การศึกษาการประยุกต์เทคโนโลยีการเรียนรู้เชิงลึกสำหรับจัดการ จราจรบนเครือข่ายเอสดีเอ็น

ปุญญพัฒน์ แปลงพระเนตร 1 และ ศรัณญ์ญู รื่นรวย 2

¹คณะเทคโนโลยีสารสนเทศ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง กรุงเทพฯ
²คณะเทคโนโลยีสารสนเทศ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง กรุงเทพฯ
Emails: 61070122@it.kmitl.ac.th, 61070215@it.kmitl.ac.th

บทคัดย่อ

เอกสารนี้รวมระบบเครือข่ายในปัจจุบันมีการขยายตัวจนมีขนาดใหญ่ และมีความซับซ้อนมากขึ้นส่งผลให้การ บริหารจัดการเป็นไปด้วยความยุ่งยาก และหนึ่งในปัญหาสำคัญคือความแออัดในระบบเครือข่ายการขยายตัวของผู้ใช้งานที่ เพิ่มขึ้น ซึ่งระบบเครือข่ายแบบดั้งเดิมไม่สามารถเลี่ยงปัญหานี้ได้ งานวิจัยนี้จึงได้เสนอวิธีการทำนายปริมาณการใช้งานของ ลิงก์ภายในระบบเครือข่ายโดยใช้โมเดลการเรียนรู้เชิงลึก ผู้วิจัยได้ทำการประเมินผลและเปรียบเทียบโมเดลการเรินรู้เชิงลึก ทั้งหมดสามโมเดล ได้แก่ LSTM (Long Short-Term Memory), BiLSTM (Bidirectional Long Short-Term Memory) และ GRU (Gated Recurrent Unit) เพื่อที่จะทำนายปริมาณการใช้งานของลิงก์ จากการผลการทดลองชี้ให้เห็นว่า BiLSTM ให้ผลการทดลองได้ดีที่สุด โดยมีค่า RMSE เพียง 2.335% และเมื่อนำไปใช้กับระบบเครือข่ายที่กำหนดโดยซอฟต์แวร์สามารถ ลดความแออัดได้ถึง 23.4%

คำสำคัญ – ระบบเครือข่ายที่กำหนดโดยซอฟต์แวร์; การเรียนรู้เชิงลึก; การกระจายการจราจรบนเครือข่าย;

1. บทน้ำ

ระบบเครือข่ายในปัจจุบันมีขนาดที่ใหญ่และประกอบไป
ด้วยอุปกรณ์ที่มีความหลากหลายส่งผลให้ระบบเครือข่าย
มีความซับซ้อนมากขึ้น หนึ่งในปัญหาสำคัญคืออุปกรณ์
จะเลือกเส้นทางที่มีประสิทธิภาพภายใต้ครือข่ายที่มีความ
ซับซ้อนได้อย่างไร การเลือกเส้นทางที่ไม่มีประสิทธิภาพ
ประกอบกับการขยายตัวของผู้ใช้งานที่เพิ่มขึ้น อาจส่งผล
ให้เกิดความแออัดในเครือข่าย ซึ่งระบบเครือข่ายแบบ
ดั้งเดิมไม่สามารถเลี่ยงปัญหานี้ได้ ปัจจุบันได้มีรูปแบบ
การจัดการระบบเครือข่ายที่มีประสิทธิภาพในการจัดการ
ระบบเครือข่ายที่มีชื่อว่าระบบเครือข่ายที่กำหนดโดย
ซอฟต์แวร์

เครือข่ายที่กำหนดโดยซอฟต์แวร์ เป็นการแยก การทำงานออกเป็น 2 ส่วน คือส่วนของการควบคุมและ ส่วนของข้อมูลซึ่งส่วนของการควบคุมจะอยู่ในสว่นที่ เรียกว่าคอนโทรลเลอร์ โดยเครือข่ายที่กำหนดโดย ซอฟต์แวร์สามารถแก้ปัญหาดังกล่าวได้ด้วยการกระจาย การจราจรจากการเลือกเส้นทางเพิ่มเติมที่เหมาะสม โดย ใช้ความสามารถของตัวคอนโทรลเลอร์ที่สามารถมอง ภาพรวมทั้งหมดของเครือข่ายได้ แต่อย่างไรก็ตามวิธีการ นี้จะแก้ไขได้ก็ต่อเมื่อคอนโทรลเลอร์ตรวจพบเท่านั้น การ ทำนายปริมาณการใช้งานของลิงก์จะช่วยให้แก้ไขปัญหา ในเชิงรุกได้

หนึ่งในตัวชี้วัดประสิทธิภาพของระบบ เครือข่ายคือปริมาณการใช้งานของลิงก์ ถ้าหากมีปริมาณ การใช้งานของลิงก์ที่สูงจะทำให้การสูญหายของแพ็คเกต และเวลาแฝงที่เพิ่มขึ้น

ในงานวิจัยนี้ผู้วิจัยได้เสนอการนำการเรียนรู้ เชิงลึกมาใช้ในการทำนายปริมาณการใช้งานของลิงก์ใน อนาคต โดยสร้างระบบเครือข่ายจำลองด้วยโปรแกรม Mininet และเก็บรวบรวมสถิติการใช้งานของลิงก์โดย คอนโทรลเลอร์เพื่อป้อนข้อมูลให้โมเดลการเรียนรู้เชิงลึก ซึ่งผู้วิจัยได้เลือกสามโมเดลได้แก่ LSTM, BiLSTM, GRU เพื่อทดสอบและทำนายปริมาณการใช้งานของลิงก์

2. ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1. ระบบเครือข่ายที่กำหนดโดยซอฟต์แวร์ (Software Defined Networks : SDN)

ระบบเครือข่ายที่กำหนดโดยซอฟต์แวร์ [1] เป็นระบบ เครือข่ายที่มีออกแบบมาเพื่อควบคุม และสั่งการจาก ส่วนกลางเพียงส่วนเดียว โดยแนวคิดของระบบเครือข่าย ที่กำหนดโดยซอฟต์แวร์จะทำการแยกส่วนของการ ควบคุมและส่วนของการส่งข้อมูลออกจากกันดังรูปที่1 ซึ่งส่วนของการควบคุมจะอยู่ในส่วน ที่เรียกว่า คอนโทรลเลอร์ (Controller) และส่วนของการส่งข้อมูล จะอยู่ที่สวิตช์ (Switch) โดยที่ SDN นั้นสามารถ แก้ปัญหาต่าง ๆ ของสถาปัตยกรรมเครือข่ายแบบเดิมได้ เพราะตัวคอลโทรลเลอร์มีซอฟต์แวร์ที่สามารถจัดการ เครือข่ายทั้งหมดมารวมอยู่ในที่เดียว โดยคอนโทรลเลอร์ จะสื่อสารกับสวิตช์โดยใช้โปรโตคอลมาตรฐานที่มีชื่อว่า OpenFlow

ร**ูปที่ 1.** สถาปัตยกรรมเครือข่ายที่กำหนดโดย ซอฟต์แวร

2.2. โอเพนวีสวิตช์

โอเพนวีสวิตซ์(Open vSwitch) เป็นเทคโนโลยีที่จำลอง การทำงานของสวิตซ์แบบมัลติเลเยอร์ (Multilayer Switch) โดยถูกออกแบบมาให้สามารถจัดการเครือข่าย แบบอัตโนมัติผ่านการเขียนโปรแกรม และยังคงชัพพอร์ต โปรโตคอลมาตรฐาน อื่น ๆ เช่น NetFlow, sFlow,

2.3. การจัดการจราจรบนเครือข่าย

การจัดการจราจรบนเครือข่ายหมายถึงการคงไว้ซึ่งความ พร้อมใช้งานของระบบเครือข่าย แนวคิดวิศวกรรมจราจร บนเครือข่ายกำหนดด้วยซอฟต์แวร์ [2] เป็นแนวคิดที่ ออกแบบ และควบคุมการจราจรของข้อมูลในเครือข่าย เพื่อทำให้การจราจรในเครือข่ายนั้นสามารถกระจายการ ทำงานได้อย่างสมดุล และมีประสิทธิภาพ โดยส่วนใหญ่ จะเกี่ยวข้องกับการกระจายการส่งข้อมูลผ่านเส้นทาง หลายเส้นทางด้วยการใช้อัลกอริทึมต่าง ๆ เพื่อแบ่ง ปริมาณการจราจรอย่างเหมาะสม

แนวคิด Two-tier mechanism [3] เป็นแนวคิด การออกแบบระบบจัดการจราจรรูปแบบหนึ่งที่จะแบ่ง การทำงานเองเอสดีเอ็นคอนโทรลเลอร์ออกเป็นสองส่วน โดยมีส่วนที่ตรวจสอบสถานะการำงาน และส่วนที่เป็น กลไกการวัดและส่วนของการจัดการเครือข่าย ดังแสดง ในรูปที่ 2

ฐปที่ 2. Two-Tier Mechanism

2.4. การเรียนรู้เชิงลึก (Deep Learning)

การเรียนรู้เชิงลึก เป็นวิธีหนึ่งของการเรียนรู้ของเครื่องซึ่ง พัฒนามาจากโครงข่ายประสาทเทียม (Artificial Neural Network : ANN) เป็นการจำลองรูปแบบการประมวลผล ของสมองมนุษย์ โดยมีโครงสร้างแบบลำดับชั้นเชื่อมต่อ ชั้น ต่าง ๆ ผลลัพธ์ของชั้นก่อนหน้าจะกลายข้อมูลนำเข้า ของชั้นถัดไป จากโครงสร้างสถาปัตยกรรมข้อมูลดังรูปที่ 2.3 ซึ่งจะประกอบไปด้วยโครงข่ายย่อย ๆ หลายชั้น สามารถใช้งานได้หลากหลายรูปแบบ เช่น การ ประมวลผลภาพ การรู้จำใบหน้า หรือการประมวลผล ภาษาธรรมชาติ

2.5. โครงข่ายความจำระยะสั้นขนาดยาว (Long-Short Term Memory : LSTM)

โครงข่ายความจำระยะสั้นขนาดยาวเป็นส่วนหนึ่งของ การเรียนรู้เชิงลึกที่สร้างขึ้นมาเพื่อแก้ปัญหาการลืมข้อมูล ของ RNN ในกรณีที่มีข้อมูลนำเข้ายาวมาก ทำให้การส่ง ค่าผลลัพธ์ฟีเจอร์ไม่สามารถที่จะเก็บรักษาข้อมูลใน ช่วงเวลาก่อนหน้าได้ทั้งหมด เอกลักษณ์สำคัญ ของ โครงข่ายชนิดนี้ คือ เซลล์ความจำ (Cell หรือ Memory cell) มีหน้าที่เก็บข้อมูลขาเข้าที่สำคัญเอาไว้ ไม่ให้เลือน หายไปในช่วงระยะเวลาหนึ่ง เป็นการแก้ปัญหาการพึ่งพา ระยะยาว ซึ่งเหมาะสำหรับการพยากรณ์ปริมาณการใช้ งานเครือข่ายเอสดีเอ็นที่มีชุดข้อมูลปริมาณมาก หรือ พยากรณ์ปริมาณการใช้แบนด์วิธในเครือข่าย [4]

LSTM ประกอบด้วยหน่วยความจำ (Cell), ประตูสัญญาณรับเข้า (Input Gate), ประตูสัญญาณ สำหรับกันลืม (forget gate), ประตูสัญญาณสำหรับ ผลลัพธ์ (Output Gate) และผลคูณแบบอาดามาร์ (Hadamard Product) ดังแสดงในรูปที่ 3

รูปที่ 3. โครงสร้างของหน่วยความจำระยะยาว

2.6. หน่วยเวียนกลับแบบมีประตู (Gated Recurrent Unit: GRU)

ถูกพัฒนาต่อยอดมา จาก LSTM ซึ่งพัฒนาในส่วนของ การลดความซับซ้อนในการทำงานของโครงข่ายประสาท แบบ LSTM เนื่องจากจำนวนหน่วยย่อยใน Cell จำนวน มาก ซึ่งมีผลต่อประสิทธิภาพในการวิเคราะห์และ ทำนายผล โดย GRU ได้ทำการลดความซับซ้อนในการ ทำงานของโครงข่ายดังรูปที่ 4 ประสาทแบบ LSTM โดย การลดหน่วยย่อยใน Cell เหลือเพียง 2 ส่วน ได้แก่ Update Gate และ Reset Gate

รูปที่ 4. โครงสร้างของหน่วยเวียนกลับแบบมีประตู

3. วิธีการดำเนินการวิจัย

3.1. การปรับปรุงองค์ประกอบภายใน คลนโทรลเลลร์

การปรับปรุงองค์ประกอบภายในของคอนโทรลเลอร์ จะ นำองค์ประกอบมาตรฐานภายในคอนโทรลเลอร์ของ RYU Controller มาปรับปรุงและเพิ่มเติม โดยที่ องค์ประกอบมาตรฐานภายในคอนโทรลเลอร์ประกอบไป ด้วยส่วนต่าง ๆ ดังรูปที่ 5

รูปที่ 5. องค์ประกอบภายในคอนโทรลเลอร์

3.1.1. Path Provision Module (PPM)

ทำหน้าที่จัดการข้อความจากโอเพนโฟลว์ทั้งหมดจาก องค์ประกอบภายในคอนโทรลเลอร์ โดยภายในจะมี องค์ประกอบย่อยคือ Path Computation Module (PCM) เมื่อ PPM ได้รับแพ็คเกตมาจากสวิตช์ PPM จะ ทำการส่งต่อข้อความไปยัง PCM เพื่อคำนวณหาเส้นทาง ไปยังปลายทางต่อไป

3.1.2. Path Computation Module (PCM)

ทำหน้าที่ในการหาเส้นทางที่มีระยะที่สั้นที่สุดและมี แบนด์วิดท์มากที่สุดในการส่งข้อมูล โดยใช้ข้อมูล โทโพโลยีที่ได้จาก Virtual Topology Management Module (VTMM) จากนั้นจะส่งผลการคำนวณหา เส้นทางกลับไปยัง PPM และทำการสร้าง FlowMod Message เพื่อใช้ในการติดตั้งกฎการส่งออก จากนั้นจะ ทำการติดตั้งกฎการส่งออกไปยังทุกสวิตช์ที่อยู่ในเส้นทาง ที่ได้คำนวณไว้

3.1.3. Virtual Topology Management (VTMM)

ทำหน้าที่ในการหาเส้นทางที่มีระยะที่สั้นที่สุดและมี แบนด์วิดท์มากที่สุดในการส่งข้อมูล โดยใช้ข้อมูล โทโพโลยีที่ได้จาก Virtual Topology Management

3.1.4. Flow Monitoring Module (FMM)

ทำหน้าที่ในการทำนายปริมาณการใช้งานของลิงก์ในทุก ๆ ช่วงเวลาและใช้เป็นเงื่อนไขในการลบสวิตช์ที่เกิดความ แออัด เมื่อโมเดลทำนายว่ามีปริมาณการใช้งานของลิงก์ เกินกว่า 70 เปลร์เซ็น

3.2. อัลกอริทึมในการหาเส้นทางสำหรับการย้าย โฟลว์บนระบบเครือข่ายที่กำหนดโดยซอฟต์แวร์

สำหรับอัลกอริทึมในโครงงานนี้ จะใช้อัลกอริทึมในการ หาเส้นทางสำหรับการย้ายโฟลว์โดยพิจารณาจากขนาด ของโฟลว์และความพร้อมใช้ของแบนด์วิดท์คงเหลือต่ำสุด ของเส้นทางนั้น โดยอาศัยข้อมูลหลายอย่างในการ คำนวน ในรูปแบบ $P_{A \to B}$ คือเช็ตของเส้นทางทั้งหมดจาก A ไป B , e_i คือลิงก์ของเส้นทางนั้, c_i คือ ค่าใช้จ่ายของ ลิงก์นั้น ๆ , b_i คือ ค่าปริมาณการใช้งานของลิงก์ และ a_i คือ ค่าความจุคงเหลือที่พร้อมใช้ของลิงก์นั้น ๆ อันดับ แรกต้องทำการคำนวนหาปริมาณการใช้งานของลิงก์ใน แต่ละลิงก์จากสมการที่ 1 โดยที่ n_i คือ ค่าปริมาณการ ส่งผ่าน และ T คือ เวลาในการเรียกตรวจสอบในแต่ละ ครั้ง

$$b_i = \frac{n_i(t) - n_i(t - T)}{T} \tag{1}$$

เมื่อได้ค่าปริมาณการใช้งานของลิงก์แล้ว ระบบนำข้อมูล เข้าสู่โมเดลเพื่อทำนายปริมาณการใช้งานในอนาคตและ นำค่าไปปรับปรุงโทโพโลยีจำลองและ PCM จะนำไปหา เส้นทางสำหรับการย้ายโฟลว์โดยพิจารณาตามลำดับ ขนาดของโฟลว์ จากนั้นจะต้องนำไปตรวจสอบว่า เส้นทางที่คำนวณออกมาจะสามารถย้ายโฟลว์ไปที่ เส้นทางนั้นได้หรือไม่โดยไม่ก่อให้เกิดความแออัดซ้ำซ้อน ซึ่งต้องคำนวณหาปริมาณแบนด์วิดท์คงเหลือต่ำสุดที่ พร้อมใช้งานของเส้นทางนั้น ในขั้นแรกต้องทำการหา เส้นทางที่ดีที่สุดสำหรับโฟลว์นั้นก่อนซึ่งสามารถหาได้ จากสามการที่ 2 โดยที่ BP คือเส้นทางที่ดีที่สุด สำหรับไฟลว์นั้นก่อนซึ่งสามารถหาได้ จากสามการที่ 2 โดยที่ BP คือเส้นทางที่ดีที่สุด สำหรับไฟลว์นั้นก่อนซึ่งสามารถหาได้ จากสามการที่ 2 โดยที่ BP คือเส้นทางที่ดีที่สุด

$$BP = \min_{P \in P_{A \to B}} \sum_{e_i \in P} c_i$$
 (2) เมื่อได้เส้นทางที่ดีที่สุดแล้ว จากนั้นจะหาปริมาณแบนด์ วิดท์คงเหลือที่ต่ำที่สุดจากทุกลิงก์ของเส้นทางนั้น [6] จากสมการที่ 3 โดยที่ ABW คือ ค่าแบนด์วิดท์ต่ำสุดที่ พร้อมใช้งานของเส้นทาง

$$ABW = \min_{e_i \in BP} a_i \tag{3}$$

เมื่อได้ค่าแบนด์วิดท์ต่ำสุดที่พร้อมใช้งานแล้ว จากนั้นจะ นำมาเปรียบเทียบกับขนาดของโฟลว์ที่จะทำการย้าย การเลือกเส้นทางที่เหมาะสมที่สุดโดยพิจารณาจากค่า แบนด์วิดท์ต่ำสุดที่พร้อมใช้งานและขนาดของโฟลว์

โดยปกติสวิตช์จะสามารถส่งข้อมูลไปได้โดย อาศัยข้อมูลจาก Flow Table กล่าวคือเมื่อมีโฟลว์หรือ แพ็คเกตถูกส่งมาที่สวิตช์ สวิตช์จะนำมาเปรียบเทียบกับ ข้อมูลใน Flow Table ถ้าหากว่ามีข้อมูลที่ตรงกันก็จะ ส่งออกตามพอร์ตที่กำหนดแต่ถ้าหากไม่มีข้อมูลที่ตรงกัน สวิตช์จะร้องข้อข้อมูลเส้นทางจากคอนโทรลเลอร์ สภาวะ ปกติสวิตช์จะ Flow Table ทั้งหมด 2 ตารางดังรูปที่ 6 (a) โดยตารางที่ 0 จะส่งโฟลว์ไปตรวจสอบกับตารางที่ 1 เพื่อหาว่าข้อมูลสำหรับการส่งออก แต่ถ้าหากมีการย้าย เส้นทางเกิดขึ้นคอนโทรลเลอร์จะสร้างตารางที่ 2 ที่มี ข้อมูลเส้นทางใหม่ให้กับสวิตช์ที่อยู่ในเส้นทางใหม่และ เปลี่ยนให้ตารางที่ 0 ส่งโฟลว์มาที่ตารางที่ 2 ดังรูปที่ 6 (b) ถ้าหากโฟลว์ที่ถูกย้ายเส้นทางส่งข้อมูลครบแล้ว คอนโทรลเลอร์จะเปลี่ยนให้ตารางที่ 0 ส่งโฟลว์ให้กับ ตารางที่ 1 เพื่อกลับมาใช้เส้นทางเดิม

รูปที่ 6. Flow Table ภายในสวิตช์

3.3. ข้อมูลที่ใช้ในงานวิจัย

ข้อมูลที่ใช้ที่ใช้ในการวิจัยจะเป็นข้อมูลประเภทอนุกรม เวลาที่ได้มาจากการเก็บค่าปริมาณการใช้งานของแต่ละ ลิงค์ในทุกช่วงเวลา โดยจะเก็บข้อมูลจากการสร้าง การจราจรในเครือข่ายที่มีการผสมระหว่างรูปแบบ การจราจรที่มีการบังคับให้เกิดความแออัดและรูปแบบ การจารจรแบบส่ม ซึ่งจัดเก็บในรูปแบบไฟล์นามสกุล csv

3.4. การจัดการข้อมูล

ข้อมูลที่ได้มามีจำนวนไม่มากนัก แต่มีความผิดพลาดอยู่ จึงจำเป็นต้องทำการตรวจสอบ แก้ไข หรือลบเพื่อให้ รายการข้อมูลที่ไม่ถูกต้องออกไปจากชุดข้อมูลจึงจะ นำไปใช้ประโยชน์ได้อย่างไม่เกิดความผิดพลาดความ สับสน

หลังจากทำความสะอาดข้อมูลเสร็จแล้ว จากนั้นจะต้องทำการปรับขอบเขตของข้อมูล (Feature Scaling) ให้อยู่ในช่วงเดียวกกัน ดังนั้นผู้วิจัยจึงเลือกใช้วิธี Rescaling (Min – Max Normalization) เพื่อทำการ ปรับช่วงข้อมูลให้อยู่ในช่วง [0, 1] จากสมการที่ 4

$$\chi' = \frac{x - \min(x)}{\max(x) - \min(x)} \tag{4}$$

จากนั้นจะต้องแบ่งข้อมูลฝึกฝนและข้อมูลทดสอบเป็น ข้อมูลนำเข้าและข้อมูลส่งออกด้วยเทคนิค Sliding window โดยกำหนดขนาดของขนาดของกรอบที่จะใช้ ระบุข้อมูลนำเข้า (Windw Size) และลำดับถัดไปของ กรอบข้อมูลจะถูกนำมาเป็นข้อมูลส่งออกดังรูปที่ 7

ฐปที่ 7. Sliding Window

3.5. การทดสอบโมเดลการเรียนรู้เชิงลึก

หลังจากจัดเตรียมข้อมูลแล้วจากนั้นทางผู้พัฒนาจึงได้ทำ การเลือกโมเดลในการทำการทดสอบทั้งหมด 3 โมเดล ดังนี้

- 1) Long Short-term Memory (LSTM)
- Bidirectional Long Short-term Memory (BiLSTM)
- 3) Gated Recurrent Unit (GRU)

ซึ่งจะทดลองแบบหลายอินพุตหลายเอาท์พุต (Multiple Input Multiple Output) เพื่อให้ทำนายปริมาณการใช้ งานลิ้งค์ครั้งละหนึ่งพอร์ต โดยก่อนการฝึกฝนโมเดลผู้จัย ได้ทำการกำหนดพารามิเตอร์ต่าง ๆ ดังตารางที่ 1 ตารางค่าพารามิเตอร์ของแต่ละโมเดล

Hyperparameter	LSTM	BiLSTM	GRU
Activation	ReLu	ReLu	ReLu
Function			
Optimizer	Adam	Adam	Adam
Learning rate	0.001	0.001	0.001
Dropout rate	0.2	0.2	0.2
Batch size	16	16	16
Number of	100	75	100
neurons			
Epoch	36	27	30

Loss	MSE	MSE	MSE
------	-----	-----	-----

4. การทดลองและผลการทดลอง

4.1. การทดลองคอนโทรลเลอร์

การทดลองนี้นำคอนโทรลเลอร์ที่ได้ออกแบบไว้ในบทที่ 3 มาทดลองและวัดประสิทธิภาพโดยสร้างระบบเครือข่าย เสมือนจริงจากโปรแกรม Mininet ประกอบไปด้วย Open vSwitch จำนวน 5 ตัว และ PC จำนวน 4 ตัว ดัง รูปที่ 8 แต่ละเครื่องจะสุ่มสลับการรับ-ส่งข้อมูลโดยใช้ โปรแกรม iPerf [5] สร้างแพ็คเกตแบบ UDP ส่งเข้าไปใน เครือข่ายเพื่อสร้างการจราจรแบบสุ่มในระบบเป็นเวลา หนึ่งชั่วโมง

รูปที่ 8. โทโพโลยีแบบกำหนดเอง

4.2. ผลการทดลองโมเดลการเรียนรู้เชิงลึก

จากการทดลองสามารถแสดงผลได้ดังรูปที่ 9 โดยจะเห็น ได้ว่าโมเดลสามารถเรียนรู้ได้ดีโดยไม่เกิดปัญหา Overfitting หรือ Underfitting

รูปที่ 9. กราฟเปรียบเทียบเส้นโค้งการเรียนรู้ของแต่ละ โมเดล

ในส่วนของการเปรียบเทียบค่าจริงและค่าทำนายสามารถ แสดงผลเป็นกราฟได้ดังรูปที่ 10 โดยเลือกใช้ข้อมูลของ สวิตช์ที่ 1 พอร์ตที่ 2 ในการเปรียบเทียบ

ร**ูปที่ 10** กราฟเปรียบเทียบค[่]าจริงและค[่]าทำนายของแต[่] ละโมเดล

เมื่อได้ผลการทำนายแล้วจากนั้นจะต้องนำมาประเมิน ประสิทธิภาพของโมเดล โดยผู้วิจัยได้เลือก 4 ตัวชี้วัด พื้นฐานสำหรับโมเดลพยากรณ์อนุกรมเวลา ได้แก่ Mean Absolute Error (MAE), Mean Squared Error (MSE) และ Root Mean Squared Error (RMSE) เพื่อ เปรียบเทียบความแม่นยำของแต่ละโมเดลดังแสดงใน ตารางที่ 2 จากผลลัพธ์แสดงให้เห็นว่า BiLSTM มี ประสิทธิภาพมากที่สุด

ตารางที่ 2. ตารางเปรียบเทียบความคลาดเคลื่อนของแต่่ ละโมเดล

Model	MSE	RMSE	MAE
LSTM	0.00064	0.02548	0.01011
BiLSTM	0.00054	0.02335	0.00878
GRU	0.00061	0.02477	0.01002

4.3. ผลการทดลองการทำงานของระบบ

ในการวัดประสิทธิภาพการทำงานของระบบที่พัฒนาใน โครงงานนี้บนโทโพโลยีที่กำหนดจะใช้ตัวชี้วัด ประสิทธิภาพการทำงานคือ จำนวนครั้งในการเกิดความ แออัด

จำนวนครั้งในการเกิดความแออัดในเครือข่าย ที่กำหนดด้วยซอฟต์แวร์โดยใช้คอนโทรลเลอร์ที่พัฒนาขึ้น สามารถแสดงได้ดังภาพที่ 11

ร**ูปที่ 11** กราฟเปรียบเทียบแสดงจำนวนการเกิดความ แออัดในระยะเวลาหนึ่งชั่วโมง

หลังจากได้นำโมเดลการเรียนรู้เชิงลึก จำนวนครั้งในการ เกิดความแออัดมีจำนวนที่ลดลง ซึ่งสอดคล้องกับรูปที่ 11 โดยหมายความว่าคอนโทรลเลอร์สามารถกระจาย การจราจรก่อนจะเกิดความแออัดในเครือข่ายได้อย่างมี ประสิทธิภาพ

5. สรุปผลการทดลอง

5.1 สรุปผล

ในปัจจุบันระบบเครือข่ายในปัจจุบันได้มีการขยายตัวจน มีขนาดใหญ่ การจัดการปัญหาความแออัดแบบเดิมตาม กลไกของระบบเครือข่ายนั้นยังไม่สามารถจัดการได้มี ประสิทธิภาพดีพอ ดังนั้นโครงงานนี้จึงได้พัฒนา คอนโทรลเลอร์ของระบบเครือข่ายที่กำหนดโดย ซอฟต์แวร์ที่สามารถกระจายการจราจรในเครือข่ายก่อน เกิดความแออัด โดยใช้การเรียนรู้เชิงลุกและอัลกอริทึม การหาเส้นทางสำหรับการย้ายโฟลว์ ซึ่งเส้นทางที่สารถใช้ งานได้นั้น จะต้องสอดคล้องกับเกณฑ์ที่กำหนดไว้ โดย ผลลัพธ์ที่ได้ทำการทดลองแสดงให้เห็นว่าคอนโทรลเลอร์ สามารถกระจายการจราจรก่อนที่เกิดควมแออัดได้อย่าง มีประสิทธิภาพบนโทโพโลยีที่กำหนด โดยสามารถลได้ถึง 23.04 เปอร์เพ็นต์

5.2 แนวทางในการพัฒนาต่อ

คอนโทรลเลอร์ที่พัฒนาในโครงงานนี้สามารถทำนาย ปริมาณการใช้งานของลิงก์ภายใต้โทโพโลยีและ รูปแบบการจราจรที่กำหนคไว้แล้วเท่านั้น การพัฒนา โครงงานในอนาคตจะพัฒนาเทคโนโลยีการเรียนรู้เชิง ลึกให้สามารถพยากรณ์ปริมาณการใช้งานของลิงก์ให้ ใช้ได้กับโทโพโลยีและรูปแบบการจราจรที่หลากหลาย

เอกสารอ้างอิง

- [1] Xenofon Foukas, Mahesh K. Marina, Kimon Kontovasilis, "Software Defined Networking Concepts," The University of Edinburgh & NCSR "Demokritos.
- [2] I Zhaogang Shu, Jiafu Wan, Jiaxiang Lin, Shiyong Wang, Di Li, Seungmin Rho, Changcai Yang, "Traffic Engineering in Software-defined Networking: Measurement and Management," IEEE Access, vol. 4, pp.3242-3256 (2016).

- [3] Ming-Hung Chen, Yen-Chen Tien, Yuan-Ting
 Huang, "A Low-Latency Two-Tier
 Measurement and Control Platform for
 Commodity SDN," IEEE
 Communications Magazine, pp. 0163-6804 September (2016).
- [4] Maxime Labonne; Charalampos Chatzinakis;
 Alexis Olivereau, "Predicting
 Bandwidth Utilization on Network
 Links Using Machine Learning," 2020
 European Conference on Networks
 and Communications (EuCNC),
 September (2020).
- [5] "iPerf iPerf3 and iPerf2 user documentation." [Online]. Available from: https://iperf.fr
- [6] Péter Megyesi, Alessio Botta, Giuseppe
 Aceto, Antonio Pescapè, Sándor
 Molnár, "Available Bandwidth
 Measurement in Software Defined
 Network," 31st ACM/SIGAPP
 Symposium on Applied Computing,
 April (2016)