Marginal Distributions of Discrete Random Variables

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

In a model with many variables, how do we characterize behavior of individual variables?

Joint pmf

$p_{\tilde{a}}$?

$$p_{\tilde{a}}(1) = p_{\tilde{a},\tilde{b}}(1,1) + p_{\tilde{a},\tilde{b}}(1,2) + p_{\tilde{a},\tilde{b}}(1,3) = 0.55$$

We have access to $p_{\tilde{a},\tilde{b}}$ but are only interested in \tilde{a}

$$p_{\tilde{a}}(a) = P(\tilde{a} = a)$$

$$= P\left(\bigcup_{b \in B} \left\{ \tilde{a} = a, \tilde{b} = b \right\} \right)$$

$$= \sum_{b \in B} P\left(\tilde{a} = a, \tilde{b} = b\right)$$

$$= \sum_{b \in B} p_{\tilde{a}, \tilde{b}}(a, b)$$

The marginal pmf of \tilde{a} is obtained by summing the joint pmf over all possible values of \tilde{b}

Movie ratings

Movielens dataset

Users give 1-5 ratings to movies

Goal: Model Independence Day and Mission Impossible

Empirical joint pmf (%)

Independence Day

maspendence 2 dy						
		1	2	3	4	5
•	1	0.6	1	1.6	0.3	0
	2	1	3.8	5.7	3.5	1.6
	3	1.6	4.5	11.8	13.1	5.4
	4	1.9	4.8	6.4	15	6.1
	5	0	0	1.3	3.8	5.4

Mission Impossible

Mission Impossible?

Independence Day

= =,						
		1	2	3	4	5
	1	0.6	1	1.6	0.3	0
	2	1	3.8	5.7	3.5	1.6
	3	1.6	4.5	11.8	13.1	5.4
	4	1.9	4.8	6.4	15	6.1
	5	0	0	1.3	3.8	5.4

Mission Impossible

Independence Day?

Independence Day

		•	,		
	1	2	3	4	5
1	0.6	1	1.6	0.3	0
2	1	3.8	5.7	3.5	1.6
3	1.6	4.5	11.8	13.1	5.4
4	1.9	4.8	6.4	15	6.1
5	0	0	1.3	3.8	5.4
	3	2 1 3 1.6 4 1.9	1 0.6 1 2 1 3.8 3 1.6 4.5 4 1.9 4.8	1 0.6 1 1.6 2 1 3.8 5.7 3 1.6 4.5 11.8 4 1.9 4.8 6.4	1 0.6 1 1.6 0.3 2 1 3.8 5.7 3.5 3 1.6 4.5 11.8 13.1 4 1.9 4.8 6.4 15

Mission Impossible

Marginal joint pmf

4-dimensional random vector \tilde{x}

$$p_{\tilde{x}[1],\tilde{x}[4]}(a,d)$$

$$= P\left(\bigcup_{b \in R_2, c \in R_3} \{\tilde{x}[1] = a, \tilde{x}[2] = b, \tilde{x}[3] = c, \tilde{x}[4] = d\}\right)$$

$$= \sum_{b \in R_2} \sum_{c \in R_3} p_{\tilde{x}}(a,b,c,d)$$

Precipitation in Oregon

Goal: Model precipitation in Coos Bay, Corvallis, John Day

Precipitation in Oregon (%)

Coos Bay and Corvallis?

Marginal joint pmf

Corvallis

Bay		0	1
00s E	0	84.70	4.02
ပိ	1	5.62	5.72

Coos Bay and John Day?

Marginal joint pmf

John Day

Bay		0	1
oos E	0	86.43	2.24
Š	1	10.21	1.13

Corvallis and John Day?

Marginal joint pmf

John Day

/allis		0	1
orva	0	88.07	2.19
Ö	1	8.56	1.18

Coos Bay?

Corvallis?

John Day?

What have we learned?

How to compute marginal pmfs $\,$