hospitals: the National Institute of Pediatrics (INP) and the ABC-Kardias Pediatric Heart Center (in partnership with the ABC Medical Center). This program is committed to excellence, so it shares the best practices with the most important pediatric heart centers in the world and has the most advanced technology to perform surgeries of the highest complexity and quality.

U.S. Food & Drug Administration's Artificial Intelligence Challenges

According to the U.S. Food & Drug Administration's Artificial Intelligence (AI) and Machine Learning Program the main AI Challenges are:

- * Image acquisition and processing
- * Earlier disease detection
- * More accurate diagnosis, prognosis, and risk assessment
- * New patterns identification on human physiology
- * Personalized diagnostics and therapeutics

Congenital Heart Disease in Mexico (Kardias Patients)

Congenital Heart Disease in Mexico (Kardias Patients)

World Database for Congenital Heart Surgery 2011-2012

02 Cleaning etl

Databases

Kardias Database **2012-2022**

1,039 10

Patients Years

Database Cleaning

Original Database

Step 1

Step 2

Cleaned Database

kardiasclean

RegEx

Python Libraries & Algorithms

20% variance reduction

03 Visualization

Top 10 Surgical Procedures

Surgical Procedures

1,000

RACHS-01 Score vs Mortality

2011-2012

04 Machine Learning

Neural Network

high accuracy, low sensitivity

Linear Regression

25 - 20 - 25 - 3.0 3.5 4.0 Average Rachs

Variables removed
Stay Days
Mortality

After dimensionality Reduction

Clustering

We used the K-Means algorithm to make clusters from patients with similar characteristics. The algorithm correlates all variables to obtain the following clusters:

	n_patients	stay_days	rachs	cx_previous	age_days	weight_kg	height_cm	expired
Cluster								
01	41.0	19.390244	2.902439	0.292683	346.731707	5.874146	62.292683	0.170732
02	151.0	2.682119	1.105960	0.019868	2419.304636	20.303974	112.718543	0.000000
03	59.0	24.830508	4.186441	0.016949	422.847458	6.659831	62.381356	0.101695

Variables

Stay Days
RACHS-01
Previous Surgeries
Age
Weight
Height
Mortality (expired)

CLUST	ER: 1					
	stay_days	rachs	age_days	weight_kg	height_cm	expired
mean	19.390244	2.902439	346.731707	5.874146	62.292683	0.170732
std	20.160454	0.943527	531.333606	4.339480	20.395151	0.380949
min	0.000000	0.000000	2.000000	2.300000	43.000000	0.000000
max	100.000000	6.000000	1721.000000	18.000000	115.000000	1.000000
CLUST	'ER: 2					
	stay_days	rachs	age_days	weight_kg	height_cm	expired
mean	2.682119	1.105960	2419.304636	20.303974	112.718543	0.0
std	1.348435	0.367919	1249.083680	9.610278	21.621022	0.0
min	1.000000	1.000000	264.000000	5.300000	57.000000	0.0
max	9.000000	3.000000	6489.000000	50.000000	159.000000	0.0
CLUST	ER: 3					
	stay_days	rachs	age_days	weight_kg	height_cm	expired
mean	24.830508	4.186441	422.847458	6.659831	62.381356	0.101695
std	35.235245	0.860525	1056.228665	9.766134	25.922188	0.304841
min	1.000000	1.000000	1.000000	2.100000	41.000000	0.000000
max	173.000000	6.000000	5295.000000	54.900000	169.000000	1.000000

05 Deployment

Deployment

Thank You!