

# **Physical Vapor Deposition**

Lecturer: Mengyuan Hua

### **Outline**

- Applications
- Materials
  - Semiconductors
  - Insulators
  - Conductors
- Methods
  - CVD Chemical Vapour Deposition
    - APCVD, LPCVD, PECVD, HDPCVD, VPE
  - PVD Physical Vapour Deposition
    - Evaporation, Sputtering
  - Spin-on
  - Electrochemical Deposition



### **PVD** - Evaporation



#### **Cold surface**

Condensation

Evaporation

**Hot surface** 

**Basic principle** 

- Very flexible tool
- Wide range of pure materials
- •"No" gas-phase collisions
- Line-of-sight deposition
- High purity possible
  - •UHV, P< 10<sup>-9</sup> Torr
  - Pure source & e-beam



## **PVD** - Evaporation



Mengyuan Hua, Dept. EEE





### **Vapour Pressure**



### **Evaporation:**

Melt→Gas

### **Sublimation:**

Solid→Gas

Useful rates:

P <10 mTorr ~ 1Pa

very often:

P<10<sup>-5</sup> Torr



## **Point Source Evaporation**



1 01110 504170

Receiving area inclination effect

### Isotropic point source emitter

Radial mass flux : 
$$F_r = \frac{R_{evap}}{\Omega r^2}$$

Full space emitter: 
$$F_r = \frac{R_{evap}}{4\pi r^2}$$

Half space emitter: 
$$F_r = \frac{R_{evap}}{2\pi r^2}$$

### Mass deposition flux:

$$F_D = \frac{F_r(A_k \cos \theta_k)}{A_k} = F_r \cos \theta_k$$

$$F_D = F_r \cos \theta_k = \frac{R_{evap}}{\Omega r^2} \cos \theta_k$$

**Deposition rate:** 
$$v = \frac{F_D}{\rho} = \frac{R_{evap}}{\rho \Omega r^2} \cos \theta_k$$

## **Plane Source Evaporation**



Receiving area inclination effect & Source area inclination effect

Isotropic plane source emitter

Half space emitter:  $F_r = \frac{R_{evap}}{2\pi r^2} 2\cos\theta_i$ 

Mass deposition flux:

$$F_D = F_r \cos \theta_k = \frac{R_{evap}}{\pi r^2} \cos \theta_i \cos \theta_k$$

Deposition rate:

$$v = \frac{F_D}{\rho} = \frac{R_{evap}}{\rho \pi r^2} \cos \theta_i \cos \theta_k$$

## **Plane Receiving Surface**



Deposition rate variation across a planar receiving surface for point and plane isotropic emitters.

### Plane receiving surface:

$$\cos \theta_i = \cos \theta_k = \frac{h}{r}$$

$$\cos\theta = \frac{h}{\sqrt{h^2 + l^2}}$$

### **Deposition rate:**

$$v_{\text{point}} = v_0 \cos \theta_k = \frac{v_0 h}{\sqrt{h^2 + l^2}}$$

$$v_{\text{plane}} = v_0 \cos \theta_i \cos \theta_k = \frac{v_0 h^2}{h^2 + l^2}$$

Use a large source/sample distance h

**Price:** rate - reduction  $v_0 \propto \frac{1}{h^2}$ 



## Spherical Wafer Holder A Planet arium



**Point source:**  $\cos \theta_k = 1$ 

**Deposition rate:** 

$$v_{\text{point}} = \frac{R_{evap}}{\rho \Omega r^2} \cos \theta_k = \frac{R_{evap}}{\rho \Omega a^2}$$

Plane source:  $\cos \theta_i = \cos \theta_k = \frac{r}{2a}$ 

**Deposition rate:** 

$$v_{\text{plane}} = \frac{R_{evap}}{\rho \pi r^2} \cos \theta_i \cos \theta_k = \frac{R_{evap}}{\rho 4\pi a^2}$$

Source/wafer arrangement for uniform deposition rate.





### **Ideal Radiation Patterns**



Ideal point source Isotropic



Ideal plane source cosθ



Directional source  $\cos^n \theta$ 

Real sources can have far more complicated radiation patterns! But the ideal patterns are very useful in modelling.

## Trench Filling/Sidewall Coverage



In evaporation the sticking coefficient is very high,  $S_C \approx 1$  Evaporated atoms arriving from a small space angle => Sidewalls are not covered, unless they directly see the source.

### **Practical Evaporation Sources**



### Resistance heating – Filament:

Easy & cheap
Melt/Heater contact:
Contamination problem
Materials compatibility problem

### **RF-Heating:**

Reduced contamination

### **E-Beam Heating:**

Water cooling: Partly molten source No Melt/Crucible contact Contamination eliminated No materials compatibility problem 5-10keV electrons: Radiation (X-Ray) problem



### **Deposition Rate Monitor**



### Resonant frequency:

$$\omega = \sqrt{\frac{K}{M+m}} = \omega_0 \sqrt{\frac{1}{1+\frac{m}{M}}} \approx \omega_0 \left(1 - \frac{m}{2M}\right)$$



#### Real rate monitor:

Piezo-electric crystal (Quartz) in a shear-vibration mode. Electronic feedback circuit sustains and detects vibration.

Rate monitors needed due to the strongly temperature dependent vapour pressure & rate.

### **PVD** - Evaporation

### <u>Advantages</u>

- Flexible, many pure materials in one system
- In-situ multilayer materials
- No step coverage
  - Lift-off
- Rate & substrate temperature independent
- Real time rate measurements easy
- Single sided deposition

### **Disadvantages**

- Alloy composition difficult to control
  - Also in co-evaporation
- No step coverage
  - Move wafer to cover steps
- Rates difficult to control
  - Affects morphology
- Single sided deposition
- Pump-down time long
  - Use a load-lock:
     reduce pump-down time & contamination

## **PVD – Sputtering: Basic Principle**



Target: source material

Energetic ions, usually Ar<sup>+</sup>, knock out source atoms.

These atoms travel and deposit on the wafer/substrate.

Gas phase collisions occur before deposition,  $P\sim10-100$ mTorr,  $\lambda<5$ mm.

#### Result

- •Deposited atoms arrive from a wide space angle.
- •Improved step coverage.

**Sputter yields** (atoms/ion) rather insensitive to material:

- •0.1 to 3, determined by the DC bias and inject angle
- Controlled alloy deposition possible



## **DC - Sputtering**



Basic two-electrode DC sputter system p~10-100mTorr, V<sub>DC</sub>~0.5-5kV.

Ar + e<sup>-</sup>  $\rightarrow$  Ar<sup>+</sup> + 2e<sup>-</sup> Improbable at low pressure, since  $\lambda \ge L$ , Improbable at high pressure, since E ~  $\lambda V/L < E_{ionization}$ 



### **Glow Discharges**





The plasma region is

- •Almost charge neutral Ar<sup>+</sup> & e<sup>-</sup>.
- •At the positive plasma potential  $V_p \sim 1-10V$ ,  $E_{electron} \sim 1-10eV$ .

The applied voltage is dropped across the cathode dark space. The cathode dark space is:

- •A space charge region, Ar<sup>+</sup>.
- •0.1-10mm thick, d.

Current space-charge limited Langmuir-Child: I~V<sup>1.5</sup>/d<sup>2</sup>

Why the plasma potential is possitive with respect to the anode?





## **Sputtering – Important Processes**



Ionization in gas-phase:

• Ar + 
$$e^- \rightarrow Ar^+ + 2e^-$$

Sputtering of AI & neutralisation of Ar<sup>+</sup>

• Al+Ar++e
$$\rightarrow$$
 Al<sub>gas</sub>+Ar

Secondary electron emission

• Ar
$$^+$$
+2e $^ \rightarrow$  Ar + e $^-$ 

Ionization of background gas

• 
$$O_2$$
 +  $e^-$  + Solid  $\rightarrow O_2^-$ 

Gains energy in darkspace → High energy ions hit substrate Electrons ~10eV hit substrate

- + a few ~1keV electrons
- + high energy photons ~100eV



# **PVD – Sputtering**





## **Sputtering - Uniformity**



Target usually much larger than the wafer => Very good uniformity across a wafer, but still worse than CVD

Well controlled sputter parameters (Power, pressure etc.) => Very good uniformity from run to run

Rate monitors not necessary!

Composition of deposits reproducible!



## **Reactive Sputter Deposition**

### **Compounds deposition**





Reactive gas is added  $(O_2/N_2)$ 

• Ar + 
$$e^- \rightarrow Ar^+ + 2e^-$$

$${}^{\bullet}O_2 + e^{-} \rightarrow O_2^{-}$$

$$\bullet N_2 + e^- \rightarrow N_2^-$$

Reacte with Ti on the wafer surface or on the target

• 
$$2\text{Ti+N}_2 \rightarrow 2\text{TiN}$$

$$\bullet \text{Ti+O}_2 \to \text{TiO}_2$$

Diffcult to control the ratio

Used to improve the preperties of a film

Oxygen or nitrogen doped TiW

## **RF - Sputtering**



- RF sputtering allows nonconducting materials to be sputtered & deposition on dielectrics.
- Substrates on the larger electrode
- Allows more intense plasmas higher ion-density by RF-exceted electrons
   → The ionization rate is still quite low



## **Magnetron Sputtering**





A magnetic field makes the electrons take a longer spiralling path

- More intense plasmas by confined electrons
- •More confined plasmas → reduced Si sputter
- Higher deposition rates
- •Lower Ar pressure → improved film quality





### **Pulsed Laser Deposition**





- A high-power pulsed laser beam is focused to strike a target that is to be deposited in ultra high vacuum or in the presence of a background gas.
  - Rapid adoption in the 1990s with the development of short-pulse lasers.
- Good choice to grow thin films of complex composition and structure
  - metastable phases
  - ➤ laser source is external to the reaction chamber → "clean" reactor.
  - ➤ No charge effects appear
  - ➤ No "memory" reactor
  - cost-effective: one laser can serve many vacuum systems.



## Lely method



- A crystal growth technology used for producing silicon carbide crystals.
- Produce bulk SiC crystals through the process of sublimation.
- Silicon carbide powder is loaded into a graphite crucible, which is purged with argon gas and heated to 2500 °C



## **Physical Vapor Transport**





Gradient temperature

> AIN growth



## **Spin Coating**



- Spin coating is a procedure used to deposit uniform thin films onto flat substrates.
- Industrial uses of spin coating: Photoresist for patterning wafer, insulating layers such as polymers, flat screen display coatings such as antireflection coatings and conductive oxides, television tube antireflection coatings, DVD and CD ROM

## **Electroplating**



Oxidation & dissolution of Cu Cu → Cu<sup>++</sup> + 2e<sup>-</sup>

# Low cost technology Easily scaled to industrial scale

Current density ~1-5A/dm<sup>2</sup> Temperature 20-70°C

Stress & morphology affected by

- Current density
- Temperature
- Bath composition
- Bath additives

Materials:

Cu, Ni, Au, NiFe, CoNiFe, Sn

Problems: Purity, uniformity, composition & stress control

# **Electroplated Ni Structures**















# Summary of thin film deposition

| Thin film                       | Equipment               | Typical Reactions                                                                                    | Comments                                                                                                |
|---------------------------------|-------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Epitaxial<br>silicon            | APCVD, LPCVD            | $SiH_4 \rightarrow Si + 2H_2$<br>$SiCl_4 + 2H_2 \rightarrow Si + 4HCl$<br>$Also SiHCl_3, SiH_2Cl_2$  | 1000-1250°C Reduce pressure for lower temperature deposition.                                           |
| Polysilicon                     | LPCVD                   | Same as epitaxial Si                                                                                 | 575-650°C Grain structure depends on deposition conditions and doping.                                  |
| $\mathrm{Si}_{3}\mathrm{N}_{4}$ | LPCVD, PECVD            | $3SiH_4 + NH_4 \rightarrow$ $Si_3N_4 + 12H_2$                                                        | 650-800°C for oxidation mask.  200-400°C (PECVD) for passivation.                                       |
| SiO <sub>2</sub>                | LPCVD, PECVD,<br>HDPCVD | $SiH_4 + O_2 \rightarrow SiO_2 + 2H_2$<br>$Si(OC_2H_5)_4 (+O_3)$<br>$\rightarrow SiO_2 + byproducts$ | 200-800°C<br>200-500°C (LTO) - may<br>require high T anneal.<br>25-400°C (TEOS-ozone,<br>PECVD, HDPCVD) |



### continued

|                   | 1                                                          |                                       |                                                                          |  |
|-------------------|------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------|--|
| Al                | Magnetron sputter deposition                               |                                       | 25-300°C (standard deposition)                                           |  |
|                   |                                                            |                                       | 440-550°C (hot Al for insitu reflow)                                     |  |
|                   |                                                            |                                       | CVD difficult for alloys<br>(Al-Cu-Si)                                   |  |
| Ti and            | Magnetron                                                  |                                       | CVD difficult                                                            |  |
| Ti-W              | sputter deposition<br>(standard, ionized<br>or collimated) |                                       | Nitrogen can be added to<br>Ti-W to stuff grain<br>boundaries.           |  |
| W                 | LPCVD                                                      | $2WF_6 + 3SiH_4 \rightarrow$          | 250-500°C                                                                |  |
|                   |                                                            | $2W + 3SiF_4 + 6H_2$                  | Blanket deposition with two step process using both reactions is common. |  |
|                   |                                                            | $WF_6 + 3H_2 \rightarrow$             |                                                                          |  |
|                   |                                                            | W + 6HF                               |                                                                          |  |
| TiSi <sub>2</sub> | Sputter and surface reaction                               | Ti(sputtered)+                        | Sputter/reaction give self-aligned silicide                              |  |
|                   | Co-sputtering or                                           | $Si(exposed) \rightarrow TiSi_2$      | Two step anneal process                                                  |  |
|                   | CVD                                                        |                                       | required (600/800°C)                                                     |  |
| TiN               | Reactive sputter deposition                                | $Ti + N_2(in plasma) \rightarrow TiN$ | Organometallic source possible for MOCVD deposition                      |  |

# CVD versus PVD (coarse comparison)

|                              | CVD       | PVD       |
|------------------------------|-----------|-----------|
| Flexibility                  | Poor      | Good      |
| Deposition temperature       | High      | Low       |
| Deposition pressure          | High      | Low       |
| Step coverage (conformality) | Good      | Poor      |
| Thickness uniformity         | Good      | Good      |
| Composition control          | Good      | Poor      |
| Film purity                  | High      | Low       |
| Dielectric                   | Preferred | -         |
| Metal                        | -         | Preferred |

