Data Structures Level Order Traversal

Mostafa S. Ibrahim Teaching, Training and Coaching since more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / Msc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

Level Order Traversal

- We learned 3 recursive traversal methods that keep going deep tell no more way
 - We call them depth first (go deeper)
 - o Inorder here is: 8 4 2 6 3 5
- In level order traversal, we print the tree level by level
 - Level 0: 2
 - Level 1: 4 3
 - Level 2: 8 6 5
 - We call it: breadth first
- Depth vs Breadth

- Although we can use recursion to find the levels one by one, it will be very impractical
- One of the great applications of the queue is to iterate on a tree level by level
- Start a queue with the root.
- Pop it and push its children and so on
- Can you finish idea and implement it?

- Add the root node to the queue
- While not empty
 - Get node
 - Print it
 - Add its available children

2		

• Pop: Tree(2)

• Add children: 4, 3

• Printed so far: 2

4	3			
---	---	--	--	--

• Pop: Tree(4)

Add children: 8

Printed so far: 2 4

|--|

• Pop: Tree(3)

• Add children: 6, 5

• Printed so far: 2 4 3

8 6 5

• Pop: Tree(8)

Add children: None

Printed so far: 2 4 3 8

6	5			
---	---	--	--	--

Pop: Tree(6)

Add children: None

• Printed so far: 2 4 3 8 6

5		
9		

- Pop: Tree(5)
- Add children: None
- Empty: queue: stop
- Printed so far: 2 4 3 8 6 5

The queue content

- What is happening? We iterate on nodes one by one, adding its children to the current queue
- The queue will be in 1 of 2 cases
 - Either all current nodes of 1 specific level
 - Or 2 consecutive levels

3	8		
8	6	5	

Let's check the queue

A1

B2, B3

B3, C4

C4, C5, C6

C5, C6, D7

C6, D7

D7, D8

D8, E9

E10, E11, F12

F12

G13

: remove A1, add B2, B3

: remove B2, add C4

: remove B3, add C5, C6

: remove C4, add D7

: remove C5, add nothing

: remove C6, add D8

: remove D7, add E9

: remove D8, add E10, E11

E9, E10, E11 : remove E9, add F12

Implementation v1

- Just simulate the process using the code
- Although we print level by level, but we don't know the level of each node!
- 2 ways
 - In the queue, add also the level
 - Or smartly, process level by level

```
void level order traversal1() {
    queue<BinaryTree*> nodes queue;
    nodes queue.push(this);
    while (!nodes queue.empty()) {
        BinaryTree*cur = nodes queue.front();
        nodes queue.pop();
        cout << cur->data << " ";
        if (cur->left)
            nodes queue.push(cur->left);
        if (cur->right)
            nodes queue.push(cur->right);
    cout << "\n";
```

Print level by level, knowing level

- Let's assume the queue now has ONLY nodes from level 5
 - Assume they are 4 nodes. Let's call it sz
- Process sz # of times the queue
 - Now the sz (4) nodes are removed!
 - Only their children are added

Process based on current size

- 1A sz = 1, Process 1 step
- 2B, 3B sz = 2, Process 2 steps

Implementation v2

- Now can trivially know which level we are
- In each step
 - We process all current parents
 - Add all their children
 - Hence, always one level in the queue
- Both methods are O(n) time
 - We iterate on each node: ~n
 - We move through each edge: ~n
 - A tree has n-1 edges

```
void level order traversal2() {
    queue<BinaryTree*> nodes queue;
    nodes queue.push(this);
    int level = 0;
   while (!nodes queue.empty()) {
        int sz = nodes queue.size();
        cout<<"Level "<<level<<": ";
        while(sz--) {
            BinaryTree*cur = nodes queue.front();
            nodes queue.pop();
            cout << cur->data << " ";
            if (cur->left)
                nodes queue.push(cur->left);
            if (cur->right)
                nodes queue.push(cur->right);
        level++;
        cout << "\n";
```

Time Complexity

- Fact: A tree of nodes has always n-1 edges (think about it)
- Time complexity
 - o In both recursive and level traversals: we iterate on each node ⇒ ~n steps
 - From each node, we pass on its children. Total edges ~n
 - Don't just say it is 2 max as constant! Think total here
 - So total O(n) time

Memory Complexity

- In recursion, we have a stack of depth h. So O(h)
- But for level order? We have a queue of items
- We know, the queue will never have more than n nodes, so o(n)
 - But actually, will have only subset of them: the max level per a tree
- Ok, then in a perfect tree, we have max of 2^h nodes in last level so o(2^h)
 - But if the tree is degenerate, this means we have 2ⁿ nodes while in fact we have only O(1)
- Overall, this should encourage the following choices
 - The best case: O(1) for degenerate tree
 - The worst case: For a perfect tree we have $O(2^h)$. As $h = \sim \log n$. Then again O(n)
 - Math Tip: 2 ^ logn = n
 - Overall: a better representation is O(n) memory complexity

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."