Problem 1

Job Number	$\mathbf{s_i}$	$\mathbf{f_i}$	$\mathbf{w_i}$	$\mathbf{p}(\mathbf{i})$
1	1	4	5	0
2	3	5	1	0
3	0	6	8	0
4	4	7	4	1
5	3	8	6	0
6	5	9	3	2
7	6	10	2	3
8	8	11	4	5

i	Values in M
1	[0,5]
2	[0,5,5]
3	[0,5,5,8]
4	[0,5,5,8,9]
5	[0,5,5,8,9,9]
6	[0,5,5,8,9,9,9]
7	[0,5,5,8,9,9,9,10]
8	[0,5,5,8,9,9,9,10,13]

CS 3330 Homework 9 Solution

Problem 2

(a) The dynamic programming state of this problem is OPT(i, w, k) where i is the index of the item being considered, w is the remaining weight of the knapsack, and k is the number of items we can still select. The Bellman equation can be written as follows:

$$OPT(i, w, k) = \begin{cases} 0 & \text{if } i = 0 \text{ or } w = 0 \text{ or } k = 0, \\ OPT(i-1, w, k) & \text{if } w_i > w \\ max(OPT(i-1, w, k), v_i + OPT(i-1, w - w_i, k - 1)) & \text{O.W.} \end{cases}$$

(b) The pseudocode can be written as below:

```
\begin{aligned} & \textbf{foreach} \ i = 0 \ \textbf{to} \ N \ \textbf{do} \\ & \textbf{foreach} \ w = 0 \ \textbf{to} \ W \ \textbf{do} \\ & \textbf{foreach} \ k = 0 \ \textbf{to} \ K \ \textbf{do} \\ & \textbf{if} \ i = 0 \ \textbf{or} \ w = 0 \ \textbf{or} \ k = 0 \ \textbf{then} \\ & dp[i][w][k] \leftarrow 0 \\ & visited[i][w][k] \leftarrow \text{True} \\ & \textbf{else} \\ & visited[i][w][k] \leftarrow \text{False} \\ & \textbf{end} \ \textbf{if} \end{aligned}
```

```
end foreach
    end foreach
end foreach
Function Top-down (i, w, k, weights, values, dp, visited)
if visited[i][w][k] = True then
    return dp[i][w][k]
end if
if weights[i] > w then
    dp[i][w][k] \leftarrow \text{Top-down} \ (i-1, w, k, weights, values, dp, visited)
else
    exclude \leftarrow \text{Top-down} (i-1, w, k, weights, values, dp, visited)
   include \leftarrow values[i] + Top-down (i-1, w-weights[i], k-1, weights, values, dp, visited)
    dp[i][w][k] \leftarrow max(exclude, include)
end if
visited[i][w][k] \leftarrow True
return dp[i][w][k]
```

Problem 3

Suppose the set of chocolates is M=1,2,...,n where each i is of type $t \in \{1, 2, ..., K\}$ Suppose that M_a and M_b are the set of chocolates for Alice and Bob respectively. We have $S_a = \sum_{i \in M_a} t_i$, $S_b = \sum_{i \in M_b} t_i$

(a) The goal of the problem is to optimize the difference between the two sets:

$$\min |S_a - S_b|$$

such that $S_a + S_b = \sum_{i=1}^n t_i$
and $M_a \cup M_b = M$,
 $M_a \cap M_b = \emptyset$

(b) $S_{min} = min(S_a, S_b), S_{max} = max(S_a, S_b)$ Therefore, $S_{min} \leq S_{max}$. Using $S_{min} + S_{max} = \sum t_i$, we have $S_{min} + S_{max} \leq S_{min} + S_{max} = \sum t_i =>$ $S_{min} \leq \frac{1}{2} \sum_{i=1}^{n} t_i$

- (c) This is an alternative to the knapsack problem:
 - We have a bag with capacity $\frac{1}{2} \sum_{i=1}^{n} t_i$.
 - We have item i, which has weight t_i and value t_i . Notice that weights and values are the same.

Step 1: OPT(n, W) = maximum value, using the first n items with capacity equal to W.

Step 2:

$$OPT(n, W) = \begin{cases} 0 & \text{if } n = 0 \\ OPT(n-1, W) & \text{if } n \ge 1 \text{ and } W < t_n \\ \max \left(OPT(n-1, W - t_n) + t_n, OPT(n-1, W) \right) & \text{if } n \ge 1 \text{ and } W \ge t_n \end{cases}$$

(d) The time and space complexity of the algorithm is $O(n\sum_{i=1}^{n}t_i)$, as it is in the knapsack problem.

Problem 4

(a) Let A denote the fertility matrix such that A[i, j] shows the fertility of land (i, j). Let $S_1 = A[:, 1]$ (first column of A) and $S_j = S_{j-1} + A[:, j]$:

for each j=1 to n do $x \leftarrow S_j - S_{j'}$ Run Kadane's algorithm to find the max sum subarray Update the coordinates of the maximum rectangle seen so far end for each end for each

- (b) The time complexity of the algorithm is $O(n^3)$ as the time it takes for the body of the double-loop to complete is O(n). The space complexity is $O(n^2)$ as we only need to store the values of S_j for $j \in \{1, 2, ..., n\}$.
- (c) Now that we have picked a wheat farm, we can change the fertility of the covered segments to $-\infty$, so that our algorithm won't pick those segments for the carrot farm. Notice that a square is identified by its corner coordinates and its size:

Assuming Val((i, j), k) is the sum of the values in such a square, we have:

$$Val((i,j),k+1) = A[i,j] + \sum_{l=i-1}^{j-k+1} A[i,l] + \sum_{l=i-1}^{i-k+1} A[l,j] + Val((i-1,j-1),k)$$

Now let $R_{i,j} = \sum_{l=1}^{j} A[i,l]$ denote a row sum, and $C_{i,j} = \sum_{l=1}^{i} A[l,j]$ denote a column sum. Hence we have:

$$Val((i-1,j-1),k) = \begin{cases} A[i,j] & k = 1 \\ A[i,j] + R_{i,j-1} - R_{i,j-k+1} + V_{i-1,j} - V_{i-k+1,j} + Val((i-1,j-1),k-1) & k \ge 1 \\ -\infty & i < 0 \text{ or } j < 0 \end{cases}$$

(d) Notice that calculating $R_{i,j}$ and $C_{i,j}$ takes $O(n^2)$ time and space:

$$R_{i,j} = \begin{cases} A[i,1] & j=1 \\ R_{i,j-1} + A[i,j] & i=1 \end{cases}, C_{i,j} = \begin{cases} A[1,j] & i=1 \\ C_{i-1,j} + A[i,j] & i=1 \end{cases}$$

and calculating Val((i, j), k) takes $O(n^3)$ time and $O(n^2)$ space. Notice that we can reuse the space to ensure $O(n^2)$ space complexity, while carrying the best square in O(1) variable.

Important note: You can also use an approach similar to part (a) to solve the problem. The main difference is that you do not need Kadane's algorithm, as given j and j', there are only O(|j'-j|) possible squares.