### Final Project Presentation

CS-UY 4563 2:00pm Section May 2, 2022 Prof Linda M. Sellie Chuanyang Jin, Alex Yan

### Introduction

Dataset from Kaggle containing 10876 real tweets:

- 2 Classes (relating / not relating to a real disaster)
- 6851 Training Sample used
- 762 Testing Sample used

Performance measured by F1 score

Imbalanced dataset (in real life dataset will be imbalanced)

### Preprocessing

Filter out meaningless message in the raw text.

&amp @ https://

Common stop word filter applied at feature transformation.

#### Web View:



#### Raw Text:

This is a test message & amp will tag @user2 https://t.co/image\_url.



#### Filtered Text:

This is a test message will tag URL.

# Transforming Feature

**Token Count:** 

Transforms the texts into a feature vector with the number of times each word appears in the collection of every tweet text.

Output: 14443 features

|                                       | the | red | dog | cat | eats | food |
|---------------------------------------|-----|-----|-----|-----|------|------|
| <ol> <li>the red dog -&gt;</li> </ol> | 1   | 1   | 1   | 0   | 0    | 0    |
| <ol> <li>cat eats dog →</li> </ol>    | 0   | 0   | 1   | 1   | 1    | 0    |
| <ol><li>dog eats food→</li></ol>      | 0   | 0   | 1   | 0   | 1    | 1    |
| <ol> <li>red cat eats →</li> </ol>    | 0   | 1   | 0   | 1   | 1    | 0    |
|                                       |     |     |     |     |      |      |

# Transforming Feature

TF-IDF

(Term Frequency-Inverse Document Frequency)

Output: 14443 features

|  | _ | _ | <br>_ |
|--|---|---|-------|
|  |   |   |       |
|  |   |   |       |
|  |   |   |       |
|  |   |   |       |
|  |   |   |       |
|  |   |   |       |
|  |   |   |       |

For a term i in document j:

TFIDF

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 $tf_{i,j}$  = number of occurrences of i in j  $df_i$  = number of documents containing iN = total number of documents

|   | blue | bright | can | see | shining | sky | sun | today |
|---|------|--------|-----|-----|---------|-----|-----|-------|
| 1 | 1    | 0      | 0   | 0   | 0       | 1   | 0   | 0     |
| 2 | 0    | 1      | 0   | 0   | 0       | 0   | 1   | 1     |
| 3 | 0    | 1      | 0   | 0   | 0       | 1   | 1   | 0     |
| 4 | 0    | 1      | 1   | 1   | 1       | 0   | 2   | 0     |



|   | blue  | bright | can   | see   | shining | sky   | sun    | today |
|---|-------|--------|-------|-------|---------|-------|--------|-------|
| 1 | 0.301 | 0      | 0     | 0     | 0       | 0.151 | 0      | 0     |
| 2 | 0     | 0.0417 | 0     | 0     | 0       | 0     | 0.0417 | 0.201 |
| 3 | 0     | 0.0417 | 0     | 0     | 0       | 0.100 | 0.0417 | 0     |
| 4 | 0     | 0.0209 | 0.100 | 0.100 | 0.100   | 0     | 0.0417 | 0     |

# Transforming Feature

**BERT** 

(Bidirectional Encoder Representations from Transformers)

Output: 384 features



### Logistic Regression

- 63 + 1 different hyperparameters
  - 3 Feature Transformation
  - L1, L2 Regularization
  - Different C values
- Trials reveal ideal C value is near 1
  - Best test F1 score of 0.796992.
  - Achieved at C = 0.8 with L2
     Regularization and BERT
- Not overfitting too much.
  - Not a significant difference between training & testing F1 score



### SVM

- 54 + 1 different hyperparameters
  - 3 Feature Transformation
  - Radial Basis Function / Linear / Polynomial (deg 3)
  - Different C values
- Trials reveal ideal C value is near 1
  - Best test F1 score of 0.811060.
  - Achieved at C = 1.7 with RBF and BERT
- Slight overfitting (more than Logistic Regression)
  - Around 10% difference in training & testing F1 score



### Neural Network

- 15 + 1 different hyperparameters
  - Only applied on BERT (otherwise too time consuming)
  - Different activation function: logistic, ReLU, tanh
  - Different C values
- Trials reveal ideal C value is near 1
  - Best test F1 score of 0.8.
  - Achieved at C = 1 with ReLU
- Less overfitting, roughly same as logistic regression.



## Additional Methods

Naive Bayes Random Forest Gradient Boosting

- Try Gaussian Naive Bayes,
   Multinomial Naive Bayes,
   Complement Naive Bayes,
   Bernoulli Naive Bayes and
   Categorical Naive Bayes
- Vary the number of estimators
   (or trees) in the Random Forest,
   Gradient Boosting



#### Ensemble Model

single model may not work well



take advantage of different models

First attempt: majority vote of three best models → fail to improve accuracy

Second attempt: rely mainly on the best model, refer to the second, third, and fourth best models as well

→ improve accuracy



### Conclusion

Best result is produced by combining SVM, logistic regression, neural networks, and gradient boosting, achieving F1 score of 0.812121 (kaggle test set F1 score 0.82286 ranking 157/896)

Every model exhibited roughly the same F1 score using the best hyperparameter, probably because the dataset provided was not adequate for the training to reach a higher F1 score.

| Model    | LogReg   | SVM      | Neural<br>Networks | Naive<br>Bayes | Random<br>Forest | Gradient<br>Boosting | Ensemble<br>Model |
|----------|----------|----------|--------------------|----------------|------------------|----------------------|-------------------|
| F1 Score | 0.796992 | 0.811060 | 0.800001           | 0.789174       | 0.786834         | 0.791411             | 0.812121          |

| 153 | ps40             |     | 0.82378 | 8  | 1mo |  |
|-----|------------------|-----|---------|----|-----|--|
| 154 | Leong Ivan       | 4   | 0.82378 | 4  | 1mo |  |
| 155 | Yuri             |     | 0.82316 | 2  | 2mo |  |
| 156 | Jaaack Wang      | (9) | 0.82286 | 10 | 1mo |  |
| 157 | Alex & Chuanyang |     | 0.82286 | 2  | 1h  |  |