# IC Engineering I

Saroj Rout

2025-01-08

## Table of contents

| Preface |                                   | 3        |
|---------|-----------------------------------|----------|
| 1       | Introduction                      | 4        |
|         | Passive IC devices 2.1 Resistance | <b>5</b> |
| Re      | eferences                         | 7        |

## **Preface**

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

## 1 Introduction

This book covers basic topics in circuits and devices for Integrated Circuit (IC) engineers.

This is a book created from markdown and executable code.

This is an exmaple of reference citation: Thomas, Rosa, and Toussaint (2016)

#### 2 Passive IC devices

This chapter covers basics principle behind passive IC devices: Resistors, Capcitors and Inductors.

#### 2.1 Resistance



Figure 2.1: Setup for resistance calculation

Resistance calculation of metal or semiconductor material is fundamental to IC engineering. Consider a block of metal or semiconductor material with dimensions L, W and h as shown in Figure 2.1. Let n be the charge per unit volume. To calculate the current  $I_R$  for an applied voltage  $V_R$  across the length of the material, we will consider an incremental cross section of the material with length  $\Delta x$ . The current can be written as the total charge in the incremental volume in time  $\Delta t$ :

$$I_R = \frac{\Delta Q}{\Delta t} = \frac{Q_S \Delta x}{\Delta t} = Q_S v_d$$

 $I_R = SheetCharge \times AverageVelocity \text{ or,}$ 

where,  $Q_S = nWh$  is the sheet-charge or the charge per unit length,

 $\boldsymbol{v}_d$  is the average velocity of the electrons:

$$v_d = \frac{\Delta x}{\Delta t} = \mu E$$
, and

where,  $E = \frac{\Delta v}{\Delta x}$ , and  $\mu$  is the *mobility* of the material.

Therefore,  $I_R = \mu Q_S \frac{\Delta v}{\Delta x}$ 

The incremental resistance can be expressed as

$$\Delta R = \Delta v / I_R = \rho \frac{\Delta x}{Wh}$$

where,  $\rho = 1/(n\mu)$  is the *Specific resistivity*  $(\rho)$  is a property of the material that can be defined as the resistance per unit volume expressed in SI units of  $\Omega m$  but more conveniently as  $\Omega cm$ .

The total resistance of the volume can be found by summing up all incremental resistances  $\Delta R$ .

$$R = \rho \frac{L}{A}$$

where, L is the length and A is the cross-sectional area (Wh).

In integrated circuit design, the height of the metal routing is fixed and is typically in the range of 0.1 to 5 micrometers ( $\mu m$ ,  $10^{-6}m$ ) and the resistance is measured in square units as ohms per square or  $\Omega/\Box$ .

$$R=(\rho/h)(L/W)$$

Where,  $\rho/h$  is typically called sheet-rho  $(\rho_{sheet})$ 

The specific resistance (in  $\Omega cm$ ) and unit resistance (in  $\Omega/\square$ ) of typical metals used in integrated circuits such as aluminum (Al), copper (Cu) and gold (Au) are tabulated:

|    | $\mu - \Omega \text{ cm}$ | $m\Omega/\Box$ |
|----|---------------------------|----------------|
| Al | 2.65                      | 26.5           |
| Cu | 1.68                      | 16.8           |
| Au | 2.44                      | 24.4           |

#### References

Thomas, Roland E., Albert J. Rosa, and Gregory J. Toussaint. 2016. The Analysis and Design of Linear Circuits. John Wiley & Sons. https://www.dropbox.com/scl/fi/83ygnyynx2sfe x1h7tdhg/Thomas-AnalysisDesignOfLinearCkts-Wiley-2023.pdf?rlkey=4xzk0an1z7r3fcj 936o0enjg4&dl=0.