

Institutt for datateknikk og informatikk

Eksamensoppgave i TDT4145 Datamodellering og databasesystemer

Faglig kontakt under eksamen:		
Roger Midtstraum: 995 72 420		
Svein Erik Bratsberg: 995 39 963		
Eksamensdato: 7. august 2017		
Eksamenstid (fra-til): 09:00-13:00		
Hjelpemiddelkode/Tillatte hjelpemidler:		
D – Ingen trykte eller håndskrevne hjelpemidler	tillatt. Bestemt, enkel ka	alkulator tillatt.
Annen informasjon:		
Målform/språk: Norsk bokmål		
Antall sider (uten forside): 5		
Antall sider vedlegg: 0		
Informasjon om trykking av eksamensoppgave	٦ ,	Kontrollert av:
Originalen er:	'	Monti onert av.
1-sidig □ 2-sidig X		
1-sidig □ 2-sidig X sort/hvit X farger □	Dato	Sign

Oppgave 1 - Datamodeller og relasjonsdatabaser (15 %)

a) I figuren under har vi vist to ulike måter å representere en binær relasjon mellom entiteter i entitetsklassene A og B. Diskuter fordeler og ulemper ved de to alternativene.

b) I figuren under har vi vist en ER-modell. Oversett denne til en hensiktsmessig relasjonsdatabasemodell. Gjør kort rede for eventuelle forutsetninger som du finner det nødvendig å gjøre.

Oppgave 2 - Teori (10 %)

- **a)** Når vi designer relasjonsdatabaser kan vi velge om vi vil tillate *redundans* i datalagringen. Diskuter fordeler og ulemper ved å tillate redundans.
- **b)** I relasjonsdatabaser har vi en spesiell NULL-verdi. Hva er hensikten med å ha en slik spesiell verdi? Kunne vi klart oss uten?

Oppgave 3 – Relasjonsdatabaser, ER-modeller, relasjonsalgebra og SQL (20 %)

Gitt følgende relasjonsdatabase-skjema for en database over verdensdeler, land og byer. Primærnøkler er understreket.

Verdensdel (VID, VNavn)

Land(LID, LNavn, Areal, Folketall, VDelID)

VDelID er fremmednøkkel mot Verdensdel-tabellen. Kan ikke ha NULL-verdi.

By (BID, BNavn, Folketall, LandID, HovedstadFraAAr)

LandID er fremmednøkkel mot Land-tabellen. Kan ikke ha NULL-verdi. Dersom byen er hovedstad i landet, har den et årstall som verdi for HovedstadFraAAr, som ellers har NULL-verdi.

Relasjonsalgebra kan formuleres som tekst eller grafer. Hvis du behersker begge notasjonene foretrekker vi at du svarer med grafer, men du blir ikke trukket for å svare med tekst.

- a) Lag et ER-diagram (du kan bruke alle virkemidler som er med i pensum) som i størst mulig grad samsvarer med relasjonsskjemaet. Gjør rede for eventuelle antagelser du finner det nødvendig å gjøre.
- **b)** Lag en spørring i *relasjonsalgebra* som finner navn på by, navn på land og byens folketall for alle hovedsteder i Afrika.
- **c)** Lag en spørring i *SQL* som finner verdensdel-ID, verdensdel-navn, antall land i verdensdelen, verdensdelens areal og verdensdelens folketall.
- **d)** Lag en spørring i *SQL* som finner by-navn, byens folketall, land-navn og verdensdel-navn for alle byer som har flere enn 5 millioner innbyggere. Resultatet skal være sortert etter folketall i synkende ordning, deretter på byens navn i stigende rekkefølge.
- **e)** Lag et *SQL-skript* som oppretter Land-tabellen. Velg hensiktsmessige datatyper for attributtene (vi vektlegger ikke detaljer). Gjør rede for eventuelle antagelser du finner det nødvendig å gjøre.

Oppgave 4 - Normaliseringsteori (15 %)

a) Anta R = {A, B, C, D} og F = {A \rightarrow B; BC \rightarrow D}. Under er vist en tabellforekomst for R. Bestem hvilke verdier S, T, U, V og W kan ha for at tabellforekomsten skal være gyldig.

Α	В	O	D
3	1	2	2
2	τ	2	S
Т	1	C	3
4	6	1	0
5	V	W	4

- **b)** Gitt $R = \{A, B, C, D, E\}$ og $F = \{AC \rightarrow BD; EC \rightarrow BD; A \rightarrow E; E \rightarrow A\}$. Forutsett at R er på første normalform. Hva er den høyeste normalformen som er oppfylt av R? Svaret må begrunnes.
- **c)** Gitt tabellen R = {A, B, C}. Attributtene har samme verdimengde: dom(A) = dom(B) = dom(C) = {1,2,3}.
 - i) Anta $F = \Phi$. Hva er det maksimale antall rader som kan finnes i en tabellforekomst (r(R))?
 - ii) Anta $F = \{A \rightarrow BC\}$. Hva er det maksimale antall rader som kan finnes i en tabellforekomst?
- **d)** En tabell, R, splittes i to (komponent-)tabeller, R₁ og R₂. Forklar hva det vil si at dekomponeringen har *tapsløst-join egenskapen* (eng. lossless join). Vurder om det er nødvendig å ha denne egenskapen eller ikke. Svaret må begrunnes.
- **e)** Gitt R = {A, B, C} og F = {A→B}. En vanlig feil er å tro at A→B medfører at "A fører til eller bestemmer B". Forklar hvorfor dette ikke er en god forklaring på den funksjonelle avhengigheten.

Oppgave 5 – Statisk hashing (5 %)

Vi skal sette inn følgende nøkler i en statisk hashing-struktur: 27, 18, 9, 7, 16, 13, 11. Vi har 4 blokker og en overflytsblokk. Hver blokk har plass til to nøkler. Se figuren under. Du kan bruke hashfunksjonen:

$$h(K) = K MOD 4$$

Vis hvordan strukturen ser ut til slutt når du har satt inn alle nøklene.

00		Overflow		
01				
10				
11				

Oppgave 6 - Lagring, indeksering og queries (10 %)

Vi har en database som lagrer webclicks i en tabell:

Click (clickId, user, url, time)

Hver post (record) i tabellen er 100 byte lang og hver blokk er 8 KB (8192 bytes). Vi har registrert 300 000 klikk i databasen.

- a) Vi ønsker å lagre tabellen i et clustered B+-tree med clickId (8 byte) som søkenøkkel. Hvor mange blokker er det på hvert nivå i B+-treet? Beskriv eventuelle antagelser du tar.
- b) Vi ønsker å utføre følgende query:

SELECT url, count(*) AS clickcount

FROM Click

GROUP BY url

ORDER BY clickcount DESC;

Hvordan vil du indeksere tabellen for å kunne svare på queriet? Begrunn svaret ditt.

Oppgave 7 - Transaksjoner (15 %)

- a) Forklar de fire begrepene som forkortes ACID.
- b) Vi har en historie:
 - H_1 : $r_1(A)$; $w_2(A)$; $w_2(B)$; $w_3(B)$; $w_1(B)$; C_1 ; C_2 ; C_3 ; Vi innfører tofaselåsing (rigorous 2PL). Skriv om historien slik at den bruker 2PL. Innfør operasjonene wl(X) $write_lock(X)$ og rl(X) $read_lock(X)$.
- c) For hver klasse av samtidighetsproblemer gitt under, hvilke ser du i historien H_1 i b) og hvorfor / hvorfor ikke?
 - Dirty read
 - Lost update
 - Unrepeatable read
 - Incorrect summary

Oppgave 8 - Transaksjoner: Recovery - ARIES (10 %)

- a) Beskriv og forklar hva som skjer i de tre fasene av recovery etter krasj i ARIES.
- b) Hva er PageLSN og hvorfor er dette en viktig oppfinnelse?