

UFRN / 6º PERÍODO / Circuitos Digitais / ATIVIDADES2019-2 / ATIVIDADE-11 /

PROFESSOR Dr.: SAMAHERNI MORAIS DIAS

ESTUDANTE: KAIKE CASTRO CARVALHO

1. INTRODUÇÃO

1 - Projete um circuito lógico para uma máquina de vendas. A máquina possui duas entradas de dados, sendo uma para informar o valor da moeda inserida (A) e uma outra para entrar com o valor do produto (S). Tamb´em conta uma entrada para indicar quando uma moeda foi depositada (c=1) e uma sa´ıda (d=1) para liberar o produto.

Figura 1. Bloco Problema

2. OBJETIVO

Desenvolver um VHD que compara o valor de entrada com o preço do produto e libera ou não a compra.

3. DESENVOLVIMENTO

O projeto obedeceu o passo a passo em Nível de Transferência entre Registradores (RTL) que organizar a forma do bloco de controle se comunicar com o bloco operacional. As seções a seguir são as fases de extrair a solução de acordo com o enuciado do problema.

3.1 CRIAR UMA MÁQUINA DE ESTADOS DE ALTO NÍVEL

A máquina de estados foi desenvolvida pensando no processo que seria: **início**, **esperar**, **somar** e **fornecer**. As entradas c (bit), a (8 bits) e s (8bits). As saída é: d (bit).

Figura 2. Máquina de Estados

Tabela 1. Relação entre entradas e saídas

	SAÍDAS				ENTRADAS					
1	n0	n1	tot_clr	tot_ld	d	tot_lt_s	С	s0	s1	
INICIAR	1	0	1	0	0	0	0	0	0	0
	1	0	1	0	0	1	0	0	0	1
	1	0	1	0	0	0	1	0	0	2
	1	0	1	0	0	1	1	0	0	3
ESPERA	1	1	0	0	0	0	0	1	0	4
	1	0	0	0	0	1	0	1	0	5
	0	1	0	0	0	0	1	1	0	6
	0	1	0	0	0	1	1	1	0	7
SOMAR	1	0	0	1	0	0	0	0	1	8
	1	0	0	1	0	1	0	0	1	9
	1	0	0	1	0	0	1	0	1	10
	1	0	0	1	0	1	1	0	1	11
	0	0	0	0	1	0	0	1	1	12
	0	0	0	0	1	1	0	1	1	13
	0	0	0	0	1	0	1	1	1	14
	0	0	0	0	1	1	1	1	1	15

- Equações das saídas resultante da tabela 1:
- d = s1*s0;
- tot_ld= s1' * s0';
- tot_clr= s1' * s0';
- n1= s1' * s0 * c'*tot_lt_s' + s1' * s0 * c;
- n0= s0' + s1' * s0 * c';

3.2 CRIAR UM BLOCO OPERACIONAL

As entradas **s** e **a** são de 8 bits e representar o valor do produto e a quantia que será inserido na máquina de refrigerante, respectivamente. As outras entradas tot_ld, tot_clr, tot_lt_s são LD, LC e ME, respectivamente.

Figura 3. Bloco Operacional

3.3 CONECTAR O BLOCO OPERACIONAL AO BLOCO DE CONTROLE

A construção do bloco de controle possui um bloco lógico e um registrador de 2 bits que c representa quando uma moeda é inserida.

Figura 3. Visão completada dos blocos

4. RESULTADOS

• Entidade do projeto que expõem as entradas do circuito:

```
entity main is

port(c, clock: in bit;
    S, A: in bit_vector(7 downto 0);
    d: out bit);
end;
```

• Arquitetura que relaciona os componentes datapath e controller seguindo o modelo RTL.

```
architecture circuito of main is
component datapath is
 port(aa,b: in bit_vector(7 downto 0);
tot_ld, tot_clr, clkk: in bit;
tot_It_s: out bit);
end component;
component controller is
 port(cc, mme, clocck: in bit;
 LD, CL, dd: out bit);
end component;
signal ME: bit;
signal AUX: bit_vector(2 downto 0);
begin
CLLER: controller port map(
cc => c,
 mme => ME,
 clocck => clock,
 LD \Rightarrow AUX(0),
 CL \Rightarrow AUX(1),
 dd => AUX(2));
DP: datapath port map(
 aa => A,
 b => S,
 tot_ld => AUX(0),
tot_clr => AUX(1),
clkk => clock,
tot_It_s => ME );
d \leftarrow AUX(2);
end circuito;
```

5. CONCLUSÃO

O circuito foi desenvolvido de acordo com o proposto pelo enuciado do problema.