高等代数作业答案 (编纂中)

章亦流 A24201011

2025年3月9日

目录

		章多项式]
	5.1	一元多项式	
	5.2	整除	4
	5.3	因式分解定理	7
	5.4	复系数与实系数多项式的因式分解	1(
	5.5	有理系数多项式	12
5	第	五章多项式	
		·元多项式	
5	_	·元多斯式	

5.1.1 $f, g \in \mathbb{F}[x]$, 证明 $fg = 0 \iff f$ 和 g 中至少一个是 0.

证明一. \iff 显然. \Longrightarrow : 若 f,g 均非零,则两者的首项系数之积非零,从而 $fg \neq 0$.

证明二. ⇒:按逐项系数递推,记

$$f(x) = \sum_{i=0}^{m} a_i x^i, g(x) = \sum_{j=0}^{n} b_j x^j, f(x)g(x) = \sum_{t=0}^{m+n} \left(\sum_{i+j=t}^{m+n} a_i b_j\right) x^t = 0$$

从而 $c_t = \sum_{i+j=t} a_i b_j = 0, \forall t = 0, \cdots, m+n$. 若 f = 0 则命题得证; 若 $f \neq 0$, 则 $a_m \neq 0$, 而 $c_{m+n} = a_m b_n = 0, b_n = 0$.

下证明 $b_{n-r} = 0, r = 0, \dots, n$. 对 r 归纳, r = 0 时已证. 若 < r 的情形已证, 即

$$b_{n-0} = b_{n-1} = \dots = b_{n-r+1} = 0$$

则

$$c_{m+n-r} = a_m b_{n-r} + a_{m-1} b_{n-r+1} + \dots + a_{m-r} b_n = a_m b_{n-r} = 0$$

从而
$$b_{n-r}=0$$
, 得证.

5.1.2 $f, g, h \in \mathbb{F}[x], \text{ Är } f \neq 0, \text{ } \emptyset \text{ } fg = fh \iff g = h.$

证明.
$$fg=fh\iff f(g-h)=0,$$
 而 $f\neq 0,$ 由上题知 $g-h=0,$ $g=h.$

5.1.3 对于 $f \in \mathbb{R}[x], f \neq 0$ 满足 $f(x^2) = f^2(x)$, 求多项式 f(x).

证明一. 记 $f(x) = \sum_{i=0}^{n} a_i x^i, a_i \in \mathbb{R}, a_n \neq 0$. 取 $m = \max\{k \mid a_k \neq 0, k = 0, \dots, n-1\}$, 即除 $a_n x^n$ 外最高非零项的次数, 则

$$f(x^2) = \sum_{i=0}^{n} a_i x^{2i} = a_n x^{2n} + a_m x^{2m} + \cdots, f^2(x) = \sum_{i=0}^{2n} \left(\sum_{i+j=1}^{n} a_i a_j \right) x^t = a_n^2 x^{2n} + 2a_n a_m x^{n+m} + \cdots$$

比较系数, $a_n = a_n^2$, $a_n = 1$. 而 n + m > 2m, 故 x^{n+m} 项系数 $2a_n a_m = 0$, $a_m = 0$. 这与 m 定义矛盾, 故 m 不存在, 即 $a_0 = \cdots = a_{n-1} = 0$, $f(x) = x^n$.

证明二. 同上记号且易证 $a_n = 1$. 对 $f(x^2), f^2(x)$ 展开有:

$$f(x^2) = \sum_{i=0}^{n} a_i x^{2i}, f^2(x) = \sum_{t=0}^{2n} \left(\sum_{i+j=t}^{n} a_i a_j \right) x^t$$

逐项比较系数, 可得:

$$a_k = \sum_{i+j=2k} a_i a_j, \qquad 0 = \sum_{i+j=2k+1} a_i a_j, \qquad \forall k = 0, \dots, n$$

从而 $0 = 2a_n a_{n-1}, a_{n-1} = 0$. 下证 $a_{n-r} = 0, r = 1, \dots, n$. 对 r 归纳, r = 1 时已证. 假设 < r 的情形已证, 即 $a_{n-1} = \dots = a_{n-r+1} = 0$ 时: 若 r 为偶数, 则

$$0 = a_{n-r/2} = \sum_{i+j=2n-r} a_i a_j = 2a_n a_{n-r}$$

若 r 为奇数, 则取 k = n - (r+1)/2,

$$0 = \sum_{i+j=2n-r} a_i a_j = 2a_n a_{n-r}$$

可知总有 $a_{n-r}=0$, 从而得证, 即 $f(x)=x^n$.

5.1.4 $f, g, h \in \mathbb{R}[x]$, 证明若 $f^2(x) = xg^2(x) + xh^2(x)$, 则 f = g = h = 0.

证明一. 若 $f \neq 0$ 则 $\deg f^2 = 2 \deg f$ 为偶数, 且此时 $g^2 + h^2 \neq 0$. 由于 g^2 与 h^2 的首项系数均为正数, 故两者和也为正数, 故 $\deg(g^2 + h^2) = \max(\deg g^2, \deg h^2)$, 从而有

$$2 \deg f = \deg f^2 = \deg (xg^2(x) + xh^2(x)) = 2 \max(\deg g, \deg h) + 1$$

左端为偶数, 右端为奇数, 矛盾, 从而 $f = 0, g^2 + h^2 = 0, g = h = 0$.

证明二. 若 g,h 中至少有一个非零,取 $g \neq 0$,则 $\exists c \in \mathbb{R}, g(c) \neq 0$,故 $g^2(c) + h^2(c) > 0, g^2 + h^2 \neq 0$. 而 $\deg f^2$ 为 偶数, $\deg \left(xg^2(x) + xh^2(x) \right)$ 为奇数,矛盾. 故 g = h = 0, f = 0.

5.1.5 在 $\mathbb{C}[x]$ 中找一组不全为 0 的多项式 f,g,h 使得 $f^2(x) = xg^2(x) + xh^2(x)$.

证明.
$$f(x) = 0, g(x) = i, h(x) = 1.$$

通解. 由于 $x \mid f^2(x)$, 则 $x \mid f(x)$. 记 f(x) = xq(x), 有

$$xq^{2}(x) = g^{2}(x) + h^{2}(x) = (g(x) + ih(x))(g(x) - ih(x))$$

不失一般性地认为 g,h 互素, 因为上式等价于

$$x\left(\frac{q(x)}{(g(x),h(x))}\right)^2 = \left(\frac{g(x)}{(g(x),h(x))}\right)^2 + \left(\frac{h(x)}{(g(x),h(x))}\right)^2$$

另一方面, $x \mid (g(x) + ih(x))(g(x) - ih(x))$, 不失一般性地认为 $x \mid g(x) + ih(x)$.

将 q(x) 分解为不可约多项式的乘积, 即 $q = p_1 p_2 \cdots p_m$, 则

$$g(x) + ih(x) = xp_1^2(x) \cdots p_s^2(x)p_{s+1}(x) \cdots p_t(x), g(x) - ih(x) = p_{s+1}(x) \cdots p_t(x)p_{t+1}^2(x) \cdots p_m^2(x)$$

记

$$a(x) = p_1(x) \cdots p_s(x), b(x) = p_{t+1}(x) \cdots p_m(x), d(x) = p_{s+1}(x) \cdots p_t(x)$$

则 q = abd, $g + ih = xa^2d$, $g - ih = db^2$, $(g + ih, g - ih) = d(a, b)^2$. 而 (g + ih, g - ih) = (g + ih, 2g) = (g, h) = 1, 因此 d = (a, b) = 1, $g + ih = xa^2$, $g - ih = b^2$, 解得:

$$f = xq = xab, g = \frac{xa^2 + b^2}{2}, h = \frac{xa^2 - b^2}{2i}$$

最后回代 g,h 不互素的情况, 得到通解: 对于 $\forall a,b \in \mathbb{C}[x]$, 上式为通解.

5.2整除

- **5.2.1** 求下列 f(x) 除以 g(x) 的商式 g(x) 与余式 r(x):
 - 1. $f(x) = 5x^4 + 3x^3 + 2x^2 + x 1$, $g(x) = x^2 + 2x 2$;
 - 2. $f(x) = 6x + 3x^4 4x^3$, g(x) = x + 2.
- 证明. 1. $q(x) = 5x^2 7x + 26, r(x) = -65x + 51.$
 - 2. $q(x) = 3x^3 10x^2 + 20x 34, r(x) = 68.$
- **5.2.2** 求 f(x) 按 x-c 幂的展开式, 即写成 $f(x) = \sum_{k=0}^{n} a_k (x-c)^k$ 的形式:
 - 1. $f(x) = x^5, c = 1$;
 - 2. $f(x) = x^3 10x^2 + 13, c = -2.$
- 1. $(x-1)^5 + 5(x-1)^4 + 10(x-1)^3 + 10(x-1)^2 + 5(x-1) + 1$.
 - 2. $(x+2)^3 16(x+2)^2 + 52(x+2) 35$.
- **5.2.3** 问参数 m, n, p 满足什么条件时有
 - 1. $x^2 2x + 1 \mid x^4 5x^3 + 11x^2 + mx + n$;
 - 2. $x^2 2mx + 2 \mid x^4 + 3x^2 + mx + n$:
 - 3. $x^2 + m 1 \mid x^3 + nx + p$;
 - 4. $x^2 + mx + 1 \mid x^4 + nx^2 + n$
- 1. 要求除法余式 r(x) = (m+11)x + (n-4) = 0, 即 m = -11, n = 4.
 - 2. 要求除法余式 $r(x) = (8m^3 m)x 8m^2 + n 2 = 0$, 解得 m = 0, n = 2 或 $m = \pm \frac{\sqrt{2}}{4}, n = 3$.
 - 3. 要求除法余式 r(x) = (1 m + n)x + p = 0, 即 m = n + 1, p = 0.
 - 4. 要求除法余式 $r(x) = (-m^3 mn + 2m)x m^2 n + p + 1 = 0$, 解得 m = 0, n = p + 1 或 $m^2 + n = 2, p = 1$.

 \Box

- **5.2.4** 求 u(x), v(x) 使得 uf + vg = (f, g).
 - 1. $f(x) = x^4 + 3x^3 x^2 4x 3$, $g(x) = 3x^3 + 10x^2 + 2x 3$;
 - 2. $f(x) = x^4 10x^2 + 1$, $g(x) = x^4 4\sqrt{2}x^3 + 6x^2 + 4\sqrt{2}x + 1$;
 - 3. $f(x) = x^4 x^3 4x^2 + 4x + 1$, $g(x) = x^2 x 1$.
- 1. $u(x) = \frac{3}{5}x 1, v(x) = -\frac{1}{5}x^2 + \frac{2}{5}x.$
 - 2. $u(x) = -\frac{\sqrt{2}}{8}x + \frac{1}{2}, v(x) = \frac{\sqrt{2}}{8}x + \frac{1}{2}.$ 3. $u(x) = -x 1, v(x) = x^3 + x^2 3x 2.$

(答案均不唯一.)

5.2.5 设 $f(x) = x^3 + (t+1)x^2 + 2x + 2u$ 与 $g(x) = x^3 + tx^2 + u$ 的最大公因式为二次多项式, 求 t, u.

证明. 考虑带余除法 f = qg + r, 比较次数与系数可知 q(x) = 1, 故 $r(x) = f(x) - g(x) = x^2 + 2x + u$. 继续辗转相除得到 $g = q_1r + r_1$, 其中 $\deg r_1 < \deg r = 2$, 而 $(f,g) \mid r_1$, 因此 $r_1 = 0$, $g = q_1r$. 比较系数知 q_1 为首项系数为 1的一次多项式 (x-a), 因此有

$$g(x) = x^3 + tx^2 + u = (x - a)(x^2 + 2x + u) = x^3 + (2 - a)x^2 + (u - 2a)x - au$$

比较系数可得

$$t = 2 - a$$
, $0 = u - 2a$, $u = -au$

解得 t = 2, u = 0, a = 0 或 t = 3, u = -2, a = -1.

5.2.6 对于多项式 f, g, d, 若 $d \mid f, d \mid g$ 且存在多项式 u, v 使得 d = uf + vg, 证明 d = (f, g).

证明. 由 $d \mid f, d \mid g$ 知 $d \mid (f, g)$, 而 $(f, g) \mid uf + vg = d$, 因此 $d \vdash (f, g)$ 间差一个非零常数, 即 $d \vdash (f, g)$ 的一个最大公因数.

- **5.2.7** 设 $f, g \in \mathbb{F}[x]$, 证明:
 - 1. 若 $a, b, c, d \in \mathbb{F}$ 满足 $ad bc \neq 0$, 则 (af + bg, cf + dg) = (f, g);
 - 2. $(f^2, g^2) = (f, g)^2$;
 - 3. $(f, f + g) = 1 \iff (f, g) = 1$.

证明. 首先证明引理: 对于任意多项式 $q \in \mathbb{F}[x], (f,g) = (f+qg,g)$. 证: 由于 (f,g) 整除 f+qg 和 g, 因此 $(f,g) \mid (f+qg,g)$, 同理 $(f+qg,g) \mid (f+qg-qg,g) = (f,g)$, 从而两者相等.

1.

$$(af + bg, cf + dg) = \left(af + bg, cf + dg - \frac{c}{a}(af + bg)\right) = \left(af + bg, \frac{ad - bc}{a}g\right) = (f, g)$$

2. 记 d = (f, g), 有 $f = df_1, g = dg_1, (f_1, g_1) = 1, (f^2, g^2) = d^2(f_1^2, g_1^2)$. 而 $(f_1, g_1) = 1 \iff (f_1^2, g_1^2) = 1$ (书上推论 5.2.12, 或由 Bézout 定理), 从而得证.

5.2.8 $f, g \in \mathbb{F}[x]$ 不全为 0, 且 uf + vg = (f, g), 证明 (u, v) = 1.

证明. 记 $f = (f,g)f_1, g = (f,g)g_1$, 其中 $(f_1,g_1) = 1$. 从而有 $(f,g) = uf + vg = (f,g)(uf_1 + vg_1)$, 因此 $uf_1 + vg_1 = 1$, 这等价于 (u,v) = 1.

5.2.9 设 $f_1, \dots, f_m, g_1, \dots, g_n \in \mathbb{F}[x]$ 且 $(f_i, g_j) = 1 (\forall i \in [m], j \in [n])$, 证明 $(f_1 \dots f_m, g_1 \dots, g_n) = 1$.

证明. 首先证明 n=1 的情形, 即 $\forall i=1,\cdots,m, (f_i,g)=1$ 则有 $(f_1\cdots f_m,g)=1$. 对 m 归纳,m=1 时已证,下设 < m 的情形已得证,而 $(f_1\cdots f_{m-1},g)=(f_m,g)=1 \iff (f_1\cdots f_m,g)=1$ (书上推论 5.2.12),从而得证.

再对原命题考虑, 记
$$f = f_1 \cdots f_m$$
, 由上知 $(f, g_1) = \cdots = (f, g_n) = 1$, 从而又有 $(f, g_1 \cdots g_n) = 1$.

5.2.10 证明定理 5.2.16

定理 5.2.16 设 $f_1, \dots, f_k \in \mathbb{F}[x]$ 不全为 0, 则 (f_1, \dots, f_k) 唯一存在, 且

$$(f_1, \cdots, f_k) = ((f_1, \cdots, f_{k-1}), f_k)$$

从而 $\exists u_i \in \mathbb{F}[x], i \in [k]$ 使得

$$(f_1,\cdots,f_k)=\sum_{i=1}^k u_i f_i$$

证明. 对 k 归纳,k=2 时已得证. 下设 $k \geq 3$, < k 的情形已证. 设 $d_1 = (f_1, \dots, f_{k-1})$, 由归纳假设知其唯一确定, 且有 $v_1 f_1 + \dots + v_{k-1} f_{k-1} = d_1$.

首先证明 $d = (d_1, f_k)$ 为 f_1, \dots, f_k 的最大公因式, 从而证明存在性. 显然 $d \mid d_1 \mid f_i (i = 1, \dots, k-1)$ 且 $d \mid f_k$. 又对于 f_1, \dots, f_k 的任意公因式 g, 均有 (由归纳假设)

$$g \mid v_1 f_1 + \dots + v_{k-1} f_{k-1} = d_1, g \mid f_k$$

从而 $g \mid (d_1, f_k) = d$, 即 d 为最大公因式.

再证明唯一性: 若有多项式 d, d' 均为 f_1 , \cdots , f_k 的最大公因式, 则 $d' \mid d$, $d \mid d'$, 从而相同 (差一个非零常数而 首项系数均为 1).

最后, 由归纳假设有 $v_1f_1 + \cdots + v_{k-1}f_{k-1} = d_1$, 又有 $ud_1 + vf_k = d$, 从而

$$u(v_1f_1 + \dots + v_{k-1}f_{k-1}) + vf_k = uv_1f_1 + \dots + uv_{k-1}f_{k-1} + vf_k = d$$

综上得证.

5.2.11 称多项式 m(x) 为多项式 f(x), g(x) 的最小公倍式, 若 $f \mid m, g \mid m$ 且 f, g 的任意公倍式是 m 的倍式. 记 m = [f, g], 证明若 f, g 首项系数为 1, 则 $[f, g] = \frac{fg}{(f, g)}$.

证明. 记 $d = (f, g), m = fg/d, f = df_1, g = dg_1, (f_1, g_1) = 1$. 从而 $m = f_1g = fg_1$, 故 $f \mid m, g \mid m$.

再设 f,g 的任意公倍式 $h=h_1f=h_2g$,有 $h=dh_1f_1=dh_2g_1$,从而 $h_1f_1=h_2g_1$. 而 $(f_1,g_1)=1$,因此 $f_1\mid h_2,m=df_1g_1\mid dh_2g_1=h$. 综上,m 满足最小公倍式的所有条件,即 m=[f,g].

思考题 1 对于
$$f(x) = \sum_{i=0}^{m} a_i x^i, g(x) = \sum_{i=0}^{n} b_i x^i, h(x) = \sum_{i=0}^{m-n} c_i x^i,$$
 若有 $f(x) = g(x)h(x),$ 显式表达出 c_i .

证明. 考虑 g(x) 的最低非零次数 $r=\min{\{i|b_i\neq 0, i=0,1,\cdots,n\}},$ 则 $g(x)=\sum_{i=r}^n b_i x^i.$ 又由 $a_k=\sum_{i+j=k} b_i c_j$ 有:

$$a_{r+k} = \sum_{i+j=r+k} b_i c_j = b_r c_k + \sum_{i=0}^{k-1} b_{r+k-i} c_i, (k = 0, \dots, m-r)$$

因此有

$$c_k = \frac{1}{b_r} \left(a_{r+k} - \sum_{i=0}^{k-1} b_{r+k-i} c_i \right)$$

其在 r=0, 即 $b_0\neq 0$ 时化为

$$c_k = \frac{1}{b_0} \left(a_k - \sum_{i=0}^{k-1} b_{k-i} c_i \right)$$

6

5.3 因式分解定理

5.3.1 $x^2 + 1$ 在 \mathbb{Q} 上不可约.

证明. 由于 x^2+1 在 $\mathbb R$ 上的唯一分解式为 $(x-\mathrm{i})(x+\mathrm{i})$,故其不能被分解为 $\mathbb Q[x]$ 中的一次多项式之积,故在 $\mathbb Q$ 上不可约.

- 5.3.2 判别下列多项式是否有重因式:
 - 1. $f(x) = x^4 + x^3 + 2x^2 + x + 1$,
 - 2. $f(x) = x^6 3x^5 + 6x^3 3x^2 3x + 2$.
- 证明. 1. 辗转相除可得 (f, f') = 1 从而无重因式. 但辗转相除太过麻烦, 有其他方法:
 - 注意到 $(f,g) = (f+qg,g), \forall g \in \mathbb{F}[x],$ 故对第一小问有

$$(f, f') = (x^4 + x^3 + 2x^2 + x + 1, 4x^3 + 3x^2 + 4x + 1) = (x^3 + 4x^2 + 3x + 4, 4x^3 + 3x^2 + 4x + 1)$$

$$= (x^3 + 4x^2 + 3x + 4, 13x^2 + 8x + 15) = (11x^2 + 6x + 13, 13x^2 + 8x + 15)$$

$$= (11x^2 + 6x + 13, 10x - 4) = (4x + 5, 10x - 4) = 1$$

但该方法对第二小问太麻烦.

• 由于该题为四次多项式, 故可设

$$x^{4} + x^{3} + 2x^{2} + x + 1 = (x^{2} + ax + b)(x^{2} + cx + d)$$

展开后比较系数可得

$$a + c = 1$$
, $ac + b + d = 2$, $ad + bc = 1$, $bd = 1$

尝试带入 $b = d = \pm 1$ 发现 b = d = 1, a = 0, c = 1 时方程成立, 即

$$f(x) = (x^2 + 1)(x^2 + x + 1)$$

从而无重因式.

• 注意到方程系数 (1,1,2,1,1) 是对称的, 因此可令 z = x + 1/x 换元, 即

$$f(x) = x^{2} \left(x^{2} + x + 2 + \frac{1}{x} + \frac{1}{x^{2}} \right) = x^{2} \left(\left(x + \frac{1}{x} \right)^{2} + \left(x + \frac{1}{x} \right) \right)$$
$$= x^{2} \left(x + \frac{1}{x} + 1 \right) \left(x + \frac{1}{x} \right) = (x^{2} + 1)(x^{2} + x + 1)$$

从而无重因式.

2. 辗转相除可得 $(f,f')=x^3-x^2-x+1$ 从而有重因式. 也可直接试根: 注意到 f(x) 的有理根 $x_0=r/s$ 总有 $r\mid 2,s\mid 1$,故 x_0 仅可能为 $\pm 1,\pm 2$,故带入验算发现 1,-1,2 均为根,相除得到

$$\frac{f(x)}{(x-2)(x-1)(x+1)} = x^3 - x^2 - x + 1 = (x-1)^2(x+1)$$

从而 $f(x) = (x-1)^3(x+1)^2(x-2)$, 其有重根.

5.3.3 求 A, B 使得 $(x-1)^2 \mid Ax^4 + Bx^2 + 1$.

证明一. 设 $f(x) = Ax^4 + Bx^2 + 1$, 由题知 $(x-1) \mid f'(x) = 4Ax^3 + 2Bx$, 从而 f(1) = f'(1) = 0, 即 A + B + 1 = 4A + 2B = 0, 解得 A = 1, B = -2.

证明二. 设 $f(x) = Ax^4 + Bx^2 + 1$, 注意到 $(x-1) \mid (f,f') = (Ax^4 + Bx^2 + 1, 4Ax^3 + 2Bx) = (Bx^2/2 + 1, 4Ax^3 + 2Bx)$, 而 $(x-1) \mid \frac{B}{2}x^2 + 1$ 要求 B = -2, 以及 $(x-1) \mid x(4Ax^2 - 4)$ 要求 A = 1.

5.3.4 设 $f(x) = x^5 - 3x^4 + 2x^3 + 2x^2 - 3x + 1$, 在 $\mathbb{Q}[x]$ 中求一个没有重因式的多项式 g, 使其与 f 有完全相同的不可约多项式 (不计重数).

证明. 观察多项式系数可知其有理根仅可能有 ±1, 验算可知均为根, 从而有

$$\frac{f(x)}{(x-1)(x+1)} = x^3 - 3x^2 + 3x - 1 = (x-1)^3$$

从而取 $g(x) = (x-1)(x+1) = x^2 - 1$ 即可.

5.3.5 证明多项式 $f(x) = x^4 + 2x^3 - 15x^2 + 4x + 20$ 有重根, 并求其所有根.

证明. 辗转相除可得 (f, f') = x - 2, 从而知 $(x - 2)^2 \mid f(x)$,

$$\frac{f(x)}{(x-2)^2} = x^2 + 6x + 5 = (x+1)(x+5)$$

从而 2,-1,-5 为其所有根.

5.3.6 证明: 不可约多项式 p 是多项式 f 的 k 重因式 $\iff p \mid f, p \mid f', \dots, p \mid f^{(k-1)}$ 但 $p \nmid f^{(k)}$.

证明一. 容易看出, 该命题等价于: $p^k \mid f \iff p$ 整除 $f, f', \dots, f^{(k-1)}$. 下对 k 归纳, k = 1 时显然, 下设 $k \geq 2, < k$ 时命题成立.

⇒:显然 $p^{k-1} \mid f$,故由归纳假设,p 整除 $f, f', \dots, f^{(k-2)}$,下证 $p \mid f^{(k-1)}$. 由于有 $f = p^k g$,即 $f' = p^{k-1}(kp'g + pg')$,故 $p^{(k-1)} \mid f'$. 从而由归纳假设, $p \mid (f')^{(k-2)} = f^{(k-1)}$.

 $\leftarrow :$ 由于 p 整除 $f', (f')', \cdots, (f')^{(k-2)},$ 故由归纳假设知 $p^{k-1} \mid f',$ 其等价于 $p^k \mid f.$

证明二. k=1 时已证,k>1 时: $p \in f$ 的 k 重因式 $\iff p \in f'$ 的 k-1 重因式 $\iff \cdots \iff p \in f^{(k-1)}$ 的 $p \in f^{(k)}$.

另一方面, $p \nmid f^{(k)}$, $p \mid f^{(k-1)}$, 故 p 不为 $f^{(k-1)}$ 的重因式; 而 p 整除 $f^{(k-1)}$, $f^{(k-2)}$, 故 p 是 $f^{(k-2)}$ 的重因式. 综上,p 是 $f^{(k-1)}$ 的 2 重因式, 其余同上, 从而得证.

- 注 1. 该结果只对 $\operatorname{char} \mathbb{F} > k$ 或 $\operatorname{char} \mathbb{F} = 0$ 的数域 \mathbb{F} 上的多项式成立.
- **5.3.7** 举例否定 "若 α 是 f' 的 m 重根, 则 α 是 f 的 m+1 重根".

证明. 取 $f(x) = x^{m+1} + 1$, $f'(x) = (m+1)x^m$, 0 为 f' 的 m 重根但不是 f 的 m+1 重根.

注 2. 该命题若加上条件 " α 是 f 的根"即正确.

证明: 由题知 $(x-\alpha) \mid f, (x-\alpha)^m \mid f', (x-\alpha)^{m+1} \mid f'$. 由 5.3.6 知 $(x-\alpha)$ 整除 $f', f'', \dots, (f')^{(m-1)} = f^{(m)}$ 但 $(x-\alpha) \mid f^{(m+1)}$,加上题设 $(x-\alpha) \mid f$ 再由 5.3.6 知 $(x-\alpha)$ 是 f 的 m+1 重因式.

5.3.8 证明: 若 $(x-1) \mid f(x^n)$ 则 $(x^n-1) \mid f(x^n)$.

证明一. 显然 f(1)=0, 故 $(x-1)\mid f(x), f(x)=(x-1)g(x)$, 从而 $f(x^n)=(x^n-1)g(x^n), (x^n-1)\mid f(x^n)$.

证明二. 显然 f(1) = 0. 考虑 1 的任意 n 次单位根 $\omega_k = e^{\frac{2k\pi i}{n}}$, 有 $f(\omega_k^n) = f(1) = 0$, 故 $(x - \omega_k) \mid f(x^n)$, 从而

$$\prod_{k=0}^{n-1} (x - \omega_k) = (x^n - 1) \mid f(x^n).$$

5.3.9 $p \in \mathbb{F}[x], \deg p > 0$. 若对于 $\forall f \in \mathbb{F}[x]$ 均有 $p \mid f$ 或 (p, f) = 1, 则 p 在 \mathbb{F} 中不可约.

证明. 若 p 可被分解为次数小于 $\deg p$ 的多项式 q,r 之积,则必有其中一个多项式次数非零,设其为 q. 从而取 $f=q,(p,f)\neq 1,p\nmid f$,矛盾.

5.3.10 $p \in \mathbb{F}[x], \deg p > 0$. 若对于 $\forall f, g \in \mathbb{F}[x], p \mid fg \implies p \mid f$ 或 $p \mid g$, 则 p 在 \mathbb{F} 中不可约.

证明. 若 p 可被分解为次数小于 $\deg p$ 的多项式 q,r 之积, 则 $p \mid qr = p$ 但 $p \nmid q, p \nmid r$, 矛盾.

思考题 2 x^2-2 在 \mathbb{Q} 上不可约而在 \mathbb{R} 上可约.

证明一. 在 \mathbb{R} 上有 $x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$ 从而可约. 而该多项式在 \mathbb{Q} 上若有根 a = p/q,则 $q \mid 1, p \mid (-2)$,即 a 仅可能为 $\pm 1, \pm 2$,而这些均不为根,从而无根,即不可约.

证明二. 若在 \mathbb{Q} 上有唯一分解 $x^2-2=(x-a)(x-b)$, 即 a+b=0, ab=-2, 即 $a^2=2$. 对 $\sqrt{2}$ 的无理性证明导出 x^2-2 在 \mathbb{Q} 上不可约.

证明三. 书上例 5.3.1. □

思考题 3 设 $f = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}, g = p_1^{\beta_1} p_2^{\beta_2} \cdots p_s^{\beta_s},$ 其中 p_i 均为不可约多项式. 证明 $(f,g) = p_1^{\gamma_1} p_2^{\gamma_2} \cdots p_s^{\gamma_s},$ 其中 $\gamma_i = \min(\alpha_i, \beta_i), i = 1, \cdots, s.$

证明. 设 $d=p_1^{\gamma_1}p_2^{\gamma_2}\cdots p_s^{\gamma_s}$, 显然 $d\mid f,d\mid g$. 若有 f,g 的公因式 $d'=p_1^{\delta_1}p_2^{\delta_2}\cdots p_s^{\delta_s}$, 则 $\forall i=1,2,\cdots,s,\delta_i\leq\alpha_i$ 且 $\delta_i\leq\beta_i$, 故 $\delta_i\leq\gamma_i$, 从而 $d'\mid d$, 故 d=(f,g).

思考题 4 $f_1, \dots, f_s \in \mathbb{F}[x]$ 之间两两互素, 记 $f = f_1 \dots f_s, g_i = f/f_i$, 证明 $(g_1, g_2, \dots, g_s) = 1$.

证明. 对 s 归纳,s=2 时 $(g_1,g_2)=(f_2,f_1)=1$ 从而成立. 设 < s 时命题成立, 考虑两两互素的多项式 f_1,f_2,\cdots,f_s , 如上定义 f,g_i , 则有

$$d = \left(g_1, g_2, \cdots, g_s\right) = \left(\left(g_1, g_2, \cdots, g_{s-1}\right), g_s\right)$$

而

$$(g_1, g_2, \cdots, g_{s-1}) = \left(\frac{f_1 \cdots f_s}{f_1}, \frac{f_1 \cdots f_s}{f_2}, \cdots, \frac{f_1 \cdots f_s}{f_{s-1}}\right) = f_s\left(\frac{f_1 \cdots f_{s-1}}{f_1}, \frac{f_1 \cdots f_{s-1}}{f_2}, \cdots, \frac{f_1 \cdots f_{s-1}}{f_{s-1}}\right)$$

由归纳假设知右端项为 f_s , 从而 $d = (f_s, f_1 \cdots f_{s-1}) = 1$, 从而得证.

5.4 复系数与实系数多项式的因式分解

5.4.1 求多项式 $x^5 - 1$ 在 \mathbb{C} 和 \mathbb{R} 上的因式分解.

证明. 在 ℂ 上显然有

$$x^{5} - 1 = (x - 1)(x - \omega)(x - \omega^{2})(x - \omega^{3})(x - \omega^{4})$$

其中 $\omega = e^{\frac{2\pi i}{5}} = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$. 而由于复数根成对, 故在 \mathbb{R} 上有

$$x^{5} - 1 = (x - 1) \left[(x - \omega)(x - \omega^{4}) \right] \left[(x - \omega^{2})(x - \omega^{3}) \right]$$
$$= (x - 1) \left(x^{2} - 2\cos\frac{2\pi}{5}x + 1 \right) \left(x^{2} - 2\cos\frac{4\pi}{5}x + 1 \right)$$
$$= (x - 1) \left(x^{2} + \frac{1 - \sqrt{5}}{2}x + 1 \right) \left(x^{2} + \frac{1 + \sqrt{5}}{2}x + 1 \right)$$

5.4.2 $f \in \mathbb{R}[x], \deg f = n \perp f \in \mathbb{R}[x]$ (计重数), 证明 $n - \ell$ 是偶数.

证明. 将 f 分解为不可约多项式的乘积, 即

$$f = ap_1^{\alpha_1} \cdots p_s^{\alpha_s} q_1^{\beta_1} \cdots q_t^{\beta_t}$$

其中 p_i 均为一次多项式, q_i 均为二次多项式,则

$$n = \sum_{i=1}^{s} \alpha_i + \sum_{i=1}^{t} 2\beta_i, \qquad \ell = \sum_{i=1}^{s} \alpha_i, \qquad n - \ell = 2\sum_{i=1}^{t} \beta_i$$

从而 $n-\ell$ 显然为偶数.

5.4.3 求 $x^4 + 1$ 在 \mathbb{C} 和 \mathbb{R} 上的标准分解.

证明. 在 \mathbb{C} 上 $x^4 + 1$ 有根 $(-1)^{1/4} = e^{\frac{\pi i}{4}}, (-1)^{3/4} = e^{\frac{3\pi i}{4}}, (-1)^{5/4} = e^{\frac{5\pi i}{4}}, (-1)^{7/4} = e^{\frac{7\pi i}{4}},$ 因此有

$$x^{4} + 1 = (x - e^{\frac{\pi i}{4}})(x - e^{\frac{3\pi i}{4}})(x - e^{\frac{5\pi i}{4}})(x - e^{\frac{7\pi i}{4}})$$

$$= \left[(x - e^{\frac{\pi i}{4}})(x - e^{\frac{7\pi i}{4}}) \right] \left[(x - e^{\frac{3\pi i}{4}})(x - e^{\frac{5\pi i}{4}}) \right]$$

$$= \left(x^{2} - 2\cos\frac{\pi}{4}x + 1 \right) \left(x^{2} - 2\cos\frac{3\pi}{4}x + 1 \right)$$

$$= \left(x^{2} - \sqrt{2}x + 1 \right) \left(x^{2} + \sqrt{2}x + 1 \right)$$

5.4.4 $f \in \mathbb{R}[x]$ 的首项系数 $a_n > 0$, 若 f 无实根, 则存在 $g, h \in \mathbb{R}[x]$ 使得 $f = g^2 + h^2$.

证明. 由于实系数多项式 f 无实根, 故其不可约分解中均为二次不可约多项式, 即在 $\mathbb C$ 中有分解

$$f(x) = q_1(x) \cdots q_m(x) = \prod_{i=1}^m \left[(x - \lambda_i)(x - \bar{\lambda_i}) \right] = \left(\prod_{i=1}^m (x - \lambda_i) \right) \left(\prod_{i=1}^m (x - \bar{\lambda_i}) \right) = p(x)q(x)$$

其中 $q_i(x) = (x - \lambda_i)(x - \bar{\lambda_i})$ 均为在 \mathbb{R} 上不可约的二次多项式, $\lambda_i \in \mathbb{C}$. 将 p(x) 按系数的实部和虚部分为两个实系数多项式, 即

$$p(x) = g(x) + ih(x), \qquad g, h \in \mathbb{R}[x]$$

再对 p(x) 的系数取共轭, 有

$$g(x) - ih(x) = \bar{p}(x) = \prod_{i=1}^{m} (x - \bar{\lambda_i}) = q(x)$$

从前
$$f = (g + ih)(g - ih) = g^2 + h^2$$
.

5.4.5 设 $p, f \in \mathbb{R}[x]$ 且 p 在 \mathbb{R} 上不可约, 证明: 若 $\exists \alpha \in \mathbb{C}, p(\alpha) = f(\alpha) = 0$ 则 $p \mid f$.

证明. 显然
$$\deg p=1$$
 或 2. 若 $\deg p=1$ 则 $\alpha\in\mathbb{R}, p(x)=a(x-\alpha)\mid f(x)$. 若 $\deg p=2$ 则 $\alpha\notin\mathbb{R}, p(x)=a(x-\alpha)(x-\bar{\alpha})$,而 $f(\alpha)=f(\bar{\alpha})=0$,从而 $p(x)=a(x-\alpha)(x-\bar{\alpha})\mid f(x)$.

5.5 有理系数多项式

5.5.1 求下列多项式的有理根:

1.
$$2x^4 - x^3 + 2x - 3$$
;

2.
$$4x^4 - 7x^2 - 5x - 1$$
;

3.
$$x^4 + 6x^3 + 12x^2 + 11x + 6$$
.

5.5.2 判别下列多项式在 ℚ 上是否可约:

1.
$$x^6 + x^3 + 1$$
;

2.
$$x^p + px + 1, p$$
 是奇素数;

3.
$$x^4 + 4$$
;

4.
$$x^4 + 4kx + 1, k \in \mathbb{Z}$$
.

证明. 1. 代换 x = t + 1, 故原式 = $(t + 1)^6 + (t + 1)^3 + 1 = t^6 + 6t^5 + 15t^4 + 21t^3 + 18t^2 + 9t + 3$. 用 Einstein 判别法 (取 p = 3) 知其在 Q 上不可约.

- 2. 令 x = t 1, 则原式 $= (t 1)^p + pt + 1 p = t^p + \sum_{k=2}^{p-1} \binom{p}{k} (-1)^k t^k + 2pt + p$, 从而由 Einstein 判别法知其 在 \mathbb{Q} 上不可约.
- 3. $x^4 + 4 = (x^2 2x + 2)(x^2 + 2x + 2)$, 故可约.
- 4. 若原式 f(x) 在 $\mathbb Q$ 上可约,则也在 $\mathbb Z$ 上可约. 显然 f(x) 的有理根仅可能有 ± 1 ,但 $f(\pm 1) \neq 0$, ± 1 均不是根,从而 f(x) 在 $\mathbb Z$ 上没有一次 (和三次) 因式. 若原式在 $\mathbb Z$ 上有二次因式,即设

$$x^4 + 4kx + 1 = (x^2 + ax + b)(x^2 + cx + d),$$
 $a, b, c, d \in \mathbb{Z}$

比较系数可得 a+c=0, ac+b+d=0, ad+bc=4k, bd=1, 从而 $b=d=\pm 1$, $ac=-a^2=\mp 2$, 矛盾于 $a\in\mathbb{Z}$, 故原式在 \mathbb{Z} 上也没有二次因式, 故在 \mathbb{Z} 和 \mathbb{Q} 上不可约.

5.5.3 p 为素数, 证明 $f(x) = x^p - px + (2p-1)$ 在 \mathbb{Q} 上不可约.

证明. 今 x = t + 1, 则

$$f(t+1) = (t+1)^p - p(t+1) + (2p-1) = t^p + \sum_{k=2}^{p-1} {p \choose k} t^k + p$$

从而由 Einstein 判别法知其在 Q 上不可约.

5.5.4 设 $p_i(i = 1, 2, ..., t)$ 为 t 个互异素数, 证明 $f(x) = x^n - p_1 \cdots p_t$ 在 \mathbb{Q} 上不可约.

证明. 取素数 p 为任一 p_i , 由 Einstein 判别法知 f(x) 在 \mathbb{Q} 上不可约.

5.5.5 f 是**首**一整系数多项式, 若 f(0) 和 f(1) 均为奇数, 则 f 没有有理根.

证明一. 设 $f(x) = \sum_{k=0}^{n} a_k x^k$, 若其有有理根 r/s 则 $s \mid a_n = 1, r \mid a_0 = f(0)$, 从而有理根仅可能为 $c \in \mathbb{Z}, c \mid f(0)$. 而 f(0) 为奇数, 故 c 为奇数. 由于 f(c) = 0, 故

$$-f(1) = f(c) - f(1) = \sum_{k=0}^{n} a_k (c^k - 1)$$

而对 $\forall k \in \mathbb{N}, c^k - 1$ 为偶数, 故等式右端为偶数, 但左端为奇数, 矛盾, 从而 f 无有理根.

证明二. 若 f 有有理根 r/s, 则 $s \mid a_n = 1, r \mid a_0 = f(0)$, 即 $s = \pm 1, r$ 为奇数. 而 $(r - ms) \mid f(m)$, 故 $(r \pm 1) \mid f(1)$, 但 $r \pm 1$ 为偶数, f(1) 为奇数, 矛盾, 故无有理根.

注 3. 若无首一条件, 可取 f(x) = 2x - 1, f(0) = 1, f(1) = 3 但有有理根 1/2.

注 4. 命题可作简单推广:f 是首一整系数多项式, p 是素数, 若 $f(0) \neq 0$, $f(1) \neq 0$ (mod p), 则 f 没有有理根.