Caractérisation des singularités de type ${\mathfrak J}$

Félix Larose-Gervais

Mai 2023

Contents

1	Intr	roduction
	1.1	Notations
	1.2	Définitions
	1.3	Rappels d'arithmétique
		1.3.1 Algorithme d'Euclide et PGCD
		1.3.2 Théorème des restes chinois
	1.4	Résultats connus
2	Pro 2.1	positions Existence d'un éclatement
	2.2	Invariants
		2.2.1 Ordre des poids
		2.2.2 Ajout de poids
		2.2.3 Retrait de poids
		Caractérisation stricte

1 Introduction

1.1 Notations

Soit $a, b \in \mathbb{Z}$ on note la relation de coprimalité \perp

$$a \perp b \iff \gcd(a, b) = 1$$

Soit $m, n \in \mathbb{N}$, X un ensemble, notons

- \bullet Sym(X) le groupe de bijections de X dans lui-même
- Sym(m) le groupe de bijections $Sym(\{1, ..., m\})$
- \mathbb{Z}_n l'anneau des entiers modulo n $(\mathbb{Z}/n\mathbb{Z})$
- \mathbb{Z}_n^{\times} son groupe d'inversibles $(\{a \in \mathbb{Z}_n \mid a \perp n\})$
- X^m l'ensemble des m-uplets de X $\underbrace{(X \times \cdots \times X)}_{mfois}$

On notera aussi S_n^m l'ensemble des m-uplets d'inversibles modulo n $((\mathbb{Z}_n^\times)^m)$

1.2 Définitions

Définition 1. Une singularité est un $[a] = ([a_1], \ldots, [a_m]) \in S_n^m$, on appelle

- n la racine de la singularité
- $[a_1], \ldots, [a_m]$ les **poids** de la singularité

Définition 2. Un **éclatement** $a \in \mathbb{Z}^m$ d'une singularité $[a] \in S_n^m$ (noté $a \in [a]$) est un choix de représentant $a = (a_1, \ldots, a_m)$ tel que

$$\forall i \neq j : a_i \perp a_j$$

On note E_a l'ensemble des singularités associées à l'éclatement a comme suit:

$$E_{a} = \{ [a^{i}] \in S_{a_{i}}^{m} \mid \forall i = 1..m, \ a_{i} > 1 \}$$

$$[a^{i}] = ([a_{1}^{i}], \dots, [a_{m}^{i}])$$

$$[a_{j}^{i}] \equiv \begin{cases} -n & \text{si } i = j \\ a_{j} & \text{sinon} \end{cases} \pmod{a_{i}} \quad \forall j = 1..m$$

On appelle $a = (a_1, ..., a_m)$ l'éclatement naturel de [a] si les $a_1, ..., a_m$ sont les plus petits représentant positifs de leurs classes

Définition 3. Un éclatement $a \in [a]$ est dit **lisse** si a = (1, ..., 1)

Définition 4. La singularité [a] est dite de **type** \mathfrak{J} (noté $[a] \in \mathfrak{J}$) ssi

$$\exists a \in [a] : \forall [a^i] \in E_a : [a^i] \in \mathfrak{J}$$

On parlera de type \mathfrak{J} strict (noté $[a] \in \overline{\mathfrak{J}}$) lorsque pour $a \in [a]$ l'éclatement naturel de [a] on a

$$\forall [a^i] \in E_a : [a^i] \in \overline{\mathfrak{J}}$$

1.3 Rappels d'arithmétique

1.3.1 Algorithme d'Euclide et PGCD

Soit $a, b \in \mathbb{Z}$, on calcule le PGCD comme suit

$$\gcd(a,b) := \begin{cases} a & \text{si } b = 0\\ \gcd(b, a \mod b) & \text{sinon} \end{cases}$$

Avec $k \in \mathbb{Z}$, on a les propriétés suivantes:

$$\gcd(a, 1) = 1$$
$$\gcd(a, b) = \gcd(b, a)$$
$$\gcd(a, b) = \gcd(a, -b)$$
$$\gcd(a, b) = \gcd(a, b + ka)$$

De la dernière on déduit directement, pour $n \in \mathbb{N}$

$$a \equiv b \pmod{n} \implies \gcd(a, n) = \gcd(b, n)$$

1.3.2 Théorème des restes chinois

Soit $m, n_1, \ldots, n_m \in \mathbb{N}$ et $a_1, \ldots, a_m \in \mathbb{Z}$, notons le produit $n = n_1 \cdots n_m$ Si $\forall i \neq j : n_i \perp n_j$, alors $\exists ! x \in \mathbb{Z}_n$ tel que

$$x \equiv a_1 \pmod{n_1}$$

$$\vdots$$

$$x \equiv a_m \pmod{n_m}$$

1.4 Résultats connus

Résultats utiles, dûs à Habib Jaber.

Proposition 1. Soit $a_1, a_2 \in \mathbb{Z}$, $gcd(a_1, a_2) = 1$, alors

$$[(a_1, a_2)]_{a_1 + a_2} \in \mathfrak{J}$$

Exemple 1. $gcd(2,1) = 1 \implies [(2,1)]_3 \in \mathfrak{J}$

Proposition 2.

$$\left[\left(a_{1},a_{2}\right)\right]_{n}\in\mathfrak{J}\iff\forall k\in\mathbb{Z}:\left[\left(a_{1},a_{2}\right)\right]_{n+ka_{1}a_{2}}\in\mathfrak{J}$$

Exemple 2. $[(2,1)]_3 \in \mathfrak{J} \implies [(2,1)]_5 \in \mathfrak{J}, [(2,1)]_7 \in \mathfrak{J}, \dots$

Illustration de la propoision 1 avec 3 termes consécutifs de la suite de Fibonacci

2 Propositions

Soit $m, n \in \mathbb{N}$ tels que m > 2, et une singularité $[a] = ([a_1], \dots, [a_m]) \in S_n^m$

2.1 Existence d'un éclatement

Proposition 3. Toute singularité isolée admet un éclatement

Preuve. Soit
$$[a] = ([a_1], \dots, [a_m]) \in S_n^m$$

Prenons $(a_1, \dots, a_m) \in [a]$ son représentant naturel
On cherche $(b_1, \dots, b_m) \in [a]$ tels que $\forall i \neq j : b_i \perp b_j$ et $\forall i : b_i \perp n$
Il suffit de prendre $b_1 = a_1$ et $\forall i = 2..m$, un b_i vérifiant

$$b_i \equiv a_i \pmod{n}$$

$$b_i \equiv 1 \pmod{b_1}$$

$$\vdots$$

$$b_i \equiv 1 \pmod{b_{i-1}}$$

De tels b_i existent par le théorème des restes chinois On vérifie les coprimalités nécéssaires grâce aux propriétés de gcd On a par la première congruence $\forall i:b_i\perp n$ (puisque $\forall i:a_i\perp n$) Et par les suivantes $\forall i\neq j:b_i\perp b_j$ On a donc $b=(b_1,\ldots,b_m)$ un éclatement de [a]

2.2 Invariants

2.2.1 Ordre des poids

Soit $\sigma \in Sym(m), \, \pi_{\sigma} \in Sym(S_n^m),$

Proposition 4. Le réarrangement des poids préserve le type \mathfrak{J} Notons $[b] = \pi_{\sigma}([a])$

$$[a] \in \mathfrak{J} \implies [b] \in \mathfrak{J}$$

Preuve. Il suffit d'observer que $E_a \cong E_b$

2.2.2 Ajout de poids

Proposition 5. L'ajout de poids congrus à 1 modulo n préserve le type $\mathfrak J$ Notons $[b]=([a_1],\ldots,[a_m],[1])\in S_n^{m+1}$

$$[a] \in \mathfrak{J} \implies [b] \in \mathfrak{J}$$

Preuve.Il suffit d'observer que $E_a\cong E_b$

2.2.3 Retrait de poids

Proposition 6. Le retrait de poids préserve le type \mathfrak{J} Notons $[b] = ([a_1], \dots, [a_{m-1}]) \in S_n^{m-1}$

$$[a] \in \mathfrak{J} \implies [b] \in \mathfrak{J}$$

Preuve. TODO

2.3 Caractérisation stricte

Proposition 7. Soit $[a] \in S_n^2$, d'éclatement naturel $a = (a_1, a_2) \in \mathbb{Z}^2$

$$[a] \in \overline{\mathfrak{J}} \implies n \ge a_1 + a_2$$

Preuve. Par contraposée, supposons $n < a_1 + a_2$ (*)

- Si $a_1 = a_2 \ (\neq 1 \text{ par } (\star))$ Alors $[a] \notin \overline{\mathfrak{J}}$
- Sinon, $a_1 \neq a_2$, supposons sans perdre de généralité que $a_1 > a_2$ Considérons a^1 l'éclatement naturel de $[a^1] \in E_a$ la singularité associée à a_1 On a $a^1 = (-n \mod a_1, a_2 \mod a_1)$

Puisque $a_1 > a_2$, on a $2a_1 > a_1 + a_2 > n$, donc $a_1 < n < 2a_1$

On en déduit $(-n \mod a_1) = 2a_1 - n$

Aussi, $(a_2 \mod a_1) = a_2 \operatorname{car} a_1 > a_2$

On a donc $a^1 = (2a_1 - n, a_2)$

Puisque $n < a_1 + a_2$, on a $a_1 < 2a_1 - n + a_2$

Donc $[a^1] \in S^2_{a_1}$ vérifie la condition (\star) , on répète le raisonnement avec $[a^1]$

Exemple 3. $[4,3]_5 \not\in \overline{\mathfrak{J}} \ car \ 5 < 4+3$

Figure 4: Singularités $s \in S^2_{32}$ telles que $s \in \overline{\mathfrak{J}}$

3 Conjectures

Conjecture 1. Soit $[a] \in S_n^m$ de représentant naturel $a = (a_1, \ldots, a_m) \in \mathbb{Z}^m$

$$[a] \in \overline{\mathfrak{J}} \implies |\{a_i \in a \mid a_i > 1\}| \le 2$$

Preuve. Par contraposée, supposons $1 < a_1, a_2, a_3$ (*)

- Si $\exists i \neq j : a_i = a_j \neq 1$ Alors $[a] \notin \overline{\mathfrak{J}}$
- Sinon $(\forall i \neq j, a_i \neq 1 : a_i \neq a_j)$ Supposons sans perdre de généralité $a_1 > a_2 > a_3 > \cdots \geq a_m$ (Donc $a_1 \geq 4$) Considérons a^1 l'éclatement naturel de $[a^1] \in E_a$ la singularité associée à a_1 On a $a^1 = (-n \mod a_1, a_2 \mod a_1, \ldots, a_m \mod a_1) = (-n \mod a_1, a_2, \ldots, a_m)$ On sait que $(-n \mod a_1) \neq 0$ car $a_1 \perp n$ Il suffit de montrer que $(-n \mod a_1) \neq 1$ pour que $[a^1]$ vérifie (\star) Impossible (contre-exemple: $(5, 3, 2) \mod 29$) Tous ces éclatements ont m=2, or pas j strict

Figure 5: Singularités $s \in S^3_{13}$ telles que $s \in \overline{\mathfrak{J}}$

Corollaire 1. Soit la singularite $[a] \in S_n^m$ de représentant naturel $a = (a_1, a_2, \dots, a_m) \in \mathbb{Z}^m$ Supposons sans perdre de généralité que $a_1 > a_2 > \dots > a_m$, alors

$$[a] \in \overline{\mathfrak{J}} \iff a_3 = \cdots = a_m = 1 \ et \ [(a_1, a_2)]_n \in \overline{\mathfrak{J}}$$

Preuve. D'après les proposition précédentes

- (\iff) Si $a_3 = \cdots = a_m = 1$ et $[(a_1, a_2)]_n \in \overline{\mathfrak{J}}$ Comme $[(a_1, a_2)]_n \in \overline{\mathfrak{J}}$, on a $[a] \in \overline{\mathfrak{J}}$ (par ajout de poids à 1)
- (\Longrightarrow) Si $[a] \in \overline{\mathfrak{J}}$ Alors $a = (a_1, a_2, 1, \dots, 1)$ (par la conjecture) Et $[(a_1, a_2)] \in \overline{\mathfrak{J}}$ (par retrait de poids)

Conjecture 2. $Si[a] \in \overline{\mathfrak{J}}, \ alors[a] \in \mathfrak{J}, \ donc \ \mathfrak{J} = \overline{\mathfrak{J}}$