# INTRODUCTION TO STATISTICS

**LECTURE 7** 

## LAST TIME

- Normal distribution
  - probability of being in an interval;
  - some properties;
  - MLE for  $\mu$  and  $\sigma$ .

## LAST TIME

- Normal distribution
  - probability of being in an interval;
  - some properties;
  - MLE for  $\mu$  and  $\sigma$ .
- Central limit theorem an introduction.

## **TODAY**

- Central limit theorem
  - revision;
  - practical exercise.

## **TODAY**

- Central limit theorem
  - revision;
  - practical exercise.
- Properties of point estimators
  - bias, variance and consistency.

## **TODAY**

- Central limit theorem
  - revision;
  - practical exercise.
- Properties of point estimators
  - bias, variance and consistency.

Confidence intervals

Why normal distribution is so important

#### In the <u>video</u>:

• Instead of measuring every single rabbit, weigh samples of size N and compute sample means.



#### In the video:

- Instead of measuring every single rabbit, weigh samples of size N and compute sample means.
- Central limit theorem (informally): the larger the N, the more "normal" the distribution of the sample averages is.





Samples  $X_1, X_2, ..., X_n$ :

- i.i.d.
- a finite mean  $\mu$  and finite variance  $\sigma^2$

Samples  $X_1, X_2, ..., X_n$ :

- i.i.d.
- a finite mean  $\mu$  and finite variance  $\sigma^2$

Let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Samples  $X_1, X_2, ..., X_n$ :

- i.i.d.
- a finite mean  $\mu$  and finite variance  $\sigma^2$

Let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Then

$$\bar{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$

- $X \sim Po(5)$  number of errors per computer program
  - E(X) = Var(X) = 5
- $X_1, X_2, \dots, X_{125}$  number of errors in the programs.

$$P(\overline{X}_n \leq 5.5) =$$

- $X \sim Po(5)$  number of errors per computer program
  - E(X) = Var(X) = 5
- $X_1, X_2, \dots, X_{125}$  number of errors in the programs.

$$P(\bar{X}_n \le 5.5) =$$

$$= P\left(\frac{\sqrt{125}(\bar{X}_n - 5)}{\sqrt{5}} \le \right) \approx$$

- $X \sim Po(5)$  number of errors per computer program
  - E(X) = Var(X) = 5
- $X_1, X_2, ..., X_{125}$  number of errors in the programs.

$$P(\bar{X}_n \le 5.5) =$$

$$= P\left(\frac{\sqrt{125}(\bar{X}_n - 5)}{\sqrt{5}} \le \frac{\sqrt{125}(5.5 - 5)}{\sqrt{5}}\right) \approx$$

- $X \sim Po(5)$  number of errors per computer program
  - E(X) = Var(X) = 5
- $X_1, X_2, ..., X_{125}$  number of errors in the programs.

$$P(\overline{X}_n \le 5.5) =$$

$$= P\left(\frac{\sqrt{125}(\overline{X}_n - 5)}{\sqrt{5}} \le \frac{\sqrt{125}(5.5 - 5)}{\sqrt{5}}\right) \approx$$

$$\approx P(Z \le 2.5) =$$

- $X \sim Po(5)$  number of errors per computer program
  - E(X) = Var(X) = 5
- $X_1, X_2, ..., X_{125}$  number of errors in the programs.

$$P(\bar{X}_n \le 5.5) =$$

$$= P\left(\frac{\sqrt{125}(\bar{X}_n - 5)}{\sqrt{5}} \le \frac{\sqrt{125}(5.5 - 5)}{\sqrt{5}}\right) \approx$$

$$\approx P(Z \le 2.5) = 0.9938$$

## **CLT IN ACTION**

Google Classroom -> Lecture 7 -> Mean of means

Bias, variance and consistency

- Parameter estimation:
  - Given samples  $X_1, X_2, ... X_n$
  - Obtain estimate  $\hat{\theta}$  of an unknown parameter  $\theta$ .

• Parameter estimation:

Given samples  $X_1, X_2, ... X_n$ Obtain estimate  $\hat{\theta}$  of an unknown parameter  $\theta$ .

• 
$$\hat{\theta} = T(X_1, ..., X_n)$$
,  $T(X)$  — estimator.

- Parameter estimation:
  - Given samples  $X_1, X_2, ... X_n$ Obtain estimate  $\hat{\theta}$  of an unknown parameter  $\theta$ .
- $\hat{\theta} = T(X_1, ..., X_n)$ , T(X) estimator.
- So far, we only constructed ML estimators.

- Parameter estimation:
  - Given samples  $X_1, X_2, ... X_n$ Obtain estimate  $\hat{\theta}$  of an unknown parameter  $\theta$ .
- $\hat{\theta} = T(X_1, ..., X_n)$ , T(X) estimator.
- So far, we only constructed ML estimators. But anything can be an estimator:

- Parameter estimation:
  - Given samples  $X_1, X_2, ... X_n$
  - Obtain estimate  $\hat{\theta}$  of an unknown parameter  $\theta$ .
- $\hat{\theta} = T(X_1, ..., X_n)$ , T(X) estimator.
- So far, we only constructed ML estimators. But anything can be an estimator:

$$\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$
,  $\hat{\theta}_2 = \frac{X_1 + X_n}{2}$ ,  $\hat{\theta}_3 = \max(X_1, \dots, X_n)$ , ...

- Parameter estimation:
  - Given samples  $X_1, X_2, ... X_n$
  - Obtain estimate  $\hat{\theta}$  of an unknown parameter  $\theta$ .
- $\hat{\theta} = T(X_1, ..., X_n)$ , T(X) estimator.
- So far, we only constructed ML estimators. But *anything* can be an estimator:

$$\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$
,  $\hat{\theta}_2 = \frac{X_1 + X_n}{2}$ ,  $\hat{\theta}_3 = \max(X_1, \dots, X_n)$ , ...

• We need to compare different estimators.

Bias

Variance

Consistency

## **BIAS**

An estimator T(X) is unbiased of  $\theta$  if

$$E(T(X)) = \theta$$

## **BIAS**

An estimator T(X) is unbiased of  $\theta$  if

$$E(T(X)) = \theta$$

Bias is defined as

$$bias(T(X)) = \theta - E(T(X))$$

$$X_1, ..., X_n \sim Bernoulli(p)$$

$$\hat{p}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i - \text{(un)biased?}$$

$$X_1, ..., X_n \sim Bernoulli(p)$$

$$\hat{p}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i - \text{(un)biased?}$$

$$E(\hat{p}_{ML}) =$$

$$X_1, ..., X_n \sim Bernoulli(p)$$

$$\hat{p}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i - \text{(un)biased?}$$

$$E(\hat{p}_{ML}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) =$$

$$X_1, ..., X_n \sim Bernoulli(p)$$

$$\hat{p}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i - \text{(un)biased?}$$

$$E(\hat{p}_{ML}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) = 0$$

$$X_1, ..., X_n \sim Bernoulli(p)$$

$$\hat{p}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i - \text{(un)biased?}$$

$$E(\hat{p}_{ML}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) = \frac{1}{n}\cdot np = p$$

$$X_1, \dots, X_n \sim N(\mu, \sigma^2)$$

$$\hat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 – (un)biased?

$$X_1, \dots, X_n \sim N(\mu, \sigma^2)$$

$$\hat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i - \text{(un)biased?}$$

$$E(\hat{\mu}_{ML}) = E\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \frac{1}{n}\sum_{i=1}^{n} E(X_i) = \frac{1}{n} \cdot n\mu = \mu$$

$$X_1, \dots, X_n \sim N(\mu, \sigma^2)$$

$$\hat{\sigma}_{ML}^2 = s^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 - \text{(un)biased?}$$

$$X_1, \dots, X_n \sim N(\mu, \sigma^2)$$

$$\hat{\sigma}_{ML}^2 = s^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 - \text{(un)biased?}$$

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 =$$

$$X_1, \dots, X_n \sim N(\mu, \sigma^2)$$

$$\hat{\sigma}_{ML}^2 = s^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 - \text{(un)biased?}$$

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \left(\frac{1}{n} \sum_{i=1}^n X_i^2\right)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 + \frac{1}{n} \sum_{i=$$

$$X_1, \dots, X_n \sim N(\mu, \sigma^2)$$

$$\hat{\sigma}_{ML}^2 = s^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 - \text{(un)biased?}$$

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \left(\frac{1}{n} \sum_{i=1}^n X_i^2\right)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$$

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$$

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$$

$$E(\hat{\sigma}_{ML}^2) =$$

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$$

$$E(\hat{\sigma}_{ML}^2) = \frac{1}{n} \sum_{i=1}^n EX_i^2 - E\bar{X}^2$$

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$$

$$E(\hat{\sigma}_{ML}^2) = \frac{1}{n} \sum_{i=1}^n EX_i^2 - E\bar{X}^2$$

$$EX_i^2 = ?$$

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$$

$$E(\hat{\sigma}_{ML}^2) = \frac{1}{n} \sum_{i=1}^n EX_i^2 - E\bar{X}^2$$

$$EX_i^2 = ?$$

$$Var(X_i) = \sigma^2 =$$

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$$

$$E(\hat{\sigma}_{ML}^2) = \frac{1}{n} \sum_{i=1}^n EX_i^2 - E\bar{X}^2$$

$$EX_i^2 = ?$$

$$Var(X_i) = \sigma^2 = EX_i^2 - (EX_i)^2 =$$

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$$

$$E(\hat{\sigma}_{ML}^2) = \frac{1}{n} \sum_{i=1}^n EX_i^2 - E\bar{X}^2$$

$$EX_i^2 = ?$$

$$Var(X_i) = \sigma^2 = EX_i^2 - (EX_i)^2 = EX_i^2 - \mu^2$$

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$$

$$E(\hat{\sigma}_{ML}^2) = \frac{1}{n} \sum_{i=1}^n EX_i^2 - E\bar{X}^2$$

$$EX_i^2 = ?$$

$$Var(X_i) = \sigma^2 = EX_i^2 - (EX_i)^2 = EX_i^2 - \mu^2$$

$$E(X_i^2) = \sigma^2 + \mu^2$$

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - E\bar{X}^2$$

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - E\bar{X}^2$$
$$E\bar{X}^2 = ?$$

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - E\bar{X}^2$$
$$E\bar{X}^2 = ?$$

$$Var(\bar{X}) =$$

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - E\bar{X}^2$$
$$E\bar{X}^2 = ?$$

 $Var(\bar{X}) = E\bar{X}^2 - (E\bar{X})^2 =$ 

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - E\bar{X}^2$$
$$E\bar{X}^2 = ?$$

$$Var(\bar{X}) = E\bar{X}^2 - (E\bar{X})^2 = E\bar{X}^2 - \mu^2$$

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - E\bar{X}^2$$
$$E\bar{X}^2 = ?$$

$$Var(\bar{X}) = E\bar{X}^2 - (E\bar{X})^2 = E\bar{X}^2 - \mu^2$$

$$Var(\bar{X}) =$$

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - E\bar{X}^2$$
$$E\bar{X}^2 = ?$$

$$Var(\bar{X}) = E\bar{X}^2 - (E\bar{X})^2 = E\bar{X}^2 - \mu^2$$

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) =$$

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - E\bar{X}^2$$
$$E\bar{X}^2 = ?$$

$$Var(\bar{X}) = E\bar{X}^2 - (E\bar{X})^2 = E\bar{X}^2 - \mu^2$$

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - E\bar{X}^2$$
$$E\bar{X}^2 = ?$$

$$Var(\bar{X}) = E\bar{X}^2 - (E\bar{X})^2 = E\bar{X}^2 - \mu^2$$

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

$$E\bar{X}^2 = \frac{\sigma^2}{n} + \mu^2$$

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - \frac{\sigma^2}{n} - \mu^2 =$$

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - \frac{\sigma^2}{n} - \mu^2 = \frac{(n-1)\sigma^2}{n}$$

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - \frac{\sigma^2}{n} - \mu^2 = \frac{(n-1)\sigma^2}{n}$$

Sample variance  $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$  is a **biased** estimator for the parameter  $\sigma^2$  of the Normal distribution.

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - \frac{\sigma^2}{n} - \mu^2 = \frac{(n-1)\sigma^2}{n}$$

Sample variance  $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$  is a **biased** estimator for the parameter  $\sigma^2$  of the Normal distribution.

How to make it unbiased?

$$S_{unbiased}^2 =$$

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - \frac{\sigma^2}{n} - \mu^2 = \frac{(n-1)\sigma^2}{n}$$

Sample variance  $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$  is a **biased** estimator for the parameter  $\sigma^2$  of the Normal distribution.

How to make it unbiased?

$$S_{unbiased}^2 = \frac{n}{(n-1)} \cdot S^2 =$$

$$E(\hat{\sigma}_{ML}^2) = \sigma^2 + \mu^2 - \frac{\sigma^2}{n} - \mu^2 = \frac{(n-1)\sigma^2}{n}$$

Sample variance  $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$  is a **biased** estimator for the parameter  $\sigma^2$  of the Normal distribution.

How to make it unbiased?

$$S_{unbiased}^2 = \frac{n}{(n-1)} \cdot S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

#### **VARIANCE**

Variance of an estimator T(X) is defined as

$$Var(T(X)) = E\{T(X) - E(T(X))\}^{2}$$

$$X_1, \dots, X_n \sim N(\mu, \sigma^2)$$

$$X_1, \dots, X_n \sim N(\mu, \sigma^2)$$

$$\widehat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i, = \overline{X}, \quad Var(\widehat{\mu}_{ML}) = ?$$

$$X_1, \dots, X_n \sim N(\mu, \sigma^2)$$

$$\hat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i, = \overline{X}, \qquad Var(\hat{\mu}_{ML}) = ?$$

$$Var(\bar{X}) =$$

$$X_1, \ldots, X_n \sim N(\mu, \sigma^2)$$

$$\hat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i, = \bar{X}, \qquad Var(\hat{\mu}_{ML}) = ?$$

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) =$$

$$X_1, \dots, X_n \sim N(\mu, \sigma^2)$$

$$\widehat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i, = \overline{X}, \qquad Var(\widehat{\mu}_{ML}) = ?$$

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{n\sigma^{2}}{n^{2}} = \frac{\sigma^{2}}{n}$$

• Can a biased and an unbiased estimator have the same variance?

- Can a biased and an unbiased estimator have the same variance?
- Example:

$$\hat{\mu}_{ML} = \overline{X}$$
 — unbiased

$$\hat{\mu}_2 = \hat{\mu}_{ML} + 1$$
 —biased

- Can a biased and an unbiased estimator have the same variance?
- Example:

$$\hat{\mu}_{ML} = \bar{X} - \text{unbiased}$$

$$Var(\hat{\mu}_{ML}) = \frac{\sigma^2}{n}$$

$$\hat{\mu}_2 = \hat{\mu}_{ML} + 1$$
 —biased

- Can a biased and an unbiased estimator have the same variance?
- Example:

$$\hat{\mu}_{ML} = \bar{X} - \text{unbiased}$$

$$Var(\hat{\mu}_{ML}) = \frac{\sigma^2}{n}$$

$$\hat{\mu}_2 = \hat{\mu}_{ML} + 1$$
 —biased but

$$Var \hat{\mu}_2 =$$

#### **BIAS AND VARIANCE EXAMPLE**

- Can a biased and an unbiased estimator have the same variance?
- Example:

$$\widehat{\mu}_{ML} = \overline{X} - \text{unbiased}$$

$$Var(\widehat{\mu}_{ML}) = \frac{\sigma^2}{n}$$

$$\hat{\mu}_2 = \hat{\mu}_{ML} + 1$$
 —biased but  $Var(\hat{\mu}_2) = \frac{\sigma^2}{n}$ 



















LOW BIAS
LOW VARIANCE



2



HIGH BIAS LOW VARIANCE



LOW BIAS HIGH VARIANCE



HIGH BIAS
HIGH VARIANCE

LOW BIAS
LOW VARIANCE



2



HIGH BIAS LOW VARIANCE



LOW BIAS HIGH VARIANCE



HIGH BIAS HIGH VARIANCE



#### **BIAS-VARIANCE TRADE-OFF**

• Impossible to simultaneously optimize bias and variance.

• Related to *under-* and *overfitting* in Machine Learning.



LOW BIAS
LOW VARIANCE

#### CONSISTENCY

For a good estimator, as the sample size increases, the values of the estimator should get closer to the parameter being estimated.

#### CONSISTENCY

For a good estimator, as the sample size increases, the values of the estimator should get closer to the parameter being estimated.

Let  $T_1, T_2, ... T_n$  be a sequence of estimators for  $\theta, T_k = T(X_1, ..., X_k)$ .

#### CONSISTENCY

For a good estimator, as the sample size increases, the values of the estimator should get closer to the parameter being estimated.

Let  $T_1, T_2, ... T_n$  be a sequence of estimators for  $\theta, T_k = T(X_1, ..., X_k)$ .

Then  $\{T_n\}$  is consistent if  $\forall \epsilon > 0$ 

$$\lim_{n\to\infty} P(|T_n - \theta| < \epsilon) = 1$$

$$\hat{\mu} = \bar{X}$$

$$\hat{\mu} = \overline{X}, \qquad E\hat{\mu} = \mu, \qquad Var(\hat{\mu}) = \sigma^2/n$$

$$\hat{\mu} = \bar{X}, \qquad E\hat{\mu} = \mu,$$

$$\hat{\mu} = \overline{X}, \qquad E\hat{\mu} = \mu, \qquad Var(\hat{\mu}) = \sigma^2/n$$

$$\hat{\mu} = \overline{X}, \qquad E\hat{\mu} = \mu, \qquad Var(\hat{\mu}) = \sigma^2/n$$

Let's show that 
$$\forall \epsilon > 0$$
  $\lim_{n \to \infty} P(|T_n - \mu| \ge \epsilon) = 0$ 

$$\hat{\mu} = \overline{X}, \qquad E\hat{\mu} = \mu, \qquad Var(\hat{\mu}) = \sigma^2/n$$

Let's show that 
$$\forall \epsilon > 0$$
  $\lim_{n \to \infty} P(|T_n - \mu| \ge \epsilon) = 0$ 

Let's chose 
$$\epsilon = \frac{c\sigma}{\sqrt{n}}$$

$$\hat{\mu} = \bar{X}, \qquad E\hat{\mu} = \mu, \qquad Var(\hat{\mu}) = \sigma^2/n$$

Let's show that 
$$\forall \epsilon > 0$$
  $\lim_{n \to \infty} P(|T_n - \mu| \ge \epsilon) = 0$ 

Let's chose 
$$\epsilon = \frac{c\sigma}{\sqrt{n}}$$

$$P\left(|T_n - \mu| \ge \frac{c\sigma}{\sqrt{n}}\right) \le$$

$$\hat{\mu} = \bar{X}, \qquad E\hat{\mu} = \mu, \qquad Var(\hat{\mu}) = \sigma^2/n$$

Let's show that 
$$\forall \epsilon > 0$$
  $\lim_{n \to \infty} P(|T_n - \mu| \ge \epsilon) = 0$ 

Let's chose 
$$\epsilon = \frac{c\sigma}{\sqrt{n}}$$

$$P\left(|T_n - \mu| \ge \frac{c\sigma}{\sqrt{n}}\right) \le$$

Chebyshev's inequality:  

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

$$\hat{\mu} = \bar{X}$$
,  $E\hat{\mu} = \mu$ ,  $Var(\hat{\mu}) = \sigma^2/n$ 

Let's show that 
$$\forall \epsilon > 0$$
  $\lim_{n \to \infty} P(|T_n - \mu| \ge \epsilon) = 0$ 

Let's chose 
$$\epsilon = \frac{c\sigma}{\sqrt{n}}$$

$$P\left(|T_n - \mu| \ge \frac{c\sigma}{\sqrt{n}}\right) \le \frac{1}{c^2} =$$

Chebyshev's inequality:  

$$P X - \mu \ge k\sigma \le \frac{1}{k^2}$$

$$\hat{\mu} = \bar{X}, \qquad E\hat{\mu} = \mu, \qquad Var(\hat{\mu}) = \sigma^2/n$$

Let's show that 
$$\forall \epsilon > 0$$
  $\lim_{n \to \infty} P(|T_n - \mu| \ge \epsilon) = 0$ 

Let's chose 
$$\epsilon = \frac{c\sigma}{\sqrt{n}}$$

$$P\left(|T_n - \mu| \ge \frac{c\sigma}{\sqrt{n}}\right) \le \frac{1}{c^2} = \frac{\sigma^2}{n\epsilon^2}$$

Chebyshev's inequality:  

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

$$\hat{\mu} = \overline{X}, \qquad E\hat{\mu} = \mu, \qquad Var(\hat{\mu}) = \sigma^2/n$$

Let's show that  $\forall \epsilon > 0$   $\lim P(|T_n - \mu| \ge \epsilon) = 0$ 

Let's chose 
$$\epsilon = \frac{c\sigma}{\sqrt{n}}$$

Chebyshev's inequality:
$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

$$P\left(|T_n - \mu| \ge \frac{c\sigma}{\sqrt{n}}\right) \le \frac{1}{c^2} = \frac{\sigma^2}{n\epsilon^2} \to 0 \quad n \to \infty$$

1. The MLE is consistent:

1. The MLE is consistent:

$$\hat{\theta} \stackrel{P}{\rightarrow} \theta$$

1. The MLE is consistent:

$$\hat{\theta} \stackrel{P}{\rightarrow} \theta$$

2. The MLE is **equivariant**:

1. The MLE is consistent:

$$\hat{\theta} \stackrel{P}{\rightarrow} \theta$$

2. The MLE is **equivariant**:

If  $\hat{\theta}$  is MLE for  $\theta$  than  $g(\hat{\theta})$  is MLE for  $g(\theta)$ 

1. The MLE is consistent:

$$\hat{\theta} \stackrel{P}{\rightarrow} \theta$$

2. The MLE is **equivariant**:

If 
$$\hat{\theta}$$
 is MLE for  $\theta$  than  $g(\hat{\theta})$  is MLE for  $g(\theta)$ 

3. MLE is asymptotically efficient:

1. The MLE is consistent:

$$\hat{\theta} \stackrel{P}{\rightarrow} \theta$$

2. The MLE is **equivariant**:

If 
$$\hat{\theta}$$
 is MLE for  $\theta$  than  $g(\hat{\theta})$  is MLE for  $g(\theta)$ 

3. MLE is asymptotically efficient: roughly speaking, among well-behaved estimators, it has the smallest variance, at least for large samples.

# **CONFIDENCE INTERVALS**

#### **MOTIVATION**

• Point estimation provides a single "best guess".

#### **MOTIVATION**

• Point estimation provides a single "best guess".

How confident can we be in our estimation?

#### **MOTIVATION**

• Point estimation provides a single "best guess".

• How confident can we be in our estimation?

Cl proposes a range of plausible values.

#### **DEFINITION**

A  $1-\alpha$  confidence interval for a parameter  $\theta$  is an interval  $C_n=(a,b)$  such that  $T_1=t_1(X_1,\ldots,X_n),\ T_2=t_2(X_1,\ldots,X_n)$  and

$$P(T_1 < \theta < T_2) \ge 1 - \alpha$$

#### **DEFINITION**

A  $1-\alpha$  confidence interval for a parameter  $\theta$  is an interval  $C_n=(T_1,T_2)$  such that  $T_1=t_1(X_1,\ldots,X_n),\ T_2=t_2(X_1,\ldots,X_n)$  and

$$P(T_1 < \theta < T_2) \ge 1 - \alpha$$

• Random intervals:  $T_1$  and  $T_2$  are functions of random samples.

#### **DEFINITION**

A  $1-\alpha$  confidence interval for a parameter  $\theta$  is an interval  $C_n=(T_1,T_2)$  such that  $T_1=t_1(X_1,\ldots,X_n),\ T_2=t_2(X_1,\ldots,X_n)$  and

$$P(T_1 < \theta < T_2) \ge 1 - \alpha$$

- Random intervals:  $T_1$  and  $T_2$  are functions of random samples.
- $\theta$  is unknown, but fixed  $T_1$  and  $T_2$  are random

$$C_n = (T_1, T_2)$$
:  $P(T_1 < \theta < T_2) \ge 1 - \alpha$ 

$$C_n = (T_1, T_2)$$
:  $P(T_1 < \theta < T_2) \ge 1 - \alpha$ 

• **Not** a probability statement about  $\theta$  since it's fixed.

$$C_n = (T_1, T_2)$$
:  $P(T_1 < \theta < T_2) \ge 1 - \alpha$ 

- **Not** a probability statement about  $\theta$  since it's fixed.
- Common interpretation:

$$C_n = (T_1, T_2)$$
:  $P(T_1 < \theta < T_2) \ge 1 - \alpha$ 

- **Not** a probability statement about  $\theta$  since it's fixed.
- Common interpretation:

If I repeat the experiment many times, the interval will contain the true value of  $\theta$  95% of the time ( $\alpha$ =0.05).

# CI FOR MEAN (VARIANCE IS KNOWN)

• Suppose that  $X_1, X_2, ..., X_n$  - i.i.d. samples from a distribution with unknown mean  $\mu$  and known variance  $\sigma^2$ .

• Suppose that  $X_1, X_2, ..., X_n$  - i.i.d. samples from a distribution with unknown mean  $\mu$  and known variance  $\sigma^2$ .

• Point estimate for  $\mu$ :

$$\mu = \bar{X} = \sum_{i=1}^{n} X_i$$

• Suppose that  $X_1, X_2, ..., X_n$  - i.i.d. samples from a distribution with unknown mean  $\mu$  and known variance  $\sigma^2$ .

• Point estimate for  $\mu$ :

$$\mu = \bar{X} = \sum_{i=1}^{n} X_i$$

• How to compute a confidence interval?

Central Limit Theorem:

Central Limit Theorem:  $\bar{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$ 

Central Limit Theorem: 
$$\bar{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right) \Leftrightarrow \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \approx N(0, 1)$$

Central Limit Theorem: 
$$\bar{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right) \Leftrightarrow \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \approx N(0, 1)$$

$$P\left(\begin{array}{cc} < \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} < \end{array}\right) = 1 - \alpha$$



$$P\left(\begin{array}{cc} < \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} < \end{array}\right) = 1 - \alpha$$



$$P\left(\begin{array}{cc} < \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} < \end{array}\right) = 1 - \alpha$$



$$P\left(\begin{array}{cc} < \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} < \end{array}\right) = 1 - \alpha$$



$$P\left(\begin{array}{cc} <\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma} < \end{array}\right) = 1 - \alpha$$



$$P\left(\begin{array}{cc} <\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma} < \end{array}\right) = 1 - \alpha$$



$$P\left(-z_{1-\frac{\alpha}{2}} < \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} < z_{1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

$$P\left(-z_{1-\frac{\alpha}{2}} < \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} < z_{1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

$$P\left(\overline{X} - \frac{\sigma}{\sqrt{n}}z_{1 - \frac{\alpha}{2}} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}}z_{1 - \frac{\alpha}{2}}\right) = 1 - \alpha$$

• Example:

$$n=100, \quad \bar{X}=5, \quad \sigma=1$$

$$P\left(\overline{X} - \frac{\sigma}{\sqrt{n}}z_{1 - \frac{\alpha}{2}} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}}z_{1 - \frac{\alpha}{2}}\right) = 1 - \alpha$$

• Example:

$$n=100, \quad \overline{X}=5, \quad \sigma=1$$

$$P\left(5 - \frac{1}{10}z_{1 - \frac{0.05}{2}} < \mu < 5 + \frac{1}{10}z_{1 - \frac{0.05}{2}}\right) = 0.95$$

• Example:

$$n=100, \quad \bar{X}=5, \quad \sigma=1$$

| Quantile (p) | $\Phi^{-1}(p,0,1)$ |
|--------------|--------------------|
| 0.995        | 2.58               |
| 0.99         | 2.33               |
| 0.975        | 1.96               |
| 0.95         | 1.64               |
| 0.9          | 1.28               |

$$P\left(5 - \frac{1}{10}\mathbf{z}_{1 - \frac{0.05}{2}} < \mu < 5 + \frac{1}{10}\mathbf{z}_{1 - \frac{0.05}{2}}\right) = 0.95$$

• Example:

$$n=100, \quad \bar{X}=5, \quad \sigma=1$$

$$P\left(5 - \frac{1}{10}z_{1 - \frac{0.05}{2}} < \mu < 5 + \frac{1}{10}z_{1 - \frac{0.05}{2}}\right) = 0.95$$

$$P(5 - 0.196 < \mu < 5 + 0.196) = 0.95$$

• Example:

$$n=100, \quad \bar{X}=5, \quad \sigma=1$$

$$P\left(5 - \frac{1}{10}z_{1 - \frac{0.05}{2}} < \mu < 5 + \frac{1}{10}z_{1 - \frac{0.05}{2}}\right) = 0.95$$

$$P(5 - 0.196 < \mu < 5 + 0.196) = 0.95$$

$$(5 - 0.196; 5 + 0.196)$$

• Example:

$$n=100, \qquad \bar{X}=5, \qquad \sigma=1$$

| Quantile (p) | $\Phi^{-1}(p,0,1)$ |
|--------------|--------------------|
| 0.995        | 2.58               |
| 0.99         | 2.33               |
| 0.975        | 1.96               |
| 0.95         | 1.64               |
| 0.9          | 1.28               |

$$P\left(\bar{X} - \frac{\sigma}{\sqrt{n}}z_{1 - \frac{\alpha}{2}} < \mu < \bar{X} + \frac{\sigma}{\sqrt{n}}z_{1 - \frac{\alpha}{2}}\right) = 1 - \alpha$$

• Example:

$$n=100, \quad \bar{X}=5, \quad \sigma=1$$

| Quantile (p) | $\Phi^{-1}(p,0,1)$ |
|--------------|--------------------|
| 0.995        | 2.58               |
| 0.99         | 2.33               |
| 0.975        | 1.96               |
| 0.95         | 1.64               |
| 0.9          | 1.28               |

$$P\left(5 - \frac{1}{10}z_{1 - \frac{0.1}{2}} < \mu < 5 + \frac{1}{10}z_{1 - \frac{0.1}{2}}\right) = 0.90$$

• Example:

$$n=100, \quad \bar{X}=5, \quad \sigma=1$$

| Quantile (p) | $\Phi^{-1}(p,0,1)$ |
|--------------|--------------------|
| 0.995        | 2.58               |
| 0.99         | 2.33               |
| 0.975        | 1.96               |
| 0.95         | 1.64               |
| 0.9          | 1.28               |

$$P\left(5 - \frac{1}{10}z_{0.95} < \mu < 5 + \frac{1}{10}z_{0.95}\right) = 0.90$$

$$P(5 - 0.164 < \mu < 5 + 0.164) = 0.95$$
  
(5 - 0.164; 5 + 0.164)

#### TO SUM SUP

Central Limit Theorem

- Properties of estimators
  - bias, variance, consistency;
  - properties of ML estimates.

Confidence intervals

#### **MID-TERM**

Tomorrow, Wednesday,
 December 9

• 09:00 – 12:00 (no class)

 Assignment will become available on Google Classroom

You should submit by 12:00

#### Topics:

- Descriptive statistics
- Discrete distributions
- Continuous random variables (CDFs, PDFs, probabilities)
- Maximum likelihood (discrete and continuous)

#### **MID-TERM**

Tomorrow, Wednesday,
 December 9

• 09:00 – 12:00 (no class)

 Assignment will become available on Google Classroom

You should submit by 12:00