

Data Encryption Standard

- Combination of substitution and transposition
 - Repeated for 16 cycles
 - Provides confusion and diffusion

- Product cipher
 - Two weak but complementary ciphers can be made more secure by being applied together
- Symmetric-key block cipher (block size of 64bits)

A High Level Description of DES

Key Schedule

- The process of deriving keys
- PC1 reduces 64bits -> 56 bits
- C16(enc) = C0(dec), D16(enc) = D0(dec)
- Modern ciphers have much more complex key schedule

 \mathbb{M}

Key Summary

A Cycle in DES

Summary of f

Decryption of DES

- The decryption process of DES is essentially the same as the encryption process
 - use the ciphertext as the input for decryption
 - use the subkey K_i in reverse order, i.e., use K_n in the first round, K_{n-1} in the second round...

- Good property of this nice feature
 - don't need to implement two different algorithms

A High Level Description of DES

Prove the Correctness of Decryption

 If we can prove $LD_i = RE_{16-i}$ and RD_i=LE_{16-i}, then the decryption is correct

- Developed in the early 1970s IBM; for the protection of sensitive, unclassified electronic government data
- The publication resulted in its quick international adoption and widespread academic scrutiny
- Proved by National Security Agency (NSA) and published in 1977

- The heart of DES is the 16 cycles and f function
 - Expansion component (P)
 - S-boxes (S)
 - Permutation component (P)

 Proposed the use of a cipher that alternates substitutions and permutations

Substitutions

 Each plaintext element or group of elements is uniquely replaced by a corresponding ciphertext element or group of elements

Permutation

 No elements are added or deleted or replaced in the sequence, rather the order in which the elements appear in the sequence is changed

Avalanche Effect

- Avalanche effect means a small change in the plaintext (or key) should create a significant change in the ciphertext.
- Avalanche effect is the prime design criteria for any block cipher—why?
 - If the change of one bit from the input leads to the change of only one bit of the output, then it is easy to guess to find the input
 - E(1011)=1110; E(1001)=?

An example of avalanche effect

Plaintext: 0000000000000000

Ciphertext: 4789FD476E82A5F1

Plaintext: 00000000000000000001

Ciphertext: 0A4ED5C15A63FEA3

Key: 22234512987ABB23

Key: 22234512987ABB23

- Objective of concatenating permutation and substitution in each cycle
 - Achieve avalanche effect

- The number of cycles/rounds (why 16?)
 - A fact: only after eight rounds (on average, in DES), each ciphertext is a function of every plaintext bit and every key bit;

Rounds	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bit differences	1	6	20	29	30	33	32	29	32	39	33	28	30	31	30	29

an example

- The number of cycles/rounds (why 16?)
 - A fact: only after eight rounds (on average, in DES), each ciphertext is a function of every plaintext bit and every key bit;
 - However, DES with less than sixteen rounds are vulnerable to known-plaintext attacks
 - Known plaintext attack
 - Chosen plaintext attack

- The objective of IP and inverse IP
 - Has no cryptographic significance in DES
 - The reason they are included in DES is not clear and has not been revealed by the DES designer
 - One guess is that DES was designed to be implemented in hardware, and these permutations may thwart a software simulation of the mechanism

- Cracking the DES
 - In 1980s, Diffie-Hellman outlined a "brute-force" attack on DES
 - By "brute-force" is meant that you try as many of the 256
 (why?) possible keys to decrypt the ciphertext into a meaningful
 plaintext message
 - They estimated that it would cost \$20m to build such device

- 2 types of attack
 - Analytical attacks
 - In 1975, people tried to crack DES.
 - In 1999, it was cracked by Eli Biham & Adi Shamir.
 - The attack was called Differential Cryptanalysis.
 - Requires 2^47 (x,y) pairs
 - Although better than brute-force, doesn't work in practice
 - The second attack was Linear Cryptanalysis.
 - Requires 2^43 (x,y) pairs
 - Still too high

- 2 types of attack
 - Brute-force attack
 - Given (X0, Y0) Check if DES⁻¹_{Ki}(Y0) = X0 where $i=0..2^{56}$ -1

- 2 types of attack
 - Brute-force attack
 - In 1998, DeepCrack special-purpose DES hardware cracker was built
 - Could break DES in 4.5 days
 - Cost \$220K
 - Used 27 boards each containing 64 chips
 - Was capable of testing 90 billion keys a second
 - On July 17, 1998, they announced they had cracked a 56-bit key in 56 hours
 - Official death of DES ©

- 2 types of attack
 - Brute-force attack
 - In early 1999, Distributed. Net used the DES Cracker and a worldwide network of nearly 100K PCs to break DES in 22 hours
 - they were testing 245 billion keys per second
 - It has been shown that a dedicated hardware device with a cost of \$1M (is much less in 2010) can search all possible DES keys in about 3.5 hours
 - This just serves to illustrate that any organization with moderate resources can break through DES with very little effort these days

- 2 types of attack
 - Brute-force attack
 - In 2007, Copacobana
 - Could break DES in 1.5 days
 - Cost \$10K

Triple DES

 Triple-DES uses three keys and three executions of DES algorithm

Triple DES

- Keying options
 - Option 1: all three keys (K1, K2, K3) are independent: the strongest, with 3*56=168 independent key bits
 - Option 2: K1 and K2 are independent, and K3=K1: provides less security with 2*56=112 key bits, but stronger than pure DES
 - Option 3: all three keys are identical—equivalent of DES (why?)

Triple DES

Attractions:

- 168-bit (or 112-bit) key length overcomes the vulnerability to brute-force attack of DES
- underlying encryption algorithm is the same as in DES

Drawbacks:

- algorithm is sluggish in software
- uses a 64-bit block size

Data Encryption Standard (DES)

- DES is the most studied cipher in the world
- DES is unsecure today (key too short)
- 3DES is used in electronic passports
- 3DES is very secure

Alternatives to DES

- AES defacto world standard
- 3DES still very secure
- There are more than 200 block ciphers
- Requires time to be adopted
- AES finalists (5 algorithms)

AES

- Advanced encryption standard
 - 128, 192, 256 bit keys
 - similar level of computation complexity with DES
 - idea is similar to DES
 - widely used nowadays