JC Bose University of Science and Technology, YMCA, Faridabad 6 First session Exam, Subject: Digital Electronics B. Tech CE31 3rd Sem (Computer Engineering) M. Marks: 30 Duration: 90 min Note: All Question Carry Equal Marks 1. You are given the data bits 1011 and asked to encode them using the Hamming (7.4) code, which uses 4 data bits and 3 parity bits. Also, assume that a single-bit error occurs during transmission. Find the transmitted code, detect the error, and correct it? (CO-1, HO) 2. Design a 256-to-1 multiplexer using 16-to-1 multiplexers. Explain the process step by step, including the number of multiplexers used, how the inputs are organized, how the selection lines are assigned, and the final output selection. Include a diagram to illustrate your design? (CO-2, IO) 3. Explain ripple counter in detail? (CO-2, IO) 4. Explain the working of SR flip flop in detail? (CO-2, LO)

Roll No. 2300100 1099

J. C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD SESSIONAL-I (October 2024) (CE-III Sem)

Digital Electronics (ESC-302)

			Time: 9	0 mm
MM: Q1	- that were a single effor-correcting code for the message	(2)	CO1	HOCQ
Q2	a) Minimize the following expressions using k-map: $Y(A, B, C, D) = \sum_{i=0}^{\infty} m(0, 2, 4, 7, 8, 10, 12, 13) + d(3, 15)$	(2)	COI	IOCQ
	and implement it using logic gates. b) Draw and explain BCD Adder. c) Implement the following expression using a single 8:1 multiplexer V(A P. C. D)	(3)	CO2 CO2	LOCQ
Q3	$Y(A, B, C, D) = \sum_{i} m(0,2,3,6,8,9,12,14)$ Design a 3-bit Binary-to-Gray code converter using a PLA.	(3)	CO4	10CQ

