Análisis Matemático II - Cuestionario del Final del 10/12/20

P1

```
Sea h(x,y) = f(x^2 + y, v(x,y)) con v(x,y) definida implícitamente por la ecuación v^2 \ln(v-1) + x y^2 = 1, sabiendo que f \in C^1(\mathbb{R}^2), \nabla f(2,2) = (2,4) y f(2,2) = 5, la fórmula de aproximación lineal de los valores de h en un entorno de (1,1) es:

Seleccione una:

o a. h(x,y) \cong 5+3 (x-1)

o b. h(x,y) \cong 5+6 (x-1)+3 (y-1)

o c. h(x,y) \cong 2 x+2 y+1

o d. h(x,y) \cong 5+(x-1)+2 (y-1)

o e. Ninguna de las otras es correcta
```

P2

P3

Un cuerpo esférico de radio R=2 tiene, en cada punto, una densidad directamente proporcional al doble de la distancia desde el punto al origen de coordenadas. Entonces, siendo k>0 la constante de proporcionalidad que se utiliza en la expresión de la densidad, la masa del cuerpo resulta igual a:

Seleccione una:

- \bigcirc a. 16 k π
- O b. Ninguna de las otras es correcta
- \bigcirc c. $\frac{64}{3}$ k π
- O d. 24 k π
- \bigcirc e. 32 k π

P4

Sean $\overline{f}(x,y) = (y^2 - 2x, 2xy + e^y)$ definida en \mathbb{R}^2 y la curva C de ecuación $\overline{X} = (1 + \cos(t), t^3 \sin(t))$ con $0 \le t \le \pi$. La circulación de \overline{f} a lo largo de C, en el sentido impuesto por la parametrización dada, resulta igual a: Seleccione una:

O a. Ninguna de las otras es correcta

O b. -3O c. 4O d. 2π O e. 2

Análisis Matemático II – Cuestionario del Final del 10/12/20

P6

```
Considere la superficie abierta \Sigma de ecuación z=x^2+y^2 con z\leq 2 y el campo vectorial \overline{f}=(P,Q,R)\in C^2(\mathbb{R}^3) tal que Q'_\chi(x,y)=8 y P'_{\gamma}(x,y)=5. Entonces, el flujo de \mathrm{Fot}(\overline{f}) a través de \Sigma orientada hacia Z^+ resulta igual a:

Seleccione una:

O a. Ninguna de las otras es correcta

O b. 3\pi

O c. 6\pi

O d. -6\pi

O e. -3\pi
```

P7

Considere la superficie abierta Σ de ecuación $z=x^2+y^2$ con $z\leq 2$ y el campo vectorial $\overline{f}=(P,Q,R)\in C^2(\mathbb{R}^3)$ tal que $Q'_X(x,y)=8$ y $P'_Y(x,y)=5$. Entonces, el flujo de $\mathrm{FOT}(\overline{f})$ a través de Σ orientada hacia z^+ resulta igual a: Seleccione una:

O a. 6π O b. -3π O c. Ninguna de las otras es correcta

O d. -6π O e. 3π

P8

Un cuerpo esférico de radio R=2 tiene, en cada punto, una densidad directamente proporcional al doble de la distancia desde el punto al origen de coordenadas. Entonces, siendo k>0 la constante de proporcionalidad que se utiliza en la expresión de la densidad, la masa del cuerpo resulta igual a:

Seleccione una

Defections units	
O a.	$\frac{64}{3}$ k π
О ъ.	32 k π
○ c.	16 <i>k</i> π
\bigcirc d. Ninguna de las otras es correcta	
○ e.	24 k π

Análisis Matemático II – Cuestionario del Final del 10/12/20

P9

Sea
$$h(x,y) = f(x^2 + y, v(x,y))$$
 con $v(x,y)$ definida implícitamente por la ecuación $v^2 \ln(v-1) + x y^2 = 1$, sabiendo que $f \in C^1(\mathbb{R}^2)$, $\nabla f(2,2) = (2,4)$ y $f(2,2) = 5$, la fórmula de aproximación lineal de los valores de h en un entorno de $(1,1)$ es:

Seleccione una:

O a. $h(x,y) \cong 5 + 6(x-1) + 3(y-1)$
O b. $h(x,y) \cong 5 + (x-1) + 2(y-1)$
O c. $h(x,y) \cong 5 + 3(x-1)$
O d. Ninguna de las otras es correcta
O e. $h(x,y) \cong 2x + 2y + 1$

P10

O e. Ninguna de las otras es correcta

Sea
$$f(x,y) = \frac{e^{x^2+y^2}-x^2-y^2-1}{(x^2+y^2)^2}$$
 si $(x,y) \neq (0,0)$.

Analizando si se puede definir $f(0,0)$ de manera que la función resulte continua en el origen, se concluye que:

Seleccione una:

O a. Se puede, definiendo $f(0,0) = 1/2$

O b. Se puede, definiendo $f(0,0) = 1/8$

O c. Se puede, definiendo $f(0,0) = 0$

O d. No es posible