Hardware IP Protection

Yu Bi

ELE594 – Special Topic on Hardware Security & Trust University of Rhode Island

Computer Hardware

- Computer Hardware = Digital IC
- Physical realization of digital logic
- Complex and ubiquitous

Manufacturing Process

HDL Netlist IC

```
case (display_state)
UPDATE : begin
seg00_reg <= seg00;
seg01_reg <= seg01;

// update leds
if (count00[0]) begin
state <= UPDATE;
end

default : begin
ons00 <= 0;
count00 <= 0;
display_state <= UPDATE;
end</pre>
```

endcase

Threat Model

News story, May 2012: "Security backdoor found in US military chip made in [foreign country]."

Example

Full Adder Netlist

Example

Full Adder Netlist

IC Layers

Fig. 1: (a) A cross-section of an IC layout. The layout has two parts: Front End Of Line or FEOL layers(transistors, lower metal layers) and Back End Of Line or BEOL layers (intermediate, and top metal layers)[Source: [10]]. (b) Pitch length of different metal layers in 45nm CMOS technology [1].

Split Manufacturing

Split Manufacturing

Split Manufacturing Flow

Attack Summary

Layout Randomization

Layout Randomization

Layout and Routing Results

Wire Length Distribution

Figure: Comparison of the wire length distribution for the unsecured, obfuscated and hidden circuits. Also the hidden wire length distribution passes the χ^2 test when compared to a random distribution.

Power and Delay Costs

Figure: Power and delay ratio calculated from base/unsecured circuit.

Layout-level Logic Obfuscation

Figure 1: Standard cell layout of regular 2-input (a) NAND and (b) NOR gates. The metal layers are different and hence it is easy to differentiate them by just looking at the top metal layer. Camouflaged standard cell layouts of 2-input (c) NAND and (b) NOR gates. The metal layers are identical and hence it is difficult to differentiate them by just looking at the top metal layer.

Obfuscated Layout

Function	Contacts				
	True	Dummy			
NAND	2, 4, 6, 8,	1, 3, 5, 7, 9, 10,			
	11, 12, 16, 17	13, 14, 15, 18, 19			
NOR	2, 5, 6, 11,	1, 3, 4, 7, 8, 9,			
	12, 18, 19	10, 13, 14, 15, 16, 17			
XOR	1, 3, 4, 7, 9, 10, 12,	2, 5, 6, 8,			
	13, 14, 15, 18, 19	11, 16, 17			

Achieved Functions

Obfuscated Circuits

Logic Obfuscation Flow

Results

Function	Camouflaged gate						
	XOR+NAND+NOR			XNOR+NAND+NOR			
	Power	Delay	Area	Power	Delay	Area	
NAND	5.5X	1.6X	4X	5.1X	1.8X	4X	
NOR	5.1X	1.1X	4X	4.8X	1.4X	4X	
XOR	0.8X	0	1.2X	N/A			
XNOR	N/A			0.7X	0	1.2X	

