Measuring of Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations

by

Ann Berlinsky Kallin

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Science
in
Physics

Waterloo, Ontario, Canada, 2010

© Ann Berlinsky Kallin 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

In this thesis we present methods for measuring entanglement entropy in spin-1/2 Heisenberg systems using quantum Monte Carlo in the valence bond basis. We first directly compare the recently proposed valence bond entanglement entropy to the standard definition of entanglement entropy: the von Neumann entanglement entropy. We find both cases in which SHUT UP, THESIS

We explain VB QMC techniques:

- single projector
- double projector
- loop algorithm Look at VB EE compared to vN Look at Renyi EE Area Laws

Acknowledgements

I would like to thank all the people who made this possible.

Contents

Li	st of	Tables	vii	
List of Figures				
1	Intr	roduction	1	
	1.1	Entanglement	1	
	1.2	Measures of Entanglement	1	
	1.3	The von Neumann Entanglement Entropy	1	
	1.4	The Area Law	1	
2	Qua	antum Monte Carlo in the Valence Bond Basis	2	
	2.1	The Valence Bond Basis	2	
	2.2	Ground State Projection	2	
	2.3	The Hamiltonian / Bond Operators	2	
	2.4	Single Projector	2	
		2.4.1 Measurements	2	
	2.5	Double Projector	2	
	2.6	Loop Moves	2	
3	Vale	ence Bond Entanglement Entropy	3	
	3.1	One Dimensional Systems	3	
	3.2	Approaching Two Dimensions	3	
	3.3	The Area Law	3	

4	asuring Rényi Entanglement Entropy	4			
	4.1	The Swap Operator	4		
	4.2	1D Results	4		
	4.3	The Ratio Operator	4		
	4.4	2D Results	4		
	4.5	The Area Law	4		
5 Prospects for Future Research					
6 Conclusions			6		
\mathbf{A}	APPENDICES				
$\mathbf{R}_{\mathbf{c}}$	References				

List of Tables

List of Figures

Introduction

Explain entanglement
Explain measures of entanglement
Talk about entanglement entropy
Area Law
Corrections to Area Law

- 1.1 Entanglement
- 1.2 Measures of Entanglement
- 1.3 The von Neumann Entanglement Entropy
- 1.4 The Area Law

Quantum Monte Carlo in the Valence Bond Basis

- 2.1 The Valence Bond Basis
- 2.2 Ground State Projection
- 2.3 The Hamiltonian / Bond Operators
- 2.4 Single Projector
- 2.4.1 Measurements
- 2.5 Double Projector
- 2.6 Loop Moves

Valence Bond Entanglement Entropy

- 3.1 One Dimensional Systems
- 3.2 Approaching Two Dimensions
- 3.3 The Area Law

Measuring Rényi Entanglement Entropy

- 4.1 The Swap Operator
- 4.2 1D Results
- 4.3 The Ratio Operator
- 4.4 2D Results
- 4.5 The Area Law

Prospects for Future Research

Conclusions

APPENDICES

Bibliography

[1] Anders W. Sandvik. Ground state projection of quantum spin systems in the valence-bond basis. *Phys. Rev. Lett.*, 95(20):207203, Nov 2005.