Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Logik für Studierende der Informatik

Probeklausur

Die Probeklausur besteht aus 8 Aufgaben (insgesamt 36 Punkte).
Geben Sie am Ende der Klausur Ihre Lösungen einschließlich dieses Deckblatts ab.
Schreiben Sie auf jedes Blatt Ihren Namen und Ihre Matrikelnummer.
Viel Erfolg!

Name:
Vorname:
Matrikelnummer:

Note

Aufgabe	1	2	3	4	5	6	7	8	Σ
Punkte erreicht									

Aufgabe 1 (2 Punkte).

Definiere, wann eine Theorie T in einer Sprache \mathcal{L} konsistent ist.

Aufgabe 2 (2 Punkte).

Wie lautet der Kompaktheitssatz?

Aufgabe 3 (4 Punkte).

Entscheide mit Hilfe der Tableau Methode, ob folgende Aussagen Tautologien sind.

(a)
$$(A_1 \longrightarrow \neg \neg A_2) \longrightarrow (A_1 \longrightarrow A_2)$$
.

(b)
$$\left(\left(\left(\left(\bigwedge_{i=1}^k A_i\right) \wedge P\right) \longrightarrow Q\right) \longrightarrow \left(\left(\bigwedge_{i=1}^k A_i\right) \longrightarrow \left(P \longrightarrow Q\right)\right)\right)$$
.

Aufgabe 4 (4 Punkte).

In der Sprache \mathcal{L} sei T eine Theorie und χ , θ_1 , θ_2 Aussagen derart, dass $(\theta_1 \to \theta_2)$ aus $T \cup \{\chi\}$ folgt. Zeige, dass

$$T \cup \{(\neg \theta_2 \land \chi)\} \models \neg \theta_1.$$

Aufgabe 5 (10 Punkte).

Sei $\mathcal{L} = \{0, f\}$ die Sprache, welche aus einem einstelligen Funktionszeichen f und einem Konstantenzeichen 0 besteht. Betrachte die natürlichen Zahlen \mathbb{N} als \mathcal{L} -Struktur \mathcal{N} mit folgenden Interpretationen:

$$0^{\mathcal{N}} = 0 \text{ und } f^{\mathcal{N}}(x) := x + 1.$$

- (a) Zeige, dass es für jedes $n \neq 0$ in \mathbb{N} ein k gibt, so dass $n = \underbrace{f^{\mathcal{N}} \circ f^{\mathcal{N}} \cdots \circ f^{\mathcal{N}}}_{k}(0)$.
- (b) Schreibe eine \mathcal{L} -Aussage, welche in \mathcal{N} gilt und besagt, dass jedes $0 \neq n \in \mathbb{N}$ im Bild von $f^{\mathcal{N}}$ liegt.
- (c) Zeige, dass es eine elementare Erweiterung \mathcal{M} von \mathcal{N} mit einem nichtstandard Element x in M gibt, das heißt $x \neq n$ für jedes n in \mathbb{N} .
- (d) Beschreibe drei paarweise nicht-isomorphe abzählbare Modelle des vollständigen Diagramms $\operatorname{Diag}(\mathcal{N})$ von \mathcal{N} .
- (e) Wie sehen abzählbare Modelle im Allgemeinen aus (eine informelle Beschreibung genügt)? Wieviele gibt es, bis auf Isomorphie?

Aufgabe 6 (4 Punkte).

Sei T eine vollständige rekursiv axiomatisierbare \mathcal{L} -Theorie. Zeige, dass T entscheidbar ist.

Aufgabe 7 (6 Punkte).

- (a) Sei $f: \mathbb{N} \to \mathbb{N}$ eine rekursive monoton steigende Funktion. Zeige, dass $f(\mathbb{N})$ rekursiv ist.
- (b) Sei $g: \mathbb{N} \to \mathbb{N}$ eine rekursive Funktion mit unendlichem Bildbereich. Zeige, dass es eine rekursive monoton steigende Funktion $h: \mathbb{N} \to \mathbb{N}$ derart gibt, dass $h(\mathbb{N}) \subset g(\mathbb{N})$.

(Bitte wenden!)

(c) Schließe daraus, dass jede rekursiv aufzählbare unendliche Teilmenge A von $\mathbb N$ eine rekursive unendliche Teilmenge $B\subset A$ besitzt.

Aufgabe 8 (4 Punkte).

Sei $f: \mathbb{N}^{k+1} \to \mathbb{N}$ eine primitiv rekursive Funktion. Zeige, dass die Funktion

$$g(x_1,\ldots,x_k,y)=\sum_{z< y}f(x_1,\ldots,x_k,z)$$

auch primitiv rekursiv ist, wobei die leere Summe Wert 0 hat.