Math 635 Lecture 24

Thomas Cohn

3/17/21

Continuing with Jacobi fields from last time. Recall: For γ a geodesic, $J \in \Gamma_{\gamma}(TM)$ is a Jacobi field iff $\frac{D^2}{dt^2}J + \mathcal{R}(J,\dot{\gamma})\dot{\gamma} = 0$. It's a fact that J is a Jacobi field iff $V = \partial_s f|_{s=0}$ for some variation f of γ by geodesics. We proved part of this in class, and will prove the rest in a homework problem.

Let $E_1, \ldots, E_n \in \Gamma_{\gamma}(TM)$ be an orthonormal parallel frame. We can write any $J \in \Gamma_{\gamma}(TM)$ as $J(t) = f^i(t)E_i(t)$ for some smooth functions f^i . Using the fact that $\frac{D}{dt}E_i \equiv 0$, we get $\frac{D^2}{dt^2}J = \ddot{f}^iE_i$, and by linearity, the Jacobi equation becomes a system of ODEs. $\forall i$,

$$\ddot{f}^{i} + \underbrace{(E_{i}, \dot{\gamma}, \dot{\gamma}, E_{j})}_{a_{ij} = a_{ji}} f^{j} \equiv 0 \quad \text{and} \quad (E_{i}, \dot{\gamma}, \dot{\gamma}, E_{j}) f^{j} = \mathcal{R}(J, \dot{\gamma}) \dot{\gamma} = \mathcal{R}(f^{j} E_{j}, \dot{\gamma}) \dot{\gamma} = f^{j} \mathcal{R}(E_{j}, \dot{\gamma}) \dot{\gamma}$$

The *i*th component of $\mathcal{R}(J,\dot{\gamma})\dot{\gamma}$ is

$$a_{ij} = f^i(E_j, \dot{\gamma}, \dot{\gamma}, E_i) = f^i(\dot{\gamma}, E_i, E_j, \dot{\gamma}) = a_{ji}$$

So our system of equations is

$$\ddot{f}^i(t) + a_{ij}f^j(t) = 0 \quad 1 \le i \le n$$

Cor: A Jacobi field is uniquely determined by J(0) and $\frac{DJ}{dt}(0)$. In fact, we have an isomorphism

{Jacobi fields along
$$\gamma$$
} $\cong T_{\gamma(0)}M \oplus T_{\gamma(0)}M$
 $J \mapsto (J(0), \frac{DJ}{dt}(0))$

This tells us that the space of Jacobi fields along γ has dimension 2n.

Lemma: Let J be a Jacobi field. Then $\exists a, b \in \mathbb{R}$ such that $\langle J(t), \dot{\gamma}(t) \rangle = a + bt$.

Proof: It's enough to show $\frac{d}{dt}\langle J,\dot{\gamma}\rangle$ is constant. Well,

$$\frac{d}{dt}\left(\frac{d}{dt}\left\langle J(t),\dot{\gamma}(t)\right\rangle\right) = \frac{d}{dt}\left\langle\frac{DJ}{dt}(t),\dot{\gamma}(t)\right\rangle = \left\langle\frac{D^2J}{dt^2}(t),\dot{\gamma}(t)\right\rangle = -\left\langle\mathcal{R}(J,\dot{\gamma})\dot{\gamma}(t),\dot{\gamma}(t)\right\rangle = 0$$

with the last equality because curvature is skew-symmetric. \square

Cor: If J(0) and $\frac{DJ}{dt}(0)$ are orthogonal to $\dot{\gamma}(0)$, then they remain orthogonal for all t.

Defn: A Jacobi field satisfying the above condition is called a <u>normal Jacobi field</u>. The set of normal Jacobi fields forms a dimension 2(n-1) subspace.

Lemma: $(\dot{\gamma}, t\dot{\gamma})$ span the space of tangential Jacobi fields.

Lemma: The space of Jacobi fields has a natural symplectic structure. $\forall J_1, J_2$ Jacobi fields, the quantity

$$\Omega(J_1, J_2) = \left\langle J_1, \frac{DJ_2}{dt} \right\rangle - \left\langle \frac{DJ_1}{dt}, J_2 \right\rangle$$

is constant w.r.t. t. We take Ω to be the symplectic form.

Observe: The space of normal Jacobi fields is a symplectic subspace (i.e. the restriction of Ω is still non-degenerate). It corresponds to a certain subspace of $T_{(\dot{\gamma}(0),\dot{\gamma}(0))}(T^*M)$.

We now check the lemma above. All we need to do is show $\Omega(J_1, J_2)$ is constant w.r.t. t. So we differentiate:

$$\frac{d}{dt}\Omega(J_1,J_2) = \frac{d}{dt}\left(\left\langle J_1,\frac{DJ_2}{dt}\right\rangle - \left\langle \frac{DJ_1}{dt},J_2\right\rangle\right) = \left\langle \frac{DJ_1}{dt},\frac{DJ_2}{dt}\right\rangle + \left\langle J_1,\frac{D^2J_2}{dt^2}\right\rangle - \left\langle \frac{DJ_1}{dt},\frac{DJ_2}{dt}\right\rangle - \left\langle \frac{D^2J_1}{dt},J_2\right\rangle$$

We can then use the Jacobi equation to cancel out the remaining terms. \Box

Ex: Let M be an oriented surface, and take $||\dot{\gamma}|| \equiv 1$. Then $(E_1, E_2) = (\dot{\gamma}, \dot{\gamma}^{\perp})$ is an orthonormal frame. We write down the Jacobi equations:

$$(E_i, \dot{\gamma}, \dot{\gamma}, E_j) = \begin{cases} 0 & i = 1 \text{ or } j = 1\\ k & i = j = 2 \end{cases}$$

where k is the Gaussian curvature. Write $J=f^1\dot{\gamma}+f^2\dot{\gamma}^{\perp}$. Then $\ddot{f}^1=0$ iff $f^1=a+bt$, for $a,b\in\mathbb{R}$. And $\ddot{f}^2=kf^2=0$ (assume k is constant for this problem). Then $f^2(t)=Ae^{i\sqrt{k}}+Be^{-i\sqrt{k}}$. f^2 must be real, so we solve this well-known type of differential equation, and if k>0, we get the following:

$$J(t) = (A\cos\sqrt{k}t + B\sin\sqrt{k}t)\dot{\gamma}^{\perp}$$

If J(0)=0, then $J(t)=B\sin(\sqrt{k}t)\dot{\gamma}^{\perp}$ Observe that $J(\frac{\pi}{\sqrt{k}})=0$. We say that " $\gamma(0)$ and $\gamma(\frac{\pi}{\sqrt{k}})$ are conjugate". If k<0, then we replace sin and cos with sinh and cosh. Then J(0)=0 implies $J(t)=B\sinh(\sqrt{k}t)\dot{\gamma}^{\perp}$. In this case, $J(t)\neq 0, \ \forall t\neq 0$.

One application of this is computing $d(\exp_n)_v$ for $v \neq 0$.

Prop: Given $v, w \in T_pM$, $d(\exp_p)_v(w) = J(1)$, where J is the Jacobi field such that J(0) = 0 and $\frac{DJ}{dt}(0) = w$.

Proof: $d(\exp_p)_v(w) = \frac{d}{dt} \exp_p(v + sw)\big|_{s=0}$. Define $f(s,t) = \exp_p(t(v + sw))$. $\forall s, t \mapsto f(s,t)$ is a geodesic. Define $J(t) = \partial_s f\big|_{s=0}$. We know this is a Jacobi field, and claim that $\frac{DJ}{dt}(0) = w$.