Experiment Report

Name	吳彬睿	ID	3180200084
Title	Grab Cut	Date	2019/6/11

一、 实验内容、运行说明

1. 实验内容:

GrabCut 是一个经典的图像分割方法。它结合手工交互和自动的 Graph-Cut 算法来对静态图像进行高效的前景/背景分割。在这个项目中,你需要实现 GrabCut 算法的核心步骤,并完成简单易用的用户界面,用户界面要支持完成 GrabCut 所需要的基本交互。

2. 运行说明:

(1) 开启挡案

(执行挡案) 先选择要做 grab cut 的图片

(2) 手动标注前景的筐筐

标注完成前景的位置后,执行一次 Grab Cut 迭代。

得到第一次 grab cut 后的前景。

(3) 辅助标示前景与背景、并进行第二次迭代:

标示出一开始在 GMM 模型中被误认的·辅助电脑知道哪些属于前景·

哪些属于真正的背景。

并在执行一次 Grab cut 的动作,得到一个新的分割。

可以看到在辅助的情况下,裤子成功被分类为前景,而皮肤色的地方还有点模棱两可,需要在迭代一次。

(4) 在进行一次辅助标示前景与背景、并进行第三次迭代

标示出鞋子、手部、脸部、腿等等皮肤色的地方,再进行一次 grab cut,可以看到结果已经非常完善。

(5) 输出结果

输出分割完成的结果,存成一个去背的挡案。

此档案一定要是 png 格式·因为只有 png 格式支援第四个通道 alpha 通道·也就是透明度通道·才能真正保存去背的效果·而 jpg 格式没有这个通道·所以存起来的图片背景会是白色的。

(6) 绘制想要的场景

Report due Mon 11:59pm to MobileSecurity2014@163.com. You can write in either English or Chinese. Document naming convention: ExperimentDate- ChineseName-StudentID, e.g., 2014-11-24-张三-123456789.

3. 支援功能

(1) r: 还原图片

(2) f: 显示前景

(3) b: 显示背景

(4) n: 进行一次 Grab Cut 迭代

(5) s: 存储去背的前景图片

二、基本原理、细节

- 1. 基本原理:
 - (1) Kmeans

Kmeans 试一个在计算欧式距离下做 EM 的算法。

E-Step:

$$Q_i(z^{(i)}) := p(z^{(i)}|x^{(i)};\theta).$$

M-Step:

$$\theta := \arg \max_{\theta} \sum_{i} \sum_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})}.$$

(2) GMM

GMM 是由 K 个高斯分布组成的:

$$p(x) = \sum_{k=1}^{K} p(k)p(x|k) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$$

E-Step:

计算出每一个 Sample 属于哪个 component。

$$\gamma(i,k) = \frac{\pi_k N(x_i | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x_i | \mu_j, \Sigma_j)}$$

M-Step:

把每个 component 所属的 sample 做最大化似然估计,

maximum-likelihood,得到每个 component 新的高斯模型。

$$\Sigma = rac{1}{N_k} \sum_{i=1}^N \gamma(i,k) (x_i - \mu_k) (x_i - \mu_k)^T$$

(3) Minimum-Cut

Step1:

找出 S-t 的最大流,可以用 Fold Fulkerson 算法来计算。

Step2:

DFS 方法找出流量瓶颈。

Step3:

我們只找源點側點數最少的、匯點側點數最少的,其他的最小源 匯割則不好找

Psuedo code:

```
void DFS(int i)
   visit[i] = true;
   for (int j=0; j<9; ++j)
       if (!visit[j] && F[i][j] < C[i][j])</pre>
          DFS(j);
void minimum_s_t_cut(int s, int t)
    // 求一個最大源匯流,源點為s點,匯點為t點,
   Edmonds_Karp(s, t);
    // 從源點開始遍歷,找出流量瓶頸。
   memset(visit, false, sizeof(visit));
    // 找出其中一個最小源匯割,會是源點側點數最少的最小源匯割
                           // 窮舉源點側的點
    for (int i=0; i<9; ++i)
       if (visit[i])
           for (int j=0; j<9; ++j) // 窮舉匯點側的點
              if (!visit[j])
                  if (c[i][j] > 0) // 要確定有邊
cout << "割上的邊有"
                         << "曲" << i << "到" << j;
```

(4) Grab Cut:

a. 特点:

基于 Graph Cut 的实现,用高斯混合模型 GMM 代替灰度直方图,颜色模型取代单色图像,在 graph cuts 中只进行一次的最小化分割估计被 一个在估计和参数学习中可选的、可靠迭代的过程代替。对于 Trimap,用户只需提供不完全标记。

b. 吉布斯能量分布:

$$E(\underline{\alpha}, k, \underline{\theta}, z) = U(\underline{\alpha}, k, \underline{\theta}, z) + V(\underline{\alpha}, z)$$

U:数据项

$$U(\underline{\alpha}, k, \underline{\theta}, z) = \sum_{n} D(\alpha_{n}, k_{n}, \underline{\theta}, z_{n})$$

$$D(\alpha_n, k_n, \underline{\theta}, z_n) = -\log p(z_n \mid \alpha_n, k_n, \underline{\theta}) - \log \pi(\alpha_n, k_n)$$

V:平滑向

$$V(\underline{\alpha}, z) = \gamma \sum_{(m,n) \in C} [\alpha_n \neq \alpha_m] \exp(-\beta ||z_m - z_n||^2)$$

c. 求解最小化吉布斯能量分布:

刚好可以看成是一个作 Max-flow 解 min-cut 的问题。

2. Graph 定义:

(1) 像素与像素之间的 edge w:

(2) Source/Destination 与像素之间的 edge w:

三、遇到问题

定义 Graph 的部份,之前不知道 edge 的 weight 要怎么定义,最一开始就用一个固定值当做是 weight 但是做出来的效果不太好,想一想这样不太对,每个像素之间的 weight 不应该一样,这样不能分辨出前景与背景的区别,反而像素相似的应该有较大的 weight,而像素比较不相似的之间的weigh 尽量要小,这样最后在做 min-cut 的时后比较容易选到这组边。后来仔细搜索了一遍就又平滑向的值当做试 edge 的 weight,做出来的效果是我想要的。

四、结果与分析

1. 结果:

最终结果·我觉得还不错像这种构图简单的图片都分割的还不错·GMM的 K 调 5 刚好可以体现出这个人·一类是黑色头法裤子、皮肤颜色、红色衣服、淡蓝色的鞋子·刚好这几个特征都有被试别到。

2. 跟 OpenCV 的比较:

a. 迭代一次:

我的跟 OpenCV 的比较,看起来我的分割效果较好一点,虽然我的前景裤子的部份被认为是背景了,但起码没有把背景的部份误认为前景,而且OpenCV 分割的鞋子的部份也没有处理好。

还有一点 OpenCV 内建的 Grabcut 速度非常的快 ·我觉得内建的 Graph 定义可能有些不一样 · 导致在做 Flow 的时后结果可能也不一样 · 或是有 省下一些东西 · OpenCV 为了追求速度而损失一些准确性 · 也是合理的。

(1) 前景背景相似、且复杂的场景:

进行了五次迭代·最后两次结果很相近·应该是收殓了·可以看到效果不是那么好·原因有几个就是前景跟背景的颜色实在太像了·在做前景跟背景的 GMM 有一部份是重叠的导致很难准确的分离前景跟背景·还有一个很大的原因是我们的 GMM 的 K 调 5·代表说把整张图片分 10 类·前 背景个半·但是这张图片的复杂程度远大于 10 类·因此难以有好的结果。

五、参考文献

Grab Cut: http://alex-phd.blogspot.com/2014/03/graph-cutgrab-cut.html

Max-flow min-cut: http://www.csie.ntnu.edu.tw/~u91029/Cut.html