GIBBS Phase Rule

$$P+F=C+N$$

P is the number of phases present

F is the externally controlled variables (e.g., temperature, pressure, composition)

C is the number of components in the system.

N is number of noncom positional variables (e.g., temperature and pressure).

Because pressure is constant (1 atm)

N = 1 (Temperature is the only noncompositional variable)

Number of components C is 2

$$P + F = 2 + 1 = 3$$
 $F = 3 - P$

For binary systems, when three phases are present, there are no degrees of freedom because

$$F = 3 - P$$
$$= 3 - 3 = 0$$

Concept Question 1 For a ternary system, three components are present; temperature is also a variable. What is the maximum number of phases that may be present for a ternary system, assuming that pressure is held constant?

Answer: For a ternary system (C = 3) at constant pressure (N = 1), Gibbs phase rule,

$$P + F = C + N = 3 + 1 = 4$$

Or,

$$P = 4 - F$$

Thus, when F = 0, P will have its maximum value of 4, which means that the maximum number of phases present for this situation is 4.

Classification of Ferrous and Non ferrous Alloys

Taxonomy of Metals

Based on data provided in Tables 11.1(b), 11.2(b), 11.3, and 11.4, Callister 7e.

Ferrous Alloys

Iron containing – Steels - cast irons

```
Nomenclature AISI & SAE
         Plain Carbon Steels
  10xx
         Plain Carbon Steels (resulfurized for machinability)
  11xx
         Mn (10 ~ 20%)
  15xx
         Mo (0.20 ~ 0.30%)
  40xx
         Ni (1.65 - 2.00%), Cr (0.4 - 0.90%), Mo (0.2 - 0.3%)
  43xx
         Mo (0.5%)
  44xx
where xx is wt% C x 100
  example: 1060 steel – plain carbon steel with 0.60 wt% C
Stainless Steel -- >11% Cr
```

Cast Iron

- Ferrous alloys with > 2.1 wt% C
 - more commonly 3 4.5 wt%C
- low melting (also brittle) so easiest to cast
- Cementite decomposes to ferrite + graphite $Fe_3C \rightarrow 3 Fe(\alpha) + C \text{ (graphite)}$
 - generally a slow process

Fe-C True Equilibrium Diagram

Graphite formation promoted by

- Si > 1 wt%
- slow cooling

Adapted from Fig. 11.2, *Callister 7e.* (Fig. 11.2 adapted from *Binary Alloy Phase Diagrams*, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

Types of Cast Iron

Gray iron

- 2-4% C, 1-3% Si
- graphite flakes
- weak & brittle under tension
- stronger under compression
- excellent vibrational dampening
- wear resistant
- Least expensive

Ductile iron

- add Mg or Ce
- graphite in nodules not flakes
- matrix often pearlite better ductility
- Stronger and more ductile than gray iron

Adapted from Fig. 11.3(a) & (b), Callister 7e.

Types of Cast Iron

White iron

- <1wt% Si and faster cooling rate
- so harder but brittle
- unmachinable
- more cementite
- Rollers in mills

Malleable iron

- heat treat white iron at 800-900°C
- graphite in rosettes
- Strong and ductile
- Automobile industry

White iron: the light cementite regions are surrounded by pearlite, which has the ferrite cementite layered structure.

Limitations of Ferrous Alloys

- 1) Relatively high density
- 2) Relatively low conductivity
- 3) Poor corrosion resistance

Nonferrous Alloys

Cu Alloys Al Alloys -lower ρ : 2.7g/cm³ Brass: Zn is subst. impurity (costume jewelry, coins, -Cu, Mg, Si, Mn, Zn additions corrosion resistant) -solid sol. or precip. Bronze: Sn, Al, Si, Ni are strengthened (struct. subst. impurity aircraft parts (bushings, landing & packaging) gear) NonFerrous Mg Alloys Cu-Be: -very low ρ : 1.7g/cm³ Alloys precip. hardened -ignites easily for strength -aircraft, missiles Ti Alloys Refractory metals -lower ρ : 4.5g/cm³ -high melting T vs 7.9 for steel Noble metals -Nb, Mo, W, Ta -Ag, Au, Pt -reactive at high *T* -oxid./corr. resistant -space applic.