

강의안내

합성곱 신경망

01 합성곱 신경망의 개요

02 합성곱(Convolution) 층

03 풀링(Pooling) 층

■ 합성곱 층의 유래

고양이 실험에서 시작함

두뇌피질이 특정 형태의 그림에서만 반응함

뉴런 사이의 연결 패턴이 동물의 시각 피질 조직과 유사하다는 점에서 영감을 얻음

■ 합성곱 신경망의 구성

합성곱 신경망

합성곱 층(Convolution Layer)

풀링 층(Pooling Layer)

합성곱 층

■ 완전 연결 계층에서 이미지 문제

2차원 이미지를 1차원으로 변형하며 입력을 넣어줌

0	1	0
0	1	0
0	1	0

0

1

0

0

1

0

0

1

1

- 공간적 정보를 잃어 본질적인 패턴 정보가 유실되는 문제
- 이미지가 커질수록 파라미터의 수가 증가하며 과적합되는 문제

- 완전 연결 신경망과 합성곱 신경망
 - 완전 연결 신경망에서 이미지를 주입하기 위해서는 1차원 벡터로 평탄화 하는 과정에서 정보의 소실이 발생함
 - 합성곱 신경망의 계층에는 너비, 높이, 깊이의 3차원으로 배열된 뉴런으로 이미지를 그대로 주입할 수 있음

- 특징 자동 추출
 - ▶ 이미지에서 부분마다의 특징을 자동으로 추출함

합성곱

- 특정한 패턴의 특징이 어디에서 나타나는지를 확인하는 도구
- 영어로 컨볼루션(Convolution)으로 불림

[출처 : Stanford University CS231n, https://cs231n.github.io/]

커널(Kernel) 또는 필터(Filter)라는 n x m 크기의 행렬로 높이와 너비의 곱하기 크기의 이미지를 처음부터 끝까지 겹치며 이동함

겹쳐지는 부분의 각 이미지와 커널의 원소의 값을 곱해서 모두 더한 값을 출력함

- 이미지 가장 왼쪽부터 오른쪽까지 순차적으로 이동함
- 서로 다른 뉴런이 전체 시야를 볼 수 있도록 부분적으로 중첩되는 원리로 구현함

[출처 : 위키미디어, https://commons.wikimedia.org/]

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

[출처:ttp://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/]

[출처 : https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/]

- 합성곱 과정
 - ▶ 데이터의 특징을 추출하는 과정

데이터에 각 성분의 인접 성분들을 조사해 특징을 파악함

파악한 특징을 한장으로 도출시키는 과정 이미지의 특정부분을 추상화 하여 특정 층으로 표현함

하나의 압축과정으로 파라미터의 갯수를 효과적으로 줄여줌

기본 용어 정의

커널 (Kernel)

 슬라이딩 윈도우 형식으로 입력된 데이터 상에서 좌에서 우로, 위에서 아래로 내적 연산을 진행함

필터 (Filter)

- 작은 필터를 여러 개 중첩하면 원하는 특징을 더 돋보이게 연산량을 줄일 수 있음
- 입력 데이터의 채널 수와 필터의 채널 수는 같아야 함
- RGB 색이 추가된다면 총 3개의 채널을 갖게 되며 커널은 여전히 n x n x 1 개의 텐서이지만, 필터의 차원은 m x m x 3이 되어 3개의 커널을 포함하게 됨

기본 용어 정의

스트라이드 (Stride)

- 커널의 이동 보폭
 - 1이라면 한 픽셀씩 이동한다는 의미
- 큰 값을 입력하면 계산 단위가 줄어듦

피처맵 (Feature Map)

• 입력과 커널의 합성곱 연산 결과

패딩의 목적

합성곱 연산을 수행하기 전에 입력 데이터 주변을 0,1 등의 특정 값을 사용해서 채우는 것

- ▶ 0으로 채우는 Zero-Padding을 주로 사용함
- ▶ 입력 데이터와 출력 데이터의 크기를 맞추기 위해서 사용함
- ▶ 입력 데이터에 필터를 적용하여 합성곱 연산 수행시 이미지 데이터가 축소되는 것을 방지함
- ▶ 모서리 부분의 데이터를 충분히 활용하기 위해 사용함

0	0	0	0	0	0		
0							
0							
0							
0							

■ 패딩의 종류

Valid Padding

- Padding 하지 않는 것을 의미함
- 입력보다 출력의 크기가 작아짐
- ▶ tf.keras에서는 Conv2D에 Padding 옵션을 제공하고 있음

Same Padding

- 입력과 출력 이미지의 크기가 같음
- Zero Padding을 의미함

[Image(+Zero Padding)]

0	0	0	0	0	0	0
0	1	1	1	0	0	0
0	0	1	1	1	0	0
0	0	0	1	1	1	0
0	0	0	1	1	0	0
0	0	1	1	0	0	0
0	0	0	0	0	0	0

tf.keras.layers.Conv2D

filters

필터의 갯수

padding

Zero-Padding의 유무

kernel_Size

필터의 크기

activation

활성화 함수

strides

이동할 픽셀 크기

예제

문제 상황

합성곱 신경망 구성

실습 코드

tf.keras.layers.Conv2D()

```
예
시
화
면
```

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D

model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3, 3), strides=1, padding='same', input_shape=(32,32, 3)))
print(model.output_shape)
model.add(Conv2D(filters=32, kernel_size=(3, 3), strides=1, padding='valid',))
print(model.output_shape)
```


- ♣ 풀링의 과정
 - 풀링(Pooling)
 - ▶개념

풀링 (Pooling)

합성곱 과정을 거친 층의 사이즈를 줄여주는 과정

- ▶ 장점
 - 01 단순히 데이터의 사이즈를 줄여주어 학습 속도를 높여줌
 - 02 노이즈를 상쇄시켜 줌
 - 03 미세한 부분에서 일관적인 특징을 제공하기 때문에 오버피팅을 억제해 줌

- Max, Average, Min Pooling
 - ▶ 대상 영역에서 최댓값, 평균, 최솟값 등을 취하는 것에 따라 풀링의 종류가 달라짐
 - ▶ 보통은 Max Pooling을 가장 많이 사용함

01 전체 데이터의 사이즈가 줄어들어 연산에 들어가는 컴퓨팅 리소스가 줄어듦

02 데이터의 크기를 줄이며 소실이 발생하기 때문에 오버피팅을 방지해 줌

'풀링 함수의 이해

tf.keras.layers.MaxPool2D

pool_Size

Pooling에 사용할 Filter의 크기를 정하는 것(단순한 정수 또는 튜플형태(N,N))

strides

Pooling에 사용할 Filter의 Strides를 정하는 것

padding

"valid"(Padding을 하지 않음) or "same"(결과 Size가 Input Size와 동일하게 Padding)

```
tf.keras.layers.MaxPool2D(
    pool size=(2, 2),
    strides=(1, 1),
    padding='same',
    data format=None,
    **kwargs
```


- LeNet-5
 - ▶ 얀 르쿤(Yann LeCun) 교수에 의해 만들어짐
 - ▶ 합성곱과 풀링 과정 후에 완전연결을 사용하여 결과를 만들어 내는 방식

[출처: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf]

예제

문제 상황

합성곱 신경망 구성

실습 코드

tf.keras.layers.MaxPooling2D()

예 시 화 면

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense

model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3, 3), strides=1, padding='same', input_shape=(150,150, 3),))
model.add(MaxPooling2D(2,2))
model.add(Conv2D(filters=32, kernel_size=(4, 4), strides=1, padding='valid',))
model.add(MaxPooling2D(2,2))
print(model.output_shape)
model.add(Flatten())
print(model.output_shape)
model.add(Dense(256, activation='relu'))
model.add(Dense(5, activation='softmax'))
```

강의마무리

KEY POINT

- ▶ 합성곱 신경망의 개요
 - 3차원으로 배열된 뉴런으로 이미지를 그대로 주입할 수 있음
 - 합성곱 연산과 서브샘플링을 적용하는 것을 반복함
 - 마지막에 완전 연결층을 통해 데이터를 분류함
- ▶ 합성곱(Convolution) 층
 - 특정한 패턴의 특징이 어디에서 나타나는지를 확인하는 도구
 - 필터의 갯수, 크기, Strides로 이동할 픽셀의 크기, 패딩 유무, 활성화 함수 등으로 구성됨
- ▶ 풀링(Pooling) 층
 - 합성곱 과정을 거친 층의 사이즈를 줄여주는 과정
 - 데이터의 사이즈를 줄여주기 때문에 빠르게 학습하는데 도움이 됨
 - 노이즈를 상쇄시키고 오버피팅을 억제시켜 줌

Python을 활용한 이미지 분석

5. 합성곱 신경망

"이번 시간을 모두 마치셨습니다. 수고하셨습니다."

