Corrigé de l'intérrogation Analyse mathématique 3

Février 2021 Durée : 1h

- Les documents, calculatrices et téléphones sont interdits.
- Répondre sur le sujet

Exercice 1 (4 points) : Les questions sont indépendantes.

1) Etudier la nature de la série $\sum u_n$ où $u_n = \frac{n^{2021}}{n!}$.

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \left(\frac{(n+1)^{2021}}{(n+1)!} \cdot \frac{n!}{n^{2021}} \right) = \lim_{n \to +\infty} \left(\left(\frac{n+1}{n} \right)^{2021} \cdot \frac{1}{(n+1)} \right) = 0 < 1.$$

Puisuqe, $u_n \ge 0$, d'après la régle de D'Alembert la série est donc convergente.

2) Etudier la nature (convergence absolue et semi-convergence) de la série $\sum u_n$ où

$$u_n = \log\left(1 + \frac{(-1)^n}{2n}\right).$$

a) La convergence absolue : On a

$$|u_n| \sim \frac{1}{2n}$$
.

Or $\sum \frac{1}{n}$ diverge (série de Riemann), alors la série ne converge pas absolument (critère d'équivalence).

b) La convergence simple : On a

$$u_n = \frac{(-1)^n}{2n} - \frac{1}{4n^2} + o\left(\frac{1}{4n^2}\right).$$

→ Méthode 1 : On a

- $\sum \frac{(-1)^n}{2n}$ converge (par la règle de Leibnitz).
- $\sum \frac{1}{4n^2}$ converge car $\sum \frac{1}{n^2}$ converge (série de Riemann).
- $\sum o\left(\frac{1}{4n^2}\right)$ converge car $\sum \frac{1}{4n^2}$ converge absolument.

On en déduit aisni, par linéairité, que $\sum u_n$ converge.

→ Méthode 2 : On pose

$$v_n = \frac{(-1)^n}{2n+1}$$
 et $t_n = \frac{1}{(2n+1)^2} + o\left(\frac{1}{(2n+1)^2}\right)$.

- D'une part $\sum v_n$ converge (série de Leibnitz).
- D'autre part $t_n \sim \frac{1}{4n^2} \ge 0$,

or $\sum \frac{1}{n^2}$ converge (série de Riemann), alors, la série $\sum t_n$ converge (critère d'équivalence).

On obtient la convergence de $\sum u_n$ par linéarité.

$$v_n = \frac{(-1)^n}{2n}, \ t_n = \frac{1}{4n^2} \ \text{et} \ s_n = o\left(\frac{1}{4n^2}\right).$$

- $\sum v_n$ converge (série de Leibnitz).
- $\sum t_n$ converge car $\sum \frac{1}{n^2}$ converge (série de Riemann).
- $\lim_{n \to +\infty} n^2 |s_n| = \lim_{n \to +\infty} n^2 \left| o\left(\frac{1}{4n^2}\right) \right| = \lim_{n \to +\infty} \frac{n^2}{4n^2} |o(1)| = 0$, la série $\sum s_n$ converge absolument (Régle de l'ordre) donc converge.

On obtient la convergence de $\sum u_n$ par linéarité.

c) On en déduit de a) et b) que la série est semi convergente.

Exercice 2 (6 points): Soit
$$F(x) = \sum_{n \ge 0} f_n(x)$$
 où

$$f_n(x) = e^{-n^3 x} \text{ pour } x > 0.$$

1) Montrer que F est bien définie pour tout $\forall x > 0$.

0,75 pt \rightarrow **Réponse** : Soit x > 0. On a

$$\lim_{n \to +\infty} (f_n(x))^{\frac{1}{n}} = \lim_{n \to +\infty} e^{-n^2 x} = 0 < 1.$$

Conclusion: Donc, d'après la régle de Cauchy, la série converge (on peut aussi utiliser la régle de l'ordre etc...), donc F est bien définie $\forall x > 0$.

2) Montrer que F est continue sur $]0,+\infty[$.
2,25 pt \leadsto Réponse : Pour montrer la continuité de F , utilisons le théorème de conservation de la continuité pour les séries de fonctions. • Toutes les f_n sont continues sur $]0,+\infty[$ car c'est la composée de fonctions continues.
• Etude de la convergence uniforme de $\sum f_n$. On a pour $a > 0$
$\forall n \geq 0, \ \forall x \in [a, +\infty[, f_n(x) = e^{-n^3x} \leq e^{-n^3a}.$
Puique $\sum e^{-n^3 a}$ converge, car $\sum e^{-n^3 a} = F(a)$ et $a > 0$.
D'où $\sum f_n$ converge normalement sur tout $[a,+\infty[$, donc uniformément sur tout $[a,+\infty[$. Ainsi, F est continue sur tout $[a,+\infty[\subset]0,+\infty[$. Conclusion : Par recouvrement F est continue sur $]0,+\infty[$.
Conclusion . Fair recouvrement 1' est continue sur jo,+∞[.
3) Montrer que F est dérivable sur $]0,+\infty[$.
3 pt \rightarrow Réponse :Pour montrer la dérivabilité de F utilisons le théorème de
conservation de la dérivabilité pour les séries de fonctions.
• Toutes les f_n sont de classe C^1 sur $]0,+\infty[$ car c'est la composée de fonctions C^1 .

- $\exists x_0 \in]0,+\infty[$ tq $\sum_{n\geq 0} f_n(x_0)$ converge, puisque la série de fonctions converge $\text{sur }]0,+\infty[.$
- Etude de la convergence uniforme de $\sum f'_n$: On a

$$f'_n(x) = -n^3 e^{-n^3 x}$$
.

Et pour a > 0, on a

$$\forall n \geq 0, \ \forall x \in [a, +\infty[, \ |f'_n(x)| = n^3 e^{-n^3 x} \leq n^3 e^{-n^3 a}.$$

Mais, $\sum_{n \to +\infty} n^3 e^{-n^3 a}$ converge et ceci par la régle de l'ordre, en effet: $\lim_{n \to +\infty} n^2 \left(n^3 e^{-n^3 a} \right) = 0$

(on peut aussi utiliser la régle de Cauchy etc...).

D'où $\sum f'_n$ converge normalement sur $[a, +\infty[$, ainsi, uniformément sur $[a, +\infty[$. On en déduit que F est dérivable sur tout $[a, +\infty[$ avec 0 < a.

Conclusion : Par recouvrement F est dérivable sur $]0,+\infty[$ et $F'(x)=$	$\sum_{n\geq 1} -2n^3xe^{-n^3x}$
	. – – – – – – –
	. – – – – – – –