

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА по курсу «Data Science»

Дьяченко Юлия Анатольевна

Цели и задачи

- Разработать модели для прогноза модуля упругости при 1 растяжении, прочности при растяжении и соотношения «матрицанаполнитель»
 - **2** Провести разведочный анализ и предобработку данных
- З Обучить модели для прогноза модуля упругости при растяжении и прочности при растяжении
- 4 Написать нейронную сети, которая будет рекомендовать соотношение матрица-наполнитель и разработка приложения
- 5 Создать репозиторий в GitHub / GitLab и разместить там код исследования

Используемые методы

Алгоритмы машинного обучения:

- 1. «Случайный лес» (RandomForest);
- 2. Линейная регрессия (Linear regression);
- 3. Градиентный бустинг (Gradient Boosting).

Библиотеки:

- Pandas;
- 2. NumPy;
- 3. Matplotlib;
- 4. Seaborn;
- 5. Tensorflow.

Разведочный анализ

Библиотека Pandas Profiling раздел Overview (Обзор)

- количество наблюдений;
- количество переменных;
- тип данных;
- процент и количество пропущенных значений;
- процент и количество дубликатов.

Раздел Overview из отчета Pandas Profiling

Блок Variables

- количество уникальных записей и их процент;
- количество пропущенных значений и их процент;
- количество значений NaN и их процент;
- среднее, минимальное и максимальное значение;
- количество и процент нулевых значений;
- график распределения значений

Variables

Раздел Variables, сведения о признаке «Соотношение матрица-наполнитель»

Блок Interactions, генерация графиков по парам переменных для визуализации зависимостей и распределения значений

график зависимости между переменными «Плотность нашивки» и «Соотношение матрица/наполнитель»

график зависимости между переменными «Плотность нашивки» и «Плотность, кг/м3»

график зависимости между переменными «Содержание эпоксидных групп,%_2» и «Плотность, кг/м3»

Блок Correlations, значения корреляции всех пар переменных

1.00

0.75

0.50

0.25

- 0.00

-0.25

-0.50

-0.75

-1.00

Блок Missing values, анализ пропущенных значений

Блок Sample, выборкой первых и последних строк

First rows

Last rows

	Соотношение матрица-наполнитель	Плотность, кг/м3	модуль упругости, ГПа	Количество отвердителя, м.%	Содержание эпоксидных групп,%_2
0	1.857143	2030.0	738.736842	30.00	22.267857
1	1.857143	2030.0	738.736842	50.00	23.750000
2	1.857143	2030.0	738.736842	49.90	33.000000
3	1.857143	2030.0	738.736842	129.00	21.250000
4	2.771331	2030.0	753.000000	111.86	22.267857
5	2.767918	2000.0	748.000000	111.86	22.267857
6	2.569620	1910.0	807.000000	111.86	22.267857
7	2.561475	1900.0	535.000000	111.86	22.267857
8	3.557018	1930.0	889.000000	129.00	21.250000
9	3.532338	2100.0	1421.000000	129.00	21.250000

Оценка выбросов с помощью Boxplot («ящик с усами»)

Диаграмма Boxplot или «ящик с усами»

Попарные графики рассеяния точек

Предобработка данных

К задачам предварительной обработки данных относятся:

- Очистка данных;
- Редактирование данных;
- Заполнение пропусков.

График распределения значений до нормализации данных

Нормализация данных

График распределения значений после нормализации

Разработка и обучение моделей

- Разделение на обучающую и тестовую выборки в соотношении 70/30;
- Подбор гиперпараметров для моделей с помощью поиска по сетке с перекрестной проверкой;
- Построение модели при помощи линейной регрессии;
- Построение модели при помощи «случайного леса»;
- Построение модели при помощи градиентного бустинга.

Тестирование моделей

	Model	MAE	MSE	R2 score
Прочность при растяжении	LinearRegression()	0.13712	0.029412	-0.017691
		Model	MAE	MSE R2 score
Прочность при растяжении Randon	mForestRegressor(random_	state=42) (0.135316 0.02	28723 0.006151
	Мо	del M	IAE MS	SE R2 score
Прочность при растяжении G	radient Boosting Regress	or() 0.134	497 0.02869	99 0.006997

		Model	N	1AE	MSE	R2 score
Модуль упругости при растя	жении	LinearRegression()	0.138	812	0.029498	0.00418
			Model	M	IAE MS	E R2 score
Модуль упругости при растяжении	Random	For est Regressor (random_st	ate=42)	0.1386	578 0.02959	5 0.00093
		Мо	del	MAE	MSE	R2 scor
Модуль упругости при растяже	нии Gr	adient Boosting Regress	or() 0.	13886	0.029657	-0.00116

Ошибки модели предсказания для параметра «Прочность при растяжении»

Ошибки модели предсказания для параметра «Модуль упругости при растяжении»

Нейронная сеть

Model: "sequential"

Output Shape	Param #
atio (None, 12)	3
(None, 1024)	13312
(None, 1024)	1049600
(None, 1)	1025
	(None, 1024) (None, 1024)

Total params: 1,063,940 Trainable params: 1,063,937 Non-trainable params: 3

Информация о модели нейронной сети

Визуализация ошибки модели нейронной сети

Разработка приложения

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Спрогнозировать значение матрица-

Композиционные материалы

Композиционные материалы — это искусственно созданные материалы, остоящие из нескольких других с четкой границей между ними. Композиты обладают теми свойствами, которые не наблюдаются у компонентов по отдельности. При этом композиты являются монолитным материалом, т. е. компоненты материала неотделимы друг от друга без разрушения конструкции в целом.

Созданные прогнозные модели помогут сократить количество проводимых испытаний, а также пополнить базу данных материалов возможными новыми характеристиками материалов, и цифровыми двойниками новых композитов.

В данном веб-приложении с помощью нейронной сети прогнозируются соотношение "Матрица-наполнитель" в композиционных материалах, на основе введенных пользователем значений.

Ссылка на репозиторий в GitHub:

https://github.com/shish27/VKR_Dyachenko

Расчет соотношения матрица-наполнитель

Введите параметры для модели	
Введите Плотность, кг/м3	Рассчитать
	Сбросить
Введите Модуль упругости, ГПа	
Введите Количество отвердителя, м.%	
· · · · · · · · · · · · · · · · · · ·	
Введите Содержание эпоксидных групп,%_2	
Введите Температура вспышки, С_2	
Введите Поверхностная плотность, г/м2	
Введите Модуль упругости при растяжении, ГПа	
Введите Прочность при растяжении, МПа	
Введите Потребление смолы, г/м2	
Введите Угол нашивки, град	
Введите Шаг нашивки	
Введите Плотность нашивки	

Спрогнозированное Соотношение матрица-наполнитель для введенных параметров: [[2.8133044]]

Вернуться на главную страницу

do.bmstu.ru

