A PAIR OF GARSIDE SHADOWS

PIOTR PRZYTYCKI† AND YEEKA YAU†

ABSTRACT. We prove that the smallest elements of Shi parts and cone type parts exist and form Garside shadows. The latter resolves a conjecture of Parkinson and the second author as well as a conjecture of Hohlweg, Nadeau and Williams.

1. Introduction

A Coxeter group W is a group generated by a finite set S subject only to relations $s^2 = 1$ for $s \in S$ and $(st)^{m_{st}} = 1$ for $s \neq t \in S$, where $m_{st} = m_{ts} \in \{2, 3, ..., \infty\}$. Here the convention is that $m_{st} = \infty$ means that we do not impose a relation between s and t. By X^1 we denote the Cayley graph of W, that is, the graph with vertex set $X^0 = W$ and with edges (of length 1) joining each $g \in W$ with gs, for $s \in S$. For $g \in W$, let $\ell(g)$ denote the word length of g, that is, the distance in X^1 from g to id. We consider the action of W on $X^0 = W$ by left multiplication. This induces an action of W on X^1 .

For $r \in W$ a conjugate of an element of S, the wall W_r of r is the fixed point set of r in X^1 . We call r the reflection in W_r (for fixed W_r such r is unique). Each wall W separates X^1 into two components, called half-spaces, and a geodesic edgepath in X^1 intersects W at most once [Ron09, Lem 2.5]. Consequently, the distance in X^1 between $g, h \in W$ is the number of walls separating g and h.

We consider the partial order \leq on W (called the 'weak order' in algebraic combinatorics), where $p \leq g$ if p lies on a geodesic in X^1 from id to g. Equivalently, there is no wall separating p from both id and q.

Shi parts. Let \mathcal{E} be the set of walls \mathcal{W} such that there is no wall separating \mathcal{W} from id (these walls correspond to so-called 'elementary roots'). The components of $X^1 \setminus \bigcup \mathcal{E}$ are *Shi components*. For a Shi component Y, we call $P = Y \cap X^0$ the corresponding *Shi part*.

Our first result is the following.

Theorem 1.1. Let P be a Shi part. Then P has a smallest element with respect $to \leq$.

Theorem 1.1 was proved independently in a more general form by Dyer, Fishel, Hohlweg and Mark in [DFHM23, Theorem 1.1(1)]). Here we give a short proof following the lines of the proof of a related result of the first author and Osajda [OP22, Thm 2.1].

In [Shi87], Shi proved Theorem 1.1 for affine W. The family \mathcal{E} , which is finite by [BH93], has been extensively studied ever since and has become an important object in algebraic combinatorics, geometric group theory and representation theory. See for example see the survey article [Fis20].

 $[\]dagger$ Partially supported by NSERC and (Polish) Narodowe Centrum Nauki, UMO-2018/30/M/ST1/00668.

[†] Partially supported by the National Science Foundation under Award No. 2316995.

By [BH93], Shi parts are in correspondence with the states of an automaton recognising the language of reduced words of the Coxeter group. This partition of a Coxeter group is thus one of the primary examples of 'regular' partitions, see [PY22].

For $g \in W$, let m(g) be the smallest element in the Shi part containing g, guaranteed by Theorem 1.1. Let $M \subset W$ be the set of elements of the form m(g) for $g \in W$.

The join of $g, g' \in W$ is the smallest element h (if it exists) satisfying $g \leq h$ and $g' \leq h$. A subset $B \subseteq W$ is a Garside shadow if it contains S, contains $g^{-1}h$ for every $h \in B$ and $g \leq h$, and contains the join, if it exists, of every $g, g' \in B$.

Theorem 1.2. *M* is a Garside shadow.

Theorem 1.2 was also obtained in [DFHM23, Thm 1.1(2)], where the authors showed that M is the set of so-called 'low elements' introduced in [DH16]. We give an alternative proof using 'bipodality', a notion introduced in [DH16] and rediscovered in [OP22].

Cone type parts. For each $g \in W$, let $T(g) = \{h \in W \mid \ell(gh) = \ell(g) + \ell(h)\}$. For $T \subset W$, the cone type part $Q(T) \subset W$ is the set of all g^{-1} with T(g) = T. In other words, Q(T) consists of g such that T is the set of vertices on geodesic edge-paths starting at g and passing through id that appear after id, including id.

We obtain a new proof of the following.

Theorem 1.3. [PY22, Thm 1] Let Q be a cone type part. Then Q has a smallest element with respect to \leq .

For $g \in W$, let $\mu(g)$ be the smallest element in the cone type part containing g. Let $\Gamma \subset W$ be the set of elements of form $\mu(g)$ for $g \in W$ These elements are called the *gates* of the cone type partition in [PY22].

We also obtain the following new result, confirming in part [PY22, Conj 1].

Theorem 1.4. For any $q, q' \in \Gamma$, if the join of q and q' exists, then it belongs to Γ .

By [PY22, Prop 4.27(i)], this implies that Γ is a Garside shadow. Furthermore, Γ is the set of states of a the minimal automaton (in terms of the number of states) recognising the language of reduced words of a Coxeter group. This verifies [HNW16, Conj 1].

The paper is organised as follows. In Section 2 we discuss 'bipodality' and use it to prove Theorem 1.1 and Theorem 1.2. In Section 3 we focus on the cone type parts and give the proofs of Theorem 1.3 and Theorem 1.4.

Acknowledgements. We thank Christophe Hohlweg and Damian Osajda for discussions and feedback.

2. Shi parts

The following property was called *bipodality* in [DH16]. It was rediscovered in [OP22].

Definition 2.1. Let $r, q \in W$ be reflections. Distinct walls $\mathcal{W}_r, \mathcal{W}_q$ intersect, if \mathcal{W}_r is not contained in a half-space for \mathcal{W}_q (this relation is symmetric). Equivalently, $\langle r, q \rangle$ is a finite group. We say that such r, q are sharp-angled, if r and q do not commute and $\{r, q\}$ is conjugate into S. In particular, there is a component of

 $X^1 \setminus (\mathcal{W}_r \cup \mathcal{W}_q)$ whose intersection F with X^0 is a fundamental domain for the action of $\langle r, q \rangle$ on X^0 . We call such F a geometric fundamental domain for $\langle r, q \rangle$.

Lemma 2.2 ([OP22, Lem 3.2], special case of [DH16, Thm 4.18]). Suppose that reflections $r, q \in W$ are sharp-angled, and that $g \in W$ lies in a geometric fundamental domain for $\langle r, q \rangle$. Assume that there is a wall \mathcal{U} separating g from \mathcal{W}_r or from \mathcal{W}_q . Let \mathcal{W}' be a wall distinct from $\mathcal{W}_r, \mathcal{W}_q$ that is the translate of \mathcal{W}_r or \mathcal{W}_q under an element of $\langle r, q \rangle$. Then there is a wall \mathcal{U}' separating g from \mathcal{W}' .

FIGURE 1. Lemma 2.2 for the case $m_{rq} = 4$

The following proof is surprisingly the same as that for a different result [OP22, Thm 2.1].

Proof of Theorem 1.1. Let $P = Y \cap X^0$, where Y is a Shi component. It suffices to show that for each $p_0, p_n \in P$ there is $p \in P$ satisfying $p_0 \succeq p \preceq p_n$. Let (p_0, p_1, \ldots, p_n) be the vertices of a geodesic edge-path π in X^1 from p_0 to p_n , which lies in Y. Let $L = \max_{i=0}^n \ell(p_i)$.

We will now modify π and replace it by another embedded edge-path from p_0 to p_n with vertices in P, so that there is no p_i with $p_{i-1} \prec p_i \succ p_{i+1}$. Then we will be able to choose p to be the smallest p_i with respect to \preceq .

If $p_{i-1} \prec p_i \succ p_{i+1}$, then let $\mathcal{W}_r, \mathcal{W}_q$ be the (intersecting) walls separating p_i from p_{i-1}, p_{i+1} , respectively. Moreover, if r and q do not commute, then r, q are sharp-angled, with id in a geometric fundamental domain for $\langle r, q \rangle$. We claim that all the elements of the residue $R = \langle r, q \rangle(p_i)$ lie in P.

Indeed, since p_{i-1}, p_{i+1} are both in P, we have that $W_r, W_q \notin \mathcal{E}$. It remains to justify that each wall $W' \neq W_r, W_q$ that is the translate of W_r or W_q under an element of $\langle r, q \rangle$ does not belong to \mathcal{E} . We can thus assume that r and q do not commute, since otherwise there is no such W'. Since $W_r \notin \mathcal{E}$, there is a wall \mathcal{U} separating id from W_r . By Lemma 2.2, there is a wall \mathcal{U}' separating id from W', justifying the claim.

We now replace the subpath (p_{i-1}, p_i, p_{i+1}) of π by the second embedded edgepath with vertices in the residue R from p_{i-1} to p_{i+1} . Since all the elements of R are $\forall p_i$ [Ron09, Thm 2.9], this decreases the complexity of π defined as the tuple (n_L, \ldots, n_2, n_1) , where n_j is the number of p_i in π with $\ell(p_i) = j$, with lexicographic order. After possibly removing a subpath, we can assume that the new edge-path is embedded. After finitely many such modifications, we obtain the desired path. \square

Lemma 2.3. For $g \leq h$, we have $m(g) \leq m(h)$.

Proof. Let k be the minimal number of distinct Shi components traversed by a geodesic edge-path γ from h to g. We proceed by induction on k, where for k = 1 we have m(g) = m(h). Suppose now k > 1. If a neighbour f of h on γ lies in the same Shi component as h, then we can replace h by f. Thus we can assume that f lies in a different Shi component than h. Consequently, the wall \mathcal{W}_r separating h from f belongs to \mathcal{E} . Since $g \leq f$, by the inductive assumption we have $m(g) \leq m(f)$. Thus it suffices to prove $m(f) \leq m(h)$.

In the first case, where for every neighbour h' of h on a geodesic edge-path from h to id, the wall separating h from h' belongs to \mathcal{E} , we have h=m(h) and we are done. Otherwise, let \mathcal{W}_q be such a wall separating h from h' outside \mathcal{E} . If r and q do not commute, then r,q are sharp-angled, with id in a geometric fundamental domain for $\langle r,q\rangle$. By Lemma 2.2, among the walls in $\langle r,q\rangle\{\mathcal{W}_r,\mathcal{W}_q\}$ only \mathcal{W}_r belongs to \mathcal{E} . Let \bar{h},\bar{f} be the vertices opposite to f,h in the residue $\langle r,q\rangle h$. We have $m(\bar{h})=m(h),m(\bar{f})=m(f)$. Replacing h,f by \bar{h},\bar{f} , and possibly repeating this procedure finitely many times, we arrive at the first case.

Lemma 2.3 has the following immediate consequence.

Corollary 2.4. For any $g, g' \in M$, if the join of g and g' exists, then it belongs to M.

For completeness, we include the proof of the following.

Lemma 2.5 ([DH16, Prop 4.16]). For any $h \in M$ and $g \leq h$, we have $g^{-1}h \in M$.

Proof. For any neighbour h' of h on a geodesic edge-path from h to g, the wall \mathcal{W} separating h from h' belongs to \mathcal{E} . Consequently, we also have $g^{-1}\mathcal{W} \in \mathcal{E}$, and so $g^{-1}h \in M$.

Also note that for each $s \in S$, we have $W_s \in \mathcal{E}$ and so m(s) = s implying $S \subset M$. Thus Corollary 2.4 and Lemma 2.5 imply Theorem 1.2.

3. Cone type parts

Let T = T(g) for some $g \in W$. We denote by ∂T the set of walls separating adjacent vertices $h \in T$ and $h' \notin T$. In particular, the walls in ∂T separate id from g^{-1} .

We note that one of the primary differences between the cone type parts and the Shi parts is that the cone type parts do not correspond to a 'hyperplane arrangement'. See for example Figure 2.

FIGURE 2. Shi parts and cone type parts for the Coxeter group of type \widetilde{G}_2

Remark 3.1. Note that for $g, g' \in Q(T)$ any geodesic edge-path from g to g' has all vertices f in Q(T). Indeed, for $h \in T$, any wall separating id from f separates id from g or g' and so it does not separate id from f. Thus $f \in T(f^{-1})$ and so $f \subseteq T(f^{-1})$. Conversely, if we had $f \subseteq T(f^{-1})$ then there would be a vertex $f \in T$ with a neighbour $f' \in T(f^{-1}) \setminus T$ separated from f by a wall $f' \in T(f^{-1})$ that does not separate $f' \in T(f^{-1})$ and so $f' \notin T(g^{-1})$ or $f' \notin T(g^{-1})$. See also [PY22, Thm 2.14] for a more general statement.

Proof of Theorem 1.3. The proof is identical to that of Theorem 1.1, with P replaced by Q. The vertices of a geodesic edge-path π in X^1 from p_0 to p_n belong to Q by Remark 3.1. We also make the following change in the proof of the claim that all the elements of $R = \langle r, q \rangle(p_i)$ lie in Q. Namely, since $T = T(p_i^{-1})$ equals $T(p_{i-1}^{-1})$, we have $\mathcal{W}_r \notin \partial T$. Analogously we obtain $\mathcal{W}_q \notin \partial T$. If r and q do not commute, we have that T is contained in a geometric fundamental domain for $\langle r, q \rangle$, and so we also have $\mathcal{W}' \notin \partial T$ for any \mathcal{W}' that is a translate of \mathcal{W}_r or \mathcal{W}_q under an element of $\langle r, q \rangle$. This justifies the claim.

Proof of Theorem 1.4. The proof structure is similar to that of Lemma 2.3. We need to justify that for $g \leq h$, we have $\mu(g) \leq \mu(h)$, where we induct on the minimal number k of distinct cone type components traversed by a geodesic edge-path γ from h to g. Suppose k > 1, and let Q = Q(T) be the cone type component containing h. If a neighbour f of h on γ lies in Q, then we can replace h by f. Thus we can assume $f \notin Q$. Consequently, the wall \mathcal{W}_r separating h from f belongs to ∂T . Since $g \leq f$, by the inductive assumption we have $\mu(g) \leq \mu(f)$. Thus it suffices to prove $\mu(f) \leq \mu(h)$.

If for every neighbour h' of h on a geodesic edge-path from h to id, the wall separating h from h' belongs to ∂T , we have $h = \mu(h)$ and we are done. Otherwise,

let W_q be such a wall separating h from h' outside ∂T . Let \bar{h}, \bar{f} be the vertices opposite to f, h in the residue $\langle r, q \rangle h$, and let f' = rqh. It suffices to prove $\mu(\bar{h}) = \mu(h), \mu(\bar{f}) = \mu(f)$. To justify $\mu(\bar{h}) = \mu(h)$, or, equivalently, $\bar{h} \in Q$, it suffices to observe that among the walls in $\langle r, q \rangle \{W_r, W_q\}$ only W_r belongs to ∂T : Indeed, if r and q do not commute, then r, q are sharp-angled, with T in the geometric fundamental domain F for $\langle r, q \rangle$ containing id.

It remains to justify $\mu(\bar{f}) = \mu(f)$, or, equivalently, $T(\bar{f}^{-1}) = \tilde{T}$ for $\tilde{T} = T(f^{-1})$. Since $\tilde{T} \cap F = T$, to show, for example, $T(f'^{-1}) = \tilde{T}$, it suffices to show that the wall $\mathcal{W} = r\mathcal{W}_q$ does not belong to $\partial \tilde{T}$.

Otherwise, let $b \in T$ be adjacent to W. Then $rb \in F$ is adjacent to W_q , which is outside ∂T . Consequently, $rb \notin T$. Thus there is a wall W' separating id from h and rb. Note that $W' \neq W_r$ and so W' separates id from f. Since id lies on a geodesic edge-path from f to b, we have that W' does not separate id from b. Thus rW' separates r and rb from f, h, b, and id, since, again, id lies on a geodesic edge-path from f to b.

Consider the distinct connected components $\Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4$ of $X^1 \setminus (\mathcal{W}_r \cup r\mathcal{W}')$ with id $\in \Lambda_1, b \in \Lambda_2, r \in \Lambda_3, rb \in \Lambda_4$. Since id and r are interchanged by the reflection r and they lie in the opposite connected components, we have $r\Lambda_2 \subsetneq \Lambda_1$. On the other hand, since b and rb lie in the opposite connected components, we have $r\Lambda_1 \subsetneq \Lambda_2$, which is a contradiction.

This proves that the wall W does not belong to $\partial \widetilde{T}$, and hence neither does any other wall in $\langle r, q \rangle \{ \mathcal{W}_r, \mathcal{W}_q \}$. Consequently $T(\overline{f}^{-1}) = \widetilde{T}$, as desired.

FIGURE 3. Proof of Theorem 1.4, the case of $m_{rq} = 3$

References

- [BH93] Brigitte Brink and Robert B. Howlett, A finiteness property and an automatic structure for Coxeter groups., Mathematische Annalen **296** (1993), no. 1, 179–190.
- [DDH15] Patrick Dehornoy, Matthew Dyer, and Christophe Hohlweg, Garside families in Artin–Tits monoids and low elements in Coxeter groups, Comptes Rendus Mathematique **353** (2015), no. 5, 403–408.
 - [Dye19] Matthew Dyer, On the Weak Order of Coxeter Groups, Canadian Journal of Mathematics **71** (2019), no. 2, 299–336.

- [DH16] Matthew Dyer and Christophe Hohlweg, Small roots, low elements, and the weak order in Coxeter groups, Adv. Math. **301** (2016), 739–784.
- [DFHM23] Matthew Dyer, Susanna Fishel, Christophe Hohlweg, and Alice Mark, Shi arrangements and low elements on Coxeter groups (2023), available at arXiv:2303.16569.
 - [Fis20] Susanna Fishel, A survey of the Shi arrangement (2020), available at arXiv:1909.
- [HNW16] Christophe Hohlweg, Philippe Nadeau, and Nathan Williams, Automata, reduced words, and Garside shadows in Coxeter groups, Journal of Algebra 457 (2016), 431–456
 - [OP22] Damian Osajda and Piotr Przytycki, Coxeter groups are biautomatic (2022), available at arXiv:2206.07804.
 - [PY22] James Parkinson and Yeeka Yau, Cone types, automata, and regular partitions in Coxeter groups, Adv. Math. 398 (2022), Paper No. 108146, 66pp.
 - [Ron09] Mark Ronan, Lectures on buildings, University of Chicago Press, Chicago, IL, 2009. Updated and revised.
 - [Shi87] Jian Yi Shi, Alcoves corresponding to an affine Weyl group, J. London Math. Soc. (2) **35** (1987), no. 1, 42–55.

Department of Mathematics and Statistics, McGill University, Burnside Hall, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada

Email address: piotr.przytycki@mcgill.ca

DEPARTMENT OF MATHEMATICS AND STATISTICS, 1 UNIVERSITY HEIGHTS, UNIVERSITY OF NORTH CAROLINA ASHEVILLE, ASHEVILLE, NC 28804, USA

Email address: yyau@unca.edu