UFCFA3-30-1 Exam Formula Booklet

1. Logic

- 1.1 Truth Tables
- 1.2 Logical Equivalences (Propositional Logic)
- 1.3 Inference rules (Propositional Logic)
- 1.4 Quantifiers

2. Sets

- 2.1 Some Standard Sets
- 2.2 Set Notations
- 2.3 Set Operations
- 2.4 Cardinality of Sets

3. Functions

- 3.1 Composition of Functions
- 3.2 Injections, Surjections and Bijections

4. Relations

- 4.1 Reflexive, Irreflexive, Symmetric, Transitive
- 4.2 Equivalence Relations
- 4.3 Composition of Relations
- 4.4 Inverse Relation

5 Graph Theory

5.1 Isomorphic Graphs

UFCFA3-30-1 Formula Page 1 of 9

1. Logic

1.1 Truth Tables

Table 1 : negation	
of a proposition	
Р	¬P
Т	F
F	Т

Table 2 :		
cor	conjunction of two	
propositions		
Р	Q	$P \wedge Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Table 3 : disjunction of two propositions	
Q	$P \lor Q$
T	Т
F	Т
Т	Т
F	F
	Q T F T

Table 4 : exclusive-or of two propositions		
$P Q P \oplus Q$		
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Table 4 : implication		
$P \to Q$		
Р	Q	$P\toQ$
Т	T	Т
Т	F	F
F	Т	Т
F	F	Т

Table 5 : biconditional			
	$P \leftrightarrow Q$		
Р	Q	$P \leftrightarrow Q$	
Т	Т	Т	
Т	F	F	
F	Т	F	
F	F	Т	

UFCFA3-30-1 Formula Page 2 of 9

1.2 Logical Equivalences (Propositional Logic)

Logical Equivalence	Name of law
P ∧ True ⇔ P P ∨ False ⇔ P	Identity
P ∨ True ⇔ True P ∧ False ⇔ False	Domination
$\begin{array}{ccc} P \lor P & \Leftrightarrow & P \\ P \land P & \Leftrightarrow & P \end{array}$	Idempotent
$P \lor Q \Leftrightarrow Q \lor P$ $P \land Q \Leftrightarrow Q \land P$ $P \leftrightarrow Q \Leftrightarrow Q \leftrightarrow P$	Commutative
$(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$ $(P \land Q) \land R \Leftrightarrow P \land (Q \land R)$	Associative
$ \begin{array}{ccc} P \vee (Q \wedge R) & \Leftrightarrow & (P \vee Q) \wedge (P \vee R) \\ P \wedge (Q \vee R) & \Leftrightarrow & (P \wedge Q) \vee (P \wedge R) \end{array} $	Distributive
$\neg(\neg P) \Leftrightarrow P$	Double negation
$\neg(P \land Q) \qquad \Leftrightarrow \qquad (\neg P) \lor (\neg Q)$ $\neg(P \lor Q) \qquad \Leftrightarrow \qquad (\neg P) \land (\neg Q)$	de Morgan's
$P \to Q \qquad \Leftrightarrow \qquad (\neg P) \lor Q$	Implication
$P \leftrightarrow Q \qquad \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$	Equivalence
$P \lor (\neg P) \Leftrightarrow True$	Excluded middle
$P \wedge (\neg P) \Leftrightarrow \text{False}$	Contradiction (⊥ ⇔ False)
$P \to Q \iff (\neg Q) \to (\neg P)$	Contrapositive
$\begin{array}{ccc} P \lor (P \land Q) & \Leftrightarrow & P \\ P \land (P \lor Q) & \Leftrightarrow & P \end{array}$	Absorption

UFCFA3-30-1 Formula Page 3 of 9

1.3 Inference Rules (Propositional Logic)

Inference Rule	Name
$\frac{P}{Q}$ $P \wedge Q$	Conjunction
$\frac{P \wedge Q}{P}$	Simplification
$\frac{P}{P \vee Q}$	Addition
$P \to Q$ $\frac{P}{Q}$	Modus Ponens
$P \to Q$ $\frac{\neg Q}{\neg P}$	Modus Tollens
$P \lor Q$ $\frac{\neg Q}{P}$	Disjunctive Syllogism
$P \to Q$ $Q \to R$ $P \to R$	Hypothetical Syllogism
$P = \frac{\neg P}{\bot}$	Contradiction (⊥ ⇔ False)

UFCFA3-30-1 Formula Page 4 of 9

The 'assumption' inference laws:

• Conditional Proof:

Applied to cases where the <u>conclusion</u> is an implication (of the form $\alpha \rightarrow \beta$).

Assume α is true to get β being true; then you can deduce that $\alpha \rightarrow \beta$ is true.

Indirect Proof:

Applies to cases whereby the <u>conclusion</u> is not an implication.

Assume the negation of the conclusion to get a contradiction; then you have proved the conclusion.

1.4 Quantifiers

Quantifiers of one variable		
Statement	When true?	When false?
$\forall x \cdot P(x)$	P(x) is true for every x .	There is an x for which $P(x)$ is false.
$\exists x \cdot P(x)$	There is an x for which $P(x)$ is true.	P(x) is false for every x .

Negation of Quantifiers:

Statement	Equivalent Statement
$\neg \big(\exists x \cdot P(x)\big)$	$\forall x \cdot (\neg P(x))$
$\neg \big(\forall x \cdot P(x) \big)$	$\exists x \cdot (\neg P(x))$

UFCFA3-30-1 Formula Page 5 of 9

2. Sets

2.1 Some Standard Sets

- N the set of all natural numbers = $\{1, 2, 3, ...\}$
- N_0 the set of all non-negative integers = { 0, 1, 2, 3, ...}
- **Z** the set of all integers = $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- the set of all rational numbers
- R the set of all real numbers
- B the set of all bit strings, including the empty string = $\{\lambda, 0, 1, 00, 01, 10, 11, 000, 001, 010, ...\}$

2.2 Set Notations

- $x \in A$ x is an element of A.
- $x \notin A$ $x \in A$ $x \in A$ $x \in A$ $x \in A$
- $A \subseteq B$ A is a subset of B.
- $A \nsubseteq B$ A is not a subset of B.
- $A \subset B$ A is a proper subset of B.

2.3. Set Operations

- The <u>union</u> of A and B: $A \cup B = \{x | (x \in A) \lor (x \in B)\}$
- The <u>intersection</u> of A and B: $A \cap B = \{x | (x \in A) \land (x \in B)\}$
- The <u>difference</u> of A and B: $A \setminus B = \{ x \mid (x \in A) \land (x \notin B) \}$
- The <u>complement</u> of A: $\overline{A} = \{x | x \notin A\}$
- Cartesian Product of A and B: $A \times B = \{(x, y) \mid (x \in A) \land (y \in B)\}$
- Power set of *A* (the set of all subsets of *A*): $P(A) = \{ X \mid X \subseteq A \}$

2.4 **Cardinality of Sets**

Power sets:

Let *A* be a finite set with |A| = n. Then $|P(A)| = 2^n$.

Cartesian Product:
$$|A \times B| = |A| \times |B|$$

Principle of Inclusion Exclusion:
$$|A \cup B| = |A| + |B| - |A \cap B|$$

Others

- $|A \setminus B| = |A| |A \cap B|$
- $|\bar{A}| = |U| |A|$ where U is the universal set.

3 **Functions**

3.1 **Composition of Functions**

Let A, B, and C be sets and consider functions

$$f: A \to B$$

and

$$g:B\to C$$

Note that the codomain of f equals the domain of g.

The composition of g and f, denoted by $g \circ f$ is the function

$$g \circ f \colon A \to C$$

$$g \circ f \colon A \to C$$
 given by $(g \circ f)(x) = g(f(x))$

3.2 Injections, Surjections and Bijections

Let *A* and *B* be sets and let $f: A \rightarrow B$ be a function.

Injection: The function f is said to be an injection if and only if:

for all pairs of distinct members of the domain, $x_1, x_2 \in A$ with $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

Surjection: The function f is said to be a <u>surjection</u> if and only if:

for all members of the codomain, $y \in B$, there exists a member of the domain, $x \in A$, such that f(x) = y.

Alternatively, the function f is a surjection if and only if its image set is equal to its codomain.

Bijection: The function f is said to be a <u>bijection</u> if and only if:

it is both an injection and a surjection.

The function f has an <u>inverse</u> if and only if it is a <u>bijection</u>.

4. Relations

4.1 Reflexive, Irreflexive, Symmetric, Transitive

Let A be a set and let $R: A \times A$ be a relation on the set A. Then:

- R is said to be *reflexive* if and only if, for all $x \in A$, we have $(x, x) \in R$.
- R is said to be *irreflexive* if and only if, for all $x \in A$, we have $(x, x) \notin R$.
- R is said to be *symmetric* if and only if, for all $x, y \in A$, we have that:

if
$$(x, y) \in R$$
 then $(y, x) \in R$.

• R is said to be *transitive* if and only if, for all for all $x, y, z \in A$, we have that:

if
$$(x, y) \in R$$
 and $(y, z) \in R$ then $(x, z) \in R$.

UFCFA3-30-1 Formula Page 8 of 9

4.3 Composition of Relations

Let R and S be relations. The composition $S \circ R$ exists if and only if the right-set of R is the same as the left-set of S. Let A, B and C be sets and let $R: A \times B$ and $S: B \times C$ be relations, then the relation $S \circ R: A \times C$ exists.

The composition $S \circ R$ is defined as follows:

$$(x,z) \in S \circ R \qquad \Leftrightarrow \qquad \exists y \cdot \left(\left((x,y) \in R \right) \land \left((y,z) \in S \right) \right).$$

4.4 Inverse Relation

Let $R: A \times B$ be a relation. The inverse of R, denoted by R^{-1} , is the relation $R^{-1}: B \times A$ given by $R^{-1} = \{(b, a) \mid (a, b) \in R\}$.

5 Graph Theory

5.1 Isomorphic Graphs

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be simple graphs.

 G_1 and G_2 are isomorphic if and only if there exists a bijection of the form $f: V_1 \to V_2$ with the property that, for all vertices v_1, v_2 in V_1 we have: $\{v_1, v_2\}$ is an edge of G_1 if and only if $\{f(v_1), f(v_2)\}$ is an edge of G_2 .

Informally: If it is possible to replace the labelling of the vertices of G_1 with the vertices of G_2 such that the new graph is equal to G_2 , then G_1 and G_2 are isomorphic.

UFCFA3-30-1 Formula Page 9 of 9