Università degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE220

A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi

Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

Soluzioni Tutorato 1 (10 Marzo 2011) SPAZI METRICI E TOPOLOGICI

- 1. Sia (X,d) uno spazio metrico e sia A un sottoinsieme di X. Verificare che le seguenti condizioni sono equivalenti:
 - (a) A è aperto;
 - (b) $\forall x \in A$, esiste un disco $D_{\epsilon}(x)$ tale che $D_{\epsilon}(x) \subseteq A$;
 - (c) $\forall x \in A$, esiste un aperto V_x tale che $x \in V_x \subseteq A$.

Solutione:

 $(a) \Rightarrow (b)$: Per definizione, dato (X,d) spazio metrico e $A \subseteq X$, A è aperto se è unione di dischi aperti:

$$A = \bigcup_{\alpha \in I} D_{\alpha}$$

Allora $\forall x \in A \ \exists \ \bar{\alpha} \in I \ \text{tale che} \ x \in D_{\bar{\alpha}} = D_{\epsilon}(y) = \{z \in X | \ d(y,z) < \epsilon\}.$ Scelto dunque $\epsilon' < \min \{d(x,y), \epsilon - d(x,y)\}$ si ha $x \in D_{\epsilon'}(x) \subset D_{\epsilon}(y) \subset A.$ Infatti, $\forall x' \in D_{\epsilon'}(x) \ (\Rightarrow d(x', x) < \epsilon')$ si ha: $d(x', y) \le d(x', x) + d(x, y) < \epsilon' + d(x, y) < \epsilon'$ $\epsilon - d(x, y) + d(x, y) = \epsilon \implies x' \in D_{\epsilon}(y).$

- $(b) \Rightarrow (c)$: $D_{\epsilon}(x)$ è un aperto tale che $x \in D_{\epsilon}(x) \subseteq A$; $\forall x \in A$ basta quindi scegliere $V_x = D_{\epsilon}(x)$
- $(c) \Rightarrow (a)$: Sappiamo che $\forall x \in A$, esiste un aperto V_x tale che $x \in V_x \subseteq A$. Allora:

$$A = \bigcup_{x \in A} \{x\} \subseteq \bigcup_{x \in A} V_x \subseteq A \Rightarrow A = \bigcup_{x \in A} V_x.$$

 $A = \bigcup_{x \in A} \{x\} \subseteq \bigcup_{x \in A} V_x \subseteq A \Rightarrow A = \bigcup_{x \in A} V_x.$ $V_x \ \text{è aperto e quindi unione di dischi aperti. Pertanto } A \ \text{è unione di dischi aperti e}$ quindi è aperto.

2. Sia (X,d) uno spazio metrico discreto. Determinare l'insieme dei suoi aperti A e per ogni $x \in X$ l'insieme $\mathfrak{D}(x)$ dei dischi aventi centro in x.

$\underline{Soluzione}$:

Ricordiamo che la distanza discreta è definita nel modo seguente:

$$d(x,y) = \left\{ \begin{array}{ll} 0 & se \ x = y \\ 1 & se \ x \neq y \end{array} \right. \Rightarrow D_{\epsilon}(x) = \left\{ \begin{array}{ll} \{x\} & se \ \epsilon \leq 1 \\ X & se \ \epsilon > 1 \end{array} \right..$$

Quindi $\mathfrak{D}(x) = \{\{x\}, X\} \ \forall x \in X.$

Descriviamo ora l'insieme degli aperti A di (X, d).

Sia U un sottoinsieme di X; allora $U = \bigcup_{x \in U} \{x\}$, cioè U è unione dei suoi punti che, per

quanto visto sopra, sono dischi. Allora U è aperto in quanto unione di dischi.

Ne segue che ogni sottoinsieme di X è aperto, ossia $\mathcal{A} = \mathcal{P}(X)$ (insieme delle parti di X).

- 3. Sia (X,d) uno spazio metrico. Si considerino le tre applicazioni $d_r, \delta, \epsilon: X \times X \to \mathbb{R}$ così definite:
 - (a) $d_r(x,y) := rd(x,y), \forall x,y \in X$ (dove r > 0 è un numero reale fissato);

- (b) $\delta(x,y) := \frac{d(x,y)}{1+d(x,y)}, \forall x,y \in X;$
- (c) $\epsilon(x, y) := \min\{1, d(x, y)\}, \forall x, y \in X.$

Verificare che d_r , δ , ϵ sono distanze su X.

$\underline{Solutione}$:

Osserviamo innanzitutto che, essendo d una metrica su $X, \forall x, y, z \in X$ valgono le seguenti condizioni:

- (i) $d(x,y) \ge 0$; $d(x,y) = 0 \Leftrightarrow x = y$;
- (ii) d(y, x) = d(x, y);
- (iii) $d(x,y) \le d(x,z) + d(z,y)$.
- (a) (i) $\forall x, y \in X$ $d_r(x, y) = rd(x, y) \ge 0$ poiché r > 0 e $d(x, y) \ge 0$. Inoltre $d_r(x, y) = 0 \Leftrightarrow d(x, y) = 0 \Leftrightarrow x = y$;
 - (ii) $d_r(x, y) = rd(x, y) = rd(y, x) = d_r(y, x) \ \forall x, y \in X;$
 - (iii) $\forall x, y, z \in X$ $d_r(x, y) = rd(x, y) \le r(d(x, z) + d(z, y)) = rd(x, z) + rd(z, y) = d_r(x, z) + d_r(z, y).$
- (b) (i) $\forall x,y \in X \quad \delta(x,y) \geq 0$ poiché $d(x,y) \geq 0$ e 1+d(x,y)>0. Inoltre, $\delta(x,y)=\frac{d(x,y)}{1+d(x,y)}=0 \Leftrightarrow d(x,y)=0 \Leftrightarrow x=y;$
 - (ii) $\forall x, y \in X$ $\delta(x, y) = \frac{d(x, y)}{1 + d(x, y)} = \frac{d(y, x)}{1 + d(y, x)} = \delta(y, x)$;
 - (ii) $\forall x, y, z \in X$ dobbiamo mostrare che $\delta(x,y) \leq \delta(x,z) + \delta(z,y)$. Poniamo a := d(x,y) e b := d(x,z) + d(z,y); sappiamo che $a \leq b \Rightarrow a + ab \leq b + ab \Rightarrow a(1+b) \leq b(1+a) \Rightarrow \frac{a}{1+a} \leq \frac{b}{1+b}$ cioè $\delta(x,y) = \frac{d(x,y)}{1+d(x,y)} \leq \frac{d(x,z)+d(z,y)}{1+d(x,z)+d(z,y)} = \frac{d(x,z)}{1+d(x,z)+d(z,y)} + \frac{d(z,y)}{1+d(x,z)+d(z,y)} \leq \frac{d(x,z)}{1+d(x,z)} + \frac{d(z,y)}{1+d(z,y)} = \delta(x,z) + \delta(z,y).$
- (c) (i) $\forall x,y \in X$ $\epsilon(x,y) \ge 0$ poiché $1 \ge 0$ e $d(x,y) \ge 0$. Inoltre $\epsilon(x,y) = 0 \Leftrightarrow d(x,y) = 0 \Leftrightarrow x = y$;
 - (ii) $\forall x, y \in X \ \epsilon(x, y) = \min\{1, d(x, y)\} = \min\{1, d(y, x)\} = \epsilon(y, x);$
 - (iii) Dimostriamo, ora, la diseguaglianza triangolare. $\forall x,y,z\in X\ \epsilon(x,y)=\min\{1,d(x,y)\}\leq \min\{1,d(x,z)+d(z,y)\}\ e$ $\epsilon(x,z)+\epsilon(z,y)=\min\{1,d(x,z)\}+\min\{1,d(z,y)\}.$ Ci basterà dunque verificare che $\min\{1,d(x,z)+d(z,y)\}\leq \min\{1,d(x,z)\}+\min\{1,d(z,y)\},$ cioè che posto a:=d(x,z) e b:=d(z,y) si abbia $\min\{1,a+b\}\leq \min\{1,a\}+\min\{1,b\}.$

Verifichiamo la disuguaglianza nei due casi seguenti:

- Supponiamo $1 \le a+b \Rightarrow \min\{1,a+b\} = 1$. Se $a \ge 1$ allora $\min\{1,a\} + \min\{1,b\} = 1 + \min\{1,b\} \ge 1$; se $b \ge 1$ si procede allo stesso modo; se infine a < 1 e b < 1, allora $\min\{1,a\} + \min\{1,b\} = a+b \ge 1$.
- Supponiamo $1 > a + b \Rightarrow \min\{1, a + b\} = a + b$. Necessariamente deve quindi essere a < 1 e b < 1. Ne segue che $\min\{1, a\} + \min\{1, b\} = a + b = \min\{1, a + b\}$.
- 4. (a) Due metriche d e d' su X sono dette topologicamente equivalenti [e si scrive $d \sim d'$] se hanno gli stessi aperti.

Per ogni $x \in X$ si indichi con $\mathfrak{D}(x)$ [risp. $\mathfrak{D}'(x)$] l'insieme dei dischi di centro x in (X, d) [risp. (X, d')].

Dimostrare che vale il seguente criterio di equivalenza topologica:

 $d \sim d' \Leftrightarrow \forall x \in X$, sono verificate le due condizioni:

- i. $\forall D \in \mathfrak{D}(x), \exists D' \in \mathfrak{D}'(x) \text{ tale che } D' \subseteq D;$
- ii. $\forall D' \in \mathfrak{D}'(x), \exists D \in \mathfrak{D}(x) \text{ tale che } D \subseteq D'.$

(b) Sia (X, d) un fissato spazio metrico. Verificare che le metriche d_r, δ, ϵ definite nell'esercizio 3 sono topologicamente equivalenti [alla metrica d e quindi tra loro].

Solutione:

- (a) \Rightarrow : Dimostriamo i. (si procederà in maniera analoga per ii.). Sia $x \in X$ e sia $D \in \mathfrak{D}(x)$. In particolare D è un aperto di $(X, d) \Rightarrow D$ è aperto in (X, d') (dall'equivalenza topologica di d e d'). Dall'esercizio 1 $((a) \Leftrightarrow (b))$, $\exists D' \in \mathfrak{D}'(x)$ tale che $D' \subseteq D$.

Si procede in modo analogo per dimostrare che se A è aperto in (X, d') allora A è aperto in (X, d).

- (b) Utilizziamo il criterio d'equivalenza per dimostrare che d_r , δ ed ϵ sono topologicamente equivalenti alla metrica d.
 - $d_r \sim d$ $\forall x \in X$ consideriamo $D^r_{\epsilon}(x) \in \mathfrak{D}^r(x)$ (famiglia dei dischi aperti rispetto alla metrica d_r) $\Rightarrow D^r_{\epsilon}(x) = \{y \in X : d_r(x,y) < \epsilon\} = \{y \in X : rd(x,y) < \epsilon\} = \{y \in X : d(x,y) < \frac{\epsilon}{r}\} = D_{\frac{\epsilon}{r}}(x).$ $d \in d_r$ sono allora topologicamente equivalenti poiché $\mathfrak{D}(x)$ (famiglia dei dischi aperti rispetto alla metrica d) e $\mathfrak{D}^r(x)$ coincidono.
 - $\begin{array}{l} \bullet \ \, \delta \sim d \\ \forall x \in X \ \, \mathrm{sia} \ \, D_{\epsilon}^{\delta}(x) \in \mathfrak{D}^{\delta}(x) \ \, \mathrm{risulta} \ \, \mathrm{che} \ \, D_{\epsilon}^{\delta}(x) = \left\{ y \in X : \delta(x,y) < \epsilon \right\} = \left\{ y \in X : \frac{d(x,y)}{1+d(x,y)} < \epsilon \right\} = \left\{ y \in X : d(x,y)(1-\epsilon) < \epsilon \right\} = \left\{ X \ \, \stackrel{se}{\sim} \, \stackrel{\epsilon \geq 1}{1-\epsilon} \left(x \right) \, \stackrel{se}{\sim} \, \stackrel{\epsilon < 1}{\sim} \right. \\ \mathrm{Segue} \ \, \mathrm{che}, \ \, \mathrm{in} \ \, \mathrm{ogni} \ \, \mathrm{caso}, \ \, D_{\epsilon}^{\delta}(x) \ \, \mathrm{contiene} \ \, \mathrm{un} \ \, \mathrm{disco} \ \, \mathrm{di} \ \, \mathfrak{D}(x). \end{array}$

Viceversa, preso $D_{\epsilon}(x) \in \mathfrak{D}(x)$ abbiamo che: $D_{\epsilon}(x) = \{y \in X : d(x,y) < \epsilon\} = \{y \in X : d(x,y) + \epsilon d(x,y) < \epsilon + \epsilon d(x,y)\} = \{y \in X : \frac{d(x,y)}{1+d(x,y)} < \frac{\epsilon}{1+\epsilon}\} = \{y \in X : \delta(x,y) < \frac{\epsilon}{1+\epsilon}\} = D_{\frac{\epsilon}{1+\epsilon}}^{\delta}(x).$

• $\epsilon \sim d$ Sia $x \in X$ e $D_r^{\epsilon}(x) \in \mathfrak{D}^{\epsilon}(x)$ Allora: $D_r^{\epsilon}(x) = \{y \in X : \epsilon(x,y) < r\} = \{y \in X : \min\{1,d(x,y)\} < r\}.$ Se $r > 1 \Rightarrow D_r^{\epsilon}(x) = X$ altrimenti, nel caso in cui $0 < r \le 1, D_r^{\epsilon} = D_r(x)$. In ogni caso, $D_r(x) \subseteq D_r^{\epsilon}(x)$. Viceversa, sia $D = D_r(x) \in \mathfrak{D}(x)$. Se r > 1 possiamo scegliere $D' = D_1^{\epsilon} \in \mathfrak{D}^{\epsilon}(x)$; se $r \le 1$ allora prenderemo $D' = D_r^{\epsilon}(x) \in \mathfrak{D}^{\epsilon}(x)$. In entrambi i casi, otteniamo che $D' \subseteq D$.

5. Dimostrare che ogni spazio metrizzabile e finito è discreto.

Solutione

Sia (X, \mathcal{T}) uno spazio metrizzabile e finito; allora $X = \{x_1, x_2, \dots, x_n\}$ tale che esista una distanza d su X che induca la topologia \mathcal{T} .

Ricordiamo che X è discreto se e solo se tutti i suoi punti sono aperti.

Sia dunque $r_{ij} := d(x_i, x_j) \ \forall i, j = 1, ..., n$. Scegliendo $\epsilon < \min\{r_{ij} : \ \forall i, j = 1, ..., n \ i \neq j\}$ si ha che $D_{\epsilon}(x_i) = \{x_i\}$, da cui segue che $\{x_i\}$ è aperto $\forall i$.

6. Assegnata una famiglia $\{\mathcal{T}_{\alpha}\}_{{\alpha}\in I}$ di topologie su un insieme X, verificare che $\bigcap_{{\alpha}\in I}\mathcal{T}_{\alpha}$ è una topologia su X.

Dare invece un esempio di due topologie $\mathcal{T}_1, \mathcal{T}_2$ su un insieme X tali che $\mathcal{T}_1 \cup \mathcal{T}_2$ non sia una topologia.

Solutione:

Per dimostrare che la famiglia $\bigcap_{\alpha \in I} T_{\alpha}$ sia una topologia su X basterà verificare:

- (a) \varnothing e X sono elementi di $\bigcap_{\alpha \in I} \mathcal{T}_{\alpha}$;
- (b) l'unione di una qualsiasi famiglia di insiemi di $\bigcap_{\alpha \in I} \mathcal{T}_{\alpha}$ è un insieme di $\bigcap_{\alpha \in I} \mathcal{T}_{\alpha}$;
- (c) l'intersezione di due insiemi qualsiasi di $\bigcap_{\alpha \in I} \mathcal{T}_{\alpha}$ è un insieme di $\bigcap_{\alpha \in I} \mathcal{T}_{\alpha}$.

Si ha:

- (a) \varnothing e X appartengono a $\bigcap_{\alpha \in I} \mathcal{T}_{\alpha}$ poiché \varnothing e X appartengono a $\mathcal{T}_{\alpha} \ \forall \alpha \in I$;
- (b) Sia $\{A_j\}_{j\in J}$ una famiglia qualsiasi di aperti in $\bigcap_{\alpha\in I}\mathcal{T}_{\alpha}\Rightarrow A_j\in\mathcal{T}_{\alpha}\ \forall \alpha\in I$ e $j\in J\Rightarrow$ \Rightarrow $\bigcup_{j\in J}A_j\in\mathcal{T}_{\alpha}\ \forall \alpha\in I$ poiché \mathcal{T}_{α} è una topologia su $X\Rightarrow$ $\bigcup_{j\in J}A_j\in\bigcap_{\alpha\in I}\mathcal{T}_{\alpha};$
- (c) Siano A_1 e $A_2 \in \bigcap_{\alpha \in I} \mathcal{T}_{\alpha} \Rightarrow A_1$ e A_2 appartengono a $\mathcal{T}_{\alpha} \ \forall \alpha \in I \Rightarrow A_1 \cap A_2 \in \mathcal{T}_{\alpha} \ \forall \alpha \in I$ poiché \mathcal{T}_{α} è una topologia su $X \ \forall \alpha \in I \Rightarrow A_1 \cap A_2 \in \bigcap_{\alpha \in I} \mathcal{T}_{\alpha}$.

Consideriamo ora l'insieme
$$X := \{a, b, c\}$$
 e le seguenti topologie su $X : \mathcal{T}_1 := \{\{a\}, X, \varnothing\} \in \mathcal{T}_2 := \{\{b\}, X, \varnothing\}.$
Allora $\mathcal{T}_1 \cup \mathcal{T}_2 = \{\{a\}, \{b\}, \varnothing, X\}, \text{ ma } \{a, b\} = \{a\} \cup \{b\} \notin \mathcal{T}_1 \cup \mathcal{T}_2.$

7. Siano \mathcal{T} e \mathcal{T}' due topologie su un insieme X, con \mathcal{T} strettamente meno fine di \mathcal{T}' . Dimostrare che \mathcal{T} non è una base della topologia \mathcal{T}' .

Solutione:

Poiché \mathcal{T} è strettamente meno fine di \mathcal{T}' , $\exists A \in \mathcal{T}'$ tale che $A \notin \mathcal{T}$. Se, per assurdo, \mathcal{T} fosse una base della topologia \mathcal{T}' , A sarebbe unione di elementi di \mathcal{T} ma, poiché \mathcal{T} è una topologia, si otterrebbe che A apparteniene a \mathcal{T} . Ciò è assurdo; quindi \mathcal{T} non può essere una base della topologia \mathcal{T}' .

- 8. Sia $S := \{\mathbb{R}; \emptyset; (-\infty, a], \forall a \in \mathbb{R}\}.$
 - (a) Verificare che \mathcal{S} non è una topologia su \mathbb{R} .
 - (b) Determinare la topologia $\mathcal{T}(\mathcal{S})$ generata da \mathcal{S} e confrontarla con la topologia $\mathfrak{i}_S = \{(-\infty, b) : b \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}.$

Solutione:

- (a) Sia $a \in \mathbb{R}$ e sia $A_n := (-\infty, a \frac{1}{n}] \in \mathcal{S} \ \forall n \ge 1 \ \Rightarrow \ \bigcup_{n \ge 1} A_n = (-\infty, a) \notin \mathcal{S} \Rightarrow \mathcal{S}$ non è una topologia su \mathbb{R} .
- (b) Dimostriamo, in primo luogo che, S è base di una topologia su \mathbb{R} , mostrando che S è un ricoprimento di \mathbb{R} e l'intersezione di due elementi qualsiasi di S è unione di elementi di S.
 - S è un ricoprimento di \mathbb{R} poichè $\mathbb{R} \in S$;
 - $\forall (-\infty, a], (-\infty, b] \in \mathcal{S}$ si ha: $(-\infty, a] \cap (-\infty, b] = (-\infty, \min\{a, b\}] \in \mathcal{S}$.

Sia ora $\mathcal{T}(\mathcal{S})$ la topologia generata da \mathcal{S} .

Come già visto $\forall a \in \mathbb{R} \ (-\infty, a) = \bigcup_{n>1} (-\infty, a] \ da \ cui \ (-\infty, a) \in \mathcal{T}(\mathcal{S}).$

Sia $\mathcal{T} := \{\emptyset, \mathbb{R}, (-\infty, a], (-\infty, b), \forall a, b \in \mathbb{R}\}; \text{ è evidente che } \mathcal{S} \subseteq \mathcal{T} \subseteq \mathcal{T}(\mathcal{S}); \text{ quindi, verificando che } \mathcal{T} \text{ è una topologia, necessariamente deve essere } \mathcal{T} = \mathcal{T}(\mathcal{S}).$

Osserviamo innanzitutto che l'intersezione tra due intervalli illimitati a sinistra (aperti

o chiusi) è ancora un intervallo illimitato a sinistra.

Inoltre, $\bigcup_{i\in I}(-\infty,a_i)=(-\infty,\sup\{a_i\})$ mentre $\bigcup_{i\in I}(-\infty,a_i]=\left\{\begin{array}{l}(-\infty,\sup\{a_i\})\\(-\infty,\sup\{a_i\}]\end{array}\right\}$, a seconda dei casi ; in ogni caso, l'unione di una famiglia qualsiasi di intervalli illimitati a sinistra è ancora un intervallo illimitato a sinistra. Infine $\varnothing,\mathbb{R}\in\mathcal{T}$. Ne deduciamo che \mathcal{T} è una topologia.

 \mathcal{T} è strettamente più fine di $\mathfrak{i}_{\mathcal{S}}$; infatti: $\forall b \in \mathbb{R}(-\infty, b) \in \mathcal{T}$, mentre $(-\infty, b] \notin \mathfrak{i}_{\mathcal{S}}$.

- 9. Sia $S := \{(-\infty, 1); (a, b), \forall a, b \in \mathbb{R} : 0 < a < b\}.$
 - (a) Verificare che \mathcal{S} è base di una topologia su \mathbb{R} .
 - (b) Verificare che la topologia \mathcal{T} su \mathbb{R} generata da \mathcal{S} è strettamente meno fine della topologia euclidea su \mathbb{R} .
 - (c) Per quali $a \in \mathbb{R}$, $(-\infty, a)$ è un aperto di \mathcal{T} ?

Solutione

- (a) Affinché $\mathcal S$ sia base di una topologia su $\mathbb R$ bisognerà dimostrare che sia un ricoprimento di $\mathbb R$ e che l'intersezione di due elementi di $\mathcal S$ è unione di elementi di $\mathcal S$. E' facile vedere che, ad esempio, $\mathbb R=(-\infty,1)\cup\bigcup_{n\geq 1}(\frac12,n)$. Inoltre, l'intersezione tra due intervalli di $\mathcal S$ o è vuota, nel caso in cui i due intervalli siano disgiunti, o assume una delle due forme seguenti: (a,1), se stessimo intersecando l'intervallo $(-\infty,1)$ con un generico intervallo limitato (a,b), con a<1; $(\max\{a,c\},\min\{b,d\})$, nel caso in cui stessimo intersecanto due intervalli aperti limitati a destra e a sinistra.
- (b) Indichiamo con ε la topologia euclidea. Essendo \mathcal{S} costituita da intervalli aperti, allora $\mathcal{S} \subseteq \varepsilon$, da cui $\mathcal{T} < \varepsilon$. Prendendo ora, ad esempio, l'aperto $(-1,0) \in \varepsilon$ risulta $(-1,0) \notin \mathcal{T}$, da cui concludiamo che $\mathcal{T} \not\subseteq \varepsilon$.
- (c) $(-\infty, a) \in \mathcal{T} \Leftrightarrow a \geq 1$. Infatti: se $a \geq 1$ $(-\infty, a) = (-\infty, 1) \cup (\frac{1}{2}, a) \in \mathcal{T}$. Se, viceversa, $(-\infty, a) \in \mathcal{T}$ allora necessariamente $(-\infty, a) \supset (-\infty, 1) \Rightarrow a \geq 1$.
- 10. Trovare uno spazio topologico (X, \mathcal{T}) in cui ogni aperto sia anche chiuso, con \mathcal{T} diversa dalla topologia banale o discreta.

Se in uno spazio topologico ogni aperto è anche chiuso è altresì vero che ogni chiuso è anche aperto?

$\underline{Soluzione}$

Sia $X = \{a, b, c\}$ e sia $\mathcal{T} = \{\{a\}, \{b, c\}, \varnothing, X\}$. E' facile verificare che \mathcal{T} è una topologia. Verifichiamo che tutti gli aperti di \mathcal{T} sono chiusi, mostrando che il complementare di ciascun aperto è aperto. Si ha infatti:

$$\{a\}^c = \{b,c\} \in \mathcal{T}, \{b,c\}^c = \{a\} \in \mathcal{T}, \ \varnothing^c = X \in \mathcal{T}, X^c = \varnothing \in \mathcal{T}.$$

Sì, è vero. Infatti, supponendo che ogni aperto è chiuso, se C è un chiuso $\Rightarrow C^c$ è aperto $\Rightarrow C^c$ è chiuso $\Rightarrow (C^c)^c = C$ è aperto.

11. Sia (X,d) uno spazio metrico discreto e $\{x_n\}$ una successione in X. Verificare che $\{x_n\}$ converge in $X \Leftrightarrow \{x_n\}$ è definitivamente costante.

Solutione

- \Rightarrow : Sia $\{x_n\}$ una successione convergente ad $x_0 \in X$. Allora $\forall \epsilon > 0 \ \exists N_{\epsilon}$ tale che $\forall n \geq N_{\epsilon} \ x_n \in \mathcal{D}_{\epsilon}(x_0) := \{y \in X : d(x_0, y) < \epsilon\}$. Se $\epsilon < 1$, essendo X uno spazio metrico discreto, $\mathcal{D}_{\epsilon}(x_0) = \{x_0\} \Rightarrow \exists N_{\epsilon}$ tale che $\forall n \geq N_{\epsilon} \ x_n \in \mathcal{D}_{\epsilon}(x_0) = \{x_0\} \Rightarrow x_n = x_0 \ \forall n \geq N_{\epsilon} \Rightarrow x_n \ \text{è definitivamente costante.}$
- \Leftarrow : Supponiamo ora che $\{x_n\}$ sia definitivamente costante, ciò significa che $\exists n_0$ t.c. $\forall n \ge n_0$ $x_n = x_0$. Preso $\epsilon > 0$ ed $n_{\epsilon} = n_0 \Rightarrow \forall n \ge n_{\epsilon}$ $x_n = x_0 \in \mathcal{D}_{\epsilon}(x_0)$. Segue che $\{x_n\}$ converge ad x_0
- 12. \underline{Def} : Un punto $x \in X$ si dice punto di accumulazione dell'insieme $S \subseteq X$ se ogni intorno di x contiene almeno un punto di S diverso da x, cioè se $(N \setminus \{x\}) \cap S \neq \emptyset$ per ogni intorno N di x.

L'insieme dei punti di accumulazione di S si chiama derivato di S e si denota con D(S).

Sia X uno spazio topologico. Dimostrare che X è discreto se e solo se per ogni sottoinsieme A di X, $D(A) = \emptyset$.

$\underline{Soluzione}$

- \Rightarrow : Sia $A\subseteq X$. Se X è discreto, $\forall\,x\in X$ scegliendo $N=\mathcal{D}_{\frac{1}{2}}(x)=\{x\}$ abbiamo che $N\backslash\{x\}\cap A=\varnothing$, da cui x non è un punto di accumulazione per A. Ne segue che $D(A)=\varnothing$.
- \Leftarrow : In particolare $D(X) = \emptyset$; quindi, $\forall x \in X \exists N_x$ intorno di x tale che $(N_x \setminus \{x\}) \cap X = \emptyset \Rightarrow N_x = \{x\}$. Per definizione di intorno, $\exists U$ aperto tale che $x \in U \subseteq N_x = \{x\}$, da cui $\{x\} = U$ è aperto. Ne segue che X è discreto, poichè tutti i suoi punti sono aperti.