Wypukłość funkcji produkcji a korzyści skali

Lukasz Patryk Woźny* dnia 7 listopada 2006

Rozpatrzymy wybrane zależności pomiędzy korzyściami skali a wypukłością funkcji produkcji.

1 Definicje i oznaczenia

Niech \mathbb{R}_+ oznacza zbiór liczb rzeczywistych z zerem.

Definicja 1 Mówimy, że funkcja produkcji¹ $f: \mathbb{R}^n_+ \to \mathbb{R}_+$ ma rosnące korzyści skali wtedy i tylko wtedy, gdy dla każdego² $\mathbf{x} \in \mathbb{R}^n_+ \setminus \{0\}$ i każdego $\alpha > 1$ zachodzi: $f(\alpha \mathbf{x}) > \alpha f(\mathbf{x})$.

Definicja 2 Mówimy, że funkcja produkcji $f : \mathbb{R}^n_+ \to \mathbb{R}_+$ ma malejące korzyści skali wtedy i tylko wtedy, gdy dla każdego $\mathbf{x} \in \mathbb{R}^n_+ \setminus \{0\}$ i każdego $\alpha > 1$ zachodzi: $f(\alpha \mathbf{x}) < \alpha f(\mathbf{x})$.

Definicja 3 Mówimy, że funkcja produkcji $f: \mathbb{R}^n_+ \to \mathbb{R}_+$ ma stałe korzyści skali wtedy i tylko wtedy, gdy dla każdego $\mathbf{x} \in \mathbb{R}^n_+ \setminus \{0\}$ i każdego $\alpha > 1$ zachodzi: $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$.

Twierdzenie 1 Funkcja f jest wypukła wtt. wykres tej funkcji leży zawsze nad hiperpłaszczyzną styczną do tej funkcji, tj. dla f różniczkowalnej zachodzi: dla każdego $\mathbf{x}_0, \mathbf{x} \in \mathbb{R}^n_+$ takich, że $\mathbf{x} \neq \mathbf{x}_0$ zachodzi: $f(\mathbf{x}) > (\mathbf{x} - \mathbf{x}_0)f'(\mathbf{x}_0) + f(\mathbf{x}_0)$. Jeżeli f jest dwukrotnie różniczkowalna oraz dla każdego $\mathbf{x} \in \mathbb{R}^n_+$ zachodzi, że macierz $f''(\mathbf{x})$ jest dodatnio określona, wtedy f jest ostro wypukła.

^{*}lukasz.wozny@sgh.waw.pl.

 $^{^1}$ Liczba $n \in \mathbb{N}, \, n > 0$ oznacza ilość czynników produkcji.

²Zauważmy, iż w definicji korzyści skali wyłączyliśmy punkt $\mathbf{x} = 0$. Dla $\mathbf{x} = 0$ zachodzi bowiem: dla każdego $\alpha > 1$ zachodzi: $f(\alpha \mathbf{0}) \leq \alpha f(\mathbf{0})$ gdy tylko $f(\mathbf{0}) \geq 0$ bez względu na dalszy przebieg zmienności funkcji.

Twierdzenie 2 Funkcja f jest wklęsła wtt. wykres funkcji leży zawsze pod hiperpłaszczyną styczną do tej funkcji, tj. dla f różniczkowalnej zachodzi: dla każdego $\mathbf{x}_0, \mathbf{x} \in \mathbb{R}_+$ takich, że $\mathbf{x} \neq \mathbf{x}_0$ zachodzi: $f(\mathbf{x}) < (\mathbf{x} - \mathbf{x}_0)f'(\mathbf{x}_0) + f(\mathbf{x}_0)$. Jeżeli f jest dwukrotnie różniczkowalna oraz dla każdego $\mathbf{x} \in \mathbb{R}_+$ zachodzi, że macierz $f''(\mathbf{x})$ jest ujemnie określona wtedy f jest ostro wklęsła.

Dalej dla przeprowadzenia analizy graficznej oraz uproszczenia analizy założymy, że mamy tylko jeden czynnik produkcji (n = 1) a funkcja $f : \mathbb{R}_+ \to \mathbb{R}_+$ jest ciągła na \mathbb{R}_+ i różniczkowalna na $\mathbb{R}_+ \setminus \{0\}$.

2 Jak graficznie badać występowanie korzyści skali

Aby graficznie zbadać występowanie korzyści skali należy:

- 1. wybrać dowolny punkt na wykresie funkcji produkcji $(x_0, f(x_0))$, gdzie $x_0 \neq 0$,
- 2. wyznaczyć półprostą wychodzącą z początku układu współrzędnych i przechodzącą przez wybrany punkt: $(x_0, f(x_0))$,
- 3. sprawdzić, czy dla każdego $\alpha > 1$ (czyli dowolnego punktu $(\alpha x_0, \alpha f(x_0))$ na wytyczonej półprostej leżącego na prawo od $(x_0, f(x_0))$) zachodzi, że $\alpha f(x)$ leży wyżej (niżej, na) od wartości funkcji produkcji w tym punkcie $(\alpha x_0, f(\alpha x_0))$,
- 4. punkty 1,2 i 3 muszą być powtórzone dla każdego;) $(x_0, f(x_0))$, gdzie $x_0 \neq 0$.

Taka analize przeprowadzono m.in. na rysunkach 3 oraz 5.

3 Malejąca funkcja produkcji

Twierdzenie 3 Każda malejąca funkcja produkcji ma malejące korzyści skali.

Dowód Funkcja jest malejąca jeżeli dla każdego $x, y \in \mathbb{R}_+$ takich, że y > x zachodzi f(y) < f(x). Weźmy dowolne $\alpha > 1$ i podstawmy $y = \alpha x$ wtedy zachodzi: $f(y) = f(\alpha x) < f(x) \le \alpha f(x)$. Ostatnia nierówność jest prawdziwa bo $f(\cdot) \ge 0$. Porównaj rysunek 1.

4 Liniowa funkcja produkcji

Twierdzenie 4 Funkcja produkcji $f : \mathbb{R}_+ \to \mathbb{R}$ postaci f(x) = ax + b gdzie a > 0 ma rosnące [malejące, stale] korzyści skali dla b < 0 [b > 0, b = 0].

Rysunek 1: Malejąca funkcja produkcji ma malejące korzyści skali.

Rysunek 2: Liniowa funkcja produkcji dla b>0 ma malejące korzyści skali.

Dowód Weźmy $\alpha > 1$. $f(\alpha x) = \alpha ax + b < \alpha(ax + b)$ wtedy i tylko wtedy gdy b>0. Dla rosnących i stałych korzyści postępujemy analogicznie. Porównaj rysunek 2.

Twierdzenie 5 Funkcja produkcji f(x) = b gdzie b > 0 ma malejące korzyści skali.

Dowód Weźmy
$$\alpha > 1$$
: $f(\alpha x) = b < \alpha b = \alpha f(x)$.

5 Wklęsła funkcja produkcji

Twierdzenie 6 Rosnąca i wklęsła funkcja produkcji, dla której $f(0) \ge 0$ ma malejące korzyści skali.

Rysunek 3: Wklęsła rosnąca funkcja produkcji z $f(0) \geq 0$ ma malejące korzyści skali.

Dowód Weźmy $\alpha > 1$. Korzystając z twierdzenia 2 mamy: $f(x) < (x - x_0)f'(x_0) + f(x_0)$. Weźmy $x = \alpha x_0$ wtedy dla każdego x_0 zachodzi:

$$f(\alpha x_0) < (\alpha - 1)x_0 f'(x_0) + f(x_0) < (\alpha - 1)f(x_0) + f(x_0) = \alpha f(x_0),$$

gdzie ostatnia nierównowść zachodzi ponieważ $\forall x_0 f(x_0) > f'(x_0) x_0$ (elastyczność funkcji jest mniejsza od jedności) bowiem (patrz rysunek 3) kąt $\gamma < \beta$ a więc $f'(x_0) = \tan(\gamma) < \tan(\beta) = \frac{f(x_0)}{x_0}$.

Poniżej przedstawimy jeszcze jeden szczególny przypadek choć funkcja produkcji nie jest już wklęsła na całej dziedzinie.

Przykład 1

Funkcja na rysunku 4 nie ma malejących korzyści skali bowiem dla wybranego x_0 istnieją takie α_1 i α_2 , dla których zachodzi: $f(\alpha_1 x_0) > \alpha_1 f(x_0)$ oraz $f(\alpha_2 x_0) < \alpha_2 f(x_0)$.

6 Wypukła funkcja produkcji

Twierdzenie 7 Rosnąca i wypukła funkcja produkcji, dla której f(0) = 0 ma rosnące korzyści skali.

Dowód Weźmy $\alpha > 1$. Korzystając z twierdzenia 1 mamy: $f(x) > (x - x_0)f'(x_0) + f(x_0)$. Weźmy $x = \alpha x_0$ wtedy dla każdego x_0 zachodzi:

$$f(\alpha x_0) > (\alpha - 1)x_0 f'(x_0) + f(x_0) > (\alpha - 1)f(x_0) + f(x_0) = \alpha f(x_0),$$

gdzie ostatnia nierównowść zachodzi ponieważ $\forall x_0 f(x_0) < f'(x_0)x_0$ (elastyczność funkcji jest większa od jedności) bowiem (patrz rysunek 5) kat

Rysunek 4: Funkcja nie ma malejących korzyści skali.

Rysunek 5: Wypukła rosnąca funkcja produkcji z f(0)=0ma rosnące korzyści skali.

Rysunek 6: Wypukła rosnąca funkcja produkcji z f(0)>0nie ma rosnących korzyści skali.

$$\gamma > \beta$$
 a więc $f'(x_0) = \tan(\gamma) > \tan(\beta) = \frac{f(x_0)}{x_0}$.

Poniższy przykład pokazuje, iż gdy $\mathbf{f}(0){>}0$ wypukła funkcja produkcji nie ma rosnących korzyści skali.

Przykład 2

Niech $f'(\cdot) > 0$, $f''(\cdot) > 0$ oraz f(0) > 0. Na rysunku 6 wybrano takie x_0 dla którego istnieją α_1 i α_2 dla których zachodzi: $f(\alpha_1 x_0) < \alpha_1 f(x_0)$ oraz $f(\alpha_2 x_0) > \alpha_2 f(x_0)$.

Poniżej przedstawimy jeszcze jeden szczególny przypadek funkcji z rosnącymi korzyściami skali choć funkcja produkcji nie jest już wypukła na całej dziedzinie.

 \Diamond

Przykład 3

Funkcja na rysunku 7 ma rosnące korzyści skali.

Rysunek 7: Funkcja ma rosnące korzyści skali.