Отчет о выполненой лабораторной работе 2.2.3

Котляров Михаил, Б01-402

1 Введение

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

Оборудование: цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр и амперметр (цифровые мультиметры); источник постоянного напряжения; магазин сопротивлений.

2 Теоретические сведения

Теплопроводность — это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии

$$\bar{q} = -k\nabla T,\tag{1}$$

где $k\left[\frac{\mathrm{Br}}{\mathrm{m}\cdot\mathrm{K}}\right]$ - *коэффициент теплопроводности*. Среднее расстояние, на котором молекулы двигаются без столкновений, называется длиной свободного пробега. Будем обозначать эту величину λ . Молекулярно-кинетическая теория дает следующую оценку для коэффициента теплопроводности газов:

$$k \sim \lambda \overline{\nu} \cdot nc_V,$$
 (2)

где λ - длина свободного пробега молекул газа, $\overline{\nu}=\sqrt{\frac{8k_{\rm B}T}{\pi m}}$ — средняя скорость их теплового движения, n — концентрация (объёмная плотность) газа, $c_V=\frac{i}{2}k_{\rm B}$ - его теплоёмкость при постоянном объёме в расчёте на одну молекулу (i — эффективное число степеней свободы молекулы). Длина свободного пробега может быть оценена как $\lambda=\frac{1}{\sigma n}$, где σ — эффективное сечение столкновений молекул друг с другом. В модели частиц, как одинаковых твердых шариков $\sigma=\pi d^2$, где d - диаметр шарика. Тогда из (2) видно, что k не зависит от плотности и определяется только температурой. Рассматривая стационарную теплопроводность в цилиндрической геометрии, где пренебрегаются теплоотвод через торцы и перепад температур между нитью и стенками, а параметры газа считаются зависящами только от расстояния до оси системы, справедлива следущая формула

$$Q = \frac{2\pi L}{\ln \frac{r_0}{r_1}} k \cdot \Delta T \tag{3}$$

Рис. 1. Цилиндрическая установка

3 Экспериментальная установка

Схема установки приведена на рис. 2. На оси полой цилиндрической трубки с внутренним диаметром $2r_0\approx 0,7\pm 0,01$ см размещена металлическая нить диаметром $2r_1\approx 0,05\pm 0,003$ мм и длиной $L\approx 40\pm 0,2$ см (материал нити и точные геометрические размеры указаны в техническом описании установки). Полость трубки заполнена воздухом (полость через небольшое отверстие сообщается с атмосферой). Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так что их температура t_0 поддерживается постоянной. Для предотвращения конвекции трубка расположена вертикально.

Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). По пропускаемому через нить постоянному току I и напряжению U на ней вычисляется мощность нагрева по закону Джоуля—Ленца: Q=UI, и сопротивление нити по закону Ома: $R=\frac{U}{I}$.

Сопротивление нити является однозначной функцией её температуры R(t). В исследуемом интервале температур $(20\,\tilde{}~80\,\tilde{}^{\circ}C)$ зависимость сопротивления от температуры можно с хорошей точностью аппроксимировать линейной функцией:

Рис. 2. Схема установки

$$R(t) = R_{273}(1 + \alpha t), \tag{4}$$

где t - температура в [°C], R_{273} - сопротивление нити при температуре 0°C и $\alpha = \frac{1}{R_{273}} \frac{dR}{dT}$ - температурный коэффициент сопротивления материала.

4 Приборы и данные

• Цифровые мульиметры Вольтметр универсальный В7-78/1, погрешность измерения постоянного тока 0.15% + 0.02 мA, погрешность измерения постоянного напряжения 0.004% + 0.007 мB.

рис. 1 Электрическая схема установки

- Термостат Witeg WCR-12, погрешность измерения температуры $0.2~^{\circ}C$.
- Источник постоянного напряжения GW Instek GPS-2303, погрешность $0.5\% + 10~\mathrm{mB}$
- Магазин сопротивлений МЕГЕОН05350, погрешность 5%, 2%, 1%, 0,5% для декад x0,1, x1, x10, x100 соответственно

5 Выполнение

1. Проведем предварительные расчеты параметров опыта. Приняв максимально допустимый перегрев нити относительно термостата, а равным $\Delta t_{max} = 30^{\circ}C$, а коэффициент теплопроводности воздуха $k \approx 25 \frac{\text{мВт}}{\text{м·K}}$, оценим максимальную мощность нагрева. $Q_{max} = \frac{2\pi L}{\ln \frac{r_0}{r_1}} k \cdot \Delta t_{max} = 381,4$ мВт. Сопротивление платиновой

нити при комнатной температуре $R_{\rm H} \approx 20\,$ Ом. Определим с помощью данных значений значения максимального тока в нити I_{max} и максимального напряжения на ней U_{max} .

$$U_{max} = \sqrt{Q_{max}R_{\rm H}} = 2,76 \text{ B},$$

$$I_{max} = \sqrt{\frac{Q_{max}}{R_{rr}}} = 138,1 \text{ MA}.$$

2. Показания гигрометра: температура у стены с окнами $17^{\circ}C$, влажность 79%. Температруа термостата $23^{\circ}C$. Проведем первую серию измерений сопротивления нити $R_{\rm H} = \frac{U}{I}$ от подаваемой на нее мощности Q = UI. Понижая сопротивление на магазине, будем ждать по 30-40 секунд для установления теплового равновесия. Убедимся в том, что зависимость линейная, построив график.

По окончании первой серии перведем магазин сопротивления $R_{\rm m}$ на 10 кОм, установив минимальный ток через нить. Повысим температуру в термостате и подождем 10-15 минут для установления теплового равновесия в системе. Проделаем этот опыт еще 3 раза для различных температур термостата.

6 Обработка результатов

1. Проведя 4 серии мы получили следующие результаты.

$R_{\scriptscriptstyle \mathrm{M}}, \mathrm{Om}$	I, mA	U , м $\mathbf B$	Q, м B т	σ_Q , м B т	$arepsilon_Q,\%$	R, OM	σ_R, O_M	$\varepsilon_R,\%$
199.9	15.70 ± 0.04	308.5	4.843	0.013	0.28	19.650	0.055	0.28
99.9	28.22 ± 0.06	555.9	15.687	0.035	0.22	19.699	0.044	0.22
49.9	46.87 ± 0.09	930.6	43.617	0.084	0.19	19.855	0.038	0.19
29.9	63.54 ± 0.12	1275	81.014	0.147	0.18	20.066	0.036	0.18
9.9	97.40 ± 0.17	2016.2	196.378	0.335	0.17	20.700	0.035	0.17
4.9	111.71 ± 0.19	2352.1	262.753	0.441	0.17	21.055	0.035	0.17

Таблица 1. $t = 23,0^{\circ}C$

$R_{\scriptscriptstyle \mathrm{M}}$, Om	I , m A	U , м $\mathbf B$	Q, м B т	σ_Q , м B т	$\varepsilon_Q,\%$	R, OM	σ_R , Om	$\varepsilon_R,\%$
199.9	16.02 ± 0.04	322.8	5.171	0.014	0.27	20.150	0.055	0.27
99.9	29.26 ± 0.06	591.5	17.307	0.038	0.22	20.215	0.044	0.22
59.9	43.68 ± 0.09	888.4	38.805	0.076	0.20	20.339	0.040	0.20
39.9	57.88 ± 0.11	1186.2	68.657	0.127	0.18	20.494	0.038	0.18
19.9	85.15 ± 0.13	1783.4	151.857	0.264	0.17	20.944	0.036	0.17
9.9	110.13 ± 0.19	2369.1	260.909	0.439	0.17	21.512	0.036	0.17
6.9	120.32 ± 0.20	2622.2	315.503	0.526	0.17	21.794	0.036	0.17
3.9	132.13 ± 0.22	2929.2	387.035	0.639	0.17	22.169	0.037	0.17

Таблица 2. $t = 30,0^{\circ}C$

$R_{\scriptscriptstyle \mathrm{M}}$, Om	I, mA	U , м $\mathbf B$	Q, м B т	σ_Q , м B т	$arepsilon_Q,\%$	R, OM	σ_R, O_M	$arepsilon_R,\%$
199.9	15.96 ± 0.04	335.1	5.348	0.015	0.28	20.996	0.058	0.28
99.9	29.06 ± 0.06	612.1	17.788	0.039	0.22	21.063	0.046	0.22
59.9	43.24 ± 0.09	915.8	39.599	0.078	0.20	21.179	0.042	0.20
39.9	57.09 ± 0.11	1218.3	69.553	0.129	0.19	21.340	0.039	0.19
19.9	83.49 ± 0.13	1817.3	151.726	0.264	0.17	21.767	0.038	0.17
9.9	107.46 ± 0.18	2397.2	257.603	0.434	0.17	22.308	0.038	0.17
6.9	117.20 ± 0.20	2645.5	310.053	0.518	0.17	22.573	0.038	0.17
3.9	128.51 ± 0.22	2944.5	378.398	0.627	0.17	22.913	0.038	0.17

Таблица 3. $t = 42, 2^{\circ}C$

$R_{\scriptscriptstyle \mathrm{M}}, \mathrm{Om}$	I, mA	U , м $\mathbf B$	Q, м B т	σ_Q , м B т	$arepsilon_Q,\%$	R, OM	σ_R , Om	$arepsilon_R,\%$
199.9	15.87 ± 0.04	352.2	5.589	0.015	0.28	22.193	0.061	0.28
99.9	28.78 ± 0.06	640.4	18.431	0.040	0.22	22.252	0.049	0.22
59.9	42.62 ± 0.09	953.1	40.621	0.080	0.20	22.363	0.044	0.20
39.9	56.03 ± 0.11	1261.4	70.676	0.131	0.19	22.513	0.042	0.19
19.9	81.29 ± 0.13	1862.6	151.411	0.264	0.17	22.913	0.040	0.17
9.9	103.95 ± 0.18	2433.4	252.952	0.428	0.17	23.409	0.040	0.17

Таблица 4. $t=59,0^{\circ}C$

2. Построим по методу наименьших квадратов график зависимости сопротивления нити от мощности R(Q).

График №1 Зависимость R(Q)

Из графика видно, что зависимость линейная. Определим сопротивление нити при $Q \to 0~R_0$ и угловые коэффициенты $\frac{dR}{dQ}$ для исследуемых температур.

	$T,^{\circ}C$	$\frac{dR}{dQ}, \frac{\mathrm{O}_{\mathrm{M}}}{\mathrm{B}_{\mathrm{T}}}$	$\sigma_{rac{dR}{dQ}}, rac{\mathrm{O}_{\mathrm{M}}}{\mathrm{Br}}$	$\varepsilon_{\frac{dR}{dQ}},\%$	R_0, O_{M}	σ_{R_0}, O м	$arepsilon_{R_0},\%$
ĺ	23.0 ± 0.2	5.483	0.018	0.33	19.6186	0.0018	0.009
ĺ	30.0 ± 0.2	5.282	0.016	0.30	20.1299	0.0022	0.011
ĺ	42.2 ± 0.2	5.143	0.017	0.34	20.9765	0.0024	0.011
ĺ	59.0 ± 0.2	4.932	0.009	0.19	22.1635	0.0008	0.004

Таблица 5. Сопротивления R_0 и коэффициенты $\frac{dR}{dQ}$ для исследуемых температур

3. Пользуясь полученными значениями R_0 построим по МНК график зависимости сопротивления нити от температуры R(T).

- R = 0.0705T + 18.0041 Om

График №2 Зависимость R(T)

Из графика видно, что зависимость линейная. Определим наклон прямой $\frac{dR}{dT}$, сопротивление при $0^{\circ}C$ R_{273} и температурный коэффициент сопротивления материала нити α .

$$\begin{split} \frac{dR}{dT} &= (7,05\pm0,02)\cdot10^{-2}\frac{\mathrm{Om}}{\mathrm{K}}(\varepsilon_{\frac{dR}{dT}} = 0,34\%),\\ R_{273} &= 18,004\pm0,003\mathrm{Om}(\varepsilon_{R_{273}} = 0,02\%),\\ \alpha &= \frac{1}{R_{273}}\frac{dR}{dT} = 3,916\pm0,013,10^{-3}\mathrm{K}^{-1}(\varepsilon_{\alpha} = 0,34\%), \end{split}$$

Значение α довольно близко к табличному значению для платины ($\alpha_{Pt}^{\text{табл}} = 3, 8 \cdot 10^{-3} \text{K}^{-1}$).

4. Найдем коэффициенты теплопроводности воздуха при атмосферном давлении для наших температур:

$$k = \frac{dQ}{dT} \frac{ln\frac{r_o}{r_1}}{2\pi L} = \frac{\frac{dR}{dT}}{\frac{dR}{dQ}} \frac{ln\frac{r_o}{r_1}}{2\pi L}$$

$T, ^{\circ}C$	$k, \frac{MBT}{M \cdot K}$	$\sigma_k, \frac{MBT}{M \cdot K}$	ε_k , %
23.0 ± 0.2	25.28	0.42	1.65
30.0 ± 0.2	26.24	0.43	1.65
42.2 ± 0.2	26.96	0.45	1.66
59.0 ± 0.2	28.11	0.46	1.63

Таблица 6. Коэффициенты теплопроводности воздуха при атмосферном давлении для исследуемых температур

5. Построим график зависимости теплопроводности воздуха от температуры газа k(T) в обычном и в двойном логарифмическом масштабах.

График №3 Зависимость k(T)

График №4 Зависимость k(T) в двойном логарифмическом масштабе

Предполагая, что коэффициент теплопроводности воздуха зависит степенным образом от абсолютной температуры: $k \sim T^{\beta}$, вычислим по графику №4 $\beta=0,88\pm0,07(\varepsilon_{\beta}=7,98\%)$. Теоретический коэффициет равен 0.5, поскольку $k \sim \lambda \overline{\nu} \cdot nc_V$, где $\overline{\nu}=\sqrt{\frac{8k_{\rm B}T}{\pi m}}$.

7 Результаты и обсуждения

Сравним полученные экспериментально значения коэффициента теплопроводности воздуха при атмосферном давлении для исследуемых температур с табличными значениями. В таблице приведены вычисленные на основе данных из книги Лабораторный практикум по общей физике Том 1 Термодинамика и молекулярная физика коэффициента по линейной зависимости (k=aT+b) и степенной с показателем $\frac{1}{2}$ $(k=\alpha\sqrt{T}+\beta)$.

T, K	$k_{ m 9KCH}, {{ m MBT}\over { m M}\cdot { m K}}$	$k_{ ext{reop}}^{ ext{line}}, rac{ ext{mBt}}{ ext{m} \cdot ext{K}}$	$k_{\mathrm{reop}}^{\mathrm{root}}, \frac{{}_{\mathrm{M}\mathrm{B}\mathrm{T}}}{{}_{\mathrm{M}}\cdot\mathrm{K}}$	$\sigma_{\scriptscriptstyle{9\mathrm{KCH}}}, rac{{}_{\scriptscriptstyle{\mathrm{M}}}\mathrm{B}{}_{\scriptscriptstyle{\mathrm{T}}}}{{}_{\scriptscriptstyle{\mathrm{M}}}\cdot\mathrm{K}}$	$\sigma_{ ext{ ine}}^{ ext{line}}, rac{ ext{ ine}B ext{ ine}}{ ext{ ine}K}$	$\sigma_{\mathrm{reop}}^{\mathrm{root}}, \frac{{}_{\mathrm{M}\mathrm{B}\mathrm{T}}}{{}_{\mathrm{M}}\cdot\mathrm{K}}$	$\varepsilon_{ m skcn},\%$	$arepsilon_{ ext{ ine}}^{ ext{line}},\%$	$\varepsilon_{ m reop}^{ m root},\%$
296.0 ± 0.2	25.28	25.88	25.88	0.42	0.60	0.60	1.65	2.30	2.31
303.0 ± 0.2	26.24	26.41	26.41	0.43	0.17	0.17	1.65	0.63	0.63
315.2 ± 0.2	26.96	27.32	27.31	0.45	0.36	0.36	1.66	1.32	1.30
332.0 ± 0.2	28.11	28.64	28.66	0.46	0.53	0.55	1.63	1.85	1.91

Таблица 7. Сравнение экспериментальных и табличных значений

Как мы видим, полученные значения с хорошей точностью совпадают с табличными. Также можно отметить, что расхождение между степенной и линейной зависимостью минимальны, что означает, что полученный по графику №4 показатель β , несмотря на сильное расхождение с теоретическим, для данного диапазона не сильно влияет на точность полученных значений. Стоит отметить, что эффективное сечение столкновение σ является медленно убывающей функцией T, поэтому по соотношению (2) можно сделать вывод, что показатель β должен быть больше $\frac{1}{2}$.

8 Выводы

- 1. В данной работе были измерены зависимости сопротивления платиновой нити от подаваемой на нее мощности при разных температурах. Построены графики зависимостей R(Q), получены угловые коэффициенты $\frac{dR}{dQ}$ и сопротивления нити при данных температурах (при $Q \to 0$). Относительная погрешность величин мала из-за высокой точности приборов (в частности мультиметров)
- 2. при помощи полученных сопротивлений построили график зависимости сопротивления нити от ее температуры R(T), вычислили температурный коэффициент сопротивления платиновой нити. $\alpha_{\text{эксп}} = 3,916\pm0,013,10^{-3}\text{K}^{-1}$ ($\varepsilon_{\alpha} = 0,34\%$), $\alpha_{\text{табл}} = 3,8\cdot10^{-3}\text{K}^{-1}$. Значения отличаются на $0,116\cdot10^{-3}\text{K}^{-1}(\varepsilon=3,05\%)$, поэтому экспериментальная величина довольна близка к табличной.
- 3. Вычислили коэффициенты теплопроводности воздуха при атмосферном давлении и разных температурах. Табличные значения для температур $t_2=30,0^{\circ}C$ и $t_3=42,2^{\circ}C$ с большим числом измеренных точек зависимости R(Q) входят в диапазон погрешности экспериментальных. Относительная погрешность коэффициента для каждой температуры не превосходит 1,66% (см. таблицу 7).
- 4. Предположив, что коэффициент теплопроводности зависит от температуры степенным образом, по графику зависимости lnk(lnT) определили показатель. $\beta_{\rm эксп}=0,88\pm0,07(\varepsilon_{\beta}=7,98\%),\ \beta_{\rm теор}=0,5$. Значения сильно отличаются, однако исходя из таблицы 7, можно сделать вывод, что при показателе от 0,5 до 1 экспериментальные и теоретические значения гкоэффициентов теплопроводности не сильно расходятся.