数学分析-习题 2

课程助教 徐業釗 2023年10月8日

1. 证明收敛数列必定有单调有界的收敛子列.

2. 设 $a_1 = \sqrt{2}$, $a_{n+1} = \sqrt{2 + a_n}$, $n \ge 1$, 研究数列 $\{a_n\}$ 的极限.

解:

4. 设 $a_1 = 1, a_{n+1} = \frac{1}{1+a_n}, n \ge 1$. 研究数列 $\{a_n\}$ 的极限.

5. 计算极限 $\lim_{n\to\infty} (1 + \frac{1}{n} + \frac{1}{n^2})^n$

解:

6. 设 $0 \le q < 1$ 为常数,数列 $\{a_n\}$ 满足条件

$$|a_{n+1} - a_n| \le q|a_n - a_{n-1}|, \forall n \ge 2$$

证明 $\{a_n\}$ 为 Cauchy 列。

解

7. 设数列 $\{a_n\}$ 如果存在常数 M, 使得

$$|a_2 - a_1| + |a_3 - a_2| + \dots + |a_{n+1} - a_n| \le M, \forall n \ge 1$$

$$\tag{1}$$

则称 $\{a_n\}$ 为有界变差数列。证明有界变差数列均为 Cauchy 列

解

8. 设 $a_0 = a, a_1 = b$, 定义:

$$a_n = \frac{1}{2}(a_{n-1} + a_{n-2}), \forall n \ge 2$$
(2)

证明 $\{a_n\}$ 为有界变差数列,且 $\lim_{n\to\infty} a_n = \frac{1}{3}(a+2b)$

解:

9. 设函数 f(x) 是闭区间 [a,b] 上的单调递增函数,且

证明存在 $\xi \in (a,b)$ 使得 $f(\xi) = \xi$

解

10. **压缩映射原理:** 已知数列 $\{a_n\}$ 存在常数 $r \in (0,1)$, 使得

$$|a_{n+1} - a_n| \le r |a_n - a_{n-1}| (n = 2, 3, \dots, n)$$

则数列收敛, 特别得如果数列 a_n 由递推公式 $a_{n+1}=f(a_n)$ 给出, 其中 f 是可微函数, 且存在 $r\in(0,1)$ 使得

$$f'(x) \leqslant r \leqslant 0$$

则 a_n 收敛。