Лекция 5 Обучение с подкреплением

Никита Юдин, iudin.ne@phystech.edu

Московский физико-технический институт Физтех-школа прикладной математики и информатики

6 марта 2024

Новая постановка задачи

Теперь в задаче удалим ограничение на множество состояний среды $|S| \ll \infty$.

Заменяем таблицу на сеть

Если s,a — входные данные, $y\in\mathbb{R}$ — наблюдаемые значения, которые будут получаться как несмещ. оценка решения уравнения Беллмана. Будем решать следующую задачу регрессии:

$$y(s,a) := r(s,a) + \gamma \max_{a'} Q^*(s',a',\theta_k)$$

Где $s' \sim p(s'|s,a)$.

→ロト 4回ト 4 差ト 4 差ト 差 めな(

Deep Q-learning

Инициализируем $Q^*(s, a, \theta)$ произвольно, $\theta^- := \theta, \mathcal{D} = \emptyset$; Получаем s_0 : for $k = 0, 1, 2, \dots$

- 1. Выбрать действие $a_k \sim \varepsilon \operatorname{greedy}(Q^*(s_k, a, \theta));$
- 2. Пронаблюдать r_k , s_{k+1} , done $_{k+1}$ и сохранить $(s_k, a_k, r_k, s_{k+1}, \mathsf{done}_{k+1})$ в \mathcal{D} ;
- 3. Засемплировать батч переходов $\mathbb{T} := (s, a, r, s', \mathsf{done})$ из \mathcal{D} ;
- 4. $y(\mathbb{T}) := r + \gamma(1 \mathsf{done}) \max_{a'} Q^*(s', a', \theta^-);$
- 5. Совершить шаг градиентного спуска:

$$\theta \leftarrow \theta - \frac{\alpha}{B} \sum_{\mathbb{T}} \nabla_{\theta} (Q^*(s, a, \theta) - y(\mathbb{T}))^2$$

 δ . Обновляем *Target Net*, если k mod K=0 : $heta^- \leftarrow heta$.

Никита Юдин (МФТИ)

Проблема vanilla DQN

Выученная функция склонна к переоцениванию будущей награды, то есть Q-функция начинает неограниченно расти. Эта проблема называется overestimation bias.

Name	Networks	Targets
Double*	<i>Q</i> ₁	$y_1 = r + \gamma Q_2(s', \operatorname{argmax} Q_1(s', a'))$
Q-learning	Q_2	$y_2 = r + \gamma Q_1(s', rg \max_{a'} Q_2(s', a'))$
Double Q-learning	Q Q_ — TN	$y = r + \gamma Q_{-}(s', rg \max_{a'} Q(s', a'))$
Twin	Q_1	$y_1 = r + \gamma \min_{i=1,2} Q_i(s', \arg\max_{a'} Q_1(s', a'))$
Q-learning	Q_2	$y_2 = r + \gamma \min_{i=1,2} Q_i(s', \arg \max_{a'} Q_2(s', a'))$

Q-функция по политике π

$$Q^{\pi}(s,a) = \mathbb{E}_{\tau}[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) | s_{0} = s, a_{0} = a] = \mathbb{E}_{\tau} Z(s, a),$$

где $au \sim p(s_0) \cdot \prod_{t=0}^{\infty} (\pi(a_t|s_t)p(s_{t+1}|s_t,a_t))$. До этого момента вопрос о распределении Z нас несильно интересовал — мы искали сразу её матожидание.

Пример

Посмотрим как выглядит Z на реальном примере. Положим $\gamma=0.5$. Пусть мы находимся в состоянии s_0 , из которого мы совершаем действие a_0 , приводящее нас в s_1 с вероятностью 0,6 и наградой 1 либо в состояние s_2 с вероятностью 0,4 и наградой 0. Далее: из состояния s_1 есть два действия a_{11} с наградой 2 и a_{12} с наградой 0, приводящие нас в терминальное состояние; из состояния s_2 так же есть два действия a_{21} с наградой 1 и a_{22} с наградой 0. Текущая политика такова, что $\pi(a_{11}|s_1)=\pi(a_{12}|s_1)=1/2$ и $\pi(a_{21}|s_2)=1/4, \pi(a_{22}|s_2)=3/4$. Посчитаем $Z(s_0,a_0)$.

Пример

Пример

Итого $Z^{\pi}(s_0, a_0)$ — дискретная случайная величина с функцией распределения согласно таблице:

	hearth all answers a service and a service and a			
s'	a [']	Вероятность	reward-to-go	
<i>s</i> ₁	a ₁₁	0.3	$1+2\gamma$	
<i>s</i> ₁	a ₁₂	0.3	1	
<i>s</i> ₂	a ₂₁	0.1	γ	
<i>s</i> ₂	a ₂₂	0.3	0	

Почему иногда надо искать именно распределение?

Оказывается, поиск матожидания Z — не всегда оптимальное решение:

В данном случае среднее случайной величины будет в районе нуля!

QR-DQN

Идея

Почему бы нам не искать распределение Z (т.е. распределение наград) и понимать о задаче больше?

Иными словами заставим нейронную сеть аппроксимировать функцию Z и будем выбирать оптимальное действие согласно

$$a^* = \arg\max_a \mathbb{E} Z(s, a)$$

Вопрос к залу

Каким образом заставить нейросеть возвращать распределение?

QR-DQN

QR-DQN

Зафиксируем N и будем генерировать N дельта-функций. Их позиции будет выбирать нейронная сеть, каждая дельта-функция принимает максимальное значение 1/N.

Следующий вопрос

Каким образом учить такую сеть?

Distributional Bellman Equation

$$Z^{\pi}(s,a) \stackrel{\text{c.d.f.}}{=} r(s,a) + \gamma Z^{\pi}(S',A'),$$

где $S'\sim p(\cdot|s,a)$; $A'\sim \pi(\cdot|s)$ и равенство подразумевается по распределению.

Аналогично тому, как мы интерпретировали Q-функцию в виде таблицы, Z(s,a) тоже может рассматриваться как таблица, в (s,a) ячейке которой находится случайная величина, а Z(S',A') — это таблица случайных величин, к ячейке (S',A') которой мы обращаемся с помощью случайных величин (S',A').

Пояснение

Слева и справа записаны два процесса генерации одной и той же случайной величины. Мы можем бросить кость $Z^{\pi}(s,a)$ (случайная величина слева), а можем — сначала s', потом a', затем $Z^{\pi}(s',a')$ и выдать исход $r(s,a)+\gamma Z^{\pi}(s',a')$ (случайная величина справа), и эти две процедуры порождения эквивалентны.

Замечание

Подобные уравнения называются $recursive\ distributional\ equations\ u$ рассматриваются математикой в одном из разделов теории вероятности.

Определение

Пусть \mathcal{W} — метрика в пространстве $P(\mathbb{R})$ Тогда её максимальной формой (maximal form) будем называть следующую метрику в пространстве Z-функций:

$$\mathcal{W}^{\mathsf{max}}(Z_1,Z_2) := \sup_{s \in S, a \in A} \mathcal{W}(Z_1(s,a),Z_2(s,a))$$

Утверждение (без доказательства)

Distributional Bellman Operator — сжимающий оператор в пространстве с метрикой $d(Z_1, Z_2) := \max_{s,a} W_p(Z_1(s,a), Z_2(s,a))$, где W_p — расстояние Вассерштейна.

Замечание 1

Использовать KL-дивергенцию нельзя, потому что она не является метрикой, и с ней DBO не ялвяется сжимающим оператором.

Замечание 2

Если в алгоритме vanilla DQN с буфером заменить Q на Z, а MSELoss на $\max_{s,a}W_p(Z_1(s,a),Z_2(s,a))$, то алгоритм потеряет свойство сходимости поскольку в таком случае не будет выполняться условие на сходимость алгоритма оптимизации SGD: $\mathbb{E}\nabla$ loss $\neq \nabla$ \mathbb{E} loss

Расстояние Вассерштейна: общий случай

$$W_p(u,v) = (\inf_{\mu \in \Gamma(u,v)} \mathbb{E}_{(x,y) \sim \mu} ||x-y||_p^p)^{1/p},$$

где $\Gamma(U,V)$ — множество всех распределений, маргиналы которых имеют распределения U и V.

Расстояние Вассерштейна: для одномерных случайных величин

$$W_p(U,V) = (\int_0^1 |F_U^{-1}(w) - F_V^{-1}(w)|^p dw)^{1/p}$$

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q @

Свойства

- $W_p(aU, aV) \leqslant |a|W_p(U, V)$
- $W_p(A+U,A+V) \leqslant W_p(U,V)$
- $W_p(AU, AV) \leq ||A||_p W_p(U, V)$

Песок

Расстояние Вассерштейна между двумя распределениями неспроста имеет второе название Earth Moving Distance. Аналогия такая: нам даны две кучи песка. Объём песка в кучах одинаков, но у них разные конфигурации, они «насыпаны» по-разному. Чтобы перенести каждую песчинку массы m на расстояние x, нам нужно затратить «работы» объёмом тх. Расстояние Вассерштейна замеряет, какое минимальное количество работы нужно совершить, чтобы перевести конфигурацию первой кучи песка во вторую кучу; объём песка в каждой кучи одинаков. Для дискретных распределений, когда функции распределения (и, соответственно, квантильные функции) — «ступеньки», минимальная работа полностью соответствует площади между функциями распределений.

Пример

Посчитаем расстояние Вассерштейна между двумя следующими распределениями. Первое распределение — честная монетка с исходами 0 и 1 (красным), вторая случайная величина принимает значение 0.4 с вероятностью $\theta < 0.5$ и 0.8 с вероятностью $1-\theta$ (синим). Можно нарисовать функции распределения и посчитать площадь между ними. А можно рассуждать так: давайте «превратим» вторую кучу песка в первую:

Пример

Посмотрим на песок объёма θ в точке 0.4. Куда его переносить? Наверное, в точку 0 куда его тащить ближе. Перенесли; совершили работы объёмом 0.4 θ . Посмотрим на песок объёма $1-\theta$ в точке 0.8. Его удобно тащить в точку 1, но там для получения первой конфигурации нужно только 0.5 песка. Поэтому 0.5 песка из точки 0.8 мы можем перевести в точку 1, совершив работу 0.2 \cdot 0.5, а оставшийся объём $1-\theta-0.5$ придётся переводить в точку 0, совершая работу $0.8(0.5-\theta)$. Итого расстояние Вассерштейна равно: $0.4\theta+0.8(0.5-\theta)+0.1$

Distributional Optimality Operator

Distributional Optimality Equation

$$Z^*(s, a) = r(s, a) + \gamma Z^*(S', A'),$$

где $S'\sim p(\cdot|s,a)$; $A'\sim \arg\max_a \mathbb{E} Z^\pi(S',a)$ (arg max может достигаться в разных точках, поэтому используется знак \sim) и равенство подразумевается по распределению.

Аналогично тому, как мы интерпретировали Q-функцию в виде таблицы, Z(s,a) тоже может рассматриваться как таблица, в (s,a) ячейке которой находится случайная величина, а Z(A',S') — это таблица случайных величин, к ячейке (S',A') которой мы обращаемся с помощью случайных величин (S',A').

Distributional Optimality Operator

Замечание

DOO может не являться сжимающим оператором в пространстве с метрикой Вассерштейна.

Доказательство

Доказательство

Рассмотрим среду с диаграммы, где под $r=\varepsilon\pm 1$ подразумевается равновероятная награда $\varepsilon+1$ и $\varepsilon-1$, $\varepsilon>0$, $\varepsilon\ll 1$. Оптимальная политика состоит в выборе a_2 из s_1 , так как матожидание награды максимальна. Положим $\gamma=1$.

Доказательство

Рассмотрим среду с диаграммы, где под $r=\varepsilon\pm 1$ подразумевается равновероятная награда $\varepsilon+1$ и $\varepsilon-1$, $\varepsilon>0$, $\varepsilon\ll 1$. Оптимальная политика состоит в выборе a_2 из s_1 , так как матожидание награды максимальна. Положим $\gamma=1$.

	(s_0, a_0)	(s_1, a_1)	(s_1, a_2)
<i>Z</i> *	$\varepsilon\pm 1$	0	$arepsilon\pm 1$
Z_0^{our}	$\varepsilon\pm 1$	0	$-\varepsilon \pm 1$

Где Z^* — оптимальное, а $Z_0^{\rm our}$ — начальное приближение на которое мы будем действовать DOO. Тогда:

$$d(Z_0^{\text{our}}, Z^*) = \max_{(s,a)} W_1(Z_0^{\text{our}}(s,a), Z^*(s,a)) = 2\varepsilon$$

Доказательство

	(s_0, a_0)	(s_1, a_1)	(s_1, a_2)
Z *	$\varepsilon \pm 1$	0	$arepsilon\pm 1$
$Z_0^{ m our}$	$\varepsilon\pm 1$	0	$-\varepsilon \pm 1$
$W_1(Z_0^{our}(s,a),Z^*(s,a))$	0	0	2ε

Теперь применим к Z_0^{our} оператор Беллмана и получим $Z_1^{\mathsf{our}} := \mathcal{T}(Z_0^{\mathsf{our}})$

	(s_0, a_0)	(s_1, a_1)	(s_1, a_2)
<i>Z</i> *	$arepsilon\pm 1$	0	$arepsilon\pm 1$
Z_0^{our}	$arepsilon\pm 1$	0	$-\varepsilon \pm 1$
$T(Z_0^{\text{our}})$	0	0	$arepsilon\pm 1$

Доказательство

	(s_0, a_0)	(s_1,a_1)	(s_1, a_2)
Z^*	$\varepsilon \pm 1$	0	$arepsilon\pm 1$
$Z_0^{ m our}$	$\varepsilon\pm 1$	0	$-\varepsilon\pm 1$
$T(Z_0^{\text{our}})$	0	0	$\varepsilon\pm 1$
$W_1(Z^*, T(Z_0^{\text{our}}))$	1	0	2ε

$$d(T(Z_0^{\mathsf{our}}), Z^*) = \mathsf{max}(1, 0, 2\varepsilon) = 1$$

Получили, что за одну итерацию расстояние увеличилось! Значит сжатия нет.

Хорошие новости

Утверждение

$$\|\mathbb{E} Z_1 - \mathbb{E} Z_2\|_{\infty} > \|\mathbb{E} T(Z_1) - \mathbb{E} T(Z_2)\|_{\infty}$$

Использование DOO (хоть и несжимающего) приведет нас к оптимальной политике, но гарантированного приближения к настоящему Z не будет, найдется что-то другое \hat{Z} , такое что $\mathbb{E}\,\hat{Z}=\mathbb{E}\,Z$.

Это проихсодит из-за того, что *DOE* имеет не единственное решение.

QR DQN

Так же как и в DQN: θ — параметры сети. Для одного семпла (s,a,r,s'):

- 1. $a^* = \arg\max_a \mathbb{E} Z_{\theta}(s', a)$
- 2. Считаем целевое значение $y = r + \gamma Z_{\theta}(s', a^*)$
- 3. Считаем потери $\mathsf{Loss}(y, Z_\theta(s, a)) \to \min_{\theta}$ и сделаем один шаг стох. оптимизации (например SGD).

Quantile Regression DQN (QR-DQN)

Гиперпараметры

B — размер мини-батчей, A — число атомов, K — периодичность обновления таргет-сети, $\varepsilon(t)$ — стратегия исследования, $z_i(s,a,\theta)$ — нейросетка с параметрами θ , SGD-оптимизатор

Предварительные вычисления

Предпосчитать середины отрезков квантильной сетки $au_i := rac{rac{i}{A} + rac{i+1}{A}}{2}$ Инициализировать heta произвольно

Положить $\theta^- \coloneqq \theta$

Пронаблюдать s₀

Quantile Regression DQN (QR-DQN)

Ha очередном шаге t:

- 1) выбрать a_t случайно с вероятностью $\varepsilon(t)$, иначе $a_t \coloneqq \arg\max_{a_t} \sum_{i=0}^{A-1} z_i(s_t, a_t, \theta)$
- 2) пронаблюдать r_t , s_{t+1} , $done_{t+1}$
- 3) добавить пятёрку $(s_t, a_t, r_t, s_{t+1}, \mathrm{done}_{t+1})$ в реплей буфер
- 4) засэмплировать мини-батч размера B из буфера
- 5) для каждого перехода $\mathbb{T} \coloneqq (s, a, r, s', \text{done})$ посчитать таргет:

$$y(\mathbb{T})_j \coloneqq r + (1 - \mathrm{done})\gamma z_j \left(s', rg \max_{a'} \sum_i z_i(s', a', \theta^-), \theta^- \right)$$

6) посчитать:

$$\mathsf{Loss}(\theta) \coloneqq \tfrac{1}{BA} \sum_{\mathbb{T}} \sum_{i=0}^{A-1} \sum_{j=0}^{A-1} \left(\tau_i - \mathbb{I}[z_i(s,a,\theta) < y(\mathbb{T})_j] \right) \left(z_i(s,a,\theta) - y(\mathbb{T})_j \right)$$

Quantile Regression DQN (QR-DQN)

- 7) сделать шаг градиентного спуска по heta, используя $abla_{ heta}\operatorname{Loss}(heta)$
- 8) если $t \mod K = 0$: $\theta^- \leftarrow \theta$

Implicit Quantile Networks

Идея: давайте будем уметь в нашей нейросети выдавать произвольные квантили, каким-то образом задавая $\tau \in (0,1)$ дополнительно на вход. Тогда наша модель $z(s,a,\tau,\theta)$ будет неявно (implicit) задавать, вообще говоря, произвольное распределение на \mathbb{R} . По сути, мы моделируем квантильную функцию «целиком»; очень удобно:

$$F_{\mathcal{Z}_{\theta}(s,a)}^{-1}(\tau) \coloneqq z(s,a,\tau,\theta)$$

Implicit Quantile Networks

Утвреждение

Пусть F — функция распределения случайной величины X. Тогда, если $au \sim U[0,1]$, случайная величина $F^{-1}(au)$ имеет то же распределение, что и X.

Доказательство

Заметим, что функция распределения равномерной случайной величины при $x \in [0,1]$ равна $P(\tau < x) = x$. Теперь посмотрим на функцию распределения случайной величины $F^{-1}(\tau)$:

$$P(F^{-1}(\tau) < x) = P(\tau < F(x)) = F(x)$$

Implicit Quantile Networks

Итак, мы можем аппроксимировать жадную стратегию примерно так:

$$\pi^*(s) \coloneqq rg \max_{a} \sum_{i=0}^N z(s,a, au_i, heta), \qquad au_i \sim \textit{U}[0,1].$$

В качестве функции потерь предлагается использовать тот же квантильный лосс, что и в QR-DQN, но в модифицированном виде:

$$\mathsf{Loss}(\mathbb{T},\theta) \coloneqq \sum_{i=0}^{N'} \frac{1}{\mathsf{N}''} \sum_{j=0}^{N''} \mathsf{Loss}_{\tau_i}(z(s,a,\tau_i,\theta),r+\gamma z(s',\pi^*(s'),\tau_j,\theta^-)),$$

где $au_i, au_j \sim U[0,1]$ и

$$\mathsf{Loss}_{\tau}(c,X) = (\tau - \mathbb{I}[c < X]) (c - X).$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ