2CPI

Contrôle final Analyse mathématique 4

Durée : 2 heures

- Les documents, calculatrices et téléphones sont interdits.
- Il sera tenu compte de la présentation et la clarté des réponses

Veuillez rédiger les exercices 1,2 et 3 sur une double feuille séparée.

Exercice 1 (3 points): Soit $f(x,y) = -(x-1)^2 - (x-e^y)^2$.

- 1. Déterminer les points critiques.
- 2. f admet elle des extrémums locaux de f? Si oui lesquels sont globaux?

Exercice 2 (3 points): Calculer le volume de Ω . où

$$\Omega = \{(x,y,z) \in \mathbb{R}^3 / x^2 + y^2 \le 1, x^2 + y^2 + z^2 \le 2, z \ge 0\}.$$

Exercice 3 (5 points): On pose $f(t,x) = e^{-t^2}\cos(xt)$ et $F(x) = \int_0^{+\infty} e^{-t^2}\cos(xt)dt$.

- 1. Montrer que F est bien définie sur \mathbb{R} .
- **2**. Montrer que F est de classe C^1 sur \mathbb{R} .
- 3. Montrer que $F'(x) = -\frac{1}{2}xF(x)$.
- **4**. En déduire l'expression de F sachant que $\int_{0}^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Veuillez rédiger les exercices 4 et 5 sur le cahier.

Exercice 4 (4 points): Résoudre l'équation différentielle suivante en utilisant la transformée de Laplace

$$\begin{cases} y''(t) + y(t) = \sin(2t) \text{ pour } t > 0, \\ y(0) = 2, \quad y'(0) = 0. \end{cases}$$

Table des TL:

f(t)	$\mathcal{L}\{f(t)\} = F(x)$	f(t)	$\mathcal{L}\{f(t)\} = F(x)$	f(t)	$\mathcal{L}\{f(t)\} = F(x)$
$t^n, n \in \mathbb{N}$	$\frac{n!}{x^{n+1}}, x > 0$	sin(at)	$\frac{a}{x^2 + a^2}, x > 0$	sh(at)	$\frac{a}{x^2 - a^2}, x > a $
e ^{al}	$\frac{1}{x-a}, x > a$	cos(at)	$\frac{x}{x^2 + a^2}, x > 0$	ch(at)	$\frac{x}{x^2 - a^2}, x > a $

Exercice 5 (5 points):

- **1**. Calculer $\mathcal{F}(e^{-\alpha|t|})$ pour $\alpha > 0$:
- 2. En déduire $\int_{0}^{+\infty} \frac{\cos tx}{\alpha^2 + x^2} dx = \frac{\pi}{2\alpha} e^{-\alpha|t|}.$
- **3**. On pose $g_a(t) = \frac{1}{t^2 + \alpha^2}$ avec $\alpha > 0$.

En appliquant la transformée de Fourier, trouver une fonction $y \in L^1(\mathbb{R}) \cap C^1(\mathbb{R}^*)$ solution de

$$y * g_{\alpha} = g_{\beta}$$
 avec $\beta > \alpha > 0$.

Bon Courage