Algorithmique des graphes

David Pichardie

28 Mars 2018

Bilan du CM3

- Le parcours en largeur calcule les plus courts chemin d'un graphe non-pondéré
- Le parcours en profondeur permet de classifier les arcs selon 4 types
- Le parcours en profondeur permet de détecter les cycles dans un graphes non-orienté, en temps linéaire
- Tri topologique
 - grâce à un parcours en profondeur
 - ou en utilisant l'algorithme de Kahn

Fermeture transitive

Vocabulaire

Définition

Dans un graphe, orienté ou non, un sommet y est dit *accessible* depuis un sommet x si il existe un chemin de x à y.

Exemple

y est accessible depuis x

Accessibilité

On peut décider si *y* est accessible depuis *x* grâce à un parcours en profondeur démarrant en *x*.

Vocabulaire

Définition

La *fermeture transitive* d'un graphe G=(S,A) est un graphe G^{*} avec les même sommets S mais dans lequel il existe un arc entre x et y si et seulement si il y a un chemin de x à y dans G.

Exemple

Remarque

La fermeture transitive d'un graphe est souvent dense : on représente donc la fermeture avec une matrice d'adjacence

	0	1	2	3	4	5
0	0	1	0 1 0 1 0	0	0	1
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	1	0	1	0
4	0	0	0	0	0	1
5	0	0	0	0	1	0

	0	1	1 1 1 1 0 0	3	4	5
0	1	1	1	0	1	1
1	1	1	1	0	1	1
2	1	1	1	0	1	1
3	1	1	1	1	1	1
4	0	0	0	0	1	1
5	0	0	0	0	1	1

Application

Si on connait G*, on peut résoudre les requêtes d'accessibilité en temps constant

```
ACCESSIBLE?(Astar,x,y) = renvoie (x,y) ∈ Astar
```

Calcul de la fermeture transitive sur les graphes sparses

Avec |S| parcours en profondeur (un pour chaque ligne)

```
on parcourt les accessibles depuis l
```

```
VISITE(l,i) =
   A*[l,i] <- vraie
   pour tout j ∈ Adj[i]
      si non A*[l,j] alors VISITE(l,j)

FERMETURE_TRANSITIVE() =
   A* <- [[faux, ..., faux], ..., [faux, ..., faux]]
   pour tout i ∈ S
      VISITE(i,i)
   renvoie A*</pre>
```

on lance une visite avec VU[] = A*[i][]

coût O(AS)

Calcul de la fermeture transitive sur les graphes denses

Avec des calculs matriciels!

Rappel:

on calcule

$$C[i,j] = \sum_{k} A[i,k] \times B[k,j]$$

Calcul de la fermeture transitive sur les graphes denses

Produits de matrices à valeurs booléennes

il existe k tel que
A[i,k]=vraie et B[k,j]=vraie

Produit de matrices d'adjacences

Si C est un graphe dont la matrice d'adjacence est égale au produit des matrices d'adjacence des graphes A et B, alors

> il existe un arc (i,j) dans C si et seulement si

il existe un sommet k tel que (i,k) est un arc de A et (k,j) est un arc de B.

Calcul de la fermeture transitive sur les graphes denses

Si A est la matrice d'adjacence d'un graphe G

- si G n'a pas d'auto-boucle, pour tout sommets i,j,
 A^k[i,j] = vraie si et seulement si existe un chemin simple à k sommets entre i et j
- si G a des auto-boucle en chaque sommet, pour tout sommets i,j,
 A^k[i,j] = vraie si et seulement si existe un chemin simple avec au plus k sommets entre i et j

Calcul de la fermeture transitive sur les graphes denses

Puisque tous les chemins simples de G passent par au plus |S| sommets, il suffit

- d'ajouter des auto-boucles en chaque sommet
- de calculer la puissance |S|ième de la matrice obtenue

$$A^* = (Id+A)^{|S|}$$

A

	0	1	2	3	4	5
0	0	1	0 1 0 1 0	0	0	1
1	0	0	1	0	0	0
2	1	0	0	0	0	0
3	0	0	1	0	1	0
4	0	0	0	0	0	1
5	0	0	0	0	1	0

Id+A

	1 0 1 0 0 0	1	2	3	4	5
0	1	1	0	0	0	1
1	0	1	1	0	0	0
2	1	0	1	0	0	0
3	0	0	1	1	1	0
4	0	0	0	0	1	1
5	0	0	0	0	1	1

(TA	1	1)	2
\ -	LU	+/	٦ノ	_

	0	1	2	3	4	5
0	1	1	1 1 1 1 0 0	0	1	1
1	1	1	1	0	0	0
2	1	1	1	0	0	1
3	1	0	1	1	1	1
4	0	0	0	0	1	1
5	0	0	0	0	1	1

	0	1	2	3	4	5
0	1	1	1 1 1 1 0 0	0	1	1
1	1	1	1	0	0	1
2	1	1	1	0	1	1
3	1	1	1	1	1	1
4	0	0	0	0	1	1
5	0	0	0	0	1	1

	0	1	2	3	4	5
0	1	1	1 1 1 1 0 0	0	1	1
1	1	1	1	0	1	1
2	1	1	1	0	1	1
3	1	1	1	1	1	1
4	0	0	0	0	1	1
5	0	0	0	0	1	1

	0	1	2	3	4	5
0	1	1	1 1 1 1 0 0	0	1	1
1	1	1	1	0	1	1
2	1	1	1	0	1	1
3	1	1	1	1	1	1
4	0	0	0	0	1	1
5	0	0	0	0	1	1

	0	1	2	3	4	5
0	1 1 1 1 0 0	1	1	0	1	1
1	1	1	1	0	1	1
2	1	1	1	0	1	1
3	1	1	1	1	1	1
4	0	0	0	0	1	1
5	0	0	0	0	1	1

Algorithme de Warshall

Il est possible d'obtenir une complexité en O(S3)

Nous expliquerons cet algorithme dans un prochain cours

Composantes fortement connexes

Vocabulaire

Définition

Dans un graphe orienté, deux sommets x et y sont fortement connectés si il existe un chemin de x à y et un chemin de y à x.

Exemple

x et y sont fortement connectés

Propriétés

Le connectivité forte est une relation d'équivalence

- x est fortement connecté à x (relation réflexive)
- si x est fortement connecté à y, alors y est fortement connecté à x (relation symétrique)
- si x est fortement connecté à y, et si y est fortement connecté à z, alors x est fortement connecté à z (relation transitive)

Vocabulaire

Définition

Dans un graphe orienté, une composante fortement connexe est un ensemble maximal de sommets fortement connectés.

Exemple

6 composantes fortement connexes

Exercice

Calculer les composantes fortement connexes (cfc)

Exercice

Calculer les composantes fortement connexes (cfc)

Vocabulaire

Définition

Le graphe *inverse* d'un graphe orienté G=(S,A) est le graphe G'=(S,A') possédant les même sommets mais où chaque arc $(i,j) \in A'$ si et seulement $(j,i) \in A$.

Exemple

Propriétés

Les composantes fortement connexes d'un graphe G sont les mêmes que celles de son graphe inverse G'

Propriétés

 Les composantes fortement connexes sont les classes d'équivalence de la relation d'équivalence associée

Les classes d'équivalence forment une partition des

sommets

Graphe quotient

On peut alors construire un nouveau graphe où

- les sommets sont les classe d'équivalence
- les arc relies les classes pour lesquelles il existait au moins un arc dans le graphe initial

Propriétés

- le graphe quotient est un graphe orienté acyclique
- il donne une « vue d'avion » du graphe

Calcul des composantes fortement connexes : histoire

- années 60 : un problème classique
 - mais sans solution efficace (polynomial)
 - la complexité du problème n'est pas connue
- 1972 : algorithme linéaire proposé par Tarjan
 - une simple modification du parcours en profondeur
 - difficile à comprendre
- années 80 : algorithme linéaire de Kosaraju
 - plus simple à comprendre (2 parcours)
 - Kosaraju avait oublié ses notes de cours et a inventé l'algorithme pour préparer son cours!

Algorithme de Kosaraju

- parcours en profondeur sur G pour calculer FIN (ordre suffixe)
- 2. calcul de l'inverse G' de G
- parcours en profondeur sur G', mais en itérant la boucle principale par ordre de FIN décroissant
- 4. les composantes fortement connexes sont les arbres de la forêt du 2e parcours

coût global O(A+S)

