# Modeling Chinook Growth and Mortality

And the implications of size-selective culling

#### **Growth and Mortality**

Background

Mathematical Models

Measuring Growth

Maturation Models

## Chinook Salmon Lifecycle



#### Columbia River Basin Salmon



#### The Puzzle

- CRB Chinook
  - Saturation
  - DD in Freshwater
  - Diminishing returns
  - DD in ocean



#### First Ocean Year



#### Basic Growth & Mortality Model

- Mortality rules:
- Growth rules:
  - Variable food → Variation in growth
    - 1: Low, patchy, competition
    - 1: High, well-distributed, no competition
    - Genetics
  - Density dependence:
    - Fewer salmon → more food per → faster growth

#### **Growth and Mortality**

Background

Mathematical Models

Measuring Growth

Maturation Models

$$\frac{\partial N}{\partial t} = -\frac{\partial}{\partial x}(g N) - m N$$

where

$$\frac{\partial N}{\partial t} = -\frac{\partial}{\partial x}(g N) - m N$$

where

N(x, t) is the number of individuals of size x at time t

$$\frac{\partial N}{\partial t} = -\frac{\partial}{\partial x} (\mathbf{g} \ N) - m \ N$$

where

N(x, t) is the number of individuals of size x at time t

g is the growth function  $\left(\frac{dx}{dt}\right)$ 

$$\frac{\partial N}{\partial t} = -\frac{\partial}{\partial x}(g N) - m N$$

where

N(x, t) is the number of individuals of size x at time t

g is the growth function  $\left(\frac{dx}{dt}\right)$ 

m is the per-capita mortality rate  $\left(\frac{1}{N}\frac{dN}{dt}\right)$ 

$$\frac{\partial N}{\partial t} = -\frac{\partial}{\partial x} (g N) - m N$$

where

N(x,t) is the number of individuals of size x at time t

g is the growth function  $\left(\frac{dx}{dt}\right)$ 

m is the per-capita mortality rate  $\left(\frac{1}{N}\frac{dN}{dt}\right)$ 

## MKVF example



#### MKVF example



#### Munch formulation (2003)

$$\frac{dN}{dt} = -m(x)N \qquad \frac{dx}{dt} = g(x)$$

where

- x(t) is the size of a fish at time t (which was size  $x_0$  at time 0)
- N(t) is the number fish at time t (which were size  $x_0$  at time 0 and size  $x_t$  at time t)
- g(x) is the growth rate for fish of size  $x\left(\frac{dx}{dt}\right)$
- m(x) is the mortality rate for fish of size  $x\left(\frac{1}{N}\frac{dN}{dt}\right)$

#### Munch formulation (2003)

$$\frac{dN}{dt} = -m(x)N \qquad \qquad \frac{dx}{dt} = g(x)$$

$$\int \frac{dN}{N} = -\int m(x)dt \qquad \qquad \int_{x_0}^{x_t} \frac{dz}{g(z)} = \int_0^t ds$$

$$\frac{N(x_t, t)}{N(x_0, 0)} = \exp\left(-\int_0^t m(x_s) ds\right) \qquad \varphi^{-1}(x_t) \equiv t$$

$$\frac{N(x_t, t)}{N(x_0, 0)} = \exp\left(-\int_{x_0}^{x_t} \frac{m(x)}{g(x)} dx\right) \qquad x_t \equiv \varphi(t; x_0)$$

#### Munch formulation (2003)

$$\frac{N(x_t,t)}{N(x_0,0)} = \exp\left(-\int_{x_0}^{x_t} \frac{m(x)}{g(x)} dx\right)$$

where

 $N(x_t, t)$  is the number of size  $x_t$  fish at time t

g(x) is the growth rate for fish of size  $x\left(\frac{dx}{dt}\right)$ 

 $x_t$  is the size of a fish at time t (which was size  $x_0$  at time 0)

m(x) is the mortality rate for fish of size  $x\left(\frac{1}{N}\frac{dN}{dt}\right)$ 

## Example of Munch formulation



#### **Growth and Mortality**

Background

Mathematical Models

Measuring Growth

Maturation Models

## Measuring Growth and the Impact of Size-Selective Culling

- Not size-selective
   Size selective
  - Size distribution translates



- - Size distribution "pushed"



#### **Estimating Growth**

- Samples of size at two times
- Growth ≠ difference in means
- Estimate parameters
  - growth and mortality
- Growth computable
  - Error bounds?

#### **Growth and Mortality**

Background

Mathematical Models

Measuring Growth

Maturation Models

#### Maturation Biology

- Age size/growth
  - Critical size at age
  - Most growth is marine
- Initiation
  - 6-12 months prior
  - Hormonal cues detectable in some outmigrants!
- Genetics
  - Faster/slower growers

## Potential Factors influencing jack returns

#### Freshwater conditions

- Size at tagging
- Growth index
- Flows
- PNI
- Location
- Water temperatures

#### Ocean conditions

- Ocean upwelling
- Copepod
- SST (by season)
- PDO (by season)
- ONI (by season)

#### What fraction of returns will be jacks?

#### Linear regression model

#### Freshwater conditions

- Important:
  - Growth index
  - Size at tagging
- Influential:
  - Water temperatures
- Not:
  - Flows
  - PNI
  - location

#### Ocean conditions

- Important:
  - Ocean upwelling
  - PDO (summer)
- Not:
  - SST
  - PDO (winter, spring, fall)
  - ONI
  - Copepod

#### **Model Results**



#### **Model Results**



#### **Model Results**



#### Summing up & moving on

- Model development
  - Environmental Covariates
  - Interacting Populations
    - Interspecific
    - Wild & hatchery
    - Fast/slow growers
- Growth Measurement
- Jack Returns
  - Freshwater Development
  - Variables Missing?

## Thank You !

$$\frac{\partial N}{\partial t} = -\frac{\partial}{\partial x}(g\ N) - m\ N$$

where

N(x,t) is the number of individuals of size x at time t

g is the growth function  $\left(\frac{dx}{dt}\right)$ 

m is the per-capita mortality rate  $\left(\frac{1}{N}\frac{dN}{dt}\right)$ 

## Example of Munch formulation



#### Estimating params

- Measurements: time 0 & t
- Algorithm
  - guess  $\theta$  (growth & mortality params)
  - construct bins for time 0
  - Repeat until MLE found
    - translate bins to time t using growth params
    - solve for MLE of nuisance parameters
    - compute likelihood
    - systematically explore parameter space