Sp18 CS 61B Discussion 11

Welcome!

Wayne Li

wli2@berkeley.edu

https://wayne-li2.github.io/

Announcements

- Midterm II scores are out (@3262)
 - Regrade requests will open on April 4th, at noon
 - Regrade requests will close on April 9th, at noon
 - Special regrade instructions for FLIGHT
- Algorithm design problems (@3259)
- HW 4 (Puzzle Solver) due tomorrow 4/4
- Hope you all had a restful and fun spring break!

Quiz Instructions

- If you haven't yet, please also neatly put your email address outside the name box if you want to be emailed!
- Bubble number 41.

Aside

Resilience

- If you didn't get the score you wanted
 - o I'm here for you!
- Want to meet with me specifically?
 - https://goo.gl/forms/3HyKxt0ZAWHKRmij2
 - Can chat about anything, serious or light!
- Want to meet with any TA (not me)? @3258

Feedback

- Not many responses :(
- New survey! (much shorter, 1 Q!)
- https://goo.gl/forms/qxZ8qzS47HB62wiE3
- Will give the option of non-anonymity.
- Give me criticism!! Nothing too small to bring up.

Feedback so Far

- Room's too small!
 - Sorry...: (Trying to find a 61C TA that will switch rooms with me

Feedback so Far

- Speed: Just right -> Too Fast
 - Want to gather more data from this week!
 - Remember this is exam prep: come with the concepts learned from regular discussion!
 - If you're struggling, email me on the side! More than happy to explain concepts.

Why is this Important?

Onto Discussion

Q1 (Warmup)

Runtimes

idea	addEdge(s, t)	for(w : adj(v))	printgraph()	hasEdge(s, t)	space used
adjacency matrix	Θ(1)	Θ(V)	Θ(V ²)	Θ(1)	Θ(V ²)
list of edges	Θ(1)	Θ(Ε)	Θ(Ε)	Θ(Ε)	Θ(Ε)
adjacency list	Θ(1)	Θ(1) to Θ(V)	Θ(V+E)	Θ(degree(v))	Θ(E+V)

Important real-life considerations.

- Adjacency Matrix
 - Fast hasEdge(u, v). Probably the most common operation on a graph.
 - Ex: Facebook are A and B friends?

- Adjacency Matrix
 - If graph is sparse, a lot of wasted space.
 - Ex: Facebook 2.2 billion users, most users have between 100-1000 friends.

Question

Should Facebook use an adjacency matrix?

Question

- Should Facebook use an adjacency matrix?
 - They pay someone a lot more than me to answer this question.

- Adjacency List
 - Slower hasEdge(u, v).
 - But faster on everything else! Namely:
 - \bullet O(V + E) instead of O(V²)

- Adjacency List
 - Important: Know what size of E is relative to size of V.
 - Therefore, on dense graphs, $\mathbf{E} \sim \mathbf{O}(\mathbf{V}^2)$, and adjacency lists lose their speed.

- Edge Set
 - Seems fast! Everything O(1) or O(E).
 - But hasEdge(u, v) is O(E).

Q2 (skip)

Q3

Berkeley CS Courses

Q4