

INF 638 Cryptography & Cryptosystems

Section 4: Data Encryption System

Dr. Bertrand Cambou

Professor of Practice NAU, Cybersecurity
School of Informatics, Computing, and Cyber-Systems
Bertrand.cambou@nau.edu

INF 638: Cryptography & Cryptosystems

- 1- Motivation & Definitions
- 2- Elements of Number theory
- **3-** Early Cryptographic methods
- 4- Symmetrical Cryptography: DES
- 5- Symmetrical Cryptography: AES
- ♦ 6- Quantum Cryptography: Key distribution
- 7- Elements of Asymmetrical Cryptography
- 8- Asymmetrical Cryptography: RSA
- 9- ECC Key Distribution
- **❖ 10-** PKI & Digital Signatures
- 11- Hash Functions
- 12- Smartcards

- 4-1 History & Description
- 4-2 Encryption versus Decryption
- 4-3 The f-function
- 4-4 Key processor
- 4-5 Summary & limitations

Overview of DES Plain Text 64-bit key 64 bits Initial Permutation 56-bit key 16 rounds 16 rounds DES of Key encryption Processor Final Permutation Key Processing Cipher Text 64 bits

1-DES: Initial and final permutation

2- DES: 16 rounds of Feistel encryption

- 1- History & Description
- 2- Encryption versus Decryption
- 3- The f-function
- 4- Key processor
- ❖ 5- Summary & limitations

- 1- History & Description
- 2- Encryption versus Decryption
- 3- The f-function
- 4- Key processor
- 5- Summary & limitations

DES: f function – Expansion/Permutation

DES: f function – S Box

DES: description of the S-BOX

Detail: 8 S-boxes

x0111x

8

x1000x

3

x1001x

10

x1010x

6

x1011x

12

x1100x

5

x1101x

9

x1110x

0

x1111x

7

x0110x

11

x0101x

15

x0010x

13

 $\mathbf{S_1}$

0уууу0

x0000x

14

x0001x

4

x0011x

1

x0100x

2

ОууууО	14	4	13	1	2	15	11	8	3	10	ь	12	5	9	U	/
0уууу1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
1уууу0	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
1уууу1	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
S ₂	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
0уууу1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
1уууу0	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
1уууу1	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
S ₃	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
0уууу1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
1уууу0	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
1уууу1	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
S ₄	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
0уууу1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
1уууу0	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
1уууу1	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
S ₅	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
0уууу1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
1уууу0	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
1уууу1	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
														·		
S ₆	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
0уууу1	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
1уууу0	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
1уууу1	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
S ₇	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
0уууу1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
1уууу0	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
1уууу1	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
S ₈	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
0уууу1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
1уууу0	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
1уууу1	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

DES: P-box of the f function

P – Box permutation

(16)	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Positions 1 after permutation carry the bit located position 16 before permutation

- 1- History & Description
- 2- Encryption versus Decryption
- 3- The f-function
- 4- Key processor
- **5** Summary & limitations

Key processing: permuted choice 1

PCI: only 56 bits of the 64 bits selected;

8, 16, 24, 32, 40, 48, 56, 64: parity bits.

PC1								
(57)	49	F	_33	25	17	9		
1	58	50	42	34	_26_	18		
10	2	59	51	43	35	27		
19	11	3	60	52	44	36		
above for C_i ; below for D_i								
63	55	47	39	31	23	15		
7	62	54	46	38	30	22		
14	6	61	53	45	37	29		
21	13	5	28	20	12	4		

Positions 1 after permutation carry the bit located position 57 before permutation

Key processing: permuted choice 2

PC2: Only 48-bits of the 56-bit selected;

Left behind: 9, 18, 22, 25, 35, 38, 43, 54.

Positions 1 after permutation carry the bit located position 14 before permutation

- 1- History & Description
- 2- Encryption versus Decryption
- 3- The f-function
- 4- Key processor
- 5- Summary & limitations

Triple DES – Performance comparison

Method	Properties	Strength			
DES	One 56-bit key	Weak			
Double DES	Two 56-bit keys	2 X as strong as DES			
Two-Key Triple DES	Two 56-bit keys	16 million times as strong as DES			
Three-Key Triple DES	Three 56-bit keys	10 ¹⁷ as strong as DES			
AES	128-bit key	4 10 ²¹ as strong as DES			

QUESTIONS?

Dr. Bertrand Cambou

Professor of Practice NAU, Cybersecurity
School of Informatics, Computing, and Cyber-Systems
Bertrand.cambou@nau.edu