Telecom Customer Churn Analysis

The BRICS

Introduction - Topic

Prescriptive Analysis

- To uncover the key causeand-effect relationships and understand why
- To manipulate these factors in one's favor to get satisfactory outcome

Telecom Customer Churn

- To find the factors that result in customer leaving the company and analyze the reasons
- To give suggestions on improvement in order to retain customers

Introduction - Data

	gender	Senio	rCitizen	Partner	Dependents	tenure	PhoneSer	vice	Multiple	Lines	InternetService	OnlineS	Security Onl	ineBackup De	eviceProt	ection
1	Female		0	Yes	No	1		No	No phone se	ervice	DSL		No	Yes		No
2	Male		0	No	No	34		Yes		No	DSL		Yes	No		Yes
3	Male		0	No	No	2		Yes		No	DSL		Yes	Yes		No
4	Male		0	No	No	45		No	No phone se	ervice	DSL		Yes	No		Yes
5	Female		0	No	No	2		Yes		No	Fiber optic		No	No		No
6	Female		0	No	No	8		Yes		Yes	Fiber optic		No	No		Yes
	TechSup	port	Streaming	TV Stre	amingMovies	(Contract	Paper	·lessBilling	J	PaymentM	lethod Mo	onthlyCharge	s TotalCharg	ges Churr	1
1		No		No	No	Month-	to-month		Yes		Electronic	check	29.8	5 29.	85 No)
2		No		No	No	(One year		No)	Mailed	check	56.9	5 1889.	50 No)
3		No		No	No	Month-	to-month		Yes		Mailed	check	53.8	5 108.	15 Yes	
4		Yes		No	No	(One year		No	Bank	transfer (autom	natic)	42.3	0 1840.	75 No)
5		No		No	No	Month-	to-month		Yes	;	Electronic	check	70.7	0 151.	65 Yes	;
6		No	Y	'es	Yes	Month-	to-month		Yes	;	Electronic	check	99.6	5 820.	50 Yes	;

Visualization

- Gender (X)
- Partner -
- Senior Citizen +
- Dependents

Visualization (continued)

- Multiple Lines +
- Internet Service +
- Online Security
- Online Backup

Tilder Visualization (continued)

- **Device Protection**
- Tech Support
- Streaming TV
- **Streaming Movies**

Tilder Visualization (continued)

- Contract
- Paperless Billing +
- **Payment Method**
- **Tenure**

Generally data is sufficient and clean

Data Pre-processing

- 1. Fill NA in total charge (0.15%) with rpart model
- 2. Replace 'No internet service' with 'No' in Internet related features
- Scale numerical features
- 4. Turn categorical features into dummies

Modeling

- 1. Models: Logit, knn, tree, random forest, nb, qda, svm
- Cross-validation: numbers = 5 to avoid overfitting
- Metrics: emphasis more on Sens than Spec (prob cutoff)
 cost of retain existing customer < attracting new customers

Digression: Best cutoff in business

	Churn	Not churn
Predict positive	TP	FP (extra cost to retain)
Predict negative	FN (extra cost to attract new customer)	TN

Quantitative way to get cutoff:

$$Total\ cost = TP \times C_1 + FP \times C_1 + FN \times C_2$$

$$= C_1(TP + FN) \times sen$$

$$+ C_1(TN + FP) \times (1 - spe)$$

$$+ C_2(TP + FN) \times (1 - sen)$$

$$= (C_1 - C_2)(TP + FN) \times sen$$

$$- C_1(TN + FP) \times spe + constant$$

C1 – cost of retain existing customers

C2 – cost of attracting new customers

Logistic

Criteria: Searching For Lowest AIC with

function stepAIC

Pros: easy to interpret, helpful to

determine the quantitative impact of

variables

Cutoff Point: At 25%, good sensitivity with not low accuracy and specificity

ROC	Sens	Spec	
0.8456	0.8977	0.5507	

KNN

Criteria of Choosing K: Highest AUC when K=71

Pros: Few parameters needed, a good benchmark

Larger cost: a larger drop of accuracy for getting a higher sensitivity than logistic model

Cutoff Point: At 25%, a little higher sensitivity than Logit

Decision Tree

Criteria: Complexity for 0.0054. Max depth is set to 6. Easy for explaining and avoid overfitting.

Pros: deal with both discrete and continuous variables; easy to understand and interpret

Cutoff Point: At 10%, very costly to get high sensitivity, not better than KNN

ср	ROC	Sens	Spec
0.0054	0.7785	0.9163	0.4446
0.0062	0.7259	0.9283	0.4137
0.1048	0.6177	0.9573	0.2311

Random Forest

Criteria: Highest accuracy with 500 trees and 2 Maximum Variables at Each Split

Cutoff Point: At 10%, better than the tree, similar to KNN

mtry	ROC	Sens	Spec
2	0.8345	0.9226	0.4601
15	0.8192	0.8938	0.4909
28	0.8146	0.8902	0.4963

Naive Bayes & Quadratic Discriminant Analysis

Naive Bayes: cost for getting a higher sensitivity is low, but sensitivity not high enough

Cons: needs estimation of many hidden variables, no regularization of overfitting

Quadratic Discriminant Analysis: Similar to NB, even lower cost but also lower available sensitivity

Cutoff Point: At 5%, high sensitivity with not low accuracy and specificity

Radial Support Vector Machine

Criteria: Highest AUC (small C = 0.25, which avoids overfitting)

Pros: Low risk for overfitting, perform very well with appropriate kernel function

Cutoff Point: At the elbow of 15%, high sensitivity with not low accuracy and specificity

С	ROC	Sens	Spec
0.25	0.8273	0.9273	0.4419
0.5	0.8215	0.9273	0.4419
1	0.8147	0.9250	0.4510

Comparison with DataRobot

DataRobot Best Model (Cross Validated AUC)

Light Gradient Boosted Trees Classifier with Early Stopping

AUC of best model: 0.8450

ROC Curve of Light GBM Model

Best Model – Trade-offs

Best Model: Radical Support Vector Machine

Accuracy vs. Interpretability

- Higher rate for predicting true positive
- Harder to interpret the detailed relationship between each independent variables and the target variable

Result Interpretation

Rank by Importance Level

In conjunction with Visualization and Logit Coefficients

Result Interpretation

Target variable: Churn

Positive: Total/Monthly Charges; Paperless Billing; Payment Method (Electronic check); Senior Citizen; Streaming TV and Movies; Multiple Lines; Internet Service (Fiber Optics)

Negative: Tenure; Yearly Contract; Online Security; Tech Support; Online Backup; Dependent; Partner; No Internet Service

Business Insight

Problems	Suggestions		
Sensitivity of Senior Customer to the monthly charge	Package contract with family		
Positive relationship of Paperless Billing	Regular Emails containing: Latest or Special Offers, Usage Report, New Products or Services		
More expensive or worse TV, Movie and Internet services	Cooperate with specialized companies Lower Charges		
People with Partners More likely to stay	Differentiated Contracts the distinct between single and married		
Contract	Lower the price with the increase in the time the contract lasts		

- Collinearity Between Total Charge & Monthly Charge
- Could Not Quantify Between The Cost of Attracting new Customers & Keeping Current Customers

