Busca em Largura, Caminhos e Distâncias

Prof. Andrei Braga

Conteúdo

- Busca em largura
- Representação da árvore de busca
- Caminhos de comprimento mínimo
- Distâncias
- Referências

- Falamos antes sobre o seguinte objetivo:
 Dado um grafo, queremos determinar um caminho de comprimento mínimo entre um certo vértice e cada um dos vértices do grafo
- Podemos atingir este objetivo através de uma estratégia de busca chamada busca em largura
- Para este objetivo, o algoritmo de busca em profundidade não é útil, pois a estratégia utilizada não tem relação com calcular caminhos de comprimento mínimo
- Em uma busca em largura, vamos percorrer o grafo da seguinte maneira:
 vamos visitar primeiro os vértices mais próximos do vértice inicial

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Estrutura de dados:

v2 v5 v7

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Estrutura de dados:

v5 v7

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Estrutura de dados:

v5 v7 v6

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Estrutura de dados:

v7 v6

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Estrutura de dados:

v7 v6 v3 v4

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Estrutura de dados:

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Nesta busca, também temos que evitar que um vértice seja visitado mais de uma vez

Estrutura de dados:

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

A **primeira vez** que v4 **entra** na estrutura de dados corresponde ao **momento correto** em que queremos visitá-lo

Por isso, vamos evitar que um vértice seja inserido mais de uma vez na estrutura de dados

Estrutura de dados:

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Estrutura de dados:

v6 v3 v4 v1

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Estrutura de dados:

v3 v4 v1

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Estrutura de dados:

v4 v1

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Vamos usar a **estratégia geral de busca** vista anteriormente

Vamos percorrer o grafo visitando primeiro os vértices mais próximos do vértice inicial

Partindo do **v0**

Busca em largura - Implementação

- Considerando a estratégia geral de busca vista anteriormente, o que podemos dizer da lógica através da qual os vértices são visitados no algoritmo de busca em largura?
 - É uma lógica de fila
- Então, vamos implementar este algoritmo usando uma fila

Busca em largura - Implementação

```
void Grafo::busca_larg(int v) {
 // Criacao e inicializacao do vetor marcado
 queue<int> fila;
 fila.push(v);
 while (!fila.empty()) {
     int w = fila.front();
     fila.pop();
     printf("%d\n", w);
     marcado[w] = 1:
     for (int u = 0; u < num_vertices_; u++)</pre>
         if (matriz_adj_[w][u] != 0)
             if (marcado[u] == 0)
                  fila.push(u);
```


Nesta implementação, um vértice pode ser **visitado mais de uma vez!**

Busca em largura - Implementação

```
void Grafo::busca_larg(int v) {
 // Criacao e inicializacao do vetor marcado
 queue<int> fila;
 marcado[v] = 1;
 fila.push(v);
 while (!fila.empty()) {
     int w = fila.front();
     fila.pop();
     printf("%d\n", w);
     for (int u = 0; u < num_vertices_; u++)</pre>
         if (matriz_adj_[w][u] != 0)
             if (marcado[u] == 0) {
                 marcado[u] = 1;
                  fila.push(u);
```


- Assim como fizemos para a estratégia de busca anterior, vamos construir um grafo H que representa a dinâmica desta segunda estratégia de busca
 - Quando o vértice inicial da busca é visitado, o adicionamos a H
 - Quando um novo vértice v é visitado, se chegamos a v através da aresta wv,
 então adicionamos a H a aresta wv e o vértice v

Partindo do **v0**

0	-
-/	r

Partindo do **v0**

Partindo do **v0**

Estrutura de dados:

Partindo do **v0**

Estrutura de dados:

v2 v5 v7

Partindo do **v0**

Estrutura de dados:

Partindo do **v0**

Estrutura de dados:

Partindo do **v0**

Estrutura de dados:

Partindo do **v0**

Estrutura de dados:

v7 v6 v3 v4

Partindo do **v0**

Estrutura de dados:

Partindo do **v0**

Estrutura de dados:

v6 v3 v4 v1

Partindo do **v0**

Estrutura de dados:

v6 v3 v4 v1

A busca segue em **largura** até não ser mais possível, para depois se aprofundar

Partindo do **v0**

Partindo do **v0**

Estrutura de dados:

H: v0 v7 v5 v7 v6 v3

Partindo do **v0**

H: v0 v7 v6 v3 v4

Estrutura de dados:

Partindo do **v0**

Estrutura de dados:

Partindo do **v0**

Estrutura de dados:

H é uma **árvore**

Busca em largura

- Usando o algoritmo de busca em largura, como podemos determinar um caminho de comprimento mínimo entre um dado vértice e cada um dos vértices de um grafo?
- É possível provar o seguinte teorema:
- Teorema: Considere a árvore correspondente à dinâmica do algoritmo de busca em largura executada em um grafo G partindo de um vértice v. Para qualquer vértice u desta árvore, o caminho entre v e u na árvore é um caminho de comprimento mínimo entre v e u em G.
- Para a prova do teorema, veja o capítulo relativo a busca em largura da Ref.
 1 desta apresentação

Partindo do **v0**

Estrutura de dados:

Busca em largura

- Portanto, a partir da árvore que corresponde à dinâmica do algoritmo de busca em largura, podemos determinar um caminho de comprimento mínimo entre o vértice inicial da busca e cada um dos vértices do grafo
- E como podemos obter esta árvore?
- Vamos estender a implementação do algoritmo de busca em largura para que seja gerada uma representação desta árvore
- Vamos representar a árvore através de um vetor pai

- Uma árvore é um grafo e, portanto, pode ser representada como uma matriz de adjacências ou listas de adjacência ou de outra forma usual de representar um grafo
- Além disso, uma árvore pode ser representada como uma estrutura mais simples

 Dada uma árvore com raiz r, se a última aresta do caminho entre o vértice r e um vértice v na árvore é a aresta uv, então dizemos que u é o pai de v e v é um filho de u

Exemplo:

- o v2 é filho de v0
- v5 é pai de v10
- v13 é filho de v5
- v6 não é pai de v7 (v6 é irmão de v7)

- Podemos representar uma árvore G com raiz r como um **vetor** pai de |V(G)| elementos, com índices 0, 1, ..., |V(G)| 1, tal que
 - pai[i] é igual ao pai do vértice i em G caso i ≠ r e
 - o pai[r] = -1
- Exemplo:

- Podemos representar uma árvore G com raiz r como um vetor pai de |V(G)|elementos, com índices 0, 1, ..., |V(G)| - 1, tal que
 - pai[i] é igual ao pai do vértice i em G caso $i \neq r$ e
 - pai[r] = -1
- Exemplo:

pai

-1	0	0	0	1	2	3	3	3	5	5	5	5	5
0													

Busca em largura - Representação da árvore de busca

 Lembrando da dinâmica da busca, podemos entender como preencher um vetor pai que representa a árvore correspondente

Busca em largura - Implementação

```
void Grafo::busca_larg(int v) {
 // Criacao e inicializacao do vetor marcado
 queue<int> fila;
 marcado[v] = 1;
 fila.push(v);
 while (!fila.empty()) {
     int w = fila.front();
     fila.pop();
     printf("%d\n", w);
     for (int u = 0; u < num_vertices_; u++)</pre>
         if (matriz_adj_[w][u] != 0)
             if (marcado[u] == 0) {
                 marcado[u] = 1;
                  fila.push(u);
```


Busca em largura - Implementação

```
void Grafo::busca_larg(int v, int pai[]) {
 // Criacao e inicialização do vetor marcado
// Inicializacao do vetor pai
 queue<int> fila;
 marcado[v] = 1;
 pai[v] = -1;
 fila.push(v);
 while (!fila.empty()) {
     int w = fila.front();
     fila.pop();
     printf("%d\n", w);
     for (int u = 0; u < num_vertices_; u++)</pre>
         if (matriz_adj_[w][u] != 0)
             if (marcado[u] == 0) {
                 marcado[u] = 1;
                 pai[u] = w;
                 fila.push(u);
```


Busca em largura

 Além de determinar caminhos de comprimento mínimo, podemos, durante uma busca em largura, já determinar a distância entre o vértice inicial da busca e cada um dos vértices do grafo

Busca em largura - Implementação

```
void Grafo::busca_larg(int v, int pai[]) {
 // Criacao e inicialização do vetor marcado
// Inicializacao do vetor pai
 queue<int> fila;
 marcado[v] = 1;
 pai[v] = -1;
 fila.push(v);
 while (!fila.empty()) {
     int w = fila.front();
     fila.pop();
     printf("%d\n", w);
     for (int u = 0; u < num_vertices_; u++)</pre>
         if (matriz_adj_[w][u] != 0)
             if (marcado[u] == 0) {
                 marcado[u] = 1;
                 pai[u] = w;
                 fila.push(u);
```


Busca em largura - Implementação

```
void Grafo::busca_larg(int v, int pai[], int dist[]) {
 // Criacao e inicializacao do vetor marcado
 // Inicializacao dos vetores pai e dist
 queue<int> fila;
 marcado[v] = 1;
 pai[v] = -1;
 dist[v] = 0;
fila.push(v);
 while (!fila.empty()) {
     int w = fila.front();
    fila.pop();
     printf("%d\n", w);
     for (int u = 0; u < num_vertices_; u++)</pre>
         if (matriz_adj_[w][u] != 0)
             if (marcado[u] == 0) {
                 marcado[u] = 1;
                 pai[u] = w;
                 dist[u] = dist[w] + 1;
                 fila.push(u);
```


Exercícios

• Exercício 5 da Lista de Exercícios "Busca em profundidade e em largura".

Exercícios

• Exercício 6 da Lista de Exercícios "Busca em profundidade e em largura".

Exercícios

• Demais exercícios da Lista de Exercícios "Busca em profundidade e em largura".

Referências

- Esta apresentação é baseada nos seguintes materiais:
 - Capítulo 22 do livro
 Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms.
 3rd. ed. MIT Press, 2009.
 - Capítulo 18 do livro
 Sedgewick, R. Algorithms in C++ Part 5. Graph Algorithms. 3rd. ed. Addison-Wesley, 2002.