Digitalna vezja UL, FRI

Vaja 8 Števci

1 DV

3- bitni Števec

Realizirajte števec za podano sekvenco z uporabo JK pomnilnih celic in logičnih vrat AND, OR, NOT. Rezultat štetja prikažite na digitalnem prikazovalniku v logisimu.

- t trenutno stanje števca,
- t+l naslednje stanje števca
- Zaporedje stanj lahko podamo tudi kot:

Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	J2=K2	J1=K1	J0=K0
(t)	(t)	(t)	(t+1)	(t+1)	(t+1)			
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Vezje vključuje 3 pomnilne celice JK in 2-vhodna vrata AND, ki z izhodom po vrednosti I krmili preklop celice Q_2 .

Naloga 1 Števec

Imamo 2-bitni števec:

- A=0 Dekrement, k=2
- A=I Inkrement, k=I

Naloge:

- Narišite diagram prehajanja stanj
- Pravilnostno tabelo prehajanja stanj števca
- Uporabite JK pomnilni celici in logičnima vrata AND, OR, NOT

А	Q ₁ (t)	Q ₀ (t)	Q ₁ (t+1)	Q ₀ (t+1)	T ₁	T ₀
0	0	0	I	0	I	0
0	0	I	I	I	I	0
0	1	0	0	0	I	0
0	1	I	0	I	I	0
I	0	0	0	I	0	I
I	0	I	I	0	I	I
I	I	0	I	I	0	I
I	I	I	0	0	I	I

$$T_0 = A$$

$$T_1 = \overline{A} \vee Q_0$$

$$\mathcal{T}_0 = \mathcal{A}$$
 $\mathcal{T}_1 = \overline{\mathcal{A}} \vee Q_0$
 $\mathcal{T}_1 = \overline{\mathcal{A}} \vee Q_0 = \mathcal{A} \uparrow \overline{Q}_0$

Naloga – obvezno

- □ Definirajte 2-bitni števec $Q=(Q_1, Q_0)v$ tabeli stanj. Krmilni vhod a določa:
 - a=0: M=4, Dekrement, k=1
 - a=1: M=4 Inkrement, k=1
- □ Naloge:
 - Zapišite tabelo stanj delovanja števca
 - Zapišite krmilni funkciji za D pomnilni celici z uporabo
 - XOR operatorjev
 - 4/I MUXov
 - Realizirajte števec v logisimu Dodajte gumb za asinhronsko brisanje števca (Reset).
 - Obe rešitve je potrebno dokončati doma. Shemo vezja shranite kot sliko in natisnjeno prinesite na naslednje vaje.