

HF	HF1006											
TEN1, 4hp												
TID	TIDAA, TIELA, TIMEL											
Ma	Maria Shamoun											
Jon	Jonas Stenholm, tel. 08 790 94 50											
202	2022-12-19											
8:0	8:00-12:00											
For	Formelblad											
	Del	Poäng	Fx	E	D	С	В	Α				
							-	8				
	11	14	U	U	3	Ь	9	12				
Un	Undvik röda pennor Skriv namn och											
,								ara på				
	, .											
lösningar. Lösningarna skall vara väl								_				
								Svaret				
Tentamenslydelsen ska lämnas in tillsamma								mans				
Lvc	Lycka till!											
	TEI TID Ma Jon 202 8:00 For Und par ma sar lös mo ska Ter me	TEN1, 4I TIDAA, T Maria Sh Jonas Ste 2022-12-8:00-12:0 Formelbl Del I II Undvik re personn papprets markeras samtliga lösninga motivera ska fram Tentame med lösn	TEN1, 4hp TIDAA, TIELA, TII Maria Shamoun Jonas Stenholm, 2022-12-19 8:00-12:00 Formelblad Del Poäng I 12 II 14 Undvik röda per personnummer papprets ena sic markeras med k samtliga uppgir lösningar. Lösn motiverade, tyd ska framgå tyd Tentamenslydels	TEN1, 4hp TIDAA, TIELA, TIMEL Maria Shamoun Jonas Stenholm, tel. 2022-12-19 8:00-12:00 Formelblad Del Poäng Fx I 12 7 II 14 0 Undvik röda pennor. personnummer på v papprets ena sida. In markeras med kryss samtliga uppgifter lösningar. Lösninga motiverade, tydliga ska framgå tydligt. Tentamenslydelsen simed lösningarna.	TEN1, 4hp TIDAA, TIELA, TIMEL Maria Shamoun Jonas Stenholm, tel. 08 79 2022-12-19 8:00-12:00 Formelblad Del Poäng Fx E I 12 7 8 II 14 0 0 Undvik röda pennor. Skriv personnummer på varje papprets ena sida. Inlämnamarkeras med kryss på för samtliga uppgifter krävs lösningar. Lösningarna simotiverade, tydliga och ska framgå tydligt. Tentamenslydelsen ska lär med lösningarna.	TEN1, 4hp TIDAA, TIELA, TIMEL Maria Shamoun Jonas Stenholm, tel. 08 790 94 2022-12-19 8:00-12:00 Formelblad Del Poäng Fx E D I 12 7 8 8 II 14 0 0 3 Undvik röda pennor. Skriv nam personnummer på varje pappe papprets ena sida. Inlämnade u markeras med kryss på försätts samtliga uppgifter krävs fulls lösningar. Lösningarna skall v motiverade, tydliga och lätta ska framgå tydligt. Tentamenslydelsen ska lämnas med lösningarna.	TEN1, 4hp TIDAA, TIELA, TIMEL Maria Shamoun Jonas Stenholm, tel. 08 790 94 50 2022-12-19 8:00-12:00 Formelblad Del	TEN1, 4hp TIDAA, TIELA, TIMEL Maria Shamoun Jonas Stenholm, tel. 08 790 94 50 2022-12-19 8:00-12:00 Formelblad Del Poäng Fx E D C B I 12 7 8 8 8 8 II 14 0 0 3 6 9 Undvik röda pennor. Skriv namn och personnummer på varje papper. Skriv be papprets ena sida. Inlämnade uppgifter smarkeras med kryss på försättsbladet. Ti samtliga uppgifter krävs fullständiga lösningar. Lösningarna skall vara väl motiverade, tydliga och lätta att följa. ska framgå tydligt. Tentamenslydelsen ska lämnas in tillsam med lösningarna.				

Del I: 2p/uppgift

1) För tre komplexa tal u, v och w gäller att $u = v \cdot w$, där u och v är givna i figuren. Bestäm w. Svara på valfri form.

2) Bestäm imaginärdelen (Im z) av $z = \frac{6-8i}{-i} + 6e^{i\cdot\frac{2\pi}{3}}$

3) Givet är matriserna
$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}$ och $C = \begin{bmatrix} 1 & 4 \\ 3 & -1 \end{bmatrix}$. Beräkna $(2B+C)A^T$.

4) Lös ekvationssystemet

$$\begin{cases} x + y + 2z = 8 \\ -x - 2y + 3z = 1 \\ 3x - 7y + 4z = 10 \end{cases}$$

5) Beräkna $\begin{vmatrix} 1 & 2 & 4 \\ 3 & 5 & 2 \\ -1 & -3 & 6 \end{vmatrix}$.

6) Låt vektorn $\vec{u} = \vec{a} - 2\vec{b}$ där $\vec{a} = (-1, 3, -2)$ och $\vec{b} = (2, 1, -2)$ och $\vec{v} = (1, 1, -3)$. Bestäm en vektor som är vinkelrät mot både \vec{u} och \vec{v} .

Del II:

7) Betrakta följande figur (ej skalenlig):

I det tvådimensionella koordinatsystemet ovan finns en parallellogram (i en parallellogram är motstående sidor parallella och lika långa), ABCD, för vilken gäller att längden av AD är $3\sqrt{2}$ längdenheter och av AB 5 längdenheter (se figur).

b) Bestäm vektorn
$$\overrightarrow{BD}$$
. (1p)

8) Lös följande ekvation:
$$z^4 = -9$$
, där z är ett komplext tal.
Svara på rektangulär form ($z = a + bi$). (3p)

9) Betrakta följande ekvationssystem:
$$\begin{cases} 2x + 6z = 6\\ 3x - y + 4z = 2\\ x + 3y + az = 3 \end{cases}$$

För vilka värden på konstanten a finns en unik lösning (exakt en lösning)? Bestäm denna unika lösning. Förenkla svaret så långt som möjligt. (3p)

10) En matrisekvation är given: $(A-3E) \cdot X = B$

där
$$A = \begin{pmatrix} 2 & 0 & 1 \\ -2 & 0 & 1 \\ 3 & 0 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 \\ 2 \\ -6 \end{pmatrix}$ och E är enhetsmatrisen.

- a) Visa, med hjälp av determinant, att koefficientmatrisen (A-3E) är inverterbar. (1p)
- b) Bestäm X. (2p)
- 11) I en tredimensionell rymd finns endast tre objekt: En ljuskälla i P: (1,2,7) med oändlig räckvidd. Ett föremål i punkten Q: (-2,5,0) och en oändlig ogenomskinlig vägg med ekvationen 6x-2y+z=5. Avgör om föremålet i Q träffas av ljuset från ljuskällan i P eller inte. (3p)

Lösningsförslag med rättningsmall:

1) För tre komplexa tal u, v och w gäller att $u = v \cdot w$, där u och v är givna i figuren. Bestäm w. Svara på valfri form.

Figuren används för att bestämma u och v: u = -6 + 6i, v = 2 + 2i.

Bestämning av w på rektangulär form: $u = v \cdot w \implies w = \frac{u}{v}$

$$w = \frac{-6+6i}{2+2i} = \frac{\left(-6+6i\right)\left(2-2i\right)}{\left(2+2i\right)\left(2-2i\right)} = \frac{-12+12i+12i-12i^2}{4-4i^2} = \frac{24i}{8} = 3i$$

Bestämning av w på polär form:

$$\tan(\arg u) = \frac{6}{-6} = -1 \implies \arg u = \arctan(-1) + \pi = -\frac{\pi}{4} + \pi = \frac{3\pi}{4}$$
 (andra kvadranten)

$$\tan(\arg v) = \frac{2}{2} = 1 \implies \arg v = \arctan(1) = \frac{\pi}{4}$$
 (första kvadranten)

$$|u| = \sqrt{(-6)^2 + 6^2} = \sqrt{72} = 6\sqrt{2}$$
 $|v| = \sqrt{2^2 + 2^2} = \sqrt{8} = 2\sqrt{2}$

$$w = \frac{6\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)}{2\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)} = 3\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) = 3i$$

Svar: w = 3i

Rättningsmall:

Felavläst u eller v eller båda, i figur -1p Allt rätt 2p 2) Bestäm imaginärdelen (Im z) av $z = \frac{6-8i}{-i} + 6e^{i\frac{2\pi}{3}}$

Det komplexa talet z måste först skrivas på rektangulär form (z = a+bi):

$$z = \frac{6 - 8i}{-i} + 6e^{i \cdot \frac{2\pi}{3}} = \frac{\left(6 - 8i\right) \cdot i}{-i \cdot i} + 6 \cdot \left(\cos \frac{2\pi}{3} + i\sin \frac{2\pi}{3}\right) = 6i + 8 + 6 \cdot \left(-\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}\right) = 6i + 8 + 6i \cdot \left(-\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}\right) = 6i + 8 + 6i \cdot \left(-\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}\right) = 6i + 8 + 6i \cdot \left(-\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}\right) = 6i + 8i \cdot \left(-\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}\right) = 6i + 8i \cdot \left(-\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}\right) = 6i + 8i \cdot \left(-\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}\right) = 6i \cdot$$

$$= 6i + 8 - 3 + 3\sqrt{3} \cdot i = 5 + \left(6 + 3\sqrt{3}\right) \cdot i$$

Svar: Im $z = 6 + 3\sqrt{3}$

Rättningsmall: Korrekt omskrivning till rektangulär form (även om ej fullständigt förenklat) +1p Allt rätt 2p

3) Givet är matriserna $A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}$ och $C = \begin{bmatrix} 1 & 4 \\ 3 & -1 \end{bmatrix}$. Beräkna $(2B + C)A^T$. $2B + C = 2\begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 4 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} 9 & 2 \\ 3 & 3 \end{bmatrix}$

$$A^T = \begin{bmatrix} 3 & -1 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$

$$(2B+C)A^{T} = \begin{bmatrix} 9 & 2 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 3 & -1 & 1 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 27 & -9+4 & 9+2 \\ 9 & -3+6 & 3+3 \end{bmatrix} = \begin{bmatrix} 27 & -5 & 11 \\ 9 & 3 & 6 \end{bmatrix}$$

Svar: $\begin{bmatrix} 27 & -5 & 11 \\ 9 & 3 & 6 \end{bmatrix}$

Rättningsmall:

Beräknar 2B+C samt rätt transponering av A , 1p. Allt rätt, 2p.

4) Lös ekvationssystemet
$$\begin{cases} x + y + 2z = 8 \\ -x - 2y + 3z = 1 \\ 3x - 7y + 4z = 10 \end{cases}$$

$$\begin{cases} x + y + 2z = 8 \\ -x - 2y + 3z = 1 \\ 3x - 7y + 4z = 10 \end{cases} \Leftrightarrow \begin{cases} ekv1 + ekv2 \\ -3ekv1 + ekv3 \end{cases} \begin{cases} x + y + 2z = 8 \\ -y + 5z = 9 \\ -10y - 2z = -14 \end{cases}$$

$$\Leftrightarrow \{-10ekv2 + ekv3\} \begin{cases} x + y + 2z = 8 \\ -y + 5z = 9 \\ -52z = -104 \end{cases} \Leftrightarrow \begin{cases} x = 8 - y - 2z \\ y = 5z - 9 \\ z = 2 \end{cases} \Leftrightarrow \begin{cases} x = 8 - 1 - 2 \cdot 2 = 3 \\ y = 5 \cdot 2 - 9 = 1 \\ z = 2 \end{cases}$$

Svar: x=3, y=1, z=2

Rättningsmall:

Beräknar en av variablerna, 1p. Allt rätt, 2p.

5) Beräkna
$$\begin{vmatrix} 1 & 2 & 4 \\ 3 & 5 & 2 \\ -1 & -3 & 6 \end{vmatrix}$$
.
 $\begin{vmatrix} 1 & 2 & 4 \\ 3 & 5 & 2 \\ -1 & -3 & 6 \end{vmatrix} = (\text{utveckla efter rad1}) = 1 \begin{vmatrix} 5 & 2 \\ -3 & 6 \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 \\ -1 & 6 \end{vmatrix} + 4 \begin{vmatrix} 3 & 5 \\ -1 & -3 \end{vmatrix} =$

$$=30-(-6)-2(18-(-2))+4(-9-(-5))=36-40-16=-20$$

Svar: determinanten är -20.

Rättningsmall:

Teckenfel vid beräkning av determinanterna av 2x2-matris, 0p. Missar teckenskiftningen vid utveckling efter rad eller kolonn, 0p. Vid användning av sarrus regel förväxlar de positiva termerna med de negativa, 0p. Allt rätt, 2p. 6) Låt vektorn $\vec{u} = \vec{a} - 2\vec{b}$ där $\vec{a} = (-1, 3, -2)$ och $\vec{b} = (2, 1, -2)$ och $\vec{v} = (1, 1, -3)$. Bestäm en vektor som är vinkelrät mot både \vec{u} och \vec{v} .

$$\vec{u} = \vec{a} - 2\vec{b} = (-1, 3, -2) - 2(2, 1, -2) = (-5, 1, 2)$$

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{e_x} & \vec{e_y} & \vec{e_z} \\ -5 & 1 & 2 \\ 1 & 1 & -3 \end{vmatrix} = (-3 - 2, 2 - 15, -5 - 1) = (-5, -13, -6)$$

Svar: vektor som är vinkelrät mot både \vec{u} och \vec{v} är (-5,-13,-6) eller (5,13,6).

Rättningsmall:

Bestämmer \vec{u} och ställer upp kryssprodukt av \vec{u} och \vec{v} , 1p. Allt rätt, 2p.

7) Betrakta följande figur (ej skalenlig):

I det tvådimensionella koordinatsystemet ovan finns en parallellogram (i en parallellogram är motstående sidor parallella och lika långa), ABCD, för vilken gäller att längden av AD är $3\sqrt{2}$ längdenheter och av AB 5 längdenheter (se figur).

- a) Bestäm koordinaterna för C.
- b) Bestäm vektorn \overrightarrow{BD} .
- a) Koordinaterna för C ges av vektorn \overrightarrow{AC} , eftersom A ligger i koordinatsystemets origo. $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{AD}$ (sista steget kan göras då ABCD är en parallellogram) $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD} = (5,0) + (3\sqrt{2} \cdot \cos 45^\circ, 3\sqrt{2} \cdot \sin 45^\circ) = (5,0) + (3\sqrt{2} \cdot \frac{1}{\sqrt{2}}, 3\sqrt{2} \cdot \frac{1}{\sqrt{2}}) = (5,0) + (3,3) = (8,3)$

b)
$$\overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB} = (3,3) - (5,0) = (-2,3)$$

Svar: a) (8,3) b) (-2,3) **Rättningsmall:** a) och b), allt rätt 1p

8) Lös följande ekvation: $z^4 = -9$, där z är ett komplext tal. Svara på rektangulär form (z = a + bi).

Skriv ekvationen på potensform (eller polär form): $z = re^{iv}$ och $-9 = 9e^{i \cdot \pi}$

$$(re^{iv})^4 = -9 \Leftrightarrow r^4e^{i\cdot 4v} = 9e^{i\cdot \pi}$$

Vilket ger: $\begin{cases} r^4 = 9 \\ 4v = \pi + n \cdot 2\pi \end{cases} \Rightarrow \begin{cases} r = 9^{\frac{1}{4}} = \sqrt{3} \\ v = \frac{\pi}{4} + n \cdot \frac{\pi}{2} \end{cases}$, där n är ett godtyckligt heltal.

Eftersom ekvationen är av fjärde graden finns det endast fyra <u>olika</u> lösningar, vilka fås genom att t.ex. sätta n=0,1,2,3:

Rättningsmall: Ställer upp korrekta ekvationer för r och v 1p Korrekt lösning, men svarar i polär form eller potensform 2p Allt rätt 3p

9) Betrakta följande ekvationssystem: $\begin{cases} 2x + 6z = 6\\ 3x - y + 4z = 2\\ x + 3y + az = 3 \end{cases}$

För vilka värden på konstanten a finns en unik lösning? Bestäm denna unika lösning. Förenkla svaret så långt som möjligt.

Vilka a som ger en unik lösning kan bestämmas m.h.a. koefficientmatrisens determinant (detta kan också bestämmas vid en direkt lösning av ekvationssystemet):

$$\begin{vmatrix} 2 & 0 & 6 \\ 3 & -1 & 4 \\ 1 & 3 & a \end{vmatrix} = +2 \cdot (-1) \cdot a + 0 \cdot 4 \cdot 1 + 6 \cdot 3 \cdot 3 - 2 \cdot 4 \cdot 3 - 0 \cdot 3 \cdot a - 6 \cdot (-1) \cdot 1 = -2a + 36$$

Unik lösning då determinanten ej är noll, d.v.s. då: $-2a+36 \neq 0 \implies a \neq 18$

Bestäm den unika lösningen (som förstås beror på värdet av a) med hjälp av en totalmatris:

$$\begin{bmatrix} 2 & 0 & 6 & 6 \\ 3 & -1 & 4 & 2 \\ 1 & 3 & a & 3 \end{bmatrix} - \frac{3}{2} \cdot \text{rad1+rad2}, \text{ samt } -\frac{1}{2} \cdot \text{rad1+rad3 ger:}$$

$$\begin{bmatrix} 2 & 0 & 6 & 6 \\ 0 & -1 & -5 & -7 \\ 0 & 3 & a - 3 & 0 \end{bmatrix} -1 \cdot \text{rad2 och därefter } -3 \cdot \text{rad2+rad3 ger:}$$

$$\begin{bmatrix} 2 & 0 & 6 & 6 \\ 0 & 1 & 5 & 7 \\ 0 & 0 & a - 18 & -21 \end{bmatrix}$$

Sista raden ger att
$$(a-18) \cdot z = -21 \implies z = \frac{-21}{a-18} = \frac{21}{18-a}$$

Rad 2 ger att $y = 7 - 5z = 7 - 5 \cdot \frac{21}{18-a} = \frac{7 \cdot (18-a)}{18-a} - \frac{105}{18-a} = \frac{21-7a}{18-a}$
Rad 1 ger att $2x = 6 - 6z \iff x = 3 - 3z = 3 - 3 \cdot \frac{21}{18-a} = \frac{3 \cdot (18-a)}{18-a} - \frac{63}{18-a} = \frac{-9 - 3a}{18-a}$

(Här ser man också att $a \neq 18$, för att lösningen ska vara definierad)

Svar: Unik lösning om $a \ne 18$.

Lösningen är:
$$\begin{cases} x = \frac{-9 - 3a}{18 - a} \\ y = \frac{21 - 7a}{18 - a} \\ z = \frac{21}{18 - a} \end{cases}$$

Rättningsmall: korrekt villkor för a med motivering, för unik lösning +1p Korrekt lösning av ekvationssystem, men något räknefel +1p Allt rätt 3p

10) En matrisekvation är given:
$$(A-3E) \cdot X = B$$

där
$$A = \begin{pmatrix} 2 & 0 & 1 \\ -2 & 0 & 1 \\ 3 & 0 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 \\ 2 \\ -6 \end{pmatrix}$ och E är enhetsmatrisen.

- a) Visa, med hjälp av determinant, att koefficientmatrisen (A-3E) är inverterbar.
- b) Bestäm X.

a) Koefficientmatrisen bestäms:
$$A - 3E = \begin{pmatrix} 2 & 0 & 1 \\ -2 & 0 & 1 \\ 3 & 0 & -1 \end{pmatrix} - 3 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & -3 & 1 \\ 3 & 0 & -4 \end{pmatrix}$$

Denna matris är inverterbar, om och endast om, dess determinant är skild från noll.

$$\begin{vmatrix} -1 & 0 & 1 \\ -2 & -3 & 1 \\ 3 & 0 & -4 \end{vmatrix} = (-1) \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (1) \cdot 1 \cdot 0 - 0 \cdot (-2) \cdot (-4) - 1 \cdot (-3) \cdot 3 = (-1) \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (1) \cdot 1 \cdot 0 - 0 \cdot (-2) \cdot (-4) - 1 \cdot (-3) \cdot 3 = (-1) \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (1) \cdot 1 \cdot 0 - 0 \cdot (-2) \cdot (-4) - 1 \cdot (-3) \cdot 3 = (-1) \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (1) \cdot 1 \cdot 0 - 0 \cdot (-2) \cdot (-4) - 1 \cdot (-3) \cdot 3 = (-1) \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (1) \cdot 1 \cdot 0 - 0 \cdot (-2) \cdot (-4) - 1 \cdot (-3) \cdot 3 = (-1) \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (1) \cdot 1 \cdot 0 - 0 \cdot (-2) \cdot (-4) - 1 \cdot (-3) \cdot 3 = (-1) \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (1) \cdot 1 \cdot 0 - 0 \cdot (-2) \cdot (-4) - 1 \cdot (-3) \cdot 3 = (-1) \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (1) \cdot 1 \cdot 0 - 0 \cdot (-2) \cdot (-4) - 1 \cdot (-3) \cdot 3 = (-1) \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (1) \cdot 1 \cdot 0 - 0 \cdot (-2) \cdot (-4) - 1 \cdot (-3) \cdot 3 = (-1) \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (1) \cdot 1 \cdot 0 - 0 \cdot (-2) \cdot (-4) - 1 \cdot (-3) \cdot 3 = (-1) \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (1) \cdot 1 \cdot 0 - 0 \cdot (-2) \cdot (-4) - 1 \cdot (-3) \cdot 3 = (-1) \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (1) \cdot 1 \cdot 0 - 0 \cdot (-2) \cdot (-4) - 1 \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (1) \cdot 1 \cdot 0 - 0 \cdot (-2) \cdot (-4) - 1 \cdot (-3) \cdot 3 = (-1) \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (-2) \cdot (-4) - 1 \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (-2) \cdot (-4) - 1 \cdot (-3) \cdot (-4) + 0 \cdot 1 \cdot 3 + 1 \cdot (-2) \cdot 0 - (-2) \cdot (-4) - ($$

$$=(-1)\cdot(-3)\cdot(-4)-1\cdot(-3)\cdot3=-12+9=-3\neq0$$

Determinanten skild från noll, d.v.s koefficientmatrisen är inverterbar.

b)
$$(A-3E) \cdot X = B \iff (A-3E)^{-1} \cdot (A-3E) \cdot X = (A-3E)^{-1} \cdot B \iff X = (A-3E)^{-1} \cdot B$$

Bestämning av
$$(A-3E)^{-1}$$
:
$$\begin{bmatrix} -1 & 0 & 1 & 1 & 0 & 0 \\ -2 & -3 & 1 & 0 & 1 & 0 \\ 3 & 0 & -4 & 0 & 0 & 1 \end{bmatrix}$$
 $(-1) \cdot \text{rad } 1$

$$\begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 0 \\ -2 & -3 & 1 & 0 & 1 & 0 \\ 3 & 0 & -4 & 0 & 0 & 1 \end{bmatrix} 2 \cdot \text{rad} 1 + \text{rad} 2, (-3) \cdot \text{rad} 1 + \text{rad} 3$$

$$\begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & -3 & -1 & -2 & 1 & 0 \\ 0 & 0 & -1 & 3 & 0 & 1 \end{bmatrix} (-\frac{1}{3}) \cdot \operatorname{rad} 2, (-1) \cdot \operatorname{rad} 3$$

$$\begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & \frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & 0 \\ 0 & 0 & 1 & -3 & 0 & -1 \end{bmatrix} (-\frac{1}{3}) \cdot \operatorname{rad} 3 + \operatorname{rad} 2, \operatorname{rad} 3 + \operatorname{rad} 1$$

$$\begin{bmatrix} 1 & 0 & 0 & | -4 & 0 & -1 \\ 0 & 1 & 0 & | \frac{5}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & | -3 & 0 & -1 \end{bmatrix}$$
 E

 $\begin{bmatrix} 1 & 0 & 0 & | -4 & 0 & -1 \\ 0 & 1 & 0 & \frac{5}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & | -3 & 0 & -1 \end{bmatrix}$ Enhetsmatrisen står till vänster om strecket, alltså står $\left(A - 3E\right)^{-1}$ till

höger om strecket.

Beräkning av X:
$$X = (A - 3E)^{-1} \cdot B$$
, d.v.s $X = \begin{pmatrix} -4 & 0 & -1 \\ \frac{5}{3} & -\frac{1}{3} & \frac{1}{3} \\ -3 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 2 \\ -6 \end{pmatrix} = \begin{pmatrix} -10 \\ 4 \\ -6 \end{pmatrix}$

Svar: a) Inverterbar, ty determinanten är skild från noll (-3). b) $X = \begin{pmatrix} -10 \\ 4 \\ 6 \end{pmatrix}$

Rättningsmall: Om koefficientmatrisen felbestäms så att den får fel typ så blir det 0 poäng på hela uppgiften, annars gäller följande:

Deluppgift a) korrekt determinantbestämning och tolkning ger 1p även om koefficientmatrisen blev felaktigt bestämd. Om en felaktig koefficientmatris ger en determinant som är 0, ger detta ändå 1 poäng, om studenten visar förståelse att något blivit fel.

Deluppgift b) Felaktigt bestämd koefficientmatris, A-3E -1p

Felaktig invertering

Löst ut X felaktigt -1p

Felaktig multiplikation, invers(A-3E)*B -1p

11) I en tredimensionell rymd finns endast tre objekt: En ljuskälla i P: (1,2,7) med oändlig räckvidd. Ett föremål i punkten Q: (-2,5,0) och en oändlig ogenomskinlig vägg med ekvationen 6x-2y+z=5. Avgör om föremålet i Q träffas av ljuset från ljuskällan i P eller inte.

Om föremålet i Q träffas av ljuset från ljuskällan i P beror enbart av huruvida P och Q befinner sig på samma sida eller på olika sidor om den ogenomskinliga väggen. Eftersom ljuskällan har oändlig räckvidd spelar avståndet mellan P och Q ingen roll.

<u>Lösningsmetod 1:</u>

Välj en godtycklig punkt <u>i väggen</u> (det givna planet), t.ex. A: (0,0,5). Bilda vektorerna AP och AQ:

$$\overrightarrow{AP} = (1, 2, 7) - (0, 0, 5) = (1, 2, 2)$$

$$\overrightarrow{AQ} = (-2,5,0) - (0,0,5) = (-2,5,-5)$$

Väggens normalvektor är $\vec{n} = (6, -2, 1)$

Låt $v_P(v_Q)$ vara vinkeln mellan $\overrightarrow{AP}(\overrightarrow{AQ})$ och normalvektorn. Om $\cos v_P(v_Q) = 0$ så är $v_P(v_Q) = 90$ ° och P(Q) ligger i planet. Om $\cos v_P(v_Q) > 0$ så är $v_P(v_Q) < 90$ ° och P(Q) ligger på den sida om planet som normalvektorn pekar mot. Om $\cos v_P(v_Q) < 0$ så är $v_P(v_Q) > 90$ ° och P(Q) ligger på den andra sidan om planet. Detta betyder att $P(v_Q) > 0$ 0 så ar $v_P(v_Q) > 0$ 0 och P(Q)1 ligger på samma sida om planet om 00 och 00 och

Skalärprodukten används:
$$\cos v_P = \frac{\overrightarrow{AP} \circ \overrightarrow{n}}{\left| \overrightarrow{AP} \right| \cdot \left| \overrightarrow{n} \right|} = \frac{(1,2,2) \circ (6,-2,1)}{\left| (1,2,2) \right| \cdot \left| (6,-2,1) \right|} = \frac{4}{3\sqrt{41}} > 0$$

$$\cos v_Q = \frac{\overrightarrow{AQ} \circ \overrightarrow{n}}{\left| \overrightarrow{AQ} \middle| \cdot \middle| \overrightarrow{n} \middle|} = \frac{(-2, 5, -5) \circ (6, -2, 1)}{\left| (-2, 5, -5) \middle| \cdot \middle| (6, -2, 1) \middle|} = \frac{-27}{\sqrt{54} \cdot \sqrt{41}} < 0$$

Cos v_P och cos v_Q har olika tecken, d.v.s. P och Q befinner sig på olika sidor om planet (väggen) och därför träffas inte Q av ljusstrålarna från P.

Lösningsmetod 2 (Alternativ lösning):

Bilda istället linjen genom Q och P, med startpunkt i Q och QP som riktningsvektor:

$$L = Q + t \cdot \overrightarrow{QP} = (-2, 5, 0) + t \cdot ((1, 2, 7) - (-2, 5, 0)) = (-2, 5, 0) + t \cdot (3, -3, 7) = \begin{cases} x = -2 + 3t \\ y = 5 - 3t \\ z = 7t \end{cases}$$

Ljusstrålen från P går längs denna räta linje till Q. Om linjen skär planet (väggen) mellan P och Q så ligger de på olika sidor om planet, annars ligger de på samma sida om planet. Insättning av t = 0 i linjens ekvation ger punkten Q. Insättning av t = 1 i linjens ekvation ger punkten P. Parametervärdet (t-värdet) på linjen för skärningspunkten med planet bestäms. Om 0<t<1 så skär linjen planet mellan P och Q, annars skär linjen inte planet mellan P och Q.

Linjens ekvation på parameterform sättes in i planets ekvation:

$$6x - 2y + z = 6 \cdot (-2 + 3t) - 2 \cdot (5 - 3t) + 7t = -22 + 31t = 5 \implies t = \frac{27}{31}$$

Eftersom 0 < t < 1 så skär linjen planet mellan P och Q, d.v.s P och Q ligger på olika sidor om planet och därför når ej ljusstrålen från P fram till Q.

Svar: Q träffas ej av ljusstrålen från P.

Rättningsmall: Börjar på en väl motiverad, korrekt lösningsmetod, men gör något större algebraiskt fel 1p Löser med väl motiverad, korrekt metod, men gör något räknefel 2p Allt rätt 3p