1.

## a) Cycle DFS. O(V+E)

Starting from the vertex, say A, perform DFS until the same vertex, A was accessed.

## b) Floyd Warshall. O(V^3)

Fill in the adjacency table. Iterate (V-1) times for value update in the adjancency tbale.

## c) Bellman-Ford. O(VE)

Iteration i finds all shortest paths that use i edges. Pick one edge each time. Update the table with the shorter path.

## d) Baruvka's algorithm. O(ElogV)

Form the MST sequentially using the shortest weight edge in graph with no repletion in visited vertices list.



Order: [8,7,4,1,2,3,5,6]



4.

Suppose a minimum spanning tree of G is T.

i) If u is v's parent, grandparent, branch. If u, v are not adjacent in T.

There exist a subset of vertices,  $a = \{a1, a2, ..., an\}$ , |a| < number of vertices in T, such that <math>[u->a1->a2->...->v].

The sum of these edges are w(u, a1) + w(a1, a2) + ... + w(an->v).

As an alternative method to connect, we can make [u->v->an->...->a1].

```
The sum of these edges are w(u, v) + w(v, an) + ... + w(a2->a1)
= w(u, v) + w(a1, a2) + ... + w(an->v)
Since w(u, v) is the smallest edge,
w(u, v) + w(v, an) + ... + w(a2->a1) < w(u, a1) + w(a1, a2) + ... + w(an->v).
```

T is not MST. Contradiction.

- ii) If v is u's parent, grandparent, branch. If u, v are not adjacent in T. For the same reason, contradiction.
- iii) If u, v, have same parent, grandparent, ... Suppose their parent is pu, pv.

Consider only (pu, u), (pv, v).

Sum1 = w(pu, u) + w(pv, v) + K, where K is the weights of other edges.

If we change the edges to (pu, u), (u, v), where other edges remain the same,

Sum2 = w(pu, u) + w(u, v) + K.Since w(u, v) is the smallest edge, Sum2 < Sum1.

T is not MST. Contradiction.

```
When length = 4,
1234 has no 341. 0 occurrence.
1234 1234
341
       341
fail
       fail
Fail: 2, Success: 0.
When length = 8,
12341234 has 1 occurrence.
12341234 12341234 12341234 12341234 12341234
341
            341
                        341
                                               341
                                                           341
                                    341
                                                           fail
fail
           fail
                                   fail
                                               fail
                        success
Fail: 5, Success: 3.
ISuccessI = (length - 4)/4 * 3
So when length = 1000,
|Success| = 747
|Faill = 749|
```

6.

```
P: pattern, m := size of P, S := set of symbols, |S| := number of symbols
n := |S|
i := m - 1
j := n - 1
while (j != -1)
if i == -1
    S[j] := -1
        i := m - 1
        j := n - 1
else if P[i] == S[j]
    S[j] := i
        i := m - 1
        j := n - 1
else
    i := i - 1
return 0
```

9 comparisons in total.



8.

```
Input: string S with n characters and P with m characters

i := m - 1
while (i != n - 1)
if S[i] = P[m-1]
j := 0
while (j < m and S[i-j] == P[m-1-j])
j := j + 1
if j == m
return i
i := i + 1
return -1</pre>
```

Worst case and others: O(n)

9.

Answer: The output should always be a minimum spanning tree. If an edge is not in the minimum spanning tree, there should exist a smaller edge in the minimum spanning tree. The weight should be started from

the biggest to the smallest. The left edges could form a MST, which fulfills the cycle property. In the end, we will have a correct tree.

10.

