MATH 6321 - Theory of functions of one real variable

Homework IV

Joel Sleeba

February 20, 2025

1. **Solution:** Let e_0, e_1 be the usual linearly independent unit norm vectors in $\ell^1(\mathbb{N})$. Let $\mathcal{M} = \text{span}\{e_0\}$, and $\mathcal{N} = \text{span}\{e_0, e_1\}$. Let $\lambda \in \mathbb{C} \setminus \{0\}$ and define a linear functional

$$\phi: \mathcal{M} \to \mathbb{C} := te_0 \mapsto t\lambda, \quad t \in \mathbb{C}$$

Then by the definition of the operator norm, we see that $\|\phi\| = |\lambda|$ Now, let $\phi_1, \phi_2 : \mathcal{N} \to \mathbb{C}$ defined as

$$\phi_1(e_0) = \lambda = \phi_2(e_0)$$
 $\phi_1(e_1) = -\frac{\lambda}{2}, \ \phi_2(e_1) = \frac{\lambda}{2}$

and then linearly extending to \mathcal{N} . We see that ϕ_1, ϕ_2 extend ϕ . And since

$$|\phi_i(ae_0 + be_1)| = |a\phi_i(e_0) + b\phi_i(e_1)|$$

$$= |a\lambda + (-1)^i \frac{\lambda}{2} b|$$

$$= |\lambda||a + (-1)^i \frac{b}{2}|$$

$$\leq |\lambda| \left(|a| + \frac{|b|}{2}\right)$$

$$\leq |\lambda|(|a| + |b|)$$

$$= |\lambda||(a, b)||_1$$

we see that $\|\phi_i\| = |\lambda|$. Now by Hahn-Banach extension theorem, we see that both ϕ_1, ϕ_2 extends to linear functionals on $\ell^1(\mathbb{N})$. By an abuse of notation, call them ϕ_1, ϕ_2 . Then we see that ϕ_1, ϕ_2 are extensions of ϕ , which preserve norm, but that the extension is not unique since $\phi_1(e_1) \neq \phi_2(e_1)$.

2. **Solution:** Let (x_n) be as sequence in X. Assume that $(||x_n||) < M$. Since $||x_n|| = ||i_{x_n}||$, for any $f \in X^*$,

$$||f(x_n)|| = ||i_{x_n}(f)|| \le ||i_{x_n}|| ||f|| = ||x_n|| ||f|| < M||f||$$

shows that $||f(x_n)||$ is a bounded sequence. Since $f \in X^*$ was arbitrary, this holds true for all $f \in X^*$.

Conversely let $\sup_{n\in\mathbb{N}} ||i_{x_n}(f)|| = \sup_{n\in\mathbb{N}} ||f(x_n)|| < \infty$ for all $f \in X^*$. Then by a corollary to Banach-Steinhaus theorem, we see that

$$\sup_{n \in \mathbb{N}} ||x_n|| = \sup_{n \in \mathbb{N}} ||i_{x_n}|| < N$$

for some $N \geq 0$.

3. **Solution:** Let $\Lambda \in \mathbf{c}_0^*$. We claim that the sequence $(y_n) = (\Lambda(e_n)) \in \ell^1$. Let $\theta_j \in [0, 2\pi)$ such that $e^{i\theta_j}y_j = |y_j|$. Then for any $N \in \mathbb{N}$, we have

$$\sum_{j=1}^{N} |y_n| = \sum_{j=1}^{N} |\Lambda(e_j)| = \sum_{j=1}^{N} e^{i\theta_j} \Lambda(e_j)$$

$$= \Lambda \left(\sum_{j=1}^{N} e^{i\theta_j} e_j \right)$$

$$\leq ||\Lambda|| \left\| \sum_{j=1}^{N} e^{i\theta_j} e_j \right\|_{\infty}$$

$$= ||\Lambda||$$

Since this is true for all $N \in \mathbb{N}$, taking the limits as $N \to \infty$, the inequality is preserved and we get that $(y_n) \in \ell^1$.

Since any $x \in \mathbf{c}_0$ can be written as $x = \sum_{n \in \mathbb{N}} x_i e_i$, where $x_i \to 0$, by linearity of Λ , we see that

$$\Lambda(x) = \sum_{n \in \mathbb{N}} x_i \Lambda(e_i) = \sum_{n \in \mathbb{N}} x_i y_i$$