# Arbres de recherche généralisés et Arbres (2,4)

## Arbres de recherche généralisés

- Un arbre de recherche généralisé est un arbre ordonné ayant les propriétés suivantes:
  - Chaque noeud interne a au moins deux enfants et garde en mémoire d-1 éléments  $(k_i, v_i)$ , où d est le nombre d'enfants
  - Pour chaque noeud interne gardant en mémoire les clés  $k_1, k_2, \ldots, k_{d-1}$  et ayant pour enfants les noeuds  $n_1, n_2, \ldots, n_d$  on a
    - $\triangle$  les clés dans le sous-arbre de racine  $n_1$  sont plus petites que  $k_1$
    - $\triangle$  les clés dans le sous-arbre de racine  $n_i$  sont plus petites que  $k_i$  et plus grande ou égale à  $k_{i-1}$   $(i=2,\ldots,d-1)$
    - lacktriangle les clés dans le sous-arbre de racine  $n_d$  sont plus grandes ou égales à  $k_{d-1}$



## Implémentation (structure chaînée)

 Un noeud de la structure chaînée représentant le noeud d'un arbre de recherche généralisé est de cette forme



fils (dans une liste ou un vecteur)

Exemple au tableau

## Parcours symétrique d'un arbre de recherche généralisé

- On peut généraliser la notion de parcours symétrique d'un arbre binaire aux arbres de recherche généralisés
  - $\blacksquare$  On visite l'élément  $(k_i, v_i)$  d'un noeud n entre les visites récursives des sousarbres de n de racines  $n_i$  et  $n_{i+1}$
  - Un parcours symétrique d'un arbre de recherche généralisé visite les clés selon un ordre croissant



## Chercher dans un arbre de recherche généralisé

- O Similaire à la recherche dans un arbre binaire de recherche
- $\bigcirc$  À chaque noeud interne d'enfants  $n_1, n_2, \dots, n_d$  et de clés  $k_1, k_2, \dots, k_{d-1}$ 
  - Si  $k = k_i$  (i = 1, ..., d 1): la recherche se termine et on retourne  $v_i$
  - $\square$  Si  $k < k_1$ , on continue la recherche dans le fils  $n_1$
  - $\blacksquare$  Si  $k_{i-1} \le k < k_i \ (i=2,\ldots,d-1)$ , on continue la recherche dans le fils  $n_i$
  - $\blacksquare$  Si  $k > k_{d-1}$ , on continue la recherche dans le fils  $n_d$
- Si on atteint un noeud externe, on retourne NULL
- Exemple: Chercher 30



## Arbres (2,4)

- Un arbre (2,4) est un arbre de recherche généralisé ayant les propriétés suivantes:
  - □ Nombre d'enfants: tout noeud interne a au plus 4 enfants
  - Propriété de profondeur: tous les noeuds externes ont la même profondeur
- Donc, dépendant du nombre d'enfants, un noeud interne d'un arbre (2,4) est appelé un 2-noeud, un 3-noeud ou un 4-noeud.



## Hauteur d'un arbre (2,4)

- igcup La hauteur d'un arbre (2,4) gardant en mémoire n éléments est en  $O(\log n)$ 
  - □ Soit h, la hauteur d'un arbre (2,4) gardant en mémoire n éléments
  - Étant donné les propriétés des arbres (2,4), on a au moins  $2^i$  éléments de profondeur i = 0, ..., h-1 et aucun élément de profondeur h, on a donc

$$n \ge 1 + 2 + 4 + \ldots + 2^{h-1} = 2^h - 1$$

 $\blacksquare$  On a donc  $h \le \log(n+1)$ 

 $\bigcirc$  La recherche dans un arbre (2,4) se fait donc en  $O(\log n)$ 

## Insérer dans un arbre (2,4)

- On insère un nouvel élément (k,v) dans le parent n de la feuille atteinte lors de notre recherche pour k
  - □ La propriété de profondeur est préservée
  - □ Insérer k dans n peut causer un débordement (i.e que le noeud n devient un 5-noeud)
- Exemple: Insérer 30 cause un débordement



### Débordement et fractionnement

- On "répare" le débordement d'un 5-noeud n avec une opération de fractionnement:
  - $\square$  Soit  $n_1, \ldots, n_5$  les enfants de n, et  $k_1, \ldots, k_4$  les clés de n
  - $\blacksquare$  Le noeud n est remplacé par deux noeuds n' et n''
    - $\triangle$  n' est un 3-noeud de clés  $k_1, k_2$  et d'enfants  $n_1, n_2, n_3$
    - $\triangle$  n'' est 2-noeud de clé  $k_4$  et d'enfants  $n_4, n_5$
  - La clé  $k_3$  est insérée dans le parent u du noeud n (une nouvelle racine peut être créée)
- igoplus Le débordement peut se propager dans u



## Complexité en temps d'une insertion

#### Algorithme *insérer* ((k,v), T)

Étape 1. On exécute l'algorithme chercher(*k*), jusqu'à ce qu'on atteigne une feuille. Soit *n* le parent de cette feuille.

Étape 2. On met (k, v) dans n

Étape 3. **Tant que** *Déborde*(*n*)

si estRacine(n)

créer une nouvelle racine au-dessus de *n* 

 $n \leftarrow fractionne(n)$ 

- Soit T un arbre (2,4) contenant n éléments:
  - $\square$  l'arbre  $\top$  a une hauteur en  $O(\log n)$
  - $\blacksquare$  et donc, l'étape 1 prend un temps  $O(\log n)$
  - $\square$  l'étape 2 prend un temps O(1)
  - l'étape 3 prend un temps  $O(\log n)$  étant donné que chaque fractionnement se fait en temps O(1) et qu'on doit exécuter dans le pire des cas  $O(\log n)$  fractionnements
- $\bigcirc$  Insérer un élément dans un arbre (2,4) prend un temps  $O(\log n)$

## Supprimer dans un arbre (2,4)

- Si le noeud interne w contenant l'élément à enlever a au moins un enfant qui est une feuille, on enlève cette feuille et w et on retourne la valeur de l'élément.
- Si tous les enfants de w sont internes, on trouve le noeud y contenant le successeur, selon l'ordre symétrique, de la clé à enlever. On remplace l'élément à enlever par ce successeur et on enlève une feuille de y. On retourne la valeur de l'élément enlevé.
- Exemple: enlever un élément de clé 24



### Noeud interne vide et fusion

- ullet Enlever une clé d'un noeud interne v peut rendre ce noeud vide, i.e que v devient un 1-noeud (noeud avec un enfant et aucune clé)
- ullet Pour remédier à cette situation, où un noeud interne v de parent u devient vide, on considère deux cas:
- igoplus Premier cas: le noeud (frère) adjacant à v est un 2-noeud w
  - $\square$  Opération de fusion: on fusionne v et w en un noeud v', et on bouge un élément du parent u dans v'
  - $\square$  Après la fusion, il est possible que le parent  $\mathcal{U}$  devienne vide



#### Noeud interne vide et transfert

- O Deuxième cas: le noeud (frère) adjacant à v est un 3-noeud ou un 4-noeud w
  - □ Opération de transfert:
    - 1) on transfert un enfant de Wà V
    - 2) on transfert un élément de u à v
    - 3) on transfert un élément de *W* à *u*
  - □ Après un transfert, aucun autre noeud devient vide



## Complexité en temps d'une suppression

- Soit T un arbre (2,4) contenant n éléments
  - $\blacksquare$  l'arbre T a une hauteur en  $O(\log n)$
- Lorsqu'on exécute une opération de suppression
  - $\square$  On visite  $O(\log n)$  noeuds pour trouver le noeud dans lequel on va supprimer un élément
  - $\blacksquare$  Si un noeud interne devient vide après la suppression, on exécute au plus une série de  $O(\log n)$  fusions et ensuite au plus un transfert
  - $\square$  Chaque fusion et transfert s'exécute en O(1)
- Onc, supprimer un élément dans un arbre (2,4) prend un temps  $O(\log n)$