Welcome to Final Term [Fall 2021-22 Semester]

Final-Term Evaluation

Attendance : 10 Marks

Quiz **: 20 marks**

[Mainly Two (2) Quizzes and Two (2) Make up Quizzes]

Assignments : 20 marks

Viva **: 10 marks**

Home Exam [MCQ/FB/TF in Final-Term Full Syllabus] : 20 marks

Home Exam [Math on Final-Term Full Syllabus] : 20 marks

Total : 100 marks

DMAM

Final-Term Course Descriptions

AC Circuits:

- Phasor Algebraic, Phasor or Vector Diagram.
- R branch, L branch, C branch, RL series/Parallel, RC series/parallel, RLC series/parallel, series-parallel circuits with AC source: Equation of instantaneous voltage, current and power; Total impedances/admittance calculation; power factor, reactive factor, real power, reactive power, apparent power calculation; and Application of VDR, CDR, KVL and KCL
- Source Conversion, Mesh Analysis, Nodal Analysis, Wye–Delta $(Y-\Delta)$ or Tee–Pai $(T-\Pi)$ conversion and Delta–Wye (Δ -Y) or Pai – Tee (Π - T)
- Super position Theorem, Thevenin's Theorem, Norton's Theorem and Maximum Power Transfer Theorem

Electrical Machine:

- **Basic Theories for Electrical Machines**: Electromagnetism, Flemings hand rules, Transformer,
- **DC Machines**: DC generator and DC motor,
- **AC Machines**: Induction motor, Synchronous generator or Alternator, Synchronous Motor, Single phase induction Motor
- **Special Machines**: Stepper Motor, Universal Motor, Servo Motor, Permanent-magnet Synchronous motor, hysteresis motor, Reluctance motor, Linear motor

Review on AC Circuit

Instantaneous value: e(t), v(t), i(t), p(t) etc.

Peak or Crest value: E_m , V_m , I_m

Peak-to-peak value: E_{p-p} , V_{p-p} , I_{p-p}

Period: T[s]

Frequency: f[Hz]

Angular Frequency: ω [rad/s]

Phase angle: $[\theta_e, \theta_v \text{ and } \theta_i]$

Initial Angle: $[\theta_{e0}, \theta_{v0} \text{ and } \theta_{i0}]$

Angle Difference: Voltage Angle — Current Angle

Phase Difference: Angle Difference

Phase Relation: [in phase, leading, lagging]

$$f = \frac{1}{T} \text{ Hz}$$

$$\omega = \frac{\alpha}{t} \text{ rad/s}$$

$$\omega = \frac{2\pi}{T} \text{ rad/s}$$
$$= 2\pi f \text{ rad/s}$$

The instantaneous or time domain equation

$$e(t) = E_m \sin(\alpha + \theta_e) V = E_m \sin(\omega t + \theta_e) V$$

$$v(t) = V_m \sin(\alpha + \theta_v) V = V_m \sin(\omega t + \theta_v) V$$

$$i(t) = I_m \sin(\alpha + \theta_i) A = I_m \sin(\omega t + \theta_i) A$$

Initial Angle = - Phase Angle

 $Angle\ Difference=\ Voltage\ angle\ -\ Current\ Angle\ =0^o$

Phase Relation: v(t) and i(t) are **in phse**.

Angle Difference= Voltage angle – Current Angle > 0°

Phase Relation: v(t) leads i(t), or i(t) lags v(t)

 $Angle\ Difference=\ Voltage\ angle-\ Current\ Angle<0^o$

Phase Relation: v(t) lags i(t), or i(t) leads v(t)

$$\cos \alpha = \sin(\alpha + 90^{\circ})$$

$$-\cos\alpha = \sin(\alpha - 90^{\circ})$$

$$-\sin\alpha = \sin(\alpha \pm 180^{\circ})$$

Average Value or Mean Value

For asymmetrical wave:

Average Value =
$$\frac{\text{Area under the curve in one cycle}}{\text{Duration } of \text{ one cycle}}$$

$$I_{ave} = \frac{1}{T} \int_{0}^{T} i(t)dt = \frac{1}{2\pi} \int_{0}^{2\pi} i(\theta)d\theta$$

For symmetrical wave:

Average Value =
$$\frac{\text{Area under the curve in } half - \text{cycle}}{\text{Duration } of \ half - \text{cycle}}$$

$$I_{ave} = \frac{1}{T/2} \int_{0}^{T/2} i(t)dt = \frac{1}{\pi} \int_{0}^{\pi} i(\theta)d\theta$$

RMS or Effective Value

Analytical or Integral Method:

$$I_{\rm rms} = \sqrt{\frac{\int_0^T i^2(t) \ dt}{T}}$$

$$I_{\rm rms} = \sqrt{\frac{\text{area}(i^2(t))}{T}}$$

$$I_{ave} = \frac{\pi}{2}I_m = 0.637I_m$$

$$E_{ave} = \frac{\pi}{2}E_m = 0.637E_m$$

$$V_{ave} = \frac{\pi}{2} V_m = 0.637 V_m$$

$$I_{ave} = \frac{\pi}{2} I_m = 0.637 I_m$$
 $I = I_{rms} = \frac{I_m}{\sqrt{2}} = 0.707 I_m$ $E_{ave} = \frac{\pi}{2} E_m = 0.637 E_m$ $E = E_{rms} = \frac{E_m}{\sqrt{2}} = 0.707 E_m$ $V_{ave} = \frac{\pi}{2} V_m = 0.637 V_m$ $V = V_{rms} = \frac{V_m}{\sqrt{2}} = 0.707 V_m$

Chapter 14 The Basic Elements and Phasors

Phasor Algebra/Complex Number

Vector Quantities Represent by Complex Number:

1. Magnitude

2. Direction

Phasor Quantities Represent by Complex Number:

- 1. Magnitude (RMS value for voltage and current)
- **2.** Direction (Phase angle)
- 3. Continuously change with respect to time [such as sine and cosine waves)

Complex Number can be represented by three different ways:

- **1.** Polar or Phasor form
- 2. Cartesian or Rectangular form
- **3.** Exponential form

14.7 RECTANGULAR FORM:

$$C = X + jY$$
 (14.17)

C = X + jY

FIG. 14.39 Defining the rectangular form.

EXAMPLE 14.13 Sketch the following complex numbers in the complex plane:

a.
$$C = 3 + j4$$

b.
$$C = 0 - j6$$

a.
$$C = 3 + j4$$
 b. $C = 0 - j6$ c. $C = -10 - j20$

$$j^2 = -1$$

$$\frac{1}{j} = -j$$

14.8 POLAR OR PHASOR FORM:

$$C = Z \angle \theta \qquad (14.18)$$

FIG. 14.43 *Defining the polar form.*

$$C = -Z \angle \theta = -Z \angle \theta \pm 180^{\circ} (14.19)$$

FIG. 14.44

Demonstrating the effect of a negative sign on the polar form.

EXAMPLE 14.14 Sketch the following complex numbers in the complex plane:

a.
$$C = 5 \angle 30^{\circ}$$

b.
$$C = 7 \angle -120^{\circ}$$

a.
$$C = 5 \angle 30^{\circ}$$
 b. $C = 7 \angle -120^{\circ}$ c. $C = -4.2 \angle 60^{\circ}$

DMAM

14.9 CONVERSION BETWEEN FORMS

FIG. 14.48 Conversion between forms.

Rectangular to Polar

$$Z = \sqrt{X^2 + Y^2} \tag{14.20}$$

$$\theta = \tan^{-1} \frac{Y}{X} \tag{14.21}$$

Polar to Rectangular

$$X = Z\cos\theta \tag{14.22}$$

$$Y = Z \sin \theta \tag{14.23}$$

EXAMPLE 14.15 Convert the following from rectangular to polar form:

$$C = 3 + j4$$
 (Fig. 14.49)

Solution:
$$Z = \sqrt{(3)^2 + (4)^2}$$

= $\sqrt{25} = 5$
 $\theta = \tan^{-1}\left(\frac{4}{3}\right) = 53.13^\circ$

 $C = 5 \angle 53.13^{\circ}$

and FIG. 14.49 Example 14.15.

EXAMPLE 14.16 Convert the following from polar to rectangular form:

$$C = 10 \angle 45^{\circ}$$
 (Fig. 14.50)

FIG. 14.50 Example 14.16.

Solution: $X = 10 \cos 45^{\circ}$ = (10)(0.707)= 7.07 $Y = 10 \sin 45^{\circ}$ = (10)(0.707)= 7.07

and C = 7.07 + j7.07

14.10 MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS

Addition

$$\mathbf{C}_1 = \pm X_1 \pm jY_1$$
 and $\mathbf{C}_2 = \pm X_2 \pm jY_2$

$$\mathbf{C}_1 + \mathbf{C}_2 = (\pm X_1 \pm X_2) + j(\pm Y_1 \pm Y_2)$$
 (14.27)

EXAMPLE 14.19 Add $C_1 = 3 + i6$ and $C_2 = -6 + i3$.

Solutions:
$$C_1 + C_2 = (3 - 6) + j(6 + 3) = -3 + j9$$

Subtraction

$$\mathbf{C}_1 = \pm X_1 \pm jY_1$$
 and $\mathbf{C}_2 = \pm X_2 \pm jY_2$

$$\mathbf{C}_1 - \mathbf{C}_2 = [\pm X_1 - (\pm X_2)] + j[\pm Y_1 - (\pm Y_2)]$$
 (14.28)

EXAMPLE 14.20 Subtract $C_2 = -2 + j5$ from $C_1 = +3 + j3$.

Solutions:
$$C_1 - C_2 = [3 - (-2)] + j(3 - 5) = 5 - j2$$

Multiplication

C₁ =
$$X_1 + jY_1$$
 and C₂ = $X_2 + jY_2$
then C₁· C₂: $X_1 + jY_1$
 $X_2 + jY_2$
 $X_1X_2 + jY_1X_2$
 $X_1X_2 + j(Y_1X_2 + X_1Y_2) + Y_1Y_2(-1)$

$$\mathbf{C}_1 \cdot \mathbf{C}_2 = (X_1 X_2 - Y_1 Y_2) + j(Y_1 X_2 + X_1 Y_2)$$
 (14.29)

Multiplication in Polar Form:

$$\mathbf{C}_1 = Z_1 \angle \theta_1$$
 and $\mathbf{C}_2 = Z_2 \angle \theta_2$

$$\mathbf{C}_1 \cdot \mathbf{C}_2 = Z_1 Z_2 / \underline{\theta_1 + \underline{\theta_2}}$$
 (14.30)

Division

$$C_1 = X_1 + jY_1$$
 and $C_2 = X_2 + jY_2$

$$\frac{\mathbf{C}_1}{\mathbf{C}_2} = \frac{(X_1 + jY_1)(X_2 - jY_2)}{(X_2 + jY_2)(X_2 - jY_2)}$$

$$= \frac{(X_1X_2 + Y_1Y_2) + j(X_2Y_1 - X_1Y_2)}{X_2^2 + Y_2^2}$$

$$\frac{\mathbf{C}_1}{\mathbf{C}_2} = \frac{X_1 X_2 + Y_1 Y_2}{X_2^2 + Y_2^2} + j \frac{X_2 Y_1 - X_1 Y_2}{X_2^2 + Y_2^2}$$
(14.31)

Division in Polar Form:

$$\mathbf{C}_1 = Z_1 \angle \theta_1$$
 and $\mathbf{C}_2 = Z_2 \angle \theta_2$

$$\frac{\mathbf{C}_1}{\mathbf{C}_2} = \frac{Z_1}{Z_2} / \theta_1 - \theta_2 \tag{14.32}$$

EXAMPLE 14.23

a. Find $\mathbf{C}_1 \cdot \mathbf{C}_2$ if $\mathbf{C}_1 = 5 \angle 20^\circ$ and $\mathbf{C}_2 = 10 \angle 30^\circ$

b. Find $\mathbf{C}_1 \cdot \mathbf{C}_2$ if $\mathbf{C}_1 = 2 \angle -40^\circ$ and $\mathbf{C}_2 = 7 \angle +120^\circ$

Solutions:

a.
$$\mathbf{C}_1 \cdot \mathbf{C}_2 = (5 \angle 20^\circ)(10 \angle 30^\circ) = (5)(10) \angle 20^\circ + 30^\circ = \mathbf{50} \angle \mathbf{50}^\circ$$

b.
$$\mathbf{C}_1 \cdot \mathbf{C}_2 = (2 \angle -40^\circ)(7 \angle +120^\circ) = (2)(7) \angle -40^\circ + 120^\circ = \mathbf{14} \angle +\mathbf{80}^\circ$$

EXAMPLE 14.25

a. Find C_1/C_2 if $C_1 = 15 \angle 10^\circ$ and $C_2 = 2 \angle 7^\circ$.

b. Find C_1/C_2 if $C_1 = 8 \angle 120^\circ$ and $C_2 = 16 \angle -50^\circ$.

Practice Problem 39 ~ 49 [Ch. 14]

Solutions:

a.
$$\frac{\mathbf{C}_1}{\mathbf{C}_2} = \frac{15 \angle 10^{\circ}}{2 \angle 7^{\circ}} = \frac{15}{2} \angle 10^{\circ} - 7^{\circ} = 7.5 \angle 3^{\circ}$$

b.
$$\frac{\mathbf{C}_1}{\mathbf{C}_2} = \frac{8 \angle 120^\circ}{16 \angle -50^\circ} = \frac{8}{16} \angle 120^\circ - (-50^\circ) = \mathbf{0.5} \angle \mathbf{170}^\circ$$

APPLICATION OF COMPLEX NUMBERS IN AC CIRCUIT

Instantaneous Form (Time Domain) Equation:

$$e(t) = E_m sin(\omega t + \theta_e) V$$

$$v(t) = V_m sin(\omega t + \theta_v) V$$

$$i(t) = I_m sin(\omega t + \theta_i) A$$

Phasor Form (Polar Form) Equation:

$$m{E} = ec{E} = E_{rms} \angle \theta_e = E \angle \theta_e \, V$$
 $m{V} = ec{V} = V_{rms} \angle \theta_v = V \angle \theta_v \, V$
 $m{I} = ec{I} = I_{rms} \angle \theta_i = I \angle \theta_i \, A$

Rectangular Form (Cartesian Form) Equation:

$$\mathbf{E} = \vec{E} = E_r + jE_i \quad V$$
 $\mathbf{V} = \vec{V} = V_r + jV_i \quad V$
 $\mathbf{I} = \vec{I} = I_r + jI_i \quad A$

Faculty of Engineering

EXAMPLE 14.27 Convert the following from the time to (*i*) the phasor domain, and (*ii*) the rectangular domain.

Time Domain	Phasor Domain	Rectangular Domain
(a) $v(t) = 70.7\sin(\omega t - 60^{\circ}) \text{ V}$	$\vec{V} = (0.707 \times 70.7) \text{V} \angle -60^{\circ} = 50 \text{V} \angle -60^{\circ}$	V = 25 - j43.3 V
(b) $i(t) = 21.21\cos(\omega t + 20^{\circ}) \text{ A}$	$\vec{I} = (0.707 \times 21.21) \text{A} \angle 110^{\circ} = \mathbf{15A} \angle 110^{\circ}$	$I = 15[\cos(110^\circ) + j\sin(110^\circ)]$
$=21.21\sin(\omega t+110^{\circ})\mathrm{A}$	$I = (0.707 \times 21.21) \times 2110 = 13 \times 2110$	= -5.13 + j14.1 A
$(c) e(t) = -200\cos\omega t V$	$\vec{E} = (0.707 \times 200) \text{V} \angle -90^{\circ} = 141.42 \text{V} \angle -90^{\circ}$	$E = 141.42[\cos(-90^{\circ}) + j\sin(-90^{\circ})]$
$=200\sin(\omega t - 90^{\circ}) \text{ V}$	$L = (0.707 \times 200) \times 2 - 90 = 141.42 \times 2 - 90$	= 0 - j141.42 V
(d) $i(t) = -4.5\sin(\omega t + 30^{\circ}) A$	$\vec{I} = (0.707 \times 4.5) \text{A} \angle -150^{\circ} = 3.18 \text{A} \angle -150^{\circ}$	$I = 3.18[\cos(210^{\circ}) + j\sin(210^{\circ})]$
$= 4.5\sin(\omega t - 150^{\circ}) A$		= -2.75 - j1.59 A
$= 4.5\sin(\omega t + 210^{\circ}) A$	$\vec{I} = (0.707 \times 4.5) \text{A} \angle 210^{\circ} = 3.18 \text{A} \angle 210^{\circ}$	— 21/3 jii3/11

EXAMPLE 14.27.1 Convert the following from Cartesian form to (*i*) the phasor domain, and (*ii*) the instantaneous form for 50 Hz

TOTTH FOR 50 HZ.			
Rectangular Form	Phasor Form	Instantaneous Form	
(a) $\vec{V} = 25 - j43.3 \text{ V}$ RMS value: 50 V Phase Angle: -60° Peak Value: 70.7 V	$V = \sqrt{25^2 + (-43.3)^2} = 50 \text{ V}$ $\theta_v = \tan^{-1} \left[\frac{-43.3}{25} \right] = -60^{\circ}$ $V = 50 \text{ V} \angle -60^{\circ}$	$\omega = 2\pi \times 50 = 314 \text{ rad/s}$ $v(t) = (\sqrt{2}) \times 50 \sin(314t - 60^{\circ}) \text{ V}$ $= 70.7 \sin(314t - 60^{\circ}) \text{ V}$	
(b) $\vec{E} = j150 \text{ V}$ RMS value: 150 V Phase Angle: 90° Peak Value: 212.13 V	$E = \sqrt{0^2 + 150^2} = 150 \text{ V}$ $\theta_e = \tan^{-1} \left[\frac{150}{0} \right] = 90^{\circ}$ $E = 150 \text{V} \angle 90^{\circ}$	$e(t) = (\sqrt{2}) \times 150 \sin(314t + 90^{\circ}) \text{ V}$ = 212.13\sin(314t + 90^{\circ}) \text{ V} = 212.13\cos314t \text{ V}	
$(d) \vec{I} = -j5 \text{ A}$ RMS value: 5 A Phase Angle: -90° Peak Value: 7.07 A	$I = \sqrt{0^2 + (-5)^2} = 5 \text{ A}$ $\theta_i = \tan^{-1} \left[\frac{-5}{0} \right] = -90^{\circ}$ $I = 5\text{A} \angle -90^{\circ}$	$i(t) = (\sqrt{2}) \times 5\sin(314t - 90^{\circ}) \text{ A}$ = 7.07\sin(314t - 90^{\circ}) \text{ A} = -7.07\cos314t \text{ A}	
$(e) \vec{V} = -100 \text{ V}$ RMS value: 100 V Phase	 V = 100V∠±180° e Angle: ± 180° Peak Value: 141.42 V 	$v(t) = (\sqrt{2}) \times 100 \sin(314t \pm 180^{\circ}) \text{ V}$ = 141.42sin(314t ± 180°) V = -141.42sin314t V	

IMPEDANCE

Impedance: Impedance is the ratio of **voltage** to **current**.

Impedance opposes the flow of current.

Impedance represent by **Z**. Its unit is **ohm** (Ω) .

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{V_{rms} \angle \theta_v}{I_{rms} \angle \theta_i} = \frac{V \angle \theta_v}{I \angle \theta_i} = \frac{V}{I} \angle (\theta_v - \theta_i) = Z \angle \theta_z = R + jX \Omega$$

Magnitude of Impedance: $Z = \frac{V_m}{I_m} = \frac{V_{rms}}{I_{rms}} = \frac{V}{I}$

Angle of Impedance: $\theta_z = \theta_v - \theta_i$

Resistance (Real Part of Impedance): $R = Z\cos\theta_z$

Reactance (Imaginary Part of Impedance): $X = Z\sin\theta_z$

Practically, $-90^{\circ} \le \theta_z \le 90^{\circ}$

Reactance is the property of inductor and capacitor to oppose the flow of current. The are two reactance in electrical circuit: (i) inductive reactance (X_I) , and (ii) capacitive reactance (X_C) .

Inductive Reactance:

$$X_L = \omega L = 2\pi f L \ [\Omega] \qquad X_L \propto f$$

Capacitive Reactance:

$$X_C = \frac{1}{\omega C} = \frac{1}{2\pi f C} [\Omega] \qquad X_C \propto \frac{1}{f}$$

Impedance (**Z**) is not a phasor quantity because for a circuit it is constant. That means impedance does not change with respect to time.

ADMITTANCE

Admittance (*Y*) is also not a phasor quantity.

Admittance: Admittance is the ratio of **current** to **voltage**. *Admittance* is **reciprocal of impedance**.

Admittance is a measure of how well an ac circuit will *admit*, or allow, current to flow in the circuit.

Admittance represent by Y. Its unit is Siemens (S).

$$\mathbf{Y} = \frac{1}{\mathbf{Z}} = \frac{\mathbf{I}}{\mathbf{V}} = \frac{I_{rms} \angle \theta_i}{V_{rms} \angle \theta_v} = \frac{I \angle \theta_i}{V \angle \theta_v} = \frac{I}{V} \angle (\theta_i - \theta_v)$$
$$= Y \angle \theta_v = G + jB S$$

Magnitude of Admittance:
$$Y = \frac{1}{Z} = \frac{I_m}{V_m} = \frac{I_{rms}}{V_{rms}} = \frac{I}{V}$$
 S Angle of Admittance: $\theta_V = -\theta_Z = \theta_i - \theta_v$

Conductance (Real Part of admittance):

$$G = \frac{1}{R} = Y \cos \theta_y \qquad S$$

Susceptance (Imaginary Part of admittance):

$$B = \frac{1}{X} = Y sin\theta_y$$
 S

Susceptance is the property of inductor and capacitor to help the flow of current. The are two susceptance in electrical circuit: (i) inductive susceptance (B_L), and (ii) capacitive susceptance (B_C).

Inductive Susceptance:

$$B_L = \frac{1}{X_L} = \frac{1}{\omega L} = \frac{1}{2\pi f L} [S] \qquad B_L \propto \frac{1}{f}$$

Capacitive Susceptance:

$$B_C = \frac{1}{X_C} = \omega C = 2\pi f C \text{ [S]} \qquad B_C \infty f$$

EXAMPLE The supply voltage and current of a circuit are $v(t) = 100\sin 314t$ V and i(t) = $15\cos(314t-120^{\circ})$ A.

- (a) Find (i) the magnitude of impedance, (ii) the angle of impedance, (iii) the value of resistance, and (iv) the value of reactance.
- (b) Find (i) the magnitude of admittance, (ii) the angle of admittance, (iii) the value of conductance, and (iv) the value of susceptance.
- (c) Write the impedance and admittance in both polar and cartesian or rectangular form.

Solution: Converting current from cosine to sine, we have: $i(t) = 15\sin(314t-30^{\circ})$ A.

Now,
$$V_m = 100$$
 V, $I_m = 15$ A, $\theta_v = 0^{\circ}$ and $\theta_i = -30^{\circ}$

(a) (i)
$$Z = \frac{V}{I} = \frac{V_m}{I_m} = \frac{100 \text{V}}{15 \text{A}} = 6.67 \ \Omega$$

(ii) $\theta_Z = \theta_V - \theta_i = 0^\circ - (-30^\circ) = 30^\circ$

(*iii*)
$$R = Z \cos \theta_Z = 6.67 \times \cos(30^\circ) = 5.78 \Omega$$

(*iv*)
$$X = Z \sin \theta_Z = 6.67 \times \sin(30^\circ) = 3.34 \Omega$$

(b) (i)
$$Y = \frac{1}{Z} = \frac{I}{V} = \frac{I_m}{V_m} = \frac{15A}{100V} = 0.15 \text{ S or } 150\text{mS}$$

(*ii*)
$$\theta_{y} = -\theta_{Z} = \theta_{i} - \theta_{v} = -30^{\circ} - 0^{\circ} = -30^{\circ}$$

(*iii*)
$$G = Y \cos \theta_{y} = 150 \times \cos(-30^{\circ}) = 129.9 \text{ mS}$$

$$(iv) B = Y \sin \theta_v = 150 \times \sin(-30^\circ) = -75 \text{ mS}$$

(c)
$$\mathbf{Z} = \vec{Z} = 6.67\Omega \angle 30^{\circ}$$

$$\overrightarrow{Z} = Z = 5.78 + j3.34 \Omega$$

$$Y = \vec{Y} = 150 \text{mS} \angle -30^{\circ}$$

$$Y = Y = 129.9 + j75 \text{ mS}$$

DMAM

EXAMPLE The supply voltage and current of a circuit are $V = 200 \text{V} \angle 90^{\circ}$ and $I = 10 \text{A} \angle 30^{\circ}$.

- (a) Find the impedance and admittance in both polar and cartesian or rectangular form.
- (b) Find (i) the magnitude of impedance, (ii) the angle of impedance, (iii) the value of resistance, and (iv) the value of reactance.
- (c) Find (i) the magnitude of admittance, (ii) the angle of admittance, (iii) the value of conductance, and (iv) the value of susceptance.

Solution:

(a)
$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{200 \text{V} \angle 90^{\circ}}{10 \text{V} \angle 30^{\circ}} = 20\Omega \angle 60^{\circ} = 10 + j17.32 \ \Omega$$

 $\mathbf{Y} = \frac{1}{\mathbf{Y}} = \frac{\mathbf{I}}{\mathbf{V}} = \frac{10 \text{V} \angle 30^{\circ}}{200 \text{V} \angle 90^{\circ}} = 005 \text{S} \angle -60^{\circ} = 0.025 + j0.0433 \ \text{S} = 25 + j43.3 \ \text{mS}$

(b) (i)
$$Z = 20$$
 Ω ; (ii) $\theta_Z = 60^{\circ}$; (iii) $R = 10 \Omega$; (iv) $X = 17.32 \Omega$

(c) (i)
$$Y = 0.05 \text{ S}$$
; (ii) $\theta_y = -60^\circ$; (iii) $G = 25 \text{ mS}$; (iv) $B = 43.3 \text{ mS}$

EXAMPLE The supply voltage and impedance of a circuit are $v(t) = 282.84\cos 314t \text{ V}$ and $Z = 20\Omega \angle 60^{\circ}$. Find the current i(t).

Solution: Converting voltage from cosine to sine, we have: $v(t) = 282.84\sin(314t+90^{\circ}) \text{ V}$.

Now,
$$V_m = 282.84 \text{ V}$$
, $\theta_v = 90^{\circ}$ and $Z = 20 \Omega$, $\theta_z = 60^{\circ}$

We know that:
$$Z = \frac{V_m}{I_m}$$
 $\theta_z = \theta_v - \theta_i$

$$I_m = \frac{V_m}{Z} = \frac{282.84}{20} = 14.142 \text{ A}$$

$$\theta_i = \theta_v - \theta_z = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

Thus, $i(t) = 14.142\sin(314t + 30^{\circ})$ A

EXAMPLE The supply current and impedance of a circuit are $i(t) = 15\sin 377t \text{ V}$ and $Z = 17.32 + j10 \Omega$. Find the voltage v(t).

Solution: Converting impedance from Cartesian to Polar form:

$$Z = 17.32 + j10 \Omega = 20\Omega \angle 30^{\circ}$$

Now,
$$I_m = 15$$
 V, $\theta_i = 0^\circ$ and $Z = 20 \Omega$, $\theta_z = 30^\circ$

We know that:
$$Z = \frac{V_m}{I_m}$$
 $\theta_z = \theta_v - \theta_i$ $V_m = ZI_m = 20 \times 15 = 300 \text{ V}$

$$\theta_{\mathcal{V}} = \theta_{\dot{i}} + \theta_{\mathcal{Z}} = 0^{\circ} + 30^{\circ} = 30^{\circ}$$

Faculty of Engineering

Thus, $v(t) = 300\sin(377t + 30^{\circ}) \text{ V}$

