Государственное образовательное учреждение высшего профессионального образования Московской области

Государственный университет «Дубна» Международная школа "Аналитика больших данных"

Отчет

По предмету

Научно-проектная деятельность

на тему: «Расширение функционала программной платформы при помощи модулей для анализа телеметрии оборудования.»

Выполнил студент группы **11** Згонник Данил Андреевич Научный руководитель:

Зайцев М. А.

г. Дубна, 2022

Оглавление

Описание проекта и предметной области	3
Цели и задачи проекта	4

Описание проекта и предметной области

PMQ (аббр. от англ. Predictive Maintenance and Quality – профилактическое обслуживание и качество) – предметная область, объединяющая в себе задачи профилактического обслуживания оборудования на основе следующих данных: телеметрия (история показаний различных датчиков, управляющих сигналов), история обслуживания оборудования, история отказов оборудования, данные анализа качества. Кроме того, полезна и другая статическая информация о машине/системе, такая как данные об особенностях машины, ее механических свойствах, типичном поведении при использовании и условиях окружающей среды.

Сбор данных в подобных задачах чаще всего осуществляется при помощи систем SCADA (аббр. от англ. Supervisory Control And Data Acquisition) — компьютерная система для сбора и анализа данных в режиме реального времени. Системы SCADA используются для мониторинга и управления оборудованием в таких отраслях, как телекоммуникации, управление водными ресурсами и отходами, энергетика, переработка и транспортировка нефти и газа.

В данном проекте необходимо на основе вышеупомянутых данных расширить функционал программной платформы модулями по анализу состояния и качества технического оборудования.

Цели и задачи проекта

Целью данного проекта является построение РМО-модели со следующими возможностями:

- Прогнозирование отказа оборудования для предотвращения дорогостоящих непредвиденных простоев.
- Внесение коррективов в графики профилактического обслуживания для снижения затрат на ремонт и сведения к минимуму времени простоя.
- Определение основной причины сбоя объекта для принятия корректирующие действия.
- Точное и своевременное выявление проблем с качеством и надежностью.

Для достижения цели необходимо решить следующие поставленные задачи:

1. Сбор данных

Загрузка данных из разных источников - CSV, СУБД, API к SCADA/MES системам.

Необходимые данные:

- Телеметрия (история показаний различных датчиков, управляющих сигналов)
- История обслуживания оборудования
- История отказов оборудования / Данные анализа качества

2. Оценка данных

Оценка количества целевых событий, для которых есть предыстория телеметрии необходимой глубины. Расчет *MTTF* — среднего времени наработки оборудования до отказа. Расчет количества оборудования и их однообразности.

3. Предобработка данных

Данные по телеметрии используются для расчета средних значений и дисперсии за разные интервалы и их тренды, частота выбросов, общего времени наработки, наработки в разных режимах (при высоком токе, нормальном токе, низком токе), количество запусков и т.д. *PCA* для снижения размерности и выявления базисных признаков.

4. Разделение данных на тренировочную и тестовую выборки

Для задач прогнозного обслуживания необходимо гарантировать что все данные по конкретному событию отказа будут либо тренировочной, либо в тестовой выборке. Только такой способ позволяет гарантировать, что нет переобучения модели. Для задач оптимизации тех. процесса данные, как правило, используется timeseries split.

5. Выбор метрик качества

Для задач прогнозного обслуживания оборудования как правило используются метрики Precision и Recall.

6. Выбор алгоритма

Как правило на вид алгоритма не накладываются специальных ограничений, так как модели редко используются для *Realtime* скоринга с большой частотой. На этом уровне работают *PID* контроллеры. Часто инженеры/технологии требуют использовать интерпретируемые алгоритмы, чтобы они могли проверить найденные закономерности. Для этого используются деревья решений, поиск правил (*skope-rules*, *decision list*).

7. Реализация алгоритма

Конструирование модели на основе выбранного алгоритма и ее обучение.

8. Тестирование модели

Тестирование модели с использованием заранее предобработанных данных.

Реализация и тестирование РМО модели приведены ниже

In [1]: **import** pandas **as** pd **import** numpy **as** np

from matplotlib import pyplot as plt

from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import recall_score, precision_score, classification_report, confusion_matrix,ConfusionMatrixDisplay from sklearn.model_selection import GridSearchCV

from xgboost import XGBClassifier pd.set_option('display.max_rows', 500)

pd.set_option('display.max_columns', 500)

In [3]:

Import telemetry data df_raw =
pd.read_csv('./data/telemetry.csv')

df_raw['datetime'] = pd.to_datetime(df_raw['datetime'], format='%m/%d/%Y %I:%M:%S %p')

df_raw.head()

Out[3]:		datetimemachinel	D	volt	rotate	pressure	vibration
	0	2015-01-01 06:00:00	1	176.217853	418.504078	113.077935	45.087686
	1	2015-01-01 07:00:00	1	162.879223	402.747490	95.460525	43.413973
	2	2015-01-01 08:00:00	1	170.989902	527.349825	75.237905	34.178847
	3	2015-01-01 09:00:00	1	162.462833	346.149335	109.248561	41.122144
	4	2015-01-01 10:00:00	1	157.610021	435.376873	111.886648	25.990511
In [4].							

In [4]:

print("List of machineID: {}".format(df_raw['machineID'].unique()))

List of machinelD: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100]

In [5]:

Check for correlation between tags df_raw.iloc[:,

2:].corr()

Out[5]:

In [6]:

	volt	rotate	pressure	vibration
volt	1.000000	-0.001511	0.001652	0.002390
rotate	-0.001511	1.000000	-0.000688	-0.003056
pressure	0.001652	-0.000688	1.000000	0.001395
vibration	0.002390	-0.003056	0.001395	1.000000

cols = df_raw.columns[2:].to_list()

 $df_mean = df_raw.groupby('machinelD').resample('D', on='datetime').mean(). drop(columns='machinelD').rename(columns={c: c + '_mean' for c in cols})$

df_std = df_raw.groupby('machineID').resample('D', on='datetime').std().\ drop(columns='machineID').rename(columns={c: c + '_std' for c in cols})

df_agg = df_mean.merge(df_std, how='inner', left_index=True, right_index=True)

Convert datetime index to date
df_agg.reset_index(inplace=True) df_agg['datetime'] =
df_agg['datetime'].dt.date df_agg.set_index(['machineID',
'datetime'], inplace=True)

df_agg

Out[6]: vibration std volt_mean rotate_mean pressure_mean vibration_mean volt std rotate_std pressure_std datetime machineID 2015-01-01 167.576533 440.515328 98.522345 40.049623 9.300337 49.590263 10.588562 5.739395 2015-01-02 169.795758 446.832666 98.454608 39.271645 15.742155 38.800266 11.679314 5.579524 459.204742 97.998233 8.884765 2015-01-03 171.862244 48.074091 11.182853 47.387959 8.194927

		2015-01-04	174.792428	448.743201	101.452266	52.190268	19.224657	34.008026	10.807630	5.081258
		2015-01-05	171.018408	454.822750	102.363114	43.330311	17.900560	47.803621	10.672868	8.087134
	1	.00 2015-12-28	170.982029	454.875385	97.864404	39.221774	15.030665	58.013495	8.522116	5.384053
	•									
		2015-12-29	167.114444	459.097599	97.531682	40.117173	16.654803	56.447064	9.257888	4.916935
		2015-12-30	168.613777	455.140822	98.415400	39.995452	12.261241	59.849202	9.359740	4.896418
		2015-12-31	168.469994	463.241909	101.846119	38.826901	17.310060	67.148361	9.567172	5.670301
		2016-01-01	175.690455	445.693412	97.504105	44.080262	11.756392	35.153622	8.808406	5.668216
3	36600 ro	ws × 8 columns								
In [8]:	t Import i	machines data c	of machine =							
		csv('./data/mac								
С	df_machi	ne.head()								
Out[8]:	mach	nineID model	age							
	0	1 r	model3 18							
	1	2 r	model4 7							
	2	3 r	model3 8							
	3		nodel3 7							
	4	5 r	nodel3 2							
In [12]:		: maintenance d _csv('./data/mai								
	df_main	t.head()								
Out[12]:		datetii	me machineID	comp						
	o 6,	/1/2014 6:00:00 AN		comp2						
	1 7/	/16/2014 6:00:00 A	M 1	comp4						
	2 7/	/31/2014 6:00:00 A	M 1	comp3						
	3 12	2/13/2014 6:00:00	AM 1	comp1						
	4 1/	/5/2015 6:00:00 AN	1	comp4						
In [13]:		re df_maint df_r _csv('./data/mai								
	df_maint['datetime'] = pd.to_datetime(df_maint['datetime'], format='%m/%d/%Y %I:%M:%S %p') df_maint['datetime'] = df_maint['datetime'].dt.date df_maint['value'] = 1									
	df_maint = pd.pivot(df_maint, index=['machineID', 'datetime'], columns=['comp'], values=['value']) df_maint.columns=['maint_comp1', 'maint_comp2', 'maint_comp3', 'maint_comp4']									
	df_maint.fillna(0, inplace= True)									
	<pre>for col in ['maint_comp' + str(i+1) for i in range(4)]:</pre>									
	df_main	t								
Out[13]:			maint_comp	1 maint_com	p2 maint_comp3	maint_comp4				

1 2014-06-01 1

machineID

datetime

2014-07-16	0	0	0	1		
2014-07-31	0	0	1	0		
2014-12-13	1	0	0	0		
2015-01-05 1 0 0 1 100 2015-10-10 1 0 1 0						
2015-10-25	0	0	0	1		
2015-11-09	0	0	0	1		
2015-12-09	0	1	0	0		
2015-12-24	0	1	0	0		

2528 rows × 4 columns

In [14]:

Import errors data df_err =
pd.read_csv('./data/errors.csv')

df_err.head()

Out[14]:

	datetime	machineID	errorID
0	1/3/2015 7:00:00 AM	1	error1
1	1/3/2015 8:00:00 PM	1	error3
2	1/4/2015 6:00:00 AM	1	error5
3	1/10/2015 3:00:00 PM	1	error4
4	1/22/2015 10:00:00 AM	1	error4

In [15]:

Some charts df_err =
pd.read_csv('./data/errors.csv')

 $df_err = df_err.merge(df_machine, on='machineID', how='left')$

 $\#fig, \ ax = plt.subplots(2,2, figsize=(10, 10))$

 $df_err['errorID'].value_counts().plot(kind='bar')$

Out[15]:<AxesSubplot:>

In [16]:

df_err.groupby(['model', 'errorID'])['errorID'].count()

Out[16]:model	errorID model1
error1	152
error2	154
error3	139
error4	152
error5	75 model2
error1	176
error2	164
error3	119
error4	181
error5	62 model3

```
352
error1
                    346
error2
error3
                    317
                    193
error4
           120 model4
error5
error1
                    330
                    324
error2
error3
                    263
error4
                     201
          99
error5
Name: errorID, dtype: int64
# Prepare df_err df_err =
pd.read_csv('./data/errors.csv')
df\_err['datetime'] = pd.to\_datetime(df\_err['datetime'], format='%m/%d/%Y \%l:%M:%S \%p')
df_err['datetime'] = df_err['datetime'].dt.date df_err['value'] = 1
df\_err = pd.pivot\_table(df\_err, index=['machinelD', 'datetime'], columns=['errorlD'], values=['value'], aggfunc=np.sum)
\label{eq:df_error} df\_err.columns=['errorID\_1', 'errorID\_2', 'errorID\_3', 'errorID\_4', 'errorID\_5']
df_err.fillna(0, inplace=True)
for col in [ 'errorID_' + str(i+1) for i in range(5)]: df_err[col] =
df_err[col].astype(int)
df_err
                            errorID_1
                                       errorID_2 errorID_3 errorID_4 errorID_5
  machineID
                 datetime
              2015-01-03
                                    1
                                                0
                                                                                   0
               2015-01-04
                                                0
                                                           0
                                                                       0
                                                                                   1
               2015-01-10
                                                0
                                                           0
                                                                                   0
```

3441 rows × 5 columns

In [19]:

In [17]:

Out[17]:

Import failures data df_fail =
pd.read_csv('./data/failures.csv')

df_fail.head()

Out[19]:

	datetime	machineID	failure
0	1/5/2015 6:00:00 AM	1	comp4
1	3/6/2015 6:00:00 AM	1	comp1
2	4/20/2015 6:00:00 AM	1	comp2
3	6/19/2015 6:00:00 AM	1	comp4
4	9/2/2015 6:00:00 AM	1	comp4

In [20]:

```
parse_dates=True)
        df_fail['datetime'] = pd.to_datetime(df_fail['datetime'], format='%m/%d/%Y %I:%M:%S %p')
         df_{fail}['datetime'] = df_{fail}['datetime'].dt.date df_{fail}['value'] = 1
        df_fail = pd.pivot(df_fail, index=['machineID', 'datetime'], columns=['failure'], values=['value']) df_fail.columns=['fail_comp_1',
         'fail_comp_2', 'fail_comp_3', 'fail_comp_4']
        df_fail.fillna(0, inplace=True)
        for col in [ 'fail_comp_' + str(i+1) for i in range(4)]: df_fail[col] =
         df_fail[col].astype(int)
        df_fail.head()
Out[20]:
                                     fail_comp_1
                                                    fail_comp_2
                                                                  fail_comp_3
                                                                                 fail_comp_4
           machineID
                          datetime
                        2015-01-05
                                                0
                                                              0
                        2015-03-06
                                                                                            0
                        2015-04-20
                        2015-06-19
                                                                             0
                        2015-09-02
                                                              0
                                                                             O
                                                                                            1
In [21]:
        # Merge dataframes
        df = df_agg.merge(df_maint, left_index = True, right_index=True, how='left') df =
         df.merge(df_err, left_index = True, right_index=True, how='left') df =
         df.merge(df_fail, left_index = True, right_index=True, how='left')
        df.fillna(0, inplace=True)
        df.reset_index(inplace=True) df.sort_values(['machineID',
         'datetime'], inplace=True)
        df
Out[21]:
                   machineID
                                datetime
                                            volt mean
                                                         rotate_mean
                                                                        pressure_mean
                                                                                          vibration_mean
                                                                                                              volt std
                                                                                                                        rotate_std
                                                                                                                                     pressure_std
                                                                                                                                                     vibration std
                                                                                                                                                                     maint_comp
                                2015-01-
               0
                                167.576533 440.515328 98.522345 40.049623 9.300337 49.590263 10.588562 5.739395
                                      01
                                2015-01-
                            1
                                169.795758\ 446.832666\ 98.454608\ \ 39.271645\ \ 15.742155\ \ 38.800266\ \ 11.679314\ \ 5.579524
                                      02
                                2015-01-
                                171.862244 459.204742 97.998233 48.074091 11.182853 47.387959 8.884765
                                                                                                            8.194927
                            1
                                      03
                                2015-01-
                                174.792428 448.743201 101.452266 52.190268 19.224657 34.008026 10.807630 5.081258
               3
                            1
                                      04
                                2015-01-
                                171.018408 454.822750 102.363114 43.330311 17.900560 47.803621 10.672868 8.087134
                                2015-12-
          36595
                          100
                                170.982029 454.875385 97.864404 39.221774 15.030665 58.013495 8.522116
                                                                                                            5.384053 0
                                2015-12-
                                167.114444 459.097599 97.531682 40.117173 16.654803 56.447064 9.257888
          36596
                                      29
                                2015-12-
          36597
                          100
                                168.613777 455.140822 98.415400 39.995452 12.261241 59.849202 9.359740
                                      30
                                2015-12-
                                168.469994 463.241909 101.846119 38.826901 17.310060 67.148361 9.567172 5.670301
          36598
                                      31
```

Prepare df_err df_fail = pd.read_csv('./data/failures.csv',

```
36600
                         rows × 23 columns
In [22]:
        # Check if maintenance is always true when component fail for i in range(1, 5): print("Comp{} maintenance rate in case of fail:
        \{:.3f\}".format(i, df[df['fail_comp_' + str(i)] == 1.0]['maint_comp' + str(i)].mean()))
Comp1 maintenance rate in case of fail: 0.953
Comp2 maintenance rate in case of fail: 0.988
Comp3 maintenance rate in case of fail: 0.977
Comp4 maintenance rate in case of fail: 0.983
In [23]:
        # Add days from last event for error, maintenance and failure
        features = [
           'maint_comp1', 'maint_comp2', 'maint_comp3', 'maint_comp4',
           'errorID_1', 'errorID_2', 'errorID_3', 'errorID_4', 'errorID_5',
           'fail_comp_1', 'fail_comp_2', 'fail_comp_3', 'fail_comp_4'
        df.sort_values(['machineID', 'datetime'], inplace=True)
        for f in features:
           group_id = ((df['machineID'] != df['machineID'].shift(1)) | (df[f])).astype(int).cumsum() df[f +
         '\_days'] = df.groupby(group\_id)[f].cumcount() \qquad df[f + '\_count'] =
        df.groupby(group_id)[f].rolling(window=3).sum().reset_index(drop=True)
        df.fillna(0, inplace=True)
        df
Out[23]:
                   machineID
                                datetime
                                                         rotate_mean
                                                                                          vibration_mean
                                                                                                              volt_std
                                                                                                                        rotate_std
                                                                                                                                     pressure_std
                                                                                                                                                     vibration_std
                                                                                                                                                                     maint_comp
                                           volt_mean
                                2015-01-
               0
                                167.576533 440.515328 98.522345 40.049623 9.300337 49.590263 10.588562 5.739395
                            1
                                     01
                                2015-01-
               1
                            1
                                169.795758 446.832666 98.454608 39.271645 15.742155 38.800266 11.679314 5.579524
                                2015-01-
                                171.862244\ 459.204742\ 97.998233\ \ 48.074091\ \ 11.182853\ \ 47.387959\ \ 8.884765
                                                                                                            8.194927
                                     03
                                2015-01-
                                174.792428 448.743201 101.452266 52.190268 19.224657 34.008026 10.807630 5.081258
                                     04
                                2015-01-
                                171.018408 454.822750 102.363114 43.330311 17.900560 47.803621 10.672868 8.087134
                                     05
                                2015-12-
                                170.982029 454.875385 97.864404 39.221774 15.030665 58.013495 8.522116
          36595
                         100
                                                                                                            5.384053
                                2015-12-
                                167.114444 459.097599 97.531682 40.117173 16.654803 56.447064 9.257888
          36596
                         100
                                                                                                            4.916935
                                2015-12-
          36597
                         100
                                168.613777\ 455.140822\ 98.415400\ \ 39.995452\ \ 12.261241\ \ 59.849202\ \ 9.359740
                                2015-12-
          36598
                         100
                                168.469994 463.241909 101.846119 38.826901 17.310060 67.148361 9.567172
                                     31
                                2016-01-
          36599
                                175.690455 445.693412 97.504105 44.080262 11.756392 35.153622 8.808406
                                     01
          36600
                         rows × 49 columns
In [24]:
```

175.690455 445.693412 97.504105 44.080262 11.756392 35.153622 8.808406 5.668216 0.

2016-01-

Export data mart df.to_csv('./data/_data_mart.csv')

In [25]:

100

36599

```
# Select boundary data for train/test split date_split
                 = pd.Timestamp("2015-09-01")
                print("Train split size: {:.2f}%".format(100*(df.datetime < date_split).astype(int).mean())) print("Test split
                size: {:.2f}%".format(100*(df.datetime >= date_split).astype(int).mean()))
Train split size: 66.39% Test split size: 33.61% c:\users\denny\appdata\local\programs\python\python39\lib\site-packages\pandas\core\ops\array ops.py:73:
FutureWarning: Comparison of Timestamp with datetime.date is deprecated in order to match the standard library behavior. In a future version these will be considered
non-comparable.Use 'ts == pd.Times tamp(date)' or 'ts.date() == date' instead.
 result = libops.scalar_compare(x.ravel(), y, op)
In [26]:
                # Model
                features = [
                     'volt_mean', 'volt_std',
                     'rotate_mean', 'rotate_std',
                     'pressure_mean', 'pressure_std',
                     'vibration_mean', 'vibration_std',
                     'maint_comp1_days', 'maint_comp2_days', 'maint_comp3_days', 'maint_comp4_days',
                     'errorID_1_days', 'errorID_2_days', 'errorID_3_days', 'errorID_4_days', 'errorID_5_days',
                     'errorID_1_count', 'errorID_2_count', 'errorID_3_count', 'errorID_4_count', 'errorID_5_count',
                     'fail_comp_1_days', 'fail_comp_2_days', 'fail_comp_3_days', 'fail_comp_4_days'
                X = df[features]
                date_split = pd.Timestamp("2015-09-01")
                train_idx = df.datetime < date_split test_idx =
                df.datetime >= date_split
                X_train = X[train_idx]
                X_test = X[test_idx]
                GridSearchCV results = []
                 \textbf{for i in } range(1,5): \quad \text{y = (df['fail\_comp\_' + str(i)].shift(-1) == 1)} \  \, \textbf{\& (df['machineID'] == df['machineID'].shift(-1))} \  \, \# \  \, \text{for i in } \  \, \text{for i
                Failure next day y = y.astype(int)
                     y train = y[train idx]
                y_test = y[test_idx]
                     parameters = {
                         'max_depth': [3, 4, 5],
                         'n_estimators': [10, 25, 50, 100]
                     }
                     model = GridSearchCV(XGBClassifier(eval metric='logloss', use label encoder=False), parameters)
                     model.fit(X train, y train)
                     GridSearchCV_results.append(model)
                     model.predict(X_test)))
                     print("\n")
Model evaluation for comp1 failure:
               precision recall f1-score support
                                   1.00 1.00 12249
            n
                     1.00
                       0.96 0.96
          0.96
1
                                                          51
                                                   1.00 12300 macro avg
0.98
              0.98
                             0.98 12300 weighted avg
               1.00 12300
1.00
Model evaluation for comp2 failure:
               precision recall f1-score support
                     1.00
                                   1.00
                                                   1.00
                                                                12210
          1.00
                         0.99
                                        0.99
                                                          90
1
                                                   1.00 12300 macro avg
    accuracy
               0.99
                             1.00 12300 weighted avg
1.00
1.00
               1.00 12300
```

Model evaluation for comp3 failure: precision recall f1-score support

0 1.00 1.00 1.00 12260 1 0.94 0.78 0.85 40

accuracy 1.00 12300 macro avg 0.97 0.89 0.92 12300 weighted avg 1.00 1.00 1.00 12300

Model evaluation for comp4 failure: precision recall f1-score support

0 1.00 1.00 1.00 12244 1 0.98 1.00 0.99 56

accuracy 1.00 12300 macro avg 0.99 1.00 1.00 12300 weighted avg 1.00 1.00 1.00 12300