Cohen-Seidenberg 理论

戚天成 ⋈

复旦大学 数学科学学院

2023年11月7日

这份笔记主要用于记录初等交换代数中 Cohen-Seidenberg 理论的经典内容, 该理论由 Irvin Cohen(美国, 1917-1955) 与 Abraham Seidenberg(美国, 1916-1988, Zarisiki 的学生) 发展.

1 整扩张

设含幺交换环 E 是含幺交换环 R 的环扩张, 称 $u \in E$ 是 R 上整元 (integral element), 如果 u 满足某个 R 上首一多项式. 不难证明 $u \in E$ 是 R 上整元的充要条件是存在 E 的一个有限生成 R-子模 M 使得 $1_R \in M, uM \subseteq M$. 在域论中, 给定域扩张 $E \supseteq F$, 若 E 中任意元素都是 F 上代数元, 我们称 E 是 F 的代数扩张 (algebraic extension). 类似地, 我们可以在含幺交换环中考虑整扩张的概念.

Lemma 1.1. 设 $E \supseteq R$ 是含幺交换环, $1_E \in R$, 并记 R' 是 E 中所有的 R 上整元构成的集合, 则 R' 是 E 的 子环, $1_E \in R'$ 且若 $u \in E$ 是 R' 上整元, 则有 $u \in R'$.

证明前我们先引入一些记号, 对 $u \in E$, 记 R[u] 是 E 中由 $\{u\} \cup R$ 生成的子环, 则 $R[u] = \{f(u)|u \in R[x]\}$. 如果 u 是 R 上整元, 易见 R[u] 作为 R-模是有限生成的且 $1_R \in R[u]$, $uR[u] \subseteq R[u]$. 于是对正整数 n 作归纳可得, 对 R 上任意 n 个整元 $u_1, u_2, ..., u_n$, $R[u_1, u_2, ..., u_n] = R[u_1, u_2, ..., u_{n-1}][u_n]$ 是有限生成 R-模.

Proof. 首先由 $1_R=1_E$ 知 $1_E\in R'$. 任给 $u_1,u_2\in R'$, 则 $R[u_1],R[u_2]$ 都是有限生成 R-模. 由此可知 $R[u_1][u_2]$ 是有限生成 R-模, $1_R\in R[u_1][u_2]$ 且 $u_1u_2R[u_1][u_2]\subseteq R[u_1][u_2]$, $(u_1-u_2)R[u_1][u_2]\subseteq R[u_1][u_2]$, 所以 u_1u_2,u_1-u_2 都是 R 上整元,即 $u_1u_2,u_1-u_2\in R'$,所以 R' 是 E 的子环.如果 $u\in E$ 是 R' 上的整元,即存在 正整数 n 以及 $v_0,v_1,...,v_{n-1}\in R'$ 使得 $u^n+v_{n-1}u^{n-1}+\cdots+v_1u+v_0=0$,由此立即得到 $R[v_0,v_1,...,v_{n-1}][u]$ 是有限生成 R-模,易见 $1_R\in R[v_0,v_1,...,v_{n-1}][u]$, $uR[v_0,v_1,...,v_{n-1}][u]\subseteq R[v_0,v_1,...,v_{n-1}][u]$,所以 $u\in R$ 上整元,即 $u\in R'$.

在上述条件下, 称 R' 是 R 在 E 中的整闭包 (integral closure). 如果 R' = E, 即 E 中任何元素都在 R 上是整元, 则称 E 是 R 的整扩张 (integral extension). 如果 R' = R, 则称 R 在 E 中是整闭的 (integrally closed), 此时也称 E 是 R 的整闭扩张. 如果 R 与 E 都是域, 那么 E 是 R 的整扩张等价于 E 是 R 的代数扩张, R 在 E 中的整闭包就是 R 在 E 中的代数闭包. 前面的引理表明任意含幺交换环的环扩张 $R \subseteq E$ 有分解 $R \subseteq R' \subseteq E$, 前者是整扩张, 后者是整闭扩张.

考虑环扩张 $\mathbb{Q} \supseteq \mathbb{Z}$, 易见 \mathbb{Q} 是 \mathbb{Z} 的一个整闭扩张: 首先 $\mathbb{Z}' \supseteq \mathbb{Z}$, 任取 $q \in \mathbb{Z}'$, 可设正整数 s 与整数 t 满足 s, t 互素且 q = t/s, 因为 q 是 \mathbb{Z} 上整元, 所以存在首一整系数多项式 $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ 使得 f(q) = 0. 即 $t^n + a_{n-1}t^{n-1}s + \cdots + a_1ts^{n-1} + a_0s^n = 0$, 由此立即得到 s 整除 1, t 整除 a_0 , 所以 $q \in \mathbb{Z}$, 进而知 $\mathbb{Z}' = \mathbb{Z}$. 一般地, 任何 U.F.D. 的商域都是该 U.F.D. 的整闭扩张.

域的代数扩张的代数扩张仍是代数扩张,对于整扩张同样有传递性:

Lemma 1.2. 设 A,B,C 都是含幺交换环, $A \subseteq B \subseteq C$ 是环扩张. 如果 $A \subseteq B$ 与 $B \subseteq C$ 都是整扩张, 那么 $A \subseteq C$ 也是整扩张.

Proof. 任取 $c \in C$,有 B 上首一多项式 $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ 使得 f(c) = 0,由于 $A[a_0, a_1, ..., a_{n-1}]$ 是有限生成 A-模,于是 $A[a_0, a_1, ..., a_{n-1}][c]$ 是有限生成 A-模,易见 $1_A \in A[a_0, a_1, ..., a_{n-1}][c]$ 且 $cA[a_0, a_1, ..., a_{n-1}][c] \subseteq A[a_0, a_1, ..., a_{n-1}][c]$,所以 c 是 a 上整元. 由 a 的任意性知 a 是 a 的整扩张.

如果 $E \supseteq R$ 是含幺交换环的环扩张, 那么对 E 的任意理想 A, 记 A 关于嵌入 $i: R \to E$ 的收缩理想是 $A^c = A \cap R$, 则 A^c 是 A 中理想且 $\varphi: R/A^c \to E/A, r+A^c \mapsto r+A$ 是单保幺环同态, 因此我们可以把 R/A^c 视作 E/A 的子环 (严格地说, R/A^c 同构于 E/A 的一个子环). 于是有下面的结果:

Proposition 1.3. 给定含幺交换环的整扩张 $E \supseteq R$, $A \in E$ 的真理想, 则 $\varphi : R/A^c \to E/A, r + A^c \mapsto r + A$ 是整扩张, 即 E/A 作为 $\varphi(R/A^c)$ 的扩环是整扩张.

Proof. 只需证明任给 $u + A \in E/A$,存在以集合 $\{r + A | r \in R\}$ 中元素为系数的首一多项式零化 u + A 即可. 因为 $u \in E$ 是 R 上整元,所以存在 $a_0, a_1, ..., a_{n-1} \in R$ 使得 $u^n + a_{n-1}u^{n-1} + \cdots + a_1u + a_0 = 0$. 从而 $(u + A)^n + (a_{n-1} + A)(u + A)^{n-1} + \cdots + (a_1 + A)(u + A) + (a_0 + A) = 0 + A$.

给定含幺交换环的环扩张 $E \supseteq R$, 并设 $S \not\in R$ 的乘闭子集, 则有嵌入 $i_S: R_S \to E_S, a/s \mapsto a/s$, 需要注意的是, R_S 中的 a/s 与 E_S 中的 a/s 不同, 后者所表示的等价类可能更大. 上述嵌入表明我们可以把 R_S 视作 E_S 的子环, 下面的结果表明, 在将 R_S 视作 E_S 子环的意义下, 在乘闭子集 S 处的局部化保持整闭包 (我们不考虑零环的情况, 所以下面要求 $0 \notin S$, 这是 R_S 不是零环的等价条件).

Proposition 1.4. 给定含幺交换环的环扩张 $E \supseteq R$, 并设 $S \not\in R$ 的乘闭子集且 $0 \not\in S$, 若 $R' \not\in R$ 在 E 中的整闭包,则 $R'_S \not\in R_S$ 在 E_S 中的整闭包.因此对环扩张取整闭包和作局部化可交换.

Proof. 设 R_S 在 E_S 中的整闭包为 $(R_S)'$, 任取 $u/s \in R'_S$, $s \in S$, $u \in R'$, 则存在 R 上首一多项式 $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ 使得 f(u) = 0. 由此得到:

$$(\frac{u}{s})^n + \frac{a_{n-1}}{s}(\frac{u}{s})^{n-1} + \dots + \frac{a_1}{s^{n-1}}(\frac{u}{s}) + \frac{a_0}{s^n} = \frac{0}{s},$$

所以 $R'_S \subseteq (R_S)'$. 任取 $u/s \in (R_S)'$, 则存在正整数 n 以及 $a_{n-1},...,a_1,a_0 \in R,s_{n-1},s_{n-2},...,s_0 \in S$ 使得

$$(\frac{u}{s})^n + \frac{a_{n-1}}{s_{n-1}}(\frac{u}{s})^{n-1} + \dots + \frac{a_1}{s_1}(\frac{u}{s}) + \frac{a_0}{s_0} = \frac{0}{s},$$

由上式可知存在 $t \in S, b_{n-1}, b_{n-2}, ..., b_1, b_0 \in R$ 使得 $tu^n + b_{n-1}u^{n-1} + \cdots + b_1u + b_0 = 0$, 两边同乘 t^{n-1} 可得 $tu \in R'$, 所以 $u/s = tu/ts \in R'_S$, 故 $(R_S)' \subseteq R'_S$.

对任给域 F 上代数 A, 如果 A 是整环且在 F 上代数, 易知 A 是域. 一般地, 我们有下面的结果.

Proposition 1.5. 给定含幺交换环的整扩张 $E \supseteq R$, 其中 E 是整环, 则 R 是域的充要条件是 E 是域. 特别地, 对整扩张 $E \supseteq R$, 对任何 E 中极大理想 P, 其收缩理想 $P^c = P \cap R$ 是 R 中极大理想.

Proof. 必要性: 任取 E 中非零元 u, 设 u 在 R 上的首一最小多项式为 $m(x) = x^r + b_{r-1}x^{r-1} + \cdots + b_1x + b_0$, 则由 E 是整环知 $b_0 \neq 0$. 于是利用 $u(u^{r-1} + b_{r-1}u^{r-2} + \cdots + b_1) = -b_0$ 以及 b_0 可逆得到 u 有逆元. 由 u 的任意性知 E 是域. 充分性: 设 $a \neq 0 \in R$, 则存在 $b \in E$ 使得 $ab = ba = 1_R$, 因为 b 在 R 上是整的, 所以存在 $a_{n-1}, ..., a_1, a_0 \in R$ 使得 $b^n = a_{n-1}b^{n-1} + \cdots + a_1b + a_0$, 两边同乘 a^{n-1} 得到 $b \in R$. 这就证明了第一个结论.

现任取 E 中极大理想 P, 则 $\varphi: R/P^c \to E/P, r+P^c \mapsto r+P$ 是整扩张, 具体地, E/P 作为 $\varphi(R/P^c)$ 的 环扩张是整的, 因此由 E/P 是域立即得到 $\varphi(R/P^c)$ 是域, 所以 R/P^c 是域.

Corollary 1.6. 对整扩张 $R \subseteq E$, 若 E 的素理想 Q_1, Q_2 满足 $R \cap Q_1 = R \cap Q_2 = P$ 且 $Q_1 \subseteq Q_2$, 则 $Q_1 = Q_2$. Proof. 考虑下述交换图:

$$E \longrightarrow E_P$$

$$\uparrow \qquad \uparrow$$

$$R \longrightarrow R_P$$

这里 R_P 到 E_P 的标准映射是单射, 且 $(Q_1)_P$, $(Q_2)_P$ 关于该映射的原像均为 P_P , 是极大理想, 所以 $(Q_1)_P$, $(Q_2)_P$ 都是 E_P 中的极大理想, 进而知 $(Q_1)_P = (Q_2)_P$, 于是可得 $Q_1 = Q_2$.

2 Going-up 定理

Going-up Theorem. 给定含幺交换环的整扩张 $E \supseteq R$, 则对任给 R 中素理想 P, 存在 E 中素理想 Q 使得 $Q^c = P$, 即嵌入同态 $i: R \to E$ 所诱导的连续映射 $\operatorname{Spec}(i): \operatorname{Spec}(E) \to \operatorname{Spec}(R)$ 是满射. 对 R 中任给素理想 $P_1 \subseteq P_2$, 存在 E 中素理想 $Q_1 \subseteq Q_2$ 使得 $Q_1^c = P_1, Q_2^c = P_2$. 特别地, 对 R 中任意素理想升链 $P_1 \subseteq P_2 \subseteq \cdots \subseteq P_n$, 存在 E 中素理想升链 $Q_1 \subseteq Q_2 \subseteq \cdots \subseteq Q_n$ 使得 $Q_k^c = P_k$, $\forall 1 \le k \le n$.

Proof. 任给 R 的素理想 P, 我们先说明存在 E 中素理想 Q 使得 $Q^c = P$. 考虑 R 在素理想 P 处的局部化 R_P , 则 R_P 可视作 E_P 的子环, 进而得到整扩张 $E_P \supseteq R_P$. 因为 R_P 是局部环, P_P 是 R_P 中唯一的极大理想, 故取 E_P 的极大理想 Q_P (这里 Q 是 E 中素理想, 满足 $Q \cap (R-P) = \emptyset$), 则 Q_P^c 是 R_P 中的极大理想, 由此得到 $Q_P^c = P_P$. 下面说明 $Q^c = Q \cap R = P$. 因为 $Q \cap (R-P) = \emptyset$, 所以 $Q \cap R \subseteq P$. 任取 $P \in P$, 则存在 $Q \in Q$ 以及 $Q \in R$ 0 使得 $Q \in R$ 1, 由此知存在 $Q \in R$ 2 以及 $Q \in R$ 3, 所以 $Q \cap R$ 4 使得 $Q \in R$ 5, 因此 $Q \in R$ 6, 因此 $Q \in R$ 7, 由此知存在 $Q \in R$ 8, 所以 $Q \cap R \subseteq R$ 9, 因此 $Q \in R$ 9, 因此 $Q \in R$ 9, 因此 $Q \in R$ 9, 所以 $Q \cap R \subseteq R$ 9, 所以 $Q \cap R \subseteq R$ 9, 所以 $Q \cap R \subseteq R$ 9, 因此 $Q \cap R \subseteq R$ 9, 所以 $Q \cap R \subseteq R$ 9, 因此 $Q \cap R \subseteq R$ 9, 所以 $Q \cap R \subseteq R$ 9, 因此 $Q \cap R \subseteq R$ 9, 所以 $Q \cap R \subseteq R$ 9, 而以 $Q \cap$

现任给 R 中素理想 $P_1 \subseteq P_2$,对素理想 P_1 ,存在 E 中素理想 Q_1 使得 $P_1 = Q_1^c$. 命 $\psi: R/P_1 \to E/Q_1, r+P_1 \mapsto r+Q_1$,易见 ψ 是单保幺环同态. 于是可将 E/Q_1 视作 $\psi(R/P_1)$ 的整扩张,因此对 $\psi(R/P_1)$ 的素理想 $\psi(P_2/P_1)$,存在 E/Q_1 的素理想 Q_2/Q_1 (这里 $Q_1 \subseteq Q_2$ 是 E 中素理想)使得 $\psi(P_2/P_1) = (Q_2/Q_1)^c$,易见 $P_2 \subseteq Q_2 \cap R = Q_2^c$. 下面说明 $Q_2 \cap R \subseteq P_2$,任取 $x \in Q_2 \cap R$,则存在 $p_2 \in P_2$ 使得 $x-p_2 \in Q_1$,于是存在 $q_1 \in Q_1$ 使得 $x-p_2 = q_1 \in Q_1 \cap R = Q_1^c = P_1$,从而 $x \in P_2$,因此 $Q_2 \cap R \subseteq P_2$,这就得到了 $Q_2^c = P_2$.

Remark 2.1. 上述定理称为 Going-up 的原因是证明过程中我们先给定 R 中素理想 $P_1 \subseteq P_2$, 再取定 E 中收缩理想是 P_1 的素理想 Q_1 , 然后再构造 Q_2 , E 中素理想链是上升构造的.

Example 2.2. 给定素数 p, 易见 $p\mathbb{Z}/(x^2)$ 是含幺交换环 $R = \mathbb{Z}/(x^2) \cong \mathbb{Z}$ 中的素理想, $E = \mathbb{Z}[x]/(x^2)$ 是 R 的一个整扩张, $p\mathbb{Z}[x]/(x^2)$ 是 R 中的素理想且它的收缩理想就是 $p\mathbb{Z}/(x^2)$.

Corollary 2.3. 设 $E \supseteq R$ 是整扩张, 则对任给 R 中极大理想 P, 存在 E 的极大理想 Q 使得 $P = Q^c$.

Proof. 首先 Going-up 定理保证存在素理想 Q 使得 $Q^c = P$. 再应用 [命题1.5] 即得.

Remark 2.4. 设 \mathbb{R} 是代数闭域,如果仿射簇间正则映射 $\varphi: V \to W$ 满足该正则映射诱导的正则函数环间的代数同态 $\varphi^*: A(W) \to A(V)$ 是嵌入且给出整扩张 $A(V) \supseteq \varphi^*(A(W))$,那么 φ 是满射.不妨设 $V \subseteq \mathbb{R}^n, W \subseteq \mathbb{R}^m$ 并且 $\varphi: V \to W, (x_1, ..., x_n) \mapsto (f_1(x_1, ..., x_n), ..., f_m(x_1, ..., x_n))$,其中 $f_j \in \mathbb{R}[x_1, ..., x_n]$. 那么 $A(W) = \mathbb{R}[x_1, ..., x_m]/I(W)$, $A(V) = \mathbb{R}[x_1, ..., x_n]/I(V)$. 于是 $\varphi^*: \mathbb{R}[x_1, ..., x_m]/I(W) \to \mathbb{R}[x_1, ..., x_n]/I(V)$, $f + I(W) \mapsto \varphi^* f + I(V)$,其中 $\varphi^* f(x_1, ..., x_n) = f(f_1(x_1, ..., x_n), ..., f_m(x_1, ..., x_n))$. 任取 W 内点 $p = (a_1, ..., a_m)$,它对应 A(W) 的极大理想 $\mathfrak{m}_p = (x_1 - a_1, ..., x_m - a_m)/I(W)$,上述推论表明存在 A(V) 的极大理想使得该极大理想关于 φ^* 的收缩理想是 \mathfrak{m}_p . 因为 \mathbb{R} 是代数闭域,所以存在 $q = (b_1, ..., b_n) \in V$ 使得 $\mathfrak{m}_q = (x_1 - b_1, ..., x_n - b_n)/I(V)$ 关于 φ^* 的收缩理想是 \mathfrak{m}_p . 由此得到 $(f_1(x_1, ..., x_n) - a_1, ..., f_m(x_1, ..., x_n) - a_m) \subseteq (x_1 - b_1, ..., x_n - b_n)$. 这说明 $(b_1, ..., b_n)$ 是多项式集 $\{f_1(x_1, ..., x_n) - a_1, ..., f_m(x_1, ..., x_n) - a_m) \subseteq (x_1 - b_1, ..., x_n - b_n)$ 的一个公共零点,进而 $f_i(b_1, ..., b_n) = a_i, \forall 1 \leq j \leq m$. 这说明 $\varphi(q) = p$.

Corollary 2.5. 设 $R \subseteq E$ 是含幺交换环的整扩张, 那么 k.dimR = k.dimE. 例如对域 F 有 k.dimF = 0, 那么任何在 F 上代数的交换代数 A, 均有 k.dimA = 0.

Proof. 任给 R 的素理想链 $P_0 \supseteq P_1 \supseteq \cdots \supseteq P_s$,由 Going-up 定理知对每个自然数 $1 \le k \le s$,存在 E 的素理想 Q_k 使得 $P_k = Q_k \cap R$,并且 $Q_0 \supseteq Q_1 \supseteq \cdots \supseteq Q_s$,那么 $Q_0 \supseteq Q_1 \supseteq \cdots \supseteq Q_s$ 是 E 的素理想链,这说明 $k.\dim R \le k.\dim E$. 现设 $Q_0 \supseteq Q_1 \supseteq \cdots \supseteq Q_s$ 是 E 的素理想链(利用 [推论1.6]),记 $P_k = R \cap Q_k$,那么 $P_0 \supseteq P_1 \supseteq \cdots \supseteq P_s$ 是 R 的素理想链,所以 $k.\dim R \ge k.\dim E$.

3 整扩张的 Going-down 定理

设 $E \supseteq R$ 是含幺交换环的整扩张, 我们已经看到任给 R 中素理想 P, 存在 E 中素理想 Q 使得 $Q^c = P$. 一个自然的问题是, 如果给定 R 素理想 $P_1 \subseteq P_2$ 以及 E 中素理想 Q_2 使得 $Q_2^c = P_2$, 是否存在 E 中素理想 Q_1 , 使得 $Q_1^c = P_1$ 且 $Q_1 \subseteq Q_2$? 下面是一个反例.

Example 3.1. 设 F 是域, 命 E = F[x,y], $R = \{f(x,y) \in E | f(0,0) = f(1_F,1_F)\}$, 则 $E \supseteq R$ 是整扩张, $Q_2 = (x - 1_F, y - 1_F)$ 与 (x) 都是 E 中素理想, $P_2 = Q_2 \cap R$, $P_1 = (x) \cap R$ 是 R 中素理想, 且不存在 E 中素理想 Q_1 使得 $Q_1^c = P_1$ 且 $Q_1 \subseteq Q_2$.

Proof. 易见 R 是 E 的子环且 $1_F \in R$. 记 R 在 E 中的整闭包为 R', 利用 $x^2 - x, y^2 - y \in R$ 可知 $x, y \in R'$. 因为 R' 关于加法乘法封闭且包含所有 F 上常数多项式, 所以 $E \subseteq R'$, 故 E = R', 即 $E \supseteq R$ 是整扩张. 易见 $Q_2 = (x - 1_F, y - 1_F)$ 是 E 中的极大理想, 特别地, 它也是 E 中素理想. 下面说明 (x) 是 E 中素理想, 命

 $\varphi: E \to F[y], f(x,y) \mapsto f(0,y), 则 \varphi$ 是满环同态且 $(x) \subseteq \operatorname{Ker} \varphi$. 任取 $g(x,y) \neq 0 \in \operatorname{Ker} \varphi$, 则存在自然数 s 以及多项式 $a_0(x), a_1(x), ..., a_s(x) \in F[x], a_s(x) \neq 0$ 使得 $g(x,y) = a_s(x)y^s + \cdots + a_1(x)y + a_0(x)$. 由此可得 $a_0(x), a_1(x), ..., a_s(x)$ 的常数项是零, 进而 $g(x,y) \in (x)$, 所以 $(x) = \operatorname{Ker} \varphi$. 利用 $F[x,y]/(x) \cong F[y]$ 立即得到 (x) 是 E 中素理想. 根据上述讨论可知 P_1, P_2 都是 R 中素理想, 且易见 $P_1 \subseteq P_2$. 下面我们用反证法说明不存在 E 中素理想 Q_1 使得 $Q_1^c = P_1$ 且 $Q_1 \subseteq Q_2$. 假设存在这样的素理想 Q_1 , 则 $Q_1 \cap R = P_1 = (x) \cap R$. 于是 $xy - x^2, x^2 - x \in Q_1$. 因为 $Q_1 \subseteq Q_2$, 所以 $x \notin Q_1$. 进而 $y - x, x - 1_F \in Q_1$, 所以 $x - 1_F, y - 1_F \in Q_1$. 因此 我们得到 $Q_1 = Q_2$. 这表明 $R \cap (x) = R \cap (x - 1_F, y - 1_F)$, 于是 $y^2 - y \in (x)$, 矛盾.

上面的例子表明在 Going-up 的条件下我们不能直接得到素理想下降存在性 (Going-down) 的结论. 因此我们需要再对 R,E 这两个环增加条件.

Proposition 3.2 (Gauss). 设 R 是 U.F.D., F 是 R 的商域 (我们把 r 与 $r/1_R$ 视作等同), 则环扩张 $F \supseteq R$ 是整闭扩张. 特别地, 若 R 是 U.F.D., 则多项式环 $R[x_1, x_2, ..., x_n]$ 也是整闭整环.

Proof. 如果 $u = q/p \in F$ 是 R 上整元, 不妨设 p, q 在 R 中互素. 设 $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in R[x]$ 使得 f(u) = 0, 则

$$\left(\frac{q}{p}\right)^n + \frac{a_{n-1}q^{n-1}}{p^{n-1}} + \dots + \frac{a_1q}{p} + \frac{a_0}{1_R} = 0,$$

由此可知 $q^n + a_{n-1}q^{n-1}p + \cdots + a_1qp^{n-1} + a_0p^n = 0$, 所以 $p|q^n$. 这迫使 p 是 R 中可逆元 (否则与 p,q 互素矛盾), 故 $u \in R$. 因此 $F \supseteq R$ 是整闭扩张.

在正式证明 Going-down 定理前, 我们需要下面的几个引理.

Lemma 3.3. 设 R 是含幺交换环, $f(x) \in R[x]$ 是次数为 d > 0 的首一多项式, 则有:

- (1) 存在 R 的环扩张 S 使得 S 是含幺交换环且 f(x) 在 S[x] 中可以分解为首项系数是 1_R 的一次多项式的乘积, S 作为 R-模是自由的, 秩为 d!.
- (2) 对含幺交换环的扩张 $E \supseteq R$, 如果存在 E[x] 中多项式 g(x), h(x) 使得 f(x) = g(x)h(x), g(x) 首项系数是 1_R , 那么 h(x) 也是首一多项式且 g(x), h(x) 的系数都是 R 上整元.

Proof. 先证明 (1), 对正整数 d 作归纳: 当 d=1 时, 取 S=R 即可. 假设结论对次数为 $d-1(d\geq 2)$ 的多项式成立. 我们先说明存在 R 的环扩张 S_1 使得 S_1 是秩为 d 的 R-模且存在 $a\in S_1$, S_1 上次数为 d-1 的首一多项式 h(x) 使得 f(x)=(x-a)h(x). 事实上, 对含幺交换环 T=R[x]/(f(x)), 易见它是自由 R-模, 有基 $\{\overline{1_R},\overline{x},...,\overline{x^{d-1}}\}$, 因此利用 T 不难构造满足条件的含幺交换环 S_1 . 对 $h(x)\in S_1(x)$ 使用归纳假设知存在含幺交换环的扩张 $S\supseteq S_1$ 使得 h(x) 可以分解为 S[x] 中 d-1 个首项系数是 1_R 的一次多项式的乘积且 S 是秩为 (d-1)! 的自由 S_1 -模. 因为 S 作为 S_1 -自由模的秩是 (d-1)!, S_1 作为 R-自由模的秩是 d, 所以 S 作为 R-模是自由的且秩为 d!=d(d-1)!, 这就证明了 (1).

下面证明 (2), 只需说明 h(x), g(x) 的系数均为 R 上整元. 如果 h(x), g(x) 中有一个是常数多项式, 结论直接成立. 下设 h(x), g(x) 次数均不低于 1. 由 (1), 存在环扩张 $S \supseteq E$ 使得 g(x) 可以在 S 上分解为首项系数是 1_R 的一次多项式的乘积 $g(x) = (x - a_1)(x - a_2) \cdots (x - a_{d_1}) \in S$, 因为每个 a_k 都被 $f(x) \in R[x]$ 零化, 所以每个 a_k 都是 R 上整元, 由此得到 g(x) 的系数都是 R 上整元. 同理可得 h(x) 的系数都是 R 上整元.

Lemma 3.4. 设 R 是整闭整环, F 是 R 的商域, $K \supseteq F$ 是域扩张. 如果 $u \in K$ 在 R 上整元, 设 u 在 F 上首一最小多项式是 f(x), 则 $f(x) \in R[x]$.

Proof. 由条件, 存在 R 上首一多项式 g(x) 使得 g(u) = 0. 因为 g(x) 可视作 F 上多项式, 故有 $h(x) \in F[x]$ 使得 g(x) = h(x)f(x), 于是由 [引理3.3] 知 f(x) 所有系数都是 R 上整元. 再由 R 是整闭的得到结论.

Lemma 3.5. 设 $f: R \to R'$ 是含幺交换环间的保幺环同态, $P \in R$ 中素理想, 如果 $P^{ec} = P$, 那么 $P \in R'$ 某个素理想的收缩理想 (这里的收缩理想与扩张理想都是关于 f 而言的).

Proof. 命 S = f(R - P), 那么 $S \in R'$ 的乘闭子集. 下面说明 $P^e \cap S = \emptyset$, 若不然, 设 $r \in R - P$ 使得 $f(r) \in P^e$, 于是 $r \in P^{ec} = P$, 矛盾. 于是存在 R' 中素理想 $Q \subseteq R' - S$ 使得 $Q \supseteq P^e$, 于是知 $Q^c \supseteq P$. 因为 $Q \subseteq R' - S$, 所以 $Q^c \subseteq P$. 因此 P 是素理想 Q 的收缩理想.

下面是 Cohen-Seidenberg 理论中整扩张的 Going-down 定理.

Going-down Theorem. 给定整闭整环 R 的整扩张 $E \supseteq R$, E 也是整环, 则对 R 中任给素理想 $P_1 \subseteq P_2$, E 中满足 $Q_2^c = P_2$ 的素理想 Q_2 , 存在 E 中素理想 Q_1 , 使得 $Q_1^c = P_1$ 且 $Q_1 \subseteq Q_2$.

Proof. 命 $\varphi: R \to E_{Q_2}, r \mapsto r/1_R$ 为保幺环同态, 这里 E_{Q_2} 是 E 在素理想 Q_2 处的局部化. 命 $\lambda_{Q_2}: E \to E_{Q_2}, a \mapsto a/1_R, i: R \to E$ 是标准嵌入. 则有下图交换:

$$R \xrightarrow{i} E$$

$$\downarrow^{1_R} \qquad \qquad \downarrow^{\lambda_{Q_2}}$$

$$R \xrightarrow{\varphi} E_{Q_2}$$

我们的证明分为两步: 首先说明 $\varphi^{-1}(P_1E_{Q_2})=P_1($ 这里 $P_1E_{Q_2}$ 表示 P_1 关于环同态 φ 的扩张理想), 再利用上面的交换图结合前面的引理去说明 P_1 是 E 中某个含于 Q_2 的素理想关于 i 的原像集.

先说明 $\varphi^{-1}(P_1E_{Q_2})\subseteq P_1$,假设存在 $y\in \varphi^{-1}(P_1E_{Q_2})$ 使得 $y\notin P_1$. 那么存在 $x_1,x_2,...,x_m\in E$ 以及 $p_1,p_2,...,p_m\in P_1$ 以及 $s\in E-Q_2$ 使得

$$\frac{y}{1_R} = \frac{a}{s}, a = p_1 x_1 + p_2 x_2 + \dots + p_m x_m \in E,$$

由于 $R[x_1, x_2, ..., x_m]$ 是有限生成 R-模,含 1_R 且 $aR[x_1, x_2, ..., x_m] \subseteq R[x_1, x_2, ..., x_m]$,所以存在 R 上某个元素均来自 P_1 的方阵使得该方阵的特征多项式能够零化 a. 设该矩阵的特征多项式为 $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0, a_k \in P_1, 0 \le k \le n-1$. 如果首一多项式 $g(x), h(x) \in \operatorname{Frac}(R)[x]$ 使得 f(x) = g(x)h(x),则由前面的引理知 g(x), h(x) 系数都是 R 上整元,因为 R 是整闭的,所以 $g(x), h(x) \in R[x]$. 于是利用 P_1 是素理想可得 g(x), h(x) 除了首项系数外其余系数均在 P_1 中. 特别地,对 a 在 $\operatorname{Frac}(R)[x]$ 中的首一最小多项式 $m(x) = x^\ell + b_{\ell-1}x^{\ell-1} + \cdots + b_1x + b_0$,有 $b_0, b_1, ..., b_{\ell-1} \in P_1$. 因为在 E_{Q_2} 中有 $y/1_R = a/s$,所以利用 E 是整环知在 E 中有 a = sy. 于是在 $\operatorname{Frac}(E)$ 中有 $s/1_R = a/y$. 我们将 $\operatorname{Frac}(E)$ 视作 $\operatorname{Frac}(R)$ 的域扩张,那么利用前面的最小多项式 m(x) 可知 $s/1_R$ 在 $\operatorname{Frac}(E)$ 是 $\operatorname{Frac}(R)$ 上 ℓ 次多项式 $v(x) = x^\ell + (b_{\ell-1}/y^{\ell-1})x^{\ell-1} + \cdots + (b_1/y)x + b_0/y^\ell$ 的根,因为 $s/1_R$ 在 $\operatorname{Frac}(R)$ 上任何一个 ℓ 次首一零化多项式都可以给出 ℓ 在 ℓ 在 ℓ 上的一个 ℓ 次首一零化多项式,所以 ℓ 必定是 ℓ 上多项式。于是利用 ℓ 为 ℓ ,所以 ℓ 。 ℓ ,可得 ℓ ,可得 ℓ 。 ℓ ,可得 ℓ ,可得 ℓ 。 ℓ ,可得 ℓ ,可得 ℓ ,可得 ℓ 。 ℓ ,可得 ℓ ,可得 ℓ 。 ℓ ,可得 ℓ ,可得 ℓ 。 ℓ ,可得 ℓ ,可得 ℓ ,可得 ℓ 。 ℓ ,可得 ℓ 。 ℓ ,可得 ℓ ,可得 ℓ ,可得 ℓ ,可得 ℓ 。 ℓ ,可得 ℓ ,可以 ℓ ,可以

根据第一步已经证明的结果, 应用前面的引理, 我们知道 P_1 是 E_{Q_2} 某个素理想 II 关于 φ 的收缩理想, 因此存在 E 中含于 Q_2 的素理想 Q_1 使得 $\lambda_{Q_2}(Q_1)=$ II, 进而知 $\varphi^{-1}(\lambda_{Q_2}(Q_1))=P_1$. 利用 λ_{Q_2} 是单射 (这是由

E 是整环保证的, 这里也可以不使用单射直接证明这个等式) 可知 $P_1 = i^{-1} \lambda_{Q_2}^{-1}(\lambda_{Q_2}(Q_1)) = i^{-1}(Q_1) = Q_1 \cap R$. 故 Q_1 就是满足条件的素理想.

4 平坦扩张的 Going-down 定理

下面是忠实平坦模的一些基本性质, 最后证明平坦扩张条件下 Going-down 定理是成立的.

Definition 4.1. 设 R 是含幺环, M 是右 R-模, 如果对任给左 R-模同态序列 $N_1 \xrightarrow{\alpha} N_2 \xrightarrow{\beta} N_3$,序列 $N_1 \xrightarrow{\alpha} N_2 \xrightarrow{\beta} N_3$ 正合的充要条件是 $M \otimes_R N_1 \xrightarrow{1_M \otimes \alpha} M \otimes_R N_2 \xrightarrow{1_M \otimes \beta} M \otimes_R N_3$ 正合,则称 M 是忠实平坦模 (faithfully flat module),类似可定义 M 是左 R-模的情形.

下面的结果表明 M 是忠实平坦模等价于 M 决定的张量函子 $M \otimes_{R} - : R - \text{Mod} \to \text{Ab}$ 是忠实正合函子.

Lemma 4.2. 给定含幺环 R, M 是右 R-模, 那么以下四条等价:

- (1)M 是忠实平坦模.
- (2)M 是平坦模且对任给左 R-模同态 $\alpha: N \to N', \alpha = 0$ 的充要条件是 $1_M \otimes \alpha = 0$.
- (3)M 是平坦模且对任给非零模 $N, M \otimes_R N$ 非零.
- (4)M 是平坦模且对任给 R 的极大左理想 P, $M \otimes_R R/P$ 非零.

Proof. (1)⇒(2): 由忠实平坦模的定义知张量函子 $M\otimes_R -: R-\mathrm{Mod} \to \mathrm{Ab}$ 保持短正合列, 所以 M 是平坦模. 如果左 R-模同态 $\alpha: N\to N'$ 满足 $1_M\otimes\alpha=0$, 考虑 $0\longrightarrow \mathrm{Ker}\alpha\stackrel{i}{\longrightarrow} N\stackrel{\alpha}{\longrightarrow} N'$, 作用张量函子得到正合列 $0\longrightarrow M\otimes_R \mathrm{Ker}\alpha\stackrel{1_M\otimes i}{\longrightarrow} M\otimes_R N\stackrel{1_M\otimes\alpha}{\longrightarrow} M\otimes_R N'$, 则 $1_M\otimes i$ 是满射, 于是 i 是满射, 这蕴含着 $\alpha=0$.

 $(2){\Rightarrow}(1)$: 设左 R-模同态序列 $N_1 \stackrel{\alpha}{-\!-\!-\!-\!-} N_2 \stackrel{\beta}{-\!-\!-\!-\!-} N_3$ 使得同态序列

$$M \otimes_R N_1 \xrightarrow{1_M \otimes \alpha} M \otimes_R N_2 \xrightarrow{1_M \otimes \beta} M \otimes_R N_3$$

正合,设 $x \in \operatorname{Ker}\beta$,我们来说明 $x \in \operatorname{Im}\alpha$. 易见 $\varphi : M \times N_2 \to M \otimes_R (N/\operatorname{Im}\alpha), (m,n) \mapsto m \otimes (n+\operatorname{Im}\alpha)$ 是 R-平衡映射,这导出加群同态 $\psi : M \otimes_R N_2 \to M \otimes_R (N_2/\operatorname{Im}\alpha)$ 使得下图交换:

$$M \times N_2 \xrightarrow{\otimes_R} M \otimes_R N_2$$

$$\downarrow^{\varphi} \qquad \downarrow^{\psi}$$

$$M \otimes_R (N_2/\mathrm{Im}\alpha)$$

由此容易证明对任给 $m \in M$, 在 $M \otimes_R (N_2/\mathrm{Im}\alpha)$ 中 $m \otimes (x + \mathrm{Im}\alpha) = 0$. 由此可知左 R-模同态 $\theta : R \to N_2/\mathrm{Im}\alpha, r \mapsto rx + \mathrm{Im}\alpha$ 导出的同态 $1_M \otimes \theta$ 是零同态, 因此 $\theta = 0$, 这表明 $x \in \mathrm{Im}\alpha$.

- (2)⇒(3): 设 N 是非零模, 取 $x \neq 0 \in N$, 则有标准嵌入 $i: Rx \to N$, 它不是零映射. 因此同态 $1_M \otimes i: M \otimes_R Rx \to M \otimes_R N$ 是非零映射, 特别地, $M \otimes_R N$ 非零.
- (3)⇒(2): 设左 R-模同态 $\alpha: N \to N'$ 满足 $1_M \otimes \alpha = 0$, 则利用标准嵌入 $i: \operatorname{Im}\alpha \to N'$ 是单射以及 $1_M \otimes i$ 的像集在 $1_M \otimes \alpha$ 像集中可知 $M \otimes_R \operatorname{Im}\alpha$ 是零模. 这迫使 $\operatorname{Im}\alpha$ 是零模, 即 $\alpha = 0$.
 - (3)⇒(4): 取 N = R/P 即得结果.

(4)⇒(3): 对非零模 N, 取 $x \neq 0 \in N$, 则 $\varphi : R \to N, r \mapsto rx$ 是非零模同态, 因此 $\operatorname{Ker} \varphi$ 是 R 的真左理想. 于是存在极大左理想 $P \supseteq \operatorname{Ker} \varphi$, 这就得到标准映射 $\pi : R/\operatorname{Ker} \varphi \to R/P$, 它是定义合理的满左 R-模同态, 由此立即得到 $M \otimes_R (R/\operatorname{Ker} \varphi)$ 非零. 于是利用 $\varphi : R/\operatorname{Ker} \varphi \to N$ 是单模同态可知 $M \otimes_R N$ 非零.

Remark 4.3. 在上述结果中出现了 $M \otimes_R R/P$ 形式的加群, 事实上对任给 R 的理想 I, 有加群同构 $M \otimes_R R/I \cong M/MI$, 我们可以通过 M/MI 来考察 $M \otimes_R R/I$ 是否是平凡加群.

若含幺交换的局部环 R,S 间的保幺环同态 $\varphi:R\to S$ 满足 R 中唯一的极大理想在 φ 下的像含于 B 唯一的极大理想,则称 φ 是**局部同态** (local homomorphism). 下面是局部同态在忠实平坦性上的应用.

Lemma 4.4. 设 $\varphi: A \to B$ 是含幺交换局部环间的局部同态,则对 B 上任意有限生成模 M, M 是 A 上忠实平坦模的充要条件是 M 是非零平坦 A-模. 特别地, 若 B 是平坦 A-模, 那么 B 是忠实平坦 A-模.

Proof. 必要性: 只需说明 M 是非零模, 因为 M 是忠实平坦的, 故由前面的引理知对任何非零 A-模 N 有 $M \otimes_A N$ 非零. 由此易见 M 是非零模. 充分性: 设 A 的极大理想是 \mathfrak{m} , B 的极大理想是 \mathfrak{n} . 由 Nakayama 引理, M 作为有限生成 B-模, 有 $\mathfrak{n} M \subsetneq M$. 于是 $\mathfrak{m} M \subseteq \mathfrak{n} M \subsetneq M$, 这说明商模 $M/\mathfrak{m} M$ 非零, 由此得到 $M \otimes_A A/\mathfrak{m}$ 非零, 根据前面的引理, M 作为 A-模是忠实平坦的.

为证明平坦扩张下 Going-down 定理成立, 我们再做一个准备工作.

Lemma 4.5. 设 $\varphi: A \to B$ 是含幺交换环间的保幺环同态, 如果 B 作为 A-模是忠实平坦模, 那么 $Spec(\varphi) = \varphi^*: Spec(B) \to Spec(A)$ 是满射.

Proof. 任给 A 的素理想 P, 记整环 A/P 的商域为 F, 将 F 视作 A-模, 则由 B 的忠实平坦性知 A-代数 $B\otimes_A F$ 作为交换环不是零环, 它是含幺交换环, 所以存在素理想. 考虑 B 到 $B\otimes_A F$ 的标准映射 $j:B\to B\otimes_A F$, $b\mapsto b\otimes 1_F$ 是保幺环同态,这就得到了保幺环同态 $A\overset{\varphi}{\longrightarrow} B\overset{j}{\longrightarrow} B\otimes_A F$. 这诱导出素谱间的连续映射 $Spec(B\otimes_A F)\overset{j^*}{\longrightarrow} Spec(B)\overset{\varphi^*}{\longrightarrow} Spec(A)$. 对 $B\otimes_A F$ 中的一个素理想 II,易见 $P\subseteq\varphi^*j^*(II)$. 任取 $a\in\varphi^*j^*(II)$,假设 $a\notin P$,那么 $j\varphi(a)$ 是 $B\otimes_A F$ 中可逆元,与 $j\varphi(a)\in II$ 矛盾. 所以 $P=\varphi^*j^*(II)$,这 说明 P 关于 v 有原像 $j^*(II)$,故 φ^* 是满射.

Going-down Theorem (平坦扩张版本). 设 $R \subseteq E$ 是含幺交换环的平坦扩张, 那么对任给 R 中素理想 $P_1 \subseteq P_2$, E 中满足 $Q_2^c = P_2$ 的素理想 Q_2 , 存在 E 中素理想 Q_1 , 使得 $Q_1^c = P_1$ 且 $Q_1 \subseteq Q_2$.

Proof. 考虑映射 $\psi: R_{P_2} \to E_{Q_2}, a/s \mapsto a/s$, 因为 $Q_2^c = P_2$, 所以 ψ 是定义合理的保幺环同态. 易见 ψ 是局部同态, 故由 [引理4.4] 得 E_{Q_2} 是忠实平坦 R_{P_2} -模. 因此 [引理4.5] 表明 $\psi^*: \operatorname{Spec}(E_{Q_2}) \to \operatorname{Spec}(R_{P_2})$ 是满射. 因此对于 R_{P_2} 中的素理想 $(P_1)_{P_2}$, 存在 E 中素理想 $Q_1 \subseteq Q_2$ 使得

$$\psi^{-1}((Q_1)_{Q_2}) = (P_1)_{P_2}.$$

于是可直接验证 $Q_1^c = P_1$.