Sistemas Distribuídos

8 Relógios Lógicos

- Introducão
- Tempo Lógico
- Relógios Lógicos de Lamport
- Relógios Lógicos Vetoriais

 ${f Prof^a}$ Ana Cristina B. Kochem Vendramin DAINF / UTFPR

Introdução

• Princípios:

- Vistos de um processo, os eventos são ordenados pelo tempo do relógio local.
- Somente processos que interagem precisam sincronizar seus relógios.
- Não conseguimos sincronizar os relógios físicos perfeitamente. Logo, não podemos utilizá-los para determinar a ordem de ocorrência de dois eventos quaisquer num SD (Lamport, 78).

Profa. Ana Cristina B. Kochem Vendramin

Relação de causalidade ou happened-before

- Relação acontece-antes (→):
 - Se dois eventos x e y ocorrem em um mesmo processo p então esses dois eventos ocorrem na mesma ordem observada por p. Se p: x → y então x → y é verdadeiro.
 - 2. Seja x o evento de uma mensagem m enviada por um processo, e y o evento do recebimento dessa mensagem por outro processo.

 $V m, x \rightarrow y$

3. Relação transitiva:

Sejam x, y e z eventos tal que $x \rightarrow y$ e $y \rightarrow z$.

Então, $x \rightarrow z$ é verdadeiro.

Profa. Ana Cristina B. Kochem Vendramin DAINF/UTFPR

Relação de causalidade ou happened-before

- Localmente no processo: $\mathbf{a} \rightarrow \mathbf{b}$, $\mathbf{c} \rightarrow \mathbf{d}$, $\mathbf{e} \rightarrow \mathbf{f}$
- send→receive: b→c, d→f
- Relação transitiva: a→f
- a || e = eventos "a" e "e" são concorrentes

Profa, Ana Cristina B. Kochem Vendrar

Relógio Lógico de Lamport

- Mecanismo numérico para representar a relação lógica entre eventos de processos;
- Não tem relação com relógios físicos;
- Cada processo (p_i) tem seu relógio lógico (L_i) usado para fazer timestamp de eventos;

Profa. Ana Cristina B. Kochem Vendramin. DAINF/UTFPR

Relógio Lógico de Lamport

- Cada relógio é incrementado antes de colocá-lo como *timestamp t* em um evento.
- Quando o processo p_i envia uma mensagem m, essa mensagem leva junto o valor do seu relógio $L_{i;}$
- Quando o processo p_i recebe uma mensagem m com timestamp t, p_i faz Li := max(Li, t) + 1

Profa. Ana Cristina B. Kochem Vendramin DAINF/UTFPR

Relógio de Lamport x Relógio Vetorial

- Relógios Lógicos de Lamport
 - Ordem parcial dos eventos relação causal HB
 - $x \rightarrow y \Rightarrow L(x) \rightarrow L(y)$, porém
 - Se $L(x) \rightarrow L(y)$ não se pode deduzir que $x \rightarrow y$.
- Relógios Lógicos Vetoriais
 - Surgem da necessidade de satisfazer completamente a relação acima
 - $x \rightarrow y \Leftrightarrow L(x) \rightarrow L(y)$

Profa, Ana Cristina B. Kochem Vendramin

Relógio Lógico Vetorial

- · Considere um SD com N processos;
- Cada processo possui seu relógio vetorial V_i;
- ullet Cada relógio vetorial terá old N posições $old V_i$ [N];
- A posição $\mathbf{V_i}$ [i] contém o número de eventos que ocorreram no processo $\mathbf{P_i}$;
- Uma posição V_i [j] com i != j contém o número de eventos que ocorreram em P_i e afetaram P_i .

Profa. Ana Cristina B. Kochem Vendramin DAINF/UTFPR

Relógio Lógico Vetorial

- Regras de atualização:
 - Inicialmente: $V_i[j] = 0$ para j = 1 até N;
 - Evento Local:
 - Antes de colocar o timestamp em um evento, o processo faz:
 - $V_i[i] := V_i[i] + 1;$
 - Envio de mensagem:
 - ullet Pi anexa o valor de seu relógio V_i na mensagem;
 - Recebimento de mensagem:
 - Quando ${\bf Pi}$ recebe uma mensagem com ${\it timestamp}$ ${\bf t}$, ele faz:
 - $V_i[j] := max(V_i[j],t[j])$

Profa. Ana Cristina B. Kochem Vendrami

Relógio Lógico Vetorial

- Comparação de relógios vetoriais
 - Precedência: $g \rightarrow c \Leftrightarrow V(g) < V(c)$
 - [0,1,0] ≤ [3,1,3]?
 - $[0 \le 3, 1 \le 1, 0 \le 3] = [V, V, V] = Verdadeiro$
 - Não precedência: \sim (V(c) \leq V(g))
 - [3,1,3] < [0,1,0]? $[F,V,F] = \sim (F) = V$
 - Concorrência: $c \parallel h \Leftrightarrow \sim (V(c) \leq V(h)) \land \sim (V(c) \geq V(h))$
 - $\sim ([3,1,3] \le [1,2,4])^{\sim} ([3,1,3] \ge [1,2,4]) = \sim (\mathbf{F})^{\sim} (\mathbf{F}) = \mathbf{V}$

Profa. Ana Cristina B. Kochem Vendramin DAINF/UTFPR

Referências Bibliográficas

- Coulouris, George; Dollimore, Jean; Kindberg, Tim. Distributed Systems: concepts and design. Third Edition. Addison-Wesley 2001.
- Coulouris, George; Dollimore, Jean; Kindberg, Tim; tradução João Tortello. Sistemas Distribuídos: conceitos e projeto. 4. ed. Bookman 2007.

Profa. Ana Cristina B. Kochem Vendramin.

...