东 南 大 学 考 试 卷 (A卷)

课程名称 ______ 高等数学 A 期末 _____ 考试 学 期 ___ 09-10-3 ___ 得分 ______ 适用专业 选修高数 A 的各专业 考试形式 ____ 闭卷 ____ 考试时间长度 150 分钟

题号	_	=	Ξ	四	五	六	七
得分							

- 一.填空题(本题共9小题,每小题4分,满分36分)
- 1. 将 $\int_{-2}^{2} dx \int_{0}^{\sqrt{4-x^2}} dy \int_{0}^{\sqrt{4-x^2-y^2}} f(x^2+y^2+z^2) dz$ (其中f(t)为连续函数)写成球面坐标系 下的三次积分_____
- 2. 球面 $x^2 + y^2 + z^2$ 3x = 0 在点 (1,1,1) 处的切平面方为______;
- 3. 设 $f(x) = \begin{cases} 1, -\pi < x \le 0 \\ 2x, 0 < x \le \pi \end{cases}$, 且以 2π 为周期, S(x) 为 f(x) 的 Fourier 级数的和函数,

- **4.** 已知 $(axy^3 y^2 \cos x) dx + (1 + by \sin x + 3x^2y^2) dy$ 为某个二元函数 f(x, y) 的全微分,则 $a = ___$, $b = ___$;
- 5. 设C 为圆周 |z|=2,取逆时针方向,则 $\int_C \frac{1}{(z+i)(z-4)} dz =$
- 6. $\text{BW}_{\text{Res}} \left[\frac{\ln(1+2z)}{1-\cos z}, 0 \right] = \frac{1}{1-\cos z}$
- 7. 设 $\mathbf{r} = \{x, y, z\}, r = |\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}$, 则散度 div(e'r) =

锥面 $z = \sqrt{x^2 + y^2}$ (0 $\leq z \leq 1$) 下侧,则

 $\iint 3x \, dy \wedge dz + 2y \, dz \wedge dx + (z - 1) \, dx \wedge dy = \underline{\hspace{1cm}}$

- 二. 计算下列各题(本题共 4 小题, 每小题 7 分, 满分 28 分)
- **10.** 设 z = z(x, y) 是由方程 $ze^z = xe^y + ye^x$ 所确定的隐函数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

11. 计算
$$\int_0^{\sqrt{2}} e^{-y^2} dy \int_0^y e^{-x^2} dx + \int_{\sqrt{2}}^2 e^{-y^2} dy \int_0^{\sqrt{4-y^2}} e^{-x^2} dx$$
.

12. 判断级数
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{n^{n-1}} \left(\frac{17}{9}\right)^{n-1}$$
 的敛散性.

- **13.** 求幂级数 $\sum_{n=1}^{\infty} \frac{2^{\ln n}}{n} x^n$ 的收敛域. (**注**: 级数若在收敛区间的端点处收敛,须说明是绝对收敛还是条件收敛.)
- **三 (14). (本題满分 7 分)** 设 $f(x) = \begin{cases} \frac{1}{2}, & 0 \le x < \frac{\pi}{2} \\ 0, & \frac{\pi}{2} \le x < \pi \end{cases}$ 的和函数.

四(15)。(本題满分 7 分)将函数 $f(z) = \frac{2+z}{(1-z)^2}$ 在圆环域 $2 < |z+1| < +\infty$ 内展开为 Laurent 级数.

五(16)(本题满分 7 分) 计算 $\int_{C} \frac{(x-y)dx+(x+y)dy}{x^2+y^2}$,其中 C 为 $x^{\frac{2}{3}}+y^{\frac{2}{3}}=\left(\frac{1}{\pi}\right)^{\frac{2}{3}}$,方向为逆时针.

六 (17)(本题满分 8 分) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \left(1 - \frac{1}{n(2n-1)}\right) x^{2n}$ 的收敛域与和函数 S(x),

并求数项级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \left(1 - \frac{1}{n(2n-1)}\right) \frac{1}{2^n}$ 的和.

七(18)(本题满分 7 分)计算由柱面 $x^2 + y^2 = 2x$ 、锥面 $2z = \sqrt{x^2 + y^2}$ 及 xoy 平面所围立体的表面积.

09-10-3 高等数学 A 期末试卷 (A) 参考答案

一.填空题(本题共9小题,每小题4分,满分36分)

1,
$$\int_0^{\pi} d\varphi \int_0^{\frac{\pi}{2}} \sin\theta d\theta \int_0^2 f(r^2) r^2 dr$$
 2, $x - 2y - 2z + 3 = 0$

$$2, \quad x - 2y - 2z + 3 = 0$$

3,
$$S(3\pi) = \pi + \frac{1}{2}$$
, $S(-2\pi) = \frac{1}{2}$ 4, $a = 2$, $b = -2$

$$4, a = 2, b = -2$$

5,
$$\int_C \frac{1}{(z+i)(z-4)} dz = \frac{1}{2\pi} \frac{1+4i}{7}$$
 6, $\operatorname{Res} \left[\frac{\ln(1+2z)}{1-\cos z}, 0 \right] = 4$

6,
$$R \operatorname{es} \left[\frac{\ln(1+2z)}{1-\cos z}, 0 \right] = \underline{4}$$

7, div(e^rr) =
$$e^{r}(3+r)$$

8,
$$\iint_{\Sigma} 3x \, dy \wedge dz + 2y \, dz \wedge dx + (z - 1) \, dx \wedge dy = 2\pi \qquad \qquad 9, \quad F(2) = \frac{5}{12}$$

$$9 \cdot F(2) = \frac{5}{12}$$

二. 计算下列各题(本题共 4 小题, 每小题 7 分, 满分 28 分)

10. **AZ:**
$$\frac{\partial z}{\partial x}(1+z)e^z = e^y + ye^x$$
, $\frac{\partial z}{\partial x} = \frac{e^{y-z} + ye^{x-z}}{1+z}$, $\frac{\partial z}{\partial y} = \frac{e^{x-z} + xe^{y-z}}{1+z}$

11. **M**:
$$D = \{(x, y) | x^2 + y^2 \le 4, 0 \le x \le y \}$$
,

原式 =
$$\iint_{D} e^{-(x^{2}+y^{2})} dx dy = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{2} e^{-\rho^{2}} \rho d\rho = \frac{\pi}{8} (1 - e^{-4})$$

12、**解:**
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} \frac{17}{9} = \frac{17}{9e} < 1$$
,由达朗贝尔比值判别法知级数

$$\sum_{n=1}^{\infty} \frac{(n-1)!}{n^{n-1}} \left(\frac{17}{9}\right)^{n-1} \psi \dot{\omega}.$$

13. **A:**
$$\lim_{n \to \infty} \frac{2^{\ln(n+1)}}{n+1} \cdot \frac{n}{2^{\ln n}} = \lim_{n \to \infty} \frac{n}{n+1} 2^{\frac{\ln(1+\frac{1}{n})}{n}} = 1$$
, If $\bigcup R = 1$, $\frac{2^{\ln n}}{n} = \frac{1}{n^{1-\ln 2}}$,

$$0 < 1 - \ln 2 < 1$$
, 故当 $x = 1$ 时, 级数 $\sum_{n=1}^{\infty} \frac{2^{\ln n}}{n}$ 发散, 当 $x = -1$ 时, 级数 $\sum_{n=1}^{\infty} (-1)^n \frac{2^{\ln n}}{n}$ 条件收

敛,故收敛域为[-1,1).

三(14). (本题满分7分)

M:
$$a_n = 0$$
, $n = 0, 1, 2, \cdots$, $b_n = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \sin nx dx = \frac{1}{n\pi} \left(1 - \cos \frac{n\pi}{2} \right)$, $n = 1, 2, \cdots$,

$$\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(1 - \cos \frac{n\pi}{2} \right) \sin nx = \begin{cases} f(x), & x \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right) \\ \frac{1}{4}, & x = \frac{\pi}{2} \\ 0, & x = 0 \end{cases}$$

四(15).(本题满分7分)

M:
$$\frac{1}{1-z} = \frac{1}{2-(z+1)} = -\frac{1}{z+1} \cdot \frac{1}{1-\frac{2}{z+1}} = -\sum_{n=0}^{\infty} 2^n (z+1)^{-n-1}, \quad 2 < |z+1| < +\infty$$

$$f(z) = \frac{2+z}{(1-z)^2} = \sum_{n=0}^{\infty} (n+1)2^n (z+1)^{-n-2} + \sum_{n=0}^{\infty} (n+1)2^n (z+1)^{-n-1}$$

$$= \sum_{n=0}^{\infty} (3n+2)2^{n-1}(z+1)^{-n-1} \qquad 2 < |z+1| < +\infty$$

五(16)(本题满分7分)

解:
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = \frac{y^2 - x^2 - 2xy}{\left(x^2 + y^2\right)^2}$$
, 取正数 ε 很小,使 C_{ε} : $x^2 + y^2 = \varepsilon^2$ 含于

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = \left(\frac{1}{\pi}\right)^{\frac{2}{3}} \not D, \quad (1 \not T) \quad \iint_{C} \frac{(x-y)dx + (x+y)dy}{x^{2} + y^{2}} = 2\varepsilon^{-2} \iint_{D_{\varepsilon}} dx dy = 2\pi$$

六(17)(本题满分8分)

AZ:
$$S_1(x) = \sum_{n=1}^{\infty} (-1)^{n-1} x^{2n} = \frac{x^2}{1+x^2}, \quad x \in (-1,1)$$

$$S_2'(x) = \left(\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(2n-1)} x^{2n}\right)' = 2\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} x^{2n-1} = 2 \arctan x, \quad x \in [-1,1],$$

$$S_2(x) = 2x \arctan x - \ln(1 + x^2)$$
, $x \in [-1, 1]$,

于是,
$$S(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \left(1 - \frac{1}{n(2n-1)}\right) x^{2n} = \frac{x^2}{1+x^2} - 2x \arctan x + \ln(1+x^2)$$
, $x \in (-1,1)$

(1
$$Arr$$
), $\sum_{n=1}^{\infty} (-1)^{n-1} \left(1 - \frac{1}{n(2n-1)}\right) \frac{1}{2^n} = S\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{3} - \sqrt{2} \arctan \frac{1}{\sqrt{2}} + \ln \frac{3}{2}$

七(18)(本题满分7分)

解: 记 S_1 为锥面 $2z = \sqrt{x^2 + y^2}$ 被柱面 $x^2 + y^2 = 2x$ 所截部分,其面积记为 A_1 ,记 S_2 为柱面 $x^2 + y^2 = 2x$ 被锥面 $2z = \sqrt{x^2 + y^2}$ 和xoy 平面所截部分,其面积记为 A_2 ,记 S_3 为

底面,其面积记为 A_3 ,表面积 $A=A_1+A_2+A_3$

$$A = \iint_{x^2 + y^2 \le 2x} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial x}\right)^2} \, d\sigma + \frac{1}{2} \iint_{x^2 + y^2 = 2x} \sqrt{x^2 + y^2} \, ds + \pi = \left(\frac{\sqrt{5}}{2} + 1\right) \pi + 2 \int_0^{\pi} \cos \frac{\theta}{2} \, d\theta$$
$$= \left(\frac{\sqrt{5}}{2} + 1\right) \pi + 4 \circ$$

