Primer parcial

1-Considere un sistema de N partículas idénticas y distinguibles, con 2 estados de energía accesibles $-\varepsilon$ y ε . Use el ensamble microcanónico y canónico para calcular la entropía por partícula como función de la energía media de las partículas, en el límite $N \to \infty$. Verifique que los resultados obtenidos con ambos ensambles son idénticos.

Obtenga la expresión de la temperatura (T).

Calcule la densidad de ocupación de los estados (n_{ε} , $n_{-\varepsilon}$,), la energía (E) y la entropía (S) en el límite $T \to \infty$.

Calcule la densidad de ocupación de los estados (n_{ϵ} , $n_{-\epsilon}$,), la energía (E) y la entropía (S) en el límite $T \to 0$.

Calcule la temperatura para el caso n_{ϵ} =N. Explique el resultado.

2-Calcule y aproxime la función partición Z(T,L), para una partícula cuántica confinada en un pozo infinito unidimensional de ancho L, en los límites de alta y baja temperatura.

Calcule la capacidad calorífica C_L .

Determine la ecuación de estado f(T, P, L) = 0.

3-A lo largo de dos barras paralelas perfectamente lisas de largo L y separación a se mueven dos masas m_1 y m_2 unidas por un resorte de constante elástica k y largo despreciable ($\ll a$), como se ilustra en la figura:

El sistema se encuentra en contacto con un baño térmico a temperatura au.

Escriba la función partición del sistema. Resuelva las dos integrales simples y deje expresadas las dos integrales complicadas.

Las integrales complicadas se simplifican para temperaturas mucho mayores o menores que la temperatura característica del sistema. Detalle la expresión de la temperatura característica de este sistema, y encuentre la energía interna en estos casos límites. Interprete los resultados en términos del principio de equipartición y señale donde se almacena la energía en promedio en estos casos límites.

4-Calcule la energía media y la capacidad calorífica para un sistema clásico de N partículas distintas en un espacio de dimensión d, cuyo hamiltoniano es:

$$H = \sum_{i=1}^{N} A_{i} |p_{i}|^{s} + B_{i} |q_{i}|^{t}$$

Donde los parámetros A_i y B_i , caracterizan a las partículas individuales y s,t son valores enteros positivos. El sistema se encuentra a una temperatura T.

Como caso especial, obtenga la energía media y la capacidad calorífica para N osciladores armónicos tridimensionales.