AGC019D Shift and Flip

MyeeYe

2023年3月

目录

为啥讲这题 题意简述 基本做法 边界情况 贪心性质 贡献拆分 翻转的贡献 平移的贡献 总结 更优做法 基本原理 翻转的贡献 总结

为啥讲这题

作为比较远古的 AGC, 肯定有很多人做过这题吧!

为啥讲这题

作为比较远古的 AGC, 肯定有很多人做过这题吧! 你可能会想,这人怎么这么逊,连这题都讲! 是的,确实很逊。

为啥讲这题

作为比较远古的 AGC, 肯定有很多人做过这题吧! 你可能会想,这人怎么这么逊,连这题都讲! 是的,确实很逊。 但是讲这题主要是为了介绍一种**复杂度更优**的做法!

题意简述

给定两个长度为 n 的 01 串 A 和 B,你可以进行以下三种操作:

- 1. 将 A 循环左移一位。(e.g. 0011 → 0110)
- 2. 将 *A* 循环右移一位。(e.g. 0011 → 1001)
- 3. 选择一个满足 $B_i = 1$ 的位置 i,令 $A_i = 1 A_i$ 。 问要使 A 和 B 相等至少要进行几次操作,无解输出 -1。

原题数据范围: n < 2000, 时限 2s。

其实可以做到: $n \le 1000000$, 时限 1s; 或者 $n \le 20000$, 时限 2s。

首先,如果A串全是0,则最小方案数即为不同的位数。

首先,如果 A 串全是 0,则最小方案数即为不同的位数。 否则如果 B 串全是 0,则无解。

首先,如果 A 串全是 0,则最小方案数即为不同的位数。 否则如果 B 串全是 0,则无解。 否则总能把 A 转一圈来构造方案。

先考虑一个简单的贪心性质。

先考虑一个简单的贪心性质。 任何一个位置都不会在 0 和 1 之间反复横跳。

先考虑一个简单的贪心性质。 任何一个位置都不会在 0 和 1 之间反复横跳。 证明是显然的,可以调整。

再考虑另一个贪心性质。

再考虑另一个贪心性质。 任何一个移动方案,假设其向左最多 l 步,向右最多 r 步,终点和起点相距 p。

再考虑另一个贪心性质。 任何一个移动方案,假设其向左最多 l 步,向右最多 r 步,终点和起点相距 p。 那么其可以最少可以花在走路上 2l+2r-p 步。

再考虑另一个贪心性质。 任何一个移动方案,假设其向左最多 l 步,向右最多 r 步,终点和起点相距 p。 那么其可以最少可以花在走路上 2l+2r-p 步。 证明也是显然的,可以调整。

刚刚我们的分析把贡献拆成了两个部分:

刚刚我们的分析把贡献拆成了两个部分:翻转的贡献:移到终点后不同的位置数目。平移的贡献:2l+2r-p。

刚刚我们的分析把贡献拆成了两个部分: 翻转的贡献:移到终点后不同的位置数目。 平移的贡献:2l + 2r - p。 注意到这两部分贡献均只与p有关,我们分别单独求出即可。

翻转的贡献

这部分比较简单。

基本做法翻转的贡献

这部分比较简单。

逐一比较哪些位上 $A_i \neq B_{i+p}$ (反方向上是 $A_i \neq B_{i-p}$) 即可。注意这里的比较是把其视作一个循环的字符串的。

基本做法翻转的贡献

这部分比较简单。

逐一比较哪些位上 $A_i \neq B_{i+p}$ (反方向上是 $A_i \neq B_{i-p}$) 即可。注意这里的比较是把其视作一个循环的字符串的。 复杂度 $\Theta(n^2)$ 。

基本做法平移的贡献

考虑到为什么要平移?

基本做法平移的贡献

考虑到为什么要平移? 其一,移动到终点,需要平移。

考虑到为什么要平移? 其一,移动到终点,需要平移。 其二,为了让每个终点处 $B_i = 0$ 的 $A_i = 1$ 变成 0, 我们要让其经过过 $B_i = 1$ 的位置。

考虑到为什么要平移? 其一,移动到终点,需要平移。 其二,为了让每个终点处 $B_i=0$ 的 $A_i=1$ 变成 0, 我们要让其经过过 $B_i=1$ 的位置。 进一步可以转化成,每个 $A_i=1$ 都要途经 $B_i=1$ 的位置。 因为终点是 1 的显然也会在终点处经过。

基本做法平移的贡献

第一类可以转化为 $l \ge p$ 或 $r \ge p$, 由移动方向决定是何者。

第一类可以转化为 $l \ge p$ 或 $r \ge p$,由移动方向决定是何者。对第二类的贡献,设 i 处其左边第一个 $B_i = 1$ 与之距离 l_i ,同样类似定义 r_i ,则此限制可以被刻画为:在 $A_i = 1$ 时, $l \ge l_i$ 或 $r \ge r_i$ 。

第一类可以转化为 $l \ge p$ 或 $r \ge p$,由移动方向决定是何者。对第二类的贡献,设 i 处其左边第一个 $B_i = 1$ 与之距离 l_i ,同样类似定义 r_i ,则此限制可以被刻画为:在 $A_i = 1$ 时, $l \ge l_i$ 或 $r \ge r_i$ 。除此之外,还显然有 $l \ge 0$ 与 $r \ge 0$

第一类可以转化为 $l \ge p$ 或 $r \ge p$,由移动方向决定是何者。对第二类的贡献,设 i 处其左边第一个 $B_i = 1$ 与之距离 l_i ,同样类似定义 r_i ,则此限制可以被刻画为:在 $A_i = 1$ 时, $l \ge l_i$ 或 $r \ge r_i$ 。除此之外,还显然有 $l \ge 0$ 与 $r \ge 0$ 我们的目标是最小化 l + r。

基本做法平移的贡献

使用一个规划来描述之。

使用一个规划来描述之。

$$\min z = x + y$$

$$s.t. \begin{cases} A_1 = 0 \lor x \ge l_1 \lor y \ge r_1 \\ A_2 = 0 \lor x \ge l_2 \lor y \ge r_2 \\ \vdots \\ A_n = 0 \lor x \ge l_n \lor y \ge r_n \\ x \ge [终点向左走]p \\ y \ge [终点向右走]p \end{cases}$$

基本做法平移的贡献

考虑图解法。

基本做法平移的贡献

考虑图解法。

注意到前面若干条限制为一个 3/4 平面, 最后还有两个半平面。

考虑图解法。

注意到前面若干条限制为一个 3/4 平面,最后还有两个半平面。 裁掉被直接包含的限制,我们就是解轮廓线上的最小 z=x+y。

基本做法平移的贡献

考虑图解法。

注意到前面若干条限制为一个 3/4 平面,最后还有两个半平面。 裁掉被直接包含的限制,我们就是解轮廓线上的最小 z=x+y。 对每个 p 做一次,使用基数排序、单调栈即可解决。

基本做法平移的贡献

考虑图解法。

注意到前面若干条限制为一个 3/4 平面,最后还有两个半平面。裁掉被直接包含的限制,我们就是解轮廓线上的最小 z=x+y。对每个 p 做一次,使用基数排序、单调栈即可解决。复杂度 $\Theta(n^2)$ 。

判掉边界情况,枚举 p,把两部分贡献拼合,即可做到 $\Theta(n^2)$ 的总复杂度。

更优做法基本原理

更优做法改进自基本做法。 其基本原理在于把两部分贡献计算分别更快解决。

更优做法 翻转的贡献

注意到权值只有 01, 而我们对贡献的计算是一个差卷积的形式。

更优做法翻转的贡献

注意到权值只有 01,而我们对贡献的计算是一个差卷积的形式。 使用 FFT 对两种情况分别优化即可做到 $\Theta(n \log n)$ 。 由于 AtCoder 自带 atcoder.h 库,直接用就好了。

更优做法翻转的贡献

注意到权值只有 01,而我们对贡献的计算是一个差卷积的形式。 使用 FFT 对两种情况分别优化即可做到 $\Theta(n\log n)$ 。 由于 AtCoder 自带 atcoder.h 库,直接用就好了。 也可以用 bitset 做到 $\Theta(n^2/w)$ 。

更优做法 平移的贡献

注意到对于向左移动的情况,除 $x \ge p$ 外其余限制都是固定的。向右同理。

更优做法

注意到对于向左移动的情况,除 $x \ge p$ 外其余限制都是固定的。向右同理。

可先把那些部分中的无用限制删去,然后按 p 从大到小扫描线。

更优做法

注意到对于向左移动的情况,除 $x \ge p$ 外其余限制都是固定的。向右同理。

可先把那些部分中的无用限制删去,然后按 p 从大到小扫描线。由于要排序,朴素实现是 $O(n\log n)$ 的,使用基排即为 $\Theta(n)$ 。

更优做法

判掉边界情况,把两部分贡献拼合, 即可做到 $\Theta(n\log n)$ 或 $\Theta(n^2/w)$ 的总复杂度。

总结

分离贡献、逐步优化的过程是解决并优化此题的关键。