More notes on Mellit, "Poincaré Polynomials...", refining 2302_06.

4.1. Fix a field **F**, which we will eventually take to be \mathbf{F}_q . Fix an integer n > 0. Let $G = \mathrm{GL}_n$ and $\mathfrak{g} = \mathfrak{gl}_n$ over **F**. Let \mathscr{N} be the nilpotent cone in \mathfrak{g} .

Let $F = \mathbf{F}((z))$ and $\mathscr{O} = \mathbf{F}[[z]]$. Let $\mathscr{V} \subseteq \mathscr{N}(F)^2$ be the set of pairs (η, θ) such that η and θ are conjugate under G(F). Let $\mathscr{T} \subseteq \mathscr{N}(F)^2 \times G(F)$ be the set of triples (η, θ, g) such that $\eta = g\theta g^{-1}$. Forgetting g defines a map $\mathscr{T} \to \mathscr{V}$.

4.2. There is an action of $G(F)^2$ on $\mathscr V$ by conjugation in each entry. This lifts to an action on $\mathscr T$ defined by

$$(x, y) \cdot (\eta, \theta, g) = (x\eta x^{-1}, y\theta y^{-1}, xgy^{-1}).$$

For all η , let $\mathscr{V}_{\eta} \subseteq \mathscr{N}(F)$ be the fiber of \mathscr{V} over η . For all θ , let $\mathscr{T}_{\eta,\theta} \subseteq G(F)$ be the fiber of \mathscr{T} over (η,θ) .

Let $G(F)_{\eta}$ and $G(F)_{\theta}$ be the respective stabilizers of η and θ under conjugation by G(F). Then the action of $G(F)^2$ on \mathscr{T} induces an action of $G(F)_{\eta} \times G(F)_{\theta}$ on $\mathscr{T}_{\eta,\theta}$. The resulting actions of $G(F)_{\eta} \times 1$ and $1 \times G(F)_{\theta}$ on $\mathscr{T}_{\eta,\theta}$ are simply transitive.

4.3. Let $\mathcal{V}^{\mathcal{O}} \subseteq \mathcal{V}$ and $\mathcal{T}^{\mathcal{O}} \subseteq \mathcal{T}$ be the subsets where $\eta, \theta \in \mathcal{N}(\mathcal{O})$.

Given $(\eta, \theta, g) \in \mathcal{F}^{\theta}$, we say that g is θ -kernel-strict and g^{-1} is η -kernel strict if and only if any of the following equivalent conditions hold:

- $g : \ker(\theta) \xrightarrow{\sim} \ker(\eta)$ restricts to a bijection $\ker(\theta) \cap \mathscr{O}^n \xrightarrow{\sim} \ker(\eta) \cap \mathscr{O}^n$.
- $g^{-1}: \ker(\eta) \xrightarrow{\sim} \ker(\theta)$ restricts to a bijection $\ker(\eta) \cap \mathcal{O}^n \xrightarrow{\sim} \ker(\theta) \cap \mathcal{O}^n$.
- $\ker(\theta) \cap \mathcal{O}^n = \ker(\theta) \cap g^{-1} \mathcal{O}^n$ as subsets of F^n .
- $\ker(\eta) \cap \mathcal{O}^n = \ker(\theta) \cap g\mathcal{O}^n$ as subsets of F^n .

Let $\mathscr{T}^{ks} \subseteq \mathscr{T}^{\mathscr{O}}$ be the subset of triples (η, θ, g) in which g is θ -kernel-strict. The action of $G(F)^2$ on \mathscr{T} restricts to an action of $G(\mathscr{O})^2$ on $\mathscr{T}^{\mathscr{O}}$ that preserves \mathscr{T}^{ks} . Let $\mathscr{T}^{ks}_{n,\theta} = \mathscr{T}_{\eta,\theta} \cap \mathscr{T}^{ks}$.

Let J_{η} and J_{θ} be the respective stabilizers of η and θ under conjugation by $G(\mathcal{O})$. Then the action of $G(F)_{\eta} \times G(F)_{\theta}$ on $\mathcal{T}_{\eta,\theta}$ restricts to an action of $J_{\eta} \times J_{\theta}$ on $\mathcal{T}_{\eta,\theta}^{ks}$. Unlike before, the resulting actions of $J_{\eta} \times 1$ and $1 \times J_{\theta}$ on $\mathcal{T}_{\eta,\theta}^{ks}$ are usually not simply transitive.

- 4.4. Let $G(F) = \coprod_{d \in \mathbb{Z}} G(F)^{(d)}$ be the decomposition in which $G(F)^{(d)}$ is the subset of elements whose determinant has *z*-valuation *d*. What follows is Lemma 3.7 in [M20]:
- **Lemma 4.1** (Mellit). Let $(\eta, \theta) \in \mathcal{V}^{\mathcal{O}}$. Suppose that $\eta \in \mathcal{N}(\mathbf{F})$. Then there is an integer $d_{\eta,\theta}$ such that $\mathcal{T}^{\mathrm{ks}}_{\eta,\theta} \subseteq G(F)^{(d_{\eta,\theta})}$. (By construction, it only depends on θ up to conjugation by $G(\mathcal{O})$.) Moreover, $d_{\eta,\theta}$ is nonnegative.
- 4.5. Let $\mathscr{T}_{\eta,\theta}^{\mathrm{ks,max}} \subseteq \mathscr{T}_{\eta,\theta}^{\mathrm{ks}}$ be the subset of elements g such that the most negative z-valuation among the matrix entries of g is the most positive that it can be.

The groups J_{η} , J_{θ} are commeasurable in the following sense, adapted from Proposition 3.12 and Remark 3.14 of [M20].

Lemma 4.2 (Mellit). Let $(\eta, \theta) \in \mathscr{V}^{\mathcal{O}}$. Suppose that $\eta \in \mathscr{N}(\mathbf{F})$. Then for any double coset $J_{\eta}gJ_{\theta} \subseteq \mathscr{T}^{\mathrm{ks}}_{\eta,\theta}$ with $g \in \mathscr{T}^{\mathrm{ks,max}}_{\eta,\theta}$, the sets

$$J_{\eta} \setminus J_{\eta} g J_{\theta} \subseteq G(\mathscr{O}) \setminus G(F)^{(d_{\eta,\theta})}$$
 and $J_{\eta} g J_{\theta} / J_{\theta} \subseteq G(F)^{(d_{\eta,\theta})} / G(\mathscr{O})$

are bounded (e.g., in the Schubert stratification). If $\mathbf{F} = \mathbf{F}_q$, then the ratio of point counts

$$\operatorname{wt}_{\eta,\theta}(q) \coloneqq \frac{|J_{\eta}gJ_{\theta}/J_{\theta}|}{|J_{\eta}\backslash J_{\eta}gJ_{\theta}|}$$

is independent of g. (Again, this number only depends on θ up to conjugation by $G(\mathcal{O})$.)

4.6. For all $\mu \vdash n$, let $K_{\mu} \subseteq G(\mathscr{O})$ be the standard parahoric of type μ . Then $\mathscr{B}_{\mu} := G(\mathscr{O})/K_{\mu}$ is the usual partial flag variety of type μ .

For another $\lambda \vdash n$, let $\eta_{\lambda} \in \mathcal{N}(\mathbf{F}_q)$ be of Jordan type λ . Mellit introduces

$$C_{\lambda,\mu,q}(t) = \sum_{[\theta] \in \mathcal{V}_{\eta_{\lambda}}^{\theta}/G(\mathcal{O})} t^{d_{\eta_{\lambda},\theta}} \operatorname{wt}_{\eta_{\lambda},\theta}(q) |\mathcal{B}_{\mu}^{\theta}(\mathbf{F}_{q})|,$$

where $\mathscr{B}_{\mu}^{\theta} \subseteq \mathscr{B}_{\mu}$ is the Springer fiber for θ . After correction, his Theorem 5.15 is:

Theorem 4.3 (Mellit). *For all* λ , $\mu \vdash n$, *we have*

$$\begin{split} C_{\lambda,\mu,q}(t) &= \frac{\langle h_{\mu}, \tilde{H}_{\lambda^{l}}(q,t) \rangle}{\prod_{\substack{\square \in \lambda^{l} \\ l(\square) \neq 0}} (1 - t^{l(\square)} q^{-a(\square) - 1})} \\ &= \frac{\langle h_{\mu}, \tilde{H}_{\lambda}(t,q) \rangle}{\prod_{\substack{\square \in \lambda \\ q(\square) \neq 0}} (1 - t^{a(\square)} q^{-l(\square) - 1})}, \end{split}$$

where, on the right-hand side, we implicitly specialize q to the prime power $|\mathbf{F}_q|$.

Example 4.4. Taking $\lambda = (1^n)$, so that $\eta_{\lambda} = 0$, the identity becomes

$$C_{1^n,\mu,q}(t) = |\mathscr{B}_{\mu}(\mathbf{F}_q)| = \langle h_{\mu}, \tilde{H}_{1^n}(t,q) \rangle.$$

Note that above, each expression is a polynomial in q alone.

Example 4.5. Taking t = 0, we find that the Macdonald expression becomes

$$\langle h_{\mu}, \tilde{H}_{\mu}(0,q) \rangle = |\mathcal{B}^{\eta_{\lambda}}_{\mu}(q)|.$$

So in this limit, the identity becomes $C_{\lambda,\mu,q}(0)=|\mathscr{B}^{\eta_{\lambda}}_{\mu}(q)|$. This, in turn, is equivalent to the claim that any element $\theta\in\mathscr{V}^{\mathscr{O}}_{\eta_{\lambda}}$ with $d_{\eta_{\lambda},\theta}=0$ is already conjugate to η_{λ} under $G(\mathscr{O})$. These statements generalize the previous example.

Example 4.6. Take n = 2 and $\lambda = (2)$. For all integers $i \ge 0$, let

$$g_i = \begin{pmatrix} 1 & \\ & \varpi^i \end{pmatrix} \in G(F), \quad \theta_i = \begin{pmatrix} 0 & \varpi^i \\ & 0 \end{pmatrix} \in \mathcal{N}(\mathcal{O}).$$

Then $g_i^{-1}\eta g_i = \theta_i$, and in fact, the θ_i form a full set of representatives for the adjoint action of $G(\mathcal{O})$ on \mathcal{V}^{η} . Note that

$$G(F)_{\eta} = G(F)_{\theta_i} = \left\{ \begin{pmatrix} 1 & F \\ & 1 \end{pmatrix} \right\},$$

from which $J_{\eta} = J_{\theta_i} = \left\{ \begin{pmatrix} 1 & \mathscr{O} \\ & 1 \end{pmatrix} \right\}$. We compute:

$$\begin{split} \mathscr{T}_{\eta,\theta_i} &= \mathscr{T}^{\mathrm{ks}}_{\eta,\theta_i} = G(F)_{\eta} g_i = g_i G(F)_{\theta_i} = \left\{ \begin{pmatrix} 1 & F \\ & \varpi^i \end{pmatrix} \right\} \subseteq G(F)_i^{\geq i}, \\ \mathscr{T}^{\mathrm{ks,max}}_{\eta,\theta_i} &= \left\{ \begin{pmatrix} 1 & \varpi^i \mathscr{O} \\ & \varpi^i \end{pmatrix} \right\}. \end{split}$$

The latter display shows that for any $g \in \mathscr{T}^{\mathrm{ks,max}}_{\eta,\theta_i}$, we have

$$J_{\eta}gJ_{\theta_{i}} = \left\{ \begin{pmatrix} 1 & \mathcal{O} \\ & \varpi^{i} \end{pmatrix} \right\},$$
$$J_{\eta}gJ_{\theta_{i}}/J_{\theta_{i}} \simeq pt,$$
$$J_{\eta}\backslash J_{\eta}gJ_{\theta_{i}} \simeq \mathbf{F}^{i}.$$

We deduce that $d_{\eta,\theta_i}=i$ and $\operatorname{wt}_{\eta,\theta_i}(q)=q^{-i}$. Altogether,

$$C_{\lambda,\mu,q}(t) = 1 + \left(\sum_{i \ge 1} t^i q^{-i}\right) |\mathcal{B}_{\mu}(\mathbf{F}_q)| = 1 + \frac{tq^{-1}}{1 - tq^{-1}} \cdot \begin{cases} 1 & \mu = (2), \\ 1 + q & \mu = (1^2) \end{cases}$$
$$= \frac{1}{1 - tq^{-1}} \cdot \begin{cases} 1 & \mu = (2), \\ 1 + t & \mu = (1^2). \end{cases}$$