MATH 644

Chapter 2

SECTION 2.2: FUNDAMENTAL THEOREM OF ALGEBRA AND PARTIAL FRACTIONS

Contents

Fundamental Theorem of Algebra	2
Consequences Rational Functions	5

Created by: Pierre-Olivier Parisé Spring 2023

Fundamental Theorem of Algebra

The local behavior of a polynomial (Walking a Dog picture) is really helpful to give a proof of the FTA.

THEOREM 1. Every non-constant polynomial has a zero.

Some precision:

• A function $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$ has a zero at $a \in \Omega$ if f(a) = 0.

Lemma 2. If $n := \deg p \ge 1$, then $|p(z)| \to \infty$, as $|z| \to \infty$.

Proof.

Lemma 3. If p(z) is a polynomial with no zero, then

$$M:=\inf\{|p(z)|\,:\,z\in\mathbb{C}\}\in(0,\infty).$$

Proof.

Proof of the FTA.

Consequences

COROLLARY 4. If p is a polynomial of degree $n \ge 1$, then there are complex numbers z_1, z_2, \ldots, z_n and a compact constant c such that

$$p(z) = c \prod_{k=1}^{n} (z - z_k).$$

Proof.

EXAMPLE 5. Find the zeros of $p(z) = z^n - 1$, $n \ge 1$.

Rational Functions

A rational function is a quotient of two polynomials. From the FTA, we can write

$$r(z) = \frac{p(z)}{\prod_{j=1}^{N} (z - z_j)^{n_j}}$$

for some $N, n_j \in \mathbb{C}$ and $z_1, z_2, \dots, z_N \in \mathbb{C}$.

COROLLARY 6. Let p be a polynomial. Then there is a polynomial q(z) and complex constants $c_{k,j}$ such that

$$\frac{p(z)}{\prod_{j=1}^{N}(z-z_j)^{n_j}} = q(z) + \sum_{j=1}^{N} \sum_{k=1}^{n_j} \frac{c_{k,j}}{(z-z_j)^k}.$$

A simple case: