

大数据分析实践课程实验报告

实验项目-数据质量实践

专业	班级:	22 级公信
学	号:	202200120100
姓	名: _	徐瑞良
报告	日期:	2025年9月19日

目 录

实验	2 数据质量实践	1
2.1	l 实验目标	. 1
2.2	9. 实验环境	. 1
	3 数据集	
2.4	1 实验步骤	. 1
	2.4.1 配置环境与加载数据集	. 1
	2.4.2 实验步骤	1
2.5	5 心得与体会	.7

实验 2 数据质量实践

2.1 实验目标

本次实验主要围绕宝可梦数据集进行分析,考察在拿到数据后如何对现有的 数据进行预处理清洗操作,建立起对于脏数据、缺失数据等异常情况的一套完整 流程的认识。

2.2 实验环境

python3.9, jupyter notebook

2.3 数据集

Pokeman Dataset: 721 Pokemon, including their number, name, first and s econd type, and basic stats: HP, Attack, Defense, Special Attack, Special Defense, and Speed

数据集地址: http://storage.amesholland.xyz/Pokemon.csv

2.4 实验步骤

2.4.1 配置环境与加载数据集

```
import chardet
import pandas as pd
from pandas import DataFrame
import numpy as np
import matplotlib.pyplot as plt

with open('D:/大数据分析实践 实验内容/Pokemon.csv', 'rb') as f:
    result = chardet.detect(f.read())

df = pd.read_csv('D:/大数据分析实践 实验内容/Pokemon.csv', encoding=result['encoding'])
df

# Name Type 1 Type 2 Total HP Attack Defense Sp. Atk Sp. Def Speed Generation L
```

	#	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	L
0	1	Bulbasaur	Grass	Poison	318	45	49	49	65	65	45	1	
1	2	lvysaur	Grass	Poison	405	60	62	63	80	80	60	1	
2	3	Venusaur	Grass	Poison	525	80	82	83	100	100	80	1	
3	3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80	1	
4	4	Charmander	Fire	NaN	309	39	52	43	60	50	65	1	
805	721	Volcanion	Fire	Water	600	80	110	120	130	90	70	6	
806	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	t
807	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	ţ
808	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
809	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

810 rows \times 13 columns

2.4.2 实验步骤

①数据集存在的部分问题:最后两行数据无意义,可直接删去

```
df=df.iloc[:-4]
df.tail()
```

实际实验中发现数据集最后四行都无意义,将其都删除。结果如下:

山东大学计算机科学与技术学院课程实验报告

	#	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
801	719	Diancie	Rock	Fairy	600	50	100	150	100	150	50	6	TRUE
802	719	DiancieMega Diancie	Rock	Fairy	700	50	160	110	160	110	110	6	TRUE
803	720	HoopaHoopa Confined	Psychic	Ghost	600	80	110	60	150	130	70	6	TRUE
804	720	HoopaHoopa Unbound	Psychic	Dark	680	80	160	60	170	130	80	6	TRUE
805	721	Volcanion	Fire	Water	600	80	110	120	130	90	70	6	TRUE

②type2 存在异常的数值取值,可清空

参考实验指导书内容,绘制了一个柱状图,用以统计 type2 中所有的取值

将异常值['273', '0', 'A', 'BBB']标注并删除

	#	Name	Type 1 T	ype 2	Total	HP	Attack	Defense	Sp. A	tk Sp.	Def	Speed	Gene	eration Leg	endary
34	27	Sandshrew G	Fround	0	300	50	75	85	2	20	30	40		1	FALSE
39	32	Nidoranâ™?Poison	NaN	273	46	57	40	40	2	10	50	1		FALSE	NaN
117	107	Hitmonchan Fi	ghting	Α	455	50	105	79	3	35	110	76		1	FALSE
428	382	KyogrePrimal Kyogre	Water	BBB	770	100	150	90	18	30	160	90		3	TRUE
f = f	df[~d	<pre>#f['Type 2'].isin(targe Name</pre>		, -	2 To	ıtal l	-IP Att	ack Defe	nse S	n. Atk	Sp. D	ef Sn	eed	Generation	Legen
0	1	Bulbasaur		Poiso			45	49	49	65	00000000	65	45	1	E E
1	2	lvysaur		Poiso			60	62	63	80		80	60	1	Б
2	3	Venusaur	Grass	Poiso	n 5	525	80	82	83	100	1	00	80	1	F.
3	3	VenusaurMega Venusaur	Grass	Poiso	n 6	525	80	100	123	122	1	20	80	1	F.
4	4	Charmander	Fire	Na	N B	809	39	52	43	60		50	65	1	E
301	719	Diancie	Rock	. Fair	y 6	500	50	100	150	100	1	50	50	6	1
302	719	DiancieMega Diancie	Rock	Fair	y 7	700	50	160	110	160	1	10	110	6	1
303	720	HoopaHoopa Confined	Psychic	Gho	st 6	600	80	110	60	150	1	30	70	6	1
304	720	HoopaHoopa Unbound	Psychic	Dai	rk 6	680	80	160	60	170	1	30	80	6	1
OF	721	Volcanion	Fire	Wate	or 6	600	80	110	120	130		90	70	6	٦

绘制柱状图显示数据删除更新后的结果

③数据集中存在重复值 检测重复值并删除

<pre>df[df.duplicate</pre>	d()]
----------------------------	------

	#	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
15	11	Metapod	Bug	NaN	205	50	20	55	25	25	30	1	FALSE
23	17	Pidgeotto	Normal	Flying	349	63	60	55	50	50	71	1	FALSE
185	168	Ariados	Bug	Poison	390	70	90	70	60	60	40	2	FALSE
186	168	Ariados	Bug	Poison	390	70	90	70	60	60	40	2	FALSE
187	168	Ariados	Bug	Poison	390	70	90	70	60	60	40	2	FALSE

df =	<pre>df.drop_duplicates()</pre>
------	---------------------------------

	#	Name	Type 1	Type 2	Total	НР	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
0	1	Bulbasaur	Grass	Poison	318	45	49	49	65	65	45	1	FALSE
1	2	lvysaur	Grass	Poison	405	60	62	63	80	80	60	1	FALSE
2	3	Venusaur	Grass	Poison	525	80	82	83	100	100	80	1	FALSE
3	3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80	1	FALSE
4	4	Charmander	Fire	NaN	309	39	52	43	60	50	65	1	FALSE
		•••											
801	719	Diancie	Rock	Fairy	600	50	100	150	100	150	50	6	TRUE
802	719	DiancieMega Diancie	Rock	Fairy	700	50	160	110	160	110	110	6	TRUE
803	720	HoopaHoopa Confined	Psychic	Ghost	600	80	110	60	150	130	70	6	TRUE
804	720	HoopaHoopa Unbound	Psychic	Dark	680	80	160	60	170	130	80	6	TRUE
805	721	Volcanion	Fire	Water	600	80	110	120	130	90	70	6	TRUE

797 rows × 13 columns

④Attack 属性存在过高的异常值

参考实验指导书绘制了一份散点图

发现存在异常值,采用 IQR 计算定位异常值并删除

删除后的散点图如下所示

```
x = np.arange(df.shape[0])
y = df['Attack']
plt.figure(figsize=(12, 6))
plt.scatter(x, y, alpha=0.6) # alpha=0.6 让点更清晰(避免重叠)
plt.xlabel("Pokemon Index")
plt.ylabel("Attack Value")
plt.grid(alpha=0.3) # 添加网格线,便于观察
    160
    140
    120
    100
Attack Value
     80
      60
      20
                                  100
                                                     200
                                                                       300
                                                                                                                               600
                                                                                                                                                  700
                                                                                          400
                                                                                                            500
                                                                                                                                                                    800
                                                                                  Pokemon Index
```

⑤有两条数据的 Generation 与 Legendary 属性被置换 首先检测 Generation 与 Legendary 中的特殊数据并查询数据类型

```
#查看两列的数据
print(df['Generation'].unique())
print(df['Legendary'].unique())

['1' 'FALSE' '2' '3' nan '4' '5' '6' 'undefined']
['FALSE' '1' '0' 'Poison' 'Ground' 'TRUE' nan]
```

```
#查询数据类型
df.dtypes
```

```
object
#
                object
Name
                object
Type 1
Type 2
                object
                object
Total
HP
                object
Attack
              float64
                object
Defense
Sp. Atk
               object
                object
Sp. Def
Speed
                object
Generation
                object
                object
Legendary
dtype: object
```

查看包含对应内容的行,发现 Legendary 中除属性置换外,还含有其他异常值

```
#查看包含目标内容的行
target_contents = ['FALSE','undefined']
df[df['Generation'].isin(target_contents)]
```

	#	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
11	9	Blastoise	Water	NaN	530	79	83.0	100	85	105	78	FALSE	1
32	25	Pikachu	Electric	NaN	320	35	55.0	40	50	50	90	FALSE	0
771	695	Heliolisk	Electric	Normal	481	62	55.0	52	109	94	109	undefined	FALSE

```
#交換11、32行对应列内容

temp_generation_11 = df.loc[11, 'Generation']

temp_generation_32 = df.loc[32, 'Generation']

df.loc[11, 'Generation'] = df.loc[11, 'Legendary']

df.loc[32, 'Generation'] = df.loc[32, 'Legendary']

df.loc[11, 'Legendary'] = temp_generation_11

df.loc[32, 'Legendary'] = temp_generation_32

df.loc[11:11]
```

```
        #
        Name
        Type 1
        Type 2
        Total
        HP
        Attack
        Defense
        Sp. Atk
        Sp. Def
        Speed
        Generation
        Legendary

        11
        9
        Blastoise
        Water
        NaN
        530
        79
        83.0
        100
        85
        105
        78
        1
        FALSE
```

```
df.loc[32:32]
```

#NameType 1Type 2TotalHPAttackDefenseSp. AtkSp. DefSpeedGenerationLegendary3225PikachuElectricNaN3203555.0405050900FALSE

上述将对应值置换过来后,将异常值一并删除

```
# 使用布尔索引删除指定的行
rows_to_delete = [45, 78, 115, 130,771]
df = df[~df.index.isin(rows_to_delete)]
print(df.loc[45:45])
print(df.loc[78:78])
print(df.loc[115:115])
print(df.loc[130:130])
print(df.loc[771:771])
Empty DataFrame
Columns: [#, Name, Type 1, Type 2, Total, HP, Attack, Defense, Sp. Atk, Sp. Def, Speed, Generation, Legendary]
Index: []
Empty DataFrame
Columns: [#, Name, Type 1, Type 2, Total, HP, Attack, Defense, Sp. Atk, Sp. Def, Speed, Generation, Legendary]
Index: []
Empty DataFrame
Columns: [#, Name, Type 1, Type 2, Total, HP, Attack, Defense, Sp. Atk, Sp. Def, Speed, Generation, Legendary]
Index: []
Empty DataFrame
Columns: [#, Name, Type 1, Type 2, Total, HP, Attack, Defense, Sp. Atk, Sp. Def, Speed, Generation, Legendary]
Index: []
Empty DataFrame
Columns: [#, Name, Type 1, Type 2, Total, HP, Attack, Defense, Sp. Atk, Sp. Def, Speed, Generation, Legendary]
Index: []
```

	#	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
0	1	Bulbasaur	Grass	Poison	318	45	49.0	49	65	65	45	1	FALSE
1	2	lvysaur	Grass	Poison	405	60	62.0	63	80	80	60	1	FALSE
2	3	Venusaur	Grass	Poison	525	80	82.0	83	100	100	80	1	FALSE
3	3	VenusaurMega Venusaur	Grass	Poison	625	80	100.0	123	122	120	80	1	FALSE
4	4	Charmander	Fire	NaN	309	39	52.0	43	60	50	65	1	FALSE

801	719	Diancie	Rock	Fairy	600	50	100.0	150	100	150	50	6	TRUE
802	719	DiancieMega Diancie	Rock	Fairy	700	50	160.0	110	160	110	110	6	TRUE
803	720	HoopaHoopa Confined	Psychic	Ghost	600	80	110.0	60	150	130	70	6	TRUE
804	720	HoopaHoopa Unbound	Psychic	Dark	680	80	160.0	60	170	130	80	6	TRUE
805	721	Volcanion	Fire	Water	600	80	110.0	120	130	90	70	6	TRUE

2.5 心得与体会

通过本次数据质量实验,我明确了数据预处理作为保障分析结果可靠性的关键,实践了数据清洗核心流程。实验中结合初步观察与数据可视化来系统性地发现并定位无效数据、异常值和重复记录、字段错位问题。通过实验,加深了我对数据预处理基础保障作用的理解,掌握了一套行之有效的数据清洗流程与方法论,为后续分析奠定基础