Knapsack Problem with Minimization Objective Function (*KP01-Min*)

Given:

```
n items, P_j "profit" of item j, j = 1, ..., n (P_j > 0), W_j "weight" of item j, j = 1, ..., n (W_j > 0), One container ("knapsack") with "threshold" B:
```

determine a subset of the n items so as to minimize the global profit, and such that the global weight is not smaller than the knapsack threshold B.

KP01-Min is NP-Hard Feasibility Problem of KP01-Min?

Mathematical Model of KP01-Min

$$y_j = \begin{cases} 1 & \text{if item } j \text{ is inserted in the knapsack} \\ 0 & \text{otherwise} \end{cases} \quad (j = 1, ..., n)$$

min $\sum_{j=1,n} P_j y_j$

$$\sum_{j=1,n} W_j y_j \geq B$$

$$y_j \in \{0, 1\} \qquad (j = 1, ..., n)$$

BLP Model (Binary Linear Programming Model)

KP01-Min is "equivalent" to KP01.

KP01-Min is "equivalent" to KP01.

Set $y_j = 1 - x_j$ (j = 1, ..., n) and replace y_j with $1 - x_j$

1) min
$$T = \sum_{j=1,n} P_j y_j = \sum_{j=1,n} P_j (1 - x_j) =$$

$$P - \max \sum_{j=1,n} P_j x_j$$

where
$$P = \sum_{j=1,n} P_j$$

KP01-Min is "equivalent" to KP01 (2).

2)
$$\sum_{j=1,n} W_j y_j = \sum_{j=1,n} W_j (1 - x_j) = \sum_{j=1,n} W_j - \sum_{j=1,n} W_j x_j \ge B$$

$$\sum_{j=1,n} W_j x_j \le C'$$

where
$$C' = \sum_{j=1, n} W_j - B$$

KP01-Min is "equivalent" to KP01 (3).

$$\min T = P - \max \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C'$$

$$x_j \in \{0,1\} \qquad (j=1,...,n)$$

where:
$$P = \sum_{j=1, n} P_j$$
; $C' = \sum_{j=1, n} W_j - B$

- Problem KP01
- KP01-Min is NP-Hard

Variant of KP01: Equality-KP01 (E-KP01)

- Same input data as for the KP01: n, C, (P_j) , (W_j)
- * Determine a subset of the n items so that the global profit is maximum and the global weight is equal to the knapsack capacity C.

$$\max \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j = C$$

$$x_j \in \{0,1\} \quad (j=1,...,n) \quad (BLP Model)$$

The Feasibility Problem of E-KP01 is NP-Hard

E-KP01 is NP-Hard

Feasibility Problem of E-KP01 (F-E-KP01)

- Input data: n, C, (W_i)
- Determine a subset of the n items so that the global weight is equal to the knapsack capacity C.

- *F-E-KP01* is NP-Hard
- Input: $n, C, (W_j)$: Size: 2 + n : n
- Binary Decision Tree of KP01:

$$F$$
- E - $KP01 \in Class NP$

F-E-KP01 is NP-Hard

- Input data: $n, C, (W_i)$
- Determine a subset of the n items so that the global weight is equal to the knapsack capacity C.
- $PP \propto F-E-KP01$:
- Given any instance of PP: t, (a_i) , b (Size: t)
- 1) Define (in time O(t)) an instance $(n, C, (W_i))$ of F-E-KP01:
 - * n := t
 - * C := b
 - * $W_j := a_j \quad (j = 1, ..., n).$
- 2) Determine (if it exists) a feasible solution (x_i) of *F-E-KP01*.
- 3) If a feasible solution (x_j) of F-E-KP01 exists, then PP has a feasible solution (x_j)

Otherwise: *PP* has no feasible solution.

Computing time O(n) (hence O(t), polynomial in the size of PP)

Variant of KP01: Subset Sum Problem (SSP)

• Item j has weight W_j and profit $P_j = W_j$ (j = 1, ..., n): Determine a subset of the n items so that the global weight is maximum and not greater than C.

Cut of metal bars with minimization of the waste.

$$\max \quad \sum_{j=1,n} \ W_j \ x_j$$

$$\sum_{j=1,n} \ W_j \ x_j \le C$$

$$x_j \in \{0,1\} \quad (j=1,...,n) \quad (BLP \, Model)$$

SSP is NP-Hard

SSP is NP-Hard

- SSP: input data: n, C, (W_i) .
- Determine a subset of the n items so that the global weight is maximum and not greater than C.
- Size: 2 + n : n
- Binary Decision Tree of KP01: $SSP \in Class\ NP$
- * $PP \propto SSP$ Given any instance of PP: t, (a_j) , b (Size: t)
- 1) Define (in time O(t)) an instance $(n, (W_j), C)$ of SSP:
 - * $n := t ; C := b ; W_j := a_j (j = 1, ..., n).$
- 2) Determine the optimal solution $(x_1, x_2, ..., x_n, z)$ of SSP.
- 3) If z = C : PP has a feasible solution $(x_1, x_2, ..., x_n)$
 - If z < C : PP has no feasible solution
 - Computing time O(n) (hence O(t), polynomial in the size of PP)

Subset Sum Problem (SSP)

- Item j has weight W_j and profit $P_j = W_j$ (j = 1, ..., n):
- Determine a subset of the n items so that the global weight is maximum and not greater than C.

$$\max \quad \sum_{j=1,n} \ W_j \ x_j$$

$$\sum_{j=1,n} \ W_j \ x_j \le C$$

$$x_j \in \{0,1\} \quad (j=1,...,n) \quad (\text{BLP Model})$$

SSP is NP-Hard.

SSP is a special case of KP01

The feasibility problem of SSP is polynomial

Variant of KP01: Change Making Problem (CMP)

- Given *n banknotes* and *a cheque* (check),
- * W_j is the *value* of banknote j (j = 1, ..., n), with $W_j > 0$,
- C is the value of the cheque:
- select a *minimum cardinality* subset of banknotes so that the global value is equal to *C*.

$$\min \quad \sum_{j=1,n} x_j$$

$$\sum_{j=1,n} W_j x_j = C$$

$$x_j \in \{0,1\} \quad (j=1,...,n) \quad (BLP Model)$$

CMP is NP-Hard (its Feasibility Problem is NP-Hard)

Feasibility Problem of CMP (F-CMP)

- Input: n, C, (W_i)
- select a subset of banknotes so that the global value is equal to C.
- F-CMP is NP-Hard:
- "Banknotes" correspond to "items";
- "Cheque value" corresponds to "capacity C";
- F-CMP is identical to F-E-KP01.
- CMP is NP-Hard

Variant of KP01: Two-Constrained KP (2C-KP)

Given:

```
n items, P_j "profit" of item j, j = 1, ..., n (P_j > 0), W_j "weight" of item j, j = 1, ..., n (W_j > 0), V_j "volume" of item j, j = 1, ..., n (V_j > 0), ONDE CONTAINTE ("knapsack") with:
```

* "weight capacity" C, and "volume capacity" D:

determine a subset of the n items so as to maximize the global profit, and such that the global weight is not greater than the weight capacity C and the global volume is not greater than the volume capacity D.

2C-KP is NP-Hard

Mathematical Model for 2C-KP

$$\max \quad \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C$$

$$\sum_{j=1,n} V_j x_j \leq D$$

$$x_i \in \{0,1\} \quad (j=1,...,n) \quad (BLP Model)$$

2C-KP is NP-Hard

Input:
$$n, C, D, (P_j), (W_j), (V_j), j = 1, ..., n$$
;

determine a subset of the n items so as to maximize the global profit, and such that the global weight is not greater than the weight capacity C and the global volume is not greater than the volume capacity D.

- Size: 3 + 3n : n
- Binary Decision Tree of KP01:

$$2C$$
- $KP \in Class NP$

* 2C-KP is a generalization of KP01:

$$(KP01 \propto 2C-KP)$$

The feasibility problem of 2C-KP is polynomial.

Variant of KP01: Bounded-KP (BKP)

In addition to the input data for KP01:

* d_j = number of available items of item-type j (j = 1, ..., n)

Input: $n, C, (P_j), (W_j), (d_j) j = 1, ..., n$;

determine for each item-type j (j = 1, ..., n) the number of items to be inserted in the knapsack so as to maximize the global profit, and such that the global weight is not greater than the capacity C.

Variant of KP01: Bounded-KP (BKP)

In addition to the input data for KP01:

- * d_j = number of available items of item-type j (j = 1, ..., n)
- x_j = number of items selected for item-type j (j = 1, ..., n)

$$\max \quad \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C$$

$$0 \le x_j \le d_j$$
 INTEGER $(j = 1, ..., n)$

ILP Model; BKP is NP-Hard

BKP is NP-Hard

Input: n, C, (P_j) , (W_j) , (d_j) j = 1, ..., n; determine for each item-type j (j = 1, ..., n) the number of items to be inserted in the knapsack so as to maximize the global profit, and such that the global weight is not greater than the weight capacity C.

- Size: 2 + 3n: n (number of "symbols" required to represent the input data)
- Decision Tree: n levels, one for each item-type j;
- * $(d_j + 1)$ descendent nodes (one node for each posssible number of inserted items of item-type j) and constant time for each node:

$$BKP \in Class\ NP$$
 (???)

* is d_i a polynomial function of the size n?

BKP is NP-Hard

Input: n, C, (P_j) , (W_j) , (d_j) j = 1, ..., n; determine for each item-type j (j = 1, ..., n) the number of items to be inserted in the knapsack so as to maximize the global profit, and such that the global weight is not greater than the weight capacity C.

- Size: 2 + 3n: n (number of "symbols" required to represent the input data)
- Decision Tree: n levels, one for each item-type j; $(d_j + 1)$ descendent nodes (one node for each possible number of inserted items of item-type j) and constant time for each node:

$$BKP \in Class\ NP$$
 (???)

- * is d_i a polynomial function of the size n?
- * $B = \max \{d_j : j = 1, ..., n\} \le (2)^k$ where k is the number of bits needed to represent B
- * Size: 2 + 2n + k*n : k*n (number of "bits")
- * d_i is defined by an exponential function of the size k*n

Transformation of an ILP model with n variables into a BLP model with n*k variables

- * x_j integer variable with $x_j \ge 0$, $x_j \le d_j$ (with $d_j \le B$).
- * for each variable x_j (j = 1, ..., n) introduce k binary variables t_{jh} , with h = 1, ..., k

$$x_{j} = \sum_{h=1,k} 2^{h-1} t_{jh}$$

$$t_{jh} \in \{0, 1\} \quad h = 1, ..., k \quad (j = 1, ..., n)$$

$$k = \begin{bmatrix} z \end{bmatrix} \quad \text{with} \quad \mathbf{z} = \log_{2} (B+1)$$

$$B \le (2)^{k}$$

BLP model with n*k variables:

Binary Decision Tree with n*k levels (polynomial function of the size k*n).

BKP is NP-Hard

Input: n, C, (P_j) , (W_j) , (d_j) j = 1, ..., n; determine for each item-type j (j = 1, ..., n) the number of items to be inserted in the knapsack so as to maximize the global profit, and such that the global weight is not greater than the weight capacity C.

- Size: 2 + 2n + k*n : k*n
- for each variable x_j (j = 1, ..., n) introduce k binary variables t_{jh} , with h = 1, ..., k

Binary Decision Tree: k*n levels (one for each binary variable t_{jh});

- * 2 descendent nodes and constant time for each node: BKP ∈ Class NP
- * BKP is a generalization of KP-01 (KP-01 \propto BKP)

The feasibility problem of BKP is polynomial.

Variant of KP01: Unbounded-KP (UKP)

No limit on the number of items available for each item-type j (j = 1, ..., n).

• x_j = number of items selected for item-type j (j = 1, ..., n)

 $\max \quad \sum_{j=1,n} P_j x_j$

$$\sum_{j=1,n} W_j x_j \leq C$$

$$x_j \ge 0$$
 INTEGER $(j = 1, ..., n)$

ILP Model

It is known that *UKP* is NP-Hard

Variant of KP01: Unbounded-KP (UKP)

No limit on the number of items available for each item-type $(d_j = \infty, j = 1, ..., n)$

• x_j = number of items selected for item-type j (j = 1, ..., n)

$$\max \quad \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C$$

$$x_j \ge 0$$
 INTEGER $(j = 1, ..., n)$

UKP is a special case of *BKP*: $d_j = int(C/W_j)j = 1, ..., n$

Transportation Problem (TP)

Given: m origins and n destinations:

- a_i amount of product to be transported from origin i $(i = 1, ..., m), a_i \ge 0;$
- b_j amount of product to be transported to destination j $(j = 1, ..., n), b_j \ge 0;$
- c_{ij} cost for transporting one unit of product from origin i to destination j (i = 1, ..., m; j = 1, ..., n):

Determine the amount of product (x_{ij}) to be transported from each origin i (i = 1, ..., m) to each destination j (j = 1, ..., n) so as to minimize the global cost.

$$\sum_{j=1,n} b_j = \sum_{i=1,m} a_i$$

Mathematical Model of TP

$$\min \quad \sum_{i=1,m} \sum_{j=1,n} c_{ij} x_{ij}$$

$$\sum_{j=1,n} x_{ij} = a_i$$
 $(i = 1, ..., m)$

$$\sum_{i=1,m} x_{ij} = b_i$$
 $(j=1,...,n)$

$$x_{ij} \geq 0$$
 $(i = 1, ..., m, j = 1, ..., n)$

LP model

TP is a polynomial problem

If a_i and b_j are integer: x_{ij} integer

AP is a special case of TP

Set Covering Problem (SCP)

• Given: a "Binary Matrix" A with m rows e n columns; C_j "cost" of column j (j = 1, ..., n) ($C_j > 0$)

If $A_{ij} = 1$ (i = 1, ..., m; j = 1, ..., n):

column j "covers" row irow i "is covered" by column j

Select a subset of the n columns of A_{ij} so that:

- the sum of the costs of the selected columns is minimum,
- all the *m* rows are covered at least once by the selected columns

Example of SCP

n=8, m=5;

binary matrix:

j	1	2	3	4	5	6	7	8
1	0	1	0	1	1	0	0	1
2	1	0	0	0	0	0	0	1
3	0	0	1	1	0	1	0	1
4	1	1	0	1	0	1	1	0
5	0	0	1	0	1	0	1	0
costs	5	5	3	6	2	4	5	9

feasible solution:

Cost = 5 + 5 + 3 = 13

Example of SCP

optimal solution:

Cost = 5 + 3 + 2 = 10

Mathematical Model of SCP

$$x_j = \begin{cases} 1 & \text{if column } j \text{ is selected} \\ 0 & \text{otherwise} \end{cases}$$
 $(j = 1, ..., n)$

$$\min \sum_{j=1,n} C_j x_j$$

$$\sum_{j=1,n} A_{ij} x_j \ge 1 \qquad (i = 1, ..., m)$$

$$x_j \in \{0, 1\} \qquad (j = 1, ..., n)$$

BLP Model

The Feasibility Problem of SCP is polynomial.

 $SCP \in Class NP$ (Binary Decision Tree with n levels) SCP is known to be NP-Hard

Variant: Set Partitioning (SPP)

Select a subset of the n columns of matrix A_{ii} so that:

- the sum of the costs of the selected columns is minimum,
- all the *m* rows are covered exactly once by the selected columns.

```
\min \sum_{j=1,n} C_j x_j
\sum_{j=1,n} A_{ij} x_j = 1 \qquad (i = 1, ..., m)
x_j \in \{0, 1\} \qquad (j = 1, ..., n) \quad \text{BLP model}
```

The Feasibility Problem of *SPP* is known to be NP-Hard

SPP is NP-Hard

Example of SPP

optimal solution of SCP

$$Cost = 5 + 3 + 2 = 10$$

Number of

covering columns **(1**) costs

infeasible solution of SPP

Example of SPP

optimal solution of SCP, cost = 10

 $cost(SPP) \ge cost(SCP)$

	-		-	-					covering
i	1	2	3	4	5	6	7	8	columns
1	0	1	0	1	1	0	0	1	1
2	1	0	0	0	0	0	0	1	1
3	0	0	1	1	0	1	0	1	1
4	1	1	0	1	0	1	1	0	1
5	0	0	1	0	1	0	1	0	1
costs	5	5	3	6	2	4	5	9	-

optimal solution of SPP:

$$Cost = 5 + 9 = 14$$

Number of

Strong Formulation of the BPP

Let S = subset of the n items corresponding to a *feasible* loading of a bin:

S contained in $\{1, 2, ..., n\}$ and such that $\Sigma_j \in S$ $W_j \leq C$ $P = \text{family of all the feasible subsets } S = \{S_1, S_2, ..., S_k\}$ (k can grow exponentially with n).

A subset S_h (h = 1, ..., k) is *maximal* if the addition of an item generates an infeasible subset.

For j = 1, 2, ..., n; h = 1, 2, ..., k: $A_{jh} = 1$ if item j belongs to feasible subset S_h $A_{ih} = 0$ otherwise

Strong Formulation of the BPP (2)

$$x_h = \begin{cases} 1 & \text{if subset } S_h \text{ is selected} \\ 0 & \text{otherwise} \end{cases}$$
 $(h = 1, ..., k)$

min
$$\Sigma_{h=1,k} x_j$$

 $\Sigma_{h=1,k} A_{jh} x_j = 1$ $(j = 1, ..., n)$
 $x_h \in \{0, 1\}$ $(h = 1, ..., k)$

Set Partitioning Formulation (BLP Model)

Consider only "maximal" feasible subsets S_h

$$\sum_{h=1,k} A_{jh} x_j \ge 1$$
 $(j = 1, ..., n)$

Set Covering Formulation (BLP Model)

Sequencing of Jobs

Given:

- n jobs
- m identical machines
- p_j processing time of job j (j = 1, 2, ..., n), $p_j > 0$
- "no preemption" = the processing of a job cannot be interrupted;
- a machine cannot process more than one job at the same time;
- assign the jobs to the machines so as to minimize the time at which all the machines have finished to process the assigned jobs ("makespan").

Sequencing of Jobs (2)

• Example: n = 5, m = 2, $p_j = (90, 50, 30, 40, 20)$

makespan = 120

Sequencing of Jobs (3)

- n = 5, m = 2, $p_i = \{90, 50, 30, 40, 20\}$
- Z = makespan = 120
- LB = Lower Bound = $\sum_{j=1,n} P_j/m = 230/2 = 115$
- Z = value of the optimal solution
- optimal solution: machine 1: jobs 1 and 5 machine 2: jobs 2, 3 and 4

Mathematical Model

$$x_{ij} = \begin{cases} 1 & \text{if machine } i \text{ processes job } j \\ 0 & \text{otherwise } (i = 1, ..., m; j = 1, ..., n) \\ \min z \end{cases}$$

$$\sum_{j=1,n} p_j x_{ij} \leq \mathbf{z} \qquad (i=1,...,m)$$

$$\Sigma_{i=1,m} x_{ij} = 1 \quad (j=1,...,n)$$

$$x_{ij} \in \{0, 1\} \quad (i = 1, ..., m; j = 1, ..., n)$$
 $z \ge 0$

MLP model

The Job Sequencing Problem is NP-Hard