Definition and Examples

Note 1

9080791fc8754b0bb88c381c10acbdfc

Let G be a group. If $\{c2\pi H \text{ is a subgroup of } G\}$ we shall write $\{c1\pi H \text{ is a subgroup of } G\}$

 $H \leq G$.

}}

Note 2

6e7f23728af4c9d8839d172e59d716a

Let G be a group and $H \leq G$. We shall denote the operation for H by (call the same symbol as the operation for G.)

Note 3

e76ada2ee6da4b5fb71966e9f7ce3de

Let G be a group. If $\{c2\pi H \leq G \text{ and } H \neq G\}$ we shall write $\{c1\pi H < G_n\}$

Note 4

1d28c11c52c84bd0b639505598bb1dce

If H is a subgroup of G then any equation in the subgroup H may also be viewed as $\{(c)\}$ an equation in the group G.

Note 5

8f5b765961884460823141645b5ea08b

Let G be a group and $H \leq G$. What is the identity of H?

The identity of G.

Note 6

7c122a5400f64eba9a76438c1ff296ee

Let G be a group and $H \leq G$. The identity of H is the identity of G. What is the key idea in the proof?

The identity is unique and it is the identity of G.

Note 7

3cha804764h43e2haf282ffee513694

Let G be a group. What is the minimal subgroup of G?

The singleton $\{1\}$.

Note 8

d40df9f46a6b43ecb3fea9b5b37e5b1c

Let G be a group. What is the element that any subgroup of G must contain?

The identity of G.

Note 9

bc95ad6358814213a6fff2eb0cfd544b

Let G be a group and $H \leq G$. What is the inverse of an element x in H?

I The inverse of x in G.

Note 10

be9f1756cf3449e8a6718069fd4aedf

Let G be a group and $H \leq G$. Why is the notation x^{-1} unambiguous?

In the inverse in H is the same as the inverse in G.

Note 11

8aabd93df8a5437eb3e50c3e0d438381

Let G be a group. (c2::The subgroup $\{1\}$ of G) is called (c1::the trivial subgroup.)

Note 12

eb859714e1f34f4db3dc35755f562945

Let G be a group. ([c2::The trivial subgroup]) is denoted by ([c1::1.])

Note 13

74ab3ceb9a36420fb53dc2b3a22eb5f2

Which subgroups does any group have?

The trivial subgroup and the group itself.

Note 14

5683ff4198a74e9d988f501c925d85ad

If H is a subgroup of G and K is a subgroup of H, then $\mathrm{GL}_H K$ is a subgroup of G.

Which object is considered in the Subgroup Criterion?

Any subset of a group.

Note 16

340038893a3642a18c3e43c4e89aed15

What are the conditions of the Subgroup Criterion?

The subset is nonempty and closed under $(x, y) \mapsto x \cdot y^{-1}$.

Note 17

71291d04ca2941fca2fc08759d8fd302

What is the special case considered in the Subgroup Criterion?

The subset is finite.

Note 18

a1e69be09e78402d989b3805b3dfc54f

What are the conditions of the Subgroup Criterion for a finite subset?

The subset is nonempty and closed under the operation.

Note 19

5bcd55a73e184bcd9bcc32f1ee47da2e

What is the key idea in the proof of the Subgroup Criterion for a finite subset?

Any element's inverse is it's n-th power.

Note 20

0e1ccaae016c4900ac96b733fb9e1764

Why is the set of 2-cycles in S_n not a subgroup of S_n ?

It does not contain the identity.

Note 21

587390d0450f4681a66bcbc8c0d5889c

Why is the set of reflection in D_{2n} not a subgroup of D_{2n} ?

It does not contain the identity.

Note 22

fc87d2283cb546708502ce325e326258

Why is the set of reflection in D_{2n} together with 1 not a subgroup of D_{2n} ?

I Two distinct reflections induce a rotation.

Note 23

24b90e714649459ba38e6b40f07f6b2a

Is $\{1, r^2, s, sr^2\}$ a subgroup of D_8 ?

Yes.

Note 24

eac99978715a4ec894h296f8e1ee52f3

Is $\{1, r, s, sr\}$ a subgroup of D_8 ?

No.

Note 25

64ea968bdce94647b6fb2c351a60f2a2

Is $\{1, r^2, sr, sr^3\}$ a subgroup of D_8 ?

Yes.

Note 26

678b87f890ac4d8da5be6a78cb619358

Is $\{1, r, r^2\}$ a subgroup of D_8 ?

No.

Note 27

e036f3cc7667461b98e50e94ff3a8c80

Is $\{1, r, r^2, r^3\}$ a subgroup of D_8 ?

Yes.

Note 28

209944ca7a524af3be44b398de974c2d

Give an example of a group and its infinite subset that is closed under the operations, but is not a subgroup of the original group.

Positive integers under addition.

Note 29

547363a46106478187c20c5cbb868461

For what groups is the notion of the torsion subgroup introduced?

For abelian groups.

Note 30

d29b9ffdb46c4c909fbfb2a438abb0a0

What is the torsion subgroup of an abelian group?

The set of all the elements of a finite order.

Note 31

b2a854579339471d8ae41776f1661f29

Let G be an abelian group. What is the name of the set

$$\{g \in G : |g| < \infty\}?$$

The torsion subgroup of G.

Note 32

a685e6476b94b9eac539a17441574ef

Why is the notion of the torsion subgroup introduced only for abelian groups?

For non-abelian groups the set is not guaranteed to form a subgroup.

Note 33

22a771a961c3498f88a030fabf778797

Give an example of a non-abelian group, who's "torsion subgroup" is not actually a subgroup.

 $GL_3(\mathbb{R})$

Note 34

f4edb9436c094103b0b9b82019185296

Give an example of two elements a, b in $GL_3(\mathbb{R})$ such that

$$|a|, |b| < \infty$$
 and $|ab| = \infty$.

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix} .$$

Note 35

2c41a74f8a04bh892b471915e533055

What is the torsion subgroup of $\mathbb{Z} \times (\mathbb{Z}/n\mathbb{Z})$?

The set of elements who's first component is 0.

Note 36

Ldf6h5997d30483fh469565c89630322

When is the union of two subgroups also a subgroup?

If and only if one of the subgroups is a subset of the other.

Note 37

b523dcaec101461e902f34191451e11

When is the union of an infinite number of subgroups also a subgroup?

It depends.

Note 38

60129b39ceab4468915a6d2237915c1a

Let H and K be subgroups of G and $H \subseteq K$. What do we know about $H \cup K$?

It is a subgroup of G.

Note 39

791301f78ecf4800a13e3a0299c57028

Let H and K be subgroups of G. If $H \cup K$ is a subgroup of G, then $H \subseteq K$ or $K \subseteq H$. What is the key idea in the proof?

By contradiction.

Note 40

cc8decdf60194667b3b27ff0941c9fc0

What is the special linear group?

The set of square matrices who's determinant is 1.

Note 41

1e420dd97e1942b3b7bc70d71fc0953e

The special linear group of n imes n matrices over a field $F_{\mathbb{N}}$ is denoted (ichief $SL_n(F)$.)

Note 42

941aeeb281da4b009ffdc95864eddb3b

When is the intersection of two subgroups also a subgroup?

Always.

Note 43

887cf7600d994fcd9662e35fc9719c62

When is the intersection of an infinite number of subgroups also a subgroup?

Always.

Note 44

3bdd7a0f0e044c6b9c3c1811d4478f10

Let $H_1 \leq H_2 \leq \cdots$ be an ascending chain of subgroups of G. Then $\bigcup_{i=1}^{\infty} H_i$ is a subgroup of G.

Centralizers and Normalizers, Stabilizers and Kernels

Note 1

3de251693e74655a5752529379e7081

For what do we define centralizers in groups?

For nonempty subsets of the group.

Note 2

h46233e067ea4c24h38af57081ef1dh3

Let G be a group and A be a nonempty subset of G. (class The set

$$\left\{g \in G \mid gag^{-1} = a \text{ for all } a \in A\right\}$$

is called **c2: the centralizer of A in G.

Note 3

3c2adb104b55494a8a248b4e6cf72980

Let G be a group and A be a nonempty subset of G. Recall the centralizer of A in G_{\parallel} is denoted Recall that

$$C_G(A)$$
.

33

Note 4

aeea9d02d1a8429ab94927313c1e2194

How can centralizers be redefined in terms of commutativity?

As the set of all the elements that commute with every element of the subset.

Note 5

ae3968a709ba423b91c84596e63977c7

How do we call the set of elements of a group G that commute with every element of a given subset A of G?

• The centralizer of A in G.

Note 6

588fd51b4281485c87a74faa9ddbf8f5

Let G be a group and A be a nonempty subset of G. The centralizer of A in G forms (c.): a subgroup of G.)

Let G be a group and A be a nonempty subset of G. When is the centralizer of A in G a subgroup of G?

Always.

Note 8

23eee6bafc20447987eaab729108324e

Let G be a group and A be a nonempty subset of G. In the special case when $A=\{a\}$ we shall write (consimply $C_G(a)$) instead of ((constant)).

Note 9

92e1f52031224232bf8ac69f4014862c

Let G be a group and $a \in G$. Then

$$\{\{\mathrm{cl}: \langle a \rangle\}\} \subseteq C_G(a)$$
 .

Note 10

656f69d38b7e4f41882f7feda5410dde

$$C_{Q_8}(i) = \{\{1, -1, i, -i\} .\}$$

Note 11

1fd69e94ef324e30a0054ea4860105e4

$$C_{Q_8}(1) = \{\{c1: Q_8.\}\}$$

Note 12

ec04d8a609e442690da0ee9332a9647

For what do we define centers in groups?

For the group itself.

Note 13

936431cf3df24996965ce022800fa1bc

Let G be a group. (C2) The set of elements of G commuting with all elements of G is called (C1) the center of G.

Let G be a group. {{c2::} The center of G} is denoted {{c1::} Z(G).}

Note 15

b7d3c0377db64825b9428611799a938c

Let G be a group. The center of G forms (case a subgroup of G.)

Note 16

c3e0bd81b194850bbeed0d6688646ea

Let G be a group. When is the center of G a subgroup of G?

Always.

Note 17

10b56b05fab34d6a91d494a9c515f2a

Let G be a group. ([c2::The center of G]) is the centralizer of ([c1::G in G.)

Note 18

4c598c0713ef4d649fe3629dfcd8a0c7

For what do we define normalizers in groups?

For nonempty subsets.

Note 19

ea05e39de520479892867fd132778337

Let G be a group and A be a nonempty subset of G. (call the set

$$\left\{g \in G \mid gAg^{-1} = A\right\}$$

) is called (c1) the normalizer of A in G.

Note 20

c4b4c4424c6549c6b9afccb2945d17ee

Let G be a group and A be a nonempty subset of G. We have the normalizer of A in G is denoted we have

$$N_G(A)$$
.

Let G be a group and A be a nonempty subset of G. The normalizer of A in G forms (c) a subgroup of G.)

Note 22

b536e255fed54b02a1036b9baf6a7dc6

Let G be a group and A be a nonempty subset of G. When is the normalizer of A in G a subgroup of G?

Always.

Note 23

2f5272d0d29344f79fee3fe3bc9cd61l

Let G be a group. How do $N_G(A)$ and $C_G(A)$ relate for an arbitrary nonempty subset A of G?

 $C_G(A) \leq N_G(A)$.

Note 24

18e1e07cc3434babbe772c427d74c950

Let G be a group. How do Z(G) and $C_G(A)$ relate for an arbitrary nonempty subset A of G?

 $Z(G) \leq C_G(A)$.

Note 25

3a6dffba1da649fdb21855ef88b93490

How do Z(G) and $N_G(A)$ relate for an arbitrary nonempty subset A of G?

 $Z(G) \leq N_G(A)$.

Note 26

730b6cdac2414954adf98bd2792c58c2

What is the smallest possible centralizer in a group?

The center of the group.

Let G be a group. Then

$$C_G(\{\{c2::G\}\}) = \{\{c1::Z(G).\}\}$$

Note 28

552be3f0d86c4b46930159c7dc731d54

What is the largest possible centralizer in a group?

The group itself.

Note 29

eaee66528de84c1f8c9fad762b3a644

Let G be a group. Then

$$C_G(\{\{c2::1\}\}) = \{\{c1::G.\}\}$$

Note 30

b2cf1d78fcb14ecf8264f750afafece2

Let G be group. Then Z(G)=G (C2: if and only if) (C1: G is abelian.

Note 31

0ce2f162b9d4f76b662613ffba40ced

Let G be an abelian group and A be a nonempty subset of G. Then

$$C_G(A) = \{\{c1::G.\}\}$$

Note 32

cfaa88a96e604867bcd19b10b115de3e

Let G be an abelian group and A be a nonempty subset of G. Then

$$N_G(A) = \{\{\mathrm{cl}: G.\}\}$$

$$C_{D_8}\left(\left\{1,r,r^2,r^3
ight\}
ight)=\{cir\left\{1,r,r^2,r^3
ight\}.\}$$

Note 34

o19776816d5e4309b70ee8d73e045e52

$$N_{D_8}\left(\left\{1,r,r^2,r^3
ight\}
ight)=\{\{c1::D_8.\}\}$$

Note 35

d850d1653ce94d3780dcbb94b6080430

How do you show that $N_{D_8}(\{1, r, r^2, r^3\}) = D_8$?

r and s must be included; as a subgroup the normalizer must be closed under multiplication.

Note 36

fadch63215d9471dh6ae7ehe8e76ee63

$$Z(D_6) = \{\{c_1: \{1\} .\}\}$$

Note 37

46db60ed1736470f9534921d4505ea62

$$Z(D_8) = \{\{c1: \{1, r^2\} .\}\}$$

Note 38

2ce99da32df545fe9ec31ee8e0206c7f

$$C_{S_3}(\{1,\;(1\;2)\})=\{\{1,\;(1\;2)\}\;.\}\}$$

Note 39

2e782a1f12a6406db1161635406da5c7

How do you show that

$$C_{S_3}(\{1, (12)\}) = \{1, (12)\}?$$

 $\{1, (12)\}$ is a subset + Lagrange's Theorem.

$$N_{S_3}(\{1,\;(1\;2)\})=\{\{1,\;(1\;2)\}\;.\}$$

Note 41

nd9c2331e5514956b74f445ad054106c

Let G be a group and $a \in G$. Then

$$N_G(\{1,a\}) = \{\{c_1:: C_G(a).\}\}$$

Note 42

ed1e65dd5c9446a9de9fc7b16d42025

$$Z(S_3) = \{\{c1: \{1\} .\}\}$$

Note 43

9b743f8b30c84ac99b22a6eb0f967267

Let G be a group acting on a set S and $s \in S$. (c2::The stabilizer of s in G) is denoted (c1::

 G_s .

}}

Note 44

6bc0f129d62348a487c114d0b7ad69f8

Let D_8 act on the set of four vertices of a square. What is the stabilizer of a vertex a in D_8 ?

The identity and the reflection around the line of symmetry passing through a.

Note 45

041877bf3b974f4f8ac78eea7bb331f7

What is the kernel of the action of D_8 on the set of four vertices of a square?

The identity subgroup.

Let G be a group and A be a nonempty subset of G. Then $\{(G, A)\}$ is $\{(G, A)\}$ is $\{(G, A)\}$ by left conjugation.

(in terms of group actions)

Note 47

39f5a3ad85424edc82a2480cee84987a

Let G be a group and A be a nonempty subset of G. Then $\{c_G(A)\}$ is $\{c_G(A)\}$ is $\{c_G(A)\}$ on A by left conjugation.

(in terms of group actions)

Note 48

ee92b4ef2d764cf8b83c56d984146ff

Let G be a group. The $\{(c2) Z(G)\}$ is $\{(c1)$ the kernel of the action of G on G by left conjugation.

(in terms of group actions)

Note 49

7b91acc9b3d04a08b282faf013ef934c

Let G be a group.

$$C_G(Z(G)) = \{\{c1::G.\}\}$$

Note 50

0448d1d230f340db94d0400519d257f1

Let G be a group.

$$N_G(Z(G)) = \{\{c1::G.\}\}$$

Note 51

0d151553fc4c40c2ae19df1526b809da

Let G be a group and $A \subseteq B \subseteq G$. How do $C_G(A)$ and $C_G(B)$ relate?

$$C_G(B) \leq C_G(A)$$
.