

Detailed Specifications

For user manuals and dimensional drawings, visit the product page resources tab on ni.com.

Last Revised: 2010-11-12 09:07:44.0

Stepper Motors and Encoders

Overview

National Instruments offers a complete stepper motion control solution – including stepper motors, drives, controllers, and software – that is easy to se motors available from NI offer high torque, precision, and easy connectivity to stepper motor drives. Due to their ease of use, simplified control needs feedback requirements, stepper motors are an excellent solution for applications such as machine control, manufacturing test, semiconductor position automation

Application and Technology

Stepper Motors

NEMA 17, 23, and 34 frame sizes

Up to 1710 oz-in. (12.1 N·m) holding torque

3000 rpm max speed

1.8 deg step angle

Matched with P7000 drives for high performance

Encoders

1000 counts/revolution resolution
NEMA 23 and 34 motor compatibility
Low profile 1 in. (25.4 mm) height design and easy mounting
Industrial construction

Hardware

Stepper motors provide very precise, extremely cost-effective motion control. The 2-phase motors inherently move in small, precise, 1.8 degree incre brushless and maintenancefree. Stepping action is simple to control and does not require complicated, expensive feedback devices. National Instrum the motors for applications where position verification is required. Stepper motors are available from NI in three different National Electrical Manufacture and with either a single or a dual shaft. The motors provide optimum performance and easy connectivity when matched with the P7000 series stepper

Support and Services

System Assurance Programs

NI system assurance programs are designed to make it even easier for you to own an NI system. These programs include configuration and deploym CompactRIO, or Compact FieldPoint system. The NI Basic System Assurance Program provides a simple integration test and ensures that your system one box. When you configure your system with the NI Standard System Assurance Program, you can select from available NI system driver sets and to create customized, reorderable software configurations. Your system arrives fully assembled and tested in one box with your software preinstalled. standard program, you also receive system-specific documentation including a bill of materials, an integration test report, a recommended maintenant documents. Finally, the standard program reduces the total cost of owning an NI system by providing three years of warranty coverage and calibratic advisors at ni.com/advisor to find a system assurance program to meet your needs.

Calibration

NI measurement hardware is calibrated to ensure measurement accuracy and verify that the device meets its published specifications. NI offers a nu maintain the ongoing accuracy of your measurement hardware. These services allow you to be completely confident in your measurements, and help like ISO 9001, ANSI/NCSL Z540-1 and ISO/IEC 17025. To learn more about NI calibration services or to locate a qualified service center near you, on i.com/calibration.

Technical Support

Get answers to your technical questions using the following National Instruments resources.

Support - Visit ni.com/support to access the NI KnowledgeBase, example programs, and tutorials or to contact our applications engineers what around the world and speak the local language.

Discussion Forums - Visit forums.ni.com for a diverse set of discussion boards on topics you care about.

Online Community - Visit community.ni.com to find, contribute, or collaborate on customer-contributed technical content with users like you.

Repair

While you may never need your hardware repaired, NI understands that unexpected events may lead to necessary repairs. NI offers repair services technicians who quickly return your device with the guarantee that it will perform to factory specifications. For more information, visit ni.com/repair.

Training and Certifications

The NI training and certification program delivers the fastest, most certain route to increased proficiency and productivity using NI software and hard efficiently develop robust, maintainable applications, while certification validates your knowledge and ability.

Classroom training in cities worldwide - the most comprehensive hands-on training taught by engineers.

On-site training at your facility - an excellent option to train multiple employees at the same time.

Online instructor-led training - lower-cost, remote training if classroom or on-site courses are not possible.

Course kits - lowest-cost, self-paced training that you can use as reference guides.

Training memberships and training credits - to buy now and schedule training later.

Visit ni.com/training for more information.

Extended Warranty

NI offers options for extending the standard product warranty to meet the life-cycle requirements of your project. In addition, because NI understands the extended warranty is flexible in length and easily renewed. For more information, visit ni.com/warranty.

OEM

NI offers design-in consulting and product integration assistance if you need NI products for OEM applications. For information about special pricing ni.com/oem.

Alliance

Our Professional Services Team is comprised of NI applications engineers, NI Consulting Services, and a worldwide National Instruments Alliance Paindependent consultants and integrators. Services range from start-up assistance to turnkey system integration. Visit ni.com/alliance.

Detailed Specifications

View Detailed Specifications Table of Contents

NEMA 17 Motor

Electrica

Step angle	1.8 deg
Steps per revolution	200
Angular accuracy	±3%
Phases	2
Industry Standards	
Industrial standards	CE, UR
Sealing standards	IP40
RoHS Compliance	Yes
Physical	
Operating temperature	-20 to 40 °C
Shaft load (20,000 hours at 1,500 rpm)	
Radial	15 lb (6.8 kg) at shaft center
Axial push	6 lb (2.7 kg)
Axial pull	15 lb (6.8 kg)
Recommended heat sink size	10 x 10 x 1/4 in. aluminum plate

			Holding	Rotor Inertia	Phase	Phase	
1	l						

NI Part Number	Manufacturer Part Number	Dual Shaft	Drive	Amps/Phase	Torque	oz-ins ²	Inductance	Resistance	Detent Torque
					oz-in. (N . m)	(kg-m ² x 10 ⁻³)	mH	Ω ±10%	oz-in. (N . m)
780067-01	CTP10ELF10MAA00	no			43	0.0005		F 0F	1.98
780068-01	CTP10ELF10MMA00	yes		1.0	(0.30)	(0.0040)	7.7	5.25	(0.014)
780069-01	CTP11ELF11MAA00	no	P70530	1.1	63	0.0008	11	5.19	2.55
780070-01	CTP11ELF11MMA00	yes		1.1	(0.44)	(0.0050)	11	5.19	(0.018)
780071-01	CTP12ELF10MAA00	no		1.0	80	0.0011	12	6.51	2.97
780072-01	CTP12ELF11MAA0	yes		1.0	(0.56)	(0.0070)	12	0.51	(0.021)

78

Torc

Torque versus Speed

Dimensions and Wiring

NI Part Number	Manufacturer Part Number	Dual Shaft	Max Length A in. (mm)	Net Weight lb (kg)
780067-01	CTP10ELF10MAA00	no	1.37	0.441
780068-01	CTP10ELF10MMA00	yes	(34.7)	(0.200)
780069-01	CTP11ELF11MAA00	no	1.61	0.573
780070-01	CTP11ELF11MMA00	yes	(40.9)	(0.260)
780071-01	CTP12ELF10MAA00	no	1.92	0.750
780072-01	CTP12ELF11MAA0	yes	(48.8)	(0.340)

NEMA 23 Motor Back to Detailed Specs

Electrical

Step angle	1.8 deg
Steps per revolution	200

Angular accuracy	±3%
Phases	2
Industry Standards	
Industrial standards	CE, cUR, UR
RoHS Compliance	Yes
Physical	
Operating temperature	-20 to 40 °C
Rated ambient temperature	40 °C
Shaft load (20,000 hours at 1,500 rpm)	
Radial	20 lb (9.1 kg) at shaft center
Axial push	6 lb (2.7 kg)
Axial pull	50 lb (22.7 kg)
Recommended heat sink size	10 x 10 x 1/4 in. aluminum plate
Recommended encoder	780251-01

NI Part Number	Manufacturer Part Number	Dual Shaft	Drive	Amps/Phase		Rotor Inertia oz-ins ² (kg-m ² x10 ⁻³)	Inductance		Detent Torque oz-in. (N . m)
780073-01	T21NRLC-LNN-NS-00	no		0.40	180	0.0034	209	42.9	2.97
780074-01	T21NRLC-LDN-NS-00	yes		0.40	(1.27)	(0.0248)	209	72.3	(0.021)
780075-01	T22NRLC-LNN-NS-00	no	D 7 0000	0.40	280	0.0056	200	44.4	5.95
780076-01	T22NRLC-LDN-NS-00	yes	P70360	0.46	(1.98)	(0.0408)	209	41.4	(0.042)
780077-01	T23NRLC-LNN-NS-00	no		0.67	380	0.0084	136	23.5	6.94
780078-01	T23NRLC-LDN-NS-00	yes]	0.67	(2.68)	(0.0612)	130	23.5	(0.049)
780079-01	T21NRLH-LNN-NS-00	no			180	0.0034			2.97
780080-01	T21NRLH-LDN-NS-00	yes		2.7	(1.27)	(0.0248)	4.6	0.85	(0.021)
780081-01	T22NRLG-LNN-NS-00	no	P70530	2.5	280	0.0056	7.1	1.23	5.95
780082-01	T22NRLG-LDN-NS-00	yes		2.0	(1.98)	(0.0408)	7.1	1.23	(0.042)
780083-01	T23NRLH-LNN-NS-00	no		3.0	380	0.0034	6.2	1.00	6.94
780084-01	T23NRLH-LDN-NS-00	yes			(2.68)	(0.0248)	\		(0.049)

Torque versus Speed

3000

24 VDC

1000

Speed (RPM)

2000

3000

0+

Dimensions and Wiring

24 VDC

1000

Speed (RPM)

NI Part Number	Manufacturer Part Number	Dual Shaft	Max Length A in. (mm)	Net Weight lb (kg)
780073-01	T21NRLC-LNN-NS-00	no	2.21	1.6
780074-01	T21NRLC-LDN-NS-00	yes	(56.1)	(0.7)
780075-01	T22NRLC-LNN-NS-00	no	3.06	2.3
780076-01	T22NRLC-LDN-NS-00	yes	(77.7)	(1.0)
780077-01	T23NRLC-LNN-NS-00	no	4.06	3.2
780078-01	T23NRLC-LDN-NS-00	yes	(103.1)	(1.5)
780079-01	T21NRLH-LNN-NS-00	no		

780080-01	T21NRLH-LDN-NS-00	yes	2.21	1.6
780081-01	T22NRLG-LNN-NS-00	no	(5 6.1)	(2.3)
780082-01	T22NRLG-LDN-NS00	yes	(77.7)	(1.0)
780083-01	T23NRLH-LNN-NS00	no	4.06	3.2
780084-01	T23NRLH-LDN-NS00	yes	(103.1)	(1.5)

NEMA 34 Motor

Back to Detailed Specs

-	ectrical	
	c cii icai	

Recommended heat sink size

Step angle	1.8 deg
Steps per revolution	200
Angular accuracy	±3%
Phases	2
Industry Standards	
Industrial standards	CE, cUR, UR
RoHS Compliance	Yes
Physical	
Operating temperature	-20 to 40 °C
Rated ambient temperature	40 °C
Shaft load (20,000 hours at 1,500 rpm)	
Radial	
N31, N32	65 lb (29.5 kg)
N33	110 lb (49.9 kg)
Axial	
N31, N32, N33	305 lb (138.3 kg)

Recommended encoder		780252-01							
						Rotor Inertia			

10 x 10 x 1/4 in. aluminum plate

NI Part Number	Manufacturer Part Number	Dual Shaft	Drive		Torque	oz-ins ² (kg-m ² x 10 ⁻³)	Phase Inductance		
780085-01	N31HRLG-LNK-NS-00	no		0.86	oz-m. (n . m)		THE		oz-in. (N . m)
780086-01	N31HRLG-LEK-M2-00	yes		0.86	641 (4.52)	0.0202 (0.1430)	138	16.2	18.0 (0.127)
780087-01	N32HRLG-LNK-NS-0	no	P70360 0.95	1240 (8.76)	0.0380 (0.2680)	206	17.6	36.0 (0.254)	
780088-01	N32HRLG-LEK-M2-00	yes							
780089-01	N33HRLG-LNK-NS-0	no	1.24	1710 (12 09)	0.0567 (0.4000)	144	13.0	54.0 (0.381)	
780090-01	N33HRLG-LEK-M2-00	yes		1.24	17 10 (12.00)	0.0307 (0.4000)	144	13.0	34.0 (0.361)
780091-01	N31HRHJ-LNK-NS-0	no		5.5	645 (4.55)	0.0202 (0.1430)	3.5	0.42	18.0 (0.127)
780092-01	N31HRHJ-LEK-M2-0	yes		5.5	045 (4.55)	0.0202 (0.1430)	3.5	0.42	16.0 (0.127)
780093-01	N32HRHJ-LNK-NS-0	no	D70520	E 1	1405 (0.40)	42) 0 0200 (0 0700)	6.5	0.00	20.0 (0.054)
780094-01	N32HRHJ-LEK-M2-0	yes	P70530 5.1	1195 (8.43)	0.0380 (0.2700)	6.5	0.63	36.0 (0.254)	
780095-01	N33HRHJ-LNK-NS-0	no		5.0	1710 (12.07)	0.0567 (0.4000)	9.0	0.83	54.0 (0.381)
780096-01	N33HRHJ-LEK-M2-0	yes		5.0	17 10 (12.07)	0.0567 (0.4000)	9.0	0.83	34.0 (0.381)

Torque versus Speed

780091-01 and 780092-01 780093-01 and 780094-01 78

Dimensions and Wiring

Note: Motor leads are 12.0 in. (304.8 mm) minimum.

NI Part Number	Manufacturer Part Number	Dual Shaft	Max Length A in. (mm)	B max and min in. (mm)	C max and min in. (mm)	
780085-01	N31HRLG-LNK-NS-00	no	3.13	0.5000 (12.700) 0.4995	0.1250 (3.175) 0.1230	

780086-01	N31HRLG-LEK-M2-00	yes	(79.502)	(12.687)	(3.124)	
780087-01	N32HRLG-LNK-NS-00	no	4.65	0.5000 (12.700) 0.4995	0.1250 (3.175) 0.1230	
780088-01	N32HRLG-LEK-M2-00	yes	(118.11)	(12.687)	(3.124)	
780089-01	N33HRLG-LNK-NS-00	no	6.13	0.6250 (15.875) 0.6245	0.1875 (4.763) 0.1855	
780090-01	N33HRLG-LEK-M2-00	yes	(155.70)	(15.862)	(4.712)	
780091-01	N31HRHJ-LNK-NS-00	no	3.13	0.5000 (12.700) 0.4995	0.1250 (3.175) 0.1230	
780092-01	N31HRHJ-LEK-M2-00	yes	(79.502)	(12.687)	(3.124)	
780093-01	N32HRHJ-LNK-NS-00	no	4.65	0.5000 (12.700) 0.4995	0.1250 (3.175) 0.1230	
780094-01	N32HRHJ-LEK-M2-00	yes	(118.11)	(12.687)	(3.124)	
780095-01	N33HRHJ-LNK-NS-00	no	6.13	0.6250 (15.875) 0.6245	0.1875 (4.763) 0.1855	
780096-01	N33HRHJ-LEK-M2-00	yes	(155.70)	(15.862)	(4.712)	

Encoders for NEMA 23 and NEMA 34 Motors

Electrical

Resolution	1000 counts/revolution
Input voltage	5 V ±10%
Input current	100 mA max (65 mA typical) with no output
Channel configuration	Quadrature A, B, and Index
Output type	Differential line driver
Noise immunity	Tested to BS EN61000-6-2; BS EN50081-0 BS EN61000-4-6; BS EN500811
Symmetry	180 deg (±18 deg) electrical
Quadrature phasing	90 deg (±22.5 deg) electrical
Minimum edge separation	67.5 deg electrical
Accuracy	Within 0.017 deg mechanical or 1 arc-minu
Industry Standards	
Industrial standards	CE
Sealing standards	IP40
RoHS Compliance	Yes
Physical	
Operating temperature	-20 to 85 °C
Model type	Thru-bore
Bore size	1/4 in. (780251-01), 8 mm (780252-01)

Mounting Maximum frequency	1.812 in. (46 mm) two-hole flex mount 200 kHz
Operating temperature	20 to 85 °C
Max shaft speed	8000 rpm
Bore tolerance	-0.0000 in./+0.0006 in.
User shaft tolerances	
Radial runout	0.008 in. max
Axial endplay	±0.030 in. max
Starting torque	0.300 oz-in. (0.212 N . m)
Moment of inertia	6.7 x 10-5 oz-insec2 (4.8 gm-cm2)
Max acceleration	1 x 105 rad/sec2
Weight	3 oz typical
Storage temperature	-25 to 85 °C
Humidity	98% RH noncondensing
Vibration	10 g @ 58 to 500 Hz
Shock	80 g @ 11 ms duration

Dimensions, Wiring and Timing Diagrams

Mount

Note: All dimensions have a tolerance of ± 0.005 in. or ± 0.01 in. unless otherwise specified.

NI Part Number	Manufacturer Part Number	A (Thru-Bore Diameter)
780251-01	15T-01SA-1000-N5RHV-F00-CE	1/4 in., 0.250 in.
780252-02	15T-14SA-1000-N5RHV-F00-CE	8 mm

Wire Description

Pin#	Wire Color	Function
1	Brown	A
2	White	+VDC
3	Yellow	A
4	Red	В
5	Green	В
6	Orange	Z
7	Black	COM
8	Blue	Z

Quadrature Waveform

©2010 National Instruments. All rights reserved. CompactRIO, CVI, FieldPoint, LabVIEW, Measurement Studio, National Instruments, National Instruments Alliance Partner, National Instruments. The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and company names listed are trademarks or trade names of their respective companies. A National Instruments Alliance Partner is a business entity independent from National or joint-venture relationship with National Instruments.
My Profile RSS Privacy Legal Contact NI © 2011 National Instruments Corporation. All rights reserved.