Methods Mathematical Models: Applied to Cable Theory

Additional Reference:

http://www.scholarpedia.org/article/Cable_theory

Ernst Niebur Mind/Brain Institute niebur@jhu.edu

What we will do today

Understand cable theory equations from top to bottom, as a (very useful) example of how to use basic physics and mathematical tools in theoretical neuroscience

Cable Theory

The voltage V(x,t) along a neural process is:

$$\tau \frac{\partial V\left(x,t\right)}{\partial t} = \lambda^{2} \frac{\partial^{2} V\left(x,t\right)}{\partial x^{2}} - V\left(x,t\right) \quad \text{Passive (cable)}$$

$$+ \sum_{k} G_{k}(V,t) \left[V_{act,k} - V\left(x,t\right)\right] \quad \text{Active currents}$$

$$+ \sum_{i} G_{i}(x,V,t) \left[V_{syn,i} - V\left(x,t\right)\right] \quad \text{Chem. synapses}$$

$$+ \sum_{i} G_{j}(x) \left[V_{j}(x,t) - V\left(x,t\right)\right] \quad \text{Electr. synapses}$$

The Problem:

How to understand electrical signals in complex neuronal geometries

Anatomy

The Problem:

How to understand electrical signals in complex neuronal geometries

The Problem:

How to understand electrical signals in complex neuronal geometries

A B apical dendrite dendrite basal dendrite dendrite axon collaterals

Neither is sufficient to understand the electrical signalling within the cell.

Physics and Modeling to the rescue!

Currents in Dendrites

FIG. 2. Flow of electric current from a microelectrode whose tip penetrates the cell body (soma) of a neuron. Full extent of dendrites is not shown. External electrode to which the current flows is at a distance far beyond the limits of this diagram. [From Rall (139).]

3-dimensional complex current flow

One Law, One Fact, and One Approximation that we will use

- Conservation of charge: atoms/ions and electrons can be moved but not created or destroyed
- Cell membrane (a phospho-lipid bilayer) is a relatively poor conductor (but not an insulator!) compared to cytoplasm and extracellular medium
- Neglect voltage differences across dendrite (or axon)

Compartmentalization

Dendritic Tree

- •look at one piece at a time (remember small current flow across membrane compared to along dendrite!)
- •assume voltage *within* each piece is constant
- •compute currents in each piece and between neighboring pieces

NB: Subdividing the dendrite into finitelength segments is the basis for 'compartmental modeling' (solving ODEs numerically). In the following, we derive PDEs by subdividing the dendrite into pieces of length Δx and consider the limit $\Delta x \rightarrow 0$

A piece of dendrite at distance x from soma

Important:

Voltage is about the same everywhere in this element:

- •Across the dendrite: this is our approximation!
- •Along the dendrite: true if we make the element short enough!

... and its two neighbors, at $(x - \Delta x)$ and at $(x + \Delta x)$:

X

There are currents flowing from both neighbors into the center element (in general, these currents are not the same). The current flow *densities* are:

X

A current flows across the membrane of each element (again, usually these current densities may be different for each element):

The fundamental element: All current densities

Compute all currents from their current densities

Geometry

- •Radius of cylinder a
- •Length of cylinder Δx
- •Cross section surface πa^2
- •Exterior surface $2\pi a \Delta x$

Currents

(Convention: All incoming currents are counted positive)

•From
$$x+\Delta x$$

$$\pi$$
 a² i(x+ Δ x,t)

•From
$$x - \Delta x$$

$$-\pi a^2 i(x,t)$$

$$-2\pi$$
 a Δx $i_{m}(V,x,t)$

•Total current: $I(x,t) = -2\pi \ a \ \Delta x \ i_m(V,x,t) + \pi \ a^2\{i(x+\Delta x,t) - i(x,t)\}$

Conservation of Charge

Change in charge over time period Δt is the sum of all currents times Δt :

$$\Delta Q(x,x+\Delta x,t)=I(x,t) \Delta t$$

Divide by Δt :

$$\Delta Q(x,x+\Delta x,t)/\Delta t = I(x,t)$$

Change in charge leads to proportional change in voltage:

$$\Delta V$$
 prop. to ΔQ : $\Delta Q = C_m \Delta V$ with $C_m = "Capacitance"$

Conservation of Charge

Copying equation from previous page:

$$\Delta Q(x,x+\Delta x,t)/\Delta t = C_m \Delta V(x,t)/\Delta t = I(x,t)$$

=-
$$2\pi$$
 a Δx i_m(V,x,t)+ π a²{i(x+ Δx ,t)- i(x,t)}

In the limit when Δt goes to zero:

$$C_m \frac{\partial V(x,t)}{\partial t} = \mathbf{I(V,x,t)} =$$

"Partial derivative with respect to t"

$$-2\pi a \Delta x i_m(V, x, t) + \pi a^2 [i(x + \Delta x, t) - i(x, t)]$$

Capacitance

Capacitance is proportional to area:

$$C_m = 2\pi \ a \ \Delta x \ c_m$$

C_m= capacitance per area

Use to replace C_m:

$$2 \pi a \Delta x c_m \frac{\partial V(x,t)}{\partial t} = I(V,x,t) =$$

$$-2\pi a \Delta x i_m(V, x, t) + \pi a^2 [i(x + \Delta x, t) - i(x, t)]$$

Spatial Derivative

Divide both sides by $(2\pi \ a \ \Delta x)$:

$$c_{m} \frac{\partial V(x,t)}{\partial t} = -i_{m}(V,x,t) + \frac{a[i(x+\Delta x,t)-i(x,t)]}{2\Delta x}$$

Pull out a/2 on right hand side:

$$c_{m} \frac{\partial V(x,t)}{\partial t} = -i_{m}(V,x,t) + \frac{a}{2} \frac{i(x+\Delta x,t) - i(x,t)}{\Delta x}$$

RHS becomes spatial derivative for Δx towards zero:

$$c_{m} \frac{\partial V(x,t)}{\partial t} = -i_{m}(V,x,t) + \frac{a}{2} \frac{\partial i(x)}{\partial x}$$
 "Partial derivative with respect to space"

Current Along Dendrite

Ohm's law: Current is proportional to voltage difference:

$$V=RI$$

R=resistance, proportional to length,

with material-dependent constant r: $R=r \Delta x$

Since I=V/R, we get

$$i(x,t)=$$

$$R$$
 $i(x)$
 R
 $i(x+\Delta x)$

$$\frac{V(x,t)-V(x-\Delta x,t)}{R} = \frac{V(x,t)-V(x-\Delta x,t)}{r\Delta x} = \frac{1}{r} \frac{V(x,t)-V(x-\Delta x,t)}{\Delta x}$$

Again, in the limit Δx towards zero,

$$i(V,x,t) = \frac{1}{r} \frac{\partial V(x,t)}{\partial x}$$

Current Along Dendrite

Ohm's law: Current is proportional to voltage difference:

$$U=RI$$

R=resistance, proportional to length,

Since I=U/R, we get

$$i(x,t)=$$

$$\frac{V\left(x+\Delta x,t\right)-V\left(x,t\right)}{R} = \frac{V\left(x+\Delta x,t\right)-V\left(x,t\right)}{r\,\Delta x} = \frac{1}{r}\,\frac{V\left(x+\Delta x,t\right)-V\left(x,t\right)}{\Delta x}$$

Again, in the limit Δx towards zero,

$$i(V, x, t) = \frac{1}{r} \frac{\partial V(x, t)}{\partial x}$$

Recall: Final Result

$$c_{m} \frac{\partial V(x,t)}{\partial t} = -i_{m}(V,x,t) + \frac{a}{2} \frac{\partial i(V,x,t)}{\partial x}$$

Use formula for i(x,t) from previous slide:

$$i(V, x, t) = \frac{1}{r} \frac{\partial V(x, t)}{\partial x}$$

to get:

$$c_{m} \frac{\partial V(x,t)}{\partial t} = -i_{m}(V,x,t) + \frac{a}{2r} \frac{\partial^{2} V(x,t)}{\partial x^{2}}$$

"Partial differential equation for V(x,t)"

Only depends on membrane currents i_m

Linear Cable Theory

Assume (!) that transmembrane current is linear:

$$i_m(V,x,t) = V(x,t)/r_m$$

with r_m constant (i.e., constant "leakage resistance").

(We also set resting potential to zero). Then,

$$c_{m} \frac{\partial V(x,t)}{\partial t} = -V(x,t)/r_{m} + \frac{a}{2r} \frac{\partial^{2} V(x,t)}{\partial x^{2}}$$

Only depends on V! Multiply by r_m

$$r_m c_m \frac{\partial V(x,t)}{\partial t} = -V(x,t) + \frac{a r_m}{2r} \frac{\partial^2 V(x,t)}{\partial x^2}$$

$$\left(\tau \frac{\partial V}{\partial t} = -V + \lambda^2 \frac{\partial^2 V}{\partial x^2}\right)$$

 $\tau = r_m c_m$ Membrane time constant

 $\lambda^2 = r_m a/(2r)$ Membrane space constant

Physical Interpretation of Membrane Parameters

Inject constant current at point x=0, current decays as $\exp(-|x|/\lambda)$

Inject charge at x=0, t=0: Current decays as $exp(-t/\tau)$

Cable Theory

Our result:

$$\tau \frac{\partial V}{\partial t} = -V + \lambda^2 \frac{\partial^2 V}{\partial x^2}$$

Compare with first line of:

$$\tau \frac{\partial V\left(x,t\right)}{\partial t} = \lambda^{2} \frac{\partial^{2} V\left(x,t\right)}{\partial x^{2}} - V\left(x,t\right) \quad \text{Passive (cable)}$$

$$+ \sum_{k} G_{k}(V,t) \left[V_{act,k} - V\left(x,t\right)\right] \quad \text{Active currents}$$

$$+ \sum_{i} G_{i}(x,V,t) \left[V_{syn,i} - V\left(x,t\right)\right] \quad \text{Chem. synapses}$$

$$+ \sum_{j} G_{j}(x) \left[V_{j}(x,t) - V\left(x,t\right)\right] \quad \text{Electr. synapses}$$

What about the other lines?

Go back to our 'Main Result" for general (non-linear) membrane currents:

membrane currents:
$$c_{m} \frac{\partial V(x,t)}{\partial t} = -i_{m}(x,t) + \frac{a}{2r} \frac{\partial^{2} V(x,t)}{\partial x^{2}}$$

Other terms: additional transmembrane currents (conductance times voltage difference; note G=1/R), from currents NOT obeying Ohm's 'linear' law:

$$\tau \frac{\partial V(x,t)}{\partial t} = \lambda^{2} \frac{\partial^{2} V(x,t)}{\partial x^{2}} - V(x,t) \quad \text{Passive (cable)}$$

$$+ \sum_{k} G_{k}(V,x,t) [V_{act,k} - V(x,t)] \quad \text{Active currents (HH, ...)}$$

$$+ \sum_{i} G_{i}(x,V,t) [V_{syn,i} - V(x,t)] \quad \text{Chem. synapses}$$

$$+ \sum_{i} G_{j}(x) [V_{j}(x,t) - V(x,t)] \quad \text{Electr. synapses}$$

Membrane Patch Model with Synapses

NMDA

 $\sum_{i} G_{i}(x, V, t)[V_{syn}, i-V(x, t)]$

$$\sum_{j} G_{j}(x) [V_{j}(x,t) - V(x,t)]$$

 $G_i(x,V,t)$, $G_i(x)$: conductances of chem. and elect. synapses

V_i: reversal potential of chemical synapse

V_i: transmembrane potential of other neuron at electrical synapse

Now add space: Currents in Dendrites

FIG. 2. Flow of electric current from a microelectrode whose tip penetrates the cell body (soma) of a neuron. Full extent of dendrites is not shown. External electrode to which the current flows is at a distance far beyond the limits of this diagram. [From Rall (139).]

• 3-dimensional complex current flow

Dendritic Integration

- Dendrites:
 Collect, Combine, Compute
- Divergence and convergence factors:
 - typically 1000s of synapses per neuron
 - Up to 200,000 (cerebellar Purkinje cells)
- How to understand this 'synaptic integration' process quantitatively in complex geometries?
- Combine the insights we have:

Spatio-temporal summation in dendrites

Influence of synaptic location

 Proximal synapses: fast-rising, high, fast decaying V(t)

- Distal synapses: slowly-rising, low, prolonged V(t)
- Different response, depending on threshold
- Can be very different for active membrane!

Rall, 1963

Spatiotemporal patterns

- Identical total synaptic input
- Different time course
- Different response dependent on threshold

Conclusions

- Rigorous, quantitative approaches can be applied to neuroscience
- It is possible to understand the math!