数学 4回目

$$\frac{dx}{dy} = \frac{\sin \psi}{\cos 5x}$$

$$\frac{dy}{dx} = \frac{1}{dx} = \frac{\cos x}{\sin \theta} = \frac{\cos x}{1 - \cos^2 \theta} = \frac{\cos x}{1 - \sin^2 x} = \frac{1}{1 - \sin^2 x}$$

$$(2) \int x = \alpha(\partial - \sin \theta) \rightarrow \frac{\pi}{6} = \alpha(1 - \cos \theta)$$

$$(3) \exists \alpha(1 - \cos \theta) \rightarrow \frac{\partial \theta}{\partial \theta} = \alpha \sin \theta$$

$$\frac{d\theta}{dx} = \frac{d\theta}{d\theta} = \alpha \sin \theta \qquad \sin \theta$$

$$\frac{dx}{dx} = \frac{dx}{d\theta} = \alpha(1 - \cos \theta) \qquad 1 - \cos \theta$$

$$\frac{d^2\theta}{dx} = \frac{d(\theta)}{dx} = \frac{d(\theta)}{dx} = \frac{d\theta}{dx} = \frac{\cos \theta}{(1 - \cos \theta)^2} \qquad \alpha(1 - \cos \theta)$$

$$\frac{d^2\theta}{dx} = \frac{dx}{dx} = \frac$$

$$[2] (1) \frac{d\theta}{dx} + (\frac{\theta}{x} - e^x) = 0$$

$$dy + (\frac{1}{x} - e^{x}) dx = 0$$

$$P(x, \theta) = \frac{1}{x} - e^{x}$$
, $Q(x, \theta) = | x t < \frac{\partial P}{\partial \theta} = \frac{1}{x}$, $\frac{\partial Q}{\partial x} = 0$

$$\frac{\partial P}{\partial R} = \frac{1}{2R} \cdot \frac{\partial Q}{\partial R} = 0$$

$$\frac{1}{Q}\left(\frac{\partial P}{\partial D} - \frac{\partial Q}{\partial X}\right) = \frac{1}{X} = \chi(X)$$

(2)
$$\mu(x) P(x, y) = y - xe^x - P(x, y)$$

$$M(\pi) Q(\chi, \theta) = \chi \longrightarrow Q(\chi, \theta)$$

一般解:
$$u(\pi, \theta) = \int_{0}^{x} P(x, \theta) dx + \int_{0}^{x} a(x_{0}, \theta) d\theta$$

$$= \frac{1}{70} (9 - 7e^{x}) dx + \frac{1}{90} 70 dy$$

$$= \frac{1}{70} 6 dx - \frac{1}{70} x (e^{x})' dx + \frac{1}{70} (9 - 90)$$

$$= \frac{1}{70} (7 - 10) - \frac{1}{70} x (e^{x})' dx + \frac{1}{70} e^{x} + \frac{1}{70} (9 - 90)$$

(1) 火1,火2,火3は一次作属か),

$$C_1 \times_1 + C_2 \times_2 + C_3 \times_3 = 0$$

 $C_1 + 3C_2 + 5C_3 = 0 \implies C_3 = C_1$

$$\int 2C_1 + C_2 = 0 \rightarrow C_2 = -2C_1$$

1. 1/3 =-10, +2/12

(2) X3 = XX, + BX

$$\left(\alpha + 3\beta = 5 \rightarrow \alpha = -1 \rightarrow \beta = 2\right)$$

(3)	li	j	k			
$\chi_1 \times \chi_2 =$	1	2	3	= 41+k+9j-6k-2j-32 = 2+4j-5k =	17	
	3	1	2		5	
	1	j	14		7	

$$\chi_1 \chi \chi_3 = 123 = 22 + 15j - 10k - j = 22 + 14j - 10k = 27$$

x +74-52=0

平面の式て一致したので、1次1+7/22-5次3=0

(4)	1	3	5					a	
A =	2	ļ	0	, b=	3	,	χ=	h	とおく
	3	2)	/	4			(

拡大係執行列

	[]	3	5		
[A b] =	12	1	0	3	= B
1	3	2	1	4	

	[135]-1	
P31(-3)P21(-Z)B=	0 -5 -10 5	= B ₁
	0 -7 -14 7	
	10-1/2	2 ∫ α- c= 0
P32(9) P12 (-3) P2(-3)B1=	0 1 2 -1	Lb +2C=0
	0 0 0 0	C= k x t < 2, a= k, b= -2 k

	a		2		17	
: 1	b	=/	-1	+	-2	(には任意定数)
	C		0		1	

[4] (1)
$$f(t) = \frac{1}{at} \{ u(t) - u(t-a) \}$$

$$5^{2}(5+1)$$
 「ついて、 $\frac{1}{5^{2}}|_{5=-1}=1$
 5^{2} の因ナニフルマ、 $\frac{1}{5+1}|_{5=0}=1$
 5^{2} の因ナニフルマ、 $\frac{1}{5+1}|_{5=0}=1$
 $\frac{1}{5^{2}}|_{5=-1}=1$

Y(s) =	$-\frac{e^{-5\alpha\left(\frac{1}{5} - \frac{1}{5+1}\right)} - \frac{e^{-5\alpha}}{\alpha^2} \left(\frac{1}{5+1} + \frac{1}{5^2} - \frac{1}{5}\right) + \frac{1}{\alpha} \left(\frac{1}{5+1} + \frac{1}{5^2} - \frac{1}{5}\right)}{\alpha^2}$	
	$-\{1-e^{-(t-a)}\}U(t-a)-\frac{1}{a}(e^{-(t-a)}+t-a-1)U(t-a)+\frac{1}{a}(e^{-t}+t-1)$	