EE655: Computer Vision & Deep Learning

Lecture 16

Koteswar Rao Jerripothula, PhD Department of Electrical Engineering IIT Kanpur

Overview

Neural Style Transfer

Generative Adversarial Networks (GANs)

Neural style transfer

Visualizing what a deep network is learning

Repeat for other units.

Layer 3

Layer 4

Layer 5

Layer 2

Layer 3

Layer 4

Layer 5

Layer 5

Layer 5

Layer 5

Layer 5

Neural style transfer cost function

[Gatys et al., 2015. A neural algorithm of artistic style. Images on slide generated by Justin Johnson]

Find the generated image G

1. Initiate G randomly

2. Use gradient descent to minimize J(G)

$$G := G - \frac{3}{4} J(e)$$

Content cost function

$$\underline{J(G)} = \alpha \, \underline{J_{content}(C,G)} + \beta \, J_{style} \, (S,G)$$

- Say you use hidden layer *l* to compute content cost.
- Use pre-trained ConvNet. (E.g., VGG network)
- Let $a^{[l](C)}$ and $a^{[l](G)}$ be the activation of layer l on the images
- If $a^{[l](C)}$ and $a^{[l](G)}$ are similar, both images have

Meaning of the "style" of an image

Say you are using layer *l*'s activation to measure "style." Define style as correlation between activations across channels.

How correlated are the activations across different channels?

Intuition about style of an image

Generated Image n_H n_W

[Gatys et al., 2015. A neural algorithm of artistic style]

Style matrix

$$\begin{array}{c}
\text{H } \omega \\
\text{Let } \mathbf{a}_{i,j,k}^{[l]} = \text{activation at } (i,j,k). \quad \underline{G}^{[l]} \text{ is } \mathbf{n}_{\mathbf{c}}^{[l]} \times \mathbf{n}_{\mathbf{c}}^{[l]} \\
\text{CLA}(S) = \sum_{i=1}^{LD} \sum_{j=1}^{LD} \sum_{i=1}^{LD} \sum_{j=1}^{LD} \sum_{i=1}^{LD} \sum_{j=1}^{LD} \sum_{i=1}^{LD} \sum_{i=1}^{LD} \sum_{j=1}^{LD} \sum_{i=1}^{LD} \sum_{i=1}^{LD}$$

[Gatys et al., 2015. A neural algorithm of artistic style]

Style cost function

$$J_{style}^{(l)}(S,G) = \frac{1}{\left(2n_H^{[l]}n_W^{[l]}n_C^{[l]}\right)^2} \sum_k \sum_{k'} \left(G_{kk'}^{[l](S)} - G_{kk'}^{[l](G)}\right)^2$$

Generative

Adversarial

Generates data (Creates fake data)

Generator and **discriminator**, each competing to win.

Generator trying to fake and Discriminator, trying not to be fooled.

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right).$$

end for

5 steps to training a GAN

- 1. Define GAN architecture based on the application
- 2. Train the discriminator to distinguish between real vs fake data
- 3. Train the generator to fake data that can fool the discriminator
- 4. Continue discriminator and generator training for multiple epochs
- 5. Save generator model to create new, realistic fake data

NOTE: When training the discriminator, hold the generator values constant; and when training the generator, hold the discriminator values constant. Each should train against a static adversary.

Conditional Generative Adversarial Network

Conditional data (y): can be class labels or data from other modalities.

Image-to-Image Translation: Pix2Pix GAN

- · Takes an image as input and maps it to a generated output image with different properties.
- Example: Train an image-to-image GAN to take sketches of handbags and turn them into photorealistic images of handbags.
- · The system requires pairwise correspondences between images during training.

Super-resolution

Increase the resolution of images, adding detail where necessary to fill in blurry areas.

The GAN-generated image looks very similar to the original image, but if you look closely at the headband...

Text-to-Image Synthesis

Take text as input and produce images as described by the text.

(a) StackGAN Stage-I 64x64 images

(b) StackGAN Stage-II 256x256 images

(c) Vanilla GAN 256x256 images

This bird is white with some black on its head and wings, and has a long orange beak

This bird has a yellow belly and tarsus, grey back, wings, and brown throat, nape with a black face This flower has overlapping pink pointed petals surrounding a ring of short yellow filaments

CycleGAN Generator Objectives

- Ensure the translated image looks like a zebra.
 - a. This is trained using the GAN objective with the discriminator.
- Ensure the translated image still looks mostly like the original.
 - a. This is trained using a reconstruction objective with the second generator.
 - This is the novel cycle-consistency loss.

CycleGAN

- Transform images from one set into images that could belong to another set.
- Example: Convert an image of a horse into an image of a zebra.
- The training data for the CycleGAN is simply two sets of images (e.g., a set of horse images and a set of zebra images).
- · The system requires no labels or pairwise correspondences between images for training.

References

https://www.youtube.com/watch?v=R39tWYYKNcl&list=PLkDaE6sCZn6Gl29AoE31iwdVwSG-KnDzF&index=37

https://www.voutube.com/watch?v=ChoV5h7tw5A&list=PLkDaE6sCZn6Gl29AoE31iwdVwSG-KnDzF&index=38

https://www.youtube.com/watch?v=xY-DMAJpIP4&list=PLkDaE6sCZn6Gl29AoE31iwdVwSG-KnDzF&index=39

https://www.youtube.com/watch?v=b1I5X3UfEYI&list=PLkDaE6sCZn6Gl29AoE31iwdVwSG-KnDzF&index=40

https://www.youtube.com/watch?v=W5NPIZzebO0

https://www.youtube.com/watch?v=-8hfnlxEPn4