FUR FURENCE TRAN Shape at

OFFICH OF HIVEL RESEARCH

CONTRACT NO. NO.014-75-C-0305

Task No. NR 053-569

/ TECHNICAL REPORT, NO. 25/

Tetrametallic Nickel-Boron Clusters, $(\eta^5-C_5H_5)_4Ni_4B_4H_4$ and $(\eta^5-C_5H_5)_4Ni_4B_5H_5$. Synthesis of Metalloboron Cluster Systems by Transition Metal Aggregation on a

Small Borane Framework #

James R. Bowser Russell N. Grimes

Department of Chemistry, University of Virginia

Charlottesville, Virginia 22901

Prepared for Publication

in the

Journal of the American Chemical Society

Hay 🖺 🛂 78

Reproduction in whole or in part is permitted for any purpose of the United States Government

Approved for public release; distribution unlimited

78 06 06 036

401147

AU NO. DDC FILE COPY Tetrametallic Nickel-Boron Clusters, $(\eta^5-C_5H_5)_4Ni_4B_4H_4$ and $(\eta^5-C_5H_5)_4Ni_4B_5H_5$. Synthesis of Metalloboron Cluster Systems by Transition Metal Aggregation on a Small Borane Framework

James R. Bowser and Russell N. Grimes*

Department of Chemistry, University of Virginia

Charlottesville, VA 22901

Abstract. The reaction of $Na_{\sqrt{B}\xi H_{N}^{-7}}^{+}$ with nickelocene and sodium amalgam in tetrahydrofuran at ambient temperature yielded the title compounds, which were isolated as crystalline solids and characterized from their $^{11}\mathrm{B}_{\mathrm{i}}$ and $^{3}\mathrm{H}$ FT NMR and mass spectra and an X-ray structure determination of the Ni B cluster. Although the number of skeletal valence electrons in each system is consistent with a nido structure, $(\eta^5 - C_5 H_5)_A Ni_A B_A H_A$ has a closo-dodecahedral structure with rigorous D2d symmetry, with all nickel atoms occupying low-coordinate vertices; this geometry contrasts with that of $(\eta^5 - C_5H_5)_4Co_4B_4H_4$, which is also <u>closo</u>-dodecahedral but has the metal atoms in high-coordinate vertices. The two nickel species and the previously reported $(\eta^5 - C_5 H_5)_4 Co_4 B_4 H_4$ are the only known examples of tetrametallic boron cage compounds, and they extend the class of metalloboron "hybrid" cluster systems which link the borane and metal cluster families. These results, together with earlier preparations of other metal-metal bonded metalloborane cages from $B_5H_8^-$ and other boron substrates, suggest that stepwise metal attachment to a borane framework is a general phenomenon which can be utilized as a synthetic route to polymetallic cluster systems.

is the way that the

Sir:

The reaction of $B_5H_8^-$ ion with $CoCl_2$ and $C_5H_5^-$ in cold tetrahydrofuran (THF) generates, among other products, a series of polyhedral cobalt-boron clusters having a high metal content, e.g., $(\eta^5-C_5H_5)_2Co_2B_4H_6$, $(\eta^5-C_5H_5)_3Co_3B_3H_5$, $(\eta^5-C_5H_5)_3Co_3B_4H_4$, and $(\eta^5-C_5H_5)_4Co_4B_4H_4$, all of which have been crystallographically characterized. The major cobaltaborane product of the reaction is the square-pyramidal complex $2-(\eta^5-C_5H_5)CoB_4H_8$, a B_5H_9 analogue; further addition of cobalt to the bridge-deprotonated anion of that species, $(\eta^5-C_5H_5)CoB_4H_7^-$, produces the same metal-rich clusters.

The formation of these metalloboron cages can be envisioned as a stepwise aggregation of cyclopentadienylcobalt units onto a borane substrate, which thereby serves as a nucleation center. Moreover, since in each of the polyhedral cobalt-boron clusters the metal atoms show a distinct propensity to adopt adjacent vertices in the cage framework, it appears that the presence of one or more cobalt centers in the cage promotes the further addition of cobalt. That this phenomenon is not limited to cobalt is suggested by the preparation from CB₅H₉ of a trimetallic (η^5 -C₅H₅) $_3$ Ni $_3$ CB₅H₆ complex containing two Ni-Ni interactions, and the synthesis of a (η^5 -C₅H₅) $_2$ Ni $_2$ B₁₀H₁₀ complex which is proposed to have adjacent metal atoms, from the B₁₀H₁₀ on. Moreover, in the closely related metallocarborane family there are numerous examples of di- and trimetallic species in which the metals kinetically adopt vicinal locations in the polyhedron (although in some cases they migrate at elevated temperature to non-vicinal positions). The complex of the polyhedron is capable to the polyhedron of the positions.

In this Communication we report the extension of this pattern with the synthesis of two tetranickel species which are the second and third examples [after $(\eta^5 - C_5H_5)_4Co_4B_4H_4^{1b}$] of metalloboron polyhedra containing four metal atoms, and are new representatives of "hybrid" cages 1 linking the borane and metal cluster families. The treatment of 22 mmol of $\mathrm{Na}^{+}\mathrm{B}_{5}\mathrm{H}_{8}^{-}$ (prepared from $\mathrm{B}_{5}\mathrm{H}_{9}$ and NaH) with 34 mmol of $(\eta^{5}-\mathrm{C}_{5}\mathrm{H}_{5})_{2}\mathrm{Ni}$ and sodium amalgam containing 36 mmol of Na in THF at -30° with subsequent stirring at 00 and finally at room temperature, gave a dark green solution. Removal of solvent in vacuo, extraction with hexane followed by CH2Cl2, and separation by preparative-scale liquid chromatography on silica, afforded two major components as crystalline, air-stable solids: brown (η^5 - $C_{5}^{H}_{5})_{4}^{N}i_{4}^{B}_{4}^{H}_{4}$ (I) [0.817 g (18% yield based on $(C_{5}^{H}_{5})_{2}^{N}$ i consumed), R_{f} 0.60] and green $(\eta^5 - C_5 H_5)_4 Ni_4 B_5 H_5 (II)$ [0.465 g (10%), $R_f = 0.49$]. The mass spectra of I and II exhibited strong parent groupings with intensity patterns conforming to the compositions indicated above. Exact mass determinations: for I, calc. for $^{60}\text{Ni}_4^{\ 12}\text{C}_{20}^{\ 11}\text{B}_4^{\ 1}\text{H}_{24}^{\ +}$, 547.9578; ; for II, calc. for ${}^{60}\text{Ni}_4{}^{12}\text{C}_{20}{}^{11}\text{B}_5{}^{1}\text{H}_{25}{}^+$, 559.9750; found, 559.9743.

The 100-MHz 1 H FTNMR spectrum of I in CDCl $_3$ exhibited a single C_5H_5 resonance at $\pmb{\delta}$ 5.34 ppm 10 relative to $(CH_3)_4Si$, and an H-B singlet (11 B-decoupled) at $\pmb{\delta}$ 8.22; the 1 H spectrum of II contained C_5H_5 singlets at $\pmb{\delta}$ 5.45, 5.35, and 5.29 with relative areas of 5:10:5, and H-B resonances (11 B-decoupled) at $\pmb{\delta}$ 8.80, 7.25, and 4.70 with relative areas of 2:1:2. The 32-MHz 11 B FTNMR spectrum of I exhibited one doublet at $\pmb{\delta}$ 56.2 ppm 10 relative to BF $_3\cdot O(C_2H_5)_2$ (J_{PH} = 156 Hz), which collapsed to a singlet on 1 H decoupling. The $^{1.1}$ B spectrum of

II exhibited doublets at 64.7 (J = 156, area 2), 55.0 (J = 157, area 1), and 29.4 (J = 117, area 2), all of which collapsed to singlets on 1 H-decoupling.

Since I and II contain 20 and 22 skeletal valence electrons (based on a donation 11 of 3 from each (C_5H_5) Ni and 2 from each BH unit), both species are (2n+4)-electron systems (n = the number of vertices) and thus were expected to adopt nido 12 structures. However, X-ray diffraction data 14 on I has established the closo dodecahedral (D $_{2d}$) geometry shown in Figure la. This structure is surprising not only in that it is closo rather than nido, but also in the fact that all four metal atoms occupy low-coordinate vertices with unusually short 15 equivalent Ni-Ni distances of 2.354(1) %. Curiously, the recently reported b, c cluster $(\eta^5-C_5H_5)_4Co_4B_4H_4$ (which has four fewer electrons than I) also adopts a closo dodecahedral shape lc, 2b but with all metal atoms in highcoordinate vertices. It is remarkable that the 8-vertex species $(\eta^{5}-c_{5}H_{5})_{4}\mathrm{Ni}_{4}B_{4}H_{4},\ B_{8}H_{8}^{\ 2-},\ c_{2}B_{6}H_{8},\ \mathrm{and}\ (\eta^{5}-c_{5}H_{5})_{4}\mathrm{Co}_{4}B_{4}H_{4},\ \mathrm{which\ are}$ assigned, respectively, 20, 18, 18, and 16 skeletal valence electrons, all exhibit the same (closo) polyhedral geometry. The structure of $(CH_3)_4 C_4 B_4 H_4$, 18 a 20-electron analogue of I, has not been established although several nido geometries have been suggested. 18

Clearly, 8-vertex clusters present a special case in which the cage structure is markedly affected by factors above and beyond framework electron population per se. 19 Indeed, a recent MO study 21 indicates that ${\rm B_8H_8}^{2-}$ is uncommon among the polyhedral borane anions in having very small energy differences between alternative geometries. Of significance in the present case may be the short nickel-nickel bond lengths

in I, which suggest abnormally high bond orders for these interactions (there do not appear to be any particular steric constraints in this system that would produce such an effect).

The structure of II has not been established, but the geometry shown in Figure 1b is proposed on the basis of ^{11}B and ^{1}H NMR data, and on the assumption that there is a straightforward structural relationship between I and II (it is likely that I forms by net loss of a BH unit from II). Thus, a direct II \rightarrow I conversion can be effected by removing B(6)-H from II and linking B(9) to B(3) and Ni(7). In view of the fact that the 8-vertex species I is closo, in violation of the structural electron count rules, 11 it is possible that a similar anomaly exists in II and that a closo structure will be found here also. However, as noted above, I and other 8-vertex clusters are regarded as an exceptional group; moreover, the trinickel metallocarborane 5 (5 - 5 - 6 - 5 - 1 3 Ni 3 CB 5 H6, an isoelectronic analogue of II, has an established nido geometry similar to that proposed here for II. Hence we expect II to adopt a nido structure as shown, in conformity with the presence of 22 skeletal electrons. 11

Since cobalt and nickel can be incorporated into $B_5H_8^-$ to give polymetallic clusters, extension to other metals and to other borane substrates seems likely; however, because the nature of the products is largely controlled by kinetic factors, the choice of reagent is crucial. Thus, the treatment of $B_5H_8^-$ with FeCl₂ and $C_5H_5^-$ produces monoferraboranes ²² such as $2-(\eta^5-C_5H_5)$ FeB₅H₁₀ rather than metal-rich species. Investigations in this area are continuing.

Acknowledgment. This work was supported in part by the Office of Naval Research. We thank David Finster and William Hutton for the NMR spectra.

James R. Bowser and Russell N. Grimes*

Department of Chemistry, University of Virginia

Charlottesville, VA 22901

References and Notes

- (a) V. R. Miller and R. N. Grimes, <u>J. Am. Chem. Soc.</u>, <u>95</u>, 5078 (1973);
 (b) V. R. Miller and R. N. Grimes, <u>ibid.</u>, <u>98</u>, 1600 (1976);
 (c) V. R. Miller, R. Weiss, and R. N. Grimes, ibid., 99, 5646 (1977).
- (a) J. R. Pipal and R. N. Grimes, <u>Inorg. Chem.</u>, <u>16</u>, 3255 (1977);
 (b) J. R. Pipal and R. N. Grimes, manuscript in preparation.
- 3. R. Weiss, J. R. Bowser, and R. N. Grimes, Inorg. Chem., in press.
- 4. The condensation of Co atoms with B_5H_9 and cyclopentadiene at -196° yields the same cobalt-boron clusters as were originally reported in refs. la-c, as well as a new one, $(\eta^5-C_5H_5)_3Co_3B_5H_5$, of uncertain structure: L. W. Hall, G. J. Zimmerman, and L. G. Sneddon, Chem. Commun., 45 (1977).
- 5. C. G. Salentine, C. E. Strouse, and M. F. Hawthorne, <u>Inorg. Chem.</u>, 15, 1832 (1976).
- 6. B. P. Sullivan, R. N. Leyden, and M. F. Hawthorne, <u>J. Am. Chem. Soc.</u>, 97, 455 (1975).
- 7. The adjacent-metal effect is most evident in the smaller polyhedral species (perhaps in part owing to the more limited geometric options), but examples can also be found among the icosahedral or supra-icosahedral metallocarboranes.
- (a) G. K. Barker, M. Green, J. L. Spencer, F. G. A. Stone, B. F. Taylor, and A.J. Welch, J. Chem. Soc., Chem. Commun., 804 (1975);
 (b) V. R. Miller, L. G. Sneddon, D. C. Beer, and R. N. Grimes, J. Am. Chem. Soc., 96, 3090 (1974); (c) V. R. Miller and R. N. Grimes, ibid., 97, 4213 (1975); (d) C. G. Salentine and M. F. Hawthorne, ibid., 97, 6382 (1975); (e) K. P. Callahan, W. J. Evans, F. Y. Lo,

- C. E. Strouse, and M. F. Hawthorne, <u>ibid.</u>, <u>97</u>, 296 (1975);
 (f) W. M. Maxwell, V. R. Miller, and R. N. Grimes, <u>ibid.</u>, <u>98</u>,
 4818 (1976); (g) W. M. Maxwell, V. R. Miller, and R. N. Grimes,
 <u>Inorg. Chem.</u>, <u>15</u>, 1343 (1976); (h) W. M. Maxwell, K-S. Wong,
 and R. N. Grimes, ibid., 16, 3094 (1977).
- (a) E. L. Hoel, C. E. Strouse, and M. F. Hawthorne, <u>Inorg. Chem.</u>,
 13, 1388 (1974); (b) W. J. Evans and M. F. Hawthorne, <u>ibid.</u>, <u>13</u>,
 869 (1974); (c) K. P. Callahan, C. E. Strouse, A. L. Sims, and
 M. F. Hawthorne, <u>ibid.</u>, <u>13</u>, 1397 (1974).
- 10. Positive values indicate shifts to lower field (less shielding).
- 11. (a) K. Wade, Adv. Inorg. Chem. Radiochem. 18, 1 (1976); (b) R. W.
 Rudolph, Acc. Chem. Res., 9, 446 (1976); (c) D. M. P. Mingos,
 Nature (London), Phys. Sci., 236, 99 (1972).
- 12. Cages based on closo (triangulated) polyhedra with one missing vertex are described as nido, while those with two vacant vertices are labeled arachno. 11,13
- 13. R. E. Williams, Inorg. Chem., 10, 210 (1971).
- 14. J. R. Pipal and R. N. Grimes, to be submitted for publication.
- 15. Metal-metal bond distances in other metalloboranes and metallocarboranes 16a exceed 2.40 A, except for that in icosahedral $(C_5H_5)_2Co_2C_2B_8H_{10}$ (2.387 (2) A). The same is true of most nickel clusters, although Ni-Ni bond lengths in the range 2.34-2.38 A have been found in small nickel carbonyl clusters. 17

- 16. (a) See refs. 2a and 5, and references therein. (b) K. P. Callahan, C. E. Strouse, A. L. Sims, and M. F. Hawthorne, Inorg. Chem. 13, 1397 (1974).
- 17. G. Longoni, P. Chini, L. D. Lower, and L. F. Dahl, <u>J. Am. Chem.</u>
 Soc., <u>97</u>, 5034 (1975), and references therein.
- 18. T. P. Fehlner, J. Am. Chem. Soc., 99, 8355 (1977).
- 19. Eight-vertex metallic and organometallic clusters also exhibit a variety of polyhedral shapes including cubic, distorted cubic, and chair, e.g., (CO) $_8\text{Ni}_8\left[\mu_4\text{-P}(\text{C}_6\text{H}_5)\right]_6$, 20a ($^{75}\text{-C}_5\text{H}_5$) $_4\text{Fe}_4\text{S}_4$, 20b and $\left[(^{2}_6\text{H}_5)_3\text{P}\right]_4\text{Ag}_4\text{I}_4$.
- (a) L. D. Lower and L. F. Dahl, J. Am. Chem. Soc., 98, 5046 (1976).
 (b) Trinh-Toan, W. P. Fehlhammer, and L. F. Dahl, <u>ibid.</u>, 99, 402 (1977);
 (c) B-K. Teo and J. C. Calabrese, <u>Inorg. Chem.</u>, <u>15</u>, 2474 (1976).
- 21. E. Muetterties and B. F. Beier, <u>Bull. Soc. Chim. Belg.</u>, <u>84</u>, 397 (1975).
- 22. R. Weiss and D. N. Grimes, J. Am. Chem. Soc., 99, 8087 (1977).

Figure Caption

Figure 1. (a) Structure of $(\eta^5-C_5H_5)_4Ni_4B_4H_4$ (I). (b) Proposed structure of $(\eta^5-C_5H_5)_4Ni_4B_5H_5$ (II). The molecule is bisected by a mirror plane through Ni(1), Ni(2), and B(4).

 $(C_5H_5)_4Ni_4B_5H_5$

O BH

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	. GOVT ACCESSION NO.		
Technical Report No. 25			
4. TITLE (and Subtitle)	. 5	5. TYPE OF REPORT & PERIOD COVERED	
Tetrametallic Nickel-Boron Clustera, $(\eta^5-C_5H_5)_4$ NigB $_4H_4$ and $(\eta^5-C_5H_5)_4$ Ni $_4B_5H_5$. Synthesis of Metalloboron Cluster Systems by Transition Metal Aggregation on a Small Borane Framework		- Interim	
		6. PERFORMING ORG, REPORT NUMBER	
		}	
James R. Bowser, Russell N. Grimes		8. CONTRACT OR GRANT NUMBER(*)	
		N00014-75-C-0305	
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
University of Virginia		AREA T WORK BRITT HOMBERS	
Department of Chemistry Charlottesville, Virginia 22901		NR 053-569	
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
Chemistry Branch, Office of Naval Research Arlington, Virginia 22217		May, 1978	
		13. NUMBER OF PAGES	
14. MONITORING AGENCY NAME & ADDPESS(II different from Controlling Office)		15. SECURITY CLASS. (al thie report)	
		Unclassified	
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report)			
Approved for public release; distribution unlimited.			
!			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES			
•			
19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)			
Metalloboranes Boron cage compounds			
Metal clusters Nickelaboranes Nickel clusters			
		Tetrametallic clusters	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)			
Son mare 1			
See page 1			
•			
•			