Part 1: Re-cap of L17: Background on the Laplacian

(H, Ch. 7.4, 7.5)

 Solving problems (Poisson) via eigen-expansion or space-time separation of variables, $u(\mathbf{x},t)=\phi(\mathbf{x})h(t)$ for many problems (heat, wave) yields the **Helmholtz** PDE eigenvalue problem: $|
abla^2\phi = -\lambda\phi|$

These ϕ_k are basis fcns for the multi- \overline{D} eigen-expansion approach! (i.e. SV v2.0)

ullet Multi-var calc and Linear operator theory for the Laplacian ${
m L}u\equiv
abla^2 u$:

$$-\nabla^2 u = \nabla \cdot \nabla u$$
 or in words: $lap(u) = div(grad(u))$ (4)

$$-$$
 The divergence theorem $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D \mathbf{
abla} \cdot \mathbf{F} \, dA$

can be used to derive Green's 2nd identity:

$$\underbrace{\iint_D v \nabla^2 u \, dA}_{ \langle v, \mathbf{L} u \rangle_2} = \underbrace{\oint_{\partial D} \left(v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n} \right) \, ds}_{ \text{boundary terms}} + \underbrace{\iint_D u \nabla^2 v \, dA}_{ \langle u, \mathbf{L}^* v \rangle_2}$$

Notation: $\partial_n f \equiv \mathbf{n} \cdot \nabla f$ Neumann derivative, and boundary of D: $C = \partial D$

 The Laplacian is formally self-adjoint and with Dir/Neu BC's it is fully self-adjoint on any D (independent of shape or coord vars!)

Sturm-Liouville-type results for $abla^2\phi=-\lambda\phi$ on any finite domain D

- 0. $oldsymbol{
 abla}^2_{xy}u$ is like a 2-D SL $\widetilde{\mathbf{L}}u$ with p=1,q=0 (and $\sigma=1$)
- 1. λ 's are real
- 2. λ_k are discrete and $\lambda_k \to \infty$ (multiple roots possible (symmetry of D's shape))
- 3. $\phi_{k}(x,y)$ are a complete self-orthogonal basis

$$F(x,y)=\sum_{"k"}c_k\phi_k(x,y)$$
 $c_k=rac{\langle F,\phi_k
angle_2}{||\phi_k||_2^2}$ " k " multi-index $=(m,n)$

4. To show $\lambda \geq 0$, take inner product of $\nabla^2 \phi = -\lambda \phi$ with ϕ :

$$\langle \phi, \nabla^2 \phi \rangle \ = \ -\lambda \langle \phi, \phi \rangle \quad \cdots$$

$$\boxed{ \left(||\nabla \phi||^2 - \oint_C \phi \frac{\partial \phi}{\partial n} \, ds \right) \Big/ ||\phi||^2} \ = \ \lambda \qquad \underline{\text{Rayleigh quotient}}$$

$$\lambda \geq 0$$
 for Dirichlet $(\phi=0)$ or Neumann $(\partial \phi/\partial n=0)$ BC's (H. Ch 7.6)

5. Fredholm Alternative Thm issues for Laplace problems $\mathbf{L}u=f$ and Helmholtz eigenfunctions?

Part 2: The Laplacian in 2D polar coordinates (Haberman 2.5.2)

ullet Convert (r, heta) o (x, y)

$$x = r \cos \theta$$
 $y = r \sin \theta$

• Convert $(x,y) o (r,\theta)$

$$r = \sqrt{x^2 + y^2} \ge 0$$
 $\theta = \tan^{-1}(y/x)$

• Laplacian in 2D polar coordinates. Start from usual rectangular form:

$$abla^2 u(x,y) = rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2}$$

Change of variables u(x,y) = U(r, heta) and chain rule for U(r(x,y), heta(x,y))

$$egin{aligned}
abla_{xy}^2 u &=
abla_{r heta}^2 U \equiv \left| rac{1}{r} rac{\partial}{\partial r} \left(r rac{\partial U}{\partial r}
ight) + rac{1}{r^2} rac{\partial^2 U}{\partial heta^2}
ight| =
abla^2 U \end{aligned}$$