

Universal Serial Bus (USB)

Ali Mirghasemi

Introduction

- USB On-The-Go Full-Speed (USB OTG FS) is a versatile and powerful feature integrated into the STM32F407 microcontroller, enabling dynamic switching between host and device roles in USB communications.
- This functionality allows the STM32F407 to interact seamlessly with a variety of USB peripherals, enhancing its adaptability in embedded systems.
- USB OTG FS operates at a Full-Speed rate of 12 Mbps, making it suitable for applications that require moderate data transfer speeds without the complexity and power consumption associated with High-Speed USB interfaces.

Applications

Mobile Devices

• Facilitates direct connection between smartphones and peripherals like keyboards, mice, and storage devices.

• Industrial Automation

• Enables communication between microcontrollers and industrial sensors, actuators, and control units.

• Consumer Electronics

• Supports connections with cameras, game controllers, and audio devices.

Data Acquisition Systems

• Allows for efficient data transfer between sensors and data processing units.

• IoT Devices

• Enhances connectivity options for Internet of Things (IoT) applications by enabling peripheral expansion and direct device communication.

Features

• Dual Role Capability

• Can function either as a host or a device, allowing flexible communication setups.

• Full-Speed Operation

• Supports data transfer rates up to 12 Mbps, balancing speed and power efficiency.

• Low Power Consumption

• Optimized for energy-efficient operations, crucial for battery-powered devices.

Integrated PHY

• The STM32F407 includes a built-in Physical Layer (PHY) for USB, simplifying hardware design.

• Support for Multiple Endpoints

• Facilitates simultaneous communication with multiple USB devices or peripherals.

Properties

- Connection Type: Serial
- Communication Type: Half-Duplex
- Data Type: Packet
- Synchronize: Async
- Channel Type: Copper Wire
- Voltage State: TTL (Differential)

USB TYPE-A Connector Pinout

Versions

Name	Version	Communication Type	Speed (Mbps)	Connector
Low Speed (LS)	1.0	Half-Duplex	1.5	A, B
Full Speed (FS)	1.1	Half-Duplex	12	A, B
High Speed (HS)	2.0	Half-Duplex	480	A, B
Super Speed (SS)	3.0	Full-Duplex	5000	A, B
Super Speed+ (SS+)	3.1	Full-Duplex	10000	A, C
Super Speed++ (SS++)	3.2	Full-Duplex	20000	С
USB4	4.0	Full-Duplex	40000	С

Connectors

USB 1.0 12mbps

Type A

Type B

Mini-B

4000

Micro-B

Micro-A

USB 2.0 480mbps

Type A

Type B

Mini-B

0.000 Micro-B

USB 3.1 Gen1 (Previously 3.0) 5gbps

USB 3.1 Gen2

10gbps

USB 3.2 20gbps

Thunderbolt

Thunderbolt

Connectors

Stream

Control Streams

• Handle setup, configuration, and control signals essential for managing the USB connection.

• Bulk Streams

• Transfer large amounts of data without real-time constraints, suitable for applications like file transfers.

• Interrupt Streams

• Manage small, time-sensitive data packets, ideal for devices like keyboards and mice.

• Isochronous Streams

• Provide consistent, real-time data delivery, necessary for audio and video streaming applications.

Packets

• Token Packets

• Initiate data transactions and indicate the type of transfer (e.g., IN, OUT, SETUP).

• Data Packets

• Carry the actual payload data between the host and device.

Handshake Packets

• Provide status information and acknowledgments (e.g., ACK, NAK, STALL).

• Start-of-Frame (SOF) Packets

• Signal the beginning of a new frame and synchronize data transfers.

States

• Idle

• The default state when no USB activity is occurring.

• Reset

• Entered during USB initialization or when a reset signal is detected, preparing the interface for communication.

• Addressing

• Assigns a unique address to the device during enumeration.

Configured

• Indicates that the device is properly configured and ready for data transfer.

• Suspended

• Activates low-power mode when the USB connection is idle or not in use.

• Error

• Triggered by communication errors, requiring error handling and recovery procedures.

States

Upstream Schematics (1/4)

USB FS upstream port with embedded pull-up resistor in self-powered applications

Upstream Schematics (2/4)

USB FS upstream port without embedded pull-up resistor in self-powered applications

Upstream Schematics (3/4)

USB FS upstream port with embedded pull-up resistor in bus-powered applications

Upstream Schematics (4/4)

USB FS upstream port without embedded pull-up resistor in bus-powered applications

Downstream Schematic

USB FS downstream implementation

OTG Schematic

OTG schematic implementation (dual-mode)

Registers

- USB_OTG_FS Control and Status Registers (GOTGCTL, GOTGINT)
 - Manage OTG-specific controls and interrupts.
- USB_OTG_FS Global Registers (GUSBCFG, GRSTCTL, GINTMSK, GINTSTS)
 - Configure global USB settings, handle resets, and manage global interrupts.
- USB_OTG_FS Device Registers (DCFG, DCTL, DSTS, DIEPCTLn, DOEPCTLn)
 - Control device-specific configurations, status, and endpoint controls.
- USB_OTG_FS Host Registers (HCFG, HCTL, HFNUM, HPRT, HPTXSTS, HAINT)
 - Manage host-specific configurations, port status, transfer scheduling, and host interrupts.