ESP8266

Hardware Specifications

Type Value

CPU Tensilica L106 (32-bit @ 160 MHz)

Peripheral Interface UART/SDIO/SPI/I2C/I2S/IR Remote Control

GPIO/ADC/PWM

Operating Voltage 2.5V ~ 3.6V

Operating Current Average value: 80 mA

Wi-Fi Protocols

- 802.11 b/g/n/e/i support
- Wi-Fi Direct (P2P) support
- WPA/WPA2 PSK, and WPS driver

IEEE 802.11

IEEE 802.11 is a set of media access control **(MAC)** and physical layer **(PHY)** specifications for implementing wireless local area network (WLAN) computer communication in the 900 MHz and 2.4, 3.6, 5, and 60 GHz frequency bands.

WPA/WPA2

Wi-Fi Protected Access (WPA) and **Wi-Fi Protected Access II (WPA2)** are two security protocols and security certification programs developed by the Wi-Fi Alliance to secure wireless computer networks.

ESP8266 Flavors

ESP-01

ESP-01 PINOUT

NOTES:

- ▲ Typ. pin current 6mA (Max. 12mA)
- For sleep mode, connect GPI016 and EXT_RSTB. On wakeup, GPI016 will output LOW for system reset.
- On boot/reset/wakeup, keep GPI015 LOW and GPI02 HIGH.

Programming ESP-01

ESP-12E

ESP-12E PINOUT

I/O

ADC

N/C

CONTROL

COMM. INTERFACE

PIN NUMBER

√ PWM

For sleep mode, connect GPI016 and EXT_RSTB. On wakeup, GPI016 will output

▲ On boot/reset/wakeup, keep GPIO15 LOW

LOW for system reset.

and GPI02 HIGH.

antenna

Ulrxd

SPIHD SPI_MISO

GPI09

GPIO7

SPI

SPIWP

GPIO8 GPIO1(

SPICLK

GPI06

Programming ESP-12E

NodeMCU

ESP-12E DEVELOPMENT BOARD PINOUT

NOTES:

- ▲ Typ. pin current 6mA (Max. 12mA)
- For sleep mode, connect GPI016 and EXT_RSTB. On wakeup, GPI016 will output LOW for system reset.
- On boot/reset/wakeup, keep GPI015 LOW and GPI02 HIGH.

Programming NodeMCU

CP2102 USB-UART (VCP)

NodeMCU v2 is Protoboard friendly

Firmware options:

- Offical ESP8266 AT Firmware
- Espressif FreeRTOS Firmware / SDK
- NodeMCU Lua Based Firmware
- Micro Python
- Arduino core for ESP8266
- Visuino
- ESP-Lisp
- Espruino
- Sming
- ESP8266 Basic
- ESPWebFramework

Slave Mode (AT Commands)

Standalone Mode

Hands on NodeMCU

Prerequisites:

- NodeMCU Module
- USB to Micro USB cable
- Computer (Win OS) with Internet Connection
- Arduino IDE 1.6.4+

Configuration Steps:

1. Download and Install "CP2102 USB to UART Bridge Controller" driver.

Install the ESP8266 Arduino Addon.

Open up Arduino, then go to the Preferences (File> Preferences). Then, towards the bottom of the window, copy this URL into the "Additional Board Manager URLs" text box:

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Then navigate to the Board Manager by going to:

"Tools > Boards > Boards Manager".

There should be a couple new entries in addition to the standard Arduino boards. Look for **esp8266**.

Click on that entry, then select **Install**.

Select the NodeMCU board:

"Tools > Boards > NodeMCU 1.0 (ESP-12E Module)".

4. Select NodeMCU COM Port:

"Tools > Port > COM(n)".

5. Select NodeMCU **Upload Speed**:

"Tools > Upload Speed > 921600".

Make it work:

"File > Examples > ESP8266 > Blink".

Need help with your NodeMCU setup?

Still need help?

Configuration Steps:

1. Sign up or register to Thingspeak:

https://thingspeak.com/users/sign_up

Create a new Channel:

https://thingspeak.com/channels/new

3. Get your channel API keys:

https://thingspeak.com/channels/<channel_number>/api_keys

4. Publish to your channel, download example code from:

https://goo.gl/kkycnr

(https://github.com/nothans/ESP8266/blob/master/examples/RSSI_to_ThingSpeak.ino)

5. Watch your data live!

https://thingspeak.com/channels/<channel_number>

Understand Thingspeak API

To update a channel feed, send an HTTP GET or POST request to:

https://api.thingspeak.com/update

Example:

POST /update HTTP/1.1

Host: api.thingspeak.com

Connection: close

X-THINGSPEAKAPIKEY: MYC91BJSZLFGGUWI

Content-Type: application/x-www-form-urlencoded

Content-Length: 22

field1=73&field2=100

HTTP

(Hypertext Transfer Protocol)

The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed, collaborative, and hypermedia information systems.[1] HTTP is the foundation of data communication for the World Wide Web.

Hypertext is structured text that uses logical links (hyperlinks) between nodes containing text. HTTP is the protocol to exchange or transfer hypertext.

Define "protocol"

Define "protocol"

In information technology, a protocol is the special set of rules that end points in a telecommunication connection use when they communicate. Protocols specify interactions between the communicating entities.

HTTP Requests

GET

The GET method requests a representation of the specified resource. Requests using GET should only retrieve data and should have no other effect

POST

The POST method requests that the server accept the entity enclosed in the request as a new subordinate of the web resource identified by the URI. The data POSTed might be, for example, an annotation for existing resources; a message for a bulletin board, newsgroup, mailing list, or comment thread; a block of data that is the result of submitting a web form to a data-handling process; or an item to add to a database.

PUT

The PUT method requests that the enclosed entity be stored under the supplied URI. If the URI refers to an already existing resource, it is modified; if the URI does not point to an existing resource, then the server can create the resource with that URI.

DELETE

The DELETE method deletes the specified resource.

OSI Model

(Open Systems Interconnection model)

OSI model		
Layer	Name	Example protocols
7	Application Layer	HTTP, FTP, DNS, SNMP, Telnet
6	Presentation Layer	SSL, TLS
5	Session Layer	NetBIOS, PPTP
4	Transport Layer	TCP, UDP
3	Network Layer	IP, ARP, ICMP, IPSec
2	Data Link Layer	PPP, ATM, Ethernet
1	Physical Layer	Ethernet, USB, Bluetooth, IEEE802.11

Q&A Time!

Challenge:

Draw a Sine wave on a Thingspeak chart, at least one complete cycle. No rules on x-y axis range or sample timing, just draw the wave.

Duration: 30 minutes

The first one to show me the full wave and source code wins.

Prize:

Free admission on my next course, materials included & 1 beer...

Gracias por asistir!

Hugo Arganda

hugo.arganda@gmail.com @argandas

*El 100% de las ganancias han sido donadas para apoyar a MakersGDL