Normalizing tweets with edit scripts and recurrent neural embeddings

Grzegorz Chrupała | Tilburg University

Normalizing tweets

Convert tweets to canonical form easy to understand for downstream applications

Examples

I will c wat i can do I will see what I can do imma jus start puttn it out there I'm going to just start putting it out there

Approaches

Noisy-channel-style

Finite-state transducers

- Dictionary-based
 - Hand-crafted
 - Automatically constructed

Labeled vs unlabeled data

Noisy-channel:

- Dictionary lookup:
 - Induce dictionary from unlabeled data
 - Labeled data for parameter tuning

Discriminative model

argmax_{target} P(diff(source, target) | source)

- diff(·,·) transforms source to target
- P(·) is a Conditional Random Field

Signal from raw tweets included via learned text representations.

Architecture

Simple Recurrent Networks

Elman, J. L. (1990). Finding structure in time. *Cognitive* science, 14(2), 179-211.

Recurrent neural embeddings

- SRN trained to predict next character
- Representation:

 Embed string (at each position) in lowdimensional space

Visualizing embeddings

String	Nearest	neighbors in	n embedding	space
should h	should d	will s	will m	should a
@justth	@neenu	@raven_	@lanae	@despic
maybe	u maybe y	cause i	wen i	when i

diff - Edit script

Input	С	_	W	а	t
diff	DEL	INS(see)	NIL	INS(h)	NIL
Output		see_	W	ha	t

Each position in string labeled with edit op

Features

Baseline n-gram features

```
c _ w a t c_ w wa at c_w _wa wat c_wa _wat c_wat
```

- SRN features
 - 400 MB raw Twitter feed
 - 400 hidden units
 - Activations discretized

Dataset

 Han, B., & Baldwin, T. (2011). Lexical normalisation of short text messages: Makn sens a# twitter. In ACL.

- 549 tweets, with normalized versions
- Only lexical normalizations

Results

- No-op make no changes
- Doc
 train on and label whole
 tweets
- OOV train on and label OOV-words

Compared to Han & Bo 2012

Method	WER (%)	
No-op	11.2	
S-dict	9.7	
GHM-dict	7.6	
HB-dict	6.6	
Dict-combo	4.9	
OOV NGRAM+SRN	4.7	

Where SRN features helped

- 9 cont continued
- 4 bro brother
- 3 yall you
- 2 wuz what's
- 2 juss just

- 5 gon gonna
- 4 congrats congratulations
- 3 pic picture
- 2 mins minutes
- 2 fb facebook

Conclusion

 Supervised discriminative model performs at state-of-the-art with little training data

 Neural text embeddings effectively incorporate signal from raw tweets