Solution Notes

Context: errors; loss of significance; quadratic equations.

(a) Let x^* denote the floating-point representation of x.

Absolute error E is defined by $x^* = x + E$.

Relative error E is defined by $x^* = x + E$.

Companing these definitions,

$$E = \times \delta$$
 so $\delta = \frac{E}{x}$ if $x \neq 0$.

Loss of significance occurs when relative error grows much larger during the course of a calculation. [3 marks]

(b) The formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

is unsuitable if $\theta^2 >> 14ac1$ because of loss of significance in the numerator for the positive square root. For this case consider

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \cdot \frac{-b - \sqrt{b^2 - 4ac}}{-b - \sqrt{b^2 - 4ac}}$$

$$= \frac{b^2 - (b^2 - 4ac)}{-2a(b + \sqrt{b^2 - 4ac})} = \frac{-2c}{b + \sqrt{b^2 - 4ac}}.$$

There is no loss of significance in fermula @ when b > 0. Consider a = 30, b = 3000, c = 1 with 5 sig. figs.

of accuracy
$$(\sqrt{b^2-4ac})^* = (3000 - 60/3000)^* = (3000 - 0.02)^*$$

= $(2999.98)^* = 3000.0$.

For the positive square root

① gives
$$x = \left(\frac{-3000 + 3000.0}{60}\right)^* = 0$$

2 gives
$$x = \left(\frac{-2}{3000 + 3000.0}\right)^* = -3.3333 \times 10^4$$
 [10 marks] over

$$a_6 = \frac{x^6}{6!} = a_4 \cdot \frac{x^2}{5.6}$$
 $a_8 = \frac{x^8}{8!} = a_6 \cdot \frac{x^2}{7.8}$

For x=6, a4 < a6 > a8, i.e. a6 is the largest.

$$a_6 = \frac{6^6}{6!} = \frac{6^4}{4.5} = 64.8$$

If relative error in $a_6 \simeq 0.5 \times 10^{-7}$ then absolute error in $a_6 \simeq 0.5 \times 10^{-7}$ $a_6 \simeq 32.4 \times 10^{-7}$

Estimate relative error in cos 6 \simeq [absolute error in largest term] $|\cos 6|$ $\simeq 0.3 \times 10^{-(p-2)}$

so about 2 significant digits are lost. [7 marls]