Advanced Sampling Techniques

LSST Discovery Fellowship Program Day 3

Fitting a line to data

Modeling choices

Physical

What processes do you include? What approximations do you make?

Statistical

Are data i.i.d.?
Is there correlated noise?
Do you account for data collection?

Model specification

Parameterization

Priors

Convergence criteria

Sampler

Grid search Maximum likelihood Markov Chain Monte Carlo Nested Sampling

Fitting a line to data

We will build a generative model

$$y_{\text{mod}} = mx + b$$

$$\sigma_{\text{tot}}^2 = \sigma_{\text{obs}}^2 + s^2$$

$$\ln \mathcal{L}(\theta) = -\frac{1}{2} \sum_{i} \left[\frac{(y_{\text{obs},i} - y_{\text{mod},i})^2}{\sigma_{\text{tot},i}^2} + \ln(2\pi\sigma_{\text{tot},i}^2) \right]$$

We have already made many implicit and explicit assumptions about the data generating process

Fitting a line to data

```
import pymc3 as pm
   import pymc3_ext as pmx
   with pm.Model() as model:
        m = pm.Uniform("m", lower=-10, upper=10)
       b = pm.Uniform("b", lower=-10, upper=10)
        log_f = pm.Normal("log_f", mu=0, sd=10)
       y_mod = pm.Deterministic("y_mod", m*x + b)
       s_mod = pm.math.sqrt(pm.math.exp(log_f)**2 + y_err**2)
11
12
        lnlike = pm.Normal("lnlike", mu=y_mod, sd=s_mod, observed=y_obs)
13
14
15 with model:
        trace = pmx.sample(chains=2, tune=1000, draws=1000, target_accept=0.9, return_inferencedata=True)
Multiprocess sampling (2 chains in 4 jobs)
NUTS: [log_f, b, m]
```

100.00% [4000/4000 00:00<00:00 Sampling 2 chains, 0 divergences]

Look at those lovely Gaussian posteriors!

Easy mode: low-dimensional Gaussian

Small parameter covariances

Smooth, homogenous, isotropic posterior topology

Computationally cheap

Hard mode: real data

Strong or unknown covariances

Inhomogeneous (and unknown) posterior topology

Computational cost rapidly scales with number of free parameters

Sneaky mode: high dimensions

As the number of free parameters increases, the "typical set" is a thin shell, even for low-covariance topologies

Near maximum likelihood, relatively little posterior volume interior to current position

In high dimension, chance of all parameters simultaneously moving toward maximum likelihood becomes vanishingly small

Mission: generate samples from complicated posterior topologies

Option 1: Change the sampler

Ensemble Samplers
Hamiltonian Monte Carlo
Nested sampling

Option 2: Change the topology

Re-parameterize
Importance sampling
Umbrella sampling

Bayes Theorem

MCMC generates samples from the posterior

Bayes Theorem

$$P(\theta \mid D, M) = \frac{P(D \mid \theta, M) P(\theta \mid M)}{P(D \mid M)}$$

Implicit assumption of a particular model

Random Walk Monte Carlo

- 1. Choose an initial θ
- 2. Loop over N iterations
 - a. Propose a new θ' from proposal $q(\theta)$
 - b. Compute acceptance ratio $\alpha = p(\theta')/p(\theta)$
 - c. Generate random number $u \sim U(0,1)$
 - If $u \leq \alpha \rightarrow \text{accept}$, $\theta_{i+1} = \theta'$
 - If $u > \alpha \rightarrow \text{reject}$, $\theta_{i+1} = \theta$

3. Stop when $N_{
m eff}$ is above desired threshold

MCMC Variations

Method	Description
Metropolis-Hastings	Walkers move according to fixed proposal distribution
Gibbs Sampling	Walkers propose steps one variable at a time
Differential Evolution	Scales steps size according to ensemble of walkers
Affine Invariant	Adapts proposals to geometry of walker ensemble
Parallel Tempering	Runs ensemble of walkers at different "temperatures"
Hamiltonian	Simulates "momentum" for each walker to take long steps through parameter space

Metropolis-Hastings Monte Carlo

Almost identical to Random Walk Monte Carlo, but algorithm is modified to allow for asymmetric proposal steps

Random Walk :
$$\alpha = \frac{p(\theta')}{p(\theta)}$$

Metropolis-Hastings :
$$\alpha = \frac{p(\theta')}{p(\theta)} \frac{q(\theta \mid \theta')}{q(\theta' \mid \theta)}$$

Proposal Distribution

Gibbs Sampling

Very similar to Metropolis-Hastings, but steps in one parameter at a time

This can be beneficial for high-dimensional problems when acceptance fraction would be low by stepping in all parameters at once.

Ensemble Samplers

Differential Evolution

Ter Braak (2004, 2006)

Affine Invariant

Goodman & Weare (2010)

Parallel Tempering

Earl & Deem (2005)

Hamiltonian Monte Carlo

Instead of "walkers" we have "particles" described by both position θ and momentum ν

Particle motion is analogous to rolling a ball around a basin

Higher computational cost per step Higher acceptance fraction $\alpha \gtrsim 0.9$ Short autocorrelation length $\tau \approx 2$

Step size can now be large and traces the curvature of the posterior topology

Hamiltonian Monte Carlo

1. Define a Hamiltonian system

$$H = U(\theta) + K(\nu)$$

- 2. For each step...
 - a. Give momentum a 'kick'
 - b. Integrate particle trajectory
 - c. Almost always accept proposal
- 3. Stop at predetermined N

$$U(\theta) \propto -\log[p(\theta \mid D)]$$

Bayes Theorem

$$P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{P(D)}$$

$$P(D \mid D) = \frac{P(D \mid \theta) P(\theta)}{P(D)}$$
Evidence, Z

Nested sampling generates samples from the prior*

*subject to constraint $L > \lambda$, with the goal of calculating Z

MCMC vs Nested Sampling


```
// Initialize live points.
Draw K "live" points\{\Theta_1, \ldots, \Theta_K\} from the prior \pi(\Theta).
    Main sampling loop.
while stopping criterion not met do
    Compute the minimum likelihood \mathcal{L}^{\min} among the current set of live points.
    Add the kth live point \Theta_k associated with \mathcal{L}^{\min} to a list of "dead" points.
    Sample a new point \Theta' from the prior subject to the constraint \mathcal{L}(\Theta') \geq \mathcal{L}^{\min}.
    Replace \Theta_k with \Theta'.
    // Check whether to stop.
    Evaluate stopping criterion.
end
    Add final live points.
while K > 0 do
    Compute the minimum likelihood \mathcal{L}^{min} among the current set of live points.
    Add the kth live point \Theta_k associated with \mathcal{L}^{\min} to a list of "dead" points.
    Remove \Theta_k from the set of live points.
    Set K = K - 1.
end
```


Bounding Distributions

Unit Cube (no bound)

Single Ellipsoid

Multiple Ellipsoids

Overlapping Balls

Overlapping Cubes

The evidence Z is the likelihood of the data D marginalized over all possible parameter values θ for a given model M

$$Z = \int P(D \mid \theta) P(\theta) d\theta$$
 Marginal Likelihood

The evidence Z can be re-expressed as an integral over the prior volume X; this volume can be constrained by likelihood contours $\mathcal{L} > \lambda$

$$Z = \int_0^1 \mathcal{L}(X) \, dX \qquad \text{Integral over prior volume } X \qquad X(\lambda) \equiv \int_{\mathcal{L}(\theta) > \lambda}^P P(\theta) d\theta$$

The evidence Z can be calculated by summing over the likelihood \mathscr{L}_i of each nested sample, weighted by from the contained prior volume

$$Zpprox \sum_{i=1}^n \mathcal{L}_i\cdot w_i$$
 From weighted samples $w_i=X_{i-1}-X_i$ $X_ipprox e^{-i/N}$

From the evidence, we can generate samples from the posterior as an automatic byproduct

$$Z \approx \sum_{i=1}^{n} \mathcal{L}_i \cdot w_i \qquad \qquad P(\theta_i \mid D) \approx \frac{\mathcal{L}_i \cdot w_i}{Z}$$

Recall that weights w_i are proportional to the prior volume X_i contained within likelihood contour $\mathcal{L} > \lambda$

Popular Implementations

- MultiNest https://github.com/JohannesBuchner/MultiNest
- UltraNest | https://johannesbuchner.github.io/UltraNest/index.html
- DyNesty https://dynesty.readthedocs.io/en/v2.1.5/

Which sampler should I use?

Random Walk or Metropolis-Hastings

Good for learning the fundamental of MCMC, but you probably won't use these in practice.

Gibbs Sampling

Special cases dictated by the problem geometry.

Affine Invariant of Differential Evolution MCMC

Reasonable default choice for low-to-moderate number of dimensions, provided covariances are not pathological. The python package emcee is popular, making affine invariant sampling popular.

Parallel Tempering

Good for complicated or multimodal posteriors. Nicely balances exploration and sampling.

Hamiltonian Monte Carlo

Topology must be differentiable (i.e. you can compute a gradient). Particularly good for high dimensional problems, but struggles with multimodal distributions.

Nested Sampling

Excellent for complicated or multimodal distributions. Performance slows in higher dimensions.

Further reading

Bayesian Analysis

Bayesian Data Analysis, by A. Gelman et al. Third Edition, Boca Raton, FL: Chapman & Hall 2014

Model Fitting

Hogg, Bovy, & Lang 2010, "Data analysis recipes: fitting a model to data", arXiv:1008.4686

Affine-Invariant MCMC

Foreman-Mackey et al., 2014, "emcee: The MCMC Hammer", PASP, 125, 925

Hamiltonian Monte Carlo

Betancourt 2017, "A Conceptual Introduction to Hamiltonian Monte Carlo", arXiv:1701.02434

Nested Sampling

Speagle 2020, "DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences" MNRAS, 493, 3