STP协议

学习内容

- 1. STP产生背景
- 2. STP工作原理
- 3. RSTP工作原理
- 4. MSTP工作原理
- 5. 华为STP协议配置命令
- 6. STP案例

1 STP产生背景

- 路径环回的影响
- 1重复帧发送
- ②MAC地址不稳定

STP的作用

- 通过阻断冗余链路来消除桥接网络中可能存在的路径回环
- 当前路径发生故障时,激活冗余备份链路,恢复网络连通性

2 STP工作原理

- STP (Spanning Tree Protocol, 生成 树协议)是用于在局域网中消除数据 链路层物理环路的协议。
- 通过在桥之间交换BPDU (Bridge Protocol Data Unit, 桥协议数据单元),来保证设备完成生成树的计算过程。

• 802.1d

STP工作原理

基本思想:

- 在网桥之间传递特殊的消息(配置消息),包含足够的信息做以下工作:
 - 从网络中的所有网桥中,选出一个作为根网桥 (Root bridge)
 - 在所有非根桥中选择一个根端口(root port)
 - 在每个网段选择指定端口(designated port)

BPDU

- 配置BPDU包含以下重要信息,完成生成树计算
 - 根桥ID (RootID)
 - 根路径开销(RootPathCost)
 - 指定桥ID (DesignatedBridgeID)
 - 指定端口ID (DesignatedPortID)
- 各台设备的各个端口在初始时生成以自己为根桥(Root Bridge)的配置消息,向外发送自己的配置消息
- 网络收敛后,根桥向外发送配置BPDU,其他的设备对该配置 BPDU进行转发
- BPDU消息: configuration bpdu和 TCN bpdu

BPDU

DMA SMA L/T LLC Header Payload

- DMA:目的MAC地址
 - 配置消息的目的地址是一个固定的桥的组播地址 (0x0180c2000000)
- SMA:源MAC地址
 - 即发送该配置消息的桥MAC地址
- L/T:帧长
- LLC Header:配置消息固定的链路头
- Payload:BPDU数据

值 域	占用字节
协议ID	2
协议版本	1
BPDU类型	1
标志位	1
根桥ID	8
根路径开销	4
网桥ID	8
指定端口ID	2
Message Age	2
Max Age	2
Hello Time	2
Forward Delay	2

BPDU的消息处理

- 将各个端口收到的配置消息和自己的配置消息做比较,得出优先级最高的配置消息更新本身的配置消息,主要工作有:
 - 选择根网桥RootID: 最优配置消息的RootID
 - 计算到根桥的最短路径开销RootPathCost: 如果自己是根桥,则最短路径开销为0,否则为它所收到的最优配置消息的RootPathCost与收到该配置消息的端口开销之和
 - 选择根端口RootPort:如果自己是根桥,则所有端口为指定端口,否则 根端口为收到最优配置消息的那个端口
 - 选择指定端口: 包括在生成树上处于转发状态的其他端口
- 从指定端口发送新的配置消息

根桥的选举

• 桥ID由桥优先级(BridgePriority)

和桥MAC地址(BridgeMacAddress)

组成

• 桥ID小的桥被选举为根桥

BridgeID: 16.0000-0000-0001 BridgeID: 0.0000-0000-0002

端口角色的确定

- 根桥上的所有端口为指定端口 (Designated Port)
- 在非根桥上选举根路径开销 (RootPathCost) 最小的端口为根端口 (Root Port)
- 每个物理段选出根路径开销最小的桥作为指定桥(Designated Bridge),连接指定桥的端口为指定端口
- 不是根端口和指定端口的其余端口被STP置为阻塞状态

根路径开销

- 根路径开销(RootPathCost)是到达根的路径上所有链路开销(Cost)的代数和
- 非根桥进行根端口选举时,根路径开销最小的端口为根端口
- 物理段进行指定桥选举时,路径开销最小的桥为指定桥

通过桥ID决定端口角色

• 在根路径开销相同时,所连网段 指定桥ID最小的端口为根端口

• 在根路径开销相同时,桥ID最小 的桥被选举为物理段上的指定桥. 连接指定桥的端口为指定端口

SWB

通过端口ID决定端口角色

在根路径开销、指定桥ID都相同的情况下,所连指定端口ID小的端口为根端口

STP端口状态

端口角色	端口状态	端口行为
未启用STP功能的端口	Disabled	不收发BPDU报文,接收或转发数据
非指定端口或根端口	Blocking	接收但不发送BPDU,不接收或转发数据
	Listening	接收并发送BPDU,不接收或转发数据
	Learning	接收并发送BPDU,不接收或转发数据
指定端口或根端口	Forwarding	接收并发送BPDU,接收并转发数据

端口状态迁移

- •端口被选为指定端口或根端口后,需要从Blocking状态经Listening和Learning才能到Forwarding状态
- •默认的Forwarding Delay时间是15秒

生成树的不足

- •端口从阻塞状态进入转发状态必须经历两倍的Forwarding Delay 时间
- 如果网络中的拓扑结构变化频繁,网络会频繁地失去连通性

3 RSTP工作原理

- RSTP(Rapid Spanning Tree Protocol,快速生成树协议)是STP协议的优化版
- RSTP具备STP的所有功能
- RSTP可以实现快速收敛
- 在某些情况下,端口进入转发状态的延时大大缩短,从而缩短了网络最终达到拓扑稳定所需要的时间。
- 802.1w

RSTP的端口状态

STP 端口状态	RSTP端口状态
Disabled	Discarding
Blocking	Discarding
Listening	Discarding
Learning	Learning
Forwarding	Forwarding

RSTP的改进

	STP行为	RSTP行为
端口被选为根端口	默认情况下,2倍的 Forwarding Delay的时间延 迟。	存在阻塞的备份根端口情况下,仅有数毫秒延迟。
端口被选为指 定端口 影认情况下,2倍的 Forwarding Delay的时间 迟。	默认情况下。2倍的	在指定端口是非边缘端口的情况下,延迟取决因素较多。
	Forwarding Delay的时间延	在指定端口是边缘端口的情况下,指定端口可以直接进入转发状态,没有延迟。

RSTP的不足

• 快速生成树也是在整个交换网络应用单生成树实例,不能解决由于网络规模增大带来的性能降低问题。建议网络直径最好不要超过

4 MSTP的工作原理

- Trunk链路上实际上运行着多个VLAN
- 所有VLAN共用一棵生成树
- 无法实现不同VLAN在多条Trunk链路上的负载均衡
- 802.1s
- 该模式是华为交换机的默认工作模式

MSTP工作原理

三种协议对比

- STP的特性
 - → 解决环路
- RSTP的特性
 - → 解决环路
 - → 快速收敛
 - ▶ 根端口快速进入转发状态
 - ➤ 采用握手机制实现端口的快速转发
 - ▶ 设置边缘端口实现快速转发
- MSTP的特性
 - → 解决环路
 - → 快速收敛
 - → 多棵生成树实现负载均衡(不同VLAN的流量可以按照不同的路径进行 转发)

5 STP相关命令

- stp mode stp/mstp/rstp
- STP配置思路:
- (1) 配置STP工作模式 stp mode mst
- (2) 指定根桥 stp root primary stp priority 0
- (3) 指定从根桥(可选) stp root secondary stp priority 4096
- (4) 修改交换机端口cost值,实现负载分担 stp port priority 112
- 查看STP是否配置成功:
- (1) display stp brief 查看生成树根桥和端口角色是否工作正常
- (2) display stp int f0/1 查看接口f0/1的stp priority值

- <SwitchA> system-view
- [~ SwitchA] stp mode stp
- [*SwitchA] stp root primary

- <SwitchB> system-view
- [~ SwitchB] stp mode stp
- [*SwitchB] stp root secondary

- <SwitchC> system-view
- [~ SwitchC] stp mode stp
- [*SwitchC] interface 10ge 1/0/1
- [*SwitchC-10GE1/0/1] stp cost 20000

- <SwitchD> system-view
- [~ SwitchD] stp mode stp

