Product Allocation and Functional Area Sizing

- Product Allocation and Functional Area Sizing (Min. Cost) (5pts)
- Block Layout Design (6 Departments) (5pts)
 - (Optional) Robust Block Layout Design (All departments) (Bonus 2.5pts)

```
In [2]: import pandas as pd
        import math
        import pulp
        import gurobipy as gp
        from gurobipy import GRB
        import matplotlib.pyplot as plt
        import matplotlib.patches as patches
        import math
        from collections import defaultdict
In [2]:
        In this part of the code we import all the data into dataframes
        # Define product data
        requirements = {
            "Product": ["Product 1", "Product 2", "Product 3", "Product 4", "Product 5", "Product 6"],
            "Annual demand (units)": [10000, 15000, 25000, 2000, 1500, 95000],
            "Order cost ($)": [50, 50, 50, 50, 50, 150],
            "Price/unit load ($)": [500, 650, 350, 250, 225, 150],
            "Space required (m<sup>2</sup>)": [10, 15, 25, 10, 12, 13],
            "Reserve dwell percentage (%)": [0, 0, 0.20, 0, 0, 1.00],
             "Yearly carrying cost rate (%)": [0.10, 0.10, 0.10, 0.10, 0.10]
        }
        # Define flow data
        flow_cost = {
             "Flow/Product": ["Flow 1 (CD)", "Flow 2 (R)", "Flow 3 (RF)", "Flow 4 (F)"],
            "Product 1": [0.0707, 0.0849, 0.1061, 0.0778],
            "Product 2": [0.0203, 0.2023, 0.2023, 0.2023],
            "Product 3": [0.0267, 0.0420, 0.0054, 0.0481],
            "Product 4": [0.3354, 0.5590, 1.0062, 0.0671],
            "Product 5": [0.4083, 0.6804, 1.2248, 0.8165],
            "Product 6": [0.0726, 0.0871, 0.1088, 0.0798]
        }
        # Define flow data (integer version)
        yearly cost = {
            "Flow/Product": ["Flow 1 (CD)", "Flow 2 (R)", "Flow 3 (RF)", "Flow 4 (F)"],
             "Product 1": [20, 5, 10, 15],
            "Product 2": [15, 5, 10, 10],
            "Product 3": [4, 20, 1, 9],
            "Product 4": [5, 4, 5, 1],
            "Product 5": [15, 25, 45, 30],
            "Product 6": [20, 5, 10, 15]
        area_bounds = {
             "Functional Area": ["Cross-docking", "Reserve", "Forward"],
             "Lower bound (m<sup>2</sup>)": [0, 35000, 35000],
             "Upper bound (m<sup>2</sup>)": [15000, 75000, 75000]
        levels = {
             "Functional Area": ["Cross-docking", "Reserve", "Forward"],
             "#Levels": [1, 1, 1]
        area_bounds = pd.DataFrame(area_bounds)
        levels = pd.DataFrame(levels)
        yearly_cost = pd.DataFrame(yearly_cost)
```

```
In [3]: """
        In this part of the code we calculate the EOQ and average dwell time for each product usin the
        formulas from the slides
        eoq = []
        avg_dwell = []
        for i, row in requirements.iterrows(): # iterate over rows
            demand = row["Annual demand (units)"]
            order_cost = row["Order cost ($)"]
            price = row["Price/unit load ($)"]
            carrying_rate = row["Yearly carrying cost rate (%)"]
            eoq_val = math.sqrt((2 * demand * order_cost) / (price * carrying_rate))
            eoq.append(eoq_val)
            avg_dwell_time = eoq_val /(2 * demand)
            avg_dwell.append(avg_dwell_time)
        # Add EOQ as a new column to the DataFrame
        requirements["EOQ"] = eoq
        requirements["Avg dwell time"] = avg_dwell
        print(requirements[["Product", "EOQ", "Avg dwell time"]])
```

```
        Product
        EOQ
        Avg dwell time

        0
        Product 1
        141.421356
        0.007071

        1
        Product 2
        151.910905
        0.005064

        2
        Product 3
        267.261242
        0.005345

        3
        Product 4
        89.442719
        0.022361

        4
        Product 5
        81.649658
        0.027217

        5
        Product 6
        1378.404875
        0.007255
```

flow_cost = pd.DataFrame(flow_cost)
requirements = pd.DataFrame(requirements)

Mathematical formulation

Sets

- $I \in \{1, 2, 3, 4, 5, 6\}$ are products which need to be stored in the warehouse.
- $J \in \{1, 2, 3, 4\}$ are the different flows going trough the warehouse

Parameters

- S^{total} Total availibale stoage space ($100.000m^2$)
- S_i Space required for storing a unit of product i
- z^{CD} Levels of space available in the vertical dimention of functional area Cross Docking
- ullet z^F Levels of space available in the vertical dimention of functional area Forward
- z^R Levels of space available in the vertical dimention of functional area Reserve
- LL_{CD} Lower storage space limit in the in cross docking $(0m^2)$
- UL_{CD} Upper storage space limit in the in cross docking $(15000m^2)$
- LL_F Lower storage space limit in the in forward $(35000m^2)$
- UL_F Upper storage space limit in the in forward $(75000m^2)$
- LL_R Lower storage space limit in the in reserve $(35000m^2)$
- UL_R Upper storage space limit in the in reserve $(75000m^2)$
- C_{ij}^{handle} Cost of handeling a unit load of product i and material flow j
- C_{ij}^{store} Cost of storing a unit load of product i and material flow j
- ρ_i^R Average percentage of time a unit load of product i spends in the reserve area if product is assigned to material flow 3

Decision variables

- $x_{ij} = \begin{cases} 1, & \text{if product i is assigned to flow j} \\ 0, & @ \end{cases}$
- ullet Propotion of available space assigned to the crossing dock function area

- w^F Propotion of available space assigned to the forward function area
- w^R Propotion of available space assigned to the reserve function area

Objective function

$$min\sum_{i=1}^{6}\sum_{j=1}^{4}(2C_{ij}^{handle})D_{i}x_{ij}+\sum_{i=1}^{6}\sum_{j=1}^{4}rac{Q_{i}}{2}C_{ij}^{store}x_{ij}$$

Same as in the lecture slides of this course, we assume for all flow only 2 transactions. Therefore, we only have the coefficient 2 here.

Constraints

Since we assign each product to one flow this will add up to one for all the flows combined combined with the fact that x is binary this function will work.

$$\sum_{j}^{4}x_{ij}=1 \quad orall i \in I$$

Since the cross docking only happens in flow 1:

$$\sum_{i=1}^6 rac{Q_i}{2} S_i x_{i1} \leq w^{CD} (z^{CD} S^{total})$$

Since the reserve only goes trough flow 2 and 3 the sum of these two sould be less than proportion of availbe space times the total space (vertial and in floor area).

$$\sum_{i=1}^{6} rac{Q_i}{2} S_i x_{i2} + \sum_{i=1}^{6} rac{Q_i}{2}
ho_i^R S_i x_{i3} \leq w^R (z^R S^{total})$$

Since the forward only goes trough flow 3 and 4 the sum of these two sould be less than proportion of availbe space times the total space (vertial and in floor area).

$$\sum_{i=1}^{6} rac{Q_i}{2} (1-
ho_i^R) S_i x_{i3} + \sum_{i=1}^{6} rac{Q_i}{2} S_i x_{i4} \leq w^F (z^F S^{total})$$

A 100% of the space should be allocated

$$w^{CD} + w^R + w^F = 1$$

The lower and upper limits given should be enforced

$$LL_{CD} \leq w^{CD}(z^{CD}S^{total}) \leq UL_{CD}LL_R \leq w^R(z^RS^{total}) \leq UL_RLL_F \leq w^F(z^FS^{total}) \leq UL_FLL_F \leq w^F(z^FS^{total}) \leq UL_FL_F \leq w^F(z^FS^{total}) \leq UL_FL_F$$

Proportion should be smaller than the avaible space

$$w^{CD}, w^R, w^F \geq 0$$

```
In [4]: # Sets
    products = requirements["Product"].tolist() # I
    flows = flow_cost["Flow/Product"].tolist() # J

# Parameters
    S_total = 100000
    S = requirements.set_index("Product")["Space required (m²)"].to_dict() # space per product
    Q = dict(zip(requirements["Product"], requirements["E00"])) # E00 per product
    C_handle = flow_cost.set_index("Flow/Product").T.to_dict() # handling cost per product per flow
    C_store = yearly_cost.set_index("Flow/Product").T.to_dict() # storage cost per product per flow
    rho_R = requirements.set_index("Product")["Reserve dwell percentage (%)"].to_dict() # proportion to reserve

# Vertical Levels
    z_CD = levels.set_index("Functional Area").loc["Cross-docking", "#Levels"]
    z_F = levels.set_index("Functional Area").loc["Forward", "#Levels"]
    z_R = levels.set_index("Functional Area").loc["Reserve", "#Levels"]
```

```
# Limits
LL_CD, UL_CD = area_bounds.set_index("Functional Area").loc["Cross-docking", ["Lower bound (m²)", "Upper bound", "Upper bound", "Index of the content of the
 \label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local
LL R, UL R = area bounds.set index("Functional Area").loc["Reserve", ["Lower bound (m²)", "Upper bound (m²)"
# Create model
model = pulp.LpProblem("Warehouse Storage Optimization", pulp.LpMinimize)
# Decision variables
x = pulp.LpVariable.dicts("x", [(i,j) for i in products for j in flows], cat='Binary')
w_CD = pulp.LpVariable("w_CD", lowBound=0)
w_F = pulp.LpVariable("w_F", lowBound=0)
w R = pulp.LpVariable("w_R", lowBound=0)
# Objective function
total_cost = pulp.lpSum([
               (2 * C_handle[j][i] * Q[i] * x[i,j]) +
               (Q[i]/2 * C_store[j][i] * x[i,j])
               for i in products for j in flows
])
# Add to objective
model += total cost
# Constraints
# Each product assigned to exactly one flow
for i in products:
               model += pulp.lpSum([x[i,j] for j in flows]) == 1
# Cross Docking (Flow 1)
model += pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 1 (CD)'] for i in products]) <= w_CD * z_CD * S_total
# Reserve (Flow 2 and Flow 3)
model += pulp.lpSum([Q[i]/2 * S[i] * x[i,'Flow 2 (R)'] + Q[i]/2 * rho_R[i] * S[i] * x[i,'Flow 3 (RF)'] for i
# Forward (Flow 3 and Flow 4)
model += pulp.lpSum([Q[i]/2 * (1-rho_R[i]) * S[i] * x[i, 'Flow 3 (RF)'] + Q[i]/2 * S[i] * x[i, 'Flow 4 (F)'] for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[i, 'Flow 4 (F)']) for all in the pulp.lpSum([Q[i]/2 * S[i] * x[
# 100% of the space allocated
model += w_CD + w_R + w_F == 1
# Enforce Lower and upper limits
model += w_CD * z_CD * S_total >= LL_CD
model += w_CD * z_CD * S_total <= UL_CD</pre>
model += w_R * z_R * S_total >= LL R
model += w_R * z_R * S_total <= UL_R</pre>
model += w F * z F * S total >= LL F
model += w_F * z_F * S_total <= UL_F</pre>
# Solve the model
model.solve()
# Output results
print("Product Allocations:")
for i in products:
               for j in flows:
                               if x[i,j].value() == 1:
                                              print(f"{i}: {j}")
print()
print("Area Sizes:")
print(f"Cross Docking: {w_CD.value()*S_total}m2")
print(f"Reserve: {w_R.value()*S_total}m2")
print(f"Forward: {w_F.value()*S_total}m2")
print("Total cost:", round(pulp.value(total cost), 2))
```

```
Product Allocations:
Product 1: Flow 2 (R)
Product 2: Flow 2 (R)
Product 3: Flow 3 (RF)
Product 4: Flow 4 (F)
Product 5: Flow 1 (CD)
Product 6: Flow 2 (R)

Area Sizes:
Cross Docking: 15000.0m²
Reserve: 35000.0m²
Forward: 50000.0m²
Total cost: 5377.23
```

11.5 Warehouse Block Layout Design

```
In [8]: # Example: access a value
        #print(departments["Cross-Dock"]) # Output: 3520
        departments_matrix = {
            "Inbound Dock": {
                 "Inbound Dock": "-",
                 "Receiving/Staging": "E",
                 "QA & Technical Test": "U",
                 "Cross-Dock": "U",
                 "Pallet Reserve Storage (Bulk)": "U",
                 "Oversize/Non-Standard Storage": "U",
                 "Packing / Wrap / Banding": "U",
                 "Outbound Staging": "U",
                 "Shipping Dock": "U",
                 "Empty Pallets & Dunnage": "U",
                 "Maintenance & Battery Charge": "U",
                 "Returns & WEEE": "U",
                 "Spare Parts & Accessories Cage": "U"
            "Receiving/Staging": {
                 "Inbound Dock": "E",
                 "Receiving/Staging": "-",
                 "QA & Technical Test": "A",
                 "Cross-Dock": "A",
                 "Pallet Reserve Storage (Bulk)": "I",
                 "Oversize/Non-Standard Storage": "U",
                 "Packing / Wrap / Banding": "U",
                 "Outbound Staging": "U",
                 "Shipping Dock": "U",
                 "Empty Pallets & Dunnage": "I",
                 "Maintenance & Battery Charge": "U",
                 "Returns & WEEE": "U",
                 "Spare Parts & Accessories Cage": "U"
             "QA & Technical Test": {
                "Inbound Dock": "U",
                 "Receiving/Staging": "A",
                 "QA & Technical Test": "-",
                 "Cross-Dock": "U",
                 "Pallet Reserve Storage (Bulk)": "U",
                 "Oversize/Non-Standard Storage": "U",
                 "Packing / Wrap / Banding": "U",
                 "Outbound Staging": "U",
                 "Shipping Dock": "U",
                 "Empty Pallets & Dunnage": "U",
                 "Maintenance & Battery Charge": "U",
                 "Returns & WEEE": "I",
                 "Spare Parts & Accessories Cage": "U"
            "Cross-Dock": {
                "Inbound Dock": "U",
                 "Receiving/Staging": "A",
                 "QA & Technical Test": "U",
                 "Cross-Dock": "-",
                 "Pallet Reserve Storage (Bulk)": "U",
                 "Oversize/Non-Standard Storage": "U",
                 "Packing / Wrap / Banding": "U",
```

```
"Outbound Staging": "A",
    "Shipping Dock": "A",
    "Empty Pallets & Dunnage": "U",
    "Maintenance & Battery Charge": "U",
    "Returns & WEEE": "U",
    "Spare Parts & Accessories Cage": "U"
},
"Pallet Reserve Storage (Bulk)": {
    "Inbound Dock": "U",
    "Receiving/Staging": "I",
    "QA & Technical Test": "U",
    "Cross-Dock": "U",
    "Pallet Reserve Storage (Bulk)": "-",
    "Oversize/Non-Standard Storage": "U",
    "Packing / Wrap / Banding": "E",
    "Outbound Staging": "U",
    "Shipping Dock": "U",
    "Empty Pallets & Dunnage": "U",
    "Maintenance & Battery Charge": "O",
    "Returns & WEEE": "U",
    "Spare Parts & Accessories Cage": "U"
},
"Oversize/Non-Standard Storage": {
    "Inbound Dock": "U",
    "Receiving/Staging": "U",
    "QA & Technical Test": "U",
    "Cross-Dock": "U",
    "Pallet Reserve Storage (Bulk)": "U",
    "Oversize/Non-Standard Storage": "-",
    "Packing / Wrap / Banding": "I",
    "Outbound Staging": "U",
    "Shipping Dock": "U",
    "Empty Pallets & Dunnage": "U",
    "Maintenance & Battery Charge": "U",
    "Returns & WEEE": "U",
    "Spare Parts & Accessories Cage": "U"
},
"Packing / Wrap / Banding": {
    "Inbound Dock": "U",
    "Receiving/Staging": "U",
    "QA & Technical Test": "U",
    "Cross-Dock": "U",
    "Pallet Reserve Storage (Bulk)": "E",
    "Oversize/Non-Standard Storage": "I",
    "Packing / Wrap / Banding": "-",
    "Outbound Staging": "E",
    "Shipping Dock": "U",
    "Empty Pallets & Dunnage": "O",
    "Maintenance & Battery Charge": "U",
    "Returns & WEEE": "O",
    "Spare Parts & Accessories Cage": "U"
},
"Outbound Staging": {
    "Inbound Dock": "U",
    "Receiving/Staging": "U",
    "QA & Technical Test": "U",
    "Cross-Dock": "A",
    "Pallet Reserve Storage (Bulk)": "U",
    "Oversize/Non-Standard Storage": "U",
    "Packing / Wrap / Banding": "E",
    "Outbound Staging": "-",
    "Shipping Dock": "E",
    "Empty Pallets & Dunnage": "U",
    "Maintenance & Battery Charge": "U",
    "Returns & WEEE": "U",
    "Spare Parts & Accessories Cage": "U"
"Shipping Dock": {
    "Inbound Dock": "U",
    "Receiving/Staging": "U",
    "QA & Technical Test": "U",
    "Cross-Dock": "A",
    "Pallet Reserve Storage (Bulk)": "U",
    "Oversize/Non-Standard Storage": "U",
```

```
"Packing / Wrap / Banding": "U",
        "Outbound Staging": "E",
        "Shipping Dock": "-",
        "Empty Pallets & Dunnage": "U",
        "Maintenance & Battery Charge": "U",
        "Returns & WEEE": "U",
        "Spare Parts & Accessories Cage": "U"
    },
    "Empty Pallets & Dunnage": {
        "Inbound Dock": "U",
        "Receiving/Staging": "I",
        "QA & Technical Test": "U",
        "Cross-Dock": "U",
        "Pallet Reserve Storage (Bulk)": "U",
        "Oversize/Non-Standard Storage": "U",
        "Packing / Wrap / Banding": "0",
        "Outbound Staging": "U",
        "Shipping Dock": "U",
        "Empty Pallets & Dunnage": "-",
        "Maintenance & Battery Charge": "U",
        "Returns & WEEE": "U",
        "Spare Parts & Accessories Cage": "U"
    },
    "Maintenance & Battery Charge": {
        "Inbound Dock": "U",
        "Receiving/Staging": "U",
        "QA & Technical Test": "U",
        "Cross-Dock": "U",
        "Pallet Reserve Storage (Bulk)": "0",
        "Oversize/Non-Standard Storage": "U",
        "Packing / Wrap / Banding": "U",
        "Outbound Staging": "U",
        "Shipping Dock": "U",
        "Empty Pallets & Dunnage": "U",
        "Maintenance & Battery Charge": "-",
        "Returns & WEEE": "U",
        "Spare Parts & Accessories Cage": "U"
    },
    "Returns & WEEE": {
        "Inbound Dock": "U",
        "Receiving/Staging": "U",
        "QA & Technical Test": "I",
        "Cross-Dock": "U",
        "Pallet Reserve Storage (Bulk)": "U",
        "Oversize/Non-Standard Storage": "U",
        "Packing / Wrap / Banding": "0",
        "Outbound Staging": "U",
        "Shipping Dock": "U",
        "Empty Pallets & Dunnage": "U",
        "Maintenance & Battery Charge": "U",
        "Returns & WEEE": "-",
        "Spare Parts & Accessories Cage": "U"
    },
    "Spare Parts & Accessories Cage": {
        "Inbound Dock": "U",
        "Receiving/Staging": "U",
        "QA & Technical Test": "U",
        "Cross-Dock": "U",
        "Pallet Reserve Storage (Bulk)": "U",
        "Oversize/Non-Standard Storage": "U",
        "Packing / Wrap / Banding": "U",
        "Outbound Staging": "U",
        "Shipping Dock": "U",
        "Empty Pallets & Dunnage": "U",
        "Maintenance & Battery Charge": "U",
        "Returns & WEEE": "U",
        "Spare Parts & Accessories Cage": "-"
    }
}
# Define the mapping of letters to numeric values
letter_to_number = {
    "E": 4,
    "A": 3,
    "I": 2,
```

```
"0": 1,
    "U": 0,
    "-": 0
# Selected six departments
def load data():
    selected depts = [
        "Inbound Dock",
        "Outbound Staging",
        "Packing / Wrap / Banding",
        "Pallet Reserve Storage (Bulk)",
        "Receiving/Staging",
        "Shipping Dock"
    return selected depts
def load_all_data():
    selected_depts = [
        "Inbound Dock",
        "Outbound Staging",
        "Packing / Wrap / Banding",
        "Pallet Reserve Storage (Bulk)",
        "Receiving/Staging",
        "Shipping Dock",
        "Cross-Dock",
        "Empty Pallets & Dunnage",
        "Maintenance & Battery Charge",
        "Oversize/Non-Standard Storage",
        "QA & Technical Test",
        "Returns & WEEE",
        "Spare Parts & Accessories Cage"
    return selected depts
departments = {
    "Cross-Dock": 3520,
    "Empty Pallets & Dunnage": 880,
    "Inbound Dock": 2640,
    "Maintenance & Battery Charge": 1320,
    "Outbound Staging": 8800,
    "Oversize/Non-Standard Storage": 2640,
    "Packing / Wrap / Banding": 3520,
    "Pallet Reserve Storage (Bulk)": 46340,
    "QA & Technical Test": 1760,
    "Receiving/Staging": 5280,
    "Returns & WEEE": 2640,
    "Shipping Dock": 3520,
    "Spare Parts & Accessories Cage": 440
# Example: access a value
#print(departments matrix["Inbound Dock"]["Receiving/Staging"]) # Output: E
```

Translation from letter to numeric

The convert_letters_to_numbers function translates qualitative relationship scores—represented by letters (E, A, I, O, U, -)—into quantitative values using a predefined mapping, where each letter corresponds to a numeric priority. These values are then squared to amplify the importance of higher-priority relationships, ensuring that critical connections (like "E") have a significantly greater impact on the optimization process this will make the simulation run faster.

```
# Conversion based on SLP legend
# Function to convert nested dictionary values
def convert_letters_to_numbers(matrix, mapping):
    numeric_matrix = {}
    for dept_from, relations in matrix.items():
        numeric_matrix[dept_from] = {}
        for dept_to, letter in relations.items():
            numeric_matrix[dept_from][dept_to] = mapping.get(letter, None) # None if unknown
        return numeric_matrix
# Apply the conversion
numeric_departments_matrix = convert_letters_to_numbers(departments_matrix, letter_to_number)
# Example: check numeric value
```

```
4
       0
In [10]: # Conversion based on squared SLP Legend
         # Function to convert nested dictionary values
         def convert_letters_to_numbers(matrix, mapping):
             numeric_matrix = {}
             for dept_from, relations in matrix.items():
                 numeric_matrix[dept_from] = {}
                 for dept_to, letter in relations.items():
                     val = mapping.get(letter, None)
                     numeric_matrix[dept_from][dept_to] = val**2 if val is not None else None
             return numeric_matrix
         numeric_departments_matrix = convert_letters_to_numbers(departments_matrix, letter_to_number)
         print(numeric_departments_matrix["Inbound Dock"]["Receiving/Staging"]) # Output: 16
         print(numeric_departments_matrix["Inbound Dock"]["Inbound Dock"]) # Output: 0
       16
```

print(numeric_departments_matrix["Inbound Dock"]["Receiving/Staging"]) # Output: 4

print(numeric departments matrix["Inbound Dock"]["Inbound Dock"])

Mathematical formulation

We consider the following 6 departments

- Inbound Dock
- Receiving/Staging
- Pallet Reserve Storage (Bulk)
- Packing / Wrap / Banding
- Outbound Staging (Join areas for 2-Man Delivery and Parcel)
- Shipping Dock

Sets

0

- $I \in \{1, 2, 3, 4, 5, 6\}$ are the 6 departments
- ullet $J\in\{1,2,3,4,5,6\}$ are the 6 departments

Parameters

- ullet m Number of departments
- ullet f_{ij} Flow from department i to department j
- c_{ij} Cost of moving a unit load one distance unit from department i to department j
- ullet B_x Building length (measured along the x-coordinate)
- B_y Building width (measured along the y-coordinate)
- A_i Area of department i
- ullet $L_i^{
 m LB}$ Lower limit on the length of department i
- ullet L_i^{UB} Upper limit on the length of department i
- W_i^{LB} Lower limit on the width of department i
- ullet W_i^{UB} Upper limit on the width of department i
- ullet M Large number

Variables

- α_i : x-coordinate of the centroid of department i
- β_i : y-coordinate of the centroid of department i
- x_i^{left} : x-coordinate of the left (or west) side of department i
- ullet $x_i^{
 m right}$: x-coordinate of the right (or east) side of department i
- $ullet \ y_i^{
 m bottom}$: y-coordinate of the bottom (or south) side of department i
- y_i^{top} : y-coordinate of the top (or north) side of department i

- z_{ij}^x : 1 if department i is strictly to the east of department j; 0 otherwise
- z_{ij}^y : 1 if department i is strictly to the north of department j; 0 otherwise

Objective function

$$\min \sum_{i=1}^6 \sum_{j=1}^6 f_{ij} c_{ij} (|lpha_i - lpha_j| + |eta_i - eta_j|)$$

Constraints

The length and width of each department must remain within the specified bounds:

Length Constraints:

$$L_i^{ ext{LB}} \leq (x_i^{ ext{right}} - x_i^{ ext{left}}) \leq L_i^{ ext{UB}} \quad orall i \in I$$

Width Constraints:

$$W_i^{ ext{LB}} \leq (y_i^{ ext{top}} - y_i^{ ext{bottom}}) \leq W_i^{ ext{UB}} \quad orall i \in I$$

Area Constraints:

$$(x_i^{ ext{right}} - x_i^{ ext{left}})(y_i^{ ext{top}} - y_i^{ ext{bottom}}) = A_i \quad orall i \in I$$

X-Direction Boundaries:

$$0 \leq x_i^{ ext{left}} \leq x_i^{ ext{right}} \leq B_x \quad orall i \in I$$

Y-Direction Boundaries:

$$0 \leq y_i^{ ext{bottom}} \leq y_i^{ ext{top}} \leq B_y \quad orall i \in I$$

X-Coordinate Centroid:

$$lpha_i = 0.5 x_i^{ ext{left}} + 0.5 x_i^{ ext{right}} \quad orall i \in I$$

Y-Coordinate Centroid:

$$eta_i = 0.5 y_i^{ ext{bottom}} + 0.5 y_i^{ ext{top}} \quad orall i \in I$$

East-West Separation:

$$x_j^{ ext{right}} \leq x_i^{ ext{left}} + M(1-z_{ij}^x) \quad orall i, j, i
eq j$$

North-South Separation:

$$y_j^{ ext{top}} \leq y_i^{ ext{bottom}} + M(1-z_{ij}^y) \quad orall i, j, i
eq j$$

Mutual Exclusion:

$$z_{ij}^x + z_{ji}^x + z_{ij}^y + z_{ji}^y \geq 1 \quad orall i, j, i \leq j$$

Continuous Variable Non-negativity:

$$\alpha_i, \beta_i \geq 0 \quad \forall i$$

Boundary Variable Non-negativity:

$$x_i^{ ext{left}}, x_i^{ ext{right}}, y_i^{ ext{bottom}}, y_i^{ ext{top}} \geq 0 \quad orall i$$

Binary Variable Declaration:

$$z_{ij}^x, z_{ij}^y \in \{0,1\} \quad orall i, j, i
eq j$$

Absolute Difference Constraints:

$$d\alpha_{ij} \geq \alpha_i - \alpha_j \quad \forall i, j$$

$$egin{aligned} dlpha_{ij} &\geq -lpha_i + lpha_j & orall i,j \ \ deta_{ij} &\geq eta_i - eta_j & orall i,j \ \ deta_{ii} &\geq -eta_i + eta_j & orall i,j \end{aligned}$$

Aspect ratio:

I-shaped layout

Inbound dock at one side of the I:

$$x_{
m Inbound\ Dock}^{
m left}=0$$

• Outbound dock at the other side:

$$x_{
m Outbound\ Staging}^{
m right} = B_{
m width}$$

Aspect ratio constraints:

$$B_{ ext{width}} \leq I \cdot B_{ ext{height}}, \quad B_{ ext{height}} \leq I \cdot B_{ ext{width}}$$

L-shaped layout

• Inbound dock at bottom-left corner:

$$x_{\rm Inbound\; Dock}^{\rm left}=0$$

• Outbound dock at top-right corner:

$$x_{
m Outbound\ Staging}^{
m right} = B_{
m width}$$

• Phantom department at bottom wall:

$$egin{align*} x_{
m Phantom}^{
m right} - x_{
m Phantom}^{
m left} \geq rac{1}{4} B_{
m width}, \quad y_{
m Phantom}^{
m top} - y_{
m Phantom}^{
m bottom} \geq rac{1}{4} B_{
m height} \ & \ x_{
m Phantom}^{
m left} = 0, \quad y_{
m Phantom}^{
m bottom} = 0 \ & \ \end{array}$$

U-shaped layout

• Inbound dock at bottom-left corner:

$$x_{
m Inbound\ Dock}^{
m left}=0,\quad y_{
m Inbound\ Dock}^{
m bottom}=0$$

Outbound dock at top-left corner:

$$x_{
m Outbound\ Staging}^{
m left} = 0, \quad y_{
m Outbound\ Staging}^{
m top} = B_{
m height}$$

• Phantom department at left wall:

$$x_{
m Phantom}^{
m left} = 0, \quad x_{
m Phantom}^{
m right} + 1 \leq B_{
m width}$$

• Minimum dimensions for Phantom department to create a propper U shape:

$$x_{\mathrm{Phantom}}^{\mathrm{right}} - x_{\mathrm{Phantom}}^{\mathrm{left}} \geq \frac{1}{4} B_{\mathrm{width}}, \quad y_{\mathrm{Phantom}}^{\mathrm{top}} - y_{\mathrm{Phantom}}^{\mathrm{bottom}} \geq \frac{1}{4} B_{\mathrm{height}}$$

Code

Side Notes

Coverting Qualitative SLP

We converted the qualitative SLP to a quantitive one by using the SLP legend. In this case it was possible as 'X' was not given in the SLP adjacent matrix and we therefore, also do not make use of negative numbers. We tied it with the scores in the SLP legend and also by squaring the SLP legend scores. When squaring the values, the running time get be decreased.

Outbound Staging

For the outbound strategy we where suppose to ioin areas for 2-Man Delivery and Parcel. We have done this by adding their areas together. Additionally, for the interaction we compared if they have for all departments the same value. As this was the case, we used these values for a department called 'Outbound Staging' and took out the departments for 2-Man Delivery and Parcel.

Aspect Ratio

We make use of an aspect ratio, for giving the warehouse certain proportions. 'R' is used for the proportion of the departments and 'I' is used for the general shape of the I-shaped warehouse.

Clearance

As we limit our warehouse size to the sum of the area needed by each deaprtment, we do not make use of clearance. Otherwise our model would be infeasable as a larger area would be needed.

Phantom Department

In order to create L- and U- shaped warehouses, we introduced a phantom warehouse. For this department we added a consraint which defined on which wall (s) it should be placed to reach the wanted shape. The exact size of the phantom warehouse then depends on width and the height of the total warehouse.

Costs

As no costs have been specified in the assignment describtion, we chose to set c to 1. Therefore, we left it out in our objective unction in the gurobi model below.

```
In [13]: selected_depts = load_data()
         # USER PARAMETERS / INPUTS
         # -----
         # Department areas (sq_m) - scaled down by factor of 10 for more reasonable dimensions
         L_LB = {d: 1.0 for d in selected_depts}
         W_LB = {d: 1.0 for d in selected_depts}
         R = 3 # Aspect ratio tolerance (1.2 means 1:1.2 to 1.2:1)
         BIG_M = 10000.0 # Big-M for separation constraints
         # Calculate total area
         total_area = sum(departments[d] for d in selected_depts)
         def solve_layout(layout_type ,total_area=total_area, selected_depts=selected_depts, departments=departments,
             model = gp.Model(f"warehouse_layout_{layout_type}")
            model.Params.NonConvex = 2
            # Variables
            alpha, beta = {}, {}
            x_left, x_right, y_bottom, y_top = {}, {}, {}, {}
            width, height = {}, {}
            d_alpha = {}
            d_beta = {}
            z_x = \{\}
            z_y = \{\}
             B_width = model.addVar(lb=0, name="B_width")
                                                          # small lb to avoid zero
             B_height = model.addVar(lb=0, name="B_height")
             if layout_type == "L-shaped" or layout_type == "U-shaped":
                 selected_depts.append("Phantom")
                 departments["Phantom"] = total_area/3
                 numeric_departments_matrix["Phantom"] = {d: 0 for d in selected_depts}
                 for d in selected_depts:
                     numeric_departments_matrix[d]["Phantom"] = 0
             for i in selected_depts:
                 x_left[i] = model.addVar(lb=0, name=f"x_left_{i}")
                 y_bottom[i] = model.addVar(lb=0, name=f"y_bottom_{i}")
                 width[i] = model.addVar(lb=0, name=f"width_{i}")
                 height[i] = model.addVar(lb=0, name=f"height_{i}")
                 # Derived boundaries
```

```
x_right[i] = model.addVar(lb=0, name=f"x_right_{i}")
      y_top[i] = model.addVar(lb=0, name=f"y_top_{i}")
      alpha[i] = model.addVar(name=f"alpha {i}")
      beta[i] = model.addVar(name=f"beta_{i}")
      # ensure nested dict entries exist
      d_alpha.setdefault(i, {})
      d beta.setdefault(i, {})
      z x.setdefault(i, {})
      z y.setdefault(i, {})
      for j in selected depts:
             print(i, j)
             d_alpha[i][j] = model.addVar(lb=0, name=f"d_alpha_{i}_{j}")
             d_beta[i][j] = model.addVar(lb=0, name=f"d_beta_{i}_{j}")
             z_x[i][j] = model.addVar(vtype=GRB.BINARY, name=f"z_x_{i}_{j}")
             z_y[i][j] = model.addVar(vtype=GRB.BINARY, name=f"z_y_{i}_{j}")
model.update()
# Placement, dimension & area constraints
for i in selected depts:
      # Within building
      model.addConstr(alpha[i] >= 0, name=f"alpha_pos_{i}")
      model.addConstr(beta[i] >= 0, name=f"beta_pos_{i}")
      model.addConstr(x_right[i] >= 0, name=f"width_lb_{i}")
      model.addConstr(x_left[i] >= 0, name=f"x_left_pos_{i}")
      model.addConstr(y_top[i] >= 0, name=f"y_top_pos_{i}")
      model.addConstr(y_bottom[i] >= 0, name=f"y_bottom_pos_{i}")
      model.addConstr(x_right[i] <= B_width, name=f"x_right_pos_{i}")</pre>
      model.addConstr(y_top[i] <= B_height, name=f"y_top_pos_{i}")</pre>
      # Area (bilinear but with positive factors only)
      area = departments[i]
      if i == "Phantom":
             model.addConstr((x\_right[i] - x\_left[i]) * (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i]) == 1 * area, name=f"area\_lb\_left[i] + (y\_top[i] - y\_bottom[i] + (y\_top[i] - y\_bottom[i]) == 1 * area\_lb\_left[i] + (y\_top[i] - y\_bottom[i] + (y\_top[i]
      # Area Constraint (upper bound)
      model.addConstr((x\_right[i]-x\_left[i]) \  \  <= \  R \  \  *(y\_top[i]-y\_bottom[i]), \  \  name=f"area\_ub\_\{i\}")
      model.addConstr((y_top[i]-y_bottom[i]) <= R *(x_right[i]-x_left[i]), name=f"area_ub_{i}")</pre>
      model.addConstr(alpha[i] == 0.5 * (x_left[i] + x_right[i]), name=f"centroid_x_{i}")
      model.addConstr(beta[i] == 0.5 * (y_bottom[i] + y_top[i]), name=f"centroid_y_{i}")
      for j in selected depts:
             if i <= j:
                   model.addConstr(z_x[i][j] + z_x[j][i] + z_y[i][j] + z_y[j][i] \Rightarrow 1, name=f"mutual_excl_{i}_{}
             if i != j:
                    model.addConstr(x\_right[j] <= x\_left[i] + BIG\_M*(1 - z\_x[i][j]), name=f"width\_def\_\{i\}\_\{j\}")
                    model.addConstr(y_top[j] <= y_bottom[i] + BIG_M*(1 - z_y[i][j]), name=f"height_def_{i}_{j}")</pre>
                    # Absolute distance linearization
                    model.addConstr(d_alpha[i][j] >= alpha[i] - alpha[j])
                    model.addConstr(d_alpha[i][j] >= -alpha[i] + alpha[j])
                    model.addConstr(d_beta[i][j] >= beta[i] - beta[j])
                    model.addConstr(d_beta[i][j] >= -beta[i] + beta[j])
#space specific constraints
if layout_type == "I-shaped":
      # Inbound dock at bottom
      # Inbound dock must be at the left wall
      model.addConstr(x_left["Inbound Dock"] == 0, name="inbound_left_wall")
      # Outbound dock must be at the right wall
      model.addConstr(x_right["Outbound Staging"] == B_width, name="outbound_right_wall")
      model.addConstr(B_width <= I * B_height)</pre>
      model.addConstr(B_height <= I * B_width)</pre>
      #total_area = total_area * 1
if layout_type == "L-shaped":
      # Inbound dock at bottom left corner
      model.addConstr(x_left["Inbound Dock"] == 0, name="inbound_left_wall")
      model.addConstr(y_top["Inbound Dock"] == B_height, name="inbound_top_wall")
```

```
# Outbound dock at top right corner
    model.addConstr(x_right["Outbound Staging"] == B_width, name="outbound_right_wall")
    model.addConstr(y bottom["Outbound Staging"] == 0, name="outbound bottom wall")
    # phantom department at bottom wall
    model.addConstr((x_right["Phantom"] - x_left["Phantom"]) >= 1/4 * B_width, name="inbound_width")
    model.addConstr((y_top["Phantom"] - y_bottom["Phantom"]) >= 1/4 * B_height, name="inbound_height")
    model.addConstr(x_left["Phantom"] == 0, name="inbound_left_wall")
    model.addConstr(y_bottom["Phantom"] == 0, name="inbound_bottom_wall")
if layout_type == "U-shaped":
     # Inbound dock at bottom left corner
    model.addConstr(y_bottom["Inbound Dock"] == 0, name="inbound_bottom_wall")
    model.addConstr(x_left["Inbound Dock"] == 0, name="inbound_left_wall")
    # Outbound dock at top left corner
    model.addConstr(y_top["Outbound Staging"] == B_height, name="outbound_top wall")
    model.addConstr(x_left["Outbound Staging"] == 0, name="outbound_left_wall")
    # phantom department at left wall
    model.addConstr(x_left["Phantom"] == 0, name="phantom_left wall")
    model.addConstr(B_width >= x_right["Phantom"]+1, name="phantom_right")
    model.addConstr((x_right["Phantom"] - x_left["Phantom"]) >= 1/4 * B_width, name="inbound_width")
    model.addConstr((y_top["Phantom"] - y_bottom["Phantom"]) >= 1/4 * B_height, name="inbound_height")
total area = sum(departments[d] for d in selected depts)
print(f"Total area for {layout_type}: {total_area}")
model.addConstr(B_width * B_height == total_area, name="total_area")
# Objective
obj = gp.quicksum(
    numeric_departments_matrix[i][j] * (d_alpha[i][j] + d_beta[i][j])
    for i in selected depts for j in selected depts if i != j
model.setObjective(obj, GRB.MINIMIZE)
model.optimize()
# Plot results (unchanged except width/height already consistent)
if model.status in (GRB.OPTIMAL, GRB.TIME_LIMIT, GRB.SUBOPTIMAL):
    print(f"\n--- {layout_type.upper()} LAYOUT ---")
    print(f"Building dimensions: {B_width.X:.1f} x {B_height.X:.1f} m")
    print(f"Total area: {B_width.X * B_height.X:.1f} sqm")
    print(f"Objective (total flow-distance): {model.ObjVal:.1f}")
    # ...existing code inside solve_layout, in the plotting section after creating fig, ax ...
    fig, ax = plt.subplots(figsize=(15,10))
    colors = plt.cm.get_cmap('tab20', len(selected_depts))
    # Warehouse (building) outline
    building outline = patches.Rectangle(
        (0, 0),
        B width.X,
        B height.X,
        facecolor='none',
        edgecolor='red',
        linewidth=2,
        linestyle='--'
        label='Building'
    ax.add patch(building outline)
    ax.text(B_width.X/2, B_height.X + 0.02*B_height.X,
            f"Warehouse: {B_width.X:.1f} x {B_height.X:.1f} m",
            ha='center', va='bottom', fontsize=12)
    for idx, i in enumerate(selected depts):
        xl, xr = x_left[i].X, x_right[i].X
        yb, yt = y_bottom[i].X, y_top[i].X
        # Check if the department is Phantom
        if i == "Phantom":
            facecolor = 'white'
            label_text = "" # no name
            show_marker = False
            show_area = False
            facecolor = colors(idx)
```

```
label_text = i
                         show_marker = True
                         show area = True
                     rect = patches.Rectangle((xl, yb), xr - xl, yt - yb,
                                              edgecolor='black', facecolor=facecolor, alpha=0.7)
                     ax.add patch(rect)
                     # Add department name
                     if label text:
                         ax.text((xl + xr)/2, (yb + yt)/2, label_text, ha='center', va='center',
                                 fontsize=10, fontweight='bold',
                                 bbox=dict(facecolor='white', alpha=0.7, edgecolor='none'))
                     # Add marker if not Phantom
                     if show marker:
                         ax.plot((xl + xr)/2, (yb + yt)/2, 'kx', markersize=8)
                     # Add area text if not Phantom
                     if show area:
                         ax.text(xl + 5, yt - 5, f"{(xr - xl)*(yt - yb):.0f} sqm", fontsize=8)
                 ax.set_xlim(0, B_width.X)
                 ax.set_ylim(0, B_height.X)
                 ax.set_aspect('equal')
                 ax.set_title(f"{layout_type} Layout\nTotal Flow-Distance: {model.ObjVal:.1f}", fontsize=14)
                 ax.grid(True, linestyle='--', alpha=0.6)
                 ax.set_xlabel("Width (m)")
                 ax.set_ylabel("Height (m)")
                 ax.legend(loc='upper right')
                 plt.show()
             else:
                 print(f"No feasible solution for {layout_type}, status: {model.status}")
In [14]: # Run for all layouts
         for layout_type in [ "L-shaped"]:
             selected depts = load data()
```

 $\verb|solve_layout(layout_type, total_area=total_area, selected_depts=selected_depts, departments=departments, | a constraint of the constra$

```
Set parameter Username
Set parameter LicenseID to value 2620689
Academic license - for non-commercial use only - expires 2026-02-11
Set parameter NonConvex to value 2
Inbound Dock Inbound Dock
Inbound Dock Outbound Staging
Inbound Dock Packing / Wrap / Banding
Inbound Dock Pallet Reserve Storage (Bulk)
Inbound Dock Receiving/Staging
Inbound Dock Shipping Dock
Inbound Dock Phantom
Outbound Staging Inbound Dock
Outbound Staging Outbound Staging
Outbound Staging Packing / Wrap / Banding
Outbound Staging Pallet Reserve Storage (Bulk)
Outbound Staging Receiving/Staging
Outbound Staging Shipping Dock
Outbound Staging Phantom
Packing / Wrap / Banding Inbound Dock
Packing / Wrap / Banding Outbound Staging
Packing / Wrap / Banding Packing / Wrap / Banding
Packing / Wrap / Banding Pallet Reserve Storage (Bulk)
Packing / Wrap / Banding Receiving/Staging
Packing / Wrap / Banding Shipping Dock
Packing / Wrap / Banding Phantom
Pallet Reserve Storage (Bulk) Inbound Dock
Pallet Reserve Storage (Bulk) Outbound Staging
Pallet Reserve Storage (Bulk) Packing / Wrap / Banding
Pallet Reserve Storage (Bulk) Pallet Reserve Storage (Bulk)
Pallet Reserve Storage (Bulk) Receiving/Staging
Pallet Reserve Storage (Bulk) Shipping Dock
Pallet Reserve Storage (Bulk) Phantom
Receiving/Staging Inbound Dock
Receiving/Staging Outbound Staging
Receiving/Staging Packing / Wrap / Banding
Receiving/Staging Pallet Reserve Storage (Bulk)
Receiving/Staging Receiving/Staging
Receiving/Staging Shipping Dock
Receiving/Staging Phantom
Shipping Dock Inbound Dock
Shipping Dock Outbound Staging
Shipping Dock Packing / Wrap / Banding
Shipping Dock Pallet Reserve Storage (Bulk)
Shipping Dock Receiving/Staging
Shipping Dock Shipping Dock
Shipping Dock Phantom
Phantom Inbound Dock
Phantom Outbound Staging
Phantom Packing / Wrap / Banding
Phantom Pallet Reserve Storage (Bulk)
Phantom Receiving/Staging
Phantom Shipping Dock
Phantom Phantom
Total area for L-shaped: 93466.6666666667
Gurobi Optimizer version 12.0.1 build v12.0.1rc0 (win64 - Windows 11.0 (26100.2))
CPU model: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz, instruction set [SSE2|AVX|AVX2]
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Non-default parameters:
NonConvex 2
Optimize a model with 372 rows, 254 columns and 1036 nonzeros
Model fingerprint: 0x7f0b74e3
Model has 8 quadratic constraints
Variable types: 156 continuous, 98 integer (98 binary)
Coefficient statistics:
                  [3e-01, 1e+04]
 Matrix range
  QMatrix range
                   [1e+00, 1e+00]
 Objective range [4e+00, 2e+01]
 Bounds range
                  [1e+00, 1e+00]
 RHS range
                   [1e+00, 1e+04]
 QRHS range
                  [3e+03, 9e+04]
Presolve removed 223 rows and 140 columns
Presolve time: 0.00s
```

Presolved: 239 rows, 135 columns, 653 nonzeros Presolved model has 1 quadratic constraint(s)

Presolved model has 21 bilinear constraint(s)

Warning: Model contains variables with very large bounds participating in product terms.

Presolve was not able to compute smaller bounds for these variables. Consider bounding these variables or reformulating the model.

Solving non-convex MIQCP

Variable types: 62 continuous, 73 integer (73 binary)

Root relaxation: objective 3.735176e+01, 85 iterations, 0.00 seconds (0.00 work units)

Root relaxation: objectiv	e 3.73	351766	e+01, 85 iterations, 0	.00 sed	conds (0	.00 worl
Nodes Current	Node	ı	Objective Bounds	1	Wor	k
·			Incumbent BestBd	Gap	It/Node	
					_ 0,	
0 0 37.35176	0	38	- 37.35176	-	-	0s
0 0 1222.89275	0	38	- 1222.89275	-	-	0s
0 0 1222.89275	0	38	- 1222.89275	-	-	0s
0 0 1350.29007	0	36	- 1350.29007	-	-	0s
0 0 1350.29007	0	36	- 1350.29007	-	-	0s
0 0 1638.53954	0	32	- 1638.53954	-	-	0s
0 0 1638.53954	0	34	- 1638.53954	-	-	0s
0 0 1639.17638	0	38	- 1639.17638	-	-	0s
0 0 1639.17638	0	38	- 1639.17638	-	-	0s
0 0 1639.17643	0	36	- 1639.17643	-	-	0s
0 0 1639.17643	0	36	- 1639.17643	-	-	0s
0 0 1773.37920	0	36	- 1773.37920	-	-	0s
0 0 1782.12895 0 0 1951.34961	0	36	- 1782.12895	-	-	0s
	0 0	38 38	- 1951.34961 - 1965.80473	-	-	0s
0 0 1965.80473 0 0 1977.01817	0	37	- 1903.00473	-	-	0s 0s
0 0 1977.01817	0	37	- 1977.01817	_	_	0s
0 0 1984.25672	0	33	- 1984.25672	_	_	0s
0 0 1985.12111	0	35	- 1985.12111	_	_	0s
0 0 1993.90882	0	35	- 1993.90882	_	_	0s
0 0 1994.01387	0	35	- 1994.01387	_	_	0s
0 0 1994.28439	0	35	- 1994.28439	_	_	0s
0 0 1994.28439	0	35	- 1994.28439	_	_	0s
0 0 1994.38363	0	35	- 1994.38363	_	_	0s
0 0 1994.43205	0	35	- 1994.43205	-	-	0s
0 0 1994.43903	0	35	- 1994.43903	-	-	0s
0 0 2029.56753	0	29	- 2029.56753	-	-	0s
0 2 2029.56753	0	29	- 2029.56753	-	-	0s
33901 15697 infeasible	53		- 8916.28977	-	7.4	5s
89882 34961 infeasible	52		- 9790.49993	-	7.5	10s
137127 51937 15021.3346	36	18	- 10241.9032	-	7.6	15s
194323 72583 12363.7848	45	20	- 10525.6954	-	7.6	20s
237964 89073 11021.2822	51	21	- 10697.7421	-	7.6	25s
284863 107210 11436.1599		23	- 10817.8288	-		30s
327509 124190 infeasible	49		- 10909.0701	-		35s
360916 136502 infeasible			- 10976.7928		7.5	40s
393440 148344 12878.3348		21	- 11039.5800	-		45s
430150 162455 12315.5012		23	- 11099.4176		7.5	50s
467654 175304 13905.1432		22	- 11165.9502			55s
508032 189914 infeasible		21	- 11224.5765			60s
546220 202137 11482.0840 590726 217355 infeasible		21	- 11288.1124 - 11348.5714			65s 70s
621544 227685 12825.8401		21	- 11348.5714 - 11391.5712		7.5 7.5	76s 75s
651051 237968 infeasible		21	- 11391.3712 - 11427.3128			755 80s
678139 248258 13669.5264		19	- 11427.3128			85s
702526 256123 11738.2474		21	- 11490.4760		7.5	90s
728945 264792 infeasible			- 11519.6633	_	- 7 . 5	95s
750623 272090 infeasible			- 11545.1981	-		100s
786143 283588 infeasible			- 11584.2251		- 7 . 5	105s
828323 296064 infeasible			- 11634.5554	-		110s
863974 306608 infeasible			- 11673.2684		7.5	115s
900167 316800 24926.9714		23	- 11714.2175	-		120s
938691 328703 17537.5794		20	- 11753.4451	-	7.5	125s
979417 341112 25644.4150		17	- 11794.1565	-		130s
1025402 354624 infeasibl			- 11836.026		- 7.5	
1068357 366461 infeasibl			- 11878.121		- 7.5	
1111625 378502 11940.293	7 43	26	- 11921.933	6	- 7.5	

4454740 200507	40427 4445		2.5	14062 0742		7.5	450
1154718 390597		50	25	- 11962.0713	-	7.5	150s
1197808 401455		40	21	- 12003.8213	-	7.5	155s
1238484 412908		47	22	- 12041.3657	-	7.5	160s
1276257 423544		64	23	- 12074.3179	-	7.5	165s
1315020 434176		49	-	- 12106.4520	-	7.5	170s
1354766 445550		121	5	- 12126.6249	-	7.4	175s
1391950 451267		131	2	- 12126.6490	-	7.4	180s
1431802 457241		124	3	- 12126.6745	-	7.3	185s
1469098 460360		127	2	- 12126.7053	-	7.2	190s
1505534 463343		174		- 12126.7085	-	7.3	195s
1537458 463981		180		- 12126.7085	-	7.3	200s
1573114 463679		175		- 12126.7086	-	7.4	205s
1609596 463784		179	6	- 12126.7086	-	7.5	210s
1646176 463848		181	_	- 12126.7086	-	7.5	215s
1683307 463806		174	5	- 12126.7087	-	7.6	220s
1717175 463373		178		- 12126.7087	-	7.7	225s
1750158 464401		180		- 12126.7087	-	7.7	230s
1787039 464793		181		- 12126.7088	-	7.8	235s
1819044 464441		181		- 12126.7088	-	7.8	240s
1849041 464272		178		- 12126.7088	-	7.9	245s
1881407 463773		183		- 12126.7089	-	8.0	250s
1916565 463771		178		- 12126.7089	-	8.0	255s
1952157 463670		178		- 12126.7090	-	8.1	260s
1987176 463406		178		- 12126.7090	-	8.2	265s
2022705 464325		176		- 12126.7090	-	8.2	270s
2058123 464278		178		- 12126.7091	-	8.2	275s
2091483 463719		184	_	- 12126.7091	-	8.3	280s
2116440 463678		175	5	- 12126.7091	-	8.4	285s
2156763 463305		177	5	- 12126.7092	-	8.4	290s
2190218 463894		178		- 12126.7092	-	8.5	295s
2225053 463473		178		- 12126.7092	-	8.5	300s
2252764 463500		178		- 12126.7093	-	8.6	305s
2292887 463555		179		- 12126.7093	-	8.7	310s
2324328 463111		181	_	- 12126.7093	-	8.8	315s
2358380 464534		173	6	- 12126.7094	-	8.8	321s
2389330 465042		171	4	- 12126.7094	-	8.8	325s
2433576 465135		180	6	- 12126.7094	-	8.8	330s
2468404 464723		182		- 12126.7095	-	8.8	335s
2498812 464302		180	6	- 12126.7095	-	8.9	340s
2524631 465407		169	5	- 12126.7095	-	8.9	345s
2573345 465664		175		- 12126.7096	-	8.9	350s
2624065 464889		178		- 12126.7097	-	8.8	355s
2677211 464263		184		- 12126.7097	-	8.6	360s
2734210 465195		182	6	- 12126.7098	-	8.5	365s
2786867 464392		175	5	- 12126.7099	-	8.3	370s
2828694 464569		179	_	- 12126.7099	-	8.2	375s
2883591 464148		184	6	- 12126.7100	-	8.0	380s
2949736 463561		181		- 12126.7101	-	7.9	385s
3006990 463598		184	_	- 12126.7101	-	7.7	390s
3069444 464464		182	6	- 12126.7102	-	7.6	395s
3125630 463829		182	6	- 12126.7102	-	7.5	400s
3181221 463266 3242975 463639		177	5	- 12126.7103	-	7.3	405s
		178		- 12126.7104	-	7.2	410s
3296193 463616 3353223 462965		179 180	5	- 12126.7104 - 12126.7105	-	7.1 7.0	415s 420s
			5		-		
3407723 464690 3462272 464252		176 176		- 12126.7106 - 12126.7106	-	6.9	425s
3462272 464252 3516936 465189		176	E	- 12126.7106 - 12126.7106	-	6.8 6.7	430s
		182	6	- 12126.7106	-		435s
3567200 464243 3625693 464281		178		- 12126.7107	-	6.6	440s 445s
		178	-	- 12126.7108	-	6.5	
3671895 463822		177	5	- 12126.7108	-	6.4	450s
3714048 463472 3775813 463821		183	6	- 12126.7109 12126.7110	-	6.3	455s 460s
3826985 463175		184		- 12126.7110 - 12126.7110	-	6.2	465s
		178	Е		-		
3874472 463049 3926191 463716		175	5	- 12126.7111 - 12126.7112	-	6.1	470s
		175 177	5	- 12126.7112 - 12126.7112	-	6.0 5.9	475s 480c
3980763 463806		177	5	- 12126.7112 - 12126.7113	-	5.9	480s
4033748 463729 4085627 463246		179	5 5	- 12126.7113 - 12126.7113	-	5.9	485s 490s
4141679 463459		178 185	6	- 12126.7113 - 12126.7114	-	5.8 5.7	490S 495s
4191804 462643		181	U	- 12126.7114 - 12126.7115	-	5.7	4955 500s
4250507 463851		179	5	- 12126.7115 - 12126.7116	_	5.6	505s
4311489 463069		180	5	- 12126.7116 - 12126.7117	_	5.5	510s
4365327 463247		185	6	- 12126.7117	_	5.5	515s
4417571 463126		180	5	- 12126.7118	_	5.4	520s
		±00	,	12120 + / 113		J•→	J2U3

4470401 462720 :::			12126 7110		F 3	F2F-
4470491 462729 infe 4531430 464992 1212		6	- 12126.7119 - 12126.7120	-	5.3 5.3	525s 530s
4590459 465467 1212		6	- 12126.7120	_	5.2	535s
4642861 464586 infe		O	- 12126.7121	_	5.2	540s
4705944 465757 1212		4	- 12126.7122	_	5.1	545s
4761148 465874 infe		•	- 12126.7123	_	5.0	550s
4803281 465106 1212		5	- 12126.7123	_	5.0	555s
4852733 464554 infe			- 12126.7124	_	5.0	560s
4909961 465699 infe			- 12126.7124	_	4.9	565s
4964201 464830 1212		6	- 12126.7125	_	4.9	570s
5012066 464855 1212		5	- 12126.7125	_	4.8	575s
5065564 464517 infe			- 12126.7126	_	4.8	580s
5118210 464145 1212	26.7127 180	5	- 12126.7126	_	4.7	585s
5168835 466057 1212		4	- 12126.7127	_	4.7	590s
5224824 466195 1212		5	- 12126.7128	_	4.6	595s
5280371 466859 1212		6	- 12126.7128	_	4.6	600s
5335016 466592 1212	26.7129 177	5	- 12126.7129	_	4.5	605s
5396166 465941 infe	easible 177		- 12126.7129	_	4.5	610s
5452607 466405 1212	26.7130 176	5	- 12126.7130	_	4.5	615s
5504800 465965 1212	26.7131 177	5	- 12126.7130	_	4.4	620s
5551462 465656 1212	26.7131 179	5	- 12126.7131	_	4.4	625s
5619933 464851 1212	26.7132 182	6	- 12126.7132	-	4.3	630s
5673308 465097 1212	26.7133 175	5	- 12126.7133	-	4.3	635s
5732847 465216 1212	26.7133 183	6	- 12126.7133	-	4.3	640s
5784149 464505 infe	easible 178		- 12126.7134	-	4.2	645s
5841728 464485 1212	26.7135 179	5	- 12126.7134	-	4.2	650s
5896496 464010 infe	easible 187		- 12126.7135	-	4.2	655s
5950241 465505 1212	26.7136 176	5	- 12126.7136	-	4.1	660s
6002816 465791 infe	easible 184		- 12126.7136	-	4.1	665s
6061287 465296 infe	easible 184		- 12126.7137	-	4.1	670s
6114826 464705 1212	26.7138 186	6	- 12126.7138	-	4.0	675s
6167954 464491 1212	26.7139 179	6	- 12126.7139	-	4.0	680s
6225949 464441 1212	26.7140 179	5	- 12126.7139	-	4.0	685s
6280461 464936 infe	easible 184		- 12126.7140	-	3.9	690s
6337998 464745 1212	26.7141 180	5	- 12126.7141	-	3.9	695s
6386571 464349 1212	26.7142 183	6	- 12126.7142	-	3.9	700s
6440247 464655 1212	26.7144 179	5	- 12126.7143	-	3.8	705s
6489263 463948 infe	easible 181		- 12126.7144	-	3.8	710s
6537088 464035 1212	26.7145 177	5	- 12126.7145	-	3.8	715s
6595023 463869 1212	26.7146 183	5	- 12126.7146	-	3.8	720s
6649634 463667 infe	easible 175		- 12126.7147	-	3.7	725s
6705933 463641 infe	easible 175		- 12126.7148	-	3.7	730s
6763583 464340 infe	easible 178		- 12126.7148	-	3.7	735s
6819089 463682 1212	26.7149 177	4	- 12126.7149	-	3.7	740s
6867404 463342 1212	26.7150 170	5	- 12126.7149	-	3.6	745s
6922637 463598 infe	easible 184		- 12126.7150	-	3.6	750s
6983856 463715 1212	26.7151 182	6	- 12126.7150	-	3.6	755s
7037993 462740 infe	easible 187		- 12126.7151	-	3.6	760s
7093291 465075 1212	26.7152 175	5	- 12126.7152	-	3.5	765s
7147177 464317 1212	26.7152 181	6	- 12126.7152	-	3.5	770s
7202370 464600 1212	26.7153 183	6	- 12126.7153	-	3.5	775s
7259690 464346 1212	26.7154 177	5	- 12126.7154	-	3.5	780s
7312905 463742 1212	26.7155 183	6	- 12126.7155	-	3.4	785s
7372602 463243 infe	easible 178		- 12126.7156	-	3.4	790s
7430259 463671 1212	26.7156 177	5	- 12126.7156	-	3.4	795s
7484377 463875 infe	easible 178		- 12126.7157	-	3.4	800s
7535905 462991 1212		6	- 12126.7157	-	3.3	805s
7602813 464072 infe	easible 178		- 12126.7158	-	3.3	810s
7659802 464186 infe	easible 178		- 12126.7159	-	3.3	815s
7715804 463625 1212	26.7159 176	5	- 12126.7159	-	3.3	820s
7757183 463673 1212	26.7160 178	5	- 12126.7160	-	3.3	825s
7825403 462973 1212		6	- 12126.7161	-	3.2	830s
7885247 464037 infe	easible 179		- 12126.7162	-	3.2	835s
7940810 463514 infe			- 12126.7162	-	3.2	840s
7992812 463094 1212		4	- 12126.7164	-	3.2	845s
8048755 462886 1212		5	- 12126.7164	-	3.2	850s
8109466 462887 1212		5	- 12126.7165	-	3.1	855s
8163702 463183 1212		5	- 12126.7166	-	3.1	860s
8221933 464814 1212		5	- 12126.7167	-	3.1	865s
8276251 465023 1212		5	- 12126.7167	-	3.1	870s
8336837 465291 1212		5	- 12126.7168	-	3.1	875s
8391317 464339 1212		5	- 12126.7168	-	3.0	880s
8444447 464483 1212		6	- 12126.7169	-	3.0	885s
8502409 464037 1212		5	- 12126.7169	-	3.0	890s
8555036 466034 1212	26.7170 180	6	- 12126.7170	-	3.0	895s

0004010 405700 13130 7171	177	г	12126 7171		2 0 0006
8604916 465708 12126.7171 8657202 466018 12126.7171	177 176	5 5	- 12126.7171 - 12126.7171	-	3.0 900s 3.0 905s
8708791 466014 infeasible	179	5	- 12126.7171 - 12126.7172	_	3.0 910s
8762697 465034 infeasible	181		- 12126.7172	_	2.9 915s
8811864 464374 infeasible	178		- 12126.7173	_	2.9 920s
8854825 464543 infeasible	184		- 12126.7173	_	2.9 925s
8908397 464202 infeasible	186		- 12126.7174	-	2.9 930s
8964438 465243 12126.7177	181	6	- 12126.7175	-	2.9 935s
9022383 465018 12126.7176	177	5	- 12126.7176	-	2.9 940s
9074752 464383 infeasible	179		- 12126.7177	-	2.8 945s
9130800 464130 12126.7178	178	5	- 12126.7177	-	2.8 950s
9188478 464647 12126.7178	179	5	- 12126.7178	-	2.8 955s
9241298 463910 infeasible	187		- 12126.7179	-	2.8 960s
9302953 463644 infeasible	185		- 12126.7180	-	2.8 965s
9356933 463538 12126.7181	177	5	- 12126.7181	-	2.8 970s
9407881 463818 infeasible	178		- 12126.7182	-	2.8 975s
9470292 463082 12126.7183	176	5	- 12126.7182	-	2.7 980s
9527599 463079 infeasible	181		- 12126.7183	-	2.7 985s
9580824 464145 infeasible	178		- 12126.7184	-	2.7 990s
9637537 464041 infeasible	178	_	- 12126.7184	-	2.7 995s
9697583 463857 12126.7185	184	6	- 12126.7185	-	2.7 1000s
9755222 463301 infeasible	179	-	- 12126.7186	-	2.7 1005s
9807280 462887 12126.7187	180	5 5	- 12126.7187	-	2.7 1010s
9856593 463794 12126.7188 9911047 463386 infeasible	178 181	Э	- 12126.7188 - 12126.7188	-	2.7 1015s 2.6 1020s
9960888 462764 12126.7189	178	5	- 12126.7188	_	2.6 1020s 2.6 1025s
10014095 462960 12126.7190	186	6	- 12126.7189	-	2.6 1030s
10070784 463113 12126.7191	180	5	- 12126.7191	_	2.6 1035s
10119106 462748 12126.7191	187	6	- 12126.7191	_	2.6 1040s
10172998 463501 12126.7192	175	5	- 12126.7192	_	2.6 1045s
10236813 463955 12126.7193	184	6	- 12126.7193	_	2.6 1050s
10295310 463539 12126.7194	179	5	- 12126.7193	_	2.6 1055s
10352020 464189 12126.7194	177	5	- 12126.7194	-	2.6 1060s
10410420 464117 12126.7195	179	5	- 12126.7195	-	2.5 1065s
10462817 463591 infeasible	180		- 12126.7196	-	2.5 1070s
10521132 463111 infeasible	187		- 12126.7198	-	2.5 1075s
10583950 462879 infeasible	181		- 12126.7201	-	2.5 1080s
10638376 462809 infeasible	180		- 12126.7201	-	2.5 1085s
10692617 463458 infeasible	184		- 12126.7202	-	2.5 1090s
10752378 463099 12126.7203	186	6	- 12126.7203	-	2.5 1095s
10808824 462785 infeasible	180		- 12126.7204	-	2.5 1100s
10863122 462749 infeasible	182		- 12126.7205	-	2.4 1105s
10917419 462445 infeasible	190		- 12126.7206	-	2.4 1110s
10978549 463651 12126.7207	176	5	- 12126.7207	-	2.4 1115s
11035838 463393 12126.7208	177	4	- 12126.7208	-	2.4 1120s
11093851 463502 infeasible	180		- 12126.7209	-	2.4 1125s
11152700 463471 infeasible	181	-	- 12126.7210		2 4 4420-
11207289 463156 12126.7211 11261432 462476 infeasible	183	5		-	2.4 1130s
			- 12126.7211	-	2.4 1135s
	187		- 12126.7212	-	2.4 1135s 2.4 1140s
11313120 462605 12126.7213	185	6	- 12126.7212 - 12126.7213	- - -	2.4 1135s 2.4 1140s 2.4 1145s
11313120 462605 12126.7213 11377168 462556 12126.7214	185 183	6 6	- 12126.7212 - 12126.7213 - 12126.7214	- - -	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214	185 183 187	6 6 6	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214	- - - -	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215	185 183 187 179	6 6	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215	- - - -	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible	185 183 187 179 183	6 6 6 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216	- - - -	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1165s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217	185 183 187 179 183 186	6 6 6	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217	- - - -	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1165s 2.3 1170s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible	185 183 187 179 183	6 6 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216	- - - - -	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1165s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218	185 183 187 179 183 186 187	6 6 6 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218	- - - - - -	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1165s 2.3 1170s 2.3 1175s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219	185 183 187 179 183 186 187	6 6 6 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219	- - - - - - -	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1165s 2.3 1170s 2.3 1175s 2.3 1180s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible	185 183 187 179 183 186 187 183	6 6 5 6 6 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220	-	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1170s 2.3 1175s 2.3 1180s 2.3 1185s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221	185 183 187 179 183 186 187 183 183	6 6 5 6 6 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220	-	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1170s 2.3 1175s 2.3 1180s 2.3 1180s 2.3 1189s 2.3 1190s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221 11860095 462138 12126.7222	185 183 187 179 183 186 187 183 183 182	6 6 5 6 6 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220 - 12126.7220	-	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1170s 2.3 1175s 2.3 1180s 2.3 1185s 2.3 1190s 2.3 1195s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221 11860095 462138 12126.7222 11916576 462462 infeasible	185 183 187 179 183 186 187 183 183 182 184	6 6 5 6 6 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220 - 12126.7222 - 12126.7222	-	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1170s 2.3 1175s 2.3 1180s 2.3 1189s 2.3 1190s 2.3 1195s 2.3 1200s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221 11860095 462138 12126.7222 11916576 462462 infeasible 11972706 462322 infeasible	185 183 187 179 183 186 187 183 183 184 191	6 6 5 6 6 5 4 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220 - 12126.7222 - 12126.7222 - 12126.7222	-	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1170s 2.3 1175s 2.3 1180s 2.3 1185s 2.3 1190s 2.3 1190s 2.3 1200s 2.3 1205s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221 11860095 462138 12126.7222 11916576 462462 infeasible 11972706 462322 infeasible 12028319 462230 12126.7224 12082981 461893 12126.7225 12140058 464440 12126.7226	185 183 187 179 183 186 187 183 182 184 191 185 185 188 173	6 6 5 6 5 4 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220 - 12126.7222 - 12126.7224 - 12126.7224 - 12126.7224 - 12126.7225 - 12126.7225 - 12126.7225	-	2.4 1135s 2.4 1140s 2.4 1150s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1170s 2.3 1175s 2.3 1180s 2.3 1185s 2.3 1190s 2.3 1205s 2.3 1205s 2.3 1210s 2.2 1215s 2.2 1220s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221 11860095 462138 12126.7222 11916576 462462 infeasible 11972706 462322 infeasible 11972706 462322 infeasible 12028319 462230 12126.7224 12082981 461893 12126.7225 12140058 464440 12126.7226 12192901 464174 12126.7227	185 183 187 179 183 186 187 183 182 184 191 185 185 188 173 180	6 6 5 6 5 4 5 5 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220 - 12126.7222 - 12126.7222 - 12126.7224 - 12126.7224 - 12126.7224 - 12126.7225 - 12126.7226 - 12126.7226 - 12126.7226	-	2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1170s 2.3 1175s 2.3 1180s 2.3 1185s 2.3 1190s 2.3 1200s 2.3 1205s 2.3 1210s 2.2 1215s 2.2 1220s 2.2 1225s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221 11860095 462138 12126.7222 11916576 462462 infeasible 11972706 462322 infeasible 12028319 462230 12126.7224 12082981 461893 12126.7225 12140058 464440 12126.7226 12192901 464174 12126.7227 12243757 463675 12126.7228	185 183 187 179 183 186 187 183 182 184 191 185 185 188 173 180 166	6 6 6 5 6 5 5 5 5 6 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220 - 12126.7222 - 12126.7222 - 12126.7224 - 12126.7224 - 12126.7225 - 12126.7226 - 12126.7226 - 12126.7226 - 12126.7226 - 12126.7226		2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1170s 2.3 1175s 2.3 1180s 2.3 1185s 2.3 1200s 2.3 1200s 2.3 120s 2.3 1210s 2.2 1215s 2.2 1220s 2.2 1225s 2.2 1230s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221 11860095 462138 12126.7221 11916576 462462 infeasible 11972706 462322 infeasible 11972706 462322 infeasible 12028319 462230 12126.7224 12082981 461893 12126.7225 12140058 464440 12126.7225 121492901 464174 12126.7227 12243757 463675 12126.7228	185 183 187 179 183 186 187 183 182 184 191 185 185 188 173 180 166 179	6 6 5 6 5 4 5 5 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220 - 12126.7222 - 12126.7224 - 12126.7224 - 12126.7225 - 12126.7226 - 12126.7226 - 12126.7226 - 12126.7227 - 12126.7227		2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1170s 2.3 1175s 2.3 1180s 2.3 1185s 2.3 1200s 2.3 1200s 2.3 120s 2.3 1210s 2.2 1225s 2.2 1220s 2.2 1225s 2.2 1230s 2.2 1235s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221 11860095 462138 12126.7221 11916576 462462 infeasible 11972706 462322 infeasible 11972706 462322 infeasible 12028319 462230 12126.7224 12082981 461893 12126.7224 12082981 461893 12126.7225 12140058 464440 12126.7226 12192901 464174 12126.7227 12243757 463675 12126.7228 12293980 464905 12126.7227 12333091 464929 infeasible	185 183 187 179 183 186 187 183 182 184 191 185 185 188 173 180 166 179 178	6 6 6 5 6 5 5 5 5 6 5 6 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220 - 12126.7222 - 12126.7222 - 12126.7224 - 12126.7224 - 12126.7225 - 12126.7226 - 12126.7226 - 12126.7227 - 12126.7227 - 12126.7227		2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1170s 2.3 1175s 2.3 1180s 2.3 1185s 2.3 1200s 2.3 1200s 2.3 120s 2.3 1215s 2.2 1220s 2.2 1225s 2.2 1230s 2.2 1235s 2.2 1240s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7215 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221 11860095 462138 12126.7221 11916576 462462 infeasible 11972706 462322 infeasible 11972706 462322 infeasible 12028319 462230 12126.7224 12082981 461893 12126.7224 12082981 461893 12126.7225 12140058 464440 12126.7226 12192901 464174 12126.7227 12243757 463675 12126.7228 12293980 464905 12126.7227 12333091 464929 infeasible 12372340 464235 12126.7228	185 183 187 179 183 186 187 183 182 184 191 185 185 188 173 180 166 179 178 183	6 6 6 5 6 5 5 5 5 6 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220 - 12126.7222 - 12126.7222 - 12126.7224 - 12126.7224 - 12126.7225 - 12126.7226 - 12126.7226 - 12126.7227 - 12126.7227 - 12126.7227 - 12126.7228 - 12126.7228		2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1165s 2.3 1175s 2.3 1175s 2.3 1180s 2.3 1190s 2.3 1200s 2.3 120s 2.3 120s 2.2 1215s 2.2 1220s 2.2 1225s 2.2 1230s 2.2 1235s 2.2 1240s 2.2 1245s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221 11860095 462138 12126.7222 11916576 462462 infeasible 11972706 462322 infeasible 12028319 462230 12126.7224 12082981 461893 12126.7224 12082981 464893 12126.7225 12140058 464440 12126.7226 12192901 464174 12126.7227 12243757 463675 12126.7228 12293980 464905 12126.7227 12333091 464929 infeasible 12372340 464235 12126.7228 12409731 463988 infeasible	185 183 187 179 183 186 187 183 182 184 191 185 185 188 173 180 166 179 178 183 184	6 6 6 5 6 6 5 5 5 5 6 6 5 6 6 6 6 6 6 6	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220 - 12126.7222 - 12126.7222 - 12126.7224 - 12126.7224 - 12126.7225 - 12126.7226 - 12126.7226 - 12126.7227 - 12126.7227 - 12126.7227 - 12126.7228 - 12126.7228 - 12126.7228 - 12126.7228 - 12126.7228		2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1165s 2.3 1175s 2.3 1180s 2.3 1189s 2.3 1190s 2.3 1200s 2.3 120s 2.3 120s 2.2 1215s 2.2 1220s 2.2 1225s 2.2 1230s 2.2 1240s 2.2 1245s 2.2 1240s 2.2 1245s 2.2 1250s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221 11860095 462138 12126.7222 11916576 462462 infeasible 11972706 462322 infeasible 12028319 462230 12126.7224 12082981 461893 12126.7224 12082981 464174 12126.7225 12140058 464440 12126.7227 12243757 463675 12126.7228 12293980 464905 12126.7227 12333091 464929 infeasible 12372340 464235 12126.7228 12409731 463988 infeasible 12446381 463737 12126.7229	185 183 187 179 183 186 187 183 182 184 191 185 188 173 180 166 179 178 183 184 175	6 6 6 5 6 5 5 5 5 6 5 6 5	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220 - 12126.7222 - 12126.7222 - 12126.7222 - 12126.7224 - 12126.7224 - 12126.7225 - 12126.7226 - 12126.7226 - 12126.7227 - 12126.7227 - 12126.7227 - 12126.7228 - 12126.7228 - 12126.7228 - 12126.7229 - 12126.7229		2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1165s 2.3 1175s 2.3 1180s 2.3 1185s 2.3 1189s 2.3 1200s 2.3 120s 2.3 120s 2.2 1215s 2.2 1220s 2.2 1225s 2.2 1230s 2.2 1245s 2.2 1240s 2.2 1245s 2.2 1255s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221 11860095 462138 12126.7222 11916576 462462 infeasible 11972706 462322 infeasible 11972706 462322 infeasible 12028319 462230 12126.7224 12082981 461893 12126.7225 12140058 464440 12126.7225 12140058 464440 12126.7225 12243757 463675 12126.7227 12243757 463675 12126.7227 12333091 464929 infeasible 12372340 464235 12126.7228 12409731 463988 infeasible 12446381 463737 12126.7229 12478346 464451 infeasible	185 183 187 179 183 186 187 183 182 184 191 185 188 173 180 166 179 178 183 184 175 178	6 6 6 5 6 6 5 5 5 6 6 5 6 5 6 6 5 6 6 5 6	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220 - 12126.7222 - 12126.7222 - 12126.7222 - 12126.7224 - 12126.7224 - 12126.7225 - 12126.7226 - 12126.7226 - 12126.7227 - 12126.7227 - 12126.7227 - 12126.7228 - 12126.7228 - 12126.7229 - 12126.7229 - 12126.7229		2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1170s 2.3 1175s 2.3 1180s 2.3 1185s 2.3 120s 2.3 120s 2.3 120s 2.3 120s 2.2 1215s 2.2 1220s 2.2 1225s 2.2 1230s 2.2 1240s 2.2 1240s 2.2 1255s 2.2 1255s 2.2 1255s 2.2 1255s 2.2 1255s 2.2 1250s 2.2 1255s 2.2 1260s
11313120 462605 12126.7213 11377168 462556 12126.7214 11418648 462354 12126.7214 11468221 462994 12126.7215 11526355 462882 infeasible 11580402 462733 12126.7217 11634403 462700 12126.7218 11690634 462279 12126.7219 11750343 463024 infeasible 11806506 462739 12126.7221 11860095 462138 12126.7222 11916576 462462 infeasible 11972706 462322 infeasible 12028319 462230 12126.7224 12082981 461893 12126.7224 12082981 464174 12126.7225 12140058 464440 12126.7227 12243757 463675 12126.7228 12293980 464905 12126.7227 12333091 464929 infeasible 12372340 464235 12126.7228 12409731 463988 infeasible 12446381 463737 12126.7229	185 183 187 179 183 186 187 183 182 184 191 185 188 173 180 166 179 178 183 184 175	6 6 6 5 6 6 5 5 5 5 6 6 5 6 6 6 6 6 6 6	- 12126.7212 - 12126.7213 - 12126.7214 - 12126.7214 - 12126.7215 - 12126.7216 - 12126.7217 - 12126.7218 - 12126.7219 - 12126.7220 - 12126.7220 - 12126.7222 - 12126.7222 - 12126.7222 - 12126.7224 - 12126.7224 - 12126.7225 - 12126.7226 - 12126.7226 - 12126.7227 - 12126.7227 - 12126.7227 - 12126.7228 - 12126.7228 - 12126.7228 - 12126.7229 - 12126.7229		2.4 1135s 2.4 1140s 2.4 1145s 2.4 1150s 2.4 1155s 2.3 1160s 2.3 1165s 2.3 1175s 2.3 1180s 2.3 1185s 2.3 1189s 2.3 1200s 2.3 120s 2.3 120s 2.2 1215s 2.2 1220s 2.2 1225s 2.2 1230s 2.2 1245s 2.2 1240s 2.2 1245s 2.2 1255s

12502165	162109	12126 7221	177	5 -	12126 7221		2 2 12756
		12126.7231 infeasible	187		12126.7231 12126.7232	-	2.2 1275s 2.2 1280s
		12126.7238	181	6 -	12126.7232	-	2.2 1280s 2.2 1285s
		infeasible	177	-	12126.7232	_	2.2 1283s 2.2 1290s
		infeasible	176	_	12126.7233	_	2.2 1295s
		12126.7234	182	6 -		_	2.1 1300s
		infeasible	178	-	12126.7234	_	2.1 1305s
12872672	464614	12126.7235	176	5 -	12126.7235	-	2.1 1310s
12919762	464799	infeasible	178	-	12126.7235	-	2.1 1315s
12963046	465006	infeasible	179	-	12126.7236	-	2.1 1320s
13010737	464155	infeasible	187	-	12126.7237	-	2.1 1325s
13047422	463549	12126.7238	177	5 -	12126.7238	-	2.1 1330s
13089657	464104	infeasible	181	-	12126.7238	-	2.1 1335s
13131546	463992	12126.7238	177	5 -	12126.7238	-	2.1 1340s
		12126.7239	177	5 -	12126.7239	-	2.1 1345s
		infeasible	179	-	12126.7240	-	2.1 1350s
		infeasible	181	-	12126.7240	-	2.1 1355s
		infeasible	178		12126.7241	-	2.1 1360s
		12126.7242	176	4 -	12126.7241	-	2.1 1365s
		infeasible	177	-	12126.7242	-	2.1 1370s
		infeasible	179	-	12126.7242	-	2.1 1375s
		12126.7243	184	6 -	12126.7243 12126.7244	-	2.1 1380s
		12126.7244 infeasible	182 178	6 -	12126.7244	-	2.1 1385s 2.1 1390s
		infeasible	180	-	12126.7244	-	2.1 1390S 2.0 1395s
		12126.7246	176		12126.7245	-	2.0 1393S 2.0 1400s
		12126.7246	177	5 -	12126.7246	_	2.0 1400s 2.0 1405s
		infeasible	179	_	12126.7247	_	2.0 1410s
		infeasible	179	_	12126.7248	_	2.0 1415s
		infeasible	181	_		_	2.0 1420s
		12126.7250	180	5 -	12126.7250	_	2.0 1425s
		infeasible	181	-	12126.7251	_	2.0 1430s
13940260	462839	infeasible	190	-	12126.7251	-	2.0 1435s
13992382	465794	12126.7272	181	6 -	12126.7252	-	2.0 1440s
14037991	465820	infeasible	178	-	12126.7252	-	2.0 1445s
14079455	465561	12126.7253	177	5 -	12126.7253	-	2.0 1450s
14129940	466527	12126.7253	177	6 -	12126.7253	-	2.0 1455s
		infeasible	178	-	12126.7254	-	2.0 1460s
14225734	465876	infeasible	178	-	12126.7254	-	2.0 1465s
		12126.7255	182		12126.7255	-	2.0 1470s
		12126.7255	177		12126.7255	-	2.0 1475s
		infeasible	179		12126.7256	-	2.0 1480s
		12126.7257	173		12126.7257	-	2.0 1485s
		12126.7257	177		12126.7257	-	1.9 1490s
		infeasible	176		12126.7258	-	1.9 1495s
		12126.7258 12126.7259	183		12126.7258 12126.7259	-	1.9 1500s 1.9 1505s
		infeasible	174 178		12126.7259	-	1.9 1505S 1.9 1510S
H14688073		IIII easible	1/0	191006.28238		93.7%	1.9 1510s 1.9 1511s
H14688168				82742.340352		85.3%	1.9 1511s
H14688496				29203.073166		58.5%	1.9 1511s
		infeasible	133		12126.7332	58.5%	1.9 1515s
		infeasible	140		12127.5415	58.5%	1.9 1520s
14738708	438188	infeasible	61		12130.6481	58.5%	1.9 1525s
14752486	435229	21235.8799	39	19 29203.0732	12136.4819	58.4%	1.9 1530s
14761465	436440	16763.8171	37	24 29203.0732	12145.9389	58.4%	1.9 1537s
14773167	436910	infeasible	54	29203.0732	12156.3714	58.4%	1.9 1540s
H14782013	392340			23398.548072	12164.8435	48.0%	1.9 1544s
14782128	392340	infeasible	50	23398.5481	12164.8670	48.0%	1.9 1545s
14784303	392461	15949.5701	55	20 23398.5481	12167.1228	48.0%	1.9 1550s
14792921	392971	14641.4133	53	18 23398.5481		48.0%	1.9 1555s
		13220.8326	46	25 23398.5481		47.9%	2.0 1560s
		16966.2222	51	20 23398.5481		47.9%	2.0 1565s
		18049.5470	54	16 23398.5481		47.8%	2.0 1570s
		infeasible	50		12222.7225	47.8%	2.0 1575s
14863936		cutoff	52		12243.8105	47.7%	2.0 1580s
		13322.3349	56	17 23398.5481		47.5%	2.0 1585s
		16186.1521	46	21 23398.5481		47.4%	2.0 1590s
		13059.5329 infeasible	42 52	16 23398.5481	12321.3883	47.3% 47.3%	2.0 1595s 2.0 1600s
		12431.7748	52 57	17 23398.5481		47.3%	2.0 1600S 2.0 1605s
		infeasible	53		12389.7400	47.2%	2.0 1605S 2.0 1610S
		infeasible	43		12400.6851	47.1%	2.0 1610S 2.0 1615s
		14742.1430	50	18 23398.5481		46.9%	2.0 1013s 2.1 1620s
		infeasible	51		12429.5034	46.9%	2.1 1625s
00001		5052020			7007		

1507/657	101981	infeasible	50		23398 5/81	12442.9561	46.8%	2.1 1630s
		infeasible	43			12442.9301	46.8%	2.1 1636s 2.1 1635s
		13051.2608	35	20	23398.5481		46.7%	2.1 1640s
		14753.1145	50		23398.5481		46.6%	2.1 1645s
15134995	407371	infeasible	46		23398.5481	12496.9402	46.6%	2.1 1650s
		14278.0671	45		23398.5481		46.5%	2.1 1655s
		18906.7351	43	21	23398.5481		46.5%	2.1 1660s
		infeasible	51			12546.8202	46.4%	2.1 1665s
		infeasible infeasible	44 48			12562.3337 12578.6174	46.3% 46.2%	2.1 1670s 2.1 1675s
		22258.8826	55	18	23398.5481		46.2%	2.1 1673s 2.1 1680s
		infeasible	60	10		12609.3595	46.1%	2.2 1685s
		18512.6529	49	19		12623.8527	46.0%	2.2 1690s
15301054	412096	12969.6416	44	21	23398.5481	12639.6314	46.0%	2.2 1695s
15319226	412600	15039.6819	45	23	23398.5481	12654.8905	45.9%	2.2 1700s
		infeasible	62			12666.5907	45.9%	2.2 1705s
		18381.6891	52		23398.5481		45.8%	2.2 1710s
		12718.1118	69	9	23398.5481		45.7%	2.2 1715s
		infeasible infeasible	45 43			12708.5224 12722.6931	45.7% 45.6%	2.2 1720s 2.2 1725s
		infeasible	41			12731.4377	45.6%	2.2 1723s 2.2 1730s
15430248		cutoff	43			12743.1000	45.5%	2.2 1735s
15447365	415766	infeasible	53			12755.6672	45.5%	2.2 1740s
15462707	416127	$\verb"infeasible"$	42		23398.5481	12768.0671	45.4%	2.2 1745s
		infeasible	41			12780.8853	45.4%	2.2 1750s
		12805.2537	45	19		12788.6017	45.3%	2.3 1755s
		infeasible	50			12800.4460	45.3%	2.3 1760s
H15520261		13700.7199	50		3398.548058 23398.5481		45.2% 45.2%	2.3 1763s 2.3 1765s
		infeasible	42	19		12814.0765	45.2%	2.3 1703S 2.3 1770s
		13860.8243	46	19	23398.5481		45.1%	2.3 17703 2.3 1775s
		13927.4171	52		23398.5481		45.1%	2.3 1780s
15589161	419304	infeasible	40		23398.5481	12865.2982	45.0%	2.3 1785s
15603583	419446	$\verb"infeasible"$	44		23398.5481	12878.5050	45.0%	2.3 1790s
		18684.4383	42	21	23398.5481		44.9%	2.3 1795s
		infeasible	41			12903.9017	44.9%	2.3 1800s
		17308.7368	52	21	23398.5481		44.8%	2.3 1805s
		infeasible 18688.5414	52 49	1Ω	23398.5481	12928.8720	44.7% 44.7%	2.3 1810s 2.3 1815s
		infeasible	54	10		12953.4476	44.6%	2.3 18133 2.3 1820s
H15710109		1111 CUSTOTE	٥.	23	3398.548053		44.6%	2.3 1824s
		15532.2009	49		23398.5481		44.6%	2.3 1825s
15724130	422338	16634.7529	56	21	23398.5481	12976.6591	44.5%	2.3 1830s
		$ \hbox{infeasible} $	46		23398.5481	12983.2188	44.5%	2.4 1835s
		infeasible	44			12995.7075	44.5%	2.4 1840s
		infeasible	48			13008.9382	44.4%	2.4 1845s
		19032.6960 14809.8754	42		23398.5481 23398.5481		44.4%	2.4 1850s 2.4 1855s
		infeasible	47 40	23		13027.7881	44.3% 44.3%	2.4 1855S 2.4 1860s
		infeasible	43			13052.5801	44.2%	2.4 1865s
		13063.5864	33	21	23398.5481		44.2%	2.4 1870s
15845068	424098	16366.2880	52	21	23398.5481	13075.1357	44.1%	2.4 1875s
		15761.8265	49	19	23398.5481		44.1%	2.4 1880s
		infeasible	52			13094.1213	44.0%	2.4 1885s
		15143.7193	42		23398.5481		44.0%	2.4 1890s
		21104.9522 21282.2095	51 43		23398.5481 23398.5481		43.9%	2.4 1895s
		infeasible	43 51	20		13136.5756	43.9% 43.9%	2.4 1900s 2.4 1905s
		infeasible	40			13146.1923	43.8%	2.4 1909s
		15777.2294	53	14	23398.5481		43.8%	2.4 1915s
		infeasible	52			13164.4891	43.7%	2.4 1920s
15969149	426683	14129.3615	52	15	23398.5481	13173.7819	43.7%	2.4 1925s
		14275.8860	48		23398.5481		43.7%	2.4 1930s
		15715.0003	47		23398.5481		43.6%	2.5 1935s
		22573.0573	57 40	21	23398.5481		43.6%	2.5 1940s
		infeasible 13249.5054	48 52	16	23398.5481 23398.5481	13209.9442	43.5% 43.5%	2.5 1945s 2.5 1950s
		infeasible	52 53	Τ0		13219.4217	43.5%	2.5 1950S 2.5 1955s
		infeasible	63			13237.8804	43.4%	2.5 1960s
		infeasible	51			13246.0392	43.4%	2.5 1965s
16071580	428587	16495.6027	54	23	23398.5481		43.4%	2.5 1970s
		$ \hbox{infeasible} $	49			13263.5159	43.3%	2.5 1975s
H16085810					3398.548047		43.3%	2.5 1977s
H16088807		14420 727	4-		3398.548038		43.3%	2.5 1979s
16089956	428625	14420.7274	45	19	23398.5480	13269.6665	43.3%	2.5 1981s

```
16097926 428822 22835.3355
                                 23 23398.5480 13276.8564 43.3%
                                                                  2.5 1985s
 16108070 429125 infeasible
                            59
                                    23398.5480 13284.7630 43.2%
                                                                  2.5 1990s
16118760 429231 infeasible 60
                                    23398.5480 13293.2014 43.2%
                                                                  2.5 1995s
                                  23398.5480 13302.0470 43.2%
16129277 429552 infeasible 38
                                                                  2.5 2000s
16141088 429790 17020.5299
                            49 21 23398.5480 13310.8194 43.1%
                                                                  2.5 2005s
                                23398.5480 13318.5017 43.1%
                           44
16150676 430225 infeasible
                                                                  2.5 2010s
                                                                 2.5 2015s
                           49
16155459 430475 infeasible
                                    23398.5480 13322.0201 43.1%
                                                                 2.5 2020s
16165573 430661 infeasible 50
                                    23398.5480 13329.1567 43.0%
                                  23398.5480 13338.6254 43.0%
16175641 430713 infeasible
                                                                 2.5 2025s
                           51
16185699 430946 14239.2790 47 21 23398.5480 13346.2353 43.0%
                                                                 2.5 2030s
                           49
                                                                 2.5 2035s
                                 23398.5480 13353.7169 42.9%
16195565 431271 infeasible
                            44 15 23398.5480 13362.0315 42.9%
                                                                 2.5 2040s
16206349 431511 17332.7587

    16215607
    431465
    13881.9708
    60
    16 23398.5480
    13370.7970
    42.9%

    16226284
    431599
    15126.2789
    61
    18 23398.5480
    13379.8758
    42.8%

                                                                  2.5 2045s
                                                                  2.5 2050s
16235227 431769 infeasible 98
                                  23398.5480 13387.0310 42.8%
                                                                  2.5 2055s
                                  17251.461727 13391.0217 22.4%
*16242000 234674
                           131
                                                                  2.5 2059s
                                17251.4617 13391.7831 22.4%
                           46
16242886 234606
                   cutoff
                                                                  2.5 2060s
16249415 234567
                   cutoff 56
                                    17251.4617 13398.0397 22.3%
                                                                  2.5 2065s
16256694 234087 infeasible 60
                                    17251.4617 13406.7054 22.3%
                                                                  2.6 2070s
                                  17251.4617 13415.3949 22.2%
16264688 233732 infeasible 42
                                                                  2.6 2075s
16273349 233298 15153.2659 56 21 17251.4617 13423.8050 22.2%
                                                                  2.6 2080s
16281598 232940 15079.7911 60 17 17251.4617 13433.6452 22.1%
                                                                  2.6 2085s
16289011 232487 infeasible 50
                                  17251.4617 13440.8003 22.1%
                                                                  2.6 2090s
16296859 231865 13451.4826 35
                                 17 17251.4617 13449.8471 22.0%
                                                                  2.6 2095s
16304491 231613
                    cutoff
                            40
                                    17251.4617 13458.1573 22.0%
                                                                  2.6 2100s
16312384 231201 infeasible
                            49
                                    17251.4617 13466.1296 21.9%
                                                                  2.6 2105s
                            16320360 230849 13939.3890
                                                                  2.6 2110s
16328202 230366 13801.1516
                            41 17 17251.4617 13483.2450 21.8%
                                                                  2.6 2115s
16336038 229932 14372.9454
                           56 15 17251.4617 13492.3188 21.8%
                                                                  2.6 2120s
16343764 229667 infeasible
                                  17251.4617 13500.8620 21.7%
                                                                  2.6 2125s
16351449 229223 13838.8664
                            62
                                 18 17251.4617 13509.1258 21.7%
                                                                  2.6 2130s
16359278 228819 infeasible 56
                                  17251.4617 13517.2249 21.6%
                                                                  2.6 2135s
*16364241 24695
                           141
                                 13703.962190 13523.2143 1.32%
                                                                 2.6 2138s
                                 13703.9622 13529.3369 1.27%
16366042 23776
                  cutoff
                           49
                                                                 2.6 2140s
16370805 19547
                  cutoff
                           60
                                   13703.9622 13553.1172 1.10%
                                                                 2.6 2145s
16376212 15260 infeasible
                          45
                                   13703.9622 13581.6140 0.89%
                                                                 2.6 2150s
                          137
                                 13685.217383 13623.3539 0.45%
*16384040 7584
                                                                 2.6 2154s
16384501 6479 infeasible 55
                                  13685.2174 13625.0401 0.44%
                                                                 2.6 2155s
H16384654 6477
                                 13685.217364 13625.1491 0.44%
                                                                 2.6 2155s
                                 13685.217354 13638.0841 0.34%
H16386464 5436
                                                                 2.6 2157s
H16386601 5342
                                 13684.638641 13638.6361 0.34%
                                                                 2.6 2157s
16388539 4026 cutoff 39
                                  13684.6386 13650.7752 0.25%
                                                                 2.6 2160s
H16388652 2080
                                  13672.378490 13651.5464 0.15%
Cutting planes:
 Gomory: 23
 MIR: 10
 Flow cover: 136
 Inf proof: 7
 RLT: 316
Explored 16391212 nodes (42558258 simplex iterations) in 2164.26 seconds (595.26 work units)
Thread count was 12 (of 12 available processors)
Solution count 10: 13672.4 13672.4 13684.6 ... 29203.1
Optimal solution found (tolerance 1.00e-04)
Best objective 1.367237848974e+04, best bound 1.367237540129e+04, gap 0.0000%
--- L-SHAPED LAYOUT ---
Building dimensions: 381.5 x 245.0 m
Total area: 93466.7 sqm
Objective (total flow-distance): 13672.4
C:\Users\chant\AppData\Local\Temp\ipykernel_34796\398782425.py:167: MatplotlibDeprecationWarning: The get_cma
p function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`` o
r ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.
colors = plt.cm.get_cmap('tab20', len(selected_depts))
```

L-shaped Layout - Warehouse 1381 5 2213.0 m otal Flow-Distance: 13672.4


```
In [ ]: # Run for all layouts
for layout_type in [ "U-shaped"]:
    selected_depts = load_data()
    solve_layout(layout_type, total_area=total_area, selected_depts=selected_depts, departments=departments,
```

```
Set parameter Username
Set parameter LicenseID to value 2718175
Academic license - for non-commercial use only - expires 2026-10-05
Set parameter NonConvex to value 2
Inbound Dock Inbound Dock
Inbound Dock Outbound Staging
Inbound Dock Packing / Wrap / Banding
Inbound Dock Pallet Reserve Storage (Bulk)
Inbound Dock Receiving/Staging
Inbound Dock Shipping Dock
Inbound Dock Phantom
Outbound Staging Inbound Dock
Outbound Staging Outbound Staging
Outbound Staging Packing / Wrap / Banding
Outbound Staging Pallet Reserve Storage (Bulk)
Outbound Staging Receiving/Staging
Outbound Staging Shipping Dock
Outbound Staging Phantom
Packing / Wrap / Banding Inbound Dock
Packing / Wrap / Banding Outbound Staging
Packing / Wrap / Banding Packing / Wrap / Banding
Packing / Wrap / Banding Pallet Reserve Storage (Bulk)
Packing / Wrap / Banding Receiving/Staging
Packing / Wrap / Banding Shipping Dock
Packing / Wrap / Banding Phantom
Pallet Reserve Storage (Bulk) Inbound Dock
Pallet Reserve Storage (Bulk) Outbound Staging
Pallet Reserve Storage (Bulk) Packing / Wrap / Banding
Pallet Reserve Storage (Bulk) Pallet Reserve Storage (Bulk)
Pallet Reserve Storage (Bulk) Receiving/Staging
Pallet Reserve Storage (Bulk) Shipping Dock
Pallet Reserve Storage (Bulk) Phantom
Receiving/Staging Inbound Dock
Receiving/Staging Outbound Staging
Receiving/Staging Packing / Wrap / Banding
Receiving/Staging Pallet Reserve Storage (Bulk)
Receiving/Staging Receiving/Staging
Receiving/Staging Shipping Dock
Receiving/Staging Phantom
Shipping Dock Inbound Dock
Shipping Dock Outbound Staging
Shipping Dock Packing / Wrap / Banding
Shipping Dock Pallet Reserve Storage (Bulk)
Shipping Dock Receiving/Staging
Shipping Dock Shipping Dock
Shipping Dock Phantom
Phantom Inbound Dock
Phantom Outbound Staging
Phantom Packing / Wrap / Banding
Phantom Pallet Reserve Storage (Bulk)
Phantom Receiving/Staging
Phantom Shipping Dock
Phantom Phantom
Total area for U-shaped: 93466.6666666667
Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (win64 - Windows 11+.0 (26200.2))
CPU model: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz, instruction set [SSE2|AVX|AVX2]
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Non-default parameters:
NonConvex 2
Optimize a model with 372 rows, 254 columns and 1036 nonzeros
Model fingerprint: 0xe34ee067
Model has 8 quadratic constraints
Variable types: 156 continuous, 98 integer (98 binary)
Coefficient statistics:
                  [3e-01, 1e+04]
 Matrix range
  QMatrix range
                   [1e+00, 1e+00]
 Objective range [4e+00, 2e+01]
 Bounds range
                  [1e+00, 1e+00]
 RHS range
                   [1e+00, 1e+04]
 QRHS range
                  [3e+03, 9e+04]
Presolve removed 222 rows and 139 columns
Presolve time: 0.01s
```

Presolved: 236 rows, 135 columns, 639 nonzeros Presolved model has 1 quadratic constraint(s)

Presolved model has 20 bilinear constraint(s)

 $\label{thm:warning:model} \mbox{Warning: Model contains variables with very large bounds participating} \\$

in product terms.

Presolve was not able to compute smaller bounds for these variables. Consider bounding these variables or reformulating the model.

Solving non-convex MIQCP

Variable types: 62 continuous, 73 integer (73 binary)

Root relaxation: objective 2.102737e+01, 78 iterations, 0.00 seconds (0.00 work units)

Root relaxation: objective	2.102	737e	+01, 78 iterations, 0	.00 se	conds (0	.00 work
Nodes Current	Nodo	I	Objective Bounds	1	Worl	,
·			Incumbent BestBd	Gap		
Expr different Obj. Deptil	1110111		Incambene beseba	Gup	I C/ NOGC	111110
0 0 21.02737	0 3	9	- 21.02737	_	_	0s
0 0 392.24303	0 3	8	- 392.24303	-	-	0s
0 0 392.24303	0 3	7	- 392.24303	-	-	0s
0 0 537.26412	0 3	5	- 537.26412	-	-	0s
0 0 707.31466	0 3	9	- 707.31466	-	-	0s
0 0 707.31466	0 3	9	- 707.31466	-	-	0s
0 0 716.03843	0 3	9	- 716.03843	-	-	0s
0 0 716.03843	0 3	9	- 716.03843	-	-	0s
0 0 716.03843	0 3	9	- 716.03843	-	-	0s
0 1 716.03843	0 3	9	- 716.03843	-	-	0s
	53		- 9403.20869	-		5s
121578 45085 infeasible	63		- 10843.5379	-		10s
197484 72930 23754.2009	59	20	- 11513.5826	-		15s
	103		- 11872.6394	-	• • •	20s
333333 120704 12896.2422	62	21	- 12118.6904		- 6.3	25s
380974 137503 19940.7538	66	16	- 12288.5227		- 6.3	30s
435510 156554 16665.4870	51	18	- 12442.8822		- 6.3	35s
491044 176488 infeasible	59		- 12580.3583		- 6.3	40s
543943 193833 13525.8217	56	22	- 12685.4340		- 6.2	45s
594430 206521 15623.1814	56	14	- 12795.6002		- 6.2	50s
641889 215967 infeasible	60	4.0	- 12887.3730		- 6.2	55s
686354 225398 21388.1873	58	18	- 12965.0881		- 6.3	60s
731481 234269 22736.3533	55	21	- 13043.3129		- 6.3	65s
772052 243777 infeasible	58	22	- 13107.4735		- 6.4	70s
810528 252561 13535.3348	60	22	- 13160.4365		- 6.4	75s
847308 261340 13583.3430	55	20	- 13213.8734		- 6.4	80s
885794 270249 infeasible	73	1.0	- 13266.9405		- 6.5	85s
926454 280062 13333.8036 967331 290366 14856.6574	57	16	- 13321.2516		- 6.5	90s
1005010 298846 18117.4468	61 57	17 12	- 13370.2126 - 13418.9562		- 6.5 - 6.5	95s 100s
1003010 298846 18117.4468 1043415 307698 infeasible	57 59	12	- 13418.702		- 6.6	
1081763 315944 infeasible	53		- 13520.2279		- 6.6	
1122175 324882 16821.6805		20	- 13572.804		- 6.6	
1163232 333852 infeasible	73	20	- 13624.5196		- 6.6	
1202224 343542 23498.9987	55	18	- 13666.8464		- 6.6	125s
1234881 350820 17466.2638	55	16	- 13704.6903		- 6.6	130s
1273301 359726 15906.2402	61	16	- 13750.1163		- 6.7	135s
1311803 368266 24395.1800	62	24	- 13796.3234		- 6.7	140s
1348909 376988 infeasible	53		- 13833.932		- 6.7	145s
1384566 385041 infeasible	76		- 13874.6144	1	- 6.7	150s
1420409 392818 25924.3980	55	16	- 13914.3082		- 6.7	155s
1456261 401327 16789.9077	50	22	- 13950.3803	3	- 6.7	160s
1495554 409734 16702.2966	56	19	- 13988.5606	5	- 6.7	165s
1530866 417355 infeasible	56		- 14021.3499	9	- 6.7	170s
1563665 423914 21089.1012	141	8	- 14055.3234	1	- 6.7	175s
1596926 430274 19225.3409	51	16	- 14089.4568	3	- 6.7	180s
1631870 437859 15628.9473	59	18	- 14120.0586	5	- 6.8	185s
1664502 444252 16559.2063	47	16	- 14150.6153	3	- 6.8	190s
1697803 450829 17805.2750	62	16	- 14179.7002	2	- 6.8	195s
1727636 456731 17082.1801	65	23	- 14207.5819	9	- 6.8	200s
1759290 463379 20252.9772	57	20	- 14237.3633	3	- 6.8	205s
1794797 469404 19980.7822	59	13	- 14274.0127	7	- 6.8	210s
1829483 475081 14373.8951	63	12	- 14307.2635	5	- 6.8	215s
1862384 480825 14895.1699	55	18	- 14336.5846	5	- 6.8	220s
1896577 487226 37089.5385	68	20	- 14369.1907	7	- 6.8	225s
1932775 493308 17753.1632	61	22	- 14403.9120	9	- 6.8	230s
1964424 498462 15133.5287	73	13	- 14434.6556	9	- 6.8	235s

2000201	503538	25759.2339	60	17	-	14468.2939	-	6.8	240s
2034898	508732	25623.4822	64	16	-	14502.5677	-	6.9	245s
2067811	514315	28585.4223	68	20	-	14531.5302	-	6.9	250s
2101282	518727	infeasible	57		-	14562.4571	-	6.9	255s
2131948	523395	infeasible	62		-	14590.9547	-	6.9	260s
2164202	528442	24318.5296	66	20	-	14619.3486	_	6.9	265s
2196597	532766	14865.6343	56	20	-	14651.4995	-	6.9	270s
2230691	537372	22890.3982	57	17	-	14682.7439	-	6.9	275s
2265042	542544	infeasible	62		-	14711.3815	-	6.9	280s
2299019	546973	infeasible	55		-	14741.1762	-	6.9	285s
2331912	551684	infeasible	60		-	14769.5494	-	6.9	290s
2360639	555329	19268.0859	55	16	-	14796.2471	-	6.9	295s
2392439	559788	18441.4137	58	17	-	14823.7412	-	6.9	300s
2426223	564588	infeasible	61		-	14855.0674	-	6.9	305s
2459080	569224	21669.2644	62	18	-	14885.7357	-	6.9	310s
2491607	573798	17043.3471	61	19	-	14914.4941	-	6.9	315s
2525660	578114	24995.1275	63	18	-	14945.5111	-	7.0	320s
2559910	583334	15655.1152	60	13	-	14977.6773	-	7.0	325s
2593029	587888	34552.5624	65	18	-	15006.1033	-	7.0	330s
2625596	592402	15173.3492	65	14	-	15037.0941	-	7.0	335s
2657418	596962	18638.4740	55	20	-	15062.9292	-	7.0	340s
2689725	601281	infeasible	55		-	15091.6649	-	7.0	345s
2723477	606469	18208.7433	63	22	-	15118.5662	-	7.0	350s
2753675	610712	15149.8235	69	20	-	15143.7730	-	7.0	355s
2784931	614737	infeasible	65		-	15171.5437	-	7.0	360s
2815181	618033	23680.1450	56	16	-	15198.5542	-	7.0	365s
2846808	621846	25948.4984	48	20	-	15225.9889	-	7.0	370s
2880468	625806	16114.1782	60	18	-	15253.6823	-	7.0	375s
2912021	629445	18667.9140	66	18	-	15280.6542	-	7.0	380s
2943482	633281	18130.3495	66	21	-	15306.5727	-	7.0	385s
2975185	637302	infeasible	60		-	15332.4726	-	7.0	390s
3004913	640524	infeasible	51		-	15356.8349	-	7.0	395s
3040035	644821	16361.6007	52	16	-	15384.1766	-	7.0	400s
3073525	647120	19577.9530	52	19	-	15387.1540	-	7.0	405s
3099732	649858	20763.3124	60	19	-	15407.5616	-	7.0	410s
3127745	653233	infeasible	74		-	15428.9830	-	7.0	415s
3159989	657291	19219.8817	68	16	-	15453.4306	-	7.0	420s
3193083	661082	15768.0268	62	14	-	15477.4707	-	7.0	425s
3226967	664806	17952.8005	46	17	-	15505.3448	-	7.0	430s
3258734	668581	infeasible	63		-	15530.6617	-	7.0	435s
3288831	671962	18541.8198	64	14	-	15554.3913	-	7.0	440s
*3309921	95970		144	16255.18753	37	15569.2979	4.22%	7.0	444s
3310718	95111	cutoff	61	16255.187	'5	15571.3514	4.21%	7.0	446s
H3315279	93764			16255.18752	0	15580.7643	4.15%	7.0	446s
H3316947	93743			16255.18750	0	15585.3213	4.12%	7.0	447s
3323982	90792	15743.6580	61	18 16255.187	'5	15600.9327	4.02%	7.0	450s
3332668	88402	15872.1402	72	19 16255.187	'5	15625.2457	3.88%	7.0	455s
*3345209	904		133	15654.32281	.2	15653.1405	0.01%	7.0	459s
C + + :	. 1								

Cutting planes:

Gomory: 12 Implied bound: 4

MIR: 3

Flow cover: 16 Inf proof: 5 RLT: 34

Relax-and-lift: 1

BQP: 1

Explored 3345251 nodes (23458338 simplex iterations) in 459.83 seconds (139.73 work units) Thread count was 12 (of 12 available processors)

Solution count 3: 15654.3 15654.3 16255.2

Optimal solution found (tolerance 1.00e-04)
Best objective 1.565432281205e+04, best bound 1.565325947393e+04, gap 0.0068%

--- U-SHAPED LAYOUT ---

Building dimensions: $305.7 \times 305.7 \text{ m}$

Total area: 93466.7 sqm

Objective (total flow-distance): 15654.3

C:\Users\ruben\AppData\Local\Temp\ipykernel_7940\398782425.py:167: MatplotlibDeprecationWarning: The get_cmap
function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`` or
``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.
colors = plt.cm.get_cmap('tab20', len(selected_depts))

U-shaped Layout Warehouse 305 7 m Total Flow-Distance: 15654.3


```
In [ ]: # Run for all Layouts
for layout_type in [ "I-shaped"]:
    selected_depts = load_data()
    solve_layout(layout_type, total_area=total_area, selected_depts=selected_depts, departments=departments,
```

```
Set parameter NonConvex to value 2
Inbound Dock Inbound Dock
Inbound Dock Outbound Staging
Inbound Dock Packing / Wrap / Banding
Inbound Dock Pallet Reserve Storage (Bulk)
Inbound Dock Receiving/Staging
Inbound Dock Shipping Dock
Outbound Staging Inbound Dock
Outbound Staging Outbound Staging
Outbound Staging Packing / Wrap / Banding
Outbound Staging Pallet Reserve Storage (Bulk)
Outbound Staging Receiving/Staging
Outbound Staging Shipping Dock
Packing / Wrap / Banding Inbound Dock
Packing / Wrap / Banding Outbound Staging
Packing / Wrap / Banding Packing / Wrap / Banding
Packing / Wrap / Banding Pallet Reserve Storage (Bulk)
Packing / Wrap / Banding Receiving/Staging
Packing / Wrap / Banding Shipping Dock
Pallet Reserve Storage (Bulk) Inbound Dock
Pallet Reserve Storage (Bulk) Outbound Staging
Pallet Reserve Storage (Bulk) Packing / Wrap / Banding
Pallet Reserve Storage (Bulk) Pallet Reserve Storage (Bulk)
Pallet Reserve Storage (Bulk) Receiving/Staging
Pallet Reserve Storage (Bulk) Shipping Dock
Receiving/Staging Inbound Dock
Receiving/Staging Outbound Staging
Receiving/Staging Packing / Wrap / Banding
Receiving/Staging Pallet Reserve Storage (Bulk)
Receiving/Staging Receiving/Staging
Receiving/Staging Shipping Dock
Shipping Dock Inbound Dock
Shipping Dock Outbound Staging
Shipping Dock Packing / Wrap / Banding
Shipping Dock Pallet Reserve Storage (Bulk)
Shipping Dock Receiving/Staging
Shipping Dock Shipping Dock
Total area for I-shaped: 70100
Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (win64 - Windows 11+.0 (26200.2))
CPU model: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz, instruction set [SSE2|AVX|AVX2]
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Non-default parameters:
NonConvex 2
Optimize a model with 276 rows, 194 columns and 761 nonzeros
Model fingerprint: 0x992e7154
Model has 7 quadratic constraints
Variable types: 122 continuous, 72 integer (72 binary)
Coefficient statistics:
                   [5e-01, 1e+04]
 Matrix range
 QMatrix range
                   [1e+00, 1e+00]
 Objective range [4e+00, 2e+01]
 Bounds range
                   [1e+00, 1e+00]
 RHS range
                   [1e+00, 1e+04]
 QRHS range
                   [3e+03, 7e+04]
Presolve removed 150 rows and 93 columns
Presolve time: 0.01s
Presolved: 224 rows, 124 columns, 596 nonzeros
Presolved model has 23 bilinear constraint(s)
Warning: Model contains variables with very large bounds participating
         in product terms.
         Presolve was not able to compute smaller bounds for these variables.
         Consider bounding these variables or reformulating the model.
Solving non-convex MIQCP
Variable types: 65 continuous, 59 integer (59 binary)
Root relaxation: objective 1.118464e+02, 64 iterations, 0.00 seconds (0.00 work units)
                                        Objective Bounds
                  Current Node
                Obj Depth IntInf |
                                    Incumbent
 Expl Unexpl |
                                                 BestBd
                                                          Gap |
                                                                It/Node Time
```

```
0
          0 111.84638
                             38
                                         - 111.84638
                                                                     0s
             221.93344
                             50
                                         - 221.93344
                                                                     0s
          0
             282.46422 0 47
                                         - 282.46422
                                                                     0s
    0
          0
             282.46422 0 47
                                         - 282.46422
                                                                     0s
    0
          0
             282.46422 0 43
                                           282.46422
                                                                     0s
                            36
    0
          0
             282.46422 0
                                            282.46422
                             42
    0
          0 282.46422
                                           282.46422
                                                                     0s
    0
          0 282.46422
                             46
                                        - 282.46422
                                                                     0s
                                         - 2439.50611
          0 2439.50611
                             31
                                                                     05
    0
         2 2439.50611
                       0
                             31
                                        - 2439.50611
                                                                     05
                            30817.747265 11354.6090 63.2%
*19468 8042
                       110
                                                              6.5
                                                                     45
H20431 7933
                              30817.678280 11388.5584 63.0%
                                                              6.5
                                                                     45
*21058 8094
                             29846.274174 11398.2197 61.8%
                                                              6.5
                                                                     45
H22761 8587
                              29840.087956 11471.1831 61.6%
                                                              6.5
                                                                     45
27972 10389 25412.3817 68 17 29840.0880 11637.6183 61.0%
                                                              6.9
                                                                     55
H35391 7289
                              17819.522559 11926.7202 33.1%
                                                              7.4
                                                                    65
40921 7111 infeasible 96
                               17819.5226 12005.4342 32.6%
                                                              7.2
                                                                    105
70275 1533 infeasible 96
                               17819.5226 14793.3726 17.0%
                                                              7.7
                                                                    155
*79152
        662
                       152
                              17552.810233 16808.2488 4.24%
                                                              7.6
                                                                    16s
*79601
        597
                       194
                              17449.160080 16964.9586 2.77%
                                                              7.6
                                                                    16s
       475
H80972
                              17391.837769 17118.0104 1.57%
                                                              7.5
                                                                    17s
Cutting planes:
 Gomory: 13
 Implied bound: 1
 MIR: 7
 Flow cover: 30
 Inf proof: 1
 RLT: 126
Explored 82215 nodes (615082 simplex iterations) in 17.22 seconds (4.01 work units)
Thread count was 12 (of 12 available processors)
Solution count 8: 17391.8 17449.2 17552.8 ... 30817.7
Optimal solution found (tolerance 1.00e-04)
Best objective 1.739183776903e+04, best bound 1.739183776903e+04, gap 0.0000%
--- I-SHAPED LAYOUT ---
Building dimensions: 529.5 x 132.4 m
Total area: 70100.0 sqm
Objective (total flow-distance): 17391.8
C:\Users\ruben\AppData\Local\Temp\ipykernel_7344\208478838.py:163: MatplotlibDeprecationWarning: The get_cmap
function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`` or
``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.
colors = plt.cm.get_cmap('tab20', len(selected_depts))
```

I-shaped Layout


```
In [ ]: # Print the quantified interaction values between departments
for dept_from in selected_depts:
    print(f"{dept_from}:")
    for dept_to in selected_depts:
        value = numeric_departments_matrix[dept_from][dept_to]
        print(f" {dept_to}: {value}")
    print()
```

```
Inbound Dock:
 Inbound Dock: 0
 Outbound Staging: 0
 Packing / Wrap / Banding: 0
 Pallet Reserve Storage (Bulk): 0
  Receiving/Staging: 9
 Shipping Dock: 0
 Phantom: 0
Outbound Staging:
  Inbound Dock: 0
 Outbound Staging: 0
 Packing / Wrap / Banding: 9
 Pallet Reserve Storage (Bulk): 0
 Receiving/Staging: 0
 Shipping Dock: 9
 Phantom: 0
Packing / Wrap / Banding:
  Inbound Dock: 0
 Outbound Staging: 9
 Packing / Wrap / Banding: 0
 Pallet Reserve Storage (Bulk): 9
  Receiving/Staging: 0
 Shipping Dock: 0
 Phantom: 0
Pallet Reserve Storage (Bulk):
  Inbound Dock: 0
  Outbound Staging: 0
 Packing / Wrap / Banding: 9
 Pallet Reserve Storage (Bulk): 0
  Receiving/Staging: 4
 Shipping Dock: 0
 Phantom: 0
Receiving/Staging:
  Inbound Dock: 9
 Outbound Staging: 0
 Packing / Wrap / Banding: 0
 Pallet Reserve Storage (Bulk): 4
 Receiving/Staging: 0
 Shipping Dock: 0
 Phantom: 0
Shipping Dock:
 Inbound Dock: 0
 Outbound Staging: 9
 Packing / Wrap / Banding: 0
 Pallet Reserve Storage (Bulk): 0
 Receiving/Staging: 0
 Shipping Dock: 0
 Phantom: 0
Phantom:
 Inbound Dock: 0
 Outbound Staging: 0
  Packing / Wrap / Banding: 0
 Pallet Reserve Storage (Bulk): 0
  Receiving/Staging: 0
 Shipping Dock: 0
 Phantom: 0
```

Bonus Points

We have linearised the model from above to be able to solve the layout problem also for more departments.

```
In [ ]: import gurobipy as gp
    from gurobipy import GRB
    import matplotlib.pyplot as plt
    import matplotlib.patches as patches
    import math
```

```
total_area = sum(departments[d] for d in selected_depts)
def solve_layout_linearized(layout_type, total_area, selected_depts, departments, numeric_departments_matrix
    Linear MILP version using:
    - Linearized Manhattan distances (alpha+, alpha-, beta+, beta-)
    - Perimeter-based area linearization with flexibility
    - Non-overlap constraints (Big-M)
    model = gp.Model(f"linearized layout {layout type}")
    model.Params.OutputFlag = 1
    BIG M = 10000
    R = 3 # aspect ratio tolerance
    area_tolerance = area_flex # e.g. 0.1 = 10%
    # Building fixed size (square)
    if layout_type == "I-shaped":
        B_side = math.sqrt(total_area)
        B_width = B_side * 2
        B_height = B_side * 0.5
        B_side = math.sqrt(total_area)
        B_width = B_side
        B_height = B_side
    # Add Phantom dept if needed
    if layout_type in ["L-shaped", "U-shaped"]:
        selected_depts = selected_depts.copy()
        if "Phantom" not in selected_depts:
            selected_depts.append("Phantom")
            departments["Phantom"] = total_area / 3
            numeric_departments_matrix["Phantom"] = {d: 0 for d in selected_depts}
            for d in selected depts:
                numeric_departments_matrix[d]["Phantom"] = 0
    # Decision variables
    x_{\text{left}}, y_{\text{bottom}}, width, height = {}, {}, {}, {}
    alpha, beta = {}, {}
    z_x, z_y = {}, {}
    # Positive/negative parts for distance
    alpha_pos, alpha_neg, beta_pos, beta_neg = {}, {}, {}, {}
    for i in selected depts:
        x left[i] = model.addVar(lb=0, name=f"x left {i}")
        y_bottom[i] = model.addVar(lb=0, name=f"y_bottom {i}")
        width[i] = model.addVar(lb=0, name=f"width_{i}")
        height[i] = model.addVar(lb=0, name=f"height_{i}")
        alpha[i] = model.addVar(lb=0, name=f"alpha_{i}")
        beta[i] = model.addVar(lb=0, name=f"beta_{i}")
    # Binary overlap indicators
    for i in selected depts:
        z_x[i], z_y[i] = {}, {}
        for j in selected_depts:
            if i == j:
            z_x[i][j] = model.addVar(vtype=GRB.BINARY, name=f"z_x_{i}_{j}")
            z_y[i][j] = model.addVar(vtype=GRB.BINARY, name=f"z_y_{i}_{j}")
    # Distance positive/negative variables
    for i in selected depts:
        alpha_pos[i], alpha_neg[i], beta_pos[i], beta_neg[i] = {}, {}, {}, {}
        for j in selected depts:
            if i == j:
                continue
            alpha_pos[i][j] = model.addVar(lb=0, name=f"alpha_pos_{i}_{j}")
            alpha\_neg[i][j] = model.addVar(lb=0, name=f"alpha\_neg_{i}_{j}")
            beta_pos[i][j] = model.addVar(lb=0, name=f"beta_pos_{i}_{j}")
            beta_neg[i][j] = model.addVar(lb=0, name=f"beta_neg_{i}_{j}")
    model.update()
```

```
# Core constraints
for i in selected depts:
   sqrtA = math.sqrt(departments[i])
   # Aspect ratio bounds
   model.addConstr(width[i] >= sqrtA / R)
   model.addConstr(height[i] >= sqrtA / R)
   model.addConstr(width[i] <= sqrtA * R)</pre>
   model.addConstr(height[i] <= sqrtA * R)</pre>
   model.addConstr(x_left[i] + width[i] <= B_width)</pre>
   model.addConstr(y_bottom[i] + height[i] <= B_height)</pre>
   # Area linearization via perimeter
   # 4 * sqrt(A) = perimeter of square of area A
   per_square = 4 * sqrtA
   model.addConstr(
        2 * (width[i] + height[i]) >= per_square * (1 - area_tolerance),
        name=f"per_lb_{i}"
    )
   model.addConstr(
        2 * (width[i] + height[i]) <= per_square * (1 + area_tolerance),</pre>
        name=f"per_ub_{i}"
   # Within building
    model.addConstr(x_left[i] + width[i] <= B_width)</pre>
    model.addConstr(y_bottom[i] + height[i] <= B_height)</pre>
   # Centroids
   model.addConstr(alpha[i] == x_left[i] + 0.5 * width[i])
    model.addConstr(beta[i] == y_bottom[i] + 0.5 * height[i])
        # Add these variables
# Non-overlap
for i in selected depts:
    for j in selected_depts:
        if i == j:
        model.addConstr(x_left[j] >= x_left[i] + width[i] - BIG_M * (1 - z_x[i][j]))
        model.addConstr(y_bottom[j] >= y_bottom[i] + height[i] - BIG_M * (1 - z_y[i][j]))
        model.addConstr(z_x[i][j] + z_x[j][i] + z_y[i][j] + z_y[j][i] >= 1)
        # Linearized abs differences
        model.addConstr(alpha[i] - alpha[j] == alpha_pos[i][j] - alpha_neg[i][j])
        model.addConstr(beta[i] - beta[j] == beta_pos[i][j] - beta_neg[i][j])
# Layout-type constraints
if layout_type == "I-shaped":
    model.addConstr(x_left["Inbound Dock"] == 0)
    model.addConstr(x_left["Outbound Staging"] + width["Outbound Staging"] == B width)
elif layout_type == "L-shaped":
    # Bottom-left corner
    model.addConstr(x left["Inbound Dock"] == 0)
    model.addConstr(y_bottom["Inbound Dock"] + height["Phantom"] == B_height)
   # Bottom-right corner
    model.addConstr(x left["Outbound Staging"] + width["Outbound Staging"] == B width)
    model.addConstr(y_bottom["Outbound Staging"] == 0)
   # Phantom (top-left corner)
    model.addConstr(x left["Phantom"] == 0)
    model.addConstr(y_bottom["Phantom"] == 0)
elif layout_type == "U-shaped":
    # Inbound dock (bottom-left)
    model.addConstr(x_left["Inbound Dock"] == 0)
    model.addConstr(y_bottom["Inbound Dock"] == 0)
    # Outbound staging (top-left)
    model.addConstr(x_left["Outbound Staging"] == 0)
    model.addConstr(y_bottom["Outbound Staging"] + height["Outbound Staging"] == B_height)
    # Phantom in middle
```

```
model.addConstr(x_left["Phantom"] == 0)
    \#model.addConstr(x_left["Phantom"] + 0.5 * width["Phantom"] == B_width / 2)
    model.addConstr(y_bottom["Phantom"] + 0.5 * height["Phantom"] == B_height / 2)
    #model.addConstr(x left["Phantom"] >= 0.1 * B width)
# Objective: minimize total flow * (|\Delta\alpha| + |\Delta\beta|) = \alpha + \alpha + \alpha + \beta + \beta
obj = gp.quicksum(
    numeric_departments_matrix[i][j] *
    (alpha_pos[i][j] + alpha_neg[i][j] + beta_pos[i][j] + beta_neg[i][j])
    for i in selected_depts for j in selected_depts if i != j
model.setObjective(obj, GRB.MINIMIZE)
model.optimize()
# Plot results (unchanged except width/height already consistent)
if model.status in (GRB.OPTIMAL, GRB.TIME_LIMIT, GRB.SUBOPTIMAL):
    print(f"\n--- {layout_type.upper()} LAYOUT ---")
    print(f"Building dimensions: {B_width:.1f} x {B_height:.1f} m")
    print(f"Total area: {B_width * B_height:.1f} sqm")
    print(f"Objective (total flow-distance): {model.ObjVal:.1f}")
    fig, ax = plt.subplots(figsize=(15, 10))
    colors = plt.cm.get_cmap('tab20', len(selected_depts))
    # Warehouse (building) outline
    building outline = patches.Rectangle(
        (0, 0),
        B width,
        B_height,
        facecolor='none',
        edgecolor='red',
        linewidth=2,
        linestyle='--'
        label='Building'
    ax.add_patch(building_outline)
    ax.text(B_width / 2, B_height + 0.02 * B_height,
            f"Warehouse: {B_width:.1f} x {B_height:.1f} m",
            ha='center', va='bottom', fontsize=12)
    for idx, i in enumerate(selected depts):
        xl = x left[i].X
        xr = xl + width[i].X
        yb = y_bottom[i].X
        yt = yb + height[i].X
        # Check if the department is Phantom
        if i == "Phantom":
            facecolor = 'white'
            label_text = "" # no name
            show marker = False
            show area = False
            facecolor = colors(idx)
            label text = i
            show_marker = True
            show_area = True
        rect = patches.Rectangle((xl, yb), xr - xl, yt - yb,
                                  edgecolor='black', facecolor=facecolor, alpha=0.7)
        ax.add patch(rect)
        # Add department name
        if label text:
            ax.text((xl + xr) / 2, (yb + yt) / 2, label_text, ha='center', va='center',
                    fontsize=10, fontweight='bold',
                    bbox=dict(facecolor='white', alpha=0.7, edgecolor='none'))
        # Add marker if not Phantom
        if show_marker:
            ax.plot((xl + xr) / 2, (yb + yt) / 2, 'kx', markersize=8)
        # Add area text if not Phantom
        if show_area:
```

```
ax.text(xl + 5, yt - 5, f"{(xr - xl) * (yt - yb):.0f} sqm", fontsize=8)

ax.set_xlim(0, B_width)
ax.set_ylim(0, B_height)
ax.set_aspect('equal')
ax.set_title(f"{layout_type} Layout\nTotal Flow-Distance: {model.0bjVal:.1f}", fontsize=14)
ax.grid(True, linestyle='--', alpha=0.6)
ax.set_xlabel("Width (m)")
ax.set_ylabel("Height (m)")
ax.legend(loc='upper right')
plt.show()
else:
print(f"No feasible solution for {layout_type}, status: {model.status}")
```

```
In [41]: # Run for all layouts
for layout_type in ["I-shaped"]:
    selected_depts = load_all_data()
    solve_layout_linearized(layout_type, total_area=total_area, selected_depts=selected_depts, departments=depts=selected_depts
```

Set parameter OutputFlag to value 1

```
Gurobi Optimizer version 12.0.1 build v12.0.1rc0 (win64 - Windows 11.0 (26100.2))
```

CPU model: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz, instruction set [SSE2|AVX|AVX2] Thread count: 6 physical cores, 12 logical processors, using up to 12 threads

Optimize a model with 938 rows, 1014 columns and 3409 nonzeros

Model fingerprint: 0xb14be047

Variable types: 702 continuous, 312 integer (312 binary)

Coefficient statistics:

Matrix range [5e-01, 1e+04] Objective range [1e+00, 2e+01] Bounds range [1e+00, 1e+00] RHS range [1e+00, 1e+04]

Presolve removed 493 rows and 616 columns

Presolve time: 0.01s

Presolved: 445 rows, 398 columns, 1727 nonzeros

Variable types: 112 continuous, 286 integer (286 binary)

Found heuristic solution: objective 47694.068825 Found heuristic solution: objective 44413.082917 Found heuristic solution: objective 33377.826575

Root relaxation: objective 1.429315e+04, 209 iterations, 0.00 seconds (0.00 work units)

	Node	es		Curre	nt N	lode		I		Obje	ctiv	e Bound	ds			Wor	k
E	Expl U	nexpl	0b	j De	pth	Int	Inf		Incu	ımben	t	BestBo	t	Gap	I	t/Node	Time
	0	0	14293	.1519)	0	64	33	377.	8266	142	93.1519	9	57.2%		-	0s
Н	0	0					33	309	0.39	1101	142	93.1519	9	56.8%		-	0s
	0	0	14877	.8900)	0	66	33	090.	3911	148	77.8900		55.0%		-	0s
Н	0	0					31	179	1.10	7725	151	71.0426	5	52.3%		-	0s
	0	0	15171	.0426	,	0	65	31	791.	1077	151	71.0426	5	52.3%		-	0s
	0	0	18167	.8280)	0	68	31	791.	1077	181	67.8286)	42.9%		-	0s
Н	0	0					27	784	6.37	2533	181	67.8286	9	34.8%		-	0s
Н	0	0					24	159	7.15	4267	181	82.7850)	26.1%		-	0s
	0	0	18182	.7850)	0	62	24	597.	1543	181	.82.7856	9	26.1%		-	0s
	0	0	18182	.7850)	0	62	24	597.	1543	181	.82.7850	9	26.1%		-	0s
	0	0	18668	.9822		0	62	24	597.	1543	186	68.9822	2	24.1%		-	0s
	0	0	18702	.8754		0	58	24	597.	1543	187	02.8754	1	24.0%		-	0s
	0	0	18717	.4480)	0	63	24	597.	1543	187	17.4486	9	23.9%		-	0s
	0	0	18717	.4480)	0	64	24	597.	1543	187	17.4486	9	23.9%		-	0s
	0	0	18790	.1271		0	51	24	597.	1543	187	90.1271	L	23.6%		-	0s
	0	0	18790	.1271		0	51	24	597.	1543	187	90.1271	L	23.6%		-	0s
	0	0	18790	.1271		0	55	24	597.	1543	187	90.1271	L	23.6%		-	0s
Н	0	0					24	431	6.77	6863	187	90.1271	L	22.7%		-	0s
	0	0	18790	.1271		0	54	24	316.	7769	187	90.1271	L	22.7%		-	0s
	0	0	18790	.1932		0	38	24	316.	7769	187	90.1932	2	22.7%		-	0s
	0	0	18793	.0369)	0	38	24	316.	7769	187	93.0369	9	22.7%		-	0s
	0	0	18793	.0369)	0	45	24	316.	7769	187	93.0369	9	22.7%		-	0s
	0	0	18793	.0369)	0	33	24	316.	7769	187	93.0369	9	22.7%		-	0s
	0	2	18793	.0369)	0	31	24	316.	7769	187	93.0369	9	22.7%		-	0s
Н	108	132					24	419	8.11	7687	188	63.4093	3	22.0%	10	0.6	0s
Н	163	185					23	330	1.38	1467	188	63.4093	3	19.0%	9	9.9	0s
Н	187	185					22	264	4.31	4892	188	63.4093	3	16.7%	9	9.5	0s
Н	252	256					22	236	3.90	4646	188	72.8662	2	15.6%		8.8	0s
Н	260	256					21	157	8.86	3013	188	72.8662	2	12.5%		8.7	0s
Н	1516	718					21	153	5.43	0741	193	97.1399)	9.93%		8.4	0s
*	6387	688			3	4	21	152	6.58	0182	209	90.6550	9	2.49%	9	9.2	1s
*	7466	178			2	6	21	148	0.19	1909	212	83.5236	9	0.92%	9	9.2	1s

Cutting planes:

Gomory: 25 Cover: 3

Implied bound: 39

MIR: 152 Inf proof: 14 RLT: 11

Relax-and-lift: 2

Explored 7978 nodes (73505 simplex iterations) in 1.33 seconds (0.81 work units) Thread count was 12 (of 12 available processors)

Solution count 10: 21480.2 21526.6 21535.4 ... 24597.2

Optimal solution found (tolerance 1.00e-04)
Best objective 2.148019190917e+04, best bound 2.148019190917e+04, gap 0.0000%

```
--- I-SHAPED LAYOUT ---
Building dimensions: 577.2 x 144.3 m
Total area: 83300.0 sqm
Objective (total flow-distance): 21480.2
```

C:\Users\chant\AppData\Local\Temp\ipykernel_34796\3827421511.py:181: MatplotlibDeprecationWarning: The get_cm ap function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]` or ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead. colors = plt.cm.get_cmap('tab20', len(selected_depts))


```
In [42]: # Run for all layouts
for layout_type in ["L-shaped"]:
    selected_depts = load_all_data()
    solve_layout_linearized(layout_type, total_area=total_area, selected_depts=selected_depts, departments=depts
```

Set parameter OutputFlag to value 1 Gurobi Optimizer version 12.0.1 build v12.0.1rc0 (win64 - Windows 11.0 (26100.2))

CPU model: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz, instruction set [SSE2|AVX|AVX2]

Thread count: 6 physical cores, 12 logical processors, using up to 12 threads

Optimize a model with 1084 rows, 1176 columns and 3956 nonzeros

Model fingerprint: 0xb19da74b

Variable types: 812 continuous, 364 integer (364 binary)

Coefficient statistics:

Matrix range [5e-01, 1e+04] Objective range [1e+00, 2e+01] Bounds range [1e+00, 1e+00] RHS range [1e+00, 1e+04]

Presolve removed 639 rows and 790 columns

Presolve time: 0.01s

Presolved: 445 rows, 386 columns, 1710 nonzeros

Variable types: 111 continuous, 275 integer (275 binary)

Root relaxation: objective 1.144759e+04, 221 iterations, 0.00 seconds (0.00 work units)

	Nodes		Current	Node	e Objective Bounds Work
Exp	1 Une	xpl			tInf Incumbent BestBd Gap It/Node Time
	0	0	11447.5897	0	42 - 11447.5897 0s
Н	0	0			38922.574346 11447.5897 70.6% - 0s
Н	0	0			24408.551107 11447.5897 53.1% - 0s
	0		12116.4446	0	70 24408.5511 12116.4446 50.4% - 0s
	0		12401.0890	0	77 24408.5511 12401.0890 49.2% - 0s
	0		12488.7883	0	76 24408.5511 12488.7883 48.8% - 0s
	0		12488.7883	0	76 24408.5511 12488.7883 48.8% - 0s
	0		13325.5529	0	79 24408.5511 13325.5529 45.4% - 0s 71 24408.5511 13480.5036 44.8% - 0s
	0		13480.5036 13480.5036	0 0	71 24408.5511 13480.5036 44.8% - 0s 76 24408.5511 13480.5036 44.8% - 0s
	0 0		13480.5036	0	79 24408.5511 13480.5036 44.8% - 0s
	0		14043.1543	0	76 24408.5511 13480.3030 44.6% - 05
	0		14358.2859	0	70 24408.5511 14358.2859 41.2% - 0s
	0		14367.5688	0	66 24408.5511 14367.5688 41.1% - 0s
	0		14367.7141	0	71 24408.5511 14367.7141 41.1% - 0s
Н	0	0	1130717111	Ů	24002.774975 14451.0252 39.8% - 0s
••	0		14451.0252	0	65 24002.7750 14451.0252 39.8% - 0s
	0		14526.5895	0	66 24002.7750 14526.5895 39.5% - 0s
	0		14526.5895	0	65 24002.7750 14526.5895 39.5% - 0s
Н	0	0			23535.086296 14526.5895 38.3% - Os
	0	0	14526.5895	0	71 23535.0863 14526.5895 38.3% - 0s
	0	0	14554.1729	0	71 23535.0863 14554.1729 38.2% - 0s
Н	0	0			23192.092900 14554.1729 37.2% - 0s
	0	0	14554.1729	0	75 23192.0929 14554.1729 37.2% - 0s
	0	0	14608.0589	0	81 23192.0929 14608.0589 37.0% - 0s
Н	0	0			22925.209255 14608.0589 36.3% - 0s
	0	0	14608.0589	0	81 22925.2093 14608.0589 36.3% - Os
	0	0	15788.9562	0	73 22925.2093 15788.9562 31.1% - Os
	0	2	15788.9562	0	57 22925.2093 15788.9562 31.1% - Os
Н	43	72			21659.000654 16192.8416 25.2% 22.7 Os
		120			21215.691618 16192.8416 23.7% 13.3 0s
	63	371		59	20138.944803 16701.5465 17.1% 11.1 0s
H 15		663			19865.930754 17232.7060 13.3% 11.3 0s
H 22		818			19864.333007 17380.4158 12.5% 13.5 1s
H 24		772			19696.962293 17509.8166 11.1% 13.3 1s
H 33		756			19669.963189 17865.0358 9.18% 13.0 1s
* 35		682		63	19633.913013 17928.4512 8.69% 12.9 1s
H 35		646			19533.952390 17928.4512 8.22% 12.9 1s
H 38		619		F.C	19388.321115 18102.6204 6.63% 12.6 1s
* 43		775		56	19368.763313 18162.4102 6.23% 12.2 2s
H 55 * 98		.081		60	19367.025690 18322.5966 5.39% 11.5 2s 19348.401721 18670.3417 3.50% 10.4 2s
*115		826		60 72	
		.771 .446		12	19274.432198 18783.5237 2.55% 10.2 3s 19223.069785 18985.7810 1.23% 9.9 3s
H148		446			19223.069785 18985.7810 1.23% 9.9 3s 19219.640828 18985.9561 1.22% 9.9 3s
*152		460		66	19217.799987 18985.9561 1.21% 9.8 3s
*156		407		57	19213.431742 19006.4588 1.08% 9.7 3s
*158		278		66	19197.048329 19014.0516 0.95% 9.7 3s
*170		.080		68	19190.149573 19043.7312 0.76% 9.6 3s
*174		938		60	19170.361360 19044.5644 0.66% 9.6 3s
*178		629		56	19163.744102 19069.2083 0.49% 9.5 3s
1/0	J J	525		50	17107.7 TTLUE 17007.2007 0.T/M 7.7 J3

```
Cutting planes:
 Gomory: 36
  Cover: 16
 Implied bound: 20
 MIR: 103
 Flow cover: 224
 Inf proof: 8
 RLT: 7
 Relax-and-lift: 4
Explored 19192 nodes (184503 simplex iterations) in 4.17 seconds (1.68 work units)
Thread count was 12 (of 12 available processors)
Solution count 10: 19162.2 19163.7 19170.4 ... 19274.4
Optimal solution found (tolerance 1.00e-04)
Best objective 1.916216965376e+04, best bound 1.916216965376e+04, gap 0.0000%
--- L-SHAPED LAYOUT ---
Building dimensions: 288.6 x 288.6 m
Total area: 83300.0 sqm
Objective (total flow-distance): 19162.2
C:\Users\chant\AppData\Local\Temp\ipykernel_34796\3827421511.py:181: MatplotlibDeprecationWarning: The get_cm
ap function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]``
or ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.
colors = plt.cm.get_cmap('tab20', len(selected_depts))
```

19162.169654 19069.2083 0.49% 9.5

*17884 608

56

L-shaped Layout Warehouse 288,6 x 288,6 m Total Flow-Distance: 19162.2


```
In [55]: # Run for all layouts
for layout_type in ["U-shaped"]:
    selected_depts = load_all_data()
    solve_layout_linearized(layout_type, total_area=total_area, selected_depts=selected_depts, departments=depts
```

Set parameter OutputFlag to value 1 Gurobi Optimizer version 12.0.1 build v12.0.1rc0 (win64 - Windows 11.0 (26100.2))

CPU model: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz, instruction set [SSE2|AVX|AVX2]

Thread count: 6 physical cores, 12 logical processors, using up to 12 threads

Optimize a model with 1084 rows, 1176 columns and 3956 nonzeros

Model fingerprint: 0xa8258a50

Variable types: 812 continuous, 364 integer (364 binary)

Coefficient statistics:

Matrix range [5e-01, 1e+04] Objective range [1e+00, 2e+01] Bounds range [1e+00, 1e+00] RHS range [1e+00, 1e+04]

Presolve removed 641 rows and 793 columns

Presolve time: 0.01s

Presolved: 443 rows, 383 columns, 1703 nonzeros

Variable types: 110 continuous, 273 integer (273 binary)

Root relaxation: objective 1.269845e+04, 211 iterations, 0.00 seconds (0.00 work units)

	Nodes		Current	Node	- 1	0bjec	tive Bounds		Worl	<
Exp	ol Une	xpl				_	BestBd	Gap	It/Node	Time
	0		12698.4473	0	50		12698.4473	-	-	0s
Н	0	0					12698.4473	64.8%	-	0s
Н	0	0		_			12698.4473	61.6%	-	0s
	0		13508.6259	0			13508.6259	59.1%	-	0s
Н	0	0	44070 7000				13627.3718	58.4%	-	0s
	0		14070.7933	0			14070.7933	57.1%	-	0s
	0		14113.6715	0			14113.6715	56.9%	-	0s
Н	0	0	14227.1405	0			14227.1405 14227.1405	56.5%	-	0s
	0 0		14227.1405	0 0	-		14227.1405	56.5% 56.5%	-	0s
	0		14248.5434	0			14248.5434	56.4%	-	0s 0s
	0		14257.8473	0			14257.8473	56.4%	-	0s
Н	0	0	14237.0473	O			14459.7862	39.6%	_	0s
	0		14736.1076	0			14736.1076	38.5%	_	0s
	0		14772.2655	0			14772.2655	38.3%	_	0s
	0		14774.6876	0			14774.6876	38.3%	_	0s
	0		14777.1066	0			14777.1066	38.3%	_	0s
	0		14777.1066	0	72 23	3948.0972	14777.1066	38.3%	-	0s
	0		15102.1981	0	65 23	3948.0972	15102.1981	36.9%	_	0s
Н	0	0					15108.9103	36.7%	_	0s
	0	0	15146.6685	0	71 23	8868.9911	15146.6685	36.5%	-	0s
	0	0	15146.6685	0	71 23	8868.9911	15146.6685	36.5%	-	0s
	0	0	15234.6326	0	69 23	8868.9911	15234.6326	36.2%	-	0s
	0	0	15289.6386	0	75 23	8868.9911	15289.6386	35.9%	-	0s
	0	0	15289.6386	0	69 23	8868.9911	15289.6386	35.9%	-	0s
Н	0	0			2261	2.774473	15289.6386	32.4%	-	0s
	0	0	15289.6386	0	68 22	2612.7745	15289.6386	32.4%	-	0s
	0	0	15289.6386	0	71 22	2612.7745	15289.6386	32.4%	-	0s
	0	0	15314.3213	0	76 22	2612.7745	15314.3213	32.3%	-	0s
	0	0	15320.5622	0	77 22	2612.7745	15320.5622	32.2%	-	0s
Н	0	0					15337.3204	30.4%	-	0s
	0		15337.3204	0			15337.3204	30.4%	-	0s
	0		15339.1866	0			15339.1866	30.4%	-	0s
	0		15339.1866	0			15339.1866	30.4%	-	0s
Н	0	0		_			15507.3770	29.1%	-	0s
	0		15507.3770	0			15507.3770	29.1%	-	0s
	0		15524.8139	0			15524.8139	29.0%	-	0s
	0		15526.6923	0			15526.6923	29.0%	-	0s
	0		15527.7169	0			15527.7169	29.0%	-	0s
	0		15537.8544	0			15537.8544	28.9%	-	0s
	0		15541.0576 15541.0576	0	_		15541.0576 15541.0576	28.9%	-	0s
	0 0		15568.4874	0 0			15568.4874	28.8%	-	0s 0s
			15601.9397	0			15601.9397	28.6%	-	
	0 0		15601.9397	0			15601.9397	28.6%	-	0s 0s
Н	0	0	±JUU1.333/	ð			15601.9397	26.3%	-	0s
"	0		15627.7607	0			15627.7607	26.2%	-	0s
	0		15628.9046	0			15628.9046	26.2%	-	0s
	0		15655.9546	0			15655.9546	26.0%	-	0s
	0		15661.7638	0			15661.7638	26.0%	_	0s
	0		15662.1845	0			15662.1845	26.0%	_	0s
	v	U	17002:10 1 7	V	,, 41	-,0.3333	17002.1077	_0.0/0		V J

```
0 15662.1845 0 74 21170.5599 15662.1845 26.0%
    0
                                                                      0s
    0
          0 15662.2324
                        0 63 21170.5599 15662.2324 26.0%
                                                                      0s
    0
          0
                              20499.625981 15662.2324 23.6%
                                                                      0s
          2 15662.2324 0 62 20499.6260 15662.2324 23.6%
    0
                                                                      0s
Н
   63
         55
                              20335.416413 16252.6633 20.1% 25.1
                                                                      0s
H 1212
        457
                               20296.842089 18053.5048 11.1% 11.6
                                                                      0s
H 2670
                               20251.402164 18704.8838 7.64% 11.1
        738
* 3309
        801
                               20243.888868 18905.9907 6.61% 11.0
                                                                      0s
H 3628
        824
                               20186.268143 18964.4677 6.05% 10.8
                                                                      1s
H 4530
       711
                               20131.029311 19191.5183 4.67% 10.8
Cutting planes:
  Gomory: 7
  Cover: 14
 Implied bound: 60
 Clique: 2
 MIR: 271
 Inf proof: 17
 RLT: 40
  Relax-and-lift: 11
Explored 7836 nodes (84074 simplex iterations) in 1.69 seconds (1.09 work units)
Thread count was 12 (of 12 available processors)
Solution count 10: 20131 20186.3 20243.9 ... 22023.9
Optimal solution found (tolerance 1.00e-04)
Best objective 2.013102931136e+04, best bound 2.013102931136e+04, gap 0.0000%
--- U-SHAPED LAYOUT ---
Building dimensions: 288.6 x 288.6 m
Total area: 83300.0 sqm
Objective (total flow-distance): 20131.0
C:\Users\chant\AppData\Local\Temp\ipykernel 34796\2685057132.py:184: MatplotlibDeprecationWarning: The get cm
ap function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`
or ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.
colors = plt.cm.get_cmap('tab20', len(selected_depts))
```

U-shaped Layout Total Flow-Distance: 20131.0

