- 一、项目说明
 - 。 1、背景
 - o 2、概述
- 二、登录行为聚类过程
 - 。 1、数据读取:
 - 。 2、数据预处理和参数确定:
 - (1) 数据形式
 - (2) 初步业务特征选择
 - (3) 缺失值处理、标准化
 - (4) 聚类簇数选择
 - (5) 二次特征选择
 - 。 3、模型训练
 - (1)形成新dataframe
 - (2) 训练模型
 - (3) 模型结果输出
 - (4) 迭代聚类
 - (5) 对多次聚类结果进行分析
 - 。 4、测试数据

一、项目说明

1、背景

EDR通常会收集到大量的有关用户登录行为的告警日志,但并不是所有登录行为都是异常的,因此需更准确地辨别哪些登录行为异常行为。

2、概述

登录行为聚类分析,主要是以EDR所采集的公司内各终端数月的win-eventlog登录行为告警数据为基础,对用户登录行为进行聚类,

通过多次聚类,得到异常集群,然后与业务人员一同对该集群进行分析,判断其是否产生异常行为。

二、登录行为聚类过程

1、数据读取:

数据类型: win-eventlog的登录成功行为告警数据

数据读取: (1) python连接数据库直接读取形成dataframe(实时更新); (2) 读取数据下载到本地处理(离线分析)。

2、数据预处理和参数确定:

(1) 数据形式

如特征表数据字典, 该数据集由57个特征组成的12月1日至今的登录行为告警数据。

(2) 初步业务特征选择

业务筛选特征:

首先通过业务了解,对特征进行初步筛选,仅选择与登录成功行为相关的特征。 保留以下特征:

```
['dtdlcgs','jycdlcgsjd','j7tdlcgs','j14tdlcgs','j28tdlcgs','ljdlcgs',
't1_zhmyms','t7_zhmyms', 't14_zhmyms','t28_zhmyms','lj_zhmyms',
't1_jcxxs','t7_jcxxs','t14_jcxxs','t28_jcxxs','lj_jcxxs',
't1_gzts','t7_gzts','t14_gzts','t28_gzts','lj_gzts',
't1_zydzs','t7_zydzs','t14_zydzs','t28_zydzs','lj_zydzs',
't1_dljcs','t7_dljcs','t14_dljcs','t28_dljcs','lj_dljcs']
```

(3) 缺失值处理、标准化

缺失值处理

删除缺失值: dataframe.dropna方法。

离散属性处理

pd.get dummies独热编码,处理jycdlcgsjd离散变量,处理后得到73个特征

标准化处理

最大最小标准化

```
dataSet sc = (dataSet-dataSet.min())/(dataSet.max()-dataSet.min())
```

(4) 聚类簇数选择

轮廓系数法

采用轮廓系数法,簇心个数区间设置为3到8,对于不同的k值计算聚类模型的轮廓系数值,确定当前聚类阶段的簇数k-certain


```
K = range(3,8) # 设置个数区间
coef = []
for k in K:
    km = KMeans(n_clusters=k,random_state = 0).fit(dataSet_sc) #构建kmeans模型并训练
    score = silhouette_score(dataSet_sc, km.labels_,sample_size=915) # 计算对应模型的轮廓系数
    coef.append(score)
plt.plot(K,coef) # K为x轴输出, coef是y轴输出
plt.xlabel('k')
font = FontProperties(fname=r'c:\windows\fonts\msyh.ttc', size=20)
plt.ylabel(u'轮廓系数', fontproperties=font)
plt.title(u'轮廓系数确定最佳的K值', fontproperties=font)
plt.show()
```

(5) 二次特征选择

方差阈值法进行特征选择

统计各特征的方差,得到最小方差,最大方差,设定最小阈值,最大阈值,按10等分取步长. 根据不同的阈值,剔除方差大于阈值的特征,得到不同的特征矩阵,然后训练k=k-certain的聚类模型,计算轮廓系数值,

得到阈值a,筛选特征。

3、模型训练

(1)形成新dataframe

根据特征筛选的结果,标准化后的dataSet_sc剔除未被选择的特征生成新的dataframe特征矩阵 new data

(2) 训练模型

训练模型,簇数k=k_certain,初始化簇心方法init为kmeans++, n_init默认为10,选择最优结果。

```
model = KMeans(n_clusters=k-certain, random_state=0,max_iter=1000).fit(new_data.iloc[:,:].values)
```

(3) 模型结果输出

简单打印结果

统计各类别种的样本数目,得到聚类中心,进行横向连接。

输出原始数据及其所属簇类

```
r = pd.concat([new_data, pd.Series(model.labels_, index = new_data.index)], axis = 1) #详细输出每个样本对应自r.columns = list(new_data.columns) + [u'聚类类别'] #重命名表头r.to_csv(r'E:\EDR_log_analysis\数据\聚类结果.csv') #保存结果
```

利用TSNE进行数据降维展示聚类结果

(4) 迭代聚类

输出多次聚类的结果

迭代聚类, 直到各集群内的样本数目没有数量级上的明显差别。

如	:								
第一次聚类结果:									
	0	1	2	3		28	29	30	0
0	0.418783	0.803030	0.764792	0.761314		0.900000	0.950000	0.950000	24
1	0.005150	0.614731	0.005805	0.004565		0.297518	0.304526	0.304526	685
2	0.003190	0.629779	0.003906	0.003237		0.179206	0.192056	0.192290	856
第二次聚类结果:									
	0	1	2	3		28	29	30	0
0	0.008172	0.636818	0.010710	0.011190		0.215000	0.231875	0.232187	800
1	0.012168	0.611942	0.014693	0.014675		0.375527	0.384318	0.384318	711
2	0.000057	0.521212	0.000100	0.000116		0.250000	0.250000	0.250000	30
第三次聚类结果:									
	0	1	2	3		28	29	30	0
0	0.004466	0.682318	0.006665	0.007494		0.025641	0.032967	0.032967	273
1	0.022927	0.809725	0.026840	0.025029		0.503876	0.511628	0.511628	258
2	0.017351	0.582645	0.020006	0.016401		0.250000	0.250000	0.250000	22
3	0.009315	0.604936	0.011945	0.012408		0.330523	0.352445	0.352867	593
4	0.005887	0.487173	0.007528	0.008668		0.275342	0.282877	0.282877	365
第四次聚类结果:									
	0	1	2	3		28	29	30	0
0	0.012612	0.861405	0.016313	0.016264		0.319121	0.346899	0.346899	387
1	0.004425	0.674567	0.006273	0.007159		0.011673	0.019455	0.019455	257
2	0.005887	0.475811	0.007430	0.008622		0.275585	0.282895	0.282895	342
3	0.024154	0.800973	0.028246	0.026189		0.510288	0.512346	0.512346	243
4	0.003486	0.260140	0.004789	0.006070	• • •	0.341346	0.356731	0.357692	260

(5) 对多次聚类结果进行分析

迭代聚类过程中,已经将聚类结果中的异常集群标注为xxx_ourlier_an,表示它是与其他集群有明显异常的。接下来会将该集群内的样内的样本进行对比分析,并与专业人士探讨其异常原因。

4、测试数据

模型保存与再利用

利用joblib模块进行模型的保存和索引使用。

模型测试

将近一周的用户登录数据,输入到各次迭代的聚类模型中,通过与各模型总的簇心计算距离比较,看哪些登录行为归类为异常集群,则判断该登录行为是异常的。