Zveznost

Zveznost v (0,0) (če ni (0,0) še premaknemo) pokažemo tako:

- 1. Naredimo oceno $|f(r\cos\phi, r\sin\phi) f(0,0)| \le g(r)$.
- 2. Če je $\lim_{r\to 0} g(r) = 0 \Rightarrow f$ je zvezna v (0,0).

Parcialni odvodi in diferenciabilnost

Verižno pravilo: $D(G \circ F)(a) = (DG)(F(a)) \circ (DF)(a)$

Nasveti

- Poskusimo opaziti kakšno simetrijo funkcije, da bi imeli manjše dela.
- Včasih lahko ne gledamo zveznost parcialnih odvodov, če ne treba.
- Linearna presliava je bijektivna, če ima trivialno jedro.

Vpeljava novih spremenljivk

Nove spremenljivke y_1, \ldots, y_n vpeljamo takole: $\frac{\partial}{\partial x_k} = \sum_{i=1}^n \frac{\partial y_i}{\partial x_k} \cdot \frac{\partial}{\partial y_i}$.

Recimo, da stare spr. x, y sta izraženi preko novih u, v: x = x(u), y = y(v). Potem: $\begin{bmatrix} f_x \\ f_y \end{bmatrix} = \left(\left(\frac{\partial(x, y)}{\partial(u, v)} \right)^{-1} \right)^T \begin{bmatrix} f_u \\ f_v \end{bmatrix}$.

Izrek o inverzni preslikavi

Potreben pogoj: Če je F difeomorfizem, potem $det(DF) \neq 0$ na D_F .

Diferencial inverza: $(DF^{-1})(F(x)) = (DF)^{-1}(x)$.

Izrek o inverzni preslikavi: Naj bo $D \subseteq \mathbb{R}^n$ odprta, $F: D \to \mathbb{R}^n$ preslikava razreda C^1 , $a \in D$ in b = F(a).

Če je $\det(DF)(a) \neq 0$, potem obstajata okolici $a \in U \subseteq \mathbb{R}^n$ in $b \in V \subseteq \mathbb{R}^n$, da je $F: U \to V$ C^1 -difeomorfizem.

Izrek o implicitni funkciji

Izrek o implicitni funkciji: Naj bo $D \subseteq \mathbb{R}^n_x \times \mathbb{R}^m_y$ odprta množica, $(a,b) \in D$, $F:D \to \mathbb{R}^m$ preslikava razreda C^1 . Naj velja:

- 1. F(a,b) = 0,
- 2. $\det(\frac{\partial F}{\partial u}(a,b)) \neq 0$ (to preverjamo).

Tedaj obstaja okolica $a \in U \subseteq \mathbb{R}^n$ in okolica $b \in V \subseteq \mathbb{R}^m$ in enolično določena preslikava $\varphi : U \to V$ razreda C^1 , da:

- 1. $\varphi(a) = b$.
- 2. $\forall (x,y) \in U \times V$. $F(x,y) = 0 \Leftrightarrow y = \varphi(x)$ (rešitve te enačbe je isto kot graf φ znotraj $U \times V$).
- 3. $(D\varphi)(x) = -\left(\frac{\partial F}{\partial y}(x,y)\right)^{-1} \cdot \frac{\partial F}{\partial x}(x,y), \ y = \varphi(x) \text{ za vsak } x \in U.$

Podmnogoterosti

Naj bo $M \subseteq \mathbb{R}^{n+m}$, $M \neq \emptyset$. Množica M je **gladka podmnogoterost** dimenzije n prostora \mathbb{R}^{n+m} , če za vsako točko $a \in M$ obstaja okolica U v \mathbb{R}^{n+m} in take C^1 funkcije $F_1, \ldots, F_m : U \to \mathbb{R}$, da velja:

- 1. $M \cap U = \{x \in U \mid F_1(x) = \ldots = F_m(x) = 0\} = F^*(\{0\}).$
- 2. $rang(F_1, ..., F_m) = m \text{ na } U.$

M podajamo kot $F(\underbrace{x_1,\ldots,x_n}_x)=0$, kjer $F=(f_1,\ldots,f_{n-m})$ (v $M=F^*(0)$ so rešitve enačbe F(x)=0).

Recept: Če je rang JF(a) = n - m (maksimalen) za vsak $a \in M$, potem M je C^r podmnogoterost dimenzije m. **Tangentni prostor:** Če je $M = F^*(0)$ podmnogoterost, $a \in M$, rang JF(a) maksimalen, potem $T_aM = \ker JF(a)$.

Taylorjeva formula

Taylorjeva formula: $f(a+h) = f(a) + (D_h f)(a) + \frac{1}{2!}(D_h^2 f)(a) + \dots + \frac{1}{k!}(D_h^k f)(a) + R_k$

kjer je $D_h = h_1 D_1 + h_2 D_2 + \ldots + h_n D_n$ odvod v smeri h in $R_k = \frac{1}{(k+1)!} (D_h^{k+1} f)(a + \theta h)$ ostanek.

Iskanje odvodov: $\frac{\partial^{i+j}}{\partial x^i \partial y^j}(a,b) = C_{ij} i! j!$, kjer je C_{ij} koeficient pred členom $x^i y^j$ v razvoju f v Taylorjevo vrsto.

Nasveti

• Za razvoj okoli točke $(a, b) \neq (0, 0)$ vpeljamo u = x - a, v = y - b.

Splošno

Norma matrik

Naj bo
$$A = [a_{ij}]_{1 \leq i,j \leq n}, \ B = [B_{ij}]_{1 \leq i,j \leq n}.$$
 Definiramo $||A|| = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2}.$ Dokažemo, da velja $||A \cdot B|| \leq ||A|| \cdot ||B||.$

Dokaz. Matriki množimo tako:
$$A \cdot B = \begin{bmatrix} \vec{a}_1 \\ \vdots \\ \vec{a}_n \end{bmatrix} \cdot \begin{bmatrix} \vec{b}_1 & \dots & \vec{b}_n \end{bmatrix} = \begin{bmatrix} \vec{a}_1 \cdot \vec{b}_1 & \dots & \vec{a}_n \cdot \vec{b}_n \end{bmatrix}.$$

Za vsak element produkta velja:
$$||(A \cdot B)_{ij}||^2 = ||\vec{a}_i \cdot \vec{b}_j||^2 \le ||\vec{a}_i||^2 \cdot ||\vec{b}_j||^2$$
.
Torej $||A \cdot B||^2 = \sum_{i=1}^n \sum_{j=1}^n ||(A \cdot B)_{ij}||^2 \le \sum_{i=1}^n \sum_{j=1}^n ||\vec{a}_i||^2 \cdot ||\vec{b}_j||^2 = \sum_{i=1}^n ||\vec{a}_i||^2 \sum_{j=1}^n ||\vec{b}_j||^2 = ||A||^2 \cdot ||B||^2$.

Inverz 2×2 matriki

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}.$$

Hiperbolične funkcije

$$\sinh x = \frac{e^x - e^{-x}}{2}, \ \cosh x = \frac{e^x + e^{-x}}{2}, \ \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \ \cosh^2 x - \sinh^2 x = 1.$$