Лабораторная работа №3.

ИССЛЕДОВАНИЕ УСИЛИТЕЛЬНОГО КАСКАДА С ЁМКОСТНОЙ СВЯЗЬЮ.

1. Макетная схема RC-каскада на биполярном транзисторе с эмиттерной стабилизацией представлена на рисунке 1.

Рисунок 1.

- 1.1 Зарисуйте схему и ознакомьтесь с назначением элементов:
 - XFG-1 функциональный генератор;
 - резисторы R_1 и R_2 задают выходное сопротивление генератора и дают возможность определить входное сопротивление усилителя (r_{BX});
 - ёмкости С₁,С₃ и С₄ разделительные ёмкости, которые не пропускают постоянную составляющую от генератора на вход и нагрузку усилителя;
 - резисторы R_3 , R_4 и R_5 задают начальный режим транзистора по постоянному току;
 - резистор $R_6 = R_{\kappa}$ задает коэффициент усиления усилителя;
 - резистор R₇ осуществляет эмиттерную стабилизацию;

- ёмкость С2 исключает ООС по переменному току;
- резисторы R_8 , R_9 активные сопротивления нагрузки каскада ($r_{\text{вых}}$);
- ёмкость C_5 ёмкостная нагрузка усилителя;
- мультиметр XMM1 измеряет действующее значение генератора (e_{Γ});
- мультиметр XMM2 изменяет постоянное (U_{B}) и переменное (U_{BX}) напряжение на базе транзистора;
- мультиметр XMM3 измеряет эмиттерный ток покоя ($I_3 \sim I_K$);
- мультиметр XMM4 измеряет постоянное напряжение на эмиттере транзистора (U_3) ;
- мультиметр XMM5 измеряет выходное напряжения ($U_{\text{вых}}$);
- ключи $J_1 J_4$ позволяют изменять номиналы элементов схемы;
- XSC1 двухканальный осциллограф;
- XBP1 плоттер Боде, позволяет исследовать амплитудно-частотную характеристику.

2. Определение режима каскада по постоянному току.

- 2.1 Установите мультиметры XMM2 и XMM4 в режим измерения постоянного напряжения, а мультиметр XMM3 в режим постоянного тока.
- 2.2 Запустите моделирование и измерьте значения I_{K} , U_{5} и U_{7} . Рассчитайте режим работы биполярного транзистора:

$$U_{\text{E}\ni}=U_{\text{E}}$$
 - U_{\ni} ,
$$U_{\text{K}\ni}=E_{\text{V}1}$$
 - $I_{\text{K}}R_{6}$ - U_{\ni} .

2.3 Снять и построить нагрузочную линию I_K = $f(E_\Pi)$, где E_Π = $(E_{V^1}$ - $U_{\ni})$. Для этого изменять величину сопротивления R5 от 20% до 100% и измерять значения I_k и U_{\ni} по мультиметрам XMM3 и XMM4. Изменения вносить при выключенном моделировании.

На графике отметить рабочую точку транзистора (приблизительно середина графика) и с помощью R5 выставить соответствующий ток I_к.

- 3. Исследование усилительного каскада с ёмкостной связью по переменному току.
- 3.1 Включите мультиметры XMM1, XMM2 и XMM5 в режим измерения переменного напряжения и установите их на экране дисплея для удобного снятия показаний (рис.2)

Рисунок 2.

3.2 Снимите и постройте амплитудную характеристику $U_{BMX} = f(e_{\Gamma})$ для двух значений сопротивления нагрузки $R_H = R_8 = 1$ КОм и $R_H = R_9 = 10$ КОм при значениях $F_{\Gamma} = 1$ К Γ ц и $R_{\Gamma} = R_1 = 1$ КОм. Резисторы R8 и R9 переключаются ключом J_3 .

Таблица 1

Е _г (амп.)	2	5	10	15	20	30	50	80	100	мВ
е _г (действ.)										мВ
U _{вых} (1КОм)										мВ
										мВ
U _{вых} (10КОм)										

На осциллографе XSC1 отображаются входной и выходной сигналы.

3.3 Рассчитайте коэффициент усиления каскада:

$$K_{V} = \frac{U_{\rm\scriptscriptstyle BbIX}}{e_{\scriptscriptstyle \Gamma}}$$
 при ${\rm E}_{\scriptscriptstyle \Gamma} = 10$ мВ, ${\rm R}_{\rm H} = 1$ КОм и ${\rm R}_{\rm H} = 10$ КОм.

3.4 Определите входное сопротивление усилителя (r_{BX}) при $R_{\Gamma} = R_1 = 1$ КОм и $E_{\Gamma} = 1$ 5мB:

$$r_{_{BX}} = \frac{R_{_{\Gamma}}}{\frac{e_{_{\Gamma}}}{U_{_{BX}}} - 1} \; U_{_{BX}} -$$
 напряжение на базе транзистора, на мультиметре XMM2.

3.5 Определите выходное сопротивление усилителя при напряжении генератора равном $E_{\Gamma} = 10 \text{мB}$:

$$r_{{\scriptscriptstyle BbIX}} = rac{U_{{\scriptscriptstyle BbIX}2} - U_{{\scriptscriptstyle BbIX}1}}{U_{{\scriptscriptstyle BbIX}1}} - rac{U_{{\scriptscriptstyle BbIX}1}}{R_{\scriptscriptstyle 9}}, \; U_{{\scriptscriptstyle BbIX}1}$$
при включенном $R_{\scriptscriptstyle 8},\; U_{{\scriptscriptstyle BbIX}2}$ при включенном $R_{\scriptscriptstyle 9}.$

3.6 Исследуйте влияние значения величин элементов схемы на частотные свойства усилителя, т.е. $F_{\rm H}$ -нижнюю и $F_{\rm B}$ – верхнюю (на уровне -3дБ) граничную частоту, при E_{Γ} = 10 мВ

Таблица 2

	\mathbf{J}_2	\mathbf{R}_{Γ}	R_{H}	$C_H=C_5$	$\mathbf{F}_{\mathbf{H}}$	F _B	\mathbf{K}_{V}
1	5мкФ	1КОм	1КОм	-			
2	1мкФ	1КОм	1КОм	-			
3	5мкФ	10КОм	1КОм	-			
4	5мкФ	1КОм	10КОм	-			
5	5мкФ	1КОм	1КОм	4нФ			

где J_2-C_2 или C_4 , $R_{\scriptscriptstyle \Gamma}-R_1$ или R_2 , $R_{\scriptscriptstyle H}-R_8$ или R_9 .

Перед изменением схемы выключать моделирования схемы.

3.7 Откройте плоттер Боде (XBP1). Выставьте величины указанные в таблице. Включите источник питания схемы. Определите коэффициент усиления K_V на частоте 1 КГц (рис.3).

Рисунок 3.

Перемещая курсор влево и вправо на величину уменьшения $K_v(дБ)$ на -3 дБ зафиксируйте значения F_H и F_H (см. рис.4 и рис.5).

Рисунок 4

Рисунок 5

Повторите измерения для других номиналов элементов из таблицы 2.

3.8 Проанализируйте результаты.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ.

- 1. Гусев В.Г., Электроника. / В.Г. Гусев, Ю.М Гусев. М. : Высшая школа, 1991 г. 617 с
- 2. Титце У., Полупроводниковая схемотехника. В 2 т. : Пер. с нем. / У. Титце, К. Шенк. М. : Додэка-ХХІ, 2008. 832 с