Q1. [40 pts] Maximum Likelihood Estimation (I)

Given n = 100 (random) observations $x_1, x_2, ..., x_n$ which are independently drawn from an univariate Gaussian distribution N(2 μ ,7 σ ²) with unknown mean μ and variance σ ² > 0.

(a) [20 pts] Derive the maximum likelihood estimation μ_{MLE} of μ as a function of n and $(x_1, x_2, ..., x_n)$.

Answer:

$$\begin{split} \theta \text{MLE} &= (\mu \text{MLE} \text{ , } \sigma 2 \text{MLE}) \\ dL/d\mu &= \sum_{} (i=1)^N \text{N } d(-0.5 * (xi-2\mu)2 \text{ / } 7\sigma 2) \text{ / } d\mu \\ dL/d\mu &= -\sigma - 2 * \sum_{} (i=1)^N \text{N } (xi-2\mu) \text{ } d(-\mu) \text{ / } d\mu \\ dL/d\mu &= (1 \text{ / } \sigma^2) \sum_{i=1}^N \text{ } (x_i-2\mu) \\ \mu_{\text{MLE}} &= (2/N) \sum_{i=1}^N x_i \end{split}$$

(b) [20 pts] Derive the maximum likelihood estimation σ_{MLE^2} of σ^2 as a function of n and $(x_1, x_2, ..., x_n)$.

Answer:

Given n independent observations x1, x2, ..., xn from a Gaussian distribution with mean μ and variance σ^2 , the likelihood function can be written as:

$$L(\mu, \sigma^2) = (2\pi\sigma^2)^{-1}(-n/2) \exp(-(1/2\sigma^2) * \sum (xi - \mu)^2)$$

To find the maximum likelihood estimates (MLEs) of μ and σ^2 , we need to find the values of μ and σ^2 that maximize the likelihood function. We can start by finding the MLE of μ as we did in the previous question:

To find the MLE of μ , we differentiate the likelihood function with respect to μ and set the derivative to zero:

$$d \ln L / d\mu = (1/\sigma^2) * \sum (xi - \mu) = 0$$

Solving for μ , we get:

$$\mu_MLE = (1/n) * \sum xi$$

Now, we can find the MLE of σ^2 by differentiating the likelihood function with respect to σ^2 and setting the derivative to zero:

$$d \ln L / d(\sigma^2) = (-n/2\sigma^2) + (1/2(\sigma^2)^2) * \sum (xi - \mu_M LE)^2 = 0$$

Solving for σ^2 , we get:

$$\sigma^2_{MLE} = (1/n) * \sum (xi - \mu_{MLE})^2$$

Substituting the value of μ _MLE in the above equation, we get:

$$\sigma^2 MLE = (1/n) * \sum (xi - (1/n) * \sum xi)^2$$

Simplifying the above equation, we get:

$$\sigma^2 MLE = (1/n) * (\sum xi^2 - (1/n) * (\sum xi)^2)$$

Therefore, the MLE of σ^2 is (1/n) times the sum of the squared deviations of the observations from their sample mean.

Q2. [30 pts] Maximum Likelihood Estimation (II)

Let $x_1, x_2, ..., x_n$ denote the n independent observations which are assumed to be drawn from the same distribution $p(x \mid \theta)$ with defining parameter θ .

(a) [10 pts] Suppose $0 < \theta < 1$ and $p(x = 1 \mid \theta) = \theta$ while $p(x = 0 \mid \theta) = 1 - \theta$. Then, suppose m out of n observations (m < n) have value 1 while the rest has value 0.

Compute the maximum likelihood estimation θ_{MLE} of θ in terms of m and n.

Answer:

$$L(\theta \mid x) = p(x \mid \theta) = \theta^m (1 - \theta)^n(n-m)$$

To find the maximum likelihood estimation of θ , we take the derivative of the log-likelihood function with respect to θ , set it to zero and solve for θ :

$$\log L(\theta \mid x) = m \log(\theta) + (n-m) \log(1-\theta)$$

$$d/d\theta \left[\log L(\theta \mid x)\right] = m/\theta - (n-m)/(1-\theta) = 0$$

Solving for θ , we get:

$$m/\theta = (n-m)/(1-\theta)$$

$$\theta m - m\theta = n\theta - m\theta$$

$$\theta m = n\theta$$

$$\theta$$
MLE = m/n

(b) [10 pts] Suppose $\theta > 0$ and assume the observations $x_1, x_2, ..., x_n$ were independently drawn from Uniform $(0, 1/\theta)$. Assuming all observations are positive, show that $p(x_i | \theta) = I(\theta \le 1/x_i) \cdot \theta$.

Here, $I(\theta \le 1/x_i) = 1$ if and only if $\theta \le 1/x_i$ is true and if $x \sim \text{Uniform}(a,b)$ then $p(x \mid a,b) = 1/(b-a)$.

Answer:

We have the following information:

The observations x1,x2,...,xn are drawn independently from a uniform distribution U(a,b) with a=0 and $b=1/\theta$.

The probability density function (pdf) of the uniform distribution U(a,b) is $p(x \mid a,b) = 1/(b-a)$.

We need to show that $p(xi \mid \theta) = I(\theta \le 1/xi) \cdot \theta$, where $I(\theta \le 1/xi) = 1$ if and only if $\theta \le 1/xi$ is true.

Let's start by finding the pdf of xi given θ . Since xi is drawn from a uniform distribution U(0,1/ θ), we have:

$$p(xi | \theta) = 1/(1/\theta - 0) = \theta/(1 - \theta xi)$$

Now, we need to show that $p(xi \mid \theta) = I(\theta \le 1/xi) \cdot \theta$. We have:

If
$$\theta > 1/xi$$
, then $p(xi \mid \theta) = \theta/(1 - \theta xi) > \theta$, and $I(\theta \le 1/xi) = 0$. Therefore, $p(xi \mid \theta) = 0$ when $\theta > 1/xi$.

If
$$\theta \le 1/xi$$
, then $p(xi \mid \theta) = \theta/(1 - \theta xi)$ and $I(\theta \le 1/xi) = 1$. Therefore, $p(xi \mid \theta) = \theta/(1 - \theta xi)$ when $\theta \le 1/xi$.

Putting these two cases together, we get:

$$p(xi \mid \theta) = I(\theta \le 1/xi) \cdot \theta$$

Therefore, we have shown that $p(xi \mid \theta) = I(\theta \le 1/xi) \cdot \theta$ when xi is drawn independently from Uniform(0,1/ θ) and $\theta > 0$.

(c) [10 pts] Following the same setting in part (b), compute θ_{MLE} in terms of $(x_1, x_2, ..., x_n)$

Answer:

The likelihood function is given by:

$$L(\theta \mid x) = \sum_{i=1}^n p(xi \mid \theta)$$
$$= \sum_{i=1}^n I(\theta \le 1/xi) \cdot \theta$$
$$= \theta^n \cdot \sum_{i=1}^n I(\theta \le 1/xi)$$

We can see that θ MLE must satisfy θ MLE $\leq 1/xi$ for all i in order for the likelihood to be non-zero. This implies that θ MLE is upper bounded by the smallest value of 1/xi, i.e.,

$$\theta$$
MLE \leq min(1/xi)

To find the maximum likelihood estimation of θ , we need to find the value of θ that maximizes the likelihood function. We know that θ MLE \leq min(1/xi), so we can set θ = min(1/xi) to maximize the likelihood function. The likelihood function then becomes:

$$L(\theta MLE \mid x) = (min(1/xi))^n \cdot \sum_{i=1}^n I(\theta MLE \le 1/xi)$$

Note that if there exists some j such that $\theta MLE < 1/xj$, then $I(\theta MLE \le 1/xj) = 0$ and the likelihood becomes 0. Therefore, θMLE must be equal to the minimum value of 1/xi in order for the likelihood to be non-zero. Thus, we have:

```
\thetaMLE = min(1/xi)
= 1/max(xi)
```

Therefore, the maximum likelihood estimation of θ is the reciprocal of the largest observed value xi.

Q3. [30 pts] Maximum a Posteriori

Let $x_1, x_2, ..., x_n$ denote the n > 2 independent observations which are assumed to be drawn from the same distribution $p(x \mid \theta)$ where $\theta \sim \text{Beta}(a, b)$ with a, b > 0.

The probability density function (PDF) of the beta distribution is $p(\theta \mid a,b) = \theta^{a-1}(1-\theta)^{b-1}/B(a,b)$ where B(a,b) = G(a)G(b)/G(a+b) with G denote the Gamma function as mentioned in slides 46-47 of lecture 22. This density is non-zero only at $\theta \in (0,1)$.

(a) [15 pts] Assume $p(x \mid \theta)$ is the Bernoulli distribution as in part (a) of Q2. That is, $p(x = 1 \mid \theta) = \theta$ while $p(x = 0 \mid \theta) = 1 - \theta$ with $0 < \theta < 1$.

Given that m out of n observations (1 < m < n) has value 1, derive θ_{MAP} in terms of m, n, a and b.

Answer:

Using Bayes' rule, we can write the posterior PDF as:

$$p(\theta \mid x_1, x_2, ..., x_n, a, b) = p(x_1, x_2, ..., x_n \mid \theta) * p(\theta \mid a, b) / p(x_1, x_2, ..., x_n \mid a, b)$$

where $p(x1, x2, ..., xn \mid \theta)$ is the likelihood function of the Bernoulli distribution, $p(\theta \mid a, b)$ is the PDF of the Beta distribution, and $p(x1, x2, ..., xn \mid a, b)$ is the marginal likelihood, which is the normalizing constant that ensures the posterior PDF integrates to 1.

Using the given Bernoulli distribution, we have:

$$p(x_1, x_2, ..., x_n \mid \theta) = \theta^m * (1 - \theta)^n (n - m)$$

Using the given Beta distribution, we have:

$$p(\theta \mid a, b) = \theta^{(a-1)} * (1-\theta)^{(b-1)} / B(a,b)$$

where B(a,b) is the Beta function, which is defined as B(a,b) = $\Gamma(a) * \Gamma(b) / \Gamma(a + b)$, where $\Gamma(a)$ is the Gamma function.

Using the fact that $p(x1, x2, ..., xn \mid a, b) = \int p(x1, x2, ..., xn \mid \theta) * p(\theta \mid a, b) d\theta$, we have:

$$p(x1, x2, ..., xn \mid a, b) = \int \theta^{n} m * (1 - \theta)^{n} (n - m) * \theta^{n} (a - 1) * (1 - \theta)^{n} (b - 1) / B(a, b) d\theta$$

$$p(x1, x2, ..., xn \mid a, b) = B(m+a,n-m+b) / B(a,b)$$

where B(m+a,n-m+b) is the Beta function evaluated at m+a and n-m+b.

Now, substituting these expressions in the expression for the posterior PDF and taking the logarithm, we get: $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2}$

$$\log p(\theta \mid x1, x2, ..., xn, a, b) = (m + a - 1) * \log(\theta) + (n - m + b - 1) * \log(1 - \theta) - \log B(m + a, n - m + b) + \log B(a, b) + C$$
 where C is a constant that does not depend on θ .

To find the MAP estimate of θ , we need to find the value of θ that maximizes the posterior PDF. Taking the derivative of the logarithm of the posterior PDF with respect to θ and setting it to zero, we get:

$$(d/d\theta) \log p(\theta \mid x_1, x_2, ..., x_n, a, b) = (m + a - 1) / \theta - (n - m + b - 1) / (1 - \theta) = 0$$

Simplifying this equation, we get:

$$\theta = (m + a - 1) / (n + a + b - 2)$$

(b) [15 pts] Now, assume instead that each observation can take on 3 values in $\{0,1,2\}$ according to the following distribution: $p(x = 0 \mid \theta) = \theta$, $p(x = 1 \mid \theta) = \theta \cdot (1 - \theta)$, and $p(x = 2 \mid \theta) = (1 - \theta)^2$ with $0 < \theta < 1$.

Given that there are n_0 , n_1 and n_2 observations with values 0, 1 and 2, respectively. Derive θ_{MAP} in terms of n_0 , n_1 , n_2 , a and b assuming that n_0 , n_1 , $n_2 \ge 1$.

Answer:

The likelihood function can be written as:

$$p(x_1, x_2, ..., x_n | \theta) = \theta^n 0 * (\theta^*(1-\theta))^n 1 * (1-\theta)^2 n2$$

where n0, n1, and n2 are the number of observations with values 0, 1, and 2, respectively.

The prior distribution of θ is given by the beta distribution:

$$p(\theta) = \theta^{(a-1)} (1-\theta)^{(b-1)} / B(a, b)$$

where B(a, b) is the beta function.

Therefore, the posterior distribution of θ is:

$$p(\theta|x_1, x_2, ..., x_n) = \theta^n 0 * (\theta^*(1-\theta))^n 1 * (1-\theta)^2 n 2 * \theta^n (a-1) * (1-\theta)^n (b-1) / B(a, b)$$

Taking the logarithm of both sides, we get:

$$\log p(\theta|x_1, x_2, ..., x_n) \propto n0 * \log(\theta) + n1 * \log(\theta^*(1-\theta)) + 2n2 * \log(1-\theta) + (a-1) * \log(\theta) + (b-1) * \log(1-\theta) - \log(1-\theta) + (a-1) * \log(\theta) + (b-1) * \log$$

To find the MAP estimate of θ , we need to maximize the posterior distribution, which is equivalent to maximizing its logarithm. Taking the derivative of the logarithm of the posterior with respect to θ and setting it to zero, we get:

$$(n0 + n1 - 1) / \theta - (n1 + b) / (1 - \theta) = 0$$

Simplifying this expression, we get:

$$\theta = (n0 + n1 - 1 + a) / (n0 + n1 + 2n2 + a + b - 2)$$

$$\theta$$
MAP = $(n0 + n1 - 1 + a) / (n0 + n1 + 2n2 + a + b - 2)$