Softwarica College of IT & E-Commerce

ST5014CEM Data Science for Developers Assignment Brief 2024/25

in collaboration with

Module Title: Data Science for Developers	Ind/Group: Individual	Cohort: September 2024 - Regular	Module Code: ST5014CEM
Coursework Title: Town Recommendation System and Report on a Project	Handout Date: 12/29/2024		
Lecturer: Siddhartha Neupane	Due Date: 01/30/2025		
Estimated Time (hrs.) [NA] Word Limit: 3000	Coursework Type: Assignment		% Of Module Mar k 70%

Submission arrangement online via schoolworkspro:

The link to your GitHub classroom repository containing app source code must be submitted on schoolworkspro.

File types: Please submit your report in PDF format only. Mark and Feedback date: 3 weeks after submission

Mark and Feedback method: written feedback using schoolworkspro

Module Learning Outcomes Assessed:

ILO1. Understand and apply the components of the data mining lifecycle to real-world big data problems.

ILO2. Analyse, design, implement, manage, and critically evaluate a database solution for a specified commercial or scientific objective, using state-of-the-art tools such as R, OpenRefine or Python.

ILO5. Show systematic knowledge of concepts in statistical analysis including experimental design, statistical modelling, probabilities, p-values, categorical data, t-tests, and Pearson correlation; and critically select and justify use of appropriate methods for a given problem space.

Task and Mark distribution:

In this Individual Coursework you will work through the phases of the data science lifecycle applied to a real-world task. You will obtain, combine, and analyse datasets from a range of sources. We are primarily interested in the processes you follow, although you will need to find your own datasets, explain the code used to implement your system, and communicate the results of your analyses. You are encouraged to explore the topic, use your initiative, and show some originality, within the time available. Ensure that you clearly address the module learning outcomes listed above and that you reference any sources you have used.

Submit one report as a single pdf document. Make sure you include any code snippets, and selected output and plots, directly in the report so that they can be clearly read. The word limit is a maximum rather than a target. Concentrate on producing a clear and concise answer to each

subtask. Make sure you include a full listing of your code as an Appendix. Code developed should be exclusively written in R.

Scenario

Your international friends are considering making a substantial investment by purchasing a property in the UK, and they've narrowed their options down to two picturesque regions: **Devon and Dorset**. Both regions are renowned for their natural beauty, cultural heritage, and distinct appeal. However, your friends are looking for more than just a scenic view—they want a location that offers the right balance of affordability, connectivity, safety, and quality of life.

Affordability is their primary concern, especially when it comes to housing prices. They're aware that the property market varies between urban and rural areas, and they want to ensure that their investment aligns with both their budget and their long-term financial goals. They're open to exploring diverse areas, from bustling towns to tranquil countryside settings, depending on what offers the best value for money and potential for future appreciation.

Connectivity is another critical factor, particularly in terms of internet access. As they rely heavily on a stable and fast internet connection for work and leisure, they need to be assured that the area they choose provides reliable, high-speed broadband services. This will be essential for maintaining their productivity and staying connected with friends and family abroad.

Safety and security are equally important. Relocating to a new country can be daunting, and they want to ensure that their new home is in a neighbourhood with low crime rates and a strong sense of community. Understanding the local crime statistics will help them make an informed decision about where they'll feel most secure.

Beyond these essentials, your friends also value the overall **quality of life** in their chosen location. They're interested in the availability of key amenities like schools, hospitals, and shopping centres, as well as access to public transportation and recreational facilities. Proximity to these services will greatly influence their day-to-day convenience and satisfaction with their new home.

Given these criteria, affordability, connectivity, safety, and quality of life, your friends are eager for your insights and recommendations. They trust your expertise in data analysis to provide a clear and thorough comparison between **Devon and Dorset**, helping them make a well-informed decision on where to invest in their future.

Tasks

You must only use datasets that have been released by the UK government, either centrally or through a public entity that is accessible to the public in the UK. The website https://data.gov.uk/ might be a good place to start. You should clean the data, create a uniform data model, use exploratory data analysis to examine the dataset, investigate statistical links between the attributes, and create a basic recommendation system utilizing this knowledge. The processes you use must be documented and explained.

You must ensure that:

- The system is developed using R programming language.
- All data used is normalised to at least 3NF and stored in an appropriate database. You
 must use the three key characteristics described above (house prices, broadband speed,
 and crime in the area) and at least one additional characteristic (but you must justify your
 reason for including it).
- You must include a simple recommendation system that determines a value in the range 0–10 for each of the characteristics, combines these into a score for each town, and displays the top three towns in order.
- The towns used are in the counties given. You may restrict the number of towns you look at to main towns, but you must justify your selection in your report.

The main element must be done in R programming language, but the data cleaning may be done in any language as long as you explicitly explain the processes you took so they can be repeated. You'll need to search up the districts in the two counties, and the big towns may be found from the districts. The ONS' Open Geography Portal (http://geoportal.statistics.gov.uk/) includes several useful tools for things like converting postcodes to MSOAs, electoral wards, and so on.

Submission details

You should submit a single ZIP file containing the following:

- An electronic copy of your code (.R files).
- An electronic copy of your report as detailed above (.pdf format).
- An electronic copy of your datasets.

Report Template

- An introduction that clearly sets out the problem, a description of the datasets obtained, a
 justification of the suitability of the data for the task, and exactly where the datasets were
 obtained from.
- A clear, detailed description and justification of how the data was checked, cleaned and preprocessed, and a description of the data model, including why it is organised in this way (this can be thought of as a description and rationale for your database tables).
- Exploratory data analysis (EDA) undertaken on the datasets, i.e., graphical plots and summary statistics to investigate the distribution of single variable data (including looking for outliers) and investigate the relationships between variables (scatterplots and correlation coefficients).
- Interpretation and discussion of results obtained by applying appropriate statistical models and methods to your datasets, e.g., fitting linear models and discussing the output, diagnostic plots, comparing models, and statistical tests (interpreting the p-values).
- Design of your simple recommendation system, a discussion of its results, and an assessment of the degree to which it achieves its goal.
- An overview of the design of your code (with justification) and details of testing.
- A discussion of the legal and ethical issues relating to the data you are using and your recommendation system.
- Conclusion giving an analysis and reflection on how well you were able to apply the data mining lifecycle to the problem. Summarise the conclusions that you have made about your data and make some recommendations to improve or extend what you have done in the future.
- References.

Marks are distributed as follows:

- Identification, justification and gathering of data (10 marks)
- Data cleaning, pre-processing, and data model (15 marks)
- Exploratory data analysis (15 marks)
- Application and interpretation of statistical models, linear regression, and other methods (15 marks)
- Design and effectiveness of the recommendation system (10 marks)
- Code readability (10 marks)
- Discussion of legal and ethical issues (5 marks)
- Conclusions, analysis, and reflection (10 marks)
- Report quality, presentation, organization, and referencing (10 marks)

Notes:

- 1. You are expected to use the Coventry University APA style for referencing. For support and advice on this, students can contact Centre for Academic Writing (CAW).
- 2. Please notify your academic services team and module leader for disability support.
- 3. The college cannot take responsibility for any coursework lost or corrupted on disks, laptops, or personal computer. Students should therefore regularly back-up any work and are advised to save it on the cloud-based services.
- 4. If there are technical or performance issues that prevent students submitting coursework through the online coursework submission system on the day of a coursework deadline, an appropriate extension to the coursework submission deadline will be agreed. This extension will normally be 24 hours or the next working day if the deadline falls on a Friday or over the weekend period. This will be communicated via your Module Leader.
- 5. Collusion between students (where sections of your work are similar to the work submitted by other students in this or previous module cohorts) is taken extremely seriously and will be reported to the academic conduct panel. This applies to both coursework and exam answers.
- 6. A marked difference between your writing style, knowledge and skill level demonstrated in class discussion, any test conditions and that demonstrated in a coursework assignment may result in you having to undertake a Viva Voce in order to prove the coursework assignment is entirely your own work.
- 7. If you make use of the services of a proofreader in your work you must keep your original version and make it available as a demonstration of your written efforts.
- 8. You must not submit work for assessment that you have already submitted (partially or in full), either for your current course or for another qualification of this college, with the exception of resits, where for the coursework, you may be asked to rework and improve a previous attempt. This requirement will be specifically detailed in your assignment brief or specific course or module information. Where earlier work by you is citable, i.e., it has already been published/submitted, you must reference it clearly. Identical pieces of work submitted concurrently may also be considered to be self-plagiarism.

Mark allocation guidelines to students (to be edited by staff per assessment)

0-39	40-49	50-59	60-70	70+	80+
Work mainly incomplete and /or weaknesses in most areas	Most elements completed; weaknesses outweigh strengths	Most elements are strong, minor weaknesses	Strengths in all elements	Most work exceeds the standard expected	All work substantially exceeds the standard expected

Marking Rubric

Grade	Answer Relevance	Report	Code And Results	Data Mining Lifecycle
First	Innovative response, answers	A clear, consistent in-depth	Code is well written and	All stages of the data mining
	the question fully, addressing	critical and evaluative report.	follows a logical structure.	lifecycle have been correctly
≥70	the learning objectives of the	Engagement with theoretical	Analysis of the data is clear	applied to all datasets. A
	assessment task. Evidence of	and conceptual analysis.	with a range of statistical	range of appropriate datasets,
	critical analysis, synthesis and	Correctly referenced.	methods applied.	including the key datasets,
	evaluation.			have been chosen, cleaned
	A	A service the street for the service of		and applied.
Upper Second	A very good attempt to	A generally clear line of critical	Code is readable and	All states of the data mining
60.60	address the objectives of the	and evaluative argument is	functions as expected. An	lifecycle have been correctly
60-69	assessment task with an emphasis on those elements	presented. Relationships between statements and	appropriate range of statistical	applied to all datasets. The
		sections are easy to follow,	methods are applied, but analysis is not as good as it	three key datasets have been identified, cleaned, and
	requiring critical review.	and there is a sound,	could be.	applied.
		coherent structure. Correctly	Could be.	арріїец.
		referenced in the main.		
Lower Second	Competently addresses	Some critical discussion, but	Code functions as expected. A	All states of the data mining
Lower Gooding	objectives, but may contain	the argument is not always	statistical method is correctly	lifecycle have been correctly
50-59	errors or omissions and	convincing, and the work	applied with some analysis.	applied to all datasets. The
	critical discussion of issues	shows only a partial		three key datasets have been
	may be superficial or limited in	understanding of the key		identified and used.
	places.	concepts. Referencing is not		
	·	always correctly presented.		
Third	Addresses most objectives of	Limited understanding of the	Code has most of the	Most of the stages of the data
	the assessment task, with	theoretical concepts. Limited	functionality implemented. A	mining lifecycle have been
40-49	some notable omissions. The	justification of method and	statistical method is applied	applied to most datasets. Two
	structure is unclear in parts,	results. Referencing has	with limited analysis.	of the three key datasets have
	and there is limited analysis.	some errors.		been identified and used.
Fail	Some deviation from the	Descriptive with no evidence	Code has some functionality	The majority of the stages of
.40	objectives of the assessment	of theoretical engagement. At	implemented. A statistical	the data mining lifecycle have
<40	task. May not consistently	the lower end displays a	method is applied with little or	been applied to some
	address the assignment brief.	minimal level of	no analysis.	datasets. One of the three key datasets has been identified
	At the lower end fails to answer the question set or	understanding. Poor presentation of references.		and used.
	address the learning	presentation of references.		anu useu.
	outcomes. There is minimal			
	evidence of analysis or			
	evaluation.			
Late Submission	0	0	0	0