

Big Data Visual Analytics (CS 661)

Instructor: Soumya Dutta

Department of Computer Science and Engineering Indian Institute of Technology Kanpur (IITK)

email: soumyad@cse.iitk.ac.in

Project Group Formation

- Form groups by tonight and update the google spreadsheet
- An email was sent earlier today
- If you can't find a group, I will start forming new groups

Study Materials for Lecture 15

- SLIC Superpixels Compared to State-of-the-Art Superpixel Methods, Achanta et al.
- Homogeneity guided probabilistic data summaries for analysis and visualization of large-scale data sets, Dutta et al. IEEE PacificVis.
- Statistical visualization and analysis of large data using a value-based spatial distribution, Wang et al., IEEE PacificVis.
- Distribution Driven Extraction and Tracking of Features for Time-varying Data Analysis, Dutta et al., IEEE TVCG.

Goals of a Region-wise Statistical Summarization

- Produce coherent partitions
 - Similar data values are grouped together
 - Partitions are spatially contiguous
- Preserve the statistical properties of the data accurately
 - Minimize sampling errors
 - Efficient feature analysis
- Use appropriate distribution models for summarization
 - A compact storage representation

Goals of a Region-wise Statistical Summarization

- Produce coherent partitions
 - Similar data values are grouped together
 - Partitions are spatially contiguous
- Preserve the statistical properties of the data accurately
 - Minimize sampling errors
 - Efficient feature analysis
- Use appropriate distribution models for summarization
 - A compact storage representation

A Superior Solution for Region-wise Statistical Summarization

- Generate partitions based on data homogeneity
- Simple Linear Iterative Clustering (SLIC)
 - Produces irregular shaped partitions/clusters
 - Value variation inside partitions is minimized
 - Reduced sampling error

$$dist(i, j) = \alpha. \|C_i - P_j\|_2 + (1 - \alpha). \|val_i - val_j\|$$

SLIC Algorithm Steps

Algorithm 1 Efficient superpixel segmentation

- 1: Initialize cluster centers $C_k = [l_k, a_k, b_k, x_k, y_k]^T$ by sampling pixels at regular grid steps S.
- 2: Perturb cluster centers in an $n \times n$ neighborhood, to the lowest gradient position.
- 3: repeat
- 4: for each cluster center C_k do
- 5: Assign the best matching pixels from a $2S \times 2S$ square neighborhood around the cluster center according to the distance measure (Eq. 1).
- 6: end for
- 7: Compute new cluster centers and residual error E {L1 distance between previous centers and recomputed centers}
- 8: **until** $E \leq \text{threshold}$
- 9: Enforce connectivity.

SLIC Partitioning and Distribution Modeling

- Generate partitions based on data homogeneity
- Summarize each partition using a

hybrid distribution scheme

- A single Gaussian or a mixture of Gaussians
- Reduce data size and a compact representation

SLIC Partitioning and Distribution Modeling

Hybrid Distribution-based Summarization

- Each SLIC partition is summarized using
 - Either a single Gaussian or a mixture of Gaussians (GMM)
 - The decision is made based on a Normality test
 - Expectation Maximization (EM) for GMM parameter estimation
- A hybrid distribution-based data set
 - Compact statistical representation
 - Significantly smaller than the raw data

- Block histogram summarizes data samples in a block
 - Bin b_i represents a continuous data value range $\left[L_{b_i}, U_{b_i}\right]$
 - $H(b_i) = \frac{N(b_i)}{\sum_{k=0}^{B-1} N(b_k)}$ (normalized frequency of bin b_i)
 - $N(b_k)$: number of grid points whose values are in range $\left[L_{b_k}, U_{b_k}\right]$

- Block histogram does not retain samples' location information
- Each bin attaches a spatial distribution: $\{S_0, S_1, ... S_{B-1}\}$
 - S_{b_i} : maps a spatial location (ℓ) to a probability
 - Estimated by a multivariate GMM (Spatial GMM)
- Spatial GMM modeling
 - Collect coordinates of all grid points assigned to bin b_i
 - Use EM algorithm to estimate the parameters of the GMM
 - Repeat the process for each bin

- The complexity of the spatial distribution of each bin are quite different
 - Increases storage overhead if we use too many Gaussian components
 - May have insufficient modeling quality if fewer Gaussian components are used
- Use an adaptive scheme to determine the best number of Gaussian components
 - Bayesian Information Criterion (BIC) evaluates the fitting quality
 - Given an upper bound of number of Gaussian components
 - The number of Gaussian components with the best BIC is selected

Bayesian Information Criterion (BIC)

- BIC is a criterion of model selection given different model configurations
- Lower values of BIC are preferred
- Tries to balance between the number of model parameters (model complexity) and the amount of overfitting

$$BIC = k * ln(n) - 2 * ln(L)$$

- L is the maximized value of likelihood function
- n = sample size
- k = number of model parameters

Spatial Distribution-augmented Statistical Data Summarization: Value Estimation

- A probability density function (PDF) at a given location ℓ
 - Possible values at ℓ and their associated probability
 - Combine the histogram and spatial GMMs by Bayes' rule
- Bayes' rule
 - The prior is adjusted by the related evidences

•
$$P_{\ell}(b_i) = \frac{SGMM_{b_i}(\ell)*H(b_i)}{\sum_{k=0}^{B-1} SGMM_{b_k}(\ell)*H(b_k)}$$

- Prior: block histogram
- Evidences: probabilities of spatial GMMs at ℓ
- Posterior: estimated PDF at ℓ

Data/Storage Reduction

- SLIC-based partitioning + hybrid modeling Technique
 - 100 GB raw data could be reduced to 10.8 GB distribution-based data
 - Reduced data needs only ~10% of the raw data storage
- Spatial GMM + value distribution-based modeling
 - 10.61 GB raw data could be reduced to 0.152 GB distribution-based data (32³ block size)
 - Reduced data needs only 1.39% of the raw data storage

What Can We Do With the Distribution-based Reduced Data?

- Reconstruct the full resolution data
 - Bayes' Rule-based method of reconstruction using Spatial distribution models
 - Monte Carlo sampling for SLIC-based hybrid distribution models
- Distribution-based feature search
- Feature extraction and tracking
- Many more

Box Muller Transform

- Box Muller Transform is used to generate pairwise independent Standard Normally distributed values
- Let U_1 and U_2 are independent samples chosen from a Uniform distribution defined over (0,1)
- Compute: $Z_0 = R\cos(\Theta) = \sqrt{-2\ln U_1}\cos(2\pi U_2)$

$$Z_1 = R\sin(\Theta) = \sqrt{-2\ln U_1}\sin(2\pi U_2)$$

• We can show that Z_0 and Z_1 are coming from Standard Normal distributions

Box Muller Transform for GMM

- Box Muller Transform gives us samples that follow Standard Normal distributions
- But we have Gaussian mixture models (GMM)
- So, apply the following steps to generate samples from a GMM:
 - Generate a random number r between 0 1
 - Find the Gaussian component for which $\sum_k weight_k \ge r$
 - Use Box Muller Transform to sample a value from the selected Gaussian component

Monte Carlo Sampling-based Reconstruction

- Monte Carlo Sampling is used to reconstruct the full data from distribution models
 - Box Muller Transform on GMM and Gaussians
- Regular partitioning is not optimal
 - Does not consider inherent data coherency

High sampling error in reconstructed data

Ground truth data

Monte Carlo Sampling-based Reconstruction

- Generate partitions based on data homogeneity
- Simple Linear Iterative Clustering (SLIC)
 - Produces irregular shaped partitions/clusters
 - Value variation inside partitions is minimized
 - Reduced sampling error

Smooth reconstruction using SLIC partitioning

Ground truth data

Bayes' Rule-based Method of Reconstruction using Spatial Distribution

Raw data
Size: 10871MB
Resolution: 2545x2545x440

Size: 131.4MB Block Size: 22³

Block histogram w/ interpolation Size: 131.4MB

Block Size: 22³

Block GMM Size: 163.71MB Block Size: 10³

Our approach Size: 151.54MB Block Size: 32³

Spatial Distribution

Bayes' Rule-based Method of Reconstruction using Spatial Distribution

Distribution Similarity-based Feature Search

Selection of feature

Feature distribution to be searched

Regions with similar distributions for regular partitioning

Regions with similar distributions for K-d tree partitioning

Regions with similar distributions for SLIC partitioning

Selection of feature

Feature distribution to be searched

Regions with similar distributions for regular partitioning

Regions with similar distributions for K-d tree partitioning

Regions with similar distributions for SLIC partitioning

How to Compute Similarity Between Distributions?

• Kullback-Leibler divergence: Amount of work needed to convert one distribution to other

$$D_{ ext{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log igg(rac{P(x)}{Q(x)}igg)$$

• Earth Mover's distance: Minimum cost of turning mass of one distribution to another. For 1-D distributions, this can be shown as a sum of the differences between their cumulative distributions

$$EMD(X,Y) = \int_{-\infty}^{\infty} |F_X(x) - F_Y(x)| dx$$

• Bhattacharya distance:

$$D_B(P,Q) = -\ln(BC(P,Q))$$
 where $BC(P,Q) = \sum_{x \in \mathcal{X}} \sqrt{P(x)Q(x)}$

P and Q are probability distributions defined on the same domain \mathcal{X}