FEDERAL UNIVERSITY OF SÃO CARLOS

CENTER OF EXACT SCIENCES AND TECHNOLOGY GRADUATE PROGRAM IN MATHEMATICS

Alex Melges Barbosa

Characteristic Classes of Topological and Generalized Manifolds

Alex Melges Barbosa melges.ab@gmail.com LinkedIn profile GitHub profile

Characteristic Classes of Topological and Generalized Manifolds

Thesis submitted to the Graduate Program in Mathematics at the Federal University of São Carlos as part of the requirements for the degree of PhD in Mathematics

Advisor: Prof. Dr. Edivaldo Lopes dos Santos edivaldo@ufscar.br

Acknowledgements

First of all, I would like to thank God for the opportunities and doors that have opened throughout my 11-year academic journey, spanning my undergraduate, master's, and doctoral degrees. There have been many moments—both good and challenging—that have shaped me into the person and professional I am today.

I would also like to express my gratitude to my parents, Antonio Carlos and Edith, and my siblings, Carol and André, who have been my unwavering support every day.

A special thanks goes to two individuals who have been my mentors throughout this process: Edivaldo and João Peres. They have not only helped shape me into the mathematician I am today but, more importantly, have played a key role in shaping the person I've become. Thank you both very much.

Last but not least, I want to thank my friends, who have been like a second family to me during this long journey. There's no need for me to mention them by name, as only those who have lifted me up during my stumbles and celebrated my successes with me truly understand the depth of my gratitude and affection for them.

This work was supported financially by CAPES.

In memory of my father, Antonio Carlos Barbosa. Unfortunately, you couldn't be physically present on the day of my defense, but you certainly were and will always be present in the hearts of our entire family. Thank you for everything!

Abstract

In this work, we will first present generalized fiber bundles, a concept developed by Fadell with the aim of generalizing vector bundles, Stiefel-Whitney classes, and Wu's formula from the context of smooth manifolds to topological manifolds. After that, we will use generalized fiber bundles to obtain original results concerning the Thom, Stiefel-Whitney, Wu, and Euler classes of topological manifolds, as well as to provide a second proof of Wu's formula for topological manifolds and to establish the topological version of the Poincaré-Hopf Theorem. Finally, we will use Poincaré and Poincaré-Lefschetz dualities to construct the Stiefel-Whitney classes of generalized manifolds in a broader manner, aiming to present, for the first time in the literature, a proof of Wu's formula for such manifolds.

Keywords: characteristic classes, generalized fiber bundles, topological manifolds, generalized manifolds, Wu's formula.

Contents

1	Introduction	10
2	Bundles	17
3	Characteristic Classes of Topological Manifolds	18
4	Applications in Closed Topological Manifolds	19
5	Characteristic Classes of Generalized Manifolds	20
A	Singular (Co)homology	21
Reference Index		22

List of Figures

List of Notations

- 1. Saying that $f: X \to Y$ is a map means the same as saying that f is a continuous function between topological spaces.
- 2. $f: X \rightleftharpoons Y: g$ denotes two maps when $f: X \to Y$ and $g: Y \to X$, not necessarily inverses of each other.
- 3. $1: X \to X$ denotes the identity map on X.
- 4. f^{-1} denotes the preimage of a map f, as well as its inverse mapping (when it exists).
- 5. If $f: X \to Y$ is a map, then $f(\underline{\ })$ denotes f(x) for every $x \in X$.
- 6. If $H: X \times Y \to Z$ is a map defined on a Cartesian product, then $H(\underline{\ },y)$ denotes H(x,y) for every $x \in X$. The same holds for $H(x,\underline{\ })$.
- 7. $p_i: X_1 \times \cdots \times X_n \to X_i$ denotes the projection on the *i*-th factor.
- 8. $d: X \to X \times X$ denotes the diagonal map given by d(x) = (x, x).
- 9. Saying that $U \subset X$ is an open neighborhood of some subset $A \subset X$ means the same as saying that U is an open subspace of X that contains A.
- 10. Saying that \mathcal{U} is an open cover of a topological space B means the same as saying that $\mathcal{U} = \{U \subset B\}$, such that $U \subset B$ is an open subspace of B for every $U \in \mathcal{U}$ and $\bigcup_{U \in \mathcal{U}} U = B$.
- 11. $X \approx Y$ denotes when two topological spaces are homeomorphic.
- 12. $f \sim g$ denotes when two maps are homotopic.
- 13. $X \sim Y$ denotes when two topological spaces have the same type of homotopy.
- 14. $G_1 \cong G_2$ denotes when two algebraic objects are, appropriately, isomorphic.
- 15. $\mathbb{S}^{n-1} = \{ x \in \mathbb{R}^n : ||x|| = 1 \}.$
- 16. $D^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}.$
- 17. $B^n = \{x \in \mathbb{R}^n : ||x|| < 1\}.$
- 18. $I = [0, 1] \subset \mathbb{R}$.

- 19. X^I denotes the topological space of paths in X.
- 20. $\Omega(X, x_0) = \{ \omega \in X^I : \omega(0) = \omega(1) = x_0 \}.$
- 21. $H_k(X, A; R)$ and $H^k(X, A; R)$ denote the k-th R-modules of singular homology and cohomology, respectively, of the pair (X, A) with coefficients in a commutative ring R with unity.
- 22. $H_k^c(X,A;R)$ and $H_c^k(X,A;R)$ denote, respectively, the k-th R-modules of singular homology and cohomology with compact support.
- 23. $\widetilde{H}_k(X, A; R)$ and $\widetilde{H}^k(X, A; R)$ denote, respectively, the k-th R-modules of reduced singular homology and cohomology.
- 24. $\check{H}^k(X,A;R)$ denotes the k-th R-module of Čech cohomology.
- 25. $H^k(X,A;R)=(x)$ denotes that the k-th R-module of cohomology of the pair (X,A) is generated by the element $x\in H^k(X,A;R)$. The same applies for homology modules.
- 26. If $x \in H^k(X, A; R)$, then we denote |x| = k. The same applies for homology modules.
- 27. <,>: $H^k(X,A;R) \otimes H_k(X,A;R) \to R$ denotes the Kronecker product, which maps $\varphi \otimes \sigma \mapsto <\varphi, \sigma>$.
- 28. $\frown: H_k(X, A \cup B; R) \otimes H^l(X, A; R) \to H_{k-l}(X, B; R)$ denotes the cap product, which maps $\sigma \otimes \varphi \mapsto \sigma \frown \varphi$.
- 29. $\smile: H^k(X,A;R) \otimes H^l(X,B;R) \to H^{k+l}(X,A \cup B;R)$ denotes the cup product, which maps $\varphi \otimes \psi \mapsto \varphi \smile \psi$.
- 30. $\times: H^k(X,A;R) \otimes H^l(Y,B;R) \to H^{k+l}(X \times Y,(X \times B) \cup (A \times Y);R)$ denotes the cross product, which maps $\varphi \otimes \psi \mapsto \varphi \times \psi$.

Introduction

"Between the 4th and 10th of September 1935, during the International Congress of Topology held in Moscow, several works were presented that would forever change the future of Algebraic Topology, with some of these works now considered foundational research lines in this theory. Among these works, we can mention:

- *The introduction by Witold Hurewicz to homotopy groups.*
- The lectures by Heinz Hopf and Hassler Whitney on vector fields and sphere bundles, which initiated the study of vector bundles and, consequently, characteristic classes.
- The independent introductions by James Alexander and Andrei Kolmogorov to cohomology theory, as well as the cup product."

In this work, we will contribute to the theory of characteristic classes, more specifically, characteristic classes of topological and generalized manifolds.

After this historical context on the emergence of characteristic class theory, we will begin introducing the basic concepts used for the development of this work.

In 1955, Nash introduced in [11] the concept that would become known as the field of non-singular paths of a topological manifold, which can be understood as the topological version of a non-zero vector field. Essentially, Nash showed that given a smooth manifold M and fixing a point $b \in M$, the space of non-zero tangent vectors of M at b can also be defined from the topological viewpoint, up to a homotopy equivalence, as the set:

$$\{\omega \in M^I : \omega(t) = b \Leftrightarrow t = 0\}$$

A decade later, in 1965, Fadell defined in [6] generalized fiber bundles, a concept that not only generalized vector bundles, but also allowed the extension, through Nash's ideas in [11], of the notions of tangent and normal fiber bundles from the context of smooth manifolds to topological manifolds. Furthermore, Fadell constructed the Stiefel-Whitney classes of generalized fiber bundles in order to obtain Whitney's duality for specific topological embeddings and to prove the Wu formula for topological manifolds.

The theory developed by Fadell in [6] will serve as the foundation for the development of our entire work, which can be divided into two parts:

- The first part will consist of chapters 2, 3, and 4. These chapters can be interpreted as a modern re-reading of the results obtained by Fadell in [6], as well as a continuation of the same, since we will present additional results both on generalized fiber bundles themselves and on Thom, Stiefel-Whitney, Euler, and Wu classes of topological manifolds.
- The second part of this work will consist solely of chapter 5, in which we will
 construct more extensively the Stiefel-Whitney classes of generalized manifolds in
 order to present for the first time in the literature a proof of the Wu formula for such
 manifolds.

Now, we will look in more detail at how we will organize the structure of our work, pointing out our contributions and the relevance of the results that will be presented here.

In chapter 2, we will begin our work by presenting the studies conducted on generalized fiber bundles, a tool developed by Fadell in [6], which not only generalized the concepts of tangent and normal vector bundles from the context of smooth manifolds to topological manifolds, but also allowed him to define the Stiefel-Whitney classes and prove Whitney's duality and the Wu formula for the context of topological manifolds.

Concatenating definitions ??, ??, and ??, we can define a generalized fiber bundle more directly as follows:

Definition. Given E and B topological spaces, $E_0 \subset E$ and $p: E \to B$ a onto map, we call the pair $(\mathcal{F}, \mathcal{F}_0) = (E, E_0, p, B)$ an \mathbb{R}^n -generalized fiber bundle when:

- 1. For any maps $h: X \to E$ and $H: X \times I \to B$, such that $H(_, 0) = p \circ h$, there exists a map $\widetilde{H}: X \times I \to E$ such that $\widetilde{H}(_, 0) = h$ and $p \circ \widetilde{H} = H$.
- 2. If $x_0 \in X$ is such that $h(x_0) \in E_0$, then $\widetilde{H}(x_0, \underline{\ }) \in E_0$.
- 3. There exists a map $s: B \to E$ such that $E_0 = E s(B)$.
- 4. For all $b \in B$, $(p^{-1}(b), p^{-1}(b) \cap E_0) \sim (\mathbb{R}^n, \mathbb{R}^n \{0\})$.

With this definition, we can interpret a generalized fiber bundle as a fibration with the following characteristics:

- The total space is a pair of topological spaces.
- There is always at least one global section.
- The fiber behaves, up to homotopy equivalence, like a Euclidean space.

During the reading of Chapter 2, the reader will notice that the development of the chapter will not be as straightforward compared to the definition above, since our main goal will be to present the theory of generalized fiber bundles in a more detailed way and using a more modern language than the results presented by Fadell in the first half of [6].

More explicitly, we will show in Example ?? how generalized fiber bundles indeed generalize vector bundles, and in Proposition ?? how the notion of isomorphism between

vector bundles remains valid when extended to the category of generalized fiber bundles. We will also show that it is possible to construct new generalized fiber bundles from others, just as it happens with vector bundles, for example: restriction bundles, product bundles, and Whitney sum bundles.

Although Chapter 2 is a preliminary chapter, we will contribute with original results concerning the pullback generalized fiber bundle, which was developed by Brown in [4] but was neither cited nor used by Fadell in [6]. These results will prove to be quite relevant when we use them in the construction of some maps regarding characteristic classes of topological manifolds in Chapters 3 and 4.

In Chapter 3, we will address the topic of characteristic classes of generalized bundles and topological manifolds, more specifically, Thom classes, Stiefel-Whitney classes, and Euler classes. Initially, we will introduce the notion of R-orientability of generalized fiber bundles, where R is a commutative ring with unity, and their respective Thom classes, concepts originally proposed by Fadell in [6], but little explored by him, since the main topic developed in the second half of [6] was about Stiefel-Whitney classes, in which case orientability is not a concern.

Thus, we will detail a little more the definition of R-orientability of generalized fiber bundles and present some technical results on the behavior of Thom classes under pullback and product generalized bundles, as well as show what happens when we reverse the orientability of a generalized fiber bundle and the relation between the dimension of a \mathbb{Z} -orientable topological manifold and the Thom class of its tangent generalized fiber bundle. Even though these results are already known in the context of vector bundles and smooth manifolds, they can be considered original since they have not yet been described in the context of generalized fiber bundles and topological manifolds.

The second topic we will address in Chapter 3 will be about Stiefel-Whitney classes. The purpose of this topic will be to rewrite the main properties and consequences of these classes, already widespread in the literature, for the context of generalized fiber bundles and topological manifolds, following the same steps used by Milnor in ([10], Chapter 8) for vector bundles and smooth manifolds. In doing so, we will offer a broader, more modern, and detailed reinterpretation of the results proposed by Fadell in the second half of [6]. Our contributions to this topic will involve results concerning pullback generalized fiber bundles.

The third and last topic addressed in Chapter 3 will be about Euler classes. Differently from Stiefel-Whitney classes, Euler classes can only be defined for \mathbb{Z} -orientable generalized fiber bundles. Thus, due to the technical lemmas related to Thom classes of \mathbb{Z} -orientable generalized fiber bundles obtained at the beginning of Chapter 3, we will be able to conclude several consequences and applications concerning Euler classes of generalized fiber bundles and \mathbb{Z} -orientable topological manifolds. In this topic, except for Proposition ??, all other results will be original, being generalizations of known results about Euler classes for vector bundles and smooth manifolds. Among these generalizations, we highlight:

Proposition 3.7. Let $(\mathcal{F}, \mathcal{F}_0) = (E, E_0, p, B)$ be an \mathbb{R}^n -generalized fiber bundle that is \mathbb{Z} -orientable. If $(\mathcal{F}, \mathcal{F}_0)$ admits a section $s : B \to E$ such that $s(B) \subset E_0$, then

$$e(\mathcal{F}, \mathcal{F}_0) = 0.1$$

The proposition above, in its version for vector bundles, is widely known, as it allows interpreting the Euler class of a vector bundle as an obstruction to the existence of a nowhere-vanishing section. In this work, we will present the generalized version of this interpretation, which will allow us to obtain the main application related to the Euler class in Chapter 4, the topological version of the Poincaré-Hopf theorem.

Up to this point, the reader should already have noticed the main goal of Chapters 2 and 3 of our work, which is to structure in detail and using a more up-to-date language the theory of generalized fiber bundles and their characteristic classes, while also presenting several technical contributions, aiming to generalize applications regarding characteristic classes of smooth manifolds to the context of topological manifolds, as we will see next.

The conclusion of our work regarding characteristic classes of generalized fiber bundles will be presented in Chapter 4, where we will present three major applications with original technical proofs concerning Stiefel-Whitney, Euler, and Wu classes of closed topological manifolds. Initially, we will present an alternative proof of the topological version of the famous Wu formula, which relates the Stiefel-Whitney and Wu classes of a smooth manifold through Steenrod squares.

In [6], Fadell uses generalized fiber bundles to give a first proof of Wu's formula for topological manifolds, based on the techniques used by Milnor in ([9], Chapter 9). Furthermore, the preliminary results that Fadell develops to prove Wu's formula are all in the framework of singular (co)homology \mathbb{Z}_2 -modules. Meanwhile, the alternative proof of Wu's formula for topological manifolds that we will present in Chapter 4 will be based on different techniques also introduced by Milnor, now found in ([10], Chapter 11).

Comparing the proofs presented by us in this work and by Fadell in [6], the main differences will be found in the preliminary lemmas used in Wu's formula, as we will prove them in the framework of singular (co)homology R-modules with $R = \mathbb{Z}$ or $R = \mathbb{Z}_2$. Since we will use the same sequence of results employed by Milnor in [10], now using generalized fiber bundles instead of vector bundles, our main contribution will be obtaining the case $R = \mathbb{Z}$ of the following result:

Lemma 4.1. Let M^m be a closed, connected, R-orientable topological manifold with $R = \mathbb{Z}$ or $R = \mathbb{Z}_2$, $b \in M$ arbitrary, $j_b : (M, M - \{b\}) \hookrightarrow (M \times M, (M \times M) - \Delta)$ the canonical inclusion, $[M]_b \in H_m(M, M - \{b\}; R)$ the local R-orientation class of M at b, and $(\tau') \in H^m(M \times M, (M \times M) - \Delta; R)$ the generator uniquely defined by the Thom class of the tangent generalized fiber bundle of M. Then:

$$< j_b^*(\tau'), [M]_b > = 1 \in R$$

The proof of the lemma above, in its version for smooth manifolds, can be found in ([10], Lemma 11.7, p. 123), where the Riemannian structure of the manifold and the existence of the exponential map are used, whereas our proof will be entirely algebraic, allowing generalization to the context of topological manifolds, which will be crucial for the topological applications of the Euler class.

 $^{{}^{1}}e(\mathcal{F},\mathcal{F}_{0})$ will denote the Euler class of the generalized fiber bundle $(\mathcal{F},\mathcal{F}_{0})$.

The second application of Chapter 4 will concern Euler classes. In fact, we will present two applications on this topic, one being the relation between the Euler class and the Euler characteristic of a topological manifold, and the other being the topological version of the Poincaré-Hopf theorem. The reader will notice the importance of the $R=\mathbb{Z}$ case of Lemma 4.1 for the first application, whose statement is as follows:

Theorem 4.2. If M is a closed, connected, and \mathbb{Z} -orientable topological manifold, then²:

$$< e(M), [M] > = \chi(M >$$

For the second map involving the Euler class, we will need to define the concept of a path field on a topological manifold, which was introduced by Nash in [11] as follows:

Definition 4.1. A path field on a topological manifold M is any section of its generalized fiber bundle $(\tau M, \tau_0 M) = (TM, T_0 M, p, M)$. Moreover, a nonsingular path field on M is a section $s: M \to TM$ such that $s(M) \subset T_0 M$.

As we will show in Chapter 4, generalized fiber bundles will allow us to generalize the notion of nowhere-vanishing vector fields from the smooth manifold context to the topological manifold setting, since a smooth manifold admits a nowhere-vanishing vector field if and only if it admits a nonsingular path field. With that, we will be able to prove the topological version of the Poincaré-Hopf theorem, whose statement is:

Theorem 4.3. Let M be a closed, connected, and \mathbb{Z} -orientable topological manifold. If M admits a nonsingular path field, then $\chi(M) = 0$.

This result was first presented by Brown in [4], using essentially Lefschetz numbers in his proof. In our work, we will present an alternative proof of this result using the Euler class.

As the final map in Chapter 4, we will see how some technical results about generalized bundles will allow us to prove the following:

Theorem 4.4. If $i: M^m \hookrightarrow S^{m+k}$ is a locally flat embedding³ between closed, connected topological manifolds with trivial normal generalized fiber bundle, then:⁴

$$v(M) = i^*(v(S))$$

At first glance, the theorem above seems quite clear and straightforward, since if we replace the total Wu classes with the total Stiefel-Whitney classes, this result becomes an immediate consequence of Whitney duality. However, upon closer examination of the proof of Theorem 4.4 in its version for vector bundles and smooth manifolds, as given

 $^{^{2}}e(M)$, [M], and $\chi(M)$ will denote, respectively, the Euler class, the global orientation class, and the Euler characteristic of the manifold M.

³A locally flat embedding is a topological embedding that locally behaves like a smooth embedding, whose formal definition can be found in Definition 2.14.

 $^{{}^{4}}v(M)$ and v(S) will denote, respectively, the total Wu classes of M and S.

by Stong in [13] and presented in more detail in [12], it becomes evident that the proof makes direct use of the existence of a tubular neighborhood for smooth embeddings.

Since we cannot guarantee the existence of a tubular neighborhood in the topological context, our main contribution was to circumvent this problem using only results about generalized fiber bundles, showing that the existence of a tubular neighborhood is not essential, but rather certain algebraic consequences of a locally flat embedding.

In the last chapter of our work, Chapter 5, we will present for the first time in the literature a proof of Wu's formula in the context of generalized manifolds, using their Poincaré and Poincaré-Lefschetz dualities. To this end, we will begin the chapter with a brief summary, based on [1], [8], and [3], about the concept of generalized manifolds. More explicitly, the constructions in this chapter will be carried out for \mathbb{Z}_2 -homological ENR-manifolds, which are particular generalized manifolds. For convenience, we will continue to refer to these spaces simply as generalized manifolds.

In this initial summary, we will see that generalized manifolds are essentially topological spaces that behave like topological manifolds in the realm of singular (co)homology \mathbb{Z}_2 -modules. In particular, we will be able to construct the Wu classes for such manifolds, as well as their Poincaré and Poincaré-Lefschetz dualities.

After establishing these objects, we will associate to each embedding $s: M^m \to N^{2m}$ between compact, connected generalized manifolds, such that there exists a retraction $p: N \to M$, its transfer isomorphism given by the following composition of the Poincaré-Lefschetz duality of the embedding s with the Poincaré duality of the manifold M:

$$s_!: H_k(N, N-M; \mathbb{Z}_2) \xrightarrow{\mathcal{D}_{N,M}^{-1}} H^{2m-k}(M; \mathbb{Z}_2) \xrightarrow{\mathcal{D}_M} H_{k-m}(M; \mathbb{Z}_2)$$

Thus, the transfer isomorphism associated to the embedding s will allow us to define the Thom class also associated to the embedding s as the generator:

$$(\tau_s) = H^m(N, N - M; \mathbb{Z}_2)$$

Inspired by the techniques presented by Dold in ([5], Chapter 8), we will demonstrate that the homomorphism $\phi_s: H^k(M;\mathbb{Z}_2) \to H^{k+m}(N,N-M;\mathbb{Z}_2)$ given by $\phi_s(x) = p^*(x) \smile \tau_s$ is, in fact, the dualization (via Universal Coefficients) of the transfer isomorphism $s_!$.

Having done this, we will call ϕ_s the Thom isomorphism associated to the embedding s and define the k-th Stiefel-Whitney class associated to the embedding s as:

$$w_k(s) = \phi_s^{-1} \circ Sq^k(\tau_s) \in H^k(M; \mathbb{Z}_2)$$

In particular, we will define the k-th Stiefel-Whitney class of a generalized manifold M as the k-th Stiefel-Whitney class associated to the embedding given by the diagonal map $d: M \to M \times M$. Moreover, to ensure that this definition is indeed well-defined, we will use some results about generalized fiber bundles presented in Chapter 4 to show

⁵That is, $p \circ s = 1$.

in Theorem 5.5 that, in the context of topological manifolds, the definition of Stiefel-Whitney classes via generalized fiber bundles coincides with the definition we propose via the Stiefel-Whitney classes associated to the embedding given by the diagonal map.

Finally, motivated by the techniques presented by Bredon in ([2], Chapter 6), we will conclude Chapter 5, and consequently our work, by showing that it is possible to obtain Wu's formula for generalized manifolds using our definition of Stiefel-Whitney classes associated to the embedding given by the diagonal map of a generalized manifold.

Since Biasi, Daccach, and Saeki defined in [1] the Stiefel-Whitney classes of generalized manifolds as Wu's formula itself and presented several results in this context, we highlight the originality of Chapter 5 where we define the Stiefel-Whitney classes for generalized manifolds in an alternative way and prove Wu's formula for such manifolds.

We will conclude the introduction chapter of our work with the words of Massey, which can be found in ([7], Chapter 21), providing additional historical context for the emergence of characteristic classes:

"At the 1935 conference in Moscow, Hopf presented the work of one of his students, Stiefel, whose publication appeared only in the following year. In this work, Stiefel defined certain homology classes of a smooth manifold that, in modern language, are the Poincaré-dual classes of the Stiefel-Whitney classes of the tangent vector bundle. His method consisted of constructing, through a very geometric process, the cycles that represented these homology classes."

"Whitney gave a lecture at the Moscow conference entitled 'Sphere spaces,' which we now call sphere bundles. These two lectures, and the subsequent papers, marked the beginning of work on the general topic of vector bundles. The most important invariants of vector bundles are generally various characteristic classes, but always cohomology classes."

William S. Massey

Bundles

We will begin this work by presenting the so-called generalized fiber bundles, a tool developed by Fadell in [6] with the purpose of defining the Stiefel-Whitney classes and proving Whitney's duality and Wu's formula in the context of topological manifolds.

At first, in Section ??, we will review specific concepts about vector bundles in order to fix notation and clarify to the reader how vector bundles will be naturally generalized throughout this chapter.

After that, Section ?? will serve as an intermediate step for defining generalized bundles and for presenting the results that will be shown in Section ?? in a clearer and more succinct way.

Finally, in Section ??, we will find the definition and properties involving generalized fiber bundles, almost all of which are taken from [6].

As will be explained in Observation ??, every topological manifold mentioned throughout this work will be assumed to be a manifold without boundary.

Characteristic Classes of Topological Manifolds

Applications in Closed Topological Manifolds

Characteristic Classes of Generalized Manifolds

Appendix A Singular (Co)homology

Index

```
diagonal
map, 8

generalized
fiber bundle, 11, 17

Stiefel-Whitney
class, 11, 17

topological
manifold, 11, 17

Whitney
duality, 11, 17

Wu
formula, 11, 17
```