Magenta

Slides: http://goo.gl/bXbQox

cinjon@google.com / fjord@google.com

g.co/magenta

Prediction

github.com/tensorflow/magenta

magenta/models

Your Turn

Using a model

- Training a model is basically asking the computer to find patterns in data
- Get a bunch of midi files
- Turn those files into a dataset for the model
 - Translates midi into a format that's easier to work with (NoteSequence)
 - Extracts melody information from the NoteSequences
- Train the model to predict the next note in a given sequence
- Prime the model with a starting sequence
- Ask the model to continue the sequence

Getting MIDI files

- Find a collection that matches the music you want to generate.
- Get a large quantity of files (at least 50).
 - Colin Raffel has a collection he'd be happy to share with you
- Run the commands to create your dataset.
- Example:

```
mkdir /tmp/midiworld

cd /tmp/midiworld/
wget -r --accept "*.mid" --level 1 "http://www.midiworld.com/classic.htm/"
```


Training the model

Use TensorBoard to monitor your progress

Or, just use our pre-trained model

Download the checkpoint file: goo.gl/fuygak

Run the generator with --checkpoint_file instead of --run_dir:

```
bazel run //magenta/models/lookback_rnn:lookback_rnn_generate -- \
--checkpoint_file=/tmp/lookback_rnn.checkpoint \
--hparams="{'batch_size':64,'rnn_layer_sizes':[64,64]}" \
--output_dir=/tmp/lookback_rnn/generated \
--num_outputs=10 \
--num_steps=128 \
--primer_melody="[60]"
```


Generating a new sequence: command line

```
bazel run //magenta/models/lookback_rnn:lookback_rnn_generate -- \
    --run_dir=/tmp/lookback_rnn/logdir/run1 \
    --hparams="{'batch_size':64,'rnn_layer_sizes':[64,64]}" \
    --output_dir=/tmp/lookback_rnn/generated \
    --num_outputs=10 \
    --num_steps=128 \
    --primer_melody="[60]"
...
```

INFO:tensorflow:Wrote 10 MIDI files to /tmp/lookback rnn/generated

Generating a new sequence - MIDI Interface

magenta/interfaces/midi

How does it work?

Sequence Generators

GenerateSequenceRequest

```
input sequence {
 ticks_per_beat: 96
 tempos {
    bpm: 120.0
 notes {
   pitch: 60
   velocity: 100
   start_time: 0
    end_time: 0.125
generator_options {
  generate_sections {
    start_time_seconds: 0.25
    end_time_seconds: 16.0
```

GenerateSequenceResponse

```
generated sequence {
 ticks_per_beat: 96
 tempos {
   bpm: 120.0
 notes {
   pitch: 60
   velocity: 100
   start time: 0
   end_time: 0.125
 notes {
   pitch: 55
   velocity: 100
    start time: 1.625
   end_time: 1.875
```


Sequence Generator Interface

```
class BaseSequenceGenerator(object):
    @abc.abstractmethod
    def _initialize(self, checkpoint):
        pass

    @abc.abstractmethod
    def _close(self):
        pass
```

```
@abc.abstractmethod
def _generate(self, generate_sequence_request):
    """
    Args:
        generate_sequence_request: The request for
            generating a sequence
    Returns:
        A GenerateSequenceResponse proto.
    """
    pass
```


Sequence Generators

Project ideas

- Create a new interface.
 - Rather than a keyboard for input, why not take input from another data source?
 - You could create priming melodies based on the current weather!
 - As long as your interface speaks the Sequence Generator protocol, you can connect it.

- Create a new model.
 - o Implement BaseSequenceGenerator and any interface can connect to your model.

Important Links

- GitHub: https://github.com/tensorflow/magenta
- Blog: <u>https://magenta.tensorflow.org/</u>
- MIDI Interface instructions:
 https://github.com/tensorflow/magenta/tree/master/magenta/interfaces/midi
- BaseSequenceGenerator class:
 https://github.com/tensorflow/magenta/blob/master/magenta/lib/sequence_generator.py
- Sequence Generator protocol: https://github.com/tensorflow/magenta/blob/master/magenta/protobuf/generator.proto
- Pre-trained lookback_rnn checkpoint: https://goo.gl/fuygaK

Magenta

Slides: http://goo.gl/bXbQox

cinjon@google.com / fjord@google.com

g.co/magenta

