Всероссийская олимпиада школьников по физике

11 класс, региональный этап, 2015/16 год

Задача 1. На изначально покоящийся на гладком горизонтальном столе брусок массы m=2 кг начали действовать постоянной горизонтальной силой F. В результате была получена зависимость мощности N от перемещения s бруска. Некоторые измерения могли оказаться не очень точными.

В каких координатных осях экспериментальная зависимость мощности от перемещения линейна?

Определите мощность силы в точке с координатой $s_0 = 10$ см.

Найдите значение силы F.

N, Bt	0,28	0,40	0,57	0,75	1,02	1,10	1,23	1,26	1,50
s, cm	1,0	2,0	4,0	7,0	13	15	19	20	30

Н 2 ;тВ 68,0

Задача 2. Скопления звёзд образуют бесстолкновительные системы — галактики, в которых звёзды равномерно движутся по круговым орбитам вокруг оси симметрии системы. Галактика NGC 2885 состоит из скопления звёзд в виде шара (ядра радиусом $r_{\rm g}=4~{\rm knk}$) и тонкого кольца, внутренний радиус которого совпадает с радиусом ядра, а внешний равен $15r_{\rm g}$. Кольцо состоит из звёзд с пренебрежимо малой по сравнению с ядром массой. В ядре звёзды распределены равномерно.

Было установлено, что линейная скорость дви-

жения звёзд в кольце не зависит от расстояния до центра галактики: от внешнего края кольца вплоть до края ядра скорость звёзд $v_0=240~{\rm km/c}$. Такое явление может быть объяснено наличием несветящейся массы («тёмной материи»), распределённой сферически симметрично относительно центра галактики вне её ядра.

- 1) Определите массу M_{π} ядра галактики.
- 2) Определите среднюю плотность $\rho_{\rm s}$ вещества ядра галактики.
- 3) Найдите зависимость плотности «тёмной материи» $\rho_{\scriptscriptstyle {
 m T}}(r)$ от расстояния до центра галактики.
- 4) Вычислите отношение массы «тёмной материи», влияющей на движение звёзд в диске, к массе ядра.

Примечание: 1 кпк = 1 килопарсек = $3{,}086 \cdot 10^{19}$ м, гравитационная постоянная $\gamma = 6{,}67 \cdot 10^{-11} \text{ H} \cdot \text{м}^2 \cdot \text{кг}^{-2}$.

$$\boxed{ \mathbb{A} \mathbb{I} = \mathbb{R} \mathbb{M}/\mathbb{I} \mathbb{M} \; (\mathbb{A} \; ; \frac{\frac{6}{2} n}{\zeta_{\tau \gamma \tau \pi \hat{\mu}}} = (\tau)_{\mathbb{I}} q \; (\mathbb{S} \; ; \mathbb{M}/\mathbb{I} \pi)^{0} - 0 \mathbb{I} \cdot \mathbb{E}, \mathbb{I} = \frac{\frac{6}{6} n \mathbb{E}}{\mathbb{E}} \mathbb{I} + \frac{6}{8} \mathbb{E} \mathbb{I} + \frac{6}{8}$$

ЗАДАЧА 3. Куб собран из одинаковых резисторов, имеющих сопротивления R. Четыре резистора заменены на идеальные перемычки, как указано на рисунке.

- 1) Найдите общее сопротивление получившейся системы между контактами A и B.
- 2) Через какие резисторы сила текущего тока максимальна, а через какие минимальна? Найдите эти значения силы тока, если сила тока, входящего в узел A, равна $I_0=1,2$ A.
- 3) Какова сила тока, текущего через идеальную перемычку AA'?

I)
$$R_0 = 5R/12$$
; 2) $I_{\min} = I_{C'L'} = 0$, 1, $I_{\max} = I_{A'B'} = 0$, 5, A; 3) $I_{AA'} = 0$, 7

Задача 4. Циклический процесс, совершаемый над идеальным газом, на (p,V)-плоскости представляет собой ромб (см. качественный рисунок). Вершины (1) и (3) лежат на одной изобаре, а вершины (2) и (4) — на одной изохоре. За цикл газ совершил работу A.

Насколько отличается количество теплоты Q_{12} , подведённое к газу на участке 1–2, от количества теплоты $|Q_{34}|$, отведённой от газа на участке 3–4?

 A_{8} A/2

Задача 5. В электрической цепи (см. рисунок), состоящей из резистора сопротивлением R, катушки индуктивностью L, на конденсаторе ёмкостью C_0 находится заряд Q_0 . В некоторый момент времени замыкают ключ K и одновременно начинают изменять ёмкость конденсатора так, что идеальный вольтметр показывает постоянное напряжение.

- 1) Как зависит от времени ёмкость конденсатора C(t) при изменении t от 0 до $t_1 = \sqrt{C_0 L}$?
- 2) Какую работу за время t_1 совершили внешние силы? Считайте, что $t_1 = L/R = \sqrt{C_0 L}$.

 $\mathbf{\Pi o d c \kappa a s \kappa a}$. Количество теплоты, выделившейся на резисторе за время t_1 , равно

$$W_R = \int_0^{t_1} I^2(t) R dt = \frac{Q_0^2}{3C_0} \,.$$

$$\frac{2}{0}\frac{Q}{0}\frac{Q}{Q} = A \left(2 ; \frac{\frac{c_3}{L} - 1}{L} \frac{2}{0} - 1 \right) O = (1) O \left(1 \right)$$