Introdução ao NumPy


```
NumPy Libray
inant (art apantisst_hitien = (2)
2 dorats: (1)
3 manle:
10 The lacray erfact; 311 adcatt (1), (3;
14 Viime = "ilex" langht - 21) 5;
27 fruum () kill ii dreast, araat()[
           Nitrum(1, U83, * 1019);
            (aickantaiæl/ −19; 👭
```

```
Sempliensw. materation
 1 arrray courtion (6))
1 fils milers amilcinnle canal array;
2 fild arrays is wrior aarrays;
   rille whal scr2ay, ⇒ it (runty anhilaton);
   Common 3D Foxts, (lite Numps ()slantled arratl)*))
   rentalable arrayy);
I/ cide, = (Po, alcy, filer, 3D * arrays);
1# Cult and cumran motions uit int (261));
1# Blystrittionl * arrays);
   DUL array(t _tramy <5);
   Cule whi(cluptle is if contnoard (nuntly));
; Cant od(fcattion (30)));
```

CRONOGRAMA DA AULA

1

O que é NumPy?

2

Por que usar NumPy?

3

Convenção de Importação 4

O Objetivo ndarray

5

Atributos do ndarray

6

Operações Básicas

7

Programação Orientada a Arrays

O QUE É NUMPY?

Numerical Python

Abreviatura de Python Numérico

Estruturas e algoritmos

Fornece código
essencial para
processamento de
dados

"Língua franca"

Usado para troca de dados entre pacotes científicos

POR QUE USAR NUMPY?

POR QUE USAR NUMPY?

Padrão recomendado

import numpy as np

Uso correto

np.arange, np.array

Evitar

from numpy import *

```
imporrt iarterment tint);;
    import {
    ic, inctent,);
     is, stt;
    basic irpat = array,
    last dry.inrnane lats aned lago complet;
perrtienffy ic, < intapbing))</pre>
  Last wit/ ciry ((awra),));
     cottamution(, = mest arpay, lt; this as clomen, ()
     act ikf = factaniumyy:
  cirst the fintpart {
     scemplars art (110);
     but fmat.
    frandlations inpphase", from lesp imperational try
     lasc NumPy {;
     mtoplay cin aural);
```

O OBJETO NDARRAY

ATRIBUTOS DO NDARRAY

dtype

Descreve o tipo de dado do array

- Inteiro
- Ponto flutuante
- Booleano
- String

shape

Tupla indicando tamanho de cada dimensão

- (3,) vetor
- (2,3) matriz
- (2,3,4) tensor

MANIPULAÇÃO DE STRINGS

Indexação e Fatiamento

Acesso a elementos e sub-arrays

Aritmética com Arrays

Operações elemento a elemento

Funções Universais (ufuncs)

Operações rápidas vetorizadas

NumPy array operations

y arraw operation, of indexz, index;

Am	f	No	f	No	im	np						
1,		8,		10	45	42	81					
12		3,		4	26	31	72					
(0)		13		93	23	13 =	101	7	101	+	24	(1) + (
18		4	7	12,	113	(27 +	10)	× (3)	28	+	(6)	
15		18		19.	16		35	× 11,	(6)	+	88	
11		110		90	191	(21 =	(6)	+	10;	(8	(1)	

```
Indexting index:
NumPy dnine ndexted; additine pprtim (afd (addition in 103))
universal and
addittun 10;
Arithemetic operation:
multiplication +) and authplication (=-6,1);
coff ex(=(0),
Simple functions
NumPy dipe addition, function operations \( \) \( (110\)(0x: as),
and Illical and scoupes linet: sine and cosine(e);
Universal functions:
    firit4 cosines [urd(ve));
Universal functions (for 124)
sine and cosine (fx+1d)
```

PROGRAMAÇÃO ORIENTADA A ARRAYS

Evitar laços explícitos

Operações aplicadas a arrays inteiros

Maior desempenho

Computação mais rápida e eficiente

Habilidade essencial

Fundamental para computação científica

Vamos avaliar o encontro?