CITY UNIVERSITY

· signals (one channel)

Sampling Frequency

_ analogue

_ digital

Digital Signal Processing and Audio Programming

INM378/IN3031

Digital Signal Processing and Audio Programming

Module IN3031 / INM378 **Digital Signal Processing** and Audio Programming

Tillman Weyde t.e.wevde@city.ac.uk

Spatial Signals: Images

 $x_a(x,y):\mathbb{R}^2\to\mathbb{R}$

• $x_n[n,m] = x_n(n \cdot 1/Fs, m \cdot 1/Fs)$ where **Fs** is the

· We focus on digital signals from here on

 $x_{a}[n,m]:\mathbb{Z}^{2}\rightarrow\mathbb{Z}$

CITY UNIVERSITY

INM378/IN3031 Digital Signal Processing and Audio Programmin

Operations in the **Time or Space Domain**

_ changing amplitude = multiplying with a number a $y = a \cdot x$, i.e. $y[n] = a \cdot x[n]$ |a| > 1 : |ouder/brighter signals, |a| < 1 softer/darker signal

_ mixing signals = addition $y = x_1 + x_2$, i.e. $y[n] = x_1[n] + x_2[n]$

_ delay = time-shifting y[n] = x[n-k]

INM378/IN3031

Example: Digital Sound

- Analogue systems use continuous values
- Digital systems use discrete (non-continuous) values
- . Digitisation reduces from continuous to discrete:
 - time (by sampling)
 - amplitude (by quantisation)

Digital Signal Processing and Audio Programming

Digitising Time: Sampling

. Sample/Hold electronics: take a value at regular time intervals and hold it

• Sampling Frequency (sampe rate, often Fs or fs): Number of samples per time, i.e. time resolution

Signals in the **Time Domain**

signals (one channel)

 $_{-}$ analogue $_{X_{-}}(t)$: \mathbb{R} → \mathbb{R}

_ digital $x_d[n]: \mathbb{Z} \to \mathbb{Z}$

• $x_n[n] = x_n(n \cdot 1/Fs)$ where **Fs** is the

Sampling Frequency

INM378/IN3031 Digital Signal Processing and Audio Programming

Frequencies and Spectra

- Most signals contain multiple frequencies (harmonic, inharmonic, noise ...)
- _ Amplitude of the signal per frequency is called the spectrum
- _ The **square** of the spectrum is the power spectrum
- _ We will address later how to calculate the spectrum

INM378/IN3031 Digital Signal Processing and Audio Programming Lecture 2 / Slide 9

Digital Images: Spatial Sampling

- · Spatial resolution (raster size) spatial sampling frequency
- . Sample resolution per dimension, often in dots per
- Typically same resolution in both dimensions

Digitising Values: Quantisation

- Rounding a continuous to a discrete value (from a fixed set)
- Sample Resolution (Depth): number of bits per sample
 Defines the possible range of values
 e.g. 8 bits (2⁸=256), 16 bits (2¹⁶,~65k), 24 bits (2²⁴,~16m)

INM378/IN3031
Digital Signal Processing and Audio Programming
Lecture 2 / Stirle 13

Sampling and frequency

 a problem with high input frequencies relative to Fs sampled signal looks quite different from input

INM378/IN3031
Digital Signal Processing and Audio Programming
Lecture 2 / Slide 16

'Digital' Aliasing

- Aliasing occurs not only when sampling physical signals.
- In in the digital domain aliasing can occur by:
 - Downsampling digital signals (reducing resolution)
 - Sampling mathematical functions (synthesizing signals)

Quantisation Error

- Difference between the sampled and quantised signal (rounding error)
- Different values are mapped to one -> information loss.

INM378/IN3031
Digital Signal Processing and Audio Programming

Aliasing

- Intuition: 2 samples needed per wave cycle (one for each peak and trough)
- Output frequencies are different (aliased) too low if too few samples i.e. temporal/spatial resolution is too low

macro_sampling

INM378/IN3031 Digital Signal Processing and Audio Programming Lecture 2 / Slide 17

Sampling Theorem

• Sampling cannot capture frequencies greater than half the sampling frequency

every wave cycle needs two points

- Fs/2 called Nyquist-Frequency
- Frequencies in the signal above the Nyquist-Frequency get mirrored down at the Nyquist-Frequency (<u>Aliasing</u>)
- $f_{al} = -abs([f_i \mod F_s] F_s/2) + F_s/2$

Sampling rate: time resolution Bit depth: value resolution

- Higher resolution: lower quantisation error (closer to the original)
- Crucial for signal quality

INM378/IN3031
Digital Signal Processing and Audio Programming
Lecture 2 / Slide 15

Spatial Aliasing (Moire)

- In 2D, the same problem occurs
- E.g. woven patterns can exceed camera resolution
- Effect can be different per colour channel

INM378/IN3031
Digital Signal Processing and Audio Programming
Lecture 2 / Slide 18

Filters

- Filters signal processing units (typically) designed to remove frequency components
- Filter types named mostly by frequency ranges (bands) that can pass through the filter, e.g.

high pass

low pass

band pass

band rejct

• Typical examples are EQ in stereos and mobile phones

CITY UNIVERSITY

CITY UNIVERSITY

Aliasing Solution

- Increase time or space resolution not always possible/practical may not (fully) resolve the problem
- · Anti-alias filter: Remove components above the Nyquist frequency before (down-)sampling (with a low-pass filter)

INM378/IN3031

INM378/IN3031

CITY UNIVERSITY

Signal Reconstruction

- · Ideal impulses contain infinite frequency content, which repeats at Fs multiples.
- · Easy to filter (analogue) but not practical to generate

Digital Signal Processing and Audio Programmin

INM378/IN3031 Digital Signal Processing and Audio Programming Lecture 2 / Slide 25

Generating Signals

- Generating a signal can be done
 - _ off line or in real time
 - _ digital or analogue
 - _ (re-)using signal waveforms
 - simple periodic
 - noise (random)
 - · recorded signal

CITY UNIVERSITY

Digital Signal Processing and Audio Programming

Signal Reconstruction

Reconstruction of a

Sampled Signal

Goal: reconstruction of the original signal

(within the limits of the sampling theorem) · Problem: samples provide discrete values

that we need to be connect continuously

same frequency content as the original

· Reconstructed signal should have the

- · Signal reconstruction by holding the value effectively multiplies the spectrum with a **sinc function** $(\sin(x) / x)$, better but still not ideal.
- · Further filtering is needed, more in the next weeks.

INM378/IN3031 Digital Signal Processing and Audio Programming Lecture 2 / Slide 26

Oscillators

- · Simple signal generators
- Periodic waveforms (typical)
 - _ sine
 - _ square
 - _ pulse
 - sawtooth
- Noise: different 'colours'

Signal Reconstruction

 Reconstruction should reproduce the original signal and spectrum

INM378/IN3031 Digital Signal Processing and Audio Programming
Lecture 2 / Slide 24

Filtering in the ADA Chain

- · Analog input must not contain frequencies higher than Nvauist-F.
 - anti-alias filtering (low-pass)
- · Output created from digital contains additional frequencies
 - reconstruction filtering (low-pass)

INM378/IN3031 Digital Signal Processing and Audio Programming Lecture 2 / Slide 27

Oscillator Waveforms

· Periodic waveforms

INM378/IN3031 Digital Signal Processing and Audio Programming Lecture 2 / Slide 28

LONDON

INM378/IN3031 Digital Signal Processing and Audio Programming Lecture 2 / Slide 29

Frequencies and Waveforms

- Simple periodic waveforms create harmonic signals (frequency components at integer multiples)
- · How can we determine the frequency content of a given signal? We'll see next week :-)

INM378/IN3031 Digital Signal Processing and Audio Programmin

Amplitude Control (Gain)

• In a computer, a gain control unit multiplies every sample with a gain factor:

y[t] = x[t] * cin Matlab $y = x \cdot * c$ (the '.' is optional)

• c can change over time, in that case the unit is called time variant

INM378/IN3031 Digital Signal Processing and Audio Programming Lecture 2 / Slide 34

READING

http://www.dspguide.com/ Chapter 3

Maths refresher: Rochesso, D.: Introduction to Sound Processing Appendix pp. 154: Vectors and Matrices, Exponentials and Logarithms, Trigonometric Functions

Noise Oscillators

- Noise oscillators can create random signals
 - _ white noise has evenly distributed frequency components
 - _ pink noise has weaker high-frequency components (amplitude ~ 1/f).
- · Some rarely used forms of noise
 - _ brown noise (1/f²)
 - _ blue noise (f)
 - _ violet noise (f²)

INM378/IN3031 Digital Signal Processing and Audio Programmin

Envelope Generator

- · Natural sounds change over time
- · This is modelled by an envelope generator that can control gain and other system parameters
- Envelopes are typically triggered by events
 - _ in music, typically a MIDI note-on/off message
 - _ in games, an event from the game play
- The envelope is modulating signal properties (e.g. amplitude, spectrum).

INM378/IN3031 Digital Signal Processing and Audio Programming Lecture 2 / Slide 35

NEXT WEEK: Frequency Analysis

INM378/IN3031 Digital Signal Processing and Audio Programming Lecture 2 / Slide 30

Control

- Most components of a synthesiser have some **parameters** to control
- In analogue systems electric control signals were used:
 - voltage controlled oscillator
- voltage controlled filter
- voltage controlled amplifier
- External control sources can be a musician playing on a keyboard, nowadays done in MIDI
- · Internal control sources are low frequency oscillator (LFO) and envelope generator (ADSR)

INM378/IN3031 Digital Signal Processing and Audio Programmin Lecture 2 / Slide 33

Envelope Generator (2)

· The most common form is an Attack, Decay, Sustain, Release (ADSR) generator.

Attack, Decay and Release have rate parameters, Sustain has a level parameter (usually not changed in real time). macro_envelope