Cavallaro, Jeffery Math 221a Homework #3

1.3.11

Let G be a group and $a, b \in G$. Prove:

1).
$$|a| = |a^{-1}|$$

Assume $x \in \langle a \rangle$
 $\exists n \in \mathbb{Z}, x = a^n$
 $x = (a^{-1})^{-n}, -n \in \mathbb{Z}$
 $x \in \langle a^{-1} \rangle$
 $\langle a \rangle \subseteq \langle a^{-1} \rangle$

Assume $x \in \langle a^{-1} \rangle$
 $\exists m \in \mathbb{Z}, x = (a^{-1})^m$
 $x = a^{-m}, -m \in \mathbb{Z}$
 $x \in \langle a \rangle$
 $\langle a^{-1} \rangle \subseteq \langle a \rangle$
 $\langle a \rangle = \langle a^{-1} \rangle$
 $\therefore |a| = |a^{-1}|$

2).
$$|ab| = |ba|$$

If a=b=e then |ab|=|ba|=1, so AWLOG that $a\neq e$ or $b\neq e$

Assume $\langle ab \rangle$ is finite

Let
$$|ab|=n$$
 $(ab)^n=e$ $b(ab)^na=bea$ $(ba)^{n+1}=ba$ $(ba)^n=e$ $|ba|\leq n$ $|ba|\leq |ab|$ and $\langle ba\rangle$ is finite

Assume $\langle ba \rangle$ is finite

Let
$$|ba| = m$$

 $(ba)^m = e$
 $a(ba)^mb = aeb$
 $(ab)^{m+1} = ab$
 $(ab)^m = e$
 $|ab| \le m$
 $|ab| \le |ba|$ and $\langle ab \rangle$ is finite

 $\therefore \langle ab \rangle$ finite $\iff \langle ba \rangle$ finite, and so if $\langle ab \rangle$ is finite then so is $\langle ba \rangle$, and |ab| = |ba|.

By the CP, $\langle ab \rangle$ infinite $\iff \langle ba \rangle$ infinite, and all infinite cyclic groups are isomorphic to \mathbb{Z} (and each other). So if $\langle ab \rangle$ is infinite then so is $\langle ab \rangle$, and $|ab| = |ba| = \aleph_0$.

$$|ab| = |ba|$$

3).
$$\forall c \in G, |a| = |cac^{-1}|$$

Assume $c \in G$

Lemma

$$\forall n \in \mathbb{Z}^+, (cac^{-1})^n = ca^n c^{-1}$$

Proof

Proof by induction on n:

Base:
$$n=1$$

$$(cac^{-1})^1 = cac^{-1} = ca^1c^{-1}$$

Assume
$$(cac^{-1})^n = ca^nc^{-1}$$

$$(cac^{-1})^{n+1} = (cac^{-1})^n(cac^{-1}) = ca^nc^{-1}cac^{-1} = ca^neac^{-1} = ca^nac^{-1} = ca^{n+1}c^{-1}$$

If
$$a = e$$
 then $cac^{-1} = cec^{-1} = cc^{-1} = e$, and so $|a| = |cac^{-1}| = 1$

If
$$c = e$$
 then $cac^{-1} = eae^{-1} = eae = a$, and so $|cac^{-1}| = |a|$

If
$$cac^{-1} = e$$
 then $a = c^{-1}ec = c^{-1}c = e$, and so $|a| = |cac^{-1}| = 1$

So AWLOG that $a \neq e, c \neq e,$ and $cac^{-1} \neq e$

Assume $\langle a \rangle$ is finite

Let
$$|a| = n, n \in \mathbb{Z}^+$$
 $a^n = e$ $(cac^{-1})^n = ca^nc^{-1} = cec^{-1} = cc^{-1} = e$ $|cac^{-1}| \le n$ $|cac^{-1}| \le |a|$ and $\langle cac^{-1} \rangle$ is finite

Assume $\langle cac^{-1} \rangle$ is finite

Let
$$|cac^{-1}| = m, m \in \mathbb{Z}^+$$

$$(cac^{-1})^m = e$$

$$ca^mc^{-1} = e$$

$$a^m = c^{-1}ec = c^{-1}c = e$$

$$|a| \le m$$

$$|a| \leq |cac^{-1}|$$
 and $\langle a \rangle$ is finite

 $\therefore \langle a \rangle$ finite $\iff \langle cac^{-1} \rangle$ finite, and so if $\langle a \rangle$ is finite then so is $\langle cac^{-1} \rangle$, and $|a| = |cac^{-1}|$.

By the CP, $\langle a \rangle$ infinite $\iff \langle cac^{-1} \rangle$ infinite, and all infinite cyclic groups are isomorphic to \mathbb{Z} (and each other). So if $\langle a \rangle$ is infinite then so is $\langle cac^{-1} \rangle$, and $|a| = |cac^{-1}| = \aleph_0$.

$$\therefore |a| = |cac^{-1}|$$

1.3.2

Let G be an abelian group. Let $a,b\in G$ such that $\langle a\rangle$ and $\langle b\rangle$ are finite with |a|=m and |b|=n.

Prove: $\exists c \in G, |c| = [m, n]$

Lemma

Let G be an abelian group. Let $a,b\in G$ such that $\langle a\rangle$ and $\langle b\rangle$ are finite with |a|=m and |b|=n such that (m,n)=1.

$$\exists c \in G, |c| = mn$$

 $\therefore \langle c \rangle \leq G \text{ and } |c| = rs$

Proof

```
Let c = ab \in G
\langle c \rangle \leq G
c^{rs} = (ab)^{rs} = a^{rs}b^{rs} = (a^r)^s(b^s)^r = e^se^r = ee = e
So \langle c \rangle is finite
Let |c| = n
n \leq rs
c^n = e
(ab)^n = e
a^n b^n = e
a^n = b^{-n}
Let \ell=a^n=b^{-n}
\ell \in \langle a \rangle and \ell \in \langle b \rangle
\langle \ell \rangle \leq \langle a \rangle and \langle \ell \rangle \leq \langle b \rangle
|\ell| \mid r and |\ell| \mid s
\ell is a common divisor of r and s
But (r, s) = 1
So |\ell| = 1 and thus \ell = e
a^n = b^{-n} = e
b^n = e
r \mid n \text{ and } s \mid n
n is a common multiple of r and s
But since (r, s) = 1, [r, s] = rs, and so:
rs \leq n
rs = n
```

Now, let
$$d=(r,s)$$

$$[r,s]=\frac{rs}{d}$$
 Let $s_0=\frac{s}{d}$
$$(r,s_0)=1$$

$$|a|=r$$

$$|b^d|=\frac{s}{(d,s)}=\frac{s}{(d,ds_0)}=\frac{s}{d}=s_0$$
 So by the lemma:
$$\exists \ c\in G, |c|=rs_0$$
 But $rs_0=\frac{rs}{d}=[r,s]$
$$\therefore \exists \ c\in G, |c|=[r,s]$$

1.3.3

Let G be an abelian group of order pq such that (p,q)=1.

Prove: $(\exists a, b \in G, |a| = p \text{ and } |b| = q) \implies G \text{ is cyclic}$

Assume $\exists a, b \in G, |a| = p \text{ and } |b| = q$

By the lemma:

$$\exists c \in G, |c| = pq$$

$$\langle c \rangle \leq G \text{ and } |c| = |G|$$

So
$$\langle c \rangle = G$$

 \therefore *G* is cyclic.

1.3.4

Let $\phi: G \to H$ be a homomorphism of groups.

Prove: $a \in G$ and $\phi(a)$ has finite order in $H \implies |a|$ is infinite or $|\phi(a)| \mid |a|$

Assume $a \in G$ and $\phi(a)$ has finite order in H

If |a| is infinite then done, so assume |a| is finite

Let
$$|a| = n$$

$$a^n = e_G$$

$$\phi(a^n) = \phi(a)^n$$

$$\phi(a^n) = \phi(e_G) = e_H$$

$$\phi(a)^n = e_H$$

So
$$|\phi(a)| | n$$

$$\therefore |\phi(a)| \mid |a|$$

1.3.5

Let $G = GL_2(\mathbb{Q})$.

1). Let
$$a = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. Show $|a| = 4$
$$a^2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$a^4 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = e$$

2). Let
$$b = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$
. Show $|b| = 3$
$$b^2 = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$$
$$b^3 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = e$$

3). Show $|ab| = \aleph_0$

$$ab = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$\mathsf{Claim} \colon (ab)^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$

case 1: n > 0

Proof by induction on \boldsymbol{n}

Base: n=1

$$(ab)^1 = ab = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Assume
$$(ab)^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$

$$(ab)^{n+1} = (ab)^n (ab) = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n+1 \\ 0 & 1 \end{pmatrix}$$

case 2: n = 0

$$(ab)^0 = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

case 3: n < 0

$$\begin{aligned} \text{Claim: } \forall \, n > 0, [(ab)^n]^{-1} &= \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix} &= \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = e \end{aligned}$$

Let
$$m = -n > 0$$

$$(ab)^n = (ab)^{-m} = [(ab)^m]^{-1} = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -m \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$

Let
$$A = \{(ab)^n \mid n \in \mathbb{N}\}$$

Define $\phi : \mathbb{N} \to A$ by $\phi(n) = (ab)^n$
Let $\phi^{-1} : A \to N$ be defined by $\phi^{-1}((ab)^n) = n$
 $(\phi\phi^{-1})((ab)^n) = \phi(n) = (ab)^n$
 $(\phi^{-1}\phi)(n) = \phi^{-1}((ab)^n) = n$

So ϕ is invertible, and thus bijective

$$\phi(n+m) = (ab)^{n+m} = \begin{pmatrix} 1 & n+m \\ 0 & 1 \end{pmatrix}$$

$$\phi(n)\phi(m) = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n+m \\ 0 & 1 \end{pmatrix}$$

$$\phi(n+m) = \phi(n)\phi(m)$$

So ϕ is a homomorphism, and thus an isomorphism

So A has infinite order

But $A \subset \langle ab \rangle$

∴ ab has infinite order.

4). Show that $Z_2 \oplus \mathbb{Z}$ has elements a and b of infinite order such that a + b has finite order.

Let
$$a=(0,1)$$
 and $b=(0,-1)$

Clearly, a and b have infinite order:

$$na=(0,n)$$

$$nb = (0, -n)$$

But a+b=(0,1)+(0,-1)=(0,0)=e, and $\langle e\rangle$ is finite with order 1.

1.3.8

Prove: A group that has only a finite number of subgroups must be finite.

Assume that G is a group with only a finite number of subgroups

ABC: $\exists a \in G$ such that a has infinite order

 $\langle a \rangle \simeq \mathbb{Z},$ which has an infinite number of subgroups

So $\langle a \rangle$, and thus G, have an infinite number of subgroups

CONTRADICTION!

Thus G is a union of a finite number of finite subgroups $\therefore G$ is finite.

1.3.9

Let G be an abelian group and define $T = \{a \in G \mid a \text{ has finite order}\}.$

Prove: $T \leq G$

$$|e|=1$$
, so $e\in T$ and $T
eq\emptyset$

Assume $a,b \in T$

By closure, $ab \in G$

Let
$$|a|=r$$
 and $|b|=s$

$$(ab)^{rs} = a^{rs}b^{rs} = (a^r)^s(b^s)^r = e^se^r = ee = e$$

Thus, ab has finite order

 $ab \in T$

 $\therefore T$ is closed.

 $\text{Assume } a \in T$

$$|a| = |a^{-1}|$$

 $\overset{\cdot}{a}^{-1}$ has finite order

$$a^{-1} \in T$$

 $\therefore T$ has inverses.

$$T \leq G$$