Эконометрика. Лекция 10. Три сюжета напоследок

Три сюжета

- Квантильная регрессия
- Алгоритм случайного леса
- Байесовский подход

Квантильная регрессии

Моделировать можно не только среднее, но и медиану или другой определённый квантиль.

Классическая регрессия — модель для среднего

Предпосылки классической модели:

- $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$
- экзогенность, $E(\varepsilon_i|x_i)=0$
- другие предпосылки

Следствие:

$$E(y_i|x_i) = \beta_1 + \beta_2 x_i$$

Минимизация суммы квадратов

Модель:
$$E(y_i|x_i) = \beta_1 + \beta_2 x_i$$

- Сумма квадратов остатков, $Q(\hat{\beta}_1, \hat{\beta}_2) = \sum_i (y_i \hat{y}_i)^2$
- ullet При минизации $Q(\hat{eta}_1,\hat{eta}_2)$ получаем состоятельные оценки $\hat{eta}_1,\,\hat{eta}_2$

Медианная регрессия

Модель:
$$Med(y_i|x_i) = \beta_1 + \beta_2 x_i$$

Алгоритм получения оценок

- ullet Сумма модулей остатков, $M(\hat{eta}_1,\hat{eta}_2) = \sum_i |y_i \hat{y}_i|$
- ullet Минимизируя $M(\hat{eta}_1,\hat{eta}_2)$ получаем состоятельные оценки $\hat{eta}_1,\,\hat{eta}_2$

Пример у неоновой доски

Найдите оценку $\hat{\beta}$ медианной регрессии:

$$Med(y_i|x_i) = \beta x_i$$

Набор данных:

У	X
1	1
2	5
6	5

Медианная и классическая регрессия

- Классическая: от каких факторов зависит $E(y_i|x_i)$?
- Медианная: от каких факторов зависит $Med(y_i|x_i)$?
- Если распределение ε_i симметрично, то оба подхода дают асимптотически одинаковые оценки

Медианная регрессия: минусы

- Нет явных формул для оценок коэффициентов и стандартных ошибок
- Только асимптотические свойства оценок коэффициентов

Медианная регрессия: плюсы

- Взгляд на данные с другой стороны
- Более устойчивые оценки в случае "выбросов" в ε_i

Произвольная квантиль

• Медиана, $Med(y_i)$, — квантиль 50%

$$P(y_i \leq Med(y_i)) = 0.5$$

ullet Квантиль порядка $au, \ oldsymbol{q}_{ au}$:

$$P(y_i \leq q_{\tau}) = \tau$$

Квантильная регрессия

Модель:
$$q_{\tau}(y_i|x_i) = \beta_1^{\tau} + \beta_2^{\tau}x_i$$

• Зависимость для разных квантилей может быть разная!

Асимметричная сумма модулей остатков:

$$M(\hat{eta}_1,\hat{eta}_2) = \sum_i
ho_{ au}(y_i - \hat{y}_i)$$
где

$$\rho_{\tau}(y_{i} - \hat{y}_{i}) = \begin{cases} (1 - \tau) \cdot |y_{i} - \hat{y}_{i}|, \ y_{i} < \hat{y}_{i} \\ \tau \cdot |y_{i} - \hat{y}_{i}|, \ y_{i} \ge \hat{y}_{i} \end{cases}$$

ullet Минимизируя $M(\hat{eta}_1,\hat{eta}_2)$ получаем состоятельные оценки $\hat{eta}_1,\,\hat{eta}_2$

Квантильная регрессия стоимости квартир

```
totsp 1.31148
totsp 2.09259
totsp 3.64286
(здесь вставить график)
```

Алгоритм случайного леса

- Очень хорошо прогнозирует
- Не объясняет, как устроены данные

Две версии алгоритма

- ullet Для непрерывной y_i
- Для качественной уі

Каждый мужчина должен посадить дерево

(здесь картинка дерева)

Работа с деревом

- Построение дерева по имеющимся данным
- Прогнозирование с помощью дерева

Как посадить дерево?

- Из имеющихся k переменных случайно отбираем $k' = \lceil k/3 \rceil$ переменных
- Из отобранных k' переменных выбираем ту, которая даёт наилучшее деление ветви дерева на две
- Повторяем до тех пор, пока в каждом терминальном узле остаётся больше nodesize = 5 наблюдений

Алгоритм случайный

Повторное применение алгоритма к тому же набору данных даст слегка другие оценки

Неоновая доска

Пример построения классификационного дерева

У	X
1	1
2	2
9	3
10	4
10	5

Мужчина, владеющий R, может посадить целый лес!

- Случайным образом отбираем (с повторениями) n наблюдений из исходных n наблюдений
- Сажаем дерево по случайной подвыборке
- Повторяем до получения $n_{tree} = 500$ деревьев

Прогноз случайного леса:

- \bullet Каждое из $n_{tree}=500$ деревьев даёт свой прогноз \hat{y}_i
- Усредняем и получаем финальный прогноз

Байейсовский подход

Опишем наше незнание параметра θ в виде априорного закона распределения!

Пример. Неизвестная вероятность

•
$$p \in [0; 1]$$

Априорная плотность:

$$f(p) = egin{cases} 1, & p \in [0;1] \\ 0, & ext{иначе} \end{cases}$$

(здесь картинка)

Пример. Неизвестный положительный коэффициент

•
$$\beta \in [0; +\infty)$$

Априорная плотность:

$$f(eta) = egin{cases} \exp(-eta), \; eta \in [0; \infty) \ 0, \; \; ext{иначе} \end{cases}$$

(здесь картинка)

Модель

Модель задаёт закон распределения наблюдений, y_i , при фиксированном значении параметров

Например,

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i, \ \varepsilon_i \sim N(0, \sigma^2)$$

Кристально-чистая логика байесовского подхода

Определяем:

- Априорное распределение, $f(\theta)$
- ullet Модель для данных, f(y| heta)

Получаем:

• Апостериорное распределение, $f(\theta|y)$

Формула условной вероятности

$$f(\theta|y) = \frac{f(y|\theta) \cdot f(\theta)}{f(y)} \sim f(y|\theta) \cdot f(\theta)$$

Пример у неоновой доски

Караси, щуки

- нет информации
- Бабушка: караси встречаются чаще щук!

Как описать сложную функцию плотности?

(картинка)

- \bullet Большая выборка независимых значений случайной величины r
- Можно оценить всё: E(r), $E(r^2)$, P(r > 0)

Монте-Карло по схеме Марковской цепи

MCMC (Markov Chain Monte Carlo)

На входе:

- Априорное распределение, $f(\theta)$
- ullet Модель для данных, f(y| heta)

На выходе:

ullet Большая выборка из апостериорного распределения, f(heta|y)

(картинка)

Регрессия пик-плато

Пример

Большое спасибо

Большое спасибо тем, кто прошел вместе с нами этот курс до конца