Sheep Example Discriminant Analysis

April 29, 2020

0.1 Example 12.6

Five diagnostic tests were carried out on two groups of sheep:

- 1. those suffering with Scrapie (a mild disease);
- 2. those suffering from ovine CJD (a more serious disease).

The measurements of the two tests were:

```
[7]: # 5 tests for Scrapie group

srp.t1 <- c(11, 33, 20, 18, 22)
srp.t2 <- c(18, 27, 28, 26, 23)
srp.t3 <- c(15, 31, 27, 18, 22)
srp.t4 <- c(18, 21, 23, 18, 16)
srp.t5 <- c(15, 17, 19, 9, 10)
```

```
[8]: # The same 5 diagnostic tests for the ovine CJD group

cjd.t1 <- c(18, 31, 14, 25, 36)

cjd.t2 <- c(17, 24, 16, 24, 28)

cjd.t3 <- c(20, 31, 17, 31, 24)

cjd.t4 <- c(18, 26, 20, 26, 26)

cjd.t5 <- c(18, 20, 17, 18, 29)
```

```
[11]: scrapie <- data.frame(srp.t1, srp.t2, srp.t3, srp.t4, srp.t5)
cjd <- data.frame(cjd.t1, cjd.t2, cjd.t3, cjd.t4, cjd.t5)
```

0.1.1 Scrapie data: 5 observations

[12]: scrapie

	srp.t1	srp.t2	srp.t3	srp.t4	srp.t5
A data.frame: 5×5	<dbl $>$	<dbl></dbl>	<dbl $>$	<dbl $>$	<dbl $>$
	11	18	15	18	15
	33	27	31	21	17
	20	28	27	23	19
	18	26	18	18	9
	22	23	22	16	10

0.1.2 Ovine CJD data: 5 observations

[13]: cjd

	cjd.t1	$\rm cjd.t2$	cjd.t3	cjd.t4	$\mathrm{cjd.t5}$
A data.frame: 5×5	<dbl $>$	<dbl></dbl>	<dbl $>$	<dbl $>$	<dbl $>$
	18	17	20	18	18
	31	24	31	26	20
	14	16	17	20	17
	25	24	31	26	18
	36	28	24	26	29

0.1.3 Need the sample sizes of the two samples

1. 5 2. 5

0.1.4 Our pooled estimate of the covariance matrix: $\hat{\Sigma} = \mathbf{S}_U$

 \mathbf{S}_U is the unbiased estimate of Σ

$$\mathbf{S}_{U} = \frac{(n_{1} - 1)\mathbf{S}_{1U} + (n_{2} - 1)\mathbf{S}_{2U}}{n_{1} + n_{2} - 2}$$

Where \mathbf{S}_{1U} is the sample covariance matrix for sample 1.

		srp.t1	srp.t2	srp.t3	srp.t4	srp.t5
A matrix: 5×5 of type dbl	srp.t1	0.09627223	-0.12756676	-0.07536557	0.1508991	-0.06570241
	srp.t2	-0.12756676	0.32560846	0.06744833	-0.3102937	0.06755138
	srp.t3	-0.07536557	0.06744833	0.12750144	-0.2041784	0.07866334
	srp.t4	0.15089911	-0.31029369	-0.20417838	0.6566855	-0.20100846
	srp.t5	-0.06570241	0.06755138	0.07866334	-0.2010085	0.13556886

Now getting the sample means

Our sample means will be vectors

The length of the sample mean vectors will be 5 - due to the 5 tests

```
[52]: # MARGIN = 2 means we're getting column-wise means
sample.mean.scrapie <- apply(scrapie, MARGIN = 2, mean)
sample.mean.cjd <- apply(cjd, MARGIN = 2, mean)</pre>
```

[53]: # little bit of R syntax to turn these two objects into vectors

names(sample.mean.scrapie) <- NULL

names(sample.mean.cjd) <- NULL

0.2 We can now calculate the \widehat{L} part of the Sample Linear Discriminant Function, $\widehat{L}x$

$$\mathbf{L} = \Sigma^{-1}(\mu_1 - \mu_2)$$
$$\widehat{\mathbf{L}} = \mathbf{S}_U^{-1}(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)$$

[56]: # in R, %*% performs a dot product
L.hat <- s.pooled.inv %*% (sample.mean.scrapie - sample.mean.cjd)
L.hat</pre>

0.2.1 Our estimate for α , the squared Mahalanobis distance, is given by:

$$\alpha = (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 - \mu_2)$$

$$\alpha = (\mu_1 - \mu_2)^T \mathbf{L} = \mathbf{L}^T (\mu_1 - \mu_2)$$

$$\hat{\alpha} = (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)^T \mathbf{S}_U^{-1} (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)$$

$$\hat{\alpha} = (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)^T \hat{\mathbf{L}} = \hat{\mathbf{L}}^T (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)$$

[69]: alpha.hat <- t(sample.mean.scrapie - sample.mean.cjd) %*% s.pooled.inv %*%⊔

→(sample.mean.scrapie - sample.mean.cjd)

alpha.hat <- alpha.hat[1,1]
alpha.hat</pre>

15.1835214211121

0.2.2 Probability that misclassified

Total Probability that disease is misclassified = $\Phi\left(-\frac{\sqrt{\hat{\alpha}}}{2}\right)$

0.0256894240288836