E.M.B

Chapter 4: CONGRUENCES AND THE INTEGERS MODULO *n*

Mphako-Banda

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- define congruence modulo n on Z
- prove that congruence modulo n is an equivalence relation
- define an equivalence class
- show when two equivalence classes are equal

CONGRUENCE MODULO n

Definition (4.1.1 CONGRUENT MODULO) For a,b § Z

Let $n \ge 2$ be an integer. On \mathbb{Z} define \equiv as follows $a \equiv b$ iff a - b = kn, $k \in \mathbb{Z}$ iff n | (a - b). In this case we write $a \equiv b \pmod{n}$ and refer to n as the modulus.

Theorem (4.1.2)

 $a \equiv b \pmod{n}$, $n \ge 2$ is an equivalence relation on \mathbb{Z} . [Congruence modulo n is an equivalence on \mathbb{Z} .]

RECALL: n|(a-b) means n divides a-b

PROOF: (Show 'congruence mod n'is an equivalence relation)

(i)
$$a-a=0=0.n$$
 so $a\equiv a\pmod n$, $0\in\mathbb{Z}$

(ii)
$$a \equiv b \pmod{n} \Rightarrow a - b = kn \Rightarrow b - a = (-k)n$$

 $\Rightarrow b \equiv a \pmod{n} \text{ as } -k \in \mathbb{Z} \text{ if } k \in \mathbb{Z}.$ ($\therefore \equiv \text{ is symmetric}$)

(iii)
$$a \equiv b \pmod{n}$$
 and $b \equiv d \pmod{n}$
 $\Rightarrow a - b = kn \text{ and } b - d = ln \qquad k, l \in \mathbb{Z}$
 $\Rightarrow (a - b) + (b - d) = (k + l)n \qquad k + l \in \mathbb{Z}$
 $\Rightarrow a - d = (k + l)n$
 $\Rightarrow a \equiv d \pmod{n}$ ($\therefore \equiv \text{ is transitive}$)

 $\therefore \equiv \pmod{n}$ is an equivalence relation on \mathbb{Z} .

EQUIVALENCE CLASS

From definition 3.1.2 (this is the most general statement)

We work toward finding a list of elements from the general

statement...

$$[a] = \{b \in \mathbb{Z} | b \equiv a \pmod{n}\}$$
={all b in \mathbb{Z} such that b is equivalent to a}

$$= \{b \in \mathbb{Z} | b-a=kn, k \in \mathbb{Z}\}$$

$$= \{b \in \mathbb{Z} | b = a + kn, k \in \mathbb{Z}\}$$

$$= \{a + kn | k \in \mathbb{Z}\}$$

$$= \{\cdots, a-3n, a-2n, a-n, a, a+n, a+2n, a+3n, \cdots\}$$

What is the <u>one word</u> that says what an equivalence class is?

A number?

A relation?

A set?

See last slide..

Example: Let n = 5.

$$\begin{array}{lll} [0] & = & \{0+5k| & k \in \mathbb{Z}\} \\ & = & \{\cdots, -15, -10, -5, 0, 5, 10, 15 \cdots\} \\ & = & [5] = [-5] = [10] & \text{(multiples of 5)} \end{array}$$

[1] =
$$\{1 + 5k | k \in \mathbb{Z}\}$$

= $\{\cdots, -14, -9, -4, 1, 6, 11, 16 \cdots\}$
= $[6] = [-9]$ ((multiples of 5)-1)

Part 1 E.M.B [a] contains all elements of Z that are congruent to the number a modulus n...

Definition (4.1.3)

The equivalence class [a] is called the residue class of a modulo n and may also be denoted by \overline{a} .

Theorem (4.1.4)

Given
$$n \ge 2$$
, $[a] = [b]$ if and only if $a \equiv b \pmod{n}$.

PROOF: From Theorem 3.2.1, part (ii) f[a] = [b] if and only if $a \approx b$. J We know that [a] = [b] if and only if $a \equiv b$. In this case [a] = [b] if and only if $a \equiv b \pmod{n}$.

We proved in theorem (3.2.1) the conditions for two equivalence classes to be equal, so in the proof of this theorem (4.1.4) we apply the earlier theorem (3.2.1)