

Introduction of BELLA Code

Janne Wallenius, Alejandría Pérez Nuclear Engineering, KTH

Intended learning outcomes

Simulation of transients in fast reactors using BELLA

By "transient" is meant a transition from one steady state to another.

This may entail

Start-up & shut-down

Intended change in power and/or flow

Un-intended change in power and/or flow followed by shut-down

Un-intended change in power and/or flow without shut-down

After this lecture you will be able to:

- Write a simple code for the simulation of transients in a fast reactor
- Simulate reactivity insertion and loss of flow transients

KTH BELLA Code

- BELLA Bortot's Elegant Liquid LFR Analysis tool.
- BELLA provides a non-linear solution for the coupled neutron kinetic and thermal-hydraulic equations of the primary system of an arbitrary liquid metal-cooled reactor.
- The code is based on point kinetics and balance equations for mass, energy and momentum, which are generally applied to the core, primary system components and RVAC system.
- Developed in the Fortran language. This language was chosen because it is easy to learn and provides efficient constructs that are useful for numerical calculations.

PRIMARY NEUTRONICS ACTINIDES RVACS REACTOR THERMO -**SYSTEM CORE MECHANICS Point Kinetics** Decay heat Hot leg Model of minor Reactor Vessel Heat transfer **Fuel** Steam generator model actinide bearing **Auxiliary Cooling** applied of fuel performance Cold leg rod and coolant. fuel analysis System **REACTIVITY** Cold pool Displacement Temperature Reactivity Temperature Temperature Air mass flow Stress Mass fraction Mass flux Heat source Heat removed Strain

BELLA Code - Current capabilities

BELLA Code - Current capabilities

- Un-protected Transient over-power (UTOP)
- Un-protected Loss-of-flow (ULOF)
- Un-protected Loss-of-heat-sink (ULOHS)
- Combination of ULOF and ULOHS (station blackout)

BELLA Code - FEEDBACK

Neutronic - Point Kinetics Model

In the point-kinetic approximation, we may describe the power evolution of a reactor according to the following set of coupled differential equations:

$$\frac{d\dot{Q}}{dt} = \frac{dn(t)}{dt} = \frac{\rho(t) - \beta_{eff}}{\Lambda_{eff}} n(t) + \sum_{i=1}^{8} \lambda_i C_i(t)$$
$$\frac{dC_i(t)}{dt} = \frac{\beta_i}{\Lambda_{eff}} n(t) - \lambda_i C_i(t)$$

Group	β_i (pcm)	λ_i (1/s)
1	15.9	0.0125
2	92.1	0.0283
3	50.4	0.0425
4	117.1	0.133
5	205.1	0.292
6	84.6	0.666
7	67.8	1.63
8	32.2	3.55

SUNRISE-LFR point kinetics parameters for all neutron precursors.

Initial conditions $n(0) = n_0$

$$C_i(0) = \frac{\beta_i}{\Lambda_{eff} \lambda_i} n(0)$$

$$\beta_{eff} = \sum_{i=1}^{8} \beta i$$

Parameter	Value	${f Unit}$
$eta_{ ext{eff}}$	665.2	pcm
$\lambda_{ ext{eff}}$	0.089	1/s
$\Lambda_{ ext{eff}}$	0.88	$\mu { m s}$

SUNRISE-LFR point kinetics main effective parameters.

^{*}Data obtained from: Persico, A. (2022). Master Degree thesis. In progress.

Reactivity feedback

$$\delta \rho(t) = K_D \ln \left(\frac{\overline{T}_{fuel}(t)}{\overline{T}_{fuel}(0)} \right) + \alpha_{axial} \delta \overline{T}_{fuel}(t) + \alpha_{coolant} \delta \overline{T}_{coolant}(t) + \alpha_{radial} \delta \overline{T}_{coolant}^{in}(t) + \delta \rho_{external}$$

Fuel Doppler feedback

Fuel axial expansion

Coolant density change

Fuel SA diagrid radial expansion

External reactivity

Parameter	Value	${f Unit}$
K_D	-530	pcm
α_{ax}	-0.15	pcm/K
α_{Pb}	-0.66	pcm/K
α_{rad}	0.03	$\mathrm{pcm/K}$

lists the feedback coefficients at the middle of life (MoL) of SUNRISE-LFR.

^{*}Data obtained from: Persico, A. (2022). Master Degree thesis.

Thermalhydraulic

Lumped parameter approach

- Treat the primary system as a collection of single points, featuring average and boundary temperatures:
- $\qquad \qquad \overline{T}_{coolant}^{core}, \ T_{coolant}^{core_in}, \ T_{coolant}^{core_out}, \overline{T}_{HL}, \ \overline{T}_{coolant}^{SG}, T_{coolant}^{SG_in}, T_{coolant}^{SG_out}, \overline{T}_{CL}^{SG_in}, T_{coolant}^{SG_out}, \overline{T}_{CL}^{SG_out}, \overline{T}_{C$
- $ar{T}_{clad}^{outer}$, $ar{T}_{clad}^{inner}$, $ar{T}_{fuel}^{outer}$, $ar{T}_{fuel}^{middle}$, $ar{T}_{fuel}^{central}$

Initialise coolant flow and clad surface temperature

- Set inlet and outlet temperatures (Tin & Tout) of your core coolant
- Steam generator Inlet temperature = Outlet temperature of core
- Outlet temperature of steam generator = Inlet temperature of core

$$\dot{m}_{coolant}^{core} = \frac{Q_{core}}{c_p^{core} \Delta T_{core}}, \qquad \overline{v}_{coolant}^{core} = \frac{\dot{m}}{A_{flow} \times \overline{\rho}_{coolant}^{core}}$$

$$\overline{T}_{clad}^{surface} = \overline{T}_{coolant}^{core} + \dot{Q} \frac{D_h}{\lambda_{coolant} \times Nu_{coolant}}$$

 c_p, λ, Nu , are to be evaluated at the coolant average temperature and average velocity.

Initialise temperature state of cladding

• Calculate average ΔT_{clad} between outer and inner surfaces of the fuel clad by iteration process:

$$\Delta T_{clad}^{(1)} = \frac{\overline{\chi}}{2\pi\lambda_{clad}(T_{clad}^{out})} \ln\left(\frac{r_{clad}^{out}}{r_{clad}^{in}}\right)$$

$$\overline{\lambda}_{clad}^{(1)} = \lambda_{clad} \left(\overline{T}_{clad}^{out} + \frac{1}{2} \Delta T_{clad}^{(1)} \right)$$

$$\Delta T_{clad}^{(2)} = \frac{\overline{\chi}}{2\pi \overline{\lambda}_{clad}^{(1)}} \ln \left(\frac{r_{clad}^{out}}{r_{clad}^{in}} \right)$$

$$\overline{\lambda}_{clad}^{(2)} = \lambda_{clad} \left(\overline{T}_{clad}^{out} + \frac{1}{2} \Delta T_{clad}^{(2)} \right) \text{ ... until } \Delta T_{clad}, \overline{\lambda}_{clad} \text{ converges}$$

Initialise temperature increase over fuel-clad gap

Calculate average ΔT_{gap} between clad inner surface and fuel pellet by iteration:

$$\Delta T_{gap}^{(1)} = \frac{\overline{\chi}}{2\pi\lambda_{gap}(T_{clad}^{in})} \ln\left(\frac{r_{clad}^{in}}{r_{fuel}^{out}}\right)$$

$$\overline{\lambda}_{gap}^{(1)} = \lambda_{gap} \left(\overline{T}_{clad}^{in} + \frac{1}{2} \Delta T_{gap}^{(1)} \right)$$

$$\Delta T_{gap}^{(2)} = \frac{\overline{\chi}}{2\pi \overline{\lambda}_{gap}^{(1)}} \ln \left(\frac{r_{clad}^{in}}{r_{fuel}^{out}} \right)$$

$$\overline{\lambda}_{gap}^{(2)} = \lambda_{gap} \left(\overline{T}_{clad}^{in} + \frac{1}{2} \Delta T_{gap}^{(2)} \right) \quad \text{... until } \Delta T_{gap}, \overline{\lambda}_{gap} \text{ converges}$$

... until
$$\Delta T_{gap}$$
 , $\overline{\lambda}_{gap}$ converges

Initialise temperature state of fuel pellet

• Calculate average ΔT_{fuel} between fuel outer surface and centre-line by iteration:

$$\Delta T_{fuel}^{(1)} = \frac{\overline{\chi}}{4\pi\lambda_{fuel}(T_{fuel}^{out})}$$

$$\overline{\lambda}_{fuel}^{(1)} = \lambda_{fuel} \left(\overline{T}_{fuel}^{out} + \frac{1}{2} \Delta T_{fuel}^{(1)} \right)$$

$$\Delta T_{fuel}^{(2)} = \frac{\overline{\chi}}{4\pi \overline{\lambda}_{fuel}^{(1)}}$$

$$\overline{\lambda}_{fuel}^{(2)} = \lambda_{fuel} \left(\overline{T}_{fuel}^{out} + \frac{1}{2} \Delta T_{fuel}^{(2)} \right) \dots \text{until } \Delta T_{fuel}, \overline{\lambda}_{fuel} \text{ converges}$$

Transient heat transfer

The following set of differential equations is solved to evaluate the evolution of component temperatures in the core during a transient:

$$\begin{split} &m_{fuel}^{centre} c_{p}^{fuel} \frac{dT_{fuel}^{centre}}{dt} = Q_{fuel}^{centre}(t) - \frac{r_{fuel}}{r_{centre}} h_{fuel} \left(T_{fuel}^{centre}(t) - T_{fuel}^{middle}(t)\right) \\ &m_{fuel}^{middle} c_{p}^{fuel} \frac{dT_{fuel}^{middle}}{dt} = Q_{fuel}^{middle}(t) + \frac{r_{fuel}}{r_{centre}} h_{fuel} \left(T_{fuel}^{centre}(t) - T_{fuel}^{middle}(t)\right) - \frac{r_{fuel}}{r_{middle}} h_{fuel} \left(T_{fuel}^{middle}(t) - T_{fuel}^{outer}(t)\right) \\ &m_{outer}^{outer} c_{p}^{fuel} \frac{dT_{fuel}^{outer}}{dt} = Q_{fuel}^{outer}(t) + \frac{r_{fuel}}{r_{middle}} h_{fuel} \left(T_{fuel}^{middle}(t) - T_{fuel}^{outer}(t)\right) - h_{gap} \left(T_{fuel}^{outer}(t) - T_{clad}^{inner}\right) \\ &m_{clad}^{inner} c_{p}^{clad} \frac{dT_{clad}^{inner}}{dt} = h_{gap} \left(T_{fuel}^{outer}(t) - T_{clad}^{inner}(t)\right) - h_{clad} \left(T_{clad}^{inner}(t) - T_{clad}^{outer}(t)\right) \\ &m_{collant}^{outer} c_{p}^{clad} \frac{dT_{clad}^{outer}}{dt} = h_{clad} \left(T_{clad}^{inner}(t) - T_{clad}^{outer}(t)\right) - h_{coolant} \left(T_{clad}^{outer}(t) - \overline{T}_{coolant}^{core}(t)\right) \\ &m_{coolant}^{coolant} \frac{dT_{coolant}^{outer}}{dt} = h_{coolant} \left(T_{clad}^{outer}(t) - \overline{T}_{coolant}^{core}(t)\right) - m_{coolant}^{coolant}(t) c_{p}^{coolant} \Delta T_{coolant}^{coolant}(t) \end{aligned}$$

Generalised heat transfer coefficients

$$h_{fuel} = 4\pi \lambda_{fuel} n_{rods} H_{fuel}$$
 [W/K]

$$h_{gap} = \frac{2\pi\lambda_{gap}n_{rods}H_{fuel}}{\ln(r_{clad}^{in}/r_{fuel})}$$
 [W/K]

$$h_{clad} = \frac{2\pi\lambda_{clad}n_{rods}H_{fuel}}{\ln(r_{clad}^{out}/r_{clad}^{in})}$$
 [W/K]

$$h_{coolant} = 2\pi r_{clad}^{out} \lambda_{coolant} n_{rods} H_{fuel} \frac{Nu_{coolant}^{core}}{D_{h}^{core}} \quad [\text{W/K}]$$

Fuel average temperature

The fuel average temperature \overline{T}_{fuel} to be used for Doppler and axial expansion feedback is obtained as:

$$\overline{T}_{fuel} = T_{fuel}^{centre} \left(\frac{r_{centre}}{r_{fuel}}\right)^2 + T_{fuel}^{middle} \left(\frac{r_{middle} - r_{centre}}{r_{fuel}}\right)^2 + T_{fuel}^{centre} \left(\frac{r_{outer} - r_{middle}}{r_{fuel}}\right)^2$$

Hot/cold leg and steam generator temperatures

The coolant exiting the core is diluted into the hot leg:

$$\frac{d\overline{T}_{coolant}^{HL}}{dT} = \frac{\overset{\cdot}{m_{coolant}^{core}}}{\overset{\cdot}{m_{coolant}^{HL}}} \left(T_{out}^{core} - \overline{T}_{coolant}^{HL}\right)$$

• For the steam generator inlet, we assume

$$T_{in}^{SG} = \overline{T}_{coolant}^{HL}$$

 Here, a simplified assumption is made for the outlet temperature of the steam generator. Either

$$T_{out}^{SG} = T_{in}^{SG} - \Delta T_{coolant}^{SG}$$
 constant temperature difference, or

$$T_{out}^{SG} = T_{in}^{SG} - \frac{Q_{SG}}{\dot{m}_{coolant}^{SG} \times c_p^{coolant}}$$
 constant power removal.

For cold leg and core inlet temperatures:

$$\frac{d\overline{T}_{coolant}^{CL}}{dT} = \frac{m_{coolant}^{SG}}{m_{coolant}^{CL}} \left(T_{out}^{SG} - \overline{T}_{coolant}^{CL} \right), \qquad T_{in}^{core} = \overline{T}_{coolant}^{CL}$$

Mass flow rates

Change in mass flow rate through core and steam generator:

Pressure loss coefficients

The generalized pressure loss coefficients K are expressed in terms of the steady state pressure drops assumed to be established at t = 0:

$$K^{core}(t) = \left| \frac{\overset{\cdot}{m_{coolant}^{core}}(t)}{\overset{\cdot}{m_{coolant}^{core}}(0)} \right|^{b_{core}} \Delta P^{core}(0) \left[\frac{\overset{\cdot}{m_{coolant}^{core}}(0) \left| \overset{\cdot}{m_{coolant}^{core}}(0) \left| \frac{\overset{\cdot}{m_{coolant}^{core}}(0) \left| \overset{\cdot}{m_{coolant}^{core}}(0) \left| \frac{\overset{\cdot}{m_{coolant}^{core}}(0) \left| \overset{\cdot}{m_{coolant}^{core}}(0) \right| \right|^{-1}}{2\rho_{coolant}^{core}(0) (A_{coolant}^{core})^{2}} \right]^{-1}$$

$$K^{SG}(t) = \left| \frac{\overset{\cdot}{m_{coolant}^{SG}}(t)}{\overset{\cdot}{m_{coolant}^{SG}}(0)} \right|^{b_{SG}} \Delta P^{SG}(0) \left[\frac{\overset{\cdot}{m_{coolant}^{SG}}(0) \left| \overset{\cdot}{m_{coolant}^{SG}}(0) \right| \right| \right]^{-1} \right|$$

b: flow characteristic friction exponents

Elevation of coolant free surface levels

Net transfer of coolant between hot and cold legs + expansion

$$\frac{dH^{HL}}{dt} = \frac{\dot{m_{coolant}}^{core} - \dot{m_{coolant}}^{SG}}{\rho_{coolant}^{HL} A_{coolant}^{HL}} - \frac{H^{HL}}{\rho_{coolant}^{HL}} \frac{d\rho_{coolant}}{dT} \frac{d\overline{T}^{HL}}{dt} - \frac{V_{coolant}^{core}}{\rho_{coolant}^{core} A_{coolant}^{HL}} \frac{d\rho_{coolant}}{dT} \frac{d\overline{T}^{core}}{dt}$$

$$\frac{dH^{CL}}{dt} = \frac{\dot{m}_{coolant}^{SG} - \dot{m}_{coolant}^{core}}{\rho_{coolant}^{CL} A_{coolant}^{CL}} - \frac{H^{CL}}{\rho_{coolant}^{CL}} \frac{d\rho_{coolant}}{dT} \frac{d\overline{T}^{CL}}{dt}$$

Termomechanical model

Radial equilibrium equation

radial stress & hoop stress

Geometric equations

radial displacement & strain

Generalized Hooke's law

stress & strain

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r - \sigma_\theta}{r} = 0$$

$$\varepsilon_r = \frac{du}{dr}$$
 $\varepsilon_\theta = \frac{u}{r}$ $\varepsilon_z = const(r)$

$$\varepsilon_{r} = \frac{1}{E} (\sigma_{r} - v(\sigma_{\theta} + \sigma_{z})) + \alpha T + \varepsilon^{s} + \varepsilon_{r}^{c}$$

$$\varepsilon_{\theta} = \frac{1}{E} (\sigma_{\theta} - v(\sigma_{r} + \sigma_{z})) + \alpha T + \varepsilon^{s} + \varepsilon_{\theta}^{c}$$

$$\varepsilon_{z} = \frac{1}{E} (\sigma_{z} - v(\sigma_{r} + \sigma_{\theta})) + \alpha T + \varepsilon^{s} + \varepsilon_{z}^{c}$$

RVAC System

$$\frac{d\bar{T}_{Pb}}{dt} = \frac{1}{m_{Pb}c_p^{Pb}} \left(\dot{Q}(t) - h_{Pb \to 316L} A_{primary} (\bar{T}_{Pb} - \bar{T}_{primary}) \right) \tag{1}$$

$$\frac{d\bar{T}_{Pb}}{dt} = \frac{1}{m_{Pb}c_{p}^{Pb}} \left(\dot{Q}(t) - h_{Pb \to 316L} A_{primary}(\bar{T}_{Pb} - \bar{T}_{primary}) \right)$$

$$\frac{d\bar{T}_{vessel}}{dt} = \frac{1}{m_{vessel}c_{p}^{316L}} \left(h_{Pb \to 316L} A_{primary}(\bar{T}_{Pb} - \bar{T}_{primary}) - \frac{\sigma_{SB}(\bar{T}_{vessel}^4 - \bar{T}_{guard}^4)}{\frac{1}{A_{vessel}c_{vessel}} + \frac{1}{A_{guard}c_{guard}} - \frac{1}{A_{guard}} \right)$$

$$\frac{d\bar{T}_{vessel}}{dt} = \frac{1}{m_{guard}c_{p}^{316L}} \left(\frac{\sigma_{SB}(\bar{T}_{vessel}^4 - \bar{T}_{guard}^4)}{\frac{1}{A_{guard}c_{guard}} - \frac{\sigma_{SB}(\bar{T}_{guard}^4 - \bar{T}_{liner}^4)}{\frac{1}{A_{guard}c_{guard}} + \frac{1}{A_{liner}c_{liner}} - \frac{1}{A_{liner}}} - h_{316L \to air}A_{guard}(\bar{T}_{guard} - \bar{T}_{air}) \right)$$

$$(2)$$

$$\frac{d\bar{T}_{guard}}{dt} = \frac{1}{m_{guard}c_p^{316L}} \left(\frac{\sigma_{SB}(\bar{T}_{vessel}^4 - \bar{T}_{guard}^4)}{\frac{1}{A_{vessel}\epsilon_{vessel}} + \frac{1}{A_{guard}\epsilon_{guard}} - \frac{1}{A_{guard}} - \frac{\sigma_{SB}(\bar{T}_{guard}^4 - \bar{T}_{liner}^4)}{\frac{1}{A_{guard}\epsilon_{guard}} + \frac{1}{A_{liner}\epsilon_{liner}} - \frac{1}{A_{liner}}} - h_{316L \to air}A_{guard}(\bar{T}_{guard} - \bar{T}_{air}) \right) (3)$$

$$\frac{d\bar{T}_{liner}}{dt} = \frac{1}{m_{liner}c_p^{316L}} \left(\frac{\sigma_{SB}(\bar{T}_{guard}^4 - \bar{T}_{liner}^4)}{\frac{1}{A_{guard}\epsilon_{guard}} + \frac{1}{A_{liner}\epsilon_{liner}} - \frac{1}{A_{liner}}} - h_{316L \to air}A_{liner}(\bar{T}_{liner} - \bar{T}_{air}) - h_{316L \to RW}A_{liner}(\bar{T}_{liner} - \bar{T}_{RW}) \right)$$
(4)

RVAC System

|--|

$$\frac{d\bar{T}_{RW}}{dt} = \frac{1}{m_{RW}c_n^{RW}} \left(h_{316L \to RW} A_{liner} (\bar{T}_{liner} - \bar{T}_{RW}) - h_{RW \to shield} A_{shield} (\bar{T}_{RW} - \bar{T}_{shield}) \right) \tag{5}$$

$$\frac{d\bar{T}_{shield}}{dt} = \frac{1}{m_{shield}c_p^{shield}} \left(h_{RW \to shield} A_{shield} (\bar{T}_{RW} - \bar{T}_{shield}) - h_{shield \to air} A_{shield} (\bar{T}_{shield} - \bar{T}_{in}) \right) \tag{6}$$

$$\frac{dT_{air}^{out}}{dt} = \frac{1}{m_{air}c_p^{air}} \left(h_{guard \to air} A_{guard} (\bar{T}_{guard} - \bar{T}_{air}) + h_{liner \to air} A_{liner} (\bar{T}_{liner} - \bar{T}_{air}) - \dot{m}_{air}c_p^{air} (T_{air}^{out} - T_{in}) \right)$$
(7)

$$\frac{d\vec{m}_{air}}{dt} = \frac{A_{vault}}{H_{vault}} \left(g(\rho_{air}^{in} - \rho_{air}^{out}) \left(\frac{H_{vault}}{2} + H_{chimney} \right) - \frac{f_D^{vault} H_{vault} \dot{m}_{air}^2}{2D_h^{vault} \rho_{air} (T_{vault}) A_{vault}^2} - \frac{f_D^{chimney} H_{chimney} \dot{m}_{air}^2}{2D_h^{chimney} \rho_{air} (T_{chimney}) A_{chimney}^2} \right) + \frac{f_D^{vault} H_{vault} \dot{m}_{air}^2}{2D_h^{vault} \rho_{air} (T_{vault}) A_{vault}^2} - \frac{f_D^{chimney} H_{chimney} \dot{m}_{air}^2}{2D_h^{chimney} \rho_{air} (T_{chimney}) A_{chimney}^2} \right)$$

$$-\frac{A_{vault}}{H_{vault}}\frac{\dot{m}_{air}^2}{2}\left(\frac{K_{in}+K_{bend}}{\rho_{air}(T_{in})A_{in}^2}+K_{\Delta A}+\left(\frac{A_{in}}{A_{bottom}}-1\right)^2\frac{1}{\rho_{air}(T_{in})A_{in}^2}+K_{\Delta A}-\left(1-\frac{A_{vault}}{A_{bottom}}\right)\frac{1}{\rho_{air}(T_{out})A_{bottom}^2}+K_{\Delta A}+\left(\frac{A_{vault}}{A_{chimney}}-1\right)^2\frac{1}{\rho_{air}(T_{out})A_{vault}^2}+\frac{2K_{bend}+K_{out}}{\rho_{air}(T_{out})A_{out}^2}\right)$$
(8)

How are the models solved?

Radial temperatures

- Fuel
- Gap
- Cladding
- Lead

Simultaneous

Matrix solved by Thomas' Method

Primary System and RVAC

- Hot-leg
- Steam generator
- Cold-leg
- Cold-pool
- Reactor-vessel
- Guard-vessel

Sequential

Explicit discretization

Reactor Power

- Neutronic density
- Reactivity

Sequential

Explicit discretization

BELLA Code Routines

User_interface.f90

Read_input.f90

Print results.f90

Transients.f90

Input.dat

Results.dat

Initial.f90

User_interface.f90

Neutronic_model.f90

Reactivity.f90

Radial_temp.f90

Axial temp.f90

Energy_primary.f90

Momentum_primay.f90

Mass primay.f90

Energy_RVAC.f90

Momentum_RVAC.f90

BELLA.f90

Global_variables.mod

Precision.mod

Fuel prop.f90

Gap prop.f90

Clad_prop.f90

Lead_prop.f90

Users Interface : doing easy

```
aleiandria@eduroam-10-200-44-189 src % ./bella
     Please write the simulation time (s).
1000
     Please write simulation step (s).
1
     Do you want to simulate a transient event?
          ves = 1
           no = 2
1
     Please write the time to start the transient (s).
100
     Choose the transient event:
                   write 1
     ULOF
     UTOP
                   write 2
                   write 3
     ULOHS
     ULOF & ULOHS write 4
```

```
Time
                                             Thermal power =
                      1000.00000000000000
                                                                 80000652.000000000
                                Temperatures [°C]
Fuel avo
                      645.22998046875000
                                                                 652.65002441406250
                                             Fuel max
Clad ava
                                             Clad max
                      496.45001220703125
                                                                 561.34002685546875
                                             Lead outlet
Lead inlet
                      419.67001342773438
                                                                 550.86999511718750
Lead core
                                             Lead Hot leg
                      485.36999511718750
                                                                 550.86999511718750
Lead SG
                                             Lead Cold leg =
                      485.23001098632812
                                                                 419.98999023437500
Lead Cold pool
                                             Fuel max core =
                                                                 868.34002685546875
                      419.98999023437500
Mass flow [kg/s] =
                      4241.3999023437500
```


Repository to keep it safe!

Simulation of reactivity insertion in a small lead-cooled reactor with UO₂ fuel (SEALER-3)

- Insertion of 0.5\$ reactivity at t = 100 s.
- Power increases more than 400%
- Temperatures increase
- Negative reactivity feedbacks act
- Sub-criticality achieved (without insertion of shut-down rods) 100 s into the transient.
- Power reduces, as delayed neutrons continue to induce fission chains.
- Coolant & clad temperatures increase
- Fuel temperature decreases

Simulation of loss of flow in SEALER-3

