## Завдання на КР

Створити програму з графічним інтерфейсом користувача (рис. 1), яка отримує через вікно значення x, a, b, xmin, xmax, dx та розв'язує наступні задачі:

- **1.** Обчислює значення функції f(x) з таблиці 1. Значення i рівне номеру варіанта.
- **2.** Обчислює значення функції g(x), якщо a=-0,5; b=0,5.

$$g(x) = \begin{cases} 0, & x < a \\ f(x), & a \le x \le b \\ x, & x > b \end{cases}$$

- **3.** Виводить список значень функції f(x), якщо x змінюється від xmin=-1 до xmax=1 з кроком dx=0,1.
- **4.** Знаходить наближене значення інтеграла  $\int_{xmin}^{xmax} f(x) dx \approx \sum f(x_i) dx$  з кроком інтегрування dx=0,1.
- **5.** Знаходить наближене мінімальне і максимальне значення функції f(x) на проміжку [*xmin*, *xmax*], якщо крок x рівний dx=0,1.
- **6.** Записує у текстовий файл значення аргументу x і функції f(x), якщо x змінюється від xmin=-1 до xmax=1 з кроком dx=0,1.
- **7.** Будує графік функції f(x).

Оформити курсову роботу, як описано в методичних вказівках [3].



Рисунок 1 - Графічне вікно програми

## Література:

- 1.Копей, В.Б. Програмування на С++. Приклади програм з коментаріями: Навчальний посібник / В.Б. Копей, І.З. Лютак, Я.Б. Сторож. Івано-Франківськ : Факел, 2008. 170с.
- 2.Копей В. Б. Мова програмування Python для інженерів і науковців : навчальний посібник / В. Б. Копей Івано-Франківськ : ІФНТУНГ, 2019. 272 с.
- 3.Копей В. Б. Методичні вказівки до виконання курсової роботи з дисципліни "Основи програмування" / В. Б. Копей Івано-Франківськ: ІФНТУНГ, 2018. 28 с.

Таблиця 1 – Варіанти завдань

| 1 a0 | таолиця т – Варганти завдань                                       |                                                     |  |
|------|--------------------------------------------------------------------|-----------------------------------------------------|--|
| i    | f(x)=                                                              | Графік функції                                      |  |
| 0    | $\frac{i+x}{-i+2.5i+x} + \sin^{i+1}\left(x + \frac{\pi}{2}\right)$ | 1.8 -<br>1.6 -<br>1 0 1                             |  |
| 1    | $\frac{i+x}{ix+2.5i} + \cos^{i+1}\left(x + \frac{\pi}{2}\right)$   | 1.2 -<br>1.0 -<br>0.8 -<br>0.6 -<br>0.4 -<br>-1 0 1 |  |

| 2 | $\frac{i+x}{2.5i+\frac{x}{i}} + \tan^{i+1}(x)$        | 4 - 2 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |
|---|-------------------------------------------------------|-----------------------------------------------|
| 3 | $\frac{i+x}{2.5i+x^i} + a\sin^{i+1}(x)$               | 6 - 4 - 2 1 0 1                               |
| 4 | $\frac{i+x}{2.5i + \frac{1}{i+x}} + a\cos^{i+1}(x)$   | 300 - 200 - 100 - 1.0 - 0.5 0.0 0.5 1.0       |
| 5 | $\frac{-i+x}{ix+2.5i} + \operatorname{atan}^{i+1}(x)$ | 0.0 - 0.2 - 0.4 - 0.6 - 1                     |

| 6 | $\frac{-i+x}{2.5i+\frac{x}{i}} + \sinh^{i+1}(x)$   | 2 -<br>0 -<br>-2 -<br>1 0 1                                      |
|---|----------------------------------------------------|------------------------------------------------------------------|
| 7 | $\frac{-i+x}{2.5i+x^i} + \cosh^{i+1}(x)$           | 30 - 1<br>20 - 1<br>10 - 1                                       |
| 8 | $\frac{-i+x}{2.5i+\frac{1}{i+x}} + \tanh^{i+1}(x)$ | 0.3 - 0.4 - 0.5 - 1                                              |
| 9 | $\frac{ix}{2.5i + \frac{x}{i}} + (e^x)^{i+1}$      | 20000 -<br>15000 -<br>10000 -<br>5000 -<br>-1.0 -0.5 0.0 0.5 1.0 |

| 10 | $\frac{ix}{2.5i + x^i} +  x ^{i+1}$                              | 1.0 -<br>0.5 -<br>0.0 -<br>-1 0 1        |
|----|------------------------------------------------------------------|------------------------------------------|
| 11 | $\frac{ix}{2.5i + \frac{1}{i+x}} + \pi x^{i+1}$                  | 3 -<br>2 -<br>1 -<br>0 -<br>-1 0 1       |
| 12 | $\left(\sqrt{x+2}\right)^{i+1} + \frac{x}{i(2.5i+x^i)}$          | 1000 -<br>500 -<br>-1.0 -0.5 0.0 0.5 1.0 |
| 13 | $\log^{i+1}(x+2) + \frac{x}{i\left(2.5i + \frac{1}{i+x}\right)}$ | 3 - 2 - 1 - 0 1                          |

