Algèbre 1

Produit tensoriel

Question 1/3

Définition du produit tensoriel de E_1, \dots, E_n des \mathbb{k} -ev de dimension finie

Réponse 1/3

Il existe $(E_1 \otimes \cdots \otimes E_n, \Pi)$ tel que $E_1 \otimes \cdots \otimes E_n$ est un k-ev et $\Pi \in n\text{-Lin}(E_1, \cdots, E_n; E_1 \otimes \cdots \otimes E_n)$ est tel que pour tout F k-ev, tout $\varphi \in n\text{-Lin}(E_1, \cdots, E_n; F)$ se factorise en un unique $\overline{\varphi}$ linéaire vérifiant $\varphi = \overline{\varphi} \circ \Pi$ $(E_1 \otimes \cdots \otimes E_n, \Pi)$ est unique à unique isomorphisme près

Question 2/3

Application linéaire associée à une application $u \in \mathcal{E} = n\text{-Lin}(E_1, \cdots, E_n; F)$

Réponse 2/3

$$\Phi: \mathcal{E} \longrightarrow F^{I_1 \times \dots \times I_n}
\varphi \longmapsto \left(\varphi\left(e_{i_1}^{(1)}, \dots, e_{i_n}^{(n)}\right)\right)_{(i_1, \dots, i_n) \in I_1 \times \dots \times I_n}
\text{Où } \left(e_i^{(j)}\right)_{i \in I_j} \text{ est une base de } E_j$$

Question 3/3

Structure de n-Lin

Réponse 3/3

 $\Bbbk\text{-}\mathrm{ev}$