Introduction to Quantum Computing

Week 1: Quantum World

Taha Selim

t.i.m.m.selim2@hva.nl

Quantum Talent and Learning Center Amsterdam University of Applied Sciences

> Week 1 March 15th, 2024

Welcome to the Quantum World!

Agenda for today:

- 14:00-14:30 Setting up the workshop + Introduction + round of introductions from other teachers/TLCs.
- 14:30-14:45~15:00 Marten Teitsma will give a short presentation on the quantum software applications and the ecosystem.
- 15:00-15:30 \sim 15:45 Starting the first part of the presentation.
- 15:45-16:00 Bernardo will give a short presentation about the minor of applied quantum computing at HvA.
- 16:00-16:30 Continue with the workshop's presentation, ending the workshop with outline for the upcoming session next week.

Workshop scheme

Every 30 min or so we will have a feed from other QTLC groups.

Feel free to ask questions at any time!

It is an interactive workshop, we all learn from each other!

Session is **recoded** and will be shared with you.

We will use **Discord** for communication.

TLC hubs

Meet the other TLC hubs!

- We are here at Hogeschool van Amsterdam (HvA)- Amsterdam University of Applied Sciences.

TLC hubs

Meet the other TLC hubs!

- We are here at Hogeschool van Amsterdam (HvA)- Amsterdam University of Applied Sciences.
- Hogeschool Saxion Saxion University of Applied Sciences, Dr. ir. Tjeerd Bollmann, (TLC Enschede/Twente).

TLC hubs

Meet the other TLC hubs!

- We are here at Hogeschool van Amsterdam (HvA)- Amsterdam University of Applied Sciences.
- Hogeschool Saxion Saxion University of Applied Sciences, Dr. ir. Tjeerd Bollmann, (TLC Enschede/Twente).
- De Haagse Hogeschool (HHS)-The Hague University of Applied Sciences, Pascal van Den Bosch (TLC Quantum Delft/Leiden).

Meet the other TLC hubs!

- We are here at Hogeschool van Amsterdam (HvA)- Amsterdam University of Applied Sciences.
- Hogeschool Saxion Saxion University of Applied Sciences, Dr. ir. Tjeerd Bollmann, (TLC Enschede/Twente).
- De Haagse Hogeschool (HHS)-The Hague University of Applied Sciences, Pascal van Den Bosch (TLC Quantum Delft/Leiden).
 - Hogeschool Fontys -Fontys University of Applied Sciences, Dr. Mohammad-Amin Moradi (TLC Eindhoven).

Quantum ecosystem

Presentation, Marten Teitsma, professor of applied quantum computing at HvA

Quantum chemistry and quantum dynamics simulations

The quest to understand the formation of planets and origin of life!

Circumstellar/Protoplanetary Disks

- Persson, Magnus Vilhelm (2014)

- Bill Saxton, NRAO/AUI/NSF

Quantum chemistry and quantum dynamics simulations

During my PhD work: computationally expensive simulations of molecular interactions.

Image credit: Taha Selim, Al-generated image.

Quantum chemistry and quantum dynamics simulations

Would quantum computing help in performing these simulations?

Applications include: material design, drug discovery, · · · .

Image credit: Taha Selim, Al-generated image.

It is all about computing!

The need for digital twin, performing simulations and design

Image credit: Taha Selim, Al-generated image.

Curious Questions!

- What is the fastest computer in the world?
- What is the difference between classical and quantum computing?
- Why do we need Quantum Computing?
- What do you expect to have from quantum computing?
- Can Quantum Computing solve all problems?
- Can Quantum Computing break all encryptions?
- Can current AI be improved by Quantum Computing?
- Which one wins, AI or Quantum Computing?
- What is the future of Quantum Computing?

What is Quantum Mechanics?

Quantum mechanics is the language of the microscopic world!

With the language of quantum mechanics, we can do:

- Make designs of quantum sensors.
- Send and encrypt information.
- Design quantum systems to do computations.

What is the functional form of the following wave?

What is the functional form of the following wave?

Classical or Quantum superposition?

Classical superposition:

Two physical quantities are added together to make another third physical quantity.

$$y = A\sin(x)$$

Example of constructive and destructive interference of two waves.

Example of constructive and destructive interference of two waves.

The superposition of two waves: constructive interference,

$$y(x) = A\sin(x) + 1.5A\sin(x)$$

Example of constructive and destructive interference of two square waves.

The result of the superposition of the two waves: destructive interference,

Example of constructive and destructive interference of two square waves.

The result of the superposition of the two waves: destructive interference,

Example of classical superposition in electrostatics.

The resultant force acting on the upper electric charge:

Example of classical superposition in electrostatics.

The resultant force acting on the upper electric charge:

$$\vec{F}_{total} = \vec{F}_{12} + \vec{F}_{13}$$

Quantum superposition:

A quantum system can be in a superposition of two or more states. We can explain it using the following analogy:

A coin has a 50/50 probability of landing as either heads or tails:

Quantum superposition:

A quantum system can be in a superposition of two or more states. We can explain it using the following analogy:

A coin has a 50/50 probability of landing as either heads or tails:

Question: What state is the coin in while it is in the air? Is it heads or tails?

Quantum superposition:

A quantum system can be in a superposition of two or more states. We can explain it using the following analogy:

A coin has a 50/50 probability of landing as either heads or tails:

Question: What state is the coin in while it is in the air? Is it heads or tails? We can say that the coin is in a superposition of both heads and tails. When it lands, it has a definite state, either heads or tails.

Quantum superposition:

A quantum system can be in a superposition of two or more states. We can explain it using the following analogy:

A coin has a 50/50 probability of landing as either heads or tails:

Question: What state is the coin in while it is in the air? Is it heads or tails? We can say that the coin is in a superposition of both heads and tails. When it lands, it has a definite state, either heads or tails.

After the coin is tossed, it is in a superposition of heads and tails. Only when it fails on the ground, we will know the outcome:

Probability of landing on heads Probability of landing on tails

$$P(H) = 0.5$$

$$P(T) = 0.5$$

Energy quantization

Quantum superposition:

Example: Particle (electron) trapped in a box

Quantization of energy levels which a trapped particle in 1D well can have.

Taha Selim March 15th, 2024 Intro to Quantum Computing Workshop

20 / 27

Quantum superposition:

Schrödinger's cat:

Quantum superposition:

Schrödinger's cat:

Measurements: destroy the superposition of states.

Let's play!

Tik Tok Toe game:

https://tiqtaqtoe.com/

Let's play!

Tik Tok Toe game:

https://tiqtaqtoe.com/

Who wins? How did you win?

Refreshing 1

Discuss among yourselves whether the following quantities are quantized or continuous:

- 1 electric charge.
- 2 time.
- length.
- 4 energy.
- **6** cash.
- 6 paint color.

Question source: Hughes et al. (2021), Springer. Quantum Computing for the Quantum Curious.

Refreshing 2

Question:

An ink is created by mixing together 50% red ink and 50% yellow ink. An artist uses it to stamp a picture of a sun. If the ink behaves like a quantum system in a half-yellow, half-red quantum superposition, what are the different options for what the resulting picture could look like? Some options are shown in the figure.

Refreshing 3

Question:

If this controversial picture of a dress is always seen as blue/black by Student A and always seen as white/gold by Student B, is the dress in a quantum superposition? https://en.wikipedia.org/wiki/The_dress

Question source: Hughes et al. (2021), Springer. Quantum Computing for the Quantum Curious.

Questions?

Intro to Quantum Computing workshop: Taha Selim, t.i.m.m.selim2@hva.nl

Minor of Applied Quantum Computing @HvA, Dr. Bernardo Villalba Frias, b.r.villalba.frias@hva.nl

Quantum Software ecosystem and applications, Dr. Marten Teitsma, m.teitsma@hva.nl

Thank you

Thank you!