Mesa 7

Christopher Carmona Aitor Salazar

Práctica 1.1

1) ¿Cuál es el rango operativo de la ALU completa?

Si se entiende como rango operativo el rango de números que puede sumar sin que resulte en overflow, en nuestro caso sería sumar 128 con 127. Dado que la suma de estos dos resulta en "0 1111 1111". La salida de nuestra ALU tiene 9 bits, por lo que una suma mayor ocuparía el noveno bit que se usa para indicar el signo, ya que el resultado viene dado en complemento a 2.

A continuación se muestran los resultados obtenidos para cinco ejemplos.

A, B en dec.	Operando A	Operando B	OPERA	Resultado	
62, 37	0011 1110	0010 0101	00	0 0110 0011	99
	0011 1110	0010 0101	01	0 0001 1001	25
	0011 1110	0010 0101	10	0 0011 1110	62
	0011 1110	0010 0101	11	0 0010 0101	37
41, 53	0010 1001	0011 0101	00	0 0101 1110	94
	0010 1001	0011 0101	01	1 1111 0100	-12
	0010 1001	0011 0101	10	0 0011 0101	53
	0010 1001	0011 0101	11	0 0010 1001	41
10, 100	0000 1100	0110 0111	00	0 0111 0011	115
	0000 1100	0110 0111	01	1 1010 0101	-91
12, 103	0000 1100	0110 0111	10	0 0110 0111	103
	0000 1100	0110 0111	11	0 0000 1100	12
87, 86	0101 0111	0101 0110	00	0 1010 1101	173
	0101 0111	0101 0110	01	0 0000 0001	1
	0101 0111	0101 0110	10	0 0101 0111	87
	0101 0111	0101 0110	11	0 0101 0110	86
127,128	0111 1111	1000 0000	00	0 1111 1111	255
	0111 1111	1000 0000	01	1 1111 1111	-1
	0111 1111	1000 0000	10	0 1000 0000	128
	0111 1111	1000 0000	11	0 0111 1111	127

Cuadro 1: Resultados de la ALU de 9 bits para cinco ejemplos.

2) Comparación de recursos utilizados.

En la tabla de la Figura 1 se muestran los recursos post-implementación utilizados.

Resource	Utilization	Available	Utilization
LUT	7	53200	0.01
IO	18	200	9.00

Figura 1: Valores de recursos utilizados.

Práctica 1.2

1) Es válido el multiplicador para ambas codificaciones numéricas?

No, el multiplicador solo es válido para números en binario natural. Como puede apreciarse en los resultados de la Tabla 2, el multiplicador devolverá valores erróneos cuando se le entreguen operandos negativos.

A continuación se muestran los resultados obtenidos para 6 ejemplos de multiplicaciones.

Operando A		Operando B		Resultado	
010001	17	0011010	26	0000110111010	442
101111	-17	0011010	26	0010011000110	1222
010001	17	1100110	-26	0011011000110	1734
101111	-17	1100110	-26	1001010111010	-3398
011111	31	0101101	45	0010101110011	1395
001001	9	0111111	63	0001000110111	567

Cuadro 2: Resultados del multiplicador para operandos de 6 y 7 bits respectivamente.