This (open Mapping): if X, Y Banach & T \in L(X, Y) is surj, T is open.

Coc: if T is bijective, T is bodd.

cos: if X Banach under 11:11, & 11:11, and FC>0 5.1. ||X||, < c|| XII, < c|| XII, < c|| XII, < ||X||, < ||X||,

Exercise: suppose IIII, & II. III are norme on X Bancier which induces the same topology. Then III, ~ II. II .

Def: X, Y normed spaces $x + X \rightarrow Y$ liner. The graph of T is $\Gamma(T) = \int (X, y) | Tx = y \} = X \times Y$ subspace

T is closed if $\Gamma(T)$ is closed. $\|\cdot\|_{X \times Y} = \max \{ \|x\|, \|y\| \}$

Thin (closed graph): T: X -> Y I men, closed -> 6dd.

Ilm (Banach-Steinhaus/Uniform bolines Principle): Suppose X, y normed sp & Sc L(X, V).

Dif sup ||Tx|| < 00 & X in a non-menger subset of X,

TES

Then sup ||T|| < 00

TES

@ If X banach & sup ||Tx || < so Yx \in X, sup ||T|| < so.
TES

#O Define
$$E_n = \{x \in X \mid \sup_{T \in J} ||Tx|| \le n\}$$

$$= \bigcap_{T \in J} \{x \mid ||Tx|| \le n\}$$

$$T \in J$$
Closed

 \Rightarrow En is closed. UEn nonmager so some E not nowheredense. By assumption, $\exists x_0 \in X$, r>0, r>0 s.t. $\overline{B_r(x_0)} \subset E_n$

B, (0) ct2n:

||Tx|| ≤ ||T(x-X)|| + ||Tx|| ≤ 2n when || X || ≤ r

Thus $\forall \tau \in \mathcal{J}$, $\forall x = ||x|| \leq r$, $||Tx|| \leq 2n$. $\Rightarrow ||T|| \leq \frac{2n}{r} \forall \tau \in \mathcal{J}$ $\Rightarrow ||T|| \leq \frac{2n}{r}.$ TES

2) If X is banach, the sets En in D

Count all be menger by BCT

(X = UEn).

 \Box

Page 2

X barrech
$$X \mapsto (TX)_{T \in S}$$
 Innear operation: $S: X \longrightarrow TTY$ has closed graph, $S \circ \|S\| < \infty$

If suppose $X \to X$ in X
 $S \circ X_X \longrightarrow Y$ in TTY

Show $S \circ X = Y$.

 $\|Y_T - T \circ X_X\| \xrightarrow{X} \circ Y T$

Exercise: flesh this out.

Y=TX YTES

Reference: Pedersen: Analysis Now.

• A subset C = X is called convex if $\forall x, y \in C$, $\forall t \in [0,1]$, $\forall x + (1-t)y \in C$ as well.

- . We'll focus on <u>locally convex</u> TVS's

 Yopen ucx, xeu, Jopen convex Vcu sit xeV.
- . Let X be a K-v, and flisieI a family of seminormoon X. for $x \in X$, $i \in I$, $\varepsilon > \sigma$, define

$$U_{x,i,s} = \{y \in X \mid P_i(x-y) < \epsilon\}$$
.

let T be the topology gen by U_{xi} s.

Facts:

- ① T is weakest top s.l. P:X→(o, a) is ets Vi.
- Φ ∀xεX, finite intersections {yex | Pi(x-y) < ε ψ i ∈ ξi,..., i, }
 }
 </p>

$$= \bigcap_{j=1}^{\kappa} \mathcal{U}_{x i_{j} \epsilon}$$

$$= \bigcup_{\substack{z \in S \text{ constant}}}^{\kappa} \mathcal{U}_{x i_{j} \epsilon}$$

$$= \bigcup_{\substack{z \in S \text{ constant}}}^{\kappa} \mathcal{U}_{x i_{j} \epsilon}$$

$$= \bigcup_{\substack{z \in S \text{ constant}}}^{\kappa} \mathcal{U}_{x i_{j} \epsilon}$$

form a nhd base at x.

If T consists of arbitrary unions of finite intersections of U_{xis} is.

Suppose $x \in U \subset X$ Then $\exists x_1, ..., x_n \\ \xi_1, ..., \xi_n$ s.t. $x \in \bigcap_{k=1}^n U_{x_k i_k \xi_k}$.

Pefue
$$\varepsilon = \min_{k} \left[\underbrace{\varepsilon_{k} - P_{i_{k}}(x - x_{k})}_{>0 \ \forall k} \right]$$

Then
$$\forall y \in \bigcap_{k=1}^{n} \mathcal{U}_{\chi_{i_{K}} \varepsilon}$$
, $P_{i_{K}}(\chi - y) \leq P_{i_{K}}(\chi - \chi_{k}) + P_{i_{K}}(\chi_{k} - y)$
 $\leq \varepsilon_{k} - \varepsilon + \varepsilon$
 $= \varepsilon_{k}$
 $\Rightarrow y \in \bigcap_{k=1}^{n} \mathcal{U}_{\chi_{k} i_{k} \varepsilon_{k}}$.

② If
$$(X_{\lambda}) \subset X$$
 is a net, $X_{\lambda} \to X$ iff $P_{i}(X_{\lambda} - X) \to 0$ $\forall i \in I$.
(Notation change: $S = \{P_{i}\}_{i \in I}$, so $\{P_{i} \mid i \in I\} = \{P \mid P \in S\}$)

If observe $X_{\lambda} \to X$ iff X_{λ} eventually in $U_{X_{i,k}} \neq 0$ $\in S_{i,k}$ iff $P_{i}(X_{i} - X_{\lambda}) \to 0$ $\forall i$

3(X, T) is a TVS:

$$\frac{+:}{P_{i}(x+y-x_{x}-y_{x})} \leq P_{i}(x-x_{x}) + P_{i}(y-y_{x}) \longrightarrow 0$$

$$\frac{+:}{P_{i}(x+y-x_{x}-y_{x})} \leq P_{i}(x-x_{x}) + P_{i}(x-x_{x}) + P_{i}(x-x_{x}) \longrightarrow 0$$

$$\frac{+:}{P_{i}(x+y-x_{x}-y_{x})} \leq P_{i}(x-x_{x}) + P_{i}(x-x_{x}) + P_{i}(x-x_{x}) \longrightarrow 0$$

$$\frac{+:}{P_{i}(x+y-x_{x}-y_{x})} \leq P_{i}(x-x_{x}) + P_{i}(x-x_{x}) + P_{i}(x-x_{x}) \longrightarrow 0$$

$$\frac{+:}{P_{i}(x+y-x_{x}-x_{x})} \leq P_{i}(x-x_{x}) + P_{i}(x-x_{x}) + P_{i}(x-x_{x}) \longrightarrow 0$$

$$\frac{+:}{P_{i}(x+y-x_{x}-x_{x})} \leq P_{i}(x-x_{x}) + P_{i}(x-x_{x}) + P_{i}(x-x_{x}) \longrightarrow 0$$

$$\frac{+:}{P_{i}(x+y-x_{x}-x_{x})} \leq P_{i}(x-x_{x}) + P_{i}(x-x_{x}) + P_{i}(x-x_{x}) \longrightarrow 0$$

$$\frac{+:}{P_{i}(x+y-x_{x}-x_{x})} \leq P_{i}(x-x_{x}) + P_{i}(x-x_{x}) \longrightarrow 0$$

$$\frac{+:}{P_{i}(x+y-x_{x}-x_{x})} = P_{i}(x-x_{x}) + P_{i}(x-x_{x}) \longrightarrow 0$$

\$\text{\$\text{\$(\text{X}_1\text{\$\exitit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\t

$$P_{i}(x-(ty+(1-t)z)) \leq P_{i}(tx-ty) + P_{i}((1-t)x-(1-t)z)$$

$$= t P_{i}(x-y) + (1-t) P_{i}(x-z)$$

$$< t \xi + (1-t) \xi = \xi.$$

Exercises:

- (5) X is Handorff iff $\{P_i\}_{i \in I}$ separates pts iff $\forall x \in X$, $\exists i \in I$ s.1. $P_i(x) \neq 0$.
- 6) If X Hawderst & I is orbbe, \exists a translation, invariant metric $p: X \times X \longrightarrow [0, \infty)$ s.t $P(X+Z, y+Z) = P(X,y) \quad \forall z \in X \quad \text{which induces } \tau$ $P(X,y) := \sum_{i=1}^{\infty} \frac{1}{2^i} P_i(X-y).$