Inlämning 1 datorlaboration 3

Namn: Anders Lorén

Personnummer: 19840102-5534

Laborationsgrupp: 38

GitHub: https://github.com/andersloren/operationsanalys-vt24/tree/master/datorlaboration-2

Uppft 1 (jämnt nummer)

Tabell

Moment	Aktivitet	Föregångare	Tid
1	dränering och markarbete	-	22 (20)
2	gruda grund	1	10
3	avlopp, vatten (yttre)	1	8
4	väggar	2	6
5	tak	4	4
6	elinstallation	4	6
7	avlopp, vatten (inre)	4	6
8	markarbeten	3	9 (5)
9	fönster	4	4
10	målning	6, 9	6
11	tapetsering	6, 9, 10	8
12	staket, grindar	8	3
13	installation av vitvaror	11, 10	4
14	kontroll	13, 12, 8	3

Kod

```
! Laboration 3, Uppgift 1;
! Beslutsvariabler;

t1>=0;
t2>=0;
t3>=0;
```

```
t4>=0;
t5>=0;
t6>=0;
t7>=0;
t8>=0;
t9>=0;
t10>=0;
t11>=0;
t12>=0;
t13>=0;
t14>=0;
t15>=0;
! Bivillkor;
t2-t1>=22;
t3-t1>=22;
t4-t2>=10;
t8-t3>=8;
t5-t4>=6;
t6-t4>=6;
t7-t4>=6;
t9-t4>=6;
t10-t6>=6;
t12-t8>=9;
t14-t8>=9;
t10-t9>=4;
t11-t10>=6;
t13-t11>=8;
t14-t13>=4;
t15-t14>=3;
! Målfunktion;
min = t15-t1;
```

Svar:

Målfunktionens värde = 65 timmar

Kritiska moment

1	
2	
4	
6	
10	
11	

Kritiska moment

13

Moment 12 måste inledas senast målfunktionens värde - A12(tid) vilket är:

65 - 3 = 62 timmar efter att projektet startats.

Uppgift 2

Kod

```
! Datorlaboration 3, Uppgift 2
! Beslutsvariabler;
!xj = \{ 1, om investering j väljs, j = A, B, C, ..., I \}
      { 0, annars
! bivillkor;
@BIN( xa);
@BIN( xb);
@BIN(xc);
@BIN( xd);
@BIN( xe);
@BIN( xf);
@BIN( xg);
@BIN( xh);
@BIN( xi);
xa + xf - xb <= 1;
xd + xh <= 1;
xa + xc + xd + xf + xg + xi >= 4;
xb + xe + xh  <= 2;
xb + xe + xh >= 1;
[budget] 9*xa + 7*xb + 12*xc + 20*xd + 8*xe + 15*xf + 9*xg + 16*xh + 13*xi <= 80;
! Målfunktion;
max = 18*xa + 21*Xb + 18*xc + 30*xd + 24*xe + 20*xf + 20*xg + 30*xh + 23*xi;
```

Optimallösning

Investeringar

Α

Investeringar

B
C
D
E