

Centralna Komisja Egzaminacyjna

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Układ graficzny © CKE 2010

WPISUJE ZDAJĄCY

KOD PESEL

Miejsce na naklejkę z kodem

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

MAJ 2011

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 20 stron (zadania 1–33). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–23) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (24–33) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 5. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1 1P-112

2

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 23. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. *(1 pkt)*

Wskaż nierówność, którą spełnia liczba π .

A.
$$|x+1| > 5$$

B.
$$|x-1| < 2$$

B.
$$|x-1| < 2$$
 C. $|x+\frac{2}{3}| \le 4$ **D.** $|x-\frac{1}{3}| \ge 3$

D.
$$\left| x - \frac{1}{3} \right| \ge 3$$

Zadanie 2. *(1 pkt)*

Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł. Rower kosztuje

Zadanie 3. (1 pkt)

Wyrażenie $5a^2 - 10ab + 15a$ jest równe iloczynowi

A.
$$5a^2(1-10b+3)$$

B.
$$5a(a-2b+3)$$

B.
$$5a(a-2b+3)$$
 C. $5a(a-10b+15)$ **D.** $5(a-2b+3)$

D.
$$5(a-2b+3)$$

Zadanie 4. *(1 pkt)*

Układ równań $\begin{cases} 4x + 2y = 10 \\ 6x + ay = 15 \end{cases}$ ma nieskończenie wiele rozwiązań, jeśli

A.
$$a = -1$$

$$\mathbf{B.} \quad a = 0$$

C.
$$a = 2$$

D.
$$a = 3$$

Zadanie 5. (1 pkt)

Rozwiązanie równania x(x+3)-49=x(x-4) należy do przedziału

A.
$$(-\infty,3)$$

B.
$$(10, +\infty)$$

B.
$$(10, +\infty)$$
 C. $(-5, -1)$ **D.** $(2, +\infty)$

D.
$$(2,+\infty)$$

Zadanie 6. (1 pkt)

Najmniejszą liczbą całkowitą należącą do zbioru rozwiązań nierówności $\frac{3}{8} + \frac{x}{6} < \frac{5x}{12}$ jest

B. 2

 \mathbf{C} . -1

D.
$$-2$$

Zadanie 7. (1 pkt)

Wskaż, który zbiór przedstawiony na osi liczbowej jest zbiorem liczb spełniających jednocześnie następujące nierówności: $3(x-1)(x-5) \le 0$ i x > 1.

Zadanie 8. (1 pkt)

Wyrażenie $\log_4(2x-1)$ jest określone dla wszystkich liczb x spełniających warunek

A.
$$x \le \frac{1}{2}$$

B.
$$x > \frac{1}{2}$$

C.
$$x \le 0$$

D.
$$x > 0$$

Zadanie 9. *(1 pkt)*

Dane są funkcje liniowe f(x) = x - 2 oraz g(x) = x + 4 określone dla wszystkich liczb rzeczywistych x. Wskaż, który z poniższych wykresów jest wykresem funkcji $h(x) = f(x) \cdot g(x)$.

Zadanie 10 *(1 pkt)*

Funkcja liniowa określona jest wzorem $f(x) = -\sqrt{2}x + 4$. Miejscem zerowym tej funkcji jest liczba

A.
$$-2\sqrt{2}$$

B.
$$\frac{\sqrt{2}}{2}$$

C.
$$-\frac{\sqrt{2}}{2}$$

D.
$$2\sqrt{2}$$

Zadanie 11. *(1 pkt)*

Dany jest nieskończony ciąg geometryczny (a_n) , w którym $a_3 = 1$ i $a_4 = \frac{2}{3}$. Wtedy

A.
$$a_1 = \frac{2}{3}$$

B.
$$a_1 = \frac{4}{9}$$
 C. $a_1 = \frac{3}{2}$ **D.** $a_1 = \frac{9}{4}$

C.
$$a_1 = \frac{3}{2}$$

D.
$$a_1 = \frac{9}{4}$$

Zadanie 12. (1 pkt)

Dany jest nieskończony rosnący ciąg arytmetyczny (a_n) o wyrazach dodatnich. Wtedy

A.
$$a_4 + a_7 = a_{10}$$

B.
$$a_4 + a_6 = a_3 + a_8$$

A.
$$a_4 + a_7 = a_{10}$$
 B. $a_4 + a_6 = a_3 + a_8$ **C.** $a_2 + a_9 = a_3 + a_8$ **D.** $a_5 + a_7 = 2a_8$

D.
$$a_5 + a_7 = 2a_8$$

Zadanie 13. *(1 pkt)*

Kąt α jest ostry i $\cos \alpha = \frac{5}{13}$. Wtedy

A.
$$\sin \alpha = \frac{12}{13}$$
 oraz $\operatorname{tg} \alpha = \frac{12}{5}$
B. $\sin \alpha = \frac{12}{13}$ oraz $\operatorname{tg} \alpha = \frac{5}{12}$
C. $\sin \alpha = \frac{12}{5}$ oraz $\operatorname{tg} \alpha = \frac{12}{13}$
D. $\sin \alpha = \frac{5}{12}$ oraz $\operatorname{tg} \alpha = \frac{12}{13}$

B.
$$\sin \alpha = \frac{12}{13}$$
 oraz $\tan \alpha = \frac{5}{12}$

C.
$$\sin \alpha = \frac{12}{5}$$
 oraz $tg\alpha = \frac{12}{13}$

D.
$$\sin \alpha = \frac{5}{12}$$
 oraz $tg\alpha = \frac{12}{13}$

Zadanie 14. *(1 pkt)*

Wartość wyrażenia $\frac{\sin^2 38^\circ + \cos^2 38^\circ - 1}{\sin^2 52^\circ + \cos^2 52^\circ + 1}$ jest równa

- **B.** 0
- C. $-\frac{1}{2}$
- **D.** 1

Zadanie 15. *(1 pkt)*

W prostopadłościanie ABCDEFGH mamy: |AB| = 5, |AD| = 4, |AE| = 3. Który z odcinków AB, BG, GE, EB jest najdłuższy?

- **A.** *AB*
- **B.** *BG*
- **C.** *GE*
- **D.** *EB*

Zadanie 16. *(1 pkt)*

Punkt O jest środkiem okręgu. Kąt wpisany α ma miarę

- A. 80°
- **B.** 100°
- **C.** 110°
- **D.** 120°

Zadanie 17. *(1 pkt)*

Wysokość rombu o boku długości 6 i kącie ostrym 60° jest równa

- **A.** $3\sqrt{3}$
- **B.** 3
- **C.** $6\sqrt{3}$
- **D.** 6

Zadanie 18. *(1 pkt)*

Prosta k ma równanie y = 2x - 3. Wskaż równanie prostej l równoległej do prostej k i przechodzącej przez punkt D o współrzędnych (-2,1).

- **A.** y = -2x + 3
- **B.** y = 2x + 1
- **C.** y = 2x + 5 **D.** y = -x + 1

Zadanie 19. (1 pkt)

Styczną do okręgu $(x-1)^2 + y^2 - 4 = 0$ jest prosta o równaniu

A.
$$x = 1$$

B.
$$x = 3$$
 C. $y = 0$ **D.** $y = 4$

C.
$$y = 0$$

D.
$$y = 4$$

Zadanie 20. *(1 pkt)*

Pole powierzchni całkowitej sześcianu jest równe 54. Długość przekątnej tego sześcianu jest równa

$$\mathbf{A.} \quad \sqrt{6}$$

D.
$$3\sqrt{3}$$

Zadanie 21. *(1 pkt)*

Objętość stożka o wysokości 8 i średnicy podstawy 12 jest równa

A.
$$124\pi$$

C.
$$64\pi$$

D.
$$32\pi$$

Zadanie 22. (1 pkt)

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo otrzymania sumy oczek równej trzy wynosi

A.
$$\frac{1}{6}$$

B.
$$\frac{1}{9}$$

C.
$$\frac{1}{12}$$

D.
$$\frac{1}{18}$$

Zadanie 23. (1 pkt)

Uczniowie pewnej klasy zostali poproszeni o odpowiedź na pytanie: "Ile osób liczy twoja rodzina?" Wyniki przedstawiono w tabeli:

Liczba osób	liczba
w rodzinie	uczniów
3	6
4	12
x	2

Średnia liczba osób w rodzinie dla uczniów tej klasy jest równa 4. Wtedy liczba x jest równa

A. 3

B. 4

C. 5

D. 7

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 24. do 33. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 24. (2 pkt)

Rozwiąż nierówność $3x^2 - 10x + 3 \le 0$.

Odpowiedź:

Zadanie 25. (2 pkt)

Uzasadnij, że jeżeli a + b = 1 i $a^2 + b^2 = 7$, to $a^4 + b^4 = 31$.

Zadanie 26. *(2 pkt)*

Na rysunku przedstawiono wykres funkcji f.

Odczytaj z wykresu i zapisz:

- a) zbiór wartości funkcji f,
- b) przedział maksymalnej długości, w którym funkcja f jest malejąca.

Odpowiedź:

	Nr zadania	24.	25.	26.
Wypełnia	Maks. liczba pkt	2	2	2
egzaminator	Uzyskana liczba pkt			

Zadanie 27. *(2 pkt)*

Liczby x, y, 19 w podanej kolejności tworzą ciąg arytmetyczny, przy czym x + y = 8. Oblicz x i y.

Odpowiedź:

Zadanie 28. *(2 pkt)*

Kąt α jest ostry i $\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha} = 2$. Oblicz wartość wyrażenia $\sin \alpha \cdot \cos \alpha$.

Odpowiedź:

Zadanie 29. *(2 pkt)*

Dany jest czworokąt ABCD, w którym $AB \parallel CD$. Na boku BC wybrano taki punkt E, że |EC| = |CD| i |EB| = |BA|. Wykaż, że kąt AED jest prosty.

Odpowiedź:

	Nr zadania	27.	28.	29.
Wypełnia egzaminator	Maks. liczba pkt	2	2	2
	Uzyskana liczba pkt			

Zadanie 30. *(2 pkt)*

Ze zbioru liczb {1, 2, 3,..., 7} losujemy kolejno dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo wylosowania liczb, których suma jest podzielna przez 3.

Odpowiedź:

Zadanie 31. *(4 pkt)*

Okrąg o środku w punkcie S = (3,7) jest styczny do prostej o równaniu y = 2x - 3. Oblicz współrzędne punktu styczności.

Odpowiedź:

	Nr zadania	30.	31.
Wypełnia	Maks. liczba pkt	2	4
egzaminator	Uzyskana liczba pkt		

Zadanie 32. *(5 pkt)*

Pewien turysta pokonał trasę 112 km, przechodząc każdego dnia tę samą liczbę kilometrów. Gdyby mógł przeznaczyć na tę wędrówkę o 3 dni więcej, to w ciągu każdego dnia mógłby przechodzić o 12 km mniej. Oblicz, ile kilometrów dziennie przechodził ten turysta.

Odpowiedź:

	Nr zadania	32.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 33. *(4 pkt)*

Punkty K, L i M są środkami krawędzi BC, GH i AE sześcianu ABCDEFGH o krawędzi długości 1 (zobacz rysunek). Oblicz pole trójkąta KLM.

Odpowiedź:

	Nr zadania	33.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

MMA-P1_1P-112

WYPEŁNIA ZDAJĄCY

Nr zad.	Odpowiedzi						
1	A	В	O	D			
2	A	В	С	D			
3	A	В	C	D			
4	A	В	C	D			
5	A	В	C	D			
6	A	В	С	D			
7	A	В	C	D			
8	A	В	С	D			
9	A	В	C	D			
10	A	В	С	D			
11	A	В	C	D			
12	A	В	C	D			
13	A	В	C	D			
14	A	В	С	D			
15	A	В	C	D			
16	A	В	С	D			
17	A	В	C	D			
18	A	В	С	D			
19	A	В	C	D			
20	A	В	С	D			
21	A	В	С	D			
22	A	В	С	D			
23	A	В	С	D			

PESEL										

Miejsce na naklejkę z nr PESEL

WYPEŁNIA EGZAMINATOR

Nr	Punkty							
zad.	0	1	2	3	4	5		
24								
25								
26								
27								
28								
29								
30								
31								
32								
33								

SUMA PUNKTÓW	
D	
J	

KOE) EG	ZAN	IINA	TOR	A			
	Czy	/telny	y pod	lpis e	gzan	ninat	ora	
	KC	DD 2	ZDA	\JĄ(CEC	30		