

T.D

6

**COPY OF PAPERS
ORIGINALLY FILED**

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Atty. Docket No: HMV-070.01

In re patent application of

GOLDBERG, ALFRED L. et al.

Serial No. 10/050,686

Filed: January 16, 2002

For: COMPOSITIONS AND METHODS FOR TREATMENT OF MUSCLE WASTING

STATEMENT TO SUPPORT FILING AND SUBMISSION IN
ACCORDANCE WITH 37 C.F.R. § 1.821-1.825

**COPY OF PAPERS
ORIGINALLY FILED**

Assistant Commissioner for Patents
Washington, D.C. 20231
Box SEQUENCE

Sir:

In connection with a Sequence Listing submitted concurrently herewith, the undersigned hereby states that:

1. the submission, filed herewith in accordance with 37 C.F.R. § 1.821(g), does not include new matter;

2. the content of the attached paper copy and the attached computer readable copy of the Sequence Listing, submitted in accordance with 37 C.F.R. § 1.821(c) and (e), respectively, are the same; and

3. all statements made herein of their own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United

Serial No. 10/050,686

**COPY OF PAPERS
ORIGINALLY FILED**

States Code and that such willful false statements may jeopardize the validity of the application or any patent resulting therefrom.

Respectfully submitted,

April 15, 2002
Date

James A. Coburn

HARBOR CONSULTING
Intellectual Property Services
1500A Lafayette Road
Suite 262
Portsmouth, N.H.
800-318-3021

1
SEQUENCE LISTING

<110> GOLDBERG, ALFRED L.
GOMES, MARCELO D.
LECKER, STEWART H.
JAGOE, R. THOMAS

<120> COMPOSITIONS AND METHODS FOR TREATMENT OF MUSCLE
WASTING

<130> HMV-070.01

<140> 10/050,686
<141> 2002-01-16

<150> 60/262,090
<151> 2001-01-16

<160> 3

<170> PatentIn Ver. 2.1

<210> 1
<211> 2067
<212> DNA
<213> Mus sp.

<400> 1
cccacgcgtc cggctaaagag cagggggctc ttggcggcaa caaagagacg gggcagcggc 60
ccgggataaa tactgcgtc gggcagccgc tcagcattcc cagagtccagg aggcgcaccc 120
ccccaaacgccc tgcgcctctg tgagtcaag gatcccccgc cccacccagg atccgcagcc 180
ctccacacta gttgaccac tcttgcctcg gtcgcgcctc gcgtcggtcc ccacatctt 240
cccaacgcgc cgcataccct gggcaagcca ggcgggttcc tggctgtcaa tccgtcccgt 300
ccgtcggtcg cgtccgcgtc ctgtaccatcg cggcccttgc ggcaggactg ggggtccccgg 360
ggccagagct gggtaagac ggcggacggc tggaaagcgct tcttggatga gaaaagcgcc 420
agttcgtga ggcacccctcag cagttactgc aacaaggagg tatacagtaa ggagaatctg 480
ttcagcagcc tggactacga cgtcgcagcc aagaagagaa agaaagacat tcagaacacg 540
aaaaccaaaa ctcagtaactt ccatcaagaa aagtggatct atgttccacaa aggaagtacg 600
aaggagcgcctt atggatactg tactttgggg gaagctttca acagacttgc cttctcaact 660
gcattctgg attccagaag attaaactac gtggccggc tggtggatct gatagcaaaag 720
tcacagctca catccctgag tggcatcgcc caaaagaact tcataat tttggaaaaaa 780
gtggtaactga aagtcccttga agaccaggcaaa acatccatcg taataaggaa actactccag 840
accctctaca catccttatg tacactggc caaagatcg gcaagttgt gctggccggg 900
aacattaaca tgggggtgttgc tggatgggg acgtttctcc actggcagca gcagctgaac 960
aacattcaga tcaccaggcc tgccttcaaa ggccttcaccc tcactgaccc gccttgc 1020
ctacaactga acatcatgca gaggtcgac gacggggccggg acctggtcag cctggccag 1080
gcagccccag acctgcgtgt gctcgtgt gacggctac tggaaagag actctggccag 1140
taccacttct cagagaggca gattcgcaag cgtttgtatct tggatccacaa agggcagctg 1200
gatttggaaaga agatgtatctt taagttgttgc cgtgttacc caagaagaga gcagttatggg 1260
gtcaccctgc agcttgcac acactgccac attctctccctt ggaagggcac tgaccatccg 1320
tgcacggccca acaacccaga gaggtcgcc tgcgttccctt cccctcaaga ctttatcaat 1380
ttgttcaagt tctgaataat cccagcacac gacaacactt cagaaggctt ctaattggat 1440
ggctgggagat tcgggacact tcattttgttgc atagtttgc ttttaagcat tggcttggaa 1500
ctgcggggggta tacgttccatggaggacgtt ggcggggaaag agatgttgc ggcgttggaa 1560
atttacaaat gtgaatttcca catgagaact ggtacagaaa agcagaaata ctgtaaatag 1620
acttttttattt tcccttaacg atttgcacg aagactataaa aggcaagaac tctatgtcag 1680
ccatggaaac ggagtccctc tgagtccctt aggaagaaaaa aggcaaaaaag ctcaaaaaca 1740
agatggaaaca ctctgtttac aatgtgaaaaa tggttggatag acaaaaaataa ggaagaagga 1800

agatgaacgc tgcatttagg aaacccttgg gctttgggtt tggattcggg gtttggggc 1860
 agcaggccaa gaagtatac cacctgaaat ctgcacgggc ttaagtccctt atcctatgaa 1920
 gatgccacac aatggctac ctctaaaagc atagcgtgtt ctctggcaac atactttatc 1980
 tggaggcaa tgtctgtgtt tcatgtaagt tctatactct gtgaagtgtat ctaagatggg 2040
 aaggctgtta gaaaaaaa aaaaaaa 2067

<210> 2
 <211> 355
 <212> PRT
 <213> Mus sp.

<400> 2
 Met Pro Phe Leu Gly Gln Asp Trp Arg Ser Pro Gly Gln Ser Trp Val
 1 5 10 15
 Lys Thr Ala Asp Gly Trp Lys Arg Phe Leu Asp Glu Lys Ser Gly Ser
 20 25 30
 Phe Val Ser Asp Leu Ser Ser Tyr Cys Asn Lys Glu Val Tyr Ser Lys
 35 40 45
 Glu Asn Leu Phe Ser Ser Leu Asp Tyr Asp Val Ala Ala Lys Lys Arg
 50 55 60
 Lys Lys Asp Ile Gln Asn Ser Lys Thr Lys Thr Gln Tyr Phe His Gln
 65 70 75 80
 Glu Lys Trp Ile Tyr Val His Lys Gly Ser Thr Lys Glu Arg His Gly
 85 90 95
 Tyr Cys Thr Leu Gly Glu Ala Phe Asn Arg Leu Asp Phe Ser Thr Ala
 100 105 110
 Ile Leu Asp Ser Arg Arg Phe Asn Tyr Val Val Arg Leu Leu Glu Leu
 115 120 125
 Ile Ala Lys Ser Gln Leu Thr Ser Leu Ser Gly Ile Ala Gln Lys Asn
 130 135 140
 Phe Met Asn Ile Leu Glu Lys Val Val Leu Lys Val Leu Glu Asp Gln
 145 150 155 160
 Gln Asn Ile Arg Leu Ile Arg Glu Leu Leu Gln Thr Leu Tyr Thr Ser
 165 170 175
 Leu Cys Thr Leu Val Gln Arg Val Gly Lys Ser Val Leu Val Gly Asn
 180 185 190
 Ile Asn Met Trp Val Tyr Arg Met Glu Thr Ile Leu His Trp Gln Gln
 195 200 205
 Gln Leu Asn Asn Ile Gln Ile Thr Arg Pro Ala Phe Lys Gly Leu Thr
 210 215 220
 Phe Thr Asp Leu Pro Leu Cys Leu Gln Leu Asn Ile Met Gln Arg Leu
 225 230 235 240

Ser Asp Gly Arg Asp Leu Val Ser Leu Gly Gln Ala Ala Pro Asp Leu
245 250 255

His Val Leu Ser Glu Asp Arg Leu Leu Trp Lys Arg Leu Cys Gln Tyr
260 265 270

His Phe Ser Glu Arg Gln Ile Arg Lys Arg Leu Ile Leu Ser Asp Lys
275 280 285

Gly Gln Leu Asp Trp Lys Lys Met Tyr Phe Lys Leu Val Arg Cys Tyr
290 295 300

Pro Arg Arg Glu Gln Tyr Gly Val Thr Leu Gln Leu Cys Lys His Cys
305 310 315 320

His Ile Leu Ser Trp Lys Gly Thr Asp His Pro Cys Thr Ala Asn Asn
325 330 335

Pro Glu Ser Cys Ser Val Ser Leu Ser Pro Gln Asp Phe Ile Asn Leu
340 345 350

Phe Lys Phe
355

<210> 3
<211> 1112
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: WD-40 motif

<220>
<221> MOD_RES
<222> (1)..(94)
<223> Any amino acid, wherein the region represents
6-94 residues

<220>
<221> MOD_RES
<222> (97)..(137)
<223> Any amino acid, wherein the region represents
23-41 residues

<220>
<221> MOD_RES
<222> (140)..(233)
<223> Any amino acid, wherein the region represents
6-94 residues

<220>
<221> MOD_RES
<222> (236)..(276)
<223> Any amino acid, wherein the region represents
23-41 residues

```
<220>
<221> MOD_RES
<222> (279)..(372)
<223> Any amino acid, wherein the region represents
6-94 residues

<220>
<221> MOD_RES
<222> (375)..(415)
<223> Any amino acid, wherein the region represents
23-41 residues

<220>
<221> MOD_RES
<222> (418)..(511)
<223> Any amino acid, wherein the region represents
6-94 residues

<220>
<221> MOD_RES
<222> (514)..(554)
<223> Any amino acid, wherein the region represents
23-41 residues

<220>
<221> MOD_RES
<222> (557)..(650)
<223> Any amino acid, wherein the region represents
6-94 residues

<220>
<221> MOD_RES
<222> (653)..(693)
<223> Any amino acid, wherein the region represents
23-41 residues

<220>
<221> MOD_RES
<222> (696)..(789)
<223> Any amino acid, wherein the region represents
6-94 residues

<220>
<221> MOD_RES
<222> (791)..(832)
<223> Any amino acid, wherein the region represents
23-41 residues

<220>
<221> MOD_RES
<222> (835)..(928)
<223> Any amino acid, wherein the region represents
6-94 residues

<220>
<221> MOD_RES
```


Xaa Gly
 500 505 510
 His Xaa
 515 520 525
 Xaa
 530 535 540
 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Asp Xaa Xaa Xaa Xaa
 545 550 555 560
 Xaa
 565 570 575
 Xaa
 580 585 590
 Xaa
 595 600 605
 Xaa
 610 615 620
 Xaa
 625 630 635 640
 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly His Xaa Xaa Xaa Xaa
 645 650 655
 Xaa
 660 665 670
 Xaa
 675 680 685
 Xaa Xaa Xaa Xaa Xaa Trp Asp Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
 690 695 700
 Xaa
 705 710 715 720
 Xaa
 725 730 735
 Xaa
 740 745 750
 Xaa
 755 760 765
 Xaa
 770 775 780
 Xaa Xaa Xaa Xaa Gly His Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
 785 790 795 800

Xaa Xaa Xaa Xaa Xaa Xaa Trp Asp
1105 1110