Lógica Informática

Ejercicios sobre formas normales en lógica proposicional

- 1. Para cada una de las siguientes fórmulas, determinar si están en FNC, en FND, en ambas o en ninguna de las dos.
 - $a) (\neg p \lor q) \land (\neg q \lor p)$
 - b) $(\neg p \lor q) \land (q \to p)$
 - $c) (\neg p \land q) \lor (\neg q \land p)$
 - $d) (\neg p \land q) \lor (q \rightarrow p)$
- 2. Calcular, utilizando las reglas de normalización, una forma normal conjuntiva de cada una de las siguientes fórmulas
 - $a) \neg (p \land (q \rightarrow r))$
 - b) $(p \to q) \lor (q \to p)$
- 3. Calcular, utilizando las reglas de normalización, una forma normal disjuntiva de la siguiente fórmula

$$\neg(\neg p \lor \neg q \to \neg(p \land q))$$

- 4. Demostrar o refutar las siguientes afirmaciones:
 - a) $F_1 \wedge \cdots \wedge F_n$ es una tautología si, y sólo si, F_1, \ldots, F_n lo son.
 - b) $L1 \vee \cdots \vee L_n$ es una tautología si, y sólo si, el conjunto $\{L_1, \ldots, L_n\}$ contiene algún par de literales complementarios (i.e. existen i y j tales que $L_i = L_j^c$).
- 5. Decidir, mediante una forma normal conjuntiva, si la siguiente fórmula es una tautotologías. En el caso de que no lo sea calcular sus contramodelos a partir de dicha FNC.

$$(p \to q) \lor (q \to p)$$

- 6. Demostrar o refutar las siguientes afirmaciones
 - a) $F_1 \vee \cdots \vee F_n$ es satisfacible si, y sólo si, alguna de las fórmulas F_1, \ldots, F_n lo es.
 - b) $L_1 \wedge \cdots \wedge L_n$ es satisfacible si, y sólo si, $\{L_1, \ldots, L_n\}$ no contiene ningún par de literales complementarios (i.e. no existen i y j tales que $L_i = L_i^c$).
- 7. Decidir, mediante forma normal disyuntiva, si la siguiente fórmula es satisfacible. En el caso de que lo sea calcular sus modelos a partir de la FND.

$$\neg(\neg p \lor \neg q \to \neg(p \land q))$$

- 8. Para cada una de las siguientes fórmulas:
 - $\neg (p \leftrightarrow q \rightarrow r)$
 - $\neg (p \land q \land r) \lor (p \land q \lor r)$
 - $(p \to r \lor s) \land (r \to s) \land \neg (p \to s)$

- a) Calcular una FNC, utilizando las reglas de normalización, y decidir si es o no una tautología; determinar, en su caso, todos sus contramodelos.
- b) Calcular una FND, utilizando las reglas de normalización, y decidir si es o no satisfacible; determinar, en su caso, todos sus modelos.
- 9. Empleando una FNC o bien una FND, según lo que se considere más adecuado, decidir cuáles de las siguientes afirmaciones son verdaderas:
 - $a) \{p \leftrightarrow q, q \lor s\} \models s \to p$
 - $b) \ p \to q \equiv \neg q \to \neg p$
- 10. Determinar una FNC y una FND de una fórmula F cuya tabla de verdad es la siguiente:

p	q	$\mid r \mid$	F
1	1	1	0
1	1	0	0
1	0	1	1
1	0	0	1
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	1

11. Probar, mediante forma normal conjuntiva, que

$$\models (p \rightarrow \neg q \land r) \rightarrow (p \rightarrow (q \rightarrow r))$$

12. Utilizando una forma normal, probar que la siguiente fórmula es satisfacible:

$$\neg(\neg t \leftrightarrow (\neg t \land p)) \rightarrow \neg(p \rightarrow \neg t)$$

13. Probar, usando formas normales, que

$$\models (p \to (q \land r)) \to (p \to q) \lor (p \to r)$$

- 14. Sea la fórmula $F = p \lor q \leftrightarrow \neg r$. Calcular una forma normal conjuntiva de F y, a partir de ella, determinar los contramodelos de F y decidir si F es una tautología.
- 15. Calcular una forma normal conjuntiva de una fórmula F sabiendo que está compuesta con las tres variables p, q y r; y que, para toda interpretación I, se tiene que

$$I(F) = \begin{cases} 1 & \text{si } I(p) = I(\neg q \lor r) \\ 0 & \text{en otro caso} \end{cases}$$

16. Calcular una forma normal disyuntiva de F y una forma normal conjuntiva de $\neg F$ siendo F una fórmula cuya tabla de verdad es:

p	q	$\mid r \mid$	F
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	0

- 17. Demostrar o refutar las siguientes proposiciones:
 - a) Sean G_1 una forma normal disyuntiva de F_1 y G_2 una forma normal disyuntiva de F_2 . Si F_1 y F_2 son equivalentes, entonces G_1 y G_2 son la misma fórmula.
 - b) Para toda fórmula F se tiene que si G_1 es una forma normal conjuntiva de F y G_2 es una forma normal normal disyuntiva de F, entonces G_1 y G_2 son fórmulas distintas.
- 18. Dada la siguiente tabla de verdad de las fórmulas proposicionales F_1 y F_2 , en las que solo ocurren las variables proposicionales p, q y r,

se pide razonar directamente a partir de ella para:

- Obtener una FND de F_1 y una FNC de F_2 .
- Decidir si $\{F_1\} \models s \to F_2$
- 19. Dada la siguiente tabla de verdad de las fórmulas proposicionales F_1 y F_2 , en las que solo ocurren las variables proposicionales p, q y r,

se pide razonar directamente a partir de ella para:

- Obtener una FND de F_1 y una FNC de F_2 .
- Decidir si $\{F_1\} \models F_2 \rightarrow q \land r$