ALGORITMI ANALIZE MASIVNIH PODATKOV

DOMEN MONGUS

P03 – Opisna analiza

Motivacija

- □ Analiza nakupov
 - Začetek Big Data analiz
- □ Apriori algoritem
 - Najbolj citiran članek na področju podatkovnega rudarjenja
- □ Temeljno vprašanje:
 - Kakšne so navade kupcev?

Motivacija

Kaj kupuje Homer Simpson poleg plenic?

- □ Odgovor:
 - Če kupuješ plenice imaš doma verjetno otroka
 - Ker imaš otroka, verjetno ne hodiš dosti v ven
 - Izkaže se, da poleg plenice kupuješ pivo

Motivacija

Kaj kupuje Homer Simpson poleg plenic?

□ Posledica:

- V trgovinah imamo skupaj pivo in plenice
- Plenice daš v akcijo in dvigneš ceno piva
- Lahko damo v akcijo tudi pivo?

Vsebina

□ Opisna statistika

□ Asociacijska pravila

□ Apriori algoritem

□ Iskanje opisnih (meta) podatkov

- □ Statistični povzetki:
 - Srednje (pričakovane) vrednosti
 - Spremenljivost (disperzija)

- Običajno izdelamo iz histograma
 - Rešujemo problem volumna

- □ Osnovni podatki:
 - $\square N =$ Število elementov
 - \square Min n = Najmanjši element
 - \square Max n = Največji element
 - Razpon vrednosti $n \in [Min \ n, Max \ n]$
- \square Histogram H[k] = število elementov v košu k
 - $\square K =$ število košev
 - □ k ∈ [0, K-1]

□ Kako določiti število košev K?

$$\blacksquare K = \frac{Max \, n - Min \, n}{h}, \text{ kjer je } h \text{ velikost koša}$$

$$\blacksquare K = \sqrt{n}$$

Normalna porazdelitev običajno

$$k = \lceil \log_2 n \rceil + 1,$$

Izboljšava za nenormalno porazdelitev

$$k=1+\log_2(n)+\log_2igg(1+rac{|g_1|}{\sigma_{g_1}}igg)$$

□ Povprečje na osnovi histograma

$$\bar{n} = \frac{\sum_{k=0}^{K} k * H[k]}{\sum_{k=0}^{K} H[k]}$$

 \square Pričakovana vrednost = arg max H[k]

□ Kako izračunamo mediano?

□ Standardni odklon

$$\bar{n} = \sqrt{\frac{\sum_{k=0}^{K} k * (H[k] - \bar{n})}{\sum_{k=0}^{K} H[k]}}$$

□ Spremenljivost

$$m_{1} = \frac{\sum (x_{i} - \bar{x})}{N}$$

$$m_{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{N}$$

$$m_{3} = \frac{\sum (x_{i} - \bar{x})^{3}}{N}$$

$$m_{4} = \frac{\sum (x_{i} - \bar{x})^{4}}{N}$$

Asimetrija (skewness)

$$b_1 = \frac{m_3}{s^3} = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^3}{\left[\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2\right]^{3/2}} ,$$

□ Spremenljivost

$$m_{1} = \frac{\sum (x_{i} - \bar{x})}{N}$$

$$m_{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{N}$$

$$m_{3} = \frac{\sum (x_{i} - \bar{x})^{3}}{N}$$

$$m_{4} = \frac{\sum (x_{i} - \bar{x})^{4}}{N}$$

Sploščenost (kurtosis)

$$g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^4}{\left(\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2\right)^2} - 3$$

Model trgovine in nakupovalnega vozička

Množica pogosto kupljenih izdelkov

- Velik nabor artiklov
- □ Velik nabor nakupovalnih vozičkov
 - V vsakem vozičku malo artiklov
- □ Katere artikli so "pogosto" kupljeni?
 - □ Podorno število množice /

$$sup(I) = \frac{\check{s}t. vozi\check{c}kov v katerih je I}{\check{s}t. vseh vozi\check{c}kov},$$

Podporna pragovna vrednost s določa množico pogosto kupljenih izdelkov

- Množica artiklov = {marelice, češnje, pomaranče, breskve, jagode}
- □ Podporna pragovna vrednost s = 33%, približno 3

$$B_1 = \{m,c,b\}$$
 $B_2 = \{m,p,i\}$
 $B_3 = \{m,b\}$ $B_4 = \{c,i\}$
 $B_5 = \{m,p,b\}$ $B_6 = \{m,c,b,i\}$
 $B_7 = \{c,b,i\}$ $B_8 = \{b,c\}$

- □ Kateri so pogosti artikli:
 - □ {m}, {c}, {b}, {i},
 - □ {m,b}, {b,c}, {c,i}

Formalizacija

□ Iščemo "if-then" relacije

$$\{i_1, i_2, ..., i_k\} \rightarrow j$$

 $l \rightarrow j, če = \{i_1, i_2, ..., i_k\}$

□ Zaupanje:

$$conf(I \rightarrow j) = \frac{\sup(I \cup j)}{\sup(I)} = P(j|I)$$

 \square Kakšno je zaupneje v pravilo $\{m,b\} \rightarrow c$?

Formalizacija

□ Iščemo "if-then" relacije

$$\{i_1, i_2, ..., i_k\} \rightarrow j$$

 $l \rightarrow j, če = \{i_1, i_2, ..., i_k\}$

□ Zaupanje:

$$conf(I \rightarrow j) = \frac{\sup(I \cup j)}{\sup(I)} = P(j|I)$$

□ Kakšno je zaupneje v pravilo $\{m,b\} \rightarrow c$? $conf(\{m,b\} \rightarrow c) = 50\%$

Naivni Algoritem

- Zanimajo nas vsa asociativna pravila, ki imajo podporo večjo od s in zaupanje večje kot c
- □ Osvnovna ideja, če ima I podporo s, potem ima pravilo $I \rightarrow i$ podporo, ki je vsaj cs. Zato:
 - A vsebuje vse množice, ki imajo podporo vsaj cs
 - \blacksquare B vsebuje vse množice, ki imajo vsaj s (tako $A \subseteq B$)
 - $\blacksquare B \setminus A$ definira pravila
 - Poiščimo torej tiste množice, ki so v B in jih ni v A ter ugotovimo kateri element jim manjka
- □ Ne pozabimo, problem je Big Data!

Naivni Algoritem

- Problem iskanja asociativnih pravil je enak problemu iskanja pogosto kupljenih artiklov
 - Zahteva uporabo DAM!
- □ Prešteti moremo vse množice s podporo cs
 - V bistvu histogram
- □ Štetje zahteva:
 - Izvedbo trikotna matrike
 - Izvedbo seznama parov

Apriorni algoritem

Množica artiklov ne more biti pogosta, če vse njene podmnožice niso pogoste!

Časovna zahtevnost algoritma je enaka podpornemu

številu, ki ga iščemo!

□ Postopno filtriranje glede na dedukcijo!ⓒ

Monotonost (matematično):

$$\forall x, y: x \le y \Rightarrow f(x) \le f(y)$$

Praktično: če se par artiklov pojavi v s nakupovalnih vozičkih, se vsak izmed para artiklov sam pojavi vsaj s-krat.

Apriorni algoritem

- □ Z drugimi besedami: če se artikel ne pojavi v vozičku vsaj s-krat, potem se tudi noben izmed njegovih parov ne:
 - □ <u>Prehod 1</u>: Preštejemo število pojavitev vsakega artikla in brišemo vse, ki se ne pojavijo vsaj s-krat
 - Generiramo seznam kandidatov parov pogosto kupljenih artiklov
 - <u>Prehod 2</u>: Preštejemo kolikokrat se pojavijo pari pogosto kupljenih artiklov (vse filtrirane preskočimo) in zopet filtriramo.
 - Generiramo seznam trojic pogosto kupljenih artiklov.

Apriorni algoritem

- □ Generiranje trojic pogosto kupljenih artiklov:
 - □ Izberemo par, iz katerega želimo generirati trojice
 - Izberemo drugi par, ki vsebuje vsaj en element, v prvem paru
 - Dobimo tretji element, ki definira trojico.

- Množica artiklov =
 {marelice, češnje,
 pomaranče, breskve,
 jagode}
- Podporna pragovna vrednost s = 3 in c=50% $B_1 = \{m,c,b\} B_2 = \{m,p,j\}$ $B_3 = \{m,b\} B_4 = \{c,j\}$ $B_5 = \{m,p,b\} B_6 = \{m,c,b,j\}$ $B_7 = \{c,b,j\} B_8 = \{b,c\}$

- □ Korak 1:
 - \square sup($\{m\}$)=5
 - \square sup($\{c\}$)=5
 - \square sup($\{p\}$)=2
 - \square sup($\{b\}$)=5
 - \square sup($\{i\}$)=4
- □ Filtriranje
 - **□** {m,c,b,j}

- Množica artiklov =
 {marelice, češnje,
 pomaranče, breskve,
 jagode}
- Podporna pragovna vrednost s = 3 in c=50% $B_1 = \{m,c,b\} B_2 = \{m,p,j\}$ $B_3 = \{m,b\} B_4 = \{c,j\}$ $B_5 = \{m,p,b\} B_6 = \{m,c,b,j\}$ $B_7 = \{c,b,j\} B_8 = \{b,c\}$

- □ Filtriranje
 - **□** {m,c,b,j}
- □ Generiramo pare:
 - \square sup($\{m,c\}$)=2
 - \square sup($\{m,b\}$)=4
 - \square sup($\{m,j\}$)=2
 - \square sup($\{c,b\}$)=4
 - \square sup($\{c,j\}$)=3
 - \square sup($\{b,j\}$)=2

- Množica artiklov = {marelice, češnje, pomaranče, breskve, jagode}
- □ Podporna pragovna vrednost s = 3 in c=50% $B_1=\{m,c,b\}$ $B_2=\{m,p,i\}$ $B_3=\{m,b\}$ $B_4=\{c,i\}$ $B_5=\{m,p,b\}$ $B_6=\{m,c,b,i\}$

 $B_7 = \{c,b,j\}$ $B_8 = \{b,c\}$

- □ Generiramo pare:
 - \square sup($\{m,c\}$)=2
 - \square sup($\{m,b\}$)=4
 - \square sup($\{m,j\}$)=2
 - \square sup($\{c,b\}$)=4
 - \square sup($\{c,j\}$)=3
 - \square sup($\{b,j\}$)=2
- □ Filtriranje
 - Število parov je 6
 - □ Prag = 3

- Množica artiklov =
 {marelice, češnje,
 pomaranče, breskve,
 jagode}
- Podporna pragovna vrednost s = 3 in c=50% $B_1 = \{m,c,b\} B_2 = \{m,p,j\}$ $B_3 = \{m,b\} B_4 = \{c,j\}$ $B_5 = \{m,p,b\} B_6 = \{m,c,b,j\}$ $B_7 = \{c,b,j\} B_8 = \{b,c\}$

- □ Filtriranje
 - \square sup($\{m,b\}$)=4
 - \square sup($\{c,b\}$)=4
 - \square sup({c,i})=3
- □ Izračunamo trojice
 - sup({m,b,c})=2
 - \square sup($\{c,b,j\}$)=2