Lista 10

- 1. Consideremos as seguintes bases do \mathbb{R}^2 : $A = \{(1,1), (0,-1)\}$ e $B = \{(2,-3), (-3,5)\}$.
 - a) Determinar a matriz-mudança de base $[I]_B^A$.
 - b) Utilizar a matriz obtida no item a) para calcular v_B , sendo $v_A = (2,3)$.
 - c) Determinar a matriz-mudança de base de B para A.
- 2. Sabendo que $[I]_B^A=\left[\begin{array}{cc} -1 & 4 \\ 4 & -11 \end{array}\right]$ e $B=\{(3,5),(1,2)\},$ determinar a base A.
- 3. Seja $T:\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ um operador linear. Consideremos as bases A canônica e $B=\{(4,1),(-11,-3)\}$. Sabendo que $[T]_B=\begin{bmatrix}3&5\\1&2\end{bmatrix}$, determinar $[T]_A$, utilizando a relação entre matrizes semelhantes.

Gabarito:

1. a)
$$[I]_B^A = \begin{bmatrix} 8 & -3 \\ 5 & -2 \end{bmatrix}$$

b)
$$v_B = (7, 4)$$

c)
$$[I]_A^B = \begin{bmatrix} 2 & -3 \\ 5 & -8 \end{bmatrix}$$

2.
$$A = \{(1,3), (1,-2)\}$$

$$3. \ [T]_A = \left[\begin{array}{cc} 1 & -3 \\ 7 & -3 \end{array} \right]$$