Function GET_MW - single-thread version: res = call_external(libname, 'GET_MW', Lparms, Rparms, Parms, \$ T_arr, DEM_arr, DDM_arr, RL)

Function parameters:

- 0. Lparms 5-element long integer array of dimensions and global (for all voxels) integer parameters (see below).
- 1. Rparms 3-element double array of global (for all voxels) real parameters (see below).
 - 2. Parms array of LOS parameters, $15 \times Nz$ elements, double (see below).
- 3. T_arr array of temperatures where DEM/DDM are specified, NT elements, double, in K (the temperature grid is assumed to be the same in all voxels, and the same for both DEM and DDM).
 - 4. DEM_arr array of DEM, NT × Nz, double, in cm⁻⁶ K⁻¹.
 - 5. DDM_arr array of DDM, NT × Nz, double, in cm $^{-3}$ K $^{-1}$.
 - 6. RL input/output array, $7 \times Nf$, double:
 - c. first row (RL[0, *]) emission frequencies, in GHz;
 - d. other rows emission intensities, in sfu.

Array of dimensions and global integer parameters:

Lparms = [Nz, Nf, NT, DEM_key, DDM_key]

- 0. Nz number of voxels along LOS;
- 1. Nf number of frequencies in the spectrum;
- 2. NT number of temperatures in the T_arr array; must be ≥ 2 otherwise DEM/DEM are ignored;
 - 3. DEM_key global DEM on/off key.
 - a. 0: DEM is enabled: it can be used in all or some voxels, depending on the local DEM on/off keys (see below).
 - b. ≠ 0: DEM is disabled for all voxels, regardless of the local DEM on/off keys.
 - 4. DDM_key global DDM on/off key: same as above, but for DDM.

Array of global real parameters:

Rparms = $[S, f_0, \Delta f]$

- 0. S visible source area, in cm².
- 1. f_0 starting frequency of the spectrum, in Hz:
 - a. is used, only if $f_0 > 0$;
 - b. if $f_0 \le 0$, the frequencies are taken from the RL[0, *] array.
- 2. Δf logarithmic frequency step (is used only if $f_0 > 0$).

Array of parameters Parms (for a single voxel):

- 0. Parms[0] = Δz voxel length, in cm.
- 1. Parms[1] = T_0 plasma temperature, in K (is used if DEM or DDM are not specified).
- 2. Parms[2] = n_0 either electron concentration or total atomic concentration (depending on other parameters), in cm⁻³ (is used if DEM or DDM are not specified).
 - 3. Parms[3] = B magnetic field strength, in G.
 - 4. Parms[4] = θ viewing angle, in degrees.
 - 5. Parms[5] = φ magnetic field azimuthal angle, in degrees.
 - 6. Parms[6] emission mechanism flag (rounded to the nearest integer):
 - a. 0: all emission mechanisms (gyroresonance + free-free + contribution of neutrals) are included;
 - b. 1: gyroresonance is off;
 - c. 2: free-free is off;
 - d. 4: contribution of neutrals is off.

Several flags can be combined by usual or bitwise summation: e.g., $mechanism\ flag = 2 + 4\ turns\ off\ both\ free-free\ and\ contribution\ of\ neutrals,\ etc.$

- 7. Parms[7] = s_{max} maximum cyclotron harmonic number.
- 8. Parms[8] = n_p proton concentration, in cm⁻³ (is used if DEM or DDM are not specified, and the temperature is low).
 - 9. Parms[9] = $n_{\rm HI}$ neutral hydrogen concentration, in cm⁻³.
 - 10. Parms[10] = n_{HeI} neutral helium concentration, in cm⁻³.
 - 11. Parms[11] local DEM on/off key:
 - e. 0: DEM is used (provided that NT ≥ 2 and DEM is enabled by the global key);
 - f. \neq 0: DEM in this voxel is ignored even if it is specified; T_0 and n_0 are used instead.
 - 12. Parms[12] local DDM on/off key: same as above, but for DDM.
 - 13. Parms[13] element abundance model:
 - g. 0: coronal;
 - h. 1: photospheric (Caffau);
 - i. 2: photospheric (Scott).
- 14. Parms[14] = Vox_ID voxel type (coronal / chromospheric / etc.), currently ignored.

Function FindIonizations:

a = call_external(libname, 'FindIonizations', n0, T0, n_e, n_H, n_He, /d_value)

Input parameters (double scalar variables only): total atomic (H + He) density n0 [cm⁻³], plasma temperature T0 [K].

Output parameters (double scalar variables only): concentrations of electrons (n_e) , neutral hydrogen (n_H) and neutral helium (n_He) , all in cm⁻³.

Return value: n_e/n0.