

+13/1/32+

QCM THLR 4

Nom et prénom, lisibles :	Identifiant (de haut en bas) :
AUER	
Euron	
	2 □1 □2 □3 □4 □5 □6 □7 □8 □9
plutôt que cocher. Renseigner les champs d'identis sieurs réponses justes. Toutes les autres n'en ont que plus restrictive (par exemple s'il est demandé si 0 pas possible de corriger une erreur, mais vous pour incorrectes pénalisent; les blanches et réponses mais J'ai lu les instructions et mon sujet est composition $\mathbf{Q.2}$ Le langage $\{ \mathbf{O}^n \mid \forall n \in \mathbb{N} \}$ est $\mathbf{Q.3}$ Le langage $\{ \mathbf{O}^n \mid \forall n \in \mathbb{N} \}$ est $\mathbf{Q.3}$ Le langage $\{ \mathbf{O}^n \mid \forall n \in \mathbb{N} \}$ est $\mathbf{Q.3}$ rationnel $\mathbf{Q.4}$ vide \mathbf{C} finition \mathbf{C} finition \mathbf{C} rationnel \mathbf{C} vide \mathbf{C} finition \mathbf{C}	plet: les 2 entêtes sont +13/1/xx+···+13/2/xx+. nnaissable par automate fini
Q.4 Quels langages ne vérifient pas le lemme de	pompage?
Certains langages non reconnus par DFACertains langages reconnus par DFA	
Q.5 Un automate fini qui a des transitions spon	tanées
🗌 est déterministe 🎇 n'est pas déterr	ministe \square n'accepte pas ε \square accepte ε
Q.6 Si un automate de n états accepte a^n , alors	il accepte
	$q \in \mathbb{N}^* : p + q \le n$ \square $(a^n)^m$ avec $m \in \mathbb{N}^*$ n^m avec $m \in \mathbb{N}^*$
Q.7 Combien d'états au moins a un automate dont la n -ième lettre avant la fin est un a (i.e., $(a + a)$)	déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ · b)* $a(a+b)^{n-1}$):
$ \Box \frac{n(n+1)}{2} \qquad \Box n+1 $	$\boxtimes 2^n$
Q.8 Combien d'états au moins a un automate dé dont la n -ième lettre avant la fin est un a (i.e., $(a +$	eterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ a + b + c + d: :
\boxtimes 2 ⁿ	
Q.9 Déterminiser cet automate : $\xrightarrow{a,b}$ $\xrightarrow{a,b}$	$b \qquad a, b \qquad b \qquad a \rightarrow b \rightarrow$

 \square $Det(T(Det(T(\mathscr{A}))))$

 \square $Det(T(Det(T(Det(\mathscr{A})))))$

- Q.10 Comment marche la minimisation de Brzozowski d'un automate A?
- 2/2 \Box $T(Det(T(Det(\mathcal{A}))))$

Fin de l'épreuve.

 \Box $T(Det(T(Det(T(\mathcal{A})))))$