ESERCITAZIONI DI INFORMATICA B

RIEPILOGO MATLAB

Stefano Cereda stefano.cereda@polimi.it 15/12/2020

Politecnico Milano

PAGHE

Data la seguente tabella:

	op1	op2	ор3	op4	op5
Paga oraria	5	5.5	6.5	5	6.25
Ore settimanali	40	43	37	50	45
Pezzi prodotti	1000	1100	1000	1200	1100

Scrivere uno script Matlab che organizzi la tabella in un array di dati strutturati e risponda alle seguenti domande:

- 1. Quanto guadagna ogni operaio?
- 2. Qual è il salario totale di tutti gli impiegati?
- 3. Quanti pezzi vengono prodotti?
- 4. Qual è il costo medio di un pezzo?
- 5. Quante ore occorrono in media per un pezzo?
- 6. Qual è l'operaio più efficiente?

ARCHIVIO MAMMIFERI I

Si vogliono rappresentare informazioni relative ai mammiferi ospitati in un parco protetto.

In particolare, per ogni mammifero si rappresentano i seguenti dati: NOME TIPO, TIPO ALIMENTAZIONE, PESO MEDIO, insieme di ESEMPLARI

Dove ogni esemplare è caratterizzato da:

CODICE ESEMPLARE, ANNO DI NASCITA, NUMERO CUCCIOLI

ARCHIVIO MAMMIFERI II

1. Si crei una variabile mammifero che contenga le informazioni del seguente mammifero:

NOME TIPO: Elefante

TIPO ALIMENTAZIONE: Erbivoro

PESO MEDIO: 2500

ESEMPLARE 1: (Codice: 3, Anno: 1985, Cuccioli: 3) ESEMPLARE 2: (Codice: 5, Anno: 1989, Cuccioli: 0) ESEMPLARE 3: (Codice: 8. Anno: 1982, Cuccioli: 0)

2. Chieda all'utente se vuole inserire ulteriori elefanti

ARCHIVIO MAMMIFERI III

3. Si scriva il codice che costruisce, a partire dalla variabile creata al punto precedente, l'archivio degli esemplari di elefante sterili sapendo che un elefante si dice sterile se è nato prima del 1990 e non ha concepito nessun cucciolo.

Si stampi su schermo l'elenco dei codici degli elefanti sterili.

MATRICE DOMINANTE - TDE 20 LUGLIO 2018

Una matrice quadrata è definita diagonalmente dominante se il valore assoluto di ciascun elemento sulla diagonale principale è maggiore della somma dei valori assoluti degli altri elementi sulla stessa riga.

Per esempio, la seguente matrice è diagonalmente dominante:

20	2	3	4	5
3	-25	5	6	7
2	3	23	5	6
8	7	6	-30	4
2	3	4	5	20

Si scriva uno script MATLAB che, ricevuta una matrice *m*, stampi -1 se *m* non è quadrata, 0 se quadrata ma non diagonalmente dominante, 1 se quadrata e diagonalmente dominante.

TRADING - TDE 16 FEBBRAIO 2018 I

Un'agenzia di trading online vuole memorizzare l'andamento del valore dei titoli che controlla. La memorizzazione viene effettuata in **500** istanti temporali equidistanti. I dati vengono salvati nel file MATLAB **log.mat** che contiene:

- la matrice titoli, le cui righe rappresentano i diversi titoli controllati e le cui colonne rappresentano i vari istanti in cui sono stati memorizzati i valori di tali titoli (quindi ogni cella della matrice contiene il valore di un titolo in un dato istante)
- il vettore colonna andamento, con lo stesso numero di righe della matrice titoli, che contiene un valore numerico per ogni titolo, indicativo del suo andamento complessivo crescente o decrescente

TRADING - TDE 16 FEBBRAIO 2018 II

- 1. Scrivere in linguaggio MATLAB una funzione **splittaMatrice** che:
 - riceva in input una matrice titoliTot (con la stessa struttura di titoli), un vettore andamentoTot (con stessa struttura di vettore andamento) e uno scalare soglia;
 - fornisca in output due matrici titoliOver e titoliUnder (ognuna con la stessa struttura di titoliTot). titoliOver include solo le righe di titoliTot corrispondenti agli elementi di andamentoTot con valore maggiore o uguale di soglia. titoliUnder, invece, include le righe di titoliTot corrispondenti agli elementi di andamentoTot con valore minori di soglia.

TRADING - TDE 16 FEBBRAIO 2018 III

- 2. Scrivere in linguaggio MATLAB uno script che:
 - 2.1 legga dal file log.mat i due dati memorizzati: titoli e andamento
 - 2.2 richiami la funzione **splittaMatrice** per separare titoli nelle due matrici **titoliOver** e **titoliUnder**, per un valore di soglia pari a 0
 - 2.3 crei un vettore x che contenga i 500 istanti di memorizzazione
 - 2.4 disegni su due grafici separati (che includano il titolo del grafico e il nome dei due assi) l'andamento dei titoli in **titoliOver** e **titoliUnder**, in funzione di x.

CORNICI - TDE 29 GENNAIO 2018 I

Si consideri il seguente problema: si vuole creare una matrice quadrata che sia organizzata come quella in figura.

12	12	12	12	12
12	13	13	13	12
12	13	14	13	12
12	13	13	13	12
12	12	12	12	12

1. Si scriva in linguaggio MATLAB una funzione iterativa cornici che, data la dimensione N della matrice e un numero di partenza P, restituisca al

CORNICI - TDE 29 GENNAIO 2018 II

- chiamante una matrice quadrata NxN così definita: la matrice contiene nella cornice più esterna il numero P e numeri crescenti nelle cornici più interne.
- 2. Si scriva inoltre uno script in linguaggio MATLAB che acquisisca da tastiera la dimensione desiderata N e il numero di partenza P, invochi la funzione cornici con gli opportuni parametri e infine stampi a video la matrice risultante.
- 3. Nel TdE c'è un terzo punto che riguarda le funzioni ricorsive

