Fundamental Groups of Topological Spaces

Jeffery A. Cavallaro

San Jose State University Spring 2020 Math-275a

11 May 2020

Motivation

- Determining whether two topological spaces are homeomorphic is hard.
- Determining non-homeomorphism is easier: find a non-preserved topological property.
- Some spaces are problematic:

▶ All are compact, but none are homeomorphic.

Homotopy

- ▶ Let $I = [0,1] \subset \mathbb{R}$ imbued with the subspace topology.
- A continuous function $F: X \times I \rightarrow Y$ between continuous functions $f_1, f_2: X \rightarrow Y$.
- $F(x,0) = f_1(x)$ and $F(x,1) = f_2(x)$.
- f_1 and f_2 are homotopic $(f_1 \simeq f_2)$.
- ▶ If f_2 is a constant function then f_1 is called nulhomotopic.
- A continuous deformation of f_1 into f_2 via a parameterized family of continuous functions.

Homotopy Examples

Homotopy Properties

- Homotopic is an equivalence relation.
- Let [f] denote the equivalence class of continuous functions that are homotopic to f.
- ▶ If $Y \subset \mathbb{R}^n$ is convex then any two continuous $f_1, f_2 : X \to Y$ are homotopic via the straight-line homotopy:

$$F(x,t) = (1-t)f_1(x) + tf_2(x)$$

Path Homotopy

- ▶ f_1 and f_2 are paths in X with the same initial (x_0) and final (x_1) points.
- $F: I \times I \rightarrow X$
- $F(x,0) = f_1(x)$ and $F(x,1) = f_2(x)$
- $F(0,t) = x_0 \text{ and } F(1,t) = x_1$

$$F(s,t) = s + \sin[(3t+1)\pi s]$$

Product

- $ightharpoonup f_1$ is a path from x_0 to x_1 .
- $ightharpoonup f_2$ is a path from x_1 to x_2 .
- Concatenates the two paths:

$$f_1 * f_2 = \begin{cases} f_1(2t), & t \in \left[0, \frac{1}{2}\right] \\ f_2(2t-1), & t \in \left[\frac{1}{2}, 1\right] \end{cases}$$

Continuous by the pasting lemma.

Product Groupoid

- $e_{x_0}(t) = x_0$
- $ightharpoonup ar{f}(t) = f(1-t)$ (reverse path)
- \blacktriangleright * is a partial function on X: only works when $f_1(1) = f_2(0)$.
- Forms a groupoid.
- Associative: ([f] * [g]) * [h] is defined if and only if [f] * ([g] * [h]) is defined and if defined then they are equal.
- ▶ Identity: $[e_{x_0}] * [f] = [f]$ and $[f] * [e_{x_1}] = [f]$.
- ▶ Inverse: $[f] * [\bar{f}] = [e_{x_0}]$ and $[\bar{f}] * [f] = [e_{x_1}]$.

Fundamental Group

- ▶ A path that starts and ends at x_0 is called a loop based at x_0 .
- ▶ For a topological space X, select some $x_0 \in X$.
- \triangleright Select all loops based at x_0 .
- The homotopic equivalence classes and * form a group: $\pi_1(X, x_0)$ with identity $[e_{x_0}]$.
- For all $x_0, x_1 \in X$, $\pi_1(X, x_0)$ is isomorphic to $\pi_1(X, x_1)$.
- Topologically invariant (up to isomorphism).
- \triangleright Only addresses the path component containing x_0 .
- ▶ If $\pi_1(X, x_0)$ is not isomorphic to $\pi_1(Y, y_0)$ then X and Y are not homeomorphic.

Simply Connected

- ▶ For all $x_0 \in X$, $\pi_1(X, x_0) = \{[e_{x_0}]\}$ (trivial).
- ▶ Denoted by $\pi_1(X, x_0) = 0$.
- Any two paths with the same initial and final points are homotopic.
- ▶ Any convex subspace of \mathbb{R}^n is simply connected.
- In particular, all open balls in \mathbb{R}^n are simply connected: $\pi_1(B(p,r),x_0)=0$.

Non-homeomorphic Spaces

 $\blacktriangleright \ \pi_1(S^1,x_0) \sim \mathbb{Z} \qquad \text{(times around the circle)}$

▶ $\pi_1(S^n, x_0) = 0$ for $n \ge 2$

 $\blacktriangleright \pi_1(T \# T)$ is not abelian

