

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Course Name:	Elements of Electrical and Electronics Engineering Laboratory	Semester:	I/II
Date of Performance:	17 / 9 /2024	Batch No:	C5-2
Student Name:	Nidhesh Gomai	Roll No:	16014224025
Faculty Sign & Date:		Grade/Marks:	/ 20

Experiment No: 3

Title: Theyenin's Theorem & Norton's Theorem

Aim and Objective of the Experiment:

- To Verify for Thevenin's Theorem for the circuit
- To Verify Norton Theorem for the Circuit.

COs to be achieved:

CO1: Analyze resistive networks excited by DC sources using various network theorems.

EEEEL Semester: I/II Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Task 1: Circuit Diagram to measure R_{TH}/R_N:

Task 2: Circuit Diagram to measure VTH:

Task 3: Circuit Diagram to measure Isc:

Nidher Gamai
CS-2 16014224025

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Stepwise-Procedure:

Thevenin's Theorem:

- 1. Connect the circuit as shown in the circuit diagram.
- 2. Set 10V and measure open circuit voltage V_{Th} across load terminals A and B.
- 3. Replace all voltage sources by Short circuit and measure R_{Th} across terminals A and B as per the circuit diagram shown in the figure.
- 4. Draw Thevenin's equivalent circuit and determine the value of load current from it.
- 5. Verify the results theoretically.

Norton's Theorem:

- 1. Connect the circuit as shown in the circuit diagram.
- 2. Set the voltages 10V
- 3. Remove the load resistance and measure the short circuit current I_{SC} through A and B terminals.
- 4. Replace all the voltage sources by Short circuit and measure R_{Th} across terminals A and B as per the circuit diagram shown in the figure.
- 5. Draw Norton's equivalent circuit and determine the value of load current.
- 6. Verify the results theoretically

Nichesh (Jona) C5-2 16014224025

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

Observation Table:

	V _{TH} (V)	R_{TH} / R_N (Ω)	I _N (mA)	I _L (mA)
Theoretical value	-4.103V	132.601	-17-6	-12.3
Practical value	-4.10 V	231.22	-17.4	-12.1

Draw Thevenin's Equivalent circuit

$$I_{L} = \frac{V+h}{R+k+R_{L}}$$

$$I_{L} = \frac{-4.103}{332.60}$$

$$I_{L} = -0.0123 A$$

$$I_{L} = -12.3 MA$$

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Conclusion: We understood to analyze resistine networks using DC source. we cannot learned how to deal with resistances on bread board.

Signature of faculty in-charge with Date:

EEEEL Semester: I/II Academic Year: 2024-25