Metodi Matematici per l'Informatica (secondo canale)

Soluzioni di: Andrea Princic. Cartella delle soluzioni

20 Giugno 2024

Es 1.

Indichiamo con P(A) l'insieme dei sottoinsiemi di un insieme A con $X, Y \in P(A)$. Allora:

- **A.** se $\emptyset \in A$ allora $\emptyset \in P(A)$; **Vero** per ogni insieme A vale che $\emptyset \in P(A)$
- **B.** se $\emptyset \in P(A)$ allora $\emptyset \in A$; **Falso** per lo stesso motivo di sopra
- C. $(X \cup Y) \cap X = X$; Vero
- **D.** $(X \cap Y) \cup X = X$; **Vero**
- **E.** se $A \subseteq P(A)$ allora $A = \emptyset$; **Vero**

Es 2.

Sia $R \subseteq A \times A$ una relazione simmetrica e antisimmetrica. Allora

- \mathbf{A} . non può esistere una tale R; \mathbf{Falso}
- **B.** $R = A \times A$; Falso
- $\mathbf{C.}\ R$ è necessariamente anche antiriflessiva; Falso
- **D.** se per ogni $x \in A$ esiste y tale che $(x, y) \in R$ allora R è un'equivalenza; **Vero**

Per simmetria: se per ogni x esiste y tale che $(x,y) \in R$ allora $(y,x) \in R$.

Per antisimmetria: $(x,y) \in R \land (y,x) \in R \rightarrow x = y$ quindi la relazione è anche riflessiva.

Ne deriva una relazione del tipo $\{(x,x) \mid \forall x \in A\}$, quindi una relazione di equivalenza.

Es 3.

Siano $f: X \to Y$ e $g: Z \to Y$ dove $Z \subseteq X$. Indicare se le seguenti affermazioni sono vere o false. (NB: per un qualunque $S \subseteq X$, con f(S) si denota l'insieme $\{y \in Y \mid \exists s \in S \text{ per cui } f(s) = y\}$. Analogamente per g(S)).

- A. Se f è iniettiva allora g è iniettiva; Vero
- **B.** $f(X-Z) \subseteq f(X) f(Z)$; Falso
- C. $Y = f(X) \cup g(Z)$; Falso

Es 4.

L'unione numerabile di insiemi numerabili è numerabile?

Sì. Per unione numerabile si intende l'unione di una quantità numerabile di insiemi. Questa unione si può dimostrare numerabile con il metodo della diagonale di Cantor.

Es 5.

Dimostrare usando il Principio di Induzione la seguente proposizione: Con francobolli da 4 e 5 centesimi posso ottenere ogni affrancatura di valore $n \ge 12$.

Caso base $12 \le n \le 16$:

$$12 = 3*4$$

$$13 = 2*4 + 5$$

$$14 = 4+2*5$$

$$15 = 3*5$$

$$16 = 4*4$$

Passo induttivo $n \ge 17$:

per induzione possiamo assumere che n-4 e n-5 sono ottenibili con francobolli da 4 e 5 centesimi. Aggiungendo un francobollo da 4 a n-4 oppure un francobollo da 5 a n-5 possiamo ottenere anche n.

Es 6.

Se so che $A \to B$ ha valore VERO, che cosa posso concludere del valore di verità delle proposizioni seguenti?

A. $((A \lor C) \to (B \lor C));$

\sim				777
	A	В	C	$(\neg A \land \neg C) \lor B \lor C$
	F	F	F	V
	F	F	V	V
	F	V	F	V
	F	V	V	V
	V	F	F	F
	V	F	V	V
	V	V	F	V
	V	V	V	V

B. $((\neg A \land B) \leftrightarrow (A \lor B));$

A	В	$(\neg A \wedge B)$	$(A \lor B)$	$(\neg A \land B) \leftrightarrow (A \lor B)$
F	F	F	F	V
F	V	V	V	V
V	F	F	V	F
V	V	F	V	F

Es 7.

La formula seguente è una tautologia?

A. $((\exists x P(x)) \to (\exists x Q(x))) \to (\exists x (P(x) \to Q(x)));$ **Vero**

Dividiamo la formula nelle due parti principali:

$$\exists x P(x) \to \exists x Q(x)$$
 (1)

$$\exists x (P(x) \to Q(x))$$
 (2)

Per falsificare la formula dobbiamo trovare un caso in cui (1) è vera mentre (2) è falsa. A questo scopo possiamo esplorare singolarmente i tre possibili casi di soddisfacibilità di P.

Tautologia Se P è una tautologia allora $\exists x P(x)$ è vera e per soddisfare (1) dobbiamo avere anche $\exists x Q(x)$ vera. In questo caso è facile vedere che anche (2) è vera: basta prendere come x lo stesso x che rende vera $\exists x Q(x)$.

Insoddisfacibile Se P è insoddisfacibile possiamo direttamente notare che in (2) P(x) sarà sempre falsa, quindi (2) è vera.

Soddisfacibile e falsificabile Se P è falsificabile possiamo fare lo stesso ragionamento fatto al paragrafo precedente per rendere (2) vera, scegliendo come x in (2) una qualunque x che rende P falsa.

Abbiamo visto che in ogni caso di soddisfacibilità di P ci risulta che (2) è vera, quindi la formula è una tautologia.

I tableau si trovano in fondo al documento.

Es 8.

Formalizzare la frase $Tutti\ i\ nipoti\ amano\ i\ propri\ nonni$, considerando come universo del discorso l'insieme di tutte le persone ed utilizzando il linguaggio formato da due simboli di relazione binari G e A interpretati come segue: G(x,y) se e solo se x è genitore di y, A(x,y) se e solo se x ama y.

 $\forall x \forall y \forall z ((G(z,y) \land G(y,x)) \to A(x,z))$

Per ogni tripla di persone x, y, z, se z è genitore di y e y è genitore di x (quindi z è nonno di x) allora x ama z.

Tableau

