2014年全国统一高考数学试卷(文科)(大纲版)

_	、选择题(本大题)	共 12 小题,每小题	5 分)	2
1.	(5分)设集合 M	l={1, 2, 4, 6, 8},	N={1, 2, 3, 5,	6 ,7 },则 M∩N 中
	元素的个数为()		
	A. 2	B. 3	C. 5	D. 7
2.	(5 分)已知角 α	的终边经过点(- 4	,3),则 cosα=()
	A. $\frac{4}{5}$	B. $\frac{3}{5}$	$C \frac{3}{5}$	D. $-\frac{4}{5}$
3.	(5分)不等式组	{x(x+2)>0 (x <1 (x <1	为 ()	
	A. {x - 2 < x < -	1}	B. $\{x \mid -1 < x < 0\}$	
	C. $\{x \mid 0 < x < 1\}$		D. $\{x x > 1\}$	
4.	(5分)已知正四	面体 ABCD 中,E 是	AB 的中点,则异面	直线 CE 与 BD 所成
	角的余弦值为()		
	A. $\frac{1}{6}$	B. $\frac{\sqrt{3}}{6}$	C. $\frac{1}{3}$	D. $\frac{\sqrt{3}}{3}$
5.	(5 分)函数 y=ln	$(\sqrt[3]{x}+1)$ (x>- 1))的反函数是()
	A. $y=(1-e^x)^{-3}$	(x>- 1)	B. $y=(e^{x}-1)^{-3}$	(x>- 1)
	C. $y= (1-e^x)^3$	(xER)	D. $y=(e^{x}-1)^{-3}$	(x∈R)
6.	(5分)已知亩, 1	* 为单位向量,其夹角	角为 60°,则(2 a−	\vec{b}) \vec{b} = ()
	A 1	B. 0	C. 1	D. 2
7.	(5分)有6名男	医生、5 名女医生,	从中选出 2 名男医生	生、1 名女医生组成
	一个医疗小组,则	不同的选法共有()	
	A. 60 种	B. 70 种	C. 75 种	D. 150 种
8.	(5分)设等比数	列{a _n }的前 n 项和为	/ S _n . 若 S ₂ =3,S ₄ =1	5,则 S ₆ =()
	A. 31	B. 32	C. 63	D. 64
9.	(5 分)已知椭圆	C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>1	b>0)的左、右焦点	点为 F ₁ 、F ₂ ,离心率

第1页(共22页)

方				
为 2				
丘线				
1,				
二、填空题(本大题共 4 小题,每小题 5 分)				
),				
三、解答题 17. (10 分)数列 {a _n } 满足 a ₁ =1, a ₂ =2, a _{n+2} =2a _{n+1} - a _n +2. (I)设 b _n =a _{n+1} - a _n ,证明 {b _n } 是等差数列;				

第2页(共22页)

18. (12 分) \triangle ABC 的内角 A、B、C 的对边分别为 a、b、c,已知 3acosC=2ccosA, \tan A= $\frac{1}{3}$,求 B.

- 19. (12 分)如图,三棱柱 ABC- A₁B₁C₁ 中,点 A₁ 在平面 ABC 内的射影 D 在 AC 上,∠ACB=90°,BC=1,AC=CC₁=2.
 - (I)证明: AC₁ \(_{1} \)B;
 - (\mathbb{I}) 设直线 AA_1 与平面 BCC_1B_1 的距离为 $\sqrt{3}$,求二面角 A_1 AB- C 的大小.

- 20. (12 分)设每个工作日甲,乙,丙,丁 4 人需使用某种设备的概率分别为 0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.
 - (I) 求同一工作日至少3人需使用设备的概率;
 - (Ⅱ)实验室计划购买 k 台设备供甲,乙,丙,丁使用,若要求"同一工作日需使用设备的人数大于 k"的概率小于 0.1,求 k 的最小值.

第3页(共22页)

- 21. (12分)函数 f (x) =ax³+3x²+3x (a≠0).
 - (I) 讨论 f (x) 的单调性;
 - (Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.

- 22. (12 分)已知抛物线 C: $y^2=2px$ (p>0)的焦点为 F,直线 y=4 与 y 轴的交点为 P,与 C 的交点为 Q,且 $|QF|=\frac{5}{4}|PQ|$.
- (I) 求 C 的方程;
- (Ⅱ)过F的直线 I 与 C相交于 A、B 两点,若 AB 的垂直平分线 I'与 C相交于 M、N 两点,且 A、M、B、N 四点在同一圆上,求 I 的方程.

2014年全国统一高考数学试卷(文科)(大纲版)

参考答案与试题解析

- 一、选择题(本大题共12小题,每小题5分)
- 1. (5分) 设集合 M={1, 2, 4, 6, 8}, N={1, 2, 3, 5, 6, 7}, 则 M∩N 中 元素的个数为()
 - A. 2 B. 3 C. 5 D. 7

【考点】1A:集合中元素个数的最值:1E:交集及其运算.

【专题】5J:集合.

【分析】根据 M 与 N, 找出两集合的交集, 找出交集中的元素即可.

【解答】解: ∵M={1, 2, 4, 6, 8}, N={1, 2, 3, 5, 6, 7},

∴M∩N={1, 2, 6}, 即 M∩N 中元素的个数为 3.

故选: B.

【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

- 2. (5 分) 已知角 α 的终边经过点 (- 4, 3) , 则 cosα= (

- A. $\frac{4}{5}$ B. $\frac{3}{5}$ C. $-\frac{3}{5}$ D. $-\frac{4}{5}$

【考点】G9:任意角的三角函数的定义,

【专题】56: 三角函数的求值.

【分析】由条件直接利用任意角的三角函数的定义求得 cosa 的值.

【解答】解: :角 α 的终边经过点(- 4, 3), \therefore x=- 4, y=3, $r=\sqrt{_{x}{}^{2}+_{y}{}^{2}}=5$.

 $\therefore \cos\alpha = \frac{x}{r} = \frac{-4}{5} = -\frac{4}{5},$

故选: D.

【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属 干基础题.

第5页(共22页)

3. (5 分) 不等式组
$$\begin{cases} x(x+2) > 0 \\ |x| < 1 \end{cases}$$
的解集为 ()

A.
$$\{x \mid -2 < x < -1\}$$

A.
$$\{x \mid -2 < x < -1\}$$
 B. $\{x \mid -1 < x < 0\}$ C. $\{x \mid 0 < x < 1\}$

D.
$$\{x | x > 1\}$$

【考点】7E: 其他不等式的解法.

【专题】59:不等式的解法及应用.

【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的 解集,再取交集,即得所求.

【解答】解:由不等式组
$$\begin{cases} x(x+2) > 0 \\ |x| < 1 \end{cases}$$
可得 $\begin{cases} x < -2, \ \text{或} x > 0 \\ -1 < x < 1 \end{cases}$,解得 $0 < x < 1$,

故选: C.

【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.

4. (5 分) 已知正四面体 ABCD 中, E 是 AB 的中点,则异面直线 CE 与 BD 所成 角的余弦值为()

A.
$$\frac{1}{6}$$

B.
$$\frac{\sqrt{3}}{6}$$

c.
$$\frac{1}{3}$$

A.
$$\frac{1}{6}$$
 B. $\frac{\sqrt{3}}{6}$ C. $\frac{1}{3}$ D. $\frac{\sqrt{3}}{3}$

【考点】LM:异面直线及其所成的角.

【专题】5G:空间角.

【分析】由 E 为 AB 的中点,可取 AD 中点 F,连接 EF,则∠CEF 为异面直线 CE 与 BD 所成角,设出正四面体的棱长,求出△CEF 的三边长,然后利用余弦定 理求解异面直线 CE 与 BD 所成角的余弦值.

【解答】解:如图,

取 AD 中点 F, 连接 EF, CF,

: E 为 AB 的中点,

∴EF // DB,

则 \angle CEF 为异面直线 BD 与 CE 所成的角,

第6页(共22页)

∵ABCD 为正四面体, E, F 分别为 AB, AD 的中点,

∴CE=CF.

设正四面体的棱长为 2a,

则 EF=a,

$$CE=CF=\sqrt{(2a)^2-a^2}=\sqrt{3}a$$

在△CEF中,由余弦定理得:

$$\cos \angle CEF = \frac{CE^2 + EF^2 - CF^2}{2CE \cdot EF} = \frac{a^2}{2 \times \sqrt{3} a^2} = \frac{\sqrt{3}}{6}.$$

故选: B.

【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用 , 是中档题.

5. (5分) 函数 y=ln ($\sqrt[3]{x}$ +1) (x>- 1) 的反函数是 ()

A.
$$v = (1 - e^x)^3 (x > -1)$$

A.
$$y=(1-e^x)^3(x>-1)$$
 B. $y=(e^x-1)^3(x>-1)$

C.
$$y=(1-e^x)^3 (x \in R)$$

C.
$$y=(1-e^x)^3 (x \in R)$$
 D. $y=(e^x-1)^3 (x \in R)$

【考点】4R: 反函数.

【专题】51:函数的性质及应用.

【分析】由已知式子解出 x, 然后互换 x、y 的位置即可得到反函数.

【解答】解: ∵y=ln (¾√x+1),

$$\therefore \sqrt[3]{x} + 1 = e^y$$
,即 $\sqrt[3]{x} = e^{y} - 1$,

∴x=
$$(e^{y}-1)^{-3}$$
,

∴所求反函数为 y= (e^x- 1) ³,

故选: D.

【点评】本题考查反函数解析式的求解, 属基础题.

- 6. (5 分) 已知 a, b 为单位向量,其夹角为 60°,则 (2 a- b) b= ()
 - A. 1 B. 0 C. 1
- D. 2

【考点】90:平面向量数量积的性质及其运算.

【专题】5A: 平面向量及应用.

【分析】由条件利用两个向量的数量积的定义,求得 $\overset{\text{-}}{\mathbf{a}}$ · $\overset{\text{-}}{\mathbf{b}}$ 、 $\overset{\text{-}}{\mathbf{b}}$ 的值,可得($\overset{\text{-}}{\mathbf{a}}$ **b**) • b 的值.

【解答】解:由题意可得, $\overrightarrow{a} \cdot \overrightarrow{b} = 1 \times 1 \times \cos 60^{\circ} = \frac{1}{2}$, $\overrightarrow{b}^2 = 1$,

 $\therefore (2\vec{a} - \vec{b}) \cdot \vec{b} = 2\vec{a} \cdot \vec{b} - \vec{b}^2 = 0,$

故选: B.

【点评】本题主要考查两个向量的数量积的定义,属于基础题.

- 7. (5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成 一个医疗小组,则不同的选法共有()

- A. 60 种 B. 70 种 C. 75 种 D. 150 种

【考点】D9:排列、组合及简单计数问题.

【专题】50:排列组合.

【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中 选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算 可得答案.

【解答】解:根据题意,先从6名男医生中选2人,有C₆2=15种选法, 再从 5 名女医生中选出 1 人,有 $C_c^{1}=5$ 种选法,

第8页(共22页)

则不同的选法共有 15×5=75 种:

故选: C.

【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.

8. (5 分) 设等比数列 $\{a_n\}$ 的前 n 项和为 $\{a_n\}$ 的前 n 项和

- A. 31
- B. 32
- C. 63
- D. 64

【考点】89: 等比数列的前 n 项和.

【专题】54: 等差数列与等比数列.

【分析】由等比数列的性质可得 S_2 , S_4 — S_2 , S_6 — S_4 成等比数列,代入数据计算 可得.

【解答】解: $S_2=a_1+a_2$, $S_4-S_2=a_3+a_4=(a_1+a_2)$ q^2 , $S_6-S_4=a_5+a_6=(a_1+a_2)$ q^4 ,

所以 S_2 , S_4 - S_2 , S_6 - S_4 成等比数列,

即 3, 12, S₆- 15 成等比数列,

可得 12²=3(S₆- 15),

解得 S₆=63

故选: C.

【点评】本题考查等比数列的性质,得出 S_2 , S_4 — S_2 , S_6 — S_4 成等比数列是解决 问题的关键,属基础题.

- 9. (5 分) 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>b>0) 的左、右焦点为 F_1 、 F_2 ,离心率 为 $\frac{\sqrt{3}}{2}$,过 F_2 的直线 I 交 C 于 A、B 两点,若 $\triangle AF_1B$ 的周长为 $4\sqrt{3}$,则 C 的方 程为()

- A. $\frac{x^2}{3} + \frac{y^2}{2} = 1$ B. $\frac{x^2}{3} + y^2 = 1$ C. $\frac{x^2}{12} + \frac{y^2}{2} = 1$ D. $\frac{x^2}{12} + \frac{y^2}{4} = 1$

第9页(共22页)

【考点】K4: 椭圆的性质.

【专题】5D: 圆锥曲线的定义、性质与方程.

【分析】利用 \triangle AF₁B 的周长为 4 $\sqrt{3}$,求出 a= $\sqrt{3}$,根据离心率为 $\frac{\sqrt{3}}{3}$,可得 c=1, 求出 b, 即可得出椭圆的方程.

【解答】解: $: \triangle AF_1B$ 的周长为 $4\sqrt{3}$,

- ∴ △AF₁B 的周长= |AF₁|+ |AF₂|+ |BF₁|+ |BF₂|=2a+2a=4a,
- ∴ $4a = 4\sqrt{3}$,
- $\therefore a = \sqrt{3}$
- :离心率为 $\frac{\sqrt{3}}{3}$,
- $\therefore \frac{c}{3} = \frac{\sqrt{3}}{3}, c=1,$
- $\therefore b = \sqrt{a^2 c^2} = \sqrt{2},$
- ∴椭圆 C 的方程为 $\frac{x^2}{3}$ + $\frac{y^2}{2}$ =1.

故选: A.

【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能 力,属干基础题.

- 10. (5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2 ,则该球的表面积为()

- A. $\frac{81 \, \pi}{4}$ B. 16π C. 9π D. $\frac{27 \, \pi}{4}$

【考点】LG: 球的体积和表面积: LR: 球内接多面体.

【专题】11: 计算题; 5F: 空间位置关系与距离.

【分析】正四棱锥 P- ABCD 的外接球的球心在它的高 PO₁上,记为 O,求出 PO₁

, OO₁, 解出球的半径, 求出球的表面积.

【解答】解: 设球的半径为 R,则

∵棱锥的高为4,底面边长为2,

第10页(共22页)

$$\therefore R^2 = (4-R)^2 + (\sqrt{2})^2$$

$$\therefore R = \frac{9}{4}$$

∴球的表面积为 4π • $(\frac{9}{4})^2 = \frac{81\pi}{4}$.

故选: A.

【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题

11. (5分) 双曲线 C: $\frac{x^2}{a^2}$ $\frac{y^2}{a^2}$ =1 (a>0, b>0) 的离心率为 2, 焦点到渐近线

的距离为 $\sqrt{3}$,则 \mathbf{C} 的焦距等于()

B.
$$2\sqrt{2}$$

B.
$$2\sqrt{2}$$
 C. 4 D. $4\sqrt{2}$

【考点】KC:双曲线的性质.

【专题】5D: 圆锥曲线的定义、性质与方程.

【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到 结论.

【解答】解: :: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a>0, b>0) 的离心率为 2,

 $\therefore e = \frac{c}{a} = 2$, 双曲线的渐近线方程为 $y = \pm \frac{b}{a} x$, 不妨取 $y = \frac{b}{a} x$, 即 bx - ay = 0,

则 c=2a, b=
$$\sqrt{c^2-a^2}=\sqrt{3}a$$
,

:焦点 F(c, 0) 到渐近线 bx- ay=0 的距离为√3,

$$\therefore d = \frac{bc}{\sqrt{a^2 + b^2}} = \sqrt{3},$$

第11页(共22页)

$$\mathbb{P}\frac{\sqrt{3}a^{\bullet}c}{\sqrt{a^2+3a^2}} = \frac{\sqrt{3}ac}{2a} = \frac{\sqrt{3}c}{2} = \sqrt{3}$$

解得 c=2,

则焦距为 2c=4,

故选: C.

【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直 线的距离公式,建立方程组是解决本题的关键,比较基础.

12. (5分) 奇函数 f(x) 的定义域为 R, 若 f(x+2) 为偶函数,且 f(1)=1,

- A. 2 B. 1 C. 0 D. 1

【考点】3K: 函数奇偶性的性质与判断.

【专题】51:函数的性质及应用.

【分析】根据函数的奇偶性的性质,得到 f(x+8) = f(x) ,即可得到结论.

【解答】解: ∵f(x+2) 为偶函数, f(x) 是奇函数,

∴设g(x)=f(x+2),

则g(-x)=g(x),

即 f(-x+2) = f(x+2),

∵f (x) 是奇函数,

: f(-x+2) = f(x+2) = -f(x-2),

即 f (x+4) =- f (x), f (x+8) = f (x+4+4) =- f (x+4) = f (x),

则 f(8) = f(0) = 0, f(9) = f(1) = 1,

 \therefore f (8) +f (9) =0+1=1,

故选: D.

【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称 轴是解决本题的关键.

第12页(共22页)

二、填空题(本大题共4小题,每小题5分)

13. (5分) (x-2) 6的展开式中 x3的系数是_-160_. (用数字作答)

【考点】DA: 二项式定理.

【专题】11: 计算题.

【分析】根据题意,由二项式定理可得(x-2)6的展开式的通项,令 x 的系数为 3,可得 r=3,将 r=3 代入通项,计算可得 $T_4=-160x^3$,即可得答案.

令 6- r=3 可得 r=3,

此时 T_4 = $(-1)^3 \bullet 2^3 \bullet C_6^3 x^3 = -160 x^3$,即 x^3 的系数是 -160;

故答案为- 160.

【点评】本题考查二项式定理的应用,关键要得到(x-2)6的展开式的通项.

14. (5 分)函数 y=cos2x+2sinx 的最大值是 $-\frac{3}{2}$.

【考点】HW:三角函数的最值.

【专题】11: 计算题.

【分析】利用二倍角公式对函数化简可得 y=cos2x+2sinx=1- 2sin²x+2sinx= $-2(\sin x - \frac{1}{2})^2 + \frac{3}{2}, \text{ 结合- } 1 \leqslant \sin x \leqslant 1$ 及二次函数的性质可求函数有最大值

【解答】解: : y=cos2x+2sinx=1- 2sin²x+2sinx=
$$-2(\sin x - \frac{1}{2})^2 + \frac{3}{2}$$

又∵- 1≤sinx≤1

当 $\sin x = \frac{1}{2}$ 时,函数有最大值 $\frac{3}{2}$

故答案为: $\frac{3}{2}$

第13页(共22页)

【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭 区间上的最值的求解,解题中要注意-1≤sinx≤1的条件.

【考点】7C: 简单线性规划.

【专题】31:数形结合.

【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

【解答】解:由约束条件 $\begin{cases} x-y \ge 0 \\ x+2y \le 3$ 作出可行域如图, $x-2y \le 1$

联立
$$\begin{cases} \mathbf{x}-\mathbf{y}=0\\ \mathbf{x}+2\mathbf{y}=3 \end{cases}$$
,解得 C(1,1).

化目标函数 z=x+4y 为直线方程的斜截式,得 $y=\frac{1}{4}x+\frac{z}{4}$.

由图可知,当直线 $y=\frac{1}{4}x+\frac{z}{4}$ 过 C 点时,直线在 y 轴上的截距最大,z 最大.

此时 z_{max}=1+4×1=5.

故答案为:5.

【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题

16. (5分) 直线 I_1 和 I_2 是圆 $x^2+y^2=2$ 的两条切线,若 I_1 与 I_2 的交点为(1,3),

第14页(共22页)

则 I_1 与 I_2 的夹角的正切值等于 $-\frac{4}{3}$.

【考点】IV:两直线的夹角与到角问题.

【专题】5B: 直线与圆.

【分析】设 I_1 与 I_2 的夹角为 2θ ,由于 I_1 与 I_2 的交点 A(1,3)在圆的外部,由直角三角形中的边角关系求得 $\sin\theta = \frac{\mathbf{r}}{0A}$ 的值,可得 $\cos\theta$ 、 $\tan\theta$ 的值,再根据 $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$,计算求得结果.

【解答】解:设 I_1 与 I_2 的夹角为 20,由于 I_1 与 I_2 的交点 A(1,3)在圆的外部,且点 A 与圆心 O 之间的距离为 $OA=\sqrt{1+9}=\sqrt{10}$,

圆的半径为 $r=\sqrt{2}$,

$$\therefore \sin\theta = \frac{r}{0A} = \frac{\sqrt{2}}{\sqrt{10}},$$

$$\therefore \cos\theta = \frac{2\sqrt{2}}{\sqrt{10}}, \quad \tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{1}{2},$$

$$\therefore \tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta} = \frac{1}{1-\frac{1}{4}} = \frac{4}{3},$$

故答案为: $\frac{4}{3}$.

【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.

三、解答题

- 17. (10 分)数列 $\{a_n\}$ 满足 $a_1=1$, $a_2=2$, $a_{n+2}=2a_{n+1}-a_n+2$.
 - (I) 设 $b_n = a_{n+1} a_n$, 证明 $\{b_n\}$ 是等差数列;
 - (Ⅱ) 求{a_n}的通项公式.

【考点】83: 等差数列的性质: 84: 等差数列的通项公式: 8H: 数列递推式.

【专题】54: 等差数列与等比数列.

【分析】(I)将 a_{n+2}=2a_{n+1}- a_n+2 变形为:a_{n+2}- a_{n+1}=a_{n+1}- a_n+2,再由条件得

第15页(共22页)

 $b_{n+1}=b_n+2$,根据条件求出 b_1 ,由等差数列的定义证明 $\{b_n\}$ 是等差数列;

(II) 由(I) 和等差数列的通项公式求出 b_n ,代入 $b_n=a_{n+1}$ — a_n 并令 n 从 1 开始取值,依次得(n—1)个式子,然后相加,利用等差数列的前 n 项和公式求出 $\{a_n\}$ 的通项公式 a_n .

【解答】解: (I) 由 a_{n+2}=2a_{n+1}- a_n+2 得,

 a_{n+2} $- a_{n+1} = a_{n+1} - a_n + 2$,

由 $b_n = a_{n+1} - a_n$ 得, $b_{n+1} = b_n + 2$,

即 b_{n+1} - b_n =2,

 ∇ b₁=a₂- a₁=1,

所以{b_n}是首项为1,公差为2的等差数列.

(Ⅱ)由(Ⅰ)得,b_n=1+2(n- 1)=2n- 1,

由 $b_n = a_{n+1} - a_n$ 得, $a_{n+1} - a_n = 2n - 1$,

则 a_2 - a_1 =1, a_3 - a_2 =3, a_4 - a_3 =5, ..., a_n - a_{n-1} =2 (n-1) - 1,

所以, a_n- a₁=1+3+5+...+2 (n- 1) - 1

$$=\frac{(n-1)(1+2n-3)}{2}=(n-1)^{2}$$

又 $a_1=1$,

所以 $\{a_n\}$ 的通项公式 $a_n=(n-1)^2+1=n^2-2n+2$.

【点评】本题考查了等差数列的定义、通项公式、前 n 项和公式,及累加法求数列的通项公式和转化思想,属于中档题.

18. (12 分) \triangle ABC 的内角 A、B、C 的对边分别为 a、b、c,已知 3acosC=2ccosA, \tan A= $\frac{1}{3}$,求 B.

【考点】GL: 三角函数中的恒等变换应用; HP: 正弦定理.

【专题】58:解三角形.

第16页(共22页)

【分析】由 3acosC=2ccosA,利用正弦定理可得 3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得 tanC,利用 tanB=tan[π- (A+C)]=- tan(A+C)即可得出.

【解答】解: :: 3acosC=2ccosA,

由正弦定理可得 3sinAcosC=2sinCcosA,

- ∴3tanA=2tanC,
- \because tanA= $\frac{1}{3}$,
- \therefore 2tanC=3 $\times \frac{1}{3}$ =1,解得 tanC= $\frac{1}{2}$.

∴
$$tanB=tan[\pi-(A+C)]=-tan(A+C)=-\frac{tanA+tanC}{1-tanAtanC}=-\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{3}\times\frac{1}{2}}=-1$$

∵B∈ (0, π),

$$\therefore B = \frac{3\pi}{4}$$

【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.

- 19. (12 分) 如图, 三棱柱 ABC- A₁B₁C₁ 中, 点 A₁ 在平面 ABC 内的射影 D 在 AC 上, ∠ACB=90°, BC=1, AC=CC₁=2.
 - (I)证明: AC₁ LA₁B;
 - (II) 设直线 AA_1 与平面 BCC_1B_1 的距离为 $\sqrt{3}$,求二面角 A_1 AB- C 的大小.

【考点】LW: 直线与平面垂直; MJ: 二面角的平面角及求法.

【专题】5F: 空间位置关系与距离.

【分析】(I)由已知数据结合线面垂直的判定和性质可得:

(II) 作辅助线可证 $\angle A_1FD$ 为二面角 A_1 — AB— C 的平面角,解三角形由反三角 函数可得.

【解答】解: (Ⅰ)∵A₁D⊥平面 ABC,A₁D⊂平面 AA₁C₁C,

- ∴平面 AA₁C₁C⊥平面 ABC, 又 BC⊥AC
- ∴BC⊥平面 AA₁C₁C, 连结 A₁C,

由侧面 AA_1C_1C 为菱形可得 $AC_1 \perp A_1C_1$

 $\mathbb{Z} AC_1 \perp BC, A_1C \cap BC=C,$

- ∴AC₁⊥平面 A₁BC, AB₁⊂平面 A₁BC,
- $AC_1 \perp A_1B$;
- (Ⅱ) ∵BC上平面 AA₁C₁C, BC⊂平面 BCC₁B₁,
- ∴平面 AA₁C₁C⊥平面 BCC₁B₁,

作 A₁E⊥CC₁, E 为垂足,可得 A₁E⊥平面 BCC₁B₁,

又直线 AA₁//平面 BCC₁B₁,

- ∴ A₁E 为直线 AA₁ 与平面 BCC₁B₁ 的距离,即 A₁E= $\sqrt{3}$,
- $:: A_1C$ 为 $\angle ACC_1$ 的平分线, $:: A_1D = A_1E = \sqrt{3}$,

作 DF LAB, F 为垂足, 连结 A₁F,

又可得 AB L A₁D, A₁F ∩ A₁D=A₁,

- ∴AB 上平面 A₁DF, ∵A₁F⊂平面 A₁DF
- $A_1F \perp AB$,
- \therefore $\angle A_1$ FD 为二面角 A_1 AB- C 的平面角,

由 $AD = \sqrt{AA_1^2 - A_1D^2} = 1$ 可知 D 为 AC 中点,

$$\therefore DF = \frac{1}{2} \times \frac{AC \times BC}{AB} = \frac{\sqrt{5}}{5},$$

$$\therefore \tan \angle A_1 FD = \frac{A_1 D}{DF} = \sqrt{15},$$

∴二面角 A₁- AB- C 的大小为 arctan√15

第18页(共22页)

【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.

- 20. (12 分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.
 - (I) 求同一工作日至少3人需使用设备的概率;
 - (Ⅱ)实验室计划购买 k 台设备供甲,乙,丙,丁使用,若要求"同一工作日需使用设备的人数大于 k"的概率小于 0.1,求 k 的最小值.

【考点】C8: 相互独立事件和相互独立事件的概率乘法公式.

【专题】51: 概率与统计.

【分析】(I)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.

(Ⅱ)由(Ⅰ)可得若 k=2,不满足条件. 若 k=3,求得"同一工作日需使用设备的人数大于 3"的概率为 0.06 < 0.1,满足条件,从而得出结论.

【解答】解: (I)由题意可得"同一工作日至少3人需使用设备"的概率为

 $0.6 \times 0.5 \times 0.5 \times 0.4 + (1-0.6) \times 0.5 \times 0.5 \times 0.4 + 0.6 \times (1-0.5) \times 0.5 \times 0.4 + 0.6 \times 0.5 \times (1-0.5) \times 0.4 + 0.6 \times 0.5 \times 0.5 \times (1-0.4) = 0.31.$

(Ⅱ)由(Ⅰ)可得若 k=2,则"同一工作日需使用设备的人数大于 2"的概率为 0.31>0.1,不满足条件.

若 k=3,则"同一工作日需使用设备的人数大于 3"的概率为 $0.6\times0.5\times0.5\times0.4=0.06<0.1$,满足条件.

故 k 的最小值为 3.

第19页(共22页)

- 【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题.
- 21. (12 分) 函数 f (x) = ax^3+3x^2+3x (a \neq 0).
 - (I) 讨论 f(x) 的单调性;
 - (Ⅱ) 若 f(x) 在区间(1, 2) 是增函数, 求 a 的取值范围.

【考点】6B: 利用导数研究函数的单调性; 6D: 利用导数研究函数的极值.

【专题】53:导数的综合应用.

【分析】(I)求出函数的导数,通过导数为0,利用二次函数的根,通过a的范围讨论f(x)的单调性:

(Ⅱ) 当 a>0, x>0 时, f(x) 在区间(1, 2) 是增函数, 当 a<0 时, f(x) 在区间(1, 2) 是增函数, 推出 f'(1) ≥0 且 f'(2) ≥0, 即可求 a 的取值范围.

【解答】解: (I) 函数 $f(x) = ax^3 + 3x^2 + 3x$,

: $f'(x) = 3ax^2 + 6x + 3$

- ①若 a \geq 1 时,则 $\Delta\leq$ 0, f'(x) \geq 0, ∴f(x)在 R上是增函数;
- ②因为 $a \neq 0$, \therefore $a \leq 1$ 且 $a \neq 0$ 时, $\triangle > 0$, f'(x) = 0 方程有两个根, $x_1 = \frac{-1 + \sqrt{1 a}}{a}$, $x_2 = \frac{-1 \sqrt{1 a}}{a}$,

当 0 < a < 1 时,则当 $x \in (-\infty, x_2)$ 或 $(x_1, +\infty)$ 时,f'(x) > 0,故函数在 $(-\infty, x_2)$ 或 $(x_1, +\infty)$ 是增函数;在 (x_2, x_1) 是减函数;

当 a < 0 时,则当 $x \in (-\infty, x_1)$ 或 $(x_2, +\infty)$, f'(x) < 0 ,故函数在 $(-\infty, x_1)$ 或 $(x_2, +\infty)$ 是减函数;在 (x_1, x_2) 是增函数;

(Ⅱ)当a>0,x>0时,f'(x)=3ax²+6x+3>0故a>0时,f(x)在区间(1,2)是增函数,

第20页(共22页)

当 a < 0 时, f(x) 在区间(1, 2) 是增函数,

当且仅当: $f'(1) \ge 0$ 且 $f'(2) \ge 0$,解得- $\frac{5}{4}$ ≤a<0,

a 的取值范围[$-\frac{5}{4}$, 0) \cup (0, +∞).

【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.

- 22. (12 分)已知抛物线 C: $y^2=2px$ (p>0)的焦点为 F,直线 y=4 与 y 轴的交点为 P,与 C 的交点为 Q,且 $|QF|=\frac{5}{4}|PQ|$.
 - (I) 求 C 的方程:
 - (Ⅱ)过F的直线 I 与 C 相交于 A、B 两点,若 AB 的垂直平分线 I'与 C 相交于 M、N 两点,且 A、M、B、N 四点在同一圆上,求 I 的方程.

【考点】KH: 直线与圆锥曲线的综合.

【专题】5E: 圆锥曲线中的最值与范围问题.

- 【分析】(I)设点 Q 的坐标为(x_0 , 4),把点 Q 的坐标代入抛物线 C 的方程 ,求得 $x_0 = \frac{8}{p}$,根据 $|QF| = \frac{5}{4} |PQ|$ 求得 p 的值,可得 C 的方程.
- (II) 设 I 的方程为 x=my+1 (m \neq 0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长 |AB|. 把直线 I'的方程代入抛物线方程化简,利用韦达定理、弦长公式求得 |MN|. 由于 MN 垂直平分线段 AB,故 AMBN 四点共圆等价于 $|AE|=|BE|=\frac{1}{2}|MN|$,由此求得 m 的值,可得直线 I 的方程.
- 【解答】解 (I)设点 Q 的坐标为(x_0 , 4), 把点 Q 的坐标代入抛物线 C: $y^2=2px$ (p>0),

可得
$$x_0 = \frac{8}{p}$$
, :点 P(0, 4), :|PQ|= $\frac{8}{p}$.

$$\mathbb{Z} | QF | = x_0 + \frac{p}{2} = \frac{8}{p} + \frac{p}{2}, | QF | = \frac{5}{4} | PQ |,$$

$$\frac{8}{p} + \frac{p-5}{2} \times \frac{8}{p}$$
, 求得 p=2, 或 p=-2 (舍去).

故 C 的方程为 y²=4x.

(Ⅱ) 由题意可得,直线 I 和坐标轴不垂直, $v^2=4x$ 的焦点 F(1,0),

第21页(共22页)

设 I 的方程为 x=my+1 (m≠0),

代入抛物线方程可得 y^2 - 4my- 4=0,显然判别式 \triangle =16 m^2 +16>0, y_1 + y_2 =4m, y_1 • y_2 =- 4.

∴ AB 的 中 点 坐 标 为 D ($2m^2+1$, 2m) , 弦 长 $|AB| = \sqrt{m^2+1} |y_1 - y_2| = \sqrt{m^2+1} \sqrt{(y_1 + y_2)^2 - 4y_1 y_2} = 4 \ (m^2+1) \ .$

又直线 l'的斜率为- m, :直线 l'的方程为 $x=-\frac{1}{m}y+2m^2+3$.

过F的直线I与C相交于A、B两点,若AB的垂直平分线I'与C相交于M、N两点,

把线 l'的方程代入抛物线方程可得 $y^2 + \frac{4}{m}y^-$ 4(2m²+3)=0, $\therefore y_3 + y_4 = \frac{-4}{m}$, $y_3 \cdot y_4 = -4$ (2m²+3).

故线段 MN 的中点 E 的坐标为($\frac{2}{m^2}$ +2m²+3, $\frac{-2}{m}$), \therefore |MN|= $\sqrt{1+\frac{1}{m^2}}$ |y₃- y₄|=

$$\frac{4(m^2+1) \cdot \sqrt{2m^2+1}}{m^2}$$
,

:MN 垂直平分线段 AB,故 AMBN 四点共圆等价于 $|AE|=|BE|=\frac{1}{2}|MN|$,

$$\therefore \frac{1}{4} \cdot AB^{2} + DE^{2} = \frac{1}{4}MN^{2},$$

∴ 4 (m²+1) ² + (2m+
$$\frac{2}{m}$$
) ² + ($\frac{2}{m^2}$ + 2) $\frac{2}{4}$ × $\frac{16 \cdot (m^2+1)^2 \cdot (2m^2+1)}{m^4}$, 化简可得 m²- 1=0,

∴m=±1, ∴直线 | 的方程为 x- y- 1=0, 或 x+y- 1=0.

【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用, 市达定理、弦长公式的应用, 体现了转化的数学思想, 属于难题.