Borqs BeiJing Ltd.

Presto

Main Model: A2 Serial Model: N/A

December 04, 2013 Report No.: 13070507-FCC-R1-V1 (This report supersedes NONE)

Modifications made to the product: None

This Test Report is Issued Under the Authority of:						
Row Zhan	Alex. Lin					
Ray Zhao Compliance Engineer	Alex Liu Technical Manager					

This test report may be reproduced in full only. Test result presented in this test report is applicable to the representative sample only.

13070507-FCC-R1-V1 December 04, 2013 2 of 36 www.siemic.com

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Accreditations for Conformity Assessment

Country/Region	Scope		
USA	EMC, RF/Wireless, Telecom		
Canada	EMC, RF/Wireless, Telecom		
Taiwan	EMC, RF, Telecom, Safety		
Hong Kong	RF/Wireless ,Telecom		
Australia	EMC, RF, Telecom, Safety		
Korea	EMI, EMS, RF, Telecom, Safety		
Japan	EMI, RF/Wireless, Telecom		
Singapore	EMC, RF, Telecom		
Europe	EMC, RF, Telecom, Safety		

Report No.: 13070507-FCC-R1-V1
Issue Date: December 04, 2013
Page: 3 of 36
www.siemic.com

This page has been left blank intentionally.

13070507-FCC-R1-V1 December 04, 2013 4 of 36 www.siemic.com

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	5
2	TECHNICAL DETAILS	6
3	MODIFICATION	7
4	TEST SUMMARY	8
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
ANI	NEX A. TEST INSTRUMENT & METHOD	18
ANI	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	22
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	31
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST	35
ANI	NEX E. DECLARATION OF SIMILARITY	36

13070507-FCC-R1-V1 December 04, 2013 5 of 36 www.siemic.com

1 EXECUTIVE SUMMARY & EUT INFORMATION

The purpose of this test programme was to demonstrate compliance of the Borqs BeiJing Ltd., Presto, and model: A2 against the current Stipulated Standards. The Presto has demonstrated compliance with the FCC Part 15.225: 2013, ANSI C63.4: 2009.

EUT Information

EUT Description		Presto
Model No	:	A2
Serial No	 :	N/A
Antenna Gain	:	Bluetooth & WIFI: 2dBi NFC: 2dBi
Input Power	•	Li-ion polymer: Model: PR-696876 Spec: 3.7 Vdc, 11100 mAh Limited charger voltage: 4.2V
Classification Per Stipulated Test Standard	•	FCC Part 15.225: 2013, ANSI C63.4: 2009

13070507-FCC-R1-V1 December 04, 2013 6 of 36 www.siemic.com

2 TECHNICAL DETAILS

Purpose	Compliance testing of Presto with stipulated standard
Applicant / Client	Borqs BeiJing Ltd Tower A, Building B23, Universal Business Park, No. 10 Jiuxianqi ao Road, Chaoyang District Beijing, 100015 China
Manufacturer	Borqs BeiJing Ltd Tower A, Building B23, Universal Business Park, No. 10 Jiuxian qiao Road, Chaoyang District Beijing, 100015 China
Laboratory performing the tests	SIEMIC (Nanjing-China) Laboratories NO.2-1,Longcang Dadao, Yuhua Economic Development Zone Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email: China@siemic.com.cr
Test report reference number	13070507-FCC-R1-V1
Date EUT received	November 05, 2013
Standard applied	FCC Part 15.225: 2013, ANSI C63.4: 2009
Dates of test (from – to)	November 26 to December 04, 2013
No of Units :	#1
Equipment Category :	DXX
Trade Name :	E la Carte, Inc.
RF Operating Frequency (ies)	802.11b/g/n: 2412-2462 MHz Bluetooth: 2402-2480 MHz NFC: 13.56 MHz
Number of Channels	Bluetooth: 79CH 802.11b/g/n: 11CH NFC: 1CH
Modulation	802.11b/g/n: CCK/OFDM Bluetooth: GFSK NFC: ASK
Port	USB Port
FCC ID:	2ABDKPRESTOA211

13070507-FCC-R1-V1 December 04, 2013 7 of 36

www.siemic.com

3 MODIFICATION

NONE

13070507-FCC-R1-V1 December 04, 2013 8 of 36 www.siemic.com

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Test Results Summary

Test Standard	Description.	Pass/Fail	
FCC Part 15.225:2013	Description		
15.203	Antenna Requirement	Pass	
15.207(a)	Conducted Emissions Voltage	N/A	
15.225(a)	Fundamental Field Strength	Pass	
15.225(b)	Fundamental Field Strength	Pass	
15.225(c)	Fundamental Field Strength	Pass	
15.225(d),15.209	Radiated Emissions	Pass	
15.225(e)	Frequency Stability	Pass	
15.215(c)	Occupied Bandwidth	Pass	

ANSI C63.4: 2009

PS: All measurement uncertainties are not taken into consideration for all presented test result.

13070507-FCC-R1-V1 December 04, 2013 9 of 36 www.siemic.com

5 <u>MEASUREMENTS, EXAMINATION AND DERIVED</u> <u>RESULTS</u>

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

The antenna is permanently attached to the device.

13070507-FCC-R1-V1 December 04, 2013 10 of 36 www.siemic.com

5.2 Conducted Emissions Voltage

Requirement:

	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15–0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

^{*}Decreases with the logarithm of the frequency.

Procedures:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz - 30MHz (Average & Quasi-peak) is $\pm 3.5dB$.

4. Environmental Conditions Temperature 20°C

Relative Humidity 50% Atmospheric Pressure 1019mbar

5. Test date : ---

Tested By: Ray Zhao

Result: N/A

Battery Operated

13070507-FCC-R1-V1 December 04, 2013 11 of 36 www.siemic.com

5.3 Fundamental Field Strength Test Result

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors are reported. All other emissions were relatively insignificant.
- A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, is +/-6dB.

4. Environmental Conditions Temperature 20°C
Relative Humidity 50%
Atmospheric Pressure 1019mbar

5. Test date: November 26, 2013

Tested By: Ray Zhao

Test Requirement:

- (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

13070507-FCC-R1-V1 December 04, 2013 12 of 36 www.siemic.com

15.225(a), 15.225(b) and 15.225(c) Test Result:

Date: 26.NOV.2013 20:09:49

Loop Antenna Positioned at 90 degree @3m

Date: 26.NOV.2013 20:13:41

13070507-FCC-R1-V1 December 04, 2013 13 of 36 www.siemic.com

5.4 Radiated Emissions

Requirement(s): 47 CFR §15.209; 47 CFR§15.225(d)

Procedures: For >30MHz, Radiated emissions were measured according to ANSIC63.4. The EUT was set to transmit at the highest output power. The EUT was set 3 meter away from the measuring antenna. The Log periodic antenna was positioned 1 meter above the ground from the centre of the antenna. The measuring bandwidth was set to 120kHz. (Note: During testing the receive antenna was raise from 1-4meters to maximize the emission from the EUT.)

The limit is converted from microvolt/meter to decibel microvolt/meter.

 $Sample\ Calculation:\ Corrected\ Amplitude = Raw\ Amplitude\ (dBuV/m) + ACF(dB) + Cable\ Loss(dB) - Distance\ Correction\ Factor$

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors are reported. All other emissions were relatively insignificant.
- A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, is +/-6dB.

4. Environmental Conditions Temperature 20°C
Relative Humidity 50%
Atmospheric Pressure 1019mbar

5. Test date: December 04, 2013 Tested By: Ray Zhao

The result: Pass

13070507-FCC-R1-V1 December 04, 2013 14 of 36 www.siemic.com

Transmit mode:

1MHz to 30MHz Test result Loop Antenna at 0 degree:

Date: 4.DEC.2013 10:39:31

Loop Antenna at 90 degree:

@ 3M

Date: 4.DEC.2013 10:40:36

Note: Emissions from 9kHz to 1MHz is very low under transmit mode so test data is not presented in this report

13070507-FCC-R1-V1 December 04, 2013 15 of 36 www.siemic.com

Test Mode: Transmitting

Test Data

Vertical & Horizontal Polarity Plot at 3m

vertical & Horizontal I olarity I lot at om							
Frequency (MHz)	Quasi Peak (dBμV/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB)	Limit (dBµV/m)	Margin (dB)
531.99	45.14	286.00	Н	185.00	-27.85	46.00	-0.86
386.89	43.93	288.00	Н	101.00	-29.97	46.00	-2.07
580.34	43.49	295.00	Н	167.00	-23.27	46.00	-2.51
628.72	38.87	209.00	V	109.00	-21.05	46.00	-7.13
435.24	42.34	289.00	Н	101.00	-28.87	46.00	-3.66
725.45	41.22	241.00	Н	120.00	-21.50	46.00	-4.78

Note: Testing measured to beyond the tenth harmonic of the highest fundamental frequency and complies with FCC rule.

13070507-FCC-R1-V1 December 04, 2013 16 of 36 www.siemic.com

5.5 Frequency Stability

Requirement(s): 47 CFR §15.225(e)

Procedures: Frequency Stability was measured according to 47 CFR§2.1055. Measurement was taken with spectrum analyzer. The spectrum analyzer bandwidth and span was set to read in hertz. A voltmeter was used to monitor when varying the voltage.

Limit: ±0.01% of 13.56MHz=1356Hz

1. Environmental Conditions Temperature 20°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

2. Test date: November 28, 2013

Tested By: Ray Zhao

The result: Pass

Frequency Stability versus Temperature: The Frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20° C to $+50^{\circ}$ C at normal supply voltage.

Reference Frequency: 13.56MHz at -20°C to +50°C 3.7DC

Temperature (°C)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Deviation (Limit: 0.01%)	Pass/Fail
50	13.5608	800	< 0.01	Pass
40	13.5606	600	< 0.01	Pass
30	13.5603	300	< 0.01	Pass
20		Reference	ce	
10	13.5608	800	< 0.01	Pass
0	13.5605	500	< 0.01	Pass
-10	13.5605	500	< 0.01	Pass
-20	13.5604	400	< 0.01	Pass

Frequency Stability versus Input Voltage: The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$, the frequency of the transmitter was measured at 85% and at 115% of the rated power supply voltage at 20°C environmental temperature.

Carrier Frequency: 13.56MHz at 20°C at 3.7VDC

Measured Voltage ±15% of nominal(DC)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Deviation (Limit: 0.01%)	Pass/Fail
3.2	13.5606	600	< 0.01	Pass
4.3	13.5608	800	< 0.01	Pass

13070507-FCC-R1-V1 December 04, 2013 17 of 36 www.siemic.com

5.6 Occupied Bandwidth

Requirement(s): 47 CFR§15.215(e)

Procedures: Occupied Bandwidth was measured according to 47 CFR§2.1049. Measurement was taken with spectrum analyzer. The spectrum analyzer bandwidth and span was set to read in hertz.

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, is +/-6dB.
- 4. Environmental Conditions Temperature 25°C
 Relative Humidity 50%
 Atmospheric Pressure 1019mbar
- 5. Test date :November 28, 2013 Tested By : Ray Zhao

Test Result: Pass

Frequency	20dB BW
(MHz)	(kHz)
13.5586	1.36

Date: 28.NOV.2013 19:49:56

13070507-FCC-R1-V1 December 04, 2013 18 of 36 www.siemic.com

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Serial #	Calibration Date	Calibration Due Date
AC Line Conducted Emissions				
R&S EMI Test Receiver	ESPI3	101216	09/27/2013	09/26/2014
ROHDE&SCHWARZ V-LISN	ESH3-Z5	838979/005	09/27/2013	09/26/2014
Com-Power Transient Limiter	LIT-153	531021	09/27/2013	09/26/2014
SIEMIC Labview Conducted Emissions software	V1.0	N/A	N/A	N/A
Radiated Emissions				
R&S EMI Receiver	ESPI3	101216	09/27/2013	09/26/2014
Antenna (30MHz~6GHz)	JB6	A121411	03/27/2013	03/26/2014
Hp Agilent Pre-Amplifier	8447F	1937A01160	10/27/2013	10/26/2014
EMCO Passive Loop Antenna	6509	9909-1469	10/18/2013	10/17/2014
Pro.Temp.&Humi.Chamber	MHP-150-1C	MHA090510A	11/03/2013	11/02/2014
SIEMIC Labview Radiated Emissions software	V1.0	N/A	N/A	N/A

13070507-FCC-R1-V1 December 04, 2013 19 of 36 www.siemic.com

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in Annex B.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

At 20 MHz

 $limit = 250 \mu V = 47.96 dB\mu V$

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB

Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$

(Calibrated for system losses)

Therefore, Q-P margin = 47.96 - 40.00 = 7.96

i.e. 7.96 dB below limit

13070507-FCC-R1-V1 December 04, 2013 20 of 36 www.siemic.com

Annex A. iii. RADIATED EMISSIONS TEST DESCRIPTION

EUT Characterisation

EUT characterisation, over the frequency range from 30 MHz to 10^{th} Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

13070507-FCC-R1-V1 December 04, 2013 21 of 36 www.siemic.com

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from $0 \circ to 360 \circ with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.$
- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is

> Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

13070507-FCC-R1-V1 December 04, 2013 22 of 36 www.siemic.com

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Annex B.i. Photograph 1: EUT External Photo

EUT - Front View

EUT - Rear View

13070507-FCC-R1-V1 December 04, 2013 23 of 36 www.siemic.com

EUT - Top View

EUT - Bottom View

13070507-FCC-R1-V1 December 04, 2013 24 of 36 www.siemic.com

EUT - Left View

EUT - Right View

BT/WIFI Antenna Report No.: Issue Date: Page: 13070507-FCC-R1-V1 December 04, 2013 25 of 36 www.siemic.com

Annex B.ii. Photograph 2: EUT Internal Photo

Cover Off - Front View 1

Cover Off - Front View 2

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

NFC Antenna

13070507-FCC-R1-V1 December 04, 2013 26 of 36 www.siemic.com

Battery - Top View

Battery - Bottom View

13070507-FCC-R1-V1 December 04, 2013 27 of 36 www.siemic.com

PCB 1 - Front View

PCB 1 - Rear View

13070507-FCC-R1-V1 December 04, 2013 28 of 36 www.siemic.com

PCB 2 – Front View

PCB 2 - Rear View

13070507-FCC-R1-V1 December 04, 2013 29 of 36 www.siemic.com

LCD - Front View

LCD - Rear View

13070507-FCC-R1-V1 December 04, 2013 30 of 36 www.siemic.com

Annex B.iii. Photograph: Test Setup Photo

Front View of Radiated Emissions Test Setup below 30MHz

Front View of Radiated Emissions Test Setup (30MHz-1GHz)

Report No.: 13070507-FCC-R1-V1 Issue Date: December 04, 2013 Page: 31 of 36 www.siemic.com

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
N/A	N/A	N/A

13070507-FCC-R1-V1 December 04, 2013 32 of 36 www.siemic.com

Block Configuration Diagram for Conducted Emissions $N\!/\!A$

13070507-FCC-R1-V1 December 04, 2013 33 of 36 www.siemic.com

Block Configuration Diagram for Radiated Emissions

Report No.: 13070507-FCC-R1-V1 Issue Date: December 04, 2013 Page: 34 of 36 www.siemic.com

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation	
Emissions Testing	The EUT was continuously transmitting to stimulate the worst case.	

Report No.: 13070507-FCC-R1-V1 Issue Date: December 04, 2013 Page: 35 of 36 www.siemic.com

Annex D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST

Please see attachment

Report No.: 13070507-FCC-R1-V1
Issue Date: December 04, 2013
Page: 36 of 36
www.siemic.com

Annex E. DECLARATION OF SIMILARITY

N/A