American Computer Science League

2021 Finals • Solutions to Short Problems • Senior Division

1. Boolean Algebra

$$\overline{ABC}(A + B)(\overline{B} + \overline{C}) = \overline{ABC}(A\overline{B} + A\overline{C} + \overline{B}B + B\overline{C})$$

$$= \overline{ABC} + \overline{ABCC} + \overline{ABBC} + \overline{ABBCC}$$

$$= \overline{ABC}$$

$$= \overline{A} + B + \overline{C}$$

1.
$$\overline{A} + B + \overline{C}$$
 (D)

2. Boolean Algebra

$$(\overline{AB} + \overline{C}) + (\overline{A}\overline{B} + \overline{C}) = \overline{A}\overline{B}\overline{C} + (\overline{A}\overline{B} + \overline{C})$$

$$= (\overline{A} + \overline{B})\overline{C} + \overline{A}\overline{B} + \overline{C}$$

$$= \overline{A}\overline{C} + \overline{B}\overline{C} + \overline{A}\overline{B} + \overline{C}$$

$$= \overline{A}\overline{B} + \overline{C}(\overline{A} + \overline{B} + 1)$$

$$= \overline{A}\overline{B} + \overline{C}$$

If $\overline{C} = 1$, then C = 0. 4 ordered triples make it TRUE. (*, *, 0) If $\overline{C} = 0$, then C = 1. $\Rightarrow \overline{A} = 1$, $\overline{B} = 1$. (0, 0, 1) 2. 5 (C)

3. Bit-String Flicking

((LCIRC-25 011001) OR (RCIRC-16 101101) AND (NOT 011100))

- = ((LCIRC-1 011001) OR (RCIRC-4 101101) AND 100011)
- = (110010 OR (110110 AND 100011))
- = (110010 OR 100010)
- = 110010

3. 110010 (A)

4. Bit-String Flicking

Let X = abcde. ((LSHIFT-1 X) OR (NOT (RSHIFT-1 10111))) = X((LSHIFT-1 abcde) OR (NOT (RSHIFT-1 10111))) = abcde LHS = ((LSHIFT-1 abcde) OR (NOT (RSHIFT-1 10111))) = (bcde0 OR (NOT 01011)) = (bcde0 OR 10100) = 1c1e0LHS = RHS \Rightarrow 1c1e0 = abcde \Rightarrow a = 1, b = c, c = 1, d = e, e = 0 \Rightarrow a = b = c = 1, d = e = 0 $\Rightarrow 11100$

4. 11100 (B)

5. Recursive Functions

$$f(20) = f(f(20-3)) + 3 = f(f(17)) + 3 = f(5) + 3 = 0$$

$$f(17) = f(f(17-3)) + 3 = f(f(14)) + 3 = f(3) + 3 = 2$$

$$f(14) = f(f(14-3)) + 3 = f(f(11)) + 3 = f(1) + 3 = 0$$

$$f(11) = f(f(11-3)) + 3 = f(f(18)) + 3 = f(-1) + 3 = 0$$

$$f(8) = f(8-2) - 2 = f(6) - 2 = 1 - 2 = -1$$

$$f(6) = f(6-2) + 2 = f(6) - 2 = 3 - 2 = 1$$

$$f(4) = 4 - 1 = 3$$

$$f(-1) = -1 - 1 = -2$$

$$f(1) = 1 - 1 = 0$$

$$f(3) = 3 - 1 = 2$$

$$f(5) = f(5-2) - 2 = f(3) - 2 = 2 - 2 = 0$$

6. Recursive Functions

Each zig zag curve has twice the length of the segment on which it is constructed. The perimeter will double the length at each stage.

6. 7 (C)

Stage	1	2	3	4	5	6	7
Perimeter	64	128	256	512	1024	2048	4096

7. Digital Electronics

The circuit can be represented by the following boolean expression:

$$A \oplus \overline{A \oplus (B \oplus C)}$$

A	В	С	$B \oplus C$	$A \oplus (B \oplus C)$	$\overline{A \oplus (B \oplus C)}$	$A \oplus \overline{A \oplus (B \oplus)}$
0	0	0	0	0	1	1
0	0	1	1	1	0	0
0	1	0	1	1	0	0
0	1	1	0	0	1	1
1	0	0	0	1	0	1
1	0	1	1	0	1	0
1	1	0	1	0	1	0
1	1	1	0	1	0	1

8. Digital Electronics

The boolean expression for the circuit is: $\overline{A(A + B + BC)} + C$

$$\overline{A(\overline{A} + B + BC)} + C = \overline{A(\overline{A} \overline{B} \overline{B} C)} + C$$

$$= \overline{C}$$

9. Prefix-Infix-Postfix

3 4 5 + 7 2 1 & 6 ! * * 7 8 - 4 3 + 2 & 3 2 ^ ! / &

$$= 3 (45 +) (721 \&)(6!) ** (78 -)(43 +) 2 \& (32^)! / &$$

$$= 3 \{ (45 +) [(721 \&)(6!) *] * \} \{ [(78 -)(43 +) 2 \&)[(32^)!] / \} \&$$

$$= 3\{ (+45) [(&721)(!6) *] *\} \{[(-78)(+43) 2 &] [(^32) !] / \} &$$

$$= 3\{ (+45) [*&721!6]]* \{ [\&-78+432] [!^32] / \} \&$$

$$= 3\{ *+45*&721!6 \} \{ /\&-78+432!^32 \} \&$$

$$= &3*+45*&721!6/&-78+432!^32$$

7. 4 (C)

 $8. \overline{C} (B)$

9. &3*+4 5*&7 2 1! 6/& -7 8 +4 2!^3 2 (D)

10. Prefix-Infix-Postfix

10. 90 (C)

11. Computer Number Systems

11. 29D3CB₁₆ (B)

12. Computer Number Systems

$$2001 = 3721_8 \qquad 2021 = 3745_8$$

YEAR ₈	3721	3722	3723	3724	3725	3726	3727
DIGITS	1	1	1	1	2	2	2
YEAR ₈	3730	3731	3732	3733	3734	3735	3736
DIGITS	1	1	1	1	1	2	2
YEAR ₈	3737	3740	3741	3742	3743	3744	3745
DIGITS	2	1	1	1	1	1	2

12. 28 (D)

There are 28 digits greater than 4.

13. Data Structures

The min-heap for TRICERATOPS is:

A C R

13. OIRR (C)

14. Data Structures

FIFO: July: \$20/share (sold)

March: \$10/share (bought)

Profit: \$10/share

Total profit: \$1000 for 100 shares

Tax: 20% of \$1000 = \$200

LIFO: July: \$20/share (sold)

May: \$5/share (bought)

Profit: \$15/share

Total profit: \$1500 for 100 shares

Tax: 20% of \$1500 = \$300

14. FIFO, saving \$100 (A)

15. Graph Theory

Squaring a matrix gives the number of paths of length 2.

0	1	1	1	0	1	2		1	1	1	0	2	1
0	0	1	0	1	0			2	2	0	0	0	2
1	1	0	0	0	1			0	1	2	1	2	1
0	0	0	0	0	0		=	0	0	0	0	0	0
1	1	0	0	0	1			0	1	2	1	2	1
0	0	0	0	1	0			1	1	0	0	0	1

15. 4 (B)

There are 15 paths that do not have a length of 2, but only 4 unique pairs of vertices do not have a path of length 2 in either direction.

DD, AD/DA, BD/DB, DF/FD

16. Graph Theory

There are 12 cycles: ACA, ABCA, ABEA, ADEA, ACBEA, ACDEA, ABCDEA, ADEBCA, BEB, BCB, BCDEB, and DED

16. None of the above (E)

17. What Does This Program Do?

Pascal's triangle rows start and end with 1. A new entry, pt(i), in a row is found by adding the entry above to the left, pt(i-1), and the one to the right, pt(i). This is choice B.

17. for i = X to 1 step -1 pt(i) = pt(i) + pt(i-1)next i (B)

18. LISP Programming

```
G = (CADDADADDR S)
  = (CADDADADDR '(H ((A C) K) (E (R R (A))) (N (K))))
  = (CADDADADR'(((AC)K)(E(RR(A)))(N(K))))
  = (CADDADAR '((E (R R (A))) (N (K))))
  = (CADDADR '(E (R R (A))))
  = (CADDAR '((R R (A))))
  = (CADDR '(R R (A)))
  = (CADR '(R (A)))
  =(CAR'((A)))
  =(A)
H = (CADADADR Q)
  = (CADADADR '((PL) (A (T (FO) R)) M))
  = (CADADAR '((A (T (F O) R)) M))
  = (CADADR '(A (T (F O) R)))
  = (CADAR '((T (F O) R)))
  = (CADR '(T (F O) R))
  = (CAR '((FO) R))
  = (F O)
(CONS G H) = (CONS (A) (F O))
           = ((A) F O)
```

18. ((A) F O) (A)

19. FSAs and Regular Expressions

Given the pattern [^aeiou] [aeiou] [^a-j] [p-t]?. (er|s) * the following strings fail at the given character:

crayons: r - must be a vowel

erasers: e - cannot start with a vowel

staples: t - must be a vowel staplers: t - must be a vowel notebooks: e - must be p-t

computers: t - there is no symbol to use

tablets: b - cannot be a-j boards: a - cannot be a-j

rulers: e - must have another character before the er or the s

There are 3 left which satisfy the regular expression which are: markers, desks, and compass.

19. None of the above (E)

20. Assembly Language

The assembly programs can be converted to ACSL WDTPD code as follows:

20. 56 (C)

```
input x, y
z = x - y
c = 1: b = 1: a = 1
while z > 0
   c = c * z
   z = z - 1
end while
while y > 0
   b = b * y
   y = y - 1
end while
while x > 0
   a = a * x
   x = x - 1
end while
d = a / b / c
output d
```

Each while loop calculates a factorial.

d = a!/b!/c! which is the formula to calculate 8 things taken 3 at a time where order doesn't matter.