Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ

II CEMECTP

Лектор: Андрей Михайлович Райгородский

Автор: Киселев Николай Репозиторий на Github

Содержание

 Проделаем переход индукции с прошлой лекции, напомним, что хотим доказать:

Теорема 0.1.

$$p_{k+2} = a_{k+2}p_{k+1} + p_k$$

$$q_{k+2} = a_{k+2}q_{k1} + q_k$$

Доказательство. Пусть $[a_0; a_1, \ldots, a_n] = \frac{p_n}{q_n}, [a_1; a_2, \ldots, a_k] = \frac{p'_k}{q'_k}$

$$a_0 + \frac{1}{[a_1; a_2, \dots, a_n]} = a_0 + \frac{1}{\frac{p'_n}{q'_n}} = a_o + \frac{q'_n}{p'_n} = \frac{a_0 p'_n + q'_n}{p'_n}$$

$$p_n = a_0 p'_n + q'_n = a_0 (a_n p'_{n-1} + p'_{n-2}) + a_n q'_{n-1} + q'_{n-2} = a_n \underbrace{(a_0 p'_{n-1} + q'_{n-1})}_{p_{n-1}} + \underbrace{a_0 p'_{n-2} + q'_{n-2}}_{p_{n-2}}$$

Замечание. $p_{n+2} \cdot q_{n+1} - p_{n+1}q_{n+2} = p_nq_{n+1} - q_np_{n+1}$

Так как $p_0q_1-q_0p_1=a_oa_1-(a_1a_0+1)=-1,\ p_nq_{n+1}-q_np_{n+1}=(-1)^{n+1}$ и $\frac{p_n}{q_n}$ нельзя сократить.

Замечание. $p_{n+2}q_n - q_{n+2}p_n = a_{n+2}(-1)^n$

Из прошлого замечания получаем еще одно тождество:

$$p_{n+2}q_n - q_{n+2}p_n = a_{n+2}\underbrace{(p_{n+1}q_n - q_{n+1}p_n)}_{(-1)^n}$$

Утверждение 0.1. Из первого замечания можно понять очень выжный факт:

- 1. Дроби с нечетным п убывают
- 2. Дроби с четным п возрастают
- 3. Но все они отличаются друг от друга на небольшое число $\frac{(-1)^n}{q_n q_{n+1}}$

0.1 Бесконечная цепная дробь

Формально почти все операции над цепными дробями остаются без изменений, но значение дроби определяется как предел подходящего ряда:

$$[a_0; a_1, \dots, a_n, \dots] = \lim_{n \to \infty} \frac{p_n}{q_n}$$

Теорема 0.2. (Докажут на семинаре)

Предел всегда существует.

Пример.
$$[1; 1, 1, ..., 1] = ?$$

Пусть $[1; 1, 1, ..., 1] = \alpha$. $1 + \frac{1}{\alpha} = \alpha \Longrightarrow \alpha = \frac{1 + \sqrt{5}}{2}$

Теорема 0.3. Если цепная дробь периодична, то ее значение будет являться квадратичной иррациональностью (решением квадратного уравнения с иррациональными коэффицеинтами)

Доказательство. $\alpha = [a_0; a_1, \dots, a_k, \overline{b_1, b_2, \dots, b_m}].$

Аналогично с примером обозначаем дробь $[b_1; b_2, \ldots, b_m]$ за β . Тогда:

$$b_m + \frac{1}{\beta} = \frac{\beta b_m + 1}{\beta}$$

$$\frac{\beta}{\beta b_m + 1} + b_{m-1} = \frac{\beta + \beta b_{m-1} b_m + b_{m-1}}{\beta b_m + 1}$$

Понятно, что если выражать дальше β , то в числителе и знаменателе будет получаться линейная функция от β . $\beta = \frac{c_1\beta+c_2}{c_3\beta+c_4} \Longrightarrow \beta$ - квадратичная иррациональность.

Теорема 0.4. $(6/\partial)$ Верно и обратное.

Теорема 0.5. $\forall \psi: \psi(q) \to +\infty \exists \alpha > 0:$ неравенство $\left|\alpha - \frac{p}{q}\right| \leqslant \frac{1}{\psi(q)}$ имеет бесконечно много решений в дробях $\frac{p}{q}$.

Доказательство. $\alpha = [a_0; a_1, \dots]$