

RR051-14-105388-4-A Ed. 1

This test report cancels and replaces test report RR051-14-105388-4-A Ed. 0

Certification test report

According to the standard: CFR47 FCC PART 15

Equipment under test: LOOP SIREN 915MHz

Model: BU4006

FCCID: 2ADLABU4006

Company: MYFOX

DISTRIBUTION: Mr Chafik (Company: MYFOX)

Number of pages: 25 with 6 appendixes

Ed.	Date	Modified	,	Written by		erification and Approval
		pages	Name	Visa	Name	Visa
1	21-May-2015	See vertical line	S. LOUIS	<u>~</u>		

Duplication of this test report is only permitted for an integral photographic facsimile. It includes the number of pages referenced here above.

This document is the result of testing a specimen or a sample of the product submitted. It does not imply an assessment of the conformity of the whole manufactured products of the tested sample.

TESTED BY:

LOOP SIREN 915MHz DESIGNATION OF PRODUCT: Serial number (S/N): BSIRE-0000025 Reference / model (P/N): BU4006 **Software version:** 1.0 MANUFACTURER: MYFOX **COMPANY SUBMITTING THE PRODUCT: MYFOX** Company: Address: RUE DU LAC 2460 L'OCCITANE REGENT PARK II 31670 LABEGE **FRANCE** Responsible: Mr CHAFIK DATE(S) OF TEST: 14, 17, 25 and 26 November 2014 **TESTING LOCATION:** EMITECH ANGERS laboratory at JUIGNE SUR LOIRE (49) FRANCE EMITECH ANGERS open area test site in JUIGNE SUR LOIRE (49) **FRANCE** 21 rue de la Fuye 49610 Juigne sur Loire France FCC 2.948 Listed Site Registration Number: 90469 FCC Accredited under US-EU MRA Designation Number: FR0009 Test Firm Registration Number: 873677

S. LOUIS

CONTENTS

TITLE	PAGE
1. INTRODUCTION	4
2. PRODUCT DESCRIPTION	4
3. NORMATIVE REFERENCE	4
4. TEST METHODOLOGY	5
5. TEST EQUIPMENT CALIBRATION DATES	5
6. TESTS AND CONCLUSIONS	6
6.1 unintentional radiator (subpart B)	6
6.2 intentional radiator (subpart C)	6
7. RADIATED EMISSION LIMITS	8
8. ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS	10
9. FUNDAMENTAL AND HARMONICS FIELD STRENGTH	11
10. OUT OF BAND EMISSIONS	13

APPENDIX 1: Photos of the equipment under test

APPENDIX 2: Test set up

APPENDIX 3: Test equipment list

APPENDIX 4: Band edge

APPENDIX 5: 6 dB bandwidth

APPENDIX 6: 20 dB bandwidth

1. INTRODUCTION

This document presents the result of Certification tests carried out on the following equipment: **LOOP SIREN 915MHz**, in accordance with normative reference.

2. PRODUCT DESCRIPTION

ITU Emission code: 250KF1D

Class: B (residential) / Utilization: Alarm system

Antenna type and gain: Internal helicoidal antenna: gain not communicated

Operating frequency range: from 902 MHz to 928 MHz

Number of channels: 1

Channel spacing: Not concerned

Modulation: FSK

Power source: 4 x 1.5Vdc type LR20 (D size)

Power level, frequency range and channels characteristics are not user adjustable. The details pictures of the product and the circuit boards are joined with this file.

3. NORMATIVE REFERENCE

The standards and testing methods related throughout this report are those listed below.

They are applied on the whole test report even though the extensions (version, date and amendment) are not repeated.

CFR 47 FCC Part 15 (2014) Radio Frequency Devices

ANSI C63.4 (2009) Methods of Measurement of Radio-Noise Emissions from Low-voltage

Electrical and Electronics Equipment in the range

of 9 kHz to 40 GHz.

4. TEST METHODOLOGY

Radio performance tests procedures given in CFR 47 part 15:

Subpart B – Unintentional Radiators

Paragraph 109: Radiated emission limits

Subpart C - Intentional Radiators

Paragraph 203: Antenna requirement

Paragraph 205: Restricted bands of operation

Paragraph 209: Radiated emission limits; general requirements

Paragraph 215: Additional provisions to the general radiated emission limitations

Paragraph 249: Operation within the bands 902-928 MHZ, 2400-2483.5 MHz, 5725-5850

MHz and 24.0-24.25 GHz.

5. TEST EQUIPMENT CALIBRATION DATES

Equipment	Model	Туре	Last verification	Next verification	Validity
0000	BAT-EMC	Software	1	1	1
1922	Microwave DB C020180F- 4B1	Low-noise amplifier 1 to 18 GHz	20/08/2014	20/08/2015	20/10/2015
4088	R&S FSP40	Spectrum Analyzer	22/08/2013	22/08/2015	22/10/2015
6609	MICRO-TRONICS HPM11630	high-pass filter	24/02/2014	24/02/2016	24/04/2016
8511	Hewlett Packard 8447D	Low noise amplifier	20/08/2014	20/08/2015	20/10/2015
8526	Schwarzbeck VHBB 9124	Biconical antenna	12/06/2012	12/06/2016	12/08/2016
8530	Bilog CBL5112A	Bilog antenna	05/03/2013	05/03/2017	05/05/201
8533	R&S HFH2-Z2	Loop antenna	11/02/2014	11/02/2016	11/04/2016
8535	Emco 3115	Horn antenna	29/10/2012	29/10/2016	29/12/2016
8543	Schwarzbeck UHALP 9108A	Log periodic antenna	12/06/2012	12/06/2016	12/08/2016
8593	SIDT Cage 2	Full anechoic room	1	1	1
8675	AOIP MN5102B	Multimeter	15/01/2013	15/01/2015	15/03/2015
8707	R&S ESI7	Test receiver	03/10/2012	03/10/2014	03/12/2014
8732	Emitech	OATS	23/08/2013	23/08/2016	23/10/2016
8749	La Crosse Technology WS- 9232	Meteo station	03/09/2014	03/09/2016	03/11/2016
8750	La Crosse Technology WS- 9232	Meteo station	03/09/2014	03/09/2016	03/11/2016
8896	ACQUISYS GPS8	Satellite synchronized frequency standard	1	1	1
/	GPIBShot V2.4	Software	1	1	1

6. TESTS AND CONCLUSIONS

6.1 unintentional radiator (subpart B)

Test	Description of test	Re	espect	ed crite	ria?	Comment
procedure		Yes	No	NAp	NAs	
FCC Part 15.107	CONDUCTED LIMITS			Χ		
FCC Part 15.109	RADIATED EMISSION LIMITS	X				
FCC Part 15.111	ANTENNA POWER CONDUCTED LIMITS FOR RECEIVER			Х		

NAp: Not Applicable NAs: Not Asked

6.2 intentional radiator (subpart C)

Test	Description of test		espect	Comment		
procedure	·	Yes	No	NAp	NAs	
FCC Part 15.203	ANTENNA REQUIREMENT	Х		•		
FCC Part 15.205	RESTRICTED BANDS OF OPERATION	Χ				
FCC Part 15.207	CONDUCTED LIMITS			Χ		
FCC Part 15.209	RADIATED EMISSION LIMITS; general	X				Note 1
	requirements					
FCC Part 15.212	MODULAD TRANSMITTERS			Χ		
FGG Part 15.212	MODULAR TRANSMITTERS			Λ		
	ADDITIONAL PROVISIONS TO THE GENERAL					
FCC part 15.215	RADIATED EMISSION LIMITATIONS					
	(a) Alternative to general radiated emission limits	X				
	(b) Unwanted emissions outside of §15.249	V				N-4- 0
	frequency bands	X				Note 2
	(c) 20 dB bandwidth and band-edge compliance	Χ				
	OPERATION WITHIN THE BANDS 902-928 MHZ,					
FCC Part 15.249	1					
	24.25 GHz					
	(a) Fundamental and harmonics field strength	X				
	(b) Fixed point-to-point operation		Χ			
	(c) Measurement distance	X				
	(d) Out-of-band emissions	X				
	(e) Field strength limits above 1 GHz	X				

NAp: Not Applicable NAs: Not Asked

Note 1: See FCC part 15.249 (d).

Note 2: See FCC part 15.209. Unwanted emissions levels are all below the fundamental emission field strength level.

RF EXPOSURE:

Maximum measured power = 83 dB μ V/m = 0.059 mW (P = (E×d)² / (30×Gp) with d = 3 m and Gp = 1) In accordance with KDB 447498 D01 General RF Exposure Guidance v05r02 PSD = EIRP/(4* π *R²)=0.065 / 4* π *(20 cm)² = 47.6×10-6 mW/cm² (limit= 0.612 mW/cm²).

The equipment fulfils the requirements on power density for general population/uncontrolled exposure and therefore fulfils the requirements of 47 CFR §1.1310.

To declare, or not, the compliance with the specifications, it was not explicitly taken into account of uncertainty associated with the results

7. RADIATED EMISSION LIMITS

Standard: FCC Part 15

Test procedure: Paragraph 109

Limit class: Class B

Test set up:

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

Frequency range: From 30 MHz to 5th harmonic of the highest frequency used (915 MHz).

Detection mode: Quasi-peak (F < 1 GHz) Average (F > 1 GHz)

Bandwidth: 120 kHz (F < 1 GHz) 1 MHz (F > 1 GHz)

Distance of antenna: 10 meters (in open area test site) / 3 meters (in anechoic room)

Antenna height: 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

Equipment under test operating condition:

The equipment is blocked in reception mode.

Results:

Ambient temperature (°C): 21.2 Relative humidity (%): 53

Power source: 4 x 1.5Vdc type LR20 (D size)

Sample N° 1

FREQUENCIES (MHz)	Detector P: Peak QP: Quasi- Peak	Antenna height (cm)	Azimuth (degree)	Polarization H: Horizontal V: Vertical	Field strength (dBµV/m)	Limits (dBµV/m)	Margin (dB)
813.44	QP	150	280	V	37.3	46	8.7

Applicable limits: for 30 MHz \leq F \leq 88 MHz : 40 dB μ V/m at 3 meters

for 88 MHz < F \leq 216 MHz : 43.5 dB μ V/m at 3 meters for 216 MHz < F \leq 960 MHz : 46 dB μ V/m at 3 meters above 960 MHz : 54 dB μ V/m at 3 meters

Note: any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

Test conclusion:

RESPECTED STANDARD

8. ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS

Standard: FCC Part 15

Test procedure: Paragraph 15.215

Test set up:

Test realized in near field. All field strength measurements are correlated with the radiated maximum peak output power

Test operating condition of the equipment:

The equipment under test is blocked in continuous transmission mode, modulated by internal data signal, at the highest output power level which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 21.2 Relative humidity (%): 47

Power source: 4 x 1.5Vdc type LR20 (D size)

Lower Band Edge: band from 900 MHz to 902 MHz Upper Band Edge: band from 928 MHz to 930 MHz

Sample N° 1:

Fundamental frequency (MHz)	Field strength level of fundamental (dBµV/m)	Detector (peak or average)	Frequency of maximum band-edges emission (MHz)	Delta marker (dB)*	Calculated max out-of- band emission level (dBµV/m)	Limit (dBµv/m)	Margin (dB)
915.05	83.35	peak	900.384	-51.89	31.46	63.35	31.89
915.05	83.35	peak	929.124	-51.63	31.72	63.35	31.63

Marker-Delta method

The 20 dB bandwidth curves are given in appendix 6; band-edge curves are given in appendix 4.

Test conclusion:

RESPECTED STANDARD

9. FUNDAMENTAL AND HARMONICS FIELD STRENGTH

Standard: FCC Part 15

Test procedure: paragraph 15.249 (a)

Test set up:

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

The system is tested in an open area test site (OATS). The EUT is placed on a rotating table, 0.8m from a ground plane. Zero degree azimuth corresponds to the front of the device under test.

The system is tested in anechoic chamber. The EUT is placed on a rotating table, 1.5m from a ground plane. Zero degree azimuth corresponds to the front of the device under test.

The measurement of the electro-magnetic field is realized, with a calibrated peak power responding power meter.

Frequency range: From 9 kHz to 10th harmonic of the highest fundamental frequency (915 MHz).

Distance of antenna: 10 meters (in open area test site) / 3 meters (in anechoic room)

Antenna height: 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal

Equipment under test operating condition:

The equipment under test is blocked in continuous transmission mode, modulated by internal data signal, at the highest output power level which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 20.3 Relative humidity (%): 51

Power source: 4 x 1.5Vdc type LR20 (D size)

Sample N° 1

FREQUENCIES (MHz)	Detector P: Peak	Antenna height	Azimuth (degree)	Resolution bandwidth	Polarization H: Horizontal	Field	Limits	Margin (dB)
(1011 12)	QP: Quasi-	(cm)	(degree)	(kHz)	V: Vertical	strength (dB _µ V/m)	(dB _µ V/m)	(ub)
	Peak	, ,				, ,		
915	QP	100	340	120	Н	83*	83.6	0.6
1830.5	Р	150	75	1000	V	36**	74	38
2745.5	Р	150	38	1000	V	43.9**	74	30.1

^{*} Fundamental emission

Note: any spurious which has more than 20 dB of margin compared to the limit is not necessarily reported.

Test conclusion:

RESPECTED STANDARD

^{**} The peak level is lower than the average limit (54 dB μ V/m).

10. OUT OF BAND EMISSIONS

Standard: FCC Part 15

Test procedure: paragraph 15.205

paragraph 15.209 paragraph 15.249 (d)

Test set up:

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

Frequency range: From 9 kHz to 10th harmonic of the highest fundamental frequency (915 MHz).

Detection mode: Quasi-peak (F < 1 GHz) Average (F > 1 GHz)

Bandwidth: 200Hz (9 kHz < F < 150kHz)

9 kHz (150 kHz < F < 30MHz) 120 kHz (30 MHz < F < 1 GHz)

1 MHz (F > 1 GHz)

Distance of antenna: 10 meters (in open area test site) / 3 meters (in anechoic room)

Antenna height: 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

Equipment under test operating condition:

The equipment under test is blocked in continuous transmission mode, modulated by internal data signal, at the highest output power level which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 21.2 Relative humidity (%): 47

Power source: 4 x 1.5Vdc type LR20 (D size)

Sample N° 1

FREQUENCIES (MHz)	Detector P: Peak QP: Quasi- Peak	Antenna height (cm)	Azimuth (degree)	Polarization H: Horizontal V: Vertical	Field strength (dBµV/m)	Limits (dBµV/m)	Margin (dB)
1627	Р	150	60	V	34.1**	74	39.9

^{**} The peak level is lower than the average limit (54 dB μ V/m).

Applicable limits: for 30 MHz \leq F \leq 88 MHz : 40 dB μ V/m at 3 meters

for 88 MHz < F \leq 216 MHz : 43.5 dB μ V/m at 3 meters for 216 MHz < F \leq 960 MHz : 46 dB μ V/m at 3 meters above 960 MHz : 54 dB μ V/m at 3 meters

<u>Note</u>: any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

Test conclusion:

RESPECTED STANDARD

□□□ End of report, 6 appendixes to be forwarded □□□

APPENDIX 1: Photos of the equipment under test

Page 15 out of 25

APPENDIX 2: Test set up

Anechoïc room

Page 18 out of 25

Open area test site

Page 19 out of 25

APPENDIX 3: Test equipment list

Radiated emission limits

TYPE	MANUFACTURER	EMITECH NUMBER
Open test site	EMITECH	8732
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Biconical antenna VHBB 9124	Schwarzbeck	8526
Log periodic antenna UHALP 9108A	Schwarzbeck	8543
Bi-log antenna CBL6112A	Chase	8530
Antenna 3115	Electrometrics	8535
Low-noise amplifier 8447D	Hewlett Packard	8511
Low-noise amplifier C020180F-4B1	Microwave DB	1922
Multimeter MN5102B	AOIP	8675
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.6.0.32	0000

Additional provisions to the general radiated emission limitations

TYPE	MANUFACTURER	EMITECH NUMBER
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Log periodic antenna UHALP 9108A	Schwarzbeck	8543
Multimeter MN5102B	AOIP	8675
Meteo station WS-9232	La Crosse Technology	8750
Software	GPIBShot V2.4	-

Fundamental and harmonics field strength

TYPE	MANUFACTURER	EMITECH NUMBER
Open test site	EMITECH	8732
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Test receiver ESI7	Rohde & Schwarz	8707
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Bi-log antenna CBL6112A	Chase	8530
Antenna 3115	Electrometrics	8535
Low-noise amplifier C020180F-4B1	Microwave DB	1922
High pass filter HPM11630	Hewlett Packard	6609
Multimeter MN5102B	AOIP	8675
Meteo station WS-9232	La Crosse Technology	8749
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.6.0.32	0000

Out of band emissions

TYPE	MANUFACTURER	EMITECH NUMBER
Open test site	EMITECH	8732
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Test receiver ESI7	Rohde & Schwarz	8707
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Loop antenna HFH2-Z2	Rohde & Schwarz	8533
Biconical antenna VHBB 9124	Schwarzbeck	8526
Log periodic antenna UHALP 9108A	Schwarzbeck	8543
Bi-log antenna CBL6112A	Chase	8530
Antenna 3115	Electrometrics	8535
Low-noise amplifier 8447D	Hewlett Packard	8511
Low-noise amplifier C020180F-4B1	Microwave DB	1922
High pass filter HPM11630	Hewlett Packard	6609
Multimeter MN5102B	AOIP	8675
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.6.0.32	0000

APPENDIX 4: Band edge

Lower band edge

Date: 17.NOV.2014 10:32:55

Upper band edge

Date: 17.NOV.2014 10:35:55

APPENDIX 5: 6 dB bandwidth

Date: 17.NOV.2014 10:18:13

APPENDIX 6: 20 dB bandwidth

Date: 17.NOV.2014 10:25:43