Multi-Dimensiona/

Knapsack Problem

In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight. In the multi-dimensional knapsack problem, additional capacity constraints, such as volume, must be enforced.

Mathematical statement of 2-dimensional problem:

Maximize
$$\sum_{j=1}^{n} v_{j} x_{j}$$
subject to
$$\sum_{j=1}^{n} a_{1j} x_{j} \leq b_{1}$$

$$\sum_{j=1}^{n} a_{2j} x_{j} \leq b_{2}$$

$$x_{j} \in X_{j}, j = 1, ...n$$

The coefficients v_j and a_{ij} are nonnegative real numbers, and the set X_j may be the binary set $\{0,1\}$ or the set of all nonnegative integers.

b_i = capacity of knapsack with respect to measure i (e.g.,

i=1: weight, i=2: volume)

 a_{ij} = measure i of item j, e.g., weight and volume

Dynamic Programming

Let's assume that the coefficients a_{ij} are nonnegative integers, and the capacity limits b_i are positive integers.

In the DP model for the 1-dimensional knapsack problem, a stage is defined for each of the n items, and the state of the system at stage j is the unused capacity after items have been added in the previous stages.

In the *multi-dimensional* knapsack problem, the state of the system is a **vector** of dimension *m*, one element per capacity constraint, for example (available weight, available volume)

Consider the *two-dimensional* knapsack problem with data: n = # items = 6

Item j	1	2	3	4	5	6
Value v _j	2	3	3	4	4	5
Weight a _{1j}	1	2	1	3	2	3
Volume a_{2j}	2	1	3	2	2	3

Maximum weight is 6 and maximum volume is 4.

Define stages j=1, 2, ...6 where

decision $x_j = 1$ if item j is to be included in the knapsack, else **0**

state (s_1, s_2) where

 $s_1 \in \{0,1,...6\}$ is the slack in the *weight* constraint, and $s_2 \in \{0,1,...4\}$ is the slack in the *volume* constraint.

Thus the state space contains $7 \times 5 = 35$ elements.

Optimal value function

Using a *backward* recursion and imagining that we begin by deciding whether to include item #6 and end by deciding whether to include item #1,

 $f_j(s_1, s_2)$ = maximum total value of items j, j-1, ... 1 which can be included if the knapsack if the weight and volume are restricted to s_1 and s_2 , respectively.

We aim, of course, is to determine the value of $f_6(6,4)$.

Recursion:

$$f_{j}(s_{1}, s_{2}) = \max_{x_{j} \in \{0,1\}} \left\{ v_{j} x_{j} + f_{j-1} \left(s_{1} - a_{1j} x_{j}, s_{2} - a_{2j} x_{j} \right) \right\}, j = 6, 5, \dots 1$$

 $f_0(s_1, s_2) = 0$ for all nonnegative integers s_1 and s_2

APL definition of optimal value function f_n

```
∇ z+F N;t

A Optimal Value Function for 2-D knapsack problem

A:if N=0 A Terminal conditions
z+((ρs)ρ0),-BIG A Big penalty for infeasible states
:else

A recursion
z+MAX (((ρs)ρ0)∘.+V[N]×x)+(F N-1)[TRANSITION s∘.-W[N]×x]
:endif
∇
```

Definition of state & decision vectors:

Definition of constants

$$V \leftarrow 2 \ 3 \ 3 \ 4 \ 4 \ 5$$

 $W \leftarrow (1 \ 2 \ 1 \ 3 \ 2 \ 3), "(2 \ 1 \ 3 \ 2 \ 2 \ 3)$

				<mark>St</mark>	<mark>age 1</mark>
S		\ x:	0	1	Maximum
0	0		0.00	-99999.99	0.00
0	1		0.00	-99999.99	0.00
0	2		0.00	-99999.99	0.00
0	3		0.00	-99999.99	0.00
0	4		0.00	-99999.99	0.00
1	0		0.00	-99999.99	0.00
1	1		0.00	-99999.99	0.00
1	2		0.00	2.00	2.00
1	3		0.00	2.00	2.00
1	4		0.00	2.00	2.00
2	0		0.00	-99999.99	0.00
2	1		0.00	-99999.99	0.00
2	2		0.00	2.00	2.00
2	3		0.00	2.00	2.00
2	4		0.00	2.00	2.00
3	0		0.00	-99999.99	0.00
3	1		0.00	-99999.99	0.00
3	2		0.00	2.00	2.00
3	3		0.00	2.00	2.00
3	4		0.00	2.00	2.00
4	0		0.00	-99999.99	0.00
4	1		0.00	-99999.99	0.00
4	2		0.00	2.00	2.00
4	3		0.00	2.00	2.00
4	4		0.00	2.00	2.00
5	0		0.00	-99999.99	0.00
5	1	ļ	0.00	-99999.99	0.00
5	2	ļ	0.00	2.00	2.00
5	3	ļ	0.00	2.00	2.00
5	4		0.00	2.00	2.00

s		\ x:	0	1	Maximum
6	0		0.00	-99999.99	0.00
6	1	İ	0.00	-99999.99	0.00
6	2	İ	0.00	2.00	2.00
6	3	İ	0.00	2.00	2.00
6	4	İ	0.00	2.00	2.00

We begin with the computation of $f_1(\bullet)$ at stage 1, i.e.,

we consider that only item #1 remains to be added.

Recall that

Item j	1
Value v _j	2
Weight a _{1j}	1
Volume a_{2j}	2

---Stage 2---

	s	\ x:	0	1	Maximum
0	0		0.00	-99999.99	0.00
0	1		0.00	-99999.99	0.00
0	2		0.00	-99999.99	0.00
0	3		0.00	-99999.99	0.00
0	4		0.00	-99999.99	0.00
1	0		0.00	-99999.99	0.00
1	1		0.00	-99999.99	0.00
1	2		2.00	-99999.99	2.00
1	3		2.00	-99999.99	2.00
1	4		2.00	-99999.99	2.00
2	0		0.00	-99999.99	0.00
2	1		0.00	3.00	3.00
2	2		2.00	3.00	3.00
2	3		2.00	3.00	3.00
2	4		2.00	3.00	3.00
3	0		0.00	-99999.99	0.00
3	1		0.00	3.00	3.00
3	2		2.00	3.00	3.00
3	3		2.00	5.00	5.00
3	4	ļ	2.00	5.00	5.00
4	0		0.00	-99999.99	0.00
4	1	ļ	0.00	3.00	3.00
4	2	ļ	2.00	3.00	3.00
4	3	ļ	2.00	5.00	5.00
4	4	ļ	2.00	5.00	5.00
5	0	ļ	0.00	-99999.99	0.00
5	1		0.00	3.00	3.00
5	2	ļ	2.00	3.00	3.00
5	3	ļ	2.00	5.00	5.00
5	4		2.00	5.00	5.00

S	`	\ x:	0	1	Maximum
6	0		0.00	-99999.99	0.00
6	1		0.00	3.00	3.00
6	2		2.00	3.00	3.00
6	3		2.00	5.00	5.00
6	4		2.00	5.00	5.00

Next we imagine that only items #1 & 2 remain to be added to the knapsack, and compute their optimal value, $f_2(\cdot)$ where

Item j	2
Value v _j	3
Weight a_{1j}	2
Volume a_{2j}	1

---Stage 3---

	S	\ x:	0	1	Maximum
0	0		0.00	-99999.99	0.00
0	1		0.00	-99999.99	0.00
0	2		0.00	-99999.99	0.00
0	3		0.00	-99999.99	0.00
0	4		0.00	-99999.99	0.00
1	0		0.00	-99999.99	0.00
1	1		0.00	-99999.99	0.00
1	2		2.00	-99999.99	2.00
1	3		2.00	3.00	3.00
1	4		2.00	3.00	3.00
2	0		0.00	-99999.99	0.00
2	1		3.00	-99999.99	3.00
2	2		3.00	-99999.99	3.00
2	3		3.00	3.00	3.00
2	4		3.00	3.00	3.00
3	0		0.00	-99999.99	0.00
3	1		3.00	-99999.99	3.00
3	2		3.00	-99999.99	3.00
3	3		5.00	3.00	5.00
3	4	ļ	5.00	6.00	6.00
4	0		0.00	-99999.99	0.00
4	1	ļ	3.00	-99999.99	3.00
4	2	ļ	3.00	-99999.99	3.00
4	3	ļ	5.00	3.00	5.00
4	4	ļ	5.00	6.00	6.00
5	0	ļ	0.00	-99999.99	0.00
5	1		3.00	-99999.99	3.00
5	2	ļ	3.00	-99999.99	3.00
5	3	ļ	5.00	3.00	5.00
5	4		5.00	6.00	6.00

٤	3	\ x:	0	1	Maximum
6	0		0.00	-99999.99	0.00
6	1		3.00	-99999.99	3.00
6	2	İ	3.00	-99999.99	3.00
6	3	İ	5.00	3.00	5.00
6	4		5.00	6.00	6.00

Item j	3
Value v _j	3
Weight a_{1j}	1
Volume a_{2j}	3

---Stage 4---

	s	\ x:	0	1	Maximum
0	0		0.00	-99999.99	0.00
0	1		0.00	-99999.99	0.00
0	2		0.00	-99999.99	0.00
0	3		0.00	-99999.99	0.00
0	4		0.00	-99999.99	0.00
1	0		0.00	-99999.99	0.00
1	1		0.00	-99999.99	0.00
1	2		2.00	-99999.99	2.00
1	3		3.00	-99999.99	3.00
1	4		3.00	-99999.99	3.00
2	0		0.00	-99999.99	0.00
2	1		3.00	-99999.99	3.00
2	2		3.00	-99999.99	3.00
2	3		3.00	-99999.99	3.00
2	4		3.00	-99999.99	3.00
3	0		0.00	-99999.99	0.00
3	1		3.00	-99999.99	3.00
3	2		3.00	4.00	4.00
3	3		5.00	4.00	5.00
3	4		6.00	4.00	6.00
4	0		0.00	-99999.99	0.00
4	1		3.00	-99999.99	3.00
4	2		3.00	4.00	4.00
4	3		5.00	4.00	5.00
4	4		6.00	6.00	6.00
5	0		0.00	-99999.99	0.00
5	1		3.00	-99999.99	3.00
5	2		3.00	4.00	4.00
5	3		5.00	7.00	7.00
5	4		6.00	7.00	7.00

	S	\ x:	0	1	Maximum
6	0		0.00	-99999.99	0.00
6	1		3.00	-99999.99	3.00
6	2	ĺ	3.00	4.00	4.00
6	3		5.00	7.00	7.00
6	4		6.00	7.00	7.00

Item j	4
Value v _j	4
Weight a_{1j}	3
Volume a_{2j}	2

---Stage 5---

	s	\ x:	0	1	Maximum
0	0		0.00	-99999.99	0.00
0	1		0.00	-99999.99	0.00
0	2		0.00	-99999.99	0.00
0	3		0.00	-99999.99	0.00
0	4		0.00	-99999.99	0.00
1	0		0.00	-99999.99	0.00
1	1		0.00	-99999.99	0.00
1	2		2.00	-99999.99	2.00
1	3		3.00	-99999.99	3.00
1	4		3.00	-99999.99	3.00
2	0		0.00	-99999.99	0.00
2	1		3.00	-99999.99	3.00
2	2		3.00	4.00	4.00
2	3		3.00	4.00	4.00
2	4		3.00	4.00	4.00
3	0		0.00	-99999.99	0.00
3	1		3.00	-99999.99	3.00
3	2		4.00	4.00	4.00
3	3		5.00	4.00	5.00
3	4		6.00	6.00	6.00
4	0		0.00	-99999.99	0.00
4	1		3.00	-99999.99	3.00
4	2		4.00	4.00	4.00
4	3		5.00	7.00	7.00
4	4		6.00	7.00	7.00
5	0		0.00	-99999.99	0.00
5	1	ļ	3.00	-99999.99	3.00
5	2	ļ	4.00	4.00	4.00
5	3		7.00	7.00	7.00
5	4		7.00	8.00	8.00

	S	/ x:	0	1	Maximum
6	0		0.00	-99999.99	0.00
6	1		3.00	-99999.99	3.00
6	2	İ	4.00	4.00	4.00
6	3	İ	7.00	7.00	7.00
6	4	Ì	7.00	8.00	8.00

Item j	5
Value v _j	4
Weight a_{1j}	2
Volume a_{2j}	2

---Stage 6---

	S	\ x:	0	1	Maximum
0	0		0.00	-99999.99	0.00
0	1		0.00	-99999.99	0.00
0	2		0.00	-99999.99	0.00
0	3		0.00	-99999.99	0.00
0	4		0.00	-99999.99	0.00
1	0		0.00	-99999.99	0.00
1	1		0.00	-99999.99	0.00
1	2		2.00	-99999.99	2.00
1	3		3.00	-99999.99	3.00
1	4		3.00	-99999.99	3.00
2	0		0.00	-99999.99	0.00
2	1		3.00	-99999.99	3.00
2	2		4.00	-99999.99	4.00
2	3		4.00	-99999.99	4.00
2	4		4.00	-99999.99	4.00
3	0		0.00	-99999.99	0.00
3	1		3.00	-99999.99	3.00
3	2		4.00	-99999.99	4.00
3	3		5.00	5.00	5.00
3	4		6.00	5.00	6.00
4	0		0.00	-99999.99	0.00
4	1		3.00	-99999.99	3.00
4	2		4.00	-99999.99	4.00
4	3		7.00	5.00	7.00
4	4		7.00	5.00	7.00
5	0		0.00	-99999.99	0.00
5	1		3.00	-99999.99	3.00
5	2		4.00	-99999.99	4.00
5	3		7.00	5.00	7.00
5	4		8.00	8.00	8.00

 5	3	\ x:	0	1	Maximum
 6	0		0.00	-99999.99	0.00
6	1		3.00	-99999.99	3.00
6	2	Ì	4.00	-99999.99	4.00
6	3	ĺ	7.00	5.00	7.00
6	4		8.00	8.00	8.00

Since we want only the value of $f_6(6,4)$, only the last row of this table is necessary!

Item j	6
Value v _j	5
Weight a_{1j}	3
Volume a_{2j}	3

Optimal value is 8.00
There are 2 optimal solutions

Optimal Solution No. 1

Optimal Solution No. 2

stage	st 	ate 	decision
6	6	4	Include
5	3	1	Omit
4	3	1	Omit
3	3	1	Omit
2	3	1	Include
1	1	0	Omit
0	1	0	
Weight= 5	, vol	ume=	4

Note that there are $(1+b_1)\times(1+b_2)$ elements in the state space, or in general, $\prod_{i=1}^{m}(1+b_i)$ elements,

which for even modest values of b_i can be quite large -the so-called "curse of dimensionality"—
and make dynamic programming computations prohibitive.

The dimension of the state space can be reduced to 1 by solving a one-dimensional knapsack problem which is a *relaxation* of the original two-dimensional knapsack problem, that is,

the feasible region of the two-dimensional knapsack problem is contained within the feasible region of the relaxation.

Two approaches for relaxing constraints are

Lagrangian Relaxation,

in which only one constraint is kept (unchanged) and the objective includes a penalty term for violation of the other.

Surrogate Relaxation,

in which a nonnegative combination of the original constraints are used, but the objective function is unchanged.

Lagrangian Relaxation

Reducing Dimensionality by Lagrangian Relaxation

We **relax**, i.e., no longer enforce, one of the capacity restrictions, and introduce a Lagrangian multiplier λ which we will interpret as the value ("shadow price") of one unit of the relaxed capacity.

For example, in our two-dimensional knapsack problem, we will no longer impose the volume restriction-- instead, we place a value λ on a unit of volume so that the value of including item j will be reduced from v_j to $(v_j - \lambda a_{2j})$.

It can easily be shown that the optimal value of the resulting *one-dimensional knapsack*, i.e.,

Maximize
$$\sum_{j=1}^{n} v_{j} x_{j} + \lambda \left(b_{2} - \sum_{j=1}^{n} a_{2j} x_{j} \right) = \sum_{j=1}^{n} \left(v_{j} - \lambda a_{2j} \right) x_{j} + \lambda b_{2}$$
subject to
$$\sum_{j=1}^{n} a_{1j} x_{j} \leq b_{1}$$

$$x_{j} \in X_{j}, \ j = 1, \dots n$$

is an **upper bound** on, i.e., *at least as large* as, the optimal value of the original two-dimensional problem.

The *Lagrangian Dual problem* is to select a value of λ so that this upper bound is as *small* as possible.

A crude search algorithm for Lagrangian dual:

- **Step 0.** Initialize $\lambda = 0$.
- **Step 1.** Solve the one-dimensional Lagrangian relaxation to find all optimal solutions $x^*(\lambda)$ and the associated volumes $\sum_{j=1}^n a_{2j} x_j^*(\lambda).$ Let m & M be the minimum and maximum volumes, respectively.
- **Step 2.** If m \le b_2 \le M, STOP. If the volume $\sum_{j=1}^n a_{2j} x_j^*(\lambda)$ of a solution

is *exactly* that available, b_2 , then that solution $x^*(\lambda)$ is optimal for the original problem. Otherwise a duality gap exists and none of the solutions $x^*(\lambda)$ are optimal in the original problem

Step 3. If $b_2 < m$, i.e., the volume restriction is violated by all optima, increase the "shadow price" λ placed on a unit of volume, while if $b_2 > M$, i.e., the volume restriction is "slack", decrease λ . Return to Step 1.

Example: Relax the volume restriction of the 2-dimensional knapsack problem above, with Lagrange multiplier initial value $\lambda = 0$. The results are shown below.

---Stage 1---

s \ x	: 0	1	Maximum
0	0.00	⁻ 99.99	0.00
1	0.00	2.00	2.00
2	0.00	2.00	2.00
3	0.00	2.00	2.00
4	0.00	2.00	2.00
5	0.00	2.00	2.00
6	0.00	2.00	2.00

---Stage 2---

s \ x	c: 0	1	Maximum
0	0.00	⁻ 99.99	0.00
1	2.00	⁻ 99.99	2.00
2	2.00	3.00	3.00
3	2.00	5.00	5.00
4	2.00	5.00	5.00
5	2.00	5.00	5.00
6	2.00	5.00	5.00

				0 10.00
Stage	3			·
_ s \ z	x: 0	1	Maximum	Stage 6
0	0.00	⁻ 99.99	0.00	s \ x: 0
1	2.00	3.00	3.00	6 12.00
2	3.00	5.00	5.00	
3	5.00	6.00	6.00	
4	5.00	8.00	8.00	
5	5.00	8.00	8.00	
6	5.00	8.00	8.00	

---Stage 4---

s \ x	: 0	1	Maximum
0	0.00	⁻ 99.99	0.00
1	3.00	⁻ 99.99	3.00
2	5.00	⁻ 99.99	5.00
3	6.00	4.00	6.00
4	8.00	7.00	8.00
5	8.00	9.00	9.00
6	8.00	10.00	10.00

<u>um</u> ---**Stage 5**---

s\z	ζ: Ο	1	Maximum
0	0.00	⁻ 99.99	0.00
1	3.00	⁻ 99.99	3.00
2	5.00	4.00	5.00
3	6.00	7.00	7.00
4	8.00	9.00	9.00
5	9.00	10.00	10.00
6	10.00	12.00	12.00

s \ 2	ς: Ο	1	Maximum
6	12.00	12.00	12.00

*** Optimal value is 12.00 ***
There are 2 optimal solutions

Optimal Solution No. 1

```
state decision
stage
            Omit
  6
         6
         6
             Include
  4
            Include
   3
         4 Include
  2
         3 Include
  1
             Include
  0
         1
```

Volume used by this solution: 10

Optimal Solution No. 2

stage	state	decision
6	6	Include
5	5	Include
4	4	Omit
3	4	Include
2	3	Include
1	2	Include
Ο	1	

Volume used by this solution: 11

Because both solutions exceed the volume capacity (which is only 4 units), the Lagrange multiplier λ must be increased. Suppose we increase the multiplier to the value 1.00, i.e., each unit of volume has a "shadow price" of \$1.00.

Item j	1	2	3	4	5	6
Value v _j	2	3	3	4	4	5
$v_j - \lambda a_{2j}$	0	2	O	2	2	2
Weight a_{1j}	1	2	1	3	2	3
Volume a_{2j}	2	1	3	2	2	3

Stage	1
-------	---

_ s \ >	c: 0	1	Maximum
0	0.00	⁻ 99.99	0.00
1	0.00	0.00	0.00
2	0.00	0.00	0.00
3	0.00	0.00	0.00
4	0.00	0.00	0.00
5	0.00	0.00	0.00
6	0.00	0.00	0.00

---Stage 2---

s\2	ς : Ο	1	Maximum
0	0.00	⁻ 99.99	0.00
1	0.00	⁻ 99.99	0.00
2	0.00	2.00	2.00
3	0.00	2.00	2.00
4	0.00	2.00	2.00
5	0.00	2.00	2.00
6	0.00	2.00	2.00

---Stage 3---

_ s \ x	c: 0	1	Maximum
0	0.00	⁻ 99 . 99	0.00
1	0.00	0.00	0.00
2	2.00	0.00	2.00
3	2.00	2.00	2.00
4	2.00	2.00	2.00
5	2.00	2.00	2.00
6	2.00	2.00	2.00

---Stage 4---

_ s \ x	: 0	1	Maximum			
0	0.00	⁻ 99.99	0.00			
1	0.00	⁻ 99.99	0.00			
2	2.00	⁻ 99.99	2.00			
3	2.00	2.00	2.00			
4	2.00	2.00	2.00			
5	2.00	4.00	4.00			
6	2.00	4.00	4.00			

---Stage 5---

_ s \ x	: 0	1	Maximum
0	0.00	-99.99	0.00
1	0.00	-99.99	0.00
2	2.00	2.00	2.00
3	2.00	2.00	2.00
4	2.00	4.00	4.00
5	4.00	4.00	4.00
6	4.00	4.00	4.00

---Stage 6---

s \ x	c:0	1	Ma	aximum
6	4.00	4.0	00	4.00

The result: **seventeen** optimal solutions!

Item	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0
2	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0	0
3	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	0	1
4	1	1	1	0	0	0	0	1	1	1	0	0	0	1	0	0	0
5	0	0	0	1	1	1	1	1	1	1	0	0	0	0	1	1	1
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Vol.	3	5	6	3	5	6	8	4	6	7	4	6	7	5	5	7	8

The optimal value in each case is \$8, i.e., value of knapsack (\$4) + value of 4 units of volume (\$4).

Notice that, of the 17 solutions of the relaxed problem,

 2 solutions (#8 & 11) use exactly 4 units of volume satisfying a complementary slackness condition

$$\lambda \left(b_i - \sum_{j=1}^n a_{ij} x_j \right) = 0$$

- 2 solutions (#1 & 4) use less (and are therefore *feasible*), while
- the remaining 13 solutions exceed the 4 unit volume restriction and are *infeasible*.

The 2 solutions satisfying the complementary slackness condition are optimal in the original problem. The other two feasible solutions (# 1 & 4) have value \$7 and are not optimal!

Suppose that we relax the weight restriction (with "shadow price" $\lambda = 0$) and impose the volume restriction:

Stage			-Stage	1				-Stage	4
	s \	x:0	1	Maximum		S	\ x:0	1	Maximum
	0	0	-9999	0	·	0	0	-9999	0
	1	0	-9999	0		1	3	-9999	3
	2	0	2	2		2	3	4	4
	3	0	2	2		3	5	7	7
	4	0	2	2		4	6	7	7
Stage			-Stage	2				-Stage	5
	s \	x:0	1	Maximum		S	\ x:0	1	Maximum
	0	0	-9999	0		0	0	-9999	0
	1	0	3	3		1	3	-9999	3
	2	2	3	3		2	4	4	4
	3	2	5	5		3	7	7	7
	4	2	5	5		4	7	8	8
Stage			-Stage	3				-Stage	6
	s \	x:0	1	Maximum	_	S	\ x:0	1	Maximum
	0	0	-9999	0		0	0	-9999	0
	1	3	-9999	3		1	3	-9999	3
	2	3	-9999	3		2	4	-9999	4
	3	5	3	5		3	7	5	7
	4	5	6 l	6		4	1 8	8	8

```
*** Optimal value is 8 ***

*** There are 2 optimal solutions ***
```

Optimal Solution No. 1

Optimal Solution No. 2

stage	state	decision	stage	state	decision
6	4	Omit	6	4	Include
5	4	Include	5	2	Omit
4	2	Include	4	2	Omit
3	0	Omit	3	0	Omit
2	0	Omit	2	0	Include
1	0	Omit	1	0	Omit
0	0		0	0	

Both of these solutions use exactly 4 units of volume, and are therefore feasible. In this case, the complementary slackness condition is again satisfied ($0\times0=0$) and it therefore follows that both must be optimal in the original problem!

Important!

In the example shown,

- at most one adjustment was required for the Lagrangian multiplier, and
- no duality gap was encountered,

whereas in general

- many such adjustments are required, and
- the optimal solution of the 2-dimensional problem might never be found!

Surrogate Relaxation

Reducing Dimensionality by Surrogate Relaxation

Choose nonnegative multipliers μ_1 and μ_2 , so that

$$\begin{cases} \sum_{j=1}^{n} a_{1j} x_{j} \leq b_{1} \\ \sum_{j=1}^{n} a_{2j} x_{j} \leq b_{2} \end{cases} \Rightarrow \begin{cases} \sum_{j=1}^{n} \mu_{1} a_{1j} x_{j} \leq \mu_{1} b_{1} \\ \sum_{j=1}^{n} a_{2j} x_{j} \leq b_{2} \end{cases} \Rightarrow \sum_{j=1}^{n} \mu_{2} a_{2j} x_{j} \leq \mu_{2} b_{2}$$

In general, for an m-dimensional knapsack problem, the *surrogate relaxation* is

$$S(\mu) = Maximum \sum_{j=1}^{n} v_{j} x_{j}$$
subject to
$$\sum_{i=1}^{m} \sum_{j=1}^{n} \mu_{i} a_{ij} x_{j} \leq \sum_{i=1}^{m} \mu_{i} b_{i},$$

$$x_{j} \in X_{j}, j = 1, ...n$$

- As was the case with Lagrangian relaxation, for any m≥0 the optimal solution of the relaxation (a one-dimensional knapsack problem) may *not* be feasible in the two-dimensional problem, but the optimal value is an *upper bound* on the optimum of the two-dimensional problem.
- The **Surrogate Dual** problem is the problem of finding the surrogate multipliers μ which will yield the *least upper bound*.
- Theory is available that guarantees that the surrogate *duality gap* is no larger than, and is often smaller than, the Lagrangian duality gap.