Boolean Algebra

Lecture 2

Outline

- Logic gates and Boolean expressions
- Boolean algebra

Boolean Expressions

- เรา ใช้ประโยคสัญลักษณ์บูลีน ในการบรรยายฟังก์ชันตรรก (Logic Functions)
- ฟังก์ชันตรรกใดๆก็ตาม สามารถเขียนและสร้างโดยใช้เกท AND, OR, และ NOT
- Basic Boolean Operations:
 - AND $A \cdot B$
 - \bullet OR A+B
 - NOT \overline{A}

Basic Gates

AND

OR

NOT

Boolean

 $A \bullet B$

A + B

 \overline{A}

Logic gate

Truth Table

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

Other Logic Gates

NAND

NOR

Boolean

$$\overline{A \bullet B}$$

$$\overline{A+B}$$

Logic gate

Truth Table

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

Other Logic Gates

XOR

XNOR

Boolean

$$A \oplus B$$

$$\overline{A \oplus B}$$

Logic gate

Truth Table

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

Boolean to others: Ex 1

$$Y = (A \cdot B) + C$$

Α	В	С	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Boolean to others: Ex 2

$$Y = AB + A\overline{B}C$$

Α	В	С	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Boolean to others: Ex 3

$$Y = (A + B)(\overline{B} + \overline{C})$$

Α	В	С	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Equivalent Equations

- พิจารณาสมการบูลีน 2 สมการนี้
 - $Z_1 = \overline{A} \, \overline{B}C + \overline{A}BC + A\overline{B}C + AB\overline{C}$
 - $Z_2 = AB\overline{C} + \overline{(AB)}C$

 เขียน Schematic Diagram และตารางค่าความจริงของสม การบูลีนทั้งสอง

Equivalent Equations

$$Z_1 = \overline{A} \ \overline{B}C + \overline{A}BC + A\overline{B}C + AB\overline{C}$$

Α	В	С	ĀBC	- ABC	ABC	ABC	Z ₁
0	0	0	Õ	0	\bigcirc	Ô	Q
0	0	1	1	\bigcirc	\bigcirc	\bigcirc	1
0	1	0	C	\bigcirc	0	9	O
0	1	1	\bigcirc	1	0	\bigcirc	1
1	0	0		\bigcirc	\bigcirc	\bigcirc	0
1	0	1	\bigcirc	\bigcirc	A	\bigcirc	1
1	1	0	\bigcirc	\bigcirc	0	1	1
1	1	1				\bigcirc	0

$$Z_2 = AB\overline{C} + \overline{(AB)}C$$

Α	В	С	ABC	(AB)C	Z_2
0	0	0	0	6	6
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	1	1
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	\bigcirc	7
1	1	1	0	0	0

Boolean Minimization

- ฟังก์ชันตรรกเดียวกันสามารถเขียนได้หลายรูปแบบของสม การบูลีน
- การลดรูปสมการมีข้อดีคือ
 - ช่วยลดจำนวนเกทที่ใช้
 - ประหยัดพื้นที่ของวงจร
 - ประหยัดต้นทุน

Boolean Algebra พีงคมิดบูลีน

- ในการจัดการสมการบูลีน เราจำเป็นต้องมีกฏ
- กฏเหล่านี้เกี่ยวข้องกับข้อกำหนดต่างๆ ของตัวแปรตรรก (Logic Variables) ซึ่งจะกำหนดว่าเราสามารถทำอะไรกับ ตัวแปรตรรกได้บ้าง
- ทฤษฎีพีชคณิตบูลีนนี้ถูกคิดคันโดย George Boole ในปี ค.ศ. 1854

Boolean Algebra

- พีชคณิตบูลีนประกอบไปด้วย
 - เซตของตัวแปรตรรก S
 - Binary operators 2 ตัวคือ AND และ OR
 - Unary operator 1 ตัวคือ NOT
 (Operator ที่ทำกับตัวผม)

1. สมบัติปิด (Closure): For every A, B in S

$$A + B \in S$$
 કોંગનીય O તેંગ 1 ક્ર્યું

- (ii) $AB \in S$
- 2. กฏการสลับที่ (Commutative):

$$(i) A + B = B + A$$

(ii)
$$AB = BA$$

3. กฏการจัดหมู่ (Associative):

(i)
$$A + (B + C) = (A + B) + C$$

(ii)
$$A(BC) = (AB)C$$

4. กฏการกระจาย (Distributive):

(i)
$$A + BC = (A + B)(A + C)$$

(ii)
$$A(B+C) = AB + AC$$

5. เอกลักษณ์ (Identities):

(i)
$$A + 0 = A$$

(ii)
$$A \cdot 1 = A$$

$$A + 1 = 1$$

$$A \cdot 0 = 0$$

6. ส่วนกลับ (Complements):

$$\overline{(\overline{A})} = A$$

$$(ii) A + \overline{A} = 1$$

(iii)
$$A\overline{A} = 0$$

7. Self Operation:

$$(i) A + A = A$$

(ii)
$$A \cdot A = A$$

8. กฎของเดอมอร์แกน (DeMorgan's Laws):

$$\overline{A + B} = \overline{A} \, \overline{B}$$

(ii)
$$\overline{AB} = \overline{A} + \overline{B}$$

= A = 1

= A#

Useful Laws

9.
$$AB + A\overline{B} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{A}B = A + B$$

$$= A \cdot 1$$

11)
$$A + \overline{A}B = A + \overline{B}$$

L.H.S: $A + \overline{A}B = A(\overline{B} + B) + \overline{A}B$
 $= A\overline{B} + AB + \overline{A}B$
 $= A\overline{B} + (A+\overline{A})B$
 $= A\overline{B} + B$

Haven't proved yet.

$$Y = (A + \overline{B})B$$

$$= AB + \overline{B}B$$

$$= AB + O$$

$$= AB + V$$

$$Y = B\overline{C} + \overline{A}BC + ABC$$

$$= B\overline{C} + (\overline{A}A)BC$$

$$= B\overline{C} + BC$$

$$= B\overline{C} + BC$$

$$= B\overline{C} + BC$$

$$= B\overline{C} + BC$$

$$Y = \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} D + \overline{A} B \overline{C} \overline{D} + \overline{A} B \overline{C} D$$

$$= \overline{A} \overline{B} \overline{C} (\overline{D} + \overline{D}) + \overline{A} \overline{B} \overline{C} (\overline{D} + \overline{D})$$

$$= \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C}$$

$$= (\overline{A} \overline{B} + \overline{A} \overline{B}) \overline{C}$$

$$= (\overline{A} (\overline{B} + \overline{B})) \overline{C}$$

$$= \overline{A} \overline{C} + \overline{A} \overline{C} \overline{D} + \overline{A} \overline{C} \overline{D} + \overline{A} \overline{C} \overline{D}$$

$$\begin{array}{c}
A : nputs \\
Y = (\overline{A} + BC + D)(\overline{A} + BC + \overline{D}) \\
= (2+D)(2+\overline{D}) = 7 + (2+\overline{D}) \\
= A + BC + A + BC
\end{array}$$

$$\begin{array}{c}
A : nputs \\
= (A + BC) + (D + \overline{D}) \\
= A + BC
\end{array}$$