DCG, Wintersemester 2022/23

Lecture 21 (5 pages)

The ε -Net Theorem

Anne Driemel updated: January 17, 2025

In the previous lecture we introduced set systems and we showed that the VC-dimension characterizes the growth of subsystems, which we formalized with the growth function $\Pi_{\mathcal{R}}(m)$. In this lecture we will introduce the concept of ε -nets and show that a small VC-dimension implies the existence of ε -nets of size independent of the size of the ground set.

1 Definitions

Definition 21.1 (ε -net). Let \mathcal{R} be a set system with finite ground set X and let $\varepsilon \in [0,1]$ be a real value. A subset $A \subseteq X$ is an ε -net for this set system, if $A \cap r \neq \emptyset$ for all $r \in \mathcal{R}$ with $|r| \geq \varepsilon |X|$.

Example 21.2. The figure below shows a set of 10 points in the plane. Let X denote this set and consider the set system \mathcal{R} where every set is defined by a disk D and contains the subset of X inside D. Let $\varepsilon = \frac{1}{2}$, an ε -net of \mathcal{R} is shown with red (filled) dots. It can be verified that any disk containing at least 5 points also contains a point of the ε -net.

Example 21.3. Let X be a set of n points in \mathbb{R}^d . Let \mathcal{R} be a set system, where every set is defined by a vector $a \in \mathbb{R}^d$ and a real value $b \in \mathbb{R}$, by $r = \{x \in X \mid \langle a, x \rangle \leq b\}$. That is, \mathcal{R} is a set system of halfspaces in \mathbb{R}^d intersected with a finite groundset. Let $\varepsilon = \frac{1}{n}$, then the set of points that lie on the boundary of the convex hull of X serves as an example of an ε -net for this set system.

2 The ε -net theorem

If \mathcal{R} is a finite set system that consists of all possible subsets of the ground set X, then no small ε -nets can exist for any $\varepsilon < 1/2$: no matter what set $A \subset X$ one chooses, if |A| < |X|/2, there will be always be a set $r \in \mathcal{R}$, namely $X \setminus A$, such that $|r| \ge |X|/2 > \varepsilon |X|$ while $r \cap A = \emptyset$. However, if \mathcal{R} is a finite set system of small VC-dimension, small ε -nets do exist:

Theorem 21.4. Let \mathcal{R} be a finite set system with ground set X and VC-dimension at most d and let $0 < \varepsilon < \frac{1}{2}$ be a parameter, then there exists an ε -net of size in $O(\frac{d}{\varepsilon} \ln \frac{1}{\varepsilon})$ for this set system.

Proof. In our calculations, we will assume $d \ge 2$ (the result will also hold for d = 1, since $O(\frac{1}{\varepsilon} \ln \frac{1}{\varepsilon}) = O(\frac{2}{\varepsilon} \ln \frac{1}{\varepsilon})$).

Let $s = \frac{Cd}{\varepsilon} \ln \frac{1}{\varepsilon}$ for some value of C, which will be determined later, and assume for simplicity that s is a natural number. Let N be a random sample of X generated by making s independent draws from X. We claim that N is a ε -net with positive probability.

For simplicity, assume that all $r \in \mathcal{R}$ satisfy $|r| \geq \varepsilon |X|$. (Otherwise, consider the set system that only contains such sets). Let E_0 be the event that there exists a set $r \in \mathcal{R}$ with $N \cap r = \emptyset$ (so N is not an ε -net). We want to bound $\mathbf{Pr}[E_0]$ from above.

To this end, draw another sample M in the same way as above. Let E_1 be the event that there exists a set $r \in \mathcal{R}$ with $N \cap r = \emptyset$ and $|M \cap r| \geq k$, where $k = \frac{1}{2}\varepsilon s$. For simplicity assume that k is a natural number. (Here, we treat N and M as multisets, so an element drawn multiple times is also counted the appropriate number of times.)

The remainder of the proof is based on two claims.

Claim 21.5. Pr $[E_1] \ge \frac{1}{2}$ Pr $[E_0]$.

Claim 21.6. Pr $[E_1] < \frac{1}{2}$.

Together, the two claims imply $\Pr[E_0] < 1$, so N is an ε -net with positive probability. \square

It remains to prove the two claims.

To prove Claim 21.5, we will use the following lemma.

Lemma 21.7. Let $Y = Y_1 + Y_2 + \cdots + Y_s$, where Y_i are independent random variables with $\operatorname{\mathbf{Pr}}[Y_i = 1] = \alpha$ and $\operatorname{\mathbf{Pr}}[Y_i = 0] = 1 - \alpha$. Then

$$\Pr\left[Y \ge \frac{s \cdot \alpha}{2}\right] \ge \frac{1}{2}$$

provided that $s \cdot \alpha \geq 8$.

Proof. Recall that the variance of a random variable is defined as the mean squared difference with its mean value:

$$Var(Y) := \mathbf{E}\left[(Y - \mathbf{E}[E])^2 \right].$$

For any $t \geq 0$ the following holds:

$$Var(Y) = \mathbf{E}\left[(Y - \mathbf{E}\left[Y\right])^2 \right] \geq t^2 \cdot \mathbf{Pr}\left[(Y - \mathbf{E}\left[Y\right])^2 \geq t^2 \right] = t^2 \cdot \mathbf{Pr}\left[|Y - \mathbf{E}\left[Y\right]| \geq t \right],$$

hence:

$$\Pr[|Y - \mathbf{E}[Y]| \ge t] \le \frac{Var(Y)}{t^2}$$
 (Chebyshev's inequality)

In our case.

$$\mathbf{E}\left[Y\right] = \sum_{i=1}^{s} \mathbf{E}\left[Y_{i}\right] = s \cdot \alpha$$

and, using the fact that the variance of the sum of independent variables is the sum of their variances:

$$Var(Y) = \sum_{i=1}^{s} Var(Y_i) = \sum_{i=1}^{s} \mathbf{E} \left[(Y_i - \mathbf{E} [Y_i])^2 \right] = \sum_{i=1}^{s} (\alpha(1-\alpha)) \le s \cdot \alpha$$

So, for $t = s \cdot \alpha/2$ with $s \cdot \alpha \ge 8$ we have by Chebyshev's inequality

$$\mathbf{Pr}\left[Y < \frac{s \cdot \alpha}{2}\right] \leq \mathbf{Pr}\left[|Y - \mathbf{E}\left[Y\right]| \geq \frac{s \cdot \alpha}{2}\right] \leq \frac{s \cdot \alpha}{\left(s \cdot \alpha/2\right)^2} = \frac{4}{s \cdot \alpha} \leq \frac{1}{2}$$

Indeed, the first inequality holds, since

$$Y < \frac{s \cdot \alpha}{2} \implies (s \cdot \alpha) - Y > \frac{s \cdot \alpha}{2} \implies |\mathbf{E}[Y] - Y| > \frac{s \cdot \alpha}{2}$$

Proof of Claim 21.5. By the definition of conditional probability

$$\mathbf{Pr}\left[E_1|E_0\right] = \frac{\mathbf{Pr}\left[E_1 \cap E_0\right]}{\mathbf{Pr}\left[E_0\right]} = \frac{\mathbf{Pr}\left[E_1\right]}{\mathbf{Pr}\left[E_0\right]}$$

since $E_1 \subseteq E_0$. Therefore, to show $\Pr[E_1] \ge \frac{1}{2} \cdot \Pr[E_0]$, it suffices to show $\Pr[E_1|E_0] \ge \frac{1}{2}$.

So assume that E_0 occurs. In this case, there exists an $r \in \mathcal{R}$ with $N \cap r = \emptyset$. Let's fix one such set r and denote it by r_N .

We have

$$\mathbf{Pr}\left[E_1|E_0\right] \ge \mathbf{Pr}\left[|M \cap r_N| \ge k\right]$$

by the definition of these events. Note that we have an inequality here since there could be more than one set that is hit by M many times.

Now define random variables Y_1, \ldots, Y_s with $Y_i = 1$ if and only if the *i*th sample point of M falls into r_N . Observe that

$$\mathbf{Pr}\left[Y_i = 1\right] = \frac{|r_N|}{|X|} \ge \varepsilon$$

Let $Y = \sum_{i=1}^{s} Y_i$ and observe that $Y = |M \cap r_N|$.

Lemma 21.7 implies

$$\mathbf{Pr}\left[|M\cap r_N| \ge \frac{s\cdot\alpha}{2}\right] \ge \frac{1}{2}$$

where α denotes the probability $\mathbf{Pr}[Y_i = 1]$. (To satisfy the conditions of Lemma 21.7 we need to choose C sufficiently large)

Since $k = \varepsilon s/2$ and since $\alpha \ge \varepsilon$ we have that

$$|M \cap r_N| \ge \frac{s \cdot \alpha}{2} \implies |M \cap r_N| \ge k$$

Therefore,

$$\mathbf{Pr}\left[E_1|E_0\right] \geq \mathbf{Pr}\left[|M \cap r_N| \geq k\right] \geq \mathbf{Pr}\left[|M \cap r_N| \geq \frac{s \cdot \alpha}{2}\right] \geq \frac{1}{2}$$

Proof of Claim 21.6. Instead of choosing N and M directly as above, we generate the samples as follows. We first draw a sequence $A = (z_1, \ldots, z_{2s})$ of 2s independent random draws from X. Then in the second step, we randomly choose s positions in A (each subset of s positions out of 2s having the same probability) and put the elements at the chosen positions into N and the remaining elements into M. The resulting distribution of N and M is the same as before.

Now, consider A to be fixed and consider the subsystem $\mathcal{R}|_A$. Fix a set $r \in \mathcal{R}|_A$. Let E_r be the event that $N \cap r = \emptyset$ and $|M \cap r| \geq k$ (Note that this is like E_1 , but for a fixed set r). We distinguish two cases: (i) $|r| = |A \cap r| < k$, and (ii) $|r| = |A \cap r| \geq k$.

In the first case, E_r cannot occur, so $\mathbf{Pr}[E_r] = 0$.

In the second case, $N \cap r = \emptyset$ implies $|M \cap r| \ge k$, so $\Pr[E_r] = \Pr[N \cap r = \emptyset]$. This is the probability that a random sample of s positions out of 2s avoids the at least k positions occupied by $A \cap r$. Therefore we have

$$\mathbf{Pr}\left[N \cap r = \emptyset\right] \le \left(1 - \frac{k}{2s}\right)^s \le e^{-(k/2s)\cdot s} = e^{-k/2}$$

where the last inequality follows from the fact that $1 - x \le e^{-x}$ for $x \in [0, 1]$.

Recall that $k = \frac{1}{2}\varepsilon s = \frac{1}{2}Cd\ln\frac{1}{\varepsilon}$, so

$$e^{-k/2} = e^{-\frac{1}{4}Cd\ln(1/\varepsilon)} = \varepsilon^{\frac{1}{4}Cd}$$

Thus we have, for any fixed A and fixed $r \in \mathcal{R}|_A$:

$$\mathbf{Pr}\left[E_r\right] \le \varepsilon^{\frac{1}{4}Cd}.$$

By Theorem 23.9 the number of distinct sets $r \in \mathcal{R}_A$ is at most

$$\Pi_{\mathcal{R}}(|A|) \le \left(\frac{\mathbf{e} \cdot 2s}{\mathbf{d}}\right)^{\mathbf{d}} = \left(\frac{\mathbf{e} \cdot 2C}{\varepsilon} \ln \frac{1}{\varepsilon}\right)^{\mathbf{d}} \le \left(\frac{\mathbf{e} \cdot 2C}{\varepsilon^2}\right)^{\mathbf{d}}$$

Thus, for any fixed A we can use a union bound over all $r \in \mathcal{R}|_A$ and obtain

$$\Pr_{\text{fixed }A}\left[E_{1}\right] \leq \sum_{r \in \mathcal{R}|_{A}} \Pr\left[E_{r}\right] \leq \left|\mathcal{R}|_{A}\right| \cdot \varepsilon^{\frac{1}{4}C\mathrm{d}} \leq \left(\frac{\mathrm{e} \cdot 2C}{\varepsilon^{2}}\right)^{\mathrm{d}} \cdot \varepsilon^{\frac{1}{4}C\mathrm{d}} = \left(\mathrm{e} \cdot 2C \cdot \varepsilon^{\frac{1}{4}C-2}\right)^{\mathrm{d}} < \frac{1}{2}$$

if C is sufficiently large (50 will do), $d \ge 1$, and $\varepsilon \le \frac{1}{2}$.

Now, since this bound holds as a worst-case bound for any sample A, it also holds as a bound on the probability of E_1 over all possible samples A. In particular, we can define F_A as the event that the set A is chosen in the first draw of 2s elements from X and we can think of the above probability as conditioned on the event F_A for a fixed set A. Now, by the law of total probability we have

$$\mathbf{Pr}\left[E_{1}\right] = \sum_{F_{A}} \mathbf{Pr}\left[E_{1}|F_{A}\right] \cdot \mathbf{Pr}\left[F_{A}\right] \leq \max_{F_{A}} (\mathbf{Pr}\left[E_{1}|F_{A}\right]) \cdot \sum_{F_{A}} \mathbf{Pr}\left[F_{A}\right] = \max_{F_{A}} \mathbf{Pr}\left[E_{1}|F_{A}\right] < \frac{1}{2}.$$

3 Extension to infinite set systems

Definition 21.8 (ε -net). Let \mathcal{R} be a set system with ground set X and let $\varepsilon \in [0,1]$ be a real value. Let \mathcal{D} be a probability distribution defined on X. A subset $A \subseteq X$ is an ε -net for this set system, if $A \cap r \neq \emptyset$ for all $r \in \mathcal{R}$ with $\mathbf{Pr}[x \in r] \geq \varepsilon$ for a random sample x drawn from \mathcal{D} .

Note that this is an extension of the definition of ε -net that we used above, since for finite set systems we can choose the uniform distribution over X for \mathcal{D} and then the two definitions are equivalent. Using this definition and the above proof one can show with minor modifications that the following extended theorem holds true.

Theorem 21.9. Let \mathcal{R} be a set system with ground set X and VC-dimension at most d and let $0 < \varepsilon < \frac{1}{2}$ be a parameter. Let \mathcal{D} be a probability distribution defined on X. There exists an ε -net of size in $O(\frac{d}{\varepsilon} \ln \frac{1}{\varepsilon})$ for this set system.

References

- Sariel Har-Peled, Chapter 5 in *Geometric Approximation Algorithms*. AMS Mathematical Surveys and Monographs. 2011.
- Jiří Matouŝek, Chapters 10.2 and 10.3 in *Lectures on Discrete Geometry*, Springer Graduate Texts in Mathematics.