Physical Computing Servos

Smart Servos Overview

What are Servo Motors?

Working Principle

Motor with closed loop position controler

Required Connections:

+ Voltage

GND

Signal

13.10.23

Working Principle

Feedback Sources

Working Principle

Encoder Signal

13.10.23

```
#include <Servo.h>
 3
    Servo myservo;
4
 5
    void setup()
 6
      myservo.attach(9);
    }
8
9
    void loop() {}
10
```

Setup

Add the library

Create a servo object

Tell the object which PWM-Pin (~) the servo is connected to

Servo object expects an angle (in Degrees) as an input:

myservo.write(angle)

Exercise 1

Make the servo sweep back and forth.

Hobby Servos

Reduced movement based on potentiometer as feedback source

RC-Vehicles
Small / Precise Movement

//Basic Servo #include <Servo.h> Servo myservo; // create servo object int pos = 0; // variable to store the servo position void setup() { myservo.attach(9); // attaches the servo on pin 9 to the servo object 9 10 11 void loop() { 12 13 for (pos = 0; pos \ll 180; pos \ll 1) { // goes from 0 degrees to 180 degrees // in steps of 1 degree 14 myservo.write(pos); // tell servo to go to position in variable 'pos' 15 16 delay(15); // waits 15ms for the servo to reach the position 17 for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees 18 myservo.write(pos); // tell servo to go to position in variable 'pos' 19 delay(15); // waits 15ms for the servo to reach the position 20 21 22

Exercise 1

13.10.23