CS 229: Machine Learning

Christian Shelton

UC Riverside

Lecture 8

Slides from Lecture 8

- From UC Riverside
 - ► CS 229: Machine Learning
 - Professor Christian Shelton
- DO NOT REDISTRIBUTE
 - ▶ These slides contain copyrighted material (used with permission) from
 - ► Elements of Statistical Learning (Hastie, et al.)
 - ▶ Pattern Recognition and Machine Learning (Bishop)
 - Machine Learning: A Probabilistic Perspective (Murphy)
 - ▶ For use only by enrolled students in the course

Non-linear methods

ln

$$f(x) = x^{T} w$$

$$f(x) = \sigma(x^{\top}w)$$

replace x with $\varphi(x)$:

$$f(x) = \phi(x)^{\top} w$$

$$f(x) = \sigma(\phi(x)^{\top} w)$$

Non-linear methods

ln

$$f(x) = x^{\top} w$$

$$f(x) = \sigma(x^{\top}w)$$

replace x with $\varphi(x)$:

$$f(x) = \phi(x)^{\top} w$$

$$f(x) = \sigma(\phi(x)^{\top} w)$$

If $\phi(x)$ selected by hand, we are done!

For a given x, y

$$z_{i} = g_{i}(a_{i})$$
$$a_{i} = \sum_{i} w_{ij}z_{j}$$

For a given x, y

$$z_{i} = g_{i}(\alpha_{i})$$

$$\alpha_{i} = \sum_{j} w_{ij}z_{j}$$

$$\frac{\partial l}{\partial w_{ij}} = \frac{\partial l}{\partial \alpha_{i}} \frac{\partial \alpha_{i}}{\partial w_{ij}}$$

$$= \delta_{i}z_{j}$$

For a given x, y

$$f = g_f(\alpha^{(f)})$$

$$\alpha^{(f)} = \sum_j w_{fj} z_j$$

$$\delta^{(f)} = \frac{\partial l}{\partial \alpha^{(f)}} = \frac{\partial l}{\partial f} \frac{\partial f}{\partial \alpha^{(f)}} = \frac{\partial l}{\partial f} g'_f(\alpha^{(f)})$$

for squared error

$$= (a^{(f)} - y) = (f - y)$$

for binary classification

$$= -y(1 - \sigma(ya^{(f)})) = (f - y_{01})$$

For regression:

$$g_f(\alpha) = \alpha$$

$$\delta^{(f)} = (f - y)$$

$$l(f,y) = \frac{1}{2}(f-y)^2$$

For regression:

$$g_f(a) = a$$

$$\delta^{(f)} = (f - y)$$

$$l(f,y) = \frac{1}{2}(f-y)^2$$

For binary classification, $y \in \{-1, +1\}$:

$$g_f(\alpha) = \sigma(\alpha)$$

$$\delta^{(f)} = -y(1 - \sigma(y\alpha^{(f)}))$$

$$l(f, y) = \log(1 + e^{-yf})$$

For regression:

$$g_f(a) = a$$

$$l(f, y) = \frac{1}{2}(f - y)^2$$

$$\delta^{(f)} = (f - y)$$

For binary classification, $y \in \{-1, +1\}$:

$$\begin{split} g_f(\alpha) &= \sigma(\alpha) \\ \delta^{(f)} &= -y(1-\sigma(y\alpha^{(f)})) \end{split}$$

$$l(f,y) = log(1+e^{-yf})$$

For binary classification, $y \in \{0, 1\}$:

$$g_f(\alpha) = \sigma(\alpha) \qquad \qquad l(f,y) = -(y \log(f) + (1-y) \log(1-f))$$

$$\delta^{(f)} = (f-y)$$

For multiclass classification, $y_c \in \{0, 1\}$:

$$g_{f,c}(a^{(f)}) = \frac{e^{a_c^{(f)}}}{\sum_{c'} e^{a_{c'}^{(f)}}} \quad l(f,y) = -\sum_{c} y_c \log(f_c)$$

$$\delta^{(f_c)} = (f_c - y_c)$$

Non-linearities

Most common:

$$\begin{split} g(\alpha) &= \sigma(\alpha) = \tanh(2\alpha)/2 + 1 \\ g(\alpha) &= \tanh(\alpha) \\ g(\alpha) &= \max(0, \alpha) \\ g(\alpha) &= \max(0, 0.99\alpha) + 0.01\alpha \end{split}$$

Non-linearities

Most common:

$$\begin{split} g(\alpha) &= \sigma(\alpha) = \tanh(2\alpha)/2 + 1 \\ g(\alpha) &= \tanh(\alpha) \\ g(\alpha) &= \max(0, \alpha) \\ g(\alpha) &= \max(0, 0.99\alpha) + 0.01\alpha \end{split}$$

Also used:

$$z_{i} = e^{-\sum_{j}(z_{j} - w_{ij})^{2}}$$

(radial basis function network)

- Historically, 2 (1 layer of hidden units)
- 2 can approximate any function (with enough hidden units)

- Historically, 2 (1 layer of hidden units)
- 2 can approximate any function (with enough hidden units)
- More cause problems with minimization

- Historically, 2 (1 layer of hidden units)
- 2 can approximate any function (with enough hidden units)
- More cause problems with minimization
- Now common to have many (deep learning)

How many layers?

- Historically, 2 (1 layer of hidden units)
- 2 can approximate any function (with enough hidden units)
- More cause problems with minimization
- Now common to have many (deep learning)

How many units?

- Too many can cause overfitting...
- ...see next slide

How many layers?

- Historically, 2 (1 layer of hidden units)
- 2 can approximate any function (with enough hidden units)
- More cause problems with minimization
- Now common to have many (deep learning)

How many units?

- Too many can cause overfitting...
- ...see next slide
- Usually err on side of too many

Overfitting

Start (stochastic) gradient descent:

- With weights near 0
- But, random!

Overfitting

Start (stochastic) gradient descent:

- With weights near 0
- But, random!

Add regularization to loss:

$$L = \sum_{i} l(f(x_i), y_i) + \frac{\lambda}{2} \sum_{ij} w_{ij}^2$$

Overfitting

Start (stochastic) gradient descent:

- With weights near 0
- But, random!

Add regularization to loss:

$$L = \sum_{i} l(f(x_i), y_i) + \frac{\lambda}{2} \sum_{ij} w_{ij}^2$$

Same as adding $-\eta \lambda w_{ij}$ to batch update of w_{ij} (or $-\frac{1}{n}\eta \lambda w_{ij}$ to online update)

Called "weight decay"

Neural Network - 10 Units, No Weight Decay

Neural Network - 10 Units, Weight Decay=0.02

Sum of Sigmoids, 10 Hidden Unit Model

Either batch (gradient descent) or online (stochastic gradient descent) used.

Either batch (gradient descent) or online (stochastic gradient descent) used. 2^{nd} -order methods possible, but expensive Conjungate-gradient methods (and similar) more popular

Either batch (gradient descent) or online (stochastic gradient descent) used. $2^{\rm nd}$ -order methods possible, but expensive Conjungate-gradient methods (and similar) more popular Many many local minima...

Either batch (gradient descent) or online (stochastic gradient descent) used. 2^{nd} -order methods possible, but expensive Conjungate-gradient methods (and similar) more popular Many many local minima... use random restart

Either batch (gradient descent) or online (stochastic gradient descent) used. 2nd-order methods possible, but expensive Conjungate-gradient methods (and similar) more popular Many many local minima... use random restart Normalize data

Weight Tieing

If we want two weights to be the same...

Weight Tieing

If we want two weights to be the same...

- Start them the same
- Sum their updates and apply to both:

$$\begin{split} g(\alpha,b) &= \dots \\ f(x) &= g(x,x) \\ \frac{\partial f}{\partial x} &= \frac{\partial g}{\partial \alpha} \frac{\partial \alpha}{\partial x} + \frac{\partial g}{\partial b} \frac{\partial b}{\partial x} \\ \frac{\partial f}{\partial x} &= \frac{\partial g}{\partial \alpha} + \frac{\partial g}{\partial b} \end{split}$$

Digit Recognizer Networks

