

L'influence des transporteurs tonoplastiques sur la répartition des sucres chez Solanum lycopersicum

Existe-t-il une corrélation entre les flux de glucose et de malate dans les vacuoles du péricarpe ?

04/12/2020

Sommaire

Existe-t-il une corrélation entre les flux de glucose et de malate dans les vacuoles du péricarpe ?

Introduction

- 1. Matériel et Méthodes
 - 1. Extraction
 - 2. Dosage du malate
 - 3. Dosage du glucose
- 2. Analyse des résultats
 - 1. Analyse statistique R
 - 2. Interprétation Biologique

Conclusion

Bibliographie

Introduction

L'organisme modèle : Solanum lycopersicum

- •Famille des **Solanaceae** : Solanum tuberosum (pomme de terre), Solanum melongena (aubergine), Genre Capsicum (piments)
- •Caractères intéressants au niveau agronomique : feuilles (composés), ramification (sympodiale), péricarpe (charnu)

Péricarpe charnu de Solanum lycopersicum @snv.jussieu.fr

Structure sympodiale @LinneenneLyon.org

Stades du développement de Solanum lycopersicum @BMC Plant Biology

Introduction

Les métabolites d'étude

Introduction

Un transporteur tonoplastique des monosaccharides : TMT1

- Importateur vacuolaire de glucose
- Sous-famille des TMT (tonoplast monosaccharide transporter)

Schéma résumant la localisation et la fonction des différents transporteurs de sucres dans la cellule végétale - @researchgate.net

1. Extraction

- 3 cycles → épuiser le culot
- Éthanol à 80% → solubilise membrane
- Éthanol à 50% → solubilité
 composés (acides organiques, ..)
- 80°C → favoriser échange inactiver protéines

2. Dosage du malate

Exemple calcul:

Tricine (M = 179,17 g/mol)

On veut 1,5 mL d'une solution à 1M

1M = 1 mol/L 1L de 1M = 179,17 g 1 mL de 1M = 179, 17 mg

donc:

1,5 mL de 1M = 268,755 mg

2. Dosage du malate

$$DO - DO_{blanc} = \Delta DO$$
$$[Malate]_p = \frac{\Delta DO - b}{a}$$

$$[Malate]_{p}/_{V_{r\acute{e}actionel}} = [Malate]_{\mu L \, d'extrait}$$

$$[Malate]_{\mu L \, d'extrait} * V_{total} = [Malate]_{extrait}$$

$$[Malate]_{extrait}/_{m} = [Malate]/_{mgFW}$$

3. Dosage du glucose

Exemple calcul:

NADP+ (M = 744,413 g/mol)

On veut 0,6 mL une solution à 45mM

1M = 1 mol/L 1L de 1M = 744,413 g 1 mL de 1M = 744,413 mg 1 mL de 0,045M = 33,499 mg

donc:

0.6 mL de 0.045 M = 20.0994 mg

$$\mu mol NADPH = \frac{\Delta DO}{2,85 * 6,22}$$

1. Analyse statistique R – Statistiques descriptives

Analyse des données aberrantes, tendances centrales et dispersion

Row Labels ▼ Count of	of Glucose	Moyenne	Écartypep	Min	Max	coefficient de variation	Row Labels	Count of Malate	Min	Max	Moyenne I	Ecart-type	Coefficient de variation
⊞TMT135S2	33	24	9	6	53	38%	⊞TMT135S2	33	3	12	8	2	26%
⊞TMT235S6	33	55	16	7	82	29%	⊞TMT235S6	33	2	11	6	2	37%
⊕WT	33	69	15	18	91	22%	⊕WT	33	2	8	5	2	36%
Grand Total	99	49	23	6	91		Total	99	2	12	6	2	

Analyse de la répartition de Glucose et Malate chez TMT1 et WT

1. Analyse statistique R – Statistiques décisionelles

Etude par comparaisons des moyennes suivie d'un test de corrélation

Les tests de Shapiro montrent que les répartitions ne suivent pas toutes la loi normale

Test de Wilcoxon-Mann-Whitney pour échantillons non-appariés :

>wilcox.test(TMT1\$Glucose,WT\$Glucose, alternative ="less")

Wilcoxon rank sum exact test

data: TMT1\$Glucose and WT\$Glucose

W = 29, p-value = 3.189e-15

alternative hypothesis: true location shift is less than 0

>Test de comparaison du Glucose Hypothèse Forte Wilcoxon rank sum test with continuity correction

data: TMT1\$Malate and WT\$Malate

W = 936, p-value = 5.317e-07

alternative hypothesis: true location shift is not equal to 0

>Test de comparaison du Malate Hypothèse faible

1. Analyse statistique R – Statistiques décisionelles

Coefficient de corrélation et droite de régression linéaire

>cor(TMT1\$Malate,TMT1\$Glucose,use="everything")
>cor.test(TMT1\$Glucose,TMT1\$Malate)

```
Pearson's product-moment correlation

data: TMT1$Glucose and TMT1$Malate
t = -7.0577, df = 31, p-value = 6.313e-08
alternative hypothesis: true correlation is not equal to
0
95 percent confidence interval:
-0.8888413 -0.6048135
sample estimates:
cor
-0.7851049
```

Malate en fonction du glucose chez le mutant TMT1

1. Analyse statistique R – Statistiques décisionelles

Comparaison avec le Wild-Type

>cor(WT\$Malate,WT\$Glucose,use="everything")
>cor.test(WT\$Glucose,WT\$Malate,method = c("spearman"))

Spearman's rank correlation rho

data: WT\$Glucose and WT\$Malate
S = 6721.1, p-value = 0.4947
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho

-0.1231721

Malate en fonction du glucose chez WT

2. Interprétation Biologique

Conclusion

Différences significatives de concentration en malate chez le mutant TMT1:35S → effet de la mutation sur la concentration en malate

Corrélation négative et significative du malate et du glucose chez le mutant TMT1:35S (inexistante chez le Wild Type)

Mutant TMT135S2 \rightarrow Knock-out du gène TMT1 \rightarrow non expression du gène TMT1 \rightarrow absence de protéine TMT1 \rightarrow importations monosaccharides par d'autres transporteurs \rightarrow faible concentrations en glucose dans la vacuole

Glucose dans le cytosol → utilisé par d'autres organelles (plastes, mitochondries) → voies métaboliques plus prolifiques → explique l'accumulation de malate observée dans la vacuole chez TMT135S2

Discussion

TETHYLENE acid kinase neutral starch amylase sugar chlorophyll hydrolase anthocyanin pectin (hard) pectinase less pectin (soft) hydrolases large organics aromatic

Bibliographie

Martinière A. et al. *In Vivo Intracellular pH Measurements in Tobacco and Arabidopsis Reveal an Unexpected pH Gradient in the Endomembrane System,* October 2013. https://doi.org/10.1105/tpc.113.116897

Karina Wingenter et al., Increased Activity of the Vacuolar Monosaccharide Transporter TMT1 Alters Cellular Sugar Partitioning, Sugar Signaling, and Seed Yield in Arabidopsis, October 2010. DOI: https://doi.org/10.1104/pp.110.162040

Finkemeier, Iris, and Lee J Sweetlove. *The role of malate in plant homeostasis,* F1000 biology reports vol. 1 47. 29 Jun. 2009, doi:10.3410/B1-47

Bertrand P. Beauvoit et al. *Model-Assisted Analysis of Sugar Metabolism throughout Tomato Fruit Development Reveals Enzyme and Carrier Properties in Relation to Vacuole Expansion*, Published August 2014. https://doi.org/10.1105/tpc.114.127761

Danilo C. et al. Malate Plays a Crucial Role in Starch Metabolism, Ripening, and Soluble Solid Content of Tomato Fruit and Affects Postharvest Softening, January 2011. DOI: https://doi.org/10.1105/tpc.109.072231

AGRIKOLA: Systematic RNAi knockouts in Arabidopsis http://arabidopsis.info/CollectionInfo?id=68

