NOTICE:

. IT IS INFORMED TO ALL THE STUDENTS THAT TIME TABLE FOR THE CONSECUTIVE TESTS WOULD BE UPLOADED EVERY WEEK.

.WE KINDLY REQUEST ALL THE STUDENTS TO ENGAGE ONTO THE ONLINE TEST AT 9:00 AM (Morning).

.PLEASE SPREAD THE FOLLOWING MESSAGE TO ALL OF YOUR FELLOW MATES THANK YOU .

In insulators (C.B. is conduction band and V.B. is valence band)

1) V.B. is partially 2) C.B. is partially 3) C.B. is empty and V.B. 4) C.B. is filled with electrons is filled with electrons electrons and V.B. is empty

ANSWER

Band gap is nearly 6 eV and electrons are completely filled in V.B and where as C.B is empty

Q2

The threshold frequency for a certain photosensitive metal is v_0 . When it is illuminated by light of frequency $v=2v_0$, the maximum velocity of photoelectrons is v_0 . What will be the maximum velocity of the photoelectrons when the same metal is illuminated by light frequency $v=5v_0$

1)
$$\sqrt{2}v_0$$
 2) $2v_0$ 3) $2\sqrt{2}v_0$ 4) $4v_0$

ANSWER

$$egin{aligned} &rac{1}{2}mV_0^2 = h\left(2v_0
ight) - hv_0 \ &rac{1}{2}mV_0^2 = hv_0
ightarrow (1) \ &rac{1}{2}mV_2^2 = h\left(5v_0
ight) - hv_0 \ &rac{1}{2}mV_2^2 = 4hv_0
ightarrow (2) \ &(1) \ \& \ (2) \ \Rightarrow rac{V_2^2}{V_0^2} = 4 \Rightarrow V_2 = 2v_0 \end{aligned}$$

Q3

In a n-type semiconductor, which of the following statement is true

- a) holes are majority carriers and trivalent atoms are dopants
- b) electrons are majority carriers and trivalent atoms are dopants
- c) electrons are minority carriers and pentavalent atoms are dopants
- d) holes are minority carriers and pentavalent atoms are dopants

ANSWER

d) holes one minority covinces & pentavalent atoms one departs

The given graph represents V-I characteristic for a semiconductor device. Which of the following statements is correct?

1) It is for a 2) It is for a solar cell and photodiode and points A and B represent open circuit voltage and current, respectively.

3) It is for a LED 4) It is V-I and points A and characteristic for solar cell where, point A represents open circuit voltage and short circuit open circuit voltage current, respectively.

ANSWER

It is a V-I characteristics ties of solar cell where point A represents open circuit voltage and point B short circuit current.

Q5.

Let K_1 be the maximum kinetic energy of photoelectrons emitted by light of wavelength λ_1 and K_2 corresponding to wavelength λ_2 . If $\lambda_1 = 2\lambda_2$. then.

1)
$$2K_1 = K_2$$
 2) $K_2 > K_1$ 3) $K_1 < \frac{K_2}{2}$ 4) $K_1 > 2K_2$

$$K = rac{hc}{\lambda} - \phi$$
 $K_1 = rac{hc}{\lambda_1} - \phi
ightarrow (1)$
 $K_2 = rac{hc}{\lambda_2} - \phi
ightarrow (2)$ & $\lambda_1 = 2\lambda_2$
 $K_2 = rac{2hc}{\lambda_1} - \phi$
 $K_2 = K_1 + rac{hc}{\lambda_1}$
 $2K_1 = rac{2hc}{\lambda_1} - 2\phi$
 $K_2 = rac{2hc}{\lambda_1} - \phi$
 $K_2 = 2K_1 + \phi$

The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. The peak value of electric field strength is:

1) 3V/m 2) 6V/m 3) 9V/m 4) 12 V/m

ANSWER

Speed of electromagnetic wave $c=3\times 10^8 {
m m/s}$ peak value of magnetic field $B_0=20\times 10^{-9} T$ $E_0=cB_0=3\times 10^8 {
m m/s}\times 20\times 10^{-9} T=6 {
m V/m}$

Q7

A doped semiconductor is

1) Positively charged 2) Negatively charged 3) electrically neutral 4) may be positive or negative

ANSWER

Always, any doped semiconductor is electrically neutral

Q8

Three semi-conductors are arranged in the increasing order of their energy gap as follows. The correct arrangement is

1) Tellurium, 2) Tellurium, silicon, 3) Silicon, germanium, 4) Silicon, tellurium, germanium, silicon germanium tellurium germanium

ANSWER

The correct order of band gap is

$$T_e > G_e > Si$$

Q9

For the given combination of gates, if the logic states of inputs A, B, C are as follows A = B = C = 0 and A = B = 1, C = 0 then the logic states of output D are:

ANSWER

The output D for the given combination

$$D = \overline{(A+B). \ C} = \overline{(A+B) + \bar{C}}$$
 If A = B = C = 0 then $D = \overline{(0+0)} + \bar{0} = \bar{0} + \bar{0} = 1 + 1 = 1$ If A = B = 1, C = 0 then $D = \overline{(1+1)} + \bar{0} = \bar{1} + \bar{0} = 0 + 1 = 1$

When the wavelength of the incident photon is decreased then:

1) Velocity of emitted

photo-electron decreases

2) Velocity of emitted photoelectron increases

Velocity of photoelectron do not Photo electric current increases

charge

ANSWER

With decrease in wavelength of incident photons, energy of photoelectrons increases. Q11

An N-type silicon of width 4×10^{-3} m, thickness and length 6×10^{-2} m carries a current of 4.8 mA, when the voltage is applied across the length of the sample. The free electron density is $10^{22} m^{-3}$

1) The current density is 20 A / m

The drift speed is 1.25 cm/sec

3) The time taken by electrons to travel the full length of the sample is 4.8 sec

4) All options

are correct

ANSWER

1)
$$J = \frac{I}{A} = \frac{4.8 \times 10^{-3}}{wt} = \frac{4.8 \times 10^{-3}}{4 \times 10^{-3} \times 6 \times 10^{-2}}$$

$$=20 A/m^2$$

2)
$$V_d = \frac{J}{ne} = \frac{20}{10^{22} \times 1.6 \times 10^{-19}}$$

$$=1.25 \, cm/\sec$$

3)
$$time(t) = \frac{l}{V_d} = \frac{6 \times 10^{-2}}{1.25 \times 10^{-2}}$$

$$=4.8 \text{ sec}$$

Q12

Light waves travel in vaccum along the y-axis which of the following may represent the wavefront

1) x=constant 2) y=constant 3) z=constant 4) x+y+z=constant

ANSWER

Light waves travel in vaccum along the y-axis y = constant represent the wave front.

Which of the following best represents the I-V characteristics of a solar cell? (I on y axis, V on x-axis)

ANSWER

I-V characteristics of a solar cell is represented by the 3rd option given in the circuit.

O14

A pure Ge crystal has $3.0 \times 10^{28} \ atoms/m^3$. It is doped by 1 part per 10 million concentration of trivalent Ga. The number density of electrons is: (given n_i =1.5 × $10^{16}/m^3$)

1)
$$3.0 \times 10^{21}/m^3$$
 2) $7.5 \times 10^{10}/m^3$ 3) $3.0 \times 10^{35}/m^3$ 4) $1.5 \times 10^9/m^3$

ANSWER

Pure Ge has
$$3 \times 10^{28}$$
 atoms $/m^3$; $n_i = 1.5 \times 10^{16}/m^3$ doped Ga $-10PPM = 10 \times 10^6 = 10^7$
 \therefore No of holes is $n_h = \frac{3 \times 10^{28}}{10 \times 10^6} = 3 \times 10^{21}$
No of electrons, $n_e = \frac{n_i^2}{n_h} = \frac{(1.5 \times 10^{16})}{3 \times 10^{21}} = 7.5 \times 10^{10}/m^3$

Q15

The wavelength of an electron of energy 10keV will be

1)
$$0.12\,A^0$$
 2) $1.2\,A^0$ 3) $12\,A^0$ 4) $120\,A^0$

$$\lambda = \frac{12.27}{\sqrt{v}}$$

$$\lambda = \frac{12.27}{\sqrt{10 \times 10^3}}$$

$$\lambda = 0.12 A^0$$

If the work function of a metal is Φ and the frequency of the incident light is v, there is no emission of photoelectrons if:

1)
$$\nu < \frac{\phi}{h}$$
 2) $\nu = \frac{\phi}{h}$ 3) $\nu > \frac{\phi}{h}$ 4) $\nu > = < \frac{\phi}{h}$

ANSWER

For no emission of photoelectron, energy of incident light < Work function $\Rightarrow h\nu < \phi \Rightarrow \nu < \frac{\phi}{h}$

Q17

A lamp emits monochromatic green light uniformly in all directions. The lamp is converting electrical power to electromagnetic waves and consumes 100 W of power. The amplitude of the electric field associated with the electromagnetic radiation at a distance of 5 m from the lamp will be:

ANSWER

$$I = rac{Power}{Area} = rac{1}{2} arepsilon E^2 C$$

$$E = \sqrt{rac{2.P}{4\pi r^2 arepsilon_0 C}}$$

Q18

The given figure shows the wave forms for two inputs A and B and that for the output Y of logic circuit. The logic circuit is

1) AND gate 2) OR gate 3) NAND gate 4) NOT gate

ANSWER

The wave forms for two inputs A and B used to a logic gate, the out put of logic circuit given in the diagram reveals that, this gate is an AND gate

In the given figure, which of the diodes are forward biased

ANSWER

From the given figures

high potential to low potential is highly forward biased.

... B, D, E are forward biased.

Q20

The figure gives a system of logic gates. From the study of truth tables, it can be found that to produce a high output (1) at R, we must have:

ANSWER

By choosing elemination method, If x=1,y-0 then out put is '1'.

Q21

The cathode of a photoelectric cell is changed such that the work function changes from $W_1 to W_2$ $(W_2 > W_1)$. If the current before and after change are I_1 and I_2 , all other conditions remaining unchanged, then: (assuming $h\nu > W_2$)

1)
$$I_1 = I_2$$
 2) $I_1 < I_2$ 3) $I_1 > I_2$ 4) $I_1 < I_2 < 2I_1$

ANSWER

The work function has no effect on current so long as $h\nu > W_0$. The photoelectric current is proportional to the intensity of light. Since there is no change in the intensity of light, therefore $I_1 = I_2$.

de-Broglie wavelength of a body of mass m and kinetic energy E is given by

1)
$$\lambda=\frac{h}{mE}$$
 2) $\lambda=\frac{\sqrt{2mE}}{h}$ 3) $\lambda=\frac{h}{2mE}$ 4) $\lambda=\frac{h}{\sqrt{2mE}}$

ANSWER

$$\lambda = rac{h}{p} = rac{h}{\sqrt{2MK \cdot E}}$$
 $K \cdot E = rac{p^2}{2m}$
 $p = \sqrt{2mKE}$

Q23

A parallel plate capacitor is connected to a battery and is getting charged. During the charging process, at any instant of time, the current in the wire connected to battery positive is I_1 , the current in the wire connected to battery negative is I_2 and the displacement current between the plates of the capacitor is I_d . Which of the following is the correct relation between the currents?

1)
$$I_1 = I_d = I_2$$
 2) $I_1 = I_d + I_2$ 3) $I_1 = I_d - I_2$ 4) $I_1 + I_d + I_2 = 0$

ANSWER

$$I_{c} = \frac{d\phi}{dt}$$

$$I_{d} = \varepsilon_{0} \frac{d}{dt} (\vec{E} \cdot \vec{A})$$

$$= \varepsilon_{0} \frac{d}{dt} \left(\frac{\sigma}{\varepsilon_{0}} \cdot A \right)$$

$$= \frac{dQ}{dt}$$

$$\Rightarrow I_{d} = I_{c} \quad \therefore I_{1} = I_{d} = I_{2}$$

Q24

) Band gap in insulator is of the order

ANSWER

The band gap in insulator is of order of nearly 6eV

A photon in motion has a mass:

1)
$$c/h\nu$$
 2) h/ν 3) $h\nu$ 4) $h\nu/c^2$

ANSWER

$$E = h\nu = mc^2 \Rightarrow m = \frac{h\nu}{c^2}$$

Q26

The average wavelength of de-Broglie wave associated with a thermal neutron of mass m at absolute temperature T is given by (here k is the Boltzmann constant):

1)
$$\frac{h}{\sqrt{mkT}}$$
 2) $\frac{h}{\sqrt{2mkT}}$ 3) $\frac{h}{\sqrt{3mkT}}$ 4) $\frac{h}{2\sqrt{mkT}}$

ANSWER

$$\lambda = \frac{h}{\sqrt{2mE}}
ightarrow (1)$$
 $E = \frac{3}{2}kT
ightarrow (2)$
 $\lambda = \frac{h}{\sqrt{2m\frac{3}{2}kT}}$
 $\lambda = \frac{h}{\sqrt{3mkT}}$

Q27

When forward bias is applied to a P-N junction, what happens to the potential barrier V_B , and the width of charge depleted region x?

1) V_B increases, x

2) V_B decreases, x

3) V_B increases, x

4) V_B decreases, x

decreases

increases

increases

decreases

ANSWER

In forward biasing both V_B and x decreases.

Q28

Which of the following figure represents the variation of particle momentum and the associated de-Broglie wavelength?

ANSWER

Q29

The gate represented by the block diagram is:

ANSWER

In the given diagram, the logoic gate must be 'NOR' gate.

Q30

Match List I (Wavelength range of electromagnetic spectrum) with List II. (Method of production of these waves).

List-I	List-II
(a) 700 nm	(i) Vibration of atoms
to 1 mm	and molecules
(b) 1 nm to	(ii) Inner shell electrons
400 nm	in atoms moving from
	one energy level
	to a lower level
(c) < 10 ⁻³ nm	(iii) Radioactive decay
	of the nucleus
(d) 1 mm to 0.1 m	(iv) Magnetron value

ANSWER

700 nm to 1 mm - Vibration of atoms and molecules

1 nm to 400 nm - Inner shell e^- in atoms moving from one energy level to a lower level $< 10^{-3} \, nm$ - Radioactive decay of the nucleus

1 mm to 0.1 m - Magnetron value.

Q31

When light falls on semiconductors, their resistance

1) Decreases 2) Increases 3) Does not change 4) Can't be predicted

ANSWER

When light fall on semiconductor, number of charge carriers increases, hence resistance decreases.

Q32

Current in the circuit will be:

1)
$$\frac{5}{40}A$$
 2) $\frac{5}{50}A$ 3) $\frac{5}{10}A$ 4) $\frac{5}{20}A$

ANSWER

The diode in lower branch is forward biased and diode in upper branch is reverse biased

$$\therefore i = \frac{5}{20 + 30} = \frac{5}{50}A$$

Q33

If 5% of the energy supplied to a bulb is irradiated as visible light, how many quanta are emitted per second by a 100 W lamp? Assume wavelength of visible light is 5.6×10^{-5} cm

1)
$$1.4 \times 10^{19}$$
 2) 3×10^{3} 3) 1.4×10^{-19} 4) 3×10^{4}

5% power =
$$\left(\frac{n}{t}\right) \frac{hc}{\lambda}$$

 $\frac{5}{100} \times 100 = \left(\frac{n}{t}\right) \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{5.6 \times 10^{-7}}$
 $\frac{n}{t} = \frac{5 \times 5.6 \times 10^{19}}{20}$
= 1.4×10^{19}

The realtime variation of input signal A and B are as shown. If the inputs are fed into a NAND gate, then select the output signal from the following:

ANSWER

For the NAND gate, the output waveform obeying its truth table. Hence the corresponding choice is '2'.

Q35

The de-Broglie wavelength of an electron moving with a velocity c/2 (c = velocity of light in vacuum) is equal to the wavelength of a photon. The ratio of the kinetic energies of electrons and photon is

ANSWER

The de-Brogile wavelength,
$$\lambda=\frac{h}{mv}$$
 Here $\lambda=\frac{h}{m_e\frac{c}{2}}$ and $\lambda_p=\frac{h}{m_pc}$ Given, $\lambda_e=\lambda_p$

Given,
$$\lambda_e = \lambda_p$$

So, $\frac{h}{m_e \frac{c}{2}} = \frac{h}{m_p c} \Rightarrow \frac{\mu_{\varepsilon}}{\mu_{\pi}} = 2$

Ratio of KE
$$rac{k_e}{k_p}=rac{rac{1}{2}m_ev_e^2}{rac{1}{2}m_pv_p^2}=rac{2mpc^2}{4mpc^2}=rac{1}{2}$$

Q36

Instantaneous displacement current of 1 A in the space between the parallel plates of a 1 μ F capacitor can be established by changing the potential difference of:

1)
$$10^{-6}V/s$$
 2) $10^{6}V/s$ 3) $10^{-8}V/s$ 4) $10^{8}V/s$

ANSWER

$$\Rightarrow rac{V}{t} = rac{i}{C} = rac{1}{10^{-6}} = 10^6 V/s$$

Q37

A parallel plate capacitor consists of two circular plates each of radius 12 cm and separated by 5.0 mm. The capacitor is being charged by external source. The charging current is constant and is equal to 0.15 A. The rate of change of potential difference between the plates will be:

1)
$$1.873 \times 10^{7} V/s$$
 2) $1.873 \times 10^{8} V/s$ 3) $1.873 \times 10^{9} V/s$ 4) $1.873 \times 10^{10} V/s$

ANSWER

$$egin{aligned} rac{dv}{dt} &= rac{1}{C} = rac{Id}{Aarepsilon_0} \ &= rac{0.15 imes 5 imes 10^{-3}}{3.14 imes 144 imes 10^{-4} imes 8.85 imes 10^{-12}} \ &= rac{7.5}{4} imes 10^9 \ &= 1.87 imes 10^9 \ V/s \end{aligned}$$

Q38

The ozone layer absorbs:

1) Infrared radiations 2) ultraviolet radiations 3) X-rays 4) γ -rays

ANSWER

Ozone layer absorbs ultraviolet radiations.

Q39

Which of the following is incorrect?

1) In solar cell, 2) Zener diode used as 3) For Si diode minimum 4) p – type, n – type and diode operated voltage regulator in reverse required forward voltage so p – N junction diodes all in forward bias bias under breakdown that current can flow is 0.7 are electrically neutral region V

ANSWER

The correct option is (1) because solar cell is operated not in any bias means unbiased.

Q40

The frequencies of X-rays, $\gamma - rays$ and ultraviolet rays are respectively a, b and c. Then:

1)
$$a < b, b > c$$
 2) $a > b, b > c$ 3) $a > b, b < c$ 4) $a < b, b < c$

ANSWER

$$u_{\gamma-rays} >
u_{X-rays} >
u_{UV-rays}$$

Q41

A Germanium specimen is doped with Aluminium. The concentration of acceptor atoms is $\sim 10^{21} \text{ /m}^3$. Given that the intrinsic concentration of electron hole pairs is $\sim 10^{19} \text{ /m}^3$. The concentration of electrons in the specimen is

- a) $10^{17}/\text{m}^3$
- b) $10^{15}/\text{m}^3$
- c) $10^4/\text{m}^3$
- d) $10^2/m^3$

ANSWER

a)
$$10^{17}/m^{3}$$
 $n_{1}^{2} = n_{e} n_{h}$
 $\Rightarrow (10^{17})^{2} = n_{e} (10^{21})$
 $\Rightarrow n_{e} = 10^{17}$

Q42

A semiconductor X is made by doping a germanium crystal with arsenic (Z=33). A second semiconductor Y is made by doping germanium with indium (Z=49).

The two are joined end to end and connected to a battery as shown. Which of the following statements is correct

- a) X is P-type, Y is N-type and the junction is forward biased
- b) X is N-type, Y is P-type and the junction is forward biased
- c) X is P-type, Y is N-type and the junction is reverse biased
- d) X is N-type, Y is P-type and the junction is reverse biased

ANSWER

d) X is N-type, Y is P-type and the junction is Heverse biased.

Two PN junctions can be connected in series by three different methods as shown in the figure. If the potential difference in the junctions is the same, then the correct connections will be

- a) In the circuit (1) and (2)
- b) In the circuit (2) and (3)
- c) In the circuit (1) and (3)
- d) Only in the circuit (1)

ANSWER

b) In the circuit (2) and (3)

Q44

The current through an ideal p-n junction diode shown in the figure is

- a) 20mA
- b) 10mA
- c) 0mA
- d) 50mA

a)
$$20 \text{ mA}$$
 $3 \text{ inde is forward biased}$.

$$i I = \frac{V}{K} = \frac{2}{100} = \frac{20 \text{ mA}}{100}$$

In the given figure, which of the diodes are forward biased

Each polypeptide in a protein has amino acids liked with each other in a specific sequence. This sequence of amino acids is said to be

1) Primary structure of

2) Secondary structure

3) Tertiary structure of

4) Quaternary structure

proteins

of proteins

proteins

of proteins

ANSWER

The arrangement of the sequence of amino acids linked to each other through peptide bonds is called the primary structure of a protein polymeric chain. This structure is unaffected even after denaturation of the protein.

O47

Which one given below is a non-reducing sugar?

1) Sucrose 2) Maltose 3) Lactose 4) Glucose

ANSWER

Reducing groups of glucose and fructose are involved in glycosidic linkage.

Q48

The vitamin which plays an important role in coagulating blood is

1) vitamin E 2) vitamin K 3) vitamin B_6 4) vitamin B_{12}

ANSWER

Deficiency of vitamin K causes

increases blood clotting time.

Q49

x = 2

 $0.7 \text{ g of } Na_2CO_3$. $x H_2O$ is dissolved in 100 ml, 20 ml of which required 19.8 ml of 0.1 N HCl. The value of x is

1) 4 2) 3 3) 2 4) 1

$$N = rac{0.7}{\left(rac{1.6+x.18}{2}
ight)} imes rac{1000}{100}$$
 $N = rac{14}{106+18x}$ $N_1V_1 = N_2V_2$ $rac{14}{106+18x} imes 20 = 0.1 imes 19.8$

Number of stereo centers present in linear and cyclic structures of glucose are respectively:

4) 5 & 5

ANSWER

Ans: 2

Q51

A sample of a hydrate of barium chloride weighing 61 g was heated until all the water of hydration is removed. The dried sample weighed 52 g. The formula of the hydrated salt is: (atomic mass, Ba=137 amu, Cl=35.5 amu)

1)
$$BaCl_2$$
.

2)
$$BaCl_2 \cdot 2H_2C$$

1)
$$BaCl_2 \cdot H_2O$$
 2) $BaCl_2 \cdot 2H_2O$ 3) $BaCl_2 \cdot 3H_2O$ 4) $BaCl_2 \cdot 4H_2O$

4)
$$BaCl_2 \cdot 4H_2C$$

ANSWER

The chemical equation for heating of hydrated barium chloride is

$$BaCl_2. xH_2O \rightarrow BaCl_2 + xH_2O$$

weight of water removed = 61 - 52=9 gr

$$nH_2O = \frac{9}{18} = \frac{1}{2}$$

Molecular weight of $BaCl_2 = 208$

$$nBaCl_2 = \frac{52}{208} = \frac{1}{4}$$

simplest formula : $\frac{1}{4}$: $\frac{1}{2}$ = 1 : 2

 $BaCl_2.2H_2O$

Q52

Choose the correct statement from the following

1) All amino acids

2) All naturally occurring amino acids are optically

3) At pH = 0 all

4) In strongly basic solutions, all amino acids

have common isoelectric point

active except glycine

amino acids are present as their

anions

are present as their cations

ANSWER

Except glycine all amino acids are optically active.

The harmone that helps in the conversion of glucose to glycogen is

1) Adrenaline 2) Insulin 3) Cortisone 4) Bile acids

ANSWER

Insulin is a hormones secreted by the pancreas that lower blood glucose level by promoting the uptake of glucose by cells and the conversion of glucose to glycogen by the liver and skeletal muscle.

Q54

Which of the following proteins acts as a messenger in living system?

1) Harmone 2) Enzyme 3) Protective protein 4) Transport protein

ANSWER

Harmones are chemical messengers that are directly into blood from endocrine or ductless glands. Blood carries them into organs and tissues to carry out specific functions.

Q55

The sequence in which the α -amino acids are linked to one another in a protein molecule is called its

1) Primary structure 2) secondary structure 3) Tertiary structure 4) guaternary structure

ANSWER

The primary structure of a protein the arrangement of linear sequence of amino acids that makes up a protein.

Q56

Trans-form of polyisoprene is

1) Guttapercha 2) Hydrochloride rubber 3) Buna-N 4) Synthetic rubber

ANSWER

Guttapercha rubber is very hard horny material consisting of trans 1, 4 - polyisoprene polymer

Q57

Complete hydrolysis of cellulose gives

1) α -D-fructose 2) α - D-ribose 3) β -D-glucose 4) L-glucose

ANSWER

 β -D-glucose is the monomer of cellulose.

The monomer of Nylon-6 is/are

1)HO-CH₂-CH₂-OH+HOOC COOH 2)
$$C=O$$
 3) $F_2C = CF_2$ 4) $H_2C = CH_2$

ANSWER

The monomer used in the preparation of Nylon-6 is caprolactam.
$$\begin{array}{c} C = O \\ NH^{+}H_2O \longrightarrow HOOC - (CH_2)_5 - NH_2 + HNOO \\ \longrightarrow HOOC - (CH_2)_5 - HN - CO - (CH_2)_5 - NH_2 \\ \begin{bmatrix} O & H \\ -C - (CH_2)_5 - N - \\ Nylon-6 \end{bmatrix}_n \end{array}$$

Q59

Which of the following statements is not true about sucrose?

- The Glycosidic linkage is present between C₁ of α-Glucose and C₁ of β-fructose.
- It is also named as invert sugar
- It is a non reducing sugar
- 4) On hydrolysis, it produces glucose and fructose

ANSWER

Ans: 1,Glycosidic linkage is between C1 of α-Glucose and C2 of β-fructose.

Q60

In the titration of a certain H_2 SO₄ solution,60 mL of 5.0 M NaOH solution was used to completely neutralize 75 ml of the acid. The molarity of the acid solution may be expressed as:

1)
$$\frac{5M \times 50mL}{2 \times 75mL}$$
 2) $\frac{5M \times 75mL \times 2}{60 mL}$ 3) $\frac{75mL \times 2}{5.0M \times 60 mL}$ 4) $\frac{60 ml \times 75mL \times 2}{5.0M}$

From Question data; NaOH (vs)
$$H_2SO_4$$
 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$ $\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$ $M_1 = \text{NaOH molarity} = 5\text{M}$ $M_2 = H_2SO_4$ molarity $V_1 = \text{NaOH volume} = 60 \text{ ml}$ $V_2 = H_2SO_4$ volume $= 75$ $n_1 = \text{mole number of NaOH} = 2$ $n_2 = \text{mole number of } H_2SO_4 = 1$ $\Rightarrow \frac{5\times 60}{2} = \frac{75\times M_2}{1}$ $M_2 = \frac{2\times 75}{5\times 60}$

Starch is composed of two polysaccharides namely

1) Amylopectin and

2) Amylose and

3) Amylose and

4) Amylose, amylopectin and

glycogen

glycogen

amylopectin

glycogen

ANSWER

Natural starch is composed of about 10 - 20% amylose and 90 - 80% of amylopectin

Q62

The secondary structure of a protein refers to

1) \propto -helical

2) hydrophobic

3) sequence of α –

4) Fixed configuration of the

back bone

interactions

amino acids

polypeptide back bone

ANSWER

Secondary structures of proteins involve α - helical back-bonding and β -sheet structures. These are formed as a result of hydrogen bonding between different peptide groups.

(or)

The secondary structure is the three dimensional form of small areas of a protein. They are commonly helixes formed by peptide bond formation involving α -amino acids.

Q63

In elastomer, intermolecular forces are:

1) Nil 2) Weak 3) Strong 4) Very strong

ANSWER

Elastomer are having weak intermolecular forces.

Q64

Intermolecular forces are strongest in

1) rubber 2) Orlon 3) polypropylene 4) Nylon 6

ANSWER

Nylon-6 is polyamide and it belongs to Fibre. So, inter molecular forces are strong. Q65

74.5 g of a metallic chloride contains 35.5 g of chlorine. The equivalent weight of the metal is

1) 19.5 2) 35.5 3) 39.0 4) 78.0

eq.wt of metal=
$$\frac{wt. \ of \ metal}{wt. \ of \ chloride} imes 35.5$$

wt. of metal chloride=74.5

wt of chlorine=35.5

wt. of metal=39,
$$(74.5 - 35.5 = 39)$$

eq.wt of metal=
$$\frac{39}{35.5} \times 35.5 = 39$$

Q66

A codon has a sequence of A and specifies a particular B that is to be incorporated into a C. What are?

 \underline{A} , \underline{B} , C

1) A - 3 bases B - Amino

2) A - 3 acids B -

3) A - 3 bases B -

4) A - 3 bases B -

acid C - Carbohydrate

Carbohydrate C -

Protein C - Amino

Amino acid C -

Protein acid

Protein

ANSWER

Codon has sequence of 3 bases + aminoacid + protein

3 DNA or RNA bases + Amino acid derivative + protein

Q67

Terylene is the polymer of

1) Ethylene glycol and

2) Melamine and

3) Vinyl chloride and

4) Hexamethylene diamine

terephthalic acid

formaldehyde

formaldehyde

and adipic acid

ANSWER

Terylene is the polymer of

Q68

The enzyme which hydrolyses triglycerides to fatty acids and glycerol is called

1) maltose

2) zymase 3) lipase 4) pepsin

ANSWER

Fats and oils are important constituents of diet and are collectively called lipids. The termination ase is used to indicate an enzyme catalyst causing break down of lipids. Glycerides are esters which are hydrolyzed to acid and glycerol by a lipase.

Q69

PVC is used for

1) Manufacture of

2) Manufacture of

3) Manufacture of nonstick 4) Manufacture of plastic

cosmetics

tyres

pans

pipes

ANSWER

PVC is polyvinyl chloride, which is used in manufacture of plastic pipes

The term anomers of glucose refers to

- 1) Isomers of glucose that differ in configurations at carbons one and four (C-1 and C-4)
- A mixture of (D)-glucose and (L)-glucose
- 3) Enantiomers of glucose
- 4) Isomers of glucose that differ in configuration at carbon one (C-1)

ANSWER

Ans : 4.

Q71

Chargaff's rule states that in an organism

1) 2) Amount of adenine (A) is 3) Amount of adenine (A) is 4) Amount of adenine (A) is equal to that of thymine (T) Amounts equal to that of guanine (G) equal to that of cytosine (C) of all and the amount of guanine and the amount of thymine and the amount of thymine bases are (G) is equal to that of (T) is equal to that of cytosine (T) is equal to guanine (G) equal cytosine (C)

ANSWER

According to Chargaff's rule amount of adenine(A) is equal to that of thymin(T) and the amount of guanine(G) is equal to that of cytosine(C).

Q72

Volume of 0.6 M NaOH required to neutralize 30 cm3 of 0.4 M HCl is

$$1)\ 30\ cm^3 \quad 2)\ 20\ cm^3 \quad 3)\ 50\ cm^3 \quad 4)\ 45\ cm^3$$

ANSWER

NaOH HCl

$$N_1V_1 = N_2V_2$$
; $0.6 \times V_1 = 0.4 \times 30$; $V_1 = 20ml$

Q73

RNA and DNA are chiral molecules, their chirality is due to

1) D-sugar component 2) L-sugar component 3) chiral bases 4) chiral phosphate ester unit

ANSWER

DNA has a phosphate unit, a sugar unit called deoxyribose and four nitrogenous bases. It is sugar component that brings chirality to the DNA species.

O74

A carbohydrate which can not be hydrolysed to simpler compounds is called

1) Monosaccharides 2) Disaccharide 3) Polysaccharide 4) Oligosaccharide

ANSWER

Monosaccharides are the simplest sugars which cannot be hydrolysed further.

Which of the following is a carbohydrate

1) Leucine 2) Albumin 3) Inulin 4) Maltase

ANSWER

Inulin is a carbohydrate which is stored in "Roots of Dahliya".

Q76

Vegetable oils like wheat germ oil, sunflower oil, etc, are the good source of

1) Vitamin K 2) Vitamin E 3) Vitamin D 4) Vitamin A

ANSWER

Wheat germ oil is an oil obtained from the germ of wheat kernel. It is rich in vitamin E.

Q77

Glucose will show mutarotation when solvent is

1) Acidic 2) Basic 3) Neutral 4) Amphoteric

ANSWER

In neutral solvent, glucose shows mutarotation.

Q78

Which of the following is not a polyamide?

1) Nylon-66 2) Protein 3) Glyptal 4) Nylon-6

ANSWER

Glyptal is an alkyd resin of ethylene glycol $(HO - CH_2 - CH_2 - OH)$ and phthalic acid, it is polyester

O79

During the process of digestion, the proteins present in food materials are hydrolysed to amino acids. The two enzymes involved in the process are

1) invertase and zymase 2) amylase and maltase 3) diastase and lipase 4) pepsin and trypsin ANSWER

$$\begin{array}{ccc} \operatorname{proteins} & \stackrel{enzyme(A)}{\longrightarrow} & \operatorname{polypeptide} & \stackrel{enzyme(B)}{\longrightarrow} & \operatorname{amino\ acids} \\ \operatorname{proteins} & \stackrel{pep\sin}{\longrightarrow} & \operatorname{polypeptide} & \\ \operatorname{polypeptide} & \stackrel{tryp\sin}{\longrightarrow} & \operatorname{aminoacids} & \end{array}$$

The equivalent weight of $K_4[Fe(CN)_6]$ in the given reaction is :

$$K_4[Fe(CN)_6] \stackrel{ ext{[O]}}{\longrightarrow} Fe^{3+} + \ NO_3^- + \ CO_2$$

ANSWER

Equivalent weight of $K_4\left[Fe(CN)_6\right]$ in the given reaction is

$$K_4\left[Fe(CN)_6
ight] \stackrel{[O]}{\longrightarrow} Fe^{3+} + NO_3^- + CO_2$$

Equivalent weight of K_4 [$Fe(CN)_6$]=(Molecular weight of K_4 [$Fe(CN)_6$])/(difference between oxidation states)

$$K_4\left[Fe(CN)_6
ight]
ightarrow Fe^{+3}$$

$$Fe
ightarrow + 2 \hspace{1cm} + 3
ightarrow 1$$

$$CN^- \to CO_2$$

$$C
ightarrow +2 +4$$

difference between 1C atom = 2

difference between 6 carbon atoms = 12

$$CN^- o NO_3^-$$

$$N
ightarrow -3 + 5$$

difference between 1N atom = 8

difference between 6N atom = 48

Equivalent weight of

$$K_2Cr_2O_7 = \frac{M}{61}$$

Q81

The number of essential amino acids in man is

1) 8 2) 10 3) 18 4) 20

ANSWER

The amino acids which can't be synthesised by human body so they are essential to take from diet. They are 10 in number.

Q82

Thiol group is present in

- 1) Cystine 2) (
- Cysteine
- 3) Methionine
- Cytosine

ANSWER

Q83

During estimation of nitrogen in the organic compound evolved from 0.5 g of the compound in Kjeldahl's estimation of nitrogen, neutralised 10 mL of 1M H_2SO_4 . Find out the percentage of nitrogen in the compound.

ANSWER

1 M of 10 mL $H_2SO_4 = 1$ M of 20 mL NH_3

1000 mL of 1 M ammonia contains = 14 g nitrogen

20 mL of 1 M NH_3 contains $=\frac{14\times20}{1000}g$ nitrogen

% age of nitrogen =
$$\frac{14 \times 20 \times 100}{1000 \times 0.5} = 56.0\%$$

Q84

3.6 g of an oxide of metal on reduction with hydrogen formed 3.2 g of metal. If the vapour density of metal is 32, the simplest formula of the oxide would be

1) MO 2)
$$M_2O_3$$
 3) M_2O 4) M_2O_5

ANSWER

As we know that

Equivalent weight of metal = $\frac{\text{weight of metal}}{\text{weight of oxygen}} \times 8$

$$=\frac{32}{0.4}\times 8=64$$

Vapour density = $\frac{\text{mol. wt}}{2}$

Mol. wt=
$$2 \times V$$
. $D = 2 \times 32 = 64$

As we know that
$$n = \frac{\text{mol. wt}}{\text{eq. wt}} = \frac{64}{64} = 1$$

Suppose, the formula of metal oxide be $M_2 O_n$. Hence the formula of metal oxide $= M_2 O$.

Q85

4 g of copper was dissolved in concentrated nitric acid. The copper nitrate solution on strong heating gave 5 g of its oxide. The equivalent weight of copper is

ANSWER

wt. of oxygen =wt. of oxide - wt. of copper

$$=5-4$$

$$egin{aligned} =& 1 \ rac{W_{Cu}}{W_0} = rac{E_{Cu}}{E_0} \ rac{4}{1} = rac{E_{Cu}}{8} \Rightarrow \ E_{Cu} = 32 \end{aligned}$$

Monomer present in PGA is

$$HO-CH_2-COOH$$
 $HOCH_2-CH_2OH$ $HOOC-CH_2-COOH$ NH_2-CH_2-COOH

ANSWER

PGA is polyglycolic acid whose monomer is glycolic acid which is $\alpha-$ hydroxyacetic acid $HO-CH_2-COOH$.

Q87

The polymer used for making contact lenses is

1) Polymethylmethacrylate 2) Polyethelene 3) Polyethylacrylate 4) Nylon-6

ANSWER

Also known as PMMA. It is a transparent, excellent light transmitter and its optical clarity better than glass so it is used in the preparation of lenses for eyes.

Q88

The optically inactive amino acid is

1) Lysine 2) Glycine 3) Arginine 4) Alanine

ANSWER

Glycine H_2NCH_2COOH is the only optically inactive amino acid

Q89

Of the following statements about enzymes which ones are true

- (i) Enzymes lack in nucleophilic groups
- (ii) Enzymes are highly specific both in binding chiral substrates and in catalyzing their reactions
- (iii) Enzymes catalyse chemical reactions by lowering the activation energy
- (iv) Pepsin is a proteolytic enzyme
- 1) (i) and (iv) 2) (i) and (iii) 3) (ii), (iii) and (iv) 4) (i)

ANSWER

Of the following statements about enzymes are true

Conceptual : - Ii, iii, iv statements are correct

Starch is converted into maltose by the

1) Maltase 2) Invertase 3) Zymase 4) Diastase

ANSWER

Diastase enzyme converts starch into maltose.

The first antibiotic disco	overed was		
1. Penicillin	Chloromycetin	Cephalosporin	4. Streptomycin
Q92			
Which one of the follow	ving enzyme is secreted by ye	ast fermentation to pro	oduce alcohol?
1. Enolase	2. Invertase	3. Zymase	4. Dehydrogenase
Q93		-	
Following is used in the	production of leavened bread	i	
1. Aspergillus Q94	2. Rhizopus	3.Saccharomyces	4. None of the above
Ganga and Yamuna act	ion plan is initiated by		
 Ministry of Environn 	nent and Forest	Ministry of Agric	
Ministry of Wild-life	Conservation	4. None of the above	ve
Q95			
Integrated Pest Manager	nent (IPM) discourages the e	xcessive use of	
1. Biological methods	2. Chemical pesticides	3.Mechanical metho	od 4.None of these
Q96			
Which form grows sym	biotically in the leaves of biot	fertilizer water fern?	
1. Rhizobium	2. Klebsiella	3. Clostridium	4. Anabaena
Q97			
Maximum alcohol will	be obtained from		
1. Wood	2. Sugarcane	Tapioca	4. Maize
Q98			
Biogas contains			
1. 50-70% CH ₄	Traces of CH₄	3. 30- 40%CH ₄	4. C_2H_6
Q99		_	
•	used as 'clot buster' obtained		
1. Streptococcus	2. Staphylococcus	3. Lactobacillus	4. Saccharomyces
Q100			
LAB are useful in		2. Duadrastian affic	
1. Biocontrol		Production of bio Production of cur	-
3. Recycling elements Q101		4. Production of cui	d Holli lillik
•	s/ are useful as single cell pro	teins?	
1. Pinnularia		2. Spirulina	
3. Methylophilus		4. Spirulina and Met	hylophilus

Q102 Which of the following	is correctly matched	1?	
1. Streptomyces- antibio	•	2. Rhizobium- biof	ertilizer
3. Spirulina-SCP		4. All of these	
Q103 Root nodules for nitrog	gen fixation of a non	leguminous plant possess	
1. Frankia	2. Rhizobium	3. Azotobacter	4. Thiobacillus
Q104			
Enzyme required for i	nitrogen fixation is		
 Nitrogenase 		Glutamate dehydro	genase
3. Transaminase		4. Transferase	
Q105			
A toxic protein delta end	lotoxin is insecticida	al and is produced by	
1. Agrobacterium	2. Frankia	Bacillus thuringiensis	4. Salmonella
Q106 . In rice fields, which	ch of the following	increases soil fertility?	
1. Anabaena	Ferrobacter	rium 3. Rhizobium	4. Clostridium
Q107 . When a natural pre- process is called	dator (living being)	is applied on the other pathoge	en organism to control them,
•	2. Genetic enginee	ering 3. Artificial control	4. Chemical technique
Q108			
-	s is generally not rec	ommended now-a-days because	, pesticides
1. Damage plant leaves		2. Damage plant roots	-
3. Kill insects that feed	on plants	4. Kill insects that pollinate	plants
Q109			
. Bacillus thuringiens	is (Bt) strains have b	een used for designing novel	
Biofertilizer		Bio- metallurgical techni	ques
3. Bio- mineralisation p	rocess	4. Bio- insecticidal plants	
Q110 . Integrated pest mana	gement programme	(IPM) emphasizes on	
 Biological control 		Confusion technique	
3. Pesticides		4. None of these	
Q111			
. Blue-green algae are	chiefly used as fertil	lizer in	
1. Wheat	2. Paddy	3. Mustard	4. Gram
Q112			
. Find the odd one out	t- streptomycin, peni	cillin, tetracycline, lipase	
1. Streptomycin	2. Penicillin	3. Tetracycline	4. Lipase

Q113 . Microbes, a diverse g	group that includes all	the following except	
1. Bacteria	2. Protozoans	3. Fungi	4. Mosses
Q114			
. The large vessels used	d for growing microbe	es in large scale, for obtaining	products on industrial scale
are			
1. Fermenters Q115	2. Fermentors	3. Biogas vessel	4. Petridish
-	found in human intes	tine	
•		3. Helicobacter pylori	4.Corynebacterium
Q116			•
-	isiae is employed in th	ne production of	
1. Antibiotic	2. Bread	3. Cheese	4. All these
Q117			
	t cellulose anaerobical	ly, release	
1. Oxygen	2. Methane	3. Oxygen	4. Both 1 and 2
Q118			
•	t of waste water treatm	nent involves the removal of	
1. Floating debris	2. Grit	3. Both 1 and 2	4. Harmful bacteria
Q119			
•	owing alcoholic drinks	s is produced without distillation	on?
1. Wine	2. Whisky	3. Rum	4. Brandy
Q120	•		j
•	ontent increases follow	ring conversion of milk into co	and by lactic acid bacteria?
1. Vitamin C	2. Vitamin D	3. Vitamin B ₁₂	4. Vitamin E
	2. 7	5. VIMIIII 212	•
Q121 Exploring the molecular	cular cenetic and en	ecies level diversity for obta	ining products of economic
importance is called	cutar, genetic and sp	ecies level diversity for obta	ming products of economic
•	2 Rionharming	3. Bioprospecting	4. Bioethics
	2. Biophaining	3. Bioprospecting	4. Bioetifics
Q122			
. Loss of species forev	ver from the Earth surf	face is:	
1. Deletion	2. Extinction	3. Invasion	4. Endemism
Q123			
. Which of the follo	owing statement is	correct :	
1. Parthenium is an e	ndemic species of	our country	
2. Lantana is popular	-	•	
3. African catfish is n	•	_	
	_		
4. Stellar's sea cow is	s an extinct animal.		
Q124		1 41 TT-4 4 C1 ' 1' '	
	our country considered	d as the Hot spot of biodiversi	ty and regarded as the 'cradle
of speciation'.	2 Wastom Ob-to	2 Daggan Distant	4. Factory Illimatores
 North east 	Western Ghats	 Deccan Plateau 	 Eastern Himalayas.

. 'Rivet popper' hypo		7: 3. E.Wilson	4. A. Humbo	ldt
	2. Dawin	3. L. Wilson	4. 71. Humoo	iai
Q126				
	owing forests is kr	nown as 'the lungs of th	-	
1. Taiga forests		2. Tundra fore		
3. Amazon rain fores	t	4. Ram forests	s of north east India	
Q127 . Which of the fo	ollowing is not a	cause for loss of bid	odiversity?	
1. Destruction of h			asion by alien speci	es
3. Keeping animals	in zoological p		er exploitation	
Q128	0 1		•	
. The term Biodive	ersity is related to	:		
1. All living animals		All living	plants and animals	
3. Living plants, anim	nals and microbes	found in natural habit	ats 4. A	All living plant
Q129				
-	-	tu conservation is base		
	_	ecies 2. The numb	per of extinct and vuln	ierable species
3. The habitat loss an		_		
4. The number of en	demic species and	habitat loss		
Q130	ant dema encompina	is obtained from		
1. Datura	2. Rauwolfia	is obtained from: a 3. Atropa	1.5	antalum
Q131	2. Rauwoiju	і З. Апора	4. 50	иншит
•	he following is	not a wildlife conserv	vation project?	
Project tiger			ject Elephant	
3. Project dodo			ject Great Indian Bu	ietard
Q132		4.110	eet Great malan Da	istara
	llowing is not a n	arrow utilitarian featu	re for conservation o	f a species?
1. Food	2.Firewood	d 3.Fibre	4	4. Pollination
Q133				
. What is commo	n to the techniqu	es?		
i. In vitro fertilizatio	n ii. Cryopre	eservation iii. Tissue	culture	iv. Seed bank
1. All are in situ cor	nservation metho	ds 2. All are	ex situ conservation	methods
3. These techniques	are not used in I	ndia		
4. All are methods f	or conservation of	of extinct organisms		
Q134			45.40	
		hornia and African ca		
1. All are endangered	_	a 2. All are	extinct species	
All are mammals:	tound in India			

4. All the species are neither threatened nor indigenous species of India

Q135			
. The 'Increased di	versity contributes to	o higher productivity' was	the idea of
 Robert May 	David Tilma	n 3. Edward Wilson	4. Endemic
Q136			
		share of the global species div	versity is
1. 1.8%	2. 3.1%	3. 5.1%	4. 8.1%
Q137			
. Germplasm conserv			
	Cryoprevention	3. Germification	4. Cryopreservation
Q138			
	assenger pigeon was du		
	-	2. Over exploitation by hu	mans
3. Bird flu virus infectio	011	4. Habitat loss	
Q139 . IUCN Red List (200	04) recorded the extinct	ion of species.	
1. 524	2. 784	3. 500	4. 338
Q140			
		al areas shows maximum bio	odiversity in our country?
1. Sunderbans and Ran	n of Kutch	3	
3. Eastern Ghats and w	est Bengal.	4. Eastern Himalayas and	Western Ghats
Q141			
•	ion act was introduction	n in:	
1. 1972	2. 1981	3. 1986	4.1991
Q142			
. The term biodivers	ity was coined by:		
 Walter Rosen 	Edward Wilson	3. Linnaeus	4. Bentham
Q143			
. The only floating N	Vational Park in the wor	rld is:	
 Keibul Lamjao Natio 	onal Park	Keoladeo Ghana Nation	nal Park
3. Bhitarkanika Wildlif	fe Sanctuary	4. Yellowstone National F	Park
Q144 . Find the odd one			
1. Wild life safari park	2. Biosphere reserves	3. National parks	4. Wild life sanctuaries
Q145			
. The relationship be equation:	etween species richness	s and area is described on	a Logarithmic scale by the
1. Log S= Log C-Z log	A	2. $\log S = \log C + Z \log A$	
3. Log C= Log S+Z log		4. $\text{Log S} = \text{Z log A}$	
Q146		5 5	
. MAB stands for			
Mammals and Birds	2. Man and Biosphere	3. Man and Biology	4. Man and Biodiversity
	-		-

- Which of these is incorrect about ozone depletion?
- CFCs release 'Cl' atom which causes degradation of O₃.
- 2. 'Cl' atoms act as catalyst
- 3. 'Cl' atoms are not consumed in the reaction
- 4. Ozone depletion is minimum over Antarctic region

Q156

- What are the effects of air pollution on plants?
- 1. Growth retardation
 - 2. Decrease in yield 3. Premature death
- 4. All of these

Q157

- The most widely used and effective device for removing particulate matter is
- 1. Arrester
- Scrubber
- 3. Electrostatic precipitator
- 4. Converters

Q158

- Catalytic converters are fitted into automobiles to reduce emission of harmful gases. Catalytic converters change unburnt hydrocarbons into;
- 1. Carbon dioxide and water

2. Carbon monoxide

3. Methane

4. Carbon dioxide and methane

O159

- . Greenhouse gases absorb radiation from the earth and emit it again towards the earth. The cycle continues till the earth's surface has no radiation to emit.
- 1. Long wave (infrared), long wave
- 2. Short wave (UV), long wave
- 3. Long wave (infrared), short wave (UV)
- 4. Short wave (UV), short wave (UV)

O160

- Which one of the following pairs of gases are the major causes of 'Greenhouse effect'?
- 1. CO₂ and CO
- CFCs and SO₂
- 3. CO₂ an N₂O
- 4. CO_2 and O_3

Q161

Match the items given in Column I with those in Column II and select the correct option given below:

	COLUMN I		COLUMN II
A	Eutrophication	I	UV-B radiation
В	Sanitary landfill	II	Deforestation
С	Snow blindness	III	Nutrient enrichment
D	Jhum cultivation	IV	Waste disposal

	A	В	С	D
1	III	IV	I	II
2	I	III	IV	II
3	II	I	III	IV
4	I	II	IV	III

Q162

- Soil erosion occurs because of
- 1. Over-cultivation

- 2. Unrestricted grazing
- 3. Deforestation and poor irrigation practices 4. All of these

Q163			
. World Ozone Day i	is celebrated on		
1. 16 th September	2. 21st April	3. 5 th June	4. 22 nd April
Q164			
 According to CPCE 	3 which particulate size	causes greatest harm to human	n health?
1. 2.5μm or less	2. 3.5μm	3. 4.5µm	4. 5.2μm or more
Q165 . According to an est	timate, almost	_ per cent forests have been lo	ost in the tropics, compared to
only per cent in			
1. 40, 10	_	3. 40, 1	4. 20, 1
Q166			
. Which one of	the following is a v	wrong statement?	
1. Most of the fore	ests have been lost	in tropical areas	
2. Ozone in upper	part of atmosphere	e is harmful to animals	
3. Green house eff	-		
	-		
4. Eutrophication	is a naturai phenon	nenon in freshwater bodie	es
Q167		. Ladia is	
. The green scum s			
1. Blue green algae	2. Red algae	Green algae	4. Both 1 and 3
Q168			
. As the organic m	natter increases in a	water body, the BOD:	
1. Increases	2. Decreases	3. Remains unchanged	4. Not a parameter
Q169			-
. Global warming	can be controlled b	у	
1. Increasing defores	station, reducing eff	iciency of energy usage	
2. D. adar alin a mafe mark	_4! !	- - - - - : 1	

- 2. Reducing reforestation, increasing the use of fossil fuel
- 3. Increasing deforestation, slowing down the growth of human population
- 4. Reducing deforestation, cutting down use of fossil fuel

Given below is a diagram of electrostatic precipitator. Identify A,B,C and D and select the correct option.

	A	В	C	D		
1	Negatively charged wire	Negatively charged dust particles	Discharge corona	Collection plate		
2	Negatively charged wire Discharge corona		Collection plate	Negatively charged dust particles		
3	Positively charged wire	Discharge corona		Collection plate		
4	Positively charged wire	Discharge corona	Collection plate	Positively charged dust particles		

Q171

- Which of the following statements is not true regarding algal blooms?
- 1. Algal blooms are formed by excessive growth of planktonic algae
- 2. Growth of Eichornia crassipes causes coloration of water during algal blooms
- 3. Increased growth of algae causes depletion of O2 in water
- 4. Algal blooms cause deterioration of water quality and fish mortality Q172
- Polyblend is
- 1. A mixture of two different types of plastics. 2. A blend of plastic and bitumen
- 3. A fine powder of recycled modified plastic. 4. None of these

Q173

- Which international treaty was signed in 1987 (effective in 1989) to control the emission of ozone depleting substances?
- 1. Kyoto protocol
- 2. Earth summit
- 3. Montreal Protocol
- 4. All of these

Q174

						44				
19 2 11	1210t	calise	tor	atmost	henc	noll	1111011	117	metro	CITIES
13 G 11	Iujoi	cause	101	aumos	/IICIIC	POI	uuon	111	meuo	CILICS

- 1. Factory
- 2. Automobiles
- 3. Smoking
- 4. Thermal power plant

Read the given statements and select the correct option.

Statement 1: Average temperature of Earth has increased by 0.60C during past century

Statement 2: There has been a progressive increase in the use of fossil fuels generating more greenhouse

- 1. Both statements 1 and 2 are correct.
- 2. Statement 1 is correct but statement 2 is incorrect
- 3. Statement 1 is incorrect but statement 2 is correct
- 4. Both statements 1 and 2 are incorrect

Q176

- Which of the following statements are incorrect regarding the Euro III norms?
- 1. It stipulates that sulphur be controlled at 350 ppm in diesel
- 2. It stipulates that sulphur be controlled at 150 ppm in petrol
- 3. Aromatic hydrocarbons are to be contained at 42% of the concerned fuel
- 4. None of these

O177

The highest DDT concentration in aquatic food chain shall occur in;

. Crab 2. Eel 3. Phytoplankton

O178

Natural aging of lake depends on

1. Climatic factors

2. Size of lake

Nutrient content of lake

4. All of these

4. Seagull

Q179

1. Internationally, it has been recognized that desertification is a major problem nowadays, particularly due to:

Over grazing

Over cultivation

Increased urbanisation

Water logging

O180

-). Which of the following actions can be taken to control noise pollution?
- 1. Delimitation of horn-free zone around hospitals and schools
- 2. Permissible sound levels of crackers and of loudspeakers
- 3. Set the timings after which loudspeakers cannot be played

4. All of these

ANSWERS

UNIT NO: B-18 ANSWER KEY

Q. No.	Ans.	Q. No.	Ans						
91	1	92	3	93	3	94	1	95	2
96	4	97	2	98	1	99	1	100	4
101	4	102	4	103	1	104	1	105	3
106	1	107	1	108	4	109	4	110	1
111	2	112	4	113	4	114	2	115	2
116	2	117	2	118	3	119	1	120	3
121	3	122	2	123	4	124	4	125	1
126	3	127	3	128	3	129	4	130	2
131	3	132	4	133	2	134	4	135	2
136	4	137	4	138	2	139	2	140	4
141	1	142	1	143	1	144	1	145	2
146	2	147	3	148	4	149	1	150	4
151	2	152	3	153	4	154	3	155	4
156	4	157	3	158	1	159	1	160	3
161	1	162	4	163	1	164	1	165	3
166	2	167	4	168	1	169	4	170	2
171	2	172	3	173	3	174	2	175	1
176	4	177	4	178	4	179	3	180	4

+