Aufgabe 1

Der natürliche Verbund (natural join) ist im Allgemeinen weder kommutativ (d.h. $R \bowtie S = S \bowtie R$ gilt nicht) noch assoziativ (d.h. $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$ gilt nicht). Beweisen Sie dies!

Musterlösung

Kommutativität: z. B.

- R mit Schema (A, B) und
- S mit Schema (B, C)

dann hat $R \bowtie S$ das Schema (B, A, C) und $S \bowtie R$ das Schema (B, C, A)

\mathbf{R}	
A	В
a	1
b	2

\mathbf{S}	
В	С
1	100
_2	200

R \triangleright	$\bowtie S$	
В	A	С
1	a	100
2	b	200

$S\bowtie R$		
В	С	A
1	100	a
2	200	b

Assoziativität: z. B.

- R mit Schema (A, B) und
- S mit Schema (B, C) und
- T mit Schema (C, D)

dann hat $(R \bowtie S) \bowtie T$ das Schema (C, B, A, D)

denn $R \bowtie S$ selektiert über B und hat das Schema (B, A, C) und $(R \bowtie S) \bowtie T$ selektiert über C

und $R \bowtie (S \bowtie T)$ das Schema (B, A, C, D) denn $S \bowtie T$ selektiert über C und hat das Schema (C, B, D) und $R \bowtie (S \bowtie T)$ selektiert über B

$$\begin{array}{c|c} R \\ \hline A & B \\ \hline a & 1 \\ b & 2 \\ \end{array}$$

$$\begin{array}{c|cc} R\bowtie S & \\ \hline B & A & C \\ \hline 1 & a & 100 \\ 2 & b & 200 \\ \end{array}$$

$$\begin{array}{c|cccc} (R \bowtie S) \bowtie T \\ \hline C & B & A & D \\ \hline 100 & 1 & a & h \\ 200 & 2 & b & k \\ \hline \end{array}$$

$$\begin{array}{c|ccc} S\bowtie T & & \\ \hline C & B & D \\ \hline 100 & 1 & h \\ 200 & 2 & k \\ \end{array}$$

$$\begin{array}{c|cccc} R \bowtie (S \bowtie T) & \\ \hline B & A & C & D \\ \hline 1 & a & 100 & h \\ 2 & b & 200 & k \\ \hline \end{array}$$

${\bf Aufgabe~2}$

Berechnen Sie die folgenden Ausdrücke auf den durch die Tabellen gegebenen Relationen! Geben Sie die Ergebnisrelationen wieder als Tabelle an.

\mathbf{X}	
A	В
a	d
b	d
b	e
_ c	f

\mathbf{Y}	
В	\mathbf{C}
d	3
e	1
-	2

${f Z}$		
$\overline{\mathbf{A}}$	В	$\overline{\mathbf{C}}$
a	d	2
b	e	1
\mathbf{c}	a	7
b	-	2
d	b	3
b	d	1
b	d	3

\mathbf{W}			
A	В	\mathbf{C}	D
a	d	3	d
b	d	-	d
\mathbf{c}	f	2	\mathbf{f}
b	e	3	d
b	e	2	\mathbf{f}
\mathbf{c}	f	3	d
b	d	2	\mathbf{f}
a	d	2	f

a)
$$Z \div Y$$

c)
$$W \div Y$$

b)
$$W \div X$$

d)
$$Y \bowtie X$$

Lösung

a)
$$\frac{Z \div Y}{A}$$

b)
$$W \div X$$
 C D 2 f

c)
$$W \div Y$$
 A D

$$\begin{array}{c|ccccc}
 & Y \bowtie X \\
\hline
 & B & C & A \\
\hline
 & d & 3 & a \\
 & d & 3 & b \\
 & e & 1 & b
\end{array}$$