Aluno(a): ____

- 1. Utilizando o método de demonstração por absurdo ou indireta, demonstre a validade do argumento $\sim (r \vee s)$, a partir das premissas:
 - 1. $\sim p \lor \sim q$
 - 2. $r \lor s \rightarrow p$
 - 3. $q \lor \sim s$
 - $4. \sim r$

Isto é, esta sequência deduz (\vdash , consiste de um teorema) $\sim (r \lor s)$?

- 2. Demonstrar que o conjunto das proposições abaixo geram uma contradição (isto é, derivam uma inconsistência do tipo: $\Box \Leftrightarrow (\sim x \land x)$).
 - $1 \quad x = 1 \to y < x$
 - (a) $2 \quad y < x \rightarrow y = 0$
 - $3 \quad \sim (y = 0 \lor x \neq 1)$
 - 1 $p \lor s \rightarrow q$
 - (b) $\begin{array}{ccc} 2 & q \rightarrow \sim r \\ \end{array}$
 - $3 \quad t \to p$
 - $4 \quad t \wedge r$
- 3. Aplicando o método da Resolução, e considerando as premissas dos item anterior, demonstre que:
 - (a) $y \neq 0$ é consequente lógico do item a)
 - (b) q é consequente lógico do item b)
- 4. Seja a hipótese de um teorema dado por: $(p \to (r \to q)) \land (p \to r) \vdash (p \to q)$. Demonstre pelo método da Resolução que $(p \to q)$ é uma verdade a partir desses argumentos.
- 5. Faça as interpretações (Φ) e justifique (explique) o valor lógico das fórmulas abaixo segundo os domínios:
 - (a) $\forall x(2^x > x^2)$ para $x \in N$
 - (b) $\forall x(x^2 + 3x + 2 = 0)$ para $x \in R$
 - (c) $\exists x(x+2=x)$ para $x \in R$
 - (d) $\exists x (3x^2 2x 1) = 0$ para $x \in R$
- 6. Aplicando De Morgan aos quantificadores das fórmulas de LPO, dar a negação das seguintes sentenças lógicas:
 - (a) $\exists x \forall y (p(x) \lor \sim q(y))$
 - (b) $\forall x \exists y (\sim p(x) \lor \sim q(y))$

Observações:

- 1. Nas questões sobre Resolução faça as árvores de expansão, indique <u>claramente</u> os termos λ , e as novas cláusulas obtidas.
- 2. Clareza e legibilidade
- 3. Se der vontade de escrever nas carteiras, solicite ao prof papel rascunho!