(c) the function that assigns the number of bits leftover when a bit string is split into bytes (which are blocks of 8 bits)

WEEK 3 DISCUSSION WORKSHEET: BOOLEAN ALGEBRA

- (1) Evaluate the logical expressions with x = y = 1 and w = z = 0
 - (a) $xy\overline{wz}$
 - (b) $x\overline{y} + z(\overline{w+z})$
 - (c) $\overline{z}y\overline{x}(1+w)$
 - (d) $xy\overline{z} + z\overline{w}$
 - (e) $\overline{(z+y)(w+x)}$
- (2) Use the laws of Boolean algebra to show that the two Boolean expressions in each pair are equivalent.
 - (a) $xy + x\overline{y} = x$
 - (b) x + xy = x
 - (c) $x(\overline{y} + x) = x$
 - (d) $\overline{x+\overline{y}} + \overline{x}\overline{y} = \overline{x}$
- (3) A function f is defined by

x	y	z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- (a) The function g is defined as $g(x, y, z) = \overline{xy}z + \overline{xy}z + xyz$ Give a set of values for the variables x, y, and z, for which the functions f and g have different output values
- (b) The function g is defined as $h(x,y,z) = \overline{xy}z + \overline{x}y\overline{z} + \overline{x}yz + xy\overline{z}$ Give a set of values for the variables x, y, and z, for which the functions f and h have different output values
- (4) For each expression below, give an equivalent expression that uses only the NAND operation. Then give an equivalent expression that uses only the NOR operation.
 - (a) $\overline{x} + y$
 - (b) \overline{xy}
 - (c) (x+y)z

(1) Evaluate the logical expressions with
$$x = y = 1$$
 and $w = z = 0$
(a) $xy\overline{wz}$
(b) $x\overline{y} + z(\overline{w+z})$

$$\begin{array}{c}
\text{(a)} \ xy\overline{w}\overline{z} \\
\text{(b)} \ x\overline{y} + z(\overline{w} + \overline{z}) \\
\text{(c)} \ \overline{z}y\overline{x}(1+w) \\
\text{(d)} \ \underline{xy}\overline{z} + z\overline{w} \\
\text{(e)} \ \underline{z}y\overline{x}(1+w)
\end{array}$$

(a)
$$xy\overline{wz} = 1.1.(0.0) = 1.1.0 = 1.1.1 = 1$$

(b)
$$1 \cdot \overline{1} + 0 \cdot \overline{(0+0)} = 1 \cdot 0 + 0 \cdot \overline{0} = 1 \cdot 0 + 0 \cdot 1 = 0 + 0 = 0$$

(C)
$$\overline{0} \cdot 1 \cdot \overline{1} \cdot (1+0) = 1 \cdot 1 \cdot 0 \cdot 1 = 0$$

(d) $1 \cdot 1 \cdot \overline{0} + 0 \cdot \overline{0} = 1 \cdot 1 \cdot 1 + 0 \cdot 1 = 1 + 0 = 1$

(e)
$$\overline{(0+1)\cdot(0+1)} = \overline{1\cdot 1} = \overline{1} = 0$$

(2) Use the laws of Boolean algebra to show that the two Boolean expressions in each pair are equivalent.

$$(a) xy + x\overline{y} = x$$

$$(b) x + xy = x$$

$$(c) x(\overline{y} + x) = x$$

$$(d) \overline{x + \overline{y}} + \overline{xy} = \overline{x}$$

(a)

$$xy + x\overline{y} = x(y+\overline{y})$$
 (Distribution)
 $= x \cdot 1$ (Complemet)
 $= x \cdot (1)$ (Jolentity)

Idempotent laws:	X + X = X	$X \cdot X = X$
Associative laws:	(x + y) + z = x + (y + z)	(xy)z = x(yz)
Commutative laws:	x + y = y + x	xy = yx
Distributive laws:	x + yz = (x + y)(x + z)	x(y + z) = xy + xz
Identity laws:	x + 0 = x	x • 1 = x
Domination laws:	x + 1 = 1	x • 0 = 0
Double complement law:	$\overline{\overline{x}} = x$	
Complement laws:	$\frac{x + \overline{x}}{\overline{0}} = 1$	$\frac{x\overline{x}=0}{\overline{1}=0}$
De Morgan's laws:	$\overline{x+y} = \overline{x}\overline{y}$	$\overline{xy} = \overline{x} + \overline{y}$
Absorption laws:	x + (xy) = x	x(x + y) = x

(b)
$$x + xy = x$$
 (Absorption (cous).
 $x + xy = x \cdot 1 + xy$ Identity
$$= x(1+y) \quad \text{Distr.}$$

$$= x \cdot 1 \quad \text{Domination}$$

$$= x \quad \text{Identity}$$
(c) $x(\bar{y}+x) = x$ Absorption Laws.
(d) $x + \bar{y} + \bar{x} \cdot \bar{y} = \bar{x} \cdot \bar{y} + \bar{x} \cdot \bar{y}$ (De Margan)
$$= \bar{x}(y + \bar{y}) \quad \text{(Double Complement + Dirt.)}$$

$$= \bar{x} \cdot 1 = \bar{x}$$

$$7 \quad \chi(\tilde{y}+x) = \chi(\tilde{y}+x\cdot x) \quad (Dist.) \qquad \chi(x+y) = \chi$$

$$= \chi(\tilde{y}+x) \quad (Dist.) \qquad \chi(y+x) = \chi$$

$$= \chi(\tilde{y}+x) \quad (Dist.)$$

$$= \chi(\tilde{y}+1) \quad (Dist.)$$

 $= x \cdot 1$

(Pomination)

(Identity)

(3) A function f is defined by

- (a) The function g is defined as $g(x, y, z) = \overline{xy}z + \overline{x}yz + xyz$ Give a set of values for the variables x, y, and z, for which the functions f and g have different output values
- (b) The function g is defined as $h(x,y,z) = \overline{xy}z + \overline{x}y\overline{z} + \overline{x}yz + xy\overline{z}$ Give a set of values for the variables x, y, and z, for which the functions f and h have different output values

wira ii iiwto aiiioioiiu odupau taraoo

- (4) For each expression below, give an equivalent expression that uses only the NAND operation. Then give an equivalent expression that uses only the
- NOR operation.

 (a) $\overline{x} + y$ (b) \overline{xy} (c) (x + y)z $7 + y = \overline{x} + y$ $7 + y = \overline{x} + y$

$$x \uparrow y = \overline{x} y$$

$$x \uparrow x = \overline{x} x = \overline{x}$$

$$x = x + 1$$

$$(2) \quad xy = \overline{x} y = \overline{x} y = (x \uparrow y) \uparrow (x \uparrow y)$$

$$|x + 1) \uparrow y = \overline{x} \cdot \overline{y} = |\overline{x} \cdot \overline{y}| \uparrow (\overline{x} \cdot \overline{y}) \uparrow (\overline{x} \cdot \overline{y})$$

$$= |x + 1| y = \overline{x} \cdot \overline{y} = |\overline{x} \cdot \overline{y}| \uparrow (\overline{x} \cdot \overline{y}) \uparrow (\overline{x} \cdot \overline{y})$$

$$= |x + 1| y = \overline{x} \cdot \overline{y} = |\overline{x} \cdot \overline{y}| \uparrow (\overline{x} \cdot \overline{y}) \uparrow (\overline{x} \cdot \overline{y})$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \qquad (x \cdot \overline{y}) = x \cdot \overline{y}$$

$$= ((x \cdot \overline{y}) \uparrow (x \cdot \overline{y})) \uparrow ((x \cdot \overline{y})) \uparrow (x \cdot \overline{y})) \uparrow$$

$$= ((x \cdot \overline{y})) \uparrow (x \cdot \overline{y})) \uparrow ((x \cdot \overline{y})) \uparrow$$

$$= ((x \cdot \overline{y})) \uparrow (x \cdot \overline{y})) \uparrow$$

$$= ((x \cdot \overline{y})) \uparrow (x \cdot \overline{y})) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

$$= (x \cdot \overline{y}) \uparrow (x \cdot \overline{y}) \uparrow$$

 $(X+1)^2 = X^2 + 2x + [$

x = 1 $x = 2^3$

x= ytt

 $(\alpha) \quad \overline{x} + y = \overline{\overline{x} \cdot y} = \overline{\overline{x} \cdot y} = \overline{x} \cdot \overline{y}$

(5) Give an equivalent Boolean expression for each circuit. Then use the laws of Boolean algebra to find a simpler circuit that computes the same function.

