6 Week 6? i think

Solvers: Sanchit, Ethan

Writeup: Ethan

Exercise 6.33. Prove that $[0,1]^2$ is homeomorphic to the closed unit ball $\overline{B}(0,1)$ in \mathbb{R}^2 .

Proof. We begin by proving a lemma that will help us prove the continuity of the inverse.

Lemma. Let X, Y be compact metric spaces. If $f: X \to Y$ is bijective and continuous, then f^{-1} is continuous.

Let f be bijective and continuous. Thus

Now, we continue to the main result. It is pretty easy to see that the closed box $[0,1]^2$ is homeomorphic to $[-1,1]^2$. We define the function $h:[-1,1]^2\to \overline{B}(0,1)$ by

$$h(x,y) = \begin{cases} \frac{\|(x,y)\|_{\text{max}}}{\|(x,y)\|_2} (x,y), & \text{if } (x,y) \neq (0,0); \\ (0,0), & \text{if } (x,y) = (0,0). \end{cases}$$

We show that this is a homeomorphism by first showing continuity, and then showing that the inverse is continuous.

Fact! Norms are continuous. Therefore h is continuous when $(x, y) \neq 0$. It remains to show continuity at (0,0).

Let $\varepsilon > 0$. By the strong equivalence of norms on \mathbb{R}^2 , there is an M > 0 such that $\frac{\|(x,y)\|_{\text{max}}}{\|(x,y)\|_2} \leq M$ for all $(x,y) \in \mathbb{R}^2$. Let $\delta = \frac{\varepsilon}{M}$. Let $(x,y) \in \mathbb{R}^2$ such that $\|(x,y)\| < \delta$. Then

$$||h(x,y)|| = \left| \frac{||(x,y)||_{\max}}{||(x,y)||_2}(x,y) \right|| = \frac{||(x,y)||_{\max}}{||(x,y)||_2} ||(x,y)|| \le M ||(x,y)|| < \varepsilon$$

Thus h is continuous everywhere. We can explicitly define the inverse h^{-1} as

$$h^{-1}(x,y) = \begin{cases} \frac{\|(x,y)\|_2}{\|(x,y)\|_{\text{max}}}(x,y), & \text{if } (x,y) \neq 0; \\ (0,0), & \text{if } (x,y) = (0,0). \end{cases}$$

By a similar argument, we can prove that h^{-1} is continuous. Therefore h is indeed a homeomorphism. Since $[0,1]^2 \cong [-1,1]^2 \cong \overline{B}(0,1)$, $[0,1]^2 \cong \overline{B}(0,1)$ by transitivity.