

Figure I

Attachment of Ligands Through Primer Region

Figure 2
Attachment of Ligands by Incorporation of Modified Nucleotide Precursors

Figure 3
Incorporation of Ligands through Modified Ribonucleotides

Figure 4

Attachment of Ligands through a 3' tail

\ \

Figure 5
Preparation of Gapped Circle

Figure 6
Attachment of Ligands through hybridization to a 3' tail

Figure 7
RNA with Ligands on Primer

(Continued in Figure 8)

Continued from Figure 7

Figure 8

RNA with Ligands on Primer (Continued)

(Continued in Figure 10)

Figure 9
RNA with Ligands on Multiple Primers

Figure 10
RNA with Ligands on Multiple Primers (Continued)

at. We was well

Figure 11
Single-stranded DNA with attached Ligands

(Continued in Figure 12)

x x A'B'C'D'E'F

12/51 Continued from Figure 11 (b) (a) Presence of multiple Presence of a single tRNA primer sites tRNA primer site G' H' A' B' XX A'B'C'D'E'F Binding of tRNA's to Binding of tRNA to Primer Binding sites Primer Binding site **tRNA** Primer 3' 5'XX A'B'C'D'E'F Extension of DNA strand Extension of DNA strand from tRNA primers from tRNA primer E F 3' JK ABCDEF CD Synthesis of second strand by binding of tRNA to Primer Binding site at 5' end

Figure 12 Single-stranded DNA with attached Ligands (continued)

Figure 13
Linear Double-stranded DNA with attached Moieties on each strand

Figure 14

Enhanced Delivery of Retroviral Vector to Haematopoeitic Stem Cell

Figure 15

Enhanced Delivery of Vector DNA to Haematopoeitic Stem Cell

Figure 16
Covalent Attachment of vector DNA to Dimeric Antibody

Figure 17
Covalent attachment of Modified DNA to a Monovalent Antibody

Figure 18
Modified DNA used as a Binder

(continued in Figure 20)

IV

Figure 19 Synthetic Steps for Creation of Antibodies With Nucleic Acid Moieties Attached

Figure 20 Continuation of Synthetic Steps

Figure 21

Enhanced Binding of Antibodies to Antigens by Multimerization

Figure 22
High Affinity Multi-Insulin Soluble Complex

G'

Intron insertion site

(A) ----TGCTCTCTAAGGGTCTACTC----

T7 RNA Polymerase Sequence

Splice Donor Site

Splice Acceptor site

TGTATTTTAGATTCAA--
CAGATTCCATTTATA - - - ACATAAAATCTAAGTT---

SV40 Intron Sequence

(C) ----ACGAGAGATTCCATTATA - - - - - ACATAAAATCCCAGATGAG----

Insertion of SV40 Intron into polymerase coding sequence

Splice Donor Site

Splice Acceptor site

UGUAUUUUAGGGUCUACUC--
UGUAUUUUAGGGUCUACUC---

mRNA transcript containing intron

(E) ----UGCUCUAAGGGUCUACUC--mRNA transcript after splicing has normal T7 Sequence

Figure 24

Fusion of Intron into T7 RNA Polymerase Coding Sequence

Ka ka ka

Figure 25
Construction of T7 Expression Vector

T7 Promoter

B) Oligomers used for synthesis

TSP-1 GGA ATT CGT CTC GAG CTC TGA TCA CCA CCA TGG ACA CGA TTA ACA TCG C

TSP-2 GAC TAG TTG GTC TCG TCT CTT TTT TGG AGG AGT GTC GTT CTT AGC GAT GTT AAT C

TSP-3 GGA ATT CGT CTC GGA GAA AGG TAA AAT TCT CTG ACA TCG AAC TGG C

TSP-4 GAC TAG TGG TCT CCC CTT AGA GAG CAT GTC AGC

TSP-5 GGA ATT CGG TCT CGG GTC TAC TCG GTG GCG AGG

TSP-6 GAC TAG TCG TTA CGC GAA CGC AAA GTC

INT-1 GGA ATT CGT CTC TAA GGT AAA TAT AAA ATT TTT AAG

INT-2 GAC TAG TCG TCT CTG ACC CTA AAA TAC ACA AAC AAT TAG A

Figure 26

Synthesis of Pieces for Construction of T7 RNA Polymerase with Intron

Formation of Nuclear Localisation Signal by Fusion of TSP1/TSP2 Product to Clone with PCR #1 product

Annealing of TSP1 with TSP2

3' C TAA TTG TAG CGA TTC TTG CTG TGA GGA GGT TTT TTC TCT GCT CTG GTT GAT CAG $\,$ 5' $\,$ 5' 69 AAT TCG TCT CGA GCT CTG ATC ACC ACG ATG GAC ACG ATT AAC ATC GC

Extension of TSP1/TSP2 by polymerase

n n 5' GO ANT TCG TCT COA GCT CTG ATC ACC ATG GAC ACG ATT AAC ATC GCT AAG AAC GAC ACT CCT CCA AAA AAG AGA CGA GAA CTA GT GT GT GT GT GAT TTG TC TCT GCT GAT TTG TCT GCT GAT CAG Figure

Digestion of TSP1/TSP2 product with Bsa I

Digestion of PCR #1 clone (pL-1) with BsmB I

GAGA AAG GITA AAA TIC TCI GAC AIC GAA CIG GC---TIC CAI TIT AAG AGA CIG TAG CII GAC CG---CCT TAA GCA GAG CCTCT 5' GGA ATT COT CTC G

Ligation of Bsa I digested TS1/TS2 product to BsmB I digested PCR#1 clone

5' GG ANT TCG TCT CGA GCT CTG ATC ACC ATG GAC ACG ATT AAC ATC GCT AAG AAC GAC ACT CCT CCA AAA AAG AAA GAA AAA TTC 3' CC TTA AGC AGA GGT TTT TTC TCT TTC CAT TTT AAG 3' CC TTA AGC AGA GGT TTT TTC TCT TTC CAT TTT AAG

ATC GAA CTG GC-----TAG CTT GAC CG-----

Comparison of the 5' ends of the Nucleotide Sequences of Wild Type and Modified T7 RNA Polymerase

Wild Type T7 nucleic and amino acid sequence

```
ATG GAC ACG ATT AAC ATC GCT AAG AAC GAC TTC TCT GAC ATC GAA CTG GC------
TAC CTG TGC TAA TTG TAG CGA TTC TTG CTG AAG AGA CTG TAG CTT GAC CG------
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
```

Modified T7 nucleic and amino acid sequence with Nuclear Localisation Signal (NLS) insertion

ATO DAC ACO ATT AAC ATC OCT AAD AAC DAC ACT CCT CCA AAA AAG AGA AAG GTA AAA TTC TCT DAC ATC DAA CTO OC-TGA GGA GGT TITT TIC TOT TITC CAT TIT AND AGA CTG TAG CTT GAC CG-11 12 13 14 TAC CTG TGC TAA TTG TAG CGA TTC TTG CTG

Fusion of PCR Pieces to Construct T7 RNA Polymerase with an Intron

HTA-1

GAT CAT TAG ACC AGA TCT GAG CCT GGG AGC TCT CTG GCT AAC TAG GGA ACC CAC TGCTTA AGC CTC AAG
HTA-2

GAT CCT TGA GGC TTA AGC AGT GGG TTC CCT AGT TAG CCA GAG AGC TCC CAG GCT CAG ATC TGG TCT AAT

HTB-1

GAT CAC CTT AGG CTC TCC TAT GGC AGG AAG AAG CGG AGA CAG CGA AGA CCT CCT CAA G
GAT CCT TGA GGA GGT CTT CGT CGC TGT CTC CGC TTC TTC CTG CCA TAG GAG AGC CTA AGG T

HTC-1

GAT CAT AGT GAA TAG AGT TAG GCA GGG ATA CTC ACC ATT ATC GTT TCA GAC CCA CCT CCC AG
GAT CCT GGG AGG TGG GTC TGA AAC GAT AAT GGT GAG TAT CCC TGC CTA ACT CTA TTC ACT AT

TER-1 AAT CTA GAG CTA ACA AAG CCC GAA AGG AAG
TER-2 TTC TGC AGA TAT AGT TCC TCC TTT CAG C

Figure 30
Insertion of Anti-Sense Sequences into T7 Directed Transcription Units

Figure 31
Construct with T7 RNA polymerase and Anti-Sense directed from a T7 Promoter

A) Oligomers for introduction of T7 signals and polylinker

- PL-1

 TCG AGC CAT GGC TTA AGG ATC CGT ACG TCC GGA GCT AGC GGG CCC ATC GAT ACT

 AGT TAA ATG CAG ATC T
- PL-2 CTA GAG ATC TGC ATT TAA CTA GTA TCG ATG GGC CCG CTA GCT CCG GAC GTA CGG
 ATC CTT AAG CCA TGG C

Figure 32
Introduction of Poly-Linker for Creation of Protein Expression Vector

Final steps for construction of Expression Vector

Construct that produces single-stranded Anti-Sense DNA

Continued from Figure 34

(Structure 34e)

Extension by RT and digestion by RNase H

Extension by RT and displacement generates Single-Stranded DNA and a mostly Double-stranded DNA molecule

(Structure 35k)

3' X' Y' Z' A' B' C' C 5'

5' X Y Z A B C C' B'

Figure 35
Continuation of Process from Figure 34

Figure 36

Construct that produces RNA that is Reverse Transcribed to create Secondary DNA Constructs capable of directing transcription

Figure 37
Construct which Propagates a Double Hairpin Production Center

In this Example, the sequence F' E' D' is a promoter, the sequence G H J K

is an Anti-Sense sequence and X Y Z is a Poly A signal

Figure 38 Continuation of process from Figure 37

Figure 39

Construct which propagates a Production Center capable of Inducible Suicide

Figure 40

Use of tRNA primers to create a DNA construct for secondary production of transcripts

Figure 41

Excision of Sequences from U1 Transcript Region and Replacement with Novel Sequences

(A) Anti-sense oligomers

HVA-1 GAT CCG GAT TGA GGC TTA AGC AGT GGG TTC CCT AGT TAG CCA GAG AGC TCC CAG GCT CAG ATC TGG TCT AAT

HVA-2 CCG GAT TAG ACC AGA TCT GAG CCT GGG AGC TCT CTG GCT AAC TAG GGA ACC CAC TGC TTA AGC CTC AAT CCG

HVB-1 GAT CCG GAC CTT GAG GAG GTC TTC GTC GCT GTC TCC GCT TCT TCC TGC CAT AGG AGA GCC TAA GGT

HVB-2 CCG GAC CTT AGG CTC TCC TAT GGC AGG AAG AAG CGG AGA CAG CGA CGA AGA CCT CCT CAA GGT CCG

HVC-1 GAT CCG GAT GGG AGG TGG GTC TGA AAC GAT AAT GGT GAG TAT CCC TGC CTA ACT CTA TTC ACT AT

HVC-2 CCG GAT AGT GAA TAG AGT TAG GCA GGG ATA CTC ACC ATT ATC GTT TCA GAC CCA CCT CCC ATC CG

HVD-1 GAT CAG CAT GCC TGC AGG TCG ACT CTA GAC CCG GGT ACC GAG CTC GCC CTA TAG TGA GT C GTA TTA T

HVD-2 CCG GAT AAT ACG ACT CAC TAT AGG GCG AGC TCG GTA CCC GGG TCT AGA GTC GAC CTG CAG GCA TGC T

(B) Replacement of U1 sequences with HIV Anti-sense sequences

Figure 42
Insertion of Anti-Sense Sequences into U1Operons

Figure 43
Predicted Secondary structures for U1
Transcripts with Anti-sense Substitutions

Figure 44
Construction of U1 Multiple Operon Clone

Figure 45
Construction of T7 Triple Operon

pNDU1(A,B,C)

Triple U1 Operon Construct with HIV Anti-Sense

Figure 46

Structures of Triple Operon Constructs from Figures 44 and 45

Figure 47
Construction of Multiple T7 Operons in Vector coding for T7 RNA Polymerse

Figure 48

Flow cytometry data measuring binding of anti-CD4+ antibody to HIV resistant U037 cells

Figure 49

PCR amplification of gag region indicating absence of HIV in viral resistant cell line (2.10.16) after challenge

BEST AVAILABLE COPY

Figure 50

Clone with target-lacZ fusion will have reduced expression of lacZ after transfection by HIV Anti-sense construct

51/51

Enzyme activity as expressed by A₄₂₀ readings in extracts prepared from

	2.5 x 10 ⁴ cells	5 x 10 ⁴ cells	1.0 x 10 ⁵ cells
U 937 [untransfected]	0.018	0.023	0.034
U 937 [HIV A clone]	0.154	0.277	0.566
U937 [HIV A / Anti-A]	0.010	0.017	0.027
U 937 [HIV A/Anti-ABC]	0.013	0.021	0.035
U 937 [HIV A / Null DNA]	0.120	0.212	0.337

[B] Expression of Beta-galactosidase activity by In situ assay:

U 937 [untransfected] no blue spots in cells

U 937 [HIV A clone] blue spots in cells

U 937 [HIV A/Anti A] no blue spots in cells

U 937 [HIV A/Anti ABC] no blue spots in cells

U 937 [HIV A / Null DNA] blue spots in cells

Figure 51

Expression of Beta-galactosidase activity in extracts