

Load Analysis

Alexander Standaert Wouter Diels

OUTLINE

INPUTS: Load types, Design parameters and

Simulation set up

- OBJECTIVES: Linear sweep and Monte carlo
- RESULTS LINEAR SWEEP
- RESULTS MONTE CARLO
- FINAL LOAD
- CONCLUSION : Conclusion and Future work

OUTLINE

■ INPUTS : Load types, Design parameters and

Simulation set up

- OBJECTIVES: Linear sweep and Monte carlo
- RESULTS LINEAR SWEEP
- RESULTS MONTE CARLO
- FINAL LOAD
- CONCLUSION: Conclusion and Future work

OBJECTIVES

- Bitline voltage difference: V_BL(HRS) V_BL(LRS)
- Bitline delay
- Area
- Voltage drop memory cell
- Minimal Bitline voltage difference
- Minimal Standard deviation Bitline voltage
- Maximal Bitline delay
- Robustness Temperature, Vss, ... variations

LINEAR SWEEP

MONTE CARLO

OBJECTIVES LINEAR SWEEP

OBJECTIVES MONTE CARLO

OUTLINE

- INPUTS : Load types, Design parameters and
- Simulation set up
- OBJECTIVES: Linear sweep and Monte carlo
- RESULTS LINEAR SWEEP
- RESULTS MONTE CARLO
- FINAL LOAD
- CONCLUSION: Conclusion and Future work

LINEAR SWEEP

SWEEP RANGE:

W_switch = 100-500nm W_load = 100-500nm V_bias = 0-0.4V

LINEAR SWEEP: SWITCH LOAD

LINEAR SWEEP: BIAS LOAD

LINEAR SWEEP: DIODE LOAD

LINEAR SWEEP: BULK LOAD

LINEAR SWEEP: PARETO

PARETO OBJECTIVES:

- Area
- Diff BL voltage
- Settle Time
- Voltage drop memory cell

OUTLINE

- INPUTS : Load types, Design parameters and Simulation set up
- OBJECTIVES: Linear sweep and Monte carlo
- RESULTS LINEAR SWEEP
- RESULTS MONTE CARLO
- FINAL LOAD
- CONCLUSION: Conclusion and Future work

OBJECTIVES MONTE CARLO

MONTE CARLO: PARETO

MONTE CARLO: PARETO

OUTLINE

- INPUTS : Load types, Design parameters and Simulation set up
- OBJECTIVES: Linear sweep and Monte carlo
- RESULTS LINEAR SWEEP
- RESULTS MONTE CARLO
- FINAL LOAD
- CONCLUSION : Conclusion and Future work

Everything has mismatch

Everything has mismatch

Load of memory BL and reference BL are matched → Both loads have a mismatch but their mismatch is the same

Load of memory BL and reference BL are matched → Both loads have a mismatch but their mismatch is the same = 100% correlation

Load of memory BL and reference BL are matched → Both loads have a mismatch but their mismatch is the same

- CDF(BL_voltage HRS) < 0.1%
- CDF(BL_voltage LRS) < 99.9%
- CDF(BL_voltage REFERENCE) < 0.1%
- CDF(BL_voltage REFERENCE) < 99.9%

Why Dominant?

1) Cascode effect: explains why mismatch switch is dominant

- 1) Cascode effect: explains why mismatch switch is dominant
- 2) Increase ds resistance : explains why V_bl(HRS)- V_bl(LRS) becomes smaller at extreme positive values of ΔVt

INTERMEZZO

Why no cascode effect with WL and Sel_SL transistors?

 $\Delta V = gm_1(r_{01}gm_2r_{02})\Delta Vt$

OUTLINE

- INPUTS: Load types, Design parameters andSimulation set up
- OBJECTIVES: Linear sweep and Monte carlo
- RESULTS LINEAR SWEEP
- RESULTS MONTE CARLO
- FINAL LOAD
- **CONCLUSION:** Conclusion and Future work

FUTURE WORK

