Introduction to Discrete Math

Felipe P. Vista IV

Course Outline

- Mathematical Thinking
 - Convincing Arguments, Find Example, Recursion, Logic, Invariants
- Probability & Combinatronics
 - Counting, Probability, Random Variables
- Graph Theory
 - Graphs (cycles, classes, parameters)
- Number Theory & Cryptography
 - Arithmetic in modular form
 - Intro to Cryptography

Mathematical Thinking - Logic

EXAMPLES, COUNTEREXAMPLES, LOGIC

Counterexamples

Logic

- Sometimes, one example is already enough
- If we want to prove that white lions exists
 - It is enough to show just one white lion
 - such examples are not always easy to come up with
 - 13 in the wild and approximately 300 in captivity
 - https://whitelions.org/white-lion/faqs/

Problem I

• Is it possible that for three positive integer numbers a, b, and c so that $a^2 + b^2 = c^2$?

Solution

- To come up with this example, recall
 - Pythagorean Theorem with right angle, and sides 3, 4, and 5

$$h = \sqrt{(a^{2} + b^{2})}; h = c$$

$$c^{2} = a^{2} + b^{2}$$

$$25 = 16 + 9$$

$$5^{2} = 4^{2} + 3^{2}$$

Problem II

• Is it possible that for three positive integer numbers a, b, and c so that $a^3 + b^3 = c^3$?

Solution

- * conjecture conclusion assume to be true due to initial supporting evidence but no proof or disproof has yet been found
- This is in fact impossible, so there is no example
- Fermat's Last Theorem (1637), a famous mathematical conjecture
 - for any integer n > 2, there are no such integers a, b, & c such that $a^n + b^n = c^n$.
- Mathematicians failed tried to prove it for hundreds of years
 - Andrew Wiles was able to prove it in 1995

Problem III

• Is it possible that for positive integer numbers a, b, c, and d so that $a^4 + b^4 + c^4 = d^4$?

Solution

- We could initially assume that it is impossible due to Fermat's Last Theorem
- But the theorem only focus on equations with the form

$$\underline{a}^n + b^n = \underline{c}^n$$

Hence, it is not applicable for this problem a, b c.

Solution

- It is actually possible, the smallest number though is very big $95800^4 + 217519^4 + 414560^4 = 422481^4$
- Computers used to derive the examples
- But the possible number of values are so huge that it is hard to find examples that satisfy the equation, even with the help of computers

Problem IV

• Is there a power of 2 that starts with 65?

Problem IV

• Is there a power of 2 that starts with 65?

Solution

- The answer is $2^{16} = 65536$ | 10 24 8 14 32 49
- This is the complete solution
- In fact, there is a power of 2 that starts w/ any integer n, n > 0
 - But much more difficult to prove

Logic

Examples

Counterexamples

Logic

Logic - Counterexamples

Counterexamples

- Just one counterexample is enough to disprove a statement
- If we want to prove that all swans are white
 - Just one instance of black swan is enough to disprove it
 - However, it is often difficult to find such counterexamples

Introduction to Discrete Math

Logic - Counterexamples

Counterexamples

Theorem I

All rectangles are squares

Logic - Counterexamples

Counterexamples

Theorem I

• All rectangles are squares X

Solution

- A rectangle with sides of sizes 1 and 2, respectively, is not a square.
- This is a counterexample for the theorem, hence the theorem is wrong

Logic - Counterexamples

Counterexamples

Theorem II

All square are rectangles

Solution

- There is no counterexample for this case, hence the theorem is true
- Since square is a rectangle with equal sides.

Introduction to Discrete Math

Logic - Counterexamples

Counterexamples

Theorem II

• All square are rectangles

Counterexamples

Theorem III

- Euler came up w/ a generalization of Fermat's Last Theorem
- For any n > 2, it is impossible for an n-th power of a positive integer to be represented as a sum of n - 1 numbers w/c are the n-th powers of positive integers
- For n=3, it is the same as Fermat's Last Theorem: It is impossible that $a^3+b^3=c^3$.

Counterexamples

Solution

• Lander came up with a counterexample in 1966 for n=5:

$$27^5 + 84^5 + 110^5 + 133^5 = 144^5$$

• Elkies found another counterexample in 1986 for n=4:

$$2682440^4 + 15365639^4 + 18796760^4 = 20615673^4$$

- Frye found the smallest counterexample for n=4 in 1988:
 - Which is an example for one statement & counterexample for another

$$95800^4 + 217519^4 + 414560^4 = 422481^4$$

Logic

Examples

Counterexamples

Logic

Logic - Logic

Logic

Logical Operators

- Negation
- Logical AND
- Logical OR
- If-then

Introduction to Discrete Math

Logic - Logic

Negation

Statement

• All swans are white.

Statement

All swans are white.

Negation

Not all swans are white. Or, there are swans that are not white.

Statement

• There exists three positive integers a, b, & c, such that

$$a^3 + b^3 = c^3$$

Statement

• There exists three positive integers a, b, & c, such that $a^3 + b^3 = c^3$.

Negation

- There are no such positive integer numbers a, b, & c, such that $a^3 + b^3 = c^3$.
- Or for any positive integers a, b, & c, such that $a^3 + b^3 \neq c^3$.

Statement

- 4 = 2 + 2
- 5 = 2 + 2

Statement

- 4 = 2 + 2
- 5 = 2 + 2

Negation

- 4 ≠ 2 + 2
 5 ≠ 2 + 2

Negation

- Is true, if and only if the initial statement is wrong
- Is false, if and only if the initial statement is correct

Logical AND

Statement

- 4 = 2 + 2 AND $4 = 2 \times 2$
- The logical AND of two statements is true if and only if both statements are true.
- $4 = 2 + 2 \text{ AND } 4 = 2 \times 2 \rightarrow \text{TRUE}$
- 4 = 2 + 2 AND $5 = 2 \times 2 \rightarrow FALSE$
- 5 = 2 + 2 AND $4 = 2 \times 2 \rightarrow FALSE >$
- 5 = 2 + 2 AND $5 = 2 \times 2 \rightarrow FALSE \times$

Logical OR

Statement

- $4 = 2 + 2 OR 4 = 2 \times 2$
- The logical OR of two statements is true if and only if at least one of the statements is true.

- 33 -

•
$$4 = 2 + 2 \text{ OR } 4 = 2 \times 2 \rightarrow \text{TRUE}$$

•
$$4 = 2 + 2 \text{ OR } 5 = 2 \times 2 \rightarrow \text{TRUE}$$

•
$$5 = 2 + 2 \text{ OR } 4 = 2 \times 2 \rightarrow \text{TRUE}$$

•
$$5 = 2^7 + 2 \text{ OR } 5 = 2 \times 2 \rightarrow \text{FALSE} \times$$

Venn Diagram

Symbols:

• Logical NOT (\neg), logical AND (\land), and logical OR (\lor)

https://en.wikipedia.org/wiki/Logical_connective

Negation of AND

Statement

Negation of AND is OR of negations:

Negation of "A AND B" is "Not A OR Not B"

Negation of AND

Statement

Negation of AND is OR of negations:

Negation of "A AND B" is "Not A OR Not B"

Negation of
$$4 = 2 + 2$$
 AND $4 = 2 \times 2$.

• $4 \neq 2 + 2$ OR $4 \neq 2 \times 2$. Note that AND

Negation of OR

Statement

Negation of OR is AND of negations:

Negation of "A OR B" is "Not A AND Not B"

Negation of OR

Statement

Negation of OR is AND of negations:

Negation of "A OR B" is "Not A AND Not B"

Negation of
$$4 = 2 + 2$$
 OR $5 = 2 \times 2$:

• $(4 \neq 2 + 2)$ AND $(5 \neq 2 \times 2)$

Thank you.