ROSSELAND APPROXIMATION CODE

JON VAN LEW - JTVANLEW@UCLA.EDU - 2010

The file Sample.m contains sample code on how to call the Rosseland approximation function. The code is based off of a one-dimensional, steady state consideration of the energy balance of a one-dimensional medium. Review notes for when Rosseland approximation is appropriate for use.

The standard equation in one dimension is

(1)
$$0 = \frac{d}{dz} \left(k_c \frac{dT}{dz} + k_R \frac{dT}{dz} \right)$$

with equivalent boundary conditions $T(z_0) = T_0$ and $T(z_L) = T_L$

The code assumes you have non-dimensionalized Eq. (1) with the following non-dimensional parameters

(2)
$$\theta = \frac{T}{T_0} \qquad \tau = \beta_R z \qquad N = \frac{k_c \kappa}{4n^2 \sigma T_0^3}$$

to find

(3)
$$0 = N \frac{d^2 \theta}{d\tau^2} + 4\theta^2 \left(\frac{d\theta}{d\tau}\right)^2 + \frac{4}{3}\theta^3 \frac{d^2 \theta}{d\tau^2}$$

Therefore, the function expects to be called in the following manner [tau, theta] = rosseland(TO, TL, tau0, tauL,N) where your boundary conditions are

$$\theta_0 \to T0$$
 $\theta_L \to TL$

at the locations

$$\tau_0 \to tau0$$
 $\tau_L \to tauL$

with your conduction-to-radiation parameter N.

The program then provides the two vectors of dimensionless axis τ and temperature θ

$$tau \to \tau$$
 $theta \to \theta(\tau)$