1990 HI19

求
$$\frac{1}{2\times3} + \frac{1}{3\times4} + \frac{1}{4\times5} + \dots + \frac{1}{19\times20}$$
 的值。

Find the value of $\frac{1}{2\times 3} + \frac{1}{3\times 4} + \frac{1}{4\times 5} + \dots + \frac{1}{19\times 20}$.

1991 HG2

若
$$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \dots + \frac{1}{2450} = \frac{x}{100}$$
 , 求 x 的值。

If $\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \dots + \frac{1}{2450} = \frac{x}{100}$, find the value of x.

1994 HG10

已知
$$\frac{1}{n} - \frac{1}{n+2} = \frac{2}{n(n+2)}$$
 ° 若 $a = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{111 \cdot 113}$

求a的值。

Given that
$$\frac{1}{n} - \frac{1}{n+2} = \frac{2}{n(n+2)}.$$

Find the value of a if $a = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots + \frac{1}{n(n+2)} + \dots + \frac{1}{111 \cdot 113}$.

1994 FG6.2

若
$$b = \log_3[2(3+1)(3^2+1)(3^4+1)(3^8+1)+1]$$
, 求 b 的值。

If $b = \log_3[2(3+1)(3^2+1)(3^4+1)(3^8+1)+1]$, find the value of b.

1996 HG5

已知
$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$
 , 求 $\frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{99\times 100}$ 之值。

Given that $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$, find the value of $\frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{99 \times 100}$.

1996 FI4.4

若
$$d = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{9 \times 10}$$
 , 求 d 的值。

If
$$d = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{9 \times 10}$$
, find the value of d .

1996 FI5.3

設
$$c = \frac{1}{2^2 - 1} + \frac{1}{4^2 - 1} + \frac{1}{6^2 - 1} + \dots + \frac{1}{20^2 - 1}$$
 , 求 c 的值。

Let
$$c = \frac{1}{2^2 - 1} + \frac{1}{4^2 - 1} + \frac{1}{6^2 - 1} + \dots + \frac{1}{20^2 - 1}$$
, find the value of c .

Hint 提示:
$$\frac{1}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} - \frac{1}{x+1} \right)$$

2000 HI2

解下列方程:

$$\frac{1}{x+12} + \frac{1}{(x+1)(x+2)} + \frac{1}{(x+2)(x+3)} + \frac{1}{(x+3)(x+4)} + \dots + \frac{1}{(x+10)(x+11)} + \frac{1}{(x+11)(x+12)} = \frac{1}{4}$$

Solve the following equation:

$$\frac{1}{x+12} + \frac{1}{(x+1)(x+2)} + \frac{1}{(x+2)(x+3)} + \frac{1}{(x+3)(x+4)} + \dots + \frac{1}{(x+10)(x+11)} + \frac{1}{(x+11)(x+12)} = \frac{1}{4}$$

2001 HG4

如果
$$\frac{4a}{1-x^{16}} = \frac{2}{1-x} + \frac{2}{1+x} + \frac{4}{1+x^2} + \frac{8}{1+x^4} + \frac{16}{1+x^8}$$
 , 求 a 的值。

If
$$\frac{4a}{1-x^{16}} = \frac{2}{1-x} + \frac{2}{1+x} + \frac{4}{1+x^2} + \frac{8}{1+x^4} + \frac{16}{1+x^8}$$
, find the value of a.

2001 FG1.2

已知
$$b\left[\frac{1}{1\times3} + \frac{1}{3\times5} + \dots + \frac{1}{1999\times2001}\right] = 2\times\left[\frac{1^2}{1\times3} + \frac{2^2}{3\times5} + \dots + \frac{1000^2}{1999\times2001}\right]$$

求 b 的值。

Given that
$$b \left[\frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \dots + \frac{1}{1999 \times 2001} \right] = 2 \times \left[\frac{1^2}{1 \times 3} + \frac{2^2}{3 \times 5} + \dots + \frac{1000^2}{1999 \times 2001} \right],$$

find the value of b.

2002 FI2.1

已知
$$P = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{99 \times 100}$$
 , 求 P 的值。

Given that
$$P = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{99 \times 100}$$
, find the value of P.

2003 HG1

若
$$k = \frac{1}{4 \times 5 \times 6} + \frac{1}{5 \times 6 \times 7} + \frac{1}{6 \times 7 \times 8} + \dots + \frac{1}{99 \times 100 \times 101}$$
,求 k 的值。

If $k = \frac{1}{4 \times 5 \times 6} + \frac{1}{5 \times 6 \times 7} + \frac{1}{6 \times 7 \times 8} + \dots + \frac{1}{99 \times 100 \times 101}$, find the value of k .

2005 HI6

設 n 是自然數,直綫 $nx + (n+1)y = \sqrt{2}$ 與兩坐標軸所圍成的三角形的面積是 S_n 。若 $K = S_1 + S_2 + \cdots + S_{2005}$,求 K 的值。

Let *n* be a natural number, the area of the triangle bounded by the line $nx + (n + 1)y = \sqrt{2}$ and the two ordinate axes is S_n .

If $K = S_1 + S_2 + \cdots + S_{2005}$, find the value of K.

2005 FI3.4

若
$$c = \frac{1}{2}$$
, $\frac{1}{(c+1)(c+2)} + \frac{1}{(c+2)(c+3)} + \dots + \frac{1}{(c+d)(c+d+1)} = \frac{8}{15}$,求 d 的 \hat{a}
If $c = \frac{1}{2}$ and $\frac{1}{(c+1)(c+2)} + \frac{1}{(c+2)(c+3)} + \dots + \frac{1}{(c+d)(c+d+1)} = \frac{8}{15}$,

find the value of d.

2009 HG1

若 a 是正整數及
$$\frac{1}{a(a+1)} + \frac{1}{(a+1)(a+2)} + \dots + \frac{1}{2008 \times 2009} = \frac{272}{30135}$$
,

求 a 的值。

If a is a positive integer and $\frac{1}{a(a+1)} + \frac{1}{(a+1)(a+2)} + \dots + \frac{1}{2008 \times 2009} = \frac{272}{30135}$,

find the value of a.

2010 HI3

If $a = \frac{1}{5 \times 10} + \frac{1}{10 \times 15} + \frac{1}{15 \times 20} + \dots + \frac{1}{100 \times 105}$, find the value of a.

2011 FI2.4

If
$$S > 0$$
 and $\frac{1}{S(S-1)} + \frac{1}{(S+1)S} + \dots + \frac{1}{(S+20)(S+19)} = \frac{5}{6}$, find the value of S .

2012 FI4.1

若 A 為一正整數且
$$\frac{1}{1\times 3} + \frac{1}{3\times 5} + \dots + \frac{1}{(A+1)(A+3)} = \frac{12}{25}$$
 , 求 A 的值。

If A is a positive integer such that $\frac{1}{1\times 3} + \frac{1}{3\times 5} + \dots + \frac{1}{(A+1)(A+3)} = \frac{12}{25}$,

find the value of A.

2014 FG3.2

若
$$\frac{\beta}{1\times2\times3}$$
 + $\frac{\beta}{2\times3\times4}$ + ···+ $\frac{\beta}{8\times9\times10}$ = 11 , 求 β 的值。

Determine the value of β if $\frac{\beta}{1\times2\times3} + \frac{\beta}{2\times3\times4} + \cdots + \frac{\beta}{8\times9\times10} = 11$.

2015 HI8

求
$$\frac{1}{4029} + \frac{2 \times 2014}{2014^2 + 2015^2} + \frac{4 \times 2014^3}{2014^4 + 2015^4} - \frac{8 \times 2014^7}{2014^8 - 2015^8}$$
 的值。

Find the value of $\frac{1}{4029} + \frac{2 \times 2014}{2014^2 + 2015^2} + \frac{4 \times 2014^3}{2014^4 + 2015^4} - \frac{8 \times 2014^7}{2014^8 - 2015^8}$.

2015 HG1

求
$$\frac{1}{1860\times1865} + \frac{1}{1865\times1870} + \frac{1}{1870\times1875} + \dots + \frac{1}{2010\times2015}$$
 的值。

Find the value of $\frac{1}{1860 \times 1865} + \frac{1}{1865 \times 1870} + \frac{1}{1870 \times 1875} + \dots + \frac{1}{2010 \times 2015}$.

2015 HG10

設 a_n 及 b_n 為二次函數 $y = n(n-1)x^2 - (2n-1)x + 1$ 的截距,其中 n 為一個大於 1 的整數。求 $a_2b_2 + a_3b_3 + ... + a_{2015}b_{2015}$ 的值。

Let a_n and b_n be the x-intercepts of the quadratic function $y = n(n-1)x^2 - (2n-1)x + 1$, where n is an integer greater than 1.

Find the value of $a_2b_2 + a_3b_3 + ... + a_{2015}b_{2015}$.

2016 FG1.4

求
$$T = (3^{2^0} + 1) \times (3^{2^1} + 1) \times (3^{2^2} + 1) \times \dots \times (3^{2^{10}} + 1)$$
 的值。(答案以指數表示。)

Determine the value of $T = (3^{2^0} + 1) \times (3^{2^1} + 1) \times (3^{2^2} + 1) \times \cdots \times (3^{2^{10}} + 1)$. (Leave your answer in index form.)

Answers

Allowers				
1990 HI19	1991 HG2 98	1994 HG10 <u>56</u> 113	1994 FG6.2 16	1996 HG5 49 100
1996 FI4.4 9 10	1996 FI5.3 10 21	2000 HI2 3	2001 HG4 8	2001 FG1.2 1001
$2002 \text{ FI2.1} \\ \frac{99}{100}$	$ \begin{array}{r} 2003 \text{ HG1} \\ \hline 63 \\ \hline 2525 \end{array} $	$\frac{2005 \text{ HI6}}{2005} = \frac{2005}{2006}$	2005 FI3.4 6	2009 HG1 105
2010 HI3 $\frac{4}{105}$	$ \begin{array}{r} 2011 \text{ FI2.4} \\ -95 + 3\sqrt{1505} \\ \hline 10 \end{array} $	2012 FI4.1 22	2014 FG3.2 45	2015 HI8 1
2015 HG1 1 120900	2015 HG10 2014 2015	2016 FG1.4 $\frac{1}{2} \left(3^{2048} - 1\right)$		