

CS 310: Algorithms

Lecture 6

Instructor: Naveed Anwar Bhatti

Chapter 3: **Graphs**

Section 3.2: **Graph Traversal**

Last time: Graph Representation

Adjacency Matrix

Adjacency List

Connectivity

- s-t connectivity problem: Given two node s and t, is there a path between **s** and **t**?
- s-t shortest path problem: Given two node s and t, what is the length of the shortest path between s and t?
- Applications.

Fewest number of hops in a communication network

BFS intuition: Explore outward from s in all possible directions, adding nodes one
 "layer" at a time.

- BFS algorithm:
 - $L_0 = \{ s \}.$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

BFS intuition: Explore outward from s in all possible directions, adding nodes one
 "layer" at a time.

- BFS algorithm.
 - $L_0 = \{ s \}.$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breath First Search

BFS intuition: Explore outward from s in all possible directions, adding nodes one
 "layer" at a time.

- BFS algorithm.
 - $L_0 = \{ s \}.$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breath First Search

BFS intuition: Explore outward from s in all possible directions, adding nodes one
 "layer" at a time.

- BFS algorithm.
 - $L_0 = \{ s \}.$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breath First Search

BFS intuition: Explore outward from s in all possible directions, adding nodes one
 "layer" at a time.

- BFS algorithm.
 - $L_0 = \{ s \}.$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breath First Search

• BFS intuition: Explore outward from *s* in all possible directions, adding nodes **one** "layer" at a time.

- BFS algorithm.
 - $L_0 = \{ s \}.$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breath First Search

BFS intuition: Explore outward from s in all possible directions, adding nodes one
 "layer" at a time.

- BFS algorithm.
 - $L_0 = \{ s \}.$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breath First Search

BFS intuition: Explore outward from s in all possible directions, adding nodes one
 "layer" at a time.

- BFS algorithm.
 - $L_0 = \{ s \}.$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breath First Search

BFS intuition: Explore outward from s in all possible directions, adding nodes one
 "layer" at a time.

- BFS algorithm.
 - $L_0 = \{ s \}.$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breath First Search

BFS intuition: Explore outward from s in all possible directions, adding nodes one
 "layer" at a time.

- BFS algorithm.
 - $L_0 = \{ s \}.$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breath First Search

• BFS intuition: Explore outward from *s* in all possible directions, adding nodes **one** "layer" at a time.

- BFS algorithm.
 - $L_0 = \{ s \}.$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breath First Search

BFS intuition: Explore outward from s in all possible directions, adding nodes one
 "layer" at a time.

- BFS algorithm.
 - $L_0 = \{ s \}.$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breath First Search

BFS intuition: Explore outward from s in all possible directions, adding nodes one
 "layer" at a time.

- BFS algorithm.
 - $L_0 = \{ s \}.$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breath First Search


```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
end procedure
```



```
procedure BFS(G,s)
 \rightarrow for each vertex v \in V[G] do
          explored[v] \leftarrow false
         d[v] \leftarrow \infty
     end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
          u \leftarrow remove vertex from the front of Q
          for each v adjacent to u do
               if not explored[v] then
                    explored[v] \leftarrow true
                    d[v] \leftarrow d[u] + 1
                    insert {\bf v} to the end of {\cal Q}
               end if
          end for
     end while
```



```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
     end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	False
2	False
3	False
4	False
5	False
6	False
7	False
8	False


```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
        d[v] \leftarrow \infty
     end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	False
2	False
3	False
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	∞
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

end procedure


```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
   end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	False
2	False
3	False
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	∞
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞


```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
 → explored[s] ← true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                  explored[v] \leftarrow true
                  d[v] \leftarrow d[u] + 1
                  insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	False
3	False
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	∞
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞


```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
 \rightarrow d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	False
3	False
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞


```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
     end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
 \rightarrow Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	False
3	False
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex
1


```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q \colon = a queue data structure, initialized with s
 \blacksquare while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                    explored[v] \leftarrow true
                    d[v] \leftarrow d[u] + 1
                    insert v to the end of Q
               end if
          end for
     end while
```


Explored

Vertex	Value
1	True
2	False
3	False
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

Queue

Vertex
1

end procedure


```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


_	
Explo	red

Vertex	Value
1	True
2	False
3	False
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

Queue

U V 1 2

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
     end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


_	
qx:	lored

Vertex	Value
1	True
2	False
3	False
4	False
5	False
6	False
7	False
8	False

Distance

213641166	
Vertex	Value
1	0
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

Queue

end procedure

U V 1 2

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	False
3	False
4	False
5	False
6	False
7	False
8	False

Distance

213641166	
Vertex	Value
1	0
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

Queue

U V 1 2

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
     end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
end procedure
```


Explored

Vertex	Value
1	True
2	True
3	False
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

Queue

U V 1 2

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
end procedure
```


_	
:xp	lored

Vertex	Value
1	True
2	True
3	False
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

Queue

U V 1 2

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	False
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

U V 1 3

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	False
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex
2

U 1

۷ 2

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
end procedure
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex	
2	

U V 1 3

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex
2

U V 1 3

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
     end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
end procedure
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex
2
3

U V 1 3

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex	
2	
3	

U V 1

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
vertex	value
1	0
2	1
3	1
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex
2
3

U V 2

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex
3

U V 2

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex	
3	

end procedure

U V 2 1

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	∞
6	∞
7	∞
8	∞

U V 2 1

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex
3

U V 2 3

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex
3

end procedure

U V 2 3

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	False
6	False
7	False
8	False

45

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex
3

end procedure

U V 2 5

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	False
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex	
3	

U V 2 5

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
end procedure
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	∞
6	∞
7	∞
8	∞

Vertex
3

U 2

V

5

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	2
6	∞
7	∞
8	∞

U V 2 5

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	2
6	∞
7	∞
8	∞

Vertex
3
5

U V 2 5

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	2
6	∞
7	∞
8	∞

Vertex
3
5

end procedure

U V 2 4

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	False
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	2
6	∞
7	∞
8	∞

Vertex
3
5

U V 2 4

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	∞
5	2
6	∞
7	∞
8	∞

Vertex
3
5

U V 2 4

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex	
3	
5	

U V 2 4

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex
3
5
4

U V 2 4

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex
3
5
4

U V 2

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                    explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                    insert {\bf v} to the end of {\cal Q}
              end if
          end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex
3
5
4

U V 3

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex	
5	
4	

U V 3

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex	
5	
4	

U V 3 1

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex	
5	
4	

U V 3 1

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex	
5	
4	

U V 3 2

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex	
5	
4	

U V 3 2

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex	
5	
4	

U V 3 5

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex	
5	
4	

U V 3 5

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex	
5	
4	

U V 8

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	False

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex	
5	
4	

U V 8

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
end procedure
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	∞

Vertex	
5	
4	

U V 8

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	2

Vertex	
5	
4	

U V 8

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	2

Vertex
5
4
8

end procedure

U V 3 7

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	False
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	2

Vertex
5
4
8

U V 3 7

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
end procedure
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	∞
8	2

Vertex	
5	
4	
8	

U V 3 7

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
end procedure
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex
5
4
8

U V 3 7

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
     end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
end procedure
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex
5
4
8
7

U V 3 7

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
     end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex
5
4
8
7

U V 3

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex
5
4
8
7

U V 5

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex	
4	
8	
7	

U V 5

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex
4
8
7

U V 5 4

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex
4
8
7

end procedure

U V 5 4

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex	
4	
8	
7	

end procedure

U V 5 2

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex
4
8
7

end procedure

U V 5 2

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex
4
8
7

U \

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex
4
8
7

U V 5 3

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex
4
8
7

U V 5 8

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex	
4	
8	
7	

U V 5 8

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex
4
8
7

end procedure

U V 5 6

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	False
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Queue

Vertex
4
8
7

85

end procedure

U V 5 6

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	∞
7	2
8	2

Vertex
4
8
7

U V 5 6

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
end procedure
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	3
7	2
8	2

Vertex
4
8
7

U V 5 6

```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert {\bf v} to the end of {\cal Q}
              end if
         end for
     end while
end procedure
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	3
7	2
8	2

Vertex	
4	
8	
7	
6	


```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	3
7	2
8	2

Queue

Vertex
4
8
7

end procedure


```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	3
7	2
8	2

Vertex	
4	
8	


```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	3
7	2
8	2


```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Explored

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	3
7	2
8	2

Queue

Vertex


```
procedure BFS(G,s)
     for each vertex v \in V[G] do
         explored[v] \leftarrow false
         d[v] \leftarrow \infty
     end for
     explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
     while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
               if not explored[v] then
                    explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                    insert {\bf v} to the end of {\cal Q}
              end if
          end for
     end while
```


Explo	ored
-------	------

Vertex	Value
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True

Distance

Vertex	Value
1	0
2	1
3	1
4	2
5	2
6	3
7	2
8	2

Queue

Vertex

Property: Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.

Breadth First Search - Analysis

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow \texttt{false O(1)}
                                            O(V)
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                                                                      O(V)
                   explored[v] \leftarrow true
                   d[v] \leftarrow d[u] + 1
                                                       O(deg(v))
                   insert v to the end of Q
              end if
         end for
    end while
```


Breadth First Search - Analysis

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false O(1)
                                           O(V)
         d[v] \leftarrow \infty
                                 0(1)
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s-
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                                                                O(2E)
                   explored[v] \leftarrow true
                  d[v] \leftarrow d[u] + 1
                   insert v to the end of Q
              end if
         end for
    end while
```


Time Complexity: O(V) + O(2E)O(V + 2E)

O(V + E)

end procedure

BFS: Live Poll 1

Consider a complete undirected graph where every vertex **V** has an edge with every other vertex. You are going to perform a Breadth-First Search (BFS) on this graph.

Which of the following expressions give equivalent time complexity in terms of the Big O notation of the BFS for this graph?

- A. V^2
- B. 2E
- C. V+2E
- D. V+E
- E. All of Above
- F. None of Above

Scan the QR code to vote or go to https://forms.office.co m/r/jxW8PBV0Vd

Scan the QR code to vote or go to https://forms.office.co m/r/jxW8PBV0Vd

Breadth First Search - Analysis

```
procedure BFS(G,s)
    for each vertex v \in V[G] do
         explored[v] \leftarrow false O(1)
                                           O(V)
         d[v] \leftarrow \infty
    end for
    explored[s] \leftarrow true
    d[s] \leftarrow 0
    Q:= a queue data structure, initialized with s
    while Q \neq \phi do
         u \leftarrow remove vertex from the front of Q
         for each v adjacent to u do
              if not explored[v] then
                                                                     O(V)
                   explored[v] \leftarrow true
                  d[v] \leftarrow d[u] + 1
                                                      (V-1) = O(V)
                   insert v to the end of Q
              end if
         end for
    end while
```


Time Complexity: $O(V) + O(V^2)$ $O(V^2)$

end procedure

BFS: Live Poll 1

Consider a complete undirected graph where every vertex \boldsymbol{V} has an edge with every other vertex. You are going to perform a Breadth-First Search (BFS) on this graph.

Which of the following expressions give equivalent time complexity in terms of the Big O notation of the BFS for this graph?

A.
$$V^2 = O(V^2)$$

B.
$$2E = V(V - 1) = V^2 - V = O(V^2)$$

C. V+2E =
$$V + V(V - 1) = V^2 = O(V^2)$$

D. V+E =
$$V + (V(V-1))/2 = V + (V^2 - V)/2 = O(V^2)$$

- E. All of Above
- F. None of Above

Thanks a lot

If you are taking a Nap, wake up.....Lecture Over