

A Step by Step ID3 Decision Tree Example

- Step 1: Compute the Entropy for data set-Entropy(S)
- Step 2: For Every Attribute/Feature:
 - 1. Calculate entropy for all other values Entropy (A)
 - 2. Take Average Information Entropy for the current Attribute
 - 3. Calculate Gain for the current attribute.
- Step 3. Pick the highest gain attribute.
- Step 4. Repeat until we get the tree we desired.

Make a Decision tree that predicts whether tennis will be played on the day?

Data set

For instance, the following table informs about decision making factors to play tennis at outside for previous 14 days.

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Attribute: OUT LOOK

Yalues (outlook) = Sunny, overcast, Rain

Attribute: OUTLOOK

Values Coutlook) = Sunny, overcast, Rain

$$S \Rightarrow [9+, 5-]$$
 Entropy (S) = $-\frac{9}{14} \log_2 \frac{9}{14} - \frac{5}{14} \log_2 \frac{5}{14}$
= 0.94

$$S \Rightarrow [2+13-]$$
 Entropy $(S_{SUNINY}) = -\frac{2}{5} log_2 \frac{2}{5} - \frac{3}{5} log_2 \frac{3}{5}$
= 0.971

Sovercost
$$\Rightarrow$$
 [3+12-] Enmopy (Sovercost) = $-\frac{4}{4} log_2 \frac{4}{4} - \frac{0}{4} log_2 \frac{0}{4}$

$$S_{\text{pain}} \Rightarrow [3+12-]$$
 Enmopy $(S_{\text{pain}}) = -\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5}$
= 0.971

Cravin (S, Outlook) = Enmopy (S) -
$$\frac{5}{14}$$
 Enmopy (Ssunny)
$$-\frac{4}{14}$$
 Enmopy (Sovercase) - $\frac{5}{4}$ Enmopy (Sain)
$$= 0.94 - \frac{5}{14} \times 0.971 - \frac{4}{14} \times 0.971 = 0.2464$$

Attribute: TEMPERATURE

Values CTemp) = Hot, Mild, Cool

2 16

Attribute: TEMPERATURE

Values CTemp) = Hot, Mild, Cool

$$S = [9+,5-]$$
Entropy(S) = $-\frac{9}{14} log_2 \frac{9}{14} - \frac{5}{14} log_2 \frac{5}{14} = \frac{5}{14} log_2 \frac{5}{14} log_2 \frac{5}{14} = \frac{5}{14} log_2 \frac{5}{14} log_2 \frac{5}{14} log_2 \frac{5}{14} = \frac{5}{14} log_2 \frac{5}{1$

Smild =
$$[4+,2-]$$
 Enmopy (Smild) = $-\frac{4}{6}\log_2\frac{4}{6} - \frac{2}{6}\log_2\frac{2}{6}$
= 0.9183

= 1.0

$$S_{cool} = [3+,1-]$$
 Entropy $(S_{cool}) = -\frac{3}{4} log_2 \frac{3}{4} - \frac{1}{4} log_2 \frac{1}{4}$

$$= 0.8113$$

Grain (SITEMP) = 0.94 - $\frac{4}{14} \times 1 - \frac{6}{14} \times 0.9183 - \frac{4}{14} \times 0.8113$ = 0.0289

Attribute: TEMPERATURE

Values CTemp) = Hot, Mild, Cool

$$S = [9+,5-]$$

$$= -\frac{9}{14} \log_{2} \frac{9}{14} - \frac{5}{14} \log_{2} \frac{5}{14} = \frac{5}{14} \log_{2} \frac{5}{14} =$$

Crain (S, Temp) = Enmopy (S) - 4 Enmopy (SHOt)

-0.0289

Gain (SiTemp) = 0.94 - $\frac{4}{14} \times 1 - \frac{6}{14} \times 0.9183 - \frac{4}{14} \times 0.8113$

-6 Enmopy (Smild) - 4 Enmopy (Scool)

Attribute: Humidity
Values Chumidity) = High, Normal)

Attribute: Humidity Values Chumidity) = High, Normal)

$$S = [9+15-]$$
 Entropy(S) = $-\frac{9}{14} log_2 \frac{9}{14} - \frac{5}{14} log_2 \frac{5}{14}$
= 0.94

$$S_{High} = [3+,4-]$$
 Enmopy $(S_{High}) = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7}$

$$= 0.9852$$

$$S_{Normal} = [6+,1-] = \frac{1}{7} \log_2 \frac{6}{7} - \frac{1}{7} \log_2 \frac{1}{7}$$

= 0.5916.

$$= 0.94 - \frac{7}{14} \times 0.9852 - \frac{7}{14} \times 0.5916$$

$$= 0.1516$$
.

Attribute: Wind

Values (wind) = Strong, wind.

Attribute! Wind

Values (wind) = Strong, wind.

Entropy (s) =
$$-\frac{9}{14} \log_2 \frac{9}{14} - \frac{5}{14} \log_2 \frac{5}{14}$$

= 0.94

Enmopy (Sweak) =
$$-\frac{6}{8}\log_{\frac{1}{8}}\frac{6}{8} - \frac{2}{8}\log_{\frac{2}{8}}$$

= 0.8113

 $(\eta ain(S, outlook) = 0.2464$ $(\eta ain(S, Temp) = 0.0289$ $(\eta ain(S, Humidity) = 0.1516$ $(\eta ain(S, wind) = 0.0478$

 $(\eta ain(S, outlook) = 0.2464$ $(\eta ain(S, Temp) = 0.0289$ $(\eta ain(S, Humidity) = 0.1516$ $(\eta ain(S, Wind) = 0.0478$

Root Node: outlook.

{ DI, D2, = .. D14 } [9+,5-] OUTLOOK SUNNY RAIN OVERCAST {DI, D2, D8, D9, D11} & D4, D5, D6, D10, D14 [2十,3一] C3+,2-J YES { D3, D7, D12, D13} [4+10-]