Foundation of Cryptography (0368-4162-01), Lecture 7 Encryption Schemes

Iftach Haitner, Tel Aviv University

January 3, 2012

Section 1

Definition

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **1** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^*$
- (2) E(e, m) outputs an encryption c
- \bigcirc D(d, c) outputs a message

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **1** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^*$
- (e, m) outputs an encryption c
- O D(d, c) outputs a message

- e − encryption key, d − decryption key
- m plaintext, c = E(e, m) ciphertext
- $E_e(m) \equiv E(e,m)$ and $D_d(c) \equiv D(d,c)$,

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **1** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^*$
- (2) E(e, m) outputs an encryption c
- O D(d, c) outputs a message

- e − encryption key, d − decryption key
- m plaintext, c = E(e, m) ciphertext
- $E_e(m) \equiv E(e,m)$ and $D_d(c) \equiv D(d,c)$,
- public/private key

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **1** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^*$
- (2) E(e, m) outputs an encryption c
- O(d, c) outputs a message

- e − encryption key, d − decryption key
- m plaintext, c = E(e, m) ciphertext
- $E_e(m) \equiv E(e,m)$ and $D_d(c) \equiv D(d,c)$,
- public/private key
- nealigible error

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **1** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^*$
- (2) E(e, m) outputs an encryption c
- O(d, c) outputs a message

- e − encryption key, d − decryption key
- m plaintext, c = E(e, m) ciphertext
- $E_e(m) \equiv E(e,m)$ and $D_d(c) \equiv D(d,c)$,
- public/private key
- nealigible error

Security

• What would we like to achieve?

Security

- What would we like to achieve?
- Dream version: exits $\ell \in \text{poly}$ such that for any $n \in \mathbb{N}$ and $x \in \{0,1\}^*$:

$$(E_{G(1^n)_1}(x)) \equiv U_{\ell(n)}$$

Security

- What would we like to achieve?
- Dream version: exits $\ell \in \text{poly}$ such that for any $n \in \mathbb{N}$ and $x \in \{0,1\}^*$:

$$(E_{G(1^n)_1}(x)) \equiv U_{\ell(n)}$$

Shannon – only for x with $|x| \leq |G(1^n)_1|$

Semantic Security

Semantic Security

O Ciphertext reveal "no information" about the plaintext

Semantic Security

Semantic Security

- Open Ciphertext reveal "no information" about the plaintext
- Formulate via the simulation paradigm

Semantic Security

- O Ciphertext reveal "no information" about the plaintext
- Formulate via the simulation paradigm
- Cannot hide the message length

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \left| \mathsf{Pr}_{x \leftarrow \mathcal{X}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, E_e(x), 1^{|x|}, h(1^n, x)) = f(1^n, x)] \right| \\ - \mathsf{Pr}_{x \leftarrow \mathcal{X}_n} [\mathsf{A}'(1^n, h(1^n, x)) = f(1^n, x)] \Big| = \mathsf{neg}(n) \end{aligned}$$

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if for any PPT A, \exists PPT A' s.t. for any polynomially-bounded ensemble $\mathcal{X} = \{\mathcal{X}_n\}_{n \in \mathbb{N}}$ and every polynomially-bounded functions $h, f : \{0, 1\}^* \mapsto \{0, 1\}^*$

$$\begin{aligned} \left| \mathsf{Pr}_{x \leftarrow \mathcal{X}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, E_e(x), 1^{|x|}, h(1^n, x)) = f(1^n, x)] \right| \\ - \mathsf{Pr}_{x \leftarrow \mathcal{X}_n} [\mathsf{A}'(1^n, h(1^n, x)) = f(1^n, x)] \Big| = \mathsf{neg}(n) \end{aligned}$$

polynomially-bounded?

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if for any PPT A, \exists PPT A' s.t. for any polynomially-bounded ensemble $\mathcal{X} = \{\mathcal{X}_n\}_{n \in \mathbb{N}}$ and every polynomially-bounded functions $h, f : \{0, 1\}^* \mapsto \{0, 1\}^*$

$$\begin{aligned} \left| \mathsf{Pr}_{x \leftarrow \mathcal{X}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, E_e(x), 1^{|x|}, h(1^n, x)) = f(1^n, x)] \right| \\ - \mathsf{Pr}_{x \leftarrow \mathcal{X}_n} [\mathsf{A}'(1^n, h(1^n, x)) = f(1^n, x)] \Big| = \mathsf{neg}(n) \end{aligned}$$

 polynomially-bounded? for simplicity we assume polynomial length

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \left| \mathsf{Pr}_{x \leftarrow \mathcal{X}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, E_e(x), 1^{|x|}, h(1^n, x)) = f(1^n, x)] \right| \\ - \mathsf{Pr}_{x \leftarrow \mathcal{X}_n} [\mathsf{A}'(1^n, h(1^n, x)) = f(1^n, x)] \Big| = \mathsf{neg}(n) \end{aligned}$$

- polynomially-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|x|}$ are not really needed

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \left| \mathsf{Pr}_{x \leftarrow \mathcal{X}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, E_e(x), 1^{|x|}, h(1^n, x)) = f(1^n, x)] \right| \\ - \mathsf{Pr}_{x \leftarrow \mathcal{X}_n} [\mathsf{A}'(1^n, h(1^n, x)) = f(1^n, x)] \Big| = \mathsf{neg}(n) \end{aligned}$$

- polynomially-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|x|}$ are not really needed
- Non-uniform definition

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \left| \mathsf{Pr}_{x \leftarrow \mathcal{X}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, E_e(x), 1^{|x|}, h(1^n, x)) = f(1^n, x)] \right| \\ - \mathsf{Pr}_{x \leftarrow \mathcal{X}_n} [\mathsf{A}'(1^n, h(1^n, x)) = f(1^n, x)] \Big| = \mathsf{neg}(n) \end{aligned}$$

- polynomially-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|x|}$ are not really needed
- Non-uniform definition
- Relation to ZK

Semantic security - public-key model

Definition 3 (Semantic Security – public-key model)

$$\begin{aligned} \left| \mathsf{Pr}_{x \leftarrow \mathcal{X}_n, (e, d) \leftarrow G(1^n)} [\mathsf{A}(1^n, e, E_e(x), 1^{|x|}, h(1^n, x)) = f(1^n, x)] \right. \\ \left. - \mathsf{Pr}_{x \leftarrow \mathcal{X}_n} [\mathsf{A}'(1^n, 1^{|x|}, h(1^n, x)) = f(1^n, x)] \right| = \mathsf{neg}(n) \end{aligned}$$

Indistinguishablity of encryptions

The encryption of two strings is indistinguishable

Indistinguishablity of encryptions

- The encryption of two strings is indistinguishable
- Less intuitive than semantic security, but easier to work with

Indistinguishablity of encryptions – private-key model

Definition 4 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any p, ℓ poly(n), $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$|\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(x_n)) = 1]$$

 $-\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(y_n)) = 1]| = neg(n)$

Indistinguishablity of encryptions – private-key model

Definition 4 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any p, ℓ poly(n), $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$|\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(x_n)) = 1]$$

 $-\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(y_n)) = 1]| = neg(n)$

Non-uniform definition

Indistinguishablity of encryptions – private-key model

Definition 4 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any p, ℓ poly(n), $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$|\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(x_n)) = 1]$$

 $-\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(y_n)) = 1]| = neg(n)$

- Non-uniform definition
- Public-key model

Equivalence of definitions

Theorem 5

An encryption scheme (G, E, D) is semantically secure iff is has indistinguishable encryptions.

Equivalence of definitions

Theorem 5

An encryption scheme (G, E, D) is semantically secure iff is has indistinguishable encryptions.

We prove the private key case

Indistinguishablity \implies Semantic Security

Indistinguishablity \implies Semantic Security

Fix \mathcal{X} , A, f and h, be as in Definition 2.

Indistinguishablity ⇒ Semantic Security

Fix \mathcal{X} , A, f and h, be as in Definition 2. We construct A' as

Algorithm 6 (A')

Input: 1^n , $1^{|x|}$ and h(x)

- $\bullet e \leftarrow G(1^n)_1$
- 2 $c = E_e(1^{|x|})$
- **3** Output $A(1^n, c, 1^{|x|}, h(x))$

Indistinguishablity Semantic Security

Fix \mathcal{X} , A, f and h, be as in Definition 2. We construct A' as

Algorithm 6 (A')

Input: 1^n , $1^{|x|}$ and h(x)

- $\bullet \leftarrow G(1^n)_1$
- 2 $c = E_e(1^{|x|})$
- **3** Output A(1ⁿ, c, 1^{|x|}, h(x))

Claim 7

A' is a good simulator for A (according to Definition 2)

Proving Claim 7

Assume exists infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly s.t.}$ for any $n \in \mathcal{I}$:

$$\begin{aligned} \left| \mathsf{Pr}_{x \leftarrow \mathcal{X}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, E_e(x), h(1^n, x)) = f(1^n, x)] \right. \\ \left. - \mathsf{Pr}_{x \leftarrow \mathcal{X}_n} [\mathsf{A}'(1^n, h(1^n, x)) = f(1^n, x)] \right| > 1/p(n) \end{aligned} \tag{1}$$

Proving Claim 7

Assume exists infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly s.t.}$ for any $n \in \mathcal{I}$:

$$\begin{aligned} \left| \mathsf{Pr}_{x \leftarrow \mathcal{X}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, E_e(x), h(1^n, x)) = f(1^n, x)] \right. \\ \left. - \mathsf{Pr}_{x \leftarrow \mathcal{X}_n} [\mathsf{A}'(1^n, h(1^n, x)) = f(1^n, x)] \right| > 1/p(n) \end{aligned} \tag{1}$$

Fix $n \in \mathcal{I}$ and let $x \in \operatorname{Supp}(\mathcal{X}_n)$ be a value that maximize Equation (1). We construct B and contradicts the indistinguishability of the scheme with respect to $\{(x_n = x, y_n = 1^{|x|})\}$ and $\{z_n = (h(1^n, x), f(1^n, x))\}$.

Algorithm 8 (B)

Input: 1^n , $z_n = (h(1^n, x), f(1^n, x)), c$ Output 1 iff $A(1^n, c, 1^{|x|}, h(x)) = f(1^n, x)$

Semantic Security \implies **Indistinguishablity**

Assume \exists B, $\{(x_n, y_n)\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$ that contradict the semantic security of semantic security.

Semantic Security \Longrightarrow **Indistinguishablity**

Assume \exists B, $\{(x_n, y_n)\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$ that contradict the semantic security of semantic security. Let \mathcal{X}_n be x_n wp $\frac{1}{2}$ and y_n otherwise, let $f(1^n, x_n) = 1$ and $f(1^n, y_n) = 0$ and let $h(1^n, \cdot = z_n)$. Finally, $A(1^n, \cdot, c, z_n)$ returns $B(z_n, c)$. Multiple Encryptions

Security Under Multiple Encryptions

Definition 9 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any p, ℓ, t poly(n),

$$\{x_{n,1},\dots x_{n,t(n)},y_{n,1},\dots,y_{n,t(n)}\in\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}},\ \{z_n\in\{0,1\}^{p(n)}\}_{n\in\mathbb{N}}\ \text{and polynomial-time B,}$$

$$\begin{aligned} & \left| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1] \right. \\ & \left. - \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \right| = \mathsf{neg}(n) \end{aligned}$$

Definition 9 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \operatorname{poly}(n)$,

$$\begin{aligned} & \{x_{n,1}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \\ & \{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}} \text{ and polynomial-time B,} \\ & & \big| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1 \big| \\ & & - \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \big| = \mathsf{neg}(n) \end{aligned}$$

Different length messages

Definition 9 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \operatorname{poly}(n)$,

$$\{x_{n,1}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}},$$

 $\{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$\begin{aligned} & \left| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1] \\ & - \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \right| = \mathsf{neg}(n) \end{aligned}$$

- Different length messages
- Semantic security version

Definition 9 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \operatorname{poly}(n)$,

$$\{x_{n,1}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}},$$
 $\{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$\begin{aligned} & \left| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1] \\ & - \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \right| = \mathsf{neg}(n) \end{aligned}$$

- Different length messages
- Semantic security version
- Public-key definition

Multiple Encryption in the Public-Key Model

Theorem 10

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Assume (G, E, D) is public-key secure for a single message and not for multiple messages with respect to B, $\{x_{1,t(n)},\ldots x_{n,t(n)},y_{n,1},\ldots,y_{n,t(n)}\in\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}},$ $\{z_n\in\{0,1\}^{p(n)}\}_{n\in\mathbb{N}}.$

Multiple Encryption in the Public-Key Model

Theorem 10

> neg(n)

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Assume (G, E, D) is public-key secure for a single

message and not for multiple messages with respect to B, $\{x_{1,t(n)}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}.$ It follows that for some function $i(n) \in [t(n)]$ $\left| \Pr[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), E_e(y_{n,i}) \dots, E_e(y_{n,t(n)})) = 1 \right] - \Pr[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i}), E_e(y_{n,i+1}) \dots, E_e(y_{n,t(n)})) = 1 \right]$

where in both cases $e \leftarrow G(1^n)_1$

Multiple Encryptions

Algorithm 11 (B')

Input: 1^n , $z_n = i(n)$, e, c

Return B($c, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), c, E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)})$)

Algorithm 11 (B')

Input: 1^n , $z_n = i(n)$, e, cReturn $B(c, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), c, E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)}))$

B' is critically using the public key

Multiple Encryptions

Multiple Encryption in the Private-Key Model

Fact 12

Assume (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, bit not for multiple messages

Multiple Encryption in the Private-Key Model

Fact 12

Assume (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, bit not for multiple messages

Proof: Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a (non-uniform) PRG, and for $i \in \mathbb{N}$ let g_i be its "iterated extension" to output of length i (see Lecture 2.).

Construction 13

- $G(1^n)$ outputs $e \leftarrow \{0,1\}^n$,
- $E_e(m)$ outputs $g_{|m|}(e) \oplus m$
- $D_e(c)$ outputs $g_{|c|}(e) \oplus c$

Multiple Encryptions

Claim 14

(G, E, D) has a indistinguishable encryptions for a single message

Proof:

(G, E, D) has a indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$ be the triplet that realizes it.

(G, E, D) has a indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$ be the triplet that realizes it.

Wlog,

$$|\Pr[\mathsf{B}(z_n, g_{|x_n|}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, U_{|x_n|} \oplus x_n) = 1]| > \mathsf{neg}(n)$$
 (2)

(G, E, D) has a indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$ be the triplet that realizes it.

Wlog,

$$|\Pr[\mathsf{B}(z_n,g_{|x_n|}(U_n)\oplus x_n)=1]-\Pr[\mathsf{B}(z_n,U_{|x_n|}\oplus x_n)=1]|> \mathsf{neg}(n)$$
 (2)

Hence, B implies a (non -uniform) distinguisher for g

(G, E, D) has a indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$ be the triplet that realizes it.

Wlog,

$$|\Pr[\mathsf{B}(z_n,g_{|x_n|}(U_n)\oplus x_n)=1]-\Pr[\mathsf{B}(z_n,U_{|x_n|}\oplus x_n)=1]|> \mathsf{neg}(n)$$
 (2)

Hence, B implies a (non -uniform) distinguisher for g

Claim 15

(G, E, D) does not have a indistinguishable encryptions for multiple messages

(G, E, D) has a indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$ be the triplet that realizes it.

Wlog,

$$|\Pr[\mathsf{B}(z_n,g_{|x_n|}(U_n)\oplus x_n)=1]-\Pr[\mathsf{B}(z_n,U_{|x_n|}\oplus x_n)=1]|> \mathsf{neg}(n)$$
 (2)

Hence, B implies a (non -uniform) distinguisher for g

Claim 15

(G, E, D) does not have a indistinguishable encryptions for multiple messages

Proof:

(G, E, D) has a indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$ be the triplet that realizes it.

Wlog,

$$|\Pr[\mathsf{B}(z_n,g_{|x_n|}(U_n)\oplus x_n)=1]-\Pr[\mathsf{B}(z_n,U_{|x_n|}\oplus x_n)=1]|> \mathsf{neg}(n)$$
 (2)

Hence, B implies a (non -uniform) distinguisher for g

Claim 15

(G, E, D) does not have a indistinguishable encryptions for multiple messages

Proof: Take $x_{n,1}=x_{n,2}$ and $y_{n,1}\neq x_{n,2}$ and $D(c_1,c_2)$ outputs 1 iff $c_1=c_2$

Section 2

Constructions

Private key indistinguishable encryptions for multiple messages

Construction 16

- $G(1^n)$ outputs $e \leftarrow \{0,1\}^n$,
- $E_e(m)$ outputs $g_{|m|}(e) \oplus m$
- $D_e(c)$ outputs $g_{|c|}(e) \oplus c$