

Course > Unit 10... > Lec. 26:... > 5. Exer...

## 5. Exercise: Steady-state approximation

None due May 29, 2020 05:29 IST

Exercise: Steady-state approximation

0.0/3.0 points (ungraded)

Consider a Markov chain with the following transition probability graph:



Find an approximation to  ${f P}(X_{10000}=5\mid X_0=1)=r_{15}\,(10000).$  **Hint:** First find an (exact) equation relating  $r_{15}\,(10000)$ ,  $r_{15}\,(9999)$  and  $r_{55}\,(9999)$ .

 $r_{15}\left(10000
ight)pprox$  Answer: 0.12121

## **Solution:**

Following the hint, we look one transition ahead: going from state 1 to state 5 after 10000 transitions can be achieved by either (i) staying at state 1 after the first transition and then going from state 1 to state 5 in 9999 transitions, or (ii) going from state 1 to state 5 after the first transition and then ending back in state 5 after 9999 transitions. The first transition cannot go to state 2 because then there would be no way to end up in state 5. Hence,

$$r_{15}\left(10000
ight) = p_{11}r_{15}\left(9999
ight) + p_{15}r_{55}\left(9999
ight) = rac{1}{3}r_{15}\left(9999
ight) + rac{1}{9}r_{55}\left(9999
ight).$$

Since 9999 and 10000 are both large numbers of transitions, we use two approximations: (i)  $r_{15}$   $(9999) \approx r_{15}$  (10000) and (ii)  $r_{55}$   $(9999) \approx \pi_5$ , the steady-state probability of being in state 5 when we consider the aperiodic recurrent class  $\{5,6\}$ . With these approximations, we have

$$r_{15}\left(10000
ight)pproxrac{1}{3}r_{15}\left(10000
ight)+rac{1}{9}\pi_{5} \Rightarrow r_{15}\left(10000
ight)pproxrac{1}{6}\pi_{5}.$$

The steady-state probabilities  $\pi_5$  and  $\pi_6$  are obtained by solving the system of equations

$$egin{array}{l} rac{1}{4}\pi_5 &= rac{2}{3}\pi_6 \ \pi_5 + \pi_6 &= 1, \end{array}$$

which leads to  $\pi_5=8/11$  and  $\pi_6=3/11$ .

Therefore,  $r_{15} \left(10000\right) pprox rac{4}{33}$ .

Submit

You have used 0 of 3 attempts

Answers are displayed within the problem

## Discussion

**Hide Discussion** 

**Topic:** Unit 10: Markov chains:Lec. 26: Absorption probabilities and expected time to absorption / 5. Exercise: Steady-state approximation

Show all posts 

lgnoring state 7 and 8?
The steady state equation pi 5 + pi 6 = 1 totally ignores recurrent states 7 and 8. Is it allowed or did I mis...

Petter approximation?

© All Rights Reserved

