Varianten des Theorems von Kirchberger

Tim Baumann

TopMath-Frühlingsschule in Oberschönenfeld

4. März 2014

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Hyperebene trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Hyperebene trennbar sind.

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Hyperebene trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Hyperebene trennbar sind.

Übersicht

1 Trennung durch Sphären

- 2 Trennung durch Zylinder
- Trennung durch Parallelotope

Sei $p \in E^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathbf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Sei $p \in E^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathbf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Definition

Seien A und B Teilmengen von E^n .

Die Sphäre $S_{\alpha}(p)$ trennt A und B streng, wenn gilt:

$$\forall a \in A : \|p - a\| < \alpha$$
 und

$$\forall b \in B : \|p - a\| > \alpha$$

Sei $p \in E^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathbf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Definition

Seien A und B Teilmengen von E^n .

Die Sphäre $S_{\alpha}(p)$ trennt A und B streng, wenn gilt:

$$\forall a \in A : \|p - a\| < \alpha$$
 und

$$\forall b \in B : \|p - a\| > \alpha$$

Sei $p \in E^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathbf{E}^n \mid ||x - p|| = \alpha \}$$

oder

Sphäre mit Radius α um den Punkt p.

Definition

Seien A und B Teilmengen von E^n .

Die Sphäre $S_{\alpha}(p)$ trennt A und B streng, wenn gilt:

$$\forall a \in A : \|p - a\| < \alpha$$

und
$$\forall b \in B : \|p - a\| > \alpha$$

$$\forall a \in A : ||p - a|| > \alpha$$
und

$$\forall b \in B : \|p - a\| < \alpha$$

Seien P und Q nichtleere, kompakte Teilmengen von \mathbb{E}^n . Dann sind P und Q genau dann durch eine Hyperebene streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+2Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Hyperebene streng trennbar sind.

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset \mathbb{E}^n$ mit maximal n+3Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Beispiel im E^2

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

TODO

TODO