Nombre y Apellido:

Justifique todas sus respuestas

Parte práctica.

- 1. (15 pts.) Sea W el subespacio de \mathbb{R}^4 generado por los vectores (0, 2, -1, 3), (-1, 0, 2, 3), (1, 2, -3, 0) y (1, 2, -2, 0).
 - a) Describir W implícitamente.
 - b) Dar una base ordenada de W, y calcular su dimensión.
 - c) Dado $(x, y, z, w) \in W$, dar sus coordenadas respecto de la base hallada en b).
 - d) Completar la base hallada en b) a una base de \mathbb{R}^4 .
- 2. (15 pts.) Sea $A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & -1 & 0 \\ 2 & -1 & 1 \end{pmatrix} \in M_{3\times 3}(\mathbb{R}).$
 - a) Probar que A es inversible y determinar su inversa.
 - b) Determinar si A es semejante o no a una matriz diagonal D; y si lo es, dar una matriz P tal que $P^{-1}AP = D$.
- 3. (15 pts.)
 - a) Definir una transformación lineal inyectiva (monomorfismo) $T: \mathbb{R}^3 \to P_4(\mathbb{R})$ tal que

$$T(1,0,-1) = 1 + x$$
, $T(-1,1,0) = x^2$.

¿Existe una única transformación que cumpla estas condiciones?

- b) Dar la matriz de T en las bases ordenadas canónicas $\{(1,0,0),(0,1,0),(0,0,1)\}$ y $\{1,x,x^2,x^3\}$ de \mathbb{R}^3 y $P_4(\mathbb{R})$, respectivamente.
- c) Dar una descripción implícita de Im T, calcular su dimensión y mostrar una base.
- 4. (15 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Existe una base ordenada \mathcal{B} de \mathbb{R}^2 tal que $P = \begin{pmatrix} 1/2 & -1 \\ 1 & -2 \end{pmatrix}$ es la matriz de cambio de base de la base ordenada canónica a la base ordenada \mathcal{B} .
 - b) Existen subespacios W_1 y W_2 de \mathbb{R}^6 tal que dim $W_1=5$, dim $W_2=4$ y los vectores (1,-1,1,-1,1,-1) y (1,0,-1,-1,0,1) generan al subespacio $W_1\cap W_2$.
 - c) Existe una transformación lineal $T: \mathbb{C}^2 \to \mathbb{C}^3$ tal que los vectores (i, 1, 0), (0, 1 + i, 0) y (1, 0, -i) están en la imagen de T.

Parte Teórica.

- 5. (20 pts.) Sea V un espacio vectorial de dimensión finita sobre un cuerpo \mathbb{K} . Probar que:
 - a) Si W es un subespacio propio de V, entonces W es de dimensión finita y dim $W < \dim V$.
 - b) Si $V \neq 0$ y S es un conjunto finito de generadores de V, entonces existe un subconjunto \mathcal{B} de S tal que \mathcal{B} es base de V.
- 6. (20 pts.) Sean V y W espacios vectoriales de dimensión finita sobre un cuerpo \mathbb{K} tales que dim $V = \dim W$, y sea $T: V \to W$ una transformación lineal. Probar que las siguientes afirmaciones son equivalentes:
 - a) T es monomorfismo.
 - b) T es epimorfismo.
 - c) T es isomorfismo.

Parte práctica	1	2	3	4	Total
Evaluación					

Parte teórica	5	6	Total	Total General
Evaluación				