RICERCA OPERATIVA - PARTE II

ESERCIZIO 1. (10 punti) Sia dato il seguente problema di PLI

$$\begin{array}{ll}
\max & x_2 \\
6x_1 - x_2 \ge 11 \\
x_1 \ge 2 \\
x_1 \le 4 \\
2x_1 + 2x_2 \le 13 \\
x_1, x_2 \ge 0 \\
x_1, x_2 \in Z
\end{array}$$

Si visualizzi graficamente la chiusura convessa della regione ammissibile Z_a e se ne dia una descrizione tramite diseguaglianze lineari. Si risolva il problema con l'algoritmo branch-and-bound risolvendo i rilassamenti lineari per via grafica.

ESERCIZIO 2. (9 punti) Sia dato il seguente problema

$$\min \quad -x^3 + y$$
$$-x^2 + y \ge 0$$
$$-y + 1 \ge 0$$

- È un problema di programmazione convessa?
- ci sono punti che non soddisfano nessuna delle constraint qualification viste a lezione?
- si impostino le condizioni KKT e si trovino tutti i punti che le soddisfano;
- osservando graficamente la regione ammissibile, si può affermare con certezza che il problema ammette un ottimo globale? Nel caso lo ammettesse, quale punto restituireste come ottimo globale?

ESERCIZIO 3. (5 punti) Sia dato un problema di PLI con regione ammissibile Z_a . Si dica se le seguenti affermazioni sono vere o false, **motivando la risposta**:

- il taglio di Gomory non è soddisfatto da tutte le soluzioni ottime del rilassamento lineare del problema di PLI;
- il taglio di Gomory è soddisfatto da tutte le soluzioni ottime del problema di PLI;
- \bullet la regione ammissibile S_a del rilassamento lineare del problema di PLI è un sottinsieme del semispazio definito dal taglio valido.

ESERCIZIO 4. (5 punti) Si dia la definizione di minimo locale e minimo globale. Si dimostri che in un problema senza vincoli con funzione obiettivo convessa ogni minimo locale è anche un minimo globale.