Сначала опишем регистр команд для разных случаев для общего понимания работы.

Например, есть команда **sub al, bl**:

Этот формат называется **R/M, R** (регистр / память, регистр). Используется при сложении/вычитании двух регистров либо регистра и памяти. Общий формат:

В регистре команд первые 6 разрядов относятся к $KO\Pi$ — это код операции. Определяет, какая операция совершается.

7 разряд d — определяет источник и приёмник. d=0 — источник в reg, приёмник в md, r/m; d=1 — источник в md, r/m, приёмник в reg.

8 разряд w – указывает на длину операнда.

md, r/m – задают режим адресации (см. таблицу 1).

reg – вместе с w определяют регистр.

disp – смещение адреса операнда.

Таблица 1. Формирование 16-разрядного ЕА

r/m	md			
	00	01	10	11
000	ds:[bx+si]	ds:[bx+si+disp8]	ds:[bx+si+disp16]	Смотри
001	ds:[bx+di]	ds:[bx+di+disp8]	ds:[bx+di+disp16]	таблицу
010	ss:[bp+si]	ss:[bp+si+disp8]	ss:[bp+si+disp16]	регистров
011	ss:[bp+di]	ss:[bp+di+disp8]	ss:[bp+di+disp16]	ниже.
100	ds:[si]	ds:[si+disp8]	ds:[si+disp16]	
101	ds:[di]	ds:[di+disp8]	ds:[di+disp16]	
110	ds:[disp16]	ss:[bp+disp8]	ss:[bp+disp16]	
111	ds:[bx]	ss:[bx+disp8]	ss:[bx+disp16]	

При md≠11 операндами являются регистр и память. При md=11 используются два регистра. У нас md=11, поэтому смотрим **таблицу регистров**:

reg,r/m	W	
при md=11	0	1
000	al	ax
001	cl	cx
010	dl	dx
011	bl	bx
100	ah	sp
101	ch	bp
110	dh	si
111	bh	di

Поскольку у нас d = 1, то значит, что источник находится в r/m, приёмник результата в reg.

Reg = 000, w = 0, регистр al.

r/m = 011, w = 0, регистр bl.

У нас в команде эти два регистра есть, и мы их таким образом определили.

Если бы d было равно нулю, то приёмник находился бы в r/m, а источник – в reg.

Примеры команд R/M, R:

- add AX,BX
- add AL, CH
- add [BX+0A3h], CX
- add CX, [BX+0A3h]
- add [si], si
- sub bh, [bp+0DFF7h]

Примечание: тип операции (sub или add) не влияет на формат команды.

Рассмотрим другую команду: sub di, 2Ah

Этот формат называется **R/M, I** (регистр / память, непосредственный операнд). Используется при сложении/вычитании регистра либо памяти с числом (непосредственным операндом). Общий формат:

В регистре команд первые 6 разрядов относятся к КОП – это код операции. Определяет, какая операция совершается.

7 разряд s – вместе с битом w определяют разрядность операнда и операции (таблица 2).

8 разряд w – разрядность операнда.

md – определяет первый операнд (см. таблицу 1). При md=11 первым операндом является регистр. Его разрядность определяется полем w. Разрядность непосредственного операнда определяется полями s, w (табл. 2 ниже).

При md≠11 первым операндом является память. Разрядность обоих операндов определяется в этом случае битами s, w.

Таблица2. Разрядность операции и операндов

S	w	разрядность			
		операция	операнд		
0	0	8	8		
0	1	16	16		
1	0				
1	1	16	8		

r/m вместе с md определяет формирование 16-разрядного EA (таблица 1).

Im – непосредственный операнд. Если операнд – не байт, а слово, то будет две ячейки: ImL и ImH (верхний и нижний индекс).

Примеры команд R/M, I:

- add BX, 05h
- add CX, 50h
- add [BX], 50h
- add [BX+0A3h], 0AABBh

Рассмотрим третью команду: sub ax, 0F4h

Этот формат называется **A**, **I** (аккумулятор AX, непосредственный операнд). Используется при сложении/вычитании регистра AX с числом (непосредственным операндом). Общий формат:

A, I KOII w Im8 (ImL) Im16 (ImH)

В регистре команд первые 6 разрядов относятся к $KO\Pi$ — это код операции. Определяет, какая операция совершается.

7 разряд пустой.

8 разряд w — разрядность числа. При w = 1 операция проводится над словами, а при w = 0 — над байтами.

Im – непосредственный операнд. Если операнд – не байт, а слово, то будет две ячейки: ImL и ImH (верхний и нижний индекс).

Примеры команд А, І:

- add AX, 0AAh
- add AX,5654h

Теперь рассмотрим этапы выполнения команды.

Допустим дана команда: sub ax,cx

Первый этап. На нём делается выборка команды из ОЗУ (выбор кода команды).

- Для реализации этого этапа необходимо код со счетчика команд (**IP**) передать в сумматор физического адреса команды ($\Sigma \Phi AK$).
- Также на $\sum \Phi AK$ необходимо передать значение регистра **CS**, умноженного на 16.

Немного теории. **СФАК**и используются для получения адреса обращения к ОП с учётом её сегментной организации. Одним из слагаемых является начальный адрес сегмента, значение которого берётся путём умножения на 16 значения соответствующего сегментного регистра. А второе слагаемое — это смещение относительно начала сегмента. В качестве него тут выступает значение указателя команд **IP**.

- На выходе ∑ФАК формируется код физического адреса ОЗУ, по которому находится первый байт команды. Далее код с выхода ∑ФАК поступает на регистр адреса (РА) ОЗУ. Регистр адреса служит для хранения адреса, по которому происходит обращение к ОЗУ, на время этого обращения.
- С **РА** код передаётся в дешифратор (ДШ). Дешифратор преобразует поступающий на него адрес в унитарный код, который непосредственно воспринимается физическими элементами схем памяти. На его выходах всегда имеется одна и только одна возбужденная шина, соответствующая адресу выбираемой ячейки.
- Дешифратор коммутирует схемы **ОЗУ** таким образом, чтобы на выходе получить код команды.
- С **ОЗУ** код команды записывается в регистр команд (**PK**). Регистр команд предназначен для хранения в процессоре считанной из **ОЗУ** команды на время ее выполнения. В

данной работе предполагается, что команда считывается за одно обращение к памяти (а вообще она считывается по одному байту).

- Далее поле кода операции (**КОП**) передается на коммутатор операции (тоже **КОП** не путать с кодом операции!). Коммутатор операции определяет тип команды.
- При командах типа «**R/M**, **I**» (команды вида <команда> <операнд-регистр или операндпамять>, <непосредственный операнд>) на коммутатор операции передаются также значения бит **s** и **w**, а также кода операции **КОП** из второго блока регистра команд. В нашей команде данный пункт не требуется.

Немного теории. Сигнал с коммутатора операции настраивает блок управления операциями таким образом, что на его выходах формируются управляющие сигналы (УС $_i$), которые необходимы для автоматического выполнения всего цикла команды вплоть до занесения в **РК** новой команды. Формирование УС $_i$ проходит на основе сигналов с датчика сигналов (ДС), который вырабатывает импульсы, равномерно распределенные по своим выходам. Регистр команд, дешифратор кода операции, блок управления операциями, датчик сигналов, счетчик команд составляют устройство управления.

• На этом же этапе счетчик команд **IP** увеличивается на длину считанной команды, формируя адрес следующей команды.

Вкратце на первом этапе должны быть отмечены следующие стрелки (голубой цвет – то, что не всегда используется, остальное – всегда):

- IP $\rightarrow \sum \Phi AK$
- $CS \rightarrow \Sigma \Phi AK$
- Сег. рег. * 16
- ΣΦΑΚ → PA
- РА → ДШ
- ДШ → ОЗУ
- ОЗУ (команда) → РК
- РК (КОП код операции) → КОП (коммутатор операции)
- РК (если есть оба бита s и w, а также КОП во втором блоке РК) → КОП (коммутатор операции). Данные стрелки отмечаются, если они вообще есть (грубо говоря ВСЕ стрелки, идущие от РК к КОП).
- КОП -> Блок управления операциями
- КОП → IP

Второй этап – выборка первого операнда.

Будем всегда считать, что для команд типа " \mathbf{R}/\mathbf{M} , \mathbf{R} " и " \mathbf{R}/\mathbf{M} , \mathbf{I} " первый операнд определяется полями \mathbf{md} , \mathbf{r}/\mathbf{m} ; для команд типа " \mathbf{A} , \mathbf{I} " первым операндом является регистр $\mathbf{A}\mathbf{X}$. Для каждого типа команд действия будут различными. Рассмотрим возможные варианты:

- 1. Команды типа «**R/M**, **R**» (наша команда).
 - Из **РК** на блок формирования адреса операнда передаются значения полей **w**, **md** и **r/m**.
 - Далее, синхронизируя сигналы с помощью тактового генератора (**ТГ**), **блок** формирования адреса операнда производит необходимую коммутацию оборудования.

А вот дальше мы имеем два случая.

md=11 (регистр и регистр)

• Блок формирования адреса операнда коммутирует (передаёт сигнал) регистровую память (РП) так, чтобы на её выходе сформировалось значение запрашиваемого в r/m регистра.

Определим, какой же из двух регистров надо считать первым. У нас $\mathbf{md}=11$, поэтому надо смотреть таблицу регистров (выше). Где же — в \mathbf{reg} или $\mathbf{r/m}$ находится код регистра? Это определяется по биту \mathbf{d} . Если $\mathbf{d}=0$, то в \mathbf{reg} ; если $\mathbf{d}=1$, то в $\mathbf{r/m}$. Смотрим значение $\mathbf{r/m}$ и ищем в таблице. У нас

md≠11 (память и регистр)

Тут всё ясно: первый операнд — это память. Но есть два случая:

- а) В операнде поля **Disp** нет (нет чисел в []).
 - Блок формирования адреса операнда коммутирует (передаёт сигнал) регистровую память (РП), отмечаем используемые регистры при формировании адреса и сегментный регистр (если в операнде присутствует регистр ВР, то отмечается SS, если отсутствует, то DS).
 - Значения регистров, используемых при формировании адреса в ОЗУ,

- **r/m**=001, ищем в таблице совпадение: **CX** это наш первый операнд.
- С выхода регистровой памяти (РП) передаётся значение регистра на первый буферный регистр (БР1) АЛУ.
- поступают на сумматор физического адреса данных ($\sum \Phi A \coprod$).
- б) В операнде есть поле **Disp** (есть числа в []). В этом случае выполняется пункт а) и плюс это:
 - Блок формирования адреса операнда коммутирует (передаёт сигнал) схемы считывания кодов смещений и непосредственных операндов.
 - Значения полей **Disp** считываются на **схемы считывания кодов смещений** и **непосредственных операндов**.
 - С выхода схем считывания кодов смещений и непосредственных операндов значения идут на $\sum \Phi A J$.

Далее выполняются общие действия для каждого случая:

- На $\sum \Phi A \mathcal{I}$ передаётся значение одного из сегментных регистров. Если в операнде присутствует регистр **BP**, то передаётся **SS**, если отсутствует, то **DS**.
- Умножение сегментного регистра на 16.
- На выходе ∑ФАД формирует физический адрес данных:
 (ФАД = сегментный регистр*16 [+ регистры смещения] [+ Disp]).
 ФАД передаётся на регистр адреса (РА).
- С РА передаётся на дешифратор (ДШ).
 - В соответствии с управляющим сигналом из блока формирования адреса операнда происходит коммутация **ОЗУ**.
- Благодаря коммутации на выходе из **ОЗУ** значение операнда передаётся на первый буферный регистр (**БР1**) **АЛУ**.

2. Команды типа «**R/M**, **I**» (регистр/память, непосредственный операнд).

Один из операндов — память (md≠11)

• На блок формирования адреса операнда считывается значение бита s.

• Остальные действия аналогичны пункту 1.

- 3. Команды типа «**A**, **I**» (регистр **AX**, непосредственный операнд).
 - Тактовый генератор (ТГ) синхронизирует сигналы блока формирования адреса операнда.

- С помощью ТГ блок формирования адреса операнда коммутирует (передаёт сигнал) регистровую память $(\mathbf{P}\mathbf{\Pi})$, отмечаем регистр $\mathbf{A}\mathbf{X}$.
- С выхода регистровой памяти (РП) передаётся значение регистра АХ на первый буферный регистр (БР1) АЛУ.

Вкратце на втором этапе должны быть отмечены следующие стрелки (по вариантам):

- 1. Команды типа «**R/M, R**» (наша команда).
 - w (РК) → Блок формирования адреса операнда.
 - md (PK) > Блок формирования адреса операнда.
 - r/m (PK) → Блок формирования адреса операнда.

r/m (PK) \rightarrow Блок формирования адреса операнда.					
 ТГ → Блок формирования адреса операнда 	ì.				
md=11 (регистр и регистр)	md≠11 (память и регистр)				
 ■ Блок формирования адреса операнда → РП (смотрим значение г/т и ищем в таблице регистров, выбираем этот регистр). ● РП → БР1. 	а) В операнде поля Disp нет (чисел в [] нет).				

2. Команды типа «**R/M**, **I**» (регистр/память, непосредственный операнд).

Один из операндов – память (md≠11)	Один из операндов – регистр		
 s (РК) → блок формирования адреса 	• Все действия аналогичны пункту 1 при		
операнда.	md=11.		
• Остальные действия аналогичны			

- 3. Команды типа «**A**, **I**» (регистр AX, непосредственный операнд).
 - ТГ → блок формирования адреса операнда.
 - Блок формирования адреса операнда → РП (отмечаем АХ).
 - PΠ → БР1.

Наш случай относится к пункту 1, когда $\mathbf{md}=11$. Пройдясь по пунктам, имеем такую картинку:

Этап 3. Считывание второго операнда из регистра команд (РК).

Для каждого типа команд действия будут различными. Рассмотрим возможные варианты:

- 1. Команды типа «**R/M**, **R**».
 - Из РК на блок формирования адреса операнда передаются значения полей w и reg.
 - Синхронизация блока формирования адреса операнда с тактовым генератором (ТГ).
 - **Блок формирования адреса операнда** посылает сигналы в регистровую память (**РП**). Смотрим значение **reg** и ищем в таблице регистров. У нас **reg**=000, ищем в таблице совпадение: **AX** это наш второй операнд.
 - С выхода регистровой памяти передаётся значение регистра на второй буферный регистр (**БР2**) АЛУ.
- 2. Команды типа «**R/M**, **I**» и «**A**, **I**». Второй операнд содержится в полях Im.
 - Из **РК** на **блок формирования адреса операнда** передаются значения полей **s** (для «**R/M**, **I**») и **w** (для обоих типов), которые определяют разрядность операнда.
 - Синхронизация блока формирования адреса операнда с тактовым генератором (ТГ).
 - Блок формирования адреса операнда коммутирует (передаёт сигнал) схемы считывания кодов смещений и непосредственных операндов.
 - Значения полей Im считываются на **схемы считывания кодов смещений и непосредственных операндов**.
 - С выхода схем считывания кодов смещений и непосредственных операндов значение непосредственного операнда идёт на второй буферный регистр (и) АЛУ.

Вкратце на третьем этапе должны быть отмечены следующие стрелки (по вариантам):

- 1. Команды типа «**R/M**, **R**».
 - w (РК) → блок формирования адреса операнда.
 - reg (РК) -> блок формирования адреса операнда.
 - ТГ → блок формирования адреса операнда.
 - Блок формирования адреса операнда → РП (смотрим значение reg и ищем в таблице регистров, выбираем этот регистр).
 - P∏ → БР2
- 2. Команды типа «**R/M**, **I**» и «**A**, **I**». Второй операнд содержится в полях Im.
 - $s(PK) \rightarrow блок формирования адреса операнда (ТОЛЬКО ДЛЯ «$ **R/M**,**I**»).
 - w (PK) → блок формирования адреса операнда.
 - ТГ → блок формирования адреса операнда.
 - Блок формирования адреса операнда → схемы считывания кодов смещений и непосредственных операндов.
 - Im \rightarrow схемы считывания кодов смещений и непосредственных операндов.
 - Схемы считывания кодов смещений и непосредственных операндов **>** БР2.

Наш случай относится к пункту 1. Пройдясь по пунктам, имеем такую картинку:

Этап 4. Выполнение арифметических операций в арифметико-логическом устройстве (**АЛУ**).

Тут всё просто. Последовательность действий ВСЕГДА одна и та же (кроме пункта 2).

- Поле кода операции команды (КОП в РП) передаётся в коммутатор операции (КОП).
- При командах типа «**R/M**, **I**» (команды вида <команда> <операнд-регистр или операндпамять>, <непосредственный операнд>) на коммутатор операции передаются также значения бит **s** и **w**, а также кода операции из второго блока регистра команд. В нашей команде данный пункт не требуется.

- **КОП** определяет тип команды и коммутирует оборудование блока управления операциями таким образом, чтобы на его выходе были сигналы, необходимые **АЛУ** для выполнения операции.
- Подача сигналов на АЛУ регулируется датчиком сигналов (ДС).
- Сигналы передаются АЛУ для выполнения арифметической операции в АЛУ.

Вкратце на четвёртом этапе должны быть отмечены следующие стрелки:

- ΚΟΠ (PK) → ΚΟΠ.
- РК (если есть оба бита s и w, а также КОП во втором блоке РК) → КОП (коммутатор операции). Данные стрелки отмечаются, если они вообще есть (грубо говоря ВСЕ стрелки, идущие от РК к КОП).
- КОП → Блок управления операциями.
- ДС > Блок управления операциями.
- Блок управления операциями → АЛУ.

Этап 5. Запись результата.

Для каждого типа команд действия будут различными. Рассмотрим возможные варианты:

- 1. Команды типа «**R/M**, **R**».
 - Приёмник определяется полем **d** в регистре команд (**PK**). Значение этого бита идёт на блок формирования адреса операнда.

Лалее лва различных случая:

Amiro Asa basan men ori in				
d=1 (приёмник определяется полем reg)	d=0 (приёмник определяется полями md, r/m)			
	md=11 (приёмник –	md≠11 (приёмник –		
	регистр)	память)		
• Синхронизация тактового генератора	• Действия	• Синхронизация		
(ТГ) с блоком формирования адреса	аналогичны	тактового		
операнда.	действиям при $d=1$	генератора (ТГ) с		
• Блок формирования адреса	(только вместо reg	блоком		

("	<u> </u>	1
операнда коммутирует (передаёт	берётся r/m).	формирования
сигнал) регистровую память (РП),		адреса операнда.
подготавливая нужный регистр для		• В регистре адреса
приёма значения.		(РА) уже хранится
Приёмник – всегда первый операнд. А		физический адрес
так берём значение из reg и ищем в		ОЗУ, вычисленный
таблице регистров. У нас reg =000,		при обращении к
ищем в таблице совпадение: АХ – туда		этой ячейке за
запишется результат.		операндом.
• АЛУ посылает в РП результат.		• Из РА значение
		адреса передаётся в
		дешифратор (ДШ).
		• ДШ отсылает
		сигнал в ОЗУ,
		подготавливая
		место для записи.
		Блок
		формирования
		адреса операнда
		управляет
		пересылкой
		результата из АЛУ
		$\frac{1}{B}$ O3Y.
		• АЛУ посылает в
		ОЗУ результат.

- 2. Команды типа «**R/M**, **I**».
 - Действия аналогичны пункту 1 таблицы при **d**=0.
- 3. Команды типа «**A**, **I**».
 - Синхронизация тактового генератора (ТГ) с блоком формирования адреса операнда.
 - **Блок формирования адреса операнда** коммутирует (передаёт сигнал) регистровую память (**РП**), подготавливая регистр **АХ** для приёма значения.
 - АЛУ посылает в РП (АХ) результат.

Для всех случаев:

• Запись признаков результата (ПР) из АЛУ в регистр флагов (FLAGS).

Вкратце на пятом этапе должны быть отмечены следующие стрелки:

- 1. Команды типа «**R/M, R**».
 - d (PK) -> блок формирования адреса операнда.

Далее два различных случая:

d=1 (приёмник определяется полем reg) d=0 (приёмник определяется полями md, r/		
	md=11 (приёмник –	md≠11 (приёмник –
	регистр)	память)
• ТГ → блок формирования адреса	• Действия	 ТГ → блок
операнда.	аналогичны	формирования
• Блок формирования адреса операнда	действиям при d=1	адреса операнда.
→ РП (смотрим значение reg и ищем в	(только вместо reg	• РА → ДШ.
	берётся r/m).	

таблице регистров,	выбираем	ЭТОТ	•	дш → озу.
регистр).	_			Блок формирования
• АЛУ → РП.				адреса операнда >
				ОЗУ.
			•	АЛУ → ОЗУ.

- 2. Команды типа «**R/M**, **I**».
 - Действия аналогичны пункту 1 таблицы при d=0.
- 3. Команды типа «**A**, **I**».
 - ТГ → блок формирования адреса операнда.
 - Блок формирования адреса операнда → РП (АХ).
 - АЛУ → РП (АХ).

Для всех случаев:

• $\Pi P (AJJY) \rightarrow FLAGS$.

Примечание. Если в команде встретится word ptr или byte ptr, то это в общем-то ни на что не влияет. Это пишется, чтобы определить, что брать из памяти — слово или байт. Например, есть команда add byte ptr [bp+si+7120h], 0C6h. Это значит, что мы обращаемся к ОЗУ по адресу [bp+si+7120h] и берём оттуда всего байт. Если было бы указано word ptr, то из ОЗУ брали бы слово, то есть два байта.