Příloha: Výstupní zpráva

Jméno: Miroslav Bálek

Login: xbalek02

Architektura navrženého obvodu

Schéma obvodu

Obrázek 1: RTL obvod

Popis funkce

Obvod se skládá z:

- FSM Konečný automat
- Počítadla:
 - O CLK COUNTER Sloužící k počítání tiků hodinového signálu
 - o BIT_COUTER Sloužící k počítání datových bitů
 - o DEMULTIPLEXOR Přepínač pro paralelní zobrazení dat

Obvod se skládá z FSM viz. níže, dále se skládá z CLK_COUNTER sloužící k počítaní hod. signálů. Dále se skládá z BIT_COUNTER sloužící k počítání datových bitů. Vstupem do obvodu je datová linka DIN, na níž jsou přenášeny data. Po příchodu *start bitu* je zpracováno 8 sériových datových bitů (jednou za 16 hod. sig.), které se po přijetí ukončovacího bitu *end bit* zobrazí paralelně na výstupu DOUT pomocí demultiplexoru. Validita dat na výstupu DOUT je potvrzena výstupem DOUT_VALID, a to nastavením jeho hodnoty do log. 1 po dobu jednoho hod. signálu.

Návrh automatu (Finite State Maschine)

Schéma automatu

Legenda:

- DIN Datový vstup
- CLK_COUNT Počítadlo hodinových tiku
- CLK EN Povoluje běh CLK COUNT
- BIT_COUNT Počítadlo bitů

• BIT_EN – Povoluje běh BIT_COUNT

Obrázek 2: Konečný automat FSM

Automat čeká ve stavu AWAIT, dokud se na datovém vstupu DIN neobjeví logická 0. Poté přechází do stavu IS_START_BIT. V tomto stavu obvod čeká osm hodinových signálu, a následně ověřuje hodnotu na vstupu DIN, pokud je hodnot rovna logické 1, automat se vrátí do stavu AWAIT. Pokud je na vstupu stále 0 automat přechází do stavu WAIT_FOR_DATA, kde setrvá následujících osm hod. signálu. A následně přechází do stavu DATA, kde dochází ke zaznamenávání osmi bitů. Následně přechází automat do stavu IS_STOP_BIT, kde čeká na příjem tzv. stop bitu. Po přijmutí tohoto stop bitu se na výstupu D_VALID podobu jednoho hod. signálu zobrazí log. 1. Následně se automat vrací do původního stavu čekající na příjem dalších dat.