Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных.

In [1]:

```
import numpy as np
import pandas as pd
pd.set_option('display.max.columns', 100)
# to draw pictures in jupyter notebook
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
# we don't like warnings
# you can comment the following 2 lines if you'd like to
import warnings
warnings.filterwarnings('ignore')
```

Загрузка и первичный анализ данных

In [172]:

```
data = pd.read_csv("C:/Users/VTsapiy/Desktop/лаба3/train.csv", sep=',')
data.head()
```

Out[172]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	U1
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	1
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	1
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	1
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	1
←										•

In [169]:

```
data.shape
```

Out[169]:

(401, 25)

```
In [164]:
```

```
data.dtypes
Out[164]:
         object
age
         object
bp
         object
sg
         object
al
su
         object
rbc
         object
         object
рс
рсс
         object
         object
ba
         object
bgr
         object
bu
\mathsf{sc}
         object
         object
sod
pot
         object
         object
hemo
pcv
         object
         object
WC
rc
         object
htn
         object
dm
         object
cad
         object
appet
         object
         object
pe
ane
         object
class
         object
dtype: object
In [97]:
data.isnull().sum()
Out[97]:
Ιd
                    0
MSSubClass
                    0
                    0
MSZoning
LotFrontage
                  259
LotArea
                    0
MoSold
                    0
YrSold
                    0
SaleType
                    0
                    0
SaleCondition
SalePrice
Length: 81, dtype: int64
In [98]:
total count = data.shape[0]
print('Всего строк: {}'.format(total_count))
```

Всего строк: 1460

1. Обработка пропусков в данных

1.1. Простые стратегии - удаление или заполнение нулями

```
In [99]:
```

```
# Удаление колонок, содержащих пустые значения data_new_1 = data.dropna(axis=1, how='any') (data.shape, data_new_1.shape)
```

Out[99]:

```
((1460, 81), (1460, 62))
```

In [100]:

```
# Удаление строк, содержащих пустые значения data_new_2 = data.dropna(axis=0, how='any') (data.shape, data_new_2.shape)
```

Out[100]:

```
((1460, 81), (0, 81))
```

In [101]:

```
data.head()
```

Out[101]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	U1
0	1	60	RL	65.0	8450	Pave	NaN	Reg	LvI	,
1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	,
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	,
3	4	70	RL	60.0	9550	Pave	NaN	IR1	LvI	1
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	1
←										•

In [102]:

```
# Заполнение всех пропущенных значений нулями
# В данном случае это некорректно, так как нулями заполняются в том числе колонки содержащи
data_new_3 = data.fillna(0)
data_new_3.head()
```

Out[102]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Ut
0	1	60	RL	65.0	8450	Pave	0	Reg	Lvl	
1	2	20	RL	80.0	9600	Pave	0	Reg	LvI	,
2	3	60	RL	68.0	11250	Pave	0	IR1	LvI	,
3	4	70	RL	60.0	9550	Pave	0	IR1	LvI	,
4	5	60	RL	84.0	14260	Pave	0	IR1	Lvl	,

1.2. "Внедрение значений" - импьютация (imputation)

1.2.1. Обработка пропусков в числовых данных

In [103]:

```
# Выберем числовые колонки с пропущенными значениями
# Цикл по колонкам датасета
num_cols = []
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt=='int64' or dt=='float64'):
        num_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col,
```

Колонка LotFrontage. Тип данных float64. Количество пустых значений 259, 17. 74%.

Колонка MasVnrArea. Тип данных float64. Количество пустых значений 8, 0.55%. Колонка GarageYrBlt. Тип данных float64. Количество пустых значений 81, 5.5 5%.

In [104]:

```
data_num = data[num_cols]
data_num
```

Out[104]:

	LotFrontage	MasVnrArea	GarageYrBlt
0	65.0	196.0	2003.0
1	80.0	0.0	1976.0
2	68.0	162.0	2001.0
3	60.0	0.0	1998.0
4	84.0	350.0	2000.0
1455	62.0	0.0	1999.0
1456	85.0	119.0	1978.0
1457	66.0	0.0	1941.0
1458	68.0	0.0	1950.0
1459	75.0	0.0	1965.0

1460 rows × 3 columns

In [105]:

```
# Гистограмма по признакам

for col in data_num:

plt.hist(data[col], 50)

plt.xlabel(col)

plt.show()
```


In [107]:

```
data[data['LotFrontage'].isnull()]
```

Out[107]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandConto
7	8	60	RL	NaN	10382	Pave	NaN	IR1	ı
12	13	20	RL	NaN	12968	Pave	NaN	IR2	l
14	15	20	RL	NaN	10920	Pave	NaN	IR1	l
16	17	20	RL	NaN	11241	Pave	NaN	IR1	l
24	25	20	RL	NaN	8246	Pave	NaN	IR1	l
1429	1430	20	RL	NaN	12546	Pave	NaN	IR1	l
1431	1432	120	RL	NaN	4928	Pave	NaN	IR1	l
1441	1442	120	RM	NaN	4426	Pave	NaN	Reg	l
1443	1444	30	RL	NaN	8854	Pave	NaN	Reg	l
1446	1447	20	RL	NaN	26142	Pave	NaN	IR1	l

259 rows × 81 columns

→

In [108]:

```
# Запоминаем индексы строк с пустыми значениями
flt_index = data[data['LotFrontage'].isnull()].index
flt_index
```

Out[108]:

In [109]:

```
# Проверяем что выводятся нужные строки data[data.index.isin(flt_index)]
```

Out[109]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandConto
7	8	60	RL	NaN	10382	Pave	NaN	IR1	l
12	13	20	RL	NaN	12968	Pave	NaN	IR2	l
14	15	20	RL	NaN	10920	Pave	NaN	IR1	l
16	17	20	RL	NaN	11241	Pave	NaN	IR1	l
24	25	20	RL	NaN	8246	Pave	NaN	IR1	l
1429	1430	20	RL	NaN	12546	Pave	NaN	IR1	l
1431	1432	120	RL	NaN	4928	Pave	NaN	IR1	l
1441	1442	120	RM	NaN	4426	Pave	NaN	Reg	l
1443	1444	30	RL	NaN	8854	Pave	NaN	Reg	l
1446	1447	20	RL	NaN	26142	Pave	NaN	IR1	l

259 rows × 81 columns

```
→
```

In [110]:

```
# фильтр по колонке
data_num[data_num.index.isin(flt_index)]['LotFrontage']
```

Out[110]:

```
7
       NaN
12
       NaN
14
       NaN
16
       NaN
24
       NaN
1429
       NaN
1431
       NaN
1441
       NaN
1443
       NaN
1446
       NaN
Name: LotFrontage, Length: 259, dtype: float64
```

In [115]:

```
data_num_LotFrontage = data_num[['LotFrontage']]
data_num_LotFrontage.head()
```

Out[115]:

1

LotFrontage 0 65.0

80.0

- **2** 68.0
- **3** 60.0
- **4** 84.0

In [116]:

```
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
```

In [117]:

```
# Фильтр для проверки заполнения пустых значений indicator = MissingIndicator() mask_missing_values_only = indicator.fit_transform(data_num_LotFrontage) mask_missing_values_only
```

Out[117]:

In [118]:

```
strategies=['mean', 'median', 'most_frequent']
```

In [119]:

```
def test_num_impute(strategy_param):
   imp_num = SimpleImputer(strategy=strategy_param)
   data_num_imp = imp_num.fit_transform(data_num_LotFrontage)
   return data_num_imp[mask_missing_values_only]
```

In [120]:

```
strategies[0], test_num_impute(strategies[0])
```

Out[120]:

```
('mean',
array([70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837]))
```

In [121]:

```
strategies[1], test_num_impute(strategies[1])
```

Out[121]:

```
('median',
```

In [122]:

```
strategies[2], test_num_impute(strategies[2])
```

Out[122]:

```
('most_frequent',
```

```
In [123]:
```

```
# Более сложная функция, которая позболяет задабать колонку и вид импьютации

def test_num_impute_col(dataset, column, strategy_param):
    temp_data = dataset[[column]]

indicator = MissingIndicator()
    mask_missing_values_only = indicator.fit_transform(temp_data)

imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(temp_data)

filled_data = data_num_imp[mask_missing_values_only]

return column, strategy_param, filled_data.size, filled_data[0], filled_data[filled_data]

In [124]:
```

```
data[['MasVnrArea']].describe()
```

Out[124]:

MasVnrArea count 1452.000000 mean 103.685262 std 181.066207 min 0.000000 25% 0.000000 50% 0.000000 75% 166.000000 max 1600.000000

In [125]:

```
test_num_impute_col(data, 'MasVnrArea', strategies[0])
```

Out[125]:

('MasVnrArea', 'mean', 8, 103.68526170798899, 103.68526170798899)

In [126]:

```
test_num_impute_col(data, 'MasVnrArea', strategies[1])
```

Out[126]:

('MasVnrArea', 'median', 8, 0.0, 0.0)

In [127]:

```
test_num_impute_col(data, 'MasVnrArea', strategies[2])

Out[127]:
   ('MasVnrArea', 'most_frequent', 8, 0.0, 0.0)
```

1.2.2. Обработка пропусков в категориальных данных

In [128]:

```
# Выберем категориальные колонки с пропущенными значениями
# Цикл по колонкам датасета
cat_cols = []
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt=='object'):
        cat_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col,
```

```
Колонка Alley. Тип данных object. Количество пустых значений 1369, 93.77%.
Колонка MasVnrType. Тип данных object. Количество пустых значений 8, 0.55%.
Колонка BsmtQual. Тип данных object. Количество пустых значений 37, 2.53%.
Колонка BsmtCond. Тип данных object. Количество пустых значений 37, 2.53%.
Колонка BsmtExposure. Тип данных object. Количество пустых значений 38, 2.
6%.
Колонка BsmtFinType1. Тип данных object. Количество пустых значений 37, 2.5
Колонка BsmtFinType2. Тип данных object. Количество пустых значений 38, 2.
Колонка Electrical. Тип данных object. Количество пустых значений 1, 0.07%.
Колонка FireplaceQu. Тип данных object. Количество пустых значений 690, 47.2
6%.
Колонка GarageType. Тип данных object. Количество пустых значений 81, 5.55%.
Колонка GarageFinish. Тип данных object. Количество пустых значений 81, 5.5
5%.
Колонка GarageQual. Тип данных object. Количество пустых значений 81, 5.55%.
Колонка GarageCond. Тип данных object. Количество пустых значений 81, 5.55%.
Колонка PoolQC. Тип данных object. Количество пустых значений 1453, 99.52%.
Колонка Fence. Тип данных object. Количество пустых значений 1179, 80.75%.
Колонка MiscFeature. Тип данных object. Количество пустых значений 1406, 96.
3%.
```

```
In [129]:
```

```
cat_temp_data = data[['MasVnrType']]
cat_temp_data.head()
```

Out[129]:

```
        MasVnrType

        0
        BrkFace

        1
        None

        2
        BrkFace

        3
        None

        4
        BrkFace
```

In [130]:

```
Cat_temp_data['MasVnrType'].unique()

Out[130]:
array(['BrkFace', 'None', 'Stone', 'BrkCmn', nan], dtype=object)

In [131]:

Cat_temp_data[cat_temp_data['MasVnrType'].isnull()].shape

Out[131]:
(8, 1)

In [132]:
# Импьютация наиболее частыми значениями
imp2 = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
data_imp2 = imp2.fit_transform(cat_temp_data)
data_imp2

Out[132]:
array([['BrkFace'],
```

8

```
In [133]:
# Пустые значения отсутствуют
np.unique(data_imp2)
Out[133]:
array(['BrkCmn', 'BrkFace', 'None', 'Stone'], dtype=object)
In [134]:
# Импьютация константой
imp3 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value='!!!')
data_imp3 = imp3.fit_transform(cat_temp_data)
data_imp3
Out[134]:
array([['BrkFace'],
       ['None'],
       ['BrkFace'],
       . . . ,
       ['None'],
       ['None'],
       ['None']], dtype=object)
In [135]:
np.unique(data_imp3)
Out[135]:
array(['!!!', 'BrkCmn', 'BrkFace', 'None', 'Stone'], dtype=object)
In [136]:
data_imp3[data_imp3=='!!!'].size
Out[136]:
```

2. Преобразование категориальных признаков в числовые

```
In [138]:
cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})
cat_enc
Out[138]:
           с1
   0 BrkFace
        None
   2 BrkFace
   3
        None
   4 BrkFace
1455
        None
1456
        Stone
1457
        None
1458
        None
1459
        None
1460 rows × 1 columns
```

2.1. Кодирование категорий целочисленными значениями - label encoding

```
In [139]:
from sklearn.preprocessing import LabelEncoder, OneHotEncoder

In [140]:
le = LabelEncoder()
cat_enc_le = le.fit_transform(cat_enc['c1'])

In [141]:
cat_enc['c1'].unique()

Out[141]:
array(['BrkFace', 'None', 'Stone', 'BrkCmn'], dtype=object)
```

```
In [142]:

np.unique(cat_enc_le)

Out[142]:
array([0, 1, 2, 3])

In [143]:

le.inverse_transform([0, 1, 2, 3])

Out[143]:
array(['BrkCmn', 'BrkFace', 'None', 'Stone'], dtype=object)

2.2. Кодирование категорий наборами бинарных значений - one-hot encoding
```

```
In [144]:
ohe = OneHotEncoder()
cat_enc_ohe = ohe.fit_transform(cat_enc[['c1']])
In [145]:
cat_enc.shape
Out[145]:
(1460, 1)
In [146]:
cat_enc_ohe.shape
Out[146]:
(1460, 4)
In [147]:
cat_enc_ohe
Out[147]:
<1460x4 sparse matrix of type '<class 'numpy.float64'>'
        with 1460 stored elements in Compressed Sparse Row format>
```

8

9

None

None

```
In [148]:
cat_enc_ohe.todense()[0:10]
Out[148]:
matrix([[0., 1., 0., 0.],
        [0., 0., 1., 0.],
        [0., 1., 0., 0.],
        [0., 0., 1., 0.],
        [0., 1., 0., 0.],
        [0., 0., 1., 0.],
        [0., 0., 0., 1.],
        [0., 0., 0., 1.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.]])
In [149]:
cat_enc.head(10)
Out[149]:
       с1
   BrkFace
1
     None
2
   BrkFace
     None
   BrkFace
4
5
     None
6
     Stone
7
     Stone
```

2.3. Pandas get_dummies - быстрый вариант one-hot кодирования

```
In [150]:
```

```
pd.get_dummies(cat_enc).head()
```

Out[150]:

	c1_BrkCmn	c1_BrkFace	c1_None	c1_Stone
0	0	1	0	0
1	0	0	1	0
2	0	1	0	0
3	0	0	1	0
4	0	1	0	0

In [151]:

```
pd.get_dummies(cat_temp_data, dummy_na=True).head()
```

Out[151]:

	MasVnrType_BrkCmn	MasVnrType_BrkFace	MasVnrType_None	MasVnrType_Stone	MasVnrTy
0	0	1	0	0	
1	0	0	1	0	
2	0	1	0	0	
3	0	0	1	0	
4	0	1	0	0	
4					•

3. Масштабирование данных

In [152]:

from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer

3.1. MinMax масштабирование

In [153]:

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['SalePrice']])
```

In [154]:

```
plt.hist(data['SalePrice'], 50)
plt.show()
```


In [155]:

```
plt.hist(sc1_data, 50)
plt.show()
```


3.2. Масштабирование данных на основе Z-оценки - StandardScaler

In [156]:

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['SalePrice']])
```

```
In [157]:
```

```
plt.hist(sc2_data, 50)
plt.show()
```


3.3. Нормализация данных

In [158]:

```
sc3 = Normalizer()
sc3_data = sc3.fit_transform(data[['SalePrice']])
```

In [159]:

```
plt.hist(sc3_data, 50)
plt.show()
```


In []: