5

Square Roots and Cube Roots

IMPORTANT FACTS AND FORMULAE

I. Square Root: If $x^2 = y$, we say that the square root of y is x and we write, $\sqrt{y} = x$.

Thus, $\sqrt{4} = 2$, $\sqrt{9} = 3$, $\sqrt{196} = 14$.

II. Cube Root: The cube root of a given number x is the number whose cube is x. We denote the cube root of x by $\sqrt[3]{x}$.

Thus, $\sqrt[3]{8} = \sqrt[3]{2 \times 2 \times 2} = 2$, $\sqrt[3]{343} = \sqrt[3]{7 \times 7 \times 7} = 7$ etc.

Note:

$$1. \quad \sqrt{xy} = \sqrt{x} \times \sqrt{y}$$

2.
$$\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}} = \frac{\sqrt{x}}{\sqrt{y}} \times \frac{\sqrt{y}}{\sqrt{y}} = \frac{\sqrt{xy}}{y}$$
.

SOLVED EXAMPLES

- **Ex. 1.** Evaluate $\sqrt{6084}$ by factorization method.
- **Sol. Method:** Express the given number as the product of prime factors. Now, take the product of these prime factors choosing one out of every pair of the same primes. This product gives the square root of the given number.

Thus, resolving 6084 into prime factors, we get:

$$6084 = 2^2 \times 3^2 \times 13^2$$

$$\therefore \quad \sqrt{6084} = (2 \times 3 \times 13) = 78.$$

Ex. 2. Find the square root of 1471369.

Sol. Method: In the given number, mark off the digits in pairs starting from the unit's digit. Each pair and the remaining one digit is called a period.

Now, $1^2 = 1$. On subtracting, we get 0 as remainder.

Now, bring down the next period i.e., 47.

Now, trial divisor is $1 \times 2 = 2$ and trial dividend is 47.

So, we take 22 as divisor and put 2 as quotient.

The remainder is 3.

Next, we bring down the next period which is 13.

Now, trial divisor is $12 \times 2 = 24$ and trial dividend is 313. So, we take 241 as dividend and 1 as quotient.

The remainder is 72.

Bring down the next period i.e., 69.

Now, the trial divisor is $121 \times 2 = 242$ and the trial dividend is 7269. So, we take 3 as quotient and 2423 as divisor. The remainder is then zero.

Hence, $\sqrt{1471369} = 1213$.

Ex. 3. Evaluate:
$$\sqrt{248 + \sqrt{52 + \sqrt{144}}}$$
.

(P.C.S., 2009)

Sol. Given expression =
$$\sqrt{248 + \sqrt{52 + 12}} = \sqrt{248 + \sqrt{64}} = \sqrt{248 + 8} = \sqrt{256} = 16$$
.

6084

3042

1521

507

169

13

2

3

13

Ex. 4. Simplify:
$$\frac{112}{\sqrt{196}} \times \frac{\sqrt{576}}{12} \times \frac{\sqrt{256}}{8}$$
.

Sol. Given expression =
$$\frac{112}{14} \times \frac{24}{12} \times \frac{16}{8} = 8 \times 2 \times 2 = 32$$
.

Ex. 5. If
$$a * b * c = \frac{\sqrt{(a+2)(b+3)}}{c+1}$$
, then find the value of $6 * 15 * 3$.

Sol.
$$6 * 15 * 3 = \frac{\sqrt{(6+2)(15+3)}}{3+1} = \frac{\sqrt{8 \times 18}}{4} = \frac{\sqrt{144}}{4} = \frac{12}{4} = 3.$$

Ex. 6. Find the value of
$$\sqrt{1\frac{9}{16}}$$
.

Sol.
$$\sqrt{1\frac{9}{16}} = \sqrt{\frac{25}{16}} = \frac{\sqrt{25}}{\sqrt{16}} = \frac{5}{4} = 1\frac{1}{4}$$
.

Ex. 7. What is the square root of 0.0009?

Sol.
$$\sqrt{0.0009} = \sqrt{\frac{9}{10000}} = \frac{\sqrt{9}}{\sqrt{10000}} = \frac{3}{100} = 0.03.$$

Ex. 8. Evaluate
$$\sqrt{175.2976}$$

Sol. Method: We make even number of decimal places by affixing a zero, if necessary. Now, we mark off periods and extract the square root as shown.

$$\therefore \sqrt{175.2976} = 13.24.$$

Ex. 9. What will come in place of question mark in each of the following questions?

(i)
$$\sqrt{\frac{32.4}{?}} = 2$$

(ii)
$$\sqrt{86.49} + \sqrt{5 + (?)^2} = 12.3$$

Sol. (i) Let
$$\sqrt{\frac{32.4}{x}} = 2$$
. Then, $\frac{32.4}{x} = 4 \iff 4x = 32.4 \iff x = 8.1$.

(ii) Let
$$\sqrt{86.49} + \sqrt{5 + x^2} = 12.3$$
.

Then,
$$9.3 + \sqrt{5 + x^2} = 12.3 \iff \sqrt{5 + x^2} = 12.3 - 9.3 = 3$$

 $\iff 5 + x^2 = 9 \iff x^2 = 9 - 5 = 4 \iff x = \sqrt{4} = 2.$

Ex. 10. Find the value of $\sqrt{\frac{0.289}{0.00121}}$.

Sol.
$$\sqrt{\frac{0.289}{0.00121}} = \sqrt{\frac{0.28900}{0.00121}} = \sqrt{\frac{28900}{121}} = \frac{170}{11}$$

Ex. 11. If $\sqrt{841} = 29$, then find the value of $\sqrt{841} + \sqrt{8.41} + \sqrt{0.0841} + \sqrt{0.000841}$.

Sol. Given expression =
$$\sqrt{841} + \sqrt{\frac{841}{10^2}} + \sqrt{\frac{841}{10^4}} + \sqrt{\frac{841}{10^6}} = \sqrt{841} + \frac{\sqrt{841}}{10} + \frac{\sqrt{841}}{10^2} + \frac{\sqrt{841}}{10^3}$$

$$= 29 + \frac{29}{10} + \frac{29}{100} + \frac{29}{1000} = 29 + 2.9 + 0.29 + 0.029 = 32.219.$$

Ex. 12. If
$$\sqrt{1 + \frac{x}{144}} = \frac{13}{12}$$
, then find the value of x.

(IGNOU, 2003)

(M.B.A., 2006)

182 QUANTITATIVE APTITUDE

Sol.
$$\sqrt{1 + \frac{x}{144}} = \frac{13}{12} \Rightarrow \left(1 + \frac{x}{144}\right) = \left(\frac{13}{12}\right)^2 = \frac{169}{144} \Rightarrow \frac{x}{144} = \frac{169}{144} - 1$$

$$\Rightarrow \frac{x}{144} = \frac{25}{144} \Rightarrow x = 25.$$

Ex. 13. Simplify:
$$\frac{1}{\sqrt{100} - \sqrt{99}} - \frac{1}{\sqrt{99} - \sqrt{98}} + \frac{1}{\sqrt{98} - \sqrt{97}} - \frac{1}{\sqrt{97} - \sqrt{96}} + \dots + \frac{1}{\sqrt{2} - \sqrt{1}}$$
. (Section Officers', 2005)

Sol. Given expression

$$= \frac{1}{\sqrt{100} - \sqrt{99}} \times \frac{\sqrt{100} + \sqrt{99}}{\sqrt{100} + \sqrt{99}} - \frac{1}{\sqrt{99} - \sqrt{98}} \times \frac{\sqrt{99} + \sqrt{98}}{\sqrt{99} + \sqrt{98}} + \frac{1}{\sqrt{98} - \sqrt{97}} \times \frac{\sqrt{98} + \sqrt{97}}{\sqrt{98} + \sqrt{97}}$$

$$- \frac{1}{\sqrt{97} - \sqrt{96}} \times \frac{\sqrt{97} + \sqrt{96}}{\sqrt{97} + \sqrt{96}} + \dots + \frac{1}{\sqrt{2} - \sqrt{1}} \times \frac{\sqrt{2} + \sqrt{1}}{\sqrt{2} + \sqrt{1}}$$

$$= \frac{\sqrt{100} + \sqrt{99}}{(100 - 99)} - \frac{\sqrt{99} + \sqrt{98}}{(99 - 98)} + \frac{\sqrt{98} + \sqrt{97}}{(98 - 97)} - \frac{\sqrt{97} + \sqrt{96}}{(97 - 96)} + \dots + \frac{\sqrt{2} + \sqrt{1}}{(2 - 1)}$$

$$= (\sqrt{100} + \sqrt{99}) - (\sqrt{99} + \sqrt{98}) + (\sqrt{98} + \sqrt{97}) - (\sqrt{97} + \sqrt{96}) + \dots + (\sqrt{2} + \sqrt{1})$$

$$= \sqrt{100} + \sqrt{1} = 10 + 1 = 11.$$

Ex. 14. Find the sum: $3 + \frac{1}{\sqrt{3}} + \frac{1}{3 + \sqrt{3}} - \frac{1}{3 - \sqrt{3}}$. (S.S.C., 2007)

Sol.
$$3 + \frac{1}{3} + \frac{1}{3 + \sqrt{3}} - \frac{1}{3 - \sqrt{3}} = 3 + \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + \frac{1}{3 + \sqrt{3}} \times \frac{3 - \sqrt{3}}{3 - \sqrt{3}} - \frac{1}{3 - \sqrt{3}} \times \frac{3 + \sqrt{3}}{3 + \sqrt{3}}$$

$$= 3 + \frac{\sqrt{3}}{3} + \frac{3 - \sqrt{3}}{(9 - 3)} - \frac{3 + \sqrt{3}}{(9 - 3)} = 3 + \frac{\sqrt{3}}{3} + \frac{3 - \sqrt{3}}{6} - \frac{3 + \sqrt{3}}{6}$$

$$= \frac{18 + 2\sqrt{3} + 3 - \sqrt{3} - 3 - \sqrt{3}}{6} = \frac{18}{6} = 3.$$

Ex. 15. Find the value of $\sqrt{3}$ upto three places of decimal.

Sol.
$$1 | \overline{3.000000} (1.732)$$

 $27 | 200$
 189
 $343 | 1100$
 1029
 $3462 | 7100$
 $6924 : \sqrt{3} = 1.732.$

Ex. 16. If $\sqrt{3} = 1.732$, find the value of $\sqrt{192} - \frac{1}{2}\sqrt{48} - \sqrt{75}$ correct to 3 places of decimal. (S.S.C., 2004)

Sol.
$$\sqrt{192} - \frac{1}{2}\sqrt{48} - \sqrt{75} = \sqrt{64 \times 3} - \frac{1}{2}\sqrt{16 \times 3} - \sqrt{25 \times 3} = 8\sqrt{3} - \frac{1}{2} \times 4\sqrt{3} - 5\sqrt{3}$$

= $3\sqrt{3} - 2\sqrt{3} = \sqrt{3} = 1.732$.

Ex. 17. If $\sqrt{0.05 \times 0.5 \times a} = 0.5 \times 0.05 \times \sqrt{b}$, then find the value of $\frac{a}{b}$. (M.B.A., 2006)

Sol. Clearly, we have:
$$\frac{\sqrt{a}}{\sqrt{b}} = \frac{0.5 \times 0.05}{\sqrt{0.05 \times 0.5}} \Rightarrow \frac{a}{b} = \frac{0.5 \times 0.05 \times 0.5 \times 0.05}{0.05 \times 0.5} = 0.5 \times 0.05 = 0.025.$$

Ex. 18. Evaluate :
$$\sqrt{\frac{9.5 \times .0085 \times 18.9}{.0017 \times 1.9 \times 0.021}}$$
.
Sol. Given exp. = $\sqrt{\frac{9.5 \times .0085 \times 18.900}{.0017 \times 1.9 \times 0.021}}$

Sol. Given exp. =
$$\sqrt{\frac{9.5 \times .0085 \times 18.900}{.0017 \times 1.9 \times 0.021}}$$

Now, since the sum of decimal places in the numerator and denominator under the radical sign is the same, we remove the decimal.

:. Given exp. =
$$\sqrt{\frac{95 \times 85 \times 18900}{17 \times 19 \times 21}} = \sqrt{5 \times 5 \times 900} = 5 \times 30 = 150$$
.

Ex. 19. Simplify:
$$\sqrt{[(12.1)^2 - (8.1)^2] \div [(0.25)^2 + (0.25)(19.95)]}$$
.

(C.B.I., 2003)

Sol. Given exp. =
$$\sqrt{\frac{(12.1+8.1)(12.1-8.1)}{(0.25)(0.25+19.95)}} = \sqrt{\frac{20.2\times4}{0.25\times20.2}} = \sqrt{\frac{400}{0.25}} = \sqrt{\frac{400}{25}} = \sqrt{16} = 4.$$

Ex. 20. If
$$x = 1 + \sqrt{2}$$
 and $y = 1 - \sqrt{2}$, find the value of $(x^2 + y^2)$.

Sol.
$$x^2 + y^2 = (1 + \sqrt{2})^2 + (1 - \sqrt{2})^2 = 2[(1)^2 + (\sqrt{2})^2] = 2 \times 3 = 6.$$

Ex. 21. Evaluate
$$\sqrt{0.9}$$
 upto 3 places of decimal.

Sol.

9
$$0.\overline{900000}(0.948)$$
81
184 900
736
1888 16400
15104 $\therefore \sqrt{0.9} = 0.948$

Ex. 22. Find the square root of 0.1.

Sol.
$$\sqrt{0.\dot{1}} = \sqrt{\frac{1}{9}} = \frac{1}{3} = 0.333 \dots = 0.\dot{3}.$$

Ex. 23. If
$$\sqrt{15} = 3.88$$
, find the value of $\sqrt{\frac{5}{3}}$.

Sol.
$$\sqrt{\frac{5}{3}} = \sqrt{\frac{5 \times 3}{3 \times 3}} = \frac{\sqrt{15}}{3} = \frac{3.88}{3} = 1.2933.... = 1.29\overline{3}.$$

Ex. 24. Find the least square number which is exactly divisible by 10, 12, 15 and 18.

Sol. L.C.M. of 10, 12, 15, 18 = 180. Now,
$$180 = 2 \times 2 \times 3 \times 3 \times 5 = 2^2 \times 3^2 \times 5$$
.

To make it a perfect square, it must be multiplied by 5.

$$\therefore$$
 Required number = $(2^2 \times 3^2 \times 5^2) = 900$.

Ex. 25. Find the greatest number of five digits which is a perfect square.

Sol. Greatest number of 5 digits is 99999.

 \therefore Required number = (99999 - 143) = 99856.

Ex. 26. Find the smallest number that must be added to 1780 to make it a perfect square.

 \therefore Number to be added = $(43)^2 - 1780 = 1849 - 1780 = 69.$

Ex. 27. If
$$\sqrt{2} = 1.4142$$
, find the value of $\frac{\sqrt{2}}{(2+\sqrt{2})}$.

Sol.
$$\frac{\sqrt{2}}{(2+\sqrt{2})} = \frac{\sqrt{2}}{(2+\sqrt{2})} \times \frac{(2-\sqrt{2})}{(2-\sqrt{2})} = \frac{2\sqrt{2}-2}{(4-2)} = \frac{2(\sqrt{2}-1)}{2} = (\sqrt{2}-1) = (1.4142-1)$$

Ex. 28. If
$$x = \left(\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\right)$$
 and $y = \left(\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\right)$, find the value of $(x^2 + y^2)$.

Sol.
$$x = \frac{(\sqrt{5} + \sqrt{3})}{(\sqrt{5} - \sqrt{3})} \times \frac{(\sqrt{5} + \sqrt{3})}{(\sqrt{5} + \sqrt{3})} = \frac{(\sqrt{5} + \sqrt{3})^2}{(5 - 3)} = \frac{5 + 3 + 2\sqrt{15}}{2} = 4 + \sqrt{15}.$$

$$y = \frac{(\sqrt{5} - \sqrt{3})}{(\sqrt{5} + \sqrt{3})} \times \frac{(\sqrt{5} - \sqrt{3})}{(\sqrt{5} - \sqrt{3})} = \frac{(\sqrt{5} - \sqrt{3})^2}{(5 - 3)} = \frac{5 + 3 - 2\sqrt{15}}{2} = 4 - \sqrt{15}.$$

$$\therefore x^2 + y^2 = (4 + \sqrt{15})^2 + (4 - \sqrt{15})^2 = 2[(4)^2 + (\sqrt{15})^2] = 2 \times 31 = 62.$$

Ex. 29. Find the value of:
$$\sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}}$$

(S.S.C., 2006)

Sol. Let
$$\sqrt{6 + \sqrt{6 + \sqrt{6 + \cdots}}} = x$$
.

Then,
$$\sqrt{6+x} = x \Leftrightarrow 6+x = x^2 \Rightarrow x^2-x-6=0 \Leftrightarrow x^2-3x+2x-6=0$$

 $\Leftrightarrow x (x-3)+2 (x-3)=0 \Leftrightarrow (x-3) (x+2)=0 \Leftrightarrow x=3.$ [:: $x \neq -2$]
Hence, $\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}=3$.

Ex. 30. Find the cube root of 2744.

Sol. Method: Resolve the given number as the product of prime factors and take the product of prime factors, choosing one out of three of the same prime factors. Resolving 2744 as the product of prime factors, we get:

$$2744 = 2^3 \times 7^3.$$

$$3\sqrt{2744} = 2 \times 7 = 14.$$

Ex. 31. By what least number 4320 be multiplied to obtain a number which is a perfect cube?

Sol. Clearly,
$$4320 = 2^3 \times 3^3 \times 2^2 \times 5$$
.

To make it a perfect cube, it must be multiplied by 2×5^2 i.e., 50.

EXERCISE

(OBJECTIVE TYPE QUESTIONS)

Directions: Mark (1) against the correct answer:

- 1. $\sqrt{53824} = ?$
 - (a) 202
- (b) 232
- (c) 242
- (d) 332
- 2. The square root of 41209 is equal to (L.I.C.A.D.O., 2008)
 - (a) 103
- (b) 203
- (c) 303
- (d) 403
- **3.** The square root of 123454321 is (a) 111111
 - (b) 12341
 - (c) 11111
- (d) 11211
- 4. The number of digits in the square root of 625685746009 is (S.S.C., 2007)
 - (a) 4

(b) 5

(c) 6

- (d) 7
- 5. $\sqrt{\sqrt{17956} + \sqrt{24025}} = ?$

(Bank P.O., 2008)

(P.C.S., 2008)

- (a) 19
- (b) 155
- (c) 256
- (d)289
- (e) None of these
- 6. $\sqrt{\sqrt{44944} + \sqrt{52441}} = ?$

(Bank P.O., 2008)

(a) 17

- (b) 312
- (c) 441
- (d) 485
- (e) None of these
- 7. One-fourth of the sum of prime numbers, greater than 4 but less than 16, is the square of (P.C.S., 2009)
 - (a) 3

- (c) 5
- 8. The value of $\sqrt{10 + \sqrt{25 + \sqrt{108 + \sqrt{154 + \sqrt{225}}}}}$ is

(c) 8

- **9.** Evaluate $\sqrt{41 \sqrt{21 + \sqrt{19 \sqrt{9}}}}$.
 - (a) 3

(*b*) 5

(c) 6

- (d) 6.4
- 10. $\sqrt{176 + \sqrt{2401}}$ is equal to
 - (a) 14

- (b) 15
- (c) 18
- (d) 24
- 11. $\frac{\sqrt{196}}{7} \times \frac{\sqrt{441}}{7} \times \frac{120}{\sqrt{225}} = ?$
- (R.R.B., 2008)

- (a) 48
- (b) 54
- (c) 58
- (d) 84

- $12. \left(\sqrt{\frac{225}{729}} \sqrt{\frac{25}{144}} \right) \div \sqrt{\frac{16}{81}} = ?$
- (b) $\frac{5}{48}$
- (d) None of these
- **13.** $(15)^2 + (18)^2 20 = \sqrt{?}$
- (Bank P.O., 2006)

- (a) 22
- (b) 23
- (c) 529
- (d) 279841
- (e) None of these
- **14.** $\sqrt{?} \times \sqrt{484} = 1034$
- (L.I.C.A.D.O., 2007)
- (a) 2025
- (b) 2209 (d) 2401
- (c) 2304
- (e) None of these
- **15.** $\sqrt{11881} \times \sqrt{?} = 10137$
- (Bank Recruitment, 2008) (b) 8649
- (a) 8281 (c) 9216
- (d) 9409
- (e) None of these
- **16.** In the equation $\frac{4050}{\sqrt{x}} = 450$, the value of x is

(L.I.C.A.D.O., 2008)

(a) 9

- (b) 49
- (c) 81

- (d) 100
- (R.R.B. 2008)
- (a) 5
- (b) 8
- (c) 16
- (d) None of these
- **18.** The square root of $(272^2 128^2)$ is (a) 144
- (b) 200
- (c) 240
- (d) 256
- **19.** If $x * y = x + y + \sqrt{xy}$, the value of 6 * 24 is
 - (a) 41

(b) 42

- (c) 43
- (d) 44
- **20.** If y = 5, then what is the value of $10y \sqrt{y^3 y^2}$?
 - (a) $50\sqrt{2}$
- (b) 100
- (c) $200\sqrt{5}$
- (d) 500
- **21.** $\sqrt{110\frac{1}{4}} = ?$
 - (a) 10.25
- (b) 10.5
- (c) 11.5
- (d) 19.5

22.	$\sqrt{\frac{25}{81} - \frac{1}{9}} = ?$	(Hotel Management, 2002)		orn in the first hal ears old in the ye		
	(a) $\frac{2}{3}$	(b) $\frac{4}{9}$	(a) 1806		(b) 1812	(NI.D.A., 2011)
	o .	,	(c) 1825		(d) 1836	
	(c) $\frac{16}{81}$	(d) $\frac{25}{81}$	` '	ositive number.	` '	ed by 8 and
	$[(\sqrt{81})^2]^2 = (?)^2$	(Specialist Officers, 2006)	then squ the squa	ared. The square re root is taken.	is now divid The result of	ed by 4 and f the square
	(a) 8	(b) 9). What is the va		(SNAP, 2010)
	(c) 4096	(d) 6561	(a) 3R		(b) 4R	
	(e) None of these		(c) 7R	11 1	(d) 9R	
24.	The digit in the unit's pl 15876 is	ace in the square root of		allest natural nu and which ends		-
	(a) 2	(b) 4		and 2000	(b) 2000 and	3000
	(c) 6	(d) 8		and 4000	(d) 4000 and	
25.	Which of the following is	closest to $\sqrt{3}$?			(a) 4000 and	3000
		(S.S.C., 2005)	34. $\left(\sqrt{2} + \frac{1}{\sqrt{2}}\right)$	$\left(\frac{1}{2}\right)^2$ is equal to		(S.S.C., 2005
	(a) 1.69	(b) $\frac{173}{100}$	(a) $2\frac{1}{2}$		(b) $3\frac{1}{2}$	
	(c) 1.75	(d) $\frac{9}{5}$	(c) $4\frac{1}{2}$		(d) $5\frac{1}{2}$	
26.	How many two-digit number last digit (unit's digit) of to number is 8?		35. If the proincreased	oduct of four cor	nsecutive natu	rfect square
	(a) 1	(b) 2		value of <i>p</i> is	(1) 0	(C.P.O., 2006)
	(c) 3	(d) None of these	(a) 1		(b) 2	
27.	What percentage of the ne	umbers from 1 to 50 have	(c) 4		(d) 8	
	squares that end in the d		the square root of			
	(a) 1	(<i>b</i>) 5	(a) 0.004		(b) 0.04	
	(c) 10	(d) 11	(c) 0.4		(d) 4	
	(e) 20		37. The valu	ıe of √0.000441 i	is	(S.S.C., 2002
28.	While solving a mathem	atical problem, Samidha	(a) 0.0002	21	(b) 0.0021	
	squared a number and the		(c) 0.021		(<i>d</i>) 0.21	
	rather than the required i.e		38. $\sqrt{0.00004}$	761 equals		(C.B.I., 2003)
	the number and then squ		(a) 0.000e		(b) 0.0069	
	right answer. What was t		(c) 0.0609		(d) 0.069	
	(-) 12	(Bank P.O., 2006)	39. $1.5^2 \times \sqrt{0}$			
	(a) 13	(b) 38				ank P.O., 2002
	(c) 48	())] ()	(a) 0.0375)	(b) 0.3375	
	(d) Cannot be determined		(c) 3.275		(<i>d</i>) 32.75	
29.	How many perfect squa 300?	res lie between 120 and (S.S.C., 2010)	40. $\sqrt{0.01} + \sqrt{0.01} = \sqrt{0.01} $	$\sqrt{0.0064} = ?$	(1) 0.0	
	(a) 5	(b) 6	(a) 0.03		(b) 0.3	
	(c) 7	(d) 8	(c) 0.42		(d) None of	
30.	The number of perfect squand 1000 is	uare numbers between 50	41. The valu	1e of $\sqrt{0.01} + \sqrt{0.81}$	$1 + \sqrt{1.21} + \sqrt{0.00}$	009 is (S.S.C., 2002)
	(a) 21	(b) 22	(a) 2.03		(b) 2.1	(0.0.0., 2002
	the second secon		(11, 4.00		\v / \langle - 1	

(a) 2.03

(c) 2.11

(d) 24

(Section Officers', 2003)

(c) 23

(b) 2.1

(d) 2.13

SQU	ARE ROOTS AND CUBE ROO	JIS			187
42.	$\sqrt{.0025} \times \sqrt{2.25} \times \sqrt{.0001} = 3$?		(a) 1	(b) 7
	(a) .000075	(b) .0075		(c) $7\frac{1}{2}$	(d) None of these
	(c) .075	(d) None of these	52.	What should come in pl	lace of both the question
43.	$\sqrt{1.5625} = ?$	(S.B.I.P.O., 2003)			
	(a) 1.05	(b) 1.25		marks in the equation $\sqrt{}$	${128} = {?}$.
	(c) 1.45	(d) 1.55		(a) 12	(b) 14
44.	If $\sqrt{.00000676} = .0026$, the	e square root of 67,60,000		(c) 144	(d) 196
	is:		53.	If $\sqrt{x + \frac{x}{y}} = x \sqrt{\frac{x}{y}}$, where	x and y are positive real
	(a) $\frac{1}{26}$	(b) 26		numbers, then y is equal	
	(c) 260	(d) 2600		(a) $x + 1$	(b) $x - 1$
45.	If $\sqrt{18225} = 135$, then the	value of	E4		(d) $x^2 - 1$ is the square of a natural
	$(\sqrt{182.25} + \sqrt{1.8225} + \sqrt{0.02})$		34.	number n . The sum of the	
	(a) 1.49985	(b) 14.9985			(A.A.O. Exam., 2010)
	(c) 149.985	(d) 1499.85		(a) 7 (c) 21	(b) 14 (d) 28
16	If $\sqrt{4096} = 64$, then	` '	55.	If $0.13 \div p^2 = 13$, then $p \in$	
40.				(a) 0.01	(b) 0.1
	$\sqrt{40.96} + \sqrt{0.4096} + \sqrt{0.004}$	-	F C	(c) 10	(d) 100 $\sqrt{0.25}$ to size
	two places of decimals is	(S.S.C., 2005)	56.	What number should be the result as 25?	,
	(a) 7.09 (c) 7.11	(<i>b</i>) 7.10 (<i>d</i>) 7.12		(a) 12.5	(C.B.I., 2003) (b) 25
47	Given that $\sqrt{13} = 3.605$ ar	` '		(c) 5 <u>0</u>	(d) 125
4/.			57.	If $\sqrt{3}^n = 729$, then the va	lue of <i>n</i> is
	value of $\sqrt{1.3} + \sqrt{1300} + \sqrt{1300}$				(Section Officers, 2003)
	(a) 36.164	(b) 36.304		(a) 6 (c) 10	(b) 8 (d) 12
	(c) 37.164	(d) 37.304	58.	If $\sqrt{18 \times 14 \times x} = 84$, then	` '
48.	If $\frac{52}{x} = \sqrt{\frac{169}{289}}$, the value of	of x is		(a) 22	(b) 24
	(a) 52	(b) 58		(c) 28	(d) 32
	(c) 62	(d) 68	59.	$28\sqrt{?} + 1426 = \frac{3}{4}$ of 2872	
49.	For what value of * the s	statement $\left(\frac{*}{15}\right)\left(\frac{*}{135}\right) = 1$		(a) 576 (c) 1296	(b) 676 (d) 1444
	is true?	(S.S.C., 2002)		7 54	(11)
	(a) 15	(b) 25	60.	$\sqrt{\frac{169}{169}} = \frac{3}{39}$	
	(c) 35	(d) 45		(a) 108	(b) 324
50.	Which number should re	-		(c) 2916	(d) 4800
	marks in the following ec	uation? (Bank P.O., 2008)	61.	If $\sqrt{x} \div \sqrt{441} = 0.02$, then	the value of x is
	$\frac{?}{1776} = \frac{111}{?}$			(a) 0.1764	(b) 1.764
	(a) 343	(b) 414		(c) 1.64	(d) 2.64
	(c) 644	(d) 543	62.	$\sqrt{\frac{.0196}{?}} = 0.2$	
	(e) None of these			(a) 0.49	(b) 0.7
51.	Which number can replace	e both the question marks		(c) 4.9	(d) None of these
	$4\frac{1}{2}$ 2		63.	$\sqrt{0.0169 \times ?} = 1.3$	(Hotel Management, 2001)
	in the equation $\frac{4\frac{1}{2}}{?} = \frac{?}{32}$.			(a) 10	(b) 100
	: 32			(c) 1000	(d) None of these

64. If $\sqrt{1369} + \sqrt{.0615 + x} = 37.25$, then x i	is e	qual t	to
---	------	--------	----

- (a) 10^{-1}
- (b) 10^{-2}
- (c) 10^{-3}
- (d) None of these

65. If
$$\sqrt{(x-1)(y+2)} = 7$$
, x and y being positive whole numbers, then the values of x and y respectively are

- (a) 8, 5
- (b) 15, 12
- (c) 22, 19
- (d) None of these

66. If
$$\sqrt{.04 \times .4 \times a} = .004 \times .4 \times \sqrt{b}$$
, then $\frac{a}{b}$ is

- (a) 16×10^{-3}
- (b) 16×10^{-4}
- (c) 16×10^{-5}
- (d) None of these
- **67.** Three-fifth of the square of a certain number is 126.15. What is the number?
 - (a) 14.5
- (b) 75.69
- (c) 145
- (d) 210.25

68.
$$\sqrt{\frac{0.361}{0.00169}} = ?$$

- (a) $\frac{1.9}{13}$
- (b) $\frac{19}{13}$
- (c) $\frac{1.9}{130}$
- (d) $\frac{190}{13}$

69.
$$\sqrt{\frac{48.4}{0.289}}$$
 is equal to

(S.S.C., 2004)

- (a) $1\frac{5}{17}$
- (b) $12\frac{1}{17}$
- (c) $12\frac{16}{17}$
- (d) $129\frac{7}{17}$

70. If
$$\sqrt{1 + \frac{x}{169}} = \frac{14}{13}$$
, then *x* is equal to

- (a) 1
- (b) 13

(c) 27

(d) None of these

71.
$$\sqrt{1 + \frac{55}{729}} = 1 + \frac{x}{27}$$
, then the value of x is

(C.D.S., 2003)

(*a*) 1 (*c*) 5

- (*b*) 3 (*d*) 7
- 72. $\sqrt{\frac{4}{3}} \sqrt{\frac{3}{4}} = ?$

(R.R.B., 2005)

- (a) $\frac{4\sqrt{3}}{6}$
- (b) $\frac{1}{2\sqrt{3}}$

(c) 1

 $(d) - \frac{1}{2\sqrt{3}}$

73. The value of
$$\sqrt{2}$$
 upto three places of decimal is

- (a) 1.410
- (b) 1.412
- (c) 1.413
- (d) 1.414

74.
$$(2\sqrt{27} - \sqrt{75} + \sqrt{12})$$
 is equal to

- (a) $\sqrt{3}$
- (b) $2\sqrt{3}$
- (c) $3\sqrt{3}$
- (*d*) $4\sqrt{3}$

75. By how much does
$$\sqrt{12} + \sqrt{18}$$
 exceed $\sqrt{3} + \sqrt{2}$?

- (a) $\sqrt{2} 4\sqrt{3}$
- (b) $\sqrt{3} + 2\sqrt{2}$
- (c) $2(\sqrt{3}-\sqrt{2})$
- (d) $3(\sqrt{3}-\sqrt{2})$

76.
$$\frac{\sqrt{24} + \sqrt{216}}{\sqrt{96}} = ?$$

- (a) $2\sqrt{6}$
- (b) 2
- (c) $6\sqrt{2}$
- (d) $\frac{2}{\sqrt{6}}$

77. The value of
$$\frac{\sqrt{80} - \sqrt{112}}{\sqrt{45} - \sqrt{63}}$$
 is

(a) $\frac{3}{4}$

- (b) $1\frac{1}{3}$
- (c) $1\frac{7}{9}$
- (d) $1\frac{3}{4}$

78. If
$$3\sqrt{5} + \sqrt{125} = 17.88$$
, then what will be the value of $\sqrt{80} + 6\sqrt{5}$?

- (a) 13.41
- (b) 20.46
- (c) 21.66
- (d) 22.35
- 79. $\sqrt{50} \times \sqrt{98}$ is equal to
 - (a) 63.75
- (b) 65.95
- (c) 70
- (d) 70.25
- **80.** Given $\sqrt{2} = 1.414$. The value of

$$\sqrt{8} + 2\sqrt{32} - 3\sqrt{128} + 4\sqrt{50}$$
 is:

- 10.
- (a) 8.426
- (b) 8.484
- (c) 8.526
- (d) 8.876

81. The approximate value of
$$\frac{3\sqrt{12}}{2\sqrt{28}} \div \frac{2\sqrt{21}}{\sqrt{98}}$$
 is

(Section Officers, 2003)

- (a) 1.0605
- (b) 1.0727
- (c) 1.6007
- (d) 1.6026
- **82.** $\sqrt{110.25} \times \sqrt{0.01} \div \sqrt{0.0025} \sqrt{420.25}$ equals

(SNAP, 2010)

(S.S.C., 2003)

- (a) 0.50
- (b) 0.64
- (c) 0.73
- (d) 0.75

83.
$$\sqrt{\frac{.081 \times .484}{.0064 \times 6.25}}$$
 is equal to

- (a) 0.9
- (b) 0.99

(c) 9

(d) 99

(a) $\frac{1}{6}$

(b) 0.06

85.
$$\sqrt{\frac{0.081 \times 0.324 \times 4.624}{1.5625 \times 0.0289 \times 72.9 \times 64}}$$
 is equal to

- (b) 0.24

- **86.** $\sqrt{\frac{9.5 \times .085}{.0017 \times .19}}$ equals
 - (*a*) .05 (*c*) 50

(c) 50 (d) 500
87. The value of
$$\sqrt{\frac{(0.03)^2 + (0.21)^2 + (0.065)^2}{(0.003)^2 + (0.021)^2 + (0.0065)^2}}$$
 is

(S.S.C., 2002)

- (c) 10^2
- $(d) 10^3$ **88.** The square root of $(7 + 3\sqrt{5})(7 - 3\sqrt{5})$ is (S.S.C., 2004)

(c) 4

(d) $3\sqrt{5}$

89.
$$\left(\sqrt{3} - \frac{1}{\sqrt{3}}\right)^2$$
 simplifies to

- (d) None of these
- **90.** If a = 0.1039, then the value of $\sqrt{4a^2 4a + 1 + 3a}$

- (a) 0.1039
- (b) 0.2078

- (c) 1.1039 (d) 2.1039 91. The square root of $\frac{(0.75)^3}{1 0.75} + [0.75 + (0.75)^2 + 1]$ is

- **92.** If 3a = 4b = 6c and $a + b + c = 27\sqrt{29}$, then $\sqrt{a^2 + b^2 + c^2}$

 - (a) $3\sqrt{29}$
- (b) 81
- (c) 87
- (d) None of these
- **93.** The square root of $0.\overline{4}$ is
- (S.S.C., 2004)

- (a) $0.\overline{6}$
- (b) $0.\overline{7}$
- (c) $0.\overline{8}$
- (d) $0.\overline{9}$

- 94. Which one of the following numbers has rational square root?
 - (a) 0.4
- (b) 0.09
- (c) 0.9
- (d) 0.025
- **95.** The value of $\sqrt{0.4}$ is
 - (a) 0.02
- (b) 0.2
- (c) 0.51
- (d) 0.63
- **96.** $\sqrt{0.2} = ?$

- (a) 0.02
- (b) 0.2
- (c) 0.447
- (d) 0.632
- **97.** The value of $\sqrt{0.121}$ is
 - (a) 0.011
- (b) 0.11
- (c) 0.347
- (d) 1.1
- **98.** The value of $\sqrt{0.064}$ is
 - (a) 0.008
- (b) 0.08
- (c) 0.252
- (d) 0.8
- 99. The value of $\sqrt{\frac{0.16}{0.4}}$ is
- (IGNOU, 2003)

(R.R.B., 2006)

(R.R.B., 2007)

- (a) 0.02
- (b) 0.2
- (c) 0.63
- (d) None of these
- 100. The value of $\frac{1+\sqrt{0.01}}{1-\sqrt{0.1}}$ is close to
 - (a) 0.6
- (b) 1.1

- **101.** The square root of 535.9225 is
 - (a) 23.15
- (b) 23.45
- (c) 24.15
- **102.** If $\sqrt{5} = 2.236$, then the value of $\frac{1}{\sqrt{5}}$ is
 - (a) .367
- (c) .745
- (d) None of these
- **103.** If $\sqrt{24} = 4.899$, the value of $\sqrt{\frac{8}{3}}$ is
 - (a) 0.544
- (b) 1.333
- (c) 1.633
- (d) 2.666
- **104.** If $\sqrt{6} = 2.449$, then the value of $\frac{3\sqrt{2}}{2\sqrt{3}}$ is
 - (a) 0.6122
- (b) 0.8163
- (c) 1.223
- (d) 1.2245
- **105.** If $\sqrt{5} = 2.236$, then the value of $\frac{\sqrt{5}}{2} \frac{10}{\sqrt{5}} + \sqrt{125}$
 - is equal to
 - (a) 5.59
- (b) 7.826
- (c) 8.944
- (d) 10.062

130					Q0/111111/11	IVE AL TITODE
106.	If $2 * 3 = \sqrt{13}$ and $3 * 4$ $5 * 12$ is	4 = 5, then the value of	118. The great (a) 9000	atest four-digit pe	rfect squar (b) 9801	e number is
			(c) 9900		(d) 9981	
	(a) $\sqrt{17}$	(b) $\sqrt{29}$	119. The least	st number of 4 of	digits which	h is a perfect
	(c) 12	(d) 13	square i	is		
107.	If 1537* is a perfect squa	re, then the digit which	(a) 1000		(b) 1016	
	replaces * is	(Hotel Management, 2007)	(c) 1024		(d) 1036	
	(a) 2	(b) 4	120. The sur	n of 18 consecuti	ve natural	numbers is a
	(c) 5	(d) 6	perfect s	square. What is th	ne smallest	possible value
100	, ,	` '	of this s	sum?	(A	.A.O. Exam, 2009)
108.	The smallest perfect squa	2	(a) 169		(b) 225	
	is	(I.I.F.T., 2010)	(c) 289		(d) 441	
	(a) 19600	(b) 44100				_
	(c) 176400	(d) 705600	121. $\sqrt{2} + \sqrt{3}$	$\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}$	$(2 + \sqrt{2} + \sqrt{2})$	$2 + \sqrt{3}$
109.	The least perfect square r 5, 6 and 8 is	number divisible by 3, 4,	$1\sqrt{2-1}$	$\frac{1}{2 + \sqrt{2 + \sqrt{3}}}$ is eq	rual to	
	(a) 900	(b) 1200	, ,	1- · V- · · · · · · · · · · · · · · · · ·	1444 10	
	(c) 2500	(d) 3600	(a) 1		(b) 2	
110	· /	` '	(c) 4		(d) $\sqrt{6}$	
110.	The least perfect square, which is divisible by each of 21, 36 and 66, is		` '	$\sqrt{5} = 2.2361, \sqrt{3} =$: 1.7321, the	$\frac{1}{\sqrt{5}}$ is
	(a) 213444	(b) 214344				$\sqrt{5} - \sqrt{3}$
	(c) 214434	(d) 231444	equal to)		
111.	The least number by which	h 294 must be multiplied	(a) 1.98		(b) 1.984	
	to make it a perfect square,		(c) 1.984	! 1	(d) 2	
	(a) 2	(b) 3	1	1	1	1
	(c) 6	(d) 24	123. $\frac{1}{(\sqrt{9}-\sqrt{9})}$	$\frac{1}{8} - \frac{1}{(\sqrt{8} - \sqrt{7})} + \frac{1}{(\sqrt{8} - \sqrt{7})}$	$\sqrt{7} - \sqrt{6}$	$(\sqrt{6} - \sqrt{5})$
110	Find the smallest number	()	(V) V	0) (40 47) (V 7 V 0)	(40 43)
112.	multiplied so that the prosquare.	2	$+\frac{1}{(\sqrt{5}-$	$\sqrt{4}$) is equal to		(M.B.A., 2007)
	(a) 2	(b) 3			1	
	(c) 7	(d) 11	(<i>a</i>) 0		(b) $\frac{1}{3}$	
110	, ,	()	(a) 1		(d) 5	
113.	The least number by which is		(c) 1	ine the value of	(a) 3	
	to get a number which is					1
	(a) 5	(b) 6	1	$\frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}$	L 	<u></u>
111	(c) 15	(d) 30	$\sqrt{1} + \sqrt{2}$	$2 \sqrt{2} + \sqrt{3} \sqrt{3} + \sqrt{3}$	$-\sqrt{4}$	$\sqrt{120} + \sqrt{121}$
114.	What is the smallest numb	_				(M.A.T., 2005)
	549162 in order to make i		(a) 8		(b) 10	
	(a) 28	(b) 36	(c) $\sqrt{120}$	_)	(d) $12\sqrt{2}$	
	(c) 62	(d) 81			` '	
115.	What is the least number w from 0.000326 to make it a		125. The exp	pression $1 - \frac{1}{1 + \sqrt{3}}$	$+\frac{1}{1-\sqrt{3}} \in$	equals
	(a) 0.000002	(b) 0.000004				(M.B.A., 2011)
	(c) 0.02	(d) 0.04	1	<u> </u>	(1) 4	(M.D.A., 2011)
116.	What is the least number	to be added to 7700 to	(a) $1-\sqrt{a}$		(b) 1	
	make it a perfect square?		(c) $-\sqrt{3}$	- 	(d) $\sqrt{3}$	
	(a) 77	(b) 98				
	(c) 131	(d) 221	126 $2 + \sqrt{2}$	_ 1 _ 1 _ 1	cimplific	e to
	(e) None of these	(Bank Recruitment, 2008)	120. 2 + 72	$+\frac{1}{2+\sqrt{2}}+\frac{1}{\sqrt{2}-2}$	Smithing	.5 10
117.	The smallest number to be	· ·			/	
	the sum a perfect square i			_		(M.B.A., 2007)
	(a) 4	(b) 5	(a) $2-\sqrt{2}$	√2	(<i>b</i>) 2	
	(c) 6	(d) 8	(c) $2 + \sqrt{1}$	$\sqrt{2}$	(d) $2\sqrt{2}$	

127. What is the value of $\frac{1}{\sqrt{5} + \sqrt{3}} + \frac{2}{3 + \sqrt{5}} - \frac{3}{3 + \sqrt{3}}$?

(a)
$$-\frac{1}{2}$$

(b) 0

(c)
$$\frac{1}{2}$$

(d) 1

128. If $\sqrt{2} = 1.4142$, the value of $\frac{7}{(3+\sqrt{2})}$ is (R.R.B., 2005)

- (a) 1.5858
- (c) 3.5858

129.
$$\left[\frac{3\sqrt{2}}{\sqrt{6} - \sqrt{3}} - \frac{4\sqrt{3}}{\sqrt{6} - \sqrt{2}} - \frac{6}{\sqrt{8} - \sqrt{12}} \right] = ?$$

(Teachers' Exam, 2010)

- (a) $\sqrt{3} \sqrt{2}$
- (b) $\sqrt{3} + \sqrt{2}$
- (c) $5\sqrt{3}$

130. $\frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} - \sqrt{5}}$ is equal to

- (b) 2
- (c) $6 \sqrt{35}$
- (d) $6 + \sqrt{35}$

131. If $\frac{5+2\sqrt{3}}{7+4\sqrt{2}} = a + b\sqrt{3}$, then

- (a) a = -11, b = -6(b) a = -11, b = 6(c) a = 11, b = -6(d) a = 6, b = 11

132. If $\sqrt{2} = 1.414$, the square root of $\frac{\sqrt{2} - 1}{\sqrt{2} + 1}$ is nearest

to

- (a) 0.172
- (b) 0.414
- (c) 0.586
- (d) 1.414

133. Given that $\sqrt{3} = 1.732$, the value of

$$\frac{3+\sqrt{6}}{5\sqrt{3}-2\sqrt{12}-\sqrt{32}+\sqrt{50}} \text{ is }$$

- (a) 1.414
- (b) 1.732
- (c) 2.551
- (d) 4.899

134. $\left(\frac{2+\sqrt{3}}{2-\sqrt{3}} + \frac{2-\sqrt{3}}{2+\sqrt{3}} + \frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$ simplifies to (S.S.C., 2008)

- (a) $16 \sqrt{3}$
- (b) $4 \sqrt{3}$
- (c) $2 \sqrt{3}$

135. If $x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$ and $y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$, then (x + y)

(a)
$$2(\sqrt{5} + \sqrt{3})$$

(b) $2\sqrt{15}$

(d) 16

136. $\frac{\sqrt{2}(2+\sqrt{3})}{\sqrt{3}(\sqrt{3}+1)} \times \frac{\sqrt{2}(2-\sqrt{3})}{\sqrt{3}(\sqrt{3}-1)}$ is equal to (C.P.O., 2006)

- (a) $3\sqrt{2}$
- (b) $\frac{\sqrt{2}}{3}$
- (c) $\frac{2}{3}$
- (d) $\frac{1}{2}$

137. $\frac{12}{3+\sqrt{5}+2\sqrt{2}}$ is equal to

(S.S.C., 2007)

- (a) $1 \sqrt{5} + \sqrt{2} + \sqrt{10}$
- (b) $1+\sqrt{5}+\sqrt{2}-\sqrt{10}$
- (c) $1+\sqrt{5}-\sqrt{2}+\sqrt{10}$
- (d) $1 \sqrt{5} \sqrt{2} + \sqrt{10}$

138. $\left[\frac{1}{\sqrt{2} + \sqrt{3} - \sqrt{5}} + \frac{1}{\sqrt{2} - \sqrt{3} - \sqrt{5}} \right]$ in simplified form

equals

(S.S.C., 2005)

(a) 0

(b) $\frac{1}{\sqrt{2}}$

(d) $\sqrt{2}$

139. If $x = (7 - 4\sqrt{3})$, then the value of $\left(x + \frac{1}{x}\right)$ is

- (a) $3\sqrt{3}$
- (c) 14
- (d) $14 + 8\sqrt{3}$

140. If $x = 3 + \sqrt{8}$, then $x^2 + \frac{1}{x^2}$ is equal to (S.S.C., 2007)

- (a) 30

 $a^2 + b^2$ would be

- (a) 10
- (b) 98
- (c) 99

142. If $a = \frac{\sqrt{5} + 1}{\sqrt{5} - 1}$ and $b = \frac{\sqrt{5} - 1}{\sqrt{5} + 1}$, the value

of
$$\left(\frac{a^2 + ab + b^2}{a^2 - ab + b^2}\right)$$
 is

143. If $x = \sqrt{1 + + \}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\frac{1+\sqrt{1+\cdots\infty}}$	then the positive val	ue of
n io		(3.5.D. A	2000)

(a) $\frac{\sqrt{7}+1}{2}$

(c) $\frac{\sqrt{5}+1}{2}$

(d) $\frac{\sqrt{3}+1}{2}$

144. $\sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}}$ is equal to

(S.S.C., 2005)

(a) 1

(c) 2 (d) 2.5 **145.** If $a = \sqrt{3 + \sqrt{3 + \sqrt{3 + \cdots}}}$, then which of the

following is true?

(M.B.A., 2007)

(a) 2 < a < 3

(b) a > 3

(c) 3 < a < 4

(d) a = 3

146. $\frac{\sqrt{3+x}+\sqrt{3-x}}{\sqrt{3+x}-\sqrt{3-x}} = 2$. Then *x* is equal to (S.S.C., 2010)

(b) $\frac{7}{5}$

147. One-fourth of a herd of camels was seen in the forest. Twice the square root of the herd had gone to mountains and the remaining 15 camels were seen on the bank of a river. Find the total number of camels. (M.A.T., 2005)

(a) 32

(b) 34

(c) 35

(d) 36

148. A gardener plants 17956 trees in such a way that there are as many rows as there are trees in a row. The number of trees in a row are (M.B.A., 2006)

(a) 134

(b) 136

(c) 144

(d) 154

149. The number of trees in each row of a garden is equal to the total number of rows in the garden. After 111 trees have been uprooted in a storm, there remain 10914 trees in the garden. The number of rows of trees in the garden is (C.P.O., 2007)

(a) 100

(b) 105

(c) 115

(d) 125

150. 1250 oranges were distributed among a group of girls of a class. Each girl got twice as many oranges as the number of girls in that group. The number of girls in the group was (P.C.S., 2006)

(a) 25

(b) 45

(c) 50

(d) 100

151. A General wishes to draw up his 36581 soldiers in the form of a solid square. After arranging them, he found that some of them are left over. How many are left?

(a) 65(c) 100 (b) 81

(d) None of these

152. A group of students decided to collect as many paise from each member of the group as is the number of members. If the total collection amounts to ₹ 59.29, the number of members in the group is

(a) 57

(b) 67

(c) 77

(d) 87

153. A mobile company offered to pay the Indian Cricket Team as much money per run scored by the side as the total number it gets in a one-dayer against Australia. Which one of the following cannot be the total amount to be spent by the company in this deal? (P.C.S., 2008)

(a) 21,904

(b) 56,169

(c) 1,01,761

(d) 1,21,108

154. $\sqrt[3]{148877} = ?$

(L.I.C.A.D.O., 2007)

(a) 43(c) 53

(b) 49 (d) 59

155. $\sqrt[3]{681472} = ?$

(Bank P.O., 2009)

(a) 76

(b) 88

(c) 96

(d) 98

156. $1728 \div \sqrt[3]{262144} \times ? - 288 = 4491$

(Bank P.O., 2008)

(a) 148

(b) 156

(c) 173

(d) 177

157. 99 × 21 – $\sqrt[3]{?}$ = 1968

(NABARD, 2008)

(a) 1367631

(b) 111

(c) 1366731

(d) 1367

158. The cube root of .000216 is

(a) .6

(b) .06

(c) .006

(d) None of these

159. $\sqrt[3]{4\frac{12}{125}} = ?$

(a) $1\frac{2}{5}$

(c) $1\frac{4}{5}$

160. $\sqrt[3]{\sqrt{.000064}} = ?$

(a) .02 (c) 2

(b) .2

(d) None of these

161. The smallest positive integer n, for which 864n is a perfect cube, is (C.P.O., 2007) (a) 1

(c) 3

(b) 2

(d) 4

162. Value of $\sqrt{.01} \times \sqrt[3]{.008} - .02$ is

(P.C.S., 2006)

(b) 1

(c) 2

(d) 3

(S.S.C., 2005)

- (a) 0.125
- (b) 0.25
- (c) 0.5
- (d) 0.75
- **164.** A rationalising factor of $(\sqrt[3]{9} \sqrt[3]{3} + 1)$ is (S.S.C., 2007)
 - (a) $\sqrt[3]{3} 1$
- (b) $\sqrt[3]{3} + 1$
- (c) $\sqrt[3]{9} 1$
- (d) $\sqrt[3]{9} + 1$
- **165.** The largest four-digit number which is a perfect cube, is
 - (a) 8000
- (b) 9261
- (c) 9999
- (d) None of these
- **166.** By what least number must 21600 be multiplied so as to make it a perfect cube? (M.A.T., 2002)
 - (a) 6

- (b) 10
- (c) 20

- (d) 30
- **167.** What is the smallest number by which 3600 be divided to make it a perfect cube?
 - (a) 9
- (b) 50
- (c) 300
- (d) 450
- **168.** Which smallest number must be added to 710 so that the sum is a perfect cube? (S.S.C., 2005)
 - (a) 11
- (b) 19
- (c) 21

- (d) 29
- **169.** Solve $\sqrt{7921} = ?$ [Indian Railway Gr. 'D' Exam, 2014]
 - (a) 89
- (b) 87
- (c) 37
- (d) 47
- 170. Solve $\sqrt[4]{(625)^3}$ =? [Indian Railway Gr. 'D' Exam, 2014]
 - (a) $\sqrt[3]{1875}$
- (b) 25
- (c) 125
- (d) None of these
- **171.** If $\sqrt{y} = 4x$, then $\frac{x^2}{y}$ is [SS]

[SSC—CHSL (10+2) Exam, 2015]

(a) 2

- (b) $\frac{1}{16}$
- (c) $\frac{1}{4}$

(d) 4

Direction (*Q. No. 172*): What approximate value will come in place of question mark(?) in the given question? (You are not expected to calculate the exact value)

172.
$$\sqrt{2025.11} \times \sqrt{256.04} + \sqrt{399.95} \times \sqrt{?} = 33.98 \times 40.11$$

[IBPS—Bank Spl. Officer (IT) Exam, 2015]

- (a) 1682
- (b) 1024
- (c) 1582
- (d) 678
- 173. If $\sqrt{7} = 2.645$, then the value of $\frac{1}{\sqrt{28}}$ up to three

places of decimal is

- [SSC—CHSL (10+2) Exam, 2015]
- (a) 0.183
- (b) 0.185
- (c) 0.187
- (d) 0.189

174. Solve:
$$\left(\sqrt{\frac{25}{9}} - \sqrt{\frac{64}{81}}\right) \div \sqrt{\frac{16}{324}} = ?$$

(a) 4.5

(b) 2.5

- (c) 1.5
- (d) 3.5

[United India Insurance Co. Ltd. (UIICL)
Assistant (Online) Exam, 2015]

- 175. Solve $1728 \div \sqrt[3]{262144} \times ?-288 = 4491$
 - (a) 148
- (b) 156
- (c) 173
- (d) 177
- (e) 185

[United India Insurance Co. Ltd. (UIICL) Assistant (Online) Exam, 2015]

- **176.** Solve: $(\sqrt{7} + 11)^2 = (?)^{\frac{1}{3}} + 2\sqrt{847} + 122$
 - (a) $36 + 44\sqrt{7}$
- (b) 6
- (c) 216
- (d) 36

[IDBI Bank Executive Officers Exam, 2015]

Directions (Q. No. 177 & 178): What will come in place of question mark in these questions?

- **177.** $?-\sqrt{(784)} = 6 \times \sqrt{(324)}$
- (NICL—AAO Exam, 2015]

[NICL—AAO Exam, 2015]

- (a) 128
- (b) 160
- (c) 236
- (d) 136
- 178. $\sqrt{(2116)} \sqrt{1600} = \sqrt{?}$
- (b) 64
- (*a*) 20 (*c*) 81
- (d) 36
- **179.** Solve $\sqrt{(27 \div 5 \times ?) + 15} = 5.4 \div 6 + 0.3$

[IBPS—RRB Office Assistant (Online) Exam, 2015]

(a) 2

- (b) 6
- (c) 10
- (d) 4
- **180.** $\sqrt{24 \div 0.5 + 1} + \sqrt{18 \div 0.6 + 6} = ?$
 - (a) 19
- (b) 13
- (c) 12
- (d) 15

[IBPS—RRB Office Assistant (Online) Exam, 2015]

181. $(\sqrt{63} + \sqrt{252}) \times (\sqrt{175} + \sqrt{28}) = ?$

[IBPS—RRB Office Assistant (Online) Exam, 2015]

- (a) $16\sqrt{7}$
- (b) 441
- (c) 16
- (d) $7\sqrt{7}$
- **182.** $9x^2 + 25 30x$ can be expressed as the square of [SSC—CHSL (10+2) Exam, 2015]
 - (a) $3x^2 25$
- (b) 3x 5
- (c) -3x 5
- (d) 3x 5
- **183.** If $\sqrt{33} = 5.745$, then the value of the following is
 - approximately $\sqrt{\frac{3}{11}}$
- (b) 6.32

[SSC-CHSL (10+2) Exam, 2015]

- (*a*) 1 (*c*) 0.5223
- (d) 2.035

194

184.
$$\sqrt{?} + 14 = \sqrt{2601}$$
 [SBI Jr. Asso

[SBI Jr. Associates (Pre.) Exam, 2016]

- (a) 1521
- (b) 1369
- (c) 1225

185. If
$$a = \frac{\sqrt{3}}{2}$$
, then $\sqrt{1+a} + \sqrt{1-a} = ?$

[DMRC—Train Operator (Station Controller) Exam, 2016]

- (a) $(2-\sqrt{3})$
- (b) $(2+\sqrt{3})$

186. What is
$$\frac{5+\sqrt{10}}{5\sqrt{5}-2\sqrt{20}-\sqrt{32}+\sqrt{50}}$$
 equal to? [CDS 2016]

(a) 5

- (b) $5\sqrt{2}$
- (c) $5\sqrt{5}$
- (d) $\sqrt{5}$

187. The square root of $\frac{(0.75)^3}{1-0.75} + \left[0.75 + (0.75)^2 + 1\right]$ is

(c) 3

- (b) 2
- (d) 4

188.
$$\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}$$
 is equal to

- (a) $(\sqrt{2} + \sqrt{3} + \sqrt{5})$ (b) $(\sqrt{2} + \sqrt{3} \sqrt{5})$
- (c) $(\sqrt{2} + \sqrt{5} \sqrt{3})$
- (d) None of these

[DMRC—Customer Relationship Assistant (CRA) Exam, 2016]

ANSWERS

1. (b)	2. (<i>b</i>)	3. (c)	4. (c)	5. (<i>e</i>)	6. (<i>e</i>)	7. (<i>a</i>)	8. (a)	9. (c)	10. (b)
11. (a)	12. (c)	13. (<i>d</i>)	14. (<i>b</i>)	15. (<i>b</i>)	16. (c)	17. (<i>c</i>)	18. (<i>c</i>)	19. (<i>b</i>)	20. (<i>d</i>)
21. (<i>b</i>)	22. (<i>b</i>)	23. (<i>e</i>)	24. (c)	25. (<i>b</i>)	26. (<i>d</i>)	27. (<i>e</i>)	28. (<i>a</i>)	29. (<i>c</i>)	30. (<i>d</i>)
31. (a)	32. (<i>b</i>)	33. (<i>a</i>)	34. (c)	35. (<i>a</i>)	36. (<i>c</i>)	37. (<i>c</i>)	38. (<i>b</i>)	39. (<i>b</i>)	40. (<i>b</i>)
41. (<i>d</i>)	42. (<i>d</i>)	43. (<i>b</i>)	44. (<i>d</i>)	45. (<i>b</i>)	46. (c)	47. (<i>d</i>)	48. (<i>d</i>)	49. (<i>d</i>)	50. (<i>e</i>)
51. (<i>d</i>)	52. (<i>a</i>)	53. (<i>d</i>)	54. (<i>b</i>)	55. (<i>b</i>)	56. (<i>a</i>)	57. (<i>d</i>)	58. (<i>c</i>)	59. (<i>b</i>)	60. (<i>b</i>)
61. (a)	62. (<i>a</i>)	63. (<i>b</i>)	64. (c)	65. (<i>a</i>)	66. (<i>c</i>)	67. (<i>a</i>)	68. (<i>d</i>)	69. (<i>c</i>)	70. (c)
71. (a)	72. (<i>b</i>)	73. (<i>d</i>)	74. (c)	75. (<i>b</i>)	76. (<i>b</i>)	77. (<i>b</i>)	78. (<i>d</i>)	79. (<i>c</i>)	80. (<i>b</i>)
81. (a)	82. (<i>a</i>)	83. (<i>b</i>)	84. (<i>d</i>)	85. (<i>a</i>)	86. (<i>c</i>)	87. (<i>b</i>)	88. (<i>b</i>)	89. (<i>c</i>)	90. (c)
91. (<i>b</i>)	92. (c)	93. (a)	94. (<i>b</i>)	95. (<i>d</i>)	96. (<i>c</i>)	97. (<i>c</i>)	98. (<i>c</i>)	99. (c)	100. (<i>c</i>)
101. (<i>a</i>)	102. (<i>b</i>)	103. (<i>c</i>)	104. (<i>d</i>)	105. (<i>b</i>)	106. (<i>d</i>)	107. (<i>d</i>)	108. (<i>c</i>)	109. (<i>d</i>)	110. (a)
111. (c)	112. (<i>b</i>)	113. (<i>d</i>)	114. (<i>d</i>)	115. (a)	116. (e)	117. (<i>a</i>)	118. (<i>b</i>)	119. (<i>c</i>)	120. (<i>b</i>)
121. (a)	122. (c)	123. (<i>d</i>)	124. (<i>b</i>)	125. (<i>a</i>)	126. (<i>b</i>)	127. (<i>b</i>)	128. (<i>a</i>)	129. (<i>c</i>)	130. (<i>d</i>)
131. (<i>c</i>)	132. (<i>b</i>)	133. (<i>b</i>)	134. (<i>a</i>)	135. (<i>c</i>)	136. (<i>d</i>)	137. (<i>b</i>)	138. (<i>b</i>)	139. (<i>c</i>)	140. (<i>b</i>)
141. (<i>b</i>)	142. (<i>b</i>)	143. (c)	144. (c)	145. (<i>a</i>)	146. (<i>d</i>)	147. (<i>d</i>)	148. (<i>a</i>)	149. (<i>b</i>)	150. (<i>a</i>)
151. (<i>c</i>)	152. (<i>c</i>)	153. (<i>d</i>)	154. (c)	155. (<i>b</i>)	156. (<i>d</i>)	157. (<i>a</i>)	158. (<i>b</i>)	159. (<i>b</i>)	160. (<i>b</i>)
161. (<i>b</i>)	162. (<i>a</i>)	163. (<i>c</i>)	164. (<i>b</i>)	165. (<i>b</i>)	166. (<i>b</i>)	167. (<i>d</i>)	168. (<i>b</i>)	169. (<i>a</i>)	170. (<i>c</i>)
171. (<i>b</i>)	172. (<i>b</i>)	173. (<i>d</i>)	174. (<i>d</i>)	175. (<i>d</i>)	176. (c)	177. (<i>d</i>)	178. (<i>d</i>)	179. (<i>d</i>)	180. (<i>b</i>)
181. (b)	182. (<i>d</i>)	183. (c)	184. (<i>b</i>)	185. (<i>d</i>)	186. (<i>d</i>)	187. (<i>b</i>)	188. (<i>a</i>)		

SOLUTIONS

 $\therefore \sqrt{53824} = 232.$

2. 2 4
$$\overline{12}$$
 $\overline{09}$ (203
4 40 12 0
403 12 09 12 09

 $\therefore \sqrt{41209} = 203.$

 $\therefore \sqrt{123454321} = 11111.$

- **4.** The number of digits in the square root of a perfect square number of n digits is
 - (i) $\frac{n}{2}$, if *n* is even
 - (ii) $\frac{n+1}{2}$, if n is odd

Here, n = 12. So, required number of digits $= \frac{n}{2} = \frac{12}{2} = 6$.

5.
$$\sqrt{\sqrt{17956} + \sqrt{24025}} = \sqrt{134 + 155} = \sqrt{289} = 17.$$

- **6.** $\sqrt{\sqrt{44944} + \sqrt{52441}} = \sqrt{212 + 229} = \sqrt{441} = 21.$
- 7. Sum of prime numbers greater than 4 but less than 16 = (5 + 7 + 11 + 13) = 36.

$$\therefore \frac{1}{4} \times 36 = 9 = 3^2.$$

8. Given exp.
$$= \sqrt{10 + \sqrt{25 + \sqrt{108 + \sqrt{154 + 15}}}}$$
$$= \sqrt{10 + \sqrt{25 + \sqrt{108 + \sqrt{169}}}}$$
$$= \sqrt{10 + \sqrt{25 + \sqrt{108 + 13}}}$$
$$= \sqrt{10 + \sqrt{25 + \sqrt{121}}}$$
$$= \sqrt{10 + \sqrt{25 + 11}} = \sqrt{10 + \sqrt{36}}$$
$$= = \sqrt{10 + 6} = \sqrt{16} = 4.$$

9. Given exp.
$$= \sqrt{41 - \sqrt{21 + \sqrt{19 - 3}}}$$
$$= \sqrt{41 - \sqrt{21 + \sqrt{16}}} = \sqrt{41 - \sqrt{21 + 4}}$$
$$= \sqrt{41 - \sqrt{25}} = \sqrt{41 - 5} = \sqrt{36} = 6.$$

- **10.** Given exp. $= \sqrt{176 + 49} = \sqrt{225} = 15$.
- 11. Given exp. $=\frac{14}{7} \times \frac{21}{7} \times \frac{120}{15} = 2 \times 3 \times 8 = 48.$

12. Given exp.
$$= \left(\frac{\sqrt{225}}{\sqrt{729}} - \frac{\sqrt{25}}{\sqrt{144}}\right) \div \frac{\sqrt{16}}{\sqrt{81}}$$
$$= \left(\frac{15}{27} - \frac{5}{12}\right) \div \frac{4}{9} = \left(\frac{15}{108} \times \frac{9}{4}\right) = \frac{5}{16}.$$

- **13.** Let $(15)^2 + (18)^2 20 = \sqrt{x}$. Then, $\sqrt{x} = 225 + 324 - 20 = 529$ $\Leftrightarrow x = (529)^2 = 279841$.
- **14.** Let $\sqrt{x} \times \sqrt{484} = 1034$. Then, $\sqrt{x} \times 22 = 1034$ $\Leftrightarrow \sqrt{x} = \frac{1034}{22} = 47$ $\Leftrightarrow x = (47)^2 = 2209$.
- **15.** Let $\sqrt{11881} \times \sqrt{x} = 10137$. Then, $109 \times \sqrt{x} = 10137$ $\Leftrightarrow \sqrt{x} = \frac{10137}{109} = 93$ $\Leftrightarrow x = (93)^2 = 8649$.

16.
$$\frac{4050}{\sqrt{x}} = 450 \Leftrightarrow \sqrt{x} = \frac{4050}{450} = 9$$

$$\Leftrightarrow x = 9^2 = 81.$$

17. Let
$$\sqrt{\frac{16}{25}} \times \sqrt{\frac{x}{25}} \times \frac{16}{25} = \frac{256}{625}$$

Then,
$$\frac{4}{5} \times \frac{\sqrt{x}}{2} \times \frac{16}{25} = \frac{256}{625}$$

$$\Leftrightarrow \frac{64\sqrt{x}}{625} = \frac{256}{625}$$

$$\Leftrightarrow \sqrt{x} = \frac{256}{625} \times \frac{625}{64}$$

$$\Leftrightarrow x = 4^2 = 16.$$

18.
$$\sqrt{(272)^2 - (128)^2} = \sqrt{(272 + 128)(272 - 128)}$$

= $\sqrt{400 \times 144} = \sqrt{57600} = 240$

19. 6 * 24 =
$$6 + 24 + \sqrt{6 \times 24} = 30 + \sqrt{144}$$

$$= 30 + 12 = 42.$$
20. $10y\sqrt{y^3 - y^2} = 10 \times 5\sqrt{5^3 - 5^2}$

$$= 50 \times \sqrt{125 - 25} = 50 \times \sqrt{100}$$

$$= 50 \times 10 = 500$$

21.
$$\sqrt{110\frac{1}{4}} = \sqrt{\frac{441}{4}} = \frac{\sqrt{441}}{\sqrt{4}} = \frac{21}{2} = 10.5.$$

22.
$$\sqrt{\frac{25}{81} - \frac{1}{9}} = \sqrt{\frac{25 - 9}{81}} = \sqrt{\frac{16}{81}} = \frac{\sqrt{16}}{\sqrt{81}} = \frac{4}{9}$$
.

23. Let $[(\sqrt{81})^2]^2 = x^2$. Then, $x^2 = (81)^2$ or x = 81.

- 26. A number ending in 8 can never be a perfect square.
- **27.** The squares of numbers having 1 and 9 as the unit's digit end in the digit 1.

Such numbers are: 1, 9, 11, 19, 21, 29, 31, 39, 41, 49 i.e., there are 10 such numbers.

$$\therefore$$
 Required percentage = $\left(\frac{10}{50} \times 100\right)\% = 20\%$.

28. Let the given number be x.

Then,
$$x^2 - 25 = (x - 25)^2 \Leftrightarrow x^2 - 25 = x^2 + 625 - 50x \Leftrightarrow 50x = 650 \Leftrightarrow x = 13.$$

29. $(11)^2 = 121$ and $(17)^2 = 289$.

So, the perfect squares between 120 and 300 are the squares of numbers from 11 to 17. Clearly, these are 7 in number.

- **30.** The first perfect square number after 50 is $64 (= 8^2)$ and the last perfect square number before 1000 is $961 [= (31)^2]$. So, the perfect squares between 50 and 1000 are the squares of numbers from 8 to 31. Clearly, these are 24 in number.
- **31.** Clearly, the man was born between 1800 and 1850. The only perfect square number between 1800 and 1850 is 1849. And, 1849 = (43)².

So, the man was 43 years old in 1849. Thus, he was born in (1849 - 43) = 1806.

32.
$$Q = \sqrt{\frac{(8R)^2}{4}} = \frac{\sqrt{(8R)^2}}{\sqrt{4}} = \frac{8R}{2} = 4R.$$

33. The smallest such number is 1444[= (38)²]. It lies between 1000 and 2000.

34.
$$\left(\sqrt{2} + \frac{1}{\sqrt{2}}\right)^2 = (\sqrt{2})^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + 2 \times \sqrt{2} \times \frac{1}{\sqrt{2}}$$

= $2 + \frac{1}{2} + 2 = 4\frac{1}{2}$.

35. We have:

$$1 \times 2 \times 3 \times 4 = 24$$
 and $24 + 1 = 25$ [= 5^2].
 $2 \times 3 \times 4 \times 5 = 120$ and $120 + 1 = 121$ [= 11^2]
 $3 \times 4 \times 5 \times 6 = 360$ and $360 + 1 = 361$ [= 19^2]
 $4 \times 5 \times 6 \times 7 = 840$ and $840 + 1 = 841$ [= 29^2].
 $\therefore p = 1$.

36.
$$\sqrt{0.16} = \sqrt{\frac{16}{100}} = \frac{\sqrt{16}}{\sqrt{100}} = \frac{4}{10} = 0.4.$$

37.
$$\sqrt{0.000441} = \sqrt{\frac{441}{10^6}} = \frac{\sqrt{441}}{\sqrt{10^6}} = \frac{21}{10^3} = \frac{21}{1000} = 0.021.$$

38.
$$\sqrt{0.00004761} = \sqrt{\frac{4761}{10^8}} = \frac{\sqrt{4761}}{\sqrt{10^8}} = \frac{69}{10^4} = \frac{69}{10000} = 0.0069.$$

39.
$$1.5^2 \times \sqrt{0.0225} = 1.5^2 \times \sqrt{\frac{225}{10000}} = 2.25 \times \frac{15}{100}$$

= $2.25 \times 0.15 = 0.3375$.

40.
$$\sqrt{0.01 + \sqrt{0.0064}} = \sqrt{0.01 + \sqrt{\frac{64}{10000}}}$$

= $\sqrt{0.01 + \frac{8}{100}} = \sqrt{0.01 + 0.08} = \sqrt{0.09} = 0.3.$

41. Given exp.
$$= \sqrt{\frac{1}{100}} + \sqrt{\frac{81}{100}} + \sqrt{\frac{121}{100}} + \sqrt{\frac{9}{10000}}$$
$$= \frac{1}{10} + \frac{9}{10} + \frac{11}{10} + \frac{3}{100}$$
$$= 0.1 + 0.9 + 1.1 + 0.03 = 2.13.$$

42. Given exp.
$$= \sqrt{\frac{25}{10000}} \times \sqrt{\frac{225}{100}} \times \sqrt{\frac{1}{10000}}$$
$$= \frac{5}{100} \times \frac{15}{10} \times \frac{1}{100} = \frac{75}{100000} = 0.00075.$$

$$\therefore \sqrt{1.5625} = 1.25.$$

44.
$$\sqrt{6760000} = \sqrt{0.00000676 \times 10^{12}} = \sqrt{0.00000676} \times \sqrt{10^{12}}$$

$$= .0026 \times 10^6 = 2600.$$
45. Given exp.
$$= \sqrt{\frac{18225}{10^2}} + \sqrt{\frac{18225}{10^4}} + \sqrt{\frac{18225}{10^6}} + \sqrt{\frac{18225}{10^8}}$$

$$= \frac{\sqrt{18225}}{10} + \frac{\sqrt{18225}}{10^2} + \frac{\sqrt{18225}}{10^3} + \frac{\sqrt{18225}}{10^4}$$

$$= \frac{135}{10} + \frac{135}{100} + \frac{135}{1000} + \frac{135}{10000}$$

46. Given exp.
$$= \sqrt{\frac{4096}{10^2}} + \sqrt{\frac{4096}{10^4}} + \sqrt{\frac{4096}{10^6}} + \sqrt{\frac{4096}{10^8}}$$
$$= \frac{\sqrt{4096}}{10} + \frac{\sqrt{4096}}{10^2} + \frac{\sqrt{4096}}{10^3} + \frac{\sqrt{4096}}{10^4}$$
$$= \frac{64}{10} + \frac{64}{100} + \frac{64}{1000} + \frac{64}{10000}$$

$$= 6.4 + 0.64 + 0.064 + 0.0064$$
$$= 7.1104 \approx 7.11.$$

47. Given exp.
$$= \sqrt{1.30} + \sqrt{1300} + \sqrt{0.0130}$$
$$= \sqrt{\frac{130}{100}} + \sqrt{13 \times 100} + \sqrt{\frac{130}{10000}}$$

$$= \frac{\sqrt{130}}{10} + \sqrt{13} \times 10 + \frac{\sqrt{130}}{100}$$
$$= \frac{11.40}{10} + 3.605 \times 10 + \frac{11.40}{100}$$

$$= 1.14 + 36.05 + 0.114 = 37.304.$$

48.
$$\frac{52}{x} = \sqrt{\frac{169}{289}}$$

$$\Leftrightarrow \frac{52}{x} = \frac{13}{17}$$

$$\Leftrightarrow x = \left(\frac{52 \times 17}{13}\right) = 68.$$

49. Let the missing number be x.

Then,
$$x^2 = 15 \times 135 \Leftrightarrow x = \sqrt{15 \times 135}$$

= $\sqrt{15^2 \times 3^2} = 15 \times 3 = 45$.

50. Let
$$\frac{x}{1776} = \frac{111}{x}$$
. Then, x^2

$$= 111 \times 1776 = 111 \times 111 \times 16$$

$$\Rightarrow x = \sqrt{(111)^2 \times (4)^2} = 111 \times 4 = 444.$$

51. Let
$$\frac{4\frac{1}{2}}{x} = \frac{x}{32}$$
. Then, $x^2 = 32 \times \frac{9}{2} = 144 \Leftrightarrow x = \sqrt{144} = 12$.

52. Let
$$\frac{x}{\sqrt{128}} = \frac{\sqrt{162}}{x}$$
. Then, $x^2 = \sqrt{128 \times 162} = \sqrt{64 \times 2 \times 18 \times 9}$
$$= \sqrt{8^2 \times 6^2 \times 3^2} = 8 \times 6 \times 3 = 144.$$

$$x = \sqrt{144} = 12.$$

53.
$$\sqrt{x + \frac{x}{y}} = x\sqrt{\frac{x}{y}} \Rightarrow x + \frac{x}{y} = x^2 \cdot \frac{x}{y} \Rightarrow \frac{xy + x}{y} = \frac{x^3}{y}$$

$$\Rightarrow xy + x = x^3$$

$$\Rightarrow y + 1 = x^2$$

$$\Rightarrow y = x^2 - 1.$$

54.
$$n^2 = (25)^{64} \times (64)^{25} = (5^2)^{64} \times (2^6)^{25}$$

 $= 5^{128} \times 2^{150} = 5^{128} \times 2^{128} \times 2^{22}$
 $\Rightarrow n = 5^{64} \times 2^{64} \times 2^{11} = (5 \times 2)^{64} \times 2^{11} = 10^{64} \times 2048$
 \therefore Sum of digits of $n = 2 + 0 + 4 + 8 = 14$.

55.
$$\frac{0.13}{p^2} = 13$$

 $\Leftrightarrow p^2 = \frac{0.13}{13} = \frac{1}{100}$
 $\Leftrightarrow p = \sqrt{\frac{1}{100}} = \frac{1}{10} = 0.1.$

56. Let the required number be x. Then,
$$\frac{x}{\sqrt{0.25}} = 25$$

$$\Leftrightarrow \frac{x}{0.5} = 25$$

$$\Leftrightarrow x = 25 \times 0.5 = 12.5.$$

57.
$$\sqrt{3^n} = 729 = 3^6 \Leftrightarrow (\sqrt{3^n})^2 = (3^6)^2 \Leftrightarrow 3^n = 3^{12} \Leftrightarrow n = 12$$

58.
$$\sqrt{18 \times 14 \times x} = 84 \Leftrightarrow 18 \times 14 \times x = 84 \times 84$$

 $\Leftrightarrow x = \frac{84 \times 84}{18 \times 14} = 28.$

59. Let
$$28\sqrt{x} + 1426 = 3 \times 718$$
.
Then, $28\sqrt{x} = 2154 - 1426 \Leftrightarrow 28\sqrt{x} = 728 \Leftrightarrow \sqrt{x} = 26$
 $\Leftrightarrow x = (26)^2 = 676$.

60. Let
$$\sqrt{\frac{x}{169}} = \frac{54}{39}$$
. Then, $\frac{\sqrt{x}}{13} = \frac{54}{39} \iff \sqrt{x} = \left(\frac{54}{39} \times 13\right) = 18$
 $\iff x = (18)^2 = 324$.

61.
$$\frac{\sqrt{x}}{\sqrt{441}} = 0.02 \iff \frac{\sqrt{x}}{21} = 0.02$$

 $\iff \sqrt{x} = 0.02 \times 21 = 0.42 \iff x$
 $= (0.42)^2 = 0.1764$.

62. Let
$$\sqrt{\frac{.0196}{x}} = 0.2$$
. Then, $\frac{.0196}{x} = 0.04$
 $\Leftrightarrow x = \frac{.0196}{.04} = \frac{1.96}{4} = .49$.

63. Let
$$\sqrt{0.0169 \times x} = 1.3$$
. Then, $0.0169x = (1.3)^2 = 1.69$

$$\Rightarrow x = \frac{1.69}{0.0169} = 100.$$

64.
$$37 + \sqrt{.0615 + x} = 37.25 \iff \sqrt{.0615 + x} = 0.25$$

 $\Leftrightarrow .0615 + x = (0.25)^2 = 0.0625$
 $\Leftrightarrow x = .001 = \frac{1}{10^3} = 10^{-3}.$

65.
$$\sqrt{(x-1)(y+2)} = 7 \Rightarrow (x-1)(y+2) = (7)^2 \Rightarrow (x-1) = 7$$
 and $(y+2) = 7 \Rightarrow x = 8$ and $y = 5$.

66.
$$\frac{\sqrt{a}}{\sqrt{b}} = \frac{.004 \times .4}{\sqrt{.04 \times .4}} \Rightarrow \frac{a}{b} = \frac{.004 \times .4 \times .004 \times .4}{.04 \times .4} = \frac{.0000064}{.04}$$
$$\Rightarrow \frac{a}{b} = \frac{.00064}{4} = .00016 = \frac{16}{10^5} = 16 \times 10^{-5}.$$

67. Let the number be x. Then, $\frac{3}{5}x^2 = 126.15 \iff x^2 = \left(126.15 \times \frac{5}{3}\right) = 210.25$

$$\Leftrightarrow x = \sqrt{210.25} = 14.5.$$

68.
$$\sqrt{\frac{0.361}{0.00169}} = \sqrt{\frac{0.36100}{0.00169}} = \sqrt{\frac{36100}{169}} = \frac{190}{13}$$

69.
$$\sqrt{\frac{48.4}{0.289}} = \sqrt{\frac{48.400}{0.289}} = \sqrt{\frac{48400}{289}} = \frac{220}{17} = 12\frac{16}{17}$$

70.
$$\sqrt{1 + \frac{x}{169}} = \frac{14}{13} \implies 1 + \frac{x}{169} = \frac{196}{169}$$

$$\implies \frac{x}{169} = \left(\frac{196}{169} - 1\right) = \frac{27}{169} \implies x = 27.$$

71.
$$\sqrt{1 + \frac{55}{729}} = 1 + \frac{x}{27} \Rightarrow \sqrt{\frac{784}{729}} = \frac{27 + x}{27}$$

 $\Rightarrow \frac{28}{27} = \frac{27 + x}{27} \Rightarrow 27 + x = 28 \Rightarrow x = 1.$

72.
$$\sqrt{\frac{4}{3}} - \sqrt{\frac{3}{4}} = \frac{\sqrt{4}}{\sqrt{3}} - \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{4} \times \sqrt{4} - \sqrt{3} \times \sqrt{3}}{\sqrt{12}} = \frac{4 - 3}{2\sqrt{3}} = \frac{1}{2\sqrt{3}}.$$

74.
$$2\sqrt{27} - \sqrt{75} + \sqrt{12} = 2\sqrt{9 \times 3} - \sqrt{25 \times 3} + \sqrt{4 \times 3}$$

= $6\sqrt{3} - 5\sqrt{3} + 2\sqrt{3} = 3\sqrt{3}$.

198 QUANTITATIVE APTITUDE

75.
$$(\sqrt{12} + \sqrt{18}) - (\sqrt{3} + \sqrt{2}) = (\sqrt{4 \times 3} + \sqrt{9 \times 2}) - (\sqrt{3} + \sqrt{2})$$

 $= (2\sqrt{3} + 3\sqrt{2}) - (\sqrt{3} + \sqrt{2})$
 $= (2\sqrt{3} - \sqrt{3}) + (3\sqrt{2} - \sqrt{2}) = \sqrt{3} + 2\sqrt{2}.$

76.
$$\frac{\sqrt{24} + \sqrt{216}}{\sqrt{96}} = \frac{\sqrt{4 \times 6} + \sqrt{36 \times 6}}{\sqrt{16 \times 6}} = \frac{2\sqrt{6} + 6\sqrt{6}}{4\sqrt{6}} = \frac{8\sqrt{6}}{4\sqrt{6}} = 2.$$

77.
$$\frac{\sqrt{80} - \sqrt{112}}{\sqrt{45} - \sqrt{63}} = \frac{\sqrt{16 \times 5} - \sqrt{16 \times 7}}{\sqrt{9 \times 5} - \sqrt{9 \times 7}}$$
$$= \frac{4\sqrt{5} - 4\sqrt{7}}{3\sqrt{5} - 3\sqrt{7}} = \frac{4(\sqrt{5} - \sqrt{7})}{3(\sqrt{5} - \sqrt{7})} = \frac{4}{3} = 1\frac{1}{3}.$$

78.
$$3\sqrt{5} + \sqrt{125} = 17.88 \implies 3\sqrt{5} + \sqrt{25 \times 5} = 17.88$$

$$\implies 3\sqrt{5} + 5\sqrt{5} = 17.88 \implies 8\sqrt{5} = 17.88 \implies \sqrt{5} = 2.235.$$

$$\therefore \sqrt{80} + 6\sqrt{5} = \sqrt{16 \times 5} + 6\sqrt{5} = 4\sqrt{5} + 6\sqrt{5}$$

$$= 10\sqrt{5} = (10 \times 2.235) = 22.35.$$

79.
$$\sqrt{50} \times \sqrt{98} = \sqrt{50 \times 98} = \sqrt{4900} = 70.$$

80. Given exp. =
$$\sqrt{4 \times 2} + 2\sqrt{16 \times 2} - 3\sqrt{64 \times 2} + 4\sqrt{25 \times 2}$$

= $2\sqrt{2} + 8\sqrt{2} - 24\sqrt{2} + 20\sqrt{2} = 6\sqrt{2} = 6 \times 1.414 = 8.484$.

81. Given exp. =
$$\frac{3\sqrt{12}}{2\sqrt{28}} \times \frac{\sqrt{98}}{2\sqrt{21}} = \frac{3\sqrt{4\times3}}{2\sqrt{4\times7}} \times \frac{\sqrt{49\times2}}{2\sqrt{21}}$$

= $\frac{6\sqrt{3}}{4\sqrt{7}} \times \frac{7\sqrt{2}}{2\sqrt{21}} = \frac{21\sqrt{6}}{4\sqrt{7\times21}} = \frac{21\sqrt{6}}{28\sqrt{3}}$
= $\frac{3}{4}\sqrt{2} = \frac{3}{4} \times 1.414 = 3 \times 0.3535 = 1.0605$.

82. Given exp. =
$$\sqrt{\frac{11025}{100}} \times \sqrt{\frac{1}{100}} \div \sqrt{\frac{25}{10000}} - \sqrt{\frac{42025}{100}}$$

= $\frac{105}{10} \times \frac{1}{10} \div \frac{5}{100} - \frac{205}{10}$
= $\frac{105}{100} \times \frac{100}{5} - \frac{205}{10}$
= $21 - \frac{205}{10} = \frac{5}{10} = \frac{1}{2} = 0.50$.

83. Sum of decimal places in the numerator and denominator under the radical sign being the same, we remove the decimal.

:. Given exp. =
$$\sqrt{\frac{81 \times 484}{64 \times 625}} = \frac{9 \times 22}{8 \times 25} = 0.99$$
.

84. Given exp. =
$$\sqrt{\frac{204 \times 42}{7 \times 34}} = \sqrt{36} = 6$$
.

85. Given exp. =
$$\sqrt{\frac{81 \times 324 \times 4624}{15625 \times 289 \times 729 \times 64}}$$

= $\frac{9 \times 18 \times 68}{125 \times 17 \times 27 \times 8} = \frac{3}{125} = 0.024$.

86. Given exp. =
$$\sqrt{\frac{9.5 \times .08500}{.19 \times .0017}} = \sqrt{\frac{95 \times 8500}{19 \times 17}}$$

= $\sqrt{5 \times 500} = \sqrt{2500} = 50$.

87. Given exp. =
$$\sqrt{\frac{(0.03)^2 + (0.21)^2 + (0.065)^2}{\left(\frac{0.03}{10}\right)^2 + \left(\frac{0.21}{10}\right)^2 + \left(\frac{0.065}{10}\right)^2}}$$
$$= \sqrt{\frac{100 \left[(0.03)^2 + (0.21)^2 + (0.065)^2\right]}{(0.03)^2 + (0.21)^2 + (0.065)^2}} = \sqrt{100} = 10.$$

88.
$$\sqrt{(7+3\sqrt{5})(7-3\sqrt{5})} = \sqrt{(7)^2 - (3\sqrt{5})^2}$$

= $\sqrt{49-45} = \sqrt{4} = 2$.

89.
$$\left(\sqrt{3} - \frac{1}{\sqrt{3}}\right)^2 = (\sqrt{3})^2 + \left(\frac{1}{\sqrt{3}}\right)^2 - 2 \times \sqrt{3} \times \frac{1}{\sqrt{3}}$$

= $3 + \frac{1}{3} - 2 = 1 + \frac{1}{3} = \frac{4}{3}$.

90.
$$\sqrt{4a^2 - 4a + 1} + 3a$$

= $\sqrt{(1)^2 + (2a)^2 - 2 \times 1 \times 2a} + 3a = \sqrt{(1 - 2a)^2} + 3a$
= $(1 - 2a) + 3a = (1 + a) = (1 + 0.1039) = 1.1039$.

91.
$$\sqrt{\frac{(0.75)^3}{(1-0.75)}} + [0.75 + (0.75)^2 + 1]$$

$$= \sqrt{\frac{(0.75)^3 + (1-0.75)[(1)^2 + (0.75)^2 + 1 \times 0.75]}{1-0.75}}$$

$$= \sqrt{\frac{(0.75)^3 + [(1)^3 - (0.75)^3]}{1-0.75}}$$

$$= \sqrt{\frac{1}{0.25}} = \sqrt{\frac{100}{25}} = \sqrt{4} = 2.$$

92.
$$a + b + c = 27\sqrt{29} \implies 2c + \frac{3}{2}c + c = 27\sqrt{29}$$

$$\Rightarrow \frac{9}{2}c = 27\sqrt{29} \implies c = 6\sqrt{29}.$$

$$\sqrt{a^2 + b^2 + c^2} = \sqrt{(a + b + c)^2 - 2(ab + bc + ca)}$$

$$= \sqrt{(27\sqrt{29})^2 - 2\left(2c \times \frac{3}{2}c + \frac{3}{2}c \times c + c \times 2c\right)}$$

$$= \sqrt{(729 \times 29) - 2\left(3c^2 + \frac{3}{2}c^2 + 2c^2\right)}$$

$$= \sqrt{(729 \times 29) - 2 \times \frac{13}{2}c^2}$$

$$= \sqrt{(729 \times 29) - 13 \times (6\sqrt{29})^2} = \sqrt{29(729 - 468)}$$

$$= \sqrt{29 \times 261} = \sqrt{29 \times 29 \times 9} = 29 \times 3 = 87.$$

93.
$$\sqrt{0.\overline{4}} = \sqrt{\frac{4}{9}} = \frac{2}{3} = 0.666.... = 0.\overline{6}.$$

94.
$$\sqrt{0.09} = \sqrt{\frac{9}{100}} = \frac{3}{10} = 0.3$$
, which is rational.

95.

$$... \sqrt{0.4} = 0.63$$

96.

$$\sqrt{0.2} = 0.447$$

97.

$$\sqrt{0.121} = 0.347$$

98.

$$\sqrt{0.064} = 0.252$$

99.
$$\sqrt{\frac{0.16}{0.4}} = \sqrt{\frac{0.16}{0.40}} = \sqrt{\frac{16}{40}} = \sqrt{\frac{4}{10}} = \sqrt{0.4} = 0.63.$$

100.
$$\frac{1+\sqrt{0.01}}{1-\sqrt{0.1}} = \frac{1+0.1}{1-0.316} = \frac{1.1}{0.684} = \frac{1100}{684} = 1.6.$$

3	$0.\overline{10}$ $\overline{00}$ $\overline{00}$ (0.316)
	9
61	1 00
	61
626	39 00
	37 56

101.
$$\sqrt{535.9225} = \sqrt{\frac{5359225}{10000}} = \frac{2315}{100} = 23.15.$$

102.
$$\frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{5} = \frac{2.236}{5} = 0.447.$$

103.
$$\sqrt{\frac{8}{3}} = \sqrt{\frac{8 \times 3}{3 \times 3}} = \frac{\sqrt{24}}{3} = \frac{4.899}{3} = 1.633.$$

104.
$$\frac{3\sqrt{2}}{2\sqrt{3}} = \frac{3\sqrt{2}}{2\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{3\sqrt{6}}{2 \times 3} = \frac{\sqrt{6}}{2} = \frac{2.449}{2} = 1.2245.$$

105.
$$\frac{\sqrt{5}}{2} - \frac{10}{\sqrt{5}} + \sqrt{125} = \frac{(\sqrt{5})^2 - 20 + 2\sqrt{5} \times 5\sqrt{5}}{2\sqrt{5}}$$
$$= \frac{5 - 20 + 50}{2\sqrt{5}} = \frac{35}{2\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{35\sqrt{5}}{10} = \frac{7}{2} \times 2.236$$
$$= 7 \times 1.118 = 7.826.$$

106. Clearly,
$$a * b = \sqrt{a^2 + b^2}$$
. $\therefore 5 * 12$
= $\sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13$.

107. Let the missing digit be x.

$$\begin{array}{c|ccccc}
1 & \overline{1} & \overline{53} & \overline{7x} & (124) \\
1 & & & & \\
22 & & 53 & & \\
& & 44 & & \\
244 & & 9 & 7x & \\
& & & 9 & 76 & \\
& & & \times & & \\
\end{array}$$

Then, x = 6.

108.
$$7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$$

= $7 \times 2 \times 3 \times 5 \times 2^2 \times 3 \times 2$
= $2^4 \times 3^2 \times 5 \times 7$.

Thus, the smallest perfect square number which is divisible by 7! is

$$(2^4 \times 3^2 \times 5 \times 7) \times (5 \times 7)$$

= 5040 × 35 = 176400.

109. L.C.M. of 3, 4, 5, 6, 8 is 120. Now, 120

$$=2\times2\times2\times3\times5.$$

To make it a perfect square, it must be multiplied by $2 \times 3 \times 5$.

So, required number = $2^2 \times 2^2 \times 3^2 \times 5^2 = 3600$.

110. L.C.M. of 21, 36, 66

= 2772. Now, 2772
=
$$2 \times 2 \times 3 \times 3 \times 7 \times 11$$
.

To make it a perfect square, it must be multiplied by 7×11 . So, required number = $2^2 \times 3^2 \times 7^2 \times 11^2 = 213444$.

111. $294 = 7 \times 7 \times 2 \times 3$.

To make it a perfect square, it must be multiplied by 2×3 *i.e.*, 6.

 \therefore Required number = 6.

112. $5808 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 11 \times 11 = 2^2 \times 2^2 \times 3 \times 11^2$.

To make it a perfect square, it must be multiplied by 3.

113. $1470 = 7 \times 7 \times 5 \times 6$. To make it a perfect square, it must be divided by 5×6 , *i.e.*, 30.

∴ Required number to be subtracted = 81.

115.
$$0.000326 = \frac{326}{10^6}$$

 \therefore Required number to be subtracted = $\frac{2}{10^6}$ = 0.000002.

.. Number to be added $= (88)^2 - 7700 = 7744 - 7700 = 44.$

 \therefore Number to be added = $(825)^2 - 680621$ = 680625 - 680621 = 4.

118. Greatest number of four digits is 9999.

 \therefore Reqd. number = (9999 - 198) = 9801.

119. Least number of 4 digits is 1000

$$\begin{array}{c|c}
3 & \overline{10} & \overline{00} & (31 \\
9 & & 1 & 00 \\
\hline
 & 1 & 00 & \\
\hline
 & 61 & \\
\hline
 & 39 & & \therefore (31)^2 < 1000 < (32)^2.
\end{array}$$

Hence, required number = $(32)^2 = 1024$.

120. Let the 18 consecutive natural numbers be x, (x + 1) (x + 2), (x + 3),, (x + 17). Then, x + (x + 1) + (x + 2) + + (x + 17) = 18x + (1 + 2 + 3 + ... + 17) = 18x + 153. Putting x = 1, 2, 3, 4, we find that the smallest value of x for which (18x + 153) becomes a perfect square is x = 4. ∴ Required value = $18 \times 4 + 153 = 72 + 153 = 225$.

121. Given expression

$$= \sqrt{2 + \sqrt{3}} \cdot \sqrt{2 + \sqrt{2 + \sqrt{3}}} \cdot \sqrt{2^2 - \left(\sqrt{2 + \sqrt{2 + \sqrt{3}}}\right)^2}$$

$$= \sqrt{2 + \sqrt{3}} \cdot \sqrt{2 + \sqrt{2 + \sqrt{3}}} \cdot \sqrt{4 - (2 + \sqrt{2 + \sqrt{3}})}$$

$$= \sqrt{2 + \sqrt{3}} \cdot \sqrt{2 + \sqrt{2 + \sqrt{3}}} \cdot \sqrt{2 - \sqrt{2 + \sqrt{3}}}$$

$$= \sqrt{2 + \sqrt{3}} \cdot \sqrt{2^2 - \left(\sqrt{2 + \sqrt{3}}\right)^2} = \sqrt{2 + \sqrt{3}} \cdot \sqrt{2 - \sqrt{3}}$$

$$= \sqrt{2^2 - (\sqrt{3})^2} = \sqrt{4 - 3} = \sqrt{1} = 1.$$

122.
$$\frac{1}{(\sqrt{5} - \sqrt{3})} = \frac{1}{(\sqrt{5} - \sqrt{3})} \times \frac{(\sqrt{5} + \sqrt{3})}{(\sqrt{5} + \sqrt{3})} = \frac{(\sqrt{5} + \sqrt{3})}{(5 - 3)}$$
$$= \frac{(2.2361 + 1.7321)}{2} = \frac{3.9682}{2} = 1.9841.$$

123. Given expression =
$$\frac{1}{(\sqrt{9} - \sqrt{8})} \times \frac{(\sqrt{9} + \sqrt{8})}{(\sqrt{9} + \sqrt{8})} - \frac{1}{(\sqrt{8} - \sqrt{7})}$$

 $\times \frac{(\sqrt{8} + \sqrt{7})}{(\sqrt{8} + \sqrt{7})} + \frac{1}{(\sqrt{7} - \sqrt{6})} \times \frac{(\sqrt{7} + \sqrt{6})}{(\sqrt{7} + \sqrt{6})}$
 $-\frac{1}{(\sqrt{6} - \sqrt{5})} \times \frac{(\sqrt{6} + \sqrt{5})}{(\sqrt{6} + \sqrt{5})} + \frac{1}{(\sqrt{5} - \sqrt{4})} \times \frac{(\sqrt{5} + \sqrt{4})}{(\sqrt{5} + \sqrt{4})}$
 $= \frac{(\sqrt{9} + \sqrt{8})}{(9 - 8)} - \frac{(\sqrt{8} + \sqrt{7})}{(8 - 7)} + \frac{(\sqrt{7} + \sqrt{6})}{(7 - 6)}$
 $-\frac{(\sqrt{6} + \sqrt{5})}{(6 - 5)} + \frac{(\sqrt{5} + \sqrt{4})}{(5 - 4)}$
 $= (\sqrt{9} + \sqrt{8}) - (\sqrt{8} + \sqrt{7}) + (\sqrt{7} + \sqrt{6}) - (\sqrt{6} + \sqrt{5})$
 $+ (\sqrt{5} + \sqrt{4}) = (\sqrt{9} + \sqrt{4}) = 3 + 2 = 5.$
124. Given exp. $= \frac{1}{\sqrt{2} + \sqrt{1}} + \frac{1}{\sqrt{3} + \sqrt{2}} + \frac{1}{\sqrt{4} + \sqrt{3}}$

$$+ \cdots + \frac{1}{\sqrt{121} + \sqrt{120}}$$

$$= \frac{1}{\sqrt{2} + \sqrt{1}} \times \frac{\sqrt{2} - \sqrt{1}}{\sqrt{2} - \sqrt{1}} + \frac{1}{\sqrt{3} + \sqrt{2}} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$

$$+ \frac{1}{\sqrt{4} + \sqrt{3}} \times \frac{\sqrt{4} - \sqrt{3}}{\sqrt{4} - \sqrt{3}} + \cdots + \frac{1}{\sqrt{121} + \sqrt{120}} \times \frac{\sqrt{121} - \sqrt{120}}{\sqrt{121} - \sqrt{120}}$$

$$= \frac{\sqrt{2} - \sqrt{1}}{2 - 1} + \frac{\sqrt{3} - \sqrt{2}}{3 - 2} + \frac{\sqrt{4} - \sqrt{3}}{4 - 3} + \cdots + \frac{\sqrt{121} - \sqrt{120}}{121 - 120}$$

$$= \sqrt{2} - \sqrt{1} + \sqrt{3} - \sqrt{2} + \sqrt{4} - \sqrt{3} + \cdots + \sqrt{121} - \sqrt{120}$$

$$= \sqrt{12} - \sqrt{121} = -1 + 11 = 10.$$

125. Given exp. =
$$\frac{(1+\sqrt{3})(1-\sqrt{3})-(1-\sqrt{3})+(1+\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})}$$
=
$$\frac{1-(\sqrt{3})^2-1+\sqrt{3}+1+\sqrt{3}}{1^2-(\sqrt{3})^2}$$
=
$$\frac{2\sqrt{3}-2}{1-3} = \frac{2(\sqrt{3}-1)}{(-2)} = 1-\sqrt{3}.$$
126. Given exp. =
$$(2+\sqrt{2})+\frac{1}{(2+\sqrt{2})}\times\frac{(2-\sqrt{2})}{(2-\sqrt{2})}$$

$$-\frac{1}{(2-\sqrt{2})}\times\frac{(2+\sqrt{2})}{(2+\sqrt{2})}$$
=
$$(2+\sqrt{2})+\frac{(2-\sqrt{2})}{(4-2)}-\frac{(2+\sqrt{2})}{(4-2)}$$
=
$$(2+\sqrt{2})+\frac{1}{2}(2-\sqrt{2})-\frac{1}{2}(2+\sqrt{2})=2.$$
127. Given exp. =
$$\frac{1}{(\sqrt{5}+\sqrt{3})}\times\frac{(\sqrt{5}-\sqrt{3})}{(\sqrt{5}-\sqrt{3})}+\frac{2}{(3+\sqrt{5})}$$

$$\times\frac{(3-\sqrt{5})}{(3-\sqrt{5})}-\frac{3}{(3+\sqrt{3})}\times\frac{(3-\sqrt{3})}{(3-\sqrt{3})}$$
=
$$\frac{(\sqrt{5}-\sqrt{3})}{(5-3)}+\frac{2(3-\sqrt{5})}{(9-5)}-\frac{3(3-\sqrt{3})}{(9-3)}$$
=
$$\frac{\sqrt{5}-\sqrt{3}}{(3+\sqrt{2})}+\frac{2(3-\sqrt{5})}{(9-5)}-\frac{3(3-\sqrt{3})}{(9-3)}$$
=
$$\frac{6(\sqrt{5}-\sqrt{3})+6(3-\sqrt{5})-6(3-\sqrt{3})}{12}=0.$$
128.
$$\frac{7}{(3+\sqrt{2})}=\frac{7}{(3+\sqrt{2})}\times\frac{(3-\sqrt{2})}{(3-\sqrt{2})}=\frac{7(3-\sqrt{2})}{(9-2)}$$
=
$$(3-\sqrt{2})=(3-1.4142)=1.5858.$$
129. Given exp. =
$$\frac{3\sqrt{2}}{(\sqrt{6}+\sqrt{3})}\times\frac{(\sqrt{6}+\sqrt{3})}{(\sqrt{6}+\sqrt{3})}-\frac{4\sqrt{3}}{(\sqrt{6}-\sqrt{2})}$$

$$\times\frac{(\sqrt{6}+\sqrt{2})}{(\sqrt{6}-\sqrt{2})}-\frac{6}{2(\sqrt{2}-\sqrt{3})}$$
=
$$\frac{3\sqrt{2}(\sqrt{6}+\sqrt{3})}{(6-3)}-\frac{4\sqrt{3}(\sqrt{6}+\sqrt{2})}{(6-2)}$$
+
$$\frac{3}{(\sqrt{3}-\sqrt{2})}\times\frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}+\sqrt{2})}$$
=
$$\sqrt{2}(\sqrt{6}+\sqrt{3})-\sqrt{3}(\sqrt{6}+\sqrt{2})+3(\sqrt{3}+\sqrt{2})$$
=
$$\sqrt{2}(\sqrt{6}+\sqrt{3})-\sqrt{3}(\sqrt{6}+\sqrt{2})+3(\sqrt{3}+\sqrt{2})$$
=
$$\sqrt{12}+\sqrt{6}-\sqrt{18}-\sqrt{6}+3\sqrt{3}+3\sqrt{2}$$
=
$$2\sqrt{3}-3\sqrt{2}+3\sqrt{3}+3\sqrt{3}+3\sqrt{2}=5\sqrt{3}$$
130.
$$\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}=\frac{(\sqrt{7}+\sqrt{5})}{(\sqrt{7}-\sqrt{5})}\times\frac{(\sqrt{7}+\sqrt{5})}{(\sqrt{7}+\sqrt{5})}=\frac{(\sqrt{7}+\sqrt{5})^2}{(7-5)}$$

 $=\frac{7+5+2\sqrt{35}}{2}=\frac{12+2\sqrt{35}}{2}=6+\sqrt{35}.$

131. $a + b\sqrt{3} = \frac{(5 + 2\sqrt{3})}{(7 + 4\sqrt{3})} \times \frac{(7 - 4\sqrt{3})}{(7 - 4\sqrt{3})} = \frac{35 - 20\sqrt{3} + 14\sqrt{3} - 24}{(7)^2 - (4\sqrt{3})^2}$

$$= \frac{11 - 6\sqrt{3}}{49 - 48} = 11 - 6\sqrt{3}. \qquad \therefore a = 11, b = -6.$$

$$132. \frac{\sqrt{2} - 1}{\sqrt{2} + 1} = \frac{(\sqrt{2} - 1)}{(\sqrt{2} + 1)} \times \frac{(\sqrt{2} - 1)}{(\sqrt{2} - 1)} = (\sqrt{2} - 1)^{2}.$$

$$\therefore \sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}} = (\sqrt{2} - 1) = (1.414 - 1) = 0.414.$$

$$133. \text{ Given exp.} = \frac{3 + \sqrt{6}}{5\sqrt{3} - 4\sqrt{3} - 4\sqrt{2} + 5\sqrt{2}} = \frac{(3 + \sqrt{6})}{(\sqrt{3} + \sqrt{2})}$$

$$= \frac{(3 + \sqrt{6})}{(\sqrt{3} + \sqrt{2})} \times \frac{(\sqrt{3} - \sqrt{2})}{(\sqrt{3} - \sqrt{2})}$$

$$= \frac{3\sqrt{3} - 3\sqrt{2} + 3\sqrt{2} - 2\sqrt{3}}{(3 - 2)} = \sqrt{3} = 1.732.$$

$$134. \text{ Given exp.} = \frac{(2 + \sqrt{3})}{(2 - \sqrt{3})} \times \frac{(2 + \sqrt{3})}{(2 + \sqrt{3})} + \frac{(2 - \sqrt{3})}{(2 + \sqrt{3})} \times \frac{(2 - \sqrt{3})}{(2 - \sqrt{3})}$$

$$+ \frac{(\sqrt{3} - 1)}{(\sqrt{3} + 1)} \times \frac{(\sqrt{3} - 1)}{(\sqrt{3} - 1)}$$

$$= \frac{(2 + \sqrt{3})^{2}}{(4 - 3)} + \frac{(2 - \sqrt{3})^{2}}{(4 - 3)} + \frac{(\sqrt{3} - 1)^{2}}{(3 - 1)}$$

$$= \frac{(2 + \sqrt{3})^{2}}{(4 - 3)} + \frac{(2 - \sqrt{3})^{2}}{(4 - 3)} + \frac{(\sqrt{3} - 1)^{2}}{(3 - 1)}$$

$$= \frac{(2 + \sqrt{3})^{2}}{(4 - 3)} + \frac{(\sqrt{5} + \sqrt{3})}{(\sqrt{5} + \sqrt{3})} \times \frac{(\sqrt{5} + \sqrt{3})}{(\sqrt{5} + \sqrt{3})}$$

$$+ \frac{(\sqrt{5} - \sqrt{3})}{(\sqrt{5} + \sqrt{3})} \times \frac{(\sqrt{5} - \sqrt{3})}{(\sqrt{5} - \sqrt{3})}$$

$$+ \frac{(\sqrt{5} - \sqrt{3})}{(\sqrt{5} + \sqrt{3})^{2}} + \frac{(\sqrt{5} - \sqrt{3})^{2}}{(\sqrt{5} - \sqrt{3})^{2}}$$

$$= \frac{(\sqrt{5} + \sqrt{3})^{2}}{(\sqrt{3})^{2}} + \frac{(\sqrt{5} - \sqrt{3})^{2}}{(\sqrt{5} + \sqrt{3})^{2}} = 5 + 3 = 8.$$

$$136. \text{ Given exp.} = \frac{(\sqrt{2})^{2}}{(\sqrt{3})^{2}} \cdot \frac{(2 + \sqrt{3})(2 - \sqrt{3})}{(\sqrt{3} + 1)(\sqrt{3} - 1)} = \frac{2}{3} \left[\frac{2^{2} - (\sqrt{3})^{2}}{(\sqrt{3})^{2} - 1^{2}}\right]$$

$$= \frac{2}{3} \left(\frac{4 - 3}{3 - 1}\right) = \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}.$$

$$137. \text{ Given exp.} = \frac{12}{3 + (\sqrt{5} + 2\sqrt{2})^{2}} \times \frac{3 - (\sqrt{5} + 2\sqrt{2})}{3 - (\sqrt{5} + 2\sqrt{2})}$$

$$= \frac{12(3 - \sqrt{5} - 2\sqrt{2})}{(-4 + 4\sqrt{10})} = \frac{3(\sqrt{5} + 2\sqrt{2} - 3)}{\sqrt{10} + 1}$$

$$= \frac{3(\sqrt{5} + 2\sqrt{2} - 3)}{\sqrt{10} + 1} \times \frac{\sqrt{10} - 1}{\sqrt{10} - 1}$$

202 QUANTITATIVE APTITUDE

$$= \frac{3\sqrt{50} - 3\sqrt{5} + 6\sqrt{20} - 6\sqrt{2} - 9\sqrt{10} + 9}{10 - 1}$$

$$= \frac{15\sqrt{2} - 3\sqrt{5} + 12\sqrt{5} - 6\sqrt{2} - 9\sqrt{10} + 9}{9}$$

$$= \frac{9\sqrt{2} + 9\sqrt{5} - 9\sqrt{10} + 9}{9} = 1 + \sqrt{2} + \sqrt{5} - \sqrt{10}.$$
138. Given exp.
$$= \frac{1}{(\sqrt{2} - \sqrt{5}) + \sqrt{3}} + \frac{1}{(\sqrt{2} - \sqrt{5}) - \sqrt{3}}$$

$$= \frac{\left[(\sqrt{2} - \sqrt{5}) + \sqrt{3}\right] + \left[(\sqrt{2} - \sqrt{5}) + \sqrt{3}\right]}{\left[(\sqrt{2} - \sqrt{5}) + \sqrt{3}\right] \left[(\sqrt{2} - \sqrt{5}) + \sqrt{3}\right]}$$

$$= \frac{2(\sqrt{2} - \sqrt{5})}{(\sqrt{2} - \sqrt{5})^{2} - (\sqrt{3})^{2}} = \frac{2(\sqrt{2} - \sqrt{5})}{(2 + 5 - 2\sqrt{10}) - 3}$$

$$= \frac{2(\sqrt{2} - \sqrt{5})}{\sqrt{2}(\sqrt{2} - \sqrt{5})} = \frac{1}{\sqrt{2}}.$$
139.
$$x + \frac{1}{x} = (7 - 4\sqrt{3}) + \frac{1}{(7 - 4\sqrt{3})} \times \frac{(7 + 4\sqrt{3})}{(7 + 4\sqrt{3})}$$

$$= (7 - 4\sqrt{3}) + \frac{(7 + 4\sqrt{3})}{(49 - 48)}$$

$$= (7 - 4\sqrt{3}) + (7 + 4\sqrt{3}) = 14.$$
140.
$$x = 3 + \sqrt{8} \Rightarrow x^{2} = (3 + \sqrt{8})^{2} = 3^{2} + (\sqrt{8})^{2} + 2 \times 3 \times \sqrt{8}$$

$$= 9 + 8 + 6\sqrt{8} = 17 + 12\sqrt{2}.$$

$$x^{2} + \frac{1}{x^{2}} = (17 + 12\sqrt{2}) + \frac{1}{(17 + 12\sqrt{2})} \times \frac{(17 - 12\sqrt{2})}{(17 - 12\sqrt{2})}$$

$$= (17 + 12\sqrt{2}) + \frac{(17 - 12\sqrt{2})}{289 - 288}.$$

$$= (17 + 12\sqrt{2}) + (17 - 12\sqrt{2}) = 34.$$
141.
$$a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$

$$= \frac{(\sqrt{3} + \sqrt{2})^{2}}{(\sqrt{3})^{2} - (\sqrt{2})^{2}} = \frac{3 + 2 + 2\sqrt{6}}{3 - 2} = 5 + 2\sqrt{6}.$$

$$b = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$

$$= \frac{(\sqrt{3} - \sqrt{2})^{2}}{(\sqrt{3})^{2} - (\sqrt{2})^{2}} = \frac{3 + 2 - 2\sqrt{6}}{3 - 2} = 5 + 2\sqrt{6}.$$

$$a^{2} + b^{2} = (5 + 2\sqrt{6})^{2} + (5 - 2\sqrt{6})^{2} = 2\left[(5)^{2} + (2\sqrt{6})^{2}\right]$$

$$= 2(25 + 24) = 2 \times 49 = 98.$$
142.
$$a = \frac{(\sqrt{5} + 1)}{(\sqrt{5} - 1)} \times \frac{(\sqrt{5} + 1)}{(\sqrt{5} - 1)}$$

$$= \frac{(\sqrt{5} + 1)^{2}}{(\sqrt{5} - 1)} \times \frac{(\sqrt{5} + 1)}{(\sqrt{5} - 1)}$$

$$= \frac{(\sqrt{5} + 1)^{2}}{(\sqrt{5} - 1)} \times \frac{(\sqrt{5} + 1)}{(\sqrt{5} - 1)}$$

$$b = \frac{(\sqrt{5} - 1)}{(\sqrt{5} + 1)} \times \frac{(\sqrt{5} - 1)}{(\sqrt{5} - 1)} = \frac{(\sqrt{5} - 1)^2}{(5 - 1)}$$

$$= \frac{5 + 1 - 2\sqrt{5}}{4} = \left(\frac{3 - \sqrt{5}}{2}\right).$$

$$\therefore a^2 + b^2 = \frac{(3 + \sqrt{5})^2}{4} + \frac{(3 - \sqrt{5})^2}{4} = \frac{(3 + \sqrt{5})^2 + (3 - \sqrt{5})^2}{4} = \frac{(3 + \sqrt{5})^2 + (3 - \sqrt{5})^2}{4} = 1.$$

$$Also, ab = \frac{(3 + \sqrt{5})}{2} \cdot \frac{(3 - \sqrt{5})}{2} = \frac{(9 - 5)}{4} = 1.$$

$$\therefore \frac{a^2 + ab + b^2}{a^2 - ab + b^2} = \frac{(a^2 + b^2) + ab}{(a^2 + b^2) - ab} = \frac{7 + 1}{7 - 1} = \frac{8}{6} = \frac{4}{3}.$$
143. $x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots \infty}}} \Leftrightarrow x = \sqrt{1 + x}$

$$\Leftrightarrow x^2 = 1 + x \Leftrightarrow x^2 - x - 1 = 0$$

$$\Leftrightarrow x = \frac{1 \pm \sqrt{(-1^2) - 4 \times 1 \times (-1)}}{2}$$

$$\Leftrightarrow x = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2}.$$
Hence, positive value of x is $\frac{1 + \sqrt{5}}{2}$.

144. Let $x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}}.$
Then, $x = \sqrt{2 + x} \Leftrightarrow x^2 = 2 + x \Leftrightarrow x^2 - x - 2 = 0$

$$\Leftrightarrow x^2 - 2x + x - 2 = 0$$

$$\Leftrightarrow x (x - 2) + (x - 2) = 0 \Leftrightarrow (x - 2) (x + 1) = 0$$

$$\Leftrightarrow x = 2 \cdot [\because x \neq -1]$$
145. $a = \sqrt{3 + \sqrt{3 + \sqrt{3 + \cdots}}} \Leftrightarrow a = \sqrt{3 + a} \Leftrightarrow a^2 = 3 + a$

$$\Leftrightarrow a^2 - a - 3 = 0$$

$$\Leftrightarrow a = \frac{1 \pm \sqrt{(-1)^2 - 4 \times 1 \times (-3)}}{2}$$

$$\Leftrightarrow a = \frac{1 \pm \sqrt{(-1)^2 - 4 \times 1 \times (-3)}}{2}$$

$$\Leftrightarrow a = \frac{1 \pm \sqrt{(-1)^2 - 4 \times 1 \times (-3)}}{2}$$

$$\Leftrightarrow a = \frac{1 \pm \sqrt{(-1)^2 - 4 \times 1 \times (-3)}}{2}$$

$$\Leftrightarrow a = \frac{1 \pm \sqrt{3 + x - \sqrt{3 - x}}}{2} = 2.$$

$$\Leftrightarrow \frac{\sqrt{3 + x + \sqrt{3 - x}}}{\sqrt{3 + x - \sqrt{3 - x}}} \times \frac{\sqrt{3 + x} + \sqrt{3 - x}}{\sqrt{3 + x} + \sqrt{3 - x}}} = 2$$

$$\Leftrightarrow \frac{(\sqrt{3 + x} + \sqrt{3 - x})^2}{(\sqrt{3 + x})^2 - (\sqrt{3 - x})^2} = 2$$

$$\Leftrightarrow \frac{(\sqrt{3 + x} + \sqrt{3 - x})^2}{(\sqrt{3 + x})^2 - (\sqrt{3 - x})^2} = 2$$

$$\Leftrightarrow \frac{(\sqrt{3 + x} + \sqrt{3 - x})^2}{(\sqrt{3 + x})^2 - (\sqrt{3 - x})^2} = 2$$

$$\Leftrightarrow \frac{(\sqrt{3 + x} + \sqrt{3 - x})^2}{(\sqrt{3 + x})^2 - (\sqrt{3 - x})^2} = 2$$

$$\Leftrightarrow \frac{(\sqrt{3 + x} + \sqrt{3 - x})^2}{(\sqrt{3 + x})^2 - (\sqrt{3 - x})^2} = 2$$

$$\Leftrightarrow \frac{(\sqrt{3 + x} + \sqrt{3 - x})^2}{(\sqrt{3 + x})^2 - (\sqrt{3 - x})^2} = 2$$

$$\Leftrightarrow \frac{(\sqrt{3 + x} + \sqrt{3 - x})^2}{(\sqrt{3 + x})^2 - (\sqrt{3 - x})^2} = 2$$

$$\Leftrightarrow 6 + 2\sqrt{9 - x^2} = 4x \Leftrightarrow 2\sqrt{9 - x^2} = 4x - 6$$

$$\Leftrightarrow \sqrt{9 - x^2} = 2x - 3$$

$$\Leftrightarrow 9 - x^2 = (2x - 3)^2 = 4x^2 + 9 - 12x$$

$$\Leftrightarrow 5x^2 - 12x = 0 \Leftrightarrow 5x^2 = 12x$$

$$\Leftrightarrow x = \frac{12}{5}.$$

147. Let the total number of camels be x.

Let the total number of camels be
$$x$$
.
Then, $x - \left(\frac{x}{4} + 2\sqrt{x}\right) = 15 \Leftrightarrow \frac{3x}{4} - 2\sqrt{x} = 15$
 $\Leftrightarrow 3x - 8\sqrt{x} = 60 \Leftrightarrow 8\sqrt{x} = 3x - 60$
 $\Leftrightarrow 64x = (3x - 60)^2 \Leftrightarrow 64x = 9x^2 + 3600 - 360x$
 $\Leftrightarrow 9x^2 - 424x + 3600 = 0 \Leftrightarrow 9x^2 - 324x - 100x + 3600 = 0$
 $\Leftrightarrow 9x (x - 36) - 100 (x - 36) = 0 \Leftrightarrow (x - 36) (9x - 100) = 0$
 $\Leftrightarrow x = 36$.
 $\therefore x \neq \frac{100}{9}$

 \therefore Number of rows = 134.

Number of rows = $\sqrt{10914 + 111} = \sqrt{11025} = 105$.

150. Let the number of girls in the group be x. Then, number of oranges given to each girl = 2x. $\therefore x \times 2x = 1250 \Leftrightarrow 2x^2 = 1250 \Leftrightarrow x^2 = 625 \Leftrightarrow x = \sqrt{625} = 25$.

 \therefore Number of men left = 100.

152. Money collected = (59.29×100) paise = 5929 paise.

 \therefore Number of members = $\sqrt{5929} = 77$.

153. Clearly, the required number must be a perfect square. Since a number having 8 as the unit's digit cannot be a perfect square, so 1,21,108 is not a perfect square.

154. $148877 = 53 \times 53 \times 53$ $\therefore \sqrt[3]{148877} = 53.$

53	148877
53	2809
	53

155. $681472 = 8 \times 8 \times 8 \times 11 \times 11 \times 11 = 8^3 \times (11)^3$.

8	681472
8	85184
8	10648
11	1331
11	121
	11

 $\sqrt[3]{681472} = 8 \times 11 = 88.$

- **156.** $262144 = 8 \times 8 \times 8 \times 8 \times 8 \times 8 = 8^6$.
 - $3\sqrt{262144} = 8^2 = 64.$

Let $1728 \div \sqrt[3]{262144} \times x - 288 = 4491$.

Then, $1728 \div 64 \times x - 288 = 4491$

 $\Leftrightarrow 27x = 4779$

$$\Leftrightarrow x = \frac{4779}{27} = 177.$$

8	262144
8	32768
8	4096
8	512
8	64
	8

157. Let $99 \times 21 - \sqrt[3]{x} = 1968$.

Then, $2079 - \sqrt[3]{x} = 1968 \Leftrightarrow \sqrt[3]{x} = 2079 - 1968 = 111$ $\Leftrightarrow x = (111)^3 = 1367631.$

158.
$$(.000216)^{1/3} = \left(\frac{216}{10^6}\right)^{1/3}$$

$$= \left(\frac{6 \times 6 \times 6}{10^2 \times 10^2 \times 10^2}\right)^{1/3} = \frac{6}{10^2} = \frac{6}{100} = .06.$$

159.
$$\sqrt[3]{4\frac{12}{125}} = \sqrt[3]{\frac{512}{125}} = \left(\frac{8 \times 8 \times 8}{5 \times 5 \times 5}\right)^{1/3} = \frac{8}{5} = 1\frac{3}{5}.$$

160.
$$\sqrt{.000064} = \sqrt{\frac{64}{10^6}} = \frac{8}{10^3} = \frac{8}{1000} = .008.$$

$$\therefore \quad \sqrt[3]{\sqrt{.000064}} = \sqrt[3]{.008} = \sqrt[3]{\frac{8}{1000}} = \frac{2}{10} = 0.2.$$

161. $864 = 3 \times 3 \times 3 \times 4 \times 4 \times 2$. Clearly, 864 when multipled by 2 will become

Clearly, 864 when multipled by 2 will become a perfect cube.

Hence, n = 2.

I	004
4	216
3	54
3	18
3	18
3	6
	2

162.
$$\sqrt{.01} \times \sqrt[3]{.008} - .02 = \sqrt{(.1)^2} \times \sqrt[3]{(.2)^3} - .02$$

= .1 × .2 - .02 = .02 - .02 = 0.

163. Given exp. =
$$\sqrt[3]{\frac{0.008 + 0.000064}{0.064 + 0.000512}} = \sqrt[3]{\frac{0.008064}{0.064512}}$$

$$=3\sqrt{\frac{8064}{64512}}=3\sqrt{\frac{1}{8}}=\frac{1}{2}=0.5.$$

164. Let $\sqrt[3]{3} = x$.

Then,
$$(\sqrt[3]{9} - \sqrt[3]{3} + 1) = (x^2 - x + 1) = \frac{x^3 + 1}{x + 1} = \frac{(\sqrt[3]{3})^3 + 1}{(\sqrt[3]{3} + 1)}$$
.

$$\Rightarrow (\sqrt[3]{9} - \sqrt[3]{3} + 1)(\sqrt[3]{3} + 1) = (\sqrt[3]{3})^3 + 1$$

= 3 + 1 = 4, which is rational.

165. Clearly, $(21)^3 = 9261$ and $(22)^3 = 10648$.

So, 9261 is the largest four-digit number which is a perfect cube.

166. $21600 = 2^5 \times 3^3 \times 5^2$.

To make it a perfect cube, it must be multiplied by (2×5) , i.e., 10.

167. $3600 = 2^3 \times 5^2 \times 3^2 \times 2$.

To make it a perfect cube, it must be divided by $5^2 \times 3^2 \times 2$, i.e. 450.

168. Required number to be added

$$= 9^3 - 710 = 729 - 710 = 19.$$

169. 8
$$\begin{array}{c|c} 79 & 21 \\ 8 & 64 \\ \hline 169 & 1521 \\ 9 & 1521 \\ \times \\ \hline \Rightarrow \sqrt{7921} = 89 \\ \end{array}$$

170. Given
$$? = \sqrt[4]{(625)^3}$$

$$= (625)^{\frac{3}{4}} = (5 \times 5 \times 5 \times 5)^{\frac{3}{4}}$$
$$= (5^4)^{\frac{3}{4}} = 5^3 = 125$$

171. Given $\sqrt{y} = 4x$

$$\Rightarrow y = (4x)^2 = 16x^2$$

$$\Rightarrow y = 16x^2$$

$$\therefore \frac{x^2}{y} = \frac{1}{16}$$

172. Let the number be x.

Given:
$$\sqrt{2025.11} \times \sqrt{256.04} + \sqrt{399.95} \times \sqrt{?} = 33.98 \times 40$$

 $\sqrt{2025} \times \sqrt{256} + \sqrt{400} \times \sqrt{?} = 34 \times 40$
 $45 \times 16 + 20 \times \sqrt{?} = 1360$

$$20 \times \sqrt{?} = 1360 - 720 = 640$$

$$\sqrt{?} = \frac{640}{20} = 32$$

⇒ ? =
$$(32)^2$$

∴ ? = $32 \times 32 = 1024$

Hence, the number is 1024.

173.
$$\frac{1}{\sqrt{28}} = \frac{1}{\sqrt{2 \times 2 \times 7}} = \frac{1}{2\sqrt{7}}$$
$$= \frac{\sqrt{7}}{2\sqrt{7} \times \sqrt{7}} = \frac{\sqrt{7}}{14}$$
$$= \frac{2.645}{14} = 0.189$$

174. =
$$\left(\sqrt{\frac{25}{9}} - \sqrt{\frac{64}{81}}\right) \div \sqrt{\frac{16}{324}}$$

= $\left(\frac{5}{3} - \frac{8}{9}\right) \div \frac{4}{18}$
LCM of 3 and 9 is 9.
= $\left(\frac{15 - 8}{9}\right) \div \frac{2}{9} = \frac{7}{9} \div \frac{2}{9}$
= $\frac{7}{9} \times \frac{9}{2} = \frac{7}{2} = 3.5$

175. Given:
$$1728 \div \sqrt[3]{262144} \times ? - 288 = 4491$$

 $\Rightarrow 1728 \div \sqrt[3]{64 \times 64 \times 64} \times ?$
 $= 4491 + 288$
 $\Rightarrow \frac{1728}{64} \times ? = 4779$
 $\Rightarrow 27 \times ? = 4779$
 $\Rightarrow ? = \frac{4779}{27} = 177$

176. Let the number be *a*.

$$(\sqrt{7} + 11)^{2}$$

$$= a^{\frac{1}{3}} + 2\sqrt{847} + 122$$

$$\Rightarrow 7 + 121 + 22\sqrt{7}$$

$$= a^{\frac{1}{3}} + 22\sqrt{7} + 122$$

$$\Rightarrow 128 - 122 = a^{\frac{1}{3}}$$

$$\Rightarrow a^{\frac{1}{3}} = 6$$

$$\Rightarrow a = (6)^{3} = 216$$
Hence, the number is 216.

177. Let the number be x.

$$x - \sqrt{784} = 6 \times \sqrt{324}$$

$$x - 28 = 6 \times 18$$

$$x - 28 = 108$$

$$x = 108 + 28 = 136$$

178. Let the number be x.

Given
$$\sqrt{2116} - \sqrt{1600} = \sqrt{(x)}$$

 $46 - 40 = \sqrt{(x)}$
 $\Rightarrow 6 = \sqrt{x}$
 $\Rightarrow x = (6)^2 = 36$
Hence, the number is 36.

179. Let the number be
$$x$$
.

179. Let the number be
$$x$$
.
$$\sqrt{(27 \div 5 \times x) \div 15} = 5.4 \div 6 + 0.3$$

$$\Rightarrow \sqrt{\frac{(27 \div 5 \times x)}{15}} = \frac{5.4}{6} + 0.3$$

$$\Rightarrow \sqrt{\frac{27 \times x}{5 \times 15}} = \frac{5.4}{6} + 0.3$$

$$\Rightarrow \sqrt{\frac{9 \times x}{5 \times 5}} = 0.9 + 0.3$$

$$\Rightarrow \frac{3}{5} \sqrt{x} = 1.2$$

$$\Rightarrow \sqrt{x} = \frac{1.2 \times 5}{3} = 2 \Rightarrow x = (2)^2$$

$$\Rightarrow x = 2 \times 2 = 4^2$$
180. Given $\sqrt{24 \div 0.5 + 1} + \sqrt{18 \div 0.6 + 6}$

180. Given
$$\sqrt{24 \div 0.5 + 1} + \sqrt{18 \div 0.6 + 6}$$

$$= \sqrt{24 \times \frac{1}{0.5} + 1} + \sqrt{18 \times \frac{1}{0.6} + 6}$$

$$= \sqrt{24 \times \frac{10}{5} + 1} + \sqrt{\frac{18 \times 10}{6} + 6}$$

$$= \sqrt{48 + 1} + \sqrt{30 + 6}$$

$$\sqrt{49} + \sqrt{36} = 7 + 6 = 13$$

181. Given
$$(\sqrt{63} + \sqrt{252}) \times (\sqrt{175} + \sqrt{28})$$

 $= (\sqrt{63} + \sqrt{4 \times 63}) \times (\sqrt{25 \times 7} + \sqrt{4 \times 7})$
 $= (\sqrt{7 \times 9} + \sqrt{4 \times 9 \times 7}) \times (\sqrt{5 \times 5 \times 7} + \sqrt{2 \times 2 \times 7})$
 $= (3\sqrt{7} + 6\sqrt{7}) \times (5\sqrt{7} + 2\sqrt{7})$
 $= 9\sqrt{7} \times 7\sqrt{7} = 441$

182. Given
$$9x^2 + 25 - 30x$$

We have to find
$$\sqrt{9x^2 + 25 - 30x}$$

$$= \sqrt{(3x)^2 - 2.3x \cdot 5 + (-5)^2} \quad \{\because a^2 - 2ab + b^2 = (a - b)^2\}$$

$$= \sqrt{(3x - 5)^2} = 3x - 5$$

183.
$$\sqrt{\frac{3}{11}} = \sqrt{\frac{3 \times 11}{11 \times 11}} = \frac{\sqrt{33}}{11}$$

= $\frac{5.745}{11} = 0.5223$
184. Let the number be x .

184. Let the number be *x*.
Given
$$\sqrt{x} + 14 = \sqrt{2601}$$

or, $\sqrt{x} = 51 - 14 = 37$
or $x = 37^2 = 1369$

185.
$$a = \frac{\sqrt{3}}{2}$$
 (given)

$$\therefore \sqrt{1+a} + \sqrt{1-a}$$

$$= \sqrt{1 + \frac{\sqrt{3}}{2}} + \sqrt{1 - \frac{\sqrt{3}}{2}}$$

$$= \sqrt{\frac{2+\sqrt{3}}{2}} + \sqrt{\frac{2-\sqrt{3}}{2}}$$

$$= \sqrt{\frac{2(2+\sqrt{3})}{4}} + \sqrt{\frac{2(2-\sqrt{3})}{4}}$$

$$= \sqrt{\frac{4+2\sqrt{3}}{4}} + \sqrt{\frac{4-2\sqrt{3}}{4}}$$

$$= \sqrt{\frac{3+1+2\times\sqrt{3}\times1}{2}} + \sqrt{\frac{3+1-2\times\sqrt{3}\times1}{2}}$$

$$\begin{cases} \sqrt{3}^2 + (1)^2 - 2\times\sqrt{3}\times1 = (\sqrt{3}-1)^2 \\ \cdot \cdot \cdot (\sqrt{3})^2 + (1)^2 + 2\times\sqrt{3}\times1 = (\sqrt{3}+1)^2 \\ a^2 + b^2 + 2ab = (a+b)^2 \\ a^2 + b^2 - 2ab = (a-b)^2 \end{cases}$$

$$= \frac{\sqrt{(\sqrt{3}+1)^2}}{2} + \frac{\sqrt{(\sqrt{3}-1)^2}}{2}$$

$$= \frac{\sqrt{3}+1+\sqrt{3}-1}{2}$$

$$= \frac{2\sqrt{3}}{2} = \sqrt{3}$$

186. Given
$$\frac{5+\sqrt{10}}{5\sqrt{5}-2\sqrt{20}-\sqrt{32}+\sqrt{50}}$$

$$=\frac{5+\sqrt{10}}{5\sqrt{5}-2\times2\sqrt{5}-2\times2\sqrt{2}+5\sqrt{2}}$$

$$=\frac{5+\sqrt{10}}{5\sqrt{5}-4\sqrt{5}-4\sqrt{2}+5\sqrt{2}}$$

$$=\frac{5+\sqrt{10}}{\sqrt{5}+\sqrt{2}}=\frac{\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}=\sqrt{5}$$

187. Given:
$$\frac{(0.75)^3}{1 - 0.75} + \left[0.75 + (0.75)^2 + 1\right]$$
$$= \frac{(0.75)^2 \times 0.75}{0.25} + \left[0.75 + 0.5625 + 1\right]$$
$$= 0.5625 \times 3 + \left[0.75 + 0.5625 + 1\right]$$
$$= 1.6875 + 2.3125 = 4$$
Square root of $4 = 2$

188. Given
$$\sqrt{10 + 2\sqrt{6} + 2\sqrt{10} + 2\sqrt{15}}$$

= $\sqrt{10 + 2 \times \sqrt{3} \times \sqrt{2} + 2 \times \sqrt{2} \times \sqrt{5} + 2 \times \sqrt{3} \times \sqrt{5}}$
= $\sqrt{2 + 3 + 5 + 2 \times \sqrt{2} \times \sqrt{3} + 2 \times \sqrt{5} \times \sqrt{2} + 2 \times \sqrt{5} \times \sqrt{3}}$
= $\sqrt{(\sqrt{2})^2 + (\sqrt{3})^2 + (\sqrt{5})^2 + 2 \times \sqrt{2} \times \sqrt{3} + 2 \times \sqrt{5} \times \sqrt{2} + 2 \times \sqrt{5} \times \sqrt{3}}$
 $\left\{ \because a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a + b + c)^2 \right\}$
= $\sqrt{(\sqrt{2} + \sqrt{3} + \sqrt{5})^2}$
= $(\sqrt{2} + \sqrt{3} + \sqrt{5})$