

Wireless Sensors Networks 5 ISS

Teached by **Daniela Dragomirescu**

27/07/2023

INSA Toulouse

Onnig Brulez, Aude Jean-Baptiste, Romain Moulin, Marco Ribeiro Badejo

21/11/2023

Outline of the presentation

- I Introduction
- II Physical layer
- III MAC layer
- IV Network layer
- **V Power Consumption**
- **VI Conclusion**

Introduction

Zigbee standardization & use cases

1998

Beginning of preliminary work

2002

Creation of the Zigbee alliance

2003

Ratification of the norm 802.15.4 (physical & MAC layers)

2005

First commercialized Zigbee products

IEEE 802.15.4: physical and MAC layers

Zigbee Alliance: Network and application layers

Minimal use of the shared medium

Minimal energy consumption

Full stack

FOR WHAT?

LP-WPAN

21/11/2023

INSA Toulouse

Zigbee use cases

Autonomous cars

Smart homes

& connected

buildings

Physical layer

Physical Layer Generalities

- Range: From 10 to 100 meters in urban use
- Up to 65 535 nodes in a Zigbee network

Modulation

Benefits of OQPSK against QPSK :
Less amplitude fluctuation —> Lower Bit Error Rate —> More reliable

Modulation

Use of DSSS (Direct Sequence Spread Spectrum):

- Spreads the signal across a wider bandwidth
- Reduces Narrowband interference
- More secure
- Makes Zigbee more reliable

Frame Format

SHR: Start of Header MPDU: MAC Protocol Data Unit

PHR: Physical Layer Header PSDU: Protocol Data Service Unit

PPDU: Physical Protocol Data Unit

preambule sequence: 32 bit of 0

SFD: Sequence that indicates a zigbee frame is starting

MAC layer

Zigbee's frames are short : The MTU is 127 bytes

2 bytes

Specify:

- the type of the frame (ACK, Beacon, data, command)
- the address format
- the need or not for acknoledgement

Specify:

- The place of the frame in the sequence allowing to detect data loss or duplication

Specify:

- the source and destination of the frame

Specify:

the CRC code allowing to verify the integrity of the frame

- No synchronization between nodes
- Send when medium seems available
- Backoff time if collision

- Cannot reserve resources for transmission
- Too costly for low bandwidth
- Similar to Wifi except for RTS/CTS

With coordination **

- Presence of a coordinator
 - Sends beacon periodically
 - Every node synchronizes on the coordinator
 - Act as a relay for end nodes
- Less power consumption
 - Nodes can sleep until next beacon

With coordination **

- The superframe is the time between two beacons
 - It is composed of 16 slots
 - The first slot is dedicated to the beacon
- The first slots (Contention Access Period part) is dedicated to CSMA/CA frame transmission
- The last slots (Contention Free Period part) are reserved slot that the coordinator can allocate to some nodes

Users

Coordinator

Coordinator sends beacon

Types of access

INSA Toulouse

21/11/2023

- Coordinator sends beacon
- 2. Users that do not need to send or receive switch to sleep mode

Users

Coordinator

21/11/2023 INSA Toulouse

24

Users

Coordinator

- Coordinator sends beacon
- 2. Users that do not need to send or receive switch to sleep mode
- 3. Users send data to the relay then go to sleep

- Coordinator sends beacon
- 2. Users that do not need to send or receive switch to sleep mode
- 3. Users send data to the relay then go to sleep
- 4. Next beacon is sent, blue user learn that there is a frame for him

- Coordinator sends beacon
- 2. Users that do not need to send or receive switch to sleep mode
- 3. Users send data to the relay then go to sleep
- 4. Next beacon is sent, blue user learn that there is a frame for him
- 5. Blue user request frame

Coordinator

- Coordinator sends beacon
- Users that do not need to send or receive switch to sleep mode
- Users send data to the relay then go to sleep
- Next beacon is sent, blue user learn that there is a frame for him
- Blue user request frame
- Relay sends frame to blue user

Users

Coordinator

INSA Toulouse

The LLC sublayer

Typical role of LLC

Check the integrity of frames

2) Flow Control

3) Address convergence

LLC in Zigbee (SSCS)

Already done by the MAC layer

Send & wait

No address convergence (L2 and L3 addresses are the same)

Network layer

Different types of nodes

• **Zigbee Router**: It is a coordinator that will manage a small sub section of the network. It relays packets from end devices

 Zigbee End Devices: The devices that need to send and/or receive data. They do not run any routing process.

Different topologies

Routing protocol

The tree topology

- The addresses are given based on the depth and position of the node
- Easy to know where to send the packet in a tree topology
- More scalable

The mesh topology

- No addressing scheme
- Routing on demand using network flooding
- The nodes do not keep routes and topology information
- Expensive in large networks

Power Consumption

A standard known for its low consumption

21/11/2023

INSA Toulouse

Technical Specifications and Operational States of Zigbee

Operation frequency : 2.4GHz

Power transmission: -3.5DBm to +20dBm

Receiver sensibility: -92dBm

Transmission: 30mA

Figure 1 : Consumption in function of the Zigbee Mode on a ETRX35 Zigbee Module

Different modes:

- Transmission: Approx. 30mA (at 0 dBm)
- Receiving: 19 mA
- Standby: 1-2 μA
- Deep Sleep: < 1 μA

Energy efficiency

- Average consumption in transmission mode: 30mA
- Voltage: 3V
- Transmission time: 1s

$$P = I \times V \times t = 0.030A \times 3V \times 1s = 0.09 J$$

With an average data rate of 250 kbps:

Energy efficiency =
$$\frac{0.09 J}{250\ 000\ bps \times 1\ s}$$
 = 3.6×10-7J

We use 0,36µJ every bit we send!

Conclusion

Choosing Zigbee for your WSN?

Commercial & financial model

Full stack solution designed for IoT

Focuses on interoperability

Certification of Zigbee products by the CSA

Place in WSN & WPAN today

One of the most widely used standards

Mature technology

Still in **development**

Choosing Zigbee for its low-power properties?

Use of sleep / wakeup cycles

3.6×10⁻⁷ Joule / bit

Average Data Rate: 250kbps

Thank you for your attention

Any other questions?

Sources

- → icons: www.flaticon.com
- → Zigbee official website: https://csa-iot.org/all-solutions/zigbee/
- → Technologie ZigBee / 802.15.4 Protocoles, topologies et domaines d'application (Techniques de l'ingénieur):

 https://www.techniques-ingenieur.fr/base-documentaire/technologies-de-l-information-th9/reseaux-locaux-42292210/technologie-zigbee-802-15-4-te7508/
- → WPAN standards for IoT continue to develop use cases:

 https://www.techtarget.com/iotagenda/feature/WPAN-standards-for-IoT-continue-to-develop-use-cases
- → Zigbee standard Smart Energy datasheet: https://csa-iot.org/wp-content/uploads/2022/01/docs-07-5356-18-0zse-zigbee-smart-energy-profile-specification.pdf
- → ETRX35x ZIGBEE MODULES datasheet:

 https://www.silabs.com/documents/public/data-sheets/TG-PM-0516-ETRX35x
 public/data-sheets/TG-PM-0516-ETRX35x
 public/data-sheets/TG-PM-0516-ETRX35x
 https://www.silabs.com/documents/public/data-sheets/TG-PM-0516-ETRX35x
 https://www.silabs.com/documents/public/data-sheets/TG-PM-0516-ETRX35x
 public/data-sheets/TG-PM-0516-ETRX35x
 https://www.silabs.com/documents/public/data-sheets/TG-PM-0516-ETRX35x
 https://www.silabs.com/documents/TG-PM-0516-ETRX35x
 https://www.silabs.com/documents/TG-PM-0516-ETRX35x
 <a href="mailto:public/data-sheets/TG-P

