Presentation:

Dynamics of water and carbon dioxide gas-exchange through the adaxial and abaxial surfaces of leaves

Diego Márquez

Abbreviation	Name
ABA	Phytohormone abscisic acid
A-C _i curve	Relation between assimilation rate and C_i at constant light intensity.
A_{T}	Net assimilation rate
ASD	Air moisture saturation deficit
β	Ratio $g_{\rm cc}/g_{\rm cw}$
$C_{\mathbf{a}}$	CO ₂ concentration in the atmosphere
$C_{\rm i}$	CO ₂ concentration in the mesophyll air space of a leaf
$C_{ m in}$	CO ₂ concentration flowing into the cuvette
$C_{ m out}$	CO ₂ concentration flowing out of the cuvette
C_{s}	CO ₂ concentration at the surface of a leaf
$E_{\rm c}$	Rate of transpiration through the cuticle
$E_{\rm s}$	Rate of transpiration through the stomata
E_{T}	Total transpiration rate
$g_{ m bc}$	Boundary layer conductance to CO ₂
$g_{ m bw}$	Boundary layer conductance to H ₂ O vapour
g_{cc}	Cuticular conductance to CO ₂
g_{cw}	Cuticular conductance to H ₂ O vapour
$g_{ m lc}$	Total conductance to CO ₂ through the surface of a leaf
g_{lw}	Total conductance to H ₂ O through the surface of a leaf
$g_{ m sc}$	Stomatal conductance to CO ₂
g_{sw}	Stomatal conductance to H ₂ O vapour
$g_{ m tc}$	Total conductance to CO ₂
g_{tw}	Total conductance to H ₂ O vapour
γ	Ratio $g_{\text{cw-ab}}/g_{\text{cw-ad}}$
Γ	C_i at CO_2 compensation point
κ	Ratio C_{i-ad}/C_{i-ab}
Wa	Water vapour concentration in the atmosphere
Wi	Water vapour concentration in the mesophyll air space of a leaf
Win	Water vapour concentration flowing into the cuvette
Wout	Water vapour concentration flowing out of the cuvette
Ws	Water vapour concentration at the surface of a leaf
Subscript -ab	The abaxial face of the leaf
Subscript -ad	The adaxial face of the leaf
Subscript -T	Total leaf, adaxial plus abaxial faces of the leaf
Subscript -vCF	Identifies unknowns derived from vCF equations

