Zadanie zespołowe programistyczne (dla chętnych zespołów 4-5osobowych)

TERMIN I: do 14.06.2019 (pigtek)k godz. 17:00

<u>TERMIN II (uzupełniajgcy bez konsekwencji za opóźnienie) : do 13.09.2019 (piątek) godz.</u> <u>17:00</u>

Fabuła zjawiska fizycznego

Stan pojedynczego "atomu" , o masie m=1 i promieniu r=0,1, gazu dwuwymiarowego opisują dwie pary liczb całkowitych: wektor położenia $\vec{r}=[x,y]$ oraz wektor prędkości $\vec{V}=[V_x,V_v].$

N cząstek gazu wypełnia przestrzeń dwuwymiarową ("pojemnik"), tak, że $x,y \in \langle -R,R \rangle$, (Rys.1).

Rys. 1. Przestrzeń położeń XY

Wartości prędkości nie mogą przekraczać ograniczenia $V_x, V_y \in \langle -W, W \rangle$ (Rys.2).

- P,P			P,P
- P,- P			P,- P

Rys.2. Przestrzeń prędkości

Przyjmujemy, że R i W są liczbami naturalnymi.

Przy zderzeniu ze ściankami pojemnika następuje zmiana prędkości

-
$$\vec{V} = [V_x, V_y]$$
-> $\vec{V}' = [V_x, -V_y]$ przy odbiciu od górnej lub dolnej ścianki,

-
$$\vec{V} = [V_x, V_y]$$
-> $\vec{V}' = [-V_x, V_y]$ przy odbiciu od lewej lub prawej scianki.

Zakładamy, że przy zderzeniu kulek składowe styczne prędkości kulek nie ulegają zmianie a jedynie składowe równoległe prędkości tak, że po zderzeniu prędkości kulek są następujące (Rys.3.):

$$\vec{V}_{1\perp}' = \vec{V}_{1\perp} + \vec{V}_{2\parallel} \quad \vec{V}_{2\perp}' = \vec{V}_{2\perp} + \vec{V}_{1\parallel}.$$

Wzór powyższy zachodzi pod warunkiem, że zajdzie zderzenie!

Rys.3. Prędkości przed zderzeniem i rozkład na składowe styczne i centralne..

Zakładamy, że zderzenie zachodzi gdy atom zbliży się do przeszkody (inna kulka lub ścianki pojemnika) z dokładnością ok. +/- 1/100 promienia kulki.

W chwili t=0 cząstki wypełniają równomiernie pierwszą kolumnę "pojemnika" XY, a współrzędne prędkości, przyjmują dla każdej cząstki wartości losowe

z przedziału
$$V_{x0,i}, V_{y0,i} \in \langle -W/(2N), W/(2N) \rangle$$
, tj. $W \approx \sqrt{\sum_{i=1}^N \left(V_{x0,i}^2 + V_{y0,i}^2\right)}$.

Ustalamy krok czasu $\Delta t \approx \frac{1}{2W}$ (zamiast czynnika 2 , w mianowniku, można testować wartości: 1, 2, 3, $\,$).

Definiujemy stan dyskretny , w których może się znaleźć pojedyncza cząstka jako określany przez cztery liczby całkowite $[nx, ny \ nV_x, nV_y]$, które numerują elementy iloczynu kartezjańskiego zbioru komórek przestrzeni XY (Rys.1. i zbioru komórek przestrzeni VxVy (Rys.2) . Poszczególne stany $[nx, ny \ nV_x, nV_y]$, można ponumerować pojedynczym indeksem s .

Polecenie

W dowolnym języku programowania (sugeruję język Python) napisz program, który

- 1. (5 punktów) wyznacza położenie poszczególnych cząstek w przestrzeni XY, dla czasów $t_i=j~\Delta t~$ z dokładnością do rozmiarów pojedynczej komórki.
- 2. (5 punktów)(wyznacza położenie poszczególnych cząstek w przestrzeni VxVy, dla czasów $t_i = j \Delta t$ z dokładnością do rozmiarów pojedynczej komórki.
- 3. (5punktów) wyznacza liczbę cząstek $n_s(t_j)$ w poszczególnych stanach o indeksie s (tj. komórkach $[nx, ny \ nV_x, nV_y]$, w kolejnych chwilach czasu t_j .
- 4. (5 punktów) wyznacza prawdopodobieństwo termodynamiczne $\mathscr{O}(t_j) = \frac{N!}{\prod_{s=1}^{M} \left(n_s(t_j)\right)!}$ danego makrostanu w funkcji czasu t_j .
- 5. (5 punktów) wyznacza entropię $S(t_j) = ln \omega(t_j)$ w zaleznościu od czasu t_j .i rysuje wykres tej zależności.

Wskazówka! W podpunkcie 4 i 5 sugeruję przybliżenie Stirlinga $\ln{(n!)} \approx n \ln(n) - n$.

Rozwiązanie zadania bonusowego trzeba zademonstrować w trakcie konsultacji. Możliwe są inne warianty rozwiązania po uzgodnieniach.