Difference Operators

STAT 464 / 864 Fall 2024
Discrete Time Series Analysis
Skyepaphora Griffith, Queen's University

We learned something today, in Time Series 🕛

Autocovariance: $\gamma_X(h) \stackrel{\text{def}}{=} \text{Cov}(X_t, X_{t+h})$,

for all t (time independent)

compares two observations/RVs distanced in time

Stationary:

frequency structure doesn't change over time,

(neither does mean or variance)

kinda feels like MC escher

What do we tell quin?

The Difference Operator:

Basic operation:
$$\nabla X_t \stackrel{\text{def}}{=} X_t - X_{t-1}$$

Lag-h difference: $\nabla_h X_t \stackrel{\text{def}}{=} X_t - X_{t-h}$

Powers denote repeat applications **Example:**

Consider the polynomial

 $m_t = c_0 + c_1 t + c_2 t^2 + \dots + c_k t^k$

Last term of expansion: j=k

So, (t-1)^k is t^k, plus some polynomial with degree < k

Applying ∇ to a Seasonal Component

Suppose {Xt} has a seasonal component st with period d

$$\nabla_d s_t = s_t - s_{t-d} = 0$$

We learned something today, in Time Series 🕛

What do we tell quin?