Lesson 1

L	\mathbf{Pre}	requisite Knowledge	2
	1.1	Units & Dim	2
	1.2	SI Units	3
	1.3	Unit Conversion	3
	1.4	Notable Derivatives	3
	1.5	Notable Integrals	4

1 Prerequisite Knowledge

1.1 Units & Dim

$$[\cdots] =$$
 "Units of"
 $[mass] = kg$
 $[length] = m$
 $[time] = s$

Physics 1A has 3 unit systems

v	v		
Sys	[L]	T	M
Mks	m	s	kg
CGS	$^{ m cm}$	s	g
US Customary	ft	s	slug

$$[v] = \frac{\text{length}}{\text{time}}$$
$$[v]_{\text{CGS}} = \frac{\text{cm}}{\text{s}}$$
$$[v]_{\text{MKS}} = \frac{\text{m}}{\text{s}}$$
$$[v]_{\text{US}} = \frac{\text{ft}}{\text{s}}$$

$$\begin{split} [F] &= [m][a] \\ [F] &= [m] \frac{[v]}{[T]} \\ [F] &= [m] \frac{[L]}{[T]^2} \\ [F]_{\text{MKS}} &= \log \frac{\text{m}}{\text{s}^2} = \text{N} \\ [F]_{\text{CGS}} &= g \frac{\text{cm}}{\text{s}^2} = \text{dyne} \\ [F]_{\text{US}} &= (\text{sl}) \frac{\text{ft}}{\text{s}^2} = \text{lb} \end{split}$$

$$[C] = 1$$
$$[p] = \frac{\text{kg}}{\text{m}^3}$$
$$[A] = \text{m}^2$$
$$[v] = \frac{\text{m}}{\text{s}}$$

1.2 SI Units

Prefix	Symbol	Power	Amount
giga	G	10^{9}	1,000,000,000
mega	M	10^{6}	1,000,000
kilo	k	10^{3}	1,000
base	_	10^{0}	1
centi	c	10^{-2}	$\frac{1}{100}$
milli	m	10^{-3}	$\frac{1}{1,000}$
micro	μ	10^{-6}	$\frac{1}{1,000,000}$
nano	n	$10^{-9} \\ 10^{-12}$	$\frac{1}{1,000,000,000}$
pico	$\mid p \mid$	10^{-12}	-

1.3 Unit Conversion

Given: mi = 1609m hr = 3600s

$$\left(\frac{60\mathrm{mi}}{1\mathrm{hr}}\right)\left(\frac{1609\mathrm{m}}{1\mathrm{mi}}\right)\left(\frac{1\mathrm{hr}}{3600\mathrm{s}}\right) = 27^\mathrm{m}/\!\mathrm{s}$$

Find 9.8 m/s^2 in $^{\text{mph/s}}$

$$\left(\frac{9.8\mathrm{m}}{\mathrm{s}^2}\right)\left(\frac{1\mathrm{mi}}{1609\mathrm{m}}\right)\left(\frac{3,600\mathrm{s}}{1\mathrm{hr}}\right) = 22^{\mathrm{mph}}/\mathrm{s}$$

1.4 Notable Derivatives

$$\frac{d(x^n)}{dx} = nx^{n-1}$$

$$\frac{d(\frac{1}{x^n})}{dx} = \frac{d(x^{-n})}{dx} = -nx^{-n-1}$$

$$\frac{d(Ae^{kx})}{dx} = Ake^{kx}$$

1.5 Notable Integrals

$$\int (x^n) dx = \frac{1}{n+1} x^{n+1} + C$$

$$\int (x^{-n}) dx = \frac{1}{-n+1} x^{1-n} + C \implies (n \neq 1)$$

$$\int \left(\frac{1}{x}\right) dx = \ln|x| + C$$