Calculus I Lecture 19

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

Linear Approximations

Outline

Linear Approximations

Differentials

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

Linear Approximations and Differentials

- Main idea: A curve is very close to its tangent line at the point of tangency.
- We can use the tangent line at (a, f(a)) as an approximation to the curve y = f(x).
- This approximation works well as long as x is near a.

Todor Milev Lecture 19 2020

Linear Approximations 6/16

Definition (Linearization of *f* at *a*)

The linear function whose graph is the tangent line at (a, f(a)) is called the linearization of f at a. Its equation is

$$L(x) = f(a) + f'(a)(x - a).$$

Definition (Linear Approximation of f(x) near a)

The approximation

$$f(x) \approx f(a) + f'(a)(x - a)$$

is called the linear approximation of f at a.

Let
$$y = f(x)$$
, $\Delta y := f(x) - f(a)$, and $\Delta x := x - a$.

Definition (Linear approx. y = f(x) near a, alternative notation)

$$\Delta y \approx \frac{dy}{dx} \Delta x$$
 .

Todor Milev Lecture 19 2020

Linear approximations

Function	f	L
Run	Δx	Δx
Rise	$\triangle f$	ΔL
Formula	$\Delta f = f(x + \Delta x) - f(x)$	$\Delta L = (\Delta x)f'(x)$

Linear approximations

Function	f	L
Run	Δx	Δx
Rise	$\triangle f$	ΔL
Formula	$\Delta f = f(x + \Delta x) - f(x)$	$\Delta L = (\Delta x)f'(x)$

Linear approximations

Function	f	L
Run	Δx	Δx
Rise	Δf	ΔL
Formula	$\Delta f = f(x + \Delta x) - f(x)$	$\Delta L = (\Delta x)f'(x)$

Linear Approximations 8/16

Example

- f'(x) = ?
- f(1) = ?
- f'(1) = ?
- Linearization:

- f'(x) = ?
- f(1) = ?
- f'(1) = ?
- Linearization:

- $f'(x) = \frac{1}{2\sqrt{x+3}}.$
- f(1) = ?
- f'(1) = ?
- Linearization:

- $f'(x) = \frac{1}{2\sqrt{x+3}}.$
- f(1) = ?
- f'(1) = ?
- Linearization:

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

- f'(1) = ?
- Linearization:

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

- f'(1) = ?
- Linearization:

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a = 1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

$$L(x) = ? + ? (x - ?)$$

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

$$L(x) = ? + ? (x - 1)$$

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

$$L(x) = ? + ? (x - 1)$$

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

$$L(x) = 2 + ?(x - 1)$$

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

$$L(x) = 2 + ?(x - 1)$$

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

$$L(x) = 2 + \frac{1}{4}(x-1)$$

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

$$L(x) = 2 + \frac{1}{4}(x - 1)$$
$$= \frac{7}{4} + \frac{x}{4}$$

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

Linearization:

$$L(x) = 2 + \frac{1}{4}(x - 1)$$
$$= \frac{7}{4} + \frac{x}{4}$$

•
$$\sqrt{4.05} = f(1.05) \approx$$
?

8/16

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

Linearization:

$$L(x) = 2 + \frac{1}{4}(x - 1)$$
$$= \frac{7}{4} + \frac{x}{4}$$

•
$$\sqrt{4.05} = f(1.05) \approx$$
?

8/16

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

Linearization:

$$L(x) = 2 + \frac{1}{4}(x - 1)$$
$$= \frac{7}{4} + \frac{x}{4}$$

•
$$\sqrt{4.05} = f(1.05) \approx$$
?

8/16

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

$$L(x) = 2 + \frac{1}{4}(x - 1)$$
$$= \frac{7}{4} + \frac{x}{4}$$

•
$$\sqrt{4.05} = f(1.05) \approx$$
?

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

$$f'(x) = \frac{1}{2\sqrt{x+3}}.$$

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

$$L(x) = 2 + \frac{1}{4}(x - 1)$$
$$= \frac{7}{4} + \frac{x}{4}$$

•
$$\sqrt{4.05} = f(1.05) \approx \frac{7}{4} + \frac{1.05}{4} = 2.0125$$
.

Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates or underestimates?

•
$$f'(x) = \frac{1}{2\sqrt{x+3}}$$
.

•
$$f(1) = \sqrt{1+3} = 2$$
.

•
$$f'(1) = \frac{1}{2\sqrt{1+3}} = \frac{1}{4}$$
.

Linearization:

$$L(x) = 2 + \frac{1}{4}(x - 1)$$
$$= \frac{7}{4} + \frac{x}{4}$$

The graph of the linearization is above the curve, so these are overestimates.

•
$$\sqrt{3.98} = f(0.98) \approx \frac{7}{4} + \frac{0.98}{4} = 1.995$$
.

•
$$\sqrt{4.05} = f(1.05) \approx \frac{7}{4} + \frac{1.05}{4} = 2.0125$$
.

Linear Approximations 9/16

Example

- f(2) =
- f(2.05) =
- $\Delta y =$

- f(2) =
- f(2.05) =
- $\Delta y =$

- $f(2) = 2^3 + 2^2 2(2) + 1 = 9$.
- f(2.05) =
- \bullet $\Delta y =$

- $f(2) = 2^3 + 2^2 2(2) + 1 = 9$.
- f(2.05) =
- \bullet $\Delta y =$

- $f(2) = 2^3 + 2^2 2(2) + 1 = 9$.
- $f(2.05) = (2.05)^3 + (2.05)^2 2(2.05) + 1 = 9.717625$.
- \bullet $\Delta y =$

- $f(2) = 2^3 + 2^2 2(2) + 1 = 9$.
- $f(2.05) = (2.05)^3 + (2.05)^2 2(2.05) + 1 = 9.717625$.

9/16

Example

- $f(2) = 2^3 + 2^2 2(2) + 1 = 9$.
- $f(2.05) = (2.05)^3 + (2.05)^2 2(2.05) + 1 = 9.717625.$
- $\Delta y = f(2.05) f(2) = 9.717625 9 = 0.717625$.

- $f(2) = 2^3 + 2^2 2(2) + 1 = 9$.
- $f(2.05) = (2.05)^3 + (2.05)^2 2(2.05) + 1 = 9.717625.$
- $\Delta y = f(2.05) f(2) = 9.717625 9 = 0.717625$.
- f'(x) =

- $f(2) = 2^3 + 2^2 2(2) + 1 = 9$.
- $f(2.05) = (2.05)^3 + (2.05)^2 2(2.05) + 1 = 9.717625$.
- $\Delta y = f(2.05) f(2) = 9.717625 9 = 0.717625$.
- f'(x) =
- $\Delta y \simeq \Delta L = f'(x)\Delta x = f'(x)\Delta x =$

9/16

Example

- $f(2) = 2^3 + 2^2 2(2) + 1 = 9$.
- $f(2.05) = (2.05)^3 + (2.05)^2 2(2.05) + 1 = 9.717625$.
- $\Delta y = f(2.05) f(2) = 9.717625 9 = 0.717625$.
- $f'(x) = 3x^2 + 2x 2$.

- $f(2) = 2^3 + 2^2 2(2) + 1 = 9$.
- $f(2.05) = (2.05)^3 + (2.05)^2 2(2.05) + 1 = 9.717625$.
- $\Delta y = f(2.05) f(2) = 9.717625 9 = 0.717625$.
- $f'(x) = 3x^2 + 2x 2$.
- When x = 2 and $\Delta x = 0.05$, we have:
- \bullet $\Delta L =$

- $f(2) = 2^3 + 2^2 2(2) + 1 = 9$.
- $f(2.05) = (2.05)^3 + (2.05)^2 2(2.05) + 1 = 9.717625$.
- $\Delta y = f(2.05) f(2) = 9.717625 9 = 0.717625$.
- $f'(x) = 3x^2 + 2x 2$.
- When x = 2 and $\Delta x = 0.05$, we have:
- $\Delta L = (3(2)^2 + 2(2) 2)(0.05) =$

- $f(2) = 2^3 + 2^2 2(2) + 1 = 9$.
- $f(2.05) = (2.05)^3 + (2.05)^2 2(2.05) + 1 = 9.717625$.
- $\Delta y = f(2.05) f(2) = 9.717625 9 = 0.717625$.
- $f'(x) = 3x^2 + 2x 2$.
- When x = 2 and $\Delta x = 0.05$, we have:
- $\Delta L = (3(2)^2 + 2(2) 2)(0.05) = 0.7$.

9/16

Example

- $f(2) = 2^3 + 2^2 2(2) + 1 = 9$.
- $f(2.05) = (2.05)^3 + (2.05)^2 2(2.05) + 1 = 9.717625$.
- $\Delta y = f(2.05) f(2) = 9.717625 9 = 0.717625$.
- $f'(x) = 3x^2 + 2x 2$.
- When x = 2 and $\Delta x = 0.05$, we have:
- $\Delta L = (3(2)^2 + 2(2) 2)(0.05) = 0.7.$
- Therefore $\Delta Ly = 0.7$, an approximation of $\Delta y = 0.717625$.

Differentials

• Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{\mathrm{d}y}{\mathrm{d}x} \Delta x$

Differentials

• Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$

- $\Delta y \approx \frac{\mathrm{d}y}{\mathrm{d}x} \Delta x$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.

Differentials

• Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$

- $dy \approx \frac{dy}{dx} \Delta x$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.

Differentials

• Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$

- $dy = \frac{dy}{dx} dx$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.

Differentials

• Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$

- $dy = \frac{dy}{dx} dx$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.

Differentials

• Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$

- $dy = \frac{dy}{dx}dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.

Differentials

• Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$

- $dy = \frac{dy}{dx} dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.
- Define the differential d and the differential forms dx, d(f(x)) by requesting that d and dx satisfy the transformation law

$$d(f(x)) = f'(x)dx$$

for any differentiable function f(x). In abbreviated notation:

$$df = f' dx$$

Differentials

• Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{\mathrm{d} y}{\mathrm{d} x} \Delta x$

- $dy = \frac{dy}{dx} dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.
- Define the differential d and the differential forms dx, d(f(x)) by requesting that d and dx satisfy the transformation law

$$d(f(x)) = f'(x)dx$$

for any differentiable function f(x). In abbreviated notation:

$$df = f' dx$$

Differentials

• Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$

- $dy = \frac{dy}{dx} dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.
- Define the differential d and the differential forms dx, d(f(x)) by requesting that d and dx satisfy the transformation law

$$d(f(x)) = f'(x)dx$$

for any differentiable function f(x). In abbreviated notation:

$$df = f' dx$$

Differentials

• Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$

- $dy = \frac{dy}{dx} dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.
- Define the differential d and the differential forms dx, d(f(x)) by requesting that d and dx satisfy the transformation law

$$d(f(x)) = f'(x)dx$$

for any differentiable function f(x). In abbreviated notation:

$$df = f' dx$$

Expressions containing expression of the form d(something) are called differential forms.

Differentials

• Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$

- $dy = \frac{dy}{dx} dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.
- Define the differential d and the differential forms dx, d(f(x)) by requesting that d and dx satisfy the transformation law

$$d(f(x)) = f'(x)dx$$

for any differentiable function f(x). In abbreviated notation:

$$df = f' dx$$

Expressions containing expression of the form d(something) are called differential forms.

Differentials

• Recall Δy , Δx stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$

- $dy = \frac{dy}{dx} dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.
- Define the differential d and the differential forms dx, d(f(x)) by requesting that d and dx satisfy the transformation law

$$d(f(x)) = f'(x)dx$$

for any differentiable function f(x). In abbreviated notation:

$$df = f' dx$$

Expressions containing expression of the form d(something) are called differential forms.

 $\bullet \ \mathsf{d} f(x) = f'(x) \mathsf{d} x.$

- \bullet df(x) = f'(x)dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.

- df(x) = f'(x) dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.

- df(x) = f'(x) dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.

- df(x) = f'(x) dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.

 The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.

- \bullet df(x) = f'(x)dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.

- df(x) = f'(x) dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.
- Courses such as "Integration and Manifolds" or "Differential geometry" usually give precise definitions and fill in the details.

- df(x) = f'(x) dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.
- Courses such as "Integration and Manifolds" or "Differential geometry" usually give precise definitions and fill in the details.
- Nonetheless, what we studied is completely sufficient for practical purposes and carrying out computations.

- df(x) = f'(x) dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.
- Courses such as "Integration and Manifolds" or "Differential geometry" usually give precise definitions and fill in the details.
- Nonetheless, what we studied is completely sufficient for practical purposes and carrying out computations.

- $\bullet \ \mathsf{d} f(x) = f'(x) \mathsf{d} x.$
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.
- Courses such as "Integration and Manifolds" or "Differential geometry" usually give precise definitions and fill in the details.
- Nonetheless, what we studied is completely sufficient for practical purposes and carrying out computations.
- Do not confuse differentials with derivatives.

$$df(x) = f'(x)$$

- df(x) = f'(x) dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.
- Courses such as "Integration and Manifolds" or "Differential geometry" usually give precise definitions and fill in the details.
- Nonetheless, what we studied is completely sufficient for practical purposes and carrying out computations.
- Do not confuse differentials with derivatives.

- df(x) = f'(x) dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.
- Courses such as "Integration and Manifolds" or "Differential geometry" usually give precise definitions and fill in the details.
- Nonetheless, what we studied is completely sufficient for practical purposes and carrying out computations.
- Do not confuse differentials with derivatives. The correct equality is this.

$$df(x) = f'(x) \qquad df(x) = f'(x) dx$$

Example

Compute the differential (via dx).

$$d(x^2)$$

Example

Compute the differential (via dx).

$$d\left(x^2\right) = \left(x^2\right)' dx$$

Example

Compute the differential (via dx).

$$d(x^2) = (x^2)' dx = 2x dx .$$

Example

Compute the differential (via dx).

$$d(\sqrt{x})$$

Example

Compute the differential (via dx).

$$d(\sqrt{x}) = (\sqrt{x})' dx$$

Example

Compute the differential (via dx).

$$d(\sqrt{x}) = (\sqrt{x})' dx = \frac{1}{2\sqrt{x}} dx .$$

 All rules for computing with derivatives have analogues for computing with differential forms.

- All rules for computing with derivatives have analogues for computing with differential forms.
- The rules for computing differential forms are a direct consequence of the corresponding derivative rules and the transformation law d(f(x)) = f'(x)dx.

Rule name: product rule. Differential rule

Derivative rule
$$(fg)' = f'g + fg'$$

Rule name: product rule. Differential rule d(fg) = gdf + fdg

Derivative rule (fg)' = f'g + fg'

Rule name: constant derivative rule.

Differential rule
$$d(fg) = gdf + fdg$$

$$(fg)' = f'g + fg'$$

$$(c)' = 0$$

Rule name: constant derivative rule.

$$d(fg) = gdf + fdg$$
$$dc = 0 = 0dx$$

Derivative rule

(c)' = 0

$$(fg)' = f'g + fg'$$

Rule name: Differential rule d(fg) = gdf + fdgdc = 0 = 0dx

Derivative rule

$$(fg)' = f'g + fg'$$

 $(c)' = 0$
 $(cf)' = cf'$

c-const.

Rule name:

Differential rule d(fg) = gdf + fdg dc = 0 = 0dx d(cf) = cdf

Derivative rule (fg)' = f'g + fg'

$$\begin{aligned} (c)' &= 0 \\ (cf)' &= cf' \end{aligned}$$

Rule name: sum rule. Differential rule d(fg) = gdf + fdgdc = 0 = 0dx

d(cf) = cdf

Derivative rule (fg)' = f'g + fg' (c)' = 0 (cf)' = cf'(f+g)' = f'+g'

c-const.

Rule name: sum rule.

Differential rule d(fg) = gdf + fdg dc = 0 = 0dx d(cf) = cdf

$$d(f + g) = df + dg$$

Derivative rule

(fg)' = f'g + fg'

(c)'=0

(cf)' = cf'

(f+g)'=f'+g'

c-const.

c-const.

Rule name: chain rule. Differential rule d(fg) = gdf + fdgdc = 0 = 0dx

dc = 0 = 0dx d(cf) = cdf d(f + g) = df + dg

Derivative rule

behivative fulle

$$(fg)' = f'g + fg'$$

 $(c)' = 0$
 $(cf)' = cf'$
 $(f + q)' = f' + q'$

c-const.

c-const.

$$(f(g(x)))' = f'(g(x))g'(x)$$

Rule name: chain rule.

Differential rule

$$d(fg) = gdf + fdg$$

$$dc = 0 = 0dx$$

$$d(cf) = cdf$$

$$d(f + g) = df + dg$$

$$d(f+g) = df + dg$$

$$df(g(x)) = f'(g(x))dg(x)$$

$$df(g) = f'(g)dg$$

Derivative rule

$$(fg)' = f'g + fg'$$

$$(c)'=0$$

$$(cf)' = cf'$$

$$(f+g)'=f'+g'$$

$$= f'(g(x))g'(x)dx \quad (f(g(x)))' = f'(g(x))g'(x)$$

c-const.

c-const.

Rule name: power rule. Differential rule

Differential rule

$$d(fg) = gdf + fdg$$

$$dc = 0 = 0dx$$

$$d(cf) = cdf$$

$$d(f+g) = df + dg$$

$$df(g(x)) = f'(g(x))dg(x)$$

$$= f'(g(x))g'(x)dx$$

$$df(g) = f'(g)dg$$

Derivative rule

$$(fq)' = f'q + fq'$$

$$(c)'=0$$

$$(cf)' = cf'$$

$$(f+g)'=f'+g'$$

$$= f'(g(x))g'(x)dx \quad (f(g(x)))' = f'(g(x))g'(x)$$

c-const.

c-const.

$$(x^n)' = nx^{n-1}$$

Rule name: power rule. Differential rule Derivative rule (fg)' = f'g + fg'd(fg) = gdf + fdgdc = 0 = 0 dx(c)' = 0c-const. d(cf) = cdf(cf)' = cf'c-const. d(f+g)=df+dg(f + a)' = f' + a'df(q(x)) = f'(q(x))dq(x) $= f'(g(x))g'(x)dx \quad (f(g(x)))' = f'(g(x))g'(x)$ df(g) = f'(g)dg $d(x^n) = nx^{n-1}dx$ $(x^n)' = nx^{n-1}$

Rule name: exponent derivative rule. Differential rule Derivative rule (fg)' = f'g + fg'd(fg) = gdf + fdgdc = 0 = 0 dx(c)' = 0c-const. d(cf) = cdf(cf)' = cf'c-const. d(f+g)=df+dg(f + a)' = f' + a'df(g(x)) = f'(g(x))dg(x) $= f'(g(x))g'(x)dx \quad (f(g(x)))' = f'(g(x))g'(x)$

 $\frac{\mathrm{d}f(g)}{\mathrm{d}(x^n) = nx^{n-1}\mathrm{d}x}$

Todor Miley Lecture 19 2020

 $(x^n)' = nx^{n-1}$ $(e^x)' = e^x$

Rule name: exponent derivative rule. Differential rule Derivative rule (fg)' = f'g + fg'd(fg) = gdf + fdgdc = 0 = 0 dx(c)' = 0c-const. d(cf) = cdf(cf)' = cf'c-const. d(f+g)=df+dg(f + a)' = f' + a'df(q(x)) = f'(q(x))dq(x) $= f'(g(x))g'(x)dx \quad (f(g(x)))' = f'(g(x))g'(x)$ df(g) = f'(g)dg $d(x^n) = nx^{n-1}dx$ $(x^n)' = nx^{n-1}$ $(e^x)'=e^x$

 $d(e^x) = e^x dx$

Rule name:

Differential rule
$$d(fg) = gdf + fdg$$
 $(fg)' = f'g + fg'$ $(c)' = 0$ c -const. $d(cf) = cdf$ $(cf)' = cf'$ c -const. $d(f+g) = df + dg$ $(f+g)' = f' + g'$ $(f+g)'$

Rule name:

Differential rule
$$d(fg) = gdf + fdg$$
 $(fg)' = f'g + fg'$ $dc = 0 = 0dx$ $(c)' = 0$ c -const. $d(cf) = cdf$ $(cf)' = cf'$ c -const. $d(f+g) = df + dg$ $(f+g)' = f' + g'$ $df(g(x)) = f'(g(x))dg(x)$ $= f'(g(x))g'(x)dx$ $(f(g(x)))' = f'(g(x))g'(x)$ $df(g) = f'(g)dg$ $d(x^n) = nx^{n-1}dx$ $(x^n)' = nx^{n-1}$ $d(e^x) = e^x dx$ $(e^x)' = e^x$ $d(\sin x) = \cos x dx$ $(\sin x)' = \cos x$

Rule name:

Differential rule
$$d(fg) = gdf + fdg$$
 $(fg)' = f'g + fg'$ $dc = 0 = 0dx$ $(c)' = 0$ c -const. $d(cf) = cdf$ $(cf)' = cf'$ c -const. $d(f+g) = df + dg$ $(f+g)' = f' + g'$ $df(g(x)) = f'(g(x))dg(x)$ $= f'(g(x))g'(x)dx$ $(f(g(x)))' = f'(g(x))g'(x)$ $df(g) = f'(g)dg$ $d(x^n) = nx^{n-1}dx$ $d(e^x) = e^xdx$ $d(\sin x) = \cos xdx$ $(\sin x)' = \cos x$ $(\cos x)' = -\sin x$

Rule name:

Differential rule
$$d(fg) = gdf + fdg$$
 $(fg)' = f'g + fg'$ $dc = 0 = 0dx$ $(c)' = 0$ c -const. $d(cf) = cdf$ $(cf)' = cf'$ c -const. $d(f+g) = df + dg$ $(f+g)' = f' + g'$ $df(g(x)) = f'(g(x))dg(x)$ $= f'(g(x))g'(x)dx$ $(f(g(x)))' = f'(g(x))g'(x)$ $df(g) = f'(g)dg$ $d(x^n) = nx^{n-1}dx$ $(x^n)' = nx^{n-1}$ $d(e^x) = e^x dx$ $(e^x)' = e^x$ $d(\sin x) = \cos x dx$ $(\sin x)' = \cos x$ $d(\cos x) = -\sin x dx$ $(\cos x)' = -\sin x$

Rule name:

Differential rule
$$d(fg) = gdf + fdg \qquad (fg)' = f'g + fg'$$

$$dc = 0 = 0dx \qquad (c)' = 0 \qquad c\text{-const.}$$

$$d(cf) = cdf \qquad (cf)' = cf' \qquad c\text{-const.}$$

$$d(f+g) = df + dg \qquad (f+g)' = f' + g'$$

$$df(g(x)) = f'(g(x))dg(x) \qquad (f(g(x)))' = f'(g(x))g'(x)$$

$$df(g) = f'(g)dg \qquad (x^n) = nx^{n-1}dx \qquad (x^n)' = nx^{n-1}$$

$$d(e^x) = e^x dx \qquad (e^x)' = e^x$$

$$d(\sin x) = \cos x dx \qquad (\sin x)' = \cos x$$

$$d(\cos x) = -\sin x dx \qquad (\ln x)' = \frac{1}{x}$$

Rule name:

Differential rule
$$d(fg) = gdf + fdg$$
 $(fg)' = f'g + fg'$ $dc = 0 = 0dx$ $(c)' = 0$ c -const. $d(cf) = cdf$ $(cf)' = cf'$ c -const. $d(f+g) = df + dg$ $(f+g)' = f' + g'$ $df(g(x)) = f'(g(x))dg(x)$ $= f'(g(x))g'(x)dx$ $(f(g(x)))' = f'(g(x))g'(x)$ $df(g) = f'(g)dg$ $d(x^n) = nx^{n-1}dx$ $d(e^x) = e^xdx$ $d(\sin x) = \cos xdx$ $d(\sin x) = \cos xdx$ $d(\cos x) = -\sin xdx$ $d(\cos x)' = -\sin x$ $d(\cos x)' = -\sin x$ $d(\cos x)' = -\sin x$ $d(\cos x)' = -\sin x$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$.

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$.

$$d\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$.

Set
$$u = 1 + \sqrt{1 + x^2}$$
.

$$d\left(\ln\left(1+\sqrt{1+x^2}\right)\right) = d\left(\ln u\right)$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$.

Set
$$u = 1 + \sqrt{1 + x^2}$$
.

$$d\left(\ln\left(1+\sqrt{1+x^2}\right)\right) = d\left(\ln u\right) = ? du$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$.

Set
$$u = 1 + \sqrt{1 + x^2}$$
.

$$d\left(\ln\left(1+\sqrt{1+x^2}\right)\right) = d\left(\ln u\right) = \frac{1}{u}du$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$.

Set $u = 1 + \sqrt{1 + x^2}$.

$$d\left(\ln\left(1+\sqrt{1+x^2}\right)\right) = d\left(\ln u\right) = \frac{1}{u}du = \frac{1}{u}d\left(1+\sqrt{1+x^2}\right) =$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$.

Set
$$u = 1 + \sqrt{1 + x^2}$$
.

$$d\left(\ln\left(1+\sqrt{1+x^2}\right)\right) = d\left(\ln u\right) = \frac{1}{u}du = \frac{1}{u}d\left(1+\sqrt{1+x^2}\right) = \frac{1}{u}d\left(\sqrt{1+x^2}\right) =$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$.

Set
$$u = 1 + \sqrt{1 + x^2}$$
. Set $v = 1 + x^2$.

$$d\left(\ln\left(1+\sqrt{1+x^2}\right)\right) = d\left(\ln u\right) = \frac{1}{u}du = \frac{1}{u}d\left(1+\sqrt{1+x^2}\right) =$$

$$= \frac{1}{u}d\left(\sqrt{1+x^2}\right) = \frac{1}{u}d\left(\frac{v^{\frac{1}{2}}}{v^{\frac{1}{2}}}\right) =$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$. Set $u=1+\sqrt{1+x^2}$. Set $v=1+x^2$.

$$d\left(\ln\left(1+\sqrt{1+x^{2}}\right)\right) = d\left(\ln u\right) = \frac{1}{u}du = \frac{1}{u}d\left(1+\sqrt{1+x^{2}}\right) = \frac{1}{u}d\left(\sqrt{1+x^{2}}\right) = \frac{1}{u}d\left(\sqrt{1+x^{2}}\right) = \frac{1}{u}\frac{1}{2}v^{-\frac{1}{2}}dv$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$. Set $u=1+\sqrt{1+x^2}$. Set $v=1+x^2$.

$$d\left(\ln\left(1 + \sqrt{1 + x^2}\right)\right) = d\left(\ln u\right) = \frac{1}{u}du = \frac{1}{u}d\left(1 + \sqrt{1 + x^2}\right) =$$

$$= \frac{1}{u}d\left(\sqrt{1 + x^2}\right) = \frac{1}{u}d\left(v^{\frac{1}{2}}\right) = \frac{1}{u}\frac{1}{2}v^{-\frac{1}{2}}dv$$

$$= \frac{1}{2uv^{\frac{1}{2}}}d\left(1 + x^2\right) =$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln \left(1 + \sqrt{1 + x^2} \right) \right)$. Set $u = 1 + \sqrt{1 + x^2}$. Set $v = 1 + x^2$.

$$d\left(\ln\left(1 + \sqrt{1 + x^2}\right)\right) = d\left(\ln u\right) = \frac{1}{u}du = \frac{1}{u}d\left(1 + \sqrt{1 + x^2}\right) =$$

$$= \frac{1}{u}d\left(\sqrt{1 + x^2}\right) = \frac{1}{u}d\left(v^{\frac{1}{2}}\right) = \frac{1}{u}\frac{1}{2}v^{-\frac{1}{2}}dv$$

$$= \frac{1}{2uv^{\frac{1}{2}}}d\left(1 + x^2\right) =$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln \left(1 + \sqrt{1 + x^2} \right) \right)$. Set $u = 1 + \sqrt{1 + x^2}$. Set $v = 1 + x^2$.

$$d\left(\ln\left(1+\sqrt{1+x^{2}}\right)\right) = d\left(\ln u\right) = \frac{1}{u}du = \frac{1}{u}d\left(1+\sqrt{1+x^{2}}\right) =$$

$$= \frac{1}{u}d\left(\sqrt{1+x^{2}}\right) = \frac{1}{u}d\left(v^{\frac{1}{2}}\right) = \frac{1}{u}\frac{1}{2}v^{-\frac{1}{2}}dv$$

$$= \frac{1}{2uv^{\frac{1}{2}}}d\left(1+x^{2}\right) = \frac{2x}{2uv^{\frac{1}{2}}}dx =$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln \left(1 + \sqrt{1 + x^2} \right) \right)$. Set $u = 1 + \sqrt{1 + x^2}$. Set $v = 1 + x^2$.

$$d\left(\ln\left(1+\sqrt{1+x^{2}}\right)\right) = d\left(\ln u\right) = \frac{1}{u}du = \frac{1}{u}d\left(1+\sqrt{1+x^{2}}\right) = \frac{1}{u}d\left(\sqrt{1+x^{2}}\right) = \frac{1}{u}d\left(\sqrt{1+x^{2}}\right) = \frac{1}{u}d\left(v^{\frac{1}{2}}\right) = \frac{1}{u}\frac{1}{2}v^{-\frac{1}{2}}dv$$
$$= \frac{1}{2uv^{\frac{1}{2}}}d\left(1+x^{2}\right) = \frac{2x}{2uv^{\frac{1}{2}}}dx = \frac{x}{uv^{\frac{1}{2}}}dx$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$. Set $u=1+\sqrt{1+x^2}$. Set $v=1+x^2$.

$$\begin{split} d\left(\ln\left(1+\sqrt{1+x^{2}}\right)\right) &= d\left(\ln u\right) = \frac{1}{u}du = \frac{1}{u}d\left(1+\sqrt{1+x^{2}}\right) = \\ &= \frac{1}{u}d\left(\sqrt{1+x^{2}}\right) = \frac{1}{u}d\left(v^{\frac{1}{2}}\right) = \frac{1}{u}\frac{1}{2}v^{-\frac{1}{2}}dv \\ &= \frac{1}{2uv^{\frac{1}{2}}}d\left(1+x^{2}\right) = \frac{2x}{2uv^{\frac{1}{2}}}dx = \frac{x}{uv^{\frac{1}{2}}}dx \\ &= \frac{x}{\left(1+\sqrt{1+x^{2}}\right)\sqrt{1+x^{2}}}dx \end{split}$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$. Set $u=1+\sqrt{1+x^2}$. Set $v=1+x^2$.

$$d\left(\ln\left(1+\sqrt{1+x^{2}}\right)\right) = d\left(\ln u\right) = \frac{1}{u}du = \frac{1}{u}d\left(1+\sqrt{1+x^{2}}\right) = \frac{1}{u}d\left(\sqrt{1+x^{2}}\right) = \frac{1}{u}d\left(\sqrt{1+x^{2}}\right) = \frac{1}{u}d\left(v^{\frac{1}{2}}\right) = \frac{1}{u}\frac{1}{2}v^{-\frac{1}{2}}dv$$

$$= \frac{1}{2uv^{\frac{1}{2}}}d\left(1+x^{2}\right) = \frac{2x}{2uv^{\frac{1}{2}}}dx = \frac{x}{uv^{\frac{1}{2}}}dx$$

$$= \frac{x}{\left(1+\sqrt{1+x^{2}}\right)\sqrt{1+x^{2}}}dx$$

Differentials are especially efficient at "encoding" the chain rule.

Example

Compute the differential d $\left(\ln\left(1+\sqrt{1+x^2}\right)\right)$. Set $u=1+\sqrt{1+x^2}$. Set $v=1+x^2$.

$$d\left(\ln\left(1+\sqrt{1+x^{2}}\right)\right) = d\left(\ln u\right) = \frac{1}{u}du = \frac{1}{u}d\left(1+\sqrt{1+x^{2}}\right) = \frac{1}{u}d\left(\sqrt{1+x^{2}}\right) = \frac{1}{u}d\left(\sqrt{1+x^{2}}\right) = \frac{1}{u}d\left(v^{\frac{1}{2}}\right) = \frac{1}{u}\frac{1}{2}v^{-\frac{1}{2}}dv$$

$$= \frac{1}{2uv^{\frac{1}{2}}}d\left(1+x^{2}\right) = \frac{2x}{2uv^{\frac{1}{2}}}dx = \frac{x}{uv^{\frac{1}{2}}}dx$$

$$= \frac{x}{\left(1+\sqrt{1+x^{2}}\right)\sqrt{1+x^{2}}}dx$$