

Sentiment Analysis on Human-to-Human Conversation

By Aden Lu, Garvin Chan, Jai Gollapudi

Background

- Based on our experience from service learning
 - Difficult to gauge the older adults' emotion
 - Monotone
 - Deadpan
- Existing research has shown that word choice can reflect a person's emotional wellbeing
- Our Aim: Gain a deeper understanding of the emotional states of older adults by analyzing their speech patterns, word choices, and conversational flow.

Data Overview

Dataset

EmoWOZ (MultiWOZ + DialMAGE)

- Human-to-Human Conversations
- Manually annotated multi-domain task-oriented dialogue dataset (Booking, Reservations)

Statistics

• Total Dialogues: 10438

• Total Sentences: 71524 (65120 Unique)

• Total Tokens: 425933

• Label Distribution:

Distribution of Emotion Label in MultiWOZ:

	Label	Count	Percentage
0	Neutral	51426	71.9%
1	Fearful, Sad, Disappointed	381	0.53%
2	Dissatisfied, Disliking	914	1.28%
3	Apologetic	838	1.17%
4	Abusive	44	0.06%
5	Excited, Happy, Anticipating	860	1.2%
6	Satisfied, Liking	17061	23.85%

Data Pre-Processing

Problem:

- Neutral and Satisfied, Liking make up 95% of the dataset
- Overfitting toward majority classes
- Back-translation, Synonym-replacement, etc (4+ hours on a T4 GPU) were insufficient to fully solve the disparity

Solution:

Sub-Model 1: Classifying as Neutral or not

Convert all labels other than neutral ('0') to non-neutral ('1), upsample non-neutral to 50% and downsample neutral to 50%

Sub-Model 2: Classifying as one of the 6 emotions

Remove all labels that are neutral ('0') and upsample the minority classes to majority class (~16.5% each)

Model 1: Logistic Regression (Baseline)

Model	Feature Representation	Best Performing Representation	Best Hyperparameters (GridSearchCV)	Metrics (Weighted Avg)
Neutral Vs Non-Neutral	BoW, TF-IDF	BoW	C: 10 penalty': L2	Accuracy: 0.916 Precision: 0.92 Recall: 0.92 F1: 0.92
One of 6 emotions	BoW, TF-IDF	BoW	C: 10 penalty': L1	Accuracy: 0.889 Precision: 0.92 Recall: 0.89 F1: 0.90

Model 2: Feed Forward Neural Network

Model	Feature Representation	Best Performing Representation	Best Hyperparameters (Optuna)	Metrics (Weighted Avg)
Neutral Vs Non-Neutral	Word2Vec	Word2Vec (For now)	Epochs: 5+ LR: .001 Batch Size: 64 Dropout Rate: .5 Hidden Units: 128	Accuracy: 0.904 Precision: 0.91 Recall: 0.90 F1: 0.90
One of 6 emotions	Word2Vec	Word2Vec (For now)	Epochs: 5+ LR: .001 Batch Size: 64 Dropout Rate: .5 Hidden Unit: 128	Accuracy: 0.992 Precision: 0.99 Recall: 0.99 F1: 0.99

Model 3: BERT

Model	Feature Representation	Best Hyperparameters	Metrics (Weighted Avg)
All Emotions	None	bert-based-uncased Epochs: 3 Max Length: 128 Batch Size: 16 LR: 5e-5	Accuracy: 0.9251 Loss: .2374

Note: Haven't used hyperparameter tuning libraries to really fine-tune the values

Future Work

- Better data preprocessing
 - O Back-translation (Requires more powerful GPU)
 - Other data augmentation methods/libraries (e.g. NLPAug, Synonym-replacement)
- Refine and tune neural network and BERT models
 - Run optuna and other hyperparameter libraries with a greater range of hyperparameter values
- Classify multiple emotions instead of one in a text
 - E.g. 'I'm super excited that we went to this restaurant. I really enjoyed the food.'
 - Our current model might say this is either 'Excited' or 'Satisfied'
 - In reality, this is around 50% 'excited' and 50% 'satisfied'
- Text-only analysis currently
 - We want to capture and transcribe conversations with older adults to better understand their tone and conversation pattern

