Máquinas de Vectores Soporte (SVM)

Alfredo Cuesta Infante

E. T. S. Ingeniería Informática Universidad Rey Juan Carlos

Master Univ. en Visión Artificial Reconocimiento de Patrones

Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Intuición

Riesgo estructural Márgenes Truco del Kernel

Clasificación lineal

Notación Márgenes hard Márgenes soft El problema dual

Clasificación no lineal

Intuición

Riesgo estructural Márgenes Truco del Kernel

Clasificación lineal

Notación Márgenes hard Márgenes soft El problema dual

Clasificación no lineal

El truco del Kernel

Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Clasificación lineal

Intuición

Riesgo estructural Márgenes Truco del Kernel

Clasificación linea

Notación Márgenes hard Márgenes soft

Clasificación no linea

Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Intuición

Márgenes

Clasificación lineal

Notación Márgenes hard Márgenes soft

Clasificación no lineal

¿Qué clasificador es mejor?

- Los clasificadores C₁, C₂ y C₃ clasifican PERO... ¿qué ocurrirá cuando llegue un nuevo ejemplo próximo a la superficie de decisión?
- ► Cuanto mayor sea el **margen** menor es el **riesgo** de FPs y FNs

Figura: (Der.) Tres clasificadores que no cometen ningún error en el conjunto de entrenamiento pero seguramente funcionen mal con datos nuevos. (Izq.) Este clasificador que maximiza el margen entre ambas clases. [Fuente: Original de A. Cuesta]

Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Intuició

Riesgo estructural Márgenes

Clasificación lineal Notación Márgenes hard Márgenes soft

Clasificación no lineal

Intuición

"La justicia inflexible es frecuentemente la injusticia más grande"

Publio Terencio Africano (194 a.C. – 159 a.C.)

 Si permitimos algunos ejemplos dentro de los márgenes, entonces podemos aumentarlos y encontrar clasificadores con mayor potencial generalizador

Figura: (Der.) Márgenes hard. (Izq.) márgenes soft [Fuente: Original de A. Cuesta]

Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Intuición

Riesgo estructural Márgenes

Clasificación lineal

Notación Márgenes hard Márgenes soft

Clasificación no lineal

Intuición

Clasificación No-Lineal

- Con SVM no vamos a necesitar transformar el vector de características a otro espacio.
- En su lugar alguien de ese espacio vendrá al nuestro con el resultado de las operaciones.

Máquinas de Vectores Soporte (SVM)

Alfredo Cuesta Infante

Intuició

Riesgo estructura Márgenes Truco del Kernel

61 16 17 11

Clasificación lineal Notación Márgenes hard Márgenes soft

Clasificación no lineal

Intuición

Riesgo estructural Márgenes Truco del Kernel

Clasificación lineal

Notación Márgenes hard Márgenes soft El problema dual

Clasificación no linea El truco del Kern Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Intuició

Riesgo estructural Márgenes

Clasificación lineal

Notación Márgenes hard Márgenes soft

CI 10 17 11 1

$$\mathbf{w} = (w_1, w_2, \dots, w_m)^T$$
 , $\mathbf{x} = (x_1, x_2, \dots, w_m)^T$.

Dado que hemos sacado el término independiente del vector de pesos, la expresion del discriminante es ahora:

$$\hat{t} = \begin{cases} +1 & \text{si} & \mathbf{w}^{\mathsf{T}} \mathbf{x} + b > 0 \\ -1 & \text{si} & \mathbf{w}^{\mathsf{T}} \mathbf{x} + b < 0 \end{cases}$$
 (1)

donde b es el término independiente y, al igual que en la semana pasada, las etiquetas son +1 y -1 porque serán 'matemáticamente convenientes'.

Recordar también que en 2D

- lacktriangle Una recta se puede definir con un punto y un vector director $oldsymbol{v}$
- ▶ Un hiperplano se puede definir con un punto y un vector normal w
- ► El vector director y el normal son ortogonales: $\mathbf{v}^T \mathbf{w} = \mathbf{w}^T \mathbf{v} = 0$
- ▶ La ecuación implícita de una recta: $w_1x_1 + w_2x_2 + b = \mathbf{w}^T\mathbf{x} = 0$

Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Intuición

Riesgo estructural Márgenes

Clasificación lineal Notación Márgenes hard

El problema dual

1. Calcular la distancia de la superficie de decisión al origen

Figura: El clasificador lineal viene dado por un vector director \mathbf{v} y un punto de corte b. El vector \mathbf{w} es perpendicular a \mathbf{v} y sirve para calcular la distancia de la recta al origen. Combinando todo podemos representar d en función de \mathbf{w} y b. [Fuente: Original de A. Cuesta]

En definitiva, la distancia del clasificador al origen es

$$d = \frac{b}{\|\mathbf{w}\|}$$

Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Intuició

Riesgo estructural Márgenes

Clasificación lineal

Notación Márgenes hard Márgenes soft

Clasificación no lineal

Clasificación lineal con márgenes hard

Planteamiento geométrico del problema

2. Imponer el margen hard

Todos los ejemplos de cada clase deben quedar por encima (o por debajo) de los márgenes.

Para ello situamos dos clasificadores H^+ y H^-

Figura: Para crear el margen se añaden dos planos paralelos entre las clases, sin ningún ejemplo entre ellos. [Fuente: Original de A. Cuesta]

En definitiva

$$2\varepsilon = (d+\varepsilon) - (d-\varepsilon) = \frac{b+1-(b-1)}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}, \text{ luego } \varepsilon = \frac{1}{\|\mathbf{w}\|}$$

Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Intuición

Riesgo estructural Márgenes

Clasificación lineal Notación Márgenes hard Márgenes soft

Clasificación no lineal

Planteamiento geométrico del problema

3. En definitiva:

 Cuanto más pequeña sea la norma del vector de pesos ||w||, mayor será el márgen ε; es decir, buscamos

$$\mathbf{w}^* = \operatorname*{arg\,min}_{\mathbf{w}} \|\mathbf{w}\|$$

Las dos restricciones impuestas se pueden escribir en una sola:

$$\begin{array}{ll} \mathrm{Si} & \hat{\mathbf{r}}^{(i)} = +1 & \mathrm{entonces} & \mathbf{w}^{(i)\intercal}\mathbf{x} + b \geq +1 \\ \mathrm{Si} & \hat{\mathbf{r}}^{(i)} = -1 & \mathrm{entonces} & \mathbf{w}^{(i)\intercal}\mathbf{x} + b < -1 \end{array} \right\} = \\ & \left(\hat{\mathbf{r}}^{(i)}\right)\!\!\left(\mathbf{w}^{(i)\intercal}\mathbf{x} + b\right) \geq 1.$$

Por tanto el problema de optimización es:

minimizar
$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

sujeto a $(\hat{t}^{(i)})(\mathbf{w}^{(i)T}\mathbf{x} + b) \ge 1$,
para $i = 1, 2, ..., m$.

Recordar que
$$\|\mathbf{w}\| = \mathbf{w}^T \mathbf{w}$$

Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Intuición

Riesgo estructural Márgenes

Clasificación lineal Notación Márgenes hard Márgenes soft

Clasificación no lineal

Introducción de variables Slack

 \blacktriangleright Permitimos que haya ejemplos en el margen utilizando un peso ζ que incorporamos a la función de coste

Figura: Slack variables para ejemplos que violan la restricción. [Fuente: Original de A. Cuesta]

1. Compromiso

- Queremos ampliar el margen
- Queremos minimizar el número de ejemplos que hay dentro del margen

Para gestionarlo se añade el hiperparámetro C:

$$\min_{\mathbf{w},b,\zeta} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i=1}^m \zeta^{(i)}$$

Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Intuición

Riesgo estructural Márgenes

Clasificación lineal Notación Márgenes hard Márgenes soft

Clasificación no lineal

Introducción de variables Slack

2. Modificación de las restricciones

$$\left(\hat{t}^{(i)}\right)\left(\mathbf{w}^{(i)\mathsf{T}}\mathbf{x}+b\right)\geq 1-\zeta^{(i)}$$

3. En definitiva

$$\underset{\mathbf{w},b,\zeta}{\text{minimizar}} \quad \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C \sum_{i=1}^{m} \zeta^{(i)},$$
sujeto a
$$\begin{cases}
\left(\hat{\mathbf{r}}^{(i)}\right) \left(\mathbf{w}^{(i)T}\mathbf{x} + b\right) \ge 1 - \zeta^{(i)} \\
\zeta^{(i)} \ge 0 \\
i = 1, 2, \dots, m.
\end{cases} \tag{2}$$

- C es una medida de cuanto queremos evitar que haya ejemplos en el márgen. Cuanto más pequeño, menos queremos evitarlo, es decir más permisivos somos.
- Problema de optimización cuadrática con restricciones !!
- ► Solución mediante multiplicadores de Lagrange

Multiplicadores de Lagrange

▶ Técnica mediante la cual el problema se formula en términos de unas nuevas variables $\alpha^{(i)}$ con restricciones más sencillas.

$$\underset{\alpha}{\text{minimizar}} \quad \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha^{(i)} \alpha^{(j)} t^{(i)} t^{(j)} \mathbf{x}^{(i)} \mathbf{x}^{(j)} - \sum_{i=1}^{m} \alpha^{(i)}$$
sujeto a
$$\alpha^{(i)} > 0$$

$$i = 1, 2, \dots, m.$$
(3)

- ▶ Cada eiemplo $\mathbf{x}^{(i)}$ tiene un multiplicador de Lagrange $\alpha^{(i)}$.
- El problema se puede resolver mediante métodos computacionales.
- Una vez resuelto, algunos (muchos) multiplicadores se anulan. Los ejemplos asociados a los multiplicadores distintos de cero son los vectores soporte.
- El vector de pesos óptimo es:

$$\mathbf{w}^* = \sum_{i=1}^m \alpha^{*(i)} t^{(i)} \mathbf{x}^{(i)} \; ; \; b^* = \frac{1}{n_s} \sum_{i: \alpha^{*(i)} > 0} \left((1 - t^{(i)}) (\mathbf{w}^{*T} \mathbf{x}^{(i)}) \right)$$
 (4)

 n_s es el número de vectores soporte, o sea el número de $\alpha^{*(i)} > 0$.

Intuición

Riesgo estructural Márgenes Truco del Kernel

Clasificación linea

Notación Márgenes hard Márgenes soft El problema dua

Clasificación no lineal El truco del Kernel Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Intuició

Riesgo estructural Márgenes

Clasificación lineal

Notación Márgenes hard

Clasificación no lineal

Clasificación no linea

Clasificación lineal

El truco del Kernel

El truco del Kernel

- En la formulación dual, la función de coste depende del producto escalar de cada dos vectores transformados
- \blacktriangleright Pero si en vez de tener la transformación ϕ tuvieramos una función K (Kernel) que nos devuelva el resultado de dicho producto escalar en el espacio al que nos lleva ϕ , ¿podríamos resolver el problema?

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha^{(i)} \alpha^{(j)} t^{(i)} t^{(j)} \phi(\mathbf{x}^{(i)})^{\mathsf{T}} \phi(\mathbf{x}^{(j)}) - \sum_{i=1}^{m} \alpha^{(i)} \\
\downarrow \\
\min_{\alpha} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha^{(i)} \alpha^{(j)} t^{(i)} t^{(j)} \mathcal{K}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) - \sum_{i=1}^{m} \alpha^{(i)}$$

▶ Aparentemente **NO** porque la solución $\{\mathbf{w}^*, b^*\}$ depende de $\phi(\mathbf{x}^{(i)})$

$$\mathbf{w}^* = \sum_{i=1}^m \alpha^{*(i)} t^{(i)} \phi(\mathbf{x}^{(i)}) \; ; \; b^* = \frac{1}{n_s} \sum_{i: \alpha^{*(i)} > 0} \left((1 - t^{(i)}) (\mathbf{w}^{(*)T} \phi(\mathbf{x}^{(i)})) \right)$$

- ▶ Pero ; para qué queremos saber $\{\mathbf{w}^*, b^*\}$?
 - ¿No es para clasificar nuevos ejemplos?
 - \rightarrow Vamos a ver qué aspecto tiene la función discriminante

$$\hat{\mathbf{t}} = \mathbf{w}^{*T} \phi(\mathbf{z}) + b^* = \left(\sum_{i=1}^m \alpha^{*(i)} t^{(i)} \phi(\mathbf{x}^{(i)})\right)^T \phi(\mathbf{z}) + b^*$$

$$= \sum_{i:\alpha^{*(i)} > 0} \alpha^{*(i)} t^{(i)} \left(\phi(\mathbf{x}^{(i)})^T \phi(\mathbf{z})\right) + b^*$$

$$= \sum_{i:\alpha^{*(i)} > 0} \alpha^{*(i)} t^{(i)} K(\mathbf{x}^{(i)}, \mathbf{z}) + b^*$$

- ¡¡ Podemos clasificar ejemplos sin necesitar φ !! Necesitamos:
 - Resolver el problema dual planteado con un Kernel para obtener los multiplicadores no nulos
 - Utilizar la expresión de arriba para clasificar nuevos ejemplos, donde el término independiente óptimo b* es

$$b^* = \frac{1}{n_s} \sum_{i:\alpha^*(i)>0} \left(\left(1-t^{(i)}\right) \sum_{j:\alpha^*(j)>0} \left(\alpha^{*(j)}t^{(j)}K(\mathbf{x}^{(j)},\mathbf{z})\right) \right)$$

Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Intuición

Riesgo estructural Márgenes

Clasificación lineal Notación Márgenes hard

El problema dual

Algunos Kernels importantes

Nombre	$K(\mathbf{a},\mathbf{b}) =$	Hiperparámetros
Lineal	$\mathbf{a}^{T}\mathbf{b}$	
Polinomial	$\left(\gamma \mathbf{a}^{T} \mathbf{b} + r\right)^d$	γ , r , d
Sigmoide	$ anh\left(\gamma \mathbf{a}^T \mathbf{b} + r ight)$	γ , r
RBF Gaussiano	$\exp\left(-\gamma\ \mathbf{a}-\mathbf{b}\ ^2\right)$	γ
RBF = Radial Basis Function		

Máquinas de Vectores Soporte (SVM)

> Alfredo Cuesta Infante

Intuiciór

Riesgo estructural Márgenes

Truco del Kernel

Clasificación lineal

Notación Márgenes hard

El problema dual