ECE6784 Semester Project:

"LoRa Performance Evaluation for Piedmont Region of Virginia"

Michael Sanda
April 28, 2021
rjy3bd@virginia.edu
https://github.com/mjs161803/channel-modeling-project-public/

Background - Smart Agriculture

- Reduced costs enabling farmers to use low-power, wide-area sensor networks
- Soil moisture, humidity, pest detection
- Improve Profitability
 - Reduced water usage
 - Disease prediction
 - Reduced pesticide usage
 - Remote sensing vs human inspection
- Applicable for Virginia's Vineyards
 - o 2017 Report to EU Commission
 - 2020 UVA Paper: "Low Power Wireless Networks in Vineyards"

Background - LoRa

- LoRa: "Long Range"
- Chirped Spread Spectrum
- Proprietary Modulation
- Advertised ranges of 10+ km
- Low data rates

Spectrum and Waterfall Plot of LoRa Signal During Data Transmission (Source: Link Labs)

Project Goals

This project aimed to:

- Characterize the Piedmont-specific wireless channel conditions for a specific LPWAN technology: LoRa ("LOng RAnge")
- 2. Develop a model for prediction of coverage area for LoRa-based LPWANs in the Piedmont area.

Conclusions Up Front

 LoRa-based wireless networks are a viable technology for enabling "smart" vineyards in the Piedmont Region.

- A "conservative" model, based on empirical measurements, for a wireless channel at 915 MHz in the Piedmont area predicts a properly-located single LoRa base station should be capable of servicing a cell bigger than any vineyards in the state.
 - The average vineyard site in Virginia is approximately 15 acres, with a median size of approximately 7.5 acres¹
 - The largest vineyard in the state is 227 acres (Trump Winery)²

Methodology

- 1. Transmit packets from various locations around Gateway. For each Tx Packet:
 - a. Record position, date/time, message serial #, tx_power to 'tx_packets' table
 - b. If received at gateway, record RSSI to 'rx_packets' table.
- 2. Analyze tx_packets and rx_packets:
 - a. Calculate K and gamma for a Simplified Path Loss Model
 - b. Use model to calculate standard deviation from model (i.e. shadow fading)
 - c. Calculate packet loss rates versus distance
- 3. Utilize model data to assess suitability for Virginia Piedmont-area vineyards

Test Setup

Test Hardware

Test Hardware

Test Software

C++ Program to Analyze Data:

- Read data from CSV files
- Compare tx_packets and rx_packets to generate results_table
- Analyze results_table to calculate parameters for Simplified Path Loss model
- Use model to calculate standard deviation from model (i.e. Shadow Fading)
- Plot a graph showing modeled path loss overlaid on measured data
- Calculate packet loss % binned by 100 meter distances
- Plot a graph showing packet loss % versus distance

Analysis - Determining Tx Power

	30 dB ATTENUATION	60 dB ATTENUATION	90 dB ATTENUATION	120 dB ATTENUATION
Tx_Power = 20	RSSI = -52 dBm	RSSI = -70 dBm	RSSI = -82 dBm	RSSI = -83 dBm*
Tx_Power = 10	RSSI = -52 dBm	RSSI = -77 dBm	RSSI = -91 dBm	RSSI = -90 dBm
Tx_Power = 5	RSSI = -55 dBm	RSSI = -82 dBm	RSSI = -97 dBm	RSSI = -95 dBm

RSSI =
$$Tx_Power + 2L_{cables} - 60 dB$$

• RSSI =
$$P_T$$
 + $2G_{Ant}$ - $2L_{cables}$ - Pathloss

Pathloss =
$$P_T$$
 - RSSI + $2G_{Ant}$ - $2L_{cables}$

Analysis - Determining K and d

- How to pick reference distance and K values?
- Textbook indicates simply using FSPL
- Or... just brute force it! Pseudocode:
 - Iterate over all distances between minimum and maximum tx locations
 - Iterate over all possible path losses from 0 to -160 dB
 - For each combination of d_o and K...
 - Calculate gamma
 - Calculate standard deviation from model
 - Keep track of which values give the lowest standard deviation
- \sim (3000 d_o iterations) * (160 K-value iterations) = 480,000 iterations

Analysis - Noise Floor

SCATTERPLOT OF (RSSI, SNR)

Analysis - Determining Gamma

 $K \, \mathrm{dB} - 10\gamma \log_{10} \left| \frac{d}{d\alpha} \right|$

1) Simplified Path Loss Model:

$$P_r = P_t K \left[\frac{d_0}{d} \right]^{\gamma}$$

2) Re-arranged using dB:

$$P_r dBm = P_t dBm + K dB - 10\gamma \log_{10} \left[\frac{d}{d_0} \right]$$

3) Iterate over every result and determine MSE as a function of gamma:

N	
$F(\gamma) = \sum_{i=1}^{\infty} [M_{\text{measure}}]$	$\operatorname{ed}(d_i) - \underbrace{M_{\operatorname{model}}(d_i)}^2$

Environment	γ range
Urban macrocells	3.7-6.5
Urban microcells	2.7-3.5
Office Building (same floor)	1.6-3.5
Office Building (multiple floors)	2-6
Store	1.8-2.2
Factory	1.6-3.3
Home	3

Table 2.2: Typical Path Loss Exponents

4) Differentiate, set equal to zero, and solve for gamma.

Results - Google Earth

- 809 Packets transmitted
- 330 Packets received
- More data needed
- Limited to collecting along roadways, which are not identically-distributed testing points.

Results - Google Earth

Results - Path Loss

- Reference distance d_o = 2844 meters
- K = -123 dB using measured data
 K = -100.7 dB using FSPL
- Gamma = 1.45
- std = 12.8 dB

$$P_r \, dBm = P_t \, dBm - 123 \, dB - 14.5^* \, \log_{10} \left[\frac{d}{2844} \right]$$

Results - Path Loss

Results - Packet Loss

Conclusions - Vineyard Suitability

- Different ways of calculating maximum cell size...
 - Ignore fading: d_max = 629 km
 - Packet Loss < 1.0: ~3.1 km
 - o 50% availability: 93 km
 - o 90% availability: 6.9 km
 - 99% availability: 0.83 km

Method:	Max Range (km):	Equivalent Circular Acreage:	
Ignore Fading	629	3.07 * 10^8	
Packet Loss	3.1	7,460	
99% Availability	0.83	535	

- Median Virginia Vineyard size = 15 acres
- Maximum Virginia Vineyard Size = 227 acres

ASSUMPTIONS:

- +20 dBm Tx Power
- -148 dBm min Rx Power
- +2 dBi Antenna Gains at both Tx and Rx
- -27 dB Total Cable Losses
- Both antennas approximately 2 meters above ground

QUESTIONS?