

离散数学(1) Discrete Mathematics

第十章关系

刻世實 shixia@tsinghua.edu.cn

传递集合

- ON CANCERS IN CANCERS
- 下列集合是传递集合吗: *S* = {1,2,{1,2}}
- 如果由集合组成的集合A的任一元素的元素都是A的元素,就称A为传递集合。
- 因此讨论上述集合是否为传递集合时,首先要把它看做集合的集合,即: $S = \{1,2,\{1,2\}\} = \{\{0\},\{0,1\},\{1,2\}\}$,显然 $0 \notin S$,因此S不是传递集合

A是传递集合 $\Leftrightarrow (\forall x)(\forall y)((x \in y \land y \in A) \rightarrow x \in A)$

由集合组成的集合A

 x_1 , x_2 "元素的元素都是元素"的集合

例: $A = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$

 y_1 , y_2 , y_3

内层括号里的内容,在外层也能找得到。

传递集合是否一定为幂集?

- 反例1: $A_1 = \{\emptyset, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}\}, |U|A| = 3$, 因此不可能是某个集合的幂集
- 反例2: $A_2 = \emptyset$, 但 $\emptyset \notin A_2$, 不可能是某个集合的幂集
- 解释
 - 1. 从集合的基数考虑,幂集的元素个数是2的正整数次幂,但是传递集合没有限制

• 定理9.5.10 传递集合的性质2 对任意的集合 A, A是传递集合 $\Leftrightarrow P(A)$ 是传递集合

奇异集合与无穷递降链

定义 9.7.2 如果集合 A 中有集合的序列 $A_0 \in A$, $A_1 \in A$, \cdots , $A_n \in A$, \cdots , 使得

$$\cdots, A_{n+1} \in A_n, A_n \in A_{n-1}, \cdots, A_1 \in A_0,$$

或简写为 $\cdots \in A_{n+1} \in A_n \in A_{n-1} \in \cdots \in A_2 \in A_1 \in A_0$, 就称 A 为奇异集合.

- 在ZFC公理集合论中,集合中不能存在∈-无穷递降链,因 为它违反了正则性公理。
 - (7) 正则公理 对任意的非空集合 x,存在 x 的一个元素,它和 x 不相交. $(\forall x)(x \neq \emptyset \rightarrow (\exists y)(y \in x \land (x \cap y = \emptyset)))$

证明 设 A 为奇异集合,则 A 中的一些元素满足 $\cdots \in A_{n+1} \in A_n \in A_{n-1} \in \cdots \in A_2 \in A_1 \in A_0$. 于是可以构造 A 的非空子集

$$B = \{A_0, A_1, \dots, A_n, A_{n+1}, \dots\}.$$

假设 B 中有极小元 $A_i(i \ge 0)$,则 $A_i \in B$ 且 $A_i \cap B = \emptyset$. 然而,因为 $A_{i+1} \in A_i$ 和 $A_{i+1} \in B$,所以 $A_i \cap B \ne \emptyset$,产生矛盾. 因此 B 没有极小元,不满足正则公理. 奇异集合 A 不是集合.

其他

- 空集与空集的笛卡尔积有意义吗
 - 空集与空集的笛卡尔积还是空集,它的存在是有意义的
- 可以用解释法证明集合恒等式吗
 - 需要用严格的数理逻辑或者集合运算的方式证明
- ·请问在A上的关系图可以画两个A集合吗,谢谢。
 - 对于A上的关系,不能将其画成两个A集合
- 在第一题写元素的时候可以保留为有序对的 形式么
 - 可以保留为有序对的形式

其他

- 请问ZFC集合论公理系统在期末的考察范围 之内吗?
 - ZFC集合论公理系统中的无穷公理在考察范围内
- 书上例题已经证明的东西可以当结论用吗
- 内容好杂,有什么方法可以加深记忆?感 觉做题做少了确实对记忆帮助不大
 - 熟练掌握课件和课本的例题以及作业题

期末考试安排

• 2024年1月11日(17周周四)下午14:30-

16:30

• 考试地点: 六教6C300

第十章 关系

- 10.1 <u>二元关系</u>
- 10.2 关系矩阵和关系图
- 10.3 关系的逆、合成、(限制和象)
- 10.4 关系的性质
- 10.5 <u>关系的闭包</u>
- 10.6 等价关系和划分
- 10.7 <u>相容关系和覆盖</u>
- 10.8 <u>偏序关系</u>

- 自反性
 - ∀a∈A, 有<a,a>∈R,则R为A上的**自反关系**
- 反自反性
 - ∀a∈A, 有 <a,a> ∉R, R为A上的反自反关系
- 例 A={a,b,c}
 - $-R_1 = \{ \langle a,a \rangle, \langle b,b \rangle, \langle c,c \rangle, \langle a,b \rangle, \langle c,a \rangle \}$
 - $-R_2 = \{ \langle a,b \rangle, \langle b,c \rangle, \langle c,a \rangle \}$

$$R_3 = \{ \langle a, a \rangle, \langle b, c \rangle \}$$

- Λ R₃不是自反的,也不是反自反的。
- \mathbf{R}_3 是自反的,不是反自反的。
- \mathbb{C} R_3 不是自反的,是反自反的。
- P R₃是自反的,也是反自反的。

- · 例: R是Z₊上的整除关系,则R具有自反性
 - 证明: ∀x∈Z₊, x能整除x,
 - :<x,x>∈R, ::R具有自反性
- 例: R是Z上的同余关系,则R具有自反性证明: ∀x∈Z, (x-x)/k=0,
 - ::x与x同余::<x,x>∈R::R具有自反性
- 其它≤, ≥关系, 均是自反关系
- 实数上的<,>关系,均是反自反关系

- 关系矩阵的特点?
 - 自反关系的关系矩阵的对角元素均为1
 - 反自反关系的关系矩阵的对角元素均为0
- 关系图的特点?
 - 自反关系的关系图中每个顶点都有环
 - 反自反关系的关系图中每个顶点都没有环
- 定理: R是A上的关系,则:
 - -R是自反关系的充要条件是 $I_A\subseteq R$
 - R是反自反关系的充要条件是 $R \cap I_A = \Phi$

- 对称关系R
 - $\forall a,b \in A$,如果<a,b>∈R,则必有<b,a>∈R
- 例
 - $-R_1 = \{<1,1>,<2,3>,<3,2>\}$
 - R₁是对称的
 - $-R_2 = \{<1,1>,<3,3>\}$
 - R₂是对称的
 - $-R_3 = \{ <2,2>,<2,3>,<3,2>,<3,1> \}$
 - $-R_3$ 不是对称的

- 关系矩阵特点?
 - 对称关系的关系矩阵是对称矩阵
- 关系图特点?
 - 如果两个顶点之间有边,一定是一对方向相反的边 (无单边)
- 定理: R在A上对称当且仅当R=R⁻¹

证明:必要性 <x,y>∈R⇔<y,x>∈R⇔<x,y>∈R⁻¹ 充分性<x,y>∈R⇔<y,x>∈R⁻¹⇔<y,x>∈R

- 反对称关系R
 - ∀a,b∈A,如果<a,b>∈R且<b,a>∈R,则必有a=b
 - ∀a,b∈A,如果a≠b,<a,b>∈R,则必有<b,a>∉R
- 例: A={a,b,c}
 - $-R = \{ <a,a>, <b,b> \}$
 - $-S = \{ \langle a,b \rangle, \langle a,c \rangle \}$
 - $-T = \{ <a,c>, <b,a>, <a,b> \}$
 - R, S是反对称的, T不是反对称的

 $\mathbb{R}_2 = \{ <1,1>,<1,2>,<2,3> \}$

- A 自反
- B 非自反
- c 反对称
- □ 传递
- ■対称

提交

- 例: 实数集合上≤关系是反对称关系
 - -∀x,y∈实数集,如x≠y,且x≤y,则y≤x不成立
- 例: ≥,<,>关系,均是反对称关系
- 反对称关系矩阵和关系图特点?
 - -若 r_{ij} =1,且 $i\neq j$,则 r_{ji} =0
 - 如果两个顶点之间有边,一定是一条有向边 (无双向边)
- 定理: R在A上反对称当且仅当 $R \cap R^{-1} \subseteq I_A$

• 传递关系

– ∀a,b,c∈A,如果<a,b>∈R,<b,c>∈R, 必有<a,c>∈R

• 例

- $-R_1 = \{ \langle x,y \rangle, \langle z,x \rangle, \langle z,y \rangle \}$
- 是传递关系
- $-R_2 = \{ <a,b>, <c,d> \}$
- 是传递关系
- $-R_3 = \{ <a,b>, <b,a> \}$
- 不是传递关系

- 例:整除关系 R_D 是 Z_+ 上的传递关系
 - $\forall x, y, z \in Z_{+,}$ 如< $x, y > \in R_D$, < $y, z > \in R_{D,}$ 即x能整除y, 且y能整除z,则必有x能整除z, < $x, z > \in R_D$
- · 例:P(A)上的包含关系⊆具有传递性
 - 若u ⊆ v, v ⊆ w,则必有u ⊆ w
- 例:实数集上的≤关系具有传递性
 - $若x \le y, y \le z 必有x \le z$

- 传递关系关系图特点?
 - 如果结点a能通过有向弧组成的有向路径通向结点x,则a必须有有向弧直接指向x,否则R就不是传递的
- 例: R={<a,b>,<b,c>,<c,d>,<a,c>} 传递?

- $R = \{ \langle a,b \rangle, \langle b,c \rangle, \langle c,d \rangle, \langle a,c \rangle, \langle b,d \rangle, \langle a,d \rangle \}$
- 定理: R在A上传递当且仅当RoR⊆R

自 反: $\forall x(x \in X \to xRx)$

反自反: $\forall x(x \in X \to x \not R x)$

反对称: $\forall x \forall y (x \in X \land y \in X \land xRy \land yRx \rightarrow x = y)$

传 递:

 $\forall x \forall y \forall z (x \in X \land y \in X \land z \in X \land xRy \land yRz \rightarrow xRz)$

UNIVERSITY WEST 1911— 1911—

- 设A是集合, R_1 和 R_2 是A上的关系
 - 若 R_1 , R_2 是自反的和对称的,则 R_1 ∪ R_2 也是自反的和对称的

证明: R_1 , R_2 是自反的 \Rightarrow $I_A \subseteq R_1$, $I_A \subseteq R_2$ 所以 $I_A \subseteq R_1 \cup R_2$ R_1 , $R_2 \in R_1 \cup R_2$ R_1 , $R_2 \in R_1 \cap R_2 \cap R_1 \cap R_2 \cap R_1 \cap R_2 \cap R_2 \cap R_2 \cap R_1 \cap R_2 \cap R_2 \cap R_2 \cap R_1 \cap R_2 \cap R_2$

R是自反关系的充要条件是 $I_A\subseteq R$ R在A上对称当且仅当 $R=R^{-1}$

- 设A是集合, R_1 和 R_2 是A上的关系
 - $= R_1 + R_2 = R_2 + R_2$
- 需要证明 $(R_1 \cap R_2)^2 \subseteq R_1 \cap R_2$ 。
- 由于 $R_1 \cap R_2 \subseteq R_1$,有 $(R_1 \cap R_2)^2 \subseteq R_1^2$ 。类似的, $(R_1 \cap R_2)^2 \subseteq R_2^2$ 。因此有 $(R_1 \cap R_2)^2 \subseteq R_1^2 \cap R_2^2$ 。
- 由于 R_1 , R_2 是传递的, $R_1^2 \subseteq R_1$, $R_2^2 \subseteq R_2$ 。于是 $(R_1 \cap R_2)^2 \subseteq R_1^2 \cap R_2^2 \subseteq R_1 \cap R_2$ 。

定理: R在A上传递当且仅当RoR⊆R

设A是集合, R_1 和 R_2 是A上的关系 若 R_1 , R_2 是传递的,问 R_1 U R_2 是不是传递的?如 果是,请证明,如果不是请给出范例。

• 例: X={1,2,3}, 判断关系的性质

- R₁={<1,2>,<2,3>,<1,3>}
 - 反自反
 - 反对称
 - 传递

- R2={<1,1>,<1,2>,<2,3>}
 - 反对称

白丘	- 日白に	コナチャ	后对护	/生 斗
				传递
Reflexive	Irreflexive	Symmetric	•	Transitive
(10.4.1)	(10.4.1)	(10.4.2)	(10.4.2)	(10.4.3)
$r \in A \rightarrow rR r$	$x \in A \longrightarrow x\mathbb{R} x$	$xRy \rightarrow yRx$	$xRy \land x \neq y$	$xRy \wedge yRz$
$X \subseteq H \setminus X \cap X$	$\langle x, x \rangle \notin R$	$\langle x, y \rangle \in R \to$	$\rightarrow y Rx$ $xRy \wedge yRx$	
		$\langle y, x \rangle \in R$	•	$\langle y, z \rangle \in R \to$
		()	Ş	$\langle x, z \rangle \in R$
$r_{ii}=1;$ $ \pm $	$r_{ii}=0$;主	对称矩阵	若 $r_{ij}=1$ ∧	无直观特点
对角元均 为1	对角元均 为0	$r_{ij} = r_{ji}$	$ \begin{array}{c} i \neq j \\ \rightarrow r_{ji} = 0 \end{array} $	或难以直接 判断
每个结点 都有自圈	每个结点 都没有自 圈	若点边,一村后的边,一村间,一村间,一村间,一村间,一村村间,一村村村村村村村村村村村村村村村村	若两个结点 之间有边, 一定是一条 有向边	若从结点 x_i 到 x_j 有边, x_j 到 x_k 有边,则从 x_i 到 x_k 一定有
	$x \in A \rightarrow xRx$ $r_{ii} = 1; 主$ 对角元均 为1	Reflexive $(10.4.1)$ $Irreflexive$ $(10.4.1)$ $x \in A \rightarrow xRx$ $x \in A \rightarrow x$	Reflexive (10.4.1)Irreflexive (10.4.1)Symmetric (10.4.2) $x \in A \rightarrow xRx$ $x \in A \rightarrow xRx$ $\langle x, x \rangle \notin R$ $xRy \rightarrow yRx$ $\langle x, y \rangle \in R \rightarrow$ $\langle y, x \rangle \in R$ $r_{ii} = 1; \pm$ 对角元均 为1 $r_{ii} = 0; \pm$ 对角元均 为0对称矩阵 $r_{ij} = r_{ji}$ 每个结点 都有自圈每个结点 都没有自 圈若两个结 点之间有 边,一定 是一对方 向相反的	Reflexive (10.4.1)Irreflexive (10.4.1)Symmetric (10.4.2)Antisymmetric (10.4.2) $x \in A \rightarrow xRx$ $x \in A \rightarrow xRx$ $\langle x, x \rangle \notin R$ $xRy \rightarrow yRx$ $\langle x, y \rangle \in R \rightarrow$ $\langle y, x \rangle \in R$ $xRy \land x \neq y$ $\Rightarrow y Rx$ $xRy \land yRx$ $\Rightarrow x = y$ $r_{ii} = 1; \pm$ 对角元均 为1 $r_{ii} = 0; \pm$ 对角元均 为0对称矩阵 $r_{ij} = r_{ji}$ $Tricellowing area of the constraints of the constraint$

运算性质

- 已知 R_1 , R_2 是A上满足相应性质的关系,
- 问题:经过并,交,补,求逆,合成运算 后是否还具有原来的性质?

性质 运算	自反性	反自反性	对称性	反对称性	传递性
R^{-1}	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	
$R_1 \cap R_2$		$\sqrt{}$			
$R_1 \cup R_2$		$\sqrt{}$		×	×
$R_1 - R_2$	×		$\sqrt{}$		X
R_1 o R_2	$\sqrt{}$	×	×	×	×

注: √表示经过左端的运算仍保持原来的性质, ×则表示原来的性质不再满足。

R_1 o R_2 :反自反性

- $A = \{1,2,3\}$
- $R_1 = \{ <1,2>,<2,3> \}$
- $R_2 = \{ \langle 2, 1 \rangle, \langle 3, 2 \rangle \}$
- $R_1 \circ R_2 = \{<2,2>,<3,3>\}$

R_1 o R_2 : 对称性,反对称性

- $A = \{1,2,3\}$
- 对称性

$$R_1 = \{ <1,2 >, <2,1 >, <1,3 >, <3,1 > \}$$

 $R_2 = \{ <3,1 >, <1,3 > \}$

反对称性

$$R_1 = \{ < 1,2, < 1,3 >, < 1,1 > \}$$

 $R_2 = \{ < 3,1 >, < 1,1 > \}$

R₁o R₂:传递性

- $A = \{1,2,3\}$
- $R_1 = \{ <1,2>, <2,3>, <1,3> \}$
- $R_2 = \{ \langle 3, 1 \rangle, \langle 1, 2 \rangle, \langle 3, 2 \rangle \}$
- R_1 o $R_2 = \{ <3,2>, <3,3>,<1,3> \}$

A是非空的

几个主要关系的性质

性质 关系	自反性	反自反性	对称性	反对称性	传递性
恒等关系					
I_A					
全域关系 <i>E_A</i>					
<i>A</i> 上的空 关系 <i>Φ</i>					
N上的整 除关系					
包含关系 ⊆					
真包含关 系 ⊂		·			

A是非空的

几个主要关系的性质

性质 关系	自反性	反自反性	对称性	反对称性	传递性
恒等关系 <i>I_A</i>	√	×	√	√	√
全域关系 <i>E_A</i>	√	×	\checkmark	×	
<i>A</i> 上的空 关系 <i>Φ</i>	×	√		√	V
N上的整 除关系	$\sqrt{}$	×	×		$\sqrt{}$
包含关系 ⊆	V	×	×	√	
真包含关 系 ⊂	×	√	×	√	V

- $R_3 = \{ <1,1>,<2,2>,<3,3> \}$
- 自反,对称,反对称,可传递的

- $R_4 = E_x$
- 自反,对称,可传递的

- $X = \{1,2,3\}, R_5 = \emptyset$
 - 反自反的,对称的,反对称的,可传递的

1

2. .3

- 若X=∅,X上的空关系
 - 自反的,反自反的,对称的,反对称的,可传递的

10.5 关系的闭包(closure)

- 希望已有的关系具有某些特殊的性质(如自反、 对称、传递等)
- 2. 有些关系原本不具备这些性质,但可以通过对原 关系加以扩充,使之满足这些性质。
- 3. 希望扩充的部分尽量小,即增加的有序对尽量少, 便形成了闭包的概念。

关系的运算

R的n次幂

- ❖ 记为Rⁿ
- $R^0 = I_A$
- $R^{n+1}=R^n\circ R$

定理: 设R是集合A上的关系, $m,n \in N$

- $R^m \circ R^n = R^{m+n}$
- $(R^m)^n = R^{mn}$

证明思路: 使用归纳法并利用复合关系的结合律

10.5.1 多个关系的合成举例

例

```
A = \{a, b, c, d\}
R^{\circ} = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle\}
R^{1} = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, d \rangle\}
R^{2} = \{\langle a, a \rangle, \langle a, c \rangle, \langle b, b \rangle, \langle b, d \rangle\}
R^{3} = \{\langle a, b \rangle, \langle a, d \rangle, \langle b, a \rangle, \langle b, c \rangle\} = R^{2} \circ R
R4 = R^{3} \circ R = \{\langle a, a \rangle, \langle a, c \rangle, \langle b, b \rangle, \langle b, d \rangle\} = R^{2}
```

• 对于此例 $R^2 = R^4 = R^6 = \cdots$, $R^3 = R^5 = R^7 = \cdots$, 是否具有普遍规律?

思考题

思考: 若

A ★ / 性 共可定义多少个不同的关系?

有限集合上的类系的合成?

定理10.5.1

- 设A是有限集合,|A| = n,R是A上的关系,则 存在自然数s和t, $s \neq t$ 使得 $R^s = R^t$ 。
- 所有的关系数量是 2^{n^2}

鹤巢原理

定理10.5.3 有限集合上关系的幂序列具有周期性

- 设A是有限集合,R是A上的关系,若存在自然数s和t (s < t),使得 $R^s = R^t$,则
- (1) $R^{s+k} = R^{t+k}$, 其中 $k \in N$;
- (2) $R^{s+kp+i} = R^{s+i}$, 其中 $k, i \in N$ p = t s;
- (3) 令 $B = \{R^0, R^1 ... R^{t-1}\}$,则R的各次幂均为B的元素,即对任意的 $q \in N$,有 $R^q \in B$

例
$$A = \{a, b, c, d\},$$

 $R = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, d \rangle\}$
 $R^2 = \{\langle a, a \rangle, \langle a, c \rangle, \langle b, b \rangle, \langle b, d \rangle\} = R^4$

对应 *s*=2, *t*=4,

$$R^{2+k} = R^{4+k}, R^{2+2k+i} = R^{2+i}$$

 $B = \{R^0, R^1, R^2, R^3\},$

R的幂中不相同的只有以上4种。

定理10.5.3 有限集合上关系的幂序列具有周期性

• 设A是有限集合,R是A上的关系,若存在自然数s和t

(s < t),使得 $R^s = R^t$,则 $(1)R^{s+k} = R^{t+k}$,其中 $k \in N$;

证明:
$$R^{s+k} = R^s \cdot R^k$$

= $R^t \cdot R^k$
= R^{t+k}

有限集合上关系的幂序列具有周期性

• 设A是有限集合,R是A上的关系,若存在自然数s和t (s < t),使得 $R^s = R^t$,则

(2)
$$R^{s+kp+i} = R^{s+i}$$
, 其中 $k, i \in N$ $p = t - s$;

证明:数学归纳法。

对k进行归纳:

k = 0: $R^{s+0+i} = R^{s+i}$

假设k = n时有 $R^{s+np+i} = R^{s+i}$

则当k = n + 1时,

$$R^{s+(n+1)p+i} = R^{s+np+p+i} = R^{s+np+i} \cdot R^{p}$$
$$= R^{s+i} \cdot R^{p} = R^{s+(t-s)+i} = R^{t+i} = R^{s+i}$$

清华大学软件学院 离散数学

$$R^m \circ R^n = R^{m+n}$$

归纳罐?

有限集合上关系的幂序列具有周期性。

- 设A是有限集合,R是A上的关系,若存在自然数s和t (s < t),使得 $R^s = R^t$,则
- (3) 令 $B = \{R^0, R^1 ... R^{t-1}\}$,则 R 的各次幂均为 B 的元素,即对任意的 $q \in N$,有 $R^q \in B$

证明:

q < t: 则 $R^q \in B$

 $q \geq t$: 则

有q > s。一定存在q = s + kp + i,

其中 $0 \le i \le p-1$, $R^q = R^{s+kp+i} = R^{s+i}$

 $s + i \le s + p - 1 = t - 1$, 所以 $R^q \in B$

证什么?

$$R^{s+k\,p+i}=R^{s+i}$$

定义10.5.2 闭包的定义

- 设R是非空集合A上的关系,如果A上有另一个关系 A2/满足:
 - (1) R'是自反的(对称的或传递的);

满足性质

(2) $R \subseteq R'$:

包含关系

(3) 对A上任何自反的(对称的或传递的)

关系R", $R \subseteq R$ " $\rightarrow R' \subseteq R$ "。

最小的那个

- 则称关系R'为R的自反(对称或传递)闭包 闭包
- 一般将R的自反闭包记作r(R), 对称闭包记作s(R),传递闭包记作t(R)。

• $\{\emptyset | A = \{a, b, c\}, R = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, c \rangle\}$

- 自反闭包r(R)
- $\{ \langle a, a \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle b, b \rangle, \langle c, c \rangle \}$

- 对称闭包s(R)
- $-\{ \langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, b \rangle \}$
- 传递闭包t(R)

• 自反闭包r(R),

是具有自反性的R的"最小"超集合

对称闭包s(R),

是具有对称性的R的"最小"超集合

传递闭包t(R),

是具有传递性的R的"最小"超集合

若R已经是自反(对称、传递)的,那么R的自反(对称、传递)闭包就是它自身。

超集合(Superset)

• 定义:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S1就是S2的一个超集。S1是S2的超集,若S1中一定有S2中没有的元素,则S1是S2的真超集,S2是S1的真子集。

清华大学软件学院 离散数学

定理10.5.4 闭包的性质

- 性质1:对非空集合A上的关系R,
 - (1) R是自反的 $\Leftrightarrow r(R) = R$;
 - (2) R是对称的⇔ s(R) = R;
 - (3) R是传递的 $\Leftrightarrow t(R) = R$ 。

性质2: 对非空集合A上的关系R1,R2,若 $R_1 \subseteq R_2$ 则

- $(1) r(R_1) \subseteq r(R_2)$
- $(2) s(R_1) \subseteq s(R_2)$
- (3) $t(R_1) \subseteq t(R_2)$

定理10.5.6 闭包的性质3

对非空集合A上的关系R1,R2,

(1)
$$r(R_1) \cup r(R_2) = r(R_1 \cup R_2)$$

(2)
$$s(R_1) \cup s(R_2) = s(R_1 \cup R_2)$$

(3)
$$t(R_1) \cup t(R_2) = t(R_1 \cup R_2)$$

$$A = \{1,2,3\}$$

$$R_1 = \{ <1,2 > <2,1 > \}$$
 $R_2 = \{ <2,3 > <3,2 > \}$

$$t(R_1) = \{ <1, 1>, <1, 2>, <2, 1>, <2, 2> \}$$

$$t(R_2) = \{ \langle 3, 3 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle \langle 3, 2 \rangle \}$$

$$t(R_1 \cup R_2) = \{<1,1>,<1,2>,<2,1>,<2,2>,<3,3>,<2,3>,<3,2>,$$

性质 运算	自反性	反自反性	对称性	反对称性	传递性
R^{-1}	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
$R_1 \cap R_2$				$\sqrt{}$	
$R_1 \cup R_2$				×	×
$R_1 - R_2$	×			$\sqrt{}$	×
R_1 o R_2		×	×	×	×

注: √表示经过左端的运算仍保持原来的性质, ×则表示原来的性质不再满足。

$$r(R_1) \cup r(R_2) = r(R_1 \cup R_2)$$

 $r(R_1)$ 和 $r(R_2)$ 是A上的自反关系,所以 $r(R_1)$ U $r(R_2)$ 是A上的自反关系

 $R_1 \subseteq r(R_1), R_2 \subseteq r(R_2), 所以 R_1 \cup R_2 \subseteq r(R_1) \cup r(R_2)$

根据自反闭包的定义 $r(R_1 \cup R_2) \subseteq r(R_1) \cup r(R_2)$

 $R_1 \subseteq R_1 \cup R_2$, $f(R_1) \subseteq r(R_1 \cup R_2)$

同理, $r(R_2) \subseteq r(R_1 \cup R_2)$

因此 $r(R_1) \cup r(R_2) \subseteq r(R_1 \cup R_2)$

性质2:对非空集合A上的 关系R1,R2,若 $R_1 \subseteq R_2$ 则

- $(1) r(R_1) \subseteq r(R_2)$
- $(2) s(R_1) \subseteq s(R_2)$
- $(3) \ t(R_1) \subseteq t(R_2)$

清华大学软件学院 离散数学

定理: R是非空集合A上的关系,则 $r(R) = R \cup I_A$

证明: $R\subseteq R\cup I_A$, $R\cup I_A$ 是自反的

• 设R"满足 $R \subseteq R$ ", R"是自反的 $\forall < a,b > \in R \cup I_A$

- 对A上任何自反的 关系R", $R \subseteq R$ " \rightarrow $R' \subseteq R$ "
- 则 $< a, b > \in R$ 或 $< a, b > \in I_A$
- 如 $< a, b > \in R$,由 $R \subseteq R$ "知 $< a, b > \in R$ "
- 如 $\langle a,b \rangle \in I_A$,由R"的自反性知 $\langle a,b \rangle \in R$ "
- 均有< a, b > ∈R"

$$\therefore R \cup I_A \subseteq R$$
"

$$r(R_1) \cup r(R_2) = r(R_1 \cup R_2)$$

$$r(R_1 \cup R_2) = (R_1 \cup R_2) \cup I_A$$

$$= (R_1 \cup I_A) \cup (R_2 \cup I_A)$$

$$= r(R_1) \cup r(R_2)$$

$$r(R) = R \cup I_A$$

$$Z$$
上定义关系: $R = \{(x,y) | x + y = 2\}$,则 R 的自反闭包 $r(R) = \{(x,y) | x + y = 2$ 或 $x = y\}$

- 正确
- B 错误

例:整数集 Z 上 < (小于)关系的自反闭包 是 ≤ (小于等于)关系;

- ≠关系的自反闭包是全关系;
- 空关系的自反闭包是恒等关系;
- Z上定义关系: $R = \{(x,y) | x + y = 2\}$, 则 R的自反闭包 $r(R) = \{(x,y) | x + y = 2\}$ 2或 $x = y\}$ 。

定理: R是非空集合A上的关系, 则 $S(R) = R \cup R^{-1}$

证明: $R \subseteq R \cup R^{-1}$ 满足闭包定义第2条

$$\forall < a, b > \in R \cup R^{-1}$$

$$\Leftrightarrow$$
 < $a, b > \in R \lor < a, b > \in R^{-1}$

$$\Leftrightarrow < b, a > \in R^{-1} \lor < b, a > \in R$$

$$\Leftrightarrow < b, a > \in R \cup R^{-1}$$

$: R \cup R^{-1}$ 是对称的

满足性质

• 如 $R \subseteq R$ ", 且R"是对称的

$$\forall < a, b > \in R \cup R^{-1}$$

$$< a, b > ∈ R$$
 或 $< a, b > ∈ R^{-1}$

如
$$\langle a,b \rangle \in R$$
,由 $R \subset R$ ",则 $\langle a,b \rangle \in R$ "

如
$$< a, b > \in R^{-1}$$
, 则 $< b, a > \in R$, 则 $< b, a > \in R$ "

因R"对称

$$\therefore \langle a, b \rangle \in R^n, \therefore R \cup R^{-1} \subseteq R^n$$

• 满足定义第3条

$$s(R_1) \cup s(R_2) = s(R_1 \cup R_2)$$

$$s(R_1 \cup R_2) = (R_1 \cup R_2) \cup (R_1 \cup R_2)^{-1}$$

$$= (R_1 \cup R_2) \cup (R_1)^{-1} \cup (R_2)^{-1}$$

$$= (R_1 \cup (R_1)^{-1}) \cup (R_2 \cup (R_2)^{-1})$$

$$= s(R_1) \cup s(R_2)$$

$$t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2)$$

$$t(R_1) \subseteq t(R_1 \cup R_2)$$

$$t(R_2) \subseteq t(R_1 \cup R_2)$$
 因而

$$t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2)$$

若
$$R_1 \subseteq R_2$$
 则 $t(R_1) \subseteq t(R_2)$

例:设 $A = \{1,2,3\}, A$ 上的关系R如图,求r(R), s(R)

解:
$$1 > 3$$

$$R = \{<1,2>, <2,3>, <3,2>, <3,3>\}$$

$$r(R) = R \cup I_A$$

$$= \{<1,2>, <2,3>, <3,2>, <3,3>, <2,2>, <1,1>\}$$

$$s(R) = R \cup R^{-1}$$

$$= \{<1,2>, <2,3>, <3,2>, <3,3>, <2,1>\}$$

定理: R是非空集合A上的关系,则 $t(R) = R^1 \cup R^2 \cup ...$

证明:首先证明 $R^1 \cup R^2 \cup ... \subseteq t(R)$,使用归纳法。

$$n=1$$
, 显然 $R^1=R\subseteq t(R)$

假设
$$R^k \subseteq t(R)$$
, 对任意< $x,y >$ 有

$$< x, y > \in R^{k+1} = R^k \circ R^1$$

$$\Leftrightarrow \exists t (\langle x, t \rangle \in R \land \langle t, y \rangle \in R^k)$$

$$\Rightarrow \exists t (\langle x, t \rangle \in t(R) \land \langle t, y \rangle \in t(R)) \Rightarrow \langle x, y \rangle \in t(R)$$

其次,
$$t(R) \subseteq R^1 \cup R^2 \cup ...$$
即证 $R^1 \cup R^2 \cup ...$ 传递

推论:设A是非空有限集,R是集合A上的二元关系,

则存在正整数
$$n$$
,使得 $t(R) = R \cup R^2 \cup ... \cup R^n$

实例

$$A = \{a, b, c, d\}$$

$$R = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, c \rangle, \langle b, d \rangle \}$$

$$S = \{ \langle a, b \rangle, \langle b, c \rangle, \langle c, d \rangle \}, \, \dot{\Re}t(R), t(S)$$

$$M: R2 = {< a, c >, < a, d >}, R3 = ∅$$
∴ $t(R) = R \cup {< a, c >, < a, d >}$

$$S2 = {< a, c >, < b, d >}, S3 = {< a, d >}, S4 = ∅$$
∴ $t(S) = S \cup {< a, c >, < b, d >} \cup {< a, d >}$

给定关系R, r(R), s(R), t(R)的关系矩阵分别为M, M_r , M_s , M_t , 那么:

- $M_r = M + I$
- $M_{s} = M + M^{T}$
- $M_t = M + M^2 + M^3 + \cdots$

关系图分别为G, G_r , G_s , G_t , 那么:

- 考察G的每个顶点,如果没有环就加上一个环,最终得到的是 G_r
- 考察G的每一条边,如果有一条从 x_i 到 x_j 的单向边,则在G中加一条 x_i 到 x_i 的反方向边,最终得到 G_s
- 考察 G 的每个顶点 x_i ,找出从 x_i 出发的所有2步,3步,…,n步长的路径。设路径的终点为 x_{j1} , x_{j2} ,…, x_{jk} 。如果没有从 x_i 到 x_{jl} 的边,就加上这条边,最终得到 G_t

例子

$$A = \{a, b, c\}, R = \{\langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle\},$$
求
闭包 $r(R), s(R), t(R)$

$$r(R) = R \cup \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}$$

$$s(R) = R \cup \{ < b, a >, < c, b >, < a, c > \}$$

$$t(R) = R \cup R^2 \cup R^3$$

其中
$$R^2 = \{ \langle a, c \rangle, \langle b, a \rangle, \langle c, b \rangle \}$$

$$R^3 = \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}$$

实例

• 设 $A = \{a, b, c, d\}$ 上的关系

$$R = \{ \langle a, b \rangle \langle b, a \rangle, \langle b, c \rangle, \langle c, d \rangle, \langle d, b \rangle \}$$

- (1) 写出R, r(R), s(R), t(R) 的关系图。
- (2) 计算r(R), s(R), t(R)。
- (3) 写出R, r(R), s(R), t(R) 的关系矩阵。

$R = \{ \langle a, b \rangle \langle b, a \rangle, \langle b, c \rangle, \langle c, d \rangle, \langle d, b \rangle \}$ 实例

• 设关系R, r(R), s(R), t(R), 关系图如下图

 \mathbb{R} $R = \{ \langle a, b \rangle \langle b, a \rangle, \langle b, c \rangle, \langle c, d \rangle, \langle d, b \rangle \}$

$$\mathbf{M} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad \mathbf{M}_{r} = \mathbf{M} + \mathbf{I} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

定理10.5.10 传递闭包的有限构造方法

• A为非空有限集合,|A| = n,R为A上的关系,则存在正整数 $k \le n$,使得

$$t(R) = R^+ = R \cup R^2 \cup ... \cup R^k$$

传递闭包的求解

- 图论中一个非常重要的问题
 - 给定了一个城市的交通地图,可利用求传递闭包的方法获知任意两个地点之间是否有路相连通。
- 求传递闭包的方法
 - 直接利用关系矩阵相乘来求传递闭包
 - 在计算矩阵相乘的时候用分治方法降低时间复杂度
 - 利用基于动态规划的Warshall算法来求传递闭包

Warshall算法

计算有限集合上关系的传递闭包的一种有效算法

定理:设A是集合, R_1 和 R_2 是A上的二元关系, $R_1 \subseteq R_2$,则有:

- $r(R_1) \subseteq r(R_2)$
- $s(R_1)\subseteq s(R_2)$
- $t(R_1)\subseteq t(R_2)$

$$r(R_1)\subseteq r(R_2)$$

证明:
$$r(R_1) = R_1 \cup I_A$$
, $r(R_2) = R_2 \cup I_A$

10.5 关系的闭包(closure)

定理: 设X是一集合, R是X上的二元关系,

则有:

- 若R是自反的,则S(R), t(R)也自反
- 若R是对称的,则r(R), t(R)也对称
- 若R是可传递的,则r(R)也可传递

s(R)不是可传递的?

定理:设X是一集合,R是X上的二元关系则有:若R是对称的,则t(R)也对称

证明:归纳法证明若R是对称,则 R^n 也对称 n=1, 显然成立 假设 R^n 对称,对任意< x, y > $< x, y > \in R^{n+1}$ $\Leftrightarrow \exists t (\langle x, t \rangle \in R \land \langle t, y \rangle \in R^n)$ $\Rightarrow \exists t (\langle t, x \rangle \in R \land \langle y, t \rangle \in R^n)$ $\Rightarrow < y, x > \in RoR^n \Rightarrow < y, x > \in R^{n+1}$ 任取< x, y >,有 $\langle x, y \rangle \in t(R)$ $\Rightarrow \exists n (\langle x, y \rangle \in \mathbb{R}^n)$ $\Rightarrow \exists n (< y, x > \in R^n)$ $\Rightarrow < y, x > \in t(R)$

若R是传递的,s(R)不一定是传递的

反例: $R = \{ \langle a, b \rangle, \langle c, b \rangle \}$,

R是传递的

$$s(R) = \{ \langle a, b \rangle, \langle b, a \rangle, \langle c, b \rangle, \langle b, c \rangle \}$$

 $s(R)$ 不是传递的

若R是可传递的,则r(R)也可传递

定理10.5.12 闭包同时具有的多种性质2

对非空集合A上的关系R,

$$(1) rs(R) = sr(R)$$

$$(2) rt(R) = tr(R)$$

(3)
$$st(R) \subseteq ts(R)$$

若R是自反的,则s(R), t(R)也自反若R是对称的,则r(R), t(R)也对称若R是可传递的,则r(R)也可传递

其中 rs(R) = r(s(R)), 其它类似。

$$r(R) \Rightarrow sr(R) \Rightarrow tsr(R)$$
 $r(R) \Rightarrow tr(R) \Rightarrow str(R)$?

传递闭包的应用

- 传递闭包在关系数据库中有很多应用
 - 最短路径选择
 - 最省时加工流程

关系的性质

- 自反?对称?传递?
- 日常生活中的关系?

同龄人

同班同学

.

10.6 等价关系和划分

定义10.6.1 等价关系

- 设R为非空集合A上的关系,如果R是自反的、 自反的、 对称的、 传递的,
- 则称R为A上的等价关系。

以下哪些关系是等价关系?

- **平面几何中三角形间的相似关系**
- **B** 同学集合中同班同学的关系
- 。 朋友关系
- D 恒等关系、全域关系
- 非空集合上的空关系

典型的等价关系

- 平面几何中三角形间的相似关系
- 同学集合中同班同学的关系
- 同学集合中同年龄的关系
- 同学集合中的老乡关系
- 但朋友关系并非等价关系(不满足传递)
- 非空集合A上的恒等关系、全域关系
- 非空集合上的空关系不是等价关系(满足反自 反故不满足自反性)

例:整数集上的同余关系

- 整数集上关系 $R = \{ < x, y > | x y$ 能被m整 除 $\}$ 。
- 关系R是等价关系。

证明: R有自反性; 对称性; 传递性。

例: 模为3的同余关系

设*A* = {0,1,2,3,5,6,8}, *R*为*A*上的模3等价关系,则

$$R = \{ < 0.0 >, < 1.1 >, < 2.2 >, < 3.3 >, < 5.5 >, < 6.6 >, < 8.8 >, < 0.3 >, < 3.0 >, < 0.6 >, < 6.0 >, < 2.5 >, < 5.2 >, < 2.8 >, < 8.2 >, < 3.6 >, < 6.3 >, < 5.8 >, < 8.5 > \}.$$

R的关系图见图

是否等价关系中有天然的划分?

10.6 等价关系与划分

等价类

设R是非空A集合上的等价关系,对于任何 $x \in A$,令:

- $[x]_R = \{y | y \in A \land xRy\}$
- $[x]_R$ 是由 $x \in A$ 生成的R等价类
- x为等价类[x] $_R$ 的表示元素

等价类

- $[x]_R$ 是X内所有与x有等价关系R的元素构成的集合。有如下性质:
 - (1) $\forall x \in X, x \in [x]_R, [x]_R \neq \emptyset$
 - (2) 若 $y \in [x]_R$, 则 $[x]_R = [y]_R$
 - (3) $y \in [y]_R$, 若 $y \notin [x]_R$, 则 $[x]_R \neq [y]_R$

定理 设A是一个集合,R是A上的等价 关系,xRy当且仅当[x] $_R = [y]_R$ 证明:

- 充分性,因为 $x \in [x]_R = [y]_R$,即 $x \in [y]_R$, 所以xRy。
- 必要性,已知 xRy ,考虑 $[x]_R$ 的任意元素 z ,有 zRx 。根据 R 的传递性,有 zRy ,因此 $z \in [y]_R$ 。证明 $[x]_R \subseteq [y]_R$ 。类似可证明 $[y] \subseteq [x]_R$,所以 $[x]_R = [y]_R$ 。

10.6 等价关系与划分

定理 设A是一个集合,R是A上的等价关系,对于所有 $x,y \in A$,或者[x] $_R = [y]_R$,或者[x] $_R \cap [y]_R = \emptyset$

证明: 只需证明如果 $x \not R y$,则 $[x]_R \cap [y]_R = \emptyset$

反证法: 假设 $[x]_R \cap [y]_R \neq \emptyset$,则 $\exists z \in [x]_R \cap [y]_R$

10.6 等价关系与划分

定理 设R是集合A上的等价关系,则

$$A = \cup \{ [x]_R | x \in A \}$$

证明: 首先易证 \cup { $[x]_R | x \in A$ } $\subseteq A$

其次,对任意 $y \in A$

 $y \in A \Rightarrow y \in [y]_R \land y \in A$

 $\Rightarrow y \in \cup \{[x]_R | x \in A\}$

所以: $A \subseteq \cup \{[x]_R | x \in A\}$

等价类覆盖集合

10.6 等价关系与划分-等价类

- 由等价类的定义性质知: X内的任两元素对于 R的等价类或相等或分离,故X内所有元素对 R的等价类的并集就是X。
- 也可以说, X的元素对于R的等价类定义了X 的一个划分,且这样的划分就是唯一的。原因:由等价类的性质知等价关系R构成的类 两两不相交,且覆盖X,且X的所有元素对于R的等价类是唯一的。

10.6 等价关系与划分-讨论

- 等价类 $[x]_R$ 是一个集合, $[x]_R \subseteq A$ ($[x]_R$ 是A的 子集)
- $[x]_R$ 中的元素是在A中所有与x具有等价关系R的元素所组成的集合
- 在等价关系中的关系图中,
 - 每个连通子图中的所有点就构成一个等价类

10.6 等价关系与划分-实例

•
$$A = \{a, b, c, d\}$$

•
$$R = \{ \langle a, a \rangle, \langle b, b \rangle, \langle a, b \rangle,$$

 $\langle b, a \rangle, \langle c, c \rangle, \langle d, d \rangle,$
 $\langle c, d \rangle, \langle d, c \rangle \}$

•
$$[a]_R = \{a, b\} = [b]_R$$

•
$$[c]_R = \{c, d\} = [d]_R$$

动态规划与WARSHALL算法

软件学院《离散数学1》课程组

什么是动态规划

动态规划(英语: Dynamic programming, 简称DP)是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划常常适用于有<mark>重叠子问题^[1]和最优子结构</mark>性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再根据子问题的解以得出原问题的解。

通常许多子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量:一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个子问题解之时直接查表。这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

动态规划:数字三角形

- 在数字三角形中寻找一条从顶部到底边的 路径,使得路径上所经过的数字之和最大。
- 路径上的每一步都只能往左下或右下走。

- 重叠子问题: 一系列从顶部到某点的路径中数字之和的最大值
- 最优子结构: 如果 $p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow p_4$ 是 p_1 到 p_4 所有路径中数字之和最大的,那么 $p_1 \rightarrow p_2 \rightarrow p_3$ 是 p_1 到 p_3 所有路径中数字之和最大的
- •记忆化存储:无需重复计算每个子问题

动态规划: 数字三角形

如何给出具体路径?

记录下每个点从哪里走过来的

动态规划: 数字三角形

Warshall算法

- 算法目标:
 - 求解关系R的传递闭包
- 背景
 - 当有限集合A的元素较多时,用矩阵算法求A上的关系 R的传递闭包仍很复杂。
 - 1962年Warshall提出了一种有效的算法
- 算法复杂度
 - $O(n^3)$

Warshall算法伪代码

Algorithm 1 Warshall

Input: Relation R

Output: t(R)

1: Matrix
$$B = M(R)$$

2: for
$$k \leftarrow 1$$
 to n do

3: **for**
$$i \leftarrow 1$$
 to n **do**

4: for
$$j \leftarrow 1$$
 to n do

5:
$$B[i,j] = B[i,j] \vee (B[i,k] \wedge B[k,j])$$

6: **Return** B

如何理解?

1. 算法求解的正确性?

$$B[i,j] = 1 \Rightarrow i$$
可达 j

- ✓遍历中介节点k
- \checkmark 遍历所有的 $i \rightarrow j$
- ✓本身可达,或通过k为中介到达

Warshall算法伪代码

Algorithm 1 Warshall

Input: Relation R

Output: t(R)

1: Matrix B = M(R)

2: for $k \leftarrow 1$ to n do

3: **for** $i \leftarrow 1$ to n **do**

4: **for** $j \leftarrow 1$ to n **do**

5: $B[i,j] = B[i,j] \vee (B[i,k] \wedge B[k,j])$

6: **Return** B

如何理解?

1. 算法求解的正确性?

 $B[i,j] = 1 \Rightarrow i$ 可达j

- ✓遍历中介节点k
- \checkmark 遍历所有的 $i \rightarrow j$
- ✓本身可达,或通过k为中介到达
- 2. 算法求解的完全性?

i可达 $j \Rightarrow B[i,j] = 1$

- ✓ 设路径是 $i \to p_1 \to \cdots \to p_m \to j$
- ✓ 每次执行完毕变量k的一个循环过程,就对应的将这条路径中k出现的前后两项连通了
- ✓ 遍历了所有*n*个点后,这条 路径必然是会走通的

Warshall算法伪代码

Algorithm 1 Warshall

```
Input: Relation R
```

Output: t(R)

```
1: Matrix B = M(R)
```

2: for
$$k \leftarrow 1$$
 to n do

3: **for**
$$i \leftarrow 1$$
 to n **do**

4: for
$$j \leftarrow 1$$
 to n do

5:
$$B[i,j] = B[i,j] \vee (B[t,k] \wedge B[k,j])$$

6: **Return** B

```
2: for k \leftarrow 1 to n do
3: for i \leftarrow 1 to n do
4: if B[i, k] ==1 then
5: for j \leftarrow 1 to n do
6: B[i, j] = B[i, j] \vee B[k, j]
```

如何理解?

1. 算法求解的正确性?

$$B[i,j] = 1 \Rightarrow i$$
可达 j

- ✓遍历中介节点k
- ✓遍历所有的 $i \rightarrow j$
- ✓本身可达,或通过k为中介到达
- 2. 算法求解的完全性?

$$i$$
可达 $j \Rightarrow B[i,j] = 1$

- ✓ 设路径是 $i \rightarrow p_1 \rightarrow \cdots \rightarrow p_m \rightarrow j$
- ✓ 每次执行完毕变量k的一个循环过程,就对应的将这条路径中k出现的前后两项连通了
- ✓ 遍历了所有*n*个点后,这条 路径必然是会走通的

Warshall算法思想

- 定义n阶方阵序列 B(0), B(1), ..., B(n),每个方阵中的 元素值只能取0或1。B(m)[i,j] = 1 表示存在从i到j且中间顶点序号不大 于m的路径,B(m)[i,j] = 0表示不存 在这样的路径
- B(n)[i,j] = 1表示i可达j, B(n)[i,j] = 0表示i不可达j。故B(n)为t(R)的关系矩阵。
- Warshall算法实际上就是在计算这个n阶方阵序列 B(0), B(1), ..., B(n)

Algorithm 1 Warshall

```
Input: Relation R
Output: t(R)
```

```
1: Matrix B = M(R)
2: for k \leftarrow 1 to n do
```

3: **for** $i \leftarrow 1$ to n **do** 4: **if** B[i, k] == 1 **then**

5: for $j \leftarrow 1$ to n do

6: $B[i,j] = B[i,j] \vee B[k,j]$

7: Return B

运行实例

Algorithm 1 Warshall

Input: Relation R

Output: t(R)

1: Matrix B = M(R)2: for $k \leftarrow 1$ to n do

for $i \leftarrow 1$ to n do

if B[i,k]==1 then

for $j \leftarrow 1$ to n do 5:

6:

当i可达k时

遍历所有k

 $B[i,j] = B[i,j] \vee B[k,j]$ k能到的i就能到 第k行加到第i行

遍历所有列k

找非零元i

- 7: **Return** B
- 口诀:列a行b有一,行a加到行b
- $R = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, d \rangle, \langle c, b \rangle, \langle e, c \rangle\}$

	а	b	С	d	е
а	1	1			
b				1	
С		1			
d					
е			1		

		1			
	а	b	С	d	Φ
а	1	1			
b				1	
С		1			
d					
е			1		

	а	b	С	d	Ф
а	1	1		1	
b				1	
С		1		1	
d					
е			1		

	а	b	С	d	Ф
а	1	1		1	
b				1	
С		1		1	
d					
е		1	1	1	

	а	Ь	С	d	е	
а	1	1		1		
b				1		
С		1		1		
d						
е		1	1	1		

B(0)

B(1)

B(2)

B(3)

B(4)

使用Warshall算法求 $R = \{\langle a,b\rangle,\langle a,f\rangle,\langle b,d\rangle,\langle b,e\rangle,\langle e,c\rangle,\langle f,d\rangle\}$, 当算法第四次运行到最外层循环的结束位置时,下列说法正确的是?

- \triangle 算法已经找到(a,c),因为其只需两次复合即可得到
- ⑤ 算法尚未找到⟨a, c⟩, 因为其依赖中介点e
- 算法已经找到⟨a, d⟩, 因为其只需一次复合即可得到
- 算法尚未找到(a,d), 因为其依赖中介点f

	а	b	С	d	е	f
а		1				1
b				1	1	
С						
d						
е			1			
f				1		

提交

算法2是一名同学实现的Warshall算法。在右下角的 例子上,这一算法与算法1是()的。()例子使其 结果与算法1不一致。

- 一致,不存在
- 一致,存在
- 不一致,存在
- 不一致,不存在

Algorithm 2 Warshall

```
Input: Relation R
Output: t(R)
 1: Matrix B = M(R)
 2: for i \leftarrow 1 to n do
        for j \leftarrow 1 to n do
            for k \leftarrow 1 to n do
                B[i,j] = B[i,j] \lor (B[i,k] \land B[k,j])
```

6: Return B

	а	b	С
а		1	
b	1		1
С			1

谢谢! shixia@tsinghua.edu.cn