INTPARTSTAT

Mickaël Gastineau

December 11, 2018

Programme d'intégration d'un seul système planétaire avec plusieurs particules.

1 Version séquentielle

- Compilation: make clean make
- Execution en interactif: intplastat.x ???.par
- Soumission sur bessel qsubserial -fastsse4 intpartstat.x ???.par

2 Version MPI

- Compilation: make mpi
- Soumission sur bessel (ici 48 coeurs) : qsubmpi 48 -fastsse4 -stdin STDIN/ intpartstat_mpi.x ???.par
- Fusion des fichiers mpi des différents processeurs (ici, chemin="DATA" et nf_rad="sim2014XX") mergempi.sh DATA sim2014XX

3 Fichiers d'entree

3.1 Fichier de paramètres intpartstat.par

Namelist lect : Contrôles de l'intégration

Nom du champ	Descriptif							
chemin	dossier où seront stockés les fichiers							
nf rad	radical de tous les fichiers générés							
nf_initext	fichier de conditions initiales des planètes							
ref_gmsun	Valeur du GM du soleil de référence							
	0: valeur issue de la Table 1 de "NOMINAL VALUES FOR							
	LECTED SOLAR AND PLANETARY QUANTITIES: IAU 2							
	RESOLUTION B3"							
	1: valeur calculée à partir de la constante de Gauss							
	(k=0.01720209895e0)							
int_type	schéma de l'intégrateur (e.g., 'ABA4' ou 'ABAH4' (liste dans doc							
	de intplastat))							
if_orb_pla	= 0, l'intégration des planètes est réalisée en même temps que celle							
	des particules.							
	= 1, la solution planétaire est donnée par une fonction tabulée : cf.							
	namelist orb_pla_tabulee.							
tinit	temps initial (en géneral 0)							
dt	pas de temps de l'intégration en année							
n_iter	nombre de pas d'intégrations à calculer. A la fin de l'intégration, le							
	temps final sera n_iter*dt ans.							
n_out	fréquence d'écriture des intégrales premières, coordonnées cartési-							
	ennes et éléments elliptiques. Il est exprimé en nombre de pas							
	d'intégrations. Les données seront écrites tous les n_out*dt années.							
if_invar	=0, l'intégration se fait dans le repère actuel.							
	=1, l'intégration se fait dans le plan invariant et les données générées							
if int	sont dans ce plan invariant							
if_int	=0, les intégrales premières ne sont pas écrites.							
	=1, les intégrales premières sont écrites dans les fichiers xxx.int. Un seul fichier							
part blocksize	nombre de particules intégrées en même que le systsème planétaire.							
part_blocksize	Pour MPI, c'est aussi le nombre de particules envoyées aux noeuds							
	esclaves.							
nf initpart	fichier de conditions initiales des particules							
_ III_IIIItPart	nemer de conditions initiates des bartientes							

${\bf Name list \ orb_pla_tabulee: solution \ plan\'etaire \ tabul\'ee}$

Ce namelist n'est utilisé que si if_orb_pla=1. Il requiert que if_invar=0.

Nom du champ	Descriptif		
orb_pla_tabulee_coord	type de coordonnées des planètes		
	= 5: positions vitesses héliocentriques (x,y,z,vx,vy,vz)		
orb_pla_tabulee_nf	nom du fichier contenant la solution tabulée. Le format		
	identique à celui des fichiers ???.car ou ???.ell.		

Sortie des coordonnées des planètes

Cela génère les fichiers xxx.ell et xxx.car.

genere les numers xxx.en et xxx.car.								
Nom du champ	Descriptif							
out_ell_pla	format des éléments elliptiques écrites dans les fichiers xxx.ell							
	1: elliptiques héliocentriques canoniques							
	$\mathrm{CI}(1:6) = (\mathrm{a,e,I,M,omega,Omega})$							
	2: elliptiques héliocentriques non canoniques							
	$\mathrm{CI}(1:6) = (\mathrm{a,e,I,M,omega,Omega})$							
	3: elliptiques héliocentriques canoniques							
	CI(1:6) = (a, la, k, h, q, p)							
	4: elliptiques héliocentriques non canoniques							
	CI(1:6) = (a,la,k,h,q,p)							
if_ell_pla	=0, les éléments elliptiques des planètes ne sont pas écrits.							
	=1, les éléments elliptiques des planètes sont écrits dans les fichiers							
	xxx.ell. Un seul fichier.							
if_car_pla	=0, les éléments cartésiens (positions/vitesses) des planètes ne sont							
	pas écrits.							
	=1, les éléments cartésiens (positions/vitesses) des planètes sont							
	écrits dans les fichiers xxx.car. Un seul fichier.							

Sortie des coordonnées des particules

Cela génère les fichiers xxx.ell_part et xxx.car_part.

Nom du champ	Descriptif							
out_ell_part	format des éléments elliptiques écrites dans les fichiers xxx.ell_part							
	1: elliptiques héliocentriques canoniques							
	$\mathrm{CI}(1:6) = (\mathrm{a,e,I,M,omega,Omega})$							
	2: elliptiques héliocentriques non canoniques							
	$\mathrm{CI}(1:6) = (\mathrm{a,e,I,M,omega,Omega})$							
	3: elliptiques héliocentriques canoniques							
	$\mathrm{CI}(1:6) = (\mathrm{a,la,k,h,q,p})$							
	4: elliptiques héliocentriques non canoniques							
	$\mathrm{CI}(1:6) = (\mathrm{a,la,k,h,q,p})$							
if_ell_part	=0, les éléments elliptiques des particules ne sont pas écrits.							
	=1, les éléments elliptiques des particules sont écrits dans les fichiers							
	xxx.ell_part.							
if_car_part	=0 , les éléments cartésiens (positions/vitesses) des particules ne							
	sont pas écrits.							
	=1, les éléments cartésiens (positions/vitesses) des particules sont							
	écrits dans les fichiers xxx.car_part.							

Calcul des minimum, moyenne et maximum en a,e,I des particules

Cela génère les fichiers xxx.minmax_aei_part.

Nom du champ	Descriptif				
minmax_aei_compute	=0, les minimum, moyenne et maximum en a,e,I ne sont pas				
	calculées. Tous les autres champs sont ignorés.				
	=1, les minimum, moyenne et maximum en a,e,I sont cal-				
	culés. Un fichier par processeur.				
minmax_aei_stepcalc	fréquence de calcul des minimum, moyenne et maximum en				
	a,e,I. Il est exprimé en nombre de pas d'intégrations. Les				
	données seront calculées tous les minmax_aei_stepcalc*dt				
	années.				
minmax_aei_stepout	Longueur en nombre d'itérations sur laquelle on effectue les				
	calculs de minimum, moyenne et maximum en a,e,I. Les				
	minimum, moyenne et maximum en a,e,I sont écrites tous				
	les minmax_aei_stepout*dt années dans les fichiers min-				
	max_aei.				
minmax_aei_elltype	Type des éléments elliptiques utilisé pour le calcul des min-				
	imum, moyenne et maximum en a,e,I				
	1: elliptiques héliocentriques canoniques				
	$\mathrm{CI}(1:6) = (\mathrm{a,e,I,M,omega,Omega})$				
	2: elliptiques héliocentriques non canoniques				
	$\mathrm{CI}(1:6) = (\mathrm{a,e,I,M,omega,Omega})$				

Calcul des minimum, moyenne et maximum en différence d'éléments elliptiques : $a_{part}-a_{p(1)},~\lambda_{part}-\lambda_{p(1)}$ et $\varpi_{part}-\varpi_{p(1)}$

Cela génère les fichiers xxx.minmax_alp_part. Le calcul est effectué entre chaque particule et la planète d'indice p(1).

are or in planete a marce $p(1)$.						
minmax_diffalp_compute	$=0$, les minimum, moyenne et maximum en $a_{part}-a_{p(1)}$,					
	$\lambda_{part} - \lambda_{p(1)}$ et $\varpi_{part} - \varpi_{p(1)}$ ne sont pas calculées. Tous					
	les autres champs sont ignorés.					
	=1, les minimum, moyenne et maximum en $a_{part} - a_{p(1)}$,					
	$\lambda_{part} - \lambda_{p(1)}$ et $\varpi_{part} - \varpi_{p(1)}$ sont calculés. Un fichier par					
	processeur.					
minmax_diffalp_stepcalc	fréquence de calcul des minimum, moyenne et max-					
	imum en a,e,I. Il est exprimé en nombre de pas					
	d'intégrations. Les données seront calculées tous les min-					
	$max_diffalp_stepcalc*dt~ann\'ees.$					
minmax_diffalp_stepout	Longueur en nombre d'itérations sur laquelle on effectue					
	les calculs de minimum, moyenne et maximum en a,e,I.					
	Les minimum, moyenne et maximum en a,e,I sont écrites					
	tous les minmax_diffalp_stepout*dt années dans les					
	fichiers minmax_alp.					
minmax_diffalp_elltype	Type des éléments elliptiques utilisé pour le calcul des					
	minimum, moyenne et maximum en $a_{part} - a_{p(1)}$, $\lambda_{part} -$					
	$\lambda_{p(1)} ext{ et } arpi_{part} - arpi_{p(1)}$					
	6: elliptiques héliocentriques non canoniques					
	$ ext{CI}(1:6) = (ext{a,e,I}, \lambda, arpi, ext{Omega})$					
minmax_diffalp_pla(1)	indice de la planète $p(1)$. Les indices commencent à 1.					

Analyse en fréquence en $a \exp^{i\lambda}, k + ih, q + ip$ pour les particules

Cela génère les fichiers xxx.naf_alkhqp_part ou xxx.naf_alkh_part selon la variable naf_alkhqp_compute.

Nom du champ	Descriptif				
naf_alkhqp_compute	$=0$, l'analyse en fréquence en $a\exp^{\imath\lambda}, k+\imath h, q+\imath p$ n'est pas				
	calculée. Tous les autres champs sont ignorés.				
	$=1$, l'analyse en fréquence en $a\exp^{\imath\lambda}, k+\imath h, q+\imath p$ est calculé.				
	Un fichier par processeur avec l'extension naf_alkhqp_part.				
	$=2$, l'analyse en fréquence en $a\exp^{i\lambda}, k+ih$ est calculé (utile				
	pour le cas plan (q=p=0)). Un fichier par processeur avec				
	l'extension naf_alkh_part.				
naf_alkhqp_stepcalc	fréquence des points utilisés pour l'analyse en fréquence.				
	Il est exprimé en nombre de pas d'intégrations. Les en-				
	trées de l'analyse en fréquence seront calculées tous les				
	naf_alkhqp_stepcalc*dt années.				
naf_alkhqp_stepout	Longueur en nombre d'itérations sur laquelle on effectue				
	l'analyse en fréquence. Le résultat de l'analyse en fréquence				
	est écrit tous les naf_alkhqp_stepout*dt années dans les				
	fichiers naf_alkhqp ou naf_alkh.				
naf_alkhqp_elltype	Type des éléments elliptiques utilisé pour le calcul de l'analyse				
	en fréquence				
	3: elliptiques héliocentriques canoniques				
	$\mathrm{CI}(1:6) = (\mathrm{a,la,k,h,q,p})$				
	4: elliptiques héliocentriques non canoniques				
	$\mathrm{CI}(1:6) = (\mathrm{a,la,k,h,q,p})$				
naf_alkhqp_nterm	Nombre de termes recherchés pour l'analyse en fréquence.				
naf_alkhqp_isec	=0, la méthode des secantes n'est pas utilisée.				
	=1, la méthode des secantes est utilisée.				
naf_alkhqp_iw	présence de fenêtre.				
	=-1, fenetre exponentielle PHI(T) = $1/CE * EXP(-1/(1 - 1))$				
	T^2)) avec CE= 0.22199690808403971891E0				
	=0, pas de fenêtre.				
	= N > 0: PHI(T) = CN*(1+COS(PI*T))**N avec CN =				
0 111	$2^{N}(N!)^{2}/(2N)!$				
naf_alkhqp_dtour	Longueur d'un tour de cadran (en général 2π).				
naf_alkhqp_tol	Tolérance pour déterminer si deux fréquences sont identiques.				

Analyse en fréquence en $\exp^{i(\lambda_{part}-\lambda_{p(1)})}$ et $\exp^{i(\varpi_{part}-\varpi_{p(1)})}$

Cela génère les fichiers xxx.naf_diffalp_part. Le calcul est effectué entre chaque particule et la planète p(1).

Nom du champ	Descriptif								
naf_diffalp_compute	$=0$, l'analyse en fréquence en $\exp^{i(\lambda_{part}-\lambda_{p(1)})}$ et $\exp^{i(\varpi_{part}-\varpi_{p(1)})}$ n'est pas calculée. Tous les autres champs								
	sont ignorés.								
	$=1$, l'analyse en fréquence en $\exp^{i(\lambda_{part}-\lambda_{p(1)})}$ et								
	$\exp^{i(\varpi_{part}-\varpi_{p(1)})}$ est calculé. Un fichier par processeur								
	avec l'extension naf_diffalp.								
naf_diffalp_stepcalc	fréquence des points utilisés pour l'analyse en fréquence.								
	Il est exprimé en nombre de pas d'intégrations. Les en-								
	trées de l'analyse en fréquence seront calculées tous les								
	naf_diffalp_stepcalc*dt années.								
naf_diffalp_stepout	Longueur en nombre d'itérations sur laquelle on effectue								
	l'analyse en fréquence. Le résultat de l'analyse en fréquence								
	est écrit tous les naf_diffalp_stepout*dt années dans les								
C 1:00 1 114	fichiers naf_diffalp ou naf_alkh.								
naf_diffalp_elltype	Type des éléments elliptiques utilisés pour le calcul de								
	l'analyse en fréquence 6: elliptiques héliocentriques non canoniques								
	$\mathrm{CI}(1:6) = (\mathrm{a.e.I.}\lambda, \varpi, \mathrm{Omega})$								
naf diffalp nterm	Nombre de termes recherchés pour l'analyse en fréquence.								
naf_diffalp_isec	=0, la méthode des secantes n'est pas utilisée.								
inar_amarp_isee	=1, la méthode des secantes est utilisée.								
naf diffalp iw	présence de fenêtre.								
	=-1, fenetre exponentielle $PHI(T) = 1/CE * EXP(-1/(1 - 1))$								
	(T^2)) avec CE= 0.22199690808403971891E0								
	=0, pas de fenêtre.								
	N > 0: PHI(T) = CN*(1+COS(PI*T))**N avec CN =								
	$2^{N}(N!)^{2}/(2N)!$								
naf_diffalp_dtour	Longueur d'un tour de cadran (en général 2π).								
naf_diffalp_tol	Tolérance pour déterminer si deux fréquences sont identiques.								
naf_diffalp_pla(1)	indice de la première planète $p(1)$. Les indices commencent à								
	1.								

Analyse en fréquence en $a\exp^{\imath\lambda}, k+\imath h, q+\imath p$ pour les planètes

 $Ce la~g\'en\`ere~les~fichiers~xxx.naf_alkhqp~ou~xxx.naf_alkh~selon~la~variable~naf_alkhqp_pla_compute.$

Nom du champ	Descriptif				
naf_alkhqp_pla_compute	$=0$, l'analyse en fréquence en $a\exp^{i\lambda}, k+ih, q+ip$ n'est				
	pas calculée. Tous les autres champs sont ignorés.				
	$=1$, l'analyse en fréquence en $a\exp^{i\lambda}, k+ih, q+ip$				
	est calculé. Un fichier par processeur avec l'extension				
	naf_alkhqp.				
	$=2$, l'analyse en fréquence en $a\exp^{i\lambda}, k+ih$ est calculé				
	(utile pour le cas plan $(q=p=0)$). Un fichier par pro-				
	cesseur avec l'extension naf_alkh.				
naf_alkhqp_pla_stepcalc	fréquence des points utilisés pour l'analyse en fréquence.				
	Il est exprimé en nombre de pas d'intégrations. Les en-				
	trées de l'analyse en fréquence seront calculées tous les				
	naf_alkhqp_stepcalc*dt années.				
naf_alkhqp_pla_stepout	Longueur en nombre d'itérations sur laquelle on ef-				
	fectue l'analyse en fréquence. Le résultat de l'analyse				
	en fréquence est écrit tous les naf_alkhqp_stepout*dt				
	années dans les fichiers naf_alkhqp ou naf_alkh.				
naf_alkhqp_pla_elltype	Type des éléments elliptiques utilisé pour le calcul de				
	l'analyse en fréquence				
	3: elliptiques héliocentriques canoniques				
	CI(1:6) = (a,la,k,h,q,p)				
	4: elliptiques héliocentriques non canoniques				
6 111	CI(1:6) = (a,la,k,h,q,p)				
naf_alkhqp_pla_nterm	Nombre de termes recherchés pour l'analyse en				
6 11 1	fréquence.				
naf_alkhqp_pla_isec	=0, la méthode des secantes n'est pas utilisée.				
C 11 1 1 .	=1, la méthode des secantes est utilisée.				
naf_alkhqp_pla_iw	présence de fenêtre.				
	$=-1$, fenetre exponentielle $PHI(T) = 1/CE * EXP(-1/(1 - T^2))$ avec $CE=$				
	$1/CE * EXP(-1/(1 - T^2))$ avec CE= 0.22199690808403971891E0				
	0.22199090808403971891E0 =0, pas de fenêtre.				
	=0, pas de ieneure. =N>0: PHI(T) = CN*(1+COS(PI*T))**N avec CN				
	$= 2^{N}(N!)^{2}/(2N)!$				
naf_alkhqp_pla_dtour	Longueur d'un tour de cadran (en général 2π).				
naf_alkhqp_pla_tol	Tolérance pour déterminer si deux fréquences sont iden-				
mai_aikiiqp_pia_toi	tiques.				
	uques.				

Contrôle de la distance à l'étoile

Cela arrête l'intégration de la particule si la particule s'approche trop près ou s'éloigne trop de l'étoile.

Nom du champ	Descriptif			
ctrl_diststar_compute	=0, le contrôle de distance n'est pas réalisé. Tous les autres			
	champs sont ignorés.			
	=1, le contrôle de distance est réalisé.			
ctrl_diststar_stepcalc	fréquence des points de contrôle de distance. Il est exprimé			
	en nombre de pas d'intégrations. La distance sera vérifiée			
	tous les ctrl_diststar_stepcalc*dt années.			
ctrl_diststar_distmin	distance minimale en UA à l'étoile. Si une particule a une			
	distance à l'étoile inférieure à cette valeur, l'intégration de			
	celle-ci s'arrête.			
ctrl_diststar_distmax	distance maximale en UA à l'étoile. Si une particule a une			
	distance à l'étoile supérieure à cette valeur, l'intégration de			
	celle-ci s'arrête.			

Contrôle de la distance aux planètes

Cela arrête l'intégration de la particule si la particule s'approche trop près d'une planète.

10	la affete i integration de la particule si la particule s'approche trop pres d'une planete.								
	Nom du champ	Descriptif							
	ctrl_distpla_compute	=0, le contrôle de distance n'est pas réalisé. Tous les autres							
		champs sont ignorés.							
	=1, le contrôle de distance est réalisé.								
	$ctrl_distpla_stepcalc$	istpla_stepcalc fréquence des points de contrôle de distance. Il est exprir							
		en nombre de pas d'intégrations. La distance sera vérifiée							
		tous les ctrl_diststar_stepcalc*dt années.							
	$ctrl_distpla_distmin$	distance minimale en UA à l'étoile. Si une particule a une							
		distance à l'étoile inférieure à cette valeur, l'intégration de							
		celle-ci s'arrête.							

3.2 Format du fichier nf initext

Ce fichier contient les conditions initiales (masses et coordonnées) du système planétaire. Ce fichier stocke un système planétaire par ligne. Le fichier ne peut contenir qu'un seul système planétaire.

Les masses sont exprimées en masse solaire. La masse solaire de référence dépend du flag ref_gmsun. Les unités des coordonnées des planètes doivent être en UA, an et radians.

Sur chaque ligne, on a:

- \bullet colonne 1 : chaine sans espace donnant le nom du système. Par exemple P0001 ou N0002,
- colonne 2 : nombre de planètes (sans l'étoile) , nommé nbplan.

- colonne 3 : Masse de l'étoile exprimée en masse solaire (=1 pour le système solaire)
- colonne 4 à 4+nbplan-1 : Masse des planètes exprimée en masse solaire
- colonne 4+nbplan : type de coordonnées initiales des planètes
 - 1: elliptiques héliocentriques canoniques CI(1:6) = (a,e,I,M,omega,Omega)
 - 2: elliptiques héliocentriques non canoniques CI(1:6) = (a,e,I,M,omega,Omega)
 - 3: elliptiques héliocentriques canoniques CI(1:6) = (a,la,k,h,q,p)
 - 4: elliptiques héliocentriques non canoniques CI(1:6) = (a,la,k,h,q,p)
 - -5: positions vitesses héliocentriques CI(1:6) = (x,y,z,vx,vy,vz)
- \bullet colonne 4+nbplan+1 à 4+nbplan+6 : coordonnées initiales (6 composantes) de la planète 1
- colonnes suivantes : coordonnées initiales (6 composantes) pour les planètes suivantes

Par exemple, si on a 3 planètes avec des positions/vitesses héliocentriques, on a dans les colonnes :

1	2	3	4	5	6	7	8-13	14-19	20-25
P0001	3	M_{star}	M_1	M_2	M_3	5	$CI_1(1:6)$	$CI_2(1:6)$	$CI_3(1:6)$

3.3 Format du fichier nf initpart

Ce fichier contient les conditions initiales (coordonnées) des particules. Ce fichier stocke une particule par ligne.

Les unités des coordonnées des particules doivent être en UA, an et radians.

Sur chaque ligne, on a:

- colonne 1 : chaine sans espace donnant le nom de la particule. Par exemple P0001 ou N0002,
- colonne 2 : type de coordonnées initiales la particule.
- colonne 3 à 8 : coordonnées initiales (6 composantes) de la particule
 - 1: elliptiques héliocentriques canoniques CI(1:6) = (a,e,I,M,omega,Omega)
 - 2: elliptiques héliocentriques non canoniques CI(1:6) = (a,e,I,M,omega,Omega)
 - -3: elliptiques héliocentriques canoniques CI(1:6) = (a,la,k,h,q,p)
 - 4: elliptiques héliocentriques non canoniques CI(1:6) = (a,la,k,h,q,p)
 - -5: positions vitesses héliocentriques CI(1:6) = (x,y,z,vx,vy,vz)

Par exemple, si on a deux particules avec des positions/vitesses héliocentriques, on a dans les colonnes :

1	2	3-8
P0001	5	$CI_1(1:6)$
P0002	5	$CI_2(1:6)$

4 Fichiers de sortie

4.1 Format du fichier ???.ci pla

Ce fichier contient les conditions initiales (masses et coordonnées) des systèmes planétaires. Ce fichier stocke un système planétaire par ligne.

Son format est identique à celui de nf initext.

4.2 Format du fichier ???.ci part

Ce fichier contient les conditions initiales (coordonnées) des particules. Ce fichier stocke une particule par ligne.

Son format est identique à celui de nf initpart.

4.3 Format du fichier ???.control

Ce fichier contient 5 colonnes et indique pour pour chaque condition initiale si l'intégration s'est bien déroulée ou non. Ce fichier stocke un seul système planétaire.

Sur chaque ligne, on a:

- colonne 1 : chaine sans espace donnant le nom du système. Par exemple P0001 ou N0002,
- \bullet colonne 2:
 - 0: l'intégration s'est correctement terminée
 - -3: problème de convergence dans kepsaut. L'intégration s'est interrompue.
 - -4: cas non elliptique. L'intégration s'est interrompue.
 - -5: variation trop grande de l'énergie. La colonne 6 contient la valeur absolue de l'erreur relative de l'énergie par rapport à l'énergie au temps 0.
 L'intégration s'est interrompue.
 - 6: corps trop proche de l'étoile. La colonne 6 contient la distance de la planète à l'étoile. L'intégration s'est interrompue.
 - -7: corps trop loin de l'étoile. La colonne 6 contient la distance de la planète à l'étoile. L'intégration s'est interrompue.
- colonne 3 : temps initial de l'intégration
- colonne 4 : temps finale de l'intégration
- colonne 5 : corps (si disponible) ayant généré l'erreur
- colonne 6 : 0 si aucune erreur. Sinon, elle contient une valeur dépendante de la colonne 2.

4.4 Format du fichier ???.control_part

Ce fichier contient 5 colonnes et indique pour pour chaque condition initiale si l'intégration s'est bien déroulée ou non. Ce fichier stocke une particule par ligne.

Sur chaque ligne, on a:

- colonne 1 : chaine sans espace donnant le nom de la particule. Par exemple P0001 ou N0002,
- \bullet colonne 2:
 - 0: l'intégration s'est correctement terminée
 - -3: problème de convergence dans kepsaut. L'intégration s'est interrompue.
 - -4: cas non elliptique. L'intégration s'est interrompue.
 - -6: corps trop proche de l'étoile. La colonne 6 contient la distance de la particule à l'étoile. L'intégration s'est interrompue pour cette particule.
 - -7: corps trop loin de l'étoile. La colonne 6 contient la distance de la particule à l'étoile. L'intégration s'est interrompue pour cette particule.
 - 9: corps trop proche d'une planète. La colonne 6 contient la distance de la planète à l'étoile. L'intégration s'est interrompue.
- colonne 3 : temps initial de l'intégration
- colonne 4 : temps finale de l'intégration
- colonne 5 : corps (si disponible) ayant généré l'erreur
- colonne 6 : 0 si aucune erreur. Sinon, elle contient une valeur dépendante de la colonne 2.

4.5 Format du fichier ???.int

Chaque fichier contient un seul système planétaire. Ce fichier contient 5 colonnes et stocke la valeur des intégrales premières : énergie et moment cinétique.

Sur chaque ligne, on a:

colonne 1 colonne 2		colonne 3-5
temps	énergie	moment cinétique (x,y,z)

La première ligne contient la valeur initiale des intégrales premières. Les lignes suivantes contient la différence (absolue) des intégrales par rapport à la valeur initiale.

4.6 Format du fichier ???.car

Ce fichier contient les positions héliocentriques et vitesses héliocentriques cartésiennes des planètes. Les unités sont en AU et AU/an . Chaque fichier contient un seul système planétaire.

Sur chaque ligne, on a:

colonne 1	colonne 2-7	colonne 2-7 colonne 8-13	
temps	(x,y,z,vx,vy,vz) de la planète 1	(x,y,z,vx,vy,vz) de la planète 2	

4.7 Format du fichier ???.ell

Ce fichier contient les éléments elliptiques des planètes. le type délément dépend du paramètres **out_ell**. Les unités sont en AU, an et radians. Chaque fichier contient un seul système planétaire.

Sur chaque ligne, on a:

1	8)		
colonne 1 colonne 2-7		colonne 8-13	
$_{ m temps}$	$\mathrm{ell}(1:6)$ de la planète 1	$\mathrm{ell}(1:6)$ de la planète 2	

4.8 Format du fichier ???.car part

Ce fichier contient les positions héliocentriques et vitesses héliocentriques cartésiennes des particules. Les unités sont en AU et AU/an.

Il y a un fichier par processeur. Chaque fichier contient plusieurs particules. Il y a une seule particule et une seule tranche de calcul par ligne. Le fichier contient toutes les tranches d'une même condition initiale.

Sur chaque ligne, on a:

1	0)	
colonne 1	colonne 2	colonne 3-8
nom	temps	(x,y,z,vx,vy,vz) de la particule

4.9 Format du fichier ???.ell_part

Ce fichier contient les éléments elliptiques des particules. le type délément dépend du paramètres out ell. Les unités sont en AU, an et radians.

Il y a un fichier par processeur. Chaque fichier contient plusieurs particules. Il y a une seule particule et une seule tranche de calcul par ligne. Le fichier contient toutes les tranches d'une même condition initiale.

Sur chaque ligne, on a:

	0 /	
colonne 1	colonne 2	colonne 3-8
nom	temps	ell(1:6) de la particule.

4.10 Format du fichier ???.minmax aei part

Ce fichier contient les minimum, maximum et moyenne en a,e et i sur une tranche de temps. Les unités sont en AU et radians. Les types des éléments elliptiques dépendent du paramètre **minmax aei elltype**.

Il y a un fichier par processeur. Chaque fichier contient plusieurs particules.

1	2	3-11								
			particule							
		a			e			i		
nom	temps final	min	moy	max	min	moy	max	min	moy	max

Ici, le temps final est le temps de fin de chaque tranche. Le fichier contient toutes les tranches d'une même condition initiale.

4.11 Format du fichier ???.minmax alp part

Ce fichier contient les minimum, maximum et moyenne en $a_{part} - a_{p(1)}$, $\lambda_{part} - \lambda_{p(1)}$ et $\varpi_{part} - \varpi_{p(1)}$ sur une tranche de temps. Les unités sont en AU et radians. Pour les différences d'angle, il y a une double détermination entre $[0, 2\pi]$ et entre $[-\pi, \pi]$. Les types des éléments elliptiques dépendent du paramètre **minmax** alp elltype.

Il y a un fichier par processeur. Chaque fichier contient plusieurs particules. Il y a une seule particule et une seule tranche de calcul par ligne. Le fichier contient toutes les tranches d'une même condition initiale.

Sur chaque ligne, on a dans chaque colonne:

colonne	description				
1	nom				
2	temps final de chaque tran	nche			
3		min			
4	$a_{part} - a_{p(1)}$	moy			
5		max			
6		min			
7	$\lambda_{part} - \lambda_{p(1)} \text{ sur } [0, 2\pi]$	moy			
8		max			
9		min			
10	$\lambda_{part} - \lambda_{p(1)} \text{ sur } [-\pi, \pi]$	moy			
11		max			
12		min			
13	$\varpi_{part} - \varpi_{p(1)} \operatorname{sur} [0, 2\pi]$	moy			
14		max			
15		min			
16	$\varpi_{part} - \varpi_{p(1)} \operatorname{sur} \left[-\pi, \pi \right]$	moy			
17		max			

4.12 Format du fichier ???.naf_alkhqp_part

Ce fichier contient l'analyse en fréquence des particules en $a \exp^{i\lambda}, k + ih, q + ip$ sur une tranche de temps. Les unités des fréquences dépendent de naf_alkhqp_dtour.

Il y a un fichier par processeur. Chaque fichier contient plusieurs particules. Il y a une seule particule et une seule tranche de calcul par ligne. Le fichier contient toutes les tranches d'une même condition initiale.

Sur chaque ligne, on a dans chaque colonne:

colonne		description						
1	nom							
2	temps init	temps initial (T0) de chaque tranche						
3 4 5	particule	$a \exp^{i\lambda}$	terme 1	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)				
	particule	$a \exp^{i\lambda}$	terme ??					
	particule	$a \exp^{i\lambda}$	terme naf_alkhqp_nterm	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)				
	particule	k + ih	terme 1	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)				
	particule	k + ih	terme ??					
	particule	k + ij	terme naf_alkhqp_nterm	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)				
	particule	q + ip	terme 1	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)				
	particule	q + ip	terme ??					
	particule	q + ip	terme naf_alkhqp_nterm	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)				

4.13 Format du fichier ???.naf_alkh_part

Ce fichier contient l'analyse en fréquence des particules en $a\exp^{i\lambda}, k+ih$ sur une tranche de temps. Les unités des fréquences dépendent de naf_alkhqp_dtour.

Il y a un fichier par processeur. Chaque fichier contient plusieurs particules. Il y a une seule particule et une seule tranche de calcul par ligne. Le fichier contient toutes les tranches d'une même condition initiale.

colonne		description						
1	nom	nom						
2	temps init	ial (T0) o	le chaque tranche					
3	nonticulo	$a \exp^{i\lambda}$	towns 1	fréquence				
5	particule	$a \exp^{-a}$	terme 1	amplitude (partie réelle) amplitude (partie imagi- naire)				
	particule	$a \exp^{i\lambda}$	terme ??					
	particule	$a \exp^{i\lambda}$	terme naf_alkhqp_nterm	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)				
	particule	k + ih	terme 1	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)				
	particule	k + ih	terme ??					
	particule	k + ij	terme naf_alkhqp_nterm	fréquence amplitude (partie réelle) amplitude (partie imagi- naire)				

$4.14 \quad Format \ du \ fichier \ ???.naf_diffalp_part$

Ce fichier contient l'analyse en fréquence en $\exp^{i(\lambda_{part}-\lambda_{p(1)})}$ et $\exp^{i(\varpi_{part}-\varpi_{p(1)})}$ sur une tranche de temps. Les unités des fréquences dépendent de naf_diffalp_dtour.

Il y a un fichier par processeur. Chaque fichier contient plusieurs particules. Il y a une seule particule et une seule tranche de calcul par ligne. Le fichier contient toutes les tranches d'une même condition initiale.

colonne		description					
1	nom						
2	temps initial (T0) de chaque tranche					
3			fréquence				
4	$\exp^{i(\lambda_{part}-\lambda_{p(1)})}$	m terme~1	amplitude (partie réelle)				
5			amplitude (partie imagi- naire)				
	$\exp^{i(\lambda_{part}-\lambda_{p(1)})}$	terme??					
			fréquence				
	$\exp^{i(\lambda_{part}-\lambda_{p(1)})}$	terme naf_alkhqp_nterm	amplitude (partie réelle)				
			amplitude (partie imagi-				
			naire)				
			fréquence				
	$\exp^{i(\varpi_{part}-\varpi_{p(1)})}$	m terme~1	amplitude (partie réelle)				
			amplitude (partie imagi-				
			naire)				
	$\exp^{i(\varpi_{part}-\varpi_{p(1)})}$	terme??					
			fréquence				
	$\exp^{i(\varpi_{part}-\varpi_{p(1)})}$	terme naf_alkhqp_nterm	amplitude (partie réelle)				
			amplitude (partie imagi-				
			naire)				

4.15 Format du fichier ???.naf_alkhqp

Ce fichier contient l'analyse en fréquence des planètes en $a\exp^{\imath\lambda}, k+\imath h, q+\imath p$ sur une tranche de temps. Les unités des fréquences dépendent de naf_alkhqp_dtour.

Il y a un fichier par processeur. Chaque fichier contient un seul système planétaire. Le fichier contient toutes les tranches de ce système planétaire.

colonne			description					
1	nom							
2	temps init:	temps initial (T0) de chaque tranche						
3 4 5	planete 1	$a \exp^{i\lambda}$	terme 1	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)				
	planete 1	$a \exp^{i\lambda}$	terme ??					
	planete 1	$a \exp^{i\lambda}$	terme naf_alkhqp_nterm	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)				
	planete 1	k + ih	terme 1	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)				
	planete 1	k + ih	terme ??					
	planete 1	k + ij	terme naf_alkhqp_nterm	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)				
	planete 1	q + ip	terme 1	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)				
	planete 1	$q + \imath p$	terme ??					
	planete 1	q + ip	terme naf_alkhqp_nterm	fréquence amplitude (partie réelle) amplitude (partie imag- inaire)				
	planete 2	$a \exp^{i\lambda}$	terme 1	fréquence				

4.16 Format du fichier ???.naf alkh

Ce fichier contient l'analyse en fréquence des planètes en $a \exp^{i\lambda}$, k + ih sur une tranche de temps. Les unités des fréquences dépendent de naf alkhqp dtour.

Il y a un fichier par processeur. Chaque fichier contient un seul système planétaire. Le fichier contient toutes les tranches de ce système planétaire.

colonne	description			
1	nom			
2	temps initial (T0) de chaque tranche			
3				fréquence
4	planete 1	$a \exp^{i\lambda}$	terme 1	amplitude (partie réelle)
5				amplitude (partie imag-
				inaire)
	planete 1	$a \exp^{i\lambda}$	terme ??	
				fréquence
	planete 1	$a \exp^{i\lambda}$	terme naf_alkhqp_nterm	amplitude (partie réelle)
				amplitude (partie imag-
				inaire)
				fréquence
	planete 1	k + ih	terme 1	amplitude (partie réelle)
				amplitude (partie imag-
				inaire)
	planete 1	k + ih	terme??	
				fréquence
	planete 1	k + ij	terme naf_alkhqp_nterm	amplitude (partie réelle)
				amplitude (partie imag-
				inaire)
	planete 2	$a \exp^{i\lambda}$	terme 1	fréquence