Implementing Deconvolution to Visualize and Understand Convolutional Neural Networks

Objectives

- Understand how Convolutional and Deconvolutional Neural Networks work and implement them from scratch.
- Propose possible study problems for future studies.

Introduction

- Implement the primary components in CNNs: the convolution, pooling and fully connected layer.
- Apply these components to train a classifier on cat images.
- Implement the inverse operation of these components: the *deconvolution* and *max-unpooling* layer.
- Apply the inverse components to visualize the learned features of the classifier.

Table of Contents

- Overall Approach. Correctness and Performance.
- Classification Model.
 - Image → Tensors.
 - Convolution, Max-Pooling and Fully Connected Layer.
 - Computation of the loss function.
 - Updates of the parameters (Backward).
- Interpretation Model.
 - Interception of Feature maps.
 - Deconvolution and Max-UnPooling Layer.
 - Visualizations of Feature maps.

Approach

- Implement with pure Python, NumPy-like libraries.
- *Correctness*: Each component is verified by comparing the output with PyTorch. Besides, an end-to-end test is used to verify the updating process.
- Performance: CPU/GPU support (with the help of CuPy).

Classification Models

Images -> Tensors

Images can be regarded as matrices. Grayscale images are (H, W) matrices. Each entry represents a pixel in image.

Color images usually consist 3 channels: red, green and blue.
Each channel is a single (H, W) matrix.

Images -> Tensors

For simplicity, we will only use a single channel example in the following

Convolution Layer

Initialize the Kernel with a random 2x2 matrix: $\begin{bmatrix} 0.10 & 0.20 \\ 0.30 & 0.40 \end{bmatrix}$

Slide the kernel across the input by a unit stride.

We omit the bias for simplicity.

		0.10 0.35 0.65 0.90 -0.25	0.15 0.40 0.70 0.95 0.30	0.20 0.45 0.75 0.10 0.35	0.25 0.55 0.80 0.15 0.40	$ \begin{array}{c} 0.30 \\ 0.60 \\ 0.85 \\ 0.20 \\ 0.45 \end{array} $ $ \begin{bmatrix} 0.10 & 0.20 \\ 0.30 & 0.40 \end{bmatrix} $	
--	--	---------------------------------------	--------------------------------------	--------------------------------------	--------------------------------------	--	--

0.305	0.355	

$$<\begin{bmatrix} 0.10 & 0.15 \\ 0.35 & 0.40 \end{bmatrix}, > = 0.10*0.10+0.15*0.20+0.35*0.30+0.40*0.40=0.305$$

$$<\begin{bmatrix} 0.15 & 0.20 \\ 0.40 & 0.45 \end{bmatrix}, \begin{bmatrix} 0.10 & 0.20 \\ 0.30 & 0.40 \end{bmatrix} > = 0.15*0.10+0.20*0.20+0.40*0.30+0.45*0.40=0.355$$

Convolution Layer

Initialize the Kernel with a random 2x2 matrix: $\begin{bmatrix} 0.10 & 0.207 \\ 0.30 & 0.407 \end{bmatrix}$

Slide the kernel across the input by a unit stride.

We omit the bias for simplicity.

0.10 0.35 0.65 0.90	0.15 0.40 0.70 0.95	0.20 0.45 0.75 0.10	0.25 0.55 0.80 0.15	0.30 0.60 0.85 0.20	$\begin{bmatrix} 0.10 \\ 0.30 \end{bmatrix}$	0.20 0.40]	
0.90	0.95 0.30	0.10	0.15	0.20	10.30	0.401	

0.305	0.355	0.425	0.49
0.59	0.64	0.7	0.755
0.855	0.545	0.325	0.375
0.475	0.345	0.305	0.355

Max-Pooling Layer

Assume we have a 2x2 pooling kernel.

Slide the kernel across the input by a unit stride.

0.305	0.355	0.425	0.490
0.590	0.355 0.640	0.700	0.755
0.855	0.545	0.325	0.375
0.475	0.345	0.305	0.355_

0.64	0.70	0.755
0.855	0.70	0.755
0.855	0.545	0.375

Flatten

Fully Connected Layer

The shape of weight is determined by the input shape and output shape. In our example, we have a 2×9 matrix. Initialize it randomly.

Softmax: normalize raw confidence to [0,1]

Softmax is defined as $f(y_i) = \frac{e^{y_i}}{\sum e^{y_j}}$. In our case, $y_0 = 2.9475$, $y_1 = 3.2325$.

- $e^{y_0} = 19.058, e^{y_1} = 25.343.$
- $\sum e^{y_j} = 19.058 + 25.342 = 44.401$.

•
$$p(y_0) = f(y_0) = \frac{19.058}{44.401} = 0.4292, p(y_1) = f(y_1) = \frac{25.342}{44.401} = 0.5707.$$

Normalized confidence for classes.

Cross Entropy: Loss function for classification

Cross Entropy loss is defined as $\ell = -\sum y_i log(p(y_i))$. In our case $p(y_0) = 0.4292$, $p(y_1) = 0.5707$.

- Ground truth is 1.
- $-y_0 \log(p(y_0)) = -0 * \log(0.4292) = 0$
- $-y_1 \log(p(y_1)) = -1 * \log(0.5707) = 0.5608.$
- $\ell = 0 + (0.5604) = 0.5608$.
- The loss value measures the distance between the predicted output and the ground truth.

What we have done so far?

What we have done so far?

Backward: Loss Function

How the output will impact the loss? \rightarrow What's the $\frac{\partial \ell}{\partial y_0}$ and $\frac{\partial \ell}{\partial y_1}$?

•
$$y_0 = 2.9475$$
, $y_1 = 3.2325$, $\ell = -\sum y_i log(p(y_i))$, and $p(y_i) = \frac{e^{y_i}}{\sum e^{y_j}}$.

•
$$\frac{\partial \ell}{\partial y_i} = -\sum_j y_j \frac{\partial \log(p(y_j))}{\partial y_i} = -\sum_j y_j \frac{1}{p(y_j)} \frac{\partial p(y_j)}{\partial y_i}.$$

- Among all j, there will be a k=i, such that $\frac{\partial p(y_k)}{\partial y_i} = \frac{\partial \frac{e^{y_i}}{\sum e^{y_j}}}{\partial y_i} = \frac{e^{y_i}\sum e^{y_j} e^{y_i}e^{y_i}}{\left(\sum e^{y_j}\right)^2} = \frac{e^{y_i}\sum e^{y_j} e^{y_i}e^{y_i}}{\sum e^{y_j}} = \frac{e^{y_i}\sum e^{y_j} e^{y_i}e^{y_i}}{\sum e^{y_j}} = p(y_i)(1-p(y_i)).$
- For others $k \neq i$, we have $\frac{\partial p(y_k)}{\partial y_i} = \frac{\partial \frac{e^{y_k}}{\sum e^{y_j}}}{\partial y_i} = \frac{\partial -e^{y_k}e^{y_i}}{\left(\sum e^{y_j}\right)^2} = \frac{e^{y_k}}{\sum e^{y_j}} \frac{-e^{y_i}}{\sum e^{y_j}} = -p(y_i)p(y_k).$
- Then, what about $\frac{\partial \ell}{\partial y_i}$?

Backward: Loss Function

• $\ell = -\sum y_i log(p(y_i))$. We split it into two parts: i and $j \neq i$.

•
$$\frac{\partial l}{\partial y_i} = (-y_i) \frac{1}{p(y_i)} p(y_i) (1 - p(y_i)) - \sum_{i \neq j} y_j \frac{1}{p(y_j)} (-p(y_j)p(y_i))$$

= $-y_i (1 - p(y_i)) - \sum_{i \neq j} -p(y_i)y_j$
= $-y_i + y_i p(y_i) + \sum_{i \neq j} y_j p(y_i)$
= $-y_i + p(y_i) \left(y_i + \sum_{i \neq j} y_j\right) = -y_i + p(y_i)$

Backward: Loss Function

- In our example, we will have
 - $\frac{\partial \ell}{\partial y_0} = p(y_0) y_0 = 0.4292 0 = 0.4292.$
 - $\frac{\partial \ell}{\partial y_1} = p(y_1) y_1 = 0.5707 1 = -0.4292.$
- In matrix forms, we have $\frac{\partial \ell}{\partial Y} = \begin{bmatrix} \frac{\partial \ell}{\partial y_0} \\ \frac{\partial \ell}{\partial y_1} \end{bmatrix} = \begin{bmatrix} 0.4292 \\ -0.4292 \end{bmatrix}$.
- Then, how will the weight in fully connected layer affect the loss ℓ ?

What we have done so far?

Backward: Fully Connected Layer.

• Using Chain rule:
$$\frac{\partial \ell}{\partial W} = \frac{\partial \ell}{\partial y_0} \frac{\partial y_0}{\partial W} + \frac{\partial \ell}{\partial y_1} \frac{\partial y_1}{\partial W}$$

Backward: Fully Connected Layer

$$Y = \begin{bmatrix} 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 \\ 0.9 & 0.8 & 0.7 & 0.6 & 0.5 & 0.4 & 0.3 & 0.2 & 0.1 \end{bmatrix} \begin{bmatrix} 0.64 \\ 0.70 \\ 0.755 \\ 0.855 \\ 0.70 \\ 0.755 \\ 0.855 \\ 0.845 \\ 0.375 \end{bmatrix} = \begin{bmatrix} 2.9475 \\ 3.2325 \end{bmatrix}$$

•
$$y_0 = \sum_i w_{0i} x_i \rightarrow \frac{\partial y_0}{\partial w_{0i}} = x_i, \frac{\partial y_0}{\partial w_{1i}} = 0.$$

•
$$y_0 = \sum_i w_{0i} x_i \rightarrow \frac{\partial y_0}{\partial w_{0i}} = x_i, \frac{\partial y_0}{\partial w_{1i}} = 0.$$

• $y_1 = \sum_i w_{1i} x_i \rightarrow \frac{\partial y_1}{\partial w_{1i}} = x_i, \frac{\partial y_1}{\partial w_{0i}} = 0.$

Backward: Fully Connected Layer

• $\frac{\partial \ell}{\partial y_i}$ is the *i*th row in $\frac{\partial \ell}{\partial Y}$, x_i is the *i*th column in X^T .

$$\frac{\partial \ell}{\partial W} = \begin{bmatrix} 0.429 \\ -0.4292 \end{bmatrix} \begin{bmatrix} 0.64 & 0.70 & 0.755 & 0.855 & 0.70 & 0.755 & 0.855 & 0.545 & 0.375 \end{bmatrix}$$

$$\frac{\partial \ell}{\partial Y}$$

Backward: Fully Connected Layer.

$$\bullet \frac{\partial \ell}{\partial W} = \frac{\partial \ell}{\partial Y} X^T.$$

• Similarly $\frac{\partial \ell}{\partial X} = W^T \frac{\partial \ell}{\partial Y}$. (We will use this later)

$$\frac{\partial \ell}{\partial W} = \begin{bmatrix} 0.4292 \\ -0.4292 \end{bmatrix} \begin{bmatrix} 0.64 & 0.70 & 0.755 & 0.855 & 0.70 & 0.755 & 0.855 & 0.545 & 0.375 \end{bmatrix}$$

$$= \begin{bmatrix} 0.274 & 0.300 & 0.324 & 0.366 & 0.300 & 0.324 & 0.366 & 0.233 & 0.160 \\ -0.274 & -0.300 & -0.324 & -0.366 & -0.300 & -0.324 & -0.366 & -0.233 & -0.160 \end{bmatrix}$$

$$\frac{\partial \ell}{\partial x} = \begin{bmatrix} 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 \\ 0.9 & 0.8 & 0.7 & 0.6 & 0.5 & 0.4 & 0.3 & 0.2 & 0.1 \end{bmatrix}^{T} \begin{bmatrix} 0.4292 \\ -0.4292 \end{bmatrix} = \begin{bmatrix} -0.343 \\ -0.085 \\ 0 \\ 0.085 \\ 0.1716 \\ 0.2575 \end{bmatrix}$$

Backward: Fully Connected Layer

- Now we update the weight by gradient descent: $W^{new} = W \lambda \frac{\partial \ell}{\partial W}$.
- λ is a preset hyper-parameter, here we set $\lambda = 0.01$.

$$W^{new} = \begin{bmatrix} 0.097 & 0.196 & 0.296 & 0.396 & 0.496 & 0.596 & 0.696 & 0.797 & 0.898 \\ 0.902 & 0.803 & 0.703 & 0.603 & 0.503 & 0.403 & 0.303 & 0.202 & 0.101 \end{bmatrix}$$

• Then we pass $\frac{\partial \ell}{\partial X}$ to previous layer. $\frac{\partial \ell}{\partial X} = \begin{bmatrix} -0.343 \\ -0.2575 \\ -0.1716 \\ -0.085 \\ 0 \\ 0.085 \\ 0.1716 \end{bmatrix}$

$$\frac{\partial \ell}{\partial x} = \begin{vmatrix} -0.2575 \\ -0.1716 \\ -0.085 \\ 0 \\ 0.085 \\ 0.1716 \\ 0.2575 \\ 0.3433 \end{vmatrix}$$

Summary: Backward of Linear Transformation

- If we have two functions:
 - $g(X): R^{p \times n} \to R^{m \times n}, g(X) = Y = WX$, where $W \in R^{m \times p}$.
 - $f(X): R^{m \times n} \to R$.

Then we have:

$$\bullet \frac{\partial f}{\partial W} = \frac{\partial f}{\partial Y} X^T$$

$$\bullet \frac{\partial f}{\partial X} = W^T \frac{\partial f}{\partial Y}$$

Backward: Max-Pooling

- The fully connected layer gives us: $\frac{\partial \ell}{\partial X}$ (X is the input of Fully Connected Layer). It is equal to $\frac{\partial \ell}{\partial Y}$ (Y is the output of the Pooling).
- There's no weight in Pooling Layer. We only need to pass the gradient to previous layer, i.e. we only need to compute $\frac{\partial \ell}{\partial X}$.
- First reshape the received gradient to original size, i.e. 3×3 .

$$\frac{\partial \ell}{\partial X} = \begin{bmatrix} -0.343 & -0.2575 & -0.1716 \\ -0.085 & 0 & 0.085 \\ 0.1716 & 0.2575 & 0.343 \end{bmatrix}$$

Backward: Max-Pooling

0.305	0.355	0.425	0.490]
0.590	0.640	0.425 0.700	0.755
0.855	0.545	0.325	0.375
0.475	0.345	0.305	0.355

[-0.343]	-0.257	-0.171
-0.085	0	0.085
0.171	0.257	0.343

	-0.343	-0.257+0	-0.171+0.085
-0.085+0.171	0.257		0.343

Backward: Max-Pooling

- Other elements are all zeros.
- Result:

$$\frac{\partial \ell}{\partial X} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -0.343 & -0.257 & -0.085 \\ 0.085 & 0.257 & 0 & 0.343 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Revisit Convolution: Linear Transform

- 5×5 input and 2×2 kernel $\rightarrow 4\times4$ output.
- 25×1 input matrix, left multiplied by a 16×25 matrix $W \rightarrow 16\times1$ matrix.

$$\begin{bmatrix} 0.10 & 0.15 & 0.20 & 0.25 & 0.30 \\ 0.35 & 0.40 & 0.45 & 0.55 & 0.60 \\ 0.65 & 0.70 & 0.75 & 0.80 & 0.85 \\ 0.90 & 0.95 & 0.10 & 0.15 & 0.20 \\ 0.25 & 0.30 & 0.35 & 0.40 & 0.45 \end{bmatrix}$$
Input
$$\begin{bmatrix} 0.10 & 0.20 \\ 0.30 & 0.40 \end{bmatrix}$$
Kernel

Convolution operation becomes a matrix multiplication.

Backward: Convolution

- We will have $\frac{\partial \ell}{\partial W} = \frac{\partial \ell}{\partial Y} X^T$, by reusing the results from fully connected layer.
- Then update the weight: $W^{new} = W \lambda \frac{\partial \ell}{\partial W}$.
- Result:

•
$$W^{new} = \begin{bmatrix} 0.097 & 0.198 \\ 0.301 & 0.403 \end{bmatrix}$$

What we have done so far?

Backward Pass

Is our model more confident?

- To verify, we perform forward pass again with updated weights.
- Output probabilities: $p(y_0) = 0.416$, $p(y_1) = 0.584$. Slightly more confident than $p(y_1) = 0.571$.
- Loss: $\ell = 0.5387$. Slightly closer to ground truth than $\ell = 0.5608$.

Interpretation Model

Problems in CNNs

What kind of features does convolution + pooling extracted?

Problems in CNNs

What kind of features that convolution + pooling extracted?

Max-UnPooling

0.64	0.70	0.755
0.855	0.70	0.755
0.855	0.545	0.375

	0.640	0.700	0.755
0.855	0.545		0.375

0.305	0.355	0.425	0.490°
0.590	0.640	0.425 0.700	0.755
		0.325	
0.475	0.345	0.305	0.355

Other elements are all zeros.

Deconvolution: Transposed Kernel

- Convolution: 5×5 input and 2×2 kernel $\rightarrow 4 \times 4$ output.
- Deconvolution: 4×4 input and 2×2 kernel \rightarrow 5×5 output.
- In convolution, we have a 16×25 matrix. By transposing, we will have a 25×16 matrix.
- Then we multiply it with the 16×1 input (reshaped from 4×4), we will get a 25×1 vector.
- After that, we reshaped the output 25×1 vector back to 5×5 matrix.
- Result:

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0.064 & 0.198 & 0.215 & 0.151 \\ 0.085 & 0.417 & 0.575 & 0.544 & 0.377 \\ 0.256 & 0.505 & 0.218 & 0.112 & 0.150 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

What we have done so far?

Experiments and Visualizations

600 cat images + 600 not-cat images as train+val dataset. Then 90% for training and 10% for validation.

Each image is (3, 224, 224).

The learning rate, λ , is set to be 10^{-3} .

Acc=85% on validation set, 65% on test set.

Visualized Feature Maps

"These regions are discriminative for classification."

Sometimes it does not perform well.

Conclusion

- This approach reveals the regions that are discriminative to the classifier.
- From the visualizations, we can "guess" when our models will work, and when it will not work.
- It is only a qualitative analysis.
- Some regions cannot be understood by our humans.