Analisi di Immagini e Video (Computer Vision)

Giuseppe Manco

Outline

- Filtri e normalizzazione
- Image Processing avanzato
 - Edge detection

Crediti

- Slides adattate da vari corsi
 - Analisi di Immagini (F. Angiulli) Unical
 - Intro to Computer Vision (J. Tompkin) CS Brown Edu
 - Computer Vision (I. Gkioulekas), CS CMU Edu

Filtri

Point Operation

point processing

Neighborhood Operation

"filtering"

Filtraggio spaziale lineare

Filtraggio spaziale lineare

$$h[i,j] = \sum_{k=-a}^{a} \sum_{l=-b}^{b} f[k+a,l+b] \times I[i+k,j+l]$$

- f, matrice dei coefficienti (maschera):
 - detta filter, mask, filter mask, kernel, template, window
- Maschera di dimensione $m \times n$ (in genere dispari):
 - m = 2a+1, n = 2b+1

Esempio: box (average) filter

$$f[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[i,j] = \sum_{k=-a}^{a} \sum_{l=-b}^{b} f[k+a,l+b] \times I[i+k,j+l]$$

$$i = 1, j = 1$$
$$a, b = 1$$

$$f[\cdot,\cdot]_{\frac{1}{9}}$$

0	10				

$$h[i,j] = \sum_{k=-a}^{a} \sum_{l=-b}^{b} f[k+a,l+b] \times I[i+k,j+l]$$

$$i = 1, j = 2$$

 $a, b = 1$

$$f[\cdot,\cdot]_{\frac{1}{9}}$$

0	10	20			

$$h[i,j] = \sum_{k=-a}^{a} \sum_{l=-b}^{b} f[k+a,l+b] \times I[i+k,j+l]$$

$$i = 1, j = 3$$

 $a, b = 1$

$$f[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

$$h[i,j] = \sum_{k=-a}^{a} \sum_{l=-b}^{b} f[k+a,l+b] \times I[i+k,j+l]$$

$$i = 1, j = 4$$

 $a, b = 1$

$$f[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

			_			
0	10	20	30	30		

$$h[i,j] = \sum_{k=-a}^{a} \sum_{l=-b}^{b} f[k+a,l+b] \times I[i+k,j+l]$$

$$i = 1, j = 5$$

 $a, b = 1$

$$f[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		
			?			

$$h[i,j] = \sum_{k=-a}^{a} \sum_{l=-b}^{b} f[k+a,l+b] \times I[i+k,j+l]$$

$$i = 6, j = 4$$
$$a, b = 1$$

$$f[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30			
0	10	20	30	3			
		_					_
					?		
			50				

$$h[i,j] = \sum_{k=-a}^{a} \sum_{l=-b}^{b} f[k+a,l+b] \times I[i+k,j+l]$$

$$i = 4, j = 6$$

 $a, b = 1$

$$f[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[i,j] = \sum_{k=-a}^{a} \sum_{l=-b}^{b} f[k+a,l+b] \times I[i+k,j+l]$$

$$i = 1, j = 1$$

 $a, b = 1$

Smoothing mediante filtraggio spaziale

Average filter

- Sostituisce l'intensità del pixel col valore medio del suo vicinato
- **Smoothing**: Le transizioni brusche (sharp) d'intensità vengono attenutate

1	1	1	1
<u> </u>	1	1	1
9	1	1	1

Smoothing mediante filtraggio spaziale con average filter

- Riduzione del rumore (noise removal)
 - Side-effect: i bordi (edge) vengono attenuati (blur)

- Riduzione dei dettagli "irrilevanti" (image blurring)
 - Offuscare l'immagine per ottenerne una rappresentazione grossolana
 - Gli oggetti più piccoli si confondono con lo sfondo
 - Gli oggetti più grandi diventano "bloblike" e facili da individuare

Filtro Gaussiano

 Campiona I valori del kernel sulla base della funzione

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

Filtro Gaussiano

Campiona i valori del kernel sulla base della funzione

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- I pesi decadono con la distanza dal centro
- Ridurre l'effetto di blurring quando si effettua l'operazione di smoothing
- Coefficienti inversamente proporzionali alla distanza dal pixel centrale
- Con maschera piccola non vi sono grandi differenze

Dimensione ottimale?

- Il filtro gaussiano è potenzialmente infinito...
- Regola empirica (Gaussian): settiamo l'ampiezza a 6 σ

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

Filtraggio spaziale lineare

$$h[i,j] = \sum_{k=-a}^{a} \sum_{l=-b}^{b} f[k+a,l+b] \times I[i+k,j+l]$$

- Fondamentale!
 - Migliora l'immagine
 - Denoise, ridimensiona, aumenta il contrasto, etc.
 - Estrae informazioni dall'immagine
 - Texture, edges, distinctive points, etc.
 - Trova patterns
 - Template matching

1.

0	0	0
0	1	0
0	0	0

2.

0	0	0
0	0	1
0	0	0

3.

1	0	-1
2	0	-2
1	0	-1

4.

0	0	0
0	2	0
0	0	0

1	1	1	1
_ _	1	1	1
9	1	1	1

Original

0	0	0
0	1	0
0	0	0

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Ori	giı	nal

0	0	0
0	0	1
0	0	0

Original

0	0	0
0	0	1
0	0	0

Shifted right By 1 pixel

1	0	-1
2	0	-2
1	0	-1

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

1	2	1
0	0	0
-1	-2	-1

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

\circ	•	•	1
\mathbf{O}_{1}	r18	211	าลไ
		\supset	

0	0	0	$-\frac{1}{2}$	1	1	1
0	2	0		1	1	1
0	0	0	9	1	1	1

?

before after

Convoluzione

• Definizione generale:

$$(f*g)(x) = \int_{-\infty}^{\infty} f(u)g(x-u)du$$
 Segnale filtrato Filtro Segnale di input

Convoluzione

Il filtering come convoluzione

$$(f*I)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$$
Segnale filtrato

Filtro Segnale di input

Convoluzione

$$(f * I)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$$

Correlazione

$$(f \otimes I)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x+i,y+j)$$
Applicational contrario

• Nessuna differenza se il filtro è simmetrico

• Convoluzione

1	2	3
4	5	6
7	8	9

$(f * I)(x,y) = \sum_{i,j=-\infty}^{\infty} f$	f(i,j)I(x-i,y-j)
--	------------------

$$(f * I)(3,3) = f(-1,-1) * I(4,4) + f(-1,0) * I(4,3) + f(-1,1) * I(4,2)$$

$$+f(0,-1) * I(3,4) + f(0,0) * I(3,3) + f(0,1) * I(3,3)$$

$$+f(1,-1) * I(2,4) + f(1,0) * I(2,3) + f(1,1) * I(2,2)$$

Correlazione

1	2	3
4	5	6
7	8	9

$$(f \otimes I)(3,3) = f(-1,-1) * I(2,2) + f(-1,0) * I(2,3) + f(-1,1) * I(2,4) + f(0,-1) * I(3,2) + f(0,0) * I(3,3) + f(0,1) * I(3,4) + f(1,-1) * I(4,2) + f(1,0) * I(4,3) + f(1,1) * I(4,4)$$

Proprietà

- Commutativa: a * b = b * a
- Associativa: a * (b * c) = (a * b) * c
 - La correlazione non lo è (effetto rotazione)
- Si distribuisce: a * (b + c) = (a * b) + (a * c)
- lineare: ka * b = a * kb = k (a * b)
- Identità: sull'impulso unitario e = [0, 0, 1, 0, 0], e * a = a

- A = B * B
- $C = B \otimes B$

- $A = B \otimes C$
 - "because it kind of looks like it."

Cè un filtro Gaussiano

- Se il filtro 'assomiglia' all'immagine = 'template matching'
 - Confronta un'immagine con quello che vuoi trovare, in tutte le regioni.
 - L'asimmetria acquista un senso

D (275 x 175 pixels)

f 61 x 61

D (275 x 175 pixels)

f 61 x 61

Filtri separabili

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$$

• Un filtro è **separabile** se lo stesso effetto può essere ottenuto dall'applicazione in sequenza di due filtri più semplici

Filtri separabili

- Perché è utile?
 - Immagine MxN, filtro PxQ
 - 2D convolution: ~MNPQ addizioni/moltiplicazioni
 - Separable 2D: ~MN(P+Q) addizioni/moltiplicazioni
 - Speed up = PQ/(P+Q)
- Filtro $9x9 = ^4.5x$ più veloce

Componenti a bassa ed alta frequenza

- Informalmente, le *frequenze* di una immagine sono una misura di quanto l'intensità varia con la distanza
 - Le componenti ad *alta frequenza* sono associate a grandi cambiamenti dell'intensità entro piccole distanze (es. bordi e rumore)
 - Le componenti a bassa frequenza sono associate a piccoli cambiamenti dell'intensità (regioni uniformi)

 Terminologia utile per discutere gli effetti di un filtro e scegliere il filtro più appropriato al task

Filtri passa-basso e passa-alto

• Filtro passa-alto: fa "passare" le componenti ad alta frequenza e riduce o elimina le componenti a bassa frequenza

• Filtro passa-basso: fa "passare" le componenti a bassa frequenza e riduce o elimina le componenti ad alta frequenza

Filtri passa-basso e passaalto nel dominio spaziale

• Filtro passa-basso (es., average filter):

- La somma dei coefficienti vale 1 → regioni uniformi preservate e non uniformi tendono ad uniforme
- Offusca sia i bordi che il rumore

$$f = \frac{1}{9} \times \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Filtro passa-alto:

 La somma dei coefficienti 0 → la risposta sulle componenti a bassa frequenza è prossima a zero

$$f = \frac{1}{9} \times \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Sharpening: Unsharp masking

- *Sharpening*: evidenziare transizioni d'intensità
- Unsharp masking:
 - Appica average filter all'immagine
 - Sottrai l'immagine filtrata da quella originale (maschera)
 - Aggiungi la maschera opportunamente pesata all'immagine originale

Unsharp masking

$$I_m = I - h_{BLUR} * I = (h_{ID} - h_{BLUR}) * I = g_m * I$$

$$I_{res} = I + k \cdot I_m = I + k \cdot g_m * I = (h_{ID} + k \cdot g_m) * I$$

$$g_m = (h_{ID} - h_{BLUR})$$
 è un filtro passa-alto

• Esempio:

$$w = h \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

 $h=2 \rightarrow \text{unsharp masking}$

- $k = 1 \rightarrow$ unsharp masking
- $k < 1 \rightarrow$ si riduce l'importanza della maschera
- $k > 1 \rightarrow$ highboost filtering

Gestire i risultati di un filtro

- L'applicazione di un filtro può produrre valori al di fuori dell'intervallo previsto per le intensità
 - Clipping
 - Scaling
 - Utilizzo diretto andando a sottrarre/sommare immagine di partenza
 - Dividere per una costante da determinare caso per caso