Appendices: Use of satellite data for understanding and predicting oil sardine (Sardinella longiceps) catch variability along the southwest coast of India

13 February, 2020

Appendix A: Tests for prior season catch as covariate

Table A1. Model selection tests of time-dependency the log catch during spawning months using F-tests of nested linear models. S_t is the catch during the spawning period (Jul-Sep). N_t is the catch during the non-spawning period (Oct-Jun). S_{t-1} and N_{t-1} are the catch during the prior season during and after the spawning period respectively. S_{t-2} and N_{t-2} are the same for two seasons prior. Test A uses catch during the spawning period as the explanatory variable. Test B uses catch during the non-spawning period as the explanatory variable. The numbers in front of the model equation indicate the level of nestedness. For Test C, there are two nested model sets, each with a different model 3. The Naive model is a model that uses the previous data point in the time series as the prediction; thus the Naive model has no estimated parameters.

	Residual		Adj.		р		
Model	df	MASE	R2	\mathbf{F}	value	AIC	LOOCV
Naive Model 1984-2015 data							
$ln(S_t) = ln(S_{t-1}) + \epsilon_t$	32	1				122.85	1.599
Time dependency test A 1984-2015 data							
$1. \ln(S_t) = \alpha + \ln(S_{t-1}) + \epsilon_t$	31	0.992	-29			124.83	1.65
$2. \ln(S_t) = \alpha + \beta \ln(S_{t-1}) + \epsilon_t$	30	0.814	10.3	15.14	0.001	114.14	1.43
3. $ln(S_t) = \alpha + \beta_1 ln(S_{t-1}) + \beta_2 ln(S_{t-2}) + \epsilon_t$	29	0.803	13.6	2.13	0.155	113.88	1.414
Time dependency test B 1984-2015 data							
1. $ln(S_t) = \alpha + ln(N_{t-1}) + \epsilon_t$	31	0.856	14.2			111.78	1.346
$2. \ln(S_t) = \alpha + \beta \ln(N_{t-1}) + \epsilon_t$	30	0.794	22.2	4.06	0.053	109.59	1.308
3. $ln(S_t) = \alpha + \beta_1 ln(N_{t-1}) + \beta_2 ln(N_{t-2}) + \epsilon_t$	29	0.797	19.6	0.01	0.919	111.57	1.346
Time dependency test C 1984-2015 data							
1. $ln(S_t) = \alpha + ln(N_{t-1}) + \epsilon_t$	31	0.856	14.2			111.78	1.346
$2. \ln(S_t) = \alpha + \beta \ln(N_{t-1}) + \epsilon_t$	30	0.794	22.2	4.08	0.053	109.59	1.308
3a. $ln(S_t) = \alpha + \beta_1 ln(N_{t-1}) + \beta_2 ln(S_{t-1}) + \epsilon_t$	29	0.804	20	0.16	0.688	111.4	1.37
3b. $ln(S_t) = \alpha + \beta_1 ln(N_{t-1}) + \beta_2 ln(S_{t-2}) + \epsilon_t$	29	0.778	20.8	0.45	0.508	111.09	1.331

Table A2. Model selection tests of time-dependency the catch during spawning months using non-linear or time-varying linear responses instead of time-constant linear responses as in Table A1. See Table A1 for an explanation of the parameters and model set-up.

26.11	Residual	3.5.4.00	Adj.		p	4.10	T 0 0 GH
Model	df	MASE	R2	F	value	AIC	LOOCV
Time dependency test A 1984-2015 data							
1. $ln(S_t) = \alpha + \beta ln(S_{t-1}) + \epsilon_t$	30	0.814	10.3			114.14	1.43
$2. \ln(S_t) = \alpha + s(\ln(S_{t-1})) + \epsilon_t$	28.2	0.798	19.6	2.74	0.089	111.79	1.371
3. $ln(S_t) = \alpha + s_1(ln(S_{t-1})) + s_2(ln(S_{t-2})) + \epsilon_t$	25.5	0.77	20.7	0.97	0.416	113.23	1.382
Time dependency test B 1984-2015 data							
1. $ln(S_t) = \alpha + \beta ln(N_{t-1}) + \epsilon_t$	30	0.794	22.2			109.59	1.308
$2. \ln(S_t) = \alpha + s(\ln(N_{t-1})) + \epsilon_t$	28.6	0.761	24.4	1.26	0.287	109.52	1.299
3. $ln(S_t) = \alpha + s_1(ln(N_{t-1})) + s_2(ln(N_{t-2})) + \epsilon_t$	26.4	0.761	21.2	0.28	0.785	112.42	1.342
Time dependency test C 1984-2015 data							
1. $ln(S_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	28.6	0.761	24.4			109.52	1.299
2. $ln(S_t) = \alpha + s_1(ln(N_{t-1})) + s_2(ln(S_{t-1})) + \epsilon_t$	26.1	0.698	28.5	1.49	0.242	109.55	1.273
3. $ln(S_t) = \alpha + s_1(ln(N_{t-1})) + s_2(ln(S_{t-2})) + \epsilon_t$	25.9	0.724	26.3	1.09	0.367	110.63	1.295
Time varying test D 1984-2015 data							
1. $ln(S_t) = \alpha_t + \epsilon_t$	29	0.658				114.45	1.373
$2. \ln(S_t) = \alpha_t + \beta_t t + \epsilon_t$	27	0.85				114.24	1.354
$3a. \ ln(S_t) = \alpha + \beta_t ln(S_{t-1}) + \epsilon_t$	28	0.723				115.66	1.49
3b. $ln(S_t) = \alpha + \beta_t ln(N_{t-1}) + \epsilon_t$	28	0.794				111.59	1.337

Table A3. Table A2 with 1956-1983 data instead of 1984 to 2015 data. See Table A1 for an explanation of the parameters and model set-up.

Model	Residual df	MASE	Adj. R2	F	p value	AIC	LOOCV
Time dependency test A 1956-1983 data							
1. $ln(S_t) = \alpha + \beta ln(S_{t-1}) + \epsilon_t$	24	0.633	-0.7			64.69	0.821
$2. \ln(S_t) = \alpha + s(\ln(S_{t-1})) + \epsilon_t$	22.1	0.614	-0.2	0.78	0.464	65.71	0.844
3. $ln(S_t) = \alpha + s_1(ln(S_{t-1})) + s_2(ln(S_{t-2})) + \epsilon_t$	19.9	0.58	3.1	1.19	0.329	66.35	1.053
Time dependency test B 1956-1983 data							
1. $ln(S_t) = \alpha + \beta ln(N_{t-1}) + \epsilon_t$	24	0.634	-3.8			65.48	0.821
$2. \ln(S_t) = \alpha + s(\ln(N_{t-1})) + \epsilon_t$	21.6	0.584	8.2	2.24	0.127	63.8	0.783
3. $ln(S_t) = \alpha + s_1(ln(N_{t-1})) + s_2(ln(N_{t-2})) + \epsilon_t$	18.5	0.495	16.9	1.56	0.231	63.13	0.785
Time dependency test C 1956-1983 data							
1. $ln(S_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	22.5	0.586	4.3			66.2	0.8
2. $ln(S_t) = \alpha + s_1(ln(N_{t-1})) + s_2(ln(S_{t-1})) + \epsilon_t$	20.7	0.556	4.8	0.91	0.41	67.3	0.829
3. $ln(S_t) = \alpha + s_1(ln(N_{t-1})) + s_2(ln(S_{t-2})) + \epsilon_t$	19.5	0.55	12.9	1.42	0.266	63.79	0.967

Table A4. Model selection tests of time-dependency the N_t model using F-tests of nested models fit to 1984 to 2014 log landings data. The years are determined by the covariate data availability and end in 2014 since the landings data go through 2015 and N_{2014} includes quarters in 2014 and 2015. N_t is the catch during the non-spawning period (Qtrs 4 and 1: Oct-Mar) of season t (Jul-Jun). S_{t-1} and N_{t-1} are the catch during the prior sardine season during and after the spawning period respectively. S_{t-2} and N_{t-2} are the same for two seasons prior. Test A uses catch during the spawning period as the explanatory variable. Test B uses catch during the non-spawning period as the explanatory variable. Test C uses both. The numbers next to the model equations indicate the level of nestedness. The Naive model is a model that uses the previous data point in the time series as the prediction; thus the Naive model has no estimated parameters.

	Residual		Adj.		р		
Model	$\mathrm{d}\mathrm{f}$	MASE	R2	\mathbf{F}	value	AIC	LOOCV
Naive Model 1984-2014 data							
$ln(N_t) = ln(N_{t-1}) + \epsilon_t$	31	1				90.87	1.015
Time dependency test A 1984-2014 data							
1. $ln(N_t) = \alpha + ln(S_{t-1}) + \epsilon$	30	1.363	-20.3			107.36	1.324
$2. \ln(N_t) = \alpha + \beta \ln(S_{t-1}) + \epsilon_t$	29	1.018	26.2	19.99	0	93.17	1.035
3. $ln(N_t) = \alpha + \beta_1 ln(S_{t-1}) + \beta_2 ln(S_{t-2}) + \epsilon_t$	28	1.009	26.6	1.15	0.292	93.92	1.062
Time dependency test B 1984-2014 data							
1. $ln(N_t) = \alpha + ln(N_{t-1}) + \epsilon_t$	30	0.999	24.7			92.87	1.048
$2. \ln(N_t) = \alpha + \beta \ln(N_{t-1}) + \epsilon_t$	29	0.978	37	6.63	0.016	88.28	1.062
3. $ln(N_t) = \alpha + \beta_1 ln(N_{t-1}) + \beta_2 ln(N_{t-2}) + \epsilon_t$	28	0.97	34.8	0.04	0.843	90.24	1.148
Time dependency test C 1984-2014 data							
1. $ln(N_t) = \alpha + \beta ln(N_{t-1}) + \epsilon_t$	29	0.978	37			88.28	1.062
2a. $ln(N_t) = \alpha + \beta_1 ln(N_{t-1}) + \beta_2 ln(S_{t-1}) + \epsilon_t$	28	0.964	35	0.12	0.729	90.15	1.093
2b. $ln(N_t) = \alpha + \beta_1 ln(N_{t-1}) + \beta_2 ln(S_{t-2}) + \epsilon_t$	28	0.978	34.7	0.01	0.919	90.27	1.208

Table A5. Model selection tests of time-dependency the N_t model using non-linear or time-varying linear responses instead of time-constant linear responses as in Table A4 See Table A4 for an explanation of the parameters and model set-up.

Model	Residual df	MASE	Adj. R2	F	p value	AIC	LOOCV
Time dependency test A 1984-2014 data							
1. $ln(N_t) = \alpha + \beta ln(S_{t-1}) + \epsilon_t$	29	1.018	26.2			93.17	1.035
$2. \ln(N_t) = \alpha + s(\ln(S_{t-1})) + \epsilon_t$	27.3	0.992	30.2	1.83	0.185	92.61	1.016
3. $ln(N_t) = \alpha + s_1(ln(S_{t-1})) + s_2(ln(S_{t-2})) + \epsilon_t$	24.4	0.94	36.4	1.79	0.177	91.62	1.012
Time dependency test B 1984-2014 data							
1. $ln(N_t) = \alpha + \beta ln(N_{t-1}) + \epsilon_t$	29	0.978	37			88.28	1.062
$2. \ln(N_t) = \alpha + s(\ln(N_{t-1})) + \epsilon_t$	27.6	0.874	45.3	3.88	0.047	84.75	0.966
3. $ln(N_t) = \alpha + s_1(ln(N_{t-1})) + s_2(ln(N_{t-2})) + \epsilon_t$	25.4	0.805	45.6	0.87	0.441	86.11	1.02
Time dependency test C 1984-2014 data							
1. $ln(N_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	27.6	0.874	45.3			84.75	0.966
2. $ln(N_t) = \alpha + s_1(ln(N_{t-1})) + s_2(ln(S_{t-1})) + \epsilon_t$	25.1	0.856	43.8	0.53	0.634	87.37	1.081
3. $ln(N_t) = \alpha + s_1(ln(N_{t-1})) + s_2(ln(S_{t-2})) + \epsilon_t$	24.8	0.743	56.6	3.39	0.036	79.53	1.062
Time varying test D 1984-2014 data							
1. $ln(N_t) = \alpha_t + \epsilon_t$	28	0.443				92.98	1.043
$2. \ln(N_t) = \alpha_t + \beta_t t + \epsilon_t$	26	0.455				96.96	1.045
3a. $ln(N_t) = \alpha + \beta_t ln(S_{t-1}) + \epsilon_t$	27	0.789				93.96	0.923
3b. $ln(N_t) = \alpha + \beta_t ln(N_{t-1}) + \epsilon_t$	27	0.978				90.28	1.031

Table A6. Table A5 with 1956-1983 data instead of 1984 to 2014 data. See Table A4 for an explanation of the parameters and model set-up.

	Residual		Adj.		р		
Model	df	MASE	R2	\mathbf{F}	value	AIC	LOOCV
Time dependency test A 1956-1983 data							
1. $ln(N_t) = \alpha + \beta ln(S_{t-1}) + \epsilon_t$	24	0.641	-1.7			44.98	0.574
$2. \ln(N_t) = \alpha + s(\ln(S_{t-1})) + \epsilon_t$	22.1	0.534	16.2	3.53	0.052	41.11	0.542
3. $ln(N_t) = \alpha + s_1(ln(S_{t-1})) + s_2(ln(S_{t-2})) + \epsilon_t$	19.9	0.502	18.1	1.09	0.362	42	0.615
Time dependency test B 1956-1983 data							
1. $ln(N_t) = \alpha + \beta ln(N_{t-1}) + \epsilon_t$	24	0.681	-4.2			45.61	0.575
$2. \ln(N_t) = \alpha + s(\ln(N_{t-1})) + \epsilon_t$	21.6	0.507	29.1	5.69	0.009	37.12	0.468
3. $ln(N_t) = \alpha + s_1(ln(N_{t-1})) + s_2(ln(N_{t-2})) + \epsilon_t$	18.5	0.471	32.2	1.14	0.36	37.87	0.506
Time dependency test C 1956-1983 data							
1. $ln(N_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	21.6	0.507	29.1			37.12	0.468
2a. $ln(N_t) = \alpha + s_1(ln(N_{t-1})) + s_2(ln(S_{t-1})) + \epsilon_t$	19	0.45	34.4	1.49	0.251	36.74	0.498
2b. $ln(N_t) = \alpha + s_1(ln(N_{t-1})) + s_2(ln(S_{t-2})) + \epsilon_t$	19.5	0.465	33.4	1.54	0.24	36.84	0.538

Appendix B: Tests for environmental variables as covariates

Table B1. Model selection tests of GPCP precipitation as an explanatory variable for the catch S_t during monsoon months (Jul-Sep) using 1984 to 2015 data. The data range is determined by the years for which SST was available in order to use a consistent dataset across covariate tests. The base model (M) with prior catch dependency was selected independently (Appendix A). To the base model, covariates are added. V_t is the covariate in same calendar year as the Jul-Sep catch. The specific hypothesis (Table 1) being tested is noted in parentheses. The models are tested as nested sets. Thus 1, 2a, 3a is a set and 1, 2b, 3b is another set. MASE is the mean absolute square error (residuals).

Model	Residual df	MASE	Adj. R2	F	p value	AIC
base model (M) 1984-2015 data 1. $ln(S_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	28.6	0.761	24.4			109.52
$V_t = \text{Jun-Jul Precipitation (S1)}$ 2. $ln(S_t) = M + \beta V_t$ 3. $ln(S_t) = M + s(V_t)$	27.6 26	0.743 0.734	23.5 27	0.67 1.51	0.42 0.241	110.78 110.28
$V_t = \text{Apr-May Precipitation (S2)}$ 2. $ln(S_t) = M + \beta V_t$ 3. $ln(S_t) = M + s(V_t)$	27.6 25.6	0.756 0.748	23.8 21.1	0.72 0.24	0.403 0.792	110.65 112.98

Table B2. Model selection tests of sea surface temperature off the Kerala coast (up to 80km offshore in boxes 2-5 in Figure 1), and upwelling indices as the explanatory variables (V_t) for the catch during monsoon months (Jul-Sep) using 1984 to 2015 data. The hypothesis tested (Table 1) is noted in parentheses. Three upwelling indices were tested. The nearshore-offshore temperature differential (UPW), which is the offshore minus nearshore SST, the average nearshore SST along the Kerala coast (boxes 2-5), and the Bakun upwelling index based on wind stress. See Table B1 for an explanation of the models.

Model	Residual df	MASE	Adj. R2	F	p value	AIC
	- ui	WITIOL	1(2		varue	
base model (M) 1984-2015 data	20.0	0 = 01	24.4			400 50
1. $ln(S_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	28.6	0.761	24.4			109.52
$V_t = \text{Ave Mar-May SST (S4)}$						
2a. $ln(S_t) = M + \beta V_t$	27.6	0.772	23.3	0.59	0.449	110.87
$3a. \ln(S_t) = M + s(V_t)$	25.5	0.753	26.4	1.26	0.303	110.8
2b. $ln(S_t) = M + \beta V_{t-1}$	27.6	0.754	22.8	0.39	0.533	111.07
3b. $ln(S_t) = M + s(V_{t-1})$	25.7	0.723	26.1	1.35	0.275	110.74
$V_t = \text{Ave Oct-Dec SST (L1)}$						
2. $ln(S_t) = M + \beta V_{t-1}$	27.6	0.759	21.8	0	0.952	111.5
$\Rightarrow 3. \ ln(S_t) = M + s(V_{t-1})$	26.1	0.768	21.8	0.66	0.482	112.32
$V_t = \text{Ave. Jun-Sep UPW (S4 and L2)}$						
\Rightarrow 2a. $ln(S_t) = M + \beta V_t$	27.6	0.706	33.5	5.01	0.034	106.32
$3a. \ln(S_t) = M + s(V_t)$	25.5	0.682	34.1	0.83	0.455	107.24
2b. $ln(S_t) = M + \beta(V_t)$	27.6	0.748	22.6	0.33	0.568	111.15
3b. $ln(S_t) = M + S(V_{t-1})$	25.1	0.724	26.2	1.28	0.3	111.16
$V_t = \text{Ave. Jun-Sep SST (S4 and L2)}$						
v_t = Ave. Sun-Sep 551 (54 and L2) \Rightarrow 2a. $ln(S_t) = M + \beta V_t$	27.6	0.745	33.3	5.53	0.027	106.4
$\Rightarrow 3a. \ ln(S_t) = M + \beta V_t$ $\Rightarrow 3a. \ ln(S_t) = M + s(V_t)$	$27.0 \\ 25.9$	0.683	41	2.85	0.021	100.4
2b. $ln(S_t) = M + S(v_t)$ 2b. $ln(S_t) = M + \beta V_{t-1}$	27.6	0.083 0.742	23.2	0.54	0.064 0.468	110.89
3b. $ln(S_t) = M + \beta V_{t-1}$	$27.0 \\ 25.5$	0.742 0.715	23.2 22.2	0.54	0.408 0.599	110.59 112.57
$so. \ tn(s_t) = M + s(v_{t-1})$	20.0	0.713	22.2	0.54	0.599	112.57
$V_t = \text{Ave. Jun-Sep Bakun-UPW (S4 and L2)}$						
$\Rightarrow 2a. ln(S_t) = M + \beta V_t$	27.6	0.776	28.4	3.62	0.069	108.66
\Rightarrow 3a. $ln(S_t) = M + s(V_t)$	25.5	0.633	47.8	5.66	0.009	99.8
$2b. ln(S_t) = M + \beta V_{t-1}$	27.7	0.744	26.1	1.67	0.207	109.65
3b. $ln(S_t) = M + s(V_{t-1})$	25.6	0.728	24.9	0.48	0.628	111.36

Table B3. Model selection tests of the multi-year average near shore sea surface temperature and ENSO indices as the explanatory variables (V) for the catch during summer months (Jul-Sep) using 1984 to 2015 data. The hypothesis tested (Table 1) is noted in parentheses. The ENSO indices were the ONI index averaged over all months in the calendar year and the DMI index for Sep-Nov. The 2.5-year average SST is the average for Jan-Jun in the current calendar year and the prior 2 calendar years (30 months total). Thus the average does not include any months during the Jul-Sep catch. See Table B1 for an explanation of the models.

Model	Residual df	MASE	Adj. R2	F	p value	AIC
base model (M) 1984-2015 data 1. $ln(S_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	28.6	0.761	24.4			109.52
$V_t = 2.5$ -year average SST (A1) 2. $ln(S_t) = M + \beta V_t$ 3. $ln(S_t) = M + s(V_t)$	27.6 26.2	0.723 0.653	33.2 41	5.52 3.22	0.027 0.07	106.43 103.26
$V_t = \text{ONI (A2)}$ 2. $ln(S_t) = M + \beta V_{t-1}$ 3. $ln(S_t) = M + s(V_{t-1})$	27.6 26.6	0.758 0.733	22 23.6	0.08 1.16	0.77 0.294	111.4 111.28
$V_t = \text{DMI (A3)}$ 2. $ln(S_t) = M + \beta V_{t-1}$ 3. $ln(S_t) = M + s(V_{t-1})$	27.6 24.7	0.756 0.761	21.9 19	0.03 0.41	0.869 0.744	111.42 114.41

Table B4. Model selection tests of GPCP precipitation as an explanatory variable for the catch (N_t) during post-monsoon months (Oct-May) using 1984 to 2014 data. The data range is determined by the years for which SST was available in order to use a consistent dataset across covariate tests. The base model (M) with prior catch dependency was selected independently (Appendix A). N_{t-1} is the post-monsoon catch in prior season, and S_{t-2} is the catch during Jul-Sep two seasons prior. To the base model, covariates are added. V_t is the covariate in the calendar year, and V_{t-1} is the covariate in the prior calendar year. The specific hypothesis (Table 1) being tested is noted in parentheses. The models are tested as nested sets. Thus 1, 2a, 3a is a set and 1, 2b, 3b is another set.

M. 1.1	Residual	MACE	Adj.	Б	p	ATC
Model	df	MASE	R2	F	value	AIC
base model (M) 1984-2014 data						
1. $ln(N_t) = \alpha + s(ln(N_{t-1})) + s(ln(S_{t-2})) + \epsilon_t$	24.8	0.743	56.6			79.53
$V_t = \text{Jun-Jul Precipitation (S1)}$						
2a. $ln(N_t) = M + \beta V_t$	23.8	0.755	56.7	1.03	0.318	80.23
$3a. ln(N_t) = M + s(V_t)$	22.3	0.75	55.3	0.19	0.767	82.02
2b. $ln(N_t) = M + \beta V_{t-1}$	23.8	0.744	54.9	NA	NA	81.5
3b. $ln(N_t) = M + s(V_{t-1})$	22.3	0.701	56.4	1.32	0.28	81.18
$V_t = \text{Apr-May Precipitation (S2)}$						
2a. $ln(N_t) = M + \beta V_t$	23.8	0.742	55.1	0.11	0.735	81.34
$3a. ln(N_t) = M + s(V_t)$	21.7	0.73	53.7	0.36	0.707	83.39
2b. $ln(N_t) = M + \beta V_{t-1}$	23.8	0.723	56.2	0.74	0.397	80.6
3b. $ln(N_t) = M + s(V_{t-1})$	22	0.692	55.6	0.5	0.587	81.87

Table B5. Model selection tests of sea surface temperature off the Kerala coast (up to 80km offshore in boxes 2-5 in Figure 1), and upwelling indices as the explanatory variables (V) for the catch during post-monsoon months (Oct-May) using 1984 to 2014 data. The hypothesis tested (Table 1) is noted in parentheses. Three upwelling indices were tested. The nearshore-offshore temperature differential (UPW), which is the offshore minus nearshore SST, the average nearshore SST along the Kerala coast (boxes 2-5), and the Bakun upwelling index based on wind stress. See Table B4 for an explanation of the models.

Model	Residual df	MASE	Adj. R2	F	p value	AIC
base model (M) 1984-2014 data						
1. $ln(N_t) = \alpha + s(ln(N_{t-1})) + s(ln(S_{t-2})) + \epsilon_t$	24.8	0.743	56.6			79.53
$V_t = \text{Ave Mar-May SST (S5)}$						
2a. $ln(N_t) = M + \beta V_t$	23.8	0.701	59	2.84	0.107	78.53
$3a. \ln(N_t) = M + s(V_t)$	22	0.682	63.2	2.29	0.13	76.01
2b. $ln(N_t) = M + \beta V_{t-1}$	23.8	0.762	57.1	1.33	0.26	79.93
3b. $ln(N_t) = M + s(V_{t-1})$	22	0.747	57.4	0.79	0.455	80.61
$V_t = \text{Ave Oct-Dec SST (L1)}$						
$2. \ln(N_t) = M + \beta V_{t-1}$	23.8	0.748	54.9	NA	NA	81.5
3. $ln(N_t) = M + s(V_{t-1})$	22.5	0.736	56	1.13	0.318	81.37
$V_t = \text{Ave. Jun-Sep UPW (L2)}$						
$\Rightarrow 2a. ln(N_t) = M + \beta V_t$	23.8	0.759	62.2	4.91	0.038	76
$3a. \ln(N_t) = M + s(V_t)$	21.4	0.733	62.3	0.74	0.513	77.2
2b. $ln(N_t) = M + \beta V_{t-1}$	23.8	0.742	54.9	0	0.979	81.49
3b. $ln(N_t) = M + s(V_{t-1})$	21.4	0.711	56.5	1.12	0.351	81.6
$V_t = \text{Ave. Jun-Sep SST (L2)}$						
$\Rightarrow 2a. ln(N_t) = M + \beta V_t$	23.8	0.717	62.7	5.27	0.033	75.57
3a. $ln(N_t) = M + s(V_t)$	21.9	0.714	61.8	0.39	0.67	77.33
2b. $ln(N_t) = M + \beta V_{t-1}$	23.8	0.744	55.3	0.23	0.626	81.18
3b. $ln(N_t) = M + s(V_{t-1})$	21.8	0.76	54.6	0.49	0.616	82.72
$V_t = \text{Ave. Jun-Sep Bakun-UPW (L2)}$						
2a. $ln(N_t) = M + \beta V_t$	23.8	0.758	57.4	1.58	0.221	79.75
3a. $ln(N_t) = M + s(V_t)$	21.8	0.672	60.3	1.58	0.228	78.55
2b. $ln(N_t) = M + \beta V_{t-1}$	23.8	0.765	56.8	1.17	0.287	80.13
3b. $ln(N_t) = M + s(V_{t-1})$	22	0.74	57.9	1.08	0.349	80.24

Table B6. Model selection tests of the multi-year average near shore sea surface temperature and ENSO indices as the explanatory variables (V) for the catch during post-monsoon months (Oct-May) using 1984 to 2014 data. The hypothesis tested (Table 1) is noted in parentheses. The ENSO indices were the ONI index averaged over all months in the calendar year and the DMI index for Sep-Nov. The 2.5-year average SST is the average for Jan-Jun in the current calendar year and the prior 2 calendar years (30 months total). Thus the average does not include any months during the Oct-Mar catch. See Table B4 for an explanation of the models.

Model	Residual df	MASE	Adj. R2	F	p value	AIC
		11111011	102		varae	
base model (M) 1984-2014 data						
1. $ln(N_t) = \alpha + s(ln(N_{t-1})) + s(ln(S_{t-2})) + \epsilon_t$	24.8	0.743	56.6			79.53
$V_t = 2.5$ -year average SST (A1)						
$2. \ln(N_t) = M + \beta V_t$	23.8	0.667	64.7	7.68	0.012	73.9
$\Rightarrow 3. \ln(N_t) = M + s(V_t)$	22.7	0.594	67.5	2.58	0.12	71.88
$V_t = \text{ONI (A2)}$						
2a. $ln(N_t) = M + \beta V_t$	23.9	0.794	56.4	0.86	0.351	80.41
$3a. ln(N_t) = M + s(V_t)$	22.8	0.79	56.9	0.93	0.351	80.5
2b. $ln(N_t) = M + \beta V_{t-1}$	23.8	0.744	54.9	NA	NA	81.46
3b. $ln(N_t) = M + s(V_{t-1})$	23	0.748	55.5	0.99	0.313	81.46
$V_t = \text{DMI (A3)}$						
2a. $ln(N_t) = M + \beta V_t$	23.9	0.791	55.7	0.42	0.498	80.92
$3a. \ln(N_t) = M + s(V_t)$	21.2	0.77	56.8	1	0.404	81.54
2b. $ln(N_t) = M + \beta V_{t-1}$	23.8	0.746	54.8	NA	NA	81.52
\Rightarrow 3b. $ln(N_t) = M + s(V_{t-1})$	21.1	0.678	67.5	4.34	0.018	72.69

Table B7. Model selection tests of GPCP precipitation as an explanatory variable for the catch (N_t) during post-monsoon months (Oct-May) using 1984 to 2014 data and the base model without S_{t-2} . The data range is determined by the years for which SST was available in order to use a consistent dataset across covariate tests. The base model (M) with prior catch dependency was selected independently (Appendix A). N_{t-1} is the post-monsoon catch in prior season, and S_{t-2} is the catch during Jul-Sep two seasons prior. To the base model, covariates are added. V_t is the covariate in the calendar year, and V_{t-1} is the covariate in the prior calendar year. The specific hypothesis (Table 1) being tested is noted in parentheses. The models are tested as nested sets. Thus 1, 2a, 3a is a set and 1, 2b, 3b is another set.

	Residual		Adj.		р	
Model	$\mathrm{d}\mathrm{f}$	MASE	R2	\mathbf{F}	value	AIC
base model (M) 1984-2014 data						
1. $ln(N_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	27.6	0.874	45.3			84.75
$V_t = \text{Jun-Jul Precipitation (S1)}$						
2a. $ln(N_t) = M + \beta V_t$	26.6	0.873	43.3	NA	NA	86.74
$3a. ln(N_t) = M + s(V_t)$	24.9	0.849	45.3	1.29	0.288	86.66
2b. $ln(N_t) = M + \beta V_{t-1}$	26.6	0.872	44	0.35	0.556	86.33
3b. $ln(N_t) = M + s(V_{t-1})$	24.9	0.867	43.4	0.53	0.566	87.69
$V_t = \text{Apr-May Precipitation (S2)}$						
2a. $ln(N_t) = M + \beta V_t$	26.6	0.872	43.5	0.1	0.742	86.59
3a. $ln(N_t) = M + s(V_t)$	24.5	0.863	41.3	0.24	0.802	89.08
2b. $ln(N_t) = M + \beta V_{t-1}$	26.6	0.86	44	0.35	0.553	86.32
3b. $ln(N_t) = M + s(V_{t-1})$	24.8	0.833	44.7	0.85	0.431	87.01

Table B8. Model selection tests of sea surface temperature off the Kerala coast (up to 80km offshore in boxes 2-5 in Figure 1), and upwelling indices as the explanatory variables (V) for the catch during post-monsoon months (Oct-May) using 1984 to 2014 data and base model without S_{t-2} . The hypothesis tested (Table 1) is noted in parentheses. Three upwelling indices were tested. The nearshore-offshore temperature differential (UPW), which is the offshore minus nearshore SST, the average nearshore SST along the Kerala coast (boxes 2-5), and the Bakun upwelling index based on wind stress. See Table B4 for an explanation of the models.

Model	Residual df	MASE	Adj. R2	F	p value	AIC
base model (M) 1984-2014 data						
1. $ln(N_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	27.6	0.874	45.3			84.75
$V_t = \text{Ave Mar-May SST (S5)}$						
2a. $ln(N_t) = M + \beta V_t$	26.6	0.854	46.2	1.47	0.236	85.12
3a. $ln(N_t) = M + s(V_t)$	24.8	0.839	46.7	0.82	0.446	85.9
2b. $ln(N_t) = M + \beta V_{t-1}$	26.6	0.813	48	2.54	0.124	84.04
3b. $ln(N_t) = M + s(V_{t-1})$	24.7	0.778	49	0.96	0.395	84.54
$V_t = \text{Ave Oct-Dec SST (L1)}$						
$2. \ln(N_t) = M + \beta V_{t-1}$	26.6	0.828	45.6	1.12	0.299	85.47
3. $ln(N_t) = M + s(V_{t-1})$	25.2	0.839	44.5	0.28	0.684	86.89
$V_t = \text{Ave. Jun-Sep UPW (L2)}$						
$\Rightarrow 2a. \ln(N_t) = M + \beta V_t$	26.6	0.863	54	6.63	0.017	80.25
$3a. ln(N_t) = M + s(V_t)$	24.1	0.834	56	1.22	0.319	80.36
2b. $ln(N_t) = M + \beta V_{t-1}$	26.6	0.876	43.3	NA	NA	86.74
3b. $ln(N_t) = M + s(V_{t-1})$	24	0.804	46.9	1.46	0.253	86.25
$V_t = \text{Ave. Jun-Sep SST (L2)}$						
$\Rightarrow 2a. \ln(N_t) = M + \beta V_t$	26.6	0.857	51.6	4.71	0.04	81.79
$3a. ln(N_t) = M + s(V_t)$	24.6	0.86	51.3	0.63	0.545	83.19
2b. $ln(N_t) = M + \beta V_{t-1}$	26.6	0.819	45.2	0.92	0.345	85.67
3b. $ln(N_t) = M + s(V_{t-1})$	24.5	0.801	43.6	0.36	0.711	87.78
$V_t = \text{Ave. Jun-Sep Bakun-UPW (L2)}$						
2a. $ln(N_t) = M + \beta V_t$	26.6	0.825	46.2	1.5	0.231	85.1
$3a. \ln(N_t) = M + s(V_t)$	24.5	0.746	47	0.89	0.428	85.85
2b. $ln(N_t) = M + \beta V_{t-1}$	26.6	0.825	44.2	0.44	0.507	86.22
3b. $ln(N_t) = M + s(V_{t-1})$	24.7	0.807	44.7	0.83	0.446	87.07

Table B9. Model selection tests of the multi-year average near shore sea surface temperature and ENSO indices as the explanatory variables (V) for the catch during post-monsoon months (Oct-May) using 1984 to 2014 data and base model without S_{t-2} . The hypothesis tested (Table 1) is noted in parentheses. The ENSO indices were the ONI index averaged over all months in the calendar year and the DMI index for Sep-Nov. The 2.5-year average SST is the average for Jan-Jun in the current calendar year and the prior 2 calendar years (30 months total). Thus the average does not include any months during the Oct-Mar catch. See Table B4 for an explanation of the models.

	Residual		Adj.		p	
Model	df	MASE	R2	F	value	AIC
base model (M) 1984-2014 data						
1. $ln(N_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	27.6	0.874	45.3			84.75
$V_t = 2.5$ -year average SST (A1)						
$2. \ln(N_t) = M + \beta V_t$	26.6	0.736	55	8.08	0.009	79.58
$\Rightarrow 3. ln(N_t) = M + s(V_t)$	25.3	0.664	60.3	3.48	0.064	76.34
$V_t = \text{ONI (A2)}$						
2a. $ln(N_t) = M + \beta V_t$	26.6	0.883	48.4	2.66	0.115	83.81
$3a. \ln(N_t) = M + s(V_t)$	25.5	0.877	47.9	0.37	0.567	84.69
2b. $ln(N_t) = M + \beta V_{t-1}$	26.6	0.875	43.8	0.25	0.614	86.45
3b. $ln(N_t) = M + s(V_{t-1})$	25.6	0.844	46.3	1.86	0.185	85.53
$V_t = \text{DMI (A3)}$						
2a. $ln(N_t) = M + \beta V_t$	26.6	0.904	48.1	2.52	0.126	83.99
3a. $ln(N_t) = M + s(V_t)$	23.6	0.882	48	0.73	0.548	85.86
2b. $ln(N_t) = M + \beta V_{t-1}$	26.6	0.855	43.9	0.26	0.606	86.38
3b. $ln(N_t) = M + s(V_{t-1})$	23.7	0.853	43.4	0.68	0.571	88.43

Appendix C: Tests for Chlorophyll-a as a covariate

Table C1. Model selection tests of Chlorophyll-a (CHL) as an explanatory variable for the Jul-Sep catch (S_t) using 1998 to 2014 data. The data range is determined by the years for which CHL was available. V_t is CHL in the current season which spans two calendar years from July to June in the next year. V_{t-1} is CHL in the prior Jul-Jun season. Only CHL in Oct-Dec and Jan-Mar in the prior season is used since for the current season, these months are after the Jul-Sep catch being modeled. Non-linearity is modeled as a 2nd-order polynomial due to data constraints and appears as p() in the model equations. The Jul-Sep catch is modeled as a function of Oct-Jun catch in the prior year only, without Jul-Sep catch 2-years prior as in the other covariate analyses (Appendix B). This is done due to data constraints. The models are nested; the Roman numeral indicates the level of nestedness. Models at levels II and higher are shown with the component that is added to the base level model (M) at top.

	Residual		Adj.		р	
Model	$\mathrm{d}\mathrm{f}$	MASE	R2	\mathbf{F}	value	AIC
base model (M) 1998-2014 data						
1. $ln(S_t) = \alpha + p(ln(N_{t-1})) + \epsilon_t$	14	0.516	25.3			18.29
$V_t = \text{Jul-Sep Chlorophyll}$						
$2. \ln(S_t) = M + \beta V_t$	13	0.503	24.6	0.69	0.427	19.2
3. $ln(S_t) = M + p(V_t)$	12	0.48	19.5	0.16	0.699	20.94
4. $ln(S_t) = M + p(V_t) + \beta V_{t-1}$	11	0.5	13.7	0.17	0.688	22.65
5. $ln(S_t) = M + p(V_t) + p(V_{t-1})$	10	0.497	5.1	0.01	0.935	24.64
$V_t = \text{Oct-Dec Chlorophyll}$						
2. $ln(S_t) = M + \beta V_{t-1}$	13	0.516	19.6	0	0.99	20.29
3. $ln(S_t) = M + p(V_{t-1})$	12	0.456	21.5	1.33	0.272	20.51
$V_t = \text{Jan-Mar Chlorophyll}$						
2. $ln(S_t) = M + \beta V_{t-1}$	13	0.522	20.6	0.16	0.697	20.08
3. $ln(S_t) = M + p(V_{t-1})$	12	0.526	16.7	0.4	0.541	21.52

Table C2. Model selection tests of Chlorophyll-a (CHL) as an explanatory variable for Oct-Jun catch (N_t) using 1998 to 2014 data. The data range is determined by the years for which CHL was available. V_t is CHL in the current season which spans two calendar years from July to June in the next year. V_{t-1} is CHL in the prior Jul-Jun season. Non-linearity is modeled as a 2nd-order polynomial due to data constraints and appears as p() in the model equations. The Oct-Jun catch is modeled as a function of Oct-Jun catch in the prior year only, without Jul-Sep catch 2-years prior as in the other covariate analyses (Appendix B). This was done due to data constraints. The models are nested; the numeral indicates the level of nestedness. Models at levels 2 and higher are shown with the component that is added to the base level model (M) at top.

	Residual		Adj.		p	
Model	$\mathrm{d}\mathrm{f}$	MASE	R2	\mathbf{F}	value	AIC
base model (M) 1998-2014 data						
1-M. $ln(N_t) = \alpha + p(ln(N_{t-1})) + \epsilon_t$	14	0.875	26.5			18.94
$V_t = \text{Jul-Sep Chlorophyll}$						
$2. \ln(N_t) = M + \beta V_t$	13	0.893	23.1	0.32	0.587	20.45
$3. ln(N_t) = M + p(V_t)$	12	0.874	17.9	0.15	0.709	22.21
2. $ln(N_t) = M + \beta V_{t-1}$	13	0.86	25	0.69	0.422	20.03
3. $ln(N_t) = M + p(V_{t-1})$	11.7	0.839	21.7	0.27	0.677	21.36
$V_t = \text{Oct-Dec Chlorophyll}$						
$2. \ln(N_t) = M + \beta V_t$	13	0.883	23.9	0.59	0.458	20.29
$3. ln(N_t) = M + p(V_t)$	12	0.744	29.5	2.22	0.167	19.62
4. $ln(N_t) = M + p(V_t) + \beta V_{t-1}$	11	0.679	40.8	2.99	0.114	17.16
5. $ln(N_t) = M + p(V_t) + p(V_{t-1})$	10	0.68	34.9	0	0.976	19.16
$2. ln(N_t) = M + \beta V_{t-1}$	13	0.764	39.4	3.87	0.074	16.41
3. $ln(N_t) = M + p(V_{t-1})$	11.3	0.728	37.7	0.49	0.595	17.62
$V_t = \text{Jan-Mar Chlorophyll}$						
$2. \ln(N_t) = M + \beta V_t$	13	0.901	23.6	0.4	0.541	20.34
$3. \ln(N_t) = M + p(V_t)$	12	0.829	23.9	0.89	0.367	20.92
2. $ln(N_t) = M + \beta V_{t-1}$	13	0.866	21.2	0.05	0.829	20.88
3. $ln(N_t) = M + p(V_{t-1})$	11.1	0.873	15.2	0.23	0.791	22.97

Table C3. Model selection tests of Chlorophyll-a as an explanatory variable for the catch during the non-spawning months (Oct-Jun) using box 5.

Model	Residual df	MASE	Adj. R2	F	p value	AIC
base model (M) 1998-2014 data						
1. $ln(N_t) = \alpha + p(ln(N_{t-1})) + \epsilon_t$	14	0.875	26.5			18.94
$V_t = \text{Jul-Sep Chlorophyll}$						
$2. ln(N_t) = M + \beta V_t$	13	0.865	22.5	0.24	0.635	20.6
$3. \ln(N_t) = M + p(V_t)$	12	0.904	20.4	0.61	0.451	21.69
2. $ln(N_t) = M + \beta V_{t-1}$	13	0.839	28.5	1.33	0.271	19.22
3. $ln(N_t) = M + p(V_{t-1})$	12	0.837	25.2	0.07	0.789	20.42
$V_t = \text{Oct-Dec Chlorophyll}$						
$2. \ln(N_t) = M + \beta V_t$	13	0.864	28.4	1.4	0.265	19.25
3. $ln(N_t) = M + p(V_t)$	12	0.844	24	0.26	0.62	20.91
4. $ln(N_t) = M + p(V_t) + \beta V_{t-1}$	11	0.666	35.6	2.9	0.119	18.62
5. $ln(N_t) = M + p(V_t) + p(V_{t-1})$	10	0.649	29.9	0.11	0.743	20.42
2. $ln(N_t) = M + \beta V_{t-1}$	13	0.739	35.5	2.88	0.116	17.48
3. $ln(N_t) = M + p(V_{t-1})$	11.7	0.732	34.2	0.52	0.534	18.39
$V_t = \text{Jan-Mar Chlorophyll}$						
$2. \ln(N_t) = M + \beta V_t$	13	0.847	29.5	1.56	0.24	18.98
3. $ln(N_t) = M + p(V_t)$	12	0.804	31.6	1.33	0.276	19.11
2. $ln(N_t) = M + \beta V_{t-1}$	13	0.89	21.4	0.09	0.769	20.84
3. $ln(N_t) = M + p(V_{t-1})$	8.9	0.682	27.9	1.07	0.427	20.97

Appendix D: Covariates along the SE India coast

Figure D1. Upwelling index.

Figure D2. Chlorophyll-a.

Appendix E: Comparison of land and oceanic rainfall measurements

Figure E2. Monthly precipitation measured over land via land gauges versus the precipitation measured via remote sensing over the ocean.

Appendix F: Influential years tests

Validation of the landings base model

This describes a variety of cross-validations used to select the base model for landing. The base model is the model with no environmental covariates only prior landings as covariates.

Three types of base models were fit. The first two were GAM and linear models with Jul-Sep and Oct-Mar in the prior season only or prior season and two seasons prior as covariates. c is the response variable: landings during the two seasons, either Jul-Sep or Oct-Mar.

```
\begin{aligned} \text{GAM t-1}: X_t &= \alpha + s(c_{t-1}) + e_t \\ \text{Linear t-1}: X_t &= \alpha + \beta c_{t-1} + e_t \\ \text{GAM t-1, t-2}: X_t &= \alpha + s(c_{t-1}) + s(d_{t-2}) + e_t \\ \text{Linear t-1, t-2}: X_t &= \alpha + \beta c_{t-1} + d_{t-2} + e_t \end{aligned}
```

where c_{t-1} was either S_{t-1} (Jul-Sep landings in prior season) or N_{t-1} (Oct-Mar landings in prior season) and d_{t-2} was the same but 2 seasons prior.

These types of models do not allow the model parameters (the intercept α and effect parameter β) to vary in time. The second type of models were dynamic linear models (DLMs). DLMs allow the parameters to evolve in time. Two types of DLMs were used, an intercept only model where the intercept α evolves and a linear model where the effect parameter β is allowed to evolve:

```
DLM intercept only : X_t = \alpha_t + e_t
DLM intercept and slope : X_t = \alpha_t + \beta_t t + e_t
DLM intercept and effect : X_t = \alpha + \beta_t c_{t-1} + e_t
```

In addition to the GAM, linear and DLM models, three null models were included in the tested model sets:

```
\begin{aligned} & \text{intercept only}: X_t = \alpha + e_t \\ & \text{intercept and prior catch}: X_t = \alpha_t + X_{t-1} + e_t \\ & \text{prior catch only}: X_t = X_{t-1} + e_t \end{aligned}
```

The 'intercept only' is a flat level model. The 'prior catch only' simply uses the prior value of the time series (in this case landings) as the prediction and is a standard null model for prediction. The 'intercept and prior catch' combines these two null models.

The models were fit to the 1956-2015 landings (full data) and 1984-2015 (data that overlap the environmental covariates).

The model performance was measured by AIC, AICc and LOOCV prediction. The LOOCV prediction error is the data point t minus the predited value for data point t. This is repeated for all data points t. The influence of single data points to on model performance was evaluated by leaving out one data point, fitting to the remaining data and computing the model performance (via AIC, AICc or LOO prediction error).

Results: Jul-Sep landings

The Figure 1D shows the Δ AIC for the models: GAM, linear, and DLM. The figure shows that for the 1984-2015 data with any year left out, the set of models that has the lowest AIC was always the GAM or linear model with Oct-Mar in the prior season. There were cases where deleting a year removed one of these two from the 'best' category, but they were still in the 'competitive' category with a Δ AIC less than 2.

AIC gives us a measure of how well the models fit the data, with a penalty for the number of estimated parameters. We look at the one-step-ahead predictive performance (Figure 2D), we see that all the GAM, linear and DLM models have a hard time adjusting to shifts in the data (e.g. after 1998). The null models can adjust quickly but has large errors when there are rapid changes. The root mean squared error (which penalizes large predictive errors) is lowest for the models with Oct-Mar in the prior season (Figure 3D).

It should be noted that none of the Jul-Sep models has a particularly high adjusted R^2 . The values are generally less than 0.3. The Jul-Sep landings tend to be highly variable and not related to the catch in prior years. Jul-Sep is during the monsoon during which fishing is not always possible due to sea-state and there is a 6-week fishing ban during this time.

Figure 1D. \triangle AICc for the Jul-Sep landings base models with one year deleted using only the landings data that overlap with the environmental data 1984-2015. See Figure 1D for an explantion of the figure.

Figure 3D. Leave one out (LOO) one step ahead prediction errors for the linear, GAM, and DLM models of Jul-Sep landings. The data point at year t on the x-axis is predicted from the data up to year t-1.

Figure 4D. Leave-one-out predictive performance (leave out a year, fit, predict that year) for the Jul-Sep landings base models. The performance (DelLOO) is the RSME (root mean square error).

Validation of the Oct-Mar landings base models

The Figure 4D shows that for Oct-Mar landings with the 1984 to 2014 data, the best model was always GAM with Oct-Mar in the prior season and Jul-Sep landings two seasons prior. For the one step ahead predictions, simpler models had the lower prediction errors: GAM with Oct-Mar in the prior season for the recent data and linear with Oct-Mar in the prior season for the full data set (Figure 6D).

Figure 6D. \triangle AICc for the Oct-Mar landings base models with one year deleted using only the landings data that overlap with the environmental data 1984-2015. See Figure 1D for an explantion of the figure.

Figure 8D. Leave one out (LOO) one step ahead prediction errors for the linear, GAM, and DLM models of Oct-Mar landings. The data point at year t on the x-axis is predicted from the data up to year t-1.

Figure 9D. Leave-one-out predictive performance (leave out a year, fit, predict that year) for the Oct-Mar landings base models. The performance (DelLOO) is the RSME (root mean square error).

Appendix G: Data Sources

Landings Data

Description

A dataset containing the landings (in metric tons) of oil sardines in Kerala state 1956-2016. The data are collected and processed into a total landings estimates based on a stratified sampling of landing sites along the SW coast of India throughout the year. The program is run by the Central Marine Fisheries Research Institute (CMFRI) in Cochin, India. The data were obtained from reports published by CMFRI; see references.

References

CMFRI reports were downloaded from the CMFRI Publication repository http://www.cmfri.org.in.

1956-1968 Antony Raja BT (1969). "Indian oil sardine." CMFRI Bulletin, 16, 1-142.

1968-1978 Pillai VN (1982). Physical characteristics of the coastal waters off the south-west coast of India with an attempt to study the possible relationship with sardine, mackerel and anchovy fisheries. Thesis, University of Cochin.

1975-1984 Kerala Jacob T, Rajendran V, Pillai PKM, Andrews J, Satyavan UK (1987). "An appraisal of the marine fisheries in Kerala." Central Marine Fisheries Research Institute.

1975-1984 Kernataka Kurup KN, Nair GKK, Annam VP, Kant A, Beena MR, Kambadkar L (1987). "An appraisal of the marine fisheries of Karnataka and Goa." Central Marine Fisheries Research Institute.

1985-2014 Provided by CMFRI directly via a data request.

SST Data

Description

The SST satellite data were downloaded from the NOAA ERDDAP server using R Mendels rerddapXtracto R package which uses the ropensci rerddap R package.

Details

For 1981 to 2003, We used the Pathfinder Version 5.2 (L3C) monthly day and night product on a 0.0417 degree grid. These SST data use the Advanced Very-High Resolution Radiometer (AVHRR) instrument on the Pathfinder satellites. These data were provided by GHRSST and the US National Oceanographic Data Center. This project was supported in part by a grant from the NOAA Climate Data Record (CDR) Program for satellites.

For 2004 to 2016, we used the NOAA CoastWatch sea surface temperature (SST) products derived from NOAA's Polar Operational Environmental Satellites (POES). The SST estimates use the Advanced Very-High Resolution Radiometer (AVHRR) instruments on the POES satellites and are on a 0.1 degree grid.

Both SST data sets were downloaded from the NOAA ERDDAP server:

https://coastwatch.pfeg.noaa.gov/erddap/info/erdAGsstamday/index.html

https://coastwatch.pfeg.noaa.gov/erddap/info/erdPH2sstamday/index.html.

The SST values were averaged across thirteen 1 degree by 1 degree boxes which roughly parallel the bathymetry (Figure 1 in main text).

References

These data were provided by GHRSST and the US National Oceanographic Data Center. This project was supported in part by a grant from the NOAA Climate Data Record (CDR) Program for satellites. The data were downloaded from NOAA CoastWatch-West Coast Regional Node and Southwest Fisheries Science Center's Environmental Research Division. To cite these data in a paper, please follow the instructions in the license and at this link: https://coastwatch.pfeg.noaa.gov/erddap/information.html#citeDataset

Casey KS, Brandon TB, Cornillon P, Evans R (2010). "The past, present, and future of the AVHRR Pathfinder SST program." In Oceanography from space, 273–287. Springer.

Walton C, Pichel W, Sapper J, May D (1998). "The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites." Journal of Geophysical Research: Oceans, 103(C12), 27999–28012.

Upwelling Data

Description

Three upwelling indices are in the 'upw' data object: a SST near shore offshore differential, a wind-based index and the Bakun indices. The upwelling indices and SST data were downloaded from the NOAA ERDDAP server using R Mendels rerddap Xtracto R package which uses the ropensci rerddap R package.

Details

The Wind-based monthly upwelling indices were downloaded from the NOAA ERDDAP server. The first is 1999-2009 on a 0.125 degree grid. The second is 2009 to present on a 0.25 degree grid. and the second is See https://coastwatch.pfeg.noaa.gov/erddap/info/erdQSstressmday/index.html and https://coastwatch.pfeg.noaa.gov/erddap/info/erdQAstressmday/index.html.

The SST differential upwelling indices were downloaded from the NOAA ERDDAP server. The first is 1981-2012 on a 0.0417 degree grid. The second is 2003-2016 on a 0.1 degree grid. Both are AVHRR so accurate for close to the coast. https://coastwatch.pfeg.noaa.gov/erddap/info/erdPH2sstamday/index.html and https://coastwatch.pfeg.noaa.gov/erddap/info/erdAGsstamday/index.html. The UPW index is the difference between the coast box (1 to 5) and a box 3 degrees offshore at the same latitude.

The Bakun index (The Bakun 1973) is calculated based upon Ekman's theory of mass transport due to wind stress. The index is computed from the ektrx and ektry, which are the x- and y- components of Ekman Transport obtained from the ERDDAP link below, and coast_angle is 158 degrees for the India west coast near Kochi. https://coastwatch.pfeg.noaa.gov/erddap/info/erdlasFnWPr/index.html. The function to compute the Bakun index is at https://oceanview.pfeg.noaa.gov/products/upwelling/bakun.

References

SST data: These data were provided by GHRSST and the US National Oceanographic Data Center. This project was supported in part by a grant from the NOAA Climate Data Record (CDR) Program for satellites. The data were downloaded from NOAA CoastWatch-West Coast Regional Node and Southwest Fisheries Science Center's Environmental Research Division.

Wind-based UPW index: NOAA's CoastWatch Program distributes wind velocity measurements derived from the Seawinds instrument aboard NASA's QuikSCAT satellite. The Seawinds instrument is a dual-beam microwave scatterometer designed to measure wind magnitude and direction over the global oceans. CoastWatch further processes these wind velocity measurements to wind stress and wind stress curl.

Bakun index: The Environmental Research Division (ERD), within NOAA Fisheries, has long been a leader in development and calculation of upwelling and other environmental indices. ERD was originally established as the Pacific Environmental Group at the U.S. Navy Fleet Numerical Meteorology and Oceanography Center (FNMOC) in Monterey, California, to take advantage of the Navy's global oceanographic and meteorological models. FNMOC produces operational forecasts of the state of the atmosphere and the ocean several times daily. Before the advent of satellite oceanography, these forecasts provided global snapshots of ocean

conditions for Navy operations, but were also invaluable for studies of fisheries climatology since they provided long time series of environmental conditions at a much higher resolution than was possible from direct measurement. The FNMOC sea-level pressure became the basis of the Bakun upwelling index calculation, and provides estimates of upwelling for the Northern Hemisphere starting in 1948 and globally since 1981.

Bakun A (1973). "Coastal upwelling indices, west coast of North America." US Department of Commerce, NOAA Technical Report NMFS SSRF-671.

Precipitation Data

Description

Three precipition datasets off the SW coast of India. Two are satellite derived and one is based on land gauges.

Details

The National Climatic Data Center provides basic information on the GPCP Precipitation dataset. The dataset consists of monthly precipitation estimates (average mm/day) from January 1979 to the present. The precipitation estimates merge several satellite and in situ sources into a final product. Data are provided on a 2.5 degree grid. The GPCP Precipitation data are provided by the NOAA/NCEI Global Precipitation Climatology Project and were downloaded from https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly. Two boxes were defined, one off the Kerala coast and one off the Karnataka coast, and the average values of all grid points within these boxes were used. The boxes are Kerala Lat(8.75, 11.25), Lon(73.25, 75.75) Karnataka Lat(13.75, 16.25), Lon(71.25, 73.75)

The land gauge data is monthly, seasonal and annual rainfall (in mm) area weighted average for each state in India starting from 1901 onwards. This data set is based on rain guages. The data are provided by the India Meteorological Department (Ministry of Earth Sciences). The 1901 to 2014 data were downloaded from the Open Government Data Platform India https://data.gov.in. The 2015 and 2016 data were extracted from the yearly Rainfall Statistics reports (see references).

NASA's Tropical Rainfall Measuring Mission (TRMM) website provides background on the TRMM data (https://pmm.nasa.gov/). 1997 to 2015 monthly precipitation estimates on a 0.25 degree grid were downloaded from the Tropical Rainfall Measuring Mission (TRMM) website. The data are averaged in the 2.5×2.5 degree boxes used for the other satellite data.

References

Adler R, Huffman G, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003). "The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present)." Journal of Hydrometeorology, 4, 1147-1167.

Adler R, Wang J, Sapiano M, Huffman G, Chiu L, Xie PP, Ferraro R, Schneider U, Becker A, Bolvin D, Nelkin E, Gu G, Program NC (2016). "Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 2.3 (Monthly)." National Centers for Environmental Information. doi: 10.7289/V56971M6.

Purohit MK, Kaur S (2016). "Rainfall Statistics of India - 2016." India Meterorological Department (Ministry of Earth Sciences). http://hydro.imd.gov.in/hydrometweb/.

Chlorophyll Data

Description

The CHL satellite data were downloaded from the NOAA ERDDAP server using R Mendels rerddapXtracto R package which uses the ropensci rerddap R package.

Details

The Chlorophyll-a products are developed by the Ocean Biology Processing Group in the Ocean Ecology Laboratory at the NASA Goddard Space Flight Center.

For 1997 to 2002, we used the Chlorophyll-a 2014.0 Reprocessing (R2014.0) product from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the Orbview-2 satellite. These data are on a 0.1 degree grid. See reference below.

For 2003 to 2017, we used the MODIS-Aqua product on a 4km grid. These CHL data are taken from measurements gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua Spacecraft. See reference below.

Both CHL data sets were downloaded from the NOAA ERDDAP server:

https://coastwatch.pfeg.noaa.gov/erddap/info/erdSW1chlamday/index.html

https://coastwatch.pfeg.noaa.gov/erddap/info/erdMH1chlamday/index.html.

The CHL values were averaged across thirteen 1 degree by 1 degree boxes which roughly parallel the bathymetry (Figure 1 in main text).

References

NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group; (2014): SeaWiFS Ocean Color Data; NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. https://dx.doi.org/10.5067/ORBVIEW-2/SEAWIFS OC.2014.0

NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data; 2014 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. https://dx.doi.org/10.5067/AQUA/MODIS/L3M/CHL/2014

Hu C, Lee Z, Franz B (2012). "Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference." Journal of Geophysical Research: Oceans, 117(C1).

ENSO Data

Description

Oceanic Nino Index and Dipole Mode Index.

Details

The ONI index is 3 month running mean of ERSST.v5 SST anomalies in the Niño 3.4 region (5°N-5°S, 120°-170°W)], based on centered 30-year base periods updated every 5 years.

The ONI was downloaded from http://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt

The DMI is the monthly Dipole Mode Index. The DMI (also IOD index) is defined by the SSTA difference between the western Indian Ocean ($10^{\circ}S-10^{\circ}N$, $50^{\circ}E-70^{\circ}E$) and the southeastern Indian Ocean ($10^{\circ}S-0^{\circ}$, $90^{\circ}E-110^{\circ}E$). The data were downloaded from https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/dmi.long.data

References

Saji NH, Yamagata T (2003). "Possible impacts of Indian Ocean Dipole mode events on global climate." Climate Research, 25(2), 151-169. doi: 10.3354/cr025151.