Package 'DBfit'

October 12, 2022

Title A Double Bootstrap Method for Analyzing Linear Models with

Type Package

Autoregressive Errors								
Version 2.0								
Date 2021-04-30								
Author Joseph W. McKean and Shaofeng Zhang								
Maintainer Shaofeng Zhang <shaofeng.zhang@wmich.edu></shaofeng.zhang@wmich.edu>								
Description Computes the double bootstrap as discussed in McKnight, McKean, and Huitema (2000) <doi:10.1037 1082-989x.5.1.87="">. The double bootstrap method provides a better fit for a linear model with autoregressive errors than ARIMA when the sample size is small.</doi:10.1037>								
License GPL ($>= 2$)								
Depends Rfit								
NeedsCompilation no								
Repository CRAN								
Date/Publication 2021-04-30 20:30:02 UTC								
R topics documented:								
DBfit-package boot1 boot2 dbfit durbin1fit durbin1xy								

 hmdesign2
 10

 hmmat
 10

 hypothmat
 11

 lagx
 12

 nurho
 13

DBfit-package

DBfi	t-package	A	Doi	ubl	e E	300	otsi	tra	р.	Μe	eth	oa	l f	or	Ar	ıal	lyz.	in	g 1	Lir	iec	ır	M	10	de	ls	W	ith	ı A	u-	
Index																														:	2
	wrho			•		•			•			•	•	•		•	•	•		•	•	•	•	•		•	٠	•	•	•	1
	testdata																														
	summary.dbfit																														
	simulacorrection																														
	simula																														
	simpgen1hm2																														
	rhoci2																														
	print.dbfit																														

toregressive Errors

Description

Computes the double bootstrap as discussed in McKnight, McKean, and Huitema (2000) <doi:10.1037/1082-989X.5.1.87>. The double bootstrap method provides a better fit for a linear model with autoregressive errors than ARIMA when the sample size is small.

Details

The DESCRIPTION file:

Package: DBfit
Type: Package

Title: A Double Bootstrap Method for Analyzing Linear Models with Autoregressive Errors

Version: 2.0

Date: 2021-04-30

Author: Joseph W. McKean and Shaofeng Zhang

Maintainer: Shaofeng Zhang <shaofeng.zhang@wmich.edu>

Description: Computes the double bootstrap as discussed in McKnight, McKean, and Huitema (2000) <doi:10.1037/1082-9

License: GPL (>= 2)

Depends: Rfit

Index of help topics:

DBfit-package A Double Bootstrap Method for Analyzing Linear

Models With Autoregressive Errors

boot1 First Boostrap Procedure For parameter

estimations

boot2 First Boostrap Procedure For parameter

estimations

dbfit The main function for the double bootstrap

method

durbin1fit Durbin stage 1 fit

boot1 3

durbin1xy Creating New X and Y for Durbin Stage 1

durbin2fit Durbin stage 2 fit

fullr QR decomposition for non-full rank design

matrix for Rfit.

hmdesign2 the Two-Phase Design Matrix

hmmat K-Phase Design Matrix

hypothmat General Linear Tests of the regression

coefficients

lagx Lag Functions

nurho Creating a new response variable for Durbin

stage 2

print.dbfit DBfit Internal Print Functions

rhoci2 A fisher type CI of the autoregressive

parameter rho

simpgen1hm2 Simulation Data Generating Function

simula Work Horse Function to implement the Double

Bootstrap method

simulacorrection Work Horse Function to Implement the Double

Bootstrap Method For .99 Cases

summary.dbfit Summarize the double bootstrap (DB) fit

testdata testdata

wrho Creating a new design matrix for Durbin stage 2

Author(s)

Joseph W. McKean and Shaofeng Zhang

Maintainer: Shaofeng Zhang <shaofeng.zhang@wmich.edu>

References

McKnight, S. D., McKean, J. W., and Huitema, B. E. (2000). A double bootstrap method to analyze linear models with autoregressive error terms. Psychological methods, 5 (1), 87. Shaofeng Zhang (2017). Ph.D. Dissertation.

boot1

First Boostrap Procedure For parameter estimations

Description

Function performing the first bootstrap procedure to yield the parameter estimates

```
boot1(y, phi1, arp, nbs, x, allb, method, scores)
```

boot2

Arguments

У	the response variable
phi1	the Durbin two-stage estimate of the autoregressive parameter rho
arp	the order of autoregressive errors
nbs	the bootstrap size
X	the original design matrix (including intercept), without centering
allb	all the Durbin two-stage estimates of the regression coefficients
method	If "OLS", uses the ordinary least square; If "RANK", uses the rank-based fit
scores	Default is Wilcoxon scores

Value

An estimate of the bias is returned

Note

This function is for internal use. The main function for users is dbfit.

boot2	First Boostrap Procedure For parameter estimations

Description

Function performing the second bootstrap procedure to yield the inference of the regression coefficients

Usage

```
boot2(y, xcopy, phi1, beta, nbs, method, scores)
```

Arguments

У	the response variable
хсору	the original design matrix (including intercept), without centering
phi1	the estimate of the autoregressive parameter rho from the first bootstrap procedure
beta	the estimates of the regression coefficients from the first bootstrap procedure
nbs	the bootstrap size
method	If "OLS", uses the ordinary least square; If "RANK", uses rank-based fit
scores	Default is Wilcoxon scores

dbfit 5

Value

betacov	the estimate of var-cov matrix of betas
allbeta	the estimates of betas inside of the second bootstrap, not the final estimates of betas. The final estimates of betas are still from boot1.
rhostar	the estimates of rho inside of the second bootstrap, not the final estimates of rho. The final estimate(s) of rho are still from boot1.
MSEstar	MSE used inside of the second bootstrap.

Note

This function is for internal use. The main function for users is dbfit

dbfit	The main function for the double bootstrap method	

Description

This function is used to implement the double bootstrap method. It is used to yield estimates of both regression coefficients and autoregressive parameters(rho), and also the inference of them.

Usage

```
## Default S3 method:
dbfit(x, y, arp, nbs = 500, nbscov = 500,
conf = 0.95, correction = TRUE, method = "OLS", scores, ...)
```

Arguments

x	the design matrix, including intercept, i.e. the first column being ones.
У	the response variable.
arp	the order of autoregressive errors.
nbs	the bootstrap size for the first bootstrap procedure. Default is 500.
nbscov	the bootstrap size for the second bootstrap procedure. Default is 500.
conf	the confidence level of CI for rho, default is 0.95.
correction	logical. Currently, ONLY works for order 1, i.e. for order > 1, this correction will not get involved. If TRUE, uses the correction for cases that the estimate of rho is 0.99. Default is TRUE.
method	the method to be used for fitting. If "OLS", uses the ordinary least square lm ; If "RANK", uses the rank-based fit rfit.
scores	Default is Wilcoxon scores
	additional arguments to be passed to fitting routines

6 dbfit

Details

Computes the double bootstrap as discussed in McKnight, McKean, and Huitema (2000). For details, see the references.

Value

coefficients	the estimates of regression coefficients based on the first bootstrap procedure
rho1	the Durbin two-stage estimate of the autoregressive parameter rho
adjar	the estimates of regression coefficients based on the first bootstrap procedure
mse	the mean square error
rho_CI_1	the first type of CI for rho, see the second reference for details.
rho_CI_2	the second type of CI for rho, see the second reference for details.
rho_CI_3	the third type of CI for rho, see the second reference for details.
betacov	the estimate of the variance-covariance matrix of betas
tabbeta	a table of point estimates, SE's, test statistics and p-values.
flag99	an indicator; if 1, it indicates the original fit yields an estimate of rho to be 0.99. When the correction is requested (default), the correction procedure kicks in, and the final estimates of rho is corrected. Only valid if order 1 is specified.
residuals	the residuals, that is response minus fitted values.
fitted.values	the fitted mean values.

Author(s)

Joseph W. McKean and Shaofeng Zhang

References

McKnight, S. D., McKean, J. W., and Huitema, B. E. (2000). A double bootstrap method to analyze linear models with autoregressive error terms. Psychological methods, 5 (1), 87.

Shaofeng Zhang (2017). Ph.D. Dissertation.

See Also

dbfit.formula

Examples

```
# make sure the dependent package Rfit is installed
# To save users time, we set both bootstrap sizes to be 100 in this example.
# Defaults are both 500.

# data(testdata)
# This data is generated by a two-phase design, with autoregressive order being one,
# autoregressive coefficient being 0.6 and all regression coefficients being 0.
# Both the first and second phase have 20 observations.
```

durbin1fit 7

```
# y <- testdata[,5]
# x <- testdata[,1:4]
# fit1 <- dbfit(x,y,1, nbs = 100, nbscov = 100) # OLS fit, default
# summary(fit1)
# Note that the CI's of autoregressive coef are not shown in the summary.
# Instead, they are attributes of model fit.
# fit1$rho_CI_1
# fit2 <- dbfit(x,y,1, nbs = 100, nbscov = 100 ,method="RANK") # rank-based fit
# When fitting with autoregressive order 2,
# the estimate of the second order autoregressive coefficient should not be significant,
# since this data is generated with order 1.
# fit3 <- dbfit(x,y,2, nbs = 100, nbscov = 100)
# fit3$rho_CI_1 # The first row is lower bounds, and second row is upper bounds</pre>
```

durbin1fit

Durbin stage 1 fit

Description

Function implements the Durbin stage 1 fit

Usage

```
durbin1fit(y, x, arp, method, scores)
```

Arguments

У	the response variable in stage 1, not the original response variable
x	the model matrix in stage 1, not the original design matrix
arp	the order of autoregressive errors.
method	the method to be used for fitting. If "OLS", uses the ordinary least square; If "RANK", uses the rank-based fit.
scores	Default is Wilcoxon scores

Note

This function is for internal use. The main function for users is dbfit.

References

McKnight, S. D., McKean, J. W., and Huitema, B. E. (2000). A double bootstrap method to analyze linear models with autoregressive error terms. Psychological methods, 5 (1), 87. Shaofeng Zhang (2017). Ph.D. Dissertation.

8 durbin2fit

durbin1xy Creating New X and Y for Durbin Stage 1

Description

Functions provides the tranformed reponse variable and model matrix for Durbin stage 1 fit. For details of the transformation, see the reference.

Usage

```
durbin1xy(y, x, arp)
```

Arguments

١	1	the orginal	response	variable

the orginal design matrix with first column of all one's (corresponding to the Χ

intercept)

the order of autoregressive errors. arp

References

McKnight, S. D., McKean, J. W., and Huitema, B. E. (2000). A double bootstrap method to analyze linear models with autoregressive error terms. Psychological methods, 5 (1), 87. Shaofeng Zhang (2017). Ph.D. Dissertation.

	Durbin stage 2 fit	durbin2fit
--	--------------------	------------

Description

Function implements the Durbin stage 1 fit

Usage

```
durbin2fit(yc, xc, adjphi, method, scores)
```

Arguments

ус	a transformed reponse variable
хс	a transformed design matrix
adjph	the Durbin stage 1 estimate(s) of the autoregressive parameters rho
metho	the method to be used for fitting. If "OLS", uses the ordinary least square; If "RANK", uses the rank-based fit.
score	Default is Wilcoxon scores

fullr 9

Value

L - 4 -	414:4	- C :	CC -:4-
beta	the estimates	of regression	coefficients

sigma the estimate of standard deviation of the white noise

Note

This function is for internal use. The main function for users is dbfit.

References

McKnight, S. D., McKean, J. W., and Huitema, B. E. (2000). A double bootstrap method to analyze linear models with autoregressive error terms. Psychological methods, 5 (1), 87. Shaofeng Zhang (2017). Ph.D. Dissertation.

fullr

QR decomposition for non-full rank design matrix for Rfit.

Description

With Rfit recent update, it cannot return partial results with sigular design matrix (as opposed to lm). This function uses QR decomposition for Rfit to resolve this issue, so that dbfit can run robust version.

Usage

```
fullr(x, p1)
```

Arguments

x design matrix, including intercept, i.e. the first column being ones.

p1 number of first few columns of x that are lineraly independent.

Note

This function is for internal use.

10 hmmat

hmdesign2

the Two-Phase Design Matrix

Description

Returns the design matrix for a two-phase intervention model.

Usage

```
hmdesign2(n1, n2)
```

Arguments

n1 number of obs in phase 1 n2 number of obs in phase 2

Details

It returns a matrix of 4 columns. As discussed in Huitema, Mckean, & Mcknight (1999), in two-phase design: beta0 = intercept, beta1 = slope for Phase 1, beta2 = level change from Phase 1 to Phase 2, and beta3 slope change from Phase 1 to Phase 2.

References

Huitema, B. E., Mckean, J. W., & Mcknight, S. (1999). Autocorrelation effects on least-squares intervention analysis of short time series. Educational and Psychological Measurement, 59 (5), 767-786.

Examples

```
n1 <- 15
n2 <- 15
hmdesign2(n1, n2)
```

hmmat

K-Phase Design Matrix

Description

Returns the design matrix for a general k-phase intervention model

```
hmmat(vecss, k)
```

hypothmat 11

Arguments

vecss a vector of length k with each element being the number of observations in each

phase

k number of phases

Details

It returns a matrix of 2*k columns. The design can be unbalanced, i.e. each phase has different observations.

References

Huitema, B. E., Mckean, J. W., & Mcknight, S. (1999). Autocorrelation effects on least-squares intervention analysis of short time series. Educational and Psychological Measurement, 59 (5), 767-786.

See Also

hmdesign2

Examples

```
# a three-phase design matrix
hmmat(c(10,10,10),3)
```

hypothmat

General Linear Tests of the regression coefficients

Description

Performs general linear tests of the regressio coefficients.

Usage

```
hypothmat(sfit, mmat, n, p)
```

Arguments

sfit the result of a call to dbfit.

mmat a full row rank q*(p+1) matrix, where q is the row number of the matrix and p

is number of independent variables.

n total number of observations.
p number of independent variables.

Details

This functions performs the general linear F-test of the form H0: Mb = 0 vs HA: Mb != 0.

12 lagx

Value

tst the test statistic

pvf the p-value of the F-test

References

McKnight, S. D., McKean, J. W., and Huitema, B. E. (2000). A double bootstrap method to analyze linear models with autoregressive error terms. Psychological methods, 5 (1), 87. Shaofeng Zhang (2017). Ph.D. Dissertation.

Examples

```
# data(testdata)
# y<-testdata[,5]
# x<-testdata[,1:4]
# fit1<-dbfit(x,y,1) # OLS fit, default
# a test that H0: b1 = b3 vs HA: b1 != b3
# mat<-matrix(c(1,0,0,-1),nrow=1)
# hypothmat(sfit=fit1,mmat=mat,n=40,p=4)</pre>
```

lagx Lag Functions

Description

For preparing the transformed x and y in the Durbin stage 1 fit

Usage

```
lagx(x, s1, s2)
lagmat(x, p)
```

Arguments

Χ	a vector or the design matrix, including intercept, i.e. the first column being
	ones.

s1 starting index of the slice.

s2 end index of the slice.

p the order of autoregressive errors.

Note

These function are for internal use.

nurho 13

nurho

Creating a new response variable for Durbin stage 2

Description

It returns a new response variable (vector) for Durbin stage 2.

Usage

```
nurho(yc, adjphi)
```

Arguments

yc the centered response variable y

adjphi (initial) estimate of rho in Durbin stage 1

Details

see reference.

Note

This function is for internal use. The main function for users is dbfit.

References

McKnight, S. D., McKean, J. W., and Huitema, B. E. (2000). A double bootstrap method to analyze linear models with autoregressive error terms. Psychological methods, 5 (1), 87. Shaofeng Zhang (2017). Ph.D. Dissertation.

print.dbfit

DBfit Internal Print Functions

Description

These functions print the output in a user-friendly manner using the internal R function print.

```
## S3 method for class 'dbfit'
print(x, ...)
## S3 method for class 'summary.dbfit'
print(x, ...)
```

rhoci2

Arguments

x An object to be printed

... additional arguments to be passed to print

See Also

```
dbfit, summary.dbfit
```

rhoci2

A fisher type CI of the autoregressive parameter rho

Description

This function returns a Fisher type CI for rho, which is then used to correct the .99 cases.

Usage

```
rhoci2(n, rho, cv)
```

Arguments

n total number of observations

rho final estimate of rho, usually .99.

cv critical value for CI

Details

see reference.

Note

This function is for internal use.

References

Shaofeng Zhang (2017). Ph.D. Dissertation. Rao, C. R. (1952). Advanced statistical methods in biometric research. p. 231

simpgen1hm2

C I M	pgen [°]	lhmツ
O TIII	Pacii	11111112

Simulation Data Generating Function

Description

Generates the simulation data for a two-phase intervention model.

Usage

```
simpgen1hm2(n1, n2, rho, beta = c(0, 0, 0, 0))
```

Arguments

n1	number of obs in phase I
n2	number of obs in phase 2
rho	pre-defined autoregressive parameter(s)

beta pre-defined regression coefficients

Details

This function is used for simulations when developing the package. With pre-defined sample sizes in both phases and parameters, it returns a simulated data.

Value

mat

a matrix containing the simulation data. The last column is the response variable. All other columns make up the design matrix.

See Also

hmdesign2

Examples

```
n1 <- 15

n2 <- 15

rho <- 0.6

beta <- c(0,0,0,0)

dat <- simpgen1hm2(n1, n2, rho, beta)

dat
```

16 simula

Work Horse Function to implement the Double Bootstrap method

Description

simula is the original work horse function to implement the DB method. However, when this function returns an estimate of rho to be .99, another work horse function simulacorrection kicks in

Usage

```
simula(x, y, arp, nbs, nbscov, conf, method, scores)
```

Arguments

Χ	the design matrix	, including intercept, i.e.	the first column being ones.

y the response variable.

arp the order of autoregressive errors.

nbs the bootstrap size for the first bootstrap procedure. Default is 500.

nbscov the bootstrap size for the second bootstrap procedure. Default is 500.

conf the confidence level of CI for rho, default is 0.95.

method the method to be used for fitting. If "OLS", uses the ordinary least square 1m; If

"RANK", uses the rank-based fit rfit.

scores Default is Wilcoxon scores

Details

see dbfit.

Note

Users should use dbfit to perform the analysis.

References

McKnight, S. D., McKean, J. W., and Huitema, B. E. (2000). A double bootstrap method to analyze linear models with autoregressive error terms. Psychological methods, 5 (1), 87. Shaofeng Zhang (2017). Ph.D. Dissertation.

See Also

dbfit.

simulacorrection 17

simulacorrection Work Horse Function to Implement the Double Bootstrap Method For .99 Cases		simulacorrection	1	
---	--	------------------	---	--

Description

When function simula returns an estimate of rho to be .99, this function kicks in and ouputs a corrected estimate of rho. Currently, this only works for order 1, i.e. for order > 1, this correction will not get involved.

Usage

```
simulacorrection(x, y, arp, nbs, nbscov, method, scores)
```

Arguments

x	the design matrix, including intercept, i.e. the first column being ones.
у	the response variable.
arp	the order of autoregressive errors.
nbs	the bootstrap size for the first bootstrap procedure. Default is 500.
nbscov	the bootstrap size for the second bootstrap procedure. Default is 500.
method	the method to be used for fitting. If "OLS", uses the ordinary least square 1m; If "RANK", uses the rank-based fit rfit.
scores	Default is Wilcoxon scores

Details

If 0.99 problem is detected, then construct Fisher CI for both initial estimate (in Durbin stage 1) and first bias-corrected estimate (perform only one bootstrap, instead of a loop); if the midpoint of latter is smaller than 0.95, then this midpoint is the final estimate for rho; otherwise the midpoint of the former CI is the final estimate.

By default, when function simula returns an estimate of rho to be .99, this function kicks in and ouputs a corrected estimate of rho. However, users can turn the auto correction off by setting correction="FALSE" in dbfit. Users are encouraged to investigate why the stationarity assumption is violated based on their experience of time series analysis and knowledge of the data.

Note

Users should use dbfit to perform the analysis.

References

Shaofeng Zhang (2017). Ph.D. Dissertation.

See Also

dbfit.

18 testdata

summary.dbfit

Summarize the double bootstrap (DB) fit

Description

It summarizes the DB fit in a way that is similar to OLS 1m.

Usage

```
## S3 method for class 'dbfit'
summary(object, ...)
```

Arguments

object a result of the call to rfit
... additional arguments to be passed

Value

call the call to rfit
tab a table of point estimates, standard errors, t-ratios and p-values
rho1 the Durbin two-stage estimate of rho
adjar the DB (final) estimate of rho

flag99 an indicator; if 1, it indicates the original fit yields an estimate of rho to be 0.99.

Only valid if order 1 is specified.

Examples

```
# data(testdata)
# y<-testdata[,5]
# x<-testdata[,1:4]
# fit1<-dbfit(x,y,1) # OLS fit, default
# summary(fit1)</pre>
```

testdata

testdata

Description

This data serves as a test data.

```
data("testdata")
```

wrho 19

Format

A data frame with 40 observations. First 4 columns make up the design matrix, while the last column is the response variable. This data is generated by a two-phase design, with autoregressive order being one, autoregressive coefficient being 0.6 and all regression coefficients being 0. Both the first and second phase have 20 observations.

Examples

data(testdata)

wrho

Creating a new design matrix for Durbin stage 2

Description

It returns a new design matrix for Durbin stage 2.

Usage

```
wrho(xc, adjphi)
```

Arguments

xc centered design matrix, no column of ones adjphi (initial) estimate of rho in Durbin stage 1

Details

see reference.

Note

This function is for internal use. The main function for users is dbfit.

References

McKnight, S. D., McKean, J. W., and Huitema, B. E. (2000). A double bootstrap method to analyze linear models with autoregressive error terms. Psychological methods, 5 (1), 87. Shaofeng Zhang (2017). Ph.D. Dissertation.

Index

```
* datasets
    testdata, 18
boot1, 3
boot2, 4
DBfit(DBfit-package), 2
dbfit, 5, 14, 16, 17
DBfit-package, 2
durbin1fit, 7
durbin1xy, 8
durbin2fit, 8
fullr, 9
hmdesign2, 10, 11, 15
\quad \text{hmmat}, \\ 10
hypothmat, 11
lagmat (lagx), 12
lagx, 12
nurho, 13
print.dbfit, 13
print.summary.dbfit(print.dbfit), 13
rhoci2, 14
simpgen1hm2, 15
simula, 16
{\it simulacorrection}, 17
\verb|summary.dbfit|, \textit{14}, 18
testdata, 18
wrho, 19
```