Weak Memory Concurrency-I

Soham Chakraborty

25.02.2022

Memory Consistency

Defines the possible result/outcome of a program

Defines the ordering of execution of shared memory accesses

Captures the effect of out-of-order executions and the effects of caches in a processor

Different consistency models:

- Sequential consistency (SC)
- Total-store-order (TSO)
- Partial store order (PSO)
- Relaxed memory order (RMO)

Sequential Consistency

"... the result of any execution is the same as if the operations of all the processors were executed in some sequential order, and the operations of each individual processor appear in this sequence in the order specified by its program."

Leslie Lamport,
"How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs",
IEEE Trans. Comput. C-28,9 (Sept. 1979), 690-691.

How does concurrent programs execute?

"...the result of any execution is the same as if the operations of all the processors were executed in some sequential order, and the operations of each individual processor appear in this sequence in the order specified by its program." ~ Leslie Lamport

Sequential consistency (SC) ==> Interleaving Execution

Representative Example: Store Buffer (SB)

$$X=Y=0$$

$$X = 1;$$
 $Y = 1;$ $b = X;$

$$X=Y=0$$

S2:
$$a = Y$$
; $S4: b = X$;

$$X=Y=0$$

$$X=Y=0$$

$$X=Y=0$$

$$X = 1;$$
 $Y = 1;$ $b = X;$

Let's execute the program...

$$X=Y=0$$

$$X = 1;$$
 $Y = 1;$ $b = X;$

$$X=Y=0$$
 $X = 1;$
 $A = 1$

Cannot be explained by thread interleaving.

Relaxed memory model/consistency/concurrency

Relaxed Memory Concurrency

Traditionally: Concurrency = thread interleaving

Reality: more behaviors than thread interleaving

Relaxed Memory Concurrency

Traditionally: Concurrency = thread interleaving

Reality: more behaviors than thread interleaving

Reasons:

Compiler: reorder instructions

Hardware:

- Out of order execution
- Data movement/communication is not instantaneous

Order relaxation

No order for Store – Load

$$X=Y=0$$
 $X = 1;$
 $A = 1$

Memory Models in Processors

Sequential Consistency (SC)

Initially
$$X = Y = 0$$
;
 $X = 1$; $Y = 1$;
 $A = Y$; $A = X$;

$$a = 1, b = 1, X = 1, Y = 1$$

 $a = 0, b = 1, X = 1, Y = 1$
 $a = 1, b = 0, X = 1, Y = 1$
 $a = 0, b = 0, X = 1, Y = 1$
 $A = 0, b = 0, X = 1, Y = 1$

Effect of Caches

Sequential Consistency (SC)
Relaxed Memory Consistency

Initially
$$X = Y = 0$$
;
 $X = 1$; $Y = 1$;
 $A = Y$; $A = X$;

X86 Architecture

X86 Architecture

X86 Architecture

X86 Architecture

X86 Architecture

```
Initially X = Y = 0;

X = 1; Y = 1;

A = Y; A = X;
```

$$a = 1, b = 1, X = 1, Y = 1$$
 $a = 0, b = 1, X = 1, Y = 1$
 $a = 1, b = 0, X = 1, Y = 1$
 $a = 0, b = 0, X = 1, Y = 1$

X86 Architecture

Total Store Order (TSO)

Relaxation for Store - Load

a;b	Store	Load
Store	N	Y
Load	N	N

Behavior = transformations+interleaving

$$X=Y=0$$

Is a=1, b=0 possible an allowed behavior?

• SC? S3;S4;S1;S2 \rightarrow a=0, b= ... • TSO? S1;S2;S3;S4;S5 \rightarrow a=1, b=1

• • •

$$X=Y=0$$

Is a=1, b=0 possible an allowed behavior?

• SC?

TSO has same behaviors as SC model

TSO ?

$$X=Y=0$$

 $X = 1;$ $a = Y;$
 $Y = 1;$ $if(a == 1)$
 $b = X;$

Is a=1, b=0 possible an allowed behavior?

- SC **X**
- TSO X

Program: Message Passing (MP)

$$X=Y=0$$
 $X=Y=0$ $Y=1;$ $a=Y;$ $A=Y=0$ $A=Y=1;$ $A=Y=0$ $A=Y=1;$ $A=Y=1$ $A=Y=$

Requires Store-Store relaxation

Program: Message Passing (MP)

$$X=Y=0$$
 $X=Y=0$ $Y=1;$ $a=Y;$ $A=Y=0$ $A=Y=1;$ $A=Y=0$ $A=Y=1;$ $A=Y=1$ $A=Y=$

PSO model allows Store-Store relaxation

Partial Store Order (PSO)

Relaxation for Store – Store, Store - Load

a;b	Store	Load
Store	Y	Y
Load	N	N

$$X=Y=0$$

 $X = 1;$ $a = Y;$
 $Y = 1;$ $if(a == 1)$
 $b = X;$

Is a=1, b=0 possible an allowed behavior?

- SC *no*
- TSO *no*
- PSO yes

Yet Another Program: Load Buffering (LB)

Is a=1, b=1 possible an allowed behavior?

```
    SC? X a=1, b=0 → S3;S4
    TSO? X a=0,b=0 → S1;S3; ...
    PSO? X a=0, b=1 →
```

Program: Message Passing (MP)

$$X=Y=0$$
 $X=Y=0$ $Y=1;$ $Y=1;$ $X=1;$ $X=1;$

Requires Load-Store relaxation

Relaxed Memory Order (RMO)

Relaxation for Store – Store

a;b	Store	Load
Store	Y	Y
Load	Y	Y

Summary

ACC. Pair Relaxation	Store-Load	Store-Store	Load-Load	Load-Store
Memory Model				
SC	N	N	N	N
TSO	Y	N	N	N
PSO	Y	Y	N	N
RMO	Y	Y	Y	Y

Question

 Can we explain all relaxed memory models by transformation and interleaving?

Other Primitives & Properties

- Dependencies
- Fences
- Atomic accesses
- Coherence
- Multicopy-atomicity

References

Chapter 5.6 (Memory consistency Models)

 Computer Architecture, Sixth Edition A Quantitative Approach by John L. Hennessy, David A. Patterson