1 Required

1.1 Material

- A MAA article about visualizing the first group isomorphism theorem.
- Visually constructing homomorphisms.
- Lecture slides by Professor Matthew Macauley on group homomorphisms.

1.2 Exercises

1.2.1 Gallian

• Chapter 6, 40 - 50, A First Course in Abstract Algebra

1.2.2 Herstein

- Section 2.7, 1 3, 15 16, Topics in Algebra
- Section 2.8, 1 4, 10 11, 16, Topics in Algebra

1.2.3 Programming

- \bullet Given a natural number n less than 200, output the number of group structures on a set of n elements.
- Define $gHg^{-1} := \{ghg^{-1} | h \in H\}$. Given a group G, how many subgroups H of G satisfy the property $gHg^{-1} = H$ for all $g \in G$?
- Read more about the PermutationGroupHomomorphism_from_gap() function and construct a homomorphism from $\mathbb{Z}/2\mathbb{Z}$ to the Klein Four Group.

2 Additional

2.1 Maximal slackers

We call a subgroup H of a group G maximal if there exists no subgroup H' such that $H \subsetneq H'$. Define $J(G) := \bigcap_{H \text{ is maximal}} H$.

Compute the following and compare J(G) with $NotGen(G)^1$:

- \bullet $J(S_3)$
- $J(\mathbb{Z})$
- $J(\mathbb{Z}/4\mathbb{Z})$

 $^{^{1}}$ Refer to the material provided on 25/11

2.2 A generalized 15 puzzle

Consider a rectangular $m \times n$ tiled grid with an unoccupied bottom-right space.

1	2		m
m+1	m+2		2m
:	:	٠٠.	•
m(n-1) + 1	m(n-1)+2		В

The puzzle behaves like the 15 puzzle - tiles adjacent to the blank space can be pushed into it. Let $G_{m \times n}$ be the set of reachable states where the blank tile remains in the bottom-right corner. $G_{m \times n}$ forms a group under composition.

For $2 \le m, n \le 5$ find the minimal set of moves that generate $G_{m \times n}$ and express them in terms of the basic pushLeft, pushRight, pushDown, pushUp moves.

Observe that the move M defined as pushLeft pushDown pushRight pushUp generates $G_{2\times 2}$

What group is $G_{m \times n}$ isomorphic to?

2.3 Commutator Chain

Given a group G define the commutator subgroup Comm(G) as the subgroup generated by all elements $\{ghg^{-1}h^{-1}|g,h\in G\}$.

Given a finite group G, we define a commutator chain $\{G, Comm(G), Comm(Comm(G)), \ldots\}$.

We terminate the chain once a stationary point is reached. A stationary point is defined as $Comm^{(n)}(G)$ such that $Comm^{(n)}(G) \simeq Comm^{(n+k)}(G)$ for all $k \in \mathbb{N}$.

What is the commutator chain of a finite abelian group? What is the commutator chain of:

- S₄
- S₅
- Mathieu Group M_{12}