Slide - 29
$$P = \frac{1}{E.T}$$

Computer A:

Clock Rate = 2 aHz

CPU Time = 103

Computer B:

CPU Time = 66

Clock Cycle = 1.2

Computer A:

Clock Cycles = CPU Time x Clock Rate Clock Cycles = Instruction Count x Cycles per Instruction

CPU Time = Instruction County CPIX

clock cycle time

Instruction Count x CPI

= Instruction Count x CPI

Clock Rate

Same ISA (Instruction Count = 1)

$$\frac{P_A}{P_B} = \frac{E_B}{E_A}$$

CPU Time = Instruction Count x CPI x Cycle time

CPU Time_B CPU Time_A

Clock Cycles =
$$\sum_{i=1}^{n}$$
 (CPI; x Instruction;)

Relative Frequency

	10	otal Clock
_	$(2x3)+(5x2)+(3x5)^{-1}$	Cycle
_	10	

n = 3

C(043	A	В	С
CPI for class	ㅓ	2	3
IC in Seq. 1	2	1	2
Ic in seq.2	4	1	1

Geometric Mean:

$$\frac{n}{\sum_{i=1}^{n} \text{Execution time ratio}}$$

Amdahl's Law

Execution Time = Taffected+ Tunaffected
multiply accounts for 805/2005

Execution Time = Taffected+ Tunaffected
1006

806
206

Timproved =
$$\frac{\text{Taffected}}{\text{improvement}} + \text{Tuneffected}$$
 $factor$
 $100 \times 50 = \frac{80}{9} + 20$

$$20 = \frac{80}{n} + 20$$

$$\frac{80}{n} = 0 \times \text{Can't be done}$$

The Von Neumann Model
The Honovard Anchitecture

C15C/R15C

MIPS Follow RISC.