COMP4611: Design and Analysis of Computer Architectures

Instruction Set Architectures

In order to use the hardware of a computer, we must <u>speak</u> its language.

The words of a computer language are called <u>instructions</u>, and its vocabulary is called an <u>instruction set</u>.

Instruction set of a computer: the portion of the computer visible to the assembly level programmer or to the compiler writer.

software

instruction set

Instruction Set Architecture (ISA)

Application Application Instruction Set Architecture ...SPARC MIPS ARM x86 HP-PA IA-64... Intel Pentium X, Core 2 AMD K6, Athlon, Opteron Transmeta Crusoe TM5x00

Instruction Set Architecture

- Strong influence on cost/performance
 - Remember the Execution Time equation?

- ISA has a huge impact on programs and their performance!
- New ISAs are rare, but new (extended) versions are not
 16-bit, 32-bit and 64-bit X86 versions
- Longevity is a strong function of marketing prowess

Instruction Set Architecture

- · What is an instruction set architecture?
 - Specification of a set of instructions
 - Each instruction is directly executed by the CPU hardware.
- · How is it represented?
 - $-\,$ By a binary format, typically bits, bytes, words.
 - Word size is typically 16, 32, 64 bits today.
 - Length format options:
 - · Fixed each instruction encoded in same size field
 - Variable half-word, whole word, multiple word instructions are possible

6

Basic ISA Classes

- Accumulator:
 - -1 Address: add A (acc ← acc + Mem[A]).
- Stack:
 - 0 address: add (tos ← tos + second of stack).
- General Purpose Register (GPR):
 - A fast register file (collection of registers)
 - Operands of arithmetic operations are explicitly specified
 - Operands can be memory locations or registers
 - -2 addresses: add A, B EA(A) ←EA(A)+EA(B)
 - 3 addresses: add A, B, C EA(A) ←EA(B)+EA(C)

Basic ISA Classes

- Classes of GPR computers
 - Register-register, register-memory, memorymemory
- · Load/Store (register-register):
 - ALU operations : No memory reference.
 - 3 addresses: add R1, R2, R3 R1 ← R2 + R3

load R1, R2 R1 \leftarrow Mem[R2] store R1, R2 Mem[R1] \leftarrow R2

 Comparison: Bytes per Instruction? Number of Instructions? Cycles per instruction?

10

Operand Locations in Four ISA Classes (a) Stack Processor (b) Accumulator (c) Register-memory (d) Register-register/load-storre ALU Memory 11

Comparison of ISA Classes

• Code Sequence for C = A+B

- A, B, and C are variables stored in memory

Stack	Accumulator	Register (register-Mem)	Register (load/store)
Push A	Load A	Load R1, A	Load R1, A
Push B	Add B	Add R1, B	Load R2, B
Add	Store C	Store C, R1	Add R3, R1, R2
Pop C			Store C, R3

Memory efficiency? Instruction access? Data access?

What's the minimum number of instructions we need for a computer?

What may an ISA want to provide?

- Computers should use general purpose registers
- Computer should use a load-store architecture
- The number of instructions is not a limitation any more

13

Addressing Modes

- · An important aspect of ISA design
 - Has major impact on both the HW complexity and the instruction count
 - HW complexity affects the CPI and the cycle time
- Basically a set of mappings
 - From address specified to address used
 - Address used = effective address
 - Effective address may go to memory or to register file
 - Effective address generation is an important focus

Addressing Mode Summary

- Important data addressing modes
 - Displacement
 - Immediate
 - Register Indirect
- Displacement size should be 12 to 16 bits.
- Immediate size should be 8 to 16 bits.

21

Instruction Operations

- Arithmetic and Logical:
 - add, subtract, and , or, etc.
- Data transfer:
 - Load, Store, etc.
- Control
- Jump, branch, call, return, trap, etc.
- Synchronization:
 - Test & Set.
- String:
 - string move, compare, search.

		Usage Example:
	Top 10 Intel	X86 Instructions
Rank	instruction	Integer Average Percent total executed
1	load	22%
2	conditional branch	20%
3	compare	16%
4	store	12%
5	add	8%
6	and	6%
7	sub	5%
8	move register-register	4%
9	call	1%
10	return	1%
	Total	96%
Obser	vation: Simple instruction	ns dominate instruction usage frequency.
	•	3
23		

Data Type and Size of Operands

- Byte, half word (16 bits), word (32 bits), double word (64 bits).
- Arithmetic:
 - Decimal: 4bit per digit.
 - Integers: 2's complement
 - 8 bits (C char), 16 bits (C int16_t, sometimes int, short), 32 bits (C int32_t, sometimes long), 64 bits (C int64_t, sometimes long
 - Floating-point: IEEE standard
 - · Single precision: 32 bits (C float)
 - Double precision: 64 bits (C double)
 - · Quadruple precision: 128 bits
 - · Extended precision: e.g., 80 bits

Instruction Set Encoding

Considerations affecting instruction set encoding:

- To support registers and addressing modes provided
- The impact of the size of the register and addressing mode fields on the average instruction size and on the average program.
- To encode instructions into lengths that will be easy to handle in the implementation.
 - · Usually, the instruction length should be a multiple of bytes.

Instruction Format

- - Operation, address specifier 1, address specifier 2, address specifier 3.
 - MIPS, SPARC, Power PC.
- Variable
 - Operation & # of operands, address specifier1, ..., specifier n. - VAX
- Hybrid
- operation, address specifier, address field.
- operation, address specifier 1, address specifier 2, address field.
- operation, address field, address specifier 1, address specifier 2.
- Summary:
 - If code size is most important, use variable format.
 - If performance is most important, use fixed format.

What should an ISA want to provide?

- Use general purpose registers with a load-store architecture.
- Support these addressing modes: displacement, immediate, register indirect.
- Support these simple instructions: load, store, add, subtract, move register, shift, compare equal, compare not equal, branch, jump, call, return.
- Support these data size: 8-,16-,32-bit integer, IEEE FP standard.
- Provide at least 16 general purpose registers plus separate FP registers and aim for a minimal instruction set.

33

64-Bit Processors

34

32-bit Computing

- In computer architecture, a word is defined as a unit of data that can be addressed and moved between the computer processor and the storage area.
- In 32-bit computing a word is 32 bits.
- Usually, the defined bit-length of a word is equivalent to the width of the computer's data bus (and registers) so that a word can be moved in a single operation from the storage to the processor registers

35

Th..... 22 bit

• In a 32-bit microprocessor;

 There are 32-bit general-purpose registers in the processor.

32-bit Computing

 There are 2³² = 4GB memory to be addressed.

64-bit Computing

- · The best and simple definition is enhancing the processing word in the architecture to 64 bits.
- The addressable memory increases from 4 GB to up to 2^{64} = 18 billion GB
- Many implementations support less than this
- Size of registers extended to 64 bits
- Integer and address data up to 64 bits in length can now be operated on
- $2^{64} = 1.8 \times 10^{19}$ integers can be represented with 64 bits vs. 4.3 x 10⁹ with 32 bits
- Dynamic range has increased by a factor of 4.3 billion!

64-bit Computing

• Stepping up from 32 to 64 bits does not mean doubling performance

Certain applications will benefit, others

may not

What Applications Can Benefit Most From 64-bit?

- · Large databases
- Business and scientific simulation and modeling programs
- Highly graphics-intensive software (CAD, 3-D games)
- Cryptography