Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling

Constraint-based Modeling for Scheduling Paint Shops in the **Automotive Supply Industry**

Felix Winter and Nysret Musliu Contact: winter@dbai.tuwien.ac.at Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling DBAI, TU Wien

Published in ACM Transactions on Intelligent Systems, March 2021

Problem Statement

Paint Shop Scheduling in the Automotive Supply Industry

- Large number of items are painted every day
- Great potential to minimize waste and setup times

Finding good schedules is challenging

- Many restrictions and parameters have to be considered
- ► Items need to be allocated on customized carrier devices

Goals

- Minimize color changes in production sequence
- Minimize number of required carrier device changes

Contribution

Two modeling approaches

- Direct Model
- Deterministic Finite Automata (DFA) Model

Experimental evaluation

- Benchmark instances based on real life scenarios
- Experiments with state of the art MIP and CP solvers
- We provide previously unknown optimal solutions for 7 instances

Complexity Analysis

We show that the decision variant is NP-complete

Paint Shop Scheduling in the Automotive Supply Industry

During production, a number of carrying devices will be inserted onto a circular system of conveyor belts which will then transport unpainted material pieces to the painting cabins.

	R1	R2	R3
1	\downarrow A1	$oxed{A2}$	C1
2	A1	$oxed{A2}$	$oxed{C2}$
3	A2	C1	C3
4	B1	B2	B1
5	B2	B3	B2

An example painting schedule for three rounds. Each column represents the scheduled carrier sequences scheduled within a single round.

Three carriers carrying painted items in different color and shape configurations.

	Feasible		Infea	sible	Optimal		
	R1	R2	R1	R2	R1	R2	
1	A	$\overline{\mathbf{C}}$	A	\mathbf{C}	A	\subset	
2	\mathbb{B}^{\int}	A	В	A	В	A	
3	$oxed{C}$	$^{\prime}$ B	$oxed{C}$	В	\mathbb{C}	В	

Three options to reuse carrier devices between two consecutive rounds that schedule three different carrier types.

Modeling the Paint Shop Scheduling Problem

Decision Variables

- $ightharpoonup x_{i,j}$: Carrier in round i at position j
- $ightharpoonup c_{i,j}$: Color used in round i at position j

Hard Constraints

- Due dates
- Forbidden carrier sequences
- Forbidden color sequences
- Min/Max consecutive carriers with same type
- Min/Max carriers per round
- Carrier availability

Sequence constraints can be modeled with DFAs:

DFA accepting only sequences that schedule carriers of type t at least b_t^{\min} times consecutively

Objective Function

- $ightharpoonup R = \{1, \ldots, n\}$: Rounds to schedule
- $ightharpoonup S = \{1, \dots, s\}$: Positions in each round
- $ightharpoonup sc_r, \forall r \in \{1, \ldots, n-1\}$: Number of carrier changes after each round
- $ightharpoonup cc_r, \forall r \in R$: Number of color changes in each round

minimize
$$\sum_{r \in \{0,...,n-1\}} sc_r^2 + \sum_{r \in R} cc_r^2$$

- ► Aim: Minimize the number of carrier changes (sc) and color change costs (cc).
- Squared sums of changes per round are used to encourage an even distribution of changes over the scheduling horizon.

Modeling Carrier Changes

We propose a modeling approach that introduces variables to store the positions of all reused carriers:

$$kept_{i,j}^1 \in \{0,\ldots,s\}, \forall i \in \{0,\ldots,r-1\}, j \in S$$

$$kept_{i,j}^2 \in \{0,\ldots,s\}, \forall i \in R, j \in S$$

Feasible				Infeas	ible	Optimal		
\overline{x}	$kept_{1,x}^1$	$kept_{2,x}^2$	\overline{x}	$kept_{1,x}^1$	$kept_{2,x}^2$	\overline{x}	$kept_{1,x}^1$	$kept_{2,}^2$
1	1	3	1	3	3	1	2	1
2	0	0	2	1	2	2	3	2
3	0	0	3	0	0	3	0	0

The tables show the $kept_{i,j}^1$, $kept_{i,j}^2$ variable values that correspond to the three options to reuse carriers between two consecutive rounds shown in the example above.

Complexity Analysis

Decision variant of the problem is **NP-complete**

- Can we find a schedule with costs $\leq k?$
- Proof via reduction from set covering
 - We create demands for each element in universe
 - Create a single carrier configuration for each set
 - Find schedule for a single round

Experimental Results & Conclusion

- Direct model did not produce competitive results compared to DFA based model
- ► The best results for instances 1–24 using MiniZinc with Chuffed, Gurobi and Cplex compared with the best known upper bounds produced by Local Search (LS).
- Best result are shown in bold face, a * denotes optimal solutions.
- Exact methods can solve small to medium sized instances.

	Chuffed	Gurobi	Cplex	LS		Chuffed	Gurobi	Cplex	LS
<u> </u>	775*	775*	776	930.9	l13	_			62816.5
12	842*	842*	842*	1015.5	I 14			_	91587.3
13	961*	961*	2761	971.6	I 15			_	136675.8
14	918*	967	12920	1100.8	I 16			_	180608.1
15	530*	530*	11085	551.7	I 17				297230.8
16	842*		1933	863.5	I 18				526878
17	844*	904		912.1	I 19			_	460643.5
18	1237*			1529.5	I 20			_	839361.1
19	975*			1406.3	l 21			_	841710.7
I 10	964			1029.9	122			_	1524201.9
l11				4471.5	I 23			_	1641116.1
I 12				4917.9	I 24				2542131.3