Lecture 8 Segment 3

Estimation of coefficients

Estimation of coefficients

- Still ORDINARY LEAST SQUARES estimation
 - But we will use matrix algebra

Estimation of coefficients

- The values of the coefficients (B) are estimated such that the model yields optimal predictions.
 - Minimize the residuals!
 - The sum of the squared (SS) residuals is minimized
 - $-SS.RESIDUAL = \Sigma(\acute{Y} Y)^2$
 - ORDINARY LEAST SQUARES estimation

Regression equation

- $\hat{Y} = B_0 + B_1 X_1 # \hat{Y}$ is the predicted score on Y
- $Y \hat{Y} = e^{\#} e$ is the prediction error (residual)

Regression equation, matrix form

- $\hat{Y} = BX$
 - $-\hat{Y}$ is a [N x 1] vector (N = number of cases)
 - B is a $[(1+k) \times 1]$ vector (k = number of predictors)
 - -X is a $[N \times (1+k)]$ matrix

Make X square and symmetric

- To do this, pre-multiply by the transpose of X, X'
- \bullet $X'\hat{Y} = X'XB$

To solve for B, get rid of X'X

- To do this, pre-multiply by the inverse, (X'X)⁻¹
- $(X'X)^{-1}X'\hat{Y} = (X'X)^{-1}X'XB$
- $(X'X)^{-1}X'X = I$
- IB = B
- $(X'X)^{-1}X'\hat{Y} = B$

© 2012 Andrew Conway