47-805: Computational Methods Introduction & General issues Judd Chapters 1-2

David Childers (thanks to Y. Kryukov, K. Judd, and U. Doraszelski)

CMU, Tepper School of Business

March 13, 2023

1 / 33

David Childers (CMU) 47-805: Intro Mar-13

Plan for today

- Computational methods: why and how to use them
- @ General points on:
 - Number representation
 - Problem solving
 - Coding

Next time: Solving systems of linear equations (Chapter 3)

What are computational methods?

- Economics is full of problems without closed-form solutions:
 - Macro: dynamic problems
 - Econometrics: estimators solve optimization or integration problems
 - General equilibrium is a system of nonlinear eq-s
 - Finance: stochastic calculus & diff. eq's
 - Applied Micro: Games, especially dynamic ones
- Pencil & paper methods limit us to special cases
- Realistic applications lead to analytically intractable problems
- Numerical methods let us substantially relax constraint on tractability

Computing power & its limits

- Moore's law: computing power doubles every 18 months
 - Faster CPUs, more CPUs in the same box
 - \bullet Server farms / Supercomputers: 100's of CPUs/GPUs
- But: CPU is a complement to human brain, not a substitute
 - Brute force can take too long, or fail to solve the problem.
 ⇒ choice of model form, solution method, starting value, etc.
 - Inappropriate methods can produce unreasonable results
 ⇒ economic interpretation & verification of results.
- Numerical methods is a field dedicated to solving problems
 - Economics is about finding interesting problem to solve, and interpreting the solution; not the solution methods
 - But: need to know strength and weaknesses of each method

4 / 33

What can numerical methods do?

- Solve intractable problems:
 - Realistic models in both macro and micro
 - Specialized estimation problems (GMM, MLE, Bayes)
 - Policy experiments on estimated model
- Generate hypothesis or counterexamples
 - Can say: X might happen, maybe even likely/unlikely
 - Cannot say: X will always/never happen
- Check derivations, quantify & visualize effects
- Still, can only solve one parameterization at a time:
 - Large number of examples instead of general results

5 / 33

Criticism of numerical methods, & response

- Limited to a finite number of parameterizations
 - Theory is usually limited to a finite set of functional forms
 - We can approximate smooth functions
 - Can combine w/ symbolic/logical methods for non-local results
- Introduces errors
 - We can bound or measure them: compute and verify
- Is a "Black box": what are economic forces behind the result?
 - Do comparative statics, e.g. try turning effects off
 - Take analytical derivation as far as you can
- Computational methods extend analytical ones, not replace them

Computational research stages

- Pick an economic issue, represent as mathematical problem
- Pick a numerical solution method
- Code it up, solve, experiment with it
- Interpret the results:
 - Note behavior consistent with existing theory
 - Find economic reasons behind unexpected behavior, make sure it is not caused by numeric issues
 - ullet Solve trivial cases (e.g. discount factor = 0), where you know how the solution should look like
 - Robustness checks: different numeric method(s) & settings, different functional forms, different model
- Use data to quantify model features, test structure
- 4.1-2 or 5 core of theory, empirical paper, respectively,
 4.4 = brief section at the end + details in online appendix

David Childers (CMU) 47-805: Intro Mar-13 7 / 33

Course goals

• Solve dynamic problems (e.g. discrete time):

$$\max \sum_{k} \beta^{t} u \left(f \left(k_{t} \right) - k_{t+1} \right)$$

$$\Rightarrow V \left(k \right) = \max_{k'} u \left(f \left(k \right) - k' \right) + \beta V \left(k' \right)$$

- ullet Maximization \Rightarrow nonlinear equations \Rightarrow linear equations
 - Also: constraints, integration ($\beta \mathbf{E}[V(k')|k,c]$), etc.
- Unknown function $V(\cdot)$: polynomials or splines
- Solving the dynamic problem:
 - Dynamic programming (iterate on Bellman)
 - ullet Projection: find $V\left(\cdot\right)$ and policy functions directly

8 / 33

Model taxonomy

- Time:
 - Discrete: $V(k) = \max_{c} u(k, c) + \beta V(f(k, c))$
 - Continuous: $\rho V(k) = \max_{c} u(k, c) + V'(k) g(k, c)$
- State:
 - Discrete $(k \in \{k_i\})$
 - Continuous $(k \ge 0)$
- State transitions:
 - Deterministic: ... $+\beta V(f(k,c))$
 - Stochastic: ... $+\beta \mathbf{E}_{k'} [V(k') | k, c]$
- We can solve any combination of the above
 - Pick features that match your economic story
 - "Simplest" case (discrete time & state, deterministic transitions) often leads to unreasonable results, and can be hard to compute.

Course structure

- Solving for an unknown number (or vector):
 - Solving linear and nonlinear equations
 - Optimization
 - Integration and simulation
- Solving for an unknown function:
 - Polynomial, spline, & other approximations
 - Differential equations
 - Projection methods
- Applications to dynamic problems in Econ:
 - Dynamic programming
 - Optimal control, Euler equations
 - Other advanced topics (suggestions?)

Tradeoffs

- Time vs. precision
- Time vs. robustness
- Machine time vs. programming time

Course logistics

- Canvas: lectures, homeworks, announcements
- Homeworks your best chance to review the material, learn to code & receive feedback
 - Submit meaningful write-up & discussion; upload code as ZIP
 - Teams up to 3 people; HW 1 should be done alone.
 - Can't use outside help, e.g.: other students, last year solutions, code from other sources
 - Can use Internet for reference purposes (with citation)
 - Lowest scoring homework will be dropped (given honest effort)
- No midterm
- Final exam: 48 hour take-home, date TBD

Number representation & machine zero

- At lowest (binary) level, computer can only deal with integers
- Real numbers are stored as $\pm m * 2^{\pm n}$
 - m = mantissa, n = exponent
- Double precision storage format: m and n share the same 64 bits ⇒ both are bounded
- \bullet Bound on exponent n determines lowest and largest values
- Machine zero: smallest positive number that machine can represent
 - Matlab: realmin/Julia nextfloat(-Inf)/Numpy np.finfo(np.float64).min ≈ -2e-308
 - Largest possible number: realmax/prevfloat(Inf)/np.finfo(np.float64).max \approx 2e+308 \approx e^{710}

Machine epsilon

• Real numbers are stored as $\pm m * 2^{\pm n}$

Bound on mantissa m limits the number of digits:

- **Machine epsilon**: smallest difference from 1.0 that the machine can represent
- ullet Given Matlab/Julia/Python 64-bit precision: eps() pprox 2e-16
 - If you have $A \approx 1$, and A-B $\approx 1e$ -16, then you can assume that A = B.
 - Example: type "0.6-0.2-0.2-0.2" into Matlab/Julia/Python
- Machine zero < machine epsilon:
 - *m* and *n* share the same 64 bits
 - many digits in m leave less room for n
 - change units to keep your values in (0.01, 100)

Error propagation

- Mathematical operations propagate rounding error
- Solving: $x^2 26x + 1 = 0 \implies x = 13 \sqrt{168} = 0.0385186$
- Machine that stores 5 decimal digits would compute: 13.000 12.961 = 0.039
- Answer has precision reduced from 5 meaningful digits to 2
 - Small difference between large numbers will be imprecise
- If A and B are on the scale of 10^6 , you cannot expect A-B to go below 1e-10

Computation speed

- Basic arithmetic (+, -, *, /) is fast
- Everything else is approximated through those
- Functions with no closed form take a lot longer
- Exponent takes several times longer than multiplication:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \approx \sum_{n=0}^{N} \frac{x^n}{n!}$$

- ⇒ pre-compute & store expressions that will not change during iterations
- ullet \Rightarrow transform the formula, e.g. Horner's method:
 - $a_0 + a_1 x + a_2 x^2 + a_3 x^3$, vs.
 - $a_0 + x (a_1 + x (a_2 + a_3 x))$

Solution methods

Direct methods (e.g. $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$):

- Result in an "exact" solution
- Takes finite (but potentially long) time

Iterative methods:

- Each iteration k generates a new guess at the solution: $x_{k+1} = g(x_k, x_{k-1}, ...)$.
- E.g. $x_k = [e^a]_k = \sum_{n=0}^k \frac{a^n}{n!} = x_{k-1} + \frac{a^k}{k!}$
- Each guess is (hopefully) closer to the true solution
 - I.e. sequence (hopefully) converges, to the solution
- Stopping criterion & max. number of iterations trade off computation time vs. precision.

10 × 4 / 10

David Childers (CMU)

Order notation

- Let x_k be the k^{th} element of a sequence and f(k) a nonnegative sequence
- x_k is O(f(k)) (say " x_k is big O f(k)") if

$$\limsup_{k\to\infty}\left|\frac{x_k}{f(k)}\right|<\infty$$

• x_k is o(f(k)) (say " x_k is little o f(k)") if

$$\lim_{k \to \infty} \left| \frac{x_k}{f(k)} \right| = 0$$

David Childers (CMU)

47-805: Intro

Computational Complexity: Some minimal theory

- Goal of computation is to take some (finite) input x (a problem) and produce the correct output y (the "result") by means of a function f(.) (a program) that applies a series of steps which can be performed by a machine
- Standard to study case where $y \in \{True, False\}$
- ullet Computational theory asks several questions about f()
 - **①** Computability: $\exists f()$ which produces y in finite time?
 - Fact: ∃ problems for which answer is *no*:
 - These problems are called "noncomputable"
 - Supposing answer to (1) is *yes*, how many resources does it take to compute?
 - Time: # of operations
 - Space: # of bits of memory
 - Other resources as needed

Computational Resources

- ullet Answers to resource cost allowed can depend on size n of input
 - If # ops (bits) $O(n^k)$, $k < \infty$ problem is polynomial time (space)
 - If # ops (bits) $O(2^{n^k})$ problem is exponential time (space)
- Biggest unsolved problem in compsci is, roughly, what kinds of problems are in each class
- Numerics looks at problems where y is a number, which allows consideration of other resources
 - \bullet Precision: For $\epsilon>0$, let f(x) produce \tilde{y} such that $\|y-\tilde{y}\|<\epsilon$
 - Probability: For $\delta>0$ allow \tilde{y} random such that $Pr(\|y-\tilde{y}\|<\epsilon)>1-\delta$

Approach to resources in this class

- Goal: find programs for problems x in some class which are fast, small, precise, reliable.
 - i.e. $ops < O(q(\epsilon,\delta,n))$ with optimal dependency of q() on ϵ,δ,n
 - Equivalently, $\epsilon < O(r(ops, \delta, n))$ for optimal r()
- We will not systematically probe optimal production possibilities frontier for any class of problem
- Instead, we will describe reasonable assortment of useful methods, and say a little bit about properties and tradeoffs

Rates of convergence (geometric convention)

• x_k converges to x^* at rate q if:

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^q} < \infty$$

• x_k converges to x^* linearly at rate β if:

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = \beta < 1$$

- Convergence at rate $q \implies ||x_k x^*|| = O(\exp(-q^k))$
- Linear convergence at rate $\beta \implies \|x_k x^*\| = O(\beta^k)$
- Informally: Linear convergence improves precision by 1 digit each fixed # of iterations $(\frac{-1}{\log_{10}(\beta)})$
- Iterative algorithms usually have geometric convergence
- Will use this convention in most of class

David Childers (CMU) 47-805: Intro Mar-13 22 / 33

Stopping rules

- Want to stop when x_k is close to x^* .
- We do not know $x^* \Rightarrow$ stop when x_k is close to x_{k+1} , i.e. when $f(\|x_{k+1} x_k\|) < \delta$
- Using absolute difference $||x_{k+1} x_k||$ is a bad idea if x's are large, due to limited precision.
- Relative difference $||x_{k+1} x_k|| / ||x_k||$ better but might "blow up" if x_k is close to zero
- Hybrid rule: $||x_{k+1} x_k|| / [1 + ||x_k||]$
- Potential problem: we might stop far from x^*
 - E.g. $x_k = \sum_{n=1}^k \frac{1}{n} \to \infty$, but $|x_k x_{k+1}| = \frac{1}{k+1} \to 0$

(ロ) (部) (注) (注) 注 り(0)

Testing the solution: compute and verify

- Solving f(x) = 0: true solution is x^* is unknown, computed numeric solution is \hat{x}
- Forward error analysis (compare x^* to \hat{x}) is infeasible
- Backward error analysis: compare $f\left(\cdot\right)$ to similar function $\hat{f}\left(\cdot\right)$ that has $\hat{f}\left(\hat{x}\right)=0$
 - ullet $\hat{f}\left(\cdot\right)$ can be tricky to make meaningful
- Compute and verify: compare $f(\hat{x})$ to 0, normalized for scale if possible
 - GE: $E(p^*) \equiv D(p^*) S(p^*) = 0$ (absolute error)
 - Relative error: compare $E(\hat{p})/D(\hat{p})$ to 0

Matlab hints

- Every variable is a matrix (or N-dimensional array), of double-precision reals.
- Capitalization matters
- Interpreter language: check variables after error
 - F12 = break point; error('Message') stops code
- Use help:
 - Menu/Help/Product help, then maybe Index
 - Select command and press F1
 - Type: help <command>
- Matrix operations instead of for loops:
 - Elementwise operations: .+ .- .* ./ .^
 - Log(), exp() and most functions work on matrices
 - indexing: lag_X=[NaN X(1:end-1)];

David Childers (CMU) 47-805: Intro

Mar-13

25 / 33

Readable code

- Header comment %% explaining what this code does
- Set all parameters as variables at the beginning of the code
- Use descriptive comments % every few lines
 - Ctrl-R (command / on Mac) and Ctrl-T = (un)comment lines
- Use offsets with control structures (for, while, if)
 - Ctrl-[and Ctrl-] = offset selected lines
- Cell mode (=paragraphs): "%%" starts a new cell
 - Ctrl-Enter runs the current cell

Writing the code

- One does not simply type 500 lines of code
 - Mistakes will happen
- Try to test every "block" of code
 - F9 runs selected code
 - Use Matlab's cells (%% Headers, Ctrl-Enter to run)
 - Give it trivial inputs, so you can know the correct output
 - Verify output using manual calculation or alternative formula
- Provide meaningful output on screen
 - E.g. iteration report: x, difference from stopping criterion.
 - Look up fprintf for formatted output

Julia hints

- Every variable has a *type* (Float64, Int64, Array, etc) and every function must be compatible with the type of the input.
- Programming with types improves speed and readability by specializing method to input structure.
- Capitalization matters
- Use help:
 - https://docs.julialang.org/ and https://julia.quantecon.org invaluable sources
 - Type: ? <command>
- for loops: not slow like Matlab, but broadcasting still useful
 - Elementwise operations: .+ .- .* ./ .^
 - log.(), exp.() etc elementwise using . symbol, to whole array without.

Mar-13

Readable code

- Code in Jupyter notebooks mixes text cells and code cells
 - Provide useful header plus context and explanations
- Use notebooks for exploratory model building, collections .jl scripts (in terminal or IDE like VSCode) for large projects
- Code in scripts should have header and comments
- Use descriptive comments # every few lines
 - Ctrl-/ (command / on Mac) in VSCode IDE
- Set all parameters as variables at the beginning of the code
- Use offsets with control structures (for, while, if)

Writing the code

- One does not simply type 500 lines of code
 - Mistakes will happen
- Try to test every "block" of code
 - Run code in REPL (interactively) to see output
 - Encapsulate discrete behaviors in functions: prevents repetition, improves speed, allows repurposing code when model changes
 - using Test package allows setting formal tests
 - Verify output using manual calculation or alternative formula
- Provide meaningful output on screen
 - \bullet E.g. iteration report: x, difference from stopping criterion.
 - Look up println for formatted output

Python hints

- Spaces and capitalization matter, indices start at 0 instead of 1
- Use help:
 - https://python.quantecon.org invaluable source
 - Colab and VSCode have docs as popup
- Python is *interpreted* and *dynamically typed*:
 - Commands make a guess at type of data at runtime rather than requiring explicit declaration
 - Good for convenience, interactivity, bad for reliability and speed
 - Libraries like numpy, scipy have fast precompiled functions
 - numba allows @jit (just-in-time) compilation to optimize own functions

Readable code

- Code in Jupyter notebooks mixes text cells and code cells
 - Provide useful header plus context and explanations
- Use notebooks for exploratory model building, collections of scripts (in terminal or IDE like VSCode) for large projects
- Code in scripts should have header and comments
- Use descriptive comments # every few lines
 - Ctrl-/ (command / on Mac) in VSCode IDE
- Set all parameters as variables at the beginning of the code
- Use offsets with control structures (for, while, if)

Writing the code

- One does not simply type 500 lines of code
 - Mistakes will happen
- Try to test every "block" of code
 - Run code in interactively to see output
 - Encapsulate discrete behaviors in functions and classes: prevents repetition, improves speed, allows repurposing code when model changes
 - Verify output using manual calculation or alternative formula
- Provide meaningful output on screen
 - E.g. iteration report: x, difference from stopping criterion.
 - print(f"Text {variable}") for formatted output