MATH 2418: Linear Algebra

Assignment 9 (sections 4.4 and 5.1)

Due: November 2, 2016 Term: Fall, 2016

Suggested problems(do not turn in): Section 4.4: 1, 3, 4, 5, 6, 9, 13, 15, 18, 19, 22, 24; Section 5.1: 1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 15, 16, 17, 18, 21, 22, 23, 28. Note that solutions to these suggested problems are available at math.mit.edu/linearalgebra

- 1. [10 points] Let $\mathbf{e}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 4/5 \\ 0 \\ 3/5 \end{bmatrix}$.
 - (a) (5 points) Find vector \mathbf{e}_3 such that $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ form an orthonormal basis.
 - (b) (1 point) How many different choices for e_3 there is?
 - (c) (4 points) Express vector $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ as a linear combination of vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$.

2. [10 points] Find orthogonal vectors \mathbf{A}, \mathbf{B} and \mathbf{C} by Gram-Schmidt from the vectors $\mathbf{a} = (1, 1, 1, 0)$, $\mathbf{b} = (1, 1, 0, 1)$ and $\mathbf{c} = (1, 0, 1, 1)$.

3. [10 points]

- (a) (5 points) Find an orthonormal basis in the subspace $\mathbf{S} \subset \mathbb{R}^4$ spanned by all solutions of $x_1 + 2x_2 + 3x_3 6x_4 = 0$.
- (b) (4 points) Express vector $\mathbf{b} = (1, 1, 1, 1)$ in this basis.
- (c) (1 point) Find a basis for S^{\perp} .

- 4. [10 points] Let 3×3 matrices A and B have determinants -1 and 2 correspondingly.
 - (a) (3 points) Find determinant of $(2A)B^{-1}$.
 - (b) (3 points) Find determinant of B^2A^{-1} .
 - (c) (3 points) Find a scalar $c \in \mathbb{R}$ such that $\det[(cA)B] = 1$.
 - (d) (1 point) Find determinant of A^{2016} .

5. [10 points] Let
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta \end{bmatrix}$ be matrices of rotation around the z and x axis in \mathbb{R}^3 correspondingly. Find the determinant of the matrix AB .

6. [10 points] True or False

- (a) (1 point) If three vectors in \mathbb{R}^3 are orthonormal then they form a basis.
- (b) (1 point) If columns of matrix A are orthogonal then rows of A are independent.
- (c) (1 point) If B is square orthogonal matrix then $B^{-1} = B^{T}$.
- (d) (1 point) If Q is square orthogonal matrix such that $Q^{2016} = I$ then $Q^T = Q^{2015}$.
- (e) (1 point) If for some basis $\{\mathbf{a}_1, \mathbf{a}_2\}$ for vector \mathbf{b} one has $\mathbf{b} = x\mathbf{a}_1 + y\mathbf{a}_2$ then $\|\mathbf{b}\| = \sqrt{x^2 + y^2}$.
- (f) (1 point) If $\det A = \det A^{-1}$ then A = I.
- (g) (1 point) There are no matrix A such that $\det A^{-1} = 0$.
- (h) (1 point) Row operations do not change the determinant of a matrix.
- (i) (1 point) If det(2A) = det(3A) then A is not invertible.

(j) (1 point) If
$$B = \begin{bmatrix} -1 & 4 & -6 \\ 0 & 2 & 5 \\ 0 & 0 & -3 \end{bmatrix}$$
 then $\det(-B^{-1}) = -6$.