Graph Neural Networks

Graph Convolutional Layers

Dr. Alireza Aghamohammadi

GCN Layer Variations

♦ Basic GCN Layer: The layer aggregates information from neighbors and combines it with the current node representation using a simple summation:

$$H_{k+1} = a \left[\beta_k \mathbf{1}^T + \Omega_k H_k (A+I) \right]$$

where:

- $lue{}$ H_k : Node embeddings at layer k
- \Box A: Adjacency matrix
- \Box *I*: Identity matrix
- \square β_k, Ω_k : Learnable parameters
- \square $a(\cdot)$: Activation function
- **Diagonal Enhancement:** The current node embedding is weighted by a factor $(1 + \epsilon_k)$, where ϵ_k is a learned scalar:

$$H_{k+1} = a \left[\beta_k \mathbf{1}^T + \Omega_k H_k (A + (1 + \epsilon_k)I) \right]$$

Linear Transformation of Current Node: Applies a distinct linear transform Γ_k to the current node representation:

$$H_{k+1} = a \left[\beta_k \mathbf{1}^T + \Omega_k H_k A + \Gamma_k H_k \right]$$

Alternative Aggregation Methods

❖ Residual Connections: The aggregated neighbor representation is transformed and combined with the current node embedding, often using concatenation:

$$H_{k+1} = \begin{bmatrix} a \left[\beta_k \mathbf{1}^T + \Omega_k H_k A \right] \\ H_k \end{bmatrix}$$

* Average Aggregation: Instead of summing neighbor embeddings, take their average:

$$H_{k+1} = a \left[\beta_k \mathbf{1}^T + \Omega_k H_k (AD^{-1} + I) \right]$$

where:

- \Box D: Diagonal degree matrix (D_{ii} is the number of neighbors for node i)
- Kipf Normalization: Normalizes the sum of neighbor embeddings to down-weight nodes with many neighbors:

$$\operatorname{agg}\left[n\right] = \sum_{m \in \operatorname{ne}\left[n\right]} \frac{h_m}{\sqrt{\left|\operatorname{ne}\left[n\right]\right| \left|\operatorname{ne}\left[m\right]\right|}}$$

In matrix form:

$$H_{k+1} = a \left[\beta_k \mathbf{1}^T + \Omega_k H_k (D^{-1/2} A D^{-1/2} + I) \right]$$

Max Pooling Aggregation

❖ Max Pooling: Aggregates the embeddings of neighbors by taking the element-wise maximum:

$$\mathsf{agg}\left[n\right] = \max_{m \in \mathsf{ne}[n]} \left[h_m\right]$$

where $\max[\bullet]$ denotes the element-wise maximum of neighbor embeddings h_m .