04 deep convolutional generative adversarial network

September 29, 2021

1 Sample DCGAN Implementation using Keras

To illustrate the implementation of a GAN using Python, we use the [Deep Convolutional GAN](https://arxiv.org/abs/1511.06434 (DCGAN) example discussed in the Section 'Evolution of GAN Architectures' to synthesize images from the fashion MNIST dataset.

Adapted from https://github.com/eriklindernoren/Keras-GAN/blob/master/dcgan/dcgan.py

1.1 Imports & Settings

```
[1]: %matplotlib inline
   import matplotlib.pyplot as plt

import warnings
   import sys
   import numpy as np

from keras.datasets import mnist, fashion_mnist
   from keras.layers import Input, Dense, Reshape, Flatten, Dropout
   from keras.layers import BatchNormalization, Activation, ZeroPadding2D
   from keras.layers.advanced_activations import LeakyReLU
   from keras.layers.convolutional import UpSampling2D, Conv2D
   from keras.models import Sequential, Model
   from keras.optimizers import Adam
```

Using TensorFlow backend.

```
[2]: warnings.filterwarnings('ignore')

[3]: img_rows = 28
   img_cols = 28
   channels = 1
   img_shape = (img_rows, img_cols, channels)
   latent_dim = 100

[5]: epochs=4000
  batch_size=128
  save_interval=50
```

```
progress_every = 100
```

1.2 Helper

```
[6]: def save_imgs(epoch):
    r, c = 5, 5
    noise = np.random.normal(0, 1, (r * c, latent_dim))
    gen_imgs = generator.predict(noise)

# Rescale images 0 - 1
gen_imgs = 0.5 * gen_imgs + 0.5

fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
    for j in range(c):
        axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')
        axs[i,j].axis('off')
        cnt += 1
fig.savefig('images/fashion_mnist_{}.png'.format(epoch))
```

1.3 Build Discriminator

Both the discriminator and generator use a deep CNN architecture, wrapped in a function:

```
[7]: def build_discriminator():
         model = Sequential([
             Conv2D(32, kernel_size=3, strides=2, input_shape=img_shape,_
      →padding='same'),
             LeakyReLU(alpha=0.2),
             Dropout (0.25),
             Conv2D(64, kernel_size=3, strides=2, padding='same'),
             ZeroPadding2D(padding=((0, 1), (0, 1))),
             BatchNormalization(momentum=0.8),
             LeakyReLU(alpha=0.2),
             Dropout(0.25),
             Conv2D(128, kernel_size=3, strides=2, padding='same'),
             BatchNormalization(momentum=0.8),
             LeakyReLU(alpha=0.2),
             Dropout (0.25),
             Conv2D(256, kernel_size=3, strides=1, padding='same'),
             BatchNormalization(momentum=0.8),
             LeakyReLU(alpha=0.2),
             Dropout (0.25),
             Flatten(),
             Dense(1, activation='sigmoid')
         ])
```

```
model.summary()

img = Input(shape=img_shape)
validity = model(img)

return Model(img, validity)
```

A call to this function and subsequent compilation shows that this network has over 393,000 parameters.

```
[4]: optimizer = Adam(0.0002, 0.5)
```

WARNING:tensorflow:From

/home/stefan/.pyenv/versions/miniconda3-latest/envs/ml4t/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.

Instructions for updating:

Colocations handled automatically by placer.

WARNING:tensorflow:From

/home/stefan/.pyenv/versions/miniconda3-latest/envs/ml4t/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.

Instructions for updating:

Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 14, 14, 32)	320
leaky_re_lu_1 (LeakyReLU)	(None, 14, 14, 32)	0
dropout_1 (Dropout)	(None, 14, 14, 32)	0
conv2d_2 (Conv2D)	(None, 7, 7, 64)	18496
zero_padding2d_1 (ZeroPaddin	(None, 8, 8, 64)	0

batch_normalization_1 (Batch	(None,	8, 8,	64)	256
leaky_re_lu_2 (LeakyReLU)	(None,	8, 8,	64)	0
dropout_2 (Dropout)	(None,	8, 8,	64)	0
conv2d_3 (Conv2D)	(None,	4, 4,	128)	73856
batch_normalization_2 (Batch	(None,	4, 4,	128)	512
leaky_re_lu_3 (LeakyReLU)	(None,	4, 4,	128)	0
dropout_3 (Dropout)	(None,	4, 4,	128)	0
conv2d_4 (Conv2D)	(None,	4, 4,	256)	295168
batch_normalization_3 (Batch	(None,	4, 4,	256)	1024
leaky_re_lu_4 (LeakyReLU)	(None,	4, 4,	256)	0
dropout_4 (Dropout)	(None,	4, 4,	256)	0
flatten_1 (Flatten)	(None,	4096)		0
dense_1 (Dense)	(None,	1)		4097 =======
Total params: 393,729 Trainable params: 392,833 Non-trainable params: 896				

1.4 Build Generator

The generator network is slightly shallower but has more than twice as many parameters:

```
[9]: def build_generator():
    model = Sequential([
        Dense(128 * 7 * 7, activation='relu', input_dim=latent_dim),
        Reshape((7, 7, 128)),
        UpSampling2D(),
        Conv2D(128, kernel_size=3, padding='same'),
        BatchNormalization(momentum=0.8),
        Activation('relu'),
        UpSampling2D(),
        Conv2D(64, kernel_size=3, padding='same'),
        BatchNormalization(momentum=0.8),
        Activation('relu'),
        Conv2D(channels, kernel_size=3, padding='same'),
```

```
Activation('tanh')])

model.summary()
noise = Input(shape=(latent_dim,))
img = model(noise)

return Model(noise, img)
```

```
[10]: # Build the generator
generator = build_generator()
```

Layer (type)	Output	Shape		Param #
dense_2 (Dense)	(None,	6272)		633472
reshape_1 (Reshape)	(None,	7, 7, 12	28)	0
up_sampling2d_1 (UpSampling2	(None,	14, 14,	128)	0
conv2d_5 (Conv2D)	(None,	14, 14,	128)	147584
batch_normalization_4 (Batch	(None,	14, 14,	128)	512
activation_1 (Activation)	(None,	14, 14,	128)	0
up_sampling2d_2 (UpSampling2	(None,	28, 28,	128)	0
conv2d_6 (Conv2D)	(None,	28, 28,	64)	73792
batch_normalization_5 (Batch	(None,	28, 28,	64)	256
activation_2 (Activation)	(None,	28, 28,	64)	0
conv2d_7 (Conv2D)	(None,	28, 28,	1)	577
activation_3 (Activation)	(None,	28, 28,	1)	0
Total params: 856,193 Trainable params: 855,809 Non-trainable params: 384				

1.5 Create Combined Model

The combined model consists of the stacked generator and discriminator and trains the former to fool the latter:

```
[11]: # The generator takes noise as input and generates imgs
z = Input(shape=(latent_dim,))
img = generator(z)

# For the combined model we will only train the generator
discriminator.trainable = False

# The discriminator takes generated images as input and determines validity
valid = discriminator(img)

# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
combined = Model(z, valid)
combined.compile(loss='binary_crossentropy', optimizer=optimizer)
```

1.6 Load the Data

```
[12]: # Load the dataset
(X_train, _), (_, _) = fashion_mnist.load_data()

# Rescale -1 to 1
X_train = X_train / 127.5 - 1.
X_train = np.expand_dims(X_train, axis=3)
```

1.7 Adversarial Training

Adversarial training iterates over the epochs, generates random image and noise input, and trains both the discriminator and the generator (as part of the combined model):

```
[13]: # Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
```

```
for epoch in range(epochs):
    # Select a random half of images
    idx = np.random.randint(0, X_train.shape[0], batch_size)
    imgs = X_train[idx]

# Sample noise and generate a batch of new images
    noise = np.random.normal(0, 1, (batch_size, latent_dim))
    gen_imgs = generator.predict(noise)

# Train the discriminator (real classified as ones and generated as zeros)
    d_loss_real = discriminator.train_on_batch(imgs, valid)
    d_loss_fake = discriminator.train_on_batch(gen_imgs, fake)
    d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
```

```
# Train the generator (wants discriminator to mistake images as real)
g_loss = combined.train_on_batch(noise, valid)

# Plot the progress
if epoch % progress_every == 0:
    output = f'{epoch:5,d} | Discriminator Loss: {d_loss[0]:.4f} '
    output += f'Accuracy: {d_loss[1]:.2%} | Generator Loss: {g_loss:.4f}'
    print(output)

# If at save interval => save generated image samples
if epoch % save_interval == 0:
    save_imgs(epoch)
```

WARNING: tensorflow: From

/home/stefan/.pyenv/versions/miniconda3-latest/envs/ml4t/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.

Instructions for updating:

Use tf.cast instead.

```
0 | Discriminator Loss: 1.1500
                                    Accuracy: 32.42% | Generator Loss: 0.7232
  100 | Discriminator Loss: 0.8362
                                    Accuracy: 50.00% | Generator Loss: 1.1875
  200 | Discriminator Loss: 0.6351
                                    Accuracy: 64.84% | Generator Loss: 1.2165
  300 | Discriminator Loss: 0.7033
                                    Accuracy: 55.86% | Generator Loss: 1.1464
  400 | Discriminator Loss: 0.6380
                                    Accuracy: 65.23% | Generator Loss: 1.1279
 500 | Discriminator Loss: 0.6816
                                    Accuracy: 59.38% | Generator Loss: 1.1778
  600 | Discriminator Loss: 0.6978
                                    Accuracy: 59.38% | Generator Loss: 1.0102
  700 | Discriminator Loss: 0.6460
                                    Accuracy: 64.84% | Generator Loss: 1.1709
  800 | Discriminator Loss: 0.6652
                                    Accuracy: 59.77% | Generator Loss: 1.0554
  900 | Discriminator Loss: 0.6856
                                    Accuracy: 56.64% | Generator Loss: 1.0876
1,000 | Discriminator Loss: 0.6649
                                    Accuracy: 60.94% | Generator Loss: 1.0400
1,100 | Discriminator Loss: 0.6843
                                    Accuracy: 61.33% | Generator Loss: 1.0122
1,200 | Discriminator Loss: 0.6930
                                    Accuracy: 58.59% | Generator Loss: 1.0356
1,300 | Discriminator Loss: 0.6269
                                    Accuracy: 69.14% | Generator Loss: 1.0310
1,400 | Discriminator Loss: 0.6892
                                    Accuracy: 57.42% | Generator Loss: 1.0321
1,500 | Discriminator Loss: 0.7001
                                    Accuracy: 61.33% | Generator Loss: 1.0173
1,600 | Discriminator Loss: 0.6481
                                    Accuracy: 60.16% | Generator Loss: 1.0005
1,700 | Discriminator Loss: 0.6868
                                    Accuracy: 60.55% | Generator Loss: 1.0278
1,800 | Discriminator Loss: 0.6685
                                    Accuracy: 60.55% | Generator Loss: 0.9716
1,900 | Discriminator Loss: 0.6315
                                    Accuracy: 61.33% | Generator Loss: 1.0013
2,000 | Discriminator Loss: 0.6960
                                    Accuracy: 58.98% | Generator Loss: 0.9738
2,100 | Discriminator Loss: 0.6942
                                    Accuracy: 55.47% | Generator Loss: 0.9165
                                    Accuracy: 60.94% | Generator Loss: 1.0099
2,200 | Discriminator Loss: 0.6877
2,300 | Discriminator Loss: 0.6793
                                    Accuracy: 57.81% | Generator Loss: 0.9861
2,400 | Discriminator Loss: 0.6520
                                    Accuracy: 60.55% | Generator Loss: 0.9718
2,500 | Discriminator Loss: 0.6753
                                    Accuracy: 57.03% | Generator Loss: 0.9864
2,600 | Discriminator Loss: 0.6834
                                    Accuracy: 57.03% | Generator Loss: 0.9735
```

2,700	Discriminator	Loss:	0.6757	Accuracy:	57.81%	${\tt Generator}$	Loss:	0.9536
2,800	Discriminator	Loss:	0.7126	Accuracy:	57.42%	${\tt Generator}$	Loss:	0.9276
2,900	${\tt Discriminator}$	Loss:	0.6924	Accuracy:	55.86%	${\tt Generator}$	Loss:	0.8972
3,000	Discriminator	Loss:	0.7000	Accuracy:	57.03%	${\tt Generator}$	Loss:	0.9584
3,100	${\tt Discriminator}$	Loss:	0.6330	Accuracy:	64.06%	${\tt Generator}$	Loss:	0.9714
3,200	${\tt Discriminator}$	Loss:	0.6649	Accuracy:	62.50%	${\tt Generator}$	Loss:	0.8566
3,300	${\tt Discriminator}$	Loss:	0.6575	Accuracy:	60.16%	${\tt Generator}$	Loss:	0.9702
3,400	${\tt Discriminator}$	Loss:	0.6613	Accuracy:	59.38%	${\tt Generator}$	Loss:	0.9194
3,500	${\tt Discriminator}$	Loss:	0.6878	Accuracy:	57.03%	${\tt Generator}$	Loss:	0.8923
3,600	${\tt Discriminator}$	Loss:	0.6585	Accuracy:	62.50%	${\tt Generator}$	Loss:	1.0193
3,700	Discriminator	Loss:	0.6194	Accuracy:	70.31%	${\tt Generator}$	Loss:	0.9064
3,800	Discriminator	Loss:	0.6860	Accuracy:	60.16%	${\tt Generator}$	Loss:	0.8630
3,900	${\tt Discriminator}$	Loss:	0.6794	Accuracy:	58.59%	${\tt Generator}$	Loss:	0.9534

After 4,000 epochs, which only takes a few minutes, the synthetic images created from random noise clearly resemble the originals:

```
[15]: r, c = 2, 10
      noise = np.random.normal(0, 1, (r * c, latent_dim))
      gen_imgs = generator.predict(noise)
      # Rescale images 0 - 1
      gen_imgs = 0.5 * gen_imgs + 0.5
      fig, axs = plt.subplots(r, c, figsize=(20, 5))
      cnt = 0
      for i in range(r):
          for j in range(c):
              axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')
              axs[i,j].axis('off')
              cnt += 1
      fig.suptitle('Synthetic Fashion MNIST Images', fontsize=24),
      fig.tight_layout()
      fig.subplots_adjust(top=.96)
      fig.savefig('images/fashion_mnist.png', dpi=300)
```

Synthetic Fashion MNIST Images

