Tutorat 8

Dateisystem, Zugriffsrechte, Binärpräfixe, Links, FAT, I-Nodes

umask -Befehl

- Falls Zugriffsrechte **verloren** gehen, liegt das daran, dass die Zugriffsrechte mit der umask maskiert werden
- Beispiele:
 - umask 0002 beim Kopieren wird Schreibrecht (w = 2) für Others gelöscht.
 - umask 0077 beim Kopieren werden alle Rechte (r+w+x=4+2+1=7) für Gruppe und Others gelöscht.
- Die führende 0 gibt an, dass es sich um Oktaldarstellung handelt
 - the first zero is a special permission digit and can be ignored → 0002 is the same as 002
- Mit umask -S lassen sich die Rechte von neu erstellen Dateien anzeigen
- To view current umask value: umask

umask -Befehl

- in Linux, the default permissions value is directory. When creating a new file or directory, the kernel takes this default value, "subtracts" the umask value, and gives the new files the resulting permissions
- folder: 777 022 = 755
- file: 666 022 = 644
- " not really subtraction: technically, the mask is negated (its bitwise compliment is taken) and this value is then applied to the default permissions using a logical AND operation (→ Material nonimplication)

"

umask -Befehl

umask digit	default file permissions	default directory permissions
0	rw	rwx
1	rw	rw
2	r	rx
3	r	r
4	W	wx
5	W	W
6	X	Х
7	(no permission allowed)	(no permission allowed)

https://www.computerhope.com/unix/uumask.htm

umark -Befehl

- umask u-x,g=r,o+w:
- The default mask for a **non-root user** is 002, changing the **folder** permissions to 775 (rwxrwxr-x), and **file** permissions to 664 (rw-rw-r--).
- The default mask for a **root user** is 022, changing the **folder** permissions to 755 (rwxr-xr-x), and **file** permissions to 644 (rw-r--r--).

Material nonimplication

• "p minus q.", "p without q.", "p but not q."

https://en.wikipedia.org/wiki/Material nonimplication

Binärpräfixe

- Speicher wird in **Byte** = 8 **Bit** angegeben
- **Dezimalpräfixe:** Kilobyte [kB], Megabyte [MB], Gigabyte [GB], Terabyte [TB], Petabyte [PB], Exabyte [EB]
- Binärpräfixe: Kibibyte [KiB], Mebibyte [MiB], Gibibyte [GiB], Tebibyte [TiB], Pebibyte [PiB], Exbibyte [EiB]
- Einheit umrechnen:

```
1 000 000 000 kB \stackrel{\cdot 1000}{\longleftarrow} 1 000 000 MB \stackrel{\cdot 10^3}{\longleftarrow} 1 000 GB \stackrel{\cdot 10^3}{\longleftarrow} 1 TB \downarrow \cdot 10^3 1 000 000 000 000 B \downarrow : 2^{10} 976 562 500 KiB \stackrel{: 1024}{\longrightarrow} 953 674,32 MiB \stackrel{: 2^{10}}{\longrightarrow} 931,32 GiB \stackrel{: 2^{10}}{\longrightarrow} 0,91 TiB
```

Binärpräfixe

- $1 \cdot 2^{10}B = 1KiB$, $1 \cdot 2^{20} = 1MiB$, $1 \cdot 2^{30} = 1GiB$ etc.
- $1 \cdot 10^3 B = 1 KB$, $1 \cdot 10^6 B = 1 MB$, $1 \cdot 10^9 B = 1 GB$ etc.
- Windows verwendet GiB, schreibt aber GB hin, einige Linux Distributionen auch, der Manjaro Installer aber z.B. GiB
- wird von **Festplattenherstellern** genutzt, um 100GB draufzuschreiben, was viele fälschlicherweise als GiB interpretieren, aber nur $(100\cdot 1000\cdot 1000\cdot 1000)/1024/1024/1024 \approx 93.13GiB$ tatsächlich zu liefern
- ullet Unterschied wird immer größer, z.B. zwischen GB und GiB sind es 7,4%
- bei SD-Karten wird in GiB angegeben (512GiB)
- Arbeitsspeicher wird in GiB angegebn (8 GiB Arbeitsspeicher)

Dateisysteme

• siehe Tutorat_8_Dateisysteme.pdf auf Nextcloud

Zugriffsrechte

- siehe Tutorat_8_Users_Groups_Permissions.pdf auf Nextcloud
- nur x ist ein Dunkler Raum mit geöffneter Tür, r ist ein Raum mit angeschaltetem Licht
 - Dateien in einem x-only Verzeichnis können allerdings trotzdem ausgeführt werden, falls der Name richtig geraten wird.
- Kann man sich mit **chmod u-rwx** nicht aussperren?
 - Nein, weil im I-Node des Ordner die Zugriffrechte stehen und auf den hat man ja Zugriff. Und wenn man auf diesen keinen Zugriff hat, dann hat man hoffenltich auf sein Elternverzeichnis Zugriff
- für Others gibt es kein S-Bit:
 - S-Bit gibt es nur für Gruppe und User
 - a+s skipt Others

Zugriffsrechte

• Überprüfung, ob man Recht für diese Datei hat

```
permission_for_file(self, file, permission) {
  if file.user == self.user: return file.user[permission]
  if file.group == self.group: return file.group[permission]
  return file.others[permission]
}
```

- chmod 007 <file> bedeutet alle haben vollen Zugriff, außer der User und alle in der Gruppe des Users
- chmod 077 <file> bedeutet alle außer dem User haben vollen Zugriff
- chmod 070 <file> bedeutet nur die **Gruppe** des Users hat darauf Zugriff

Absoluter and relativer Softlink / Symbolischer Link

- In -s <target> link> für absoluten oder relativen Symbolischen Link
 - Ist nur ein absoluter Link, wenn target ein absoluter Pfad ist, also nicht einfach nur der Dateiname, sonst ist es ein relativer Link
 - In -sr <target> link> für auf jeden Fall einen relativen symbolischen Link
 - -r: auch wenn man einen absoluten Pfad angibt, wird daraus ein relativer Pfad gemacht
- bei relativen Pfandangaben wird der Link ungültig, wenn das Ziel in ein anderes Verzeichnis verschoben wird

a)

```
$ ls -1
drwxr-x--x 2 un1062 uni 26 27. Okt 14:06 meine_dateien
```

- Der Besitzer un1062 darf den Verzeichnisinhalt auflisten (r), Dateien erstellen, löschen und umbenennen (w) und in das Verzeichnis wechseln (x).
- Mitglieder der **Gruppe** uni dürfen nur den **Verzeichnisinhalt auflisten** und in das **Verzeichnis wechseln**.
- Alle anderen Benutzer dürfen nur in das Verzeichnis wechseln, den Inhalt aber nicht auflisten.

Aufgabe 1

b.1)

```
cd /tmp
mkdir $(whoami) # oder $USER
cd $(whoami)
cp /usr/bin/whoami werbinich
ls -lh /usr/bin/whoami
ls -lh /tmp/$(whoami)/werbinich
```

- root:root → <username>:student
- Zugriffsrechte können teilweise verloren gehen (umask)

b.2)

- chmod g=rx werbinich, (ggf. chgrp uni werbinich)
 - falls **Gruppe** uni nicht existiert:

```
sudo groupadd uni # Gruppe erstellen
sudo usermod -a -G uni $USER # Mitglied der Gruppe werden
# Ausloggen und wieder einloggen, um Gruppenmitgliedschaft zu erlangen
sudo groupdel uni # Löschen der Gruppe
```

- -a, --append: Appends the user to the current **supplementary group** list. Use only with the -G option. If the user is currently a member of a group which is **not listed**, the user will be **removed** from the group
- -G, --groups GROUP1[,GROUP2,...[,GROUPN]]]: A list of **supplementary groups** which the user is also a member of

b.2)

• werbinich zeigt den Namen des Nutzers (xy1234) an, da das Programm unter seiner Benutzerkennung ausgeführt wird.

b.3)

• SUID-Bit (Set User ID) setzen:

chmod u+s werbinich
./werbinich

Aufgabe 1

c.1+2)

```
cd && mkdir systeme-public
# 1)
chmod go=rx systeme-public # Oktalmodus: chmod 555 systeme-public
# 2)
chmod go=x ~ # Oktalmodus: chmod 511 ~
```

- das x -Recht muss für alle übergeordneten Verzeichnisse gesetzt sein
- chmod 555 systeme-public, ist 101101101, also r-xr-xr-x
- chmod 511 ~ ausführen, was 101001001, also r-x--x ist.

Aufgabe 2a)

Unterschiede

- Alle Hardlinks einer Datei verweisen auf den I-Node dieser Datei
- Jeder **Symbolische Link / Softlink** hat einen **eigenen** I-Node, der einen Zeiger auf einen **Datenblock** enthält, der wiederum den **Pfadnamen** des Ziels enthält
 - bei manchen Dateisystemen (z.B. ext) wird der Pfad des Ziels auch direkt im I-Node gespeichert, also die Daten des I-Nodes verweisen auf einen Verzeichniseintrag
- ein Hardlink ist nur ein Verzeichniseintrag, jeder symbolische Link hat einen eigenständigen I-Node
- wird das Original gelöscht, so zeigen symbolische Links ins Leere, während über Hardlinks der Inhalt der Datei immer noch zugänglich ist

Aufgabe 2a)

Unterschiede

- Wird das Original gelöscht und eine Datei mit dem selben Namen angelegt, so zeigen die symbolischen Links auf die neue Datei, während Hardlinks weiterhin auf das I-Node mit dem alten Inhalt zeigen
- Während symbolische Links weit verbreitet sind, existieren Hardlinks nur in Dateisystemen mit I-Nodes oder ähnlichen Strukturen
- Hardlinks können nur innerhalb des selben Dateisystems angelegt werden, symbolische Links funktionieren auch über Dateisysteme hinweg
- Ordner können i.d.R. nur bei symbolischen Links als Target verwendet werden

```
> $ ln folder folder_link
ln: folder: hard link not allowed for directory
```


Aufgabe 2a)

Vorteile und Nachteile - Übersicht

	Vorteile	Nachteile	
symbolische	können auf beliebige Objekte (Dateien,	zeigt nach Löschen oder Verschieben des	
Links	Verzeichnisse, Devices usw.) zeigen	Originals ins Leere	
	können auf Objekte in anderen	Anzahl der Links auf eine Datei nur	
	Dateisystemen zeigen	durch Suche bestimmbar	
	Linkziel sichtbar im Dateibrowser / per	Zugriff auf Zieldatei ist aufwendiger, da	
	ls -l	der komplette Linkpfad nachverfolgt	
		werden muss	
	Existiert für eine Vielzahl von		
	Dateisystemen		
Hardlinks	bleibt bei Löschen oder Verschieben des	können nicht auf Verzeichnisse zeigen	
	Originals gültig		
	Anzahl der Links auf eine Datei im	nur innerhalb eines Dateisystems	
	I-Node gespeichert	möglich	
	Zugriff auf Zieldatei sehr effizient, da der	mit 1s -1 nicht erkennbar, welche Links	
	Hardlink direkt auf den I-Node verweist	auf die selbe Datei zeigen	
	geringerer Speicherplatzverbrauch als	Nur in Dateisystemen mit I-Nodes oder	
	bei symbolischen Links, da bei der	ähnlichen Strukturen verfügbar	
	Erstellung eines Hardlinks nur ein		
	Verzeichniseintrag hinzugefügt wird		

Übungsblatt Aufgabe 2a)

Weitere Vor- und Nachteile

- symoblischer Link I-Node Verschwendung (→ df -i)
- man kann Zugriffrechte für jeden Softlinks individuel einstellen

Aufgabe 2b)

- Wenn dies möglich wäre, müsste man zusätzlich zum I-Node abspeichern, in welchem Dateisystem/in welcher Partition das Ziel liegt. Das wiederum macht aber keinen Sinn, da die Dateisysteme an verschiedenen Stellen, zu unterschiedlichen Zeiten und möglicherweise von unterschiedlichen Computern gemountet werden könnten und damit könnte dies zu unerwartetem Verhalten führen
 - Wenn das Dateisystem, auf das sich das Referenzobjekt befindet, nicht gemountet ist, kann der Linkzähler nicht dekrementiert werden, wenn der Harte Link gelöscht wird
 - Beispiel: Datei A erstellt und es verweisen zwei Hardlinks von unterschiedlichen Dateisystemen auf diese Datei. In welchem Dateisystem befinden sich nun tatsächlich die Daten? Was muss man tun, wenn ein Dateisystem nicht mehr mit dem Rechner verbunden ist? Sind die

Betriebssysteme, Puch workanden? Wenn ja kann ich sie löschen? Technische Fakultät

Aufgabe 2c)

- Erstelle in Verzeichnis D1 ein Verzeichnis A. Nun erstelle in Verzeichnis A mit In ../A B einen Hardlink B auf A. Wechsle nun mit cd B in das Verzeichnis. Man befindet sich nun gleichzeitig in D1 und A. Was soll nun passieren wenn man cd .. eingibt? Das Verzeichnis hat zwei Vaterverzeichnisse (D1,A). Wie soll das Dateisystem wissen, welches ausgewählt werden soll?
- Es gibt auch noch andere Probleme, z.B. gehen **UNIX-Befehle** immer von einer **azyklischen Verzeichnisstruktur** aus. Ein Zyklus könnte deshalb zu **Endlosschleifen** führen
 - im Gegensatz zu **Softlinks** lassen sich **Hardlinks** nicht vom orginalen Verzeichniseintrag der Datei **unterscheiden**

Aufgabe 3

a)

	Ang	gabe in Bits	Angabe in Bytes		
Angabe	2er-Potenz dezimal 2er-Pot		2er-Potenz	dezimal	
2 Byte	2 ⁴ Bit 16		2 ¹ Byte	2 Byte	
2048 MiB	2 ³⁴ Bit	17.179.869.184 Bit	2 ³¹ Byte	2.147.483.648 Byte	
32 Byte	2 ⁸ Bit	256 Bit	2 ⁵ Byte	32 Byte	
16 MiBit	2^{24} Bit	16.777.216 Bit	2 ²¹ Byte	2.097.152 Byte	
1024 KiBit	2^{20}Bit	1.048.576 Bit	2 ¹⁷ Byte	131.072 Byte	

Aufgabe 3

b)

- Die Einheit $\ \ \,$ bezeichnet bei Festplatten typischerweise 10^{12} Bytes, da die Festplattenkapazität in **SI-Einheiten** größer aussieht als in **Zweierpotenz-Einheiten**:
 - Differenz der Intepretationen: $3.0 \cdot 2^{40}B 3.0 \cdot 10^{12}B = 298534883328B = 278.032GiB$
- Im Gegensatz dazu ergibt sich für Arbeitsspeicher wegen der parallelen Adressierung immer eine Zweierpotenz, weshalb Arbeitsspeicher fast immer mit Binärpräfix angegeben wird.

Aufgabe 4

a)

 Ein Hardlink in einem anderen Verzeichnis hätte einen eigenen Verzeichniseintrag. Wird etwas an einer Datei und somit am Verzeichniseintrag verändert (z.B gelöscht), müsste auch der Eintrag des Hardlinks entsprechend verändert werden. Dafür müssten aber alle Hardlinks voneinander wissen.

b)

$$ullet$$
 Es werden $\lceil rac{158KB}{32KB/Block}
ceil = 5 ext{Bl\"ocke}$ benötigt

b)

FAT: Plattenblock 0 Plattenblock 1 Plattenblock 2 10 Plattenblock 3 11 Plattenblock 4 Plattenblock 5 Plattenblock 6 3 Plattenblock 7 2 Plattenblock 8 Plattenblock 9 Plattenblock 10 12 Plattenblock 11 14Plattenblock 12 -1Plattenblock 13 Plattenblock 14 -1Plattenblock 15

Liste freier Plattenblöcke:

15	13	1	8	9	5	0	

Verzeichniseinträge:

9						
Dateiname	Erwei-	Datei-	Erster	Datei-		
	terung	Attribute	Plattenblock	größe		
BRIEF	TXT	()	4	129 KB		
EDITOR	EXE	()	6	101 KB		
:	:	÷	:	:		

b)

FAT:

Plattenblock 0 Plattenblock 1 Plattenblock 2 10 Plattenblock 3 Plattenblock 4 Plattenblock 5 Plattenblock 6 Plattenblock 7 Plattenblock 8 Plattenblock 9 Plattenblock 10 Plattenblock 11 Plattenblock 12 Plattenblock 13 Plattenblock 14 Plattenblock 15

Liste freier Plattenblöcke:

Verzeichniseinträge:

Dateiname	Erwei-	Datei-	Erster	Datei-
	terung	Attribute	Plattenblock	größe
BRIEF	TXT	()	4	129 KB
EDITOR	EXE	()	6	101 KB
AUFGABE	DOC	()	15	158 KB
:	:	:	:	:

Aufgabe 5

a)

• Bei der 1-/2-/3-fach indirekten Adressierung passen $\left\lfloor \frac{b}{z} \right
floor$ Zeiger in einen

Block. Die Anzahl der Datenblöcke, die ein I-Node adressieren kann, ist daher:

$$N_b = 10 + \left\lfloor rac{b}{z}
ight
floor + \left\lfloor rac{b}{z}
ight
floor^2 + \left\lfloor rac{b}{z}
ight
floor^3 = 10 + \sum_{i=1}^3 \left\lfloor rac{b}{z}
ight
floor^i$$

- b) Maximale Dateigrößen
 - Blockgröße 1 KiB:
 - Anzahl Zeiger pro Block:

$$\left\lfloor rac{b}{z}
ight
floor = rac{1rac{ ext{KiB}}{ ext{Block}}}{4rac{ ext{Byte}}{ ext{Zeiger}}} = 256rac{ ext{Zeiger}}{ ext{Block}}$$

• Maximale Anzahl der adressierbaren Datenblöcke pro I-Node:

$$N_b = 10 + 256 + 256^2 + 256^3 = 10 + 256 + 65536 + 16777216 = 16843018$$

• Maximale Größe einer Datei:

$$16843018 \; \text{Bl\"ocke} \; \cdot 1 \\ \frac{\text{KiB}}{\text{Block}} = 17247250432 \\ \text{Byte} = 16843018 \\ \text{KiB} \approx 16448 \\ \text{MiB} \approx 16,06 \\ \text{GiB}$$

- b) Maximale Dateigrößen
 - Blockgröße 4 KiB:
 - Anzahl Zeiger pro Block:

$$\left\lfloor rac{b}{z}
ight
floor = rac{4rac{ ext{KiB}}{ ext{Block}}}{4rac{ ext{Byte}}{ ext{Zeiger}}} = 1024rac{ ext{Zeiger}}{ ext{Block}}$$

• Maximale Anzahl der adressierbaren Datenblöcke pro I-Node:

$$N_b = 10 + 1024 + 1024^2 + 1024^3 = 10 + 1024 + 1048576 + 1073741824 = 1074791434$$

• Maximale Größe einer Datei:

$$1074791434Bl\ddot{o}cke \cdot 4 rac{ ext{KiB}}{ ext{Block}} = 4402345713664 ext{ Byte} = 4299165736 ext{KiB} pprox 4100 ext{GiB} pprox 4,00 ext{TiB}$$

b) Maximale Dateigröße

• Aufgrund der gewählten Zeigergröße von 4Byte können maximal 2^{32} Blöcke = $4'294'967'296Bl\"{o}cke$ adressiert werden (über mehrere dieser Blöcke erstreckt sich ein Datenblock, wovon es 16'843'018 bzw. 1'074'791'434 gibt)

Ergänzungen

Ergänzungen

Addition binär und dezimal

```
00 + 00 = 00 00 + 00 (+ 01) = 01 00 + 01 = 01 00 + 01 (+ 01) = 10 01 + 00 = 01 01 + 00 (+ 01) = 10 01 + 01 = 10 01 + 01 (+ 01) = 11
```

Subtraktion binär und dezimal (nicht empfohlen, dient Vergleich mit nächster Folie)

```
(1)
0111000 (56) 24242
- 0011011 (27) - 17718
1111 11 1
====== ====
0011101 (29) 6524
```

```
10 - 00 = 10 10 - 00 (-01) = 01 10 - 01 (-01) = 00 11 - 00 = 11 11 - 00 (-01) = 10 11 - 01 (-01) = 01
```

Betriebssysteme, Tutorat 8, Gruppe 6, <u>juergmatth@gmail.com</u>, Universität Freiburg Technische Fakultät

Subtraktion binär und dezimal (funktioniert immer, egal was für Vorzeichen Zahlen haben)

```
(2)
    0111000 (56)
+ 1100101 (27) (0011011 negiert und +1)
    11
    ======
    0011101 (29)
```

- Zweierkomplement Negation: 11011 -> 011011 -> 100100 -> 100101
 - o en hinzufügen bis Minuend und Subtrahend beide gleiche Länge haben und Platz für ihr Vorzeichenbit ist und dieses korrekt gesetzt ist
 - 1er Komplement Negation und +1 nicht vergessen für den Subtrahenden

Multiplikation binär und dezimal

```
1101 x 1001 (13 * 9)

1304 x 12

1101

48

0000

+ 0

0000

+ 36

1101

+12

======

1110101 (117)

15648
```

• Verschiebung ist aufgrund der o en, die hier ausgelassen sind

Division binär

```
1110101 / 1011 (117 : 11) = 1010 (10) Rest: 111 (7)
- 1011|||
 ====|||
    111||
      0||
   ====||
    1110|
    1011|
      111
      111
```

Betriebssysteme, Tutorat 8, Gruppe 6, <u>juergmatth@gmail.com</u>, Universität Freiburg Technische Fakultät

Division dezimal

```
15658 / 12 = 1304,833...
12|||
== | | |
 36||
 36||
 == | |
  05|
   58
   48
```


Division dezimal

```
oder Rest: 10
10 | 0
   40
   36
    40
    36
```


Division binär

• bei binärer Division gibt es nur 2 Zustände (1 oder 0), dementsprechend wird entweder die Zahl so übernommen (Zahl \cdot 1) oder die Zahl ist 0 (Zahl \cdot 0)

Division allgemein

- nach jeder Addition ein Zahl runterholen, bis keine mehr runtergeholt werden kann \rightarrow dann Ende (bei **ganzzahliger Division**). Was unten stehen bleibt ist der **Rest**
- bei Division mit Nachkommastellen, 0en runterbringen, bis einmal **kein Rest** mehr rauskommt oder Grenze setzen bis zu der man weiter macht \rightarrow dann Ende
- ist der **Dividend** trotz runtergebrachter weiter Stelle (weil einmal kein Rest übrig blieb) immernoch kleiner als der **Divisor**, so ist der **Quotient** 0, weil nur durch 0 rechnen kann der **Divisor** noch kleiner sein als der **Dividend**

updating

- sudo apt update: update package lists
- sudo apt update -y && sudo apt full-upgrade:

full-upgrade

- * Installierte Pakete wenn möglich auf eine neuere Version aktualisieren.
- * Um geänderte Abhängigkeiten zu erfüllen, werden gegebenenfalls auch neue Pakete installiert.
- * <u>Bei nicht mehr benötigten Abhängigkeiten werden gegebenenfalls auch Pakete</u> entfernt.
- sudo apt update -y && sudo apt full-upgrade qutebrowser: update a program
- full-upgrade is the recommended way over upgrade

installing

- sudo apt update -y && sudo apt install gcc -y:install package from repo
- sudo apt update -y && sudo apt install ./foo_1.0_all.deb -y:install local package

removing

- sudo apt update -y && sudo apt purge gcc -y: uninstalls package, es werden alle Konfigurationsdateien gelöscht
- sudo apt update -y && sudo apt autoremove -y uninstalls all packages, that are not needed anymore and have no dependencies to other packages
- purge is the recommended way over remove

searching

- autocomplete application name, e.g. sudo apt install openjdk, double tab
- apt list gcc: lists als packages with which fit the search term
- apt list gcc --installed: only list packages that are installed
- apt show gcc: shows desciption of package matching the search term
- apt search gcc: lists alls packages which the search term in their discription or name
- glob-pattern or regex as search pattern

"

other

- sudo apt download emacs: download .deb -package
- sudo apt install alacritty -y:no y each time
- sudo do-release-upgrade: upgrade Distro to a newer release
- instead of confirming with y, once can also just spam enter
 - access packages over /var/cache/apt/archives

"

comparisson to apt-get

Vergleich apt/apt-get

	apt install	apt-get install	apt upgrade	apt-get upgrade	apt full-upgrade	apt-get dist-upgrade
installierte Pakete wenn möglich auf eine neuere Version aktualisieren		ja		ja		ja
ggf. Installation neuer Pakete		ja	ja	nein		ja
ggf. Löschung unnötig gewordener Abhängigkeiten		nein		nein		ja
installiert ein lokales Paket und dessen Abhängigkeiten	ja	nein				

Packages installieren mit pacman

Synchronising with the repositories

- sudo pacman -Sy: As new packages are added to the repositories you will need to regularly synchronise the package lists. This will only download the package lists if there has been a change (sudo apt update)
- sudo pacman -Syy: Occasionally you may want to force the package lists to be downloaded

Updating software

- sudo pacman -Su: perform an update of software already installed (sudo apt upgrade)
- sudo pacman -Syu: check whether the package lists are up-to-date at the same time

Searching for software

- pacman -Ss ^hunspell: searching a package by name in repos. Supports Regex
- pacman -Qs hunspell: searching package locally
- pacman -Q: list all packages installed on computer
- pacman -Qeq: self installed programs (e), only the program names, not the version number (q)
- pacman -Qen: packages self installed from main repos (n)
- pacman -Qem: packages self installed from aur (m)
- pacman -Qdt: orphans, unneeded dependencies

Find out where package installed

pacman -Ql handbrake: look up where application gets installed
 Betriebssysteme, Tutorat 8, Gruppe 6, juergmatth@gmail.com, Universität Freiburg Technische Fakultät

Installing software

- sudo pacman -S gimagereader-gtk: install package from repo
- sudo pacman -U /var/cache/pacman/pkg/rofi-1.6.1-1-x86_64.pkg.tar.zst:install local package

Removing software

- sudo pacman -Rns dmenu : remove a package (R), dependencies (s) and configuration files (n)
- sudo pacman -Rns \$(pacman -Qtdq): if at a later date you want to remove all orphan packages and configuration files for packages that you removed some time ago
- sudo pacman -Sc: remove unused packages and repos from cache

Packages installieren mit pacman

Finding out version number of local and remote packages

- pacman -Qi python: for local packages
- pacman -Si python: for remote packages

Misc

If a package in the list is already installed on the system, it will be reinstalled even if it is already up to date. This behavior can be overridden with the
 --needed option.

Prinzip

- capital letter at beginning
- s: sync with repository in some way
- Q: search locally
- R:remove

Yay

- commands are the same as in pacman
- adds search in the AUR (Arch User Repository): https://aur.archlinux.org/
 (Duckduckgo: !au)
- yay polybar erlaubt auswahl an packages, die z.B. Discord im Namen haben

Packages installieren mit pacman

Anmerkungen

- PACkage MANager
- always make sudo pacman -Syu before installing new software

Edit configuration files

• sudo nvim /etc/pacman.conf

```
# Misc options
#UseSyslog
Color
#TotalDownload
# We cannot check disk space from within a chroot environment
CheckSpace
#VerbosePkgLists
ILoveCandy
```

• sudo nvim /etc/pacman.d/mirrorlist

Quellen

Quellen Wissenquellen

- https://www.computerhope.com/unix/uumask.htm
- https://phoenixnap.com/kb/what-is-umask

QuellenBildquellen

Wallpaper: https://www.peppercarrot.com/en/webcomic/ep24 The-Unity-Tree.html

Vielen Dank für eure Aufmerksamkeit!

