Zach Andreas	(12004790)
--------------	------------

Datum der Messung

Inhaltsverzeichnis

Versuchsname

1	Aufgabenstellung
	Grundlagen und Voraussetzungen
	2.1 Unsicherheitsberechnungen
3	Versuchsanordnung
4	Geräteliste
5	Versuchsdurchführung und Messergebnisse
6	Auswertung
7	Diskussion
8	Zusammenfassung
$\mathbf{p}_{\mathbf{v}}$	thon-Skript

1 Aufgabenstellung

2 Grundlagen und Voraussetzungen

 $\text{Text}1^1$

 $\text{Text}2^2$

 $\text{Text}3^3$

 Text4^4

$$\int_{a}^{b} x^{2} dx = \frac{b^{3} - a^{3}}{3} \tag{1}$$

Inline math: $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$

Inline math: $\lim_{n\to\infty} \frac{1}{2n} = 0$

$$\sqrt[3]{27} = 3 \implies \vec{\mathbf{A}} \times \vec{\mathbf{B}} \implies (30.0 \pm 0.2) \,\mathrm{m\,s}^{-1}$$

Display math:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

$$\int \frac{1}{x} dx = \ln|x| \quad \text{quad text, additionaly:} \quad \frac{df}{dx} \wedge \frac{\partial g}{\partial y}$$
$$\boldsymbol{F} = m \cdot \boldsymbol{a} = \dot{\mathbf{p}}$$

Test: typewriter

2.1 Unsicherheitsberechnungen

Die explizit angegebenen Unsicherheiten der ermittelten Messgrößen basieren auf Berechnungen durch die Unsicherheitsangabe nach den Datenblättern der verwendeten Messgeräte. Diese sind in Tabelle 1 vermerkt beziehungsweise referenziert.

Die Fehlerfortpflanzung der berechneten Werte basiert auf der verallgemeinerten Methode der Gauß'schen Fehlerfortpflanzung.

$$\mathbf{\Sigma}_{m{y}} = \mathbf{J}(m{x}) \, \mathbf{\Sigma}_{m{x}} \, \mathbf{J}^*(m{x})$$

 $^{^{1}\}mathrm{Demtr\"{o}der},\,2018,\,\mathrm{S.}\,\,1000.$

²Knoll, o. D. Kapitel 74.

³https://online.uni-graz.at/kfu_online/ee/ui/ca2/app/desktop/#/login?\$ctx=&redirect=Li4vLi4vLi4vZWUvdWkvY2EyL2FwcC9kZXNrdG9wLyMvc2xjLnRtLmNwL3N0dWRlbnQvY291cnNlcy82Mjg3OTk=

⁴ "ProduktInformationen Motoröle: Genol Rasenmäheröl", 2013.

Dabei beschreibt Σ_i die Kovarianzmatrix des Vektors i und J(i) die Jakobi-Matrix desselben. Die zweite Matrix $J^*(i)$ beschreibt die Hermetisch-konjungierte der Jakobi-Matrix. Um diese Berechnungen effizient auszuführen, wird für jeden Unterpunkt der Laborübung ein Skript in der Programmiersprache Python implementiert. Kernstück dessen ist das package uncertainties⁵, dass intern die Matrixmultiplikationen berechnet. Gerundet wird nach den Angaben des Skriptums der Lehrveranstaltung "Einführung in die physikalischen Messmethoden" in der gültigen Version 7.6

3 Versuchsanordnung

4 Geräteliste

Gerät Hersteller Modell Unsicherheit Anmerkung quasi Gerät 1 meins 0,01 perfekt ich genau Gerät 2 21.4 quasi perfekt genau passt so ∇ Gerät 3 passt so Alle meine Gerät 4 Entchen

Tabelle 1: Verwendete Geräte und wichtige Materialien

5 Versuchsdurchführung und Messergebnisse

 ${\bf Tabelle~2:~Caption~of~example~longtblr}$

1	2	3	4	5	6	7.000.000.000.000.000.000.000.000 ^a
1	2	3	4	5	6	7.000.000.000.000.000.000.000.000
1	2	3	4	5	6	7.000.000.000.000.000.000.000.000
1	2	3	4	5	6	7.000.000.000.000.000.000.000.000
1	2	3	4	5	6	7.000.000.000.000.000.000.000.000
1	2	3	4	5	6	7.000.000.000.000.000.000.000.000

Fortsetzung auf nächster Seite

⁵Lebigot, o. D.

 $^{^6}$ Dämon et al., 2021.

7.000.000.000.000.000.000.000.000

1	2	3	4	5	6	7.000.000.000.000.000.000.000.000
1	2	3	4	5	6	7.000.000.000.000.000.000.000.000
1	2	3	4	5	6	7.000.000.000.000.000.000.000.000
1	2	3	4	5	6	7.000.000.000.000.000.000.000.000
1	2	3	4	5	6	7.000.000.000.000.000.000.000.000
1	2	3	4	5	6	7.000.000.000.000.000.000.000.000
1	2	3	4	5	6	7.000.000.000.000.000.000.000.000
1	2	3	4	5	6	7.000.000.000.000.000.000.000.000

Tabelle 2: Caption of example longtblr (Fortsetzung)

2

5

6 Auswertung

7 Diskussion

8 Zusammenfassung

Python-Skript

```
1 """A simple example for a few types and keywords"""
3 from math import pi, floor
5 CONST = 4
6 str_ = "abcde"
8 # calculate output
9 output = str_*CONST+str(2)*floor(pi)
print(output)
```

 $^{^{\}mathsf{a}}$ note

Literaturverzeichnis

- Dämon, R., Ditlbacher, H., Hauser, A. W., Koch, M., Lammegger, R., Leitner, A., Schweighart, M., & Schultze-Bernhardt, B. (2021). Einführung in die physikalischen Messmethoden. 7.
- Demtröder, W. (2018). Experimentalphysik 1: Mechanik und Wärme (8. Aufl.) [eBook]. Springer Spektrum.
- Knoll, P. (o. D.). Mechanik und Wärme (Mechanics and Heat): Skriptum zur Vorlesung. Lebigot, E. O. (o. D.). Uncertainties: a Python package for calculations with uncertainties. https://pythonhosted.org/uncertainties/
- Produkt Informationen Motoröle: Genol Rasenmäheröl. (2013). https://cdn.lagerhaus.at/rwa/lh3/media/download/2014.07.08/1404820306140132.pdf

Abbildungsverzeichnis

Tabellenverzeichnis

1	Geräteliste .																			2
2	Short entry																			2