An STT-MRAM Based Strong PUF

Soroush Khaleghi

Paolo Vinella

Soumya Banerjee

Wenjing Rao

Nanoarch 2016 - Beijing, China

ECE Department
University of Illinois at Chicago

What is a PUF?

- > No two chips are exactly the same
 - Due to manufacturing <u>process variations</u>
- ♦ PUF: Physically Unclonable Function
 - · A device, based on physical disorders of chips

> CRP: Challenge-Response Pair

PUFs at a Glance

- Manufactured with the <u>same layout</u>
- > A unique function per chip
 - Challenge-Response Pairs (CRPs)
- ➤ Physically <u>unclonable</u>
 - Impossible to avoid random process variations
- Unpredictable behavior
 - Unless by testing all CRPs
 - Known CRPs cannot be used to predict responses to new challenges

Security Advantages

- Keys are generated on demand
 - No need to program the key
 - No non-volatile memory required
- No need to store information on chip
 - Unlike conventional digital storage
 - Security achieved through a Challenge-Response mechanism
- ➤ No attack when the chip is OFF
- Resilient against invasive attacks
 - The PUF would be changed/destroyed

Weak PUFs

☐ Example: Ring-Oscillator (RO) based PUF*

$$n$$
 ROs ==> $\binom{n}{2}$ CRPs : $O(n^2)$

- > Weak PUF: Limited number of independent CRPs
 - Polynomial w.r.t. the number of components

^{*} G. Sush and S. Devadas, IEEE/ACM Design Automation Conference, 2007

Strong PUFs

☐ Example: Arbiter PUF*

- \Rightarrow 2n Multiplexers ==> 2ⁿ CRPs : $O(2^n)$
- > Strong PUF: Huge number of independent CRPs
 - Exponential w.r.t. the number of components

Weak PUF vs. Strong PUF

Weak PUF

- Limited number of CRPs
 - Polynomial
- CRPs must be kept secret
 - Otherwise, the attacker can fully characterize the PUF
- Applications
 - Key generation, fingerprint

Strong PUF

- ➤ **Huge** number of CRPs
 - Exponential
- > CRPs are **not secret**
 - <u>Infeasible</u> to fully recover the truth-table
- Applications
 - Device authentication, logic obfuscation, etc.

Overview of the Proposed Work

- 1) Proposing a strong PUF based on STT-MRAM devices
 - Previous work: an STT-MRAM based weak PUF
 - Introducing the idea of Group Formation
 - The proposed strong PUF

- 2) Generalizing the idea of *Group Formation*
 - ❖ How to make a strong PUF in general?
 - Applying the idea of group formation to RO-based weak PUF

Introduction to STT-MRAM

- Spin-Transfer Torque Magnetic RAM (STT-MRAM)
 - A nano device, with Magnetic Tunnel Junction (MTJ) as its storage

Two states:

- 1) Parallel (P): low resistance, associated with logic 0
- 2) Anti-Parallel (AP): high resistance, associated with logic 1

An STT-MRAM based Weak PUF*

> Main idea

Two identical cells with the same magnetization

$$R = \begin{cases} 0 & \text{if } r_{MTJ1} > r_{MTJ2} \\ 1 & \text{if } r_{MTJ1} < r_{MTJ2} \end{cases}$$

> Architecture

- n/2 pairs ==> $2^{n/2}$ CRPs
- Only 2 independent CRPs
 - 1) All pairs set to state *P*
 - All pairs set to state AP

✓ Weak PUF

Weak PUF vs. Strong PUF

- > PUFs are based on noisy analog features
 - STT-MRAM: resistances of the MTJ devices
 - Arbiter, RO-based: gate delays
- > Analog features "collapsing" into digital bits ==> PUF
 - STT-MRAM: Resistance comparison of two cells
- Analog features can offer an unlimited number of CRPs
 - Infinite precision
- Weak PUF vs. Strong PUF
 - How much of such infinite precision is exploited before collapsing into digital?

Strong PUF Component 1: Group Formation

- Previous Weak PUF:
 - Comparing the resistances of two single cells
- > Group Formation:
 - Comparing the resistances of two groups of cells
 - □ Example:
 - 6 STT-MRAM cells
 - 3 cells per group
 - Fixed magnetization
 - Group 1 vs. Group 0

Configurable grouping: 10 independent CRPs

Group Formation Block

- > Two groups (Group 1 and Group 0) with 3 cells
- Each cell can join <u>either</u> of groups, but <u>not both simultaneously</u>
- \triangleright Challenge bits: C_1 to C_6 , controlling 12 switches
- Example:
 - Group 1: Cells in Grey

Strong PUF Component 2: Bit Pattern

Bit Pattern:

 Changing the magnetization of cells in each group (assumed to be fixed so far)

Example:

- Same number of cells in states P and AP in both groups
- 20 independent CRPs (per 6 cells) for every group choice

Proposed STT-MRAM Based Strong PUF

- n/2 cells per group
- Each cell can join <u>either</u> of groups, but <u>not both simultaneously</u>.
- Groups with <u>less</u> than n/2 cells: <u>not allowed</u> by the architecture
 - To avoid using the info. of smaller groups to determine the larger ones

Challenges:

- 1) Group Formation
- 2) Bit Pattern Selection
- * Responses: 1 or 0 (1-bit)

Analysis of the Proposed PUF (1/2)

- Total resistance of each group
 - Parallel equivalence of all cells
- Example:
 - 3 cells per group (two *P*'s and one *AP*)

$$\frac{1}{r_{G1}} = \frac{1}{r_1^P} + \frac{1}{r_2^{AP}} + \frac{1}{r_4^P}$$
 and $\frac{1}{r_{G0}} = \frac{1}{r_3^{AP}} + \frac{1}{r_5^P} + \frac{1}{r_6^P}$

- Hardware overhead
 - Previous weak PUF: n sense-amplifiers
 - Proposed PUF: 1 sense-amplifier + 2n switches

Analysis of the Proposed PUF (2/2)

- Number of independent CRPs
 - 1) Group Formation: $\frac{1}{2} \binom{n}{n/2}$
 - 2) Bit Pattern Selection: $\sum_{i=0}^{n/2} {n \choose 2 i}^2$

Total number of independent CRPs

$$\frac{1}{2} \times \binom{n}{\frac{n}{2}} \times \sum_{i=0}^{n/2} \binom{\frac{n}{2}}{i}^2 = \frac{1}{2} \binom{n}{\frac{n}{2}}^2$$

Factorial growth of independent CRPs ==> Strong PUF

Simulation Results: Inter-chip

- Experiment Setup:
 - 1024-bit responses
 - 100 Chips
 - MATLAB model*

- ➤ Inter-chip randomness
 - Hamming Distance

Simulation Results: Intra-chip

- Intra-chip randomness
 - 1) Hamming Weight: randomness of bits within the same response
 - 2) Bit Aliasing: single bit randomness among different responses

Strong PUF Beyond STT-MRAM

- Necessary conditions for making a strong PUF
 - 1) Device-level compatibility for group formation
 - STT-MRAM: parallel combination of MTJ cells' resistances
 - Arbiter PUF: gate delays
 - Not supported in "SRAM-based power-up PUF" *

- 2) Architecture-level support to achieve independent CRPs
 - STT-MRAM: group formation flexibility
 - Arbiter PUF: path selection

RO-based Strong PUF

- > RO-based weak PUF
 - Two ROs compared at a time
 - n ROs ==> $\binom{n}{2}$ CRPs : $O(n^2)$

RO-based strong PUF

 \Rightarrow 2n Inverters ==> 2^n CRPs : $O(2^n)$

Conclusions

♦ Weak PUF vs. Strong PUF

How much to exploit the noisy analog feature?

♦ An STT-MRAM based strong PUF

- Based on the idea of Group Formation
 - Fixing the group size
 - Allowing each device to join either of groups, but not both
- Simulation results confirmed high quality of randomness

♦ Making a strong PUF in general

- 1) Device-level compatibility for group formation
- 2) Architecture-level support for huge CRPs