本讲目的

- 与超导电现象有关的基本概念?
 - * 借助于澄清以下几个概念展开
 - #超导体不是理想导体→Meissner效应
 - # Cooper对 → 超导机制
 - #超导能隙→拆散Cooper对所需能量

第32讲、专题: 超导电性

- I. 传统超导现象及其微观理论
 - 1. 低温超导现象
 - 临界温度、电流、磁场
 - 2. 超导体是否理想导体?
 - Meissner效应
 - 3. Cooper⊼寸
 - 超导能隙
 - 4. Josephson效应
- II. 铜氧化物高温超导
 - 1. 氧化物超导的发现
 - 2. 结构共性与超导电性

招导电件

I、传统超导现象及其微观理论

- 1911年, H. K. Onnes (1913得诺贝尔奖)
- 1957年, J. Bardeen, L. N. Cooper and J. R. Schrieffer (BCS理论,1972得诺贝尔奖)
- 1962年, B. D. Josephson (1973得诺贝尔奖)

1、低温超导现象

关于低温时金属电阻的推测

- 1. 如完全来源于电子—声子散射,极低温时T⁵下降
- 2. 如来源于杂质、缺陷散射, 则电阻与温度无关趋于常数
- 3. 如金属中载流子浓度随T下降 而减少,则电阻反而上升
- 但1911年Onnes发现,在临界温度T_c=4.15K以下,汞进入了一个新的状态: 电阻为零,或,电流一旦建立,永不衰减→他称其为超导态

Onnes发现超导现象

- 与新技术有密切联系
 - * 1908年荷兰物理学家 Onnes成功液化氦气, *T*<4.2K, 开创了低温物 理研究
- 1911年
 - * 为观察杂质电阻,选择当时可提纯最高的水银
 - * 发现**4.15K**附近水银电阻 突然消失
 - * 这条曲线是可逆
 - * Onnes因此而获1913年 的Nobel物理奖

• 随后的研究表明

* 很多金属都有这种性质:有28种元素在常压下具有超导电性,但并不排除在更低温下,其他元素也有

*室温下是半导体,低温时也有超导电性质,且转变温度比纯金属高

* 但Au、Ag、Cu 等良导体没有

材料	$T_{\rm c}/{ m K}$	材料	$T_{\rm c}/{ m K}$
Sn	3.72	Nb ₃ Ge	23.2
TI	2.39	Nb ₂ Ga	20.3
In	3.40	Nb ₃ Sn	18.05
Al	1.14	Nb ₃ Al	17.5
Hg	4.15	NiBi	4.25
Cd	0.56	AuBe	2.64
Ti	0.39	PdSb ₂	1.25
Nb	9.26	TiCo	0.71
Zn	0.88	AuSb ₂	0.58
Ga	3.40	\mathbf{ZrAl}_2	0.30
Ta	4.48	Mo ₃ Ir	8.8
Pb	7.19	C ₆₀	19.2
Tc	7.77	NbN	16.0

http://10.107.0.68/~jgche/

蓝: 标准条件; 绿: 高压下

4	1A	1	KN	ΟV	VN:	SUF	ΈR	.CO	ND	UC	ΤI	Æ						0 2
I	Н	ELEMENTS ELEMENTS											IIIA	IVA	VΑ	VIA	VIIA	He
2	3 Li	4 Be																
3	11 Na	12 Mg	IIIB	GMEt IVB	zN = u VB	VIB	VIIB	: K HII 	an er — VII —	1655 ——	URE IB	IIB	13 A I	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	Nb	42 Mo	43 Tc	44 Ru	45 Rh	⁴⁶ Pd	47 Ag	48 Cd	49 in	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 A t	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 106	107 107	¹⁰⁸ 108	109 109	110 110	111 111	112 112	St	IPER	COND	ист	ors.	ORG

*Lanthanide Series

+ Actinide Series

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	F m	Md	No	Lr

临界温度、电流、磁场

- 既然没有电阻,那就可具有很大的电流呢?
- 不! 临界直流电流
 - * 超过临界电流, 超导态被破坏, 转入正常态
- 为什么?
- 是被电流自身产生的磁场所破坏

• 临界温度, 临界电流, 临界磁场相图

I类和II类超导体

- 若将磁场加大 到一临界值 时,磁场会实 然进入超导体 内部,从而 好 坏了超导态
- 大部分纯金属 属第一类超导 体
 - * *H*_c较低,使用 价值不大

- 外加磁场加大时,经过一个混合态,到正常态
- 大部分合金属第二类超导体

2、超导体是否理想导体?

- 电导率无限大→理想导体?
 - * 实验事实:良好的金属,往往不是好的超导体;室温下电阻率高的金属,在低温下往往可以变成超导体
- 如果超导体就是理想导体,电阻为零意味着电场为零(否则将被无限加速)
 - *由Maxwell方程可得,超导体中电场为零意味着磁场的变化率为零,导体内的磁场无论外磁场如何变化应保持不变

- 假想理想导体如果在无外磁场下冷却后进入超 导态,再加外磁场,因磁场变化率为零,超导 体内磁场仍然为零, 撤去磁场后仍为零
- 假想理想导体如果在外磁场存在下先被磁化, 冷却进入超导态,再撤去磁场,因磁场变化率 为零, 但超导体内保留磁通量
- 因此,如果是理想导体,意味着超导体内的磁 感应强度与次序有关,而不是由外界确定

超导电性

实验事实→Meissner效应

• Meissner效应:超导态时,磁力线被全部排斥 出超导体内,完全抗磁性→超导的重要特征

* 因此,是否超导,除零电阻外,还必须检验是否具有完全抗磁性

- 实验发现:超导态是完全抗磁体,即外加磁场 H_a,测量磁矩是-M,-M 随外磁场线性增加直至 超导态被破坏,磁矩为 零,是可逆的→Meissner 效应
- 要判断是否处于超导 态,必须判断样品是否 具有完全抗磁性
 - * 许多激动人心的发现都因为没有抗磁性而被否定

Meissner效应演示:永久磁铁放在超导体之上,当温度下降至转变温度以下时,由于磁力线被完全排除在超导体外,它们之间存在的斥力可使磁铁悬浮在超导体之上(磁场必须小于一个特定的数值)

3、Cooper对——超导机制的微观解释

- 正常态为什么有电阻?
- 晶格原子如果是静止的,就没有电阻。电子被晶格振动散射,因而产生电阻——源于电子与晶格振动的相互作用

$$C_{\rm V} = AT + BT^3$$

$$C_{\rm V} = Ae^{-\Delta(T)/k_{\rm B}T} + BT^3$$

- 实验表明
 - * 正常——超导相变不是晶格相变引起的
 - * 只能是电子气状态的改变

图 2.2 T。附近比热的跃变

- ?
- 超导态比热的测量表明能隙存在,电子在温度 升高的激发过程中至少要吸收等于能隙的能量。 这表明进入超导态后,能量降低。但如果只有 电子排斥作用,这只会使能量升高而不是降低。 能隙表示只有拆散电子间的吸引,电子才能进 入正常态

思考: 到底什么相互作用是主要因素

- 电子——电子相互作用?
- 电子自旋——电子自旋相互作用?
- 磁相互作用?
- 电子——晶格相互作用?

同位素效应:实验表明,临界温度与同位素的 质量满足

 $M^{\alpha}T_{c}=$ 常数

- 对一般元素, alpha=1/2
- 同位素效应表明,尽管超导态与正常态的晶格 点阵本身没有变化,但在决定传导电子的行为 上,晶格点阵还是起了重要作用
- 点阵振动与超导电性有关
 - * Cooper首先认识到,两个动量大小相等、方向相反和自旋相反的电子,通过晶格振动的相互作用产生吸引作用→形成电子对的束缚态
 - * 一个电子发射一个声子,这个声子立即被另一电子吸收,这两个电子通过声子相互作用,组成电子对

- 在超导态时,一对电子通过离子形成的点阵
 - * 一个电子通过正离子点阵,引起点阵畸变,吸引另一个电子

• 在第一个电子完全通过和点阵恢复之前,第二个电子进入该通道,因为畸变尚未恢复,两个电子就好象有吸引作用一样,形成所谓的Cooper对

 $M^{\alpha}T_{c}=常数$

思考:为什么由同位素效应猜测与晶格振动有关呢?

- 同位素效应: 吸引力是通过晶格的媒介而发生
 - * 如晶格离子的质量大,则声子频率降低,因而形成Cooper对的状态数减少,所以吸引作用弱,使 T_c 减小

- 正常态时,电子形成费米球;超导态时,费米面附近电子结合成电子对,相干长度~10-4cm
- 1957年,由Cooper对发展而来的BCS(Bardeen, Cooper, Schrieffer)理论
 - *解释了与超导有关的宏观现象,如Meissner效应, 比热,同位素效应,等等
 - * 1972年获Nobel物理奖

微观解释

- 那为什么超导态没有电阻呢?
- 导体中电阻是因为电子受声子散射而改变动量
- 在超导态,虽然Cooper电子对也受声子散射,但是成对出现的这种散射却不改变总动量,所以没有电阻效应
- · 如果Cooper被拆散,超导态将变成正常态
 - *温度升高,超过拆散Cooper对的能量 $\rightarrow T_c$
 - * 电流增大,动能增大,超过拆散Cooper对的能量 $\rightarrow I_c$

超导能隙测量

- 单电子隧穿效应:两个同一种超导体金属夹绝缘层(约几十埃)制成的隧道结
 - * 当金属都处于正常态时, I-V曲线欧姆型
 - * 当金属处于超导态时, I-V曲线特性如图

I

- ?
- 看Fermi面附近电子激发后组成Cooper对,与Fermi子不同,Cooper对是玻色子,所有的Cooper对可凝聚在低于费米能级的同一能级上
- 在这个能级以下,所有能量状态全被填满,在这个能级以上,全空
- · 拆散Cooper对需能量 2d,用 能带的语言就是这里有能隙, 这个能隙宽度是d
- 当体系从正常态转变成超导态时,电子气能量降低 $N(E_F)d$

• V小于两倍能隙,仅数目很少的正常态的热激 发电子在费米能级以上,而超导态在费米能级 以下有少量空位,这时可以隧穿,但电流很小

• 从V大于等于两倍能隙开始,大量电子可以向

T=0时的能隙($E_g/10^4$ eV)

- 能隙的实验测量
 - * 0.1~1meV的量级

Al	3.4
\mathbf{V}	16.0
Zn	2.4
Ga	3.3
Nb	30.5
Mo	2.7
Cd	1.5
In	10.5
Sn	11.5
La	19.0
Ta	14.0
Hg	16.5
Tl	7.35
Pb	27.3

思考:如果真是电子对起作用,那么磁通量是量子化的,电荷单位应该是多少?

应该是2e,而不是e

4、Josephson效应

- 如果隧穿效应中绝缘层减少至1纳米后,即使 外加电压为零时,也存在超导电流,好象绝缘 层也变成超导体一样
- 超导电流的最大值I_c(~mA)与外磁场有关,随 磁场呈周期性变化,周期正好是磁通量子

$$\Phi_0 = \hbar / 2e$$

• 电流大于I_c时,结电压不等于零,存在一个交变的超导电子对隧穿电流,频率与V₀成正比,说明吸收或放出能量为2eV₀的光子

$$\omega = 2eV_0/\hbar$$

如再外加一个交变的电磁场(一定频率的电磁 波照射隧道结),会对内部的交变电流起频率 调制作用,从而产生直流分量,直流电流的大 小形成一系列的台阶,其对应的电压满足

$$V = n \frac{\omega_{\text{sh}} \hbar}{2e}$$

- · 这是一种宏观量子现象——超导研究的一个重要里程碑: Cooper对也可以隧穿。后来发展出了很多应用
- 1973年获Nobel物理奖

传统超导现象小结

- 直到86年高温超导发现前,共发现28种元素和约8000种合金或化合物有超导电性
- · 大多数在室温下具有良好导电性质的金属如Au, Ag, Cu, Pd, Pt等和Li, Na, K等碱金属都不是超 导元素
- 磁性金属元素如Cr, Fe, Mn, Co, Ni等也都不是 超导元素
- Ge, Si等半导体材料,在高压下会转变成金属 并具有超导电性
- 75年的提高 T_c 努力,仅使它提高了19K,最高的临界温度是 Nb_3 Ge合金,23K
- BCS理论判断,最高临界温度<30K!

II、铜氧化物高温超导

- J. Gorge Bednorz (1950-)
- K. Alexander Mueller (1927-)
- 1986年9月在Z. Physik B发表他们关于La₂. _xBa_xCuO₄在35K发现超导电性的结果
- 1987年获Nobel物理奖

1、氧化物超导的发现

- J. G. Bednorz和K. A. Mueller,镧钡铜氧化物超导的可能性,德国物理学报86年4月,La₂₋ _xBa_xCuO₄转变温度35K
- · 这个刊物影响因子不高,并未引起注意,该文 也没有提及抗磁性,他们投寄过PRL,未接受
- 朱经武11月拿到该文复印件,12月重复实验证实,并在施压后提高 T_c 到40K

思考:能不能改变原子大小模拟施压效应?

日本东京大学的田中昭二,用锶代替钡,在常压下得到更高的转变温度

- YBa₂Cu₃O₇高 温超导~90K
- 1987年3月2日 美国Houston 大学的朱经武 小组的结果在 PRL发表,2 月27日中科院 物理所赵忠贤 小组的结果由 人民日报报 道, 开创了高 温超导新纪元

· 90K高温的意义

高临界温度,大临界电流超导

- 何时梦想成真?
- 目前,常压,HgBa₂Cu₃O₈,130K
 * → 宰温?
- 已有100多种氧化物超导
- 使用方面的展开竞争
 线材、薄膜, 10³A/cm² ——>10⁵A/cm²
- 在有效地寻找新型超导体之前,应该弄清 氧化物超导的机理——BCS? 氧化物超导的结构与转变温度有何联系?

2、机理探索

- 现在一般认为,BCS理论中Cooper对的概念对高温超导机理还是适用的,即还是Cooper电子对的凝聚,这已为大量实验事实所证实
- 但Cooper对的配对机理不同于低温超导,即不再是通过与声子相互作用而形成Cooper对
- 有迹象显示, 先配对, 再相干凝聚: 正常态中, 就有能隙
- 配对如此之强,连高温扰动不能打开?

层状结构

- 钙钛矿型(CaTiO₃)结构: 夹层结构
- 有两种CuO层: 一个 Cu与五个 O构成金字 塔二维CuO₂层, Cu 与近邻两个 O构成一 维CuO链
- 两个二维CuO₂金字塔 层夹住一个Y
- · CuO₂与CuO一维链所 在层间隙中是Ba

- HgBa₂Ca₂Cu₃O₉
- TlBa₂Ca₂Cu₃O₉

• BiSr₂CuO₆含有CuO八面体

3、结构共性与超导电性

- 都属层状钙钛矿结构
- 都包含一个四面体,八面体或平面的所谓二维 CuO₂层,该层完整,超导性好
- 这种二维CuO₂层是超导层,证据: 只需约百分之几的二价的磁性离子Ni或非磁性离子Zn替代其中的Cu,超导电性就被破坏,而替代所谓的一维CuO链中的Cu,只是改变载流子的浓度而影响超导电性,对结构的影响更大些,另一证据是La系高温超导没有一维CuO链

• 氧含量的作用:不同氧成分的转变温度的实验结果,一维CuO层——载流子库

本讲小结

- 传统超导现象及机制
 - * Meissner效应
 - * Cooper对和超导能隙
- 高温超导材料和机制
 - * BCS理论中的Cooper对仍有效,但配对机理不清, 电子关联是关键
 - * 高温超导材料结构也许有启发:层状有缺陷的钙钛矿结构,都包含有二维CuO₂超导层,而一维CuO链 所在层是载流子库,调节作用

结束语

- 如果你们通过这门课程而喜欢固体物理学
 - * 那我只是做了我应该做的, 把必要知识告诉了你们
- 如果因为这门课使你们讨厌这个学科,那我感到抱歉!
 - * 并最后希望,你们不会因此而远离这个领域,实际上这个世界很精彩,只是我不能把它完全地展现给你们

谢谢大家!