TABLE 2.1 Convolution Table

No.	$x_1(t)$	x ₂ (t)	$x_1(t) * x_2(t) = x_2(t) * x_1(t)$
1	x(t)	$\delta(t-T)$	x(t-T)
2	$e^{\lambda t}u(t)$	u(t)	$\frac{1-e^{\lambda t}}{-\lambda}u(t)$
3	u(t)	u(t)	tu(t)
4	$e^{\lambda_1 t} u(t)$	$e^{\lambda_2 t}u(t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} u(t) \qquad \lambda_1 \neq \lambda_2$
5	$e^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$te^{\lambda t}u(t)$
6	$te^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$\frac{1}{2}t^2e^{\lambda t}u(t)$
7	$t^N u(t)$	$e^{\lambda t}u(t)$	$\frac{N!e^{\lambda t}}{\lambda^{N+1}}u(t)-\sum_{k=0}^N\frac{N!t^{N-k}}{\lambda^{k+1}(N-k)!}u(t)$
8	$t^{M}u(t)$	$t^N u(t)$	$\frac{M!N!}{(M+N+1)!}t^{M+N+1}u(t)$
9	$te^{\lambda_{\parallel}r}u(t)$	$e^{\lambda_2 t}u(t)$	$\frac{e^{\lambda_2 t}-e^{\lambda_1 t}+(\lambda_1-\lambda_2)te^{\lambda_1 t}}{(\lambda_1-\lambda_2)^2}u(t)$
0	$t^{M}e^{\lambda t}u(t)$	$t^N e^{\lambda t} u(t)$	$\frac{M!N!}{(N+M+1)!}t^{M+N+1}e^{\lambda t}u(t)$
I	$t^{M}e^{\lambda_{\parallel}t}u(t)$	$t^N e^{\lambda_2 t} u(t)$	$\sum_{k=0}^{M} \frac{(-1)^k M! (N+k)! t^{M-k} e^{\lambda_1 t}}{k! (M-k)! (\lambda_1 - \lambda_2)^{N+k+1}} u(t)$
	$\lambda_1 \neq \lambda_2$		$+\sum_{k=0}^{N}\frac{(-1)^{k}N!(M+k)!t^{N-k}e^{\lambda_{2}t}}{k!(N-k)!(\lambda_{2}-\lambda_{1})^{M+k+1}}u(t)$
2	$e^{-ai}\cos(\beta t+\theta)u(t)$	$e^{\lambda t}u(t)$	$\frac{\cos{(\theta-\phi)}e^{\lambda t}-e^{-\alpha t}\cos{(\beta t+\theta-\phi)}}{\sqrt{(\alpha+\lambda)^2+\beta^2}}u$
			$\phi = \tan^{-1}[-\beta/(\alpha+\lambda)]$
}	$e^{\lambda_1 t} u(t)$	$e^{\lambda_2 t}u(-t)$	$\frac{e^{\lambda_1 t} u(t) + e^{\lambda_2 t} u(-t)}{\lambda_2 - \lambda_1} \text{Re } \lambda_2 > \text{Re } \lambda_1$
	$e^{\lambda_1 t} u(-t)$	$e^{\lambda_2 t}u(-t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_2 - \lambda_1} u(-t)$