BLOCK CIPHER MODES OF OPERATION

Luke Anderson

luke@lukeanderson.com.au

24th March 2016

University Of Sydney

Overview

1. Crypto-Bulletin

2. Modes Of Operation

- 2.1 Evaluating Modes
- 2.2 Electronic Code Book (ECB)
- 2.3 Cipher Block Chaining (CBC)
- 2.4 Output Feedback Mode (OFB)
- 2.5 Counter Mode (CTR)
- 2.6 Galois/Counter Mode (GCM)

CRYPTO-BULLETIN

Crypto-Bulletin

How the AFP nabbed an Aussie Anonymous hacker

https://www.itnews.com.au/news/how-the-afp-nabbed-an-aussie-anonymous-hacker-455142

Wikileaks publishes large trove of CIA hacking tools https://www.itnews.com.au/news/vikileaks-publishes-large-trove-of-cia-hacking-tools-453899

Govt. Cybersecurity Contractor Hit in W-2 Phishing Scam

 $\verb|https://krebsonsecurity.com/2017/03/govt-cybersecurity-contractor-hit-in-w-2-phishing-scam/alternative for the contractor-hit-in-w-2-phishing-scam/alternative for the contractor-hit-in-w-2-phish$

This time last year:

Slew of dangerous Adobe Flash flaws patched Remote code execution vulnerabilities galore.

http://www.itnews.com.au/news/slew-of-dangerous-adobe-flash-flaws-patched-416771

Modes Of Operation

Cipher Modes of Operation

Once a key k is chosen and loaded into a block cipher, E_k only operates on single blocks of data.

- 1. Block size usually small (16 byte blocks for AES)
- 2. Message to be sent usually large (web page + assets $\approx 500 \text{kB}$)
- 3. Need a way to repeatedly apply the cipher with the same key to a large message.

By using different *modes of operation*, messages of an arbitrary length can be split into blocks and encrypted using a block cipher.

Each mode of operation describes how a block cipher is repeatedly applied to encrypt a message and each has certain advantages and disadvantages.

Evaluating Block Ciphers & Modes

To evaluate a cipher and a mode of operation, examine:

Key Size:

Upper bound on security, but longer keys add costs (generation, storage, etc.)

Block Size:

Larger is better to reduce overheads, but is more costly.

Estimated Security Level:

Confidence grows the more it is analysed.

Throughput:

How fast can it be encrypted/decrypted? Can it be pre-computed? Can it be parallelised?

Error Propagation:

What happens as a result of bit errors or bit loss?

The first two points above are relevant only to the cipher, while the last three are relevant to both the cipher and a mode of operation.

Electronic Code Book (ECB)

Electronic Code Book (ECB) encrypts each block separately.

ECB is generally an insecure and naïve implementation, it is vulnerable to a range of attacks; including dictionary and frequency attacks. *It should never be used.*

Electronic Code Book (ECB)

The problem with ECB:

Encryption of Tux¹ image.

It's a substitution cipher, with blocks instead of letters!

¹Tux is the Linux mascot

ECB Properties

Identical plaintext blocks result in identical ciphertext blocksSince blocks are enciphered independently, a reordering of ciphertext blocks results in reordering of plaintext blocks.

ECB is thus not recommended for messages > 1 block in length.

Error propagation: Bit errors only impact the decoding of the corrupted block (block will result in gibberish)

Cipher Block Chaining (CBC)

In Cipher Block Chaining (CBC) blocks are chained together using XOR.

The **Initialisation Vector (IV)** is a random value that is transmitted in the clear that ensures the same plaintext and key does not produce the same ciphertext.

CBC Properties

Identical plaintexts result in identical ciphertexts when the same plaintext is enciphered using the same key and IV.

Changing at least one of $[k, IV, m_0]$ affects this.

Rearrangement of ciphertext blocks affects decryption, as ciphertext part c_i depends on all of $[m_0, m_1, \dots, m_i]$.

Error propagation:

Bit error in ciphertext c_j affects deciphering of c_j and c_{j+1} . Recovered block m'_i typically results in random bits.

Bit errors in recovered block m'_{j+1} are precisely where c_j was in error. Attacker can cause predictable bit changes in m_{j+1} by altering c_j .

Bit recovery:

CBC is self-synchronising in that if a bit error occurs in c_j but not c_{j+1} , then c_{j+2} correctly decrypts to m_{j+2} .

CBC Decryption

- Ciphertext errors only affect two plaintext blocks, one in a predictable way.
- Encryption must be done sequentially.
- O Decryption can be random-access and is fully parallelisable.

Output Feedback Mode (OFB)

Output Feedback Mode (OFB) effectively turns a block cipher into a synchronous stream cipher.

OFB Properties

Identical plaintext results in identical ciphertext when the same plaintext is enciphered using the same key and IV.

Chaining Dependencies: (Same as a stream cipher) The key stream is plaintext independent.

Error propagation: (Same as a stream cipher) Bit errors in ciphertext blocks cause errors in the same position in the plaintext.

Error recovery: (Same as a stream cipher) Recovers from bit errors, but not bit loss (misalignment of key stream)

Throughput: Key stream may be calculated independently — e.g. pre-computed — before encryption/decryption become parallelisable.

IV *must* **change**: Otherwise it becomes a two time pad.

Counter Mode (CTR)

Counter Mode (CTR) modifies the IV for each block using a predictable counter function, turning the block cipher into a stream cipher.

The counter can be any function (e.g. a PRNG), but it is commonly just an incrementing integer.

CTR Mode Encryption

CTR Properties

Identical plaintext results in identical ciphertext when the same plaintext is enciphered using the same key and IV.

Chaining Dependencies: (Same as a stream cipher) The key stream is plaintext independent.

Error propagation: (Same as a stream cipher) Bit errors in ciphertext blocks cause errors in the same position in the plaintext.

Error recovery: (Same as a stream cipher) Recovers from bit errors, but not bit loss

(misalignment of key stream)

Throughput: Both encryption and decryption can be randomly accessed and/or parallelised: the best we could hope for.

IV must change: Otherwise it becomes a two time pad.

OFB and CTR share a lot of these properties, because they both make the block cipher act as a stream cipher.

GCM Mode

Galois/Counter Mode (GCM) mode is not strictly a cipher mode of operation since it also provides *authentication*: assurance the ciphertext has not been tampered with.

- An extension of CTR mode.
- While encryption happens, the ciphertext blocks are combined into something like a MAC.
- Unlike HMAC, is parallelisable (you can't combine two HMACs into one larger one).
- Used for low-latency, high-throughput dedicated hardware applications (network packets).

GCM mode is an example of authenticated encryption.