See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/230126788

Can the First Addition of Alkyl Radicals Play a Role in the Fate of NMP?

ARTICLE in MACROMOLECULAR CHEMISTRY AND PHYSICS · JULY 2008

Impact Factor: 2.62 · DOI: 10.1002/macp.200800099

CITATIONS READS

22

23

9 AUTHORS, INCLUDING:

E.G. Bagryanskaya

Novosibirsk Institute of Organic Chemistry

136 PUBLICATIONS 1,529 CITATIONS

SEE PROFILE

Denis Bertin

Aix-Marseille Université

150 PUBLICATIONS 3,283 CITATIONS

SEE PROFILE

Igor A Kirilyuk

Novosibirsk Institute of Organic Chemistry

91 PUBLICATIONS 839 CITATIONS

SEE PROFILE

Dmitry P. Zubenko

D.S. Rozhdestvenskii Optical Society

6 PUBLICATIONS 113 CITATIONS

SEE PROFILE

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2008. Supporting Information for *Macromol. Chem. Phys.*, 2008, 209, 1345.

May the First Addition of Alkyl Radical Play a Role in the Fate of NMP?

Elena Bagryanskaya,¹ Denis Bertin,² Didier Gigmes,² Igor Kirilyuk,³ Sylvain R. A. Marque,*² Vladimir Reznikov,³ Galina Roshchupkina,³ Irina Zhurko,³ Dmitry Zubenko¹

Fax: +33-4-91-98-85-12; E-mail: sylvain.marque@univ-provence.fr

Experimental section

4-Phenyl-1-[(1-phenylethyl)-oxy]-2,2,5,5-tetramethyl-2,5-dihydroimidazole (1e). Colorless oil, 40% yield. 1 H NMR (300 MHz, CDCl₃), δ (ppm): 7.63-6.92 (m, 10H, CH); 4.69 (q, $^{3}J_{\text{H-H}} = 6$ Hz, 1H, CHCH₃); 1.54, 1.49, 1.48, 1.46, 1.43, 1.51, 1.25, 0.90, 0.82 (15H, CH₃). **2-methyl-2-[2,2,5,5-tetramethyl-4-phenylimidazoline-1-oxyl]propionic** acid **4-nitrophenyl ester** (1g). Yellow powder, 58% yield. Anal. calcd. for C₂₃H₂₇N₃O₅ (425): C, 64.94; H, 6.35; N, 9.88; O, 18.82; Found: C, 64.32; H, 6.35; N, 9.46; O, 19.25. 1 H NMR (CDCl₃): $\delta = 8.30$ (d, $^{2}J_{\text{H-H}} = 8$ Hz, 2 H, CH), 7.75–7.60 (m, 2 H, CH), 7.45-7.30 (m, 3 H, CH), 7.25 (m, 2 H, CH), 1.67 (s, 3 H, CH₃), 1.65 (s, 3 H, CH₃) 1.56 (s, 3 H, CH₃), 1.51 (s, 6 H, CH₃), 1.42 (s, 3 H, CH₃) ppm. LRMS m/z 426 [M+H]⁺, m/z 448 [M+Na]⁺.

¹ International Tomography Center SB RAS, Novosibirsk, Russia

² UMR 6517 – CNRS Aix-Marseille Université, Case 521, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 France

³ Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia

2,2,3,4,4,5,5-Heptamethyl-1-[(1-phenylethyl)-oxy]-imidazolidine (**5e**). Colorless oil, 52% yield. 1 H NMR: $\delta = 7.55-7.05$ (m, 5 H, CH), 4.85-4.60 (m, J = 9 Hz, 1 H, CH), 2.20-2.09 (2s, 3 H, NCH₃), 1.52-1.47 (2d, J = 9 Hz, 3 H, CH₃), 1.30-1.21 (2s, 3 H, CH₃), 1.15 (d, J = 3 Hz, 3 H, CH₃), 1.02-1.00 (2s, 3 H, CH₃), 0.95-0.85 (2s, 3 H, CH₃), 0.91-0.89 (2s, 3 H, CH₃), 0.58-0.54 (2s, 3H, CH₃) ppm. 13 C NMR: $\delta = 145.56-144.96$ (2s, *C*-CH), 128.00 (s, 2CH), 127.12-126.99 (2s, 2CH), 82.60-82.32 (2s, C-CH-CH₃), 79.18-78.65 (2s, NCN), 66.96-66.58 (2s, NC(CH₃)₂), 61.35-61.18 (2s, NC(CH₃)₂), 27.60-27.11 (3s, CH₃), 26.00 (s, CH₃), 24.63-24.41 (2s, CH₃), 23.36-22.89 (2s, CH₃), 22.72-22.59 (2s, CH₃), 22.02 (s, CH₃), 17.89-17.78 (2s, 2CH₃) ppm. LRMS m/z 291 [M+H]⁺, m/z 308 [M+NH₄]⁺.

5,5-Diphenyl-2,2,3,4,4-pentamethyl-1-[(1-phenylethyl)-oxy]-imidazolidine (6e). Colorless oil, 48% yield. ESI-MS m/z 415.2746 [M+H]⁺. ¹H NMR (CDCl₃): δ = 7.8-7.18 (m, 15 H, CH); 5.07 (q, ³J = 6 Hz, 1H, CH); 2.26 (bs, 3H, CH₃), 1.53-0.47 (m, 15H, CH₃). ¹³C NMR (CDCl₃): δ = 134.73 (s, C_{ar}), 129.93 (s, C_{ar}), 127.87(s, CH_{ar}), 127.18 (s, CH_{ar}), 126.41 (s, CH_{ar}), 126.05 (s, CH_{ar}), 128.29 (s, CH_{ar}), 81.68 (s, CH-CH₃), 81.60 (s, C), 80.89 (s, C), 64.56 (s, C), 27.66 (s, CH₃), 26.18 (s, CH₃), 23.05 (s, CH₃), 23.03 (s, CH₃), 27.15 (s, CH₃).

2-Methyl-2-[(2,2,3,4,4-pentamethyl-5,5-diphenylimidazolidine-1-yl)oxy]-propionic acid **4-nitrophenyl ester (6g).** Yellowish powder, 72% yield. ¹H NMR: $\delta = 8.09$ (d, ² $J_{\rm H,H} = 8$ Hz, 2 H, CH), 8.05–7.80 (m, 2 H, CH), 7.70-7.50 (m, 2 H, CH), 7.40-7.15 (m, 3 H, CH), 7.15-6.95 (m, 3 H, CH), 6.49 (d, ² $J_{\rm H,H} = 8$ Hz, 2 H, CH), 2.37 (s, 3 H, NCH₃), 1.76 (s, 3 H, CH₃), 1.46 (s, 3 H, CH₃), 1.29 (s, 3 H, CH₃), 1.20 (s, 3 H, CH₃), 1.12 (s, 3 H, CH₃), 0.45 (s, 3 H, CH₃) ppm. LRMS m/z 518 [M+H]⁺, m/z 540 [M+Na]⁺.

Methyl 2-[(2,2,3,4,5,5-hexamethylimidazolidin-1-yl)oxy]propanoate (10a), a mixture of diastereomers, colorless oil, 37 % yield. Anal. Calc. for $C_{13}H_{26}N_2O_3$: C, 60.44; H, 10.14; N, 10.84; found: C, 60.68; H, 10.28; N, 11.06. v_{max} (neat)/cm⁻¹ 2976, 2844, 2786, 2621, 1757, 1450, 1376, 1364, 1273, 1239, 1202, 1181, 1146, 1094, 1042 and 994. δ_H(400 MHz; CDCl₃):

4.17 (total 1 H, m, O-C<u>H</u>(CH₃)), 3.57, 3.58 (total 3 H, each s, O-CH₃), 2.28, 2.13 (total 1 H, each m, 4-C<u>H</u>(CH₃)), 2.00, 1.99 (total 3 H, each s, N-CH₃), 1.21, 1.20 (total 3 H, each d, J 3.5, O-CH(C<u>H</u>₃)), 1.09, 1.03, 0.97, 0.94 (total 6 H, each s, 2-C(CH₃)₂), 0.84, 0.85, 0.87, 0.89 (total 6 H, each s, 5-C(CH₃)₂), 0.77, 0.78 (3 H, each d, J 3, 4-CH₃),; δ_C(100 MHz, CDCl₃): 12.58, 12.63, 12.79, 12.88 (4-CH₃), 13.63, 13.74, 15.42, 15.56 (O-CH(<u>C</u>H₃)), 16.81, 17.06, 23.16, 23.70, 23.95, 24.34, 25.21, 25.56, 25.95, 26.63, 27.03, 27.81 (2,5-C(<u>C</u>H₃)₂), 32.26, 32.48 (N-CH₃), 51.04, 51.06 (O-CH₃), 61.60, 62.07, 64.39, 64.76 (C-4), 62.75, 63.31, 64.55, 64.90 (C-5), 79.40, 80.05, 80.21 (O-<u>C</u>H(CH₃)), 80.02, 81.64 (C-2), 173.53, 173.63, 173.88, 174.08 (C=O).

tert-Butyl 2-[(2,2,3,4,5,5-hexamethylimidazolidin-1-yl)oxy]-2-methylpropanoate (10d), a mixture of conformers, colorless oil, 44 % yield. Anal. Calc. for C₁₇H₃₄N₂O₃: C, 64.93; H, 10.90; N, 8.91, found: C, 65.12; H, 10.86; N, 8.74. v_{max} (neat)/cm⁻¹ 2977, 2934, 2843, 2785, 2621, 1731, 1460, 1366, 1273, 1240, 1220, 1164, 1136 and 850. $\delta_H(200 \text{ MHz}; \text{CDCl}_3): 0.81$, 0.82 (total 3 H, each d, J 6, 4-CH₃), 0.84, 0.87, 0.90, 0.92, 0.94, 0.97, 1.07, 1.09 (total 12 H, each s, 2,5-CH₃), 1.27 (total 6 H, s, O-C(CH₃)₂), 1.36 (total 9 H, s, C(CH₃)₃), 2.04, 2.05 (total 3 H, each s, N-CH₃), 2.16, 2.20 (total 1 H, each m, 4-CH(CH₃)); δ_C (50 MHz, CDCl₃): 12.60, 13.99 (4-CH₃), 13.15, 15.56 (O-C(<u>C</u>H₃)₂), 22.48, 23.44, 24.14, 24.38, 24.81, 25.07, 25.69, 27.31 (2,5-C(CH₃)₂), 27.63 (C(CH₃)₃), 32.61, 32.79 (N-CH₃), 62.23, 64.55 (C-4), 63.05, $64.48 \text{ (C-5)}, 80.17 \text{ (\underline{C}(CH_3)_3)}, 80.44, 81.21 \text{ (O-}\underline{C}(CH_3)_2), 81.10, 81.74 \text{ (C-2)}, 173.44 \text{ (C=O)}.$ mixture 1,2,2,4,4,5-Hexamethyl-3-[(1-phenylethyl)-oxy]imidazolidine of (10e),diastereomers, colorless oil, 45 % yield. Anal. calc. for C₁₇H₂₈N₂O: C, 73.87; H, 10.21; N, 10.13; found: C, 73.65; H, 10.25; N, 9.91. v_{max} (neat)/cm⁻¹ 3086, 3064, 3032, 2974, 2929, 2842, 2784, 2708, 2680, 2620, 1603, 1494, 1452, 1374, 1361, 1273, 1239, 1220, 1178, 1065, 1009, 996, 892 and 760. $\delta_{H}(400 \text{ MHz}; \text{CDCl}_{3})$: 0.59, 1.02 (total 3 H, each d, J 3, 4-CH₃), 0.77, 0.89, 0.91, 0.93, 0.94, 0.95, 0.97, 1.07, 1.09, 1.11, 1.21, 1.24, 1.28, 1.31 (total 12 H,

each s, 2,5-CH₃), 1.35, 1.38, 1.53 (total 3 H, each d, J 3, O-CH-C \underline{H}_3) 2.11, 2.13, 2.20 (total 3 H, each s, N-CH₃), 2.26, 2.33, 2.43, 2.48 (total 1 H, m, 4-C \underline{H} (CH₃)), 4.73 (total 1 H, m, O-C \underline{H} -CH₃), 7.26–7.38 (total 5 H, m, Ph); δ_C (100 MHz, CDCl₃): 13.19, 13.91 (O-CH(\underline{C} H₃)Ph), 13.06, 13.21, 15.70, 15.90 (4-CH₃), 21.66, 21.74, 22.13, 23.47, 23.84, 24.39, 24.49, 24.57, 25.43, 26.08 (2,5-C(\underline{C} H₃)₂), 32.47, 32.54, 32.64, 32.82 (N-CH₃), 62.02, 62.33, 64.59, 64.75 (C-4), 62.34, 62.63, 64.28, 64.54 (C-5), 79.64, 80.31 (C-2), 82.25, 82.35, 82.50 (O- \underline{C} H(CH₃)Ph), 126.85, 126.94, 127.00, 127.07, 127.13, 127.74, 127.81 (*o,m,p*-Ph), 144.36, 144.50 (*i*-Ph).

- **2,2-Dibutyl-**[(**1-phenylethyl)-oxy**]**-3,4,5,5-tetramethylimidazolidine** (**12e**). Colorless oil, 51% yield. 1 H NMR: $\delta = 7.39-7.17$ (m, 5H, CH), 5.21 (q, J=6 Hz, 1H, C*H*N), 4.68 (m, 1H, C*H*Ph).
- **2,2-Diethyl-5,5-diphenyl-**[(**1-phenylethyl)-oxy**]**-3,4,4-trimethylimidazolidine** (**16e**). Colorless oil, 50% yield. $C_{30}H_{38}N_2O$ (442.2984) ESI-MS m/z 443.3051 [M+H]⁺. ¹H NMR (CDCl₃): δ = 7.50-7.02 (m, 15 H, CH); 5.12 (q, ³J = 9 Hz, 1H, CH); 2.40 (s, 3H, CH₃), 1.55-0.57 (m, 19H, CH₂ + CH₃). ¹³C NMR (CDCl₃): δ = 145.11 (s, C_{ar}), 130.02 (s, C_{ar}), 128.25(s, CH_{ar}), 128.23 (s, CH_{ar}), 127.73 (s, CH_{ar}), 127.53 (s, CH_{ar}), 126.86 (s, CH_{ar}), 126.50 (s, CH_{ar}), 126.10 (s, CH_{ar}), 84.91 (s, C), 81.25 (s, C), 81.22 (s, CH-CH₃), 64.09 (s, C), 29.75 (s, CH₃), 29.44 (s, CH₂), 23.85 (s, CH₃), 23.03 (s, CH₃), 21.00 (s, CH₃), 10.47 (s, CH₃).
- **2,2-Diethyl-3,4,5,5-tetramethyl-[(1-phenylethyl)-oxy]-imidazolidine** (**17e**). Colourless oil, mixture of diastereomers, yield 60%. Anal. calcd. for $C_{19}H_{32}N_2O$ (304.25): C, 74.95; H, 10.59; N, 9.20. Found: C, 74.70; H, 10.25; N, 8.87. $v_{max}(KBr)/cm^{-1}$ 3087, 3065, 3032, 2973, 2795, 1494, 1452, 1377, 1227, 1064, 1009, 997, 965, 912, 841, 760 and 699; $\delta_H(300 \text{ MHz}; CDCl_3)$ 0.84, 1.01, 1.49 (total 6 H t J 7, CH₃, Et), 0.93 (3 H m 4-CH₃), 1.09, 1.12, 1.23, 1.28 (total 6 H each s, 5-Me) 1.34-1.90 (total 4 H m, CH₂), 1.46 and 1.51 (total 3H, both d J 6.6, CH₃CHPh), 2.26, 2.30 (total 3 H, each s, NCH₃), 2.49, 2.60 (total 1H, both q J 6.6, 4-CH),

4.71 (1H m, CH₃C<u>H</u>Ph), 7.35 (5H m, Ph); $\delta_{\text{C}}(100 \text{ MHz}; \text{CDCl}_3)$ 9.41, 9.69, 9.89, 9.95 (CH₃, Et), 13.94, 13.99 (4-Me), 16.47, 16.65 (O-CH-<u>C</u>H₃), 22.20, 22.42, 25.69, 26.38, 26.69 (5-Me) 28.87, 29.23, 30.48, 30.92 (CH₂), 32.97, 33.15 (N-CH₃), 63.54, 63.64 (N-CH), 63.87, 64.08 (C-5), 81.92, 82.07 (O-CH), 82.95, 83.63 (C-2), Ph: 126.66, 127.00 (C_o), 127.77, 127.81 (C_m), 128.17, 128,51 (C_p), 144.61, 144,86 (C_i).

2-Methyl-2-[(2,2-diethyl-3,4,5,5-tetramethylimidazolidine-1-yl)oxy]propionic acid **4-nitrophenyl ester (17g).** Colourless oil, yield 50%. Anal. calcd. for $C_{21}H_{33}N_3O_5$ (407,50): C, 61.90; H, 8.16; N, 10.31. Found: C, 61.70; H, 8.25; N, 9.04. $v_{max}(KBr)/cm^{-1}$ 3117, 3085, 2978, 2797, 1767, 1616, 1592, 1525, 1490, 1455, 1347, 1204, 1163, 1012, 863, 711, 687 and 661; $\delta_H(300 \text{ MHz}; \text{CDCl}_3) 0.90 - 0.98$ (total 6 H, m, CH₃, Et), 0.99 (total 3 H, d, J 7, 4-CH₃), 1.09, 1.12 (each 3 H s, 5-Me), 1.40-1.53, 1.55-1.72 and 1.75-1.90 (1 H, 2H and 1 H, each m, CH₂) 1.62 and 1.64 (3 H and 3 H m, O-C(CH₃)₂CO), 2.33 (3 H s, N-CH₃), 2.46 (1H q J 7, CH) 7.35 and 8.31 (AA'BB' J 9, C_6H_4); $\delta_C(75 \text{ MHz}; \text{CDCl}_3) 8.98$, 9.36 (CH₃, Et), 13.50 (4-CH₃), 15.78 and 23.36 (5-Me), 24.52, 25.20 (O-C(CH₃)₂CO), 28.86, 29.87 (CH₂), 32.28 (N-CH₃), 62.89 (CH), 63.59 (C-5), 80.56 (O-C(CH₃)₃), 83.34 (C-2), 121.31 and 124.34 (CH, Ar), 144.32 (C-N, Ar), 154.81 (C-O, Ar), 171.33 (C=O).

Methyl 2-[(2,2,3,4-tetramethyl-1,4-diazaspiro[4.4]non-1-yl)oxy]propanoate (19a), a mixture of diastereomers, colorless oil, 30 % yield. v_{max} (neat)/cm⁻¹ 2952, 2869, 2841, 2784, 2634, 1757, 1454, 1363, 1325, 1272, 1250, 1252, 1203, 1147, 1088, 1041, 982, 944, and 848. δ_H(400 MHz; CDCl₃): 0.82 (total 3 H, d, J 6, 4-CH₃), 0.91, 0.93, 0.94, 1.01, 1.04, 1.05, 1.06, 1.10 (total 6 H, each s, 5-CH₃), 1.28, 1.30 (total 3 H, each d, J 6.5, O-CH(CH₃)), 1.34–2.09 (total 8 H, m, CH₂), 2.04, 2.05, 2.09 (total 3 H, each s, N-CH₃), 2.20, 2.33, 2.55 (total 1 H, m, 4-CH(CH₃)), 3.60, 3.63 (total 3 H, each s, O-CH₃), 4.23, 4.34 (total 1 H, each m, O-CH-(CH₃)); δ_C(100 MHz, CDCl₃): 13.16, 13.30, 13.51, 13.66 (4-CH₃), 16.19, 16.33, 17.22, 17.54 (O-CH(CH₃)), 21.68, 21.79, 24.61, 24.66, 24.82, 25.04, 25.12, 26.91, 27.19, 29.41, 32.08,

32.21, 33.54, 34.76, 36.08, 36.74 (CH₂), 23.67, 23.78, 25.22, 26.05, 26.54 (5-CH₃), 31.97, 32.01, 32.54, 32.60 (N-CH₃), 51.22, (O-CH₃), 61.95, 62.20, 64.96, 65.12 (C-5), 63.34, 63.92, 65.96, 66.06 (C-4), 78.69, 79.58, 79.67, 80.11 (O-CH(CH₃)), 90.17, 92.44, 92.63 (C-2), 173.53, 173.73, 173.84, 174.0 (C=O).

2,2-Diethyl-3,4-dimethyl-1-[(1-phenylethyl)-oxy]-1,4-diaza-spiro[4,5]decan (20e),mixture of diastereomers, colorless oil, 50% yield. Anal. calcd. for C₂₂H₃₆N₂O (344): C, 76.69; H, 10.53; N, 8.13; Found: C, 76.77; H, 10.13; N, 8.30; v_{max} (neat)/cm⁻¹ 3031, 2930, 2876, 2786, 1454, 1494, 1452, 1371, 1292, 1204, 1061, 1030, 1007, 993, 960, 909, 885, 760, and 700; $\delta_H(300 \text{ MHz}; \text{CDCl}_3) 0.37, 0.39, 0.54, 0.78, 0.83, 1.06, 1, 10, 1.12$ (total 6H, each t J= 7 Hz, CH₃, Et), 0.92, 0.95, 1.00, 1.01 (total 3H, each d, J= 7 Hz, 4-CH₃), 1.25-2.20 (14 H, m, CH₂), 1.51, 1.55 (total 3H, both d, J= 7 Hz, CH₃, PhCHCH₃), 2.27, 2.31, 2.34, 2.36 (total 3H, each s, N-CH₃), 2.46, 2.53, 2.88, 2.95 (total 1H, each q, J= 7 Hz, N-CH), 4.74, 4.79, 5.24, 5.21 (total 1H, each q, J= 7 Hz, O-CH), 7.29-7.44 (5H, m, Ph); $\delta_{\rm C}(100~{\rm MHz}; {\rm CDCl_3})$ 8.11, 8.29, 8.97, 9.36, 9.68, 9.99, 10.18, 11.04 (CH₃, Et), 13.56, 13.63, 14.80, 14.93 (4-CH₃), 22.11, 22.39, 22.83, 22.92 (CH₃, PhCHCH₃), 21.24, 22.48, 22.77, 23.77, 23.90, 24.77, 25.16, 25.28, 25.38, 25.82, 26.61, 26.88, 26.93, 27.26, 27.69, 29.19, 29.54, 30.41, 31.39, 32.48, 33.77, 35.78, 36.23 (CH₂), 34.61, 34.69, 35.16, 35.69 (N-CH₃), 58.56, 58.67, 62.66, 62.84 (N-CH), 66.63, 67.33, 69.05, 69.52 (CEt₂), 81.77, 81.95, 82.02, 82.69 (O-<u>C</u>H(CH₃)Ph), 81.34, 82.21 (C-2), 125.96, 126.06, 126.16, 126.65, 126.73, 126.79, 126.90, 126.96, 127.15, 127.19, 127.70, 127.75, 127.84, 127.88, 127.98, 128.16, 128.51 (*o,m,p*-Ph), 143.96, 144.34, 144.64, 144.74 (C_i, Ph).

2-[(2,2,5,5-tetraethyl-3,4-dimethylimidazolidine-1-yl)oxy]propionic acid methyl ester **(21a).** Colorless oil, mixture of 4 isomers, 70% yield. Anal. calcd. for $C_{17}H_{34}N_2O_3$ (314): C, 64.93; H, 10.90; N, 8.91. Found: C, 65.27; H, 10.96; N, 8.44. $v_{max}(KBr)/cm^{-1}$ 2970, 2937, 2880, 2793, 1758, 1465, 1373, 1275, 1202, 1149, 1090 and 1048; $\delta_H(400 \text{ MHz}; CDCl_3)$ 0.60

- 1.0 (total 15 H, m, 5CH₃, 4Et and 4-CH₃), 1.23, 1.27, 1.29 and 1.30 (total 3 H, each d, J 7, O-CH(CH₃)CO), 1.3-2.0 (total 8 H, m, CH₂), 2.04, 2.20 and 2.24 (total 3H, each s, N-CH₃), 2.62 - 2.83 (1H, m, NCH), 3.66, 3.67 (total 3 H, each s, OCH₃), 4.29 (1H, m, OCH); $\delta_{\rm C}(100$ MHz; CDCl₃) 6.82, 6.97, 7.86, 7.93, 9.02, 9.17, 9.21, 9.31, 9.36, 9.44, 9.61, 9.64, 10.39, 10.91, 10.95 (CH₃, Et), 14.13, 14.22, 15.17, 15.28 (4-CH₃), 17.00, 17.64, 17.72, 17.77 (OCH-CH3), 21.26, 21.88, 23.32, 23.43, 24.92, 25.26, 25.59, 25.78, 26.72, 27.83, 28.06, 28.45, 29.56, 29.88, 30.35, 31.18 (CH₂), 31.47, 31.70, 33.34, 33.49 (N-CH₃), 51.28 (OCH₃), 58.93, 59.30, 62.31, 62.50 (NCH), 66.62, 67.71, 67.89, 67.98 (C-5), 77.88, 78.60, 78.94, 79.00 (OCH), 80.11 (O-C(CH₃)₃), 82.50, 83.37, 84.15, 84.60 (C-2), 174.36, 174.46, 174.55 (C=O). 2-methyl-2-[2,2,5,5-tetraethyl-3,4-dimethylimidazolidine-1-oxyl]propionic acid tert-butyl ester (21d). Colorless oil, mixture of diastereomers, 60% yield. Anal. calcd. for C₂₁H₄₂N₂O₃ (370): C, 68.06; H, 11.42; N, 7.56. Found: C, 68.49; H, 10.95; N, 7.56. $v_{\text{max}}(\text{KBr})/\text{cm}^{-1}$ 2975, 2937, 2880, 2809, 2793, 1731, 1464, 1368, 1287, 1250, 1224, 1136, 1036, 996, 967, 943, 900, 849, 767 and 751; $\delta_{H}(400 \text{ MHz}; \text{CDCl}_{3}) 0.80 - 0.92$ (total 12 H, m, CH₃, Et), 0.95 and 1.01 (total 3 H, both d, J 6, 4-CH₃), 1.34, 1.35, 1.36 and 1.37 (total 6 H, each s, O-C(CH₃)₂CO), 1.3-2.1 (total 8 H, m, CH₂), 1.41 (9 H, s, t-Bu), 2.04 and 2.26 (total 3H, each s, N-CH₃), 2.77 (1H, m, CH); $\delta_{\rm C}(100 \, {\rm MHz}; {\rm CDCl}_3)$ 7.12, 8.49, 9.05, 9.41, 9.84(double intensity), 10.62, 10.87 (CH₃, Et), 14.47, 15.19 (4-CH₃), 20.68, 22.81, 24.84, 25.38, 27.05, 28.47, 30.84, 31.27 (CH₂), 24.61, 24.80 (O-C(CH₃)₂CO), 27.54 (C(CH₃)₃), 32.06, 32.51 (N-CH₃), 59.57, 62.02 (CH), 66.83, 67.77 (C-5), 80.11 (O- \underline{C} (CH₃)₃), 81.27, 81.43 (O- \underline{C} (CH₃)₂CO), 83.17, 84.13 (C-2), 173.15, 173.34 (C=O).

2-methyl-2-[(2,2,5,5-tetraethyl-3,4-dimethylimidazolidine-1-yl)oxy]propionic acid phenyl ester (21f). 30% yield. $\delta_H(300 \text{ MHz}, \text{CDCl}_3)$ 7.28-7.09 (m, 5 H, CH); 2.89-2.80 (m, 1H, CH); 2.07 (s, 3H, CH₃); 2.03-1.50 (m, 14H, CH₂ + CH₃), 1.08-0.88 (m, 15H, CH₃).

Thermal decomposition of alkoxyamine was performed until the EPR signal reached a plateau, meaning that all alkoxyamine was decomposed. For each experiment, the plateau was reached for more than 90% conversion. Therefore, each alkoxyamines exhibited more than 90% purity.

Results

In a recent work,^[1] we reported for the homolysis of the C—ON bond for **1a** and **2a**: $\Delta E_a = E_a(\mathbf{1a}) - E_a(\mathbf{2a}) = 0.7 \text{ kJ·mol}^{-1}$. It was assumed this value also held for the difference between E_a for **1e** and **2e**, i.e. $E_a(\mathbf{2e}) = 140.3 \text{ kJ·mol}^{-1}$. The E_a for **17e** was estimated applying the increment +12.8 kJ·mol $^{-1}$ ($\mathbf{c} \bullet \to \mathbf{e} \bullet$),^[2] providing the effect of the phenyl group in **17f** was accounted for by $k_{d,c} = k_{d,f}/3$,^[3,4] i.e. $E_a(\mathbf{17c}) = 117.4 \text{ kJ·mol}^{-1}$. The E_a for **7e** (Table S1) was obtained by applying the increment +12.8 kJ·mol $^{-1}$ ($\mathbf{d} \bullet \to \mathbf{e} \bullet$),^[2] assuming no effect of the alkyl ester group.^[5] The E_a for **18e** (Table S1) was obtained by applying the increment -8.7 kJ·mol $^{-1}$, assuming that the E_a difference of E_a for **2a** ($E_a = 144.8 \text{ kJ·mol}^{-1}$)^[1] and **18a** ($E_a = 136.1 \text{ kJ·mol}^{-1}$)^[1] held. The conversion of E_a for **19a** (see Table 1) into E_a for **19e** (Table S1) was done applying the increment -6.3 kJ·mol $^{-1}$.^[2] The value of $E_a(\mathbf{21e})$ was given by averaging the values obtained applying the increment +6.3 kJ·mol $^{-1}$ to $E_a(\mathbf{21a})$,^[2] and +12.8 to $E_a(\mathbf{21d})$ and to $E_a(\mathbf{21c})$,^[2] providing that $k_{d,c} = k_{d,f}/3$,^[3,4] i.e. $E_a(\mathbf{21c}) = 110.7 \text{ kJ·mol}^{-1}$.

Multi-parameter approach. The analysis of k_d in terms of polar/stabilization and steric effects (eq. S1) has already been applied to 40 cyclic nitroxyl fragments carrying fragment $e^{[6,7]}$ The polar/stabilization effect is accounted for by the polar Hammett constant σ_L and given by eq. S2 (as exemplified in Figure S1). The missing σ_L constants were estimated with eqs. S3 and S4. The steric effect is accounted for by eqs. S5 and S6 (as exemplified in Figure S1). It was assumed that the steric effects E_s^{AorB} of the two alkyl groups flanking the nitroxyl fragment were linearly combined (eq. S5) and that each E_s value was given by eq.

S6.^[6,7] The individual Fujita steric constants r_i for the alkyl group R are negative, meaning that the larger alkyl group, the smaller r(R) value.^[10] All the values of σ_L and E_s needed for eq. S1 are gathered in Table S1.

$$\log(k_{d,n}/s^{-1}) = \log(k_{d0}/s^{-1}) + \rho_{L} \cdot \sigma_{L,n} + \delta \cdot E_{s,n}$$
 (S1)

$$\sigma_{L,n} = \sum_{i=1}^{6} \sigma_{L}(R_{i})$$
 (S2)

$$\sigma_{L,R_1R_2CH} = 0.297 \times \sum \sigma_{L,R} + 0.00482$$
 (S3)

$$\sigma_{L,R_1R_2R_3C} = 0.248 \times \sum \sigma_{L,R} + 0.00398$$
 (S4)

$$E_{s,n} = E_s^A + E_s^B \tag{S5}$$

$$E_s^{\text{AorB}} = -2.104 + 3.429 \times r_1(R_1) + 1.978 \times r_2(R_2) + 0.649 \times r_3(R_3)$$
 (S6)

$$R_{1}$$
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 E_{S}
 E_{S

Figure S1. Examples of steric (E_s)and polar (σ_I)constants estimate.

The very close values of k_d for 2a (1.4 10^{-5} s⁻¹ at 120 °C in PhCl)^[1] and 1a (1.1 10^{-5} s⁻¹ at 120 °C in PhCl)^[1] show that the replacement of the methyl group in 2a by the phenyl ring in 1a has no significant influence ($\Delta E_a = 0.7 \text{ kJ·mol}^{-1}$) either on the polarity or on the bulkiness of the nitroxyl fragment.^[11] In a previous work, it was shown that the cyclic strain for the five-membered ring for nitroxyl fragments 3, 9, 11, 13, and 14 was accounted for by the steric constant $r(C5^{[12]}) = 0.31$. As in the case of fragments 3, carbons 3 and 4 on the ring of fragments 3, 3, 4 are bounded by a double bond, and therefore, 4 4 was applied to

estimate the corresponding E_s . Unexpectedly, molecules 1e and 2e are outliers whereas 7e and 18e lie on the regression line (eq. 7). Such discrepancies might be due to the difficulty to estimate both the E_a for an alkyl fragment other than e and the polar effect of the imine function. [8,9,13] When the steric cyclic constant r(C5) was applied to estimate E_s for fragments 4, 5, 8, 10, 17, 20, and 21, the data strikingly deviated from the correlation line (Triangles in Figure 5). Thus, assuming that fragment 10 lay on the correlation line, a new steric cyclic constant r(C5") was developed applying eqs. S5 and S6 and given as 0.15. Hence, using this new value, fragments 4, 5, 8, 17, 20, and 21 were shifted close to the regression line (Figure 5 and eq. 7). In a previous work, $^{[7]}$ the difficulty to estimate E_s when the substituents were cycles was mentioned. The comparison of the k_d for 19e and 17e (Table S1) shows that the values are very close, meaning that the 5-membered ring is sterically as demanding as two ethyl groups although it has been reported to be the size of the methyl group. [7,10] On the other hand, r(C6'') was applied successfully to estimate E_s of 4e, 7e, 8e, and 20e (Table S1). Interestingly, 12e and 15e are deviated strongly (Figure 4) when r(n-Bu) and r(n-Pr) were used, respectively, whereas assuming r(n-Bu) = r(n-Pr) = r(Et), the data were shifted closer to the regression line (for discussion, see the levelled steric effect section). When the value of r = -1.4 was applied for the phenyl group^[6,7] as for $E_{s,11}$, the data for **6e** and **16e** deviated dramatically from the regression line whatever, the ring constant r(C5) or r(C5"). [14] In fact, phenyl group is known as a Janus group^[15] i.e. a group capable of changing its steric demand when the surrounding groups vary. Therefore, for the sake of simplicity, it was assumed that the two phenyl groups exhibited the same bulkiness, hence, the data for 6e and 16e were shifted on the straight line when r(Ph) was assumed around -0.23 (Figure 5) to estimate $E_{s,6e}$ and $E_{s.16e}$, using r(C5''). [16]

Table S1. Activation energies E_a and homolysis rate constants k_d at 120 °C for the release of alkyl radical e^{\bullet} , polar/stabilization Hammett constants^{a)} σ_L and Fujita steric constants^{b)} E_s for nitroxides $1^{\bullet}-21^{\bullet}$.

Nitroxyl fragment	$E_{\rm a}({\rm kJ\cdot mol^{-1}})^{\rm c)}$	$k_{\rm d} ({\rm s}^{\text{-}1})^{\rm d}$	$\sigma_L^{e)}$	$E_{ m s}^{ m f)}$
1	141.0	4.4 10 ⁻⁵	$0.29^{g)}$	$-2.08^{h)i}$
2	$140.3^{j)}$	$9.4\ 10^{-5}$	$0.29^{g)}$	$-2.08^{h)i}$
$3^{\mathrm{k})}$	139.8	$6.3\ 10^{-5}$	0.08	-2.08
4	139.4 ¹⁾	$7.1 10^{-5}$	0.5	$-2.87^{h)i)m}/-3.97^{i)m)n}$
5	138.1	$1.1 \ 10^{-4}$	$0.17^{\rm o)}$	$-2.08^{h)i}/-3.18^{i)n}$
6	137.7	$1.2 \ 10^{-4}$	$0.43^{\rm o)}$	$-3.78^{i)n)p)}$
7	137.5 ^{j)}	$1.3 \ 10^{-4}$	$0.29^{g)}$	$-3.47^{i)h)m}$
8	137.4 ¹⁾	$1.3 \ 10^{-4}$	0.50	$-2.87^{h)i)m}/-3.97^{i)m)n}$
$9^{\mathrm{k})}$	137.0	$1.5 \ 10^{-4}$	-0.06	-2.08
10	135.9	$2.1 10^{-4}$	$0.18^{o,q)}$	$-2.08^{h)i}/-3.18^{i)n}$
$11^{k)}$	133.5	$4.3 \ 10^{-4}$	0.07	-2.99
12	132.8	$5.4 \cdot 10^{-4}$	$0.18^{o,q)}$	$-3.92^{\text{h}\text{i}\text{j}}/-4.18^{\text{i}\text{n}\text{r}\text{j}}$
$13^{\mathrm{k)}}$	132.3	$6.2\ 10^{-4}$	0.09	-3.44
$14^{k)}$	131.1	$9.0\ 10^{-4}$	0.08	-4.08
$15^{k)}$	130.9	9.6 10 ⁻⁴	0.08	-4.08^{s}
16	130.2	$1.2 \ 10^{-3}$	$0.43^{\rm o)}$	$-4.78^{i)p}$
17	$130.2^{j)}$	$7.7 \cdot 10^{-4}$	$0.18^{o,q)}$	$-3.08^{\text{h})\text{i}}/-4.18^{\text{i})\text{n}}$
18	131.6 ^{j)}	$1.3 \ 10^{-3}$	$0.29^{g)}$	$-4.08^{h)i}$
19	128.5 ^{j)}	$2.0\ 10^{-3}$	$0.18^{o,q)}$	$-2.19^{\text{h}\text{i}\text{i}}/-4.18^{\text{i}\text{n}\text{t}\text{i}}$
20	124.3	$7.2 \cdot 10^{-3}$	$0.18^{o,q)}$	$-3.47^{\text{h})\text{i})\text{m}}/-4.57^{\text{i})\text{m})\text{n}}$
21	121.9 ^{j)}	1.6 10 ⁻²	$0.18^{o,q)}$	$-4.08^{h)i}/-5.17^{i)n}$

a) Value of σ_L given in reference [8] unless otherwise mentioned, $\sigma_{L,Me} = \sigma_{L,Et} = \sigma_{L,n-Pr} = \sigma_{L,n-Pr}$ $\sigma_{L,Et} = \sigma_{L,n-Pr} = \sigma_{L$

b) Values for the basic groups $E_s(Me) = 0$, $E_s(Et) = -0.38$, $E_s(n-Pr) = -0.67$, $E_s(n-Bu) = -0.70$ are given in reference [10].

^{c)} Errors estimated around 2 kJ·mol⁻¹. Values given for the released alkyl radical e^{\bullet} and reestimated with the averaged frequency factor $A = 2.4 \ 10^{14} \ s^{-1}$, see references [7], [17], and [18].

^{d)} Estimated using $A = 2.4 \cdot 10^{14} \text{ s}^{-1}$ and the E_a listed in the second column.

e) Given by eq. 2, see text.

 $^{^{\}rm f)}$ Given by eqs. 5 and 6, see text.

- ^{g)} $\sigma_{L,PhHC=N} = 0.14$ see ref. [8] and $\sigma_{L,PhC=NH} = 0.19$ using $F_{PhC=NH} = 0.19$ as given in reference [13].
- h) E_s was estimated with r(C5) = 0.31, see references [6] and [7].
- i) It was assumed that there was no steric influence of the substituent attached to the double bond or to the nitrogen atom.
- j) See text.
- k) Given in ref. [6].
- ¹⁾ Given in reference [7].
- $^{\rm m)} r({\rm C6''}) = -0.15.$
- ⁿ⁾ E_s was estimated with r(C5") = 0.15, see text.
- $^{\rm o)}$ σ_{L,NMe_2} = 0.17. σ_{L,Me_2CNMe_2} = 0.04 as given by eq. 4.
- ^{p)} E_s was estimated with r(Ph) = -0.23, see text.
- $^{\rm q)}$ σ_{L,NMe_2} = 0.17. $\sigma_{L,MeHCNMe_2}$ = 0.05 as given by eq. 3.
- ^{r)} It was assumed r(n-Bu) = r(Et), see text. Otherwise, $E_s(12) = -5.02$.
- s) It was assumed r(n-Pr) = r(Et), see SI. Otherwise, $E_s(15) = -5.60$.
- t) r(C5') = r(Et) was used, see SI. For r(C5') = -0.04, $E_s(19) = -3.28$ (empty circle in Figure 4).
- [1] D. Zubenko, I. Kirilyuk, G. Roshchupkina, I. Zhurko, V. Reznikov, S. R. A. Marque, E. Bagryanskaya, *Helv. Chim. Acta* **2006**, 89, 2341.
- [2] E. Beaudoin, D. Bertin, D. Gigmes, S. R. A. Marque, D. Siri, P. Tordo, Eur. J. Org. Chem.
 2006, 7, 1755-1768.
- [3] D. Bertin, D. Gigmes, S. R. A. Marque, S. Milardo, J. Peri, P. Tordo, *Coll. Cze. Chem. Commun.* **2004**, *69*, 2223-2238.

- [4] G. Ananchenko, E. Beaudoin, D. Bertin, D. Gigmes, P. Lagarde, S. R. A. Marque, E. Revalor, P. Tordo *J. Phys. Org. Chem.* **2006**, *19*, 269-275.
- [5] G. Ananchenko, E. Beaudoin, D. Bertin, D. Gigmes, P. Lagarde, S. R. A. Marque, E. Revalor, P. Tordo, *J. Phys. Org. Chem.* **2006**, *19*, 269-275.
- [6] S. Marque, J. Org. Chem. **2003**, 68, 7582-7590.
- [7] H. Fischer, A. Kramer, S. R. A. Marque, P. Nesvadba, *Macromolecules* **2005**, *38*, 9974-9984.
- [8] M. Charton, Prog. Phys. Org. Chem. 1981, 13, 119-251.
- [9] M. Charton, In Advances in Quantitatives Structure-Property Relationship; M. Charton, Ed.; Jai Press Inc.: Greenwich, CT, 1996; Vol. 1, pp 171-219.
- [10] T. Fujita, C. Takayama, M. Nakajima, J. Org. Chem. 1973, 38, 1623-1631.
- [11] Another possibility would be that for the phenyl group the steric effect balanced the electron withdrawing capacity.
- [12] The code for cyclic steric constants is given in reference **Fehler! Textmarke nicht definiert.**, i.e., r(C5) for $CR_2(CH_2)_2CR_2$ and $CR_2CR=XCR_2$, r(C5') for $(CH_2)_4$, and r(C5'') for $CR_2CHRNMeCR_2$ and $CR_2CR_2NMeCR_2$ and $CR_2NRC(O)CR_2$.
- [13] C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165.
- [14] When r(Ph) = -1.4 and r(C5") = 0.15 were used for estimating E_s , $E_s(\mathbf{6}) = -6.86$ and $E_s(\mathbf{16}) = -7.86$.
- [15] E. Kutter, C. J. Hansch, Med. Chem. 1969, 12, 647.
- [16] Using r(C5) provided r(Ph) = -0.65.
- [17] S. Marque, C. Le Mercier, P. Tordo, H. Fischer, *Macromolecules* **2000**, *33*, 4403-4410.
- [18] S. Marque, H. Fischer, E. Baier, A. Studer, J. Org. Chem. 2001, 66, 1146-1156.