1.3.2. Potencia de un primo que divide a un factorial . 10

•				
T	nd	ı •		
•	nc	11	C	Ω
1	TTC	L	v	C

					1.3.3. Factorización de un factorial	10
1.		ría de números	5		1.3.4. Factorización usando Pollard-Rho	10
	1.1.	Funciones básicas	5	1.4.	Funciones multiplicativas famosas	11
		1.1.1. Función piso y techo	5		1.4.1. Función σ	11
		1.1.2. Exponenciación y multiplicación binaria	5		1.4.2. Función Ω	11
		1.1.3. Mínimo común múltiplo y máximo común divisor	5		1.4.3. Función ω	11
		1.1.4. Euclides extendido e inverso modular	5		1.4.4. Función φ de Euler	11
		1.1.5. Todos los inversos módulo p	6		1.4.5. Función μ	12
		1.1.6. Exponenciación binaria modular	6	1.5.	Orden multiplicativo, raíces primitivas y raíces de la uni-	
		1.1.7. Teorema chino del residuo	6		- · · · · · · · · · · · · · · · · · · ·	12
		1.1.8. Coeficiente binomial	6		1.5.1. Función λ de Carmichael	12
		1.1.9. Fibonacci	7		1.5.2. Orden multiplicativo módulo m	12
	1.2.	Cribas	7		1.5.3. Número de raíces primitivas (generadores) módu-	
		1.2.1. Criba de divisores	7		lo m	12
		1.2.2. Criba de primos	7		1.5.4. Test individual de raíz primitiva módulo m	12
		1.2.3. Criba de factor primo más pequeño	7		1.5.5. Test individual de raíz k -ésima de la unidad módu-	10
		1.2.4. Criba de factores primos	8			13
		1.2.5. Criba de la función φ de Euler	8		1.5.6. Encontrar la primera raíz primitiva módulo m .	13
		1.2.6. Criba de la función μ	8		1.5.7. Encontrar la primera raíz k -ésima de la unidad módulo m	13
		1.2.7. Triángulo de Pascal	8		1.5.8. Logaritmo discreto	
		1.2.8. Segmented sieve	8		1.5.9. Raíz k-ésima discreta	
		1.2.9. Criba de primos lineal	9	1.6	Particiones	
		1.2.10. Criba lineal para funciones multiplicativas	9	1.0.		
	1 3		10		1.6.1. Función P (particiones de un entero positivo)	14
	1.0.		10		1.6.2. Función Q (particiones de un entero positivo en distintos sumandos)	15
		1.9.1. ractorizacion de un numero	10		1.6.3. Número de factorizaciones ordenadas	
					1.0.0. 1. dilloto de lactoridado ordenadas	-0

		$1.6.4.\;$ Número de factorizaciones no ordenadas	16			4.3.1. Otros valores para escoger la raíz y el módulo 25	5
	1.7.	Otros	16		4.4.	FFT módulo n arbitrario	6
		1.7.1. Cambio de base	16		4.5.	Aplicaciones	6
		1.7.2. Fracciones continuas	16			4.5.1. Multiplicación de polinomios	6
		1.7.3. Ecuación de Pell \dots	17			4.5.2. Multiplicación de números enteros grandes 26	6
2	NT-4		10			4.5.3. Inverso de un polinomio	6
۷.		neros racionales Estructura fraccion	18 18			4.5.4. Raíz cuadrada de un polinomio	7
3	Álæ	ebra lineal	19	5.	Geo	ometría 28	8
J .		Estructura matrix	19		5.1.	Estructura point	8
					5.2.	Verificar si un punto pertenece a una línea o segmento . 29	9
		Matriz inversa			5.3.	Intersección de líneas	9
	3.4.	Transpuesta	22		5.4.	Intersección de segmentos	9
	3.5.	Traza			5.5.	Distancia punto-recta	0
	3.6.	Determinante			5.6.	Perímetro y área de un polígono	0
	3.7.	Matriz de cofactores y adjunta			5.7.	Envolvente convexa (convex hull) de un polígono 30	0
		v v			5.8.	Verificar si un punto pertenece al perímetro de un polígono 30	0
		Factorización $PA = LU$			5.9.	Verificar si un punto pertenece a un polígono 31	1
		Polinomio característico			5.10.	. Par de puntos más cercanos	1
		. Gram-Schmidt			5.11.	. Vantage Point Tree (puntos más cercanos a cada punto) 3	1
		. Recurrencias lineales			5.12.	. Centroide de un polígono	2
	3.12	Simplex	24		5.13.	. Suma Minkowski	2
4.	FFT		24	6.	Gra	afos 35	3
		Funciones previas	24		6.1.	Estructura disjointSet	3
		FFT con raíces de la unidad complejas				·	
	4.3.	FFT con raíces de la unidad discretas (NTT)	25		6.3.	Estructura path	3

	6.4. Estructura graph	 33		8.1. Estructura flowEdge	40
	6.5. DFS genérica	 34		8.2. Estructura flowGraph	40
	6.6. Dijkstra con reconstrucción del camino más cor menos vértices	34		8.3. Algoritmo de Edmonds-Karp $O(VE^2)$	
	6.7. Bellman Ford con reconstrucción del camino más con menos vértices	35		8.5. Flujo máximo de costo mínimo	
	6.8. Floyd	 35	9.	Estructuras de datos	43
	6.9. Cerradura transitiva $O(V^3)$	 35		9.1. Segment Tree	43
	6.10. Cerradura transitiva $O(V^2)$	 35		9.1.1. Point updates, range queries	43
	6.11. Verificar si el grafo es bipartito	 36		9.1.2. Dinamic with lazy propagation	43
	6.12. Orden topológico	 36		9.2. Fenwick Tree	44
	6.13. Detectar ciclos	 36		9.3. SQRT Decomposition	44
	6.14. Puentes y puntos de articulación	 37		9.4. AVL Tree	45
	6.15. Componentes fuertemente conexas	 37		9.5. Treap	48
	6.16. Árbol mínimo de expansión (Kruskal) $\ \ldots \ \ldots$	 37		9.6. Ordered Set C++	50
	6.17. Máximo emparejamiento bipartito	 38		9.7. Splay Tree	50
	6.18. Circuito euleriano	 38		9.8. Sparse table	50
7.	. Árboles	39		9.9. Wavelet Tree	51
	7.1. Estructura tree	 39		9.10. Red Black Tree	51
	7.2. k -ésimo ancestro	 39	10	.Cadenas	52
	7.3. LCA	 39		10.1. Trie	52
	7.4. Distancia entre dos nodos	 40		10.2. KMP	52
	7.5. HLD	 40		10.3. Aho-Corasick	
	7.6. Link Cut	 40		10.4. Rabin-Karp	54
Q	. Flujos	40		10.5. Suffix Array	54
0.	· IIIJOS	40		10.6. Función Z \hdots	54

3

4

1	.Varios	55
	11.1. Lectura y escritura deint128	55
	11.2. Longest Common Subsequence (LCS) $\dots \dots$.	55
	11.3. Longest Increasing Subsequence (LIS)	55
	11.4. Día de la semana	56
	11.5. 2SAT	56
	11.6. Código Gray	56

5

1. Teoría de números

1.1. Funciones básicas

1.1.1. Función piso y techo

```
lli piso(lli a, lli b){
  if((a >= 0 \&\& b > 0) || (a < 0 \&\& b < 0)){}
    return a / b:
  }else{
    if(a \% b == 0) return a / b:
    else return a / b - 1;
 }
}
lli techo(lli a, lli b){
  if((a >= 0 \&\& b > 0) || (a < 0 \&\& b < 0)){}
    if(a \% b == 0) return a / b;
    else return a / b + 1;
  }else{
    return a / b;
  }
}
```

1.1.2. Exponenciación y multiplicación binaria

```
lli pow(lli b, lli e){
    lli ans = 1;
    while(e){
        if(e & 1) ans *= b;
        e >>= 1;
        b *= b;
    }
    return ans;
}

lli multMod(lli a, lli b, lli n){
    lli ans = 0;
    a %= n, b %= n;
    if(abs(b) > abs(a)) swap(a, b);
```

```
if(b < 0){
    a *= -1, b *= -1;
}
while(b){
    if(b & 1) ans = (ans + a) % n;
    b >>= 1;
    a = (a + a) % n;
}
return ans;
}
```

1.1.3. Mínimo común múltiplo y máximo común divisor

```
lli gcd(lli a, lli b){
  lli r:
  while(b != 0) r = a \% b, a = b, b = r;
  return a:
lli lcm(lli a, lli b){
  return b * (a / gcd(a, b));
lli gcd(vector<lli>> & nums){
  lli ans = 0;
  for(lli & num : nums) ans = gcd(ans, num);
  return ans;
}
lli lcm(vector<lli> & nums){
  lli ans = 1:
  for(lli & num : nums) ans = lcm(ans, num);
  return ans:
}
```

1.1.4. Euclides extendido e inverso modular

```
while(r1){
    q = r0 / r1;
    ri = r0 \% r1, r0 = r1, r1 = ri;
    si = s0 - s1 * q, s0 = s1, s1 = si;
    ti = t0 - t1 * q, t0 = t1, t1 = ti;
  s = s0, t = t0;
  return r0;
}
lli modularInverse(lli a, lli m){
  lli r0 = a, r1 = m, ri, s0 = 1, s1 = 0, si;
  while(r1){
    si = s0 - s1 * (r0 / r1), s0 = s1, s1 = si;
   ri = r0 \% r1, r0 = r1, r1 = ri;
  }
  if(r0 < 0) s0 *= -1;
  if(s0 < 0) s0 += m;
  return s0;
}
```

1.1.5. Todos los inversos módulo p

```
//find all inverses (from 1 to p-1) modulo p
vector<lli> allInverses(lli p){
  vector<lli> ans(p);
  ans[1] = 1;
  for(lli i = 2; i < p; ++i)
    ans[i] = p - (p / i) * ans[p % i] % p;
  return ans;
}</pre>
```

1.1.6. Exponenciación binaria modular

```
lli powMod(lli b, lli e, lli m){
  lli ans = 1;
  b %= m;
  if(e < 0){
    b = modularInverse(b, m);</pre>
```

```
e *= -1;
}
while(e){
  if(e & 1) ans = (ans * b) % m;
  e >>= 1;
  b = (b * b) % m;
}
return ans;
}
```

1.1.7. Teorema chino del residuo

1.1.8. Coeficiente binomial

```
lli ncr(lli n, lli r){
  if(r < 0 || r > n) return 0;
  r = min(r, n - r);
  lli ans = 1;
  for(lli den = 1, num = n; den <= r; den++, num--){
    ans = ans * num / den;
  }
  return ans;
}</pre>
```

7

1.1.9. Fibonacci

```
//very fast fibonacci
inline void modula(lli & n){
  while(n < 0) n += mod;
  while(n \ge mod) n -= mod:
}
array<lli, 2> mult(array<lli, 2> & A, array<lli, 2> & B){
  array<lli, 2> C;
  C[0] = A[0] * B[0] \% mod;
  11i C2 = A[1] * B[1] \% mod;
  C[1] = (A[0] + A[1]) * (B[0] + B[1]) % mod - (C[0] + C2);
  C[0] += C2;
  C[1] += C2;
  modula(C[0]), modula(C[1]);
  return C;
}
lli fibo(lli n){
  array<11i, 2 > ans = \{1, 0\}, tmp = \{0, 1\};
  while(n){
    if (n \& 1) ans = mult(ans, tmp);
    n >>= 1;
    if(n) tmp = mult(tmp, tmp);
  }
  return ans[1];
}
```

1.2. Cribas

1.2.1. Criba de divisores

```
vector<lli> divisorsSum;
vector<vector<int>> divisors;
void divisorsSieve(int n){
   divisorsSum.resize(n + 1, 0);
   divisors.resize(n + 1, vector<int>());
   for(int i = 1; i <= n; i++){
      for(int j = i; j <= n; j += i){</pre>
```

```
divisorsSum[j] += i;
  divisors[j].push_back(i);
}
}
```

1.2.2. Criba de primos

```
vector<int> primes;
vector<bool> isPrime;
void primesSieve(int n){
  isPrime.resize(n + 1, true);
  isPrime[0] = isPrime[1] = false;
  primes.push_back(2);
  for(int i = 4; i <= n; i += 2) isPrime[i] = false;</pre>
  int limit = sqrt(n);
  for(int i = 3; i \le n; i += 2){
    if(isPrime[i]){
      primes.push_back(i);
      if(i <= limit)</pre>
        for(int j = i * i; j <= n; j += 2 * i)
          isPrime[j] = false;
   }
 }
}
```

1.2.3. Criba de factor primo más pequeño

```
vector<int> lowestPrime;
void lowestPrimeSieve(int n){
  lowestPrime.resize(n + 1, 1);
  lowestPrime[0] = lowestPrime[1] = 0;
  for(int i = 2; i <= n; i++) lowestPrime[i] = (i & 1 ? i : 2);
  int limit = sqrt(n);
  for(int i = 3; i <= limit; i += 2){
    if(lowestPrime[i] == i){
      for(int j = i * i; j <= n; j += 2 * i){
        if(lowestPrime[j] == j) lowestPrime[j] = i;
    }
}</pre>
```

```
}
}
}
```

1.2.4. Criba de factores primos

```
vector<vector<int>> primeFactors;
void primeFactorsSieve(lli n){
  primeFactors.resize(n + 1, vector<int>());
  for(int i = 0; i < primes.size(); i++){
    int p = primes[i];
    for(int j = p; j <= n; j += p){
       primeFactors[j].push_back(p);
    }
  }
}</pre>
```

1.2.5. Criba de la función φ de Euler

```
vector<int> Phi;
void phiSieve(int n){
   Phi.resize(n + 1);
   for(int i = 1; i <= n; i++) Phi[i] = i;
   for(int i = 2; i <= n; i ++){
      if(Phi[i] == i){
        for(int j = i; j <= n; j += i){
            Phi[j] -= Phi[j] / i;
        }
      }
   }
}</pre>
```

1.2.6. Criba de la función μ

```
vector<int> Mu;
void muSieve(int n) {
  Mu.resize(n + 1, -1);
  Mu[0] = 0, Mu[1] = 1;
```

```
for(int i = 2; i <= n; ++i){
   if(Mu[i]){
     for(int j = 2*i; j <= n; j += i){
        Mu[j] -= Mu[i];
     }
   }
}</pre>
```

1.2.7. Triángulo de Pascal

1.2.8. Segmented sieve

```
vector<int> segmented_sieve(int limit){
  const int L1D_CACHE_SIZE = 32768;
  int raiz = sqrt(limit);
  int segment_size = max(raiz, L1D_CACHE_SIZE);
  int s = 3, n = 3;
  vector<int> primes(1, 2), tmp, next;
  vector<char> sieve(segment_size);
  vector<bool> is_prime(raiz + 1, 1);
  for(int i = 2; i * i <= raiz; i++)
    if(is_prime[i])
    for(int j = i * i; j <= raiz; j += i)
        is_prime[j] = 0;</pre>
```

```
for(int low = 0; low <= limit; low += segment_size){</pre>
    fill(sieve.begin(), sieve.end(), 1);
    int high = min(low + segment_size - 1, limit);
    for(; s * s \le high; s += 2){
      if(is_prime[s]){
        tmp.push_back(s);
        next.push_back(s * s - low);
      }
    }
    for(size_t i = 0; i < tmp.size(); i++){</pre>
      int j = next[i];
      for(int k = tmp[i] * 2; j < segment_size; j += k)</pre>
        sieve[j] = 0;
      next[i] = j - segment_size;
    }
    for(; n <= high; n += 2)
      if(sieve[n - low])
        primes.push_back(n);
  }
  return primes;
}
```

1.2.9. Criba de primos lineal

```
vector<int> linearPrimeSieve(int n){
  vector<int> primes;
  vector<bool> isPrime(n+1, true);
  for(int i = 2; i <= n; ++i){
    if(isPrime[i])
      primes.push_back(i);
  for(int p : primes){
    int d = i * p;
    if(d > n) break;
    isPrime[d] = false;
    if(i % p == 0) break;
  }
}
return primes;
}
```

1.2.10. Criba lineal para funciones multiplicativas

```
//suppose f(n) is a multiplicative function and
//we want to find f(1), f(2), ..., f(n)
//we have f(pq) = f(p)f(q) if qcd(p, q) = 1
//and f(p^a) = g(p, a), where p is prime and a>0
vector<int> generalSieve(int n, function<int(int, int)> g){
  vector\langle int \rangle f(n+1, 1), cnt(n+1), acum(n+1);
  vector<bool> isPrime(n+1, true);
 for(int i = 2; i <= n; ++i){
    if(isPrime[i]){ //case base: f(p)
      primes.push_back(i);
     f[i] = g(i, 1);
      cnt[i] = 1;
      acum[i] = i;
    for(int p : primes){
     int d = i * p;
     if(d > n) break;
     isPrime[d] = false;
     if(i % p == 0){ //qcd(i, p) != 1
        f[d] = f[i / acum[i]] * g(p, cnt[i] + 1);
        cnt[d] = cnt[i] + 1;
        acum[d] = acum[i] * p;
        break;
     }else{ //qcd(i, p) = 1}
        f[d] = f[i] * g(p, 1);
        cnt[d] = 1;
        acum[d] = p;
     }
   }
 return f;
```

1.3. Factorización

1.3.1. Factorización de un número

```
vector<pair<lli, int>> factorize(lli n){
  vector<pair<lli, int>> f;
  for(lli p : primes){
    if(p * p > n) break;
    int pot = 0;
    while(n % p == 0){
       pot++;
       n /= p;
    }
    if(pot) f.push_back(make_pair(p, pot));
}
if(n > 1) f.push_back(make_pair(n, 1));
  return f;
}
```

1.3.2. Potencia de un primo que divide a un factorial

```
lli potInFactorial(lli n, lli p){
    lli ans = 0;
    lli div = p;
    while(div <= n){
        ans += n / div;
        div *= p;
    }
    return ans;
}</pre>
```

1.3.3. Factorización de un factorial

```
vector<pair<lli, lli>> factorizeFactorial(lli n){
  vector<pair<lli, lli>> f;
  for(lli p : primes){
    if(p > n) break;
    f.push_back(make_pair(p, potInFactorial(n, p)));
  }
```

```
return f;
}
```

1.3.4. Factorización usando Pollard-Rho

```
bool isPrimeMillerRabin(lli n){
  if(n < 2) return false;
  if(n == 2) return true;
 lli d = n - 1, s = 0;
  while(!(d & 1)){
    d >>= 1;
    ++s;
  for(int i = 0; i < 16; ++i){
    lli a = 1 + rand() \% (n - 1);
    lli m = powMod(a, d, n);
    if (m == 1 \mid | m == n - 1) goto exit;
    for(int k = 0; k < s - 1; ++k){
      m = m * m % n;
      if(m == n - 1) goto exit;
    return false;
    exit:;
  return true;
lli factorPollardRho(lli n){
  lli a = 1 + rand() \% (n - 1);
 lli b = 1 + rand() \% (n - 1);
 lli x = 2, y = 2, d = 1;
  while (d == 1 \mid | d == -1) {
    x = x * (x + b) \% n + a;
    y = y * (y + b) \% n + a;
    y = y * (y + b) % n + a;
    d = gcd(x - y, n);
  }
  return abs(d);
```

```
map<lli, int> fact;
void factorizePollardRho(lli n){
  while(n > 1 && !isPrimeMillerRabin(n)){
    lli f;
    do{
      f = factorPollardRho(n);
    }while(f == n);
    n /= f;
    factorizePollardRho(f);
    for(auto & it : fact){
      while(n % it.first == 0){
        n /= it.first;
        ++it.second;
      }
    }
  }
  if(n > 1) ++fact[n];
```

1.4. Funciones multiplicativas famosas

1.4.1. Función σ

```
//divisor power sum of n
//if pot=0 we get the number of divisors
//if pot=1 we get the sum of divisors
lli sigma(lli n, lli pot){
  lli ans = 1;
  auto f = factorize(n);
  for(auto & factor : f){
    lli p = factor.first;
    int a = factor.second;
    if(pot){
      lli p_pot = pow(p, pot);
      ans *= (pow(p_pot, a + 1) - 1) / (p_pot - 1);
    }else{
      ans *= a + 1;
    }
  }
  return ans;
```

}

1.4.2. Función Ω

```
//number of total primes with multiplicity dividing n
int Omega(lli n){
  int ans = 0;
  auto f = factorize(n);
  for(auto & factor : f){
    ans += factor.second;
  }
  return ans;
}
```

1.4.3. Función ω

```
//number of distinct primes dividing n
int omega(lli n){
  int ans = 0;
  auto f = factorize(n);
  for(auto & factor : f){
    ++ans;
  }
  return ans;
}
```

1.4.4. Función φ de Euler

```
//number of coprimes with n less than n
lli phi(lli n){
    lli ans = n;
    auto f = factorize(n);
    for(auto & factor : f){
        ans -= ans / factor.first;
    }
    return ans;
}
```

1.4.5. Función μ

```
//1 if n is square-free with an even number of prime factors
//-1 if n is square-free with an odd number of prime factors
//0 is n has a square prime factor
int mu(lli n){
  int ans = 1;
  auto f = factorize(n);
  for(auto & factor : f){
    if(factor.second > 1) return 0;
    ans *= -1;
  }
  return ans;
}
```

1.5. Orden multiplicativo, raíces primitivas y raíces de la unidad

1.5.1. Función λ de Carmichael

```
//the smallest positive integer k such that for
//every coprime x with n, x^k=1 mod n

lli carmichaelLambda(lli n){
    lli ans = 1;
    auto f = factorize(n);
    for(auto & factor : f){
        lli p = factor.first;
        int a = factor.second;
        lli tmp = pow(p, a);
        tmp -= tmp / p;
        if(a <= 2 || p >= 3) ans = lcm(ans, tmp);
        else ans = lcm(ans, tmp >> 1);
    }
    return ans;
}
```

1.5.2. Orden multiplicativo módulo m

```
// the smallest positive integer k such that x^k = 1 mod m
lli multiplicativeOrder(lli x, lli m){
  if(gcd(x, m) != 1) return -1;
  lli order = phi(m);
  auto f = factorize(order);
  for(auto & factor : f){
    lli p = factor.first;
    int a = factor.second;
    order /= pow(p, a);
    lli tmp = powMod(x, order, m);
    while(tmp != 1){
       tmp = powMod(tmp, p, m);
       order *= p;
    }
  }
  return order;
}
```

1.5.3. Número de raíces primitivas (generadores) módulo m

```
//number of generators modulo m

lli numberOfGenerators(lli m){
   lli phi_m = phi(m);
   lli lambda_m = carmichaelLambda(m);
   if(phi_m == lambda_m) return phi(phi_m);
   else return 0;
}
```

1.5.4. Test individual de raíz primitiva módulo m

```
//test if order(x, m) = phi(m), i.e., x is a generator for Z/mZ
bool testPrimitiveRoot(lli x, lli m){
  if(gcd(x, m) != 1) return false;
  lli order = phi(m);
  auto f = factorize(order);
  for(auto & factor : f){
    lli p = factor.first;
```

```
if(powMod(x, order / p, m) == 1) return false;
}
return true;
}
```

1.5.5. Test individual de raíz k-ésima de la unidad módulo

m

1.5.6. Encontrar la primera raíz primitiva módulo m

```
lli findFirstGenerator(lli m){
  lli order = phi(m);
  if(order != carmichaelLambda(m)) return -1; //just an
  → optimization, not required
  auto f = factorize(order):
  for(lli x = 1; x < m; x++){
    if(gcd(x, m) != 1) continue;
    bool test = true:
    for(auto & factor : f){
     lli p = factor.first;
      if(powMod(x, order / p, m) == 1){
       test = false;
        break;
      }
    }
    if(test) return x;
```

```
return -1;
```

1.5.7. Encontrar la primera raíz k-ésima de la unidad módulo m

```
lli findFirstPrimitiveKthRootUnity(lli k, lli m){
  if(carmichaelLambda(m) % k != 0) return -1; //just an
  → optimization, not required
  auto f = factorize(k);
  for(lli x = 1; x < m; x++){
    if(powMod(x, k, m) != 1) continue;
    bool test = true:
    for(auto & factor : f){
     lli p = factor.first;
     if(powMod(x, k / p, m) == 1){
       test = false:
       break;
     }
    }
    if(test) return x;
  return -1;
```

1.5.8. Logaritmo discreto

```
// a^x = b mod m, a and m coprime
pair<lli, lli> discreteLogarithm(lli a, lli b, lli m){
  if(gcd(a, m) != 1) return make_pair(-1, 0);
  lli order = multiplicativeOrder(a, m);
  lli n = sqrt(order) + 1;
  lli a_n = powMod(a, n, m);
  lli ans = 0;
  unordered_map<lli, lli> firstHalf;
  lli current = a_n;
  for(lli p = 1; p <= n; p++){
    firstHalf[current] = p;
    current = (current * a_n) % m;</pre>
```

```
current = b % m;
for(lli q = 0; q <= n; q++){
  if(firstHalf.count(current)){
    lli p = firstHalf[current];
    lli x = n * p - q;
    return make_pair(x % order, order);
}
  current = (current * a) % m;
}
return make_pair(-1, 0);
}</pre>
```

1.5.9. Raíz k-ésima discreta

```
// x^k = b \mod m, m has at least one generator
vector<lli>discreteRoot(lli k, lli b, lli m){
  if(b \% m == 0) return {0};
  lli g = findFirstGenerator(m);
  lli power = powMod(g, k, m);
  auto y0 = discreteLogarithm(power, b, m);
  if(y0.first == -1) return {};
  lli phi_m = phi(m);
  lli d = gcd(k, phi_m);
  vector<lli> x(d);
  x[0] = powMod(g, y0.first, m);
  lli inc = powMod(g, phi_m / d, m);
  for(11i i = 1; i < d; i++){
    x[i] = x[i - 1] * inc % m;
  sort(x.begin(), x.end());
  return x;
}
```

1.6. Particiones

1.6.1. Función P (particiones de un entero positivo)

```
lli mod = 1e9 + 7;
vector<lli> P;
//number of ways to write n as a sum of positive integers
lli partitionsP(int n){
  if(n < 0) return 0;
  if(P[n]) return P[n];
  int pos1 = 1, pos2 = 2, inc1 = 4, inc2 = 5;
  lli ans = 0;
  for(int k = 1; k \le n; k++){
    lli tmp = (n \ge pos1 ? P[n - pos1] : 0) + (n \ge pos2 ? P[n]
    \rightarrow - pos2] : 0);
    if(k & 1){
      ans += tmp;
    }else{
      ans -= tmp;
    if(n < pos2) break;
    pos1 += inc1, pos2 += inc2;
    inc1 += 3, inc2 += 3;
  ans %= mod;
  if (ans < 0) ans += mod;
  return ans;
}
void calculateFunctionP(int n){
 P.resize(n + 1);
 P[0] = 1;
 for(int i = 1; i <= n; i++){
    P[i] = partitionsP(i);
 }
}
```

1.6.2. Función Q (particiones de un entero positivo en distintos sumandos)

```
vector<lli>Q;
bool isPerfectSquare(int n){
  int r = sqrt(n);
  return r * r == n;
}
int s(int n){
  int r = 1 + 24 * n;
  if(isPerfectSquare(r)){
    int j;
    r = sqrt(r);
    if((r + 1) \% 6 == 0) j = (r + 1) / 6;
    else i = (r - 1) / 6;
    if(j & 1) return -1;
    else return 1;
  }else{
    return 0;
  }
}
//number of ways to write n as a sum of distinct positive
\hookrightarrow integers
//number of ways to write n as a sum of odd positive integers
lli partitionsQ(int n){
  if(n < 0) return 0;
  if(Q[n]) return Q[n];
  int pos = 1, inc = 3;
 lli ans = 0;
  int limit = sqrt(n);
  for(int k = 1; k <= limit; k++){</pre>
    if(k & 1){
      ans += Q[n - pos];
    }else{
      ans -= Q[n - pos];
    pos += inc;
    inc += 2;
```

```
ans <<= 1;
ans += s(n);
ans %= mod;
if(ans < 0) ans += mod;
return ans;
}

void calculateFunctionQ(int n){
  Q.resize(n + 1);
  Q[0] = 1;
  for(int i = 1; i <= n; i++){
     Q[i] = partitionsQ(i);
  }
}</pre>
```

1.6.3. Número de factorizaciones ordenadas

```
//number of ordered factorizations of n
lli orderedFactorizations(lli n){
  //skip the factorization if you already know the powers
  auto fact = factorize(n);
  int k = 0, q = 0;
  vector<int> powers(fact.size() + 1);
  for(auto & f : fact){
    powers[k + 1] = f.second;
   q += f.second;
    ++k;
  }
  vector<lli> prod(q + 1, 1);
  //we need Ncr until the max_power+Omega(n) row
  //module if needed
 for(int i = 0; i \le q; i++){
   for(int j = 1; j \le k; j++){
     prod[i] = prod[i] * Ncr[powers[j] + i][powers[j]];
   }
  }
 lli ans = 0;
 for(int j = 1; j \le q; j++){
   int alt = 1;
```

```
for(int i = 0; i < j; i++){
    ans = ans + alt * Ncr[j][i] * prod[j - i - 1];
    alt *= -1;
    }
}
return ans;
}</pre>
```

1.6.4. Número de factorizaciones no ordenadas

```
//Number of unordered factorizations of n with
//largest part at most m
//Call unorderedFactorizations(n, n) to get all of them
//Add this to the main to speed up the map:
//mem.reserve(1024); mem.max_load_factor(0.25);
struct HASH{
  size_t operator()(const pair<int,int>&x)const{
    return hash<long long>()(((long long)x.first)^(((long
    \rightarrow long)x.second)<<32));
  }
};
unordered_map<pair<int, int>, lli, HASH> mem;
lli unorderedFactorizations(int m, int n){
  if(m == 1 && n == 1) return 1;
  if (m == 1) return 0;
  if(n == 1) return 1;
  if(mem.count({m, n})) return mem[{m, n}];
  lli ans = 0;
  int l = sqrt(n);
  for(int i = 1; i \le 1; ++i){
    if(n \% i == 0){
      int a = i, b = n / i;
      if(a <= m) ans += unorderedFactorizations(a, b);</pre>
      if (a != b && b <= m) ans += unorderedFactorizations(b,
      \rightarrow a);
    }
  }
  return mem[{m, n}] = ans;
```

1.7. Otros

1.7.1. Cambio de base

```
string decimalToBaseB(lli n, lli b){
  string ans = "";
 lli digito;
  do{
    digito = n % b;
   if(0 <= digito && digito <= 9){
      ans = (char)(48 + digito) + ans;
   }else if(10 <= digito && digito <= 35){
      ans = (char)(55 + digito) + ans;
   n /= b;
  }while(n != 0);
 return ans;
lli baseBtoDecimal(const string & n, lli b){
 lli ans = 0:
 for(const char & digito : n){
    if(48 <= digito && digito <= 57){
      ans = ans * b + (digito - 48);
   }else if(65 <= digito && digito <= 90){
      ans = ans * b + (digito - 55);
   }else if(97 <= digito && digito <= 122){
      ans = ans * b + (digito - 87);
   }
 }
 return ans;
```

1.7.2. Fracciones continuas

```
//continued fraction of (p+sqrt(n))/q, where p,n,q are positive

→ integers
//returns a vector of terms and the length of the period,
//the periodic part is taken from the right of the array
pair<vector<lli>, int> ContinuedFraction(lli p, lli n, lli q){
```

17

```
vector<lli> coef;
  lli r = sqrt(n);
  if(r * r == n){
    lli num = p + r;
    lli den = q;
    lli residue;
    while(den){
      residue = num % den;
      coef.push_back(num / den);
      num = den;
      den = residue;
    }
    return make_pair(coef, 0);
 if((n - p * p) \% q != 0){
    n *= q * q;
    p *= q;
    q *= q;
    r = sqrt(n);
  lli a = (r + p) / q;
  coef.push_back(a);
  int period = 0;
  map<pair<lli, lli>, int> pairs;
  while(true){
    p = a * q - p;
    q = (n - p * p) / q;
    a = (r + p) / q;
    if(pairs.count(make_pair(p, q))){ //if p=0  and q=1, we can
    \rightarrow just ask if q==1 after inserting a
      period -= pairs[make_pair(p, q)];
      break;
    }
    coef.push_back(a);
    pairs[make_pair(p, q)] = period++;
  return make_pair(coef, period);
}
```

1.7.3. Ecuación de Pell

```
//first solution (x, y) to the equation x^2-ny^2=1
pair<lli; lli> PellEquation(lli n){
  vector<lli> cf = ContinuedFraction(0, n, 1).first;
  lli num = 0, den = 1;
  int k = cf.size() - 1;
  for(int i = ((k & 1) ? (2 * k - 1) : (k - 1)); i >= 0; i--){
    lli tmp = den;
    int pos = i % k;
    if(pos == 0 && i != 0) pos = k;
    den = num + cf[pos] * den;
    num = tmp;
  }
  return make_pair(den, num);
}
```

2. Números racionales

2.1. Estructura fraccion

```
struct fraccion{
   lli num, den;
   fraccion(){
       num = 0, den = 1;
   fraccion(lli x, lli y){
       if(y < 0)
           x *= -1, y *=-1;
       lli d = \_gcd(abs(x), abs(y));
       num = x/d, den = y/d;
   fraccion(lli v){
        num = v;
        den = 1;
   fraccion operator+(const fraccion& f) const{
       lli d = __gcd(den, f.den);
        return fraccion(num*(f.den/d) + f.num*(den/d),
        \rightarrow den*(f.den/d));
   }
   fraccion operator-() const{
        return fraccion(-num, den);
   fraccion operator-(const fraccion& f) const{
       return *this + (-f);
   }
   fraccion operator*(const fraccion& f) const{
        return fraccion(num*f.num, den*f.den);
   }
   fraccion operator/(const fraccion& f) const{
        return fraccion(num*f.den, den*f.num);
   fraccion operator+=(const fraccion& f){
        *this = *this + f;
       return *this;
   fraccion operator = (const fraccion& f){
```

```
*this = *this - f;
    return *this;
fraccion operator++(int xd){
    *this = *this + 1;
    return *this;
fraccion operator--(int xd){
    *this = *this - 1;
    return *this;
fraccion operator*=(const fraccion& f){
    *this = *this * f;
    return *this;
}
fraccion operator/=(const fraccion& f){
    *this = *this / f;
    return *this;
}
bool operator == (const fraccion& f) const{
    lli d = __gcd(den, f.den);
    return (num*(f.den/d) == (den/d)*f.num);
bool operator!=(const fraccion& f) const{
    lli d = __gcd(den, f.den);
    return (num*(f.den/d) != (den/d)*f.num);
bool operator >(const fraccion& f) const{
    lli d = __gcd(den, f.den);
    return (num*(f.den/d) > (den/d)*f.num);
bool operator <(const fraccion& f) const{</pre>
    lli d = __gcd(den, f.den);
    return (num*(f.den/d) < (den/d)*f.num);
}
bool operator >=(const fraccion& f) const{
    lli d = __gcd(den, f.den);
    return (num*(f.den/d) >= (den/d)*f.num);
}
bool operator <=(const fraccion& f) const{</pre>
    lli d = __gcd(den, f.den);
```

```
return (num*(f.den/d) <= (den/d)*f.num);
    }
    fraccion inverso() const{
        return fraccion(den, num);
    }
    fraccion fabs() const{
        fraccion nueva:
        nueva.num = abs(num);
        nueva.den = den;
        return nueva;
    }
    double value() const{
      return (double) num / (double) den;
    string str() const{
        stringstream ss;
        ss << num;
        if(den != 1) ss << "/" << den;
        return ss.str();
    }
};
ostream &operator << (ostream &os, const fraccion & f) {
    return os << f.str();
}
istream &operator>>(istream &is, fraccion & f){
    lli num = 0, den = 1;
    string str;
    is >> str;
    size_t pos = str.find("/");
    if(pos == string::npos){
        istringstream(str) >> num;
    }else{
        istringstream(str.substr(0, pos)) >> num;
        istringstream(str.substr(pos + 1)) >> den;
    f = fraccion(num, den);
    return is;
}
```

3. Álgebra lineal

3.1. Estructura matrix

```
template <typename entrada>
struct matrix{
 vector< vector<entrada> > A;
 int m, n;
 matrix(int _m, int _n){
   m = _m, n = _n;
   A.resize(m, vector<entrada>(n, 0));
 vector<entrada> & operator[] (int i){
   return A[i];
 }
 void multiplicarFilaPorEscalar(int k, entrada c){
   for(int j = 0; j < n; j++) A[k][j] *= c;
 }
 void intercambiarFilas(int k, int 1){
    swap(A[k], A[1]);
  }
 void sumaMultiploFilaAOtra(int k, int l, entrada c){
   for(int j = 0; j < n; j++) A[k][j] += c * A[l][j];
 matrix operator+(const matrix & B) const{
   if(m == B.m \&\& n == B.n){
     matrix<entrada> C(m, n);
     for(int i = 0; i < m; i++){
       for(int j = 0; j < n; j++){
         C[i][j] = A[i][j] + B.A[i][j];
       }
     return C;
   }else{
```

```
return *this;
 }
}
matrix operator+=(const matrix & M){
  *this = *this + M;
  return *this;
}
matrix operator-() const{
  matrix<entrada> C(m, n);
  for(int i = 0; i < m; i++){
   for(int j = 0; j < n; j++){
      C[i][j] = -A[i][j];
   }
  }
  return C;
matrix operator-(const matrix & B) const{
  return *this + (-B);
}
matrix operator = (const matrix & M){
  *this = *this + (-M);
 return *this;
}
matrix operator*(const matrix & B) const{
  if(n == B.m){
    matrix<entrada> C(m, B.n);
    for(int i = 0; i < m; i++){
      for(int j = 0; j < B.n; j++){
        for(int k = 0; k < n; k++){
          C[i][j] += A[i][k] * B.A[k][j];
        }
     }
    }
    return C;
  }else{
    return *this;
```

```
matrix operator*(const entrada & c) const{
  matrix<entrada> C(m, n);
 for(int i = 0; i < m; i++){
   for(int j = 0; j < n; j++){
      C[i][j] = A[i][j] * c;
   }
 return C;
matrix operator *= (const matrix & M){
  *this = *this * M;
  return *this;
}
matrix operator*=(const entrada & c){
  *this = *this * c;
  return *this;
matrix operator^(lli b) const{
  matrix<entrada> ans = matrix<entrada>::identidad(n);
  matrix<entrada> A = *this;
  while(b){
   if (b & 1) ans *= A;
   b >>= 1;
   if(b) A *= A;
  return ans;
matrix operator^=(lli n){
  *this = *this ^ n;
  return *this;
}
bool operator==(const matrix & B) const{
  if(m == B.m \&\& n == B.n){
```

21

```
for(int i = 0; i < m; i++){
    for(int j = 0; j < n; j++){
        if(A[i][j] != B.A[i][j]) return false;
    }
}
return true;
}else{
    return false;
}

bool operator!=(const matrix & B) const{
    return !(*this == B);
}</pre>
```

3.2. Gauss Jordan

```
//For every elemental operation that we apply to the matrix,
//we will call to callback(operation, source row, dest row,
\rightarrow value).
//It returns the rank of the matrix, and modifies it
int gauss_jordan(bool full = true, bool makeOnes = true,

    function < void(int, int, int, entrada) > callback = NULL) {

  int i = 0, j = 0;
  while(i < m \&\& j < n){
    if(A[i][j] == 0){
      for(int f = i + 1; f < m; f++){
        if(A[f][j] != 0){
          intercambiarFilas(i, f);
          if(callback) callback(2, i, f, 0);
          break;
        }
      }
    }
    if(A[i][j] != 0){
      entrada inv_mult = A[i][j].inverso();
      if(makeOnes && A[i][j] != 1){
        multiplicarFilaPorEscalar(i, inv_mult);
        if(callback) callback(1, i, 0, inv_mult);
      }
```

```
for(int f = (full ? 0 : (i + 1)); f < m; f++){
    if(f != i && A[f][j] != 0){
        entrada inv_adit = -A[f][j];
        if(!makeOnes) inv_adit *= inv_mult;
        sumaMultiploFilaAOtra(f, i, inv_adit);
        if(callback) callback(3, f, i, inv_adit);
    }
}
i++;
}
return i;
}

void eliminacion_gaussiana(){
    gauss_jordan(false);
}</pre>
```

3.3. Matriz inversa

```
static matrix identidad(int n){
  matrix<entrada> id(n, n);
  for(int i = 0; i < n; i++){
    id[i][i] = 1;
  }
  return id;
matrix<entrada> inversa(){
  if(m == n){
    matrix<entrada> tmp = *this;
   matrix<entrada> inv = matrix<entrada>::identidad(n);
    auto callback = [&](int op, int a, int b, entrada e){
     if(op == 1){
        inv.multiplicarFilaPorEscalar(a, e);
     else if(op == 2){
        inv.intercambiarFilas(a, b);
     else if(op == 3){
        inv.sumaMultiploFilaAOtra(a, b, e);
```

```
}
};
if(tmp.gauss_jordan(true, true, callback) == n){
   return inv;
}else{
   return *this;
}
}else{
   return *this;
}
}else{
```

3.4. Transpuesta

```
matrix<entrada> transpuesta(){
  matrix<entrada> T(n, m);
  for(int i = 0; i < m; i++){
    for(int j = 0; j < n; j++){
      T[j][i] = A[i][j];
    }
  }
  return T;
}</pre>
```

3.5. Traza

```
entrada traza(){
  entrada sum = 0;
  for(int i = 0; i < min(m, n); i++){
    sum += A[i][i];
  }
  return sum;
}</pre>
```

3.6. Determinante

```
entrada determinante(){
  if(m == n){
```

```
matrix<entrada> tmp = *this;
entrada det = 1;
auto callback = [&](int op, int a, int b, entrada e){
   if(op == 1){
     det /= e;
   }else if(op == 2){
     det *= -1;
   }
};
if(tmp.gauss_jordan(false, true, callback) != n) det = 0;
return det;
}else{
   return 0;
}
```

3.7. Matriz de cofactores y adjunta

```
matrix<entrada> menor(int x, int y){
  matrix<entrada> M(0, 0);
 for(int i = 0; i < m; i++){
   if(i != x){
      M.A.push_back(vector<entrada>());
     for(int j = 0; j < n; j++){
        if(j != y){
          M.A.back().push_back(A[i][j]);
        }
     }
   }
 M.m = m - 1;
 M.n = n - 1;
  return M;
entrada cofactor(int x, int y){
  entrada ans = menor(x, y).determinante();
 if((x + y) \% 2 == 1) ans *= -1;
  return ans;
}
```

```
matrix<entrada> cofactores(){
   matrix<entrada> C(m, n);
   for(int i = 0; i < m; i++){
      for(int j = 0; j < n; j++){
        C[i][j] = cofactor(i, j);
      }
   }
   return C;
}

matrix<entrada> adjunta(){
   return cofactores().transpuesta();
}
```

3.8. Factorización PA = LU

```
vector< matrix<entrada> > PA_LU(){
  matrix<entrada> U = *this;
  matrix<entrada> L = matrix<entrada>::identidad(n);
  matrix<entrada> P = matrix<entrada>::identidad(n);
  auto callback = [&](int op, int a, int b, entrada e){
   if(op == 2){
     L.intercambiarFilas(a, b);
     P.intercambiarFilas(a, b);
     L.A[a][a] = L.A[b][b] = 1;
     L.A[a][a + 1] = L.A[b][b - 1] = 0;
   else if(op == 3){
     L.A[a][b] = -e;
   }
  U.gauss_jordan(false, false, callback);
  return {P, L, U};
}
```

3.9. Polinomio característico

```
vector<entrada> polinomio(){
  matrix<entrada> M(n, n);
```

```
vector<entrada> coef(n + 1);
matrix<entrada> I = matrix<entrada>::identidad(n);
coef[n] = 1;
for(int i = 1; i <= n; i++){
    M = (*this) * M + I * coef[n - i + 1];
    coef[n - i] = -((*this) * M).traza() / i;
}
return coef;
}</pre>
```

3.10. Gram-Schmidt

```
matrix<entrada> gram_schmidt(){ //los vectores son las filas
\hookrightarrow de la matriz
  matrix<entrada> B = (*this) * (*this).transpuesta();
  matrix<entrada> ans = *this;
  auto callback = [&] (int op, int a, int b, entrada e) {
    if(op == 1){
      ans.multiplicarFilaPorEscalar(a, e);
    else if(op == 2){
      ans.intercambiarFilas(a, b);
    else if(op == 3){
      ans.sumaMultiploFilaAOtra(a, b, e);
    }
  };
  B.gauss_jordan(false, false, callback);
  return ans;
}
```

3.11. Recurrencias lineales

```
//Solves a linear recurrence relation of degree d of the form //F(n) = a(d-1)*F(n-1) + a(d-2)*F(n-2) + \ldots + a(1)*F(n-(d-1)) \rightarrow + a(0)*F(n-d) //with initial values F(0), F(1), \ldots, F(d-1) //It finds the nth term of the recurrence, F(n) //It values of a[0,\ldots,d) are in the array P[] lli solveRecurrence(lli *P, lli *init, int deg, lli n){ lli *ans = new lli[deg]();
```

```
11i *R = new 11i[2*deg]();
  ans[0] = 1;
  lli p = 1;
  for(lli v = n; v >>= 1; p <<= 1);
  auto mult = [&](int d){
   fill(R, R + 2*deg, 0);
    for(int i = 0; i < deg; i++)
      for(int j = 0; j < deg; j++)
        R[i + j + d] += ans[i] * ans[j];
    for(int i = 0; i < 2*deg; ++i) R[i] %= mod;
    for(int i = deg-1; i >= 0; i--){
      R[i + deg] \% = mod;
      for(int j = 0; j < deg; j++)
        R[i + j] += R[i + deg] * P[j];
    }
    for(int i = 0; i < deg; i++) R[i] %= mod;
    copy(R, R + deg, ans);
  };
  while(p){
    mult((n & p)!=0);
   p >>= 1;
  lli nValue = 0;
  for(int i = 0; i < deg; i++)
    nValue += ans[i] * init[i];
  return nValue % mod:
}
```

3.12. Simplex

4. FFT

4.1. Funciones previas

```
typedef complex<double> comp;
typedef long long int lli;
double PI = acos(-1.0);

int nearestPowerOfTwo(int n){
  int ans = 1;
  while(ans < n) ans <<= 1;
  return ans;
}</pre>
```

4.2. FFT con raíces de la unidad complejas

```
void fft(vector<comp> & X, int inv){
 int n = X.size();
 int len, len2, i, j, k;
 for(i = 1, j = 0; i < n - 1; ++i){
   for (k = n >> 1; (j = k) < k; k >>= 1);
   if (i < j) swap(X[i], X[j]);</pre>
 }
 double ang;
 comp t, u, v;
 vector<comp> wlen_pw(n >> 1);
 wlen_pw[0] = 1;
 for(len = 2; len <= n; len <<= 1){
   ang = inv == -1 ? -2 * PI / len : 2 * PI / len;
   len2 = len >> 1;
   comp wlen(cos(ang), sin(ang));
   for(i = 1; i < len2; ++i){}
     wlen_pw[i] = wlen_pw[i - 1] * wlen;
   for(i = 0; i < n; i += len){
     for(j = 0; j < len2; ++j){}
       t = X[i + j + len2] * wlen_pw[j];
       X[i + j + len2] = X[i + j] - t;
       X[i + j] += t;
     }
```

```
}
}
if(inv == -1){
  for(i = 0; i < n; ++i){
    X[i] /= n;
}
}</pre>
```

4.3. FFT con raíces de la unidad discretas (NTT)

```
int inverse(int a, int n){
  int r0 = a, r1 = n, ri, s0 = 1, s1 = 0, si;
  while(r1){
    si = s0 - s1 * (r0 / r1), s0 = s1, s1 = si;
    ri = r0 % r1, r0 = r1, r1 = ri;
  if(s0 < 0) s0 += n;
  return s0;
}
const int p = 7340033;
const int root = 5;
const int root_1 = inverse(root, p);
const int root_pw = 1 << 20;</pre>
void ntt(vector<int> & X, int inv){
  int n = X.size();
  int len, len2, wlen, i, j, k, u, v, w;
  for(i = 1, j = 0; i < n - 1; ++i){
   for (k = n >> 1; (j = k) < k; k >>= 1);
    if(i < j) swap(X[i], X[j]);</pre>
  }
  for(len = 2; len <= n; len <<= 1){
   len2 = len >> 1;
    wlen = (inv == -1) ? root_1 : root;
    for(i = len; i < root_pw; i <<= 1){
      wlen = (lli)wlen * wlen % p;
    for(i = 0; i < n; i += len){
```

```
w = 1;
for(j = 0; j < len2; ++j){
    u = X[i + j], v = (lli)X[i + j + len2] * w % p;
    X[i + j] = u + v < p ? u + v : u + v - p;
    X[i + j + len2] = u - v < 0 ? u - v + p : u - v;
    w = (lli)w * wlen % p;
}
}
if(inv == -1){
    int nrev = inverse(n, p);
    for(i = 0; i < n; ++i){
        X[i] = (lli)X[i] * nrev % p;
}
}</pre>
```

4.3.1. Otros valores para escoger la raíz y el módulo

Raíz <i>n</i> -ési-	ω^{-1}	Tamaño	Módulo p
ma de la		máximo del	-
unidad (ω)		arreglo (n)	
15	30584	2^{14}	$4 \times 2^{14} + 1 = 65537$
9	7282	2^{15}	$2 \times 2^{15} + 1 = 65537$
3	21846	2^{16}	$1 \times 2^{16} + 1 = 65537$
8	688129	2^{17}	$6 \times 2^{17} + 1 = 786433$
5	471860	2^{18}	$3 \times 2^{18} + 1 = 786433$
12	3364182	2^{19}	$11 \times 2^{19} + 1 = 5767169$
5	4404020	2^{20}	$7 \times 2^{20} + 1 = 7340033$
38	21247462	2^{21}	$11 \times 2^{21} + 1 = 23068673$
21	49932191	2^{22}	$25 \times 2^{22} + 1 = 104857601$
4	125829121	2^{23}	$20 \times 2^{23} + 1 = 167772161$
31	128805723		$119 \times 2^{23} + 1 = 998244353$
2	83886081	2^{24}	$10 \times 2^{24} + 1 = 167772161$
17	29606852	2^{25}	$5 \times 2^{25} + 1 = 167772161$
30	15658735	2^{26}	$7 \times 2^{26} + 1 = 469762049$
137	749463956	2^{27}	$15 \times 2^{27} + 1 = 2013265921$

4.4. FFT módulo n arbitrario

4.5. Aplicaciones

4.5.1. Multiplicación de polinomios

```
void multiplyPolynomials(vector<comp> & A, vector<comp> & B){
  int degree = A.size() + B.size() - 2;
  int size = nearestPowerOfTwo(degree + 1);
  A.resize(size):
  B.resize(size);
 fft(A, 1);
  fft(B, 1);
  for(int i = 0; i < size; i++){
    A[i] *= B[i];
  }
  fft(A, -1);
  A.resize(degree + 1);
}
void multiplyPolynomials(vector<int> & A, vector<int> & B){
  int degree = A.size() + B.size() - 2;
  int size = nearestPowerOfTwo(degree + 1);
  A.resize(size):
  B.resize(size);
  ntt(A, 1);
  ntt(B, 1);
  for(int i = 0; i < size; i++){
    A[i] = (lli)A[i] * B[i] % p;
  }
  ntt(A, -1);
  A.resize(degree + 1);
}
```

4.5.2. Multiplicación de números enteros grandes

```
string multiplyNumbers(const string & a, const string & b){
  int sgn = 1;
  int pos1 = 0, pos2 = 0;
  while(pos1 < a.size() && (a[pos1] < '1' || a[pos1] > '9')){
```

```
if(a[pos1] == '-') sgn *= -1;
  ++pos1;
while(pos2 < b.size() && (b[pos2] < '1' || b[pos2] > '9')){
  if(b[pos2] == '-') sgn *= -1;
  ++pos2;
}
vector<int> X(a.size() - pos1), Y(b.size() - pos2);
if(X.empty() || Y.empty()) return "0";
for(int i = pos1, j = X.size() - 1; i < a.size(); ++i){}
 X[j--] = a[i] - '0';
}
for(int i = pos2, j = Y.size() - 1; i < b.size(); ++i){</pre>
  Y[i--] = b[i] - '0';
}
multiplyPolynomials(X, Y);
stringstream ss;
if(sgn == -1) ss << "-";
int carry = 0;
for(int i = 0; i < X.size(); ++i){
 X[i] += carry;
  carry = X[i] / 10;
 X[i] \% = 10;
while(carry){
 X.push_back(carry % 10);
  carry /= 10;
for(int i = X.size() - 1; i >= 0; --i){
  ss << X[i];
return ss.str();
```

4.5.3. Inverso de un polinomio

26

```
vector<int> inversePolynomial(vector<int> & A){
  vector<int> R(1, inverse(A[0], p));
  while(R.size() < A.size()){
   int c = 2 * R.size();</pre>
```

```
R.resize(c);
                                                                       for(int i = 0; i < c; ++i){
    vector<int> TR = R;
                                                                         R[i] = R[i] + TF[i];
    TR.resize(nearestPowerOfTwo(2 * c));
                                                                         if(R[i] >= p) R[i] -= p;
    vector<int> TF(TR.size());
                                                                         R[i] = (lli)R[i] * inv2 % p;
    for(int i = 0; i < c; ++i){
                                                                       }
      TF[i] = A[i];
    }
                                                                     R.resize(A.size());
    ntt(TR, 1);
                                                                     return R;
    ntt(TF, 1);
    for(int i = 0; i < TR.size(); ++i){</pre>
      TR[i] = (lli)TR[i] * TR[i] % p * TF[i] % p;
    }
    ntt(TR, -1);
    TR.resize(2 * c);
    for(int i = 0; i < c; ++i){
      R[i] = R[i] + R[i] - TR[i];
      while(R[i] < 0) R[i] += p;
      while(R[i] >= p) R[i] -= p;
    }
  }
  R.resize(A.size());
  return R;
}
```

4.5.4. Raíz cuadrada de un polinomio

```
const int inv2 = inverse(2, p);

vector<int> sqrtPolynomial(vector<int> & A){
  int r0 = 1; //r0^2 = A[0] mod p
  vector<int> R(1, r0);
  while(R.size() < A.size()){
    int c = 2 * R.size();
    R.resize(c);
    vector<int> TF(c);
    for(int i = 0; i < c; ++i){
        TF[i] = A[i];
    }
    vector<int> IR = inversePolynomial(R);
    multiplyPolynomials(TF, IR);
```

5. Geometría

5.1. Estructura point

```
double eps = 1e-8;
# define M_PI 3.14159265358979323846
# define M_E 2.71828182845904523536
struct point{
  double x, y;
  point(): x(0), y(0){}
  point(double x, double y): x(x), y(y){}
  point operator+(const point & p) const{return point(x + p.x,
  \rightarrow y + p.y);}
  point operator-(const point & p) const{return point(x - p.x,
  \rightarrow y - p.y);}
  point operator*(const double & k) const{return point(x * k, y
  \rightarrow * k);}
  point operator/(const double & k) const{return point(x / k, y
  \rightarrow / k);}
  point operator+=(const point & p){*this = *this + p; return
  → *this;}
  point operator == (const point & p){*this = *this - p; return
  → *this;}
  point operator*=(const double & p){*this = *this * p; return
  → *this;}
  point operator/=(const double & p){*this = *this / p; return
  → *this;}
  point rotate(const double angle) const{
```

```
return point(x * cos(angle) - y * sin(angle), x *

    sin(angle) + y * cos(angle));
point rotate(const double angle, const point & p){
  return p + ((*this) - p).rotate(angle);
double dot(const point & p) const{
  return x * p.x + y * p.y;
double length() const{
  return hypot(x, y);
double cross(const point & p) const{
  return x * p.y - y * p.x;
point normalize() const{
  return (*this) / length();
point projection(const point & p) const{
  return (*this) * p.dot(*this) / dot(*this);
}
point normal(const point & p) const{
  return p - projection(p);
bool operator==(const point & p) const{
  return abs(x - p.x) < eps && abs(y - p.y) < eps;
bool operator!=(const point & p) const{
  return !(*this == p);
}
bool operator<(const point & p) const{</pre>
  if(abs(x - p.x) < eps){
   return y < p.y;
  }else{
    return x < p.x;
}
```

```
bool operator>(const point & p) const{
    if(abs(x - p.x) < eps){
      return y > p.y;
    }else{
      return x > p.x;
    }
  }
};
istream & operator >> (istream & is, point & P){
  point p;
    is >> p.x >> p.y;
    P = p;
    return is;
}
ostream & operator << (ostream & os, const point & p) {
    return os << fixed << setprecision(8) << p.x << " " << p.y;
}
int sgn(double x){
  if(abs(x) < eps){
   return 0;
  else if(x > 0)
    return 1:
  }else{
    return -1;
  }
}
```

5.2. Verificar si un punto pertenece a una línea o segmento

```
bool pointInLine(point & a, point & b, point & p){
   //line ab, point p
   return abs((p - a).cross(b - a)) < eps;
}
bool pointInSegment(point a, point b, point & p){
   //segment ab, point p</pre>
```

```
if(a > b) swap(a, b);
return pointInLine(a, b, p) && !(p < a || p > b);
}
```

5.3. Intersección de líneas

```
int intersectLinesInfo(point & a, point & b, point & c, point &
\rightarrow d){
  //line ab, line cd
 point v1 = b - a, v2 = d - c;
 double det = v1.cross(v2);
 if(abs(det) < eps){
    if(abs((c - a).cross(v1)) < eps){
      return -1; //infinity points
   }else{
      return 0; //no points
 }else{
    return 1; //single point
 }
}
point intersectLines(point & a, point & b, point & c, point &
\rightarrow d){
 //assuming that they intersect
 point v1 = b - a, v2 = d - c;
 double det = v1.cross(v2);
 return a + v1 * ((c - a).cross(v2) / det);
}
```

5.4. Intersección de segmentos

```
int intersectSegmentsInfo(point & a, point & b, point & c,

    point & d){
    //segment ab, segment cd

    point v1 = b - a, v2 = d - c;
    int t = sgn(v1.cross(c - a)), u = sgn(v1.cross(d - a));
    if(t == u){
        if(t == 0){
```

5.5. Distancia punto-recta

```
double distancePointLine(point & a, point & v, point & p){
   //line: a + tv, point p
   return abs(v.cross(p - a)) / v.length();
}
```

5.6. Perímetro y área de un polígono

```
double perimeter(vector<point> & points){
  int n = points.size();
  double ans = 0;
  for(int i = 0; i < n; i++){
    ans += (points[i] - points[(i + 1) % n]).length();
  }
  return ans;
}

double area(vector<point> & points){
  int n = points.size();
  double ans = 0;
  for(int i = 0; i < n; i++){
    ans += points[i].cross(points[(i + 1) % n]);
  }</pre>
```

```
return abs(ans / 2);
```

5.7. Envolvente convexa (convex hull) de un polígono

```
vector<point> convexHull(vector<point> points){
  sort(points.begin(), points.end());
 vector<point> L, U;
 for(int i = 0; i < points.size(); i++){</pre>
    while(L.size() >= 2 \&\& (L[L.size() - 2] -
    → points[i]).cross(L[L.size() - 1] - points[i]) <= 0){</pre>
      L.pop_back();
    L.push_back(points[i]);
 for(int i = points.size() - 1; i \ge 0; i--){
    while(U.size() >= 2 \&\& (U[U.size() - 2] -
    → points[i]).cross(U[U.size() - 1] - points[i]) <= 0){</pre>
      U.pop_back();
    U.push_back(points[i]);
 L.pop_back();
 U.pop_back();
 L.insert(L.end(), U.begin(), U.end());
 return L;
}
```

5.8. Verificar si un punto pertenece al perímetro de un polígono

```
bool pointInPerimeter(vector<point> & points, point & p){
  int n = points.size();
  for(int i = 0; i < n; i++){
    if(pointInSegment(points[i], points[(i + 1) % n], p)){
      return true;
    }
  }
  return false;</pre>
```

31

}

5.9. Verificar si un punto pertenece a un polígono

5.10. Par de puntos más cercanos

```
bool comp1(const point & a, const point & b){
  return a.y < b.y;
}
pair<point, point> closestPairOfPoints(vector<point> points){
  sort(points.begin(), points.end(), comp1);
  set<point> S;
  double ans = 1e9;
  point p, q;
  int pos = 0;
  for(int i = 0; i < points.size(); ++i){</pre>
    while(pos < i && abs(points[i].y - points[pos].y) >= ans){
      S.erase(points[pos++]);
    auto lower = S.lower_bound({points[i].x - ans - eps,
    \rightarrow -1e9});
    auto upper = S.upper_bound({points[i].x + ans + eps,
    \rightarrow -1e9});
    for(auto it = lower; it != upper; ++it){
```

```
double d = (points[i] - *it).length();
  if(d < ans){
    ans = d;
    p = points[i];
    q = *it;
    }
  }
  S.insert(points[i]);
}
return {p, q};</pre>
```

5.11. Vantage Point Tree (puntos más cercanos a cada punto)

```
struct vantage_point_tree{
  struct node
 {
   point p;
   double th;
   node *1, *r;
 }*root;
  vector<pair<double, point>> aux;
  vantage_point_tree(vector<point> &ps){
   for(int i = 0; i < ps.size(); ++i)</pre>
      aux.push_back({ 0, ps[i] });
   root = build(0, ps.size());
 node *build(int 1, int r){
   if(1 == r)
     return 0:
    swap(aux[1], aux[1 + rand() \% (r - 1)]);
   point p = aux[1++].second;
    if(1 == r)
     return new node({ p });
   for(int i = 1; i < r; ++i)
```

32

```
aux[i].first = (p - aux[i].second).length() * (p -

→ aux[i].second).length();
  int m = (1 + r) / 2;
  nth_element(aux.begin() + 1, aux.begin() + m, aux.begin() +
  \rightarrow r);
  return new node({ p, sqrt(aux[m].first), build(1, m),
  \rightarrow build(m, r) });
}
priority_queue<pair<double, node*>> que;
void k_nn(node *t, point p, int k){
  if(!t)
    return;
  double d = (p - t \rightarrow p).length();
  if(que.size() < k)</pre>
    que.push({ d, t });
  else if(que.top().first > d){
    que.pop();
    que.push({ d, t });
  if(!t->1 && !t->r)
    return;
  if(d < t->th){
    k_nn(t->1, p, k);
    if(t->th - d <= que.top().first)</pre>
      k_nn(t->r, p, k);
  }else{
    k_nn(t->r, p, k);
    if(d - t->th <= que.top().first)</pre>
      k_n(t->1, p, k);
  }
}
vector<point> k_nn(point p, int k){
  k_nn(root, p, k);
  vector<point> ans;
  for(; !que.empty(); que.pop())
    ans.push_back(que.top().second->p);
  reverse(ans.begin(), ans.end());
  return ans:
```

```
};
```

5.12. Centroide de un polígono

```
point centroid(vector<point> & points){
  point P;
  double div = 0;
  int n = points.size();
  for(int i = 0; i < n; ++i){
    double cross = points[i].cross(points[(i + 1) % n]);
    P += (points[i] + points[(i + 1) % n]) * cross;
    div += cross;
}
  return P / (3.0 * div);
}</pre>
```

5.13. Suma Minkowski

6. Grafos

6.1. Estructura disjointSet

```
struct disjointSet{
  int N;
  vector<short int> rank;
  vi parent, count;
  disjointSet(int N): N(N), parent(N), count(N), rank(N){}
  void makeSet(int v){
    count[v] = 1;
    parent[v] = v;
  }
  int findSet(int v){
    if(v == parent[v]) return v;
    return parent[v] = findSet(parent[v]);
  }
  void unionSet(int a, int b){
    a = findSet(a), b = findSet(b);
    if(a == b) return:
    if(rank[a] < rank[b]){</pre>
      parent[a] = b;
      count[b] += count[a];
    }else{
      parent[b] = a;
      count[a] += count[b];
      if(rank[a] == rank[b]) ++rank[a];
    }
  }
};
```

6.2. Estructura edge

```
struct edge{
  int source, dest, cost;
```

6.3. Estructura path

```
struct path{
  int cost = inf;
  vi vertices;
  int size = 1;
  int previous = -1;
};
```

6.4. Estructura graph

```
for(int i = 0; i < n; ++i)
    for(int j = 0; j < n; ++j)
      costMatrix[i][j] = (i == j ? 0 : inf);
}
void add(int source, int dest, int cost){
  adjList[source].emplace_back(source, dest, cost);
  edges.emplace_back(source, dest, cost);
  adjMatrix[source][dest] = true;
  costMatrix[source] [dest] = cost;
  if(!dir){
    adjList[dest].emplace_back(dest, source, cost);
    adjMatrix[dest][source] = true;
    costMatrix[dest][source] = cost;
  }
}
void buildPaths(vector<path> & paths){
  for(int i = 0; i < V; i++){
    int actual = i;
    for(int j = 0; j < paths[i].size; <math>j++){
      paths[i].vertices.push_back(actual);
      actual = paths[actual].previous;
    }
    reverse(paths[i].vertices.begin(),
    → paths[i].vertices.end());
  }
}
```

6.5. DFS genérica

```
void dfs(int u, vi & status, vi & parent){
  status[u] = 1;
  for(edge & current : adjList[u]){
    int v = current.dest;
    if(status[v] == 0){ //not visited
     parent[v] = u;
      dfs(v, status, parent);
   }else if(status[v] == 1){ //explored
     if(v == parent[u]){
```

```
//bidirectional node u<-->v
   }else{
      //back edge u-v
  }else if(status[v] == 2){ //visited
    //forward edge u-v
 }
}
status[u] = 2;
```

6.6. Dijkstra con reconstrucción del camino más corto con menos vértices

```
vector<path> dijkstra(int start){
 priority_queue<edge, vector<edge>, greater<edge>> cola;
  vector<path> paths(V, path());
  vb relaxed(V);
  cola.push(edge(start, 0));
 paths[start].cost = 0;
  while(!cola.empty()){
   int u = cola.top().dest; cola.pop();
   relaxed[u] = true;
   for(edge & current : adjList[u]){
      int v = current.dest;
      if(relaxed[v]) continue;
      int nuevo = paths[u].cost + current.cost;
      if(nuevo == paths[v].cost && paths[u].size + 1 <</pre>
      → paths[v].size){
        paths[v].previous = u;
        paths[v].size = paths[u].size + 1;
      }else if(nuevo < paths[v].cost){</pre>
        paths[v].previous = u;
        paths[v].size = paths[u].size + 1;
        cola.push(edge(v, nuevo));
        paths[v].cost = nuevo;
     }
   }
 buildPaths(paths);
```

```
return paths; return paths; }
```

6.7. Bellman Ford con reconstrucción del camino más 6.8. Floyd corto con menos vértices

```
vector<path> bellmanFord(int start){
  vector<path> paths(V, path());
 vi processed(V);
  vb inQueue(V);
  queue<int> Q;
  paths[start].cost = 0;
                                                                      return tmp;
  Q.push(start);
  while(!Q.empty()){
    int u = Q.front(); Q.pop(); inQueue[u] = false;
    if(paths[u].cost == inf) continue;
    ++processed[u];
    if(processed[u] == V){
      cout << "Negative cycle\n";</pre>
      return {};
    for(edge & current : adjList[u]){
      int v = current.dest;
      int nuevo = paths[u].cost + current.cost;
                                                                      return tmp;
      if(nuevo == paths[v].cost && paths[u].size + 1 <</pre>
      → paths[v].size){
        paths[v].previous = u;
        paths[v].size = paths[u].size + 1;
      }else if(nuevo < paths[v].cost){</pre>
        if(!inQueue[v]){
          Q.push(v);
          inQueue[v] = true;
        }
        paths[v].previous = u;
        paths[v].size = paths[u].size + 1;
        paths[v].cost = nuevo;
      }
                                                                            dfs(start, v);
    }
                                                                        }
  buildPaths(paths);
```

```
vector<vi> floyd(){
   vector<vi> tmp = costMatrix;
   for(int k = 0; k < V; ++k)
     for(int i = 0; i < V; ++i)
       for(int j = 0; j < V; ++j)
         if(tmp[i][k] != inf && tmp[k][j] != inf)
           tmp[i][j] = min(tmp[i][j], tmp[i][k] + tmp[k][j]);
6.9. Cerradura transitiva O(V^3)
  vector<vb> transitiveClosure(){
    vector<vb> tmp = adjMatrix;
   for(int k = 0; k < V; ++k)
     for(int i = 0; i < V; ++i)
       for(int j = 0; j < V; ++j)
         tmp[i][j] = tmp[i][j] || (tmp[i][k] && tmp[k][j]);
6.10. Cerradura transitiva O(V^2)
  vector<vb> transitiveClosureDFS(){
   vector<vb> tmp(V, vb(V));
   function<void(int, int)> dfs = [&](int start, int u){
     for(edge & current : adjList[u]){
       int v = current.dest;
       if(!tmp[start][v]){
         tmp[start][v] = true;
```

36

```
};
for(int u = 0; u < V; u++)
   dfs(u, u);
return tmp;
}</pre>
```

6.11. Verificar si el grafo es bipartito

```
bool isBipartite(){
  vi side(V, -1);
  queue<int> q;
  for (int st = 0; st < V; ++st){
    if(side[st] != -1) continue;
    q.push(st);
    side[st] = 0;
    while(!q.empty()){
      int u = q.front();
      q.pop();
      for (edge & current : adjList[u]){
        int v = current.dest;
        if(side[v] == -1) {
          side[v] = side[u] ^ 1;
          q.push(v);
        }else{
          if(side[v] == side[u]) return false;
        }
      }
    }
  }
  return true;
}
```

6.12. Orden topológico

```
vi topologicalSort(){
  int visited = 0;
  vi order, indegree(V);
  for(auto & node : adjList){
    for(edge & current : node){
```

```
int v = current.dest;
      ++indegree[v];
   }
  }
  queue<int> Q;
  for(int i = 0; i < V; ++i){
    if(indegree[i] == 0) Q.push(i);
  while(!Q.empty()){
    int source = Q.front();
    Q.pop();
    order.push_back(source);
    ++visited;
    for(edge & current : adjList[source]){
      int v = current.dest;
      --indegree[v];
      if(indegree[v] == 0) Q.push(v);
   }
  }
  if(visited == V) return order;
  else return {};
}
```

6.13. Detectar ciclos

```
bool hasCycle(){
  vi color(V);
  function<bool(int, int)> dfs = [&](int u, int parent){
    color[u] = 1;
  bool ans = false;
  int ret = 0;
  for(edge & current : adjList[u]){
    int v = current.dest;
    if(color[v] == 0)
      ans |= dfs(v, u);
    else if(color[v] == 1 && (dir || v != parent || ret++))
      ans = true;
  }
  color[u] = 2;
  return ans;
```

```
};
for(int u = 0; u < V; ++u)
   if(color[u] == 0 && dfs(u, -1))
     return true;
return false;
}</pre>
```

6.14. Puentes y puntos de articulación

```
pair<vb, vector<edge>> articulationBridges(){
  vi low(V), label(V);
  vb points(V);
 vector<edge> bridges;
  int time = 0;
  function<int(int, int)> dfs = [&](int u, int p){
    label[u] = low[u] = ++time;
    int hijos = 0, ret = 0;
    for(edge & current : adjList[u]){
      int v = current.dest;
      if(v == p && !ret++) continue;
      if(!label[v]){
        ++hijos;
        dfs(v, u);
        if(label[u] <= low[v])</pre>
          points[u] = true;
        if(label[u] < low[v])</pre>
          bridges.push_back(current);
        low[u] = min(low[u], low[v]);
      }
      low[u] = min(low[u], label[v]);
    }
    return hijos;
 };
 for(int u = 0; u < V; ++u)
    if(!label[u])
      points[u] = dfs(u, -1) > 1;
 return make_pair(points, bridges);
}
```

6.15. Componentes fuertemente conexas

```
vector<vi> scc(){
  vi low(V), label(V);
 int time = 0;
 vector<vi> ans;
 stack<int> S;
 function<void(int)> dfs = [&](int u){
   label[u] = low[u] = ++time;
   S.push(u);
   for(edge & current : adjList[u]){
     int v = current.dest;
     if(!label[v]) dfs(v);
     low[u] = min(low[u], low[v]);
   if(label[u] == low[u]){
      vi comp;
      while(S.top() != u){
        comp.push_back(S.top());
        low[S.top()] = V + 1;
        S.pop();
      comp.push_back(S.top());
     S.pop();
     ans.push_back(comp);
     low[u] = V + 1;
   }
 };
 for(int u = 0; u < V; ++u)
   if(!label[u]) dfs(u);
  return ans;
}
```

6.16. Árbol mínimo de expansión (Kruskal)

```
vector<edge> kruskal(){
  sort(edges.begin(), edges.end());
  vector<edge> MST;
  disjointSet DS(V);
  for(int u = 0; u < V; ++u)</pre>
```

```
DS.makeSet(u);
int i = 0;
while(i < edges.size() && MST.size() < V - 1){
  edge current = edges[i++];
  int u = current.source, v = current.dest;
  if(DS.findSet(u) != DS.findSet(v)){
    MST.push_back(current);
    DS.unionSet(u, v);
  }
}
return MST;
}</pre>
```

6.17. Máximo emparejamiento bipartito

```
bool tryKuhn(int u, vb & used, vi & left, vi & right){
  if(used[u]) return false;
  used[u] = true;
  for(edge & current : adjList[u]){
    int v = current.dest;
    if(right[v] == -1 || tryKuhn(right[v], used, left,

    right)){
      right[v] = u;
      left[u] = v;
      return true;
    }
  }
  return false;
}
bool augmentingPath(int u, vb & used, vi & left, vi & right){
  used[u] = true;
  for(edge & current : adjList[u]){
    int v = current.dest;
    if(right[v] == -1){
      right[v] = u;
      left[u] = v;
      return true;
    }
  }
```

```
for(edge & current : adjList[u]){
    int v = current.dest;
   if(!used[right[v]] && augmentingPath(right[v], used,
    → left, right)){
     right[v] = u;
     left[u] = v;
     return true;
   }
 }
 return false;
//vertices from the left side numbered from 0 to l-1
//vertices from the right side numbered from 0 to r-1
//graph[u] represents the left side
//graph[u][v] represents the right side
//we can use tryKuhn() or augmentingPath()
vector<pair<int, int>> maxMatching(int 1, int r){
  vi left(1, -1), right(r, -1);
  vb used(1);
 for(int u = 0; u < 1; ++u){
   tryKuhn(u, used, left, right);
   fill(used.begin(), used.end(), false);
  vector<pair<int, int>> ans;
 for(int u = 0; u < r; ++u){
   if(right[u] != -1){
     ans.emplace_back(right[u], u);
   }
 }
  return ans;
```

6.18. Circuito euleriano

7. Árboles

7.1. Estructura tree

```
struct tree{
  vi parent, level, weight;
 vector<vi> dists, DP;
  int n, root;
  void dfs(int u, graph & G){
    for(edge & curr : G.adjList[u]){
      int v = curr.dest;
      int w = curr.cost;
      if(v != parent[u]){
        parent[v] = u;
        weight[v] = w;
        level[v] = level[u] + 1;
        dfs(v, G);
      }
   }
 }
  tree(int n, int root): n(n), root(root), parent(n), level(n),
  \rightarrow weight(n), dists(n, vi(20)), DP(n, vi(20)){
    parent[root] = root;
  tree(graph & G, int root): n(G.V), root(root), parent(G.V),
  \rightarrow level(G.V), weight(G.V), dists(G.V, vi(20)), DP(G.V,
  \rightarrow vi(20)){
    parent[root] = root;
    dfs(root, G);
 }
  void pre(){
    for(int u = 0; u < n; u++){
      DP[u][0] = parent[u];
      dists[u][0] = weight[u];
    for(int i = 1; (1 << i) <= n; ++i){
```

7.2. k-ésimo ancestro

```
int ancestor(int p, int k){
  int h = level[p] - k;
  if(h < 0) return -1;
  int lg;
  for(lg = 1; (1 << lg) <= level[p]; ++lg);
  lg--;
  for(int i = lg; i >= 0; --i){
    if(level[p] - (1 << i) >= h){
      p = DP[p][i];
    }
  }
  return p;
}
```

7.3. LCA

39

```
int lca(int p, int q){
  if(level[p] < level[q]) swap(p, q);
  int lg;
  for(lg = 1; (1 << lg) <= level[p]; ++lg);
  lg--;
  for(int i = lg; i >= 0; --i){
    if(level[p] - (1 << i) >= level[q]){
      p = DP[p][i];
    }
  }
  if(p == q) return p;
  for(int i = lg; i >= 0; --i){
```

```
if(DP[p][i] != -1 && DP[p][i] != DP[q][i]){
    p = DP[p][i];
    q = DP[q][i];
}
return parent[p];
}
```

7.4. Distancia entre dos nodos

```
int dist(int p, int q){
  if(level[p] < level[q]) swap(p, q);</pre>
 int lg;
 for(lg = 1; (1 << lg) <= level[p]; ++lg);
 lg--;
 int sum = 0;
 for(int i = lg; i >= 0; --i){
    if(level[p] - (1 \ll i) >= level[q]){
      sum += dists[p][i];
      p = DP[p][i];
    }
  if(p == q) return sum;
 for(int i = lg; i >= 0; --i){
    if(DP[p][i] != -1 \&\& DP[p][i] != DP[q][i]){
      sum += dists[p][i] + dists[q][i];
      p = DP[p][i];
      q = DP[q][i];
    }
 }
  sum += dists[p][0] + dists[q][0];
  return sum;
}
```

7.5. HLD

7.6. Link Cut

8. Flujos

8.1. Estructura flowEdge

8.2. Estructura flowGraph

```
template<typename T>
struct flowGraph{
 T inf = numeric_limits<T>::max();
 vector<vector<flowEdge<T>*>> adjList;
 vector<int> dist, pos;
 int V;
 flowGraph(int V): V(V), adjList(V), dist(V), pos(V){}
  ~flowGraph(){
   for(int i = 0; i < V; ++i)
     for(int j = 0; j < adjList[i].size(); ++j)</pre>
        delete adjList[i][j];
 }
  void addEdge(int u, int v, T capacity, T cost = 0){
   flowEdge<T> *uv = new flowEdge<T>(v, 0, capacity, cost);
   flowEdge<T> *vu = new flowEdge<T>(u, capacity, capacity,
    \rightarrow -cost);
```

41

```
uv->res = vu;
vu->res = uv;
adjList[u].push_back(uv);
adjList[v].push_back(vu);
}
```

8.3. Algoritmo de Edmonds-Karp $O(VE^2)$

```
//Maximun Flow using Edmonds-Karp Algorithm O(VE^2)
T edmondsKarp(int s, int t){
 T \max Flow = 0;
  vector<flowEdge<T>*> parent(V);
  while(true){
   fill(parent.begin(), parent.end(), nullptr);
    queue<int> Q;
    Q.push(s);
    while(!Q.empty() && !parent[t]){
      int u = Q.front(); Q.pop();
      for(flowEdge<T> *v : adjList[u]){
        if(!parent[v->dest] && v->capacity > v->flow){
          parent[v->dest] = v;
          Q.push(v->dest);
       }
      }
   }
   if(!parent[t]) break;
   T f = inf;
   for(int u = t; u != s; u = parent[u]->res->dest)
      f = min(f, parent[u]->capacity - parent[u]->flow);
   for(int u = t; u != s; u = parent[u]->res->dest)
      parent[u]->addFlow(f);
    maxFlow += f;
 }
  return maxFlow;
}
```

8.4. Algoritmo de Dinic $O(V^2E)$

```
//Maximun Flow using Dinic Algorithm O(EV^2)
T blockingFlow(int u, int t, T flow){
  if(u == t) return flow;
  for(int &i = pos[u]; i < adjList[u].size(); ++i){</pre>
    flowEdge<T> *v = adjList[u][i];
    if (v\rightarrow capacity > v\rightarrow flow \&\& dist[u] + 1 ==

    dist[v->dest]){
      T fv = blockingFlow(v->dest, t, min(flow, v->capacity -
      \rightarrow v->flow));
      if(fv > 0){
        v->addFlow(fv);
        return fv;
      }
    }
  }
  return 0;
}
T dinic(int s, int t){
  T \max Flow = 0;
  dist[t] = 0;
  while (dist [t] != -1) {
    fill(dist.begin(), dist.end(), -1);
    queue<int> Q;
    Q.push(s);
    dist[s] = 0;
    while(!Q.empty()){
      int u = Q.front(); Q.pop();
      for(flowEdge<T> *v : adjList[u]){
        if(dist[v->dest] == -1 \&\& v->flow != v->capacity){
          dist[v->dest] = dist[u] + 1;
          Q.push(v->dest);
        }
      }
    if(dist[t] != -1){
      T f:
      fill(pos.begin(), pos.end(), 0);
      while(f = blockingFlow(s, t, inf))
        maxFlow += f;
```

```
parent[u]->addFlow(cap[t]);
}
return maxFlow;
return {maxFlow, minCost};
}
```

8.5. Flujo máximo de costo mínimo

```
//Max Flow Min Cost
pair<T, T> maxFlowMinCost(int s, int t){
  vector<bool> inQueue(V);
 vector<T> distance(V), cap(V);
 vector<flowEdge<T>*> parent(V);
 T maxFlow = 0, minCost = 0;
  while(true){
   fill(distance.begin(), distance.end(), inf);
   fill(parent.begin(), parent.end(), nullptr);
   fill(cap.begin(), cap.end(), 0);
   distance[s] = 0;
   cap[s] = inf;
    queue<int> Q;
    Q.push(s);
   while(!Q.empty()){
     int u = Q.front(); Q.pop(); inQueue[u] = 0;
     for(flowEdge<T> *v : adjList[u]){
        if(v->capacity > v->flow && distance[v->dest] >

    distance[u] + v->cost){
          distance[v->dest] = distance[u] + v->cost;
          parent[v->dest] = v;
          cap[v->dest] = min(cap[u], v->capacity - v->flow);
          if(!inQueue[v->dest]){
            Q.push(v->dest);
            inQueue[v->dest] = true;
          }
       }
     }
   if(!parent[t]) break;
   maxFlow += cap[t];
   minCost += cap[t] * distance[t];
   for(int u = t; u != s; u = parent[u]->res->dest)
```

9. Estructuras de datos

9.1. Segment Tree

9.1.1. Point updates, range queries

```
template<typename T>
struct SegmentTree{
  int N:
  vector<T> ST;
  SegmentTree(int N): N(N){
    ST.assign(N << 1, 0);
  }
  //build from an array in O(n)
  void build(vector<T> & arr){
    for(int i = 0; i < N; ++i)
      ST[N + i] = arr[i];
    for(int i = N - 1; i > 0; --i)
      ST[i] = ST[i << 1] + ST[i << 1 | 1];
  }
  //single element update in i
  void update(int i, T value){
    ST[i += N] = value; //update the element accordingly
    while(i >>= 1)
      ST[i] = ST[i << 1] + ST[i << 1 | 1];
  }
  //range query, [l, r]
  T query(int 1, int r){
    T res = 0;
   for(1 += N, r += N; 1 <= r; 1 >>= 1, r >>= 1){
     if(1 & 1) res += ST[1++];
      if(!(r \& 1)) res += ST[r--];
    }
    return res;
  }
};
```

9.1.2. Dinamic with lazy propagation

```
template<typename T>
struct SegmentTreeDin{
 SegmentTreeDin *left, *right;
 int 1, r;
 T value, lazy;
  SegmentTreeDin(int start, int end, vector<T> & arr):
  → left(NULL), right(NULL), l(start), r(end), value(0),
  \rightarrow lazy(0){
   if(l == r) value = arr[l];
   else{
      int half = 1 + ((r - 1) >> 1);
     left = new SegmentTreeDin(1, half, arr);
     right = new SegmentTreeDin(half+1, r, arr);
     value = left->value + right->value;
 }
 void propagate(T dif){
    value += (r - 1 + 1) * dif;
   if(1 != r){
     left->lazy += dif;
     right->lazy += dif;
   }
 }
 T query(int start, int end){
    if(lazy != 0){
      propagate(lazy);
     lazy = 0;
    if(end < 1 || r < start) return 0;</pre>
    if(start <= 1 && r <= end) return value;</pre>
    else return left->query(start, end) + right->query(start,
    \hookrightarrow end);
 }
 void update(int start, int end, T dif){
    if(lazy != 0){
```

```
propagate(lazy);
    lazy = 0;
}
if(end < 1 || r < start) return;
if(start <= 1 && r <= end) propagate(dif);
else{
    left->update(start, end, dif);
    right->update(start, end, dif);
    value = left->value + right->value;
}
}
void update(int i, T value){
    update(i, i, value);
};
};
```

9.2. Fenwick Tree

```
template<typename T>
struct FenwickTree{
  int N;
  vector<T> bit;
 FenwickTree(int N): N(N){
    bit.assign(N, 0);
 }
  void build(vector<T> & arr){
    for(int i = 0; i < arr.size(); ++i){</pre>
      update(i, arr[i]);
   }
 }
  //single element increment
  void update(int pos, T value){
    while(pos < N){
     bit[pos] += value;
      pos |= pos + 1;
    }
```

```
}
//range query, [0, r]
T query(int r){
   T res = 0;
   while(r >= 0){
      res += bit[r];
      r = (r & (r + 1)) - 1;
   }
   return res;
}

//range query, [l, r]
T query(int l, int r){
   return query(r) - query(l - 1);
}
};
```

9.3. SQRT Decomposition

```
struct MOquery{
  int 1, r, index, S;
  bool operator<(const MOquery & q) const{</pre>
    int c_o = 1 / S, c_q = q.1 / S;
    if(c_o == c_q)
      return r < q.r;
    return c_o < c_q;
 }
};
template<typename T>
struct SQRT{
  int N, S;
  vector<T> A, B;
  SQRT(int N): N(N){
    this->S = sqrt(N + .0) + 1;
    A.assign(N, 0);
    B.assign(S, 0);
```

```
current -= A[i];
void build(vector<T> & arr){
  A = vector<int>(arr.begin(), arr.end());
                                                                        for(i = prevL - 1; i >= q.l; --i){
 for(int i = 0; i < N; ++i) B[i / S] += A[i];
                                                                          //add to the left
}
                                                                          current += A[i];
//single element update
                                                                        for(i = max(prevR + 1, q.1); i \le q.r; ++i){
void update(int pos, T value){
                                                                          //add to the right
  int k = pos / S;
                                                                          current += A[i];
 A[pos] = value;
  T res = 0;
                                                                        for(i = prevR; i >= q.r + 1; --i){
  for(int i = k * S, end = min(N, (k + 1) * S) - 1; i \le end;
                                                                          //remove from the right
  \rightarrow ++i) res += A[i];
                                                                          current -= A[i];
  B[k] = res;
}
                                                                        prevL = q.1, prevR = q.r;
                                                                        ans[q.index] = current;
//range query, [l, r]
T query(int 1, int r){
                                                                      return ans;
  T res = 0;
                                                                    }
  int c_l = 1 / S, c_r = r / S;
                                                                  };
  if(c_1 == c_r){
    for(int i = 1; i <= r; ++i) res += A[i];
                                                                  9.4. AVL Tree
  }else{
    for(int i = 1, end = (c_1 + 1) * S - 1; i \le end; ++i)
    \rightarrow res += A[i];
                                                                  template<typename T>
    for(int i = c_1 + 1; i \le c_r - 1; ++i) res += B[i];
                                                                  struct AVLNode
    for(int i = c_r * S; i \le r; ++i) res += A[i];
  }
                                                                    AVLNode<T> *left, *right;
                                                                    short int height;
  return res;
}
                                                                    int size;
                                                                    T value;
//range queries offline using MO's algorithm
                                                                    AVLNode(T value = 0): left(NULL), right(NULL), value(value),
vector<T> MO(vector<MOquery> & queries){
                                                                    \rightarrow height(1), size(1){}
  vector<T> ans(queries.size());
  sort(queries.begin(), queries.end());
                                                                    inline short int balance(){
  T current = 0;
  int prevL = 0, prevR = -1;
                                                                      return (right ? right->height : 0) - (left ? left->height :
                                                                      \rightarrow 0);
  int i, j;
                                                                    }
  for(const MOquery & q : queries){
    for(i = prevL, j = min(prevR, q.l - 1); i \le j; ++i){
      //remove from the left
                                                                    inline void update(){
```

45

```
height = 1 + max(left ? left->height : 0, right ?
                                                                       if(bal > 1){

    right->height : 0);

                                                                          if(pos->right->balance() < 0) rightRotate(pos->right);
    size = 1 + (left ? left->size : 0) + (right ? right->size :
                                                                         leftRotate(pos);
    \rightarrow 0);
                                                                       else if(bal < -1){
  }
                                                                          if(pos->left->balance() > 0) leftRotate(pos->left);
                                                                         rightRotate(pos);
                                                                       }
  AVLNode *maxLeftChild(){
                                                                      }
    AVLNode *ret = this;
    while(ret->left) ret = ret->left;
                                                                      void insert(AVLNode<T> *&pos, T & value){
    return ret;
  }
                                                                        if(pos){
};
                                                                          value < pos->value ? insert(pos->left, value) :

    insert(pos->right, value);

template<typename T>
                                                                         pos->update(), updateBalance(pos);
struct AVLTree
                                                                       }else{
                                                                         pos = new AVLNode<T>(value);
  AVLNode<T> *root;
                                                                     }
  AVLTree(): root(NULL){}
                                                                      AVLNode<T> *search(T & value){
  inline int nodeSize(AVLNode<T> *& pos){return pos ?
                                                                        AVLNode<T> *pos = root;
  \rightarrow pos->size: 0;}
                                                                        while(pos){
                                                                         if(value == pos->value) break;
  int size(){return nodeSize(root);}
                                                                         pos = (value < pos->value ? pos->left : pos->right);
  void leftRotate(AVLNode<T> *& x){
                                                                       return pos;
    AVLNode<T> *y = x->right, *t = y->left;
    y->left = x, x->right = t;
    x->update(), y->update();
                                                                      void erase(AVLNode<T> *&pos, T & value){
                                                                        if(!pos) return;
    x = y;
  }
                                                                        if(value < pos->value) erase(pos->left, value);
                                                                        else if(value > pos->value) erase(pos->right, value);
  void rightRotate(AVLNode<T> *& y){
                                                                        else{
    AVLNode<T> *x = y->left, *t = x->right;
                                                                         if(!pos->left) pos = pos->right;
    x->right = y, y->left = t;
                                                                          else if(!pos->right) pos = pos->left;
    y->update(), x->update();
                                                                          else{
    y = x;
                                                                           pos->value = pos->right->maxLeftChild()->value;
  }
                                                                            erase(pos->right, pos->value);
                                                                         }
  void updateBalance(AVLNode<T> *& pos){
    short int bal = pos->balance();
                                                                        if(pos) pos->update(), updateBalance(pos);
```

```
}
                                                                     AVLNode<T> *pos = root;
                                                                     while(pos){
void insert(T value){insert(root, value);}
                                                                       if(x < pos->value){
                                                                         pos = pos->left;
void erase(T value){erase(root, value);}
                                                                       }else{
                                                                         ans += nodeSize(pos->left) + 1;
void updateVal(T old, T New){
                                                                         pos = pos->right;
  if(search(old))
    erase(old), insert(New);
                                                                     }
}
                                                                     return ans;
T kth(int i){
  if(i < 0 || i >= nodeSize(root)) return -1;
                                                                   int greaterThan(T & x){
  AVLNode<T> *pos = root;
                                                                     int ans = 0;
  while(i != nodeSize(pos->left)){
                                                                     AVLNode<T> *pos = root;
    if(i < nodeSize(pos->left)){
                                                                     while(pos){
      pos = pos->left;
                                                                       if(x < pos->value){
    }else{
                                                                         ans += nodeSize(pos->right) + 1;
      i -= nodeSize(pos->left) + 1;
                                                                         pos = pos->left;
      pos = pos->right;
                                                                       }else{
    }
                                                                         pos = pos->right;
  }
  return pos->value;
                                                                     }
}
                                                                     return ans;
int lessThan(T & x){
  int ans = 0;
                                                                   int greaterThanOrEqual(T & x){
  AVLNode<T> *pos = root;
                                                                     int ans = 0;
  while(pos){
                                                                     AVLNode<T> *pos = root;
   if(x > pos->value){
                                                                     while(pos){
      ans += nodeSize(pos->left) + 1;
                                                                       if(x > pos->value){
      pos = pos->right;
                                                                         pos = pos->right;
    }else{
                                                                       }else{
                                                                         ans += nodeSize(pos->right) + 1;
      pos = pos->left;
                                                                         pos = pos->left;
  }
  return ans;
                                                                     return ans;
int lessThanOrEqual(T & x){
  int ans = 0;
                                                                   int equalTo(T & x){
```

```
return lessThanOrEqual(x) - lessThan(x);
                                                                      inline void update(){
  }
                                                                        size = 1 + (left ? left->size : 0) + (right ? right->size :
  void build(AVLNode<T> *& pos, vector<T> & arr, int i, int j){
                                                                      }
    if(i > j) return;
                                                                    };
    int m = i + ((i - i) >> 1);
    pos = new AVLNode<T>(arr[m]);
                                                                    inline int nodeSize(Treap* &pos){
    build(pos->left, arr, i, m - 1);
                                                                      return pos ? pos->size: 0;
    build(pos->right, arr, m + 1, j);
                                                                    }
    pos->update();
  }
                                                                    void merge(Treap* &T, Treap* T1, Treap* T2){
                                                                      if(!T1) T = T2;
  void build(vector<T> & arr){
                                                                      else if(!T2) T = T1;
    build(root, arr, 0, (int)arr.size() - 1);
                                                                      else if (T1->key > T2->key)
  }
                                                                        merge(T1->right, T1->right, T2), T = T1;
                                                                      else
  void output(AVLNode<T> *pos, vector<T> & arr, int & i){
                                                                        merge(T2->left, T1, T2->left), T = T2;
    if(pos){
                                                                      if(T) T->update();
      output(pos->left, arr, i);
                                                                    }
      arr[++i] = pos->value;
      output(pos->right, arr, i);
                                                                    void split(Treap* T, int x, Treap* &T1, Treap* &T2){
    }
                                                                      if(!T)
  }
                                                                        return void(T1 = T2 = NULL);
                                                                      if(x < T->value)
  void output(vector<T> & arr){
                                                                        split(T->left, x, T1, T->left), T2 = T;
    int i = -1;
    output(root, arr, i);
                                                                        split(T->right, x, T->right, T2), T1 = T;
  }
                                                                      if(T) T->update();
};
                                                                    Treap* search(Treap* T, int x){
9.5.
      Treap
                                                                      while(T){
                                                                        if(x == T->value) break;
struct Treap{
                                                                        T = (x < T \rightarrow value ? T \rightarrow left : T \rightarrow right);
  Treap *left, *right;
                                                                      }
  int value;
                                                                      return T;
  int key, size;
                                                                    }
  Treap(int value = 0): value(value), key(rand()), size(1),
                                                                    void insert(Treap* &T, Treap* x){
  → left(NULL), right(NULL){}
                                                                      if(!T) T = x;
                                                                      else if(x->key > T->key)
```

```
i -= nodeSize(T->left) + 1;
    split(T, x->value, x->left, x->right), T = x;
  else
                                                                          T = T - > right;
    insert(x->value < T->value ? T->left : T->right, x);
                                                                        }
  if(T) T->update();
                                                                      }
}
                                                                      return T->value;
                                                                    }
void insert(Treap* &T, int x){insert(T, new Treap(x));}
                                                                    //implicit treap
void erase(Treap* &T, int x){
                                                                    void split(Treap* T, int i, Treap* &T1, Treap* &T2, int inc){
  if(!T) return;
                                                                      if(!T)
  if(T->value == x)
                                                                        return void(T1 = T2 = NULL);
                                                                      int curr = inc + nodeSize(T->left);
    merge(T, T->left, T->right);
                                                                      if(i <= curr)
    erase(x < T->value ? T->left : T->right, x);
                                                                        split(T->left, i, T1, T->left, inc), T2 = T;
  if(T) T->update();
}
                                                                        split(T->right, i, T->right, T2, curr + 1), T1 = T;
                                                                      if(T) T->update();
Treap* updateVal(Treap* &T, int old, int New){
  if(search(T, old))
                                                                    //insert the element "x" at position "i"
    erase(T, old), insert(T, New);
}
                                                                    void insert_at(Treap* &T, int x, int i){
                                                                      Treap *T1 = NULL, *T2 = NULL;
int lessThan(Treap* T, int x){
                                                                      split(T, i, T1, T2, 0);
  int ans = 0;
                                                                      merge(T1, T1, new Treap(x));
  while(T){
                                                                      merge(T, T1, T2);
    if(x > T->value){
      ans += nodeSize(T->left) + 1;
      T = T->right;
                                                                    void erase_at(Treap* &T, int i, int inc){
    }else{
                                                                      if(!T) return;
      T = T \rightarrow left;
                                                                      int curr = inc + nodeSize(T->left);
    }
                                                                      if(i == curr)
  }
                                                                        merge(T, T->left, T->right);
  return ans;
}
                                                                        erase_at(i < curr ? T->left : T->right, i, i < curr ? inc :</pre>
                                                                         \rightarrow curr + 1);
int kth(Treap* T, int i){
                                                                      if(T) T->update();
  if(i < 0 \mid | i >= nodeSize(T)) return -1;
  while(i != nodeSize(T->left)){
    if(i < nodeSize(T->left)){
                                                                    //delete element at position "i"
      T = T -> left;
                                                                    void erase_at(Treap* &T, int i){erase_at(T, i, 0);}
    }else{
```

```
//update value of element at position "i" with "x"
void update_at(Treap* T, int x, int i){
  if(i < 0 || i >= nodeSize(T)) return;
  while(i != nodeSize(T->left)){
    if(i < nodeSize(T->left)){
      T = T \rightarrow left;
    }else{
      i -= nodeSize(T->left) + 1;
      T = T->right;
    }
  }
  T->value = x;
}
void inorder(Treap* T){
  if(!T) return;
  inorder(T->left);
  cout << T->value << " ";
  inorder(T->right);
}
```

9.6. Ordered Set C++

```
}else if(t == 2){ //delete
    conj.erase(n);
  }else if(t == 3){ //update
    cin >> m;
    if(conj.find(n) != conj.end()){
      conj.erase(n);
      conj.insert(n);
  }else if(t == 4){ //lower bound
    cout << conj.order_of_key(n) << "\n";</pre>
  }else if(t == 5){ //get nth element
    auto pos = conj.find_by_order(n);
    if(pos != conj.end()) cout << *pos << "\n";
    else cout << "-1\n";
 }
}
return 0;
```

9.7. Splay Tree

9.8. Sparse table

```
template<typename T>
struct SparseTable{
 vector<vector<T>> ST;
 vector<int> logs;
 int K, N;
 SparseTable(vector<T> & arr){
   N = arr.size();
   K = log2(N) + 2;
   ST.assign(K + 1, vector<T>(N));
   logs.assign(N + 1, 0);
   for(int i = 2; i \le N; ++i)
     logs[i] = logs[i >> 1] + 1;
   for(int i = 0; i < N; ++i)
     ST[0][i] = arr[i];
   for(int j = 1; j \le K; ++j)
     for(int i = 0; i + (1 << j) <= N; ++i)
```

```
ST[j][i] = min(ST[j-1][i], ST[j-1][i+(1 << (j-1)[i])
                                                                        for(auto it = from; it != to; ++it)
        \rightarrow 1))]);
                                                                          freq.push_back(freq.back() + f(*it));
  }
                                                                        auto pivot = stable_partition(from, to, f);
                                                                        left = new WaveletTree(from, pivot, lo, m);
                                                                        right = new WaveletTree(pivot, to, m + 1, hi);
  T sum(int 1, int r){
    T ans = 0;
                                                                      }
    for(int j = K; j \ge 0; --j){
      if((1 << j) <= r - 1 + 1){
                                                                      //kth element in [l, r]
        ans += ST[j][1];
                                                                      int kth(int 1, int r, int k){
                                                                        if(1 > r) return 0;
        1 += 1 << j;
      }
                                                                        if(lo == hi) return lo;
    }
                                                                        int lb = freq[l - 1], rb = freq[r];
    return ans;
                                                                        int inLeft = rb - lb;
                                                                        if(k <= inLeft) return left->kth(lb + 1, rb, k);
                                                                        else return right->kth(l - lb, r - rb, k - inLeft);
  T minimal(int 1, int r){
                                                                      }
    int j = logs[r - l + 1];
    return min(ST[j][1], ST[j][r - (1 << j) + 1]);
                                                                      //number of elements less than or equal to k in [l, r]
  }
                                                                      int lessThanOrEqual(int 1, int r, int k){
};
                                                                        if(l > r \mid \mid k < lo) return 0;
                                                                        if(hi \leq k) return r - 1 + 1;
                                                                        int lb = freq[1 - 1], rb = freq[r];
9.9.
     Wavelet Tree
                                                                        return left->lessThanOrEqual(lb + 1, rb, k) +
                                                                         → right->lessThanOrEqual(1 - lb, r - rb, k);
struct WaveletTree{
                                                                      }
  int lo, hi;
  WaveletTree *left, *right;
                                                                      //number of elements equal to k in [l, r]
  vector<int> freq;
                                                                      int equalTo(int 1, int r, int k){
                                                                        if(1 > r \mid \mid k < lo \mid \mid k > hi) return 0;
  //queries indexed in base 1, complexity O(log(max\_element))
                                                                        if(lo == hi) return r - 1 + 1;
  //build from [from, to) with non-negative values in range [x,
                                                                        int lb = freq[l - 1], rb = freq[r];
  \hookrightarrow y]
                                                                        int m = (lo + hi) / 2;
  WaveletTree(vector<int>::iterator from, vector<int>::iterator
                                                                        if(k <= m) return left->equalTo(lb + 1, rb, k);
  \rightarrow to, int x, int y): lo(x), hi(y){
                                                                        else return right->equalTo(1 - lb, r - rb, k);
   if(lo == hi || from >= to) return;
                                                                      }
    int m = (lo + hi) / 2;
                                                                    };
    auto f = [m](int x){
      return x <= m;
                                                                    9.10. Red Black Tree
    };
    freq.reserve(to - from + 1);
```

ESCOM-IPN 51

freq.push_back(0);

10. Cadenas

10.1. Trie

```
struct Node{
    bool isWord = false;
  map<char, Node*> letters;
};
struct Trie{
  Node* root;
  Trie(){
    root = new Node();
  }
  inline bool exists(Node * actual, const char & c){
    return actual->letters.find(c) != actual->letters.end();
  }
  void InsertWord(const string& word){
    Node* current = root;
    for(auto & c : word){
      if(!exists(current, c))
        current->letters[c] = new Node();
      current = current->letters[c];
    current->isWord = true;
  }
  bool FindWord(const string& word){
    Node* current = root;
    for(auto & c : word){
      if(!exists(current, c))
        return false;
      current = current->letters[c];
    }
    return current->isWord;
  }
  void printRec(Node * actual, string acum){
```

```
if(actual->isWord){
      cout << acum << "\n";
    for(auto & next : actual->letters)
      printRec(next.second, acum + next.first);
  }
  void printWords(const string & prefix){
   Node * actual = root;
   for(auto & c : prefix){
      if(!exists(actual, c)) return;
      actual = actual->letters[c];
    printRec(actual, prefix);
 }
};
10.2. KMP
struct kmp{
  vector<int> aux;
  string pattern;
  kmp(string pattern){
    this->pattern = pattern;
    aux.resize(pattern.size());
    int i = 1, j = 0;
    while(i < pattern.size()){</pre>
      if(pattern[i] == pattern[j])
        aux[i++] = ++j;
      else{
        if(j == 0) aux[i++] = 0;
        else j = aux[j - 1];
      }
   }
  vector<int> search(string & text){
    vector<int> ans;
```

int i = 0, j = 0;

```
while(i < text.size() && j < pattern.size()){
    if(text[i] == pattern[j]){
        ++i, ++j;
        if(j == pattern.size()){
            ans.push_back(i - j);
            j = aux[j - 1];
        }
    }else{
        if(j == 0) ++i;
        else j = aux[j - 1];
    }
    return ans;
}</pre>
```

10.3. Aho-Corasick

```
const int M = 26;
struct node{
  vector<int> child;
  int p = -1;
  char c = 0;
  int suffixLink = -1, endLink = -1;
  int id = -1;
  node(int p = -1, char c = 0) : p(p), c(c){
    child.resize(M, −1);
 }
};
struct AhoCorasick{
  vector<node> t;
  vector<int> lenghts;
  int wordCount = 0;
  AhoCorasick(){
    t.emplace_back();
  }
```

```
void add(const string & s){
  int u = 0;
 for(char c : s){
    if(t[u].child[c-'a'] == -1){
      t[u].child[c-'a'] = t.size();
      t.emplace_back(u, c);
   u = t[u].child[c-'a'];
  t[u].id = wordCount++;
 lenghts.push_back(s.size());
void link(int u){
  if(u == 0){
    t[u].suffixLink = 0;
   t[u].endLink = 0;
   return;
  }
  if(t[u].p == 0){
   t[u].suffixLink = 0;
   if(t[u].id != -1) t[u].endLink = u;
    else t[u].endLink = t[t[u].suffixLink].endLink;
   return;
  int v = t[t[u].p].suffixLink;
  char c = t[u].c;
  while(true){
    if(t[v].child[c-'a'] != -1){
     t[u].suffixLink = t[v].child[c-'a'];
     break;
   }
    if(v == 0){
     t[u].suffixLink = 0;
     break;
    v = t[v].suffixLink;
  if(t[u].id != -1) t[u].endLink = u;
  else t[u].endLink = t[t[u].suffixLink].endLink;
}
```

```
void build(){
    queue<int> Q;
    Q.push(0);
    while(!Q.empty()){
     int u = Q.front(); Q.pop();
      link(u);
     for(int v = 0; v < M; ++v)
        if(t[u].child[v] != -1)
          Q.push(t[u].child[v]);
    }
  }
  int match(const string & text){
    int u = 0;
    int ans = 0;
    for(int j = 0; j < text.size(); ++j){</pre>
      int i = text[j] - 'a';
      while(true){
        if(t[u].child[i] != -1){
          u = t[u].child[i];
          break;
        }
        if(u == 0) break;
        u = t[u].suffixLink;
      }
      int v = u;
      while(true){
        v = t[v].endLink;
        if(v == 0) break;
        ++ans;
        int idx = j + 1 - lenghts[t[v].id];
        cout << "Found word #" << t[v].id << " at position " <<</pre>
        \rightarrow idx << "\n";
        v = t[v].suffixLink;
      }
    }
    return ans;
  }
};
```

10.4. Rabin-Karp

10.5. Suffix Array

10.6. Función Z

55

11. Varios

11.1. Lectura y escritura de __int128

```
//cout for __int128
ostream & operator << (ostream & os, const __int128 & value) {
  char buffer[64];
  char *pos = end(buffer) - 1;
  *pos = ' \setminus 0';
  __int128 tmp = value < 0 ? -value : value;
  do{
    --pos;
    *pos = tmp \% 10 + ^{'}0';
    tmp /= 10;
  }while(tmp != 0);
  if(value < 0){
    --pos;
    *pos = '-';
  return os << pos;
//cin for __int128
istream &operator>>(istream &is, __int128 & value){
  char buffer[64];
  is >> buffer;
  char *pos = begin(buffer);
  int sgn = 1;
  value = 0;
  if(*pos == '-'){
    sgn = -1;
    ++pos;
  }else if(*pos == '+'){
    ++pos;
  }
  while(*pos != '\0'){
    value = (value << 3) + (value << 1) + (*pos - '0');
    ++pos;
  }
  value *= sgn;
  return is;
```

}

11.2. Longest Common Subsequence (LCS)

```
int lcs(string & a, string & b){
  int m = a.size(), n = b.size();
  vector<vector<int>> aux(m + 1, vector<int>(n + 1));
  for(int i = 1; i <= m; ++i){
    for(int j = 1; j <= n; ++j){
      if(a[i - 1] == b[j - 1])
        aux[i][j] = 1 + aux[i - 1][j - 1];
      else
        aux[i][j] = max(aux[i - 1][j], aux[i][j - 1]);
    }
}
return aux[m][n];
}</pre>
```

11.3. Longest Increasing Subsequence (LIS)

11.4. Día de la semana

if(m == 1 | | m == 2){

m += 12;

//0:saturday, 1:sunday, ..., 6:friday

int dayOfWeek(int d, int m, lli y){

```
--y;
  }
  int k = y \% 100;
  lli j = y / 100;
  return (d + 13*(m+1)/5 + k + k/4 + j/4 + 5*j) \% 7;
}
11.5. 2SAT
struct satisfiability_twosat{
  int n;
  vector<vector<int>> imp;
  satisfiability_twosat(int n) : n(n), imp(2 * n) {}
  void add_edge(int u, int v){imp[u].push_back(v);}
  int neg(int u){return (n << 1) - u - 1;}</pre>
  void implication(int u, int v){
    add_edge(u, v);
    add_edge(neg(v), neg(u));
  }
  vector<bool> solve(){
    int size = 2 * n;
    vector<int> S, B, I(size);
    function<void(int)> dfs = [&](int u){
      B.push_back(I[u] = S.size());
      S.push_back(u);
      for(int v : imp[u])
        if(!I[v]) dfs(v);
```

```
else while (I[v] < B.back()) B.pop_back();</pre>
      if(I[u] == B.back())
        for(B.pop_back(), ++size; I[u] < S.size();</pre>

    S.pop_back())

          I[S.back()] = size;
    };
    for(int u = 0; u < 2 * n; ++u)
      if(!I[u]) dfs(u);
    vector<bool> values(n);
    for(int u = 0; u < n; ++u)
      if(I[u] == I[neg(u)]) return {};
      else values[u] = I[u] < I[neg(u)];</pre>
    return values;
 }
};
11.6. Código Gray
//gray code
int gray(int n){
 return n (n >> 1);
}
//inverse gray code
int inv_gray(int g){
 int n = 0;
  while(g){
   n = g;
```

g >>= 1;

return n;

56