Návrh číslicových systémů (INC): Projekt: Představení

Lukáš Kekely

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 00 Brno - Královo Pole ikekely@fit.vutbr.cz

Cíle projektu

- Získané dovednosti:
 - Vyzkoušet návrh číslicového obvodu (datová a kontrolní cesta)
 - Naučit se číslicové obvody vhodně popisovat v jazyce VHDL
 - Získat zkušenosti s překladem a simulací vytvořených obvodů
- Použitý příklad:
 - Příjem asynchronního komunikačního signálu rozhraní UART (běžně používaný protokol v oblasti vestavěných systémů)
- Formát vypracování:
 - Tři části 1. návrh, 2. implementace a 3. testování
 - Návrh "na papír", volitelné odevzdání RTL a FSM schémat
 - Povinná implementace v jazyce VHDL a její dokumentace
 - Dobrovolné testování implementace na reálném hardware

Asynchronní sériová komunikace

- Protokol na přenos vícebitového datového slova po vodiči
 - neaktivní stav log. 1
 - START bit log. 0 (přechodem 1\0 začíná přenos)
 - DATA n-bitů od LSB po MSB
 - 1-2 STOP bity log. 1
- Příklad konkrétního UART přenosu:
 - START bit, 8 bitů dat, 1x STOP bit

Asynchronní sériová komunikace

- Metoda pro příjem vstupních dat z UART vodiče
 - Výchozí hodnota neaktivní linky vodič v log. 1
 - Čeká se na START bit moment přechodu vodiče do log. 0
 - Obě strany znají přenosovou rychlost (např. 9600 baudů)
 - Pro vzorkování vodiče je použit 16x rychlejší hodinový signál
 - Hodnota se vzorkuje uprostřed intervalu přenosu daného bitu

Specifikace obvodu

DIN – vstupní vodič asynchronní sériové UART komunikace, slova v pevném formátu:
 1x START bit '0', 8x DATA bit, 1x STOP bit '1',
 konstantní přenosová (baudová) rychlost,
 16x rychlejší CLK a vzorkování uprostřed

- **DOUT[7:0]** deserializovaný 8-bitový datový výstup
- **DOUT_VLD** potvrzení platnosti dat, v log. 1 na jeden takt hodin

Zadání projektu

- Přesné informace dostupné ve VUT IS u předmětu INC
 - na eLearning (Moodle) stránce předmětu je sekce Projekt
 - texty zadání uloženy v datovém skladu a odkazovány
 - hlavní termín v IS pro odevzdání druhé části (implementace)
 - přihlašování na volitelnou první a třetí část (návrh a testování)
- Přehled bodování a odevzdání:
 - První část: extra 1b, deadline cca. konec března,
 volitelné odevzdání návrhu obvodu a získání zpětné vazby
 - Druhá část: max. 20b, získat min. 5b pro zápočet, deadline cca. konec dubna, implementace a dokumentace obvodu
 - **Třetí část:** extra 2b, možné samostatně nebo na cvičení, na konci semestru budou vypsané termíny

První část – Návrh obvodu

- 1. Nastudujte specifika fungování UART komunikace
- 2. Uvažujte specifický formát vstupních a výstupních dat
 - jeden START bit (log. 0), 8 bitů dat, jeden STOP bit (log. 1)
 - rychlost 9600 baudů za sekundu, 16x vyšší frekvence CLK
 - snímaní bitů uprostřed přenášeného intervalu
 - paralelní 8 bitový výstup, potvrzení log. 1 v jednom taktu
- 3. Navrhněte obvod na RTL úrovni včetně řídícího automatu

Dobrovolně:

- 4. Vytvořte technickou zprávu s vašim návrhem obsahující:
 - RTL schéma architektury obvodu a její stručný popis
 - Nákres grafu přechodů automatu a jeho stručný popis
- 5. Odevzdejte do IS zprávu ve formátu PDF jako *zprava.pdf*

Druhá část – Implementace a ladění

- 1. Stažení virtuálního stroje nebo lokální instalace nástrojů
- Stažení ZIP archivu se šablonou zdrojových souborů
 - uart_rx.vhd VHDL definice rozhraní a prázdné architektury
 - uart_rx_fsm.vhd prázdná VHDL komponenta pro FSM
 - testbench.vhd soubor pro základní test funkčnosti obvodu
 - uart.sh, wave.tcl pomocné soubory pro prěklad a simulaci
- 3. Navržený obvod implementujte v jazyce VHDL
- Proveďte syntézu a simulaci vašeho kódu, ověřte jeho správnou funkčnost a odstraňte nalezené chyby
- 5. Doplňte a aktualizujete technickou zprávu projektu
- 6. Odevzdejte vaše *uart_rx.vhd*, *uart_rx_fsm.vhd*, *zprava.pdf* soubory v ZIP archivu *xlogin00.zip*

Výstupy projektu

Zadání 1. a 2. části obsahuje ukázku formátu a obsahu zpráv

- Před odevzdáním implementace si její funkčnost otestujte skriptem z archivu *test.zip*, podrobný návod v *README*
- Důležité upozornění: Plagiátorství nebo nedovolená spolupráce vede na neudělením zápočtu z předmětu INC, případně získáte také předvoláním před disciplinární komisi

Třetí část – Testování na kitu PYNQ-Z2

Pomocné materiály

- Praktická ukázka návrhu obdobného číslicového obvodu
 - na cvičení za týden navrhnu a nakreslím RTL schéma podobně jednoduchého obvodu a jeho řídící konečný automat
 - upozorním na formát a potřebné náležitosti těchto schémat
- Ukázka implementace obdobného obvodu v jazyce VHDL
 - na cvičení za cca. měsíc naimplementuju v jazyce VHDL obvod podle RTL a FSM schémat, předvedu také jeho simulaci
 - upozorním na vhodný postup a pravidla psaní HDL kódu
- Zvolený obvod: vysílací strana UART protokolu
 - realizace serializace datových bajtů na jednobitový vodič
 - správný formát přenosů (START bit, 8 bitů dat, STOP bit)
 - zajištění časování vysílaných bitů (každý bit držet 16 taktů)

Děkuji za pozornost!