Automated Analysis and Denoising of Neutron Scattering Data

David Bruhwiler*, Matthew Kilpatrick, Boaz Nash, Evan Carlin (RadiaSoft),

Christina Hoffmann, Zachary Morgan, Andrei T Savici, Bogdan Vacaliuc (ORNL)

A. Kuhn, J. Mensmann, P. Messmer, M. Nienhaus, S. Roemer, D. Tatulea (NVIDIA)

*bruhwiler@radiasoft.net

American Conference on Neutron Scattering (ACNS) Knoxville, Tennessee 26 June 2024

TOPAZ Single-crystal Diffractometer

- Located at ORNL and receives neutrons from the Spallation Neutron Source
- Samples can be measured with high precision for volumetric sampling in reciprocal space
 - Samples are rotated to measure all aspects of the lattice
 - Temperature control from 5 K 450 K
 - Broad Q coverage

https://neutrons.ornl.gov/topaz

Analysis methods for TOPAZ data

- Mantid, https://www.mantidproject.org
 - Open source community-developed application
 - Algorithms use raw data processed within 2D slices of the 3D data
- Some challenges faced by the community
 - Large datasets can be up to 100 Gb in size and current tools limit interactivity
 - Displaying data requires a high level of user interaction
 - 2D slices may miss key features of the diffraction data
- Using ML & leveraging Mantid to automate analysis & viz
 - DBSCAN used to automate & improve Bragg peak identification
 - 3D UNet used to automate detection of aluminum signature
- We are improving interactivity of the data viz
 - collaboration with NVIDIA Omniverse/IndeX development team
 - working towards combination of 3D viz and automated analysis
 - IndeX 3D Scientific Data Viz, https://developer.nvidia.com/index
 - Enables 3D browser-based viz of streaming data (deployed)

Previous work: analysis of scattering data for a Silicon crystal

Preprocessing the data

- Data is transformed to q-space in the usual manner
- We consider a 3D histogram of neutron counts in q-space
- Typically use 1,000 cubed histograms □ these are voxels to NVIDIA Omniverse / IndeX
- 5,000 cubed voxels will be practical on a single, modern GPU with latest version of IndeX software

• DBSCAN (a density based clustering algorithm) is used for Bragg peak detection & analysis

- Bragg peaks are automatically identified as oblong clusters (Mantid requires user input)
- Mantid takes peaks and calculates UB matrix & Miller indices
- DBSCAN / Mantid approach is 10x faster, more accurate & requires no user input
- Timescale: 10-20 min

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN

Background Removal Processes

- Sample mounting
 - Crystal sample can be tested at low temperatures
 - Aluminum cylinders have a randomly oriented crystal structure
 - These rings will scatter neutrons into a sphere or ring
- Scattered neutrons
 - Each plane orientation will create rings within reciprocal space
 - Translates into a sphere in 3D representation

Identify Accurate Ground Truths

- Properties of Aluminum Rings
 - Monochromatic in neutron intensity
 - Concentrated at a fixed radius
 - Varies from sample to sample
- Define a scale factor
 - Simple clustering
 - Tune DBSCAN parameters to get rings
 - Gradient based definitial for clustering
 - Normalized by the mean number of voxels

$$S_{rings}(R_w) = \frac{max(\nabla_w R) \cdot \bar{R}}{1+r}$$

How do these two methods compare?

Aluminum Labels

Aluminum 47829

DBSCAN

Aluminum 47829

Identification of Aluminum Rings

- Building a neural network
 - Identify a 3D CNN to train and predict aluminum rings
 - General Unet mainly used for image segmentation
 - Fully connected
 - Contraction and expansion paths
 - 3D Unet used for learning dense volumetric segmentation from sparse annotations

Identification of Aluminum Rings

- Building a neural network
 - Identify a 3D CNN to train and predict aluminum rings
 - General Unet mainly used for image segmentation
 - Fully connected
 - Contraction and expansion paths
 - 3D Unet used for learning dense volumetric segmentation from sparse annotations

Discriminator

Identification of Aluminum Rings

- Building a neural network
 - Identify a 3D CNN to train and predict aluminum rings
 - General Unet mainly used for image segmentation
 - Fully connected
 - Contraction and expansion paths
 - 3D Unet used for learning dense volumetric segmentation from sparse annotations

Labelled Rings

Predicted Rings

NVIDIA's Omniverse/IndeX: Browser-based 3D visualization

- Omniverse / IndeX is an interactive 3D volumetric visualization framework
 - o rotate, pan, zoom into large 3D volumes
 - executes remotely on a GPU server
 - streams video to the user's browser
- TOPAZ event data is converted into a voxel database
 - o voxels are a regular 3D grid
 - each is colored and/or made transparent based on the number of neutron events within it
 - colors & transparency can be dynamically edited

- The voxel database can be dense or sparse
 - large fraction of voxels are empty, so the sparse data format is very efficient
- Interactive response is robust to WiFi quality
 - even with a poor network connection, the typical delay after a mouse click is < 0.25 s

Summary

- Our goal is to automate data analysis to enable scientific discovery
 - ML + leveraging Mantid
 - o faster, better Bragg peak detection
 - deployed on-premises for TOPAZ
 - NVIDIA's Omniverse / IndeX technology
 - o interactive 3D viz in your browser in the control room, or at your home institution
 - o an NVIDIA card is required, presently on the floor of the SNS experimental hall
 - deployed on-premises for TOPAZ
 - ML + NVIDIA/IndeX (the work presented here)
 - o it is possible to automatically identify an unwanted aluminum signature
 - not yet deployed
 - ML + EPICS controls
 - has been used to automate sample alignment
 - demonstrated for TOPAZ & also at HIFR

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0021551.

- This lab-industry collaboration is facilitated by open-source software
 - RadiaSoft has an open source business model
 - Proprietary IndeX technology is free for scientific use, courtesy of NVIDIA
 - broad applications to other neutron beamlines

