Small-Signal MOSFET Amplifiers

E2002 Analog Electronics

Prof. Zheng Yuanjin

Email: yjzheng@ntu.edu.sg

Office: S2.2-B2-16

Tel: 65927764

Module Goals

Understanding of concepts related to:

- Biasing of Transistors (BJT and MOSFET)
- dc and ac equivalent circuits for small-signal amplifier
- Small-signal models of BJT and MOSFET
- Amplifier characteristics such as voltage gain, input and output resistances
- Analysis of three broad classes of single-stage amplifiers
 - Inverting amplifiers common-emitter and common-source configurations
 - Followers common-collector and common-drain configurations
 - Noninverting amplifiers common-base and common-gate configurations

References

Text Book

1. Richard C. Jaeger and Travis N. Blalock, "Microelectronic Circuit Design", 4th Edition, McGraw Hill, 2011, Chapters 4, 5, 13 and 14.

References

- 1. Allan R. Hambley, "Electronics", 2nd Edition, Prentice Hall, 2000
- 2. Donald A. Neamen, "Electronic Circuit Analysis and Design", 2nd Edition, McGraw-Hill, 2002

MOSFET Regions of Operation

MOSFET Biasing for Different Regions of Operation

In EE2002, only enhancement mode MOSFET is considered.

Region	NMOS	PMOS	
Cutoff	$V_{GS} < V_{TN}$ $I_D = 0$	$ V_{GS} < V_{TP} $ $I_D = 0$	
Triode	$V_{DS} < V_{GS} - V_{TN}$ $I_D = K_n \left(V_{GS} - V_{TN} - \frac{V_{DS}}{2} \right) V_{DS}$	$ V_{DS} < V_{GS} - V_{TP} $ $I_{D} = K_{p} \left(V_{GS} - V_{TP} - \frac{ V_{DS} }{2} \right) V_{DS} $	
Saturation	$V_{DS} \ge V_{GS} - V_{TN}$ $I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2$	$ V_{DS} \ge V_{GS} - V_{TP} $ $I_D = \frac{K_p}{2} (V_{GS} - V_{TP})^2$	

$$K_n = \mu_n C_{ox} \left(\frac{W}{L} \right)$$
 and $K_p = \mu_p C_{ox} \left(\frac{W}{L} \right)$

MOSFET Bias Analysis Approach

- Assume saturation region (unless operation region is obvious)
- Use circuit analysis to find V_{GS}
- Use V_{GS} to calculate I_D , and I_D to find V_{DS}
- Check validity of operation region assumption
- Change assumption and analyze again if required.

NOTE: An enhancement-mode MOSFET with $V_{DS} = V_{GS}$ is always in saturation because $|V_{DS}|$ always greater than $(|V_{GS}| - |V_{TX}|)$, where X is N or P for threshold voltage of NMOS or PMOS, respectively.

MOSFET Bias Analysis: Triode Region

$$K_n = 250 \,\mu\text{A/V}^2$$
$$V_{TN} = 1 \,\text{V}$$

Assume transistor is saturated,

$$V_{GS} = V_{DD} = 4 \text{ V}.$$

$$I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 = \frac{250\mu}{2} (4-1)^2 = 1.13 \text{ mA}$$

$$V_{DD} = I_D R_D + V_{DS}$$

 $V_{DS} = 4 - 1.6 \times 1.13 = 2.19 \text{ V}$

But
$$V_{DS} = 2.19 < V_{GS} - V_{TN} = 4 - 1 = 3$$
,
Saturation region assumption is incorrect.

Using triode region equation,
$$I_D = K_n \left(V_{GS} - V_{TN} - \frac{V_{DS}}{2} \right) V_{DS}$$

$$V_{DS} = 4 - 1600 \times 250 \mu (4 - 1 - V_{DS}/2) V_{DS}$$

 $V_{DS} =$ **2.3 V** and $I_D =$ **1.06 mA**

$$V_{DS} = 2.3 < V_{GS} - V_{TN} = 3$$
, transistor is in triode region.

MOSFET Bias Analysis: nMOS Two-Resistor Biasing

 $V_{GS} = -0.77 \text{ V or } 2 \text{ V}$

$$K_n = 260 \,\mu\text{A/V}^2$$
$$V_{TN} = 1 \,\text{V}$$

Since $I_G = 0$, $V_{DS} = V_{GS}$ Transistor is saturated

$$V_{DS} = V_{DD} - I_D R_D$$

$$V_{GS} = 3.3 - \frac{260 \mu}{2} (V_{GS} - 1)^2 \times 10000 = 3.3 - 1.3 (V_{GS} - 1)^2$$

$$1.3V_{GS}^2 - 1.6V_{GS} - 2 = 0$$

$$V_{GS} = \frac{1.6 \pm \sqrt{1.6^2 - 4 \times 1.3 \times -2}}{2 \times 1.3}$$

$$V_{GS} = -0.77 \text{ V}$$
 implies MOSFET is cutoff and

$$V_{GS} = 2 \text{ V} \text{ and } V_{DS} = V_{GS} = 2 \text{ V}.$$

 $I_D = 130 \mu \times (2-1)^2 = 130 \mu \text{A}.$

contradict the observation.

MOSFET Bias Analysis: pMOS Two-Resistor Biasing

 $I_D = 25 \mu \times (3.45 - 2)^2 = 52.5 \mu A$

 $V_{SD} = V_{SG} = 3.45 \text{ V}$

$$K_p = 50 \ \mu\text{A/V}^2$$
$$V_{TP} = -2 \ \text{V}$$

Since
$$I_G = 0$$
, $V_{SD} = V_{SG}$
Transistor is saturated

$$V_{SD} = V_{DD} - I_D R_D$$

$$|V_{GS}| = 15 - \frac{50\mu}{2} (|V_{GS}| - |V_{TP}|)^2 \times 220k = 15 - 5.5 (|V_{GS}| - 2)^2$$

$$5.5 |V_{GS}|^2 - 10 |V_{GS}| - 11 = 0$$

$$|V_{GS}| = \frac{10 \pm \sqrt{10^2 - 4 \times 5.5 \times -11}}{2 \times 5.5}$$

$$|V_{GS}| = 0.37 \text{ V or } 3.45 \text{ V}$$
Since $|V_{GS}| = 0.37 \text{ V or } V_{SG} = 3.45 \text{ V}$

Introduction to Amplifiers

- BJT is an excellent amplifier when biased in forward-active region
- MOSFET can be used as amplifier when biased in saturation region.
- In these regions, transistors can provide high voltage, current and power gains.
- Bias refers to setting the 'quiescent' (idle) current when there is no signal presence. It sets the transistor in the desired operation region.
- Q-point (determined by DC analysis) also determines
 - Small-signal parameters of transistor
 - Voltage gain, input resistance, output resistance
 - Maximum input and output signal amplitudes
 - Power consumption
 - Efficiency (o/p signal power vs DC i/p power)

Biasing MOSFET for linear amplification

MOSFET is biased in **saturation region** (corresponding to the forward-active of BJT) for small-signal amplifier.

pMOS behaves like nMOS with all the polarities reversed.

nMOS	pMOS
$I_D = \frac{K_n}{2} \left(V_{GS} - V_{TN} \right)^2$	$I_D = \frac{K_p}{2} (V_{GS} - V_{TP})^2$
with channel length modulation:	with channel length modulation:
$I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \left(1 + \lambda V_{DS}\right)$	$I_D = \frac{K_p}{2} (V_{GS} - V_{TP})^2 (1 + \lambda V_{DS})$

$$V_{SAT} = |V_{GS}| - |V_{TX}| > 0$$
$$X = N \text{ or } P$$

MOSFET Amplifier

Q-point is set at $(I_D, V_{DS}) = (1.56 \text{ mA}, 4.8 \text{ V})$ with $V_{GS} = 3.5 \text{ V}$.

Total gate-source voltage is: $v_{GS} = V_{GS} + v_{gs}$

1 V p-p change in $v_{GS} \Rightarrow$ 1.25 mA p-p change in $i_D \Rightarrow$ 4 V p-p change in v_{DS} .

DC and AC Analysis

• DC analysis:

- Obtain dc equivalent circuit by replacing all capacitors by open circuits and inductors by short circuits. ac voltage sources by ground connections and ac current sources by open circuits.
- Find Q-point from dc equivalent circuit by using appropriate largesignal transistor model.

• AC analysis:

- Obtain ac equivalent circuit by replacing all capacitors by short circuits, inductors by open circuits, dc voltage sources by ground connections and dc current sources by open circuits.
- Replace transistor by small-signal model
- Use small-signal ac equivalent to analyze ac characteristics of amplifier.
- Combine end results of dc and ac analysis to yield total voltages and currents in the network.

DC Analysis Example: Four-Resistor MOSFET Biasing Circuit

KVL 1: Since
$$I_G = 0$$
, $V_{eq} = V_{GS} + I_D R_S$
 $4 = V_{GS} + 0.5 \times 25 \mu (V_{GS} - 1)^2 \times 39 k$
 $V_{GS}^2 + 0.05 V_{GS} - 7.21 = 0$
 $V_{GS} = -2.71$ or 2.66 V
Since $V_{GS} = -2.71 < V_{TN} = 1$, $V_{GS} = 2.66$ V.

KVL 2:
$$V_{DS} = 10 - I_D R_D - I_S R_S$$

 $V_{DS} = 10 - 0.0344 \times (75 + 39) = 6.08$ V
Since $V_{DS} > V_{GS} - V_{TN} = 1.66$,
 M is in saturation region.

 $I_D = (4 - 2.66)/39 \text{k} = 34.4 \, \mu\text{A}$

DC and AC Equivalents for MOSFET Amplifier

Small Signal Parameters of MOSFET

- Since gate is insulated from channel by gate-oxide input resistance = ∞ .
- Small-signal parameters are controlled by the Q-point.
- For same operating point, MOSFET
 has lower transconductance than BJT.
 MOSFET transconductance is
 geometry dependent.

$$i_{D} = \frac{K_{n}}{2} \left(v_{GS} - V_{TN}\right)^{2} \left(1 + \lambda v_{DS}\right)$$

$$\downarrow r_{o} \quad v_{ds} \quad g_{m} = \frac{\partial i_{D}}{\partial v_{GS}} \Big|_{Q-pt} = K_{n} \left(V_{GS} - V_{TN}\right) \left(1 + \lambda V_{DS}\right)$$

$$\downarrow r_{o} \quad v_{ds} \quad g_{m} = \frac{\partial i_{D}}{\partial v_{GS}} \Big|_{Q-pt} = K_{n} \left(V_{GS} - V_{TN}\right) \left(1 + \lambda V_{DS}\right)$$

$$\downarrow r_{o} \quad v_{ds} \quad g_{m} = \frac{K_{n}}{\partial v_{GS}} \Big|_{Q-pt} = K_{n} \left(V_{GS} - V_{TN}\right) \left(1 + \lambda V_{DS}\right)$$

$$\downarrow r_{o} \quad v_{ds} \quad g_{m} = \frac{K_{n}}{\partial v_{GS}} \Big|_{Q-pt} = \sqrt{2K_{n}I_{D}}$$

$$\downarrow r_{o} \quad v_{ds} \quad g_{m} = \frac{I_{D}}{V_{GS} - V_{TN}} = \sqrt{2K_{n}I_{D}}$$

$$\downarrow r_{o} \quad v_{ds} \quad g_{m} = \frac{I_{D}}{V_{GS} - V_{TN}} = \sqrt{2K_{n}I_{D}}$$

$$\downarrow r_{o} \quad v_{ds} \quad$$

Small Signal Operation of MOSFET

$$\begin{split} i_{D} &= \frac{K_{n}}{2} \left(v_{GS} - V_{TN} \right)^{2} \text{ for } v_{DS} \geq v_{GS} - V_{TN} \\ i_{D} &= \frac{K_{n}}{2} \left(V_{GS} + v_{gS} - V_{TN} \right)^{2} = \frac{K_{n}}{2} \left[\left(V_{GS} - V_{TN} \right)^{2} + 2v_{gS} \left(V_{GS} - V_{TN} \right) + v_{gS}^{2} \right] \\ i_{d} &= i_{D} - I_{D} = \frac{K_{n}}{2} \left[2v_{gS} \left(V_{GS} - V_{TN} \right) + v_{gS}^{2} \right] \end{split}$$

For linearity, i_d should be proportional to v_{gs}

$$v_{gs} \ll 2(V_{GS} - V_{TN}) \Rightarrow v_{gs} \leq 0.2(V_{GS} - V_{TN})$$

Since MOSFET can be biased with $(V_{GS} - V_{TN})$ equal to several volts, it can handle much larger values of v_{gs} than corresponding values of v_{be} for BJT.

Small-Signal Model for PMOS

The small signal model for pMOS is exactly IDENTICAL to that of nMOS. This is not a mistake because the current direction is taken care of by the polarity of V_{GS} .

Summary of Small Signal Parameters

Parameter	BJT	n-MOSFET
g_m	$rac{I_C}{V_T}$	$\frac{2I_{D}}{V_{GS} - V_{TN}}$ $K_{n} \left(V_{GS} - V_{TN}\right) \left(1 + \lambda V_{DS}\right) \approx K_{n} \left(V_{GS} - V_{TN}\right)$ $\sqrt{2K_{n}I_{D}} \left(1 + \lambda V_{DS}\right) \approx \sqrt{2K_{n}I_{D}}$
r_{π}	$\frac{\beta}{g_m} = \frac{\beta V_T}{I_C}$	∞
r_o	$\frac{V_A + V_{CE}}{I_C} \approx \frac{V_A}{I_C}$	$\frac{\frac{1}{\lambda} + V_{DS}}{I_D} \approx \frac{1}{\lambda I_D}$
Small-signal requirement	$v_{be} \le 0.005 \ V$	$v_{gs} \le 0.2 \left(V_{GS} - V_{TN} \right)$

Small Signal Analysis of Fully Bypass C-S Amplifier

- AC equivalent circuit is constructed by assuming that all capacitances have zero impedance at signal frequency and dc voltage sources represent ac grounds.
- The small signal parameters, g_m and r_o of the MOSFET is calculated at the Q-point, I_D and V_{DS} .

Fully Bypass C-S Amplifier: Voltage Gain

Terminal voltage gain between gate and drain is:

$$A_{vt} = \frac{v_d}{v_g} = \frac{-g_m v_{gs} R_L'}{v_{gs}} = -g_m R_L'$$

Overall voltage gain from source v_i to output voltage across R_L is:

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{v_{o}}{v_{g}} \times \frac{v_{g}}{v_{i}} = A_{vt} \times \frac{v_{g}}{v_{i}}$$
$$= -g_{m}R'_{L} \left(\frac{R_{G}}{R_{I} + R_{G}}\right)$$

Fully Bypass C-S Amplifier Input Resistance

Fully Bypass C-S Amplifier Output Resistance

Since
$$v_{gs} = 0$$
, $g_m v_{gs} = 0$.

$$v_{x} = i_{x} \left(R_{D} \left\| r_{o} \right. \right)$$

$$R_{out} = \frac{v_x}{i_x} = R_D || r_o$$

$$R_{out} \approx R_D \text{ if } r_o \gg R_D$$

Fully Bypass C-S Amplifier Example

Problem: Find voltage gain, input and output resistances.

Given
$$K_n = 500 \, \mu\text{A/V}^2$$
, $V_{TN} = 1 \, \text{V}$, $\lambda = 0.0167 \, \text{V}^{-1}$

$$V_{DS} = 5V, V_{GS} = 2V, I_D = 250 \mu A$$

Fully Bypass C-S Amplifier Example (contd.)

Construct the ac equivalent and simplify it.

$$g_m \approx \sqrt{2K_n I_D} = 5.20 \times 10^4 \, S$$

$$r_o = \frac{\frac{1}{\lambda} + V_{DS}}{I_D} = 260 \text{ k}\Omega$$

Amplifier Families

- Constraints for signal injection and extraction yield three families of amplifiers
 - Common-Emitter (C-E)/Common- Source (C-S)
 - Common-Base (C-B)/Common- Gate (C-G)
 - Common-Collector (C-C)/Common- Drain (C-D)
- All circuit examples here use the four-resistor bias circuits to establish Q-point of the various amplifiers
- Coupling and bypass capacitors are used to change the ac equivalent circuits.

Amplifier Family

$$\underline{i}_{e} \approx \underline{i}_{c} \approx I_{s} \exp\left(\frac{\underline{v}_{b} - \underline{v}_{e}}{V_{T}}\right)$$

C-E: i/p at B, o/p at C

C-C: i/p at B, o/p at E

C-B: i/p at E, o/p at C

$$i_s = i_d \approx \frac{K_n}{2} \left(v_g - v_s - V_{TN} \right)^2$$

C-S: i/p at G, o/p at D

C-D: i/p at G, o/p at S

C-G: i/p at S, o/p at D

C-S Amplifier (Inverting Amplifier): Terminal Voltage Gain

$$A_{vt} = \frac{v_d}{v_g} = \frac{-i_d R_L'}{v_{gs} + i_d R_{S1}} \approx \frac{-g_m v_{gs} R_L'}{v_{gs} + g_m v_{gs} R_{S1}} = \frac{-g_m R_L'}{1 + g_m R_{S1}}$$

C-S Amplifier (Inverting Amplifier): Input Resistance

$$: i_g = 0, R'_{in} = \frac{v_g}{i_g} = \infty \qquad \Longrightarrow \qquad R_{in} = R'_{in} || R_G = R_G$$

$$R_{in} = R'_{in} \left\| R_G = R_G \right\|$$

C-S Amplifier (Inverting Amplifier): Overall Voltage Gain

C-S Amplifier (Inverting Amplifier): Output Resistance

C-S Amplifier (Inverting Amplifier): Input Signal Range

For MOSFET small-signal operation, $|v_{gs}| \le 0.2(V_{GS} - V_{TN})$.

$$v_{gs} = v_g - v_s \approx v_g - g_m v_{gs} R_{S1}$$

$$v_{gs} = \frac{v_g}{1 + g_m R_{S1}}$$

$$|v_{gs}| \le 0.2 (V_{GS} - V_{TN})$$

$$\Rightarrow |v_g| \le 0.2 (V_{GS} - V_{TN}) (1 + g_m R_{S1})$$

$$\because v_g = \left(\frac{R_{in}}{R_I + R_{in}}\right) v_i \Longrightarrow |v_i| \le 0.2 \left(V_{GS} - V_{TN}\right) \left(1 + g_m R_{S1}\right) \left(\frac{R_I + R_{in}}{R_{in}}\right)$$

Presence of R_{S1} increase permissible value of v_i .

Summary: C-E and C-S

Po	arameter	Terminal Voltage Gain	Input Resistance	Output Resistance
Amplifier		A_{vt}	R'_{in}	R'_{out}
ВЈТ	C-E	$\frac{-g_m R_L'}{1 + g_m R_{E1}}$	$r_{\pi} + (\beta + 1)R_{E1}$	$\left(1 + \frac{\beta R_{E1}}{r_{\pi} + R_{th} + R_{E1}}\right) r_o$
MOSFET	C-S	$\frac{-g_m R_L'}{1+g_m R_{S1}}$	∞	$(1+g_m R_{S1})r_o$
BJT	C-C	$\frac{g_{m}R'_{L}}{1+g_{m}R'_{L}}$	$r_{\pi}+(\beta+1)R'_{L}$	$r_o \left\ \left(\frac{r_\pi + R_{th}}{\beta + 1} \right) \right\ $
MOSFET	C-D	$\frac{g_m R_L'}{1 + g_m R_L'}$	∞	$r_o \left \frac{1}{g_m} \right $
BJT	С-В	$g_{\scriptscriptstyle m} R_{\scriptscriptstyle L}'$	$\frac{1}{g_m}$	$\left[1+g_{m}\left(r_{\pi}\left\ R_{th}\right)\right]r_{o}\right]$
MOSFET	C-G	$g_{\scriptscriptstyle m} R_{\scriptscriptstyle L}'$	$\frac{1}{g_m}$	$(1+g_{m}R_{th})r_{o}$

C-D Amplifier (Voltage Follower): Terminal Voltage Gain

C-D Amplifier (Voltage Follower): Input Resistance

C-D Amplifier (Voltage Follower): Overall Voltage Gain

C-D Amplifier (Voltage Follower): Output Resistance

C-D Amplifier (Voltage Follower): Input Signal Range

For MOSFET small-signal operation, $|v_{gs}| \le 0.2(V_{GS} - V_{TN})$.

$$\begin{aligned} v_{gs} &= v_{g} - v_{s} \approx v_{g} - g_{m} v_{gs} R'_{L} \\ v_{gs} &= \frac{v_{g}}{1 + g_{m} R'_{L}} \\ |v_{gs}| &\leq 0.2 (V_{GS} - V_{TN}) \\ \Rightarrow |v_{g}| &\leq 0.2 (V_{GS} - V_{TN}) (1 + g_{m} R'_{L}) \end{aligned}$$

$$\because v_g = \left(\frac{R_G}{R_I + R_G}\right) v_i \Longrightarrow \left|v_i\right| \le 0.2 \left(V_{GS} - V_{TN}\right) \left(1 + g_m R_L'\right) \left(\frac{R_I + R_G}{R_G}\right)$$

Summary: C-C and C-D

P	arameter	Terminal Voltage	Input Resistance	Output Resistance
Amplifier		Gain $A_{\!\scriptscriptstyle u t}$	R'_{in}	R'_{out}
BJT	C-E	$\frac{-g_m R_L'}{1+g_m R_{E1}}$	$r_{\pi} + (\beta + 1)R_{E1}$	$\left(1 + \frac{\beta R_{E1}}{r_{\pi} + R_{th} + R_{E1}}\right) r_o$
MOSFET	C-S	$\frac{-g_m R_L'}{1 + g_m R_{S1}}$	∞	$(1+g_m R_{S1})r_o$
ВЈТ	C-C	$\frac{g_{\scriptscriptstyle m}R'_{\scriptscriptstyle L}}{1+g_{\scriptscriptstyle m}R'_{\scriptscriptstyle L}}$	$r_{\pi}+(\beta+1)R'_{L}$	$r_o \left\ \left(\frac{r_\pi + R_{th}}{\beta + 1} \right) \right\ $
MOSFET	C-D	$\frac{g_{\scriptscriptstyle m}R'_{\scriptscriptstyle L}}{1+g_{\scriptscriptstyle m}R'_{\scriptscriptstyle L}}$	∞	$r_o \left\ \frac{1}{g_m} \right\ $
BJT	C-B	$g_{\scriptscriptstyle m} R_{\scriptscriptstyle L}'$	$\frac{1}{g_m}$	$\left[1+g_m\left(r_\pi \left\ R_{th}\right)\right]r_o\right]$
MOSFET	C-G	$g_{\scriptscriptstyle m} R_{\scriptscriptstyle L}'$	$\frac{1}{g_m}$	$(1+g_mR_{th})r_o$

C-G Amplifier (Noninverting Amplifier): Terminal Voltage Gain

C-G Amplifier (Noninverting Amplifier): Input Resistance

C-G Amplifier (Noninverting Amplifier): Overall Voltage Gain

C-G Amplifier (Noninverting Amplifier): Output Resistance

C-G Amplifier (Noninverting Amplifier): Input Signal Range

For MOSFET small-signal operation, $|v_{gs}| \le 0.2(V_{GS} - V_{TN})$.

$$\begin{aligned} v_{gs} &= -\left(\frac{R_{in}}{R_I + R_{in}}\right) v_i \\ \left|v_{gs}\right| &\leq 0.2 \left(V_{GS} - V_{TN}\right) \end{aligned} \qquad v_i \overset{R_I}{\longrightarrow} R_{in} \overset{R_I}{R_S} \overset{R_I}{\longrightarrow} V_{gs} \\ \Rightarrow \left|v_i\right| &\leq 0.2 \left(V_{GS} - V_{TN}\right) \left(\frac{R_I + R_{in}}{R_{in}}\right) \overset{+}{\longrightarrow} \frac{R_I}{\longrightarrow} V_{gs} \end{aligned}$$

$$\therefore R_{in} = \frac{R_S}{1 + g_m R_S} \Rightarrow \frac{R_I + R_{in}}{R_{in}} = 1 + g_m R_I + \frac{R_I}{R_S}$$

If
$$R_S \gg R_I$$
, $|v_i| \le 0.2(V_{GS} - V_{TN})(1 + g_m R_I)$

Summary: C-B and C-G

Po	arameter	Terminal Voltage	Input Resistance	Output Resistance
Amplifier		Gain A_{vt}	R_{in}'	R'_{out}
BJT	C-E	$\frac{-g_m R_L'}{1 + g_m R_{E1}}$	$r_{\pi} + (\beta + 1)R_{E1}$	$\left(1 + \frac{\beta R_{E1}}{r_{\pi} + R_{th} + R_{E1}}\right) r_o$
MOSFET	C-S	$\frac{-g_m R_L'}{1 + g_m R_{S1}}$	∞	$(1+g_m R_{S1}) r_o$
BJT	C-C	$\frac{g_{\scriptscriptstyle m}R'_{\scriptscriptstyle L}}{1+g_{\scriptscriptstyle m}R'_{\scriptscriptstyle L}}$	$r_{\pi} + (\beta + 1)R'_{L}$	$r_o \left\ \left(\frac{r_\pi + R_{th}}{\beta + 1} \right) \right\ $
MOSFET	C-D	$\frac{g_{m}R'_{L}}{1+g_{m}R'_{L}}$	∞	$r_o \left\ \frac{1}{g_m} \right\ $
BJT	C-B	$g_{\scriptscriptstyle m} R_{\scriptscriptstyle L}'$	$\frac{1}{g_m}$	$\left[1+g_{m}\left(r_{\pi}\left\ R_{th}\right)\right]r_{o}\right]$
MOSFET	C-G	$g_{\scriptscriptstyle m} R_{\scriptscriptstyle L}'$	$\frac{1}{g_m}$	$(1+g_mR_{th})r_o$

Current Gain

$$A_{i} = \frac{i_{o}}{i_{i}} = \frac{\frac{v_{o}}{R_{L}}}{\frac{v_{i}}{R_{I} + R_{in}}} = \frac{v_{o}}{v_{i}} \times \frac{R_{I} + R_{in}}{R_{L}} = A_{v} \times \frac{R_{I} + R_{in}}{R_{L}}$$