Devoir à la maison n° 2

À rendre le 21 septembre

I. Un encadrement

On désire prouver que pour tout nombre complexe z de module 1 on a :

$$\sqrt{3} \le |1+z| + |1-z+z^2| \le \frac{13}{4}.$$

Dans tout l'exercice z désigne donc un nombre complexe de module 1.

- 1) On pose t = |1 + z|, dans quel intervalle se trouve le réel t?
- 2) Exprimer Re(z) à l'aide de t.
- 3) Montrer que

$$|1 - z + z^2|^2 = 3 - 4\operatorname{Re}(z) + 2\operatorname{Re}(z^2).$$

4) Exprimer $Re(z^2)$ en fonction de Re(z) (indication : utiliser l'écriture trigonométrique). En déduire que

$$|1+z| + |1-z+z^2| = t + |3-t^2|.$$

5) En déduire l'inégalité demandée. Trouver un complexe z qui réalise le minimum.

II. L'inégalité de Cauchy-Schwarz et une application

Pour deux nombres complexes z et z' écrits sous forme algébrique z = x + iy et z' = x' + iy', on définit le produit scalaire $\langle z, z' \rangle = xx' + yy'$.

- 1) Pour $z \in \mathbb{C}$, que vaut $\langle z, z \rangle$?
- 2) Pour $(z, z') \in \mathbb{C}^2$, exprimer $\langle z, z' \rangle$ en fonction de $z\overline{z'}$.
- 3) En déduire l'inégalité de Cauchy-Schwarz :

$$|\langle z, z' \rangle| \leqslant |z||z'|$$
.

Soient a et b deux complexes de même module non nul r, d'arguments α et β respectivement. On note A et B les points d'affixe a et b respectivement.

- 4) Interpréter géométriquement les conditions $ab = r^2$ puis $ab = -r^2$.
- 5) On suppose désormais que $ab \neq r^2$ et $ab \neq -r^2$.
 - a) Montrer, sans les calculer, que les complexes $z_1 = \frac{a+b}{r^2+ab}$ et $z_2 = \frac{a-b}{r^2-ab}$ sont réels.
 - **b)** Exprimer $z=rz_1$ en fonction des cosinus de $\frac{\alpha+\beta}{2}$ et $\frac{\alpha-\beta}{2}$. Qu'en est-il de $\zeta=rz_2$?
 - c) Prouver l'inégalité $z_1^2 + z_2^2 \geqslant \frac{1}{r^2}$.
 - d) Quels sont les cas d'égalité?

— FIN —