

IN THE CLAIMS

Please make the following claim substitutions:

- 1 1. (Currently amended) A method for use in a system that is adapted to transmit a
2 data burst over at least two antennas, the method comprising the step of:
3 transmitting at least two training sequences, each of the at least two training
4 sequences being transmitted ~~ever via~~ a different respective one of said antennas,
5 each of the at least two training sequences having a normalized auto-correlation
6 below an auto-correlation threshold, the auto-correlation threshold being significantly
7 less than unity, and
8 each pair of the at least two training sequences having a normalized cross-
9 correlation below a cross-correlation threshold, the cross-correlation threshold being
10 significantly less than unity.
- 1 2. (Original) The method of claim 1, wherein each of the at least two training
2 sequences having the normalized auto-correlation below the auto-correlation threshold
3 comprises a sum of the squares of a normalized auto-correlation of one of the at least
4 two training sequences over an auto-correlation window being below the auto-
5 correlation threshold.
- 1 3. (Original) The method of claim 1, wherein each pair of the at least two training
2 sequences having the normalized cross-correlation below the cross-correlation
3 threshold comprises a sum of the squares of a normalized cross-correlation of the pair
4 of the at least two training sequences over a cross-correlation window being below the
5 cross-correlation threshold.
- 1 4. (Original) The method of claim 1, wherein the auto-correlation threshold is .06.
- 1 5. (Original) The method of claim 1, wherein the cross-correlation threshold is .12.
- 1 6. (Original) The method of claim 1, wherein:
2 the normalized auto-correlation is an auto-correlation normalized by the number
3 of symbols in one of the training sequences, and

4 the normalized cross-correlation is a cross-correlation normalized by the number
5 of symbols in one of the training sequences.

1 7. (Original) The method of claim 1, wherein the system exhibits frequency selective
2 fading.

1 8. (Original) The method of claim 1, wherein:

2 the data burst includes a plurality of sub-streams, each sub-stream representing
3 different bits than the other sub-streams of the plurality of sub-streams; and

4 at a particular time each of at least two of the sub-streams are transmitted over a
5 different respective antenna of the at least two antennas.

1 9. (Original) The method of claim 1, wherein the cross-correlation is taken over a
2 cross-correlation window of -L+1 to 0 and 0 to L-1, L being the number of symbols over
3 which multipaths of significant power can arrive.

1 10. (Original) The method of claim 1, wherein the auto-correlation is taken over an
2 auto-correlation window of -L+1 to L-1, excluding 0, L being the number of symbols over
3 which multipaths of significant power can arrive.

1 11. (Original) The method of claim 1, wherein:

2 the system is adapted to transmit a plurality of data bursts; and

3 the transmitting step is repeated for each data burst.

1 12. (Currently amended) A method for use in a system that is adapted to transmit a
2 data burst over at least two antennas, the method comprising the step of:

3 transmitting at least two training sequences, each of the at least two training
4 sequences being transmitted over via a different respective one of said antennas,

5 the training sequences being shifted versions of each other,

6 with each cyclic sequences sequence having a normalized cyclic-auto-correlation
7 below a cyclic-auto-correlation threshold, each cyclic sequence being N', N'=N-L+1,
8 symbols of one of the at least two training sequences, the cyclic-auto-correlation
9 threshold being significantly less than unity, L being the number of symbols over which

10 multipaths of significant power can arrive, and N being the number of symbols in one of
11 the training sequences.

1 13. (Original) The method of claim 12, wherein each cyclic sequence having the
2 normalized cyclic-auto-correlation below the cyclic-auto-correlation threshold comprises
3 a sum of the squares of a normalized cyclic-auto-correlation of one of the cyclic
4 sequences over a cyclic-auto-correlation window being below the cyclic auto-correlation
5 threshold.

1 14. (Original) The method of claim 12, wherein the cyclic-auto-correlation threshold
2 comprises .2.

1 15. (Original) The method of claim 12, wherein the normalized cyclic-auto-correlation is
2 a cyclic-auto-correlation normalized by N'.

1 16. (Original) The method of claim 12, wherein the system exhibits frequency selective
2 fading.

1 17. (Original) The method of claim 12, wherein:
2 the data burst includes a plurality of sub-streams, each sub-stream representing
3 different bits than the other sub-streams of the plurality of sub-streams; and
4 at a particular time each of at least two of the sub-streams are transmitted over a
5 different respective antenna of the at least two antennas.

1 18. (Original) The method of claim 12, wherein:
2 the system is adapted to transmit a plurality of data bursts; and
3 the transmitting step is repeated for each data burst.

1 19. (Currently amended) A method for use in a system that is adapted to transmit a
2 data burst over at least two antennas, the method comprising the step of:
3 transmitting at least two training sequences, each of the at least two training
4 sequences being transmitted over via a different respective one of said antennas,
5 a trace of an inverse of a product of a matrix of symbols of the at least two
6 training sequences and a conjugate transpose of the matrix is below a trace threshold,

7 the trace threshold being below $5ML/(N-L+1)$, L being the number of symbols
8 over which multipaths of significant power can arrive, M being the number of training
9 sequences, and N being the number of symbols in one of the training sequences.

1 20. (Original) The method of claim 19, wherein the trace threshold is $1.2ML/(N-L+1)$.

1 21. (Original) The method of claim 19, wherein the matrix is a function of at least one of
2 the following:

3 the number of symbols over which multipaths of significant power can arrive;
4 the number of training sequences; and
5 the number of symbols of one of the training sequences.

1 22. (Original) The method of claim 19, wherein matrix is a block-toepliz matrix.

1 23. (Original) The method of claim 22, wherein the block-toepliz matrix includes:

2 M blocks, M being the number of training sequences,
3 each block having L columns, L being the number of symbols over which
4 multipaths of significant power can arrive, and
5 each block having $N-L+1$ rows, N being the number of symbols in one training
6 sequence.

1 24. (Original) The method of claim 19, wherein the system exhibits frequency selective
2 fading.

1 25. (Original) The method of claim 19, wherein:
2 the system is adapted to transmit a plurality of data bursts; and
3 the transmitting step is repeated for each data burst.

1 26. (Currently amended) A transmitter adapted to be coupled to at least two antennas,
2 the transmitter being further adapted to transmit at least two training sequences,
3 each of the at least two training sequences being transmitted over via a different
4 respective one of said antennas,

5 each of the at least two training sequences having a normalized auto-correlation
6 below an auto-correlation threshold, the auto-correlation threshold being significantly
7 less than unity, and

8 each pair of the at least two training sequences having a normalized cross-
9 correlation below a cross-correlation threshold, the cross-correlation threshold being
10 significantly less than unity.

1 27. (Original) The transmitter of claim 26, wherein each of the at least two training
2 sequences having the normalized auto-correlation below the auto-correlation threshold
3 comprises a sum of the squares of a normalized auto-correlation of one of the at least
4 two training sequences over an auto-correlation window being below the auto-
5 correlation threshold.

1 28. (Original) The transmitter of claim 26, wherein each pair of the at least two training
2 sequences having the normalized cross-correlation below the cross-correlation
3 threshold comprises a sum of the squares of a normalized cross-correlation of the pair
4 of the at least two training sequences over a cross-correlation window being below the
5 cross-correlation threshold.

1 29. (Original) The transmitter of claim 26, wherein the auto-correlation threshold is .06.

2 30. (Original) The transmitter of claim 26, wherein the cross-correlation threshold is .12.

1 31. (Original) The transmitter of claim 26, wherein the transmitter is adapted for use in
2 a system having frequency selective fading.

1 32. (Currently amended) The method transmitter of claim 26, wherein:

2 the normalized auto-correlation is an auto-correlation normalized by the number
3 of symbols in one of the training sequences, and

4 the normalized cross-correlation is a cross-correlation normalized by the number
5 of symbols in one of the training sequences.

- 1 33. (Original) The transmitter of claim 26, wherein the cross-correlation is taken over a
- 2 window of -L+1 to 0 and 0 to L-1, L being the number of symbols over which multipaths
- 3 of significant power can arrive.

- 1 34. (Original) The transmitter of claim 26, wherein the auto-correlation is taken over a
- 2 window of -L+1 to L-1, excluding 0, L being the number of symbols over which
- 3 multipaths of significant power can arrive.

- 1 35. (Canceled)