

BREAKDOWN PREDICTOR PROJECT:

BREAKDOWN TIME PREDICTION FOR DOT FOODS

UP-AND-COMING TEAM

Company Overview

Problem Description

Data Preparation

EDA & Key Message Success Measurement

Modeling Progress

Results & Recommendation

Yanrui Song Business Specialist

Zhen Yan Modelling Engineer

Yichun Fang Leader

Crystal Qiu

Business Specialist

Yuxuan Liu **Modelling Engineer**

Yushi Zhao Data Analyst

Yujun Xie Data Visualization Specialist

Yangchun Yao Data Analyst

Kexin Zhang Data Visualization Specialist

COMPANY OVERVIEW – DOT FOODS

DOT

- One of the **largest** food redistributors in North America.
- 2. **Sourcing and distributing large volumes of food** from producers to smaller distributors, supermarkets, and other retailers.
- 3. Offering **a wide range of products**: dry, refrigerated, and frozen.
- 4 Known for **logistics efficiency**, offering **smaller delivery sizes** and a **vast selection** of goods.

COMPANY OVERVIEW — COMPETITORS

Ingredion:

specializing in ingredient solutions, providing a diverse range of starches, sweeteners, and other food ingredients to manufacturers.

Topco Associates:

providing products and services to its member retailers, boosting their purchasing power and competitive pricing in the grocery sector.

US Foods:

providing diverse food and non-food products to restaurants, emphasizing innovation and customer service.

COMPANY OVERVIEW – KEY CONCEPTS IN BUSINESS

Redistributor:

Buys in bulk, sells in smaller quantities.

Supply Chain Optimization:

Improves logistics, reduces costs, and enhances efficiency.

Fleet Utilization:

Ensures trucks are fully loaded and routes are efficient.

Foodservice Distributors:

Supply food to institutions like restaurants and schools.

Inventory Turns:

Measures how often inventory is sold and replaced.

Cold Chain Logistics:

Manages temperature-sensitive goods for safe transport.

PROBLEM IDENTIFICATION

Current Issue

Varying Unloading Times

Over-allocation of Delivery Time

Fleet Utilization Inefficiencies

Goal

Build a model that more accurately predicts the unloading time.

Data Merging

New combined Dataset: 151737 rows, 44 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 151737 entries, 0 to 151736

columns (total 44 columns)	:	
Column	Non-Null Count	Dtype
Load	151737 non-null	object
Stop	151737 non-null	int64
Driver Region	151737 non-null	object
Driver ID	151737 non-null	object
Driver	151737 non-null	object
Company ID	151737 non-null	object
Company	151737 non-null	object
Address	151737 non-null	object
City	151737 non-null	object
State	151737 non-null	object
Routing Region	151737 non-null	object
Miles From Prev Stop	151737 non-null	int64
Weight	151732 non-null	float64
Cube	151732 non-null	float64
Piece Cnt	151732 non-null	float64
Lines	151732 non-null	float64
Planned Time	140335 non-null	float64
Print Of DR	151378 non-null	datetime64[ns]
Load Due Out	151723 non-null	datetime64[ns]
DC Departure	151228 non-null	datetime64[ns]
Appt	151737 non-null	datetime64[ns]
GPS Arrival	151737 non-null	datetime64[ns]
GPS Departure	151737 non-null	datetime64[ns]
	Column Load Stop Driver Region Driver ID Driver Company ID Company Address City State Routing Region Miles From Prev Stop Weight Cube Piece Cnt Lines Planned Time Print Of DR Load Due Out DC Departure Appt GPS Arrival	Codd

737 non-null	int64
737 non-null	int64
13 non-null	object
717 non-null	float64
737 non-null	datetime64[ns
737 non-null	object
737 non-null	float64
737 non-null	int64
732 non-null	float64
737 non-null	object
24 non-null	object
9 non-null	object
26 non-null	object
737 non-null	object
430 non-null	object
737 non-null	object
736 non-null	object
	object
.658 non-null	float64
.657 non-null	float64
.658 non-null	
11), int64(5),	object(21)
	737 non-null 13 non-null 717 non-null 737 non-null 737 non-null 737 non-null 737 non-null 732 non-null 737 non-null 736 non-null 736 non-null 736 non-null

Data Cleaning

Delete non-null STC value

STC: Customer is subject to count, exclude from our analysis

+	1/1/23 18:08	0	1	STC	
-	1/1/23 21:36	0	1	STC	
	1/2/23 3:58	53	1	STC	
1	1/2/23 4:38	0	1	STC	0
1	1/2/23 4:46	0	1	STC	
1	1/1/23 13:58	0	1	STC	

Unify NA format

Driver ID: "UNKNOWN"

Driver Region: "NONDRI"

Transform to NULL

Replace NA with Median

Numeric variable like: Weight, Cube, Piece Cnt, Lines, Trailer Space Utilization

Data Cleaning

Fix inconsistencies

Company ID: Set as Null Value

```
['SAGFOR' 'DC01' 'DC16' 'BAKBAK03' 'NORNOR10' 'DC13' 'CHALOT' 'LEBTER' 'DC19' 'DC41' 'OKLOKL' 'KINGEI' 'STRSTR' 'COSLYO' 'OCATER']
```

Deal with outliers

Dock Time Converted:

Drop Outliers with z-score > 3 There are 1737 number of outliers detected by Z-Score.

[1]

Key Message from Exploratory Data Analysis

Correlation between the Dock Time Converted and others

Dock Time Converted	1. 000000
Cube	0. 455143
Piece Cnt	0. 453070
Trailer Space Utilization	0.448520
Weight	0. 408301
Miles From Prev Stop	0. 225693
Lines	0.166422
Refrig Piece Count	0. 117196
Frozen Piece Count	0.108294
Planned Time	0. 108136
Mid Set Temp	0.033118
Mid Actual Temp	0.023670
Rear Actual Temp	0.004105
Appt Week	0.001964
Rear Set Temp	0.001296
Frt Actual Temp	-0. 009698
Time Diff	-0.012543
Frt Set Temp	-0.013734
Dry Piece Count	-0. 057755
Stop	-0. 292401
Name: Dock Time Converted,	dtype: floa

Calculate variance_inflation_factor (vif) for Feature Engineering

The VIF of selected Variables	1
feature	VIF
0 Cube	115. 846582
1 Piece Cnt	10. 088543
2 Trailer Space Utilization	213. 822593
3 Weight	38. 233379
4 Miles From Prev Stop	2.021738
5 Lines	2. 353255
6 Stop	1. 537385

Key Message With Important Categorical Variables

Impact of Driver Region on Dock Time

ANOVA Test Statistic: 45.304369

P-value: 2.9e-178

Regions like **IL6** and **MH** show higher dock times, suggesting potential unloading inefficiencies, while **IL4** and **NY** have shorter times, indicating greater efficiency. Large error bars across regions highlight variability, likely due to operational differences or other factors.

Key Message With Important Categorical Variables

Impact of Routine Region on Dock Time

ANOVA Test Statistic: 47.001502

P-value: 1.501668e-203

Regions like **SD** and **DTN** have **higher** dock times, indicating potential unloading inefficiencies, while **IL7** and **TN** show shorter times, suggesting greater efficiency.

Large error bars reveal high variability within regions, likely due to differing local practices or external factors.

Key Message With Important Categorical Variables

Clustering of Regions Based on Dock Time Converted Efficiency and Variability

Clustering Method

- Cluster 0: Regions with moderate dock times and low variability
- Cluster 1: High-efficiency region with low dock time and minimal variability
- Cluster 2: Regions with high variability, indicating potential inconsistency in processes

Conclusion

- Regions in Cluster 2 (e.g., SD, DTN) show high variability and may need process standardization.
- Cluster 1 (IL7) is a model of efficiency, with potential best practices to apply to other regions.
- Most regions fall in Cluster 0, with relatively stable dock time

Result:
Routing Region DTN 2
Routing Region GA1 2
Routing Region IL7 1
Routing Region SD 2
The other regions all 0

Key Message With Important Categorical VariablesClustering of Variables to Reduce Complexity & Improve Interpretability

Variable	F-value	P-value
Driver	4.905554	0.0
Company	16.145481	0.0
Address	16.85368	0.0
City	21.518489	0.0

Purpose of Clustering:

Simplifies high-dimensional variables (Driver, Company, Address, City) by grouping them into performance tiers based on dock time efficiency.

Method: Calculated average dock time for each category and clustered into high, medium, low efficiency groups using K-means.

Result: Reduces model complexity and maintains interpretability, as shown by statistically significant F-values and low P-values for each variable.

Segment Analysis - Impact of Trailer Type on Dock Time

ANOVA Test Statistic: 2.45

P-value: **0.061**

Although **dry trailers** seem to take longer on average and **refrigerated trailers** tend to have shorter dock times, the results do not reach statistical significance.

Segment Analysis - Impact of State on Dock Time

ANOVA Test Statistic: 37.41

P-value: 0.0 (highly significant)

The differences in dock times across states are **statistically significant**, meaning dock times are not random but influenced by geographical location.

Segment Analysis - Impact of State on Dock Time

Northeast and South regions have the highest dock times, suggesting potential inefficiencies in unloading processes. Other region shows the shortest dock times, indicating more efficient unloading operations compared to other regions.

Segment Analysis - Impact of Appointment Day on Dock Time

ANOVA Test Statistic: 17.33

P-value: **3.95e-20**

Weekends have notably lower dock time per piece compared to weekdays, indicating a faster unloading process on these days. Wednesday and Tuesday show the highest dock time per piece, suggesting that these days are the most time-intensive for unloading.

Tukey's HSD Post-Hoc Test Results for Appointment Day

Чu	ltipl	le Compa	arison of	Means -	- Tukey	HSD, FWEF	R=0.05
gr	oup1	group2	meandiff	p-adj	lower	upper	reject
	Fri	Mon	-0.022	0.994	-0.1181	0.0741	False
	Fri	Sat	0.9451	0.0004	0.2956	1.5946	True
	Fri	Sun	0.5237	0.0	0.2761	0.7714	True
	Fri	Thu	-0.1323	0.0006	-0.2258	-0.0387	True
	Fri	Tue	0.0049	1.0	-0.0867	0.0964	False
	Fri	Wed	-0.0208	0.9977	-0.1289	0.0873	False
	Mon	Sat	0.9671	0.0002	0.3194	1.6148	True
	Mon	Sun	0.5457	0.0	0.3028	0.7887	True
	Mon	Thu	-0.1103	0.001	-0.1906	-0.03	True
	Mon	Tue	0.0269	0.9506	-0.0511	0.1048	False
	Mon	Wed	0.0012	1.0	-0.0957	0.0981	False
	Sat	Sun	-0.4214	0.5417	-1.1081	0.2654	False
	Sat	Thu	-1.0774	0.0	-1.7247	-0.43	True
	Sat	Tue	-0.9402	0.0004	-1.5873	-0.2932	True
	Sat	Wed	-0.9659	0.0002	-1.6155	-0.3163	True
	Sun	Thu	-0.656	0.0	-0.898	-0.414	True
	Sun	Tue	-0.5189	0.0	-0.7601	-0.2776	True
	Sun	Wed	-0.5445	0.0	-0.7925	-0.2966	True
	Thu	Tue	0.1371	0.0	0.0623	0.212	True
	Thu	Wed	0.1115	0.009	0.0171	0.2059	True
	Tue	Wed	-0.0257	0.9831	-0.1181	0.0667	False

Tukey's HSD identifies that **Saturday** has significantly longer dock times than **Thursday** and **Monday**, while other weekdays show no significant differences.

Model Selection

— Linear Regression & Random Forest & XGBoost

Model Selection

1. Linear Regression:

- Assumes linear relationships between features and dock time.
- Focuses on core variables such as:
 - Number of items (Piece Count)
 - Trailer space utilization
 - Miles from previous stop
- Provides a baseline understanding of dock time influences.

2. Random Forest:

- Handles non-linear relationships and complex interactions.
- Includes additional variables:
 - Trailer type, regional factors
- Offers **feature importance** to highlight key variables influencing dock time.

3. XGBoost:

- **Ensemble model** capturing complex, nuanced interactions.
- Effective in handling:
 - Missing values
 - Non-linear effects (e.g., driver region, trailer conditions)
- Expected to provide the most accurate predictions for dock time.

Success Measurement

Quantitative Performance Metrics

Root Mean Squared Error (RMSE)

- The square root of the average squared differences between the predicted and actual breakdown times
- Target: Less than **15** minutes

R² (Coefficient of Determination)

- The **proportion of the variation** in actual breakdown times that can be explained by the model's predictions

Adjusted R²

Adjusted R² modifies R² to account for the number of predictors in the model. It provides a more
 accurate measure of the goodness of fit

Data Modeling Preprocessing

Variable Selection (VIF): Selected numeric variables (Stop, Piece Cnt, Lines, Time Diff) with low VIF to reduce multicollinearity.

One-hot Encoding: Driver Region cluster, Routing Region cluster, state cluster(region), Trailer type, appointment day, driver cluster, city cluster, company cluster, address cluster

Log Transformation: Applied log transformation to all numeric variables and the target Dock Time to standardize, making the data less skewed, improve model performance, adding 1 to each value to handle zeros and negatives, preserving proportion.

Linear Regression To Dock Time Converted

Model	RMSE	R ²	Adjusted R ²
Linear Regression	2.64	0.31	0.31
Log-Transformation	2.68	0.29	0.29

Top 10 Features by Linear Regression Coefficients:

Feature	Linear_Coefficient
City_Cluster_nan	2. 382596e+12
Trailer Type_nan	2. 172414e+12
Appt Day_nan	1. 597146e+12
Address_Cluster_nan	1. 121465e+12
region_clusters_1.0	1. 491698e+11
Piece Cnt	3.874374e-01
Driver_Cluster_2.0	2.908499e-01
Weight	2.355533e-01
Address_Cluster_2.0	2. 203473e-01
Lines	1.691268e-01

Random Forest

To Dock Time Converted

Model	RMSE	R ²	Adjusted R ²
Random Forest	2.27	0.49	0.49
Log-Transformation	2.37	0.45	0.44

Top	10	Features	by	Random	Forest	Importance:
				_		

Driver_Cluster_2.0

Address_Cluster_1.0

Feature	RF_Importance
Company_Cluster_1.0	0.319062
Time Diff	0. 193999
Piece Cnt	0.106439
Lines	0.059339
Weight	0.057201
Adjusted Dry Piece Count	0.049612
Adjusted Frozen Piece Count	0.037984
Adjusted Refrig Piece Count	0.034180

0.013702

0.012913

XG Boost

To Dock Time Converted

Model	RMSE	R ²	Adjusted R ²
XG Boost	2.25	0.50	0.50
Log-Transformation	2.33	0.46	0.46

Top 10 Features by XGB Importance:

Feature	XGB_Importance
Company_Cluster_1.0	0. 260582
Address_Cluster_1.0	0.086366
Time Diff	0.075248
Driver_Cluster_1.0	0.024038
Company_Cluster_2.0	0.023080
Driver_Cluster_2.0	0.020524
State_ID	0.019725
State_IL	0.018002
Address_Cluster_2.0	0.016617
Piece Cnt	0.014667

Model Selection

Model	RMSE	R ²	Adjusted R ²
Linear Regression	2.64	0.31	0.31
Random Forest	2.27	0.49	0.49
XG Boost	2.25	0.50	0.50

Model Comparison:

Linear Regression

Strengths: Easy to understand, interpretable, no tuning required

Random Forest Regressor

Strengths: Robust to noise, suitable for smaller datasets or simpler patterns

XGBoost Regressor

Strengths: Handles complex patterns, reduces overfitting, ideal for large datasets

Conclusion:

According to the previous analysis of the three models, the model where the independent variables are not log-transformed performs better, so we no longer log-transformed. Overall, XG Boost works best among the three models.

Final Model

Model	RMSE	R ²	Adjusted R ²
XG Boost	2.25	0.50	0.50

Numeric Variables Used: Stop, Piece Cnt, Lines, Time Diff

Categorical Variables Used: Driver Region, Routing Region, State, Trailer Type, Appointment Day, Driver, City, Company, Address

Model Effectiveness

Adjusted R² Improvement

· Better fleet utilization

More accurate scheduling means trucks are used more efficiently.

- Reduced operational costs
 Minimizing unnecessary delays and improving resource allocation.
- Increased customer satisfaction
 Timely and reliable deliveries
 contribute to stronger relationships
 with customers.

Thank you!

