1. Forest Cover Type Prediction (forest.ipynb)

- **Problem Statement**: The project aims to predict the forest cover type based on cartographic variables. This is a multi-class classification problem.
- Dataset Used
 - The dataset was loaded from covtype.csv.
 - The target variable is 'Cover_Type'.
- Methodology and Approach
 - Data Preprocessing
 - Checked for missing values using isnull().sum(); no missing values were found.
 - The features were scaled using StandardScaler.
 - Model Training
 - The data was split into training (80%) and testing (20%) sets.
 - Several classification models were trained and evaluated:
 - K-Nearest Neighbors (KNeighborsClassifier)
 - Gaussian Naive Bayes (GaussianNB)
 - Decision Tree Classifier (DecisionTreeClassifier)
 - Random Forest Classifier (RandomForestClassifier)
 - AdaBoost Classifier (AdaBoostClassifier)
 - Gradient Boosting Classifier (GradientBoostingClassifier)
 - XGBoost Classifier (XGBClassifier)

Model Evaluation

- Models were evaluated based on their accuracy scores on the test set.
- Confusion matrices and classification reports were also generated for a detailed performance view of some models (specifically Random Forest and XGBoost after hyperparameter tuning).

• Hyperparameter Tuning

• GridSearchCV was used to find the best hyperparameters for Random Forest and XGBoost models.

• Results and Conclusion

- The Random Forest model, after hyperparameter tuning with GridSearchCV (best params: {'max_depth': 20, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200}), achieved an accuracy of 93.99%.
- The XGBoost model, after hyperparameter tuning with GridSearchCV (best params: {'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}), achieved an accuracy of 80.09%.
- The Random Forest classifier was identified as the best-performing model for this dataset among those evaluated.
- The best Random Forest model was saved to forest_model.pkl.