# Advanced Linear Algebra Week 19

Jamie Gabe



Recall that for  $A \in \text{End}(V)$  and  $\lambda \in \mathcal{F}$ , the generalised eigenspace is

$$M_{\lambda} = \{x \in V : \exists k \in \mathbb{N} \text{ s.t. } (A - \lambda I)^k x = 0\} = \bigcup_{k \in \mathbb{N}} N((A - \lambda I)^k).$$

Note that when dim  $V < \infty$ , then  $M_{\lambda}$  is the space N in Theorem 7.5 for the endomorphism  $A - \lambda I$ . So there is a unique  $A - \lambda I$ -invariant subspace R so that  $V = M_{\lambda} \oplus R$ ,  $(A - \lambda I)|_{R}$  is invertible and  $(A - \lambda I)|_{M_{\lambda}}$  is nilpotent.

Theorem ((Main part of) 7.8 - Jordan decomposition)

Assume dim  $V < \infty$  and let  $A \in \text{End}(V)$ . Let  $\lambda_1, \ldots, \lambda_m$  be the eigenvalues of A. There exists a unique A-invariant subspace  $R \subseteq V$  such that

$$V = M_{\lambda_1} \oplus \cdots \oplus M_{\lambda_m} \oplus R.$$



Moreover,  $A|_R$  has no eigenvectors.

#### Corollary 7.9

If  ${\mathcal F}$  is algebraically closed then  $V=M_{\lambda_1}\oplus\cdots\oplus M_{\lambda_m}.$ 



We now go back to inner product spaces V.

Recall that  $A \in \text{End}(V)$  has an adjoint  $A^*$ , if

$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$
 for all  $x, y \in V$ .

The adjoint corresponds to the conjugate transpose of a matrix.

## Definition (9.6)

 $A \in \operatorname{End}(V)$  is called normal if it has an adjoint, and  $AA^* = A^*A$ .

### Lemma (9.7)

Let  $A \in \text{End}(V)$  be normal.

- (1)  $||Ax|| = ||A^*x||$  for all  $x \in V$ ;
- (2)  $N(A) = N(A^*)$ ;
- (3) The  $\lambda$  eigenspace of A equals the  $\overline{\lambda}$  eigenspace of  $A^*$  for each  $\lambda \in \mathcal{F}$ :
- (4) All eigenspaces of A are orthogonal to each other.



Normal:  $A^*A = AA^*$ 

#### Lemma (9.7)

Let  $A \in \text{End}(V)$  be normal.

- (1)  $||Ax|| = ||A^*x||$  for all  $x \in V$ ;
- (2)  $N(A) = N(A^*);$
- (3) The  $\lambda$  eigenspace of A equals the  $\overline{\lambda}$  eigenspace of  $A^*$  for each  $\lambda \in \mathcal{F}$ ;
- (4) All eigenspaces of A are orthogonal to each other.



Recall Lemma 8.17:  $N(A^*) \perp R(A)$ . Hence

 $N(A^*)\cap R(A)=\{0\}.$ 

Lemma (9.8)

If  $A \in \text{End}(V)$  is both nilpotent and normal, then A = 0.



Recall that if dim  $V < \infty$  then  $A \in \operatorname{End}(V)$  is orthogonally diagonalisable if  $V = \bigoplus_{\lambda \in \sigma(A)} V_{\lambda}$  is an orthogonal direct sum.

Theorem (9.9, Spectral theorem for normal maps)

Let  $\mathcal{F} = \mathbb{C}$  and dim  $V < \infty$ . Then  $A \in \operatorname{End}(V)$  is orthogonally diagonalisable if and only if A is normal.

