

Europäisches Patentamt European Patent Office Office européen des brevets

Publication number:

0 353 692 B1

(12)

EUROPEAN PATENT SPECIFICATION

- Date of publication of patent specification: 04.10.95 (a) Int. Cl. A61K 31/44, C07F 9/547, A61K 31/66
- (1) Application number: 89114113.7

② Date of filing: 31.07.89

Divisional application 95101310.1 filed on 31/07/89.

The file contains technical information submitted after the application was filed and not included in this specification

- Drug effect-enhancing agent for antitumor drug.
- Priority: 02.08.88 JP 193002/88 30.06.89 JP 168549/89
- Date of publication of application: 07.02.90 Bulletin 90/06
- 45 Publication of the grant of the patent: 04.10.95 Bulletin 95/40
- Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE
- 66 References cited:

EP-A- 0 121 117

EP-A- 0 123 850

EP-A-0 141 221

EP-A- 0 141 222

EP-A- 0 159 040

EP-A- 0 221 382

EP-A- 0 230 944

EP-A- 0 260 605

DE-A-3 736 687

PATENT ABSTRACTS OF JAPAN vol. 9, no.

188 (C-295)(1911), 03 August 1985*

CHEMICAL ABSTRACTS, vol. 107, no. 23, 07 December 1987, Columbus, OH (US); A. ZIDERMANE et al., p. 20, no. 211535u*

- Proprietor: NISSAN CHEMICAL INDUSTRIES 7-1, 3-chome Kanda-Nishiki-cho Chlyoda-ku Tokyo (JP)
- Inventor: Akiyama, Shin-ichi 2660-93, Yamada-cho Kagoshima-shi Kagoshima-ken (JP) Inventor: Sakoda, Ryozo Nissan Chemical Ind. Ltd., Chuo Kenkyusho, 722-1 Tsuboi-cho. Funabashi-shi, Chiba-ken (JP) Inventor: Seto, Kivotomo Nissan Chemical Ind. Ltd., Chuo Kenkyusho, 722-1 Tsuboi-cho, Funabashi-shi, Chiba-ken (JP)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

CHEMICAL ABSTRACTS, vol. 102, no. 9, 04 March 1985, Columbus, OH (US); I. BUIKIS et al., p. 25, no. 89746t*

CHEMICAL ABSTRACTS, vol. 98, no. 21, 23 May 1983, Columbus, OH (US); J. ULDRIKIS et al., p. 640, no. 179181h* Inventor: Shudo, Norimasa, Seibutsukagaku Kenkyusho 1470 Oaza-shiraoka, Shiraoka-machi Minami-saitama-gun, Saitama-ken (JP)

Representative: Wächtershäuser, Günter, Prof. Dr. Patentanwalt, Tal 29 D-80331 München (DE)

Description

The present invention relates to an agent for enhancing the drug effects of an antitumor drug, which comprises a pyridine derivative or a pharmaceutically acceptable salt thereof, as an active ingredient.

Remarkable developments have been observed in the chemotherapy of cancer. There have been an increasing number of cases in which some of cancers have been reportedly completely healed. However, there are still a number of problems yet to be solved. Among them, to reduce the side effects, to overcome drug resistance against antitumor drugs and to prevent relapse and metastatis are problems which are desired to be solved as soon as possible. Further, no antitumor drugs have been developed which are truly effective against solid cancers such as carcinoma of the colon, cancer of the stomach and carcinoma of the esophagus.

In the clinical field, it is frequently experienced that antitumor drugs which were initially effective, tend to be non-effective during an extended period of treatment. Further, when a tumor metastasizes or recurs, an antitumor agent is no longer effective in many cases.

Among various factors attributable to such tendency, it is known to be an important factor that cancer cells acquire drug resistance against antitumor drugs.

Yet, it frequently happens that cancer cells which acquired drug resistance against a certain particular antitumor drug, also show resistance against many other antitumor drugs which are totally different from the particular antitumor drug in their chemical structures or functional mechanisms (multidrug resistance), which constitutes a serious obstacle in the chemotherapy of cancer.

The study on the multidrug resistance against antitumor drugs has been rapidly progressed in recent years, and a part of the mechanism has been made clear. Namely, in the cancer cells which acquire resistance, an increase of a certain P-glycoprotein is observed which has a function of a drug efflux pump, whereby the antitumor drug is pumped out of the cells in an energy dependent fashion, and consequently, the concentration of the antitumor agent in the cells decreases.

Tsuruo et al have found that Verapamil i.e. one of calcium antagonistic drugs overcomes the multidrug resistance against antitumor drugs (see Cancer Res. 41; 1967-1972 (1981)).

Akasawa et al have reported that calcium antagonistic drug nicardipin enhances the antitumor activities of vindecine sulfate (Cancer and Chemotherapy, vol. 11, 943-947 (1984)). It has also been reported that calcium antagonistic drug diltiazem enhances the drug effects of vincristine (VCR) (see Japanese Unexamined Patent Publication No. 208222/1983).

These three drugs are all calcium antagonistic substances, but they have no structural similarity at all. Further, it is known that there is no relationship between the strength of the calcium antagonistic effects and the strength of the effects for enhancing the drug effects of the antitumor drugs.

Further, certain dihydropyridine compounds are known to increase the sensitivity of cancer cells to carcinostatic drugs (see Japanese Unexamined Patent Publication No. 135381/1988) or to be effective for preventing metastatis of cancer (Japanese Unexamined Patent Publication No. 87516/1987).

It has already been known that 1,4-dihydropyridines among the compounds of the present invention have strong vasodilator activities by calcium antagonism, and they are useful as pharmaceuticals effective against hypertension, angina pectoris or disorder of cerebral circulation (U.S. Patents 3,485,847, 3,644,627, 3,985,758 and 4,576,934, EP-A-0 221 382 and EP-A-0 123 850, JP-A-6 056 956).

On the other hand, substantially nothing has been known with respect to the biological activities of the pyridines of the present invention.

The present inventors have found surprisingly that the compounds of the formula I as defined hereinafter and their pharmaceutically acceptable salts are effective not only to suppress or diminish the drug resistance against cancer cells which acquired the drug resistance against antitumor drugs, but also to enhance the drug effects of antitumor drugs against cancer cells having no resistance. The present invention has been accomplished on the basis of this discovery.

The present invention provides the use of a compound of the formula I:

$$Z \xrightarrow{\text{CO}_{2} \text{R}^{3}} CO_{2} R^{3}$$

$$R^{2}$$

10

20

25

50

wherein Ar¹ is phenyl, pyridyl, furyl or 2,1,3-benzooxadiazol-4-yl, which may be substituted by one or two substituents selected from the group consisting of NO₂, CF₃, Br, Cl, F, R⁶ (wherein R⁶ is C₁-C₄ alkyl), OH, OR⁶, OCHF₂, COOR⁶, NH₂, NHR⁶, NR⁶R⁷ (wherein R⁷ has the same meaning as R⁶), CONH₂, CONHR⁶, CONR⁶R⁷, COSR⁶, SR⁶, S(O)₂R⁶, SO₃H, SO₃R⁶, SO₂NH₂, SO₂NHR⁶, SO₂NR⁶R⁷, CN and phenyloxy;

the nitrogen-containing hetero ring portion represents a 1,4-dihydropyridine ring or a pyridine ring; Z is a group of the formula II:

$$\begin{array}{c|c}
R & \downarrow & \downarrow \\
\vdots & \downarrow & \downarrow \\
R & \downarrow & \downarrow \\
P & & \downarrow & \downarrow \\
\end{array}$$
(II)

wherein each of R⁴ and R⁵ which may be the same or different is OH, C₁-C₁₂ linear or branched primary or secondary alkyloxy, C₃-C₆ linear or branched unsaturated alkyloxy, C₃-C₆ cycloalkyloxy, C₁-C₅ alkoxy substituted by C₃-C₆ cycloalkyl, OAr² (wherein Ar² is phenyl which may be substituted by halogen, C₁-C₃ alkyl or C₁-C₃ alkyl or C₁-C₃ alkyl or C₁-C₃ alkyl or Ar²), OAN(CH₂Ar²)R⁵, OAOR⁵, OACN, NH₂, NHR⁶, NR⁶R⁷, 1-piperidinyl or 1-pyrrolidinyl, or R⁴ and R⁵ together form OYO (wherein Y is C₂-C₄ linear alkylene which may be substituted by R⁵, CO₂R⁶, OR⁶ or A), NHYO, R⁶NYO, NHYNH, R⁶NYNH or R⁶NYNR⁷, or Z is CO₂R⁸ (wherein R⁸ has the same meaning as R³ defined hereinafter);

R¹ is present only when the nitrogen-containing hetero ring is a 1,4-dihydropyridine ring, and it is H, R⁵, AN(CH₂CH₂)₂O, AOR⁵ or CH₂phenyl;

 R^2 is R^6 , Ar^2 , $Ar^2CH = CH$, $Ar^2CH(OH)CH_2$, CHO, CN, CH_2OH , CH_2OH^6 , $CH_2CH_2N(CH_2CH_2)_2NR^6$, NH_2 , NHR^6 or NR^6R^7 ;

 R^3 is hydrogen, C_1 - C_{12} linear or branched alkyl, C_3 - C_6 linear or branched unsaturated alkenyl or alkynyl, C_3 - C_6 cycloalkyl, C_1 - C_6 alkyl substituted by C_3 - C_6 cycloalkyl, AOR^6 , $AO(CH_2)_mAr^2$ (wherein m is an integer of from 0 to 3), $(CH_2)_mAr^2$, ANH_2 , $ANHR^6$, ANR^6R^7 , $ANR^6(CH_2)_mAr^2$, $AN\{(CH_2)_mAr^2\}\{(CH_2)_nAr^3\}$ (wherein n has the same meaning as m, and Ar^3 has the same meaning as Ar^2), 1-benzyl-4-piperidinyl, 1-benzyl-2-piperidinyl, 2-pyridinylmethyl, 3-pyridinylmethyl, AQ (wherein Q is pyrrolidine or piperidine which may be substituted by $(CH_2)_mAr^2$), 4- R^6 -1-piperazinyl, 4- Ar^2 -1-piperazinyl, 4- $(Ar^2)_2$ CH-1-piperazinyl or 4- $(Ar^2)_2$ CH-1-(1,4-diazacycloheptyl);

or a pharmaceutically acceptable salt of the compound for the maunfacture of an agent for enhancing the drug effect at an antitumor drug.

In this specification, "the compound of the present invention" refers generally to not only the compound of the formula I but also to the pharmaceutically acceptable salt thereof.

Now, the various substituents in the formula I for the compound of the present invention will be described specifically.

R¹ includes, for example, methyl, ethyl, methoxymethyl, methoxyethyl, aminoethyl, dimethylaminoethyl and benzyl.

R² includes, for example, methyl, phenyl, styryl, cyano, amino, methylamino, dimethylamino and hydroxymethyl.

R³ includes, for example, hydrogen, methyl, ethyl, n-and i-propyl, n-, i- and sec-butyl, n-pentyl, n-hexyl, n-octyl, n-decyl, cyclopropyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclopropylethyl, cyclohexylmethyl, cyclohexylethyl, allyl, 1-methylallyl, 2 methylallyl, 3-methylallyl, 2-propynyl, 3-butynyl, phenyl, p-chlorophenyl, p-methoxyphenyl, benzyl, p-chlorobenzyl, p-methoxybenzyl, phenethyl, p-chlorophenethyl, p-methoxyphenethyl, methoxyethyl, ethoxyethyl, i-propoxyethyl, dimethylaminoethyl, benzylmethylaminopropyl, benzyloxyethyl, n-propoxyethyl, cyanoethyl, methylaminoethyl, aminoethyl, benzylmethylaminoethyl, benzylphenylaminoethyl, 1-benzylpyridino-4-yl, 1-benzylpiperidino-2-yl, 2-pyridinomethyl, 4-diphenylmethyl-1-piperadinoethyl, 4-methyl-1-piperadinoethyl, 4-phenyl-1-piperadinoethyl, 2-oxopropyl and methylthioethyl.

Each of R⁴ and R⁵ includes, for example, hydroxy, methoxy, ethoxy, n- and i-propoxy, n-, i- and secbutoxy, n-pentyloxy, n-hexyloxy, n-octyloxy, n-decyloxy, cyclopropyloxy, cyclopentyloxy, cyclohexyloxy, cyclopropylmethyloxy, cyclopropylethyloxy, cyclohexylmethyloxy, cyclohexylethyloxy, allyloxy, 1-methylallyloxy, 2-methylallyloxy, 3-methylallyloxy, 2-propynoxy, 3-butynoxy, phenyloxy, p-chlorophenyloxy, pmethoxyphenyloxy, p-chlorobenzyloxy, benzyloxy, p-methoxybenzyloxy, phenethyloxy, chlorophenethyloxy, p-methoxyphenethyloxy, methoxyethyloxy, ethoxyethyloxy, i-propoxyethyloxy, dimethylaminoethyloxy, benzylmethylaminopropyloxy, benzyloxyethyloxy. n-propoxyethyloxy, cyanoethyloxy, amino, methylamino, dimethylamino, diisopropylamino, 1-piperidinyl and 1-pyrrolidinyl.

10

The case where R⁴ and R⁵ together form a ring includes, for example, 1,2-dimethylethylenedioxy, 1,3-propylenedioxy, 2,2-dimethyl-1,3-propylenedioxy, 1,3-dimethyl-1,3-propylenedioxy, 2-ethyl-1,3-propylenedioxy, 2-isopropyl-1,3-propylenedioxy, 2-cyclobutyl-1,3-propylenedioxy, 2-cyclobexyl-1,3-propylenedioxy, 2,2-diethoxy-1,3-propylenedioxy, 1,1,3,3-tetramethyl-1,3-propylenedioxy, 1,4-dimethyl-1,4-butylenedioxy, 2-dihydro-1,4-butylenedioxy, N-methyl-1,3-dimethylpropyleneaminooxy, N-methyl-1-methylethyleneaminooxy, N,N'-dimethylethylenediamino and N,N'-diethylethylenediamino.

Ar¹ includes, for example, phenyl, nitrophenyl, chlorophenyl, fluorophenyl, trifluoromethylphenyl, hydroxyphenyl, methoxycarbonylphenyl, aminophenyl, methylaminophenyl, dimethylaminophenyl, aminocarbonylphenyl, methylaminocarbonylphenyl, methylaminocarbonylphenyl, methylsulfonylphenyl, sulfonylphenyl, methoxysulfonylphenyl, aminosulfonylphenyl, methylaminosulfonylphenyl, dimethylaminosulfonylphenyl, and o-, m- and p-substituted cyanophenyl, 2,3-dichlorophenyl and 2,1,3-benzooxadiazol-4-yl.

Among the compounds of the present invention, those of the formula I wherein either one of substituents R¹, R², R³, R⁴ and R⁵ contains at least one basic nitrogen atom capable of forming a salt, or pharmaceutically acceptable salts thereof are preferred, since they present preferred drug effect-enhancing agents for antitumor drugs.

Among the compounds of the present invention, those wherein the nitrogen-containing hetero ring is a 1,4-dihydropyridine ring, are covered by the following Japanese Unexamined Patent Publications and can be prepared in accordance with the method disclosed in these publications.

Japanese Unexamined Patent Publications No. 161392/1984, No. 69089/1985, No. 248693/1985, No. 258194/1985, No. 27995/1986, No. 30591/1986, No. 37793/1986, No. 63688/1986, No. 63689/1986, No. 210092/1986, No. 254596/1986, No. 257995/1986, No. 169795/1987, No. 195392/1987, No. 68591/1988, No. 115899/1988, No. 115899/1988 and No. 115891/1988.

Among the compounds of the present invention, those wherein the nitrogen-containing hetero ring is a pyridine ring, include new compounds. However, such compounds may readily be obtained by treating the corresponding 1,4-dihydropyridine derivatives with an oxidizing agent such as nitric acid, nitrous acid or chromic acid.

As described hereinafter, the compounds of the present invention enhance the drug effects of antitumor drugs not only against cancer cells which acquired drug resistance but also against cancer cells having no drug resistance. Therefore, they provide excellent advantages such that the dose of antitumor drugs to patients can be reduced, and toxicity or side effects can be reduced. Further, cross resistance can be overcome, which provides an important advantage that the number of useful antitumor drugs increases so that antitumor drugs can be selected to meet the symptoms and conditions of the patients. Recurrence of cancer is one of serious problems in the clinical field of chemotherapy of cancer. In many cases, this is regarded as a state where slightly remained drug resistant tumor cells have again proliferated.

The compounds of the present invention are capable of diminishing drug resistance when used in combination with antitumor agents, and they thus can be used to prevent recurrence by killing all the tumor cells and completely healing the tumor. Further, the compounds of the present invention may be employed to prevent metastatis. The enhancement of the drug effects of antitumor drugs by the combined use of the compounds of the present invention and the antitumor agents is expected also against solid cancer such as lung cancer, liver cancer or carcinoma of the colon to which the conventional antitumor agents used to be

hardly effective due to formation of multidrug resistant gene (see Fojo et al, Cancer Res., 45,3002-3007 (1986)).

The compounds of the present invention can be administered orally (in the form of tablets, pills, powders, capsules, granules, etc.) or parenteral (in the form of injection drugs, intravenous drip infusion drugs, suppositories, etc.). Further, compounds of the present invention may be administered alone or in admixture with antitumor drugs.

The dose of the compound of the present invention varies depending upon the manner of administration, the age of the patient, the type of disease, the diseased condition and the type of concurrently used antitumor agents. However, the dose is usually from 0.01 to 3 g, preferably from 0.05 to 1 g, per day for an adult. There is no particular restriction as to the concurrently used antitumor drugs. However, vina alkaloids represented by vincristine and vinblastine, adriamycin, actinomycin-D, daunomycin and colchicine may be mentioned as preferred examples.

These antitumor agents may be administered in such a dose and in such a dosage form as usually employed clinically, and they may be administered simultaneously with the compound of the present invention, or before or after the administration of the compound of the present invention. Various formulations may be employed for the oral administration of the active component of the present invention. For example, the active component may be formulated into tablets, granules, fine particles, powders, syrups or elixirs. Granules and powders may be filled in capsules to obtain unit dosage formulations, as the case requires.

Among such drug formulations for oral administration, solid drugs may contain an excipient such as silicic anhydride, metasilicic acid, magnesium aluminate, synthetic aluminum silicate, lactose, sucrose, corn starch, fine crystalline cellulose or hydroxypropyl starch, a binder such as gum arabic, gelatin, tragacanth, hydroxypropyl cellulose or polyvinyl pyrrolidone, a lubricant such as magnesium stearate, talc or silica, a disintegrator such as potato starch or calcium carboxymethyl cellulose, or a wetting agent such as polyethylene glycol, sorbitan monooleate, polyoxyethylene hardened caster oil or sodium lauryl sulfate.

Tablets may be coated in accordance with a conventional method.

Among the drugs for oral administration, liquid formulations may be in the form of aqueous or oily emulsions or syrups, or may be formulated in a dry product which is capable of being dissolved with a suitable vehicle prior to its use. Such liquid formulations may contain commonly employed additives, for example, an assisting agent for emulsification such as sorbit syrup, methyl cellulose, gelatin or hydroxyethyl cellulose, an emulsifier such as lecithin sorbitan monooleate or polyoxyethylene hardened caster oil, a non-aqueous vihicle such as a fractionated coconut oil, almond oil or peanut oil, or an antiseptic such as methyl p-hydroxybenzoate, propyl p-hydroxybenzoate or sorbic acid.

These drugs for oral administration may further contain a preservative or a stabilizer, as the case requires.

When the active component of the present invention is formulated into an injection drug, it may take a form of an oil solution, an emulsion or an aqueous solution. Such liquid formulations may contain an emulsifier, a stabilizer, etc. which are commonly employed.

Depending upon the manner of administration, these drugs may contain at least 1% by weight, preferably from 5 to 50% by weight, of the active ingredient.

Further, the active ingredient of the present invention may be formulated into a suppository by a usual method.

Now, Test Examples will be given to show the drug effect-enhancing activities of the compounds of the present invention for antitumor agents.

TEST EXAMPLE 1

20

MTT colorimetric assay performed in a 96-well plate was used for an in vitro chemosensitivity test. The assay is dependent on the reduction of MTT by the mitochondrial dehydrogenase of viable cells to a blue formazan product which can be measured spectrophotometrically. Equal numbers of cells (2,000 for KB-3-1 and 5,000 for KB-C2) were inoculated into each well with 0.18 mL of culture medium. After overnight incubation (37 °C, 5% CO₂), 20 μ L of vincristine solution and 0.5 μ L of sample solution were added and incubated for 4 days. Then, 50 μ L of MTT (1.1 mg/mL PBS) was added to each well and incubated for further 4 hours. The resulting formazan was dissolved with 100 μ L of DMSO after aspiration of the culture medium. Plates were placed on a plate shaker for 5 minutes and read immediately at 570 nm. IC₅₀ (ng/mL) with a tested sample 10 μ M is given in Table 1; and IC₅₀ of vincristine without a sample was 5,000 ng/mL.

MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MEM: minimum essential medium

The test results are shown in Table 1.

5 .		ICso		က်	120	30	1.2
10		Ra		B t	Θ Σ	Ph CII3	Ph N CII3
15 •			٠			>	` z ´
20	e 1	R 2	CII2CII2	- Z Z-	CH 3	CII 3	CH 3
25	Table 1	. A		=	=	=	=
30		2		COzEt	C02Me	0 (EtO) 2P-	0 (EtO) 2P-
35		Ar		NO NO		NO.	7,
40				<u> </u>	(<u>O</u>)-		

55

EP 0 353 692 B1

•		ı				
5		1050	9	27	15	<5
10		R 3	Ph CII 3	Ph N CH3	Ph N CII 3	Ph Ph
15 20	Table 1 (continued)	R 2	CII 2 CH CO	CH 2 CH CH	CIII 3	c II 3
. 20	Table	R-) H	=	· =	=
25 30		2	COzMe	CO _z Me	0 	0 BtO) _z P-
35	*	Ar¹		(O)-	CF3	· (<u>)</u> -

EP 0 353 692 B1

				· [
.5			ICso	< 5	13	.	19
10			R 3	Ph N Ph CH 3	Ph N CII3	Ph N CII 3	Ph N CII 3
15	,	nued)				· .	
•		(conti	R 2	CIII3	CII 3	CII 3	CII 3
20		Table 1 (continued)	R 1	= :	= .	=	=
25				0=4	m	o = d	o = d.
30		-	2	0 (EtO) _z P	COzCII3	(BtO) 2 F	0 (EtO) 2
35			Ar 1	NO NO	N No.	C. C. P. P. C. P. P. C. P. C. P.	NO ₂

5		1650	9	9	9	ა ა
10		R 3	Ph N CH ₃	Ph CII 3	Ph CH ₃	CII 3
15	Table 1 (continued)	RZ	CH 3	C II 3	CH3	II CII 3
20	Table 1	R.	=	= .	=	o = a.
30		2	0 (i PrO) z P	"BuO D II	n-llex0 l	Ph N (CH2) 40 CH30
35	•	Ar	C &	NO z	NO NO	Cho En

EP 0 353 692 B1

		ICso	9	<.5	2	14
5					2 y z	h 2
10		R 3	Ph N CII 3	Ph CII 3	N NCIIPh z	N NCIPh.
15	tinued)	R 2	CII 3	CII 3	CII3	CII3
20	Table 1 (continued)	۳.	0 =d.	0 = d.	=	=
25 30	<u>.</u>	2	CH ₃ 0 0 0 CH ₃ (CH ₂) s 0 0	CH ₃ 0 0 0	0 (EtO) ₂ P	C0 2 CII 3
35	• .	Ari	c 7 o	NO 2	NO 2 ON	NO NO

EP 0 353 692 B1

.5		1650	<10	320	300	89
10		E 2	Ph N CII3	Ph N CII 3	h Ph	Ph
15	ntinued)	P z	CII 3	CII 3	CII 3	
20	Table 1 (continued)	R.1	ш	=	=	=
25	Ħ	2	0 (EtzN) ₂ P	$\begin{array}{c} C \parallel_3 \\ -N \\ \end{array}$		
35	•	Ar	NO 2	C &	NO NO	2 N N N N N N N N N N N N N N N N N N N

EP 0 353 692 B1

5		. 0 5 0 1	42	520	25	<10
10		R 3	Ph N CII 3	Ze	Ph / CII 3	Ph N CII3
15	Table 1 (continued)	R 2	CII 3	CII	CII 3	CII 3
20	able 1 (P t	1	=	.÷ =	· =
25	T	2		$\frac{1}{1}$ $\frac{1}$	' PrzN	1 Prz N 1 C C C II 3 O
30			m	ø	9	U
35		Ar		C F		i g

5

5		ICso	260	. ما	ശ	\$
10		R 3	NCHPh2	NCIIPhz	Ph CH ₃	P h CII 3
15	nued)	`	>	>	(CII 2) & N	(CII ₂) _b N
20	Table 1 (continued)	RZ	"	CII 3	C II 3	CIIS
	Table		=	=	=	=
25		2	Me0 P = 0			
30			8	n .	. ·	N
35		Ar 1		NO.	C &	NOZ

EP 0 353 692 B1

EP 0 353 692 B1

5		٠	ICso	200	260	35	410
10			R 3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CII3 Ph	N NCIIPh 2	Ph N CH3
15		tinued)		<			: .
20		1 (con	R 2	CII 3	CH3	CII	CIL
		Table 1 (continued)	۳ <u>-</u>	=	E=	=	
25				0 = d 0		0 d	0 1 2
30	·.		2	\times	\times		MezN
35 -	,		Ari	NO 2	NO NO	C &	NO.2

50

45

50 .

EP 0 353 692 B1

-

EP 0 353 692 B1

TEST EXAMPLE 2

300 human carcinoma KB-3-1 cells of multidrug resistant KB-CI cells were incubated in a glucose culture medium for 16 hours. A solution of vincristine alone, or of vincristine and a sample compound in DMSO, was added thereto, and the cells were incubated at $37 \, ^{\circ}$ C for further 10 days. Colonies were stained with 0.5% methylene blue in 50% ehtanol, and counted. The concentration of vincristine inhibiting the formation of the cell colonies 50% (IC50) was investigated in the presence or absence of the sample. Each value represents relative resistance to vincristine that was determined by dividing the IC50 of KB-3-1 for vincristine in the presence of a sample or the IC50 of KB-CI for vincristine in the absence of the sample by the IC50 of KB-3-1 for vincristine in the absence of the sample

The test results are shown in Table 2.

					·						
5 .				КВ-С1	1200	34	٥. م	14	18	0.7	1.0
10	·			KB-3-1	H	0.2	0.1	0.2	0.1	0.1	0.1
15	ristine against (KB-Cl)	·	sans phenyl.)	Concentration (µg/me)	0	10	10	10	10	10	10
20 25	s of vinc strain		(In the Table, Ph means phenyl.)	R ⁴ R ⁵		OCH2C(CH3)2CH2O	оси(сн ₃)сн ₂ си(сн ₃)о	сн ₃ о сн ₃ о	R ⁴ : PhCH ₂ N(CH ₃)(CH ₂) ₃ O R ⁵ : CH ₃ O	$(CH_3)_2N$ C_2H_5O	N(CH ₃)CH ₂ CH ₂ N(CH ₃)
30	drug (ug res	.CozR³	<u></u>			OCH ₂ C		R ⁴ : C	R ⁴ : F	R4: (N(CH ₃
35	: Activities for enhancing drug effects strain (KB-3-1) and its drug resistant	B d d d d d d d d d d d d d d d d d d d	CH ₃ N CH ₃	R ³		CH ₂ CH ₂ N(CH ₃)CH ₂ Ph	2-(4-diphenylmethyl- l-piperazinyl)ethyl	CH ₂ CH ₂ N(CH ₃)CH ₂ Ph	СЯз	CH ₂ CH ₂ N(CH ₃)CH ₂ Ph	CH ₂ CH ₂ N(CH ₃)CH ₂ Ph
4 5	Table 2: Acti parent strain			Ar ¹	No administra- tion	m-Nitrophenyl	m-Nitrophenyl	m-Nitrophenyl	m-Nitrophenyl	m-Nitrophenyl	m-Chlorophenyl
50			·	Compound No.		(1)	(2)	(3)	(4)	(5)	(9)

Now, two typical methods for oxidizing 1,4-dihydropyridine derivatives to the corresponding pyridine derivatives, will be described in detail.

OXIDATION EXAMPLE 1

Preparation of 5-(cis-4,6-dimethyl-1,3,2-dioxaphosphorinan-2-yl)-2,dimethyl-4-(3-nitrophenyl)-3-pyridinecar-boxylic acid 4-diphenylmethyl-1-piperadinoethylester p-oxide

10 mt of 36% nitric acid was added to 1.4 g of 5-(cis-4,6-dimethyl-1,3,2-dioxaphosphorinan-2-yl)-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3-pyridinecarboxylic acid 4-diphenylmethyl-1-piperadinoethylester poxide dihydrochloride, and the mixture was stirred at 50 °C for 10 minutes.

After cooling, the mixture was neutralized with a saturated sodium hydrogencarbonate aqueous solution and extracted with chloroform. The extract was dried over anhydrous sodium sulfate. Then, the solvent was distilled off under reduced pressure, and the residue was subjected to silica gel chromatography (developing solvent: ethyl acetate Rf = 0.5) to obtain 1.2 g (yield 95%) of the above identified compound as yellow oily substance.

The analytical values are shown below.

NMR δ(ppm) CDCt₃

1.02(3H,dd,J=1.6Hz,6.2Hz), 1.16(3H,dd,J=1.6Hz,6.2Hz), 1.12(1H,m), 1.57(1H,m), 2.20-2.50(10H,m), 2.59-(3H,s), 2.99(3H,s), 3.90-4.10(2H,m), 4.19(1H,s), 4.60-4.80(2H,m), 7.17(2H,t,J=7.4Hz), 7.26-(4H,dd,J=7.4Hz,7.0Hz), 7.39(4H,d,J=7.0Hz), 7.53(1H,m), 7.59(1H,m), 8.15(1H,m), 8.25(1H,m) MS(FAB) 699 (50%, M+1),

20 167 (100%)

OXIDATION EXAMPLE 2

Preparation of 5-(5,5-dimethyl-1,3,2-dioxaphosphorinan-2-yl)-2,6-dimethyl-4-(3-nitrophenyl)-3-pyridinecarboxylic acid 2-(N-phenyl)aminoethylester p-oxide

5.6 g of 5-(5,5-dimethyl-1,3,2-dioxaphosphorinan-2-yl)-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3-pyridinecarboxylic acid 2-(N-phenyl)aminoethylester p-oxide was dissolved in 20 m² of acetic acid. After adding 2 g of chromium trioxide, the mixture was heated at 100 °C for 30 minutes.

After cooling, the solvent was distilled off under reduced pressure. To the residue, a saturated sodium hydorgencarbonate aqueous solution was added for neutralization, and the mixture was extracted with 100 mt of ethyl acetate. The extract was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. To the residue, 10 mt of methanol, 10 mt of ethanol and 2 g of p-toluene sulfonic acid, and the mixture was refluxed under heating for 7 hours. The solvent was distilled off under reduced pressure. Then, a saturated sodium hydrogencarbonate aqueous solution was added, and the mixture was extracted with 100 mt of ethyl acetate. The extract was dried over anhydrous sodium sulfate. Then, solvent was distilled off under reduced pressure, and the residue was subjected to silica gel chromatography (developing solvent: ethyl acetate Rf = 0.6) to obtain 4.2 g of the above-identified compound (yield: 79%, melting point: 105 - 106 °C) as yellow crystals.

The analytical values are shown below.

NMR δ(ppm) CDC13

0.75(3H,s), 1.09(3H,s), 2.60(3H,s), 2.89(3H,s), 3.0-3.70(6H,m), 4.14(2H,t,J=6Hz), 6.30-8.30(9H,m)

Now, examples for the drugs containing the compounds of the present invention will be presented.

45 EXAMPLES 1: Hard capsules for oral administration

25 g of hydrochloride of the compound (2), 5 g of adriamycin and 7.5 g of polyoxyethylene castor oil were dissolved in methanol. Then, 25 g of silicic anhydride was mixed thereto. Methanol was distilled off, and then 5 g of calcium carboxymethyl cellulose, 5 g of corn starch, 7.5 g of hydroxypropyl cellulose and 20 g of fine crystal cellulose were mixed thereto. Then, 30 mL of water was added, and the mixture was kneaded and granulated. The product was granulated by a granulation machine equipped with a screen of No. 24 mesh (B.S.). Granules were dried to a water content of not higher than 5% and sieved with a screen of No. 16 mesh (B.S.). Then, the particles were filled in capsules by a capsule filling machine in an amount of 200 mg per capsule.

EXAMPLE 2: Soft capsules for oral administration

30 g of hydrochloride of compound (2), 7.5 g of adriamycin and 130 g of polyethylene glycol (Macrogol 400) were mixed to obtain a uniform solution.

Separately, a gelatin solution comprising 93 g of gelatin, 19 g of glycerol, 10 g of D-sorbitol, 0.4 g of ethyl p-oxybenzoate, 0.2 g of propyl p-oxybenzoate and 0.4 g of titanium oxide, was prepared. By using this as a capsule coating agent, soft capsules each containing 190 mg of the content were prepared by a manual flat plate punching method.

EXAMPLE 3: Soft capsules for oral administration.

40 g of hydrochloride of compound (2), 4 g of adriamycin and 120 g of polyethylene glycol (Macrogol 400) were mixed to obtain a uniform solution.

Separately, a gelatin solution comprising 90 g of gelatin, 16 g of glycerol, 8 g of D-sorbitol, 0.35 g of ethyl p-oxybenzoate, 0.2 g of propyl p-oxybenzoate and 0.3 g of titanium oxide, was prepared. By using this as a capsule coating agent, soft capsules each containing 180 mg of the content were prepared by a manual flat plate punching method.

EXAMPLE 4: Injection drug

20

1 g of hydrochloride of compound (2), 1 g of adriamycin, a suitable amount of peanut oil and 1 g of benzyl alcohol were mixed, and the total amount was brought to 100 m² by using peanut oil. The solution thus obtained was put into ampules in an amount of 1 m² under an aseptic condition and the ampules were closed.

25

EXAMPLE 5: Injection drug

1 g of hydrochloride of compound (2), 1 g of adriamycin, 5.0 g of hydrogenated castor oil polyoxyethylene (60 mol) ether (Nikkol HCO 60, tradename), 20 g of propylene glycol, 10 g of glycerol and 5.0 g of ethyl alcohol were mixed, and 100 mt of distilled water was added thereto. The mixture was stirred to obtain a solution. The solution was put into ampules in an amount of 2.0 mt each under an aseptic condition, and the ampules were then closed.

EXAMPLE 6: Injection drug

35

1 g of hydrochloride of compound (2), 1 g of adriamycin, 5.0 g of hydrogenated castor oil polyoxyethylene (60 mol) ether (Nikkol HCO 60, tradename), 20 g of propylene glycol, 10 g of glycerol and 5.0 g of ethyl alcohol were mixed, and 100 mt of distilled water was added thereto. The mixture was stirred to obtain a solution. This solution was put into ampules in an amount of 2.0 mt each under an aseptic condition, and the ampules were closed.

EXAMPLE 7: Hard capsules for oral administration.

25 g of hydrochloride of compound (2), 5 g of vincristine and 7.5 g of polyoxyethylene castor oil were dissolved in methanol. Then, 25 g of silicic anhydride was added thereto, methanol was evaporated, and 5 g of calcium carboxymethyl cellulose, 5 g of corn starch, 7.5 g of hydroxypropyl cellulose and 20 g of fine crystalline cellulose were mixed, and 30 mL of water was added thereto. The mixture was kneaded and granulated. This product was granulated by a granulator with a screen of No. 24 mesh (B.S.). Granules thus obtaines were dried to a water content of not higher 5% and then sieved with a screen with No. 16 mesh (B.S.).

Then, the particles thus obtained were filled into capsules by a capsule filling machine in an amount of 200 mg per capsule.

EXAMPLE 8: Soft capsules for oral administration

55

30 g of hydrochloride of compound (2), 7.5 of vincristine and 130 g of polyethylene glycol (Macrogol 400) were mixed to obtain a uniform solution.

Separately, a gelatin solution comprising 93 g of gelatin, 19 g of glycerol, 10 g of D-sorbitol, 0.4 g of ethyl p-oxybenzoate, 0.2 g of propyl p oxybenzoate and 0.4 g of titanium oxide, was prepared. By using this as a capsule coating agent, soft capsules containing 190 mg of the content were prepared by a manual flat plate punching method.

EXAMPLE 9: Soft capsules for oral administration

40 g of hydrochloride of compound (2), 4 g of vincristine and 120 g of polyethylene glycol (Macrogol 400) were mixed to obtain a uniform solution.

Separately, a gelatin solution comprising 90 g of gelatin, 16 g of glycerol, 8 g of D-sorbitol, 0.35 g of ethyl p-oxybenzoate, 0.2 g of propyl p-oxybenzoate and 0.3 g of titanium oxide, was prepared. By using this as a capsule coating agent, soft capsules containing 180 mg of the content were prepared by a manual flat plate punching method.

15 EXAMPLE 10: Injection drug

10

20

1 g of hydrochloride of compound (2), 1 g of vincristine, a suitable amount of peanut oil and 1 g of benzyl alcohol were mixed, and the total amount was brought to 100 cc by using peanut oil. This solution was put into ampules in an amount of 1 m1 per ampule under an aseptic condition, and the ampules were closed.

EXAMPLE 11: Injection drug

1 g of hydrochloride of compound (2), 1 g of vincristine, 5.0 g of hydrogenated castor oil polyoxyethylene (60 mol) ether (Nikkol HCO 60, tradename), 20 g of propylene glycol, 10 g of glycerol and 5.0 g of ethyl alcohol were mixed, and 100 mt of distilled water was added thereto. The mixture was stirred to obtain a solution. This solution was put into ampules in an amount of 2.0 mt per ampule under an aseptic condition, and the ampules were closed.

30 EXAMPLE 12: Injection drug

1 g of hydrochloride of compound (2), 1 g of vincristine, 5.0 g of hydrogenated castor oil polyoxyethylene (60 mol) ether (Nikkol HCO 60, tradename), 20 g of propylene glycol, 10 g of glycerol and 5.0 g of ethyl alcohol were mixed, and 100 mt of distilled water was added thereto. The mixture was stirred to obtain a solution. This solution was put into ampules in an amount of 2.0 mt per ampule under an aseptic condition, and the ampules were closed.

Now, Examples will be given to illustrate the preparation of a drug in which the compound of the present invention is administered separately from an antitumor drug.

40 EXAMPLE 13: Tablets

Composition (1,000 tablets)

Hydrochloride of the compound of Example (2) Lactose	55.0 (g) 190.0
Corn starch	75.0
Fine crystalline cellulose	25.0
Methyl cellulose	3.0
Magnesium stearate	2.0
	350.0 (g)

The above components were charged into a V-type mixer and uniformly mixed. This powder mixture was directly tabletted to obtain tablets having a weight of 350 mg per tablet.

EXAMPLE 14: Capsules

Composition (1,000 capsules)

Hydrochloride of the compound of Example (2) 55 (g)
Corn starch 145
Fine crystalline cellulose 145
Magnesium stearate 5
350 (g)

The above compositions were charged into a V-type mixer and uniformly mixed. This powder mixture was filled in hard capsules. The content per capsule was 350 mg.

EXAMPLE 15: Syrups

Composition (2% solution)

20

25

5

10

Hydrochloride of the compound of Example (2)	2.0 (g)
Sucrose	30.0
Glycerol	5.0
Flavor	0.1
96% Ethanol	10.0
Methyl p-oxybenzoate	0.03
Distilled water to bring the total amount to 100.0 g	

30

Sucrose and hydrochloride of the compound of Example 1 were dissolved in 60 g of warm water and then cooled. Thereafter, a flavor solution dissolved in glycerol and ethanol was added thereto. Then, water was added to this mixture to bring the total amount to 100.0 g.

5 EXAMPLE 16: Powder

40

45

Hydrochloride of the compound of Example (2)	5.0 (g)
Lactose	84.0
Fine crystalline cellulose	10.0
Methyl cellulose	1.0
	100.0 (g)

The above components were charged into a V-type mixer and uniformly mixed.

EXAMPLE 17: Injection drug

1 g of hydrochloride of compound (2), a suitable amount of peanut oil and 1 g of benzyl alcohol were mixed, and the total amount was brought to 100 cc by using peanut oil. This solution was put into ampules in an amount of 1 m1 per ampule under an aseptic condition, and the ampules were closed.

Claims

10

15

20

25

30

35

40

45

55

1. Use of a compound of the formula I:

wherein Ar^1 is phenyl, pyridyl, furyl, or 2,1,3-benzooxadiazol-4-yl, which may be substituted by one or two substituents selected from the group consisting of NO_2 , CF_3 , Br, Cl, F, R^6 (wherein R^6 is C_1 - C_4 alkyl), OH, OR^6 , $OCHF_2$, $COOR^6$, NH_2 , NHR^6 , NR^6R^7 (wherein R^7 has the same meaning as R^6), $CONH_2$, $CONHR^6$, $CONR^6R^7$, $COSR^6$, SR^6 , $S(O)R^6$, $S(O)_2R^6$, SO_3H , SO_3R^6 , SO_2NH_2 , SO_2NHR^6 , $SO_2NR^6R^7$, CN and phenyloxy;

Z is a group of the formula II:

$$\begin{array}{ccc}
R^4 & \parallel \\
\parallel & P \\
R^5 & P
\end{array}$$

wherein each of R⁴ and R⁵ which may be the same or different is OH, C_1 - C_{12} linear or branched primary or secondary alkyloxy, C_3 - C_6 linear or branched alkenyloxy or alkynyloxy, C_3 - C_6 cycloalkyloxy, C_1 - C_6 alkoxy substituted by C_3 - C_6 cycloalkyl, OAr² (wherein Ar² is phenyl which may be substituted by halogen, C_1 - C_3 alkyl or C_1 - C_3 alkoxy), OANR⁶R⁷ (wherein A is C_2 - C_6 alkylene, which may be substituted by C_1 - C_3 alkyl or Ar²), OAN(CH₂Ar²)R⁶, OAOR⁶, OACN, NH₂, NHR⁶, NR⁶R⁷, 1-piperidinyl or 1-pyrrolidinyl, or R⁴ and R⁵ together form OYO (wherein Y is C_2 - C_4 linear alkylene which may be substituted by R⁶, CO₂R⁶, OR⁶ or A), NHYO, R⁶NYO, NHYNH, R⁶NYNH or R⁶NYNR⁷;

R¹ is hydrogen, R⁶, ANR⁶R⁷, AN(CH₂CH₂)₂O, AOR⁶ or CH₂phenyl;

 R^2 is R^6 , Ar^2 , $Ar^2CH = CH$, $Ar^2CH(OH)CH_2$, CHO, CN, CH_2OH , CH_2OR^6 , $CH_2CH_2N(CH_2CH_2)_2NR^6$, NH_2 , NHR^6 or NR^6R^7 ;

 R^3 is hydrogen, C_1 - C_{12} linear or branched alkyl, C_3 - C_6 linear or branched alkenyl or alkynyl, C_3 - C_6 cycloalkyl, C_1 - C_6 alkyl substituted by C_3 - C_6 cycloalkyl, AOR^6 , $AO(CH_2)_mAr^2$, (wherein m is an integer of from 0 to 3), $(CH_2)_mAr^2$, ANH_2 , $ANHR^6$, ANR^6R^7 , $ANR^6(CH_2)_mAr^2$, $AN\{(CH_2)_mAr^2\}\{(CH_2)_nAr^3\}$ (wherein n has the same meaning as m, and Ar^3 has the same meaning as Ar^2), the 1-benzyl-4-piperidinyl, 1-benzyl-2-piperidinyl, 2-pyridinylmethyl, 3-pyridinylmethyl, AQ (wherein Q is pyrrolidine or piperidine which may be substituted by $(CH_2)_mAr^2$), 4- R^6 -1-piperazinyl, 4- Ar^2 -1-piperazinyl, 4- Ar^2 -1-piperazinyl, 4- Ar^2 -1-piperazinyl, 4- Ar^2 -1-qiperazinyl, 4- Ar^2 -1-qiper

or a pharmaceutically acceptable salt of the compound, for the manufacture of an agent for enhancing the drug effect of an anti-tumor drug.

- The use according to Claim 1, wherein any one of the substituents R¹, R², R³, R⁴ and R⁵ in the
 compound of the formula I contains at least one basic nitrogen atom capable of forming a salt.
- 50 3. Use of a compound of the formula III:

$$Z \xrightarrow{Ar^1} CO_2R^3$$

$$CH_3 \xrightarrow{N} R^2$$
(III)

wherein Ar¹ is phenyl, pyridyl, furyl, or 2,1,3-benzooxadiazol-4-yl, which may be substituted by one or two substituents selected from the group consisting of NO₂, CF₃, Br, Cl, F, R⁶ (wherein R⁶ is C₁-C₄ alkyl), OH, OR⁶, OCHF₂, COOR⁶, NH₂, NHR⁶, NR⁶R⁷ (wherein R⁷ has the same meaning as R⁶), CONH₂, CONHR⁶, CONR⁶R⁷, COSR⁶, SR⁶, S(O)R⁶, S(O)₂R⁶, SO₃H, SO₃R⁶, SO₂NH₂, SO₂NHR⁶, SO₂NR⁶R⁷, CN and phenyloxy;

Z is a group of the formula II:

$$\begin{array}{ccc}
R^4 & \parallel \\
\parallel & \parallel \\
R^5
\end{array}$$
(II)

wherein each of R^4 and R^5 which may be the same or different is OH, C_1 - C_{12} linear or branched primary or secondary alkyloxy, C_3 - C_6 linear or branched alkenyloxy or alkynyloxy, C_3 - C_6 cycloalkyloxy, C_1 - C_6 alkoxy substituted by C_3 - C_6 cycloalkyl, OAr^2 (wherein Ar^2 is phenyl which may be substituted by halogen, C_1 - C_3 alkyl or C_1 - C_3 alkoxy), $OANR^6R^7$ (wherein A is C_2 - C_6 alkylene, which may be substituted by C_1 - C_3 alkyl or Ar^2), $OAN(CH_2Ar^2)R^6$, OACN, OA

 R^2 is R^6 , Ar^2 , $Ar^2CH_2CH_2$, $Ar^2CH_3CH_2$, CHO, $CH_2CH_2CH_2CH_2CH_2CH_2$, $CH_2CH_2CH_2CH_2$, $CH_2CH_2CH_2$, CH_2CH_2 , CH_2 , CH_2CH_2 , CH_2CH_2 , CH_2CH_2 , CH_2CH_2 , CH_2CH_2

 R^3 is hydrogen, C_1 - C_{12} linear or branched alkyl, C_3 - C_6 linear or branched alkenyl or alkynyl, C_3 - C_6 cycloalkyl, C_1 - C_6 alkyl substituted by C_3 - C_6 cycloalkyl, AOR^6 , $AO(CH_2)_mAr^2$, (wherein m is an integer of from 0 to 3), $(CH_2)_mAr^2$, ANH_2 , $ANHR^6$, ANR^6R^7 , $ANR^6(CH_2)_mAr^2$, $AN(CH_2)_mAr^2$, $AN(CH_2)_mAr^2$, $AN(CH_2)_mAr^2$, wherein n has the same meaning as m, and Ar^3 has the same meaning as Ar^2), the 1-benzyl-4-piperidinyl, 1-benzyl-2-piperidinyl, 2-pyridinylmethyl, 3-pyridinylmethyl, AQ (wherein Q is pyrrolidine or piperidine which may be substituted by AR^2), AR^6 -1-piperazinyl, AR^2 -1-piperazinyl, AR^2 -1-piperazinyl or AR^2 -1-piperazinyl

or a pharmaceutically acceptable salt of the compound for the manufacture of an agent for enhancing the drug effect for an anti-tumor drug.

4. Use according to Claim 3, wherein any one of the substituents R¹, R², R³, R⁴ and R⁵ in the compound of the formula I contains at least one basic nitrogen atom capable of forming a salt.

Patentansprüche

10

15

20

25

30

40

45

50

55

1. Verwendung einer Verbindung der Formel I:

$$Z \xrightarrow{Ar^1} CO_2R^3$$

$$CH_3 \xrightarrow{N} R^2$$

$$R^2$$

$$R^1$$

worin Ar¹ Phenyl, Pyridyl, Furyl oder 2,1,3-Benzooxadiazol-4-yl, das substituiert sein kann durch ein oder zwei Substituenten, ausgewählt aus der Gruppe, bestehend aus NO₂, CF₃, Br, Cl, F, R⁶ (wobei R⁶ C₁-C₄-Alkyl ist), OH, OR⁶, OCHF₂, COOR⁶, NH₂, NHR⁶, NR⁶R⁷ (wobei R⁷ dieselbe Bedeutung wie R⁶ hat), CONH₂, CONHR⁶, CONR⁶R⁷, COSR⁶, SR⁶, S(O)₂R⁶, S(O)₂R⁶, SO₃H, SO₃R⁶, SO₂NH₂, SO₂NHR⁶, SO₂NR⁶R⁷, CN und Phenyloxy, ist;

Z eine Gruppe der Formel II ist:

wobei R^4 und R^5 , die gleich oder verschieden sein können, jeweils OH, C_1 - C_{12} lineares oder verzweigtes primäres oder sekundäres Alkyloxy, C_3 - C_6 lineares oder verzweigtes Alkenyloxy oder Alkynyloxy, C_3 - C_6 -Cycloalkyloxy, C_1 - C_6 -Alkoxy, substituiert durch C_3 - C_6 -Cycloalkyl, OAr^2 (wobei Ar^2 Phenyl ist, das substituiert sein kann durch Halogen, C_1 - C_3 -Alkyl oder C_1 - C_3 -Alkoxy), $OANR^6R^7$ (wobei A C_2 - C_6 -Alkylen ist, das substituiert sein kann durch C_1 - C_3 -Alkyl oder Ar^2), $OAN(CH_2Ar^2)R^6$, $OAOR^6$, OACN, O

R¹ Wasserstoff, R⁶, ANR⁶ Rˀ, AN(CH₂CH₂)₂O, AOR⁶ oder CH₂phenyl ist; R² R⁶, Ar², Ar²CH=CH, Ar²CH(OH)CH₂, CHO, CN, CH₂OH, CH₂OR⁶, CH₂CH₂N(CH₂CH₂)₂NR⁶, NH₂, NHR⁶ oder NR⁶Rˀ ist;

R³ Wasserstoff, C₁-C₁₂ lineares oder verzweigtes Alkyl, C₃-C₆ lineares oder verzweigtes ungesättigtes Alkenyl oder Alkynyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkyl, substituiert durch C₃-C₆-Cycloalkyl, AOR⁶, AO-(CH₂)_mAr² (wobei m eine ganze Zahl von 0 bis 3 ist), (CH₂)_mAr², ANH₂, ANHR⁶, ANR⁶R⁷, ANR⁶(CH₂)_mAr², AN{(CH₂)_mAR²}{(CH₂)_mAr³} (wobei n dieselbe Bedeutung hat wie m, und Ar³ dieselbe Bedeutung hat wie Ar²), 1-Benzyl-4-piperidinyl, 1-Benzyl-2-piperidinyl, 2-Pyridinylmethyl, 3-Pyridinylmethyl, AQ (wobei Q Pyrrolidin oder Piperidin ist, das substituiert sein kann durch (CH₂)_mAr²), 4-R⁶-1-Piperazinyl, 4-Ar²-1-Piperazinyl, 4-(Ar²)₂CH-1-Piperazinyl oder 4-(Ar²)₂CH-1-(1,4-Diazacycloheptyl) ist; oder ein pharmazeutisch verträgliches Salz der Verbindung zur Herstellung eines Mittels zur Verbesserung der Arzneimittelwirkung eines Antitumormittels.

- Verwendung gemäß Anspruch 1, wobei irgendeiner der Substituenten R¹, R², R³, R⁴ und R⁵ in der
 Verbindung der Formel I mindestens ein basisches Stickstoffatom enthält, das fähig ist, ein Salz zu bilden.
 - Verwendung einer Verbindung der Formel III:

10

15

20

25

35

40

45

50

55

$$Z \xrightarrow{Ar^1} CO_2R^3$$

$$CH_3 \qquad N \qquad R^2$$
(III)

wobei Ar¹ Phenyl, Pyridyl, Furyl oder 2,1,3-Benzooxadiazol-4-yl ist, das substituiert sein kann durch ein oder zwei Substituenten, ausgewählt aus der Gruppe, bestehend aus NO₂, CF₃, Br, Cl, F, R⁶ (wobei R⁶ C₁-C₄-Alkyl ist), OH, OR⁶, OCHF₂, COOR⁶, NH₂, NHR⁶, NR⁶R⁷ (wobei R⁷ dieselbe Bedeutung wie R⁶ hat), CONH₂, CONHR⁶, CONR⁶R⁷, COSR⁶, SR⁶, S(O)₂R⁶, SO₃H, SO₃R⁶, SO₂NH₂, SO₂NHR⁶, SO₂NHR⁶, SO₂NR⁶R⁷, CN und Phenyloxy; Z ist eine Gruppe der Formel II:

wobei R⁴ und R⁵, die jeweils gleich oder verschieden sein können, jeweils OH, C₁-C₁₂ lineares oder verzweigtes primäres oder sekundäres Alkyloxy, C₃-C₆ lineares oder verzweigtes Alkenyloxy oder

Alkynyloxy, C₃-C₆-Cycloalkyloxy, C₁-C₆-Alkoxy, substituiert durch C₃-C₆-Cycloalkyl, OAr² (wobei Ar² Phenyl ist, das substituiert sein kann durch Halogen, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy), OANR⁶ R⁷ (wobei A C₂-C₆-Alkylen ist, das substituiert sein kann durch C₁-C₃-Alkyl oder Ar²), OAN(CH₂Ar²)R⁶, OAOR⁶, OACN, NH₂, NHR⁶, NR⁶ R⁷, 1-Piperidinyl oer 1-Pyrrolidinyl ist, oder R⁴ und R⁵ zusammen OYO bilden (worin Y C₂-C₄-lineares Alkylen ist, das substituiert sein kann durch R⁶, CO₂R⁶, OR⁶ oder A), NHYO, R⁶NYO, NHYNH, R⁶NYNH oder R⁶NYNR⁷, oder Z ist CO₂R⁸ (worin R⁸ dieselbe Bedeutung wie R³, wie hiernach definiert, hat);

R² ist R⁵, Ar², Ar²CH = CH, Ar²CH(OH)CH₂, CHO, CN, CH₂OH, CH₂OR⁶, CH₂CH₂N(CH₂CH₂)₂NR⁶, NH₂, NHR⁶ oder NR⁶R⁷:

- R³ ist Wasserstoff, C₁-C₁₂ lineares oder verzweigtes Alkyl, C₃-C₆ lineares oder verzweigtes Alkenyl oder Alkynyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkyl, substituiert durch C₃-C₆-Cycloalkyl, AOR⁶, AO(CH₂)_mAr² (wobei m eine ganze Zahl von 0 bis 3 ist), (CH₂)_mAr², ANH₂, ANHR⁶, ANR⁶ R⁷, ANR⁶ (CH₂)_mAr², AN{-(CH₂)_mAR²}{(CH₂)_mAr³} (wobei n dieselbe Bedeutung hat wie m, und Ar³ dieselbe Bedeutung hat wie Ar²), 1-Benzyl-4-piperidinyl, 1-Benzyl-2-piperidinyl, 2-Pyridinylmethyl, 3-Pyridinylmethyl, AQ (wobei Q Pyrrolidin oder Piperidin ist, das substituiert sein kann durch (CH₂)_mAr²), 4-R⁶-1-Piperazinyl, 4-Ar²-1-Piperazinyl, 4-(Ar²)₂ CH-1-Piperazinyl oder 4-(Ar²)₂ CH-1-(1,4-Diazacycloheptyl); oder ein pharmazeutisch verträgliches Salz der Verbindung zur Herstellung eines Mittels zur Verbesserung der Arzneimittelwirkung eines Antitumormittels.
- Verwendung gemäß Anspruch 3, wobei irgendeiner der Substituenten R¹, R², R³, R⁴ und R⁵ in der Verbindung der Formel I mindestens ein basisches Stickstoffatom enthält, das fähig ist, ein Salz zu bilden.

Revendications

10

15

25

30

35

40

45

50

- 55

Utilisation d'un composé de la formule (I):

$$Z \xrightarrow{Ar^1} CO_2R^3$$

$$CH_3 \xrightarrow{N} R^2$$

$$R^2$$

dans laquelle:

- Ar¹ représente phényle, pyridyle, furyle ou 2,1,3-benzooxadiazol-4-yle, qui peut être substitué par un ou deux substituants choisis dans le groupe constitué par : NO₂, CF₃, Br, Cl, F, R⁶ (où R⁶ représente alkyle en C₁-C₄), OH, OR⁶, OCHF₂, COOR⁶, NH₂, NHR⁶, NR⁶R⁷ (où R⁷ a la même signification que R⁶), CONH₂, CONHR⁶, CONR⁶R⁷, COSR⁶, SR⁶, S(O)R⁶, S(O)₂R⁶, SO₃H, SO₃R⁶, SO₂NH₂, SO₂NHR⁶, SO₂NR⁶R⁷, CN et phényloxy;
- Z représente un groupe de la formule (II) :

dans laquelle R⁴ et R⁵, qui peuvent être identiques ou différents, représentent chacun OH, alkyloxy, primaire ou secondaire, linéaire ou ramifié, en C_1 - C_{12} ,alcényloxy ou alcynyloxy linéaire ou ramifié en C_3 - C_6 , cycloalkyloxy en C_3 - C_6 , alcoxy en C_1 - C_6 substitué par cycloalkyle en C_3 - C_6 , OAr² (où Ar² représente phényle qui peut être substitué par halogène, alkyle en C_1 - C_3 ou alcoxy en C_1 - C_3), OANR⁶ R⁷ (où A représente alkylène en C_2 - C_6 , qui peut être substitué par alkyle en C_1 - C_3 ou Ar²), OAN(CH₂Ar²)R⁶, OAOR⁶, OACN, NH₂, NHR⁶, NR⁶R⁷, 1-pipéridinyle ou 1-pyrrolidinyle, ou bien

 R^4 et R^5 forment ensemble OYO (où Y représente alkylène linéaire en C_2 - C_4 qui peut être substitué par R^6 , CO_2R^6 , OR^6 ou A), NHYO, R^6 NYO, NHYNH, R^6 NYNH, ou R^6 NYNR⁷;

- R¹ représente hydrogène, R6, ANR6R7, AN(CH2CH2)2O, AOR6 ou CH2-phényle;
- R² représente R⁶, Ar², Ar²CH = CH, Ar²CH(OH)CH₂, CHO, CN, CH₂OH, CH₂OR⁶, CH₂CH₂N-(CH₂CH₂)₂NR⁶, NH₂, NHR⁶ ou NR⁶R⁷,
- R³ représente hydrogène, alkyle linéaire ou ramifié en C¹-C¹², alcényle ou alcynyle linéaire ou ramifié en C³-C₆, cycloalkyle en C³-C₆, alkyle en C¹-C₆ substitué par cycloalkyle en C³-C₆, AOR⁶, AO(CH²)mAr² (où m représente un entier de 0 à 3), (CH²)mAr², ANH², ANHR⁶, ANR⁶ R³, ANR⁶ (CH²)mAr², AN{(CH²)mAr²}{(CH²)mAr³} (où n a la même signification que m, et Ar³ a la même signi-fication que Ar²), 1-benzyl-4-pipéridinyle, 1-benzyl-2-pipéridinyle, 2-pyridinylméthyle, 3-pyridinylméthyle, AQ (où Q représente pyrrolidine ou pipéridine qui peut être substitué par (CH²)mAr²), 4-R⁶-1-pipérazinyle, 4-Ar²-1-pipérazinyle, 4-(Ar²)² CH-1-pipérazinyle ou 4-(Ar²)² CH-1-(1,4-diazacycloheptyle);

ou d'un sel pharmaceutiquement acceptable du composé, pour la fabrication d'un agent destiné à rehausser l'effet médicamenteux d'un médicament anti-tumoral.

- 2. Utilisation selon la revendication 1, dans laquelle n'importe lequel des substituants R¹, R², R³, R⁴ et R⁵ dans le composé de la formule (I) contient au moins un atome d'azote basique capable de former un sel.
- 3. Utilisation d'un composé de la formule (III) :

$$\begin{array}{c|c}
Z & CO_2R^3 \\
\hline
CH_3 & R^2
\end{array}$$
(III)

dans laquelle :

10

15

20

25

30

35

40

45

50

55

- Ar¹ représente phényle, pyridyle, furyle ou 2,1,3-benzooxadiazol-4-yle, qui peut être substitué par un ou deux substituants choisis dans le groupe constitué par : NO₂, CF₃, Br, Cl, F, R⁶ (où R⁶ représente alkyle en C₁-C₄), OH, OR⁶, OCHF₂, COOR⁶, NH₂, NHR⁶, NR⁶R⁷ (où R⁷ a la même signification que R⁶), CONH₂, CONH₂, CONH₃, CONR⁶, SR⁶, S(O)R⁶, S(O)₂R⁶, SO₃H, SO₃R⁶, SO₂NH₂, SO₂NHR⁶, SO₂NR⁶R⁷, CN et phényloxy;
- Z représente un groupe de la formule (II) :

dans laquelle R⁴ et R⁵, qui peuvent être identiques ou différents, représentent chacun OH, alkyloxy, primaire ou secondaire, linéaire ou ramifié, en C_1 - C_{12} , alcényloxy ou alcynyloxy linéaire ou ramifié en C_3 - C_6 , cycloalkyloxy en C_3 - C_6 , alcoxy en C_1 - C_6 substitué par cycloalkyle en C_3 - C_6 , OAr² (où Ar² représente phényle qui peut être substitué par halogène, alkyle en C_1 - C_3 ou alcoxy en C_1 - C_3), OANR⁶R⁷ (où A représente alkylène en C_2 - C_6 qui peut être substitué par alkyle en C_1 - C_3 ou Ar²), OAN(CH₂Ar²)R⁶, OAOR⁶, OACN, NH₂, NHR⁶, NR⁶R⁷, 1-pipéridinyle ou 1-pyrrolidinyle, ou bien

R⁴ et R⁵ forment ensemble OYO (où Y représente alkylène linéaire en C₂-C₄ qui peut être substitué par R⁶, CO₂R⁶, OR⁶ ou A), NHYO, R⁶NYO, NHYNH, R⁶NYNH ou R⁶NYNR⁷, ou Z représente CO₂R⁸ (où R⁸ a la même signification que R³ défini ci-après);

- R² représente R⁶, Ar², Ar²CH = CH, Ar²CH(OH)CH₂, CHO, CN, CH₂OH, CH₂OR⁶, CH₂CH₂N-(CH₂CH₂)₂NR⁶, NH₂, NHR⁶ ou NR⁶R⁷,
- R³ représente hydrogène, alkyle linéaire ou ramifié en C₁-C₁₂, alcényle ou alcynyle linéaire ou ramifié en C₃-C₆, cycloalkyle en C₃-C₆, alkyle en C₁-C₆ substitué par cycloalkyle en C₃-C₆, AOR⁶,

 $AO(CH_2)_mAr^2$ (où m représente un entier de 0 à 3), $(CH_2)_mAr^2$, ANH_2 , $ANHR^6$, ANR^6R^7 , ANR^6 - $(CH_2)_mAr^2$, $\{AN(CH_2)_mAr^2\}\{(CH_2)_nAr^3\}$ (où n a la même signification que m, et Ar^3 a la même signi-fication que Ar^2), 1-benzyl-4-pipéridinyle, 1-benzyl-2-pipéridinyle, 2-pyridinylméthyle, 3-pyridinylméthyle, AQ (où Q représente pyrrolidine ou pipéridine qui peut être substitué par $(CH_2)_mAr^2$), 4-R⁶-1-pipérazinyle, 4-Ar²-1-pipérazinyle, 4-(Ar²)₂CH-1-pipérazinyle ou 4-(Ar²)₂CH-1-(1,4-diazacycloheptyle);

ou d'un sel pharmaceutiquement acceptable du composé par la fabrication d'un agent destiné à rehausser l'effet médicamenteux d'un médicament anti-tumoral.

Utilisation selon la revendication 3, dans laquelle n'importe lequel des substituants R¹, R², R³, R⁴ et R⁵ dans le composé de la formule (I) contient au moins un atome d'azote basique capable de former un sel

5.