Expressões matemáticas úteis para a disciplina de Complementos de Electrónica

Tensão de saída de uma ponte resistiva (cm 2 sensores de resistência nominal <i>R</i>)	$e_{saida} pprox rac{E_{exc}}{2} rac{\Delta R}{R}$
Ganho do amplificador de instrumentação	$v_{\text{saida}} = \left(1 + 2\frac{R}{R_{i}}\right) v_{\text{ent}}$
Tensão de saída do amplificador integrador	$V_{\text{saida}} = -\frac{1}{RC} \int_0^t V_{\text{ent}} d\tau$
Tensão de saída do amplificador diferenciador	$v_{\text{saida}} = -RC \frac{dv_{\text{ent}}}{dt}$
Comparador não-inversor com histerese	$V_{CEN} = V_{REF} \frac{R_1 + R_2}{R_2}, \qquad \Delta h = 2V_{sat} \frac{R_1}{R_2}$
Comparador inversor com histerese	$V_{CEN} = V_{REF} \frac{R_2}{R_1 + R_2}, \qquad \Delta h = 2V_{sat} \frac{R_1}{R_1 + R_2}$
Tensão de saída do amplificador logarítmico $(V_{S(log)})$.	$v_{s(log)} \approx -k_1 \times ln\left(\frac{v_{ent}}{k_2}\right), (v_{ent} > 0 \text{ V}, k_1 \approx 26\text{mV para } 300^{\circ}\text{K}, k_2 = RI_0)$
Tensão de saída do amplificador exponencial (ou anti-logaritmico) ($V_{s(exp)}$).	$V_{\rm s(exp)} \approx -k_2 \times e^{\frac{V_{ent}}{k_1}}, \qquad (V_{ent} > 0 \text{ V}, k_1 \approx 26 \text{mV para } 300^{\circ}\text{K}, k_2 = RI_0)$
Relação entre a frequência superior de corte (f_{sc}) e o tempo de subida (t_r) na resposta de um sistema de 1ª ordem a um degrau.	$t_r = \frac{0.35}{f_{sc}}$