<u>Modelos de probabilidad</u>

Uniforme continua

$$X \sim U(a;b)$$

$$X \sim U(a;b)$$

$$f^{X}(x) = \begin{bmatrix} \frac{1}{b-a} & ; & a \le x \le b \\ 0 & ; & \forall \text{ otro } x \end{bmatrix}$$

$$F^{X}(x) = \begin{bmatrix} 0 & ; & -\infty < x < a \\ \frac{x-a}{b-a} & ; & a \le x < b \\ 1 & ; & b \le x < +\infty \end{bmatrix}$$

$$Var[X] = \frac{(b-a)^{2}}{12}$$

$$F^{X}(x) = \begin{cases} 0 & ; & -\infty < x < a \\ \frac{x-a}{b-a} & ; & a \le x < b \end{cases}$$

$$E[X] = \frac{a+b}{2}$$

$$Var[X] = \frac{(b-a)^2}{12}$$

Uniforme discreta

$$X \sim U[a;b]$$
 Para n valores posibles entre a y b incluidos.

$$P(X=x) = \begin{cases} \frac{1}{n} & ; & x \in \{a; ...; b\} \\ 0 & ; & \forall \text{ otro } x \end{cases}$$

$$E[X] = \frac{a+b}{2}$$

$$Var[X] \rightarrow \frac{(b-a)^2}{12}$$

Hipergeométrico dicotómico

N:# de elementos totales (población) *n*:# de elementos extraidos (muestra)

D:# total de elementos del tipo de interés

X : V.A. # de elementos de interés en la muestra de tamaño *n*

(*) Para valores grandes de N y D respecto de n, el modelo Hipergeométrico puede aproximado por el Binomial

$$P(X=x) = \frac{\binom{D}{x} \cdot \binom{N-D}{n-x}}{\binom{N}{n}}$$

$$x \in [0;1;2;...;n]$$

$$E[X] = n \cdot \frac{D}{N}$$

$$Var[X] = n \cdot \left(\frac{D}{N}\right) \cdot \left(1 - \frac{D}{N}\right) \cdot \left(\frac{N - n}{N - 1}\right)$$

Hipergeométrico multiclases

Extracción sin reposición

N:# de elementos totales

 N_1 :# de elementos del tipo 1

 N_2 :# de elementos del tipo 2...

 N_k : # de elementos del tipo k

 $/N = N_1 + N_2 + \dots + N_k$

n:# de elementos extraidos

 X_1 : V.A. # de elementos extraidos del tipo 1

 X_2 : V.A. # de elementos extraidos del tipo 2...

 X_k : V.A. # de elementos extraidos del tipo k

 $/n = X_1 + X_2 + ... + X_k$

$$P(X_{1}=x_{1}; X_{2}=x_{2}; ...; X_{k}=x_{k}) = \frac{\binom{N_{1}}{x_{1}} \cdot \binom{N_{2}}{x_{2}} \cdot ... \cdot \binom{N_{k}}{x_{k}}}{\binom{N_{n}}{n}}$$

Multinomial: En una cantidad n de experimentos que pueden resultar de kformas distintas cada una con probabilidad $\{p_1; p_2; ...; p_k\}$, probabilidad de obtener x_1 resultados del tipo 1, x_2 resultados del tipo 2,..., x_k resultados del tipo k en $p_1+p_2+...+p_k=1$ cualquier orden.

 p_1 : Prob. de resultar tipo 1 p_2 : Prob. de resultar tipo 2

 p_k : Prob. de resultar tipo k

 X_1 : V.A. # de experimentos resultados del tipo 1 X_2 : V.A. # de experimentos resultados del tipo 2

 X_k : V.A. # de experimentos resultados del tipo kn:# de experimentos / $X_1+X_2+...+X_k=n$

Normal

 $X \sim N(\mu; \sigma)$

$$f^{X}(x) = \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^{2}}$$

- La combinación lineal de normales independientes resulta normal.
- La mezcla de normales <u>no resulta normal</u> y su f.d.p. podría tener más de un máximo local.
- Si X es una V.A.N. no estándar, entonces la V.A. $((x-\mu_X)/\sigma_X)$ es una V.A.N. estándar.
- La suma de un conjunto de V.A.s I.I.D tiende a una normal, a medida que el tamaño del conjunto tiende a +∞.