Movie Genre Prediction

1. Introduction

Predicting the genre of a movie based on its features (like title, description, cast, or metadata) is a

useful task in recommendation systems, content categorization, and entertainment analytics. This

project aims to build a machine learning model that predicts one or more genres for a given movie

using textual and categorical information.

2. Objective

To build a multi-label classification model that predicts the genre(s) of a movie based on available

metadata (e.g., title, overview, cast, director).

3. Dataset

Source:

- TMDb (The Movie Database) API or Kaggles TMDB Movie Dataset

Features:

- title: Movie title

- overview: Short description of the movie

- genres: List of genres (target variable)

- cast: Top actors

- director: Director of the movie

- release_date: Movie release date

- runtime: Duration of the movie in minutes

4. Preprocessing

Text Features:

- Lowercasing				
- Removing punctuation/special characters				
- Stopword removal				
- Tokenization				
- TF-IDF vectorization or Word embeddings (e.g., BERT for advanced models)				
Categorical Features:				
- Encode genres as multi-hot vectors				
- Encode director and cast (e.g., top N one-hot or embeddings)				
Missing Values:				
- Fill or remove rows with missing critical values				
5. Modeling				
This is a multi-label classification problem, since one movie can belong to multiple genres (e.g.,				
Action + Comedy).				
Algorithms Used:				
- Logistic Regression (One-vs-Rest)				
- Random Forest				
- Multinomial Naive Bayes				
- Support Vector Machine (SVM)				
- Support Vector Machine (SVM) - Deep Learning (e.g., LSTM, BERT)				
- Deep Learning (e.g., LSTM, BERT)				
- Deep Learning (e.g., LSTM, BERT)				

- Hamming Loss
- F1-score (micro/macro)
- Precision/Recall
- Subset Accuracy

7. Results

Model	F1 Score (Macro) Hamming Loss		
Logistic Regress	sion 0.67	0.21	
Random Forest	0.63	0.25	
BERT + NN	0.78	0.12	

8. Challenges

- Multi-label imbalance (some genres are rare)
- Noisy or ambiguous descriptions
- Long overview texts that require advanced NLP

9. Conclusion

Movie genre prediction is a challenging but valuable task. Using NLP techniques and multi-label classification, it is possible to achieve good accuracy. Deep learning models (especially with pretrained transformers) significantly improve performance on complex text data.

10. Future Work

- Incorporate trailer video or poster image using multimodal learning
- Improve performance with genre hierarchy or relationships
- Personalize predictions using user preference data