PROGRAMARE LOGICĂ SEMINAR 5 - RESCRIERI -

Teorie:

- O regulă de rescriere $l \to_s r$ este formată din $l, r \in T_{\Sigma}(Y)_s$ astfel încât l nu este variabilă și $Var(r) \subseteq Var(l)$.
- Un sistem de rescriere (TRS) este o mulțime finită de reguli de rescriere.
- Dacă R este un sistem de rescriere, pentru $t, t' \in T_{\Sigma}(X)_s$ definim relația $t \to_R t'$ astfel:

$$t \to_R t' \Leftrightarrow t \text{ este } c[z \leftarrow \theta_s(l)] \text{ şi}$$

$$t' \text{ este } c[z \leftarrow \theta_s(r)], \text{ unde}$$

$$c \in T_{\Sigma}(X \cup \{z\}) \text{ context},$$

$$l \to_s r \in R \text{ cu } Var(l) = Y,$$

$$\theta : Y \to T_{\Sigma}(X) \text{ substituţie}$$

- Un termen t este reductibil dacă există un termen t' a.î. $t \to t'$.
- ullet Un termen t este $\hat{i}n$ form \bar{a} normal \bar{a} (ireductibil) dacă nu este reductibil.
- t_0 este o formă normală a lui t dacă $t \stackrel{*}{\to} t_0$ și t_0 este în formă normală.
- t_1 şi t_2 se intâlnesc $(t_1 \downarrow t_2)$ dacă există $t \in T$ a.î. $t_1 \stackrel{*}{\to} t \stackrel{*}{\leftarrow} t_2$.
- Un sistem de rescriere se numeşte
 - noetherian: dacă nu există reduceri infinite $t_0 \to t_1 \to t_2 \to \dots$
 - confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
 - complet (convergent, canonic): confluent și noetherian.
- Fie $l_1 \to r_1$, $l_2 \to r_2 \in R$ astfel încât:
 - (1) $Var(l_1) \cap Var(l_2) = \emptyset$,
 - (2) există t un subtermen al lui l_1 care nu este variabilă $(l_1 = c[z \leftarrow t], \text{ unde } nr_z(c) = 1, t \text{ nu este variabilă})$
 - (3) există θ c.g.u pentru t și l_2 (i.e. $\theta(t) = \theta(l_2)$).

Perechea $(\theta(r_1), \theta(c)[z \leftarrow \theta(r_2)])$ se numește pereche critică.

Teoremă 1 (Teorema Perechilor Critice *). Dacă R este noetherian, atunci sunt echivalente:

- (1) R este confluent,
- (2) $t_1 \downarrow_R t_2$ pentru orice pereche critică (t_1, t_2) .

Algoritmul Knuth-Bendix.

- INTRARE: R un sistem de rescriere (TRS) noetherian.
- INIȚIALIZARE: T := R și > ordine de reducere pentru T
- Se execută următorii paşi, cât timp este posibil:
 - (1) $CP := CP(T) = \{(t_1, t_2) \mid (t_1, t_2) \text{ pereche critică în } T\}$
 - (2) Dacă $t_1 \downarrow t_2$, oricare $(t_1, t_2) \in CP$, atunci STOP (*T completarea lui R*).
 - (3) Dacă $(t_1, t_2) \in CP$, $t_1 \not\downarrow t_2$ atunci:
 - $-\operatorname{dac\check{a}} fn(t_1) > fn(t_2) \text{ at unci } T := T \cup \{fn(t_1) \to fn(t_2)\},\$
 - $-\operatorname{dac\check{a}} fn(t_2) > fn(t_1) \text{ at unci } T := T \cup \{fn(t_2) \to fn(t_1)\},\$
 - altfel, STOP (completare eşuată).
- IEŞIRE: T completarea lui R sau eşec.

Exercițiul 1: Fie (S, Σ) o signatură, unde $S = \{s\}$ și $\Sigma = \{0 : \rightarrow s, g : s \rightarrow s, f : s \rightarrow s\}$. Folosind sistemul de rescriere

$$R = \{ f(g(x)) \to g(x), \ g(f(x)) \to g(x) \},\$$

rescrieți termenii $t_1 = f(f(g(f(g(0)))))$ și $t_2 = f(f(0))$ până la o formă normală. Caracterizați formele normale ale sistemului R.

Rezolvare: Forma normală a lui t_1 este g(g(0)), deoarece

$$t_1 = f(f(g(f(g(0))))) \to_R f(f(g(g(0)))) \to_R f(g(g(0))) \to_R g(g(0)),$$

iar t_2 este în formă normală. Formele normale pentru sistenul R sunt $f(\ldots(f(0))\ldots), g(\ldots(g(0))\ldots)$ și 0.

Exercițiul 2: Fie (S, Σ) o signatură, unde $S = \{s\}$ şi $\Sigma = \{g : s \to s, f : s \to s\}$. Cercetați dacă sistemul de rescriere de mai jos este confluent:

$$R = \{ f(f(x)) \to g(x) \}.$$

Rezolvare: Determinăm perechile critice ale sistemului R. Redenumind variabilele, considerăm $l_1 \to r_1, l_2 \to r_2 \in R$ ca fiind $f(f(x)) \to g(x)$ și $f(f(y)) \to g(y)$, respectiv. Subtermenii lui l_1 care nu sunt variabile sunt f(x) și f(f(x)). Investigăm fiecare caz:

- t := f(x). Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = f(z). Mai mult, $\theta(x) = f(y)$ este c.g.u. pentru t și l_2 . Obținem perechea critică $P_1 = (g(f(y)), f(g(y)))$.
- t := f(f(x)). Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = z. Mai mult, $\theta(x) = y$ este c.g.u. pentru t și l_2 . Obținem perechea critică $P_1 = (g(y), g(y))$.

Evident $g(y) \downarrow g(y)$, dar $g(f(y)) \not\downarrow f(g(y))$ deoarece g(f(y)) şi f(g(y)) sunt deja în formă normală. Deoarece R este noetherian, din Teorema Perechilor Critice obținem că R nu este confluent.

Exercițiul 3: Fie (S, Σ) o signatură, unde $S = \{s\}$ şi $\Sigma = \{a : \rightarrow s, b : \rightarrow s, c : \rightarrow s, g : s \rightarrow s, f : s s \rightarrow s\}$. Găsiți perechile critice pentru sistemul de rescriere:

$$R = \{ f(x, x) \rightarrow a, f(x, q(x)) \rightarrow b, c \rightarrow q(c) \}.$$

Rezolvare: Printre cazurile posibile, se numără:

- Cazul $l_1 \to r_1 = f(\mathbf{x}, \mathbf{x}) \to \mathbf{a}$ şi $l_2 \to r_2 = f(\mathbf{y}, \mathbf{y}) \to \mathbf{a}$. Considerăm subtermenii t ai lui l_1 care nu sunt variabile: $-\mathbf{t} = f(\mathbf{x}, \mathbf{x})$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = z. Mai mult, $\theta(x) = y$ este c.g.u. pentru t şi l_2 . Obținem perechea critică (a, a).
- Cazul $l_1 \to r_1 = f(x, x) \to a$ și $l_2 \to r_2 = f(y, g(y)) \to b$. Considerăm subtermenii t ai lui l_1 care nu sunt variabile:
 - $-\mathbf{t} = \mathbf{f}(\mathbf{x}, \mathbf{x})$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = z. Nu există c.g.u. pentru t și l_2 .
- Cazul $l_1 \to r_1 = f(\mathbf{x}, \mathbf{x}) \to \mathbf{a}$ şi $l_2 \to r_2 = \mathbf{c} \to \mathbf{g}(\mathbf{c})$. Considerăm subtermenii t ai lui l_1 care nu sunt variabile: $-\mathbf{t} = f(\mathbf{x}, \mathbf{x})$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = z. Nu există c.g.u. pentru t şi l_2 .
- Cazul $\mathbf{l_1} \to \mathbf{r_1} = \mathbf{f}(\mathbf{x}, \mathbf{g}(\mathbf{x})) \to \mathbf{b}$ şi $\mathbf{l_2} \to \mathbf{r_2} = \mathbf{f}(\mathbf{y}, \mathbf{g}(\mathbf{y})) \to \mathbf{b}$. Considerăm subtermenii t ai lui l_1 care nu sunt variabile:
 - $-\mathbf{t} = \mathbf{g}(\mathbf{x})$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = f(x, z). Nu există c.g.u. pentru t și l_2 .
 - $-\mathbf{t} = \mathbf{f}(\mathbf{x}, \mathbf{g}(\mathbf{x}))$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = z. Mai mult, $\theta(x) = y$ este c.g.u. pentru t și l_2 . Obținem perechea critică (b, b).
- Cazul $\mathbf{l_1} \to \mathbf{r_1} = \mathbf{f}(\mathbf{x}, \mathbf{g}(\mathbf{x})) \to \mathbf{b}$ și $\mathbf{l_2} \to \mathbf{r_2} = \mathbf{c} \to \mathbf{g}(\mathbf{c})$. Considerăm subtermenii t ai lui l_1 care nu sunt variabile:
 - $-\mathbf{t} = \mathbf{g}(\mathbf{x})$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = f(x, z). Nu există c.g.u. pentru t și l_2 .
 - $-\mathbf{t} = \mathbf{f}(\mathbf{x}, \mathbf{g}(\mathbf{x}))$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = z. Nu există c.g.u. pentru t și l_2 .
- Cazul l₁ → r₁ = c → g(c) şi l₂ → r₂ = c → g(c). Considerăm subtermenii t ai lui l₁ care nu sunt variabile:
 t = c. Observăm că l₁ = c[z ← t] pentru contextul c = z. Mai mult, orice substituție este c.g.u. pentru t şi l₂. Obținem perechea critică (g(c), g(c)).

În concluzie, perechile critice pentru R sunt (a, a), (b, b) şi (g(c), g(c)).

Exercițiul 4: Fie (S, Σ) o signatură, unde $S = \{s\}$ și $\Sigma = \{a : \rightarrow s, b : \rightarrow s, c : \rightarrow s, g : s \rightarrow s, f : s s \rightarrow s\}$. Cercetați dacă sistemul de rescriere de mai jos este confluent:

$$R = \{f(x,x) \rightarrow a, \quad f(x,g(x)) \rightarrow b, \quad c \rightarrow g(c)\}.$$

Rezolvare: Se observă că R nu se termină:

$$c \to_R g(c) \to_R g(g(c)) \to_R \dots$$

În concluzie nu putem aplica Teorema perechilor critice pentru a stabili confluența. Se observă că:

Cum $a \not\downarrow b$, sistemul R nu este confluent.