

电机与拖动课件之五

异步电机

- 4.1 三相异步电动机的基本工作原理和结构
- 4.2 交流电机的绕组
- 4.3 交流电机绕组的感应电动势
- 4.4 交流电机绕组的磁动势
- 4.5 三相异步电动机的空载运行

4.6 三相异步电动机的负载运行

- 4.7 三相异步电动机的等效电路和相量图
- 4.8 三相异步电动机的功率平衡、转矩平衡

一、转子电动势的频率

感应电动势的频率正比于导体与磁场的相对切割速度,故转子电动势的频率为:

$$f_2 = \frac{p(n_1 - n)}{60} = \frac{n_1 - n}{n_1} \times \frac{pn_1}{60} = sf_1$$

转子不转时,n=0,s=1, $f_2=f_1$ 理想空载时, $n\approx n_1$, $s\approx 0$, $f_2\approx 0$

二、转子绕组的感应电动势

- $E_{2s} = 4.44 f_2 N_2 k_{w2} \Phi_0$ 转子旋转时的感应电动势:
- $E_2 = 4.44 f_1 N_2 k_{w2} \Phi_0$ 转子不转时的感应电动势:
- $E_{2s} = sE_{2}$ > 二者关系为:

三、转子绕组的漏阻抗

电抗与频率成正比,转子旋转时转子漏电抗: $X_{2s}=2\pi f_{2s}L_{2s}$

$$X_{2s} = 2\pi f_2 L_2$$

转子不转时转子漏电抗: $X_2 = 2\pi f_1 L_2$

二者关系: $X_{2s} = sX_2$

转子绕组的漏阻抗: $Z_{2s} = R_2 + jX_{2s} = R_2 + jsX_2$

四、转子绕组的电流

转子绕组为闭合绕组,转子电流为

$$\dot{I}_{2} = \frac{\dot{E}_{2s}}{Z_{2s}} = \frac{\dot{E}_{2s}}{R_{2} + jX_{2s}} = \frac{s\dot{E}_{2}}{R_{2} + jsX_{2}}$$

当转速降低时, 转差率增大, 转子电流也增大。

4.6三相异步电动机的负载运行 4.6.2 转子绕组各电磁量

五、转子绕组的功率因数

$$\cos \varphi_2 = \frac{R_2}{\sqrt{R_2^2 + X_s^2}} = \frac{R_2}{\sqrt{R_2^2 + (sX_2)^2}}$$

转子功率因数与转差率有关,当转差率增大时,转子功率因数则减小。

六、转子旋转磁动势

转子绕组流过三相或多相对称电流时产生圆形旋转磁动势。

1)幅值
$$F_2 = \frac{m_2}{2} 0.9 \frac{N_2 k_{w2}}{p} I_2$$

2)转向

转子电流相序与定子旋转磁动势方向相同,转子旋转磁动势的方向与转子电流相序一致。

转子旋转磁动势相对定子的速度为

$$n_2 + n = (n_1 - n) + n = n_1$$

可见,无论转子转速怎样变化,定、转子磁动势总是以同速、同向在空间旋转,两者在空间 上总是保持相对静止。

磁动势的平衡方程为: $\overline{F}_1 + \overline{F}_2 = \overline{F}_0$

$$\overline{F}_1 + \overline{F}_2 = \overline{F}_0$$

可以改写为: $\overline{F}_1 = \overline{F}_0 + (-\overline{F}_2) = \overline{F}_0 + \overline{F}_{1L}$

 \blacktriangleright 表明:定子旋转磁动势包括两个分量:一个是励磁磁动势 F_0 ,它用来产生气隙磁通 Φ_0 ;另一个 是负载分量 \overline{F}_{11} ,它用来平衡转子磁动势 \overline{F}_{21} ,即用来抵消转子磁动势对主磁通的影响。

写成磁动势幅值公式: $\frac{m_1}{2}0.9 \frac{N_1 k_{w1}}{n} \dot{I}_1 + \frac{m_2}{2}0.9 \frac{N_2 k_{w2}}{n} \dot{I}_2 = \frac{m_1}{2}0.9 \frac{N_1 k_{w1}}{n} \dot{I}_0$

两边除以电流变比
$$k_i = \frac{m_1 N_1 k_{w1}}{m_2 N_2 k_{w2}}$$
 有: $\dot{\mathbf{I}}_1 + \frac{\dot{\mathbf{I}}_2}{\mathbf{k}_i} = \dot{\mathbf{I}}_0$

根据基尔霍夫电压定律可写出定、转子侧电动势平衡方程:

$$\dot{U}_{1} = -\dot{E}_{1} + \dot{I}_{1}R_{1} + j\dot{I}_{1}X_{1} = -\dot{E}_{1} + \dot{I}_{1}Z_{1}$$

$$0 = \dot{E}_{2s} - \dot{I}_{2}R_{2} - j\dot{I}_{2}X_{2s} = \dot{E}_{2s} - \dot{I}_{2}Z_{2s}$$

其中, E_1 与转子不转时电动势 E_2 之比称为电动势比 k_e :

$$k_e = \frac{E_1}{E_2} = \frac{N_1 k_{w1}}{N_2 k_{w2}}$$

转子绕组各电磁量

电磁关系

负载运行

 $f_2 = \frac{p(n_1 - n)}{60} = \frac{n_1 - n}{n_1} \times \frac{pn_1}{60} = sf_1$ 转子不转时, n = 0, s = 1, $f_2 = f_1$ 理想空载时, $n \approx n_1$, $s \approx 0$, $f_2 \approx 0$

> 转子旋转时的感应电动势: $E_{2s} = 4.44 f_2 N_2 k_w \Phi_0$

ightharpoonup 转子不转时的感应电动势: $E_2 = 4.44 f_1 N_2 k_{w2} \Phi_0$

▶ 二者关系为:

 $E_{2s} = sE_{2s}$

转子绕组为闭合绕组,转子电流为 $\dot{I}_2=rac{\dot{E}_{2s}}{Z_{2s}}=rac{\dot{E}_{2s}}{R_2+jX_2}=rac{\dot{s}\dot{E}_2}{R_2+jsX_2}$ 转子绕组的漏阻抗: $Z_{2s}=R_2+jSX_2$

$$\sqrt{\cos \varphi_2} = \frac{R_2}{\sqrt{R_2^2 + X_s^2}} = \frac{R_2}{\sqrt{R_2^2 + (sX_2)^2}}$$
 $F_2 = \frac{m_2}{2} \cdot 0.9 \frac{N_2 k_{w2}}{p} I_2$ 转子旋转磁动势相对定子的速度为 $n_2 + n = (n_1 - n) + n = n_1$

电抗与频率成正比,转子旋转时转子漏电抗: $X_{,s} = 2\pi f_{,s}L_{,s}$

转子不转时转子漏电抗: $X_2 = 2\pi f_2 L_2$

二者关系: $X_{s} = sX_{s}$

磁动势平衡
$$\overline{F_1} + \overline{F_2} = \overline{F_0}$$
 $\overline{F_1} = \overline{F_0} + (-\overline{F_2}) = \overline{F_0} + \overline{F_{1L}}$ $\frac{m_1}{2} 0.9 \frac{N_1 k_{w1}}{p} \dot{I}_1 + \frac{m_2}{2} 0.9 \frac{N_2 k_{w2}}{p} \dot{I}_2 = \frac{m_1}{2} 0.9 \frac{N_1 k_{w1}}{p} \dot{I}_0$ $k_i = \frac{m_1 N_1 k_{w1}}{m_2 N_2 k_{w2}}$ 有: $\dot{I}_1 + \frac{\dot{I}_2}{k_i} = \dot{I}_0$

电动势平衡
$$\begin{array}{ll} \dot{U}_1 = -\dot{E}_1 + \dot{I}_1 R_1 + j \dot{I}_1 X_1 = -\dot{E}_1 + \dot{I}_1 Z_1 \\ 0 = \dot{E}_{2s} - \dot{I}_2 R_2 - j \dot{I}_2 X_{2s} = \dot{E}_{2s} - \dot{I}_2 Z_{2s} \end{array} \quad k_e = \frac{E_1}{E_2} = \frac{N_1 k_{w1}}{N_2 k_{w2}}$$