

Physical Experiment I

Experimental Title

Measurement of Resistant by Ammeter Voltmeter Method

Your Chinese Name 郑长刚 (Your UESTC Number 2017200302027)

Instructor: Yuanjun Guo

Teaching Assistant: Yichao Chen

Date Performed: 20th may

Overall

Score

Abstract (About 100 words, 10 points)

This experiment is for measuring of the resistance and the main point of this experiment is to know the difference of the result when the circuit is inter-connected or exter-connected. Actually, this is the second time we did this experiment but what we did is very different from what we had done at high school. The most difference is in data processing procedure. The error in measuring of resistance by the V-A method is analyzed when the circuit is inter-connected or exter-connected. Then, we filled these data in the form and got the relative error of the answer.

Score

Calculations and Results (Calculations, data tables and figures;

Use about 100 words to describe your results, 20 points)

(1) Show one sample calculation of the instrument error by using the data in Data Table 3.1-1

 $\Delta Instru. = 0.5$ of the smallest division=0.016*0.5=0.008(V)-----(range 1.5V voltmeter)

(2) Use the last set of data in Data Table 3.1-2 to show the sample calculation of the approximate resistance and the corrected resistance.

We use the following method to get the approximate.

$$R_{11} = 299(\Omega)$$

$$R_{x1} = \frac{V}{I} = 45.8(\Omega)$$
-----(the sample of the first measurement)

$$R_{x2} = \frac{V}{I} = 45.5(\Omega)$$
-----(the sample of the second measurement)

$$R_{x3} = \frac{V}{I} = 45.1(\Omega)$$
-----(the sample of the third measurement)

$$R_{average} = (R_{x1} + R_{x2} + R_{x3}) \div 3 = 45.5(\Omega)$$

We use the following method to get the correct.

$$R_{v} = 299(\Omega)$$

$$R_{x1}^{'} = \frac{V}{I - \frac{V}{R_{V}}} = 54.1(\Omega) - \dots - \text{(the sample of the first measurement)}$$

$$R_{x2}^{'} = \frac{V}{I - \frac{V}{R_{V}}} = 53.7(\Omega) - \dots - \text{(the sample of the second measurement)}$$

$$R_{x3}^{'} = \frac{V}{I - \frac{V}{R_{V}}} = 53.1(\Omega) - \dots - \text{(the sample of the third measurement)}$$

$$R_{average'} = \left(R_{x1}^{'} + R_{x2}^{'} + R_{x3}^{'}\right) \div 3 = 53.7(\Omega)$$

(3) Follow the steps below to find the uncertainty of the first set of measurement in Data Table 3.1-2.

a.
$$R_{x1} = \frac{V}{I} = 45.5\Omega$$

b.

$$\mu_{A-I} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (I_i - \bar{I})^2} = 0.00312(A)$$

$$\mu_{\Delta_{\text{Instru.-I}}} = \frac{\Delta_{\text{Instru.-I}}}{\sqrt{3}} = 0.000115(A)$$

$$\mu_{\Delta_{\text{Read.}}-I} = \frac{\Delta_{\text{Read.-I}}}{\sqrt{3}} = 0.0000231(A)$$

$$\mu_{B-I} = \sqrt{\mu_{\Delta_{\text{Instru.-I}}}^2 + \mu_{\Delta_{\text{Read.-I}}}^2} = 0.000117(A)$$

$$\sigma_I = \sqrt{\mu_{B-I}^2 + \mu_{A-I}^2} = 0.00312(A)$$

$$\mu_{A-V} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (V_i - \bar{V})^2} = 0.140(V)$$

$$\mu_{\Delta_{\text{Read.}}-V} = \frac{\Delta_{\text{Read.-V}}}{\sqrt{3}} = 0.00115(V)$$

$$\mu_{\Delta_{\text{Instru.}}-V} = \frac{\Delta_{\text{Instru.}-V}}{\sqrt{3}} = 0.00462(V)$$

$$\sigma_V = \sqrt{\mu_{A-V}^2 + \mu_{A-V}^2} = 0.00476(V)$$

$$\frac{\sigma_{R_{x1}}}{|R_{x1}|} = \sqrt{(\frac{\sigma_V}{V})^2 + (\frac{\sigma_I}{I})^2} = 0.0123$$

$$\sigma_{R_{x1}} = |R_{x1}| \times \frac{\sigma_{R_{x1}}}{|R_{x1}|} = 0.559(\Omega)$$

Score

Answers to Questions (10 points)

(1) After computing Data Table 3.12 and 3.13, what conclusion can you draw.

If we use the ammeter inside method to measure a small resistance, the error would be bigger than that of using ammeter outside method.

(2) After computing Data Table 3.14 and 3.15, what conclusion can you draw.

If we use the ammeter outside method to measure a huge resistance, the error would be much bigger than that of using ammeter inside method.

(3) If in general R were calculated as R=V/I, which circuit arrangement in Fig 3.1-2 and Fig 3.1-3 would have the smallest

error? Explain.

It depends, If R is a resistance with huge resistance, we should use the ammeter inside method (Fig 3.1-3), as the resistance of ammeter is small and influence little to the final R, which can be ignored directly. If R is a normal resistance, we should use the ammeter outside method (Fig 3.1-2), as the resistance of ammeter is close to R and influence a lot to the final R, which can not be ignored directly.

(4) In the conclusion section, you use the equation R=V/I and the, measurements to compute the magnitude of the resistance and its uncertainty. Does the accepted resistance lie in the range determined by the magnitude of the resistance and its uncertainty? Why?

Because the experiment results follow normal distribution, and the method we use ensures that the answer will in that range by a 95.4 percent $(\bar{x} + n\sigma)$.

If we use the right method to measure the resistance, the answer would normally in that range.

(5) An ideal ammeter would have zero resistance, and an ideal voltmeter would have an infinite resistance. Explain why we would desire these ideal cases when using the meters.

We won't think about method errors caused by measuring instruments when measure resistance during daily life, and we always ignore method errors actually. So, we wish the inside resistance of an ammeter as small as possible and the inside resistance of a voltmeter as big as possible, so that the measuring result will be closest to the true value.

(6) Why can a diode be applied as the core component of a manostat?

Diode is used as a kind of voltage regulator, it makes use of PN junction breakdown area, which makes it has the characteristics of stable for the voltage. The diode has the characteristic which is even if it is breakdown, the voltage at the two ends still remain unchanged. So, when the voltage regulator tube access circuit, due to the power supply voltage fluctuations, or other causes circuit fluctuates, the voltage changes between two ends will remain unchanged. When the diode reverse breakdown, although the current changes in a large scale, the voltage variation would be small between both ends. So it can be used as voltage regulator.

Appendix

(Scanned data sheets)

	3. EXPERIMENTS	
3.1.5 Experim	nental Data	
calculations of uncertain	To compute the instrument error and ty and to learn to read the voltmeter	d reading error for further
Apparatus	Voltmeter	
Accuracy class	0.5%	Ammeter O T *V
Range (unit)	1.50 31/70	1500
Resistance (unit)	2880 1980 1487	0 2.10 2.70
Instrument Error (unit)	0,008 / 0,02 / 0,04	VOO8 0 2 0 2 0 A
Reading Error (unit)	0.0021 0.01	V 0.02 mg 0.04 mg
	0.0047	(Don't forget UNITS)
	use ammeter outside method to meas	- 0//-
Accepted value R	3 000	2 Pril
Rheostat Range Instru	nA Voltage, V/V	$R_{xt} = V / I \qquad R'_{xt} = \frac{V}{I - \frac{V}{R_{xx}}}$
setting 30 0	2 2001 5 0.008	ν /Ω
1 7.7	mA 0.0630 0.330	V 45.8 54.13
2 6 13	2 m/ 0-000 0.601	45.5 (3.1)
3 /8,0	2-7-16	verage 45 53.65
12.8		- 121
2:3000	3136	interned with a small value
	use ammeter inside method to measure the value $R_{\rm rl}$ 1/12 Ammeter resistant	nce R= 3.70
		A delt distribute
Rheostat Current, I/m		$R_{x1} = V / I \qquad R'_{x1} = \frac{V}{I} - R_a$
setting	ment error Range Instrument e	124 /24
7 7 7	mA 1.54 0.00	V 51.6 51.94
	nd 0.400	V ITI (1.86
	ma oill	1 15.4 51.73
3 13.01		verage 15 51.82
>1% ~ 21	the state of the s	000 101
41% ~ 112		^
Your name and student r	number: Instru	uctor's initial: Guz

			Introductory F	hysics l	Experin	nents fo	r Under	graduate	es	/	
	Data Ta	ble 3.1-4 P	urpose: To use a	mmeter	outside	-thod	to meas	re resista	ince with	na larg	
		I days	Accepted value	Kx2:[]	(4)2/61 7	Voltage, l	The second	1043	V/1	1	
	Rheostat		Current, I/mA		1		ment error		Ω	"no	
	setting	Range	Instrument er	ror	7.5	0,	14	,		10	
	-	15	0.08	-	100	10		62:	22/	261	
	2	1	1,0		260			620	620 5 106		
	3	47	1,		4.18			623	0	106	
	A. said the	101	1				Averag	e 621	1.9/	064	
						Re	lative erro	1-3	20	6.4	
									12750 000	1	
	Data Table	3.1-5 Purp	ose: To use amr	neter ins	ide met	hod to	neasure	resistanc	e with a	large	
			Accepted value	Rx2 / K	2 Am	meter res	stance R _a	= 2-1	12	80	
		Curr	ent, I/mA		Volta	ge, V/V		Con-Linearia	1 2 2 5		
Rheostat		Range	Instrument error	Range Instrument error			error	$R_{x2}=V/I$	R	$v_1 = \frac{V}{I} - 1$	
setting	.2	oof	152						/Ω		
	1	1.41	2	1	1.84 4				1	-	
	2	2.24	Maria I		134 N				1	03:	
	3	110			17	-	-	102/	1	025	
		73/		75	4.1			1635	1	033	
						A	rerage	632		100	
						Relative	error	3,2%	1	200	
NO	TF. The C						_	2000	1	3,00	
140	LL. The fo	llowing m	neasurement	s are c	ption	al.					
	Data	Table 3.1-6	D			or ar ba					
MV	Tart	1	Purpose: To	measur	e the n	ormal	resistar	ce of a	2: . 1		
1	0.000	0.100 0.20	00 0.300	0.400				T	node		
				0.400		TOTAL SALE	Contract.				
[//mA	-			19.2	5.0	10.0	5, 33	-		1000	
1/mA		LI .		21		10.0	15.0	20.0	25.0	30.0	
[VmA]	Data Ta							-			
	Data Ta	Die 3.1-7	Purpose: To n	leasuro	4L .						
	Data Ta	0 200	Purpose: To n	leasure	the re	verse r	esistano	e of a di	ode		
INV .	Data Ta	0 2.00	Purpose: To m 2.50 3.00	leasure	the re-	verse r	esistano	e of a di	iode		
	Data Ta	0 2.00	2.50 3.00	leasure	the re-	verse r	esistano	ce of a di	iode		
V/V //mA				s.o	+			ce of a di	iode		
V/V //mA				+	+		esistano	ce of a di	25.0	30.0	
V/V /				+	+					30.0	
V/V /		0 2.00 dent num		+	10	1.0	15.0	20.0		30.0	
V/V //mA			ber:	+	10	1.0		20.0		30.0	