

Perspectives for Renewable Energies in Road Transport

Dr. Klaus Bonhoff | Managing Director (Chair)

NOW GmbH National Organization Hydrogen and Fuel Cell Technology

IEA Working Party on Renewable Energy Technologies (REWP)

Workshop on Renewables and Energy Systems Integration

Denver, West Marriott, USA September 8-9, 2014

Policy Goals in Germany for Renewable Energies in Energy System and Road Transport

Energy Concept (2010)

reduce overall GHG emissions (vs. 1990):

40% by 2020

→ 80%-95% by 2050

increase share of renewables in final energy consumption:

18% by 2020 →

→ 60% by 2050

reduce primary energy consumption:

20% by 2020

→ 50% by 2050

reduce final energy consumption of <u>transport</u> (vs. 2005):

10% by 2020

• 40% by 2050

Mobility and Fuels Strategy (2013)

- → electrification of drive train (FCEVs, BEVs) needed
- → integration of renewables crucial

Scenarios for Final Energy Demand in Transportation in Germany

BAU-scenario: 'what happens if you do nothing?'

alternative electricity scenario: 'what is possible?'

Power-to-Gas

Production of hydrogen from renewable power sources

- Optimizing the deployment of fluctuating renewable energy sources
- Allowing an increasing share of renewable power
- Linking the energy sectors

Power-to-Gas Technologies are needed to Reduce Primary Energy Demand in Transportation

- high market penetration with methane-operated internal combustion engines, but no PtG;
- 2. high market penetration with methane-operated internal combustion engines, fuel demand entirely covered with PtG; and
- 3. considerable shares of both methane-operated internal combustion engines and fuel cell electric engines, fuel demand entirely covered with PtG.

Final energy consumption in road transport and inland navigation

Source:

Power-to-Gas (PtG) in transport

Status quo and perspectives for development

Study in the context of the scientific supervision, support and guidance of the BMVBS in the sectors Transport and Mobility with a specific focus on fuels and propulsion technologies, as well as energy and climate, 2014

Substantial reduction of GHG-Emissions in transportation are only achievable with Power-to-Gas including electrification of the drive-train (Batteries and Fuel Cells)

Scenarios:

- high market penetration with methane-operated internal combustion engines, but no PtG;
- 2. high market penetration with methane-operated internal combustion engines, fuel demand entirely covered with PtG; and
- 3. considerable shares of both methane-operated internal combustion engines and fuel cell electric engines, fuel demand entirely covered with PtG.

GHG emissions in road transport and inland navigation

Source:

Power-to-Gas (PtG) in transport

Status quo and perspectives for development

Study in the context of the scientific supervision, support and guidance of the BMVBS in the sectors Transport and Mobility with a specific focus on fuels and propulsion technologies, as well as energy and climate, 2014

The Overall Power Demand Increases with Power-to-Gas Fuel-Options for the Transportation Sector

- high market penetration with methane-operated internal combustion engines, but no PtG;
- 2. high market penetration with methane-operated internal combustion engines, fuel demand entirely covered with PtG; and
- 3. considerable shares of both methane-operated internal combustion engines and fuel cell electric engines, fuel demand entirely covered with PtG.

Electricity demand in the scenarios 1–3

(for the demand of the other sectors, the current electricity demand was extrapolated to 2050)

Source:

Power-to-Gas (PtG) in transport

Status guo and perspectives for development

Study in the context of the scientific supervision, support and guidance of the BMVBS in the sectors Transport and Mobility with a specific focus on fuels and propulsion technologies, as well as energy and climate, 2014

Renewable Electricity for Transportation

economic business cases are feasible

'Integration of Wind-Hydrogen-Systems in the Energy System' – Study Findings Presented 28th January 2013

Questions:

- Volume 'excess' wind power in Germany up to 2030?
- Technology and costs of wind-hydrogen-systems?
- Best options for H₂ transport and stationary use?

Answers:

- Large volumes of 'excess' wind power in Germany's coastal regions expected
- Wind-hydrogen-systems are technologically feasible; limited further R&D required
- Wind-H₂ can be sold as transport fuel with profit in several scenario cases
- Re-electrification of H₂ and sale to stationary sector only in few cases profitable
- Synergies between transport and stationary exist and improve overall profitability

Sensitivities for Hydrogen Production via Electrolysis

Case	"Less fuel"	"Standard Northeast"	Investment electrolysis 700 €/kW	Investment electrolysis 500 €/kW	Price driven electrolysis operation
Electrolysis full load hrs	3.052	3.052	3.052	3.052	5.600
Tonnes H ₂ per year	32.044	32.044	32.044	32.044	59.100
Share for power plant	38%	7%	7%	7%	39%
	Specifc Revenue to break even [€/kg H₂ fuel]				
Spot market price	3,71	2,92	2,50	2,08	2,06
40 €/MWh	6,80	5,00	4,58	4,16	
80 €/MWh	9,90	7,08	6,66	6,24	

Source: Study: Integration of Wind-Hydrogen-Systems in the Energy System (2013)

- wind-hydrogen competitive at fuel market
- wind-hydrogen cheaper than hydrogen from natural gas
- wind-hydrogen not competitive

Hydrogen Production from Renewable Energies

stabilizing the grid in the power sector and providing a renewable fuel to the transportation sector

Power-to-Gas **Demonstration Projects in Germany**

Renewable Hydrogen-Werder/Kessin/Altentreptow

Demonstration of Wind-H2- System

- conception, construction and operation
- · electricity supply for wind power plants at times of calm

ground-breaking ceremony July 2011

start of trial H₂-production December 2012

Project "Power-to-Gas for Hamburg"

- 1MW PEM-electrolyzer
- injection of H₂ into natural gas grid
- ground-breaking ceremony June 2013

Wind-Hydrogen-System at the Energy Park in Mainz

- · Project consortium: Stadtwerke Mainz, Siemens, Linde,
- Hochschule Rhein-Main 2 MW PEM electrolyzer
- Large scale ionic compressor
- Multiple uses of hydrogen
- · Planned start of operation in 2015

Battery Electric Vehicles (BEV)

Commercial offers (07/2014)

Charging Infrastructure in Germnay

Developing Charging Infrastructure

Fuel Cell Vehicles (cars and busses) and Hydrogen Stations

Fuel Cell Vehicles (FCV)

series production vehiclescommercial introductioncommercial introduction announced

50-Hydrogen-Station Program in Germany

field testing of technical innovations and connecting corridors between metropolitan regions

- joint Letter of Intent to expand the network of hydrogen filling stations in Germany
 - signed by the German Ministry of Transport, Building and Urban Development (BMVBS) and several industrial companies
 - part of the National Innovation Program for Hydrogen and Fuel Cell Technology (NIP)
 - overall investment more than €40 million (US\$51 million)
- coordination by NOW GmbH in the frame of the Clean Energy Partnership (CEP)

Current Status:

- location planning of the 50 HRS has been finalized
- 15 HRS in operation, application for funding for 23 HRS, 12 HRS are in the planning phase
- the majority of the HRS will be operated by H2-Mobility after the funded project time frame has ended
- ~110 FCEV's are currently on the road

Hydrogen Station Deployment

demonstrating Wind-Hydrogen for transportation

hydrogen as part of an integrated energy system

Total: multi-energy fuelling station

refueling renewable power

Total Refueling Station at Berlin-Schoenefeld

Opening on May 23th, 2014

Production of hydrogen

Hydrogen can be produced in an environmentally friendly way from renewable energies. This is still very expensive. It would be cheaper to produce hydrogen from natural gas. Do you think that natural gas should be used as a temporary solution, or should hydrogen be produced environmentally friendly even with a higher price?

Gefördert durch:

(Survey 01/2013, n=1012)

H2-Mobility action plan until 2023

Air Liquide, Daimler, Linde, OMV, Shell and Total agree on an action plan for the construction of a hydrogen refueling network in Germany.

Targets:

- 400 HRS until 2023 (100 HRS until 2017).
- 350 mio. € investment.
- Max. 90 km distance between two HRS at the motorway.
- 10 HRS in each metropolitan area.

H₂ Mobility

Development of an Aligned European Hydrogen-Infrastructure Strategy

- Several HRS initiatives and roll-out scenarios throughout Europe are currently in place
- Strong coordination within Europe is needed since:
 - the initiatives are at different development phases
 - there are only limited funding budgets available
 - an aligned strategy increases the political awareness

Clean Power for Transport Directive General

Targets of the directive:

- > Solve the "Chicken-and-Egg-Problem" = Energy/Fuel— Powertrain Infrastructure, Safety for investment into alternative power trains due to availability of infrastructure.
- Establishment of an EU market for alternative fuels (Methane / H2 / Electricity) and power trains.
- Enforcement of innovation and competitiveness of the EU

Key elements of the CPT-directive:

- Member states (MS) have to develop national implementation plans (NIP); no specific guidelines for infrastructure by the directive: MS have to decide within their NIP about the "appropriate number" for "Charging/H2/LNG&CNG"infrastructures
- Establishment of binding technical standards and specifications for the interconnection between "Fuel / Vehicle / Infrastructure". Motivation/Target: Interoperability und anti-discriminatory availability of infrastructure.

Effects for HRS and FCEV'S:

- > Integration of the directive into national laws: 24 month after empowerment (expected: mid of 2014)
- > H2-Infrastructure: 31.12.2025 (just for MS which will use the H2 option)
- Relevant Standards:
 - The hydrogen purity dispensed by hydrogen refuelling points shall comply with the technical specifications included in the ISO 14687-2 standard.
 - Hydrogen refuelling points shall employ fuelling algorithms and equipment complying with the ISO/TS 20100 Gaseous Hydrogen Fuelling specification.
 - Connectors for motor vehicles for the refuelling of gaseous hydrogen shall comply with the ISO 17268 gaseous hydrogen motor vehicle refuelling connection devices standard.
- Transition period for all fuel options: 36 month after empowerment of the directive all new or renewed fuel infrastructure has to follwed the mentioned standards.

Thank you very much!

Dr. Klaus Bonhoff Managing Director (Chair)

NOW GmbH National Organization Hydrogen and Fuel Cell Technology

Fasanenstrasse 5, 10623 Berlin, Germany

download: www.now-gmbh.de

Back-up

Final Energy Consumption of the Transport Sector in Germany

Final energy consumption in transport 1960 to 2011 (delimitation after energy balance)

Figure 3: The diagram shows the energy consumption of the individual modes of transport, the current situation and the targets for 2020 and 2050. (Source: own diagram BMVBS / ifeu)

Well-to-Wheel Analysis for Selected Drive Train Technologies and Energy Sources

Abbildung 1: Primärenergieverbrauch und Greenhouse-Gas-Emissionen ausgewählter Antriebskonzepte gemäß einer Well-To-Wheel-Analyse nach [3]

source:

R. Edwards, J.-F. L., J-C. Beziat (2011):

"Well-to-wheels Analysis of Future Automotive Fuels and Powertrains in the European Context Version 3c", JEC – Joint Research Centre-EUCAR-CONCAWE collaboration, Luxemburg

Wind Hydrogen Project (RH₂) -WKA

Renewable Hydrogen- Werder/Kessin/Altentreptow

Demonstration of Wind-H₂- System

- conception, construction and operation
- electricity supply for wind power plants at times of calm

plant design

ground-breaking ceremony July 2011

start of trial H₂-production December 2012

Project "Power-to-Gas for Hamburg"

- 1MW PEM-electrolyzer
- injection of H₂ into natural gas grid

ground-breaking ceremony June 2013

Wind-Hydrogen-System at the Energy Park in Mainz

- Project consortium:
 Stadtwerke Mainz,
 Siemens, Linde,
 Hochschule Rhein-Main
- 2 MW PEM electrolyzer
- Large scale ionic compressor
- Multiple uses of hydrogen
- Planned start of operation in 2015

