

Data Collection and Preprocessing Phase

Date	4 July 2024
Team ID	team-739757
Project Title	Medical Cost Prediction
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Data Exploration involves several key steps. They are importing libraries, loading the dataset, basic data overview, checking for missing values, visualizing the data distribution, correlation matrix. Data preprocessing involves the following steps they are handling missing values, encoding categorical variables, feature scaling, splitting the dataset.

Section	Description						
Data Overview	Dimension: 1338 rows x 7 columns Descriptive Statistics df.describe()						
		age	bmi	children	charges		
	count	1338.000000	1338.000000	1338.000000	1338.000000		
	mean	39.207025	30.650034	1.094918	12479.369251		
	std	14.049960	6.056926	1.205493	10158.056096		
	min	18.000000	15.960000	0.000000	1121.873900		
	25%	27.000000	26.296250	0.000000	4740.287150		
	50%	39.000000	30.400000	1.000000	9382.033000		
	75%	51.000000	34.693750	2.000000	16639.912515		
	max	64.000000	47.290000	5.000000	34489.350562		


```
Removing Outliers
        \label{eq:iqr} \begin{split} &\text{IQR = df['bmi'].quantile(0.75)-df['bmi'].quantile(0.25)} \\ &\text{IQR} \end{split}
        <del>_</del> 8.3975
        lowerBound=df['bmi'].quantile(0.25)-(1.5*IQR)
        upperBound=df['bmi'].quantile(0.75)+(1.5*IQR)
        upperBound
  https://colab.research.google.com/drive/1UB1Cw03nppHGIBKZthMnmBbCZF
  7/7/24, 1:16 PM

→ 47.29000000000000000
       df['bmi']=np.where(df['bmi']>upperBound,upperBound,df['bmi'])
df['bmi']=np.where(df['bmi']<lowerBound,lowerBound,df['bmi'])</pre>
sns.boxplot(df)
→ <Axes: >
      35000
      20000
      10000
       5000
                                                               children
```

Data Transformation

	df.head()							
		age	sex	bmi	children	smoker	region	charges
	0	19	0	27.900	0	1	3	16884.92400
	1	18	1	33.770	1	0	2	1725.55230
	2	28	1	33.000	3	0	2	4449.46200
	3	33	1	22.705	0	0	1	21984.47061
	4	32	1	28.880	0	0	1	3866.85520
Save Processed Data	Save as Pickle Pickle is useful for saving and loading data frames binary format import pickle import warnings with open("rf.pkl","wb")as f: pickle.dump(rf,f)							

