- **4.** Let $\{f_n\}$ and $\{g_n\}$ be real-valued functions on a set X. Assume that $f_n \to f$ and $g_n \to g$ uniformly on X.
 - (a) If λ, μ are scalars, show that $\lambda f_n + \mu g_n \to \lambda f + \mu g$ uniformly on X Solution:

Observe

$$|\lambda f_n(x) + \mu g_n(x) - \lambda f(x) - \mu g(x)| \le |\lambda| |f_n(x) - f(x)| + |\mu| |g_n(x) - g(x)|.$$

For a given $\varepsilon > 0$, take n sufficiently large so that $\sup_X |f_n - f| < \frac{\varepsilon}{|\lambda|}$ and $\sup_X |g_n - g| < \frac{\varepsilon}{|\mu|}$. Hence $\sup_X |\lambda f_n + \mu g_n - \lambda f - \mu g| < \varepsilon$, where we used the fact that the supremum is an upper bound on the right hand side and is least on the left.

(b) Is it true that $f_n g_n \to fg$ uniformly on X?

Solution:

This statement is false as it stands. Let $X = \mathbb{R}$ and consider $f_n(x) = \frac{1}{n}$ for all x and $g_n(x) = x$ for all x. It is clear that both $f_n \to 0$ and $g_n \to x$ both uniformly. The convergence of $f_n g_n x n \to 0$ is *not* uniform, however. To see this, let $\varepsilon = 1$ be fixed and consider $x_n = n$. Then

$$|f_n(x_n)| = 1 \ge \varepsilon$$

negating uniform convergence to 0.

(c) If the sequences are uniformly bounded (i.e., there exists M such that $|f_n(x)| \leq M$ and $|g_n(x)| \leq M$ for all $n \in \mathbb{N}$ and for all $x \in X$), show that $f_n g_n \to fg$ uniformly on X.

Solution:

Let M_f and M_g be the respective uniform bounds for f and g. Observe

$$|f_n(x)g_n(x) - f(x)g(x)| = |f_n(x)g_n(x) - f_n(x)g(x) + f_n(x)g(x) - f(x)g(x)|$$

$$\leq |f_n(x)||g_n(x) - g(x)| + |g(x)||f_n(x) - f(x)|$$

$$\leq M_f|g_n(x) - g(x)| + (|g(x) - g_n(x)| + |g_n(x)|)|f_n(x) - f(x)|$$

$$\leq M_f|g_n(x) - g(x)| + (|g(x) - g_n(x)| + M_g)|f_n(x) - f(x)|.$$

- \square Now, for a given $\varepsilon > 0$, take n sufficiently large so that $\sup_X |g_n g| < \frac{\varepsilon}{2M_f}$ and $\sup_X |f_n f| < \frac{\varepsilon}{2(\varepsilon + M_g)}$ and the convergence is established arguing as in part (a).
- 5. Define the distance between points (x_1, y_1) and (x_2, y_2) in the plane to be

$$|y_1 - y_2|$$
 if $x_1 = x_2$, $1 + |y_1 - y_2|$ if $x_1 \neq x_2$.

(a) Show that this defines a metric on the plane.

Solution:

Denote points in the plane as $p_i = (x_i, y_i)$.

- i) If $p_1 = p_2$ then $x_1 = x_2$ and $|y_1 y_2| = 0$. On the other hand, if $p_1 \neq p_2$ then either $x_1 \neq x_2$ or $y_1 \neq y_2$. In the first case, $d(p_1, p_2) = 1 + |y_1 y_2| > 0$, and in the other case, both $|y_1 y_2| > 0$ and $1 + |y_1 y_2| > 0$, so $d(p_1, p_2) > 0$.
- ii) Symmetry follows from symmetry of, =, \neq , and the distance metric on \mathbb{R} .
- iii) Let p_1, p_2 and p_3 be points in the plane. If $x_1 = x_3$, then

$$d(x_1, x_3) = |y_1 - y_3| \le |y_1 - y_2| + |y_2 - y_3| \le 1 + |y_1 - y_2| + |y_2 - y_3|.$$

If $x_1 \neq x_3$, then it is not the case that $x_1 = x_2 = x_3$, thus $x_1 \neq x_2$ or $x_2 \neq x_3$ (or both), and in each of these cases

$$d(x_1, x_3) = 1 + |y_1 - y_3| \le 1 + |y_1 - y_2| + |y_2 - y_3| \le 2 + |y_1 - y_2| + |y_2 - y_3|.$$

(b) Show that $\{0\} \times (-1/2, 1/2)$ is open and that $\{0\} \times [-1/2, 1/2]$ is compact. Solution:

Let $p_0 \in \{0\} \times (-1/2, 1/2)$, then $p_0 = (0, y_0)$ where $|y_0| < 1/2$. A ball of radius r < 1 about p_0 has points $p = (x, y) \in B(r, p_0)$ satisfying x = 0 since $1 + |y - y_0| \ge 1$. Hence,

$$d(p, p_0) = |y - y_0| < r \implies |y| < r + |y_0|,$$

and if we take $r = \min\{1, 1/2 - |y_0|\}$, then |y| < 1/2 and thus $y \in \{0\} \times (-1/2, 1/2)$. Hence each point p_0 of the set is an interior point, so the set is open.

It suffices to show that the set $\{0\} \times [-1/2,1/2]$ satisfies sequential compactness since it is a subset of a metric space. Let $p_n \in \{0\} \times [-1/2,1/2]$ then $x_n=0$ and $y_n \in [-1/2,1/2]$. By compactness of [-1/2,1/2] in \mathbb{R} , there exists a subsequence $\{y_{n_k}\}$ and a point y so that $|y-y_{n_k}| \to 0$ in \mathbb{R} . Choose $p_{n_k}=(0,y_{n_k})$ and p=(0,y) and note $d(p,p_{n_k})=|y-y_{n_k}|\to 0$, hence $p_{n_k}\to p$ in this space.

(c) Is $Y = [-1, 1] \times [-1/4, 1/4]$ compact?

Solution:

The set is *not* compact. It suffices to provide a sequence with no converging subsequences. Consider $p_n = (1/n, 0)$. Then for any n_k , $d(p_{n_k}, p_{n_j}) = 1$ for $k \neq j$, hence any p_{n_k} is not Cauchy and does not converge.

6.

(a) Show that

$$F_n(x) = \left(1 + \frac{x}{n}\right)^n e^{-x}$$

is bounded above and below by constants independent of n for $x \in [0, \infty)$.

Solution:

Note first that that $F_n(x) > 0$ since both factors are.

$$\left(1 + \frac{x}{n}\right)^n e^{-x} \ge e^{-x} = 1 - e^{-n} \to 1 \text{ as } n \to \infty.$$

Now,

$$F_n(x) = \sum_{k=0}^n \binom{n}{k} \left(\frac{x}{n}\right)^k e^{-x}$$

$$= \sum_{k=0}^n \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k! n^k} x^k e^{-x}$$

$$\leq \sum_{k=0}^n \frac{x^k}{k!} e^{-x}$$

$$\leq 1.$$

(b) Evaluate, with justifications,

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n} \right)^n e^{-2x} \, dx$$

Solution:

Since $|F_n(x)| \leq 1$, we have

$$\int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} dx \le \int_0^n e^{-x} dx = 1 - e^{-n} \le 1.$$

Recall that $(1 + x/n)^n \to e^x$ as $n \to \infty$ for each real x. Moreover, the convergence is monotone increasing since $F_n(x)$ is monotone increasing and $F_n(x)e^x = \left(1 + \frac{x}{n}\right)^n$. Let $\varepsilon > 0$ be given, then

$$\int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} dx = \int_0^n \left[\left(1 + \frac{x}{n}\right)^n - e^x \right] e^{-2x} + e^{-x} dx$$

$$= -\int_0^n \left| e^x - \left(1 + \frac{x}{n}\right)^n \right| e^{-2x} + e^{-x} dx$$

$$> -\varepsilon \int_0^n e^{-2x} dx + \int_0^n e^{-x} dx$$

for sufficiently large n. Since $\int_0^n e^{-2x} dx \to \frac{1}{2}$ and $\int_0^n e^{-x} dx \to 1$, we have

$$\int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} \, dx > \frac{\varepsilon}{2} + 1 \implies \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} \, dx = 1.$$

- 7. Let (X,d) be a metric space. A function $f:X\to\mathbb{R}$ is called Lipschitz if there is a constant L such that $|f(x)-f(y)|\leq Ld(x,y)$, for all $x,y\in X$.
 - (a) Show that the sum of two real-valued Lipschitz functions is Lipschitz.

Solution:

Let f and g be two Lipschitz functions with respective Lipschitz constants L_f and L_g . Observe

$$|f(x)+g(x)-f(y)-g(y)| \le |f(x)+f(y)|+|g(x)-g(y)| \le (L_f+L_g)|x-y|.$$

(b) Prove that the product of two bounded real-valued Lipschitz functions is again Lipschitz.

Solution:

Let M_f and M_g be the respective bounds for f and g with Lipschitz constants as above. Observe

$$|f(x)g(x) - f(y)g(y)| \le |f(x)g(x) - f(x)g(y)| + |f(x)g(y) - f(y)g(y)| \le (M_f L_g + M_g L_f)|x - y|.$$

(c) Show that the product of two real-valued Lipschitz functions need not be Lipschitz.

Solution:

Consider f(x) = x on \mathbb{R} and it is clear that f is Lipschitz. However, f^2 is not. To see this, let L > 0 be given and observe

$$|x^2 - y^2| = |x + y||x - y| > L|x - y|$$

for x > L and y = 0.

8. Consider the mapping

$$\omega = J(z) = \frac{1}{2} \left(z + \frac{1}{z} \right).$$

For each r > 0, describe the image of the circle |z| = r under this mapping (e.g., as a certain line, circle, ellipse, etc.).

Solution:

We can parametrize the circle |z| = r as $re^{i\theta} = r\cos\theta + ir\sin\theta$ for $-\pi \le \theta \le \pi$. Let $x = \text{Re }\omega$ and $y = \text{Im }\omega$, then

$$x = \frac{1}{2} \left(re^{i\theta} + r^{-1}e^{-i\theta} + re^{-i\theta} + r^{-1}e^{i\theta} \right)$$
$$= \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right) (r + r^{-1})$$
$$= \cos \theta (r + r^{-1})$$

and

$$y = \frac{1}{2i} \left(re^{i\theta} + r^{-1}e^{-i\theta} - re^{-i\theta} - r^{-1}e^{i\theta} \right)$$
$$= \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right) (r - r^{-1})$$
$$= \sin \theta (r + r^{-1}).$$

If we let $a = r + r^{-1}$ and $b = r - r^{-1}$, then

$$\frac{x^2}{a} + \frac{y^2}{b} = 1$$

and such points describe an ellipse.