Matrices et opérations élémentaires

I) Généralités

Définition : Une matrice de taille $n \times p$ est un tableau de n lignes et p colonnes composé de nombres réels appelés les coefficients de la matrice.

On note $A = (a_{(i,j)})$ ou $A = (a_{ij})$ lorsqu'il n'y pas de confusion possible.

Le **coefficient** a_{ij} est celui situé à la ligne i (L_i) et la colonne j (C_j) de la matrice. (avec $i \in [1; n]$ et $j \in [1; p]$). L'ensemble des matrices de dimensions $n \times p$ est noté $\mathcal{M}_{n,p}(\mathbb{R})$.

Exemple : $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 4 & 5 \end{pmatrix}$ est une matrice de taille 2×3 où $a_{13} = 3$ et $a_{21} = -1$.

Définitions:

- Une matrice de taille $n \times n$ est appelée une matrice carrée d'ordre n.
 - L'ensemble des matrices carrées d'ordre est noté $\mathcal{M}_n(\mathbb{R})$.
 - Pour une matrice carrée $A = (a_{ij})$ d'ordre n, l'ensemble des coefficients de la diagonale principale est : $\{a_{ii}; 1 \le i \le n\}$.
- On appelle matrice diagonale d'ordre n toute matrice carrée d'ordre n telle que tous ses coefficients hors de la diagonale principale valent 0.
- Une matrice de dimension $1 \times p$ est appelée matrice ligne. Une matrice de dimension $n \times 1$ est appelée matrice colonne.

Exemples : $B = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$ est une matrice carré d'ordre 2.

 $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -34 & 0 \\ 0 & 0 & 7 \end{pmatrix}$ est une matrice diagonale d'ordre 3.

 $D = \begin{pmatrix} 1 & 8 & -5 \end{pmatrix}$ est une matrice ligne de dimension 1×3 .

Les coordonnées d'un vecteur du plan est une matrice colonne de dimension 2 x 1.

Propriété : Deux matrices $A = (a_{ij})$ et $B = (b_{ij})$ de même dimension $n \times p$ sont égales si, et seulement si : $a_{ij} = b_{ij}$ pour tous $i \in \{1; 2; ...; n\}$ et $j \in \{1; 2; ...; p\}$.

II) Opérations

1) Somme de deux matrices

Définition : Soit A et B deux matrices de même taille.

La somme de A et B est la matrice, notée A+B, dont les coefficients sont obtenus en additionnant deux à deux des coefficients qui ont la même position dans A et B.

Exemple :
$$A = \begin{pmatrix} 1 & 5 \\ -1 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} 4 & -1 \\ 8 & 2 \end{pmatrix}$. On a $C = A + B = \begin{pmatrix} 1+4 & 5+(-1) \\ -1+8 & 3+2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 7 & 5 \end{pmatrix}$.

Remarque : Il n'est possible d'additionner que des matrices de même dimension.

Propriétés : Soient A, B et C trois matrices de même dimension $n \times p$.

- (Commutativité de l'addition) : A + B = B + A.
- (Associativité de l'addition) : (A + B) + C = A + (B + C) = A + B + C.
- (Élément neutre de l'addition) : On note $0_{n,p}$ la matrice nulle de dimension $n \times p$ dont tous les coefficients sont nuls. On a $A + 0_{n,p} = A$.

2) Produit d'une matrice par un réel

Définition : Soit une matrice A et un nombre réel k.

La produit de A par le réel k est la matrice, notée kA, dont les coefficients sont obtenus en multipliant tous les coefficients de A par k.

Exemple : Soit
$$A = \begin{pmatrix} 1 & 5 \\ -1 & 3 \end{pmatrix}$$
. On a $7A = \begin{pmatrix} 7 \times 1 & 7 \times 5 \\ 7 \times (-1) & 7 \times 3 \end{pmatrix} = \begin{pmatrix} 7 & 35 \\ -7 & 21 \end{pmatrix}$.

Propriétés : Soit A et B deux matrices carrées de même taille et deux réels k et k'.

$$\bullet (k+k')A = kA + k'A$$

$$\bullet (kk')A = k(k'A)$$

•
$$k(A+B) = kA + kB$$

• $kA = 0_{n,p}$ si, et seulement si, k = 0 ou $A = 0_{n,p}$.

Démonstration : Dernière propriété (sens direct) : $kA = 0_{n,p} \iff \forall i \in [1; n], \forall j \in [1; p], ka_{ij} = 0$. Or $ka_{ij} = 0 \iff k = 0$ ou $a_{ij} = 0$.

Par disjonction de cas :

- Si $k \neq 0$ alors $\forall i \in [1; n], \forall j \in [1; p] a_{ij} = 0$ i.e. $A = 0_{n,p}$.
- Si k = 0 l'implication est trivialement vérifiée.

3) Produit de deux matrices

Définition : Soit $A = (a_{ij})$ une matrice de dimension $n \times p$ et $B = (b_{ij})$ une matrice de dimension $m \times q$. Le produit matriciel AB est défini si, et seulement si, p = m.

Alors $AB = (p_{ij})$ où $p_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$ pour tous $i \in \{1, 2, ..., n\}$ et $j \in \{1, 2, ..., q\}$..

Exemple: Soient
$$A = \begin{pmatrix} 5 & 2 \\ -1 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} 4 & -7 \\ 6 & 1 \end{pmatrix}$. Calculons AB .
$$\begin{pmatrix} 4 & -7 \\ 6 & 1 \end{pmatrix} \text{ avec } \begin{cases} c_{11} = 5 \times 4 + 2 \times 6 = 32 \\ c_{12} = 5 \times (-7) + 2 \times 1 = -33 \\ c_{21} = -1 \times 4 + 3 \times 6 = 14 \\ c_{22} = -1 \times (-7) + 3 \times 1 = 10 \end{cases}$$
 Finalement $AB = \begin{pmatrix} 32 & -33 \\ 14 & 10 \end{pmatrix}$.

On trouve
$$BA = \begin{pmatrix} 27 & -13 \\ 29 & 15 \end{pmatrix}$$

Remarque : La multiplication de matrices n'est pas commutative . Sur l'exemple précédent on voit bien que $AB \neq BA$.

Propriétés : Soient A, B et C trois matrices et soit k un nombre réel.

Les propriétés suivantes sont valables sous réserve que les calculs soient possibles.

- (Associativité de la multiplication) : (AB)C = A(BC) = ABC.
- (Distributivité de la multiplication) : A(B+C) = AB + AC et (A+B)C = AC + BC
- (kA)B = A(kB) = k(AB) = kAB
- (Élément absorbant) : $0_{m,n}A = 0_{m,p}$ et $A0_{p,m} = 0_{n,m}$

III) Matrice inverse

1) Matrice unité ou matrice identité

Définition : On appelle matrice unité ou matrice identité de taille $n \in \mathbb{N}^*$ la matrice carrée formée de n lignes et n colonnes, tel que :

$$I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Remarque : La matrice unité est une matrice carrée avec des 1 sur la diagonale et 0 des partout ailleurs.

Propriété : (Élément neutre de la multiplication) : Pour toute matrice carrée A de taille n, on a : $A \times I_n = I_n \times A = A$

Exemple : Calculer $A \times I_2$ et $I_2 \times A$ avec $A = \begin{pmatrix} 7 & -1 \\ 2 & 5 \end{pmatrix}$.

2) Puissance d'une matrice carrée

Définition : Soit A une matrice carrée et n un entier naturel non nul. La puissance n^{ime} de A est la matrice, notée A^n , égale au produit de n facteurs A.

Remarques:

- $A^0 = I_n$; $A^1 = A$
- Le carré de A est la matrice, noté A^2 , égale à $A \times A$.
- Le cube de A est la matrice, noté A^3 , égale à $A \times A \times A$.

Exemples:

a) Soit
$$A = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$$
. Calculer A^2 puis A^3 .

b) Soit la matrice diagonale
$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
. Calculer A^2 .

Remarque : On constate que tous les coefficients qui ne se trouvent pas sur la diagonale s'annulent et que sur la diagonale, les coefficients de A^2 sont égaux aux carrées des coefficients de A.

On peut généraliser cette règle à une puissance quelconque.

Ainsi on a par exemple A^5 =

3) Matrice inverse d'une matrice carrée

Définition : Une matrice carrée A de taille n est une matrice inversible s'il existe une matrice B telle que :

 $A \times B = B \times A = I_n.$

La matrice B notée A^{-1} est appelée la matrice inverse de A.

Remarque: Si elle existe la matrice inverse est unique.

Démonstration : Supposons qu'il existe B et B' avec $B \neq B'$ telles que $\begin{cases} AB = BA = I \\ AB' = B'A = I \end{cases}$

Alors $AB = I \xrightarrow{\times \text{à gauche}} B'(AB) = B'I \iff (B'A)B = B' \iff B = B'$. Ce qui contredit notre hypothèse de départ.

Exemple : Soient $A = \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix}$ et $B = \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}$.

On a $AB = BA = I_2$

Les matrices A et B sont donc inverses l'une de l'autre et $B = A^{-1}$.

Remarque: Toutes les matrices ne sont pas inversibles.

Définition : Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice carrée d'ordre 2. On appelle déterminant de A le nombre : $\boxed{\det(A) = ad - bc}$

Exemple: Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ alors on a det(A) = $1 \times 4 - 2 \times 3 = -2$.

On peut noter $det(A) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

Propriété : Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice carrée d'ordre 2.

A est inversible si, et seulement si, $\det(A) \neq 0$. On a alors $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d \\ -c \end{pmatrix}$

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Démonstration:

• Sens indirect (\Leftarrow) : Soit $B = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Calculons $AB = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} ad - bc & cd - cd \\ -ab + ab & -bc + ad \end{pmatrix} = \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = (ad - bc) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (ad - bc)I_2.$

Si $ad - bd \neq 0$ alors $A \times \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = I_2$. Sens indirect démontré.

• Sens direct (\Rightarrow) : A est inversible $\Rightarrow \det(A) \neq 0$.

Par l'absurde : Supposons A inversible ET det(A) = 0 et cherchons une absurdité.

On a ad - bd = 0 alors d'après le point précédent $AB = (ad - bc)I_2 = 0 \times I_2 = 0_2$.

A inversible alors il existe C telle que CA = $I_2.$

D'où $(CA)B = I_2B \iff C(AB) = B \iff C0_2 = B \iff 0_2 = B$.

Si $B = 0_2$ alors a = 0, b = 0, c = 0, d = 0 puis $A = 0_2$. Or 0_2 n'est pas inversible car pour tout $M \in \mathcal{M}_2(\mathbb{R})$, $MO_2 \neq I_2$. Contraction: A est à la fois inversible et non inversible.

Exemples:

- Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Prouver que A est inversible. Déterminer A^{-1} .
- Soit $B = \begin{pmatrix} 3 & 2 \\ 6 & 4 \end{pmatrix}$. Prouver que B n'est pas inversible.

Propriété : Soit A une matrice carrée inversible de taille n, et M et N deux matrices carrées ou colonnes de taille n. On a : $AM = N \iff M = A^{-1}N$.

 $\mathbf{D\acute{e}monstration} : AM = N \iff A^{-1}(AM) = A^{-1}N \iff (A^{-1}A)M = A^{-1}N \iff I_nM = A^{-1}N \iff M = A^{-1}N.$