Análise de Regressão

Prof. Dr. Juliano Bortolini

Bacharelado em Estatística - UFMT

Período letivo: 2024/2

Avaliação 1 (escrita)

1. O artigo "Ecofriendly Dyeing of Silk with Extract of Yerba Mate" (Textile Res. J. 2017: 829–837) descreve um experimento para estudar os efeitos da concentração de corante (mg/L), da temperatura (°C) e do pH na adsorção de corante (mg de corante por grama de tecido). Adsorção de corante é um indicador de cor.

Concentração	Adsorção
10	250
20	520
20	387
20	593
10	157
20	377
10	225
20	451
15	382
15	373

- a. (0,25) Construa o gráfico de dispersão dos dados: adsorção (eixo y) e concentração (eixo x). Há evidência visual de relação linear entre as variáveis?
- b. (0,25) Considerando "y:adsorção" e "x:concentração", calcule as quantidades: $\sum x_i$, $\sum y_i$, $\sum x_i^2$, $\sum y_i^2$, $\sum x_i y_i$, \bar{x} , \bar{y} , S_{xx} , S_{yy} e S_{xy} .
- c. (0,25) Calcule o coeficiente de correlação entre as duas variáveis. Há evidência de correlação linear entre as variáveis?

- d. (0,25) Verifique se a correlação é significativa a um nível de significância de 5%.
- e. (0,50) Ajuste um modelo de regressão linear simples relacionando a concentração com a adsorção.
- f. (0,50) Construa a tabela de análise de variância e teste a significância da regressão.
- g. (0,25) Qual porcentagem da variabilidade total em y é explicada por este modelo (cálculo do \mathbb{R}^2)?
- h. (0,25) Calcule os erros-padrões do coeficiente linear (β_0) e do coeficiente angular (β_1) .
- i. (0,25) Calcule o intervalo de confiança de 95% para o coeficiente angular (β_1) e interpreteo.
- j. (0,25) Realize o teste t para o coeficiente linear (β_0) e interprete o resultado.
- k. (0,25) Encontre um intervalo de confiança de 95% para a adsorção média se a concentração for 15mg/L.
- l. (0,25) Encontre um intervalo de predição de 95% para a adsorção média se a concentração for 12mg/L.
- 2. (0,50) Para quaisquer duas variáveis aleatórias X e Y, demonstre que: $Cov(X,Y) = \mathbb{E}(XY) \mu_X \cdot \mu_Y$ (fórmula alternativa da covariância).