Universitatea Politehnica din Timișoara Facultatea Automatica și Calculatoare Specializarea Calculatoare și Tehnologia Informației

Sistem digital interactiv pentru efecte audio utilizând platforma încorporată pentru procesarea numerică a semnalelor

Candidat: Zsófia ÜLKEI

Coordonator Științific: Prof. Dr. Habil. Ing. Mihai Micea

Cuprins

- 1. Introducere
- 2. Analiza domeniului actual
- 3. Descriere generală
- **4.** Arhitectura software și hardware
- **5.** Efecte
- 6. Rezultate
- **7.** Concluzii și perspective

Introducere

- Domeniul principal:
 - prelucrarea numerică a semnalelor audio
- Contextul de realizare:
 - Rol demonstrativ
 - Laboratoarele DSPLabs
 - Coordonator: Prof. Dr. Habil. Ing. Mihai Micea

Domeniul actual

Software

Exemple:

- Audacity
- WavePad

Diverse sisteme de operare

Lucru cu fisiere

Moduri de editare (tăiere, copiere, inserare)

Adăugarea de efecte (+cele implementate)

Hardware

Exemplu:

Audio chip: LC823425

DSP integrat

MP3 decoder integrat

A/D integrat (10 biti)

Cantităti industriale

Proiect întreg

Exemplu:

Flectrosmash Pedal-Pi

Software+Hardware

Raspberry Pi Zero

C/C++

Efecte implementate

Intefata prin butoane, switch-uri

Biblioteca bcm2835

Descriere generală

- 2 module principale:
 - ▶ Modulul UI

Arhitectura software și hardware

Arhitectura hardware

Arhitectura software

Efecte

Amplificator

output[x] = gain * input[x]

Distorsiune

$$output[x] = \begin{cases} & \text{if input[x] > positiveTreshold, then positiveTreshold} \\ & \text{if negativeTreshold} \leq & \text{input[x]} \geq & \text{positiveTreshold then input[x]} \\ & \text{if input[x] < negativeTreshold, then negativeTreshold} \end{cases}$$

Efecte

Delay

output[x] = dry * input[x] + wet * input[x - delay]

Reverberație

Efecte

output[x] = dry * input[x] + wet * input[x - S(x)] S: $\mathbb{Z} \rightarrow \mathbb{Z}$, S - o funcție sinusoidală

Rezultate: Portabilitate, Modularitate

- Uşor realizat:
 - Adăugarea efectelor noi
 - Schimbarea componentelor hardware
 - Schimbarea sistemului de operare

Rezultate: Măsurarea latenței

Parametrii:

- Rata de eșantionare:
 - 22050Hz \triangleright
- Formatul eşantioanelor:
 - integer pe 16 biţi cu semn
 - little-endian \triangleright
- Numărul canalelor:
 - 2 (stereo)
- Mod de non-blocking
- Buffer = 2 * perioadă

t₩ 5,600ms

Rezultate: Utilizare de CPU

Parametrii:

⊳ Rata de eşantionare: 22050Hz

Formatul eşantioanelor:

integer pe 16 biţi cu semn

Numărul de canale: 2

- Modul non-blocking
- Mărimea buffer-ului:
- Mărimea perioadei:
 - ≥ 2048 de eşantion

Concluzii și perspective

Concluzii:

- Latență acceptabilă cu audio loopback
- Efectele = latență mai mare
- Utilizare de CPU mare

Perspective de dezvoltare:

- Scheduling
- Nucleu de timp real
- Hardware mai puternic
- Docker

Concluzii și perspective: Contribuții

- Alegerea componentelor
- Montarea sistemului din componentele:
 - Raspberry Pi Zero W, Fe-Pi Audio Z V2,
 Adafruit PiTFT 2.8" Touchscreen
 Display
- Implementarea programului:
 - ▷ Interfața grafică
 - Procesarea audio

- Implementarea programului:
 - Efectele: Amplificator, Delay,Distorsiune, Reverbaţie, Chorus
 - Realizarea înlănţuirii efectelor
- Efectuarea măsurătorilor:
 - Latenţa
 - ▶ Utilizarea CPU
- Planificarea direcţiilor de continuare a dezvoltării

Mulţumesc pentru atenţie!

Bibliografie

- Electrosmash Pedal-Pi: https://www.electrosmash.com/pedal-pi
- LC823425: <a href="https://eu.mouser.com/ProductDetail/ON-Semiconductor/LC823425-13W1-E?gs=z1AEhK4y%252b49FlJvE1uuPBw=="https://eu.mouser.com/ProductDetail/ON-Semiconductor/LC823425-13W1-E?gs=z1AEhK4y%252b49FlJvE1uuPBw==
- Raspberry Pi Zero: <u>https://www.raspberrypi.org/products/raspberry-pi-zero-w/</u>
- WavePad:
 - http://www.nch.com.au/wavepad/index.html
- Audacity:
 https://wiki.audacityteam.org/wiki/Audacity_Wiki_Home_Page