- 5.1 (1) 32/8 = 4 bytes, tx = 16/4 = 4 integers
 - (1) 我们使用量了,了, 故它们是. 对了, 我们治问 B[I][02 8000位, 以它也是
 - (3) PACIICII, 西 ACIICII 学新于ACIICI+门
 - $(4) \quad 64000 + 64000 64 = 127936$ 127936 + 8 = 127944

\$\$ 127944 = 31986 blocks

- (5) 同(2),为I,J,BCI2(0]
- (6) 为 A[J][[]

5.2 cl)如下图附示:

Word	Binary			
address	Address	Tag	Index	Hit/Miss
3	0000 0011	0	3	М
180	1011 0100	11	4	М
43	0010 1011	2	11	M
2	0000 0010	0	2	M
191	1011 1111	11	15	M
88	0101 1000	5	8	М
190	1011 1110	11	14	М
14	0000 1110	0	14	M
181	1011 0101	11	5	М
44	0010 1100	2	12	M
186	1011 1010	11	10	M
253	1111 1101	15	13	М

(1) 如图的示

Word	Binary			
address	Address	Tag	Index	Hit/Miss
3	0000 0011	0	1	M
180	1011 0100	11	2	М
43	0010 1011	2	5	M
2	0000 0010	0	1	Н
191	1011 1111	11	7	М
88	0101 1000	5	4	М
190	1011 1110	11	7	Н
14	0000 1110	0	7	M
181	1011 0101	11	2	Н
44	0010 1100	2	6	М
186	1011 1010	11	5	М
253	1111 1101	15	6	М

			lache 1		lache 2		lache 3	
word	Binary							₩,
Address	Address	Tag	Index	hit/miss	Index	hit/miss	Index	hit/miss
3	0000 0011	0	3	M	1	M	0	M
180	1011 0100	22	4	М	2	М	1	М
43	0010 1011	5	3	М	1	М	0	М
2	0000 0010	0	2	M	1	М	0	М
191	1011 1111	23	7	M	3	M	1	М
88	0101 1000	11	0	M	0	М	0	М
190	1011 1110	23	6	M	3	Н	1	Н
14	0000 1110	1	6	M	3	M	1	М
181	1011 0101	22	5	M	2	Н	1	М
44	0010 1100	5	4	M	2	М	1	М
186	1011 1010	23	2	M	1	М	0	М
253	1111 1101	31	5	M	2	M	1	М

$$(4) \quad 32 \times 2^{8} = 2^{5} \times 2^{8} = 2^{13}$$

$$\frac{2^{13}}{2} : 2^{12}$$

$$32 - 12 - 3 = 17$$

叔有 Z12 blocks

(**5**) 例如,我们可以只使用以下引用:

0x00000000, 0x10000000, 0x00000000

第一个缓存将所有这些映射到第一个块,所以我们有3次未命中。

第二个缓存将所有这些映射到第一个集合。它将第一个地址上的数据保存为 该集合的第一个元素,并将第二个地址上的数据保存为该集合的第二个元素 (有2个未命中)。然而,第三个参考是一个打击!

这是可能的。它使用5位,所以25=32块,这是无效的,但它的工作。每一块都可以打。我要添加的唯一修改是我们使用更多的位,具体来说,10位——例如,块地址【31:22】异或块地址【21:12】。

故结把 4个

(5)
$$\frac{4}{12} = \frac{1}{3} = 33.33\%$$