Exercise session on error definitions and the floating point approximation of real numbers

September 20 2021

Exercise 1

For a generic real number a consider the function $f(x) = a \exp(x)$ and its Taylor series approximation close to $x_0 = 0$ given by

$$a\left(1+x+\frac{x^2}{2}\right)$$
.

- 1. Compute absolute and relative error for the approximation in x = 0.2 in the case a = 2.
- 2. Repeat the computation for $a = 10^5$.
- 3. Repeat the computation in x = 4 for $a = 10^3$.
- 4. Repeat the computation in all the previous cases for the approximation

$$a\left(1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}\right).$$

Exercise 2

Write a MATLAB script to compute $(1+10^{-k})-1$ for $k=0,\ldots,20$. Compute in each case the relative error of the result, using the formula

$$\frac{|[(1+10^{-k})-1]-10^{-k}|}{10^{-k}}.$$

Repeat the error computation using the formula

$$\frac{|[1+10^{-k}-10^{-k}-1]}{10^{-k}}.$$

Repeat the computations for $(10^m + 10^{-k}) - 10^m$ for the same values of k and m = 1, ..., 10. In both cases, plot the error as a function of k using a logarithmic scale on the y axis (command semilogy). Explain the error behaviour based on the theory of the floating point representation of real numbers.

Exercise 3

Given real numbers a > 0 and x_0 , define x_n , $n \ge 1$ iteratively by

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right).$$

If x_0 is not too far from \sqrt{a} , one has $\lim_{n\to\infty} x_n = \sqrt{a}$. Write a MATLAB script to check this fact using a for or a while cycle and interrupting the computation when the relative error is smaller that some quantity ϵ . Run the script for different values of a, x_0, ϵ .

Exercise 4

Given real numbers a > 0 and x_0 , define $x_n, n \ge 1$ iteratively by

$$x_{n+1} = \frac{x_n}{2}(3 - ax_n^2).$$

If x_0 is not too far from $1/\sqrt{a}$, one has $\lim_{n\to\infty} x_n = 1/\sqrt{a}$. Write a MATLAB script to check this fact using a for or a while cycle and interrupting the computation when the relative error is smaller that some quantity ϵ . Run the script for different values of a, x_0, ϵ .

Exercise 5

It is known that

$$1 = \lim_{h \to 0} \frac{\exp(h) - 1}{h}.$$

Write a MATLAB script to compute $\frac{\exp(h)-1}{h}$ for $h=10^{-k}, k=0,\ldots,20$. Compute in each case the absolute error of the result. Plot the error as a function of k using a logarithmic scale on the y axis (command semilogy). Explain the error behaviour based on the theory of the floating point representation of real numbers.