# Kinematics Tutorial

### ${\bf Hankertrix}$

# September 12, 2023

# Contents

| 1 | Question 1 | 2  |
|---|------------|----|
|   | 1.1 (a)    | 2  |
|   | 1.2 (b)    |    |
|   | 1.3 (c)    |    |
| 2 | Question 2 | 4  |
|   | 2.1 (a)    | 4  |
|   | 2.2 (b)    |    |
| 3 | Question 3 | 5  |
| 4 | Question 4 | 7  |
|   | 4.1 (a)    | 7  |
|   | 4.2 (b)    | 8  |
|   | 4.3 (c)    | 10 |
| 5 | Question 5 | 10 |
| 6 | Question 6 | 11 |

### 1 Question 1

#### 1.1 (a)

Let  $u_r$  be the initial velocity of the rock and  $u_b$  be the initial velocity of the ball.

At the time the ball and the rock collide, their displacement is the same, hence:

$$u_r t + \frac{1}{2}at^2 = u_b(t-1) + \frac{1}{2}a(t-1)^2$$

$$12t + \frac{1}{2}(-9.81)t^2 = 18(t-1) + \frac{1}{2}(-9.81)(t-1)^2$$

$$24t + (-9.81)t^2 = 36t - 36 + (-9.81)(t-1)^2$$

$$9.81((t-1)^2 - t^2) = 12t - 36$$

$$9.81(t^2 - 2t + 1 - t^2) = 12t - 36$$

$$9.81 - 19.62t = 12t - 36$$

$$31.62t = 45.81$$

$$t = 1.45 \text{ s} (3.\text{s.f})$$

Thus, the ball and the rock will collide at  $1.45 \,\mathrm{s}$ .

#### 1.2 (b)

Solving for the displacement of the rock:

$$s = ut + \frac{1}{2}at^{2}$$

$$s = 12(1.45) + \frac{1}{2}(-9.81)(1.45)^{2}$$

$$s = 7.10 \text{ m } (3.\text{s.f.})$$

Thus, the ball and the rock will collide at a height of 7.10 m.

#### 1.3 (c)

Let  $u_r$  be the initial velocity of the rock and  $u_b$  be the initial velocity of the ball.

At the time the ball and the rock collide, their displacement is the same, hence:

$$u_b t + \frac{1}{2}at^2 = u_r(t-1) + \frac{1}{2}a(t-1)^2$$

$$18t + \frac{1}{2}(-9.81)t^2 = 12(t-1) + \frac{1}{2}(-9.81)(t-1)^2$$

$$36t + (-9.81)t^2 = 24t - 24 + (-9.81)(t-1)^2$$

$$9.81((t-1)^2 - t^2) = -12t - 24$$

$$9.81(t^2 - 2t + 1 - t^2) = -12t - 24$$

$$9.81 - 19.62t = -12t - 24$$

$$7.62t = 33.81$$

$$t = 4.44 \text{ s} (3.\text{s.f})$$

Solving for the displacement of the ball:

$$s = ut + \frac{1}{2}at^{2}$$

$$s = 18(4.44) + \frac{1}{2}(-9.81)(4.44)^{2}$$

$$s = -16.7 \text{ m } (3.\text{s.f.})$$

Since the displacement of the ball is negative, that means the rock and the ball collide below the ground, which means that they did not collide.

### 2 Question 2

#### 2.1 (a)

$$a = \frac{dv}{dt} = g - kv$$

$$\frac{\frac{dv}{dt}}{g - kv} = 1$$

$$\int \frac{\frac{dv}{dt}}{g - kv} dt = \int 1 dt$$
(1)

Let u = g - kv. Differentiating u with respect to v:

$$\frac{du}{dv} = -k\tag{2}$$

Substituting (2) into (1) and multiplying (1) by  $\frac{du}{dv}$ :

$$\int \frac{1}{u} \, du = \int -k \, dt$$

 $\ln |u| = -kt + c$ , where c is an arbitrary constant

$$u = e^{-kt+c}$$

Let  $B = e^c$ , where B is an arbitrary constant:

$$u = Be^{-kt}$$

Substituting u = g - kv into  $u = Be^{-kt}$ :

$$g - kv = Be^{-kt}$$

$$-kv = Be^{-kt} - g$$

Let  $A = \frac{B}{g}$ , where A is an arbitrary constant.

$$-kv = Aqe^{-kt} - q$$

$$kv = g(1 - Ae^{-kt})$$

$$v = \frac{g}{k}(1 - Ae^{-kt}) \tag{3}$$

Since the body is assumed to start from rest, at  $t=0,\,v=0.$  Substituting t=0 and v=0 into (3):

$$0 = \frac{g}{k}(1 - Ae^{-k(0)})$$
$$0 = 1 - A$$
$$A = 1$$

Substituting A = 1 into (3):

$$v = \frac{g}{k}(1 - e^{-kt})$$

Thus, the velocity of the body is  $v = \frac{g}{k}(1 - e^{-kt})$ .

#### 2.2 (b)

As  $t \to \infty, 1 - e^{-kt} \to 1$ , hence:

$$v_{max} = \frac{g}{k}(1)$$
$$v_{max} = \frac{g}{k}$$

# 3 Question 3

For the water to land  $2.5\,\mathrm{m}$  away, the horizontal component of the velocity must be able to cover the distance in time t, hence:

$$s = v_0 t + \frac{1}{2} a t^2$$

$$2.5 = 6.5 \cos(\theta) t$$

$$t = \frac{5}{13} \sec(\theta)$$
(1)

The vertical displacement of the ball must be 0 when it hits the ground, so:

$$s = v_0 t + \frac{1}{2} a t^2$$

$$0 = 6.5 \sin(\theta) t + \frac{1}{2} (-9.81) t^2$$

$$6.5 \sin(\theta) t = 4.905 t^2$$

$$6.5 \sin(\theta) = 4.905 t$$

$$t = \frac{1300}{981} \sin(\theta)$$
(2)

Substituting (1) into (2):

$$\left(\frac{5}{13}\sec(\theta)\right) = \frac{1300}{981}\sin(\theta)$$
$$\sin(\theta)\cos(\theta) = \frac{981}{3380}$$
$$2\sin(\theta)\cos(\theta) = \frac{981}{1690}$$
$$\sin(2\theta) = \frac{981}{1690}$$

$$2\theta = \sin^{-1}\left(\frac{981}{1690}\right)$$
 or  $180 - 2\theta = \sin^{-1}\left(\frac{981}{1690}\right)$   
 $2\theta = 35.4838$  or  $180 - 2\theta = 35.4838$   
 $\theta = 17.7^{\circ} (3.s.f)$  or  $\theta = 72.3^{\circ} (3.s.f)$ 

For angles of  $\theta < 90^{\circ}$ , there are two angles that will correspond to the same sin value,  $90^{\circ} - \theta$  and  $\theta$ . Thus, there are 2 angles that will correspond to the same distance that the water will travel.

The trajectory of the projectile at the two different angles are:



# 4 Question 4

### 4.1 (a)

Let  $v_x$  and  $v_y$  be the initial velocity of the ball in the horizontal and vertical direction respectively. When the ball has reached the ground, the displacement of the ball in the vertical direction is  $-14.0\,\mathrm{m}$ , thus:

$$s = v_y t + \frac{1}{2}at^2$$

$$-14 = -7\sin(40^\circ)t + \frac{1}{2}(-9.81)t^2$$

$$-28 = -14\sin(40^\circ)t - 9.81t^2$$

$$9.81t^2 + 14\sin(40^\circ)t - 28 = 0$$

$$t = -2.20926$$
 or  $t = 1.29194$   
 $t = -2.21 \text{ (3.s.f)}$  or  $t = 1.29 \text{ (3.s.f)}$ 

Since time cannot be negative,  $t = 1.29 \,\mathrm{s}$ .

# 4.2 (b)

The graph of x vs t:



The graph of y vs t:



The graph of  $v_x$  vs t:



The graph of  $v_y$  vs t:



#### 4.3 (c)

Letting the displacement of the ball in the vertical direction be -14+1.75 = -12.25 m:

$$s = ut + \frac{1}{2}at^{2}$$

$$-12.25 = 7\sin(40^{\circ})t + \frac{1}{2}(-9.81)t^{2}$$

$$-12.25 = 7\sin(40^{\circ})t - 4.905t^{2}$$

$$4.905t^{2} - 7\sin(40^{\circ})t - 12.25 = 0$$

$$t = 2.10421$$
 or  $t = -1.18688$   
 $t = 2.10 (3.s.f)$  or  $t = -1.19 (3.s.f)$ 

Since time cannot be negative,  $t=2.10\,\mathrm{s}$ . When  $t=2.10\,\mathrm{s}$ , the horizontal displacement of the ball is:

$$s = ut + \frac{1}{2}at^{2}$$

$$s = 7\cos(40^{\circ})(2.10)$$

$$s = 11.28342$$

$$s = 11.3 \text{ m}$$

Since the ball will be  $11.3\,\mathrm{m}$  away from the roof when it is  $1.75\,\mathrm{m}$  above the ground, the ball will not hit the man as he is only  $4\,\mathrm{m}$  away from the roof.

## 5 Question 5

The speed of the current will be equal to the east component of the boat's velocity. Thus, the speed of the current is  $3.4\sin(19.5^{\circ}) = 1.134\,943\,\mathrm{m} = 1.13\,\mathrm{ms}^{-1}$  (3.s.f).

The resultant speed of the boat with respect to the shore is  $3.4\cos(19.5^{\circ}) = 3.204981 = 3.20 \,\mathrm{ms}^{-1}$  (3.s.f).

### 6 Question 6

Let  $v_x$  be the component of the initial speed  $v_0$  that is parallel to the slope and  $v_y$  be the component of the initial speed that is perpendicular to the slope.

$$v_x = v_0 \cos(\theta - \phi)$$

$$v_y = v_0 \sin(\theta - \phi)$$

Let  $g_x$  be the component of the acceleration g that is parallel to the slope and  $g_y$  be the component of the acceleration g that is perpendicular to the slope.

$$g_x = g\sin(\phi) \tag{1}$$

$$g_y = g\cos(\phi) \tag{2}$$

Let  $t, t \neq 0$  be the time the ball takes to hit the ground again after being thrown. When the ball hits the ground again, the displacement of the ball must be 0.

$$s = ut + \frac{1}{2}at^2$$

$$0 = v_y t + \frac{1}{2}g_y t^2$$

$$0 = v_0 \sin(\theta - \phi)t - \frac{1}{2}g_y t^2$$

$$\frac{1}{2}g_y t = v_0 \sin(\theta - \phi)$$

$$g_y t = 2v_0 \sin(\theta - \phi)$$

$$t = \frac{2v_0 \sin(\theta - \phi)}{g_y}$$
(3)

The distance d travelled by the ball would be:

$$s = ut + \frac{1}{2}at^2$$

$$d = v_x t - \frac{1}{2}g_x t^2$$

$$d = v_0 \cos(\theta - \phi)t - \frac{1}{2}g_x t^2$$
(4)

Substituting (3) into (4):

$$d = v_0 \cos(\theta - \phi) \left( \frac{2v_0 \sin(\theta - \phi)}{g_y} \right) - \frac{1}{2} g_x \left( \frac{2v_0 \sin(\theta - \phi)}{g_y} \right)^2$$

$$d = \frac{2(v_0)^2 \sin(\theta - \phi) \cos(\theta - \phi)}{g_y} - \frac{4g_x(v_0)^2 \sin^2(\theta - \phi)}{2(g_y)^2}$$

$$d = \left( \frac{2(v_0)^2}{g_y} \right) \left( \sin(\theta - \phi) \cos(\theta - \phi) - \frac{g_x}{g_y} (\sin^2(\theta - \phi)) \right)$$
 (5)

Substituting (1) and (2) into (5):

$$d = \left(\frac{2(v_0)^2}{g\cos(\phi)}\right) \left(\sin(\theta - \phi)\cos(\theta - \phi) - \frac{g\sin(\phi)}{g\cos(\phi)}(\sin^2(\theta - \phi))\right)$$

$$d = \left(\frac{2(v_0)^2\sec(\phi)}{g}\right) \left(\sin(\theta - \phi)\cos(\theta - \phi) - \tan(\phi)\sin^2(\theta - \phi)\right)$$

$$d = \left(\frac{2(v_0)^2\sec(\phi)}{g}\right) \left(\frac{\sin(2(\theta - \phi))}{2} - \tan(\phi)\sin^2(\theta - \phi)\right)$$

$$d = \left(\frac{2(v_0)^2\sec(\phi)}{g}\right) \left(\frac{\sin(2\theta - 2\phi)}{2} - \tan(\phi)\sin^2(\theta - \phi)\right)$$

Differentiating d with respect to  $\theta$ :

$$\frac{dd}{d\theta} = \left(\frac{2(v_0)^2 \sec(\phi)}{g}\right) \left(\cos(2\theta - 2\phi) - 2\tan(\phi)\sin(\theta - \phi)\cos(\theta - \phi)\right)$$
$$\frac{dd}{d\theta} = \left(\frac{2(v_0)^2 \sec(\phi)}{g}\right) \left(\cos(2\theta - 2\phi) - \tan(\phi)\sin(2\theta - 2\phi)\right)$$

When d is maximum,  $\frac{dd}{d\theta}$  is 0. Since  $\theta$  is always greater than  $\phi$ , the point is a maximum point:

$$0 = \left(\frac{2(v_0)^2 \sec(\phi)}{g}\right) (\cos(2\theta - 2\phi) - \tan(\phi) \sin(2\theta - 2\phi))$$

$$0 = \cos(2\theta - 2\phi) - \tan(\phi) \sin(2\theta - 2\phi)$$

$$\cos(2\theta - 2\phi) = \tan(\phi) \sin(2\theta - 2\phi)$$

$$\cot(2\theta - 2\phi) = \tan(\phi)$$

$$\tan\left(\frac{\pi}{2} - (2\theta - 2\phi)\right) = \tan(\phi)$$

$$\tan\left(\frac{\pi}{2} - 2\theta + 2\phi\right) = \tan(\phi)$$

$$\frac{\pi}{2} - 2\theta + 2\phi = \phi$$

$$2\theta = \frac{\pi}{2} + \phi$$

$$\theta = \frac{\pi}{4} + \frac{\phi}{2}$$