Graph Communities

Sarunas Girdzijauskas

Recap

Clustering

- Hierarchical Clustering
- K-means
- BFR algorithm
- CURE algorithm

Label Propagation

- Network Classification
- Community Detection

What if we do not have any labels – just the graph structure?

What are clusters and communities in graphs? Any ideas?

- The notion of **community structure** captures the tendency of nodes to be organized into modules (communities, clusters, groups)
 - Members within a community are more similar among each other
- Typically, the communities in graphs (networks) correspond to densely connected entities (nodes)
- Set of nodes with more/better/stronger connections between its members, than to the rest of the network

Example

Clusters and Communites in Graphs

- There is no widely accepted single definition
 - It depends heavily on the application domain and the properies of the graph
 - Mostly we talk about sparse bidirectional graphs
 - But we could also have dense, weighted, directional
- Usually NP-hard problems

Definition/notion of Communities

- Take FB graph. How would you define a "good community"?
- Most widely used notion of communities is based on the number of edges within a group (density) compared to the number of edges between different groups
 - i.e., A community corresponds to a group of nodes with more intra-cluster edges than inter-cluster edges

How do we extract the communities?

- 1. Define a **quality measure** (evaluation measure, objective function) that quantifies the desired properties of communities
 - What could be such measures? Any ideas?
 - How do they relate to general clustering?
- 2. Apply algorithmic techniques to assign the nodes of graph into communities, optimizing the objective function

Community Evaluation measures

- We group the community evaluation measures according to
 - Evaluation based on **internal** connectivity (#of edges within community)
 - Evaluation based on external connectivity (# of edges across communities)
 - Evaluation based on internal and external connectivity
 - Evaluation based on network model

Recap on Notations

- G = (V, E) is an undirected graph, |V| = n, |E| = m
 - **S** is the set of nodes in the cluster
 - $n_s = |S|$ is the number of nodes in S
 - m_s is the number of edges in S, $m_s = |\{(u,v): u \in S, v \in S\}|$
 - c_s is the number of edges on the boundary of S, $c_s = |\{(u,v): u \in S, v \notin S\}|$
 - d_u is the degree of node u
 - f(S) represent the clustering quality of set S

Internal Connectivity

• Edges inside

•
$$f(S) = m_s$$

Do you see any issue with this measure? Can you improve it?

Internal Density

$$f(S) = \frac{M_s}{N_s(N_s-1)/2}$$

Internal Connectivity (cont.)

Average degree

Average internal degree of nodes in S

$$f(S) = \frac{2ms}{ns}$$

- Fraction over median degree (FOMD)
 - fraction of nodes in S with internal degree greater than d_m , where d_m =median degree of the whole graph

Internal Connectivity (cont. 2)

- Triangle participation ratio
 - Fraction of nodes in S that belong to a triangle

$$f(S) = \frac{\left| \{ u : u \in S, \{ (v,w) : v,w \in S, (u,v) \in E, (u,w) \in E, (v,w) \in E \} \neq \emptyset \} \right|}{n_s}$$

External Connectivity

- Any examples?
- Expansion
 - The number of edges per node that point outside S

$$f(z) = \frac{N^2}{C^2}$$

- Cut Ratio
 - Fraction of existing edges out of all possible edges leaving S

External and Internal Connectivity

- Ideas?
- Conductance

The fraction of total edge volume that points outside S

$$f(s) = \frac{C_s}{2m_s + C_s}$$

The cut that partitions out small isolated points will no longer have small value

Normalized Cut

$$f(s) = \frac{c_s}{2m_s + c_s} + \frac{c_s}{2(m-m_s)+c_s}$$

External and Internal Connectivity (cont.)

- Average out degree fraction
- The average fraction of edges of nodes in S that point outside S

Evaluation based on network model

Modularity Q

• Measures the difference between the number of edges in S and the expected number of edges in a random graph model with the same degree sequence

Modularity matrix B (not sparse):

$$B_{ij} = A_{ij} - \frac{d_i d_j}{2m}$$

Modularity Q is given by the sum $A_{ij} - \frac{d_i d_j}{2m}$ of all pairs of vertices i, j that fall in the same cluster

can conveniently be written in matrix form as

$$Q = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s},$$

where **s** is the column vector whose elements are the $s_i=1$ if node i belongs to S and O otherwise.

Sum up all the Values in B ("edges") which belong to the cluster and normalize by all edges

Which evaluation measure to use?

Your ideas?

- Consider real graphs with known node assignment to communities (ground-truth information) and test the behavior of the objective measures [Yang and Leskovec '12]
 - Compute scores for each ground-truth community based on aforementioned objective measures and check their accuracy.
 - Conductance and Triad-participation-ratio give the best performance in identifying 230 ground-truth communities from social, collaboration and information networks [Yang and Leskovec 2012]
- In the end it all the depends on the problem that you are solving
 - E.g., malicious attacker trying to isolate max number of nodes with least cuts (remember expanders)?
 - E.g., how many "valid communities" could you extract from a FB graph?
- Remark: The naming is sometimes ambiguous, e.g., conductance vs normalized cut.

Spectral Clustering

Spectral Clustering

Let's describe our problem with A n x n similarity/affinity matrix

- A_{ii} is similarity or affinity between some objects, nodes, data points etc.
- can be sparse or not
- All values non-negative a_{ii}>=0, for all i and j.
- Similarity could be 0 to 1 (but anything works, and higher value implies greater similarity)
 - Highest values would be on the diagonal (most similar to itself)

Symmetric matrix

- We assume our notion of similarity as symmetric in this class.
- A is positive semi-definite
 - $x^TAx >= 0$
 - A has n real non-negative eigenvalues

Affinity Matrix: Issues

- How do we describe affinities?
 - Any ideas?
 - How strong is relationship, Cosine similarity between vectors, dot product etc.
- Should you use all the matrix (dense)?
 - Any ideas?
 - O(N²) cost to process
 - Fix with:
 - Thresholding
 - Keep k nearest neighbors (knn), but keep it symmetric!
 - Graph interpretation: Moving from fully connected graph to a sparse graph.
 - Affinity matrix vs adjacency matrix (weighted)

Spectral Partitioning

- Spectra of A helps to optimize for "avg. degree/weight"
 - Look at the eigenvectors associated to the largest eigenvalues
- Spectra of D-A (Laplacian) Helps to optimize for "ratio cut"
 - Look at the eigenvectors associated to the smallest eigenvalues (non-zero)
 - 2nd eigenvector Fiedler vector (corresponds to second smallest eigenvlaue)
 - 1st eigeinvalue is always zero
- Spectra of D^{-1/2} (normalized Laplacian) helps to optimize for "conductance"
 - Look at the eigenvectors associated to the largest eigenvalues
- Laplacian L = D-A
- Normalized Laplacian = D^{-1/2}A D^{-1/2}
 - Sometimes also known as I-D-1/2 A D-1/2

Example: Spectral Partitioning – simple Bisection (using Fiedler vector)

Spectral Partitioning Algorithm for ratio cut

• 1) Pre-processing:

• Build Laplacian matrix \boldsymbol{L} of the graph

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

• 2) Decomposition:

• Find eigenvalues λ and eigenvectors x of the matrix L

λ=

| 0.0 | | 1.0 | | 3.0 | | 4.0 | | 5.0 | | |

X =	0.4	0.3	-0.5	-0.2	-0.4	-0.5
	0.4	0.6	0.4	-0.4	0.4	0.0
	0.4	0.3	0.1	0.6	-0.4	0.5
	0.4	-0.3	0.1	0.6	0.4	-0.5
	0.4	-0.3	-0.5	-0.2	0.4	0.5
	0.4	-0.6	0.4	-0.4	-0.4	0.0

•	Map vertices to
	corresponding
	components of λ_2

	1	0.3
	2	0.6
	3	0.3
	4	-0.3
	5	-0.3
	6	-0.6

How do we now find the clusters?

Spectral Partitioning

- 3) Grouping:
 - Sort components of reduced 1-dimensional vector
 - Identify clusters by splitting the sorted vector in two
- How to choose a splitting point?
 - Naïve approaches:
 - Split at **0** or median value

k-Way Spectral Clustering

- So far we considered bisection only.
 - How do we partition a graph into k clusters? Any ideas?
- Two basic approaches:
 - Recursive bi-partitioning [Hagen et al., '92]
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
 - Disadvantages: Inefficient, unstable
 - Cluster multiple eigenvectors [Shi-Malik, '00]
 - Build a reduced space from multiple eigenvectors
 - Commonly used in recent papers
 - A preferable approach...

Cluster multiple eigenvectors

- You end up with n x k matrix (k eigenvectors)
- Take matrix of eigenvectors

Think of

 We transformed n points in n dimensional space to n points in k dimensional space

- Run simple clustering (e.g., k-means) to find final clusters
- We expect that in this k-dim eigenspace the points will become quite distinct

Treat as a point is k-dim space

Example: Spectral Partitioning

Example: Spectral Partitioning

Example: Spectral partitioning Components of x2

How to select k?

- Eigengap:
 - The difference between two consecutive eigenvalues
- Most stable clustering is generally given by the value k that maximizes eigengap Δ_k :

$$\Delta_k = |\lambda_k - \lambda_{k-1}|$$

• Example:

See Matlab example

More tricks: Community Detection

Modularity matrix B (not sparse):

$$B_{ij} = A_{ij} - \frac{d_i d_j}{2m}$$

- We want to find two natural communities in a graph
 G.
 - Calculate eigenvector of the largest (most positive) eigenvalue of the modularity matrix B.
 - Assign vertices to communities according to the signs of the vector elements:
 - Positive signs in one group and negative into other

Recap.

- Many community evaluation measures!
- We focus on four classes:
 - Evaluation based on **internal** connectivity
 - E.g., avg. degree
 - Evaluation based on external connectivity
 - E.g., ratio cut.
 - Evaluation based on internal and external connectivity
 - E.g., Conductance
 - Evaluation based on network
 - Modularity

Cluster using eigenvectors associated to the largest eigenvalues of matrix A

Cluster using eigenvectors associated to the smallest eigenvalues of laplacian L

Cluster using **eigenvectors** associated to the **largest eigenvalues** of normalized Laplacian D-½A D-½

Cluster using eigenvectors
associated to the largest
eigenvalues of modularity matrix B