Семинар – група 1 *Седмица 1*

В съвремието, за разлика от преди, съществуват много езици за програмиране, които обслужват най различни нужди за софтуер. Тези езици се разделят на няколко типа.

- а) по начин на изпълнение функционален, процедурен, логически и т.н.
- б) по начин на структуриране обектно-ориентиран, структурен и т.н.
- в) по ниво на езика високо ниво, средно ниво, ниско ниво, асемблерен, машинен
- г) по типизация слабо типизиран, силно типизиран.

С++ може да се счете към, така наречените, системни езици или по-точно описано език от средно ниво, който е силно типизиран, поддържащ обектно-ориентиран подход, както и структурен, и процедурен начин на изпълнение.

Защо системен език за програмиране? Защото сам по себе си езикът ни дава достъп до ресурсите на машината, на която изпълняваме софтуера , написан на C++. Тъй като езикът ни дава толкова възможности, това го прави и по-труден за осъвършенстване. В същото време го прави и добра основа за навлизане в света на програмирането, тъй като е подобен на повечето известни езици като Java, C# и т.н.

Както се спомена горе, езикът спада към собствена категория системен, произлизащ от С, затова неговите основни типове данни зависят от системата, на която работим, а именно архитектурата на системата /64-битова или 32-битова/. Вече рядко ще се срещнем с 32-битови машини, но те още са използваеми. Основната разлика, която ни интересува е целочисления тип "int", който при 32-битови архитектури той с размер 2 байта, а при 64-битови е 4.

1. Основни типове данни.

Data type	Memory (bytes)	Minimum Value	Maximum Value
Bool	1	Logical Value T/F	Logical Value T/F
char	1	-128	127
unsigned Char	1	0	255
short int	2	-32768	32767
unsigned short int	2	0	65535
int	2	-32768	32767
unsigned int	2	0	65535
long int	4	-2147483648	2147483647
unsigned long int	4	0	4294967295
float	4	10-38	1038
double	8	10-308	10308
long double	10	10-4932	104932

DATA TYPE	SIZE (IN BYTES)	RANGE
short int	2	-32,768 to 32,767
unsigned short int	2	0 to 65,535
unsigned int	4	0 to 4,294,967,295
int	4	-2,147,483,648 to 2,147,483,647
long int	4	-2,147,483,648 to 2,147,483,647
unsigned long int	4	0 to 4,294,967,295
long long int	8	-(2^63) to (2^63)-1
unsigned long long int	8	0 to 18,446,744,073,709,551,615
signed char	1	-128 to 127
unsigned char	1	0 to 255
float	4	
double	8	
long double	12	
wchar_t	2 or 4	1 wide character

Int или целочисленият тип можем да го наречем като основен тип, който да ни е като основа за всички други типове. При деклариране на Int променлива се случва следното в паметта:

2. Първа програма на C++. Hello World. Основни аритметични оператори. Приоритет на операции.

```
#include <iostream>

int main() {

int main() {

std::cout << "Hello world!" << std::endl;

return 0;

втокване на библиотека

→ основната функция, отваряне на блок от код

отваряне на блок от к
```

- Основни аритметични оператори "+", "-", "*", "/".
- Оператор за търсене на остатък при деление "%".
- Особености при аритметични операции.

<u>Допълнително:</u> Побитови оператори - "&", "|", "^", "<<", ">>".

Езиците за програмиране спазват същия приоритет на операциите, както в математиката.

```
лява
без асоциативност ++ --
без асоциативност ~ - (int) (float) (string) (array) (object) (bool) @
без асоциативност instanceof
дясна
                  * / %
лява
                  + - .
лява
                  <<>>>
лява
без асоциативност < <= > >= <>
без асоциативност == != === !==
                   &
лява
                   ٨
лява
лява
                  &&
лява
                  лява
                  ?:
лява
                  = += -= *= /= .= %= &= |= ^= <<= >>=
дясна
                  and
лява
лява
                  xor
                  or
лява
лява
```

3. Булеви изрази и условен оператор / IF /.

3.1. Какво е булев израз?

- Това е такъв израз, който накрая на всички "сравнения" се оценява с **True** или **False**.
- Резултатът се запаметява в променлива или константа от тип **bool.**
- Оценява се с помощта на булеви оператори ">", "=", "<", ">=", "<=", "==", "!=", "!=", "\", "&&".

```
bool isEven = (number % 2 == 0);
bool isEven1 = !(number % 2);
bool isEven2 = !(number & 1);
```

3.2. Оператор за условие IF. Структура if-else. Тернарен оператор.

Действията в блока след if се изпълняват при стойност на условието "истина'. Тези действия може да са много, затворени в блок, или само едно действие. Условието може да е сложен булев израз.

Тази конструкция е напълно по подобие на горната, но тук имаме два изхода вместо само един.

```
(<условие>) ? <оператор> : <оператор> ;
```

Тернарният оператор действа по напълно същия начин като конструкцията if-else с една много важна разлика. Докато при if-else можем да имаме цял блок от код при изходите, който да се изпълни, тук имаме само по **ЕДИН** оператор за изпълнение на всеки изход.

4. Задачи

- 0. Да се провери дали едно число, получено от стандартния вход, е четно и ако е такова, да се изведе в конзолата "Even". В противен случай да се изведе "Odd".
- 1. Да се напише програма, която получава две числа от стандартния вход и извежда поголямото от тях.
- 2. Да се напише програма, която получава година и извежда в конзолата дали тя е високосна.
- 3. Да се напише програма, която получава трицифрено число от стандартния вход и проверява дали всичките му цифри са четни.
- 4. Да се напише програма, която получава месец и година и изписва в козолата броя дни в този месец.
- 5. Да се напише програма, която получава три числа от стандартния вход и проверява дали може да бъде съставен триъгълник с такива страни.
- 6. Да се напише програма, която получава три числа от стандартния вход и проверява дали може да бъде съставен триъгълник с такива ъгли.
- 7. Да се напише програма, която по пресмята корените на квадратно уравнение. Коефициентите се получават от стандартния вход. Ако уравнението няма корени, да се изведе подходящо съобщение.