Quiz - 4

Instructions

- The following questions may have more than one correct answers.
- There is no negative marking for wrong answers.
- Correct answers are worth one point. Partially correct answers are worth half a point.
- i is the imaginary number, $i^2 = -1$.

Questions

- 1. The quantum state that encodes the sequence $\vec{X} = \begin{bmatrix} 1 & 1 & \sqrt{2} & 2 \end{bmatrix}$, has a normalization factor of _____ and is ____.
 - a. $\frac{1}{8}$ and 'entangled'.
 - b. $\frac{1}{8}$ and 'not entangled'.
 - c. $\frac{1}{\sqrt{8}}$ and 'not entangled'.
 - d. $\frac{1}{\sqrt{8}}$ and 'entangled'.
- 2. Given the quantum state representing a sequence of integers is given as:

$$\left|\vec{\mathbf{X}}\right\rangle = \frac{1}{2\sqrt{2}} \Big[|00\rangle + |01\rangle - \sqrt{3} \, |10\rangle + \sqrt{3} \, |11\rangle \Big]$$

What are the allowed values of the second and third elements of the sequence?

- a. 1 and -3.
- b. 1 and -6.
- c. -3 and 9.
- d. -1 and -3.
- 3. For a sequence of length N=8, what is the fourth row of the Fourier basis change matrix?

a.
$$\begin{bmatrix} 1 & \frac{1+i}{\sqrt{2}} & i & \frac{-1+i}{\sqrt{2}} & -1 & -\frac{1+i}{\sqrt{2}} & -i & \frac{1-i}{\sqrt{2}} \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & -\frac{1+i}{\sqrt{2}} & i & \frac{1-i}{\sqrt{2}} & -1 & \frac{1+i}{\sqrt{2}} & -i & \frac{-1+i}{\sqrt{2}} \end{bmatrix}$$

c.
$$\begin{bmatrix} 1 & i & -1 & -i & 1 & i & -1 & -i \end{bmatrix}$$

d.
$$\begin{bmatrix} 1 & \frac{-1+i}{\sqrt{2}} & -i & \frac{1+i}{\sqrt{2}} & -1 & \frac{1-i}{\sqrt{2}} & i & -\frac{1+i}{\sqrt{2}} \end{bmatrix}$$

4. The quantum state that encodes the sequence $\vec{\mathbf{X}} = \begin{bmatrix} 1 & \frac{1+i}{\sqrt{2}} & i & \frac{i-1}{\sqrt{2}} \end{bmatrix}$ is?

a.
$$\frac{|0\rangle+|1\rangle}{\sqrt{2}}\otimes\frac{|0\rangle+e^{i\frac{\pi}{4}}|1\rangle}{\sqrt{2}}$$

b.
$$\frac{|0\rangle + i|1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle + e^{i\frac{\pi}{4}}|1\rangle}{\sqrt{2}}$$

c.
$$\frac{|0\rangle+i|1\rangle}{\sqrt{2}}\otimes\frac{|0\rangle+|1\rangle}{\sqrt{2}}$$

d.
$$\frac{|0\rangle - |1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle + e^{i\frac{\pi}{4}}|1\rangle}{\sqrt{2}}$$

5. To perform the Quantum Fourier Transform on a sequence of length 8, what is the smallest controlled rotation angle that needs to be performed?

a.
$$\frac{\pi}{4}$$

b.
$$\frac{\pi}{2}$$

c.
$$\frac{\pi}{6}$$

d.
$$\frac{\pi}{16}$$

6. Consider the sequence $\vec{\mathbf{X}} = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$, which of the following are the valid results of the Fourier transform on this sequence?

a.
$$\begin{bmatrix} 1 & i & -1 & -i \end{bmatrix}$$

c.
$$\begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}$$

d.
$$\begin{bmatrix} 1 & -i & -1 & i \end{bmatrix}$$

7. Application of the Fourier transform on the quantum state quantum state $|\psi\rangle=\begin{pmatrix}1\\0\\0\\0\\0\\0\end{pmatrix}$ yields

which of the following states?

a.
$$q_0 = |+\rangle$$
, $q_1 = |i\rangle$ and $q_2 = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$

b.
$$q_0 = |+\rangle, \ q_1 = |-i\rangle \text{ and } q_2 = \frac{|0\rangle + e^{i\frac{\pi}{4}}|1\rangle}{\sqrt{2}}$$

c.
$$q_0 = |-\rangle$$
, $q_1 = |i\rangle$ and $q_2 = \frac{|0\rangle + e^{i\frac{\pi}{4}}|1\rangle}{\sqrt{2}}$

d.
$$q_0 = |-\rangle$$
, $q_1 = |-i\rangle$ and $q_2 = \frac{|0\rangle + e^{i\frac{\pi}{4}}|1\rangle}{\sqrt{2}}$

8. The Hadamard gate acts as the Fourier transform for a sequence of what length?
a. 0
b. 2
c. 1
d. 4
9. What is the outcome of the Fourier transform on a non-constant sequence of length
a. $ 1\rangle$
b. $ 0\rangle$
c. $ +\rangle$

10. When using the Fourier transform on the the state $|01\rangle$, without the swap operation, yields which of the following outputs?

2?

a.	$ +\rangle$	$ +\rangle$
b.	$ -\rangle$	$ -\rangle$
c.	$ +\rangle$	$ -\rangle$
d.	$ -\rangle$	$ +\rangle$

d. insufficient data provided.