# LECTURE 7

CEIC6789: NOTES

# Supervised learning (Both targets and features known)

- Simple linear regression
- Multiple linear regression
- Logistic regression





| City      | Latitude    | Longitude                          |
|-----------|-------------|------------------------------------|
| Sydney    |             |                                    |
| Melbourne |             |                                    |
| Perth     | -15         | •                                  |
| Darwin    | -20<br>O    |                                    |
| Brisbane  | Latitude    | •                                  |
| Canberra  | -35         | •                                  |
| Adelaide  | 115 120 129 | 5 130 135 140 145 150<br>Longitude |























# **APPLICATIONS**

Market segmentation

Image segmentation



# MARKET SEGMENTATION



# MARKET SEGMENTATION

- Identify target customers
- Starting point for strategies



## **CLUSTERING**



# **IMAGE SEGMENTION**

Food technology





Autonomous vehicles



Health science



## DIFFERENCE BETWEEN LOGISTIC REGRESSION AND CLUSTERING

# Logistic regression

Classify (predict) target variables given the features

Supervised learning

# Clustering

Grouping data given only the features

Unsupervised learning





$$d_{2D} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$d_{3D} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

$$d_{nD} = \sqrt{(x_1^1 - x_2^1)^2 + (x_1^2 - x_2^2)^2 + \dots + (x_1^n - x_2^n)^2}$$

where  $x^1, x^2 \dots x^n$  are coordinates along *n*-axes

# Centroid: Mean position of a group of datapoints



# CRITERION FOR SELECTING THE APPROPRIATE NUMBER OF CLUSTERS?





MINIMIZING THE
DISTANCE BETWEEN
POINTS IN A CLUSTER



WITHIN CLUSTER
SUM OF SQUARES
(WCSS)

sum of squares of the distances
of each data point in all clusters
to their respective centroids

min.WCSS

finding the perfect solution

# 7 cities and 7 clusters solution



WCSS = 0

# 7 cities and 7 clusters solution



WCSS = 0

# 7 cities and I cluster solution



# 7 cities and I cluster solution



# "what we are looking for is for the WCSS to be as low as possible, while we can still have a small number of clusters"



# ADVANTAGES AND DISADVANTAGES

Simple to understand

Clustering can be done quickly

Many packages offer K-means

K-means will always yield a result (could be disadvantageous at times!)

# **ADVANTAGES**

# **DISADVANTAGES**

### We need to choose the number of clusters

Remedy: Elbow method

Elbow method is not very scientific

K-means is sensitive to initialization of centroids

• Remedy: KMeans++

K-means is sensitive to outliers

• Remedy: Remove outliers