

Laboratório 8: (resolução)

Exercício 24: Projeto de contador síncrono módulo 5 a)

UP	Q2	Q1	Q0	Q2'	Q1'	Q0'	D2	D1	D0
0	0	0	0	1	0	0	1	0	0
0	0	0	1	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	1
0	0	1	1	0	1	0	0	1	0
0	1	0	0	0	1	1	0	1	1
0	1	0	1	Χ	Χ	Χ	Χ	Χ	Χ
0	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ
0	1	1	1	Χ	Χ	Χ	Χ	Χ	Χ
1	0	0	0	0	0	1	0	0	1
1	0	0	1	0	1	0	0	1	0
1	0	1	0	0	1	1	0	1	1
1	0	1	1	1	0	0	1	0	0
1	1	0	0	0	0	0	0	0	0
1	1	0	1	Χ	Χ	Χ	Χ	Χ	Χ
1	1	1	0	Χ	Χ	Χ	Х	Χ	Χ
1	1	1	1	Χ	Χ	Χ	Χ	Χ	Χ

Q1 _Q	0 <u> </u>	0 1	1 1	1 0
0 0		0	0	0
0 1	0	X	X	9 0
1 1	0	X	15 X	1
¹ 0	0	X	X	0

Q1 _{OO}	ω2 ⁰ 0	0 1	1 1	1
0 0 0	0	1	12 0	8 0
0 1	0	5 X	13 X	9 1
1 1	<u> </u>	X) 15 X	11 0
¹ 0	0	6 X	14 X	1

 $D1(\mathit{UP},\mathit{Q2},\mathit{Q1},\mathit{Q0}) = \overline{\mathit{UP}}.\,\mathit{Q1}.\,\mathit{Q0} + \overline{\mathit{UP}}.\,\mathit{Q2} + \mathit{UP}.\,\overline{\mathit{Q1}}.\,\mathit{Q0} + \mathit{UP}.\,\mathit{Q1}.\,\overline{\mathit{Q0}}$

Q1 _{QQ}	2 0		0 1	1 1	1
0 0 0	0	4	1	0	8 1
0 1	0	5	Χ	X	9 0
1 1	0	7	X	15 X	0
1 0	1	б	X	14 X	

 $D0(UP, Q2, Q1, Q0) = \overline{UP}. Q2 + \underline{UP}. \overline{Q2}. \overline{Q0} + Q1. \overline{Q0}$

Exercício complementar: Projeto de outro contador síncrono módulo 5

a) Projetar o contador síncrono módulo 5, utilizando flip-flops tipo D, em que os estados de contagem são de 0 a 4.

Como só temos 5 estados apenas precisamos de 3 bits para codificar os estados.

Codificação
000
001
010
011
100

Tabela de transição de estados:

Q_2 Q_1 Q_2	$Q_0 Q'_2$	${Q'}_1$	Q'_0	D_2	D_1	D_0
0 0	00	0	1	0	0	1
0 0	1 0	1	0	0	1	0
0 1	0 0	1	1	0	1	1
0 1	1 1	0	0	1	0	0
1 0	0 0	0	0	0	0	0
1 0	1 X	X	X	Χ	X	Χ
1 1	0 X	X	X	Χ	X	Χ
1 1	1 X	X	X	X	X	Х

Q_{2Q}	0	0	0	1		1 1		1 0
0	0)	(0	6	X	4	0
1	1 ()		1	7	X	5	Χ

Q ₂ Q	0	0 1	1	1 0
0	0	2 1	X	0
1	1	0	⁷ X	5 X

$$\begin{aligned} D_2 &= Q_1. Q_0 \\ D_1 &= Q_1. \overline{Q_0} + \overline{Q_1}. Q_0 = Q_1 \oplus Q_0 \\ D_0 &= \overline{Q_2}. \overline{Q_0} \end{aligned}$$

b) No caso do contador se encontrar num dos estados não especificados, qual seria a evolução dos seus estados?

Substituindo os valores utilizados nos "don't care" correspondentes, e considerando a tabela dos "flip flops" D, obtemos as seguintes transições:

Q_2	Q_1	Q_0	Q'_2	Q'_1	Q'_0	D_2	D_1	D_0	$D \mid Q'_d$	
0	0	0	0	0	1	0	0	1	0 0	
0	0	1	0	1	0	0	1	0	1 1	
0	1	0	0	1	1	0	1	1		
0	1	1	1	0	0	1	0	0	Ou seja:	
1	0	0	0	0	0	0	0	0	n	Total and
1	0	1	0	1	0	0	1	0	Estado act.	Estado seg.
1	U	1	Ų	1	U		<u>_</u>	المسيا	S_5	S_2
1	1	0	0	1	0	0	1	0	S_6	S_2
1	1	1	1	0	0	1	0	0	S_7	\mathcal{S}_4
										i

 c) Altere o projeto do contador de modo a que sempre que se encontre num estado não especificado, evolua para o estado de contagem inicial. Apresente uma solução síncrona.

Para satisfazer os novos requisitos alteramos a tabela de transição de estado, substituindo os estados seguintes não especificados pelo estado inicial.

Q_2	Q_1	Q_0	Q'_2	Q'_1	Q'_0	D_2	D_1	D_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0	0
1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0

Após a substituição, e utilizando o mesmo método da alínea A obtemos as expressões das entradas dos "flip flops".

Q_{2Q}	0	0 1	1 1	1
0	0	0	0	0
1	0	³ 1	0	5 0

Q_{2Q}	0	0 1	1 1	1
0	° O		0	⁴ O
1	1 1	³ 0	⁷ 0	5 0

$$\begin{split} &D_2 = \overline{Q_2}. \, Q_1. \, Q_0 \\ &D_1 = \overline{Q_2}. \, Q_1. \, \overline{Q_0} + \overline{Q_2}. \, \overline{Q_1}. \, Q_0 = \overline{Q_2}. \, (Q_1 \oplus Q_0) \\ &D_2 = \overline{Q_2}. \, \overline{Q_0} \end{split}$$

Exercício complementar: Projeto de contador síncrono módulo 8

Projetar um contador síncrono módulo 8, em que os estados de contagem são de 0 a 7 utilizando 3 flip-flops, utilizando um flip-flop D para Q0, um flip-flop JK para Q1, e um flip-flop T para Q2.

Q2	Q1	Q0	Q2'	Q1'	Q0'	T2	J1	K1	D0
0	0	0	0	0	1	0	0	Χ	1
0	0	1	0	1	0	0	1	Χ	0
0	1	0	0	1	1	0	Χ	0	1
0	1	1	1	0	0	1	Χ	1	0
1	0	0	1	0	1	0	0	Χ	1
1	0	1	1	1	0	0	1	Χ	0
1	1	0	1	1	1	0	Χ	0	1
1	1	1	0	0	0	1	Χ	1	0

Q2 Q0	1 0	0 1	1	1
0	0	2 0	6 0	4 0
1	0	³ 1	1	5 0

T2(Q2,Q1,Q0) =**Q1.Q0**

Q2 Q0	1 0	0 1	1 1	1 0
0	0	X	X	⁴ 0
1	1 1	X	X	1

J1(Q2, Q1, Q0) = Q0

 $K1(Q2, Q1, Q0) = \mathbf{Q0}$

 $D0(Q2,Q1,Q0) = \overline{Q0}$