试卷举例

(D) 位移电流的磁效应不服从安培环路定理

	(A) 只有(1)、(4)是对的 (B) 只有(2)是对的 (C) 只有(3)是对的 (D) 只有(2)、(4)是对的			r	1		
	2. 某人骑自行车以速率 v 向正面	5方行驶,遇到由北向南	f刮的风(设风	(速大小也)	为ャ),则他		0
	感到风是从:						0
	0000000 0000000	(B) 东南方向吹来		r	1		
	(A) 东北方向吹来				•		0
	(C) 西北方向吹来	(D) 西南方向吹来					
	 一轻弹簧原长为 R , 劲度 另一端与一套在半圆环上的小 弹簧的弹性力对小环所作的功 	环相连,当把小环由半 为:	在半径为 R 自 圆环中点B移	的半圆环的 到另一端 <i>C</i>	端点A处, 的过程中,		0
	(A) $\frac{1}{2}kR^2$; (B) -	$-\frac{1}{2}kR^2$:	Z				0
	4	- /	ZZ R	1	1	1. C	0
	(C) $kR^2[1-\sqrt{2}]$; (D) k	$R^2[\sqrt{2}-1]; \qquad A$	0	$ _C$	1		
			24 023	샤마 ⊢ ઇ	e e	2. C	
	4. 一边长为 a 的正方形薄板静和 y 轴平行, 今有惯性系 S' 以	止于惯性系S的 xOy 干	国内, 且內以) 的速度相对	开加马 x 和 于 S 系沿 x	轴	3. C	
	正向作匀速直线运动,则从 S'	系测得薄板的面积为:			(200	4. C	
	(A) $\frac{4}{5}a^2$; (B) $\frac{5}{4}a^2$		(D) $\frac{5}{a^2}$	ľ	1	4. 0	
	(A) $\frac{-a}{5}$; (B) $\frac{-a}{4}$	5 ,	3				
受(D) 以上 ii 6. 如服所示,则球内距离球(A) E = 0 (C) E = 4 7. 下列说法(A) 电场(C) 电场(C) 电场(C) 电场(C) 电弧	强度不变的空间,电势必为零。 (B) 电势	X 死 死 死 死 死 死 死 死 死 死 死 死 死 死 死 死 X 不 X 不 X			5. 6. 7.	A	ENZHEN
	N 182 07 A 193 E	1 1			8.	C	
9. 关于恒定	建磁场,下列说法正确的是		1 1				
	(A) 闭合回路上各点磁感强度都为零,回路P	内一定没有电流穿过			9.	В	
	(B) 闭合回路上各点磁感强度都为零,回路中				10). A	
	(C) 磁感强度沿闭合回路积分为零时,回路.				10000	\$ \$0.5 £ \$ 1	
	(D) 磁感强度沿闭合回路积分不为零时,回	格上任一点的磁感强度都不可能	能为零				
10 学手位目	8电流,以下说法正确的是:		1 1				
) 位移电流的实质是变化的电场						
) 位移电流和传导电流一样是定向运动的电荷						
) 位移电流服从传导电流遵循的所有定律						

1. 质点作曲线运动,F表示位置矢量, $\bar{\upsilon}$ 表示速度, \bar{a} 表示加速度,S表示路程, a_r 表示

切向加速度, ν 表示速率, 下列表达式中: (1) $\mathrm{d} \upsilon / \mathrm{d} t = a$, (2) $\mathrm{d} r / \mathrm{d} t = \upsilon$, (3) $\mathrm{d} S / \mathrm{d} t = \upsilon$, (4) $\left| \mathrm{d} \bar{\upsilon} / \mathrm{d} t \right| = a_{\mathrm{r}}$.

1. 两个圆盘,同轴地粘在一起,可绕通过盘心且垂直于盘面的水平 光滑轴转动,在小圆盘边缘绕有不可伸缩的细绳,绳下端挂一质量 m=1kg 的物体,盘绳无相对滑动,小圆盘半径为r=1m, 当物体从静 止释放后,在时间 t=1s 内下降的距离 S=1m,则整个圆盘对水平光滑 1) 3.9 轴的转动惯量为 $kg \cdot m^2$ (重力加速度 $g = 9.8 \text{ m/s}^2$) 2. 在惯性系S中,相距 $x_2-x_1=600$ m 的两地方发生两个事件,时间间 隔为 $t_2-t_1=8\times10^{-7}s$, 在相对于 s 系沿 x 轴正方向作匀速直线运动的 s'系中观测到这两事件是同时发生的,则S'系相对于S系运动的速率 m 2) 1.2×10⁸ 为_____m/s。(真空中光速 $c=3\times10^8$ m/s) 3. 观察者甲以 0.8c (c 为光在真空中的速度) 相对于静止的观察者乙运动, 若甲携带有长度 为 L,截面积为 S,质量为 m 的棒,这根棒安放在平行于运动方向上,则乙测得此棒的密度 25m/9LS 或 2.78m/LS 3) 4. 真空中,两个半径分别为 R 和 2R 的金属球 A 和 B,两球相距很远,用一很长的细导线相连, $\frac{2}{3}Q$ 4) 给此系统带上电荷Q,忽略导线上的电荷,则金属球B上的电荷量为____ 5.空气平行板电容器的两极板面积均为 S, 两板相距很近, 电荷在平板上的分布可以认为 Q^2 5) $2\varepsilon_0 S$ 是均匀的. 设两极板分别带有电荷±Q,则两板间相互吸引力为_

		6. 一半径为 R 的均匀带电球面,	带有电荷 Q.	若规定该球面上电势为零,	则球面外距球
6)	$\frac{Q}{4\pi\varepsilon_0}\left(\frac{1}{r}-\frac{1}{R}\right)$	心r处的P点的电势U _P =			

7. 已知某静电场的电势分布函数: $V = -\frac{1}{x+2}$, 则电场强度大小的分布为 1 $(x+2)^2$

8. 有一半径为 a、载有电流为 I 的四分之一圆弧形导线, 按图 示方式置于磁感应强度为 B 的均匀磁场中, 其中 OA 与磁场平 行、OC 与磁场垂直,则该载流圆弧形导线所受的安培力大小

BIa

9. 已知一均匀磁化棒的体积为V, 其总的磁矩为 $\sum \bar{n}_i$, 如果 9) $\underline{\vec{B}} - \sum \vec{m}_i$

10. 真空中, 一通有稳恒电流 I 的无限长直导线, 导线旁共面放 有一长度为 a 的金属棒,棒以速率 v 平行于长直载流导线作匀速 直线运动,其端点 A 至导线的垂直距离为 a,真空中磁导率为 μ_0 ,

10) $\frac{\mu_o I v}{\ln 2}$ ln 2 2π

如图所示,则金属棒中感应电动势的大小为___

三、一质量为 $2 \log$ 的质点沿 x 轴运动,其所受合力和坐标的关系为: $F_x = 2 + 6 x^2$ (N),式中 x 的单位为 m; t = 0 时刻,质点位于 x = 0 处,速度为 10 m/s,求该质点的速率 v 与坐标 x 的关系。

得分

解: 由牛顿定律:
$$a_x = \frac{F_x}{m} = 1 + 3x^2$$
(2分)

由加速度定义:
$$a_x = \frac{dv_x}{dt} = v_x \frac{dv_x}{dx}$$
 ------(2分)

得:
$$\frac{1}{2}v_x^2 - 50 = x + x^3$$
 (2分)

$$v_x = \sqrt{2x + 2x^3 + 100}$$
(2 分)

四、 一质量为m的子弹以初速度 v_0 水平射入一长为L、质量为M=3m,且可在竖直面内绕一端转动的匀质杆的中间部位,并停留在杆中,如图所示。初始时,杆处于竖直位置,且保持静止状态,子弹射入后,杆与子弹构成的系统将绕其下端O点转动;试求: (1) 杆开始转动时角速度 ω_0 ;

(2) 转动到任意 θ 位置时角加速度 α 的大小及角速度 ω 的大小。

得分

解: (1) 系统转动惯量:
$$J = m(\frac{L}{2})^2 + \frac{1}{3}ML^2 = \frac{5}{4}mL^2$$
 (2分)

角动量守恒: $mv_0 \cdot \frac{L}{2} = J\omega_0 \Rightarrow \omega_0 = \frac{2v_0}{5L}$ (2分)

(2) 转动定律: $M=(m+M)g \cdot \frac{L}{2} \sin \theta = J\alpha$ (2分)

$$\Rightarrow \alpha = \frac{8g\sin\theta}{5L} \quad \dots \quad (1 \, \%)$$

机械能守恒,取初始位置势能为零: $\frac{1}{2}J\omega^2 - (m+M)g\frac{L}{2}(1-\cos\theta) = \frac{1}{2}J\omega_0^2$ (2 分)

$$\Rightarrow \omega = \sqrt{\left(\frac{2\nu_0}{5L}\right)^2 + \frac{32g}{5L}\sin^2\frac{\theta}{2}} \quad \dots (1 \, \text{f})$$

[或
$$\Rightarrow \omega = \sqrt{(\frac{2v_0}{5L})^2 + \frac{16g}{5L}(1 - \cos\theta)}$$
(1分)]

五、真空中,一长为I,带电量为q的均匀带电细棒以速率v沿x轴正方向运动,其中: q>0,v<< c ,当细棒运动到与y轴重合时,棒的下端与坐标原点O的距离

为 a, 如图所示, 已知真空电容率为 ε_0 、真空磁导率为 μ_0 ,

求: (1) 此时细棒在原点 O 处产生的电场强度 \overline{E} ; (2) 此时细棒在原点 O 处产生的磁感强度 \overline{B} .

得分

解: (1)
$$dq = \frac{q}{l}dy$$
, $d\vec{E} = -\frac{dq}{4\pi\epsilon_0 y^2}\vec{j} = -\frac{qdy}{4\pi\epsilon_0 ly^2}\vec{j}$ ---- (1分)

$$\vec{E} = -\frac{q}{4\pi\varepsilon_0 l} \int_a^{a+l} \frac{dy}{y^2} \vec{j} = \frac{-q}{4\pi\varepsilon_0 l} (\frac{1}{a} - \frac{1}{a+l}) \vec{j} = -\frac{q}{4\pi\varepsilon_0 a (a+l)} \vec{j} - (2+1 \%)$$

(2)
$$d\vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{dq \ \vec{v} \times \vec{e}_r}{r^2}$$
 ---- (13) $dB = \frac{\mu_0}{4\pi} \frac{vdq \sin 90^\circ}{y^2} = \frac{\mu_0 qv}{4\pi l} \frac{dy}{y^2}$ ---- (23)

$$B = \int_{a}^{a+l} dB = \int_{a}^{a+l} \frac{\mu_0 q v}{4\pi l} \frac{dy}{y^2} = \frac{\mu_0 q v}{4\pi l} (\frac{1}{a} - \frac{1}{a+l}) = \frac{\mu_0}{4\pi} \frac{q v}{a(a+l)} \quad ----- (2 \, \text{?})$$

方向: 垂直纸面向里-----(1分

六、真空中,有两根相距为 a 的无限长平行直导线,它们通以大小相等、流向相反的电流 I,与两直导线共面有一边长为 a 的正方形单 匝导体线圈,如图所示,已知真空磁导率为μο,

求: 1) 两直导线产生的磁场通过正方形线圈的磁通量;

2)当直导线中的电流 I 以 $\frac{dI}{dt}$ 的变化率增加时,求在正方形线 圈中产生的感应电动势的大小和方向。

(1)
$$B = \frac{\mu_0 I}{2\pi x} - \frac{\mu_0 I}{2\pi (x+a)}$$
 (2 $\frac{4}{3}$)

$$\Phi_{m} = \iint \vec{B} \cdot d\vec{S} = \int_{2a}^{3a} \left[\frac{\mu_{0}I}{2\pi x} - \frac{\mu_{0}I}{2\pi (x+a)} \right] a dx \qquad (2 \text{ fr})$$

$$\Phi_m = \frac{\mu_0 a I}{2\pi} \ln(\frac{9}{8})$$
, $\{ \text{if } \Phi_m = -\frac{\mu_0 a I}{2\pi} \ln(\frac{9}{8}) \}$ (2 \(\frac{1}{2}\))

(2)
$$\varepsilon_i = -\frac{d\Phi_m}{dt} \qquad (1 \, \%)$$

$$\left|\varepsilon_{i}\right| = \left[\frac{\mu_{0}a}{2\pi}\ln(\frac{9}{8})\right]\frac{dI}{dt} \qquad (2 \%)$$

方向: 順时针方向 ------(1 名