HW8 (due just before the final exam)

- 1 Define SUBGRAPH ISOMORPHISM (SI) problem as follows: Given two undirected graphs G and H, is G a subgraph of H? (G is a subgraph of H if for the set $\{v_1, v_2, ..., v_n\}$ of all nodes of G there are corresponding nodes $\{u_1, u_2, ..., u_n\}$ of H such that $\{v_j, v_i\}$ is an edge in G iff $\{u_i, u_i\}$ is an edge in H). Prove that SI is an NP-complete problem.
- 2 Define INTEGER PROGRAMMING (IP) problem as follows: Given m equations:

$$\sum_{j=1,n} a_{ij} x_j = b_i, i=1,..., m$$

in n variables x_j with integer coefficients a_{ij} and b_j , are there solutions with x_j equal to 1 or 0 for each j? Prove that IP is an NP-complete problem.

3 – Define 3-COLORING (3C) problem as follows: Given an undirected graph can its vertices colored with three colors such that no two adjacent nodes have the same color. Prove that 3C is an NP-complete problem (Hint: Use a polynomial reduction to 3SAT)