XV: Standard Cycles

1: Introduction

1.1: What are thermodynamic cycles

- A series of thermodynamic processes
- · Arranged sequentially to from a cycle.
- The working fluid undergoes a series of changes in state and is returned to the initial conditions at the end of the cycles.
- · Usually idealised.
- Cycles are arranged in specific configuration to achieve particular purposes:
 - Converting Heat to Work.
 - Move heat energy form low to high temperature regions (refrigeration)
 - Work done to sore potential or pressure energy. (compressing gases)

1.2: What are standard cycles

- · Standard cycles:
 - Generally agreed cycle configurations.
 - Generally accepted as applicable to specific tasks and machines.
 - Often named after particular individuals to honour their contribution.
- What are standard cycles used for:
 - Provide the idealised basis of thermodynamic machines.
 - Theoretical limits / feasibility.
 - o Provide guidelines & a basis of calculation of cycle operating conditions

1.3: Thermodynamic Machines and Machine Cycles versus Theoretical (Standard) Thermodynamic Cycles

- Thermodynamic Machines: are the physical and practical hardware operating in machine cycles.
- Machine Cycles: Are a repeating sequence of events subjects to all applicable laws of physics.
- Theoretical Thermodynamics Cycles: are idealised and conceptual and make no attampt to model much of the detail indicate of actual mechanical devices.

2: General approach to performing analysis

- Applied to systems modelled as:
 - Closed systems (reciprocating internal combustion engines): Energy exchangedd calculated with Non-Flow Energy Equation (NFEE).
 - Open systems (gas turbines):
 - Generally assumed to be operating in a steady state.
 - Energy Exchanges calculated with Steady Flow Energy Equation (SFEE)
 - Only enthalpy changes need to be considered.
- Basic metrics of cycle performance:
 - Ratio of relevant energy exchanges involved
 - Efficiency (heat engine cycles)
 - Coefficient of performance (refrigeration cycles)
 - Mass (Mass flow rate) of working fluid required to achieve particular energy exchanges
 - This can be useful as a proxy for system size or weight.
 - Power-to-weight ratio.
 - Power-to -volume ratio.
 - Indicated mean effective pressure.
 - The more working fluid mass, or mass flow rate per unit output ,then generally the larger the system will be required.
- Circle Efficiency Calculations:

First Law:

$$W_{NET} = Q_{IN} - Q_{OUT}$$

Efficiency:

$$egin{aligned} \eta &= rac{W_{NET}}{Q_{IN}} \ &= 1 - rac{Q_{OUT}}{Q_{IN}} \end{aligned}$$

2: Standard Cycles: The Carnot Cycles

- Carnot's work is recognized as laying the foundations of thermodynamics.
- 1-2: Isothermal (Low Temperature, T_L)
- 2-3: Reversible Adiabatic Compression
- ullet 3-4: Isothermal Heat Addition (High Temperature, T_H)
- 4-1: Reversible Adiabatic Expansion
- ullet Carnot demonstrated that the max efficiency is between T_H and T_L :

$$\eta_{Carnot} = 1 - rac{T_L}{T_H}$$

ullet This also leads to the idea which means the larger the value of T_H , the higher the cycle efficiency in his cycle.

3: Standard Cycles: Otto - Diesel - Dual

3.1: Otto Cycles

• Spark ignition reciprocating engine (the basis of Petrol Engine or Gas Engine)

3.2: Diesel Cycles

· Compression ignition reciprocating engine.

3.3: Dual Cycles

• To more accurately model real internal combustion engine operation than constant volume heat and constant pressure heat.

4: Standard Cycles analysis

- Treated as a closed system and NFEE can be used for the basis .
- · Assume as perfect gas with constant specific heat capacities
- **Definition**: (volumetric) Compression Ratio, r_v

$$r_v=rac{v_1}{v_2}=rac{V_1}{V_2}$$

· i.e. ratio of maximum to minimum volume

Cycle Efficiency base on Dual Cycle

$$\eta = 1 - \frac{q_{out}}{q_{in}} = 1 - \frac{C_v(T_5 - T_1)}{C_v(T_3 - T_2) + C_p(T_4 - T_3)}$$

For Otto or Diesel just omit the relevant heat addition.