Institute Report No. 272

Fourteen-Day Subchronic Oral Toxicity Study of Nitroguanidine in Rats

Earl W. Morgan, MAJ, VC
Larry D. Brown, LTC, VC
Carolyn M. Lewis, MS
Robert R. Dahlgren, LTC, VC
and
Don W. Korte, Jr., PhD, MAJ, MSC

MAMMALIAN TOXICOLOGY BRANCH DIVISION OF TOXICOLOGY

June 1988

Toxicology Series: 146

LETTERMAN ARMY INSTITUTE OF RESEARCH PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129

This document has been approved for public release and sales in distribution in unlimited.

Fourteen-day subchronic oral toxicity study of nitroguanidine in rats (Toxicology Series 146)--Morgan et al.

This document has been approved for public release and sale; its distribution is unlimited.

Destroy this report when it is no longer needed. Do not return to the originator.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

In conducting the research described in this report, the investigation adhered to the "Guide for the Care and Use of Laboratory Animals," as promulgated by the Committee on Revision of the Guide for Laboratory Animal Facilities and Care, Institute of Laboratory Animal Resources, National Research Council.

> This material has been reviewed by Letterman Army Institute of Research and there is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. (AR 360-5)

Chun S. Seatrue 16 June 8t Edwin S. Beatrice

COL, MC Commanding

SECURITY CLASSIFICATION OF THIS PAGE

1a. REPORT SECURITY CLASSIFICATION			REPORT DOCUMENTATION PAGE			
		16 RESTRICTIVE	MARKINGS			
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION			distribution	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE		is unli		,	ar ar war war	
4. PERFORMING ORGANIZATION REPORT NUMBER((5)	5. MONITORING	ORGANIZATION R	EPORT NUI	MBER(S)	
Institute Report No. 272						
Mammalian Toxicology Branch	56. OFFICE SYMBOL (If applicable) SGRD-UL-TO-M	US Army Bio Laborator		Nization earch a	and Development	
6c. ADDRESS (City, State, and ZIP Code) Letterman Army Institute of Resea Presidio of San Francisco, CA 941	arch 129-6800	Fort Detric Frederick,	:k			
8a. NAME OF FUNDING/SPONSORING ORGANIZATION US Army Medical Research & Development Command	Bb. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT ID	ENTIFICATIO	ON NUMBER	
8c. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF F	UNDING NUMBER	S		
Fort Detrick Frederick, MD 21701-5012		PROGRAM ELEMENT NO	PROJECT NO.	TASK NO	WORK UNIT ACCESSION NO.	
		627204	835	AB	DA 303913	
in	een-day subchro					
12. PERSONAL AUTHOR(S) Earl W. Morgan, Don W. Korte Jr.		, carolyn M.	Lewis, Rob	ert K.	Danigren, and	
13a. TYPE OF REPORT 13b. TIME COVI		4. DATE OF REPOR	RT (Year, Month, I	Day) 15.	PAGE COUNT 78	
16. SUPPLEMENTARY NOTATION						
	18. SUBJECT TERMS (C					
FIELD GROUP SUB-GROUP S	subchronic oral	toxicity, n	itroguaniai	ne, tox	icology, rat	
19. ABSTRACT (Continue on reverse if necessary and identify by block number) The 14-day subchronic oral toxicity of nitroguanidine was evaluated in male and female rats. Nitroguanidine was administered in the diet at dose levels of 0, 100, 316, and 1000 mg/kg/day for 14 days. The addition of nitroguanidine to the diet did not have an effect on food consumption, but there was a significant dose-response increase in water consumption. Clinical signs attributable to the test compound were not observed during the study. At necropsy, blood samples were taken for hematological and serum clinical analyses. Serum potassium and calcium values were decreased in the treated dose groups. Microscopic examination of tissues from the control and 1000-mg/kg/day dose group animals revealed no lesions attributable to the administration of nitroguanidine. These findings indicate that nitroguanidine is nontoxic in rats when administered at doses as high as 1000 mg/kg/day for 14 days. The findings of serum electrolyte decreases coupled with increased water consumption suggest that nitroguanidine, which is excreted unchanged in the rat's urine, may be acting as an osmotic diuretic. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT SUUNCLASSIFIED/UNLIMITED SAME AS RPT. DIIC USERS 21 ABSTRACT SECURITY CLASSIFICATION Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL Edwin S. Beatrice, COL MC 22b Telephone (Include Area Code) 22c OFFICE SYMBOL SGRD-ULZ						

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED

ABSTRACT

The 14-day subchronic oral toxicity of nitroguanidine was evaluated in male and female rats. Nitroguanidine was administered in the diet at dose levels of 0, 100, 316, and 1000 mg/kg/day for 14 days. The addition of nitroguanidine to the diet did not have an effect on food consumption, but there was a significant dose-response increase in water consumption. Clinical signs attributable to the test compound were not observed during the study. At necropsy, blood samples were taken for hematological and serum clinical analyses. Serum potassium and calcium values were decreased in the treated dose groups. Microscopic examination of tissues from the control and 1000-mg/kg/day dose group animals revealed no lesions attributable to the administration of nitroguanidine. These findings indicate that nitroguanidine is nontoxic in rats when administered at doses as high as 1000 mg/kg/day for 14 days. The findings of serum electrolyte decreases coupled with increased water consumption suggest that nitroquanidine, which is excreted unchanged in the rat's urine, may be acting as an osmotic diuretic.

Key Words: Subchronic Oral Toxicity; Nitroguanidine; Toxicology; Rat j response (biology); physiological effects; toxic tolerances; triple base propellants; ammunition; hazardono waster; (KT) Accession For NTIS GRA&I DTIC TAB Unannounced Justification DTIC COPY SPECTED Distribution/ Availability Codes Avail and/or Special Dist

PREFACE

TYPE REPORT: 14-Day Subchronic Oral Toxicity GLP Study Report

TESTING FACILITY:

US Army Medical Research and Development Command

Letterman Army Institute of Research Presidio of San Francisco, CA 94129-6800

SPONSOR:

US Army Medical Research and Development Command US Army Biomedical Research and Development Laboratory Fort Detrick, Maryland 21701-5010

Project Officer: Gunda Reddy, PhD

WORK UNIT/APC: 180 Environmental Health Effects of Army

Materials/TL09

GLP STUDY NUMBER: 84040

STUDY DIRECTOR: MAJ Don W. Korte Jr, PhD, MSC

PRINCIPAL INVESTIGATOR: MAJ Earl W. Morgan, VC

Diplomate, American College of Veterinary Preventive Medicine and

American Board of Toxicology

CO-PRINCIPAL INVESTIGATOR: LTC Larry D. Brown, MPVM, VC,

Diplomate, American College of Veterinary Preventive Medicine and

American Board of Toxicology

PATHOLOGIST: LTC Robert R. Dahlgren, DVM, VC, Diplomate,

American College of Veterinary Pathologists

REPORT AND DATA MANAGEMENT: A copy of the final report, study

protocol, SOPs, raw data,

analytical, stability, and purity data of the test compound, and an aliquot of the test compound will be retained in the LAIR Archives.

TEST SUBSTANCE: Nitroquanidine

INCLUSIVE STUDY DATES: 20 March - 19 April 1985

OBJECTIVE: The objective of this study was to determine the

14-day subchronic toxicity of nitroguanidine in

male and female Sprague-Dawley rats.

ACKNOWLEDGMENTS

SSG James D. Justus, BS, SP4 John R.G. Ryabik, BS, SP4 James J. Fischer, SP4 Scott L. Schwebe, Richard A. Spieler, and Charlotte L. Speckman provided research assistance and animal care; Conrad R. Wheeler, PhD, and SP4 Paul B. Simboli, BS, provided chemical preparation and analysis; MAJ Carlin V. Okerberg, DVM, ACVP, MAJ George T. Makovec, DVM, ACVP, SGT Thomas W. Johnson, BA, and SGT Lisa E. Carson provided necropsy and pathology support; SSG Clinton H. Beckett, SGT Samuel S. Liu, BS, and SP4 Gary E. Mattison provided hematology support; SP4 Julius Harmon and Mary E. Lyons provided clinical chemistry support; Lucille M. Cote, ASCP, and Tom Hironaga provided histology preparation support; and Colleen S. Kamiyama provided secretarial assistance.

SIGNATURES OF PRINCIPAL SCIENTISTS AND MANAGERS INVOLVED IN THE STUDY

We, the undersigned, declare that GLP Study 84040 was performed under our supervision, according to the procedures described herein, and that this report is an accurate record of the results obtained.

DOW W. KORTE JR. PhD/DATE

MAJ, MSC

Study Director

LARRY D. BROWN, DVM/DATE

LTC, VC

Co-Principal Investigator

EARL W. MORGAN / DVM/DA

MAJ, VC

Principal Investigator

CAROLINIA I FWIS MS/DATE

85375757 RXXXXXX NYV

DAC

Data Manager/Co-Author

Corrad Wheely 15 June 88

CONRAD R. WHEELER, PhD/DATE

DAC

Analytical Chemist

DEPARTMENT OF THE ARMY

LETTERMAN ARMY INSTITUTE OF RESEARCH PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129-6800

REPLY TO

SGRD-ULZ-QA (79-1n)

8 June 1988

MEMORANDUM FOR RECORD

SUBJECT: Report of GLP Compliance for GLP Study 84040

1. I hereby certify that in relation to GLP Study 84040, the following inspection was:

17 April 1985 - Weighing and Observations

2. The report entitled "Fourteen-Day Subchronic Oral Toxicity Study of Nitroguanidine in Rats," Toxicology Series 146, and the raw data for this study were audited on 17 May 1988.

WALTER G. BELL

SFC, USA

Quality Assurance Auditor

TABLE of CONTENTS

Abstract
Prefaceiii
Acknowledgmentsiv
Signatures of Principal Scientists
Report of Quality Assurance Unitvi
Table of Contentsvii
BODY OF REPORT
INTRODUCTION1
Objective of the Study1
MATERIALS1
Test Substance
RESULTS5
Mortalities
DISCUSSION

Table of Contents (cont.)

CONCLUSIO	N	
REFERENCE	s	21
APPENDICES		
Appendix	BCDE. FG. HIJKL. M.	Chemical Data
OFFICIAL DIST	RIBU	JTION LIST78

established temperated processes peoplesses peop

Fourteen-Day Subchronic Oral Toxicity Study of Nitroguanidine in Rats -- Morgan et al

INTRODUCTION

Nitroguanidine, a primary component of US Army triple-base propellants, is now produced in a Government-owned contractor-operated ammunition plant. The US Army Biomedical Research and Development Laboratory (USABRDL), as part of its mission to evaluate the environmental and health hazards of military-unique propellants generated by US Army munitions-manufacturing facilities, conducted a review of the nitroguanidine data base and identified significant gaps in the toxicity data (1). The Toxicology Branch, LAIR, was tasked by USABRDL to develop a genetic and mammalian toxicity profile for nitroguanidine, related intermediates/by-products of its manufacture, and its environmental degradation products.

Objective of the Study

The objective of this study was to determine the 14-day subchronic toxicity of nitroguanidine in male and female Sprague-Dawley rats.

MATERIALS

Test Substance

Chemical name: Nitroguanidine

Chemical Abstract Service Registry No.: 556-88-7

Structural formula:

$$H_2N$$
 $C = N - NO_2$

CONTRACT CONTRACT NO. CONTRACTOR DESCRIPTION

Molecular formula: CH4N402

Other test substance information is presented in Appendix A.

Vehicle for Test Substance

The test compound was mixed into the feed (see Husbandry).

Animals

Forty-five male and 45 female albino Sprague-Dawley rats (Bantin-Kingman Breeding Laboratories, Fremont, CA) were used in this study. Ear tags were used to identify each animal individually. Tag numbers from 85D00300 to 85D00389 were used, without exclusions. Five males and five females were used for necropsy quality controls or baseline control animals to ensure the animals were healthy and within normal limits for all measurements at receipt and after quarantine. The rats' weights on receipt (21 March 1985) ranged from 137 to 185 g. Additional animal data are presented in Appendix B.

Husbandry

The animals assigned to this study were housed individually in clear, polycarbonate shoe boxes in drawer rack cages. Cellubed®, a cellulose fiber, was used as bedding. The shoe boxes and bedding were changed twice weekly. The diet, fed ad libitum, consisted of Certified Purina Rodent Chow 5002 Meal Form (Ralston Purina, St Louis, MC). Water was provided by 16 ounce water bottles with stoppers and sipper tubes. Both feed and water consumption were measured weekly.

The temperature range maintained throughout this study was 23.9°-26.7°C with a relative humidity of 29%-43%. The photoperiod was 12 hours of light daily.

METHODS

This study was performed in accordance with LAIR Standard Operating Procedure OP-STX-52 "14-Day Subchronic Oral Toxicity Testing in Rodents" (2) and EPA guidelines (3).

Group Assignment/Acclimation

The animals were acclimated for 14 or 16 days (males and females, respectively) from receipt to the onset of dosing. During the acclimation period, the animals were observed for signs of illness daily. Food and water consumption was measured during the second week of quarantine.

Ten animals per sex were assigned to each of four dose groups. Allocation was accomplished using a computer-based, stratified, weight-biased randomization method (LAIR SOP-OP-STX-78).

Dose Levels

Dose levels were selected on the basis of the results of an acute toxicity study (4) and a 14-day pilot study. The acute oral median lethal dose exceeded a LIMIT dose of 5000 mg/kg. Thus, the upper dose level used in the pilot study was a LIMIT dose of 1000 mg/kg (3). At this dose level no deaths nor obvious toxicity were observed. Using a logarithmic progression table the following dose levels were selected: 0 mg/kg/day, 100 mg/kg/day, 316 mg/kg/day, and 1000 mg/kg/day.

Compound and Diet Preparation

The nitroguanidine was received as a dry white powder, 99.6% pure. All diet preparations were done in accordance with LAIR SOP OP-STX-16 (5). A premix consisting of 50 mg nitroguanidine/kg of the Rodent Chow was prepared. Since the compound tends to clump, it was further ground in a jar mill (Norton Inc, Akron, OH) using porcelain grinding pellets for two hours to break up the clumps. The nitroguanidine was then mixed into the meal in a series of 2-, 4-, and 6-fold dilutions. Each dilution was mixed for 15 minutes in the jar mill. The dilutions were then sieved through a 10-mesh screen to ensure the grinding was complete and to remove the grinding pellets.

On the day of the diet change, after the new diet concentrations had been calculated, the appropriate amounts of premix and meal were blended together using a Model A200D mixer (Hobart Inc, Troy, OH) for at least 15 minutes. Nitroguanidine was mixed into the feed at a level that, based on the feed consumption of the previous week and the animals's weight, would provide the desired dose (mg/kg) on a daily basis. All diet mixes were within 6.5% of target concentration and were adequately homogeneous. Additional mixing data and analyses are presented in Appendix C.

Test Procedures

Feed consumption and water consumption were measured on a weekly basis. Individual feed jars were used. They were weighed at the beginning and at the end of each week. The feed was sifted using a 10-mesh sieve to remove bedding and feces prior to the final weighing. If there were signs of

spillage in the bedding, the bedding was also sifted and the feed obtained was returned to the jar prior to weighing. Records for water bottles with obvious spillage were flagged and the weights were omitted. Recordkeeping was initiated during the final week of quarantine and provided the baseline consumption data to calculate the first week's diet mixture.

Early on the day of diet change, the animals were weighed, observed, and their water bottles and feeders were weighed. These data were collected on a Beckman TOXSYS® data collection terminal. The Beckman Diet Computation Subsystem was used for the calculations. After the new diet was mixed, the feeders and water bottles were filled, weighed, and returned to the cages.

Observations were performed twice daily throughout the two-week test period. During the morning observations, the animals were observed undisturbed in their cages, outside of their cages, and after return to their cages. All findings were recorded. A second "walk through" observation was performed in the afternoon and only significant observations were recorded. Body weights were recorded weekly and on the day of sacrifice. Appendix D contains a listing of the historical events.

All animals were subjected to a complete necropsy under sodium pentobarbital anesthesia. Blood was collected from the right ventricle for hematology and clinical chemistry measurements. A listing of the measurements and SOPs is provided in Appendix E. A listing of the tissues examined microscopically is provided in Appendix F. Animals were terminated by exsanguination while under anesthesia.

Changes/Deviations

The dosing phase of this study was accomplished according to the protocol and applicable amendments with the following exceptions: 1) Recorded observations were inadvertently omitted on 5 and 15 Apr 85; 2) daily observation records were lost on 8 Apr 85 on 5 animals due to computer malfunction; and 3) due to an oversight the necropsy quality control animals were not submitted until day 5 of the quarantine period. None of these changes had any effect on the results of the study.

Statistics

The animal weights, the results from hematology, and the blood chemistry results were analyzed statistically with packaged programs available on BMDP software (6). The

equality of the variances of the groups was tested using the Levene's Test. If the variances were equal, the vehicle control group and the dose groups were compared by the standard one-way analysis of variance (ANOVA). Otherwise, the Welch one-way ANOVA, which is not based on the assumption that the variances are equal, was performed. If the F-statistic was significant in either case, the Dunnett's test was performed to determine whether or not the vehicle control group was significantly different from any of the dose groups. Total bilirubin values are nonparametric data and were analyzed using the Kruskal-Wallis one-way ANOVA.

Storage of Raw Data and Final Report

A copy of the final report, study protocols, raw data, retired SOPs, and an aliquot of the test compound will be retained in the LAIR Archives.

RESULTS

Mortalities

No deaths occurred during the study.

Feed and Water Consumption

Feed consumption increased slightly in the males and decreased slightly in the females during the first week while both males and females had increases in their feed consumption during the second week. None of these differences were significant. Table 1 presents the average daily doses of nitroguanidine achieved. Water consumption by both sexes increased in a dose-related manner during both weeks. For the 316 and 1000 mg/kg/day dose groups this increased water consumption was significant. Table 2 presents daily feed and water consumption data. Appendix G contains individual feed and water data.

Clinical Signs

No clinical signs attributable to nitroguanidine administration were observed. Five rats (85D00318, 85D00329, 85D00358, 85D00361, 85D00369) exhibited increased startle reflex. One rat (85D00347) was irritable. In all but one rat (85D00318) these signs were only observed once. Five rats (85D00346-49, 85D00352) exhibited dehydration due to failure to insert sipper tubes adequately into the cages. One animal (85D00316) became anorectic and emaciated as a result of water deprivation from a faulty sipper tube. These signs were seen in the control, 100-, and 1000-mg/kg/day dose

groups. Fifty-two rats exhibited swelling, bleeding, and/or scabs on the ear that was tagged. Finally, a small mass near the base of the tail was observed on one rat (85D00360).

TABLE 1: Daily Consumption of Nitroguanidine

Group	Week	Males mg/kg/day	Females mg/kg/day
Controls (n=10)	1 2	0 ± 0* 0 ± 0	0 ± 0 0 ± 0
100 mg/kg (n=10)	1 2	95 ± 1 109 ± 1	89 ± 2 111 ± 3
316 mg/kg (n=10)	1 2	314 ± 9 346 ± 8	297 ± 3 346 ± 8
1000 mg/kg (n=10)	1 2	993 ± 18 1077 ± 21	933 ± 41 1108 ± 38

^{*}Mean ± Standard Error

This mass had resolved by the second week of observation. Clinical signs data are presented in Appendix H.

Animal Weights

The mean body weights for each group are given in Table 3. For the females the body weights for the control and 1000-mg/kg/day dose group were significantly different (at the 95% confidence level) when compared by ANOVA and the Dunnett's Test. Although the animals were randomized using a weight-biased stratified method at the end of the first week of quarantine, their weights were significantly different by the end of quarantine (second week). This weight difference persisted throughout the study. Since the difference first occurred during quarantine before the introduction of the test compound, this weight difference appeared to be due to individual growth rates of the animals and not to the test compound. The rate of gain for the 100- and 1000-mg/kg/day dose groups compared to the control group was significantly lower during the second week of quarantine, due at least in

part to one animal in each group that lost weight. Water bottle problems contributed to these weight losses. Body weight data are presented in Appendix I.

TABLE 2: Effect of Nitroguanidine on Food and Water Consumption*

Dose	Food	l (g/day	1	Wat	er (g/da	ıy)
(mg/kg/day)	Base- line	Week 1	Week 2	ine	Week 1	Week 2
			FEMALES			
0	19.3 ±1.2	17.2 ±0.4	18.5 ±0.7	6.5 1.2	28.7 ±0.9	25.0 ±1.2
100	17.9 ±1.0	16.3 ±0.4	18.4 ±0.6	5.5 1.3	28.5 ±0.7	26.5 ±0.8
316	16.8 ±0.6	16.2 ±0.4	17.6 [†] ±0.7	7.7 0.9	33.4« ±0.7	31.5« ±1.2
1000	15.9« ±0.8	15.1 ±0.7	16.7 ±0.7	3.9 1.3	35.4« ±1.3	31.2« ±1.1
			MALES			
0	18.0 ±1.4	21.7 ±0.7	23.6 ±0.7	8.9 2.5	37.7 ±1.8	36.9 ±2.0
100	21.3« ±0.6	21.7 ±0.5	24.3 ±0.4	3.3 1.0	39.0 ±1.5	40.0 ±1.3
316	21.4« ±0.5	22.8 ±0.5	25.5 ±0.6	5.1« 0.7	45.6« ±1.3	43.3« ±1.4
1000	21.3« ±0.7	22.4 ±0.5	24.7 ±0.6	2.8	47.3« ±1.4	42.4 ±1.9

^{*} Mean ± Standard Error, 10 animals/group

^{† 9} animals/group.

[&]quot; Significantly different than the control group (p \leq 0.05) by the Dunnett's test.

TABLE 3:

Effect of Nitroguanidine on Body Weights (g) of Rats

			Study Day		
	Q 0 0	Q5	0	7	14†
		FEMA	LES		
Controls (n=10)	170 ± 2*	199 ± 3	230 ± 4	244 ± 4	246 ± 5
100 mg/kg (n=10)	173 ± 3	200 ± 4	220 ± 4	234 ± 4	236 ± 4
316 mg/kg (n=10)	175 ± 2	203 ± 3	232 ± 5	240 ± 6	237 ± 6
1000 mg/kg (n=10)	174 ± 3	200 ± 3	216 ± 3«	222 ± 5«	223 ± 5«
		MAL	ES		
Controls (n=10)	169 ± 2	218 ± 4	263 ± 11	305 ± 9	317 ± 8
100 mg/kg (n=10)	168 ± 3	221 ± 4	273 ± 4	311 ± 6	325 ± 5
316 mg/kg (n=10)	168 ± 3	217 ± 6	277 ± 6	318 ± 5	332 ± 6
1000 mg/kg (n=10)	172 ± 1	221 ± 3	279 ± 3	314 ± 2	327 ± 3

 $[\]Diamond$ Q = quarantine period

[†] Fasted overnight

^{*} Mean ± Standard Error

[«]Significantly different than the control group (p ≤ 0.05) by Dunnett's test.

Organ Weights and Ratios

Organ weight, organ-to-body weight ratio, and organ-tobrain weight ratios were compared for liver, spleen, adrenal, kidneys, heart, testes/ovaries, and brain weights. For the males, the 316-mg/kg/day dose group's heart weight and heartto-brain weight ratio were significantly higher by both oneway ANOVA and by the Dunnett's test. The heart-to-body weight ratio data were significantly different by one-way ANOVA but were not significantly different by the Dunnett's test. For the females, heart weight (1000-mg/kg/day dose group significant) and heart-to-brain weight ratio (316- and 1000-mg/kg/day dose groups significant) both exhibited a decreasing trend. The brain-to-body weight ratio exhibited an increasing trend with the 1000-mg/kg/day dose group being significantly elevated. For the 100-mg/kg/day dose group, the ovaries-to-body weight ratio was significantly elevated. The ovaries-to-brain weight ratio was also higher by one-way ANOVA but the difference was not significant by the Dunnett's test. Group mean organ weights and the comparative ratios are presented in Tables 4 through 6. Individual organ weight data are presented in Appendix J.

Clinical Chemistry

The effect of nitroguanidine on the level of several serum electrolytes (Table 7), various serum biochemistry measurements (Tables 8 and 9), and the activity of several serum enzymes (Table 10) was examined. For the females, comparing the control and treatment groups by ANOVA indicated significant differences in the levels of aspartate aminotransferase, potassium, magnesium, and uric acid. However, when the Dunnett's test was performed, there were no significant differences between the control and treatment groups. For the males, comparing the control and treatment groups by ANOVA and Dunnett's test indicated significant differences were present in potassium and calcium levels. For calcium, the group means were lower for all dose groups. However, only the 100-mg/kg/day dose group was significantly lower. For potassium, there was no apparent trend with only the high-dose group being significantly lower. Individual clinical chemistry values are presented in Appendices K, L, and M.

<u>Hematology</u>

The effect of nitroguanidine on various hematological measurements was examined. These data are summarized in Tables 11 (females) and 12 (males). For the males, no significant differences in any of the hematological

TABLE 4: Organ Weights

	Control (n=10)	100 mg/kg (n=10)	316 mg/kg (n=10)	1000 mg/kg (n=10)
	FEM	ALES		
Liver (g)	6.85*	7.07	6.93	6.45
	±0.19	±0.33	±0.31	±0.26
Kidneys (g)	1.80	1.78	1.76	1.68
	±0.06	±0.06	±0.05	±0.05
Heart (mg)	914	872	847	801«
	±33	±23	±36	±34
Ovaries (g)	161	195	163	171
	±11	±15	±8	±11
Brain (g)	1.77	1.75	1.86	1.83
	±0.04	±0.05	±0.03	±0.03
Spleen (mg)	543	549	547	535
	±27	±19	±33	±40
Adrenals (mg)	108	112	101	102
	±10	±9	±8	±8
	MA	LES		
Liver (g)	9.40*	9.73	10.16	9.26
	±0.36	±0.25	±0.25	±0.18
Kidneys (g)	2.53	2.70	2.77	2.55
	±0.08	±0.11	±0.07	±0.07
Heart (g)	1.12 ±0.04	1.19 ±0.04	1.29« ±0.04	
Testes (g)	2.82 ±0.05	2.91 ±0.05	2.81 ±0.05	±0.12
Brain (g)	1.95	1.90	1.89	1.88
	±0.02	±0.05	±0.03	±0.05
Spleen (mg)	726	786	826	695
	±62	±56	±26	±5 5
Adrenals (mg)	86	99	103	111
	±14	±18	±14	±27

^{*}Mean + Standard Error

[«]Significantly different from the control (p \leq 0.05) by Dunnett's test.

TABLE 5: Organ-to-Body Weight Ratios

	Control (n=10)	100 mg/kg (n=10)	316 mg/kg (n=10)	1000 mg/kg (n=10)
	FEM	ALES		
Liver (%)	2.80*	2.99	2.92	2.89
	±0.05	±0.10	±0.09	±0.06
Kidneys (%)	0.736	0.755	0.743	0.755
	±0.017	±0.016	±0.008	±0.017
Heart (%)	0.374	0.370	0.356	0.359
	±0.012	±0.008	±0.009	±0.009
Ovaries (%)	0.066	0.083<	0.069	0.076
	±0.004	±0.007	±0.003	±0.003
Brain (%)	0.723	0.742	0.787	0.826«
	±0.018	±0.021	±0.018	±0.020
Spleen (%)	0.221	0.233	0.229	0.239
	±0.008	±0.007	±0.010	±0.015
Adrenals (%)	0.044	0.048	0.042	0.046
	±0.003	±0.004	±0.003	±0.003
	MA	LES		
Liver (%)	2.96	2.99	3.06	2.83
	±0.08	±0.05	±0.05	±0.04
Kidneys (%)	0.798	0.828	0.834	0.780
	±0.019	±0.027	±0.018	±0.022
Heart (%)	0.354	0.366	0.391	0.340
	±0.011	±0.011	±0.015	±0.011
Testes (%)	0.892	0.896	0.851	0.858
	±0.025	±0.021	±0.026	±0.033
Brain (%)	0.616	0.585	0.571	0.575
	±0.017	±0.017	±0.017	±0.015
Spleen (%)	0.228	0.241	0.250	0.213
	±0.018	±0.016	±0.009	±0.017
Adrenals (%)	0.027	0.030	0.031	0.034
	±0.004	±0.006	±0.004	±0.008

^{*}Mean ± Standard Error

The second of th

[«]Significantly different from the control (p \leq 0.05) by Dunnett's test.

TABLE 6: Organ-to-Brain Weight Ratios

			 	
	Control (n=10)		316 mg/kg (n=10)	1000 mg/kg (n=10)
	FEM	ALES		
Liver (%)	388*	407	373	353
	±15	±20	±15	±16
Kidneys (%)	102	102	95	92
	±4	±4	± 2	±3
Heart (%)	51.7	50.0	45.5«	43.8«
	±2.0	±1.1	±1.6	±1.9
Ovaries (%)	9.11	11.26	8.75	9.28
	±0.66	±0.94	±0.34	±0.49
Spleen (%)	30.7	31.4	29.4	29.3
	±1.5	±0.9	±1.6	±2.4
Adrenals (%)	6.13	6.45	5.43	5.56
	±0.61	±0.56	±0.42	±0.37
	MA	LES		
Liver (%)	483	515	540	497
	±18	±16	±15	±17
Kidneys (%)	130	143	147	136
	±5	±6	±5	±4
Heart (%)	57.7	63.1	68.6«	59.2
	±2.2	±3.0	±1.9	±1.4
Testes (%)	145	154	149	150
	±3	±4	±3	±6
Spleen (%)	37.3	41.1	43.8	36.7
	±3.1	±2.6	±1.4	±2.5
Adr⊖nals (%)	4.38	5.16	5.45	6.16
	±0.72	±0.96	±0.79	±1.75

^{*}Mean \pm Standard Error «Significantly different from the control (p \leq 0.05) by Dunnett's test.

ᠣᡥᢨᡥᡥ᠗ᢟᠪᢗ᠙ᢣᠺᢈ᠐ᢒᠪᡚᡗᡚᢗᡧᢓᡧᢓᡚᡚᡚᡚᢓᡚᢓᡚ᠙ᡮ᠙᠅ᡎᠣᡐᡗᡬ᠅᠘ᢢ᠘ᡎᡛ᠂ᡎᢏ᠘ᠽᡀᡳ᠅᠅᠘ᢣᡠᢏ᠒ᠽ᠘ᡶᡀ᠘᠘ᢏᡀᡧ᠘᠘ᢏ᠘᠘᠘᠘᠘᠘

TABLE 7: Serum Electrolyte Levels

	Control (n=10)	100 mg/kg (n=10)	316 mg/kg (n=10)	1000 mg/kg (n=10)
	FEM	ALES		
Sodium	165.6*	166.7	166.9†	163.1
(mEq/dl)	±2.4	±1.9	±1.1	±2.4
Potassium (mEq/dl)	6.74	6.71	7.21†	6.14
	±0.21	±0.22	±0.35	±0.15
Chloride (mEq/dl)	122.2	122.5	122.6†	118.8†
	±2.5	±1.6	±1.4	±0.9
Calcium (mg/dl)	10.78	10.96	10.92†	10.58
	±0.16	±0.12	±0.19	±0.11
Phosphorus (mg/dl)	10.4	10.7	10.6†	9.4†
	±0.5	±0.4	±0.3	±0.4
Magnesium (mg/dl)	3.17	3.32	3.41†	2.96
	±0.12	±0.09	±0.10	±0.10
	MA	LES		
Sodium (mEq/dl)	182.1†	182.1	178.1	169.0
	±5.7	±3.4	±4.0	±5.5
Potassium (mEq/dl)	8.02†	7.48	7.71	6.57«
	±0.52	±0.21	±0.28	±0.27
Chloride (mEq/dl)	112.7	109.7	110.2	113.8
	±1.3	±1.4	±2.0	±1.8
Calcium (mg/dl)	11.99	11.23«	11.61	11.51
	±0.21	±0.08	±0.20	±0.19
Phosphorus (mg/dl)	14.3	13.4	13.6	13.1
	±0.4	±0.3	±0.4	±0.4
Magnesium (mg/dl)	3.27	3.08	2.94	2.96
	±0.16	±0.15	±0.09	±0.10

^{*}Mean ± Standard Error

tn=9

[«]Significantly different from the control (p \leq 0.05) by Dunnett's test.

TABLE 8: Serum Biochemistry Measurements for Female Rats

	Controls	100mg/kg	316mg/kg	1000mg/kg
	(n=10)	(n=10)	(n=9)	(n=10)
Triglycerides (mg/dl)	63.7*	65.6	58.8	56.9†
	±4.4	±5.4	±5.3	±3.9
Cholesterol (mg/dl)	82	87	80	77†
	±4	±3	±3	±4
Glucose (mg/dl)	168	174	170	181
	±13	±12	±13	±12
Creatinine (mg/dl)	0.69	0.71	0.70	0.68t
	±0.04	±0.03	±0.03	±0.03
Blood Urea Nitrogen (mg/dl)	17.41	18.36	18.47	18.24
	±0.95	±0.57	±0.98	±1.04
Uric Acid (mg/dl)	2.5	2.7	3.3	2.4
	±0.2	±0.2	±0.3	±0.2
Albumin (g/dl)	2.92 0	3.16	3.07	3.13†
	±0.05	±0.05	±0.10	±0.05
Globulin	2.79 ◊	2.75	2.69	2.62†
(g/dl)	±0.08	±0.05	±0.07	±0.04
Total Protein (g/dl)	5.77	5.91	5.71	5.74
	±0.10	±0.07	±0.18	±0.07
Total Bilirubin< (mg/dl)	0.70	0.60	0.70	0.60
	±0.06	±0.06	±0.06	±0.03
Serum Iron	293	328	3 32	323
(µg/dl)	±22	±27	±31	±24

^{*}Mean ± Standard Error

tn=9

on=8

<Median ± Standard Error

TABLE 9: Serum Biochemistry Measurements for Male Rats

	Controls	100mg/kg	316mg/kg	1000mg/kg
	(n=10)	(n=10)	(n=10)	(n=10)
Triglycerides (mg/dl)	81.6*	72.7	83.7	107.3
	±6.0	±4.0	±5.5	±13.3
Cholesterol (mg/dl)	70	63	64	68
	±3	± 2	±4	±3
Glucose	165	158	182	162
(mg/dl)	±13	±10	±12	±10
Creatinine (mg/dl)	0.55	0.65	0.59	0.56
	±0.02	±0.08	±0.02	±0.02
Blood Urea Nitrogen (mg/dl)	16.42	18.35	17.21	17.02
	±0.38	±1.54	±0.86	±0.85
Uric Acid (mg/dl)	2.1	1.9	2.2	1.9
	±0.3	±0.1	±0.2	±0.2
Albumin (g/dl)	2.80	2.72	2.80	2.63
	±0.09	±0.08	±0.09	±0.06
Globulin	2.96	2.80	2.88	2.81
(g/dl)	±0.06	±0.06	±0.07	±0.12
Total Protein (g/dl)	5.77	5.52	5.67	5.44
	±6.11	±0.10	±0.10	±0.11
Total Bilirubin< (mg/dl)	0.72	0.64	0.64	0.59
	±0.09	±0.06	±0.09	±0.04
Serum Iron	144†	165	164†	175
(µg/dl)	±15	±17	±13	±15

^{*}Mean ± Standard Error

<Median ± Standard Error

tn=9

TABLE 10: Serum Enzyme Activity

	Control (n=10)	100 mg/kg (n=10)	316 mg/kg (n=10)	1000 mg/kg (n=10)
	FEM	ALES		
Aspartate Amino-	87.58*	80.38	67.12†	87.40
transferase (I.U.)	±7.39	±3.78	±3.66	±10.62
Alanine Amino-	29.42	29.73	27.54†	28.99
transferase (I.U.)	±0.98	±1.16	±1.16	±1.41
Lactate Dehydro-	569.64	454.53†	400.59†	566.98
genase (I.U.)	±55.27	±57.68	±58.33	±81.63
Creatine Phospho-	320.95	287.85	210.77†	262.58†
kinase (I.U.)	±66 .65	±15.70	±21.87	±29.51
Alkaline Phospho-	64.12	74.87	59.99†	66.78
kinase (I.U.)	±3.88	±5.34	±5.31	±5.36
	MA	LES		
Aspartate Amino-	84.76	77.09	80.35	79.53
transferase (I.U.)	±4.86	±3.09	±5.93	±5.18
Alanine Amino-	34.62	30.39	33.30	32.32
transferase (I.U.)	±2.04	±0.72	±1.74	±1.02
Lactate Dehydro-	595.68	565.45	455.20	593.80
genase (I.U.)	±65.78	±49.71	±73.92	±77.92
Creatine Phospho-	244.72	213.36	234.42	219.30
kinase (I.U.)	±20.13	±14.76	±26.70	±26.27
Alkaline Phospho-	129.70	120.38	141.37	135.07
kinase (I.U.)	±8.05	±9.48	±9.33	±9.52

^{*}Mean ± Standard Error tn=9

TABLE 11: Hematology Values in Female Rats

	Control	100 mg/kg	316 mg/kg	1000 mg/kg
	(n=10)	(n=9)	(n=10)	(n=9)
Erythrocytes	7.12*	7.49	7.63	7.55
(x 10 ⁶ /µl)	±0.29	±0.13	±0.16	±0.17
Hemoglobin (g/dl)	15.6	15.3	15.6	14.9
	±0.2	±0.1	±0.2	±0.3
Hematocrit (%)	43.5	42.1	43.0	41.4
	±0.5	±0.5	±1.0	±0.9
Mean Cell Volume (μ^3)	56.9	55.2«	55.5	54.7«
	±0.6	±0.4	±0.5	±0.3
Mean Corpuscular	20.6	20.2	20.4	19.9
Hemoglobin (pg)	±0.2	±0.3	±0.2	±0.2
Mean Corpuscular	35.4	35.8	36.0	35.4
Hemoglobin Conc (%)	±0.2	±0.5	±0.4	±0.2
Platelets	1.236	1.231	1.319	1.155
(x 10 ⁶ /µl)	±0.085	±0.035	±0.092	±0.085
Leukocytes (total)	6.01	4.88	6.49	5.34
(x 10 ³ /µl)	±0.35	±0.52	±0.67	±0.41
Neutrophils $(x 10^3/\mu l)$	0.92†	0.54«	0.76	0.60
	±0.11	±0.08	±0.10	±0.12
Lymphocytes $(x 10^3/\mu 1)$	5.07†	4.24	5.51	4.59
	±0.29	±0.49	±0.55	±0.41
Eosinophils (x 10 ³ /µl)	0.11†	0.03«	0.10	0.08
	±0.01	±0.01	±0.02	±0.01
Monocytes $(x 10^3/\mu l)$	0.12†	0.06«	0.13	0.08
	±0.01	±0.02	±0.02	±0.01

^{*}Mean ± Standard Error

tn=9

BOOKERS COCCUS STANDON BOOKERS SOUCCES DONNON BOOKERS BOOKERS

[«]Significantly different from the control group (p \leq 0.05) by the Dunnett's test.

TABLE 12: Hematology Values for Male Rats

	Control (n=10)	100 mg/kg (n=10)	316 mg/kg (n=9)	1000 mg/kg (n=10)
Erythrocytes (x 10 ⁶ /μ1)	7.34*	7.19	7.39	7.43
	±0.14	±0.18	±0.11	±3.10
Hemoglobin	15.3	15.3	15.2	15.3
(g/dl)	±0.3	±0.2	±0.3	±0.2
Hematocrit (%)	43.9	44.1	44.1	44.6
	±0.8	±0.6	±0.9	±0.5
Mean Cell Volume (μ^3)	59.5	59.4	59.3	59.0
	±0.6	±0.6	±0.5	±0.7
Mean Corpuscular	20.9	20.9	20.7	20.4
Hemoglobin (pg)	±0.2	±0.2	±0.2	±0.2
Mean Corpuscular	34.3	34.2	34.1	33.8
Hemoglobin Conc (%)	±0.3	±0.2	±0.3	±0.2
Platelets $(x 10^6/\mu 1)$	1.277	1.246	1.297	1.287
	±0.074	±0.029	±0.061	±0.043
Leukocytes (total) $(x 10^3/\mu l)$	6.72	6.65	6.68	7.26
	±0.49	±0.46	±0.42	±0.44
Neutrophils $(x 10^3/\mu l)$	0.52	0.75	0.70	0.81
	±0.05	±0.08	±0.08	±0.10
Lymphocytes $(x 10^3/\mu l)$	6.03	5.71	5.81	6.23
	±0.48	±0.47	±0.40	±0.44
Eosinophils $(x 10^3/\mu 1)$	0.05	0.07	0.05	0.09
	±0.02	±0.02	±0.02	±0.02
Monocytes	0.11	0.11	0.12	0.11
(x 10 ³ /μ1)	±0.02	±0.03	±0.02	±0.02

^{*}Mean ± Standard Error

AND PRODUCED LINESCOPER (ADDRESSED FRANCES)

CONTROL DESCRIPTION OF PROPERTY OF THE PROPERT

measurements were found. For the females, mean cell volume was decreased in the 100- and 1000-mg/kg/day dose groups. Analysis of variance indicated significant differences in the hemoglobin values, but there were no significant differences between control and treatment groups when the Dunnett's test was applied. Total numbers of eosinophils, neutrophils, and monocytes were significantly lower in the 100-mg/kg/day dose group than in the control group. The values of the 316- and 1000-mg/kg/day dose groups for neutrophils and the 1000-mg/kg/day dose groups for eosinophils and monocytes were also lower, although not significantly. Individual hematology values are presented in Appendix N.

Pathology

Two males, one in the 100-mg/kg/day and one in the 316-mg/kg/day dose groups, had mild-to-moderately dilated renal pelves. One male in the 1000-mg/kg/day dose group exhibited testicular atrophy. No gross abnormalities were found in any of the females. There were no microscopic lesions that could be attributed to the test compound. The veterinary pathologist's report is presented in Appendix O.

DISCUSSION

No clinical signs of toxicity attributable to nitroquanidine administration were observed during the 14-day In addition, there were no mortalities nor study period. lesions noted at necropsy or on microscopic examination that could be attributed to nitroguanidine administration. The mean body weight of the female 1000 mg/kg/day dose group was significantly lower from the second week of quarantine to termination of the study because of faulty placement of sipper tubes during the quarantine period. Water deprivation and the resultant decrease in food consumption and depletion of stored fat could account for the weight loss observed and the small but significant increases in brain-to-body weight ratios observed in the female animals. The increase in ovary-to-body weight ratio in the 100-mg/kg/day dose group was heavily influenced by two females. They were probably experiencing an early estrus. No consistent treatmentrelated changes in organ weights or organ ratios were observed in the male dose groups.

The lack of toxicity observed in this study is consistent with the results of a previously reported single-dose oral toxicity study (4). Metabolism studies (7) have indicated that nitroguanidine is rapidly absorbed following oral administration and excreted in the urine over a dose

range from 20 mg/kg to 200 mg/kg. Absorption and excretion were not measured at doses equivalent to the 1000-mg/kg/day dose administered in this study. However, the lack of toxicity observed in this study suggests that nitroguanidine might also be rapidly absorbed following oral administration and excreted in the urine at dose levels up to 1000-mg/kg/day.

Serum calcium levels in the 100-mg/kg/day male group and potassium in the 1000-mg/kg/day male group were significantly lower than in the male control group. While the levels of serum calcium and potassium in the other dose groups were lower, no overall trend was apparent. Although not significant by the Dunnett's test, the serum potassium and magnesium levels in the 1000-mg/kg/day female group were also lower.

Nitroguanidine may be acting as an osmotic diuretic in this study. Urea, a chemically related compound, has been used as an osmotic diuretic (8). Since nitroguanidine is considerably less soluble in water than guanidine or urea (9), the excretion of nitroguanidine in the urine would require considerably more urinary volume than would be required to excrete a similar quantity of guanidine or urea. The dose-related increases in water consumption following nitroguanidine administration observed in this study are consistent with an increased urinary volume requirement for excretion of nitroguanidine. The serum electrolyte decreases also observed in the study could then be an indirect or secondary response to the nitroguanidine-induced diuresis.

CONCLUSION

ŶŨŶŨŶŶĸĊŶĬŶĬŶŊĠŶŊŖĠŶŊĠŶŊŊĠŶŊĠŶŊĠŶŊĠŶŊĠŶŊĠŎŊĠŎŊĠŎŊĠ

Nitroguanidine fed at dose levels from 100-mg/kg/day to 1000-mg/kg/day in the diet for 14 days was nontoxic to Sprague-Dawley rats.

REFERENCES

- 1. Kenyon KF. A data base assessment of environmental fate aspects of nitroguanidine. Frederick, MD: US Army Medical Bioengineering Research and Development Laboratory, 1982; Technical Report 8214 (ADA125591).
- 2. Fourteen-day subchronic oral toxicity testing in rodents. LAIR Standard Operating Procedure OP-STX-52, Letterman Army Institute of Research, Presidio of San Francisco, CA. 24 October 1984.
- 3. Environmental Protection Agency. Office of Pesticides and Toxic Substances, Office of Toxic Substances (TS-792). Subchronic exposure, oral toxicity. In: Health effects test guidelines. Washington, DC: Environmental Protection Agency, August 1982; EPA 560/6-82-001.
- 4. Hiatt GFS, Morgan EW, Brown LD, Lewis CM, Johnson YC, et al. Acute toxicity of guanidine nitrate and nitroguanidine. Laurel, MD: Chemical Propulsion Information Agency, 1985; CPIA Publication 436, pp 321-330.
- 5. Diet preparation for feeding studies. LAIR Standard Operating Procedure OP-STX-16, Letterman Army Institute of Research, Presidio of San Francisco, CA. 28 June 1985.
- 6. Dixon WJ, ed. BMDP statistical software. Berkeley: University of California Press, 1981:555-573.
- 7. Ho B, Tillotson JA, Kincannon LC, Simboli PB, Korte DW, Jr. The fate of nitroguanidine in the rat. Fundam Appl Toxicol 1988;10:453-458.
- 8. Weiner IM, Mudge GH. Diuretics and other agents employed in the mobilization of edema fluid. In: Gilman AG, Goodman LS, Rall TW, Murad F, eds. The pharmacological basis of therapeutics. New York: MacMillan Publishing Co, 1985:887-900.
- 9. Windholz M, ed. Merck Index. 10th ed. Rahway, NJ: Merck and Co, 1983.

Pag		
ndix A. Chemical Data2	Α.	Appendix
ndix B. Animal Data2	В.	Appendix
ndix C. Analysis of Feed Mixtures2	C.	Appendix
ndix D. Historical Listing of Study Events3	D.	Appendix
ndix E. Hematology/Clinical Chemistry Indices3	E.	Appendix
ndix F. Histopathology Tissues3	F.	Appendix
ndix G. Individual Food and Water Data3	G.	Appendix
ndix H. Clinical Signs3	н.	Appendix
ndix I. Individual Body Weights4	I.	Appendix
ndix J. Individual Organ Weights4	J.	Appendix
ndix K. Serum Electrolyte Levels4	к.	Appendix
ndix L. Serum Biochemistries5	L.	Appendix
ndix M. Enzyme Activities5	М.	Appendix
ndix N. Hematology Data5	N.	Appendix
ndix O. Pathology Report6	0	Spuendix

Appendix A: CHEMICAL DATA

Chemical Name: Nitroguanidine (NGu)

Other Listed Names: Guanidine, Nitro; alpha-Nitroguanidine;

beta-Nitroguanidine

Chemical Abstracts Service Registry No.: 556-88-7

Lot Number: SOW83H001-004

LAIR Code: TP36
Chemical Structure:

$$H_2N$$
 $C = N - NO_2$

Molecular Formula: CH4N4O2

Molecular Weight: 104.1

Physical State: White powder

Melting Point: 232°C1

Purity: 99.6% (Data Sheet Attached)

Names of Contaminants and Percentages: (Data Sheet Attached)

Source: Hercules Aerospace Division

Sunflower Ammunition Plant

DeSoto, Kansas

Analytical Data:

An infrared spectrum was obtained upon receipt of the compound; major absorption peaks were observed at 3330 (broad), 1660, 1630, 1525, 1400, 1300, 1050, and 780 cm $^{-1}$. The spectrum was identical to the Sadtler spectrum for nitroguanidine.

Fedoroff BT, Sheffield OE. Encyclopedia of explosives and related items. Vol 6. Dover, NJ: Picatinny Arsenal, 1975: G154.

²Wheeler CR. Nitrocellulose-Nitroguanidine Projects. Laboratory Notebook #84-05-010.2, p 39. Letterman Army Institute of Research, Presidio of San Francisco, CA.

³Sadtler Research Laboratory, Inc. Sadtler standard spectra. Philadelphia: The Sadtler Research Laboratory, Inc., 1962: Infrared spectrogram #21421.

Appendix A (cont.): CHEMICAL DATA

Stability:

An aqueous solution of NGu (48.1 µmolar) was prepared and the absorption at 264 nm determined to be 0.689 AUFS. Three weeks later the same solution was reexamined spectroscopically and the absorption at 264 nm found to be 0.689 AUFS. A full spectrum scan revealed the characteristic pattern of absorption in the UV range with peak maxima at 215 and 264 nm. These data indicate that NGu is stable in aqueous solution for at least three weeks.⁴

⁴Wheeler CR. Nitrocellulose-Nitroguanidine Projects. Laboratory Notebook #84-05-010, pp 22 and 36. Letterman Army Institute of Research, Presidio of San Francisco, CA.

Appendix A (cont.): CHEMICAL DATA

DESCRIPTION SHEET FOR EX	PLOSIVES, CITE	MICALS, LTC	EXEMPT-Pare 7-10 AR 335 - 15
O: Cramander US Army Armanest Municipus and Chemical Command Actus DRSMC-QAD Rock Islane, NLL 61201	Sunflower Army DeSoto, Kansas	Ammunition Plants 66018	September 13, 1983 WAILHIAL Nitroguanidine Type II, Class 2 *
MANUT ACTURER		CONTRACT NO.	
Hercules Aerospace Division, Hercu			016, CLIN 0270
	ION A - DESCRIP		
FROM NUMBER THRU NUMBER SOW83H001-004	TOTAL NO. LOTS	7,000 15	
PLACE MANUFACTURED		ISPECIFICATION AND AM	
Sunflower Army Ammunition Plant, I	P Facility		t. Amend 6 (AR) dated
~ ~~~		OH OF MATERIAL	
· .	Parada a		
Property	Requireme		1,,,,,,
	Min.	<u>iax.</u> Ana	lysis
Purity, Z	99.0	99	.6
Ash Content, Z	•		.03
pH Value	4.5	7.0 7.	55 **
Acidity (as H ₂ SO ₄), Z			D ***
Total Volatiles, Z - Sulfates (as NaSO ₄), Z			.03
Impurities, H ₂ O Insoluble, Z			.01
Particle Size, Microns			.U1 -
Particle Size, Std. Dev.			.168
· <u>-</u>	•		
			•
•		•	
* As amended by Contract Sc. ** Approved by Waiver No. NQ. *** ND = None Detected *** Approved by Waiver No. NQ. REMARKS 1.) Manufactured under SOW ES 2.) Packaging: Level B - fibe 247 thru 285. 25 pounds p	83-1 dated Sept. 83-2 dated Sept. 1A-3-8423, Nitro	9, 1983 guanidine Particl DOT 21C60. Drum	s numbered 3 thru 243 and
	SECTION C + CE	OURCAHON I	
SAMPLING CONDUCTED BY	THE ADOVE MA	TEHIAL COMPLIES HITM A	
Hercules Aerospace Division TESTING CONGULTED BY	12 1.47	AND IS CERTIFIED TRUE	AND CORRECT.
Hercules Aerospace Division	1-2-0	A. A. Shall	A honorouse
THE ABOVE DESCRIBED LUTS AND MERLET ACC.	03150	FOR THE CON	REGULAND
14 Long 3 Quality Assu	rance Specialist		. ol
122504 500 212 2 10 10		M. A. 1.3	
ARRCOM FORM 213-R, 10 AUG 17			PHICH MAY BE USED.

Appendix B: ANIMAL DATA

Species: Rattus norvegicus

Strain: Sprague-Dawley

Source: Bantin Kingman

Fremont, CA

Sex: Male and female.

SECONOMINATIONS OF THE PROPERTY OF THE PROPERT

Date of birth: Male: 4 February 1985

Female: 28 January 1985

Method of randomization: Weight bias, stratified animal

allocation (RANDOM Computer Program,

SOP OP-ISG-21)

Animals in each group: 10 male and female animals, 3 each

for baseline controls

Condition of animals at start of study: Normal

Body weight range at start of dosing: 173-304 g

Identification procedures: Ear tagging procedure (SOP OP-

ARG-1).

Pretest conditioning: Quarantine/acclimation from 20 March to

2 April 1985

Justification: The laboratory rat has proven to be a

ⅆⅆⅆⅆⅆⅆⅆⅆⅆⅆⅆⅆⅆⅆⅆⅆ℣ⅆ℄℀ⅆ℀ⅆ℀ⅆ℀ⅆ℀ⅆ℀ⅆ℀ⅆ℀ⅆ℀ⅆ℀ⅆ℀ⅆ℀ⅆ℀Å℄ⅆ℀ℰ℀ⅆ℄℄ⅆ℀ⅆℋℋℋℋℋℋℋℋℋℋℋℋ

sensitive and reliable system for subchronic

oral lethal dose determination.

Appendix C: ANALYSIS OF FEED MIXTURES

INTRODUCTION

Feed mixtures containing nitroguanidine (NGu) were prepared for GLP Study #84040 to provide dose levels of nitroguanidine ranging from 100 to 1000 mg NGu/kg body weight/day. Separate diets were prepared for male and female rats due to differences in food consumption and body weights. New diets were prepared for each week of the two-week study to account for changes in food consumption and body weights due to growth. The target concentration of NGu in the feed mixtures ranged from 1.23 to 14.74 mg NGu/g diet. The samples of the feed mixtures were analyzed to determine concentration, homogeneity, and stability of NGu in the mixtures. The method of analysis was an HPLC method in which methylnitroguanidine (MNGu) was used as an internal standard.

MATERIALS

Chromatographic analysis was performed using a Hewlett-Packard 1090 high pressure liquid chromatography (HPLC) system with diode array detector (Hewlett-Packard, Palo Alto, CA). Separations were obtained on a Brownlee RP-18 column (4.6 x 250 mm, Brownlee Labs, Inc., Santa Clara, CA).

The nitroguanidine was obtained from the Sunflower Army Ammunition Plant, Desoto, KS (Lot No. SOW84KOlO-A-OOl). The methylnitroguanidine was synthesized previously according to the method of McKay (1) using l-methyl-3-nitro-l-nitrosoguanidine, 97% (MNNG, Lot No. 8228CK) and methylamine (40 wt% in water, Lot No. 0719AL) from the Aldrich Chemical Company, St Louis, MO. Certified Rodent Chow #5002 (Lot Nos. AUG1684BBMEAL and FEB288512MEAL) was obtained from Ralston Purina, St. Louis, MO. HPLC grade methanol (Lot No. 440127) was obtained from J. T. Baker Chemical Co., Phillipsburg, NJ. The water used for the HPLC solvent was distilled and the trace organic compounds removed using Organicpure® oxidizer (Sybron/Barnstead, Boston, MA).

METHODS

Stock solutions of NGu (1 mg/ml water) and MNGu (1 mg/ml water) were prepared as the first step in making standards for calibration. The standards were prepared by adding varying amounts of the stock solutions and water (Table 1).

Appendix C (cont): ANALYSIS OF FEED MIXTURES

TABLE 1

Tube #	Target Conc. NGu (mg/ml)	Target Conc. MNGu(mg/ml)	Mls of NGu Stock Soln.		Mls of Water
1	0.01	0.04	0.25	1.00	23.75
2	0.02	0.04	0.50	1.00	23.50
3	0.03	0.04	0.75	1.00	23.25
4	0.04	0.04	1.00	1.00	23.00
5	0.05	0.04	1.25	1.00	22.75
6	0.06	0.04	1.50	1.00	22.50
7	0.08	0.04	2.00	1.00	22.00

The standards were analyzed at the beginning and end of each run. Samples from the feed mixtures and premix were prepared by adding varying amounts of water and the MNGu stock solution (1 mg/ml) as described in Table 2.

TABLE 2

Dose Level (mg/kg/day)	Gm of Diet Analyzed	Mls of MNGu Soln Added	Mls of Water Added	Total Volume (Dilution Factor)
100	1.00	1	24	25
316	1.00	4	96	100
1000	1.00	10	240	250
Premix (50 mg/g)	0.25	10	240	250

The samples were stirred for an hour and then centrifuged at 3000g for 10 minutes. The supernatant from each tube was filtered through a Pasteur pipette with a tightly packed glass wool plug. The filtrate was then passed through a millipore filter (0.2 uM) using a syringe with a Swinney adapter. The filtrate from the ultrafiltration was subsequently analyzed using HPLC.

Appendix C (cont): ANALYSIS OF FEED MIXTURES

To determine the homogeneity of the feed mixtures, samples were removed from the top, middle, and bottom of the first batch of premix and from the feed mixtures for each dose level. Samples for testing homogeneity were also removed from the last set of feed mixtures prepared. The samples were prepared for analysis as described above.

The stability of the test compound in the feed was determined by analyzing the feed mixtures from the first week approximately one week, three weeks, and three months after their preparation. The stability of the standard solutions was determined by comparing the NGu/MNGu ratios obtained from freshly prepared solutions with standards prepared approximately three months before. The standard solutions were held at approximately 4°C in screw-cap test tubes with parafilm around the edge of the cap to prevent evaporation.

The analysis of NGu feed mixtures was accomplished under the following HPLC conditions: solvent, 10% methano1-90% water; solvent flow, 0.7 ml/min; injection volume, 10 ul; detector wavelength, 265 nm. The NGu was analyzed using methylnitroguanidine (MNGu) as an internal standard.

Calculations

The ratio of NGu to MNGu was calculated for all the standards and samples. The two peak area values for each standard from the beginning and the end of the run were averaged. Least squares linear regression analysis of the standard concentrations versus the peak area ratios was performed to obtain the equation of the best fitting line in the form of Equation 1

$$y = mx + b \tag{1}$$

where y is the peak area ratio, m is the slope, x is the concentration (mg/ml) and b is the intercept. The concentration of each extract was calculated by substituting for y the peak area obtained from HPLC analysis and solving for x. To calculate the concentration in the diet in terms of mg of NGu per g diet, the concentration of the extract was multiplied by the dilution factor and divided by the weight of the diet sample extracted (Equation 2).

Conc. in diet = Conc. of NGu in extract X Dilution factor (2)

Grams of diet extracted

Appendix C (cont): ANALYSIS OF FEED MIXTURES

RESULTS

Under the conditions of the analysis NGu eluted with a retention time of approximately 5.05 minutes and MNGu eluted with a retention time of approximately 6.40 minutes. The plots of the NGu concentration versus peak area ratio were linear within the range of concentrations analyzed. The correlation coefficients for each of these runs were greater than 0.9995. The equation of the line obtained by the regression analysis for each run is as follows:

10	Apr	85	у:	=	0.00570	+	28.07180	Х
	Apr		у:	=	-0.00889	+	29.04639	Х
23	Apr	85	У	==	-0.00844	+	28.84959	Х
19	Jul	85	V -		-0.00713	+	29.00340	Х

The results from the analysis of the diet mixtures are presented in Table 3.

TABLE 3

Target Concentration (mg/g)	P	Date repa	_		Date alyz		Concentration Determined by Analysis (mg/g)	% of Target Concentration
1.28	3	Apr	85	10	Apr	85	1.32	103.1
1.23	5	Apr	85	10	Apr	85	1.24	100.8
1.43	10	Apr	95	19	Jul	85	1.50	104.9
1.43	12	Apr	85	17	Apr	85	1.40	97.9
4.09	3	Apr	85	10	Apr	85	4.21	102.9
4.35	5	Apr	85	10	Apr	85	4.49	103.2
4.40	10	Apr	85	17	Apr	85	4.31	98.0
4.69	12	Apr	85	17	Apr	85	4.60	98.1
13.13	3	Apr	85	23	Apr	85	13.56	103.3
13.60	5	Apr	85	10	Apr	85	14.49	106.5
13.98	0	Apr	85	17	Apr	85	14.56	104.1
14.74	12	Apr	85	17	Apr	85	14.74	100.0

DECOME BUSINESSE PERSONS PROCESSES

Appendix C (cont): ANALYSIS OF FEED MIXTURES

Table 4 contains the results for the determination of homogeneity in the diets and premix.

TABLE 4

Target Concentration of NGu (mg/g)	Site of Sampling	Concentration Determined by Analysis (mg/g)	Mean Concentra- tion (mg/g)	Deviation from Mean (%)
1.28	Top Middle Bottom	1.31 1.26 1.38	1.32	0.8 4.5 4.8
1.43	Top Middle Bottom	1.43 1.39 1.38	1.40	2.1 0.7 1.4
4.09	Top Middle Bottom	4.20 4.15 4.27	4.21	0.2 1.4 1.4
4.69	Top Middle Bottom	4.59 4.60 4.62	4.60	0.2 0.0 0.4
13.13	Top Middle Bottom	13.55 13.54 13.61	13.56	0.1 0.1 0.4
14.74	Top Middle Bottom	14.68 15.12 14.43	14.74	0.4 2.6 2.1
50.00 (Premix)	Top Side Middle Bottom	50.30 50.40 50.14 50.79	50.41	0.2 0.0 0.5 0.7

Appendix C (cont): ANALYSIS OF FEED MIXTURES

Results from the stability determinations of the test compound in the feed mixtures are shown in Table 5.

TABLE 5

Target	Obser	ved Concentration (mg/ml)
Concentration (mg/ml)	10 Apr 85	23 Apr 85	19 Jul 85
1.23	1.24	1.24	1.25
4.35	4.49	4,40	4.48
13.60	14.49	14.17	14.31

The stability determinations of the standard solutions are shown in Table 6 by comparison of the NGu/MNGu ratios.

TABLE 6

Date of			Standa	rd Solut	ions (mo	/ml)	
Preparation	0.01	0.02	0.03	0.04	0.05	0.06	0 - 08
16 Apr 85	0.3004	0.5813	0.8639	1.1559	1.4404	1.6976	2.3461
18 Jul 85	0.2894	0.5752	0.8644	1.1554	1.4300	1.7148	2.3319

DISCUSSION

The concentration of NGu in the diet mixtures as determined by analysis was within 6.5% of the target concentrations. According to the EPA and NIH criteria for homogeneity (1), the data demonstrate that the dispersion of NGu in the feed provides a homogenous mixture over the range of concentrations tested. Nitroguanidine was stable in the feed mixtures for at least three months.

REFERENCES

1. EPA, GLP Standards, Final Rule (40 CFR part 160) as published in the Federal Register, 29 Nov 1983, Vol. 48, no. 230 pp 53955-53959

Appendix D: HISTORICAL LISTING OF STUDY EVENTS

Date	<u>Events</u>
20 Mar 85	Animals arrived at LAIR. They were sexed, observed for illness, and caged in the GLP Suite.
21 Mar 85	The rats were ear tagged and weighed.
21 Mar - 2 Apr 85	Animals were checked daily.
25 Mar 85	Two males and 2 females were submitted to the LAIR Pathology Group for quality control necropsy examination.
22, 29 Mar 85	All animals were weighed, males and then females respectively. Food and water consumption monitoring was initiated. Feeders and water bottles were weighed.
3 Apr 85	Animals were removed from quarantine, and dietary concentration was calculated for males based upon food consumption. Males were weighed and started on diet containing test compound. Three males were submitted for baseline hematology and serology.
4-19 Apr 85	Observations were conducted twice daily throughout the study period.
5 Apr 85	Dietary concentration was calculated for females based upon food consumption. Females were weighed and started on diet containing test compound. Three females were submitted for baseline hematology and serology.
10 Apr 85	Males were observed, weighed, and water bottles and feeders weighed. Diet requirements were recalculated and new diet mixes prepared. Feeders were changed to new mix.

Appendix D (cont): HISTORICAL LISTING OF STUDY EVENTS

	Date	Events
12	Apr 85	Females were observed, weighed, and water bottles and feeders weighed. Diet requirements were recalculated and new diet mixes prepared. Feeders were changed to new mix.
16	Apr 85	Food was removed from males at 1600 hours.
17	Apr 85	Observed and weighed males. Submitted them for necropsy. Blood and tissue samples were taken for the measurements specified.
18	Apr 85	Food was removed from females at 1600 hours.
19	Apr 85	Observed, weighed, and submitted females for necropsy. Blood and tissue samples were taken for the measurements specified.

Appendix E: HEMATOLOGY/CLINICAL CHEMISTRY INDICES

The following are LAIR GLP SOPs for the Hematology measurements performed during the study:

- 1. Complete Blood Count OP-PSG-40 (WBC, RBC, Hb, HCT, MCV, MCH, and MCHC).
- 2. Platelets OP-PSG-39
- WBC Differential OP-PSG-26 (neutrophils, lymphocytes, eosinophils, and monocytes)

Counts for the neutrophils, lymphocytes, eosinophils, and monocytes are obtained by multiplying the WBC by the appropriate percentage obtained from the differential count.

The following are LAIR GLP SOPs for the Clinical Chemistry measurements performed during the study:

- 1. Calcium OP-ACH-17
- 2. Sodium and Potassium OP-ACH-19
- 3. Chloride OP-ACH-20
- 4. Magnesium OP-ACH-50
- 5. Phosphorus OP-ACH-18
- 6. Glucose OP-ACH-7
- 7. Cholesterol OP-ACH-11
- 8. Triglycerides OP-ACH-9
- 9. Creatinine OP-ACH-15
- 10. Blood Urea Nitrogen OP-ACH-16
- 11. Uric Acid OP-ACH-14
- 12. Albumin OP-ACH-12
- 13. Total Protein OP-ACH-13
- 14. Total Bilirubin OP-ACH-8
- 15. Serum Iron OP-ACH-22
- 16. Aspartate Amino-Transferase OP-ACH-4
- 17. Alanine Amino-Transferase OP-ACH-3
- 18. Lactate Dehydrogenase OP-ACH-5
- 19. Creatine Phosphokinase OP-ACH-6
- 20. Alkaline Phosphatase OP-ACH-10

Globulin values were calculated by subtracting the albumin values from the total protein values.

Appendix F: HISTOPATHOLOGY TISSUES

The following is a list of all tissues submitted for light microscopic examination following necropsy:

Cerebrum
Cerebellum
Trachea
Thyroid
Parathyroid
Esophagus
Salivary Gland
Harderian Gland
Exorbital Gland
Heart

Heart Aorta Lung Thymus Spleen

Mesenteric Lymph Node

Liver Kidney

Urinary Bladder

Duodenum Jejunum Ileum

MALE FEM

#PORTOR OF THE PORTOR OF THE

Accessory Sex Glands Epididymis

Testes

Pancreas Cecum Colon Rectum Stomach Skeletal Muscle

Sciatic Nerve

Tongue Skin

Mammary Gland Nasal Region

Sternum
Femur
Vertebrae
Spinal Cord
Adrenals
Pituitary
Eye(s)
Middle Ear

Auditory Sebaceous Gland

FEMALE

Uterus Ovaries

Appendix G: INDIVIDUAL FEED AND WATER DATA

FEMALES

Dose		Fe	ed la/w	<u>k)</u>	Wa	ter (g/v	k)
mg/kg	Animal ID	Base-	Week	Week	Base-	Week	Week
per day	(85D00)	line	1	2	line	1	2
0	345	105	115	94	147	181	142
	355	142	127	123	178	182	182
	357	117	127	118	155	183	174
	358	125	124	116	190	207	194
	362	163	127	128	196	219	206
	365	114	114	96	178	179	160
	367	130	131	108	215	210	204
	369	117	100	101	198	210	204
	379	189	113	102	162	187	168
	381	149	123	125	233	229	127
100	348	117	115	111	174	191	185
	351	153	102	99	171	178	156
	353	117	116	119	178	195	217
	361	140	124	134	176	204	171
	364	161	116	107	215	213	203
	368	135	114	105	197	202	176
	370	122	129	122	188	226	189
	375	85	111	99	110	206	204
	385	115	110	104	165	173	171
	388	108	107	104	211	204	193
316	354	114	123	109	194	242	207
	356	100	97	96	186	238	234
	363	120	116	113	201	243	229
	376	121	119	118	192	227	213
	382	118	109	95	232	258	259
	383	122	117	101	168	215	247
	384	130	125		217	251	
	386	142	119	127	180	226	217
	387	105	97	91	178	210	173
	389	106	110	100	190	231	205
1000	346	123	92	89	178	221	196
	347	99	87 03	85	139	221	229
	352	121	93	110	213	257	267
	359	109	113	105	154	242	197
	360 366	94	84	81	145	203	183
	366	130	127	106	182	253	230
	371	96	100	91	162	255	208
	373	87	129	125	122	302	226
	377	139	116	108	200	250	216
	378	116	114	105	177	273	236

Appendix G (cont): INDIVIDUAL FEED AND WATER DATA
MALES

Dose		Ēe	ed (a/w	k)	Wat	ter (g/y	vk)
mg/kg	Animal ID	Base-	Week	Week	Base-	Week	Week
	(85D00)	line	1	2	line	1	2
per day	,	*****		<u></u>			
0	308	140	155	140	246	240	299
•	309	143	168	157	190	308	278
	313	125	144	141	237	330	228
	316	48	172	151	56	298	284
	322	158	159	152	215	224	210
	327	138	174	156	238	276	237
	332	138	149	135	220	258	251
	333	118	131	119	203	239	338
	337	137	147	139	238	265	266
	341	116	126	124	181	202	190
	200			• 2.0	0.4.4	255	255
100	300	143	140	138	214	258	255
	301	138	162	152	265	343	336
	306	156	159	146	238	293	287
	312	132	142	142	242	263	280
	324	168	169	155	261	292	276
	325	164	162	149	220	224	235
	326	151	150	159	211	243	278
	329	156	154	142	254	296	311
	331	131	138	132	221	259	280
	336	155	146	144	227	261	259
316	302	152	156	143	270	319	307
	304	143	152	147	237	300	274
	310	129	152	150	249	317	358
	314	146	149	141	240	303	290
	319	143	153	151	2 3 8	310	297
	323	160	180	166	243	323	282
	328	138	155	144	224	285	258
	335	164	173	161	271	351	343
	343	157	156	151	239	302	309
	344	168	171	176	248	381	315
1000	305	153	157	144	232	338	292
	307	149	152	145	237	351	346
	311	138	142	144	206	293	257
	318	178	180	174	277	366	359
	320	148	1.63	151	221	362	342
	330	143	153	141	251	335	319
	334	152	169	161	242	358	237
	338	156	158	134	225	325	287
	340	121	146	140	195	279	247
	342	151	151	147	212	303	284

Appendix H: Clinical Signs

Coding for Clinical Signs

- - Normal
- * Observation not performed/record lost due to computer malfunction
- A Emaciated/Anorectic
- D Dehydration
- E Ear scab/swelling and/or bleeding
- I Irritable
- M Small mass at base of tail
- S Increased startle reflex

Appendix H (cont): Clinical Signs

																ſ
							Days	Days of Study	udy							
Group	Aniral ID	0	-	2	3	7	5	9	7	80	6	2	-11	12	13	1.4
Group 1	85500308	,	_	*	-	-	-	-	-	,	-	ı	. 1	-	-	1
0 mg/kg	85000309	-	•	*	-	1	1	= 1	1	-	-	-		1	ial	3
	85000313		,	*	'	1	,	,	·		'	1		1	'	1
	85500316		۷	*	¥	٧	٧	٧	-	-	'			-	Ľ	F
	85000322	1	,	*	1	•	Ε	E	Ε	ы	T C	E	<u> </u>	3	:11	tri.
Males	85000327	-	-	*	•	•	•	1	-	,	1	1	-	-	,	,
	85000332	١	-	*	-	-	-	-	•	1	ŧ	1	-	-	1	æ
	85000333	-	-	*	-	-	ĸ	Ε	Ε	ш	ы	Ŀı	ĸ	E	E	F
	85000337	,	,	•	-	1	,	•	'	,	1	,	,	-	3	1.
	85000341	i	ı	*	-	•	-	,	•	١	'	•	•	•	ŧ	-
	85000345	*	•	'	-		,	•	-	•	1	Ε	ŭ,	Я	Œ	5
0 mg/kg	85000355	*	_	_	1	1	'	'	1		'	'	u	3	113	E
	Per100357	*	-	•	-	•	-	-	-	-	•	-	-		-	_
	85000358	*	S	'	,	'	ш	អ	ü	ш	í.i	iri	u	æ	(H)	1.
	85000362	*	,	ţ	(A)	Lal	ш	ы	ы	ш	ш	ы	ш	ы	ω	sa:
Females	85000365	*	,	•	1	,	ш	Ec	LL:	EL:	Ĺ	ſĸ	fa:	14.1	£	E
	85000367	*	1	,	1		ы	E	te:	EL.	ĮL.	Ľ.	ſĽ	tel	স	ы
	85000369	ŧτ	S	'	'	,		ы	ω	Į.;	112	μ.	ju;	ъ	ξĽ	<u></u> ;
	85000379	·x		'	ω	ப	ы	ы	ш	ы	ш	អា	ы	ш	ī	ju)
	e5500 181	*		-	,	_	ĸ	n	n	'	-	,	•	,	1	-

Appendix H (cont): Clinical Signs

							Davs	٦.	Study							
Group	Animal ID	0	-	2	3	7	2	9	7	8	6	10	11	12	13	14
Group 2	85000300	-	-	*	-	-	*	-	-	-	٠	-	1	,	_	Ľ
100 mg/kg	85000301		-	*	-	-	*	-	-	ı	-	1	-	-	-	'
	85000306	١	١	*	•	1	*	-	-	ы	Ε	Ε	Ε	3.	ω	ш
	85000312	-	ı	*	1	•	1	_	-	1	-	-	-	-	Ξ	ш
	85000324	•	1	*	ı	-	_	-	-	•	-	•	1	١	-	'
Males	85000325	•	١	*	1	1	1	-	-	-	-	_	•	Ī	ы	ω
	85000376	'	1	*		'	ı	'	•	•	,	-	•	1	ı	•
	85000329	'	ţ	*	,	S	Ε	E	Ε	E	E	n	Ε	ш	ш	ы
	85000331	1	1	*	•	-	ы	យ	E	Ε	Ε	Ξ	E	ш	ы	ы
	85000336		-	*	-	-	E	Ε	E	Ε	Ε	Э	ы	ы	ш	ы
Group 2	85000348	*	1ª	=	3	ы	3	E	E	Ε	ы	Е	Ε	ш	Ε	Ε
100 mg/kg	85000351	*	\mathbf{p}^{1}	1	-	1	Э	u	Б	ы	Ω	Ε	Ε	Ε	3	ы
	85000353	*	_	•	-	•	•	1	,	,	-		-	-	-	ı
	85000361	*	S	'		'	'	•	'	,	1	-	E	Э	1	2
	85000364	*	1	'	•	1		•	•	'	•		1	•	ı	11
Frmales	85000368	*	'	'	'	'	ш	ы	ы	Е	Ε	Э	H	រប	Ε	11
· · · · · ·	85000379	*	'	'	ш	ប	ш	ш	Ε	ш	Ε	3	R	E.	::	Ľ
	85000375	*	'	1	'	•	ш	ш	ы	u	ш	ш	'n	ü	22	=
	85000385	*	'	-	1	•	'	٠	•	-	'	1	Ħ	ы	:1	53
	85000388	*	1	1	1	'	,	1	1	,	1	١	'	1	'	

180t given water bottle

Appendix H (cont): Clinical Signs

							Days	Days of Study	nd y							
Group	Animal ID	G		2	3	7	2	9	7	ж0	6	10	11	12	13	71
2 2010	85000302		-	*	-	Ε	*	ы	Ε	3	Ω	ы	ы	Ξ	Ε	١
316 mg/kg	85500304	1	ŀ	*	-	,	*	-	1	ı	•	1	,	1	Э	,
	85000310	-	-	*	-	-	-		-	'	,	•	,	Ε	Э	ш
	85000314	-	1	*	•	1	Ξ	Ε	Ε	ы	ω	ш	Ε	3	Ξ	ш
	85000319	١	-	*	-	•	-	-	,	'	'	'	-	-	-	ı
Males	85000323	١	1	*	-	-	-	_	-	,	1	-	•	-	-	
	85000328	•	1	×	-	•	,	-	,	,	1	•	1	1	-	11
	85000335	1		*	-		Е	E	ы	ш	[A]	3	ιιì	ы	3	u
	85000343	•	-	*	-	-	•		•	1	-	•	•	_	١	١
	85000344	-	ı	*	-	•	•	,	-	•	-	ı	-		1	-
	85000384	*		-		•	Ε	£1	u	ш	ш	Ε	ы	Е	ш	Е
Group 3	85000356	*	1	-	-	-	-	-	1	1	,	,	'n	Е	Ε	j)
0	85000363	4	,	1	3	Ξ	Ε	-	-	-	1	-	ı	1	1	1
	85n00376	*	-	•	з	Ε	3	3	Ξ	3	ப	Е	E	Е	Ξ	ਬ
	85000382	*	-	•	-	ω	ы	ы	ы	ы	3	Э	Ħ	ы	В	:u
Females	85000383	*	-	-	-	-	-	-	-	-	1	1	ı	1	_	,
	85000384	*	-	-	-	-	ш	(±)	E	ш	ы	E	Ε	ы	Э	3
	85000386	*	-		-	•	•	•	'	'	-	•	١	١	١	١
	85000387	×	-	-	•	'	[12]	ш	ωı	ш	ы	ш	ω l	ы	ш	ju:
	85000389	*	1	1	,	,	1	'		,	1	•	•	ı	4	ı

TOO STANDARD TO ST

Appendix H (cont): Clinical Signs

Group Animal 15 0 11 2 3 4 5 6 7 6 7 1 1000 mg/kg 85000305]
	8 9 10	11 12	13	77
	-	- / -	-	
	3 3	E	ы	B
			•	1
		-	ы	E
	3 3	E	ы	ш
		-	Ε	Ε
	3 3	3	Ε	3
		-	-	-
		-	Е	E
		-	Ξ	E
		-	'	١
	3 3	ы	ы	3
	-	-	_	-
X		1	,	1
ш ш ш ш п ш ш ш п ш ш ш п ш ш ш п ш п п п п	3 3 3	3	ω	ш
* * * * 1 1 1 1 1 1 1 1 2 2 1 2 3 2 1 3 4 3 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 3	3	13	Э
# # #	<u>а</u>	E	'	1
1 1 m	3 3	я	:43	<u> </u>
	n n	EI EI	ш	ப
85000378 * E E E E	m m	ш	141	ıω

Not given water bottle.

Appendix I: INDIVIDUAL BODY WEIGHT (g) / FEMALES

Dose	Animal ID	QDay0	ODay5	Day0	Day7	Day14
0 mg/kg/day	84D00345 84D00355 84D00357 84D00358 84D00362 84D00365 84D00367 84D00369 84D00379 84D00381	176 166 179 173 166 166 169 168 159	206 210 211 204 181 193 207 191 185 200	230 243 238 238 229 225 236 212 207 239	248 263 261 250 252 233 247 227 222 238	239 266 259 251 259 234 246 231 220 250
100 mg/kg/day	84D00348	180 170 179 172 160 167 183 177 179	208 191 193 198 182 202 218 205 212 189	227 221 211 225 207 232 239 192 231 211	240 229 230 246 222 245 253 220 234 224	240 224 233 253 220 247 258 225 236 221
316 mg/kg/day	84D00354 84D00356 84D00363 84D00376 84D00382 84D00383 84D00384 84D00386 84D00387 84D00389	176 164 176 188 182 171 185 171 171	207 184 204 217 208 203 212 207 193 198	232 203 233 251 230 231 251 243 218 224	255 202 238 262 237 247 264 245 214 235	250 207 252 267 233 246 219 257 210 231
1000 mg/kg/day	84D00346 84D00347 84D00352 84D00359 84D00360 84D00366 84D00371 84D00373 84D00377	172 166 178 165 177 165 186 184 182 164	195 186 204 190 200 192 209 215 216 191	219 196 219 222 215 215 218 212 234 214	219 200 214 233 206 215 216 224 251 243	211 198 212 234 210 222 215 233 254 241

Appendix I (cont.): INDIVIDUAL BODY WEIGHT(g)/MALES

Dose	Animal ID	ODay0	QDay5	Day()	Day7	Day14
0 mg/kg/day	84D00308 84D00319 84D00313 84D00316 84D00322 84D00327 84D00332 84D00333 84D00337	172 180 172 169 169 171 167 157 168 167	222 239 226 226 225 218 212 197 215 205	278 304 274 173 283 271 273 249 270 252	321 349 308 256 331 313 307 277 309 277	327 362 321 290 313 333 327 287 326 288
100 mg/kg/day	84D00300 84D00301 84D00306 84D00312 84D00324 84D00325 84D00326 84D00329 84D00331 84D00336	166 175 159 157 170 178 164 179 159	216 225 213 206 237 226 219 238 207 227	263 279 272 256 293 280 273 283 254 275	299 315 314 295 341 286 342 322 290 303	313 324 321 311 354 331 348 332 309 308
316 mg/kg/day	84D00302 84D00304 84D00310 84D00314 84D00319 84D00323 84D00328 84D00335 84D00343	170 159 164 179 170 168 169 145 176 182	225 209 214 229 221 171 216 225 231 226	283 260 272 277 275 242 272 291 289 310	319 302 301 316 317 301 311 334 321 355	325 320 332 332 331 296 334 348 329 373
1000 mg/kg/day	84D00305 84D00307 84D00311 84D00318 84D00320 84D00330 84D00334 84D00338 84D00340 84D00342	170 172 172 167 175 169 176 174 167	226 221 223 229 231 216 225 225 217 193	287 280 278 290 283 282 284 281 272 256	316 316 310 324 317 313 320 320 304 298	321 328 323 342 328 325 339 323 318 319

Appendix J: INDIVIDUAL ORGAN WEIGHTS/FEMALES

Dose /day	Animal (85D00-)	Liver g	<u>Spleen</u> g	Adrenals g	Kidneys g	Heart g	<u>Ovaries</u> g	Brain g
0	345	6.055	0.488	0.069	1.630	0.934	0.119	1.792
mg/kg	355	6.983	0.634	0.139	1.930	0.936	0.194	1.887
	357	7.439	0.623	0.166	1.962	0.850	0.192	1.586
	358	7.166	0.575	0.125	2.011	1.049	0.195	1.914
	362	7.721	0.651	0.109	1.916	0.925	0.180	1.806
	365	6.515	0.446	0.090	1.799	0.799	0.146	1.832
	367	7.290	0.525	0.126	1.937	1.121	0.207	1.722
	369	5.925	0.507	0.090	1.516	0.830	0.127	1.870
	379	6.371	0.392	0.083	1.714	0.831	0.108	1.507
	381	6.990	0.593	0.081	1.581	0.861	0.144	1.813
100	348	6.786	0.452	0.086	1.733	0.888	0.145	1.701
mg/kg	351	6.167	0.570	0.070	1.583	0.917	0.148	1.878
	353	7.501	0.505	0.105	1.825	0.817	0.170	1.484
	361	9.403	0.584	0.110	2.056	0.940	0.240	1.845
	364	6.679	0.476	0.154	1.733	0.835	0.202	1.642
	368	6.983	0.622	0.121	1.726	0.899	0.208	1.684
	370	8.086	0.619	0.116	2.170	0.974	0.196	1.943
	375	5.895	0.608	0.157	1.739	0.902	0.262	1.875
	385 388	6.786	0.545 0.506	0.082 0.115	1.623 1.638	0.810 0.734	0.126 0.254	1.880
316	354	7.150	0.460	0.127	1.795	0.826	0.166	1.795
mg/kg	356	5.970	0.399	0.112	1.489	0.722	0.143	1.804
	363	7.425	0.645	0.113	1.828	0.882	0.173	1.958
	376	7.588	0.702	0.114	1.960	0.994	0.166	1.933
	382	6.147	0.512	0.054	1.710	0.805	0.127	1.780
	383 384	7.526 5.241	0.626 0.412	0.12 0 0.069	1.855 1.647	0.968 0.725	0.220 0.151	2.025
	386	8.248	0.412	0.009	1.879	0.723	0.183	1.895 1.841
	387	6.165	0.634	0.127	1.600	0.933	0.144	1.722
	389	7.831	0.532	0.090	1.858	0.940	0.159	1.838
1000	346	5.883	0.445	0.064	1.364	0.744	0.153	1.746
mg/kg	347	5.580	0.486	0.071	1.665	0.684	0.122	1.753
	352	5.570	0.433	0.094	1.601	0.800	0.135	1.785
	359	7.140	0.434	0.090	1.810	0.937	0.186	1.780
	360	5.561	0.505	0.110	1.532	0.610	0.164	1.895
	366	6.549	0.492	0.120	1.836	0.772	0.160	1.879
	371	5.986	0.459	0.118	1.574	0.818	0.182	1.907
	373	7,432	0.826	0.121	1.724	0.878	0.174	1.696
	377	7.253	0.662	0.146 0.090	1.873	0.960	0.255	2.065
	378	7.525	0.610	0.090	1.811	0.808	0.177	1.809

Appendix J (cont.): INDIVIDUAL ORGAN WEIGHTS/MALES

Dose	Animal	Liver	Spleen	Adrenals	Kidneys	Heart	Testes	Brain
/day	(85D00-)	g	g	g	g	g	g	g
0	308	9.814	0.625	0.056	2.929	1.225	3.032	1.939
mg/kg	309	10.530	0.799	0.054	2.818	1.140	2.867	1.899
	313	10.313	0.737	0.106	2.766	1.054	2.987	1.950
	316	8.145	0.818	0.128	2.433	1.102	2.818	1.843
	322	10.375	0.817	0.095	2.658	1.179	2.574	1.971
	327	10.850	1.171	0.181	2.645	1.376	2.873	2.002
	332	8.491	0.661	0.066	2.413	1.087	2.615	1.942
	333	7.803	0.493	0.031	2.185	0.861	2.808	1.925
	337	9.375	0.505	0.048	2.300	1.183	2.714	1.915
	341	8.350	0.630	0.090	2.170	1.022	2.884	2.072
100	300	8.754	0.673	0.089	2.320	1.075	2.940	1.955
mg/kg	301	9.818	0.716	0.105	2.789	1.276	2.890	1.902
	306	9.155	0.365	0.010	2.488	1.261	2.733	1.579
	312	10.289	0.901	0.144	2.854	1.273	2.921	2.102
	324	10.945	0.879	0.112	2.833	1.267	2.745	2.018
	325	10.375	0.923	0.190	3.348	1.305	3.198	1.918
	326	10.543	0.944	0.149	3.025	1.331	2.995	1.781
	329	9.696	0.913	0.012	2.580	1.176	2.953	1.997
	331	8.881	0.702	0.113	2.460	0.960	2.623	1.774
	336	8.877	0.839	0.063	2.263	0.980	3.086	1.967
316	302	9.795	0.839	0.080	3.037	1.423	2.854	1.926
mg/kg	304	9.411	1.003	0.075	2.473	1.354	2.681	1.900
	310	9.939	0.775	0.028	2.657	1.085	2.680	1.794
	314	9.700	0.810	0.062	2.964	1.174	2.959	1.827
	319	9.941	0.780	0.116	2.557	1.566	2.860	1.955
	323	10.153	0.842	0.138	2.647	1.284	3.059	2.080
	328	9.656	0.721	0.186	2.811	1.293	2.675	1.781
	335	10.890	0.892	0.142	2.941	1.246	2.992	1.801
	343	10.038	0.747	0.099	2.579	1.215	2.710	1.876
	344	12.112	0.851	0.102	3.011	1.300	2.653	1.925
1000	305	9.284	0.355	0.336	2.155	0.837	2.544	1.567
mg/kg	307	8.755	0.666	0.090	2.361	1.132	3.008	1.860
	311	9.436	0.642	0.084	2.577	1.208	2.909	1.799
	318	10.218	0.894	0.115	2.696	1.270	3.283	2.045
	320	9.090	0.833	0.117	2.502	1.062	2.870	1.846
	330	9.241	0.784	0.130	2.661	1.202	2.695	2.111
	334	9.455	0.641	0.050	2.581	1.080	2.895	1.745
	338	9.842	0.563	0.077	2.980	1.150	2.023	1.868
	340	8.183	0.622	0.056	2.350	1.133	2.603	1.985
	342	9.101	0.950	0.052	2.623	1.037	3.215	1.939

Appendix K: SERUM ELECTROLYTE LEVELS/FEMALES

Dose /day	<u>Animal</u> (85D00-)	Sodium mg/dl	Potassium mEq/L	Chloride mEq/L	Calcium mg/dl	Phosphorus mg/dl	Magnesium mg/dl
					10 51	8.83	3.16
0	345	163	6.80	118	10.51	12.30	3.68
ng/kg	355	178	7.30	133	11.50	12.29	3.53
ing/kg	357	173	7.70	131	11.34	10.12	3.30
	358	162	6.20	115	10.85	9.62	2.92
	362	154	6.40	115	10.05	10.52	2.92
	365	168	6.60	128	10.83	12.35	3.75
	367	174	7.20	128	11.25	8,74	2.85
	369	158	5.80	117	10.41	10.30	2.63
	379	165	7.50	126	11.02		2.97
	381	161	5.90	111	10.03	7.00	
	2.40	170	6.90	121	11.22	8.65	3.33 3.32
100	348	171	7.00	118	10.59		
mg/kg	351	172	6.90	128	11.04		3.59
	353	165	5.70	121	10.84		3.54
	361	169	7.40	126	11.54	11.95	3.42
	364		7.20	128	11.15	12.20	3.26
	368	171	5.30	112	10.15	8.88	2.63
	370	152	6.50	124	10.96	10.02	3.09
	375	163	7.00	122	10.89	10.21	3.54
	385	166 168	7.00	125	11.2		3.48
	388	100				2 11.45	3.76
216	354	169	8.10	129	11.3		
316		172	6.30	117	11.4		
mg/kg	363	166	8.50	1.25	11.1	6 11.21	3.7.
	376*				- 0 - 6	8 9.99	3.2
	382	167	7.00	123	10.6		
	383	168		124	10.9		
	384	167		126	9.7	-	
	386	160		115	10.3	-	
	387	166		122	11.4		
	389	167		122	11.3	11.23	, 3.3
		160	5.80	121	10.3	7.38	
1000	346	161	_	119	10.0		8 2.7
mg/k	g 347				10.6	53	
	352	182		115	10.8	10.0	
	359	163		119		18 10.1	
	360	16					7 2.4
	366	16		_			
	371	16				58 9.4	
	373	15				33 9.0	
	37 7	15					7 3.0
	378	16	1 6.10	120			

^{*}Insufficient sample collected.

Appendix K (cont): SERUM ELECTROLYTE LEVELS/MALES

Dose /day	<u>Animal</u> (85D00-)	Sodium mg/dl	Potassium mEq/L	Chloride mEq/L	mg/dl	Phosphorus mg/dl	mg/dl
0	308	195	10.68	114	12.72	15.61	3.46
mg/kg	309	161	6.32	118	12.27	14.58	3.19
	313	180	7.75	111	11.52	14.75	2.72
	316	194	8.07	114	12.15	14.15	3.26
	322	155	5.93	118	13.15	15.74	2.99
	327	175	7.00	105	11.12	12.45	2.90
	332	179	7.77	109	11.07	13.31	3.15
	333	192	9.56	110	12.13	15.58	4.53
	337	208	9.14	116	11.92	13.50	3.28
	341			112	11.88	13.75	3.20
100	300	181	7.26	111	11.20	12.28	2.81
ng/kg	301	192	6.98	114	11.21	12.21	2.28
	306	161	6.63	117	11.77	13.45	2.98
	312	176	7.15	108	11.06	13.90	3.01
	324	176	7.00	101	10.90	13.34	2.93
	325	183	8.45	108	11.02	14.12	3.20
	326	178	7.65	106	11.05	12.49	2.86
	329	186	7.12	110	11.30	13.30	3.56
	331	187	8.70	111	11.54	15.01	4.08
	336	201	7.91	111	11.27	13.52	3.11
316	302	185	8.86	113	11.48	13.24	2.54
mg/kg	304	182	8.19	115	11.26	12.42	2.92
	310	149	5.89	117	12.42	14.65	2.86
	314	181	7.31	112	11.37	12.91	2.75
	319	191	8.40	114	11.78	15.16	3.36
	323	169	6.81	100	11.21	12.06	2.96
	328	177	8.12	107	10.99	12.76	3.18
	335	171	7.19	99	10.80	12.28	2.76
	343	187	8.37	109	12.65	15.50	3.39
	344	189	7.95	116	12.12	14.83	2.70
1000	305	155	5.73	115	11.17	11.86	2.46
ng/kg	307	200	7.86	123	11.77	12.84	2.80
	311	151	6.60	120	12.72	11.65	3.15
	318	193	7.12	115	11.93	15.75	3.45
	320	154	5.74	111	11.81	13.58	2.99
	330	175	6.71	104	10.60	11.75	2.77
	334	159	6.67	112	11.62	15.19	3.42
	338	161	5.59	115	11.57	12.62	2.87
	340	161	5.85	116	10.98	13.35	2.62
	342	181	7.83	107	10.96	12.36	3.10

Appendix L: SERUM BIOCHEMISTRIES/FEMALES

Dose	<u>Animal</u> (85D00-)	Trigly- cerides mg/dl	Choles- terol mg/dl	Glucose mg/dl	Creati- <u>nine</u> mg/dl	Blood Urea Nitrogen mg/dl	
0	345	74.40	86.27	116.38	0.74	18.11	2.01
mg/kg/day		66.95	83.22	216.47	0.84	21.31	3.43
mg, ng, aa,	357	59.42	73.50	174.82	0.77	18.40	2.42
	358	82.54	107.70	168.76	0.66	14.97	2.72
	362	40.39	82.23	182.71	0.64	15.42	1.80
	365	64.24	77.51	152.30	0.58	21.48	2.23
	367	74.55	93.68	169.51	0.87	18.85	3.38
	369	53.50	64.75	106.31	0.52	18.73	2.34
	379	75.90	90.19	242.94	0.66	12.41	2.38
	381	44.78	62.68	154.32	0.63	14.40	1.96
100	348	57.35	84.83	133.52	0.77	21.06	2.40
mg/kg/day	351	75.04	69.26	130.78	0.77	19.66	2.67
	353	81.11	85.48	185.05	0.83	17.20	2.91
	361	58.87	84.19	152.41	0.74	20.22	2.42
	364	53.78	84.68	212.19	0.62	17.61	3.21
	368	106.35	103.30	145.65	0.74	19.34	2.48
	370	57.04	77.26	202.71	0.50	14.99	1.39
	375	59.49	87.22	161.69	0.75	16.97	3.24
	385	51.68	85.22	250.94	0.72	17.75	3.74
	388	55.25	104.44	161.13	0.59	18.75	2.69
316	354	85.99	93.43	174.40	0.78	21.89	3.43
mg/k g/day		81.57	78.07	138.29	0.89	21.87	2.56
	363	61.41	67.64	149.17	0.72	21.17	4.05
	376*		70.01			4 77 . 0 0	
	382	40.71	78.94	158.83	0.64	17.89	2.67
	383	51.37	84.61	215.93	0.67	20.38	5.02
	384	51.09	61.45	101.29	0.72	17.23	1.41
	386	46.47	78.61	166.76	0.59	14.98	3.94
	387	46.41	90.47	202.22	0.62	14.30	2.93
	389	64.63	82.60	221.90	0.70	16.53	3.32
1000	346	74.97	89.19	171.34	0.87	18.87	2.79
mg/kg/day	347	58.89	84.66	166.54	0.66	15.41	1.78
_	352			231.18		15.44	2.73
	359	66.75	70.54	156.48	0.71	25.81	2.18
	360	48.27	62.43	137.46	0.69	19.83	2.61
	366	58.15	83.25	176.46	0.66	17.58	1.49
	371	69.38	65.69	179.81	0.50	19.27	3.41
	373	48.68	68.70	262.15	0.59	13.80	2.13
	377	42.54	75.65	181.39	0.74	18.16	2.67
	378	44.78	93.59	147.87	0.67	18.22	2.36

Emononocidadesconocidadesconocidadesconocidadesconocidadesconocidadesconocidadesconocidadesconocidadesconocidad

^{*}Irsufficient sample collected.

Appendix L (cont): SERUM BIOCHEMISTRIES/FEMALES (cont)

Dose	Animal (85D00-)	Albumin g/dl	Globulin g/dl	Total Protein g/dl	Total Bilirubin mg/dl	Serum <u>Iron</u> µg/dl
0	345	3.12	2.67	5.79	1.00	329
mg/kg/day				5.65	0.60	292
	357			6.33	0.50	316
	358	3.07	3.26	6.33	0.70	243
	362	2.80	3.00	5.80	0.50	292
	365	2.79	2.58	5.37	0.80	259
	367	3.02	2.74	5.76	0.70	423
	369	3.02	2.65	5.67	0.80	149
	379	2.71	2.75	5.46	0.80	332
	381	2.86	2.65	5.51	0.60	298
100	348	3.21	2.85	6.06	0.50	228
mg/kg/day	351	3.00	2.44	5.44	0.70	319
	353	3.41	2.76	6.17	0.70	447
	361	3.08	2.73	5.81	0.50	240
	364	3.09	2.88	5.97	0.50	
	368	3.13	2.94	6.07	0.60	393
	370	3.32	2.52	5.84	0.50	252
	375	3.01	2.76	5.77	0.60	322
	385	3.41	2.78	6.19	0.80	429
	388	2.94	2.84	5.78	0.60	319
316	354	2.94	2.74	5.68	0.60	405
mg/kg/day	356	3.42	2.68	6.10	0.60	240
	363	3.29	2.88	6.17	0.50	222
	376*					
	382	3.19	2.91	6.10	0.80	353
	383	2.94	2.75	5.69	0.70	365
	384	2.41	2.09	4.50	0.70	505
	386	2.95	2.33	5.28	0.60	246
	387	3.22	2.63	5.85	0.70	273
	389	3.25	2.77	6.02	0.80	380
1000	346	3.04	2.76	5.80	0.60	295
mg/kg/day		2.87	2.54	5.41	0.60	435
3, 3, 2	352			5.62	1.20	
	359	3.45	2.71	6.16	0.60	371
	360	3.14	2.69	5.83	0.70	295
	366	3.23	2.68	5.91	0.50	383
	371	3.07	2.45	5.52	0.80	314
	373	3.15	2.45	5.60	0.70	219
	377	3.06	2.64	5.70	0.60	362
	378	3.13	2.70	5.83	0.60	234

^{*}Insufficient sample collected.

Appendix L (cont): SERUM BIOCHEMISTRIES/MALES

Dose	<u>Animal</u> (85D00-)	Trigly- cerides mg/dl	Choles- terol mg/dl	Glucose mg/dl	Creati- nine mg/dl	Blood Urea Nitrogen mg/dl	Uric Acid mg/dl
0	308	77.26	77.48	200.51	0.57	16.09	2.43
mg/kg/day		61.09	74.10	122.73	0.61	17.11	1.30
g, kg, aag	313	67.00	76.34	163.36	0.52	16.07	1.31
	316	91.35	77.74	79.22	0.51	15.82	2.11
	322	96.94	75.62	185.43	0.50	17.59	1.50
	327	92.34	84.34	158.29	0.45	14.97	1.77
	332	49.63	52.03	157.11	0.49	14.26	1.48
	333	71.30	58.20	177.17	0.68	17.43	3.80
	337	106.33	63.99	170.95	0.56	18.11	2.38
	341	102.43	63.95	236.85	0.57	16.71	2.78
100	300	61.84	63.72	127.51	0.74	20.70	1.90
mg/kg/day		65.91	56.99	159.57	0.64	16.63	1.09
	306	85.40	53.69	157.14	0.61	15.56	2.05
	312	95.69	69.33	109.04	0.52	16.27	2.18
	324	62.18	69.99	161.31	0.53	17.36	1.45
	325	72.32	62.37	160.13	0.52	18.16	2.31
	326	53.83	62.57	170.47	0.48	18.43	1.48
	329	76.14	73.88	203.13	0.51	13.63	1.87
	331	71.16	66.02	126.89	1.34	31.12	1.97
	336	82.83	49.91	207.20	0.57	15.63	2.22
316	302	71.59	67.69	151.42	0.58	16.42	2.49
mg/kg/day	304	90.16	78.62	125.61	0.63	18.85	2.14
	310	84.12	64.31	181.53	0.59	14.00	1.32
	314	112.93	84.50	125.74	0.60	22.56	1.43
	319	64.63	68.41	199.68	0.66	19.35	2.24
	323	75.61	50.42	213.09	0.49	15.43	2.69
	328	76.28	65.44	176.87	0.45	17.12	2.73
	335	61.05	52.28	219.08	0.61	13.87	1.69
	343	109.08	55.17	213.92	0.65	15.55	2.96
	344	91.47	53.37	214.69	0.65	18.96	2.31
1000	305	101.38	65.17	165.96	0.60	17.41	1.09
mg/kg/day	307	68.37	66.00	150.73	0.69	21.44	1.67
	311	122.67	70.72	203.50	0.56	20.24	3.11
	318	131.29	70.97	145.16	0.70	18.11	1.79
	320	67.88	51.61	175.64	0.58	15.09	2.05
	330	103.00	61.30	117.60	0.48	13.70	1.80
	334	97.85	85.12	196.51	0.61	14.37	1.83
	338	210.91	77.19	197.86	0.42	14.28	2.22
	340	90.36	68.68	150.06	0.47	19.12	1.31
	342	78.81	59.50	118.69	0.50	16.44	1.98

Appendix L (cont): SERUM BIOCHEMISTRIES/MALES (cont)

Dose	Animal (85D00-)	Albumin g/dl	Globulin g/dl	Total Protein g/dl	Total Bilirubin mg/dl	Serum Iron µg/dl
0	308	2.87	3.06	5.93	0.65	255
mg/kg/day	309	2.97	3.10	6.07	0.46	167
	313	2.50	2.95	5.45	0.85	109
	316	2.50	2.92	5.42	0.87	106
	322	2.77	2.67	5.44	0.76	136
	327	2.56	2.96	5.52	0.85	149
	332	3.18	2.71	5.89	0.76	133
	333	2.91	2.84	5.75	0.69	121
	337	3.29	3.21	6.50	0.55	122
	341	2.49	3.20	5.69	0.37	
100	300	3.15	2.66	5.81	0.80	286
mg/kg/day		2.74	2.74	5.48	0.52	160
	306	2.57	3.13	5.70	0.84	194
	312	2.64	2.59	5.23	0.65	112
	324	2.47	3.01	5.48	0.62	158
	325	2.48	2.71	5.19	0.58	182
	326	2.52	2.57	5.09	0.47	146
	329	2.99	3.05	6.04	0.74	121
	331	3.03	2.71	5.74	0.66	185
	336	2 .62	2.81	5.43	0.54	103
316	302	2.50	3.10	5.60	0.77	152
mg/kg/day		2.38	3.22	5.60	0.97	155
	310	3.19	2.82	6.01	0.76	216
	314	2.63	2.73	5.36	0.43	126
	319	2.62	2.78	5.40	0.74	182
	323	2.94	2.68	5.62	0.53	216
	328	2.62	2.69	5.31	0.69	191
	335	3.19	3.10	6.29	0.43	109
	343	3.04	2.63	5.67	0.46	126
	344	2.85	3.02	5.87	0.60	
1000	305	2.17	3.11	5.28	0.95	233
mg/kg/day		2.66	3.64	6.30	0.66	176
	311	2.73	2.76	5.49	0.64	200
	318	2.60	2.77	5.37	0.62	146
	320	2.73	2.64	5.37	0.57	261
	330	2.79	2.89	5.68	0.50	176
	334	2.70	2.85	5.55	0.51	109
	338	2.68	2.50	5.18	0.37	190
	340	2.58	2.67	5.25	0.63	122
	342	2.67	2.30	4.97	0.46	139

Appendix M: ENZYME ACTIVITIES/FEMALES

Dose	Animal	AST*	ALT*	LDH*	CPK*	AP*
(mg/kg/day)	(85D00-)	(IU)	(IU)	(IU)	(IU)	(IU)
0	345	95.39	32.8	646.68	286.24	66.23
	355	74.66	30.5	570.72	240.84	55.88
	357	94.33	28.3	470.63	305.16	56.22
	358	83.42	28.7	915.93	317.64	56.50
	362	57.78	24.8	379.33	172.08	62.18
	365	132.31	34.1	680.16	896.21	63.56
	367	70.63	29.5	324.12	199.83	95.56
	36 9	119.04	32.7	712.31	326.16	55.90
	379	81.19	26.4	502.70	298.06	71.82
	381	67.03	26.4	493.84	167.30	57.34
100	348	79. 98	35.0	397.90	205.24	68 .6 3
	351	90.33	26.7	763.23	303.08	78.52
	353	68.83	33.3	432.36	351.72	111.16
	361	66.51	26.8	303.79	246.57	51.39
	364	96.88	28.7	676.79	290.00	74.25
	368	96.36	29.6		367.09	88.70
	370	64.17	26.7	532.45	266.09	61.94
	375	73. 3 3	35.9	236.26	247.34	61.73
	385	83.1€	28.6	403.67	318.42	83.77
	388	84.28	26.0	344.30	282.93	68.65
316	354	71.17	28.6	605.82	206.16	94.48
	356	74.32	30.3	546.31	321.55	61.85
	363	60.92	28.1	315.32	266.09	46.24
	376†	70.00	21 6	E 472 30	105 00	60.00
	382	72.32	21.6	547.30	195.26	69.90
	383 384	61.34 78.96	29.5 31.8	131.25 442.92	175.84 130.69	42.03 51.97
	386	70.15	29.2	412.11	227.54	54.86
	387	42.28	22.3	130.34	116.94	51.09
	389	72.59	26.5	473.93	256.84	67.47
1000	246	00.15	24.2	020 20	252.20	60.65
1000	346	89.15	34.3	839.20	253.32	60.65
	347	79.38	29.4	745.30 649.22	222.09	60.37
	352	134.19	28.7		409.29	67.11
	359 360	74.14	24.5	697.26	279.87	59.13
	360	69.00 81.09	26.1 28.8	394.59 811.13	211.58	55.24 60. 67
	366 371	158.94	38.8	780.39	401.28	
	371	77.74	26.8	360.06	240 43	101.35
	373 377	50.12	28.0	102.34	240.41 191.07	70.18 89.72
	378	60.22	24.5	290.35	154.29	43.35
	3/8	00.22	24.3	230.33	134.29	43.35

^{*} AST=Aspartate Amino-transferase; ALT=Alanine Amino-transferase; LDH= Lactate Dehydrogenase; CPK=Creatine Phosphokinase; AP=Alkaline Phosphatase †Insufficient sample collected.

大大学の一般のなりのでは、一般できるのでは、

Appendix M (cont): ENZYME ACTIVITIES/MALES

<u>Dose</u> (mg/kg/day)	<u>Animal</u> (85D00-)	AST*	ALT*	LDH* (IU)	CPK*	AP*
0	308	86.52	31.5	263.13	227.68	174.22
v	309	91.33	48.3	864.94	261.69	140.69
	313	88.80	37.2	742.34	174.82	116.07
	316	118.21	35.2	710.83	369.34	106.19
	322	81.31	33.3	527.11	226.14	123.25
	327	82.47	29.5	701.26	246.18	104.18
	332	77.81	31.3	587.81	283.25	136.26
	333	65.56	37.1	323.97	210.59	156.79
	337	92.18	38.7	818.80	299.95	145.36
	341	63.40	24.1	416.61	147.60	94.00
100	300	71.24	29.9	343.11	205.53	101.51
	301	64.97	28.6	408.52	193.36	172.65
	306	94.08	31.6	672.71	245.06	148.73
	312	65.66	34.1	397.62	146.65	94.36
	324	86.00	32.7	774.91	261.27	88.24
	325	73.70	32.2	585.00	258.88	133.21
	326	68.27	28.6	478.51	172.57	95.14
	329	82.89	28.7	680.45	205.70	129.18
	331	80.40	30.7	540.90	161.25	148.77
	336	83.68	26.8	772.80	283.35	92.03
316	302	60.86	28.0	315.39	127.35	86.76
	304	75.93	41.0	331.71	136.35	151.58
	310	85.85	41.2	799.46	240.98	117.23
	314	113.75	33.4	742.76	323.83	137.18
	319	78.70	32.2	591.12	224.97	144.14
	323	78.63	37.5	734.46	249.49	177.52
	328	60.94	31.8	272.42	130.51	135.48
	335	111.36	32.0	314.55	381.69	183.94
	343	66.70	23.4	232.89	278.99	117.84
	344	70.74	32.5	217.20	250.08	162.01
1000	305	100.38	29.2	761.68	344.90	119.28
	307	76.70	36.4	410.77	230.25	140.15
	311	69.93	29.6	640.28	186.15	136.18
	318	95.31	38.3	872.40	301.96	199.42
	320	58.14	30.3	220.23	115.42	97.89
	330	85.30	33.6	693.40	201.00	139.00
	334	94.06	29.5	910.66	319.23	139.19
	338	93.96	30.7	735.87	237.92	103.14
	340	63.70	34.7	425.26	138.11	112.86
	342	57.85	30.9	267.49	118.06	163.57

^{*} AST=Aspartate Amino-transferase; ALT=Alanine Amino-transferase; LDH= Lactate Dehydrogenase; CPK=Creatine Phosphokinase; AP=Alkaline Phosphatase

Appendix N: HEMATOLOGY DATA/FEMALES

Dose	Animal ID	RBC Count	HGB	_HCT_	_MCV_	_MCH_	MCHC
		×10 ⁶ /μ1	g/dl	8	μ3	pg	8
0	85D00345	6.15	16.2	45.8	56	19.9	34.8
mg/kg/day	85D00355	7.11	15.4	42.7	60	21.7	35.5
	85D00357	7.61	15.5	42.4	55	20.6	36.1
	85D00358	7.34	15.5	43.4	59	21.3	35.3
	85D00362	7.24	14.5	41.3	57	20.2	34.7
	85D00365	5.11	16.2	44.6	55	20.1	35.8
	85D00367	7.16	15.1	42.7	59	21.2	34.9
	85D00369	8.43	16.7	45.4	54	19.9	36.2
	85D00379	7.35	15.3	42.3	57	20.8	35.6
	85D00381	7.71	15.9	44.2	57	20.6	35.5
100	85D00348	7.79	15.4	42.9	55	19.9	35.4
mg/kg/day	85D00351	6.82	15.4	43.2	55	19.8	35.2
	85D00353 85D00361*	7.63	15.0	42.4	55	19.8	34.9
	85D00364	7.50	14.7	41.8	55	19.7	34.8
	85D00368	7.83	15.6	43.8	56	20.1	35.1
	85D00370	7.39	14.8	41.4	56	20.1	35.2
	85D00375	7.85	15.6	43.0	55	20.1	35.9
	85D00385	7.74	15.3	41.2	53	19.9	36.6
	85D00388	6.89	15.6	39.2	57	22.7	39.2
316	85D00354	7.59	15.2	41.7	55	20.1	35.8
mg/kg/day	85D00356	7.66	15.5	42.8	56	20.3	35.7
	85D00363	8.54	17.2	48.9	57	20.3	34.6
	85D00376	7.82	15.4	43.1	55	19.8	35.3
	85D00382	7.78	15.7	44.0	56	20.4	35.4
	85D00383	6.91	14.9	37.9	55	21.7	38.8
	85D00384	7.25	14.9	39.4	54	20.6	37.2
	85D00386	7.47	15.6	43.2	58	20.9	35.5
	85D00387	7.02	15.4	42.5	53	19.3	35.8
	85D00389	8.22	16.7	46.3	56	20.4	35.6
1000	85D00346	8.25	15.8	44.5	54	19.3	35.1
mg/kg/day	85D00347	7.29	13.9	38.9	53	19.2	35.2
	85D00352	6.81	13.5	37.3	54	19.9	35.5
	85D00359	7.54	15.1	41.7	55	20.1	35.6
	85D00360	7.90	15.4	44.0	55	19.6	34.6
	85D00366	6.86	13.8	38.3	56	20.2	35.4
	85D00371	8.03	15.4	43.4	54	19.4	35.0
	85D00373*						
	85D00377	7.81	15.6	43.0	55	20.1	35.8
	85D00378	7.46	15.5	41.9	56	20.9	36.5

^{*}Sample clotted.

Appendix N (cont): HEMATOLOGY DATA/FEMALES (cont)

				White Blood Cell Differential				
		Plate-	WBC	Neutro-	Lympho-	Eosino-	Mono-	
Dose	Animal ID	lets	Count	phils	cytes	phils	cytes	
		x10 ⁶ /μ1	×10 ³ /μ1	8	8	*	8	
0	85D00345	1748	7.1	12	84	2	2	
mg/kg/day	85D00355	1172	4.9	15	81	2	2	
3. 3. 2	85D00357	856	4.1			-	-	
	85D00358	1254	5.3	20	77	1	2	
	85D00362	1346	7.1	24	72	2	2	
	85D00365	1206	5.3	15	82	1	2	
	85D00367	1238	6.6	8	88	2	2	
	85D00369	1540	7.0	12	83	2	3	
	85D00379	880	7.1	12	86	ĩ	í	
	85D00381	1122	5.6	16	79	3	2	
	03500301	1122	3.0			J	-	
100	85D00348	1410	5.8	18	79	2	1	
mg/kg/day	85D00351	1164	4.0	18	80	0	2	
	85D00353	1266	4.5	12	87	1	0	
	85D00361*					_	•	
	85D00364	1224	2.9	11	87	1	1	
	85D00368	1378	8.2	7	91	Ō	2	
	85D00370	1106	5.6	8	90	Ŏ	2	
	85D00375	1234	3.3	7	89	2	2	
	85D00385	1152	5.0	10	88	1	ī	
	85D00388	1146	4.6	10	90	ō	ō	
316	85D00354	1486	5.5	12	85	1	2	
mg/kg/day	85D00356	1552	3.7	18	82	2	2	
	85D00363	1270	6.9	11	87	0	2	
	85D00376	1278	9.5	14	82	2	2	
	85D00382	1182	5.8	14	82	2	2	
	85D00383	1014	5.1	9	88	2	1	
	85D00384	922	8.9	7	89	2	2	
	85D00386	1276	5.8	12	85	2	1	
	85D00387	1950	4.3	9	89	0	2	
	85D00389	1258	9.4	13	82	2	3	
1000	85D00346	1162	4.1	10	86	2	2	
mg/kg/day	85D00347	1248	5.2	11	86	2	1	
	85D00352	522	3.7	11	87	1	1	
	85D00359	1270	4.9	9	89	1	1	
	85D00360	1382	5.0	28	69	1	2	
	85D00366	1098	6.4	5	91	2	2	
	85D00371	1178	6.2	16	81	2	1	
	85D00373*							
	85D00377	1160	7.7	6	91	1	2	
	85D00378	1372	4.9	8	90	1	1	

^{*}Sample clotted.

Appendix N (cont): HEMATOLOGY DATA/MALES

Dose	Animal ID	RBC Count x10 ⁶ /µ1	HGB g/dl	HCT %	μ ³	MCH pg	MCHC %
0	85D00308	7.79	16.0	45.9	59	20.6	34.4
mg/kg/day	85D00309	7.10	14.8	42.1	59	20.9	34.6
J. J. 1	85D00313	6.80	14.2	41.2	60	21.0	34.0
	85D00316	6.85	14.8	42.9	62	21.5	33.9
	85D00322	7.23	14.4	41.0	56	20.0	34.7
	85D00327	7.19	14.8	44.8	62	20.6	32.5
	85D00332	7.42	14.6	42.2	57	19.8	34.2
	85D00333	8.28	17.1	49.0	59	20.8	34.5
	85D00337	7.58	15.8	45.5	60	21.0	34.3
	85D00341	7.21	16.1	44.2	61	22.4	35.9
100	85D00300	7.55	15.7	45.1	60	20.9	34.2
mg/kg/day	85D00301	7.53	15.4	43.9	58	20.6	34.6
	85D00306	7.59	15.2	43.8	57	20.1	34.3
	85D00312	5.89	14.0	41.8	60	20.4	32.9
	85D00324	7.42	15.2	43.9	59	20.6	34.2
	85D00325	7.25	14.8	42.8	59	20.5	34.1
	85D00326	7.00	15.5	42.4	60	22.2	35.9
	85D00329	7.77	16.5	48.4	62	21.3	33.6
	85D00331	6.69	15.5	44.0	57	20.3	34.7
	85D00336	7.20	15.5	45.0	62	21.7	34.0
316	85D00302	7.28	15.1	42.4	58	20.8	35.1
mg/kg/day	85D00304	6.98	14.7	41.4	59	21.2	35.1
	85D00310	7.37	16.0	45.7	62	21.8	34.4
	85D00314	6.90	13.8	39.7	57	20.1	34.2
	85D00319	7.43	15.3	44.5	60	20.6	33.9
	85D00323	7.55	15.7	44.9	59	20.9	34.4
	85D00328	7.28	14.3	42.5	58	19.8	33.1
	85D00335*						
	85D00343	7.89	16.0	47.8	60	20.4	33.0
	85D00344	7.82	16.2	47.7	61	20.3	33.5
1000	85D00305	7.07	15.3	44.9	63	21.7	33.5
mg/kg/day	85D00307	7.07	14.5	41.7	59	20.7	34.4
	85D00311	7.21	14.6	42.9	59	20.4	33.6
	85D00318	7.34	15.9	46.1	63	21.7	34.0
	85D00320	7.72	15.1	45.2	58	19.7	33.0
	85D00330	7.78	15.6	44.6	57	20.2	34.6
	85D00334	7.16	15.9	46.4	57	19.6	33.9
	85D00338	7.72	15.0	44.4	57	19.6	33.3
	85D00340	7.95	15.8	46.4	58 50	20.0	33.5
	85D00342	7.24	14.9	43.0	59	20.6	34.1

^{*}Insufficient sample collected.

CONTROL TO THE PROPERTY OF THE

Appendix N (cont): HEMATOLOGY DATA/MALES (cont)

				White Blood Cell Differential			
		Plate-	WBC			Eosino-	Mono-
Dose	Animal ID	lets	Count	phils	cytes	phils	cytes
2000		×10 ⁶ /μ1	x10 ³ /μ1		8	8	8
		χ10 -/μ1	ж10-/µ1			T6	***************************************
0	85D00308	1234	6.1	7	91	0	2
mg/kg/day	85D00309	1290	7.6	7	88	2	3
	85D00313	1320	6.5	8	89	1	2
	85D00316	1782	4.3	17	80	1	2
	85D00322	1044	6.1	9	87	2	2
	85D00327	1044	9.5	9	89	0	2
	85D00332	1110	6.8	7	91	0	2
	85D00333	1442	8.6	5	94	1	0
	85D00337	1434	6.7	4	96	0	0
	85D00341	1066	5.0	9	87	1	2
100 mg/kg	85D00300	1328	7.9	10	86	2	2.
	85D00301	1048	6.8	9	88	1	2
	85D00306	1260	5.5	14	83	1	2
	85D00312	1334	4.4	25	71	1	3
	85D00324	1320	9.4	6	89	2	3
	85D00325	1292	5.3	14	84	2	0
	85D00326	1290	7.4	17	81	0	2
	85D00329	1240	6.5	6	94	0	0
	85D00331	1188	7.3	7	92	1	0
	85D00336	1156	6.0	13	84	1	2
316	85D00302	1398	6.2	10	86	1	3
mg/kg/day	85D00304	990	7.6	9	89	0	2
	85D00310	1684	4.1	10	88	0	2
	85D00314	1280	5.4	16	81	2	1
	85D00319	1298	7.0	6	89	2	3
	85D00323	1252	7.2	12	8.5	1	2
	85D00328	1308	6.9	14	83	1	2
	85D00335*						
	85D00340	1186	7.7	6	93	0	1
	85D00344	1278	8.0	13	87	0	0
1000	85D00305	1088	5.8	10	87	0	3
mg/kg/day	85D00307	1482	8.8	11	86	2	1
	85D00311	1354	5.6	21	76	1	2
	85D00318	1396	8.9	7	89	2	2
	85D00320	1172	7.4	12	84	2	2
	85D00330	1188	8.7	4	95	0	1
	85D00334	1456	7.2	15	84	0	1
	85D00338	1152	6.5	6	86	2	2
	85D00340	1344	8.3	15	83	1	1
	85D00342	1236	5.4	14	84	2	0

^{*}Insufficient sample collected.

Appendix O: PATHOLOGY REPORT

Pathology Report

Fourteen-Day Subchronic Toxicity Study of Nitroguanidine in Male and Female Albino Sprague-Dawley Rats

Study 84040

1. Introduction

The objective of this study was to determine the subchronic effects of nitroguanidine given orally for 14 days in male and female Sprague-Dawley rats. The rats were divided randomly into three dose groups and a control group. The dosage levels were as follows:

> Group 1 -0 mg/kg/day

2 - 100 mg/kg/day 3 - 316 mg/kg/day

4 - 1000 mg/kg/day

Following anesthesia with sodium pentobarbital, administered by intraperitoneal injection, blood was collected from the right ventricle of each rat and submitted for hematologic examination [red blood cell count (RBC), hemoglobin, concentration (Hb), hematocrit (HCT), mean corpuscular hemoglobin (HCH), mean corpuscular hemoglobin concentration (HCHC), white blood cell count (WBC), WBC differential and blood morphology). Additional blood was submitted to Analytical Chemistry Services Group, Division of Research Support, for chemical analysis. All rats were killed by exsanguination and complete gross necropsy examinations were performed. Tissue specimens from all major organs and systems were fixed in 10% neutral buffered formalin for subsequent microscopic examination. Tissues were embedded in paraffin, sectioned at approximately 6 microns thickness and stained with hematoxylin and eosin. All tissues itemized in SOP-OP-PSG-13 were examined microscopically in controls and the 1000 mg/kg dosage level. In the 100 mg/kg and 316 mg/kg dosage levels only gross examination was done.

2. Results, Interpretation, and Discussion

The gross and microscopic findings are itemized in Incidence Tables 1 and 2. Appendix 1 liststhe abnormal microscopic findings by individual animal.

- a. Table 1 tabulates the gross lesions observed in all of the rats utilized in the study.
- b. Table 2 tabulates the tissue inventory and the abnormal microscopic findings in the tissues of each rat in the control and high dose groups.
 - c. Clinical pathology:

The results of complete blood counts and serum chemistry were submitted to the investigator for evaluation.

CONTRACTOR DESCRIPTION DESCRIPTION OF THE PROPERTY OF THE PROP

Appendix O (cont): PATHOLOGY REPORT

Study 84040

d. Gross necropsy:

There were no deaths in any of the dosage groups that were attributable to the toxic effects of the test article.

- e. Microscopic findings and conclusions:
- (1) There were no microscopic lesions which were caused by the test ${\operatorname{article}}.$
- (2) Lymphoid infiltration in the peribronchiolar and peribronchial areas of the lung and in the periportal tract of the liver is a common microscopic observation in both control and test article groups. These lesions are considered as part of the normal background in rats.
- (3) Animal #37426, female control Sections of liver contained a single area of clear cells. The hepatic cells in these areas contain excessive lipid and have reduced oxidative enzymatic activity. It has been suggested that these foci are preneoplastic (Toxicologic Pathology, 1982; Symposium: Preneoplastic Changes in the Rat Liver).

ROBERT R. DANLGREN, DVN

LTC, VC

I.M.A., Pathology Services Group

TABLE 1

Appendix O (cont): PATHOLOGY REPORT

There were no gross abmormalities found in females in any of the 4 groups.

TARLE	2

Female	Contro	l s

95000										
	3 4	3 5	3 5	3 5	3 6	3 6	3 6	3	3 7	3
	5	5	7	8	2	5	7	à	ģ	1
	. –		_	-	_	_	-	-	_	_
Cerebrum	21	u	Ŋ	11	N	:1	,1	51	31	И
Cerebellum	Ħ	:1	٧	4	И	N	Ħ	31	,1	Ŋ
Trachea	Ŋ	N	N	71	:1	N	*1	•1	Δ	31
Thyroid	N	N	Ŋ	11	N	Ħ	N	31	:1	N
Parathyroid	Ŋ	N	N	N	N	N	21	:1	:1	N
Esophagus	N	N	N	Ħ	N	N	7.	Ŋ	И	Ħ
Harderian	Ħ	N	N	IJ	N	N	N	N	N	N
Exorbital	N	N	N	И	N	N	N	:1	:1	N
Heart	N	N	N	N	11	N	N	Α	И	N
Aorta	Н	N	N	N	N	N	N	Ħ	H	N
Lung	A	A	λ	A	۸	A	A	A	A	N
Thymus	N	N	11	N	N	N	N	N	N	N
Spleen	N	N	N	tī	N	N	N	N	Я	N
Mesenteric Lymph Node	N	N	N	N	Ħ	N	N	Ŋ	И	N
Liver	Λ	11	N	N	N	Α	N	٨	H	N
Kidney	N	٨	И	N	N	N	N	14	11	N
Urinary Bladder	Ŋ	N	N	N	N	N	N	Ŋ	N	N
Uterus	N	ţ1	N	N	N	N	N	11	N	;1
Ovaries	N	N	N	N	N	11	11	N	N	11
Duorlenum	11	11	٧	11	34	И	N	11	4	Ŋ
Jejimum	ij	Ħ	,1	٧	ч	N	,1	1	1	M
Ileum	:1	Ħ	4	11	И	N	N	-1	.1	31
Pancreas	21	71	:1	Ŋ	21	N	8	٠;	1	Я

	Premail	e Cor	itrol	(Cor	nt'd)					
85000	3	3	3	3	3	3	3	3	3	3
	4	5	5	5	6	5	6	6	7	3
	5	5	7	8	2	5	7	9	9	ì
		_	-	-	-	-	-	_		-
Cecum	14	7	,1	Ħ	31	N	P 1.5	11	•1	N
Rectum	11	N	N	N	Ŋ	N	7114	N	:1	17/
Colon	N	11	,1	11	Й	N	784	:1	;1	31
Stonach	N	N	N	N	Ŋ	N	784	N	N	11
Skeletal Muscle	8	N	4	M	4	N	14	N	;1	11
Sciatic Nerve	11	N	7	N	N	N	31	N	71	N
Tongue	N	N	:1	И	:1	N	N	N	N	N
Skin	N	N	И	11	N	M	3	N	4	N
Mammary Gland	N	N	31	N	N	Ħ	М	N	N	N
Nasal .	N	N	N	N	N	N	N	N	N	N
Sternum	N	11	N	N	N	N	N	N	N	N
Penur	N	N	N	;1	N	31	Ħ	N	И	N
Vertebrae	n	IJ	11	Ŋ	N	N	N	N	N	Ņ
Spinal Cord	Ħ	N	N	N	N	N	N	N	N	N
Adrenals	И	N	71	N	N	N	N	۸	:1	N
Pituitary	N	Ħ	И	N	11	N	N	N	N	N
Dye	:1	N	M	N	N	И	Ħ	N	11	N
Middle Ear	Й	И	11	Я	11	N	N	N	4	*;
Auditory Sebaceous Gland	N	:1	14	tI	N	Ŋ	И	٧		

 $[\]mathfrak{U}$ = Normal; $\mathfrak{I}M$ = Not present in whit tissue; (1) = One eye available λ = Abnormal

CAN THE SECOND S

Female Dose	Group 19	00 mg/kg
-------------	----------	----------

85D03Ø											
	. 4 6	3 4 7	3 5 2	3 5 9	3 6 0	3 6 6	3 7 1	3 7 3	3 7 7	3 7 8	
	-	-		-	-	-	-	-	-	-	
Cerebrum ·	H	14	H	31	:1	N	N	N	Ħ	Ħ	
Cerebellum	N	7	N	31	N	:1	11	11	74	И	
Trachea	N	N	11	:1	.1	N	N	34	24	3	
Thyroid	Ŋ	11	И	N	:1	N	31	11	71	::	
Parathyroid	NP.	N	Ħ	31	N	31	:,P	1	:1	71	
Esophagus	N	Я	N	N	:1	N	N	:1	31	:1	
Salivary Gland	51	N	И	N	21	Ŋ	11	N	21	N	
Harderian Gland	N	Ŋ	N	*1	N	7	Δ	N	N	N	
Exorbital	N	N	N	Ŋ	34	N	31	31	31	N	
Heart	N	N	N	И	Я	N	N	N	И	N	
Aorta	N	N	N	N	N	N	N	Ŋ	N	И	
Lung	N	N	N	Α	N	A	Λ	31	A	٨	
Thymus	N	N	31	34	N	N	3	N	N	N	
Spleen	И	:1	N	N	N	N	N	И	N	N	
Mesenteric Lymph Node	11	Λ	29	Ħ	N	N	N	Ŋ	N	N	
Liver	И	ij	11	Α	21	И	N	N	N	31	
Kidney	N	N	Α	۸	Ŋ	Λ	1.3	ï	N	N	
Urinary Bladder	N	21	N	.4	.1	11	-1	1	,:4	N	
Uterus	ij	11	.1	Ŋ	31	ij	31	٦	:1	Н	
Ovarios	51	N	4	.1	4	`:	.1	•;	4	•:	
Duxleaun	:1	И	.1	::	.:	:1	.1	•;	.1	.1	
Jojunan	:1	:1	.1	:1	.1	-1	.1	1	.1	.1	
Ilem	:1	:1	7	:1	-:	11	4	.1	.;	:1	

Female Pose Group 1000 mg/kg (Cont'd)

95700										
	、3.	. 3	3	3 5	3	3	3 7	3	3	3
. *	6	7	2	9	ď	6	í	3	7	8
	-	-	-	-	-	-		-	-	-
Pancreas	N:	Ŋ	A	M	M	iv	11	•1	,1	?!
Cecum	*1	.1	7	? ?	N	?1	?1	٨	ij	N
Colon	11	A	N	N	?1	ŅŢ	N	N	V	N
Pectum	;1	Ŋ	,1	V	ч	V4	*1	` `	•7	***
Stomach	77	:1	;1	;1	N	N	174	N	!!	7
Skeletal Muscle	N *	**	N	*1	Ŋ	N	75	Ŋ	•••	M
Sciatic 'er/e	**	N	9	**	•7	•1	Ņ	•1	ÞŢ	*1
Tongue	;1	Ŋ	,7	21	11	N	?1	Ŋ	N.	ÞŢ
Skin	71	N	Ņ	M	4	14	ĸ	Ŋ	**	74
Mammery Gland	11	N	N	*	NŢ	71	11	M	;1	171
Masal	27	M	N	,1	N	ķ1	N	N	Ŋ	Ŋ
Sternum	*7	*:	N	N	M	N	1 7	Ħ	*1	! 1
Fenur	**	Ŋ	N	N	N	Ŋ	M	•1	Ŋ	N
Vertebrac	1.1	И	Ņ	Ŋ	N	'n	N	NT	31	Ņ
Spinal Cord	74	17	N	i3	N	N	54	N	14	N
Mrenals	ij	:1	3	N	Vi	N.	.1	M	Ņ	'n
Pituitory	**	N!	N	181	P.7	M	Ŋ	M	Й	NŢ
Dyc(s)	M	N	M	!!	M	Ŋ	N	•!	N	Ŋ
Middle Far	*1	<u>;1</u>	N	6.3	М	N	**	N!	11	ני
Auditory Sebagraus Glami	;1	.i	N	11	P 7	P!	14		•1	"

 $t' = \text{Morphil}; \ t'P = \text{Mot present on slide}; \ tM = \text{Mot present in unt tissue}; \ (1) = One gar available; A = Absorbal$

TABLE 2

			t-	fale C	ontro	ols				
85D33			٠							
	3	3	3	3	3	3	3	3	3	3
	Ø	0	1	1	2	2	3	3	3	4
	8	9	3	6	2	7	2	3	7	1
	_	-	_	-	_	-	-		_	-
Cerebrum	N	H	21	4	Ŋ	;1	;1	4	31	7
Cerebellum	11	N	N	N	N	N	11	:1	11	;1
Trachea	:4	N	Ħ	N	N	N	Ħ	И	A	N
Thyroid	N	N	N	N	N	N	Ŋ	И	73	N
Parathyroid	N	N	N	N	:1	11	N	;1	Ŋ	:4
Esophagus	N	N	N	Ŋ	N	N	N	Ŋ	N	N
Salivary Gland	11	N	N	:AV	N	11	и	31	:1	:1
Harderian Gland	٨	Α	Ħ	N	Λ	N	N	4	N	N
Exorbital Glant	:1	Α	11	N	λ	N	N	7	N	N
Heart	N	N	N	N	N	A	н	Ŋ	7	N
Aorta	N	u	N	M	N	N	N	N	N	N
Lung	A	٨	Α	A	Λ	A	Α	4	A	A
Thymus	31	N	Ħ	н	N	Ŋ	N	11	N	N
Spleen	H	N	11	N	Ŋ	Ħ	Ŋ	11	N	N
Mesenteric Lymph three	a	N	11	N	٨	N	N	N	ы	31
Liver	24	N	11	N	12	Ħ	N	31	N	N
Kidney	31	٨	Ŋ	4	Ħ	И	,1	:1	N	11
Urinary Bladder	:1	:1	N	N	N	И	4	31	N	:1
Accessory Sex Glambs	9	N	::	71	N	N	N	.1	H	:1
Epididymis	11	31	Ħ	:4	N	:21	.1	::	,1	21

Pituitary

Table 2: Male Control:	3 (Cn	nt'd)								
85 D00										
	3	3 Ø	3	3 1	3 2	3 2	3	3	3	3
	3	9	3	Ġ	2	7	2	ž	7	i
	_	-	-	-	-	-	-	-	-	-
Testes	11	54	N	21	H	N	N	N	24	71
Duodenum	Я	N	N	Ŋ	3	Ħ	Ŋ	11	Ŋ	Я
Jejunum	N	31	И	71	11	H	N	N	N	4
Ileum	11	31	.1	N	N	N	N	:1	N	N
Pancreas	N	N	Я	И	N	N	N	74	N	М
Cecum	N	N	N	Ŋ	И	N	N	N	31	Ħ
Colon	N	N	N	11	N	И	٧	11	N	:1
Rectum	N	N	И	P #.1	NV:	14.4	N	Я	И	:44
Stomach	N	N	Ŋ	N	N	N	ţĮ	N	Ħ	N
Skeletal Muscle	N	N	:34	Ħ	N	N	И	N	N	71
Sciatic Nerve	;1	N	77.4	NW	N	N	Ŋ	N	N	7
Tongue	11	N	N	N	N	N	Ħ	Ħ	N	Я
Skin	N	N	N	524	Ħ	Ħ	N	31	N	Ħ
Nasal	N	N	N	Ħ	N	tī	N	N	N	N
Sternum	ti	N	N	N	Ħ	17/1	N	N	N	И
Femur	N	N	Я	N	N	N	N	N	N	N
Vertebrae	N	N	N	Ħ	N	N	N	7	11	٧
Spinal Cord	N	N	N	N	ţı	!1	N	,1	N	4
Adrenals	ti	N	N	:1	N	N	:1	N	11	.1

Table 2: Male Controls (Cont'd)

85000										
	, 0 8	9 0 3	3 1 3	3 1 6	3 2 2	3 2 7	3 3 2	3 3 3	3 3 7	3 4 1
	-	-	-	-	-	-	_	-	-	_
Eye(s)	N	N	N	:1	N	M	Я	::	И	Я
Middle Ear	Я	N	N	N	N	:1	31	Ħ	N	51
Auditory Sebaceous Gland	31	Ħ	:1	N	Ħ	И	:1	:1	71	Ħ

W = Mormal; MP = Not present on slide; MI = Not present in wet tissue; (1) = One eye available; Λ = Abnormal

Males 1000 mg/kg

	•	•								
0 5	i ,	0 7	3 1 1	3 1 9	3 2 5	3 0	3 4	3 9	3 4 0	3 4 2 -
			- :1	- 1	.i	N	N	Ņ	N	21
N	,	N	N	31	N	N	:1	И	14	Ŋ
N		:1	1	14	N	11	t:	:1	N	
N	!	N	:1	и	M	И	N	N	Ŋ	Ŋ
11	!	N	15	N	Ņ	N	N	N	Ħ	:aF
11	:	N	N	N	Ŋ	11	N	Ŋ	N	N
11		:1	N	N	:1	N	N	N	N	И
N	' !	11	i)	И	A	N	N	И	N	Ŋ
N	,	eī.	N	N	Ŋ	t1	N	N	N	И
21	' !	23	N	И	H	N	Ŋ	A	N	N
:4	:	:1	:1	1	4(1)	N	N	N	7	N
11		A	Λ	H	N	N	И	N	Ŋ	11
N	1	N	И	N	N	N	N	N	H	N
13		:1	N	И	М	N	N	N	N	N
i Norte - 11		1	N	N	٨	N	N	И	N	Ĺ1
И	ı	4	N	Λ	II.	И	н	N	N	Ħ
.1		۸	:1	٨	۸	:1	N	۸	H	21
N	:	:1	14	11	N	:1	N	Ŋ	ti	71
ands 1	ţ	1	.1	N	И	N	31	N	N	Ŋ
ניו	;	1	N	И	Ħ	11	N	N	11	.1
	3 O O O O O O O O O O O O O O O O O O O	D S S S S S S S S S S S S S S S S S S S	3 3 0 0 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3 3 3 3 3 6 0 0 1 5 7 1 1 7 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 7 1 1 7 7 1 1 7 7 1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 7 1 9 7 0 0 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 5 7 7 1 8 7 7 7 1 8 7 7 7 4 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

⁽¹⁾ April on Slide #7

Table 2: Males 1000 mg/kg (Cont'd)

85D00										
	. · 3 0 5	3 0 7	3 1 1	3 1 8	3 2 0	3 3 3	3 4	3 3 9	3 4 7	3 4 2
	-	-	-	-	-	-	-	-	-	-
Testes	24	31	И	И	4	r	4	Α	И	M
Duodenum	н	N	-11	3	N	И	3	::	N	7
Jejunum	Я	31	71	И	Я	34	я	34	31	N
Ileum	N	:1	N	И	N	31	ij	34	H	14
Pancreas	3	31	N	31	И	N	34	N	N	И
Cecum	N	Я	N	31	71	:1	21	N	N	N
Colon	u	N	N	Я	7	:1	H	N	N	11
Rectum	124	N	N	:74	524	124	И	324	N	:54
Stomach	и	N	N	:1	N	34	N	31	M	31
Skeletal Muscle	;1	Ħ	N	:1	Ħ	N	N	N	N	N
Sciatic Nerve	N	Ŋ	N	N	9	N	:1	224	Ŋ	11
Tongue	11	21	N	11	11	N	И	7	Ŋ	N
Skin	N	N	11	N	N	31	N	N	N	7
tlasal	N	Λ	11	n	Ħ	N	N	N	N	11
Sternum	Я	31	N	Ħ	N	.7	Ħ	N	N	:24
Femur	N	11	Ħ	N	N	11	31	31	И	N
Vertebrae	Я	Ħ	N	:1	3	:1	N	7	N	31
Spinal Cord	N	ij	Ŋ	31	14.	11	21	:1	N	11
Adrenals	t1	N	N	::	N	31	Я	31	Я	:4
Pituitary	!1	-1	-1	31	31	.1	21	.1	31	.1
Eye(s)	11	N	:1	34	11	:1	31	N	11	71

Table 2: Males 1000 mg/kg (Cont'd)

85D3C		•								
	3	3	3	3	3	3	3	3	3	3
	O	Ø	1	l	2	3	3	3	4	4
	5	7	1	8	Ø	σ	4	8	o	2
	-	-	-	-	-	-	-	-	-	-
Middle Ear	N.	И	И	Я	31	Я	N	;1	N	И
Auditory Sebaceous Gland	н	Ŋ	N	N	31	Ŋ	31	N	N	31

M = Mormal; MP = Mot present on slide; MM = Mot present in wet tissue;

^{(1) =} One eye available; A = Abnormal

APPENDIX 1

Microscopic Findings

Group 1 - Control - Males

85000308

Harderian Gland - Lymphoid infiltration, mild, focal.

- Peribronchiolar and peribronchial lymphoid Lung

hyperplasia, mild, multifocal.

95D00309

Harderian Gland - Lymphoid infiltration - mild, multifocal. Exorbital Gland - Lymphoid infiltration - mild, multifocal.

- Peribronchiolar and peribronchial lymphoid Lung

hyperplasia, mild, multifocal.

95000313

Lung - Peribronchial lymphoid hyperplasia, mild,

multifocal.

85000316

- Peribronchial lymphoid hyperplasia, mild, Lung

multifocal.

85000322

Harderian Gland - Lymphoid infiltration, mild, multifocal.

Exorbital Gland - Lymphoid infiltration, mild, multifocal.

- Peribronchial lymphoid hyperplasia, mild, Lung

multifocal. Mesenteric

- Lymphoid hyperplasia, moderate, diffuse. Lymph Node

35D00327

- Peribronchial lymphoid hyperplasia, mild, Lung

multifocal.

- Lymphoid infiltration, myocartium, milt, focal. Heart

> Copy available to DITC does not permit fully legible reproduction

Appendix 1, Study #84040 (Cont'd)

35000332

 Lang - Peribronchial and peribronchiolar lymphoid hyperplasia, mild, multifocal.

95000337

Lung - Peribronchial lymphoid hyperplasia, mild,

multifocal.

85DC0341

Lung - Peribronchial lymphoid hyperplasia, mild,

multifocal.

Group 4 - 1000 mg/kg - Males

85D00307

Lung - Peribronchial lymphoid hyperplasia, mild,

multifocal.

Nasal Region - Lymphoid hyperplasia, mild, focal.

Kidney - Lymphoid infiltration, interstitial, mild, focal.

95D00311

Lung - Peribronchial lymphoid hyperplasia, mild,

multifocal.

85D90313

Liver - Periportal lymphoid infiltration, mild, multifocal.

Kidney - Hydromephrosis, severe, diffuse, unilateral.

Kidney - Interstitial nephritis, chronic, moderate, focal,

unilateral.

85079320

Kidney - Lymphoid infiltration, moderate, focal,

interstitium, unilateral.

Harderian Gland - Lymphoid infiltration, mild, multifocal.

05000338

Heart - Lymphoid infiltration, mild, focal.

Kidney - My ironephrosis, moderate, diffuse, bilateral.

Testes - A'rophy, swere, unilateral.

Appendix 1, Study #84040 (Cont'd)

Group 1 - Control Emales

85D00345

Lung - Peribronchiolar lymphoid hyperplasia, mild,

multifocal.

Liver - Periportal lymphoid infiltration, mild, multifocal.

95D00355

Lung - Peribronchiolar lymphoid hyperplasia, mild,

multifocal.

Kidney - Renal pelvis, lymphoid infiltrarion, mild, diffuse,

unilateral.

85D00357

Lung - Peribronchiolar and bronchial lymphoid hyperplasia,

mild, multifocal.

85000358

Lung - Peribronchial lymphoid hyperplasia, mild,

multifocal.

95D003G2

Lung - Peribronchial lymphord hyperplasia, mild,

multifocal.

85D00365 (37426)

Lung - Peribronchial lymphoid hyperplasia, mild,

multifocal.

Liver - Clear cell focus (nodule).

95D00367

Lung - Paribronchial lymphoid hyperplasia, mild,

multifocal.

Liver

Appendix O (cont): PATHOLOGY REPORT

Appendix 1, Study #84040 (Cont'd)

85D00369

Heart - Mild, multifocal lymphoid infiltration, left ventricle.

Lung - Peribronchial lymphoid hyperplasia, mild,

multifocal.

Periportal lymphoid infiltration, mild, multifocal.
 Poer cortical hyperplasis, mild, unilateral.

9500379

Trachea - Submucosal lymphoid infiltration, mild, multifocal.

Lung - Peribronchial and perivascular lymphoid

Peripronchial and perivascular lymphoid hyperplasia, moderate, multifocal.

Group 4 - 1000 ma/kg Females

85D00347

Mesenteric - Lymphoid hyperplasia, moderate, diffuse.
Lymph Node
Colon - Lymphoid infiltration, mild, multifocal,

85D30352

Kidney - Tubular mineralization, deep medulla, mild, focal.

Pancreas - Periartheritis, mild, focal.

surrucosal.

85070359

Lung - Peribronchiolar and bronchial lymphoid hyperplasia,

mild, nultifocal.

Kidney - Tubular mineralization, deep medulla, mild,

multifocal.

95D00366

Lung - Peribronchial lymphoid hyperplasia, mill,

multifocal.

Ridney - Tabular mineralization, confidence dullary junction,

mild mil'iterit.

Appendix 1, Study #84040 (Cont'd)

85D00371

Harderian Gland - Lymphoid infiltration, mild, focal.

Lung - Peribronchial lymphoid hyperplasia, mild, multifocal.

85D00373

Uterus - Dilation of lumen, moderate, diffuse. Cecum - Submucosal homorrhage, mild, multifocal.

35D00377

Lung - Peribronchial lymphoid hypperplasia, mild, multifocal.

85000377

Lung - Peribronchiolar and peribronchial lymphoid hyperplasia, mild, multifocal.

Distribution List

Commander

US Army Biomedical Research and
Development Laboratory (27)

ATTN: SGRD-UBZ-C

Fort Detrick, Frederick, MD 21701-5010

Defense Technical Information Center

(DTIC) (2)

ATTN: DTIC-DLA Cameron Station

Alexandria, VA 22304-6145

US Army Medical Research and Development Command (2)

ATTN: SGRD-RMI-S

Fort Detrick, Frederick, MD 21701-5012

Commandant

Academy of Health Sciences, US Army

ATTN: AHS-CDM

Fort Sam Houston, TX 78234

Chief

USAEHA Regional Division, West

Fitzsimmons AMC

Aurora, CO 80045

Chief

USAEHA Regional Division, North

Fort George G. Meade, MD 20755

Chief

USAEHA Regional Division, South

Bldg. 180

Fort McPherson, GA 30330

Commander

USA Health Services Command

ATTN: HSPA-P

Fort Sam Houston, TX 78234

Commandant

Academy of Health Sciences

United States Army

ATTN: Chief, Environmental

Quality Branch

Preventive Medicine Division

(HSHA-IPM)

Fort Sam Houston, TX 78234

Commander US Army Materiel

Command

ATTN: AMSCG

5001 Eisenhower Avenue

Alexandria, VA 22333

Commander

US Army Environmental Hygiene

Agency

ATTN: Librarian, HSDH-AD-L

Aberdeen Proving Ground, MD 21010

Dean

School of Medicine

Uniformed Services University of the

Health Sciences

4301 Jones Bridge Road

Bethesda, MD 20014

Commander

US Army Materiel Command

ATTN: AMCEN-A

5001 Eisenhower Avenue

Alexandria, VA 22333

HQDA

ATTN: DASG-PSP-E

Falls Church, VA 22041-3258

HQDA

ATTN: DAEN-RDM

20 Massachusetts, NW

Washington, D.C. 20314