

USING UNSUPERVISED MACHINE LEARNING

PRESENTED BY:-

PUSHPENDRA KUMAR

INFOSYS SPRINGBOARD INTERN

DOMAIN - AI

GROUP - 122

PROBLEM STATEMENT

- This project aims to develop a system using unsupervised learning to detect anomalies or potential fraud among healthcare providers based on their behavior and transaction data.
- The system integrates diverse datasets for comprehensive analysis, extracts relevant features, and applies clustering and anomaly detection algorithms.
- It aims to differentiate between normal variations and potentially fraudulent activities, establishing real-time monitoring and scoring mechanisms.

HEALTHCARE PROVIDERS

HEALTHCARE PROVIDERS DATA(KAGGLE.COM)

Healthcare fraud represents a significant societal challenge, diverting funds intended for medication, elderly care, and emergency services towards dishonest practitioners or patients. This diversion contributes significantly to the escalating costs of healthcare amid rising expenditures.

This dataset is a collection of healthcare providers records, comprising 100,000 entries. It consists of various columns including index, National Provider Identifier(NPI), Name of Provider, Credentials, Gender, State Code, Number of Services, Average Medicare Amounts, etc.

DATASET ANALYSIS

- This dataset consists of total 27 columns having 100K of total entries.
 - There are 5 Categorical, 17 Texts, and 3

 Numeric and 2 Boolean variables in the dataset.
 - It consists of various data types including object, float64, and int64.
 - There are total 104412 cells missing in the dataset which is 3.9% of total cells.
 - There is no any duplicate rows present in the dataset.

<class 'pandas.core.frame.dataframe'=""></class>			
RangeIndex: 100000 entries, 0 to 99999			
Data columns (total 27 columns):			
# Column	Non-Null Count	Dtype	
0 index	100000 non-null	int64	
1 National Provider Identifier	100000 non-null	int64	
2 Last Name/Organization Name of the Provider	100000 non-null	9	
3 First Name of the Provider	95745 non-null	object	
4 Middle Initial of the Provider	70669 non-null	object	
5 Credentials of the Provider	92791 non-null	object	
6 Gender of the Provider	95746 non-null	object	
7 Entity Type of the Provider	100000 non-null	object	
8 Street Address 1 of the Provider	100000 non-null	object	
9 Street Address 2 of the Provider	40637 non-null	object	
10 City of the Provider	100000 non-null	object	
11 Zip Code of the Provider	100000 non-null	float64	
12 State Code of the Provider	100000 non-null	object	
13 Country Code of the Provider	100000 non-null	object	
14 Provider Type	100000 non-null	object	
15 Medicare Participation Indicator	100000 non-null	object	
16 Place of Service	100000 non-null	object	
17 HCPCS Code	100000 non-null	object	
18 HCPCS Description	100000 non-null	object	
19 HCPCS Drug Indicator	100000 non-null	object	
20 Number of Services	100000 non-null	object	
21 Number of Medicare Beneficiaries	100000 non-null	object	
22 Number of Distinct Medicare Beneficiary/Per Day Services	100000 non-null	object	
23 Average Medicare Allowed Amount	100000 non-null		
24 Average Submitted Charge Amount	100000 non-null		
25 Average Medicare Payment Amount	100000 non-null	object	
26 Average Medicare Standardized Amount	100000 non-null	object	
dtypes: float64(1), int64(2), object(24)		3	
memory usage: 20.6+ MB			

EXPLORATORY DATA ANALYSIS (EDA)

- The healthcare providers dataset is analysed thoroughly, all its features are observed and checked for its usefulness and importance in anomaly detection.
- Pre-processing steps are followed such as: Handling missing values, Dropping unnecessary columns, Checking duplicates, and Filling null values with mode.
- Data Cleaning is done by converting the object columns which are supposed to be numeric, removing any comma separators, and removing periods(.) from "Credentials of the Provider" column.
- Data Visualization using various scatter plots (Univariate and Bivariate Analysis).
- Normalization, Standardization, and Encoding.
- Dimensionality Reduction using Principal Component Analysis (PCA).

EDA VISUALISATION

EDA VISUALISATION (CONTD.)

PCA VISUALISATION

Principal Component 1

20

CLUSTERING ALGORITHMS

- K-means Clustering
- DBSCAN Clustering

K-MEANS CLUSTERING

The elbow plot above tells us the ideal number of clusters to be formed. The 4 clusters formed by the distribution of values of "Number of Service" vs "Avg. Medicare Allowed Amount".

DBSCAN CLUSTERING

Total 10 clusters are formed using DBSCAN clustering algorithm.

This plot shows the clusters formed by two features "Avg.
Medicare Standardized Amount" vs "Ratio
Medicare Payment to
Submitted Charge".

CLUSTERING COMPARISON

K-means Clustering

DBSCAN Clustering

MACHINE LEARNING ALGORITHMS

- Isolation Forest
- Elliptic Envelope
- One Class SVM

ML ALGORITHM (ISOLATION FOREST)

Anomalies
Detected = 1000

ML ALGORITHM (ELLIPTIC ENVELOPE)

Anomalies
Detected = 1000

ML ALGORITHM (ONE CLASS SVM)

Anomalies
Detected = 1002

Here, in One Class SVM Model, the total number of anomalies detected by setting the 'nu' value as '0.01' are 1002.

ML ALGORITHM (ONE CLASS SVM) (CONTD.)

SHAP ANALYSIS(ISOLATION FOREST)

The following attributes have the highest positive impact on the output:

- Credentials of the Provider
- Gender of the Provider
- · HCPS Drug Indicator
- · Place of Service
- · Entity Type of the Provider

The following attributes have the highest negative impact on the output:

- City of the Provider
- · Number of Services
- Number of Distinct Medicare Beneficiary/Per Day Services
- · Number of Medicare Beneficiaries
- Average Medicare Allowed Amount
- Average Submitted Charge Amount
- · Average Medicare Payment Amount
- · Average Medicare Standardized Amount

AUTO ENCODERS

Model: "functional_1"

Layer (type)	Output Shape	Param #
input_layer (InputLayer)	(None, 20)	0
dense (Dense)	(None, 64)	1,344
dense_1 (Dense)	(None, 20)	1,300

Total params: 2,644 (10.33 KB)

Trainable params: 2,644 (10.33 KB)

Non-trainable params: 0 (0.00 B)

- ☐ The input layer is having shape as (None, 20) and 0 parameters.
- ☐ There are 2 dense layers having shape (None, 64) and (None, 20).
- \Box Total number of epochs = 30.

Anomalies Detected = 1000

AUTO ENCODERS (CONTD.)

Most number of anomalies: Florida, California, and Texas.

Least number of anomalies: Armed Forces Europe, Armed Forces Central/South America, and Armed Forces Pacific.

