ÁLGEBRAS DE LIE

EXERCÍCIOS:: AULAS 05 E 06

- 5.1. (Humphreys 3.2) Mostre que \mathfrak{g} é solúvel se, e somente se, existe uma cadeia de subálgebras $\{o\} \subsetneq \mathfrak{h}_1 \subsetneq \cdots \subsetneq \mathfrak{h}_k \subseteq \mathfrak{h}_{k+1} = \mathfrak{g}$ tal que \mathfrak{h}_i é um ideal em \mathfrak{h}_{i+1} e $\mathfrak{h}_{i+1}/\mathfrak{h}_i$ é abeliana para todo $i \in \{1, \ldots, k\}$.
- 5.2. (Humphreys 3.4) Mostre que uma álgebra de Lie $\mathfrak g$ de dimensão finita sobre $\mathbb C$ é solúvel (resp. nilpotente) se, e somente se, ad($\mathfrak g$) é uma subálgebra solúvel (resp. nilpotente) de $\mathfrak {gl}(\mathfrak g)$.
- 5.3. (Humpphreys 3.6) Dada uma álgebra de Lie $\mathfrak{g} \neq \{o\}$, mostre que existe um ideal nilpotentemaximal e um ideal solúvel-maximal em \mathfrak{g} . Descreva esses ideais explicitamente em alguns exemplos pequenos.
- 5.4. (Humphreys 3.10) Sejam \mathfrak{g} uma álgebra de Lie e I um ideal de \mathfrak{g} . Mostre que, se \mathfrak{g}/I é nilpotente e $\mathrm{ad}(x)|_I$ é nilpotente para todo $x \in \mathfrak{g}$, então \mathfrak{g} é nilpotente.
- 5.5. Dada uma álgebra de Lie \mathfrak{g} , mostre que todo subespaço vetorial $W \subseteq \mathfrak{g}$ que contém $\mathfrak{g}^2 = \mathfrak{g}'$ é um ideal. Conclua que, se \mathfrak{g} for solúvel ou nilpotente (de dimensão finita), então existe um ideal de codimensão 1 em \mathfrak{g} .
- 5.6. Classifique todas as álgebras de Lie de dimensão 3 sobre \mathbb{C} . (Analise separadamente os casos em que $\mathfrak{g}^2 = \mathfrak{g}'$ tem dimensão 0, 1, 2 ou 3.)

Entregar dia: 09 de abril de 2019.