ΗΥ-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2010 - 2011

Λύσεις 1^{ης} Σειράς Ασκήσεων

1.

$$(\ \neg P \leftrightarrow ((Q \lor \ \neg R) \mathbin{\rightarrow} \neg \ S)\) \land \neg ((P \lor Q) \land (\neg R \mathbin{\rightarrow} S))$$

$$(\neg P \leftrightarrow (\neg (Q \lor \neg R) \lor \neg S)) \land \neg ((P \lor Q) \land (\neg \neg R \lor S))$$

$$(\ (\neg P \land (\neg \ (Q \lor \ \neg R) \lor \neg \ S)\) \lor (P \land \neg \ (\neg \ (Q \lor \ \neg R) \lor \neg \ S))\) \land \neg ((P \lor Q) \land (R \lor S))$$

$$(\ (\neg P \land ((\neg Q \land R) \lor \neg S)\) \lor (P \land (\ (Q \lor \ \neg R) \land S))\) \land (\neg\ (P \lor Q) \lor \neg\ (R \lor S)\)$$

$$((\neg P \land ((\neg Q \land R) \lor \neg S)) \lor (P \land ((Q \lor \neg R) \land S))) \land ((\neg P \land \neg Q) \lor (\neg R \land \neg S)) \underline{(1)}$$

DNF

$$(\ (\ (\neg P \land (\neg Q \land R)\) \lor (\neg P \land \neg S)\) \ \lor (P \land (\ (Q \land S\) \lor (\ \neg R \land S)\)\) \land (\ (\neg\ P \land \neg\ Q) \lor (\neg\ R \land \neg\ S)\)$$

$$(\ (\neg P \land \neg Q \land R \) \lor (\neg P \land \neg S) \lor (\ (P \land (Q \land S) \) \lor (P \land (\neg R \land S) \) \) \land (\ (\neg P \land \neg Q) \lor (\neg R \land \neg S) \)$$

$$((\neg P \land \neg Q \land R) \lor (\neg P \land \neg S) \lor (P \land Q \land S) \lor (P \land \neg R \land S)) \land ((\neg P \land \neg Q) \lor (\neg R \land \neg S))$$

 $\begin{array}{l} ((\neg P \wedge \neg Q \wedge R \) \ \wedge \ (\neg P \wedge \neg Q) \) \vee ((\neg P \wedge \neg Q \wedge R \) \wedge \ (\neg P \wedge \neg Q) \) \vee ((\neg P \wedge \neg S) \wedge (\neg P \wedge \neg Q) \) \vee ((\neg P \wedge \neg S) \wedge (\neg P \wedge \neg Q) \) \vee ((\neg P \wedge \neg S) \wedge (\neg P \wedge \neg Q)) \vee ((\neg P \wedge \neg S) \wedge (\neg P \wedge \neg Q)) \vee ((\neg P \wedge \neg Q)) \vee (($

 $(\neg P \land \neg Q \land R \land \neg P \land \neg Q) \lor (\neg P \land \neg Q \land R \land \neg P \land \neg Q) \lor (\neg P \land \neg S \land \neg P \land \neg Q) \lor (\neg P \land \neg S \land \neg P \land \neg Q) \lor (\neg P \land \neg S \land \neg P \land \neg Q) \lor (\neg P \land \neg S \land \neg R \land \neg S) \lor (\neg P \land \neg R \land S \land \neg P \land \neg Q) \lor (\neg P \land \neg R \land S \land \neg R \land \neg S) \lor (\neg P \land \neg R \land S \land \neg R \land \neg S)$

 $(R \land \neg P \land \neg Q) \lor (R \land \neg P \land \neg Q) \lor (\neg S \land \neg P \land \neg Q) \lor (\neg P \land \neg R \land \neg S) \lor (S \land F) \lor (P \land Q \land F \land \neg R) \lor (F \land \neg R \land S \land \neg Q) \lor (P \land \neg R \land F)$

 $(R \land \neg P \land \neg Q) \lor (\neg S \land \neg P \land \neg Q) \lor (\neg P \land \neg R \land \neg S) \lor \mathbf{F} \lor \mathbf{F} \lor \mathbf{F} \lor \mathbf{F}$

 $(R \land \neg P \land \neg Q) \lor (\neg S \land \neg P \land \neg Q) \lor (\neg P \land \neg R \land \neg S)$.

CNF

Από την

 $((\neg P \lor (P \land ((Q \lor \neg R) \land S))) \land (((\neg Q \lor \neg S) \land (R \lor \neg S)) \lor (P \land ((Q \lor \neg R) \land S))))$

$$\land ((\neg P \lor \neg R) \land (\neg P \lor \neg S) \land (\neg Q \lor \neg R) \land (\neg Q \lor \neg S))$$

```
(((\neg P \lor (P \land (Q \lor \neg R))) \land (\neg P \lor S)) \land
(\ (\ (\neg Q \lor \neg S\ ) \lor \ (P \land (\ (Q \lor \neg R) \land S\ )\ )) \land \\
((R \lor \neg S) \lor (P \land ((Q \lor \neg R) \land S))))
\land ( (\neg P \lor \neg R) \land (\neg P \lor \neg S) \land (\neg Q \lor \neg R) \land (\neg Q \lor \neg S))
((\neg P \lor P) \land (\neg P \lor (Q \lor \neg R)) \land (\neg P \lor S)) \land
(P \lor (\neg Q \lor \neg S)) \land (((Q \lor \neg R) \land S) \lor (\neg Q \lor \neg S)) \land
((P \lor (R \lor \neg S)) \land ((Q \lor \neg R) \land S) \lor (R \lor \neg S)))
\land \ ( \ (\neg P \lor \neg R) \land (\neg P \lor \neg S) \ \land \ (\neg Q \lor \neg R) \land (\neg Q \lor \neg S))
((\neg P \lor P) \land (\neg P \lor (Q \lor \neg R)) \land (\neg P \lor S)) \land
  ((P \lor \neg Q \lor \neg S) \land ((Q \lor \neg R) \lor (\neg Q \lor \neg S)) \land (S \lor (\neg Q \lor (\neg S))) \land (S \lor (\neg Q \lor (\neg S))) \land (S \lor (\neg Q \lor (\neg S))) \land (S \lor (\neg G \lor (\neg G))) \land (S \lor (\neg G)) \land
(P \lor (R \lor \neg S) \land ((Q \lor \neg R) \lor R) \land ((S \lor R \lor \neg S))) \land
\land \ ( \ (\neg P \lor \neg R) \land (\neg P \lor \neg S) \ \land \ (\neg Q \lor \neg R) \land (\neg Q \lor \neg S))
( \neg P \lor P ) \land ( \neg P \lor Q \lor \neg R ) \land ( \neg P \lor S ) \land
  (P \lor \neg Q \lor \neg S) \land (Q \lor \neg R \lor \neg Q \lor \neg S) \land (S \lor \neg Q \lor \neg S) \land
(P \lor R \lor \neg S) \land (Q \lor \neg R \lor R) \land (S \lor R \lor \neg S) \land
  (\neg P \lor \neg R) \land (\neg P \lor \neg S) \land (\neg Q \lor \neg R) \land (\neg Q \lor \neg S)
T \wedge (\neg P \vee Q \vee \neg R) \wedge (\neg P \vee S) \wedge
   (P \lor \neg Q \lor \neg S) \land T \land T \land
(P \lor R \lor \neg S) \land T \land T \land
  (\neg P \lor \neg R) \land (\neg P \lor \neg S) \land (\neg Q \lor \neg R) \land (\neg Q \lor \neg S)
(\neg P \lor S) \land (P \lor R \lor \neg S) \land
  (\ \neg\,P\ \lor \neg\,R) \land \textcolor{red}{(\neg\,P\ \lor \neg\ S)}\ \land\ (\neg\,Q\ \lor \neg\,R\ ) \land (\neg\,Q\ \lor \neg\,S\ )
\neg P \land (P \lor R \lor \neg S) \land
  (\neg P \lor \neg R) \land (\neg Q \lor \neg R) \land (\neg Q \lor \neg S)
(P \lor R \lor \neg S) \land (\neg Q \lor \neg R) \land (\neg Q \lor \neg S).
```

2.

a)

$$S \models A$$
 και $S \models A \rightarrow B$ τότε $S \models B$

S = A

Αν το σύνολο προτάσεων S είναι αληθές, τότε μπορούμε να συμπεράνουμε ότι και η πρόταση A είναι αληθής

$S = A \rightarrow B$

Αν το σύνολο προτάσεων S είναι αληθές, τότε μπορούμε να συμπεράνουμε ότι και η πρόταση $A \rightarrow B$ ή, ισοδύναμα, η πρόταση $\neg A \lor B$ είναι αληθής

Αρα αν το σύνολο S είναι αληθές, τότε θα είναι αληθής και η πρόταση $A \land (\neg A \lor B) \equiv (A \land \neg A) \lor (A \land B) \equiv A \land B$.

Αρα αν το σύνολο S είναι αληθές, τότε θα είναι αληθής η πρόταση A (το οποίο ήδη το γνωρίζουμε) και θα είναι αληθής και η πρόταση B, κάτι το οποίο σημαίνει ότι $S \models B$.

β)

$$A \models B$$
 ή $A \models C$ τότε $A \models B \lor C$

$A = B \dot{\eta} A = C$

Αν η πρόταση A είναι αληθής, τότε μπορούμε να συμπεράνουμε ότι η πρόταση B είναι αληθής, ή ότι η πρόταση C είναι αληθής, άρα μπορούμε να συμπεράνουμε ότι η πρόταση $B \lor C$ είναι αληθής, κάτι το οποίο σημαίνει ότι $A \models B \lor C$.

Για το δεύτερο ζητούμενο, αρκεί να αποδείξουμε ότι ισχύει η $A \models B \lor C$, ξεκινώντας από υπόθεση η οποία δεν ισοδυναμεί με την $A \models B$ ή $A \models C$

Έστω ότι $A \models B$ και $A \models C$. Τότε αν η πρόταση A είναι αληθής, μπορούμε να συμπεράνουμε ότι η πρόταση B αληθής, και ότι η πρόταση C είναι αληθής, άρα και ότι η πρόταση C είναι αληθής, δηλαδή ότι C C

3.

a)

$$(A \land B) \lor (A \land \neg B) \equiv A$$

$$(A \land B) \lor (A \land \neg B)$$

$$\equiv$$
 A \land (B $\lor \neg$ B) (επιμεριστικότητα του \land πάνω στο \lor (4β))

$$\equiv A \vee F$$
 (αντινομία)

β)

$$(\mathbf{A} \land \mathbf{B}) \rightarrow \mathbf{C} \equiv \mathbf{A} \rightarrow (\mathbf{B} \rightarrow \mathbf{C})$$

Βάσει του ορισμού του →, έχουμε:

$$(A \land B) \rightarrow C \equiv \neg (A \land B) \lor C \equiv \neg A \lor \neg B \lor C$$
$$A \rightarrow (B \rightarrow C) \equiv A \rightarrow (\neg B \lor C) \equiv \neg A \lor (\neg B \lor C) \equiv \neg A \lor \neg B \lor C$$

4.

Η πρόταση που εξάγεται από τον παραπάνω πίνακα αληθείας είναι:

$$(A \wedge B \wedge C) \vee (A \wedge \neg B \wedge C) \vee (\neg A \wedge B \wedge C) \vee (\neg A \wedge B \wedge \neg C) \vee (\neg A \wedge \neg B \wedge C) \equiv (\sigma v v \acute{e} v \omega \sigma \eta)$$

$$(A \land C) \lor (\neg A \land B) \lor (\neg A \land \neg B \land C)$$

Επαληθεύουμε την παραπάνω πρόταση δημιουργώντας τον πίνακα αληθείας και συγκρίνοντας τον με τον πίνακα που δίνεται στην εκφώνηση.

A	В	С	$(A \land C) \lor (\neg A \land B) \lor (\neg A \land \neg B \land C)$
α	α	α	α
α	α	Ψ	Ψ
α	Ψ	α	α
α	Ψ	Ψ	Ψ
Ψ	α	α	α
Ψ	α	Ψ	α
Ψ	Ψ	α	α
Ψ	Ψ	Ψ	Ψ