DAQ data structure for the Muon g-2 experiment

Wes Gohn, Tim Gorringe, Kim Siang Khaw, David Sweigart November 30, 2016

Abstract

This document outlines the DAQ data structure of the Muon g-2 experiment. A detailed list of the MIDAS data bank will be shown and their contents will described.

1 MIDAS DAQ output in a nutshell

The main DAQ framework for the Muon g-2 experiment is based on MIDAS [cite]. Add MIDAS event structure description here and refer to Fig. 1.

Figure 1: MIDAS event structure.

2 MIDAS Bank list

Hundred of banks will be stored in each MIDAS event and it is very important to classify them properly. Add more descriptions here.

2.1 Calorimeter-related banks

There are 3 fill types for the calorimeter. Muon fill is the typical muon events, laser fill is event dedicated for laser calibration and monitoring events and pedestal fill is trivia from its name. Data from each fill type is identified from the bank name. The muon fill is denoted by "C", the laser fill is denoted by "L" and the pedestal fill is denoted by "P". A summary of the banks is listed in Tab. 1.

Table 1: MIDAS bank list for the calorimetry data.

	Bank nan	ne	Description						
muon fill	laser fill	pedestal fill	Description						
CA	LA	PA	AMC13 Header						
СВ	LB	PB	WFD5 header						
CC	LC	PC	GPU timing data						
CF	LF	PF	GPU fitted data						
СН	LH	PH	per-crystal Q-method data (N-th event, end of rur						
CL	LL	PL	Clock data						
CP	LP	PP	Pedestal						
CQ	LQ	PQ	per-calo Q-method data (every event)						
CR	LR	PR	WFD5 raw data						
CT	LT	PT	T-method islands						
CZ	LZ	PZ	AMC13 CDF trailers						

2.2 Auxiliary detector-related banks

A separate T/Q-method is needed for auxiliary detectors. Their data banks are denoted with the initial "K". A list of these banks are summarized in Tab. 2.

Table 2: MIDAS bank list for auxiliary T/Q data. This is mainly for the fiber harps, quads and kickers.

Bank name	Description
KH	Per aux. detector channel Q-method data (N-th event, end of run)
KQ	Per aux. detector Q-method data (every event)
KT	T-method data

2.3 CCC related banks

Table 3: MIDAS bank list for the CCC data.

TTCA	AMC13 Header
TTCR	CCC AMC13 Payload
TTCZ	AMC13 Trailer

3 Bank contents

This section details contents of each MIDAS bank.

CA (LA, PA) and CZ (LZ, PZ) banks

Figure 2: Data structure for AMC13 to DAQ. The first 2 64-bit words are stored in the CA (LA, PA) bank.

CB (LB, PB) banks

Figure 3: Data structure for Rider to AMC13.

CR (LR, PR) banks

This is the bank for the WFD5 payload.

C? (L?, P?) banks

This is the bank for the WFD5 payload in the asynchronous mode.

CT (LT, PT) banks

This place is reserved for T-method (chopped island) bank.

Figure 4: Data structure for Rider.

Figure 5: Data structure for asynchronous mode for Rider.

	3 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
AMC13 Header	0 0 0 0 AmcNo		Trig_Num[23:0]	Timestamp[43	:32]	Data_Length[19:0]						
AMC13 Header	User[12:0]	TT	Timesta	mp[31:0]		BT	Board_ID[12:0]					
FC7 Data		Laser_D	elay[31:0]	Trig_Delay[31:0]								
FC7 Data	FC7_Status[55:0] L12_Ports[7:0]											
AMC13 Trailer		CRC	[31:0]	Trig_Num[7:0]	0 0 0 0			Data_Length[19:0	0]			

Figure 6: Data structure for encoder FC7.

	63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																
AMC13 Header	0 0 0 0	0 0 0 AmcNo Trig_Num[23:0]							Timestamp[43:32]				Data_Length[19:0]				
AMC13 Header	ı	User[12:0]		TT Timesta						amp[31:0] BT				Board_ID[12:0]			
FC7 Data	Laser_Delay[31:0]									Trig_Delay[31:0]							
FC7 Data	FC7_Status[47:0]													L8_Ports[7:0]		L12_Ports[7:0]	
FC7 Data	TTS16	TTS15	TTS14	TTS13	TTS12	TTS11	TTS10	TTS9	TTS8	TTS7	TTS6	TTS5	TTS4	TTS3	TTS2	TTS1	
AMC13 Trailer	CRC[31:0]							Trig_No	um[7:0]	0 0 0 0	Data_Length[19:0]						

Figure 7: Data structure for fanout FC7.

TTCA, TTCR, TTCZ banks

4 C++ Parser

Muon g-2 offline analysis framework relies on parsers in the gm2parser name space hosted under repository gm2unpacker to decode the data.