

Troubleshooting Deep Neural Networks

Josh Tobin, Sergey Karayev, Pieter Abbeel Modified by Jiayuan Gu

See full videos and more information from https://course.fullstackdeeplearning.com/course-content/training-and-debugging
intepon/ocurocitationacopioarimigicom/ocuroc contonacitatining and dobagging

Lifecycle of a ML project

Why talk about DL troubleshooting?

Debugging: first it doesn't compile. then doesn't link. then segfaults. then gives all zeros. then gives wrong answer. then only maybe works

Why talk about DL troubleshooting?

Common sentiment among practitioners:

80-90% of time debugging and tuning

10-20% deriving math or implementing things

Why is DL troubleshooting so hard?

Suppose you can't reproduce a result

Your learning curve

He, Kaiming, et al. "Deep residual learning for image recognition." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016.

Why is your performance worse?

Poor model performance

Why is your performance worse?

Implementation bugs

Poor model performance

Most DL bugs are invisible

```
1 features = glob.glob('path/to/features/*')
2 labels = glob.glob('path/to/labels/*')
3 train(features, labels)
```


Most DL bugs are invisible

Labels out of order!

```
1 features = glob.glob('path/to/features/*')
2 labels = glob.glob('path/to/labels/*')
3 train(features, labels)
```


Another example

```
import numpy as np
     import torch
     class InMemoryDataset(torch.utils.data.Dataset):
        def __init__(self, data: np.ndarray, labels: np.ndarray):
             self.data = data
 6
             self.labels = labels
 8
        def __getitem__(self, index):
             points = self.data[index] # [N, 3] point cloud
10
11
             label = self.labels[index] # integer scalar
12
             if label == 1:
13
                 points[:, 0:3] += [0.0, 1.0, 0.0]
             return points, label
```

Model performs poorly after the first epoch.

Another example

```
import numpy as np
     import torch
     class InMemoryDataset(torch.utils.data.Dataset):
        def __init__(self, data: np.ndarray, labels: np.ndarray):
             self.data = data
 6
             self.labels = labels
 8
        def __getitem__(self, index):
             points = self.data[index] # [N, 3] point cloud
10
11
             label = self.labels[index] # integer scalar
12
             if label == 1:
                 points[:, 0:3] += [0.0, 1.0, 0.0]
13
             return points, label
```

CAUATION: In-place operation!

Why is your performance worse?

Implementation bugs

Hyperparameter choices

Poor model performance

Models are sensitive to hyperparameters

Andrej Karpathy, CS231n course notes

Models are sensitive to hyperparameters

0.95 0.9 0.85 $\frac{1}{2}\hat{n}_l Var[w_l] = 1$ ours 0.75 $\hat{n}_l Var[w_l] = 1$ Xavier Epoch

Andrej Karpathy, CS231n course notes

He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." Proceedings of the IEEE international conference on computer vision. 2015.

Why is your performance worse?

Data / model fit

Data from the paper: ImageNet

Yours: self-driving car images

Why is your performance worse?

Constructing good datasets is hard

Slide from Andrej Karpathy's talk "Building the Software 2.0 Stack" at TrainAl 2018, 5/10/2018

Common dataset construction issues

- Not enough data
- Class imbalances
- Noisy labels
- Train / test from different distributions
- etc

Takeaways: why is troubleshooting hard?

- Hard to tell if you have a bug
- Lots of possible sources for the same degradation in performance
- Results can be sensitive to small changes in hyperparameters and dataset makeup

Strategy for DL troubleshooting

Key mindset for DL troubleshooting

Pessimism

Key idea of DL troubleshooting

Since it's hard to disambiguate errors...

...Start simple and gradually ramp up complexity

Strategy for DL troubleshooting

• Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

 Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

Once model runs, overfit a single batch & reproduce a known result

 Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

 Once model runs, overfit a single batch & reproduce a known result

 Apply the bias-variance decomposition to decide what to do next

 Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

 Once model runs, overfit a single batch & reproduce a known result

 Apply the bias-variance decomposition to decide what to do next

Use coarse-to-fine random searches

 Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

 Once model runs, overfit a single batch & reproduce a known result

 Apply the bias-variance decomposition to decide what to do next

Use coarse-to-fine random searches

 Make your model bigger if you underfit; add data or regularize if you overfit

We'll assume you already have...

- Initial test set
- A single metric to improve
- Target performance based on human-level performance, published results, previous baselines, etc

Running example

Goal: 99% classification accuracy

Questions?

Troubleshooting - overview 33

Strategy for DL troubleshooting

Starting simple

Demystifying architecture selection

Start here

Consider using this later

Images

LeNet-like architecture

ResNet

Sequences

LSTM with one hidden layer (or temporal convs)

Attention model or WaveNet-like model

Other

Fully connected neural net with one hidden layer

Problem-dependent

Example: Object Detection

Usually start from ResNet50-C5 to verify the idea Finally turn to ResNet101-FPN for the best performance

Starting simple

Recommended network / optimizer defaults

- Optimizer: Adam optimizer with learning rate 3e-4
- Activations: relu (FC and Conv models), tanh (LSTMs)
- Initialization: He et al. normal (relu), Glorot normal (tanh)
- Regularization: None
- Data normalization: None

Starting simple

Important to normalize scale of input data

- Subtract mean and divide by variance
- For images, fine to scale values to [0, 1] or [-0.5, 0.5] (e.g., by dividing by 255) [Careful, make sure your library doesn't do it for you!]
- For point clouds (at least synthetic data), normalize to a unit sphere or cube

Starting simple

Consider simplifying the problem as well

- Start with a small training set (~10,000 examples)
- Use a fixed number of objects, classes, image size, etc.
- Create a simpler synthetic training set

Simplest model for pedestrian detection

Running example

- Start with a subset of 10,000 images for training for test
- Use a LeNet architecture with sigmoid cross-e
- Adam optimizer with LR 3e-4
- No regularization

Goal: 99% classification accuracy

Starting simple

Questions?

Strategy for DL troubleshooting

Preview: the five most common DL bugs

- Incorrect shapes for your tensors
 Can fail silently! E.g., accidental broadcasting: x.shape = (None,), y.shape = (None, 1), (x+y).shape = (None, None)
- Pre-processing inputs incorrectly
 E.g., Forgetting to normalize, or too much pre-processing
- Incorrect input to your loss function
 E.g., softmaxed outputs to a loss that expects logits
- Forgot to set up train mode for the net correctly E.g., toggling train/eval, controlling batch norm dependencies
- Numerical instability inf/NaN
 Often stems from using an exp, log, or div operation

Example

```
def transform_box(box, from_frame_pose, to_frame_pose, name=None):
       """Transforms 3d upright boxes from one frame to another.
 3
      Args:
         box: [..., N, 7] boxes.
         from_frame_pose: [...,4, 4] origin frame poses.
         to_frame_pose: [...,4, 4] target frame poses.
        name: tf name scope.
 8
       Returns:
         Transformed boxes of shape [..., N, 7] with the same type as box.
 9
       1111111
10
11
       with tf.compat.v1.name_scope(name, 'TransformBox'):
12
        # transform is a [..., 4, 4] tensor.
13
         transform = tf.linalg.matmul(tf.linalg.inv(to_frame_pose), from_frame_pose)
         heading = box[..., -1] + tf.atan2(transform[..., 1, 0], transform[..., 0,
14
                                                                            01)
15
16
         center = tf.einsum('...ij,...nj->...ni', transform[..., 0:3, 0:3],
                            box[..., 0:3]) + tf.expand_dims(
17
                                transform[..., 0:3, 3], axis=-2)
18
19
         return tf.concat([center, box[..., 3:6], heading[..., tf.newaxis]], axis=-1)
```

https://github.com/waymo-research/waymo-open-dataset/blob/master/waymo_open_dataset/utils/box_utils.py

Example

```
def transform_box(box, from_frame_pose, to_frame_pose, name=None):
       """Transforms 3d upright boxes from one frame to another.
 3
      Args:
         box: [..., N, 7] boxes.
         from_frame_pose: [...,4, 4] origin frame poses.
         to_frame_pose: [...,4, 4] target frame poses.
        name: tf name scope.
 8
       Returns:
 9
         Transformed boxes of shape [..., N, 7] with the same type as box.
       1111111
10
11
       with tf.compat.v1.name_scope(name, 'TransformBox'):
         # transform is a [..., 4, 4] tensor.
12
13
         transform = tf.linalg.matmul(tf.linalg.inv(to_frame_pose), from_frame_pose)
         heading = box[..., -1] + tf.atan2(transform[..., 1, 0], transform[..., 0,
14
15
                                                                            0])
         center = tf.einsum('...ij,...nj->...ni', transform[..., 0:3, 0:3],
16
                            box[..., 0:3]) + tf.expand_dims(
17
                                transform[..., 0:3, 3], axis=-2)
18
19
         return tf.concat([center, box[..., 3:6], heading[..., tf.newaxis]], axis=-1)
```

```
box[..., -1]: [..., N]
tf.atan2(...): [...]
```

https://github.com/waymo-research/waymo-open-dataset/blob/master/waymo_open_dataset/utils/box_utils.py

General advice for implementing your model

Lightweight implementation

- Minimum possible new lines of code for v1
- Rule of thumb: <200 lines
- (Tested infrastructure components are fine)

Use off-the-shelf components, e.g.,

- Keras
- tf.layers.dense(...)
 instead of
 tf.nn.relu(tf.matmul(W, x))
- tf.losses.cross_entropy(...) instead of writing out the exp

Build complicated data pipelines later

Start with a dataset you can load into memory

Debuggers for DL code

- Pytorch: easy, use ipdb
- tensorflow: trickier

Option 1: step through graph creation

```
2 # Option 1: step through graph creation
3 import ipdb; ipdb.set_trace()
4
5 for i in range(num_layers):
6    out = layers.fully_connected(out, 50)
7
```

```
josh at MacBook-Pro-9 in ~/projects
$ python test.py
> /Users/josh/projects/test.py(5)<module>()
        3 h = tf.placeholder(tf.float32, (None, 100))
        4 import ipdb; ipdb.set_trace()
----> 5 w = tf.layers.dense(h)
ipdb>
```

Debuggers for DL code

- Pytorch: easy, use ipdb
- tensorflow: trickier

Option 2: step into training loop

```
9 # Option 2: step into training loop
10 sess = tf.Session()
11 for i in range(num_epochs):
12    import ipdb; ipdb.set_trace()
13    loss_, _ = sess.run([loss, train_op])
14
```

Evaluate tensors using sess.run(...)

Debuggers for DL code

- Pytorch: easy, use ipdb
- tensorflow: trickier

Option 3: use tfdb

```
python -m tensorflow.python.debug.examples.debug mnist --debug
 <-- --> | run_info
                                                               Stops
 run | invoke stepper | exit
                                                               execution at
                                                               each
Session.run() call #1:
Fetch(es):
 accuracy/accuracy/Mean:0
                                                               sess.run(...)
Feed dict(s):
 input/x-input:0
 input/y-input:0
                                                               and lets you
elect one of the following commands to proceed ---->
 Execute the run() call with debug tensor-watching
                                                                inspect
 Execute the run() call without debug tensor
```


loaded it as a float32)

Most common causes

- Forgot to cast images from uint8 to float32
- Generated data using numpy in float64, forgot to cast to float32

Most common causes

- Forgot to initialize variables
- Forgot to turn off bias when using batch norm
- "Fetch argument has invalid type" usually you overwrote one of your ops with an output during training

Most common causes

- Flipped the sign of the loss function / gradient
- Learning rate too high
- Softmax taken over wrong dimension

Example

```
import tensorflow as tf

import tensorflo
```


Hierarchy of known results

More useful

 Official model implementation evaluated on similar dataset to yours

You can:

- Walk through code line-by-line and ensure you have the same output
- Ensure your performance is up to par with expectations

Less useful

More useful

 Official model implementation evaluated on benchmark (e.g., MNIST)

You can:

 Walk through code line-by-line and ensure you have the same output

More useful

Unofficial model implementation

You can:

 Same as before, but with lower confidence

More useful

Results from a paper (with no code)

You can:

Ensure your performance is up to par with expectations

More useful

You can:

 Make sure your model performs well in a simpler setting

Results from your model on a benchmark dataset (e.g., MNIST)

More useful

You can:

 Get a general sense of what kind of performance can be expected

Results from a similar model on a similar dataset

More useful

You can:

 Make sure your model is learning anything at all

Less useful

 Super simple baselines (e.g., average of outputs or linear regression)

More useful

- Official model implementation evaluated on similar dataset to yours
- Official model implementation evaluated on benchmark (e.g., MNIST)
- Unofficial model implementation
- Results from the paper (with no code)
- Results from your model on a benchmark dataset (e.g., MNIST)
- Results from a similar model on a similar dataset

Less useful

Super simple baselines (e.g., average of outputs or linear regression)

Summary: how to implement & debug

Questions?

Strategy for DL troubleshooting

- Test error = irreducible error + bias + variance + val overfitting
- This assumes train, val, and test all come from the same distribution.
 What if not?

Handling distribution shift

Train data

Test data

Use two val sets: one sampled from training distribution and one from test distribution

The bias-variance tradeoff

Bias-variance with distribution shift

Bias-variance with distribution shift

		Running example
Error source	Value	
Goal performance	1%	Train - goal = 19%
Train error	20%	(under-fitting)
Validation error	27%	
Test error	28%	0 (no pedestrian) 1 (yes pedestrian) Goal: 99% classification accuracy

		Running example
Error source	Value	
Goal performance	1%	
Train error	20%	Val - train = 7%
Validation error	27%	(over-fitting) O (no podostrian)
Test error	28%	0 (no pedestrian) 1 (yes pedestrian) Goal: 99% classification accuracy

		Running example
Error source	Value	
Goal performance	1%	
Train error	20%	
Validation error	27%	Toot well - 10/
Test error	28%	Test - val = 1% (looks good!) (looks good!) Goal: 99% classification accuracy

Summary: evaluating model performance

Test error = irreducible error + bias + variance + distribution shift + val overfitting

Questions?

Strategy for DL troubleshooting

Prioritizing improvements (i.e., applied b-v)

Addressing under-fitting (i.e., reducing bias)

Try first

- Make your model bigger (i.e., add layers or use more units per layer)
- Reduce regularization
- Error analysis
- Choose a different (closer to state-of-the art) model architecture (e.g., move from LeNet to ResNet)
- Tune hyper-parameters (e.g., learning rate)
- Add features

Try later

Add more layers to the ConvNet **Value** Value **Error source** 1% Goal performance 1% Train error 20% 7% Validation error 27% 19%

Goal: 99% classification accuracy (i.e., 1% error)

		Switch to ResNet-10		
Error source	Value	Value	Value	

Error source	Value	Value	Value
Goal performance	1%	1%	1%
Train error	20%	7%	3%
Validation error	27%	19%	10%
Test error	28%	20%	10%

Goal: 99% classification accuracy (i.e., 1% error)

Prioritizing improvements (i.e., applied b-v)

Addressing over-fitting (i.e., reducing variance)

Try first

- A. Add more training data (if possible!)
- B. Add normalization (e.g., batch norm, layer norm)
- C. Add data augmentation
- D. Increase regularization (e.g., dropout, L2, weight decay)
- E. Error analysis
- F. Choose a different (closer to state-of-the-art) model architecture
- G. Tune hyperparameters
- H. Early stopping
- I. Remove features

Try later

J. Reduce model size

Error source	Value	
Goal performance	1%	
Train error	0.8%	
Validation error	12%	
Test error	12%	

Running example

Increase dataset size to 250,000

Value Value **Error source**

Goal performance 1% 1%

Train error 0.8% 1.5%

Validation error 12% 5%

Test error 12% 6%

Running example

Add woight

			Add weight decay	
Error source	Value	Value	Value	
Goal performance	1%	1%	1%	
Train error	0.8%	1.5%	1.7%	
Validation error	12%	5%	4%	
Test error	12%	6%	4%	

Running example

Running example

Train, val, and test error for pedestrian detection

Tune num layers, optimizer params, weight initialization, kernel size, weight decay

					+	
Error source	Value	Value	Value	Value	Value	
Cool porformance	1 0/	1 0/	1%	1 0/2	1%	
Goal performance	1 70	1%	1 70	1%	1 70	
Train error	0.8%	1.5%	1.7%	2%	0.6%	
Validation error	12%	5%	4%	2.5%	0.9%	
validation on or	/ 0	3 / 0	1 / 0			(no pedestrian) 1 (yes pedestrian)
Test error	12%	6%	4%	2.6%	1.0%	

Goal: 99% classification accuracy

Running example

Prioritizing improvements (i.e., applied b-v)

Addressing distribution shift

Try first

Analyze test-val set errors & collect more training data to compensate

Analyze test-val set errors & synthesize more training data to compensate

Try later

C. Apply domain adaptation techniques to training & test distributions

Test-val set errors (no pedestrian detected)

Test-val set errors (no pedestrian detected)

Error type 1: hard-to-see pedestrians

Test-val set errors (no pedestrian detected)

Train-val set errors (no pedestrian detected)

Error type 2: reflections

Test-val set errors (no pedestrian detected)

Train-val set errors (no pedestrian detected)

Error type 3 (test-val only): night scenes

Error type	Error % (train- val)	Error % (test- val)	Potential solutions	Priority
1. Hard-to- see pedestrians	0.1%	0.1%	Better sensors	Low
2. Reflections	0.3%	0.3%	 Collect more data with reflections Add synthetic reflections to train set Try to remove with pre-processing Better sensors 	Medium
3. Nighttim e scenes	0.1%	1%	 Collect more data at night Synthetically darken training images Simulate night-time data Use domain adaptation 	High

Domain adaptation

What is it?

Techniques to train on "source" distribution and generalize to another "target" using only unlabeled data or limited labeled data

When should you consider using it?

- Access to labeled data from test distribution is limited
- Access to relatively similar data is plentiful

Types of domain adaptation

Type	Use case	Example techniques
Supervised	You have limited data from target domain	 Fine-tuning a pre-trained model Adding target data to train set
Un-supervised	You have lots of un- labeled data from target domain	Correlation Alignment (CORAL)Domain confusionCycleGAN

Prioritizing improvements (i.e., applied b-v)

Rebalancing datasets

- If (test)-val looks significantly better than test, you overfit to the val set
- This happens with small val sets or lots of hyper parameter tuning
- When it does, recollect val data

Questions?

Strategy for DL troubleshooting

Hyperparameter optimization

Model & optimizer choices?

Network: ResNet

- How many layers?
- Weight initialization?
- Kernel size?
- Etc

Optimizer: Adam

- Batch size?
 - Learning rate?
 - beta1, beta2, epsilon?

Regularization

-

Running example

Goal: 99% classification accuracy

Which hyper-parameters to tune?

Choosing hyper-parameters

- More sensitive to some than others
- Depends on choice of model
- Rules of thumb (only) to the right
- Sensitivity is relative to default values!
 (e.g., if you are using all-zeros weight initialization or vanilla SGD, changing to the defaults will make a big difference)

Hyperparameter	Approximate sensitivity
Learning rate	High
Learning rate schedule	High
Optimizer choice	Low
Other optimizer params (e.g., Adam beta1)	Low
Batch size	Low
Weight initialization	Medium
Loss function	High
Model depth	Medium
Layer size	High
Layer params (e.g., kernel size)	Medium
Weight of regularization	Medium
Nonlinearity	Low

Method 1: manual hyperparam optimization

How it works

- Understand the algorithm
 - E.g., higher learning rate means faster less stable training
- Train & evaluate model
- Guess a better hyperparam value & reevaluate
- Can be combined with other methods (e.g., manually select parameter ranges to optimizer over)

Advantages

 For a skilled practitioner, may require least computation to get good result

Disadvantages

- Requires detailed understanding of the algorithm
- Time-consuming

Method 2: grid search

How it works

Hyperparameter 2 (e.g., learning rate)

Advantages

- Super simple to implement
- Can produce good results

Disadvantages

- Not very efficient: need to train on all cross-combos of hyper-parameters
- May require prior knowledge about parameters to get good results

(e.g., batch size)

Hyperparameter 1

Method 3: random search

How it works

Hyperparameter 2 (e.g., learning rate)

Advantages

- Easy to implement
- Often produces better results than grid search

Disadvantages

- Not very interpretable
- May require prior knowledge about parameters to get good results

(e.g., batch size)

Hyperparameter 1

How it works

Advantages

Disadvantages

Hyperparameter 2 (e.g., learning rate)

Hyperparameter 1 (e.g., batch size)

Advantages

Disadvantages

Hyperparameter 2 (e.g., learning rate)

How it works

Advantages

Disadvantages

Hyperparameter 2 (e.g., learning rate)

Hyperparameter 1 (e.g., batch size)

How it works

Advantages

Disadvantages

Hyperparameter 2 (e.g., learning rate)

Hyperparameter 1 (e.g., batch size)

How it works

Advantages

- Can narrow in on very high performing hyperparameters
- Most used method in practice

Disadvantages

Somewhat manual process

Hyperparameter 2 (e.g., learning rate)

Summary of how to optimize hyperparams

- Coarse-to-fine random searches
- Consider Bayesian hyper-parameter optimization solutions as your codebase matures

Questions?

Conclusion

- DL debugging is hard due to many competing sources of error
- To train bug-free DL models, we treat building our model as an iterative process
- The following steps can make the process easier and catch errors as early as possible

How to build bug-free DL models

 Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

Once model runs, overfit a single batch & reproduce a known result

 Apply the bias-variance decomposition to decide what to do next

Use coarse-to-fine random searches

 Make your model bigger if you underfit; add data or regularize if you overfit

Where to go to learn more

- Andrew Ng's book Machine Learning Yearning (http://www.mlyearning.org/)
- The following Twitter thread: https://twitter.com/karpathy/status/1013244313327681536
- This blog post: https://pcc.cs.byu.edu/2017/10/02/
 practical-advice-for- building-deep-neural-networks/

Thank you!