Kleinian singularities and their anti-Poisson involutions

Mengwei Hu

Yale University

Representation Theory and Related Geometry: Progress and Prospects

May 27-31, 2024

2 Anti-Poisson involutions and their fixed loci

Preimage of fixed loci under minimal resolutions

Motivations

Kleinian singularities are the only normal Gorenstein singularities in dimension 2.

Anti-Poisson involutions appear naturally when we want to classify irreducible Hairsh-Chandra modules over Kleinian singularities.

Kleinian singularities are quotients of \mathbb{C}^2 by finite subgroups of $SL_2(\mathbb{C})$.

Let $\Gamma \subset \operatorname{SL}_2(\mathbb{C})$ be a finite subgroup acting on $\mathbb{C}[u,v]$. The algebra of invariant functions $\mathbb{C}[u,v]^{\Gamma}$ is finitely generated. Denote the corresponding variety by $X:=\mathbb{C}^2/\Gamma$.

Example

When $\Gamma = \{\pm I_2\}$, we have $\mathbb{C}[u, v]^{\Gamma} = \text{even degree polynomials} = \mathbb{C}[x = u^2, y = v^2, z = uv] = \mathbb{C}[x, y, z]/(xy - z^2).$

Fact [Klein, 1884]: $\mathbb{C}^2/\Gamma\hookrightarrow\mathbb{C}^3$ (one relation), and \mathbb{C}^2/Γ is a singular surface with only singularity at 0.

Q: How to classify Γ 's?

- (A_r) The cyclic group of order r + 1. $xy - z^{r+1} = 0$
- (D_r) The binary dihedral group of order 4(r-2), $r \geq 4$.
 - $x^{r-1} + xy^2 + z^2 = 0$
- (E_6) The binary tetrahedral group of order 24.

$$x^4 + y^3 + z^2 = 0$$

 (E_7) The binary octahedral group of order 48.

$$x^3y + y^3 + z^2 = 0$$

 (E_8) The binary icosahedral group of order 120.

$$x^5 + y^3 + z^2 = 0$$

Observation: They are in bijection with ADE type Dynkin diagrams.

There are two ways to construct this bijection.

- McKay Correspondence [McKay, 1979].
- Minimal Resolution [Du Val, 1934]. By resolution we mean a smooth variety \tilde{X} equipped with a projective birational morphism $\pi: X \to X := \mathbb{C}^2/\Gamma$. The minimality conditional means other resolution factors through \widetilde{X} . The exceptional locus

$$\pi^{-1}(0) = C_1 \cup \cdots \cup C_r, \ C_i \simeq \mathbb{P}^1$$

is a connected union of \mathbb{P}^1 's.

Fact: Construct the dual graph of $\pi^{-1}(0)$ by replacing each C_i by a vertex and drawing a line to connect C_i with C_i if they intersect. Then the dual graph is exactly the corresponding type Dynkin diagram.

May 30, 2024

For example,

$$A_1$$
 singularity $xy - z^2 = 0$

$$D_4$$
 singularity
 $x^3 + xy^2 + z^2 = 0$

Anti-Poisson involutions

Consider the standard symplectic structure on \mathbb{C}^2 given by $\omega(u, v) = 1$. The ring of functions $\mathbb{C}[u, v]$ becomes a Poisson algebra.

The finite subgroup $\Gamma \subset SL_2(\mathbb{C}) = Sp_2(\mathbb{C})$ preserves this Poisson bracket, so $\mathbb{C}[u,v]^{\Gamma}$ is a graded Poisson subalgebra of $\mathbb{C}[u,v]$ with $\deg\{\cdot,\cdot\} = -2$.

Example

Recall type A_r : $\mathbb{C}[x,y,z]/(xy-z^{r+1})$. The degree of the generators are $\deg x = \deg y = r+1$, $\deg z = 2$. The Poisson brackets are given by

$$\{x,y\} = (r+1)^2 z^r, \{x,z\} = (r+1)x, \{y,z\} = -(r+1)y.$$

Anti-Poisson involutions

Set $X := \mathbb{C}^2/\Gamma$ to denote a Kleinian singularity.

Definition

An anti-Poisson involution of X is graded algebra involution $\theta\colon \mathbb{C}[X]\to \mathbb{C}[X]$ such that

$$\theta(\{f_1, f_2\}) = -\{\theta(f_1), \theta(f_2)\}, \ \forall \ f_1, f_2 \in \mathbb{C}[X].$$

Example

On type A_r : $\mathbb{C}[x, y, z]/(xy - z^{r+1})$ Kleinian singularity,

$$x\mapsto y,\ y\mapsto x,\ z\mapsto z$$

is an anti-Poisson involution.

Fact: There are finitely many anti-Poisson involutions on \mathbb{C}^2/Γ up to conjugation by Poisson automorphisms.

The fixed loci

The fixed locus $X^{\theta} := \operatorname{Spec} \mathbb{C}[X]/I$ where $I = (\theta(f) - f, f \in \mathbb{C}[X])$

Proposition

The fixed locus X^{θ} is a reduced connected singular Lagrangian subvariety of X.

Example (continued)

On type A_r : $\mathbb{C}[x, y, z]/(xy - z^{r+1})$ Kleinian singularity,

$$x \mapsto y, \ y \mapsto x, \ z \mapsto z$$

is an anti-Poisson involution. The fixed locus is

$$\operatorname{\mathsf{Spec}} \mathbb{C}[x,y,z]/(xy-z^{r+1},x-y) \simeq \operatorname{\mathsf{Spec}} \mathbb{C}[x,z]/(x^2-z^{r+1}),$$

which is a union of two \mathbb{A}^1 's when r is odd; a cusp when r is even.

Preimage of fixed loci under minimal resolutions

Recall $\pi \colon \widetilde{X} \to X$ denote the minimal resolution. We would like to study the preimage of the fixed locus $\pi^{-1}(X^{\theta})$.

Q1: How does the preimage $\pi^{-1}(X^{\theta})$ look like in general?

A1: It is a singular Lagragian subvariety of pure dimension 1 in \widetilde{X} . Each irreducible component is either a \mathbb{P}^1 and or an \mathbb{A}^1 . The \mathbb{P}^1 's come from the exceptional locus $\pi^{-1}(0)$, while \mathbb{A}^1 's come from the fixed locus X^{θ} .

Q2: Is $\pi^{-1}(X^{\theta})$ reduced?

A2: Not necessarily.

Preimage of fixed loci under minimal resolutions

Example: Type A_r Kleinian singularity with θ swapping $x \leftrightarrow y$. The fixed locus X^{θ} and its preimage looks like the following.

fixed locus	preimage	preimage
X		
A_r, r odd	A_1	A_3
A_r , r even	A_2	A_4

Notation: straight green line is \mathbb{A}^1 ; curly purple line is \mathbb{P}^1 ; doubled line reflects non-reduced component.

Nakajima quiver varieties

Q3: How do these \mathbb{P}^1 's and \mathbb{A}^1 's intersect with each other in general?

A3: To solve this problem, we need to find a good way to describe the minimal resolution. We will realize Kleinian singularities and their minimal resolutions as **Nakajima quiver varieties** in types A_r , D_r , E_6 . (Types E_7 and E_8 is a bit tricky.)

Nakajima quiver varieties

Example: We realize type A_r : $xy - z^{r+1}$ singularity as quiver variety.

Each V_i is a 1-dimensional vector space. The group $G = \prod_{i=0}^r \operatorname{GL}(V_i)$ naturally acts on $M(V) := \bigoplus_{i,j=0}^r \operatorname{Hom}(V_i,V_j)$ with moment map $\mu = (\mu_i)_{0 \leq i \leq r} \colon M(v) \to \bigoplus_{0 \leq i \leq r} \mathfrak{gl}(V_i)$ where

$$\mu_i = a_{i-1}b_{i-1} - b_i a_i.$$

We have $\mu^{-1}(0)//G\simeq \operatorname{Spec}\mathbb{C}[x,y,z]/(xy-z^{r+1})$ with

$$x := a_r a_{r-1} \cdots a_1 a_0, \ y := b_0 b_1 \cdots b_{r-1} b_r, \ z := a_0 b_0.$$

Thank you for your attention!