MATH 450 Seminar in Proof

Prove: If $f: A \to B$ be a function such that A and B are finite |A| = |B|, then f is one-to-one if only if it is onto.

Proof.

 \Leftarrow Let $f:A\to B$ be a function such that |A|=|B| and f is onto. Then from the definition of onto, $\forall b\in B\exists a\in A$ such that, f(a)=b. Let f be not one-to-one. Then there exists $a_1,a_2\in A,a_1\neq a_2$ such that $f(a_1)=f(a_2)=b\in B$. This implies that there exists more elements in A than B. Thus saying, |A|>|B|, hence there is a contradiction $\to\leftarrow$; and so, f is one-to-one.

⇒ Let $f: A \to B$ be a function such that |A| = |B| and f is one-to-one. Then from the definition of one-to-one, if $f(a_1) = f(a_2)$ then $a_1 = a_2$. Let f be not onto. Then there exists $b \in B$ such that, $\nexists a \in A$, where f(a) = b. This implies that there exists more elements in B than A. Thus saying, |A| < |B|, hence there is a contradiction $\to \leftarrow$; and so, f has to be onto.