

1) The Z2 orbifold of the W=2 SYM gange group: SU(2)a x SY(2)b

U(1)-5gm. 5u(1) a su(1) b u(1) s u(1) x su(1) x su(1) 2 su(1), su(1) 2 p x t R 1 1/3 2/3 \mathcal{I} -10/2/2/3 2 0 4 1/2 2/3 Ø 2 Ô \mathcal{T} 0 2 2 0 2 2/3 2 -[0 2/3 2 0 0 0 Ô 2

table of mesons and baryons:

	U(1)x/8	N(1)~8	su(2),	ડત(હ),	SU(2),	54(2)2	U(1) 7/3	4(1)7/0
M = Q + Q_	0	0	2	2	1	L	0	-(
$M_t^u = Q_1 Q_2^t$	0	O	2	ፓ	t	(0	1
M, = Q, HQ2	0	0	1	1	2	2_	O	1
M_= Q1-Q21+	Ø	0	1	1	2	2	0	-
Be; +-= (Qe+)2	+1	~]	1		1	1	(-1) ^{Q41}	(-1) ^e
$\mathbb{S}_{\ell_1}=(\mathbb{Q}_\ell^{1-})^2$	-1	-	1	1		1	(-1)e+1	(-1)e
Be;-+= (Qe)2	7	+	1	1	1	İ	(-1) ⁶⁺¹	(-1) P+1
Be; ++ = (Qe)2	4	+	((1	I	(-1) ^{P+}	$(-1)^{\ell+1}$
$T^{[i]} = Q_i^{\underline{t}} Q_i^{\underline{t}}$	さ	0	2	1	2	1	1	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>†</u>	O	1	7	1	2	-1	0
-112 = 0, + C), +	0	7 1	2	l	1	7	0	S
T221 = Q1 Q1 =	0	71	l (2	2_	1	a	0

2) IR dual descriptions A We seek IR dual of orbifold theory which is SU(2) ganging of an SCFT TA.

• flavor sym: $SU(N)_u^2 \times SU(N)_v^2 \times SU(N)_t^2 \times U(I)_s \times U(I)_t \times U(I)_t$

· operators!

My, Mo, and Mt

(u(1)-charges of M2 as for M" and M")

gauge Su(2) = - symmetry of TA and add fields;

	2U(1)2	u(1)8	(U(1)x	u(1)R	ulips	14(1)r	u(1)t
q(±)	2	土丨	Į	0	-(-1	Ò
φ ⁽¹⁾	2	- 1	-	2/3	±1	7)	-1
$\mathcal{B}_{i,\pm t}$	l	0	±2	4/3	171	1±1	1
$B_{1,7}\pm$	1	±2	Ō	4/3	(7)	± 1	1
T_{o}		0	0	2	2	2	0
(M2)	2.	±, (1,1	4/3	t21	∓ ₁	1

superpotential:

$$W \supset q^{(-)} \Phi^{(+)} B_{1,-+} + q^{(+)} \overline{\Phi}^{(+)} B_{1,++} + q^{(-)} \underline{\Phi}^{(-)} B_{1,--}$$

$$+ q^{(+)} \Phi^{(-)} B_{1,+-} + q^{(+)} q^{(-)} T_0 + \Phi^{(+)} (M_4^2)^+ + \Phi^{(-)} (M_2^2)^-$$

- · Under duality M_{\pm}^{u} , M_{\pm}^{v} , and $B_{1,ab}$ map as names suggest
- Baryons $\mathbb{D}_{2,ab}$ of theory \mathbb{D} map as: $\mathbb{B}_{2,+-} \longrightarrow q^{(-)}(M_{+}^{2}), \ \mathbb{B}_{2,-+} \longrightarrow q^{(+)}(M_{-}^{2})^{+},$ $\mathbb{B}_{2,++} \longrightarrow q^{(-)}(M_{-}^{2})^{+}, \ \mathbb{B}_{2,--} \longrightarrow q^{(+)}(M_{+}^{2})^{-}$

All 't Hooft anomalies of theory

1) and 2) match!

The TA SCFT:

• add following fields to both sides of duality $0 \iff 2$:

	SU(2) w	ucl)8	U(1)~	u(i)R	u(i)s	ucily	u(1)t
q(t)	7.	t	7	0	1	(O
butt	1	0	Ŧ 1	2 3	-l±1	-(71	-1
b ₁ =1	1	Ŧ L	0	2 3	-1±1	-171	<u>-</u> 1
to	1	O	0	2	-2	- 2	٥
		,					

and superpotential!

· tune to enhance to SU(2) x/s

in theory 1) su(2) is broken by SP-terms

-> turn them off
in theory 1): go to strong coupling point

ogange SU(2) x/s

-> give ver to gange inv. mesonic

operators breaking SU(2)₂ (Higgsing)

-> theory TA remains coupled to

I' fields through SP

· remove extra fields:

add SP \$ (t) of (t) -> integrate out \$ (t)

-s TA SCFT has flavor sym.: