



# **Customer Segmentation**

**Customer Analytics** 

Dr. Vicenc Fernandez

```
",c.TRANSITION_DURATION=150,c
              &&d.replace(/.*(?=#[^\s]*$)/,"
              t("show.bs
             this.a
            ototype.
           le="tab
           .removeC
          e&&e()}va
         Transition
        .tab.noCon
       a-toggle="ta
      \text{var d=a(thi}
     s=a.extend({}}
     affix.data-api"🤋
    ;c.VERSION="3.3.7"
   llTop(),f=this.$elem
                                          ffix
  .unpin<=f.top)&&"bott
                                         his.
 c.prototype.getPinne
                                          &"bo
.scrollTop(),b=thig
this.checkPosit
```





# Customer Segmentation

# Why, why, why?

Customer Analytics, why?

Descriptive analytics (PAST), why?

Customer Segmentation, why?







### Introduction









## Market Matching Strategy



#### Segmentation

 Act of dissecting the marketplace into submarkets that require different marketing mixes

#### Targeting

 Process of reviewing market segments and deciding which one(s) to pursue

#### Positioning

 Establishing a differentiating image for a product or service in relation to its competition





# What is happening here?









# What is happening here?









# What is happening here?









#### Steps for Customer Segmentation



Types of Customer Segmentation

Variables for the Customer Segmentation Techniques for the Customer Segmentation







Variables for the Customer Segmentation

Techniques for the Customer Segmentation























We are working in an online company that sells fruit and vegetable

Who are our customers? How can we segment them?









We are working in Wallapop

Who are our customers? How can we segment them?









We are working in an airline.

Who are our customers? How can we segment them?





# Variables for the Customer Segmentation

Type of Customer
Segmentation

Variables for the Customer Segmentation

Techniques for the Customer Segmentation



| Demographic                                                                                                   | Geographic                                                                                                           |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Age, gender, household size, family status, income, race, occupation, religion, class, nationality, education | Location (country, region, state, city, neighborhood, postal code), distance, climate, population density, taste     |
| Psychographic                                                                                                 | Behavioral/Attitudinal                                                                                               |
| Lifestyle, activities, interests                                                                              | Benefits perceived/expected, loyalty, usage occasion/rate, user status, price sensitivity, product or brand attitude |





### Variables for the Customer Segmentation









# Techniques for the Customer Segmentation

Type of Customer Segmentation Variables for the Customer Segmentation Techniques for the Customer Segmentation

**AGNES Agglomerative Nesting** 



K-means clustering

Hierarchica clustering

DBSCAN - Density-Based Spatial Clustering of Applications with Noise





#### **Group Activity**

#### We have two datasets:

- transactions.csv, where we have all our customers' purchases
- customers.csv, where you have demographic information about our customers

You need to build a customer segmentation with the available information

- You cannot search information on the web
- You need to prepare 1 slide for presenting your results.

Groups of 3 people

30 minutes









# RFM Model

#### **RFM Model**









| ID   | Y1 | <b>Y2</b> | <i>Y3</i> | Y4 | <b>Y</b> 5 | <i>Y6</i> | <b>Y7</b> | <i>Y8</i> | <i>Y9</i> | Y10 |
|------|----|-----------|-----------|----|------------|-----------|-----------|-----------|-----------|-----|
| 0001 | 1  | 0         | 0         | 0  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0002 | 1  | 0         | 0         | 1  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0003 | 1  | 0         | 1         | 0  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0004 | 1  | 0         | 1         | 0  | 1          | 1         | 1         | ?         | ?         | ?   |
| 0005 | 1  | 0         | 1         | 1  | 1          | 0         | 1         | ?         | ?         | ?   |
| 0006 | 1  | 1         | 1         | 1  | 0          | 1         | 0         | ?         | ?         | ?   |
| 0007 | 1  | 1         | 0         | 1  | 0          | 1         | 0         | ?         | ?         | ?   |
| 8000 | 1  | 1         | 1         | 1  | 1          | 1         | 1         | ?         | ?         | ?   |
| 0009 | 1  | 1         | 1         | 1  | 1          | 1         | 0         | ?         | ?         | ?   |
| 0010 | 1  | 0         | 1         | 1  | 0          | 1         | 1         | ?         | ?         | ?   |
|      |    |           |           |    |            |           |           |           |           |     |

Who is the *best* customer?
Who is the person who has the highest probability to donate again?







| ID   | Y1 | <i>Y2</i> | <i>Y3</i> | <b>Y4</b> | <b>Y</b> 5 | <i>Y6</i> | <b>Y7</b> | <i>Y8</i> | <b>Y9</b> | Y10 |
|------|----|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----|
| 0001 | 1  | 0         | 0         | 0         | 0          | 0         | 0         | ?         | ?         | ?   |
| 0002 | 1  | 0         | 0         | 1         | 0          | 0         | 0         | ?         | ?         | ?   |
| 0003 | 1  | 0         | 1         | 0         | 0          | 0         | 0         | ?         | ?         | ?   |
| 0004 | 1  | 0         | 1         | 0         | 1          | 1         | 1         | ?         | ?         | ?   |
| 0005 | 1  | 0         | 1         | 1         | 1          | 0         | 1         | ?         | ?         | ?   |
| 0006 | 1  | 1         | 1         | 1         | 0          | 1         | 0         | ?         | ?         | ?   |
| 0007 | 1  | 1         | 0         | 1         | 0          | 1         | 0         | ?         | ?         | ?   |
| Bob  | 1  | 1         | 1         | 1         | 1          | 1         | 1         | ?         | ?         | ?   |
| 0009 | 1  | 1         | 1         | 1         | 1          | 1         | 0         | ?         | ?         | ?   |
| 0010 | 1  | 0         | 1         | 1         | 0          | 1         | 1         | ?         | ?         | ?   |
|      |    |           |           |           |            |           |           |           |           |     |

Who is the *best* customer?
Who is the person who has the highest probability to donate again?







#### FREQUENCY



# How many times did the donor give money in the last 7 years?





| ID   | <b>Y1</b> | <i>Y2</i> | <i>Y3</i> | <b>Y4</b> | <i>Y5</i> | <i>Y6</i> | <b>Y7</b> | <i>Y8</i> | <i>Y9</i> | Y10 |
|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|
| 0001 | 1         | 0         | 0         | 0         | 0         | 0         | 0         | ?         | ?         | ?   |
| 0002 | 1         | 0         | 0         | 1         | 0         | 0         | 0         | ?         | ?         | ?   |
| 0003 | 1         | 0         | 1         | 0         | 0         | 0         | 0         | ?         | ?         | ?   |
| 0004 | 1         | 0         | 1         | 0         | 1         | 1         | 1         | ?         | ?         | ?   |
| 0005 | 1         | 0         | 1         | 1         | 1         | 0         | 1         | ?         | ?         | ?   |
| 0006 | 1         | 1         | 1         | 1         | 0         | 1         | 0         | ?         | ?         | ?   |
| 0007 | 1         | 1         | 0         | 1         | 0         | 1         | 0         | ?         | ?         | ?   |
| Bob  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | ?         | ?         | ?   |
| 0009 | 1         | 1         | 1         | 1         | 1         | 1         | 0         | ?         | ?         | ?   |
| 0010 | 1         | 0         | 1         | 1         | 0         | 1         | 1         | ?         | ?         | ?   |
| •••  |           |           |           |           |           |           |           |           |           |     |

Who is the *worst* customer? Who is the person who has the lowest probability to donate again?









| ID   | <b>Y1</b> | <b>Y2</b> | <i>Y3</i> | Y4 | <b>Y</b> 5 | <i>Y6</i> | <b>Y7</b> | <i>Y8</i> | <i>Y9</i> | Y10 |
|------|-----------|-----------|-----------|----|------------|-----------|-----------|-----------|-----------|-----|
| Sara | 1         | 0         | 0         | 0  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0002 | 1         | 0         | 0         | 1  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0003 | 1         | 0         | 1         | 0  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0004 | 1         | 0         | 1         | 0  | 1          | 1         | 1         | ?         | ?         | ?   |
| 0005 | 1         | 0         | 1         | 1  | 1          | 0         | 1         | ?         | ?         | ?   |
| 0006 | 1         | 1         | 1         | 1  | 0          | 1         | 0         | ?         | ?         | ?   |
| 0007 | 1         | 1         | 0         | 1  | 0          | 1         | 0         | ?         | ?         | ?   |
| Bob  | 1         | 1         | 1         | 1  | 1          | 1         | 1         | ?         | ?         | ?   |
| 0009 | 1         | 1         | 1         | 1  | 1          | 1         | 0         | ?         | ?         | ?   |
| 0010 | 1         | 0         | 1         | 1  | 0          | 1         | 1         | ?         | ?         | ?   |
|      |           |           |           |    |            |           |           |           |           |     |

Who is the *worst* customer?
Who is the person who has the lowest probability to donate again?







#### FREQUENCY



# How many times did the donor give money in the last 7 years?





| ID   | <b>Y1</b> | <b>Y2</b> | <i>Y3</i> | Y4 | <b>Y</b> 5 | <i>Y6</i> | <b>Y7</b> | <i>Y8</i> | <i>Y9</i> | Y10 |
|------|-----------|-----------|-----------|----|------------|-----------|-----------|-----------|-----------|-----|
| Sara | 1         | 0         | 0         | 0  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0002 | 1         | 0         | 0         | 1  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0003 | 1         | 0         | 1         | 0  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0004 | 1         | 0         | 1         | 0  | 1          | 1         | 1         | ?         | ?         | ?   |
| 0005 | 1         | 0         | 1         | 1  | 1          | 0         | 1         | ?         | ?         | ?   |
| 0006 | 1         | 1         | 1         | 1  | 0          | 1         | 0         | ?         | ?         | ?   |
| 0007 | 1         | 1         | 0         | 1  | 0          | 1         | 0         | ?         | ?         | ?   |
| Bob  | 1         | 1         | 1         | 1  | 1          | 1         | 1         | ?         | ?         | ?   |
| 0009 | 1         | 1         | 1         | 1  | 1          | 1         | 0         | ?         | ?         | ?   |
| 0010 | 1         | 0         | 1         | 1  | 0          | 1         | 1         | ?         | ?         | ?   |
|      |           |           |           |    |            |           |           |           |           |     |

After Bob, who is the person who has the highest probability to donate again?









| ID   | <b>Y1</b> | <i>Y2</i> | <i>Y3</i> | Y4 | <b>Y</b> 5 | <i>Y6</i> | <b>Y7</b> | <i>Y8</i> | <b>Y9</b> | Y10 |
|------|-----------|-----------|-----------|----|------------|-----------|-----------|-----------|-----------|-----|
| Sara | 1         | 0         | 0         | 0  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0002 | 1         | 0         | 0         | 1  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0003 | 1         | 0         | 1         | 0  | 0          | 0         | 0         | ?         | ?         | ?   |
| Mary | 1         | 0         | 1         | 0  | 1          | 1         | 1         | ?         | ?         | ?   |
| 0005 | 1         | 0         | 1         | 1  | 1          | 0         | 1         | ?         | ?         | ?   |
| 0006 | 1         | 1         | 1         | 1  | 0          | 1         | 0         | ?         | ?         | ?   |
| 0007 | 1         | 1         | 0         | 1  | 0          | 1         | 0         | ?         | ?         | ?   |
| Bob  | 1         | 1         | 1         | 1  | 1          | 1         | 1         | ?         | ?         | ?   |
| John | 1         | 1         | 1         | 1  | 1          | 1         | 0         | ?         | ?         | ?   |
| 0010 | 1         | 0         | 1         | 1  | 0          | 1         | 1         | ?         | ?         | ?   |
|      |           |           |           |    |            |           |           |           |           |     |

After Bob, who is the person who has the highest probability to donate again?









# Why did you decide Mary or John?

**RECENCY**: How recently did the donor give money? When was the last time the donor give money?



**FREQUENCY**: How many times did the donor give money in the last 7 years?





# Why did you decide Mary or John?



**FREQUENCY**: How many times did the donor give money in the last 7 years?







### Donor Types???





DORMANT: This person has not given recently, but is likely to give again with the right development prompts

LAPSED: This person has not given recently and is not likely to give again





| ID   | <b>Y1</b> | <i>Y2</i> | <i>Y3</i> | <b>Y4</b> | <b>Y</b> 5 | <i>Y6</i> | <b>Y7</b> | <i>Y8</i> | <i>Y9</i> | Y10 |
|------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----|
| Sara | 1         | 0         | 0         | 0         | 0          | 0         | 0         | ?         | ?         | ?   |
| 0002 | 1         | 0         | 0         | 1         | 0          | 0         | 0         | ?         | ?         | ?   |
| 0003 | 1         | 0         | 1         | 0         | 0          | 0         | 0         | ?         | ?         | ?   |
| Mary | 1         | 0         | 1         | 0         | 1          | 1         | 1         | ?         | ?         | ?   |
| 0005 | 1         | 0         | 1         | 1         | 1          | 0         | 1         | ?         | ?         | ?   |
| 0006 | 1         | 1         | 1         | 1         | 0          | 1         | 0         | ?         | ?         | ?   |
| 0007 | 1         | 1         | 0         | 1         | 0          | 1         | 0         | ?         | ?         | ?   |
| Bob  | 1         | 1         | 1         | 1         | 1          | 1         | 1         | ?         | ?         | ?   |
| John | 1         | 1         | 1         | 1         | 1          | 1         | 0         | ?         | ?         | ?   |
| 0010 | 1         | 0         | 1         | 1         | 0          | 1         | 1         | ?         | ?         | ?   |
|      |           |           |           |           |            |           |           |           |           |     |



What type of Donor are Mary and John? Alive, Dormant, or Lapsed





| ID   | <b>Y1</b> | <i>Y2</i> | <i>Y3</i> | Y4 | <b>Y</b> 5 | <i>Y6</i> | <b>Y7</b> | <i>Y8</i> | <i>Y9</i> | Y10 |
|------|-----------|-----------|-----------|----|------------|-----------|-----------|-----------|-----------|-----|
| Sara | 1         | 0         | 0         | 0  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0002 | 1         | 0         | 0         | 1  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0003 | 1         | 0         | 1         | 0  | 0          | 0         | 0         | ?         | ?         | ?   |
| Mary | 1         | 0         | 1         | 0  | 1          | 1         | 1         | ?         | ?         | ?   |
| 0005 | 1         | 0         | 1         | 1  | 1          | 0         | 1         | ?         | ?         | ?   |
| 0006 | 1         | 1         | 1         | 1  | 0          | 1         | 0         | ?         | ?         | ?   |
| 0007 | 1         | 1         | 0         | 1  | 0          | 1         | 0         | ?         | ?         | ?   |
| Bob  | 1         | 1         | 1         | 1  | 1          | 1         | 1         | ?         | ?         | ?   |
| John | 1         | 1         | 1         | 1  | 1          | 1         | 0         | ?         | ?         | ?   |
| Cris | 1         | 0         | 1         | 1  | 0          | 1         | 1         | ?         | ?         | ?   |
|      |           |           |           |    |            |           |           |           |           |     |

Who is more valuable: Mary or Cris? Both have 5 donations







# Why did you decide Mary or John?

**RECENCY**: How **recently** did the donor give money? When was the **last time** the donor give money?



**FREQUENCY**: How many times did the donor give money in the last 7 years?





| ID   | <b>Y1</b> | <i>Y2</i> | <i>Y3</i> | Y4 | <b>Y</b> 5 | <i>Y6</i> | <b>Y7</b> | <i>Y8</i> | <b>Y9</b> | Y10 |
|------|-----------|-----------|-----------|----|------------|-----------|-----------|-----------|-----------|-----|
| Sara | 1         | 0         | 0         | 0  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0002 | 1         | 0         | 0         | 1  | 0          | 0         | 0         | ?         | ?         | ?   |
| 0003 | 1         | 0         | 1         | 0  | 0          | 0         | 0         | ?         | ?         | ?   |
| Mary | 1         | 0         | 1         | 0  | 1          | 1         | 1         | ?         | ?         | ?   |
| 0005 | 1         | 0         | 1         | 1  | 1          | 0         | 1         | ?         | ?         | ?   |
| 0006 | 1         | 1         | 1         | 1  | 0          | 1         | 0         | ?         | ?         | ?   |
| 0007 | 1         | 1         | 0         | 1  | 0          | 1         | 0         | ?         | ?         | ?   |
| Bob  | 1         | 1         | 1         | 1  | 1          | 1         | 1         | ?         | ?         | ?   |
| John | 1         | 1         | 1         | 1  | 1          | 1         | 0         | ?         | ?         | ?   |
| Cris | 1         | 0         | 1         | 1  | 0          | 1         | 1         | ?         | ?         | ?   |
|      |           |           |           |    |            |           |           |           |           |     |

Could you predict what is going to happen with Cris in the following 3 years?







| ID   | Y1 | <i>Y2</i> | <i>Y3</i> | <b>Y4</b> | <b>Y</b> 5 | Y6 | <b>Y7</b> | <i>Y8</i> | <b>Y9</b> | Y10 |
|------|----|-----------|-----------|-----------|------------|----|-----------|-----------|-----------|-----|
| Cris | 1  | 0         | 1         | 1         | 0          | 1  | 1         | ?         | ?         | ?   |



| ID   | Y1 | <i>Y2</i> | <i>Y3</i> | <b>Y4</b> | <b>Y</b> 5 | Y6 | <b>Y7</b> | <i>Y8</i> | <i>Y9</i> | Y10 |
|------|----|-----------|-----------|-----------|------------|----|-----------|-----------|-----------|-----|
| Cris | 1  | 0         | 1         | 1         | 0          | 1  | 1         | 0         | 1         | 1   |

But, do you think that people are doing this kind of things??

Could you predict what is going to happen with Cris in the following 3 years?











# RFM Segmentation

### The Monetary Score

Calculate the total revenue by each customer



Define the number of bins for the score

Bin the revenue values: the highest value is the most highest revenue





### The Monetary Score

|   | Customer | Revenue |
|---|----------|---------|
|   | 1        | 2542    |
|   | 2        | 2432    |
|   | 3        | 2251    |
|   | 4        | 2000    |
| ( | 5        | 1987    |
|   | 6        | 1875    |
|   | 7        | 1871    |
| ( | 8        | 1750    |
|   | 9        | 1300    |
|   | 10       | 1245    |
| ( | 11       | 1123    |
|   | 12       | 145     |





### Frequency Score

Calculate the total number of purchases

Define the number of bins for the score

Bin the frequencyvalues: the highest value is the most frequency







### The Recency Score

Select the date of most recent purchase



Define the number of bins for the score

Bin the recency values: the highest value is the most recency





### **RFM Score**

RFM score is generated which is simply the three individual scores concatenated into a single value.

| recency_score | frequency_score | monetary_score | rfm_score |
|---------------|-----------------|----------------|-----------|
| 2             | 2               | 2              | 222       |
| 4             | 5               | 5              | 455       |
| 5             | 1               | 1              | 511       |
| 5             | 4               | 4              | 544       |
| 5             | 4               | 5              | 545       |
| 5             | 4               | 3              | 543       |
| 4             | 5               | 5              | 455       |







### **RFM Segmentation**

| Segment            | Description                                                | R     | F     | М     |
|--------------------|------------------------------------------------------------|-------|-------|-------|
| Champions          | Bought recently, buy often and spend the most              | 4 - 5 | 4 - 5 | 4 - 5 |
| Loyal Customers    | Spend good money. Responsive to promotions                 | 2 - 5 | 3 - 5 | 3 - 5 |
| Potential Loyalist | Recent customers, spent good amount, bought more than once | 3 - 5 | 1 - 3 | 1 - 3 |
| New Customers      | Bought more recently, but not often                        | 4 - 5 | <= 1  | <= 1  |
| Promising          | Recent shoppers, but haven't spent much                    | 3 - 4 | <= 1  | <= 1  |
| Need Attention     | Above average recency, frequency & monetary values         | 2 - 3 | 2 - 3 | 2 - 3 |
| About To Sleep     | Below average recency, frequency & monetary values         | 2 - 3 | <= 2  | <= 2  |
| At Risk            | Spent big money, purchased often but long time ago         | <= 2  | 2 - 5 | 2 - 5 |
| Can't Lose Them    | Made big purchases and often, but long time ago            | <= 1  | 4 - 5 | 4 - 5 |
| Hibernating        | Low spenders, low frequency, purchased long time ago       | 1 - 2 | 1 - 2 | 1 - 2 |
| Lost               | Lowest recency, frequency & monetary scores                | <= 2  | <= 2  | <= 2  |











# Clustering

### K-Means

K-means clustering tries to find the centroids of a fixed number of clusters of points in a high-dimensional space.

The idea is very simple: to cluster cases, in other words, to group cases.

The algorithm is recursive and goes as follows

- Fix the number of clusters at some integer greater than or equal to 2
- Start with the "centroids" of each cluster
- Assign points to their closest centroid; cluster membership corresponds to the centroid assignment
- Recalculate centroid positions and repeat.















# 3 clusters



































































#### K-Means

> kmeansObj <- kmeans(dataFrame, centers = 3)</pre>

- > kmeansObj\$cluster
- > kmeansObj\$center

- > plot(x, y, col=kmeansObj\$cluster, pch=19, cex=2)
- > points(kmeansObj\$centers, col=1:3, pch=3, cex=3, lwd=3)







### **RFM Segmentation**

Let's see what we can do!!



