

# Winning Space Race with Data Science

James Hughey 09/16/2024



### Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

# **Executive Summary**

- Used the Data Science Life Cycle
  - Business Understanding
  - Data Mining
  - Data Cleaning
  - Data Exploration
  - Feature Engineering
  - Predictive Modeling
  - Data Visualizations

- Summary of all results
  - Used various machine learning models
  - Was able to accurately predict the outcome of most landings

### Introduction

- SpaceX advertises Falcon 9 rocket launches cost of 62 million dollars
- Other providers cost upward of 165 million dollars each
- Much of the savings is because SpaceX can reuse the first stage
- If we can determine if the first stage will land, we can determine the cost of a launch
- This information can be used if an alternate company wants to bid against SpaceX for a rocket launch
- Problems you want to find answers for
  - Success of the first stage landing
  - Cost of launch



# Methodology

### **Executive Summary**

- Data collection methodology:
  - Data was collected utilizing the SpaceX API
- Perform data wrangling
  - Missing data was replaced with mean values
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - How to build, tune, evaluate classification models

### **Data Collection**

- Describe how data sets were collected.
- Data was collected using SpaceX API
  - Collected via get request
- Abstracted the names from various columns
  - o Booster Name
  - Rockets
  - Landing Sites
  - Cores

# Data Collection – SpaceX API

- URL of Jupyter notebook
  - https://github.com/Jhughey24/IBM-Data-Science-Capstone-Project/blob/80d0a12af259758356d 932cb10c8b7c4572f55c5/jupyterlabs-spacex-data-collection-api.ipynb



# **Data Collection - Scraping**

- URL of Web Scraping Jupyter notebook
  - https://github.com/Jhughey24/I BM-Data-Science-Capstone-Project/blob/80d0a12af2597583 56d932cb10c8b7c4572f55c5/jup yter-labs-webscraping.ipynb



# **Data Wrangling**

- URL of Data Wrangling Jupyter notebook
  - https://github.com/Jhughey24/IBM-Data-Science-Capstone-Project/blob/80d0a12af259758356d9 32cb10c8b7c4572f55c5/labs-jupyterspacex-Data%20wrangling.ipynb

Identified data types in DataFrame



Calculated launch data for each site



Created landing outcome label



Calculated mission outcome for each site

### **EDA** with Data Visualization

- Utilized scatter point charts to compare relationships between features
  - Flight Number vs Launch Site
  - Payload mass vs Launch Site
  - Flight Number vs Orbit Type
  - Payload mass vs Orbit Type
- Plotted Bar chart to compare success rate of each orbit type
- Visualized yearly launch trends with line graph
- Feature engineered relative data and used one hot encoding for categorical values
- Notebook URL https://github.com/Jhughey24/IBM-Data-Science-Capstone-Project/blob/80d0a12af259758356d932cb10c8b7c4572f55c5/edadataviz.ipynb

## **EDA** with SQL

- Some SQL queries performed:
  - Display the names of the unique launch sites
  - Display 5 records where launch sites begin with the string 'CCA'
  - Display the total payload mass carried by boosters
  - Display average payload mass
  - · List the date when the first successful landing outcome
  - List the total number of successful and failure mission outcomes
- **GitHub URL** https://github.com/Jhughey24/IBM-Data-Science-Capstone-Project/blob/80d0a12af259758356d932cb10c8b7c4572f55c5/jupyter-labs-eda-sql-coursera\_sqllite.ipynb

# Build an Interactive Map with Folium

- Used circle to create zoom location
- Added circles for each launch site to see each location
- Added markers to identify names of launch sites
- Added lines to identify distances from landmarks
  - Highways
  - Cties
  - Coastline
- GitHub URL- https://github.com/Jhughey24/IBM-Data-Science-Capstone-Project/blob/80d0a12af259758356d932cb10c8b7c4572f55c5/lab\_jupyter\_launch\_site\_location.ipynb

# Build a Dashboard with Plotly Dash

- Attempted to add dropdown menus, pie chart, etc
- I was unable to. None of the visualizations ever showed (as with the original lab).
- GitHub URL https://github.com/Jhughey24/IBM-Data-Science-Capstone-Project/blob/80d0a12af259758356d932cb10c8b7c4572f55c5/spacex\_dash\_app.p

# Predictive Analysis (Classification)

- Evaluated several models
  - Logistic Regression
  - o SVM
  - Decision Tree Classifier
- Fit using GridSearchCV
- SVM had highest accuracy
- GitHub URL https://github.com/Jhughey24/IBM-Data-Science-Capstone Project/blob/2eb46b7d7fac1f55e6e83692
   c67974945dde6b04/SpaceX\_Machine%20
   Learning%20Prediction\_Part\_5.ipynb



### Results

- Exploratory data analysis results
  - Created outcomes for each type of launch
  - Listed outcome with each launch site
- Dash did not work. Do not have the screenshots
- Predictive analysis results show that SVM had the highest accuracy and would allow us to predict the landing outcomes the best.



# Flight Number vs. Launch Site



• Launches became more successful with more flights

# Payload vs. Launch Site



- VAFB-SLC launchsite no rockets launched for heavypayload mass (greater than 10000)
- KSC LC 39A did better with smalled payloads
- Mixe

# Success Rate vs. Orbit Type

- Half orbits had moderate success rates
- The other half was generally successful



# Flight Number vs. Orbit Type



- In the LEO orbit, success seems to be related to the number of flights
- Conversely, in the GTO orbit, there appears to be no relationship between flight number and success.

# Payload vs. Orbit Type



- With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS
- However, for GTO, it's difficult to distinguish between successful and unsuccessful landings as both outcomes are present.

# Launch Success Yearly Trend

 You can observe that the success rate since 2013 kept increasing till 2020



### All Launch Site Names

- Names of the unique launch sites
- Listed with Lattitude and Longitude coordinates used for plotting

|   | Launch Site  | Lat       | Long        |
|---|--------------|-----------|-------------|
| 0 | CCAFS LC-40  | 28.562302 | -80.577356  |
| 1 | CCAFS SLC-40 | 28.563197 | -80.576820  |
| 2 | KSC LC-39A   | 28.573255 | -80.646895  |
| 3 | VAFB SLC-4E  | 34.632834 | -120.610745 |
|   |              |           |             |

# Launch Site Names Begin with 'CCA'

- Find 5 records where launch sites begin with `CCA`
- Query used
  - o %sql SELECT "Launch\_Site" from SPACEXTBL where "Launch\_Site" LIKE
     'CCA%' LIMIT 5;
- Present your query result with a short explanation here
  - o I did not select the whole row and missed some the data
  - o I only retrieved the launch site CCAFS LC-40

# **Total Payload Mass**

- Calculate the total payload carried by boosters from NASA
- Query used: **%sql** SELECT SUM("PAYLOAD\_MASS\_\_KG\_") from SPACEXTBL where Customer = 'NASA (CRS)'
- Result: 45596 KG

# Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
- Quesy used: **%sql** SELECT AVG("PAYLOAD\_MASS\_\_KG\_") from SPACEXTBL where "Booster\_Version" = 'F9 v1.1'
- Result: 2928.4 KG

# First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- Query used: %sql SELECT min(Date) from SPACEXTBL where
   "Mission\_Outcome" = 'Success';
- Result: 2010-06-04

### Successful Drone Ship Landing with Payload between 4000 and 6000

- List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
- Query used: %sql SELECT "Booster\_Version" from SPACEXTBL where "Mission\_Outcome" = 'Success' & "PAYLOAD\_MASS\_\_KG\_" BETWEEN 4000 AND 6000;
- Result:

### Total Number of Successful and Failure Mission Outcomes

- Calculate the total number of successful and failure mission outcomes
- Query used: %sql SELECT (SELECT COUNT("Mission\_Outcome") from SPACEXTBL where "Mission\_Outcome" like '%Success%') as Success, (SELECT COUNT("Mission\_Outcome") from SPACEXTBL where "Mission\_Outcome" like '%Failure%') as Failure;
- Result: Success: 100 Failure: 1

# **Boosters Carried Maximum Payload**

- List the names of the booster which have carried the maximum payload mass
- Query used: %sql SELECT "Booster\_Version" from SPACEXTBL where "PAYLOAD\_MASS\_\_KG\_" = (SELECT max(PAYLOAD\_MASS\_\_KG\_) from SPACEXTBL)

#### **Booster\_Version**

F9 B5 B1048.4

F9 B5 B1049.4

F9 B5 B1051.3

F9 B5 B1056.4

F9 B5 B1048.5

F9 B5 B1051.4

F9 B5 B1049.5

F9 B5 B1060.2

F9 B5 B1058.3

F9 B5 B1051.6

F9 B5 B1060.3

F9 B5 B1049.7

### 2015 Launch Records

- List the failed landing\_outcomes in drone ship, their booster versions, and launch site names for in year 2015
- Query:

%%sql

SELECT Date, "Landing\_Outcome", "Booster\_Version", "Launch\_Site" from SPACEXTBL as 'Failure' where "Landing\_Outcome" like '%drone ship%' and substr(Date, 6,2) and substr(Date, 0,5)-12015'

| Date       | Landing_Outcome        | Booster_Version | Launch_Site |
|------------|------------------------|-----------------|-------------|
| 2015-01-10 | Failure (drone ship)   | F9 v1.1 B1012   | CCAFS LC-40 |
| 2015-04-14 | Failure (drone ship)   | F9 v1.1 B1015   | CCAFS LC-40 |
| 2015-06-28 | Precluded (drone ship) | F9 v1.1 B1018   | CCAFS LC-40 |

### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

- Query used: %%sql
- SELECT Date,
   "Landing\_Outcome" from
   SPACEXTBL where Date
   between '2010-06-04'
   AND '2017-03-20' ORDER
   BY DATE DESC

| Date       | Landing_Outcome        |
|------------|------------------------|
| 2017-03-16 | No attempt             |
| 2017-02-19 | Success (ground pad)   |
| 2017-01-14 | Success (drone ship)   |
| 2016-08-14 | Success (drone ship)   |
| 2016-07-18 | Success (ground pad)   |
| 2016-06-15 | Failure (drone ship)   |
| 2016-05-27 | Success (drone ship)   |
| 2016-05-06 | Success (drone ship)   |
| 2016-04-08 | Success (drone ship)   |
| 2016-03-04 | Failure (drone ship)   |
| 2016-01-17 | Failure (drone ship)   |
| 2015-12-22 | Success (ground pad)   |
| 2015-06-28 | Precluded (drone ship) |
| 2015-04-27 | No attempt             |
| 2015-04-14 | Failure (drone ship)   |

|  | 2015-03-02 | No attempt           |
|--|------------|----------------------|
|  | 2015-02-11 | Controlled (ocean)   |
|  | 2015-01-10 | Failure (drone ship) |
|  | 2014-09-21 | Uncontrolled (ocean) |
|  | 2014-09-07 | No attempt           |
|  | 2014-08-05 | No attempt           |
|  | 2014-07-14 | Controlled (ocean)   |
|  | 2014-04-18 | Controlled (ocean)   |
|  | 2014-01-06 | No attempt           |
|  | 2013-12-03 | No attempt           |
|  | 2013-09-29 | Uncontrolled (ocean) |
|  | 2013-03-01 | No attempt           |
|  | 2012-10-08 | No attempt           |
|  | 2012-05-22 | No attempt           |
|  | 2010-12-08 | Failure (parachute)  |
|  | 2010-06-04 | Failure (parachute)  |
|  |            |                      |



# Folium Map Screenshots

- Due to an unknown error I was not able to make the visualizations work.
- I completed to code to the best of my ability but nothing showed up on the skeleton dashboard





# Classification Accuracy

- As observed, the models have fairly the same amount of accuracy
- The SVM model has a slightly higher accuracy score



### **Confusion Matrix**

- Confusion Matrix
- Positively predicted 12 successful landings
- Incorrectly predicted 3 failed landings as successful
- Correctly predicted 3 failed landings
- Did not predict failed landings as successful landings



### **Conclusions**

- Landings generally get better as more flights are launched
- Heavier payloads can lead to failed landings
- Some launch sites are more successfulthan others
- The best model to predict successful landings is with SVM machine

# **Appendix**

None

