

Spontaneous Numerical Cognition in human and non-human Primates

Guillermo Hidalgo Gadea and Gema Martin Ordas #PSGBspring19

Agenda

IntroductionQuantity Discrimination
Numerical Cognition

Methods Task, Stimuli, Design Subjects

Results
Chimpanzee
Human

Research Question

Introduction: Quantity Discrimination

Introduction: Numerical cognition

Cantlon, Platt & Brannon (2009)

Ditz & Nieder (2016)

Hanus & Call (2007)

Methods: Task

Methods: Task

Methods: Stimuli

Methods: Design

Presentation styles

- Visible plates
- Covered cups

Conditions

- Numerosity
- Size
- Critical Discriminations
- Equal Quantities

Natural Choice: Stimulus = Reward

Methods: Metrics

IV:

Quantity Ratio = Q_1/Q_2

Quantity Difference = $Q_2 - Q_1$

Number Ratio = N_1/N_2

Size Ratio = S_1/S_2

DV:

Highest quantity choice

e.g. (numerosity) critical combination

Methods: Subjects

- Undergraduate psychology students
 N = 92 (78 f), age M = 22.15 years SD = 4.62
 tested in 4 groups at the University of Stirling.
- One chimpanzee (f, 30 years) captive living group of four at Blair Drummond Safari Park not deprived from food or water, not separated
- Expected: Four Ring-Tailed Lemurs (2 f) and two Brown Lemurs (2 m) from a captive living group at the Blair Drummond Safari park

Significant <u>side bias</u> (Binomial test, p < .05) on single sessions in covered conditions and critical discrimination.

Performance in covered conditions not significantly different from <u>chance level</u> (Binomial test, p < .05).

Quantity ratio has a stronger influence on performance than quantity difference (see Weber's Law).

 T_r_s difference difference ns. for **numerosity**.

Quantity ratio has a stronger influence on performance than quantity difference (see Weber's Law).

 T_r_s difference difference p < .05 for size.

Performance in critical condition is <u>not influenced</u> by neither <u>quantity ratio</u> nor <u>quantity difference</u>. Performance can be explained by <u>size ratio</u> ($r_s = -.24$), indicating <u>feature preference</u>.

Separate analysis for dominant feature in critical condition indicates <u>preference for size critical trials</u>. No significant difference in performance between dominant features (Wilcoxon T = 75, p = .109).

Flashback: Critical condition

Methods: Subjects

- Undergraduate psychology students
 N = 92 (78 f), age M = 22.15 years SD = 4.62
 tested in 4 groups at the University of Stirling.
- One chimpanzee (f, 30 years) captive living group of four at Blair Drummond Safari Park not deprived from food or water, not separated
- Expected: Four Ring-Tailed Lemurs (2 f) and two Brown Lemurs (2 m) from a captive living group at the Blair Drummond Safari park

<u>Visible numerosity critical</u> trials correlated to quantity ($r_s = -.30$) and size ratio ($r_s = .26$), least to numerosity ($r_s = .11$). <u>Visible size critical</u> trials correlated to quantity ($r_s = -.25$) and numerosity ratio ($r_s = .15$), least to size ($r_s = -.06$).

<u>Covered numerosity critical</u> trials correlated to size ratio ($r_s = -.12$), not to quantity nor numerosity.

<u>Covered size critical</u> trials correlated to quantity ($r_s = -.23$) and numerosity ratio ($r_s = .18$), least to size ($r_s = -.01$).

presentation_style

■ Visible ■ Covered

Friedman's ANOVA by ranks; $\chi_F^2(5) = 512.29$, p < .001. Pairwise comparisons at p < .05

Wilcoxon signed-rank T = 2130 p < .001, r = .34 for presentation style

Error bars: 95% CI

Research Question: Quantity Discrimination Strategies

Rational Model:

Volume_{total} = Volume_{piece} x Number_{pieces} (feature combination)

Rational Model + Bias:

Feature salience bias on quantity proxy (weighted combination)

Take-the-Best Model:

Single dominant feature as proxy (feature reduction)

Take-the-Best Model + Bias:

Feature salience bias on feature dominance (feature preference)

		Q. ratio	N. ratio	S. ratio
Visible		27	.09	.08
Human	N. critical	30	.11	.26
	S. critical	25	.15	ns.
	Covered	07	.19	18
	N. critical	ns.	ns.	12
	S. critical	23	.18	ns.
Ġ	Visible	ns.	ns.	24
Chimp.	N. critical	ns.	ns.	ns.
	S. critical	ns.	ns.	ns.

Note. All Spearman (Rank-) Correlations different from 0 at a p < .01 level.

Outlook: Data collection Lemurs (Eulemur fulvus, Lemur catta)

Eulemur fulvus Lemur catta

Thank you for listening

MSc Supervisor: **Dr. Gema Martin Ordas**(University of Stirling)

Research Coordinator: **Alasdair Gillies**(Blair Drummond Safari Park)

