Example 1. If a > 1, then $\lim_{n \to \infty} \frac{1}{a^n} = 0$.

Solution.
$$\frac{1}{a^n} = \frac{1}{(1+(a-1))^n} \le \frac{1}{1+n(a-1)}$$

Exercise 1 (Squeeze theorem). If $n \in \mathbb{N}$, $a_n \leq c_n \leq b_n$.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = L \implies \lim_{n \to \infty} c_n = L$$

Theorem 1. If a_n is increasing and $\{a_n \mid n \in \mathbb{N}\}$ has an upper bound, then a_n converges.

Proof. $\{a_n \mid n \in \mathbb{N}\}$ has an upper bound $\implies \sup\{a_n \mid n \in \mathbb{N}\}$ exists.

For convenience, we denote $\sup\{a_n \mid n \in \mathbb{N}\}\$ by L.

 $\forall \varepsilon > 0, L - \varepsilon < L$, and hence $\exists N \in \mathbb{N} \ [\![L - \varepsilon < a_N]\!] (\implies L - \varepsilon$ is not an upper bound.)

$$\forall n \ge \mathbb{N} \left[L - \varepsilon < a_N \le a_n \le L < L + \varepsilon \right] \implies |a_n - L| < \varepsilon$$

Definition 1. A sequence of intervals I_n $(n \in \mathbb{N})$ is nested if $I_n \neq \emptyset$ and $I_{n+1} \subseteq I_n$ for all $n \in \mathbb{N}$.

Theorem 2 (Nested intervals theorem). If I_n $(n \in \mathbb{N})$ is a sequence of bounded closed nested intervals, then

$$\bigcap_{n\in\mathbb{N}}I_n\neq\varnothing$$

Proof. Write $I_n = [a_n, b_n] \ (n \in \mathbb{N})$

 I_n is nested $\iff a_n \leq b_n, a_n \nearrow \text{ and } b_n \searrow$

 $\forall n, m \in \mathbb{N} \quad a_n \le a_{\max(n,m)} \le b_{\max(n,m)} \le b_m$

In other words, for every $m \in \mathbb{N}$, b_m is an upper bound of $\{a_n \mid n \in \mathbb{N}\}$.

Let $c = \lim_{n \to \infty} a_n$. Then $a_n \le c \le b_m m$ for all $m \in \mathbb{N} \implies$

$$c \in \bigcap_{n \in \mathbb{N}} I_n$$

Exercise 2. What if

- 1. $I_n = (a_n, b_n)$, nested, but $a_n \nearrow \nearrow$ and $b_n \searrow \searrow$.
- 2. $I_n = (a_n, \infty)$, nested and $\{a_n \mid n \in \mathbb{N}\}$ is bounded from above.

Exercise 3. Prove the Dedekind gapless property using Archimedean property and the nested intervals theorem.

Definition 2. A sequence a_n $(n \in \mathbb{N})$ in \mathbb{R} is a Cauchy sequence if

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \ [n, m \ge \mathbb{N} \implies |a_n - a_m| < \varepsilon]$$

Obviously,

- a_n is convergent $\implies a_n$ is Cauchy sequence
- a_n is Cauchy sequence $\implies a_n$ is bounded

Definition 3. Let $a_n \ (n \in \mathbb{N})$ be a bounded sequence in \mathbb{R} .

$$u_n := \sup\{a_m \mid m \geq n\}, \, l_n := \inf\{a_m \mid m \geq n\}$$

 $\forall n \in \mathbb{N} \ [\![l_n \le a_n \le u_n]\!]$

$$\overline{\lim}_{n\to\infty} a_n := \lim_{n\to\infty} u_n, \ \underline{\lim}_{n\to\infty} a_n := \lim_{n\to\infty} l_n$$

Exercise 4. a_n converges $\iff \overline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n$, and if any of both sides holds, then $\lim_{n\to\infty} a_n = \overline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n$.

Theorem 3. Let $a_n \ (n \in \mathbb{N})$ be a sequence in \mathbb{R} .

 a_n is convergent $\iff a_n$ is a Cauchy sequence