Mechanics of Materials - Week 12: Thin-Walled Pressure Vessels Cylindrical & Spherical Vessels

Viggo Hansen

April 2, 2025

Introduction to Pressure Vessels

Cylindrical Pressure Vessels

Spherical Pressure Vessels

Introduction to Pressure Vessels

Cylindrical Pressure Vessels

Spherical Pressure Vessels

What Are Pressure Vessels?

- Containers designed to hold gases or liquids under pressure.
- Examples include boilers, gas tanks, water pipes, and even aerosol cans.
- A **thin-walled vessel** assumption applies when the wall thickness t is relatively small compared to the inner radius r (rule of thumb: $r/t \ge 10$).

Figure: Schematic of a thin-walled cylindrical vessel

Why Thin-Walled Assumption?

- Simplifies stress analysis significantly.
- Enables closed-form solutions for hoop and longitudinal stresses.
- ► Common in practice for pipes, pressurized hoses, and large storage tanks.

Introduction to Pressure Vessels

Cylindrical Pressure Vessels

Spherical Pressure Vessels

Stresses in Cylindrical Vessels

- Internal gauge pressure: p.
- Two primary normal stresses:
 - **Hoop (circumferential) stress**: σ_{θ} or σ_{hoop} .
 - ▶ Longitudinal (axial) stress: σ_{long} .

Key Equations (Thin-Walled)

$$\sigma_{\mathsf{hoop}} = \sigma_1 = \frac{pr}{t}, \qquad \sigma_{\mathsf{long}} = \sigma_2 = \frac{pr}{2t}.$$

Derivation of Hoop Stress (Brief)

- ► Consider a half-cylinder cut by a plane parallel to the axis.
- ▶ Force due to internal pressure acts on the cross-sectional area (length $\approx 2r$).
- ► Hoop stress acts along the circumference on the "cut" edges.
- Equilibrium of horizontal forces leads to:

$$\sigma_{\mathsf{hoop}} \cdot (t imes \mathsf{length}) \, = \, p \cdot (\mathsf{internal area}).$$
 $\sigma_{\mathsf{hoop}} = rac{pr}{t}.$

Engineering Considerations

- ▶ Factor of Safety (F.S.): Typically, use $\sigma_{\text{allowed}} = \frac{\sigma_{\text{yield}}}{\text{F.S.}}$.
- ▶ End Caps: Axial loads on heads can introduce additional stresses.
- ► Material Selection: Must withstand stresses and possible corrosion, temperature effects.
- ▶ **Welding/Joints**: Often the weak link in pressure vessels.

Full 2D Stress Tensor in Cylindrical Vessels

- Combines hoop and longitudinal stresses into a 2D stress state at a point.
- Assume: longitudinal direction (x), hoop direction (y), no shear $(\tau_{xy} = 0)$.

Stress Tensor

$$\sigma = \begin{bmatrix} \sigma_{\mathsf{long}} & 0 \\ 0 & \sigma_{\mathsf{hoop}} \end{bmatrix} = \begin{bmatrix} \frac{pr}{2t} & 0 \\ 0 & \frac{pr}{t} \end{bmatrix}$$

Introduction to Pressure Vessels

Cylindrical Pressure Vessels

Spherical Pressure Vessels

Stresses in Spherical Vessels

- ▶ Due to symmetry, stress is uniform in all directions in a sphere.
- Magnitude of spherical stress is identical to the *longitudinal* stress in a cylindrical vessel.

Key Equation (Thin-Walled Sphere)

$$\sigma_{\sf sphere} = rac{pr}{2t}.$$

Free-Body Diagram (Spherical)

- ▶ If you "cut" a sphere by a plane, the internal pressure acts over a circular cross section.
- ▶ The internal tensile stress in the spherical wall resists the force due to pressure.

Figure: Spherical vessel free-body diagram

Introduction to Pressure Vessels

Cylindrical Pressure Vessels

Spherical Pressure Vessels

Key Takeaways

Thin-Walled Cylinders:

$$\sigma_{\mathsf{hoop}} = \frac{pr}{t}, \quad \sigma_{\mathsf{long}} = \frac{pr}{2t}.$$

Thin-Walled Spheres:

$$\sigma_{\sf sphere} = rac{pr}{2t}.$$

- When to apply:
 - $ightharpoonup r/t \gtrsim 10$ for the thin-walled assumption.
 - Uniform internal pressure.
- ▶ Engineering Concern: Always ensure proper safety factors for material strength, welds, and design codes (ASME, etc.).

Further Reading

- ▶ Mechanics of Materials texts (e.g., Gere, Beer & Johnston).
- ▶ ASME Boiler and Pressure Vessel Code (BPVC) for practical design standards.
- ▶ API standards for piping and petroleum-related vessels.