クラウドコンピューティング

基礎論

第8回

創造情報•小林克志

ikob@acm.org

Outline

- Administravia
- Homework review
- User eXperience (UX) and Internet
- TCP

Course Outline

- Administrivia
- Cloud computing
- Service reliability
- Scale-up / Scale-out
- Distributed data stores
- Global services
- Datacenter networkings (1)
- Datacenter networkings (2)
- Network performance
- User experiences
- Network latencies
- Advanced topics

For hands-on exercise: Install two softwares

- 1. Wireshark: A packet capture and analyzer
 - Just install package from http://www.wireshark.org

2.NS2: Network simulator.

Three options are there:

- A. Docker
- Install docker software and container:
 - https://github.com/ekiourk/docker-ns2
 - X-window server is required. It depends on OS.
- B. Native applicationIf you are using Linux, use this option.
 - Install ns-allinone-2.35 from source because NS-2 package.
 Note that some distribution may not work.
 - X-window, perl, gnuplot are also required.
- C. Virtual Machine (VM)
 - Install Hypervisor Software.
 - Oracle VirtualBoX is free.
 vmware or others are also welcome.
 - Linux VM image with NS2 software will be available from the course Web.

演習に向けて:2つのソフト ウェアをインストールする

- 1.パケットアナライザ wireshark
 - http://www.wireshark.org を参考にインストールすること。
- 2.ネットワークシミュレータ NS2
 - A. Docker
 - Docker をインストールし、コンテナを使用する。
 - https://github.com/ekiourk/docker-ns2
 - X-window の設定は OS に依存する。
 - B. Native
 - ·Linux を利用している場合は、この方法を使う。
 - ns-allinone-2.35 を install すること。
 - X-window, perl, gnuplot なども必要となる。
 - C. VM で動作
 - ハイパーバイザの導入
 - Oracle VirtualBoX であれば無償 vmware 他でもかまわない
 - NS2 付きの Linux 仮想マシンイメージを講義ページで配布する

Today's Assignment

- You should design a DC network with 16,384 (2^14) servers.
- 1.Tell the number of switches with the following conditions:
 - Every SW has 64 ethernet ports
 - Every server has 4 ethernet ports
 - Network topology is 2^16 = 65,536 ports required in total.
 - Link Aggregation Group (LAG) can be used both on SW and server
- 2.Draw the network topology including all SWs and servers.
- 3. Note what you take into consideration in your design.
- Submit your answers either in Japanese or in English via the course web.

本日の課題

- 16,384 (2^14) 台の server で DC ネットワークを構成したい。
- 1.以下の条件で必要な SW 台数を示せ
 - SW 側 Ethernet ポートは 64 ポート
 - Server 側 Ethernet ポートは 4 ポート
 - Folded Clos トポロジ Over subscription なし
 - Link Aggregation Group (LAG) は、server, SW とも利用可能
- 2.サーバおよびSW の接続トポロジを図示せよ
- 3.上のデザインで考慮した点を示せ
- 講義 Web から提出すること

1024 down ports

Example: Facebook DC network

Applicatio

Presentati

Session

Transport

Network

Datalink

Physical

nter fabric, the next-generation Facebook data center network", Nov. 2014

Outline

- Administravia
- Homework review
- User eXperience (UX) and Internet
- TCP

Have you seen such page?

Transmission Control Protocol (TCP)

Presentatio

Session

Transport

Network

Datalink

Physical

 A transport protocol that provides end-to-end connections on the top of packet switched networks.

TCP provides:

- ☐ byte stream type
- □ reliable
- ☐ flow-controlled
- multiplex
- □ bi-directional
- congestion controlled

IP Header

Application

Presentatio

Session

Transport

Network

Datalink

TCP and User Datagram Protocol (UDP) header

Application

Presentatio

Session

Transport

Network

Datalink

Physical

TCP Header:

UDP Header:

Application
Presentatio
Session
Transport
Network
Datalink

Transmission Control Protocol (TCP)

Application

Presentatio

Transport

Session

Network

Datalink

Physical

A transport protocol that provides end-to-end connections on the top of packet switched networks. TCP provides:

- byte stream type
- ☐ reliable
- ☐ flow-controlled
- ☐ multiplex
- ☐ bi-directional
- Congestion controlled

Five tuple: flow/connection identification

Application

Presentatio

Session

Transport

Network

Datalink

- 1. Source address
- 2. Destination address
- 3.Upper (Transport) Protocol {UDP, TCP}
- 4. Source port
- 5.Destination port

Five tuple: flow/connectio identification(cont'd)

IP header:

TCP header:

Application

Presentatio

Session

Transport

Network

Datalink

Load balancing policy and availability www.example.com Presentation/Web Servers

Policy

<u>Hash</u>: based IP address or other client-specific info.

- <u>Least connections</u>: assign most least connection server
- Round robin: new connection to the next server with RR
- Weighted ver. of above: considering server condition both static and dynamic
- Health check
- monitoring servers and update list in several levels (layers), e.g., ICMP(ping), application layer polling, server load, manual...

Transmission Control Protocol (TCP)

Application

Presentatio

Session

Transport

Network

Datalink

Physical

A transport protocol that provides end-to-end connections on the top of packet switched networks. TCP provides:

- ☐ byte stream type
- ☐ reliable
- ☐ flow-controlled
- **M**multiplex
- □ bi-directional
- Congestion controlled

TCP header

Application

Presentatio

Session

Transport

Network

Datalink

```
0
          Source Port
                                         Destination Port
                         Seauence Number
                     Acknowledgment Number
 Data I
                    IUIAIPIRISIFI
Offset| Reserved
                    IRICISISIYIII
                                              Window
                    IGIKIHITININI
           Checksum
                                           Urgent Pointer
                                                       Padding
                     Options 0
                              data
```

Transmission Control Protocol (TCP)

Application

Presentatio

Session

Transport

Network

Datalink

Physical

A transport protocol that provides end-to-end connections on the top of packet switched networks. TCP provides:

- □ byte stream type
- ☐ <u>reliable</u>
- ☐ flow-controlled
- **M**multiplex
- **M**bi-directional
- congestion controlled

Reliability on packet switched networks

- Application
- Presentatio
 - Session
- Transport
- Network
- Datalink
- Physical

- Requirements:
 - Ordered sequence of segments
 - Resiliency against segment losses.
- Provided with Automatic Repeat reQuest (ARQ)
 - Acknowledge based approaches.
 Throughputs are bounded by Round Trip Time (RTT).
 - Stop-and-Wait
 - Sliding window
 - Go-back-N, Selective repeat

Automatic Repeat reQuest (ARQ)

Application
Presentatio
Session
Transport
Network

Datalink

TCP header

Application

Presentatio

Session

Transport

Network

Datalink

```
0
       Source Port
                          Destination Port
Sequence Number
Acknowledgment Number
 Data I
             IUIAIPIRISIFI
Offset| Reserved
             |R|C|S|S|Y|I|
                             Window
             | G | K | H | T | N | N |
       Checksum
                           Urgent Pointer
                                  Padding
             Options 0
                   data
```

TCP acknowledge

Application Presentatio Session

Transport

Network

Datalink

Physical

Delayed Ack.

Delay or cumulative

Piggybacking a data segment

Loss detection and retransmission in TCP

Retransmit Time Out (RTO)
 When Data Ack. is not received until RTO*,

retransmit the segment that is regarded as loss

• Fast Retransmit / FastRecovery

• If receiving three same ack., then the consecutive packet is considered as a loss.

Application

Presentatio

Session

Transport

Network

Transmission Control Protocol (TCP)

Application
Presentatio
Session

Transport

Network

Datalink

Physical

 A transport protocol that provides end-to-end connections on the top of packet switched networks.

TCP provides:

Treliable

☐ flow-controlled

multiplex

☐ bi-directional

congestion controlled

TCP header

Application

Presentatio

Session

Transport

Network

Datalink

```
0
      Source Port
                        Destination Port
Sequence Number
Acknowledgment Number
 Data I
            IUIAIPIRISIFI
Offset| Reserved
            IRICISISIYII
                           Window
            IGIKIHITININI
       Checksum
                         Urgent Pointer
                                Padding
            Options 0
                  data
```

TCP connection set-up and tear-down

Application

Presentatio

Session

Transport

Network

Datalink

TCP Fast Open (RFC7413

1st connection

2nd connection

Application

Presentatio

Session

Transport

Network

Datalink

Today's Assignment

- In the class, TCP Fast Open (RFC7413) was introduced as an approach to reduce the latency of TCP connection set-up. Another option T/TCP TCP extensions for Transactions (RFC1644) which shares the same goal had been standardized for 20 years. In addition, T/TCP reduces the TCP set-up latency not only from the second or later connections, but from the first one. However, now T/TCP standard has been obsoleted.
- Read RFC7413, RFC1644 and related documents. Discuss why T/TCP has been obsoleted.
- Submit your answers either in Japanese or in English via the course web.

本日の課題

- 講義では、TCP コネクションセットアップの遅延を抑える手法として TCP Fast Open (RFC7413) を取り上げた。TCP Fast Open と同じ目的で TCP extensions for Transactions (RFC1644) が 20 年前に標準化されている。さらに、T/TCP ではセットアップ遅延を 2つめ以降のコネクションだけではなく、最初のコネクションから抑えることができる。しかしながら、T/TCP 標準は廃止された。
- RFC7413, RFC1644 および関連文書を読み、T/TCP が廃止された 理由を考察せよ。
- 講義 Web ページから回答すること。

T/TCP - TCP Extensions for Transactions (RFC1644)

Application
Presentatio
Session
Transport
Network
Datalink
Physical

Transmission Control Protocol (TCP)

Application

Presentatio

Session

Transport

Network

Datalink

Physical

A transport protocol that provides end-to-end connections on the top of packet switched networks. TCP provides:

- **Treliable**
- ☐ flow-controlled
- **M**multiplex
- **o**bi-directional
- Congestion controlled

TCP header

Application

Presentatio

Session

Transport

Network

Datalink

```
0
      Source Port
                        Destination Port
Sequence Number
Acknowledgment Number
 Data I
            IUIAIPIRISIFI
Offset| Reserved
            IRICISISIYIII
                           Window
            IGIKIHITININI
       Checksum
                         Urgent Pointer
                                Padding
            Options
                  data
```

Flow control in TCP

Window size $(RWND) = 7 \times MSS$ Data min(cwnd, 7 x MSS) Ack., rwin = $3 \times MSS$ min(cwnd, 3 x MSS)

Application

Presentatio

Session

Transport

Network

Datalink

Transmission Control Protocol (TCP)

Application

Presentatio

Session

Transport

Network

Datalink

Physical

A transport protocol that provides end-to-end connections on the top of packet switched networks. TCP provides:

- **Treliable**
- **In the Example of Section In the Example of Section**
- **M**multiplex
- **M**bi-directional
- congestion controlled

TCP Congestion control implementations/algorithm

- Application
- Presentatio
- Session
- Transport
- Network
- Datalink
- Physical

- TCP NewReno
 - So-called standard TCP
- CUBIC TCP (Linux), Compound TCP (Windows)
 - Improve throughput for Large Bandwidth Delay Product (BDP) with aggressive approaches.
 - Almost compatible with TCP NewReno on small BDP.
- TCB Bottleneck Bandwidth and Round-trip propagation time (BBR) (by Google)

Sliding Window Congestio Control

Application

Presentatio

Session

Transport

Network

Datalink

- Senders move window, when ack. received.
- If a sender is aware congestion, the sender shrinks window as a result the sending rate decreases.
- If a sender is aware more capacity to the receiver, the sender expand the window.
- Bandwidth throughput: window size x RTT

TCP NewReno Congestion Control

Application

Presentatio

Session

Transport

Network

Datalink

Physical

- Packet loss is regarded as a congestion signal. cwnd increases until packet loss.
- Two cwnd control phases:
 - Slow-Start : cwnd = cwnd + MSS (per ack.) when cwnd < ssthresh.

In fact, not slow but exponential cwnd growth.

Congestion Avoidance :
 cwnd = cwnd + MSS /cwnd (per Ack.) when cwnd < ssthresh.

Additive Increase/Multiplicative Decrease(AIMD))

cwnd: congestion window size

ssthresh: slow-start threshold (= max_cwnd, when connection start)

MSS: Maximum Segment Size (Typ. MSS: 1460 bytes)

TCP window behavior on NewReno

Application

Presentatio

Session

Transport

Network

Datalink

Loss detection and retransmission in TCP

- Retransmit Time Out (RTO)
 When Data Ack. is not received until RTO*,
 - retransmit the segment that is regarded as loss
 - ssthresh = cwnd / 2, cwnd = min_cwnd.
 - RTO is derived by measured RTT. min_RTO:
 - 200msec on Linux default
 - 10msec on Google DC intra-traffic
- Fast Retransmit / FastRecovery
 - If receiving three same ack., then the consecutive packet is considered as a loss.
 If retransmit is success, ssthresh = cwnd / 2, cwnd = ssthresh + 3 * MSS

Application

Presentatio

Session

Queue / packet buffer at router interface

Application
Presentatio
Session
Transport
Network
Datalink
Physical

- Absorb burst traffic caused by different rate links.
 - In case of small sizes: Unable to absorb large burst.
 - Large: longer queuing delays. Buffer space does not overflow as quickly but the buffers become full due to (greedy) TCP's behavior
 - C = BW x RTT (C: Optimal buffer capacity in case of single TCP flow)

TCP Self/Ack. clocking

Application

Presentatio

Session

Transport

Network

Datalink

Physical

Jacobson, Van. "Congestion avoidance and control." *ACM SIGCOMM Computer Communication Review*. Vol. 18. No. 4. ACM, 1988.

Nichols, K., and V. Jacobson. A modern aqm is just one piece of the solution to bufferbloat. Tech. rep., 2012.

TCP window behavior on NewReno

Application

Presentatio

Session

Transport

Network

Datalink

How client accesses Web

service?

(3) Prepare content(s)

Contents Distribution Network (CDN) and RTT

CDN is developed to serve content to Internet users with optimized availability and performance. A
CDN uses servers that are geographically distributed, helping to accelerate the delivery of content by
caching it in multiple locations and then using the closest server to fulfill a request for content from
each particular user.

Many CDN providers compete Akamai, Cloudflare, AWS CloudFront compete with each other.

- CDN offers "Best" server using metrics such as:
 - Small RTT / Bandwidth Capacity / Stable connectivity each other.
- Akamai deploys more than 100,000 edge servers in order to improve UX incl. to reduce RTT.

	Country/Region	Q1 2017 Avg. Mbps	QoQ Change	YoY Change
_	Global	7.2	2.3%	15%
1	South Korea	28.6	9.3%	-1.7%
2	Norway	23.5	-0.4%	10%
3	Sweden	22.5	-1.3%	9.2%
4	Hong Kong	21.9	-0.2%	10%
5	Switzerland	21.7	2.1%	16%
6	Finland	20.5	-0.7%	15%
7	Singapore	20.3	0.8%	23%
8	Japan	20.2	3.1%	11%
9	Denmark	20.1	-2.9%	17%
10	United States	18.7	8.8%	22%

Figure 6: Average Connection Speed (IPv4) by Country/Region

Akamai's CDN server selection with DNS

```
% dig www.sony.co.jp
...
;; ANSWER SECTION:
www.sony.co.jp. 3600 IN CNAME www.sony.co.jp.edgekey.net.
www.sony.co.jp.edgekey.net. 16939 IN CNAME e9538.dscx.akamatedge.net.
e9538.dscx.akamatedge.net. 20 IN A 184.26.246.228
```

From U-Tokyo

```
% dig www.sony.co.jp
...
;; ANSWER SECTION:
www.sony.co.jp. 60 IN CNAME www.sony.co.jp.edgekey.net.
www.sony.co.jp.edgekey.net. 60 IN CNAME e9538.dscx.akamaieage.net.
e9538.dscx.akamaiedge.net. 20 IN A 23.218.41.219
```

New evidence supports 'five-second rule' of dropped food

Next time you reach down to pick up a dropped piece of food, consider this: The length of time it's been on the floor does influence how many dangerous germs - such as E. coli or Staphylococcus - might have glommed on to it, British researchers found. But the type of flooring also plays a role: Carpeted surfaces transferred fewer germs than tile.

AFP RELAXNEWS / Tuesday, March 11, 2014, 11:07 AM

AAA

NYDailyNews.com より

Four/Two second rule in Web services

Application
Presentatio
Session
Transport
Network
Datalink

- < 4 sec. render completion limit to keep customers' attention @ 2006
 - The limit is decreasing, e.g., 2 sec.@2013
- Poor satisfaction decreases customer loyalty and revisiting.
 - To miss opportunity, and to lost revenue on e-Commerce.

Today's Quiz

- 1.Show two or more Contents Delivery Network (CDN) hosted sites.
- 2.Tell the reasons why such sites look like hosted on CDN than own Web server.
- Submit your answers either in Japanese or in English via the course web.

Today's Quiz

- 1. Contents Delivery Network (CDN)でホストされている Web サービスを 2 つ以上示せ。
- 2.これらのサービス が自身の CDN でホストされてい る理由を示せ。
- Submit your answers either in Japanese or in English via the course web.

Today's Assignment

- In the class, TCP Fast Open (RFC7413) was introduced as an approach to reduce the latency of TCP connection set-up. Another option T/TCP TCP extensions for Transactions (RFC1644) which shares the same goal had been standardized for 20 years. In addition, T/TCP reduces the TCP set-up latency not only from the second or later connections, but from the first one. However, now T/TCP standard has been obsoleted.
- Read RFC7413, RFC1644 and related documents. Discuss why T/TCP has been obsoleted.
- Submit your answers either in Japanese or in English via the course web.

本日の課題

- 講義では、TCP コネクションセットアップの遅延を抑える手法として TCP Fast Open (RFC7413) を取り上げた。TCP Fast Open と同じ目的で TCP extensions for Transactions (RFC1644) が 20 年前に標準化されている。さらに、T/TCP ではセットアップ遅延を 2つめ以降のコネクションだけではなく、最初のコネクションから抑えることができる。しかしながら、T/TCP 標準は廃止された。
- RFC7413, RFC1644 および関連文書を読み、T/TCP が廃止された 理由を考察せよ。
- 講義 Web ページから回答すること。