1DR2243:A - Teoria i metody optymalizacji, ćw. Minimalizacja w kierunku. Metoda backtracking line search

(opracował: Maciej Twardy, ostatnia modyfikacja: 27 listopada 2018)

1 Preliminaria

Wiele algorytmów optymalizacji opartych jest na zależności rekurencyjnej [1, 2, 3]

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + s\boldsymbol{v}_k,$$

gdzie wektor $v_k \in \mathbb{R}^n$ nazywamy kierunkiem poszukiwań (ang. search direction) lub kierunkiem aktualizacji (ang. update direction), zaś s>0 jest długością kroku (ang. step size).

Po wyznaczeniu kierunku poszukiwań, można wyznaczyć długość kroku (ang. $stepsize\ selection$). W tym celu rozpatrujemy obcięcie dziedziny funkcji f_0 do prostej wyznaczonej przez wektor \boldsymbol{v}_k zaczepiony w punkcie \boldsymbol{x}_k

$$\phi(s) = f_0(\boldsymbol{x}_k + s\boldsymbol{v}_k), \quad s > 0$$

Oczywiście ϕ jest funkcją zmiennej skalarnej $s,\,\phi:\mathbb{R}\to\mathbb{R},$ zachodzi również

$$\phi(0) = f_0(\boldsymbol{x}_k)$$

Wybór odpowiedniej długości kroku sprowadza się do takiego wyboru wartości s>0 aby

$$\phi(s) < \phi(0)$$

Można poszukiwać minimum funkcji $\phi,$ innymi słowy rozwiązać zadanie

$$s^* = \arg\min_{s>0} \phi(s)$$

Metodę tę nazywamy dokładnym poszukiwaniem w kierunku (ang. exact line search), dostarcza ona wartość s^* zapewniającą największy spadek wartości funkcji celu f_0 w kierunku wyznaczonym przez wektor \boldsymbol{v}_k , jednak obliczenie s^* może być samo w sobie trudnym zadaniem i z tego powodu w praktyce rzadko używa się tej metody.

Bardziej praktycznym podejściem jest szukanie wartości s która zagawarantuje nam wystarczający spadek wartości funkcji ϕ (ang. sufficient rate of decrease).

Długość kroku należy dobrać ostrożnie, aby otrzymać odpowiedni spadek wartości funkcji. Na Rys. 1 kierunek spadku wartości funkcji jest "w lewo". Jeśli $s_k > 0$ jest dostatecznie małe otrzymujemy \boldsymbol{x}_{k+1}^I tak, że $f_0(\boldsymbol{x}_{k+1}^I) < f_0(\boldsymbol{x}_k)$, jeśli jednak $s_k > 0$ będzie zbyt duże to otrzymamy $\boldsymbol{x}_{k+1}^{II}$ tak, że $f_0(\boldsymbol{x}_{k+1}^{II}) > f_0(\boldsymbol{x}_k)$.

Rys. 1 Dobór długości kroku (Źródło: [3]).

Weźmy pod uwagę prostą styczną do wykresu funkcji ϕ w punkcie $(0, \phi(0))$, tak jak to przedstawiono na Rys. 2.

Rys. 2 Warunek Armijo (Źródło: [3].)

Dla $\phi(s) = f_0(\boldsymbol{x}_k + s\boldsymbol{v}_k)$ mamy

$$\phi(s) \approx \ell(s) = \phi(0) + s\phi'(0),$$

gdzie

$$\phi'(0) = \nabla f_0(\boldsymbol{x}_k)^{\mathrm{T}} \boldsymbol{v}_k < 0, \qquad s > 0.$$

Funkcja ℓ jest funkcją afiniczną o współczynniku nachylenia $\phi'(0)$. Dla $\alpha \in (0, 1)$ prosta

$$\bar{\ell}(s) = \phi(0) + s\alpha\phi'(0), \quad s > 0 \tag{1}$$

leży powyżej wykresu funkcji $\ell(s)$, co więcej, dla małych wartości s > 0, prosta (1) leży powyżej wykresu funkcji $\phi(s)$.

Funkcja ϕ jest ograniczona z dołu, natomiast funkcja $\bar{\ell}$ jest nieograniczona z dołu, zatem musi istnieć punkt przecięcia się ich wykresów, niech \bar{s} będzie najmniejszym z takich punktów. Wszystkie wartości s dla których $\phi(s) \leqslant \bar{\ell}(s)$ zapewniają wystarczający spadek, dany przez nachylenie $\alpha\phi'(0)$ prostej $\bar{\ell}$. Zgodnie z tym warunkiem (wystarczającego spadku wartości funkcji celu), w literaturze zwanym warunkiem Armijo (ang. Armijo condition), dla wybranej (ustalonej) wartości $\alpha \in (0,1)$, dopuszczalna długość s kroku musi spełniać nierówność

$$\phi(s) \leqslant \phi(0) + s\alpha\phi'(0),\tag{2}$$

lub, równoważnie

$$f_0(\boldsymbol{x}_k + s\boldsymbol{v}_k) \leqslant f_0(\boldsymbol{x}_k) + s\alpha \nabla f_0(\boldsymbol{x}_k)^{\mathrm{T}} \boldsymbol{v}_k. \tag{3}$$

Do znalezienia odpowiedniej długości s kroku często używa się tzw. metody $backtracking\ search$, w której początkowa wartość s jest równa pewnej ustalonej wartości s_{initial} (najczęściej $s_{\text{initial}}=1$), następnie wartość s jest zmniejszana iteracyjnie z pewną ustaloną prędkością $\beta \in (0,1)$, dopóki nie jest spełniony warunek Armijo (2) lub (3).

Podsumowując, metoda backtracking search jest postaci:

Dane: różniczkowalna funkcja $\phi(s)$, parametr $\alpha \in (0, 1)$, parametr $\beta \in (0, 1)$, początkowa wartość s_{initial} (najczęściej $s_{\text{initial}} = 1$).

- 1. Kładziemy $s = s_{\text{initial}}$.
- 2. Jeśli $\phi(s) \leq \phi(0) + s\alpha\phi'(0)$ to s jest poszukiwaną wartością.
- 3. Jeśli $\phi(s)>\phi(0)+s\alpha\phi'(0)$ to kładziemy $s\leftarrow\beta s$ i przechodzimy do punku 2 .

Co można zapisać w pseudokodzie:

$$s \leftarrow 1$$

while $\phi(s) \geqslant \phi(0) + \alpha \phi'(0)s$
 $s \leftarrow \beta s$
end

Na Rys. 3 oraz Rys. 4 przedstawiono przykładowe użycie metody *backtracking search*.

Rys. 3 Ilustracja metody backtracking search dla $\phi(s) = 20s^2 - 44s + 29$, $\ell(s) = \phi(0) + \phi'(0)s = 29 - 44s$, $\bar{\ell}(s) = \phi(0) + \alpha \phi'(0)s = 29 - \alpha 44s$, $\alpha = 0.3$.

Rys. 4 Ilustracja metody backtracking search dla $\phi(s) = 40s^3 + 20s^2 - 44s + 29$, $\ell(s) = \phi(0) + \phi'(0)s = 29 - 44s$, $\bar{\ell}(s) = \phi(0) + \alpha\phi'(0)s = 29 - \alpha44s$, $\alpha = 0.4$, $\beta = 0.9$.

2 Zadania

Zadanie 1 Napisać skrypt w środowisku Matlab do wyznaczania, metodą *backtracking search*, długości kroku dla ustalonej funkcji jednej zmiennej. Wygenerować wykresy przedstawione na Rys. 3. $[\phi(s) = 20s^2 - 44s + 29]$ i Rys. 4. $[\phi(s) = 40s^3 + 20s^2 - 44s + 29]$.

Literatura

- [1] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, New York, NY, USA, 2004. http://web.stanford.edu/~boyd/cvxbook/ [Online; accessed 19.02.2016].
- [2] Stephen Boyd and Lieven Vandenberghe. Additional Exercises for Convex Optimization. 2004. http://web.stanford.edu/~boyd/ cvxbook/ [Online; accessed 19.02.2016].
- [3] G.C. Calafiore and L. El Ghaoui. Optimization Models. Control systems and optimization series. Cambridge University Press, October 2014.