8/7/22, 11:08 PM Untitled

```
In [3]: # importing packages
        import scipy.stats
        # finding p-value
        p_value = scipy.stats.norm.sf(abs(-0.67))
        ('p value is : ' + str(p_value))
Out[3]: 'p value is : 0.25142889509531013'
In [5]: # importing packages
        import scipy.stats
        # finding p-value
        p_value = scipy.stats.norm.sf(abs(1.67))
        ('p value is : ' + str(p_value))
Out[5]: 'p value is : 0.04745968180294733'
In [6]: # Calculate the z-score from with scipy
        import scipy.stats as stats
        values = [4,5,6,6,6,7,8,12,13,13,14,18]
        zscores = stats.zscore(values)
        print(zscores)
        [-1.2493901 -1.01512945 -0.78086881 -0.78086881 -0.78086881 -0.54660817
         In [8]: # Calculate the Standard Deviation in Python
        mean = sum(values) / len(values)
        differences = [(value - mean)**2 for value in values]
        sum of differences = sum(differences)
        standard_deviation = (sum_of_differences / (len(values) - 1)) ** 0.5
        (standard deviation)
Out[8]: 4.458563432181702
In [ ]:
```

8/7/22, 11:08 PM Untitled

Out[20]:

	Name	Age	Amount	Level
0	Nik	32	80000	5
1	Kate	30	90000	7
2	Joe	67	45000	3
3	Mitch	34	23000	4
4	Alana	20	12000	4

```
In [ ]:
```

```
In [ ]:
```

Out[21]:

	Name	Age	Amount	Level
0	Nik	32	80000	5
1	Kate	30	90000	7
2	Joe	67	45000	3
3	Mitch	34	23000	4
4	Alana	20	12000	4

8/7/22, 11:08 PM Untitled

```
In [27]: df['Amount zscore'] = stats.zscore(df['Amount'])
    (df.head())
```

Out[27]:

	Name	Age	Amount	Level	Income zscore	Amount zscore
0	Nik	32	80000	5	0.978700	0.978700
1	Kate	30	90000	7	1.304934	1.304934
2	Joe	67	45000	3	-0.163117	-0.163117
3	Mitch	34	23000	4	-0.880830	-0.880830
4	Alana	20	12000	4	-1.239687	-1.239687

```
In [28]: import scipy.stats as stats
import math

# Specify the sample mean (x_bar), the sample standard deviation (s), the mean
claimed in the null-hypothesis (mu_null), and the sample size (n)
x_bar = 62.1
s = 13.46
mu_null = 55
n = 30

# Calculate the test statistic
test_stat = (x_bar - mu_null)/(s/math.sqrt(n))

# Output the p-value of the test statistic (right tailed test)
print(1-stats.t.cdf(test_stat, n-1))
```

0.0036182783769480586

```
In [ ]:

In [ ]:
```