Assignment 2 Decision Tree

Yi Shiuan Tseng Po-Chih Kuo

Goal

- Implement a binary decision tree with the restaurant waiting dataset
- To build a machine learning model to predict the patients' death ('hospDIED') from real data
- Preprocess the data or fine-tune the model for better performance

Implementation (70%)

Implement the binary decision tree in 3 steps with Restaurant dataset:

• Step 1: calculate the entropy (20%)

• Step 2: search for the best split (20%)

• Step 3: build the decision tree (30%)

	Unnamed: 0	Alternate	Bar	Friday	Hungry	Patrons	Price	Raining	Reservation	Туре	WaitEstimate	Wait
0	X1	Т	F	F	Т	Some	High	F	Т	French	8	Т
1	X2	Т	F	F	Т	Full	Low	F	F	Thai	40	F
2	Х3	F	Т	F	F	Some	Low	F	F	Burger	8	Т
3	X4	Т	F	Т	Т	Full	Low	F	F	Thai	12	Т
4	X5	Т	F	Т	F	Full	High	F	Т	French	70	F
5	X6	F	Т	F	Т	Some	Medium	Т	Т	Italian	3	Т
6	X7	F	Т	F	F	None	Low	Т	F	Burger	7	F
7	X8	F	F	F	Т	Some	Medium	Т	Т	Thai	6	Т
8	X9	F	Т	Т	F	Full	Low	Т	F	Burger	80	F
9	X10	Т	Т	Т	Т	Full	High	F	Т	Italian	20	F
10	X11	F	F	F	F	None	Low	F	F	Thai	8	F
11	X12	Т	Т	Т	Т	Full	Low	F	F	Burger	40	Т

Prediction in Real Case (20%)

To classify death('hospDIED') in the MIMIC dataset.

					X_	_tı	ai	n				Y _
	subject_id	age	los	CA	DNR	СМО	DNI	indextime	female	first_careunit		I
0	10246985	48	1.826250	0	0	0	0	30JUN38:20:25:48	1	10		
1	14538806	59	10.581123	0	0	0	0	03SEP59:14:15:14	1	10		
2	12850130	73	2.065255	0	0	0	0	30SEP87:20:50:56	1	4		
3	11810761	84	1.435428	0	0	0	0	06JUN22:11:36:44	1	10		
4	13109236	66	1.443414	0	0	0	0	25MAR31:21:09:15	0	1		
											•••	
4636	10192748	82	6.488113	0	0	0	0	07OCT39:06:40:24	1	11		
4637	16510199	52	2.485833	0	0	0	0	22MAY53:18:51:15	0	11		
4638	16753060	62	2.914444	0	0	0	0	01DEC76:21:46:37	0	10		
4639	18223630	30	9.803310	0	0	0	0	12NOV77:14:57:21	1	2		
4640	18101124	72	6.168958	0	0	0	0	27FEB83:17:38:45	1	1		
41 rc	ws × 84 colum	ins										

Note:

Decision tree is recommended but not mandatory.

The MIMIC Database

- Medical Information Mart for Intensive Care
- A large, freely-available database
- Over 40,000 patients who stayed in critical care units

- We extract 27379 cases with 84 attributes and 1 label(hospDIED)
- 2738 cases split to the test set
- Data Description:
 https://docs.google.com/spreadsheets/d/1pxqxQFhIcv_hrgWEtwhXE6zBVQ5IS
 a-13PIhvXMtWCY/edit#gid=0

Data

- The Restaurant Waiting data(data.csv) for implementation
- The MIMIC dataset(x_train, y_train, x_test.csv) for real prediction
- Both are included in the template already.

```
#Read data
x_train = = pd. read_csv('https://raw.githubusercontent.com/aubreyyy24/HW2_data/main/x_train.csv')
y_train = = pd. read_csv('https://raw.githubusercontent.com/aubreyyy24/HW2_data/main/y_train.csv')
x_train.head()
```

	subject_id	age	los	CA	DNR	СМО	DNI	indextime	female	first_careunit	insurance	ethnicity	admission_type	smoking	congestive_heart_failure
0	10246985	48	1.826250	0	0	0	0	30JUN38:20:25:48	1	10	1	6	6	1	0
1	14538806	59	10.581123	0	0	0	0	03SEP59:14:15:14	1	10	1	4	9	1	0
2	12850130	73	2.065255	0	0	0	0	30SEP87:20:50:56	1	4	1	4	6	0	0
3	11810761	84	1.435428	0	0	0	0	06JUN22:11:36:44	1	10	3	4	6	1	0
4	13109236	66	1.443414	0	0	0	0	25MAR31:21:09:15	0	1	1	4	8	1	0

5 rows × 84 columns

Bonus (extra 10%)

- Visualize your decision tree of the classification part (with MIMIC data)
- Your visualization image of the decision tree can contain five levels at most
- Save your visualization image as [STUDENT_ID]_visualization.png!

Report (10%)

- List the top 3 splitting features and their thresholds of your model (in the MIMIC dataset)
- Briefly describe how you build the decision tree
- Describe if you pay extra effort to improve your model
- If you preprocess the MIMIC data in the second part(selecting feature s...), describe the work and reasons
- Summarize your work
- Do not exceed 2 pages!
- Name your report file as "[STUDENT_ID]_report.pdf"

Grading Policy

Item	Score
Implementation	70%
Classification (Performance)	20%
Report	10%
Decision Tree Visualization (bonus)	10%

You will have the following items

- Template: HW2_Decision_Tree.ipynb (input data inside)
- Sample output: sample_implementation.csv
 - sample_prediction.csv

Template

- Except for the imported packages in the template, you cannot use any other packages in the first(implementation) part
- Remember to save the code file to [STUDENT_ID]_hw2.ipynb

Output CSV File Format - Implementation

- Named as "[StudentID]_implementation.csv"
- There should be 3+2n rows in your csv file:
 - Entropy: 1
 - BestSplit column 2, BestSplit value 3
 - Tree features 4~4+(n-1), Tree thresholds 4+n~4+2n-1
 - n is the number of the features you used
- Please make sure that your model can correctly output this format of csv file

Tree

Output CSV File Format - Prediction

- Named as "[StudentID]_prediction.csv"
- y_test contains 2738 cases
- Each row represents "subject_id, hospDIED (Prediction)"
- Please make sure your model can correctly output this format of csv file

subject_id	hospDIED
10246985	0
14538806	0
12850130	0
11810761	0
13109236	0
12601474	1
19738421	0
15051600	0
19734681	1
11236474	. 0
16968810	0
11382142	. 0
16093826	1
10625523	0
15676460	0
10761467	0
12084606	0
18908038	0
18910094	. 0
10337761	0
15566609	1
18122436	0
11639209	0
16962073	0
11779110	0

Assignment 2 Requirement

- Do it individually! Not as a team! (team is for final project)
- Announce date: 2021/10/21
- Deadline: 2021/11/4 23:59 (Late submission is not allowed!)
- Hand in your files in the following format
 - [StudentID]_hw2.ipynb
 - [StudentID]_implementation.csv
 - [StudentID]_prediction.csv
 - [StudentID]_visualization.png
 - [StudentID]_report.pdf
 - Compress all files into [StudentID]_HW2.zip

The Evaluation Metric

• F1 score: F1 Score = 2*(Recall * Precision) / (Recall + Precision)

- For example:
- The class you predicted:
- $\hat{y} = [1, 1, 0, 0, 0, 0, 1]$
- Ground Truth:
- y = [0, 0, 0, 0, 0, 1, 1]

• F1 score = 0.4

Penalty

- 0 points if any of the following conditions
- Plagiarism
- Late submission
- Not using template or import any other packages in implementation part
- Incorrect input/output format
- Incorrect submission format

Questions?

• TA: Yi Shiuan Tseng (aubreytys@gapp.nthu.edu.tw)

