Asma Aknton 2019-3-60-033 Ansteren to the Guerton No. 3

Parallel-in, Parallel-out (PIPO):

(a) Block diagram

Prallel-In Porallel-Out Register

$$\exists_3 = (x_3. LD')'
 = (x_3. LD')'
 = (x_3. 1)'
 = (x_3. 1)'$$

Answer to the Question Nog4

a = 16 Synchronour up counter;

(d) Block digram

(b) Transition Diegram

Excitation Tables

Pres	ent.	State		Nex	Stal	e		Flip-1	Flop	Inputa
San	Q2n	9an	San	9 _{3nta}	Gant <u>1</u>	ginta	Sonta	73	$T_{\mathcal{Q}}$	To To
0	0	0	0	Ó	0	0	1	0	0	0 1
0	0	0	1	0	0	1	0	0	0	1 1
0	0	1	0	0	0	1	1	. 0	0	0 1
0	0	1	1	0	,1	0	0	0	1	1 1
0	1	0	0	0	= 1	0	1	0	0	0 1
0	1	0	1	0	1	1	0	0	0	1 1
0	1	1	0	0	1	1	1	0	0	0 1
0	1	1	1	1	0	0	0	1.	1	1 1
1	0	0	0	1	0	0	1	0	0	0 1
1	0	0	1	1	0	1	0	0		1 1
1	0	1	0	1	0	1	1	0	,0	0 1
1	0	1	1	1	1	0	0	0	1	1 1
1	1	0	0	1	1	0	1	0	0	0 1
1	1	0	1	1	1	1	0	0	0	1 1
1	1	. 1	0	1	1	1	1	0	0	0 1
. 1	. 1	1	1	0	0	0	Ó	1	1	1 1

(2) (20h	In gon	01	11	10	_		
93n92h	11	1	1	1			
01	1	1	1	1			
11	1	1	1	1			
20	1	1	1	1			
To = 1							

Answer to the Question Nog 5

module Syn_S_cincuit (input i, clock, resd),
Output reg [1:0] out);

re, [2:0] cornerstate, mexistate;

loadparam [2:0]
$$A = 36000$$
, $B = 36000$, $C = 36000$,

n. mext State =
$$(i==0)$$
? C:D;
out out = $(i==0)$? 2'b 10: 2'b 10;
end

nexIslate =
$$(i = = 0)$$
? A: C
 $0 \text{ wh} = (i^* = = 0)$? 2'601: 2'611;

end

end

D: begin

Oud = (i = = 0) ? 2 b 10: 2 b 11;

E: begin

end

gin
nextstate =
$$(i'==0)$$
? $E:E$;
out = $(i'==0)$? 2'b10: 2'b00;

end

default: begin

end

endcase

always @ (posedge-clock, negedge reset)
if (nreset)

currentstole <= A;

else currentstate (= nextstate;

endmodule

Owant Equation:

$$Z = (x+9_{10}) \times 9_{20}$$

= $x \times 9_{20} + x \times 9_{10} = 1$
= $x \times 9_{20} + x \times 9_{20} = 1$
= 1 1 1 1

Excidention Equation:

$$J_{2n} = (\chi' \oplus Q_{2n}')$$

$$= \chi' Q_{2n} + \chi' Q_{2n}'$$

$$J_{2n} = (29m)'$$

= $2' + 91n$

$$k_{2n} = Q_{2n}'$$

Date:.....

Next state equation 70

$$91n+1 = Jan 9an' + Kan' 9an
= (x(92n'+x'92n') 9an' + x' 9an
= x 9an' 92n' + x' 9an' 92n' + x' 9an
1 0 0 0 0 0 0 0 1$$

	Next State 9 Input	Inta x 92nta X	Stypus Z X tryant		
9gn 92n	0	1	0	1	
0 0	11	11	0	0	
01	00	00	0	1	
1 💆1	11	0 1	0	1	
1 0	11	00	0		

Answer to the Question No: 2

Excitation Tables

	-		
9n	9n+1	Sn	Rn
0	0	0	×
0	1	1	0
1	0	0	1
1	4	X	0

Present State 91n 92n	Next State Oan+1 92n+1		Flop-Flop Inputs X=0 1: X=1				Outrat 3,3	
. 91n 92n	Z=0	7=1	SinRin	1		Sonken	0	1
00	11	01	10	10	OΧ	10	11	00
0 1	11	11	10	XO	10	XO	00	11
1 1	00	10	01	01	XO	01	10	10
10	\$ 10	. 00	XO	OX Maga	01	OX	01	10

	·R2	ng	
. (22n	0	1
9m	00	0	0
	01	0	0
	11	11	1
	10	XOD	X
		Ran	= 9an

$$\frac{723}{9m92n}$$
 $\frac{1}{00}$
 $\frac{1}{10}$
 $\frac{1}{10}$

$$Z_1 = 92n92n + 92nx + 92nx + 92n'x'$$

