Chapter 06

谢胡睿 2400014151 数算(B) 24-25春

作业(p199~200):

- 复习题:2、3、4、5
- 算法题:3、5

作业(p248~249):

- 复习题:1、2、3、7
- 算法题:1

p199-200

复习题2.

Ans: 总共需要3次,过程如下:

首先,字典总共16个元素,且已经有序。

使用二分法则先从中间开始,

1.
$$l=0, r=15, mid=7$$
 $D[7]=509<612, \text{III}\ l=7+1=8$ 2. $l=8, r=15, mid=11$ $D[11]=677>612, \text{III}\ r=11-1=10$ 3. $l=8, r=10, mid=9$ $D[9]=612==612, finish!$

复习题3.

因为alpha=0.5,则p=16/0.5=32,做取余哈希

 $H(key) = key \pmod{32}$

元素	$key \pmod{32}$	地址	是否碰撞?
16	$16 \pmod{32} = 32$	16	No
87	$87 \pmod{32} = 23$	23	No
154	$154 \pmod{32} = 26$	26	No
170	$170 \pmod{32} = 10$	10	No
275	$275 \pmod{32} = 19$	19	No
426	$426 \pmod{32} = 10$	10	Yes (170)
503	$503 \pmod{32} = 23$	23	Yes (087)
509	$509 \pmod{32} = 29$	29	No
512	$512 \pmod{32} = 0$	0	No
612	$612 \pmod{32} = 4$	4	No
653	$653 \pmod{32} = 13$	13	No
677	$677 \pmod{32} = 5$	5	No

元素	$key \pmod{32}$	地址	是否碰撞?
703	$703 \pmod{32} = 31$	31	No
765	$765 \pmod{32} = 29$	29	Yes (509)
897	$897 \pmod{32} = 1$	1	No
908	$908 \pmod{32} = 12$	12	No

碰撞3次。

复习题4.

用开地址线性探查法:

426: T[11] = 426, T[10] = 170 503: T[24] = 503, T[23] = 87765: T[30] = 765, T[29] = 509

存储状况如下: T[0] = 512 T[1] = 897 T[4] = 612

T[5] = 677

T[10] = 170T[11] = 426

T[12] = 908

T[13]=653

T[16]=016

T[19]=275

T[23] = 087

T[24] = 503

T[26] = 154

T[29]=509

T[30]=765

T[31] = 703

其余均为空

复习题5.

顺序,二分易于理解,实现简单(二分需要排序O(nlogn),且是离线的,不能在线处理)哈希法需要找到一个比较好的函数,坏的函数时间复杂度将趋近于O(n)哈希法要消耗额外的空间故三种方法各有利弊,需按需完成。

算法题3.

顺序存储结构:

```
typedef struct{
   int key;
    int info;
}Node;
#define MAX 1000
typedef struct{
    Node e[MAX];
    int n;
}Seq;
int func(int key,Seq *seq){
    for(int i=0;i<seq->n;i++){
        if(seq->e[i].key==key){
            if(i){
                Node temp;
               temp=seq->e[i-1];
                seq->e[i-1]=seq->e[i];
                seq->e[i]=temp;
                return seq->e[i-1].info;
            }
            else {
               return seq->e[i].info;
        }
    }
    return -1;
}
```

链式存储:

```
typedef struct {
   int data;
   struct LNode *next;
}LNode,*LList;
bool func(LList *lst,int key){
   if(*lst==NULL) return false;
    LNode *prepre=NULL;
    LNode *pre=NULL;
    LNode *crr=*1st;
    while(crr){
       if(crr->data==key){
           if(pre){
                pre->next=crr->next;
                if(prepre){
                    prepre->next=crr;
                else{
                    *lst=crr;
                crr->next=pre;
                return true;
           return true;
       }
    }
   return false;
```

算法题5.

```
enum SlotStatus{EMPTY,OCCUPIED,DELETED};
struct HT{
   int key;
    SlotStatus status;
};
HT table[MAX];
//init every entry as EMPTY
bool Delete(int key_to_delete){
   int i=0;
    int initial_hash_val;
    int step_hash_val;
   int current_address;
    initial_hash_val=h1(key_to_delete)%m;
    step_hash_val=h2(key_to_delete)%m;//互素
    if(step_hash_val==0){
        step_hash_val=1;
    }
    do{
        current_address=(initial_hash_val+i*step_hash_val)%m;
        if(table[current_address].status==OCCUPIED&&table[current_address].key==key_to_delete){
            table[current_address].status=DELETED;
           return true;
        if (table[current_address].status==EMPTY){
            return false;
        }
        i++;
    }while (i<m);//周期
    return false;
}
```

p248-249

复习题1.

```
1. 10
 \
 20
{10,20,30}
2. 10
  30
  /
 20
{10,30,20}
3. 20
/ \
10 30
{20,10,30} or {20,30,10}
4. 30
/
10
\
20
{30,10,20}
5. 30
 /
20
10
{30,20,10}
```

复习题2.

```
即求卡特兰数C_4 C_4=\Sigma_{i=0}^3C_{4-i-1}*C_i 其中: C_0=1,C_1=1 则C_4=14
```

1. badc,bdca

```
b
/ \
a d
/
c
```

2. bacd,bcda,bcad

3. acbd,acdb

```
a
\
c
/\
b d
```

4. cabd,cdab

```
c
/ \
a d
\
b
```

5. cbad,cdba

```
c
/\
b d
/
a
```

6. dbca,dbac

```
d
/
b
/ \
a c
```

复习题3.

证明:

对称序列即为中序遍历:(左-中-右)

假设不是关键码顺序,即存在key(A) < key(B),使得A在B后面

因为key(A) < key(B),所以A在B的左子树,或者在B的父节点/父节点的左子树中(由BST性质得到)

- 1. 在B左子树中,矛盾!(先遍历B的左子树)
- 2. A为B的父节点,矛盾!(左-中-右)
- 3. *A*在*B*的父节点的左子树中,矛盾! 所以必然是关键码顺序

复习题7.

字典的字母序:

Apr, Aug, Dec, Feb, Jan, Jun, Jul, Mar, May, Nov, Oct, Sep 树为:

```
Apr
/ \
Feb Aug
/ \ / \
Jan Mar Jun Dec
/ \ /
May Jul Nov
/
Oct
/
Sep
```

存储的关键字	对应的月份大小	深度 (d_i)	比较次数 (d_i+1)
Apr	4	0	1
Feb	2	1	2
Aug	8	1	2
Jan	1	2	3
Mar	3	2	3
Jun	6	2	3
Dec	12	2	3
May	5	3	4
Jul	7	3	4
Nov	11	3	4
Oct	10	4	5
Sep	9	5	6
总和			40

则平均次数为10/3

算法题1.

```
typedef struct{
  Node* left=nullptr;
   Node* right=nullptr;
   int key;
}Node,*Tree;
int depth(Node *root,int key){
   int depth=0;
   Node *temp=root;
   while(temp){
       if(temp->key==key)return depth;
       if(temp->key>key){
           temp=temp->left;
           depth++;
           continue;
       temp=temp->right;
       depth++;
   return -1;
```