

Napredni algoritmi i strukture podataka

Tjedan 9: Algoritmi nad grafovima Teorija grafova, Najkraće udaljenosti

Osnove teorije grafova

• **Graf** (graph) je uređeni par <u>nepraznog</u> konačnog skupa vrhova V (vertex) i skupa (moguće praznog) bridova E (edge)

$$G = (V, E)$$

• **Brid** (edge) je element produkta skupa V

$$E \subseteq V \times V, e_k = (v_i, v_i) \in E$$

- Svaki brid je uređeni par vrhova $e_k = (v_i, v_j)$
- Brid se kraće može označiti samo v_iv_j ili jednostavno samo e_k , pri čemu je $e_k \,=\, v_iv_j$

Alternativna literatura:

Thomas H, C., Charles E, L., Ronald L, R., & Clifford, S. (2016). Introduction to Algorithms., Chapter VI

Osnove teorije grafova

- Red (order) grafa je broj vrhova u njemu ili |V|; često pojednostavljeno samo V
- Veličina (size) grafa je broj bridova koje graf sadrži |E|; pojednostavljeno samo E
- Petlja (loop) je brid koji počinje i završava u istom vrhu $e_k \ = \ v_i v_i$
- **Stupanj** (degree) **vrha** je broj bridova koji su priležeći (incident) tom vrhu (spojeni s njim)
 - Stupanj vrha v označavat ćemo s $\deg(v)$
 - Povratne petlje se u $\deg(v)$ ubrajaju dva puta $\forall v \in V \exists E' \subseteq E \forall (v_i, v_i) \in E' : v_i = v \lor v_j = v \Rightarrow \deg(v) = |E'|$

Teorija grafova – vrste grafova

- Neusmjereni (undirected) graf
 - Za svaki brid $v_i v_j$ vrijedi $v_i v_j = v_j v_i$
 - Vrhovi se smatraju susjednima (adjacent) ako je $v_i v_j \in E$
 - Takav je brid priležeći (incident) vrhovima $v_i \ i \ v_j$
- Usmjereni (directed) graf
 - Za brid $v_i v_j$ ne mora vrijediti $v_i v_j = v_j v_i$
 - Vrh v_j se smatra susjedom vrhu v_i samo ako postoji $v_i v_j \in E$
 - Brid v_iv_j se naziva izlaznim bridom (outedge) vrha v_i i ulaznim bridom (inedge) vrha v_j

Teorija grafova – vrste grafova

- **Jednostavni graf** (simple graph) je graf (obično neusmjereni) koji između svaka dva vrha ima najviše jedan brid i u kojem nema petlji
- Multigraf (multigraph) je graf koji može imati više od jednog brida između dva vrha

• **Pseudograf** (pseudograph) je multigraf u kojem mogu postojati povratne petlje

Teorija grafova – obilazak, putanja, ...

• Obilazak ili šetnja (walk) od vrha v_1 do vrha v_n je naizmjenični niz vrhova i bridova

$$v_1, e_2, v_2, e_3, \dots, e_n, v_n$$

- Kraće se označava v_1, v_2, \dots, v_n ili samo $v_1 v_2 \dots v_n$
- Putanja (trail) je obilazak u kojem su svi bridovi različiti (znači svakim bridom se prolazi samo jednom, ali vrhovi se mogu ponavljati)
- Put ili staza (path) je putanja (trail) u kojoj su svi vrhovi različiti (dakle ne mogu se ponavljati)
- Krug (circuit) je putanja (trail) u kojoj je $v_1 = v_n$
- Ciklus (cycle) je staza (path) na kojoj je $v_1 = v_n$

Teorija grafova

- Potpuni (complete) graf je graf u kojem je između svaka dva vrha točno jedan brid
 - Odnosi se samo na neusmjerene grafove
 - Potpuni graf n-tog reda (n vrhova) označava se s K_n
 - Broj bridova u potpunom grafu = broj dvočlanih podskupova skupa vrhova V

$$E(K_n) = {V \choose 2} = \frac{V!}{(V-2)! \cdot 2!} = \frac{V(V-1)}{2} = O(V^2)$$

- Neka je $V' \subset V$ i $E' \subset E$, tada je G' = (V', E') **podgraf** (subgraph) grafa G = (V, E)
 - Ako imamo $V' \subset V$, tada je G[V'] inducirani podgraf (induced subgraph) grafa G, koji sadrži sve bridove iz skupa E, a koji spajaju vrhove iz skupa V'

Povezanost grafa – neusmjereni grafovi

• Definiramo binarnu relaciju W^G takvu da obilaskom kroz graf G povezuje vrhove u i v. Ako su vrhovi u i v povezani vrijedi

$$uW^Gv$$

• Povezani neusmjereni graf G=(V,E) - neusmjereni graf je povezan (connected) samo ako za sve parove vrhova vrijedi

$$\forall u, v \in V: uW^Gv \wedge vW^Gu$$

- što znači da je vrh v dohvatljiv (reachable) od vrha u
- ali i obratno, što je u sukladnosti sa definicijom neusmjerenog grafa

Povezanost grafa – usmjereni grafovi

- Slabo povezani usmjereni graf G (weakly connected) je usmjereni graf čiji je neusmjereni ekvivalent povezan prema definiciji na prethodnoj prikaznici
- Snažno povezani usmjereni graf G (strongly connected) je usmjereni graf kod kojeg su svi parovi vrhova međusobno dohvatljivi

$$\forall u, v \in V: uW^Gv \wedge vW^Gu$$

- Primijetimo da je definicija za snažno povezani usmjereni graf identična definiciji za povezani neusmjereni graf
- Razlika je i više nego očita s obzirom da se kod usmjerenog grafa stvaraju krugovi i ciklusi da bi on bio snažno povezan

Povezanost grafa

- Nepovezani graf G (disconnected graph)
 - Definiramo podskup vrhova $V' \subset V$ takav da je inducirani podgraf G[V'] povezan i ne postoji obilazak između vrhova iz skupa V' i ostatka vrhova V / V' $\exists u \in V' \exists v \in V/V' : uW^G v \vee vW^G u$
 - Takav se graf smatra nepovezanim
- **Prijelomna točka** (articulation point) je vrh čijim uklanjanjem graf postaje nepovezan
- **Most** (bridge) je brid čijim uklanjanjem graf postaje nepovezan.

Pohrana grafa

а	С	d	f	
b	d	е		
С	а	f		
d	а	b	е	f
е	b	d		
f	а	С	d	
8				

- Moguća je pohrana pomoću listi i pomoću matrica
- Prednost listi je u pristupu svim susjedima nekog vrha jer je potrebno $\deg(v)$ koraka u odnosu na |V| za matrice
- Prednost matrica je u pojedinačnim intervencijama (dodavanje ili uklanjanje brida) zbog bržeg pristupa i složenosti O(1) prilikom održavanja
- Primjer u obliku tablice (star representation)(lijevo) i u obliku dvodimenzionalne povezane liste (desno)

Pohrana grafa

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ e & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ g & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Primjer u obliku matrice susjedstva (adjacency matrix)(lijevo-sredina)
 - Simetrična za neusmjerene grafove
- U obliku matrice incidencije (incidency matrix)(lijevo-dolje)
- U obliku težinske matrice susjedstva (weighted adjacency matrix)(desno)

$$\mathbf{W} = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 & v_6 \\ v_2 & 0 & 2 & 3 & 0 & 0 & 0 \\ 2 & 0 & 0 & 4 & 6 & 0 \\ 3 & 0 & 0 & -2 & 2 & 0 \\ 0 & 4 & -2 & 0 & 0 & 1 \\ v_5 & v_6 & 0 & 0 & 0 & 1 & 5 & 0 \end{bmatrix}$$

Obilazak grafa (graph traversal)

- Algoritmi za obilazak stabla nisu zadovoljavajući za općenite grafove jer:
 - Graf može imati cikluse pa bi se algoritam za stablo mogao naći u beskonačnoj petlji
 - Graf može imati odvojene i nepovezane vrhove, pa riskiramo da ne pronađemo sve povezane particije vrhova P(V)
- Dva najpoznatija algoritma za obilazak grafa su:
 - Obilazak (prvo) u širinu (*Breadth First Search;* BFS)
 - Obilazak (prvo) u dubinu (Depth First Search; DFS)
- Osim u jednostavnim primjenama (npr. obilazak grafa, detekcija ciklusa, provjera povezanosti pojedinih vrhova), DFS i BFS nisu međusobno zamjenjivi zbog bitne logičke različitosti
- Oba su temelj za brojne složenije algoritme i teorijski su podjednako brzi, ali u stvarnosti je DFS nešto sporiji jer je rekurzivan

Obilazak grafa (prvo) u širinu - BFS

- Koncept BFS algoritma
 - Inicijalno u listi imamo samo korijenski vrh lista je prirodna podatkovna struktura za BFS algoritam
 - Uzimamo prvi vrh iz liste kao trenutni vrh n
 - Prvo obilazimo SVE susjedne vrhove trenutnog vrha n
 - Kako obilazimo susjedne vrhove, stavljamo ih u listu
 - Nakon što smo obišli sve susjedne vrhove, uzimamo sljedeći vrh iz liste kao trenutni...
 - Taj postupak ponavljamo do dok nismo obišli sve vrhove u grafu
- Ukoliko imamo nepovezane podgrafove, postupak se ponavlja dok ima neobiđenih vrhova

Obilazak grafa (prvo) u širinu - BFS


```
procedure BFS(G)
   initialize all vertices in G as not visited
   Q \leftarrow \text{empty queue}
   while there is an unvisited vertex u_0 in G do
       mark u_0 as visited
       Q.enqueue(u_0)
       while Q is not empty do
          u \leftarrow Q.dequeue
          process u
          for v in adjacent vertices of u do
              if v is not visited then
                 mark v as visited
                  Q.enqueue(v)
```

Obilazak grafa (prvo) u dubinu - DFS

- Koncept DFS algoritma rekurzivno
 - Uzimamo prvi neobiđeni vrh
 - Rekurzivno se spuštamo na prvog susjeda
 - Rekurzija se ponavlja, sve do dok ne dođemo do lista, zatim se vraćamo natrag do prvog vrha na kojem imamo još neobiđenih susjeda, čim opet započinjemo rekurzivno spuštanje do listova
 - Stog je prirodna podatkovna struktura za DFS algoritam
- Ukoliko imamo nepovezane podgrafove, postupak se ponavlja dok ima neobiđenih vrhova

Obilazak grafa (prvo) u dubinu - DFS

Step	и	visited	stack S
0			а
1	а	No	bcd
2	b	No	efcd
3	e	No	ifcd
4	i	No	ghfcd
5	g	No	fhfdc
6	f	No	chfcd
7	c	No	hfcd
8	h	No	dfcd
9	d	No	fcd
10	f	Yes	cd
11	c	Yes	d
12	d	Yes	

```
procedure DFS(G)

initialize all vertices in G as not visited

S \leftarrow \text{empty stack}

while there is an unvisited vertex u_0 in G do

S.push(u_0)

while S is not empty do

u \leftarrow \text{S.pop}

if u is not visited then

mark u as visited

process u

for v in reversed list of adjacent vertices of u do

if v is not visited then

S.push(v)
```

```
procedure DFS(G)
  initialize all vertices in G as not visited
  while there is an unvisited vertex u<sub>0</sub> in G do
        DFS_recursive(G, u<sub>0</sub>)

procedure DFS_RECURSIVE(G, u)
  mark u as visited
  process u
  for v in adjacent vertices of u do
    if v is not visited then
        DFS_recursive(G, v)
```


Razapinjujuće stablo (spanning tree)

- Rezultanta putanja oba algoritma za obilazak grafa (BFS i DFS) čini stablo u kojem su svi vrhovi grafa. Takvo se stablo naziva razapinjujuće stablo (spanning tree).
 - Bilježimo samo bridove koji predstavljaju napredovanje BFS i DFS algoritama prema neobiđenim vrhovima – unaprjedni bridovi (forward edges)
 - Ne bilježimo bridove kojima se algoritmi vraćaju u vrhove koji su već obiđeni – povratni bridovi (back edges)

Najkraći putevi u grafu (shortest paths)

- Temeljni algoritmi za brojne primjene: transport, komunikacije, distribucijske energetske mreže, projektiranje integriranih elektroničkih sklopova i drugo...
- Bridovi, kao apstrakcija (model) poveznica između dvaju čimbenika nekog sustava, dobivaju "težine"; oznaka w(u,v)
- Važan je i pojam međuvrh; to je vrh na putu između neka dva vrha u grafu, dakle ni polazni ni završni
- Labela (label) = udaljenost vrha od nekog referentnog vrha (točke)
 - Najčešće se pohranjuje kao članska varijabla strukture 'vrh'
- Dvije osnovne grupe algoritama:
 - Algoritmi koji pronalaze najkraći put između dva određena vrha
 - Algoritmi koji pronalaze najkraće puteve između svih vrhova u grafu (all-to-all)

Najkraći putevi u grafu

- Odabir algoritma za traženje najkraćeg puta ovisi o težinama bridova u grafu; dvije su osnovne skupine tih algoritama:
 - Label-setting algoritmi jednom upisana labela se više ne mijenja
 - Tako upisana labela se više ne provjerava
 - Funkcioniraju za grafove s isključivo pozitivnim težinama bridova Dijkstrin algoritam
 - Label-correcting algoritmi sve labele se mogu mijenjati sve do završetka postupka (konvergencije)
 - Funkcioniraju za grafove s bilo kakvim težinama bridova Bellman-Ford algoritam

Najkraći putevi u grafu – negativne težine

Iteration	d(b)	d(c)
1	2	7
2	0	5
3	-2	3
4	- 4	1
5	-6	-1
•••		
∞	$-\infty$	$-\infty$

- Negativna težina predstavlja problem za labelsetting algoritme – uzmimo primjer na slici
 - Ako smo do vrha d došli obilaskom abd, tada je njegova labela d(d)=7
 - Ako smo do vrha d došli obilaskom abcd, tada je njegova labela d(d)=6
- Drugi problem predstavlja negativni ciklus, koji predstavlja problem i za **label-correcting** algoritme
 - Algoritam se uplete u beskonačnu petlju ažuriranja labela
 - U trenutku kada bi algoritam trebao konvergirati, on ne konvergira nego nastavlja ažurirati labele
 - Takav problem je nerješiv

Dijkstrin algoritam

- ullet Spada u algoritme koji računaju najkraću udaljenost između dva vrha v_1 i v_n
- Label-setting algoritam
 - Jednom ažurirana labela vrha se više ne mijenja, osim kroz drugu putanju
 - Nije u mogućnosti raditi s negativnim težinama bridova
- Za neku putanju

$$p = v_1 v_2 \dots v_n$$

• može se primijeniti koncept aditivnosti udaljenosti

$$d(v_1, v_n) = d(v_1, v_i) + d(v_i, v_n)$$

• Ako je putanja p ujedno i najkraća, tada vrijedi

$$d_{min}(v_1, v_n) = d_{min}(v_1, v_i) + d_{min}(v_i, v_n)$$

- Gledajući unatrag, ako svaki vrh na najkraćem putu "zna" (barem) svojeg neposrednog prethodnika, može se rekonstruirati cijeli put do polaznog vrha.
 - Ideja je računati $d(v_1,v_n) = d(v_1,v_{j-1}) + d(v_{j-1},v_j)$, od od j=n do j=2

Dijkstrin algoritam

```
procedure DIJKSTRA(G, source, destination)
    for each vertex v in V(G) do
       d(v) \leftarrow \infty
        predecessor(v) \leftarrow null
   d(source) \leftarrow 0
   work \leftarrow V(G)
    while work in not empty do
        u \leftarrow \text{take a vertex from } work \text{ having minimal } d(u)
       if u = destination then
            return
       for vertices v adjacent to u and in work do
            temp \leftarrow d(u) + w(uv)
           if temp < d(v) then
                d(v) \leftarrow temp
                predecessor(v) \leftarrow u
```

- Inicijaliziramo labele svih vrhova osim početnoga na ∞, te prethodnike na null. Početni vrh inicijaliziramo na 0.
- Krenemo od početnog vrha, te računamo i ažuriramo udaljenosti prema svim susjedima
- Prilikom obilaska
 - Ako je udaljenost susjeda manja od trenutne, tada ažuriramo labelu i tom susjedu stavljamo novog prethodnika
- Obilazak se temelji na BFS algoritmu koji je prioritiziran udaljenošću – manje udaljeni čvorovi idu prvi
- Završavamo u završnom vrhu

Dijkstrin algoritam - primjer

Iteration o: The input graph *G* and initialization

Iteration 1: u = d.

 $work = \{a, b, c, e, f, g, h, i, j\}$ d(a) = 4, d(h) = 1

Iteration 2: u = h.

 $work = \{a, b, c, e, f, g, i, j\}$ d(e) = 6, d(i) = 10

Iteration 3: u = a

$$work = \{b, c, e, f, g, i, j\}$$
$$d(e) = 5$$

Iteration 4: u = e.

$$work = \{b, c, f, g, i, j\}$$
$$d(f) = 8$$

Iteration 5: u = f.

$$work = \{b, c, g, i, j\}$$

$$d(b) = 9, d(c) = 11, d(g) = 15, d(i) = 9$$

Dijkstrin algoritam - primjer

Iteration 6: u = b $work = \{c, g, i, j\}$

Iteration 7: u = i.

 $work = \{c, g, j\}$ d(j) = 11

Iteration 8: u = j.

 $work = \{c, g\}$ d(g) = 12

Iteration 9: u = c

$$work = \{g\}$$

Iteration 10: u = g.

$$work = \{\}$$
$$d(j) = 11$$

Final predecessors in the graph *G*.

Dijkstrin algoritam - primjer

$$g \to j \to i \to f \to e \to a \to d$$

iteration	О	1	2	3	4	5	6	7	8	9	10
current vertex		d	h	а	e	f	b	i	j	С	8
а	∞	4/d									
b	∞	∞	∞	∞	∞	9/f					
С	∞	∞	∞	∞	∞	11/f					
d	О										
e	∞	∞	6/h	5/a							
f	∞	∞	∞	∞	8/e						
g	∞	∞	∞	∞	∞	15/f	15/f	15/f	12/j		
h	∞	1/d									
i	∞	∞	10/h	10/h	10/h	9/f					
j	∞	11/i									

Dijkstrin algoritam - zaključak

- Kompleksnost algoritma ako se najbliži vrh iz work liste određuje sekvencijalno $O(V^2)$
- Ukoliko se work lista implementira kao Fibonacci-eva gomila (Fibonacci heap), tada kompleksnost pada na $O(E+V\log_2 V)$

Bellman-Ford algoritam

- Spada u algoritme koji računaju najkraću udaljenost između početnog vrha i svih ostalih vrhova
- Label-correcting algoritam
 - Sve labele se ažuriraju do trenutka konvergencije do dok više nema daljnjeg ažuriranja labela
 - Može raditi s negativnim težinama u grafu
 - Nije u mogućnosti raditi s negativnim ciklusima
- Sporiji od Dijkstrinovog algoritma
- Radi s bridovima
 - Provjerava sve bridove u grafu i po njima ažurira udaljenosti vrhova
 - Konvergencija je postavljena na:
 - Dok više nema ažuriranja labela na vrhovima
 - Programski limit je |V|-1 iteracija kroz sve bridove grafa

Bellman-Ford algoritam


```
procedure Bellman-Ford(G, source)

for each vertex v in V(G) do

d(v) \leftarrow \infty

predecessor(v) \leftarrow null

d(source) \leftarrow 0

loop |V(G)| - 1 times

for each edge uv \in E(G) do

if d(u) + w(uv) < d(v) then

d(v) \leftarrow d(u) + w(uv)

predecessor(v) \leftarrow u

for each edge uv \in E(G) do

if d(u) + w(uv) < d(v) then

a(v) \leftarrow a(v) \leftarrow a(v)

a(v) \leftarrow a(v) \leftarrow a(v)

a(v) \leftarrow a(v) \leftarrow a(v)

for each edge a(v) \in E(G) \leftarrow a(v)

if a(u) + a(v) < a(v) \leftarrow a(v)

then

raise exception 'negative cycle has been detected'
```

- Sortiramo listu bridova grafa na neki način, na primjer
 - $E(G) = \{ab, be, cd, cg, ch, da, de, di, ef, gd, hg, if\}$
- Prolazimo kroz bridove u E(G). Za briduv ažuriramo udaljenost vrha v ako imamo

$$d(u) + w(uv) < d(v)$$

- To ponavljamo maksimalno |V|-1 puta
- Na kraju prođemo još jednom kroz sve bridove, pa ako još uvijek imamo vrh čiju labelu možemo ažurirati – negativni ciklus

	Iteration							
	О	1		2	3	4		
а	∞	3		2	1			
b	∞			4	3	2		
С	О							
d	∞	1	0	-1	-1			
e	∞	5		-1	-2	-3		
f	∞	9	3	2	1			
8 h	∞	1	0					
h	∞	1						
i	∞	2		1	О			

- Nakon |V|-1 iteracija dobivamo konačni rezultat
 - Desni graf predstavlja prethodnike, a time i najkraće putanje od c do svih ostalih vrhova
- Primjer rješavanja kroz tablicu
 - Pratimo E(G) i ažuriramo udaljenosti u koloni
- Kompleksnost Bellman-Ford algoritma je O(E*V). Vanjska petlja iterira kroz vrhove, dok unutarnja iterira kroz bridove

Bellman-Ford algoritam – brža inačica

```
procedure Bellman-Ford(G, source)

for each vertex v in V(G) do

d(v) \leftarrow \infty

predecessor(v) \leftarrow null

d(source) \leftarrow 0

Q \leftarrow \text{empty queue}

Q.\text{enqueue}(source)

while Q is not empty do

u \leftarrow Q.dequeue

for v in adjacent vertices of u do

if d(u) + w(uv) < d(v) then

d(v) \leftarrow d(u) + w(uv)

predecessor(v) \leftarrow u

if v not in Q then

Q.\text{enqueue}(v)
```

- Osnovna razlika je u tome što ne obrađujemo sve bridove
- U listu se stavlja početni vrh, a zatim samo vrhovi (susjedi) čija se labela promijenila
- Što znači da se obrađuju samo podgrafovi gdje će potencijalno doći do neke promjene labele – može se desiti ako imamo krugove i cikluse u grafu
- Kompleksnost je i dalje O(E * V)

Warshall-Floyd-Ingerman algoritam

- Spada u algoritme koji računaju najkraću udaljenost između svih vrhova grafa (all-to-all)
- Label-correcting algoritam
 - Sve labele se ažuriraju do kraja rada algoritma
 - Može raditi s negativnim težinama u grafu
 - Nije u mogućnosti raditi s negativnim ciklusima
- Radi s matricama udaljenosti (distance matrix)
- Zamislimo neki skup vrhova $V = \{a, b, c, d, e\}$
- ullet Mapiramo vrhove iz V tako da ih označimo rednim brojevima

$$\forall x \in V : v_i = x, 1 \le i \le |V|$$

 $v_1 = a, v_2 = b, v_3 = c, v_4 = d, v_5 = e$

Warshall-Floyd-Ingerman algoritam

ullet Matrica udaljenosti za prethodni skup vrhova V izgleda kao

$$\mathbf{D} = \begin{bmatrix} v_1 = a & v_2 = b & v_3 = c & v_4 = d & v_5 = e \\ v_1 = a & d_{11} & d_{12} & d_{13} & d_{14} & d_{15} \\ v_2 = b & d_{21} & d_{22} & d_{23} & d_{24} & d_{25} \\ d_{31} & d_{32} & d_{33} & d_{34} & d_{35} \\ v_4 = d & d_{41} & d_{42} & d_{43} & d_{44} & d_{45} \\ v_5 = e & d_{51} & d_{52} & d_{53} & d_{54} & d_{55} \end{bmatrix}$$

- ullet udaljenost između vrhova v_i i v_j označava se kao d_{ij}
- za očekivati je da će se naći barem jedna putanja kroz graf između vrhova v_i i v_i ovo nije nužno ako graf nije povezan, ali pretpostavimo da jest
- ullet treba odabrati onu putanju koja je najkraća ili $d_{min}(v_i,v_j)$

ullet Ako imamo novu putanju koja prolazi međuvrhom v_k

$$p = v_1 \dots v_k \dots v_n$$

- smatra se da je putanja p kraća ako vrijedi $d(v_1,v_k)+d(v_k,v_n)< d(v_1,v_n)$
- WFI algoritam iterira po vrhovima grafa postavljajući ih kao međuvrh v_k
 - na taj se način testira da li je taj međuvrh v_k na minimalnoj putanji između v_i i v_j
 - s obzirom da WFI algoritam izračunava udaljenosti između svih vrhova, imamo tri petlje s kojima iteriramo po vrhovima grafa, odabirući u svakoj od njih v_i , v_j i v_k

• Udaljenosti se računaju kao

$$d_{ij}^{k} = \begin{cases} w_{ij} & , k = 0 \\ \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & , k \ge 1 \end{cases}$$

- kada gledamo međuvrh v_k , udaljenost je minimum između udaljenosti d_{ij} izračunate za međuvrh v_{k-1} i udaljenosti putanje koja prolazi kroz međuvrh v_k
- Putanje (prethodnici) spremaju se u matricu putanja kao

$$\pi_{ij}^{k} = \begin{cases} \pi_{ij}^{k-1} & , d_{ij}^{k-1} \leq d_{ik}^{k-1} + d_{kj}^{k-1} \\ \pi_{kj}^{k-1} & , d_{ij}^{k-1} > d_{ik}^{k-1} + d_{kj}^{k-1} \end{cases}$$

• što znači da ako smo ažurirali udaljenost d_{ij} tada moramo staviti i da je prethodnik vrha v_i međuvrh v_k

- Na početku imamo inicijalnu matricu udaljenosti, koja je $D^0=W$, te sadrži udaljenosti samo direktno povezanih vrhova, izračun ostalih udaljenosti je stvar WFI algoritma
- ullet Inicijalna matrica putanja definira se iz težinske matrice susjedstva W na način

$$\pi_{ij}^{0} = \begin{cases} null & , i = j \text{ or } w_{ij} = 0 \\ i & , i \neq j \text{ and } w_{ij} \neq 0 \end{cases}$$


```
procedure WFI(W)

Create initial distance matrix D = D^0 from W

Create initial path matrix \Pi = \Pi^0 from W

for k from 1 to |V| do

for i from 1 to |V| do

for j from 1 to |V| do

if D[i,k] + D[k,j] < D[i,j] then

D[i,j] = D[i,k] + D[k,j]
\Pi[i,j] = \Pi[k,j]
```

- Algoritam je jednostavan, ima tri petlje kojima iteriramo po vrhovima $v_i,\,v_j$ i v_k
- Time je i kompleksnost algoritma nešto visoka $O(V^3)$

$$\mathbf{D^0} = \begin{bmatrix} a & b & c & d & e \\ a & 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ d & 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & \infty & 6 & 0 \end{bmatrix}, \mathbf{\Pi^0} = \begin{bmatrix} a & b & c & d & e \\ a & null & 1 & null & 1 \\ b & null & null & null & 1 \\ a & null & null & null & null \\ d & null & 1 & 1 & null & null \\ null & null & 1 & 1 & null & null \\ null & null & 1 & 1 & null & null \\ null & null & null & null & null \\ null & null & null & 1 & null \\ null & null & null \\$$

$$\mathbf{D^{1}} = \begin{bmatrix} a & b & c & d & e \\ a & 0 & 3 & 8 & \infty & -4 \\ b & \infty & 0 & \infty & 1 & 7 \\ c & 0 & 4 & 0 & \infty & \infty \\ d & 2 & 5(\infty) & -5 & 0 & -2(\infty) \\ e & \infty & \infty & \infty & 6 & 0 \end{bmatrix}, \mathbf{\Pi^{1}} = \begin{bmatrix} a & b & c & d & e \\ a & null & 1 & null & 1 \\ b & null & null & null & 1 \\ c & null & 3 & null & null & null \\ d & 4 & 1(null) & 4 & null & 1(null) \\ e & null & null & null & 5 & null \end{bmatrix}$$

$$\mathbf{D^{2}} = \begin{bmatrix} a & b & c & a & e \\ b & 0 & 3 & 8 & 4(\infty) & -4 \\ b & \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5(\infty) & 11(\infty) \\ d & 2 & 5 & -5 & 0 & -2 \\ e & \infty & \infty & \infty & 6 & 0 \end{bmatrix}, \mathbf{\Pi^{2}} = \begin{bmatrix} a & b & c & a & e \\ a & b & c & a & e \\ a & b & c & a & e \\ a & b & c & a & e \\ a & b & c & a & e \\ null & 1 & 1 & 2(null) & 1 \\ null & null & null & 2 & 2 \\ null & 3 & null & 2(null) & 2(null) \\ 4 & 1 & 4 & null & 1 \\ null & null & null & null & 5 & null \end{bmatrix}$$

$$\mathbf{D^3} = \begin{bmatrix} a & b & c & d & e \\ 0 & 3 & 8 & 4 & -4 \\ b & \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ e & \infty & \infty & \infty & \infty & 6 & 0 \end{bmatrix}, \mathbf{\Pi^3} = \begin{bmatrix} a & b & c & d & e \\ a & b & c & d & e \\ a & b & c & d & e \\ a & b & c & d & e \\ a & b & c & d & e \\ a & b & c & d & e \\ a & b & null & 1 & 1 & 2 & 1 \\ a & null & null & null & null & 2 & 2 \\ a & null & 3 & null & 2 & 2 \\ a & 4 & 3(1) & 4 & null & 1 \\ a & null & null & null & null & 5 & null \end{bmatrix}$$

$$\mathbf{D^4} = \begin{bmatrix} a & b & c & d & e \\ a & 0 & 3 & -1(8) & 4 & -4 \\ b & 3(\infty) & 0 & -4(\infty) & 1 & -1(7) \\ 7(\infty) & 4 & 0 & 5 & 3(11) \\ e & 8(\infty) & 5(\infty) & 1(\infty) & 6 & 0 \end{bmatrix}, \mathbf{\Pi^4} = \begin{bmatrix} a & b & c & d & e \\ a & b & c & d & d$$

$$\mathbf{D}^{5} = \begin{bmatrix} a & b & c & d & e \\ a & 0 & 1(3) & -3(-1) & 2(4) & -4 \\ b & 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ d & 2 & -1 & -5 & 0 & -2 \\ e & 8 & 5 & 1 & 6 & 0 \end{bmatrix}, \mathbf{\Pi}^{5} = \begin{bmatrix} a & b & c & d & e \\ null & 3(1) & 4(4) & 5(2) & 1 \\ 4 & null & 4 & 2 & 1 \\ 4 & 3 & null & 2 & 1 \\ 4 & 3 & 4 & null & 1 \\ 4 & 3 & 4 & 5 & null \end{bmatrix}$$

k	vertex	
$\pi_{35}^5 = 1$	$v_5 = e$	
$\pi_{31}^{5}=4$	$v_1 = a$	
$\pi_{34}^5 = 2$	$v_4 = d$	
$\pi_{32}^5 = 3$	$v_2 = b$	
$\pi_{33}^5 = null$	$v_3 = c$	

$$\Pi^{5} = \begin{bmatrix} a & b & c & d & e \\ null & 3(1) & 4(4) & 5(2) & 1 \\ 4 & null & 4 & 2 & 1 \\ 4 & 3 & null & 2 & 1 \\ 4 & 3 & 4 & null & 1 \\ e & 4 & 3 & 4 & 5 & null & 1 \end{bmatrix}$$
• π_{ii}^{5} će po definiciji biti $null$ i tu završavamo
• Za putanju idemo unatrag kroz matricu od π_{35}^{5} , gdje je $i = 3$, a $j = 5$, pa je tako
• $j = 5$ i to je vrh e
• $k = \pi_{ij}^{5} = \pi_{35}^{5} = 1$ i to je vrh a
• $k = \pi_{ij}^{5} = \pi_{35}^{5} = 1$ i to je vrh a
• $k = \pi_{ij}^{5} = \pi_{31}^{5} = 4$ i to je vrh a

- Gledamo udaljenost i najkraću putanju između i = 3 = c i j =
- Udaljenost očitamo direktno iz D^5 , to jest $d_{35}^5 = 3$
- Čitanje matrice putanja se interpretira kao
 - Ako je v_i početni vrh, a v_i završni, tada imamo putanju $v_i v_{k-n} \dots v_{k-1} v_k v_i$
 - U matrici Π^5 imamo $\pi^5_{ij}=k$, pa zatim $\pi^5_{ik}=k-1$, pa $\pi^5_{i(k-1)}=k-1$, sve do $\pi^5_{i(k-n)}=i$
 - π_{ii}^5 će po definiciji biti null i tu završavamo
- - $k-1 = \pi_{ik}^5 = \pi_{31}^5 = 4$ i to je vrh d
 - $k-2=\pi_{i(k-1)}^5=\pi_{34}^5=2$ i to je vrh b
 - $k-3=\pi_{i(k-2)}^5=\pi_{32}^5=3=i$ i to je vrh c
 - $\pi_{ii}^5 = \pi_{33}^5 = null$ i tu završavamo.

- Žarko želimo koristiti Dijkstrin algoritam, ali nam smetaju negativne težine na bridovima
- Da li je moguće nekako transformirati graf da transformacijom uklonimo negativne težine?
- Naivni pokušaj bio bi identičnom translacijom prema najnegativnijoj težini brida
- Najkraći put od a do c u originalnom grafu je abdc s udaljenošću 7
- Dodavanjem težine 2 na sve bridove to se remeti i sada je najkraća putanja abc s udaljenošću 12

• Ono što znamo sa prethodnih prikaznica je

$$d(v) \le d(u) + w(uv)$$

- znači udaljenost vrha v nije veća od udaljenosti vrha u uvećana za težinu brida w(uv)
- zapišemo li to drukčije dobivamo da je

$$0 \le d(u) + w(uv) - d(v) = w'(uv)$$

• Ako prethodni izraz upotrijebimo na putanji $p=v_1v_2\dots v_k$ dobivamo udaljenost

$$L(v_1, v_k)' = \sum_{i=1}^{k-1} w'(v_i v_{i+1}) = w(v_1 v_2) + d(v_1) - d(v_2) + \dots + w(v_{k-1} v_k) + d(v_{k-1}) - d(v_k)$$

Također vrijedi

$$L'(v_1, v_k) = \left(\sum_{i=1}^{k-1} w(v_i v_{i+1})\right) + d(v_1) - d(v_k) = L(v_1 v_k) + d(v_1) - d(v_k)$$

• Transformacija je bijektivna pa vrijedi i

$$L(v_1v_k) = L'(v_1v_k) + d(v_k) - d(v_1)$$

v_i	v_j	$w(v_iv_j)$	$d(v_i)$	$d(v_j)$	$w'(v_iv_j)$
а	b	5	О	5	5+o-5=o
а	d	4	О	3	4+0-3=1
b	d	-2	5	3	-2+5-3=o
b	С	3	5	7	3+5-7=1
d	С	4	3	7	4+3-7=o

- Using a *label-correcting* algorithm, determine the shortest distance to every vertex in the input graph G from an arbitrary reference vertex v_r . All vertices in the input graph G must be reachable from the reference vertex v_r .
- 2: Transform the input graph G into the non-negative weighted graph G' using the bijective transformation given in (3.51).
- 3: for $\forall v_i, v_k \in V(G')$ do
- Find the shortest path between source and destination vertices v_i and v_k in the transformed graph G' using a *label-setting* algorithm. The length of this path is $L'(v_iv_k)$.
- Use the inverse transformation in (3.51) to get the original length of the shortest path as $L(v_iv_k) = L'(v_iv_k) + d(v_k) d(v_i)$.

- Da bismo odradili transformaciju težine, prvo trebamo Bellman-Ford algoritmom odrediti udaljenost svih vrhova od jednog određenog vrha
- Zatim odradimo transformaciju
- Nakon toga korištenjem
 Dijkstrinog algoritma odredimo
 udaljenost između svih parova
 vrhova u grafu, čime dobivamo
 all-to-all udaljenosti

- Ukoliko imamo nepovezani graf, tada je nemoguće izračunati udaljenost svih vrhova od jednog referentnog vrha
- Tada dodajemo umjetni vrh (recimo R) koji bridovima povezujemo sa svim ostalim vrhovima grafa
 - Težine tih umjetno dodanih bridova su 0
- Sad možemo odrediti udaljenost svih vrhova od umjetnog vrha R i na temelju toga napraviti transformaciju

	v	d(v)		
	а	О		
_	b	О		
_	С	О		
	d	-2		

v_i	v_{j}	$w(v_iv_j)$	$d(v_i)$	$d(v_j)$	$w'(v_iv_j)$
а	b	5	О	О	5+0-0=5
а	d	4	О	-2	4+0+2=6
b	d	-2	О	-2	-2+0+2=0
С	b	3	О	О	3+0-0=3
С	d	4	О	-2	4+0+2=6

