# Econometria CEF y Proyección Lineal

Pasquini, Ricardo

Facultad Ciencias Empresariales Austral Universidad Austral

March 12, 2023

# CEF y Proyección Lineal

- Motivación: Descripción del ingreso en la población
- Funcion de Esperanza Condicional (CEF) y sus propiedades
- Varianza Condicional y Varianza del Error

## Ejemplo

Analizaremos la teoría junto al caso de los ingresos individuales en CABA.

#### Distribuciones Poblacionales

Supondremos Y proveniente de una población con una CDF

$$F(y) = Prob(Y \le y)$$

Supondremos factores explicativos como X₁, X₂, ..., Xk tambien como variables aleatorias con sus respectivas distribuciones.

# Distribución del ingreso - Densidad



## Distribución del ingreso - Densidad Acumulada



## Distribución del ingreso- Densidad Acumulada



## Distribucion del ingreso por sexo

¿Explica el sexo la distribución del ingreso? ¿Varía la distribución del ingreso de acuerdo al sexo?

- Lo inspeccionaremos gráficamente
- Utilizaremos el valor esperado condicional como una aproximación

# Distribucion del ingreso por sexo



## Distribucion del ingreso por sexo

Aproximación: Esperanza Condicional

$$E[Y|sexo = "hombre"] = 9.44$$
  
 $E[Y|sexo = "mujer"] = 9.13$ 

. mean logingreso, over(sexo)

Mean estimation Number of obs = 10,113

varon: sexo = varon
mujer: sexo = mujer

| Over                         | Mean                          | Std. Err.                     | [95% Conf.           | Interval]            |
|------------------------------|-------------------------------|-------------------------------|----------------------|----------------------|
| logingreso<br>varon<br>mujer | 9. <b>444</b> 136<br>9.136385 | .0117 <b>4</b> 93<br>.0120212 | 9.421105<br>9.112822 | 9.467167<br>9.159949 |

# Función de Esperanza Condicional (CEF)

► En general, es natural que para un valor de x estemos interesados en conocer el valor esperado. Lo definimos como:

$$E[Y|x] \equiv m(x)$$

Notar que puesto que x es una variable aleatoria entonces m(x) también es una variable aleatoria.

# Función de Esperanza Condicional (CEF)

Notemos que un modelo simple para explicar o predecir sería:

$$Y = m(x) + e$$

donde

$$e \equiv Y - m(x)$$

- ► Algunas propiedades del error *e*:
  - 1. E[e|x] = 0
  - 2. E[e] = 0

# Función de Esperanza Condicional (CEF)

Propiedades del error

$$E[e|x] = 0$$

$$E[e|x] = E[y-m(x)|x] = E[y|x]-E[m(x)|x] = m(x)-m(x) = 0$$

$$E[e] = 0$$
  $E[e] = E[E[e|x]] = E[0] = 0$ 

# Funcion de Esperanza Condicional

Aplicacion: Ingresos y Años de Escolaridad



#### Problema de Predicción

- ► La función CEF tiene una propiedad teórica interesante: provee la mejor predicción en un sentido específico.
- Supongamos que dado un vector de caracteristicas x queremos buscar una funcion g(x) que nos haga la mejor predicción posible sobre y. Una forma de definir mejor predicción, es pedir que minimice el error cuadrático esperado

$$E[(y-g(x))^2]$$

## Problema de Predicción

$$g(x) = E[y|x] \equiv m(x)$$
 como la solución

Se puede demostrar que la función que minimiza el error cuadrático medio es g(x) = E[y|x].

Proof.

$$E[(y - g(x))^{2}] = E[(e + m(x) - g(x))^{2}]$$

$$= E(e^{2}) + 2E(e(m(x) - g(x))) + E((m(x) - g(x))^{2})$$

$$= E(e^{2}) + E((m(x) - g(x))^{2}) > E(e^{2}) = E((y - m(x))^{2}) \quad \Box$$



## Problema de Predicción

$$g(x) = E[y|x] \equiv m(x)$$
 como la solución

- Una desventaja es que no siempre será fácil estimar E[y|x], por ejemplo por tener pocos datos para nuestro x de interés.
- ▶ Tampoco conocemos la forma funcional de E[y|x]

## Varianza Condicional

#### Nuestro objeto de interés es más que el valor esperado

▶ Definimos varianza condicional en general como:

$$Var(w|x) = E[(w - E[w|x])^2]$$

Se sigue que la varianza condicional del error del modelo CEF es la esperanza condicional del error al cuadrado:

$$\sigma^2(x) = Var(e|x) = E[(e - E[e])^2] = E[e^2|x]$$

Y definimos tambien el desvío estandar condicional:

$$\sigma(x) = \sqrt{E[e^2|x]}$$

Notar que la varianza del error *no-condicional* es el valor esperado de la varianza condicional

$$\sigma^2 = E[e^2] = E[E[e^2|x]] = E(\sigma^2(x))$$