Title: Sobel Edge Detection in Python

Author: Martin Brettschneider Institution: Radboud University

Course: Programming I Date: 15.10.2025

Contact: martin.brettschneider@ru.nl

ResearchGate: https://www.researchgate.net/profile/Martin-Brettschneider-2?ev=hdr_xprf

This project implements a simple edge detection program using the Sobel operator, a classic image processing technique used to highlight areas of rapid intensity change, i.e., edges.

The user provides an image (in .jpg or .png format), chooses a threshold value, and the program detects edges, visualizes them, and saves the result to a text file.

What it does:

- 1. Reads and converts an image into grayscale.
- 2. Applies horizontal and vertical Sobel kernels to detect changes in intensity along both directions.
- 3. Combines both gradients to compute the edge magnitude.
- 4. Applies a threshold (chosen by the user) to produce a binary edge map.
- 5. Displays the resulting edges visually.
- 6. Saves the binary edge map to a text file.
- 7. Calculates and displays basic statistics (mean, min, max) for the detected edges.

How to use it:

Run the program from the terminal:

python main.py path/to/your/image.jpg

Then follow the prompts:

- Enter a threshold value between 0 and 1.
- View the resulting edge-detected image.
- Enter a name to save the output file (saved inside the output/ folder).

Example Uses of Each Project Requirement

Requirement	Example in Project
Read/write	read_file() reads an image file; save_to_file() writes the edge map to a .txt file in the output/
from files	folder.
User input	get_user_threshold() and input("Enter output filename") gather input from the user;
and output	print_usage() and print() provide output feedback.
Use of	Every major task (reading, processing, thresholding, saving) is encapsulated in its own
functions	function (sobel operator(), threshold edges(), etc.).

Loops and	The nested for loops in sobel_operator() perform the convolution; if conditions validate
conditionals	inputs in check_args() and user threshold in get_user_threshold().
Lists and	The analyze_edges() function stores statistics in a list of tuples, demonstrates indexing
indexing	(stats[0]), and manipulation (stats.pop()).
Modules/libr	Uses numpy for matrix operations, matplotlib for reading and displaying images, and
aries	os/sys for file and command-line handling.
Exception	The main() function uses a try-except block to catch and handle runtime errors gracefully.
handling	
Docstrings	
and	Every function includes a detailed docstring describing its purpose, inputs, and outputs.
comments	

Acknowledgements and References

- Conceptual references:
 - Fisher R, Perkins S, Walker A, Wolfart E (1996) Hypermedia image processing reference.
 John Wiley & Sons Ltd, England, pp 183–202
- Code references:
 - The implementation of Sobel convolution and edge magnitude calculation was written entirely by Martin Brettschneider (me), inspired by standard textbook methods.

Authorship Statement

I declare that the work submitted here is from my authorship only. I haven't used any generative AI to help with any code/text included in my work. I have given credit for the help I had conceptualizing my project. My work respects the university and course code of conduct