Dynamic Programming II

CSci 4041: Algorithms and Data Structures

Instructor: Arindam Banerjee

March 31, 2015

Optimal Binary Search Tree (BST)

- Expected time in binary search trees
 - Depends on frequency of queries
 - Keys queried frequently should be towards the top
- Sequence of sorted keys $K = \langle k_1, k_2, \dots, k_n \rangle$
 - Probability of querying k_i is p_i
- Also (n+1) dummy keys d_0, d_1, \ldots, d_n
 - d_0 represents values less than k_1
 - d_n represents values more than k_n
 - d_i represents all values between k_i and k_{i+1}
 - Probability of querying d_i (between k_i and k_{i+1}) is q_i

Example: Optimal BST

• Expected cost of (a) is 2.80, of (b) is 2.75

Expected Cost of Search

Total probably: successful or unsuccessful search

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$$

- ullet Cost for a node = depth of the node + 1
- Expected cost over all nodes

$$E[\text{cost}(T)] = \sum_{i=1}^{n} (\text{depth}_{T}(k_{i}) + 1) \cdot p_{i} + \sum_{i=0}^{n} (\text{depth}_{T}(d_{i}) + 1) \cdot q_{i}$$

$$= 1 + \sum_{i=1}^{n} \text{depth}_{T}(k_{i}) \cdot p_{i} + \sum_{i=0}^{n} \text{depth}_{T}(k_{i}) \cdot q_{i}$$

- Goal: Find BST with minimum expected cost
 - Cannot evaluate each BST, total number is $\Omega(4^n/n^{3/2})$

Example: Expected Cost of Search

					4	
p_i		0.15	0.10	0.05	0.10 0.05	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

node	depth	probability	contribution
k_1	1	0.15	0.30
k_2	0	0.10	0.10
k_3	2	0.05	0.15
k_4	1	0.10	0.20
k_5	2	0.20	0.60
d_{0}	2	0.05	0.15
d_1	2	0.10	0.30
d_2	3	0.05	0.20
d_3	3	0.05	0.20
d_4	3	0.05	0.20
d_5	3	0.10	0.40
Total			2.80

Step 1: Structure of an Optimal BST

- Consider any subtree of a BST
 - Has keys in contiguous range $k_i, \ldots, k_j, 1 \le i \le j \le n$
 - Has dummy keys $d_{i-1}, d_i, \ldots, d_j$ as leaves
- Optimal substructure: Assume T is optimal
 - Let T' be a subtree with keys k_i, \ldots, k_i
 - Then T' is optimal for keys k_i, \ldots, k_j , dummy keys d_{i-1}, \ldots, d_j
- The 'cut-and-paste' argument
 - If a different T'' had lower cost, we can use it to get a better overall solution compared to T
 - Contradicts optimality of overall solution T

Step 1: Structure of an Optimal BST

- For keys k_i, \ldots, k_i , one key k_r will be root
 - Left subtree k_i, \ldots, k_{r-1} , dummy keys d_{i-1}, \ldots, d_{r-1}
 - Right subtree k_{r+1}, \ldots, k_j , dummy keys d_r, \ldots, d_j
- Explore all k_r as possible root
 - Optimal subtrees on k_i, \ldots, k_{r-1} , and k_{r+1}, \ldots, k_j
- Need to consider empty subtrees
 - $k_r = k_i$, left subtree has no keys, only dummy key d_{i-1}
 - $k_r = k_j$, right subtree has no keys, only dummy key d_j

Step 2: A Recursive Solution

- Consider keys k_i, \ldots, k_j
- Denote e[i,j] as the expected cost of optimal BST
 - $i \ge 1, j \le n$, and $j \ge i 1$
 - When j = i 1, no key, only d_{i-1} , so $e[i, i 1] = q_{i-1}$
- ullet For $j \geq i$, need to select a key k_r from k_i, \ldots, k_j
 - Subtree k_i, \ldots, k_{r-1} and k_{r+1}, \ldots, k_j
 - The depth of keys in the subtrees increase by 1

Step 2: A Recursive Solution

Denote

$$w(i,j) = \sum_{\ell=i}^j p_\ell + \sum_{\ell=j-1}^j q_\ell$$

• If k_r is the root of the optimal subtree containing k_i, \ldots, k_j

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$$

• Since $w(i,j) = w(i,r-1) + p_r + w(r+1,j)$, we have e[i,j] = e[i,r-1] + e[r+1,j] + w(i,j)

• Since we need to minimize over k_r , we get the recursion

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1 \ , \\ \min_{i \leq r \leq j} \left\{ e[i,r-1] + e[r+1,j] + w(i,j) \right\} & \text{if } i \leq j \ . \end{cases}$$

Step 3: Computing the Expected Cost

- A direct recursive execution would be inefficient
- Working with contiguous indices, store e[i,j] in a table
- Table e[1 ... n, 0 ... n]
 - First index runs till (n+1), since e[n+1, n] considers d_n
 - Second index starts from 0, since e[1,0] considers d_0
- Table root[i, j] stores root of subtree on k_i, \ldots, k_j
- Also maintain table for w(i,j), rather than recomputing
 - Avoid $\Theta(j-i)$ additions each time
 - Table w(1...n + 1, 0...n)
 - Base case $w(i, i-1) = q_i$, and for $j \ge i$

$$w(i,j) = w(i,j-1) + p_j + q_j$$

Algorithm: Optimal BST

return e and root

```
OPTIMAL-BST(p,q,n)
let e[1 \dots n+1, 0 \dots n], w[1 \dots n+1, 0 \dots n], and root[1 \dots n, 1 \dots n] be new tables
for i = 1 to n + 1
    e[i, i-1] = 0
    w[i, i-1] = 0
for l = 1 to n
    for i = 1 to n - l + 1
         i = i + l - 1
         e[i, i] = \infty
         w[i, j] = w[i, j-1] + p_i
         for r = i to i
              t = e[i, r-1] + e[r+1, i] + w[i, i]
              if t < e[i, j]
                  e[i, i] = t
                  root[i, j] = r
```

Example: Tables for Optimal BST

