

Esempi per il calcolo della trasmittanza di solai, pareti perimetrali, serramenti, ponti termici

Cosa è la trasmittanza termica

La trasmissione del calore avviene attraverso un corpo quando esso è sottoposto ad una differenza di temperatura. L'energia si trasferisce dal punto a temperatura maggiore al punto a temperatura minore. La schematizzazione che si applica alla trasmissione di calore si basa su tre meccanismi fondamentali:

Conduzione

Convezione

Irraggiamento

L'analisi rigorosa di questo fenomeno si basa su basi teoriche molto complesse, e quindi per rendere più agevole lo sviluppo dei calcoli si ipotizzano le seguenti condizioni:

regime stazionario (flusso di calore costante nel tempo)
parete piana di estensione infinita
materiale componente perfettamente omogeneo ed isotropo
le due facce esterne della parete sono considerate come superfici isoterme

La trasmittanza U (UNI EN ISO 6946) si definisce come il flusso di calore che attraversa una superficie unitaria sottoposta a differenza di temperatura pari ad 1°C ed è legata alle caratteristiche del materiale che costituisce la struttura e alle condizioni di scambio termico liminare e si assume pari all'inverso della sommatoria delle resistenze termiche degli strati

$$U = \frac{1}{R_{\tau}}$$

$$R_T = R_{si} + R_1 + R_2 + ... + R_n + R_{se}$$

con:

R^{si} resistenza superficiale interna;

 $R_1; R_2; ... R_n$ resistenze termiche utili di ciascuno strato;

R_{se} resistenza superficiale esterna;

con:

$$R = \frac{d}{\lambda}$$

con:

d dello strato di materiale nel componente; conduttività termica utile calcolata secondo ISO/DIS 10456.2 oppure ricavata da valori tabulati.

Per il calcolo della trasmittanza dei componenti edilizi finestrati si fa riferimento alla UNI EN ISO 10077-1.

Pavimento contro terra

Schema della struttura

Г	Descrizione	spessore	conducibilità	conduttanza	resistenza termica	Riferimento
		(m)	λ, W/mK	C W/m²K	R m ² K/W	normativo
R	Resistenza termica superf. interna				0.17	UNI 6946
1	Piastrelle in ceramica	0,012	1,000		0.0120	UNI 10351
2	Sottofondo in cemento magro	0,040	0,73		0,0548	UNI 10351
3	C.I.s. di perlite e vermiculite	0,20	0,15		1,3333	UNI 10351
4	Conduttività termica del terreno		2,00			UNI 13370

Resistenza totale o	iella struttura R = ∑ d/	1	1,4001	m ² K/W
Trasmittanza termi non isolati secondo			0,3133	W/m²K

Per la determinazione della trasmittanza termica del pavimento appoggiato sul terreno U0 (in questo caso costituito da sabbia e ghiaia), si utilizza il prospetti I della **UNI 13370** che tiene conto della conduttività termica del pavimento.

Solaio di copertura

Schema della struttura

	Descrizione	spessor e	conducibilità λ. W/mK	conduttanza C W/m²K	resistenza termica R m ² K/W	Riferimento normativo
		(m)	/C VV//////	• • • • • • • • • • • • • • • • • • • •		
R _{si}	Resistenza termica superf. interna				0,10	UNI 6946
1	Malta di gesso con inerti	0,02	0,29		0,0690	UNI 10351
2	Soletta in c.l.s. armato	0,20	1,91		0,1047	UNI 10351
3	Barriera al vapore in bitume	0,002	0,17		0,0118	UNI 10351
4	Fibra di vetro pannello semirigido	0,04	0.04		1,0000	UNI 10351
5	Intercapedine d'aria orizzontale flusso ascendente	0,04		6,5	0,16	UNI 6946
6	Copertura in tegole	0,01	0,99		0,0101	UNI 10351
R _{se}	Resistenza termica superf. esterna				0,04	UNI 6946
	Resistenza totale della struttura	R _T = R _{si} +f	R ₁ +R ₂ ++R _n +R	se	1,4956	m ² K/W
	Trasmittanza termica della struttura secondo UNI 6946	U=1/R _T			0,6686	W/m²K

Pareti perimetrali

Schema della struttura

	Descrizione	spessore (m)	conducibilità λ W/mK	conduttanza C W/m²K	resistenza termica R m²K/W	Riferimento normativo
R _{si}	Resistenza termica superf. interna				0,13	UNI 6946
1	Malta di gesso con inerti	0,02	0,29		0,0690	UNI 10351
2	Muratura in laterizio alveolato	0,25			0,8600	UNI 10355
3	Malta di calce o di calce e cemento	0,02	0,90		0,0222	UNI 10351
R _{se}	Resistenza termica superf. esterna				0,04	UNI 6946
	Resistenza totale della struttura	R _T = R _{si} +R ₁	+R ₂ ++R _n +R	se	1,1212	m²K/W
	Trasmittanza termica della struttura secondo UNI 6946	U=1/R _T		0,8919	W/m²K	

Pareti perimetrali - Cassonetto

Schema della struttura

	Descrizione	spessore (m)	conducibilità λ W/mK	conduttanza C W/m²K	resistenza termica R m²K/W	Riferimento normativo
Rsi	Resistenza termica superf. interna				0,13	UNI 6946
1	Pannelli di spaccato di legno	0,005	0,12		0,0416	UNI 10351
2	Poliuretano espanso in continuo in lastre	0,03	0,032		0,9375	UNI 10351
3	Intercapedine d'aria verticale	0,20		5,5	0,1818	UNI 6946
4	Muratura in laterizio pareti esterne	0,06			0,1300	UNI 10355
5	Malta di calce o di calce e cemento	0,02	0,9		0,0222	UNI 10351
R _{se}	Resistenza termica superf. esterna				0,04	UNI 6946
	Resistenza totale della struttura	$R_T = R_{si} + R_1 + R_2 + + R_n + R_{se}$		1,4831	m ² K/W	
	Trasmittanza termica della struttura secondo UNI 6946	U=1/R _T		0,6742	W/m²K	

Porte esterne

Schema della struttura

	Descrizione	spessore (m)	conducibilità λ W/mK	conduttanz a C W/m²K	resistenza termica R m ² K/W	Riferimento normativo
R _{si}	Resistenza termica superf. interna				0,13	UNI 6946
1	Legno di abete (fl. perp. alle fibre)	0,01	0,12		0.0833	UNI 10351
2	Intercapedine d'aria	0,04			0,18	UNI 6946
3	Legno di abete	0,01	0,12		0,0833	UNI 10351
R _{se}	Resistenza termica superf. esterna				0,04	

Resistenza totale della struttura	$R_T = R_{si} + R_1 + R_2 + + R_n + R_{se}$	0,5166	m ² K/W
Trasmittanza termica della struttura secondo UNI 6946	U=1/R _T	1,9357	W/m²K

Telaio portone esterno

	Descrizione	spessore (m)	conducibilità λ W/mK	conduttanza C W/m²K	resistenza termica R m²K/W	Riferimento normativo
Rsi	Resistenza termica superf. interna				0,13	UNI 6946
1	Legno di abete (fl. perp. alle fibre)	0,08	0,12		0,6667	UNI 10351
R _{se}	Resistenza termica superf. esterna				0,04	UNI 6946

Resistenza totale della struttura	$R_T = R_{si} + R_1 + R_2 + + R_n + R_{so}$	0,8367	m ² K/W
Trasmittanza termica della struttura	U=1/R _∓	1,1952	W/m ² K
secondo UNI 6946	0= 1/R _T		

Serramenti in legno e vetro isolante con camera d'aria mm 6 - Tipo SV1

La trasmittanza termica del componente edilizio finestrato $\mathbf{U}_{\mathbf{w}}$ composta da un singolo serramento e relativo componente trasparente risulta essere pari a:

$$Uw = \frac{AgUg + AfUf + Ig\Psi g}{Ag + Af}$$

	Descrizione	valore	Riferimento normativo
Ug	Trasmittanza termica del componente vetrato W/m²K	vedi formula	UNI 10077-1
Uf	Trasmittanza termica del telaio W/m²K	1,75	UNI 10077-1 app. D
Ψα	Trasmittanza lineare W/mK	0,04	UNI 10077-1 app. E
lg	Perimetro totale della vetrata m	11,68	
Ag	Area del vetro m²	1,842	
Af	Area del telaio m ²	0,758	

La trasmittanza termica del componente trasparente ${\bf U_g}$, nel caso di vetrate multiple, è pari a:

$$Ug = \frac{1}{Rse + \sum_{j} \frac{dj}{\lambda_{j}} + \sum_{j} Rs, j + Rst}$$

	Descrizione	valore	Riferimento normativo
R₅	Resistenza termica superf. esterna	0,04	UNI 10077-1 app. A
1	Conduttività termica del vetro W/mK	1,000	UNI prEN ISO 10077-2
d	Spessore del vetro m	0,004	UNI 10077-1
R _{s,i}	Resistenza termica dell'intercapedine m ² K/W	0,127	UNI 10077-1 app. C
Rsi	Resistenza termica superf. interna	0,13	UNI 10077-1 app. A

$$Ug = \frac{1}{0.04 + \frac{0.004}{1} + \frac{0.004}{1} + 0.127 + 0.13} = 3.27$$
 W/m²K

Ricavato il valore Ug è possibile calcolare il valore di Uw

$$U_W = \frac{1,842 \cdot 3,27 + 0,758 \cdot 1,75 + 11,68 \cdot 0,04}{1.842 + 0,758} = 3,0065 \text{ W/m}^2\text{K}$$

L'infisso viene previsto con l'installazione di tapparella esterna e si introduce una resistenza termica aggiuntiva, la trasmittanza termica risultante $\mathbf{U}_{\mathbf{ws}}$ risulta essere pari a:

$$U_{WS} = \frac{1}{\frac{1}{U_{tr}} + \Delta R} \text{ W/m}^2 \text{K}$$

Il valore di R, resistenza termica addizionale, si desume dal punto (10) paragrafo 5.3 della UNI EN 10077-1 ed è pari a 0,55 $\mathbf{R_{sh}}$ + 0,11 m²K/W; $\mathbf{R_{sh}}$ si ricava dall'Appendice G della UNI EN 10077-1 ed è uguale a 0,10 m²K/W, da cui:

$$\Delta R = 0.55 \cdot R_{sh} + 0.11$$
 m²K/W
 $\Delta R = 0.55 \cdot 0.1 + 0.11 = 0.165$

$$U_{\text{test}} = \frac{1}{\frac{1}{3.0065} + 0.165} = 2,0096 \text{ W/m}^2\text{K}$$

Il valore medio della trasmittanza del componente trasparente Um viene calcolato tenendo conto della variazione della trasmittanza nel tempo utilizzando i valori tw, periodo di tempo in cui il componente ha trasmittanza Uw, e tws periodo di tempo in cui il componente ha trasmittanza Uws e risulta pari a:

$$Uwm = \left(\frac{Uw \cdot tw + Uws \cdot tws}{tw + tws}\right)$$

i valori di tw e tws desunti dalla Raccomandazione CTI 03/2003 App. B punto B.5 sono i seguenti:

$$Uwm = \left(\frac{3,0065 \cdot 43200 + 2,0096 \cdot 43200}{43200 + 43200}\right) = 2,5080 \text{ W/m}^2\text{K}$$

Serramenti in legno e vetro isolante con camera d'aria mm 6 - Tipo SV2

Schema della struttura

La trasmittanza termica del componente edilizio finestrato $\mathbf{U}_{\mathbf{w}}$ composta da un singolo serramento e relativo componente trasparente risulta essere pari a:

$$Uw = \frac{AgUg + AfUf + Ig\Psi g}{Ag + Af}$$

	Descrizione	valore	Riferimento normativo
Ug	Trasmittanza termica del componente vetrato W/m ² K	vedi formula	UNI 10077-1
Uf	Trasmittanza termica del telaio W/m ² K	1,75	UNI 10077-1 app. D
Ψl	Trasmittanza lineare W/mK	0,04	UNI 10077-1 app. E
Lg	Lunghezza perimetrale della superficie vetrata m	7,52	
Ag	Area del vetro m ²	1,19	
Af	Area del telaio m ²	0,49	

La trasmittanza termica del componente trasparente $\boldsymbol{U_g}$, nel caso di vetrate multiple, è pari a:

$$Ug = \frac{1}{Rse + \sum_{j} \frac{dj}{\lambda_{j}} + \sum_{j} Rs, j + Rst}$$

	Descrizione	valore	Riferimento normativo
R₅	Resistenza termica superf. esterna	0,04	UNI 10077-1 app. A
1	Conduttività termica del vetro W/mK	1,000	UNI prEN ISO 10077-2
d	Spessore del vetro m	0,004	UNI 10077-1
	Resistenza termica dell'intercapedine m ² K/W	0,127	UNI 10077-1 app. C
Rsi	Resistenza termica superf. interna	0,13	UNI 10077-1 app. A

$$Ug = \frac{1}{0.04 + \frac{0.004}{1} + \frac{0.004}{1} + 0.127 + 0.13} = 3.27$$
 W/m²K

Ricavato il valore Ug è possibile calcolare il valore di Uw

$$Uw = \frac{1,19 \cdot 3,27 + 0,49 \cdot 1,75 + 7,52 \cdot 0,04}{1,19 + 0,49} = 3,0057 \text{ W/m}^2\text{K}$$

L'infisso viene previsto con l'installazione di tapparella esterna e si introduce una resistenza termica aggiuntiva, la trasmittanza termica risultante $\mathbf{U}_{\mathbf{ws}}$ risulta essere pari a:

$$U_{WS} = \frac{1}{\frac{1}{U_{WS}} + \Delta R} \text{ W/m}^2 \text{K}$$

Il valore di **R**, resistenza termica addizionale, si desume dal punto (10) paragrafo 5.3 della UNI EN 10077-1 ed è pari a 0,55 Rsh + 0,11 m2K/W; Rsh si ricava dall'Appendice G della UNI EN 10077-1 ed è uguale a 0,10 m2K/W, da cui:

$$\Delta R = 0.55 \cdot R_{sh} + 0.11 \text{ m}^2\text{K/W}$$

$$\Delta R = 0.55 \cdot 0.1 + 0.11 = 0.165$$

$$U_{ws} = \frac{1}{\frac{1}{3.0057} + 0.165} = 2.0092 \text{ W/m}^2\text{K}$$

Il valore medio della trasmittanza del componente trasparente Um viene calcolato tenendo conto della variazione della trasmittanza nel tempo utilizzando i valori tw, periodo di tempo in cui il componente ha trasmittanza Uw, e tws periodo di tempo in cui il componente ha trasmittanza Uws e risulta pari a:

$$Uwm = \left(\frac{Uw \cdot tw + Uws \cdot tws}{tw + tws}\right)$$

i valori di tw e tws desunti dalla Raccomandazione CTI 03/2003 App. B punto B.5 sono i seguenti:

$$Uwm = \left(\frac{3,0057 \cdot 43200 + 2,0092 \cdot 43200}{43200 + 43200}\right) = 2,5074 \text{ W/m}^2\text{K}$$

Serramenti in legno e vetro isolante con camera d'aria mm 6 - Tipo SV3

Schema della struttura

La trasmittanza termica del componente edilizio finestrato $\mathbf{U}_{\mathbf{w}}$ composta da un singolo serramento e relativo componente trasparente risulta essere pari a:

$$Uw = \frac{AgUg + AfUf + Ig\Psi g}{Ag + Af}$$

	Descrizione	valore	Riferimento normativo
Ug	Trasmittanza termica del componente vetrato W/m²K	vedi formula	UNI 10077-1
	Trasmittanza termica del telaio W/m²K	1,75	UNI 10077-1 app. D
Ψa	Trasmittanza lineare W/mK	0,04	UNI 10077-1 app. E
- Ig	Perimetro totale della vetrata m	3,76	
Ag	Area del vetro m ²	0,793	
Af	Area del telaio m ²	0.326	

La trasmittanza termica del componente trasparente **Ug** è pari a:

$$Ug = \frac{1}{Rse + \sum_{j} \frac{dj}{\lambda_{j}} + \sum_{j} Rs, j + Rst}$$

	Descrizione	valore	Riferimento normativo
R₅,	Resistenza termica superf. esterna	0,04	UNI 10077-1 app. A
1	Conduttività termica del vetro W/mK	1,000	UNI prEN ISO 10077-2
•	Spessore del vetro m	0,004	UNI 10077-1
	Resistenza termica dell'intercapedine m ² K/W	0,127	UNI 10077-1 app. C
Rsi	Resistenza termica superf. interna	0,13	UNI 10077-1 app. A

$$Ug = \frac{1}{0.04 + \frac{0.004}{1} + \frac{0.004}{1} + 0.127 + 0.13} = 3.27$$
 W/m²K

Ricavato il valore Ug è possibile calcolare il valore di Uw

$$Uw = \frac{0.793 \cdot 3.27 + 0.326 \cdot 1.75 + 3.76 \cdot 0.04}{0.793 + 0.326} = 2.9612 \text{ W/m}^2\text{K}$$

L'infisso viene previsto con l'installazione di tapparella esterna e si introduce una resistenza termica aggiuntiva, la trasmittanza termica risultante $\mathbf{U}_{\mathbf{ws}}$ risulta essere pari a:

$$U_{ws} = \frac{1}{\frac{1}{U_{w}} + \Delta R} \text{ W/m}^2 \text{K}$$

Il valore di $\,\mathbf{R}$, resistenza termica addizionale, si desume dal punto (10) paragrafo 5.3 della UNI EN 10077-1 ed è pari a 0,55 Rsh + 0,11 m2K/W; Rsh si ricava dall'Appendice G della UNI EN 10077-1 ed è uguale a 0,10 m2K/W, da cui:

$$\Delta R = 0.55 \cdot R_{sh} + 0.11$$
 m²K/W
 $\Delta R = 0.55 \cdot 0.1 + 0.11 = 0.165$

$$U_{\text{KS}} = \frac{1}{\frac{1}{2.9612} + 0.165} = 1,9892 = \text{W/m}^2\text{K}$$

Il valore medio della trasmittanza del componente trasparente Um viene calcolato tenendo conto della variazione della trasmittanza nel tempo utilizzando i valori tw, periodo di tempo in cui il componente ha trasmittanza Uw, e tws periodo di tempo in cui il componente ha trasmittanza Uws e risulta pari a:

$$Uwm = \left(\frac{Uw \cdot tw + Uws \cdot tws}{tw + tws}\right)$$

i valori di tw e tws desunti dalla Raccomandazione CTI 03/2003 App. B punto B.5 sono i seguenti:

$$Uwm = \left(\frac{2,9612 \cdot 43200 + 1,9892 \cdot 43200}{43200 + 43200}\right) = 2,4752 \text{ W/m}^2\text{K}$$

Calcolo dei ponti termici lineari

Premessa:

Per ponti termici si intendono quelle zone, limitate in termine di superficie, dove si verificano disomogeneità del materiale e variazioni di forma. In queste zone vi è un incremento del valore dei flussi termici e una variazione delle temperature superficiali interne, con conseguente aumento della quantità di calore disperso attraverso le pareti.

Nelle strutture edilizie reali si presentano degli effetti perturbativi locali che inducono ad un incremento della conduttanza termica e che sono appunto i ponti termici.

Generalmente si possono dividere in ponti termici di struttura, ove la presenza di elementi eterogenei di maggior conduttività incrementa il flusso termico locale, e ponti termici di forma, quale la presenza di spigoli che provocando un addensamento delle isoterme provocano un aumento del flusso termico totale.

Calcolo dei ponti termici lineari:

Il calcolo del valore della potenza termica dispersa dai ponti termici per trasmissione attraverso l'involucro edilizio espresso in watt, si effettua con la seguente relazione:

$$\sum_{\mathbf{k}} l_{\mathbf{k}} \cdot \psi_{\mathbf{k}}$$

con:

lunghezza del ponte termico in metri

ψ k trasmittanza termica lineica del ponte termico espressa in W/m2K

Il coefficiente Ø, per i diversi casi strutturali, viene calcolato in base a quanto previsto dalla UNI EN ISO 14683. Nel calcolo della potenza termica dispersa viene quindi richiesto il valore della trasmittanza lineica Ø del ponte termico espressa in watt/mK, pertanto se non si vogliono effettuare calcoli molto onerosi, come previsto dalla norma UNI, si possono utilizzare i valori delle trasmittanze lineiche ricavati dall'atlante dei ponti termici; si riportano a seguito gli Ø inerenti l'edificio da calcolare:

PT1 Giunto tra muro esterno a isolamento ripartito e solaio Ψ =0,18 W/mK di copertura in cls isolato esternamente con isolamento non

interrotto

PT2 Angolo tra muri uguali con isolamento ripartito Ψ =0,06 W/mK

PT3 Giunto tra parete e serramento Ψ =0,19 W/mK