

25/07/2017

Nota:		

Apellido y Nombre	Profesor	Tomé conocimiento de la nota: (Sólo aplazos)		

Preguntas teóricas				Ejercicios		
1	2	3	4	5	1	2

A) <u>Teoría</u>: Explícitamente defina como <u>VERDADERA</u> o <u>FALSA</u> cada una de estas afirmaciones justificando brevemente.

- 1) Un sistema en el cual los procesos deben solicitar todos los recursos que van a utilizar al iniciarse, es un sistema en el cual nunca ocurrirá un interbloqueo
- 2) Una llamada al sistema bloqueante, realizada por un KLT, podría hacer que el resto de los KLTs del mismo proceso no puedan continuar su ejecución
- 3) Además de semáforos, es posible garantizar el orden de los procesos utilizando otras herramientas del Sistema Operativo
- 4) Todos los algoritmos de planificación, que no se basan en el orden de llegada a "listos" para elegir el siguiente proceso, presentan inanición
- 5) Es posible que un proceso entre en thrashing, siendo el único en ejecución en un determinado momento

B) Práctica: Resuelva los ejercicios justificando las respuestas

1) Un Sistema Operativo, el cual planifica utilizando el algoritmo SJF (sin desalojo), corre dos procesos P1 y P2 que acceden a un conjunto de archivos en común. Cada acceso a ellos consume 1ut si el archivo se encuentra en la tabla de archivos abiertos del proceso, 2ut si se encuentra sólo en la tabla global de archivos abiertos y 3ut si nunca fue accedido aún. Se sabe también que el dispositivo de E/S no permite accesos en paralelo, y ambos procesos se encuentran en la cola de listos en el instante 0.

		CPU	E/S	CPU	E/S	CPU
P1	KLT 1	1	arch1	1	arch2	1
	KLT 2	3	arch2	2	arch1	1
P2	KLT 3	2	arch2 2		arch1	1
		-	-	3	arch1	1

Por último, el proceso P2 utiliza una biblioteca de hilos que planifica utilizando SJF (sin desalojo), y crea un segundo ULT <u>inmediatamente después de finalizar su primera E/S</u>.

Indique los tiempos de finalización de cada proceso o hilo y todo problema que ocurra, justificando con el diagrama de gantt correspondiente y sabiendo que los archivos:

- a) son abiertos con locks de lectura y cerrados al final de la ejecución.
- b) son abiertos con locks de escritura y cerrados al final de la ejecución.
- 2) Un SIstema Operativo corre diferentes procesos que controlan la interacción con diferentes grupos de dispositivos. En este sistema, cada frame tiene un tamaño de 1KB, y en un instante determinado, su tabla de páginas invertida tiene el siguiente contenido:

Frame	0	1	2	3	4	5	6	7	8	9
Página	0	1	0	-	2	0	1	-	-	-
PID	0	0	10	-	0	5	5	-	-	-

Sabiendo que su función de hash es f(Página, PID) = MOD((Página x Página) + (PID x PID), 10), indique:

- a) Qué colisiones ocurrieron, y cómo se solucionaron, sabiendo que la función que las trata es Colision(Frame) = Frame + 1
- b) Qué direcciones físicas generan la direcciones lógica 3DDh y 6FAh (en ese orden), del proceso 4
- c) Qué dirección lógica se corresponde con la dirección física 987h
- d) Cuál es el máximo de fallos de página que pudo haber ocurrido para cargar la tabla de páginas

El tiempo de duración del examen final será de 90' a contar desde el momento de comienzo del mismo. Si el alumno por algún motivo comenzará más tarde sólo podrá utilizar el tiempo remanente. Utilice hojas separadas para la teoría / ejercicios.