LECTURE

3

*C*Y11001 Spring 2018

• Energy, Heat, and Work

Lecture Slides @

http://10.57.2.100/moodle/login/index.php

Energy

$$E = K + V + U$$

- *K* and *V* are the macroscopic (not molecular) kinetic and potential energies of the body, together represent the mechanical energy
- *U* is the internal energy of the body (due to molecular motions and intermolecular interactions)

Internal Energy, U**,** is the total energy within a system. (E=U, as K=V=0)

- Extensive property
- $U_m = U/n$ (molar internal energy)
- It is a state function, independent of path
- *dU* is a perfect (exact) differential
- For cyclic process $\oint dU = 0$

Heat

- Heat is that which is transferred between a system and surrounding by virtue of a *temperature difference only*.
- Heat is not a state function (path dependent).
- Heat can be transferred reversibly or irreversibly. A reversible transfer of heat requires the *temperature difference* between two bodies be *infinitesimal*.

Work:

- expansion work, work of expansion (or compression)
- non-expansion / additional work: any other work

Expansion Work:

General expression of work (<u>reversible process</u>):

 p_{ex} = external pressure A = piston area dz = displacement dV = A dz =volume change for the gas

Work is required to move an object a distance dz against an opposing force F. Total work done,

$$w = -\int F dz = -\int (p_{ex}A)dz = -\int_{V_i}^{V_f} p_{ex}dV = -\int_{V_i}^{V_f} p dV$$

External pressure, p_{ex} dz dV = AdzArea, A Pressure, p

Figure 2-6
Atkins Physical Chemistry, Eighth Edition
© 2006 Peter Atkins and Julio de Paula

Only for reversible process

dV = change in the volume of the system

Expansion against constant pressure

Chemical example: expansion of a gas formed in a chemical reaction in a container that can expand

$$w = -\int_{V_i}^{V_f} p_{ex} dV = -p_{ex} (V_f - V_i) = -p_{ex} \Delta V$$

Expansion against constant final pressure:

$$w = -p_f(V_f - V_i)$$

Free expansion:

Expansion against zero opposing force w = 0

Expansion, i.e., $V_f > V_i$, w < 0 (work done by the system on surrounding)

Compression, i.e., $V_f < V_i$, w > 0 (work done on the system by surrounding)

Figure 2-7
Atkins Physical Chemistry, Eighth Edition
© 2006 Peter Atkins and Julio de Paula

Isothermal expansion (ideal gas):

Reversible

$$w = -\int_{V_i}^{V_f} p dV = -nRT \int_{V_i}^{V_f} \frac{dV}{V} = -nRT \ln \frac{V_f}{V_i}$$

• At higher *T*, work done is more for same expansion of volume.

Work against constant final pressure

$$w = -p_f(V_f - V_i) = -p_f \Delta V$$

Maximum work is obtained when expansion is reversible.

Adiabatic Reversible Process for ideal gas, (C_V independent of Temp)

$$dU = dw + dq = dw$$

For ideal gas, $C_V dT = -pdV$

$$C_V \int_{\mathrm{T}_1}^{\mathrm{T}_2} \frac{dT}{T} = -nR \int_{\mathrm{V}_1}^{\mathrm{V}_2} \frac{dV}{V}$$

$$C_V \ln \frac{T_2}{T_1} = nR \ln \frac{V_1}{V_2}$$

$$\left[\left(\frac{T_2}{T_1}\right)^{C_V} = \left(\frac{V_1}{V_2}\right)^{nR} = \left(\frac{V_1}{V_2}\right)^{C_p - C_V}\right]$$

$$\boxed{\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\gamma - 1} \quad \text{where} \quad \gamma = \frac{C_{p,m}}{C_{V,m}}} \boxed{PV^{\gamma} = \text{constant}}$$

$$TV^{\gamma-1} = \text{constant}$$

$$PV^{\gamma} = \text{constant}$$
 $VT^{c} = \text{constant}$ $T^{\gamma}P^{1-\gamma} = \text{constant}$

*Note: $C_V = n C_{V,m}$

Work is path dependent:

Ideal gas, closed system, reversible process

Calculate w_f and w_b

• 10 Pa, 1m^3 , $T \xrightarrow{\text{isothermal}} 1 \text{ Pa, } 10 \text{ m}^3$, T

• 10 Pa, 1m^3 , $T \xrightarrow{\text{isochoric}} 1$ Pa, 1m^3 , $T_2 \xrightarrow{\text{isobaric}} 1$ Pa, 10 m^3 , T

• 10 Pa, 1m³, $T \xrightarrow{\text{isobaric}} 10 \text{ Pa}$, 10 m³, $T_3 \xrightarrow{\text{isochoric}} 1 \text{ Pa}$, 10 m³, T

 w_{rev} depends on the path used to go from 1 to 2, and w_{rev} can have *any* positive or negative value for a given change of state

