Dimensionality Reduction: A comparative Review[1]

Ying Fu

School of Business Administration South China University of Technology

Sept 11,2019

Outline

- Introduction
- 2 Nonlinear Techniques for dimensionality reduction
 - Preserve global properties
 - Preserve local properties
 - Perform global alignment of a mixture of linear models
- 3 Characterization of the techniques
 - Relations
 - General properties
 - Out-of-sample extension
- Experiments and discussion
 - Experimental setup
 - Experiments on datasets
 - Discussion

Aims of this paper

- To investigate to what extent novel nonlinear dimensionality reduction techniques outperform the traditional PCA.
 - Both a theoretical and an empirical evaluation
- 2 To identify the inherent **weakness** of the twelve nonlinear techniques for dimensionality reduction.
 - A careful analysis of the empirical results on specifically designed artifical datasets and on real-world datasets.

Formal definition of dimensionality reduction

definition

- Assume we have a dataset represented in a $n \times D$ matrix **X** consisting of n datavectors $x_i (i \in 1, 2, ..., n)$ with dimensionality D.
- Assume further that the dataset has intrinsic dimensionality d (where d < D, and often $d \ll D$)
- Dimensionality reduction transform dataset **X** with dimensionality D into a new dataset **Y** with dimensionality d, while preserve the geometry of the data as much as possible.

Taxonomy of techniques

Outline

- Introduction
- 2 Nonlinear Techniques for dimensionality reduction
 - Preserve global properties
 - Preserve local properties
 - Perform global alignment of a mixture of linear models
- 3 Characterization of the techniques
 - Relations
 - General properties
 - Out-of-sample extension
- Experiments and discussion
 - Experimental setup
 - Experiments on datasets
 - Discussion

Global techniques

- **MDS**: Preserve the Euclidean distance.
- 2 Isomap: Preserve pairwise geodesic distance
- MVU: Unfolding
- Kernel PCA: Kernel based
- **Diffusion maps**: Preserve the diffusion distance
- Multilayer autoencoders: Neural network

Maximum Variance Unfolding: MVU(Ying Fu)

Unfold neighbourhood graph while preserving local structure

Intuitive explanation:

Imagine the inputs as a swiss roll that is coiled up in three dimensions. By pulling the swiss roll taut, the roll is arranged in a line.

Maximum Variance Unfolding(MVU)

objective

- Maximum the sum of the squared Euclidean distance between all datapoints, under the constraint that the distance inside the neighborhood graph G are preserved.
- Maximize $\sum_{ij} ||y_i y_j||^2$ with subject to: $||y_i y_i||^2 = ||x_i x_i||^2$ for $\forall (i, j) \in G$
- MVU reduces to MDS if G contains all pairs of points(Ying Fu)

MVU reformulates the optimization problem as a SDP

Defining a matrix \mathbf{K} that is the inner product of the low-dimensional data representation \mathbf{Y} .

Maximize trace(K) subject to:

- $\sum_{ij} k_{ij} = 0$ (centered)
- **3** $\mathbf{K} \geq 0$ (positive definite)

This is a **semi-definite program**:convex optimization with unique solution. From the solution K of the SDP, the low-dimensional data representation Y can be obtained by performing a singular value decomposition.

Diffusion maps[2](De la Porte)

A random walk on a dataset

- Each "jump" has a probability associated with it.
- The dashed path between nodes 1 and 6 requires two jumps (i.e., two time units) with the probability along the path being p(node 1; node 2) and p(node 2; node 6)

Diffusion maps: Constructing a graph of the data

 Using the Gaussian kernel function to compute the weights of the edges in the graph.

$$w_{ij} = exp(-\frac{\|x_i - x_j\|^2}{2\sigma^2})$$

Normalize the matrix W:

$$p_{ij} = \frac{w_{ij}}{\sum_k w_{ik}}$$

- Matrix P represents the probability of a transition from one datapoint to another datapoint in a single timestep.
- The forward probability matrix for t timesteps Pt

Diffusion maps: Preserve the diffusion distance

Using the random walk forward probabilities p_{ij}^t , the diffusion distance is defined by:

$$D^{(t)}(x_i, x_j) = \sqrt{\sum_{k} \frac{(p_{ik}^t - p_{jk}^t)^2}{\psi(x_k)}}$$

where:

$$\psi(x_i) = \frac{\sum_j p_{ij}}{\sum_k \sum_j p_{kj}}$$

Note: $\psi(x_i)$ attributes more weight to part of the graph with high density.

Intuitive explanation of diffusion distance(Ying Fu)

- Given a datapoint x_i in a graph of the data, we let it diffuse for a period of time t.
- Given another datapoint x_j , we also let it diffuse for a period time t.
- At the end, we look at the difference between the two distributions. And that is our Diffusion Distance.

Local techniques

- **1** LLE: Reconstruction weights
- 2 Laplacian Eigenmaps
- Messian LLE: Preserve the local tangent space
- Local Tangent Space Alignment: Preserve the local tangent space.

Laplacian Eigenmaps

The distance in the low-dimensional data representation between a datapoint and its first nearest neighbor contributes more to the cost function.

The cost function is minimized:

$$\phi(Y) = \sum_{ij} (y_i - y_j)^2 w_{ij}$$

where:

$$w_{ij} = exp(-\frac{\|x_i - x_j\|^2}{2\sigma^2})$$

Intuitive explations::Nearby points in the highdimensional space are brought closer together in the low-dimensional representation.

Laplacian Eigenmaps: Formulating as an eigenproblem[3]

W: Graph matrix

D: Degree matrix (a diagonal matrix of which the entries are the row sums of W): $d_{ii} = \sum_{i} w_{ij}$

Graph Laplacian L: $\mathbf{L} = \mathbf{D} - \mathbf{W}$

Cost function is minimized:

$$\phi(Y) = \sum_{ii} (y_i - y_j)^2 w_{ij} = \mathbf{2Y}^\mathsf{T} \mathbf{LY}$$

With the subject to:

- $\mathbf{Y}^{\mathsf{T}}\mathbf{D}\mathbf{Y} = \mathbf{1}$ (Removing an arbitrary scaling factor in the embedding)
- $Y^TD1 = 0$ (Cause 1 is an eigenvector with eigenvalue 0)

Find d smallest nonzero eigenvalues.

Hessian LLE(TODO)

- Minimizes the curviness of the high-dimensional space.
- Assuming that the low-dimensional data representation is locally isometric.
- Done by an eigenanalysis of a matrix H that describes the curviness of the manifold.
- Find d smallest nonzero eigenvalues

Local tangent space alignment:LTSA(TODO)

- Assuming the manifold is local linearity.
- Similar to HLLE, with the only difference of describe local properties of the high-dimensional data using the local tangent space.
- LTSA align these linear mappings.
- Find d smallest nonzero eigenvalues

Global alignment of linear models(TODO)

- Locally Linear Coordination(LLC): Alignment of local representations(Find d smallest nonzero eigenvalues).
- Manifold charting: Alignment of local representations(Find d smallest nonzero eigenvalues).

Outline

- Introduction
- Nonlinear Techniques for dimensionality reduction
 - Preserve global properties
 - Preserve local properties
 - Perform global alignment of a mixture of linear models
- 3 Characterization of the techniques
 - Relations
 - General properties
 - Out-of-sample extension
- Experiments and discussion
 - Experimental setup
 - Experiments on datasets
 - Discussion

Interrelated techniques

- Kernel PCA with a linear kernel is identical to performing traditional PCA.
- Autoencoders with a linear activation functions is identical to performing traditional PCA.
- MDS with Euclidean distance is identical to PCA.
- Perfroming MDS using geodesic distance is identical to performing Isomap.
- Isomap with the number of nearest neighbors k set to n-1 is identical to traditional MDS, as well as to PCA.

Interrelated techniques

- Isomap retains pure geodesic distance, while diffusion maps retain a weighted sum of distance of all paths through a graph.
- ② Diffusion maps in which t = 1 are fairly similar to Kernel PCA with the **Gaussian kernel function**.
- Isomap, LLE, Laplacian Eigenmaps can be considered as special cases of Kernel PCA(using a specific kernel function)
- MVU can be viewed upon as a special case of Kernel PCA in which the SDP is the kernel function.

What not included in empirical comparative evaluation

- MDS(equivalent to PCA)
- Kernel PCA using a linear kernel (equivalent to PCA)
- Autoencoders using linear activation functions(equivalent to PCA)
- Wernel PCA using a Gaussian kernel (resemble to diffusion maps)
- Sernel PCA using a polynomial kernel, instead

General properties

Technique	Convex	Parameters	Computational	Memory
PCA	yes	none	$O(D^3)$	$O(D^2)$
MDS	yes	none	$O(n^3)$	$O(n^2)$
Isomap	yes	k	$O(n^3)$	$O(n^2)$
MVU	yes	k	$O((nk)^3)$	$O((nk)^3)$
Kernel PCA	yes	$\kappa(\cdot,\cdot)$	$O(n^3)$	$O(n^2)$
Diffusion maps	yes	σ, t	$O(n^3)$	$O(n^2)$
Autoencoders	no	net size	O(inw)	O(w)
LLE	yes	k	$O(pn^2)$	$O(pn^2)$
Laplacian Eigenmaps	yes	k, σ	$O(pn^2)$	$O(pn^2)$
Hessian LLE	yes	k	$O(pn^2)$	$O(pn^2)$
LTSA	yes	k	$O(pn^2)$	$O(pn^2)$
LLC	no	m, k	$O(imd^3)$	O(nmd)
Manifold charting	no	m	$O(imd^3)$	O(nmd)

Observations:

- Some nonlinear techniques for dimensionality reduction may suffer from getting stuck in local optima (e.g. Autoencoders, LLC and manifold charting).
- All nonlinear techniques requires free parameters.
- A number of nonlinear techniques have computational disadvantages and may suffer from a memory complexity compared to PCA.

Out-of-sample extension:embedding of new datapoints

- PCA:Multiplying the new datapoint with the linear mapping matrix M, the same with Kernel PCA.
- Autoencoders: The trained network defines the transformation.
- For a number of nonlinear techniques: Using an estimation technique.(e.g.lsomap,LLE,LE are using Nystrom approximation which approximates the eigenvectors)

Outline

- Introduction
- 2 Nonlinear Techniques for dimensionality reduction
 - Preserve global properties
 - Preserve local properties
 - Perform global alignment of a mixture of linear models
- 3 Characterization of the techniques
 - Relations
 - General properties
 - Out-of-sample extension
- 4 Experiments and discussion
 - Experimental setup
 - Experiments on datasets
 - Discussion

Preparations

Datasets

- Artifical datasets
- Natural datasets

Evaluation

- To evaluate the local structure of the data
- Generalization errors of k-neighbor classifiers trained on low-dimensional data representation instead of reconstruction error.
 - Reconstruction errors measure global structure.
 - Reconstruction errors cannot be computed on real-world datasets

Reconstruction errors measure global structure

Although high reconstruction error, the local structure of the two manifolds is nearly identical (as the circles indicate).

True underlying manifold

Reconstruction manifold

Preparations:parameter settings

Technique	Parameter settings
PCA	None
Isomap	$5 \le k \le 15$
MVU	$5 \le k \le 15$
Kernel PCA	$\kappa = (XX^T + 1)^5$
Diffusion maps	$10 \le t \le 100 \sigma = 1$
Autoencoders	Three hidden layers; sigmoid
LLE	$5 \le k \le 15$
Laplacian Eigenmaps	$5 \le k \le 15$ $\sigma = 1$
Hessian LLE	$5 \le k \le 15$
LTSA	$5 \le k \le 15$
LLC	$5 \le k \le 15 5 \le m \le 25$
Manifold charting	$5 \leq m \leq 25$

Other settings:

- Grid search to find best parameters.
- σ is fixed to 1 to restrict computional requirements.
- \bullet **k** in the *knn* was set to 1
- Maximum likelihood intrinsic dimenisonality estimator to determine target dimensionality.
- Leave-one-out validation to obtain results of experiments.

Estimate intrinsic dimensionality[4](Matthew Brand)

Scale behavior of a 1D manifold in 2-space

Density Estimation:

- Considering a boll of radius r centered on a data point and containing n(r) data points.
- Defining $\mathbf{c}(\mathbf{r}) = \frac{\log \mathbf{r}}{\log \mathbf{n}(\mathbf{r})}$
- At noise scale, $c(r) = \frac{1}{D} < \frac{1}{d}$
- At locally linear scale, $\mathbf{n}(\mathbf{r}) \propto \mathbf{r}^{\mathbf{d}}$, $\mathbf{c}(\mathbf{r}) = \frac{1}{\mathbf{d}}$
- $c(r) < \frac{1}{d}$ whlie Curvaturing at large scales
- The maximum of $c(r) = \frac{1}{d}$ gives an estimation.

Choose k neighbors:Isomap(Ying Fu)

- If k is too small, it may suffer form "holes"
- If k is too large, short-circuiting may occurs.

Choose k neighbors:LLE(Ying Fu)

• If k is too large, it may suffer from folding.

Artificial datasets

Requirements

- Data that lies on or near a low-dimensional manifold that is or is not isometric to Euclidean space.
- 2 Data that lies on or near an discontinuous manifold.
- 3 A manifold with a high intrinsic dimensionality.

Datasets

- Swiss roll dataset(1)
- 4 Helix dataset(1)
- Twin peaks dataset(1)
- Broken Swiss roll dataset(2)
- High-dimensinal(HD) dataset(3)

Artificial datasets

(a) Swiss roll dataset.

(c) Twinpeaks dataset.

(b) Helix dataset.

(d) Broken Swiss roll dataset.

Natural datasets

Datasets representing tasks from a varity of domains

- MNIST dataset
 - Consisting of 60,000 handwritten digits, only 2500 is randomly selected in our experiments.
 - ullet Each image have 28×28 pixels, considered as 784 dimension.
- COIL20 dataset
- NiSIS dataset
- ORL dataset
 - A face recognition dataset containing 400 graysacle images of 112×92 pixels that depict 40 faces under various conditions.
- HIVA dataset
 - A drug discovery dataset with two classed.
 - Consisting of 3845 datapoints with dimenisonality 1617.

Experiments on artificial datasets: Observations

Dataset (d)	None	PCA	Isomap	MVU	KPCA	DM	Autoenc.	LLE	LEM	HLLE	LTSA	LLC	МС
Swiss roll (2D)	3.68%	30.56%	3.28%	5.12%	29.30%	28.06%	30.58%	7.44%	10.16%	3.10%	3.06%	27.74%	42.74%
Helix (1D)	1.24%	38.56%	1.22%	3.76%	44.54%	36.18%	32.50%	20.38%	10.34%	failed	1.68%	26.68%	28.16%
Twinpeaks (2D)	0.40%	0.18%	0.30%	0.58%	0.08%	0.06%	0.12%	0.54%	0.52%	0.10%	0.36%	12.96%	0.06%
Broken Swiss (2D)	2.14%	27.62%	14.24%	36.28%	27.06%	23.92%	26.32%	37.06%	26.08%	4.78%	16.30%	26.96%	23.92%
HD (5D)	24.19%	22.14%	20.45%	23.62%	29.25%	34.75%	16.29%	35.81%	41.70%	47.97%	40.22%	38.69%	31.46%

- Nonlinear techniques employing neighborhood graph(Isomap,LLE,LE,MVU,LTSA,LLC) outperform other techniques on standard manifold learning(e.g.swiss roll).
- Local nonlinear dimensionality reduction(LLE,HLLE) perform less well on manifolds that are not isometric to Euclidean space.(e.g. Helix)
- Most nonlinear techniques cannot deal with discontinuous manifold.(e.g. broken swiss roll,except HLLE)

Experiments on artificial datasets: Observations (cont.)

Dataset (d)	None	PCA	Isomap	MVU	KPCA	DM	Autoenc.	LLE	LEM	HLLE	LTSA	LLC	MC
Swiss roll (2D)	3.68%	30.56%	3.28%	5.12%	29.30%	28.06%	30.58%	7.44%	10.16%	3.10%	3.06%	27.74%	42.74%
Helix (1D)	1.24%	38.56%	1.22%	3.76%	44.54%	36.18%	32.50%	20.38%	10.34%	failed	1.68%	26.68%	28.16%
Twinpeaks (2D)	0.40%	0.18%	0.30%	0.58%	0.08%	0.06%	0.12%	0.54%	0.52%	0.10%	0.36%	12.96%	0.06%
Broken Swiss (2D)	2.14%	27.62%	14.24%	36.28%	27.06%	23.92%	26.32%	37.06%	26.08%	4.78%	16.30%	26.96%	23.92%
HD (5D)	24.19%	22.14%	20.45%	23.62%	29.25%	34.75%	16.29%	35.81%	41.70%	47.97%	40.22%	38.69%	31.46%

- Most nonlinear techniques perform poorly on dataset with high intrinsic dimensionality.(e.g. HD dataset)
- Wessian LLE fails to find a solution on the helix dataset. The failure is the result of the inability of the eigensolver to solve the eigenproblem up to sufficient precision.

Experiments on natural datasets

Dataset (d)	None	PCA	Isomap	MVU	KPCA	DM	Autoenc.	LLE	LEM	HLLE	LTSA	LLC	MC
MNIST (20D)	5.11%	5.06%	28.54%	18.35%	65.48%	59.79%	14.10%	19.21%	19.45%	89.55%	32.52%	36.29%	38.22%
COIL20 (5D)	0.14%	3.82%	14.86%	21.88%	7.78%	4.51%	1.39%	9.86%	14.79%	43.40%	12.36%	6.74%	18.61%
ORL (8D)	2.50%	4.75%	44.20%	39.50%	5.50%	49.00%	69.00%	9.00%	12.50%	56.00%	12.75%	50.00%	62.25%
NiSIS (15D)	8.24%	8.73%	20.57%	19.40%	11.70%	22.94%	9.82%	28.71%	43.08%	45.00%	failed	26.86%	20.41%
HIVA (15D)	4.63%	5.05%	4.97%	4.89%	5.07%	3.51%	4.84%	5.23%	5.23%	failed	6.09%	3.43%	5.20%

- PCA, Kernel PCA and autoencoders perform strongly on almost all datasets.
- The failures of Hessian LLE and LTSA are the result of the inability of the eigensolver to identify eigenvalues up to a sufficient precision.
- The classification performance of our classifiers was not improved by performing dimensionality reduction.

Experiments on artificial datasets(Ying Fu)

Results given by the author:

Dataset (d)	None	PCA	Isomap	MVU	KPCA	DM	Autoenc.	LLE	LEM	HLLE	LTSA	LLC	МС
Swiss roll (2D)	3.68%	30.56%	3.28%	5.12%	29.30%	28.06%	30.58%	7.44%	10.16%	3.10%	3.06%	27.74%	42.74%
Helix (1D)	1.24%	38.56%	1.22%	3.76%	44.54%	36.18%	32.50%	20.38%	10.34%	failed	1.68%	26.68%	28.16%
Twinpeaks (2D)	0.40%	0.18%	0.30%	0.58%	0.08%	0.06%	0.12%	0.54%	0.52%	0.10%	0.36%	12.96%	0.06%
Broken Swiss (2D)	2.14%	27.62%	14.24%	36.28%	27.06%	23.92%	26.32%	37.06%	26.08%	4.78%	16.30%	26.96%	23.92%
HD (5D)	24.19%	22.14%	20.45%	23.62%	29.25%	34.75%	16.29%	35.81%	41.70%	47.97%	40.22%	38.69%	31.46%

Repeated results:

Dataset	None	PCA	Isomap	MVU	КРСА	DM	Autoenc.	LLE	LEM	HLLE	LTSA	LLC	мс
Swiss roll	5.55%	30.50%	5.45%	0.00%	0.00%	30.60%	48.20%	31.10%	25.55%	6.10%	6.15%	21.80%	16.15 %
Helix	1.70%	3.00%	1.45%	0.00%	0.00%	3.00%	2.80%	20.55%	1.40%	1.25%	1.40%	3.80%	4.00%
Twinpeaks	0.60%	0.40%	0.20%	0.00%	0.00%	0.15%	0.30%	2.65%	0.55%	0.35%	0.20%	0.85%	0.50%

- Done by the drtoolbox provided by van der Maaten
- The broken swiss and HD datasets are not provided.
- All the parameters are default in the drtoolbox.
- Generalization errors of 1-NN classifiers.

Experiments on artificial datasets(Ying Fu)

Results given by the author:

Dataset (d)	None	PCA	Isomap	MVU	KPCA	DM	Autoenc.	LLE	LEM	HLLE	LTSA	LLC	MC
Swiss roll (2D)	3.68%	30.56%	3.28%	5.12%	29.30%	28.06%	30.58%	7.44%	10.16%	3.10%	3.06%	27.74%	42.74%
Helix (1D)	1.24%	38.56%	1.22%	3.76%	44.54%	36.18%	32.50%	20.38%	10.34%	failed	1.68%	26.68%	28.16%
Twinpeaks (2D)	0.40%	0.18%	0.30%	0.58%	0.08%	0.06%	0.12%	0.54%	0.52%	0.10%	0.36%	12.96%	0.06%
Broken Swiss (2D)	2.14%	27.62%	14.24%	36.28%	27.06%	23.92%	26.32%	37.06%	26.08%	4.78%	16.30%	26.96%	23.92%
HD (5D)	24.19%	22.14%	20.45%	23.62%	29.25%	34.75%	16.29%	35.81%	41.70%	47.97%	40.22%	38.69%	31.46%

Repeated results:

Dataset	None	PCA	Isomap	MVU	KPCA	DM	Autoenc.	LLE	LEM	HLLE	LTSA	LLC	МС
Swiss roll	5.55%	30.50%	5.45%	0.00%	0.00%	30.60%	48.20%	31.10%	25.55%	6.10%	6.15%	21.80%	16.15 %
Helix	1.70%	3.00%	1.45%	0.00%	0.00%	3.00%	2.80%	20.55%	1.40%	1.25%	1.40%	3.80%	4.00%
Twinpeaks	0.60%	0.40%	0.20%	0.00%	0.00%	0.15%	0.30%	2.65%	0.55%	0.35%	0.20%	0.85%	0.50%

- Not know author's clear parameters and repeated times.
- Variance of all the methods should be measured.(TODO)

Experiments on swiss roll (Ying Fu)

LLE performs poorly maybe due to the parameters of k (default=12) is too large, cause it folds.

Experiments on helix (Ying Fu)

PCA, Diffusion map, and autoencoders perform poorly compared to Isomap if measured only on generalization errors of 1-NN classifiers?

Eigenproblems while performing experiments(Ying Fu)

MVU

```
Compute embedding (solve eigenproblem)...
警告: 将忽略 options 结构体中的 issym 字段, 因为第一个输入不是函数句柄。
警告: 第一个输入矩阵接近奇异,或者缩放错误。RCOND = 1.602647e-17。结果可能不准确。
Running Maximum Variance Unfolding...
CSDP OUTPUT ===========================
```

Kernel PCA

Eigenanalysis of kernel matrix (using slower but memory-conservative implementation)...

- . 警告: 矩阵接近奇异值,或者缩放错误。结果可能不准确。RCOND = 8.496938e-24。
- .错误使用 *

用于矩阵乘法的维度不正确。请检查并确保第一个矩阵中的列数与第二个矩阵中的行数匹配。要执行按元素相乘,请使用'.*'。

Weaknesses of local techniques

weaknesses:

- Local techniques may suffer from the curse of dimensionality of the embedded manifold.
- ② Eigenproblems.
- Local properties of a manifold do not necessarily follow the global structure of the manifold.(overfitting)
- Ocal techniques assume that the manifold contains no discontinuities.
- Solution Cannot deal with manifolds that are not isometric to Euclidean space.
- 6 Local techniques may suffer from folding.

Global techniques

Weaknesses:

- global techniques for dimensionality reduction based on neighborhood graphs are often outperformed by PCA on artificial datasets.(Isomap and MVU)
- Kernel-based techniques are incapable of modelling certain complex manifolds.(Kernel PCA and diffusion maps)
- Techniques that optimize nonconvex objective functions may suffer from local optima in the objective functions.(e.g. autoencoders,LLC, and manifold charting.)

Summary

- On selected datasets, nonlinear techniques for dimensionality reduction outperform linear techniques, but nonlinear techniques perform poorly on various other natural datasets.
- 2 Two main weaknesses of local techniques:
 - The susceptibility to the curse of dimensionality.(TODO:Design techniques in which the global structure of the data manifold is represented in a number of linear models.)
 - The problems in finding the smallest eigenvalues in an eigenproblem.(TODO: Design techniques with objective functions that can be optimized well in practice.)

Bibliography

- [1] L. Van Der Maaten, E. Postma, and J. Van den Herik, "Dimensionality reduction: a comparative," *J Mach Learn Res*, vol. 10, no. 66-71, p. 13, 2009.
- [2] J. De la Porte, B. Herbst, W. Hereman, and S. Van Der Walt, "An introduction to diffusion maps," in *Proceedings of the* 19th Symposium of the Pattern Recognition Association of South Africa (PRASA 2008), Cape Town, South Africa, 2008, pp. 15–25.
- [3] M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering," in *Advances in neural information processing systems*, 2002, pp. 585–591.
- [4] M. Brand, "Charting a manifold," in *Advances in neural information processing systems*, 2003, pp. 985–992.