Ejemplos Famosos de Juegos en Teoría de Juegos

Exploraremos varios ejemplos de juegos (más allá del Dilema del Prisionero) que son famosos o ilustran situaciones habituales en la vida cotidiana. A cada uno le daremos alguna interpretación sencilla y analizaremos sus equilibrios de Nash (si los tienen) o remarcaremos la ausencia de los mismos en estrategia pura, cuando sea el caso.

Los ejemplos aquí presentados son **juegos estáticos** y de **información completa**, con un **número reducido de estrategias** para cada jugador (generalmente 2 o 3). Veremos cómo cada uno **puede interpretarse** de maneras variadas que conectan con la vida diaria.

1. El Juego de la Gallina (Chicken)

Matriz de Pagos (Versión Clásica)

Dos conductores se dirigen de frente, cada uno en su carril, y **ninguno** quiere ser el que "se aparte" (por orgullo). Cada uno elige entre:

- Desviarse (D): girar el volante y ceder.
- Mantenerse (M): continuar su trayecto sin desviarse.

	Conductor B: D	Conductor B: M
Conductor A: D	\$(0, 0)\$	\$(-1, +1)\$
Conductor A: M	\$(+1, -1)\$	\$(-10, -10)\$

Interpretación de pagos:

- on procession on pages
- Si ambos se desvían (D, D), nadie "gana orgullo", pero ninguno sufre el choque, por lo que el pago es intermedio \$(0,0)\$.
- Si A se desvía y B no, B "gana" (1) su orgullo, A "pierde" (-1) algo de orgullo. Viceversa si A no se desvía y B sí.
- Si ambos se mantienen (M, M), ocurre un choque catastrófico \$(-10, -10)\$.

Análisis y Equilibrios

- Estrategias dominantes: No hay.
- Equilibrios de Nash en estrategias puras:
 - (M, D) → A no se desvía, B se desvía.
 - (D, M) → A se desvía, B no se desvía.
 Ambos son equilibrios porque ningún jugador querría cambiar su estrategia unilateralmente dadas las acciones del otro.
- Interpretación cotidiana:

PROF

PROF

Invitar a salir vs. esperar a que te inviten. Si ambos esperan, nadie se mueve \$(-10, -10)\$,
 "fracaso total". Si uno toma la iniciativa y el otro no, el que "empuja" la situación se arriesga un poco (pago -1), el otro se beneficia de la invitación (+1), pero es mejor que nadie haga nada.

2. Matching Pennies (Sin Equilibrio Puro)

Matriz de Pagos

Dos jugadores (A y B) eligen simultáneamente si mostrar "cara" (C) o "cruz" (X). Si coinciden (ambos muestran C o ambos X), A gana 1 y B pierde 1 (o viceversa, según la convención). Si difieren (uno C, otro X), gana B y pierde A.

	B elige C	B elige X
A elige C	\$(+1, -1)\$	\$(-1, +1)\$
A elige X	\$(-1, +1)\$	\$(+1, -1)\$

Análisis y Equilibrios

- Estrategias dominantes: No hay.
- Equilibrio de Nash en estrategias puras: No existe. Cualquier celda que elijas, el otro jugador puede cambiar su estrategia y obtener un mejor pago.
- Equilibrio de Nash en estrategias mixtas: Cada uno elige C o X con probabilidad 1/2. Ese es el único equilibrio, pero no está en estrategias puras.
- Interpretación cotidiana:
 - **Juego de adivinar** el "verdadero interés" del otro: si la otra persona cree que vas a "cooperar", ella puede cambiar su jugada para aprovecharse, etc.
 - Salir a beber vs. quedarse en casa: si uno cree que su compañero se queda en casa, tal vez prefiera salir y viceversa, lo que genera un vaivén de decisiones.
 - Este juego suele modelar la idea de "ocultar o descubrir", donde cada jugador trata de anticipar la acción del otro.

3. Stag Hunt (Caza del Ciervo)

Matriz de Pagos (Versión 2x2)

Dos cazadores salen a cazar. Pueden **colaborar** (C) para cazar un ciervo grande (requiere ambos) o **ir solos** (S) y cazar un conejo (menos valioso, pero seguro).

	B elige C (colaborar)	B elige S (solo)
A elige C (colaborar)	\$(3, 3)\$	\$(0, 2)\$

	B elige C (colaborar)	B elige S (solo)
A elige S (solo)	\$(2, 0)\$	\$(2, 2)\$

Interpretación de pagos (ejemplo numérico):

- Si ambos colaboran (C, C): cada uno obtiene 3 (ciervo grande compartido).
- Si uno colabora y el otro no, el que va solo atrapa un conejo (2), y el que colaboró no consigue nada (0).
- Si ambos van solos (S, S), cada uno se lleva un conejo (2).

Análisis y Equilibrios

- Equilibrios de Nash en puras:
 - (C, C) → ambos colaboran y nadie gana desviándose (desviarte te da 2, que es menos que 3).
 - 2. (S, S) \rightarrow ambos van solos, y si uno se desvía a colaborar mientras el otro sigue solo, sale perdiendo (pasa de 2 a 0).
- Interpretación cotidiana:
 - **Hacer tareas en equipo** vs. **hacerlas solo**. Colaborar puede dar mayor beneficio, pero solo funciona si los demás también colaboran.
 - Estudiar juntos vs. independiente.

4. El juego de la coordinación con conflicto

Matriz de Pagos

Imaginemos que amigues quiere decidir si el plan de la tarde es **ir a ver una película** (P) o **ir a un concierto** (C). A prefiere la película ligeramente más, B prefiere el concierto. Pero ambos valoran más **estar juntos** que ir separados.

Ρ	R	0	F

	B elige P	B elige C
A elige P	\$(2,1)\$	\$(0,0)\$
A elige C	\$(0,0)\$	\$(1,2)\$

- Si A elige P y B elige P, A gana 2, B gana 1.
- Si A elige C y B elige C, A gana 1, B gana 2.
- Si eligen **opciones distintas** (P vs. C), ambos obtienen 0 (separados).

Análisis y Equilibrios

- Equilibrios de Nash en puras:
 - (P, P) y (C, C).
- Interpretaciones:
 - El **conflicto** radica en **quién** logra su plan preferido, pero la **coordinación** es clave.

5. "Enviar Mensaje a la Persona que te Gusta"

- Jugador A: Tú, que decides si enviar un mensaje (M) o quedarte callado (N).
- **Jugador B**: La persona que te interesa. Puede "responder con interés real" (I) o "responder de forma manipuladora" (sea love bombing o gaslighting) (G).

Posible Matriz de Pagos (2x2)

	B: Interés (I)	B: Manipulación (G)
A: Mensaje (M)	\$(+2, +2)\$	\$(-2, +1)\$
A: No Mensaje (N)	\$(0, 0)\$	\$(0, -1)\$

Interpretación de pagos:

- (M, I): Tú envías mensaje, la otra persona responde con interés genuino:
 - A se siente contento (+2). B también "gana" (+2) por una interacción honesta y satisfactoria.
- (M, G): Envío de mensaje y el otro responde manipulando (love bombing: halagos exagerados sin compromiso real, o gaslighting: confundiendo intencionalmente):
 - A sufre emocionalmente (-2). B obtiene una "ganancia" temporal (+1) sintiéndose con poder.
- (N, I): Si A no manda mensaje y la otra persona habría respondido con interés, realmente no ocurre interacción → \$(0, 0)\$.
- (N, G): Tampoco hay interacción, pero B "pierde un poco" (-1) por no poder manipular. A se queda neutral (0).

Análisis y Equilibrios

PROF

1. Revisa si hay estrategias dominantes:

- Para A: "Mensaje (M)" no siempre es mejor (con G, sale -2). "No Mensaje (N)" evita la pérdida, pero con I se pierde la oportunidad de +2. No hay dominancia.
- Para B: Depende de la acción de A. Si A no envía mensaje, B obtiene 0 o -1, así que prefiere I para obtener 0 (mejor que -1). Si A envía mensaje, B puede elegir +2 (I) o +1 (G). Prefiere +2 > +1, así que I domina en caso de mensaje.

2. Posible Equilibrio de Nash:

- Al observar la matriz, la mejor respuesta de B cuando A envía mensaje (M) es I (+2 en lugar de +1). La mejor respuesta de B cuando A no envía mensaje (N) es I (0 mejor que -1).
- Para A, si B escoge I, su mejor respuesta es M (obtener +2 en lugar de 0).
- Esto sugiere que (M, I) puede ser un Equilibrio de Nash (A no cambiaría a N, pues 0 < +2; B no cambiaría a G, pues +1 < +2).

• Sin embargo, si B es manipulador y siempre hace G (por "personalidad"), cabe la posibilidad de desajustes (pues A se llevaría -2).

3. Interpretaciones:

- Enviar o no "ese WhatsApp" a un/a compañero/a de clase para invitarle a estudiar juntos.
- Las ganancias o pérdidas pueden adaptarse: a veces perder es "poner tu dignidad en riesgo" o "sufrir un ghosting".

+ 5 / 5 **+**