

Session 2.2 - Quality assessment and read preprocessing

Pedro J. Sola Campoy

BU-ISCIII

<u>Unidades Comunes Científico Técnicas - SGSAFI-ISCIII</u>

05-09 Noviembre 2018, 1ª Edición Programa Formación Continua, ISCIII

Step in the process

Raw output files format

.fastq

454

.sff

SOLiD

.fasta .qual

Nanopore

FAST5

Secuenciación de genomas bacterianos: herramientas y aplicaciones

PacBio RSII Bax.h5

fasta

FASTQ format

- Is a FASTA file with quality information
- Within HTS, FASTA contain genomes y FASTQ reads

```
>SEQ_ID

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGC
TTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAA
TATAGGCATAGCGCACAGACAGATAAAAAATTACAGAGTTACACAACATCCATGAAACGCATTAGCACCACC
ATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGACGCGTACAGGAAACACAGAAAAAAG

Sequence

GSEQ_ID

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+

!''*((((****+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

Quality: must be 1 bit

FASTQ format

- Each base has an assigned quality score
 - Sequencing quality scores measure the probability that a base is called incorrectly
- How is it calculated?

Error probability

Phred transforming

ASCII encoding

- Light intensity is used to calculate the error probabilities
- Convert error probability into Phred score quality -Ewing B, Green P. (1998)

 Phred originated as an algorithmic approach that considered Sanger sequencing metrics, such as peak

resolution and shape

- Convert error probability into Phred score quality in real time on Illumina platforms
- Q scores are defined as a property that is logarithmically related to the base calling error probabilities (P)
- Phred quality range between 0-40 for Sanger and Illumina
 1.8+

$$Q = -10 \log_{10} P$$

Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%

 Convert Phred quality score into ASCII, a compact form, which uses only 1 byte per quality value

 Phred+33 (Sanger and current Illumina). 0 Phred quality correspond to decimal 33, which is the symbol!

	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
1	1.00000	64 @	11	0.07943	75 K	22	0.00631	86 V	33	0.00050	97 a
	0.79433	65 A	12	0.06310	76 L	23	0.00501	87 W	34	0.00040	98 b
	0.63096	66 B	13	0.05012	77 M	24	0.00398	88 X	35	0.00032	99 c
	0.50119	67 C	14	0.03981	78 N	25	0.00316	89 Y	36	0.00025	100 d
П	0.39811	68 D	15	0.03162	79 0	26	0.00251	90 Z	37	0.00020	101 e
	0.31623	69 E	16	0.02512	80 P	27	0.00200	91 [38	0.00016	102 f
,	0.25119	70 F	17	0.01995	81 Q	28	0.00158	92 \	39	0.00013	103 g
	0.19953	71 G	18	0.01585	82 R	29	0.00126	93]	40	0.00010	104 h
	0.15849	72 H	19	0.01259	83 S	30	0.00100	94 ^	41	0.00008	105 i
	0.12589	73 I	20	0.01000	84 T	31	0.00079	95	42	0.00006	106 j
)	0.10000	74 J	21	0.00794	85 U	32	0.00063	96 -			

 Phred+64 (Solexa and Illumina 1.3-1.5)

Phred 33 example

```
@HWI-ST731_6:1:1101:1322:1938#1@0/1
NTGACAAAGGGCTAATATCCAGAATCTACAAAGAACTTAAACAAATGTATAAGAATAAAAGTATAGTGCTAACAAT
+
#1:BDDADFDFDD@F>BGFIIIB@CFHIHICAGBC9CBCBGGIGCFF??>GGHFHIGGEGI<FECGDE=FHCHEG=
```

```
P=0.001 Q=-10*log10(0.001)=30 ASCIII 33+30 = 63 ?
```


FASTQ format

Illumina read header

@HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R	the unique instrument name		
6	flowcell lane		
73	tile number within the flowcell lane		
941	'x'-coordinate of the cluster within the tile		
1973 'y'-coordinate of the cluster within the tile			
#0	index number for a multiplexed sample (0 for no indexing)		
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)		

@HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:2458:1027 1:N:0:ACAGTG AGAAAAAACCTTGGANGGAAAAAAATCAGACATTTTCTAGAGGTGGAAGGCAAACTGAACAAAGAAATAATTCACA DGGGEDHHHHGGGFE#CBACBCA<?HHHHBHHHHHHHHHHHHHEHEFEGGGGGG/GGDDDGHFHGFCHFHHEHEH HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3082:1029 1:N:0:ACAGTG GGTAATACAGACTGANATGATCAAAGGCATGCTGGAAACAAACCTATTAAAGATAAGCTTTGGATCAAGCTTTCAT B:B:?BB/:=55177#55877<775EDD>E=B?BBBBGGGDDAG@G>GGGGGG@)EEEEBEG>GGGGGGAAA?<D @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3185:1033 1:N:0:ACAGTG CTGGGACATTGCTCNTGGCTGGGAGTCACCTGTCTGGGACATTGCTCAGGGCTGGGAGACACGTGTTGGAGGGA BC??A66;)74781<#7??;452.27'64(8,851DDG8GB?######################### @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3268:1033 1:N:0:ACAGTG ATTCAAATTAGAAGANAGTTGATCGTTCTTCATGATGCCCAAAAATTTCACTGAGAAAACCCTTTTTTAAGCCCAC IIIIIIIIIIFFFFE#ABACFEEFFIIGIIIFIHE@BIIIIIIIIHHIIFIIF>HHIHIFGDIIIIIIGFHIEGH HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3400:1035 1:N:0:ACAGTG rcctgctttaggagantcctcatgctctgacaggatgctctctatgtgagttgagctggtcttctcacttttatag IIIIIHHHIIGGEGG#AACA@?=?BHHIIIIIHHHHIINTHIHHHHHHHHHHHHGHHHHGHGGGGHG@EFGGCEFAB @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3962:1033 1:N:0:ACAGTG CACCAACACAGTCTNCACCTTCTGTTGCTGGTGATAGATTTTTGCACCTTTCCATCCTCCAGGTTTCAAAATAGC HHFHHDHDHH>C?CA#EEEE>?A?>HHDGHEGBGBCEEEEGHHF8HEHEEHECH,=>>==EAEE>BEBBAEAACAE @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:4491:1028 1:N:0:ACAGTG AGAGAGAGAGAGAGANAGAGGACTCTGGAGATGCCGAAGCACAAGCCTGCAAGAGTCCCAGCAAAGAAAATAAAAA GADGGEGGEGBBB?B#@=@@72:64GGGFGB>GGGBDG<DBGB<DA??/?###############################

ASCII-coded (0-40):

- "!"#\$%" lowest quality
- "FGHI" highest quality

Sequencing quality assessment

- To asses quality, software uses Phred per-base quality score is used
- Is the **first quality control step** after sequencing. There should be one after every step of the analysis
- After quality assessment user can know how reliable are their datasets
- QC will determine the next filtering step
- Filtering decisions will impact directly in further analysis
- Many other steps also use this quality as variable in their algorithms

Sequencing quality assessment: Artifacts

HTS methods are bounded by their technical and theoretical limitations and sequencing errors cannot be completely eliminated (Hadigol M, Khiabanian H. 2018)

- Artifacts in library preparation
 - Remaining adapters
 - High rate of duplicates
 - GC regions bias
 - Polymerase error rate
 - DNA damage during breakdown
- Artifacts during secuencing
 - Low quality in sequence ends(Phasing: cluster loose sync)
 - Complication in certain regions:
 - Repetitions
 - Homopolymers
 - High CG content

Sequencing quality assessment

FastQC, fastx-toolkit, sfftools, NGSQCToolkit, etc...

Sequencing quality assessment: FastQC

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

FastQC: Basic Statistics

- Self defined overall stats
 - Encoding: Phred33 or Phred64

Basic Statistics

Measure	Value		
Filename	bad_sequence.txt		
File type	Conventional base calls		
Encoding	Illumina 1.5		
Total Sequences	395288		
Sequences flagged as poor quality	0		
Sequence length	40		
%GC	47		

Basic Statistics

Measure	Value	
Filename	<pre>good_sequence_short.txt</pre>	
File type	Conventional base calls	
Encoding	Illumina 1.5	
Total Sequences	250000	
Sequences flagged as poor quality	0	
Sequence length	40	
%GC	45	

FastQC: Per base sequence quality

- Overview of the range of quality values across all bases at each position in the FastQ file
- Median, inter-quartile range (25-75%), 10-90% points, mean quality

Quality scores across all bases (illumina 1.5 encoding) Quality scores across all bases (illumina 1.5 encoding) 28 26 24 22 20 18 16 4 21 10 10 11 21 21 21 22 24 25 28 30 32 34 36 38 40 Position in read (bp)

FastQC: Per sequence quality score

Number of sequences with the same mean quality

FastQC: Nucleotide related errors

- How expected nucleotide distribution deviates from expected
 - Per base sequence content
 - Per base GC content
 - Per sequence GC content
 - Per base N content

FastQC: Sequence related errors

- How expected nucleotide distribution deviates from expected
 - Sequence Length Distribution Fragments
 - Sequence Duplication Levels
 - Overrepresented sequences
 - Adapter Content

FastQC: Per base sequence quality

Miseq assymetry

FastQC: Per base sequence quality

SMRT PacBio

Sequence Length Distribution

Sequence filtering

- Remove residual adapters
 - Depending on used library

Filtering parameters

- Quality filtering
 - Overall mean quality
 - Local mean quality
 - Sequence end
 - Sliding window
- Size filtering
 - Overall sequence size
 - Remaining sequence size after filtering

Sequence filtering

Example of quality filtering

Sequence filtering: stats with MultiQC

Sequence filtering: stats with MultiQC

Trimmomatic

Trimmomatic is a flexible read trimming tool for Illumina NGS data.

Hands on Quality Assessment

https://github.com/BU-ISCIII/bacterial_wgs_training/blo b/master/exercises/02_QualityA ndAssembly.md#exercise