ABSTRACT

Machine learning focuses on the development of computer programs that can access data and use it learn for themselves. Machine learning is closely related to computational statistics, which focuses on making predictions using computers. CURIS: The Disease Prediction system is based on predictive modelling, which predicts the diseases of the user. The disease prediction system has three users such as doctor, patient and admin. Each user is authenticated by the system, there is a role-based access to the system. The system allows the patient to give symptoms. On the basis of the given symptoms, the system analyses the symptoms runs multiple algorithms and gives the probability of the occurrence of a disease as an output. Disease prediction is done by using classification algorithms, the classifier calculates the probability of the disease and adds the accuracy score. The system also suggests doctors for predicted disease, where the user can consult with the doctor at their convenience by sitting at home.

ACKNOWLEDGEMENT

Any achievement, be it scholastic or otherwise does not depend solely on the individual efforts but on the guidance, encouragement and cooperation of intellectuals, elders and friends. A number of personalities, in their own capacities have helped us in carrying out this project work. We would like to take this opportunity to thank them all.

First and foremost, we would like to thank **Dr. K Channakeshavalu**, Principal, EWIT, Bangalore, for his moral support towards completing our project work.

We would like to thank, **Dr. Suresh M B,** Professor and Head of Department of ISE, EWIT, Bangalore, for his valuable suggestions and expert advice.

We deeply express our sincere gratitude to our guide **Mrs. Shruthi T V,** Asst. Prof Department of ISE, EWIT, Bangalore for her able guidance throughout the project work and guiding us to organize the report in a systematic manner.

We thank my Parents, and all the faculty members of Department of Information science & Engineering for their constant support and encouragement.

Last, but not the least, we would like to thank our peers and friends who provided us with valuable suggestions to improve our mini project.

ARCHIT SHARMA (1EW17IS010)

ARGHADEEP BANERJEE (1EW17IS011)

KRISHNAM CHATURVEDI (1EW17IS048)

TABLE OF CONTENTS

Serial No	Title	Page no
	ABSTRACT	I
	ACKNOWLEDGEMENT	II
	LIST OF FIGURES	V
1	INTRODUCTION	01
	1.1 What is machine learning?	01
	1.2 How machine learning works?	02
	1.3 Characteristics of machine learning	08
	1.4 Python Programming Languages	10
	1.4.1 What can Python technology do?	12
2	LITERATURE SURVEY	14
	2.1 EXISTING SYSTEM	17
3	SYSTEM ANALYSIS	18
	3.1 PROPOSED SYSTEM	18
	3.2 PyCharm	18
	3.3 Django	21
	3.4 PostgreSQL	22
	3.5 pgAdmin	23
4	SYSTEM DESIGN	26
	4.1 SYSTEM ARCHITECTURE	27
	4.2 USE CASE DIAGRAM	28
5	REQUIREMENT SPECIFICATION	29
6	IMPLEMENTATION	30

	6.1 Module Implementation	30
	6.1.1 Input Module	30
	6.1.2 Doctor	31
	6.1.3 User	31
	6.1.4 Admin	31
	6.1.5 Prediction System	32
	6.1.6 Output Module	33
7	SYSTEM TESTING	39
8	SNAPSHOTS	42
	CONCLUSION	48
	REFERENCES	49

LIST OF FIGURES

Figure No	Title	Page no
3.1	Project Creation	20
3.2	Running the Program	20
3.3	Installation of Django	21
3.4	Setting up Project	22
3.5	Connection of Database	24
3.6	Table Creation	25
3.7	Table Created	25
4.1	System Architecture	27
4.2	Use Case Diagram	28
8.1	Home Page	37
8.2	Signup as doctor page	37
8.3	Signup as patient page	38
8.4	Doctor Login Page	38
8.5	Patient login page	39
8.6	Patient Profile page	39
8.7	Symptom adding page	40
8.8	Prediction page	40
8.9	Consultation page	41
8.10	Doctor profile page	41
8.11	Feedback page	42