global variables: V a set, $E \subseteq V \times V$, $\triangleright \subseteq V \times V$ and $\psi : V \to wff$ procedure Expand $(v \in V)$:

if v is an uncovered leaf then

add a new vertex w to V and a new edge (v, w) to E;

let $\pi = (v_0, T_0, v_1) \cdots (v_{n-1}, T_{n-1}, v_n)$ be the unique path from ϵ to v

for all actions $(M_v(v), T, m) \in \Delta$

set $M_e(v, w) \leftarrow T$

for $i = 0 \dots n$:

if $M_v(v) = l_f$ and $\psi(v) \not\equiv$ False then

procedure Refine $(v \in V)$:

procedure $COVER(v, w \in V)$:

if $\psi(v) \models \psi(w)$ then add (v, w) to \triangleright ;

set $M_v(w) \leftarrow m$ and $\psi(w) \leftarrow \text{True}$;

if $\mathcal{U}(\pi)$ has an interpolant $\hat{A}_0, \ldots, \hat{A}_n$ then

if v is uncovered and $M_v(v) = M_v(w)$ and $v \not\sqsubseteq w$ then

delete all $(x, y) \in \triangleright$, s.t. $v \sqsubseteq y$;

 $\det \phi = \hat{A}_i^{\langle -i \rangle}$ $\text{if } \psi(v_i) \not\models \phi \text{ then}$ $\text{remove all pairs } (\cdot, v_i) \text{ from } \triangleright$ $\text{set } \psi(v_i) \leftarrow \psi(v_i) \land \phi$ else abort (program is unsafe)

Fig. 4. Three basic unwinding steps