TD N°5

- I- Le Bore naturel **B** (**Z=5**) est un mélange de deux isotopes stables : 10 **B** (**M**₁= 10,013g/mol; \mathbf{x}_1 = 0,20) et 11 **B** (**M**₂= 11,009g/mol; \mathbf{x}_2 = 0,80). \mathbf{x}_1 et \mathbf{x}_2 étant des fractions molaires
- 1. Donner la composition de chaque isotope.
- 2. Combien y a-t-il d'atomes dans une masse de 2g de l'isotope 11 B ? On donne : N_A = $6.02.10^{23}$ mole $^{-1}$
- 3. Calculer la masse molaire moyenne M du bore naturel 5B.
- 4. Soient les éléments chimiques suivants : \mathbf{B} ($\mathbf{Z} = \mathbf{5}$) ; \mathbf{F} ($\mathbf{Z} = \mathbf{9}$) ; \mathbf{P} ($\mathbf{Z} = \mathbf{15}$) ; \mathbf{Cr} ($\mathbf{Z} = \mathbf{24}$) ; \mathbf{Br} ($\mathbf{Z} = \mathbf{35}$)
 - **a-** Ecrire la configuration électronique de ces éléments à l'état fondamental en précisant le nombre d'électrons de valence.
 - **b-** Parmi ces éléments quels sont ceux qui ont les mêmes propriétés chimiques ? Justifier votre réponse.
- 5. On considère les molécules suivantes : BF₃ et PB_{r3}
 - a- Donner la représentation de Lewis de ces molécules
 - b- Donner la géométrie de ces molécules

II

- 1. On dissout 10⁻² moles de chlorure d'ammonium (NH₄Cl) dans un litre d'eau. On obtient la solution A.
 - a- Ecrire la réaction de dissociation de NH₄Cl.
 - **b-** Quelle est la nature de cette solution ? Justifier votre réponse.
 - **c-** Calculer le pH de la solution.
- 2. Soit une solution aqueuse B contenant 10⁻² mol/L d'ammoniac (NH₃).
 - a- Ecrire la réaction en solution.
 - **b-** Calculer le pH correspondant.
- 3. On mélange $V_1 = 40$ mL de la solution A et $V_2 = 60$ mL de la solution B, on obtient la solution C.
 - **a-** Calculer la concentration de NH₄⁺ et de NH₃ dans la solution C.
 - **b-** Ecrire la réaction chimique qui a lieu.
 - **c-** Calculer le pH de la solution C.

Données : $pK_A(NH_4^+/NH_3) = 9.2$; $T = 25^{\circ}C$

III-

1. Soient les glucides suivants :

D-glucose, L-glucose, D-glucosamine, D-galactose, L-mannose et D-fructose

On demande à leur propos :

- a- le nom de ceux qui sont épimères
- **b-** le nom de ceux qui sont isomères
- c- le nom de celui (ceux) qui possède (ent) un pouvoir réducteur
- **2.** Soit le triholoside ci-contre :

- **a-** Identifier les oses constitutifs.
- **b-** Ce triholoside présente-t-il un pouvoir réducteur ? Justifier votre réponse
- **c-** Quelles sont les enzymes (osidases) qui peuvent hydrolyser ce triholoside?
- 3. Soient les acides gras suivants : C16 : 0 ; C16 : 1 (ω7) ; C18 : 0 ; C18 : 1 (ω9) ; C18 : 2 (ω6) et les points de fusion : -5°C, 0°C, 13°C, 63°C, 70°C
 - a- Donner le nom des différents acides gras.
 - **b-** Apparier acide gras et point de fusion
 - **c-** Quel aspect structural de ces acides gras peut-être corrélé aux variations des points de fusion ?
- **4.** Donner la structure linéaire des acides gras suivants : **palmitique**, **stéarique**, **oléique**, **linoléique**, **arachidonique**.
 - a- Nos cellules peuvent-elles les synthétiser?
 - b- Qu'est-ce qui différencie l'acide oléique de l'acide linoléique ?
- 5. L'étude de la structure d'un peptide a donné les résultats suivants :
 - Composition en acides aminés : Ala, Arg, Cys, Lys, Ser.
 - L'hydrolyse par la tyrosine donne un dipeptide et un tripeptide.
 - L'hydrolyse acide ménagée donne un tripeptide composé de : Ala, Arg et Cys.
 - L'action du dinitrofluorobenzène (DNFB) sur le tripeptide précédent donne un dinitrophényl-Alanine (DNP-Ala).

Parmi les réponses suivantes, choisir la (les) séquences(s) compatible(s) avec les données ci-dessous :

- a- Lys-Ala-Arg-Cys-Ser
- **b-** Ala-Arg-Cys-Ser-Lys
- c- Ala-Arg-Cys-Lys-Ser
- **d-** Ser-Ala-Arg-Cys-Lys
- e- Ser-Lys-Ala-Arg-Cys
- **f-** Ala-Arg-Ser-Cys-Lys