CÁLCULO DIFERENCIAL E INTEGRAL III

8. EQUAÇÕES DIFERENCIAIS PARCIAIS EXERCÍCIOS

Equações de Primeira Ordem

1. Determine as curvas características para as equações

(a)
$$2xy u_x - (x^2 + y^2) u_y = 0$$
.

(b)
$$(x^2 - y^2 + 1) u_x + 2xy u_y = 0.$$

(c)
$$y u_x - x u_y = 0$$
.

(d)
$$x^2 u_x + (y^2 - 1) u_y = 0$$
.

2. Resolva a equação de primeira ordem $y\,u_x + x\,u_y = 2u$ sujeita à condição

(a)
$$u(x,0) = x \text{ para } x > 0.$$

(b)
$$u(x,0) = 0 \text{ para } x \in \mathbb{R}.$$

(c)
$$u(0,y) = y^2 \text{ para } y > 0.$$

(d)
$$u(s, 2s) = s \text{ para } s > 0.$$

(e)
$$u(1,y) = \frac{1+y}{1-y}$$
 para $y > 1$.

3. Determine a solução de cada um dos seguintes problemas e indique a região do plano (x,y) onde essa solução é válida.

(a)
$$u_x + u_y = u^2$$
, com $u(x, 0) = 1$ para $x \in \mathbb{R}$.

(b)
$$x u_x + y u_y = u$$
, com $u(x, 0) = x$ para $x > 0$.

(c)
$$x u_x + x u_y = u$$
, com $u(1, y) = y$ para $y \in \mathbb{R}$.

4. Determine as curvas características da equação $u_x - u_y = 0$, para x > 0 e y > 0, e mostre que uma delas intersecta a hipérbole xy = 1 no ponto (1,1). Deduza que condição deve f satisfazer para que o problema

1

$$\begin{cases} u_x - u_y = 0 \text{ para } x > 0 \text{ e y } > 0, \\ u(x, 1/x) = f(x) \text{ para } x > 0. \end{cases}$$

tenha solução.

Equações de Segunda Ordem

1. Considere a equação diferencial parcial

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + u, \quad x \in]0,1[$$

- (a) Recorrendo ao método de separação de variáveis, determine, para $t \geq 0$ e $x \in]0,1[$, soluções da equação que satisfaçam u(0,t)=0 e u(1,t)=0.
- (b) Determine uma solução que satisfaça a condição inicial

$$u(x,0) = 3\operatorname{sen}(2\pi x) - 7\operatorname{sen}(4\pi x)$$

2. (a) Recorrendo ao método de separação de variáveis, determine as soluções para $t \geq 0$ e para $x \in]0, \pi[$ de

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - u, & x \in]0, \pi[, \\ \\ u(0,t) = u(\pi,t) = 0. \end{cases}$$

(b) Determine a solução que satisfaz a condição inicial

$$u(x,0) = (\pi - x)x, x \in]0,\pi[$$

3. Determine a solução do problema

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - u, & x \in]0, L[, \ t > 0, \\ \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(L, t) = 0, \ t > 0, \\ \\ u(x, 0) = \cos(3\pi x/L), & x \in]0, L[. \end{cases}$$

- **4.** Seja f a função definida no intervalo $[0, 2\pi]$ por f(x) = x.
 - (a) Determine a série de Fourier de cosenos da função f.
 - (b) Resolva o problema

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - tu, & x \in]0, 2\pi[, \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(2\pi, t) = 0, \\ u(x, 0) = f(x), & x \in]0, 2\pi[. \end{cases}$$

5. Resolva o seguinte problema para a equação das ondas

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, & x \in]0,1[,\ t>0,\\ u(0,t) = u(1,t) = 0,\ t>0,\\ u(x,0) = 0, & x \in]0,1[,\\ \frac{\partial u}{\partial t}(x,0) = 1, & x \in]0,1[. \end{cases}$$

onde c é uma constante real positiva.

6. Resolva o seguinte problema para a equação de Laplace

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, & x, y \in]0, 1[, \\ \frac{\partial u}{\partial y}(x, 0) = 0, & \frac{\partial u}{\partial y}(x, 1) = \cos(2\pi x), & x \in]0, 1[, \\ \frac{\partial u}{\partial x}(0, y) = 0, & \frac{\partial u}{\partial x}(1, y) = \cos(2\pi y), & y \in]0, 1[. \end{cases}$$

7. Considere a equação de propagação do calor $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$.

- (a) Mostre que esta equação possui soluções estacionárias da forma u(x) = Ax + B.
- (b) Determine a solução estacionária para o problema correspondente a uma barra situada entre os pontos x=0 e x=L, em que se fixam as temperaturas $u(0,t)=T_1$ e $u(L,t)=T_2$.
- (c) Resolva a equação para 0 < x < 1 sujeita às condições iniciais e de fronteira

$$\begin{cases} u(0,t) = 20, \ t > 0, \\ u(1,t) = 60, \ t > 0, \\ u(x,0) = 75. \end{cases}$$

3

8. Recorrendo ao método de separação de variáveis, determine a solução u(x,y,t) do seguinte problema para a equação das ondas

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial t^2}, & x, y \in]0, 1[, \ t > 0 \\ \\ u(x, 0, t) = x, & u(x, 1, t) = x, \quad x \in]0, 1[, \ t > 0, \\ \\ u(0, y, t) = 0, & u(1, y, t) = 1, \quad y \in]0, 1[, \ t > 0, \\ \\ u(x, y, 0) = x, & x, y \in]0, 1[, \\ \\ \frac{\partial u}{\partial t}(x, y, 0) = \cos(2\pi(x - y)) - \cos(2\pi(x + y)), \quad x, y \in]0, 1[. \end{cases}$$

RESPOSTAS

Equações de Primeira Ordem

1. (a)
$$\frac{x^3}{3} + y^2 x = c$$
, para $c \in \mathbb{R}$.

(b)
$$\frac{x^2}{y} + y + \frac{1}{y} = c$$
, para $c \in \mathbb{R}$.

(c) Circunferências
$$x^2 + y^2 = c$$
, para $c > 0$.

(d)
$$y = \frac{1 + ke^{-2/x}}{1 - ke^{-2/x}}$$
, para $k \in \mathbb{R} \setminus \{0\}$.

2. (a)
$$u(x,y) = \sqrt{\frac{x+y}{x-y}} \ (x+y)$$
, válida para $x > 0$ e $x > y$.

(b)
$$u(x,y) = 0$$
, válida em \mathbb{R}^2 .

(c)
$$u(x,y) = (x+y)^2$$
, válida para $y > 0$ e $y > x$.

(d)
$$u(x,y) = \frac{(x+y)^{3/2}}{3\sqrt{3(y-x)}}$$
, válida para $x > 0$ e $y > x$.

(e)
$$u(x,y) = \frac{x+y}{x-y}$$
, válida para $y > 1$ e $y > x$.

3. (a)
$$u(x,y) = \frac{1}{1-y}$$
, válida para $y < 1$.

(b)
$$u(x,y) = x$$
, válida para $x > 0$.

(c)
$$u(x,y) = (y-x+1)x$$
, válida em \mathbb{R}^2 .

4. As curvas características são as rectas
$$x + y = c$$
, com $c > 0$. f deve satisfazer $f(x) = f(1/x)$ para $x > 0$.

Equações de Segunda Ordem

1. (a)
$$u(x,t) = \sum_{n=1}^{+\infty} c_n e^{(1-n^2 \pi^2) t} \operatorname{sen}(n\pi x).$$

(b)
$$u(x,t) = 3e^{(1-4\pi^2)t} \operatorname{sen}(2\pi x) - 7e^{(1-16\pi^2)t} \operatorname{sen}(4\pi x).$$

2. (a)
$$u(x,t) = \sum_{n=1}^{+\infty} c_n e^{-(1+n^2)t} \operatorname{sen}(nx), \ c_n \in \mathbb{R}.$$

(b)
$$u(x,t) = \frac{8}{\pi} \sum_{k=1}^{+\infty} \frac{1}{(2k-1)^3} e^{-(1+(2k-1)^2)t} \operatorname{sen}((2k-1)x).$$

3.
$$u(x,t) = e^{-(1+9(\pi/L)^2)t} \cos(3\pi x/L)$$
.

4. (a)
$$\pi - \sum_{k=1}^{+\infty} \frac{8}{\pi (2k-1)^2} \cos \frac{(2k-1)x}{2}$$
.

(b)
$$u(x,t) = \pi e^{-t^2/2} - \sum_{k=1}^{+\infty} \frac{8}{\pi (2k-1)^2} e^{-(t^2/2 + (2k-1)^2 t/4)} \cos \frac{(2k-1)x}{2}.$$

5.
$$u(x,t) = \sum_{k=1}^{+\infty} \frac{2(1-(-1)^k)}{k^2\pi^2c} \operatorname{sen}(k\pi ct) \operatorname{sen}(k\pi x).$$

6.
$$u(x,y) = \frac{\cosh(2\pi x)\cos(2\pi y) + \cosh(2\pi y)\cos(2\pi x)}{2\pi \sinh(2\pi)} + c, \ c \in \mathbb{R}.$$

7. **(b)**
$$u(x,t) = T_1 + \frac{T_2 - T_1}{L} x$$
.

(c)
$$u(x,t) = 20 + 40x + \sum_{k=1}^{+\infty} \frac{10}{k\pi} (3(-1)^{k+1} + 11) e^{-k^2\pi^2\alpha^2t} \operatorname{sen}(k\pi x).$$

8.
$$u(x,y,t) = x + \frac{1}{\sqrt{2}\pi} \operatorname{sen}(2\sqrt{2}\pi t) \operatorname{sen}(2\pi x) \operatorname{sen}(2\pi y).$$