

GENERAL APTITUDE

Trainer: Sujata Mohite

Email:sujata.mohite@sunbeaminfo.com

Number_Test1

Q. A number m is multiplied by 11 and then 22 is added to the product. This value is then divided by 17 and we get the result to be a natural number. The smallest possible value of 'm' is

A. 11

B. 15

C. 17

D. 22

Ans: B

Number_Test2

Q. Which of the following is a prime number?

A. 303

Ans : C

B. 477

C. 113

D. None of these

HCF/GCF/GCM

 HCF of two or more numbers is the greatest / largest / highest/biggest number which can divide those two or more numbers exactly.

Factors of 6: 1, 2, 3, 6

Factors of 8: 1, 2, 4, 8

Common 1 & 2 Highest & Common 2

- LCM
- The LCM of two or more numbers is the smallest / lowest / least number which is exactly divisible by those two or more numbers.

Multiples of 6: 6, 12, 18, 24, 30, 36, 42, 48, 54,...

Multiples of 8: 8, 16, 24, 32, 40, 48, 56, 64....

Common 24, 48, Lowest & common 24

HCF (Factorization method)

• Eg. HCF for 136, 144, 168

2	136	144	168
2	68	72	84
2	34	36	42
	17	18	21
		NO FURTHER COMM	ON FACTOR

So $HCF = 2 \times 2 \times 2 = 8$

Note: HCF is always <= the smallest of given nos

HCF (Factorization method)

• HCF of 54,72,126 (factorization method)

A. 21

B. 18

C. 36

D. 54

Ans: B

HCF (Difference Method)

• Find HCF of 203,319

Keep smaller here

- (203, 319)
- (116,203)
- (87,116)
- (29,87)
- (29,58)
- (29,29)

HCF = 29

HCF (Difference Method)

• HCF of 161,253 (difference method)

A. 27

B. 18

C. 23

D. 17

Ans: C

HCF (Difference Method)

- Find HCF of 84,125
- (84,125)
- (41,84)
- (41,43)
- (2,41)
- (2,39)

• If nothing is common then HCF =1 and numbers are said to be co prime numbers.

HCF (Assignment)

Q. Find HCF of 72,125

A. 9000

B. 1200

C. 1000

D. 800

Ans: A

Q. Find the greatest number which can divide 284, 698 &1618 leaving the same remainder 8 in each case?

A. 36 B. 46 C. 56 D. 43.

Soln-

Remainder $8 \rightarrow$ (numbers – 8) would be exactly divisible.

→284-8 = 276

→698-8 = 690

 \rightarrow 1618-8 = 1610

→ Greatest number dividing above 3 = HCF(276, 690, 1610) (difference method)

→HCF = 46

Ans B

Q. Find the greatest number which can divide 62, 132 & 237 leaving the same remainder in each case?

A. 35 B. 46 C. 56 D. 43.

Soln

If two numbers a & b are divisible by a number n then

→ Their difference (a-b) is also divisible by n.

→132-62 = 70

 \rightarrow 237-132 = 105

 \Rightarrow 237-62 = 175

 \rightarrow Greatest number dividing above 3 = HCF(70, 105, 175)

 \rightarrow HCF = 35

Ans A

Q. Find the largest number such that 43,65,108 are divisible by that number and we get the remainder as 1,2,3 respectively each case?

A. 21

B. 27

C.42

D. 63

Soln:

$$43 - 1 = 42$$

$$65 - 2 = 63$$

$$108 - 3 = 105$$

HCF(42,63,105)

Ans: A

HCF & LCM(Assignment)

Q. Find the greatest number which can divide 62, 132 & 237 leaving the same remainder in each case?

A. 35 B. 46 C. 56 D. 43.

Ans: A

Try at your end

HCF & LCM(Assignment)

Q. Find largest number such that if 45,68 and 113 are divided by that number we get the remainder as 1,2 and 3 respectively.

A. 21

B. 22

C. 26

D. 24

Ans: B

HCF & LCM(Assignment)

Q. Find the greatest number which can divide 41, 131 & 77 leaving the same remainder in each case?

A. 28 B. 18 C. 36 D. 24

Ans: B

LCM

• Eg. LCM for 18, 28, 108, 105

	2	18	28	108	105
	2	9	14	54	105
;	3	9	7	27	105
	3	3	7	9	35
	3	1	7	3	35
	5	1	7	1	<u>35</u>
	7 '	1	7	1	7
Till all quotients ar	e 1	1	1	1	1

So LCM = $2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 7 = 3780$

Note: LCM is always >= the greatest of given nos

LCM(polling)

• LCM for 12,24,20

A. 210

B. 180

C. 120

D. 144

Ans: C

Rules to Remember

 Product of two given numbers is equal to the product of their HCF & LCM

```
A \times B = HCF(A,B) \times LCM(A,B)
```

• If a, b, c are three numbers that divide a number n to leave the same remainder r, the smallest value of 'n' is

```
n = (LCM \text{ of } a, b, c) + r e.g 3,4,5 & rem 1
```


LCM

Q. Find LCM of 147 & 231

- As we know,
- HCF X LCM = product
- Find HCF by difference method
- Put in the formula,
- $21 \times LCM = (147 \times 231)$
- 1617

<u>LCM</u>

Q. Find LCM of 84 and 125

- As they are co-prime numbers the product is the LCM because HCF =1 (for co-primes)
- HCF x LCM = product
- 1 x LCM = 84 x 125
- LCM = 10500

<u>LCM</u>

- Find the least number which when divided by 12,15,24 leaves a remainder of 5 in each case
- Soln:
- Find LCM(12,15,24) = ?

- LCM = 120
- In an LCM problem, if remainder is common then,

Result = LCM + common remainder
=
$$120+5 = 125$$

LCM

Q. Find the smallest number which when divided by 20,36,45 leaves a remainder 15,31 and 40 respectively.

- Soln:
- Find LCM(20,36,45)
- In LCM problem, if difference is common(constant) then,
- Result = LCM Common difference

• 20 36 45

• 15 31 40 J

• Result = 180 - 5 = 175

LCM(Assignment)

Q. Find the least number which when divided by 12,15,40 leaves a remainder of 5 in each case

A. 120

B. 125

C. 130

D. 140

Ans: B

LCM(Assignment)

Q. If the product of two numbers is 324 and their HCF is 3, then their LCM will be =?

A. 972

B. 327

C. 321

D. 108

Ans: D

Rules to Remember

• Fractions:

LCM = LCM of Numerators / HCF of Denominators

HCF = HCF of Numerators / LCM of Denominators

LCM of 25/12 & 35/18

LCM = 175/6

HCF of 25/12 & 35/18

HCF = 5/36

HCF & LCM Fractions(Assignment)

- Find HCF & LCM of 5/9 and 25/36
- Ans : HCF = 5/36 and LCM = 25/9

Properties of Square Numbers

- A square can't end with odd number of zeroes
- A square can't end with 2, 3, 7 or 8.

```
1 2 3 4 5
```

6 **7** 8 9 0

• Square of odd no. is odd & even no. is even

<u>Squares</u>

Q. What is the smallest number you need to multiply 1944 with to make it a perfect square?

- A. 9
- B. 6

C. 4

D. 12

- Soln
- $1944 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3$
- $= 2^3 \times 3^5$
- Perfect square always has even powers of its prime factors
- So to make it perfect square multiplication by
- $2 \times 3 = 6$
- 1944 x 6 = 11664(which is a perfect square of 108)
- Ans B

Squares

- Q. A man plants his orchard with 15876 trees & arranges them so that there are as many rows as there are trees in each row. How many rows does the orchard have?
 - A. 124 B. 134

- C. 126
 - D. 136

- Soln
- No of trees = No. of rows x no of trees/row
- $15876 = n \times n$
- n = $\sqrt{15876}$
- $n = \sqrt{9} \times 1764$
- = $\sqrt{9} \times 9 \times 196$ = ? $= 9 \times 14$ =126
- Ans C

Squares

- Q. Find a positive number x, such that the difference between the square of this number and 21 is the same as the product of 4 times the number?
- Soln:
- Let first number be x.
- $x^2 21 = 4x$
- $x^2 4x 21 = 0$
- $x^2 7x + 3x 21 = 0$
- x(x-7) + 3(x-7) = 0
- (x+3)(x-7) = 0
- x = -3 or x = 7 (as question says positive number)
- Ans: 7

• Arithmetic Progression :

- If quantities increase or decrease by a common difference then they are said to be in AP e.g. 3, 5, 7, 9,11,....
- If a is first term, d is the common difference, I is the last term then
- General form: a, a+d, a+2d, a+3d,...,a+(n-1)d
- n^{th} term Tn = a + (n-1)d, n = 1, 2, ...
- Sum of first n terms Sn = n/2 [2a + (n-1)d]= n/2 (a + 1)

- Prove that the sum Sn of n terms of an Arithmetic Progress (A.P.) whose first term 'a' and common difference 'd' is
- S = n/2[2a + (n 1)d]
- Or, S = n/2[a + I], where I = last term = a + (n 1)d
- Proof:
- a, a+d, a+2d, a+3d,...., a(n-2)d, a(n-1)d, as I = last term
- a, a+d, a+2d, a+3d,...., I-d, I
- $S = a + a + d + a + 2d + a + 3d + \dots + l d + l \dots + 1$
- Writing equation 1 in reverse order(sum remains same even if we write in reverse order)
- S = I + I-d + I-2d + I-3d + + a+d + a------2
- Adding equation 1 and 2
- 2S = (a + I) + (a + I) + (a + I) + ----- + (a + I) + (a + I)
- So for n terms,
- 2S = n(a + I)
- $S = \frac{n}{2} (a + I)$

- What is the difference between arithmetic progression and geometric progression?
- A sequence is a set of numbers, called terms, arranged in some particular order.
 An arithmetic sequence is a sequence with the difference between two consecutive terms constant. The difference is called the common difference. A geometric sequence is a sequence with the ratio between two consecutive terms constant.

Q. The sum of all two digit numbers divisible by 3 is

A. 550 B. 1550

C. 1665

D. 1680

Soln

Two digit numbers divisible by 3 are:

12, 15, 18, 21, 96, 99.

This is an A.P. with a = 12, d = 3, l=99

Let n be the number of terms.

Last term = a + (n-1)d

$$99 = 12 + (n-1)x3$$

$$3n = 90$$
 , $n = 30$

Sum =
$$n/2$$
 (a + I) = $30/2$ x (12+99) = **1665**

Ans C

Q. Find the sum of all natural numbers between 10 and 200 which are divisible by 7

A. 2835

B. 2865

C. 2678

D. 2646

Soln:

Two digit numbers divisible by 3 are:

14, 21, 28, 35,, , 196.

This is an A.P. with a = 14, d = 7, l=196

Last term = a + (n-1)d

196 = 14 + (n-1)x7

196-14 = (n-1)x7

n-1 = 26

n=27

Sum = n/2 (a + I)

 $= 27/2 \times (14+196)$

 $= 27 \times 210 / 2$

 $= 27 \times 105$

= 2835

Progression(Assignment)

Q. Find the sum of the series 3,8,13,18, -----,93

A. 912 B. 925

C. 998

D. 936

Ans: A

Geometric Progression :

- If quantities increase or decrease by a constant factor then they are said to be in GP e.g. 4, 8, 16, 32,
- If a is first term, r is the common ratio, then
- General form : a, ar, ar², ar³,...., arⁿ⁻¹
- n^{th} term $Tn = ar^{(n-1)}$
- Sum of first n terms $Sn = a(r^n-1)/(r-1)$

Geometric Progression of n terms:

- To prove that the sum of first n terms of the Geometric Progression whose first term 'a' and common ratio 'r' is given by-
- $S = a + ar + ar^2 + ar^3 + ar^4 + \dots + ar^{n-1}$ ------ 1
- Multiply both sides of this equation by r
- $Sr = ar + ar^2 + ar^3 + ar^4 + \dots + ar^{n-1} + ar^n$ ----- 2
- - - - -
- Eq 2 Eq 1
- $Sr S = ar^n a$
- $S(r-1) = a(r^n 1)$
- $S = \frac{a(r^n 1)}{(r 1)}$

Geometric Progression

7.15 Find the 10th term of the series: 4,16, 64, 256, 1024,

 $A. 4^{10}$

B. 4⁸ C. 4⁹ D. 1022480

Soln

The given series is in geometric progression

Where
$$a = 4$$
, $r = 4$

So T10 = a x
$$r^{(10-1)}$$

= 4 x $4^{(10-1)}$
= 4^{10}

Ans A

THANK YOU

