

FIG.1

51

FIG.2

FIG.3A1

EXECUTION TIME REQUEST
WHEN PROGRAM IS REGISTERED
NECESSARY PROCESSING VOLUME
(M CLOCKS)

FIG.3A2

DETERMINED PROGRAM
EXECUTION TIME
NECESSARY PROCESSING VOLUME
(M CLOCKS)

FIG.3B1

CPU OPERATING FREQUENCY
(WHEN EXECUTED AS REQUESTED)
OPERATING FREQUENCY
(M CLOCKS/UNIT TIME)

FIG.3B2

CPU OPERATING FREQUENCY
(AFTER EXECUTION TIME IS DETERMINED)
OPERATING FREQUENCY
(M CLOCKS/UNIT TIME)

FIG. 4A1
EXECUTION TIME REQUEST
WHEN PROGRAM IS REGISTERED
NECESSARY PROCESSING VOLUME
(M CLOCKS))

FIG. 4A2
DETERMINED PROGRAM EXECUTION TIME
NECESSARY PROCESSING VOLUME
(M CLOCKS))

FIG. 4B1
DETERMINE PROGRAM
EXECUTION TIME
CPU OPERATING FREQUENCY
(WHEN EXECUTED AS REQUESTED)

OPERATING FREQUENCY
(M CLOCKS/UNIT TIME)

FIG. 4B2
DETERMINE PROGRAM
EXECUTION TIME
CPU OPERATING FREQUENCY
(AFTER EXECUTION TIME IS DETERMINED)

OPERATING FREQUENCY
(M CLOCKS/UNIT TIME)

FIG.5

FIG.6

FIG. 7A1

FIG. 7A2

DETERMINE PROGRAM EXECUTION TIME

FIG. 7B2

The graph plots CPU operating frequency (MHz) on the y-axis against operating frequency (m clocks/unit time) on the x-axis. The x-axis is labeled 'OPERATING FREQUENCY (M CLOCKS/UNIT TIME)' and ranges from 0 to 1.0. The y-axis is labeled 'CPU OPERATING FREQUENCY (AFTER RE-DETERMINATION)' and ranges from 0 to 1.0. A single data series is plotted as a solid line, showing a non-linear relationship that starts at approximately (0.05, 0.05) and ends at approximately (1.0, 0.95).

Operating Frequency (m clocks/unit time)	CPU Operating Frequency (MHz)
0.05	0.05
0.1	0.15
0.2	0.35
0.4	0.65
0.6	0.85
0.8	0.92
1.0	0.95

FIG.8

FIG.9

FIG.10A1

NORMAL DEAD LINE SCHEDULE

FIG.10A2

SCHEDULING USING ALLOWABLE RANGE

FIG.10B1
CPU OPERATING FREQUENCY (NORMAL)

OPERATING FREQUENCY (M CLOCKS/UNIT TIME)

FIG.10B2
CPU OPERATING FREQUENCY (SCHEDULED USING ALLOWABLE RANGE)

OPERATING FREQUENCY (M CLOCKS/UNIT TIME)

FIG. 11

54

FIG. 12

FIG. 13A1

EXECUTION TIME REQUEST
WHEN TIMER EVENT IS REGISTERED

FIG. 13A2

DETERMINED TIMER EVENT EXECUTION TIME

FIG. 13B1

CPU OPERATING FREQUENCY (WHEN EXECUTED AS REQUESTED)
OPERATING FREQUENCY (M CLOCKS/UNIT TIME)

FIG. 13B2

CPU OPERATING FREQUENCY (AFTER EXECUTION TIME IS DETERMINED)
OPERATING FREQUENCY (M CLOCKS/UNIT TIME)

FIG. 14A1
EXECUTION TIME REQUEST
WHEN TIMER EVENT IS REGISTERED]

FIG. 14A2
DETERMINED TIMER EVENT EXECUTION TIME

FIG. 14B1
CPU OPERATING FREQUENCY
(WHEN EXECUTED AS REQUESTED)
OPERATING FREQUENCY (M CLOCKS/UNIT TIME)

FIG. 14B2
CPU OPERATING FREQUENCY
(AFTER EXECUTION TIME IS DETERMINED)