

Hastings Math. com

Candidate Barcode label/Stafieskodeplakker

NSC Answer Book NSS-antwoordeboek Annotated by Tam.

CENTRE NUM		ional Senior Certif	icate/Ivasi	onuie Sei	uor seruji	kaai (Gr	aue 12/Gra	taa 12)	November	r 2022		
SENTRUMNON												
EXAMINATIO EKSAMENNON												
DATE DATUM							BOOK N BOEKNO			OF VAN		OOKS OEKE
SUBJECT COL Vakkode	ЭE						PAPER N VRAESTI	NUMBER E <i>LNOMMI</i>	ER	2		
SUBJECT NAN VAKNAAM	ИЕ	MATI	HEMA'	TICS	WISK	UNDI	E					
M	ARKER/NAS	IENER							ANT BLOCI		uil Ity	
Question Vraag	Marks Punte	Marker's Code & Initials Nasiener se kode & Voorletters	Marks Punte	SM	Marks Punte	DCM AHN	Marks Punte	CM HN	Marks Punte	IM	Marks Punte	EM
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
												_
												+
		TOTAL TOTAAL										
SURNAME AN <i>EKONTROLEI</i>	D INITIALS (ER EN AS KO.										ON THE NEXT	

This answer book consists of 23 pages./Hierdie antwoordeboek bestaan uit 23 bladsye.

PI	EASE FOLLOW THESE INSTRUCTIONS CAREFULLY	VOLG ASSEBLIEF HIERDIE INSTRUKSIES NOUKEURIG
1.	Clearly write your examination number and centre number in the space provided and attach your barcode label in the space provided.	Skryf jou eksamennommer en sentrumnommer duidelik in die ruimtes verskaf en plak jou stafieskodeplakker in die ruimte verskaf.
2.	Remember that your own name (or the name of your school) may not appear anywhere on or in this answer book.	2. Onthou dat jou eie naam (of die naam van jou skool) nie op of in hierdie antwoordeboek mag voorkom nie.
3.	Answer ALL questions in the spaces provided.	3. Beantwoord ALLE vrae in die ruimtes wat voorsien is.
4.	No pages may be torn from this answer book.	4. Geen bladsye mag uit hierdie antwoordeboek geskeur word nie.
5.	Read the instructions printed on your timetable carefully as well as any other instructions which may be given in each examination paper.	5. Lees die instruksies wat op jou eksamenrooster gedruk is, sorgvuldig deur, asook enige ander instruksies wat op elke eksamenvraestel gegee word.
6.	Candidates may not retain an answer book or remove it from the examination room.	6. Geen antwoordeboek mag deur die kandidaat behou of uit die eksamenlokaal verwyder word nie.
7.	Answers must be written in black/blue ink as distinctly as possible. Do not write in the margins.	7. Skryf die antwoorde so duidelik moontlik met swart/blou ink. Laat die kantlyne oop.
8.	Write the numbers of the questions you have answered on the front cover of the answer book where marks are to be recorded.	8. Skryf die nommers van die vrae wat jy beantwoord het op die voorblad van die antwoordeboek waar die punte aangebring word.
9.	 If you require additional space for your answers: 9.1 Use the additional space provided at the end of the answer book. 9.2 When answering a question in the additional space, indicate clearly the question number in the column on the LHS. 9.3 Rule off after each answer. 	 In geval jy bykomende ruimte benodig vir jou antwoorde: 9.1 Gebruik die bykomende ruimte wat aan die einde van die antwoordeboek voorsien word. 9.2 As 'n vraag in die bykomende ruimte beantwoord word, dui duidelik die vraagnommer in die kolom aan die LK aan. 9.3 Trek 'n lyn na elke antwoord.
10.	Draw a neat line through any work/rough work that must not be marked.	10. Trek 'n netjiese lyn deur enige werk/rofwerk wat nie nagesien moet word nie.

Popularity score (x)/ Gewildheidspunt (x)	32	89	35	82	50	59	81	40	79	65
Number of votes (y)/	9	22	10	21	11	15	20	12	19	16
Getal stemme (y)					- 1					10

	Solution/Oplossing	Marks Punte
1.1.1	$\bar{g} = 9+22+10+2 + + S+20+12+ 9+ 6$	
	10	-
	· ·	
1.1.2	= 15.5	(2)
1.1.2	6 = 4.586calculatorum = 4.59 (Zdecpl)) (1)
1.2	y - 6 = 15.5 - 4.59 = 10.91 2 were therefore not invited	
	2 were therefore not invited	
	: 10-2 were invited	
	:. 8 learners were invited	
1.3		(2)
1.3	$\alpha = 1.7709$	
	ь =0.2243 calcula	
	$\hat{y} = 0.22x + 1.77$	
1.4	let $x = 72$	(3)
	$\hat{y} = 0.22(-32)+1.77$	
	= 17.61	
	∴ ≈ 18 votes	
		\bigvee (2)
1.5.1	the points of the scatterplot are widely dispersed.	
	the points of the scatterplot are widely dispersed. there is a low correlation between IQ and number of	
	votes	$\checkmark_{(1)}$
1.5.2	r=0.9836 calula	tor work
	≈ 0.98 Votes to popularity correlation is very strong	
	is very Strong	$\mathcal{I}_{(1)}$
	0 ()	[12]

	Solution/Oplossing	Marks Punte
2.1	60 employees	
	O	$\bigvee_{(1)}$
2.2	20 < x < 25 steepest part of the	
	20 < x < 25 steepest part of the	$\bigvee_{(1)}$
2.3	more than 22.5%, 60 -34	
	- 26 people	$ \checkmark_{(2)} $
2.4	$x \times 7/. = 2400$	
	∴ x = 2400	
	7%	
	= 3428S-71429	
	J. R3428S.71	
		(2)

se causes agive to become steep	

	Solution/Oplossing	Marks Punte
3.1.1	$\frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - (-4)}{4 - 6} = \frac{6}{-2} = -3$	
	: MAB = -3	(2)
3.1.2	$tan O = m_{AB}$ $tan O = -3$ $O = tan^{-1}(-3)$	may 1/2
	=(-171.565 $\therefore \alpha = 180-9 = 180-71.565 = 108.44$	(2)
3.1.3	$T = \text{moletics} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	
	$=\left(-\frac{2+6}{2}, -\frac{3+(-4)}{2}\right)$	
	$=(2;-\frac{1}{2})$	$\left \begin{array}{c} \checkmark_{(2)} \end{array} \right $

Copyright reserved/Kopiereg voorbehou

= 3561 . Please Furn over/Blaai om asseblief 二. Area Pfc = 2 (3 型)(2) sin 39.81

	Solution/Oplossing	Marks Punte	
4.1	$x_{p} + 7 = 3$ $y_{p} + (-2) = -5$ molph $x_{p} = -1$ $y_{p} = -8$	formuli split	9
	··P(-1;-8)	(2)	
4.2.1	$\Gamma = \sqrt{(3-7)^2 + (-5+2)^2} = 5$		
	$(x-3)^2+(y+5)^2=5^2$		
	$(\chi - 3)^2 + (\gamma + 5)^2 = 25$	(3)	
4.2.2	MKLXMNP = -1 (tangent meets diams	(D)	
	$MNP = -S+2 = \frac{3}{4} = \frac$		
	$-M_{KL} = -\frac{4}{3}$ $-2 = -\frac{4}{3}(7) + C$ $(= 2.2)$	+22	۱ /
	3	3(5)	

Solution/Oplossing	Marks <i>Punte</i>
Secant cuts circle twice $ \begin{array}{cccccccccccccccccccccccccccccccccc$	(4)
$= (t-3)^{3} + (t+5)^{2} - 5^{2}$ $= (t-3)^{3} + (t+5)^{2} - 25$ $= t^{2} - 6t + 9 + t^{2} + 10t + 25 - 25$ $= 4t + 4 = 0$ $AB^{2} = 2t^{2} + 4t$ $AB = \sqrt{2}t^{2} + 10t + 25 - 25$ $AB^{2} = 4t + 4 = 0$ $AB^{2} = 2(-1)^{2} + 4(-1)^{2} + 9$ $AB^{2} = 2(-1)^{2} + 4(-1)^{2} + 9$	1 (2)
= } AB = \frac{7}{7}	(4)
	[20]

	Solution/Oplossing	Marks Punte
5.1.1	$Sin \mathcal{I} = -3$ $\sqrt{13}$	
	Sin(360 + x) = Sih x	diffe from
5.1.2	$tan x = 0$ $\sqrt{13} = 0$	(2) (ATO
(
.1.3	$\frac{\cos(180+x)}{-\cos x} = -\left(-\frac{2}{5/3}\right) = \frac{2}{5/3}$	differ,
.2	$\frac{-\sin \theta}{\sin \theta - 3\sin \theta}$	(2)
=	$\frac{-\sin\theta}{-4\sin\theta}$	
=	4	
		(5)

	Solution/Oplossing	Marks Punte	
5.3	COSX +25Înx=0 OF 35În2x-1=0		A
	$2\sin \alpha = -\cos \alpha$ $\sin 2\alpha = \frac{1}{3}$		1
	$tan x = -\frac{1}{2}$ $2x = \sin^{-1}\left(\frac{1}{3}\right)$	T	
	$x = tan^{-1}(t)z$ RA: 19.471		
	RA: 26.565 VS/T >C= 180-19.171 + 1136	0	
	x = 180 - 26.569 + 180 000 x = 19.471 + 1360		
de	= 153.45 + n180 (ne2)	7)	
0.0	$x = 360 - 26565 + n180$ $\therefore x = 80.26 + n180 (nt)$ = 333-44 + n180 (nt) $\therefore x = 9.74 + n180 (nt)$		
5.4.1	LHS = [cos x cosy - sinxsiny][cosxcosy + sinx siny]	1	
	= cosx cosy = sin2x sin2y	-	
	$= (1-\sin^2 x)(1-\sin^2 y) - \sin^2 x \sin^2 y$		
	= 1-sin2x-sin2y+sin2xsin2y-sin2xsin2		
	$=1-\sin^2 x - \sin^2 y = RHS$		
		(4)	
5.4.2	COS (45+15) COS (45-15)		
=	COS 30 COS 60 Z/60		
=	$= \left(\frac{\sqrt{3}}{\sqrt{3}} \right) \left(\frac{1}{\sqrt{3}} \right)$		
	(2)(2) SHCHTA		
=	<u>√3</u>		
	4	(3)	

	Solution/Oplossing	Marks Punte
5.5.1	16 sinx cos3x - 8 sinx cosx	
=	$8\sin \alpha \left(2\cos^3\alpha-\cos \alpha\right)$	
<u>-</u> -	85inx (cosx) (2cos2x-1)	
_	4.251 ncosx. 2 cos2 x-1	
=	4. sin 2 2 . cos2x	
=	2.2sihlxcoslx	
=	2 sin z (zx)	
	2 sih 4x	
5.5.2	8	(4)
	1.x = 67.5°	
	270 x 9	(1)
	`	[30]

	Solution/Oplossing	Marks Punte
6.1	180° by inspection	
601	O ,	(1)
6.2.1	$A(60; K)$ $O(60) = 2\sin 2(60)$ Cong $Cong$	
(00	cng	(1)
6.2.2	60-180 76=-120	
<i>C</i> 2	$9(-120) = \sqrt{3}$.1.13(-120; $\sqrt{3}$)	(1)
6.3		
	2(2sin2x) = 4sin/x : -4 < 4 < 4	(2)
6.4	$q(x+s) \in g(x+s)$ Sunity left	
	$g(x+s) \in g(x+s)$ Sunit; left $y_{g+s} \leq y_{g+s}$	
	2 2/	
	-65° < X< -5° by inspection	(2)
6.5		
	refer to MS	
		(3)
		[10]

	Solution/Oplossing	Marks Punte
7.1	$A0^{2} = (5p)^{2} + (2p)^{2}$ $= 5p^{2} + 4p^{2}$ $= 9p^{2}$ $A0 = 3p$	
7.2	3p = (p	(2)
	$\frac{\sin x}{3p} \times \frac{\sin(x+4s)}{\sin(x+4s)} = \frac{1}{5}$	
	$\sin \chi$	
Cb=-	Sinx x Sinx cosust cosx sinus	
CD=	3p x sinit (52) + cos x (52) - 3p (sinto)	
7.3	CD = 3(10) (21) (110) + CO2(110))	
	AD = 3(10) 3(10)	
	:. Areu = 2 (cb) (AD) Sin 45	
	= $\frac{1}{2} \times \left(\frac{30(\sin 110 + \cos 110)}{\cos 110}\right) \times 30 \times \sin 45$	(3)
	(52 x SIn 110	[10]
Copyright 1	reserved/Kopiereg voorbehou = 43 M Please turn over/Blaai om assebi	lief

Provide reasons for your statements in QUESTIONS 8, 9 and 10. Verskaf redes vir jou bewerings in VRAAG 8, 9 en 10.

QUESTION/VRAAG8

8.1

	Solution/Oplossing	Marks <i>Punte</i>
8.1.1	180-64 = 116 (oppes cyclic qual)	
8.1.2 M	=90-64 = 28 (L's subtend by diam=90)	(2)
8.1.3	26° x2 (<sat centre="2x<atcivc)</td"><td>(2)</td></sat>	(2)
	26° x2 (<sat centre="2x<atcivc)<br">=52°</sat>	
		(2)

	Solution/Oplossing	Marks Punte
8.2.1	Mdyt thrm	
	•	
8.2.2		(1)
0.2.2	$b \in 3x + 1$. BG = $2(3x - 1) = 6x - 2$ (mdpt +	Irm)
	Bf BG (prop thrm; FG11CH)	
	BF BG (prop thrm; FG 11 CH) FC GH	
	4 6x-7	
	$\frac{4}{1} = \frac{6x - 7}{x + 1}$	
	4x+4 = 6x-2 $6 = 2x$ $x = 3$	
	6 = 2x	
	x = 3	
		(6)

[13]

9.1

	Solution/Oplossing		Marks Punte
9.1	Construct UA & OB		-
	In $\triangle App $ and $\triangle Bp $		
	0 0A = 0B	(radii)	
	(2) OD is common 3) AO = OB	(given)	
	- 0A00 = 0B00	[sss]	
	ADB_1 is a str. like $D_1 = D_2$	(\(A \alpha \)	
	. OB JAB	(<'s on str.line =180')	(5)

9.2

	Solution/Oplossing		Marks Punte
9.2.1	$GBO = 90^{\circ}$ $OTG = 90^{\circ}$ $OTG = GBO$	(tongent le radius, Cline from centre to molpt chon	
	· OTBG ir cyclic quad	(angles subtended by equal like	=) (5)

	Solution/Oplossing		Marks Punte
9.2.2	s = STF	(alt <s; gf)<="" ps="" td=""><td></td></s;>	
	ETB = STF	(vert.oppes)	-
	GTB=GOB	(cyclic quadot BG; angles subtended by equal chord=)	
	:. 5 = GOB	equal (hord=)	
			(4)
			[14]

	Solution/Oplossing		Marks <i>Punte</i>
10.1	KTP:S,=Tz		
	$S_1 = Q_1 + Q_2$	(ext < s cyclic quad	
	$P_1 = Q_1$	(tan-chord thrm)
	$P_1 = R_Z$	(given)	
	T2 = R2+Q2	(ex+.cs △)	
	but lez=Q1	(proven)	(4)
′	.Tz=Q1+Q2=S1		

Copyright reserved/Kopiereg voorbehou

	Solution/Oplossing	Marks Punte
10.2 CTP:	AD AS ASO and DACK	
	INDASD and DACR	-
	$\hat{A} = \hat{A}$ (common) $\hat{S}_i = \hat{T}_2$ (proven)	
	$T_2 = C_2 \qquad (9H \leq S S CA)$	
	· SASO III SACR (AAA)	
10.3	$\frac{AD}{AR} = \frac{AS}{AO}$ (sides in proportion)	(5)
	AC = TC : ACR and ASK AR = SD)
blood:	$\frac{AS}{AC} = \frac{SD}{CR}$ [DASO DACE]	
	AS = CT AR = CR (prop thrm toll CA)	
		(4) [13]

Additional space/Bykomende ruimte	ľ
AS = SDXAC OF $AS = CTXAR$	
: SDXAC = CT X AR CK	
SDXAC = CTXAR	
ACXSD = ARXCT	
·	

Additional space/Bykomende ruimte	- 10-0	Marks <i>Punte</i>
		731
	-11-5-1	

TOTAL/TOTAAL:

150

	RE-MARK/RE-CHECK HERMERK/HERSIEN	
Question Vraag	Marks Punte	Initials Voorletters
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
TOTAL TOTAAL		
HASH TOTAL <i>KAF-</i>		
HASH TOTAL		