(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-271646 (P2001-271646A)

(43)公開日 平成13年10月5日(2001.10.5)

(51) Int,Cl,7

識別記号

FΙ

テーマコード(参考)

F 0 2 B 19/08

F 0 2 B 19/08

F 3G023

審査請求 未請求 請求項の数4 OL (全 6 頁)

(21)出願番号

特願2000-83167(P2000-83167)

(22)出願日

平成12年3月24日(2000.3.24)

(71)出願人 000001052

株式会社クボタ

大阪府大阪市浪速区敷津東一丁目2番47号

(72)発明者 甲斐 昭彦

大阪府堺市築港新町3丁8番 株式会社ク

ボタ堺臨海工場内

(74)代理人 100068892

弁理士 北谷 寿一

Fターム(参考) 3G023 AA02 AA07 AB05 AC04 AD27

AD28

(54)【発明の名称】 ディーゼル機関の渦流室式燃焼室

(57)【要約】

【課題】 主噴孔内の主噴流に副噴孔から出た副噴流を 左右両側から衝突・撹拌混合させて、微小渦流を多量に 発生させて、空気と燃料との混合性能を高める。主噴流 を副噴流の合流で加速させて、渦流室内の旋回渦流を強 化して、混合性能をさらに高める。

【解決手段】 左右一対の各副噴孔4の基端部5を主燃焼室の上端面に開口するのに対して、副噴孔4の先端部6を主噴孔3の周壁面8に開口して、この副噴孔4の先端部6を主噴孔3に合流させる。各副噴孔4の先端部6は、主噴孔3の周壁面8の中でも、シリンダ軸心から遠い側に位置する外周寄り周壁面部分9で、かつ主燃焼室1よりも渦流室2に近い側に位置する先端寄り周壁部分10に開口させる。各副噴孔4は、その基端部5から先端部6に向かって次第に細くなる先すぼまり状に形成した。

監修 日本国特許月

【特許請求の範囲】

【請求項1】 主燃焼室(1)と渦流室(2)とを、主噴孔 (3)と左右一対の副噴孔(4)とで連通させた、ディーゼ ル機関の渦流室式燃焼室において、

左右一対の各副噴孔(4)の基端部(5)を主燃焼室(1)の 上端面(7)に開口するのに対して、副噴孔(4)の先端部 (6)を主噴孔(3)の周壁面(8)に開口して、この副噴孔 (4)の先端部(6)を主噴孔(3)に合流させた、

ことを特徴とするディーゼル機関の渦流室式燃焼室。

【請求項2】 請求項1に記載したディーゼル機関の渦 10 流室式燃焼室において、

前記各副噴孔(4)の先端部(6)は、主噴孔(3)の周壁面 (8)の中でも、シリンダ軸心(11)から遠い側に位置する 外周寄り周壁面部分(9)に開口させた、ことを特徴とす るもの.

【請求項3】 請求項1または2に記載したディーゼル 機関の渦流室式燃焼室において、

前記各副噴孔(4)の先端部(6)は、主噴孔(3)の周壁面 (8)の中でも、主燃焼室(1)よりも渦流室(2)に近い側 に位置する先端寄り周壁面部分(10)に開口させた、こと 20 を特徴とするもの。

【請求項4】 請求項1・2または3に記載したディー ゼル機関の渦流室式燃焼室において、

前記各副噴孔(4)は、その基端部(5)から先端部(6)に 向かって次第に細くなる先すぼまり状に形成した、こと を特徴とするもの。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ディーゼル機関の 渦流室式燃焼室に関する。

[0002]

【従来の技術】ディーゼル機関の渦流室式燃焼室とし て、従来技術では特開昭59-194029号公報に掲 載されたものがある。これは、図6および図7に示すよ うに、次のように構成されている。図6は従来技術を示 す主燃焼室と渦流室の要部縦断側面図。図7は図6のVI I-VII線断面矢視図である。

【0003】主燃焼室(1)と渦流室(2)とを、主噴孔 (3)と左右一対の副噴孔(4)とで連通させた、ディーゼ ル機関の渦流室式燃焼室において、

左右一対の各副噴孔(4)の基端部(5)を主燃焼室(1)の 上端面(7)に開口するのに対して、副噴孔(4)の先端部 (6)を副噴孔(2)の底面にに開口して、この副噴孔(4) を主噴孔(3)と並列状に設けたものである。

[0004]

【発明が解決しようとする課題】上記従来技術では、つ ぎの問題点を有する。

[イ. 主噴孔(3)内を流れる主噴流と、各副噴孔 (4)を流れる副噴流とは、微小渦流を多量に発生させて 昆合性能を高めることが、期待できない。]

【0005】ディーゼル機関の圧縮行程において、主燃 焼室(1)内の空気は、主噴孔(3)および各副噴孔(4)を 通って、渦流室(2)に圧し込まれ、渦流室(2)内で旋回 して旋回渦流を形成する。このとき、主噴孔(3)内を流 れる主噴流と、各副噴孔(4)を流れる副噴流とは、互い に撹拌混合して乱流を発生させ合うことが無いので、微 小渦流を多量に活発に発生させて、空気と燃料との混合 性能を高めることが、期待できない。

【0006】[ロ. 主噴流と副噴流とは互いに流速 を高め合うことが無く、渦流室(2)内での混合性能を高 められない。] 圧縮行程において、主噴孔(3)内を流 れる主噴流と、副噴孔(4)内を流れる副噴流とは、分散 して並列に流れるため、互いに流速を高め合うことが無 く、渦流室(2)内の旋回渦流の旋回力を強化して空気と 燃料との混合性能を向上させることが期待できない。

【0007】本発明の課題は、次のようにすることにあ

(イ). ディーゼル機関の圧縮行程において、主噴孔内 を流れる主噴流に副噴孔から流れ出た副噴流を左右両側 から衝突・撹拌混合させて、微小渦流を多量に活発に発 生させて、空気と燃料との混合性能を高める。

(ロ). 主噴流を副噴流の合流で加速させて、渦流室内 の旋回渦流を強化して、空気と燃料との混合性能をさら に高める。

【0008】(ハ). 主噴流のうちの流速の早い部分を 副噴流で撹拌混合させることにより、微小渦流の発生量 を一層増大させて、混合性能を一層向上させる。

(二). 主噴流と副噴流との複合噴流を渦流室内で左右 に拡がらせて、渦流室内での混合性能・空気利用率を向 上させる。

(ホ). 副噴流を加速することにより、副噴流と主噴流 との合流部分での撹拌混合を強化して、微小渦流の発生 量を更に増大させる。

[0009]

【課題を解決するための手段】本発明のディーゼル機関 の渦流室式燃焼室は、上記課題を解決するために、例え ば図1-図5に示すように、次のように構成したことを 特徴とする。

【0010】〇 発明1. 請求項1. 図1-図5参 40

図1-図5は本発明のディーゼル機関の渦流室式燃焼室 の実施形態1を示す。図1は主噴孔と副噴孔の周面の形 状を示す図である。図1 (A) は斜視図、図1 (B) は 平面図、図1(C)は底面図、図1(D)は主噴孔の軸 心方向から見た底面図である。

【0011】図2は主噴孔と副噴孔とを形成した噴孔口 金の形状を示す図である。図2(A)は縦断側面図、図 2 (B) は図2 (A) のB-B線断面矢視図、図2 (C) は図2 (B) のC-C線断面矢視図である。図3 50 は主噴流と副噴流の流れを示す噴孔口金の横断平面図。

図4は主燃焼室と渦流室の縦断側面図。図5は図4のV-V線断面矢視図である。

【0012】主燃焼室(1)と渦流室(2)とを、主噴孔(3)と左右一対の副噴孔(4)とで連通させた、ディーゼル機関の渦流室式燃焼室において、左右一対の各副噴孔(4)の基端部(5)を主燃焼室(1)の上端面(7)に開口するのに対して、副噴孔(4)の先端部(6)を主噴孔(3)の周壁面(8)に開口して、この副噴孔(4)の先端部(6)を主噴孔(3)に合流させたものである。

【0013】〇 発明2. 請求項2. 図1-図4参 *10* 照.

上記発明1のディーゼル機関の渦流室式燃焼室において、前記各副噴孔(4)の先端部(6)は、主噴孔(3)の周壁面(8)の中でも、シリンダ軸心(11)から遠い側に位置する外周寄り周壁面部分(9)に開口させたものである。

【0014】〇 発明3. 請求項3. 図1-図4参 照.

発明1または発明2に記載したディーゼル機関の渦流室式燃焼室において、前記各副噴孔(4)の先端部(6)は、主噴孔(3)の周壁面(8)の中でも、主燃焼室(1)よりも 20 渦流室(2)に近い側に位置する先端寄り周壁面部分(10) に関口させたものである。

【0015】〇 発明4. 請求項4. 図1·図2参照.

発明1・発明2または発明3に記載したディーゼル機関の渦流室式燃焼室において、前記各副噴孔(4)は、その基端部(5)から先端部(6)に向かって次第に細くなる先すぼまり状に形成したものである。

[0016]

【発明の効果】本発明のディーゼル機関の渦流室式燃焼 30 室は、つぎの効果を奏する。○ 発明1. 請求項1. 図1-図5参照.

図1-図5は本発明のディーゼル機関の渦流室式燃焼室の実施形態1を示す。図1は主噴孔と副噴孔の周面の形状を示す図である。図1 (A)は斜視図、図1 (B)は平面図、図1 (C)は底面図、図1 (D)は主噴孔の軸心方向から見た底面図である。

【0017】図2は主噴孔と副噴孔とを形成した噴孔口金の形状を示す図である。図2(A)は縦断側面図、図2(B)は図2(A)のB-B線断面矢視図、図2(C)は図2(B)のC-C線断面矢視図である。図3は主噴流と副噴流の流れを示す噴孔口金の横断平面図。図4は主燃焼室と渦流室の縦断側面図。図5は図4のV-V線断面矢視図である。

【0018】[イ. 主噴流(12)に副噴流(13)が左右両側から衝突・撹拌混合して、微小渦流を多量に活発に発生させて、空気と燃料との混合性能を高める。] ディーゼル機関の圧縮行程において、主燃焼室(1)内の空気は、主噴孔(3)および各副噴孔(4)を通って、渦流室(2)に圧し込まれ、渦流室(2)内で旋回して旋回渦流(1 50

6)を形成する。

【0019】このとき、図3に示すように、主噴孔(3)内を流れている主噴流(12)に対して、各副噴孔(4)から流れ出た副噴流(13)が左右両側から流れ込んで来て衝突し、撹拌混合して乱流を発生させて、微小渦流を多量に活発に発生させる。

【0020】この活発に発生した微小渦流は、渦流室(2)内を旋回する旋回渦流(16)が形成されていく間も良好に存在し続け、図4に示す燃料噴射ノズル(14)から噴射された噴霧燃料(15)の燃料粒子と広い接触面積で活発に接触しながら、巻き込んでいく。これにより、空気と燃料との混合性能が高まり、燃焼性能が向上する。

【0021】[ロ. 主噴流(12)が副噴流(13)の合流で加速され、渦流室(2)内の旋回渦流(16)が強化されて、空気と燃料との混合性能をさらに高める。] 圧縮行程において、主噴孔(3)内で主噴流(12)が流れているところに副噴流(13)が合流するので、この合流した噴流の流速が加速され、渦流室(2)内の旋回渦流(16)の旋回力が強化されて、空気と燃料との混合性能がさらに向上する。

【0022】〇 発明2. 請求項2. 図1-図4参照.

[ハ. 主噴流(12)のうちの流速の早い部分が副噴流(13)で撹拌混合させられて、微小渦流の発生量が一層増大して、混合性能が一層向上する。]

【0023】圧縮行程において、主燃焼室(1)から渦流室(2)へ向かって主噴孔(3)内を流れる主噴流(12)の各部分での流速は、シリンダ軸心(11)から近い側の断面部分よりも、遠い側の断面部分の方が、空気流動慣性の性質上、その流速が可成り速くなる。この主噴流(12)のうちの流速の早い部分に副噴流(13)を流れ込ませて、衝突・撹拌混合させるので、この撹拌混合力が大きくなって、微小渦流の発生量が一層増大し、空気と燃料との混合性能が一層向上する。

【0024】〇 発明3. 請求項3. 図1-図4参照.

[二. 主噴流(12)と副噴流(13)との複合噴流が渦流室(2)内で左右に拡がって、渦流室(2)内での混合性能・空気利用率が向上する。]

【0025】圧縮行程において、主噴孔(3)内で主噴流(12)に副噴流(13)が合流してきて突入・圧縮・撹拌・反発膨張・反射などの複合作用により、両噴流(12)(13)が合流した複合噴流が、左右に拡がり始めた直後に渦流室(2)内に入り、この渦流室(2)内で旋回渦流(16)が左右に拡がりながら形成されていく。このため、渦流室(2)内での左右両側部においても、空気と燃料との混合性能が高まり、渦流室(2)内での空気利用率が向上して、燃焼性能が向上する。

【0026】〇 発明4. 請求項4. 図1·図2参照.

5

[ホ. 副噴流(13)が加速される分だけ、副噴流(13) と主噴流(12)との合流部分での撹拌混合が強くなり、微 小渦流の発生量が更に増大する。]

【0027】圧縮行程において、各副噴孔(4)内を流れる副噴流(13)は、副噴孔(4)の先すぼまり形状に沿って絞り込まれて加速される分だけ、主噴流(12)への突入力が強くなる。このため、副噴流(13)と主噴流(12)との合流部分での撹拌混合が強くなり、微小渦流の発生量が更に増大して、混合性能が更に向上する。

[0028]

【発明の実施の形態】以下、本発明のディーゼル機関の 渦流室式燃焼室の実施の形態を、図面に基き説明する。

○ 実施形態1. 請求項1・2・3・4. 図1-図 5参照

図1-図5は本発明のディーゼル機関の渦流室式燃焼室の実施形態1を示す。図1は主噴孔と副噴孔の周面の形状を示す図である。図1(A)は斜視図、図1(B)は平面図、図1(C)は底面図、図1(D)は主噴孔の軸心方向から見た底面図である。

【0029】図2は主噴孔と副噴孔とを形成した噴孔口 20 金の形状を示す図である。図2(A)は縦断側面図、図2(B)は図2(A)のB-B線断面矢視図、図2(C)は図2(B)のC-C線断面矢視図である。図3は主噴流と副噴流の流れを示す噴孔口金の横断平面図。図4は主燃焼室と渦流室の縦断側面図。図5は図4のV-V線断面矢視図である。

【0030】 図4・図5において、符号(23)はシリンダ、(24)はシリンダヘッド、(25)はピストン、(11)はシリンダ軸心、(27)は吸気弁口、(28)は排気弁口である。符号(1)は主燃焼室、(2)は渦流室、(3)は主噴孔、(4)は副噴孔、(26)は噴孔口金、(14)は燃料噴射ノズルである。

【0031】図1・図2に示すように、主燃焼室(1)と 渦流室(2)とを、主噴孔(3)と左右一対の副噴孔(4)と で連通させる。主噴孔(3)は、断面円形で大径の主通路 (21)の左右両脇部に、緩やかな円錐形で小径の左右一対 の脇通路(22)を連通させたものから成る。両脇通路(22) は、主燃焼室(1)から渦流室(2)に向かって、互いに左 右に緩やかに近づき合うように向けられている。

【0032】左右一対の各副噴孔(4)の基端部(5)を主 40 燃焼室(1)の上端面(7)に開口するのに対して、副噴孔 (4)の先端部(6)を主噴孔(3)の周壁面(8)に開口し て、この副噴孔(4)の先端部(6)を主噴孔(3)に左右両 側から合流させる。

【0033】前記各副噴孔(4)の先端部(6)は、主噴孔(3)の周壁面(8)の中でも、シリンダ軸心(11)から遠い側に位置する外周寄り周壁面部分(9)に開口させる。この各副噴孔(4)の先端部(6)は、主噴孔(3)の周壁面(8)の中でも、主燃焼室(1)よりも渦流室(2)に近い側に位置する先端寄り周壁面部分(10)に開口させる。前記各副噴孔(4)は、その基端部(5)から先端部(6)に向かって次第に細くなる先すぼまり状に形成する。

【0034】渦流室(2)から主燃焼室(1)に向かって見て、主噴孔(3)はシリンダ軸心(11)に向けられ、両副噴孔(2)は互いに左右に離れ合う方向へ向けられている。これにより、図5に示すように、渦流室(2)で燃焼し始めた燃焼ガスのうち、主噴孔(3)を通過した主噴出燃焼ガス流(29)は、主通路(21)と脇通路(21)とによる拡がり角度をもって、主燃焼室(1)の中央部を通過する。また、副噴孔(4)を通過した左右一対の副噴出燃焼ガス流(30)は、主燃焼室(1)の左右両側部へ接線状に流れていく。

【図面の簡単な説明】

【図1】図1-図5は本発明のディーゼル機関の渦流室式燃焼室の実施形態1を示す。図1は主噴孔と副噴孔の周面の形状を示す図である。図1(A)は斜視図、図1(B)は平面図、図1(C)は底面図、図1(D)は主噴孔の軸心方向から見た底面図である。

【図2】図2は主噴孔と副噴孔とを形成した噴孔口金の形状を示す図である。図2(A)は縦断側面図、図2(B)は図2(A)のB-B線断面矢視図、図2(C)30 は図2(B)のC-C線断面矢視図である。

【図3】主噴流と副噴流の流れを示す噴孔口金の横断平 面図。

【図4】主燃焼室と渦流室の縦断側面図。

【図5】図4のV-V線断面矢視図。

【図 6 】従来技術を示す主燃焼室と渦流室の要部縦断側 面図。

【図7】図6のVII-VII線断面矢視図。

【符号の説明】

1 …主燃焼室、 2 …渦流室、 3 …主噴孔、 4 …副 切 噴孔、 5 …基端部、6 …先端部、 7 …上端面、 8 …周壁面、 9 …外周寄り周壁面部分、 10 …先端寄 り周壁面部分。

_

[図7]

