CSC-422/522: ALDA M/W. 8.30-9.45am. HL-Auditorium.

Ranga Raju Vatsavai

Chancellors Faculty Excellence Associate Professor in Geospatial Analytics Department of Computer Science, North Carolina State University (NCSU) Associate Director, Center for Geospatial Analytics, NCSU &

Joint Faculty, Oak Ridge National Laboratory (ORNL)

NC STATE JNIVERSITY

Logistics

- HW4
 - Any questions?

2

Today

Association Rules

3

NC STAT

Association Rule Mining

• Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 $\begin{aligned} & \{ \text{Diaper} \} \rightarrow \{ \text{Beer} \}, \\ & \{ \text{Milk, Bread} \} \rightarrow \{ \text{Eggs, Coke} \}, \\ & \{ \text{Beer, Bread} \} \rightarrow \{ \text{Milk} \}, \end{aligned}$

Implication means co-occurrence, not causality!

NC STAT

Definition: Frequent Itemset

- Itemset
 - A collection of one or more items
 - Example: {Milk, Bread, Diaper}
 - k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support
 - Fraction of transactions that contain an itemset
 - E.g. s({Milk, Bread, Diaper}) = 2/5
- Frequent Itemset
 - An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

NC STATI UNIVERSIT

Definition: Association Rule

- Association Rule
 - An implication expression of the form X → Y, where X and Y are itemsets
 - Example: {Milk, Diaper} → {Beer}
- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

 $\{Milk, Diaper\} \Rightarrow \{Beer\}$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

NC STAT

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

NC STAT

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \left[\binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R=602 rules

Amazon:

- Books ~ 2 million
- MP3 ~ 6 million

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 ${Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)$ ${Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)$ ${Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)$ ${Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)$ ${Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)$ ${Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

NC STA

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

NC STATE

When is this useful?

- If minsup = 0, then all subsets are frequent (2^d-1). That is, summary may be larger than input.
- If minsup is large, then summary (associate rules) is very small and may be interesting and potentially valuable
 - E.g., if minsup = 20% and minconf = 50%, then most likely 80% rules are discarded.
 - Somehow we should eliminate computing support/ confidence for large fraction of itemsets.

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database
 Transactions
 List of

Transactions

List of

Candidates

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

NC STA

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

NC STAT

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$
 (Anti-Monotone)

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

NC STA

Example

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

S(Bread) > S(Bread, Milk) [4/5 > 3/5] S(Milk) > S(Bread, Milk)

....

Apriori Algorithm

- F_k: frequent k-itemsetsL_k: candidate k-itemsets
- Algorithm
 - Let k=1
 - Generate F₁ = {frequent 1-itemsets}
 - Repeat until F_k is empty
 - Candidate Generation: Generate L_{k+1} from F_k
 - Candidate Pruning: Prune candidate itemsets in L_{k+1} containing subsets of length k that are infrequent
 - Support Counting : Count the support of each candidate in $\mathsf{L}_{\mathsf{k+1}}$ by scanning the DB

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules", Proc. of the 20th Int'l Conference on Very Large Databases, 1994.

Candidate Generation: Merge F_{k-1} and F_1 itemsets

Figure 6.7. Generating and pruning candidate k-itemsets by merging a frequent (k-1)-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

NC STATE UNIVERSITY

Candidate Generation: $F_{k-1} \times F_{k-1}$ Method

- Merge two frequent (k-1)-itemsets if their first (k-2) items are identical
- F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
 - $Merge(\underline{AB}C, \underline{AB}D) = \underline{AB}CD$
 - $Merge(\underline{AB}C, \underline{AB}E) = \underline{AB}CE$
 - $Merge(\underline{\mathbf{AB}}D, \underline{\mathbf{AB}}E) = \underline{\mathbf{AB}}DE$
 - Do not merge(<u>ABD</u>,<u>ACD</u>) because they share only prefix of length 1 instead of length 2

F_{k-1} and F_{k-1} method: Self-Join

- Assume the items in L_k are listed in an order (e.g., alphabetical)
- Step 1: self-joining L_k (IN SQL)
 insert into C_{k+1}
 select p.item₁, p.item₂, ..., p.item_k, q.item_k
 from L_k p, L_k q
 where p.item₁=q.item₁, ..., p.item_{k-1}=q.item_{k-1}, p.item_k
 < q.item_k

IC STA

Self-Join Example

- L₃={abc, abd, acd, ace, bcd}
- Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace

NC STATUNIVERSI

Candidate Pruning

- Let F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L₄ = {ABCD,ABCE,ABDE} is the set of candidate 4itemsets generated
- Candidate pruning
 - Prune ABCE because ACE and BCE are infrequent
 - Prune ABDE because ADE is infrequent
- After candidate pruning: $L_4 = \{ABCD\}$

Support Counting of Candidate Itemsets

- Scan the database of transactions to determine the support of each candidate itemset
 - Must match every candidate itemset against every transaction, which is an expensive operation

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

NC STA

Support Counting of Candidate Itemsets

- To reduce number of comparisons, store the candidate itemsets in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets
 Transactions
 Hash Structure

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

- · Leaf node contains list of itemsets and counts
- Interior node contains a hash table
- Subset-function: finds all candidates contained in a transcation

Support Counting Using a Hash Tree

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

NC STATE UNIVERSITY

Example of the hash-tree for C₃

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L – f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

```
ABC \rightarrowD, ABD \rightarrowC, ACD \rightarrowB, BCD \rightarrowA, A \rightarrowBCD, B \rightarrowACD, C \rightarrowABD, D \rightarrowABC AB \rightarrowCD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrowAD, BD \rightarrowAC, CD \rightarrowAB,
```

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

NC STATI UNIVERSIT

Rule Generation

 In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
 - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

