Geometry and Topology For morning of October 24th

Problem 1 Let Ω be a domain in \mathbb{R}^n , containing the ball D_r of radius r with center at the origin. Consider $u: \Omega \to \mathbb{R}$ satisfying the minimal graph equation:

$$div\left(\frac{\nabla u}{\sqrt{1+\left|\nabla u\right|^2}}\right) = 0.$$

Namely, $\Gamma_u = \{(x, u(x)) | x \in \Omega\}$ is a minimal graph in \mathbb{R}^{n+1} . Let $B_r \subset \mathbb{R}^{n+1}$ be the ball of radius r centered at the origin. Show that

$$Vol\left(B_r\cap\Gamma_u\right)\leq rac{Vol\left(S^n
ight)}{2}r^n$$

where S^n is the unit hypersphere of \mathbb{R}^{n+1} .

Problem 2 Show that $\int_{\Sigma} H^2 \geq 16\pi$ for any closed embedded surface Σ in \mathbb{R}^3 . When does equality hold? (Here H is the mean curvature of the surface Σ , namely H is the sum of principal curvatures).

Problem 3 Let I be the interval [0,1]. For a topological space B, say homeomorphisms $g_0, g_1 : B \to B$ are isotopic if they are homotopic via a homotopy $G: B \times I \to B$ with each $G_t: B \to B$ defined by $G_t(b) = G(b,t)$ also a homeomorphism.

- (a) Show that any order-preserving homeomorphism $f: I \to I$ is isotopic to the identity.
- (b) Show that any homeomorphism $f: S^1 \to S^1$ of the unit circle is isotopic to the identity or the reflection along the x-axis.