# MA109 Tutorial Session Week 3

Dhruv Arora

Sophomore, Dept of CSE

December 16, 2020

# What's New this Wednesday

- Tutorial Sheet 2
  - Q8. (ii): Fitting a Function
  - Q8. (iii): Fitting a Function
  - Q10. (i) : Sketching a Function
  - Q11 : Another Curve Fitting
- Tutorial Sheet 3 • Q1. (ii) : Taylor Series for tan<sup>-1</sup>
  - Q2 : Taylor Series with an offset

  - Q4 : Convergence of  $e^x$ • Q5 :  $\int \frac{e^x}{y}$

Q8. (ii)

### Question

Find a function  $f: \mathbb{R} \to \mathbb{R}$  satisfying

- ② f'(0) = 1 and f'(1) = 2

or otherwise show such a function cannot exist.

# Q8. (ii)

A lot of functions satisfy the constraints.

You could fit a 2 degree polynomial with ease.

I will fit an exponential function (because, strictly convex).

Consider  $ae^{bx}$ , with the given constraints,

Verify that  $\frac{2^x}{\ln 2}$  satisfies.

To be fair, you haven't defined In or e yet, so try to fit a quadratic!

$$x + \frac{x^2}{2}$$
 works!

Find a function  $f: \mathbb{R} \to \mathbb{R}$  satisfying

- $f''(x) \ge 0 \forall x \in \mathbb{R}$
- ② f'(0) = 1 pause
- **③** f(x) ≤  $100 \forall x > 0$

or otherwise show such a function cannot exist.

Claim: Such a function does not exist.

## Proof. (by Contradiction).

Assume such a function exists, let it be f.

$$f(0) \le 100$$
 (why?), so that  $x_0 = 100 - f(0) \ge 0$ 

$$f''(x) \ge 0$$
 on  $\mathbb{R} \implies f'(x)$  is monotonically increasing on  $\mathbb{R}$ 

$$\forall x > 0 \ f'(x) \ge f'(0) = 1 > 0 \implies f$$
 is strictly increasing on  $(0, \infty)$ 

Pick a 
$$y > x_0$$
, now  $\frac{f(y) - f(0)}{y - 0} = f'(x)$  for some  $x \in (0, y)$ 

Note that 
$$f(0) < f(y) \le 100$$
 so  $0 < f(y) - f(0) \le 100 - f(0)$  also,  $y > 100 - f(0)$ 

Thus, 
$$f'(x) < 1$$
 which contradicts the fact that  $\forall x > 0$   $f'(x) > 1$ 

Sketch the function defined on  $\mathbb{R}$  given by

$$y = f(x) = 2x^3 + 2x^2 - 2x - 1$$

after identifying

- Intervals of increase/ decrease
- Intervalse of concavity and convexity
- Points of local maxima/minima
- Points of inflection
- Asymptotes

The function is polynomial, hence smooth!

The function does not have global extrema. (why?)

Get a reference point : f(0) = -1 (in general, try to get a few more)

$$f'(x) = 6x^2 + 4x - 2 = 2(3x - 1)(x + 1)$$
 is  $\geq 0$  on  $(-\infty, -1] \cup [1/3, \infty)$  and  $\leq 0$  on  $[-1, 1/3]$ 

These are intervals of increase and decrease

 $\{-1,1/3\}$  are points of (possible) local extrema

$$f''(x)=12x+4$$
 which is  $<0$  (concave) on  $(-\infty,-1/3)$  and  $>0$  (convex) on  $(1/3,\infty)$ 

So, indeed -1 is a point of local maxima, 1/3 a point of local minima

Also, -1/3 = [-1 + 1/3]/2 (show this for any cubic) a point of inflection.

Q10. (i)



Sketch a continuous function  $f: \mathbb{R} \to \mathbb{R}$  satisfying the following

- f(-2) = 8, f(0) = 4, f(2) = 0
- ② f'(x) > 0 for |x| > 2 and f'(x) < 0 for |x| < 2
- **3** f''(x) < 0 for x < 0 and f''(x) > 0 for x > 0

**Note**: I didn't mention f'(2) = f'(-2) = 0 (why?)

We saw something similar just now. A cubic might have such properties!!

How to fit a cubic? Observe that now f'(x) = c(x-2)(x+2), c > 0

Verify that this satisfies conditions (2) and (3)

Now the cubic will be of form  $\frac{cx^3}{3} - 4cx + d$ 

d = 4 and c = 3/4 satisfy all constraints.

#### Note

This is not always guarenteed to work. Say, I change f(0) = 3 instead. Can you still fit a cubic? Can you fit another function? Can you fit another polynomial?



Q1. (ii)

### Question

Give the  $n^{th}$  taylor polynomial and remainder of  $tan^{-1}(x)$  about 0 when |x| < 1

# Q1. (ii)

**Claim**: The complete taylor expansion is  $\tan^{-1}(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$ 

## Sketch. (Hacky).

We find 
$$f^{(n)}(x)$$
 and thus  $f^{(n)}(0)$   
Observe  $f'(x) = f^{(1)}(x) = \frac{1}{1+x^2} = \frac{1}{x-i} - \frac{1}{x+i}$ 

Show by induction that 
$$f^{(n)}(x) = \frac{(n-1)!(-1)^{n-1}}{2i} \left( \frac{1}{(x-i)^n} - \frac{1}{(x+i)^n} \right)$$

$$f^{(n)}(0) = egin{cases} 0 & n ext{ is even} \\ (n-1)!(-1)^{(n-1)/2} & n ext{ is odd} \end{cases}$$



$$P_{\infty}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$

To show convergence, you need to show  $R_n(x) \to 0$  (try!)

A better method will be using integration like in Q5

$$\tan^{-1}(x) = \int_{0}^{x} \frac{1}{1+t^{2}} dt$$

Can you write a power series for  $\frac{1}{1+x^2}$  with ease?

## The Rigorous Method

Note that 
$$\sum\limits_{n=0}^{\infty}(-t^2)^n=rac{1}{1+t^2}$$
 for  $|t|<1$ 

This forms the power series expansion of  $\frac{1}{1+t^2}$ , so it can be integrated term by term

$$\tan^{-1} x = \int_0^x \frac{1}{1+t^2} dt = \int_0^x \sum_{n=0}^\infty (-t^2)^n = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1}$$

This is the Taylor series expansion of  $tan^{-1}(x)^1$ 

What is the remainder  $R_n(x)$ ? There is no closed form solution.

Note that 
$$R_{2m-1}(x) = R_{2m}(x) = \sum_{n=m}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

You can write it as an integral!

16 / 19

Dhruv Arora (Sophomore, Dept of CSE) MA109 Tutorial Session December 16, 2020

<sup>&</sup>lt;sup>1</sup>I remember there was a doubt regarding this in class. The point is, if a function has a power series expansion about 0, it can be differentiated term by term as well. Can you use this to show that  $a_n = f^{(n)}(0)/n!$ ?

Write Taylor series of  $f(x) = x^3 - 3x^2 + 3x - 1$  about 1.

Taylor series about 1 will be

$$P_{\infty}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} (x-1)^n$$

$$f(x) = (x-1)^3$$
 hence  $f^{(n)}(1) = 0 \forall n \neq 3$   
Verify that indeed  $f(x) = P_{\infty}(x)$ 

Show that the series  $\sum_{k=0}^{\infty} \frac{x^k}{k!}$  converges.

### Proof.

Pick an 
$$N > 2|x|$$
, now for  $n > N$ ,  $\left|\frac{x^{n+1}}{(n+1)!}\right| \le \frac{1}{2} \frac{|x|^n}{n!}$ 

This can be seen as 
$$|x/(n+1)| \le |x/N| < 1/2$$
, also, note  $\frac{x^{n+1}}{(n+1)!} \le \left| \frac{x^{n+1}}{(n+1)!} \right|$ 

Consider any 
$$n > m > N$$
, then  $\sum_{k=n}^{m} \frac{x^k}{k!} \le \sum_{k=n}^{m} \frac{|x|^k}{k!} \le \sum_{k=N+1}^{\infty} \frac{|x|^k}{k!}$ 

Using the inequality proved, show that 
$$\sum_{k=1}^{\infty} \frac{|x|^k}{k!} \leq \frac{|x|^N}{N!}$$
 (form a GP)

Since 
$$\lim_{n\to\infty}|x|^n/n!=0$$
, we can find for any given  $\epsilon>0$ , a  $M\in\mathbb{N}$  such that  $|x|^n/n!<\epsilon\forall n\geq M$   
Chose  $N_0=\max\{N,M\}$ . Show that this satisfies the cauchy definition.

Write down a series for  $\int \frac{e^x}{y} dx$ 

We write 
$$\frac{e^x}{x} = \sum_{n=0}^{\infty} \frac{x^{n-1}}{n!}$$

We write 
$$\frac{e^x}{x} = \sum_{n=0}^{\infty} \frac{x^{n-1}}{n!}$$
  
i.e.  $\frac{e^x}{x} = \frac{1}{x} + \sum_{n=1}^{\infty} \frac{x^{n-1}}{n!}$ , so that 
$$\int \frac{e^x}{x} = \ln x + \sum_{n=1}^{\infty} \frac{x^n}{n \cdot n!} + C$$

$$\int \frac{e^x}{x} = \ln x + \sum_{n=1}^{\infty} \frac{x^n}{n \cdot n!} + C$$