Olympic Birds Química

Propriedades coligativas e misturas binárias

Autora: Rebeca Mikai Oliveria

Olympic Birds

Propriedades coligativas e misturas binárias ${\bf Qu\'imica}$

Sumário

1	Intr	rodução a propriedades coligativas	4
2	Ton	noscopia (Diminuição da Pressão de Vapor)	4
	2.1	Definição	4
	2.2	Explicação Molecular	4
	2.3	Lei de Raoult	4
	2.4	Considerações Focadas	4
		2.4.1 Desvios da Lei de Raoult	4
		2.4.2 Soluções Não-Ideais	5
3	Ebı	ulioscopia (Elevação do Ponto de Ebulição)	5
	3.1	Definição	5
	3.2	Explicação Molecular	5
	3.3	Fórmula Ebulioscópica	5
	3.4	Considerações Focadas	5
		3.4.1 Correção para Eletrólitos	5
		3.4.2 Desvios da Idealidade	6
4	Crie	oscopia (Abaixamento do Ponto de Congelamento)	6
	4.1	Definição	6
	4.2	Explicação Molecular	6
	4.3	Fórmula Crioscópica	6
	4.4	Considerações Focadas	6
	1.1	4.4.1 Correção para Eletrólitos	6
		4.4.2 Superresfriamento	6
5	Osn	moscopia (Pressão Osmótica)	7

	5.1	Definição	7		
	5.2	Explicação Molecular	7		
	5.3	Fórmula da Pressão Osmótica	7		
	5.4	Considerações Focadas	7		
		5.4.1 Membranas Reais			
		5.4.2 Aplicações Biológicas	7		
6	Outros Aspectos Importantes				
	6.1	Fator de Van't Hoff i	8		
	6.2	Aplicações Práticas	8		
		6.2.1 Anticongelantes	8		
		6.2.2 Diálise e Osmose Reversa	8		
7	Intr	odução a misturas binárias	9		
8	Propriedades Termodinâmicas das Misturas Binárias				
	8.1	Potencial Químico	Ć		
	8.2	Função de Gibbs	\hat{c}		
	8.3	Energia Livre de Mistura	S		
9	Diagramas de Fase				
	9.1	Misturas Líquido-Líquido	10		
		9.1.1 Misturas Ideais	10		
		9.1.2 Misturas Não-Ideais	10		
	9.2	Misturas Sólido-Líquido	10		
		9.2.1 Diagrama de Fase com Compostos de Eutéticos	10		
		9.2.2 Regra da Alavanca	11		
	9.3	Diagramas liquido-vapor-sólido	11		
10	Pro	priedades Coligativas em Misturas Binárias	11		
	10.1	Diminuição da Pressão de Vapor	11		
	10.2	Efeito da Dissociação e Associação	11		
11	Apli	cações Práticas das Misturas Binárias	11		
	11.1	Destilação Fracionada	11		
	11.2	Purificação de Materiais	12		
	11.3	Ligas Metálicas	12		

12 Resumo de fórmulas

14

1 Introdução a propriedades coligativas

As propriedades coligativas são propriedades das soluções que dependem exclusivamente do número de partículas de soluto presentes em uma quantidade fixa de solvente, e não da natureza química dessas partículas. Elas são fundamentais para entender o comportamento das soluções em diversas aplicações, desde processos industriais até fenômenos biológicos.

Neste material, abordaremos em detalhes as quatro principais propriedades coligativas: tonoscopia (diminuição da pressão de vapor), ebulioscopia (elevação do ponto de ebulição), crioscopia (abaixamento do ponto de congelamento) e osmoscopia (pressão osmótica).

2 Tonoscopia (Diminuição da Pressão de Vapor)

2.1 Definição

A tonoscopia refere-se à diminuição da pressão de vapor de um solvente quando um soluto não-volátil é adicionado a ele. A pressão de vapor é a pressão exercida pelas moléculas de solvente que escapam da fase líquida para a fase gasosa em equilíbrio dinâmico.

2.2 Explicação Molecular

Quando um soluto não-volátil é adicionado, as moléculas de soluto ocupam espaço na superfície do líquido, dificultando a evaporação das moléculas de solvente. Isso resulta em uma menor quantidade de moléculas de solvente na fase gasosa, diminuindo a pressão de vapor da solução.

2.3 Lei de Raoult

Para soluções ideais, a diminuição da pressão de vapor é dada pela Lei de Raoult:

$$P_A = X_A \cdot P_A^0$$

onde:

- $\bullet \ P_A$ é a pressão máxima de vapor da solução.
- P_A^0 é a pressão de vapor do solvente puro.
- X_A é a fração molar do solvente na solução.

Para um soluto não-volátil:

$$\Delta P = P_A^0 - P_A = X_B \cdot P_A^0$$

onde X_B é a fração molar do soluto.

2.4 Considerações Focadas

2.4.1 Desvios da Lei de Raoult

Em soluções reais, pode haver desvios da Lei de Raoult:

- Desvios Positivos: A pressão de vapor observada é maior do que a prevista pela Lei de Raoult, indicando interações fracas entre as moléculas de soluto e solvente.
- Desvios Negativos: A pressão de vapor é menor do que a prevista, sugerindo interações fortes entre soluto e solvente.

2.4.2 Soluções Não-Ideais

Em soluções não-ideais, a presença de interações específicas entre soluto e solvente, como ligações de hidrogênio, pode causar desvios significativos na pressão de vapor. Nestes casos, a Lei de Raoult deve ser ajustada para levar em consideração essas interações.

3 Ebulioscopia (Elevação do Ponto de Ebulição)

3.1 Definição

A ebulioscopia refere-se ao aumento do ponto de ebulição de um solvente quando um soluto não-volátil é adicionado. A adição do soluto resulta em uma necessidade de maior temperatura para que a solução atinja a pressão de vapor necessária para a ebulição.

3.2 Explicação Molecular

A diminuição da pressão de vapor causada pelo soluto não-volátil significa que a solução requer uma temperatura mais alta para que a pressão de vapor iguale a pressão atmosférica, resultando em um ponto de ebulição mais elevado.

3.3 Fórmula Ebulioscópica

A elevação do ponto de ebulição ΔT_e é dada por:

$$\Delta T_e = K_e \cdot m$$

onde:

- ΔT_e é a elevação do ponto de ebulição.
- K_e é a constante ebuliométrica do solvente.
- m é a molalidade da solução.

3.4 Considerações Focadas

3.4.1 Correção para Eletrólitos

Para solutos que se dissociam em íons, como sais, a fórmula é corrigida pelo fator de Van't Hoff i:

$$\Delta T_e = i \cdot K_e \cdot m$$

onde i representa o número efetivo de partículas em solução.

3.4.2 Desvios da Idealidade

A interação entre partículas de soluto e solvente pode causar desvios na elevação do ponto de ebulição prevista. Em soluções não-ideais, i pode ser diferente do valor teórico devido à associação ou dissociação incompleta do soluto.

4 Crioscopia (Abaixamento do Ponto de Congelamento)

4.1 Definição

A crioscopia refere-se à diminuição do ponto de congelamento de um solvente quando um soluto não-volátil é adicionado. A presença do soluto interfere na formação da estrutura cristalina do solvente, necessitando de uma temperatura mais baixa para a solidificação.

4.2 Explicação Molecular

A adição de soluto perturba o processo de cristalização do solvente, tornando necessário resfriar a solução a uma temperatura mais baixa para que o equilíbrio sólido-líquido seja alcançado.

4.3 Fórmula Crioscópica

A depressão do ponto de congelamento ΔT_f é dada por:

$$\Delta T_f = K_f \cdot m$$

onde:

- ΔT_f é a depressão do ponto de congelamento.
- K_f é a constante criométrica do solvente.
- \bullet *m* é a molalidade da solução.

4.4 Considerações Focadas

4.4.1 Correção para Eletrólitos

Assim como na ebulioscopia, o fator de Van't Hoff i é utilizado para soluções com solutos que se dissociam:

$$\Delta T_f = i \cdot K_f \cdot m$$

4.4.2 Superresfriamento

Superresfriamento é um fenômeno em que a solução pode ser resfriada abaixo do seu ponto de congelamento antes de solidificar. Esse fenômeno pode afetar a observação experimental da depressão do ponto de congelamento.

5 Osmoscopia (Pressão Osmótica)

5.1 Definição

A osmose é o processo de movimentação do solvente através de uma membrana semipermeável, do meio menos concentrado (mais diluído) para o mais concentrado. A pressão osmótica é a pressão que deve ser aplicada à solução para interromper o fluxo de solvente através da membrana.

5.2 Explicação Molecular

A adição de soluto ao solvente cria uma diferença de potencial químico, fazendo com que o solvente tenda a fluir para a região de maior concentração de soluto para alcançar o equilíbrio.

5.3 Fórmula da Pressão Osmótica

Para soluções diluídas, a pressão osmótica π pode ser calculada pela equação de Van't Hoff:

$$\pi = i \cdot M \cdot R \cdot T$$

onde:

- π é a pressão osmótica.
- \bullet i é o fator de Van't Hoff.
- \bullet M é a molaridade da solução.
- R é a constante dos gases $(0.0821 \text{ L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1})$.
- \bullet T é a temperatura absoluta em Kelvin.

5.4 Considerações Focadas

5.4.1 Membranas Reais

Em membranas semipermeáveis reais, o fluxo de soluto ou solvente pode não ser ideal, resultando em valores de pressão osmótica que diferem dos valores teóricos.

5.4.2 Aplicações Biológicas

A pressão osmótica é um fator crucial em sistemas biológicos, regulando a movimentação de água e nutrientes nas células. Por exemplo, o fenômeno da osmose é fundamental para a manutenção do turgor nas células vegetais.

6 Outros Aspectos Importantes

6.1 Fator de Van't Hoff *i*

O fator de Van't Hoff i representa o número efetivo de partículas em solução para solutos que se dissociam em íons. Para um soluto que se dissocia completamente em ν partículas, $i = \nu$. Em soluções reais, onde a dissociação pode ser incompleta, i pode ser menor que ν .

6.2 Aplicações Práticas

6.2.1 Anticongelantes

Anticongelantes, como o etilenoglicol, são utilizados em radiadores de automóveis para baixar o ponto de congelamento da água, evitando que ela congele em baixas temperaturas.

6.2.2 Diálise e Osmose Reversa

A diálise e a osmose reversa são técnicas baseadas na pressão osmótica, usadas para a purificação de água e no tratamento de insuficiências renais, respectivamente.

7 Introdução a misturas binárias

As misturas binárias são sistemas compostos por dois componentes, que podem estar presentes em qualquer proporção. A análise de tais misturas é fundamental em várias áreas da química, desde a termodinâmica até a engenharia de processos, pois permitem compreender os comportamentos físico-químicos dos componentes misturados.

8 Propriedades Termodinâmicas das Misturas Binárias

8.1 Potencial Químico

O potencial químico μ_i de um componente i em uma mistura é uma função essencial para a determinação do equilíbrio de fases e de reações químicas. Em uma mistura binária ideal, o potencial químico de um componente i é dado por:

$$\mu_i = \mu_i^0 + RT \ln x_i$$

onde:

- μ_i^0 é o potencial químico do componente puro.
- R é a constante dos gases.
- \bullet T é a temperatura absoluta.
- x_i é a fração molar do componente i.

8.2 Função de Gibbs

Para uma mistura binária ideal, a energia livre de Gibbs molar da mistura G_{mix} pode ser expressa como:

$$G_{mix} = x_A \mu_A + x_B \mu_B$$

Substituindo μ_A e μ_B das expressões anteriores:

$$G_{mix} = x_A G_A^0 + x_B G_B^0 + RT(x_A \ln x_A + x_B \ln x_B)$$

onde G_A^0 e G_B^0 são as energias livres de Gibbs dos componentes puros.

8.3 Energia Livre de Mistura

A energia livre de mistura ΔG_{mix} , que representa a diferença entre a energia livre da mistura e a soma das energias livres dos componentes puros, é dada por:

$$\Delta G_{mix} = RT(x_A \ln x_A + x_B \ln x_B)$$

Esta expressão sempre resulta em um valor negativo, indicando que a mistura é espontânea (ou seja, ocorre de maneira natural).

9 Diagramas de Fase

9.1 Misturas Líquido-Líquido

Os diagramas de fase para misturas binárias de dois líquidos podem ser classificados com base na miscibilidade dos componentes:

9.1.1 Misturas Ideais

Para misturas ideais, o diagrama de fase exibe uma curva contínua, onde os componentes são miscíveis em todas as proporções. A Lei de Raoult aplica-se a essas misturas, com a pressão de vapor total sendo uma função linear das frações molares dos componentes:

$$P_{total} = x_A P_A^0 + x_B P_B^0$$

9.1.2 Misturas Não-Ideais

Em misturas não-ideais, a interação entre as moléculas dos componentes pode causar desvios da Lei de Raoult, resultando em:

- Desvios Positivos: A pressão de vapor é maior que a prevista, sugerindo interações fracas entre os componentes.
- Desvios Negativos: A pressão de vapor é menor que a prevista, indicando interações fortes entre os componentes.

Esses desvios podem gerar azeótropos, que são pontos onde a composição do vapor e do líquido é a mesma, e a destilação simples não pode separar os componentes.

9.2 Misturas Sólido-Líquido

9.2.1 Diagrama de Fase com Compostos de Eutéticos

Em misturas sólido-líquido que formam eutéticos, o diagrama de fase exibe uma temperatura de fusão mínima, chamada ponto eutético, onde a fase líquida coexiste com duas fases sólidas:

$$T_e$$
 = temperatura eutética

Acima e abaixo dessa temperatura, diferentes fases sólidas e líquidas estão em equilíbrio. A composição na temperatura eutética é fixa e não depende da quantidade relativa dos componentes.

9.2.2 Regra da Alavanca

Para determinar as quantidades relativas de fases em uma mistura sólido-líquido em equilíbrio, utilizamos a regra da alavanca. Para um ponto em um diagrama de fase:

fração líquida =
$$\frac{x - x_s}{x_l - x_s}$$

fração sólida =
$$\frac{x_l - x}{x_l - x_s}$$

onde x_s e x_l são as frações molares do componente B nas fases sólida e líquida, respectivamente, e x é a fração molar total de B.

9.3 Diagramas liquido-vapor-sólido

Esses diagramas podem ser complexos, envolvendo a presença simultânea de três fases: sólido, líquido e vapor. Eles são essenciais para a compreensão de sistemas de cristalização e purificação, especialmente na indústria de fármacos e materiais.

10 Propriedades Coligativas em Misturas Binárias

10.1 Diminuição da Pressão de Vapor

Em uma mistura binária com um soluto não-volátil, a diminuição da pressão de vapor pode ser expressa como:

$$\Delta P = x_B \cdot P_A^0$$

onde x_B é a fração molar do soluto. Isso leva a uma série de efeitos coligativos, incluindo a elevação do ponto de ebulição e a depressão do ponto de congelamento.

10.2 Efeito da Dissociação e Associação

Para misturas que envolvem dissociação (como eletrólitos) ou associação (como ácidos carboxílicos), o número efetivo de partículas em solução deve ser considerado usando o fator de Van't Hoff i, que modifica as propriedades coligativas observadas.

11 Aplicações Práticas das Misturas Binárias

11.1 Destilação Fracionada

A destilação fracionada é uma técnica amplamente utilizada na separação de misturas binárias de líquidos. O diagrama de fase é crucial para entender o processo, especialmente em misturas com azeótropos.

11.2 Purificação de Materiais

A cristalização fracionada, baseada nos diagramas de fase sólido-líquido, é utilizada na purificação de substâncias, especialmente em indústrias químicas e farmacêuticas.

11.3 Ligas Metálicas

Misturas binárias de metais formam ligas com propriedades mecânicas e térmicas específicas. Os diagramas de fase são fundamentais para o design de ligas com as propriedades desejadas, como resistência à corrosão ou dureza.

12 Resumo de fórmulas

Resumo

Lei de Raoult:

$$P_A = X_A \cdot P_A^0$$

Para um soluto não volátil:

$$\Delta P = P_A^0 - P_A = X_B \cdot P_A^0$$

Elevação do ponto de ebulição:

$$\Delta T_e = K_e \cdot m$$

Correção para solutos que se dissociam em íons:

$$\Delta T_e = i \cdot K_e \cdot m$$

Depressão do ponto de congelamento:

$$\Delta T_f = K_f \cdot m$$

Correção para solutos que se dissociam em íons:

$$\Delta T_f = i \cdot K_f \cdot m$$

Pressão osmótica para soluções diluídas:

$$\pi = i \cdot M \cdot R \cdot T$$

Potencial químico de uma mistura binária ideal:

$$\mu_i = \mu_i^0 + RT \ln x_i$$

Energia de Gibbs em uma mistura binária ideal:

$$G_{mix} = x_A \mu_A + x_B \mu_B$$

Ou:

$$G_{mix} = x_A G_A^0 + x_B G_B^0 + RT(x_A \ln x_A + x_B \ln x_B)$$

Energia livre de mistura:

$$\Delta G_{mix} = RT(x_A \ln x_A + x_B \ln x_B)$$

Lei de Raoult em misturas:

$$P_{total} = x_A P_A^0 + x_B P_B^0$$

Resumo

Regra da alavanca:

fração líquida =
$$\frac{x-x_s}{x_l-x_s}$$

fração sólida =
$$\frac{x_l - x}{x_l - x_s}$$

Diminuição da pressão de vapor em misturas binárias com soluto não-volátil:

$$\Delta P = x_B \cdot P_A^0$$

26 de setembro de 2024

Problemas

Problema 1: A pressão de vapor da água pura é de 23,8 torr a 25°C. São dissolvidos 10,0 g de cloreto de sódio em 100,0 g de água pura a 25 °C. Qual o valor do abaixamento da pressão de vapor do solvente, em torr?

Problema 2: Todas as soluções aquosas cujos solutos estão indicados nas alternativas são de mesma concentração em mol/L. A solução que deve apresentar menor temperatura de congelamento é a de:

- A) $C_6H_{12}O_6$
- B) K_2SO_4
- C) NH₄Cl
- D) CuSO₄
- E) CH₃COOH

Problema 3: Uma solução contendo NaCl 0.2 molal e Na₂SO₄ 0.1 molal entrará em ebulição, ao nível do mar, na temperatura de:

Dados: constante ebuloscópica mola
l $(K_e)=0.52~^{\circ}\mathrm{C\cdot molal^{-1}}$

- A) 100,36 °C
- B) 99,64 °C
- C) 100,70 °C
- D) 99,3 °C
- E) 101,50 °C

Problema 4: (ITA) Considere um copo contendo 50 mL de água pura em ebulição, sob pressão ambiente. A temperatura de ebulição da água diminuirá significativamente quando a este copo for(em) acrescentado(s):

A) 50 mL de água pura.

- B) 50 mL de acetona.
- C) 1 colher das de chá de isopor picado.
- D) 1 colher das de chá de sal de cozinha.
- E) 4 cubos de água pura em estado sólido.

Problema 5: (ITA) Assinale a única opção que contém a afirmação falsa dentre as seguintes:

- A) Em medidas de pressão osmótica deve ser empregada uma membrana permeável apenas ao solvente.
- B) Em experiências de purificação por diálise costuma ser usada membranas permeáveis a íons e/ou moléculas relativamente pequenas, mas impermeáveis a íons e/ou moléculas muito grandes.
- C) O fenômeno da osmose só é observado para soluções moleculares, não ocorrendo para soluções iônicas.
- D) Numa dada pressão, a temperatura de início de ebulição de uma solução aquosa 0,10 M de CaCl₂ é praticamente igual à de uma solução 0,10 M de Na₂SO₄.
- E) Se duas soluções aquosas, no resfriamento, têm a mesma temperatura de início de solidificação, elas serão muito provavelmente isotônicas.

Problema 6: (IME) A pressão osmótica de uma solução de poliisobutileno sintético em benzeno foi determinada a 25 °C. Uma amostra contendo 0,20 g de soluto por 100 cm³ de solução subiu até uma altura de 2,4 mm quando foi atingido o equilíbrio osmótico. A massa específica da solução no equilíbrio é 0,88 g/cm³. Determine a massa molecular do poliisobuteno.

Dados:

- Aceleração da gravidade = 9.8 m/s^2
- $1 \text{ N/m}^2 = 9.869 \times 10^{-6} \text{ atm}$
- Constante Universal dos Gases $R = 0.082 \text{ (atm} \cdot \text{L)/(mol} \cdot \text{K)}$

Gabarito

Problema 1: 1,4 torr

Problema 2: B

Problema 3: A

Problema 4: B

Problema 5: C

Problema 6: $2.4 \times 10^5 \text{ g/mol}$