Stochastik I – Wahrscheinlichkeitstheorie für Physiker

SS 2015 W. Nagel Übungsaufgaben, **3.** Serie

1. Pflichtaufgabe. Mindestens die schriftliche Lösung dieser Aufgabe ist am 20.5.15 abzugeben. Es seien $[\Omega, A, P]$ ein W.-Raum und $A, B \in A$. Beweisen Sie:

- a) Wenn A und B unabhängig sind, dann sind auch A^c und B unabhängig.
- b) Wenn A und B unabhängig sind, dann sind auch A^c und B^c unabhängig.
- c) Wenn P(A) = P(B) = 1, dann ist auch $P(A \cap B) = P(A \cup B) = 1$.
- d) Wenn P(A) = P(B) = 0, dann ist auch $P(A \cap B) = P(A \cup B) = 0$.
- e) Wenn $P(A \cap B) = 1$, dann ist P(A) = P(B) = 1.
- f) Wenn $P(A \cup B) = 0$, dann ist P(A) = P(B) = 0.
- 2. Gegeben seien nichtleere Mengen Ω , Ω' und eine Abbildung $g:\Omega\to\Omega'$. Dazu wird die Urbildfunktion $g^{-1}:\wp(\Omega')\to\wp(\Omega)$ definiert durch $g^{-1}(A)=\{\omega\in\Omega:g(\omega)\in A\}$ für alle $A\subseteq\Omega'$.

Für eine Indexmenge I seien $A_i \subseteq \Omega'$, $i \in I$.

Zeigen Sie, dass für die Urbilder gilt:

$$g^{-1}\left(\bigcup_{i\in I} A_i\right) = \bigcup_{i\in I} g^{-1}(A_i).$$

$$g^{-1}\left(\bigcap_{i\in I}A_i\right) = \bigcap_{i\in I}g^{-1}(A_i).$$

$$g^{-1}(A^c) = (g^{-1}(A))^c$$
.

Prüfen Sie, welche dieser Eigenschaften in analoger Weise auch für die Bildfunktion $\tilde{g}: \wp(\Omega) \to \wp(\Omega')$ mit $\tilde{g}(C) = \{g(\omega) \in \Omega' : \omega \in C\}$ (für alle $C \subseteq \Omega$) gelten.

3. (Huyghens, 1657)

Die Spieler A und B würfeln abwechselnd mit einem Paar von (gleichmäßigen) Würfeln. A gewinnt, wenn seine Gesamtaugenzahl bei einem Wurf genau 6 ist, bevor B bei einem Wurf die Augenzahl 7 würfelt.

Wie groß ist die Wahrscheinlichkeit, dass Spieler A gewinnt, wenn er beginnt? Formalisieren Sie die Aufgabenstellung und Ihre Lösung!

4. Zusatzaufgabe: [Poisson]

Eine Urne enthalte s schwarze und w weiße Kugeln. Es werden zunächst n Kugeln entnommen (ohne Zurücklegen) und anschließend zusätzlich m Kugeln (ebenfalls ohne Zurücklegen). Zeigen Sie, dass sich die Wahrscheinlichkeit dafür, dass bei den m Kugeln k schwarze Kugeln sind, nicht ändert, wenn die m Kugeln gleich zu Beginn (d.h. vor den n Kugeln) gezogen werden.