Chapter 6: Classification

Dong-Kyu Chae

PI of the Data Intelligence Lab @HYU
Department of Computer Science & Data Science
Hanyang University

Topics

- What is classification?
- Issues regarding classification
- Classification by decision tree induction
- Random Forest
- □ Rule-based classification

- Associative classification
- □ Lazy learners (or learning from your neighbors)
- **□** Accuracy and error measures
- Ensemble methods
- □ Summary

Rule-based Classification

- **Basic idea: using IF-THEN rules**
 - □ Rule (**R**) example: **IF** *age* = youth **AND** *student* = no **THEN** *buys computer* = no
- □ It is employed when there is little amount of (or no) data
 - Rules can be made by domain experts
- □ If more than one rule is triggered, need conflict resolution
 - □ **Size ordering**: assign the highest priority to the triggering rules that have the "toughest" requirement (i.e., with the *most features to test*)
 - □ Class-based ordering: decreasing order of misclassification cost
 - Rule-based ordering (decision list): rules are organized into one long priority list
 - According to some measure of rule quality or by domain experts

Rule Extraction from a Decision Tree

IF age <=30 **AND** student = no, THEN buys computer = no

IF age <=30 **AND** student = yes, THEN buys computer = yes

IF *age* is in 31~40, THEN buys computer = yes

- Rules are easier to understand than a large tree
- One **rule** is created for each path **from the root to a leaf**
- Each feature-value pair along a path forms a conjunction, the leaf holds the class prediction
- Rules are mutually exclusive (no conflict)

Rule Extraction from Association Rule Mining

- □ Also known as associative classification: rule based classification.
 - Association rules are generated and analyzed for use in classification

$$P_1 \wedge p_2 \dots \wedge p_l \rightarrow \text{"}A_{class} = C$$
" (conf, sup)

- By controlling min_sup. and min_conf., we can search for strong associations between conjunctions of feature-value pairs (the condition part) and the class label
- □ Rules are not mutually exclusive: need conflict management

Benefits and limits

- It explores highly confident associations with considering multiple attributes, by setting higher min conf.
- May have low coverage w.r.t. the values for min_conf. and min_sup.

Rule Extraction from Association Rule Mining

Coverage and accuracy of a rule R

```
\square n_{covers} = \# of data covered by R
```

□ n_{correct} = # of data *correctly classified* by R

training phase

Lazy vs. Eager Learning

Lazy vs. Eager learning

- Eager learning (most machine learning methods)
 - Given a set of training set, constructs a classification model before
 receiving a new test data to classify
- Lazy learning
 - Simply stores training data (or only minor processing) and just waits until a test data is given
- Lazy: much less time in training but more time in predicting

The k-Nearest Neighbor (KNN) Algorithm

- learning)
- □ *k*-nearest neighbors are retrieved in terms of the distance
 - □ All data points are expressed in an *n*-dimensional space
 - \square Distance, **dist**(X_1 , X_2), is defined over the space (like **Euclidean**)

- The test sample is classified by the class label of a majority of the k-nearest neighbors (i.e., voting)
 - Or, weighted voting can be adopted depending on their distance

Evaluation of a Classification Model

Accuracy evaluation

- □ Goal: to evaluate the accuracy of the model by using a test data
- Test data
 - A set of data / data points / tuples / samples used for accuracy evaluation
 - Each data: <feat-1, feat-2,, feat-n, class label> (attribute / feature)
 - Each data has a predefined class
- The known label of a test sample is compared with the classified result from the model
- Accuracy = # of correctly classified / # of entire test set data
- □ The test set must be independent of the training set!

Evaluation of a Classification Model

Confusion matrix

 $CM_{i,j}$ an entry, indicates # of data in class i that are predicted by the classifier as class j

_		Class	ssified	
	classes	C = yes	C = no	
Ground truth	C = yes	True positive	False negative	
	C = no	False positive	True negative	

classes	Covid = yes	Covid = no	total	recognition(%)
Covid = yes	2588	412	3000	86.27
Covid = no	46	6954	7000	99.34
total	2634	7366	10,000	95.52

- □ Accuracy of a classifier: percentage of tuples (in a test set) that are correctly classified by the model (=(2588+6954)/10,000)
 - □ Error rate (misclassification rate) = (1.00 accuracy)

Evaluation of a Classification Model

Classified

	classes	Covid = yes	Covid = no	total	recognition(%)
Ground truth	Covid = yes	2588	412	3000	86.27
	Covid = no	46	6954	7000	99.34
	total	2634	7366	10000	95.52

■ Alternative accuracy measures

```
sensitivity = true-positive / positive (recall) /* true positive recognition rate */
specificity = true-negative / negative /* true negative recognition rate */

precision = true-positive / (true-positive + false-positive)
```

□ Precision and recall are dependent on each other; they are complementary. We thus use F1-score:

$$2 \times \frac{recall \times precision}{recall + precision}$$

Evaluation Protocols

□Holdout method

- Aplit data
- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 4/5) for model construction
 - Test set (e.g., 1/5) for accuracy estimation
- Repeat holdout k times
 - Just one time is not sufficient
 - Accuracy = avg. of the k accuracies obtained

Evaluation Protocols

- Cross-validation (or, k-fold cross validation)
 - Randomly partition the data into k subsets, each having approximately equal size
 - k is typically chosen as 5 or 10
 - □ At *i*-th iteration, use D_i as a test set and others as a training set

□Accuracy = avg. of the k accuracies obtained

Evaluation Protocols

□Leave-one-out:

- □ Extreme case of the k-fold cross-validation, for small sized data
- \square *k* folds where k = # of data points!

Stratified cross-validation

- Another special case of the k-fold cross-validation
- □ It aims to maintain the class distribution
 - Folds are stratified so that class distribution in each fold is approximately the same as that in the original data

Ensemble

Ensemble methods

- Use a combination of models to increase accuracy
- □ Combine a series of k learned models, C_1 , C_2 , ..., C_k , with the aim of aggregating multiple opinions

Popular ensemble methods

Bagging: simply averaging the prediction over a collection of classifiers

Applied Bagging: simply averaging the prediction over a collection of classifiers

Classifier Boosting: weight is considered within a collection of classifiers

- Model ensemble: combining a set of heterogeneous classifiers
 - E.g., SVM + Decision tree + Neural network + etc....

Ensemble

ex) Random Forest -> aggregate the opinions of

- □ Bagging: Bootstrap Aggregation II the decision trees by majority voting -> Bag or considering weight -> Boosting
- Training
 - \square At each iteration *i*, a training set D_i is sampled with replacement from the original D (i.e., bootstrap)
 - □ A classifier model M_i is learned for each training set D_i
- Classification: classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - □ The bagged classifier M* counts the votes and assigns the class with the most votes to X

Ensemble

Boosting

Weight is considered based on each model's accuracy

Process

- Initial weights (1/d) are assigned to each data point
 - Weights are also used in sampling for building i-th training set (using the bootstrap sampling)
- In each iteration from 1 to k, when each classifier M_i is learned, examine it to the i-th test set (composed of non-sampled data)
- Then, the weights are **updated** to allow the subsequent classifier, M_{i+1}, to pay more attention (in sampling) to the data points that were misclassified by M_i → 다음 boostrap sample লা ধ্ৰুগ খুন্ত
- The final result is obtained from votes of each individual classifier, where the weight of each classifier's vote is equal to its accuracy

Summary

- What is classification?
- Decision tree induction
 - Random Forest
- Rule-based classification
 - Associative classification
- Lazy learners (k-NN classifiers)
- Accuracy and error measures, evaluation protocols
- Ensemble

Thank You

