

Département sciences du numérique Première année

Transmissions sur fréquence porteuse (modulations linéaires)

Département sciences du numérique Première année

1- Classification des modulations, notion d'enveloppe complexe	Diapo 3
2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes	Diapo 12
3- Comparaison en termes d'efficacité spectrale	Diapo 21
4- Comparaison en termes d'efficacité en puissance	Diapo 34
- Exemple,	
- Chaine passe bas-équivalente	
- Calcul de TERs	

Département sciences du numérique Première année

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Transmissions en bande de base

réponse en fréquence du canal de propagation

Classification des modulations sur fréquence porteuse

→ Modulation d'amplitude

$$x(t) = Am(t)\cos(2\pi f_p t)$$
 $x(t) = (A + m(t))\cos(2\pi f_p t)$, $A \ge |m(t)|_{max}$ Modulation d'amplitude sans porteuse

→ Modulation de phase

$$x(t) = A\cos(2\pi f_p t + k_p m(t))$$

→ Modulation de fréquence

$$F_i(t) = \frac{1}{2\pi} \frac{d\Phi_i(t)}{dt} = f_p + k_f m(t) \quad \text{(fréquence instantannée)}$$

$$x(t) = A \cos\left(2\pi f_p t + 2\pi k_f \int_0^t m(u) du\right)$$

$$\Phi_i(t)$$

m(t): message à transmettre = signal modulant

$$\cos\left(2\pi f_p t\right)$$
 : cosinus porteur

 f_p : fréquence porteuse

x(t): signal modulé sur porteuse

Classification des modulations sur fréquence porteuse

Modulation mono-dimensionnelle

ou bi-dimensionnelle

$$x(t) = \sum_{k} a_k h(t - kT_s) \cos(2\pi f_p t) - \sum_{k} b_k h(t - kT_s) \sin(2\pi f_p t)$$

$$m_1(t) \qquad m_2(t)$$

9

Enveloppe complexe associée au signal modulé

$$x(t) = \Re\left[(I(t) + jQ(t)) e^{j2\pi f_p t} \right]$$

$$x_e(t) = I(t) + jQ(t) = \sum_k d_k h(t - kT_s) \qquad (d_k = a_k + jb_k)$$

Enveloppe complexe associée à x(t)

Classification des transmissions sur fréquence porteuse

Modulation linéaires

$$x(t) = \sum_{k} a_k h(t - kT_s) \cos(2\pi f_p t) - \sum_{k} b_k h(t - kT_s) \sin(2\pi f_p t)$$

$$m_1(t) \qquad m_2(t)$$

$$x(t) = \Re\left[\left(m_1(t) + jm_2(t)\right) e^{j2\pi f_p t}\right]$$

L'enveloppe complexe associée au signal modulé sur porteuse dépend linéairement de l'information à transmettre

ou non linéaires (modulations de fréquence)

$$x(t) = A\cos\left(2\pi f_p t + 2\pi k_f \int_0^t m(u)du\right)$$

$$x(t) = \Re\left[Ae^{j2\pi k_f \int_0^t m(u)du}e^{j2\pi f_p t}\right]$$
Ce n'est pas le cas ici

Accès Wooclap pour les questions

Cette chaine représente t-elle une transmission :

1 En bande de base

2 Sur fréquence porteuse

Le signal transmis avec cette chaine est un signal :

1 Modulé en amplitude

2 Modulé en phase

Modulé en fréquence

La modulation utilisée ici est une modulation :

1 Linéaire

2 Non linéaire

Département sciences du numérique Première année

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Représentation équivalente du modulateur

Modulations linéaires bi-dimensionnelles

$$x(t) = I(t)\cos(2\pi f_p t) - Q(t)\sin(2\pi f_p t)$$

Modulations numériques linéaires sur fréquence porteuse Modulations ASK, PSK, QAM

$$x(t) = \sum_k a_k h(t - kT_s) \cos{(2\pi f_p t)} - \sum_k b_k h(t - kT_s) \sin{(2\pi f_p t)}$$
 I(t) : voie en phase Q(t) : voie en quadrature

Modulations mono-dimensionnelle

$$d_k = a_k \in \{\pm 1, ..., \pm (M-1)\}$$
 M-ASK (Amplitude Shift Keying)

Modulations bi-dimensionnelles

M-QAM (Quadrature Amplitude Modulation) carrée

$$a_k,\ b_k \text{ symboles } \sqrt{M}\text{-aires indépendants } \in \left\{\pm V, \pm 3V, ..., \pm (\sqrt{M}-1)V\right\}$$

M-PSK (Phase Shift Keying)

$$d_k \in \{e^{j\left(\frac{2\pi}{M}l + \frac{\pi}{M}\right)}\}, \ l = 0, ..., M - 1$$

Modulations numériques linéaires sur fréquence porteuse Notion de Constellation

Représentation des symboles d_k possibles dans le plan (a_k, b_k)

Constellations ASK

Constellations PSK

Constellations QAM

→ Modulations linéaires mono-dimensionnelle : 2-ASK ou BPSK

Bits	a _k	d _k	$x_e(t)$	x(t)
0	-1	-1=e ^{jπ}	1.5	0.8
1	+1	+1=e ⁰		
	0 180° 1 -1 +1		a _k -1 -1.5 0 50 100 150 200 250 300 350 40	0.2 - 0 - -0.2 - -0.4 - -0.6 - -0.8 - 0 0 20 40 60 80 100

→ Modulations linéaires bi-dimensionnelle : 4-PSK ou 4-QAM ou QPSK (DVB-S)

Bits	a _k	b _k	d _k	x(t)
00	-1	-1	-1-j=e ^{j5π/4}	
01	-1	+1	-1-j=e ^{j3π/4}	
11	+1	+1	-1-j=e ^{jπ/4}	-1 - 0.5 -
10	+1	-1	-1-j=e ^{j7π/4}	0 100 200 300 400 500
		b_k		Q(t) 10.5 -
	01		11	
				k -1 - 1.5 0 50 100 150 200
	00		10	0 100 200 300 400 500

→ Modulations linéaires bi-dimensionnelle : 8-PSK (DVB-S2)

Constellation 8-PSK

→ Modulations linéaires bi-dimensionnelle : 16-QAM (DVB-C)

Constellation 16-QAM

(Enveloppe non constante)

Cette constellation est associée à une modulation :

- 1 4-ASK
- (2) 4-PSK
- 3 4-QAM

Ce modulateur va générer un signal modulé en :

- 1 8-PAM
- 2 8-ASK
- 3 8-PSK

$$\begin{array}{c} \text{Bits} \rightarrow & \text{Mapping} \\ \Rightarrow \{d_k\} \rightarrow \sum_k d_k \delta(t-kT_s) \rightarrow & \text{h (t)} \\ \Rightarrow & x_e(t) = \sum_k d_k h(t-kT_s) \\ \Rightarrow & \\ d_k \in \{-1-j, \ -1+j, \ +1+j, \ +1-j\} \end{array}$$

Ce modulateur va générer un signal modulé en :

1 4-PAM

4-PSK

2 4-ASK

5 8-ASK

3 4-QAM

6 8-PAM

Département sciences du numérique Première année

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Bits
$$\rightarrow$$
 Mapping \rightarrow $\{d_k\}$ \rightarrow $\sum_k d_k \delta(t-kT_s)$ \rightarrow $\Big|$ $h(t)$ \rightarrow $x_e(t) = \sum_k d_k h(t-kT_s)$ \Rightarrow $\Re[.]$ \Rightarrow $\Re[.]$ Symboles complexes $d_k = a_k + jb_k$ Enveloppe complexe Associée à x(t): $e^{j2\pi f_p t}$ Transposition de fréquence

$$x_e(t) = \sum_k d_k h(t - kT_s)$$

Comparaison en termes d'efficacité spectrale

$$x_e(t) = \sum_{k} d_k h(t - kT_s)$$

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 + 2 \frac{\sigma_d^2}{T_s} |H(f)|^2 \sum_{k=1}^{\infty} \mathfrak{Re} \left[R_d(k) e^{j2\pi f k T_s} \right] + \frac{|m_d|^2}{T_s^2} \sum_{k} \left| H\left(\frac{k}{T_s}\right) \right|^2 \delta\left(f - \frac{k}{T_s}\right)$$

Comparaison en termes d'efficacité spectrale

$$x_e(t) = \sum_{k} d_k h(t - kT_s)$$

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 + 2 \frac{\sigma_d^2}{T_s} |H(f)|^2 \sum_{k=1}^{\infty} \mathfrak{Re} \left[R_d(k) e^{j2\pi f k T_s} \right] + \frac{|m_d|^2}{T_s^2} \sum_k \left| H\left(\frac{k}{T_s}\right) \right|^2 \delta\left(f - \frac{k}{T_s}\right)$$

$$x(t) = \Re\left[x_e(t)e^{j2\pi f_p t}\right] \longrightarrow R_x(\tau) = \frac{1}{2}\Re\left[R_{x_e}(\tau)e^{j2\pi f_p \tau}\right]$$

Comparaison en termes d'efficacité spectrale

$$x_e(t) = \sum_{k} d_k h(t - kT_s)$$

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 + 2\frac{\sigma_d^2}{T_s} |H(f)|^2 \sum_{k=1}^{\infty} \mathfrak{Re} \left[R_d(k) e^{j2\pi f k T_s} \right] + \frac{|m_d|^2}{T_s^2} \sum_{k} \left| H\left(\frac{k}{T_s}\right) \right|^2 \delta\left(f - \frac{k}{T_s}\right)$$

$$x(t) = \Re\left[x_e(t)e^{j2\pi f_p t}\right] \rightarrow R_x(\tau) = \frac{1}{2}\Re\left[R_{x_e}(\tau)e^{j2\pi f_p \tau}\right]$$

$$S_x(f) = \frac{1}{4}\left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p)\right)$$

Exemple

Exemple

Exemple

Exemple

$$\begin{array}{c|c}
11 & b_k \\
V_1 & 10
\end{array}$$

$$\begin{array}{c|c}
-V_1 & V_2 \\
\hline
-V_1 & 01
\end{array}$$

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \Rightarrow B_x = 2B_{x_e}$$

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 + 2\frac{\sigma_d^2}{T_s} |H(f)|^2 \sum_{k=1}^{\infty} \Re\left[R_d(k) e^{j2\pi f k T_s} \right] + \frac{|m_d|^2}{T_s^2} \sum_{k} \left| H\left(\frac{k}{T_s}\right) \right|^2 \delta\left(f - \frac{k}{T_s}\right)$$
 =0 car symboles indépendants =0 car symboles à moyenne nulle

Modulations numériques linéaires sur fréquence porteuse Comparaison en termes d'efficacité spectrale

Exemple

Modulation mono-dimensionnelle (4-ASK), Modulation bi-dimensionnelle (QPSK), filtre de mise en racine de cosinus surélevé

$$S_{x}(f) = \frac{1}{4} \left(S_{x_{e}}(f - f_{p}) + S_{x_{e}}(-f - f_{p}) \right) \Rightarrow B_{x} = 2B_{x_{e}}$$

$$S_{x_{e}}(f) = \frac{\sigma_{d}^{2}}{T_{s}} |H(f)|^{2} + 2\frac{\sigma_{d}^{2}}{T_{s}} |H(f)|^{2} \sum_{l=1}^{\infty} \Re\left[R_{d}(k)e^{j2\pi fkT_{s}} \right] + \frac{|m_{d}|^{2}}{T_{s}^{2}} \sum_{l=1}^{\infty} \left| H\left(\frac{k}{T_{s}}\right) \right|^{2} \delta\left(f - \frac{k}{T_{s}}\right)$$

=0 car symboles indépendants =0 car symboles à moyenne nulle

Modulations numériques linéaires sur fréquence porteuse Comparaison en termes d'efficacité spectrale

Exemple

Modulation mono-dimensionnelle (4-ASK), Modulation bi-dimensionnelle (QPSK), filtre de mise en racine de cosinus surélevé

$$S_{x}(f) = \frac{1}{4} \left(S_{x_{e}}(f - f_{p}) + S_{x_{e}}(-f - f_{p}) \right) \Rightarrow B_{x} = 2B_{x_{e}}$$

$$S_{x_{e}}(f) = \frac{\sigma_{d}^{2}}{T_{s}} |H(f)|^{2} + 2\frac{\sigma_{d}^{2}}{T_{s}} |H(f)|^{2} \sum_{l=1}^{\infty} \Re\left[R_{d}(k)e^{j2\pi fkT_{s}} \right] + \frac{|m_{d}|^{2}}{T_{s}^{2}} \sum_{l=1}^{\infty} \left| H\left(\frac{k}{T_{s}}\right) \right|^{2} \delta\left(f - \frac{k}{T_{s}}\right)$$

=0 car symboles indépendants

=0 car symboles à moyenne nulle

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2$$

$$B_x = 2B_{x_e} = \frac{1+\alpha}{T_s} = \frac{1+\alpha}{\log_2(M)T_b} = \frac{1+\alpha}{\log_2(M)} R_b$$

$$0 \le \alpha \le 1$$

$$B_x = \frac{1+\alpha}{2T_s} \xrightarrow{B_x} \frac{1+\alpha}{2T_s}$$

Modulations numériques linéaires sur fréquence porteuse Comparaison en termes d'efficacité spectrale

Exemple

Modulation mono-dimensionnelle (4-ASK), Modulation bi-dimensionnelle (QPSK), filtre de mise en racine de cosinus surélevé

$$S_{x}(f) = \frac{1}{4} \left(S_{x_{e}}(f - f_{p}) + S_{x_{e}}(-f - f_{p}) \right) \Rightarrow B_{x} = 2B_{x_{e}}$$

$$S_{x_{e}}(f) = \frac{\sigma_{d}^{2}}{T_{s}} |H(f)|^{2} + 2\frac{\sigma_{d}^{2}}{T_{s}} |H(f)|^{2} \sum_{k=1}^{\infty} \Re \left[R_{d}(k)e^{j2\pi fkT_{s}} \right] + \frac{|m_{d}|^{2}}{T_{s}^{2}} \sum_{k=1} \left| H\left(\frac{k}{T_{s}}\right) \right|^{2} \delta \left(f - \frac{k}{T_{s}}\right)$$

=0 car symboles indépendants

=0 car symboles à moyenne nulle

$$B_{x} = 2B_{x_{e}} = \frac{1+\alpha}{T_{s}} = \frac{1+\alpha}{\log_{2}(M)T_{b}} = \frac{1+\alpha}{\log_{2}(M)}R_{b}$$

$$0 \le \alpha \le 1$$

$$-\frac{1+\alpha}{2T_{s}} \xrightarrow{B_{x_{e}}} \frac{1+\alpha}{2T_{s}} f$$

$$\eta = \frac{R_{b}}{B_{x}} = \frac{\log_{2}(M)}{1+\alpha}$$

Modulations numériques linéaires sur fréquence porteuse Comparaison en termes d'efficacité spectrale

Exemple

Modulation mono-dimensionnelle (4-ASK), Modulation bi-dimensionnelle (QPSK), filtre de mise en racine de cosinus surélevé

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \implies B_x = 2B_{x_e}$$

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 + 2 \frac{\sigma_d^2}{T_s} |H(f)|^2 \sum_{k=1}^{\infty} \Re \left[R_d(k) e^{j2\pi f k T_s} \right] + \frac{|m_d|^2}{T_s^2} \sum_{k=1}^{\infty} \left| H\left(\frac{k}{T_s}\right) \right|^2 \delta \left(f - \frac{k}{T_s}\right)$$

=0 car symboles indépendants

=0 car symboles à moyenne nulle

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2$$

$$0 \le \alpha \le 1$$

$$-\frac{1+\alpha}{2T_s} \xrightarrow{B_{x_e}} \frac{1+\alpha}{2T_s}$$

$$B_x = 2B_{x_e} = \frac{1+\alpha}{T_s} = \frac{1+\alpha}{\log_2(M)T_b} = \frac{1+\alpha}{\log_2(M)}R_b$$
$$\eta = \frac{R_b}{B_x} = \frac{\log_2(M)}{1+\alpha}$$

Même filtre de mise en forme, Même nombre de symboles

Télécommunications

Département sciences du numérique Première année

Transmissions sur fréquence porteuse

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Télécommunications

Département sciences du numérique Première année

Transmissions sur fréquence porteuse

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Modulations numériques linéaires sur fréquence porteuse Comparaison en termes d'efficacité en puissance

Exemple

Modulations numériques linéaires sur fréquence porteuse Comparaison en termes d'efficacité en puissance

Exemple

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \implies P_x = \frac{P_{x_e}}{2}$$

Comparaison en termes d'efficacité en puissance

Exemple

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \implies P_x = \frac{P_{x_e}}{2}$$

Comparaison en termes d'efficacité en puissance

Exemple

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \Rightarrow P_x = \frac{P_{x_e}}{2}$$

Comparaison en termes d'efficacité en puissance

Exemple

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \Rightarrow P_x = \frac{P_{x_e}}{2}$$

Comparaison en termes d'efficacité en puissance

Exemple

Modulation mono-dimensionnelle (4-ASK), Modulation bi-dimensionnelle (QPSK), filtre de mise en racine de cosinus surélevé

48

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \Rightarrow P_x = \frac{P_{x_e}}{2}$$

Comparaison en termes d'efficacité en puissance

Exemple

$$P_x = \frac{P_{x_e}}{2} = \frac{\sigma_d^2}{2}$$

$$\begin{cases} \sigma_d^2 = 5V^2 \text{ (4-ASK)} \\ \sigma_d^2 = 2V^2 \text{ (QPSK)} \end{cases}$$

$$P_x = \frac{P_{x_e}}{2} = \frac{\sigma_d^2}{2} = 1 \text{ pour } V = \sqrt{\frac{2}{5}} (4 - ASK), \ V = 1 \ (QPSK)$$

Télécommunications

Département sciences du numérique Première année

Transmissions sur fréquence porteuse

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Démodulation cohérente

Démodulation cohérente

Information binaire:
$$\sum_{k} a_k h(t-kT_s) \cos (2\pi f_p t) - \sum_{k} b_k h(t-kT_s) \sin (2\pi f_p t)$$

$$\sum_{k} a_k h(t-kT_s) \left(\frac{2\cos(2\pi f_p t)}{\cos(2\pi f_p t)} \right) = \sum_{k} a_k h(t-kT_s) \sin (2\pi f_p t) - \sum_{k} b_k h(t-kT_s) \cos (2\pi f_p t) - \sum_{k} b_k h(t-kT_s) \cos (4\pi f_p t) - \sum_{k} b_k h(t-kT_s) \sin (2\pi f_p t) \right)$$

$$= \sum_{k} a_k h(t-kT_s) \cos (2\pi f_p t) - \sum_{k} b_k h(t-kT_s) \sin (2\pi f_p t) - \sum_{k} b_k h(t-kT_s) \sin (4\pi f_p t)$$

$$= \sum_{k} a_k h(t-kT_s) \cos (2\pi f_p t) - \sum_{k} b_k h(t-kT_s) \sin (2\pi f_p t) + \sum_{k} b_k h(t-kT_s) \sin (4\pi f_p t)$$

$$= \sum_{k} a_k h(t-kT_s) \sin (4\pi f_p t) - \sum_{k} b_k h(t-kT_s) + \sum_{k} b_k h(t-kT_s) \cos (4\pi f_p t)$$

Démodulation cohérente

Modulations numériques linéaires sur fréquence porteuse Démodulation cohérente

Modulations numériques linéaires sur fréquence porteuse Décisions et demapping

Chaine de transmission complète

Chaine de transmission complète

Chaine de transmission complète => Chaine passe-bas équivalente

Vers la chaine passe-bas équivalente : enveloppe complexe associée au signal modulé

→ DSP de l'envelope complexe correspondante :

$$S_b(f) = \frac{1}{4} \left(S_{b_e}(f - f_p) + S_{b_e}(-f - f_p) \right)$$

Vers la chaine passe-bas équivalente : enveloppe complexe associée au bruit

 $S_{b_e}(f) = 4S_b(f + f_p)U(f + f_p) = 4S_b^+(f + f_p)$

Vers la chaine passe-bas équivalente : canal passe-bas équivalent

Vers la chaine passe-bas équivalente : canal passe-bas équivalent

 $b_e(t) = I_b(t) + jQ_b(t)$: enveloppe complexe associée à b(t)

 $S_{I_b}(f) = S_{Q_b}(f) = N_0$ sur la bande de $b_e(t)$

Vers la chaine passe-bas équivalente : canal passe-bas équivalent

Filtre canal passe-bas équivalent

(Remarque : le canal est supposé ideal sur sa bande passante dans la figure)

$$h_{c_c}(t) = I_{h_c}(t) + jQ_{h_c}(t)$$
: enveloppe complexe associée à $h_c(t)$

Chaine de transmission complète => Chaine passe-bas équivalente

Chaine passe-bas équivalente : Critères de Nyquist et filtrage adapté

Les calculs de TEB en bande de base peuvent être ré-utilisés

Télécommunications

Département sciences du numérique Première année

Transmissions sur fréquence porteuse

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Modulation Linéaire sur fréquence porteuse Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-ASK

$$TES = TES_I = 2\left(1 - \frac{1}{M}\right)Q\left(\frac{Vg(t_0)}{\sigma_w}\right)$$
 si critère de Nyquist respecté.

Modulation Linéaire sur fréquence porteuse Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-ASK

$$TES = TES_I = 2\left(1 - \frac{1}{M}\right)Q\left(\frac{Vg(t_0)}{\sigma_w}\right)$$
 si critère de Nyquist respecté.
$$\sigma_w^2 = N_0\int_{R} |H_r(f)|^2\,df = N_0g(t_0) \text{ si filtrage adapté.}$$

Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-ASK

$$TES = TES_I = 2\left(1 - \frac{1}{M}\right)Q\left(\frac{Vg(t_0)}{\sigma_w}\right)$$
 si critère de Nyquist respecté.

$$\sigma_w^2 = N_0 \int_R |H_r(f)|^2 df = N_0 g(t_0)$$
 si filtrage adapté.

Attention :
$$E_b = P_x T_b = \frac{P_{x_e}}{2} T_b = \frac{1}{2} \frac{\sigma_d^2}{T_s} \int_R \left| H_e(f) \right|^2 df \times T_b = \frac{\sigma_a^2}{2 \log_2(M)} g(t_0)$$
 si filtrage adapté.

(Forme d'onde à l'entrée du récepteur :
$$h_e(t) = h(t) * \frac{h_{c_e(t)}}{2} \xrightarrow{TF} H_e(f)$$
)

Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-ASK

$$TES = TES_I = 2\left(1 - \frac{1}{M}\right)Q\left(\frac{Vg(t_0)}{\sigma_w}\right)$$
 si critère de Nyquist respecté.

$$\sigma_w^2 = N_0 \int_R |H_r(f)|^2 df = N_0 g(t_0)$$
 si filtrage adapté.

Attention :
$$E_b = P_x T_b = \frac{P_{x_e}}{2} T_b = \frac{1}{2} \frac{\sigma_d^2}{T_s} \int_R \left| H_e(f) \right|^2 df \times T_b = \frac{\sigma_a^2}{2 \log_2(M)} g(t_0)$$
 si filtrage adapté.

(Forme d'onde à l'entrée du récepteur :
$$h_e(t) = h(t) * \frac{h_{c_e(t)}}{2} \xrightarrow{TF} H_e(f)$$
)

$$\sigma_a^2 = E\left[|a_k - m_a|^2\right] = 2 \times \frac{V^2}{M} \times \left\{1^2 + (3)^2 + \dots + (M-1)^2\right\} = 2 \times \frac{V^2}{M} \frac{M(M^2 - 1)}{6} = \frac{V^2(M^2 - 1)}{3}$$

Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-ASK

$$TES = TES_I = 2\left(1 - \frac{1}{M}\right)Q\left(\frac{Vg(t_0)}{\sigma_w}\right)$$
 si critère de Nyquist respecté.

$$\sigma_w^2 = N_0 \int_R |H_r(f)|^2 df = N_0 g(t_0)$$
 si filtrage adapté.

Attention :
$$E_b = P_x T_b = \frac{P_{x_e}}{2} T_b = \frac{1}{2} \frac{\sigma_d^2}{T_s} \int_R |H_e(f)|^2 df \times T_b = \frac{\sigma_a^2}{2 \log_2(M)} g(t_0)$$
 si filtrage adapté.

(Forme d'onde à l'entrée du récepteur :
$$h_e(t) = h(t) * \frac{h_{c_e(t)}}{2} \xrightarrow{TF} H_e(f)$$
)

$$\sigma_a^2 = E\left[|a_k - m_a|^2\right] = 2 \times \frac{V^2}{M} \times \left\{1^2 + (3)^2 + \dots + (M-1)^2\right\} = 2 \times \frac{V^2}{M} \frac{M(M^2 - 1)}{6} = \frac{V^2(M^2 - 1)}{3}$$

$$TES = TES_I = 2\left(1 - \frac{1}{M}\right)Q\left(\sqrt{\frac{6\log_2(M)}{M^2 - 1}\frac{E_b}{N_0}}\right)$$

Modulation Linéaire sur fréquence porteuse Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-QAM (carrée, M>2)

$$TES = TES_I + TES_Q - TES_I TES_Q$$

$$TES \simeq 2TES_I = \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\frac{Vg(t_0)}{\sigma_{w_I}}\right) \text{si critère de Nyquist respecté.}$$

Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-QAM (carrée, M>2)

$$TES = TES_I + TES_Q - TES_I TES_Q$$

$$TES \simeq 2TES_I = \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\frac{Vg(t_0)}{\sigma_{w_I}}\right)$$
 si critère de Nyquist respecté.

$$\sigma_{w_I}^2 = N_0 \int_R |H_r(f)|^2 df = N_0 g(t_0)$$
 si filtrage adapté.

$$\text{Attention}: E_b = P_x T_b = \frac{P_{x_e}}{2} T_b = \frac{1}{2} \frac{\sigma_d^2}{T_s} \int_R |H_e(f)|^2 \, df \\ \times T_b = \frac{2\sigma_a^2}{2\log_2(M)} g(t_0) = \frac{\sigma_a^2}{\log_2(M)} g(t_0) \text{ si filtrage adapt\'e.}$$

(Forme d'onde à l'entrée du récepteur :
$$h_e(t) = h(t) * \frac{h_{c_e(t)}}{2} \xrightarrow{TF} H_e(f)$$
)

Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-QAM (carrée, M>2)

$$TES = TES_I + TES_Q - TES_I TES_Q$$

$$TES \simeq 2TES_I = \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\frac{Vg(t_0)}{\sigma_{w_I}}\right)$$
 si critère de Nyquist respecté.

$$\sigma_{w_I}^2 = N_0 \int_R |H_r(f)|^2 df = N_0 g(t_0)$$
 si filtrage adapté.

$$\text{Attention}: E_b = P_x T_b = \frac{P_{x_e}}{2} T_b = \frac{1}{2} \frac{\sigma_d^2}{T_s} \int_R |H_e(f)|^2 \, df \\ \times T_b = \frac{2\sigma_a^2}{2\log_2(M)} g(t_0) = \frac{\sigma_a^2}{\log_2(M)} g(t_0) \text{ si filtrage adapt\'e}.$$

(Forme d'onde à l'entrée du récepteur :
$$h_e(t) = h(t) * \frac{h_{c_e(t)}}{2} \xrightarrow{TF} H_e(f)$$
)

$$\sigma_a^2 = E\left[|a_k - m_a|^2\right] = 2 \times \frac{V^2}{\sqrt{M}} \times \left\{1^2 + (3)^2 + \dots + (\sqrt{M} - 1)^2\right\} = 2 \times \frac{V^2}{\sqrt{M}} \frac{\sqrt{M}(\sqrt{M}^2 - 1)}{6} = \frac{V^2(M - 1)}{3}$$

Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-QAM (carrée, M>2)

$$TES = TES_I + TES_Q - TES_I TES_Q$$

$$TES \simeq 2TES_I = \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\frac{Vg(t_0)}{\sigma_{w_I}}\right)$$
 si critère de Nyquist respecté.

$$\sigma_{w_I}^2 = N_0 \int_{\mathcal{R}} |H_r(f)|^2 df = N_0 g(t_0)$$
 si filtrage adapté.

$$\text{Attention}: E_b = P_x T_b = \frac{P_{x_e}}{2} T_b = \frac{1}{2} \frac{\sigma_d^2}{T_s} \int_R |H_e(f)|^2 \, df \\ \times T_b = \frac{2\sigma_a^2}{2\log_2(M)} g(t_0) = \frac{\sigma_a^2}{\log_2(M)} g(t_0) \text{ si filtrage adapt\'e.}$$

(Forme d'onde à l'entrée du récepteur :
$$h_e(t) = h(t) * \frac{h_{c_e(t)}}{2} \xrightarrow{TF} H_e(f)$$
)

$$TES \simeq 2TES_I = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3}{M-1}\frac{E_s}{N_0}}\right) = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3\log_2(M)}{M-1}\frac{E_b}{N_0}}\right)$$

Modulation Linéaire sur fréquence porteuse Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-PSK

(Symboles supposés indépendants et équiprobables)

(Critère de Nyquist + Filtrage adapté)

Modulation Linéaire sur fréquence porteuse Performances des modulations sur porteuse

Comparaison PSK/QAM en termes d'efficacité en puissance

Pour un ordre M donné:

◄ efficacité en puissance pour PSK Même efficacité spectrale

QUESTION 7

Parmi ces deux modulations, laquelle va donner la transmission la plus efficace spectralement?

- 1 Celle de gauche 3 Aucune o
 - Aucune des deux (elles donneront la même efficacité spectrale)

2 Celle de droite Pas assez d'éléments pour répondre à la question

QUESTION 8

Pour un même filtre de mise en forme, classer les modulations suivantes par ordre d'efficacité spectrale croissante.

16-QAM 8-PSK **BSPK QPSK**

QUESTION 9

Pour une chaine de transmission optimisée (Nyquist, Filtrage adapté, Mapping de Gray, instants d'échantillonnage et seuils de décision optimaux), parmi les modulations suivantes quelle sera la plus efficace en puissance.

1 QPSK

2 16-QAM

3 64-QAM