# INFO251 - Applied Machine Learning

Lab 12 **Emily Aiken** 

### **Announcements**

- PS7 due Monday May 2
- Quiz 2 on Thursday, April 28
  - Let us know via email or piazza if you have a DSP accommodation or time conflict

# Agenda

- Topics covered in AML
- ML algorithms "cheat sheet"
- Practice quiz questions

# Topics covered in AML

#### 1. Causal inference

- Linear regression
- Fixed effects and panel data
- Instrumental variables
- Regression discontinuity

#### 2. Supervised Learning, Part 1

- K-nearest neighbors
- Linear regression
- Logistic regression
- Ridge and LASSO
- Support vector machines

#### 3. Optimization and Loss Functions

- Mean squared error
- Logistic loss
- Hinge (RELU) loss
- Cross entropy loss
- Gradient descent

#### 4. Supervised Learning, Part 2

- Naïve Bayes
- Decision Trees
- Random Forests
- Gradient Boosting

#### 5. Neural Networks

- Perceptron
- Fully Connected Networks
- Autoencoders
- Convolutional Neural Networks
- Recurrent Neural Networks

#### 6. Fairness

- Independence, sufficiency, separation
- Protected attributes and privilege
- p% rule
- Thresholding
- Fairness constrained classification

#### 7. Unsupervised Learning

- K-means clustering
- Hierarchical clustering
- Dimensionality reduction
- Principal components analysis

#### 8. Practical ML

- Train-test splits
- Cross validation
- Imputation
- Normalization
- Standardization
- Feature engineering
- Imbalanced data
- Regularization
- Overfitting
- Bias-variance trade-off
- Interpretability

# Python programming tools covered in AML

| Tool                        | Purpose                                        |
|-----------------------------|------------------------------------------------|
| numpy                       | Coding up algorithms, vectorized computation   |
| pandas                      | Storing real-world tabular data                |
| matplotlib, seaborn         | Visualization                                  |
| statsmodels                 | Linear regression for causal inference         |
| scikit-learn                | Supervised and unsupervised learning pipelines |
| xgboost, catboost, lightgbm | Gradient boosting models                       |
| keras and tensorflow        | Neural networks                                |

# **ML Algorithms Summary: Linear Models**

| Algorithm                     | Applications   | Hyperparameters                                                                         | Description                                                                                                           | Pros                                                                                                                                                            | Cons                                                                                                                                       |
|-------------------------------|----------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Linear<br>Regression          | Regression     |                                                                                         | Prediction for observation is linear combination of features, weights determined via optimization (gradient descent). | <ul><li>Directly interpretable coefficients</li><li>Closed form solution</li><li>Scalable</li></ul>                                                             | <ul><li>Overly simplistic model</li><li>Cannot learn nonlinear<br/>decision boundaries</li><li>Overfitting</li></ul>                       |
| LASSO/Ridge<br>Regression     | Regression     | <ul> <li>Regularization (L1 or L2)</li> <li>Regularization strength (lambda)</li> </ul> | Regularized linear regression, penalizing size of weight vector                                                       | <ul> <li>Reduces overfitting</li> <li>Optimal regularization<br/>determined through<br/>cross validation</li> <li>Feature selection<br/>(Ridge only)</li> </ul> | Cannot learn nonlinear<br>decision boundaries                                                                                              |
| Logistic<br>Regression        | Classification | <ul> <li>Regularization (L1 or L2)</li> <li>Regularization strength (lambda)</li> </ul> | Regression optimizing logistic loss to produce calibrated class probabilities                                         | <ul><li>Directly interpretable coefficients</li><li>Scalable</li><li>Option to add regularization</li></ul>                                                     | Cannot learn nonlinear<br>decision boundaries                                                                                              |
| Support<br>Vector<br>Machines | Classification | Regularization strength     (C)                                                         | Maximize margin around separating hyperplane, with penalties for misclassification                                    | <ul><li>Easy to regularize</li><li>Works with kernels</li></ul>                                                                                                 | <ul> <li>Performs badly when data not linearly separable</li> <li>Linear decision boundary only</li> <li>No class probabilities</li> </ul> |

# **ML Algorithms Summary: Nonlinear Models**

| Algorithm              | Applications                  | Hyperparameters                                                                               | Description                                                                                       | Pros                                                                                                                                          | Cons                                                                 |
|------------------------|-------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| K-Nearest<br>Neighbors | Regression,<br>Classification | <ul><li>Neighbors (K)</li><li>Distance metric</li></ul>                                       | Prediction for observation is average of target value for K closest observations in training set. | <ul><li>Simple, intuitive, interpretable</li><li>No training required</li></ul>                                                               | <ul><li>Slow</li><li>Must choose a good distance metric</li></ul>    |
| Naïve Bayes            | Classification,<br>text data  | <ul> <li>Additive smoothing<br/>parameter</li> </ul>                                          | MAP estimate for most likely class given the data (features)                                      | <ul><li>Generative model</li><li>Easy, parallelizable estimation</li></ul>                                                                    | <ul> <li>Conditional independence<br/>assumption violated</li> </ul> |
| Decision<br>Trees      | Regression,<br>Classification | <ul><li>Maximum depth</li><li>Minimum samples in leaves</li></ul>                             | Recursively grow a tree splitting on a feature value at each node                                 | <ul><li>Can learn nonlinear<br/>decision boundaries</li><li>Most interpretable<br/>model</li></ul>                                            | Simple, underfitting model                                           |
| Random<br>Forests      | Regression,<br>Classification | <ul> <li>Maximum depth</li> <li>Minimum samples in leaves</li> <li>Number of trees</li> </ul> | Ensemble method aggregating multiple trees via averaging (regression) or voting (classification)  | <ul> <li>Can learn highly nonlinear decision boundaries</li> <li>Can cross validate a number of parameters</li> <li>Parallelizable</li> </ul> | Difficult to interpret                                               |
| Gradient<br>Boosting   | Regression,<br>Classification | <ul><li>All of above</li><li>Learning rate</li></ul>                                          | Ensemble method where trees built sequentially based on where previous trees performed badly      | <ul> <li>Can learn highly nonlinear decision boundaries</li> <li>Typically more accurate than random forests</li> </ul>                       | <ul><li>Difficult to interpret</li><li>Less parallelizable</li></ul> |

# **ML Algorithms Summary: Neural Networks**

| Algorithm                               | Applications                   | Hyperparameters                                                                                                                                     | Description                                                                                                                | Pros                                                                                                | Cons                                                                                                             |
|-----------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Fully<br>Connected<br>Neural<br>Network | Tabular data                   | <ul> <li>Number of hidden layers</li> <li>Number of nodes in hidden layers</li> <li>Activation functions</li> <li>Regularization/dropout</li> </ul> | All nodes in layer of network connected to all nodes in next layer.                                                        | <ul> <li>Faster to train (than more complex network)</li> <li>Work well for tabular data</li> </ul> | <ul> <li>Expensive to train</li> <li>Must choose a good<br/>distance metric</li> <li>Overfitting risk</li> </ul> |
| Convolutional<br>Neural<br>Network      | Image data,<br>graph data      | <ul> <li>Filter size and stride</li> <li>Pooling</li> <li>Number of fully connected layers at the end</li> <li>Regularization/dropout</li> </ul>    | Convolutional layers use matrix multiplication to learn spatial dependencies, pooling layers reduce image size/complexity. | <ul> <li>Very good at learning<br/>dependencies in spatial<br/>data</li> </ul>                      | <ul><li>Expensive to train</li><li>Overfitting risk</li></ul>                                                    |
| Recurrent<br>Neural<br>Network          | Time series<br>data, text data | <ul><li>Network structure<br/>(RNN, LSTM, GRU)</li><li>Regularization</li></ul>                                                                     | Recurrent connections allow information to be passed from one input to the next                                            | Very good at learning<br>temporal dependencies                                                      | Long-term dependencies<br>lost in standard RNNs                                                                  |
| Autoencoder                             | Reconstruction                 | <ul> <li>Number of nodes in<br/>hidden layer (degree<br/>of dimensionality<br/>reduction)</li> <li>Activation functions</li> </ul>                  | By training to predict the input,<br>outputs of hidden layer are<br>lower dimensional embedding<br>of input                | Learn lower<br>dimensional embedding<br>of data                                                     | Expensive compared to<br>other dimensionality<br>reduction techniques<br>(PCA)                                   |

# **ML Algorithms Summary: Unsupervised Methods**

| Algorithm                           | Applications                                              | Hyperparameters                                              | Description                                                                                                                                                                                                         | Pros                                                                                                       | Cons                                                                                                                                                                                   |
|-------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K-means<br>clustering               | Unsupervised<br>Learning<br>(Clustering)                  | <ul><li>Distance metric</li><li>Number of clusters</li></ul> | Assign cluster centers randomly. Then, repeat until converged: assign all observations to closest cluster center, assign cluster centers as mean of observations in cluster.                                        | <ul><li>Guaranteed to converge</li><li>Intuitive</li></ul>                                                 | <ul> <li>Spherical clusters</li> <li>All observations assigned to single cluster</li> <li>Not always clear how to pick number of clusters</li> <li>Sensitive to random seed</li> </ul> |
| Hierarchical<br>Clustering          | Unsupervised<br>Learning<br>(Clustering)                  | <ul><li>Distance metric</li><li>Linkage function</li></ul>   | Agglomerative clustering starts with all observations in single clusters and links nearby clusters recursively, divisive clustering starts with all observations in single cluster and splits clusters recursively. | Doesn't require number<br>of clusters (k)                                                                  | <ul> <li>Expensive to compute</li> <li>Sensitive to linkage function</li> <li>Sensitive to random seed</li> </ul>                                                                      |
| Principal<br>Components<br>Analysis | Unsupervised<br>Learning<br>(Dimensionality<br>Reduction) | Number of components                                         | Project data into lower dimensional subspace defined by principal components, where components maximize variation explained from original data and are all orthogonal.                                              | <ul> <li>Very computationally efficient</li> <li>Can reduce overfitting for supervised learning</li> </ul> | <ul> <li>Information may be lost in lower dimensional embedding (check variance explained)</li> <li>Components not interpretable</li> </ul>                                            |

#### **Linear regression**

Using the Boston Housing dataset, you run a linear regression to predict the median house value of a neighborhood based on whether it is adjacent to the Charles river (RIV) and the crime rate (CRIM). The results are at right. Which of the following are true?

|           | Coefficient | 95% confidence<br>interval |
|-----------|-------------|----------------------------|
| Intercept | 35          | [33.6, 37.2]               |
| RIV       | 9.7         | [7.6, 10.8]                |
| CRIM      | -1.3        | [-3.7, 0.2]                |

- (A) An area far from the Charles with no crime would have an expected median housing value of \$35
- (B) For a 1% increase in the crime rate, there is a 1.3% decrease in housing value on average
- (C) Being next to the Charles river increases housing value by \$9.7 on average
- (D) Both crime rate and adjacency to the Charles river are significant predictors at a 0.05 level

### **Linear regression**

Using the Boston Housing dataset, you run a linear regression to predict the median house value of a neighborhood based on whether it is adjacent to the Charles river (RIV) and the crime rate (CRIM). The results are at right. Which of the following are true?

|           | Coefficient | 95% confidence interval |
|-----------|-------------|-------------------------|
| Intercept | 35          | [33.6, 37.2]            |
| RIV       | 9.7         | [7.6, 10.8]             |
| CRIM      | -1.3        | [-3.7, 0.2]             |

(A) An area far from the Charles with no crime would have an expected median housing value of \$35

(B) For a 1% increase in the crime rate, there is a 1.3% decrease in housing value on average

(C) Being next to the Charles river increases housing value by \$9.7 on average

(D) Both crime rate and adjacency to the Charles river are significant predictors at a 0.05 level

#### **ROC** curve

Which of the following are true about the receiver operating characteristic (ROC) curve? Check all that apply.

- (A) The ROC curve traces the trade-off between the false positive rate and true positive rate of a classifier, depending on the classification threshold
- (B) One way to calibrate the optimal point on the curve is finding the point closest to the upper left hand corner
- (C) The maximum value for the area under the curve score is 0.5
- (D) A random classifier achieves an area under the curve score of 0.5

#### **ROC** curve

Which of the following are true about the receiver operating characteristic (ROC) curve? Check all that apply.

- (A) The ROC curve traces the trade-off between the false positive rate and true positive rate of a classifier, depending on the classification threshold
- (B) One way to calibrate the optimal point on the curve is finding the point closest to the upper left hand corner
- (C) The maximum value for the area under the curve score is 0.5
- (D) A random classifier achieves an area under the curve score of 0.5

### Computational complexity

Rank the following models from least to most expensive computation <u>in the training phase</u>: k nearest neighbors, LASSO regression, naïve bayes, random forest, neural network

- (A) LASSO regression < naïve bayes < k nearest neighbors < NN< random forest
- (B) Naïve bayes < k nearest neighbors < random forest < LASSO regression < NN
- (C) K nearest neighbors < naïve bayes < LASSO regression < random forest < NN
- (D) K nearest neighbors < LASSO regression < NN < random forest < naïve bayes

### Computational complexity

Rank the following models from least to most expensive computation <u>in the training phase</u>: k nearest neighbors, LASSO regression, naïve bayes, random forest, neural network

- (A) LASSO regression < naïve bayes < k nearest neighbors < NN< random forest
- (B) Naïve bayes < k nearest neighbors < random forest < LASSO regression < NN
- (C) K nearest neighbors < naïve bayes < LASSO regression < random forest < NN
  - (D) K nearest neighbors < LASSO regression < NN < random forest < naïve bayes

#### **Fairness**

Which of the following strategies can help ameliorate bias in machine learning classifiers? Check all that apply.

- (A) "Fairness through awareness"
- (B) Alternative classification boundaries for protected classes
- (C) Leaving protected features out of the training data
- (D) Fairness constrained classification

#### **Fairness**

Which of the following strategies can help ameliorate bias in machine learning classifiers? Check all that apply.

- (A) "Fairness through awareness"
- (B) Alternative classification boundaries for protected classes
- (C) Leaving protected features out of the training data
- (D) Fairness constrained classification

#### **Random forests**

A random forest is an example of which type of ensemble learning method?

- (A) Bagging
- (B) Boosting
- (C) Voting
- (D) Stacking

#### **Random forests**

A random forest is an example of which type of ensemble learning method?

- (A) Bagging
  - (B) Boosting
  - (C) Voting
- (D) Stacking

### Clustering

Which of the following are requirements for a clustering distance metric? Check all that apply.

- (A) Symmetric
- (B) Non-negative
- (C) Convex
- (D) Satisfies Fisher's inequality
- (E) Satisfies triangle inequality

### Clustering

Which of the following are requirements for a clustering distance metric? Check all that apply.

- (A) Symmetric
- (B) Non-negative
- (C) Convex
- (D) Satisfies Fisher's inequality
- (E) Satisfies triangle inequality

$$DB = \frac{1}{n} \sum_{i=1}^{n} \max_{i \neq j} \left( \frac{\sigma_i + \sigma_j}{d(c_i, c_j)} \right)$$

#### **Davies-Bouldin**

Recall the Davies-Bouldin index, at right. Which of the following are true about the Davies-Bouldin index?

- (A) It is used to choose the optimal number of clusters in k-means clustering.
- (B) It takes into account both the distance between clusters and the distance within clusters.
- (C) The goal is to maximize the metric.
- (D) It is monotonically decreasing with the number of clusters.

$$DB = \frac{1}{n} \sum_{i=1}^{n} \max_{i \neq j} \left( \frac{\sigma_i + \sigma_j}{d(c_i, c_j)} \right)$$

#### **Davies-Bouldin**

Recall the Davies-Bouldin index, at right. Which of the following are true about the Davies-Bouldin index?

- (A) It is used to choose the optimal number of clusters in k-means clustering.
- (B) It takes into account both the distance between clusters and the distance within clusters.
- (C) The goal is to maximize the metric.
- (D) It is monotonically decreasing with the number of clusters.

#### Convolutional neural networks

Which of the following is true about pooling layers in convolutional neural networks? Check all that apply.

- (A) The most common pooling aggregations are minimum, mean, and maximum
- (B) Pooling reduces the dimensionality of the data and network
- (C) Pooling helps reduce overfitting
- (D) The most common pooling kernel is 2x2 with a stride width of 2

#### Convolutional neural networks

Which of the following is true about pooling layers in convolutional neural networks? Check all that apply.

- (A) The most common pooling aggregations are minimum, mean, and maximum
- (B) Pooling reduces the dimensionality of the data and network
- (C) Pooling helps reduce overfitting
- (D) The most common pooling kernel is 2x2 with a stride width of 2

#### **Decision trees**

True or false: A decision tree can learn a nonlinear decision boundary.

- (A) True
- (B) False

#### **Decision trees**

True or false: A decision tree can learn a nonlinear decision boundary.



(B) False

### Regularization

Which of the following is an example of regularization in a machine learning model? Check all that apply.

- (A) Ridge regression
- (B) LASSO regression
- (C) Decision tree pruning
- (D) Dropout layers and sparse neural networks
- (E) Principal components analysis

### Regularization

Which of the following is an example of regularization in a machine learning model? Check all that apply.

- (A) Ridge regression
- (B) LASSO regression
- (C) Decision tree pruning
- (D) Dropout layers and sparse neural networks
- (E) Principal components analysis