

G8 Topic Breakdown SOL - Geometry Crystal Ding

Topic: Solve real-world problems involving right triangles by using the Pythagorean Theorem and its converse properties of special right triangle trigonometry.

Determine lengths of sides if a right triangle is formed.

Sine-cosine-and tangent

$$\sin x = \frac{opp}{hyp}$$

$$\cos x = \frac{adj}{hyp}$$

$$\tan x = \frac{opp}{adj}$$

$$A^2 + B^2 = C^2$$

Example:

A triangle with side 3, 4, 5 is a right triangle because:

$$3^2 + 4^2 = 5^2$$

Solving for 45-45-90 triangle

$$\sin 45^\circ = \frac{1}{\sqrt{2}}$$
$$\cos 45^\circ = \frac{1}{\sqrt{2}}$$
$$\tan 45^\circ = 1$$

Example:

Solving for 30-60--90 triangles

Example:

$$\sin 30^{\circ} = 2$$

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$\tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$
$$\cos 60^\circ = 2$$
$$\tan 60^\circ = \sqrt{3}$$

Real world problems

Reuben attached a wire between two poles on a hill as shown.

Which is closest to x, the distance between the two poles?

- B 29 ft
- O C 60 ft
- O D 75 ft

An equilateral triangle is folded in half.

What is x, the height of the equilateral triangle?

- A 14√3 cm
- B 14 cm
- C 7√3 cm
- D 7 cm

A spectator is viewing the six cars of a roller coaster as it travels down a hill at an amusement park.

Which is closest to the total length of the six cars?

- O A 12.3 ft
- O B 15.8 ft
- O C 25.6 ft
- O D 32.5 ft

Additional Practice Problems

G.8 Geometry

Question 1

You are walking up a 400m hill, how far will it take you to reach the top?

- A) 400
- B) $400 \sqrt{3}$
- C) 600
- D) 800

Question 2:

The area of a right isosceles triangle is 50. Find the lengths of the hypotenuse of the triangle.

- A) $10\sqrt{2}$
- B) 10
- C) 50
- D) $50\sqrt{2}$

Question 3:

Find the hypotenuse of triangle ACD.

- A) 2
- B) $2\sqrt{2}$

D) $4\sqrt{2}$

C) 4

Question 4: Evaluate $2 \sin 30^{\circ} + 4$

cos 60°

- A) 3
- B) 4
- C) 4.5
- D) 6

Question 5: Find x.

- A) 76
- B) 78
- C) 79
- D) 81

Question 6:

A ladder is leaning towards the wall, creating a 45 degrees angle with the ground. If the distance from the ladder to the wall is 8, what is the length of the ladder

- ?
- A) 8
- B) $8\sqrt{2}$
- C) 16
- D) $16\sqrt{2}$

Question 7:

The perimeter of the triangle below is

 $8 + 4\sqrt{2}$. What is the length of its side?

- A) 2
- B) $2\sqrt{2}$
- C) 4
- D) $4\sqrt{2}$

Question 8:

What is the value of angle θ ?

- A) 30
- B) 45
- C) 60
- D) 80

Question 9: \triangle ABC is a right triangle. \angle A = 30°. \angle BED = 45°. DE = 4. BE = $4\sqrt{2}$. How long is CE?

Guidance:

What kind of triangle is △BDE?
How long is BD?
What kind of triangle is △ADE?
How long is AD? How long is AE?
What kind of triangle is △ABC?
How long is AC?
How long is CE?

$$\sin 45^\circ = \frac{1}{\sqrt{2}} \qquad \sin 30^\circ = 2$$

$$\cos 45^\circ = \frac{1}{\sqrt{2}} \qquad \cos 30^\circ = \frac{\sqrt{3}}{2}$$

$$\tan 45^\circ = 1 \qquad \tan 30^\circ = \frac{1}{\sqrt{3}}$$

Answer Key: Practice Problems G.8 Geometry

1.	D
2.	A
3.	С
4.	Α
5.	С
6.	В
7.	С
8.	A
9.	$2\sqrt{3}-2$