Computador: tecnologias e abstrações

Introdução

- Computadores
 - A terceira revolução da civilização
 - A revolução da informação
- A revolução continua...
 - Tecnologia de circuitos integrados
 - Novas idéias de como projetar computadores
 - Avanços em compiladores e SOs

Introdução

- Redução de custo → novas aplicações
- Exemplos:
 - Computadores em automóveis
 - Telefones celulares
 - "World Wide Web"
 - "Search engines"
- Tendência:
 - Computação ubíqua e pervasiva
 - » "Information anytime, anywhere"

Classes de aplicações: computadores

Desktop:

Exemplo: PC

Acesso: monitor, teclado e mouse

Servidor:

Exemplos: Web servers, supercomputadores

Acesso: tipicamente via rede

• Embarcado:

- Exemplos: computador de bordo (aviões e carros); celular, câmera, video game, televisão digital, etc.
- Acesso: indireto (n\u00e3o se parece com um computador)

Classes de aplicações: custo

Desktop:

- Mono-usuário
- Baixo custo

Servidor:

- Multi-usuário, grandes programas
- Baixo custo (desktop bem configurado)
- Alto custo (supercomputadores)

• Embarcado:

- Única aplicação (ou aplicações similares)
- Baixíssimo custo

Classes de aplicações: software

- Desktop:
 - Desenvolvido pelo usuário ou terceiros
 - » Atualizado pelo usuário
- Servidor:
 - Desenvolvido pelo usuário ou terceiros
 - » Atualizado pelo administrador
- Embarcado:
 - Desenvolvido pelo fabricante
 - » Muito pouco pode ser atualizado pelo usuário

Classes de aplicações: desempenho

Desktop:

- Minimizar o tempo médio de execução
- Servidor:
 - Maximizar o número de "jobs"/ tempo
- Embarcado:
 - Só o desempenho necessário para a função
 - Minimizar o custo
 - Minimizar o consumo de energia/potência

O mercado de processadores

Sob seu programa

- Escrito em linguagem de alto nível
- Software de sistema
 - Compilador: traduz código-fonte em código de máquina
 - Sistema Operacional: código de serviço
 - » Manipulação de entrada e saída (E/S)
 - » Gerenciamento de memória e discos
 - Escalonamento de tarefas e compartilhamento de recursos
- Hardware
 - Processador, memória e controladores de E/S

Sob seu programa

- Computador é máquina eletrônica
 - Transistor atua como chave
 - » Ligado/desligado: define níveis lógicos
 - Números binários
 - » Representação de dados e instruções
- Montador: simbólico → binário
 - $add A,B \rightarrow 1000110010100000$
 - Linguagem de montagem: "assembly"
 - Depende do processador-alvo

Sob seu programa

- Linguagem de alto nível
 - Mais natural
 - Maior produtividade do programador
 - Independente do processador-alvo
- Compilador: alto nível → "assembly"
 - $-A+B \rightarrow add A,B$

O Processo de Geração de Código

Linguagem de Alto Nível

```
swap (int v[], int k)
{
  int temp;
  temp = v[k];
  v[k] = v[k+1];
  v[k+1] = temp;
}
```

Linguagem de máquina

Linguagem de montagem

swap: muli \$2,\$5, 4 add \$2,\$4,\$2 lw \$15, 0(\$2) lw \$16, 4(\$2) sw \$16, 0(\$2) sw \$15, 4(\$2) jr \$31

INE 5411, abstractions, slide 12 Luiz C. V. dos Santos, INE/CTC/UFSC

Computador: principais componentes

- Dispositivos de entrada e saída (E/S)
 - Interface com o usuário
 - » Mouse, display, teclado,
 - Dispositivos de armazenamento
 - » HD, CD/DVD, flash
 - Adaptadores de rede
 - » Para se comunicar com outros computadores
- Memória
 - Armazena dados e programas em execução
 - » Caches (SRAM), memória principal (DRAM)
- Processador (CPU)
 - Obedece instruções do programa
 - Soma, testa, comanda dispositivos de E/S

Redes

- Comunicação e compartilhamento de recursos
- "Local area network" (LAN): Ethernet
 - Dentro de um prédio (100 Mbits/s a 10 Gbits/s)
- "Wide area network" (WAN): Internet
- "Wireless network": WiFi, Bluetooth
 - Rádio CMOS (1 Mbits/s a 100 Mbits/s)

Meios de armazenamento

- Memória principal volátil
 - Perde instruções e dados quando a alimentação é desligada
- Memória secundária não-volátil
 - HD
 - Memória Flash
 - Discos óticos (CD, DVD)

HD x DRAM

- Tempos de acesso (2008)
 - HD: 5-20 ms
 - DRAM: 50-70 ns
 - » DRAMs 100.000x a 400.000x mais rápidas!
- Custo/GB (2008)
 - HD é 30x a 100x mais barato que DRAM

HD x Flash

- Tempos de acesso (2008)
 - Flash 100x a 1.000x mais rápida que HD
- Flash é mais energeticamente eficiente
 - Câmeras e "portable music players"
- Custo/GB (2008)
 - HD é 6x a 10x mais cara que HD
- Problema:
 - "Estragam" após 100.000 a 1000.000 de escritas

Dentro de um microprocessador

AMD Barcelona: 4 processor cores

Dentro de um microprocessador

AMD Barcelona: 4 processor cores

Processador (core)

- Unidade de operativa ("datapath")
 - Lê ou escreve operandos
 - » Em registradores ou memória (cache, principal)
 - Executa operações
 - » Lógicas, aritméticas, comparações
- Unidade de controle
 - Comanda o "datapath"
 - Comanda dispositivos de E/S

Os 5 componentes do computador

- Para enfrentar a complexidade:
 - Esconder os detalhes
 - » Analogia (o relógio)
 - Abstrações

Abstrações

- Arquitetura
 - ISA: "Instruction-set architecture"
 - O que se precisa saber para rodar um programa em linguagem binária
- Implementação
 - HW que obedece à arquitetura
- Exemplo:
 - ISA: x86-32 (IA-32)
 - » Implementações: Pentium 4, Pentium M
 - ISA: x86-64
 - » Implementações: Core2 Duo, Core2 Quad, Opteron 2356
 - $IA-32 (x86-32) \supseteq x86-64 \neq IA-64$

Tendências tecnológicas

- A tecnologia eletrônica continua a evoluir
 - Aumento da capacidade e do desempenho
 - Redução do custo

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2005	Ultra large scale IC	6,200,000,000

Tecnologia: DRAM

Crescimento da capacidade de um chip de DRAM ao longo do tempo. A indústria de DRAMs quadruplicava a capacidade a cada e 3 anos (um crescimento anual de 60%) por 20 anos. Em anos recentes, a taxa de crescimento diminuiu: dobra a cada 2-3 anos.

Conclusões

- Desempenho/custo está aumentando
 - Devido à melhoria das tecnologias-chave
 - » Semicondutores (CMOS)
 - » Exploração de paralelismo (HW e compiladores)
- Níveis de abstração hierárquicos
 - Em ambos: HW e SW
- Instruction set architecture (ISA)
 - A interface hardware/software

O que você vai aprender

- Como programas são traduzidos em linguagem de máquina
 - E como o HW os executa
- A interface HW/SW
- Como projetistas de HW melhoram o desempenho
- Como avaliar o desempenho de um programa
 - E como melhorá-lo (SW)
- Algumas noções de processamento paralelo