Mathematics of Cryptography

Greatest Common Divisor

The greatest common divisor of two positive integers is the largest integer that can divide both integers.

Note

Euclidean Algorithm

Fact 1: gcd(a, 0) = a

Fact 2: gcd(a, b) = gcd(b, r), where r is

the remainder of dividing a by b

Figure 2.7 Euclidean Algorithm

a. Process

b. Algorithm

Note

When gcd(a, b) = 1, we say that a and b are relatively prime.

Note

When gcd(a, b) = 1, we say that a and b are relatively prime.

Example 2.7

Find the greatest common divisor of 2740 and 1760.

Solution

We have gcd(2740, 1760) = 20.

q	r_{I}	r_2	r
1	2740	1760	980
1	1760	980	780
1	980	780	200
3	780	200	180
1	200	180	20
9	180	20	0
	20	0	

Example 2.8

Find the greatest common divisor of 25 and 60.

Solution

We have gcd(25, 65) = 5.

q	r_1	r_2	r
0	25	60	25
2	60	25	10
2	25	10	5
2	10	5	0
	5	0	

Extended Euclidean Algorithm

Given two integers a and b, we often need to find other two integers, s and t, such that

$$s \times a + t \times b = \gcd(a, b)$$

The extended Euclidean algorithm can calculate the gcd (a, b) and at the same time calculate the value of s and t.

Figure 2.8.b Extended Euclidean algorithm, part b

```
r_1 \leftarrow a; \qquad r_2 \leftarrow b;
 s_1 \leftarrow 1; \qquad s_2 \leftarrow 0;
                                        (Initialization)
t_1 \leftarrow 0; \qquad t_2 \leftarrow 1;
while (r_2 > 0)
   q \leftarrow r_1 / r_2;
    r \leftarrow r_1 - q \times r_2;
                                                        (Updating r's)
    r_1 \leftarrow r_2; r_2 \leftarrow r;
     s \leftarrow s_1 - q \times s_2;
                                                        (Updating s's)
     s_1 \leftarrow s_2; s_2 \leftarrow s;
     t \leftarrow t_1 - q \times t_2;
                                                        (Updating t's)
    t_1 \leftarrow t_2; \ t_2 \leftarrow t;
   \gcd(a,b) \leftarrow r_1; \ s \leftarrow s_1; \ t \leftarrow t_1
```

b. Algorithm

Figure 2.8.a Extended Euclidean algorithm, part a

a. Process

Example 2.9

Given a = 161 and b = 28, find gcd (a, b) and the values of s and t.

Solution

We get gcd (161, 28) = 7, s = -1 and t = 6.

q	r_1 r_2	r	s_1 s_2	S	t_1 t_2	t
5	161 28	21	1 0	1	0 1	- 5
1	28 21	7	0 1	-1	1 -5	6
3	21 7	0	1 -1	4	- 5 6	-23
	7 0		-1 4		6 −23	

Example 2.10

Given a = 17 and b = 0, find gcd (a, b) and the values of s and t.

Solution

We get gcd (17, 0) = 17, s = 1, and t = 0.

q	r_1	r_2	r	s_1	s_2	S	t_1	t_2	t
	17	0		1	0		0	1	

4

2.1.4 Continued

Example 2.11

Given a = 0 and b = 45, find gcd (a, b) and the values of s and t.

Solution

We get gcd (0, 45) = 45, s = 0, and t = 1.

q	r_{I}	r_2	r	s_I	s_2	S	t_1	t_2	t
0	0	45	0	1	0	1	0	1	0
	45	0		0	1		1	0	

Example 2.14

Find the result of the following operations:

a. 27 mod 5

b. 36 mod 12

c. -18 mod 14

d. -7 mod 10

Solution

a. Dividing 27 by 5 results in r = 2

b. Dividing 36 by 12 results in r = 0.

c. Dividing -18 by 14 results in r = -4. After adding the modulus r = 10

d. Dividing -7 by 10 results in r = -7. After adding the modulus to -7, r = 3.

2.2.3 Congruence

To show that two integers are congruent, we use the congruence operator (\equiv). For example, we write:

$$2 \equiv 12 \pmod{10}$$
 $13 \equiv 23 \pmod{10}$ $3 \equiv 8 \pmod{5}$ $8 \equiv 13 \pmod{5}$

Properties

First Property: $(a+b) \mod n = [(a \mod n) + (b \mod n)] \mod n$

Second Property: $(a - b) \mod n = [(a \mod n) - (b \mod n)] \mod n$

Third Property: $(a \times b) \mod n = [(a \mod n) \times (b \mod n)] \mod n$

Multiplicative Inverse

In Z_n , two numbers a and b are the multiplicative inverse of each other if

$$a \times b \equiv 1 \pmod{n}$$

Note

In modular arithmetic, an integer may or may not have a multiplicative inverse. When it does, the product of the integer and its multiplicative inverse is congruent to 1 modulo n.

Example 2.22

Find the multiplicative inverse of 8 in \mathbb{Z}_{10} .

Solution

There is no multiplicative inverse because gcd $(10, 8) = 2 \neq 1$. In other words, we cannot find any number between 0 and 9 such that when multiplied by 8, the result is congruent to 1.

Example 2.23

Find all multiplicative inverses in \mathbb{Z}_{10} .

Solution

There are only three pairs: (1, 1), (3, 7) and (9, 9). The numbers 0, 2, 4, 5, 6, and 8 do not have a multiplicative inverse.

2.2.5 Continued Example 2.24

Find all multiplicative inverse pairs in \mathbb{Z}_{11} .

Solution

We have seven pairs: (1, 1), (2, 6), (3, 4), (5, 9), (7, 8), (9, 5), and (10, 10).

Figure 2.15 Using extended Euclidean algorithm to find multiplicative inverse

a. Process

$$\begin{aligned} r_{1} &\leftarrow \text{n}; & r_{2} \leftarrow b; \\ t_{1} &\leftarrow 0; & t_{2} \leftarrow 1; \end{aligned} \\ \text{while } (r_{2} > 0) \\ \{q \leftarrow r_{1} \ / \ r_{2}; \\ r \leftarrow r_{1} - q \times r_{2}; \\ r_{1} \leftarrow r_{2}; & r_{2} \leftarrow r; \end{aligned} \\ t \leftarrow t_{1} - q \times t_{2}; \\ t_{1} \leftarrow t_{2}; & t_{2} \leftarrow t; \end{aligned} \\ \text{if } (r_{1} = 1) \text{ then } b^{-1} \leftarrow t_{1}$$

b. Algorithm

Example 2.25

Find the multiplicative inverse of 11 in \mathbb{Z}_{26} .

Solution

q	r_{I}	r_2	r	t_1 t_2	t
2	26	11	4	0 1	-2
2	11	4	3	1 -2	5
1	4	3	1	-2 5	- 7
3	3	1	0	5 -7	26
	1	0		-7 26	

The gcd (26, 11) is 1; the inverse of 11 is −7 or 19.

Example 2.26

Find the multiplicative inverse of 23 in \mathbb{Z}_{100} .

Solution

q	r_1	r_2	r	t_{I}	t_2	t
4	100	23	8	0	1	-4
2	23	8	7	1	-4	19
1	8	7	1	-4	9	-13
7	7	1	0	9	-13	100
	1	0		-13	100	

The gcd (100, 23) is 1; the inverse of 23 is -13 or 87.

9.1.4 Euler's Phi-Function

Euler's phi-function, $\phi(n)$, which is sometimes called the **Euler's totient function** plays a very important role in cryptography.

- 1. $\phi(1) = 0$.
- 2. $\phi(p) = p 1$ if p is a prime.
- 3. $\phi(m \times n) = \phi(m) \times \phi(n)$ if m and n are relatively prime.
- 4. $\phi(p^e) = p^e p^{e-1}$ if p is a prime.

We can combine the above four rules to find the value of $\phi(n)$. For example, if n can be factored as

$$\boldsymbol{n} = \boldsymbol{p_1}^{e_1} \times \boldsymbol{p_2}^{e_2} \times \ldots \times \boldsymbol{p_k}^{e_k}$$

then we combine the third and the fourth rule to find

$$\phi(n) = (p_1^{e_1} - p_1^{e_1-1}) \times (p_2^{e_2} - p_2^{e_2-1}) \times \dots \times (p_k^{e_k} - p_k^{e_k-1})$$

Note

The difficulty of finding $\phi(n)$ depends on the difficulty of finding the factorization of n.

Example 9.7

What is the value of $\phi(13)$?

Solution

Because 13 is a prime, $\phi(13) = (13 - 1) = 12$.

Example 9.8

What is the value of $\phi(10)$?

Solution

We can use the third rule: $\phi(10) = \phi(2) \times \phi(5) = 1 \times 4 = 4$, because 2 and 5 are primes.

Example 9.9

What is the value of $\phi(240)$?

Solution

We can write $240 = 2^4 \times 3^1 \times 5^1$. Then

$$\phi(240) = (2^4 - 2^3) \times (3^1 - 3^0) \times (5^1 - 5^0) = 64$$

Example 9.10

Can we say that $\phi(49) = \phi(7) \times \phi(7) = 6 \times 6 = 36$?

Solution

No. The third rule applies when m and n are relatively prime. Here $49 = 7^2$. We need to use the fourth rule: $\phi(49) = 7^2 - 7^1 = 42$.