1

Analog Assignment 5

EE23BTECH11044 - Nimal Sreekumar

I. IC 555 TIMER DESIGN

A. Monostable Mode

Design an IC 555 timer in monostable mode for a variable pulse width ranging from $200 \mu s$ to 5 ms.

Time Period Equation:

$$T = RC\ln(3) \tag{1}$$

Using this equation to find R values for $C = 0.1 \mu F$:

$$R=1.8k\Omega \quad {\rm for} \ 200 \mu s$$

$$R = 45k\Omega$$
 for $5ms$

Circuit Diagram:

Fig. 0: Monostable Mode Circuit Diagram

Plot for Various Values of R:

Fig. 0: Time Period Variation with Resistance

For $R = 1.8k\Omega$:

Fig. 0: Output Waveform for $R = 1.8k\Omega$

For $R=45k\Omega$:

Fig. 0: Output Waveform for $R=45k\Omega$

B. Astable Mode

Design an IC 555 timer in a stable mode for a duty cycle of 75% with the fundamental frequency varying from 2 kHz to 20 kHz. Also, find the maximum achievable frequency.

Duty Cycle Relation:

$$\frac{T}{T_{on}} = 0.75 \tag{2}$$

For $T = 500 \mu s$:

$$T_{on} = 375 \mu s$$

$$T_{off} = 125 \mu s$$

Using the formulas:

$$T_{on} = (R_1 + R_2) \ln(2) C \tag{3}$$

$$T_{off} = R_2 \ln(2)C \tag{4}$$

Taking $C = 0.1 \mu \text{F}$, we find:

$$R_1 = 3.6k\Omega$$

$$R_2 = 1.8k\Omega$$

Circuit Diagram:

Fig. 0: Astable Mode Circuit Diagram

Frequency Variation Plot with Different C Values:

Fig. 0: Frequency Variation with Component Values

Output Waveform 1 with Time Interval 125us:

Fig. 0: Output Waveform for a Selected Frequency

Output Waveform 2 with Time Interval 375us:

Fig. 0: Output Waveform for Another Selected Frequency

C. Bistable Mode

The bistable mode is similar to monostable mode but uses the reset pin to control the output state. The trigger pin is set at t=2ms to start pulse generation. When the reset pin goes high, it resets the input to the S pin, making the output low.

Circuit diagram

Fig. 0: Bistable Mode Output Waveform 1

Output Waveform:

Fig. 0: Bistable Mode Output Waveform 2

II. LDO DESIGN USING MOSFETS

A. pMOS and nMOS Based LDOs

Design a pMOS and nMOS MOSFET-based LDO with $V_{ref} = 3V$ and an output voltage range from 6V to 10V (variable). Determine the minimum V_{in} required for the entire range, given that the load current is 200µA and the transistor aspect ratio (W/L) is 10/1.

Voltage Divider Relation:

$$V_{out} = V_{ref} \left(\frac{R_1 + R_2}{R_2} \right) \tag{5}$$

Given $V_{ref} = 3V$:

For
$$V_{out}=6V$$
, $R_1=R_2$
For $V_{out}=10V$, $R_1=2.33R_2$

Since $I_{DS} = 200A$:

$$V = IR_2 \tag{6}$$

Choosing $R_2 = 15k\Omega$, we determine that:

$$V_{in} \ge V_{GS,\text{max}} + V_{out} \ge 15V(\text{approx})$$
 (7)

Circuit Diagram:

Fig. 0: LDO Circuit Diagram

Different Output Voltages for Various R Values:

Fig. 0: Output Voltage Variations with Different R Values

Fig. 0: I Variations with Different R Values