Теория вероятностей и математическая статистика—1 Теоретический и задачный минимумы ФЭН НИУ ВШЭ

Винер Даниил @danya_vin

Версия от 28 ноября 2024 г.

Содержание

1	Teo	ретический минимум	2		
	1.1	Дайте определение функции распределения $F_X(x)$ случайной величины X . Укажите необ-			
		ходимые и достаточные условия для того, чтобы функция была функцией распределения			
		некоторой случайной величины	2		
	1.2	Дайте определение функции плотности $f_X(x)$ случайной величины X . Укажите необходи-			
		мые и достаточные условия для того, чтобы функция была функцией плотности некоторой			
		случайной величины	2		
	1.3	Дайте определение математического ожидания для дискретных и абсолютно непрерывных			
		случайных величин. Укажите, чему равно $\mathbb{E}\left[\alpha X+\beta Y\right]$, где X и Y — случайные величины,			
		а α и β — произвольные константы	2		
	1.4	Дайте определение дисперсии случайной величины. Укажите, чему равно $\mathbb{D}\left[\alpha X+\beta\right]$, где X			
	1 -	— случайная величина, а α и β — произвольные константы	3		
	1.5	Укажите математическое ожидание, дисперсию, множество значений, принимаемых с нену-			
	1.0	левой вероятностью, а также функцию плотности или функцию вероятности	3		
	1.6	Сформулируйте определение функции совместного распределения двух случайных вели-			
		чин, независимости случайных величин. Укажите, как связаны совместное распределение и			
	1 7	частные распределения компонент случайного вектора	4		
	1.7	Сформулируйте определение совместной функции плотности двух случайных величин. Ука-			
		жите необходимые и достаточные условия для того, чтобы функция была совместной функ-			
		цией плотности некоторой пары случайных величин. Сформулируйте определение незави-	-		
		симости случайных величин	Ð		
2	Зад	адачный минимум			
	2.1	Пусть случайная величина X имеет следующую функцию плотности	6		
	2.2	Пусть случайная величина X имеет следующую функцию плотности	7		
	2.3	Пусть задана таблица совместного распределения случайных величин X и Y	7		
	2.4	Пусть задана таблица совместного распределения случайных величин X и Y	8		

1 Теоретический минимум

1.1 Дайте определение функции распределения $F_X(x)$ случайной величины X. Укажите необходимые и достаточные условия для того, чтобы функция была функцией распределения некоторой случайной величины

Определение. Функцией рапсредделния случайной величины X называется функция

$$F_X(x) := \mathbb{P}\left(\left\{X \leqslant x\right\}\right), x \in \mathbb{R}$$

Теорема. Функция $G:\mathbb{R} \to [0;1]$ является функцией распределения некоторой случайной величины $\xi \Longleftrightarrow$

- G(x) является нестрого возрастающей, то есть $\forall x_1, x_2, x_1 \leqslant x_2 \ G(x_1) \leqslant G(x_2)$
- G(x) является непрерывной справа в каждой точке $x\in\mathbb{R},$ то есть $\forall x\in\mathbb{R}$ $\lim_{y\to x+0}G(y)=G(x)$
- $\lim_{x \to -\infty} G(x) = 0$ и $\lim_{x \to +\infty} G(x) = 1$
- 1.2 Дайте определение функции плотности $f_X(x)$ случайной величины X. Укажите необходимые и достаточные условия для того, чтобы функция была функцией плотности некоторой случайной величины

Определение. Говорят, что случайная величина X является абсолютно непрерывной, если ее функция распределения $F_X(x)$ представима в виде

$$F_X(x) := \int_{-\infty}^{x} f_X(t) dt, x \in \mathbb{R},$$

где $f_X(t)$ — неотрицательная интегрируемая функция, которая называется *плотностью распределения* случайной величины X

Теорема. Функция $g:\mathbb{R}\to[0;+\infty)$ является плотностью распределения некоторой случайной величины ξ тогда и только тогда, когда $\int\limits_{-\infty}^{+\infty}g(x)\mathrm{d}x=1$

1.3 Дайте определение математического ожидания для дискретных и абсолютно непрерывных случайных величин. Укажите, чему равно $\mathbb{E}\left[\alpha X + \beta Y\right]$, где X и Y — случайные величины, а α и β — произвольные константы

Определение. Пусть дискретная случайная величина X принимает значения $a_1, a_2, \ldots, a_k, \ldots$ и ряд

$$\sum_{k=1}^{\infty} |a_k| \cdot \mathbb{P}\left(\left\{X = a_k\right\}\right)$$

сходится

 $ext{Тогда}$, математическим ожиданием случайной величины X называется

$$\mathbb{E}\left[X\right] = \sum_{k=1}^{\infty} a_k \cdot \mathbb{P}\left(\left\{X = a_k\right\}\right)$$

Определение. Пусть случайная величина X является абсолютно непрерывной и интеграл

$$\int_{-\infty}^{+\infty} |x| f_X(x) \mathrm{d}x$$

2

сходится

 $ext{Тогда}$, математическим ожиданием случайной величины X называется

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} x f_X(x) dx$$

Теорема. Пусть случайные величины X и Y имеют конечное математическое ожидание Тогда, $\forall \alpha, \beta \in \mathbb{R}$ случайная величина $\alpha X + \beta Y$ тоже имеет конечное математичское ожидание и

$$\mathbb{E}\left[\alpha X + \beta Y\right] = \alpha \mathbb{E}\left[X\right] + \beta \mathbb{E}\left[Y\right]$$

1.4 Дайте определение дисперсии случайной величины. Укажите, чему равно $\mathbb{D}\left[\alpha X + \beta\right]$, где X — случайная величина, а α и β — произвольные константы

Определение. Пусть случайная величина X имеет конечное математическое ожидание, тогда дисперсией случайной величины X называется

$$\mathbb{D}\left[X\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right]$$

Теорема. Пусть случайная величина X имеет конечное математическое ожидание, тогда $\forall \alpha, \beta \in \mathbb{R}$

$$\mathbb{D}\left[\alpha X + \beta\right] = \alpha^2 \mathbb{D}\left[X\right]$$

- 1.5 Укажите математическое ожидание, дисперсию, множество значений, принимаемых с ненулевой вероятностью, а также функцию плотности или функцию вероятности
 - 1. **Биномиальное.** Случайная величина X имеет биномиальное распределение с параметрами $n \in \mathbb{N}, \ p \in (0;1),$ пишут $X \sim Bi(n,p),$ если случайная величина X принимает значения $0,1,2,\ldots,n$ с вероятностями
 - $\mathbb{P}(\{\xi=k\}) = C_n^k p^k (1-p)^{n-k}$, где $k=0,1,\ldots,n$
 - $\mathbb{E}[\xi] = np$
 - $\mathbb{D}[\xi] = np(1-p)$
 - 2. **Пуассоновское.** Случайная величина X имеет распределение Пуассона с параметром $\lambda > 0$, пишут $X \sim Pois(\lambda)$, если случайная величина X принимает значения с вероятностями
 - $\mathbb{P}(\{\xi=k\}) = \frac{\lambda^k}{k!}e^{-\lambda}$, где $k \in \{0,1,\ldots\}$
 - $\bullet \ \mathbb{E}\left[\xi\right] = \lambda$
 - $\mathbb{D}\left[\xi\right] = \lambda$
 - 3. **Геометрическое.** Случайная величина X имеет геометрическое распределение с параметром $p \in (0;1)$, пишут $X \sim Geom(p)$, если случайная величина X принимает значения $k \in \{1,2,3,\ldots\}$ с вероятностями
 - $\mathbb{P}(\{\xi = k\}) = p(1-p)^{k-1}$
 - $\mathbb{E}\left[\xi\right] = \frac{1}{p}$
 - $\bullet \ \mathbb{D}\left[\xi\right] = \frac{1-p}{p^2}$
 - 4. **Равномерное.** Случайная величина X имеет равномерное распределение на отрезке [a;b], где a < b, пишут $X \sim U[a;b]$, если случайная величина X имеет плотность
 - $f_{\xi}(x) = \begin{cases} \frac{1}{b-a}, & \text{ если } x \in [a;b] \\ 0, & \text{ если } x \not\in [a;b] \end{cases}$

•
$$F_{\xi}(x) = egin{cases} 0, & \text{если } x < a \\ \frac{x-a}{b-a}, & \text{если } x \in [a;b] \\ 1, & \text{если } x > b \end{cases}$$

$$\bullet \ \mathbb{E}\left[\xi\right] = \frac{a+b}{2}$$

•
$$\mathbb{D}\left[\xi\right] = \frac{(b-a)^2}{12}$$

5. Экспоненциальное (показательное). Случайная величина X имеет экпоненциальное распределение с параметром $\lambda > 0$, пишут $X \sim Exp(\lambda)$, если случайная величина X имеет плотность

•
$$f_{\xi}(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0\\ 0, & x < 0 \end{cases}$$

•
$$F_{\xi}(x) = \begin{cases} 1 - e^{-\lambda x}, & \text{если } x \geqslant 0 \\ 0, & \text{если } x < 0 \end{cases}$$

•
$$\mathbb{E}\left[\xi\right] = \frac{1}{\lambda}$$

•
$$\mathbb{D}\left[\xi\right] = \frac{1}{\lambda^2}$$

1.6 Сформулируйте определение функции совместного распределения двух случайных величин, независимости случайных величин. Укажите, как связаны совместное распределение и частные распределения компонент случайного вектора

Определение. Совместной функцией распределения случайных величин X и Y называется функция

$$F_{X,Y}(x,y) := \mathbb{P}\left(\left\{X \leqslant x\right\} \cap \left\{Y \leqslant y\right\}\right), x \in \mathbb{R}, y \in \mathbb{R}$$

Определение. Случайные величины X и Y независимы, если $\forall B_1, B_2 \in \mathcal{B}(\mathbb{R})$ события $\{X \in B_1\}$ и $\{Y \in B_2\}$ являются независимыми, то есть

$$\mathbb{P}(\{X \in B_1\} \cap \{Y \in B_2\}) = \mathbb{P}(\{X \in B_1\}) \cdot \mathbb{P}(\{Y \in B_2\})$$

Теорема. Случайные величины X и Y независимы тогда и только тогда, когда

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y), \ \forall x \in \mathbb{R}, \forall y \in \mathbb{R}$$

Теорема. (в дискретном случае). Пусть случайная величина X принимает значения a_1, \ldots, a_m , случайная величина Y принимает значения b_1, \ldots, b_n , тогда случайные величины X и Y независимы $\iff \forall i \in \{1, \ldots, m\}, \forall j \in \{1, \ldots, n\}$ события $\{X = a_i\}$ и $\{Y = b_j\}$ независимы, то есть

$$\mathbb{P}\left(\left\{X=a_{i}\right\} \cap \left\{Y=b_{i}\right\}\right) = \mathbb{P}\left(\left\{X=a_{i}\right\}\right) \cdot \mathbb{P}\left(\left\{Y=b_{i}\right\}\right)$$

Теорема. (в абсолютно непрерывном). Пусть случайный вектор (X,Y) имеет абсолютно непрерывное распредедение. Тогда, случайные величины X и Y независимы \iff

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y), \forall x \in \mathbb{R}, \forall y \in \mathbb{R}$$

Теорема.

1.
$$F_{\xi}(x) \in [0;1]$$
. Здесь и далее $x = (x_1, \dots, x_n)$

2.
$$\lim_{\substack{x_1 \to -\infty \\ x_1 \to +\infty}} F_{\xi}(x_1, x_2) = 0$$
$$\lim_{\substack{x_1 \to +\infty \\ x_2 \to +\infty \\ x_2 \to +\infty}} F_{\xi}(x_1, x_2) = F_{\xi_2}(x_2)$$

- 3. $F_{\xi}(x_1, x_2)$ не убывает по каждому из аргументов
- 4. $F_{\xi}(x_1, x_2)$ непрерынва справа по каждому из аргументов

1.7 Сформулируйте определение совместной функции плотности двух случайных величин. Укажите необходимые и достаточные условия для того, чтобы функция была совместной функцией плотности некоторой пары случайных величин. Сформулируйте определение независимости случайных величин

Определение. Случайный вектор (X,Y) имеет абсолютно непрерывное распределение, если совместнаяфункция распределения $F_{X,Y}(x,y)$ представима в виде

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t) ds dt, \ \forall x, y \in \mathbb{R},$$

где $f_{X,Y}(s,t)$ — неотрицательная интегрируемая функция, называемая плотностью распределения случайного вектора (X,Y)

Теорема. Функция $g:\mathbb{R}^2 \to [0;+\infty)$ является плотностью распределения случайного вектора $(X,Y) \Longleftrightarrow$

$$\iint\limits_{\mathbb{R}^2} g(x, y) \mathrm{d}x \mathrm{d}y = 1$$

Теорема.

- 1. $F_{\xi}(x) \in [0;1]$. Здесь и далее $x = (x_1, \dots, x_n)$
- 2. $\lim_{\substack{x_1 \to -\infty \\ x_1 \to +\infty}} F_{\xi}(x_1, x_2) = 0$ $\lim_{\substack{x_1 \to +\infty, \\ x_2 \to +\infty}} F_{\xi}(x_1, x_2) = F_{\xi_2}(x_2)$
- 3. $F_{\xi}(x_1, x_2)$ не убывает по каждому из аргументов
- 4. $F_{\xi}(x_1, x_2)$ непрерынва справа по каждому из аргументов

2 Задачный минимум

Заметьте, что обозначения $P(\dots)$ и $\mathbb{P}\left(\{\dots\}\right)$ — это одно и то же, я просто еще не везде исправил

2.1 Пусть случайная величина X имеет следующую функцию плотности...

Дана функция плотности $f_X(x) = \begin{cases} cx, & x \in [0;1] \\ 0, & x \not\in [0;1] \end{cases}$

Найдите

• $F_X(x) = \int\limits_{-\infty}^x f_X(t) \mathrm{d}t$. Тогда, при $x \to +\infty$

$$1 = \int_{-\infty}^{+\infty} f_X(t) dt = \int_{0}^{1} ct dt$$
$$= c \cdot \left. \frac{t^2}{2} \right|_{t=0}^{t=1}$$
$$= \frac{c}{2}$$

 $\implies c = 2$

• Теорема. Пусть ξ — абсолютно непрерывная случайная величина, тогда

$$\forall B \in \mathcal{B}(\mathbb{R}) \ \mathbb{P}(\{\xi \in B\}) = \int_{B} f_{\xi}(t) dt$$

Тогда, в нашем случае

$$\mathbb{P}\left(\left\{X \leqslant \frac{1}{2}\right\}\right) = \mathbb{P}\left(\left\{X \in (-\infty; \frac{1}{2}]\right\}\right)$$

$$= \int_{B} f_X(t) dt$$

$$= \int_{-\infty}^{\frac{1}{2}} f_X(t) dt$$

$$= \int_{-\infty}^{\frac{1}{2}} 2t dt$$

$$= t^2 \Big|_{t=0}^{t=\frac{1}{2}}$$

$$= \frac{1}{4}$$

6

•
$$\mathbb{P}\left(\left\{X \in \left[\frac{1}{2}; \frac{3}{2}\right]\right\}\right) = \int_{B} f_X(t) dt = \int_{\frac{1}{2}}^{1} 2t dt = t^2 \Big|_{t=\frac{1}{2}}^{t=1} = \frac{3}{4}$$

•
$$\mathbb{P}(\{X \in [2;3]\}) = \int_{[2;3]} f_X(t) dt = 0$$

•
$$f_X(x) = \begin{cases} 2x, & x \in [0;1] \\ 0, & x \notin [0;1] \end{cases}$$

Теперь рассмотрим три участка:

$$x < 0: F_X(x) = \int_{-\infty}^x f_X(t) dt = 0$$

$$0 \le x \le 1: F_X(x) = \int_{-\infty}^x f_X(t) dt = \int_{-\infty}^0 0 dt + \int_0^x 2t dt = t^2 \Big|_{t=0}^{t=x} = x^2$$

$$x > 1: F_X(x) = \int_{-\infty}^x f_X(t) dt = \int_{-\infty}^0 0 dt + \int_0^1 f_X(t) dt + \int_1^x 0 dt = 1$$

$$F_X(x) = \begin{cases} 0, & x < 0 \\ x^2, & x \in [0; 1] \\ 1, & x > 1 \end{cases}$$

${f 2.2}$ Пусть случайная величина ${f X}$ имеет следующую функцию плотности...

Дана функция плотности $f_X(x) = \begin{cases} cx, & x \in [0;1] \\ 0, & x \not\in [0;1] \end{cases}$

Найдите

•
$$F_X(x) = \int\limits_{-\infty}^x f_X(t) \mathrm{d}t$$
. Тогда, при $x \to +\infty$

$$1 = \int_{-\infty}^{+\infty} f_X(t) dt = \int_{0}^{1} ct dt$$
$$= c \cdot \frac{t^2}{2} \Big|_{t=0}^{t=1}$$
$$= \frac{c}{2}$$

$$\implies c = 2$$

•
$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x^2 x dx = 2 \int_{0}^{1} x^2 dx = 2 \cdot \frac{x^3}{3} \Big|_{0}^{1} = \frac{2}{3}$$

•
$$\mathbb{E}\left[X^2\right] = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_{0}^{1} x^2 2x dx = \frac{1}{2}$$

•
$$\mathbb{D}[X] = \frac{1}{2} - \left(\frac{2}{3}\right)^2 = \frac{1}{18}$$

•
$$\mathbb{E}\left[\sqrt{X}\right] = \int_{0}^{1} \sqrt{x} 2x dx = \frac{4}{5}$$

2.3 Пусть задана таблица совместного распределения случайных величин X и Y

	Y = -1	Y = 0	Y = 1
X = -1	0.2	0.1	0.2
X = 1	0.1	0.3	0.1

Найдите

•
$$\mathbb{P}(\{X = -1\}) = 0.2 + 0.1 + 0.2 = 0.5$$

•
$$\mathbb{P}(\{Y = -1\}) = 0.2 + 0.1 = 0.3$$

•
$$\mathbb{P}(\{X = -1\} \cap \{Y = -1\}) = 0.2$$

• Проверим, выполняется ли

$$\mathbb{P}\left(\left\{X=-1\right\}\cap\left\{Y=-1\right\}\right)=\mathbb{P}\left(\left\{X=-1\right\}\right)\cdot\mathbb{P}\left(\left\{Y=-1\right\}\right)$$

$$0.2\neq0.3\cdot0.5$$

 \Longrightarrow величины X и Y не независимы

•
$$F_{X,Y}(-1;0) = \mathbb{P}(\{X \leqslant -1\} \cap \{Y \leqslant 0\}) = \mathbb{P}(\{X = -1\} \cap \{Y = -1\}) + \mathbb{P}(\{X = -1\} \cap \{Y = 0\}) = 0.2 + 0.1 = 0.3$$

$$\bullet \begin{array}{c|c} X & \mathbb{P} \\ \hline -1 & 0.5 \\ \hline 1 & 0.5 \end{array}$$

•
$$F_X(x) = \mathbb{P}(\{X \le x\}) = \begin{cases} 0, & x < -1 \\ 0.5, & x \in [-1; 1) \\ 1, & x \ge 1 \end{cases}$$

2.4 Пусть задана таблица совместного распределения случайных величин X и Y

	Y = -1	Y = 0	Y = 1
X = -1	0.2	0.1	0.2
X = 1	0.2	0.1	0.2

Найдите

•
$$\mathbb{P}(X = 1) = 0.2 + 0.1 + 0.2 = 0.5$$

•
$$\mathbb{P}(\{Y=1\}) = 0.2 + 0.2 = 0.4$$

•
$$\mathbb{P}(\{X=1\} \cap \{Y=1\}) = 0.2$$

• Проверим, выполняется ли

$$\mathbb{P}\left(\left\{X=1\right\}\cap\left\{Y=1\right\}\right)=\mathbb{P}\left(\left\{X=1\right\}\right)\cdot\mathbb{P}\left(\left\{Y=1\right\}\right)$$

$$0.2=0.5\cdot0.4$$

 \Longrightarrow величины X и Y независимы

$$\begin{split} F_X(1;0) &= \mathbb{P}\left(\{X \leqslant 1\} \cap \{Y \leqslant 0\}\right) \\ &= \mathbb{P}\left(\{X = -1\} \cap \{Y = -1\}\right) + \mathbb{P}\left(\{X = -1\} \cap \{Y = 0\}\right) \end{split}$$

•
$$+ \mathbb{P}(\{X = 1\} \cap \{Y = -1\}) + \mathbb{P}(\{X = 1\} \cap \{Y = 0\})$$

= $0.2 + 0.1 + 0.2 + 0.1$
= 0.6

	Y	\mathbb{P}
	-1	0.4
•	0	0.2
	1	0.4

$$F_Y(y) = \mathbb{P}\left(\{Y \leqslant y\}\right) = \begin{cases} 0, & y < -1\\ 0.4, & y \in [-1;0)\\ 0.6, & y \in [0;1)\\ 1, & y \geqslant 1 \end{cases}$$

