Project Task: AI Crypto Hedge Fund

Introduction

Objective

Assignment

Project Future

Part 1: Crypto Hedge Fund Concept Presentation

Hedge Fund Model

Risk Management

Portfolio Management

System Architecture

Evaluation Criteria

Part 2: Hedge Fund Technical Implementation

Baseline Strategy for a Single Cryptocurrency

Adding AI Agents

Portfolio Management on Historical Data

Dynamic Portfolio Rebalancing

Portfolio Expansion

Evaluation Criteria

Introduction

Objective

Develop a concept, technical design, and MVP implementation for an AI agent-based automated cryptocurrency trading and risk management system.

Assignment

This assignment consists of two parts:

• Part 1 – Conceptual Presentation:

A more theoretical section focused on your understanding of cryptocurrencies, trading systems, and AI-agent system architecture.

• Part 2 – Technical Implementation:

A hands-on coding task where you will demonstrate your technical skills, including programming, system development, agent-based interaction, backtesting, and

automated trading system validation.

The two parts should be closely integrated and reflect a coherent vision.

Project Future

This project has the potential to be fully automated, executing trades across multiple centralized exchanges via APIs.

Future enhancements could include:

- **Telegram Integration:** A bot interface to display portfolio statistics, close trades manually, or adjust parameters in real time.
- Data Source Expansion: Incorporate external data sources like news feeds and sentiment analysis.

Part 1: Crypto Hedge Fund Concept Presentation

This section requires a presentation that integrates two domains: **cryptocurrencies** and **AI-driven trading bots**.

In this section, you are required to create a presentation that outlines your vision for a cryptocurrency hedge fund. It should include the following four sections:

- Hegde Fund Model
- Risk Management
- Portfolio Management
- System Architecture

Prepare a professional presentation (up to 10 slides) covering the following four sections (recommended 2–3 slides per section).

Hedge Fund Model

Describe your vision for the structure of an AI-powered cryptocurrency hedge fund.

Sample guiding questions:

- Can classical technical indicators be used in this system?
- Which types of machine learning algorithms are applicable?
- What is the role of AI in trade decision-making? Which AI agents can be used?
- How should multiple AI agents or ML models interact with each other?

Risk Management

How can risk management be handled using AI?

Sample guiding questions:

- Which risk metrics will you monitor?
- How can AI help mitigate losses during high-volatility periods?
- What methods for estimating volatility and liquidity would you employ?

Portfolio Management

Discuss existing portfolio theories, their core principles, and how (or whether) AI should be used to implement them.

Sample guiding questions:

- What is an optimal portfolio?
- Which metrics will guide portfolio optimization?
- How will you manage and rebalance the portfolio over time?

System Architecture

Design and explain a block diagram of your crypto hedge fund's system architecture, including AI agents.

Requirements:

- Must include modules for: data collection, AI agents for signal generation, order execution, monitoring, risk management, and portfolio management.
- Clearly describe interactions between modules.

Evaluation Criteria

- All four sections must be addressed.
- Depth of theoretical understanding is expected.
- Each design choice must be justified with clear rationale.
- Presentation design is not the primary criteria, but it should be clear, clean, and not textheavy.

Part 2: Hedge Fund Technical Implementation

Develop a working codebase for the crypto hedge fund system. The implementation should cover the following five levels:

- 1. Baseline strategy for a single cryptocurrency
- 2. Strategy using econometric models, machine learning models, and AI agents for a single cryptocurrency
- 3. Portfolio management of a small number of cryptocurrencies based on historical data
- 4. Portfolio management of a small number of cryptocurrencies with dynamic rebalancing
- 5. Portfolio management of a large number of cryptocurrencies with dynamic rebalancing

You are expected to conduct backtesting on out-of-sample data — i.e., data not used during training. It is recommended to split the data into train/test sets. All evaluations should include both performance and risk metrics. The tests must be reproducible.

Technical Requirements:

• The project must be hosted on a public GitHub or GitLab repository

- The code should be modular
- The code must be reproducible; use of tools like poetry or uv is expected; Docker is a plus
- All necessary data must be included in the project
- The final solution must be presented in a single, self-contained, and reproducible .ipynb notebook
- The solution should be structured according to the sections outlined in Part 2

Baseline Strategy for a Single Cryptocurrency

Implement a simple strategy (e.g., moving averages) on one crypto pair such as BTC/USDT. This will serve as your baseline.

Requirements:

- Report metrics like ROI, Sharpe Ratio, and Drawdown. Are there other useful metrics?
- Explain how this simple strategy can evolve into an AI agent.

Adding AI Agents

Enhance the previously implemented strategy by integrating AI agents, classical econometric time series models, and machine learning models. For now, apply this to a single trading pair (e.g., BTC/USDT).

Be sure to compare the performance of the different approaches.

Sample questions to address:

- What data will be used as features?
- What is the target variable?
- How will the model be trained and tested?
- How frequently should the model be retrained?

- Which metrics will you use to compare results? Why did you choose these metrics?
- How can you verify that the strategy's performance is not due to random chance?

Portfolio Management on Historical Data

Add 5–7 popular coins and perform static portfolio management based on historical data (last 12 months).

Requirements:

- Calculate portfolio metrics defined in Part 1.
- Find the optimal portfolio.
- Explain how results could be applied in real trading.

Dynamic Portfolio Rebalancing

Design an algorithm to adaptively rebalance the portfolio under changing market conditions.

Requirements:

- Describe rebalancing logic (e.g., time-based, weight deviation, signals).
- How would you select the most effective rebalancing strategy?

Portfolio Expansion

Expand your system to handle at least 100 cryptocurrency pairs. Consider how your hedge fund would be structured to operate efficiently when trading such a large number of pairs.

- How will you select trading pairs?
- How will you prioritize agent-generated signals?

- How will risk be managed (e.g., another agent? which metrics)?
- How will the portfolio be managed (AI-driven dynamic rebalancing)?
- How will the system be monitored (beyond trading KPIs)?
- How will you track long-term system quality?
- What fail-safes ("stop signals") will you implement in case AI agents behave unexpectedly?

Evaluation Criteria

- Project must run and be reproducible on other machines.
- Must include:
 - O Data preparation
 - O Model validation
 - O Strategy backtesting
 - O Result visualization & explanation
- Code quality, architecture, and documentation matter.
 - O "Spaghetti code" will be penalized.