FSA and regular languages

Data Structures and Algorithms for Comput (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

Winter Semester 2020/21

Recap: languages and automata * Recognizing strings from a language defined by a grammar is a funda

- The efficiency of computation, and required properties of computing device depending on the grammar (and the language)
- A well-known hierarchy of grammars both in computer science and linguistics is the Chowsky hierarchy
- Each grammar in the Chomsky hierarchy corresponds to an abstract
- computing device (an automaton)
- * The class of regular grammars are the class that corresponds to finite state

ne of the following patterns $(A, B \in N)$

Right regular

1 4 -- 4

2. A → aE

Regular grammars: definition A regular grammar is a tuple $G=(\Sigma,N,S,R)$ where Σ is an alphabet of terminal symbols N are a set of non-terminal symbols S is a special 'start' symbol ∈ N R is a set of rewrite rules follow

 $\alpha \in \Sigma, \varepsilon$ is the empty string) Left regular

Three ways to define a regular language

1 4-1

2 4 1 24

3. A → 6

Chomsky hierarchy and automata

Grammar class	Rules	Automat
Unrestricted grammars	$\alpha \rightarrow \beta$	Turing machine
Context-sensitive grammars	$\alpha\:A\:\beta{\to}\alpha\:\gamma\:\beta$	Linear-bounded automata
Context-free grammars	$A{\rightarrow}\alpha$	Pushdown automata
Regular grammars	A A	Finite state automata

Regular languages: some properties/operations

- L_1L_2 Concatenation of two languages L_1 and L_2 : any sentence of L_1 followed by
 - any sentence of \mathcal{L}_2 \mathcal{L}^* Kleene star of \mathcal{L} : \mathcal{L} concatenated by itself \emptyset or more tim
 - \mathcal{L}^R Reverse of \mathcal{L} : reverse of any string in \mathcal{L}
 - $\overline{\mathcal{L}} \ \ \text{Complement of \mathcal{L}: all strings in $\Sigma_{\mathcal{L}}^*$ except the ones in \mathcal{L} $(\Sigma_{\mathcal{L}}^* \mathcal{L})$}$
- $L_1 \cup L_2$ Union of languages L_1 and L_2 : strings that are in any of the language
- $\mathcal{L}_1\cap\mathcal{L}_2 \ \ \text{Intersection of languages} \ \mathcal{L}_1 \ \text{and} \ \mathcal{L}_2 \text{: strings that are in both languages}$
 - Regular languages are closed under all of these operations

· Every regular language (RL) can be expressed by a regular expression (RE),

where, $\alpha,b\in \Sigma,$ ε is empty string, \varnothing is the language that accepts nothing (e.g.

* A language is regular if there is regular grammar that generates/recog

. A language is regular regular if we can define a regular expressions for the

* A language is regular if there is an PSA that generates/recognizes it

Regular

- . Kleene star (a*). Concatenation (ab) and union (alb) are the co
- Parentheses can be used to group the sub-expressions. Otherwise, the priority of the operators as specified above a | bc* = a | (b(c*))
- In practice some short-hand notations are comm
 - $\begin{aligned} & ... = (a_1|...|a_n), \\ & \text{for } \Sigma = (a_1,...,a_n) \\ & \text{a*} = \text{aa*} \\ & [\text{a*c}] = (\text{a}|\text{b}|\text{c}) \end{aligned}$ - [^a-c] = . - (a|b|c) - \d = (0|1|...|8|9)

Converting regular expressions to FSA

And some non-regular extensions, like (a*)b\1 (sometimes the term regxp is used for expressions with non-regular extensions)

Some properties of regular expressions

Regular expressions

and every RE defines a RL • A RE • defines a RL £(•)

· Relations between RE and RL contained between KE $-\mathcal{L}(a) = a$, $-\mathcal{L}(a) = a$, $-\mathcal{L}(a) = a$ $-\mathcal{L}(ab) = \mathcal{L}(a)\mathcal{L}(b)$ $-\mathcal{L}(a^*) = \mathcal{L}(a)^*$

These identities are useful for simplifying regular expr • u(v|u) - uv|us • €u = u • Øu = Ø

· Note: no standard complement and intersection in RE

- . (u|v)* (u*|v*)*
- * u(vv) (uv)v * c* - c
 - An exercise Simplify a | ab+
 - = ac|ab* = a(c|b*) = ab*

- £(a|b) = £(a) ∪ £(b) /come author use the n

(some author use the notation as we will use a b as in many practic implementations)

- For more complex expressions, one can replace the paths for individual symbols with corresponding automata . Using c transitions may ease the task
 - The reverse conversion (from automata to regular expressions) is also easy:

 identify the patterns on the left, collapse. paths to single transitions with regul expressions

Exercise

Exercise

* (n*)* = n

+ u|v - v|u

u|(v|w) = (u|v)|w

• u|u - u

* The general idea: remove (intermediate) states, replacing edge labels with regular expressions

An exercise samplely the resulting regular expressions

Two example FSA

Converting FSA to regular expressions

COMMON DE L'ANDIGNO DE L'ANDIGN

• What is the length of longost string generated by this PSA? • What is the length of longost string generated by this PSA? • Any PSA generating an infinite language has to have a loop (application of larged every string longer than some number will include repetition of the same substring (x'(x''') above)

TA W

Note Note of Strings

Note Note Strings

Note Strings

Note Note Strings

Note Note Strings

Note Note Strings

Note Strings

Note Note Strings

Note Strin

Languages and automata: Engolar repressions: Operations on 2015. Pamping Season	Languages and automate: Engolar repressions. Operations on PAA. Pumping branes
How to use pumping lemma	Pumping lemma example prose L = e ⁻¹ e ⁻¹ is not regular
	• Assume L is regular: there must be a p such that, if uvw is in the language 1. $uv^2w\in L$ ($vi\geqslant 0$) 2. $v\neq \varepsilon$ 3. $ uv \leqslant p$
We use pumping lemma to prove that a language is not regular Proof is by contradiction:	2. v ≠ c
Proof is by contradiction:	3. un ≤ p
• roots to by Contractive. Assume the language is regular — Assume the language is regular purposed of the property of the plant of $x = uvvv$, at least one of the graphing lemma conditions does not hold • $vv \neq c \in V(x \geq 0)$ • $v \neq c \in V(x \geq 0)$	 Pick the string a^pb^p
Find a string x in the language, for all splits of x = uvw, at least one of the	 For the sake of example, assume p = 5, x = qqqqbbbbb
pumping termina conditions does not note	Three different ways to split
* uvw (= L (vt ≥ u) * v ≠ e	
 un ≤ p 	a and abbbbb violates 1
	aaaa ab bbbb violates 1 & 3
	aggach bhb. h. violates 1 & 2
	ann ab bbbb violates 1 & 3
Ç.Çillelin, 188 / University of Tallingen Window States (Sept. 2017) 21 / 21	C. Cillelin, 188 / Debessity of Silvinges Water Sensoliny 2020 (SI 24 / 29
Languages and estimate. Ergolar repressions: Operations on PIA. Pumping Innune	
Wrapping up	Acknowledgments, credits, references
FSA and regular expressions express regular languages	
Regular languages and FSA are closed under	
- Constantion - Parent	
Concatenation	
- Complement - Intersection	
 To prove a language is regular, it is sufficient to find a regular expression or FSA for it 	
To prove a language is not regular, we can use pumping lemma	
Next:	
Finite state transducers (PSTs)	
Applications of FSA and FSTs	
Summary exam preparation/discussion	
C. Cillein, 187 University of Talonges Wasin Standard 2003 27 / 29	C-Cilitia, NN/Decemby of Sidneyes National States (Company of Sidneyes SES) 21 A1
C. Cillelin, 188 / Driversky of Tallenges Winter Security 2012 AZ	C. Cillelin, 100 / Decemby of Sillinges Water Sensoler 2021/21 A.3
Net	Units C Cilifolin, NB/Decemby of Stringen Water formular 2021/21 A3
C. Cillelin, 189 / Lincornity of Talonges Window Tonica 2000 (21 A.E.)	C. Cillelin, NB / Decemby of Silvinges Water Street, 2021 22 A3