

Linear Inequations Ex 15.6 Q4

Consider the line x + y = 4, we observe that the shaded region and the origin are on the same side of the line x + y = 4 and (0,0) satisfies the linear inequation $x + y \le 4$. So, we must have one inequations as $x + y \le 4$

Consider the line y=3, we observe that the shaded region and the origin are on the same side of the line y=3 and (0,0) satisfies the linear inequation $y\le 3$, so, the second inequations is $y\le 3$.

Consider the line x = 3.

We observe that the shaded region and the origin are on the same side of the line x = 3 and $\{0,0\}$ satisfies the linear inequation $x \le 3$. so, the third inequations is $x \le 3$.

Consider the line x+5y=4, we observe that the shaded region and the origin are on the opposite sides of the line x+5y=4 and (0,0) does not satisfy the inequation $x+5y\geq 4$, so, the fourth inequations is $x+5y\geq 4$.

Finally, consider the line 6x + 2y = 8, we observe that the shaded region and the origin are on the opposite sides of the 6x + 2y = 8 and (0,0) does not satisfy the inequation 6x + 2y = 8, so the fifth inequations is 6x + 2y = 8,

we also, notice that the shaded region is above x-axis and is on the right side of y-axis. so, we must have $x \ge 0$ and $y \ge 0$

Thus, the ilnear inequations corresponding to the given solution set are $x+y\leq 4,\ y\leq 3,\ x\leq 3,\ x+5y\geq 4,\ 6x+2y\geq 8,\ x\geq 0,\ y\geq 0.$

Linear Inequations Ex 15.6 Q5

We have, $x+y \le 9$, $3x+y \ge 12$, $x \ge 0$ and $y \ge 0$

Converting the inequations into equations, we get x + y = 9, 3x + y = 12, x = 0 and y = 0.

Region represented by $x+y\geq 9$. Putting x=0 in x+y=9, we get y=9. Putting y=0 in x+y=9, we get x=9.

.. The line x+y=9 meets the coordinat axes at $\{0,9\}$ and $\{9,0\}$. Join these points by a thick line.

Now, putting x=0 and y=0 in $x+y\geq 9$, we get $0\geq 9$ This is not possible.

: We find that (0,0) is not satisfies the inequation $x + y \ge 9$.

So, the portion not containing the origin is represented by the given inequation.

Region represented by $3x + y \ge 12$: Putting x = 0 in 3x + y = 12, we get y = 12Putting y = 0 in 3x + y = 12, we get $x = \frac{12}{3} = 4$.

 \therefore The line 3x + y = 12 meets the coordinate axes at (0,12) and (4,0). Joining these points by a thick line.

Now, putting x = 0 and y = 0 in $3x + y \ge 12$, we get, $0 \ge 12$

This is not possible.

.. we find that (0,0) is not satisfies the inequation $3x + y \ge 12$, so the portion not containing the origin is represented by the given inequation.

Region represented by $x \ge 0$ and $y \ge 0$: clearly, $x \ge 0$ and $y \ge 0$ represent the first quadrant.

******* END ******