This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

(12) UK Patent Application (19) GB (11) 2 079 046 A

- (21) Application No 8119142
- (22) Date of filing 22 Jun 1981
- (30) Priority data
- (31) 8003697
- (32) 26 Jun 1980
- (33) Netherlands (NL)
- (43) Application published 13 Jan 1982
- (51) INT CL3 H01J 61/06
- (52) Domestic classification H1D 35 5M1A 5M1BY 5M1Y 5MY
- (56) Documents cited None
- (58) Field of search H1D
- (71) Applicant
 NV Philips
 Gloeilampenfabriken
 Pieter Zeemanstraat 6
 NL-5621 CT
 Eindhoven
 The Netherlands
- (72) Inventor Gerhard Heinrich

Friedrich De Vries

- (74) Agents
 R J Boxall
 Mullard House
 Torrington Place
 London WC1E 7HD
- (54) Method of manufacturing an electric discharge device
- (57) In a method of manufacturing an electric discharge device comprising a pattern of electrodes bonded to a glass substrate 2 a metal foil 1 is placed on a glass substrate 2, and this assembly is heated to a temperature T₁ which is below the melting-point of the metal of the foil 1 and at which the viscosity of the glass of the substrate 2 is in the range from 10⁷ to 10³, the foil 1 is pressed uniformly against the substrate 2 at the temperature T₁ for a time which is

sufficient to produce uniform contact between the foil 1 and the substrate 2, the foil 1 is then bonded to the substrate 2 by an anodic bonding process, and the desired electrode pattern is produced by locally removing metal from the foil 1.

ERRATA

SPECIFICATION NO 2079046A

Front page, heading (71) Applicant for Gloeilampenfabriken read Gloeilampenfabrieken

Page 1, line 85, for 10'3 read 10"

Page 5, line 47, for 1, read 11

THE PATENT OFFICE 22 September 1983

(12) UK Patent Application (15) GB (11) 2079046 A

- (21) Application No 8119142
- (22) Date of filing 22 Jun 1981
- (30) Priority data
- (31) 8003697
- (32) 26 Jun 1980
- (33) Netherlands (NL)
- (43) Application published 13 Jan 1982
- (51) INT CL3 H01J 61/06
- (52) Domestic classification H1D 35 5M1A 5M1BY 5M1Y 5MY
- (56) Documents cited None
- (58) Field of search
 H1D
- (71) Applicant
 NV Philips
 Gloeilampenfabriken
 Pieter Zeemanstraat 6
 NL-5621 CT
 Eindhoven
 The Netherlands
- (72) Inventor Gerhard Heinrich

Friedrich De Vries

- (74) Agents
 R J Boxall
 Mullard House
 Torrington Place
 London 'MC1E 7H:D
- (54) Method of manufacturing an electric discharge device

(57) In a method of manufacturing an electric discharge device comprising a pattern of electrodes bonded to a glass substrate 2 a metal foil 1 is placed on a glass substrate 2, and this assembly is heated to a temperature T, which is below the melting-point of the metal of the foil 1 and at which the viscosity of the glass of the substrate 2 is in the range from 10° to 10°, the foil 1 is pressed uniformly against the substrate 2 at the temperature T, for a time which is

sufficient to produce uniform contact between the foil 1 and the substrate 2, the foil 1 is then bonded to the substrate 2 by an anodic bonding process, and the desired electrode pattern is produced by locally removing metal from the foil 1.

FIG.2

1/2

FIG.1

FIG.2

FIG.3

FIG.5

FIG.7

SPECIFICATION

Method of manufacturing an electric discharge device

The invention relates to a method of manufacturing an electric discharge device having a pattern of electrodes provided on a glass substrate and the electrodes of which are 10 bonded to a surface of the glass substrate by means of an anodic bonding process and to an electric discharge device manufactured by such a method.

In the manufacture of an electric discharge device, it is often necessary to provide patterns of electrodes on a glass substrate. For that purpose, according to a generally known method, a metal layer is vapour-deposited or sputtered onto the surface of the substrate and the desired pattern of electrodes is obtained by locally removing parts of the metal layer. According to this method, only thin metal layers not more than a few microns thick can be provided. For providing thicker layers having a thickness of a few tens of microns, this method is very time-consuming

while the adhesion of the metal layer to the substrate for these thick layers is insufficient for many applications. When, for example in 30 gas discharge display devices, the electrodes must be capable of passing some current and the electric resistance of the electrodes must be low, such a method is hardly suitable.

Therefore, there is a need for a method with 35 which patterns of comparatively thick electrodes can be provided on a glass substrate and which adhere adequately to the substrate.

United States Patent Specification
4,083,710 discloses a method of providing a
40 pattern of electrodes in the form of parallel
strip-shaped conductors on a glass substrate.
A die having a relief pattern consisting of
parallel ridges is taken, and the strip-shaped
conductors are temporarily provided on said

45 ridges by means of an adhesive and are then transferred to the glass substrate. This transfer is effected by pressing the die with the conductors against the surface of the substrate and bonding the conductors to the surface of the substrate by means of a pressure bonding

the substrate by means of a pressure bonding process. In this manner a pattern of electrodes corresponding to the relief of the die is formed on the substrate.

The accuracy in the mutual positioning of the conductors on the substrate depends on the accuracy with which the conductors can be provided on the die in registration with the pattern of ridges. Providing the strip-shaped conductors on the die in registration with the

60 ridges is effected by means of a roller having grooves in which the strip-shaped conductors are guided. The distance between the grooves determines the distance between the conductors. The size accuracy of the pattern of

65 electrodes is hence restricted by the size accu-

racy of the tools used. Furthermore, this method is restricted to the provision of strip-shaped patterns of electrodes.

It is an object of the invention to provide a 70 method of manufacturing an electric discharge device having a pattern of electrodes provided on a glass substrate in which the pattern of electrodes adheres satisfactorily to the substrate, has a good size accuracy and may have

75 any shape and desired thickness.

For that purpose, according to the invention, a method of the kind mentioned in the opening paragraph is characterized in that a metal foil is provided on the surface of the 80 substrate to be provided with the pattern of electrodes, the assembly of metal foil and substrate is heated to a temperature T, which is lower than the melting-point of the metal of the foil and at which the viscosity of the glass 85 of the substrate has a value in the range from 107 to 1013 Pas., the metal foil at the temperature T1 is uniformly pressed against the substrate surface for a time which is sufficient to obtain a uniform contact between, the metal 90 foil and the substrate, the metal foil is bonded to the substrate by means of an anodic bonding process, and the desired pattern of electrodes is then formed by the local removal of

the metal foil.

By covering the surface of the substrate to be provided with a pattern of electrodes with a metal foil, then bonding the foil to the substrate, and finally forming the desired pat-

tern of electrodes from the foil, a number of 100 important advantages are obtained. The method is fast and is extremely suitable for mass production. Metal foils of any thickness desired for the field of application of the invention may be used. Any desired pattern of

105 electrodes can be obtained from the metal foil bonded to the substrate, for example, by means of photoetching methods, with the great accuracy associated with these methods. For the successful application of the invention,

110 however, it is necessary that a uniform surface contact should be produced between th metal foil and the substrate for at least that part of the foil from which the pattern of electrodes is to be formed afterwards. Uniform

115 contact is to be understood to mean herein a tight surface contact without gas inclusions between the metal foil and the substrate.

According to the invention, this requirement is met by laying the metal foil on the substrate

120 surface, heating the assembly to a temperature T₁ which is lower than the melting-point of the metal of the foil, and at which temperature T₁ the viscosity of the glass of the substrate is in the range 10⁷ to 10¹³ Pas., and

then pressing the metal foil uniformly against the substrate surface. In the indicated viscosity range, the glass can be deformed, so that a uniform contact is produced between the foil and the substrate when a uniform pressible in the substrate when the substrat

130 sure is exerted on the foil. The time which is

necessary to produce a uniform contact between the metal foil and the glass depends on the value of the pressure, and the surface state of the metal foil and the glass substrate, and the extent of deformability of the glass. According to an embodiment of the invention, a pressure is used in the range from 3 x 105 to 8×10^5 N/m² and is maintained for a period of from 5 minutes to 60 minutes. 10 According to a preferred embodiment of the invention, upon pressing the foil and substrate against each other, first the foil is pressed against the substrate over a restricted surface area, after which the pressure is gradually 15 expanded over a region expending towards the edges of the foil. This can be realized, for example, by means of a diaphragm which presses against the foil and of which a larger and larger area is contacted with the foil by 20 increasing the pressure on the diaphragm.

After having produced a uniform contact between foil and the substrate, the foil is bonded to the substrate by means of anodic bonding. This method comprises applying an electric potential difference over the parts to be bonded at a temperature T₂, in which the surfaces to be bonded are kept in close contact with each other. The temperature T₂ is chosen to be so high that the part to be bonded of insulating material becomes slightly electrically conductive. During the bonding of the surfaces, these surfaces are kept in close contact with each other as a result of the electric potential difference by electrostatic forces, if desired supplemented by mechanical pressure.

Such a bonding method is disclosed inter alia in United States Patent Specification 3,397,278 and United States Patent Specification 3,589,965. Reference is made to these Patent Specifications for further details regarding this bonding method.

According to another embodiment of the invention the metal foil consists of an aluminium foil. This metal is very ductile which is favourable in order to obtain a uniform surface contact when the foil and the substrate are presed against each other. Foils having a thickness of up to 300 µm can be provided on the surface of a glass substrate in the manner according to the invention in a satisfactorily adherent and bubble-free manner.

According to a further embodiment of the invention, an aluminium foil is used in combination with a soft-glass substrate, in particular a soda lime glass. At a temperature T₁ in thrange from 550 to 600°C, the aluminium foil is pressed against the soft-glass substrate at a pressure of approximately 5 × 10⁵ N/m² for approximately 30 minutes, which results in a uniform contact between aluminium foil and substrate. At a temperature T² in the rang from 230 to 280°C, an electric voltage is then applied across the glass substrate and the aluminium foil for at least 3 minutes,

which electric voltage results in a current of 0.2 to 0.7 A/m² flowing through the glass substrate, this treatment producing a strong bond between the aluminium foil and the 70 substrate.

The invention is of particular importance for the manufacture of flat display panels, for example, gas discharge display panels, the envelope of which comprises at least one 75 glass plate on which a pattern of electrodes has been provided. Such patterns of electrodes should be constructed from electrodes which are accurately defined as regards mutual position and dimensions. The use of 80 aluminium foils has several advantages, because aluminium is a metal which can easily be worked. A pattern of aluminium electrodes

provided on the glass plate according to the invention can be provided with an electrically 85 insulating oxide film locally or entirely by means of anodic oxidiation. By photographically locally providing an anodic oxide film on the electrodes, accurately defined electrode areas not provided with insulation (oxide film)

90 can be obtained, which is important for d.c.-operated display panels having a large resolving power. By providing the whole pattern of electrodes with an anodic oxide film, a display panel can be obtained which can be a.c.-95 operated.

The envelope of a gas discharge display panel may comprise a second glass plate which is also provided with a pattern of electrodes consisting of aluminium foil and 100 the patterns of electrodes on the first and second glass plates are each provided with an electrically insulating oxide film.

The invention also provides a solution to problems occurring in the vacuum-tight seal105 ing together of the glass plates in display panels. Special measures, for example, in the form of silver lead-through strips, had often to be taken to seal the panel in a vacuum-tight manner at the area where the electrodes are 110 led through. It has been found that such

110 led through. It has been found that such measures are not necessary in display panels manufactured according to the invention. The bonding of the electrodes to the glass substrate is vacuum-tight and the sealing glass,

115 usually in the form of a "glass frit" also produces a vacuum-tight connection between the glass plates of the panel at the area where the electrodes are led through the panel.

In a gas discharge display panel comprising 120 two glass plates which each bear a pattern of electrodes, one of the glass plates is bonded along a closed circuit by means of a sealing glass to the other glass plate, and the pattern of electrodes has extensions formed integrally

125 therewith, which extensions cross the circuit of sealing glass, and at the area of such a crossing on the one hand adhere directly to the glass plat, and on the other hand adhere directly to the sealing glass, so as to form a

130 vacuum-tight electric lead-through for an elec-

5

trode of the pattern of electrodes.

Embodiments of the invention will now be described with reference to the drawings, in

Figures 1, 2 and 3 illustrate three stages of an embodiment of the method according to the invention,

Figure 4 shows diagrammatically a device for producing a uniform surface contact be-10 tween a metal foil and a flat glass substrate,

Figure 5 shows part of an elementary form of a gas discharge display panel provided with a pattern of electrodes manufactured by a method according to the invention.

Figure 6 is a plan view of another embodi-15 ment of a gas discharge display panel manufactured by a method according to the invention, and

Figure 7 is a sectional view taken on the 20 line VII-VII of the gas discharge display panel

shown in Figure 6.

Figure 1 illustrates the provision of an aluminium foil 1 which is approximately 100 µm thick on a glass plate 2. The glass plate 2 25 consists of a soda lime glass consisting essentially of 69.5 wt.% SiO₂, 10 wt.% Na₂O, 7.5 wt.% K2O, 10 wt.% CaO and 3 wt.% BaO. As shown in Figure 2, the assembly consisting of the glass plate 2 and the aluminium foil 1 30 are laid on a stainless steel base plate 3, and this structure is then heated in a furnace to a temperature T, in the range from 550-600°C. At this temperature the soda lime glass has a viscosity of approximately 35 1010 Pas. After the temperature T₁ has been reached, the aluminium foil 1 is pressed uniformly against the glass plate 2 at a pressure of approximately 5 × 105 N/m² for approxi-

mately 30 minutes so as to obtain a uniform 40 surface contact between the aluminium foil 1 and the glass plate 2. During the application of this uniform pressure (indicated by the arrow 4), the formation of local gas inclusions between the aluminium foil 1 and the glass

45 plate 2 should be avoided. For that purpose, the aluminium foil 1 is first pressed against the glass plate 2 over a restricted central area, and then the area over which pressure is applied is extended over an area progressing

50 towards the edges of the foil. As is shown diagrammatically in Figure 2 the glass plate 2 and the aluminium foil 1 are bonded together by means of anodic bonding. This bonding process takes place at a temperature T2 of

 55 approximately 250°C and consists in applying an electric potential difference by means of a voltage element V, across the glass plate 2 and the foil 1 which results in an electric current of approximately 0.5 A/m² passing

60 through the glass plate 2 for at least 3 minutes. By means of known photographic methods, any desired pattern of electrodes can now be etch d from the bonded aluminium foil with the great accuracy associated 65 with this technique. In this manner a glass

plate provided with a satisfactorily adherent pattern of electrodes of the desired thickness is obtained. Figure 3 shows such a plate 2 bearing a pattern of electrodes 25 obtained by

70 a photographic etching process.

The device shown in Figure 4 shows that it is possible to simultaneously bond metal foils 1 to a number of glass plates 2, for instance two glass plates 2 and 2a. A steel top plate 6

75 is kept at a predetermined distance from the base plate 3 by means of a number of bolts 7 which engage in threaded bores 5 in the base plate 3. The top plate 6 comprises a central aperture 8 through which a tube 9 extends.

80 The tube 9 is connected at one end to a pincushion-like steel expansion vessel 10 consisting of two metal diaphragms 11 and 12 which are sealed together at the edges in a vacuum-tight manner. The glass plate 2 is

85 placed between two metal foils 1 and 1a. The glass plate 2a is placed between two metal foils 1b and 1c. The plates 2 and 2a are stacked one on top of the other and a chromium-nickel-iron plate 13 is placed between the

90 abutting metal foils 1a and 1b. This chromium-nickel-iron plate 13 being covered on each major surface with a layer of graphite or boron nitride so as to prevent the abutting foils 1a and 1b from adhering together. This

95 structure is disposed between the base plate 3 and the diaphragm 12 of the expansion vessel 10 and subsequently heated to a temperature in the range from 550-600°C. Via the tube 9 the pressure in the expansion vessel 10 is

100 then increased to approximately 4 × 105 N/m² and this pressure is maintained for about 30 minutes. When pressurizing the expansion vessel 10, the contact surface between the diaphragm 12 of the expansion

105 vessel 10 and the foil 1c on the top glass plate 2a will gradually be expanded from the centre towards the edges of the foil 1c. In this manner the formation of gas inclusions (gas bubbles) between the glass plate 2 and the

110 foils 1 and 1a as well as between the class plate 2a and the foils 1b and 1c is avoided. By means of a similar bonding process as described with reference to figure 2 the metal foils 1a and 1c or 1 and 1b are simultane-

115 ously bonded to the glass plates 2 and 2a by applying an electric potential difference across the stacked structure. Dependent on the polarity of the electric voltage the foils 1a and 1c or 1 and 1b will adhere to the respective glass plates 2 and 2a. The non-adhered metal foils

can easily pulled off the glass plates. The method according to the invention is very suitable for use in the manufacture of gas discharge display devices. Figure 5 shows

125 the most elementary form of such a display device. The device in this Figure consists of a glass base plate 20 and a glass top plate 21. According to a method described with reference to Figures 1 to 4, a pattern of electrodes

130 in the form of aluminium strip-shaped elec-

trodes 22 is provided on the base plate 20. The electrodes 22 form the cathodes of the display device. The top plate 21 is provided with a pattern of electrodes 23 in an analogous manner consisting of strip-shaped electrodes 23 which cross the electrodes 22 and constitute the anodes of the display device. The glass plates 20 and 21 are kept at a defined distance from each other by means of 10 spacing members not shown and are sealed together at the edges in a vacuum-tight manner by means of a sealing glass. The space between the plates 20 and 21 is filled with a suitable ionizable gas, for example neon or a 15 mixture of neon and argon. By applying a suitable voltage difference between a cathode 22 and an anode 23, a glow discharge which is visible through the top plate 21 is generated at the area where said anode and cath-20 ode cross each other. By scanning the anodes 23 and the cathodes 22 with a sufficiently high frequency in a predetermined sequence with voltage pulses corresponding to the picture information, a picture built up from dis-25 charge points can be displayed which is observed as an apparently continuous light picture. The here briefly described display panel is d.c.-operated. When the electrodes 22 and 23 consist of aluminium, the panel can be 30 made suitable for a.c.-operation in a simple manner by providing said aluminium electrodes 22 and 23 with an electrically insulating oxide film by means of anodic oxidation.

It is also possible to provide the cathode 22
35 with an anodic oxide film with the exception of small regions at the areas where the cathodes cross an anode. In this manner accurately defined discharge regions are obtained and a discharge panel having a large resolving

40 power can be manufactured.

Figures 6 and 7 show a particular embodiment of a gas discharge display panel having a pattern of electrodes obtained according to the invention. In the manner according to the 45 invention, a pattern of aluminium electrodes, approximately 50 µm thick, consisting of palrallel cathode strips 31 having transverse projections 32 is provided on a glass base plate 30. The cathodes 31 are provided with an 50 approximately 20 μm thick oxide skin by anodic oxidation (shown in Figure 6 by dotted areas), with the exception of small surface elements 33 present in the transverse projections 32. The surface elements 33 not pro-55 vided with an anodic oxide film form the surface parts of the cathodes 31 which are active for a discharge. These surface elements 33 can be obtained by selective photoetching. For that purpose, a layer of photoresist is 60 provided on the aluminium electrode pattern and is exposed via a photomask in such manner that after development only the surface elements 33 to be formed are covered with a layer of photoresist. The pattern of 65 electrodes is then subjected to an anodic

oxidation process, in which, the photoresist-covered surfaces excepted, an oxide film which is approximately 20 µm is obtained. The surface elements 33 are then exposed by 70 removing the resist layer. In order to obtain a discharge, said surface elements 33 co-operate with strip-shaped anodes 35 provided on a top plate 34 (shown in broken lines in Figure 6). In this manner a gas discharge 75 panel having very accurately defined active surface elements situated closely together is obtained. Moreover, each discharge is restricted to a very small cathode area so that a

picture having a very large resolving power is 80 obtained.

Figure 7 is a sectional view taken on the line VII—VII in Figure 6. The base and top plates 30 and 34, respectively, are kept at a defined distance from each other by means of spacing elements 36 and are sealed together in a vacuum-tight manner at the edges by means of a sealing glass 37. The cathodes 31 can be provided with the desired electric voltages at surface parts 38 situated outside 90 the panel and which are not covered by anodically formed oxide.

As shown in Figures 6 and 7, the electrodes 35 and 31 comprise integrally formed extensions 39 and 40, respectively, and the 95 desired electric voltages to said electrodes externally are applied to the electrodes through the respective extension. The invention provides a vacuum-tight seal of said extensions 39 and 40 to the glass plates 34 and 100 30, respectively. Due to said vacuum-tight seal, a vacuum-tight seal of the discharge panel is also obtained at the area of said

extensions by means of the sealing glass 37.

It is furthermore to be noted that in the 105 embodiment shown in Figures 6 and 7, the discharges between an anode 35 and a cathode surface element 33 occur substantially parallel to the panel. Due to the insulating anodic oxide film, the anodes 35 may then

110 rest on the cathodes 31, so that the spacing elements 36 are not essential.

CLAIMS

A method of manufacturing an electric
 discharge device having a pattern of electrodes provided on a glass substrate and the electrodes of which are bonded to a surface of the glass substrate by means of an anodic bonding process, characterized in that a mel-

120 tal foil is provided on the surface of the substrate to be provided with the pattern f electrodes, the assembly of metal foil and substrate is heated to a temperature T₁ which is lower than the melting-point of the metal of

125 the foil and at which the viscosity of the glass of the substrate has a value in the rang from 10⁷ to 10¹³ Pas., the metal foil at the temperature T₁ is uniformly pressed against the substrate surface for a time which is sufficient to

130 obtain a uniform contact between the metal

foil and the substrate, the metal foil is bonded to the substrate by means of an anodic bonding process, and the desired pattern of electrodes is then formed by the local removal of the metal foil.

A method as claimed in Claim 1, characterized in that the metal foil is pressed against the substrate surface at a pressure of from 3 x 10⁵ to 8 x 10⁵ N/m² for a time of 10 from 5 to 60 minutes.

A method as claimed in Claim 1 or Claim 2, characterized in that for producing a uniform contact between metal foil and substrate, the metal foil is first pressed against
 the substrate over a restricted area, and the pressure is expanded over a region expanding towards the edges of the metal foil.

4. A method as claimed in Claim 1, 2 or 3, characterized in that the metal foil consists

20 of aluminium.

A method as claimed in Claim 4, characterized in that the glass substrate consists of a soft glass.

A method as claimed in Claim 5,
 wherein the glass is a soda lime glass.

7. A method of manufacturing an electric discharge device, substantially as herein described with reference to Figure 5 or to Figures 6 and 7.

 8. An electric discharge device manufactured by a method as claimed in any preced-

ing Claim.

9. An electric discharge device as claimed in Claim 8, characterized in that it consists of
35 a gas discharge display panel the envelope of which comprises at least one glass plate which is provided with a pattern of electrodes consisting of aluminium foil.

10. A gas discharge display panel as 40 claimed in Claim 9, characterized in that the envelope comprises a second glass plate which is also provided with a pattern of electrodes consisting of aluminium foil and the patterns of electrodes on the first and 45 second glass plates are each provided with an electrically insulating oxide film.

A gas discharge display panel as claimed in Claim 9, characterized in that, small surface elements excepted, the pattern of electrodes is covered with an electrically insulating oxide film, which surface elements constitute surface parts of the pattern of electrical

trodes active for a discharge.

12. A gas discharge display panel as
55 claimed in Claim 10, or Claim 11, characterized in that the first glass plate comprising the
pattern of electrodes is bonded along a closed
circuit by means of a sealing also to a second
glass plate, and the pattern of electrod s has
60 extensions formed integrally therewith, which
extensions cross the circuit of sealing glass
and at the area of such a crossing on the one
hand adhere directly to the glass plat on the
other hand adhere directly to the sealing glass
so as to form a vacuum-tight electric lead-

through for an electrode of the pattern of electrodes.

Printed for Her Majesty's Stationery Office by Burgess & Son (Abingdon) Ltd.—1982. Published at The Patent Office. 25 Southampton Buildings. London, WC2A 1AY, from which copies may be obtained.

THIS PAGE BLANK (USPTO)