Finanzmathe Mitschrift vom 24.10.24

Sisam Khanal

13. November 2024

II.1 Einführung des Einperiodenmodells

Sei $d, p \in \mathbb{N}$. Wir betrachten einen Finanzmarkt mit d+1 Wertpapieren. Beim Einperiodenmodell gibt es genau zwei Zweitpunkt, den Anfangszeitpunkt 0 und der Endzeitpunkt 1. Es kann nur zum Zeitpunkt 0 gehandelt werden wobei man die Preise zum Zeitpunkt 0 kennt, aber i.A noch nicht klar ist, welches von l Szenarien für die Preise zum Zeitpunkt 1 eintreten wird.

Preisvektor zur Zeit 0:

$$\overline{S_0} = (S_0^0, S_0^1, \cdots, S_0^d)^T = (S_0^0, S_0^T)^T \in \mathbb{R}^{d+1}$$

wobei S_0^i der Preis des *i*-ten Wertpapiers zur Zeit 0 für $i \in \{0, 1, \dots, d\}$ ist.

Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein endlicher Wahrscheinlichkeitsraum mit

$$\begin{aligned} |\Omega| &= l, \Omega = \{\omega_1, \cdots, \omega_l\}, \\ \mathcal{F} &= 2^{\Omega} = \mathcal{P}(\Omega), \\ \mathbb{P} : \mathcal{F} &\to [0, 1], \\ \mathbb{P}[A] &= \sum_{\omega_k \in A} \mathbb{P}[\{\omega_k\}] \text{ für } A \subseteq \Omega, \\ \mathbb{P}[\{\omega_k\}] &> 0 \ \forall k \in \{1, \cdots, l\} \end{aligned}$$

Zufallsvektor der Preise zur Zeit l:

$$\overline{S_1} = (S_1^0, S_1^1, \cdots, S_1^d)^T = (S_1^0, S_1^T)^T : \Omega \to \mathbb{R}^{d+1}$$

wobei $S_1^i\left(\omega_k\right)\in\mathbb{R}$ der Preis der *i*-ten Wertpapiers zur Zeit 1 unter Szenario k ist für $i\in(0,1,\cdots,d)\,,k\in(1,\cdots,l)$

Alternative können wir die Preise zur Zeit 1 als eine Preismatrix auffassen:

$$S_{1} = \left[\overline{S_{1}}(\omega_{1}) \ \overline{S_{1}}(\omega_{2}) \ \cdots \ \overline{S_{1}}(\omega_{l}) \ \right] = \begin{pmatrix} S_{1}^{0}(\omega_{1}) & S_{1}^{0}(\omega_{2}) & \cdots & S_{1}^{0}(\omega_{l}) \\ S_{1}^{1}(\omega_{1}) & S_{1}^{1}(\omega_{2}) & \cdots & S_{1}^{1}(\omega_{l}) \\ \vdots & \vdots & & \vdots \\ S_{1}^{d}(\omega_{1}) & S_{1}^{d}(\omega_{2}) & \cdots & S_{1}^{d}(\omega_{l}) \end{pmatrix} \in \mathbb{R}^{(d+1)\times l}$$

Wir nehmen an, dass das Orte Wertpapiers eine Anleihe mit fester Verzinsung $r \geq 0$ (Bankkonto) ist mit

$$S_0^0 = 1$$
 und $\forall \omega \in \Omega : S_1^0(\omega) = 1 + r$

Diskontierte Preise:

$$\begin{split} X_0 &= \left(X_0^1, \cdots, X_0^d\right)^T, X_1 = \left(X_1^1, \cdots, X_1^d\right)^T, \Delta X_1 = \left(\Delta X_1^1, \cdots, \Delta X_1^d\right)^T, \\ \text{mit } X_0^i &= S_0^i, X_1^i = \frac{S_1^i}{1+r}, \Delta X_1^i = X_1^i - X_0^i, i \in \{1, \cdots, d\} \end{split}$$

Zum Zeitpunkt 0 nählt man ein Portfolio.

1.1 Definition: Eine Handelsstrategie oder ein Portfolio (im Einperiodenmodell) ist ein Vektor

$$\overline{H} = \left(H^0, H^1, \cdots, H^d\right)^T = \left(H^0, H^T\right)^T \in \mathbb{R}^{d+1}$$

Bei einer Handelsstrategie $\overline{H} = (H^0, H^1, \cdots, H^d)^T$ beschreibt $H^i \in \mathbb{R}$ die Stückzahl von Wertpapier i in Portfolio Zwischen den beiden Zeitpunkten (für $i \in \{0, 1, \cdots, d\}$. Dabei ist H^i nicht zufällig.

Falls $H^0 < 0$: Kreditaufnahme,

Falls $H^i < 0$ für ein $i \in \{1, \dots, d\}$: Leerverkauf (short sell)

1.2 Definition: Sei $\overline{H} \in \mathbb{R}^{d+1}$. Der Wert der Handelsstrategie \overline{H} ist zur Zeit 0 durch:

$$V_0^{\overline{H}} = \left\langle \overline{S_0}, \overline{H} \right\rangle = \overline{S_0^T} \overline{H} = \sum_{i=0}^d S_0^i H^i$$

Und zur Zeit 1 durch die Zufallsvariable $V_1^{\overline{H}}: \Omega \to \mathbb{R}$,

$$V_1^{\overline{H}} = \langle \overline{S_1}(\omega), \overline{H} \rangle = \sum_{i=0}^d S_0^i(\omega) H^i$$

definiert. Weiter definieren wir die diskontierten Werte als

$$D_0^{\overline{H}} = V_0^{\overline{H}} \text{ und } D_1^{\overline{H}} = \frac{V_1^{\overline{H}}}{1+r}$$

1.3 Lemma: Sei $\overline{H} = (H^0, H^T)^T \in \mathbb{R}^{d+1}$ eine Handelsstrategie. Dann gilt

$$D_1^{\overline{H}} = D_0^{\overline{H}} + \langle \Delta X_1, H \rangle$$

Beweis: Übung

Beispiel 1.4

Seien $d = 1, l = 1, p \in (0, 1), \mathbb{P}[\{\omega_1\}] = p, \mathbb{P}[\{\omega_2\}] = 1 - p, S_0^1 = 1, S_1^1(\omega_1) = 2, S_1^1(\omega_2) = \frac{1}{2}$ Sei r = 2 und wähle die Handelsstrategie $\overline{H}(1, -1)$ Dann ist,

$$\begin{split} V_0^{\overline{H}} &= 1 \cdot 1 + 1 \cdot (-1) = 0, \\ V_1^{\overline{H}}(\omega_1) &= (1+r) \cdot 1 + S_1^1(\omega_1) \cdot (-1) = 1, \\ V_1^{\overline{H}}(\omega_2) &= (1+r) \cdot 1 + S_1^1(\omega_2) \cdot (-1) = \frac{5}{2} \end{split}$$

II.2 No-Arbitrage und FTAP1

- Ziel: Charakterirrung vom Markt, in dem es keine Arbitrage-Möglichkeiten gibt.
- Hilfsmittel: äquivalente Martingallmaße
- Hauptresultat: First Fundamental theorem of asset pricing (FTAP1)
- Praktische Umsetzung: prüfe Gleichungssystem auf Lösbarkeit (unter Nebenbedingungen)

- 2.1 Definition: Eine Handelsstrategie $\overline{H} \in \mathbb{R}^{d+1}$ heißt Arbitragemöglichkeit falls gelte:
 - a) $V_0^{\overline{H}} \leq 0$,
 - b) $\forall \omega \in \Omega : V_1^{\overline{H}}(\omega) \geq 0$ und
 - c) $\exists \omega \in \Omega : V_1^{\overline{H}}(\omega) > 0$

Wir sagen, es gilt No-Arbitrage (NA), falls keine Arbitragemöglichkeit existieren.

- 2.2 Lemma: Folgende Aussagen sind äquivalent
 - a) Es gibt eine Arbitragemöglichkeit.
 - b) Es gibt ein $\alpha \in \mathbb{R}^d$, sodass
 - $\forall \omega \in \Omega : \langle \Delta X_1(\omega), \alpha \rangle \geq 0$ und
 - $\exists \omega \in \Omega : \langle \Delta X_1(\omega), \alpha \rangle > 0$
 - c) Es gibt eine Arbitragemöglichkeit $\overline{H} \in \mathbb{R}^{d+1}$ mit $V_0^{\overline{H}} = 0$

Beweis

Übung Eine Wahrscheinlichkeitsmaß Q auf (Ω, \mathcal{F}) können wir durch den Vektoren $q \in \mathbb{R}^l$ mit $q_k = Q[\{\omega_k\}], k \in \{1, \cdots, l\}$ charakterisieren. Für eine Zufallsvariable $Y: \Omega \to \mathbb{R}$ notieren wir mit

$$\mathbb{E}^{Q}\left[Y\right] = \sum_{k=1}^{l} q_{k} Y\left(\omega_{k}\right)$$

den Erwartungswert von Y bzgl. Q. Für $m \in \mathbb{N}$ und einen m-dim Zufallsvektor $Y = (Y^1, \dots, Y^m)^T : \Omega to \mathbb{R}^m$ setzen wir

$$\mathbb{E}^{Q}\left[Y\right] = \left(\mathbb{E}^{Q}\left[Y^{1}\right], \cdots, \mathbb{E}^{Q}\left[Y^{m}\right]\right)^{T}$$

2.3 Definition: Ein Wahrscheinlichkeitsmaß Q auf (Ω, \mathcal{F}) heißt <u>risikoneutral</u> oder <u>Martingalmaße</u>, falls $\forall i \in \{1, \dots, d\}$:

$$\mathbb{E}^Q\left[X_1^i\right] = X_0^i$$

- **2.4 Lemma**: Sei Q ein Wahrscheinlichkeitsmaß auf $\{\Omega, \mathcal{F}\}$ und $q_k = Q[\{\omega_k\}], k \in \{1, \dots, l\}$. Es bezeichne e_i den i-ten Einheitsvektor im \mathbb{R}^d . Dann sind äquivalent:
 - a) Q ist eine Martingalmaße
 - b) $\forall i \in \{1, \dots, d\} : \sum_{k=1}^{l} q_k \langle \Delta X_1(\omega_k), e_i \rangle = 0$
 - c) $\forall \alpha \in \mathbb{R}^d : \sum_{k=1}^l q_k \langle \Delta X_1(\omega_k), \alpha \rangle = 0$

Beweis

Übung

2.5 Definition: Ein Wahrscheinlichkeitsmaß Q auf (Ω, \mathcal{F}) heißt (zu \mathbb{P}) äquivalentes Wahrscheinlichkeitsmaß, wenn $\forall k \in \{1, \dots, l\} : q_k = Q[\{\omega_k\}] > 0$

Wir hatten angenommen, dass $\forall k \in \{1, \dots, l\} : \mathbb{P}[\{\omega_k\}] > 0$ ein \mathbb{P} äquivalentes Wahrscheinlichkeitsmaß auf $\{\Omega, \mathcal{F}\}$ ist, dann stimmen also die Mengen der möglichen Szenarien unter \mathbb{P} und Q überein (aber die genauen Wahrscheinlichkeiten sind in der Regel unterschiedlich)

2.6 Definition: Ein Wahrscheinlichkeitsmaß Q auf $\{\Omega, \mathcal{F}\}$ heißt äquivalentes Martingalmaße (ÄMM) falls Q risikoneutral und äquivalent ist. Wir definieren

$$\mathcal{P} = \{ Q : Q \text{ ist ÄMM } \}$$

Beispiel 2.7:

Seien $d=1, l=2, p\in(0,1), \mathbb{P}\left[\{\omega_1\}\right]=p, \mathbb{P}\left[\{\omega_2\}\right]=1-p, S_0^1=1, S_1^1(\omega_1)=2, S_1^1(\omega_2)=\frac{1}{2}$ und r=0. Wir versuchen, ein ÄMM zu finden. Wenn Q ein ÄMM (charakterisiert durch $q\in\mathbb{R}_2$ ist, dann müssen gelten: $q_1>0, q_2>0$

$$\sum_{k=1}^{2} q_k S_1^1(\omega_k) = q_1 \underbrace{S_1^1(\omega_1)}_{=2} + q_2 \underbrace{S_1^1(\omega_2)}_{=\frac{1}{2}} = 1$$

LGS lösen:

$$q_1 + q_2 = 1$$
$$2q_1 + \frac{1}{2}q_2 = 1$$

Andere Schreibweise:

$$\begin{pmatrix} 1 & 1 \\ 2 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \implies \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ \frac{1}{2} \end{pmatrix}$$

Im ersten fundamentalsatz wird ein Zusammenhang zwischen der Existenz von ÄMMs und NA hergestellt:

2.8 Satz (FTAP1): Es gilt: $NA \iff \mathcal{P} \neq \emptyset$. Andereseits gilt: Ein Vektor $q \in \mathbb{R}^l$ definiert genau dann ein ÄMM (via $Q[\{\omega_k\}] := q_k, k \in \{1, \dots, l\}$, wenn $k \in \{1, \dots, l\} : q_k > 0$ gilt, und q eine Lösung des Systems: $\forall i \in \{1, \dots, d\}$

$$q_1 + q_2 + \dots + q_l = 1$$

$$\frac{1}{1+r} \left(S_1^i(\omega_1) q_1 + S_1^i(\omega_2) q_2 + \dots + S_1^i(\omega_l) q_l \right) = S_0^i$$

ist. Um zu überprüfung, ab NA gilt, kann man wegen FTAP1 also testen, ob

$$S_1q = (1+r)\overline{S_0}$$

eine Lösung $q \in \mathbb{R}^l$ mit $\forall k \in \{1, \dots, l\} : q_k > 0$ besitzt

Für den Beweis des FTAP1 benötigen wir folgenden Trennungssatz (in \mathbb{R}^l)

- **2.9** Satz (Trennungssatz): Sei $n \in \mathbb{N}$
 - a) Sei $C \subseteq \mathbb{R}^n$ abgeschlossen, konvex und nichtleer mit $0 \notin C$. Dann existieren $y \in C$ und $\delta > 0$ sodass $\forall x \in C : \langle x, y \rangle \geq \delta > 0$
 - b) Sei $K \subseteq \mathbb{R}^n$ kompakt, konvex und nicht leer und sei $U \subseteq \mathbb{R}^n$ eine linearen Unterraum mit $K \cap U = \emptyset$. Dann existiert $y \in \mathbb{R}^n$ sodass
 - $\forall x \in K : \langle x, y \rangle > 0$,
 - $\forall x \in U : \langle x, y \rangle = 0$

2.10 Proposition

Die Menge \mathcal{P} aller ÄMMs ist konvex. Insbesondere gilt:

$$|\mathcal{P}| \implies |\mathcal{P}| = \infty$$

Beweis: Übung

II.3 Arbitragefreie Preise

Wir Identifizieren im Folgenden ein Derivat mit seiner Auszahlung zur Zeit T=1

3.1 Definition: Ein *Derivat* ist eine Zufallsvariable $\xi:\Omega\to\mathbb{R}$. Für $x,y\in\mathbb{R}$ notieren wir

$$(x-y)^+ = \max \{x-y, 0\}$$

3.2 Beispiel

Beispiele für Derivate:

a) Forward contract: Vereinbarung, zu einem zukünftigen, festgelegten Termin T ein Gut (z.B Wertpapier) zu einem heute vereinbarten Preis k zu kaufen bzw. zu verkaufen. Im Einperiodenmodell: Forward auf Papier

$$i: \xi = S_1^i - k$$

b) <u>Call-Option</u>: Recht, ein Gut zu festgelegt Preis K (dem Strike) zu zukünftigen Zeitpunkt T zu kaufen. <u>Im Einperio</u>denmodell: Call auf Papier

$$i: \xi = \left(S_1^i - k\right)^+$$

c) Put-Option: Analog zu Call, aber Verkaufen. Im Einperiodenmodell: Put auf Papier

$$i: \xi = \left\{k - S_1^i\right\}^+$$

d) Basket-Option: Option auf einen Index von Wertpapier z.B Basket-Call-Option mit Strike k und Gewicht $\alpha \in \mathbb{R}^d$ im Einperiodenmodell :

$$i: \xi = \left(K - S_1^i\right)$$

e) Basket-Option: Option auf einen Index von Wertpapier z.B Basket-Call-Option mit Strike k und Gewicht $\alpha \in \mathbb{R}^d$ im Einperiodenmodell:

$$(\langle S_1, \alpha \rangle - k)^+$$

3.3 Beispiel

Seien $d = 1, l = 2, \mathbb{P}[\{\omega_1\}] = \frac{1}{2} = \mathbb{P}[\{\omega_1\}], S_0^0 = 1, S_1^0 = 1 = 1 = 1, S_1^1(\omega_1) = 2, S_1^1(\omega_1) = \frac{1}{2}$. Betrachte Call $\xi = (S_1^1)^+$. Was ist ein angemessener Preis $P_0(\xi)$ für ξ zur Zeit 0?

Ersten Ansatz: Preis von ξ ist mittlere Auszahlung von ξ bei wiederhaltern Spiel, d.h

$$p_0(\xi) = \mathbb{E}^{\mathbb{P}}[\xi] = \frac{1}{2} \cdot (2-1)^+ + \frac{1}{2} \cdot \left(\frac{1}{2} - 1\right)^+ = \frac{1}{2}$$

Dadurch ergibt sich allerdings eine Arbitragemöglichkeit.

<u>Zeit 0</u>: Verkaufe $6 \times$ Call zum Preis $\frac{1}{2}$, Kaufe $3 \times$ die Aktie; Startkapital 0.

Zeit 1 Szenario ω_1 : Endkapital ist $3 \cdot 2 - 6 \cdot 1(2-1)^+ = 0$

Szenario ω_2 : Endkapital ist $3 \cdot \frac{1}{2} - 6 \cdot 1 \left(\frac{1}{2} - 1\right)^+ = 1,5$

Fischer Ansatz: Preis von ξ ist im Mittelwert unabhängig von ξ bei wiederholtem Spiel, d.h.

$$p_0(\xi) = \mathbb{E}^{\mathbb{P}}[\xi] = \frac{1}{2}(2-1)^+ + \frac{1}{2}\left(\frac{1}{2}-1\right)^+ = \frac{1}{2}$$

Dadurch ergibt sich allerdings eine Arbitragemöglichkeit:

Zeit 0:

- Verkaufe $6 \times$ Call zum Preis $\frac{1}{2}$.
- Kaufe 3× die Aktie; Startkapital 0.

Zeit 1:

- Szenario w_1 : Endkapital ist $3 \cdot 2 6(2-1)^+ = 0$
- Szenario w_2 : Endkapital ist $3 \cdot \frac{1}{2} 6 \left(\frac{1}{2} 1\right)^+ = 1.5$

Wir verwenden im Folgenden das No-Arbitrage-Prinzip zur Bewertung von Derivaten. Wähle den Preis $P_0(\xi)$ von ξ so, dass sich im um $\left(S_0^{d^0}, S_1^{d^1}\right) = (p_0(\xi), \xi)$ erweiterten Modell keine Arbitragemöglichkeit ergibt.

3.4 Definition: Sei ξ ein Derivat. Der Wert $p_0(\xi) \in \mathbb{R}$ heißt arbitragefreier/fairer Preis von ξ , falls das um $\left(S_0^{d+0}, S_1^{d+1}\right) = \left(p_0(\xi), \xi\right)$ erweiterte Marktmodell mit den Preisen $\left(S_0^0, \dots, S_0^d, S_0^{d+1}\right)^T$ und $\left(S_1^0, \dots, S_1^{d+1}\right)^T$ NA erfüllt. Wir bezeichnen mit $\Pi(\xi)$ die Menge aller arbitragefreien Preise von ξ .

Beachte: Wenn $\Pi(\xi)$ nicht leer ist, dann gilt im ursprünglichen Modell NA. Also: Falls NA im ursprünglichen Modell nicht erfüllt ist, dann ist $\Pi(\xi) = \emptyset$. Im Folgenden sei \mathcal{P} bezeichnet die Menge aller ÄMMs im ursprünglichen Modell.

3.5 Satz: Es gelte NA. Sei ξ ein Derivat. Dann ist $\Pi(\xi)$ nicht leer, und es gilt

$$\Pi(\xi) = \left\{ \mathbb{E}^{Q} \left[\frac{\xi}{1+r} \right] \middle| Q \in \mathcal{P} \right\}.$$

Beweis:

" \subseteq ": Sei $Q \in \mathcal{P}$ und $p_0(\xi) = \mathbb{E}^Q\left[\frac{\xi}{1+r}\right]$. Dann ist Q auch ein ÄMM in dem um $(p_0(\xi), \xi)$ erweiterten Markt. FTAP1 impliziert, dass im erweiterten Markt NA gilt, also $p_0(\xi) \in \Pi(\xi)$.

" \supseteq ": $p_0(\xi) \in \mathbb{R}$ ist ein arbitragefreier Preis. Der um $(p_0(\xi), \xi)$ erweiterte Modell erfüllt dann NA. Wende FTAP1 auf dem erweiterten Markt an. Dann existiert ein Wahrscheinlichkeitsmaß auf Q auf (Ω, \mathcal{F}) sodass $\forall k \in \{1, \ldots, l\} : Q[\{\omega_k\}] > 0$ und $\forall k \in \{1, \ldots, d\} : \mathbb{E}^Q[X_1^i] = X_0^i = 0$ Insbesondere gilt $Q \in \mathcal{P}$

$$p_0(\xi) = S_0^{d+1} = X_0^{d+1} = \mathbb{E}^Q \left[X_1^{d+1} \right] = \mathbb{E}^Q \left[\frac{S_1^{d+1}}{1+r} \right] = \mathbb{E}^Q \left[\frac{\xi}{1+r} \right].$$

3.6 Beispiel

Fortsetzung von Bsp 3.3

Neuer Ansatz: NA-Prinzip Aus Bsp 2.7 ist bekannt, dass $q = \left(\frac{1}{3}, \frac{2}{3}\right)^T \in \mathbb{R}^2$ in diesem Marktmodell ein ÄMM Q def. Somit ist (siehe Satz 3.5) $p_0(\xi) = \mathbb{E}^Q\left[\frac{S}{1+r}\right] = \mathbb{E}^Q\left[\left(S_1^1 - 1\right)^+\right] = \frac{1}{3}\left(S_1^1(\omega_1) - 1\right)^+ + \frac{2}{3}\left(S_1^1(\omega_2) - 1\right)^+ = \frac{1}{3}$ ein arbitragefreier Preis.

3.5 Proposition

Es gelte NA. Sei ξ ein Derivat. Dann $\emptyset \neq \Pi(\xi) \subset \mathbb{R}$ Konvex und somit ein Intervall.

Beweis: Übung

Zum Folgenden wollen wir die Intervallgrenzen $\Pi^X(\xi_i) := \sup \Pi(\xi)$ und $\Pi_X(\xi)$ für ein keivert ξ

3.5 Definition: Wir sagen, es gilt Nicht-Redundanz NR wenn die Vektoren

$$\begin{pmatrix} \Delta x_1^i(\omega_1) \\ \vdots \\ \Delta x_1^i(\omega_l) \end{pmatrix}, i \in (1, \dots, d)$$

linear unabhängig sind.

Damit NR erfüllt sein kann, muss notwendigerweise $d \leq l$ gelten. Falls NR nicht erfüllt ist, dann existiert eine strikte Teilmenge dieser Vektoren.

$$\begin{pmatrix} \Delta x_1^i(\omega_1) \\ \vdots \\ \Delta x_1^i(\omega_l) \end{pmatrix}, i \in (1, \dots, d) \text{ s.d } \forall j \in \{m + 1, \dots, d\} \exists \alpha_1, \dots, \alpha_n \in \mathbb{R} \text{ mit}$$

$$\begin{pmatrix} \Delta x_1^j(\omega_1) \\ \vdots \\ \Delta x_1^j(\omega_l) \end{pmatrix} = \sum_{i=1}^m \alpha_i \begin{pmatrix} \Delta x_1^i(\omega_1) \\ \vdots \\ \Delta x_1^i(\omega_l) \end{pmatrix}$$

Die Vektoren (Wertpapier) für $j \in \{m+1, \cdots, d\}$ sind also überflüssig redundant. Durch Wegwerfen von redundanten Wertpapieren können wir jeden Markt zu einem Markt, in dem NR gilt reduzieren.

Erinnerung:

Für eine Handelsstrategie $\overline{H} = (H^O, H^T)^T$ ist

$$V_0^{\overline{H}} = \langle \Delta_1, H \rangle = \frac{V_1^{\overline{H}}}{1+r}$$

3.9 Definition: Sei ξ ein Derivat. Ein Vektor $(X, H^T)^T \in \mathbb{R}^{d+1}$ mit $x \in \mathbb{R}$ (Anfangskapital) und $H \in \mathbb{R}^d$ (Position in Aktien) wird als Superhedging-Strategie für ξ bezeichnet, wenn

Vorlesung 13. November 2024

5.3 Definition: Seien $K, L \in \mathbb{R}$ mit $K \ge L$, sei $\lambda \in [0,1]$ und sei $M = \lambda K + (1-\lambda)L$. Wir nehem an, dass zur Zeit 0 die Call-Option $\left(S_1^1 - K\right)^+$, $\left(S_1^1 - L\right)^+$ zu dem Preisen C(K), C(L) und C(M) gehandelt werden. Der um $\left(C(K), \left(S_1^1 - K\right)^+\right)$, $\left(C(L), \left(S_1^1 - L\right)^+\right)$ erweiterte Markt NA. Dann gilt:

a)
$$C(K) \leq C(L)$$

b)
$$(1+r)(C(K)-C(L)) \le L-K$$

c)
$$C(\lambda K + (1 - \lambda)L) \le \lambda C(K) + (1 - \lambda)C(L)$$

§3 Elemente der Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheoretische Grundlagen, um das Einperiodenmodell auf mehrere Handelszeitpunkte zu erweitern und Informationszunahme im Lauf der Zeit zu modellieren.

Literatur:

- Kremer Einführung in die diskrete Finanzmathe
- Shiryaev Probability-1
- Klenke Wahrscheinlichkeitstheorie
- Mentrup und Schäffler Stochastik

III.1 σ -Algebra

Sei $\Omega \neq \emptyset$ eine Menge. Bezeichne mit $\mathcal{P}(\Omega)$ die Potenzmenge von Ω

- 1.1 Definition: Ein Mengensystem $G \subseteq \mathcal{P}(\Omega)$ heißt Algebra auf Ω , falls gelten:
 - a) $\Omega \in G$
 - b) $A \in G \implies A^c \in G$
 - c) $A, B \in G \implies A \cup B \in G$
- 1.2 Definition: Eine Algebra G auf Ω heißt σ -Algebra auf Ω , falls zusätzlich gilt:

$$A_n \in G \forall n \in \mathbb{N} \implies \bigcup_{n \in \mathbb{N}} A_n \in G$$

Beispiele für σ -Algebra (und damit auch für Algebra) sind die "triviale" σ -Algebra und die Potenzmenge $\mathcal{P}(\Omega)$. Wenn G eine Algebra ist, dann gilt $\emptyset \in G$ und $\forall A, B \in G$ sind $A \cap B = \left(A^{\complement} \cup B^{\complement}\right)^{\complement} \in G$ und $A \setminus B = A \cap B^{\complement} \in G$. Wenn G eine σ -Algebra ist, dann gilt zusätzlich $A_n \in G \ \forall n \in \mathbb{N} \implies \bigcap_{n \in \mathbb{N}} A_n \in G$

1.3 Lemma: Sei $\Omega \neq \emptyset$ eine Menge und $\{G_{\lambda}\}_{{\lambda} \in \Omega}$ eine Familie von Algebra (bzw. σ -Algebra) auf Ω . Dann ist auch $\cap_{{\lambda} \in \Omega} G_{\lambda}$ eine Algebra (bzw. σ -Algebra) auf Ω .

Beweis: Übung

1.4 Definition: Sei $A \subseteq \mathcal{P}(\Omega)$ eine Mengensystem. Wir definieren:

$$\begin{split} \mathcal{B}^{\mathcal{A}}_{\sigma} &= \{G \subseteq \mathcal{P}(\Omega) : G \text{ Algebra und } G \supseteq \mathcal{A} \} \\ \mathcal{B}^{\mathcal{A}}_{\sigma} &= \{G \subseteq \mathcal{P}(\Omega) : G \text{ } \sigma - \text{ Algebra und } G \supseteq \mathcal{A} \} \end{split}$$

Weiter definieren wir die durch \mathcal{A} erzeugte Algebra:

$$\alpha(\mathcal{A}) = \bigcap_{G \in \mathcal{B}_\sigma^\mathcal{A}} G$$

Lemma 13 Zeigt, dass $\alpha(A)$ eine Algebra und $\sigma(A)$ eine σ -Algebra ist.

1.5 Lemma: Es gelte $|\Omega| < \infty$ Sei G ein Algebra. Dann ist G eine σ -Algebra.

Beweis: Seien $A_n, n \in \mathbb{N}$, Elemente von G und $B = \bigcup_{n \in \mathbb{N}} A_n$. Weil Ω endlich ist, hat G nur endlich viele Elemente und daher geht die Vereinigung nur über endlich viele verschieden Elemente von G. Per Induktion und (iii) in Def 1.1 folgt, dass $B \in G$

Also, Auf endlichen Ω sind Algebren σ -Algebren äquivalent. Für allgemeines Ω gibt es aber Algebra , die keine σ -Algebra sind z.B:

1.6 Bsp.

Sei $\Omega = \mathbb{N}$, $\mathcal{A} = \{A \subseteq \mathbb{N} : |A| = 1\}$ und $G := \alpha(A)$. Dann gilt (Übung).

$$G = \{B \subseteq \mathbb{N} : |B| < \infty \text{ oder } |B^{\mathsf{c}}| < \infty\}$$

. Aus Lemma 1.2 wissen wir, dass G eine Algebra ist. Aber G ist keine σ -Algebra, denn $\forall k \in \mathbb{N} : \{2k\} \in G$ und (wir setzen $\cup_{\lambda \in \emptyset} \cdots = \emptyset$

$$\bigcup_{k\in\mathbb{N}}\left\{ 2k\right\} =2\mathbb{N}\notin G$$

- 1.7 Definition: Sei Ω ein Menge. Ein Mengensystem $D = \{D_{\lambda}\}_{{\lambda} \in \Omega}$ heißt <u>Partition</u> oder <u>Zerlegung</u> von Ω , falls gelten:
 - a) $\forall \lambda \in \Omega : D_{\lambda} \neq \emptyset$
 - b) $\forall \lambda_1, \lambda_2 \in \omega \text{ mit } \lambda_1 \neq \lambda_2 : D_{\lambda_1} \cap D_{\lambda_2} = \emptyset$
 - c) $\cup_{\lambda \in \omega} D_{\lambda} = \Omega$

1.8 Proposition

Sei Ω höchstens abzählbar und $D = \{D_{\lambda}\}_{{\lambda} \in \Omega}$ eine Partition. Dann gilt

$$\sigma(\mathcal{D}) = \left\{ \bigcup_{\lambda \in A} D_{\lambda} : A \subseteq \Omega \right\}$$

Beweis: Sei $\mathcal{F} := \{ \cup_{\lambda \in A} D_{\lambda} : A \subseteq \Omega \}$

" \subseteq : Zeige, dass $\mathcal{F} \in \mathcal{B}_{\sigma}^{\mathcal{D}}$. Klar: $\mathcal{D} \subset \mathcal{F}$. Noch zu zeigen: \mathcal{F} ist σ -Algebra.

- a) Wegen (iii) in Def 1.7 gilt $\Omega = \bigcup_{\lambda \in \Omega} D_{\lambda} \in \mathcal{F}$
- b) Sei $A \subseteq \mathcal{A}$. Es gilt (wegen (ii) in Def 1.7)

$$\left(\bigcup_{\lambda \in A} D_{\lambda}\right)^{c} = \bigcap_{\lambda \in A} D_{\lambda}^{c} = \bigcup_{\lambda \in \Omega \setminus A} D_{\lambda} \in \mathcal{F}$$

c) Seien $\mathcal{B}_n \in \mathcal{F}, n \in \mathbb{N}$. Für jedes $n \in \mathbb{N}$ gibt es dann $A_n \subseteq \Omega$ sodass $\mathcal{B}_n = \bigcup_{\lambda \in A_n} D_{\lambda}$. Es folgt, dass

$$\bigcup_{n\in\mathbb{N}} \mathcal{B}_n = \bigcup_{n\in\mathbb{N}} \bigcup_{\lambda\in A_n} D_\lambda = \bigcup_{\lambda\in\cup_{n\in\mathbb{N}} A_n} D_\lambda \in \mathcal{F}$$