ECON61001: Econometric Methods

Solutions to Problem Set for Tutorial 1

- 1.(a) $\partial y/\partial x = \beta_{0,2}$, and so $\beta_{0,2}$ is the partial derivative of y with respect to x.
- 1.(b) Using the Chain rule: $\partial y/\partial x = x^{-1}\beta_{0,2}$. So $\beta_{0,2}$ gives the multiple of the proportional change in x by which y changes.
- 1.(c) Using the Chain rule: $\partial y/\partial x = y\beta_{0,2}$ and so $\beta_{0,2}$ is the proportionate change in y that is $100\beta_{0,2}$ is the percentage change in y; in this case $\beta_{0,2}$ is sometimes referred as the *semi-elasticity* of y with respect to x.
- 1.(d) Using the Chain rule: $\partial y/\partial x = (y/x)\beta_{0,2}$, and so $\beta_{0,2}$ is $(x/y)(\partial y/\partial x)$, the elasticity of y with respect to x.
- 1.(e) $\partial y/\partial x = \beta_{0,2} + 2\beta_{0,3}x$, and so $\beta_{0,2}$ is $\partial y/\partial x$ at x = 0.
- 2.(a) By definition $h(\theta) = \sum_{i=1}^{p} a_i \theta_i$ and so $\partial h(\theta)/\partial \theta_i = a_i$. Since $\partial h(\theta)/\partial \theta_i$ is the i^{th} element of $\partial h(\theta)/\partial \theta$ the result then follows immediately.
- 2.(b) By dansing name of Aproject, Exameline fp. Therefore,

where A_s and $A_{\cdot s}$ are the s^{th} row and column respectively of A. Now $A_{\cdot s} = B_s$ where B = A', and so Add We Chat powcoder (1)

Since $\partial g(\theta)/\partial \theta_s$ is the s^{th} element of $\partial g(\theta)/\partial \theta$, it follows from (1) that $\partial g(\theta)/\partial \theta = (A+A')\theta$.

2.(c) From (1) it follows that

$$\partial^2 q(\theta) / \partial \theta_s \partial \theta_l = A_{s,l} + A_{l,s} \tag{2}$$

Since $\partial^2 g(\theta)/\partial \theta_s \partial \theta_l$ is the $s-l^{th}$ element of $\partial^2 g(\theta)/\partial \theta \partial \theta'$ the desired result follows directly from (2).

2.(d) If A is symmetric then A=A' and so (b) becomes $\partial g(\theta)/\partial \theta=2A\theta$, and (c) becomes $\partial^2 g(\theta)/\partial \theta \partial \theta'=2A$.

- 3.(i) Following the hint, we have c'X'Xc = b'b for b = Xc. By construction $b'b = \sum_{i=1}^{T} b_i^2$ where b_i is the i^{th} element of b, and so it follows immediately that $c'X'Xc \geq 0$. However, we must show this inequality is strict in order for X'X to be pd. Note $b = Xc = \sum_{i=1}^k x_i c_i$ where x_i is the i^{th} column of X and c_i the i^{th} element of c, and so b is a linear combination of the columns of X. rank(X) = k implies that the columns of X forms a linear independent set and so it must be that $b \neq 0$ and hence b'b > 0. This proves c'X'Xc > 0 for any non-zero vector c, and therefore that X'X is pd.
- 3.(ii) If rank(X) < k then for some choices of c we have $b = Xc \neq 0$ but for others b = 0. Therefore, $c'X'Xc \ge 0$ for all c, and so X'X is positive semi-definite.
- 4.(i) The normal equations can be written as: $X'(y X\hat{\beta}_T) = X'e = 0$. Substituting for X we have:

$$X'e = \begin{bmatrix} \iota'_T \\ X'_2 \end{bmatrix} e = \begin{bmatrix} \iota'_T e \\ X'_2 e \end{bmatrix} = 0.$$

These are a system of $k \times 1$ equations, the first of which is $\iota'_T e = 0$. Since $\iota'_T e = \sum_{t=1}^T e_t$, it follows immediately that $\bar{e} = 0$.

4.(ii) From part (i), it follows that $\iota_T'(y - X\hat{\beta}_T) = 0$ which in turn implies $T^{-1}\iota_T'(y - X\hat{\beta}_T) = 0$ (as T > 0) and so

$$T^{-1}\iota_T' y = T^{-1}\iota_T' X \hat{\beta}_T \tag{3}$$

Since he left hand side of (3) is \bar{y} and the right hand side of (3) is \bar{y} little we that $\bar{y} = \hat{y}$. 5. Prove $A^{-1} = B$ by showing B satisfies AB = BA = I. Now if AB = I then

$$A_{2,1}B_{1,1} + A_{2,2}B_{2,1} = 0 (6)$$

and so we now verify that the stated formulae for
$$B_{i,j}$$
 satisfy these equation. Substituting

 $B_{1,2} = -A_{1,1}^{-1}A_{1,2}B_{2,2}$ into the left-hand side of (5) gives

$$A_{1,1}(-A_{1,1}A_{1,2}B_{2,2}) + A_{1,2}B_{2,2} = -A_{1,2}B_{2,2} + A_{1,2}B_{2,2}$$

= 0

and so $B_{1,2} = -A_{1,1}^{-1}A_{1,2}B_{2,2}$ satisfies (5). Substituting $B_{2,1} = -A_{2,2}^{-1}A_{2,1}B_{1,1}$ into the lefthand side of (6) gives

$$A_{2,1}B_{1,1} + A_{2,2}(-A_{2,2}A_{2,1}B_{1,1}) = A_{2,1}B_{1,1} - A_{2,1}B_{1,1}$$

= 0

and so $B_{2,1} = -A_{2,2}^{-1}A_{2,1}B_{1,1}$ satisfies (6). Substituting $B_{1,2} = -A_{1,1}^{-1}A_{1,2}B_{2,2}$ into the lefthand side of (7) gives

$$A_{2,1}(-A_{1,1}^{-1}A_{1,2}B_{2,2}) + A_{2,2}B_{2,2} = I$$

which implies

$$(A_{2,2} - A_{2,1}A_{1,1}^{-1}A_{1,2})B_{2,2} = I$$

and so $B_{2,2} = (A_{2,2} - A_{2,1}A_{1,1}^{-1}A_{1,2})^{-1}$ satisfies (7). Finally substituting $B_{2,1} = -A_{2,2}^{-1}A_{2,1}B_{21}$ into the left-hand side of (4) gives

$$A_{1,1}B_{1,1} + A_{1,2}(-A_{2,2}A_{2,1}B_{1,1}) + A_{2,2}B_{2,2} = I$$

which implies

$$(A_{1,1} - A_{1,2}A_{2,2}^{-1}A_{2,1})B_{1,1} = I$$

and so $B_{1,1} = (A_{1,1} - A_{1,2}A_{2,2}^{-1}A_{2,1})^{-1}$ satisfies (4).

Since A and B are nonsingular, $AB = I \Rightarrow BAB = B \Rightarrow BA = BB^{-1} = I$. Therefore $B = A^{-1}$.

Notice that if we begin with BA = I then it is possible to derive alternative – but equivalent – representations for $B_{i,j}$ in terms of $A_{i,j}$ for $i \neq j$. These are

$$B_{1,2} = -B_{1,1}A_{1,2}A_{2,2}^{-1} (8)$$

$$B_{2,1} = -B_{2,2}A_{2,1}A_{1,1}^{-1} (9)$$

(10)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder