Date: 12.01.2022 CODE: 100479.0 SET - A

FIITJEE Internal test PINNACLE 1ST YEAR (2021-2023)

PHASE-4 (JEEM-12)

Time: 3 hours Maximum Marks: 300

INSTRUCTIONS

A. Questions paper format:

- i) This question paper consists of 3 sections (Section 1 Maths, Section 2 Physics & Section 3 Chemistry) Each Section has 2 parts: PART A, PART D
- ii) PART A contains 20 multiple choice questions. Each question has 4 choices a, b, c and d, out of which are single answer correct.
- iii) PART D contains 5 numerical type questions. The answer to each of the questions is a decimal answer or numerical. THE ANSWER SHOULD HAVE ONLY UPTO 2 PLACES AFTER DECIMAL.

B. Marking scheme:

- i) For each question in PART- A, you will be awarded 4 Marks if you have darkened only the bubble corresponding to the correct answer and zero mark if no bubble is darkened. In all other cases, minus one (-1) mark will be awarded.
- ii) For each question in **PART- D**, you will be **awarded 4 marks** if you have darkened only the bubble corresponding to the correct answer and **zero mark** if no bubble is darkened. There is no negative mark for incorrect answer(s) for this section.

IMPORTANT DATA

Mass of an electron (m) = $9.1 \times 10^{-31} \text{ kg}$	Charge of an electron (e) = 1.6×10^{-19} coulombs
--	--

Avogadro's Number (N_a) = 6.023 x 10²³ Planck's constant (h) = 6.626 x 10⁻³⁴ Js

1 Faraday = 96500 Coulomb 1 Calorie = 4.2 joule

Atomic Masses: Cr = 52, Mn = 55, Fe = 56, Co = 59, Ni = 58.7, Cu = 63.5, Zn = 65.4, As = 75, Br = 80,

Kr = 83.8, Ag = 108, Sn=118.6,I = 127,Xe = 131, Ba = 137,Au= 197, Pb = 207, U=238

Enrollment No. :									
Batch :	 	 		 	 	 	 	 	
Name :	 								

SECTION – 1

Mathematics

PART - A

SINGLE ANSWER CORRECT:

- Let $f(x) = \begin{cases} 1+x, & x \in [0,2] \\ 3-x, & x \in (2,3] \end{cases}$. Suppose g(x) = f(f(x)) then 1.
 - a) g(x) is discontinuous only at x = 1
 - b) g(x) is discontinuous only at x = 2
 - c) g(x) is discontinuous at both x = 1 and x = 2
 - d) g(x) is continuous everywhere
- 2. Which of the following function is differentiable at x = 0?
 - a) |x|
- b) $|\sin x|$
- c) $\cos |x|$
- d) $\sin |x|$

- Let $f(x) = (\sin \pi x)|x-1||x-2|$. Then 3.

 - a) f(x) is Not differentiable at x = 1 b) f(x) is Not differentiable at x = 2
 - c) f(x) is Not differentiable at x = 0,1,2 d) f(x) is Differentiable everywhere
- $f(x) = \begin{cases} x^2 + ax + 1, & x \text{ is Rational} \\ ax^2 + 2x + b, & x \text{ is Irrational} \end{cases}$. If f(x) is continuous at x = 1 and x = 2. Then a4. and b equals
 - a) $a = \frac{1}{2}$, b = 0 b) a = 0, $b = \frac{1}{2}$ c) $a = b = \frac{1}{2}$ d) $a = \frac{1}{2}$, $b \in R$

- 5. If a function f(x) is differentiable at x = 2 then which is FALSE?
 - a) $\lim_{h\to 0} \frac{f(2+h)-f(2)}{h}$ must exist and is finite
 - b) $\lim_{h\to 0} \frac{f(2+h)-f(2-h)}{h}$ must exist and is finite
 - c) $\lim_{h \to 0} f(2+h) f(2) = 0$
 - d) $\lim_{h \to 0} f(2+h) f(2) \neq 0$

SET - A JUNIORS (2021-23) JEEM12- PH4 Date:12-01-22

- The number of points of Non-Differentiability of $f(x) = |x^2 + ex + \pi|$ is 6. a) 4
- If $f(x) = \begin{cases} \frac{x |x|}{x} & \text{, when } x < 0 \\ 5x^2 + a & \text{, when } 0 \le x \le 1 \\ b\left(\frac{x^2 1}{x^2 3x + 2}\right) & \text{, when } 1 < x < 3 \end{cases}$ is a continuous function on IR, then (a,b) = (a,b) = (a,b)
- Let $f: IR \to IR$ be the function defined by $f(x) = \begin{cases} 5 & \text{, if } x \le 1 \\ a + bx & \text{, if } 1 < x < 3 \\ b + 5x & \text{, if } 3 \le x < 5 \end{cases}$ then f is 8.
 - a) continuous if a = 5 and b = 5 b) continuous if a = 0, b = 5
 - c) continuous if a = -5, b = 10
- d) not continuous for any value of a and b
- If $f: R \to R$ is defined by $f(x) = \begin{cases} \frac{1 + 3x^2 \cos 2x}{x^2}, & \text{for } x \neq 0 \\ k, & \text{for } x = 0 \end{cases}$ is continuous at 9. x = 0, then k =c) 6 a) 1 b) 5 d) 0
- The value of $f(\pi)$ so that $f(x) = \frac{1 \cos 7(x \pi)}{x \pi}$ is continuous at the point $x = \pi$ is 10.
 - a) 0

- b) 1

SET - A JUNIORS (2021-23) JEEM12- PH4 Date:12-01-22

If $f: R \to R$ is defined by $f(x) = \begin{cases} \frac{\cos 3x - \cos x}{x^2} & \text{for } x \neq 0 \\ \lambda & \text{for } x = 0 \end{cases}$ and if f is continuous 11.

at x = 0, then $\lambda =$

- a) -2
- b) -4
- c) 6
- d) 8

Consider $f(x) = \frac{x^2}{|x|}$, $x \neq 0$, f(x) = 0, x = 012.

- a) f(x) is discontinuous at every $x \in R$ b) f(x) is continuous at every $x \in R$ c) f'(x) exists in (-1, 1) d) f'(x) exists in (-2, 2)

The function $f(x) = (x^2 - 1)|x^2 - 3x + 2| + \cos|x|$ is not differentiable at 13.

- a) -1

- c) 1
- d) 2

Let $f(x) = \min\{x, x^2\}$, for every real x. Then 14.

- a) f is continuous for all x
- b) f is differentiable for all x

c) $f'(x) = 0 \ \forall \ x > 1$

d) f is differentiable at 0, 1

If $f(x) = \frac{\sin(e^{x-2}-1)}{\ln(x-1)}$, $x \ne 2$ is continuous at x = 2, then f(2) =15.

a) 0

b) 2

c) 1

d) -2

If p and q are number of points of discontinuous and non-differentiable respectively, of 16. the function $f(x) = [2 + 3\sin x]$, where $x \in (-\pi, 2\pi)$, then the value of p + q is (where [x] is GIF)

- a) 34
- b) 32
- c) 30
- d) 28

- If $f(x) = \begin{cases} e^x & \text{for } x < 1 \\ a bx & \text{for } x \ge 1 \end{cases}$ is differentiable for $x \in R$, then 17.
 - a) a = 1, b = e 1
- b) a = 0, b = e
- c) a = 0, b = -e d) a = e, b = 1
- Which of the following statements are TRUE about a function $f: R \to R$ 18. (where $a \in R$)
 - a) f is continuous at $x = a \Rightarrow f$ is differentiable at x = a
 - b) f is differentiable at $x = a \Rightarrow f$ is continuous at x = a
 - c) f is not differentiable at $x = a \Rightarrow f$ is not continuous at x = a
 - d) f is not continuous at $x = a \Rightarrow f$ is differentiable at x = a
- The number of non-differentiable points of $f(x) = |\sin 2x|$ where $x \in (0, 2\pi)$ is 19. a) 0
- f(x) = x + |x|. Then f is 20.
 - a) Differentiable at all $x \in R$
 - b) Differentiable at all $x \in R$ except at one point
 - c) Differentiable at all $x \in R$ except at two points
 - d) Differentiable at all $x \in R$ except at three points

PART - D

NUMERICAL ANSWER TYPE:

- 1. If the function $f: IR \to IR$ defined by $f(x) = \begin{cases} a\left(\frac{1-\cos 2x}{x^2}\right) & \text{, for } x < 0 \\ b & \text{, for } x = 0 \text{ is } \\ \frac{\sqrt{x}}{\sqrt{4+\sqrt{x}}-2} & \text{, for } x > 0 \end{cases}$ continuous at x = 0, then a + b = k, then the value of $\frac{20k}{9}$ is
- 2. The number of points in the interval (0, 2) at which $f(x) = |x 0.5| + |x 1| + \tan x$ is not differentiable is p then the value of $\frac{20p}{8}$ is
- 3. Define $f(x) = \begin{cases} x^2 + bx + c & , x < 1 \\ x & , x \ge 1 \end{cases}$. If f(x) is differentiable at x = 1, then (b-c) = -p, then the value of p^5 is
- 4. The number non-differentiable points of the function $f(x) = [\sin x]$ in the interval $(0,4\pi)$ is
- 5. Number of non-differential points of the function $f(x) = \left\{ \frac{x}{2} \right\}$ in the interval (0,100) is

SECTION – 2

Physics

PART - A

SINGLE ANSWER CORRECT:

Three rods of identical dimensions have thermal conductivities 3k, 2k and k, their arrangement and temperatures are shown. Temperature at their junction is

- a) $\frac{200}{3}$ °C b) $\frac{200}{4}$ °C c) $\frac{200}{5}$ °C

2. A semicircular rod is joined at its ends to a rod of same material and same crosssectional area. Their junctions are maintained at different temperatures. The ratio of heat current through then is

- a) 1: π
- b) $\pi:1$
- c) $2:\pi$
- d) $\pi:2$

A rod of length 1 m, cross sectional are $4 cm^2$ and thermal conductivity 42 J/ms °C is 3. used to melt ice. One end of the rod is placed in boiling water and other in ice. The mass of ice melt in one day is

- a) 216 g
- b) 432 g
- c) 648 g
- d) 864 g

Two spheres of same material and radius 1:4 has surface temperatures in the ratio 4. 2:1. The ratio of their power radiation is

- b) $\frac{1}{2}$
- c) 1

d) 4

5. A body cools from 50°C to 40°C in 5 min in a surrounding of 20°C. Temperature of the body after another 5 min would be about

- a) $\frac{100}{6}$
- b) $\frac{100}{3}$
- c) 200
- d) $\frac{200}{3}$

Two stars has maximum spectral emissive power at wavelengths 4000 A° and 5000 A°. 6. Ratio of their surface temperatures is

- a) 4:5
- b) 5:4
- c) 16:25
- d) 25:16

JUNIORS (2021-23) JEEM12- PH4 **SET – A** Date:12-01-22

7.	A metal sphere of radius 10 cm, emissivity 0.1 and temperature 127°C is placed in a surrounding of temperature 27°C. The initial rate of loss of heat by the sphere is								
	a) 3 W	b) 7.5 W	c) 12.5 W	d) 19 W					
8.		ool a liquid from 70°C taken to cool it to 50°C	C to 60°C in a surroun	ding of 30°C. The					
	a) 5 min	b) 6 min	c) 7 min	d) 8 min					
9.	K, with the hel	lp of a power source	of 210 W. When the	n evacuated chamber at 300 metal sphere is completely me temperature. Emissivity					
	a) 0.3	b) 0.4	c) 0.5	d) 0.6					
10.	•		m 60°C to 55°C wl l down from 55°C to c) 50 s	nen weather temperature is 50°C is about d) 60 s					
11.	1 : 2. If temperathrough them is	ature difference along	their lengths is same, t	: 1 and ratio of diameters is hen the ratio of heat current					
	a) 1:1	b) 1:2	c) 1:4	d) 1:8					
12.	Two identical rods, when welded in series, carry 20 cal of heat at a particular temperature difference. If they are now welded in parallel, then the time taken to carry same amount of heat at same temperature difference is								
	a) 1 min	b) 2 min	c) 4 min	d) 8 min					
13.	A wall of two layers of same thickness has ratio of conductivity $2:1$. At steady state, temperature difference across the wall is $36^{\circ}C$, then temperature difference across the layer of higher conductivity is								
	a) 6°C	b) 12°C	c) 18°C	d) 24°C					
14.	A slab consists of two parallel layers of copper and brass of same thickness having ratio of thermal conductivities 4:1. If free face of copper and brass are kept at 0°C and 100°C respectively then temperature of the interface is								
	a) 20°C	b) 40°C	c) 60° C	d) 80°C					
	u) 20 C	,	,	,					
		ROUC	GH WORK						

JUNIORS (2021-23) JEEM12- PH4 **SET – A** Date:12-01-22

15.	It takes 6 h to grow ice from 0 to 1 cm on a lake when atmospheric temperature -10° C. The time taken to grow thickness of ice from 1 cm to 2 cm is								
	a) 6 h	b) 12 h	c) 18 h	d) 24 h					
16.	2:3. The first rod	as of two rods is 1 : 2 at is heated through 60°C heated so that its expansion	C . Find the temperatu	are through which the					
	a) 60°C	b) 40°C	c) 30°C	d) 10°C					
17.	A wire of length 60 cm is bent into a circle with a gap of 1 cm at its ends. On heating it by 100° C, the length of the gap increases to 1.02 cm. α of material of wire is								
	a) $2 \times 10^{-4} / {}^{\circ}\text{C}$	b) $4 \times 10^{-4} / {}^{\circ}\text{C}$	c) $6 \times 10^{-4} / {}^{\circ}\text{C}$	d) $1 \times 10^{-4} / {}^{\circ}\text{C}$					
18.		A metal metre scale gives correct measurement at $0^{\circ}C$. It is generally used at a temperature of $40^{\circ}C$. The correction to be made for every metre is ($\alpha = 10^{-6}/1^{\circ}C$)							
	a) 4×10^{-5} m		b) 4×10^{-5} m to b	e added					
	c) 4×10^{-5} m must	be deducted	d) None of the ab	ove					
19.	A metal rod has a length of 1 m at $30^{\circ}C$. α of metal is $2.5\times10^{-5}/^{\circ}C$. The temperature at which it will be shortened by 1 mm is								
	a) -30°C	b) -40°C	c) -10°C	d) 10°C					
20.	Density of a substa	•	a/c.c. and at 100°C is	10 gm/c.c. coefficient of					
	a) 0.0006/°C	b) 0.0004/°C	c) 0.0003/°C	d) 0.0002/°C					
		ROUGH W	ORK						

SET - A JUNIORS (2021-23) JEEM12- PH4 Date:12-01-22

PART - D

NUMERICAL ANSWER TYPE:

- 1. Three metal rods of same lengths and same area of cross section having conductivities 1, 2, 6 units are connected in series. Then their effective conductivity will be x units, the value of x is
- A body takes 8 minutes to cool from 90°C to 80°C in a surrounding of temperature 2. 25°C. The time taken by it to cool from 80°C to 70°C in the same surroundings is in minutes
- 3. If the co-efficient of cubical expansion is x times co-efficient of superficial expansion then the value of x is
- Up on heating, the length of the side of a cube changes by 2%. The volume of cube 4. changes by x %, the value of x is
- 5. In steady state condition, the temperatures at the two ends of a metal rod of length 25 cm are 100°C and 0°C. Then temperature at a point 8 cm from the hot end is __ °C

----- ROUGH WORK -----

FIITJEE VIZAG Centre, #49-52-5, Santhipuram, Sankaramatam Road, Visakhapatnam-530016 Ph:0891-2555501,02,03 FIITJEE VIZAG Centre # 1-9-4, 1-9-4/2 to 1-9-4/5, Sector-1, MVP Colony, Visakhapatnam - 530 017. Ph:0891-2555501,02,03 10

SECTION - 3

Chemistry

PART - A

SINGLE ANSWER CORRECT:

1. How many different alkenes are formed when 2 – chlorobutane is treated with ethanolic solution of KOH?

a) 1

b) 2

c) 3

d) 4

2. What is the major dehydration product for the following reaction:

3. Which of the following compounds will lose optical activity after the reaction.

a)
$$+ Pd/BaSO_4 \xrightarrow{H_2}$$

b) $C = C - CH_3 \xrightarrow{Na} \xrightarrow{NH_3 (l)}$

c) $C = C - CH_3 + Pd/BaSO_4 \xrightarrow{H_2}$

d) $CH_3 - C = C - CH_2 \xrightarrow{C} C - CH_3 \xrightarrow{Na} \xrightarrow{(NH_3(l))}$

4. In which of the following reactions only single isomer of alkene is formed?

a)
$$C_6H_5$$
— CH_2 — CH_2 — Br $\stackrel{KOH}{\longrightarrow}$ ethanol

b)
$$C_6H_5$$
— CH_2 — CH — C_2H_5 KOH ethanol

5. Consider the following reaction

$$\begin{array}{ccc} \text{Br} & \text{CH}_3 & & \text{KOH} \\ & & & \text{ethanol} \end{array} \quad \text{Alkene}$$

The correct statement concerning product of the above reaction is

- a) only single alkene is formed
- b) a pair of geometrical isomers are formed
- c) a pair of enantiomers in equal amounts is formed
- d) a pair of diastereomers in equal amount is formed

6. Which of the following reactions cannot produce an alkene

a)
$$CH_3$$
— CH_2 — OH — $Conc. H_2SO_4$

b)
$$CH_3$$
— CH_2 — OH — AI_2O_3

c)
$$CH_3$$
— C — CH_3 $(Ph_3)_3P$ = CH_2

d)
$$\begin{array}{c}
Br \\
C_2H_2O'Na^+\\
\Delta
\end{array}$$

7. What is the major product of the reaction given below:?

meso – 2, 3 – dichlorobutane +Na
$$I_{(aq)}$$
 $\xrightarrow{acetone}$

- a) cis 2 butene
- b) 1, 3 butadiene
- c) trans -2 butene d) 1 butene

JUNIORS (2021-23) JEEM12- PH4 **SET - A** Date:12-01-22

8. Which of the following is not the product of dehydration of

a)
$$b$$
 c d

9. In the reaction below X is

Neopentyl alcohol $\xrightarrow{H_2SO_4} X$

a) 2 – methyl pentane

b) 2 - methyl pent - 2 - ene

c) 2 - methylbut - 2 - ene

d) Neopentane

10. Which of the following reactions is incorrect for Kolbe's electrolysis?

a)
$$H_2C$$
— COO^*K^+ (aq)

b) COO^*Na^+

c) COO^*K^+

(eq)

 COO^*K^+

d) COO^*K^+

11. The main product of the following reaction is

$$C_6H_5CH_2CH(OH)CH(CH_3)_2 \xrightarrow{Conc. H_2SO_4}$$

a) $C_6H_5CH_2CH_2$ $C=CH_2$

- C_6H_5 C=C $CH(CH_3)_2$
- c) $C_6H_5CH_2$ C=C CH_3
- d) C_6H_5 C=C H

12. Trans 2 – Phenyl – 1 – bromo cyclopentane on reaction with alcoholic KOH produces.

- a) 4 phyenyl cyclopentene
- b) 2 phenyl cyclopentene
- c) 1 phenyl cyclopentene
- d) 3 phenyl cyclopentene

14. Which of the following statements is incorrect?

- a) $3^{\circ}R X > 2^{\circ}R X > 1^{\circ}(R X)$ [E₁ (or) E₂]
- b) rate $\propto \lceil R X \rceil$ (Unimolecular elimination)
- c) rate $\propto [R X] [OH^-]$ (Bimolecular elimination)
- d) $I^- < Br^- < Cl^-$ (Leaving ability)

15.
$$CH_3$$
 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_6 CH_7 CH_8 $CH_$

16. Which of the following reaction is incorrect?

a)
$$CH_3 - CHBr_2 + 2Zn + Br_2CH - CH_3$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$
b)
$$RaNH_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_2$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_3$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_3$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_3$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_3$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_3$$

$$CH_3 - CH = CH - CH_3 + 2ZnBr_3$$

$$CH_3 - CH = CH - CH_3$$

CH₂OH

H₃C

17. The major product obtained in acid catalyzed dehydration is

18. Which of the following reaction cannot produce propene as one of the important organic product?

a)
$$H_3C$$
— C — $CH_3 + Zn(Hg)$ \xrightarrow{HCl}

b)
$$H_3C$$
— CH_2 — CH_2 — $N(CH_3)_3Br$ — $AgOH$ Δ

d)
$$_{H_3C}$$
—CHO + $(C_6H_5)_3P$ —CH₂ — Δ

19. Which of the following reaction produce saytzeff product as major?

b)
$$H_3C$$
— CH_3 Br CH_3 CH_2 — CH — CH_3 CH_3 CH_3

d)
$$H_3C$$
— CH_2 — CH_2 —Br $C_2H_5O^-Na^+$

- 20. Correct statement for E₂ reaction is
 - a) It is two step process
 - c) Weak base is favourable
- b) Rearrangement is possible
- d) It is one step concerted process

PART - D

NUMERICAL ANSWER TYPE:

1. How many of the following alcohols can undergo dehydration faster than C_2H_5OH .

2. How many of the following reactions are produce alkene?

1)
$$H_3C \stackrel{\text{H}_2C \longrightarrow \text{CH}_3}{\mid}$$
 Conc. $H_2SO_4 \longrightarrow$ Δ

2)
$$H_3C$$
— CH_2 — CH_2 — CH_2 — OH — OH — A

3)
$$H_3C$$
— CH_2 — OH — $Conc. H_2SO_4
 $\Delta$$

4)
$$H_3C$$
— CH_2 — CH_2 — CH_3 — Δ
 H_2C — CH_3

5) Conc.
$$H_2SO_4$$

6)
$$CH_3$$
 CH_3 $Conc. H_2SO_4$ Δ

7)
$$H_3C$$
— CH_2 — CH_2 — CH — CH_3 — KOH
 Δ

8)
$$C_2H_5O'Na^+$$
 Δ

9)
$$H_3C$$
— CH_3 CH_3

3. How many of the following statements is/are correct?

$$c < b < a$$

$$Br$$

$$ROH$$

$$\Delta$$

$$Br$$

$$\Delta$$

$$Br$$

$$\begin{array}{c|c} & & & \\ & & & \\ Br & & & \\ & & & \\ Br & & \\ & & & \\$$

e)
$$H_3C$$
— C —OH $\frac{20\% \text{ Conc. } H_2SO_4}{85 - 90^{\circ}\text{C}} \rightarrow H_3C$ — C — $CH_2 + H_2O$

f)
$$H_3C$$
— CH — CH_3 $\frac{Conc. H_2SO_4}{100^{\circ}C}$ \Rightarrow H_3C — CH = CH_2 + H_2O

4.
$$H_3C \longrightarrow CH_2 \xrightarrow{\bigoplus_{O}} N \longrightarrow CH_3 \xrightarrow{\Delta} X$$
 is alkene. Find $Y = \frac{M.W \text{ of } X}{7} + 11.28$.

5.
$$H_3C$$
— CH — CH_3 $Conc. H_2SO_4$ $X + H_2O$ (alkene)

Br
$$CH_3$$
 alcoholic KOH \rightarrow Y \rightarrow KBr + H_2O \rightarrow (major)

No. of αH hydrogen in X (major) + No. of α hydrogen in Y (major) + 0.58