EMC TEST REPORT

Report No.: 17020576-FCC-E1 Supersede Report No.: N/A

Applicant	Sangoma Technologies Corp.			
Product Name	IP PHONE			
Model No.	S705	S705		
Serial No.	S505			
Test Standard	FCC Part 15 S	Subpart B Class B:2016, ANSI C63.4: 2	2014	
Test Date	June 20, 2017	7		
Issue Date	June 28, 2017	7		
Test Result	Pass	Fail		
Equipment complied with the specification				
Equipment did not comply with the specification				
Trety.lu		Deon Dai		
Trety Lu Test Engineer		Deon Dai Checked By		
This test report may be reproduced in full only				
Test result presented in this test report is applicable to the tested sample only				

Issued by: SIEMIC (Nanjing-China) Laboratories

2-1 Longcang Avenue Yuhua Economic and Technology Development Park, Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email: China@siemic.com.cn

Test Report No.	17020576-FCC-E1
Page	2 of 37

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Accreditations for conformity Assessment		
Country/Region	Scope	
USA	EMC, RF/Wireless, SAR, Telecom	
Canada	EMC, RF/Wireless, SAR, Telecom	
Taiwan	EMC, RF, Telecom, SAR, Safety	
Hong Kong	RF/Wireless, SAR, Telecom	
Australia	EMC, RF, Telecom, SAR, Safety	
Korea	EMI, EMS, RF, SAR, Telecom, Safety	
Japan	EMI, RF/Wireless, SAR, Telecom	
Singapore	EMC, RF, SAR, Telecom	
Europe	EMC, RF, SAR, Telecom, Safety	

Test Report No.	17020576-FCC-E1
Page	3 of 37

This page has been left blank intentionally.

Test Report No.	17020576-FCC-E1
Page	4 of 37

<u>CONTENTS</u>

1.	REPORT REVISION HISTORY	5
	CUSTOMER INFORMATION	
	TEST SITE INFORMATION	
	EQUIPMENT UNDER TEST (EUT) INFORMATION	
5.	TEST SUMMARY	7
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	8
6.1 A	C POWER LINE CONDUCTED EMISSIONS	8
6.2 F	ADIATED EMISSIONS	14
ANN	EX A. TEST INSTRUMENT	19
ANN	EX B. EUT AND TEST SETUP PHOTOGRAPHS	20
ANN	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	33
ANN	EX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	36
ANN	EX E. DECLARATION OF SIMILARITY	37

Test Report No.	17020576-FCC-E1
Page	5 of 37

1. Report Revision History

Report No.	Report Version	Description	Issue Date
17020576-FCC-E1	NONE	Original	June 28, 2017

2. <u>Customer information</u>

Applicant Name	Sangoma Technologies Corp.	
Applicant Add	100 Renfrew Drive, Suite 100 / Markham, ON L3R 9R6 CANADA	
Manufacturer	Sangoma Technologies Corp.	
Manufacturer Add	100 Renfrew Drive, Suite 100 / Markham, ON L3R 9R6 CANADA	

3. <u>Test site information</u>

Lab performing tests	SIEMIC (Nanjing-China) Laboratories
Lab Address	2-1 Longcang Avenue Yuhua Economic and
	Technology Development Park, Nanjing, China
FCC Test Site No.	986914
IC Test Site No.	4842B-1
Test Software	EZ_EMC

Description of EUT:

Test Report No.	17020576-FCC-E1
Page	6 of 37

4. Equipment under Test (EUT) Information

IP PHONE

Date EUT received:	May 18, 2017
Test Date(s):	June 20, 2017
Main Model:	S705
Serial Model:	S505
Antenna Gain:	Bluetooth/BLE/WIFI:2.8dBi
Input Power:	Adapter: Model:NBS05B050120VU Input Power:100-240V,50/60Hz,0.2A Output:5V,1.2A
Type of Modulation:	802.11b/g/n: DSSS, OFDM Bluetooth: GFSK, π/4DQPSK, 8DPSK BLE: GFSK
RF Operating Frequency (ies):	WIFI: 802.11b/g/n(20M): 2412-2472 MHz WIFI: 802.11n(40M): 2422-2462 MHz Bluetooth& BLE: 2402-2480 MHz
Number of Channels:	WIFI :802.11b/g/n(20M): 13CH WIFI :802.11n(40M): 9CH Bluetooth: 79CH BLE: 40CH
Port:	Power Port、Ext Port、Internet Port、PC Port、Earphone Port、Telephone Port
Trade Name :	Sangoma
FCC ID:	2AL9Y-PHONS705A

Test Report No.	17020576-FCC-E1
Page	7 of 37

5. <u>Test Summary</u>

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

FCC Rules	FCC Rules Description of Test			
§15.107; ANSI C63.4: 2014	AC Power Line Conducted Emissions	Compliance		
§15.109; ANSI C63.4: 2014	Radiated Emissions	Compliance		

Measurement Uncertainty

Emissions						
Test Item	Description	Uncertainty				
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB				

Test Report No.	17020576-FCC-E1
Page	8 of 37

6. Measurements, Examination And Derived Results

6.1 AC Power Line Conducted Emissions

Temperature	24°C			
Relative Humidity	56%			
Atmospheric Pressure	1023mbar			
Test date :	June 20, 2017			
Tested By:	Trety Lu			

Requirement(s):	_				•
Spec	Item	Requirement			Applicable
47CFR§15.10 7	a)	For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu] H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges. Frequency ranges (MHz) QP Average 0.15 ~ 0.5 66 – 56 56 – 46 0.5 ~ 5 60 50 50			~
Test Setup		Note: 1.Support u 2.Both of LI from other	nits were connected to se (SNs (AMN) are 80cm from runits and other metal pla	EUT and at least 80cm nes support units.	•
Procedure	top 2. The 3. The 4. All of 5. The 6. A so freq 7. High	EUT and supporting equipme of a 1.5m x 1m x 0.8m high, no power supply for the EUT was RF OUT of the EUT LISN was bether supporting equipment were EUT was switched on and allowant was made on the NEUTRA usency range using an EMI test in peaks, relative to the limit line indicated and the same of the same	on-metallic table. s fed through a 50Ω/50mH s connected to the EMI test ere powered separately fron owed to warm up to its norn AL line (for AC mains) or Ea t receiver. e, The EMI test receiver wa de with a receiver bandwidt	EUT LISN, connected to filter receiver via a low-loss coaxing another main supply. In another main supply. In all operating condition. In arth line (for DC power) over the sthem tuned to the selected the setting of 10 kHz.	red mains. al cable. he required
Remark					
Result	✓ Pas	s Fail			
<u> </u>	Yes Yes (See	below)			

Test Report No.	17020576-FCC-E1
Page	9 of 37

Data sample

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBµV)		(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)

Frequency (MHz) = Emission frequency in MHz

Reading ($dB\mu V$) = Receiver Reading Value

Detector=Quasi Peak Detector or Average Detector

Lisn/ISN= Insertion loss of LISN

Ps_Lmt= Insertion loss of transient limiter (The transient limiter included 10dB attenuation)

Cab_L= cable loss

Result ($dB\mu V$) = Reading Value + Corrected Value

Limit (dB μ V) = Limit stated in standard

Calculation Formula:

Margin (dB) = Result (dB μ V) – limit (dB μ V)

Test Report No.	17020576-FCC-E1
Page	10 of 37

Phase Line Plot at 120Vac, 60Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps Lmt	Cab L	Result	Limit	Margin
110.	(MHz)	(dBuV)	Dottotoi	(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4740	39.78	QP	0.12	-10.00	0.21	50.11	56.44	-6.33
2	0.4740	31.74	AVG	0.12	-10.00	0.21	42.07	46.44	-4.37
3	0.8220	34.95	QP	0.13	-10.00	0.20	45.28	56.00	-10.72
4	0.8220	25.66	AVG	0.13	-10.00	0.20	35.99	46.00	-10.01
5	1.1420	33.01	QP	0.14	-10.00	0.20	43.35	56.00	-12.65
6	1.1420	23.77	AVG	0.14	-10.00	0.20	34.11	46.00	-11.89
7	1.4500	30.59	QP	0.15	-10.00	0.20	40.94	56.00	-15.06
8	1.4500	21.34	AVG	0.15	-10.00	0.20	31.69	46.00	-14.31
9	1.9780	29.21	QP	0.16	-10.00	0.18	39.55	56.00	-16.45
10	1.9780	21.03	AVG	0.16	-10.00	0.18	31.37	46.00	-14.63
11	2.5540	27.30	QP	0.18	-10.00	0.23	37.71	56.00	-18.29
12	2.5540	17.52	AVG	0.18	-10.00	0.23	27.93	46.00	-18.07

Test Report No.	17020576-FCC-E1
Page	11 of 37

Phase Neutral Plot at 120Vac, 60Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4740	41.54	QP	0.11	-10.00	0.21	51.86	56.44	-4.58
2	0.4740	32.93	AVG	0.11	-10.00	0.21	43.25	46.44	-3.19
3	0.7980	36.52	QP	0.12	-10.00	0.20	46.84	56.00	-9.16
4	0.7980	27.15	AVG	0.12	-10.00	0.20	37.47	46.00	-8.53
5	1.1100	34.38	QP	0.13	-10.00	0.20	44.71	56.00	-11.29
6	1.1100	24.39	AVG	0.13	-10.00	0.20	34.72	46.00	-11.28
7	1.4620	30.42	QP	0.15	-10.00	0.20	40.77	56.00	-15.23
8	1.4620	20.10	AVG	0.15	-10.00	0.20	30.45	46.00	-15.55
9	1.8340	29.39	QP	0.16	-10.00	0.20	39.75	56.00	-16.25
10	1.8340	19.71	AVG	0.16	-10.00	0.20	30.07	46.00	-15.93
11	2.1740	29.55	QP	0.18	-10.00	0.21	39.94	56.00	-16.06
12	2.1740	20.13	AVG	0.18	-10.00	0.21	30.52	46.00	-15.48

Test Report No.	17020576-FCC-E1
Page	12 of 37

Phase Line Plot at 230Vac, 50Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4740	40.98	QP	0.12	-10.00	0.21	51.31	56.44	-5.13
2	0.4740	31.67	AVG	0.12	-10.00	0.21	42.00	46.44	-4.44
3	0.7180	36.94	QP	0.13	-10.00	0.20	47.27	56.00	-8.73
4	0.7180	27.93	AVG	0.13	-10.00	0.20	38.26	46.00	-7.74
5	1.1820	34.66	QP	0.14	-10.00	0.20	45.00	56.00	-11.00
6	1.1820	25.26	AVG	0.14	-10.00	0.20	35.60	46.00	-10.40
7	1.7900	31.63	QP	0.16	-10.00	0.21	42.00	56.00	-14.00
8	1.7900	23.40	AVG	0.16	-10.00	0.21	33.77	46.00	-12.23
9	9.2060	34.62	QP	0.46	-10.00	0.38	45.46	60.00	-14.54
10	9.2060	26.12	AVG	0.46	-10.00	0.38	36.96	50.00	-13.04
11	10.4700	33.73	QP	0.52	-10.00	0.50	44.75	60.00	-15.25
12	10.4700	23.11	AVG	0.52	-10.00	0.50	34.13	50.00	-15.87

Test Report No.	17020576-FCC-E1
Page	13 of 37

Phase Neutral Plot at 230Vac, 50Hz

	r ridoo reducar r rot at 200 rao, coriz								
No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4780	34.56	QP	0.11	-10.00	0.21	44.88	56.37	-11.49
2	0.4780	24.38	AVG	0.11	-10.00	0.21	34.70	46.37	-11.67
3	0.8180	32.29	QP	0.12	-10.00	0.20	42.61	56.00	-13.39
4	0.8180	20.99	AVG	0.12	-10.00	0.20	31.31	46.00	-14.69
5	1.2140	28.45	QP	0.14	-10.00	0.21	38.80	56.00	-17.20
6	1.2140	17.93	AVG	0.14	-10.00	0.21	28.28	46.00	-17.72
7	1.5780	24.69	QP	0.15	-10.00	0.20	35.04	56.00	-20.96
8	1.5780	13.82	AVG	0.15	-10.00	0.20	24.17	46.00	-21.83
9	7.9980	28.98	QP	0.45	-10.00	0.36	39.79	60.00	-20.21
10	7.9980	21.98	AVG	0.45	-10.00	0.36	32.79	50.00	-17.21
11	9.4500	28.60	QP	0.51	-10.00	0.39	39.50	60.00	-20.50
12	9.4500	21.67	AVG	0.51	-10.00	0.39	32.57	50.00	-17.43

Test Report No.	17020576-FCC-E1
Page	14 of 37

6.2 Radiated Emissions

Temperature	24°C
Relative Humidity	56%
Atmospheric Pressure	1023mbar
Test date :	June 20, 2017
Tested By:	Trety Lu

Requirement(s):

Spec	Item	Requirement		Applicable					
47CFR§15.10	a)	Except higher limit as specified elsewhere in the low-power radio-frequency devices shat specified in the following table and the level exceed the level of the fundamental emission band edges							
9(d)	a)	Frequency range (MHz)	Field Strength (µV/m)						
		30 – 88	100 150						
		88 – 216 216 960	200	-					
		Above 960	500	1					
Test Setup		Ant. Tower 1-4m Variable Support Units Ground Plane Test Receiver							
Procedure	2	 2. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarization (whichever gave the higher emission level over a full rotation of the EUT) was chosen. b. The EUT was then rotated to the direction that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. 3. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz. 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz with Peak detection for Peak measurement at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth with Peak detection for Average Measurement as below at frequency above 1GHz. ■1 kHz (Duty cycle < 98%) □ 10 Hz (Duty cycle > 98%) 							
Remark									

Test Report No.	17020576-FCC-E1
Page	15 of 37

Result Pass		}	☐ Fail							_	
Test Data Yes Test Plot Data sample Yes (See below)			elow)	N/A							
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)

Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Receiver Reading Value

Detector= Peak Detector or Quasi Peak Detector

Ant_F=Antenna Factor

PA_G=Pre-Amplifier Gain

Cab_L=Cable Loss

Result ($dB\mu V/m$) = Read ing Value + Corrected Value

Limit ($dB\mu V/m$) = Limit stated in standard

Height (cm) = Height of Receiver antenna

Degree = Turn table degree

Calculation Formula:

Margin (dB) = Result (dB μ V/m) – limit (dB μ V/m)

Test Report No.	17020576-FCC-E1
Page	16 of 37

Below 1GHz

Test Data

Horizontal Polarity Plot @3m

	::::::::::::::::::::::::::::::::::::::										
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	651.9417	62.88	QP	21.85	48.15	4.10	40.68	46.00	-5.32	300	241
2	711.6734	60.12	QP	22.47	45.60	4.29	41.28	46.00	-4.72	200	186
3	731.9203	56.43	QP	22.59	45.38	4.34	37.98	46.00	-8.02	200	206
4	731.9203	60.64	QP	22.59	45.38	4.34	42.19	46.00	-3.81	200	206
5	750.1083	60.34	QP	22.70	45.02	4.40	42.42	46.00	-3.58	200	221
6	771.4486	57.81	peak	22.83	45.62	4.46	39.48	46.00	-6.52	200	214

Test Report No.	17020576-FCC-E1
Page	17 of 37

Below 1GHz

Test Data

Vertical Polarity Plot @3m

				V CI (icui i oic	iiity i iot	Com				
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	173.2051	70.47	QP	13.73	46.43	2.12	39.89	43.50	-3.61	100	215
2	178.1327	71.21	QP	12.69	46.34	2.15	39.71	43.50	-3.79	100	216
3	181.9202	72.13	QP	12.33	46.38	2.17	40.25	43.50	-3.25	100	227
4	193.0945	69.10	QP	13.20	46.90	2.23	37.63	43.50	-5.87	100	214
5	202.8104	64.66	QP	14.85	47.41	2.27	34.37	43.50	-9.13	100	215
6	731.9203	59.98	QP	22.26	45.38	4.34	41.20	46.00	-4.80	100	318

Test Report No.	17020576-FCC-E1
Page	18 of 37

Above 1GHz

Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	4911.000	59.51	peak	33.43	53.81	5.96	45.09	74	-28.91	200	170
2	6120.000	55.63	peak	35.21	54.00	6.11	42.95	74	-31.05	100	310
3	8631.000	55.91	peak	37.35	54.02	8.29	47.53	74	-26.47	100	298
4	10774.000	54.84	peak	38.05	53.14	9.43	49.18	74	-24.82	100	106
5	13187.000	54.36	peak	39.13	51.88	9.56	51.17	74	-22.83	200	114
6	14716.000	55.29	peak	40.34	52.74	9.36	52.25	74	-21.75	200	9

Horizontal

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	4960.000	62.1	peak	33.58	54.04	5.88	47.52	74	-26.48	154	360
2	6303.000	55.71	peak	34.32	52.22	5.84	43.65	74	-30.35	200	2
3	8580.000	54.47	peak	37.37	53.91	8.33	46.26	74	-27.74	154	360
4	10755.000	54.23	peak	38.05	53.13	9.43	48.58	74	-25.42	100	30
5	11456.000	54.45	peak	38.37	53.15	10.05	49.72	74	-24.28	200	256
6	13902.000	54.41	peak	39.98	52.11	9.11	51.39	74	-22.61	100	282

Note1: The frequency that above 3GHz is mainly from the environment noise.

Note2: The AV measurement performed, more than 20dB below limit so AV test data was not presented.

Test Report No.	17020576-FCC-E1
Page	19 of 37

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted Emission	ns				
R&S EMI Test Receiver	ESPI3	101216	05/03/2017	05/02/2018	\boxtimes
V-LISN	ESH3-Z5	838979/005	03/30/2017	03/29/2018	\boxtimes
SIEMIC EZ_EMC Conducted Emissions	Ver.ICP- 03A1	N/A	N/A	N/A	
Radiated Emissions					
Spectrum Analyzer	N9010A	MY47191130	05/03/2017	05/02/2018	\boxtimes
R&S EMI Receiver	ESPI3	101216	05/03/2017	05/02/2018	\boxtimes
Antenna (30MHz~6GHz)	JB6	A121411	10/31/2016	10/31/2017	\boxtimes
EMCO Horn Antenna (1 ~18GHz)	3115	N/A	11/15/2016	11/14/2017	
INFOMW Antenna (1 ~18GHz)	JXTXLB- 10180	J2031081120092	10/09/2016	10/08/2017	
Hp Pre-Amplifier	8447F	1937A01160	10/31/2016	10/30/2017	
Agilent Pre-Amplifier	8449B	N/A	10/31/2016	10/30/2017	\boxtimes
SIEMIC EZ_EMC Radiated Emissions software	Ver.ICP- 03A1	N/A	N/A	N/A	\boxtimes

Test Report No.	17020576-FCC-E1
Page	20 of 37

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

The Whole of EUT - Front View

Adapter - Front View

Test Report No.	17020576-FCC-E1
Page	21 of 37

Adapter – Right View

EUT - Top View

Test Report No.	17020576-FCC-E1
Page	22 of 37

EUT - Bottom View

EUT - Front View

Test Report No.	17020576-FCC-E1
Page	23 of 37

EUT - Rear View

EUT - Left View

Test Report No.	17020576-FCC-E1
Page	24 of 37

EUT - Right View

Test Report No.	17020576-FCC-E1
Page	25 of 37

Annex B.ii. Photograph: EUT Internal Photo

EUT – Uncover Front View - 1

EUT – Uncover Front View - 2

Test Report No.	17020576-FCC-E1
Page	26 of 37

EUT PCB1 - Front View

EUT PCB1 - Rear View

Test Report No.	17020576-FCC-E1
Page	27 of 37

EUT PCB2 - Front View

EUT PCB2 - Rear View

Test Report No.	17020576-FCC-E1	
Page	28 of 37	

EUT PCB3 - Front View

EUT PCB3 - Rear View

Test Report No.	17020576-FCC-E1
Page	29 of 37

EUT PCB4 - Front View

EUT PCB4 - Rear View

Test Report No.	17020576-FCC-E1
Page	30 of 37

EUT Screen - Front View

EUT Screen - Rear View

Test Report No.	17020576-FCC-E1
Page	31 of 37

Annex B.iii. Photograph: Test Setup Photo

Conducted Emissions Test Setup Front View

Conducted Emissions Test Setup Side View

Test Report No.	17020576-FCC-E1
Page	32 of 37

Radiated Spurious Emissions Test Setup Below 1GHz

Radiated Spurious Emissions Test Setup Above 1GHz

Test Report No.	17020576-FCC-E1
Page	33 of 37

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

Block Configuration Diagram for Conducted Emissions

Test Report No.	17020576-FCC-E1	
Page	34 of 37	

Block Configuration Diagram for Radiated Emissions

Test Report No.	17020576-FCC-E1
Page	35 of 37

Annex C. ii. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
HP	Laptop	4321S	N/A
N/A	Load	N/A	N/A

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
Power Cable	Un-shielding	No	0.8m	N/A

Test Report No.	17020576-FCC-E1
Page	36 of 37

Annex D. User Manual / Block Diagram / Schematics / Partlist

See attachment

Test Report No.	17020576-FCC-E1
Page	37 of 37

Annex E. DECLARATION OF SIMILARITY

Sangoma Technologies Corp.

Statement

Model number: S705, S505

FCC ID: 2AL9Y-PHONS705A

We hereby state that S705,S505 are identical in interior structure, electrical circuits and components, and just model names, the number of account keys and screen sizes are different.

Your assistance on this matter is highly appreciated. Sincerely,

Name: Frederic Dickey

Title: VP Marketing & Product Mgmt

Company Name: Sangoma Technologies Corp.

Address: 100 Renfrew Drive, Suite 100 Markham ON L3R 9R6 Canada

Telephone: +1 905 474 1990 E-mail: fdickey@sangoma.com