Ying Tang **Jiayu Weng **Pan Thang **Itile **Neural-network solutions to stochastic reaction networks **publication date **publication date** **Supported Sources ARXIV **Journal **None **Supported Sources ARXIV **Journal **None **Journal **None **Journal **Journ	doc_1		doc_2		decision	id
title Neural-network solutions to stochastic reaction networks publication date 2022-09-29 00:00:00	authors	Jiayu Weng	authors	Weng, Jiayu		
source SupportedSources.ARXIV Journal None	title	Neural-network solutions to stochastic reaction networks		• Zhang, ran		
journal None Journal Source SupportedSources.CORE	publication_date	e 2022-09-29 07:27:59+00:00	title	Neural-network solutions to stochastic reaction networks		
volume doi urls • http://arxiv.org/pdf/2210.01169v2 • http://arxiv.org/pdf/2210.01169v2 • http://arxiv.org/pdf/2210.01169v2 • http://arxiv.org/pdf/2210.01169v2 • http://arxiv.org/pdf/2210.01169v2 id diso36769134676410724 The stochastic reaction network in which chemical species evolve through a set of reactions is widely used to model stochastic processes in physics, chemistry and biology. However, the size of the state space increases exponentially with the rumber of species, making in challenging to investigate the stochastic reaction network in which chemical master equation, where the size of the counting state space increases exponentially with the type of species, making in challenging to investigate the stochastic reaction network. Here, we propose a machine-learning approach using the variational autoregressive network to solve the chemical master equation. Training the autoregressive network employs the policy gradient algorithm in the reinforcement almost require any data simulated in prior by another method. Different from simulating single trajectories, the approach tracks the time evolution of the joint probability distribution over time in the genetic toagle configurations and computing their normalized joint probabilities. We apply the approach to various systems in physics and biology, and demonstrate that it accurately generates the probabilities. We apply the approach to various systems in physics and biology, and demonstrate that it accurately generates the probabilities. We apply the approach to various systems in physics and biology, and demonstrate that it accurately generates the probability distribution over time. The variational autoregressive network exhibits a plasticity in representing the multi-modal distributions, cooperates with the conservation law, enables time-dependent reaction rates, and is efficient for high-dimensional reaction networks with allowing a flexible upper count limit. The results suggest a general approach to investigate stochastic reaction networks based o	source	SupportedSources.ARXIV	publication_date 2022-09-29 00:00:00			
Moi	journal	None	source	SupportedSources.CORE		
* http://arxiv.org/pdf/2210.01169v2 id id5036769134676410724 The stochastic reaction network in which chemical species evolve through a set of reactions is widely used to model stochastic processes in physics, chemistry and biology. To characterize the evolving joint probability distribution in the state space of species counts requires solving a system of ordinary differential equations, the chemical master equation, where the size of the counting state space increases exponentially with the rumber of species, making it challenging to investigate the stochastic reaction network to solve the chemical master equation. When the size of the counting state space increases exponentially with the rumber of species, making it challenging to investigate the size of the counting state space increases exponentially with the number of species, making it challenging to investigate the time evolution of the chemical master equation. Training the autoregressive network to solve the chemical master equation. The approach is based on the reinforcement learning framework and does not require any data simulated in prior by another method. Different from simulating single trajectories, the approach tracks the time evolution of the joint probability distribution in the state space of species counts, and supports direct sampling on configurations and computing let rajectories, the approach tracks the time evolution of the joint probability distribution over time. In experiment the autoregressive network with allowing a flexible upper count limit. The results suggest a general approach to investigate stochastic reaction networks with allowing a flexible upper count limit. The results suggest a general approach to investigate stochastic reaction networks based on modern machine learning approach to investigate stochasti	volume		journal			
id id5036769134676410724 The stochastic reaction network in which chemical species evolve through a set of reactions is widely used to model stochastic processes in physics, chemistry and biology. To characterize the evoluting into probability distribution in the state space of species counts requires onlying a system of ordinary differential equations, the chemical master equation, where the size of the counting state space of species counts requires onlying a system of ordinary differential equations, the chemical master equation, where the size of the counting state space of species counts requires onlying a system of ordinary differential equations, the chemical master equation, where the size of the counting state space of species counts is similar to a large the stochastic reaction network. Here, we propose a machine-learning approach using the variational autoregressive network to solve the chemical master equation. Training the autoregressive network employs the policy gradient algorithm in the reinforcement learning framework, which does not require any data simulated in prior by another method. Different from simulating single trajectories, the approach tracks the time evolution of the joint probability distribution in over time. The variational autoregressive network exhibits a plasticity in representing the multimodal distribution over time. The variational autoregressive network exhibits a plasticity in representing the multimodal distribution over time. The variational autoregressive network exhibits a plasticity in representing the multimodal distribution over time in the genetic toggle switch, the early life self-replicator, the epidemic model and the intracellular signaling cascade. The variational autoregressive network exhibits a plasticity in representing the multimodal distribution over time in the genetic toggle switch, the early life self-replicator, the epidemic model and the intracellular signaling cascade. The variational autoregressive network exhibits a plasticity in representing th	doi		volume			
id id5036769134676410724 The stochastic reaction network in which chemical species evolve through a set of reactions is widely used to model stochastic processes in physics, chemistry and biology. To characterize the evolving joint probability distribution in the state space of species counts requires solving a system of ordinary differential equations, the chemical master equation, where the size of the counting state space increases exponentially with the type of species, making it challenging to investigate the stochastic reaction network. Here, we propose a machine-learning approach using the variational autoregressive network to solve the chemical master equation. Training the autoregressive network to solve the chemical master equation. The approach is based on the reinforcement learning framework, which does not require any data simulated in prior by another method. Different from simulating single trajectories, the approach tracks the time evolution of the joint probability distribution, and supports direct sampling of configurations and computing their normalized joint probability distribution, and supports direct sampling of configurations and computing their normalized joint probability distribution, and supports direct sampling of configurations and computing their normalized joint probability distribution, oney time. The variational autoregressive network exhibits a plasticity in representative examples in physics and biology, and demonstrate that it accurately generates the probability distribution over time. The variational autoregressive network exhibits a plasticity in representing the multimodal distribution over time. The variational autoregressive network exhibits a plasticity in representing the multimodal distribution over time. The variational autoregressive network to solve the chemical master equation. The approach to various systems in physics and biology, and demonstrate that it accurately generates the probability distribution over time. The variational autoregressive network exhibi	urls	• http://arxiv.org/abs/2210.01169v2				
The stochastic reaction network in which chemical species evolve through a set of reactions is widely used to model stochastic processes in physics, chemistry and biology. To characterize the evolving joint probability distribution in the state space of species counts requires solving a system of ordinary differential equations, the chemical master equation, where the size of the counting state space increases exponentially with the type of species, making it challenging to investigate the stochastic reaction network. Here, we propose a machine-learning approach using the variational autoregressive network to solve the chemical master equation. Training the autoregressive network employs the policy gradient algorithm in the reinforcement learning framework, which does not require any data simulated in prior by another method. Different from simulating single trajectories, the approach tracks the time evolution of the joint probability distribution in the state space of species counts, and supports direct sampling of configurations and computing their normalized joint probability distribution, and supports direct sampling of configurations and computing their normalized joint probability distribution, and supports direct sampling of configurations and computing their normalized joint probability distribution over time. The variational autoregressive network exhibits a plasticity in representing the multimodal distribution over time. The variational autoregressive network exhibits a plasticity in representing the multimodal distribution over time. The variational autoregressive network exhibits a plasticity in representing the multimodal distribution over time in the genetic toggle switch, the early life self-replicator, the epidemic model and the intracellular signaling cascade. The variational autoregressive network exhibits a plasticity in representing the multimodal distribution over time in the genetic toggle switch, the early life self-replicator, the epidemic model and the intracellular signaling cascade.			id	id1715864676350460193		
approach to investigate stochastic reaction networks based on modern machine learning.		The stochastic reaction network in which chemical species evolve through a set of reactions is widely used to model stochastic processes in physics, chemistry and biology. To characterize the evolving joint probability distribution in the state space of species counts requires solving a system of ordinary differential equations, the chemical master equation, where the size of the counting state space increases exponentially with the type of species, making it challenging to investigate the stochastic reaction network. Here, we propose a machine-learning approach using the variational autoregressive network to solve the chemical master equation. Training the autoregressive network employs the policy gradient algorithm in the reinforcement learning framework, which does not require any data simulated in prior by another method. Different from simulating single trajectories, the approach tracks the time evolution of the joint probability distribution, and supports direct sampling of configurations and computing their normalized joint probabilities. We apply the approach to representative examples in physics and biology, and demonstrate that it accurately generates the probability distribution over time. The variational autoregressive network exhibits a plasticity in representing the multimodal distribution, cooperates with the conservation law, enables time-dependent reaction rates, and is efficient for high-dimensional reaction networks with allowing a flexible upper count limit. The results suggest a general		biology. However, the size of the state space increases exponentially with the number of species, making it challenging to investigate the time evolution of the chemical master equation for the reaction network. Here, we propose a machine-learning approach using the variational autoregressive network to solve the chemical master equation. The approach is based on the reinforcement learning framework and does not require any data simulated in prior by another method. Different from simulating single trajectories, the proposed approach tracks the time evolution of the joint probability distribution in the state space of species counts, and supports direct sampling on configurations and computing their normalized joint probabilities. We apply the approach to various systems in physics and biology, and demonstrate that it accurately generates the probability distribution over time in the genetic toggle switch, the early life self-replicator, the epidemic model and the intracellular signaling cascade. The variational autoregressive network exhibits a plasticity in representing the multi-modal distribution by feedback regulations, cooperates with the conservation law, enables time-dependent reaction rates, and is efficient for high-dimensional reaction networks with allowing a flexible upper count limit. The results suggest a general	DUPLICATE	3 19
versions		approach to investigate stochastic reaction networks based on modern machine learning.	versions			