Contents

y 20
vo Independent Samples t-Test
Example
eory & Concepts
Solution 1 : Assume $\sigma_1 = \sigma_2$
Satterthwaite Approximation
Welch's t-Test
NHST Approach
Example
Data

Day 20

Two Independent Samples t-Test

 $\underline{\text{When it's used:}}$ randomized with unrelated treatments & control groups $\overline{\text{OR}}$ observational study with comparing two unrelated groups.

 $\underline{\text{Very common:}}$ compute mean if everyone got "new" treatment to mean if everyone got "control" treatment. Example; two groups, one smoking and the other group not smoking.

<u>Data looks like</u>: one numerical response variable measured in two independent groups

Example

Lung Cap (Sm	oke)	Lung Cap (No	Smoke)
#		#	
#		#	
#		#	
#		#	
#		#	
		#	
		#	
		#	
		#	
		#	
TOTAL		TOTAL	
5		10	

Figure 1: Numbers to numbers

Lung Cap	Group
#	Smoker
#	Smoker
#	Smoker
#	No smoker

Figure 2: Numbers to groups

Theory & Concepts

Let $\mu_1 = \text{population mean in group 1.}$ $\mu_2 = \text{population mean in group 2.}$

Example: μ_1 = population mean cholesterol level if everyone got <u>new</u> drug. μ_2 = population mean cholesterol level if everyone <u>current</u> drug.

We want to do inference on $\mu_1 - \mu_2$, the difference of population means.

Recall:

$$t = \frac{STATISTIC - PARAMETER}{STANDARD \ ERROR}$$

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_1)}{STANDARD\ ERROR}$$

Now we have two sample, so we have:

- \(\bar{x}\)₁
- S₁
- n_1
- x₂
- \bullet S_2
- n₂

By CLT,

$$\bar{X}_1 \sim N(\mu_1, \frac{\sigma_1}{\sqrt{n_1}})$$

$$\bar{X}_2 \sim N(\mu_2, \frac{\sigma_2}{\sqrt{n_2}})$$

$$\bar{X}_1 - \bar{X}_2 \sim N(\mu_1 - \mu_2, \sqrt{\frac{(\sigma_1)^2}{n_1} + \frac{(\sigma_2)^2}{n_2}}]$$

$$Var(\bar{X}_1 - \bar{X}_2) = Var(\bar{X}_1) + Var(\bar{X}_2)$$

$$(\sigma_1)^2 + (\sigma_2)^2$$

Serious problem: we need to estimate two standard deviations!

Solution 1 : Assume $\sigma_1 = \sigma_2$

Estimate using pooled standard deviation $S_{\rm p}$

 $\sqrt{weighted\ average\ of\ variance}$

this is not needed

Satterthwaite Approximation

$$t \sim t(df)$$

Where df is calculated by Satterthwaite approximation.

In general, df is <u>NOT</u> an integer

Welch's t-Test

Almost always, H_0 :

- $\mu_1 \mu_2 = 0$ $(\mu_1 = \mu_2)$

Under H_0 ,

$$t = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}}$$

Almost always: use a two-sided test

Alternative hypothesis: <u>difference</u> between treatment & control.

Neyman-Pearson:

 H_1 :

- $\mu_1 \mu_2 = \Delta$
- $\Delta =$ desired effects size in original units
- Two sided critical region:

Compute $t_{\rm observed}$

Accept H_1 if $t_{\rm observed}$ in critical region. Else accept H_0 .

NHST Approach

$$H_a: \mu_1 - \mu_2 \neq 0$$

NOTE: can use $\mu_1 - \mu_2 > 0$ or $\mu_1 - \mu_2 < 0$ but be very careful

Under H_0 :

$$t = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}} \sim t(K)$$

K is given by software

Two-sided p-value = $P(|t| \ge |t_{\text{observed}}||H_0istrue)$

If p-value \leq significance level, reject H_0 & accept H_a . Else fail to reject H_0 .

Example

Study comparing fat consumption of early vs late eaters. We want to know whether there is a difference in fat consumption.

Use NHST approach

- H_0 : $\mu_1 \mu_2 = 0$
- H_a : $\mu_1 \mu_2 \neq 0$

Let μ_1 = population mean fat consumption in early eaters

Let μ_2 = population mean fat consumption in later eaters

Data

Early eaters (n=202)

- $\bar{x} = 23.1g$
- S = 12.5q

Late eaters (n=200)

- $\bar{x} = 21.4g$
- S = 8.2g

 $\mu_1 - \mu_2 > 0 \implies$ always above

 $\mu_1 - \mu_2 < 0 \implies$ always below

Under H_0 :

$$t = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}}$$

The answer is about 1.614.

Satterthwaite approximation gives df = 347.41

$$p$$
-value = $2(0.054) = 0.108$

At 5% significance level, we fail to reject H_0 because 0.108 > 0.05. We failed to find a statistically significant difference in fat consumption.