Bottom-Up Parsing

- A **bottom-up parser** creates the parse tree of the given input starting from leaves towards the root.
- A bottom-up parser tries to find the right-most derivation of the given input in the reverse order.

```
S \Rightarrow ... \Rightarrow \omega (the right-most derivation of \omega)
```

← (the bottom-up parser finds the right-most derivation in the reverse order)

- Bottom-up parsing is also known as shift-reduce parsing because its two main actions are shift and reduce.
 - At each shift action, the current symbol in the input string is pushed to a stack.
 - At each reduction step, the symbols at the top of the stack (this symbol sequence is the right side of a production) will replaced by the non-terminal at the left side of that production.
 - There are also two more actions: accept and error.

Shift-Reduce Parsing

- A shift-reduce parser tries to reduce the given input string into the starting symbol.
 - a string the starting symbol reduced to
- At each reduction step, a substring of the input matching to the right side of a production rule is replaced by the non-terminal at the left side of that production rule.
- If the substring is chosen correctly, the right most derivation of that string is created in the reverse order.

Rightmost Derivation: $S \stackrel{*}{\rightleftharpoons} \omega$

Shift-Reduce Parser finds: $\omega \rightleftharpoons_{rm} ... \rightleftharpoons_{rm} S$

Shift-Reduce Parsing -- Example

S
$$\Rightarrow$$
 aABb \Rightarrow aAbb \Rightarrow aaabb

Right Sentential Forms

• How do we know which substring to be replaced at each reduction step?

A Shift-Reduce Parser

$$\begin{array}{lll} E \rightarrow E+T \mid T & Right-Most \ Derivation \ of \ id+id*id \\ T \rightarrow T*F \mid F & E+T*F \Rightarrow E+T*id \Rightarrow E+F*id \\ F \rightarrow (E) \mid id & \Rightarrow E+id*id \Rightarrow T+id*id \Rightarrow F+id*id \Rightarrow id+id*id \end{array}$$

 $E \rightarrow E+T$

Right-Most Sentential Form

<u>id</u>+id*id <u>F</u>+id*id <u>T</u>+id*id <u>E</u>+<u>id</u>*id <u>E</u>+<u>F</u>*id <u>E</u>+<u>T</u>*<u>id</u> <u>E</u>+<u>T</u>*<u>F</u> <u>E</u>+T

Reducing Production

	<u> </u>
$F \rightarrow id$	a bandla af a string is a
$T \rightarrow F$	a handle of a string is a
$E \rightarrow T$	substring that matches the
$F \rightarrow id$	right side of a production rule
$T \rightarrow F$	
$F \rightarrow id$	
$T \rightarrow T^*F$	

<u>Handles</u> are red and underlined in the right-sentential forms.

A Stack Implementation of A Shift-Reduce Parser

- There are four possible actions of a shift-parser action:
 - **1. Shift**: The next input symbol is shifted onto the top of the stack.
 - **2. Reduce**: Replace the handle on the top of the stack by the non-terminal.
 - 3. Accept: Successful completion of parsing.
 - **4. Error**: Parser discovers a syntax error, and calls an error recovery routine.

- Initial stack just contains only the end-marker \$.
- The end of the input string is marked by the end-marker \$.

A Stack Implementation of A Shift-Reduce Parser

Stack	<u>Input</u>	Action	
\$	id+id*id\$	shift	
\$id	+id*id\$	reduce by $F \rightarrow id$	Parse Tree
\$F	+id*id\$	reduce by $T \rightarrow F$	
\$T	+id*id\$	reduce by $E \rightarrow T$	E 8
\$E	+id*id\$	shift	
\$E+	id*id\$	shift	E 3 +
\$E+id	*id\$	reduce by $F \rightarrow id$	
\$E+ <mark>F</mark>	*id\$	reduce by $T \rightarrow F$	T 2 T 5
\$E+T	*id\$	shift	
\$E+T*	id\$	shift	F 1 F 4
\$E+T*id	\$	reduce by $F \rightarrow id$	
\$E+ T* F	\$	reduce by $T \rightarrow T^*F$	id id
\$E+T	\$	reduce by $E \rightarrow E+T$	
\$E	\$	accept	

Conflicts During Shift-Reduce Parsing

- There are context-free grammars for which shift-reduce parsers cannot be used.
- Stack contents and the next input symbol may not decide action:
 - shift/reduce conflict: Whether make a shift operation or a reduction.
 - reduce/reduce conflict: The parser cannot decide which of several reductions to make.
- If a shift-reduce parser cannot be used for a grammar, that grammar is called as non-LR(k) grammar.

• An ambiguous grammar can never be a LR grammar.

Shift-Reduce Parsers

• There are two main categories of shift-reduce parsers

1. Operator-Precedence Parser

simple, but only a small class of grammars.

2. LR-Parsers

- covers wide range of grammars.
 - SLR simple LR parser
 - LR most general LR parser
 - LALR intermediate LR parser (lookhead LR parser)
- SLR, LR and LALR work same, only their parsing tables are different.

LR Parsers

• The most powerful shift-reduce parsing (yet efficient) is:

- LR parsing is attractive because:
 - LR parsing is most general non-backtracking shift-reduce parsing, yet it is still efficient.
 - The class of grammars that can be parsed using LR methods is a proper superset of the class of grammars that can be parsed with predictive parsers.

$$LL(1)$$
-Grammars $\subset LR(1)$ -Grammars

 An LR-parser can detect a syntactic error as soon as it is possible to do so a left-to-right scan of the input.

LR Parsing Algorithm

A Configuration of LR Parsing Algorithm

• A configuration of a LR parsing is:

- S_m and a_i decides the parser action by consulting the parsing action table. (*Initial Stack* contains just S_o)
- A configuration of a LR parsing represents the right sentential form:

$$X_1 ... X_m a_i a_{i+1} ... a_n$$
\$

Actions of A LR-Parser

- 1. shift s -- shifts the next input symbol and the state s onto the stack $(S_0 X_1 S_1 ... X_m S_m, a_i a_{i+1} ... a_n \$) \rightarrow (S_0 X_1 S_1 ... X_m S_m a_i s, a_{i+1} ... a_n \$)$
- 2. reduce $A \rightarrow \beta$ (or rn where n is a production number)
 - pop $2|\beta|$ (=r) items from the stack;
 - then push A and s where $s=goto[s_{m-r},A]$

$$(S_{0} X_{1} S_{1} ... X_{m} S_{m}, a_{i} a_{i+1} ... a_{n} \$) \rightarrow (S_{0} X_{1} S_{1} ... X_{m-r} S_{m-r} A s, a_{i} ... a_{n} \$)$$

- Output is the reducing production reduce $A \rightarrow \beta$
- 3. Accept Parsing successfully completed
- **4.** Error -- Parser detected an error (an empty entry in the action table)

Reduce Action

- pop $2|\beta|$ (=r) items from the stack; let us assume that $\beta = Y_1Y_2...Y_r$
- then push A and s where $s=goto[s_{m-r},A]$

$$(S_0 X_1 S_1 ... X_{m-r} S_{m-r} Y_1 S_{m-r} ... Y_r S_m, a_i a_{i+1} ... a_n \$)$$

 $\rightarrow (S_0 X_1 S_1 ... X_{m-r} S_{m-r} A S, a_i ... a_n \$)$

• In fact, $Y_1Y_2...Y_r$ is a handle.

$$X_1 ... X_{m-r} A a_i ... a_n \$ \Rightarrow X_1 ... X_m Y_1 ... Y_r a_i a_{i+1} ... a_n \$$$

(SLR) Parsing Tables for Expression Grammar

1) $E \rightarrow E+T$

2)
$$E \rightarrow T$$

3) $T \rightarrow T*F$

4)
$$T \rightarrow F$$

5) $F \rightarrow (E)$

6) $F \rightarrow id$

Action Table

Goto Table

state	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Actions of A (S)LR-Parser -- Example

<u>stack</u>	<u>input</u>	<u>action</u>	<u>output</u>
0	id*id+id\$	shift 5	
0id5	*id+id\$	reduce by F→id	F→id
0F3	*id+id\$	reduce by $T \rightarrow F$	$T \rightarrow F$
0T2	*id+id\$	shift 7	
0T2*7	id+id\$	shift 5	
0T2*7id5	+id\$	reduce by F→id	F→id
0T2*7F10	+id\$	reduce by $T \rightarrow T^*F$	$T \rightarrow T*F$
0T2	+id\$	reduce by $E \rightarrow T$	$E \rightarrow T$
0E1	+id\$	shift 6	
0E1+6	id\$	shift 5	
0E1+6id5	\$	reduce by F→id	F→id
0E1+6F3	\$	reduce by $T \rightarrow F$	$T \rightarrow F$
0E1+6T9	\$	reduce by $E \rightarrow E + T$	$E \rightarrow E + T$
0E1	\$	accept	

Constructing SLR Parsing Tables – LR(0) Item

• An **LR(0)** item of a grammar G is a production of G a dot at the some position of the right side.

• Ex: $A \rightarrow aBb$	Possible LR(0) Items:	$A \rightarrow \bullet aBb$
	(four different possibility)	$A \rightarrow a \cdot Bb$
		$A \rightarrow aB \bullet b$
		$A \rightarrow aBb \bullet$

- Sets of LR(0) items will be the states of action and goto table of the SLR parser.
- A collection of sets of LR(0) items (the canonical LR(0) collection) is the basis for constructing SLR parsers.
- Augmented Grammar:

G' is G with a new production rule $S' \rightarrow S$ where S' is the new starting symbol.

The Closure Operation

- If *I* is a set of LR(0) items for a grammar G, then *closure*(*I*) is the set of LR(0) items constructed from I by the two rules:
 - 1. Initially, every LR(0) item in I is added to closure(I).
 - 2. If $A \to \alpha \bullet B\beta$ is in closure(I) and $B \to \gamma$ is a production rule of G; then $B \to \bullet \gamma$ will be in the closure(I).
 - We will apply this rule until no more new LR(0) items can be added to closure(I).

The Closure Operation -- Example

$$E' \rightarrow E \qquad \text{closure}(\{E' \rightarrow \bullet E\}) = \\ \{E \rightarrow E + T \qquad \{E' \rightarrow \bullet E \leftarrow \text{kernel items} \} \\ E \rightarrow T \qquad E \rightarrow \bullet E + T \qquad E \rightarrow \bullet T \\ T \rightarrow T^*F \qquad E \rightarrow \bullet T \qquad T \rightarrow F \\ F \rightarrow (E) \qquad T \rightarrow \bullet F \\ F \rightarrow \text{id} \qquad F \rightarrow \bullet \text{id} \}$$

Goto Operation

- If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal), then goto(I,X) is defined as follows:
 - If $A \to \alpha \bullet X\beta$ in I then every item in **closure**($\{A \to \alpha X \bullet \beta\}$) will be in goto(I,X).

Example:

```
\begin{split} I = &\{ \quad E' \rightarrow \bullet E, \quad E \rightarrow \bullet E + T, \quad E \rightarrow \bullet T, \\ & \quad T \rightarrow \bullet T^*F, \quad T \rightarrow \bullet F, \\ & \quad F \rightarrow \bullet (E), \quad F \rightarrow \bullet id \quad \} \\ & goto(I,E) = &\{ \quad E' \rightarrow E \bullet , \quad E \rightarrow E \bullet + T \quad \} \\ & goto(I,T) = &\{ \quad E \rightarrow T \bullet , \quad T \rightarrow T \bullet *F \quad \} \\ & goto(I,F) = &\{ \quad T \rightarrow F \bullet \quad \} \\ & goto(I,C) = &\{ \quad F \rightarrow (\bullet E), \quad E \rightarrow \bullet E + T, \quad E \rightarrow \bullet T, \quad T \rightarrow \bullet T *F, \quad T \rightarrow \bullet F, \\ & \quad F \rightarrow \bullet (E), \quad F \rightarrow \bullet id \quad \} \\ & goto(I,id) = &\{ \quad F \rightarrow id \bullet \quad \} \end{split}
```

Construction of The Canonical LR(0) Collection

• To create the SLR parsing tables for a grammar G, we will create the canonical LR(0) collection of the grammar G'.

• Algorithm:

```
C is { closure({S'→•S}) }
repeat the followings until no more set of LR(0) items can be added to C.
for each I in C and each grammar symbol X
if goto(I,X) is not empty and not in C
add goto(I,X) to C
```

• goto function is a DFA on the sets in C.

The Canonical LR(0) Collection -- Example

$$\begin{split} \textbf{I}_0 \colon E' &\to .E \textbf{I}_1 \colon E' \to E . \textbf{I}_6 \colon E \to E + .T & \textbf{I}_9 \colon E \to E + T. \\ E &\to .E + T & E \to E . + T & T \to .T * F & T \to T . * F \\ E &\to .T & T \to .F & T \to .F & F \to .(E) & \textbf{I}_{10} \colon T \to T * F. \\ T &\to .F & T \to T . * F & F \to .id & F \to .(E) & F \to .id & F \to .(E) & F \to .id & E \to .E + T & E \to .T & \textbf{I}_8 \colon F \to (E.) & E \to E . + T & F \to .(E) & F \to .id & F \to .(E) & F \to .id & F \to .(E) & F \to .(E)$$

Transition Diagram (DFA) of Goto Function

Constructing SLR Parsing Table

(of an augumented grammar G')

- 1. Construct the canonical collection of sets of LR(0) items for G'. $C \leftarrow \{I_0,...,I_n\}$
- 2. Create the parsing action table as follows
 - If a is a terminal, $A \rightarrow \alpha.a\beta$ in I_i and $goto(I_i,a)=I_i$ then action[i,a] is **shift j**.
 - If $A \rightarrow \alpha$. is in I_i , then action[i,a] is *reduce* $A \rightarrow \alpha$ for all a in FOLLOW(A) where $A \neq S$ '.
 - If S' \rightarrow S. is in I_i , then action[i,\$] is *accept*.
 - If any conflicting actions generated by these rules, the grammar is not SLR(1).
- 3. Create the parsing goto table
 - for all non-terminals A, if $goto(I_i,A)=I_i$ then goto[i,A]=j
- 4. All entries not defined by (2) and (3) are errors.
- 5. Initial state of the parser contains $S' \rightarrow .S$

Parsing Tables of Expression Grammar

A 1 •	П	n 1	1
A C t 1 O 1		เฉก	
Action		ιaυ	

Goto Table

state	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

SLR(1) Grammar

- An LR parser using SLR(1) parsing tables for a grammar G is called as the SLR(1) parser for G.
- If a grammar G has an SLR(1) parsing table, it is called SLR(1) grammar (or SLR grammar in short).
- Every SLR grammar is unambiguous, but every unambiguous grammar is not a SLR grammar.

shift/reduce and reduce/reduce conflicts

- If a state does not know whether it will make a shift operation or reduction for a terminal, we say that there is a **shift/reduce conflict**.
- If a state does not know whether it will make a reduction operation using the production rule i or j for a terminal, we say that there is a reduce/reduce conflict.
- If the SLR parsing table of a grammar G has a conflict, we say that that grammar is not SLR grammar.

Conflict Example

Conflict Example2

Problem

$$FOLLOW(A)=\{a,b\}$$

$$FOLLOW(B) = \{a,b\}$$

a
$$\longrightarrow$$
 reduce by $A \rightarrow \epsilon$ reduce by $B \rightarrow \epsilon$

reduce/reduce conflict

b reduce by
$$A \rightarrow \epsilon$$
 reduce by $B \rightarrow \epsilon$ reduce/reduce conflict

Constructing Canonical LR(1) Parsing Tables

- In SLR method, the state i makes a reduction by $A\rightarrow\alpha$ when the current token is a:
 - if the $A \rightarrow \alpha_{\bullet}$ in the I_i and a is FOLLOW(A)
- In some situations, βA cannot be followed by the terminal a in a right-sentential form when $\beta \alpha$ and the state i are on the top stack. This means that making reduction in this case is not correct.

$$S \rightarrow AaAb$$
 $S \Rightarrow AaAb \Rightarrow Aab \Rightarrow ab$ $S \Rightarrow BbBa \Rightarrow Bba \Rightarrow ba$

 $S \rightarrow BbBa$

$$A \rightarrow \varepsilon$$
 Aab $\Rightarrow \varepsilon$ ab Bba $\Rightarrow \varepsilon$ ba

$$B \to \varepsilon$$
 $AaAb \Rightarrow Aa \varepsilon b$ $BbBa \Rightarrow Bb \varepsilon a$

LR(1) Item

- To avoid some of invalid reductions, the states need to carry more information.
- Extra information is put into a state by including a terminal symbol as a second component in an item.
- A LR(1) item is:

 $A \rightarrow \alpha \cdot \beta$,a where **a** is the look-head of the LR(1) item (**a** is a terminal or end-marker.)

LR(1) Item (cont.)

- When β (in the LR(1) item A $\rightarrow \alpha \cdot \beta$, a) is not empty, the look-head does not have any affect.
- When β is empty $(A \to \alpha_{\bullet}, a)$, we do the reduction by $A \to \alpha$ only if the next input symbol is **a** (not for any terminal in FOLLOW(A)).
- A state will contain $A \to \alpha_{\bullet}, a_1$ where $\{a_1, ..., a_n\} \subseteq FOLLOW(A)$...

$$A \rightarrow \alpha_{\bullet}, a_n$$

Canonical Collection of Sets of LR(1) Items

• The construction of the canonical collection of the sets of LR(1) items are similar to the construction of the canonical collection of the sets of LR(0) items, except that *closure* and *goto* operations work a little bit different.

closure(I) is: (where I is a set of LR(1) items)

- every LR(1) item in I is in closure(I)
- if $A \rightarrow \alpha \cdot B\beta$, a in closure(I) and $B \rightarrow \gamma$ is a production rule of G; then $B \rightarrow .\gamma$, b will be in the closure(I) for each terminal b in FIRST(βa).

goto operation

- If I is a set of LR(1) items and X is a grammar symbol (terminal or non-terminal), then goto(I,X) is defined as follows:
 - If $A \to \alpha.X\beta$, a in I then every item in **closure**($\{A \to \alpha X.\beta,a\}$) will be in goto(I,X).

Construction of The Canonical LR(1) Collection

• Algorithm:

```
C is { closure({S'} \rightarrow .S,$}) }

repeat the followings until no more set of LR(1) items can be added to C.

for each I in C and each grammar symbol X

if goto(I,X) is not empty and not in C

add goto(I,X) to C
```

• goto function is a DFA on the sets in C.

A Short Notation for The Sets of LR(1) Items

• A set of LR(1) items containing the following items

$$A \rightarrow \alpha \cdot \beta, a_1$$

. . .

$$A \rightarrow \alpha \cdot \beta, a_n$$

can be written as

$$A \rightarrow \alpha \cdot \beta, a_1/a_2/.../a_n$$

Canonical LR(1) Collection -- Example

$$I_4: S \rightarrow Aa.Ab , \$ \xrightarrow{A} I_6: S \rightarrow AaA.b , \$ \xrightarrow{a} I_8: S \rightarrow AaAb. , \$$$

$$A \rightarrow . , b$$

$$I_5: S \to Bb.Ba$$
, \$\bigcup_B \int_7: S \to BbB.a\$, \$\bigcup_B \int_9: S \to BbBa.\$, \$\bigcup_B \int_7: S \to BbBa.\$,\$

Canonical LR(1) Collection – Example 2

$$S' \rightarrow S \qquad I_0: S' \rightarrow .S, \$$$

$$1) S \rightarrow L = R \qquad S \rightarrow .L = R, \$$$

$$2) S \rightarrow R \qquad S \rightarrow .R, \$$$

$$3) L \rightarrow *R \qquad L \rightarrow .*R, \$/=$$

$$4) L \rightarrow id \qquad L \rightarrow .id, \$/=$$

5) $R \rightarrow L$

 $R \rightarrow .L.\$$

Construction of LR(1) Parsing Tables

- 1. Construct the canonical collection of sets of LR(1) items for G'. $C \leftarrow \{I_0,...,I_n\}$
- 2. Create the parsing action table as follows
 - If a is a terminal, $A \rightarrow \alpha \cdot a\beta$, b in I_i and $goto(I_i,a)=I_j$ then action[i,a] is *shift j*.
 - If $A \rightarrow \alpha$ •, a is in I_i , then action[i,a] is **reduce** $A \rightarrow \alpha$ where $A \neq S$ '.
 - If $S' \rightarrow S_{\bullet}$, \$\\$ is in I_i , then action[i,\$] is *accept*.
 - If any conflicting actions generated by these rules, the grammar is not LR(1).
- 3. Create the parsing goto table
 - for all non-terminals A, if $goto(I_i,A)=I_j$ then goto[i,A]=j
- 4. All entries not defined by (2) and (3) are errors.
- 5. Initial state of the parser contains $S' \rightarrow .S,$ \$

LR(1) Parsing Tables – (for Example2)

	id	*	=	\$	S	L	R
0	s5	s4			1	2	3
1				acc			
2			s6	r5			
3				r2			
4	s5	s4				8	7
5			r4	r4			
6	s12	s11				10	9
7			r3	r3			
8			r5	r5			
9				r1			
10				r5			
11	s12	s11				10	13
12				r4			
13				r3			

no shift/reduce or no reduce/reduce conflict

 $\downarrow \downarrow$

so, it is a LR(1) grammar

LALR Parsing Tables

- LALR stands for LookAhead LR.
- LALR parsers are often used in practice because LALR parsing tables are smaller than LR(1) parsing tables.
- The number of states in SLR and LALR parsing tables for a grammar G are equal.
- But LALR parsers recognize more grammars than SLR parsers.
- yacc creates a LALR parser for the given grammar.
- A state of LALR parser will be again a set of LR(1) items.

Creating LALR Parsing Tables

Canonical LR(1) Parser

LALR Parser

shrink # of states

- This shrink process may introduce a reduce/reduce conflict in the resulting LALR parser (so the grammar is NOT LALR)
- But, this shrink process does not produce a **shift/reduce** conflict.

The Core of A Set of LR(1) Items

• The core of a set of LR(1) items is the set of its first component.

Ex: $S \to L \bullet = R, \$$ \Rightarrow $S \to L \bullet = R$ Core $R \to L \bullet, \$$ $R \to L \bullet$

• We will find the states (sets of LR(1) items) in a canonical LR(1) parser with same cores. Then we will merge them as a single state.

 $I_1:L \rightarrow id \bullet ,=$ $L \rightarrow id \bullet ,=$ $L \rightarrow id \bullet ,\$$

 $I_2:L \rightarrow id \bullet ,\$$ have same core, merge them

- We will do this for all states of a canonical LR(1) parser to get the states of the LALR parser.
- In fact, the number of the states of the LALR parser for a grammar will be equal to the number of states of the SLR parser for that grammar.

Creation of LALR Parsing Tables

- Create the canonical LR(1) collection of the sets of LR(1) items for the given grammar.
- Find each core; find all sets having that same core; replace those sets having same cores with a single set which is their union.

$$C = \{I_0,...,I_n\} \rightarrow C' = \{J_1,...,J_m\}$$
 where $m \le n$

- Create the parsing tables (action and goto tables) same as the construction of the parsing tables of LR(1) parser.
 - Note that: If $J=I_1 \cup ... \cup I_k$ since $I_1,...,I_k$ have same cores

 → cores of goto(I_1,X),...,goto(I_2,X) must be same.
 - So, goto(J,X)=K where K is the union of all sets of items having same cores as $goto(I_1,X)$.
- If no conflict is introduced, the grammar is LALR(1) grammar. (We may only introduce reduce/reduce conflicts; we cannot introduce a shift/reduce conflict)

Shift/Reduce Conflict

- We say that we cannot introduce a shift/reduce conflict during the shrink process for the creation of the states of a LALR parser.
- Assume that we can introduce a shift/reduce conflict. In this case, a state of LALR parser must have:

$$A \rightarrow \alpha \bullet a$$
 and $B \rightarrow \beta \bullet a\gamma, b$

• This means that a state of the canonical LR(1) parser must have:

$$A \rightarrow \alpha \bullet ,a$$
 and $B \rightarrow \beta \bullet a\gamma ,c$

But, this state has also a shift/reduce conflict. i.e. The original canonical LR(1) parser has a conflict.

(Reason for this, the shift operation does not depend on lookaheads)

Reduce/Reduce Conflict

• But, we may introduce a reduce/reduce conflict during the shrink process for the creation of the states of a LALR parser.

Canonical LALR(1) Collection – Example 2

$$S' \rightarrow S \qquad I_0: S' \rightarrow \bullet S, \$ \qquad I_1: S' \rightarrow S \bullet, \$ \qquad I_{411}: L \rightarrow * \bullet R, \$/= \\ 1) S \rightarrow L = R \qquad S \rightarrow \bullet L = R, \$ \qquad R \rightarrow \bullet L, \$/= \\ 2) S \rightarrow R \qquad S \rightarrow \bullet R, \$ \qquad L \rightarrow \bullet *R, \$/= \\ 3) L \rightarrow *R \qquad L \rightarrow \bullet *R, \$/= \\ 4) L \rightarrow id \qquad L \rightarrow \bullet id, \$/= \\ 4) L \rightarrow id \qquad L \rightarrow \bullet id, \$/= \\ 5) R \rightarrow L \qquad R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow \bullet L, \$ \qquad I_{512}: L \rightarrow id \bullet, \$/= \\ R \rightarrow$$

to
$$I_9$$
: $S \rightarrow L=R \bullet , \$$
to I_{810}
to I_{411}
to I_{512}

Same Cores
$$I_4$$
 and I_{11}
 I_5 and I_{12}
 I_7 and I_{13}
 I_8 and I_{10}

 $I_{713}:L \rightarrow *R \bullet ,\$/=$

LALR(1) Parsing Tables – (for Example2)

	id	*	=	\$	S	L	R
0	s5	s4			1	2	3
1				acc			
2			s6	r5			
3				r2			
4	s5	s4				8	7
5			r4	r4			
6	s12	s11				10	9
7			r3	r3			
8			r5	r5			
9				r1			

no shift/reduce or no reduce/reduce conflict

so, it is a LALR(1) grammar

Using Ambiguous Grammars

- All grammars used in the construction of LR-parsing tables must be un-ambiguous.
- Can we create LR-parsing tables for ambiguous grammars?
 - Yes, but they will have conflicts.
 - We can resolve these conflicts in favor of one of them to disambiguate the grammar.
 - At the end, we will have again an unambiguous grammar.
- Why we want to use an ambiguous grammar?
 - Some of the ambiguous grammars are **much natural**, and a corresponding unambiguous grammar can be very complex.
 - Usage of an ambiguous grammar may eliminate unnecessary reductions.
- Ex.

$$E \rightarrow E+E \mid E*E \mid (E) \mid id$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (E) \mid id$$

Sets of LR(0) Items for Ambiguous Grammar

SLR-Parsing Tables for Ambiguous Grammar

$$FOLLOW(E) = \{ \$, +, *, \}$$

State I₇ has shift/reduce conflicts for symbols + and *.

$$I_0 \xrightarrow{E} I_1 \xrightarrow{+} I_4 \xrightarrow{E} I_7$$

when current token is +

shift \rightarrow + is right-associative

reduce → + is left-associative

when current token is *

shift \rightarrow * has higher precedence than +

reduce → + has higher precedence than *

SLR-Parsing Tables for Ambiguous Grammar

$$FOLLOW(E) = \{ \$, +, *, \}$$

State I₈ has shift/reduce conflicts for symbols + and *.

$$I_0 \xrightarrow{E} I_1 \xrightarrow{*} I_5 \xrightarrow{E} I_7$$

when current token is *

shift → * is right-associative

reduce → * is left-associative

when current token is +
shift → + has higher precedence than *

reduce → * has higher precedence than +

SLR-Parsing Tables for Ambiguous Grammar

Cata

1 04:00

Action							Goto
	id	+	*	()	\$	E
0	s3			s2			1
1		s4	s5			acc	
2	s3			s2			6
3		r4	r4		r4	r4	
4	s3			s2			7
5	s3			s2			8
6		s4	s5		s9		
7		r1	s5		r1	r1	
8		r2	r2		r2	r2	
9		r3	r3		r3	r3	

End of ch3....

Thank You

