21 | Proyecto: Fractales

Manuel Alcántara Juárez Verónica Esther Arriola Ríos

Prerrequisitos

- Creación de objetos y envío de mensajes mediante llamadas a métodos.
- Recursividad

Meta

Que el alumno aplique el diseño de soluciones recursivas a un problema de geometría.

Objetivos

Ayuda a Donatelo a crear diversos Fractales usando para ello recursión. Al finalizar la práctica serás capaz de:

- Analizar un problema dividiéndolo en partes más sencillas.
- Plantear soluciones a los fragmentos más básicos.
- Integrar la solución del problema completo al conectar las piezas.

Antecedentes

Un fractal, cuyo vocablo proviene del latín *fractus*, que significa quebrado, es una estructura cuya característica principal es su identidad construida por la repetición o iteración de un patrón. Por ello, los fractales son buenos candidatos para usar recursión.

Figura 21.1 Construcción del triángulo de Sierpinski

- 1. El triángulo de Sierpinski es un fractal que se puede construir a partir de un triángulo equilátero; esa sería la figura para el primer nivel. Para incrementar su profundidad tomamos el triángulo original, con vértices (B, A, C). Posteriormente, se calculan los puntos intermedios entre los 3 lados, supongamos P, N y M, y se manda a llamar recursivamente la construcción del triángulo de Sierpinski con los puntos (B, P, M), (M, N, C) y (P, A, N). Ver la Figura 21.1.
- 2. El copo de nieve o fractal de Koch, es una estrucutura que inicia con un segmento de longitud L; esa sería la figura para el primer nivel. Para incrementar su profundidad tomamos el segmento y lo dividimos en 3, en el cual, el segmento intermedio se reemplaza por un triángulo equilatero de longitud L/3, sin dibujar el lado que descansa sobre el segmento original. Finalmente, se manda a llamar recursivamente la construcción del copo de nieve para cada uno de los 4 segmentos resultantes. Para construir el copo de nievel completo basta repetir el patrón anterior 3 veces girando entre cada uno de ellos 120 grados, como si de dibujara un triángulo equilátero.

Ejercicios

- 1. Crea un método llamado snowflakeSide que recibe la longitud inicial y el nivel de recursión requerido. Dicho método dibujará uno de los lados del copo de nieve. Esta será la función recursiva. Determina:
 - ¿Cuál es tu caso base?
 - ¿Cómo realizas la llamada recursiva? Es decir, cómo construir el nivel más alto en términos de la misma función, pero con parámetros más simples.

TIP: ¿Cúanto debe medir el lado en la llamada recursiva en términos de la longitud original?

Figura 21.2 Redibujando Sierpinski en cada subtriángulo recursivamente se obtiene el afamado fractal.

Figura 21.3 Si se dibuja el fractal de Kock en las tres aristas de un triángulo equilátero se obtiene una figura muy semejante a un copo de nieve.

- 2. Crea un método con acceso private llamado snowflake que recibe la longitud y nivel de recursión requerido. Esta función invocará 3 veces a snowflakeSide girando a Donatelo 120 grados entre cada uno de ellas.
- 3. Crea un método con acceso private llamado dibuja Copo que invoque a snowflake con L=180 y nive l=3. Éste es el que llevará la anotación @FunciónFigura. Tu resultado debe verse algo parecido a la Figura 21.3.
- 4. Documenta tus métodos.
- 5. Crea una función llamada sierpinski cuyo encabezado es el siguiente:

En su caso base esta función dibuja un triángulo equilátero y deja de nuevo a Donatelo en su estado inicial.

En otro caso debe llamarse de nuevo a si misma para dibujar los subtriángulos. Calcula las posiciones en donde tendría que empezar Donatelo para construirlos y llévalo ahí. Al final de la función recuerda regresar a Donatelo a la posición en donde comenzó.

- 6. En el método dibujaSierpinski invoca la función sierpinski con L=200 y nivel=3. La figura resultante debe de pareserse a la Figura 21.2.
- 7. Documenta tus métodos.
- 8. Podrás obtener medio punto extra si utilizas una bonita combinación de colores para dibujar los fractales.

Referencias

- Copo de Nieve
- Triángulo de Sierpinski