P4 de Álgebra Linear I -2009.127 de Junho de 2009.

Nome:	Matrícula:
Assinatura:	Turma:

Duração: 1 hora 50 minutos

Preencha CORRETA e COMPLETAMENTE todos os campos.

Provas sem nome não serão corrigidas e terão nota ZERO. Provas com os campos não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Questão	Valor	Nota.
1.a	0.5	
1.b	1.0	
1.c	1.0	
2.a	1.0	
2.b	0.5	
2.c	0.5	
3.a	1.0	
3.b	1.0	
3.c	0.5	
4.a	0.5	
4.b	0.5	
4.b	1.0	
4.c	1.0	
Total	10.0	

Se você está fazendo a prova para aumentar sua nota, escreva no quadro abaixo $N\tilde{A}O$ CORRIGIR caso assim o deseje. Provas corrigidas terão suas notas lançadas.

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- Não é permitido o uso de corretor (liquid paper).
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Escreva de forma clara, ordenada legível.
- O desenvolvimento de cada questão deve estar a seguir da palavra **Resposta** no lugar a ele destinado. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) <u>não serão corrigidos</u>!!.

Aviso

- Justifique cuidadosamente todas as respostas de forma completa, ordenada e coerente.
- Esta prova tem caráter discursivo. Portanto, o raciocínio completo é parte da resposta. O raciocínio é essencial para que a resposta seja considerada correta.

Observação

Justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento.

Cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado.

Raciocínio: Encadeamento lógico de juízos ou pensamentos.

fonte: mini-Aurélio

1) Considere o plano π de \mathbb{R}^3 cuja equação cartesiana é

$$\pi$$
: $x + y - z = 1$.

- (1.a) Determine três pontos A, B e C do plano π que não sejam colineares (isto é, não existe uma reta contendo estes três pontos).
- (1.b) Determine as equações cartesianas de <u>todos</u> os planos ρ cuja distância a π seja 2.
- (1.c) Considere a reta r de equação paramétrica

$$r: (1+t, 1+t, 1+2t), t \in \mathbb{R}.$$

Determine a equação paramétrica da reta s contida no plano π que é perpendicular a r e contém o ponto (1,0,0).

Justifique sua resposta de forma completa, ordenada e coerente. A justificativa é essencial para que a resposta seja considerada correta.

2) Considere as bases de \mathbb{R}^3

$$\beta = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_3\} \quad \text{e} \quad \gamma = \{\overrightarrow{u}_1 + \overrightarrow{u}_2, \overrightarrow{u}_1 + \overrightarrow{u}_3, \overrightarrow{u}_2 + \overrightarrow{u}_3\}.$$

(2.a) Considere o vetor \overrightarrow{w} cujas coordenadas na base β são

$$(\overrightarrow{w})_{\beta} = (1,2,3).$$

Determine as coordenadas $(\overrightarrow{w})_{\gamma}$ do vetor \overrightarrow{w} na base γ .

(2.b) Considere os vetores

Determine o valor da coordenada **a** no vetor \overrightarrow{v}_6 para que os vetores \overrightarrow{v}_1 , \overrightarrow{v}_2 , \overrightarrow{v}_3 , \overrightarrow{v}_4 , \overrightarrow{v}_5 e \overrightarrow{v}_6 gerem um plano π .

(2.c) Determine uma base η do plano π e as coordenadas do vetor \overrightarrow{v}_5 na base η .

Justifique sua resposta de forma completa, ordenada e coerente.

A justificativa é essencial para que a resposta seja considerada correta.

3) Considere o vetor $\overrightarrow{w}=(1,2,1)$ de \mathbb{R}^3 e a transformação linear

$$M \colon \mathbb{R}^3 \to \mathbb{R}^3, \qquad M(\overrightarrow{u}) = \overrightarrow{u} \times \overrightarrow{w}.$$

- (3.a) Determine a matriz $[M]_{\mathcal{E}}$ de M na base canônica.
- (3.b) Determine o subespaço imagem de M, isto é, $\operatorname{im}(M) = \{ \overrightarrow{n} \in \mathbb{R}^3 \text{ tal que existe } \overrightarrow{v} \in \mathbb{R}^3 \text{ tal que } M(\overrightarrow{v}) = \overrightarrow{n} \}.$
- (3.c) Considere agora um vetor \overrightarrow{m} de \mathbb{R}^3 e a transformação linear

$$L \colon \mathbb{R}^3 \to \mathbb{R}^3, \qquad L(\overrightarrow{u}) = \overrightarrow{u} \times \overrightarrow{m}.$$

Sabendo que a matriz de L na base canônica é

$$[L]_{\mathcal{E}} = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{array} \right)$$

determine o vetor \overrightarrow{m} .

Justifique sua resposta de forma completa, ordenada e coerente. A justificativa é essencial para que a resposta seja considerada correta.

4) Considere a transformação linear $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz na base canônica é

$$[T]_{\mathcal{E}} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}.$$

- (4.a) Determine os autovalores de T e suas multiplicidades.
- (4.b) Ache, se possível, uma forma diagonal de T.

Considere a base β de \mathbb{R}^3

$$\beta = \{(0, -1, 1), (0, 1, 1), (1, 0, 1)\}.$$

- (4.c) Determine explicitamente a matriz P de mudança de base da base canônica à base β .
- (4.d) Encontre uma base γ de \mathbb{R}^3 tal que a matriz $[T]_{\gamma}$ de T na base γ seja

$$[T]_{\gamma} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{array}\right).$$

Justifique sua resposta de forma completa, ordenada e coerente. A justificativa é essencial para que a resposta seja considerada correta.