

Self- and cross- phase modulation in the generation of bright twin beams using SPDC

Nicolás Quesada¹ and J.E Sipe ²

Abstract

We introduce a simple methodology to calculate the ef-We introduce a simple methodology to calculate the el-fects of self- and cross-phase modulation in SPDC photon generation. We show that these processes make SPDC less efficient in the low spatio-temporal mode number limit.

Phase matching and energy conservation in photon generation

In recent experiments [1, 2] bright sources of squeezed light have been engineered using $\chi^{(2)}$ nonlinearities. These sources cannot be described perturbatively and one needs to worry about higher order effects (e.g. χ^3) that could also affect the states generated.

χ^2 nonlinearities

Three modes A,B,C interact via a $\chi^{(2)}$ nonlinear susceptibility

$$H_2 \sim \int dz \chi^{(2)}(z) \left(\sum_{M=A,B,C} a_M(\omega_M) e^{i(\bar{k}_M + \delta k_M)z - i(\bar{\omega}_M + \delta \omega_M)t} + \text{H.c.} \right)^3$$

where $ar{k}_M=ar{\omega}_M/$ $\ arphi_M^{(p)}$ and $\delta k_M=\delta \omega_M/$ $\ arphi_M^{(g)}$. For

$$ar{\omega}_A + ar{\omega}_B = ar{\omega}_C \ ext{and} \ ar{k}_A + ar{k}_B = ar{k}_C,$$

the only term that is relevant is $H_{\mathsf{SPDC}} \sim a_A^\dagger a_B^\dagger a_C + \mathrm{H.c.}$

χ^3 nonlinearities

Three modes A,B,C interact via a $\chi^{(3)}$ nonlinear susceptibility

$$H_3 \sim \int dz \chi^{(3)}(z) \left(\sum_{M=A,B,C} a_M(\omega_M) e^{i(\bar{k}_M + \delta k_M)z - i(\bar{\omega}_M + \delta \omega_M)t} + \mathrm{H.c.}\right)^4$$

- Terms like $a_A^{\dagger}a_Aa_C^{\dagger}a_C$ always survive.
- ullet If mode C is a strong coherent state it will create a nonlinear index of refraction for itself $H_{\text{SPM}} \sim a_C^\intercal a_C a_C^\intercal a_C$: self-phase modulation (SPM).
- It will also cause a nonlinear index of refraction for the other modes $H_{\text{XPM}} \sim a_A^{\dagger} a_A a_C^{\dagger} a_C$: cross-phase modulation (XPM)

Accounting for the effects of SPM and XPM

In the strong driven regime one needs to consider both the photon generation via SPDC and the SPM and XPM:

$$H = H_{SPDC} + H_{XPM} + H_{SPM}$$
.

If the pump is a strong coherent state $a_C(\omega_C) o \langle a_C(\omega_C)
angle = lpha_C(\omega_C)$ $H_{\mathrm{SPDC}} \sim \int dz \chi^{(2)}(z) \int d\omega_A d\omega_B d\omega_P e^{i(\delta k_P - \delta k_A - \delta k_B)z}$

SPDC
$$\sim \int az\chi^{(-)}(z) \int a\omega_A a\omega_B a\omega_P e^{i(\omega_A + \delta\omega_B - \delta\omega_P)t} \alpha_C(\omega_C) a_A^{\dagger}(\omega_A) a_B^{\dagger}(\omega_B),$$

- Free propagation is accounted for by the phases $e^{i(\delta kz \delta \omega t)}$.
- Go to an interaction picture with respect to H_{XPM} and H_{SPM} .
- This is done by including an extra propagation phase

$$\Gamma_{A/B}(z,t) = 2 \int_{-\infty}^{t} dt'' \chi^{(3)}(z - v_{A/B}(t - t'')) |\phi_C(z - v_{A/B}(t - t''), t'')|^2,$$

- $\chi^3(z)$ describes the spatial profile of the XPM nonlinearity.
- For the pump mode undergoing SPM, one should replace $v_{A/B}$ by v_P and remove the prefactor of 2.
- $\phi_P(z,t)=\int \frac{d\omega_P}{\sqrt{2\pi v_P}} \alpha(\omega_P) e^{-i(\omega_P-\bar{\omega}_P)(t-z/v_P)}$ is the pump profile in real space.

Upon the inclusion of SPM and XPM and taking

$$\alpha(\omega_c) = \frac{\tau}{\sqrt{\pi}} \exp(-\tau^2 \delta \omega_c^2)$$

we can rewrite the interaction picture Hamiltonian as

$$H_I(t) = -\hbar\varepsilon \int d\omega_A d\omega_B d\omega_P F(\omega_A, \omega_B, \omega_P) e^{i(\delta\omega_A + \delta\omega_B - \delta\omega_P)t}$$
$$a^{\dagger}(\omega_A) b^{\dagger}(\omega_B) + \text{H.c.}$$

where $F(\omega_A, \omega_B, \omega_P) = \mathcal{F}\left(-(\delta\omega_A/v_A + \delta\omega_B/v_B), \omega_P\right)$, and

$$\mathcal{F}(q,\omega_P) = \int rac{dz}{\sqrt{2\pi}} rac{dt}{\sqrt{2\pi}} \mathcal{G}(z,t) e^{i(qz+\delta\omega_P t)}, \ \mathcal{G}(z,t) = rac{\chi^{(3)}(z)}{L} e^{-(z-v_P t)^2/(4v_P^2 au^2)} e^{-i\Gamma(z,t)}$$

are a 2D Fourier transform pair in the spaces (q,ω_P) , (z,t) and

$$\Gamma = \Gamma_A + \Gamma_B - \Gamma_P.$$

The joint spectral amplitude is:

$$J_1(\omega_A, \omega_B) = F(\omega_A, \omega_B, \omega_A + \omega_P).$$

Consequences for SPDC

- The spectral structure: the Schmidt decomposition $J_1(\omega_A, \omega_B) = \sum_{\lambda} s_{\lambda} f_{\lambda}(\omega_A) j_{\lambda}(\omega_B).$
- The Schmidt coefficients satisfy $\sum_{\lambda} s_{\lambda}^2 = \int d\omega_A d\omega_B |J_1(\omega_A, \omega_B)|^2$.
- XPM and SPM will not affect the norm of the JSA since $\int d\omega_A d\omega_B |J_1(\omega_A, \omega_B)|^2 = \mathcal{J} \int d\omega_P dq |\mathcal{F}(q, \omega_P)|^2$

$$\int d\omega_A d\omega_B |J_1(\omega_A, \omega_B)|^2 = \mathcal{J} \int d\omega_P dq |\mathcal{F}(q, \omega_P)|^2$$

= $\mathcal{J} \int dz dt |\mathcal{G}(q, \omega_P)|^2$,

where $\mathcal{J}=rac{v_Av_B}{|v_A-v_B|}$ is the Jacobian of $(\omega_P=\omega_A+\omega_B,q=-(\delta\omega_A/v_A+\delta\omega_B/v_B))$ and we used Parseval's theorem.

• The number of photons will be smaller than than would be predicted if XPM and SPM where ignored since

$$\begin{split} \langle \tilde{N}_{A/B}^{\text{no XPM-SPM}} \rangle &= \sum_{\lambda} \sinh^2 \left(\sqrt{s_{\lambda}^2} \right) \leq \sinh^2 \left(\sqrt{\sum_{\lambda} s_{\lambda}^2} \right) \\ &= \sinh^2 \left(\sqrt{\tilde{s}_0^2} \right) = \langle N_{A/B} \rangle. \end{split}$$

In the last derivation time-ordering effects have been assumed to be negligible [3].

XPM and SPM leads to additional Schmidt modes and reduces estimulation

References

- G. Harder et al., "Single-Mode Parametric-Down-Conversion States with 50 Photons as a Source for Mesoscopic Quantum Optics", Phys. Rev. Lett. **116**, 143601 (2016).
- S. Lemieux et al., "Engineering the Frequency Spectrum of Bright Squeezed Vacuum via Group Velocity Dispersion in an SU(1,1) Interferometer", Phys. Rev. Lett. **117**, 183601 (2016).
- N. Quesada and J.E. Sipe, "Time-ordering effects in the generation of entangled photons using nonlinear optical processes", Phys. Rev. Lett. 114, 093903 (2015).