01-21-05

IFW

PTO/SB/21 (04-04)
Approved for use through 07/31/2006. OMB 0651-0031
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Inder the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

TRANSMITT	ΔΙ
FORM	

(to be used for all correspondence after initial filing)

1

Total Number of Pages in This Submission

Application Number	10/047,953	
Filing Date	January 15, 2002	
First Named Inventor	Mark O'Neill	
Art Unit	not assigned	
Examiner Name	not assigned	
Attorney Docket Number	065363-0003	

ENCLOSURES (check all that apply)				
Fee Transmittal Form	Drawing(s)	After Allowance communication to Technology Center (TC)		
Fee Attached	Licensing-related Papers	Appeal Communication to Board of Appeals and Interferences		
Amendment / Reply	Petition	Appeal Communication to TC (Appeal Notice, Brief, Reply Brief)		
After Final	Petition to Convert a Provisional Application	Proprietary Information		
Affidavits/declaration(s)	Power of Attorney, Revocation Change of Correspondence Address	Status Letter		
Extension of Time Request	Terminal Disclaimer	Other Enclosure(s) (please identify below):		
Express Abandonment Request	Request for Refund	Certificate of Mailing via Express Mail No. EV 473486482US		
Information Disclosure Statement	CD, Number of CD(s)	Postcard Receipt		
Certified Copy of Priority Document(s) Response to Missing Parts/ Incomplete Application Response to Missing Parts	Remarks			
under 37 CFR 1.52 or 1.53				
SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT				
Firm Or Individual name Gregory M. Zinkt, Ph.D., Reg. No. 48,492 Patent Agent and Scientific Advisor Dykema Gossett PLLC				
Signature Megory M. Znib				
Date January 18, 2005				
CERTIFICATE OF TRANSMISSION/MAIL ING				

I hereby certify that this correspondence is being facsimile transmitted to the USPTO or deposited with the United States Postal Service with

sufficient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the

Typed or printed name
Signature
Date

This collection of information is required by 37 CFR 1.5. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

CERTIFICATE OF MAILING

I hereby certify that the foregoing CERTIFIED COPY OF PRIORITY DOCUMENTS, TRANSMITTAL FORM (PTO/SB/21) and POST CARD RECEIPT for Mark O'Neill for patent application entitled "System and Method for the Signing and authentication of Configuration Settings Using Electronic Signatures" have been sent via Express Mail #EV 473486482US, postage prepaid, addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, EV 22313-1450, on January 18, 2005.

Gregory/M. Zinki, P

Reg. No. 48,492

Europäisches **Patentamt**

European **Patent Office** Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem näch-sten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

01650149.6

CERTIFIED COPY OF PRIORITY DOCUMENT

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

DEN HAAG, DEN THE HAGUE, LA HAYE, LE

30/01/02

Europäisches **Patentamt**

European **Patent Office** Office européen des brevets

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation

Anmeldung Nr.:

Application no.: Demande n°:

01650149.6

Anmeldetag: Date of filing: Date de dépôt:

14/12/01

Anmelder: Applicant(s): Demandeur(s): Vordel Limited Dublin 4

IRELAND

Bezeichnung der Erfindung: Title of the invention: Titre de l'invention:

A system and method for the signing and authentication of configuration settings using electronic signatures

In Anspruch genommene Prioriät(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat:

State: Pays: Date: Date:

File no. Numéro de dépôt:

Internationale Patentklassifikation: International Patent classification: Classification internationale des brevets:

Am Anmeldetag benannte Vertragstaaten:
Contracting states designated at date of filing: AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE/TR
Etats contractants désignés lors du depôt:

Bemerkungen: Remarks: Remarques:

Title

A system and method for the signing and authentication of configuration settings using electronic signatures.

5 Field of the Invention

The invention relates to configuration settings and in particular to a method of authenticating the validity of any changes or updates to an electronic document which contains configuration settings. More particularly, the present invention relates to a method and system adapted to secure a configuration file. Within the present specification the terms "configuration file" and "configuration settings" refer to any electronic document or instructions contained within that document which relate to how a computer program or system should operate, and are the means by which a program is controlled and directed. It will be appreciated that within this specification that the term "electronic signature" refers to any signature process including symmetric and asymmetric signatures, whereas the term "digital signature" typically refers to an asymmetric signature.

Background to the Invention

25

30

35

10

15

20

Within computer software architecture, configuration files are used for maintaining technical and administrative control of software applications. It is usual for specific operating systems and specific software applications to have individual configuration files. The running or execution of these files determines how the system interacts with other systems, the permissible behaviour and actions of users on the system and the general operation of the system. These files may be located on the computer file system or may be located in a database.

14-12-2001

10

15

20

2

Figure 1 shows an example of such a flow system wherein the user of a computer program system or program 100 can create or update configuration information 110. The configuration information is stored and then retrievable or referenced by the computer program or system 120 on demand. Due to the overall importance of the configuration files to the operation of the system, the edits of such files must be auditable. This is typically achieved through the use of proprietary lists of archival information. Hereintobefore configuration files were trusted because of their location in a proprietary database or file system, or because of their format. The creation and update of these configuration files was not recorded in a manner that was cryptographically secure.

There, therefore, exists a need for a method of maintaining control over configuration files which enables an historic monitoring of the update activity of the files and also a method that improves the security and integrity to updating of such files.

Object of the Invention

It is an object of the present invention to provide an improved security method for the creation and amendment of configuration files of a computer system or program.

Summary of the Invention

30

Accordingly the present invention provides a method for the use of electronic signatures to ensure the integrity of configuration files, and to associate the identity of a signer with the configuration file which has been signed.

35

10

15

20

25

30

35

3

In one embodiment of the present invention a method is provided for signing configuration settings, the method comprising the steps of:

enabling a user to create a configuration file, the configuration file having a series of configuration settings contained there,

storing the configuration file, and ? wherein the creation of the configuration file effects the association of a electronic signature with the configuration file, the electronic signature being uniquely identifiable with the user who created the file.

The creation of a configuration file may comprise the editing of a pre-existing configuration file or the creation of a new configuration file.

The electronic signature may be incorporated with the document which it signs or may be referenced by the document.

The invention may additionally provide a method of authenticating the validity of any changes or updates to an electronic document which contains configuration settings, the method comprising the steps of:

associating a configuration file with an electronic signature, and

referencing the configuration file, the referencing of the configuration file being effected to retrieve instructions as to how a specific task should be conducted and, the referencing of the configuration file comprising the steps of:

verifying the electronic signature associated with the configuration file and, once verified, allowing a use of the configuration settings stored within the configuration file.

If the verification fails, the method desirably is adapted to disable use of the configuration settings stored within the configuration file.

5

The method may additionally comprise the step of authenticating a digital certificate associated with the electronic signature.

- The method is further adapted to associate a digital signature of any subsequent user who edits the configuration file with the later stored configuration file.
- By using an electronic signature associated with the last edit of the configuration file the present invention ensures the integrity of the settings contained within the configuration file. Any changing of data associated with or stored within the configuration file requires an
- association of the signature of the person who has effected the change within the configuration file. If the file has been changed, the electronic signature associated with the file becomes invalid, and this change will be detected on authentication.

25

In a preferred embodiment the electronic signature is an asymmetric type digital signature formed from a set of keys. In other embodiments the electronic signature is a symmetric type signature.

30

The invention also provides a computer system adapted to provide an improved security of configuration files, the system comprising:

a input/output module adapted to receive instructions 35 from a user and furnish a response to those instructions,

5

a processor adapted to effect the processing of instructions contained within a configuration file,

a datastore adapted to store a configuration document during periods when the configuration information is not required,

a file system memory adapted to effect a retrieval of the stored configuration document prior to processing of the configurations instructions contained within the configuration document and,

wherein the retrieval of a document from the datastore and extraction of the instructions contained within that document is effected only after verification of an electronic signature associated with that document.

The system may additionally comprises a certificate authentication means, the certificate authentication means adapted to authenticate a certificate associated with the signature.

These and other features of the present invention will be better understood with reference to the following examples and Figures.

Brief Description of the Drawings

25

Figure 1 is a schematic of a prior art configuration wherein a configuration file is stored and used without a digital signature,

Figure 2 is a schematic of a configuration according to the present invention wherein a digital signature is associated with the configuration file,

Figure 3 is a schematic of a computer system according to the present invention, and

Figure 4 is a flow chart sequence outlining the retrieval of a configuration file according to the present invention.

Detailed Description of the Drawings

5 Figure 1 has been described with reference to the prior art.

Figure 2 shows a schematic of the present invention in accordance with a preferred embodiment, which associates a digital signature with a configuration file. The same reference numerals have been used for similar components. According to the present invention, a configuration file or document 210 comprises both configuration information 210A and a digital signature 210B of the user 100 who last edited the configuration information 210A. It will be appreciated that the digital signature does not have to be resident on the same platform or network as the document, but may be referenced by the document.

Once a configuration file has been created and stored, the information contained within the file may be referenced by a computer system or program 110 to which the information within the configuration file pertains. According to the present invention, the referencing of the information within the file 210 is not effected until the identity of the digital signature 210B associated with the configuration information 210A is verified.

The verification of the digital signature is typically effected using known principles and techniques. The following examples are illustrative of the type of techniques that may be implemented in order to effect a verification of the signature.

35 It will be understood that digital signature verification

makes use of mathematical cryptography in order to verify the integrity of a document and to associate a signer with a signed document. The mathematics used for digital signatures is sufficiently strong to render the generation of a fraudulent signature mathematically infeasible.

In Figure 2 above, the digital signature is verified by the computer system or application which is configured using the configuration file. This addition step, not present in the prior art shown in Figure 1, ensures the integrity of the configuration file, meaning that there is an assurance that the document has not changed since it has been signed. In addition, the identity of the signer of the configuration file can be identified.

15

10

5

The following sub-sections define, at a technical level, the steps involved in digital signature verification.

1. A digest of the signed data is produced through the use of a cryptographic hashing function. A cryptographic hashing function is a one-way mathematical function which produces an output which is linked its input in such a way that an alternative input is highly unlikely to produce the same output. The output of a cryptographic hashing function is called a "hash" and it is generally shorter in length than the corresponding input. Examples of hashing algorithms include SHA-1 and MD-5. It is important that the data is hashed using the same data hashing function as that used by the sender.

30

- 2. The verifier of the digital signature uses the customer's public key to decrypt the signature and the hash.
- 35 3. If the two hashes the hash that was encrypted by the

signer and the hash produced by the recipient - are identical, then the integrity of the data is validated.

The process described in these three steps is mathematical and is independent of the Digital Certificate Processing stage described in the paragraphs below. The method of the present invention may additionally comprise the steps of processing and authenticating a digital certificate.

10 Digital Certificate Processing

A digital signature typically either contains or references a digital certificate that is uniquely linked to the signer. This is the means by which a person or an entity is linked to a signed document. The digital certificate 15 contains what is termed the signer's public key. This public key is part of a key pair which consists of both a public key and a private key. These two keys are uniquely linked. The private key is used to digitally sign an electronic document, and the public key (contained in a 20 digital certificate) is used to verify the digital signature. In both cases - signature generation and signature validation - the same underlying asymmetric key cryptography is used. The principles associated with these techniques are, as will be appreciated by the skilled 25 person, well known and examples of the techniques may be found in United States Patent number 4,405,829.

As well as a public key, digital certificates contain
information that relates to the entity to which the
certificate is linked. This information may be stored in a
structured format, and some digital certificates conform to
a standard, X.509, for the storage of this identification
information. When a digitally signed electronic document is
received, the digital signature may include a digital

certificate. This digital certificate may be checked for validity. A digital certificate is marked invalid if the unique relationship of the public and private key pair to the signer comes into doubt. An example of a digital certificate's validity being in doubt is a compromise of the confidentiality of a pass-phrase used to protect a private key. This means that the signer is no longer the only person who could sign documents with that private key.

In addition, a digital certificate may be invalid if the recipient does not trust the signer, or does not trust the Certificate Authority which issued their digital certificate. The sender is identified by their Digital Certificate. A Digital Certificate may contain a reference to the Certificate Authority which issued the certificate. This Certificate Authority may not be trusted by the document recipient.

A Digital Certificate may be revoked, meaning that the

certificate is registered as being no longer valid, using a
third party certificate store that is available over a
computer network. Because of this reliance on an online
certificate registry, generally implemented using the X.500
directory protocol, the certificate validation stage

requires a network connection.

Validation of a digital certificate is typically performed using the following techniques:

30 Certificate Revocation List (CRL)

A Certificate Revocation List (CRL) is an electronic listing of invalid and revoked certificates. This list is generally stored in a hierarchical directory conforming to

the X.500 standard. The list is generally checked using the LDAP (Lightweight Directory Access Protocol) protocol.

Online Certificate Status Protocol (OCSP)

5

10

OCSP is used to verify the status of a digital certificate. OCSP operates by checking multiple Certificate Revocation Lists (see above) and storing the results. The act of checking a single OCSP Responder is therefore more efficient than checking multiple Certificate Revocation Lists sequentially.

eXtensible Key Management Protocol (XKMS)

15 XKMS specifies protocols for distributing and registering public keys, suitable for use in conjunction with the proposed XML Signature recommendation [XML-DSIG] developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task Force (IETF). The XML Key

20 Management Specification (XKMS) comprises two parts -- the XML Key Information Service Specification (X-KISS) and the XML Key Registration Service Specification (X-KRSS).

The X-KISS specification defines a protocol for a *Trust*25 service that resolves public key information contained in XML signature elements, as defined by the W3C and the IETF. The X-KISS protocol allows a client of such a service to delegate part or all of the tasks required to process XML certificate details contained within X509 Certificate tags.

30 The underlying certificate validity method may be one or other of (2.2.1) and (2.2.2) above.

It will be appreciated that the present invention effects the storage of a configuration file as an electronic document associated with a digital signature. It will be

10

15

20

25

30

35

11

appreciated that to effect the storage of such a file in a suitable format that the present invention provides for the permanent storage of the file in a datastore or database which then provides a copy of the configuration file during access by the referenced program or computer system to file memory. Figure 3 shows, in schematic form, an example of such a computer architecture.

The computer system 300 comprises an input/output (I/O) 310 interface which is the communication link between the system 300 and the users or external computer systems. Typically the communication with external entities, such as an authentication engine 350 is over an internet 360 or some other equivalent communications link. A permanent data storage 320 is provided for storage of one or more configuration files which are associated or required for the operation of the computer system or programs implemented on such a system. Although the data storage or datastore 320 provides a permanent storage area for the configuration files, once they are required for reference purposes a copy of the file is extracted from the datastore 320 to a file memory 330 such as a RAM or ROM. The extraction of the system commands contained within the configuration file is only effected, in accordance with the present invention, when an associated digital signature for each file is examined and authenticated, typically in accordance with the steps outlined previously. On extraction of the configuration file and authentication of same using the authentication engine or some similar method the commands are executed using a processor 340

It will be appreciated that the authentication of a digital signature typically comprises or utilises processing power and capabilities which can effect the performance of the computer system. In one embodiment the present invention

overcomes such problems by signing any variations or modifications to the configuration information all at once at the final save and not per item of change or modification. Although this results in only one signature being associated with the final edit, and not a specific signature per item of modification it will be appreciated that such an implementation achieves an efficient use of digital signature technology, which is typically processor intensive.

10

It will be appreciated from the above that the digital signature that requires verification prior to extraction of any configuration information is typically the signature of the person who performed the last edit of the document. This is advantageous in that the number of signatures that

- This is advantageous in that the number of signatures that require verification prior to processing is minimised to that of the last edit. Any preceding signature that were associated with the configuration file or document no longer require verification. This reduces the amount of processing required prior to extraction and processing. In
 - processing required prior to extraction and processing. In order to improve the audit trail of tracing those who may have edited the file or document, it will be appreciated that the number of persons or users who have authorisation to configuration document edits may be minimised. It will
- 25 be appreciated that the identity of those persons who performed previous edits may typically be ascertained by use of rollback techniques to view previous versions of the configuration file.
- It will also be appreciated that the present invention may provide for a verification of a signature of a user prior to allowing the user to save the edits to the configuration document, so as to ensure that the user is authorised to edit the document. The editing of the file typically
- 35 requires the appending of additional steps or commands

15

20

30

within the configuration document. The credentials of the signer can be checked using various techniques including the authentication of a certificate associated with the signer. The association of the signature and/or certificate with the saved file is used at a later stage for authentication of a retrieved document.

It will be further appreciated that the storage of the configuration files within a datastore provides for further advantages over prior art implementation where the files were stored in permanent file memory. Such advantages include the capability to archive, rollback etc., and may also enable the implementation of additional security wherein the repository or datastore is a trusted repository.

By implementing a digital signature associated with the configuration file and requiring the authentication of that signature by an external trusted third party or authentication engine 350, such as that shown in Figure 3, the present invention provides additional confidence levels to those who implement systems according to the present invention. It will be appreciated that the authentication of the digital signature can be implemented on saving the configuration file, i.e. is the applied signature 25 associated with the configuration file an authentic signature for that user, or simply by authenticating prior to implementation of the commands stored or referenced within the configuration file. The process flow steps shown in Figure 4 are typically implemented on retrieval of a previously stored configuration file prior to processing of same, although it will be appreciated that not all of the steps are required for all applications or implementations.

15

14

In step 400, the configuration file is retrieved from the datastore. The signature is extracted from or identified within the file, and the signature is authenticated with regard to its integrity (Step 410). The certificate associated with the signature is then checked to ensure that the signer information is current and valid (Step 420). This may require a communication with an external authentication engine (Step 420). If the document structure is unknown a further verification may be required so as to guarantee that the structure of the document is in order for processing. (Step 430).

The present invention has been described with reference to examples of the use of digital signatures within an XML environment and the association of the signature with configuration files used in such an environment. It will be understood that the present invention is not intended to be limited by such examples except as may be necessary in view of the appended claims. By using a digital signature with a configuration file the present invention is advantageous over the prior art in many ways including the way in which the integrity of the configuration file is ensured because if the configuration file is subject to a change then the digital signature becomes invalid.

25

30

20

It will be further understood that although an exemplary embodiment of the present invention has been described with reference to the application of a digital signature that any electronic signature that enables a verification of the identity of the signer may be also used.

20

25

30

Claims

- 1. A method of signing a configuration file having one or more configuration settings, the method comprising the steps of:
 - a) enabling a user to create a configuration file, the configuration file having a series of configuration settings contained there,
- 10 b) storing the configuration file, and
 wherein the creation of the configuration file effects
 the association of a electronic signature with the
 configuration file, the electronic signature being
 uniquely identifiable with the user who created the
 file.
 - 2. The method as claimed in claim 1 wherein the creation of a configuration file comprises the editing of a pre-existing configuration file or the creation of a new configuration file.
 - 3. The method as claimed in claim 1 or claim 2 wherein the electronic signature is incorporated with the document which it signs or is referenced by the document.
 - 4. The method as claimed in any preceding claim wherein the electronic signature utilises an asymmetric or symmetric signature type.
 - 5. A method of authenticating the validity of any changes or updates to an electronic document which contains configuration settings, the method comprising the steps of:

10

25

30

16

- a) associating a configuration file with an electronic signature, and
- b) referencing the configuration file, the referencing of the configuration file being effected to retrieve instructions as to how a specific task should be conducted, and
- c) verifying the electronic signature associated with the configuration file, and wherein once verified, a use of the configuration settings stored within the configuration file is allowed.
- 6. The method as claimed in claim 5 further comprising the step of disabling use of the configuration settings stored within the configuration file if the step of verifying the electronic signature with the configuration
- 7. The method as claimed in claim 5 or claim 6 comprising the additional steps of authenticating a digital certificate associated with the electronic signature.
 - 8. The method as claimed in any preceding claim wherein the digital signature associated with the configuration file is the signature of the last user to edit the configuration file.
 - 9. A computer system adapted to provide an improved security of configuration files, the system comprising:
 - a) a input/output module adapted to receive instructions from a user and furnish a response to those instructions,

10

15

20

17

- a processor adapted to effect the processing of instructions contained within a configuration file,
- c) a datastore adapted to store a configuration document during periods when the configuration information is not required,
- d) a file system memory adapted to effect as retrieval of the stored configuration document prior to processing of the configurations instructions contained within the configuration document and,

wherein the retrieval of a document from the datastore and extraction of the instructions contained within that document is effected only after verification of an electronic signature associated with that document.

10. The system as claimed in claim 9 additionally comprising a certificate authentication means, the certificate authentication means adapted to authenticate a certificate associated with the signature.

Abstract

A system and method for the signing and authentication of configuration settings using electronic signatures.

A method and system for improving the security associated with configuration files is disclosed. By associating an electronic signature with the configuration file it is possible to verify the privilege of a person either editing a configuration file, or on retrieval of the file prior to processing it is possible to ensure that the settings being implemented were implemented by a verified user.

[Fig. 2]

Figure 1

Figure 2

Figure 3

Figure 4