109-2 3DCVDL final project

Template is all you need: 2D to 3D reconstruction with template learned by contrastive learning

R08945027 M.Y. HO (何明洋)

R09942089 Y.S. Haung (黃郁珊)

B06201018 C.J. Chang (張芷榕)

Outline

- Introduction
- Method
 - Dataset and Preprocessing
 - Training scheme and architecture
- Result
- Discussion
- Conclusion
- Work Distribution

Introduction

Goal 1: 2D to 3D reconstruction

We mainly focus on testing set and other unseen data.

Introduction

Goal 2: Find out the template in each category.

Relationship between template and instances

Template can help find common characteristics from instances belong to the same category.

Method - Dataset and Preprocessing

Method - Dataset and Preprocessing

ShapeNet provides 3D object in mesh OBJ format

- 2D images in PNG format w/ 50 easy and 50 hard views (training input)
 224*224*3 (RGB)
- 3D object in SDF format (training ground truth) N*4 (x,y,z, sdf)
- → 3D object in PLY format (for evaluation)

Method - training scheme and architecture

Phase 1: Train for embedding

Get an unique embedding for each instance

$$\mathcal{L}_{rec}^{(s)} = \sum_{k=1}^{K} \sum_{i=1}^{N} L_{\epsilon_{s}, \lambda_{s}} \left(\mathcal{T} \left(\boldsymbol{p}^{(s)} \right), v_{k,i} \right)$$

$$\mathcal{L}_{rec} = \sum_{s \in \{2, 4, 6, 8\}} \mathcal{L}_{rec}^{(s)}$$

$$\mathcal{L}_{pw} = \sum_{k=1}^K \sum_{i=1}^N h\left(\|\mathcal{W}(\boldsymbol{p}_i, \boldsymbol{c}_k) - \boldsymbol{p}_i\|_2\right)$$

$$\mathcal{L}_{pp} = \sum_{k=1}^{K} \sum_{i \neq j} \max \left(\frac{\|\Delta \boldsymbol{p}_i - \Delta \boldsymbol{p}_j\|_2}{\|\boldsymbol{p}_i - \boldsymbol{p}_j\|_2} - \epsilon, 0 \right)$$

p denotes sdf samples' x, y, z coordinates in \mathbb{R}^3

v denotes sdf samples' corresponding sdf value in R¹

c denotes trainable embedding in R^{256}

Method - training scheme and architecture

Phase 2: Train for encoder

Encode the images to corresponding embeddings

Result - chairs

	Train		Test		Real world
rgb					
gt					NA
3d					

	Mean	Median
3D CNN	11.15	NA
DISN	7.54	NA
Pixel2mesh	11.13	NA
Ours (fix)	1.61	1.02
Ours (rnd)	1.82	1.16

Result - sofas

	Tra	Train		Test	
rgb					
gt					NA
3d					

	Mean	Median
3D CNN	9.76	NA
DISN	8.71	NA
Pixel2mesh	6.54	NA
Ours (fix)	1.50	0.72
Ours (rnd)	1.49	0.63

Result - planes

	Train		Test		Real world
rgb					
gt		***	**	0 3/4	NA
3d		×	×		

	Mean	Median
3D CNN	10.47	NA
DISN	9.01	NA
Pixel2mesh	6.10	NA
Ours (fix)	4.19	0.16
Ours (rnd)	4.52	0.18

The previous method relies on **intermediary embeddings** in the first phase.

- Final results hugely depend on the quality of the embeddings.
- The **number of parameters scales linearly** with the number of training data.
- → Try training in an **end-to-end** manner.

How does the encoder learn embeddings that are view-invariant?

Sol 1	Sol 2
L1 loss to match the pretrained embeddings' distribution.	Implicitly learned from the supervised loss function
strong	weak

→ Contrastive learning may come in handy!

- Force the different views of the same instance to be closer in latent space.
- Pretrain the encoder with
 contrastive learning and then use
 it as the initial weights for the later
 end-to-end training

Training loss

	rgb	gt	Sol 1	Sol 2
train				
test			1	

	<u> </u>	
	Mean	Median
Sol 1 (fix)	1.61	1.02
Sol 1 (rnd)	1.82	1.16
Sol 2 (fix)	1.53	0.93
Sol 2 (rnd)	1.59	1.00

	rgb	gt	Sol 1	Sol 2
train				
test				

	Mean	Median
Sol 1 (fix)	1.50	0.72
Sol 1 (rnd)	1.49	0.63
Sol 2 (fix)	2.01	1.40
Sol 2 (rnd)	2.54	1.26

	rgb	gt	Sol 1	Sol 2
train				
test		**	**	**

	Mean	Median
Sol 1 (fix)	4.19	0.16
Sol 1 (rnd)	4.52	0.18
Sol 2 (fix)	1.76	0.29
Sol 2 (rnd)	1.75	0.28

Conclusion

What we have done:

- Fulfill the 2D to 3D reconstruction task.
- Find out the template in each category.
- The unseen images can be applied to our network and return good results.

Novelty:

- Leverage the concept of template to achieve 2D to 3D reconstruction.
- Improve the feature extraction from 2D image using contrastive learning.

Work Distribution

何明洋

Be in charge of "sofa" class

Data preprocessing

Propose solution 1

Embedding analysis and result evaluation

黃郁珊

Be in charge of "chair" class

Propose the main ideas

Implement warping and SDF submodules

Implement solution 1

張芷榕

Be in charge of "plane" class

Propose solution 2

Implement contrastive learning

Implement result generation function

Q & A