Disclaimer

Aufgaben aus dieser Vorlage stammen aus der Vorlesung Algorithmen, Sprachen und Komplexität und wurden zu Übungszwecken verändert oder anders formuliert! Für die Korrektheit der Lösungen wird keine Gewähr gegeben.

- 1. Definitionen der Automatentheorie. Vervollständige die folgenden Definitionen:
 - (a) Eine Regel $(l \to r)$ einer Grammatik $G = (V, \sum, P, S)$ heißt rechtslinear, falls ...

Solution: immer das an der am weitesten rechts stehende Nicht-Terminal in ein Terminal umgewandelt wird. Dazu muss $l \in V$ und $r \in \sum V \cup \epsilon$.

(b) Die Menge $Reg(\sum)$ der regulären Ausdrücke über dem Alphabet ist...

Solution:

(c) Ein NFA ist ein Tupel M = (...)

Solution: ein nichtdeterministischer endlicher Automat M ist ein 5-Tupel $M=(Z, \sum, S, \delta, E)$ mit

- \bullet Z ist eine endliche Menge von Zuständen
- \sum ist das Eingabealphabet
- $S \subseteq Z$ die Menge der Startzustände (können mehrere sein)
- $\delta: Z \times \sum \to P(Z)$ ist die (Menge der) Überführungs/Übergangsfunktion
- $E \subseteq Z$ die Menge der Endzustände
- (d) Die von einem NFA $M=(Z,\sum,S,\delta,E)$ akzeptierte Sprache ist L(M)=... (ohne Definition der Mehr-Schritt Übergangsfunktion δ)

Solution:

(e) Die von einem PDA $M=(Z,\sum,\Gamma,\delta,z_0,\#)$ akzeptierten Sprache ist $L(M)=\dots$

Solution: $L(M) = \{x \in \sum^* | \text{ es gibt } z \in Z \text{ mit } (z_0, x, \#)[...]^*(z, \epsilon, \epsilon)\}$

(f) Sei L eine Sprache. Für $x, y \in \sum^*$ gilt $xE_L y$ genau dann, wenn ... $(R_L$ ist die Myhill-Nerode-Äquivalenz zu L)

Solution:

(g) Sei $M=(Z,\sum,z_0,\delta,E)$ ein DFA. Die Zustände $z,z'\in Z$ heißen erkennungsäquivalent, wenn

Solution: Zwei Zustände $z, z' \in Z$ heißen erkennungsäquivalent $(z \equiv z')$ wenn für jedes Wort $w \in \sum^*$ gilt: $\hat{\sigma}(z, w) \in E \leftrightarrow \hat{\sigma}(z', w) \in E$.

- 2. Sätze und Lemmas aus der Automatentheorie. Vervollständige die folgenden Aussagen:
 - (a) Sei $L \supseteq \sum^*$ eine Sprache. Dann sind äquivalent: 1) L ist regulär (d.h. wird von einem DFA akzeptiert), 2)..., 3)...

Solution:

- 1. L ist regulär (d.h. von einem DFA akzeptiert)
- 2. L wird von einem NFA akzeptiert
- 3. L ist rechtslinear (d.h. von einer Typ-3 Grammatik erzeugt)
- (b) Die Klasse der regulären Sprachen ist unter anderem abgeschlossen unter folgenden drei Operationen:

Solution:

(c) Sei \sum ein Alphabet. Die Anzahl der Grammatiken über \sum ist ... und die Anzahl der Sprachen über \sum ist

Solution:

(d) Unter anderem sind folgende (mind. drei) Probleme für kontextfreie Sprachen entscheidbar:

(e) Die Klasse der Kontextfreien Sprachen ist abgeschlossen unter den Operationen 1)... und 2)... . Sie ist aber nicht abgeschlossen unter 3)... und 4)... .

Solution:

(f) Der Satz von Myhill-Nerode besagt,...

Solution: Sei L eine Sprache. L ist regulär $\leftrightarrow index(R_L) < \infty$ (d.h. nur wenn die Myhill-Nerode-Äquivalenz endliche Klassen hat).

(g) Das Pumping-Lemma für kontextfreie Sprachen ...

Solution: Man versucht auszunutzen, daß eine kontextfreie Sprache von einer Grammatik mit endlich vielen Nichtterminalen erzeugt werden muss. Das bedeutet auch: wenn ein Ableitungsbaum ausreichend tief ist, so gibt es einen Ast, der ein Nichtterminal mehrfach enthält. Die durch diese zwei Vorkommen bestimmten Teilbäume werden "gepumpt". Wenn L eine kontextfreie Sprache ist, dann gibt es $n \ge 1$ derart, dass für alle z in L mit $|z| \ge n$ gilt: es gibt Wörter

Wenn L eine kontextfreie Sprache ist, dann gibt es n >= 1 derart, dass für alle z in L mit |z| >= n gilt: es gibt Wörter u, v, w, x, y in SUM mit

- $1. \ z=uvwxy,$
- $2. |vwx| \le n,$
- 3. |vx| >= 1 und
- 4. $uv^iwx^iy \in L$ für alle i >= 0
- 3. Konstruktionen der Automatentheorie
 - (a) Betrachte den folgenden NFA X. Berechne einen DFA Y mit L(X) = L(Y).

Solution:

(b) Betrachte den folgenden NFA X. Berechne einen DFA Y mit L(X) = L(Y).

Solution:

(c) Betrachte den folgenden DFA X. Berechne den minimalen DFA Y mit L(X) = L(Y).

Solution:

(d) Betrachte den folgenden DFA X. Berechne den minimalen DFA Y mit L(X) = L(Y).

Solution:

4. Algorithmen für reguläre Sprachen. Sei $\sum = \{a, b, c\}$. Gebe einen Algorithmus an, der bei Eingabe eines NFA X entscheidet, ob alle Wörter $\omega \in L(X)$ ungerade Länge besitzen und abc als Infix enthalten.

Solution:

- 5. Kontextfreie Sprachen: Sei $\sum = \{a, b, c\}$. Betrachte die Sprache $K = \{a^k b^l c^m | k \leq l \text{ oder } k \leq m\}$.
 - (a) Zeige, dass K eine kontextfreie Sprache ist.

Solution:

(b) Zeige, dass $L = \sum^* \backslash K$ (Komplement von L) nicht kontextfrei ist.

Solution:

(c) Begründe warum K deterministisch kontextfrei ist oder warum nicht.

Solution:

- 6. Kontextfreie Grammatiken: Sei $\sum = \{a,b,c,\}$
 - (a) Sei G die kontextfreie Grammatik mit Startsymbol S und der Regelmenge $S \to AB$, $A \to aBS|a$ und $B \to bBa|b|\epsilon$. Überführe G in eine äquivalente Grammatik in Chomsky Normalform.

Solution:

(b) Sei G' die kontextfreie Grammatik mit Startsymbol S und der Regelmenge $S \to AB$, $A \to CD|CF$, $F \to AD$, $B \to c|EB$, $C \to a$, $D \to b$, $E \to c$. Entscheide mit dem CYK-Algorithmus, ob die Wörter $w_1 = aaabbbcc$ oder $w_2 = aaabbccc$ von G' erzeugt werden.

Solution:

(c) Gebe für die Wörter aus b), die von G' erzeugt werden, den Ableitungsbaum an.

Solution:

- 7. Definitionen der Berechnbarkeitstheorie. Verfollständige die Definitionen
 - (a) Ein While Programm ist von der Form...

Solution:

(b) Eine Turingmaschine ist ein 7-Tupel $M=(Z, \sum, \Gamma, \delta, z_0, \square, E)$, wobei...

(c) Die von einer Turingmaschine M akzeptierte Sprache ist L(M) = ...

Solution:

(d) Seien $A\supseteq \sum^*$ und $B\supseteq \Gamma^*$. Eine Reduktion von A auf B ist ...

Solution:

(e) Eine Sprache L heißt rekursiv aufzählbar, falls ...

Solution:

(f) Sei $f:N\to N$ eine monotone Funktion. Die Klasse TIME(f) besteht aus allen Sprachen L, für die es eine Turingmaschine M gibt mit ...

Solution:

- 8. Sätze der Berechnbarkeitstheorie: Vervollständige die folgenden Aussagen
 - (a) Zu jeder Mehrband-Turingmaschine M gibt es ...

Solution:

(b) Sei $f: N^k \to \mathbb{N}$ eine Funktion für ein $k \in \mathbb{N}$. Die folgenden Aussagen sind äquivalent: 1) f ist Turing-berechenbar, 2)..., 3)..., 4)...

Solution:

(c) Sei $L \subseteq \sum^*$ eine Sprache. Sind L und $\sum^* \backslash L$ semi-entscheidbar, dann...

Solution:

(d) Der Satz von Rice lautet...

Solution: dass es unmöglich ist, eine beliebige nicht-triviale Eigenschaft der erzeugten Funktion einer Turing-Maschine (oder eines Algorithmus in einem anderen Berechenbarkeitsmodell) algorithmisch zu entscheiden.

Es sei \mathcal{P} die Menge aller partiellen Turing-berechenbaren Funktionen und $\mathcal{S} \subsetneq \mathcal{P}$ eine nicht-leere, echte Teilmenge davon. Außerdem sei eine effektive Nummerierung vorausgesetzt, die einer natürlichen Zahl $n \in \mathbb{N}$ die dadurch codierte Turing-Maschine M_n zuordnet. Dann ist die Menge $\mathcal{C}(\mathcal{S}) = \{n \mid \text{die von } M_n \text{ berechnete Funktion liegt in } \mathcal{S} \}$ nicht entscheidbar. "Sei U eine nicht-triviale Eigenschaft der partiellen berechenbaren Funktionen, dann ist die Sprache $L_U = \{ < M > \mid M \text{ berechnete } f \in U \}$ nicht entscheidbar."

- 9. Berechnungsmodelle
 - (a) Gebe ein Loop-Programm an, das die Funktion $n \to n^2 n$ berechnet

Solution:

(b) Gebe ein Loop Programm an, das die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit $f(n_1, n_2) = 2n_1n_2$ berechnet. Verwende nur elementare Anweisungen und keine Abkürzungen.

Solution:

(c) Gebe ein GoTo Programm an, das die Funktion $g: \mathbb{N} \to \mathbb{N}$ mit $g(n_1, n_2) = |n_1 - n_2|$ berechnet. Verwende nur elementare Anweisungen und keine Abkürzungen.

Solution:

(d) Gebe eine deterministische Turingmaschine M für das Eingabealphabet $\{0,1\}$ an, das folgende Funktion berechnet: Für Eingabe $a_1a_2...a_{n-1}a_n$ berechnet M die Ausgabe $a_na_1...a_{n-1}$ (letzte Symbol der Eingabe an erste Stelle).

- 10. Reduktionen
 - (a) Seien $A, L \subseteq \sum^*$ nichtleere Sprachen und A entscheidbar. Gebe eine Reduktion von $L \cup A$ auf L an.

Solution:

(b) Gebe eine Bedingung für A an, sodass $L \cup A \leq_p L$ für alle nichtleeren Sprachen $L \subseteq \sum^*$ gilt. Begründe.

Solution:

- 11. Komplexitätsklassen. Ergänze zu den Paaren von Komplexitätsklassen das Relationssymbol zur Teilmengenbeziehung.
 - (a) EXPSPACE ? EXPTIME

Solution: EXPSPACE \geq EXPTIME

(b) NP?P

Solution: $NP \ge P$

(c) NP? NPSPACE

Solution: $NP \leq NPSPACE$

(d) NPSPACE ? PSPACE

Solution: NPSPACE = PSPACE

12. Unentscheidbare Probleme: Gebe (mind vier) unterscheidbare Probleme an (als Menge oder als Eingabe-Frage-Paar).

Solution:

13. NP-vollständiges Problem: Gebe (mind. zwei) NP-vollständige Probleme an (als Menge oder Eingabe-Frage-Paar).

Solution:

Hamilton Kreis

- Eingabe: Graph(V,E)
- Frage: Kann der Graph so durchlaufen werden, dass jeder Knoten genau ein mal besucht/abgelaufen wird?
- 14. Polynomialzeitreduktion: Betrachte das Problem 4C, also die Menge der ungerichteten Graphen die sich mit vier Farben färben lassen.
 - (a) Gebe eine Polynomialzeitreduktion von 3C auf 4C an.

Solution:

(b) Zeige, dass wenn $4C \in P,$ dann gilt P = NP.