1.5em

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie Houari Boumediene Faculté d'informatique Département d'informatique

Rapport du projet de TP

 $\begin{aligned} & Module: Complexite \\ & Master \ 1 \ IV \end{aligned}$

Algorithme de complexite temporelle exponentielle

• Réalisé par :

kASHI Thiziri MESSAOUDENE Lydia

1. Premiere partie

1.1. Algorithme recursif pour resoudre le probleme des "Tours de Hanoi"

1.2. Complexite

1.2.2. complexite temporelle:

 $CT(n)=O(2^n)$

La complexité temporelle est Quadratique donc elle est de $O(2^n)$, où n est le nombre total de disques. Si n=64 et qu'un disque est déplacé par seconde, l'utilisation du plus petit nombre de déplacements disponibles prendra $2^{64}-1$ secondes, ou environ 585 milliards d'années pour finir le jeu.

1.2.1. complexite spaciale : CT(n)=O(1)

1.3. Code en C

Fichier .c

1.4. Temps d'execution

n	10	11	12	13	14	15	16	17	18	19
Τ	0.000000	0.031250	0.187500	0.343750	0.625000	1.000000	2.156250	3.265625	5.984375	12.406250

n	20	21	22	23	24	25	26	27
Τ	23.218750	45.359375	91.296875	173.375015	463.296875	682.359375	1600.421875	3033.531250

n	28	29	30	31	32	 64
T	+3033.531250	+3033.531250	+3033.531250	+3033.531250	+3033.531250	 +3033.531250

1.5.Graphe de vartiation de la complexite temporelle et du temps d'execution

${\bf 1.5.1. Graphe\ de\ vartiation\ de\ la\ complexite\ temporelle:}$

Figure 1 – Graphe de vartiation de la complexite temporelle $\mathbf{G}_{ct}(n)$

1.5.2.Graphe de vartiation du temps d'execution :

FIGURE 2 – Graphe de vartiation du temps d'execution $G_t(n)$

1.7.Interpretation des resultats

1.7.1. a quoi corespendent les mesures de temps : dans les tours de hanoi , il n y'a pas de pire , moyen ou meuilleur cas .

1.7.2. comparaison:

• $n_{suivant} = n_{precedant} + 1 compte \grave{a}T(n) nous remarque qu'il augmente d'une façon exponentielle pour n = 14T estégal \grave{a}0.03 et pour n = 14T' estégal e \grave{a}0.62, nous pouvons également comparer l'évolution de T pour l'intervallen = [18,27] nous pouvons remarque que n'a aucun moment T diminue et qu'il augmente d'une façon considérable$

 $T(n)=10.5806+1.4780298860203\times10^6*e^{0.801676x}$

1.8. temps d'execusion en java(seconde):

n	10		11 12		12	13	14	15	16	16 17		19	
Т	0.000000 0.		0.00000	00 (0.000000	1	2	5	10	19	41	92	
n	20	21	22		23	2	24		25	,	\top	26	27
Т	185	352	1121	222	2221.05489		3628.0892		4828.359375			5000	+5000

1.9.Graphe de vartiation de la complexite temporelle et du temps d'execution EN JAVA

1.5.1.Graphe de vartiation de la complexite temporelle EN JAVA :

Figure 3 – Graphe de vartiation de la complexite temporelle $\mathbf{G}_{ct}(n)$