

Image analysis tools: software and libraries used in plant trait measurement

Guillaume Lobet

Université of Liège, PhytoSYSTEMS

- 1. What is an image?
- 2. What is image analysis?
- 3. What is ImageJ?
- 4. What are macros and plugins?

1. What is an image?

2. What is image analysis?

3. What is ImageJ?

4. What are macros and plugins?

What is an image?

An image is a matrix of values

		152	230	20	65	98	75	45	25	22	36
	152	230	20	65	98	75	45	25	22	36	65
152	230	20	65	98	75	45	25	22	36	65	36
123	152	148	196	157	249	255	0	0	65	36	65
152	230	20	65	98	75	45	25	22	36	65	36
123	152	148	196	157	249	255	0	0	65	36	65
152	230	20	65	98	75	45	25	22	36	65	36
123	152	148	196	157	249	255	0	0	65	36	65
152	230	20	65	98	75	45	25	22	36	65	36
123	152	148	196	157	249	255	0	0	65	36	65
152	230	20	65	98	75	45	25	22	36	65	
123	152	148	196	157	249	255	0	0	65		•

RGB

152	230	20	65	98	75	45	25	22	36
123	152	148	196	157	249	255	0	0	65
152	230	20	65	98	75	45	25	22	36
123	152	148	196	157	249	255	0	0	65
152	230	20	65	98	75	45	25	22	36
123	152	148	196	157	249	255	0	0	65
152	230	20	65	98	75	45	25	22	36
123	152	148	196	157	249	255	0	0	65
152	230	20	65	98	75	45	25	22	36
123	152	148	196	157	249	255	0	0	65

Greyscale

8-bit integer [0-255]

32-bit real values

6

1. What is an image?

2. What is image analysis?

3. What is ImageJ?

4. What are macros and plugins?

EMBO Practical Course

What is image analysis?

Image analysis IS NOT image manipulation ImageJ IS NOT Photoshop

Image analysis is the extraction of information from images

Main advantages of automated image analysis

Removes human appreciation

Automation of processes

9

Phenotyping steps

Types of images

TIFF 530K

JPEG

18K

Minervini et al. (2015). The significance of image compression in plant phenotyping applications. Functional Plant Biology, 1-18

Image analysis basics: Image scale

Principle
Link between pixel and physical size

DPI
Dots Per Inch
Pixels Per 2.54 cm

Pixels cm scale

200 10 20 px/cm
50 DPI

Image analysis basics: Histogram

Principle
Distribution of pixel values

Image analysis basics: Thresholding

Principle

Isolate the object from the rest of the image

Image analysis basics: Thresholding

Image analysis basics: Thresholding

Be careful with thresholding

use a fixed threshold value or use an algorithm

But use always the same

Image analysis basics: Thresholding

Different fixed values

Image analysis basics: Thresholding

Different algorithms

Image analysis basics: Skeletons

Image analysis basics: Distance Map

- 1. What is an image?
- 2. What is image analysis?
- 3. What is ImageJ?
- 4. What are macros and plugins?

lmageJ

- Open source
- Developed at the NIH
- Created in 1986
- Plugin and macro
- Current version: 1.49

http://rsb.info.nih.gov

http://fiji.sc/

ImageJ menu

File Basic file operations (opening, saving, creating new images).

Edit Editing and drawing operations as well as global settings.

Conversion and modification of images including geometric lmage transformations.

Image processing, including point operations, filters and Process arithmetic operations.

Statistical measurements, profile and histogram plotting and Analyze other operations related to image analysis.

Commands for creating, editing and managing add-ons

23

Exercice 1: Thresholding

- 1. Open the image bunny.tiff
- 2. Duplicate the RGB image
- 3. Change the image type to 8-bit
- 4. Duplicate the 8-bit image
- 5. Threshold the image
- 6. Save the thresholded image

Exercice 1: Thresholding

- 1. File > Open
- 2. Image > Duplicate
- 3. Image > Type > 8-bit
- 4. Image > Duplicate
- 5. Image > Adjust > Threshold
- 6. File > Save as

Exercice 2: Counting objects

- 1. Open the image blobs.gif
- 2. Set the image scale to 300 DPI
- 3. Threshold the image
- 4. Create a binary image
- 5. Separate the objects
- 6. Count the objects

Exercice 2: Counting objects

- 1. File > Open Samples
- 2. Analyze > Set scale...
- 3. Image > Adjust > Threshold
- 4. Process > Binary > Make binary
- 5. Process > Binary > Watershed
- 6. Analyze > Analyze particles

Exercice 3: Working with roots

- 1. Open the image lupin.jpg
- 2. Threshold the image
- 3. Create a binary image
- 4. Estimate the length of the root system
- 5. Estimate the diameters of the roots

bit.ly/embo-phenotyping

Exercice 3: Working with roots

- 1. File > Open
- 2. Process > Binary > Make binary
- 3. Image > Duplicate
- 4. Select lupin.jpg
- 5. Process > Binary > Skeletonize
- 6. Analyze > Analyze particles
- 7. Select lupin-1.jpg
- 8.Process > Binary > Distance Map
- 9. Process > Image Calculator
- 10. lupin.jpg AND lupin-1.jpg

- 1. What is an image?
- 2. What is image analysis?
- 3. What is ImageJ?
- 4. What are macros and plugins?

Macros and plugins

Macros

Set of ImageJ commands
Useful for automation
Java-like

Plugins

New commands
More complex image analysis
Java

Creating macros

ImageJ built-in macro recording tool Plugins > Macros > Record...

Macro manual

http://rsb.info.nih.gov/ij/developer/macro/macro/macros.html

Launch the macro
Plugins > Macros > Run...

My first macro

```
run("Blobs (25K)");
run("Set Scale...", "distance=300 known=1 pixel=1 unit=cm");
setAutoThreshold("Default");
setThreshold(121, 255);
run("Convert to Mask");
run("Make Binary");
run("Watershed");
run("Analyze Particles...", "size=100-Infinity circularity=0.00-1.00
show=Nothing summarize");
```

Finish lines with;
Comment lines with //

A bit more complex

```
setBatchMode(true);
dir=getDirectory("Where are your images");
list=getFileList(dir);
num=list.length;
for(k = 0 ; k < num ; k++){
   open(dir+list[k]);
    run("Set Scale...", "distance=300 known=2.54 pixel=1 unit=cm");
    run("Set Measurements...", "area redirect=None decimal=2");
    setAutoThreshold("Default");
    run("Convert to Mask");
    run("Make Binary");
    run("Watershed");
    run("Analyze Particles...", "size=0.1-Infinity circularity=0.00-1.00
    show=Nothing display summarize");
   close();
```


Example of plugin: SmartRoot

More on Wednesday...

More ressources

http://imagej.nih.gov/ij/

http://fiji.sc/

bit.ly/embo-phenotyping