Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Технология приборостроения (РЛ6)»

Домашняя работа №1 по дисциплине «Безопасность жизнедеятельности» Вариант № 10

Выполнил ст. группы РЛ6-61 Филимонов С.В.

Преподаватель Матасова О. Ю.

Задание:

Определить УЗД (уровни звукового давления) в расчетной точке при заданных уровнях звуковой мощности источников (L_p = $f(f_{cr})$) (источники ненаправленные), указанном расположении расчетной точки относительно источников шума, габаритных размерах промышленного помещения. Максимальный габарит любого источника много меньше расстояния до расчетной точки. Полученные данные сравнить с нормативными значениями (CH 2.2.4/2.1.8.562-96). Построить расчетный и предельный спектры. Сделать выводы о необходимости защитных мероприятий. Предложить защитные мероприятия.

Примечание: постоянную помещения В определить в соответствии с назначением помещения и его объемом по СНиП II-12-77

Исходные данные:

Схема расположения расчетной точки относительно источников шума в помешении: 2

Схема 2

Источники шума: 3 – подвешен 1,2 – на полу;

Расстояние от РТ до источников шума: $R_1 = 2$ м, $R_2 = 8$ м, $R_3 = 8$ м;

Габаритные размеры промышленного помещения: 10x20x5 м³;

Уровень звуковой мощности источников

No,	L _w =f(f _{cr}), дБ									
п/п	63	125	250	500	1000	2000	4000	8000		
1-7	68	70	73	79	81	82	80	73		
2-8	101	102	100	101	99	99	97	95		
3-9	90	91	98	99	97	93	91	86		

Решение:

1. Определение УЗД в расчётной точке от і-ого источника в каждой октавной полосе

УЗД (уровни звукового давления) в расчетной точке при заданных уровнях звуковой мощности нескольких источников шума на каждой j-той из восьми октавных полос определяем по следующей формуле:

$$L_j = L_{Wi} + 10 lg \left(rac{\Phi}{S_i} + rac{4}{B}
ight),$$
дБ (1)

где L_{Wi} - октавный уровень звуковой мощности і-го источника, дБ;

 Φ - фактор направленности источника шума, Φ =1;

 Ω_i - пространственный угол излучения источника, рад. По таблице 3 из СНиП 23-03-2003 принимаем $\Omega_1 = 2\pi$ (источник на полу), $\Omega_2 = \pi$ (источники на полу, прижат к стене) $\Omega_3 = \pi$ (источник подвешен, прижат к двум стенам);

Площадь поверхности излучения i-ого источника, M^2 :

$$S_i = \Omega_i R_i^2 \mathbf{M}^2,$$
 (2)

здесь Ω_i — телесный угол i-ого источника;

 R_{i} — радиус сферы излучения (расстояние от i-ого источника до расчётной точки).

B — акустическая постоянная помещения в м 2 , определяемая по формуле 4 из СНиП II-12—77.

$$B = B_{1000}\mu, M^2$$
 (3)

где B_{1000} - постоянная помещения в M^2 на среднегеометрической частоте 1000 Γ ц, определяемая по таблице 3 в зависимости объема V в M^3 и типа помещения. Так как объем помещения $V = A*B*C = 10 \cdot 20 \cdot 5 = 1000$ M^3 и помещение типа 1, то $B_{1000} = \frac{V}{20} = \frac{1000}{20} = 50$ M^2 ;

 μ - частотный множитель,
определяемый по таблице 4 из СНиП II-12-77 равен:

Частотный множитель μ из среднегеометрических частот октавных полос в Γ ц										
Объем помещения V , M^3	63	125	250	500	1000	2000	4000	8000		
1000	0,65	0,62	0,64	0,75	1	1,5	2,4	4,2		

Отсюда по формуле (3):

Параметр	Среднегеометрических частоты октавных полос в Гц									
	63	125	250	500	1000	2000	4000	8000		
В, м ²	32,5	31	32	37,5	50	75	120	210		

Таким образом УЗД для каждого из источников в октавных полосах частот согласно формуле (1) следующий:

УЗД	Среднегеометрических частоты октавных полос в Гц									
	63	125	250	500	1000	2000	4000	8000		
$L_{j1,\; {\sf Д}ar{\sf B}}$	60,11	62,27	65,17	70,66	71,78	71,69	68,64	60,7		
$L_{j2,\; {\sf Д}ar{\sf B}}$	92	93,3	91	91,5	88,3	86,7	83	79		
$L_{j3,\; { m Д} { m B}}$	81	82	89	89	86	81	77	70		

2.Определение суммарного УЗД в расчётной точке от 3 источников в каждой октавной полосе

Рассчитываем УЗД в расчетной точке при заданных уровнях звуковой мощности источников на каждой (j-той) из восьми октавных полос $^L\Sigma j$, дБ от всех трех источников, и сравниваем с нормативным значением предельно допустимых уровней звукового давления (согласно таблице 2 из CH 2.2.4/2.1.8.562–96 для производственных помещений) $^L j$ доп, дБ

$$L_{\sum j} = 10 lg \sum_{n=1}^{3} 10^{0,1L_{jn}},$$
дБ (4)

Суммарный УЗД от источников шума в октавных полосах частот согласно (4) и предельный спектр:

УЗД	Среднегеометрических частоты октавных полос в Гц										
	63	125	250	500	1000	2000	4000	8000			
$L_{\sum j,\; дB}$	92	93	93	93	90	87	83	79			
L_{j доп $, дБ$	95	87	83	78	75	73	71	69			

Сравнивая значения $L_{\Sigma j}$ и $L_{j\text{доп}}$, делаем вывод, что на пяти среднегеометрических частотах F = 125, 250, 500, 1000, 2000, 4000, 8000 Гц уровень звукового давления шума превышает нормативное значение, следовательно, необходимо принимать меры по снижению шума.

3. Требуемое снижение уровней шума $^{\Delta L_{ au p}}$, дБ, в октавных полосах частот

Требуемое снижение шума рассчитывается согласно следующей формуле:

$$\Delta L_{\mathsf{Tp}} = L_{\sum j} - L_{j\mathsf{AON}} \tag{5}$$

Требуемое снижение уровней шума:

Требуемое	Среднегеометрических частоты октавных полос в Гц								
снижение уровня шума	63	125	250	500	1000	2000	4000	8000	
$\Delta L_{тр,\;дB}$	0	6	10	15	15	14	12	10	

График

Предлагаемые защитные мероприятия:

- 1) использование специальной звукопоглощающей облицовки внутренних поверхностей помещения;
- 2) изменения мощностных характеристик источников шума;
- 3) применение звукоизолирующего экрана (кожуха);
- 4) применение звукоизолирующих кабин.