Métodos iterativos - Resultados de convergencia

Dado el sistema lineal Ax = b, se propone el método iterativo

$$Mx^{(i+1)} = (M-A)x^{(i)} + b (8)$$

donde M es una matriz invertible.

Teorema 1. Si $\delta = ||I - M^{-1}A|| < 1$, entonces la sucesión producida por el método (8) converge a la solución de Ax = b, para cualquier vector inicial $x^{(0)}$.

Prueba:

Sea x solución de Ax = b. Entonces x también es solución de

$$x = (I - M^{-1}A)x + M^{-1}b. (9)$$

Ahora la iteración (8) es equivalente

$$x^{(k)} = (I - M^{-1}A) x^{(k-1)} + M^{-1}b.$$
 (10)

Restando (9) de (10) obtenemos

Métodos iterativos - Resultados de convergencia

Prueba (cont.):

$$x^{(k)} - x = (I - M^{-1}A)(x^{(k-1)} - x).$$

de donde se tiene

$$||x^{(k)} - x|| \le ||(I - M^{-1}A)|| ||(x^{(k-1)} - x)|| = \delta ||(x^{(k-1)} - x)||$$
(11)

Aplicando esta desigualdad en forma recursiva, resulta

$$\|x^{(k)} - x\| \le \delta \|(x^{(k-1)} - x)\| \le \delta^2 \|(x^{(k-2)} - x)\| \le \dots \le \delta^k \|(x^{(0)} - x)\|$$
 (12)

para cualquier índice natural k. Tomando límite cuando $k \to \infty$ nos queda

$$0 \le \lim_{k \to \infty} ||x^{(k)} - x|| \le \lim_{k \to \infty} \delta^k ||(x^{(0)} - x)|| = 0$$

ya que $0 < \delta < 1$

Así, la sucesión del método iterativo converge a la solución x del sistema lineal Ax = b.

Métodos iterativos - Resultados de convergencia

Lema 1. Si $\delta = \left\|I - M^{-1}A\right\| < 1$, entonces la sucesión producida por el método (8) cumple: $\left\|x^{(k)} - x\right\| \leq \frac{\delta}{1 - \delta} \left\|x^{(k)} - x^{(k-1)}\right\|$

Prueba: Como x es solución de Ax = b, también es solución de

$$x = (I - M^{-1}A)x + M^{-1}b.$$

Ahora la iteración (8) es equivalente

$$x^{(k)} = (I - M^{-1}A)x^{(k-1)} + M^{-1}b.$$

Restando las ultimas ecuaciones se obtiene

$$x^{(k)} - x = (I - M^{-1}A)(x^{(k-1)} - x).$$

Así, tomando norma sigue

$$||x^{(k)} - x|| \le ||(I - M^{-1}A)|| ||(x^{(k-1)} - x)|| = \delta ||(x^{(k-1)} - x)||$$
(13)

Métodos iterativos - Resultados de convergencia

Prueba (cont.)

Pero

$$||x^{(k-1)} - x|| = ||x^{(k-1)} - x^{(k)} + x^{(k)} - x|| \le ||x^{(k-1)} - x^{(k)}|| + ||x^{(k)} - x||,$$

usando (13)

$$\|x^{(k-1)} - x\| \le \|x^{(k-1)} - x^{(k)}\| + \delta \|x^{(k-1)} - x\|$$

$$\Leftrightarrow (1 - \delta) \|x^{(k-1)} - x\| \le \|x^{(k-1)} - x^{(k)}\|$$

$$\Leftrightarrow \|x^{(k-1)} - x\| \le \frac{1}{(1 - \delta)} \|x^{(k-1)} - x^{(k)}\|.$$
(14)

De (13) y (14)

$$\|x^{(k)} - x\| \le \frac{\delta}{1 - \delta} \|x^{(k)} - x^{(k-1)}\|$$

V

Métodos iterativos - Resultados de convergencia

Teorema 2.

 Si A es diagonal dominante, entonces la sucesión producida por la iteración de Jacobi

$$x^{(i+1)} = D^{-1}(E+F)x^{(i)} + D^{-1}b$$

converge a la solución de Ax = b para cualquier vector inicial $x^{(0)}$.

• Si A es diagonal dominante, entonces la sucesión producida por la iteración de Gauss-Seidel

$$x^{(i+1)} = (D-E)^{-1}F x^{(i)} + (D-E)^{-1}b$$

converge a la solución de Ax = b para cualquier vector inicial $x^{(0)}$.

Obs. Para una matriz arbitraria *A*, la convergencia de uno de estos métodos no implica la convergencia del otro.

Métodos iterativos - Resultados de convergencia

Prueba. Caso iteración de Jacobi.

$$||D^{-1}(E+F)||_{\infty} = \max_{1 \le i \le n} \sum_{\substack{j=1 \ i \ne i}}^{n} |a_{ij}/a_{ii}|$$

$$ullet$$
 elementos no diagonal $-a_{ij}$ / a_{ii}

Del hecho de que A es diagonal dominante se tiene

Primero
$$\left\| D^{-1}(E+F) \right\|_{\infty} = \max_{1 \leq i \leq n} \sum_{\substack{j=1 \\ j \neq i}}^{n} \left| a_{ij} \middle/ a_{ii} \right|$$
 porque para la matriz de $D^{-1}(E+F)$ se tiene • elementos no diagonal $-a_{ij} \middle/ a_{ii}$ • $D^{-1}(E+F) = \begin{bmatrix} 0 & -\frac{a_{12}}{a_{11}} & \cdots & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & \cdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ -\frac{a_{n1}}{a_{nn}} & \cdots & \cdots & -\frac{a_{nn-1}}{a_{nn}} & 0 \end{bmatrix}$ Del hecho de que A es diagonal dominante se tiene

$$\left|a_{ii}\right| > \sum_{\substack{j=1 \ j \neq i}}^{n} \left|a_{ij}\right| \text{ para } 1 \leq i \leq n \iff \sum_{\substack{j=1 \ j \neq i}}^{n} \left|a_{ij} / a_{ii}\right| < 1 \text{ para } 1 \leq i \leq n.$$

Entonces
$$\|D^{-1}(E+F)\|_{\infty} = \max_{1 \le i \le n} \sum_{\substack{j=1 \ j \ne i}}^{n} |a_{ij}/a_{ii}| < 1$$
 $\Leftrightarrow \|I-M^{-1}A\|_{\infty} = \|M^{-1}N\|_{\infty} < 1$

y usando el teorema 1, se tiene que la iteración de Jacobi usando cualquier vector inicial $x^{(0)}$ converge a la solución del sistema Ax = b.

Métodos iterativos - Resultados de convergencia

Teorema 3. Consideremos el método iterativo

$$x^{(i+1)} = Hx^{(i)} + c$$
 con $H = M^{-1}N$ y $c = M^{-1}b$.

el cual salió de descomponer A = M-N.

Para cualquier $x^{(0)} \in \mathbb{R}^n$ el método iterativo converge si y sólo si $\rho(H) < 1$, (radio espectral de H es menor que 1).

Corolario. Si ||H|| < 1 entonces $x^{(i)}$ converge a x solución de Ax = b.

Prueba. Se deja como ejercicio.

Cotas de Error.

a)
$$\|x^{(i)} - x\| \le \|H\|^i \|x^{(0)} - x\|,$$

b)
$$\|x^{(i)} - x\| \le \frac{\|H\|^i}{1 - \|H\|} \|x^{(1)} - x^{(0)}\|, \text{ si } \|H\| < 1$$

Métodos iterativos - Resultados de convergencia

Obs.

La desigualdad en a) coincide con la ecuación (12) de la prueba del Teorema 1. Por lo tanto, la demostración de dicha desigualdad es exactamente igual a la deducción de la ecuación (12).

Obs.

En la desigualdad a), si se parte del vector inicial nulo, se obtiene una cota superior del error relativo de aproximar x por $x^{(i)}$:

$$\frac{\left\|x^{(i)} - x\right\|}{\left\|x\right\|} \le \left\|H\right\|^{i}$$

Esto permite calcular aproximadamente el número de iteraciones necesarias para alcanzar una tolerancia dada.

Métodos iterativos - Resultados de convergencia

Prueba de b)
$$\|x^{(i)} - x\| \le \frac{\|H\|^i}{1 - \|H\|} \|x^{(1)} - x^{(0)}\|$$
, si $\|H\| < 1$

Como
$$||H|| < 1$$

 $||x^{(0)} - x|| = ||x^{(0)} - x^{(1)} + x^{(1)} - x|| \le ||x^{(0)} - x^{(1)}|| + ||x^{(1)} - x||$

Usando la desigualdad (a)

$$||x^{(0)} - x|| \le ||x^{(0)} - x^{(1)}|| + ||H|| ||x^{(0)} - x||$$

$$\Rightarrow (1 - ||H||) ||x^{(0)} - x|| \le ||x^{(0)} - x^{(1)}||$$

$$\Rightarrow ||x^{(0)} - x|| \le \frac{1}{(1 - ||H||)} ||x^{(0)} - x^{(1)}||$$

Combinando con la desigualdad (a)

$$||x^{(i)} - x|| \le ||H||^{i} ||x^{(0)} - x|| \le \frac{||H||^{i}}{(1 - ||H||)} ||x^{(0)} - x^{(1)}||$$

Métodos iterativos - Resultados de convergencia

Obs.

En la desigualdad b) se obtiene una cota superior del error absoluto de aproximar x por $x^{(i)}$:

$$||x^{(i)} - x|| \le \frac{||H||^i}{1 - ||H||} ||x^{(1)} - x^{(0)}||$$

Esto permite calcular aproximadamente el número de iteraciones necesarias para alcanzar una tolerancia dada, para lo cual se debe calcular el iterado $x^{(1)}$.

Métodos iterativos - Resultados de convergencia

Comparación de los métodos de Jacobi y Gauss-Seidel

Teorema 4. Si A es diagonal dominante, entonces para cualquier vector inicial $x^{(0)} \in \mathbb{R}^n$, los métodos de Jacobi y Gauss-Seidel convergen a la solución de Ax = b, y además se tiene

$$\left\| \left\| H_{GS} \right\|_{\infty} \le \left\| \left\| H_{J} \right\|_{\infty} < 1 \right\|$$

donde
$$H_{GS} = (D - E)^{-1}F$$
 y $H_J = D^{-1}(E + F)$ para $A = D - E - F$.

Teorema 5. Si $a_{ij} \le 0$ si $i \ne j$ y $a_{ii} > 0$ si $1 \le i \le n$, entonces se satisface una y solamente una de las condiciones siguientes

a)
$$0 < \rho(H_{GS}) < \rho(H_J) < 1$$

b)
$$1 < \rho(H_J) < \rho(H_{GS})$$

c)
$$\rho(H_{GS}) = \rho(H_J) = 1$$

d)
$$\rho(H_{GS}) = \rho(H_J) = 0$$

Obs. O ambos métodos convergen o ambos divergen, y cuando convergen, Gauss-Seidel es más rápido de Jacobi, para este tipo de matrices.

Métodos iterativos - Resultados de convergencia

Teorema 6. Para $0 < \omega < 2$, si A es simétrica y definida positiva entonces el método de Relajación Sucesiva converge para cualquier $x^{(0)} \in \mathbb{R}^n$

Obs. El teorema 6 incluye al método de Gauss-Seidel ya que el método de Relajación Sucesiva coincide con Gauss-Seidel cuando $\omega = 1$

Obs. El reciproco del teorema 6 no es cierto.

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$\rho(H_{SOR}) = 0.8 < 1$$
 para $\omega = 0.2$

el método de relajación sucesiva converge.

Se puede demostrar que A es definida positiva. A no es simétrica.

Métodos iterativos - Resultados de convergencia

Obs. Si se agregan las condiciones A simétrica y $a_{ii} > 0$ para cada i = 1, 2, ..., n manteniendo $0 < \omega < 2$, entonces el reciproco del teorema 6 es cierto.

Es decir, bajo las hipótesis anteriores, partiendo de la convergencia del SOR para cualquier x_0 , se demuestra que A es definida positiva.

Obs. Aunque *A* sea simétrica y definida positiva, el método de Jacobi puede ser divergente.

Teorema 7. Si $a_{ii} \neq 0$ para cada i=1,2,...,n entonces $\rho(H_{SOR}) \geq |\omega-1|$ Así, la única manera de que $\rho(H_{SOR}) < 1$ es que $0 < \omega < 2$.

Métodos iterativos - Resultados de convergencia

Ejemplos:

$$A = \begin{pmatrix} -10 & 1 \\ 2 & -20 \end{pmatrix}$$

 $A = \begin{pmatrix} -10 & 1 \\ 2 & -20 \end{pmatrix}$ diagonal dominante (uso teorema 2) Jacobi converge

$$A = \begin{pmatrix} -10 & 100 \\ 2 & -20 \end{pmatrix}$$

$$\rho(H_J) > 1$$

 $A = \begin{pmatrix} -10 & 100 \\ 2 & -20 \end{pmatrix}$ $\rho(H_J) > 1$ no diagonal dominante Jacobi diverge (teorema 3)

$$A = \begin{pmatrix} -10 & 100 \\ 1 & -20 \end{pmatrix}$$

$$\rho(H_J) < 1$$

 $A = \begin{pmatrix} -10 & 100 \\ 1 & -20 \end{pmatrix}$ $\rho(H_J) < 1$ no diagonal dominante Jacobi converge (teorema 3)

$$H_I = D^{-1}(E+F) = I - D^{-1}A$$

Métodos iterativos – Ejemplo de comparación

Para $s \in R$, considere la matriz simétrica

$$A = \begin{pmatrix} 1 & s & s \\ s & 1 & s \\ s & s & 1 \end{pmatrix}$$

Cálculos con MATLAB: M = sym('[1 s s; s 1 s; s s 1]') determ = det(M) pc = poly(M) factores = factor(pc)

Los valores propios de A son: 1 - s (con multiplicidad 2) y 1 + 2s. La matriz A es definida positiva cuando $s \in [-0.5, 1]$ y diagonal dominante estricta para $s \in [-0.5, 0.5]$

Resolviendo el sistema Ax = b para diferentes valores de s, usando los métodos de Jacobi y Gauss-Seidel con $b = (1,1,1)^t$, $x^{(0)} = (0.5,0.5,0.5)^t$, y n = 500

Para ambos métodos se implementó el criterio de detención visto en clase, con una tolerancia de 10⁻⁸,

$$\left\|x^{(k)} - x^{(k-1)}\right\| < tol$$

Métodos iterativos – Ejemplo de comparación

- Para s = 0.3, la matriz A es positiva definida y diagonal dominante.
 Jacobi itera 35 veces y Gauss-Seidel 11 veces.
 Ambos métodos entregan como solución x = (0.6250, 0.6250, 0.6250)^t
 que es la solución exacta. El radio espectral de H_J es 0.60 y H_{GS} es 0.1643 (ambos menores que 1).
- Para s = 0.6, la matriz A es positiva definida, pero no es diagonal dominante.
 Jacobi no converge después de 500 iteraciones y Gauss-Seidel si converge en 22 iteraciones.
 - Gauss-Seidel entrega como solución $x = (0.45455, 0.45455, 0.45455)^t$ que es la solución exacta. El radio espectral de H_J es 1.20 y H_{GS} es 0.4648.
- Para s = 1.01, la matriz A no es positiva definida ni diagonal dominante.
 Jacobi y Gauss-Seidel no convergen después de 500 iteraciones.
 La solución exacta es x = (0.3125, 0.3125, 0.3125). El radio espectral de H_J es 2.20 y H_{GS} es 1.1537 (ambos mayores que 1).