Smart Breath-Based Glucose Monitoring System

This project introduces an innovative, non-invasive approach to glucose monitoring, addressing critical challenges in diabetes management through breath analysis technology.

Challenges

- > Diabetes affects millions worldwide
- > Traditional glucose monitoring is:
 - o Invasive
 - o Painful
 - o Expensive
 - o Infrequent

Why Shift requires Monitoring system

- > Current methods require blood extraction
- > Limited patient comfort
- ➤ High monitoring costs
- > Infrequent health tracking

Primary Objectives

- > Develop non-invasive glucose monitoring system
- > Enable real-time glucose level detection
- > Reduce patient discomfort
- > Create cost-effective monitoring solution

Detection Mechanism

- First low-cost Arduino-based breath analysis system
- ➤ Utilizes MQ138 gas sensor for VOC detection
- > Provides continuous real-time monitoring
- ➤ No blood sampling required

Hardware Components Used

- > Arduino Nano Microcontroller
- ➤ MO138 Gas Sensor
- > Serial Communication Interface
- > 5V Power Supply

Software Requirements Used

- > Arduino IDE
- ➤ C/C++ Programming Language

Working Principle

1. Breath Sample Collection

- > User breathes into specialized sensor
- ➤ MQ138 detects Volatile Organic Compounds

2. Data Acquisition

- ➤ Converts chemical signals to electrical readings
- ➤ Analog reading captured via Pin A0
- ➤ Voltage Conversion Formula:

Voltage = sensorValue * (5.0/1024.0)

3. Glucose Calculation

- ➤ Linear regression formula implementation
- \rightarrow BGL = (158.12 * Voltage) 519.35
- > Result displayed in mg/dL

4. Implementation of the code

Advantages

Parameter	Traditional Methods	Our Proposed System
Sampling Method	Blood Extraction	Breath Analysis
Cost	High	Low
Frequency	Limited	Continuous
Patient Comfort	Invasive	Non-Invasive
Technological Complexity	High	Moderate
Scalability	Limited	High

Advantages

- ➤ Completely non-invasive testing
- > Real-time health monitoring
- ➤ Pain-free experience
- > Frequent testing capability
- > Significantly reduced monitoring costs

Limitations

- ➤ Requires comprehensive medical validation
- > Potential environmental factor sensitivity
- > Needs periodic recalibration
- ➤ Accuracy may vary under different conditions

Future Development

- > Enhanced Sensor Array Development
- ➤ AI-Powered Predictive Analysis
- ➤ Mobile Application Integration
- > Comprehensive Clinical Validation Studies