SIMPLE EXAMPLES OF THE USE OF MIF WITHIN THE POMP PACKAGE

AARON A. KING

In this vignette, we show the use of the POMPpackage, and the MIFalgorithm within it by means of simple examples. The first is a trivial example: much simpler methods could be used for this model. Nevertheless, it will serve to illustrate the functionality provided by POMPand to give some hints as to its use. The second example is nontrivial and involves a model for which alternate fitting procedures are available. One can therefore check the consistency of the results MIFgives.

1. Getting started with pomp

2. A TRIVIAL EXAMPLE: IID NOISE

A trivial example of a state-space model is afforded by the case of an i.i.d. random variable. The example is useful insofar as it allows us to demonstrate the use of the pomp package.

2.1. **The model.** We will denote the unobserved (state) process by X_t and the observed process by Y_t . To be specific, assume that the unobserved process is just a constant process: $X_t = \mu$. The observation process is just measurement with normal error:

$$Y_t \sim N(X_t, \sigma^2).$$

So $Y_t \sim N(\mu, \sigma^2)$. Although it isn't natural in this problem, many other problems will have a additional parameters, namely, the initial values of the state variables. Let's assume that we have an initial condition in this problem as well: $X_0 = x_0$. We'll have to estimate μ , σ , and x_0 .

2.2. **Inference using pomp.** The basic element of the pomp package is the pomp, or "partially-observed Markov process" object. Let's set up such an object for the IID model above using simulated data. First, we'll need to load the package:

> require(pomp)

We'll use the following parameters for generating the simulated data.

Date: May 22, 2007.

We can plot the results (Fig. 1).

```
> true.params < c(m = 5, s = 3, x0 = 10)
  Now we come to the setup of the pomp object itself. First we'll
generate some simulated data:
> x \leftarrow with(as.list(true.params), rbind(time = seq(1, 100), obs = rnorm(100,
      mean = m, sd = s)))
Next, we'll need four basic functions, which define the model we're
interested in. These are
    rprocess: This function simulates one step of the unobserved pro-
      cess, i.e., it is a random draw from the conditional distribution
      f(X_{t+1} | X_t).
    rmeasure: This simulates the measurement process, given the
      state. That is, it is a random draw from the conditional distri-
      bution f(Y_t | X_t).
    dmeasure: This furnishes the probability density or mass of the
      measurement process, i.e., it gives f(Y_t = y \mid X_t).
    particles:
> rprocess <- function(X, t1, t2, ...) {</pre>
      X["x",] <- X["m",]
      Χ
+ }
> rmeasure <- function(X, time, ...) {</pre>
      rnorm(ncol(X), mean = X["x", ], sd = X["s", ])
+ }
> dmeasure <- function(X, Y, ...) {</pre>
      dnorm(Y["obs"], mean = X["x", ], sd = X["s", ])
+ }
> particles <- function(Np, center, sd, ...) {
      X <- matrix(0, nrow = length(center) + 1, ncol = Np)</pre>
      rownames(X) <- c("x", names(center))</pre>
      X[names(center), ] <- rnorm(Np * length(center), mean = center,</pre>
+
           sd = sd
      X["x", ] \leftarrow X["x0", ]
+
      Χ
+ }
> iid <- pomp(data = x, t0 = 0, rprocess = rprocess, rmeasure = rmeasure,
      dmeasure = dmeasure, particles = particles)
  We can simulate from the pomp object:
> y < - simulate(iid, coef = c(m = 9, s = 1, x0 = 100))
```

> plot(y)

FIGURE 1. Simulating from an pomp object. The command used to generate the plot is shown above.

Now we can use the MIF algorithm to find maximum likelihood estimates of the parameters.

> predvarplot(z)

FIGURE 2. Using predvarplot to choose a good value of CC. The command used to generate the plot is shown above. A value of 5 looks good.

```
> mle <- c(mle.params, loglik = with(as.list(mle.params), sum(dnorm(iid@data[:
+          ], mean = m, sd = s, log = T))))
> best <- pfilter(z)
> best.estimate <- c(coef(z), best$loglik)
> require(xtable)
> xtable(cbind(truth = truth, mle = mle, "MIF estimate" = best.estimate),
+          caption = "Comparison of true, MLE, and best MIF parameters",
+          digits = c(0, 3, 3, 3))
```

> par(mfrow = c(2, 4))

0 20 40 iteration

FIGURE 3. Plotting a mif object.

	truth	mle	MIF estimate
m	5.000	4.978	5.106
S	3.000	3.085	3.033
x0	10.000		5.498
loglik	-254.119	-254.065	-254.168

Table 1. Comparison of true, MLE, and best MIF parameters

3. A NONTRIVIAL EXAMPLE: A 2-D ORNSTEIN-UHLENBECK PROCESS

We will want to maximize the likelihood on a transformed parameter space. It is useful to define functions that will perform the forward and inverse parameter transformations. A. A. KING

FIGURE 4. Results of fitting the model to the data using MIF.

```
par.trans <- function(params) {</pre>
       x <- params
       r \leftarrow length(dim(x))
       if (r > 1) {
            x \leftarrow apply(x, 2:r, par.trans)
       }
+
       else {
            x["alpha.1"] \leftarrow log(-params["alpha.1"])
           x["alpha.2"] \leftarrow log(params["alpha.2"])
            x["alpha.3"] \leftarrow log(-params["alpha.3"])
           x["alpha.4"] \leftarrow log(-params["alpha.4"])
           x["sigma.1"] <- log(params["sigma.1"])</pre>
           x["sigma.3"] \leftarrow log(params["sigma.3"])
           x["tau"] <- log(params["tau"])</pre>
       }
```

```
+
      X
+ }
> par.untrans <- function(params) {</pre>
      x <- params
      r \leftarrow length(dim(x))
+
      if (r > 1) {
          x \leftarrow apply(x, 2:r, par.trans)
+
+
      else {
          x["alpha.1"] \leftarrow -exp(params["alpha.1"])
          x["alpha.2"] \leftarrow exp(params["alpha.2"])
          x["alpha.3"] \leftarrow -exp(params["alpha.3"])
+
          x["alpha.4"] \leftarrow -exp(params["alpha.4"])
          x["sigma.1"] <- exp(params["sigma.1"])</pre>
          x["sigma.3"] \leftarrow exp(params["sigma.3"])
+
+
          x["tau"] \leftarrow exp(params["tau"])
      }
+
      X
+ }
> rw.sd <- c(alpha.1 = 0.1, alpha.2 = 0.1, alpha.3 = 0.1, alpha.4 = 0.1,
      sigma.1 = 0.1, sigma.2 = 0.1, sigma.3 = 0.1, tau = 0.1, x1.0 = 0.2,
      x2.0 = 0.2
> start <- c(alpha.1 = -0.1, alpha.2 = 0.1, alpha.3 = -0.2, alpha.4 = -0.5,
      sigma.1 = 0.1, sigma.2 = 0, sigma.3 = 2, tau = 2, x1.0 = 5,
      x2.0 = 3
> truth <- c(alpha.1 = -0.5, alpha.2 = 0.1, alpha.3 = -0.1, alpha.4 = -0.5,
      sigma.1 = 1, sigma.2 = 0, sigma.3 = 1, tau = 0.5, x1.0 = 5,
      x2.0 = 3
> estnames <- c("alpha.1", "alpha.3", "sigma.1", "sigma.3", "tau")
> fixnames <- c("alpha.2", "alpha.4", "sigma.2")
> ivpnames <- c("x1.0", "x2.0")
> rprocess <- function(X, t1, t2, ...) {</pre>
      nvar <- nrow(X)</pre>
      np \leftarrow ncol(X)
      stateindex <- match(c("x1"), rownames(X)) - 1
      parindex <- match(c("alpha.1", "alpha.2", "alpha.3", "alpha.4",</pre>
           "sigma.1", "sigma.2", "sigma.3"), rownames(X)) - 1
      result <- .C("ou2_adv", X = as.double(X), nvar = as.integer(nvar),
          np = as.integer(np), stateindex = as.integer(stateindex),
+
          parindex = as.integer(parindex), DUP = FALSE, NAOK = TRUE,
+
          PACKAGE = "pomp")$X
```

8 A. A. KING

```
array(result, dim = dim(X), dimnames = dimnames(X))
+ }
> dmeasure <- function(X, Y, ...) {</pre>
      n \leftarrow dim(X)
      measindex <- match(c("x1", "tau"), rownames(X)) - 1
      .C("normal_dmeasure", n = as.integer(n), index = as.integer(measindex),
          X = as.double(X), y = as.double(Y[2]), f = double(n[2]),
          DUP = FALSE, NAOK = TRUE, PACKAGE = "pomp") $f
+ }
> rmeasure <- function(X, time, ...) {</pre>
      n \leftarrow dim(X)
      nsim \leftarrow n[2]
      measindex <- match(c("x1", "tau"), rownames(X)) - 1
      matrix(.C("normal_rmeasure", n = as.integer(n), index = as.integer(measure)
          X = as.double(X), cases = double(nsim), DUP = FALSE,
          NAOK = TRUE, PACKAGE = "pomp")$cases, 1, nsim)
+ }
> particles <- function(Np, center, sd, statenames, parnames, fixnames,
      ivpnames, ...) {
      X <- matrix(data = 0, nrow = length(statenames) + length(parnames) +</pre>
          length(fixnames) + length(ivpnames), ncol = Np, dimnames = list(c(s))
          parnames, fixnames, ivpnames), NULL))
      X[parnames, ] <- rnorm(n = Np * length(parnames), mean = center[parnames</pre>
          sd = sd[parnames])
      X[fixnames, ] <- center[fixnames]</pre>
      X[ivpnames, ] <- rnorm(n = Np * length(ivpnames), mean = center[ivpnames</pre>
+
          sd = sd[ivpnames])
      X[statenames, ] <- X[ivpnames, ]</pre>
+
+ }
> ex <- pomp(data = rbind(t = 1:1000, z = rep(0, 1000)), t0 = 0,
      rprocess = rprocess, dmeasure = dmeasure, rmeasure = rmeasure,
      particles = particles, parnames = estnames, fixnames = fixnames,
      ivpnames = c("x1.0", "x2.0"), statenames = c("x1", "x2"))
> ex <- simulate(ex, coef = par.trans(truth))</pre>
> print(arima.fit <- arima(ex@data[2, ], order = c(2, 0, 2)))
Call:
arima(x = ex@data[2, ], order = c(2, 0, 2))
Coefficients:
                  ar2
                                    ma2 intercept
          ar1
                            ma1
```

```
0.1424
                       -0.3373
                                          -0.0221
      -0.0871
                                0.0650
       0.3767 0.2091
                        0.3765
                                           0.0273
s.e.
                                0.0836
sigma^2 estimated as 1.258: log likelihood = -1533.84, aic = 3079.68
> ff <- pfilter(ex, Np = 1000, coef = par.trans(truth))</pre>
> print(c(loglik = ff$loglik, nfail = ff$nfail))
   loglik
              nfail
-1535.221
              0.000
> x <- mif(ex, start = par.trans(start), rw.sd = rw.sd, Nmif = 1,
      pars = estnames, ivps = ivpnames, stvs = c("x1", "x2"), alg.pars = list
          CC = 7, TO = 4, cooling.factor = 0.95), max.fail = 1000,
      weighted = F)
```


> predvarplot(x)

```
> x <- continue(x, Nmif = 20, max.fail = 100, weighted = F)
> x <- continue(x, Nmif = 80, max.fail = 100, weighted = T)
> plot(x)
> print(x)
1 -variable time series of length: 1000
number of MIF iterations done: 101
```

10 A. A. KING

number of filtering failures: 0

```
5 parameter(s) estimated: alpha.1, alpha.3, sigma.1, sigma.3, tau
 2 state variable(s) (STV): x1, x2
 2 initial-value parameter(s) (IVP): x1.0, x2.0
Sigma (parameter scales):
alpha.1 alpha.2 alpha.3 alpha.4 sigma.1 sigma.2 sigma.3
                                                                  x1.0
                                                           tau
   0.1
           0.1
                   0.1
                           0.1
                                   0.1
                                           0.1
                                                   0.1
                                                           0.1
                                                                   0.2
number of particles = 1000
CC = 7, TO = 4
cooling factor = 0.95
random walk intensity at last MIF iteration:
 alpha.1 alpha.2 alpha.3 alpha.4 sigma.1 sigma.2 sigma.3
                                                                   tau
0.000592 0.000592 0.000592 0.000592 0.000592 0.000592 0.000592 0.000592
   x1.0
            x2.0
0.001184 0.001184
estimated parameter(s):
alpha.1 alpha.3 sigma.1 sigma.3
                                   tau
                                          x1.0
                                                  x2.0
-1.290 -1.385 -1.109 1.071 -0.365
                                         6.303
                                                 5.475
log-likelihood (w/ variable parameters): -1537
```

x2.0

0.2

data


```
> ff.fit <- pfilter(x)
> print(c(loglik = ff.fit$loglik, nfail = ff.fit$nfail))
```

loglik nfail -1534.519 0.000

> print(c(loglik = ff\$loglik, nfail = ff\$nfail))

loglik nfail -1535.221 0.000

> print(arima.fit)

Call:

arima(x = ex@data[2,], order = c(2, 0, 2))

Coefficients:

ar1 ar2 ma1 ma2 intercept -0.0871 0.1424 -0.3373 0.0650 -0.0221 s.e. 0.3767 0.2091 0.3765 0.0836 0.0273

sigma^2 estimated as 1.258: log likelihood = -1533.84, aic = 3079.68

A. A. King, Departments of Ecology & Evolutionary Biology and Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1048 USA

 $E ext{-}mail\ address: aaron.king@umich.edu}\ URL: \ http://www.umich.edu/~kingaa$