Positivity Certificates and Polynomial Optimization

William Heyman Krill

Aarhus University Advisor: Anders Nedergaard Jensen Thesis presentation

December 17th 2020

Let
$$f \in \mathbb{R}[\underline{X}] = \mathbb{R}[X_1, \dots, X_n]$$
.

Let
$$f \in \mathbb{R}[\underline{X}] = \mathbb{R}[X_1, \dots, X_n]$$
.

$$f = \sum_{\alpha \in \mathbb{N}^n} b_{\alpha} \underline{X}^{\alpha} = \sum_{\alpha \in \mathbb{N}^n} b_{\alpha} X_1^{\alpha_1} \cdots X_n^{\alpha_n}.$$

Let
$$f \in \mathbb{R}[\underline{X}] = \mathbb{R}[X_1, \dots, X_n]$$
.

$$f = \sum_{\alpha \in \mathbb{N}^n} b_{\alpha} \underline{X}^{\alpha} = \sum_{\alpha \in \mathbb{N}^n} b_{\alpha} X_1^{\alpha_1} \cdots X_n^{\alpha_n}.$$

Problem: Decide if f is globally non-negative, i.e.

$$f(x) \ge 0, \quad \forall x \in \mathbb{R}^n.$$

Let
$$f \in \mathbb{R}[\underline{X}] = \mathbb{R}[X_1, \dots, X_n]$$
.

$$f = \sum_{\alpha \in \mathbb{N}^n} b_{\alpha} \underline{X}^{\alpha} = \sum_{\alpha \in \mathbb{N}^n} b_{\alpha} X_1^{\alpha_1} \cdots X_n^{\alpha_n}.$$

Problem: Decide if f is globally non-negative, i.e.

$$f(x) \ge 0, \quad \forall x \in \mathbb{R}^n.$$

Very hard to answer efficiently: NP-hard.

Sufficient condition: f being a sum of squares (SOS), i.e.

$$f = f_1^2 + \dots + f_m^2, \tag{1}$$

for real polynomials $f_i \in \mathbb{R}[\underline{X}]$, i = 1, ..., m.

Sufficient condition: f being a sum of squares (SOS), i.e.

$$f = f_1^2 + \dots + f_m^2, \tag{1}$$

for real polynomials $f_i \in \mathbb{R}[\underline{X}]$, i = 1, ..., m.

The relation (1) is called an *SOS-decomposition* of f and serves as a *non-negativity certificate*.

Sufficient condition: f being a sum of squares (SOS), i.e.

$$f = f_1^2 + \dots + f_m^2, \tag{1}$$

for real polynomials $f_i \in \mathbb{R}[\underline{X}]$, i = 1, ..., m.

The relation (1) is called an SOS-decomposition of f and serves as a non-negativity certificate.

Example:

$$f = X_1^4 - 2X_1^2X_2X_3 - X_1^2 + X_2^2X_3^2 + 2X_2X_3 + 2$$

Sufficient condition: f being a sum of squares (SOS), i.e.

$$f = f_1^2 + \dots + f_m^2, \tag{1}$$

for real polynomials $f_i \in \mathbb{R}[\underline{X}]$, i = 1, ..., m.

The relation (1) is called an SOS-decomposition of f and serves as a non-negativity certificate.

Example:

$$\begin{split} f &= X_1^4 - 2X_1^2X_2X_3 - X_1^2 + X_2^2X_3^2 + 2X_2X_3 + 2 \\ &= 2\big(1 - \frac{1}{2}X_1^2 + \frac{1}{2}X_2X_3\big)^2 + X_1^2 + \frac{1}{2}\big(X_1^2 - X_2X_3\big)^2 \ge 0. \end{split}$$

Theorem

Let $f \in \mathbb{R}[\underline{X}]_{2d}$ and $z = (\underline{X}^{\alpha})_{\alpha \in \mathbb{N}_d^n}$. f is SOS if and only if there exists a psd matrix $G \in \mathcal{S}_+^{\mathbb{N}_d^n}$ so that $f = z^T Gz$.

$$f = z^T G z$$

Theorem

Let $f \in \mathbb{R}[\underline{X}]_{2d}$ and $z = (\underline{X}^{\alpha})_{\alpha \in \mathbb{N}_d^n}$. f is SOS if and only if there exists a psd matrix $G \in \mathcal{S}_{+d}^{\mathbb{N}_d^n}$ so that $f = z^T Gz$.

$$f = z^T G z = z^T B^T B z$$

Theorem

Let $f \in \mathbb{R}[\underline{X}]_{2d}$ and $z = (\underline{X}^{\alpha})_{\alpha \in \mathbb{N}_d^n}$. f is SOS if and only if there exists a psd matrix $G \in \mathcal{S}_{+d}^{\mathbb{N}_d^n}$ so that $f = z^T Gz$.

$$f = z^T G z = z^T B^T B z = \|Bz\|^2$$

Theorem

Let $f \in \mathbb{R}[\underline{X}]_{2d}$ and $z = (\underline{X}^{\alpha})_{\alpha \in \mathbb{N}_d^n}$. f is SOS if and only if there exists a psd matrix $G \in \mathcal{S}_{+d}^{\mathbb{N}_d^n}$ so that $f = z^T Gz$.

$$f = z^T G z = z^T B^T B z = ||Bz||^2 = \sum_{i=1}^{m} [Bz]_i^2.$$

Theorem

Let $f \in \mathbb{R}[\underline{X}]_{2d}$ and $z = (\underline{X}^{\alpha})_{\alpha \in \mathbb{N}_d^n}$. f is SOS if and only if there exists a psd matrix $G \in \mathcal{S}_{+d}^{\mathbb{N}_d^n}$ so that $f = z^T Gz$.

Proof.

$$f = z^T G z = z^T B^T B z = ||Bz||^2 = \sum_{i=1}^m [Bz]_i^2.$$

If $f = \sum_{i=1}^m f_i^2$ then we can choose $B \in \mathbb{R}^{m \times \mathbb{N}_d^n}$ so that $f_i = [Bz]_i$. Then $G = B^T B \succeq 0$ and $f = z^T Gz$.

Where do we look for *G*?

Figure: $\mathcal{L}_f \cap \mathcal{S}_+^{\mathbb{N}_d^n}$ is a conic section known as a *spectrahedron*.

Semi-definite Programming (SDP)

Semi-definite program:

Minimize_G
$$L(G)$$

s.t. $G \in \mathcal{L} \cap \mathcal{S}^n_+$.

 $L \colon \mathcal{S}^n \to \mathbb{R}$ is linear and $\mathcal{L} \subseteq \mathcal{S}^n$ is an affine subspace.

Can be solved numericly and efficiently.

Ellipsoid through 4 points

Problem: Find a centered ellipsoid $E \subseteq \mathbb{R}^3$ passing through the points e_1, e_2, e_3 , and v = (3, 4, 5).

Formula:

$$u^T G u = 1$$
, $G \succ 0$.

Must find G satisfying:

$$G = G_{xyz} = \begin{bmatrix} 1 & x & y \\ x & 1 & z \\ y & z & 1 \end{bmatrix} \succ 0, \qquad v^T G v = 1$$

Ellipsoid through 4 points

Figure: (x, y, z) such that G_{xyz} yields the desired ellipsoid.

Figure: Associated ellipsoid E through e_1 , e_2 , e_3 , v.

Computer assisted proofs

Theorem (Hadwiger-Finslers inequality)

Let a, b, c > 0 be the side lengths of a tirangle with area K. Then:

$$a^2 + b^2 + c^2 - (a - b)^2 + (a - c)^2 + (b - c)^2 \ge 4\sqrt{3}K$$
.

Boils down to show that

$$p = (a^2 + b^2 + c^2 - ((a - b)^2 + (a - c)^2 + (b - c)^2))^2 - (4\sqrt{3}K)^2$$

is non-negative for all $a, b, c \in \mathbb{R}$. SOS-decomposition:

$$p = (2a^2 + b(a+b-c) + c(a-b+c))^2 + 3(b(a-b) + c(a-c))^2.$$

What if no SOS-decomposition exists?

The Motzkin polynomial

$$M = X^4 Y^2 + X^2 Y^4 - 3X^2 Y^2 + 1.$$

is globally non-negative but it is not SOS.

- How do we certify non-negativity when no SOS-decomposition exists?
 - → Hilbert's 17th problem.
- How do we certify non-negativity on a *subset* $S \subseteq \mathbb{R}^n$? \leadsto Positivstellensatz.

Let
$$B = \{g_1, \dots, g_t\} \subseteq \mathbb{R}[\underline{X}]$$
.

Let
$$B=\{g_1,\ldots,g_t\}\subseteq\mathbb{R}[\underline{X}]$$
. The set $\mathcal{W}(B)=\{x\in\mathbb{R}^n\mid g_1(x)\geq 0,\ldots,g_t(x)\geq 0\}\subseteq\mathbb{R}^n$

is a basic closed semialgebraic set.

Let
$$B = \{g_1, \dots, g_t\} \subseteq \mathbb{R}[\underline{X}]$$
. The set

$$\mathcal{W}(B) = \{x \in \mathbb{R}^n \mid g_1(x) \ge 0, \dots, g_t(x) \ge 0\} \subseteq \mathbb{R}^n$$

is a basic closed semialgebraic set.

We associate to W(B) the pre-ordering generated by B:

$$T = T[B] = \left\{ \sum_{
u \in \{0,1\}^t} \sigma_
u g_1^{
u_1} \dots g_t^{
u_t} \ \middle| \ \sigma_
u \in \sum \mathbb{R}[\underline{X}]^{(2)}
ight\}$$

Let
$$B = \{g_1, \dots, g_t\} \subseteq \mathbb{R}[\underline{X}]$$
. The set

$$\mathcal{W}(B) = \{x \in \mathbb{R}^n \mid g_1(x) \geq 0, \dots, g_t(x) \geq 0\} \subseteq \mathbb{R}^n$$

is a basic closed semialgebraic set.

We associate to W(B) the pre-ordering generated by B:

$$T = T[B] = \left\{ \sum_{
u \in \{0,1\}^t} \sigma_{
u} g_1^{
u_1} \dots g_t^{
u_t} \ \middle| \ \sigma_{
u} \in \sum \mathbb{R}[\underline{X}]^{(2)} \right\}$$

 ${\cal T}$ consists of polynomials which are "obviously" non-negative on ${\cal W}({\cal B}).$

The Semialgebraic Nullstellensatz

Theorem (Semialgebraic Nullstellensatz)

Let $I \subseteq \mathbb{R}[\underline{X}]$ be an ideal and T = T[B]. Then:

$$\mathbb{I}(\mathbb{V}_{\mathbb{R}}(I)\cap\mathcal{W}(B))=\sqrt[T]{I}.$$

The Semialgebraic Nullstellensatz

Theorem (Semialgebraic Nullstellensatz)

Let $I \subseteq \mathbb{R}[X]$ be an ideal and T = T[B]. Then:

$$\mathbb{I}(\mathbb{V}_{\mathbb{R}}(I)\cap\mathcal{W}(B))=\sqrt[T]{I}.$$

Here

$$\sqrt[T]{I} = \{ f \in \mathbb{R}[\underline{X}] \mid f^{2m} + a \in I \text{ for et } m > 0 \text{ og } a \in T \}$$

is the *T-radical of I*.

Suppose that $f \in \sqrt[T]{I}$ and choose $a \in T$ and m > 0 so that $f^{2m} + a \in I$.

Suppose that $f \in \sqrt[T]{I}$ and choose $a \in T$ and m > 0 so that $f^{2m} + a \in I$. Let $x \in \mathbb{V}_{\mathbb{R}}(I) \cap \mathcal{W}(B)$:

$$f^{2m}(x) + a(x)$$

Suppose that $f \in \sqrt[T]{I}$ and choose $a \in T$ and m > 0 so that $f^{2m} + a \in I$.

Let
$$x \in \mathbb{V}_{\mathbb{R}}(I) \cap \mathcal{W}(B)$$
:

$$f^{2m}(x) + a(x) = 0.$$

Suppose that $f \in \sqrt[T]{I}$ and choose $a \in T$ and m > 0 so that $f^{2m} + a \in I$.

Let
$$x \in \mathbb{V}_{\mathbb{R}}(I) \cap \mathcal{W}(B)$$
:

$$0 \leq f^{2m}(x) + a(x) = 0.$$

Suppose that $f \in \sqrt[T]{I}$ and choose $a \in T$ and m > 0 so that $f^{2m} + a \in I$.

Let $x \in \mathbb{V}_{\mathbb{R}}(I) \cap \mathcal{W}(B)$:

$$0 \leq f^{2m}(x) + a(x) = 0.$$

I.e.
$$f(x) = 0$$
.

Suppose that $f \in \sqrt[T]{I}$ and choose $a \in T$ and m > 0 so that $f^{2m} + a \in I$.

Let $x \in \mathbb{V}_{\mathbb{R}}(I) \cap \mathcal{W}(B)$:

$$0 \leq f^{2m}(x) + a(x) = 0.$$

I.e. f(x) = 0. Hence $f \in \mathbb{I}(\mathbb{V}_{\mathbb{R}}(I) \cap \mathcal{W}(B))$.

First ingredient:

Lemma

 $\sqrt[T]{I}$ is the intersection of all T-radical prime ideals containing I.

First ingredient:

Lemma

 $\sqrt[T]{I}$ is the intersection of all T-radical prime ideals containing I.

 \rightsquigarrow We can assume that I is a T-radical prime ideal ($\sqrt[T]{I} = I$).

First ingredient:

Lemma

 $\sqrt[T]{I}$ is the intersection of all T-radical prime ideals containing I.

 \leadsto We can assume that I is a T-radical prime ideal ($\sqrt[T]{I} = I$). We then get embeddings

$$\mathbb{R} \hookrightarrow \mathbb{R}[\underline{X}]/I \hookrightarrow Q = \operatorname{Frac}(\mathbb{R}[\underline{X}]/I).$$

First ingredient:

Lemma

 $\sqrt[T]{I}$ is the intersection of all T-radical prime ideals containing I.

 \leadsto We can assume that I is a T-radical prime ideal ($\sqrt[T]{I} = I$). We then get embeddings

$$\mathbb{R} \hookrightarrow \mathbb{R}[\underline{X}]/I \hookrightarrow Q = \operatorname{Frac}(\mathbb{R}[\underline{X}]/I).$$

Second ingredient:

Lemma

There exists an ordering \leq_Q on Q which extends the ordering on $\mathbb R$ and and satisfies $\overline g_i=g_i+I\geq_Q 0$ for $i=1,\ldots,t$.

Proof that $\mathbb{I}(\mathbb{V}_{\mathbb{R}}(I) \cap \mathcal{W}(B)) \subseteq \sqrt[T]{I} = I$.

Suppose $h \notin I = \langle f_1, \dots, f_s \rangle$. We must show that $h \notin \mathbb{I}(\mathbb{V}_{\mathbb{R}}(I) \cap \mathcal{W}(B))$. Amounts to find a solution $x \in \mathbb{R}^n$ to the system:

$$f_i = 0, \quad i = 1, ..., s,$$

 $g_j \ge 0, \quad j = 1, ..., t,$
 $h \ne 0.$ (2)

Proof that $\mathbb{I}(\mathbb{V}_{\mathbb{R}}(I) \cap \mathcal{W}(B)) \subseteq \sqrt[T]{I} = I$.

Suppose $h \notin I = \langle f_1, \dots, f_s \rangle$. We must show that $h \notin \mathbb{I}(\mathbb{V}_{\mathbb{R}}(I) \cap \mathcal{W}(B))$. Amounts to find a solution $x \in \mathbb{R}^n$ to the system:

$$f_i = 0, \quad i = 1, ..., s,$$

 $g_j \ge 0, \quad j = 1, ..., t,$
 $h \ne 0.$ (2)

The Transfer-principle: It is sufficient to find a solution in Q^n !

Proof that $\mathbb{I}(\mathbb{V}_{\mathbb{R}}(I) \cap \mathcal{W}(B)) \subseteq \sqrt[T]{I} = I$.

Consider $\overline{X_i} \in \mathbb{R}[\underline{X}]/I \subseteq Q$, i = 1, ..., n. I.e. the monomials $X_i \in \mathbb{R}[X]$ embedded in Q.

Proof that $\mathbb{I}(\mathbb{V}_{\mathbb{R}}(I) \cap \mathcal{W}(B)) \subseteq \sqrt[T]{I} = I$.

Consider $\overline{X_i} \in \mathbb{R}[\underline{X}]/I \subseteq Q$, i = 1, ..., n. I.e. the monomials $X_i \in \mathbb{R}[\underline{X}]$ embedded in Q.

Then

$$f_i(\overline{X}_1,\ldots,\overline{X}_n)=\overline{f}_i=0,$$

Proof that $\mathbb{I}(\mathbb{V}_{\mathbb{R}}(I)\cap\mathcal{W}(B))\subseteq\sqrt[T]{I}=I.$

Consider $\overline{X_i} \in \mathbb{R}[\underline{X}]/I \subseteq Q$, i = 1, ..., n. I.e. the monomials $X_i \in \mathbb{R}[\underline{X}]$ embedded in Q.

$$f_i(\overline{X}_1,\ldots,\overline{X}_n)=\overline{f}_i=0,$$

$$g_j(\overline{X_1},\ldots,\overline{X_n})=\overline{g_j}\geq_Q 0,$$

Proof that $\mathbb{I}(\mathbb{V}_{\mathbb{R}}(I)\cap\mathcal{W}(B))\subseteq\sqrt[T]{I}=I.$

Consider $\overline{X_i} \in \mathbb{R}[\underline{X}]/I \subseteq Q$, i = 1, ..., n. I.e. the monomials $X_i \in \mathbb{R}[X]$ embedded in Q.

Then

$$f_i(\overline{X}_1,\ldots,\overline{X}_n)=\overline{f}_i=0,$$

$$g_j(\overline{X_1},\ldots,\overline{X_n})=\overline{g_j}\geq_Q 0,$$

and

$$h(\overline{X_1},\ldots,\overline{X_n})=\overline{h}\neq 0.$$

Proof that $\mathbb{I}(\mathbb{V}_{\mathbb{R}}(I)\cap\mathcal{W}(B))\subseteq\sqrt[T]{I}=I.$

Consider $\overline{X_i} \in \mathbb{R}[\underline{X}]/I \subseteq Q$, $i=1,\ldots,n$. I.e. the monomials $X_i \in \mathbb{R}[\underline{X}]$ embedded in Q.

Then

$$f_i(\overline{X}_1,\ldots,\overline{X}_n)=\overline{f}_i=0,$$

$$g_j(\overline{X_1},\ldots,\overline{X_n})=\overline{g_j}\geq_Q 0,$$

and

$$h(\overline{X_1},\ldots,\overline{X_n})=\overline{h}\neq 0.$$

I.e. $(\overline{X_1}, \dots, \overline{X_n}) \in Q^n$ is a solution to (2).

Theorem (Positivstellensatz)

Let
$$S = W(B)$$
 and $T = T[B]$. Then

$$f \geq 0$$
 på $S \iff \exists a_1, a_2 \in T, m > 0 : f^{2m} + a_1 = fa_2$

Theorem (Positivstellensatz)

Let
$$S = W(B)$$
 and $T = T[B]$. Then

$$f \ge 0$$
 på $S \iff \exists a_1, a_2 \in T, m > 0: f^{2m} + a_1 = fa_2$

Proof.

 $f \ge 0$ on S if and only if

$$f \in \mathbb{I}(\mathcal{W}(-f) \cap S)$$

Theorem (Positivstellensatz)

Let
$$S = W(B)$$
 and $T = T[B]$. Then

$$f \ge 0$$
 på $S \iff \exists a_1, a_2 \in T, m > 0: f^{2m} + a_1 = fa_2$

Proof.

 $f \ge 0$ on S if and only if

$$f \in \mathbb{I}(\mathcal{W}(-f) \cap S) = \mathbb{I}(\mathbb{V}_{\mathbb{R}}(\{0\}) \cap \mathcal{W}(\{-f\} \cup B))$$

Theorem (Positivstellensatz)

Let
$$S = W(B)$$
 and $T = T[B]$. Then

$$f \ge 0$$
 på $S \iff \exists a_1, a_2 \in T, m > 0: f^{2m} + a_1 = fa_2$

Proof.

 $f \ge 0$ on S if and only if

$$f \in \mathbb{I}(\mathcal{W}(-f) \cap S) = \mathbb{I}(\mathbb{V}_{\mathbb{R}}(\{0\}) \cap \mathcal{W}(\{-f\} \cup B)) = \sqrt[T]{\{0\}},$$

where $T' = T[\{-f\} \cup B] = T - fT$.

Positive polynomials

Theorem (Positivstellensatz)

Let $S = \mathcal{W}(B)$ and T = T[B]. Then

$$f \ge 0$$
 på $S \iff \exists a_1, a_2 \in T, m > 0 : f^{2m} + a_1 = fa_2$

Proof.

 $f \geq 0$ on S if and only if

$$f \in \mathbb{I}(\mathcal{W}(-f) \cap S) = \mathbb{I}(\mathbb{V}_{\mathbb{R}}(\{0\}) \cap \mathcal{W}(\{-f\} \cup B)) = \sqrt[T]{\{0\}},$$

where $T' = T[\{-f\} \cup B] = T - fT$.

I.e. if and only if there exists $a_1, a_2 \in T$ and m > 0, so that

$$f^{2m} + a_1 - fa_2 = 0$$
.

Hilbert's 17th problem

Corollary (Artin's Theorem)

If $f \geq 0$ on \mathbb{R}^n , then f can be written on the form

$$f = \frac{f^{2m} + \sigma_1}{\sigma_2}, \qquad \sigma_1, \sigma_2 \in \sum \mathbb{R}[\underline{X}]^{(2)}.$$

In particular f is a sum of squares of rational functions.

Improvements when S is compact.

Theorem (Schmüdgen)

Suppose that S = W(B) is compact. Then

$$f > 0$$
 på $S \implies f \in T[B]$

The quadratic module generated by B:

$$M[B] = \left\{ \sigma_0 + \sigma_1 g_1 + \dots + \sigma_t g_t \mid \sigma_i \in \sum \mathbb{R}[\underline{X}]^{(2)} \right\}.$$

Theorem (Putinar)

If
$$N - \sum_{i=1}^{n} X_i^2 \in M[B]$$
 for some $N \in \mathbb{N}$, then

$$f > 0$$
 på $S \implies f \in M[B]$.

$$f^* = \inf\{f(x) \mid x \in S\}$$

$$f^* = \inf\{f(x) \mid x \in S\}$$

= sup\{\lambda \in \mathbb{R} \ | f - \lambda > 0 p\text{\text{\text{\$\geq 0\$}}} S\}

$$f^* = \inf\{f(x) \mid x \in S\}$$

$$= \sup\{\lambda \in \mathbb{R} \mid f - \lambda > 0 \text{ på } S\}$$

$$= \sup\{\lambda \in \mathbb{R} \mid f - \lambda \in M\}$$

$$f^* = \inf\{f(x) \mid x \in S\}$$

$$= \sup\{\lambda \in \mathbb{R} \mid f - \lambda > 0 \text{ på } S\}$$

$$= \sup\{\lambda \in \mathbb{R} \mid f - \lambda \in M\}$$

Minimize f on S:

$$f^* = \inf\{f(x) \mid x \in S\}$$

$$= \sup\{\lambda \in \mathbb{R} \mid f - \lambda > 0 \text{ på } S\}$$

$$= \sup\{\lambda \in \mathbb{R} \mid f - \lambda \in M\}$$

Decide on a maximal degree k for the certificates in M:

$$M_k = \left\{ \sum_{i=0}^t \sigma_i g_i \ \middle| \ \sigma_i \in \sum \mathbb{R}[\underline{X}]^{(2)}, \ \mathsf{deg}(\sigma_i g_i) \leq k \right\} \subseteq M \cap \mathbb{R}[\underline{X}]_k,$$

Minimize f on S:

$$f^* = \inf\{f(x) \mid x \in S\}$$

$$= \sup\{\lambda \in \mathbb{R} \mid f - \lambda > 0 \text{ på } S\}$$

$$= \sup\{\lambda \in \mathbb{R} \mid f - \lambda \in M\}$$

Decide on a maximal degree k for the certificates in M:

$$M_k = \left\{ \sum_{i=0}^t \sigma_i g_i \ \middle| \ \sigma_i \in \sum \mathbb{R}[\underline{X}]^{(2)}, \ \deg(\sigma_i g_i) \leq k \right\} \subseteq M \cap \mathbb{R}[\underline{X}]_k,$$

This yields an SDP:

$$\bar{f}_k^* = \sup\{\lambda \in \mathbb{R} \mid f - \lambda \in M_k\} \le f^*$$

Minimize f on S:

$$f^* = \inf\{f(x) \mid x \in S\}$$

$$= \sup\{\lambda \in \mathbb{R} \mid f - \lambda > 0 \text{ på } S\}$$

$$= \sup\{\lambda \in \mathbb{R} \mid f - \lambda \in M\}$$

Decide on a maximal degree k for the certificates in M:

$$M_k = \left\{\sum_{i=0}^t \sigma_i g_i \ \middle| \ \sigma_i \in \sum \mathbb{R}[\underline{X}]^{(2)}, \ \mathsf{deg}(\sigma_i g_i) \leq k \right\} \subseteq M \cap \mathbb{R}[\underline{X}]_k,$$

This yields an SDP:

$$\bar{f}_k^* = \sup\{\lambda \in \mathbb{R} \mid f - \lambda \in M_k\} \le f^*$$

By increasing k we can approximate f^* :

$$\bar{f}_k^* \leq \bar{f}_{k+1}^*, \ \forall k, \qquad \lim_{k \to \infty} \bar{f}_k^* = f^*.$$

Example

Find the smallest circle enclosing the budderfly curve:

Figure: $V_{\mathbb{R}}(f)$, $f = X^6 + Y^6 - X^2$.

Example

Find the smallest circle enclosing the budderfly curve:

Figure:
$$V_{\mathbb{R}}(f)$$
, $f = X^6 + Y^6 - X^2$.

$$f^* = \inf\{\lambda \in \mathbb{R} \mid \lambda - X^2 - Y^2 > 0 \text{ på } \mathcal{W}(-f)\}$$

Example

Find the smallest circle enclosing the budderfly curve:

Figure: $V_{\mathbb{R}}(f)$, $f = X^6 + Y^6 - X^2$.

$$f^* = \inf\{\lambda \in \mathbb{R} \mid \lambda - X^2 - Y^2 > 0 \text{ på } \mathcal{W}(-f)\}$$
$$= \inf\{\lambda \in \mathbb{R} \mid \lambda - X^2 - Y^2 - \sigma f \in \sum \mathbb{R}[\underline{X}]^{(2)}, \ \sigma \in \sum \mathbb{R}[\underline{X}]^{(2)}\}$$

Example continued . . .

$$\bar{f}_2^* \approx 1.4679$$

Figure: $1.4679 = X^2 + Y^2$.

$$f^* = \inf\{f(x) \mid x \in S\}$$

$$f^* = \inf\{f(x) \mid x \in S\}$$

$$= \inf\left\{ \int_S f \, \mu(dx) \mid \mu \text{ pr. measure on } S \right\}$$

$$\begin{split} f^* &= \inf\{f(x) \,|\, x \in S\} \\ &= \inf\Big\{\int_S f\, \mu(dx) \,\Big|\, \mu \text{ pr. measure on } S\Big\} \\ &= \inf\{L(f) \,|\, L \in \chi\}, \end{split}$$

$$\begin{split} f^* &= \inf\{f(x) \,|\, x \in S\} \\ &= \inf\Big\{\int_S f\, \mu(dx) \,\Big|\, \mu \text{ pr. measure on } S\Big\} \\ &= \inf\{L(f) \,|\, L \in \chi\}, \end{split}$$

$$\begin{split} f^* &= \inf\{f(x) \,|\, x \in S\} \\ &= \inf\Bigl\{ \int_S f \, \mu(dx) \,\Big|\, \mu \text{ pr. measure on } S \Bigr\} \\ &= \inf\{ L(f) \,|\, L \in \chi\}, \end{split}$$

$$\chi = \{L \in \mathbb{R}[\underline{X}] \to \mathbb{R} \text{ lineær } | \ \textit{L}(\textit{M}) \subseteq [0, \infty), \textit{L}(1) = 1\}$$

$$\begin{split} f^* &= \inf\{f(x) \,|\, x \in S\} \\ &= \inf\Bigl\{ \int_S f \,\mu(dx) \,\Big|\, \mu \text{ pr. measure on } S\Bigr\} \\ &= \inf\{L(f) \,|\, L \in \chi\}, \end{split}$$

$$\chi = \{L \in \mathbb{R}[\underline{X}] \to \mathbb{R} \text{ lineær } | L(M) \subseteq [0, \infty), L(1) = 1\}$$

Decide on maximal degree k:

$$\chi_k = \{L \colon \mathbb{R}[\underline{X}]_k \to \mathbb{R} \mid L(M_k) \subseteq [0, \infty), L(1) = 1\}.$$

$$\begin{split} f^* &= \inf\{f(x) \,|\, x \in S\} \\ &= \inf\Bigl\{ \int_S f \,\mu(dx) \,\Big|\, \mu \text{ pr. measure on } S\Bigr\} \\ &= \inf\{L(f) \,|\, L \in \chi\}, \end{split}$$

$$\chi = \{L \in \mathbb{R}[\underline{X}] \to \mathbb{R} \text{ lineær } | L(M) \subseteq [0, \infty), L(1) = 1\}$$

Decide on maximal degree k:

$$\chi_k = \{L \colon \mathbb{R}[\underline{X}]_k \to \mathbb{R} \mid L(M_k) \subseteq [0, \infty), L(1) = 1\}.$$

Yields another SDP:

$$f_k^* := \inf\{L(f) \mid L \in \chi_k\}$$

$$\begin{split} f^* &= \inf\{f(x) \,|\, x \in S\} \\ &= \inf\Bigl\{ \int_S f \,\mu(dx) \,\Big|\, \mu \text{ pr. measure on } S\Bigr\} \\ &= \inf\{L(f) \,|\, L \in \chi\}, \end{split}$$

$$\chi = \{ L \in \mathbb{R}[\underline{X}] \to \mathbb{R} \text{ lineær } | L(M) \subseteq [0, \infty), L(1) = 1 \}$$

Decide on maximal degree k:

$$\chi_k = \{L \colon \mathbb{R}[\underline{X}]_k \to \mathbb{R} \mid L(M_k) \subseteq [0, \infty), L(1) = 1\}.$$

Yields another SDP:

$$\bar{f}_k^* \le f_k^* := \inf\{L(f) \mid L \in \chi_k\} \le f^*.$$

The MaxCut-problem

Figure: Find a maximal cut.

MaxCut-problemet

Figure: A maximal cut of size 9.

Approksimation

Quadratic integer problem: Maximise the polynomial

$$f = \sum_{(i,j)\in E} \frac{1}{2} (1 - X_i X_j) = \frac{1}{2} (11 - X_1 X_2 - X_1 X_4 - \dots - X_6 X_7)$$

over the set

$$S = \{-1, 1\}^7 \subseteq \mathbb{R}^7.$$

Approksimation

Quadratic integer problem: Maximise the polynomial

$$f = \sum_{(i,j)\in E} \frac{1}{2} (1 - X_i X_j) = \frac{1}{2} (11 - X_1 X_2 - X_1 X_4 - \dots - X_6 X_7)$$

over the set

$$S = \{-1, 1\}^7 \subseteq \mathbb{R}^7.$$

Lasserre approximation with k = 2:

$$f_2^* \approx 9.3231.$$