1.2 - SI- und IEC-Präfixe

Datum:

Martin-Segitz-Schule ITT 10

Maßeinheiten und Einheitenvorsätze in der Informatik

In der Informatik ist **1** Bit (b) die kleinste Informationseinheit. Da 1 Bit nur zwei unterschiedliche Zustände annehmen kann, wird es durch die Werte 1 (true, high) und 0 (false, low) beschrieben. Dabei spricht man auch von einem gesetzten (1) oder nicht-gesetzen Bit (0).

8 Bit werden zu **1 Byte (B)** zusammengefasst. Vom Arbeitsspeicher bis zur Festplatte und SSD wird deren Speicherkapazität in **Byte** angegeben. Da gerade bei solchen Massenspeichern die Anzahl an Byte sehr groß werden können, werden Sie durch die bekannten SI-Präfixe abgebildet.

Die SI-Präfixe ermöglichen es, große (und kleine) Werte leicht lesbar darzustellen.

Präfixe des **S**ystème **I**nternationale d'Unités:

<u> </u>			
Tera	Т	10^12	1.000.000.000.000
Giga	G	10^9	1.000.000.000
Mega	M	10^6	(1 1.000.000
Kilo	k	10^3	x1000 (7 1.000
		10 0	1
Milli	m	10^-3	:1000 0.001
Mikro	μ	10^-6	0.000 001

Beschreiben Sie die folgenden Angaben mit Hilfe der SI-Präfixe:

a) die Kapazität einer Magnetfestplatte mit 16.000.000.00	J.UUU.UUU BYT6	e
---	----------------	---

16 10^12 B = 16 TB

b) die Strukturgröße eines 0,000 000 007m Transistors

7 10^-9 m = 7 nm

c) den Takt eines Prozessors, der 5.000.000.000 Arbeitsschritte pro Sekunde ausführt

5 10^9 HZ = 5 G HZ = 5 G 1/s

Frequenz

Bedingt durch die technischen Rahmenbedingungen bei der Herstellung von Halbleiter-Bauelementen, wie Prozessoren oder Flash-Speichern, macht der Einsatz von SI-Präfixen nicht immer Sinn. Denn dort gibt es einen Unterschied zwischen den Präfixen, wie sie gedacht waren und welche Wertigkeit sie in der Informatik tatsächlich haben.

Beispiel:

- SI gemäße Darstellung:
- ∠ 1 kB = <u>1000</u> Byte
- Verwendung in der Informatik:

Es ist nicht klar, was 1kB tatsächlich ist

SI- und IEC-Präfixe in der EDV

Im November 2000 wurde der *Amendment 2 to IEC International Standard IEC 60027-2* verabschiedet. Dieser neue Standard brachte neben der Abgrenzung zum *Système Internationale d'Unités* (SI-Präfixe) unter anderem auch sprachliche Klarheit: Hierdurch ließen sich nun binäre Angaben eindeutig beschreiben. Um der Sprachverwirrung ein Ende zu setzen, wurden deshalb neue Bezeichnungen für die EDV-Welt eingeführt.

Die neuen Präfixe haben die angehängte Silbe **bi** (= Binär). Das Kennzeichen (Abkürzung) erhält das zusätzliche Zeichen **i**.

Damit ergibt sich die neue folgende Rechnung:

- 1 **Kilo**Byte = 1.000 Byte (Basis <u>10</u>) = 10^3
- 1 **Ki<u>bi</u>**Byte = 1.024 Byte (Basis <u>2</u>) = 2^10

Aufgaben

1. Vervollständigen Sie die gegebene Tabelle für die binären Maßeinheiten (IEC Präfixe).

Tebi	Ti		<u></u> 1024^4
Gibi	Gi		1024^3
Mebi	Mi	2^20	(7) 1024^2
Kibi	ki	2 ¹⁰	x1024 7 1.024
-	-	2 º	1

2. Wieviel Speicherplatz (Anzahl an Byte) bekommen Sie beim Kauf einer 1 TB Festplatte?

1 1	B	= 1	1 °0(0^1 00 (2 i 000	. 00 R	0 0	000	ß	٠	٠	٠		٠		٠	٠	٠	٠	٠	٠		٠	٠	٠		4	٠	8-	٠	٠		۰
D			۰			4			۰	۰			4	۰				0	0	4		Þ		0	۰		4		Þ		۰		0
Þ	٠	٠	٠	٠		4	٠	٠	٠	۰	٠		4	٠			٠	٠		4	٠	Þ		٠	۰	0	4	٠	Þ		۰	,	0
	٠	٠	٠		٠			٠	٠		٠	٠	٠		٠	+		٠	٠	٠	٠		+	٠	٠	٠		٠	٠	*		٠	

Martin-Segitz-Schule ITT 10

3. Wieviel TiB entspricht demnach 1 TB?

$$1TB = 0.9094 \text{ TiB} = 1x$$
 $\frac{10^{12}}{2^{40}}$ TiB

Faktor 1024

4. Wieviel GiB entspricht 1 TB?

$$1TB = ? GiB = 1x$$
 $\frac{10^{12}}{2^{30}}$ GiB $\frac{931,32 GiB}{2}$

5. Nach welchem Präfix richtet sich also die Anzeige Ihres Betriebssystems (hier Windows)?

6. Welche Festplattengröße (Anzahl an Byte) besitzt somit der Lokale Datenträger (C:) tatsächlich?

```
465 GB = 465 x 2^30 GiB = 499.289.948.160 B

tatsächlich Gi
```

7. Mit welcher Speichergröße (in GB) wurde der Lokale Datenträger (C:) wohl vermarktet?

$$465 \text{ GiB} = 465 \qquad \frac{2^{\circ}30}{10^{\circ}9} \quad \text{GB} = \frac{499,28 \text{GB}}{2000} \qquad --> 500 \text{GB}$$

8.	. Berechnen Sie wieviel GB tatsächlich noch auf <i>Festplatte (I:)</i> frei sind.																																
					v			*				P				4			÷	٠		*	4			*				*			*
,	٠	٠	٠	٠		4	٠	٠	٠	٠	٠	6		٠		٠	٠	٠		٠	٠	8-		٠	٠			٠	8-		٠		٠
,	٠	٠	٠	۰	٠	4	٠	٠	۰	۰	۰			٠		٠	۰	۰	٠	4	٠	Þ	٠	۰	٠	0	4	٠	Þ		۰		۰
	٠	٠	۰	۰	٠	4	٠	٠	۰	۰	۰			٠		٠	۰	۰	٠	4	٠	Þ	٠	۰	٠	0	4	٠	Þ	٠	۰		۰
	٠	٠	٠		٠		٠	٠	٠	٠		٠	٠	٠	٠	*	+	٠	٠	٠	٠	٠	*	٠	٠	٠		٠	٠	*	٠	٠	٠
	٠	٠	٠		*	4	٠	٠	۰	٠				٠	٠	٠		۰			٠				٠		4	٠		٠	۰	٠	۰

- 9. Berechnen Sie
- a) wie viel GiB einem GB,
- b) wie viel MiB einem MB und
- c) wie viel **KiB** einem **kB** entsprechen.

SI-Einheit	Umrechnung	entspricht in IEC-Einheit
1 TB		TiB
1 GB		GiB
1 MB		MiB
1 kB		KiB

Welche Besonderheit fällt Ihnen dabei auf?

1.2 - SI- und IEC-Präfixe

Datum:

Martin-Se	gitz-Sch	ule	ITT 10								
		Dezimalpräfixe		Binärpräfixe gemäß IEC							
Name	Symbol	Anzahl Bytes ^[G 1]		Name	Symbol	Anzahl Bytes					
Kilobyte	kB ^[G 2]	1 000 = 10 ³	2,4 %	Kibibyte	KiB ^[G 3]	1 024 = 2 ¹⁰					
Megabyte	МВ	1 000 000 = 10 ⁶	4,9 %	Mebibyte	MiB	1 048 576 = 2 ²⁰					
Gigabyte	GB	1 000 000 000 = 10 ⁹	7,4 %	Gibibyte	GiB	1 073 741 824 = 2 ³⁰					
Terabyte	ТВ	1 000 000 000 000 = 10 ¹²	10,0 %	Tebibyte	TiB	1 099 511 627 776 = 2 ⁴⁰					
Petabyte	РВ	1 000 000 000 000 000 = 10 ¹⁵	12,6 %	Pebibyte	PiB	1 125 899 906 842 624 = 2 ⁵⁰					
Exabyte	EB	1 000 000 000 000 000 000 = 10 ¹⁸	15,3 %	Exbibyte	EiB	1 152 921 504 606 846 976 = 2 ⁶⁰					
Zettabyte	ZB	1 000 000 000 000 000 000 000 = 10 ²¹	18,1 %	Zebibyte	ZiB	1 180 591 620 717 411 303 424 = 2 ⁷⁰					
Yottabyte	YB	1 000 000 000 000 000 000 000 000 = 10 ²⁴	20,9 %	Yobibyte	YiB	1 208 925 819 614 629 174 706 176 = 2 ⁸⁰					

Quelle: Wikipedia