Матанализ 2 семестр ПИ, Π екции

Собрано 10 сентября 2022 г. в 10:18

Содержание	
1. Метрические пространства	1

Раздел #1: Метрические пространства

Пусть X – некоторое множество. Зададим функцию $\rho: X \times X \to \mathbb{R}$.

Определение 1 (Метрика). ρ называется метрикой, если выполняются следующие три свойства:

- 1. $\rho(x,y) \ge 0 \ \forall x,y \in X$ $\rho(x,y) = 0 \Leftrightarrow x = y$
- 2. $\forall x, y \in X \ \rho(x, y) = \rho(y, x)$
- 3. $\forall x, y, z \in X \ \rho(x, y) \leq \rho(x, z) + \rho(z, y)$ неравенство треугольника.

Определение 2 (Метрическое пространство). Пара (X, ρ) называется *метрическим пространством*.

Пример. Метрика на \mathbb{R}^2 : $\rho_2(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$

Пример. Метрика на \mathbb{R}^d : $\rho_2(x,y) = \sqrt{\sum_{i=1}^d (x_i - y_i)^2}$

Пример (Дискретная метрика). Пусть X – некоторое множество. Зададим

$$\rho(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$

Действительно, все свойства выполняются, поэтому ρ – метрика.

Пример (Манхэттенская метрика). В \mathbb{R}^2 :

$$\rho_1(x,y) = |x_1 - y_1| + |x_2 - y_2|$$

Пример. $\rho_{\infty}(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$

Пример. Рассмотрим C[a,b]. Тогда $\rho(f,g)=\int_a^b |f-g|$ — метрика.

Обозначение (Открытый шар). $B_r(a) = \{x \in X, \ \rho(x,a) < r\}$

Обозначение (Замкнутый шар). $\overline{B}_r(a) = \{x \in X, \ \rho(x,a) \leq r\}$

Обозначение (Сфера). $S_r(a) = \{x \in X, \ \rho(x,a) = r\}$

Пример. В дискретной метрике при r < 1 замкнутый шар $\overline{B}_r(a)$ включает только одну точку -a, а при $r \geqslant 1$ — всё множество X.

Пример. Замкнутый шар в манхэттенской метрике:

Пример. Замкнутый шар в ρ_{∞} :

Утверждение 1. Пусть $B_{r_1}(a)$ и $B_{r_2}(a)$ – шары. Тогда

$$B_{r_1}(a) \cap B_{r_2}(a) = B_{\min(r_1, r_2)}(a)$$

Доказательство. Возьмем $x \in B_{r_1}(a) \cap B_{r_2}(a)$. Тогда $\rho(x,a) < r_1$ и $\rho(x,a) < r_2$, значит $\rho(x,a) < \min(r_1,r_2)$.

Утверждение 2. $\forall a \neq b \ \exists r : \overline{B}_r(a) \cap \overline{B}_r(b) = \emptyset.$

Доказательство. Возьмем $r = \frac{\rho(a,b)}{3}$. Предположим, что пересечение непусто, т.е. $\exists x : x \in \overline{B}_r(a)$ и $x \in \overline{B}_r(b)$. Тогда

$$\rho(a,b) \leqslant \rho(a,x) + \rho(x,b) \leqslant \frac{\rho(a,b)}{3} + \frac{\rho(a,b)}{3}$$

Обозначение. V_x – окрестность точки x (шар).

Обозначение. \dot{V}_x – проколотая окрестность x (шар, не содержащий точку x).

Определение 3 (Внутренняя точка множества). Пусть $A \subset X$. Точка a называется внутренней точкой A, если $\exists V_a \subset A$.

Определение 4 (Внешняя точка множества). Пусть $A \subset X$. Тогда точка b называется *внешней* точкой A, если b – внутренняя точка $X \setminus A$.

Определение 5 (Граничная точка множества). Пусть $A \subset X$. Тогда c является c является c является ни внутренней, ни внешней. Иначе, точка c

назывется граничной, если

$$\forall V_c \ \exists x, y \in V_c : x \in A \land y \in X \setminus A$$

Определение 6 (Открытое множество). Множество $A \subset X$ называется *открытым*, если любая его точка — внутренняя.

Теорема 1 (Об открытых множествах). 1. \emptyset и X – открытые множества

- 2. Объединение любого числа открытых множеств открытое множество
- 3. Пересечение конечного числа открытых множеств открытое множество
- 4. Открытый шар это открытое множество

Доказательство. 1. Очевидно

- 2. Пусть $B = \bigcup_{\alpha \in I} A_{\alpha}$. Возьмем $x \in B$. Тогда $\exists \beta \in I : x \in A_{\beta}$. Т.к. A_{β} открытое множество, то x принадлежит A_{β} с какой-то своей окрестностью, а значит она принадлежит и всему объединению с этой окрестностью.
- 3. Пусть $B = \bigcap_{i=1}^n A_i$. Возьем $x \in B$. Тогда $x \in A_i \ \forall i$. Точка x принадлежит всем A_i с какой-то круговой окрестностью r_i . Тогда она принадлежит пересечению с круговой окрестностью $\min r_i$.
- 4. Рассмотрим $B_R(a) = \{x \in X, \ \rho(x,a) < R\}$. Пусть точка $x \in B_R(a), \ \rho(x,a) < R$. Положим $r = R \rho(x,a)$. Возьмем y из окрестности x радиуса r. Тогда в силу неравенства треугольника

$$\rho(a,y) \leqslant \rho(a,x) + \rho(x,y) < \rho(a,x) + R - \rho(x,a) = R$$

А значит $\forall y \in V_r(x)$ $y \in B_R(a)$, т.е. любая точка $x \in B_R(a)$ принадлежит шару $B_R(a)$ с какой-то своей окрестностью.

4/8

Замечание. Конечность в пункте 3 существенна: рассмотрим $\bigcap_{n=1}^{\infty} \left(-\frac{1}{n};1\right) = [0,1)$.

Обозначение. Int A — множество всех внутренних точек множества A.

Теорема 2 (Свойства). 1. Int $A \subset A$

- 2. Int $A = \bigcup$ всех открытых множеств, которые содержатся в A
- 3. $\operatorname{Int} A$ открытое множество
- 4. A открытое $\Leftrightarrow A$ = Int A
- 5. $A \subset B \Rightarrow \operatorname{Int} A \subset \operatorname{Int} B$
- 6. $\operatorname{Int}(A \cap B) \stackrel{?}{=} \operatorname{Int} A \cap \operatorname{Int} B$
- 7. Int(Int A) = Int A

Определение 7 (Замкнутое множество). Множество $A \subset X$ называется *замкнутным*, если $X \setminus A$ – открыто.

Теорема 3 (О замкнутых множествах). 1. \emptyset , X – замкнутые множества.

- 2. Пересечение любого числа замкнутых множеств замкнутое множество
- 3. Конечное объединение замкнутых множеств замкнутое множество
- 4. Замкнутый шар это замкнутое множество.

Доказательство. Из предыдущей теоремы + формул де-Моргана. ТООО

4 Пусть $r = \rho(x, a) - R$. Возьмем y из окрестности x. Тогда

$$\rho(a,y) \geqslant -\rho(a,x) + \rho(x,y) > R$$

Замечание. Конечность в пункте 3 существенна: $\bigcup \left[\frac{1}{n};1\right] = (0;1]$ – незамкнутое множество.

Обозначение (Замыкание множества). $\operatorname{Cl} A$ – пересечение всех замкнутых множеств, которые содержат A.

Пример. Cl(0,1) = [0,1].

Теорема 4 (Свойства). 1. $A \subset \operatorname{Cl} A$

- 2. ClA замкнутое множество
- 3. A замкнуто $\Leftrightarrow A = \operatorname{Cl} A$.
- 4. $A \subset B \Rightarrow \operatorname{Cl} A \subset \operatorname{Cl} B$

- 5. $Cl(A \cup B) = Cl A \cup Cl B$
- 6. Cl(ClA) = ClA

Теорема 5. $x \in \operatorname{Cl} A \Leftrightarrow \forall r > 0$ $B_r(x) \cap A \neq \emptyset$.

Доказательство. Докажем, что $x \notin \operatorname{Cl} A \Leftrightarrow \exists r > 0 \ B_r(x) \cap A = \emptyset$.

$$x \in (X \setminus \operatorname{Cl} A) \Leftrightarrow x \in \operatorname{Int}(X \setminus A)$$

Пусть A' – множество предельных точек A. Тогда

Теорема 6 (Свойства). 1. $Cl A = A \cup A'$

- 2. $A \subset B \Rightarrow A' \subset B'$
- 3. A замкнуто $\Leftrightarrow A' \subset A$

Доказательство. 3 A – замкнуто \Leftrightarrow $\operatorname{Cl} A$ = A, $\operatorname{Cl} A$ = $A \cup A'$.

Теорема 7. $x \in A' \Leftrightarrow \forall B_r(x)$ содержит бесконечно много точек из A.

1.1. Нормированные пространства

Пусть X – векторное пространство над $\mathbb R.$

Определение 8 (Норма). Функция $\|\cdot\|: X \to \mathbb{R}$ называется *пормой*, если выпоняются следующие свойства:

- 1. $||x|| \ge 0$ $||x|| = 0 \Leftrightarrow x = 0$
- 2. $\|\lambda x\| = |\lambda| \cdot \|x\|$, $\lambda \in \mathbb{R}$
- 3. $||x + y|| \le ||x|| + ||y||$.

Пример. $||x||_1 = |x_1| + |x_2|$

Пример. $||x||_2 = \sqrt{x_1^2 + x_2^2}$

Пример. $||x||_{\infty} = \max_{i \in \{1,\dots\}} |x_i|$

Пример. $C[a,b], ||f|| = \max_{x \in [a,b)} |f|$

Определение 9 (Скалярное произведение). $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ – скалярное произведение, если выполняются:

1. $\langle x, x \rangle \geqslant 0$

 $\langle x, x \rangle = 0 \Leftrightarrow = x = 0$

- 2. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ 3. $\langle x, y \rangle = \langle y, x \rangle$ 4. $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$.

Упражнение. Вспомнить неравенство Коши-Буняковского

Утверждение 3. $||x|| = \sqrt{\langle x, x \rangle}$

Доказательство. 1-2 очевидно.

3.

$$\langle x + y, x + y \rangle \leq \langle x, x \rangle + \langle y, y \rangle + 2\sqrt{\langle x, x \rangle \cdot \langle y, y \rangle}$$

С другой стороны:

$$\langle x + y, x + y \rangle = \langle x, x \rangle + \langle y, y \rangle + 2\langle x, y \rangle$$

Определение 10 (Полное пространство). Пространство называется полным, если в нем любая фундаментальная последовательность сходится.

Упражнение. Доказать, что \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^n – полные пространства.

Обозначение. $\overline{\mathbb{R}}^d = \mathbb{R}^d \cup \{\infty\}$

Замечание. Под V_{∞} будем понимать $\{x : ||x|| > \delta\}$.

Теорема 8 (Сходимость и покоординатная сходимость). $x^i \in \mathbb{R}^d \ (x^i = (x^i_1, x^i_2, ..., x^i_d))$. Рассмотрим последовательность $\{x^i\}_{i=1}^{\infty}$. Тогда равносильны утверждения:

- 1. $\{x^i\}_{i=1}^{\infty}$ сходится
- 2. $\{x^i\}_{i=1}^{\infty}$ сходится покоординатно.

Доказательство. $1 \Rightarrow 2$.

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ ||x^n - a|| < \varepsilon$$

$$|x_k^n - a_k| \le ||x^n - a||$$

 $2 \Rightarrow 1$

$$\sqrt{(x_1^n - a_1)^2 + (x_2^n - a_2)^2 + \dots + (x_d^n - a_d)^2}$$

Замечание. $x^k = \left(k\cos\frac{\pi k}{2}, k\sin\frac{\pi k}{2}\right)$