Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №10 дисциплины «Алгоритмизация»

Выполнил: Дзуев Альберт Мухаметович 2 курс, группа ИВТ-б-о-22-1, 09.03.01 «Информатика и вычислительная техника», направленность (профиль) «Программное обеспечение средств вычислительной техники и автоматизированных систем», очная форма обучения (подпись) Руководитель практики: Воронкин Р.А., доцент кафедры инфокоммуникаций (подпись) Отчет защищен с оценкой Дата защиты

Порядок выполнения работы:

1. Написал программу поиска элемента в массиве, автоматического заполнения массива, расчёта тысячи точек, показывающих время поиска элемента в массиве в худшем и среднем случае, вывода графиков, составленных из этих точек, и подсчета корреляции:

```
| Volume | V
```

Рисунок 1. Код и результат неоптимизированного алгоритма heapsort

Таблица	1. Сравнение	алгоритма	Heap Sort c	Quick S	Sort и Merge S	ort
---------	--------------	-----------	-------------	---------	----------------	-----

Характеристика	Heap Sort	Quick Sort	Merge Sort
Сложность времени	O(n log n)	O(n^2) в худшем случае, O(n log n) в среднем	O(n log n)
Сложность по памяти	O(1) или O(log n)	O(log n) в среднем	O(n)
Лучший случай	O(n log n)	O(n log n)	O(n log n)
Худший случай	O(n log n)	O(n^2)	O(n log n)
Средний случай	O(n log n)	O(n log n)	O(n log n)

Неарsort не требует доп. память, занимает меньше всех места, но считается нестабильным. Quick Sort медленный в худшем случае, занимает больше места, требует доп. память и является нестабильным. Merge Sort стабилен, быстр, не требует доп памяти, но имеет наибольшую сложность по памяти.

2. Произвел оптимизацию алгоритма при помощи встроенной библиотеки heapq:

Рисунок 2. Оптимизированный алгоритм heapsort

Вывод: в результате выполнения лабораторной работы был изучен алгоритм heap sort и проведено исследование зависимости времени поиска от количества элементов в массиве, показавшее что зависимость время поиска линейно увеличивается с добавлением элементов в массив.