## HW8.1 (40 points)

如圖 8.1 所示,是一個 Two-Satge Opamp 的 Miller compensation 相關電路。

- (a) 請列出在使用Miller Capacitor (C)做極點分離之頻率補償時,若沒有Rz的問題是甚麼? 請說明此問題的原因為何?
- (b) 在滿足極點—零點抵消之情況下,假設 $C_E$ 可忽略,M9, M11 ( $g_m$ , W/L, Id), Cc, and  $C_L$ 皆是已知。請設計M13, M14, M15 and  $I_1$ 。



Fig. 8.1

## **HW8.2 (30 points)**

Suppose the open-loop transfer function of a two-stage op amp is expressed as

$$H_{open}(s) = \frac{A_0 \left(1 + \frac{s}{\omega_z}\right)}{\left(1 + \frac{s}{\omega_{p1}}\right) \left(1 + \frac{s}{\omega_{p2}}\right)}$$

- (a) 假如 $\omega_{p2}$ =10 $A_0\omega_{p1}$  and  $\omega_z$ =10 $\omega_{p2}$ ,請劃出 $H_{open}(s)$ 's bode plots for Magnitude and phase 並標示 出unit-gain frequency  $\omega_u$  = ?.
- (b) 承上, 其phase margin (PM) =?
- (c) 若是 $\omega_{p2}$ = $A_0\omega_{p1}$  and  $\omega_z$ = $2\omega_{p2}$ , 其phase margin (PM) = ?

## **HW8.3 (15 points)**

The two-stage op amp of Fig. 8.3 incorporates Miller compensation to reach a phase margin of  $45^{\circ}$ . Estimate the compensation capacitor value. Using all teansistors' small-signal parameters ( $g_m$ ,  $r_o$ ).



Fig. 8.3

## **HW8.4 (15 points)**

Consider the transimpedance amplifier shown in Fig. 8.4, where  $R_D = 1 \text{ k}\Omega$ ,  $R_F = 10 \text{ k}\Omega$ ,  $g_{m1} = g_{m2} = 1/(100\Omega)$ , and  $C_A = C_X = C_Y = 100 \text{ fF}$ . Neglecting all other capacitances and assuming that  $\lambda = \gamma = 0$ , compute the phase margin of the circuit. (Hint: break the loop at node X.)



Fig. 8.4