

テクニカルノート

Comparing Micron N25Q and Spansion S25FL Flash Devices

はじめに

本テクニカルノートは、Micron® N25Q (32Mb または 64Mb) と Spansion® S25FL フラッ シュメモリデバイスの機能を比較することを目的としています。比較した機能には、メ モリアーキテクチャ、パッケージオプション、信号説明、コマンドセット、電気的仕様、 デバイス識別が含まれます。

TN-12-15: N25Q と Spansion S25FL フラッシュ デバイスの比較 メモリ配列アーキテクチャ

メモリ配列アーキテクチャ

N25Q 機能	S25FL 機能
1 - 256 バイトのプログラミング	256 バイトまでのプログラミング
セクタ 消去のユニフォーム (64KB)	セクタ消去と一括消去のユニフォーム (64KB および 32KB)
ユニフォームサブセクタ消去(4KB)	ユニフォームサブセクタ消去(4KB) ¹

注: 1. サブセクタは、ユニフォーム 64KB セクター デバイスのトップとボトム パラメータ ブロック のみを消去します。

パッケージ構成

表 1: パッケージ構成

	N2	:5Q	S25FL		
パッケージ	32Mb	64Mb	32Mb	64Mb	
VDFPN8 (8mm x 6mm MLP8)	Yes	Yes	_	Yes	
TBGA24 (6mm x 8mm)	Yes	Yes	_	_	
VFDFPN8 (6mm x 5mm MLP)	Yes	Yes	_	_	
SO16 (300 mils (ミル) ボディ幅)	Yes	Yes	Yes	Yes	
SO8W (SO8 208 mils(ミル) ボディ幅)	Yes	Yes	Yes	Yes	
UFDFPN8 (4mm x 3mm MLP)	Yes	_	_	_	
SO8N (SO8 150 mils (ミル) ボディ幅)	Yes	_	_	_	

信号説明

表 2: 信号説明

N25Q 信号	S25FL 信号	タイプ	概要
С	SCK	入力	シリアルクロック
DQ0	SI	入力または I/O	シリアルデータ入力または I/O
DQ1	SO	出力または I/O	シリアルデータ出力または I/O
S#	CS#	入力	チップセレクト
W/V _{PP} /DQ2	WP#/ACC	入力または I/O	書き込み禁止/強化プログラム 供給電圧/追加データ I/O
HOLD#/DQ3	HOLD#	入力または I/O	HOLD または I/O
V _{CC}	V _{CC}	電源	供給電圧
V _{SS}	GND	グランド	グランド

メモ: 1. クアッド I/O 操作中、S25FL デバイスは ENABLE QUAD I/O コマンドをクアッド I/O 機能に送信しなければなりません。

2. クアッド I/O 操作中、N25Q はクアッド I/O 機能向けにビット (VCR または NVCR) を設定しなければなりません。この間、W および HOLD 信号は機能します。 W および HOLD 信号は、クアッド I/O 操作が進行中 (QUAD OUTPUT FAST READ、QUAD I/O FAST READ、およびQUAD INPUT FAST PROGRAM) の時だけ機能しなくなります。

コマンド

表 3: 対応コマンドセット

	コマンド コード (セットアップ/確認)	コマンド コード (セットアップ/確認)	
コマンド名	(ピッドアッフ/唯能) N25Q	(ピッドアッフ/唯能) S25FL	注記
READ			
READ	03h	03h	
FAST READ	0Bh	0Bh	
DUAL OUTPUT FAST READ	3Bh	3Bh	
DUAL INPUT/OUTPUT FAST READ	BBh	BBh	
QUAD OUTPUT FAST READ	6Bh	6Bh	
QUAD INPUT/OUTPUT FAST READ	EBh	EBh	
READ DEVICE ID	9Fh/9Eh	9Fh	2
READ ELECTRONIC SIGNATURE	N/A	90h	3
PROGRAM	<u> </u>		
PAGE PROGRAM	02h	02h	
DUAL INPUT FAST PROGRAM	A2h	N/A	1
QUAD INPUT FAST PROGRAM	32h	32h	
ERASE			
BULK ERASE	C7h	C7h/60h	4
SECTOR ERASE – 64KB	D8h	D8h	
SUBSECTOR ERASE – 4KB	20h	20h	
SUBSECTOR ERASE – 8KB	N/A	40h	5
SUSPEND			
PROGRAM/ERASE SUSPEND	75h	75h	
PROGRAM/ERASE RESUME	7Ah	7Ah	
DEEP POWER-DOWN	·		
DEEP POWER-DOWN	B9h	B9h	6, 7
RELEASE FROM DEEP POWER-DOWN	ABh	A8h	6, 7

メモ: 1. S25FL では対応していません。

- 2. 9E h は S25FL では対応していません。S25FL で、9Eh によってアクセスされた CFI コンテンツ。
- 3. N25Q では対応していません。
- 4. 60h は N25Q では対応していません。
- 5. 40h は N25Q では対応していません。
- 6. 1.8V N25Q でのみ対応。3V N25Q では対応していません。
- 7. コマンドはデバイスを低消費電力モードにするために使用されます。

READ コマンド

N25Q と S25FL デバイスで設定されている READ コマンドは同一であり、各デバイスとも標準的な 3 バイトアドレス プロトコルに従っています。

TN-12-15: N25Q と Spansion S25FL フラッシュ デバイスの比較

S25FL ではダミー サイクル 読み取りが固定されていますが、N25Q のダミー サイクルは 構成可能であり、不揮発性構成レジスタ (NVCR) のビット $12\sim15$ 、または揮発性構成レジスタ (VCR) のビット $7\sim4$ でコントロールすることができます。

S25FL と N25Q の製造元 ID、メモリタイプ、およびメモリ容量は、9Fh コマンドを発行して読み出しすることができます。 N25Q は、9Eh コマンドが発行されると同一のデータを出力します。 S25FL は 9Eh コマンドに対応していません。

XIP (Execute in Place)

XIP (Execute in Place) 向けのプロトコルは、両デバイス共に同一です。 XIP は、適切なラインアイテムを選択、または正しい確認コマンドを発行することで構成することができます。 アプリケーション・ノートの、『ForteTM N25Q フラッシュメモリ デバイスでの XIP モードの使用』を参照してください。

図 1: XIP タイミング構成

表 4: XIP 確認ピットソフトウェア コマンド

XIP 確認ビット	N25Q	S25FL
開始/確認 XIP モード	B4 = 0 (B7 to B5 and B3 to B0 = "Don't Care")	B7 \pm B3 and B6 \pm B2 and B5 \pm B1 and B4 \pm B0
XIP モードを終了	B4 = 1 (B7 to B5 and B3 to B0 = "Don't Care")	B7= B3 or B6 = B2 or B5 = B1 or B4 = B0

電気的諸特性

表 5: DC 電流特性

		N25Q		S2!		
パラメータ	シンボル	最小	最大	最小	最大	ユニット
スタンバイ電流	I _{CC1}	_	100	_	100	μΑ
操作電流 (FAST READ QUAD I/O)	Іссз	_	20	_	38	mA
操作電流 (PAGE PROGRAM)	I _{CC4}	_	20	_	26	mA
操作電流 (WRITE STATUS REGISTER)	I _{CC5}	_	20	_	26	mA
操作電流 (ERASE)	I _{CC6}	_	20	_	25	mA

表 6: DC 電圧仕様

		N25Q		S2 !		
パラメータ	シンボル	最小	最大	最小	最大	ユニット
入力 低電圧	V _{IL}	-0.5	0.3 V _{CC}	-0.3	0.3 V _{CC}	V
入力高電圧	V _{IH}	0.7 V _{CC}	V _{CC} + 0.4	0.7 V _{CC}	V _{CC} + 0.5 V _{CC}	V
出力低電圧	V _{OL}	_	0.4	-	0.4	V
出力高電圧	V _{OH}	V _{CC} - 0.2	-	V _{CC} - 0.6	_	V

AC 特性

表 7: AC 仕様

AC 仕様が全電圧範囲 (2.7-3.6V) の 最速バージョンを比較

		代替	N25Q		S2	5FL	
パラメータ	シンボル	シンボル	最小	最大	最小	最大	ユニット
クロック周波数 (x1 FAST READ)	fC	fC	_	108	_	104	MHz
クロック周波数 (x2、x4 FAST READ)	fC	fC	_	108	_	80	MHz
クロック周波数 (READ)	^f R	fR	-	54	_	40	MHz
S# アクティブ セットアップ タ イム	^t SLCH	^t CSS	4	-	3	-	ns
データ入力 セットアップ タイム	^t DVCH	^t SU	2	_	3	_	ns
データ入力 ホールド タイム	^t CHDX	^t DH	3	_	2	-	ns
正しい READ (ARRAY READ to ARRAY READ) の後に S# が時間 を選択解除	^t SHSL	^t CSH	20	_	15	_	ns
誤った READ または異なる指示 (ERASE/PROGRAM から READ) の後に S#が時間を選択解除	^t SHSL	^t CSH	50	_	50	_	ns
出力無効タイム (2.7-3.6V)	^t SHQZ	^t DIS	-	8	-	10	ns
クロック ローで出力 有効 (30pF)	^t CLQV	tV	-	7	_	12	ns
出力ホールド タイム	^t CLQX	^t HO	1	_	2	_	ns
HOLD 出力 Low- Z	tHHQX	^t LZ	_	8	N/A	N/A	ns
HOLD 出力 High-Z	^t HLQZ	^t HZ	_	8	N/A	N/A	ns

プログラムおよび消去仕様

表 8: プログラムおよび消去仕様

		N25Q				S25FL				
	32	32Mb		32Mb 64Mb		32Mb		64Mb		
操作	タイプ	最大	タイプ	最大	タイプ	最大	タイプ	最大	単位	
PAGE PROGRAM	0.5	5	0.5	5	1.5	3	1.4	5	ms	
SUBSECTOR ERASE	0.3	3	0.3	3	N/A	N/A	N/A	N/A	S	
SECTOR ERASE	0.7	3	0.7	3	0.6	3	6	3	S	
BULK ERASE	30	60	60	120	30	60	50	80	S	

TN-12-15: N25Q と Spansion S25FL フラッシュ デバイスの比較 構成およびメモリマップ

構成およびメモリマップ

表 9: 密度別セクタおよびサブセクタ

集和	資度	セクタ	サブセクタ	アドレ	ス範囲
64		127	2047	7FFFFFh	7FF000h
			:	:	:
			2032	7F0FFFh	7F0000h
		:	:	:	:
	32	63	1023	3FFFFFh	3FF000h
			:	:	:
			1008	3F0FFFh	3F0000h
		:	:	:	:
		0	15	0FFFFh	0F000h
			:	:	:
			4	04FFFh	04000h
			3	03FFFh	03000h
			2	02FFFh	02000h
			1	01FFFh	01000h
			0	00FFFh	00000h

TN-12-15: N25Q と Spansion S25FL フラッシュ デバイスの比較 デバイス識別子

デバイス識別子

製造元識別子はJEDECによって割り当てられます。 結果として、N25Qと SST26WF デバイスは異なる製造元 ID とメモリタイプ コードを使用しています。 メモリ容量コードは、SST26WF は 128Mb シリアルフラッシュ デバイスを提供しないために異なります。コマンド 9Fh は、両デバイスでこれらのコードを読み込むために使用されます。

N25Q は、17 の読み取り専用バイトで構成される固有 ID (UID) を持っており、これには次のデータが含まれます。

- 第1のバイトは10hにセットされます。
- 拡張デバイス ID の次の 2 バイトが、デバイス構成を指定します (トップ、ボトム、またはユニフォーム アーキテクチャとホールドまたはリセット機能)。
- 次の14バイトには、オプショナルのカスタマイズファクトリデータが含まれます。 カスタマイズファクトリデータバイトは、工場でプログラムされています。

さらなる詳細は、N25Qのデータシートを参照してください。

表 10: 読み取り識別子まとめ

パラメータ	N25Q ⊐-ド	S25FL コード
製造元 ID	20h	01h
メモリ タイプ	BAh	N/A
メモリ容量	17h (64Mb); 16h (32Mb)	02h, 16h (64Mb); 02h, 15h (32Mb)

注: 1. 32Mb シリアル フラッシュ デバイスのみ。

結果

Micron N25Q と Spansion S25FL フラッシュ メモリ デバイスの特性を比較することで、 ユーザーが S25FL から N25Q ヘアプリケーションを移行できるようになります。

TN-12-15: N25Q と Spansion S25FL フラッシュ デバイスの比較 改訂履歴

改訂履歴

改訂 A - 10/10

• 初期リリース

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000 www.micron.com/products/support Sales inquiries: 800-932-4992 Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.