WSZYSTKO Z FUNKCJI

Marcin Benke Dni Otwarte Kampusu Ochota, 18.04.2015

10101010

- · "wszyscy wiedzą", że komputery to zera i jedynki
- · znamy maszynę Turinga

... ale skąd się wzięła?

1

PROBLEM ROZSTRZYGANIA (DAS ENTSCHEIDUNGSPROBLEM)

W XVII wieku konstruowano maszyny liczące (np. Leibniz).

Ale czy da się skonstruować "maszynę myślącą"?

Hilbert, 1928

Czy istnieje algorytm, który potrafi rozstrzygać czy dana formuła logiczna jest prawdziwa?

Żeby wykazać, że nie, trzeba skonstruować model obliczeń, który obejmie wszelkie możliwe algorytmy.

MODELE OBLICZEŃ

Turing: maszyna z nieskończoną taśmą i regułami działania

$$\delta(q_0, 0) = (q_0, 1, R)$$

$$\delta(q_0, 1) = (q_1, 0, R)$$

Church: funkcje

$$\lambda f.(\lambda x.f(xx)(\lambda x.f(xx)))$$

FUNKCJE

- $f(x) = x^2$
- $g(x) = x^2$
- · funkcja f.. funkcja g.. funkcja x²
- · funkcja ax^2 ?
- · jako funkcja x: $\lambda x.ax^2$
- · jako funkcja a: λa.ax²

RACHUNEK LAMBDA

... i jedna reguła obliczenia: $(\lambda x.M)N \rightsquigarrow M[N/x]$

Pozwala obliczyć dokładnie to samo co maszyna Turinga.

FUNKCJE WIELOARGUMENTOWE

Funkcję f(x, y) reprezentujemy jako funkcję g argumentu x, która daje w wyniku funkcję argumentu y tak aby

$$g(x)(y) = f(x, y)$$

na przykład

 $\lambda f \lambda x. f x$ — zastosowanie funkcji do argumentu

 $\lambda f \lambda g \lambda x. f(gx)$ — złożenie funkcji f i g

Tekstowo λ zapisujemy jako \setminus , np. $\setminus x \cdot x$

KODOWANIE

Chcemy mieć true, false, if tak, żeby

- · if true tak nie \rightsquigarrow tak
- · if false tak nie \leadsto nie

KODOWANIE

Chcemy mieć true, false, if tak, żeby

- · if true tak nie → tak
- · if false tak nie → nie

true =
$$\x y$$
. x false = $\x y$. y

true
$$x y = x$$

true $x y = y$

KODOWANIE

Chcemy mieć true, false, if tak, żeby

- · if true tak nie → tak
- · if false tak nie → nie

true =
$$\x y$$
. x false = $\x y$. y

true
$$x y = x$$

true $x y = y$

if
$$b t e = b t e$$

KALKULATOR

http://benke.org/doko

ĆWICZENIE 1

Zdefiniuj not tak, żeby

not true = false
not false = true

ĆWICZENIE 1

Zdefiniuj not tak, żeby

not true = false not false = true

not = \b. b false true

ĆWICZENIE 2: PARY

```
fst (pair x y) = x
snd (pair x y) = y
```

ĆWICZENIE 2: PARY

```
fst (pair x y) = x
snd (pair x y) = y

pair = \x\y\z.z x y
fst = \p.p true
snd = \p.p false
```

Pomysł:

$$n\,f\,x=f^n(x)$$

```
Pomysł:
```

$$n f x = f^n(x)$$

 $zero = \f x.x$
 $one = \f x.f x$
 $two = \f x.f(f x)$
Jak zdefiniować funkcję następnika: $succ x = x+1$?

```
Pomysł:
n f x = f^n(x)
zero = \f x.x
one = \f x.f x
two = \f x.f(f x)
Jak zdefiniować funkcję następnika: succ x = x+1?
succ: f^n(x) \mapsto f(f^n(x))
```

```
Pomysł:
n f x = f^n(x)
zero = \f x.x
one = \f x.f x
two = \f x.f(f x)
Jak zdefiniować funkcję następnika: succ x = x+1?
succ: f^n(x) \mapsto f(f^n(x))
succ = \n f x. f(n f x)
```

ĆWICZENIE 3 - ARYTMETYKA

Dodawanie

```
succ two l o = l(l(l o))
add three two l o = l(l(l(l(l o))))
```

ĆWICZENIE 3 - ARYTMETYKA

Dodawanie

```
succ two l o = l(l(l o))
add three two l o = l(l(l(l(l o))))
add m n = m succ n
add = \m\n\f\x.m f (m f (n f x))
```

mul three two = 1(1(1(1(1(1 0)))))

Mnożenie

Idea:

```
(f^n)^m(x) = f^{m*n}(x)
```

ĆWICZENIE 3 - ARYTMETYKA

Dodawanie

```
succ two l o = l(l(l o))
add three two l o = l(l(l(l(l o))))
add m n = m succ n
add = \m\n\f\x.m f (m f (n f x))
```

mul three two = 1(1(1(1(1(1 0)))))

Mnożenie

Idea:

```
(f^n)^m(x) = f^{m*n}(x)
```

PROSTA REKURENCJA

```
f(0) = c
f(n + 1) = h(n, f(n))
Stworzymy ciąg par (0, a_0), (1, a_1), ..., (n, a_n) taki, że
a_0 = c; a_{i+1} = h(a_i); f(n) = snd(a_n)
init = pair zero c
step = \protect\ p. pair (succ(fst p)) (h p)
f = \n. snd(n step init)
```

POPRZEDNIK

$$pred(0) = 0$$

$$pred(n+1) = h(n, f(n))$$

$$h(x,y) = x$$

POPRZEDNIK

```
pred(0) = 0

pred(n+1) = h(n,f(n))

h(x,y) = x

init = pair zero zero

step = \x. pair (succ (fst x)) (fst x)

pred = \n. snd (n step init)
```

Odejmowanie

sub n m = m pred n

LISTY

```
nil = pair true true
isnil = fst
cons h t = pair false (pair h t)
```

Ćwiczenie: napisz funkcje dające głowę i ogon listy

```
nil = pair true true
isnil = fst
cons h t = pair false (pair h t)

Ćwiczenie: napisz funkcje dające głowę i ogon listy
head = \z.fst(snd z)
tail = \z.snd(snd z)
```

DODATKI

```
exp = \mbox{m n. n m}
```

Listy inaczej

```
nil = false
cons = pair
head = fst
```

PODSTAWIENIE

```
(\lambda x.M)N \rightsquigarrow M[N/x]
M[N/x] oznacza "M z N wstawionym zamiast x"
x[N/x] = N
y[N/x] = y (\text{gdy } x \neq y)
(M_1(M_2))[N/x] = M_1[N/x]
(\lambda y.M)[N/x] = \lambda y.(M[N/x]) (\text{gdy y nie występuje w N}).
```

TECHNIKALIA

Zakładamy, że wszystkie zmienne mają różne nazwy

Możemy to zawsze zapewnic odpowiednio zmnieniając nazwy:

 $\lambda y.M$ jest równowazne $\lambda z.M[z/y]$

Tekstowo piszemy $\xspace \xspace \xs$

opuszczamy nawiasy tam gdzie niepotrzebne, MNP oznacza (MN)P