

Кубик ЛФИ

Ёжик в туманности

Ёжик находится в Туманности Андромеды в Системе Можжевеловой Веточки, в центре которой находится Звезда Дельта. Вокруг Дельты движется несколько планет по круговым орбитам, лежащим в одной плоскости.

Сам Ёжик находится на Планете Бета, период которой равен 540 земных суток (т. е. 18 месяцев по 30 дней в каждом). Сутки на Планете Бета совпадают с сутками на Земле. Ёжик внимательно следит за Планетой Альфа Штрих (которая расположена дальше от Звезды) и ее Спутником Мачо, орбита которого лежит в той же плоскости, что и орбиты планет.

Ёжик заметил, что синодический период Мачо (по отношению к Альфе Штрих) равен 42 часа 28 минут и 30 секунд (и ни секундой меньше!). Ежик записывал даты, когда Мачо входил в тень от Планеты Альфа Штрих (см. таблицу). Радиус орбиты Планеты Бета по данным Ёжика 130 млн. км.

Примечание. Размеры и яркость Звезды Дельта такие, что Ёжик видит Альфу Штрих и Мачо круглый год. Размер Мачо пренебрежимо мал.

- 1. *(4 балла)* Используя данные, полученные Ёжиком, оцените скорость света в Системе Можжевеловой Веточки.
- 2. (3 балла) Оцените, чему равен радиус орбиты Планеты Альфа Штрих.
- 3. (3 балла) Известно, что Мачо находится в тени Планеты Альфа Штрих 1 час 21 минуту, а максимальный угловой размер этой планеты при наблюдении с Беты $\Delta \alpha = 1,1\cdot 10^{-3}$ рад. Найдите среднюю плотность Планеты Альфа Штрих. Угловой размер звезды Дельта пренебрежимо мал по сравнению с угловым размером Альфы Штрих при взгляде с Мачо.

Авторы задачи: М.А. Еськин

А. А. Корнева Л. М. Колдунов

Данные ёжика

При необходимости вы можете скачать данные в формате csv или excel.

Номер	День	Месяц	Год	Время
0	14	1	75	8:37
1	16	1	75	3:06
2	17	1	75	21:34
3	19	1	75	16:03
4	21	1	75	10:31
5	23	1	75	4:59
6	24	1	75	23:28
7	26	1	75	17:56
8	28	1	75	12:25
9	30	1	75	6:53
10	2	2	75	1:21
11	3	2	75	19:50
12	5	2	75	14:18
13	7	2	75	8:46
14	9	2	75	3:15
15	10	2	75	21:43
16	12	2	75	16:11
17	14	2	75	10:40
18	16	2	75	5:08
19	17	2	75	23:36
20	19	2	75	18:05
21	21	2	75	12:33
22	23	2	75	7:01
23	25	2	75	1:30
24	26	2	75	19:56
25	28	2	75	14:26
26	30	2	75	8:55
27	2	3	75	3:23
28	3	3	75	21:51
29	5	3	75	16:19
30	7	3	75	10:48
31	9	3	75	5:16
32	10	3	75	23:44
33	12	3	75	18:12
34	14	3	75	12:41
35	16	3	75	7:09
36	18	3	75	1:37
37	19	3	75	20:05
38	21	3	75	14:34
39	23	3	75	9:02
40	25	3	75	3:30

Номер	День	Месяц	Год	Время
41	26	3	75	21:58
42	28	3	75	16:27
43	30	3	75	10:55
44	2	4	75	5:23
45	3	4	75	23:51
46	5	4	75	18:19
47	7	4	75	12:48
48	9	4	75	7:16
49	11	4	75	1:44
50	12	4	75	20:12
51	14	4	75	14:41
52	16	4	75	9:09
53	18	4	75	3:37
54	19	4	75	22:05
55	21	4	75	16:33
56	23	4	75	11:02
57	25	4	75	5:30
58	26	4	75	23:58
59	28	4	75	18:26
60	30	4	75	12:55
61	2	5	75	7:23
62	4	5	75	1:51
63	5	5	75	20:19
64	7	5	75	14:48
65	9	5	75	9:16
66	11	5	75	3:44
67	12	5	75	22:12
68	14	5	75	16:41
69	16	5	75	11:09
70	18	5	75	5:37
71	20	5	75	0:05
72	21	5	75	18:34
73	23	5	75	13:02
74	25	5	75	7:30
75	27	5	75	1:59
76	28	5	75	20:27
77	30	5	75	14:55
78	2	6	75	9:23
79	4	6	75	3:52
80	5	6	75	22:20
81	7	6	75	16:48

Номер	День	Месяц	Год	Время
82	9	6	75	11:17
83	11	6	75	5:45
84	13	6	75	0:14
85	14	6	75	18:42
86	16	6	75	13:10
87	18	6	75	7:39
88	20	6	75	2:07
89	20	6	75	20:36
90	23	6	75	15:04
91	25	6	75	9:32
92	27	6	75	4:01
93	28	6	75	22:29
94	30	6	75	16:58
95	2	7	75	11:26

Решение

В процессе движения планет расстояние между Планетой Бета и Планетой Альфа Штрих меняется. Из-за этого и конечности скорости света промежуток времени между вхождениями в тень разный.

Ежик увидел вхождение в тень под номером 0, и если бы расстояние не менялось, то следующее он увидел бы через синодический период Мачо. Посчитаем разность между ожидаемой датой вхождения в тень и реальной и построим график (см. рис.).

Этот график — синусоида, так как если пересесть в систему отсчёта Альфа Штрих, Бета будет двигаться равномерно по окружности с синодическим периодом, а промежутки времени между вхождениями в тень разные из-за того, что у Альфа Штрих в процессе движения лучевая скорость меняется и свету приходится проходить разные расстояния. Причём минимум на графике соответствует нижнему соединению Бета (противостояние Альфа Штрих для ёжика), а максимум — верхнему соединению (соединение Альфа Штрих).

Максимальная разность $\tau=1110~{\rm c}$ — из-за того, что свет прошёл на $2a_{\beta}$ больше чем если бы расстояние не менялось (a_{β} — радиус орбиты Бета)

$$c = \frac{2a_{\beta}}{\tau} = 234.2 \cdot 10^3 \frac{\text{KM}}{\text{c}}.$$

Период синусоиды соответствует синодическому периоду T Альфа Штрих

$$T = 2 \cdot 168 \text{ cyt} = 336 \text{ cyt}.$$

Так как T меньше периода обращения T_{β} , то планеты движутся по орбите в разные стороны, исходя из этого найдём период Альфа Штрих $T_{\alpha'}$:

$$\frac{1}{T} = \frac{1}{T_{\beta}} + \frac{1}{T_{\alpha'}}.$$

Откуда находим

$$T_{\alpha'} = \frac{TT_{\beta}}{T_{\beta} - T} = 889 \text{ cyt.}$$

По III закону Кеплера

$$\frac{a_{\alpha'}^3}{a_{\beta}^3} = \frac{T_{\alpha'}^2}{T_{\beta}^2}.$$

Откуда находим

$$a_{lpha'}=a_{eta}\sqrt[3]{rac{T_{lpha'}^2}{T_{eta}^2}}pprox 180$$
 млн км.

Длина части орбиты, где Мачо в тени приблизительно равна $2R_{\alpha'}$, так как Дельта находится далеко и лучи параллельны. Пусть r — радиус орбиты Мачо, тогда

$$\frac{t}{T_0} = \frac{2R_{\alpha'}}{2\pi r}.$$

Откуда

$$r = \frac{TR_{\alpha'}}{\pi t}.$$

Здесь $T_0 = 42$ часа 28 минут и 30 секунд, t = 1 час 21 минута. Синодический период Мачо относительно Бета примерно равен сидерическому, тогда

$$T_0 = 2\pi \sqrt{\frac{r^3}{GM}}.$$

Тогда

$$M = \frac{4\pi^2 r^3}{GT^2}; \implies \rho = \frac{M}{\frac{4}{3}\pi R_{\rho'}^3} = 6.1 \frac{\mathrm{K}\Gamma}{\mathrm{cm}^3}.$$

Альтернативная задача

- 1. В далекой системе две Планеты движутся по круговым орбитам вокруг Солнца. Продолжительность года на первой 250 земных суток, а на второй 1000 земных суток. В момент противостояния расстояние между двумя планетами равно 300 млн км.
 - а) (1 балл) Определите радиусы орбит этих планет.
 - б) (1 балл) Через сколько дней наступит соединение планет, если одни движутся в одну сторону; в разные?
- 2. (4 балла) В центре крабовидной туманности есть излучающий объект PSR B0531+21. По зависимости мощности излучения этого объекта от времени учёные поняли, что он вращается вокруг своей оси с периодом 29,6 секунд. Оцените среднюю плотность объекта PSR B0531+21.
- 3. (4 балла) Винни-Пух и Пятачок находятся на двух одинаковых точечных метеоритах, соединенных невесомым стержнем и вращающихся вокруг общего центра масс (массы метеоритов много больше массы медведя и борова). Длина стержня 50 м, период вращения метеоритов 100 с. Свинья стреляет в косолапого из ружья. Скорость пули 300 м/с. Определите, под каким углом α к стержню должен стрелять хряк, чтобы поразить (во всех смыслах) плюшевого. Влиянием гравитации пренебречь. Считайте, что скорость пули много больше скорости вращения метеоритов.

Решение альтернативной задачи

1. а. Пусть радиусы планет R_1 и R_2 , их периоды равны $T_1=250$ суток и $T_2=1000$ суток. Тогда

$$R_1 = R_2 \sqrt[3]{\frac{T_1^2}{T_2^2}} = R_2 2 \sqrt[3]{2}.$$

Также по условию

$$R_1 + R_2 = 300$$
 млн км.

Откуда находим

$$R_2 = rac{R_1 + R_2}{1 + 2\sqrt[3]{2}} = 85.2$$
 млн км; $R_1 = 214.8$ млн км.

б. Планетам надо пройти половину круга, а их частоты обращения равны $1/T_1$ и $1/T_2$. Если планеты вращаются в одну сторону

$$rac{rac{1}{2}}{rac{1}{T_1}-rac{1}{T_2}}=rac{T_1T_2}{2(T_2-T_1)}=167$$
 дней.

Если планеты вращаются в разные стороны

$$rac{T_1T_2}{2(T_2+T_1)}=100$$
 дней.

2. Рассмотрим небольшой кусочек этого объекта на экваторе. Пусть M — масса объекта, R — его радиус, T — период вращения. Тогда центробежное ускорение равно

$$\omega^2 R = G \frac{M}{R^2}.$$

Откуда находим

$$ho = \frac{M}{\frac{4}{3}\pi R^3} = 1.6 \cdot 10^8 \text{ kg/m}^3.$$

3.

Способ 1. При решении в исходной системе координат (см. рис.) необходимо учесть, что в момент вылета пуля имеет также нормальную к направлению ружья (за счёт его движения вместе с каруселью) компоненту скорости $v_1 = \omega R$. При прохождении пулей расстояния 2R это даст

$$s_1 = \frac{\omega R2R}{v}.$$

Так как за время полёта пули и Винни уйдёт в том же направлении на

$$s_2 = \frac{\omega R2R}{v}$$
.

то снова

$$\alpha = \frac{2\omega R}{v}.$$

Способ 2. Будем решать задачу в приближении, что скорость пули значительно превосходит максимальную линейную скорость метеоритов ωR . Пренебрежём также влиянием центробежных сил, так как они лишь незначительно меняют скорость пули в направлении радиуса, по которому движется пуля.

Рассмотрим систему связанную с метеоритами (отклонение происходит под действием силы Кориолиса):

$$ma = F_{\kappa} = 2m\omega v.$$

Обозначим за s — смещение, перпендикулярное диаметру, вдоль которого направлена скорость в начальный момент), t=2R/v и, следовательно,

$$s = \omega v t^2 = \frac{4\omega R^2}{v}.$$

Угол, соответствующий этому смещению,

$$\alpha = \frac{s}{2R} = \frac{2\omega R}{v}.$$

Изменением направления силы Кориолиса из-за изменения скорости пули в результате появления s пренебрегаем, так как эти изменения малы

$$s = 2\omega vt = 4\omega R \ll v.$$

Можно отметить, что в том же приближении $\omega R \ll v$ можно траекторию движения пули считать окружностью, так как сила Кориолиса всегда перпендикулярна к направлению скорости, а центробежными силами мы пренебрегаем.