Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3213</u>	К работе допущен	
Студент Султанов Артур Радикович	Работа выполнена	
Преподаватель Хвастунов Н.Н.	Отчет принят	

Отчет по лабораторной работе №1.09

Определение момента инерции методом крутильных колебаний

1. Цели работы

- 1. Определение момента инерции различных твердых тел методом крутильных колебаний.
- 2. Проверка справедливости теоремы Гюйгенса-Штейнера

2. Задачи

- 1. Измерение коэффициента угловой жесткости спиральной пружины.
- 2. Прямые измерения периодов крутильных колебаний тел различной формы.
- 3. Расчет моментов инерции объектов измерения и сравнение их с теоретическими значениями.

3. Схема установки

Рис. 1. Схема установки

- 1. Штатив со спиральной пружиной 02415.01
- 2. Штатив для крепления электронного динамометра 02002.55
- 3. Рулетка 09936.00
- 4. Электронный динамометр 12943.00
- 5. Штанга с двумя подвижными грузами 02415.06
- 6. Сплошной диск 02415.03
- 7. Диск с отверстиями 02415.07

- 8. Шар 02415.02
- 9. Полый цилиндр 02415.04
- 10. Сплошной цилиндр 02415.05

4. Измерительные приборы

№ π/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой прибор для измерения времени	0-20 с	0,5 с
2	Рулетка	Прибор для измерения расстояния (длины)	0-1 м	0,005 м
3	Электронный динамометр	Цифровой прибор для измерения сил	0-5 H	0,01 H

5. Исходные данные

Шар (масса): 922 г Шар (диаметр): 140мм

Полый цилиндр (масса): 363 г Полый цилиндр (диаметр): 100 мм Сплошной цилиндр (масса): 457 г Сплошной цилиндр (диаметр): 100 мм

Сплошной диск (масса): 287 г Сплошной диск (диаметр): 218 мм Диск с отверстиями (масса): 393 г Диск с отверстиями (диаметр): 300 мм

Диск с отверстиями (растояние между отверстиями): 25мм

Штанга (масса): 134 г Штанга (диаметр): 5 мм Штанга (длина): 600 мм Груз (2шт.) (масса) 228 г Груз (2шт.) (диаметр): 30 мм Груз (2шт.) (высота): 40мм

6. Ход работы

Таблица 1. Определение коэффициента угловой жесткости пружины

ф =	270 °	φ =	180 °	φ =	90 °	ф =-	- 90 °	ф =-	180 °	ф =-	270 °
<i>F</i> , H	<i>r</i> , мм	<i>F</i> , H	<i>r</i> , мм	<i>F</i> , H	<i>r</i> , мм	<i>F</i> , H	<i>r</i> , мм	<i>F</i> , H	<i>r</i> , мм	<i>F</i> , H	<i>r</i> , мм
0,38	285	0,23	285	0,12	285	0,13	285	0,25	285	0,38	285
0,56	194	0,35	194	0,19	194	0,19	194	0,36	194	0,57	194
1,02	105	0,68	105	0,37	105	0,36	105	0,73	105	1,06	105
$\langle M \rangle$ (3	$3\pi/2)$	$\langle M \rangle$	(π)	$\langle M \rangle$ ($(\pi/2)$	$\langle M \rangle (-$	$\pi/2$)	$\langle M \rangle ($	- π)	$\langle M \rangle (-$	$3\pi/2)$
0,10	8013	0,06	8283	0,03	6637	-0,03	7237	-0,0	7258	-0,1	1006

Среднее значение момента силы для каждого угла закручивания пружины находится по формуле:

$$\langle M(\phi) \rangle = \frac{1}{3} \sum_{i=1}^{3} F_i(\phi) r_i(\phi)$$

Пример расчета для $\phi = 270$ \circ :

$$\langle M(\phi) \rangle = \frac{1}{3} (0,38 * 285 + 0,56 * 194 + 1,02 * 105) * 0,001 = 0,108013$$

Рисунок 1. График зависимости момента силы от угла закручивания пружины

Методом наименьших квадратов находим угловой коэффициент графика, получаем:

$$k = 0,023$$

 $\Delta k = 0,0003$

Далее, вычислим собственный центральный момент инерции штанги относительно оси вращения по формуле:

$$I = \frac{kT^2}{4\pi^2} = \frac{0.023*2.451^2}{4\pi^2} = 0.0035 \,\mathrm{kr} *\mathrm{m}^2$$

Оценим величину погрешности по формуле:

$$\Delta I_{rod} = I_{rod} \sqrt{\left(\frac{\Delta k}{k}\right)^2 + \left(\frac{2\Delta T}{T}\right)^2} = 0,000313,$$
 где $\Delta T = \frac{T_{max} - T_{min}}{2} = 0,1085$

Найдем теоретическое значение и сравним с полученным:

$$I_{rodt} = \frac{ml^2}{12} = \frac{0,134*0,6^2}{12} = 0,00402 \,\mathrm{kr} *\mathrm{m}^2$$

Видно, что теоретическое и экспериментальное моменты инерции штанги отличаются на небольшое значение.

Таблица 2: Теорема Гюйгенса-Штейнера для штанги с грузами

l, mm	<i>T</i> ₁ , c	T ₂ , c	Т ₃ , с	l^2 , mm ²	$\langle T \rangle^2$, c ²
	2,343	2,56	2,45		6,007
50	2,82	2,753	2,82	0,0025	7,827
70	3,167	3,04	3,06	0,0049	9,542
90	3,513	3,45	3,513	0,0081	12,194
110	3,91	3,95	3,913	0,0121	15,4
130	4,423	4,447	4,373	0,0169	19,486
150	4,797	4,8	4,823	0,0225	23,104

График 2. График зависимости квадрата периода колебаний системы «штанга + грузы» от квадрата расстояния.

Его угловой коэффициент:

$$\alpha = \frac{8\pi^2 m}{k} = 460,0093877$$
 $\alpha_{MHK} = 779,4885$

Вертикальное смещение относительно начала координат:

$$T_{0\text{MHK}} = 5,8879$$

Найдем массу каждого из подвижных грузов и их собственный центральный момент инерции относительно оси перпендикулярной к оси их симметрии, выразив их из формул:

$$\alpha = \frac{8\pi^{2}m}{k} \Rightarrow m = \frac{\alpha k}{8\pi^{2}} = 0,23 \text{ K}\Gamma$$

$$T_{0}^{2} = \frac{4\pi^{2}}{k} (I_{rod} + 2I_{c}) \Rightarrow I_{c} = 3,49 * 10^{-5} \text{ K}\Gamma * \text{M}^{2}$$

Помимо этого, найдем теоретическое значение:

$$I_{creop} = m(\frac{r^2}{4} + \frac{h^2}{12}) = 4.3 * 10^{-5} \text{ kg} * \text{m}^2$$

Таблица 3: Теорема Гюйгенса-Штейнера для диска с отверстиями

l, mm	<i>T</i> ₁ , c	T ₂ , c	Т ₃ , с	l^2 , mm ²	$\langle T \rangle^2$, c ²
	7,6	7,54	7,57		57,305
25	8	8,02	7,56	0,0001	61,78
50	9,23	9,18	9,2	0,0025	84,701
75	10,41	10,32	10,37	0,0056	107,468
100	12,05	11,58	12,06	0,01	141,531

График 3. График зависимости квадрата периода колебаний системы от квадрата расстояния.

Его угловой коэффициент:

$$\alpha = \frac{8\pi^2 m}{k} = 1349, 13201$$
 $\alpha_{MHK} = 7947, 9529$

Вертикальное смещение относительно начала координат:

$$T_{0\text{MHK}} = 62,7068$$

Масса диска с отверстиями и его собственный центральный момент инерции:

$$m = 2,32 \text{ кг}$$
 $I_{c} = 0,017 \text{ кгм * м}^{2}$

И найдем теоретическое значение (для сравнения с полученной величиной):

$$I_{creop} = \frac{mr^2}{2} = 0,026 \text{ кг * м}^2$$

Таблица 4: Центральные моменты инерции объектов измерения

Объект	<i>T</i> ₁ , c	T ₂ , c	Т ₃ , с	$\langle T \rangle$, c^2	<i>I</i> , кг * м ²	$I_{T'}$ кг * м ²
Сплошной диск	4,87	4,92	4,91	4,9	0,013988	0,001435
Полый цилиндр	3,98	3,95	3,84	3,923333	0,008968	0,001664
Сплошной цилиндр	3,55	3,48	3,51	3,513333	0,007191	0,001809
Шар	5,13	5,02	5,19	5,113333	0,015233	0,001807

7. Выводы

В рамках данной лабораторной работы были произведены измерения силы при разных углах поворота штанги и разных положениях динамометра относительно оси вращения. На основе полученных данных был вычислен коэффициент угловой жесткости (посредством построения графика и вычисления его углового коэффициента). Далее, были произведены измерения периода колебаний с различными объектами и конфигурациями. На основе полученных данных построены аппроксимированные графики, носящие линейный характер. Далее, сравнение экспериментальных и теоретических значений показало, что с учетом минимальных различий, которые можно обусловить погрешностью и определенной неточностью измерений, эти значения все же схожи. Таким образом, на наглядном примере проверена теорема Гюйгенса-Штейнера (зависимости момента силы от угла закручивания пружины и квадрата периода колебаний системы от квадрата являются линейными).