Jour 9 : ln et intégrale

Partie A

Soit f la fonction définie sur]0; $+\infty[$ par

$$f(x) = \frac{1 + 2\ln x}{x^2}.$$

Soit (\mathscr{C}) la courbe représentative de f et soit (\mathscr{C}') celle de la fonction h définie sur]0; $+\infty[$ par $h(x) = \frac{1}{x}$.

- 1. Déterminer les limites de f en 0 et en $+\infty$. En déduire que (\mathscr{C}) a deux asymptotes que l'on déterminera.
- **2.** Calculer la dérivée f' de f et étudier les variations de f.
- 3. Soit I le point d'intersection de (\mathscr{C}) avec l'axe des abscisses. Déterminer les coordonnées de I.
- **4.** Pour tout x de]0; $+\infty[$, on pose $g(x) = 1 x + 2 \ln x$.
 - **a.** Étudier les variations de la fonction g.
 - **b.** Montrer que l'équation g(x) = 0 admet une solution unique dans chacun des intervalles]0; 2[et]2; 4[. Soit α la solution appartenant à]2; 4[. Donner un encadrement de α d'amplitude 10^{-2}
- **5. a.** Montrer que $f(x) \frac{1}{x} = \frac{g(x)}{x^2}$ et en déduire que (\mathscr{C}) et (\mathscr{C}') se coupent en deux points.
 - **b.** Montrer que, pour tout réel x supérieur ou égal à 4, la double inégalité suivante est vraie :

$$0 < f(x) \leqslant \frac{1}{x}.$$

Partie B

1. Soit \mathcal{D} la partie du plan définie par les inégalités suivantes :

$$\begin{cases} 1 \leqslant x \leqslant \alpha & (\alpha \text{ est le réel défini dans la partie A}) \\ 0 \leqslant y \leqslant f(x) \end{cases}$$

- **a.** Montrer que la fonction F définie sur]0; $+\infty[$ par $F(x) = \frac{-2\ln(x) 3}{x}$ est une primitive de f sur]0; $+\infty[$.
- **b.** Montrer que l'aire de \mathscr{D} , notée $\mathscr{A}(\alpha)$, peut s'écrire sous la forme $\mathscr{A}(\alpha) = 2 \frac{2}{\alpha}$ et donner une valeur approchée de $\mathscr{A}(\alpha)$ à 10^{-2} près.
- **2.** Soit la suite (I_n) définie pour n supérieur ou égal à 1 par :

$$I_n = \int_n^{n+1} f(x) \, \mathrm{d}x.$$

a. Montrer que, pour tout *n* supérieur ou égal à 4, la double inégalité suivante est vraie :

$$0 \leqslant I_n \leqslant \ln\left(\frac{n+1}{n}\right)$$
.

- **b.** En déduire que la suite (I_n) converge et déterminer sa limite.
- **c.** Soit $S_n = I_1 + I_2 + I_3 + \cdots + I_n$. Calculer S_n puis la limite de la suite (S_n) .