Задачи к лекции 7

В этом листке используется обозначение $R = K[x_1, \ldots, x_n]$, где K — некоторое поле. При сравнении одночленов от нескольких переменных всегда используется лексикографический порядок.

- 1. Докажите, что если старшие члены двух многочленов $f_1, f_2 \in R$ взаимно просты, то $\{f_1, f_2\}$ является системой Грёбнера. В частности, многочлен $S(f_1, f_2)$ редуцируем к нулю относительно f_1, f_2 .
- **2.** Постройте базис Грёбнера в следующих идеалах кольца K[x, y, z]:
 - (a) $(x^2 1, xy y, xz + z)$;
 - (6) $(x^3 + xy, x^2 + y^2)$.
- **3.** Выясните, принадлежит ли многочлен $2x^2y + y$ идеалу $(x^2 + xy + 1, xy y^2)$.
- **4.** Пусть многочлены f_1, \ldots, f_m составляют базис Грёбнера идеала $I \subseteq R$. Предположим, что $L(f_1) : L(f_i)$ для некоторого $i \geqslant 2$. Докажите, что тогда многочлены f_2, \ldots, f_m по-прежнему составляют базис Грёбнера идеала I.

Базис Грёбнера F идеала $I \subseteq R$ называется минимальным редуцированным, если

- (1) для любых двух различных многочленов $f_1, f_2 \in F$ никакой одночлен в f_1 не делится на $L(f_2)$;
- (2) старшие коэффициенты всех многочленов из F равны 1.
- **5.** Докажите, что всякий ненулевой идеал в R обладает минимальным редуцированным базисом Грёбнера, причём этот базис единствен с точностью до перестановки входящих в него многочленов.
- 6. Найдите минимальный редуцированный базис Грёбнера для идеалов из задач 2 и 3.
- 7. Пусть $I = (f_1, \ldots, f_m)$ и $J = (g_1, \ldots, g_k)$ два идеала в R. Как алгоритмически выяснить, совпадают I и J или нет?
- 8. Пусть $I \subseteq R$ ненулевой идеал и F его базис Грёбнера. Пусть $1 \leqslant k \leqslant n-1$ и $R_k = K[x_{k+1}, \dots, x_n]$. Докажите, что множество $F \cap R_k$ является базисом Грёбнера идеала $I \cap R_k$ кольца R_k .
- **9.** Пусть $I = (y^2 + 1, x^2 y) \subseteq K[x, y]$. Найдите $I \cap K[x]$ и $I \cap K[y]$.
- **10.** Пусть $I=(f_1,\ldots,f_m)$ и $J=(g_1,\ldots,g_k)$ два идеала в R. Введём новую переменную t и рассмотрим в кольце $K[t,x_1,\ldots,x_n]$ идеал $H=(tf_1,\ldots,tf_m,(1-t)g_1,\ldots,(1-t)g_k)$. Докажите, что $I\cap J=H\cap R$. Опишите алгоритм нахождения порождающих идеала $I\cap J$.
- **11.** Найдите порождающую систему для пересечения $(x^3 + y^3 1, x y + 1) \cap (xy)$.

Домашнее задание

- **1.** Выясните, принадлежит ли многочлен $x^4z 4yz$ идеалу $(x^2z yz + y, xy + 2y)$ кольца $\mathbb{R}[x, y, z]$.
- 2. Найдите минимальный редуцированный базис Грёбнера в идеале

$$(xy + 2yz, x - y, yz - y) \subseteq \mathbb{R}[x, y, z]$$

относительно стандартного лексикографического порядка (то есть задаваемого условием x>y>z).

- **3.** Дан идеал $I=(x^2y+2xz+z^2,yz-1)\subseteq\mathbb{R}[x,y,z]$. Найдите порождающую систему для идеала $I\cap\mathbb{R}[x,y]$ кольца $\mathbb{R}[x,y]$.
- **4.** Найдите конечный базис Грёбнера (относительно стандартного лексикографического порядка) для идеала $I \subseteq \mathbb{R}[x,y,z]$, определяемого условием

$$I = \{ f \in \mathbb{R}[x, y, z] \mid f(a, 1, a) = 0 \text{ для всех } a \in \mathbb{R} \}.$$