一、用贪心法求解**部分**背包问题,已知n=3, C=40, (w1,w2,w3)=(28,15,24), (p1,p2,p3)=(35,25,24)。

一、用贪心法求解**部分**背包问题,已知n=3, C=40, (w1,w2,w3)=(28,15,24), (p1,p2,p3)=(35,25,24)。

首先, 计算单位重量的价值:

由于r2>r1>r3, 故从第二件物品开始贪心选择

判定条件	背包已用部分	背包剩余部分	背包总价值	物品放入情况
C>w2	15	25	25	(0, 1, 0)
C-w2 <w1< td=""><td>40</td><td>0</td><td>25+(25/28)*35</td><td>(0.893, 1, 0)</td></w1<>	40	0	25+(25/28)*35	(0.893, 1, 0)

因此,背包最大价值为56.25,放置情况为(0.893, 1, 0)或(25/28, 1, 0)

二、用Kruscal方法求下图的最小耗费生成树。

二、用Kruscal方法求下图的最小耗费生成树。

三、给定图如下,求出最小生成树以及以顶点1为源的单源最短路径。

三、给定图如下,求出最小生成树以及以顶点1为源的单源最短路径。

(1) 最小生成树:

三、给定图如下,求出最小生成树以及以顶点1为源的单源最短路径。

(2) 以顶点1为源的单源最短路径(答案不唯一):

顶点	路程	路径
1	0	
2	40	1->5->2
3	50	1->5->3
4	70	1->5->2->4
5	20	1->5
6	40	1->5->6
7	30	1->5->7

四、采用动态规划法求下列两个序列的最长公共子序列 A="xzyzzyx", B="zxyyzxz"。

- (1) 给出递推公式;
- (2) 画出求解过程的表格,并给出最优解。

四、采用动态规划法求下列两个序列的最长公共子序列 A="xzyzzyx", B="zxyyzxz"。

(1) 给出递推公式;

定义L[i,j]为序列 $A_{1...i}$ 和 $B_{1...j}$ 的公共子序列长度,则有递推式:

$$L[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ L[i-1, j-1] + 1 & \text{if } i > 0 \text{ , } j > 0 \text{ and } a_i = b_j \\ \max\{L[i, j-1], L[i-1, j] & \text{if } i > 0 \text{ , } j > 0 \text{ and } a_i \neq b_j \end{cases}$$

四、采用动态规划法求下列两个序列的最长公共子序列 A="xzyzzyx", B="zxyyzxz"。

(2) 画出求解过程的表格,并给出最优解。

		y _j		Z		Х		У		У		Z		Х		Z
		0		1		2		3		4		5		6		7
x _i	0	0		0		0		0		0		0		0		0
				↑	K								K			
Х	1	0		0		1	←	1	←	1	←	1		1	←	1
			_								K					
Z	2	0		1	←	1	←	1	←	1		2	←	2	←	2
				↑			K		K							
У	3	0		1	←	1		2		2	←	2	←	2	←	2
			K					↑			K				K	
z	4	0		1	←	1		2	←	2		3	←	3		3
			K					↑			K					
Z	5	0		1	←	1		2	←	2		3	←	3		4
				↑			K									↑
У	6	0		1	←	1		2		3	←	3	←	3		4
				\uparrow	K					↑		\uparrow	K			
Х	7	0		1		2	←	2		3		3		4	←	4

其中一个最长公 共子序列为: zyyx,长度为4。

- (1) 写出解决上述问题的动态规划实现算法(文字描述或者伪代码)
 - (2) 写出通过此算法解决上述问题的过程及结果

(1) 写出解决上述问题的动态规划实现算法(文字描述或者伪代码)

定义矩阵 $M_{i,j} = M_i \cdots M_j$, C[i,j]表示计算 $M_{i,j}$ 所需的最小乘法次数。 若依据下标k将 $M_{i,j}$ 划分为两部分: $M_{i,k-1}$ 和 $M_{k,j}$ 则有递推式: $C[i,j] = \min_{i < k \le j} \{C[i,k-1] + C[k,j] + r_i r_k r_{j+1}\}$

(1) 写出解决上述问题的动态规划实现算法(文字描述或者伪代码)

```
输入: r[1..n+1], 表示n个矩阵规模的n+1个整数.
```

输出: n个矩阵连乘的最小乘法次数.

- 1. for i←1 to n {填充对角线d₀}
- 2. C[i,i] ←0
- 3. end for
- 4. for d←1 to n-1 {填充对角线d₁到d_{n-1}}
- 5. for i←1 to n-d {填充对角线d_i的每个项目}
- 6. j←i+d {该对角线上j,i满足的关系}
- 7. $C[i,j] \leftarrow \infty$
- 8. for $k \leftarrow i + 1$ to j
- 9. $C[i,j] \leftarrow min\{ C[i,j], C[i,k-1] + C[k,j] + r_i \times r_k \times r_{j+1} \}$
- 10. end for
- 11. end for
- 12.end for
- 13.return C[1,n]

(2) 写出通过此算法解决上述问题的过程及结果

	1	2	3	4
1	0	20(2)	30(3)	48(3)
2	-	0	50(3)	60(3)
3	-	-	0	20(4)
4	-	-	-	0

最优计算次序: ((A1 ×A2) ×(A3 ×A4))

最优值: 48