Diskrete Strukturen (G. Hiz)

1. Übung: (16./17.10.) Nur Präsenzaufgaben

1. Vorlesung: 10.10

Fragestunde (TU): donnerstags, freiwillig (Frank Lübeck) Beginn: 11.10.

Übungsbetrieb: Fr -> Fr, 14:00

Anmeldung bis Rückgabe und Besprechung: Woche danach
12.10.18

1. Blatt: 12.10.

Zulassungskriterium: 50% schriftliche, 70% Online-Aufgaben https://www2.math.rwth-aachen.de/DS18

Mbungsblätter:

Keine Anmeldung notig (und möglich) oder Wbang in RWTH-Opline zur Vorlesung

Anneldung in RWTH-Online Zur Prüfung (ab 3.12.)

* Aussagen

* Verknüpfung von Aussagen Z.B. durch 1, v, ->, e>, xor

* Wahrheitstafe(

Ä	B	A -> B	
ī	l	1	
l	O	0	
0	1 1	1	
0	0	1	

* A => B; A -> B ist wahr

(d.h. A ist talsch ode A and B sind baide wahr)

A => B; A => B ist wahr, d.h. wenn A and B

der gleider Walubeits wert haben.

* Legische Terme: z.B. $7(AvB) \rightarrow (C1D) \Leftrightarrow E$ * Tautologie, z.B.: $A \rightarrow (Bv^7B)$, $S \equiv T$

* Aussage formen Wenn x>0, dann ist x ein Quadrat.

* Konventionen:

A Aussage: A gilt, falls A wabs.

A, B ": AMAGES A: (A wind deed B defi.)

A, B Symbole: A := B, (_____)

ein: minderteur ein

X11--1Xn paanveire vendriede fall Xi + X; für i + j

1.2 Mengen

Vorstellung

Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterscheidbaren Objekten unserer Anschauung oder unseres Denkens zu einem Ganzen." (Georg Cantor, 1895)

Vorsicht

Die Menge aller Mengen führt zu einem Widerspruch.

Ausweg

Beschränkung auf bestimme Mengenkonstruktionen.

Definition

Eine Menge M ist etwas, zu dem jedes beliebige Objekt x entweder Element der Menge ist, geschr. $x \in M$, oder nicht, geschr. $x \notin M$.

Mengen (Forts.)

Bemerkung

► Sei *M* eine Menge.

Dann ist " $x \in M$ " für jedes Objekt x eine Aussage. Anders gesagt, " $x \in M$ " ist eine Aussageform.

ightharpoonup Sei A(x) eine Aussageform.

Dann ist die Zusammenfassung aller x, für die A(x) wahr ist, eine Menge (vgl. Schreibweise (iii) unten).

Teilmengen und Mächtigkeit

Definition

Seine M und N Mengen.

- ▶ $N \subseteq M$ (gespr. N ist Teilmenge von M) : \Leftrightarrow Für jedes $x \in N$ ist $x \in M$.
- $ightharpoonup N \not\subseteq M : \Leftrightarrow \neg (N \subseteq M).$
- ▶ M und N sind gleich (geschr. N = M) : \Leftrightarrow $N \subseteq M$ und $M \subseteq N$.

Definition

Sei *M* eine Menge.

- ► *M* heißt *endlich*, wenn *M* nur endlich viele Elemente besitzt. In diesem Fall steht |*M*| für die Anzahl der Elemente von *M*.
- ► M heißt unendlich, wenn M nicht endlich ist. In diesem Fall: Schreiben $|M| = \infty$.
- ► |M| heißt die Mächtigkeit von M.

Beschreibung von Mengen

Aufzählung

Auflisten der Elemente und Einschließen in Mengenklammern. Irrelevant: Reihenfolge und Wiederholungen.

```
► \{-3,1,19\} = \{1,-3,19\} = \{1,-3,1,1,19,-3\} = -

► \{1,2,4,8,16,32,64,...\} = \{16,1,4,64,32,2,8,...\} \le 

Menge der 2-er-Potenzen \le Menge der natürlicher Zahlen \{x \in Menge der natürlichen Zahlen \}

\{x \in Menge der natürlichen Zahlen \}
```

Beschreibung

Mengen können durch Worte beschrieben werden.

- ► Menge der natürlichen Zahlen
- ► Menge der ganzen Zahlen
- ► Menge der in diesem Hörsaal zum jetzigen Zeitpunkt anwesenden Personen.

Aussondern

Sei M eine Menge und A(x) eine Aussageform, wobei x mit den Elementen von M belegt werden kann.

Dann ist

$$\{x \in M \mid A(x) \text{ ist wahr}\} \subseteq M$$

(gespr. Menge aller x aus M mit A(x)) eine Menge, nämlich eine Teilmenge von M.

Beispiel

Sei M die Menge der natürlichen Zahlen, und A(x) die Aussageform "x ist ungerade". Dann ist

$$\{x \in M \mid x \text{ ist ungerade}\}$$

die Menge der ungeraden natürlichen Zahlen.

A := Menge der liver jetzt Anwesender Personen dae A | a int im Jahr 2000 geboren?

Russels Antinomie

Es rei A die Menge aller Mengen. Setre M:= { M & M + M}.

 $\mathcal{M} \in \mathcal{M} = \mathcal{M} \notin \mathcal{M} \quad \text{mad Def. non } \mathcal{M}.$ $\mathcal{M} \notin \mathcal{M} = \mathcal{M} \in \mathcal{M} \quad - \mathcal{M}.$

Abbilden

Seien M und N Mengen und e(x) für jedes $x \in M$ ein Element aus N. (Wir greifen hier dem Begriff der Abbildung vor.)

Dann ist

$$\{e(x) \mid x \in M\} \subseteq \mathcal{N}$$

eine Teilmenge von N (insbesondere eine Menge), die Menge aller Elemente der Form e(x) von N, wobei x alle Elemente aus M durchläuft.

Beispiel

M = N: Menge der natürlichen Zahlen, $e(x) = x^2$ für $x \in M$.

$$\{e(x) \mid x \in M\} = \{x^2 \mid x \in M\}$$

Menge der Quadrate natürlicher Zahlen.

Standardsymbole

Häufig auftretende Mengen sind:

Symbol	Beschreibung	Definition
Ø	leere Menge	{}
N	natürliche Zahlen	$\{1,2,3,\ldots\}$
\mathbb{N}_0	natürliche Zahlen einschl. 0	$\{0,1,2,3,\ldots\}$
<u>n</u>	<i>n</i> -elementige Menge, $n\in\mathbb{N}_0$	$\{1,2,\ldots,n\},\ \underline{0}:=\emptyset$
\mathbb{P}	Primzahlen	$\{2,3,5,7,11,13,\ldots\}$
\mathbb{Z}	ganze Zahlen	$ \{ \dots, -2, -1, 0, 1, 2, \dots \} $
\mathbb{Q}	rationale Zahlen	$\{a/b \mid a \in \mathbb{Z}, b \in \mathbb{N}\}$
\mathbb{R}	reelle Zahlen	Dezimalzahlen
$\mathbb{R}_{>0}$	positive reelle Zahlen	$ \{x \in \mathbb{R} \mid x > 0\}$
$\mathbb{R}_{\geq 0}$	nicht-negative reelle Zahlen	$\{x \in \mathbb{R} \mid x \geq 0\}$
\mathbb{C}^{-}	komplexe Zahlen	$ \{a+bi\mid a,b\in\mathbb{R}\} $ $i^2=-1$

- ▶ $|\emptyset| = 0$.
- ▶ $|\underline{n}| = n$ für alle $n \in \mathbb{N}_0$.
- $\blacktriangleright |\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| = |\mathbb{R}| = |\mathbb{C}| = \infty.$
- $\blacktriangleright \emptyset = \underline{0} \subseteq \underline{1} \subseteq \underline{2} \subseteq \ldots \subseteq \mathbb{N} \subseteq \mathbb{N}_0 \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}.$
- $\blacktriangleright \{2,3,4,7\} \subseteq \{1,2,3,4,5,6,7\}$
- ▶ $\{0,3,4,7\} \nsubseteq \{1,2,3,4,5,6,7\}$

▶
$$\{1\} \neq \{1,2\}.$$

$$\blacktriangleright \ \{1\} \neq \{\{1\}\} \neq \{1,\{1\}\} \neq \{1\}.$$

$$\blacktriangleright \emptyset \neq \{\emptyset\}.$$

$$\{x \in \mathbb{R} \mid x^3 + 2x = 3x^2\} = \{0, 1, 2\}.$$

$$\{1\} + \{11\}$$
 $\{11\} + \{11\}$
 $\{11\} + \{11\}$
 $\{11, 11\} + \{11\}$

Benveir von {x² | xeR} = Rzo: "=" Sei y & {x2 | x e R3 \Rightarrow er ex. $x \in \mathbb{R}$ mu't $y = x^2$ (Def.) =) x² ro (Eigenschaft von R) (Def.) -) ¥ € R70 , 2" Sei y € R76 (Def.) =) y & R und y 70 =) en ex. x \in \mathbb{R} mit y=x^2 (Gigenschaft von R) => y \(\) \(\ (Def.)

Quantifizierte Aussagen

Erinnerung (Aussageform)

A(x): Sprachlicher Ausdruck, in dem die Variable x vorkommt.

M: Menge; Belegung von x durch ein Element aus $M \rightsquigarrow Aussage$

Definition (Quantifizierung)

- ▶ "Für alle $x \in M$ gilt A(x)."
- ▶ "Es gibt ein $x \in M$, für das A(x) gilt." oder "Es gibt ein $x \in M$ mit A(x)."

Diese sprachlichen Ausdrücke sind Aussagen, denn x ist keine (freie) Variable mehr.

Symbole (Häufige Schreibweise)

- ▶ " $\forall x \in M$ gilt A(x)." (Allquantor)
- ▶ " $\exists x \in M$, für das A(x) gilt." (Existenzquantor)

Quantifizierte Aussagen (Forts.)

Beispiele

► A(x): Aussageform "x > 5".

Quantifizierungen:

- ▶ "Es existiert ein $x \in \mathbb{N}$ mit A(x)."
- ▶ "Für alle $x \in \mathbb{N}$ gilt A(x)."
- ightharpoonup A(t): Aussageform

"Zum Zeitpunkt t gilt: Projektor ist aus \rightarrow Hörsaal ist leer."

Quantifizierungen:

- ▶ "Es gibt eine Zeit t mit A(t)."
- ▶ "Für alle Zeiten t gilt A(t)."

Quantifizierte Aussagen (Forts.)

Verneinungen (quantifizierter Aussagen)

▶ Verneinung von "Für alle $x \in M$ gilt A(x)."

```
"Es existiert x \in M mit \neg A(x)." oder "Es existiert x \in M für das A(x) nicht gilt."
```

▶ Verneinung von "Es existiert ein $x \in M$ mit A(x)."

```
"Für alle x \in M gilt \neg A(x)." oder "Für alle x \in M gilt A(x) nicht."
```

Quantifizierte Aussagen (Forts.)

Beispiele

- ▶ Verneinung von "Für alle $x \in \mathbb{R}$ gilt $x^2 > 0$."

 "Es existiert ein $x \in \mathbb{R}$ mit $x^2 \le 0$."
- Verneinung von "Es gibt eine Person im Hörsaal, die ihr Handy aus hat."

"Alle Personen im Hörsaal haben ihr Handy an."

Nicht: "Es gibt eine Person im Hörsaal, die ihr Handy an hat."

Konstruktion von Mengen

Definition

Seien M und N Mengen.

- ▶ $M \cap N := \{x \in M \mid x \in N\}$ heißt der *Durchschnitt* von M und N.
- ▶ $M \cup N := \{x \mid x \in M \text{ oder } x \in N\}$ heißt die *Vereinigung* von M und N.
- ▶ $M \setminus N := \{x \in M \mid x \notin N\}$ heißt die *Differenzmenge* von M und N, gesprochen "M ohne N".
- ► $M \times N := \{(x,y) \mid x \in M, y \in N\}$ heißt das *kartesische* Produkt von M und N. Hierbei ist (x,y) ein *geordnetes Paar*. Zwei geordnete Paare (x,y) und (x',y') sind genau dann gleich, wenn x=x' und y=y'.
- ▶ $Pot(M) := \{S \mid S \in M\}$ heißt die *Potenzmenge* von M.

Konstruktion von Mengen (Forts.)

- ► $\{a, b, c, d, e, f, g, h\} \times \{1, \dots, 8\}$ Modell für die Positionen auf einem Schachbrett.
- ▶ $\emptyset \times M = M \times \emptyset = \emptyset$ für jede Menge M.

Konstruktion von Mengen (Forts.)

- ▶ $\emptyset \subseteq M$ für jede Menge M (auch für $M = \emptyset$).
- ► Es gilt:

$$Pot(\emptyset) = \{\emptyset\},$$
 $Pot(\{1\}) = \{\emptyset, \{1\}\},$
 $Pot(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\},$
 \vdots

- ► Für Mengen *M* und *N* gilt:
 - $ightharpoonup M \cap N = N \Leftrightarrow N \subseteq M.$
 - $\blacktriangleright M \cup N = N \Leftrightarrow M \subseteq N.$

Konstruktion von Mengen (Forts.)

Bemerkung

L, M, N Mengen

- $\blacktriangleright \quad L \cap (M \cap N) = (L \cap M) \cap N$
 - $L \cup (M \cup N) = (L \cup M) \cup N$
- \blacktriangleright \blacktriangleright $L \cap M = M \cap L$
 - $\blacktriangleright L \cup M = M \cup L$
- \blacktriangleright $L \cap L = L$
 - $ightharpoonup L \cup L = L$
- $\blacktriangleright \quad L \cap (M \cup N) = (L \cap M) \cup (L \cap N)$
 - $L \cup (M \cap N) = (L \cup M) \cap (L \cup N)$
- \blacktriangleright $L \cap (L \cup M) = L$
 - $ightharpoonup L \cup (L \cap M) = L$