Linear Algebra I Exercises IV: Inner Products

Dr Nicholas Sedlmayr

- 1. Prove the Cauchy-Schwarz inequality which states that $\forall v, w \in V$, where V is a Euclidean space then $|\langle v|w\rangle| \leq ||v|| \cdot ||w||$. Tip: Consider the properties of $||v + \lambda w||^2 \geq 0$ as a polynomial in λ .
- 2. Starting from the triangle inequality,

$$||v + w|| \le ||v|| + ||w||$$
,

derive the following alternative forms of it:

$$||v-w|| \le ||v|| + ||w||, ||v+w|| \ge ||v|| - ||w||, \text{ and } ||v-w|| \ge ||v|| - ||w||,$$

for $v, w \in V$, where V is a Euclidean space.

- 3. Prove that in any complex inner product space
 - (a) $\langle u|v\rangle = \frac{1}{2} (||u+v||^2 + i||u-iv||^2 (1+i)(||u||^2 + ||v||^2))$, and
 - (b) $\langle u|v\rangle = \frac{1}{4} (||u+v||^2 ||u-v||^2 + i||u-iv||^2 i||u+iv||^2).$
- 4. Determine whether

$$\langle \mathbf{u} | \mathbf{v} \rangle = (u_1 - v_1)^2 + (u_2 - v_2)^2$$

is an inner product on \mathbb{R}^2 with $\mathbf{u} = (u_1, u_2)^T$, and $\mathbf{v} = (v_1, v_2)^T$.

5. Let $V = \mathbb{R}^3$ with the standard inner product. Describe the set of vectors orthogonal to $(1,0,-3)^T$. Show that this set is a subspace of V, find a basis and hence determine the dimension of the subspace.