Paul Gustafson Texas A&M University - Math 467 Instructor: Stephen Fulling

An angle analog of Proposition 3.12 (Revision)

To Show: If $\angle ABC \cong \angle DEF$ and \overrightarrow{BG} is interior to $\angle ABC$, then there is a unique ray \overrightarrow{EH} interior to $\angle DEF$ such that $\angle ABG \cong \angle DEF$.

Proof. WLOG, by applying C-1 and renaming, $AB \cong DE$ and $BC \cong EF$. By the crossbar theorem, WLOG A*G*C.

By SAS applied to $(AB\cong DE, \angle ABC\cong \angle DEF, BC\cong EF)$, we have $\triangle ABC\cong \triangle DEF$.

Since $AC \cong DF$, we can pick H such that D*H*F and $AG \cong DH$ by Prop. 3.12. We also have $\angle BAG = \angle BAC \cong \angle EDF = \angle EDH$. Then, by SAS on $(AB \cong DE, \angle BAG \cong \angle EDH, AG \cong DH)$, we have $\triangle BAG \cong \triangle EDH$. Hence, $\angle ABG \cong DEH$.

For the uniqueness, suppose H' is interior to $\angle DEF$ with $\angle DEH' \cong \angle ABG$. Then H' is on the same side of \overrightarrow{DE} as F. Thus, by C-4, $\overrightarrow{EH'} = \overrightarrow{EH}$.