Travaux Dirigés : Electrostatique

On rappel : ε_0 =*permittivité du vide,* $\varepsilon_0 \approx 9.10^{-12} F.m^{-1}$

- 1.* Deux charges électriques de même valeur q, sont fixées en A et B sur un axe $x \in Ox$ aux abscisses $x_A = -a$ et $x_B = +a$. Entre A et B on place une charge q' libre de se déplacer sur l'axe.
 - 1) Exprimer la force exercée par la charge q en X_A sur une charge située en x.
 - 2) Exprimer la force exercée par la charge q en X_A sur une charge située en x.
 - 3) Quelle est la position d'équilibre de q'?
 - 4) Quelle est la force exercée sur q' hors de sa position d'équilibre ?
 - 5) Discuter de la stabilité de l'équilibre dans le cas où l'on déplace très légèrement la charge q de l'axe xOx.
- 2. Un électroscope élémentaire est constitué de deux sphères identiques reliées chacune par un fil très fin non conducteur et sans masse, de I = 10 cm de longueur. Ces deux fil sont relié à un point fixe M. Chaque sphère peut être considérée comme ponctuelle, et porte une charge électrique q de $3 \cdot 10^{-7} \, C$. On note : T la tension du fil, θ l'angle des fils avec la verticale, m la masse des sphères, g l'accélération de la pesanteur.
 - 1) Les deux exercent-elle l'une sur l'autre une force attractive ou répulsive.
 - 2) Faire un schéma de l'expérience dans un repère cartésien (Oxy). L'axe Oy étant la verticale et l'axe Ox l'horizontale.
 - 3) Faire un bilan des forces s'exerçant sur l'une des charges.
 - 4) Projeter ce bilan de force selon (Ox) et selon (Oy).
 - 5) En déduire, une expression de la tension T en fonction de m, θ et g.
 - 6) Donner une expression de la masse m en fonction de ε_0 , θ , l, q et g.
 - 7) Quelle est la masse m de chaque sphère, sachant qu'à l'équilibre l'angle des fils avec la verticale est de 30°?
- **3.*** On veut calculer la force électrique s'exerçant sur une charge électrique q située à l'origine O d'un axe $x \in Ox$, par une distribution linéaire de charges de densité linéaire uniforme f, répartie entre les abscisses f > 0 et f = f + f .
 - 1) Faire un schéma de l'expérience dans un repère cartésien (Oxy). L'axe Oy étant la verticale et l'axe Ox l'horizontale.
 - 2) Donner l'expression $d\vec{E}$ du champ électrostatique produit en O par un élément de longueur dx situé en x de distribution linéaire de charges. On notera \vec{u} le vecteur unitaire donnant l'orientation de $d\vec{E}$.
 - 3) Donner l'expression \vec{E} du champ électrostatique produit en O par la totalité de la distribution linéaire de charges.
 - 4) En déduire, la force électrique s'exerçant sur la charge électrique q.

- **4.*** On veut calculer le champ électrique produit en un point M situé à une distance h à la vertical d'un fil rectiligne infini, uniformément chargé de / par unité de longueur.
 - 1) Faire un schéma de l'expérience dans un repère cartésien (Oxy). L'axe Oy étant la verticale et l'axe Ox l'horizontale.
 - 2) Donner l'expression $d\vec{E}$ du champ électrostatique exercé au point M par un élément de longueur dx situé en x de distribution linéaire de charges. On notera \vec{u} le vecteur unitaire donnant l'orientation de $d\vec{E}$.
 - 3) On note θ l'angle entre le vecteur \vec{u} et la verticale, exprimer $d\vec{E}$ en fonction de θ .
 - 4) En utilisant la symétrie du problème, donner l'orientation $\overrightarrow{u_E}$ du champ électrique total produit en M la totalité de la distribution linéaire de charges.
 - 5) Donner l'expression $d\vec{E}$ de $d\vec{E}$ projeter selon $\overrightarrow{u_E}$, en fonction de θ , ε_0 , h et $d\theta$.
 - 6) Donner l'expression \vec{E} du champ électrostatique produit en M par la totalité de la distribution linéaire de charges.
- 5.* Un cercle de rayon R, centré en O dans le plan xOy, porte une densité linéaire uniforme de charges /. On veut calculer le champ électrique créé en un point M située sur l'axe $\angle CZ$ orthogonal à ce plan, à la distance z de O. On note θ l'angle entre la droite (OM) et l'axe (Oz)
 - 1) Faire un schéma de l'expérience dans un repère cartésien (Oxyz). L'axe z'Oz étant la verticale.
 - 2) Donner l'expression $d\vec{E}$ du champ électrostatique exercé au point M par un élément de surface dl de distribution linéaire de charges. On notera \vec{u} le vecteur unitaire donnant l'orientation de $d\vec{E}$.
 - 3) On note :φ l'angle qui permet de repérer l'élément de longueur dl par rapport à l'axe (Ox). Donner l'expression de dl en fonction de R et φ.
 - 4) En utilisant la symétrie du problème, donner l'orientation $\overrightarrow{u_E}$ du champ électrique total produit en M la totalité de la distribution linéaire de charges.
 - 5) Donner l'expression dE de $d\vec{E}$ projeter selon $\overrightarrow{u_E}$.
 - 6) Exprimer dE en fonction de R, z, / q et φ (et bien sur π et ε_0).
 - 7) Donner l'expression \vec{E} du champ électrostatique produit en M par la totalité de la distribution linéaire de charge.
 - 8) En déduire la force électrique exercée par cette distribution sur une charge ponctuelle q en fonction de z.

- 6. Un disque de rayon R est centré en O dans le plan [xOy]. Il porte une densité superficielle de charge uniforme S. On veut calculer le champ électrique $\overline{E(z)}$ résultant en tout point z > 0 de son axe $z \in Oz$.
 - 1) Faire un schéma de l'expérience dans un repère cartésien (Oxyz). L'axe z'Oz étant la verticale.
 - 2) Donner l'expression $d\vec{E}$ du champ électrostatique exercé au point M par un élément de surface dS de distribution surfacique de charges. On notera \vec{u} le vecteur unitaire donnant l'orientation de $d\vec{E}$.
 - 3) On note : ρ la distance en l'élément de surface dS et φ l'angle qui permet de repérer l'élément de surface dS par rapport à l'axe (Ox). Donner l'expression de l'élément de surface dS en fonction de ρ et de φ .
 - 4) En utilisant la symétrie du problème, donner l'orientation $\overrightarrow{u_E}$ du champ électrique total produit en M la totalité de la distribution surfacique de charges.
 - 5) Donner l'expression dE de $d\vec{E}$ projeter selon $\overrightarrow{u_E}$.
 - 6) Exprimer dE en fonction uniquement de ρ , z, / q et φ (et bien sur π et ε_0)
 - 7) Donner l'expression \vec{E} du champ électrostatique produit en M par la totalité de la distribution surfacique de charge.
 - 8) Que devient $\overline{E(z)}$ lorsque $R \to \infty$?

Corrigé travaux dirigés : Electrostatique

On rappel : ε_0 =*permittivité du vide,* $\varepsilon_0\approx 9.10^{-12}F.m^{-1}$

- 1.* Deux charges électriques de même valeur q, sont fixées en A et B sur un axe $x \in Ox$ aux abscisses $x_A = -a$ et $x_B = +a$. Entre A et B on place une charge q ibre de se déplacer sur l'axe.
 - 1) Exprimer la force exercée par la charge q en X_A sur une charge située en x. $\overrightarrow{F_A} = \frac{qq'}{4\pi\epsilon_0(x+a)^2} \overrightarrow{u_x} \qquad (x+a) \text{ est la distance entre la charge } q \text{ située en } A$ et la charge q' situé à la cote x. La force est orientée selon les x>0. Faire le schéma.
 - 2) Exprimer la force exercée par la charge q en X_A sur une charge située en x. $\overrightarrow{F_B} = -\frac{qq'}{4\pi\epsilon_0(x-a)^2}\overrightarrow{u_x} \quad (x-a) \quad \text{est la distance entre la charge } q \text{ située en}$ B et la charge q' situé à la cote x. La force est orientée selon les x<0. Faire le schéma.
 - 3) Quelle est la position d'équilibre de q'?

A la position d'équilibre on a : $\overrightarrow{F_A} + \overrightarrow{F_B} = 0$ Soit :

$$\frac{qq'}{4\pi\varepsilon_0(x+a)^2} = \frac{qq'}{4\pi\varepsilon_0(x-a)^2}$$

$$(x-a)^2 = (x+a)^2 \quad \textit{soit} \quad -2ax = 2ax \quad \textit{donc x= 0}$$
A l'équilibre q'esten zéro

4) Quelle est la force exercée sur q' hors de sa position d'équilibre ?

$$\begin{split} \overrightarrow{F_{total}} &= \frac{qq'}{4\pi\varepsilon_0} \bigg(\frac{1}{(x+a)^2} - \frac{1}{(x-a)^2}\bigg) \overrightarrow{u_x} \; \textit{On réduit au même dénominateur, on a} \\ \overrightarrow{F_{total}} &= \frac{qq'}{4\pi\varepsilon_0} \bigg(\frac{(x-a)^2}{(x+a)^2(x-a)^2} - \frac{(x+a)^2}{(x+a)^2(x-a)^2}\bigg) \overrightarrow{u_x} \\ \overrightarrow{F_{total}} &= \frac{qq'}{4\pi\varepsilon_0} \bigg(\frac{x^2 + a^2 - 2ax}{(x^2 - a^2)^2} - \frac{x^2 + a^2 + 2ax}{(x-a)^2}\bigg) \overrightarrow{u_x} = \frac{qq'}{4\pi\varepsilon_0} \bigg(\frac{4ax}{(x^2 - a^2)^2}\bigg) \overrightarrow{u_x} \end{split}$$

Si x<0 alors La force est orientée selon les x>0 et vice versa

5) Discuter de la stabilité de l'équilibre dans le cas où l'on déplace très légèrement la charge q de l'axe **x**O**x**.

Si les charge sont de même signe, la force va pousser la charge q' loin de l'axe (Ox), c'est instable. Si elles sont de signe différent la force

va ramener la charge q' vers de l'axe (Ox), c'est stable.

- 2. Un électroscope élémentaire est constitué de deux sphères identiques reliées chacune par un fil très fin non conducteur et sans masse, de I = 10 cm de longueur. Ces deux fil sont relié à un point fixe M. Chaque sphère peut être considérée comme ponctuelle, et porte une charge électrique q de $3 \cdot 10^{-7} \, C$. On note : T la tension du fil, θ l'angle des fils avec la verticale, m la masse des sphères, g l'accélération de la pesanteur.
 - 1) Les deux exercent-elle l'une sur l'autre une force attractive ou répulsive.

Les charges sont de même signe car identique, on a donc une force répulsive. $\overline{F_{total}} = \frac{qq}{4\pi\epsilon_0 r^2} \overline{u_{12}}$.

2) Faire un schéma de l'expérience dans un repère cartésien (Oxy). L'axe Oy étant la verticale et l'axe Ox l'horizontale.

- 3) Faire un bilan des forces s'exerçant sur l'une des charges.
- 4) Projeter ce bilan de force selon (Ox) et selon (Oy).

La charge de droite exerce sur la charge de gauche une force $\overrightarrow{F_1}$ telque : $\overrightarrow{F_1} = -\frac{qq}{4\pi\epsilon_0 r^2}\overrightarrow{u_x}$

La charge de gauche exerce sur la charge de droite une force $\overline{F_2}$ telque : $\overline{F_2} = \frac{qq}{4\pi\epsilon_0 r^2} \overline{u_x}$

La charge de gauche subit la tension du fil \vec{T} tel que :

$$\vec{T} = -T\cos(\theta)\vec{u_v} + T\sin(\theta)\vec{u_x}$$

La charge de droite subit la tension du fil \vec{T} tel que :

$$\overrightarrow{T} = -Tcos(\theta)\overrightarrow{u_{v}} - Tsin(\theta)\overrightarrow{u_{x}}$$

Chaque subit le poids \overrightarrow{P} tel que : $\overrightarrow{P} = mg\overrightarrow{u_y}$

On a donc selon Ox pour la charge de gauche :

$$-\frac{qq}{4\pi\varepsilon_0 r^2}\overrightarrow{u_x} + Tsin(\theta)\overrightarrow{u_x} = 0$$

On a donc selon Ox pour la charge de droite $: \frac{qq}{4\pi\epsilon_0 r^2} \overrightarrow{u_x} - Tsin(\theta) \overrightarrow{u_x} = 0$

On a donc selon Oy pour les deux charges :- $Tcos(\theta)\overrightarrow{u_y} + mg\overrightarrow{u_y} = 0$

5) En déduire, une expression de la tension T en fonction de m, θ et g.

$$T = \frac{mg}{\cos(\theta)}$$

6) Donner une expression de la masse m en fonction de m, θ , l, q et g.

$$\begin{split} T &= \frac{qq}{4\pi\epsilon_0 r^2 sin(\theta)} avec \ r = 2lsin(\theta) \\ \frac{mg}{cos(\theta)} &= \frac{qq}{4\pi\epsilon_0 r^2 sin(\theta)} \\ m &= \frac{qq cos(\theta)}{4g\pi\epsilon_0 4l^2 sin^3(\theta)} \end{split}$$

7) Quelle est la masse m de chaque sphère, sachant qu'à l'équilibre l'angle des fils avec la verticale est de 30°?

$$m=15,3g$$

- 3.* On veut calculer la force électrique s'exerçant sur une charge électrique q située à l'origine O d'un axe $x \in Ox$, par une distribution linéaire de charges de densité linéaire uniforme f, répartie entre les abscisses f0 et f1.
 - 1) Faire un schéma de l'expérience dans un repère cartésien (Oxy). L'axe Oy étant la verticale et l'axe Ox l'horizontale.

2) Donner l'expression $d\vec{E}$ du champ électrostatique produit en O par un élément de longueur dx situé en x de distribution linéaire de charges. On notera \vec{u} le vecteur unitaire donnant l'orientation de $d\vec{E}$.

La charge de l'élément dx est λdx et crée un champ $d\vec{E}$ en O (situé donc à la distance x) : $d\vec{E} = \frac{\lambda dx}{4\pi\varepsilon_0 x^2} \vec{u}$ avec $\vec{u} = -\vec{u}_x$

3) Donner l'expression \vec{E} du champ électrostatique produit en O par la totalité de la distribution linéaire de charges.

Il faut prendre compte les charges de toute la distribution, on intègre donc $d\vec{E}$ sur la longueur L. On a alors :

 $\vec{E}(x=0,y=0)=\int_a^{a+L}d\vec{E}=\int_a^{a+L}rac{\vec{u}\lambda dx}{4\pi\varepsilon_0x^2}$ Toutes les contributions sont orientés selon \vec{u} , donc le champ total en O est orienté selon \vec{u} :*

$$\vec{E}(x=0,y=0) = \vec{u} \int_{a}^{a+L} \frac{\lambda dx}{4\pi\epsilon_{0}x^{2}} = \frac{\lambda}{4\pi\epsilon_{0}} \left[-\frac{1}{x} \right]_{a}^{a+L} \vec{u} = \frac{\lambda}{4\pi\epsilon_{0}} \left(\frac{1}{a} - \frac{1}{a+L} \right) \vec{u} = \frac{\lambda}{4\pi\epsilon_{0}} \left(\frac{L}{a(a+L)} \right) \vec{u}$$

$$\vec{E}(x=0,y=0) = -\frac{\lambda}{4\pi\epsilon_{0}} \left(\frac{L}{a(a+L)} \right) \vec{u}_{x}$$

4) En déduire, la force électrique s'exerçant sur la charge électrique q.

$$\vec{F}(x = 0, y = 0) = -\frac{q\lambda}{4\pi\varepsilon_0} \left(\frac{L}{a(a+L)}\right) \overrightarrow{u_x}$$

Force répulsive (selon $-\overrightarrow{u_x}$) si λ et q de même signe et attractive (selon $\overrightarrow{u_x}$) si λ et q de signe différent.

- **4.*** On veut calculer le champ électrique produit en un point M situé à une distance h d'un fil rectiligne infini, uniformément chargé de / par unité de longueur.
 - 1) Faire un schéma de l'expérience dans un repère cartésien (Oxy). L'axe Oy étant la verticale et l'axe Ox l'horizontale.

2) Donner l'expression $d\vec{E}$ du champ électrostatique exercé au point M par un élément de longueur dx situé en x de distribution linéaire de charges. On notera \vec{u} le vecteur unitaire donnant l'orientation de $d\vec{E}$.

La charge de l'élément dx est λdx et crée un champ $d\vec{E}$ en M (que l'on peut considérer en x=0 car le fil est infinie) :

$$d \overrightarrow{E} = rac{\lambda dx}{4\pi \epsilon_0 r^2} \overrightarrow{u}$$
 avec $r^2 = x^2 + h^2$.

3) On note θ l'angle entre le vecteur \vec{u} et la verticale, exprimer $d\vec{E}$ en fonction de θ $\cos(\theta) = \frac{h}{r} = \frac{h}{\sqrt{x^2 + h^2}}$ donc $d\vec{E} = \frac{\lambda dx}{4\pi\epsilon_0 r^2} \vec{u} = \frac{\lambda dx}{4\pi\epsilon_0 h^2} \cos^2(\theta) \vec{u}$

Il est préférable de travailler avec θ car l'intégration est bcp plus simple.

4) En utilisant la symétrie du problème, donner l'orientation $\overrightarrow{u_E}$ du champ électrique total produit en M la totalité de la distribution linéaire de charges.

L'axe Oy est axe de symétrie du problème et le champ total $ec{ extbf{E}}$ doit respecter cette symétrie, on a donc $\overrightarrow{u_E}=\pm\overrightarrow{u_V}$, faire en plus un schéma. De plus le problème est invariant selon x et donc le champ total \overrightarrow{E} ne doit pas dépendre de x.

5) Donner l'expression
$$dE$$
 de $d\vec{E}$ projeter selon $\overrightarrow{u_E}$, en fonction de θ , ε_0 , h et $d\theta$.
$$dE = \frac{h\lambda dx}{4\pi\varepsilon_0 r^3} = \frac{\lambda dx}{4\pi\varepsilon_0 h^2} \cos^3(\theta) \text{ avec } x = h. \tan(\theta) \text{ soit } dx = \frac{h}{\cos^2(\theta)} d\theta$$

On a donc : $dE = \frac{\lambda d\theta}{4\pi\epsilon_0 h} cos(\theta)$

6) Donner l'expression \vec{E} du champ électrostatique produit en M par la totalité de la distribution linéaire de charges.

Pour balayer tout le fil θ on doit faire varier θ entre $\frac{\pi}{2}$ et $-\frac{\pi}{2}$ On a donc E= $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\lambda}{4\pi\varepsilon_0 h} \cos(\theta) d\theta.$

$$E = \frac{\lambda}{4\pi\varepsilon_0 h} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(\theta) d\theta = \frac{\lambda}{4\pi\varepsilon_0 h} [\sin(\theta)]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\lambda}{2\pi\varepsilon_0 h}$$

$$\vec{E}(M) = \frac{\lambda}{2\pi\varepsilon_0 h} \vec{u_y}$$

- 5.* Un cercle de rayon R, centré en O dans le plan xOy, porte une densité linéaire uniforme de charges / . On veut calculer le champ électrique créé en un point M située sur l'axe ZOZ orthogonal à ce plan, à la distance z de O. On note θ l'angle entre la droite (OM) et l'axe (Oz)
 - 1) Faire un schéma de l'expérience dans un repère cartésien (Oxyz). L'axe z'Oz étant la verticale.

2) Donner l'expression $d\vec{E}$ du champ électrostatique exercé au point M par un élément de surface dl de distribution linéaire de charges. On notera \vec{u} le vecteur unitaire donnant l'orientation de $d\vec{E}$.

La charge de l'élément dl est λdl et crée un champ $d\vec{E}$ en M: $d\vec{E} = \frac{\lambda dl}{4\pi\epsilon_0 OM^2} \vec{u}$ avec $OM^2 = z^2 + R^2$.

3) On note :φ l'angle qui permet de repérer l'élément de longueur dl par rapport à l'axe (Ox). Donner l'expression de dl en fonction de R et φ.

 $dl = Rd\varphi$

4) En utilisant la symétrie du problème, donner l'ori d1 on $\overrightarrow{u_E}$ du champ électrique total produit en M la totalité de la distribution linéaire un charges.

On a une symétrie de révolution autour de l'axe Oz, le champ \vec{E} doit respecter cette symétrie de révolution, $\overrightarrow{u_E}$ est donc orienté selon $\overrightarrow{u_z}$.

5) Donner l'expression dE de $d\vec{E}$ projeter selon $\overrightarrow{u_E}$.

$$dE = \frac{\lambda dl}{4\pi\varepsilon_0 OM^2} cos(\theta)$$

6) Exprimer dE en fonction de R, z, / q et φ (et bien sur π et ε_0).

$$OM = \frac{z}{cos(\theta)}$$
 et $dl = Rd\varphi$ et $cos(\theta) = \frac{z}{OM} = \frac{z}{\sqrt{z^2 + R^2}}$ On a donc:
 $dE = \frac{\lambda Rd\varphi}{4\pi\epsilon_0 z^2} cos^3(\theta) = \frac{z\lambda Rd\varphi}{4\pi\epsilon_0 (z^2 + R^2)^{\frac{3}{2}}}$

7) Donner l'expression \vec{E} du champ électrostatique produit en M par la totalité de la distribution linéaire de charge.

Pour balayer tout le fil φ on doit faire varier φ entre 0 et 2π On a donc :

$$E = \int_0^{2\pi} \frac{z \lambda R d \varphi}{4 \pi \varepsilon_0 (z^2 + R^2)^{\frac{3}{2}}} = \frac{z \lambda R}{4 \pi \varepsilon_0 (z^2 + R^2)^{\frac{3}{2}}} \int_0^{2\pi} d \varphi = \frac{z \lambda R}{2 \varepsilon_0 (z^2 + R^2)^{\frac{3}{2}}}$$

 $\overrightarrow{E}=\pm rac{\lambda Rz}{2arepsilon_0(z^2+R^2)^{\frac{3}{2}}}\overrightarrow{u_z}$ Le champ ne dépend que de z il faut donc l'exprimer en fonction de z.

8) En déduire la force électrique exercée par cette distribution sur une charge ponctuelle q en fonction de z.

$$\vec{F} = \frac{q\lambda Rz}{2\varepsilon_0(z^2 + R^2)^{\frac{3}{2}}} \vec{u}_z$$

- 6. Un disque de rayon R est centré en O dans le plan [xOy]. Il porte une densité superficielle de charge uniforme S. On veut calculer le champ électrique $\overline{E(z)}$ résultant en tout point z > 0 de son axe $z \in Oz$.
 - 1) Faire un schéma de l'expérience dans un repère cartésien (Oxyz). L'axe z'Oz étant la verticale.

2) Donner l'expression $d\vec{E}$ du champ électrostatique exercé au point M par un élément de surface dS de distribution surfacique de charges. On notera \vec{u} le vecteur unitaire donnant l'orientation de $d\vec{E}$.

La charge de l'élément dS est σdS et crée un champ $d\vec{E}$ en M:

$$d ec{E} = rac{\sigma dS}{4\pi arepsilon_0 OM^2} ec{u}$$
 avec $OM^2 = z^2 +
ho^2$

3) On note : ρ la distance en l'élément de surface dS et φ l'angle qui permet de repérer l'élément de surface dS par rapport à l'axe (Ox). Donner l'expression de l'élément de surface dS en fonction de ρ et de φ.

$$dS = \rho d\varphi d\rho$$

4) En utilisant la symétrie du problème, donner l'orientation $\overrightarrow{u_E}$ du champ électrique total produit en M la totalité de la distribution surfacique de charges.

On a une symétrie de révolution autour de l'axe Oz, le champ \vec{E} doit respecter cette symétrie de révolution, $\overrightarrow{u_E}$ est donc orienté selon $\overrightarrow{u_z}$.

5) Donner l'expression dE de $d\vec{E}$ projeter selon $\overrightarrow{u_E}$.

$$dE = \frac{\sigma dS}{4\pi\varepsilon_0 OM^2} cos(\alpha)$$

6) Exprimer dE en fonction uniquement de ρ , z, / q et φ (et bien sur π et ε_0)

$$dE = \frac{\sigma \rho d\varphi d\rho}{4\pi \varepsilon_0 (z^2 + \rho^2)} cos(\alpha) \text{ et } cos(\alpha) = \frac{z}{0M} = \frac{z}{\sqrt{z^2 + \rho^2}}$$

Donc:
$$dE = \frac{z\sigma\rho d\phi d\rho}{4\pi\epsilon_0(z^2+\rho^2)^{\frac{3}{2}}}$$

7) Donner l'expression \vec{E} du champ électrostatique produit en M par la totalité de la distribution surfacique de charge.

Pour balayer toute la surface on doit faire varier φ entre 0 et 2π et ρ entre 0 et R On a donc :

$$E = \int_0^R \int_0^{2\pi} \frac{z\sigma\rho}{4\pi\epsilon_0 (z^2 + \rho^2)^{\frac{3}{2}}} d\phi d\rho = \frac{z\sigma}{4\pi\epsilon_0} \int_0^R \frac{\rho d\rho}{(z^2 + \rho^2)^{\frac{3}{2}}} \int_0^{2\pi} d\phi = \frac{z\sigma}{2\epsilon_0} \int_0^R \frac{\rho d\rho}{(z^2 + \rho^2)^{\frac{3}{2}}} d\phi d\rho$$

$$\int_0^R \frac{\rho d\rho}{(z^2 + \rho^2)^{\frac{3}{2}}} = \left[\frac{-1}{(z^2 + \rho^2)^{\frac{1}{2}}} \right]_0^R = \frac{1}{z} - \frac{1}{\sqrt{z^2 + R^2}}$$

$$E = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right)$$

$$\overrightarrow{E(M)} = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right) \overrightarrow{u_z}$$
 Le champ ne dépend que de z et de R

8) Que devient $\overline{E(z)}$ lorsque $R \rightarrow \infty$?

Quand R tend vers l'infini on a : $\vec{E}=\pm \frac{\sigma}{2\varepsilon_0} \overrightarrow{u_z}$ On retrouve le champ d'un plan chargé uniformément