WO 2005/089521 PCT/US2005/009478

We claim:

1

2

8.

1	1.	A semiconductor laser device including:
2		(a) a first oxide layer defining a first aperture;
3		(b) a second oxide layer defining a second aperture; and
4		(c) an active region located between the apertures;
5	the ap	ertures being of sizes and distances from a center of the active region to induce
6	a near-Gaussi	an shape of spatial current density distribution.
1	2.	The laser device according to claim 1, having a p-mirror on one side of the
2	active region	and an n-mirror on another side of the active region, and wherein the first oxide
3	layer is p-mir	ror oxide layer and the second oxide layer is an n-mirror oxide layer.
1	3.	The laser device according to claim 2, wherein the first and second oxide
2	layers and the first and second apertures defined differ in distance from the center of the	
3	active region.	
1	4.	The laser device according to claim 2, wherein the size of the first aperture is
2	smaller than t	the size of the second aperture.
1	5.	The laser device according to claim 3, wherein the size of the first aperture is
2	smaller than	the size of the second aperture.
1	6.	The laser device according to claim 3, wherein each of the mirrors comprise
2	stacks of mirror pairs, the first aperture is spaced at substantially three to twenty mirror pairs	
3	from the active region and the second aperture is spaced at substantially one to four mirror	
4	pairs from the	e active region.
1	7.	The laser device according to claim 4, wherein each of the mirrors comprises
2		ror pairs, the first aperture is spaced at substantially three to twenty mirror pairs
3	from the active region and the second aperture is spaced at substantially one to four mirror	
4	pairs from th	e active region.

The laser device according to claim 3, wherein the first aperture is

substantially 3 to $20\mu m$ across and the second aperture is substantially 5 to $30\mu m$ across.

WO 2005/089521 PCT/US2005/009478

9. The laser device according to claim 4, wherein the first aperture is substantially 3 to 20µm across and the second aperture is substantially 5 to 30µm across.

1

2

1

2

3

4

5 6

1

2

1

2

3

4

1

2

3

4

- The laser device according to claim 7, wherein the first aperture is
 substantially 3 to 20μm across and the second aperture is substantially 5 to 30μm across.
 - of the active region and a second stack of mirror pairs on a second side of the active region; the improvement comprising a first oxide aperture of a first size on the one side of the active region at a first distance from a center of the active region and a second oxide aperture of a second size on the second side of the active region at a second distance from the center of the active region.
- 1 12. The VCSEL according to claim 11, wherein the first aperture size differs from 2 the second aperture size and the first distance differs from the second distance.
 - 13. The VCSEL according to claim 12, wherein the first aperture size is smaller than the second aperture size and the first distance is greater than the second distance.
 - 14. The VCSEL according to claim 13, wherein the first aperture size is substantially 5 to 30µm across, the first distance is substantially 3 to 20 mirror pairs along the first mirror pair stack and the second distance is substantially one to four mirror pairs along the second mirror stack.
 - 15. The VCSEL according to claim 11, further including a substrate upon which the active region and first and second mirror stacks are grown, a via into the substrate and into proximity with one of said mirror stacks, heat conductive plating extending from an outer surface into the via.
- 1 16. The VCSEL according to claim 14, further including a substrate upon which 2 the active region and first and second mirror stacks are grown, a via into the substrate and 3 into proximity with one of said mirror stacks, heat conductive plating extending from an 4 outer surface into the via.
- 1 17. The VCSEL according to claim 11, further comprising a heat sink supporting 2 the active region and the first and second mirror stacks, said heat sink extending into heat 3 conducting relation to one of the mirror stacks.

WO 2005/089521 PCT/US2005/009478

1 18. The VCSEL according to claim 13, further comprising a heat sink supporting 2 the active region and the first and second mirror stacks, said heat sink extending into heat 3 conducting relation to one of the mirror stacks.