Chapitre 2

Mouvement Brownien

2.1 Définitions

Définition 2.1 Soit $(\Omega, \mathcal{F}, \mathcal{P})$ un espace de probabilité et $B = (B_t)_{t \geq 0}$ un processus stochastique. le processus B est appelé mouveemnt Brownien standard à condition que

- i) $B_0 = 0$
- ii) $\forall 0 \leq s < t < \infty$ la variable aléatoire $B_t B_s$ est indépendante de $(B_u)_{u \in [0,s]}$, ceci signifie que $\forall 0 \leq s_1 \leq \cdots \leq s_n \leq s$ et $A, A_1, \ldots A_n \in \mathcal{B}(\mathbb{R})$ on a

$$P(B_{s_1} \in A_1, \dots B_{s_n} \in A_n, B_t - B_s \in A) = P(B_{s_1} \in A_1, \dots B_{s_n} \in A_n) P(B_t - B_s \in A)$$

iii) $\forall 0 \leq s < t < \infty \ et \ \forall A \in \mathcal{B}(\mathbb{R}) \ on \ a$

$$P(B_t - B_s \in A) = \frac{1}{\sqrt{2\pi (t - s)}} \int_A e^{-\frac{x^2}{2(t - s)}} dx.$$

iv) Les trajectoires $t \longmapsto B_t(\omega)$ sont continues.

Proposition 2.2 Le mouvement Brownien standard existe.

Proposition 2.3 Soit $B = (B_t)_{t\geq 0}$ un processus stochastique tel que toutes les trajectoires sont continues et tel que $B_0 = 0$. Alors les propriétés suivantes sont équivalentes :

- i) Le processus B est mouvement Brownien standard.
- ii) Le processus B est un processus gaussien avec espérance $m(t) \equiv 0$ et covariance $\Gamma(s,t) = \min\{s,t\}$.

Proposition 2.4 Les trajectoires du mouvement Brownien standard sont continues Hölderiennes avec exposant $\alpha \in (0, 1/2)$ i.e. : l'ensemble

$$A_{\alpha,T} := \left\{ \omega \in \Omega : \sup_{0 \le s < t \le T} \frac{\left| B_t(\omega) - B_s(\omega) \right|}{\left| t - s \right|^{\alpha}} < \infty \right\}$$

est mesurable et de mesure $1 \ \forall \alpha \in (0, 1/2) \ et \ T > 0$.

Définition 2.5 Soit $(\Omega, \mathcal{F}, \mathcal{P}, (\mathcal{F}_t)_{t \in I})$ une base stochastique (espace de probabilité filtré). Un processus stochastique adapté $B = (B_t)_{t \in I}$ $B_t : \Omega \longrightarrow \mathbb{R}$ est appelé $(\mathcal{F}_t)_{t \in I}$ -mouvement Brownien standard si :

- i) $B_0 = 0$.
- ii) $\forall 0 \leq s < t \in I$ la variable aléatoire $B_t B_s$ est indépendante de \mathcal{F}_s , ceci signifie que

$$P(C \cap \{B_t - B_s \in A\}) = P(C) P(B_t - B_s \in A)$$

pour $C \in \mathcal{F}_s$ et $A \in \mathcal{B}(\mathbb{R})$.

iii) $\forall 0 \leq s < t \in I \text{ on } a :$

$$B_t - B_s \sim \mathcal{N}\left(0, t - s\right)$$

iv) $\forall \omega \in \Omega \text{ les trajectoires } t \longrightarrow B_t(\omega) \text{ sont continues.}$

Proposition 2.6 Soit $B = (B_t)_{t \in I}$ un mouvement Brownien standard (selon la 1ère définition) et soit $(B_t)_{t \in I}$ sa filtration naturelle i.e.:

$$\mathcal{F}_{t}^{B} := \sigma\left(B_{s}, s \in [0, t]\right).$$

Alors $(B_t)_{t\in I}$ est $(B_t)_{t\in I}$ -mouvement Brownien.

2.2 Complétion d'un espace de probabilité

Lemme 2.7 Soit $(\Omega, \mathcal{F}, \mathcal{P})$ un espace de probabilité et

$$\mathcal{N} := \{ A \subseteq \Omega : il \ existe \ un \ B \in \mathcal{F} \ avec \ A \subseteq B \ et \ P(B) = 0 \} \cup \{\emptyset\} .$$

i) Soit \mathcal{G} sous σ -algèbre de \mathcal{F} . Alors $B \in \mathcal{G} \vee \mathcal{N}$ si et seulement si à $A \in \mathcal{G}$ $/A\Delta B \in \mathcal{N}$.

$$(A\Delta B = (A \cup B) \setminus (A \cap B))$$

ii) La mesure P peut être prolonger à une mesure \widetilde{P} sur $\widetilde{\mathcal{F}} := \mathcal{F} \vee \mathcal{N}$ par $\widetilde{P}(B) := P(A) \ \forall A \in \mathcal{F}$ tel que $A\Delta B \in \mathcal{N}$.

Définition 2.8 L'espace de probabilité $(\Omega, \widetilde{\mathcal{F}}, \widetilde{\mathcal{P}})$ est appelé le completé de $(\Omega, \mathcal{F}, \mathcal{P})$.

Définition 2.9 Soit $X = (X_t)_{t \in I}$, $X_t : \Omega \longrightarrow \mathbb{R}$ un processus stochastique, $\mathcal{F}_{\infty}^X := \sigma(X_s : s \in I)$ $\mathcal{F}_t^X := \sigma(X_s : s \in [0, t]) \ \forall t \in I.$ Définissons

$$\mathcal{N} := \left\{ A \subseteq \Omega : il \ existe \ un \ B \in \mathcal{F}_{\infty}^X \ avec \ A \subseteq B \ et \ P(B) = 0 \right\}$$

Alors $(\mathcal{F}_t)_{t\in I}$ avec $\mathcal{F}_t := \mathcal{F}_t^X \vee \mathcal{N}$ est appelée augmentation de $(\mathcal{F}_t^X)_{t\in I}$.

Proposition 2.10 Soit $B = (B_t)_{t \in I}$ un mouvement Brownien standard, $(\mathcal{F}_t^B)_{t \in I}$ sa filtration naturelle et $(\mathcal{F}_t)_{t \in I}$ l'augmentation de $(\mathcal{F}_t^B)_{t \in I}$. Alors

- i) Le processus $(B_t)_{t\in I}$ est un $(\mathcal{F}_t)_{t\in I}$ mouvement Brownien.
- ii) La filtration $(\mathcal{F}_t)_{t\in I}$ est continue à droite, ceci signifie que

$$\mathcal{F}_t = \bigcap_{s \in (t,S)} \mathcal{F}_s$$

 $avec \ 0 \le t < S := \infty \ si \ I = [0, \infty) \ et \ 0 \le t < S := T \ si \ I = [0, T)$.

Définition 2.11 La base stochastique $(\Omega, \mathcal{F}, \mathcal{P}, (\mathcal{F}_t)_{t \in I})$ satisfait les conditions usuelles si :

- i) $(\Omega, \mathcal{F}, \mathcal{P})$ est complété.
- ii) $A \in \mathcal{F}_t \ \forall A \in \mathcal{F} \ avec \ P(A) = 0 \ et \ t \in I.$
- iii) La filtration $(\mathcal{F}_t)_{t\in I}$ est continue à droite i.e. :

$$\mathcal{F}_t = igcap_{s \in (t,S)} \mathcal{F}_s$$

Proposition 2.12

avec
$$0 \le t < S := \infty$$
 si $I = [0, \infty)$ et $0 \le t < S := T$ si $I = [0, T)$.

2.3 Temps d'arrêt et temps optionnel

Motivation : Temps d'arrêts et optionnels sont des temps aléatoires qui forment un outil puissant dans la théorie des processus stochastiques.