Решение задачи о минимальной ДНФ и КНФ булевой функции

Задача. Найти минимальные ДНФ и КНФ булевых функций, зависящих от аргументов A, B, C, D:

$$f = (1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15).$$

Решение.

Наносим функцию на карту Вейча:

		4			
В	1	1	1	1	
"	1	1	1		٦,
1	1	1	1	1	D
	1		1		<u>'</u>

У данной функции не единственный вариант минимальной ДНФ. Приведем четыре из них:

$$f = B\overline{D} + \overline{B}D + \overline{A}C + A\overline{C} + AB;$$

$$f = B\overline{D} + \overline{B}D + \overline{A}C + A\overline{C} + CB;$$

$$f = B\overline{D} + \overline{B}D + \overline{A}C + A\overline{C} + AD;$$

$$f = B\overline{D} + \overline{B}D + \overline{A}C + A\overline{C} + CD.$$

Для нахождения КНФ строим карту Вейча для инверсии заданной функции:

Инверсия заданной функции в минимальной ДНФ представима единственным образом:

$$\bar{f} = \overline{B} \, \overline{CA} \overline{D} + A \overline{B} \, C \overline{D} + \overline{A} \, B \overline{C} D \; .$$

Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

В соответствии с этим для заданной функции существует и единственная минимальная КНФ:

$$f = (B + C + A + D)(\overline{A} + B + \overline{C} + D)(A + \overline{B} + C + \overline{D}).$$

Последняя формула получена из предыдущей с использованием закона де Моргана.

Otbet:
$$f = B\overline{D} + \overline{B}D + \overline{A}C + A\overline{C} + AB$$
; $f = B\overline{D} + \overline{B}D + \overline{A}C + A\overline{C} + CB$; $f = B\overline{D} + \overline{B}D + \overline{A}C + A\overline{C} + AD$; $f = B\overline{D} + \overline{B}D + \overline{A}C + A\overline{C} + CD$; $f = (B + C + A + D)(\overline{A} + B + \overline{C} + D)(A + \overline{B} + C + \overline{D})$.