Влияние оптимизаций компилятора на энергопотребление Android-приложений

Выполнил: Богданов Егор, 17.Б11-мм

Научный руководитель: ст. преп. Сартасов С.Ю.

Введение

- Мобильные устройства часть жизни
- Проблема энергопотребления касается многих
- Новый компилятор Android
 - Нет официальной документации
 - Мало исследовательских статей, посвященных компилятору
 - Неизвестно влияние энергопотребления

Цели и задачи

Цель курсовой работы - оценить влияние оптимизаций, проводимых используемым в Android Studio по умолчанию компилятором, на энергопотребление

Задачи:

- Провести обзор аналогичных исследований;
- Определить используемый в Android Studio по умолчанию компилятор и выполняемые им оптимизации;
- Выяснить, какие ключи компиляции отвечают за эти оптимизации и как эти ключи используются в Android Studio;
- Сформулировать методологию оценки влияния оптимизаций на энергопотребление;
- Провести эксперименты;
- Сделать выводы о влиянии оптимизаций из полученных результатов экспериментов.

История компиляторов и процесс компиляции

История компиляторов и процесс компиляции

Список оптимизаций

- Inlining
- Staticization
- Null Data Flow Analysis
- Value Assumption
- Outlining
- String Constant Operations
- Forced Inlining
- Enum Ordinals and Names

Аналогичные исследования

Google Scholar

android compiler optimizations

android compiler optimizations energy consumption

android compiler optimizations consumption

android compiler optimizations energy efficiency

android compiler optimizations efficiency

android compiler energy

android compiler energy consumption

android compiler energy efficiency

android compiler power

android compiler power consumption

android compiler power efficiency

android compiler power reduction optimizations

r8 android compiler optimizations

r8 android compiler optimizations energy consumption

r8 android compiler optimizations consumption

r8 android compiler optimizations energy efficiency

r8 android compiler optimizations efficiency

r8 android compiler energy

r8 android compiler energy consumption

r8 android compiler energy efficiency

r8 android compiler power

r8 android compiler power consumption

r8 android compiler power efficiency

r8 android compiler power reduction optimizations

Список просмотренных статей:

https://docs.google.com/spreadsheets/d/1T2jcXp9WCYAj9dV8ZuZDLVt4gXm71g1SJEhgbM1Q0pE/edit

Аналогичные исследования - выводы

- Прямые замеры
 - специальные установки
 - о разборка устройства для подключения датчиков
- Косвенные замеры
 - отсутствие общепризнанной модели снятия показаний
- Программные тесты
- Минимизация влияния внешних факторов

Методология эксперимента

- Отключение модулей устройства (Wi-Fi, 3G, GPS)
- Ограничение фоновых процессов
- Настройка алгоритмов DVFS
- Привязка к одному ядру процессора

Экспериментальная установка

Samsung Galaxy A3 (2016):

- 4 ядра Cortex-A53 1.5 ГГц
- 1 ядро с интерфейсом CPUFreq
- 1 регулятор interactive

Набор тестовых программ

- SPEC (Standard Performance Evaluation Corporation)
- DaCapo Benchmark Suite
- CLBG (Computer Language Benchmarks Game)

Библиотека для измерений

- Изначально Navitas Framework
- Причины отказа:
 - power_profile.xml устройства
 - инструментовка всех методов
 - отсутствие поддержки методов на С++

Реализация легковесной версии:

https://github.com/thofyb/NavitasLiteLibrary

Результаты экспериментов

Рассмотренные оптимизации:

- Inlining
- Outlining
- Enum Ordinal and Names
- String Constant Optimizations
- Enum Ordinal and Names + String Constant Optimizations
- Statisization

Ссылка на результаты экспериментов:

https://docs.google.com/spreadsheets/d/1sPdFw5B4h86HQbJ7r9PM5MkzNrlcHq7nj FS3iY9LBc/edit

Результаты экспериментов

Inlining	выкл.	вкл.	выкл.	вкл.
Класс	отдельный	отдельный	анонимный	анонимный
Среднее потребление, мДж	111644	111724	111362	111869
Δв %		-0,07		-0,46

Enum Ordinals and Names	выкл.	вкл.	выкл.	вкл.
количество элементов	3	3	15	15
Среднее потребление, мДж	293938	266960	300339	270071
Δв %		9,18		10,08

Результаты экспериментов

Outlining	выкл.	вкл.
Среднее потребление, мДж	70162	69983
Δв %		0,26

String Constant Optimizations	выкл.	вкл.
Среднее потребление, мДж	115253	17258
Δв%		85,03

Enum Ordinal And Names и String Constant Operations	выкл.	вкл.
Среднее потребление, мДж	179653	21188
Δв%		88,21

Staticization	выкл.	вкл.
Среднее потребление, мДж	53509	52471
Δв%		1,94

Заключение

- Проведён обзор аналогичных исследований;
- Найдены используемый в Android Studio по умолчанию компилятор и выполняемые им оптимизации;
- Определено, какие ключи компиляции отвечают за эти оптимизации и как эти ключи используются в Android Studio;
- Сформулирована методология оценки влияния оптимизаций на энергопотребление;
- Проведены эксперименты;
- Сделаны выводы о влиянии оптимизаций из полученных результатов экспериментов
 - Проводимые оптимизации слабо влияют на энергопотребление программ