PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-342478

(43) Date of publication of application: 14.12.2001

- (51)Int.Cl.

C10M129/40 B22F 3/02 3/035 C10M103/02 C10M103/06 C10M129/44 C10M133/06 C10M133/16 C10M133/42 C10M143/02 C10M143/04 C10M145/14 C10M147/02 C10M149/18 C22C 33/02 // C10N 10:02 C10N 10:04 C10N 10:12 C10N 20:06 C10N 40:36

(21)Application number: 2001-045036

(22)Date of filing:

21.02.2001

(71)Applicant: KAWASAKI STEEL CORP

(72)Inventor: OZAKI YUKIKO

UENOSONO SATOSHI UNAMI SHIGERU

(30)Priority

Priority number : 2000089015 Priority date: 28.03.2000 Priority country: JP

(54) LUBRICATING AGENT FOR LUBRICATION OF MOLD AND METHOD FOR MANUFACTURING HIGH DENSITY MOLDED ARTICLE OF IRON BASED POWDER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a lubricating agent for lubrication of a mold capable of adhering to a surface of the mold by electro static charge at room temperature or at a previously heated temperature to use in molding at room temperature capable of obtaining a high density molded article in a single process at room temperature.

SOLUTION: This method introduces a lubricating agent for mold by spraying the lubricating agent obtained by mixing two or more kinds of lubricating agents having melting points higher than the predetermined pressure forming temperature, to a mold at normal temperature or preheated to the predetermined temperature to adhere to the surface of the mold by electro static discharge. Introduces iron based powder including a lubricating agent to the mold having the lubricating agent adhered by the electro static discharge and then pressure forms at normal temperature or heats to the predetermined temperature. The preferable lubricating agent for mold having melting points higher than the predetermined pressure forming temperature is two or more kinds of materials selected from one or two or more groups comprising a metal soap group, an amide based wax group, a polyamide group, a polyethylene group, polypropylene group, an acrylate polymer group, a methacrylate polymer group, a fluororesin group or a lamellar lubricating agent group. A high density molded article can be obtained by a single pressure forming according to the method.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出版公開番号 特開2001 — 342478 (P2001 — 342478A)

(43)公開日 平成13年12月14日(2001.12.14)

(51) Int.Cl.7	識別記号	ΡI		ŕ	-73-1 (参考)
C 1 0 M 129/40		C 1 0 M 12	9/40		4H104
B 2 2 F 3/02		B 2 2 F	3/02	M L	4K018
3/035		:	3/035	E	
C 1 0 M 103/02		C10M10	-	Z	
·	審查請求	未請求 請求項	画の数6 OL	(全 12 頁)	最終頁に続く
(21)出願番号	特爾2001-45036(P2001-45036)	(71)出顧人	000001258 川崎製鉄株式会	≥ ₹£	
(22)出廣日	平成13年2月21日(2001.2.21)		兵庫県神戸市中 号	中央区北本町	通1丁目1番28
(31)優先権主張番号	特臘2000-89015 (P2000-89015)	(72)発明者	尾崎 由紀子		
(32) 優先日	平成12年3月28日(2000.3.28)		千葉県千葉市中	中央区川崎町	1番地 川崎製
(33)優先權主張国	日本 (JP)		鉄株式会社技術	所究所内	
		(72)発明者	上ノ菌・聡		
			千葉県千葉市中	中央区川崎町	1番地 川崎製
			鉄株式会社技術	研究所内	
		(74)代理人	100099531		
		:	弁理士 小林	英一	
					最終頁に続く

(54) 【発明の名称】 金型酒清用酒清剤および高密度鉄基粉末成形体の製造方法

(57) 【要約】

【課題】 高密度鉄基粉末成形体の製造方法を提案する。

【解決手段】 金型を、常温のままあるいは所定の温度に予熱し、所定の加圧成形の温度より高い融点を有する2種以上の潤滑剤を混合した金型潤滑用潤滑剤を金型上部で噴霧して金型に導入し、金型表面に帯電付着させる。このような潤滑剤が帯電付着した金型に、潤滑剤を高いは所定のままあるいは所定の温度より高で加熱し成形する。所定の加圧成形の温度より高い高度に加熱し成形する。所定の加圧成形の温度より高、金属である2種以上の金型潤滑用潤滑剤としては、金属である2種以上の、アクリル酸エステル重合体、メタクリル酸エステル重合体、フッ素樹脂、あるいは層状潤滑剤の各群のうちの1群または2群以上から選ばれた物質からなる2種以上とするのが好ましい。本発明によれば、一回の加圧成形で高密度の成形体を得ることができる。

【特許請求の範囲】

- 、【請求項1】 粉末を金型で加圧成形する際に金型表面 に帯電付着させて使用する金型潤滑用潤滑剤であって、
- 所定の加圧成形の温度より高い融点を有する2種以上の 潤滑剤の混合粉であることを特徴とする金型潤滑用潤滑 剤。

【請求項2】 前記所定の加圧成形の温度より高い融点を有する2種以上の潤滑剤が、下記A~ | 群のうちの1 群または2群以上から選ばれた2種以上の物質であることを特徴とする請求項1に記載の金型潤滑用潤滑剤。

āc

A群:金属石鹸に分類される物質のうちの1種または2種以上

B群:ポリエチレンに分類される物質のうちの1種または2種以上

C群:アミド系ワックスに分類される物質のうちの1種 または2種以上

D群:ポリアミドに分類される物質のうちの1種または 2種以上

E群:ポリプロピレンに分類される物質のうちの1種または2種以上

F群:アクリル酸エステル重合体に分類される物質のうちの1種または2種以上

G群:メタクリル酸エステル重合体に分類される物質の うちの1種または2種以上

H群:フッ素樹脂に分類される物質のうちの1種または 2種以上

1群:層状潤滑剤に分類される物質のうちの1種または2種以上

【請求項3】 前記金型が、予熱された金型であることを特徴とする請求項1または2に記載の金型潤滑用潤滑剤。

【請求項4】 金型に、鉄基粉末混合粉を充填したのち、所定の温度で加圧成形する鉄基粉末成形体の製造方法において、前記金型を、表面に金型潤滑用潤滑剤が帯電付着した金型とし、前記金型潤滑用潤滑剤として、前記所定の加圧成形の温度より高い融点を有する2種以上の潤滑剤の混合粉を用いることを特徴とする高密度鉄基粉末成形体の製造方法。

【請求項5】 前記所定の加圧成形の温度より高い融点を有する2種以上の潤滑剤が、下記A~I群のうちの1群または2群以上から選ばれた2種以上の物質であることを特徴とする請求項4に記載の高密度鉄基粉末成形体の製造方法。

53

A群:金属石鹸に分類される物質のうちの1種または2 種以上

B群:ポリエチレンに分類される物質のうちの1種または2種以上

C群:アミド系ワックスに分類される物質のうちの1種

または2種以上

D群:ポリアミドに分類される物質のうちの1種または2種以上

E群:ポリプロピレンに分類される物質のうちの1種または2種以上

F群:アクリル酸エステル重合体に分類される物質のうちの1種または2種以上

G群:メタクリル酸エステル重合体に分類される物質の うちの1種または2種以上

H群:フッ素樹脂に分類される物質のうちの1種または 2種以上

I群:層状潤滑剤に分類される物質のうちの1種または 2種以上

【請求項6】 前記金型が、予熱された金型であり、かつ前記鉄基粉末混合粉が、予め加熱された粉末であることを特徴とする請求項4または5に記載の高密度鉄基粉末成形体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、金型潤滑用潤滑剤 および粉末冶金用鉄基粉末成形体の製造方法に係り、と くに、高密度の鉄基粉末成形体を製造する際に使用する 金型潤滑用潤滑剤の改善に関する。

[0002]

【従来の技術】一般的に、粉末冶金用鉄基粉末成形体は、鉄基粉末に、銅粉、黒鉛粉などの合金粉末と、さらにステアリン酸亜鉛、ステアリン酸鉛等の潤滑剤を混合した鉄基粉末混合粉を金型に充填したのち、加圧成形し製造される。成形体の密度としては、6.6~7.1Mg/m³が一般的である。

【0003】これら鉄基粉末成形体は、さらに焼結処理を施され焼結体とされ、さらに必要に応じてサイジングや切削加工が施され、粉末冶金製品とされる。また、さらに高強度が必要な場合は焼結後に浸炭熱処理や光輝熱処理を施されることもある。この粉末冶金技術により、高寸法精度の複雑な形状の部品を多くの切削工数を経なくても殆ど最終形状に近い形状(ニアネット形状)に一度で成形して生産することが可能となり、従来の製造に上べ切削コストの大幅な低減が可能になった。このようなことから、日本では、鉄系の粉末冶金製品は自動車部品として、1台当たり6kg強(1998年現在)使用されている。

【0004】さらに、最近では、切削加工の省略によるコスト削減を目的とした一層の高寸法精度化や、部品の小型軽量化を目的とした高強度化が鉄系の粉末冶金製品へ強く要求されている。粉末冶金製品(焼結部品)の高強度化に対しては、成形体の高密度化による焼結部品の高密度化が有効である。焼結部品の密度が高いほど、部品中の空孔が減少し、引張強さ、衝撃値や疲労強度などの機械的特性が向上する。

【0005】鉄基粉末成形体の高密度化を可能にする成 『形方法として、鉄基粉末混合粉を通常の成形と焼結を施 したのち、さらに成形・焼結を繰り返して行う2回成形 - 2 回焼結法や、1回成形1回焼結後熱間で鍛造する焼結 鍛造法などが提案されている。また、例えば、特開平2-156002号公報、特公平7-103404号公報、USP 第5, 256, 18 5 号公報、USP 第5,368,630 号公報には、金属粉末を加 熱しつつ成形する温間成形技術が開示されている。この 温間成形技術は、温間成形時に潤滑剤の一部または全部 を溶融させて粉末粒子間に潤滑剤を均一に分散させ、粒 子間および成形体と金型の間の摩擦抵抗を下げ成形性を 向上させようとするものであり、上記した高密度成形体 の製造方法のなかではコスト的には最も有利であると考 えられている。この温間成形技術によれば、Fe-4Ni-0.5 Mo-1.5Cu系の部分合金化鉄粉に0.5 質量%の黒鉛、0.6 質量%の潤滑剤を配合した鉄基粉末混合粉を130 ℃で7t /cm²(686 MPa)の圧力で成形した場合、7.30Mg/m³ 程 度の成形体が得られる。

[0006]

【発明が解決しようとする課題】しかしながら、特開平2~156002号公報、特公平7~103404号公報、USP 第5,256,185 号公報、USP 第5,368,630 号公報に記載された技術では、粉末混合物の流動性が不十分で、生産性が低下するうえ、成形体の密度にばらつきが生じ、焼結体の特性が変動するという問題があり、さらに、成形時の抜出し力が高く、成形体表面に疵が発生するとともに金型の寿命が短いなどの問題があった。

【0007】さらに、これらの温間成形技術では、粒子間および成形体と金型の間の摩擦抵抗を下げ成形性を向上させる目的で、鉄基粉末混合粉中に潤滑剤を含有させるが、潤滑剤は、温間成形時にその一部又は全部が溶融して成形体表面付近に押し出され、その後の焼結処理により、加熱分解あるいは蒸発して成形体から逸散し、焼結体表面付近に粗大な空孔を形成する。そのため、焼結体の機械的強度を低下させるという問題があった。

【0008】この問題を解決するために、特開平8-1002 03号公報には常温または温間成形において、帯電させた 潤滑剤粉末を金型表面に塗布して、鉄基粉末混合物中の 潤滑剤量を低減し、高密度の成形体を成形する技術が開示されている。しかしながら、この方法では、塗布する 金型潤滑用潤滑剤の種類が単体であるため、その融点前後で潤滑剤の形態が変わり、潤滑機能が著しく変化する。このため、成形温度範囲が潤滑剤の融点によって限定されるという問題があった。さらに金型潤滑用潤滑剤を金型表面に塗布し鉄基粉末混合粉中の潤滑剤量を低減したとしても、混合する潤滑剤の成分によっては量の低減によって潤滑効果を失い、圧粉密度の増大が実現できないという問題も生じている。

【0009】また、現在市販されている金型潤滑用の潤滑剤は、室温での使用を前提としている。そのため、こ

れら市販の金型潤滑用潤滑剤を、予熱された金型に帯電付着させたとしても、潤滑剤が金型表面で完全に溶融して、均一に付着できなかったり、また加圧成形中に移動しやすく、成形体と金型表面が直接接触し、抜出し力が大きくなるという問題がある。

【0010】このようなことから、依然として、室温での一回成形によって高密度成形体が得られる、常温成形技術に対する要望も強い。このような常温成形技術として、金型潤滑を利用した成形技術が試行されている(例えば、W.G. Ball et al.:TheInternational Journal of Powder Metallurgy, APMI International, vol. 33, No. 1, 1997, pp. 23-30 参照)。しかしながら、現状の金型潤滑装置を用いて、市販の金型潤滑用潤滑剤を金型に塗布した場合、室温においても金型表面(壁面)への潤滑剤の再現性の良い均一分散付着が困難であり、この技術は工業的に実用化されるまでに至っていない。

【0011】また、自動車用部品の高強度化という観点と、コストという観点からは、更なる高密度の成形体を、しかも1回の成形で得ることのできる、高密度鉄基粉末成形体の製造方法の開発が望まれていた。本発明は、上記した従来技術の問題を有利に解決し、例えば、Fe-4Ni-0.5Mo-1.5Cu組成の部分合金化鉄粉に0.5 質量%の黒鉛粉を混合した鉄基粉末混合粉を、室温で7t/cm²(686 MPa)の圧力で常温加圧成形した場合には7.30Mg/m³以上、さらに、130℃で7t/cm²(686 MPa)の圧力で温間加圧成形した場合には7.40Mg/m³以上の、高密度の成形体を1回の成形で得ることができる、高密度鉄基粉末成形体の製造方法を提案することを目的とする。【0012】

【課題を解決するための手段】本発明者らは、金型潤滑成形技術を利用して上記した課題を達成するために、金型潤滑用潤滑剤の配合について鋭意検討を行った。その結果、抜出し力を低減させるため、室温あるいは予熱した金型表面に帯電付着させることのできる金型潤滑用潤滑剤として、所定の加圧成形の温度より高い融点を有する潤滑剤を2種以上配合して混合した混合物(潤滑剤)とするのがよいという知見を得た。

【0013】本発明は、上記した知見に基づき、さらに検討して完成されたものである。すなわち、第1の本発明は、粉末を金型で加圧成形する際に金型表面に帯電付着させて使用する金型潤滑用潤滑剤であって、所定の加圧成形の温度より高い融点を有する2種以上の潤滑剤であり、また、第1の本発明では、前記所定の加圧成形の温度より高い融点を有する2種以上の潤滑剤が、次A~I群

A群:金属石鹸に分類される物質のうちの1種または2種以上

B群:ポリエチレンに分類される物質のうちの 1 種また は 2 種以上 C群:アミド系ワックスに分類される物質のうちの1種 *または2種以上

D群:ポリアミドに分類される物質のうちの1種または 2種以上

E群:ポリプロピレンに分類される物質のうちの1種または2種以上

F群:アクリル酸エステル重合体に分類される物質のうちの1種または2種以上

G群:メタクリル酸エステル重合体に分類される物質の うちの1種または2種以上

H群:フッ素樹脂に分類される物質のうちの1種または 2種以上

| 群:層状潤滑剤に分類される物質のうちの1種または2種以上

のうちの1群または2群以上から選ばれた2種以上の物質であることが好ましい。また、第1の本発明では、前記金型が、予熱された金型であることが好ましい。

【0014】また、第2の本発明は、金型に、鉄基粉末混合粉を充填したのち、所定の温度で加圧成形する鉄基粉末成形体の製造方法において、前記金型を、表面に金型潤滑用潤滑剤が帯電付着した金型とし、前記金型潤滑用潤滑剤として、前記所定の加圧成形の温度より高い融点を有する2種以上の潤滑剤の混合粉を用いることを特徴とする高密度鉄基粉末成形体の製造方法であり、また、第2の本発明では、前記所定の加圧成形の温度より高い融点を有する2種以上の潤滑剤が、次A~I群

A群:金属石鹸に分類される物質のうちの1種または2種以上

B群:ポリエチレンに分類される物質のうちの1種または2種以上

C群:アミド系ワックスに分類される物質のうちの1種または2種以上

D群:ポリアミドに分類される物質のうちの1種または 2種以上

E群:ポリプロピレンに分類される物質のうちの1種または2種以上

F群:アクリル酸エステル重合体に分類される物質のうちの1種または2種以上

G群:メタクリル酸エステル重合体に分類される物質の うちの1種または2種以上

H群:フッ素樹脂に分類される物質のうちの1種または 2種以上

1群:層状潤滑剤に分類される物質のうちの1種または 2種以上

うちの1群または2群以上から選ばれた2種以上の潤滑 剤であることが好ましい。

【0015】また、第2の本発明では、前記金型が、予 熱された金型であり、かつ前記鉄基粉末混合粉が、予め 加熱された粉末であることが好ましい。また、第2の本 発明では、前記鉄基粉末混合粉は、鉄基粉末に潤滑剤 (粉末成形用潤滑剤)あるいはさらに合金用粉末を混合したものであり、前記粉末成形用潤滑剤の含有量を、鉄基粉末混合粉全体に対し0.05~0.40質量%とするのが好ましい。また、第2の本発明では、前記粉末成形用潤滑剤は、所定の加圧成形の温度より高い融点をもつ潤滑剤と所定の加圧成形の温度以下の低い融点をもつ潤滑剤と所定の加圧成形の温度より高い融点をもつ潤滑剤とからなる混合前記所定のがより好ましく、また、この場合前記所定のがより好ましく、また、この場合前記所定のに成形の温度以下の低い融点をもつ潤滑剤の含有量は、含まれる粉末成形用潤滑剤全量の10~75質量%とし、残部の25~90質量%を所定の加圧成形の温度より高い融点とからなる潤滑剤とするのが好ましい。

【0016】本発明によれば、一回の加圧成形で高密度 の成形体を得ることができる。

[0017]

【発明の実施の形態】本発明では、金型に、鉄基粉末混合粉を充填したのち、所定の温度(常温又は、温間:70~200 ℃)で加圧成形し、鉄基粉末成形体とする。本発明では、成形に用いる金型は、常温成形の場合には予熱することなく常温で用いるか、または温間成形の場合には予め所定の温度に予熱されて使用される。金型を予熱する場合には、金型の予熱温度は、鉄基粉末混合粉が所定の加圧成形の温度に保持できる温度であればよく、とくに限定する必要はないが、所定の加圧成形の温度とり20~60℃高い温度とすることが望ましい。なお、常温成形の場合、金型を予熱せずに使用し始めても、複数回使用すると80℃程度まで金型の温度が上昇する。

【0018】金型に、帯電された金型潤滑用潤滑剤を導入し、金型表面に帯電付着させる。金型潤滑用潤滑剤

(固体粉末)は金型潤滑装置(例えば、Gasbarre社製Die WallLubricant System)に装入し、潤滑剤(固体)粉末と装置内壁の接触帯電により帯電されるのが好ましい。帯電された金型満滑用潤滑剤は、金型上部で噴霧され、金型に導入され金型表面に帯電付着される。金型表面に付着した潤滑剤(金型潤滑用潤滑剤)は、鉄基粉末成形時に、金型表面(壁面)と粉体との摩擦抵抗を低減し、成形圧力が金型表面(壁面)に逃げる「圧損」を低減し、粉体に圧力を有効に伝えることができる。このため、成形体の密度が向上し、さらに、成形体を型から抜出した。このような潤滑剤の効果を有効に発揮するためには、潤滑剤粉末が金型表面に均一に付着しなければならない。金型潤滑用潤滑剤に均一に付着しなければならない。金型潤滑用潤滑剤

(固体粉末)を金型表面に均一に付着させるためには帯電付着させるのが好ましい。

【0019】金型潤滑用潤滑剤(固体粉末)が、金型表面に確実に付着するためには、金型潤滑装置内の帯電装置内で確実に帯電する必要がある。このためには、金型潤滑用潤滑剤(固体粉末)の比表面積が小さいこと、すなわち、粒径が小さいことが望ましい。本発明では、金

型潤滑用潤滑剤(固体粉末)の粒径は金型潤滑用潤滑剤 (固体粉末)の90%以上が50 µ m以下であるものが好適である。これを超えると、帯電が不十分となるうえ、金-型に付着した後、自重で落下し金型表面への付着が不十分となる。

【0020】また、本発明では、金型潤滑用潤滑剤(固体粉末)として、2種以上の異なる粉末状の物質(潤滑剤状末)を混合して使用する。2種以上の異なる潤滑剤制制、を混合することにより、金型潤滑用潤滑剤(固体粉末)が金型潤滑装置(帯電装置)内で帯電するのみならず、2種以上の異なる粉末同志が金型潤滑装置(帯電装置)内で接触することにより接触帯電する。これに帯電力の潤滑剤を使用する場合よりも粉体全体の帯電量が大きく、したがって、金型表面への潤滑剤粉末の付着が確実となる。本発明では、金型潤滑用潤滑剤(固を対するが確実となる。本発明では、金型潤滑用潤滑剤(体粉末)として、所定の加圧成形の温度よりたものを使用する。なお、本発明でいう所定の加圧成形の温度は、加圧成形時の金型表面での温度をいうものとする。

【0021】金型潤滑用潤滑剤が、所定の加圧成形の温度より高い融点を有する潤滑剤とすることにより、金型表面で潤滑剤が溶融せず固体粉末として存在するため、金型表面での潤滑作用が維持され、成形体の密度が向し、また、抜出し力の低下は生じない。一方、金型潤滑剤とすると、金型表面で潤滑剤が溶融し、液状に広がるため、均一付着という点では有利であるが、金型・大のでは、金型を面から流出したり、流出しないまでも、鉄基粉末内部に吸引され、金型表面に残存する潤滑剤が少なくなるという問題がある。このため、金型表面での潤滑作用が低下し抜出し力が高くなる。

【0022】また、所定の加圧成形の温度より高い融点を有する潤滑剤は、成形時、金型内で未溶融であり金型内で「ころ」のような固体潤滑剤の働きをし、抜出し力を低下させる効果もある。加圧成形の温度より高い融点を有する潤滑剤(固体粉末)としては、次A~|群

A群:金属石鹸に分類される物質のうちの1種または2種以上

B群:ポリエチレンに分類される物質のうちの1種または2種以上

C群:アミド系ワックスに分類される物質のうちの1種または2種以上

D群:ポリアミドに分類される物質のうちの1種または 2種以上

E群:ポリプロピレンに分類される物質のうちの1種または2種以上

F群:アクリル酸エステル重合体に分類される物質のうちの1種または2種以上

G群:メタクリル酸エステル重合体に分類される物質の

うちの1種または2種以上

H群:フッ素樹脂に分類される物質のうちの1種または 2種以上

」群:層状潤滑剤に分類される物質のうちの1種または 2種以上

のうちの1群または2群以上から選ばれた2種以上の粉末状の物質とすることが好ましい。これら2種以上の潤滑剤(粉末)を混合し混合物として、金型潤滑用潤滑剤として使用する。

【0023】本発明の金型潤滑用の潤滑剤は、A群:金属石鹸として分類される物質のうちから選ばれた2種以上、あるいはA群:金属石鹸として分類される物質のうちから選ばれた1種または2種以上と他の群から選ばれた1種以上の物質とともに選択することができる。以下、各群とも同様である。

A群:金属石鹸として分類される物質としては、ステアリン酸リチウム、ラウリン酸リチウム、ヒドロキシステアリン酸リチウム、ステアリン酸カルシウム等が例示される。なお、本発明ではこれに限定されるものではないことはいうまでもない。

【 O O 2 4】 B群:ポリエチレンとして分類される物質としては、分子量の異なるポリエチレンがいずれも好適に例示されるが、なかでも分子量5000~10万の粉末状のポリエチレンが好ましい。

C群:アミド系ワックスとして分類される物質としては、ステアリン酸アミド(融点103 $^{\circ}$)、エチレンビスステアロアミド(融点148 $^{\circ}$)、さらにアルキル鎖の長いエチレンピスアルキルアミド(たとえば、共栄社化学製:ライトアミドWH215 (融点215 $^{\circ}$ 0)、共栄社化学製:ライトアミドWH255 (融点255 $^{\circ}$ 0))等が例示される。なお、本発明ではこれに限定されるものではないことはいうまでもない。

【0025】D群:ポリアミドとして分類される物質としては、分子量の異なるポリアミドがいずれも好適に例示されるが、なかでも融点210 ~270 ℃のポリアミド(ナイロン)が好ましい。

また、E群:ポリプロピレンとして分類される物質としては、分子量の異なるポリプロピレンがいずれも好適に例示されるが、分子量5000~10万の粉末状のポリプロピレンが好ましい。

【 O O 2 6 】 F 群: アクリル酸エステル重合体として分類される物質としては、同種のモノマーのみの重合体としても、また複数種のモノマーの共重合体としてもいずれでもよく、ポリメチルアクリレート、ポリエチルアクリレート等が例示できる。なお、本発明ではこれに限定されるものではないことはいうまでもない。

G群:メタクリル酸エステル重合体として分類される物質としては、同種のモノマーのみの重合体としても、また複数種のモノマーの共重合体としてもいずれでもよ

く、ポリメチルメタクリレート、ポリエチルメタクリレ

ート等が例示できる。なお、本発明ではこれに限定されるものではないことはいうまでもない。

【0027】H群:フッ素樹脂に分類される物質としては、同種のモノマーのみの重合体としても、また複数種のモノマーの共重合体としてもいずれでもよく、ポリエトラフルオロエチレン、テトラフルオロエチレンーパーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレンーへキサフルオロプロピレン共重合体などを例示できる。なお、本発明ではこれらに限定されるものではないということはいうまでもない。

【0028】 I 群:層状潤滑剤に分類される物質としては、層状の結晶構造を有する無機または有機潤滑剤である。無機系の層状潤滑剤としては黒鉛、MoS2、フッ化炭素など、有機系の層状潤滑剤としてはメラミンーシアヌル酸付加物(MCA)、Nーアルキルアスパラギン酸ーβーアルキルエステルなどを例示できる。なお、本発明ではこれらに限定されるものではないということはいうまでもない。

【0029】また、金型表面に帯電付着する金型潤滑用潤滑剤の付着量は、0.5~10 mg/cm² とするのが好ましい。付着量が0.5mg/cm² 未満では潤滑効果が不足し、成形後の抜出し力が高くなり、一方、付着量が10mg/cm²を超えると、成形体表面に潤滑剤が残存し、成形体の外観不良となる。金型潤滑用潤滑剤を帯電付着された金型に、ついで、鉄基粉末混合粉を装入し、加圧成形し、型鉄基粉末成形体とする。なお、金型を予熱せずに常温では、鉄基粉末混合粉も、とくに加熱せずに常温とすることが好ましい。一方、金型を予熱する場合には、鉄基粉末混合粉を、200 ℃以下、加熱温度が200 ℃上の温度に加熱することが好ましい。加熱温度が200 ℃上の温度に加熱することが好ましい。加熱温度が200 ℃を超えると、実質的に密度の増加はなく、鉄粉の酸化の懸念が生じるため、鉄基粉末混合粉の加熱温度は、200 ℃以下とするのが望ましい。

【0030】鉄基粉末混合粉は、鉄基粉末に潤滑剤(粉 末成形用潤滑剤)あるいはさらに合金用粉末を混合した ものである。本発明における鉄基粉末は、アトマイズ鉄 粉または還元鉄粉などの純鉄粉、または部分合金化鋼 粉、完全合金化鋼粉、またはこれらの混合粉が好まし い。また、鉄基粉末と粉末成形用潤滑剤あるいはさらに 合金用粉末との混合方法は、とくに限定する必要はな く、通常公知の混合方法がいずれも好適に利用できる。 なかでも、鉄基粉末に合金用粉末を混合する場合には、 含有粉末の偏析を避けるため、鉄基粉末、合金用粉末に 粉末成形用潤滑剤の1部を加えて1次混合したのち、さ らに前記粉末成形用潤滑剤のうち少なくとも1種の潤滑 剤の融点以上に加熱しつつ撹拌して、前記粉末成形用潤 滑剤のうち少なくとも 1 種の潤滑剤を溶融し、溶融後の 混合物を撹拌しながら冷却し、前記鉄基粉末表面に溶融 した潤滑剤を固着させることによって前記合金用粉末を 付着させた後、粉末成形用潤滑剤の残部を加えて2次混 合する混合方法が好ましい。

【0031】鉄基粉末混合粉に含まれる粉末成形用潤滑 剤の含有量は、鉄基粉末混合粉全体に対し0.05~0.40質 量%とするのが好ましい。粉末成形用潤滑剤の含有量が 0.05質量%未満では、成形時の粉末同士の潤滑効果が少 なくなるため、成形体の密度が低下する。一方、粉末成 形用潤滑剤含有量が0.40質量%を超えると、比重の小さ い潤滑剤の占める割合が多くなり、成形体密度が低下す る。

【0032】本発明では、鉄基粉末混合粉に含まれる粉末成形用潤滑剤は、所定の加圧成形の温度より高い融点をもつ1種または2種以上の潤滑剤としても、所定の加圧成形の温度以下の低い融点をもつ潤滑剤と所定の加圧成形の温度より高い融点をもつ潤滑剤とからなる混合潤滑剤としても、また、所定の加圧成形の温度以下の低い融点をもつ1種または2種以上の潤滑剤としてもいずれも好適であるが、なかでも、所定の加圧成形の温度以下の低い融点をもつ潤滑剤と所定の加圧成形の温度より高い融点をもつ潤滑剤とからなる混合潤滑剤とするのがより好ましい。

【0033】なお、所定の加圧成形の温度以下の低い融 点をもつ潤滑剤と所定の加圧成形の温度より高い融点を もつ潤滑剤とからなる混合潤滑剤とする場合には、所定 の加圧成形の温度以下の低い融点をもつ潤滑剤の含有量 は、含まれる粉末成形用潤滑剤全量の10~75質量%と し、残部の25~90質量%を所定の加圧成形の温度より高 い融点とからなる潤滑剤とするのがより好ましい。所定 の加圧成形の温度以下の低い融点をもつ潤滑剤は、加圧 成形時に溶融し、粉末粒子間に毛細管力により浸透し て、粉末粒子内部に均等に分散し、粒子相互の接触抵抗 を低減し、粒子再配列を促進して成形体の高密度化を促 進する効果を有する。所定の加圧成形の温度以下の低い 融点をもつ潤滑剤の含有量が、10質量%未満では、粉末 粒子内部に潤滑剤が均等に分散せず、成形体密度が低下 する。また、75質量%を超えると、成形体の密度が増加 するにしたがい、溶融した潤滑剤が成形体表面へ絞り出 され、表面に、潤滑剤の逃げ道が形成され、成形体表面 に多数の粗大な空孔が形成されて、焼結部材の強度低下

【0034】鉄基粉末混合粉に含まれる、所定の加圧成形の温度より高い融点をもつ潤滑剤は、成形時、固体として存在し、溶融した潤滑剤がはじかれる鉄基粉末粒子表面の凸部において「ころ」として作用して、粒子の再配列を促進し、成形体の密度を増加させる効果を有する。鉄基粉末混合物に含まれる粉末成形用潤滑剤のうち、所定の加圧成形の温度より高い融点をもつ潤滑剤のうち、所定の加圧成形の温度は機能、熱可塑性エラストマー、層状の結晶構造を有する無機または有機潤滑剤のうちから選ばれた1種または2種以上とするのが好ましい。所定の加圧成形の温度に応じ、下記した潤滑剤から

適宜選択できる。

【0035】金属石鹸としては、ステアリン酸リチウム、ヒドロキシステアリン酸リチウム等が好ましい。また、熱可塑性樹脂としては、ポリスチレン、ポリアミド、フッ素樹脂等が好適である。熱可塑性エラストマーとしては、ポリスチレン系エラストマー、ポリアミドエラストマー等が好適である。また、層状の結晶構造を有する無機潤滑剤としては、黒鉛、MoS2、フッ化炭素のいずれでも良く、粒度は細かいほど、抜き出し力の低減に有効である。層状の結晶構造を有する有機潤滑剤としては、メラミンーシアヌル酸付加物(MCA)、Nーアルキルアスパラギン酸ーβーアルキルエステルのいずれも使用することができる。

【0036】鉄基粉末混合粉に含まれる粉末成形用潤滑剤のうち、所定の加圧成形の温度以下の低い融点をもつ潤滑剤としては、金属石鹸、アミド系ワックス、ポリエチレンおよびこれらのうちの少なくとも2種以上の共溶融物のうちから選ばれた1種または2種以上とするのが好ましい。所定の加圧成形の温度に応じ、下記した潤滑剤から適宜選択できる。

【0037】金属石鹸としては、ステアリン酸亜鉛、ステアリン酸カルシウム等が好ましい。また、アミド系アックスとしては、エチレンビスステアロアミド、ステアリン酸モノアミド等が好適である。共溶融物としては、オレイン酸とステアリン酸亜鉛の共溶融物、エチレンとステアロアミドとステアリン酸アミドとの共溶融物、エチレンビスステアロアミドとステアリン酸アミドとステアリン酸カルシウムの共溶融物、ステアリン酸カルシウムの共溶融物、ステアリン酸カルシウムの共溶融物、ステアリン酸カルシウムの共溶融物、ステアリン酸カルシウムをテアリン酸リチウムとの共溶融物等が好適である。また、成形温度によっては、これらの潤滑剤の一部を加圧成形温度より高い融点をもつ潤滑剤として使用することもできる。

【0038】鉄基粉末混合粉に合金用粉末として含まれる黒鉛は、焼結体を強化する効果を有する。黒鉛の含有量が少ないと焼結体強化の効果が充分でなく、一方、多すぎると初析セメンタイトが析出して強度が低下する。このようなことから、鉄基粉末混合粉中に含有される黒鉛は、鉄基粉末混合粉全量に対し、0.1~2.0 質量%とするのが好ましい。

【0039】上記のようにして得られた成形体は、焼結処理、必要に応じてさらに、浸炭熱処理、光輝熱処理等が施されて、粉末冶金製品として使用することができる。

[0040]

【実施例】鉄基粉末として、Fe-4Ni-0.5Mo-1.5Cu組成の

部分合金化鋼粉を用いた。この部分合金化鋼粉に、黒鉛粉、粉末成形用潤滑剤を高速ミキサーによる加熱混合法により混合し、鉄基粉末混合粉とした。なお、黒鉛粉の添加量は、鉄基粉末混合粉の全量に対し、0.5 質量%とした。また、粉末成形用潤滑剤は、表1に示す種類および添加量(鉄基粉末混合粉の全量に対する)とした。

【0041】まず、加圧成形用の金型の温度を表1に示す温度(常温のまま、または予熱)したのち、金型潤滑装置(Gasbarre社製)を用いて帯電させた金型潤滑用潤滑剤を金型内に噴霧導入し、金型表面に帯電付着させた。なお、金型潤滑用潤滑剤は、加圧成形温度以上の融点を有する2種以上の潤滑剤を混合したものであり、表2に示すA群~!群のうちの1群または2群以上の熱質(潤滑剤)を混合したものを使用した。なお、比較として、加圧成形温度未満の融点を有する潤滑剤を1種以上含む場合、あるいは加圧成形温度より高い融点を有する潤滑剤を1種のみとした場合を比較例とした。なお、金型表面の温度を測定し、加圧成形の温度とした。

【0042】ついで、このように処理された金型に、金型の処理に応じて常温のまま、または加熱した、鉄基粉末混合粉を充填したのち、加圧成形し、10×10×55mmの直方体の成形体とした。なお、加圧力は、7t/cm² (686 MPa)とした。また、加圧成形条件を表1に示す。また、鉄基粉末混合粉に含まれる粉末成形用潤滑剤は、衰2に示す各種潤滑剤から選択し、表1に示す加圧成形温度より高い融点をもつ潤滑剤、あるいは表1に示すように、加圧成形温度以下の低い融点をもつ潤滑剤と、加圧成形温度より高い融点をもつ潤滑剤とを混合したもの、とした。

【0043】なお、従来例として、金型潤滑用潤滑剤を 塗布しない金型に、金型の処理に応じて常温(25℃)の まま、または加熱した鉄基粉末混合粉を充填し、加圧成 形し、同様の直方体の成形体とした例を従来例とした

(成形体No.28、No.32)。成形後、成形体を抜き出す 時の抜出し力を測定した。また、これら成形体につい て、アルキメデス法で密度を測定した。なお、アルキメ デス法とは、被測定物である成形体を水中に浸漬して体 積を測定することにより密度を測定する方法である。

【0044】さらに、これら成形体の外観を目視で観察し、症、割れ等の欠陥の有無を調査した。また、これら成形体を中央部で切断し、樹脂に埋め込んで研磨し、断面における空孔の有無を光学顕微鏡で観察した。抜出し力、成形体密度、成形体の外観および成形体断面の性状についての結果を表1に示す。

[0045]

【表1】

*			大 新 即 空	未悉明史	大學學院	***	****	建	本雅明例	***	本務明何	*890	**	**	
¥			4	€4	€(=<	e t	=	=	E	*	<u> </u>	==	et .	
🔻	(#		4	=	■	€	4	=	424	= <	# (*	=	ex .	4
最初		Te/a	9	1. 48	7. 42	£	3	7. 48	7. 40	1, 41	7. 48	1. 43	7. 86	7.84	の神で日本の神田田
#	14 14 14 14 14 14 14 14 14 14 14 14 14 1	4	=	2	81	9.	16	81	11	11	14	11	12	14	
¥↓₽		£	130	180	130	180	180	180	130	130	180	180	98	26	li
首用最初条の	2401 4835 4749	E 3M2 5- 3M8	130	180	180	180	180	180	180	9	180	180	3 2	98	
1.00			150	160	150	82	150	160	150	22	150	150	25	26	
5	e_	會以 實	1	ı	'	1	1	,	,	1	1	ı	١	1	
数据の米部合の中の存成形成組織を の内の影響によっては一個では一個なりを をはなります。	聖氏曆紫那編祭	要要点 数点:	l	I	•	1	ı	ŧ	ı	1	1	ı	1	,	
85 B	~=	御御	e e	8	100	100	95	100	100	100	100	100	22	60 12. 5 87, 5	ĺ
中国 光色 明	署代醫鰲哥屬希刹	建筑上海 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C1(148°C):0,4	C1(148°C):0,8	71 (#9140 °C) :0.8	C1(148°C):0.05	C1(148°C):0, 1	C1(148°C):0,8	J2 (#5185 °C) :0,8	J8 (\$5148 °C) :0,8	C1(148°C):0.2	C1(148°C):0,26	J4(#5118 °C):0,4 A8(127°C):0,4	15(\$5125 C):0,4 14(\$5118 C):0,1 C1(148 C):0,8	
1			3.0	0.3	0.3	0.05	0.1	0.2	0.8	6 .0	0.8	0, 25	0, 25	0. 30	
2	ない。	(學學) 學問		ı	ı		1	1	ı	ı	1	I	ı	Į.	
	配代整数	官馬	1	ı	I	1	ı		,	ı	1	ı	1	1	
日本 日本 日本 日本 日本 日本 日本 日本	異性醫室部屬海過	開催 (香港)	A1(150 °C) A3(230 °C)	A1(180 °C) A4(218 °C)	A4(216 °C) 31(887 °C)	61(160 C) C1(148 C)	18(280 °C) 02(260 °C)	14(218 °C) 81(144 °C)	A8(230 °C) 81(158 °C)	A8(280 °C) F1(166 °C)	C2(218 °C)	C1(148 °C) C8(265 °C)	C3(216 °C) C3(266 °C)	61(160 °C) A8(280 °C)	
Ę		はは、	22	35 76	75	22	22	25 25	22	50	30 70	25 75	25 75	25 75	
¥ 1)	ž ž	t ⊋	-	60	6	-	*0	•	~	8 0	e.	10	11	12	l

【0046】 【表2】

産業型の対応に扱 2 巻二

釈 **神浴部**米 米斯勒斯 本独现的 未完配的 * 第 5 5 5 不管的例 **米島原教 米恕型數** 家长 是旧齿囊 # 4 • 4 4 4 載 戵 4 *** =** €(個 4 44 4 4 【 €(最粉膏 , 1/3 7. 43 7, 40 7, 41 7, 47 7. 43 7. 42 7. 41 \$ Ŀ 飲し出力 4 200 Ξ 13 16 23 13 18 13 Ξ 17 加成道压形度 130 130 130 180 180 130 180 150 180 180 μ **智用觀影響** 族末 器 遊 始 合 衛 180 180 180 ပူ 130 130 180 130 180 160 型 条 凯 Ç 160 160 160 50 160 180 160 150 150 180 含比 東東 2 ŧ ı ł ı 1 220 33 1 甘田県形御展以下の森に最近の艦艇を 台州 48(187°C):0.1 C1(148°C):0.1 A2(127°C):0.1 42(127°C):0, 1 •• 部屋(番点) 典質機器### 来路悠米路白松中悠存风形田逍遥丝 1 1 1 ı ı , **存业** 豐米 18 8 22 30 200 50 9 200 2 22 甘田供売組成より 掲い着点の維維性 年和 90 • • A8(280°C):0, 8 C1(148°C):0.8 A1(160°C):0.1 A4(216°C):0, 8 F1(155°C)::0.1 C1(148°C):0,2 C1(148 C):0.2 C3(255°C):0, 2 C2(216°C):0.1 C3(256°C):0.1 (延羅) 医原体性 (延伸) B1(162°C):0. C1(148°C):0, 搬架存 电电弧 0, 35 9 # X 0.2 **.** 0.3 . 2 . . <u>.</u> ö 包田政務機関以下の 森い春点の編集権 (新羅) ١ 1 t ı ŧ ı t ı ı 1 禁 **化基础电影影响** 含化 黄光 1 1 1 ŧ ı ı ı 1 ı 甘田良労組成より 第12番点の選集集 はるで (女妻) ସିସ୍ ହିହି विविव ହିତ୍ର देवे QQ QQ QQ द्वेद्ध 148 216 256 23 144 216 255 220 220 168 220 912 092 216 168 212 14 **2** ŠĔ žž 252 ă SE BIG Z T T T T žž 322)18 11(93(含化 *** 28 828 28 28 28 229 22 28 **\$ \$ 5**6 £ 성 系 * 8 18 Ξ 9 11 38 2 2 2 22

*)避済泡金樓に対する合有比學 **)核謝粉來猶合粉中の國海和總合有職 ***)核指粉來獨合粉中の國海和總合有職

【表 1-2】

医急で 帯 辻中北の 東東原

未完別的 本類明例 木配型配 未完成的 未完別的 农东西 北京河 比较到 犹未更 元女子 空孔砂 記 記 第 低 • --ഠ 4 4 傶 表表來 4 * 4 w • * 概 . | | 有 7. 85 7. 33 7.25 **-**-鉄し出われ ٤ = 2 Ξ = 9 38 8 25 8 88 88 加成器压形度 8 8 130 8 2 130 130 180 38 38 8 Ç 加压政形象件 被宋 路 湖 田 日 島 دع 38 器 180 98 130 180 3 130 8 8 32 金子區型角度 Þ 200 160 200 8 2 2 150 150 9 83 2 會比 東大 ŧ ١ t 1 1 ı 台田及形織馬以下の角い種点の観点を ı 化 新聞 (根が): 14 単質的な444 表表的形式的一种一种一种一种 1 t f 1 1 ţ 1.1 含块"复处 ន្ត 3 8 50 12.6 37.5 울 <u>5</u> 쭖 9 몱 22 음 台田発売前向より向い間点の重点を 協会(最近): 仏内 専門権名484 10.3 10.3 10.8 14 (#118 °C):0,4 A2(127°C):0,4 A1(150°C):0, 25 C1(148°C):0, 20 D1(226°C):0, 2 D2(268°C):0.4 C1(148°C):0,4 C1(148°C):0, 4 C1(148°C):0.4 C1(148°C):0, D3(216T):0. J5 (#9126 7 J4 (#9118 7 C1(148°C):0 # **表 化 电** 0. 25 0. 30 豊米 8 0.25 0.2 9.7 32 7.0 . 4 9. ö 対圧成形態表以下の 角い壁点の施設法 (新羅) Ç û 1 i ı 1 ı 127 127 t ı 1 無)ZY **4**8(A 在原理学型制度系统 **作品** 政策 2 100 ı 1 ı i 旨用扱形組織される他に職成の強張を 14年代) G Egg (新華) ପ୍ରପ୍ର ପ୍ରିପ୍ତ वृवृव् ब ç 20 A 215 178 188 A2(127°C) 223 322 ŀ ı 256 Ĕ E <u>P</u>30 12(NO E š ន [表1-3] 也 作 条 * # x 84 22 202 **22** 222 50 90 1 ŧ \$ 텀 £ 患 Ħ 88 * 83 82 23 38 2 8 8 33 8

) 建成剂金属に対する由金比塔18) 整形的末端台級中の資産製業等金有額14() 表現的末期白級中の資産製業

[0048]

【表4】

【表2】

群	符号	潤滑剤種類	群	符号	遇滑耐種類				
A群	A 1	ステアリン酸Ca	金属	C群	C 1	エチレンヒスステアロアミド	7:下系		
	A 2	ステアリン 酸 Zn	石		C 2	ライトアミドVH215	777.4		
	A 3	ステアリン酸Li	-		C 3	ライトアミドVH255			
	A 4	ヒトロオキシステアリン酸ti		D群	D 1	ポリアミド 6	ポリア ミド		
B群	B 1	直鏡状低密度利エチレン	ポリエチレン	Ifuy		ポリアミド66			
	_				D 3	ポリアミド610			
E	E 1	ポリプロピレン	本9プロモレ ツ	F#	F 1	#9 <i>5</i> 56 799v-}	アクリル酸		
			,		F 2	ポリエチルアクリレート	合体		
G群	G 1	まりメチルメタクリレート	チャクリル 酸エステル	H群	H 1	# リテトラフルオロエチレ ソ	フッ素		
	G 2	まりエチルメタクリレート	重合体				133.18		
丁群	J 1	エチレンヒスステアロアミテ とポリ エチレンの共働混合物		Ι#	1 2	NoS:			
ļ	J 2	エチレンピスステアロアミト とステアリ ン 酸Zn の共融混合物	共融起 合物			71.44			
	J 8	エチレンビスステアロブド とステアリ ソ 酸Ca の共融混合物			I 2	ファ化炭素	潜飛		
	Ј4	オレイン酸とステアリン 酸スn の共融混合物			I 3	メラミフージアスル 酸付加物 (M.C.A)			
	J 5	ステアキン 酸アド とエチレンビス ステアキン 酸アド の共散記 合物				(MCA)			

【0049】本発明例は、いずれも成形後の抜出し力が20MPa以下と低く、さらに常温成形で7.30Mg/m³以上、温間成形で7.40Mg/m³以上の、高密度を有する成形体となっている。さらに、成形体には、疵、割れ等の欠陥は認められなかった。また、成形体の断面性状は、正常で、粗大な空孔は認められなかった。金型潤滑を施さない従来例(成形体No.28、No.32)は、著しく抜出力が増大し、成形体密度が低下し、成形体表面に疵が認められた。

【0050】本発明の範囲を外れる比較例は、抜出し力が20MPaを超えて高いか、常温成形での密度が7.25Mg/m³以下と低いか、温間成形での密度が7.35Mg/m³以下と低いか、あるいは成形体の表面に疵があるか、あるいは成形体断面の表面付近に粗大な空孔が観察された。また、温間成形においては、金型潤滑剤の少なくとも1種

の融点が、加圧成形温度以下の場合(成形体No. 29)、あるいは、金型潤滑剤が、加圧成形温度よりも高い融点を持つ1種のみである場合(成形体No. 30、No. 33)あるいは、加圧成形温度よりも低い融点を持つ1種のみである場合(成形体No. 31)は、成形体密度が低く、抜出し力が高くなる。

【0051】本発明によれば、外観性状、断面性状いずれも良好である、高密度の成形体を抜出し力が低く成形できるという効果がある。

[0052]

【発明の効果】本発明によれば、外観性状、断面性状いずれも良好である、高密度の成形体を1回の成形で容易に製造でき、しかも成形後の抜出し力が低く、金型を長寿命化することができ、さらに高密度の焼結体が容易に得られるという産業上格段の効果を奏する。

CD01A CE13A EA08A FA01

FA02 FA06 PA48 4K018 AA24 BA13 CA02 CA09 CA16

,フロントページの続き

(51) Int. CI. 7	識別記号	FI	テーマコード(参考)
* C10M	103/02	C 1 O M 103/02	Α
	103/06	103/06	С
	129/44	129/44	
	133/06	133/06	
	133/16	133/16	
	133/42	133/42	
	143/02	143/02	
	143/04	143/04	
	145/14	145/14	
	147/02	147/02	
	149/18	149/18	
C 2 2 C	33/02	C 2 2 C 33/02	Z
// C10N	10:02	C 1 O N 10:02	
	10:04	10:04	
	10:12	10:12	
	20:06	20:06	z
	40:36	40:36	
(72) 発明者	宇波 繁	Fターム(参考) 4H104 AA04A AA0	5A AA16A AA19A
	千葉県千葉市中央区川崎町1番地	川崎製 BB17A BB1	9A BEO2A BE11A
	鉄株式会社技術研究所内	BE28A CAO	2A CAO3A CBO8A