

Reinforcement Learning in Control

Dr. Saeed Shamaghdari

Electrical Engineering Department Control Group

Fall 2025 | 4041

Introduction

Reinforcement Learning: Learning through Interaction

Most natural way of learning: learning from experience

Quadrupedal Walking Human Negotiation Driving Car (modern/old) Infant Playing

Information Gathering: Understanding the outcome of a series of actions. **Reward Learning:** Determining which action to take to achieve the goal.

RL: Goal Directed Learning

I Main Idea of Reinforcement Learning

Reinforcement Learning: Mapping from state to actions

Goal: Maximizing long-term reward Using optimal control ideas

Impact of Action Choice: Next Reward, Next State

Supervised Learning (Regression, Classification)

Training Datasets:

Unsupervised Learning (Clustering, Principal Component)

I RL vs SL, UL

In Summary ...

	Supervised	Unsupervised	Reinforcement
	Learning	Learning	Learning
Data	Labeled data	Unlabeled data	Environment and feedback
Goal	Learn mapping	Discover patterns,	Learn policy to
	between input data	relationships, or	maximize
	and output labels	groupings	cumulative reward

Reinforcement Learning: Life-Long Learning

Requirements of an Agent in Reinforcement Learning:

I RL Challenges

Exploitation is exploiting known information to maximize the reward. Exploration is exploring the environment (deterministic/stochastic) by trying random actions in order to find more information about the environment.

RL Challenges

Reinforcement Learning Challenges

Exploitation is exploiting known information to maximize the reward.

Exploration is exploring the environment (deterministic/stochastic) by trying random actions in order to find more information about the environment.

Selecting better actions

In Stochastic Environments:

Repeated execution of an action to estimate its Expected Reward

To recap...

State

 \rightarrow π(State) \rightarrow Action

Function
Look-up Table
Search

Policy | Deterministic |
Stochastic

Reinforcement Learning Main Elements R_t 2. Reward Signal **Agent Goal: Agent Environment** Maximizing total reward Deterministic Stochastic

RL in Control | IUST

Reinforcement Learning Main Elements

3. Value Function

Reward: Instantaneous reward (momentary goodness)

Value: Long-term reward (long-term goodness)

Expected Rewards

Reward: Instantaneous pleasure or discomfortValue: Long-term judgment of satisfaction/dissatisfaction

Yet it may be that you dislike something, which is good for you, and it may be that you love something, which is bad for you.

Reinforcement Learning Main Elements

3. Value Function

Action Selection Criteria: Value or Reward?

Value Challenge:

Calculation/Estimation method

Reinforcement Learning Main Elements

4. Model

$$S_t \rightarrow A_t \xrightarrow{\mathsf{Model}} \begin{cases} S_{t+1} \\ A_{t+1} \end{cases}$$

Reinforcement Learning Main Elements

Reinforcement Learning vs. Evolutionary Methods

Lack of attention to policy details in evolutionary methods

Example: X-0

Performance of a skilled agent? Based on game theory ...

Assumption: The opponent is not professional

→ What is the definition of a state in the game of X-O (Tic-Tac-Toe)?
Positions of the pieces + whose turn it is?

I Example: X-0

Constructing the Game Tree

- \rightarrow If any of B to F wins, then A is the winner.
- \rightarrow If all of B to F lose, then A is the loser.

Dynamic Programming approach:

Start from the terminal (final) states in the game tree and move bottom-up.

Determine the optimal choice to win.

I Example: X-O

Constructing the Game Tree

Your probability of winning starting from this position.

Note: The last row represents the definite winning probability. Dynamic Programming: Calculating probabilities from bottom to top. I Example: X-0

Solution with Reinforcement Learning

→ Temporal Difference

Create a Value table where each row corresponds to a State Initialize the table (Value)

(example:

a row with 0: Pr=0

a row with X: Pr=1

others: Pr=0.5)

Select a policy

Update the Value table based on observations

Example: X-0

Game algorithm based on TD (Temporal Difference):

Opponent's move from a to b

Estimate the Value function for the move from b

Greedy selection: move from b to c*

Receive new Reward and calculate V(S(t+1))

Update the table based on game observations:

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[V(S_{t+1}) - V(S_t) \Big]$$

Performing Exploration: randomly selecting suboptimal moves

Example: (going to a restaurant)

Note: no table update

Proof of convergence?

I Example: X-O

Recap: Solution with RL

