8.2 Motion Planning with Potential Fields

January 14, 2021

1 8.2 Motion Planning with Potential Fields - Moving in the mall

After implementing the SLAM algorithm, the robots provided by **UMA-MR** are able to simultaneously build maps of the malls and localize themselves within them. However, the **managers at Nirvana** are looking for a fully operational robot, and something is still missing: the navigation between any two points in the malls. These points could be, for example, an information point, a shop entrance or a shop counter, a rescue point, a restaurant, etc.

From previous developments, our team has an algorithm able to find a sequence of waypoints between the start point and the goal one, that is, to plannify a **global navigation**. So **our mission here** is to develop an algorithm able to command the robot to safely navigate from a start waypoint to a (close) goal one, that is, to carry out **local reactive navigation**.

The image below shows an sketch of the restaurants area in the **Nirvana mall**, along with an example of global navigation (blue waypoints and dotted lines) between the information point and the *Dino's* restaurant. In that example, the green dotted lines correspond to the trajectory followed by a local reactive navigation avoiding obstacles in the waypoints path.

1.1 8.2.1 Formalizing the problem

The **reactive navigation** (or **local navigation**) has the objective of moving towards a close destination while avoiding obstacles. For that, it is available sensor data within a specific *look-ahed* as well as the goal point (**inputs**), being the reactive navigation method in charge of producing motor commands (**outputs**) to safely reach such goal.

In this way, reactive navigation methods **does not require neither any kind of map of the environment nor memory of previous observations**. In practice, the last requirement usually arises since in some situations it could be useful to also consider the last sensor observations (e.g. while crossing a door).

Finally, reactive navigation techniques **must run very fast** (i.e. real time or close to it) in order to safely reach the goal point. If not, dynamic obstacles or deprecated motion commands could lead the robot to crash!

In summary:

```
reactive_navigation(current_location, target_location, sensor_readings)
    # Method computations ... so fast!
    return (v_l,v_r) # Motor actuation
```

1.2 8.2.2 Potential Fields

Potential Fields is a popular and simple technique for carrying out reactive navigation. It consist of defining a **potential (energy) function** over the free space in the robot workspace, which has a **global minimum** at the goal and a maximum at obstacles. Then, in each iteration of the algorithm, the robot moves to a lower energy configuration, similar to a a ball rolling down a hill. To carry out such navigation the robot applies a force proportional to the **negated gradient of the potential field** (recall that the gradient always go in the direction in which the signal increases, and the robot pursues a lower energy, so it has to use the negated gradient).

The **potential (energy) function** defines a **potential field** over the workspace. For each robot position *q* in such workspace, the energy function is computed as:

$$U(q) = U_{att}(q) + U_{rep}(q)$$

where:

• $U_{att}(q)$ is the **atractive potential field**, which is retrieved by:

$$U_{att}(q) = \frac{1}{2} K_{att} \rho_{goal}^2(q)$$

being ρ_{goal} the distance from the robot to the goal: $\rho_{goal}^2 = ||q - q_{goal}||^2$ and K_{att} a given gain, so this potential is higher for far distances,

• and $U_{rep}(q)$ is the **repulsive potential field**, computed as:

$$U_{rep}(q) = egin{cases} rac{1}{2} K_{rep} (rac{1}{
ho(q)} - rac{1}{
ho_o})^2 & ext{if }
ho(q) <
ho_o \ 0 & ext{if }
ho(q) \geq
ho_o \end{cases}$$

being ρ_o a given distance threshold, so obstacles far away from the robot does not influence the potential field, and $\rho(q)$ the distance from the robot to the object.

Having defined such potential field, it can be computed a **force field** at the robot position F(q) (a two-element vector) as the gradient of the previous one:

$$F(q) = -\nabla U(q) = -\nabla U_{att}(q) - \nabla U_{rep}(q) = \begin{bmatrix} \partial U/\partial x \\ \partial U/\partial y \end{bmatrix}$$

Where: $-\nabla U_{att}(q)$ is also called the **attractive force** and $-\nabla U_{rep}(q)$ the **repulsive force**, so $F(q) = F_{att}(q) + F_{rep}(q)$.

Finally, the **robot speed** ($\mathbf{v}_{\mathbf{x}},\mathbf{v}_{\mathbf{y}}$) is set proportional to the force F(q) as generated by the field.

The picture below illustrates all the elements in the computation of F(q) (F_{total} in the image, r represents ρ):

Repulsive force

Attractive force

$$F_{\rm att} = -k_{\rm att} \Delta_{\rm goal}$$

$$F_{\it total} = F_{\it att} + F_{\it rep}$$

1.3 8.2.3 Developing the Potential Fields method for Reactive navigation

It's time to develop our own Potential Fields method! For that, you first need to obtain the sum of the forces that apply at a certain robot position, computing for that the attractive and repulsive forces (recall that $F(q) = F_{att}(q) + F_{rep}(q)$). Then, the total force can be retrieved, and it can be used to apply velocities to the robot wheels!

```
[1]: # IMPORTS
import numpy as np
from numpy import random
from scipy import linalg
import matplotlib
```

```
matplotlib.use('TkAgg')
from matplotlib import pyplot as plt

import sys
sys.path.append("..")
from utils.DrawRobot import DrawRobot
```

1.3.1 ASSIGNMENT 1: Computing the repulsive force

Let's start with the repulsive force (FRep) computation, which is the sum of the repulsive forces yielded by each obstacle close to the object. Recall that forces are 2-elements column vectors.

The repulsive_force() function below partially implements this computation. Notice that this function also plots a marker over the obstacles that have influence on this force, and store the handler of that plot in hInfluentialObstacles.

Recall that:

$$f_i = \begin{cases} (\frac{1}{\rho(q)} - \frac{1}{\rho_o}) \frac{1}{\rho(q)^2} \frac{q - q_{obj}}{\rho(q)} & \text{if } \rho(q) < \rho_o \\ 0 & \text{if } \rho(q) \ge \rho_o \end{cases} F_{rep} = K_{rep} \sum_i f_i$$

In the code below, $q - q_{obj}$ is stored in q_to_object, and $\rho(q)$ in r. Notice that for each f_i , the distance from the robot to the object $\rho(q)$ is a number, while $q - q_{obj}$ is a vector.

```
[2]: def repulsive_force(xRobot, Map, RadiusOfInfluence, KObstacles):
          """ Computes the respulsive force at a given robot position
              Args:
                  xRobot: Column vector containing the robot position ([x,y]')
                  Map: Matrix containing the obstacles coordinates (size 2xN_obstacles)
                  RadiusOfInfluence: distance threshold for considering that an_{\sqcup}
      \hookrightarrow obstacle has influence
                  KObstacles: gain related to the repulsive force
              Returns: Nothing. But it modifies the state in robot
                  Frep: repulsive force ([rf_x, rf_y]') (Column vector!)
                  hInfluentialObstacles: handler of the plot marking the obstacles\sqcup
      \rightarrow that have influence
         11 11 11
         q_to_object = xRobot - Map
         r = np.sqrt(np.sum(q_to_object**2, axis=0))
         iInfluential = np.where(r < RadiusOfInfluence)[0]</pre>
         if iInfluential.shape[0] > 0:
              q_to_object = q_to_object[:, iInfluential]
              r = r[iInfluential]
```

```
firstPart = (1/r)-(1/RadiusOfInfluence)
secndPart = 1/(r**2)
thirdPart = (q_to_object/r)

f = firstPart*secndPart*thirdPart

FRep = KObstacles * np.vstack(f.sum(axis=1))

hInfluentialObstacles = plt.

plot(Map[0,iInfluential],Map[1,iInfluential],'kx')
else:
    # Nothing close
FRep = np.vstack([0,0])
hInfluentialObstacles = None # Don't touch this! It is ok :)

return FRep, hInfluentialObstacles
```

```
[3]: # TRY IT!
    xRobot = np.vstack([[1],[2]])
    Map = np.vstack([[1.1, 2.4, 3.5],[2.2, 1.4, 4.5]])
    RadiusOfInfluence = 2
    KObstacles = 200

FRep, handler = repulsive_force(xRobot, Map, RadiusOfInfluence, KObstacles)
    print ('Repulsive force:\n' + str(FRep))
```

```
Repulsive force:
[[ -7117.97589183]
[-14205.83001107]]

Expected output:

Repulsive force:
[[ -7117.97589183]
[-14205.83001107]]
```

1.3.2 ASSIGNMENT 2: Retrieving the repulsive force

Next, **you need to compute** the Attractive Force FAtt. Do it in the attractive_force() function below, taking into account that:

$$F_{att} = -K_{att}\rho_{goal}(q)$$

Normalize the resultant Force by $||\Delta_{goal}||$ so its doesn't become too dominant. You can take a look at linalg.norm() for that.

```
[4]: def attractive_force(KGoal, GoalError):
    """ Computes the attractive force at a given robot position

Args:
    KGoal: gain related to the attractive force
    GoalError: distance from the robot to the goal ([d_x d_y]')

Returns: Nothing. But it modifies the state in robot
    FAtt: attractive force ([af_x, af_y]')

"""

FAtt = -KGoal*GoalError
FAtt /= linalg.norm(GoalError) # Normalization

return FAtt
```

```
[5]: # TRY IT!
KGoal = 1.5
GoalError = np.vstack([[2.3],[1.4]])

FAtt = attractive_force(KGoal, GoalError)
print ('Attractive force:\n' + str(FAtt))
```

```
[[-1.28129783]
[-0.77992042]]
Expected output:
Attractive force:
[[-1.28129783]
[-0.77992042]]
```

Attractive force:

1.3.3 ASSIGNMENT 3: Concluding with the Total Force

Finally you can compute the Total Force FTotal. **Do it in the main program below**, considering that:

$$F_{total} = F_{att} + F_{rep}$$

```
Map = MapSize*random.rand(2, nObstacles)
  fig, ax = plt.subplots()
  plt.ion()
  ax.plot(Map[0,:],Map[1,:],'ro', fillstyle='none');
  fig.suptitle('Click to choose starting point:')
  xStart = np.vstack(plt.ginput(1)).T
  print('Starts at:\n{}'.format(xStart))
  fig.suptitle('Click to choose end goal:')
  xGoal = np.vstack(plt.ginput(1)).T
  print('Goal at:\n{}'.format(xGoal))
  fig.suptitle('')
  ax.plot(xGoal[0, 0], xGoal[1, 0], 'g*', markersize=10)
  hRob = DrawRobot(fig, ax, np.vstack([xStart, 0]), axis_percent=0.001,_

→color='blue')
  # Initialization of useful vbles
  xRobot = xStart
  GoalError = xRobot - xGoal
  # Simulation
  k = 0
  while linalg.norm(GoalError) > 1 and k < nMaxSteps:</pre>
       FRep, hInfluentialObstacles = repulsive_force(xRobot, Map,__
→RadiusOfInfluence, KObstacles)
       FAtt = attractive_force(KGoal, GoalError)
       # Point 1.3
       # TODO Compute total (attractive+repulsive) potential field
       FTotal = FAtt + FRep
       #FTotal /= linalq.norm(FTotal)
       xRobot += FTotal
       Theta = np.arctan2(FTotal[1, 0], FTotal[0, 0])
       hRob.pop(0).remove()
      hRob = DrawRobot(fig, ax, np.vstack([xRobot, Theta]), axis_percent=0.
→001, color='blue')
```

```
if NON_STOP:
    plt.pause(0.1)
else:
    plt.waitforbuttonpress(-1)

if hInfluentialObstacles is not None:
    hInfluentialObstacles.pop(0).remove()

# Update termination conditions
GoalError = xRobot - xGoal
k += 1
```

1.4 8.2.4 Understanding how the technique performs

As a brilliant engineer, you have to provide some indications to the **managers at Nirvana** about how the technique performs and its limitations, which has to be provided in the next Thinking about it. The following code cells help you to execute the implemented technique with different parameters in order to retrieve the required information.

```
[]:  # For considering different gains
main(KGoal=1, KObstacles=250)
# main(KGoal=1, KObstacles=250, nObstacles = 50)
```



```
Starts at:
[[19.83429013]
       [34.69308748]]
Goal at:
[[29.53686931]
       [ 4.43293224]]
```

```
[]: # For considering different number of obstacles main(nObstacles=175)
```


Starts at: [[18.63957661] [100.01438567]] Goal at: [[24.33503591] [81.69901372]]

1.4.1 Thinking about it (1)

Address the following points to gain insight into how the developed Potential Fields technique performs. You can include some figures if needed.

• Discuss the meaning of each element appearing in the plot during the simulation of the *Potential Fields reactive navigation*.

Click to choose end goal:

Red dots are the obstacles in the map. The blue triangle is our robot. Red dot with a black cross are the obstacles that their repulsive force affects to the robot. The green star is the goal position and the blue trace are the movements that the robot did.

• Run the program setting different start and goal positions. Now change the values of the goal and obstacle gains (KGoal and KObstacles). How does this affect the paths followed by the robot?

Examples with different values for such constants:

If we increase goal gain value, the robot will be more attracted to the goal, and will go faster to the goal, sometimes skipping obstacles. If we increase obstacles gains values, the robot will found more difficult to reach the goal.

- Play with different numbers of obstacles and discuss the obtained results.
 - With less obstacles, the robot will probably reach more quickly the goal. However, if we increase the number of obstacles, the robot will found more difficult to reach the goal and is more probably to get stucked.
- Illustrate a navigation where the robot doesn't reach the goal position in the specified number of steps. Why did that happen? Could the robot have reached the goal with more iterations of the algorithm? Hint: take a look at the FTotal variable.

No, the robot got stucked. This happens because the sum of the FAttr and FRep 0 or very close to 0. This makes the robot to not to move.