A. 若干检验的一致最优性

在本章定义 1.3 中已给出了一个检验问题 H_0 : H_1 的水平 α 一致最优检验的定义. 它是一切水平 α 检验中其功效在对立假设 H_1 上处处达到最大的检验. 如已说明的,这种检验的存在是稀有的例外,但在一些重要的单参数分布族的单侧检验问题中,以及在个别多参数检验中,它确实存在. 5.2 节中许多例子属于这种情况. 这里我们来作一些讨论.

1. 简单假设下的奈曼-皮尔逊基本引理

考虑一个最简单的情况:原假设 H_0 和对立假设 H_1 中,都只包含一分布.为确定计,设分布都有密度,离散型的情况完全类似,只须把积分变成求和即可.因此,有

 H_0 :总体有密度 $f_0(x)$

 H_1 :总体有密度 $f_1(x)$

设 X_1, \dots, X_n 为样本,则(X_1, \dots, X_n)的密度,在 H_0 和 H_1 之下,分别为 $g_0(y) = f_0(x_1) \dots f_0(x_n)$ 和 $g_1(y) = f_1(x_1) \dots f_1(x_n)$. 这 里已简记 $y = (x_1, \dots, x_n)$. 求这个问题的水平 α 的检验,转化为下述数学问题:找 y 空间之一区域 Q,作为检验的否定域(当(X_1 , \dots, X_n)落在 Q 内时否定 H_0 ,不然就接受 H_0)为使 Q 达到最优,就必须在条件

$$\int_{\mathcal{Q}} g_0(y) \mathrm{d}y \leqslant \alpha$$

之下,使 $\int_Q g_1(y) dy$ 达到最大. 很容易看出: 为达到这一点, Q 必须这样取: 把比值 $g_1(y)/g_0(y)$ 大的那些 y 收进来. 这就是奈-皮基本引理:

- **庆基本引理** 水平 α 的一致最优检验 φ 的否定域 Q 应如下取: 找常数 C . 使

$$Q = \{ y : g_1(y) / g_0(y) > C \} \tag{1}$$

而满足

$$\int_{Q} g_0(y) \mathrm{d}y = \alpha \tag{2}$$

证 (2)式保证了检验 φ 的水平为 α ,现设 φ' 为另一水平 α 检验,其否定域为 Q'.记 Q 与 Q' 的公共部分为 R. Q_1 记 Q 中去掉 R 的剩余部分, Q'_1 记 Q'中去掉 R 的剩余部分(图 5.5),则易见

$$\int_{Q} g_1(y) dy - \int_{Q'} g_1(y) dy = \int_{Q_1} g_1(y) dy - \int_{Q_1'} g_1(y) dy (3)$$

由于 φ' 有水平 α ,有

$$\int_{Q'} g_0(y) \mathrm{d}y \leqslant \alpha$$

再由(2)式,知

$$\int_{Q_1} g_0(y) \mathrm{d}y \geqslant \int_{Q_1'} g_0(y) \mathrm{d}y \qquad (4)$$

因为 Q_1' 在 Q 之外,接(1)式,当 y 属于 Q_1' 时,有 $g_1(y) \leq Cg_0(y)$. 而当 y 属于 Q_1 时有 $g_1(y) > Cg_0(y)$. 故

图 5.5

$$\int_{Q_1} g_1(y) dy \ge C \int_{Q_1} g_0(y) dy, \int_{Q_1'} g_1(y) dy \le C \int_{Q_1'} g_0(y) dy$$

由此及(3),(4),即知

$$\int_{Q} g_1(y) \mathrm{d}y \geqslant \int_{Q_1'} g_1(y) \mathrm{d}y$$

即检验 φ 的功效总不小于 φ 的功效,由于 φ 是任取的水平 α 检验,证明了 φ 是水平 α 的一致最优检验.

2. 复合假设检验的情况

现考虑一般的复合假设检验问题 $H_0: H_1$. 关于其水平 α 一致最优检验的存在,有如下的简单结果:

定理 在 H_0 中取定一值 θ_0 ,对 H_1 中的值 θ_1 建立假设检验问题:

$$H_0':\theta_0;H_1':\theta_1 \tag{5}$$

按奈-皮引理,求出其水平 α 一致最优检验 φ . 如果 φ 符合以下两个条件,则它必须是原问题 $H_0:H_1$ 的一个水平 α 一致最优检验:

- 1° 检验 φ 也是 $H_0: H_1$ 的水平 α 检验.
- 2° 检验 φ 不依赖于 θ_1 值.

证 设 φ' 为 H_0 : H_1 之任一水平 α 检验,则它必是(5)的一个水平 α 检验. 这很显然: 以 $\beta_{\varphi'}(\theta)$ 记 φ' 的功效函数. φ' 为 H_0 : H_1 的水平 α 检验,意味着 $\beta_{\varphi'}(\theta)$ 在 H_0 上处处不超过 α ,因而特别在 θ_0 点不超过 α . 这样, φ 和 φ' 都是(5)的水平 α 检验而 φ 是(5)的水平 α 一致最优检验,故 $\beta_{\varphi}(\theta_1) \geqslant \beta_{\varphi'}(\theta_1)$. 因为这个事实对 H_1 中任一个 θ_1 都成立,即知 φ 为 H_0 : H_1 的水平 α 一致最优检验.

在本定理中, θ_0 值如何取? 对形如 $\theta \leq a$ 或 $\theta \geq a$ 这样的单侧原假设, θ_0 总是取为 a.

例1 X_1, \dots, X_n 为抽自正态总体 $N(\theta, \sigma^2)$ 的样本, σ^2 已知, 考虑检验问题

$$H_0: \theta \leqslant a \; ; H_1: \theta > a$$
 (6)

a 为给定常数.

按本定理,取 $\theta_0 = a$,任取 $\theta_1 > a$.作检验问题 $H'_0: \theta = a$; $H'_1: \theta = \theta_1$ (7)

按奈-皮基本引理,(7)的水平 α 一致最优检验 φ 有否定域:

$$\left\{ (x_1, \dots, x_n) : \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^n \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta_1)^2 \right] \right.$$

$$\left. \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^n \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - a)^2 \right] > C \right\}$$

取对数,易知此集合为

$$\{(x_1,\dots,x_n):\sigma^{-2}(\theta_1-a)\sum_{i=1}^n x_i>C_1\}$$

对某个常数 C_1 . 因 $\theta_1 - a > 0, \sigma^2 > 0$, 此集合化为

$$\{(x_1, \dots, x_n): \sum_{i=1}^n x_i > C_2\}$$
 (8)

的形状. C_2 为另一常数,要使此检验有水平 α ,应取 $C_2 = na + \cdot 272 \cdot$

 $\sqrt{n}\sigma u_{\alpha}$. 此值与 θ_1 无关,因而定理的条件 2°满足. 另外,这个检验的功效函数是 $1-\Phi\left(u_{\alpha}-\frac{\theta-a}{\sigma}\right)$,是 θ 的上升函数. 所以,这个检验也是(6)的水平 α 检验. 这样,条件 1°也适合. 据定理,这检验就是(6)的水平 α 的一致最优检验.

指数分布,二项分布和波哇松分布参数的单侧假设检验问题, 也可以用与本例相同的方法证明其一致最优检验存在.留给读者 作为习题.

若在本例中考察双侧假设 $H_0: \theta = a$, $H_1: \theta \neq a$,则一致最优检验不存在,其理由现在也不难看出,因现在 θ_1 可以大于 a 也可以小于a. 当 $\theta_1 > a$ 时,检验问题 (7)的一致最优检验的形式如 (8). 若 $\theta_1 < a$,则一致最优检验的否定域形如

$$\left\{(x_1,\cdots,x_n):\sum_{i=1}^n x_i < C_3\right\}$$

与(8)不同. 因此,定理的条件 2°不满足.

B. 非中心 t 分布与 t 检验

设 X 与 Y 独立, $X \sim N(0,1)$, $Y \sim \chi_n^2$,又设 δ 为常数,则随机变量 $Z = (X + \delta) / \sqrt{\frac{1}{n}} Y$ 的分布称为自由度 n、非中心参数 δ 的非中心 t 分布,记为 $Z \sim t_{n,\delta}$. $t_{n,\delta}$ 的分布函数将记为 $F_{n,\delta}(x)$. 当 $\delta = 0$ 时,就得到在第二章例 4.10 中介绍过的自由度 n 的 t 分布 (有时称中心 t 分布).

非中心 t 分布也是数理统计应用上的重要分布,但其分布函数 $F_{n,\delta}(x)$ 的形式很复杂,此处不去介绍.只提到一点对下文有用的性质:若 $\delta_2 > \delta_1$,则 $F_{n,\delta_2}(x) \leq F_{n,\delta_1}(x)$.事实上,记

$$Z_i = (X + \delta_i) / \sqrt{\frac{1}{n}Y}, i = 1,2$$

X,Y 如上文所述,则有 $Z_1 < Z_2$,故对任何 x 有 $P(Z_1 \leq x) \geqslant P(Z_2 \leq x)$,即 $F_{n,\delta_1}(x) \geqslant F_{n,\delta_2}(x)$.

有了这些准备,我们可以解决 5.2 节中遗留下来的有关 t 检

验的问题.

设 X_1, \dots, X_n 为抽自 $N(\theta, \sigma^2)$ 中的样本, θ, σ^2 都未知,对假设检验问题

$$H_0: \theta \geqslant \theta_0, H_1: \theta < \theta_0$$

我们引进了 t 检验 ψ , 由 (2.14) 给出. 其功效函数为 (2.15). 现易知, (2.15)的 $\beta_{\psi}(\theta,\sigma)$ 为

$$\beta_{\psi}(\theta,\sigma) = F_{n-1,\sqrt{n}(\theta-\theta_0)/\sigma}(-t_{n-1}(\alpha)) \tag{9}$$

事实上,有

$$\sqrt{n}(\overline{X} - \theta_0)/S = \left(\frac{\sqrt{n}(\overline{X} - \theta)}{\sigma} + \frac{\sqrt{n}(\theta - \theta_0)}{\sigma}\right)\sqrt{\frac{1}{\sigma^2}S^2}$$

当参数值为 (θ,σ) 时, $\sqrt{n}(\overline{X}-\theta)/\sigma\sim N(0,1)$, $(n-1)S^2/\sigma^2\sim\chi_{n-1}^2$,且二者独立. 故按非中心 t 分布的定义及(2.15)式,即得(9).

由(9)式可知, $\beta_{\psi}(\theta,\sigma)$ 为 θ 的下降函数. 因当 θ 增加时, $\sqrt{n}(\theta-\theta_0)/\sigma$ 增加. 按前面证明的性质, 即知(9)式右边下降, 因为 $\beta(\theta_0,\sigma)=\alpha$, 知当 $\theta \! \geqslant \! \theta_0$ 时有 $\beta_{\psi}(\theta,\sigma) \! \leqslant \! \alpha$. 这证明了: t 检验(2.14)有水平 α .

其次,功效函数(9)的形式也说明:给定 $\theta_1 < \theta_0$ 及 $\beta < \alpha$,不论 你取样本大小 n 多大,也无法保证对一切 $\sigma > 0$ 有 $\beta_{\phi}(\theta_1, \sigma) \ge \beta$, 事实上,固定 n,当 $\sigma \rightarrow \infty$ 时有

$$\lim_{\sigma \to \infty} \beta_{\psi}(\theta_1, \sigma) = \lim_{\sigma \to \infty} F_{n-1, \sqrt{n}(\theta - \theta_0)/\sigma}(-t_{n-1}(\alpha))$$
$$= F_{n-1, 0}(-t_{n-1}(\alpha)) = \alpha$$

这样,不论你固定 n 多大,只要 α 充分大,就可以使 $\beta_{\varphi}(\theta_1,\sigma)$ < β .

如果以 σ 为单位来衡量 θ_1 与 θ_0 的差距,即要求当 $(\theta_1 - \theta_0)/\sigma$ 固定为某个指定的 $\delta_0 < 0$ 时有 $\beta_{\psi}(\theta_1, \sigma) \geqslant \beta(\beta)$ 为指定的小于 1 的数),则这可以做到:只须取 n 充分大,使 $F_{n-1,\sqrt{n}\delta_0}(-t_{n-1}(\alpha)) \geqslant \beta$. 这可以通过查非中心 t 分布表求得.

这个在实用上看也是合理的.在方差未知时,均值距离的实际 意义如何,往往要看方差大小而定.方差愈大,一定的均值距离意 义就愈小.好比秤的误差愈大,两件东西的重量就必须有更大的差 别,才能较有把握地在这把秤上显示出来.(9)式中的功效函数,通

过 $(\theta - \theta_0)/\sigma$ 而依赖于 (θ, σ) ,反映了这一点. 类似的结论对两样本 t 检验当然也成立,我们把细节留给读者去完成.