Exercícios: Estimação não-(en)viesada

Disciplina: Inferência Estatística (MSc) Instrutor: Luiz Carvalho Monitor: Isaque Pim

Outubro/2023

Motivação: Na prática estatística estamos sempre em busca de procedimentos que sejam capazes de retornar estimativas de parâmetros e funções que sejam confiáveis, no sentido de terem boa acurácia (i.e. baixo viés¹) e alta precisão – variância pequena. Como vimos, estas duas características precisam quase sempre ser balanceadas e em geral não podem ser atingidas conjuntamente. Nesta lista vamos pensar um pouco mais sobre estimadores viesados e não-viesados e as garantias matemáticas que podemos dar sobre o seu comportamento.

Notação: Como convenção adotamos $\mathbb{R}=(-\infty,\infty),\ \mathbb{R}_+=(0,\infty)$ e $\mathbb{N}=\{1,2,\ldots\}.$

Dos livros-texto:

- a) KN, Ch3.7: 1;
- b) KN, Ch4.7: 1, 5a, 5b e (**Phd**) 28;
- c) CB, Ch6: 6.36.

Extra:

1. Mostre que se X_1,X_2,\ldots,X_n é uma amostra aleatória de uma distribuição P_θ com $\mathrm{Var}_\theta(X_i)=\sigma^2<\infty,$ então

$$\delta(\mathbf{X}_n) = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \frac{1}{n} \sum_{i=1}^n X_i \right)^2,$$

é um estimador não-viesado para σ^2 .

2. Suponha que temos uma amostra aleatória $X = \{X_1, X_2, \dots, X_n\}$ de uma distribuição Normal com média μ e variância σ^2 , ambas desconhecidas. Para c > 0, considere estimadores da forma

$$\delta_c(\mathbf{X}) = c \sum_{i=1}^n \left(X_i - \bar{X}_n \right)^2, \tag{1}$$

para σ^2 .

¹Lembre-se, jovem padawan: viés zero não quer dizer estimador bom!

- ullet Encontre o erro quadrático médio desta classe de estimadores em função de c.
- Encontre c^* de modo que $\delta_{c^*}(X)$ seja admissível.
- $\delta_{c^*}(X)$ é não-viesado?
- 3. Informação de Fisher. Sobre a informação de Fisher, mostre que:
 - (a) Se $X_n = (X_1, X_2, \dots, X_n)$ é uma amostra aleatória, então $I_{X_n}(\theta) = I_n(\theta) = nI(\theta)$.

Dica: Tome X e Y independentes e mostre que $I_{X,Y}(\theta) = I_X(\theta) + I_Y(\theta)$.

- (b) Tome $\mathcal{P}_0 = \{P_\theta : \theta \in \Omega\}$ família dominada com densidade f_θ e informação de Fisher $I(\theta)$. Considere uma função bijetora $h : \Xi \to \Omega$, que induz uma família reparametrizada $\tilde{\mathcal{P}} = \{P_\theta : \xi \in \Xi\}$, que também é dominada e tem densidade $f_\xi = f_{h(\theta)}$. Exiba a forma da informação de Fisher $\tilde{I}(\xi)$.
- (c) Considere uma família exponencial de um parâmetro em forma canônica. Escreva sua informação de Fisher em termos da função geradora de cumulantes.
- (d) Combine os dois itens anteriores para escrever a informação de Fisher $I(\mu)$ de uma família exponencial parametrizada em termos da média $\mu = E_{\eta}[T]$, onde T é a estatística suficiente para η .
- (e) ${\bf PhD}$ Sobre o item anterior, discuta se T é ENVVM para μ e comente sobre se a desigualdade de Cramér-Rao é sharp neste caso.

Dica: Estude a completude de T.

- PhD : Construir uma desigualdade mais geral para a cota inferior da variância de um estimador não-viesado.
 - Mostre que para duas variáveis aleatórias X, Y quaisquer²,

$$\operatorname{Var}_{\theta}(X) \ge \frac{[\operatorname{Cov}_{\theta}(X,Y)]^2}{\operatorname{Var}_{\theta}(Y)};$$

• Considere a classe $U = \{\delta : E_{\theta}[\delta] = g(\theta)\}$ de estimadores nãoviesados de $g(\theta)$. Tome ϵ tal que $\theta + \epsilon \in \Theta$ para todo $\theta \in \Theta$ e note que

$$E_{\theta+\epsilon}[\delta] - E_{\theta}[\delta] = q(\theta+\epsilon) - q(\theta).$$

Agora, assuma que $f_{\theta}(x) = 0 \implies f_{\theta+\epsilon}(x) = 0$, e defina

$$L(x) := \frac{f_{\theta+\epsilon}(x)}{f_{\theta}(x)}.$$

Mostre que para qualquer função integrável h vale:

$$E_{\theta+\epsilon}[h(X)] = E_{\theta}[L(X)h(X)];$$

 $^{^2\}mathrm{Definidas}$ no mesmo espaço de probabilidade.

• Encontre função integrável w tal $E_{\theta}[w] = 0$ e

$$E_{\theta+\epsilon}[\delta] - E_{\theta}[\delta] = \operatorname{Cov}_{\theta}(\delta, w);$$

• Conclua o argumento para encontrar, para δ não-viesado,

$$\operatorname{Var}_{\theta}(\delta) \ge \frac{[g(\theta + \epsilon) - g(\theta)]^2}{E_{\theta} \left[\left\{ L(X) - 1 \right\}^2 \right]},\tag{2}$$

que é a cota inferior (ou desigual dade) de Hammersley–Chapman–Robbins (HCR-LB) $^{3}.\ \ \,$

• A cota inferior de Cramér-Rao para um estimador δ de uma função diferenciável $g(\theta)$ vale

$$\operatorname{Var}_{\theta}(\delta(X)) \ge \frac{\left[\frac{d}{d\theta}g(\theta)\right]^2}{I_X(\theta)},$$

onde $I_X(\theta)$ é a informação de Fisher baseada em X – ver SV, seção 2.3.1. Discuta como recuperar a cota inferior de Cramér-Rao a partir de HCR-LB. Quais premissas extras precisamos tomar?

5. Seja \mathcal{P} família dominada paramétrica, com parâmetro $\theta \in \Omega$ e dando origem ao modelo $(\mathcal{X}, \mathcal{B}(\mathcal{X}), \mathcal{P})$. Para $\mathcal{R} \supseteq \Omega$, tome $\delta : \mathcal{X} \to \mathcal{R}$ um estimador não-viesado de $g(\theta)$ e $\psi : \mathcal{X} \to \mathcal{R}$. Considere a seguinte desigualdade (consequência de Cauchy-Schwarz):

$$\operatorname{Var}_{\theta}(\delta) \ge \frac{\operatorname{cov}(\delta, \psi)}{\operatorname{Var}(\psi)}.$$
 (3)

Mostre que (Blyth, 1974, Thm 1) $\text{cov}(\delta,\psi)$ depende de δ apenas através de $q(\theta)$ se e somente se

$$cov(U, \psi) = 0, \quad \forall U \in \mathcal{U},$$
 (4)

com

$$\mathcal{U} = \{U : E_{\theta}[U] = 0, E_{\theta}[U^2] < \infty \quad \forall \theta \in \Omega \},$$

i.e., para todo estimador não-viesado de zero.

- 6. Suponha que g é U-estimável, e seja δ um estimador não-viesado de $g(\theta)$. Mostre que δ atinge (3) para todo $\theta \in \Omega$ e alguma $\psi(x,\theta)$ satisfazendo (4) se e somente se $g(\theta)$ tem um ENVVM, δ_0 . Utilize o teorema do item anterior.
- 7. Mostre que se $Var_{\theta}(\delta)$ atinge Cramér-Rao, então

$$\delta(x) = g(\theta) + \frac{\frac{dg(\theta)}{d\theta}}{I_X(\theta)} \frac{\partial}{\partial \theta} f_{\theta}(x).$$

 $^{^3{\}rm O}$ denominador da expressão é a divergência qui-quadrado (χ^2) entre $P_{\theta+\epsilon}$ e $P_{\theta}.$

Bibliografia

Blyth, C. R. (1974). Necessary and sufficient conditions for inequalities of cramér-rao type. *The Annals of Statistics*, pages 464–473.