R, Euclidean Spaces, C

Reelle Zahlen grundlegende Eigenschaften

Q ist in vielen Situationen nicht ausreichend. Z. B.:

Theorem 1.1.1, Lindemann 1882: Es gibt keine Gleichung der Form $x^n + a_{n-1}x^{n-1} + \cdots$... $+ a_0 = 0$ mit $a_i \in \mathbb{Q}$ so dass $x = \pi$ eine Lösung ist.

Wir definieren nun reelle Zahlen mit zwei Opertationen:

- addition: $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
- multiplication: $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

und der totalen Ordnung \leq . $(a > b \Leftrightarrow a \geq$

Theorem 1.1.2: \mathbb{R} ist ein kommutativer, angeordneter Körper, der ordnungsvollständig

Die Neutralelemente sind 0 und 1. Dies beinhaltet die Axiome: Assoziativität, Neutralelement, inverses Element, und Kommutativität (für + and \cdot). Es gilt Distributivität. Ferner ist die Ordnung total: reflexiv, transitiv, antisymmetrisch, total. Angeordnet bedeutet: Kompatibilität der Ordnung mit Axiomen:

- (K1) $\forall a, b, c \in \mathbb{R}, a \le b \Rightarrow a+c \le b+c$
- (K2) $\forall a \geq 0, \forall b \geq 0 \Rightarrow ab \geq 0$

 \mathbb{Q} genügt bisherigen Axiomen (1.1.5). Wir fügen hinzu: Ordnungsvollständigkeit. $A, B \subseteq \mathbb{R}$ (V1): $A \neq \emptyset \neq B$. (V2): $\forall a \in A, \forall b \in B, a \leq b. - (V1) \land (V2) \Rightarrow$ $\exists c \in \mathbb{R}, \forall a \in A, b \in B, a \leq c \leq b.$

Corollary 1.1.6:

- 1. Eindeutigkeit additiver/multiplikativer Inverse
- $0 \cdot x = 0, \forall x \in \mathbb{R}$
- 3. $(-1) \cdot x = -x, \forall x \in \mathbb{R}$
- 4. $y \ge 0 \Leftrightarrow -y \le 0$
- 5. $y^2 > 0, \forall y \in \mathbb{R}$
- 6. $x \le y, u \le v \Rightarrow x + u \le y + v$ 7. $0 \le x \le y, 0 \le u \le v \Rightarrow x \cdot u \le y \cdot v$

Corollary 1.1.7: Script: Let $x \in \mathbb{R}, x > 0$ $0, y \in \mathbb{R} \Rightarrow \exists n \in \mathbb{N}, y \leq n \cdot x \mid \text{Lecture}$: $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, n > x$

Theorem: Q genügt nicht Vollständigkeit, da $\sqrt{2} \in \mathbb{R}$ as 1.1.8.

Theorem 1.1.8: For jedes $t > 0, t \in \mathbb{R}, x^2 =$ t hat eine Lösung in \mathbb{R} . Notice: Solution Definition 1.1.12: $A \subset \mathbb{R}$ unique, denoted \sqrt{t} .

We say that \mathbb{R} is unique as an isomorphism between any two sets, which validate \mathbb{R} 's axioms, exists. Also, \mathbb{Q} is dense in \mathbb{R} . So, for $x < y \in \mathbb{R}, \exists z \in \mathbb{Q} : x < z < y.$

Definition 1.1.9: Seien $x, y \in \mathbb{R}$.

- 1. $\max\{x,y\} = \begin{cases} x, & y \le y \\ y, & x \le y \end{cases}$
- 2. $\min\{x,y\} = \begin{cases} y, & y \le x \\ y, & x \le y \end{cases}$
- 3. $|x| := \max\{x, -x\}$ (Absolutbetrag)

Corollary:

- |x-y| with $x,y \in \mathbb{R}$ distance of x,y
- \bullet $x \leq |x|, -x \leq |x|$
- $|x| \leq a \Leftrightarrow x \in [-a, a]$

Theorem 1.1.10:

- $\bullet \mid -x \mid = |x| \ge 0, x \in \mathbb{R}$
- $|xy| = |x| \cdot |\overline{y}|, \forall x, y \in \mathbb{R}$
- $|x + y| \le |x| + |y|, \forall x, y \in \mathbb{R}$ (Dreiecksungleichung)
- $|x + y| \ge ||x| |y||, \forall x, y \in \mathbb{R}$

Definition Unendlichkeit: $\infty, \forall x \in \mathbb{R}$

Definition Intervalle:

- $a < b \in \mathbb{R}$
 - $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$ $- [a, b] = \{x \in \mathbb{R} | a \le x < b\}$ $- [a, b] = \{x \in \mathbb{R} | a < x \le b\}$ $-|a,b| = \{x \in \mathbb{R} | a < x < b\}$
- $a \in \mathbb{R}$
 - $-[a,+\infty] = \{x \in \mathbb{R} | a \le x\}$ $-]a, +\infty[= \{x \in \mathbb{R} | a < x\}]$ $- |-\infty, a| = \{x \in \mathbb{R} | a > x\}$ $[-] - \infty, a = \{x \in \mathbb{R} | a > x\}$
- \bullet] $-\infty$, $+\infty$ [= \mathbb{R}

[a, b]: abgeschlossen/kompakt - [a, b]: offen unten/oben beschränkt $\Leftrightarrow \exists x, \forall y \in A, x < y$ /y > x, beschränkt \Leftrightarrow oben/unten beschränkt Man kann mit Intervallen Werte approximieren:

$$\begin{array}{l} \bullet \ \left| {a - x,a + x[= \left\{ {y \in \mathbb{R}|\left| {a - y} \right| < x} \right\}} \right. \\ \bullet \ \left| {a - x,a + x} \right| = \left\{ {y \in \mathbb{R}|\left| {a - y} \right| \le x} \right\} \end{array}$$

- Schranken, Supremum, Infimum
 - $c \in \mathbb{R}$ obere Schranke von $A \forall a \in A$:
 - $c \in \mathbb{R} \subset C$ untere Schranke von A $\forall a \in A$:
 - $m \in \mathbb{A}$ Maximum von A m obere
 - $m \in \mathbb{A}$ Minimum von A m untere Schranke

∃ obere/untere Schranke: nach oben/unten beschränkt

Maximum von A: $\max A$ & Minimum von A: $\min A$

Theorem 1.1.15: $A \subset \mathbb{R}, A \neq \emptyset$

- A oben beschränkt: ∃ kleinste obere Schranke: Supremum von A - c := $\sup A$
- A unten beschränkt: \exists größte untere Schranke: Supremum von A - d := $\inf A$

Aussage äquivalent zur Vollständigkeit von \mathbb{R} . Corollary 1.1.16: $A \subset B \subset \mathbb{R}$. B nach oben beschränkt: $\sup A < \sup B$. A nach unten beschränkt: $\inf B \leq \inf A$.

Wenn A nicht oben/unten beschränkt: $\sup A = +\infty/\inf A = -\infty$. Wenn max/min existiert, dann $\max = \sup, \min = \inf$.

Showing sup A = c

Test if $c = \max A$. Else, test $\forall a \in A, a \leq c$ & for x < c find $a \in A$, x < a < c. Analogously for $\inf A = d$.

Definition 1.1.18:

- 1. X, Y gleichmächtig, \exists bijection f: $X \to Y - X \sim Y$
- 2. X endlich, wenn $X = \emptyset$ (Kardinalität cardX=0) or $\exists n\in\mathbb{N}, X\sim$ $\{1, 2, 3, ..., n\}$ (cardX = n)
- 3. X abzählbar, wenn endlich oder $X \sim \mathbb{N}$

Theorem 1.1.20, Cantor: \mathbb{R} nicht abzählbar Euklidische Räume

Nicht weiter betrachtet. Komplexe Zahlen

+: (a,b) + (c,d) = (a+c,b+d) $\cdot : (a,b) \cdot (c,d) = (ac-bd,ad+bc)$

Theorem 1.3.1: \mathbb{R}^2 mit +, · ist kommutativer Körper mit $1_{\mathbb{C}} = (1,0), 0_{\mathbb{C}} = (0,0).$

 $\mathbb{R} \subset \mathbb{C} \text{ mit } x \mapsto (x,0).$ Bemerke $i^2 =$ $(0,1)^2 = -(1,0)$

Division: $\frac{1}{z} = \frac{1}{|z|^2} \cdot \overline{z}$

Notation: z = x + yi, $x = Re \ z = \frac{z+\overline{z}}{2}$, $y = Im \ z = \frac{z - \overline{z}}{2i}$.

Definition von komplexer Konjunktion: $\overline{z} :=$ x - yi.

Theorem 1.3.2:

1.
$$\frac{\overline{(z_1 + z_2)}}{\overline{z_1}\overline{z_2}, \forall z_1, z_2 \in \mathbb{C}} = \overline{z_1} + \overline{z_2}, \overline{(z_1z_2)} = \overline{z_2}, \overline{z_2} = x^2 + y^2 = ||z||^2$$

$$\Rightarrow z^{-1} = \frac{\overline{z}}{||z||^2}$$

Additionally, $|z| = \sqrt{a^2 + b^2} \in \mathbb{R}$, $|z_1 z_2| =$ $|z_1| \cdot |z_2|, |z_1 + z_2| \le |z_1| + |z_2|.$

Also remember the polar form from Analysis. a + bi: $r = \sqrt{a^2 + b^2}$, $\Theta \Rightarrow re^{\Theta i}$

Theorem 1.3.4, Fundamentalsatz der Algebra: $n \ge 1, n \in \mathbb{N}, P(z) = z^n + a_{n-1}z^{n-1} +$ $\dots + a_0, a_i \in \mathbb{C}$. Then, $\exists z_1, \dots, z_n \in \mathbb{C}$ so that $P(z) = (z - z_1)(z - z_2) \cdot \cdot \cdot (z - z_3)$. (With multiplicity, n solutions to polynomial of degree n.)

Folgen & Reihen

Grenzwerte einer Folge

Definition 2.1.1: $a : \mathbb{N}^* \to \mathbb{R}$ Folge reeller Zahlen. a_n anstatt a(n), bezeignet mit $(a_n)_{n>1} / (a_n)_{n>0}$.

Lemma 2.1.3: $(a_n)_{n>1}$ eine Folge. Höchstens ein $l \in \mathbb{R}$ mit $\forall \epsilon > 0, \{n \in \mathbb{N} | a_n \notin \mathbb{R} \}$ $[l-\epsilon, l+\epsilon[]$ finite.

Definition 2.1.4: $(a_n)_{n\geq 1}$ konvergent falls $\exists l \in \mathbb{R} \text{ so dass } \forall \epsilon > 0 \colon \{n \in \mathbb{N}^* | a_n \not\in \mathbb{N}^* \}$ $[l - \epsilon, l + \epsilon]$ endlich.

Als $\lim_{n\to\infty} a_n$ $\rightarrow_{n\rightarrow\infty}$ l/a_n l/Grenzwert/Limes bezeichnet. Wenn nicht konvergent: divergent.

With " $A \subset \mathbb{N}$ endlich $\leftrightarrow \exists N \in \mathbb{N}$, $(n \ge N \Rightarrow n \not\in A)$ "

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |a_n - l| < \epsilon$$

ist äquivalent.

Bemerkung 2.1.5: Folge konvergent \Rightarrow Folge beschränkt.

Vergleichsprinzip: If $(c_n) \to 0$ and $\forall n, 0 \le 1$ $|a_n| \le c_n$, then $a_n \to 0$. Also if only for n > some N.

Can be used for $\frac{1}{n}$, $\frac{1}{n^2}$, $\frac{1}{2^n}$, $\frac{1}{n!}$, $\frac{\cos(...)}{n}$, $1 + \frac{1}{n}$, ...

Theorem 2.1.8: $(a_n)_{\mathbb{N}}, (b_n)_{\mathbb{N}}, a_n \rightarrow a$, $b_n \to b$

- 1. $(a_n+b_n) \rightarrow a+b$ 2. $(a_n\cdot b_n) \rightarrow a\cdot b$ 3. if $b_n\neq 0, b\neq 0$, then $\frac{a_n}{b_n} \rightarrow \frac{a}{b}$ 4. If $\exists K\in\mathbb{N}: a_n\leq b_n, \forall n\geq K$, then $a \leq b$

Satz von Weierstrass & Anwendungen

Definition 2.2.1:

- 1. $(a_n)_{\mathbb{N}}$ monoton wachsend $\Leftarrow a_n \leq$
- $a_{n+1}, \forall n$ 2. $(a_n)_{\mathbb{N}}$ monoton fallend $\Leftarrow a_{n+1} \leq$ $a_n, \forall n$

Theorem 2.2.2:

- $(a_n)_{\mathbb{N}}$ monoton wachsend, nach oben beschränkt $\Rightarrow \lim_{n\to\infty} a_n =$ $\sup\{a_n|n\in\mathbb{N}\}$
- $(a_n)_{\mathbb{N}}$ monoton fallend, nach unten beschränkt $\Rightarrow \lim_{n\to\infty} a_n =$ $\inf\{a_n|n\in\mathbb{N}\}$

Corollary 2.2.4: $(a_n)_{\mathbb{N}}$ konvergent, $k \in \mathbb{N}$, $b_n := a_{n+k} \Rightarrow b_n$ konvergent mit $b_n \rightarrow$ $\lim a_n$.

Grenzwert monotoner Folgen wenn $\lim x_n = l$ and $\lim x_{n+1} = l$, löse ggf.

Lemma 2.2.7, Bernoulli: $(1+x)^n \ge 1 + n$. $x, \forall n \in \mathbb{N}, x > -1$

Limes superior & Limes inferior

Definition Limes superior/inferior: $(a_n)_{\mathbb{N}}$ beschränkt. $b_n = \inf\{a_k | k \ge n\}$ and $c_n =$ $\sup\{a_k|k\geq n\}$

 $\liminf_{n\to\infty} a_n := \lim_{n\to\infty} b_n$ (limes inferior) $\limsup_{n\to\infty} a_n := \lim_{n\to\infty} c_n$ (limes supe-

beide existieren & $\liminf_{n\to\infty} a_n$ $\limsup_{n\to\infty} a_n$ $b_{n+1} \ge b_n, c_{n+1} \le c_n \Rightarrow$ steigend, fallend algebraische Operationen halten nicht!

Cauchy Kriterium

Lemma 2.4.1: $(a_n)_{\mathbb{N}}$ konvergiert $\Leftrightarrow (a_n)_{\mathbb{N}}$ beschränkt und $\liminf a_n = \limsup a_n$. **Theorem 2.4.2:** $(a_n)_{\mathbb{N}}$ konvergiert $\Leftrightarrow \forall \epsilon >$ $0, \exists N \geq 1 \text{ so that } |a_n - a_m| < \epsilon, \forall n, m \geq 1$ Shows: $\lim_{n\to\infty} \sum_{i=1}^n \frac{1}{i}$ does not converge. Corollary: $(a_n), (b_n)$ mit $|a_{n+1} - a_n| \le$ $b_n - b_{n+1}$. (b_n) konvergiert $\Rightarrow (a_n)$ konvergiert

Satz von Bolzano-Weierstrass

Definition 2.5.1: abgeschlossenes Teilintervall $I \subset \mathbb{R}$:

- $-[a,b], a \leq b, a, b \in \mathbb{R}$
- $-[a,+\infty[,a\in\mathbb{R}]]$
- $[-\infty,a],a\in\mathbb{R}$
- $-|-\infty,+\infty|=\mathbb{R}$

Corollary: $I \subset \mathbb{R}$ abgeschlossen $\Leftrightarrow \forall$ konvergente (a_n) in I, $\lim a_n \in I$

Monoton fallende Folge von Teilmengen: $(X_n)_{\mathbb{N}}, X_n \subset \mathbb{R}, X_n \supseteq X_{n+1}$

Theorem 2.5.5, Cauchy-Cantor: (I_i) monoton fallende Folge abgeschlossener Intervalle, $\mathcal{L}(I_1) < +\infty$. Dann: $\cap_{n>1} I_n \neq \emptyset$. & wenn $\lim \mathcal{L}(I_n) = 0$: card $\cap \dots = 1$

Theorem 2.5.6: \mathbb{R} ist nicht abzählbar.

Definition 2.5.7: Teilfolge von (a_n) ist (b_n) mit $b_n = a_{l(n)}$ und $l : \mathbb{N} \to \mathbb{N}$, $l(n) < \mathbb{N}$ $l(n+1), \forall n \geq 1$

Theorem 2.5.9, Bolzano-Weierstrass: Jede beschränkte Folge besitzt eine konvergente Teilfolge.

Corollary: (a_n) beschränkt. \forall konvergente Teilfolgend (b_n) : $\liminf a_n \leq \lim b_n \leq$ $\limsup a_n$.

Definition: (a_n) , (b_n) konvergente Teilfolge mit $l = \lim b_n$: l ist Häufungspunkt von (a_n)

• (a_n) konvergiert mit $\lim a_n = l \Rightarrow$ alle Teilfolgen haben Grenzwert l (einziger Häufungspunkt)

Folgen in \mathbb{R}^d & \mathbb{C}

Folgen in \mathbb{R}^d

Definition 2.6.1: Folge in \mathbb{R}^d ist $a : \mathbb{N} \to \mathbb{R}^d$. **Definition 2.6.2:** (a_n) in \mathbb{R}^d konvergent $\mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, a_n > A$. Analog für $\Leftrightarrow \exists a \in \mathbb{R}^d \text{ so dass } \forall \epsilon > 0, \exists N > 1 \text{ mit}$ $||a_n - a|| < \epsilon, \forall n \ge N$ Wenn konvergent: $\lim_{n\to\infty} a_n = a$.

Theorem 2.6.3: Mit $b = (b_1, ..., b_d),$ äquivalent:

- 1. $\lim_{n\to\infty} a_n = b$ 2. $\lim_{n\to\infty} a_{n,j} = b_j, \forall 1 \leq j \leq d$
- **Corollary** 2.6.4: Sei $x = (x_1, ..., x_d)$: $\forall 1 \le$ $j \le d$: $x^2 \le \sum_{i=1}^d x_i^2 \le d \cdot \max_{i \le i \le d} x_i^2 \Rightarrow$ $|x_i| \le ||x|| \le \sqrt{d} \cdot \max_{1 \le i \le d} |x_i|$

 \Rightarrow (a_n) beschränkt $\hat{A} \ni \hat{A} \geq 0$ mit $||a_n|| \leq 1$ $R, \forall n \geq 1$

Theorem 2.6.6:

- 1. (a_n) konvergiert \Leftrightarrow Cauchy Folge, i.e., $\forall \epsilon > 0, \exists N \geq 1 \text{ mit } ||a_n - a_m|| <$ $\epsilon, \forall n, m \geq N$
- 2. jede beschränkte Folge hat konvergente Teilfolge

Folgen in $\mathbb C$

 $(a_n)_{\mathbb{N}}$ komplexe Folge, $a_n = b_n + i \cdot c_n$ $(a_n, c_n)_{\mathbb{N}}$

Theorem: $a_n = b_n + i \cdot c_n \in \mathbb{C} \& l = u + i \cdot v \in \mathbb{C}$

- $\begin{array}{l} 1. \ \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |a_n l| < \epsilon \\ 2. \ (|a_n l|) \underset{\mathbb{N}}{\mathbb{N}} \to 0 \\ 3. \ b_n \to u \ (Re(a_n) \to Re(l)) \ \text{und} \ c_n \to v \end{array}$ $(Im(c_n) \to Im(l))$

Fast alles reele (bis auf lim inf, lim sup) auch hier.

Theorem:

- 1. $a_n \to l \in \mathbb{C}, b_n \to l' \in \mathbb{C}$ $-a_n+b_n\to l+l'$ - $a_n b_n \to l \cdot l'$ $-\frac{a_n}{b} \to \frac{l}{l'}$, falls $l' \neq 0$ und $b_n \neq 0$ für große n
- 2. $a_n \to l \Leftrightarrow |a_n l| \to 0$ 3. $|a_n| \le b_n$: $b_n \to 0 \Rightarrow a_n \to 0$

Theorem: (a_n) komplexe Folge

- 1. (a_n) konvergiert $\Leftrightarrow \forall \epsilon > 0, \exists N \in$ $N, \forall n, m : n \geq N, m \geq N \Rightarrow |a_n - a_n|$ $a_m|<\epsilon$ (Cauchy) 2. (a_n) beschränkt: \exists konvergente Teil-
- folge (Bolzano-Weierstrass)

Grenzwerte $\pm \infty$

Definition: (a_n) reel. $a_n \to +\infty \leftrightarrow \forall A \in$

Theorem: (a_n) fällt/steigt. Genau eins gilt:

- 1. (a_n) beschränkt & konvergent
- 2. (a_n) unbeschränkt & $a_n \to \pm \infty$

Theorem: $(a_n) \& (b_n) \to \infty$

- (a_n) beschränkt $\Rightarrow a_n + b_n \to +\infty$ $(a_n) \to l \Rightarrow \frac{a_n}{b_n} \to 0$
- $(a_n) \to 0, a_n > 0 \Rightarrow \frac{1}{a} \to \infty$

Corollary 2.6.5: $(a_n)^- \in \mathbb{R}^d$ konvergent $a_n \to 0 \not\Rightarrow \frac{1}{a_n} \to 0$ (may also be negative at

Reihen

Konvergenz von $\sum_{k=1}^{\infty} a_k$ basiert auf Folge von Partialsummen $S_n = \sum_{k=1}^n a_k$. **Definition** 2.7.1: $\sum_{k=1}^n a_k$ konvergiert

 \Leftrightarrow (S_n) konvergiert. \overline{D} ann: $\sum_{k=1}^{\infty} a_k :=$ $\lim_{n\to\infty} S_n$.

∀ Folgen: Folge der Partialsummen eindeutiger Folge.

 $\sum a_k, \sum b_j$ **Theorem** 2.7.4: konvergent, $\alpha \in \mathbb{C}$

1.
$$\sum_{b_k} (a_k + b_k)$$
 konvergent & $\sum_{k} (a_k + b_k) = (\sum_{k} a_k) + (\sum_{k} b_k)$

 $\frac{\overline{b_k}}{b_k} = (\sum a_k) + (\sum \overline{b_k})$ 2. $\sum (\alpha \cdot a_k) \text{ konvergent & } \sum (\alpha \cdot a_k) = 0$ $\alpha \sum a_k$

Theorem 2.7.5, Cauchy Kriterium: $\sum a_k$ konvergiert $\Leftrightarrow \forall \epsilon > 0, \exists N \geq \overline{1}$: $\left|\sum_{k=n}^{m} a_k\right| < \epsilon, \forall m \ge n \ge N$

Theorem 2.7.6: $\sum a_k, a_k \geq 0, \forall k \in \mathbb{N}$. konvergiert $\Leftrightarrow (S_n)_{\mathbb{N}}$ nach oben beschränkt Corollary 2.7.7: $\sum a_k, \sum b_k$: $0 \le a_k \le$ $b_k, \forall k \geq K, K \in \mathbb{N}$. Auch wenn: $|a_k| \leq b_k$.

- $\sum b_k$ konvergent $\Rightarrow \sum a_k$ konvergent $\sum a_k$ divergent $\Rightarrow \sum b_k$ divergent

Definition 2.7.9: $\sum a_k$ absolut konvergent $\Leftrightarrow \sum |a_k|$ konvergiert

Theorem 2.7.10: $\sum a_k$ absolut konvergent $\Rightarrow \sum a_k$ konvergent $\mathbb{Z} |\sum a_k| \leq \sum |a_k|$

Theorem 2.7.12 - Leibniz: (a_n) monoton fallend & $a_n \geq 0, \forall n \geq 1$ & $\lim a_n = 0$: $S := \sum (-1)^{k+1} a_k$ konvergiert und a_1 – $a_2 \leq S \leq a_1$

Definition 2.7.14: $\sum a'_n$ ist Umordnung von $\sum a_n$ falls Bijektion $\overline{\phi}: \mathbb{N} \to \mathbb{N}, a'_n = a_{\phi(n)}$. Umordnung konvergenter (nicht absolut) nicht möglich. Durch Umordnung beliebiger Grenzwert möglich.

Theorem 2.7.16, Dirichlet: $\sum a_n$ konvergiert absolut ⇒ jede Umordnung konvergiert, gleicher Grenzwert

Theorem 2.7.17, Quotientenkrieterium, Cauchy: $(a_n), a_n \neq 0, \forall n \geq 1$

- $\limsup \frac{|a_{n+1}|}{|a_n|} < 1 \Rightarrow \sum a_n$ konvergiert absolut

- $\liminf \frac{|a_{n+1}|}{|a_n|} > 1 \Rightarrow \sum a_n$ divergiert

Theorem 2.7.20, Wurzelkriterium:

- $\limsup \sqrt[n]{|a_n|} < 1 \Rightarrow \sum a_k$ konvergiert
- $\limsup \sqrt[n]{|a_n|} > 1 \Rightarrow \sum a_k$ divergiert (absolut)

Definition: (c_k) . Wenn $\limsup \sqrt[k]{|c_k|}$ ex-

$$\rho = \begin{cases} +\infty, & \text{falls } \limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0\\ \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|c_k|}}, & \text{falls } \limsup_{k \to \infty} \sqrt[k]{|c_k|} > 0 \end{cases}$$

Corollary 2.7.21: $\sum c_k z^k$ konvergiert absolut $|z| < \rho$ / divergiert $|z| > \rho$

Doppelte Summation

 $\sum_{i,j>0} a_{i,j}$ Doppelreihe. ist eine $\sum_{i}(\sum_{j} a_{ij}) \neq \sum_{j}(\sum_{i} a_{ij})$ möglich (wenn beide existieren).

Definition 2.7.22: $\sum_k b_k$ ist lineare Anordnung von $\sum_{i,j} a_{i,j}$ falls \exists Bijektion $\sigma : \mathbb{N} \to$ $\mathbb{N} \times \mathbb{N}, b_k = a_{\sigma(k)}$

Theorem 2.7.23: $\exists B \geq 0 :$ $\sum_{i=0}^{m} \sum_{j=0}^{m} |a_{ij}| \leq B, \forall m \geq \overline{0}.$ Dann: $(S_i := \sum_{j=0} a_{i,j}, \forall i \geq 0)$ und $(U_j :=$ $\sum_{i=0} a_{i,j}, \forall j \geq 0$) und $(\sum_{i=0} S_i)$ und $(\sum_{j=0} U_j)$ konvergieren absolut. Und $\sum_{i=0} S_i = \sum_{j=0} U_j$. Und jede lineare Anordnung konvergiert mit gleichem Grenzwert.

Additional Stuff

Definition 2.7.24: Cauchy Produkt von $\sum_i a_i, \sum_j b_j$ ist Reihe $\sum_n (\sum_j a_{n-j}b_j)$.

Theorem 2.7.26: $\sum_i a_i, \sum_j b_j$ konvergieren absolut ⇒ Cauchy Produkt konvergiert und $\sum_{n} (\sum_{j=0}^{n} a_{n-j} b_j) = (\sum_{i=0}^{n} a_i) (\sum_{j=0}^{n} b_j)$

Theorem 2.7.28: $f_n : \mathbb{N} \to \mathbb{R}$. Mit (1) $f(j) := \lim f_n(j)$ existiert $\forall j \in \mathbb{N}$, (2) $\exists g : \mathbb{N} \to [0, \infty[(i)] | f_n(j)| \leq g(j), \forall j \geq j$ $0, \forall n \geq 0$ (ii) $\sum_{j=0}^{\infty} g(j)$ konvergiert. Dann: $\sum_{j=0} f(j) = \lim \sum_{j=0} f_n(j)$

Corollary 2.7.29: $\forall z \in \mathbb{C}: ((1+\frac{z}{n})^n)$ konvergiert mit $\lim_{n \to \infty} (1 + \frac{z}{n})^n = \exp(z)$

Stetige Funktionen

reellwertige Funktionen

 \mathbb{R}^D für alle $f:D\to\mathbb{R},D\subset\mathbb{R}$: Vektor-Raum:

- Addition: $(f_1 + f_2)(x) = f_1(x) + f_2(x)$
- Skalare multiplikation: $(\alpha \cdot f)(x) =$ $\alpha \cdot f(x)$
- Multiplikation: $(f_1 \cdot f_2)(x)$ $f_1(x) f_2(x)$
- Neutralelement $+: 0(x) = 0, \forall x \in D$ • Neutralelement $\cdot: 1(x) = 1, \forall x \in D$

 \mathbb{R}^D kommutativer Ring. Kein Körper da $card D \ge 2 \Rightarrow$ kein multiplikatives Inverse $f_1 \le f_2 \Leftrightarrow \forall x \in D, f_1(x) \le f_2(x).$

Definition 3.1.1: $f \in \mathbb{R}^D$

- 2. f nach unten beschränkt $\Leftrightarrow f(D) \subset \mathbb{R}$ nach unten beschränkt
- 3. f beschränkt $\Leftrightarrow f(D) \subset \mathbb{R}$ beschränkt

Definition 3.1.2: $f \in \mathbb{R}^D$

- 1. monoton wachsend $\Leftrightarrow \forall x, y \in D : x \leq$ $y \Rightarrow f(x) \leq f(y)$
- 2. strengt monoton wachsend $\Leftrightarrow \forall x, y \in$ $D: x < y \Rightarrow f(x) < f(y)$
- 3. monoton fallend $\Leftrightarrow \forall x, y \in D : x \leq$ $y \Rightarrow f(x) \ge f(y)$
- 4. strengt monoton fallend $\Leftrightarrow \forall x, y \in D$: $x < y \Rightarrow f(x) > f(y)$
- 5. monoton ⇔ monoton wachsend oder fallend
- 6. streng monoton ⇔ streng monoton wachsend oder streng monoton fallend

Stetigkeit

Definition 3.2.1: $x_0 \in D$. $f \in \mathbb{R}^D$ stetig in $x_0 \Leftrightarrow \forall \epsilon > 0, \exists \delta > 0, \forall x \in D : |x - x_0| < 0$ $\delta \Rightarrow |f(x) - f(x_0)| < \epsilon$

Definition kann als formalisierung von beliebiger Approximation von $f(x_0)$ durch f verstanden werden.

jedem Punkt von D stetig.

Theorem 3.2.4: $x_0 \in D, f \in \mathbb{R}^D$. f stetig in $x_0 \Leftrightarrow \forall (a_n) \in D, (\lim_{n \to \infty} a_n = x_0 \Rightarrow$ $\lim_{n\to\infty} f(a_n) = f(x_0)$ Corollary 3.2.5: $x_0 \in D, \lambda \in \mathbb{R}, f, g \in$ \mathbb{R}^D , beide stetig in x_0

1. $f + g, \lambda \cdot f, f \cdot g$ stetig in x_0 $2. g(x_0) \neq 0 \Rightarrow$ $\mathbb{R}^{D\cap\{x\in D|g(x)\neq 0\}}, x \mapsto \frac{f(x)}{g(x)}$ stetig

Definition 3.2.6: Polynom $P \in \mathbb{R}^{\mathbb{R}}$ ist $P(x) = a_n x^n + ... + a_0, a_n, ..., a_0 \in \mathbb{R}$. Grad i: größtes i mit $a_i \neq 0$. Corollary 3.2.7: Polygnome stetig auf \mathbb{R} .

Corollary 3.2.8: P, Q Polynome auf \mathbb{R} , $Q \neq 0, x_1, ..., x_m$ Nullstellen von $Q: \frac{P}{Q} \in$ $\mathbb{R}^{\mathbb{R}\setminus\{x_1,\ldots,x_m\}}, x\mapsto \frac{P(x)}{Q(x)}$ stetig.

Zwischenwertsatz

1. f nach oben beschränkt $\Leftrightarrow f(D) \subset \mathbb{R}$ c zwischen $x_1, x_2 \Leftrightarrow \begin{cases} c \in [x_1, x_2], & x_1 \leq x_2 \\ c \in [x_2, x_1], & x_2 \leq x_1 \end{cases}$ Definieren: $x^a := c$ Corollary 3.6.6:

Theorem 3.3.1, Bolzano: $I \subset \mathbb{R}$ (interval), $f \in \mathbb{R}^I$ stetig, $a, b \in I$. $\forall c$ zwischen $f(a), f(b), \exists z \text{ zwischen } a, b \text{ mit } f(z) = c.$

Äquivalent: $f(I) \subset \mathbb{R}$ ist ein Interval in \mathbb{R} . Corollary 3.3.2: Polynom $P(x) = a_n x^n +$ $a_{n-1}x^{n-1} + ... + a_0$ mit $a_n \neq 0$, n ungerade. P hat mindestens eine Nullstelle.

Corollary 3.3.3: c > 0: $Q(x) = x^2 + c$ keine Nullstelle in \mathbb{R}

Min-Max Satz

Definition 3.4.2: $I \subset \mathbb{R}$ (interval) kompakt \Leftrightarrow Form I = [a, b], a < b

Lemma 3.4.3: $x_0 \in D$, $f, g \in \mathbb{R}^D$ stetig in x_0 . |f|, $\max(f,g)$, $\min(f,g)$ sind stetig in x_0 . **Lemma** 3.4.4: (x_n) konvergent in \mathbb{R} , $\lim x_n \in \mathbb{R}, a \leq b \colon \{x_n | n \geq 1\} \subset [a, b] \Rightarrow$ $\lim x_n \in [a,b]$

Theorem 3.4.5: $I = [a, b], f \in \mathbb{R}^I$ stetig auf I. $\exists u, v \in I$: $f(u) \leq f(x) \leq$ $f(v), \forall x \in I.$

Min/Max finden ist deutlich schwerer als Existenz!

Umkehrabbildungen

Theorem 3.5.1: $D_1, D_2 \subset \mathbb{R}, f \in D_2^{D_1}, g \in \mathbb{R}$ **Definition 3.2.2:** $f \in \mathbb{R}^D$ stetig, wenn in $\mathbb{R}^{D_2}, x_0 \in D_1$. f stetig in x_0, g stetig in $f(x_0) \Rightarrow g \circ f \in \mathbb{R}^{D_1}$ stetig in x_0 .

Corollary 3.5.2: In 3.5.1, f stetig auf D_1 , g stetig auf $D_2 \Rightarrow g \circ f$ stetig auf D_1 **Theorem 3.5.3:** $I \subset \mathbb{R}$ (interval), $f \in \mathbb{R}^I$ stetig und streng monoton. Dann J := $f(I) \subset \mathbb{R}$ (interval) and $f^{-1} \in I^J$ stetig und streng monoton.

reelle Exponentialfunktion

Theorem 3.6.1: exp : $\mathbb{R} \to]0, +\infty[$ streng monoton wachsend, stetig, surjektiv. Corollary 3.6.2: $\exp(x) > 0, \forall x \in \mathbb{R}$

 $\exp(x) > 1, \forall x > 0$ Corollary 3.6.3: $\exp(z) > \exp(y), \forall z > y$

Corollary 3.6.4: $\exp(x) \ge 1 + x$

Bijektion exp : $\mathbb{R} \to]0, +\infty[$. Umkehrabbildung: natürlicher Logarithmus Corollary 3.6.5: $\ln :]0, +\infty[\rightarrow \mathbb{R} \text{ streng}]$

monoton wachsend, stetig, bijektiv. $\ln(a \cdot b) =$ Definieren: $x^a := \exp(a \ln x)$.

- 1. a > 0 : $]0, +\infty[\rightarrow]0, +\infty[, x \mapsto x^a]$ stetig, streng monoton wachsend, Bijektion
- 2. $a < 0 :]0, +\infty[\rightarrow]0, +\infty[, x \mapsto x^a]$ stetig, streng monoton fallend, Bijektion
- 3. $\ln(x^a) = a \ln x, \forall a \in \mathbb{R}, \forall x > 0$
- 4. $x^{a} \cdot x^{b} = x^{a+b}, \forall a, b \in \mathbb{R}, \forall x > 0$
- 5. $(x^a)^b = x^{a \cdot b}, \forall a, b \in \mathbb{R}, \forall x > 0$
- 6. $(xy)^a = x^a y^a, \forall a \in \mathbb{R}, \forall x, y > 0$

Konvergenz von Funktionenfolgen

Reellwertige Funktionenfolge: \mathbb{R}^D , $n \mapsto f(n)$. Schreiben f_n statt f(n). $x \in D : (f_n(x))_{\mathbb{N}} \text{ in } \mathbb{R}.$

Definition 3.7.1: $(f_n)_{\mathbb{N}}$ konvergiert punktweise gegen $f: D \to \mathbb{R} \Leftrightarrow \forall x \in D, f(x) =$ $\lim_{n\to\infty} f_n(x)$.

Definition 3.7.2, Weierstrass: $f_n: D \to \mathbb{R}$ konvergiert gleichmässig gegen $f \in \mathbb{R}^D \Leftrightarrow$ $\forall \epsilon > 0, \exists N > 1 : \forall n > N, \forall x \in D :$ $|f_n(x) - f(x)| < \epsilon$

Theorem 3.7.4: $f_n: D \to \mathbb{R}$ Funktionenfolge stetiger Funktionen. (f_n) konvergieren gleichmässig gegen $f \in \mathbb{R}^D \Rightarrow f$ stetig in D **Definition** 3.7.5: $(f_n), f_n \in \mathbb{R}^D$ gleichmässig konvergent $\Leftrightarrow \forall x \in D, f(x) :=$ $\lim f_n(x)$ existiert und $(f_n)_{\mathbb{N}}$ gleichmässig

gegen f konvergiert

Corollary 3.7.6: $(f_n), f_n \in \mathbb{R}^D$ konvergiert gleichmässig in $D \Leftrightarrow \forall \epsilon > 0, \exists N \geq 1$: $\forall n, m \geq N, \forall x \in D: |f_n(x) - f_m(x)| < \epsilon$ Corollary 3.7.7: $f_n \in \mathbb{R}^D$ gleichmässig

 $f(x) := \lim f_n(x)$ stetig. **Definition** 3.7.8: $\sum_{k} f_k(x)$ konvergiert gleichmässig $\Leftrightarrow S_n(x) := \sum_k f_k(x)$ konvergiert

konvergente Folge stetiger Funktionen ⇒

gleichmässig. **Theorem 3.7.9:** $f_n \in \mathbb{R}^D$ Folge stetiger Funktionen. $|f_n(x)| \le c_n(\forall x \in D), \sum_n c_n$ konvergiert $\Rightarrow \sum_n f_n(x)$ konvergiert gleichmässig in D und Grenzwert f(x) := $\sum_{n} f_n(x)$ ist stetig in D.

Definition 3.7.10: $\sum_{k} c_k x^k$ hat positiven Konvergenzradius \Leftrightarrow $\limsup_{k\to\infty} \sqrt[k]{|c_k|}$ exists. Dann: $\rho =$ $\limsup_{k\to\infty} \sqrt[k]{|c_k|} = 0$ $\begin{cases} \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|c_k|}}, & \limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0\\ \limsup_{k \to \infty} \sqrt[k]{|c_k|} > 0 \end{cases}$

Theorem 3.7.11: $\sum_{k} c_k x^k, \rho > 0, f(x) :=$ $\sum_{k} c_k x^k, |x| < \rho. \Rightarrow \forall 0 \le r < \rho, \sum_{k} c_k x^k$ konvergiert gleichmässig auf [-r, r], f:] $\rho, \rho [\to \mathbb{R} \text{ stetig}]$

trigonometrische Funktionen

 $\sin z := \sum_{m=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^3}{n!} = \frac{z^3}{n!} + \frac{z^5}{n!} = \frac{z^5}{n!} - \frac{z^5}{n!} = \frac{z^5}{n!} = \frac{z^5}{n!} - \frac{z^5}{n!} = \frac{z^5}{n!} - \frac{z^5}{n!} = \frac{z^5}{n!} - \frac{z^5}{n!} = \frac{$ $\cos z := \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots$

konvergiert absolut $\forall z \in \mathbb{C}$ (Quotientenkritterium), $\rho = \infty$

Theorem 3.8.1: $\sin, \cos \in \mathbb{R}^{\mathbb{R}}$ sind stetig **Theorem** 3.8.2:

- 1. $\exp(iz) = \cos z + i \sin z, \forall z \in \mathbb{C}$
- 2. $\cos z = \cos(-z) \& \sin(-z)$ $-\sin z, \forall z \in \mathbb{C}$
- 3. $\sin z = \frac{e^{iz} e^{-iz}}{2i}, \cos z = \frac{e^{iz} + e^{-iz}}{2}$
- 4. $\sin(z+w) = \sin z \cos w + \cos z \sin w$ $\cos(z+w) = \cos z \cos w - \sin z \sin w$
- 5. $\cos^2 z + \sin^2 z = 1, \forall z \in \mathbb{C}$

Corollary 3.8.3: $\sin(2z) = 2\sin z \cos z$ & $\cos(2z) = \cos^2 z - \sin^2 z$

Corollary: $\cos^3 x = \frac{3}{4}\cos x + \frac{1}{4}\cos(3x)$ $\sin^3 x = \frac{3}{4}\sin x - \frac{1}{4}\sin(3x)$

Useful: $\sin^2 x = \frac{1}{2}(1 - \cos(2x))$

 $\cos^2 x = \frac{1}{2}(1 + \cos(2x))$

Theorem 3.9.1: sin: min. eine Nullstelle auf $]0,+\infty[.$

 $\pi := \inf\{t > 0 | \sin t = 0\}$

- 1. $\sin \pi = 0, \pi \in]2, 4[$
- 2. $\forall x \in [0, \pi]: \sin x > 0$
- 3. $e^{\frac{i\pi}{2}} = i$

Corollary 3.9.2: $x \ge \sin x \ge x - \frac{x^3}{31}, \forall 0 \le x \ge x - \frac{x^3}{31}$ $x \le \sqrt{6}$

Corollary: $e^{\frac{3i\pi}{2}} = -i$ Corollary 3.9.3:

- 1. $e^{i\pi} = -1, e^{2i\pi} = 1$ 2. $\sin(x + \frac{\pi}{2}) = \cos x, \cos(x + \frac{\pi}{2}) =$
- $-\sin x, \forall x \in \mathbb{R}$ 3. $\sin(x + \pi) = -\sin x, \sin(x + 2\pi) =$
- $\sin x, \forall x \in \mathbb{R}$ 4. $\cos(x+\pi) = -\cos x, \cos(x+2\pi) =$ $\cos x, \forall x \in \mathbb{R}$
- 5. Nullstellen von $\sin = \{k \cdot \pi | k \in \mathbb{Z}\}\$ $\sin x > 0, \forall x \in]2k\pi, (2k+1)\pi[, k \in \mathbb{Z}]$ $\sin x < 0, \forall x \in](2k+1)\pi, (2k+1)\pi$ $2)\pi$ |, $k \in \mathbb{Z}$
- 6. Nullstellen von $\cos = \{\frac{\pi}{2} + k \cdot \pi | k \in \mathbb{Z} \}$ $\cos x > 0, \forall x \in]-\frac{\pi}{2} + 2k\pi, -\frac{\pi}{2} + (2k + 1)$ $1)\pi[,k\in\mathbb{Z}$ $\cos x < 0, \forall x \in]-\frac{\pi}{2} + (2k+1)\pi, -\frac{\pi}{2} +$ $(2k+2)\pi[,k\in\mathbb{Z}$

Corollary: Bild von cos auf $[0, \pi]$ / sin auf $[-\frac{\pi}{2}, \frac{\pi}{2}]$ ist [-1, 1].

 $z \notin \frac{\pi}{2} + \pi \cdot \mathbb{Z} : \tan z := \frac{\sin z}{\cos z}$ $z \notin \bar{\pi} \cdot \mathbb{Z} : \cot z := \frac{\cos z}{\sin z}$

Grenzwerte von Funktionen

Definition 3.10.1: $x_0 \in \mathbb{R}$ ist Häufungspunkt von $D \Leftrightarrow \forall \delta > 0 : (|x_0 - \delta, x_0 + \delta| \setminus \{x_0\}) \cap$ $D \neq \emptyset$

 $f \in \mathbb{R}^D, x_0 \in \mathbb{R}$ **Definition** 3.10.3: Häufungspunkt D. $A \in \mathbb{R}$ Grenzwert $\lim_{x\to x_0} \tilde{f}(x) = A \Leftrightarrow \forall \epsilon, \exists \delta > 0, \forall x \in$ $D \cap (]\dot{x_0} - \delta, x_0 + \delta[\setminus \{x_0\}), |f(x) - A| < \epsilon.$ **Corollary** 3.10.4:

1. $f \in \mathbb{R}^D$, x_0 Häufungspunkt. $\lim_{x\to x_0} f(x) = A \Leftrightarrow \forall (a_n)_{\mathbb{N}}$ in $D\setminus\{x_0\}$ mit $\lim a_n=x_0$: $\lim f(a_n)=$ 2. $x_0 \in D$: f stetig in $x_0 \Leftrightarrow$

 $\lim_{x \to x_0} f(x) = f(x_0)$

- 3. $f, g \in \mathbb{R}^D, \lim_{x \to x_0} f(x), \lim_{x \to x_0} g(x)$ exist: $\lim(f+g)(x) = \lim f(x) + \lim g(x)$ $\lim (f \cdot g)(x) = \lim f(x) \cdot \lim g(x)$
- 4. $f, g \in \mathbb{R}^D, f \leq g : \lim f(x) \leq \lim g(x)$ (falls existent)
- 5. $g_1 \leq f \leq g_2, \lim g_1(x) = \lim g_2(x)$: $\lim f(x)$ existiert und $\lim f(x) =$ $\lim q_1(x)$

Definition der Vorlesung:

- 1. $f: [a, b] \to \mathbb{R}$. $\lim_{x \to b} f(x) = y \in \mathbb{R} \Leftrightarrow$ $(\forall \epsilon > 0, \exists \delta > 0, \forall x \in [a, b[, |x - b| <$ $\delta \Rightarrow |f(x) - y| < \epsilon$
- 2. $\lim_{x\to b} f(x) = +\infty \Leftrightarrow (\forall T>0, \exists \delta>$ $[0, \forall x \in [a, b], |x-b| < \delta \Rightarrow f(x) > T)$
- 3. $\lim_{x\to b} f(x) = -\infty \Leftrightarrow (\forall T < 0, \exists \delta >$
- $0, \forall x \in [a, b[, |x b| < \delta \Rightarrow f(x) < T)$ $4. \ f: [a, \infty[\rightarrow \mathbb{R}. \lim_{x \to \infty} f(x) = y \in \mathbb{R}]$ $\Leftrightarrow (\forall \epsilon > 0, \exists T \geq a, \forall x \geq T, |f(x) - a|)$
- 5. $\lim_{x\to\infty} f(x) = \infty \Leftrightarrow (\forall T > 0, \exists S \geq$ $a, \forall x \geq S, f(x) > t$

Theorem: $x_0, y \in \mathbb{R} \cup \{\infty\} : \lim_{x \to x_0} f(x) =$ $y \Leftrightarrow \forall (a_n), a_n \in D_f, a_n \to x_0, f(a_n) = y$ Theorem:

- 1. f stetig in $x_0 \Rightarrow \lim_{x \to x_0} f(x) = f(x_0)$
- 2. arithmetische Grenzwertoperationen gelten

Theorem 3.10.6: $D, E \subset \mathbb{R}, x_0$ Häufungspunkt von $D, f \in E^D, y_0 :=$ $\lim_{x\to x_0} f(x)$ existiert, $y_0\in E$. Wenn $g\in$ \mathbb{R}^E stetig in y_0 : $\lim_{x\to x_0} g(f(x)) = g(y_0)$ Links-/Rechtsseitige Konvergenz: $f \in$ $\mathbb{R}^D, x_0 \in \mathbb{R}, x_0$ Häufungspunkt von $D\cap]x_0, +\infty[$ (rechtsseitiger Häufungspunkt). $\lim_{x \to x_0} f|_{D \cap [x_0, \infty[}(x)) = \lim_{x \to x_0^+} f(x)$ (auch mit $\lim = \infty$ definiert)

Corollary: $-\lim \frac{e^x}{x^a} = \infty$, $-\lim x^a e^{-x} = 0$

Differenzierbare Funktionen

Ableitung: Definition +

 $D \subset \mathbb{R}, f \in \mathbb{R}^D, x_0 \in D$ Häufungspunkt von

Definition 4.1.1: f differenzierbar in x_0 falls $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ existiert. Grenzwert: $f'(x_0)$.

Äquivalent/Alt.: $f'(x_0)$ $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$

Tangente in x_0 : $f(x) = f'(x)(x - x_0) +$

Theorem 4.1.3, Weierstrass: $f \in \mathbb{R}^D, x_0 \in$ D Häufungspunkt von D. Äquivalent:

- 1. f differenzierbar in x_0
- 2. $\exists c \in \mathbb{R}, r \in \mathbb{R}^D$ $-f(x) = f(x_0) + c(x-x_0) + r(x)(x-x_0)$ $-r(x_0) = 0$ und r ist stetig in x_0 Dann $c = f'(x_0)$ eindeutig bestimmt.

 $y = f(x_0) + f'(x_0)(x - x_0)$: Tangentengleichung x_0

Theorem 4.1.4: $f \in \mathbb{R}^D$ differenzierbar in $x_0 \Leftrightarrow \exists \phi \in \mathbb{R}^D \text{ stetig in } x_0, f(x) = f(x_0) + f(x_0)$ $\phi(x)(x-x_0)(\forall x \in D)$. Dann $\phi(x_0) = f'(x_0)$.

Corollary 4.1.5: $f \in \mathbb{R}^D, x_0$ Häufungspunkt. f differenzierbar in $x_0 \Rightarrow$ f stetig in x_0

Definition 4.1.7: $f \in \mathbb{R}^D$ differenzierbar in $D \Leftrightarrow f$ differenzierbar $\forall x_0 \in D$ Häufungspunkt

 $D \subset \mathbb{R}, x_0 \in D$ **Theorem** 4.1.9: Häufungspunkt, $f, g \in \mathbb{R}^D$ differenzierbar in

- f + g differenzierbar in x_0 : (f + $g'(x_0) = f'(x_0) + g'(x_0)$
- $f \cdot g$ differenzierbar in x_0 : $(f \cdot g)'(x_0) =$ $f'(x_0)g(x_0) + f(x_0)g'(x_0)$
- $f(x_0) \neq 0$: $\frac{f}{g}$ differenzierbar in x_0 : $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$

Theorem 4.1.11: $D, E \subset \mathbb{R}, x_0 \in D$ Häufungspunkt von $D. f \in E^D$ differenzierbar in $x_0, y_0 := f(x_0)$ Häufungspunkt von E, $g \in \mathbb{R}^E$ differenzierbar in y_0 . Dann: $g \circ f \in \mathbb{R}^E$ \mathbb{R}^D differenzierbar in x_0 mit $(q \circ f)'(x_0) =$ $g'(f(x_0))f'(x_0).$

Corollary 4.1.12: $f \in E^D$ Bijektion differenzierbar in $x_0, x_0 \in D$ Häufungspunkt, $f'(x_0) \neq 0, f^{-1}$ stetig in $y_0 = f(x_0)$. Dann: y_0 Häufungspunkt von E, f^{-1} differenzierbar in $y_0: (f^{-1})'(y_0) = \frac{1}{f'(x_0)}$.

erste Ableitung

Definition 4.2.1: $f \in \mathbb{R}^D, x_0 \in D, D \subset \mathbb{R}$

- 1. f lokales Maximum in $x_0 \Leftrightarrow \exists \delta > 0$: $f(x) \le f(x_0) (\forall x \in]x_0 - \delta, x_0 + \delta[\cap D)$ 2. f lokales Minimum in $x_0 \Leftrightarrow \exists \delta > 0$:
- $f(x) \ge f(x_0) (\forall x \in]x_0 \delta, x_0 + \delta \cap D$ 3. f lokales Extremum in $x_0 \Leftrightarrow$ lokales
- Minimum oder Maximum in x_0

Theorem 4.2.2: $f:]a, b[\to \mathbb{R}, x_0 \in]a, b[, f]$ differenzierbar in x_0 .

- 1. $f'(x_0) > 0$: $\exists \delta > 0$ $-\hat{f}(x) > f(x_0), \forall x \in]x_0, x_0 + \delta[$ $-f(x) < f(x_0), \forall x \in]x_0 - \delta, x_0[$ 2. $f'(x_0) < 0 : \exists \delta > 0$
- $-f(x) < f(x_0), \forall x \in]x_0, x_0 + \delta[$ $-f(x) > f(x_0), \forall x \in]x_0 - \delta, x_0[$ 3. f lokales Extremum in x_0
- $f'(x_0) = 0$

Theorem 4.2.3, Rolle 1690: $f:[a,b] \rightarrow$ \mathbb{R} stetig, differenzierbar in a, b. f(a) = $f(b) \Rightarrow \exists \zeta \in]a, b[, f'(\zeta) = 0]$ **Theorem** 4.2.4, Lagrange 1797: $f:[a,b] \rightarrow$ \mathbb{R} stetig, differenzierbar in [a,b]. $\Rightarrow \exists \zeta \in$ |a,b|: $f(b) - f(a) = f'(\zeta)(b-a)$ Corollary 4.2.5: $f, g: [a, b] \to \mathbb{R}$ stetig und differenzierbar in a, b

- 1. $f'(\zeta) = 0, \forall \zeta \in]a, b[\Rightarrow f \text{ konstant}$ 2. $f'(\zeta) = g'(\zeta), \forall \zeta \in]a, b[\Rightarrow \exists c \in$
- $\mathbb{R}, f(x) = g(x) + c, \forall x \in [a, b]$ 3. $f'(\zeta) \geq 0, \forall \zeta \in [a, b] \Rightarrow f \text{ monoton}$ wachsend auf [a, b]
- 4. $f'(\zeta) > 0, \forall \zeta \in]\vec{a}, b[\Rightarrow f \text{ strikt mono-}$ ton wachsend auf [a, b]
- 5. $f'(\zeta) \leq 0, \forall \zeta \in]a, b] \Rightarrow f$ monoton fallend auf [a, b]
- 6. $f'(\zeta) < 0, \forall \zeta \in]a, b[\Rightarrow f \text{ strikt mono-}$ ton fallend auf [a, b]
- 7. $\exists M \geq 0, |f'(\zeta)| \leq M, \forall \zeta \in]a, b[\Rightarrow$ $\forall x_1, \overline{x_2} \in [a, b], |\overline{f}(x_1) - f(x_2)| \le$ $M|x_1-x_2|$.

Theorem 4.2.9, Cauchy: $f, g : [a, b] \rightarrow$ \mathbb{R} stetig, differenzierbar in $]a,b[\Rightarrow \exists \zeta \in$ $[a, b], g'(\zeta)(f(b) - f(a)) = f'(\zeta)(g(b) - g(a)).$ Falls $g'(x) \neq 0, \forall x \in]a, b[: \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\zeta)}{g'(\zeta)}$

Theorem 4.2.10, l'Hospital: $f, g:]a, b[\rightarrow]$ \mathbb{R} differenzierbar, $g'(x) \neq 0, \forall x \in]a, b[$. Wenn $\lim_{x\to b^{-}} f(x) = 0$, $\lim_{x\to b^{-}} g(x) = 0$ 0 und $\lim_{x\to b^-} \frac{f'(x)}{g'(x)} =: \lambda$ existiert \Rightarrow $\lim_{x\to b^-} \frac{f(x)}{g(x)} = \lim_{x\to b^-} \frac{f'(x)}{g'(x)}$. Also with

Definition 4.2.13:

 $b = +\infty, \lambda = +\infty, x \to a^+.$

- 1. $f \in \mathbb{R}^I$ konvex auf $I \Leftrightarrow \forall x \leq y \in I$ $I, \forall \lambda \in [0,1]: f(\lambda x + (1-\lambda)y) \leq$ $\lambda f(x) + (1 - \lambda) f(y)$
- 2. f streng konvex $\Leftrightarrow \forall x < y \in I, \lambda \in$ $[0,1]: f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)y$

Corollary 4.2.14: $f \in \mathbb{R}^I$ konvex. $\forall n \geq 1, \{x_1, ..., x_n\} \subset I, (\lambda_1, ..., \lambda_n) \in [0, 1]^n, \sum_{i=1}^n \lambda_i = 1 : f(\sum_{i=1}^n \lambda_i x_i) \leq \sum_{i=1}^n \lambda_i f(x_i)$ **Lemma** 4.2.15: $f \in \mathbb{R}^I$ konvex $\Leftrightarrow \forall x_0 < \infty$

 $x < x_1 \in I : \frac{f(x) - f(x_0)}{x - x_0} \le \frac{f(x_1) - f(x)}{x_1 - x}$. streng kovex mit <.

Theorem 4.2.16: $f \in \mathbb{R}^{]a,b[}$ differenzierbar in a, b[. (streng) konvex $\Leftrightarrow f'$ (streng) monoton wachsend Corollary 4.2.17: $f \in \mathbb{R}^{]a,b[}$ zweimal differenzierbar in a, b. f (streng) konvex $\Leftarrow f'' > 0 (f'' > 0)$ auf |a|.

höhere Ableitungen

 $D \subset \mathbb{R}, \forall x_0 \in D \text{ sind Häufungspunkt, } f \in$ \mathbb{R}^D differenzierbar. Schreiben: $f' = f^{(1)}$. **Definition** 4.3.1:

- 1. $n \geq 2$, f n-mal differenzierbar in $D \Leftrightarrow$ $f^{(n-1)}$ differenzierbar in D. Dann $f^{(n)} := (f^{(n-1)})'$ n-te Ableitung von
- 2. f n-mal stetig differenzierbar in $D \Leftrightarrow$ n-mal differenzierbar und $f^{(n)}$ stetig in
- 3. f ist glatt in $D \Leftrightarrow \forall n \geq 1$ n-mal differenzierbar

Corollary 4.3.2: n > 1: n-mal differenzierbar $\Rightarrow (n-1)$ -mal stetig differenzierbar

Theorem 4.3.3: $n \geq 1, f, g \in \mathbb{R}^D$ n-mal differenzierbar in D 1. f + g n-mal differenzierbar: (f + $(a)^{(n)} = f^{(n)} + g^{(n)}$ 2. $f \cdot g n$ -mal differenzierbar: $(f \cdot g)^{(n)} =$

 $\sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$

Theorem 4.3.5: $n \ge 1, f, g \in \mathbb{R}^D$ *n*-mal differenzierbar. $g(x) \neq 0, \forall x \in D \Rightarrow \frac{f}{a}$ n-mal differenzierbar.

Theorem 4.3.6: $E,D \subset \mathbb{R}$, alles Häufungspunkte, $f \in E^D, g \in \mathbb{R}^E$ je n-mal differenzierbar $\Rightarrow g \circ f$ n-mal differenzierbar $(g \circ f)^{(n)}(x) = \sum_{k=1}^{n} A_{n,k}(x)(g^{(k)} \circ f)(x).$ $A_{n,k}$ polynom in $f^{(1)}, f^{(2)}, ..., f^{(n+1-k)}$

Potenzreihen & Tayler Approximation **Theorem** 4.4.1: $f_n:]a,b[\rightarrow \mathbb{R}$ Funktio-

nenfolge, f_n einmal stetig differenzierbar in $|a,b| \forall n \geq 1, (f_n)_{\mathbb{N}} \text{ und } (f'_n)_{\mathbb{N}} \text{ konvergieren}$ gleichmässig in a, b, $\lim f_n =: f, \lim f'_n =: f$ $p. \Rightarrow f$ stetig differenzierbar, f' = pIf $f'_n \to p$ important. Bernstein Polynome $f_n(x) = \sum_{k=0}^n \binom{n}{k} f(\frac{k}{n}) x^k (1-x)^{n-k}$. Können $f_n \to f$ für beliebiges stetige f.

Theorem 4.4.2: $\sum_k c_k x^k$ Potenzreihe, Konvergenzradius $\rho > 0$ $\Rightarrow f(x) = \sum_{k=0}^{\infty} c_k(x - 1)$ $(x_0)^k$ auf $]x_0 - \rho, x_0 + \rho[$ differenzierbar und $f'(x) = \sum_{k=1}^{\infty} kc_k(x - x_0)^{k-1}, \forall x \in]x_0 \rho, x_0 + \rho$ Corollary 4.4.3: f glatt auf $]x_0 - \rho, x_0 + \rho[$: $f^{(j)}(x) = \sum_{k=j}^{\infty} c_k \frac{k!}{(k-j)!} (x-x_0)^{(k-j)}$ mit

Glatte Funktionen lassen sich durch Polynome approx.

Definition Vorlesung: $f:]a,b[\rightarrow \mathbb{R}, x_0 \in$ $|a, b|, \exists n \geq 0, \exists (f, ..., f^{(n)}) \text{ on } |a, b|.$ Taylor polynomial of order n: $f(x_0) + f'(x_0)(x (x_0) + ... + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$ **Theorem 4.4.5:** $f:[a,b] \to \mathbb{R}$ stetig, (n+1)-

 $b\exists \zeta \in]a,x[:$ $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k + \frac{f^{(n+1)}(\zeta)}{(n+1)!} (x - a)^k$ **Corollary** 4.4.6, Taylor Approximation: $f:[c,d]\to\mathbb{R}$ stetig, (n+1)-mal differenzierbar in $]c, d[. \forall a \in]c, d[, \forall x \in [c, d], \exists \zeta$ zwischen x, a:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\zeta)}{(n+1)!} (x-a)^{n+1}$$

Means: Taylor polynomial good approximation for f near x_0

Corollary 4.4.7: $n \ge 0, a < x_0 < b, f \in$ $\mathbb{R}^{[a,b]}$ (n+1)-mal differenzierbar in [a,b[. Wenn $f^{(1)} = f^{(2)} = \dots = f^{(n)} = 0$

- 1. n gerade, x_0 lokale Extremstelle \Rightarrow $f^{(n+1)}(x_0) = 0$
- 2. n ungerade, $f^{(n+1)}(x_0) > 0 \Rightarrow x_0$
- strikte lokale Minimalstelle
 3. n ungerade, $f^{(n+1)}(x_0) < 0 \Rightarrow x_0$ strikte lokale Maximalstelle

Corollary 4.4.8: $f:[a,b] \to \mathbb{R}$ stetig, zweimal differenzierbar in $]a,b[.\ a < x_0 <$ b. Falls $f'(x_0) = 0$

- 1. $f^{(2)}(x_0) > 0 \Rightarrow x_0$ strikte lokale Minimalstelle
- 2. $f^{(2)}(x_0) < 0 \Rightarrow x_0$ strikte lokale Maximalstelle

Riemann Integral

Motivation: Flächeninhalt Flächeninhalt $\{(x,y) \in \mathbb{R}^2 | a \le x \le b, 0 \le$

a < b, I = [a, b]

 $y \leq f(x)$ von $f: [a, b] \rightarrow [0, \infty]$ definiert als $\int_a^b f(t)dt$. Flächeninhalt als Definitionsgrundlage fürs Integral (Intuition für Definition). $f:[a,b] \rightarrow$ R. Ziel: Orientierter Flächeninhalt zwischen f und x-Achse in \mathbb{R}^2 . Fläche wie oben

definiert. Drei Eigenschaften:

 $FI(X_f) = t(b-a).$

- $f_1 \geq f_2 \Rightarrow FI(X_{f_1}) \geq FI(X_{f_2})$ • a < c < b. $f_1 = f$ auf [a, c], $f_2 = f$ auf $[c,b] \Rightarrow FI(X_{f_1}) + FI(X_{f_2}) = FI(X_f)$ • Nach Rechtecken: $f(x) = t \Rightarrow$
- Integral (Flächeninhalt) folgt dann durch unendlich vielen undendlich keinen Rechtecken

zur Approximation von Kurven/f. ⇒ Motivation für die Definition Definition & Integrabilitätskriterien **Definition** 5.1.1: Partition von $I \Leftrightarrow$ endliches $P \subseteq [a,b], \{a,b\} \subset P$ (eindeutig

wenn x-geordnet) P' Verfeinerung von $P \Leftrightarrow P \subset P' \& n :=$ card P - 1 $P = \{x_0, x_1, ..., x_n\}, x_0 = a, x_n = b$ Definieren: $\delta_i := x_i - x_{i-1}$ (Länge von

 $f: [a,b] \to \mathbb{R}$ beschränkt mit M. s(f, P) :=**Definition** Untersumme *f*:

 $\sum_{i=1}^{n} f_i \delta_i, f_i = \inf_{x_{i-1} \le x \le x_i} f(x)$ **Definition** Obersumme f: S(f, P) := $\sum_{i=1}^{n} F_i \delta_i, F_i = \sup_{x_{i-1} \le x \le x_i} f(x)$ **Lemma** 5.1.2:

- 1. P' Verfeinerung von P $\Rightarrow s(f, P) \leq s(f, P') \leq S(f, P') \leq$
- 2. Beliebige $P_1, P_2 : s(f, P_1) \leq S(f, P_2)$

Definition: $\mathcal{P}(I)$ Menge aller Parititonen von

- $-s(f) := \sup_{P \in \mathcal{P}(I)} s(f, P)$
- $-S(f) := \inf_{P \in \mathcal{P}(I)} S(f, P)$ s(f) < S(f)

s(f) = S(f).

Dann: $s(f) = S(f) =: \int_a^b f(x) dx$ andere Integral-Definitionen: Lebesgue's definition. Dann f(x) $\int 1$, x rational

integrierbar mit 1. Nach 0, x irrational Riemann nicht integrierbar! **Theorem 5.1.4:** beschränktes f integrierbar

 $\Leftrightarrow \forall \epsilon > 0, \exists P \in \mathbb{P}(I) : S(f, P) - s(f, P) <$ $\mathcal{P}_{\delta}(I) := \{ P | \max_{1 \le i \le n} \delta_i \le \delta \}.$ **Theorem** 5.1.8, Du Bois-Reymond/Darboux:

beschränktes $f:[a,b] \rightarrow \mathbb{R}$ integrierbar $\Leftrightarrow \forall \epsilon > 0, \exists \delta > 0 : \forall P \in \mathcal{P}_{\delta}(I) :$ $S(f, P) - s(f, P) < \epsilon$. **Definition**: $\delta(P) := \max_{1 \leq i \leq n} (x_i - x_{i-1})$ **Definition** Riemannsche Summe: $[x_{i-1}, x_i]$ beliebiger Partition $P, 1 \leq i \leq n$: $\sigma := \sum_{i=1}^n f(\zeta_i) \delta_i$ Corollary 5.1.9: beschränktes $f \in \mathbb{R}^{[a,b]}$

 $0, \exists \delta > 0, \forall P \in \mathcal{P}(I) \text{ mit } \delta(P) < \delta$ und $\zeta_i \in [x_{i-1}, x_i], P = \{x_1, ..., x_n\} : |A - \sum_{i=1}^n f(\zeta_i)(x_i - x_{i-1})| < \epsilon$ Integrierbare Funktionen

integrierbar mit $A := \int_a^b f(x) dx \Leftrightarrow \forall \epsilon >$

Theorem 5.2.1: $f, g \in \mathbb{R}^{[a,b]}$ beschränkt, integrierbar, $\lambda \in \mathbb{R} \Rightarrow f + g, \lambda$ $f, f \cdot g, |f|, \max(f, g), \min(f, g), \frac{f}{g}(g(x)) \neq$ $0, \forall x \in [a, b]$. ψ : $[c,d] \rightarrow \mathbb{R}$ Corollary 5.2.2: beschränkt $\Rightarrow \sup_{x,y \in [a,b]} |\psi(x) - \psi(y)| =$ $\sup_{x \in [c,d]} \psi(x) - \inf_{x \in [c,d]} \psi(x)$

Corollary 5.2.3: P, Q Polynome, [a, b]ohne Q Nullstelle. Dann $[a,b] \to \mathbb{R}, x \mapsto$ $\frac{P(x)}{O(x)}$ integrierbar.

Definition 5.2.4: $f \in \mathbb{R}^D$ gleichmässig stetig in $D \subset \mathbb{R} \Leftrightarrow \forall \epsilon > 0, \exists \delta > 0, \forall x, y \in D$: $(|x-y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon)$ **Theorem 5.2.6, Heine:** $f:[a,b] \to \mathbb{R}$ stetig in [a, b]. f gleichmässig stetig in [a, b].

Theorem 5.2.7: $f \in \mathbb{R}^{[a,b]}$ stetig $\Rightarrow f$ integrierbar **Theorem 5.2.8:** $f:[a,b] \to \mathbb{R}$ monoton \Rightarrow f ist integrierbar

Definition 5.1.3: beschränktes $f:[a,b] \to \text{Corollary 5.2.9}$: $a < b < c, f \in \mathbb{R}^{[a,c]}$ \mathbb{R} ist Riemann integrierbar/integrierbar \Leftrightarrow beschränkt, $f|_{[a,b]}$ und $f|_{[b,c]}$ integrierbar $\Rightarrow f$ Notation: $[f(x)]_a^b := f(b) - f(a)$

integrierbar mit $\int_a^c f(x)dx = \int_a^b f(dx)dx +$ $\int_{b}^{c} f(x)dx$. **Definition**: $\int_a^a f(x)dx = 0$ und wenn a < b:

 $\int_{b}^{a} (fx)dx := -\int_{a}^{b} f(x)dx.$

Theorem 5.2.10: $I \subseteq \mathbb{R}$ kompaktes Intervall $[a, b], f_1, f_2 \in \mathbb{R}^I$ beschränkt integrierbar, $\lambda_1, \lambda_2 \in \mathbb{R}$: $\int_a^b (\lambda_1 f_1(x) + \lambda_2 f_2(x)) dx$ $\lambda_1 \int_a^b f_1(x) dx + \lambda_2 \int_a^b f_2(x) dx$

Ungleichungen und der Mittelwertsatz

Theorem 5.3.1: $f, g : [a, b] \to \mathbb{R}$ beschränkt integrierbar, $f(x) \leq g(x), \forall x \in [a,b] \Rightarrow$ $\int_a^b f(x)dx \le \int_a^b g(x)dx$ Corollary 5.3.2: $f:[a,b] \to \mathbb{R}$ beschränkt

Theorem 5.3.3. Cauchy-Schwarz-Ungleichung: f,g : [a,b] \rightarrow \mathbb{R} beschränkt integrierbar $\Rightarrow \left| \int_a^b f(x)g(x)dx \right| \le$ $\sqrt{\int_a^b f^2(x)dx} \sqrt{\int_a^b g^2(x)dx}$

integrierbar $\Rightarrow \left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x) dx| dx$

Theorem 5.3.4, Mittelwertsatz: $f \in \mathbb{R}^{[a,b]}$ stetig $\Rightarrow \exists \zeta \in [a,b], \int_a^b f(x)dx = f(\zeta)(b-a)$ **Theorem 5.3.6:** $f, g \in \mathbb{R}^{[a,b]}, f$ stetig g beschränkt integrierbar, $g(x) \geq 0, \forall x \in$

 $[a,b] \Rightarrow \exists \zeta \in [a,b],$ $\frac{\int_a^b f(x)g(x)dx = f(\zeta) \int_a^b g(x)dx}{\text{Fundamentalsatz der Differentialrechnung}}$

Theorem 5.4.1: $a < b, f : [a, b] \rightarrow \mathbb{R}$ stetig. $F(x) = \int_a^x f(t)dt, a \le x \le b$, stetig differenzierbar in [a, b] und $F'(x) = f(x), \forall x \in [a, b]$

Definition 5.4.2: $a < b, f \in \mathbb{R}^{[a,b]}$ stetig. $f:[a,b]\to\mathbb{R}$ ist Stammfunktion von $f\Leftrightarrow F$ (stetig) differenzierbar in [a, b], F' = f in |a,b|.

Theorem 5.4.3, Fundamentalsatz der Differenzialrechnung: $f:[a,b] \to \mathbb{R}$ stetig $\Rightarrow \exists F \text{ von } f \text{ (eindeutig bis auf additive)}$ Konstante): $\int_a^b f(x)dx = F(b) - F(a)$

 $b \in \mathbb{R}, f, g \in \mathbb{R}^{[a,b]}$ stetig differenzierbar $\Rightarrow \int_a^b f(x)g'(x)dx = [f(x)g(x)]_a^b \int_a^b f'(x)g(x)dx$. **Theorem** 5.4.6, Substitution: a < b, $\phi \in \mathbb{R}^{[a,b]}$ stetig differenzierbar, $\phi([a,b]) \subset$ $I \subset \mathbb{R}, I \text{ interval}, f : \mathbb{R}^I \text{ stetig} \Rightarrow$ $\int_{\phi(a)}^{\phi(b)} f(x)dx = \int_a^b f(\phi(t))\phi'(t)dt$

Theorem 5.4.5, Partielle Integration: a <

Corollary 5.4.8: $I \subset \mathbb{R}, f \in \mathbb{R}^I, a, b, c \in \mathbb{R}$ $-[a+c,b+c] \subset I, \int_{a+c}^{b+c} f(x)dx = \int_{a}^{b} f(t+c)dx$ $-c \neq 0, [ac, bc] \subset I, \int_a^b f(ct)dt =$ $\frac{1}{c} \int_{ac}^{bc} f(x) dx$

Integration konvergenter Reihen Theorem 5.5.1: R Folge beschränkter, integrierbarer Funktionen, gleichmässig konvergent zu f: $[a,b] \rightarrow \mathbb{R} \Rightarrow f$ beschränkt integrierbar

 $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx.$ Corollary 5.5.2: $f_n: [a,b] \rightarrow \mathbb{R}$ Folge beschränkter integrierbarer Funktionen so dass $\sum_{n=0}^{\infty} f_n$ gleichmässig konvergiert auf $[a,b] \Rightarrow \sum_{n=0}^{\infty} \int_{a}^{b} f_{n}(x) dx =$ $\int_{a}^{b} \left(\sum_{n=0}^{\infty} f_{n}(x)\right) dx$ Corollary 5.5.3: $f(x) = \sum_{n=0}^{\infty} c_k x^k$ Potenzreihe mit $\rho > 0 \Rightarrow \forall 0 \le r < \rho, f$ integration grierbar auf $[-r,r], \forall x \in]-\rho, \rho[: \int_0^x f(t)dt =$ $\sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}$

Skript

• Eeuler-McLaurin Summationsformel • Stirling'sche Formel

In der Vorlesung anders thematisiert. **Stirling'sche Formel**

Vorlesung 'exklusiv': Summen Approximieren $f: [0,\infty] \to \mathbb{R}, f \geq 0$. Want to know $S_n = f(1) + ... + f(n)$ or get approximation. **Theorem:** $f \in \mathbb{R}^{[1,\infty[}, f \geq 0, f \text{ increasing,}$ $S_n = f(1) + \dots + f(n) \to \infty$.

- 1. $S_n \leq \int_1^{n+1} f(t)dt$ 2. $S_n f(1) \geq \int_1^n f(t)dt$
- To approximate the sum, we then get $\int_{1}^{n} f(t)dt + f(1) \le S_n \le \int_{1}^{n+1} f(t)dt$

uneigentliche Integrale

 $f: [a, \infty] \rightarrow \mathbb{R}$ **Definition** 5.8.1: beschränkt und integrierbar auf $[a, b], \forall b > a$. Wenn $\lim_{b\to\infty} \int_a^b f(x)dx$ existiert, bezeichnen $\int_{a}^{\infty} f(x)dx$. "f integrierbar auf $[0, \infty[$ ".

Lemma 5.8.3: $f: [a, \infty] \to \mathbb{R}$ beschränkt, integrierbar $[a, b], \forall b > a$

- 1. $|f(x)| \leq g(x)(\forall x \geq a), g(x)$ integrierbar auf $[a, \infty] \Rightarrow \overline{f}$ integrierbar auf $|a,\infty|$
- 2. $0 \le g(x) \le f(x), \int_a^\infty g(x) dx$ divergent $\Rightarrow \int_{a}^{\infty} f(x) dx$ divergent

Theorem 5.8.5, McLaurin: $f:[1,\infty[\to [0,\infty[$ monoton fallend. $\sum_{n=1}^{\infty}f(n)$ konvergiert $\Leftrightarrow \int_{1}^{\infty} f(x)dx$ konvergiert

Definition 5.8.8: $f:]a,b] \to \mathbb{R}$ (auf $[a+\epsilon,b],\epsilon>0$, beschränkt und integrierbar) integrierbar $\Leftrightarrow \lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f(x) dx$ existiert. Grenzwert: $\int_a^b f(x)dx$

trachtet

unbestimmte Integrale

 $f \in \mathbb{R}^I, I \subset \mathbb{R}.$ f stetig $\Rightarrow \int f(x)dx = \int f(x)dx$ F(x) + C für Stammunktion F.

Theorem Partielle Integration: $\int f \cdot g' =$ $f \cdot g - \int f' \cdot g$ Substitution: $\int f(\phi(u))\phi'(u)du = F \circ \phi(u)$

Stammfunktionen rationaler Funktionen $R(x) = \frac{P(x)}{Q(x)}$: $\int R(x)dx$ lässt sich als elementare Funktion darstellen.

- 1. Reduktion auf deg(P) < deg(Q). Verwende: Euklidischer Algorithmus.
- 2. Zerlegung in Summe von Brüchen bestimmter Formen
 - (a) Einfache Polynome sind bereits
 - (b) $\int \frac{a}{hx+c} dx = \frac{a}{h} \int \frac{dy}{y}$ (with $y = \frac{a}{h} \int \frac{dy}{y}$ $bx + c, dy = bdx = \frac{a}{b}(\log(y) +$ C) = $\frac{a}{b}(\log(bx+c)+C)$
 - (c) must have $d^2 4ec < 0, c \ne 0$

$$\int \frac{ax+b}{cx^2+dx+e} dx \qquad \text{(with } \\ y = x + \frac{d}{2c} / x = y - \frac{d}{2c}, \\ dx = dy, \alpha = \frac{e}{c} - \frac{d^2}{4c^2} \text{)}$$

$$= \int \frac{a(y - \frac{d}{2c}) + b}{c(y^2) + \alpha} dy \qquad \text{(with } \\ w = \frac{y}{\sqrt{\alpha}}, dw = \frac{1}{\sqrt{\alpha}} dy, y = \\ w\sqrt{\alpha} \text{)}$$

$$= \sqrt{\alpha} \int \frac{a(w\sqrt{\alpha} - \frac{d}{2c}) + b}{c\alpha(w^2 + 1)} dw$$

$$\text{Mit } \int \frac{w}{w^2 + 1} = \frac{1}{2} \int \frac{2w}{w^2 + 1} dw = \\ \frac{1}{2} \log(w^2 + 1) & \int \frac{1}{w^2 + 1} dw = \\ \arctan(w) \text{ gelöst werden.}$$

3. Integration der Partialbrüche

Example for (b)

Gamma Funktion in der Vorlesung nicht be- $\int \frac{x^3}{x^2-1}$. First, $\frac{x^3}{x^2-1} = \frac{x \cdot (x^2-1)+x}{x^2-1} = x + \frac{x}{x^2-1}$. Then, $\frac{x}{x^2-1} = \frac{1}{2}(\frac{1}{x-1} + \frac{1}{x+1}) \Rightarrow \frac{x^3}{x^2-1} =$ $x + \frac{\frac{1}{2}}{x-1} + \frac{1}{2} \frac{1}{x+1}$. Now, we can aply 2 and get: $\int \frac{x^3}{x^2 - 1} dx = \frac{x^2}{2} + \frac{1}{2} \log(x - 1) + \frac{1}{2} \log(x + 1)$ 1) + C

Example for (c)

We have $\int \frac{dx}{x^2+x+1}$ This satisfies all requirements regarding the polynomial coefficients. Notice that $x^2 + x + 1 = (x + \frac{1}{2})^2 + 1 - \frac{1}{4} = (x$ $(\frac{1}{2})^2 + \frac{3}{4}$ We substitute $y = x + \frac{1}{2}$ and get $\int \frac{dy}{y^2 + \frac{3}{2}}$ Then, we substitute $y = \frac{\sqrt{3}}{2}w, dy = \frac{\sqrt{3}}{2}dw$ and get $\frac{\sqrt{3}}{2} \int \frac{1}{\frac{3}{2}(w^2+1)} dw$ So we get this and resubstitute: $\int \frac{dx}{x^2+x+1} = \frac{\sqrt{3}}{2} \frac{4}{3} \arctan(w) =$ $\frac{2}{\sqrt{3}}\arctan(\frac{2y}{\sqrt{3}}) = \frac{2}{\sqrt{3}}\arctan(\frac{2}{\sqrt{3}}(x+\frac{1}{2}))$ (c) w/o condition example Concept, not entirely correct.

Einfache Polynome sind bereits bekannt.
$$\int \frac{ax+b}{bx+c} dx = \frac{a}{b} \int \frac{dy}{y} \text{ (with } y = bx+c, dy=bdx) = \frac{a}{b} (\log(y)+C) = \frac{a}{b} (\log(bx+c)+C) \text{ must have } d^2-4ec<0, c\neq 0$$

$$\int \frac{ax+b}{cx^2+dx+e} dx \qquad \text{(with } y = x+2, dy=dx = -\frac{1}{2} \int \frac{y-1}{y^2-2} dy = -\frac{1}{2} \int \frac{y-1}{1-\frac{y^2}{2}} dy = -\frac{1}{2} \int \frac{y-1}{1-\frac{y^2}{2}} dy = -\frac{1}{2} \int \frac{y-1}{1-\frac{y^2}{2}} dy = -\frac{1}{2} \int \frac{a(y-\frac{d}{2c})+b}{c(y^2)+\alpha} dy \qquad \text{(with } y = x+\frac{1}{2} \int \frac{a(y-\frac{d}{2c})+b}{c(y^2)+\alpha} dy = -\frac{1}{2} \int \frac{a(y-\frac{d}{2c})+b}{c(y^2)+\alpha} dy = -\frac{1}{2} \int \frac{a(w\sqrt{\alpha}-\frac{d}{2c})+b}{c\alpha(w^2+1)} dw = -\frac{1}{2} \log(w^2+1) & \int \frac{1}{w^2+1} dw & \int \frac{$$

(Hopefully) Helpful stuff

wichtige Konvergenzen

Grenzwerte

- $\frac{1}{n} \to 0$ (direkt von Definition)
- $\frac{1}{r^2} \to 0$ (Vergleichsprinzip)
- $\rightarrow 0$ (Vergleichsprinzip)
- $\rightarrow 0$ (Vergleichsprinzip)
- $\frac{\cos(\ldots)}{\cos(\ldots)} \to 0 \ (|\cos(\ldots)| \le 1)$
- $\frac{n+1}{n} = 1 + \frac{1}{n} \to 1$
- $\lim_{n \to \infty} n^a q^n = 0, 0 \le q < 1, a \in \mathbb{Z}$ (fallend + Methode "Grenzwert monotoner Folgen")
- $a_1 = c, a_{n+1} = \frac{1}{2}(a_n + \frac{c}{a_n})$ konvergiert \sqrt{c} (fallend + Methode "Grenzwert monotoner Folgen")
- $\lim_{n\to\infty} n^a q^n = 0 \ (a \in \mathbb{Z}, 0 \le q < 1)$ monoton fallend für groß genug n, nach unten beschränkt, Weierstrass
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$ $n \ge 1 \text{ von } (b^n - a^n) = (b - a)(b^{n-1} + a^n)$ $b^{n-2}a + ...$) & $\lim \frac{n}{(1+\epsilon)^n} = 0$
- $a_1 = c > 1, a_{n+1} = \frac{1}{2} \left(a_n + \frac{c}{a_n} \right)$: $\lim a_n = \sqrt{c}$

Da monoton fallend, >0 & Weierstrass

• $\lim_{x\to\infty} \sqrt{x^2+5}$ $\lim_{x \to \infty} \sqrt{x} + \frac{1}{x} = \lim_{x \to \infty} \frac{(\sqrt{x^2 + 5} - x)(\sqrt{x^2 + 5} + x)}{\sqrt{x^2 + 5} + x}$ $\lim_{x \to \infty} \frac{x^2 + 5 - x}{\sqrt{x^2 + 5} + x} = \lim_{x \to \infty} \frac{5}{\sqrt{x^2 + 5} + x} = 0$

Reihen

- $\lim_{n\to\infty} \sum_{i=1}^n \frac{1}{n^2}$ (konvergiert nach Cauchy Corollary), $=\frac{\pi^2}{6}$ alternativ Vergleich zu $\sum \frac{1}{(k-1)k}$
- $a_n = \sum_{i=1}^n \frac{1}{n^3}$ konvergiert, Grenzwert ?
- $\sum_{i=1}^{n} \frac{1}{i} \to \infty$
- $\sum \frac{1}{n} = \infty$ (increasing + Cauchy (not bound))
- $\bullet \sum \frac{1}{n^2} = \frac{\pi^2}{6}$
- $\frac{1-q^{n+1}}{1-a}$ Induktion, $|a_n-\frac{1}{1-a}|\to 0$)

- $\sum \frac{(-1)^k}{l \cdot 2}$ konvergiert absolut
- $\sum (-1)^{k+1} \frac{1}{k}$ konvergiert, aber nicht ab-
- $\sum \frac{n!}{2^n}$ divergiert (Quotientenkriterium)
- $\sum q^n$ konvergiert |q| < 1, divergiert ≥ 1 Quotientenkriterium, besonders für =
- $\sum \frac{z^k}{k!}$ konvergiert
- $\sum a_n$ konvergiert, $a_n = x_0 + \dots + x_n$, $x_n = a_n - a_{n-1} \to 0$ $-\sum_{n=0}^{\infty} x_n = \sum_{n=0}^{\infty} (x_{2n+1} + x_{4n+2} + x_{4n+4})$ falls $\sum_{n=0}^{\infty} x_n$ absolut konvergiert - $\sum x_n$ konvergiert (nicht absolut). $\forall m \in \mathbb{R}$, Bijektion $j: \mathbb{N} \to \mathbb{N}$ existiert $\sum \frac{(-1)^{j(k)-1}}{i(k)} =$

Doppelte Summation Vertauschung von In-

- funktioniert bei $a_{m,n} = (\frac{1}{2} + \frac{1}{m})^k$
- funktioniert nicht bei $a_{m,n}$

$$\begin{cases} 1, & m = n \\ -1, & m+1 = n \\ 0, & \text{else} \end{cases}$$

Cauchy Produkt

$$\begin{array}{lll}
& = & a_n & = & \frac{(-1)^n}{\sqrt{n+1}}. & \left| \sum_{j=0}^n a_{n-j} a_j \right| & = \\
& = & \sum_{j=0}^n \frac{1}{\sqrt{(n-j+1)(j+1)}} \ge \sum_{j=0}^n \frac{1}{\sqrt{(n+1)^2}} = 1
\end{array}$$

 $p(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_0, a_d \neq 0$ $q(x) = b_c x^c + \dots + b_0, b_c \neq 0$

Betrachtung von $\lim \frac{p(n)}{q(n)}$.

- $\frac{a_d}{h} > 0 \Rightarrow \lim \frac{p(n)}{q(n)} = +\infty$ $\frac{a_d}{b_c} < 0 \Rightarrow \lim \frac{p(n)}{q(n)} = -\infty$ • d = c
- $\lim \frac{p(n)}{q(n)} = \frac{a_d}{b_c}$
- \bullet d < c $\lim \frac{p(n)}{q(n)} = 0$

 $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$ (konvergiert da fallend mit 2.2.7)

• $\sum q^n = \frac{1}{1-q}, |q| < 1, q \in \mathbb{C}$ $(a_n = \text{Betrachte } \sum \frac{\text{Exponential funktion}}{n!}$. Konvergiert $\forall z$ (Qutoentenkriterium). $\exp(z) := \sum \frac{z^n}{n!}$

Mit 2.7.26: $\exp(z + w) = \exp(w) \exp(z)$ $\exp(z) \neq 0$ as inverse $\neq 0$ with $\exp(z-z) =$ $\exp(1) := e \approx 2.718281828... \Rightarrow \exp(z) =$ $\exp(1 + \dots + 1) = \exp(1)^z = e^z$ Stetigkeit Let $x_0 \in \mathbb{R}$. $\exp(x) - \exp(x_0) =$ $\exp(x_0)(\exp(x-x_0)-1)$ and $\exp(x-x_0)$ $1 = \sum_{n=1}^{\infty} \frac{(x-x_0)^n}{n!}$. With the triangle inequality and $\frac{1}{n!} \leq 1$, we get $|\exp(x-x_0)-1| \leq$ $\sum_{n=1}^{\infty} \frac{|x-x_0|^n}{n!} \le \sum_{n=1}^{\infty} |x-x_0|^n = \frac{1}{1-|x-x_0|} - \frac{1}{1-|x-x_0|}$ $1 = \frac{|x-x_0|}{1-|x-x_0|}$. Then, for $\epsilon > 0$, let $\delta =$ $\min(\frac{1}{4}, \frac{\epsilon}{4\exp(x_0)})$. With $|x - x_0| < \delta$, we get $\frac{2\pi i \pi}{\text{Für } s > 1 \text{ konvergient } \zeta(s) = \sum \frac{1}{n^s}$. $|\exp(x) - \exp(x_0)| < 2\exp(x_0)\frac{\epsilon}{4\exp(x_0)} = S_N = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \dots + \frac{1}{N^s}$. Mit $k \ge 1, N \le 1$ Grenzwerte von Funktionen $\lim_{\substack{x \to 0 \\ x < 0}} \frac{\sin(x)}{x} = \lim(\frac{1}{x}(x - \frac{x^3}{6} + \dots)) = \lim(1 - \frac{1}{x}(x - \frac{x^3}{6} + \dots)) = \lim(1 - \frac{x^3}{6} + \dots)$

 $\frac{x^2}{6} + \dots) = 1$

- $\bullet \lim_{x^2+1 \atop x^2-1} = 1$ $\bullet \lim_{x^2+1 \atop x^2-1} = \infty$
- $\lim_{x \to -\infty} e^x = 0$ $\lim \frac{e^x}{x^a} = \infty$
- $\lim x^a e^{-x} = 0$

Trigonometry

 $[0,2\pi] \rightarrow \mathbb{R}^2, t \mapsto$ Corollary 4.2.8: $(\cos t, \sin t)$ is Bijektion von $[0, 2\pi]$ nach K = $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}.$

Proof of existence: Since $x^2 + y^2 = 1$ we get $0 \le x^2 \le 1$ and $-1 \le x \le 1$. This means that there is a unique $u \in [0, \pi]$ such that cos(u) = x. Then, from $1 = x^2 + y^2 =$ $\cos^2(u) + \sin^2(u) = x^2 + \sin^2(u)$ we get $y^2 = \sin^2(u)$ wo $y = \pm \sin(u)$. Case 1: If $y \ge 0$, then $y = \sin(u)$ since $0 \le u \le \pi$. We take t = u. Case 2: If y < 0, then $y = -\sin(u) = \sin(2\pi - u)$. But then also $x = \cos(u) = \cos(2\pi - u)$ So we can take $t = 2\pi - u \in [\pi, 2\pi].$

 $\oint_{x>0} \lim_{x\to 0} \frac{1-\cos(x)}{\sin(x)} = \lim_{x\to 0} \frac{\sin(x)}{\cos(x)} = \frac{0}{1} = 0$

Corollary 4.2.18, Example!: $\sqrt[n]{x_1 \cdots x_n}$ <

We consider $f(x) = -\ln x$ with $f'(x) = -\frac{1}{x}$ and $f''(x) = \frac{1}{x^2}, x \in]0, \infty[$. Hence, f is convex. From 4.2.14 with $I =]0, \infty[$ and

 $\lambda_1 = \dots = \lambda_n = \frac{1}{n}$ we get $-\ln(\frac{1}{n}\sum_{i=1}^n x_i) \le$ $\sum_{i=1}^{n} -\frac{1}{n} \ln x_i = -\frac{1}{n} \ln(x_1 \cdot \cdot \cdot x_n)$ Now we use that exp is increasing:

$$\exp\left(\frac{\log x_1}{n} + \dots + \frac{\log x_n}{n}\right) \le \frac{x_1 + \dots + x_n}{n}$$

$$\Leftrightarrow \exp\left(\frac{\log x_1}{n}\right) \cdots \exp\left(\frac{\log x_n}{n}\right) \le \frac{x_1 + \dots + x_n}{n}$$

$$\Leftrightarrow \sqrt[n]{x_1 \cdots x_n} \le \frac{x_1 + \dots + x_n}{n}$$

Zeta-Funktion

 2^k , dann $S_N < S_{2^k}$.

$$S_{2^k} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots$$

$$\leq 1 + \frac{1}{2^s} + \frac{1}{2^{s-1}} + \frac{1}{4^{s-1}} + \dots$$

$$= 1 + \frac{1}{2^s} + \frac{1}{2^{s-1}} + \frac{1}{(2^{s-1})^2} + \frac{1}{(2^{s-1})^4} + \dots$$

Folgt mit Vergleichssatz und geometrischer

Gamma Funktion $\int_0^b x^n e^{-x} dx = -b^n e^{-b} + n \int_0^b x^{n-1} e^{-x} dx.$ Mit $\lim_{b\to +\infty} b^n e^{-b} = 0$: $\int_0^\infty x^n e^{-x} dx = 0$ $n \int_0^\infty x^{n-1} e^{-x} dx$. Es folgt: $\int_0^\infty x^n e^{-x} dx =$ $n(n-1)...1 \int_{0}^{\infty} e^{-x} dx = n!.$

Konvergenzen

 $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{\beta}}$ konvergiert gdw. $\int_{2}^{\infty} \frac{1}{n(\ln n)^{\beta}} dx$

konvergiert. $b > 2, x = e^u, u \in [\ln 2, \ln b].$ $\int_{2}^{b} \frac{1}{x(\ln x)^{\beta}} dx = \int_{\ln 2}^{\ln b} \frac{1}{e^{u}u^{\beta}} e^{u} du = \int_{\ln 2}^{\ln b} \frac{1}{u^{\beta}} du.$

Ableitungen $\bullet \exp' = \exp$ • $\ln'(x) = \frac{1}{x} (4.1.12)$ • $(\log)^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n}$ • $\sin' = \cos, \cos' = -\sin$ • $(x^n)' = nx^{n-1}$ • $\tan^{i} x = \frac{1}{\cos^{2} x} = 1 + \tan^{2} x$ (4.1.9(3)) $\bullet \cot' x = -\frac{1}{\sin^2 x}$ Notice: f even $(f(-x) = f(x)) \Rightarrow f'$ uneven $(f(-x) = -f(x)) \& f \text{ uneven} \Rightarrow f' \text{ even}$ $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 \text{ Then } f'(x_0) =$ $2x_0, \forall x_0 \in \mathbb{R}$ Follows from $f(x) - f(x_0) =$ $x^2 - x_0^2 = (x - x_0)(x + x_0)$ For $x \neq x_0$ then $\lim \frac{f(x) - f(x_0)}{x - x_0} = \lim x + x_0 = 2x_0$ f(x) = ax + b f is differentiable with f'(x) = $a \operatorname{as} \frac{f(y) - f(x)}{y - x} = \frac{a(y - x)}{y - x} = a.$ $\sin' = \cos, \cos x > 0(\forall x \in] - \frac{\pi}{2}, \frac{\pi}{2}[) \stackrel{5.2.5(4)}{\Longrightarrow}$ sin strikt monoton wachsend auf $]-\frac{\pi}{2},\frac{\pi}{2}[$ / $\sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-1, 1\right]$ Bijektion. $\arcsin: [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$ Umkehrfunktion. Differenzierbar] – 1, 1[. $\arcsin' y = \frac{1}{\sin' x} = \frac{1}{\sin' x}$ With 4.1.12 we know that arcsin is differentiable on]-1,1[and with $y = \sin x$ get $\sin^2(x) + \cos^2(x) = 1 \Rightarrow y^2 = \sin^2(x) = 1$ $1 - \cos^2(x)$. With $\cos(x) > 0$ (which holds for $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ we get: $\cos(x) = \sqrt{1 - y^2}$. So, $\forall y \in]-1,1[$ we get $\arcsin'(y)=\frac{1}{\sqrt{1-y^2}}$ $\arccos : [-1,1] \rightarrow [0,\pi]. \arccos' y =$ $\tan' x = \frac{1}{\cos^2 x}$ arctan $\tan' x = \frac{1}{\cos^2 x} \Rightarrow \arctan :] - \infty, \infty[\rightarrow$ $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] = \arctan' y = \cos^2 x = \frac{1}{1+u^2}.$ $\cot x = \frac{\cos x}{\sin x}, \cot' x = -\frac{1}{\sin^2 x}$ $\operatorname{arccot}:]-\infty, \infty[\rightarrow]0, \pi[, \operatorname{arccot}'y = -\frac{1}{1+y^2}]$ Hyperbel & Areafunktionen

 $\frac{1}{\sqrt{1+y^2}}$, $\tanh' x = \frac{1}{\cosh^2 x} > 0$, artanh'y = 4.3.4: exp, sin, cos sinh, cosh, tanh, ... sind glatt auf ganz \mathbb{R} Polynome sind glatt auf ganz \mathbb{R} ln ist glatt Integrals $\bullet \int e^x dx = e^x$ • $\int \cos(2x)dx = \frac{1}{2}\sin(2x)$ \bullet $\int e^x dx = e^x + C$ • $\int \frac{1}{x} dx = \log x + C, x > 0$ • $\int x^s dx = \begin{cases} \frac{x^{s+1}}{s+1} + C, & s \neq -1\\ \ln x + C, & x > 0 \end{cases}$ • $\int \sin x dx = -\cos x + C$ $\int \sinh x dx = \cosh x + C$ $\bullet \int \cos x dx = \sin x + C$ $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$ • $\int \cosh x dx = \sinh x + C$ • $\int \frac{1}{\sqrt{1+x^2}} dx = \operatorname{arsinh} x + C$ $\bullet \int \frac{1}{1+x^2} dx = \arctan x + C$ $\bullet \int e^x dx = e^x + C$ • $\int \frac{1}{\sqrt{x^2-1}} dx = \operatorname{arcosh} x + C$ • $\int \cos(ax) = \frac{1}{a}\sin(ax)$ arcsin' $(y) = \frac{1}{\sin'(x)} = \frac{1}{\cos(x)}$ We can use $\int f(x) = x f($ $i \leq n$ with $h = \frac{b-a}{n}$. Then $s(f, P_n) = \sum_{i=1}^{n} x_{i-1}(x_i - x_{i-1})$ $= \frac{b-a}{n} \sum_{i=1}^{n} (a+(i-1)h)$ $=\frac{b-a}{n}\left(na+h\frac{n(n-1)}{2}\right)$ $=(b-a)a+\frac{(b-a)^2}{2}(\frac{n-1}{n})$ And $S(f, P_n) = \dots = (b - a)a +$ $\frac{(b-a)^2}{2}(\frac{n-1}{n})$ So, $\lim_{n\to\infty} S(f, P_n) = \frac{b^2-a^2}{2} =$ $\lim_{n\to\infty} s(f, P_n)$ Hence, f is integrable with $\int_{a}^{b} f(x)dx = \frac{b^{2}-a^{2}}{2}$.

 $\cosh x = \frac{e^x + e^{-x}}{2}$, $\sinh x = \frac{e^x - e^{-x}}{2}$, $\tanh x =$

 $\frac{\sinh x}{\cosh x}$, $\cosh' x = \sinh x$, $\sinh' x$

 $\cosh x, \operatorname{arcosh}' y = \frac{1}{\sqrt{y^2 - 1}}, \operatorname{arsinh}' y$

$$\int \frac{1}{\sqrt{e^x - e^2}} \text{ with } u = e^x - e^2 \colon \int \frac{1}{\sqrt{u}(u + e^2)} du$$

$$\text{with } v = \frac{\sqrt{u}}{e} \colon \int \frac{2e^2v}{ve(v^2e^2 + e^2)} dv = \int \frac{2}{v^2e + e} dv = \frac{2}{e} \arctan(v)$$

$$\text{example}$$

$$\left\{ a + i \cdot h \middle| 0 \le \int \frac{1}{1 + \cos(x)} dx = \int \frac{1}{1 + \cos(x)} \frac{1 - \cos(x)}{1 - \cos(x)} dx = \int \frac{1}{\sin^2(x)} dx - \int \frac{\cos(x)}{\sin^2(x)} dx = -\cot(x) + \frac{1}{\sin(x)} \frac{1}{\cos^2(x)} \frac{1}{\cos^2(x)} \frac{1}{\cos^2(x)} dx \text{ with } u = \tan(x) \text{ we get } \int u^2 + 1 du = \frac{1}{3} \tan^3(x) + \tan(x)$$

$$\begin{array}{c} \text{example} \\ \text{ftan}(x) \text{ we get } \int u^2 + 1 du = \frac{1}{3} \tan^3(x) + \tan(x) \\ \text{h} & \frac{e^2}{1 + \cos^2(x)} \frac{1}{\cos^2(x)} \frac{1}{\cos^2(x)}$$

= enuierbar.

 $= xe^{ax^2} - 2a \int x^2 e^{ax^2} dx + 2a \int x^2 e^{ax^2} dx$ = - $f(x) = \begin{cases} 1,x \text{ rational} \\ 0,x \text{ irrational} \end{cases}$ nur Lebesgue differ-Area of Half Circle Application 5.4.7 - lecture approach 1 - Let $f:[0,1] \to \mathbb{R}$ with $f(x)=\{ egin{array}{ll} 0,x & \text{irrational or } x=0 \\ rac{1}{q},x=rac{p}{q},p,q & \text{natural numbers, relatively prime} \end{array}
ight.$ One can Let r > 0 and $f(x) = \sqrt{r^2 - x^2}$ be defined show $\int_0^1 f(x)dx = 0$.

$$\int_a^b \frac{\sin t}{\cos t} \ dt \text{ for } -\frac{\pi}{2} < a < b < \frac{\pi}{2}. \text{ We can use substitution: } \int_a^b \frac{\sin t}{\cos t} \ dt = -\int_a^b \frac{\cos t}{\cos t} \ dt = -\int_a^b \frac{\sin t}{\cos t} \ dt = -\int_a^b \frac{\cos t}{\cos t} \ dt = -\int_a^$$

 $\int \frac{1}{\cos^4(x)} dx = \int \frac{1}{\cos^2(x)} \frac{1}{\cos^2(x)} dx$ with u = $\Rightarrow 2 \int_{a}^{b} \sqrt{1-x^2} dx = \left[x\sqrt{1-x^2}\right]_a^b + \left[\arcsin \frac{x}{x^2}\right]_a^b$ $\tan(x)$ we get $\int u^2 + 1 du = \frac{1}{3} \tan^3(x) + \frac{1}{3} \tan^3(x)$ $\int_{-e}^{e} \sin(-x^3) dx = \int_{-e}^{0} ... dx + \int_{0}^{e} ... dx = 0$ $\int \tan^4(x) dx = \int \tan^2(x) \tan^2(x) dx =$

half-circle above the x-axis with radius r. We want to compute the area of that half circle,

on [-r, r]. Graphically, this corresponds to the half-circle above the x-axis with radius r. We want to compute a portion of the area of that half circle, i.e., $\int_a^b \sqrt{r^2 - x^2} dx$ with $-r \le a < b \le r$. We start by using a trick. That is, to use partial integration, we multiply by function to be integrated by 1, which we consider our g'. Then we have our function as f and q(x) = x. We get $\int_{a}^{b} \sqrt{r^2 - x^2} \, dx = \int_{a}^{b} 1 \cdot \sqrt{r^2 - x^2} \, dx = \left[x \sqrt{r} \right]$

Now, we employ a second trick: $x^2 = x^2$ r + r using that, we get Now, we consider the special case r = 1 and

 $= \left[x\sqrt{r^2 - x^2} \right]_a^b + \int_a^b \frac{x^2}{\sqrt{r^2 - x^2}} \, dx$

 $=\left[x\sqrt{1-x^2}\right]_a^b - \int_a^b \sqrt{1-x^2} \, dx + \int_a^b \frac{1}{\sqrt{1-x^2}} \, dx$

Thus, one antiderivative of $\sqrt{1-x^2}$ is S(x) = $\frac{1}{2}(x\sqrt{1-x^2}+\arcsin(x)).$

Application 5.4.7 - generalized lecture approach 2

Let r > 0 and $f(x) = \sqrt{r^2 - x^2}$ be defined on [-r, r]. Graphically, this corresponds to the

Now let $\phi: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-r, r\right], t \mapsto r \cdot \sin t$

We then also have for the inverse of ϕ^{-1} :

i.e., $\int_a^b \sqrt{r^2 - x^2} dx$ with $-r \le a < b \le r$.

 $t \mapsto \arcsin(\frac{t}{\pi})$. We get with by using $t \in$ $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \cos t \ge 0$ in the last step

$$\int_{a}^{b} f(x) dx = \int_{\phi(\phi^{-1}(b))}^{\phi(\phi^{-1}(b))} f(x) dx$$

$$= \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f(\phi(t)) \phi'(t) dt$$

$$= \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} \sqrt{r^{2} - r^{2} \sin^{2} t} \cdot r \cdot \cos t dt$$

$$= r^{2} \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} \cos^{2} t dt$$

To compute $\int_{\alpha}^{\beta} \cos^n dt$ one can use $\cos t =$ For $\cos^2 t$ we get $\cos^2 t =$ $(\frac{e^{it}-e^{-it}}{2})^2 = \frac{e^{2it}+2+e^{-2it}}{4} = \frac{1}{2}\cos(2t) + \frac{1}{2}$ for the integral we then get

$$\int_{\alpha}^{\beta} \cos^{2}(t) dt = \frac{1}{2} \int_{\alpha}^{\beta} \cos(2t) dt + \frac{1}{2} (\beta - \alpha)$$

$$= \frac{1}{4} \int_{2\alpha}^{2\beta} \cos(y) dy + \frac{\beta - \alpha}{2}$$

$$= \frac{1}{4} \left[\sin y \right]_{2\alpha}^{2\beta} + \frac{\beta - \alpha}{2}$$

$$= \frac{1}{4} (\sin(2\beta) - \sin(2\alpha)) + \frac{\beta - \alpha}{2}$$

Now, one would only have to substitute α / β with $\phi^{-1}(a)/\phi^{-1}(b)$.

Application 5.4.7

[...] (Some general stuff repeating the meaning of integral as area.) Let r > 0 and f(x) =

 $\sqrt{r^2-x^2}$ be defined on [-r,r]. Graphically, this corresponds to the half-circle above the x-axis with radius r. We want to compute the area of that half circle, i.e., $\int_{-r}^{r} \sqrt{r^2 - x^2} dx$ Now, let $\phi: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-r, r\right], t \mapsto r \cdot \sin t$ We can use 5.4.6 to get

$$\int_{-r}^{r} f(x)dx = \int_{\phi(-\frac{\pi}{2})}^{\phi(\frac{\pi}{2})} f(x)dx$$

$$= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} f(\phi(t))\phi'(t)dt$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{r^2 - r^2 \sin^2 t} r \cos t \, dt$$

$$= r^2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos^2 t} \cos t \, dt$$

As $\cos t \ge 0$, $t \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, we get $\sqrt{\cos^2 t} \cos t$ and $\int_{-\pi}^{\pi} \sqrt{r^2 - x^2} dx = r^2 \int_{-\pi}^{\frac{\pi}{2}} \cos^2 t \ dt$ So, now we want to compute $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t \ dt$ for which we use partial integration with f(t) = $\cos t$ and $g'(t) = \cos t$. Then, $g(t) = \sin(t)$. We use 5.4.5 to compute this integral

$$(\cos \frac{\pi}{2} \sin \frac{\pi}{2} - \cos(-\frac{\pi}{2}) \sin(-\frac{\pi}{2})) - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (-\sin t) \sin t \, dt^n \log t \, dt = \left[x \log x - x \right]_1^n$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 t \, dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 - \cos^2 t) \, dt \qquad = (n \log n - n) - (-1) = n \log n - n$$

$$\Rightarrow n \log n - n + 1 \le \log n!$$
So we see that $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t \, dt = \le (n + 1) \log(n + 1) - (n + 1) + 1$

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dt - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t \, dt$$
 From that follows Because $\frac{n \log n - n + 1}{n \log n - n} \to_{n \to \infty} 1$

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^2t\ dt=\frac{\pi}{2}$$
 Hence: $\int_r^r\sqrt{r^2-x^2}dx=$ and get

Integration of Converging Series

Consider $f(x) = \frac{1}{1-x}, |x| < 1$ which equals $\sum_{n=0}^{\infty} x^n$ with convergence radius $\rho =$ 1. For valid x (|x| < 1): $\int_0^x f(t)dt =$ $\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots$ In the other direction: $\int_0^x \frac{1}{1-t} dt = \left[-\log(1-t) \right]_0^x =$ $-\log(1-x) - (-\log(1)) = -\log(1-x) =$ $\log(\frac{1}{1-x})$ So: $\log(\frac{1}{1-x}) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots$

Approximation von Summen $f(x) = x^a, a \ge 0$ With $\int_1^n f(x) dx = \frac{x^{a+1}-1}{a+1}$ we can approximate a sum $\frac{n^{a+1}-1}{a+1} \le 1^a + \dots +$ $n^{a} \leq \frac{(n+1)^{a+1}-1}{a+1}$ From that we get $1 - \frac{1}{n^{a+1}} \leq 1$ $\frac{1^{a} + \dots + n^{a}}{\frac{n^{a+1}}{a+1}} \le \frac{(n+1)^{a+1}(a+1)}{(a+1)n^{a+1}} - \frac{(a+1)}{(a+1)n^{a+1}} \text{ As we}$ have $\rightarrow_{n\rightarrow\infty} 1$ for the lower and upper bound, we get $\lim_{n\to\infty} \frac{1^a + \dots + n^a}{n^{a+1}} = 1$ So, with a = e, we for instance get $1^e + ... + n^e \approx \frac{n^{e+1}}{e+1}$ $f(x) = \log x$, $S_n = \log(n!)$. We have: $= (n \log n - n) - (-1) = n \log n - n + 1$ $\Rightarrow n \log n - n + 1 \le \log n!$

Because
$$\frac{n \log n - n + 1}{n \log n} \rightarrow_{n \to \infty} 1$$

 $\leq (n+1)\log(n+1) - (n+1) + 1$

get $\lim_{n\to\infty} \frac{\log n!}{n\log n-n} = 1$. So, we get $n! \approx$ $\exp(n\log n - n) = (\frac{n}{e})^n$.

$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha}} \le \int_{1}^{\infty} \frac{1}{x^{\alpha}} dx \le \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
$$\frac{1}{\alpha - 1} \le \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \le \frac{\alpha}{\alpha - 1}$$

uneigentliche Integrale

- 1. $f(x) = e^{-cx}, c > 0$ is integrable on $[a, +\infty[$.
- 2. $f(x) = \frac{1}{x^a}$ is integrable on $[1, \infty]$ if a > 1. We have $\int_1^\infty \frac{1}{x^a} dx = \frac{1}{a-1}$.
- 3. $f(x) = \frac{1}{x^a}$ is integrable on [0,1] if a < a1. For example: $\int_{r}^{1} \frac{1}{4} dt = [2\sqrt{t}]_{x}^{1} =$ $2-2\sqrt{x} \rightarrow_{x\rightarrow 0} 2$

We want to check whether $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^a}$ exists or not. So we consider $\int_2^\infty \frac{1}{t(\log t)^a} dt =$ $\int_{\log 2}^{\log x} \frac{1}{y^a} dy$ with $y = \log t$. From an example above we know that $\int_{\log 2}^{\infty} \frac{1}{y^a} dy$ exists if and only if a > 1.