Multi-Task Federated Learning for Personalized Deep Neural Networks

TEAM -6

DEEPTI SINHA MADHURA KADABA PRAJNA K SARTHAK SHARMA SUBIN PILLAI

<u>IISC FACULTY</u> PROF. CHANDRAMANI SINGH

Multi-Task Federated Learning (MTFL)

Multi-task Federated Learning (MTFL) is an extension of Federated Learning (FL) that focuses on training multiple related models across distributed devices rather than a single global model, without sharing any raw data.

KEY DIFFERENCES:-

Feature	Federated Learning (FL)	Multi-task Federated Learning** (MTFL)			
Model type	Single Global Model	Multiple Personalized Models			
Data distribution	Assumed similar data across all clients	Handles heterogenous data across clients (non–IID different but related datasets)			
Optimization strategy	Federated Averaging (FedAvg)	Multi-task optimization (FedAvg-Adam**)			
Accuracy metric	Global model accuracy	User model accuracy (UA **)			
Use case	Common tasks across all clients	Personalized learning for all clients			
Computation	Takes place centrally on the server	Off-loaded to client devices			

Multi-Task Federated Learning (MTFL)

Feature	Federated Learning (FL)	Multi-task Federated Learning** (MTFL)
Loss function	$F_{\mathrm{FL}} = \sum_{k=1}^K \frac{n_k}{n} \ell_k(\Omega)$ where K is the total number of clients, n_k is the number of samples on client k , n is the total number of samples across all clients, ℓ_k is the loss function on client k , and Ω is the set of global model parameters.	$F_{\text{MTFL}} = \sum_{k=1}^K \frac{n_k}{n} \; \ell_k(\mathcal{M}_k)$ $\mathcal{M}_k = (\Omega_1 \cdots \Omega_{i_1}, P_{k_1}, \Omega_{i_1+1} \cdots \Omega_{i_m}, P_{k_m}, \Omega_{i_m+1} \cdots \Omega_{j})$ where \mathcal{M}_k is the patched model on client k , composed of Federated model parameters $\Omega_1 \cdots \Omega_j$ (j being the total number of Federated layers) and patch parameters $P_{k_1} \cdots P_{k_m}$ (m being the total number of local patches, $\{i\}$ being the set of indexes of the patch parameters) unique to client k .

MULTI-TASK FEDERATED LEARNING Server Save Global Model Aggregate client Wait for clients to Send work requests upload in parallel to clients Global Model Work Client Download Request Accept Client Accept / reject Train using ML Receive global work request framework model, augment with personal patches Save Patches REFERENCE: https://arxiv.org/pdf/2007.09236

MTFL ALGORITHM

<u>Step 1:</u> The server selects a subset of clients from its database to participate in the round, and sends a work request to them.

<u>Step 2:</u> Clients reply with an accept message depending on physical state and local preferences.

<u>Step 3:</u> Clients download the global model (and any optimization parameters) from the server, and update their copy of the global model with private Batch Norm layers as patches.

<u>Step 4:</u> Clients perform local training using their own data, creating a different model. Clients save the private patch layers (BN) locally, and upload their non private model parameters to the server.

<u>Step 5:</u> The server waits for C fraction of clients to upload their non-private model and optimizer values, or until a time limit.

<u>Step 6:</u> The server averages all models, saves the aggregate, and starts a new round.

Algorithm 1: MTFL 1: Initialise global model Ω and global optimiser values V2: while termination criteria not met do Select round clients, $S_r \subset S$, $|S_r| = C \cdot |S|$ for each client $s_k \in S_r$ in parallel do Download global parameters $\mathcal{M}_k \leftarrow \Omega$ Download optimiser values $V_k \leftarrow V$ for $i \in \text{patchIdxs do}$ ▷ Apply local patches $\mathcal{M}_{k,i} \leftarrow P_{k,i}, V_{k,i} \leftarrow W_{k,i}$ end for for batch b drawn from local data D_k do 10: $\mathcal{M}_k, V_k \leftarrow \text{LocalUpdate}(\mathcal{M}_k, V_k, b)$ 11: end for for $i \in patchIdxs do$ Save local patches 13: $P_{k,i} \leftarrow \mathcal{M}_{k,i}, W_{k,i} \leftarrow V_{k,i}$ 14: end for 15: patchldxs contain for each $i \notin patchIdxs do$ 16: the indexes of the Upload $\mathcal{M}_{k,i}, V_{k,i}$ to server 17: patch layer placement in the end for 18: DNN end for 20: for $i \notin \text{nonPatchIndexes do}$ $\Omega_i \leftarrow \text{GlobalModelUpdate}(\Omega_i, \{\mathcal{M}_{k,i}\}_{k \in S_r})$ $V_i \leftarrow \text{GlobalOptimUpdate}(V_i, \{V_{k,i}\}_{k \in S_r})$ end for 24: end while

MTFL ALGORITHM

We simulated the federated learning process with Global Server + Multi-Client setup using the <u>Flower framework</u>.

Each sampled client trained locally on their own data.

<u>METRICS</u>: User model accuracy (UA), Number of communication rounds required to achieve benchmark user model accuracy.

<u>STOPPING CRITERIA</u>: Reach benchmark user model accuracy (UA = 97% for MNIST, UA = 65% for CIFAR10) or run for a fixed number of communication rounds (T).

We compared the performance with custom optimization strategy (FedAvg-Adam) and various existing strategies (FedAvg, FedAdam) with/without private BN params.

REFERENCE: https://arxiv.org/pdf/2007.09236

OPTIMIZATION STRATEGIES

FedAvg

LocalUpdate is minibatch-SGD.

GlobalModelUpdate produces the new global model as a weighted (by number of local samples) average of uploaded client models.

Clients do not use distributed adaptive optimization. (Optimizers V is empty).

GlobalOptimUpdate performs no function.

<u>FedAdam</u>

LocalUpdate is minibatch-SGD.

GlobalModelUpdate, the server takes the difference (\(\Delta r \) between the previous global model and the average uploaded client model to update the global model using an Adam-like update step.

Clients do not use distributed adaptive optimization. (Optimizers V is empty).

GlobalOptimUpdate performs no function.

Optimisation Strategy	LocalUpdate	GlobalModel Update	GlobalOptim Update		
FedAvg	SGD	Average	-		
FedAdam	•SGD	Adam	-		
FedAvg-Adam	Adam	Average	Average		

FedAvg-Adam

All clients share a global set of **Adam optimizer** values (Optimizers V) received from server.

During **LocalUpdate**, clients perform **Adam SGD**, and the federated model layers and new **Adam** values are uploaded by clients at the end of the round.

To produce a new global model, the server **averages** the client models in **GlobalModelUpdate** and **averages** the **Adam** moments in **GlobalOptimUpdate**.

Benefits: Improved convergence speed.

Downside: Increased communication cost per round.

DATASET & FRAMEWORKS USED

Datasets:

	MNIST	CIFAR10			
Data Size	70,000 labelled images (60k train + 10k test)	60,000 labelled images (50k train + 10k test)			
Image size	28x28x1 (Gray-scale)	32x32x3 (RGB image)			
Classes	10 (handwritten digits)	10 (birds, animals, automobiles)			
Transforms	Normalize, Convert to tensor	Normalize, Convert to tensor			

800)

OX.

frog

truck

DATA PRE-PROCESSING

<u>Creating non-IID data-set partitions across clients:</u>

- We created a custom function to generate the non-IID partitions, aligned with the strategy described in the paper.
- First, we order the training and testing dataset by label and then perform the non-IID split.

Each client has the same classes within their respective training

20

10

20

Partition ID

and testing datasets

Data distribution for 10 random clients post non-IID data-set partition for CIFAR-10

Number of clients = W

Shards per client = 2

Number of shards = 2xW

truck

Per Partition Labels Distribution

airplane -	0	0	0	0	0	0	312	0	0	8	- 600
automobile -	0	0	312	0	0	312	0	624	0	304	500
bird -	0	0	0	0	0	0	0	0	0	0	- 500
cat -	0	312	0	312	0	0	0	0	0	0	- 400
deer -	0	0	0	0	0	0	312	0	0	0	- 300 Count
dog -	0	0	312	0	0	312	0	0	0	0	- 300 ලි
frog -	624	0	0	312	312	0	0	0	0	312	- 200
horse -	0	0	0	0	0	0	0	0	64	0	
ship -	0	312	0	0	312	0	0	0	248	0	- 100
truck -	0	0	0	0	0	0	0	0	312	0	
	Ó	i	2	3	4 Partit	5 ion ID	6	7	8	9	- 0

MODEL DETAILS (DNN with private BN)

PRIVATE BATCH NORM LAYERS (PATCHES)

Batch Normalization (BN) layers **normalize** the **activations** of a neural network **within each mini-batch** to stabilize and accelerate training by reducing internal covariate shift.

Private BN layers allow local adaptation to non-IID data

Adding BN **throughout the network** acts as regularization → local outputs remain closer to their own distribution

Noisy clients can't "pollute" the global model as easily because **BN** updates stay local

(b) Effect of patch layers on activations

EXPERIMENTS & OBSERVATIONS - (1)

Comparing Loss and User Accuracy for FL-FedAvg vs MTFL-FedAvg-Adam (private gamma and beta) using **CIFAR10 data**

EXPERIMENTS & OBSERVATIONS - (2)

Caveat: Target accuracy for experiment was reached for MTFL-FedAvg-Adam before C (fraction of clients) was connected for training

EXPERIMENTS & OBSERVATIONS - (3)

Comparing Test Accuracy for FL- FedAvg/FedAvg-Adam vs MTFL- FedAvg/FedAvg-Adam using MNIST data Clients = 200, Rounds = 300, Sample = 0.5

FL (No private parameters)

MTFL (u, s, y, b private BN parameters)

Convergence is faster with FedAvg-Adam algorithm when compared with FedAvg. No. of rounds needed to reach 97% benchmark accuracy is much lower for case 2 than case 1

EXPERIMENTS & OBSERVATIONS -(4)

Comparing Test Accuracy for FL- FedAvg/FedAvg-Adam vs MTFL- FedAvg/FedAvg-Adam using **MNIST** data Clients = 200, Rounds = 300, Sample = 0.5

MTFL (u,s private BN parameters)

MTFL (y,b private BN parameters)

Convergence is faster with FedAvg-Adam algorithm when compared with FedAvg.

No. of rounds needed to reach 97% benchmark accuracy is much higher in case 1 than case 2

RESULTS AND DISCUSSIONS

Variation in the per-round testing User accuracy and loss in the FL-FedAvg approach

Variation in the per-round testing User Accuracy in the FL-FedAvg approach

Evidence of **catastrophic forgetting** in FedAvg

FedAvg has **oscillations** and slower convergence, affected by client drift

FedAvg loss hovers inconsistently between 2.0–3.5, showing **instability** in optimization

RESULTS AND DISCUSSIONS

Variation in the per-round testing User accuracy and loss in the MTFL-FedAvg approach

Variation in the per-round testing User Accuracy in the MTFL-FedAvg approach

MTFL achieves significantly **better** final accuracy

MTFL **converges faster** and more smoothly

MTFL reduces inter-client variance, **better consistency and stability** in MTFL

MTFL loss graph shows **sharp**, **smooth decrease** down to ~0.4

Personalized optimization and private BN clearly handle **client heterogeneity**

<u>Team -6:</u>

Deepti Sinha, Madhura Kadaba, Prajna k, Sarthak Sharma, Subin Pillai