Stochastic Multi-Period OLG Model

Prof. Lutz Hendricks

Econ821

January 29, 2015

Contents

Introduction	3
Model Features	4
Model Primitives	5
Household Problem	7
Stationary Equilibrium	10
Parameter Choices	13

Introduction

We develop a realistically calibrated OLG model with heterogeneous agents.

Based on Huggett (1996)

We study the implications for

- consumption/saving puzzles
- wealth distribution.

Model Features

Households:

- Live for many (a_D) periods
- Earnings are random
- Age of retirement is fixed (a_R) .

Government:

• Pays transfers to retired households (annuitized income in the data)

Simplifying assumptions:

- Steady state
- No random mortality
- No intergenerational links
- No labor-leisure choice.

Model Primitives

Demographics

Households live for exactly a_D periods.

Total mass of households is N = 1.

In each period, $1/a_D$ households are born.

Mass of households aged a: $N_a = 1/a_D$.

Mass of retired households: $N_R = (a_D - a_R)/a_D$.

Preferences

$$\mathbb{E}\sum_{a=1}^{a_D} \beta^a u(c_a) \tag{1}$$

Technologies

$$F(K, L) = (1 - \delta) K + C + G + K'$$
(2)

Endowments

Working agents are endowed with labor efficiency $\eta_a e_a$

 η_a : age-efficiency profile

 e_a : labor efficiency (wage) shock

- governed by a Markov chain: $\Pr(e' = \varepsilon_k | e = \varepsilon_j) = P_e(k, j)$.
- new agents draw labor endowments from a fixed distribution.
- number of states: N_e .

Markets

Labor: wage w

Capital rental:

Goods: numeraire.

Government

Balances the budget in each period: G + X = T

Tax revenues: $T = \tau_w w L$.

Government consumption is thrown into the ocean (G).

Transfers are paid equally to all households who are retired: $\varpi(a) = \varpi$ if $a > a_R$.

Aggregate transfers: $X = N_R \varpi$.

Household Problem

Exogenous state variables are age a and labor endowment e: s = (a, e).

Endogenous state variable: wealth k.

Borrowing constraint: $k \ge 0$.

Sequence problem

$$\max E \sum_{a=1}^{a_D} \beta^a u(c_a)$$

subject to

$$k_{a+1} = y_a - c_a \ge 0$$

$$y_a = R k_a + w(1 - \tau_w) \eta_a e_a + \varpi (a)$$
(3)

Household Dynamic Program

$$V(k,s) = \max u(y(k,s) - k') + \beta \mathbb{E}V(k',s')$$
(4)

with

$$y(k,s) = Rk + w(1 - \tau_w)\eta_a e + \varpi(s)$$
(5)

subject to $k' \geq 0$.

Euler equation:

$$u'(c) \ge \beta R \mathbb{E} u'(c') \tag{6}$$

with equality if k' > 0.

Household Solution

Solution is a consumption function c(k, a, e) which satisfies

$$u'(c[k, a, e]) \ge \beta R \sum_{e'} P_e(e, e') u'(c[y - c(k, a, e), a + 1, e'])$$

In the last period, consume all income:

$$c(k, a_D, e) = y(k, a_D, e) \tag{7}$$

Stationary Equilibrium

Objects:

Distribution of households over exogenous types:

• $\Lambda(s)$ denotes fraction of households of type s.

Distribution over all types:

• $\Gamma(k,s)$ denotes the density.

Household policy function c(k, s) and value function V(k, s).

Aggregate quantities: K, L, X. Price functions: r(K, L), w(K, L).

Equilibrium conditions

Household policy and value functions are optimal.

Prices equal marginal products:

•
$$r = F_K(K, L), w = F_L(K, L).$$

Goods market clears: Y = C + I + G.

Labor market clears: $L = \sum_{s} e(s) \eta(s) \Lambda(s)$.

Capital market clears: $K = \sum_{s} \int_{k} \Gamma(k, s) k \, dk$.

Distribution of households is stationary.

Identities and definitions: Set of states where households work: $S_w = \{s : a \leq a_R\}$.

Set of states where households are retired: $S_R = \{s : a > a_R\}.$

Aggregate investment: $I = K' - (1 - \delta) K$.

$$K' = \sum_{s} \int_{k} \Gamma(k, s) \, k'(k, s) \, dk.$$

Household rate of return: $R = 1 + r - \delta$.

Remarks

The distribution of household types Γ is complicated (an infinite dimensional object). It must be approximated on a grid for k.

Why not restrict k to lie on a grid? This might greatly simply computations.

Parameter Choices

Calibrated parameters: β , δ , A.

Calibration targets: K/Y, w = 1, R.

Period length: λ years per model period.

Preferences

```
u(c) = c^{1-\sigma}/(1-\sigma)
 \sigma = 2.
```

Choose β to match $K/Y = 2.9/\lambda$.

Demographics

Households live from age 20 to 79.

Work from 20 to 64 (45 years).

Retire for 15 years.

 $a_R = round (45/\lambda)$

 $a_D = round(60/\lambda)$

Production Function

$$F(K,L) = A K^{\alpha} L^{1-\alpha}.$$

$$\alpha = 0.36.$$

Choose δ and A to match

- w = 1
- R = 1.04

Government

 $\tau_w = 0.4$ (Trostel 1993).

Set transfers to 40% of average earnings.

• This can be done before computing equilibrium.

Labor Endowments

Can be set before equilibrium is computed.

Empirical studies estimate AR(1) processes for [log earnings] minus [mean log earnings, η_a] by age.

New agents draw endowments from exogenous distribution:

$$\ln{(e_1)} \backsim N(0, \sigma_1^2).$$

Over time, endowments are drawn from an AR(1):

$$\ln(e_a) = \eta_a + \gamma \ln(e_{a-1}) + \varepsilon_a.$$

$$\ln(\varepsilon_a) \backsim N(0, \sigma_{\varepsilon}^2).$$

We follow Huggett (1996):

- $\sigma_1^2 = 0.38$, $\sigma_{\varepsilon}^2 = 0.045$, $\gamma = 0.96$.
- Approximate the AR(1) on a grid of 18 states equally spaced over $\pm 4 \sigma_1$.
- Add an additional state at $+6\sigma_1$ to capture skewness of earnings distribution.
- Use Tauchen (1986) (we have code for that)

Age-efficiency profile

Fig. 1. Earnings profile (ratio to overall mean).

From PSID data (Huggett, 1996)

References

Huggett, M. (1996): "Wealth distribution in life-cycle economies," *Journal of Monetary Economics*, 38, 469–494.

TAUCHEN, G. (1986): "Finite state markov-chain approximations to univariate and vector autoregressions," *Economics letters*, 20(2), 177–181.