

Since there is only one symmetric projection onto $\mathcal{C}(\mathbf{X})$, we can write such projection as $\mathbf{P}_{\mathbf{X}}$. From above, $\mathbf{P}_{\mathbf{X}} = \mathbf{X}\mathbf{X}^{\star}$. Due to Corollary 2.27, this should coincide with $\mathbf{X}\mathbf{X}^{+}$.

Corollary 2.27. AA^+ is the unique symmetric projector onto its C(A).

 $\mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^g\mathbf{X}^T$ is the projection matrix onto $\mathcal{C}(\mathbf{X})$, that is, $\mathbf{P}_{\mathbf{X}}$ is

- (b) projects onto C(X),
- (d) symmetric, and

(a) idempotent

(e) unique.

Using Result 2.5, P_X can be written in the form AA^g , so that from Result A.14 we know that P_X projects onto C(X), providing (a) and (b). For (c), let G_1 and G_2 be two generalized inverses of (X^TX) , so

and taking
$$\mathbf{A} = \mathbf{G}_1 \mathbf{X}^T \mathbf{X}, \mathbf{B} = \mathbf{G}_2 \mathbf{X}^T \mathbf{X}$$
 and applying Result 2.4 gives

(c) invariant to the choice of generalized inverse,

Now transpose this result to give
$$\underbrace{(\mathbf{X}^T\mathbf{X})\mathbf{G}_1^T\mathbf{X}^T = (\mathbf{X}^T\mathbf{X})\mathbf{G}_2^T\mathbf{X}^T}_{\mathbf{X}^T\mathbf{X}^$$

Therefore, P_X is invariant to the choice of the generalized inverse of the matrix (X^TX) . For symmetry, notice that if G_1 is a generalized inverse of X^TX , so is G_1^T (see Exercise A.22); hence P_X is symmetric. Uniqueness then follows from Result A.16.