Chapitre 10

Les entiers

Objectifs

- Rappeler le principe de récurrence et ses applications.
- Établir la propriété fondamentale de ℤ, le principe de la division euclidienne.
- Définir la notion d'ensemble fini et de cardinal. Étudier les propriétés du cardinal.
- Dénombrer les ensembles « classiques ».

Sommaire

I)	Les ensembles d'entiers		1
	1)	La récurrence	1
	2)	La propriété fondamentale	2
	3)	La division euclidienne	2
II)	Card	linal d'un ensemble fini	3
	1)	Injections, surjections	3
	2)	Ensembles finis	3
	3)	Propriétés du cardinal	4
III)	Dénombrement		6
	1)	Préliminaires	6
	2)	Le nombre d'applications	6
	3)	Le nombre de parties d'un ensemble	6
	4)	Le nombre de bijections	7
	5)	Le nombre de p-parties (ou p-combinaisons)	7
IV)	Exer	cices	8

Les ensembles d'entiers

L'existence des $\mathbb N$ et de $\mathbb Z$ est admise. On rappelle que $(\mathbb N,+)$ n'est pas un groupe, et que $(\mathbb Z,+,\times)$ est un anneau commutatif intègre.

1) La récurrence

THÉORÈME 10.1 (principe de récurrence)

Soit A une partie de \mathbb{N} vérifiant $0 \in A$ et $\forall n \in \mathbb{N}, n \in A \Longrightarrow n+1 \in A$, alors nécessairement $A = \mathbb{N}$.

Preuve: Ce théorème est admis.

-`**o**-THÉORÈME 10.2

Soit $n_0 \in \mathbb{Z}$ et E une partie de \mathbb{Z} telle que $n_0 \in E$ et $\forall n \ge n_0$, $n \in E \Longrightarrow n+1 \in E$, alors pour tout entier $n, n \ge n_0 \Longrightarrow n \in E$.

Preuve: Soit $A = \{n \in \mathbb{N} \mid n + n_0 \in E\}$, alors $0 \in A$ et si $n \in A$, alors $n + 1 \in A$, d'après le principe de récurrence on a $A = \mathbb{N}$, ce qui signifie que pour tout entier $n \in \mathbb{Z}$, $n \ge n_0 \Longrightarrow n \in E$.

On démontrerait de la même façon que si E est une partie de \mathbb{Z} qui vérifie $n_0 \in E$ et $\forall n \in \mathbb{Z}, n \in E \Longrightarrow$ $n-1 \in E$, alors $\forall n \in \mathbb{Z}, n \leq n_0 \Longrightarrow n \in E$.

Applications:

- a) Soit P(n) une propriété dépendant d'une variable $n \in \mathbb{Z}$, soit $n_0 \in \mathbb{Z}$, si $P(n_0)$ est vraie et si $\forall \ n \in \mathbb{Z}, P(n) \text{ vraie} \Longrightarrow P(n+1) \text{ vraie, alors } \forall \ n \in \mathbb{Z}, n \geqslant n_0 \Longrightarrow P(n) \text{ vraie.}$
- b) Si $P(n_0)$ est vraie et si $\forall n \in \mathbb{Z}, (\forall k \in [n_0..n], P(k) \text{ vraie}) \Longrightarrow P(n+1) \text{ vraie, alors } \forall n \in \mathbb{Z}, n \geqslant n$ $n_0 \Longrightarrow P(n)$ vraie. Il suffit d'utiliser l'application précédente à la propriété $R(n) = (\forall k \in [n_0..n], P(k)$ vraie).

Exemples:

Par récurrence on peut montrer les formules suivantes :

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \sum_{k=1}^{n} k^2 = \frac{(2n+1)n(n+1)}{6} \sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

- Soit (u_n) la suite définie par $u_0=u_1=1$ et $\forall n\in\mathbb{N}, u_{n+2}=u_{n+1}+u_n$ (suite de Fibonacci), alors on peut montrer par récurrence que pour tout n :

$$u_n = \frac{5 + \sqrt{5}}{10} \left(\frac{1 + \sqrt{5}}{2} \right)^n + \frac{5 - \sqrt{5}}{10} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

en prenant comme hypothèse de récurrence que la propriété est vraie **jusqu'au rang n** avec $n \ge 1$.

2) La propriété fondamentale

√THÉORÈME 10.3

Toute partie de \mathbb{Z} non vide et minorée admet un plus petit élément.

Preuve: Soit *A* une partie de \mathbb{Z} non vide et minorée par un entier n_0 . Soit *M* l'ensemble des minorants de *A*, on a $n_0 \in M$, supposons que $n \in M \Longrightarrow n+1 \in M$, alors d'après le principe de récurrence, $\forall n \in \mathbb{Z}, n \geqslant n_0 \Longrightarrow n \in M$. Soit $p \in A$, $p \ge n_0$, donc $p+1 \in M$ ce qui entraı̂ne que $p+1 \le p$: absurde, donc il existe un entier n_1 tel que $n_1 \in M$ et $n_1 + 1 \notin M$, mais alors il existe un élément p_1 de A tel que $p_1 < n_1 + 1$, d'où $n_1 \le p_1 < n_1 + 1$, ce qui entraîne $p_1 = n_1$, et donc $n_1 \in A$, nécessairement n_1 est le plus petit élément de A.

Conséquences:

- a) Toute partie non vide et majorée de \mathbb{Z} admet un plus grand élément. En effet, si A est non vide majorée, alors $-A = \{-a \mid a \in A\}$ est non vide minorée, donc -A admet un plus petit élément $-n_0$, ce qui signifie que n_0 est le plus grand élément de A.
- b) Toute partie non vide de N admet un plus petit élément (propriété fondamentale de N). En effet, une partie non vide de \mathbb{N} est une partie non vide de \mathbb{Z} minorée par 0.

3) La division euclidienne

-`@⁻THÉORÈME 10.4

Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$, il existe un unique couple d'entiers (q, r) tel que a = bq + r avec $0 \le r < |b|$, q est appelé le quotient, et r le reste.

Preuve: Supposons b > 0: soit $B = \{b(n+1) \mid n \in \mathbb{Z}\}$, alors B est non majoré et non minoré, donc il existe un entier n_1 tel que $a < b(n_1 + 1)$ et il existe un entier n_2 tel que $b(n_2 + 1) < a$. Soit $A = \{n \in \mathbb{Z} \mid a < b(n+1)\}$, alors A est non vide $(n_1 \in A)$ et minoré par n_2 , donc A admet un plus petit élément q, d'où $bq \le a < b(q+1)$, en posant r = a - bq, on a a = bq + r et $0 \le r < b = |b|$.

Supposons b < 0: on applique ce qui précède à -b > 0, il existe un entier q et un entier r tels que a = $(-b)q + r = b(-q) + r \text{ avec } 0 \le r < -b = |b|.$

Montrons l'unicité : si a=bq+r=bq'+r' avec $0\leqslant r<|b|$ et $0\leqslant r'<|b|$, alors |r-r'|=|bq'-bq|=|bq'-bq||b||q'-q| < |b|, d'où q' = q (ce sont des entiers) et donc r' = r.

Définition 10.1

Soient $a, b \in \mathbb{Z}$, *on dit que* b *divise* a *lorsqu'il existe* $k \in \mathbb{Z}$ *tel que* a = bk. *Notation* : $b \mid a$.

On a ainsi défini une relation dans \mathbb{Z} , elle est réflexive, non symétrique, non antisymétrique, et transitive.

🗑⁻THÉORÈME 10.5

Soient $a, b \in \mathbb{Z}$ avec $b \neq 0$, alors b|a ssi le reste dans la division euclidienne de a par b est nul.

Preuve: Celle - ci est simple et laissée en exercice.

DÉFINITION 10.2 (congruences)

Soient $a, b, n \in \mathbb{Z}$, on dit que a et congru à b modulo n lorsque $n \mid a - b$. Notation : $a \equiv b \pmod{n}$.

THÉORÈME 10.6

- La relation de congruence modulo n est une relation d'équivalence.
- Soient $a, b, c, d, n \in \mathbb{Z}$, si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$ alors :

 $ac \equiv bd \pmod{n}$ et $a + c \equiv b + d \pmod{n}$

On dit que la relation de congruence est compatible avec les opérations.

Preuve: Laissée en exercice.

Exemple: Dans \mathbb{Z} , si $n = a_0 + 10a_1 + \cdots + 10^p a_p$ (écriture décimale) alors $n \equiv a_0 + \cdots + a_p \pmod{3}$ car $10^k \equiv 1$ (mod 3)

II) Cardinal d'un ensemble fini

1) Injections, surjections

Rappels:

- a) La composée de deux injections (respectivement surjections) est une injection (respectivement surjection).
- b) Si $f: E \to F$ est injective, alors f **induit** une bijection de E sur Im(f).
- c) Si $f \circ g$ est injective, alors g est injective.
- d) Si $f \circ g$ est surjective, alors f est surjective.
- e) Si $f: E \to F$ est une application, alors f induit une surjection de E sur Im(f).
- f) Si $f: E \to F$ est surjective, alors il existe une application $g: F \to E$ telle que $f \circ g = \mathrm{id}_F$.

DÉFINITION 10.3

Soit E un ensemble, on appelle permutation de E toute bijection de E vers E. L'ensemble des permutations de E est noté $\mathcal{S}(E)$.

Soit E un ensemble non vide, alors $(\mathcal{S}(E), \circ)$ est un groupe (non commutatif en général), appelé groupe des permutations de E.

Preuve: Celle - ci est simple et laissée en exercice. On vérifie que l'élément neutre est l'application identité de E: id $_E$, et que le symétrique de $f \in \mathcal{S}(E)$ est la bijection réciproque f^{-1} .

Ensembles finis 2)

DÉFINITION 10.4

Soit E un ensemble non vide, on dit que E est fini lorsqu'il existe un entier $n \in \mathbb{N}^*$ et une bijection $\phi: [1..n] \to E$. Si c'est le cas, on pose card(E) = n, sinon on dit que E est un ensemble infini. Par convention Ø est un ensemble fini de cardinal nul.

Remarques:

- a) Dire que E est fini de cardinal $n \ge 1$ revient à dire que l'on peut indexer les éléments de E de 1 à n: $E = \{e_1, \dots, e_n\}$ (les éléments étant distincts deux à deux).
- b) Si *E* est fini de cardinal n + 1 et si $a \in E$, alors $E \setminus \{a\}$ est fini de cardinal n. En effet : soit $\phi : [1..n+1] \to E$ une bijection, soit τ la permutation de E qui échange $\phi(n+1)$ et a, alors $\tau \circ \phi$ est une bijection de $[1..n+1] \to E$ qui envoie n+1 en a, elle induit donc une bijection de [1..n] sur $E \setminus \{a\}$.
- c) Si E est fini de cardinal n et $b \notin E$, alors $E \cup \{b\}$ est fini de cardinal n+1.

-`<mark>@</mark>-THÉORÈME 10.8

Soit $n \in \mathbb{N}^*$, toute partie de [1..n] est un ensemble fini de cardinal au plus égal à n. De plus, si $F \subset [1..n]$ et si card(F) = n alors F = [1..n].

Preuve: Par récurrence sur n: pour n=1 c'est évident. Supposons le théorème établi pour un entier $n \ge 1$ et soit Fune partie de [1..n+1]. Si $n+1 \notin F$, alors F est une partie de [1..n] donc (hypothèse de récurrence) F est fini et $\operatorname{card}(F) \leq n < n+1$. Si $n+1 \in F$, alors $F \setminus \{n+1\}$ est une partie de [1..n], donc $F \setminus \{n+1\}$ est un ensemble fini de cardinal $p \le n$, mais alors F est fini de cardinal $p + 1 \le n + 1$. Supposons maintenant que card(F) = n + 1, on a nécessairement $n+1 \in F$, d'où $F \setminus \{n+1\} \subset [1..n]$ et card $(F \setminus \{n+1\}) = n$, donc $F \setminus \{n+1\} = [1..n]$ (hypothèse de récurrence) et finalement F = [1..n + 1].

THÉORÈME 10.9

Soient $n, p \in \mathbb{N}^*$, et soit $f : [1..n] \to [1..p]$ une application :

- Si f est injective, alors $n \leq p$.
- Si f est surjective, alors $n \ge p$.
- Si f est bijective, alors n = p.

Preuve: On remarque que la troisième propriété découle des deux précédentes. Montrons la première : on a $f: [1..n] \to [1..p]$ une injection, alors f induit une bijection de [1..n] sur Im(f), donc Im(f) est fini de cardinal n, or Im(f) est une partie de [1..p], donc Im(f) est fini de cardinal au plus p, i.e. $n \le p$.

Montrons la deuxième : $f: [1..n] \to [1..p]$ est surjective, alors il existe une application $g: [1..p] \to [1..n]$ telle que $f \circ g = \mathrm{id}_{\lceil 1..p \rceil}$, donc g est injective et par conséquent $p \leq n$.

Conséquence: Soit *E* un ensemble fin non vide, il existe un entier $n \ge 1$ et une bijection $\phi : [1..n] \to E$, s'il existe un autre entier p et une bijection $\psi : [1..p] \to E$, alors l'application $\psi^{-1} \circ \phi$ est une bijection de [1..n] sur [1..p], donc n = p. Ce qui prouve l'unicité du nombre card(E) et justifie à posteriori la définition.

⁻THÉORÈME 10.10

Soit $n \ge 1$, toute application injective (respectivement surjective) de [1..n] dans [1..n] est bijective.

Preuve: Si $f: [1..n] \to [1..n]$ est injective, alors f induit une bijection de [1..n] sur Im(f), donc Im(f) est fini de cardinal n, mais $\text{Im}(f) \subset [1..n]$, donc Im(f) = [1..n] i.e. f est surjective (et donc bijective).

Supposons maintenant que f est surjective, alors il existe $g : [1..n] \to [1..n]$ telle que $f \circ g = \mathrm{id}_{[1..n]}$, mais alors g est injective, donc bijective d'après ce qui précède et $f = (f \circ g) \circ g^{-1}$ composée de bijections, donc f est bijective.

Propriétés du cardinal 3)

-`<mark>⊘</mark>-THÉORÈME 10.11

Soient E et F deux ensembles finis non vides, avec $n = \operatorname{card}(E)$ et $p = \operatorname{card}(F)$ et soit $f : E \to F$ une application;

- Si f est injective alors n ≤ p.
- Si f est surjective alors $n \ge p$.
- Si f est bijective alors n = p.

Preuve: Soient $\phi_1 : [1..n] \to E$ et $\phi_2 : [1..p] \to F$ deux bijections. Si f est injective alors $\phi_2 \circ f \circ \phi_1$ est une injection de [1..n] vers [1..p], donc $n \le p$. Le raisonnement est le même pour les deux autres points.

Il en découle que si F est en bijection avec E et si E est fini, alors F est fini de même cardinal de E.

√ THÉORÈME 10.12

Soient E et F deux ensembles finis non vides de même cardinal et soit $f: E \to F$ une application, les assertions suivantes sont équivalentes :

- a) f est injective.
- b) f est surjective.
- c) f est bijective.

Preuve: Soient $\phi : [\![1..n]\!] \to E$ et $\psi : [\![1..n]\!] \to F$ deux bijections, alors $g = \psi^{-1} \circ f \circ \phi$ est une application de [1..n] vers lui - même, avec $f = \psi \circ g \circ \phi^{-1}$. Si f est injective, alors g aussi, donc g est bijective et f aussi. Si f est surjective, alors g aussi et donc g est bijective et f aussi.

Exemple: Soit A un anneau intègre fini, alors A est nécessairement un corps. En effet, soit a un élément non nul de A, l'application $f: A \to A$ définie par $f(x) = a \times x$ est injective (car A est intègre), or A est fini, donc f est bijective, par conséquent il existe $a' \in A$ tel que f(a') = 1 i.e. $a \times a' = 1$. De même il existe $a'' \in A$ tel que $a'' \times a = 1$, mais alors $a'' = a'' \times (a \times a') = (a'' \times a) \times a' = a'$. Finalement, tout élément non nul de *A* possède un inverse et donc *A* est un corps.

7-THÉORÈME 10.13

Si E est un ensemble fini et si F est une partie de E, alors F est fini. De plus, si card(F) = card(E), alors F = E.

Preuve: On écarte le cas évident où $E = \emptyset$. Soit n = card(E) et $\phi : [1..n] \to E$ une bijection. Notons $i : F \to E$ définie par i(x) = x, i est une injection donc $g = \phi^{-1} \circ i$ est une injection de F vers [1..n] qui induit donc une bijection de F sur Im(g), or Im(g) est une partie de [1..n], donc Im(g) est un ensemble fini de cardinal $p \le n$, par conséquent F est fini de cardinal p. Si n = p, alors Im(g) = [1..n] donc g est une bijection ce qui entraîne que i est une bijection, donc Im(i) = E, c'est à dire F = E.

-THÉORÈME 10.14

Soient E et F deux ensembles finis, l'ensemble $E \cup F$ est fini et :

$$card(E \cup F) = card(E) + card(F) - card(E \cap F)$$

Preuve: Si l'un des deux est vide, il n'y a rien à démontrer. Supposons E et F non vides, dans un premier temps on envisage le cas où $E \cap F = \emptyset$, soit $f : [1..n] \to E$ et $g : [1..p] \to F$ deux bijections, on considère l'application $\phi: \llbracket 1..n+p \rrbracket \to E \cup F \text{ définie par } \phi(k) = f(k) \text{ si } 1 \leqslant k \leqslant n \text{ et } \phi(k) = g(k-n) \text{ si } n+1 \leqslant k \leqslant n+p \text{, comme } E \cap F = \emptyset$ on voit que ϕ est injective, d'autre part la surjectivité est évidente, donc ϕ est bijective, ce qui montre que $E \cup F$ est fini de cardinal n + p.

Passons maintenant au cas général : posons $I = E \cap F$, on a $E \cup F = E \cup (F \setminus E)$ et ces deux ensembles sont disjoints et finis, donc $E \cup F$ est fini et $card(E \cup F) = card(E) + card(F \setminus E)$, d'autre part $F = I \cup (F \setminus E)$ et ces deux ensembles sont disjoints et finis, donc $card(F) = card(I) + card(F \setminus E)$, on a donc $card(F \setminus E) = card(F) - card(I)$, ce qui donne la formule.

THÉORÈME 10.15

Si E et F sont deux ensembles finis, alors l'ensemble $E \times F$ est fini et $card(E \times F) = card(E) \times card(F)$.

Preuve: Si l'un des deux est vide, alors $E \times F$ est vide et le résultat est évident. Soit n = card(E), si n = 1 alors $E = \{e\}$ et l'application $f: F \to E \times F$ définie par f(x) = (e, x) est une bijection, donc $E \times F$ est fini de même cardinal que F, le théorème est donc vrai pour n = 1.

Supposons le théorème démontré pour un entier $n \ge 1$ et supposons card(E) = n+1, on fixe un élément $e \in E$ et on pose $E' = E \setminus \{e\}$. On a $E \times F = (\{e\} \times F) \cup (E' \times F)$, ces deux ensembles sont disjoints et finis (hypothèse de récurrence), $\operatorname{donc} E \times F \text{ est fini et } \operatorname{card}(E \times F) = \operatorname{card}(\{e\} \times F) + \operatorname{card}(E' \times F) = \operatorname{card}(F) + \operatorname{card}(E') \times \operatorname{card}(F) = (n+1) \times \operatorname{card}(F).$ Le théorème est démontré au rang n + 1.

Conséquence : Si $p \in \mathbb{N}^*$, et si E est fini de cardinal $n \ge 1$, alors E^p (ensemble des p - uplets d'éléments de E) est fini et card $(E^p) = [\operatorname{card}(E)]^p$.

Dénombrement III)

1) Préliminaires

Définition 10.5

Dénombrer un ensemble fini E c'est calculer son cardinal. Dans la pratique, c'est le mettre en bijection avec un ensemble F dont on connaît le cardinal.

La fonction factorielle : Elle est définie sur \mathbb{N} par : $n! = \begin{cases} 1 & \text{si } n = 0 \\ 1 \times \cdots \times n & \text{si } n > 0 \end{cases}$. On peut également en donner une définition récurrente : 0! = 1 et $\forall n \in \mathbb{N}, (n+1)! = (n+1) \times n!$

- THÉORÈME 10.16 (diviser pour mieux compter)

Soient E un ensemble fini et soient A_1, \ldots, A_n n parties de E deux à deux disjointes et dont la réunion est égale à E, alors : $card(E) = \sum_{k=0}^{n} card(A_k)$.

Preuve: Celle - ci est simple, c'est un raisonnement par récurrence sur n, sachant que la formule est vraie pour n=2.

2) Le nombre d'applications

THÉORÈME 10.17

Soit E et F deux ensembles finis avec p = card(E) et n = card(F), l'ensemble des applications de E vers F, $\mathcal{F}(E,F)$ (ou F^E), est fini de cardinal n^p .

Preuve: Posons $E = \{e_1, \dots, e_n\}$, on vérifie que l'application $\phi : F^E \to F^P$ définie par $\phi(f) = (f(e_1), \dots, f(e_n))$ est une bijection. Or F^p est un ensemble fini de cardinal n^p ce qui donne le résultat.

Remarques:

- a) Le théorème justifie le raisonnement suivant : pour construire une application de *E* vers *F* on compte pour chaque élément de E le nombre de choix possibles pour son image (soit n choix), puis on fait le produit, soit n^p constructions possibles.
- b) Le nombre de façons de tirer avec remise p boules parmi n est n^p .
- c) Le nombre de façons de ranger p boules dans n boites est n^p .

3) Le nombre de parties d'un ensemble

ØDéfinition 10.6

Soit E un ensemble et A une partie de E, on appelle fonction caractéristique de A l'application $\chi_A: E \to \{0; 1\} \text{ définie par } \chi_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon} \end{cases}.$

-<mark>`@</mark>-THÉORÈME 10.18

Si E est fini de cardinal n, alors $\mathcal{P}(E)$, l'ensemble des parties de E, est fini de cardinal 2^n .

Preuve: Il est facile de vérifier que l'application de $\mathcal{P}(E)$ vers $\mathcal{F}(E, \{0, 1\})$ qui à toute partie de E associe sa fonction caractéristique, est une bijection. Or l'ensemble $\mathscr{F}(E, \{0; 1\})$ est fini de cardinal 2^n ce qui donne le résultat.

Remarque : Le théorème justifie le raisonnement suivant : pour construire une partie de E il y a deux choix possibles pour chaque élément de E (on le prend ou on ne le prend pas), comme il y a n éléments dans E cela fait 2^n constructions possibles, soit 2^n parties.

4) Le nombre de bijections

√ THÉORÈME 10.19

Si E et de F sont deux ensembles finis de même cardinal n > 0, il y a n! bijections de E vers F. En particulier, card($\mathcal{S}(E)$) = n!.

Preuve: Lorsque card(E) = card(F) = n l'ensemble des bijections de E vers F est inclus dans l'ensemble des applications, c'est donc un ensemble fini de cardinal inférieur ou égal à n^n . Soit S_n l'ensemble des permutations de $[\![1..n]\!]$ et D_k l'ensemble des permutations f de $[\![1..n]\!]$ telles que f(1)=k, alors il est clair que $S_n=D_1\cup\ldots\cup D_n$ et que $\operatorname{card}(D_k) = \operatorname{card}(S_{n-1})$, on obtient ainsi que $\operatorname{card}(S_n) = n \times \operatorname{card}(S_{n-1})$ avec $\operatorname{card}(S_1) = 1$.

Le nombre de p-parties (ou p-combinaisons)

ØDéfinition 10.7

Soit E un ensemble de cardinal n > 0 et soit $p \in \mathbb{N}$, on appelle p - combinaison d'éléments de E (ou p - partie) toute partie de E de cardinal p. L'ensemble des p - parties de E est noté $\mathscr{P}_p(E)$, c'est un ensemble fini (car inclus dans $\mathscr{P}(E)$) et son cardinal est noté $\binom{n}{n}$ ou encore C_n^p .

Cas particuliers:

- a) Si p = 0 la seule partie de E à 0 élément est \emptyset , donc $\binom{n}{0} = 1$.
- b) Si p = n, la seule partie de E à n éléments est E, donc $\binom{n}{n} = 1$.
- c) Si p > n il n'y a aucune partie de E à p éléments donc dans ce cas, $\binom{n}{p} = 0$.

-THÉORÈME 10.20

Si
$$n \ge 1$$
 et $p \in \mathbb{N}$, alors : $\binom{n}{p} = \frac{n \times (n-1) \times ... \times (n-p+1)}{p!}$. En particulier lorsque $p \le n$, on a $\binom{n}{p} = \frac{n!}{p!(n-p)!}$.

Preuve: Par récurrence sur n: pour n = 1 la vérification est simple. Supposons le théorème vrai pour un entier $n \ge 1$ (pour tout p) et supposons card(E) = n + 1, si p = 0 on sait que la formule est vraie, supposons $p \ge 1$, on fixe un élément $a \in E$, soit A l'ensemble des p - parties de E contenant a et B l'ensemble des p - parties de E ne contenant pas a, alors $\mathscr{P}_p(E) = A \cup B$ et $A \cap B = \emptyset$, donc $\binom{n+1}{p} = \operatorname{card}(A) + \operatorname{card}(B)$, or $\operatorname{card}(B) = \binom{n}{p}$ (car *B* est en bijection avec $\mathscr{P}_p(E \setminus \{a\})$) et card(A) = $\binom{n}{p-1}$ (car *A* est en bijection avec $\mathscr{P}_{p-1}(E \setminus \{a\})$), d'où $\binom{n+1}{p} = \binom{n}{p} + \binom{n}{p-1} = \frac{n \times \cdots \times (n-p+1)}{p!} + \frac{n \times \cdots \times (n-p+2)}{(p-1)!}$, ce qui donne $\frac{n \times \cdots (n-p+2)[n-p+1+p]}{p!}$, la formule est donc vraie au rang n + 1. \Box

Propriétés:

- a) Si $p \le n$, $\binom{n}{p} = \binom{n}{n-p}$.
- b) Si $1 \le p \le n$, $\binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}$.

c) Triangle de Pascal $1:\binom{n}{p}+\binom{n}{p+1}=\binom{n+1}{p+1}$.

d) Binôme de *Newton*: $\forall n \in \mathbb{N}, \forall x, y \in \mathbb{C}, (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$.

IV) Exercices

★Exercice 10.1

- a) Soit $n \in \mathbb{N}^*$, montrer que si la somme des chiffres dans l'écriture décimale de n est un multiple de 9, alors n est un multiple de 9.
- b) Si deux nombres sont écrits en base 10 avec les mêmes chiffres mais dans un ordre différent, montrer que leur différence est divisible par 9.

★Exercice 10.2

Soit *E* un ensemble non vide, et *f* une application de *E* vers $\mathcal{P}(E)$. En considérant la partie $A = \{x \in E \mid x \notin f(x)\}$, montrer que *f* ne peut pas être surjective.

★Exercice 10.3

Soient E, F, G trois ensembles et soient $f: E \to F, g: F \to G$ et $h: G \to E$ trois applications, montrer que :

- a) Si $h \circ g \circ f$ et $g \circ f \circ h$ sont surjectives et $f \circ h \circ g$ est injective, alors f, g, h sont bijectives.
- b) Si $h \circ g \circ f$ et $g \circ f \circ h$ sont injectives et $f \circ h \circ g$ est surjective, alors f, g, h sont bijectives.

★Exercice 10.4

Démontrer l'inégalité suivante : $\forall n \in \mathbb{N}^*, \frac{(2n)!}{(n!)^2} < \frac{4^n}{\sqrt[3]{n}}$.

★Exercice 10.5

Démontrer l'inégalité suivante : $\forall n \in \mathbb{N}^*, (n!)^{1/n} \geqslant \frac{n+1}{e}$.

★Exercice 10.6

Démontrer les assertions suivantes :

- a) $\forall n \in \mathbb{N}, 2n \leq 2^n$.
- b) $\forall n \in \mathbb{N}^*, (n+1)! = 1 + \sum_{k=1}^n k(k!).$
- c) $\forall n \ge 24, \exists a, b \in \mathbb{N}, n = 5a + 7b$.
- d) $\forall n \in \mathbb{N}^*, \sum_{k=1}^n k(k-1) = \frac{(n+1)n(n-1)}{3}.$
- e) Soit (F_n) une suite qui vérifie : $F_{n+2} = F_{n+1} + F_n$. Montrer que : $F_{m+2n} = \sum_{k=0}^{n} {n \choose k} F_{m+k}$.
- f) Pour tout entier n et p de \mathbb{N} , montrer que $a_{n,p} = \frac{(2n)!(2p)!}{n!p!(n+p)!}$ est un entier. On commencera par vérifier que $a_{n+1,p} = 4a_{n,p} a_{n,p+1}$.

★Exercice 10.7

- a) Soit E un ensemble, montrer que E est infini ssi il existe une injection de $\mathbb N$ dans E.
- b) Soit *A* une partie infinie de \mathbb{N} , montrer qu'il existe une bijection strictement croissante de \mathbb{N} sur *A*
- c) Soit $f: \mathbb{N} \to \mathbb{N}$ une application, montrer que f ne peut pas être strictement décroissante.

^{1.} PASCAL Blaise (1623 - 1662): mathématicien, physicien et philosophe de génie qui se tourna vers la théologie en 1654.

★Exercice 10.8

Démontrer les relations suivantes :

a)
$$C_p^p + C_{p+1}^p + \dots + C_n^p = C_{n+1}^{p+1}$$
. Retrouver ainsi les sommes : $\sum_{k=1}^n k^k$ pour $p = 1, 2, 3$.

b)
$$\forall n, m, p \in \mathbb{N}, \sum_{k=0}^{p} C_n^k C_m^{p-k} = C_{n+m}^p$$
 (formule de *Vandermonde*).

c)
$$\forall n, p \in \mathbb{N}, \sum_{k=0}^{p} C_{n+k-1}^{k} = C_{n+p}^{p}.$$

★Exercice 10.9

Soient (a_n) et (b_n) deux suites réelles telles que pour tout n on a $a_n = \sum_{k=0}^n \binom{n}{k} b_k$. Montrer que pour tout n on a $b_n = (-1)^n \sum_{k=0}^n (-1)^k \binom{n}{k} a_k$.

★Exercice 10.10

Simplifier les sommes suivantes :

$$\sum_{k=1}^{n} k \, C_n^k; \quad \sum_{k=1}^{n} k(k-1) \, C_n^k; \quad \sum_{k=1}^{n} k^2 \, C_n^k; \quad \sum_{k=1}^{n} (-1)^{k+1} k \, C_n^k; \quad \sum_{k=1}^{n} \frac{1}{k+1} \, C_n^k; \quad \sum_{k=0}^{n} \left(C_n^k \right)^2.$$

★Exercice 10.11

Soient $n \ge 1$, E un ensemble de cardinal n+3 et F un ensemble de cardinal n. Dénombrer l'ensemble des surjections de E vers F.

★Exercice 10.12

Soit E un ensemble de cardinal n, dénombrer l'ensemble des couples (A,B) de parties de E qui vérifient :

a)
$$A \cup B = E$$
 b) $A \cap B = \emptyset$ c) $card(A \cap B) = p$.

★Exercice 10.13

Soient $n, p \in \mathbb{N}$, on note Γ_n^p le nombre d'applications $u : [1..n] \to [0..p]$ telles que la somme des images est égale à p, i.e. $\sum_{k=1}^n u(k) = p$.

- a) Montrer que $\Gamma_n^0 + \Gamma_n^1 + \dots + \Gamma_n^p = \Gamma_{n+1}^p$. En déduire que $\Gamma_n^p = C_{n+p-1}^p$.
- b) Dénombrer l'ensemble des n -uplets d'entiers positifs (x_1,\ldots,x_n) vérifiant :

$$x_1 + \cdots + x_n = p$$
.

c) Dénombrer l'ensemble des n -uplets d'entiers positifs (x_1, \ldots, x_n) vérifiant :

$$x_1 + \cdots + x_n \leq p$$
.

★Exercice 10.14

Soit E un ensemble de cardinal $n \ge 1$. Dénombrer l'ensemble des :

- a) relations de E dans E.
- b) relations réflexives.
- c) relations symétriques.
- d) relations antisymétriques.
- e) relations réflexives et symétriques.
- f) relations réflexives et antisymétriques.
- g) relations d'ordre total.