(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 29 January 2004 (29.01.2004)

PCT

(10) International Publication Number $WO\ 2004/009772\ A2$

(51) International Patent Classification⁷:

C12N

(21) International Application Number:

PCT/US2003/022467

(22) International Filing Date: 17 July 2003 (17.07.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/397,442 19 July 2002 (19.07.2002) US

(71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07083-0530 (US).

- (72) Inventors: ALTMANN, Scott, W.; 42 First Street, Fanwood, NJ 07023 (US). MURGOLO, Nicholas, J.; 99 Rolling Hill Drive, Millington, NJ 07946 (US). WANG, Lu, Quan; 21 Hollis, East Brunswick, NJ 08816 (US). GRAZIANO, Michael, P.; 2239 Concord Road, Scotch Plains, NJ 07076 (US).
- (74) Agent: TRIOLO, Thomas, A.; Schering-Plough Corporation, Patent Department-K-6-1 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MA, MD, MG, MK, MN, MX, MZ, NI, NO, NZ, PG, PH, PL, PT, RO, RU, SC, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UZ, VC, VN, YU, ZA, ZM.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

04/009772 A

(54) Title: NPC1L1 (NPC3) AND METHODS OF USE THEREOF

(57) Abstract: The present invention provides rat and mouse NPC1L1 polypeptides and polynucleotides encoding the polypeptides. Also provided are methods for detecting agonists and antagonists of NPC1L1. Inhibitors of NPC1L1 can be used for inhibiting intestinal cholesterol absorption in a subject.

NPC1L1 (NPC3) AND METHODS OF USE THEREOF

This application claims the benefit of U.S. Provisional Patent Application No. 60/397,442; filed July 19, 2002 which is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention includes NPC1L1 polypeptides and polynucleotides which encode the polypeptides along with methods of use thereof.

10

15

20

25

30

5

BACKGROUND OF THE INVENTION

A factor leading to development of vascular disease, a leading cause of death in industrialized nations, is elevated serum cholesterol. It is estimated that 19% of Americans between the ages of 20 and 74 years of age have high serum cholesterol. The most prevalent form of vascular disease is arteriosclerosis, a condition associated with the thickening and hardening of the arterial wall. Arteriosclerosis of the large vessels is referred to as atherosclerosis. Atherosclerosis is the predominant underlying factor in vascular disorders such as coronary artery disease, aortic aneurysm, arterial disease of the lower extremities and cerebrovascular disease.

Cholesteryl esters are a major component of atherosclerotic lesions and the major storage form of cholesterol in arterial wall cells. Formation of cholesteryl esters is also a step in the intestinal absorption of dietary cholesterol. Thus, inhibition of cholesteryl ester formation and reduction of serum cholesterol can inhibit the progression of atherosclerotic lesion formation, decrease the accumulation of cholesteryl esters in the arterial wall, and block the intestinal absorption of dietary cholesterol.

The regulation of whole-body cholesterol homeostasis in mammals and animals involves the regulation of intestinal cholesterol absorption, cellular cholesterol trafficking, dietary cholesterol and modulation of cholesterol biosynthesis, bile acid biosynthesis, steroid biosynthesis and the catabolism of the cholesterol-containing plasma lipoproteins. Regulation of intestinal cholesterol absorption has proven to be an effective means by which to regulate serum cholesterol levels. For example, a cholesterol absorption inhibitor, ezetimibe (

5

10

15

20

25

), has been shown to be effective in this regard. Identification of a gene target through which ezetimibe acts is important to understanding the process of cholesterol absorption and to the development of other, novel absorption inhibitors. The present invention addresses this need by providing a rat and a mouse homologue of human NPC1L1 (also known as NPC3; Genbank Accession No. AF192522; Davies, *et al.*, (2000) Genomics 65(2):137-45 and Ioannou, (2000) Mol. Genet. Metab.71(1-2):175-81), the ezetimibe target.

NPC1L1 is an N-glycosylated protein comprising a YQRL (SEQ ID NO: 38) motif (i.e., a trans-golgi network to plasma membrane transport signal; see Bos, et al., (1993) EMBO J. 12:2219-2228; Humphrey, et al., (1993) J. Cell. Biol. 120:1123-1135; Ponnambalam, et al., (1994) J. Cell. Biol. 125:253-268 and Rothman, et al., (1996) Science 272:227-234) which exhibits limited tissue distribution and gastrointestinal abundance. Also, the human NPC1L1 promoter includes a Sterol Regulated Element Binding Protein 1 (SREBP1) binding consensus sequence (Athanikar, et al., (1998) Proc. Natl. Acad. Sci. USA 95:4935-4940; Ericsson, et al., (1996) Proc. Natl. Acad. Sci. USA 93:945-950; Metherall, et al., (1989) J. Biol. Chem. 264:15634-15641; Smith, et al., (1990) J. Biol. Chem. 265:2306-2310; Bennett, et al., (1999) J. Biol. Chem. 274:13025-13032 and Brown, et al., (1997) Cell 89:331-340). NPC1L1 has 42% amino acid sequence homology to human NPC1 (Genbank Accession No. AF002020), a receptor responsible for Niemann-Pick C1 disease (Carstea, et al., (1997) Science 277:228-231). Niemann-Pick C1 disease is a rare genetic disorder in humans which results in accumulation of low density lipoprotein (LDL)-derived unesterified cholesterol in lysosomes (Pentchev, et al., (1994) Biochim. Biophys. Acta. 1225: 235-243 and Vanier, et al., (1991) Biochim. Biophys. Acta. 1096:328-337). In addition, cholesterol accumulates in the trans-golgi network of npc1 cells, and relocation of cholesterol, to and from the plasma membrane, is delayed. NPC1 and NPC1L1 each possess 13 transmembrane spanning segments as well as a sterol-sensing domain (SSD). Several other proteins, including HMG-CoA Reductase (HMG-R), Patched (PTC) and Sterol Regulatory Element Binding Protein Cleavage-Activation Protein (SCAP), include an SSD which is involved in sensing cholesterol levels possibly by a mechanism which involves direct cholesterol binding

- 3 -

(Gil, et al., (1985) Cell 41:249-258; Kumagai, et al., (1995) J. Biol. Chem. 270:19107-19113 and Hua, et al., (1996) Cell 87:415-426).

SUMMARY OF THE INVENTION

5

10

15

20

25

30

The present invention includes an isolated polypeptide comprising 42 or more contiguous amino acids from an amino acid sequence selected from SEQ ID NOs: 2 and 12, preferably comprising the amino acid sequence selected from SEQ ID NOs: 2 and 12. The invention also includes an isolated polynucleotide encoding a polypeptide of SEQ ID NO: 2 or 12, preferably comprising a nucleotide sequence selected from SEQ ID NOs: 1, 5-10, 11 and 13. A recombinant vector comprising a polynucleotide of the invention is also provided along with a host cell comprising the vector.

The present invention also provides an antibody which specifically binds to NPC1L1 (e.g., mouse NPC1L1 or human NPC1L1) or any antigenic fragment thereof, preferably rat NPC1L1, more preferably a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 39-42. Preferably, the antibody is a polyclonal or monoclonal antibody. Preferably, the antibody is obtained from a rabbit.

The present invention also includes a method for making an NPC1L1 polypeptide of the invention comprising culturing a host cell of the invention under conditions in which the nucleic acid in the cell which encodes the NPC1L1 polypeptide is expressed. Preferably, the method includes the step of isolating the polypeptide from the culture.

The present invention includes methods for identifying an agonist or antagonist of NPC1L1 comprising (a) contacting a host cell (*e.g.*, chinese hamster ovary (CHO) cell, a J774 cell, a macrophage cell and a Caco2 cell) expressing a polypeptide comprising the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 or SEQ ID NO: 12 or a functional fragment thereof on a cell surface, in the presence of a known amount of detectably labeled (*e.g.*, with ³H or ¹²⁵I) ezetimibe, with a sample to be tested for the presence of an NPC1L1 agonist or antagonist; and (b) measuring the amount of detectably labeled ezetimibe specifically bound to the polypeptide; wherein an NPC1L1 agonist or antagonist in the sample is identified by measuring substantially reduced binding of the detectably labeled ezetimibe to the polypeptide, compared to what would be measured in the absence of such an agonist or antagonist.

Another method for identifying an agonist or antagonist of NPC1L1 is also provided. The method comprises (a) placing, in an aqueous suspension, a plurality of support particles, impregnated with a fluorescer (e.g., yttrium silicate, yttrium oxide, diphenyloxazole and polyvinyltoluene), to which a host cell (e.g., chinese hamster ovary (CHO) cell, a J774 cell, a

-4-

macrophage cell and a Caco2 cell) expressing a polypeptide comprising the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 or SEQ ID NO: 12 or a functional fragment thereof on a cell surface are attached; (b) adding, to the suspension, radiolabeled (e.g., with ³H or ¹²⁵I) ezetimibe and a sample to be tested for the presence of an antagonist or agonist, wherein the radiolabel emits radiation energy capable of activating the fluorescer upon the binding of the ezetimibe to the polypeptide to produce light energy, whereas radiolabeled ezetimibe that does not bind to the polypeptide is, generally, too far removed from the support particles to enable the radioactive energy to activate the fluorescer; and (c) measuring the light energy emitted by the fluorescer in the suspension; wherein an NPC1L1 agonist or antagonist in the sample is identified by measuring substantially reduced light energy emission, compared to what would be measured in the absence of such an agonist or antagonist.

5

10

15

25

30

Also provided is a method for identifying an agonist or antagonist of NPC1L1 comprising (a) contacting a host cell (*e.g.*, chinese hamster ovary (CHO) cell, a J774 cell, a macrophage cell and a Caco2 cell) expressing an polypeptide comprising an amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 12 or a functional fragment thereof on a cell surface with detectably labeled (*e.g.*, with ³H and ¹²⁵I) cholesterol and with a sample to be tested for the presence of an antagonist or agonist; and (b) measuring the amount of detectably labeled cholesterol in the cell; wherein an NPC1L1 antagonist in the sample is identified by measuring substantially reduced detectably labeled cholesterol within the host cell, compared to what would be measured in the absence of such an antagonist and wherein an NPC1L1 agonist in the sample is identified by measuring substantially increased detectably labeled cholesterol within the host cell, compared to what would be measured in the absence of such an agonist.

Also included in the present invention is a mutant mouse comprising a homozygous or heterozygous disruption of endogenous, chromosomal *NPC1L1* wherein, preferably, the mouse does not produce any functional NPC1L1 protein.

DETAILED DESCRIPTION OF THE INVENTION

The present invention includes an NPC1L1 polypeptide from rat and from mouse along with polynucleotides encoding the respective polypeptides. Preferably, the rat NPC1L1 polypeptide comprises the amino acid sequence set forth in SEQ ID NO: 2 and the mouse NPC1L1 polypeptide comprises the amino acid sequence set forth in SEQ ID NO.12. The rat NPC1L1 polypucleotide of SEQ ID NO:1 or 10 encodes the rat NPC1L1 polypeptide. The mouse NPC1L1 polypeptide of SEQ ID NO:11 or 13 encodes the mouse NPC1L1 polypeptide.

- 5 -

The present invention includes any polynucleotide or polypeptide comprising a nucleotide or amino acid sequence referred to, below, in Table 1.

Table 1. Polynucleotides and Polypeptides of the Invention.

Polynucleotide or Polypeptide	Sequence Identifier
Rat NPC1L1 polynucleotide	SEQ ID NO: 1
Rat NPC1L1 polypeptide	SEQ ID NO: 2
Human NPC1L1 polynucleotide	SEQ ID NO: 3
Human NPC1L1 polypeptide	SEQ ID NO: 4
Rat NPC1L1 expressed sequence tag	
603662080F1 (partial sequence)	SEQ ID NO: 5
Rat NPC1L1 expressed sequence tag	
603665037F1 (partial sequence)	SEQ ID NO: 6
Rat NPC1L1 expressed sequence tag	
604034587F1 (partial sequence)	SEQ ID NO: 7
EST 603662080F1 with downstream	
sequences added	SEQ ID NO: 8
EST 603662080F1 with upstream and	
downstream sequences added	SEQ ID NO: 9
Back-translated polynucleotide sequence of	
rat NPC1L1	SEQ ID NO: 10
Mouse NPC1L1 polynucleotide	SEQ ID NO: 11
Mouse NPC1L1 polypeptide	SEQ ID NO: 12
Back-translated polynucleotide sequence of	SEQ ID NO: 13
mouse NPC1L1	

5

10

A human NPC1L1 is also disclosed under Genbank Accession Number AF192522. As discussed below, the nucleotide sequence of the rat *NPC1L1* set forth in SEQ ID NO: 1 was obtained from an expressed sequence tag (EST) from a rat jejunum enterocyte cDNA library. SEQ ID NOs: 5-7 include partial nucleotide sequences of three independent cDNA clones. The downstream sequence of the SEQ ID NO: 5 EST (603662080F1) were determined; the sequencing data from these experiments are set forth in SEQ ID NO: 8. The upstream sequences were also determined; these data are set forth in SEQ ID NO: 9.

-6-

SEQ ID NOs: 43 and 44 are the nucleotide and amino acid sequence, respectively, of human NPC1L1 which is disclosed under Genbank Accession No.: AF192522 (see Davies, *et al.*, (2000) Genomics 65(2):137-45).

SEQ ID NO: 45 is the nucleotide sequence of a mouse *NPC1L1* which is disclosed under Genbank Accession No. AK078947.

5

10

15

25

30

35

Molecular Biology

In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (herein "Sambrook, et al., 1989"); DNA Cloning: A Practical Approach, Volumes I and II (D.N. Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed. 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. (1985)); Transcription And Translation (B.D. Hames & S.J. Higgins, eds. (1984)); Animal Cell Culture (R.I. Freshney, ed. (1986)); Immobilized Cells And Enzymes (IRL Press, (1986)); B. Perbal, A Practical Guide To Molecular Cloning (1984); F.M. Ausubel, et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (1994).

The back-translated sequences of SEQ ID NO: 10 and of SEQ ID NO: 13 uses the single-letter code shown in Table 1 of Annex C, Appendix 2 of the PCT Administrative Instruction in the Manual of Patent Examination Procedure.

A "polynucleotide", "nucleic acid " or "nucleic acid molecule" may refer to the phosphate ester polymeric form of ribonucleosides (adenosine, guanosine, uridine or cytidine; "RNA molecules") or deoxyribonucleosides (deoxyadenosine, deoxyguanosine, deoxythymidine, or deoxycytidine; "DNA molecules"), or any phosphoester analogs thereof, such as phosphorothioates and thioesters, in single stranded form, double-stranded form or otherwise.

A "polynucleotide sequence", "nucleic acid sequence" or "nucleotide sequence" is a series of nucleotide bases (also called "nucleotides") in a nucleic acid, such as DNA or RNA, and means any chain of two or more nucleotides.

A "coding sequence" or a sequence "encoding" an expression product, such as a RNA, polypeptide, protein, or enzyme, is a nucleotide sequence that, when expressed, results in production of the product.

The term "gene" means a DNA sequence that codes for or corresponds to a particular sequence of ribonucleotides or amino acids which comprise all or part of one or more RNA molecules, proteins or enzymes, and may or may not include regulatory DNA sequences, such as

5

10

15

25

30

promoter sequences, which determine, for example, the conditions under which the gene is expressed. Genes may be transcribed from DNA to RNA which may or may not be translated into an amino acid sequence.

-7 -

The present invention includes nucleic acid fragments of any of SEQ ID NOs: 1, 5-11 or 13. A nucleic acid "fragment" includes at least about 30 (e.g., 31, 32, 33, 34), preferably at least about 35 (e.g, 25, 26, 27, 28, 29, 30, 31, 32, 33 or 34), more preferably at least about 45 (e.g., 35, 36, 37, 38, 39, 40, 41, 42, 43 or 44), and most preferably at least about 126 or more contiguous nucleotides (e.g., 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 1000 or 1200) from any of SEQ ID NOs: 1, 5-11 or 13.

The present invention also includes nucleic acid fragments consisting of at least about 7 (e.g., 9, 12, 17, 19), preferably at least about 20 (e.g., 30, 40, 50, 60), more preferably about 70 (e.g., 80, 90, 95), yet more preferably at least about 100 (e.g., 105, 110, 114) and even more preferably at least about 115 (e.g., 117, 119, 120, 122, 124, 125, 126) contiguous nucleotides from any of SEQ ID NOs: 1, 5-11 or 13.

As used herein, the term "oligonucleotide" refers to a nucleic acid, generally of no more than about 100 nucleotides (*e.g.*, 30, 40, 50, 60, 70, 80, or 90), that may be hybridizable to a genomic DNA molecule, a cDNA molecule, or an mRNA molecule encoding a gene, mRNA, cDNA, or other nucleic acid of interest. Oligonucleotides can be labeled, *e.g.*, by incorporation of ³²P-nucleotides, ³H-nucleotides, ¹⁴C-nucleotides, ³⁵S-nucleotides or nucleotides to which a label, such as biotin, has been covalently conjugated. In one embodiment, a labeled oligonucleotide can be used as a probe to detect the presence of a nucleic acid. In another embodiment, oligonucleotides (one or both of which may be labeled) can be used as PCR primers, either for cloning full length or a fragment of the gene, or to detect the presence of nucleic acids. Generally, oligonucleotides are prepared synthetically, preferably on a nucleic acid synthesizer.

A "protein sequence", "peptide sequence" or "polypeptide sequence" or "amino acid sequence" may refer to a series of two or more amino acids in a protein, peptide or polypeptide.

"Protein", "peptide" or "polypeptide" includes a contiguous string of two or more amino acids. Preferred peptides of the invention include those set forth in any of SEQ ID NOs: 2 or 12 as well as variants and fragments thereof. Such fragments preferably comprise at least about 10 (e.g., 11, 12, 13, 14, 15, 16, 17, 18 or 19), more preferably at least about 20 (e.g., 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40), and yet more preferably at least about 42 (e.g., 43, 44, 45, 46, 47, 48, 49, 50, 60, 70, 80, 90, 100, 110, 120 or 130) or more contiguous amino acid residues from any of SEQ ID NOs: 2 or 12.

- 8 —

The present invention also includes polypeptides, preferably antigenic polypeptides, consisting of at least about 7 (e.g., 9, 10, 13, 15, 17, 19), preferably at least about 20 (e.g., 22, 24, 26, 28), yet more preferably at least about 30 (e.g., 32, 34, 36, 38) and even more preferably at least about 40 (e.g., 41, 42) contiguous amino acids from any of SEQ ID NOs: 2 or 12.

5

10

15

25

30

The polypeptides of the invention can be produced by proteolytic cleavage of an intact peptide, by chemical synthesis or by the application of recombinant DNA technology and are not limited to polypeptides delineated by proteolytic cleavage sites. The polypeptides, either alone or cross-linked or conjugated to a carrier molecule to render them more immunogenic, are useful as antigens to elicit the production of antibodies and fragments thereof. The antibodies can be used, e.g., in immunoassays for immunoaffinity purification or for inhibition of NPC1L1, etc.

The terms "isolated polynucleotide" or "isolated polypeptide" include a polynucleotide (e.g., RNA or DNA molecule, or a mixed polymer) or a polypeptide, respectively, which are partially or fully separated from other components that are normally found in cells or in recombinant DNA expression systems. These components include, but are not limited to, cell membranes, cell walls, ribosomes, polymerases, serum components and extraneous genomic sequences.

An isolated polynucleotide or polypeptide will, preferably, be an essentially homogeneous composition of molecules but may contain some heterogeneity.

"Amplification" of DNA as used herein may denote the use of polymerase chain reaction (PCR) to increase the concentration of a particular DNA sequence within a mixture of DNA sequences. For a description of PCR see Saiki, *et al.*, Science (1988) 239:487.

The term "host cell" includes any cell of any organism that is selected, modified, transfected, transformed, grown, or used or manipulated in any way, for the production of a substance by the cell, for example the expression or replication, by the cell, of a gene, a DNA or RNA sequence or a protein. Preferred host cells include chinese hamster ovary (CHO) cells, murine macrophage J774 cells or any other macrophage cell line and human intestinal epithelial Caco2 cells.

The nucleotide sequence of a nucleic acid may be determined by any method known in the art (e.g., chemical sequencing or enzymatic sequencing). "Chemical sequencing" of DNA includes methods such as that of Maxam and Gilbert (1977) (Proc. Natl. Acad. Sci. USA 74:560), in which DNA is randomly cleaved using individual base-specific reactions. "Enzymatic sequencing" of DNA includes methods such as that of Sanger (Sanger, et al., (1977) Proc. Natl. Acad. Sci. USA 74:5463).

-9-

The nucleic acids herein may be flanked by natural regulatory (expression control) sequences, or may be associated with heterologous sequences, including promoters, internal ribosome entry sites (IRES) and other ribosome binding site sequences, enhancers, response elements, suppressors, signal sequences, polyadenylation sequences, introns, 5'- and 3'- non-coding regions, and the like.

5

10

15

25

30

In general, a "promoter" or "promoter sequence" is a DNA regulatory region capable of binding an RNA polymerase in a cell (e.g., directly or through other promoter-bound proteins or substances) and initiating transcription of a coding sequence. A promoter sequence is, in general, bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at any level. Within the promoter sequence may be found a transcription initiation site (conveniently defined, for example, by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. The promoter may be operably associated with other expression control sequences, including enhancer and repressor sequences or with a nucleic acid of the invention. Promoters which may be used to control gene expression include, but are not limited to, cytomegalovirus (CMV) promoter (U.S. Patent Nos. 5,385,839 and 5,168,062), the SV40 early promoter region (Benoist, et al., (1981) Nature 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto, et al., (1980) Cell 22:787-797), the herpes thymidine kinase promoter (Wagner, et al., (1981) Proc. Natl. Acad. Sci. USA 78:1441-1445), the regulatory sequences of the metallothionein gene (Brinster, et al., (1982) Nature 296:39-42); prokaryotic expression vectors such as the β-lactamase promoter (Villa-Komaroff, et al., (1978) Proc. Natl. Acad. Sci. USA 75:3727-3731), or the tac promoter (DeBoer, et al., (1983) Proc. Natl. Acad. Sci. USA 80:21-25); see also "Useful proteins from recombinant bacteria" in Scientific American (1980) 242:74-94; and promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADC (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) promoter or the alkaline phosphatase promoter.

A coding sequence is "under the control of", "functionally associated with" or "operably associated with" transcriptional and translational control sequences in a cell when the sequences direct RNA polymerase mediated transcription of the coding sequence into RNA, preferably mRNA, which then may be RNA spliced (if it contains introns) and, optionally, translated into a protein encoded by the coding sequence.

The terms "express" and "expression" mean allowing or causing the information in a gene, RNA or DNA sequence to become manifest; for example, producing a protein by activating the cellular functions involved in transcription and translation of a corresponding gene. A DNA

- 10 -

sequence is expressed in or by a cell to form an "expression product" such as an RNA (e.g., mRNA) or a protein. The expression product itself may also be said to be "expressed" by the cell.

The term "transformation" means the introduction of a nucleic acid into a cell. The introduced gene or sequence may be called a "clone". A host cell that receives the introduced DNA or RNA has been "transformed" and is a "transformant" or a "clone." The DNA or RNA introduced to a host cell can come from any source, including cells of the same genus or species as the host cell, or from cells of a different genus or species.

5

10

15

25

30

The term "vector" includes a vehicle (e.g., a plasmid) by which a DNA or RNA sequence can be introduced into a host cell, so as to transform the host and, optionally, promote expression and/or replication of the introduced sequence.

Vectors that can be used in this invention include plasmids, viruses, bacteriophage, integratable DNA fragments, and other vehicles that may facilitate introduction of the nucleic acids into the genome of the host. Plasmids are the most commonly used form of vector but all other forms of vectors which serve a similar function and which are, or become, known in the art are suitable for use herein. See, *e.g.*, Pouwels, *et al.*, Cloning Vectors: A Laboratory Manual, 1985 and Supplements, Elsevier, N.Y., and Rodriguez *et al.* (eds.), Vectors: A Survey of Molecular Cloning Vectors and Their Uses, 1988, Buttersworth, Boston, MA.

The term "expression system" means a host cell and compatible vector which, under suitable conditions, can express a protein or nucleic acid which is carried by the vector and introduced to the host cell. Common expression systems include *E. coli* host cells and plasmid vectors, insect host cells and Baculovirus vectors, and mammalian host cells and vectors.

Expression of nucleic acids encoding the NPC1L1 polypeptides of this invention can be carried out by conventional methods in either prokaryotic or eukaryotic cells. Although *E. coli* host cells are employed most frequently in prokaryotic systems, many other bacteria, such as various strains of *Pseudomonas* and *Bacillus*, are known in the art and can be used as well. Suitable host cells for expressing nucleic acids encoding the NPC1L1 polypeptides include prokaryotes and higher eukaryotes. Prokaryotes include both gram-negative and gram-positive organisms, *e.g.*, *E. coli* and *B. subtilis*. Higher eukaryotes include established tissue culture cell lines from animal cells, both of non-mammalian origin, *e.g.*, insect cells, and birds, and of mammalian origin, *e.g.*, human, primates, and rodents.

Prokaryotic host-vector systems include a wide variety of vectors for many different species. A representative vector for amplifying DNA is pBR322 or many of its derivatives (e.g., pUC18 or 19). Vectors that can be used to express the NPC1L1 polypeptides include, but are not limited to, those containing the *lac* promoter (pUC-series); *trp* promoter (pBR322-trp); *Ipp*

- 11 -

promoter (the pIN-series); lambda-pP or pR promoters (pOTS); or hybrid promoters such as *ptac* (pDR540). See Brosius *et al.*, "Expression Vectors Employing Lambda-, trp-, lac-, and Ipp-derived Promoters", in Rodriguez and Denhardt (eds.) <u>Vectors: A Survey of Molecular Cloning Vectors and Their Uses</u>, 1988, Buttersworth, Boston, pp. 205-236. Many polypeptides can be expressed, at high levels, in an E.coli/T7 expression system as disclosed in U.S. Patent Nos. 4,952,496, 5,693,489 and 5,869,320 and in Davanloo, P., *et al.*, (1984) Proc. Natl. Acad. Sci. USA 81: 2035-2039; Studier, F. W., *et al.*, (1986) J. Mol. Biol. 189: 113-130; Rosenberg, A. H., *et al.*, (1987) Gene 56: 125-135; and Dunn, J. J., *et al.*, (1988) Gene 68: 259.

5

10

15

20

25

30

Higher eukaryotic tissue culture cells may also be used for the recombinant production of the NPC1L1 polypeptides of the invention. Although any higher eukaryotic tissue culture cell line might be used, including insect baculovirus expression systems, mammalian cells are preferred. Transformation or transfection and propagation of such cells have become a routine procedure. Examples of useful cell lines include HeLa cells, chinese hamster ovary (CHO) cell lines, J774 cells, Caco2 cells, baby rat kidney (BRK) cell lines, insect cell lines, bird cell lines, and monkey (COS) cell lines. Expression vectors for such cell lines usually include an origin of replication, a promoter, a translation initiation site, RNA splice sites (if genomic DNA is used), a polyadenylation site, and a transcription termination site. These vectors also, usually, contain a selection gene or amplification gene. Suitable expression vectors may be plasmids, viruses, or retroviruses carrying promoters derived, e.g., from such sources as adenovirus, SV40, parvoviruses, vaccinia virus, or cytomegalovirus. Examples of expression vectors include pCR®3.1, pCDNA1, pCD (Okayama, et al., (1985) Mol. Cell Biol. 5:1136), pMC1neo Poly-A (Thomas, et al., (1987) Cell 51:503), pREP8, pSVSPORT and derivatives thereof, and baculovirus vectors such as pAC373 or pAC610. One embodiment of the invention includes membrane bound NPC1L1. In this embodiment, NPC1L1 can be expressed in the cell membrane of a eukaryotic cell and the membrane bound protein can be isolated from the cell by conventional methods which are known in the art.

The present invention also includes fusions which include the NPC1L1 polypeptides and NPC1L1 polynucleotides of the present invention and a second polypeptide or polynucleotide moiety, which may be referred to as a "tag". The fusions of the present invention may comprise any of the polynucleotides or polypeptides set forth in Table 1 or any subsequence or fragment thereof (discussed above). The fused polypeptides of the invention may be conveniently constructed, for example, by insertion of a polynucleotide of the invention or fragment thereof into an expression vector. The fusions of the invention may include tags which facilitate purification or detection. Such tags include glutathione-S-transferase (GST), hexahistidine (His6) tags, maltose

- 12 -

binding protein (MBP) tags, haemagglutinin (HA) tags, cellulose binding protein (CBP) tags and myc tags. Detectable tags such as ³²P, ³⁵S, ³H, ^{99m}Tc, ¹²³I, ¹¹¹In, ⁶⁸Ga, ¹⁸F, ¹²⁵I, ¹³¹I, ^{113m}In, ⁷⁶Br, ⁶⁷Ga, ^{99m}Tc, ¹²³I, ¹¹¹In and ⁶⁸Ga may also be used to label the polypeptides and polynucleotides of the invention. Methods for constructing and using such fusions are very conventional and well known in the art.

5

10

15

25

30

Modifications (e.g., post-translational modifications) that occur in a polypeptide often will be a function of how it is made. For polypeptides made by expressing a cloned gene in a host, for instance, the nature and extent of the modifications, in large part, will be determined by the host cell's post-translational modification capacity and the modification signals present in the polypeptide amino acid sequence. For instance, as is well known, glycosylation often does not occur in bacterial hosts such as E. coli. Accordingly, when glycosylation is desired, a polypeptide can be expressed in a glycosylating host, generally a eukaryotic cell. Insect cells often carry out post-translational glycosylations which are similar to those of mammalian cells. For this reason, insect cell expression systems have been developed to express, efficiently, mammalian proteins having native patterns of glycosylation. An insect cell which may be used in this invention is any cell derived from an organism of the class Insecta. Preferably, the insect is Spodoptera fruigiperda (Sf9 or Sf21) or Trichoplusia ni (High 5). Examples of insect expression systems that can be used with the present invention, for example to produce NPC1L1 polypeptide, include Bac-To-Bac (Invitrogen Corporation, Carlsbad, CA) or Gateway (Invitrogen Corporation, Carlsbad, CA). If desired, deglycosylation enzymes can be used to remove carbohydrates attached during production in eukaryotic expression systems.

Other modifications may also include addition of aliphatic esters or amides to the polypeptide carboxyl terminus. The present invention also includes analogs of the NPC1L1 polypeptides which contain modifications, such as incorporation of unnatural amino acid residues, or phosphorylated amino acid residues such as phosphotyrosine, phosphoserine or phosphothreonine residues. Other potential modifications include sulfonation, biotinylation, or the addition of other moieties. For example, the NPC1L1 polypeptides of the invention may be appended with a polymer which increases the half-life of the peptide in the body of a subject. Preferred polymers include polyethylene glycol (PEG) (e.g., PEG with a molecular weight of 2 kDa, 5 kDa, 10 kDa, 12 kDa, 20 kDa, 30 kDa and 40 kDa), dextran and monomethoxypolyethylene glycol (mPEG).

The peptides of the invention may also be cyclized. Specifically, the amino- and carboxy-terminal residues of an NPC1L1 polypeptide or two internal residues of an NPC1L1 polypeptide of the invention can be fused to create a cyclized peptide. Methods for cyclizing peptides are

- 13 -

conventional and very well known in the art; for example see Gurrath, et al., (1992) Eur. J. Biochem. 210:911-921.

5

10

15

25

30

The present invention contemplates any superficial or slight modification to the amino acid or nucleotide sequences which correspond to the polypeptides of the invention. In particular, the present invention contemplates sequence conservative variants of the nucleic acids which encode the polypeptides of the invention. "Sequence-conservative variants" of a polynucleotide sequence are those in which a change of one or more nucleotides in a given codon results in no alteration in the amino acid encoded at that position. Function-conservative variants of the polypeptides of the invention are also contemplated by the present invention. "Function-conservative variants" are those in which one or more amino acid residues in a protein or enzyme have been changed without altering the overall conformation and function of the polypeptide, including, but, by no means, limited to, replacement of an amino acid with one having similar properties. Amino acids with similar properties are well known in the art. For example, polar/hydrophilic amino acids which may be interchangeable include asparagine, glutamine, serine, cysteine, threonine, lysine, arginine, histidine, aspartic acid and glutamic acid; nonpolar/hydrophobic amino acids which may be interchangeable include glycine, alanine, valine, leucine, isoleucine, proline, tyrosine, phenylalanine, tryptophan and methionine; acidic amino acids which may be interchangeable include aspartic acid and glutamic acid and basic amino acids which may be interchangeable include histidine, lysine and arginine.

The present invention includes polynucleotides encoding rat or mouse NPC1L1 and fragments thereof as well as nucleic acids which hybridize to the polynucleotides. Preferably, the nucleic acids hybridize under low stringency conditions, more preferably under moderate stringency conditions and most preferably under high stringency conditions. A nucleic acid molecule is "hybridizable" to another nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule under the appropriate conditions of temperature and solution ionic strength (see Sambrook, et al., supra). The conditions of temperature and ionic strength determine the "stringency" of the hybridization. Typical low stringency hybridization conditions are 55°C, 5X SSC, 0.1% SDS, 0.25% milk, and no formamide at 42°C; or 30% formamide, 5X SSC, 0.5% SDS at 42°C. Typical, moderate stringency hybridization conditions are similar to the low stringency conditions except the hybridization is carried out in 40% formamide, with 5X or 6X SSC at 42°C. High stringency hybridization conditions are similar to low stringency conditions except the hybridization conditions are similar to low stringency conditions except the hybridization conditions are similar to low stringency conditions are carried out in 50% formamide, 5X or 6X SSC and, optionally, at a higher temperature (e.g., higher than 42°C: 57°C, 59°C, 60°C, 62°C, 63°C, 65°C or 68°C). In

- 14 -

general, SSC is 0.15M NaC1 and 0.015M Na-citrate. Hybridization requires that the two nucleic acids contain complementary sequences, although, depending on the stringency of the hybridization, mismatches between bases are possible. The appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the higher the stringency under which the nucleic acids may hybridize. For hybrids of greater than 100 nucleotides in length, equations for calculating the melting temperature have been derived (see Sambrook, *et al.*, *supra*, 9.50-9.51). For hybridization with shorter nucleic acids, *i.e.*, oligonucleotides, the position of mismatches becomes more important, and the length of the oligonucleotide determines its specificity (see Sambrook, *et al.*, *supra*).

5

10

15

25

30

Also included in the present invention are polynucleotides comprising nucleotide sequences and polypeptides comprising amino acid sequences which are at least about 70% identical, preferably at least about 80% identical, more preferably at least about 90% identical and most preferably at least about 95% identical (e.g., 95%, 96%, 97%, 98%, 99%, 100%) to the reference rat NPC1L1 nucleotide (e.g., any of SEQ ID NOs: 1 or 5-10) and amino acid sequences (e.g., SEQ ID NO: 2) or the mouse NPC1L1 nucleotide (e.g., any of SEQ ID NOs: 11 or 13) and amino acids sequences (e.g., SEQ ID NO: 12), when the comparison is performed by a BLAST algorithm wherein the parameters of the algorithm are selected to give the largest match between the respective sequences over the entire length of the respective reference sequences. Polypeptides comprising amino acid sequences which are at least about 70% similar, preferably at least about 80% similar, more preferably at least about 90% similar and most preferably at least about 95% similar (e.g., 95%, 96%, 97%, 98%, 99%, 100%) to the reference rat NPC1L1 amino acid sequence of SEQ ID NO: 2 or the mouse NPC1L1 amino acid sequence of SEQ ID NO: 12, when the comparison is performed with a BLAST algorithm wherein the parameters of the algorithm are selected to give the largest match between the respective sequences over the entire length of the respective reference sequences, are also included in the present invention.

Sequence identity refers to exact matches between the nucleotides or amino acids of two sequences which are being compared. Sequence similarity refers to both exact matches between the amino acids of two polypeptides which are being compared in addition to matches between nonidentical, biochemically related amino acids. Biochemically related amino acids which share similar properties and may be interchangeable are discussed above.

The following references regarding the BLAST algorithm are herein incorporated by reference: **BLAST ALGORITHMS:** Altschul, S.F., *et al.*, (1990) J. Mol. Biol. 215:403-410; Gish, W., *et al.*, (1993) Nature Genet. 3:266-272; Madden, T.L., *et al.*, (1996) Meth. Enzymol. 266:131-

- 15 -

141; Altschul, S.F., et al., (1997) Nucleic Acids Res. 25:3389-3402; Zhang, J., et al., (1997) Genome Res. 7:649-656; Wootton, J.C., et al., (1993) Comput. Chem. 17:149-163; Hancock, J.M., et al., (1994) Comput. Appl. Biosci. 10:67-70; ALIGNMENT SCORING SYSTEMS: Dayhoff, M.O., et al., "A model of evolutionary change in proteins." in Atlas of Protein Sequence and Structure, (1978) vol. 5, suppl. 3. M.O. Dayhoff (ed.), pp. 345-352, Natl. Biomed. Res. Found., Washington, DC; Schwartz, R.M., et al., "Matrices for detecting distant relationships." in Atlas of Protein Sequence and Structure, (1978) vol. 5, suppl. 3." M.O. Dayhoff (ed.), pp. 353-358, Natl. Biomed. Res. Found., Washington, DC; Altschul, S.F., (1991) J. Mol. Biol. 219:555-565; States, D.J., et al., (1991) Methods 3:66-70; Henikoff, S., et al., (1992) Proc. Natl. Acad. Sci. USA 89:10915-10919; Altschul, S.F., et al., (1993) J. Mol. Evol. 36:290-300; ALIGNMENT STATISTICS: Karlin, S., et al., (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268; Karlin, S., et al., (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877; Dembo, A., et al., (1994) Ann. Prob. 22:2022-2039; and Altschul, S.F. "Evaluating the statistical significance of multiple distinct local alignments." in Theoretical and Computational Methods in Genome Research (S. Suhai, ed.), (1997) pp. 1-14, Plenum, New York.

Protein Purification

The proteins, polypeptides and antigenic fragments of this invention can be purified by standard methods, including, but not limited to, salt or alcohol precipitation, affinity chromatography (e.g., used in conjunction with a purification tagged NPC1L1 polypeptide as discussed above), preparative disc-gel electrophoresis, isoelectric focusing, high pressure liquid chromatography (HPLC), reversed-phase HPLC, gel filtration, cation and anion exchange and partition chromatography, and countercurrent distribution. Such purification methods are well known in the art and are disclosed, e.g., in "Guide to Protein Purification", Methods in Enzymology, Vol. 182, M. Deutscher, Ed., 1990, Academic Press, New York, NY.

Purification steps can be followed by performance of assays for receptor binding activity as described below. Particularly where an NPC1L1 polypeptide is being isolated from a cellular or tissue source, it is preferable to include one or more inhibitors of proteolytic enzymes in the assay system, such as phenylmethanesulfonyl fluoride (PMSF), Pefabloc SC, pepstatin, leupeptin, chymostatin and EDTA.

30

5

10

15

20

25

Antibody Molecules

Antigenic (including immunogenic) fragments of the NPC1L1 polypeptides of the invention are within the scope of the present invention (e.g., 42 or more contiguous amino acids from SEQ ID NO: 2, 4 or 12). The antigenic peptides may be useful, *inter alia*, for preparing

antibody molecules which recognize NPC1L1. Anti-NPC1L1 antibody molecules are useful NPC1L1 antagonists.

5

10

15

25

30

- 16 –

An antigen is any molecule that can bind specifically to an antibody. Some antigens cannot, by themselves, elicit antibody production. Those that can induce antibody production are immunogens.

Preferably, anti-NPC1L1 antibodies recognize an antigenic peptide comprising an amino acid sequence selected from SEQ ID NOs: 39-42 (e.g., an antigen derived from rat NPC1L1). More preferably, the antibody is A0715, A0716, A0717, A0718, A0867, A0868, A1801 or A1802.

The term "antibody molecule" includes, but is not limited to, antibodies and fragments (preferably antigen-binding fragments) thereof. The term includes monoclonal antibodies, polyclonal antibodies, bispecific antibodies, Fab antibody fragments, F(ab)₂ antibody fragments, Fv antibody fragments (e.g., V_H or V_L), single chain Fv antibody fragments and dsFv antibody fragments. Furthermore, the antibody molecules of the invention may be fully human antibodies, mouse antibodies, rat antibodies, rabbit antibodies, goat antibodies, chicken antibodies, humanized antibodies or chimeric antibodies.

Although it is not always necessary, when NPC1L1 polypeptides are used as antigens to elicit antibody production in an immunologically competent host, smaller antigenic fragments are, preferably, first rendered more immunogenic by cross-linking or concatenation, or by coupling to an immunogenic carrier molecule (*i.e.*, a macromolecule having the property of independently eliciting an immunological response in a host animal, such as diptheria toxin or tetanus). Cross-linking or conjugation to a carrier molecule may be required because small polypeptide fragments sometimes act as haptens (molecules which are capable of specifically binding to an antibody but incapable of eliciting antibody production, *i.e.*, they are not immunogenic). Conjugation of such fragments to an immunogenic carrier molecule renders them more immunogenic through what is commonly known as the "carrier effect".

Carrier molecules include, *e.g.*, proteins and natural or synthetic polymeric compounds such as polypeptides, polysaccharides, lipopolysaccharides *etc.* Protein carrier molecules are especially preferred, including, but not limited to, keyhole limpet hemocyanin and mammalian serum proteins such as human or bovine gammaglobulin, human, bovine or rabbit serum albumin, or methylated or other derivatives of such proteins. Other protein carriers will be apparent to those skilled in the art. Preferably, the protein carrier will be foreign to the host animal in which antibodies against the fragments are to be elicited.

Covalent coupling to the carrier molecule can be achieved using methods well known in the art, the exact choice of which will be dictated by the nature of the carrier molecule used. When

- 17 -

the immunogenic carrier molecule is a protein, the fragments of the invention can be coupled, e.g., using water-soluble carbodiimides such as dicyclohexylcarbodiimide or glutaraldehyde.

Coupling agents, such as these, can also be used to cross-link the fragments to themselves without the use of a separate carrier molecule. Such cross-linking into aggregates can also increase immunogenicity. Immunogenicity can also be increased by the use of known adjuvants, alone or in combination with coupling or aggregation.

5

10

15

25

30

Adjuvants for the vaccination of animals include, but are not limited to, Adjuvant 65 (containing peanut oil, mannide monooleate and aluminum monostearate); Freund's complete or incomplete adjuvant; mineral gels such as aluminum hydroxide, aluminum phosphate and alum; surfactants such as hexadecylamine, octadecylamine, lysolecithin, dimethyldioctadecylammonium bromide, N,N-dioctadecyl-N',N'-bis(2-hydroxymethyl) propanediamine, methoxyhexadecylglycerol and pluronic polyols; polyanions such as pyran, dextran sulfate, poly IC, polyacrylic acid and carbopol; peptides such as muramyl dipeptide, dimethylglycine and tuftsin; and oil emulsions. The polypeptides could also be administered following incorporation into liposomes or other microcarriers.

Information concerning adjuvants and various aspects of immunoassays are disclosed, *e.g.*, in the series by P. Tijssen, <u>Practice and Theory of Enzyme Immunoassays</u>, 3rd Edition, 1987, Elsevier, New York. Other useful references covering methods for preparing polyclonal antisera include <u>Microbiology</u>, 1969, Hoeber Medical Division, Harper and Row; Landsteiner, <u>Specificity of Serological Reactions</u>, 1962, Dover Publications, New York, and Williams, *et al.*, <u>Methods in Immunology and Immunochemistry</u>, Vol. 1, 1967, Academic Press, New York.

The anti-NPC1L1 antibody molecules of the invention preferably recognize human, mouse or rat NPC1L1; however, the present invention includes antibody molecules which recognize NPC1L1 from any species, preferably mammals (e.g., cat, sheep or horse). The present invention also includes complexes comprising an NPC1L1 polypeptide of the invention and an anti-NPC1L1 antibody molecule. Such complexes can be made by simply contacting the antibody molecule with its cognate polypeptide.

Various methods may be used to make the antibody molecules of the invention. Human antibodies can be made, for example, by methods which are similar to those disclosed in U.S. Patent Nos. 5,625,126; 5,877,397; 6,255,458; 6,023,010 and 5,874,299.

Hybridoma cells which produce the monoclonal anti-NPC1L1 antibodies may be produced by methods which are commonly known in the art. These methods include, but are not limited to, the hybridoma technique originally developed by Kohler, *et al.*, (1975) (Nature 256:495-497), as well as the trioma technique (Hering, *et al.*, (1988) Biomed. Biochim. Acta. 47:211-216 and

- 18 -

Hagiwara, et al., (1993) Hum. Antibod. Hybridomas 4:15), the human B-cell hybridoma technique (Kozbor, et al., (1983) Immunology Today 4:72 and Cote, et al., (1983) Proc. Natl. Acad. Sci. U.S.A 80:2026-2030), and the EBV-hybridoma technique (Cole, et al., in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96, 1985). ELISA may be used to determine if

hybridoma cells are expressing anti-NPC1L1 antibodies.

5

10

15

25

30

The anti-NPC1L1 antibody molecules of the present invention may also be produced recombinantly (e.g., in an E.coli/T7 expression system as discussed above). In this embodiment, nucleic acids encoding the antibody molecules of the invention (e.g., V_H or V_L) may be inserted into a pet-based plasmid and expressed in the E.coli/T7 system. There are several methods by which to produce recombinant antibodies which are known in the art. An example of a method for recombinant production of antibodies is disclosed in U.S. Patent No. 4,816,567. See also Skerra, A., et al., (1988) Science 240:1038-1041; Better, M., et al., (1988) Science 240:1041-1043 and Bird, R.E., et al., (1988) Science 242:423-426.

The term "monoclonal antibody," includes an antibody obtained from a population of substantially homogeneous antibodies, *i.e.*, the individual antibodies comprising the population are identical except for possible, naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Monoclonal antibodies are advantageous in that they may be synthesized by a hybridoma culture, essentially uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. The monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method as described by Kohler, *et al.*, (1975) Nature 256:495.

The term "polyclonal antibody" includes an antibody which was produced among or in the presence of one or more other, non-identical antibodies. In general, polyclonal antibodies are produced from a B-lymphocyte in the presence of several other B-lymphocytes which produced non-identical antibodies. Typically, polyclonal antibodies are obtained directly from an immunized animal (*e.g.*, a rabbit).

A "bispecific antibody" comprises two different antigen binding regions which bind to distinct antigens. Bispecific antibodies, as well as methods of making and using the antibodies, are conventional and very well known in the art.

Anti-idiotypic antibodies or anti-idiotypes are antibodies directed against the antigen-combining region or variable region (called the idiotype) of another antibody molecule. As disclosed by Jerne (Jerne, N. K., (1974) Ann. Immunol. (Paris) 125c:373 and Jerne, N. K., et al.,

WO 2004/009772

5

10

15

25

30

- 19 -

PCT/US2003/022467

(1982) EMBO 1:234), immunization with an antibody molecule expressing a paratope (antigen-combining site) for a given antigen (e.g., NPC1L1) will produce a group of anti-antibodies, some of which share, with the antigen, a complementary structure to the paratope. Immunization with a subpopulation of the anti-idiotypic antibodies will, in turn, produce a subpopulation of antibodies or immune cell subsets that are reactive to the initial antigen.

The term "fully human antibody" refers to an antibody which comprises human immunoglobulin sequences only. Similarly, "mouse antibody" refers to an antibody which comprises mouse immunoglobulin sequences only.

"Human/mouse chimeric antibody" refers to an antibody which comprises a mouse variable region (V_H and V_L) fused to a human constant region.

"Humanized" anti-NPC1L1 antibodies are also within the scope of the present invention. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementary determining region of the recipient are replaced by residues from a complementary determining region of a nonhuman species (donor antibody), such as mouse, rat or rabbit, having a desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are also replaced by corresponding non-human residues.

"Single-chain Fv" or "sFv" antibody fragments include the V_H and/or V_L domains of an antibody, wherein these domains are present in a single polypeptide chain. Generally, the sFv polypeptide further comprises a polypeptide linker between the V_H and V_L domains which enables the sFv to form the desired structure for antigen binding. Techniques described for the production of single chain antibodies (U.S. Patent Nos. 5,476,786; 5,132,405 and 4,946,778) can be adapted to produce anti-NPC1L1 specific, single chain antibodies. For a review of sFv see Pluckthun in <u>The Pharmacology of Monoclonal Antibodies</u>, vol. 113, Rosenburg and Moore eds. Springer-Verlag, N.Y., pp. 269-315 (1994).

"Disulfide stabilized Fv fragments" and "dsFv" include molecules having a variable heavy chain (V_H) and/or a variable light chain (V_L) which are linked by a disulfide bridge.

Antibody fragments within the scope of the present invention also include F(ab)₂ fragments which may be produced by enzymatic cleavage of an IgG by, for example, pepsin. Fab fragments may be produced by, for example, reduction of F(ab)₂ with dithiothreitol or mercaptoethylamine.

An F_V fragment is a V_L or V_H region.

Depending on the amino acid sequences of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are at least five major classes of

immunoglobulins: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG-1, IgG-2, IgG-3 and IgG-4; IgA-1 and IgA-2.

5

10

15

25

30

The anti-NPC1L1 antibody molecules of the invention may also be conjugated to a chemical moiety. The chemical moiety may be, *inter alia*, a polymer, a radionuclide or a cytotoxic factor. Preferably, the chemical moiety is a polymer which increases the half-life of the antibody molecule in the body of a subject. Suitable polymers include, but are by no means limited to, polyethylene glycol (PEG) (*e.g.*, PEG with a molecular weight of 2kDa, 5 kDa, 10 kDa, 12kDa, 20 kDa, 30kDa or 40kDa), dextran and monomethoxypolyethylene glycol (mPEG). Methods for producing PEGylated anti-IL8 antibodies which are described in U.S. Patent No. 6,133,426 can be applied to the production of PEGylated anti-NPC1L1 antibodies of the invention. Lee, *et al.*, (1999) (Bioconj. Chem. 10:973-981) discloses PEG conjugated single-chain antibodies. Wen, *et al.*, (2001) (Bioconj. Chem. 12:545-553) discloses conjugating antibodies with PEG which is attached to a radiometal chelator (diethylenetriaminpentaacetic acid (DTPA)).

The antibody molecules of the invention may also be conjugated with labels such as $^{99}\text{Tc}, ^{90}\text{Y}, ^{111}\text{In}, ^{32}\text{P}, ^{14}\text{C}, ^{125}\text{I}, ^{3}\text{H}, ^{131}\text{I}, ^{11}\text{C}, ^{15}\text{O}, ^{13}\text{N}, ^{18}\text{F}, ^{35}\text{S}, ^{51}\text{Cr}, ^{57}\text{To}, ^{226}\text{Ra}, ^{60}\text{Co}, ^{59}\text{Fe}, ^{57}\text{Se}, ^{152}\text{Eu}, ^{67}\text{CU}, ^{217}\text{Ci}, ^{211}\text{At}, ^{212}\text{Pb}, ^{47}\text{Sc}, ^{109}\text{Pd}, ^{234}\text{Th}, ^{40}\text{K}, ^{157}\text{Gd}, ^{55}\text{Mn}, ^{52}\text{Tr or }^{56}\text{Fe}.$

The antibody molecules of the invention may also be conjugated with fluorescent or chemilluminescent labels, including fluorophores such as rare earth chelates, fluorescein and its derivatives, rhodamine and its derivatives, isothiocyanate, phycoerythrin, phycocyanin, allophycocyanin, o-phthaladehyde, fluorescamine, ¹⁵²Eu, dansyl, umbelliferone, luciferin, luminal label, isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridimium salt label, an oxalate ester label, an aequorin label, 2,3-dihydrophthalazinediones, biotin/avidin, spin labels and stable free radicals.

The antibody molecules may also be conjugated to a cytotoxic factor such as diptheria toxin, *Pseudomonas aeruginosa* exotoxin A chain, ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, *Aleurites fordii* proteins and compounds (*e.g.*, fatty acids), dianthin proteins, *Phytoiacca americana* proteins PAPI, PAPII, and PAP-S, *momordica charantia* inhibitor, curcin, crotin, *saponaria officinalis* inhibitor, mitogellin, restrictocin, phenomycin, and enomycin.

Any method known in the art for conjugating the antibody molecules of the invention to the various moieties may be employed, including those methods described by Hunter, *et al.*, (1962) Nature 144:945; David, *et al.*, (1974) Biochemistry 13:1014; Pain, *et al.*, (1981) J. Immunol. Meth. 40:219; and Nygren, J., (1982) Histochem. and Cytochem. 30:407.

Methods for conjugating antibodies are conventional and very well known in the art.

- 21 -

Screening Assays

The invention allows the discovery of selective agonists and antagonists of NPC1L1 (*e.g.*, SEQ ID NO: 2, 4 or 12) that may be useful in treatment and management of a variety of medical conditions including elevated serum cholesterol. Thus, NPC1L1 of this invention can be employed in screening systems to identify agonists or antagonists. Essentially, these systems provide methods for bringing together NPC1L1, an appropriate, known ligand or agonist or antagonist, including cholesterol, ezetimibe, BODIPY-ezetimibe (Altmann, *et al.*, (2002) Biochim. Biophys. Acta 1580(1):77-93) or 4", 6"-bis[(2-fluorophenyl)carbamoyl]-beta-D-cellobiosyl derivative of 11-ketotigogenin as described in DeNinno, *et al.*, (1997) (J. Med. Chem. 40(16):2547-54) (Merck; L-166,143), and a sample to be tested for the presence of an NPC1L1 agonist or antagonist. A convenient method by which to evaluate whether a sample contains an NPC1L1 agonist or antagonist or antagonist is to determine whether the sample contains a substance which competes for binding between the known agonist or antagonist (*e.g.*, ezetimibe) and NPC1L1.

5

10

15

25

30

Ezetimibe can be prepared by a variety of methods well know to those skilled in the art, for example such as are disclosed in U.S. Patents Nos. 5,631,365, 5,767,115, 5,846,966, 6,207,822, U.S. Patent Application Publication No. 2002/0193607 and PCT Patent Application WO 93/02048, each of which is incorporated herein by reference in its entirety.

"Sample", "candidate compound" or "candidate substance" refers to a composition which is evaluated in a test or assay, for example, for the ability to agonize or antagonize NPC1L1 (e.g., SEQ ID NO: 2, 4 or 12) or a functional fragment thereof. The composition may small molecules, peptides, nucleotides, polynucleotides, subatomic particles (e.g., α particles) or antibodies.

Two basic types of screening systems can be used, a labeled-ligand binding assay (*e.g.*, direct binding assay or scintillation proximity assay (SPA)) and a "cholesterol uptake" assay. A labeled ligand for use in the binding assay can be obtained by labeling cholesterol or a known NPC1L1 agonist or antagonist with a measurable group (*e.g.*, ¹²⁵I or ³H). Various labeled forms of cholesterol are available commercially or can be generated using standard techniques (*e.g.*, Cholesterol-[1,2-³H(N)], Cholesterol-[1,2,6,7-³H(N)] or Cholesterol-[7-³H(N)]; American Radiolabeled Chemicals, Inc; St. Louis, MO). In a preferred embodiment, ezetimibe is fluorescently labeled with a BODIPY group (Altmann, *et al.*, (2002) Biochim. Biophys. Acta 1580(1):77-93) or labeled with a detectable group such as ¹²⁵I or ³H.

Direct Biding Assay. Typically, a given amount of NPC1L1 of the invention (e.g., SEQ ID NO: 2, 4 or 12) is contacted with increasing amounts of labeled ligand or known antagonist or agonist (discussed above) and the amount of the bound, labeled ligand or known antagonist or

agonist is measured after removing unbound, labeled ligand or known antagonist or agonist by washing. As the amount of the labeled ligand or known agonist or antagonist is increased, a point is eventually reached at which all receptor binding sites are occupied or saturated. Specific receptor binding of the labeled ligand or known agonist or antagonist is abolished by a large excess of unlabeled ligand or known agonist or antagonist.

Preferably, an assay system is used in which non-specific binding of the labeled ligand or known antagonist or agonist to the receptor is minimal. Non-specific binding is typically less than 50%, preferably less than 15%, and more preferably less than 10% of the total binding of the labeled ligand or known antagonist or agonist.

5

10

15

25

30

A nucleic acid encoding an NPC1L1 polypeptide of the invention (e.g., SEQ ID NO: 2, 4 or 12) can be transfected into an appropriate host cell, whereby the receptor will become incorporated into the membrane of the cell. A membrane fraction can then be isolated from the cell and used as a source of the receptor for assay. Alternatively, the whole cell expressing the receptor in the cell surface can be used in an assay. Preferably, specific binding of the labeled ligand or known antagonist or agonist to an untransfected/untransformed host cell or to a membrane fraction from an untransfected/untransformed host cell will be negligible.

In principle, a binding assay of the invention could be carried out using a soluble NPC1L1 polypeptide of the invention, e.g., following production and refolding by standard methods from an E. coli expression system, and the resulting receptor-labeled ligand complex could be precipitated, e.g., using an antibody against the receptor. The precipitate could then be washed and the amount of the bound, labeled ligand or antagonist or agonist could be measured.

In the basic binding assay, the method for identifying an NPC1L1 agonist or antagonist includes:

- (a) contacting NPC1L1 (e.g., SEQ ID NO: 2 or 4 or 12) or a subsequence thereof, in the presence of a known amount of labeled cholesterol or known antagonist or agonist (e.g., labeled ezetimibe or labeled L-166,143) with a sample to be tested for the presence of an NPC1L1 agonist or antagonist; and
- (b) measuring the amount of labeled cholesterol or known antagonist or agonist bound to the receptor.

An NPC1L1 antagonist or agonist in the sample is identified by measuring substantially reduced binding of the labeled cholesterol or known antagonist or agonist to NPC1L1, compared to what would be measured in the absence of such an antagonist or agonist. For example, reduced binding between [³H]-cholesterol and NPC1L1 in the presence of a sample might suggest that the sample contains a substance which is competing against [³H]-cholesterol for NPC1L1 binding.

WO 2004/009772

5

10

15

25

30

Alternatively, a sample can be tested directly for binding to NPC1L1 (e.g., SEQ ID NO: 2, 4 or 12). A basic assay of this type may include the following steps:

- (a) contacting NPC1L1 (e.g., SEQ ID NO: 2 or 4 or 12) or a subsequence thereof with a labeled candidate compound (e.g., [³H]-ezetimibe); and
 - (b) detecting binding between the labeled candidate compound and NPC1L1.

A candidate compound which is found to bind to NPC1L1 may function as an agonist or antagonist of NPC1L1 (e.g., by inhibition of cholesterol uptake).

SPA Assay. NPC1L1 antagonists or agonists may also be measured using scintillation proximity assays (SPA). SPA assays are conventional and very well known in the art; see, for example, U.S. Patent No. 4,568,649. In SPA, the target of interest is immobilised to a small microsphere approximately 5 microns in diameter. The microsphere, typically, includes a solid scintillant core which has been coated with a polyhydroxy film, which in turn contains coupling molecules, which allow generic links for assay design. When a radioisotopically labeled molecule binds to the microsphere, the radioisotope is brought into close proximity to the scintillant and effective energy transfer from electrons emitted by the isotope will take place resulting in the emission of light. While the radioisotope remains in free solution, it is too distant from the scintillant and the electron will dissipate the energy into the aqueous medium and therefore remain undetected. Scintillation may be detected with a scintillation counter. In general, ³H and ¹²⁵I labels are well suited to SPA.

For the assay of receptor-mediated binding events, the lectin wheat germ agglutinin (WGA) may be used as the SPA bead coupling molecule (Amersham Biosciences; Piscataway, NJ). The WGA coupled bead captures glycosylated, cellular membranes and glycoproteins and has been used for a wide variety of receptor sources and cultured cell membranes. The receptor is immobilized onto the WGA-SPA bead and a signal is generated on binding of an isotopically labeled ligand. Other coupling molecules which may be useful for receptor binding SPA assays include poly-L-lysine and WGA/polyethyleneimine (Amersham Biosciences; Piscataway, NJ). See, for example, Berry, J.A., *et al.*, (1991) Cardiovascular Pharmacol. 17 (Suppl.7): S143-S145; Hoffman, R., *et al.*, (1992) Anal. Biochem. 203: 70-75; Kienhus, *et al.*, (1992) J. Receptor Research 12: 389-399; Jing, S., *et al.*, (1992) Neuron 9: 1067-1079.

The scintillant contained in SPA beads may include, for example, yttrium silicate (YSi), yttrium oxide (YOx), diphenyloxazole or polyvinyltoluene (PVT) which acts as a solid solvent for diphenylanthracine (DPA).

SPA assays may be used to analyze whether a sample is an NPC1L1 antagonist or agonist. In these assays, a host cell which expresses NPC1L1 (e.g., SEQ ID NO: 2 or 4 or 12) on the cell

- 24 –

surface or a membrane fraction thereof is incubated with SPA beads (*e.g.*, WGA coated YOx beads or WGA coated YSi beads) and labeled, known ligand or agonist or antagonist (*e.g.*, ³H-cholesterol, ³H-ezetimibe or ¹²⁵I-ezetimibe). The assay mixture further includes either the sample to be tested or a blank (*e.g.*, water). After an optional incubation, scintillation is measured using a scintillation counter. An NPC1L1 agonist or antagonist may be identified in the sample by measuring substantially reduced fluorescence, compared to what would be measured in the absence of such agonist or antagonist (blank). Measuring substantially reduced fluorescence may suggest that the sample contains a substance which competes for NPC1L1 binding with the known ligand, agonist or antagonist.

5

10

15

25

30

Alternatively, a sample may be identified as an antagonist or agonist of NPC1L1 by directly detecting binding in a SPA assay. In this assay, a labeled version of a candidate compound to be tested may be put in contact with the host cell expressing NPC1L1 or a membrane fraction thereof which is bound to the SPA bead. Fluorescence may then be assayed to detect the presence of a complex between the labeled candidate compound and the host cell or membrane fraction expressing NPC1L1. A candidate compound which binds to NPC1L1 may possess NPC1L1 agonistic or antagonistic activity.

Host cells expressing NPC1L1 may be prepared by transforming or transfecting a nucleic acid encoding an NPC1L1 of the invention into an appropriate host cell, whereby the receptor becomes incorporated into the membrane of the cell. A membrane fraction can then be isolated from the cell and used as a source of the receptor for assay. Alternatively, the whole cell expressing the receptor on the cell surface can be used in an assay. Preferably, specific binding of the labeled ligand or known antagonist or agonist to an untransfected/untransformed host cell or membrane fraction from an untransfected/untransformed host cell will be negligible. Preferred host cells include Chinese Hamster Ovary (CHO) cells, murine macrophage J774 cells or any other macrophage cell line and human intestinal epithelial Caco2 cells.

Cholesterol Uptake Assay. Assays may also be performed to determine if a sample can agonize or antagonize NPC1L1 mediated cholesterol uptake. In these assays, a host cell expressing NPC1L1 (e.g., SEQ ID NO: 2 or 4 or 12) on the cell surface (discussed above) can be contacted with detectably labeled cholesterol (e.g., ³H-cholesterol or ¹²⁵I-cholesterol) along with either a sample or a blank. After an optional incubation, the cells can be washed to remove unabsorbed cholesterol. Cholesterol uptake can be determined by detecting the presence of labeled cholesterol in the host cells. For example, assayed cells or lysates or fractions thereof (e.g., fractions resolved by thin-layer chromatography) can be contacted with a liquid scintillant and scintillation can be measured using a scintillation counter.

- 25 -

In these assays, an NPC1L1 antagonist in the sample may be identified by measuring substantially reduced uptake of labeled cholesterol (e.g., ³H-cholesterol), compared to what would be measured in the absence of such an antagonist and an agonist may be identified by measuring substantially increased uptake of labeled cholesterol (e.g., ³H-cholesterol), compared to what would be measured in the absence of such an agonist.

5

10

15

25

30

Pharmaceutical Compositions

NPC1L1 agonists and antagonists discovered, for example, by the screening methods described above may be used therapeutically (e.g., in a pharmaceutical composition) to stimulate or block the activity of NPC1L1 and, thereby, to treat any medical condition caused or mediated by the receptors. For example, the antibody molecules of the invention may also be used therapeutically (e.g., in a pharmaceutical composition) to bind NPC1L1 and, thereby, block the ability of the receptor to bind cholesterol. Blocking the binding of the cholesterol may prevent absorption of the molecule (e.g., by intestinal cells such as enterocytes). Blocking absorption of cholesterol may be a useful way to lower serum cholesterol levels in a subject and, thereby, reduce the incidence of, for example, hyperlipidemia, atherosclerosis, coronary heart disease, stroke or arteriosclerosis.

The term "subject" or "patient" includes any organism, preferably animals, more preferably mammals (e.g., mice, rats, rabbits, dogs, horses, primates, cats) and most preferably humans.

The term "pharmaceutical composition" refers to a composition including an active ingredient and a pharmaceutically acceptable carrier and/or adjuvant.

Although the compositions of this invention could be administered in simple solution, they are more typically used in combination with other materials such as carriers, preferably pharmaceutically acceptable carriers. Useful, pharmaceutically acceptable carriers can be any compatible, non-toxic substances suitable for delivering the compositions of the invention to a subject. Sterile water, alcohol, fats, waxes, and inert solids may be included in a pharmaceutically acceptable carrier. Pharmaceutically acceptable adjuvants (buffering agents, dispersing agents) may also be incorporated into the pharmaceutical composition.

Preferably, the pharmaceutical compositions of the invention are in the form of a pill or capsule. Methods for formulating pills and capsules are very well known in the art. For example, for oral administration in the form of tablets or capsules, the active drug component may be combined with any oral, non-toxic pharmaceutically acceptable inert carrier, such as lactose, starch, sucrose, cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, talc, mannitol, ethyl alcohol (liquid forms) and the like. Moreover, when desired or needed, suitable

binders, lubricants, disintegrating agents and coloring agents may also be incorporated in the mixture. Suitable binders include starch, gelatin, natural sugars, corn sweeteners, natural and synthetic gums such as acacia, sodium alginate, carboxymethylcellulose, polyethylene glycol and waxes. Among the lubricants there may be mentioned for use in these dosage forms, boric acid, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrants include starch, methylcellulose, guar gum and the like. Sweetening and flavoring agents and preservatives may also be included where appropriate.

5

10

15

25

30

The pharmaceutical compositions of the invention may be administered in conjunction with a second pharmaceutical composition or substance. In preferred embodiments, the second composition includes a cholesterol-lowering drug. When a combination therapy is used, both compositions may be formulated into a single composition for simultaneous delivery or formulated separately into two or more compositions (*e.g.*, a kit).

The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. See, e.g., Gilman et al. (eds.) (1990), The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, supra, Easton, Penn.; Avis et al. (eds.) (1993) Pharmaceutical Dosage Forms: Parenteral Medications Dekker, New York; Lieberman et al. (eds.) (1990) Pharmaceutical Dosage Forms: Tablets Dekker, New York; and Lieberman et al. (eds.) (1990), Pharmaceutical Dosage Forms: Disperse Systems Dekker, New York.

The dosage regimen involved in a therapeutic application may be determined by a physician, considering various factors which may modify the action of the therapeutic substance, e.g., the condition, body weight, sex and diet of the patient, the severity of any infection, time of administration, and other clinical factors. Often, treatment dosages are titrated upward from a low level to optimize safety and efficacy. Dosages may be adjusted to account for the smaller molecular sizes and possibly decreased half-lives (clearance times) following administration.

An "effective amount" of an antagonist of the invention may be an amount that will detectably reduce the level of intestinal cholesterol absorption or detectably reduce the level of serum cholesterol in a subject administered the composition.

Typical protocols for the therapeutic administration of such substances are well known in the art. Pharmaceutical composition of the invention may be administered, for example, by any parenteral or non-parenteral route.

Pills and capsules of the invention can be administered orally. Injectable compositions can be administered with medical devices known in the art; for example, by injection with a hypodermic needle.

- 27 -

PCT/US2003/022467

Injectable pharmaceutical compositions of the invention may also be administered with a needleless hypodermic injection device; such as the devices disclosed in U.S. Patent Nos. 5,399,163; 5,383,851; 5,312,335; 5,064,413; 4,941,880; 4,790,824 or 4,596,556.

5 Anti-Sense

WO 2004/009772

10

15

25

30

The present invention also encompasses anti-sense oligonucleotides capable of specifically hybridizing to mRNA encoding NPC1L1 (e.g., any of SEQ ID NOs: 1, 3, 5-11 or 13) having an amino acid sequence defined by, for example, SEQ ID NO: 2 or 4 or 12 or a subsequence thereof so as to prevent translation of the mRNA. Additionally, this invention contemplates anti-sense oligonucleotides capable of specifically hybridizing to the genomic DNA molecule encoding NPC1L1, for example, having an amino acid sequence defined by SEQ ID NO: 2 or 4 or 12 or a subsequence thereof.

This invention further provides pharmaceutical compositions comprising (a) an amount of an oligonucleotide effective to reduce NPC1L1-mediated cholesterol absorption by passing through a cell membrane and binding specifically with mRNA encoding NPC1L1 in the cell so as to prevent its translation and (b) a pharmaceutically acceptable carrier capable of passing through a cell membrane. In an embodiment, the oligonucleotide is coupled to a substance that inactivates mRNA. In another embodiment, the substance that inactivates mRNA is a ribozyme.

EXAMPLES EXAMPLES

The following examples are provided to more clearly describe the present invention and should not be construed to limit the scope of the invention in any way.

Example 1: Cloning and Expression of Rat, Mouse and Human NPC1L1.

Rat NPC, mouse NPC1L1 or human NPC1L1 can all conveniently be amplified using polymerase chain reaction (PCR). In this approach, DNA from a rat, mouse or human cDNA library can be amplified using appropriate primers and standard PCR conditions. Design of primers and optimal amplification conditions constitute standard techniques which are commonly known in the art.

An amplified *NPC1L1* gene may conveniently be expressed, again, using methods which are commonly known in the art. For example, NPC1L1 may be inserted into a pET-based plasmid vector (Stratagene; La Joola, CA), downstream of the T7 RNA polymerase promoter. The plasmid may then be transformed into a T7 expression system (e.g., BL21DE3 E.coli cells), grown in a liquid culture and induced (e.g., by adding IPTG to the bacterial culture).

Example 2: Direct Binding Assay.

5

10

15

20

25

30

Membrane preparation: Caco2 cells transfected with an expression vector containing a polynucleotide encoding NPC1L1 (e.g., SEQ ID NO: 2, 4 or 12) are harvested by incubating in 5 mM EDTA/phosphate-buffered saline followed by repeated pipeting. The cells are centrifuged 5 min at 1000 x g. The EDTA/PBS is decanted and an equal volume of ice-cold 50mM Tris-HCl, pH 7.5 is added and cells are broken up with a Polytron (PT10 tip, setting 5, 30 sec). Nuclei and unbroken cells are sedimented at 1000 x g for 10 min and then the supernatant is centrifuged at 50,000 x g for 10 min. The supernatant is decanted, the pellet is resuspended by Polytron, a sample is taken for protein assay (bicinchoninic acid, Pierce), and the tissue is again centrifuged at 50,000 x g. Pellets are stored frozen at -20°C.

Binding assay: For saturation binding, four concentrations of [³H]-ezetimibe (15 Ci/mmol) are incubated without and with 10⁻⁵ M ezetimibe in triplicate with 50 μg of membrane protein in a total volume of 200 μl of 50 mM Tris-HCl, pH 7.5, for 30 min at 30°C. Samples are filtered on GF/B filters and washed three times with 2 ml of cold Tris buffer. Filters are dried in a microwave oven, impregnated with Meltilex wax scintillant, and counted at 45% efficiency. For competition binding assays, five concentrations of a sample are incubated in triplicate with 18 nM [³H]-ezetimibe and 70 μg of membrane protein under the conditions described above. Curves are fit to the data with Prism (GraphPad Software) nonlinear least-squares curve-fitting program and K_i values are derived from IC₅₀ values according to Cheng and Prusoff (Cheng, Y. C., *et al.*, (1973) Biochem. Pharmacol. 22:3099-3108).

Example 3: SPA Assay.

For each well of a 96 well plate, a reaction mixture of 10 µg human, mouse or rat NPC1L1-CHO overexpressing membranes (Biosignal) and 200 µg/well YSi-WGA-SPA beads (Amersham) in 100 µl is prepared in NPC1L1 assay buffer (25 mM HEPES, pH 7.8, 2 mM CaCl₂, 1mM MgCl₂, 125 mM NaCl, 0.1% BSA). A 0.4 nM stock of ligand- [¹²⁵I]-ezetimibe- is prepared in the NPC1L1 assay buffer. The above solutions are added to a 96-well assay plate as follows: 50 µl NPC1L1 assay buffer, 100 µl of reaction mixture, 50 µl of ligand stock (final ligand concentration is 0.1 nM). The assay plates are shaken for 5 minutes on a plate shaker, then incubated for 8 hours before cpm/well are determined in Microbeta Trilux counter (PerkinElmer).

These assays will indicate that $[^{125}I]$ -ezetimibe binds to the cell membranes expressing human, mouse or rat NPC1L1. Similar results will be obtained if the same experiment is performed with radiolabeled cholesterol (e.g., ^{125}I -cholesterol).

5

10

15

20

25

Example 4: Cholesterol Uptake Assay.

CHO cells expressing either SR-B1 or three different clones of rat NPC1L1 or one clone of mouse NPC1L1 were starved overnight in cholesterol free media then dosed with [³H]-cholesterol in a mixed synthetic micelle emulsion for 4 min, 8 min, 12 min or 24 min in the absence or presence of 10 µM ezetimibe. The cells were harvested and the lipids were organically extracted. The extracted lipids were spotted on thin-layer chromatography (TLC) plates and resolved within an organic vapor phase. The free cholesterol bands for each assay were isolated and counted in a scintillation counter.

The SR-B1 expressing cells exhibited an increase in [³H]-cholesterol uptake as early as 4 min which was also inhibited by ezetimibe. The three rat clones and the one mouse clone appeared to give background levels of [³H]-cholesterol uptake which was similar to that of the untransformed CHO cell.

These experiments will yield data demonstrating that CHO cells can perform mouse, rat and human NPC1L1-dependent uptake of [³H]-cholesterol when more optimal experimental conditions are developed.

Example 5: Expression of Rat NPC1L1 in Wistar Rat Tissue.

In these experiments, the expression of rat *NPC1L1* mRNA, in several rat tissues, was evaluated. The tissues evaluated were esophagus, stomach, duodenum, jejunum, ileum, proximal colon, distal colon, liver, pancreas, heart, aorta, spleen, lung, kidney, brain, muscle, testes, ovary, uterus, adrenal gland and thyroid gland. Total RNA samples were isolated from at least 3 male and 3 female animals and pooled. The samples were then subjected to real time quantitative PCR using Taqman analysis using standard dual-labeled fluorogenic oligonucleotide probes. Typical probe design incorporated a 5' reporter dye (*e.g.*, 6FAM (6-carboxyfluorescein) or VIC) and a 3' quenching dye (*e.g.*, TAMRA (6-carboxytetramethyl-rhodamine)).

rat NPC1L1:

Forward: TCTTCACCCTTGCTCTTTGC (SEQ ID NO: 14)

30 Reverse: AATGATGGAGAGTAGGTTGAGGAT (SEQ ID NO: 15)

Probe: [6FAM]TGCCCACCTTTGTTGTCTGCTACC[TAMRA] (SEQ ID NO: 16)

rat β-actin:

Forward: ATCGCTGACAGGATGCAGAAG (SEQ ID NO: 17)

Reverse: TCAGGAGGAGCAATGATCTTGA (SEQ ID NO: 18)

- 30 -

Probe: [VIC]AGATTACTGCCCTGGCTCCTAGCACCAT[TAMRA] (SEQ ID NO: 19)

PCR reactions were run in 96-well format with 25 μl reaction mixture in each well containing: Platinum SuperMix (12.5 μl), ROX Reference Dye (0.5 ul), 50 mM magnesium chloride (2 μl), cDNA from RT reaction (0.2 μl). Multiplex reactions contained gene specific primers at 200 nM each and FAM labeled probe at 100 nM and gene specific primers at 100 nM each and VIC labeled probe at 50 nM. Reactions were run with a standard 2-step cycling program, 95° C for 15 sec and 60° C for 1 min, for 40 cycles.

The highest levels of expression were observed in the duodenum, jejunum and ileum tissue. These data indicate that NPC1L1 plays a role in cholesterol absorption in the intestine.

Example 6: Expression of Mouse NPC1L1 in Mouse Tissue.

In these experiments, the expression of mouse *NPC1L1* mRNA, in several tissues, was evaluated. The tissues evaluated were adrenal gland, BM, brain, heart, islets of langerhans, LI, small intestine, kidney, liver, lung, MLN, PLN, muscle, ovary, pituitary gland, placenta, Peyers Patch, skin, spleen, stomach, testes, thymus, thyroid gland, uterus and trachea. Total RNA samples were isolate from at least 3 male and 3 female animals and pooled. The samples were then subjected to real time quantitative PCR using Taqman analysis using the following primers and probes:

mouse NPC1L1:

5

10

15

25

30

20 Forward: ATCCTCATCCTGGGCTTTGC (SEQ ID NO: 20)

Reverse: GCAAGGTGATCAGGAGGTTGA (SEQ ID NO: 21)

Probe: [6FAM]CCCAGCTTATCCAGATTTTCTTCTTCCGC[TAMRA] (SEQ ID NO: 22)

The highest levels of expression were observed in the Peyer's Patch, small intestine, gall bladder and stomach tissue. These data are consistent with a cholesterol absorption role for NPC1L1 which takes place in the digestive system.

Example 7: Expression of Human NPC1L1 in Human Tissue.

In these experiments, the expression level of human NPCILI mRNA was evaluated in 2045 samples representing 46 normal tissues. Microarray-based gene expression analysis was performed on the Affymetrix HG-U95 GeneChip using a cRNA probe corresponding to base pairs 4192-5117 (SEQ ID NO: 43) in strict accordance to Affymetrix's established protocols. Gene Chips were scanned under low photo multiplier tube (PMT), and data were normalized using either Affymetrix MAS 4.0 or MAS 5.0 algorithms. In addition "spike ins" for most samples were used

to construct a standard curve and obtain RNA concentration values according Gene Logic algorithms and procedures. A summary of these results are indicated, below, in Table 2.

Table 2. Expression level of NPC1L1 mRNA in various human tissues.

			Lower	· · · · · · ·	Upper				Lower		Upper
Tissue	Present	Absent	25%	Median	75%	Tissue	Present	Absent	25%	Median	75%
Adiposa	2 of 32	30 of 32	-2,45	1.16	12.23	Liver	. 32 of 34 ·	2 of 34 1	325.74	427,77	
Adrenal Gland	0 of 12	12 of 12	-23.54	-4.47	10.51	Lung	2 of 93	91 of 93	-3.47		
Appendix	0 of 3	3 of 3	-8.02	-6.69	38.19	Lymph Nada	0 of 11	11 of 11	-1.78		
Artery	0 of 3	3 of 3	-6.59	-4.67	9.68	Muscles	0 of 39	39 of 39	-21.57		
Biadder	1 of 5	4 of 5	-22	-7.95	-1.99	Myometrium	8 of 106	98 of 106	-3.98		17.55
Bone	0 of 3	3 of 3	-1.64	3.3	19.53	Omentum	0 of 15	15 of 15	-14.25		19.58
Breast	4 of 80	76 of 80	-4.07	3.13	14.67	Ovary	1 of 74	73 of 74	0.5	l.—	38.28
Cerebellum	0 of 5	5 of 5	-3.04	3.24	15.38	Pancreas	0 of 34	34 of 34	-87.08	(
Corvix	3 of 101	98 of 101	-7.56	-0.07	20.89	Placenta	0 of 5	5 of 5	-20.4		
Colon	9 of 151	142 of 151	-10,19	0.31	18.36	Prostate	0 of 32	32 of 32	1.08	15.56	
Cortex Frontal Lobe	0 of 7	7 of 7	1.4	8.46	11.75	Rectum	1 of 43	42 of 43	-9.26		9.8
Cortex Temporal Lobe	0 of 3	3 of 3	7.1	8.5	15.87	Right Atrium	4 of 169	165 of 169	-19.32		
Dupdenum	59 of 61	2 of 61	519.23	827.43	1101,67	Right Ventricle	1 of 160	159 of 160	-24.01	<u> </u>	10.06
Endometrium	0 of 21	21 of 21	-14,43	-6.39	2.79	Skin	0 of 59	59 of 59	-12.68		22,77
Esophagus	1 of 27	26 of 27	-10.93	-4.97	12,48	Small Intestine	46 of 68	22 of 68	21.21		
Fallopian Tube	3 of 51	48 of 51	5.02	13.24	26.77	Soft Tissues	1 of 6	5 of 6	-1.99		
GaliBladder	8 of 8	0 of 8	205.76	273.39	A# 422.8	Spleen	0 of 31	31 of 31	-9.41		9.5
Heart	0 of 3	3 of 3	3.33	11.19	11.66	Stomach	7 of 47	40 of 47	2 3,19,02		
Hippocampus	0 of 5	5 of 5	8,25	9.11	19.83	Testis	0 of 5	5 of 5	-4.51		
Kidney	4 of 86	82 of 86	-8.36	3.41	16.46	Thymus	1 of 71	70 of 71	-6.26		11.67
Larynx	0 of 4	4 of 4	-13,76	-0,81	8,54	Thyroid Gland	1 of 18	17 of 18	-12,22		
Left Atrium	2 of 141	139 of 141	-18.9	-4.58		Uterus	0 of 58	58 of 58	-10.67		
Left Ventricle	0 of 15	15 of 15	-21.19	-9.59	17.7	W8C	3 of 40	37 of 40	-16.45	-0.72	25.18

Shaded data corresponds to tissues wherein the highest levels of *NPC1L1* mRNA was detected. The "Present" column indicates the proportion of specified tissue samples evaluated wherein *NPC1L1* mRNA was detected. The "Absent" column indicates the proportion of specified tissue samples evaluated wherein *NPC1L1* RNA was not detected. The "lower 25%", "median" and "upper 75%" columns indicate statistical distribution of the relative *NPC1L1* signal intensities observed for each set of tissue evaluated.

Example 8: Distribution of Rat *NPC1L1*, Rat *IBAT* or Rat *SR-B1* mRNA in Rat Small Intestine.

In these experiments, the distribution of rat *NPC1L1* mRNA along the proximal-distal axis of rat small intestines was evaluated. Intestines were isolated from five independent animals and divided into 10 sections of approximately equal length. Total RNA was isolated and analyzed, by real time quantitative PCR using Taqman analysis, for localized expression levels of rat *NPC1L1*, rat *IBAT* (ileal bile acid transporter) or rat *SR-B1* mRNA. The primers and probes used in the analysis were:

rat NPC1L1:

5

10

15

20

Forward: TCTTCACCCTTGCTCTTTGC (SEQ ID NO: 23)

Reverse: AATGATGGAGAGTAGGTTGAGGAT (SEQ ID NO: 24)

25 Probe: [6FAM]TGCCCACCTTTGTTGTCTGCTACC[TAMRA] (SEQ ID NO: 25) rat Villin:

- 32 -

Forward: AGCACCTGTCCACTGAAGATTTC (SEQ ID NO: 26)

Reverse: TGGACGCTGAGCTTCAGTTCT (SEQ ID NO: 27)

Probe: [VIC]CTTCTCTGCGCTGCCTCGATGGAA[TAMRA] (SEQ ID NO: 28)

rat *SR-B1*:

5 Forward: AGTAAAAAGGGCTCGCAGGAT (SEQ ID NO: 29)

Reverse: GGCAGCTGGTGACATCAGAGA (SEQ ID NO: 30)

Probe: [6FAM]AGGAGGCCATGCAGGCCTACTCTGA[TAMRA] (SEQ ID NO: 31) rat IBAT:

Forward: GAGTCCACGGTCAGTCCATGT (SEQ ID NO: 32)

Reverse: TTATGAACAACAATGCCAAGCAA (SEQ ID NO: 33)

10 Probe: [6FAM]AGTCCTTAGGTAGTGGCTTAGTCCCTGGAAGCTC[TAMRA] (SEQ ID NO: 34)

The mRNA expression levels of each animal intestinal section were analyzed separately, then the observed expression level was normalized to the observed level of villin mRNA in that intestinal section. The observed, normalized mRNA expression levels for each section where then averaged.

The expression level of NPC1L1 and SR-B1 were highest in the jejunum (sections 2-5) as compared to that of the more distal ileum sections. Since the jejunum is believed to be the site of cholesterol absorption, these data suggest such a role for rat NPC1L1. IBAT distribution favoring the ileum is well document and served as a control for the experiment.

20

15

Example 9: In situ Analysis of Rat NPC1L1 mRNA in Rat Jejunum Tissue.

The localization of rat NPC1L1 mRNA was characterized by in situ hybridization analysis of rat jejunum serial sections. The probes used in this analysis were:

25 <u>T7-sense probe</u>: GTAATACGACTCACTATAGGGCCCTGACGGTCCTTCCTGA GGGAATCTTCAC (SEQ ID NO: 35)

<u>T7-antisense probe</u>: GTAATACGACTCACTATAGGGCCTGGGAAGTTGGTCAT GGCCACTCCAGC (SEQ ID NO: 36)

The RNA probes were synthesized using T7 RNA polymerase amplification of a PCR amplified DNA fragment corresponding rat *NPC1L1* nucleotides 3318 to 3672 (SEQ ID NO 1). Sense and anti-sense digoxigenin–UTP labeled cRNA probes were generated from the T7 promoter using the DIG RNA Labeling Kit following the manufacturer's instructions. Serial cryosections rat jejunum were hybridized with the sense and antiisense probes. Digoxigenin labeling was detected

with the DIG Nucleic Acid Detection Kit based on previous methods. A positive signal is characterized by the deposition of a red reaction product at the site of hybridization.

5

15

20

25

30

The anti-sense probe showed strong staining of epithelium along the crypt-villus axis under low magnification (40X). The observed rat *NPC1L1* mRNA expression levels may have been somewhat greater in the crypts than in the villus tips. Under high magnification (200X), staining was observed in the enterocytes but not in the goblet cells. A lack of staining observed with the sense probe (control) confirmed the high specificity of the *NPC1L1* anti-sense signal. These data provided further evidence of the role of rat NPC1L1 in intestinal cholesterol absorption.

Example 10: FACS Analysis of Fluorescently Labeled Ezetimibe Binding to Transiently Transfected CHO Cells.

In these experiments, the ability of BODIPY-labeled ezetimibe (Altmann, et al., (2002) Biochim. Biophys. Acta 1580(1):77-93) to bind to NPC1L1 and SR-B1 was evaluated. "BODIPY" is a fluorescent group which was used to detect the BODIPY-ezetimibe. Chinese hamster ovary (CHO) cells were transiently transfected with rat NPC1L1 DNA (rNPC1L1/CHO), mouse NPC1L1 DNA (mNPC1L1/CHO), mouse SR-B1 DNA (mSRBI/CHO) or EGFP DNA (EGFP/CHO). EGFP is enhanced green fluorescent protein which was used as a positive control. The transfected CHO cells or untransfected CHO cells were then stained with 100 nM BODIPY-labeled ezetimibe and analyzed by FACS. Control experiments were also performed wherein the cells were not labeled with the BODIPY-ezetimibe and wherein untransfected CHO cells were labeled with the BODIPY-ezetimibe.

No staining was observed in the untransfected CHO, rNPC1L1/CHO or mNPC1L1/CHO cells. Fluorescence was detected in the positive-control EGFP/CHO cells. Staining was also detected in the mouse SR-B1/CHO cells. These data show that, under the conditions tested, BODIPY-ezetimibe is capable of binding to SR-B1 and that such binding is not ablated by the presence of the fluorescent BODIPY group. When more optimal conditions are determined, BODIPY-ezetimibe will be shown to label the rNPC1L1/CHO and mNPC1L1/CHO cells.

Example 11: FACS Analysis of Transiently Transfected CHO Cells Labeled with Anti-FLAG Antibody M2.

In these experiments, the expression of FLAG-tagged NPC1L1 on CHO cells was evaluated. CHO cells were transiently transfected with mouse NPC1L1 DNA, rat NPC1L1 DNA, FLAG- rat NPC1L1 DNA or FLAG- mouse NPC1L1 DNA. The 8 amino acid FLAG tag used was DYKDDDDK (SEQ ID NO: 37) which was inserted on the amino-terminal extracellular loop just

- 34 —

past the secretion signal sequence. The cells were incubated with commercially available anti-FLAG monoclonal mouse antibody M2 followed by a BODIPY-tagged anti-mouse secondary antibody. The treated cells were then analyzed by FACS.

The M2 antibody stained the CHO cells transfected with FLAG-rat *NPC1L1* DNA and with FLAG-mouse NPC1L1. No staining was observed in the CHO cells transfected with mouse *NPC1L1* DNA and with rat *NPC1L1* DNA. These data showed that rat NPC1L1 and mouse NPC1L1 possess no significant, inherent fluorescence and are not bound by the anti-FLAG antibody. The observed, FLAG-dependent labeling of the cells indicated that the FLAG-mouse NPC1L1 and FLAG-rat NPC1L1 proteins are localized at the cell membrane of the CHO cells.

10

15

5

<u>Example 12</u>: FACS Analysis of FLAG-rat NPC1L1-EGFP Chimera in Transiently Transfected CHO Cells.

In these experiments, the surface and cytoplasmic localization of rat NPC1L1 in CHO cells was evaluated. CHO cells were transiently transfected with FLAG- rat *NPC1L1* DNA or with FLAG-rat *NPC1L1*-EGFP DNA. In these fusions, the FLAG tag is at amino-terminus of rat NPC1L1 and EGFP fusion is at the carboxy-terminus of rat NPC1L1. The cells were then stained with the M2 anti-FLAG mouse (primary) antibody followed by secondary staining with a BODIPY-labeled anti-mouse antibody. In control experiments, cells were stained with only the secondary antibody and not with the primary antibody (M2). The stained cells were then analyzed by FACS.

In a control experiment, FLAG-rat NPC1L1 transfected cells were stained with BODIPY anti-mouse secondary antibody but not with the primary antibody. The data demonstrated that the secondary, anti-mouse antibody possessed no significant specificity for FLAG-rat NPC1L1 and that the FLAG-rat NPC1L1, itself, possesses no significant fluorescence.

25

20

In another control experiment, unlabeled FLAG-rat NPC1L1-EGFP cells were FACS analyzed. In these experiments, autofluorescence of the enhanced green fluorescent protein (EGFP) was detected.

30

FLAG-rat NPC1L1 cells were stained with anti-FLAG mouse antibody M2 and with the BODIPY-labeled anti-mouse secondary antibody and FACS analyzed. The data from this analysis showed that the cells were labeled with the secondary, BODIPY-labeled antibody which indicated expression of the FLAG-rat NPC1L1 protein on the surface of the CHO cells.

FLAG-rat NPC1L1-EGFP cells were stained with anti-FLAG mouse antibody M2 and with the BODIPY-labeled anti-mouse secondary antibody and FACS analyzed. The data from this analysis showed that both markers (BODIPY and EGFP) were present indicating surface

- 35 -

expression of the chimeric protein. The data also indicated that a portion of the protein was located within the cells and may be associated with transport vesicles. These data supported a role for rat NPC1L1 in vesicular transport of cholesterol or protein expressed in subcellular organelles such as the rough endoplasmic reticulum.

5

10

Example 13: FACS Analysis and Fluorescent Microscopy of FLAG-rat NPC1L1-EGFP Chimera in a Cloned CHO Cell Line.

In these experiments, the cellular localization of rat NPC1L1 was evaluated by FACS analysis and by immunohistochemistry. CHO cells were transfected with FLAG-rat NPC1L1-EGFP DNA and stained with anti-FLAG mouse antibody M2 and then with a BODIPY-labeled anti-mouse secondary antibody. In the fusion, the FLAG tag is at the amino-terminus of rat NPC1L1 and the enhanced green fluorescent protein (EGFP) tag is located at the carboxy-terminus of the rat NPC1L1. The stained cells were then analyzed by FACS and by fluorescence microscopy.

15

Cells transfected with FLAG-rat NPC1L1-EGFP DNA were stained with the anti-FLAG mouse antibody M2 and then with the BODIPY-labeled anti-mouse secondary antibody. FACS analysis of the cells detected both markers indicating surface expression of the chimeric protein.

ንብ

FLAG-rat NPC1L1-EGFP transfected cells were analyzed by fluorescent microscopy at 63X magnification. Fluorescent microscopic analysis of the cells indicated non-nuclear staining with significant perinuclear organelle staining. Resolution of the image could not confirm the presence of vesicular associated protein. These data indicated that the fusion protein was expressed on the cell membrane of CHO cells.

Example 14: Generation of Polyclonal Anti-rat NPC1L1 Rabbit Antibodies.

25

30

Synthetic peptides (SEQ ID NO: 39-42) containing an amino- or carboxy-terminal cysteine residue were coupled to keyhole limpet hemocyanin (KLH) carrier protein through a disulfide linkage and used as antigen to raise polyclonal antiserum in New Zealand white rabbits (range 3-9 months in age). The KLH-peptide was emulsified by mixing with an equal volume of Freund's Adjuvant, and injected into three subcutaneous dorsal sites. Prior to the 16 week immunization schedule a pre-immune sera sample was collected which was followed by a primary injection of 0.25 mg KLH-peptide and 3 scheduled booster injections of 0.1 mg KLH-peptide. Animals were bled from the auricular artery and the blood was allowed to clot and the serum was then collected by centrifugation

- 36 -

The anti-peptide antibody titer was determined with an enzyme linked immunosorbent assay (ELISA) with free peptide bound in solid phase (1µg/well). Results are expressed as the reciprocal of the serum dilution that resulted in an OD₄₅₀ of 0.2. Detection was obtained using the biotinylated anti-rabbit IgG, horse radish peroxidase–streptavidin (HRP-SA) conjugate, and ABTS.

5

10

15

25

30

35

<u>Example 15</u>: FACS Analysis of Rat NPC1L1 Expression in CHO Cells Transiently Transfected with Rat NPC1L1 DNA Using Rabbit Anti-rat NPC1L1 Antisera.

In these experiments, the expression of rat NPC1L1 on the surface of CHO cells was evaluated. CHO cells were transfected with rat *NPC1L1* DNA, then incubated with either rabbit preimmune serum or with 10 week anti-rat NPC1L1 serum described, above, in Example 14 (*i.e.*, A0715, A0716, A0867 or A0868). Cells labeled with primary antisera were then stained with a BODIPY-modified anti-rabbit secondary antibody followed by FACS analysis.

No antibody surface labeling was observed for any of the pre-immune sera samples. Specific cell surface labeling of rat NPC1L1 transfected cells was observed for both A0715 and A0868. Antisera A0716 and A0867 did not recognize rat NPC1L1 surface expression in this assay format. This indicates that the native, unfused rat NPC1L1 protein is expressed in the CHO cells and localized to the CHO cell membranes. Cell surface expression of NPC1L1 is consistent with a role in intestinal cholesterol absorption.

Example 16: FACS Analysis of CHO Cells Transiently Transfected with FLAG-Mouse *NPC1L1* DNA or FLAG-rat *NPC1L1* DNA or Untransfected CHO Cells Using Rabbit Antirat NPC1L1 Antisera.

In these experiments, the expression of FLAG-mouse NPC1L1 and FLAG-rat NPC1L1 in CHO cells was evaluated. CHO cells were transiently transfected with FLAG-mouse NPC1L1 DNA or with FLAG-rat NPC1L1 DNA. The FLAG-mouse NPC1L1 and FLAG-rat NPC1L1 transfected cells were labeled with either A0801, A0802, A0715 or A0868 sera (see Example 14) or with anti-FLAG antibody, M2. The labeled cells were then stained with BODIPY-labeled anti-rabbit secondary antibody and FACS analyzed. The untransfected CHO cells were analyzed in the same manner as the transfected cell lines.

Positive staining of the untransfected CHO cells was not observed for any of the antisera tested. Serum A0801-dependent labeling of FLAG-rat *NPC1L1* transfected cells was observed but such labeling of FLAG-mouse *NPC1L1* transfected cells was not observed. Serum A0802-dependent labeling of FLAG-mouse *NPC1L1* or FLAG-rat *NPC1L1* transfected cells was not observed. Strong serum A0715-dependent labeling of FLAG-rat *NPC1L1* transfected cells was observed and weak serum A0715-dependent labeling of FLAG-mouse *NPC1L1* transfected cells

- 37 -

was observed. Weak serum A0868-dependent labeling of rat *NPC1L1* and mouse *NPC1L1* transfected cells was observed. Strong Anti-FLAG M2 antibody-dependent labeling of FLAG-rat *NPC1L1* and FLAG-mouse *NPC1L1* transfected cells was observed. The strong M2 staining is likely to be due to the fact that M2 is an affinity-purified, monoclonal antibody of known concentration. In contrast, the respective antisera are polyclonal, unpurified and contain an uncertain concentration of anti-rat NPC1L1 antibody. These date provide further evidence that the FLAG-mouse NPC1L1 and FLAG-rat NPC1L1 proteins are expressed in CHO cells and localized to the CHO cell membranes. Cell surface expression of NPC1L1 is consistent with a role in intestinal cholesterol absorption.

10

15

20

25

30

5

<u>Example 17</u>: Immunohistochemical Analysis of Rat Jejunum Tissue with Rabbit Anti-rat NPC1L1 Antisera A0715.

In these experiments, the localization of rat NPC1L1 in rat jejunum was analyzed by immunohistochemistry. Rat jejunum was removed, immediately embedded in O.C.T. compound and frozen in liquid nitrogen. Sections (6µm) were cut with a cryostat microtome and mounted on glass slides. Sections were air dried at room temperature and then fixed in Bouin's fixative. Streptavidin-biotin-peroxidase immunostaining was carried out using Histostain-SP kit. Endogenous tissue peroxidase activity was blocked with a 10 minute incubation in 3% H₂O₂ in methanol, and nonspecific antibody binding was minimized by a 45 minute incubation in 10% nonimmune rabbit serum. Sections were incubated with a rabbit anti-rat NPC1L1 antisera A0715 or A0868 at a 1:500 dilution at 4°C, followed by incubation with biotinylated goat anti-rabbit IgG and with streptavidin-peroxidase. Subsequently, the sections were developed in an aminoethyl carbazole (AEC)-H₂O₂ staining system and counterstained with hematoxylin and examined by microscopy. A positive reaction using this protocol is characterized by the deposition of a red reaction product at the site of the antigen-antibody reaction. Nuclei appeared blue from the hematoxylin counterstain. Controls were performed simultaneously on the neighboring sections from the same tissue block. Control procedures consisted of the following: (1) substitute the primary antibody with the pre-immune serum, (2) substitute the primary antibody with the nonimmune rabbit serum, (3) substitute the primary antibody with PBS, (4) substitute the second antibody with PBS.

The example shows tissue stained with anti-rat NPC1L1 sera A0715 or with the preimmune sera analyzed at low magnification (40X) and at high magnification (200X). The A0715-stained tissue, at low magnification, showed positive, strong staining of the villi epithelial layer (enterocytes). The A0715-stained tissue at high magnification showed positive, strong staining of

the enterocyte apical membranes. No staining was observed in tissue treated only with preimmune sera. Similar results were obtained with sera A0868. These data indicate that rat NPC1L1 is expressed in rat jejunum which is consistent with a role in intestinal cholesterol absorption.

5 Example 18: Labeled Cholesterol Uptake Assay.

In this example, the ability of CHO cells stably transfected with rat *NPC1L1* or mouse *SR-B1* to take up labeled cholesterol was evaluated. In these assays, cholesterol uptake, at a single concentration, was evaluated in a pulse-chase experiment. The data generated in these experiments are set forth, below, in Table 3.

10

Cells:

- A. CHO cells stably transfected with rat NPC1L1 cDNA
- B. CHO background (no transfection)

Cells were seeded at 500,000 cells/ well (mL) in 12-well plates.

15

25

30

Procedure:

All reagents and culture plates were maintained at 37°C unless otherwise noted.

Starve. The maintenance media (F12 HAMS, 1%Pen/Strep, 10%FCS) was removed and the cells were rinsed with serum-free HAMS media. The serum-free media was then replaced with 1 mL "starve" media (F12 HAMS, Pen/Strep, 5% lipoprotein deficient serum (LPDS).

One plate of each cell line was starved overnight. The remaining 2 plates were designated "No Starve" (see below).

Pre-Incubation. Media was removed from all plates, rinsed with serum-free HAMS and replaced with starve media for 30 minutes.

³*H-Cholesterol Pulse*. The following was added directly to each well.

 $0.5\mu \text{Ci}^{3}\text{H-cholesterol}$ (~1.1 X 10⁶ dpm/well) in 50 μ l of a mixed bile salt micelle.

4.8mM sodium taurocholate (2.581mg/mL)

0.6 mM sodium oleate (0.183mg/mL)

0.25 mM cholesterol (0.1 mg/mL)

Dispersed in "starve" media by ultrasonic vibration

Final media cholesterol concentration = $5\mu g/mL$

Labeled cholesterol pulse time points were 0, 4, 12 and 24 minutes. Triplicate wells for each treatment were prepared.

- 39 -

Wash. At the designated times, media was aspirated and the cells were washed once with Hobbs Buffer A (50mM Tris, 0.9% NaCl, 0.2% BSA, pH 7.4) and once with Hobbs Buffer B (50mM Tris, 0.9% NaCl, pH 7.4 (no BSA)) at 37°C.

Processing/Analysis. Cells were digested overnight with 0.2N NaOH, 2mL/well at room temperature. One 1.5 mL aliquot was removed from each well, neutralized & counted for radioactivity by scintillation counting. Two additional 50µl aliquots from all wells are assayed for total protein by the Pierce micro BCA method. The quantity of labeled cholesterol observed in the cells was normalized by the quantity of protein in the cells.

Table 3. Uptake of 3 H-cholesterol by CHO cells transfected with rat NPC1L1 or mouse SR-B1 or untransfected CHO cells.

ſ	Total C	holesterol,	dpm protein ±	sem		Total Ch	olesterol, d	pm/mg protein	± sem
Time, min		· · · · · · · · · · · · · · · · · · ·	CHO			NPC1	L1	CHO)
After ³ H-Cholesterol 0	· 2067	±46	4568	No ±1937	Starve	10754	±166	22881	±9230
4	2619	±130	2868	±193		15366	±938	15636	±1471
12	2868	±193	4459	±170		15636	±1471	24622	±966
24	7010	±89	7204	±173		41129	±685	39361	±1207
· •	1937	±273	2440	±299	tarve	10909	±1847	12429	±1673
4	3023	±308	2759	±105		17278	±1650	14307	±781
12	2759	±105	4857	±186		14307	±781	26270	±1473
24	6966	±72	7344	±65		39196	±174	38381	±161
									

dpm=disintegrations per minute sem=standard error of the mean

5

15

20

Example 19: Effect of Ezetimibe on Cholesterol Uptake.

The effect of ezetimibe on the ability of CHO cells stably transfected with mouse or rat *NPC1L1* or mouse *SR-B1* to take up ³H-labeled cholesterol was evaluated in pulse-chase experiments. One cDNA clone of mouse *NPC1L1* (C7) and three clones of rat *NPC1L1* (C7, C17 and C21) were evaluated. The ability of CHO cells stably transfected with mouse *SR-B1*, mouse *NPC1L1* and rat *NPC1L1* to take up labeled cholesterol, in the absence of ezetimibe, was also

- 40 -

evaluated in the pulse-chase experiments. Data generated in these experiments are set forth, below, in Tables 4 and 5. Additionally, the quantity of total cholesterol taken up by transfected and untransfected CHO cells in the presence of four different unlabeled cholesterol concentrations was also evaluated. The data from these experiments is set forth, below, in Table 6.

5

10

15

20

25

30

Cells:

- A. CHO cells stably transfected with rat or mouse NPC1L1 cDNA
- B. CHO background (no transfection)
- C. SR-B1 transfected CHO cells

Cells seeded at 500,000 cells / well (mL) in 12-well plates.

Procedure:

All reagents and culture plates were maintained at 37°C unless otherwise noted.

Starve. The maintenance media (F12 HAMS, 1%Pen/Strep, 10%FCS) was removed and the cells were rinsed with serum-free HAMS media. The serum-free media was then replaced with 1 mL "starve" media (F12 HAMS, Pen/Strep, 5% lipoprotein deficient serum (LPDS). The cells were then starved overnight.

Pre-Incubation/ pre-dose. Media was removed from all plates and replaced with fresh starve media and preincubated for 30 minutes. Half of the wells received media containing ezetimibe (stock soln in EtOH; final conc. = 10μ M).

³*H-Cholesterol Pulse.* The following was added directly to each well:

 $0.5\mu \text{Ci}^{3}\text{H-cholesterol}$ (~1.1 X 10^{6} dpm/well) in $50\mu \text{l}$ of a mixed bile salt micelle

4.8mM sodium taurocholate (2.581mg/mL)

0.6 mM sodium oleate (0.183mg/mL)

0.25 mM cholesterol (0.1 mg/mL)

Dispersed in "starve" media by ultrasonic vibration

Final media cholesterol concentration = $5\mu g/mL$

Labeled cholesterol pulse time points were 4, 12, 24 minutes and 4 hours. Triplicate wells were prepared for each treatment.

Wash. At designated times, media was aspirated and cells were washed once with Hobbs Buffer A (50mM Tris, 0.9% NaCl, 0.2% bovine serum albumin (BSA), pH 7.4) and once with Hobbs Buffer B (50mM Tris, 0.9% NaCl, pH 7.4 (no BSA)) at 37°C.

Processing/Analysis.

- 41 -

A. <u>4, 12, 24 minute time points</u>: Cells were digested overnight with 0.2N NaOH, 2mL/well, room temperature. One 1.5 mL aliquot was removed from each well, neutralized & counted for radioactivity by scintillation counting.

B. <u>4 hour time point</u>: The digested cells were analyzed by thin-layer chromatography to determine the content of cholesterol ester in the cells.

5

10

15

Extracts were spotted onto TLC plates and run for 30 minutes in 2 ml hexane:isopropanol (3:2) mobile phase for 30 minutes, followed by a second run in 1ml hexane:isopropanol (3:2) mobile phase for 15 minutes.

C. <u>Protein determination of cell extracts</u>. Plates containing a sample of the cell extracts were placed on orbital shaker at 120 rpm for indicated times and then extracts are pooled into 12 X 75 tubes. Plates were dried and NaOH (2ml/well) added. The protein content of the samples were then determined. Two additional 50µl aliquots from all wells were assayed for total protein by the Pierce micro BCA method. The quantity of labeled cholesterol observed in the cells was normalized to the quantity of protein in the cells.

Table 4. Total Cholesterol in Transfected CHO Cells in the Presence and Absence of Ezetimibe.

- 42 -

Γ	Total	Cholester	rol, dpm ± ser	n	Total Cholesterol, dpm/mg protein ± sem					
	Vehic	cle	EZ (10	μ M)		Vehic	le	EZ (10	μM)	
Clones:				4 Mi	n I	Pulse				
CHO Control	3413	±417	3222	±26		33443	±4070	31881	±483	
SR-BI	14207	±51	10968	±821		118242	±1261	92474	±2902	
mNPC1L1(C7)	4043	±419	4569	±222		30169	±3242	30916	±1137	
rNPC1L1(C21)	3283	±288	3769	±147		23728	±2111	27098	±689	
rNPC1L1(C17)	3188	±232	3676	±134		24000	±832	28675	±527	
rNPC1L1(C7)	1825	±806	3268	±121		15069	±6794	27285	±968	
				12 M	lin	Pulse	· · · · · · · · · · · · · · · · · · ·			
CHO Control	4710	±246	4532	±165		44208	±2702	43391	±1197	
SR-BI	16970	±763	12349	±298		140105	±6523	98956	±4447	
mNPC1L1(C7)	6316 ±85 612		6120	±755		45133	±342	41712	±4054	
rNPC1L1(C21)	5340	±12	4703	±231		40018	±1181	33985	±1928	
rNPC1L1(C17)	4831	±431	4579	±257		37378	±3461	34063	±1619	
rNPC1L1(C7)	4726	<u>+272</u>	4664	±63		39100	±2350	38581	±784	
				24 %	Gin	Pulse				
CHO Control	7367	±232	6678	±215		65843	±1281	61764	±2131	
SR-BI	39166	±2152	23558	±1310		324126	±11848	198725	±11713	
mNPC1L1(C7)	10616	±121	9749	±482		77222	±1040	74041	±3670	
rNPC1L1(C21)	9940	±587	8760	±293	76356		±9618	66165	±2181	
rNPC1L1(C17)	8728	±721	8192	±237		70509	±5189	62279	±4352	
rNPC1L1(C7)	8537	±148	7829	±204		72134	±1305	63482	±368	

EZ = ezetimibe

- 43 –

Table 5. Cholesterol Ester in CHO cells in the Presence or Absence of Ezetimibe.

	Che	olesteryl E	ster, dpm ± sen	1		Choleste	dpm/mg protein	± sem		
	Vehic	cle	EZ (10	μ M)		Vehic	cle	EZ (10	μ M)	
Clones:		<u> </u>	<u> </u>	4 H	our	Pulse				
CHO Control	652	±13	208	±9		5647	±55	1902	±87	
SR-BI	47608	±1292	9305	±401		391067	±14391	72782	±3181	
mNPC1L1(C7)	732	732 ±127		453 ±118		4994	±827	3057	±776	
rNPC1L1(C21)	2667	±90	454	±33		18655	±1032	3193	±265	
rNPC1L1(C17)	751	751 ±74		202 ±10		5379	±481	1510	±62	
rNPC1L1(C7)	462	±25	191	±54		3597	±193	1496	±403	

	Fre	ee Cholester	ol, dpm ± sem			Free Cl	iolesterol, d	pm/mg protein :	t sem
	Vehic		EZ (10			Vehi	cle	EZ (10	μM)
				4 Ho	ur]	Pulse			
CHO Control	61612	±1227	56792	±568		533876	±17770	519607	±16203
SR-BI	214678 ±4241		194519	194519 ±474		1762873	±46607	1521341	±4185
mNPC1L1(C7)	79628 ±793		77516	5 ±1910		544661	±1269	523803	±10386
rNPC1L1(C21)	71352	±1343	69106	±711		498016	±8171	485460	±4410
rNPC1L1(C17)	78956	±3782	71646	71646 ±446		566456	±29204	536651	±7146
rNPC1L1(C7)	75348	±2093	70628	±212		586127	±13932	556855	±7481

EZ =ezetimibe

Table 6. Uptake of labeled cholesterol in the presence of increasing amounts of unlabeled cholesterol.

i		Total Choleste	erol, dpm ± sem	-1	-1	То	tal Cholesterol, d	pm/mg protein ± se	em
ļ-	CHO Control	SR-BI	mNPC1L1(C7)	rNPC1L1(C21)		CHO Control	SR-BI	mNPC1L1(C7)	rNPC1L1(C21)
Cold Cholesterol	0110 0011111			24 Mi	in I	uise			
3 μg/mL	12271 ±430	49603 ±2428	1 4250 ±1628	10656 ±1233		108936 ±5413	541562 ±13785	140764 ±14433	94945 ±12916
10 µg/mL	16282 ±2438	79967 ±8151	25465 ±3037	13225 ±4556		151283 ±23345	880224 ±82254	250985 ±27481	123433 ±34092
30 μg/mL	14758 ±1607	71925 ±3863	19001 ±1530	13218 ±1149		135109 ±12106	796236 ±18952	180436 ±12112	111522 ±6941
100 μg/mL	16458 ±1614	58185 ±4548	15973 ±1665	11560 ±1132		149559 ±17977	630143 ±3718	147717 ±8261	101328 ±7191
		Chalastery] E	ster, dpm ± sem		1	Ch	nolesteryl Ester, d	pm/mg protein ± se	em
ł	CHO Control	SR-BI		rNPC1L1(C21)		CHO Control	SR-BI	mNPC1L1(C7)	rNPC1L1(C21)
<u> </u>	CHO Control 1	UIC DX	1	4 Hou	ır l				
3 μg/mL	2737 ±114	39596 ±1241	1561 ±1	4015 ±47		22050 ±978	382641 ±5955	13684 ±217	32 02 0 ±641
10 μg/mL	1646 ±76	17292 ±362	998 ±36	1866 ±33		13323 ±606	157914 ±3400	8917 ±467	14849 ±127
30 μg/mL	970 ±46	6642 ±153	537 ±82	970 ±9		7627 ±325	63547 ±1760	4885 ±748	7741 ±100
100 μg/mL	895 ±156	4777 ±27	405 ±7	777 ±16		7135 ±1230	45088 ±1526	3663 ±68	6005 ±198
		Free Choleste	erol, dpm ± sem			F	ree Cholesterol, d	pm/mg protein ± se	m
	CHO Control	SR-BI	mNPC1L1(C7)	rNPC1L1(C21)		CHO Control	SR-BI	mNPC1L1(C7)	rNPC1L1(C21)
	CHO Control	SIC DX	THAT CIDA(C.7)	4 Ho				· · · · · · · · · · · · · · · · · · ·	
3 μg/mL	89013 ±3724	013 ±3724 211783 ±3268 104343 ±2112				717308 ±34130	2047695 ±16213	914107 ±5869	735498 ±11209
10 μg/mL	136396 ±8566	278216 ±10901	196173 ±4721	125144 ±877		1105118 ±76074	2540130 ±92471	1753072 ±86578	996824 ±27850
30 μg/mL	131745 ±2922	224429 ±2556	149172 ±19689	117143 ±4976		1036195 ±21142	2149315 ±78068	1357136 ±180264	934772 ±43202
100 μg/mL	79336 ±4011	231470 ±4221	114599 ±2803	93538 ±1588		632965 ±29756	2182022 ±36793	1035979 ±30329	723225 ±21694
		Cholesteryl B	Ster, dpm ± sem			C	holestervi Ester, d	pm/mg protein ± se	em l
	CHO Control	SR-BI_		rNPC1L1(C21)		CHO Control	SR-BI	mNPC1L1(C7)	rNPC1L1(C21)
	CHO Control	BK Bx	(mill GIBI(G.)			Pulse			
3 μg/mL	57373 ±2704	162296 ±1644	22986 ±940	59377 ±953		357629 ±14639	1248900 ±18565	160328 ±6565	401315 ±5557
10 μg/mL	33730 ±1296	112815 ±373	14836 ±552	31797 ±525		215004 ±5942	830231 ±12764	98594 ±4205	200451 ±5239
30 μg/mL	19193 ±100	58668 ±1413	8878 ±355	18963 ±380		12207t ±1271	446581 ±3472	59091 ±2697	119728 ±2131
100 μg/mL	1676I ±398	31280 ±1270	8784 ±946	14933 ±311		103235 ±1739	272796 ±13392	60670 ±4597	96215 ±1023
		Free Choleci	erol, dpm ± sem		H	F	ree Cholesterol, d	pm/mg protein ± se	m
	CHO Control	SR-BI	mNPC1L1(C7)	rNPC1L1(C21)	1	CHO Control	SR-BI	mNPC1L1(C7)	rNPC1L1(C21)
	CHO Control	3IC-DI	Juill CIBI(CI)	· · · · · · · · · · · · · · · · · · ·	• •	Pulse		. 1	
3 μg/mL	248985 ±4207	357819 ±4519	285610 ±5187	227244 ±1016		1552637 ±18954	2752957 ±24984	1993256 ±56968	1536023 ±10304
10 μg/mL	231208 ±8927	269822 ±5872	311777 ±8227	231666 ±6198		1477414 ±85954	1984473 ±18420	2069980 ±25517	1461157 ±58517
30 μg/mL	203566 ±6008	225273 ±5932	279604 ±6612	209372 ±3386		1294878 ±41819	1716066 ±52581	1859476 ±29507	1321730 ±5452
100 μg/mL	178424 ±2379	167082 ±2211	229832 ±4199	182678 ±7709		1099648 ±25160	1455799 ±9885	1599244 ±76938	1177546 ±51191

5 Example 20: Labeled Cholesterol Uptake Assay.

In this example, the ability of CHO cells transiently transfected with rat *NPC1L1* or mouse *SR-B1* to take up labeled cholesterol was evaluated. Also evaluated was the ability of rat NPC1L1 to potentiate the ability of CHO cells transfected with mouse *SR-B1* to take up labeled cholesterol. In these assays, cholesterol uptake, at a single concentration, was evaluated in pulse-chase experiments. The data generated in these experiments are set forth, below, in Table 7.

Cells:

10

- A. CHO background cells (mock transfection).
- B. CHO cells transiently transfected with mouse SR-B1.
- 15 C. CHO transiently transfected with rat NPC1L1 cDNAs (n=8 clones).

Transiently transfected cells were seeded at 300,000 cells / well (mL) in 12-well plates.

Procedure:

All reagents and culture plates were maintained at 37°C unless otherwise noted.

5

10

15

25

30

Starve. The maintenance media (F12 HAMS, 1%Pen/Strep, 10%FCS) was removed from the cells and replaced with 1 mL "starve" media (F12 HAMS, Pen/Strep, 5% lipoprotein deficient serum (LPDS). Cells were starved for 1 hour.

³*H-Cholesterol Pulse.* The following was added directly to each well.

 $0.5\mu \text{Ci}^{3}\text{H-cholesterol}$ (~1.1 X 10^{6} dpm/well) in $50\mu \text{l}$ of a mixed bile salt micelle.

4.8mM sodium taurocholate (2.581mg/mL)

0.6 mM sodium oleate (0.183mg/mL)

0.25 mM cholesterol (0.1 mg/mL)

Dispersed in "starve" media by ultrasonic vibration

Final media cholesterol concentration = 5μ g/mL

Labeled cholesterol pulse time points were 24 Min and 4 hours. Triplicate wells for each treatment.

Wash. At the designated times, media was aspirated and cells were washed once with Hobbs Buffer A (50mM Tris, 0.9% NaCl, 0.2% BSA, pH 7.4) and once with Hobbs Buffer B (50mM Tris, 0.9% NaCl, pH 7.4 (no BSA)) at 37°C.

Processing/Analysis.

A. 24 minute time point: Cells were digested overnight with 0.2N NaOH, 2mL/well at room temp. One, 1.5 mL aliquot was removed from each well, neutralized & counted for radioactivity by scintillation counting.

B. <u>4 hour time point</u>: The digested cells were analyzed by thin-layer chromatography to determine the content of cholesterol ester in the cells.

The extracts were spotted onto thin layer chromatography plates and run in 2 ml hexane:isopropanol (3:2) containing mobile phase for 30 minutes, followed by a second run in 1ml hexane:isopropanol (3:2) containing mobile phase for 15min.

C. <u>Protein determination of cell extracts</u>: Plates containing a sample of the cell extracts were placed on orbital shaker at 120 rpm for indicated times and then extracts are pooled into 12X75 tubes. Plates were dried and NaOH (2ml/well) added. The protein content of the samples were then determined. Two additional 50µl aliquots from all wells were assayed for total protein by the

- 46 -

Pierce micro BCA method. The quantity of labeled cholesterol observed in the cells was normalized to the quantity of protein in the cells.

5 Table 7. Labeled cholesterol uptake in transiently transfected CHO cells.

	Total Chole	sterol, ±sem			
	dpm	dpm/mg protein			
Transfection	24 Mi	n Pulse			
CHO Control (mock)	4721 ±436	49024 ±4328			
SR-BI(Transient)	5842 ±82	59445 ±1099			
NPC1L1 (Transient)	4092 ±377	47026 ±2658			
SR-BI/NPC1L1 (trans)	3833 ±158	52132 ±3071			
	Cholesteryl	Ester, ± sem			
	dpm	dpm/mg protein			
	4 Hou	r Pulse			
CHO Control (mock)	2132 ±40	20497 ±640			
SR-BI(Transient)	5918 ±237	51812 ±1417			
NPC1L1 (Transient)	1944 ±93	19788 ±642			
SR-BI/NPC1L1 (trans)	4747 ±39	58603 ±1156			
	Free Chole	sterol, ± sem			
	dpm	dpm/mg protein			
	4 Hou	r Pulse			
CHO Control (mock)	45729 ±328	439346 ±5389			
SR-BI(Transient)	50820 ±2369	444551 ±9785			
NPC1L1 (Transient)	39913 ±1211	406615 ±6820			
SR-BI/NPC1L1 (trans)	ns) 37269 ±1225 459509 ±6195				

Example 21: Expression of rat, mouse and human NPC1L1.

10

In this example, *NPC1L1* was introduced into cells and expressed. Species specific NPC1L1 expression constructs were cloned into the plasmid pCDNA3 using clone specific PCR primers to generate the ORF flanked by appropriate restriction sites compatible with the polylinker of the vector. For all three species of NPC1L1, small intestine total tissue RNA was used as a template for reverse transcriptase-polymerase chain reaction (RT-PCR) using oligo dT as the template primer. The rat *NPC1L1* was cloned as an EcoRI fragment, human *NPC1L1* was cloned

- 47 --

as a Xbal/NotI fragment and mouse *NPC1L1* was cloned as an EcoRI fragment. Forward and reverse strand sequencing of each clone was performed to confirm sequence integrity. Standard transient transfection procedures were used with CHO cells. In a 6-well plate CHO cells were plated 1 day before transfection at a plating density of 2 X 10⁵ cells/well. The following day, cells were incubated with 2 µg plasmid DNA and 6 µL Lipofectamine for 5 hours followed a fresh media change. Forty-eight hours later, cells were analyzed for NPC1L1 expression using anti-NPC1L1 antisera by either FACS or western blot. To establish stable long term cell lines expressing NPC1L1, transfected CHO cells were selected in the presence of geneticin (G418, 0.8 mg/ml) as recommended by the manufacturer (Life Technologies). Following one month of selection in culture, the cell population was stained with anti-NPC1L1 antisera and sorted by FACS. Individual positive staining cells were cloned after isolation by limiting dilution and then maintained in selective media containing geneticin (0.5 mg/ml).

Other cell types less susceptible to transfection procedures have been generated using adenoviral vector systems. This system used to express NPC1L1 is dervied from Ad 5, a type C adenovirus. This recombinant replication-defective adenoviral vector is made defective through modifications of the E1, E2 and E4 regions. The vector also has additional modifications to the E3 region generally affecting the E3b region genes RIDa and RIDb. NPC1L1 expression was driven using the CMV promoter as an expression cassette substituted in the E3 region of the adenovirus. Rat and mouse NPC1L1 were amplified using clone specific primers flanked by restriction sites compatible with the adenovirus vector. Adenovirus infective particles were produced from 293-D22 cells in titers of 5 X 10¹⁰ P/mL. Viral lysates were used to infect cells resistant to standard transfection methodologies. In Caco2 cells, which are highly resistant to heterologous protein expression, adenovirus mediated expression of NPC1L1 has been shown by western blot analysis to persist at least 21 days post-infection.

25

30

5

10

15

20

Example 22: NPC1L1 Knock-Out Transgenic Mouse.

NPC1L1 knockout mice were constructed via targeted mutagenesis. This methodology utilized a targeting construct designed to delete a specific region of the mouse NPC1L1 gene. During the targeting process the E. coli lacZ reporter gene was inserted under the control of the endogenous NPC1L1 promoter. The region in NPC1L1 (SEQ ID NO: 45) being deleted is from nucleotide 790 to nucleotide 998. The targeting vector contains the LacZ-Neo cassette flanked by 1.9 kb 5' arm ending with nucleotide 789 and a 3.2 kb 3' arm starting with nucleotide 999. Genomic DNA from the recombinant embryonic stem cell line was assayed for homologous recombination using PCR. Amplified DNA fragments were visualized by agarose gel

- 48 -

electrophoresis. The test PCRs employed a gene specific primer, which lies outside of and adjacent to the targeting vector arm, paired with one of three primers specific to the *LacZ-Neo* cassette sequence. For 5' PCR reconfirmation, the *NPC1L1* specific oligonucleotide ATGTTAGGTGAGTCTGAACCTACCC (SEQ ID NO: 46) and for 3'PCR reconfirmation the *NPC1L1* specific oligonucleotide GGATTGCATTTCCTTCAA GAAAGCC (SEQ ID NO: 47) were used. Genotyping of the F2 mice was performed by multiplex PCR using the *NPC1L1* specific forward primer TATGGCTCTGCCC TCTGCAATGCTC (SEQ ID NO: 48) the *LacZ-Neo* cassette specific forward primer TCAGCAGCCTCTGTTCCACATACACTTC (SEQ ID NO: 49) in combination with the *NPC1L1* gene specific reverse primer GTTCCACAGGGTCTGTGGTGAGTTC (SEQ ID NO: 50) allowed for determination of both the

5

10

15

20

GTTCCACAGGGTCTGTGGTGAGTTC (SEQ ID NO: 50) allowed for determination of both the targeted and endogenous alleles. Analysis of the PCR products by agarose gel electrophoresis distinguished the wild-type, heterozygote and homozygote null mouse from each other.

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims.

Patents, patent applications, publications, product descriptions, Genbank Accession Numbers and protocols are cited throughout this application, the disclosures of which are incorporated herein by reference in their entireties for all purposes.

- 49 –

PCT/US2003/022467

We Claim:

30

WO 2004/009772

- 1. An isolated polypeptide comprising 42 or more contiguous amino acids from an amino acid sequence selected from SEQ ID NOs: 2 and 12.
- 2. An isolated polypeptide comprising an amino acid sequence selected from SEQ ID NOs: 2 and 12.
 - 3. An isolated polynucleotide encoding a polypeptide of claim 1.
- 4. An isolated polynucleotide comprising a nucleotide sequence selected from SEQ ID NOs: 1 and 11.
 - 5. A recombinant vector comprising the polynucleotide of claim 3.
- 15 6. A host cell comprising the vector of claim 5.
 - 7. An antibody which specifically binds to a polypeptide of claim 1.
- 8. An antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from SEQ ID NOs: 39-42.
 - 9. A method for making a polypeptide comprising culturing a host cell of claim 6 under conditions in which the nucleic acid is expressed.
- 25 10. The method of claim 9 wherein the polypeptide is isolated from the culture.
 - 11. A method for identifying an antagonist of NPC1L1 comprising:
 - (a) contacting a host cell expressing a polypeptide comprising an amino acid sequence selected from SEQ ID NOs: 2, 4 and 12 or a functional fragment thereof on a cell surface, in the presence of a known amount of detectably labeled ezetimibe, with a sample to be tested for the presence of the antagonist; and
 - (b) measuring the amount of detectably labeled ezetimibe specifically bound to the polypeptide;

- 50 —

WO 2004/009772

10

15

25

wherein an NPC1L1 antagonist in the sample is identified by measuring substantially reduced binding of the detectably labeled ezetimibe to the polypeptide, compared to what would be measured in the absence of such an antagonist.

PCT/US2003/022467

- 5 12. A method for identifying an antagonist of NPC1L1 comprising:
 - (a) placing, in an aqueous suspension, a plurality of support particles, impregnated with a fluorescer, to which a host cell expressing a polypeptide comprising an amino acid sequence selected from SEQ ID NOs: 2, 4 and 12 or a functional fragment thereof on a cell surface are attached;
 - (b) adding, to the suspension, radiolabeled ezetimibe and a sample to be tested for the presence of the antagonist, wherein the radiolabel emits radiation energy capable of activating the fluorescer upon the binding of the ezetimibe to the polypeptide to produce light energy, whereas radiolabeled ezetimibe that does not bind to the polypeptide is, generally, too far removed from the support particles to enable the radioactive energy to activate the fluorescer; and
 - (c) measuring the light energy emitted by the fluorescer in the suspension; wherein an NPC1L1 antagonist in the sample is identified by measuring substantially reduced light energy emission, compared to what would be measured in the absence of such an antagonist.
- 13. The method of claim 12 wherein the fluorescer is selected from yttrium silicate, yttrium oxide, diphenyloxazole and polyvinyltoluene.
 - 14. A method of claim 11 wherein the ezetimibe is labeled with a radiolabel selected from ³H and ¹²⁵I.
 - 15. A method of claim 12 wherein the ezetimibe is labeled with a radiolabel selected from ³H and ¹²⁵L
 - 16. A method for identifying an antagonist of NPC1L1 comprising:
- (a) contacting a host cell expressing a polypeptide comprising an amino acid sequence selected from SEQ ID NOs: 2, 4 and 12 or a functional fragment thereof on a cell surface with detectably labeled cholesterol and with a sample to be tested for the presence of the antagonist; and
 - (b) measuring the amount of detectably labeled cholesterol in the cell;

WO 2004/009772 - 51 –

10

wherein an NPC1L1 antagonist in the sample is identified by measuring substantially reduced detectably labeled cholesterol within the host cell, compared to what would be measured in the absence of such an antagonist.

PCT/US2003/022467

- 5 17. The method of claim 16 wherein the cholesterol is detectably labeled with a radiolabel selected from ³H and ¹²⁵I.
 - 18. A method according to claim 11 wherein the host cell is selected from a chinese hamster ovary (CHO) cell, a J774 cell, a macrophage cell and a Caco2 cell.
- 19. A method according to claim 12 wherein the host cell is selected from a chinese hamster ovary (CHO) cell, a J774 cell, a macrophage cell and a Caco2 cell.
- 20. A method according to claim 16 wherein the host cell is selected from a chinese hamster ovary (CHO) cell, a J774 cell, a macrophage cell and a Caco2 cell.
 - 21. A mutant mouse comprising a homozygous disruption of endogenous, chromosomal *NPC1L1* wherein the mouse does not produce any functional NPC1L1 protein.

SEQUENCE LISTING

<110> Schering Corporation <120> NPC1L1 (NPC3) AND METHODS OF USE THEREOF <130> JB01603-K-WI <160> 50 <170> PatentIn version 3.1 <210> 1 <211> 3996 <212> DNA <213> Rattus sp. <220> <221> CDS <222> (1)..(3996)<223> <400> 1 atg gca gct gcc tgg ctg gga tgg ctg ctc tgg gcc ctg ctc ctg agc 48 Met Ala Ala Trp Leu Gly Trp Leu Leu Trp Ala Leu Leu Ser 15 10 1 gcg gcc cag ggt gag cta tac aca ccc aaa cac gaa gct ggg gtc tgc 96 Ala Ala Gln Gly Glu Leu Tyr Thr Pro Lys His Glu Ala Gly Val Cys 25 30 20 acc ttt tac gaa gag tgc ggg aaa aac cca gag ctc tct gga ggc ctc 144 Thr Phe Tyr Glu Glu Cys Gly Lys Asn Pro Glu Leu Ser Gly Gly Leu 45 35 40 acg tca cta tcc aat gta tcc tgc ctg tct aac acc ccg gcc cgc cac 192 Thr Ser Leu Ser Asn Val Ser Cys Leu Ser Asn Thr Pro Ala Arg His 60 55 50

									21	<i>1</i> J							
gto Val 65	acg Thr				_	_			_		atc Ile			_		240	
	aac Asn							_	_				_	_		288	
_	g tcc i Ser		_		_	_				_	_			Thr	•	336	
	c ccg Fro										_					384	
_	agc Ser 130				_					_				_	-	432	
	g ggc		_	_								=	_			480	
_	g cgc n Arg	_		_		_	_				_	_	_		•	528	
	c cct Pro									=	_	_				576	
_	tcc Ser	_		_		_	_	_							_	624	
	ggg Gly 210							_						_		672	
	ggc Gly				_				_		- -					720	
	a ccc a Pro															768	•
_	g gac n Asp										_		_	_	_	816	
Arg	c cct g Pro	Ser 275	Phe	Tyr	Met	Gly	Arg 280	Met	Pro	Gly	Trp	Leu 285	Ala	Leu	Ile	864	
Ιlϵ	atc Ile 290	Phe	Thr	Ala	Val	Phe 295	Val	Leu	Leu	Ser	Ala 300	Val	Leu	Val	Arg	912	
cto	c cga	gtg	gtt	tcc	aac	agg	aac	aag	aac	aag	gca	gaa	ggc	CCC	cag	960	•

	WU	2004,	/009/	12						PC1/						
Leu 305	Arg	Val	Val	Ser	Asn 310	Arg	Asn	Lys	Asn	Lys 315	Ala	Glu	Gly	Pro	Gln 320	
_	_						_	_					_	acc Thr 335		1008
_					_						_	_	_	tgg Trp	cca Pro	1056
		_												gca Ala		1104
	_				_				_		_		_	tgg Trp	tcg Ser	1152
_														gag Glu		1200
					_			_						cgg Arg 415		1248
		_		-		_								aac Asn		1296
_			_			_				_		_		ctt Leu	cag Gln	1344
			_									_		cgc Arg		1392
			_	_		_								aac Asn		1440
_			_	_		_								cag Gln 495		1488
	_			_	_						_			Gly	cag Gln	1536
														aat Asn		1584
		_			_		_		_	_		_	_	atg Met	gct Ala	1632
				سليم سم	ـــــــــــــــــــــــــــــــــــ		بمنتوسم	4- 4			+- - -			.		1.000

gac tac ggg gct cct gtc ttc ccc ttc ctt gct gtt ggg gga tac caa

Asp Tyr Gly Ala Pro Val Phe Pro Phe Leu Ala Val Gly Gly Tyr Gln

1680

4/73

545	550	555	560
ggc acg gac tat tcc Gly Thr Asp Tyr Ser 565	Glu Ala Glu Ala Le	eu Ile Ile Thr Phe	
aat aac tac ccc gct Asn Asn Tyr Pro Ala 580	—		
gag gag gct ttc ttg Glu Glu Ala Phe Leu 595	- · ·	_	-
gac aag ttc cag gtt Asp Lys Phe Gln Val 610			•
atc aac cgc acc acc Ile Asn Arg Thr Thr 625		o Val Phe Ala Val	Ser Tyr
att atc gtc ttc ctg Ile Ile Val Phe Leu 645	Tyr Ile Ser Leu Al	a Leu Gly Ser Tyr	
tgc agc cga gta gcg Cys Ser Arg Val Ala 660	_		
gtg att gtt gtg ctg Val Ile Val Val Leu 675			
tac ctg ggt gtc ccc Tyr Leu Gly Val Pro 690		~ ~ ~	
ctg gtg cta gct gtg Leu Val Leu Ala Val 705			5 5
tac cag agg cta cct Tyr Gln Arg Leu Pro 725	Arg Met Pro Gly Gl	u Gln Arg Glu Ala I	
ggc cgc acc ctg ggc Gly Arg Thr Leu Gly 740			_
tct gag gcc atc tgc Ser Glu Ala Ile Cys 755			_
gtg agg acc ttc gcc Val Arg Thr Phe Ala 770	_ •		
ctg ctc cag atg act Leu Leu Gln Met Thr 785			

WO	2004	/00977	12			5/7	'3			PC1/(US2003/022467	
 cag Gln	_	_		_	 -		Cys					2448

			_		cgc Arg	_		_		_	_					2448
_					aaa Lys	- -			_ _							2496
- -	- -			_	cct Pro			_		_			- -		_	2544
_	-	-	_		ctg Leu				- -	_					atg Met	2592
_					ggg Gly 870		_	_	_	- -	_	_		_		2640
_		_		_	tac Tyr			_	_		_			_		2688
					ttt Phe	_			_						_	2736
	-				gcc Ala						_	-				2784
			_		atc Ile	_		_	_	_			_	_		2832
					gca Ala 950											2880
_					tcc Ser	_	_	_				_				2928
_	_	_		=	ccc Pro								-			2976
							_	Pro	_				Al	-	a cag u Gln	3024
_		Lys			g cco ı Pro		Pł				sp Pr					3069
_	tgt Cys 1025	Pro			g ggt / Gly		ı Āl	-	_	_	g Th	=	_	_		3114

															•	
	agc Ser 1040					gtt Val 1045								tac Tyr		3159
	aag Lys 1055					tca Ser 1060										3204
_	tcc Ser 1070					gcc Ala 1075										3249
	cct Pro 1085															3294
	aac Asn 1100					caa Gln 1105										3339
	ttc Phe 1115															3384
	ctc Leu 1130					gac Asp 1135										3429
	tcc Ser 1145													gct Ala		3474
	tgg Trp 1160													gtc Val		3519
	gca Ala 1175													cgg Arg		3564
	ttt Phe 1190	_		_		_				_			_			3609
_	gct Ala 1205		=			ggc Gly 1210										3654
_	acc Thr 1220					atc Ile 1225										3699
	ctt Leu 1235	Ile				ttc Phe 1240										3744
_	ctg Leu 1250	Gly		_		ggc Gly 1255	Leu									3789
agc	tat	ctg	gga	cca	gat	gtt	aac	caa	gct	ctg	gta	cag	gag	gag		3834

Ser Tyr Leu Gly Pro Asp Val Asn Gln Ala Leu Val Gln Glu Glu

aaa cta gcc agc gag gca gca gtg gcc cca gag cct tct tgc cca Lys Leu Ala Ser Glu Ala Ala Val Ala Pro Glu Pro Ser Cys Pro

cag tac ccc tcc cct gct gat gcg gat gcc aat gtt aac tac ggc Gln Tyr Pro Ser Pro Ala Asp Ala Asp Ala Asn Val Asn Tyr Gly

ttt gcc cca gaa ctt gcc cac gga gct aat gct gct aga agc tct Phe Ala Pro Glu Leu Ala His Gly Ala Asn Ala Ala Arg Ser Ser

ttg ccc aaa agt gac caa aag ttc taa Leu Pro Lys Ser Asp Gln Lys Phe

<210> 2

<211> 1331

<212> PRT

<213> Rattus sp.

<400> 2

Met Ala Ala Trp Leu Gly Trp Leu Leu Trp Ala Leu Leu Ser

Ala Ala Gln Gly Glu Leu Tyr Thr Pro Lys His Glu Ala Gly Val Cys

Thr Phe Tyr Glu Glu Cys Gly Lys Asn Pro Glu Leu Ser Gly Gly Leu

Thr Ser Leu Ser Asn Val Ser Cys Leu Ser Asn Thr Pro Ala Arg His

Val Thr Gly Glu His Leu Ala Leu Leu Gln Arg Ile Cys Pro Arg Leu

Tyr Asn Gly Pro Asn Thr Thr Phe Ala Cys Cys Ser Thr Lys Gln Leu

Leu Ser Leu Glu Ser Ser Met Ser Ile Thr Lys Ala Leu Leu Thr Arg

Cys Pro Ala Cys Ser Asp Asn Phe Val Ser Leu His Cys His Asn Thr

Cys Ser Pro Asp Gln Ser Leu Phe Ile Asn Val Thr Arg Val Val Glu Arg Gly Ala Gly Glu Pro Pro Ala Val Val Ala Tyr Glu Ala Phe Tyr Gln Arg Ser Phe Ala Glu Lys Ala Tyr Glu Ser Cys Ser Gln Val Arg Ile Pro Ala Ala Ser Leu Ala Val Gly Ser Met Cys Gly Val Tyr Gly Ser Ala Leu Cys Asn Ala Gln Arg Trp Leu Asn Phe Gln Gly Asp Thr Gly Asn Gly Leu Ala Pro Leu Asp Ile Thr Phe His Leu Leu Glu Pro Gly Gln Ala Leu Pro Asp Gly Ile Gln Pro Leu Asn Gly Lys Ile Ala Pro Cys Asn Glu Ser Gln Gly Asp Asp Ser Ala Val Cys Ser Cys Gln Asp Cys Ala Ala Ser Cys Pro Val Ile Pro Pro Pro Glu Ala Leu Arg Pro Ser Phe Tyr Met Gly Arg Met Pro Gly Trp Leu Ala Leu Ile Ile Ile Phe Thr Ala Val Phe Val Leu Leu Ser Ala Val Leu Val Arg Leu Arg Val Val Ser Asn Arg Asn Lys Asn Lys Ala Glu Gly Pro Gln Glu Ala Pro Lys Leu Pro His Lys His Lys Leu Ser Pro His Thr Ile Leu Gly Arg Phe Phe Gln Asn Trp Gly Thr Arg Val Ala Ser Trp Pro

Leu Thr Val Leu Ala Leu Ser Phe Ile Val Val Ile Ala Leu Ala Ala

Gly Leu Thr Phe Ile Glu Leu Thr Thr Asp Pro Val Glu Leu Trp Ser Ala Pro Lys Ser Gln Ala Arg Lys Glu Lys Ser Phe His Asp Glu His Phe Gly Pro Phe Phe Arg Thr Asn Gln Ile Phe Val Thr Ala Arg Asn Arg Ser Ser Tyr Lys Tyr Asp Ser Leu Leu Leu Gly Ser Lys Asn Phe Ser Gly Ile Leu Ser Leu Asp Phe Leu Leu Glu Leu Glu Leu Gln Glu Arg Leu Arg His Leu Gln Val Trp Ser Pro Glu Ala Glu Arg Asn Ile Ser Leu Gln Asp Ile Cys Tyr Ala Pro Leu Asn Pro Tyr Asn Thr Ser Leu Ser Asp Cys Cys Val Asn Ser Leu Leu Gln Tyr Phe Gln Asn Asn Arg Thr Leu Leu Met Leu Thr Ala Asn Gln Thr Leu Asn Gly Gln Thr Ser Leu Val Asp Trp Lys Asp His Phe Leu Tyr Cys Ala Asn Ala Pro Leu Thr Phe Lys Asp Gly Thr Ser Leu Ala Leu Ser Cys Met Ala Asp Tyr Gly Ala Pro Val Phe Pro Phe Leu Ala Val Gly Gly Tyr Gln Gly Thr Asp Tyr Ser Glu Ala Glu Ala Leu Ile Ile Thr Phe Ser Leu Asn Asn Tyr Pro Ala Asp Asp Pro Arg Met Ala Gln Ala Lys Leu Trp Glu Glu Ala Phe Leu Lys Glu Met Glu Ser Phe Gln Arg Asn Thr Ser

Asp	Lys 610	Phe	Gln	Val	Ala	Phe 615		Ala	Glu	Arg	Ser 620		Glu	. Asp	Glu
Ile 625	Asn	Arg	Thr	Thr	Ile 630	Gln	Asp	Leu	Pro	Val 635	Phe	Ala	Val	Ser	Tyr 640
Ile	Ile	Val	Phe	Leu 645	Tyr	Ile	Ser	Leu	Ala 650		Gly	Ser	Tyr	Ser 655	Arg
Cys	Ser	Arg	Val 660	Ala	Val	Glu	Ser	Lys 665	Ala	Thr	Leu	Gly	Leu 670	_	Gly
Val	Ile	Val 675	Val	Leu	Gly	Ala	Val 680	Leu	Ala	Ala	Met	Gly 685	Phe	Tyr	Ser
Tyr	Leu 690	Gly	Val	Pro	Ser	Ser 695	Leu	Val	Ile	Ile	Gln 700	Val	Val	Pro	Phe
Leu 705	Val	Leu	Ala	Val	Gly 710	Ala	Asp	Asn	Ile	Phe 715	Ile	Phe	Val	Leu	Glu 720
Tyr	Gln	Arg	Leu	Pro 725	Arg	Met	Pro	Gly	Glu 730	Gln	Arg	Glu	Ala	His 735	Ile
Gly	Arg	Thr	Leu 740	Gly	Ser	Val	Ala	Pro 745	Ser	Met	Leu	Leu	Cys 750	Ser	Leu
Ser	Glu	Ala 755	Ile	Cys	Phe	Phe	Leu 760	Gly	Ala	Leu	Thr	Pro 765	Met	Pro	Ala
Val	Arg 770	Thr	Phe	Ala	Leu	Thr 775	Ser	Gly	Leu	Ala	Ile 780	Ile	Leu	Asp	Phe
Leu 785	Leu	Gln	Met	Thr	Ala 790	Phe	Val	Ala	Leu	Leu 795	Ser	Leu	Asp	Ser	Lys 800
Arg	Gln	Glu	Ala	Ser 805	Arg	Pro	Asp	Val	Leu 810	Cys	Cys	Phe	Ser	Thr 815	Arg
Lys	Leu	Pro	Pro 820	Pro	Lys	Glu	Lys	Glu 825	Gly	Leu	Leu	Leu	Arg 830	Phe	Phe
Arg	Lys	Ile 835	Tyr	Ala	Pro	Phe	Leu 840	Leu	His	Arg	Phe	Ile 845	Arg	Pro	Val

Val	Met	Leu	Leu	Phe	Leu	Thr	Leu	Phe	Gly	Ala	Asn	Leu	Tyr	Leu	Met
	850					855					860				

- Cys Asn Ile Asn Val Gly Leu Asp Gln Glu Leu Ala Leu Pro Lys Asp 865 870 875 880
- Ser Tyr Leu Ile Asp Tyr Phe Leu Phe Leu Asn Arg Tyr Leu Glu Val 885 890 895
- Gly Pro Pro Val Tyr Phe Val Thr Thr Ser Gly Phe Asn Phe Ser Ser 900 905 910
- Glu Ala Gly Met Asn Ala Thr Cys Ser Ser Ala Gly Cys Lys Ser Phe 915 920 925
- Ser Leu Thr Gln Lys Ile Gln Tyr Ala Ser Glu Phe Pro Asp Gln Ser 930 940
- Tyr Val Ala Ile Ala Ala Ser Ser Trp Val Asp Asp Phe Ile Asp Trp 945 950 955 960
- Leu Thr Pro Ser Ser Ser Cys Cys Arg Leu Tyr Ile Arg Gly Pro His 965 970 975
- Lys Asp Glu Phe Cys Pro Ser Thr Asp Thr Ser Phe Asn Cys Leu Lys 980 985 990
- Asn Cys Met Asn Arg Thr Leu Gly Pro Val Arg Pro Thr Ala Glu Gln 995 1000 1005
- Phe His Lys Tyr Leu Pro Trp Phe Leu Asn Asp Pro Pro Asn Ile 1010 1015 1020
- Arg Cys Pro Lys Gly Gly Leu Ala Ala Tyr Arg Thr Ser Val Asn 1025 1030 1035
- Leu Ser Ser Asp Gly Gln Val Ile Ala Ser Gln Phe Met Ala Tyr 1040 1045 1050
- His Lys Pro Leu Arg Asn Ser Gln Asp Phe Thr Glu Ala Leu Arg 1055 1060 1065
- Ala Ser Arg Leu Leu Ala Ala Asn Ile Thr Ala Asp Leu Arg Lys 1070 1080
- Val Pro Gly Thr Asp Pro Asn Phe Glu Val Phe Pro Tyr Thr Ile

	1085					1090					1095			
Ser	Asn 1100	Val	Phe	Tyr	Gln	Gln 1105	_	Leu	Thr	Val	Leu 1110	Pro	Glu	Gly
Ile	Phe 1115	Thr	Leu	Ala	Leu	Cys 1120	Phe	Val	Pro	Thr	Phe 1125	Val	Val	Cys
Tyr	Leu 1130	Leu	Leu	Gly	Leu	Asp 1135	Met	Cys	Ser	Gly	Ile 1140	Leu	Asn	Leu
Leu	Ser 1145	Ile	Ile	Met	Ile	Leu 1150	Val	Asp	Thr	Ile	Gly 1155	Leu	Met	Ala
Val	Trp 1160	Gly	Ile	Ser	Tyr	Asn 1165		Val	Ser	Leu	Ile 1170	Asn	Leu	Val
Thr	Ala 1175	Val	Gly	Met	Ser	Val 1180	Glu	Phe	Val	Ser	His 1185	Ile	Thr	Arg
Ser	Phe 1190	Ala	Val	Ser	Thr	Lys 1195	Pro	Thr	Arg	Leu	Glu 1200	Arg	Ala	Lys
Asp	Ala 1205	Thr	Val	Phe	Met	Gly 1210	Ser	Ala	Val	Phe	Ala 1215	Gly	Val	Ala
Met	Thr 1220	Asn	Phe	Pro	Gly	Ile 1225	Leu	Ile	Leu	Gly	Phe 1230	Ala	Gln	Ala
Gln	Leu 1235	Ile	Gln	Ile	Phe	Phe 1240	Phe	Arg	Leu	Asn	Leu 1245	Leu	Ile	Thr
Leu	Leu 1250	Gly	Leu	Leu	His	Gly 1255	Leu	Val	Phe	Leu	Pro 1260	Val	Val	Leu
Ser	Tyr 1265	Leu	Gly	Pro	Asp	Val 1270	Asn	Gln	Ala	Leu	Val 1275	Gln	Glu	Glu
Lys	Leu 1280	Ala	Ser	Glu	Ala	Ala 1285	Val	Ala	Pro	Glu	Pro 1290	Ser	Cys	Pro
Gln	Tyr 1295	Pro	Ser	Pro	Ala	Asp 1300		Asp	Ala	Asn	Val 1305	Asn	Tyr	Gly
Phe	Ala 1310	Pro	Glu	Leu	Ala	His 1315	Gly	Ala	Asn	Ala	Ala 1320	Arg	Ser	Ser

Leu Pro Lys Ser Asp Gln Lys Phe 1325 1330 <210> 3 <211> 3999 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(3999) <223> <400> 3 atg gcg gag gcc ggc ctg agg ggc tgg ctg ctg tgg gcc ctg ctc ctg 48 Met Ala Glu Ala Gly Leu Arg Gly Trp Leu Leu Trp Ala Leu Leu Leu 1 10 15 cgc ttg gcc cag agt gag cct tac aca acc atc cac cag cct ggc tac 96 Arg Leu Ala Gln Ser Glu Pro Tyr Thr Thr Ile His Gln Pro Gly Tyr 20 25 30 tgc gcc ttc tat gac gaa tgt ggg aag aac cca gag ctg tct gga agc 144 Cys Ala Phe Tyr Asp Glu Cys Gly Lys Asn Pro Glu Leu Ser Gly Ser 35 40 45 ctc atg aca ctc tcc aac gtg tcc tgc ctg tcc aac acg ccg gcc cgc 192 Leu Met Thr Leu Ser Asn Val Ser Cys Leu Ser Asn Thr Pro Ala Arg 50 55 60 aag atc aca ggt gat cac ctg atc cta tta cag aag atc tgc ccc cgc 240 Lys Ile Thr Gly Asp His Leu Ile Leu Leu Gln Lys Ile Cys Pro Arg 65 70 75 80 ctc tac acc ggc ccc aac acc caa gcc tgc tgc tcc gcc aag cag ctg 288 Leu Tyr Thr Gly Pro Asn Thr Gln Ala Cys Cys Ser Ala Lys Gln Leu 85 90 95 gta tca ctg gaa gcg agt ctg tcg atc acc aag gcc ctc ctc acc cgc 336 Val Ser Leu Glu Ala Ser Leu Ser Ile Thr Lys Ala Leu Leu Thr Arg 105 100 110 tgc cca gcc tgc tct gac aat ttt gtg aac ctg cac tgc cac aac acg 384 Cys Pro Ala Cys Ser Asp Asn Phe Val Asn Leu His Cys His Asn Thr 115 120 125

tgc agc ccc aat cag agc ctc ttc atc aat gtg acc cgc gtg gcc cag

Cys Ser Pro Asn Gln Ser Leu Phe Ile Asn Val Thr Arg Val Ala Gln

432

WO 2004/009772

	130					135					140					
		_		caa Gln				_		_						480
				gcc Ala 165											Arg	528
_				gcc Ala												576
				tgc Cys									_			624
		Asn	Gly	ctg Leu	Ala	Pro	Leu		Ile	Thr				_		672
		_	_	gtg Val		_			_		_		_			720
				gag Glu 245												768
	_	-		gca Ala							_		_	_		816
			_	tac Tyr		_	_	_	_		_	_	_			864
				tct Ser												912
_	_	_	_	ccc Pro	_						_				_	960
				ctc Leu 325												1008
				ttc Phe		_										1056
				gtg Val								_	_			1104
				aca Thr											——	1152

								gag Glu								1200
								cag Gln								1248
								ctg Leu 425								1296
	_							ctg Leu								1344
		_		_			_	tgg Trp			_	_	_			1392
		_	_			_		gcc Ala				-	-			1440
								agc Ser								1488
	_	_			_			gcc Ala 505								1536
								cat His								1584
_				-	-			gcc Ala		_		-	-	-		1632
								ttc Phe								1680
								gcc Ala								1728
				_				cgt Arg 585	_	_	_	_	_			1776
		_						cga Arg	_		_	_			_	1824
	_		_	_		_	_	gct Ala				- - -	- -	_		1872

WO 2004/009772		PCT/US2003/022467
	4.6.172	

		_			_	_					_	_	_		tac Tyr 640	1920
	_			- -				_	_	_					agc Ser	1968
	_	_		_	_			_	_	_				ggc	GJA aaa	2016
	_	_	_	_		_	_	_	_	- -			_	ttc Phe		2064
														cct Pro		2112
														ctc Leu		2160
														cac His 735		2208
														agc Ser		2256
					_	_					_			cca Pro		2304
_				_	_					- -	_			gac Asp		2352
														agc Ser	aag Lys 800	2400
	_	_	_											ccc Pro 815		2448
														ttc Phe		2496
														ggt Gly		2544
						_								tcc Ser		2592
tgc	cac	atc	agc	gtg	gga	ctg	gac	cag	gag	ctg	gcc	ctg	CCC	aag	gac	2640

Cys His Ile Ser Val Gly Leu Asp Gln Glu Leu Ala Leu Pro Lys Asp 865 870 875 880	
tcg tac ctg ctt gac tat ttc ctc ttt ctg aac cgc tac ttc gág gtg Ser Tyr Leu Leu Asp Tyr Phe Leu Phe Leu Asn Arg Tyr Phe Glu Val 885 890 895	2688
ggg gcc ccg gtg tac ttt gtt acc acc ttg ggc tac aac ttc tcc agc Gly Ala Pro Val Tyr Phe Val Thr Thr Leu Gly Tyr Asn Phe Ser Ser 900 905 910	2736
gag gct ggg atg aat gcc atc tgc tcc agt gca ggc tgc aac aac ttc Glu Ala Gly Met Asn Ala Ile Cys Ser Ser Ala Gly Cys Asn Asn Phe 915 920 925	2784
tcc ttc acc cag aag atc cag tat gcc aca gag ttc cct gag cag tct Ser Phe Thr Gln Lys Ile Gln Tyr Ala Thr Glu Phe Pro Glu Gln Ser 930 935 940	2832
tac ctg gcc atc cct gcc tcc tcc tgg gtg gat gac ttc att gac tgg Tyr Leu Ala Ile Pro Ala Ser Ser Trp Val Asp Asp Phe Ile Asp Trp 945 950 955 960	2880
ctg acc ccg tcc tcc tgc tgc cgc ctt tat ata tct ggc ccc aat aag Leu Thr Pro Ser Ser Cys Cys Arg Leu Tyr Ile Ser Gly Pro Asn Lys 965 970 975	2928
gac aag ttc tgc ccc tcg acc gtc aac tct ctg aac tgc cta aag aac Asp Lys Phe Cys Pro Ser Thr Val Asn Ser Leu Asn Cys Leu Lys Asn 980 985 990	2976
tgc atg agc atc acg atg ggc tct gtg agg ccc tcg gtg gag cag ttc	
Cys Met Ser Ile Thr Met Gly Ser Val Arg Pro Ser Val Glu Gln Phe 995 1000 1005	3024
Cys Met Ser Ile Thr Met Gly Ser Val Arg Pro Ser Val Glu Gln Phe	3024
Cys Met Ser Ile Thr Met Gly Ser Val Arg Pro Ser Val Glu Gln Phe 995 1000 1005 cat aag tat ctt ccc tgg ttc ctg aac gac cgg ccc aac atc aaa His Lys Tyr Leu Pro Trp Phe Leu Asn Asp Arg Pro Asn Ile Lys	
Cys Met Ser Ile Thr Met Gly Ser Val Arg Pro Ser Val Glu Gln Phe 995 1000 1005 cat aag tat ctt ccc tgg ttc ctg aac gac cgg ccc aac atc aaa His Lys Tyr Leu Pro Trp Phe Leu Asn Asp Arg Pro Asn Ile Lys 1010 1015 1020 tgt ccc aaa ggc ggc ctg gca gca tac agc acc tct gtg aac ttg Cys Pro Lys Gly Gly Leu Ala Ala Tyr Ser Thr Ser Val Asn Leu	3069
Cys Met Ser Tle Thr Met Gly Ser Val Arg Pro Ser Val Glu Gln Phe 995 1000 1005 cat aag tat ctt ccc tgg ttc ctg aac gac cgg ccc aac atc aaa His Lys Tyr Leu Pro Trp Phe Leu Asn Asp Arg Pro Asn Ile Lys 1010 1015 1020 tgt ccc aaa ggc ggc ctg gca gca tac agc acc tct gtg aac ttg Cys Pro Lys Gly Gly Leu Ala Ala Tyr Ser Thr Ser Val Asn Leu 1025 1030 1035 act tca gat ggc cag gtt tta gcc tcc agg ttc atg gcc tat cac Thr Ser Asp Gly Gln Val Leu Ala Ser Arg Phe Met Ala Tyr His	3069 3114
Cys Met Ser Tle Thr Met Gly Ser Val Arg Pro Ser Val Glu Gln Phe 995 1000 1005 cat aag tat ctt ccc tgg ttc ctg aac gac cgg ccc aac atc aaa His Lys Tyr Leu Pro Trp Phe Leu Asn Asp Arg Pro Asn Ile Lys 1010 1015 1020 tgt ccc aaa ggc ggc ctg gca gca tac agc acc tct gtg aac ttg Cys Pro Lys Gly Gly Leu Ala Ala Tyr Ser Thr Ser Val Asn Leu 1025 1030 1035 act tca gat ggc cag gtt tta gcc tcc agg ttc atg gcc tat cac Thr Ser Asp Gly Gln Val Leu Ala Ser Arg Phe Met Ala Tyr His 1040 1045 1050 aag ccc ctg aaa aac tca cag gat tac aca gaa gct ctg cgg gca Lys Pro Leu Lys Asn Ser Gln Asp Tyr Thr Glu Ala Leu Arg Ala	3069 3114 3159
Cys Met Ser Ile Thr Met Gly Ser Val Arg Pro Ser Val Glu Gln Phe 995 1000 1005 cat aag tat ctt ccc tgg ttc ctg aac gac cgg ccc aac atc aaa His Lys Tyr Leu Pro Trp Phe 1015 1020 tgt ccc aaa ggc ggc ctg gca gca tac agc acc tct gtg aac ttg Cys Pro Lys Gly Gly Leu Ala Ala Tyr Ser Thr Ser Val Asn Leu 1025 1030 1035 act tca gat ggc cag gtt tta gcc tcc agg ttc atg gcc tat cac Thr Ser Asp Gly Gln Val Leu Ala Ser Arg Phe Met Ala Tyr His 1040 1055 1065 aag ccc ctg aaa aac tca cag gat tac aca gaa gct ctg cgg gca Lys Pro Leu Lys Asn Ser Gln Asp Tyr Thr Glu Ala Leu Arg Ala 1055 1060 1065 gct cga gag ctg gca gcc aac atc act gct gac ctg cgg aaa gtg Ala Arg Glu Leu Ala Ala Asn Tle Thr Ala Asp Leu Arg Lys Val	3069 3114 3159 3204

18/73

	1100					1105				1110				
	_		-		_	ctt Leu 1120				_	_		tgc Cys	3384
		_		_		ctg Leu 1135						_		3429
						gtg Val 1150							ctg Leu	3474
						gct Ala 1165							tcg Ser	3519
_			_	Ser	Val	gag Glu 1180						_		3564
						ccc Pro 1195								3609
						agt Ser 1210	_		_			_	atg Met	3654
						ctt Leu 1225							cag Gln	3699
						ttc Phe 1240							ctg Leu	3744
						ttg Leu 1255				_			_	3789
	gtg Val 1265					aac Asn 1270								3834
						gca Ala 1285				_				3879
						tcc Ser 1300								3924
_						atc Ile 1315			Gly					3969
						cgg Arg 1330		tga						3999

<210> 4

<211> 1332

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Glu Ala Gly Leu Arg Gly Trp Leu Leu Trp Ala Leu Leu Leu 1 5 10 15

Arg Leu Ala Gln Ser Glu Pro Tyr Thr Thr Ile His Gln Pro Gly Tyr 20 25 30

Cys Ala Phe Tyr Asp Glu Cys Gly Lys Asn Pro Glu Leu Ser Gly Ser 35 40 45

Leu Met Thr Leu Ser Asn Val Ser Cys Leu Ser Asn Thr Pro Ala Arg 50 55 60

Lys Ile Thr Gly Asp His Leu Ile Leu Leu Gln Lys Ile Cys Pro Arg 70 75 80

Leu Tyr Thr Gly Pro Asn Thr Gln Ala Cys Cys Ser Ala Lys Gln Leu 85 90 95

Val Ser Leu Glu Ala Ser Leu Ser Ile Thr Lys Ala Leu Leu Thr Arg 100 105 110

Cys Pro Ala Cys Ser Asp Asn Phe Val Asn Leu His Cys His Asn Thr 115 120 125

Cys Ser Pro Asn Gln Ser Leu Phe Ile Asn Val Thr Arg Val Ala Gln 130 135 140

Leu Gly Ala Gly Gln Leu Pro Ala Val Val Ala Tyr Glu Ala Phe Tyr 145 150 155 160

Gln His Ser Phe Ala Glu Gln Ser Tyr Asp Ser Cys Ser Arg Val Arg 165 170 175

Val Pro Ala Ala Thr Leu Ala Val Gly Thr Met Cys Gly Val Tyr 180 185 190

WO 2004/009772 PCT/US2003/022467 20/73

Gly	Ser	Ala 195	Leu	Cys	Asn	Ala	Gln 200	Arg	Trp	Leu	Asn	Phe 205	Gln	Gly	Asp
Thr	Gly 210	Asn	Gly	Leu	Ala	Pro 215	Leu	Asp	Ile	Thr	Phe 220	His	Leu	Leu	Glu
Pro 225	Gly	Gln	Ala	Val	Gly 230	Ser	Gly	Ile	Gln	Pro 235	Leu	Asn	Glu	Gly	Val 240
Ala	Arg	Cys	Asn	Glu 245	Ser	Gln	Gly	Asp	Asp 250	Val	Ala	Thr	Cys	Ser 255	Cys
Gln	Asp	Cys	Ala 260	Ala	Ser	Cys	Pro	Ala 265	Ile	Ala	Arg	Pro	Gln 270	Ala	Leu
Asp	Ser	Thr 275	Phe	Tyr	Leu	Gly	Gln 280	Met	Pro	Gly	Ser	Leu 285	Val	Leu	Ile
Ile	Ile 290	Leu	Cys	Ser	Val	Phe 295	Ala	Val	Val	Thr	Ile 300	Leu	Leu	Val	Gly
Phe 305	Arg	Val	Ala	Pro	Ala 310	Arg	Asp	Lys	Ser	Lys 315	Met	Val	Asp	Pro	Lys 320
Lys	Gly	Thr	Ser	Leu 325	Ser	Asp	Lys	Leu	Ser 330	Phe	Ser	Thr	His	Thr 335	Leu
Leu	Gly	Gln	Phe 340	Phe	Gln	Gly	Trp	Gly 345	Thr	Trp	Val	Ala	Ser 350	Trp	Pro
Leu	Thr	Ile 355	Leu	Val	Leu	Ser	Val 360	Ile	Pro	Val	Val	Ala 365	Leu	Ala	Ala
Gly	Leu 370	Val	Phe	Thr	Glu	Leu 375	Thr	Thr	Asp	Pro	Val 380	Glu	Leu	Trp	Ser
Ala 385	Pro	Asn	Ser	Gln	~ ~ ~	Arg				Ala 395	Phe	His	Asp	Gln	His 400
Phe	Gly	Pro	Phe	Phe 405	Arg	Thr	Asn	Gln	Val 410	Ile	Leu	Thr	Ala	Pro 415	Asn
Arg	Ser	Ser	Tyr 420	Arg	Tyr	Asp	Ser	Leu 425	Leu	Leu	Gly	Pro	Lys 430	Asn	Phe

WO 2004/009772 PCT/US2003/022467 21/73

Ser	Gly	Ile 435	Leu	Asp	Leu	Asp	Leu 440	Leu	Leu	Glu	Leu	Leu 445	Glu	Leu	Gln
Glu	Arg 450	Leu	Arg	His	Leu	Gln 455	Val	Trp	Ser	Pro	Glu 460	Ala	Gln	Arg	Asn
Ile 465	Ser	Leu	Gln	Asp	Ile 470	Cys	Tyr	Ala	Pro	Leu 475	Asn	Pro	Asp	Asn	Thr 480
Ser	Leu	Tyr	Asp	Cys 485	Cys	Ile	Asn	Ser	Leu 490	Leu	Gln	Tyr	Phe	Gln 495	Asn
Asn	Arg	Thr	Leu 500	Leu	Leu	Leu	Thr	Ala 505	Asn	Gln	Thr	Leu	Met 510	Gly	Gln
Thr	Ser	Gln 515	Val	Asp	Trp	Lys	Asp 520	His	Phe	Leu	Tyr	Cys 525	Ala	Asn	Ala
Pro	Leu 530	Thr	Phe	Lys	Asp	Gly 535	Thr	Ala	Leu	Ala	Leu 540	Ser	Cys	Met	Ala
Asp 545	Tyr	Gly	Ala	Pro	Val 550	Phe	Pro	Phe	Leu	Ala 555	Ile	Gly	Gly	Tyr	Lys 560
Gly	Lys	Asp	Tyr	Ser 565	Glu	Ala	Glu	Ala	Leu 570	Ile	Met	Thr	Phe	Ser 575	Leu
Asn	Asn	Tyr	Pro 580	Ala	Gly	Asp	Pro	Arg 585	Leu	Ala	Gln	Ala	Lys 590	Leu	Trp
Glu	Glu	Ala 595	Phe	Leu	Glu	Glu	Met 600	Arg	Ala	Phe	Gln	Arg 605	Arg	Met	Ala
Gly	Met 610	Phe	Gln	Val	Thr	Phe 615	Thr	Ala	Glu	Arg	Ser 620	Leu	Glu	Asp	Glu
Ile 625	Asn	Arg	Thr	Thr	Ala 630	Glu	Asp	Leu	Pro	Ile 635	Phe	Ala	Thr	Ser	Tyr 640
Ile	Val	Ile	Phe	Leu 645	Tyr	Ile	Ser	Leu	Ala 650	Leu	Gly	Ser	Tyr	Ser 655	Ser
Trp	Ser	Arg	Val 660	Met	Val	Asp	Ser	Lys 665	Ala	Thr	Leu	Gly	Leu 670	Gly	Gly
Val	Ala	Val	Val	Leu	Gly	Ala	Val	Met	Ala	Ala	Met	Gly	Phe	Phe	Ser

730

735

675 680 685

Tyr Leu Gly Ile Arg Ser Ser Leu Val Ile Leu Gln Val Val Pro Phe 690 Val Leu Ser Val Gly Ala Asp Asn Ile Phe Ile Phe Too Val Leu Glu 720

Tyr Gln Arg Leu Pro Arg Arg Pro Gly Glu Pro Arg Glu Val His Ile

Gly Arg Ala Leu Gly Arg Val Ala Pro Ser Met Leu Leu Cys Ser Leu 740 745 750

725

Ser Glu Ala Ile Cys Phe Phe Leu Gly Ala Leu Thr Pro Met Pro Ala 755 760 765

Val Arg Thr Phe Ala Leu Thr Ser Gly Leu Ala Val Ile Leu Asp Phe 770 775 780

Leu Leu Gln Met Ser Ala Phe Val Ala Leu Leu Ser Leu Asp Ser Lys 785 790 795 800

Arg Gln Glu Ala Ser Arg Leu Asp Val Cys Cys Cys Val Lys Pro Gln 805 810 815

Glu Leu Pro Pro Pro Gly Gln Gly Glu Gly Leu Leu Leu Gly Phe Phe 820 825 830

Gln Lys Ala Tyr Ala Pro Phe Leu Leu His Trp Ile Thr Arg Gly Val 835 840 845

Val Leu Leu Phe Leu Ala Leu Phe Gly Val Ser Leu Tyr Ser Met 850 855 860

Cys His Ile Ser Val Gly Leu Asp Gln Glu Leu Ala Leu Pro Lys Asp 865 870 875 880

Ser Tyr Leu Leu Asp Tyr Phe Leu Phe Leu Asn Arg Tyr Phe Glu Val 885 890 895

Gly Ala Pro Val Tyr Phe Val Thr Thr Leu Gly Tyr Asn Phe Ser Ser 900 905 910

Glu Ala Gly Met Asn Ala Ile Cys Ser Ser Ala Gly Cys Asn Asn Phe 915 920 925

- Ser Phe Thr Gln Lys Ile Gln Tyr Ala Thr Glu Phe Pro Glu Gln Ser 930 935 940
- Tyr Leu Ala Ile Pro Ala Ser Ser Trp Val Asp Asp Phe Ile Asp Trp 945 950 955 960
- Leu Thr Pro Ser Ser Cys Cys Arg Leu Tyr Ile Ser Gly Pro Asn Lys 965 970 975
- Asp Lys Phe Cys Pro Ser Thr Val Asn Ser Leu Asn Cys Leu Lys Asn 980 985 990
- Cys Met Ser Ile Thr Met Gly Ser Val Arg Pro Ser Val Glu Gln Phe 995 1000 1005
- His Lys Tyr Leu Pro Trp Phe Leu Asn Asp Arg Pro Asn Ile Lys 1010 1015 1020
- Cys Pro Lys Gly Gly Leu Ala Ala Tyr Ser Thr Ser Val Asn Leu 1025 1030 1035
- Thr Ser Asp Gly Gln Val Leu Ala Ser Arg Phe Met Ala Tyr His 1040 1045 1050
- Lys Pro Leu Lys Asn Ser Gln Asp Tyr Thr Glu Ala Leu Arg Ala 1055 1060 1065
- Ala Arg Glu Leu Ala Ala Asn Ile Thr Ala Asp Leu Arg Lys Val 1070 1075 1080
- Pro Gly Thr Asp Pro Ala Phe Glu Val Phe Pro Tyr Thr Ile Thr 1085 1090 1095
- Asn Val Phe Tyr Glu Gln Tyr Leu Thr Ile Leu Pro Glu Gly Leu 1100 1105 1110
- Phe Met Leu Ser Leu Cys Leu Val Pro Thr Phe Ala Val Ser Cys 1115 1120 1125
- Leu Leu Gly Leu Asp Leu Arg Ser Gly Leu Leu Asn Leu Leu 1130 1135 1140
- Ser Ile Val Met Ile Leu Val Asp Thr Val Gly Phe Met Ala Leu 1145 1150 1155

Trp	Asp	Ile	Ser	Tyr	Asn	Ala	Val	Ser	Leu	Ile	Asn	Leu	Val	Ser
	1160					1165					1170			

Ala Val Gly Met Ser Val Glu Phe Val Ser His Ile Thr Arg Ser 1175 1180 1185

Phe Ala Ile Ser Thr Lys Pro Thr Trp Leu Glu Arg Ala Lys Glu 1190 1195 1200

Ala Thr Ile Ser Met Gly Ser Ala Val Phe Ala Gly Val Ala Met 1205 1210 1215

Thr Asn Leu Pro Gly Ile Leu Val Leu Gly Leu Ala Lys Ala Gln 1220 1225 1230

Leu Ile Gln Ile Phe Phe Phe Arg Leu Asn Leu Leu Ile Thr Leu 1235 1240 1245

Leu Gly Leu His Gly Leu Val Phe Leu Pro Val Ile Leu Ser 1250 1255 1260

Tyr Val Gly Pro Asp Val Asn Pro Ala Leu Ala Leu Glu Gln Lys 1265 1270 1275

Arg Ala Glu Glu Ala Val Ala Ala Val Met Val Ala Ser Cys Pro 1280 1285 . 1290

Asn His Pro Ser Arg Val Ser Thr Ala Asp Asn Ile Tyr Val Asn 1295 1300 1305

His Ser Phe Glu Gly Ser Ile Lys Gly Ala Gly Ala Ile Ser Asn 1310 1315 1320

<210> 5

<211> 885

<212> DNA

<213> Rattus sp.

<400> 5 ccacgcgtcc gcacctgcaa gtgtggtccc ctgaggcaga gcgcaacatc tccctccagg

60

acatctgcta tgccccctc aacccatata acaccagcct ctccgactgc tgtgtcaaca 120 gcctccttca gtacttccag aacaaccgca ccctcctgat gctcacggcc aaccagactc 180 tgaatggcca gacctccctg gtggactgga aggaccattt cctctactgt gcaaatgccc 240 ctctcacgtt caaagatggc acgtctctgg ccctgagctg catggctgac tacggggctc 300 360 ctgtcttccc cttccttgct gttgggggat accaaggcac ggactattcc gaggcagaag cgctgatcat aaccttctct ctcaataact accccgctga tgatccccgc atggcccagg 420 480 ccaagctctg ggaggaggct ttcttgaagg aaatggaatc cttccagagg aacacaagtg 540 acaagttcca ggttgcgttc tcagctgagc gctctctgga ggatgagatc aaccgcacca 600 ccatccagga cctgcctgtc tttgccgtca gctacattat cgtcttcctg tacatctccc 660 tggccctggg cagctactcc agatgcagcc gagtagcggt ggagtccaag gctactctgg 720 gcctaggtgg ggtgatagtg tgctgggagc agttctggct tgcatggggc ttctaactcc 780 tacctgggtg tcccctcttc tctggttatc atccaagtgg tacctttcct ggtgcttaag ctgtgggagc tggacacatc tacatcctag acttgagtac cagaggtacc taggaagccg 840 885 cggaacagcg aaaaggacac attgggcgca ccctgggcat gtggc

<210> 6

<211> 458

<212> DNA

<213> Rattus sp.

<400> 6 gaccagatgt taaccaagct ctggtacagg aggagaaact agccagcgag gcagcagtgg 60 120 ccccagagcc ttcttgccca cagtacccct cccctgctga tgcggatgcc aatgttaact 180 acggctttgc cccagaactt gcccacggag ctaatgctgc tagaagctct ttgcccaaaa 240 gtgaccaaaa gttctaatgg agtaggagct tgtccatgct tctgctgatg agggatcatg aaggtcttcc ctctggttgt cctcaaggcc tggggggagg ttgttcagag aaaaatggct 300 ggcattcctg ccacgaggca accggcagct tggcactgac tccttggtct cataggtccc 360 420 taaggettgg teagattact eeteatggag agaetatett aagtatetaa getategatt 458 gggatgcatc gctgttcatt aaaaaggcta tggctatg

<211> 896

<212> DNA

<213> Rattus sp.

<400> ccacgcgtcc gcagtttcat aagtacctgc cctggttcct gaatgatccg cccaatatca 60 120 gatgtcccaa agggggtcta gcagcgtata gaacgtctgt gaatttgagc tcagatggcc 180 aggttatagc ctcccagttc atggcctacc acaagccctt aaggaactca caggacttca 240 cagaagetet eegggegtee eggttgetag eagceaacat eacagetgae etaeggaagg 300 tgcctgggac agatccaaac tttgaggtct tcccttacac gatctccaac gtgttctacc agcaatacct gacggtcctt cctgagggaa tcttcaccct tgctctttgc tttgtgccca 360 420 cctttgttgt ctgctacctc ctactgggcc tggacatgtg ctcagggatc ctcaacctac 480 tctccatcat tatgattctc gtggacacca ttggcctcat ggctgtgtgg ggtatcagct 540 ataatgcggt atccctcatc aaccttgtca cggcagtggg catgtctgtg gagtttgtgt cccacatcac tcggtccttt gcttgtaagc accaagccta cccggctgga gagggctaaa 600 660 agatgctact gtcttcatgg gcagtgcggt gtttgctgga gtggccatga ccaacttccc 720 aggcatcctc atcttggggg ctttgcccca agcccaggct tattcagatc ttcttcttcc 780 gcctcaacct tctgatcacc tttgctgggg tctgctgcat ggctggtctt cctgcccggt ttgtcctcag ctatctggga ccagatgtaa ccaaggctct gctacccgga ggagaaacta 840 896 gccagcgagg gcagcagtgg ccccagagac ttcttgccca caagtaccct tccctg

<210> 8

<211> 3124

<212> DNA

<213> Rattus sp.

<400> 8
tgcaagtgtg gtccctgag gcagagcgca acatctcct ccaggacatc tgctatgcc 60
ccctcaaccc atataacacc agcctctccg actgctgtgt caacagcctc cttcagtact 120
tccagaacaa ccgcaccctc ctgatgctca cggccaacca gactctgaat ggccagacct 180
ccctggtgga ctggaaggac catttcctct actgtgcaaa tgcccctctc acgttcaaag 240
atggcacgtc tctggccctg agctgcatgg ctgactacgg ggctcctgtc ttccccttcc 300

ttgctgttgg	gggataccaa	ggcacggact	attccgaggc	agaagcgctg	atcataacct	360
tctctctcaa	taactacccc	gctgatgatc	cccgcatggc	ccaggccaag	ctctgggagg	420
aggctttctt	gaaggaaatg	gaatccttcc	agaggaacac	aagtgacaag	ttccaggttg	480
cgttctcagc	tgagcgctct	ctggaggatg	agatcaaccg	caccaccatc	caggacctgc	540
ctgtctttgc	cgtcagctac	attatcgtct	tcctgtacat	ctccctggcc	ctgggcagct	600
actccagatg	cagccgagta	gcggtggagt	ccaaggctac	tctgggccta	ggtggggtga	660
ttgttgtgct	gggagcagtt	ctggctgcca	tgggcttcta	ctcctacctg	ggtgtcccct	720
cttctctggt	tatcatccaa	gtggtacctt	tcctggtgct	agctgtggga	gctgacaaca	780
tcttcatctt	tgttcttgag	taccagaggc	tacctaggat	gcctggggaa	cagcgagagg	840
ctcacattgg	ccgcaccctg	ggcagtgtgg	ccccagcat	gctgctgtgc	agcctctctg	900
aggccatctg	cttctttcta	ggggccctga	ccccatgcc	agctgtgagg	accttcgcct	960
tgacctctgg	cttagcaatt	atcctcgact	tcctgctcca	gatgactgcc	tttgtggccc	1020
tgctctccct	ggatagcaag	aggcaggagg	cctctcgccc	ggatgtctta	tgctgctttt	1080
caacccggaa	gctgcccca	cctaaagaaa	aagaaggcct	cttactccgc	ttcttccgca	1140
agatatacgc	tcctttcctg	ctgcacagat	tcatccgccc	tgttgtgatg	ctgctgtttc	1200
tgaccctgtt	tggagcaaat	ctctacttaa	tgtgcaacat	caacgtgggg	ctagaccagg	1260
agctggctct	gcccaaggac	tcgtacttga	tagactactt	cctctttctg	aaccgatacc	1320
ttgaagtggg	gcctccagtg	tactttgtca	ccacctcggg	cttcaacttc	tccagcgagg	1380
caggcatgaa	cgccacttgc	tctagcgcag	gctgtaagag	cttctcccta	acccagaaaa	1440
tccagtatgc	cagtgaattc	cctgaccagt	cttacgtggc	tattgctgca	tcctcctggg	1500
tagatgactt	catcgactgg	ctgaccccgt	cctcctcctg	ctgtcgcctt	tatatacgtg	1560
gcccccataa	ggatgagttc	tgtccctcaa	cggatacttc	cttcaactgc	ttaaaaaact	1620
gcatgaaccg	cactctgggt	cctgtgaggc	ccacagcgga	acagtttcat	aagtacctgc	1680
cctggttcct	gaatgatccg	cccaatatca	gatgtcccaa	agggggtcta	gcagcgtata	1740
gaacgtctgt	gaatttgagc	tcagatggcc	aggttatagc	ctcccagttc	atggcctacc	1800
acaagccctt	aaggaactca	caggacttca	cagaagctct	ccgggcgtcc	cggttgctag	1860
cagccaacat	cacagctgac	ctacggaagg	tgcctgggac	agatccaaac	tttgaggtct	1920
tcccttacac	gatctccaac	gtgttctacc	agcaatacct	gacggtcctt	cctgagggaa	1980
tcttcaccct	tgctctttgc	tttgtgccca	cctttgttgt	ctgctacctc	ctactgggcc	2040
tggacatgtg	ctcagggatc	ctcaacctac	tctccatcat	tatgattctc	gtggacacca	2100
ttggcctcat	ggctgtgtgg	ggtatcagct	ataatgcggt	atccctcatc	aaccttgtca	2160

cggcagtggg	catgtctgtg	gagtttgtgt	cccacatcac	tcggtccttt	gctgtaagca	2220
ccaagcctac	ccggctggag	agggctaaag	atgctactgt	cttcatgggc	agtgcggtgt	2280
ttgctggagt	ggccatgacc	aacttcccag	gcatcctcat	cttgggcttt	gcccaagccc	2340
agcttattca	gatcttcttc	ttccgcctca	accttctgat	caccttgctg	ggtctgctgc	2400
atggcctggt	cttcctgccg	gttgtcctca	gctatctggg	accagatgtt	aaccaagctc	2460
tggtacagga	ggagaaacta	gccagcgagg	cagcagtggc	cccagagcct	tcttgcccac	2520
agtacccctc	ccctgctgat	gcggatgcca	atgttaacta	cggctttgcc	ccagaacttg	2580
cccacggagc	taatgctgct	agaagctctt	tgcccaaaag	tgaccaaaag	ttctaatgga	2640
gtaggagctt	gtccatgctt	cttgctgatg	agggatcatg	aaggtcttcc	ctctggttgt	2700
cctcaaggcc	tggggggagg	ttgtttcaga	gaaaaatggc	tggcattcct	gccacgaggc	2760
aaccggcagc	attggcactg	acctccttgc	tctcataggt	ccctaaggcc	ttggtcagat	2820
tacctcctcc	atggagagac	tatcttaagt	atcttaagta	tcgtatggga	tgcatcgcct	2880
gtcaattaaa	aaggctatgg	cctatggctc	aggcagggcc	atccggaaga	agagaggatt	2940
ctgggataaa	gccaggtggg	agattcgcct	ggggaaaatg	tgacaatggt	tcctgagcat	3000
gggcaatcag	ccatgtggca	gaatgtaaat	taatataaat	gggttgtctt	aagttatgat	3060
tctagctggg	gaggagccta	gctgtgtagc	caagatattt	gtaaatataa	aaaaaaaaa	3120
aaaa						3124

<210> 9

<211> 4484

<212> DNA

<213> Rattus sp.

<400> 9
atggcagctg cetggetggg atggctgctc tgggccctgc tectgagcgc ggcccagggt 60
gagctataca cacccaaaca cgaagctggg gtctgcacct tttacgaaga gtgcgggaaa 120
aacccagagc tetetggagg ceteacgtca etatecaatg tatectgcet gtetaacacc 180
ccggcccgcc acgtcacggg tgaacacctg getettete agcgcatetg teccegcetg 240
tacaacggcc ccaataccac ttttgcctgt tgetetacca agcagetget gtcettagaa 300
agcagcatgt ccatcaccaa ggccettete acgcgctgcc eggcetgete tgacaattt 360
gtgagcttac actgccacaa cacttgcagc cctgaccaga gcctettcat caacgtcacc 420

cgggtggttg	agcggggcgc	tggagagcct	cctgccgtgg	tggcctatga	ggccttttat	480
cagcgcagct	ttgctgagaa	ggcctatgag	tcctgcagcc	aggtgcgcat	ccctgcggcc	540
gcttccttgg	ccgtgggcag	catgtgtgga	gtgtatggct	ccgccctctg	caatgctcag	600
cgctggctca	acttccaagg	agacacaggg	aatggcctgg	ctccgctgga	tatcaccttc	660
cacctcttgg	agcctggcca	ggccctaccg	gatgggatcc	agccactgaa	tgggaagatc	720
gcaccctgca	acgagtctca	gggtgatgac	tcagcagtct	gctcctgcca	ggactgtgcg	780
gcgtcctgcc	ctgtcatccc	tccgcccgag	gccttgcgcc	cttccttcta	catgggtcgc	840
atgccaggct	ggctggccct	catcatcatc	ttcactgctg	tctttgtgtt	gctctctgca	900
gtccttgtgc	gtctccgagt	ggtttccaac	aggaacaaga	acaaggcaga	aggcccccag	960
gaagccccca	aactccctca	taagcacaaa	ctctcacccc	ataccatcct	gggccggttc	1020
ttccagaact	ggggcacaag	ggtggcctcg	tggccactca	ccgtcttagc	actgtccttc	1080
atcgttgtga	tagccttagc	agcaggcctg	acctttattg	aactcaccac	agaccctgtg	1140
gaactgtggt	cggcccccaa	gagccaggcc	cggaaagaga	agtctttcca	tgatgagcat	1200
ttcggcccct	tctttcgaac	caaccagatt	ttcgtgacag	ctcggaacag	gtccagctac	1260
aagtacgact	ccctactgct	agggtccaag	aacttcagtg	ggatcctgtc	cctggacttc	1320
ctgctggagc	tgctggagct	tcaggagagg	cttcgacacc	tgcaagtgtg	gtcccctgag	1380
gcagagcgca	acatctccct	ccaggacatc	tgctatgccc	ccctcaaccc	atataacacc	1440
agcctctccg	actgctgtgt	caacagcctc	cttcagtact	tccagaacaa	ccgcaccctc	1500
ctgatgctca	cggccaacca	gactctgaat	ggccagacct	ccctggtgga	ctggaaggac	1560
catttcctct	actgtgcaaa	tgcccctctc	acgttcaaag	atggcacgtc	tctggccctg	1620
agctgcatgg	ctgactacgg	ggctcctgtc	ttccccttcc	ttgctgttgg	gggataccaa	1680
ggcacggact	attccgaggc	agaagcgctg	atcataacct	tctctctcaa	taactacccc	1740
gctgatgatc	cccgcatggc	ccaggccaag	ctctgggagg	aggctttctt	gaaggaaatg	1800
gaatccttcc	agaggaacac	aagtgacaag	ttccaggttg	cgttctcagc	tgagcgctct	1860
ctggaggatg	agatcaaccg	caccaccatc	caggacctgc	ctgtctttgc	cgtcagctac	1920
attatcgtct	tcctgtacat	ctccctggcc	ctgggcagct	actccagatg	cagccgagta	1980
gcggtggagt	ccaaggctac	tctgggccta	ggtggggtga	ttgttgtgct	gggagcagtt	2040
ctggctgcca	tgggcttcta	ctcctacctg	ggtgtcccct	cttctctggt	tatcatccaa	2100
gtggtacctt	tcctggtgct	agctgtggga	gctgacaaca	tcttcatctt	tgttcttgag	2160
taccagaggc	tacctaggat	gcctggggaa	cagcgagagg	ctcacattgg	ccgcaccctg	2220
ggcagtgtgg	ccccagcat	gctgctgtgc	agcctctctg	aggccatctg	cttctttcta	2280

ggggccctga	ccccatgcc	agctgtgagg	accttcgcct	tgacctctgg	cttagcaatt	2340
atcctcgact	tcctgctcca	gatgactgcc	tttgtggccc	tgctctccct	ggatagcaag	2400
aggcaggagg	cctctcgccc	ggatgtctta	tgctgctttt	caacccggaa	gctgcccca	2460
cctaaagaaa	aagaaggcct	cttactccgc	ttcttccgca	agatatacgc	tcctttcctg	2520
ctgcacagat	tcatccgccc	tgttgtgatg	ctgctgtttc	tgaccctgtt	tggagcaaat	2580
ctctacttaa	tgtgcaacat	caacgtgggg	ctagaccagg	agctggctct	gcccaaggac	2640
tcgtacttga	tagactactt	cctctttctg	aaccgatacc	ttgaagtggg	gcctccagtg	2700
tactttgtca	ccacctcggg	cttcaacttc	tccagcgagg	caggcatgaa	cgccacttgc	2760
tctagcgcag	gctgtaagag	cttctcccta	acccagaaaa	tccagtatgc	cagtgaattc	2820
cctgaccagt	cttacgtggc	tattgctgca	tcctcctggg	tagatgactt	catcgactgg	2880
ctgaccccgt	cctcctcctg	ctgtcgcctt	tatatacgtg	gccccataa	ggatgagttc	2940
tgtccctcaa	cggatacttc	cttcaactgc	ttaaaaaact	gcatgaaccg	cactctgggt	3000
cctgtgaggc	ccacagcgga	acagtttcat	aagtacctgc	cctggttcct	gaatgatccg	3060
cccaatatca	gatgtcccaa	agggggtcta	gcagcgtata	gaacgtctgt	gaatttgagc	3120
tcagatggcc	aggttatagc	ctcccagttc	atggcctacc	acaagccctt	aaggaactca	3180
caggacttca	cagaagctct	ccgggcgtcc	cggttgctag	cagccaacat	cacagctgac	3240
ctacggaagg	tgcctgggac	agatccaaac	tttgaggtct	tcccttacac	gatctccaac	3300
gtgttctacc	agcaatacct	gacggtcctt	cctgagggaa	tcttcaccct	tgctctttgc	3360
tttgtgccca	cctttgttgt	ctgctacctc	ctactgggcc	tggacatgtg	ctcagggatc	3420
ctcaacctac	tctccatcat	tatgattctc	gtggacacca	ttggcctcat	ggctgtgtgg	3480
ggtatcagct	ataatgcggt	atccctcatc	aaccttgtca	cggcagtggg	catgtctgtg	3540
gagtttgtgt	cccacatcac	tcggtccttt	gctgtaagca	ccaagcctac	ccggctggag	3600
agggctaaag	atgctactgt	cttcatgggc	agtgcggtgt	ttgctggagt	ggccatgacc	3660
aacttcccag	gcatcctcat	cttgggcttt	gcccaagccc	agcttattca	gatcttcttc	3720
ttccgcctca	accttctgat	caccttgctg	ggtctgctgc	atggcctggt	cttcctgccg	3780
gttgtcctca	gctatctggg	accagatgtt	aaccaagctc	tggtacagga	ggagaaacta	3840
gccagcgagg	cagcagtggc	cccagagcct	tcttgcccac	agtacccctc	ccctgctgat	3900
gcggatgcca	atgttaacta	cggctttgcc	ccagaacttg	cccacggagc	taatgctgct	3960
agaagctctt	tgcccaaaag	tgaccaaaag	ttctaatgga	gtaggagctt	gtccatgctt	4020
cttgctgatg	agggatcatg	aaggtcttcc	ctctggttgt	cctcaaggcc	tggggggagg	4080

ttgtttcaga	gaaaaatggc	tggcattcct	gccacgaggc	aaccggcagc	attggcactg	4140
acctccttgc	tctcataggt	ccctaaggcc	ttggtcagat	tacctcctcc	atggagagac	4200
tatcttaagt	atcttaagta	tcgtatggga	tgcatcgcct	gtcaattaaa	aaggctatgg	4260
cctatggctc	aggcagggcc	atccggaaga	agagaggatt	ctgggataaa	gccaggtggg	4320
agattcgcct	ggggaaaatg	tgacaatggt	tcctgagcat	gggcaatcag	ccatgtggca	4380
gaatgtaaat	taatataaat	gggttgtctt	aagttatgat	tctagctggg	gaggagccta	4440
gctgtgtagc	caagatattt	gtaaatataa	aaaaaaaaa	aaaa		4484

<210> 10

<211> 3993

<212> DNA

<213> Rattus sp.

<400> 10 atggcngcng cntggytngg ntggytnytn tgggcnytny tnytnwsngc ngcncarggn 60 120 garytntaya cnccnaarca ygargcnggn gtntgyacnt tytaygarga rtgyggnaar aayccngary tnwsnggngg nytnacnwsn ytnwsnaayg tnwsntgyyt nwsnaayacn 180 congonment ayetnacnee nearcayyth gonythytho armenathte yconmenyth 240 300 tayaayggnc cnaayacnac nttygcntgy tgywsnacna arcarytnyt nwsnytngar wsnwsnatgw snathacnaa rgcnytnytn acnmgntgyc cngcntgyws ngayaaytty 360 420 gtnwsnytnc aytgycayaa yacntgywsn ccngaycarw snytnttyat haaygtnacn mgngtngtng armgnggngc nggngarccn ccngcngtng tngcntayga rgcnttytay 480 carmgnwsnt tygcngaraa rgcntaygar wsntgywsnc argtnmgnat hccngcngcn 540 600 gcnwsnytng cngtnggnws natgtgyggn gtntayggnw sngcnytntg yaaygcncar 660 mgntggytna ayttycargg ngayacnggn aayggnytng cnccnytnga yathacntty 720 cayytnytng arccnggnca rgcnytnccn gayggnathc arccnytnaa yggnaarath 780 gcnccntgya aygarwsnca rggngaygay wsngcngtnt gywsntgyca rgaytgygcn genwantgye engthathee neencengar genythmgne enwanttyta yatgggnmgn 840 atgccnggnt ggytngcnyt nathathath ttyacngcng tnttygtnyt nytnwsngcn 900 gtnytngtnm gnytnmgngt ngtnwsnaay mgnaayaara ayaargcnga rggnccncar 960 1020 gargeneena arytneenea yaareayaar ytnwsneene ayaenathyt nggnmgntty ttycaraayt ggggnacnmg ngtngcnwsn tggccnytna cngtnytngc nytnwsntty 1080

athgtngtna	thgcnytngc	ngcnggnytn	acnttyathg	arytnacnac	ngayccngtn	1140
garytntggw	sngcnccnaa	rwsncargcn	mgnaargara	arwsnttyca	ygaygarcay	1200
ttyggnccnt	tyttymgnac	naaycarath	ttygtnacng	cnmgnaaymg	nwsnwsntay	1260
aartaygayw	snytnytnyt	nggnwsnaar	aayttywsng	gnathytnws	nytngaytty	1320
ytnytngary	tnytngaryt	ncargarmgn	ytnmgncayy	tncargtntg	gwsnccngar	1380
gcngarmgna	ayathwsnyt	ncargayath	tgytaygcnc	cnytnaaycc	ntayaayacn	1440
wsnytnwsng	aytgytgygt	naaywsnytn	ytncartayt	tycaraayaa	ymgnacnytn	1500
ytnatgytna	cngcnaayca	racnytnaay	ggncaracnw	snytngtnga	ytggaargay	1560
cayttyytnt	aytgygcnaa	ygcnccnytn	acnttyaarg	ayggnacnws	nytngcnytn	1620
wsntgyatgg	cngaytaygg	ngcnccngtn	ttyccnttyy	tngcngtngg	nggntaycar	1680
ggnacngayt	aywsngargc	ngargcnytn	athathacnt	tywsnytnaa	yaaytayccn	1740
gcngaygayc	cnmgnatggc	ncargcnaar	ytntgggarg	argcnttyyt	naargaratg	1800
garwsnttyc	armgnaayac	nwsngayaar	ttycargtng	cnttywsngc	ngarmgnwsn	1860
ytngargayg	arathaaymg	nacnacnath	cargayytnc	cngtnttygc	ngtnwsntay	1920
athathgtnt	tyytntayat	hwsnytngcn	ytnggnwsnt	aywsnmgntg	ywsnmgngtn	1980
gcngtngarw	snaargcnac	nytnggnytn	ggnggngtna	thgtngtnyt	nggngcngtn	2040
ytngcngcna	tgggnttyta	ywsntayytn	ggngtnccnw	snwsnytngt	nathathcar	2100
gtngtnccnt	tyytngtnyt	ngcngtnggn	gcngayaaya	thttyathtt	ygtnytngar	2160
taycarmgny	tnccnmgnat	gccnggngar	carmgngarg	cncayathgg	nmgnacnytn	2220
ggnwsngtng	cnccnwsnat	gytnytntgy	wsnytnwsng	argcnathtg	yttyttyytn	2280
ggngcnytna	cnccnatgcc	ngcngtnmgn	acnttygcny	tnacnwsngg	nytngcnath	2340
athytngayt	tyytnytnca	ratgacngcn	ttygtngcny	tnytnwsnyt	ngaywsnaar	2400
mgncargarg	cnwsnmgncc	ngaygtnytn	tgytgyttyw	snacnmgnaa	rytnccnccn	2460
ccnaargara	argarggnyt	nytnytnmgn	ttyttymgna	arathtaygc	nccnttyytn	2520
ytncaymgnt	tyathmgncc	ngtngtnatg	ytnytnttyy	tnacnytntt	yggngcnaay	2580
ytntayytna	tgtgyaayat	haaygtnggn	ytngaycarg	arytngcnyt	nccnaargay	2640
wsntayytna	thgaytaytt	yytnttyytn	aaymgntayy	tngargtngg	nccnccngtn	2700
tayttygtna	cnacnwsngg	nttyaaytty	wsnwsngarg	cnggnatgaa	ygcnacntgy	2760
wsnwsngcng	gntgyaarws	nttywsnytn	acncaraara	thcartaygc	nwsngartty	2820
ccngaycarw	sntaygtngc	nathgcngcn	wsnwsntggg	tngaygaytt	yathgaytgg	2880

ytnacnccnw snwsnwsntg ytgymgnytn tayathmgng gnccncayaa rgaygartty 2940 3000 tgyccnwsna cngayacnws nttyaaytgy ytnaaraayt gyatgaaymg nacnytnggn ccngtnmgnc cnacngcnga rcarttycay aartayytnc cntggttyyt naaygayccn 3060 ccnaayathm gntgyccnaa rggnggnytn gcngcntaym gnacnwsngt naayytnwsn 3120 3180 wsngayggnc argtnathgc nwsncartty atggcntayc ayaarccnyt nmgnaaywsn 3240 cargayttya cngargcnyt nmgngcnwsn mgnytnytng cngcnaayat hacngcngay 3300 ytnmgnaarg tnccnggnac ngayccnaay ttygargtnt tyccntayac nathwsnaay gtnttytayc arcartayyt nacngtnytn ccngarggna thttyacnyt ngcnytntgy 3360 3420 ttygtnccna cnttygtngt ntgytayytn ytnytnggny tngayatgtg ywsnggnath ytnaayytny tnwsnathat hatgathytn gtngayacna thggnytnat ggcngtntgg 3480 ggnathwsnt ayaaygcngt nwsnytnath aayytngtna cngcngtngg natgwsngtn 3540 3600 garttygtnw sncayathac nmgnwsntty gcngtnwsna cnaarccnac nmgnytngar mgngcnaarg aygcnacngt nttyatgggn wsngcngtnt tygcnggngt ngcnatgacn 3660 3720 aayttyccng gnathytnat hytnggntty gcncargcnc arytnathca rathttytty ttymgnytna ayytnytnat hacnytnytn ggnytnytnc ayggnytngt nttyytnccn 3780 3840 gtngtnytnw sntayytngg nccngaygtn aaycargcny tngtncarga rgaraarytn genwsngarg engengtnge neengareen wsntgyeene artayeenws neengengay 3900 gcngaygcna aygtnaayta yggnttygcn ccngarytng cncayggngc naaygcngcn 3960 3993 mgnwsnwsny tnccnaarws ngaycaraar tty

<210> 11

<211> 4002

<212> DNA

<213> Mus sp.

<220>

<221> CDS

<222> (1)..(4002)

<223>

<400> 11
atg gca gct gcc tgg cag gga tgg ctg ctc tgg gcc ctg ctc ctg aat 48

WO 2004/009772		PCT/US2003/022467
	34/73	

Met 1	Ala	Ala	Ala	Trp 5	Gln	Gly	Trp	Leu	Leu 10	Trp	Ala	Leu	Leu	Leu 15	Asn	
						tac Tyr										96
						ggg ggg										144
						tcc Ser 55										192
						gct Ala									cta Leu 80	240
tac Tyr	aat Asn	ggc Gly	ccc Pro	aat Asn 85	gac Asp	acc Thr	tat Tyr	gcc Ala	tgt Cys 90	tgc Cys	tct Ser	acc Thr	aag Lys	cag Gln 95	ctg Leu	288
						ctg Leu										336
tgc Cys	ccg Pro	gca Ala 115	tgc Cys	tct Ser	gaa Glu	aat Asn	ttt Phe 120	gtg Val	agc Ser	ata Ile	cac His	tgt Cys 125	cat His	aat Asn	acc Thr	384
		Pro				ctc Leu 135									cag Gln	432
	_					cct Pro										480
				Ala	Glu	aag Lys	Ala	Tyr	Glu	Ser	Cys	Ser	Arg			528
				Ala		ctg Leu										576
			Leu			gct Ala										624
		Asn				ccg Pro 215										672
	Gly					gat Asp										720
						cag Gln										768

WO 2004/009772 PCT/US2003/022467 35/73

									33/	13						
				245					250					255		
					tcc Ser											816
					atg Met											864
					gtc Val											912
					aac Asn 310											960
					cct Pro											1008
	_				gag Glu											1056
					ctg Leu											1104
	_				gaa Glu											1152
	Pro				gcc Ala 390											1200
			Phe	Phe	cga Arg	Thr	Asn	Gln	Ile	Phe	Val	Thr	Ala	Lys		1248
		_			tac Tyr											1296
_			Leu		ctg Leu								_		_	1344
	_	Leu	_		ctg Leu					_						1392
	Ser		_	_	atc Ile 470											1440
_					tgt Cys											1488

	cac His			_											1536
	tcc Ser														1584
	ctc Leu 530														1632
_	tac Tyr	- · -													1680
	acg Thr														1728
	aac Asn			_	_	_		_	=	_		_		tgg Trp	1776
	gag Glu			_	_	_	=				_				1824
	aag Lys 610		- - -					_							1872
	aat Asn														1920
	atc Ile	_							· -	_		_			1968
	agc Ser	_	_	-		_		_	_						2016
~ ~	gct Ala				_	- -		_	_	_			_		2064
	ctg Leu 690		_				_	- -					_		2112
=	gtg Val						-								2160
	cag Gln				Arg	_									2208

WO 2004/009772 PCT/US2003/022467 37/73

													tgc Cys 750		ctc Leu	2256
													atg Met			2304
													ttt Phe		ttc Phe	2352
													gat Asp			2400
													tca Ser			2448
													tgc Cys 830			2496
			Tyr										cgc Arg			2544
													tac Tyr		atg Met	2592
													ccc Pro			2640
													ttg Leu			2688
													ttt Phe 910			2736
			Met										gag Glu			2784
		Thr					Tyr						aat Asn			2832
		_											atc Ile			2880
					Ser								ggc Gly			2928
aaa	gat	gag	ttc	tgt	CCC	tca	acg	gat	act	tcc	ttc	aac	tgt	ctc	aaa	2976

Lys	Asp	Glu	Phe	Cys	Pro	Ser	Thr	Asp	Thr	Ser	Phe	Asn	Cys	Leu	Lys	
			920					925					990			

ауы	11010		980	, j		,		35			990)		
	tgc a Cys M					eu Gl				Pro T				3024
	cat His 1010	Lys	Tyr	Leu							Pro			3069
	tgt Cys 1025										Ser			3114
_	agc Ser 1040										Met			3159
	aag Lys 1055										Ala			3204
	tcc Ser 1070						Asn				Leu			3249
	cct Pro 1085	Gly	Thr				Phe				Tyr			3294
	aat Asn 1100	Val	Phe	Tyr	Gln		Tyr	Leu	Thr		Pro			3339
	ttc Phe 1115	Thr					Phe				Val			3384
	ctc Leu 1130										Leu			3429
	tcc Ser 1145	Ile									Leu			3474
_	tgg Trp 1160	Gly					Ala			atc Ile 1170	Asn			3519
	gca Ala 1175	Val					Glu				Ile			3564
	ttt Phe 1190	Ala									Arg			3609
_	gct Ala									gct Ala				3654

_	_ ~	•	-,	_	_	•	•	_

	1205			1210				1215			
				atc Ile 1225							3699
_	ctt Leu 1235	_		ttc Phe 1240						acc Thr	3744
				ggc Gly 1255						ctc Leu	3789
				gtt Val 1270							3834
		_		gcc Ala 1285	Met					cca Pro	3879
. –				gat Asp 1300						aac Asn	3924
				ttt Phe 1315							3969
=		Leu		gac Asp 1330			taa				4002

<210>

<211> 1333

<212> PRT

<213> Mus sp.

<400> 12

Met Ala Ala Trp Gln Gly Trp Leu Leu Trp Ala Leu Leu Leu Asn 15 10 1

Ser Ala Gln Gly Glu Leu Tyr Thr Pro Thr His Lys Ala Gly Phe Cys 25 30 20

Thr Phe Tyr Glu Glu Cys Gly Lys Asn Pro Glu Leu Ser Gly Gly Leu 40 45 35

Thr Ser Leu Ser Asn Ile Ser Cys Leu Ser Asn Thr Pro Ala Arg His 50 60 55

WO 2004/009772 PCT/US2003/022467 40/73

Val 65	Thr	Gly	Asp	His	Leu 70	Ala	Leu	Leu	Gln	Arg 75	Val	Cys	Pro	Arg	Leu 80
Tyr	Asn	Gly	Pro	Asn 85	Asp	Thr	Tyr	Ala	Cys 90	Cys	Ser	Thr	Lys	Gln 95	Leu
Val	Ser	Leu	Asp 100	Ser	Ser	Leu	Ser	Ile 105	Thr	Lys	Ala	Leu	Leu 110	Thr	Arg
Cys	Pro	Ala 115	Cys	Ser	Glu	Asn	Phe 120	Val	Ser	Ile	His	Cys 125	His	Asn	Thr
Cys	Ser 130	Pro	Asp	Gln	Ser	Leu 135	Phe	Ile	Asn	Val	Thr 140	Arg	Val	Val	Gln
Arg 145	Asp	Pro	Gly	Gln	Leu 150	Pro	Ala	Val	Val	Ala 155	Tyr	Glu	Ala	Phe	Tyr 160
Gln	Arg	Ser	Phe	Ala 165	Glu	Lys	Ala	Tyr	Glu 170	Ser	Cys	Ser	Arg	Val 175	Arg
Ile	Pro	Ala	Ala 180	Ala	Ser	Leu	Ala	Val 185	Gly	Ser	Met	Cys	Gly 190	Val	Tyr
Gly	Ser	Ala 195	Leu	Cys	Asn	Ala	Gln 200	Arg	Trp	Leu	Asn	Phe 205	Gln	Gly	Asp
Thr	Gly 210		Gly	Leu	Ala	Pro 215	Leu	Asp	Ile	Thr	Phe 220	His	Leu	Leu	Glu
Pro 225	Gly	Gln	Ala	Leu	Ala 230	Asp	Gly	Met	Lys	Pro 235	Leu	Asp	Gly	Lys	Ile 240
Thr	Pro	Cys	Asn	Glu 245	Ser	Gln	Gly	Glu	Asp 250		Ala	Ala	Cys	Ser 255	Cys
Gln	Asp	Cys	Ala 260		Ser	Cys	Pro	Val 265	Ile	Pro	Pro	Pro	Pro 270	Ala	Leu
Arg	Pro	Ser 275		Tyr	Met	Gly	Arg 280		Pro	Gly	Trp	Leu 285	Ala	Leu	Ile
Ile	Ile 290		Thr	Ala	Val	Phe 295		Leu	Leu	Ser	Val 300	Val	Leu	Val	Tyr

WO 2004/009772 PCT/US2003/022467 41/73

Leu 305	Arg	Val	Ala	Ser	Asn 310	Arg	Asn	Lys	Asn	Lys 315	Thr	Ala	Gly	Ser	Gln 320
Glu	Ala	Pro	Asn	Leu 325	Pro	Arg	Lys	Arg	Arg 330	Phe	Ser	Pro	His	Thr 335	Val
Leu	Gly	Arg	Phe 340	Phe	Glu	Ser	Trp	Gly 345		Arg	Val	Ala	Ser 350	Trp	Pro
Leu	Thr	Val 355	Leu	Ala	Leu	Ser	Phe 360	Ile	Val	Val	Ile	Ala 365	Leu	Ser	Val
Gly	Leu 370	Thr	Phe	Ile	Glu	Leu 375	Thr	Thr	Asp	Pro	Val 380	Glu	Leu	Trp	Ser
Ala 385	Pro	Lys	Ser	Gln	Ala 390		Lys	Glu	Lys	Ala 395	Phe	His	Asp	Glu	His 400
Phe	Gly	Pro	Phe	Phe 405	Arg	Thr	Asn	Gln	Ile 410	Phe	Val	Thr	Ala	Lys 415	Asn
Arg	Ser	Ser	Tyr 420	Lys	Tyr	Asp	Ser	Leu 425	Leu	Leu	Gly	Pro	Lys 430	Asn	Phe
Ser	Gly	Ile 435	Leu	Ser	Leu	Asp	Leu 440	Leu	Gln	Glu	Leu	Leu 445	Glu	Leu	Gln
Glu	Arg 450	Leu	Arg	His	Leu	Gln 455	Val	Trp	Ser	His	Glu 460	Ala	Gln	Arg	Asn
Ile 465				_							Asn				
Ser	Leu	Thr	Asp	Cys 485	Cys	Val	Asn	Ser	Leu 490	Leu	Gln	Tyr	Phe	Gln 495	Asn
Asn	His	Thr	Leu 500	Leu	Leu	Leu	Thr	Ala 505	Asn	Gln	Thr	Leu	Asn 510	Gly	Gln
Thr	Ser	Leu 515	Val	Asp	Trp	Lys	Asp 520	His	Phe	Leu	Tyr	Cys 525	Ala	Asn	Ala
Pro	Leu 530	Thr	Tyr	Lys	Asp	Gly 535	Thr	Ala	Leu	Ala	Leu 540	Ser	Cys	Ile	Ala

Asp	Tyr	Gly	Ala	Pro	Val	Phe	Pro	Phe	Leu	Ala	Val	Gly	Gly	Tyr	Gln
545	_	_			550					555					560

- Gly Thr Asp Tyr Ser Glu Ala Glu Ala Leu Ile Ile Thr Phe Ser Ile 565 570 575
- Asn Asn Tyr Pro Ala Asp Asp Pro Arg Met Ala His Ala Lys Leu Trp 580 585 590
- Glu Glu Ala Phe Leu Lys Glu Met Gln Ser Phe Gln Arg Ser Thr Ala 595 600 605
- Asp Lys Phe Gln Ile Ala Phe Ser Ala Glu Arg Ser Leu Glu Asp Glu 610 620
- Ile Asn Arg Thr Thr Ile Gln Asp Leu Pro Val Phe Ala Ile Ser Tyr625630
- Leu Ile Val Phe Leu Tyr Ile Ser Leu Ala Leu Gly Ser Tyr Ser Arg 645 650 655
- Trp Ser Arg Val Ala Val Asp Ser Lys Ala Thr Leu Gly Leu Gly Gly 660 665 670
- Val Ala Val Val Leu Gly Ala Val Val Ala Ala Met Gly Phe Tyr Ser 675 680 685
- Tyr Leu Gly Val Pro Ser Ser Leu Val Ile Ile Gln Val Val Pro Phe 690 695 700
- Leu Val Leu Ala Val Gly Ala Asp Asn Ile Phe Ile Phe Val Leu Glu 705 710 715 720
- Tyr Gln Arg Leu Pro Arg Met Pro Gly Glu Gln Arg Glu Ala His Ile 725 730 735
- Gly Arg Thr Leu Gly Ser Val Ala Pro Ser Met Leu Leu Cys Ser Leu 740 745 750
- Ser Glu Ala Ile Cys Phe Phe Leu Gly Ala Leu Thr Ser Met Pro Ala 755 760 765
- Val Arg Thr Phe Ala Leu Thr Ser Gly Leu Ala Ile Ile Phe Asp Phe 770 780
- Leu Leu Gln Met Thr Ala Phe Val Ala Leu Leu Ser Leu Asp Ser Lys

785	790	795	800
700	, 50	, 55	000

Arg Gln Glu Ala Ser Arg Pro Asp Val Val Cys Cys Phe Ser Ser Arg 805 810 815

Asn Leu Pro Pro Pro Lys Gln Lys Glu Gly Leu Leu Cys Phe Phe 820 825 830

Arg Lys Ile Tyr Thr Pro Phe Leu Leu His Arg Phe Ile Arg Pro Val 835 840 845

Val Leu Leu Phe Leu Val Leu Phe Gly Ala Asn Leu Tyr Leu Met 850 855 860

Cys Asn Ile Ser Val Gly Leu Asp Gln Asp Leu Ala Leu Pro Lys Asp 865 870 880

Ser Tyr Leu Ile Asp Tyr Phe Leu Phe Leu Asn Arg Tyr Leu Glu Val 885 890 895

Gly Pro Pro Val Tyr Phe Asp Thr Thr Ser Gly Tyr Asn Phe Ser Thr 900 905 910

Glu Ala Gly Met Asn Ala Ile Cys Ser Ser Ala Gly Cys Glu Ser Phe 915 920 925

Ser Leu Thr Gln Lys Ile Gln Tyr Ala Ser Glu Phe Pro Asn Gln Ser 930 935 940

Tyr Val Ala Ile Ala Ala Ser Ser Trp Val Asp Asp Phe Ile Asp Trp 945 950 955 960

Leu Thr Pro Ser Ser Ser Cys Cys Arg Ile Tyr Thr Arg Gly Pro His 965 970 975

Lys Asp Glu Phe Cys Pro Ser Thr Asp Thr Ser Phe Asn Cys Leu Lys 980 985 990

Asn Cys Met Asn Arg Thr Leu Gly Pro Val Arg Pro Thr Thr Glu Gln 995 1000 1005

Phe His Lys Tyr Leu Pro Trp Phe Leu Asn Asp Thr Pro Asn Ile 1010 1015 1020

Arg Cys Pro Lys Gly Gly Leu Ala Ala Tyr Arg Thr Ser Val Asn 1025 1030 1035

Leu	Ser 1040	Ser	Asp	Gly	Gln	Ile 1045	Ile	Ala	Ser	Gln	Phe 1050	Met	Ala	Tyr
His	Lys 1055	Pro	Leu	Arg	Asn	Ser 1060	Gln	Asp	Phe	Thr	Glu 1065	Ala	Leu	Arg
Ala	Ser 1070	Arg	Leu	Leu	Ala	Ala 1075	Asn	Ile	Thr	Ala	Glu 1080	Leu	Arg	Lys
Val	Pro 1085	Gly	Thr	Asp	Pro	Asn 1090	Phe	Glu	Val	Phe	Pro 1095	Tyr	Thr	Ile
Ser	Asn 1100	Val	Phe	Tyr	Gln	Gln 1105	Tyr	Leu	Thr	Val	Leu 1110	Pro	Glu	Gly
Ile	Phe 1115		Leu	Ala	Leu	Cys 1120		Val	Pro	Thr	Phe 1125	Val	Val	Cys
Tyr	Leu 1130		Leu	Gly	Leu	Asp 1135		Arg	Ser	Gly	Ile 1140	Leu	Asn	Leu
Leu	Ser 1145		Ile	Met	Ile	Leu 1150		Asp	Thr	Ile	Gly 1155	Leu	Met	Ala
Val	Trp 1160	•	Ile	Ser	Tyr	Asn 1165		Val	Ser	Leu	Ile 1170	Asn	Leu	Val
Thr	Ala 1175		Gly	Met	Ser	Val 1180		Phe	Val	Ser	His 1185	Ile	Thr	Arg
Ser	Phe 1190	Ala	Val	Ser	Thr	Lys 1195	Pro	Thr	Arg	Leu	Glu 1200	Arg	Ala	Lys
Asp	Ala 1205		Ile	Phe	Met	Gly 1210		Ala	Val	Phe	Ala 1215		Val	Ala
Met	Thr 1220		Phe	Pro	Gly	Ile 1225		Ile	Leu	Gly	Phe 1230		Gln	Ala
Gln	Leu 1235		Gln	lle	. Phe	Phe 1240		Arg	Leu	Asn	Leu 1245		Ile	Thr
Leu	Leu 1250		Leu	Leu	His	Gly 1255		Val	Phe	Leu	Pro 1260		Val	Leu

Ser Tyr Leu Gly Pro Asp Val Asn Gln Ala Leu Val Leu Glu Glu 1265 1270 1275

Lys Leu Ala Thr Glu Ala Ala Met Val Ser Glu Pro Ser Cys Pro 1280 1285 1290

Gln Tyr Pro Phe Pro Ala Asp Ala Asn Thr Ser Asp Tyr Val Asn 1295 1300 1305

Tyr Gly Phe Asn Pro Glu Phe Ile Pro Glu Ile Asn Ala Ala Ser 1310 1315 1320

Ser Ser Leu Pro Lys Ser Asp Gln Lys Phe 1325 1330

<210> 13

<211> 3999

<212> DNA

<213> Mus sp.

<400> 13 atggcngcng cntggcargg ntggytnytn tgggcnytny tnytnaayws ngcncarggn 60 120 garytntaya cnccnacnca yaargcnggn ttytgyacnt tytaygarga rtgyggnaar 180 aayccngary tnwsnggngg nytnacnwsn ytnwsnaaya thwsntgyyt nwsnaayacn ccngcnmgnc aygtnacngg ngaycayytn gcnytnytnc armgngtntg yccnmgnytn 240 300 tayaayggnc cnaaygayac ntaygcntgy tgywsnacna arcarytngt nwsnytngay 360 wsnwsnytnw snathacnaa rgcnytnytn acnmgntgyc cngcntgyws ngaraaytty gtnwsnathc aytgycayaa yacntgywsn ccngaycarw snytnttyat haaygtnacn 420 480 mgngtngtnc armgngaycc nggncarytn ccngcngtng tngcntayga rgcnttytay 540 carmgnwsnt tygcngaraa rgcntaygar wsntgywsnm gngtnmgnat hccngcngcn 600 gcnwsnytng cngtnggnws natgtgyggn gtntayggnw sngcnytntg yaaygcncar 660 mgntggytna ayttycargg ngayacnggn aayggnytng cnccnytnga yathacntty 720 cayytnytng arccnggnca rgcnytngcn gayggnatga arccnytnga yggnaarath 780 acncentgya aygarwsnea rggngargay wsngengent gywsntgyea rgaytgygen 840 gcnwsntgyc cngtnathcc nccnccnccn gcnytnmgnc cnwsnttyta yatgggnmgn

atgccnggnt	ggytngcnyt	nathathath	ttyacngcng	tnttygtnyt	nytnwsngtn	900
gtnytngtnt	ayytnmgngt	ngcnwsnaay	mgnaayaara	ayaaracngc	nggnwsncar	960
gargeneena	ayytnccnmg	naarmgnmgn	ttywsnccnc	ayacngtnyt	nggnmgntty	1020
ttygarwsnt	ggggnacnmg	ngtngcnwsn	tggccnytna	cngtnytngc	nytnwsntty	1080
athgtngtna	thgcnytnws	ngtnggnytn	acnttyathg	arytnacnac	ngayccngtn	1140
garytntggw	sngcnccnaa	rwsncargcn	mgnaargara	argcnttyca	ygaygarcay	1200
ttyggnccnt	tyttymgnac	naaycarath	ttygtnacng	cnaaraaymg	nwsnwsntay	1260
aartaygayw	snytnytnyt	nggnccnaar	aayttywsng	gnathytnws	nytngayytn	1320
ytncargary	tnytngaryt	ncargarmgn	ytnmgncayy	tncargtntg	gwsncaygar	1380
gcncarmgna	ayathwsnyt	ncargayath	tgytaygcnc	cnytnaaycc	ncayaayacn	1440
wsnytnacng	aytgytgygt	naaywsnytn	ytncartayt	tycaraayaa	ycayacnytn	1500
ytnytnytna	cngcnaayca	racnytnaay	ggncaracnw	snytngtnga	ytggaargay	1560
cayttyytnt	aytgygcnaa	ygcnccnytn	acntayaarg	ayggnacngc	nytngcnytn	1620
wsntgyathg	cngaytaygg	ngcnccngtn	ttyccnttyy	tngcngtngg	nggntaycar	1680
ggnacngayt	aywsngargc	ngargcnytn	athathacnt	tywsnathaa	yaaytayccn	1740
gcngaygayc	cnmgnatggc	ncaygcnaar	ytntgggarg	argcnttyyt	naargaratg	1800
carwsnttyc	armgnwsnac	ngcngayaar	ttycarathg	cnttywsngc	ngarmgnwsn	1860
ytngargayg	arathaaymg	nacnacnath	cargayytnc	cngtnttygc	nathwsntay	1920
ytnathgtnt	tyytntayat	hwsnytngcn	ytnggnwsnt	aywsnmgntg	gwsnmgngtn	1980
gcngtngayw	snaargcnac	nytnggnytn	ggnggngtng	cngtngtnyt	nggngcngtn	2040
gtngcngcna	tgggnttyta	ywsntayytn	ggngtnccnw	snwsnytngt	nathathcar	2100
gtngtnccnt	tyytngtnyt	ngcngtnggn	gcngayaaya	thttyathtt	ygtnytngar	2160
taycarmgny	tnccnmgnat	gccnggngar	carmgngarg	cncayathgg	nmgnacnytn	2220
ggnwsngtng	cnccnwsnat	gytnytntgy	wsnytnwsng	argcnathtg	yttyttyytn	2280
ggngcnytna	cnwsnatgcc	ngcngtnmgn	acnttygcny	tnacnwsngg	nytngcnath	2340
athttygayt	tyytnytnca	ratgacngcn	ttygtngcny	tnytnwsnyt	ngaywsnaar	2400
mgncargarg	cnwsnmgncc	ngaygtngtn	tgytgyttyw	snwsnmgnaa	yytnccnccn	2460
ccnaarcara	argarggnyt	nytnytntgy	ttyttymgna	arathtayac	nccnttyytn	2520
ytncaymgnt	tyathmgncc	ngtngtnytn	ytnytnttyy	tngtnytntt	yggngcnaay	2580
ytntayytna	tgtgyaayat	hwsngtnggn	ytngaycarg	ayytngcnyt	nccnaargay	2640

wsntayytna	thgaytaytt	yytnttyytn	aaymgntayy	tngargtngg	nccnccngtn	2700
tayttygaya	cnacnwsngg	ntayaaytty	wsnacngarg	cnggnatgaa	ygcnathtgy	2760
wsnwsngcng	gntgygarws	nttywsnytn	acncaraara	thcartaygc	nwsngartty	2820
ccnaaycarw	sntaygtngc	nathgengen	wsnwsntggg	tngaygaytt	yathgaytgg	2880
ytnacnccnw	snwsnwsntg	ytgymgnath	tayacnmgng	gnccncayaa	rgaygartty	2940
tgyccnwsna	cngayacnws	nttyaaytgy	ytnaaraayt	gyatgaaymg	nacnytnggn	3000
ccngtnmgnc	cnacnacnga	rcarttycay	aartayytnc	cntggttyyt	naaygayacn	3060
ccnaayathm	gntgyccnaa	rggnggnytn	gcngcntaym	gnacnwsngt	naayytnwsn	3120
wsngayggnc	arathathgc	nwsncartty	atggcntayc	ayaarccnyt	nmgnaaywsn	3180
cargayttya	cngargcnyt	nmgngcnwsn	mgnytnytng	cngcnaayat	hacngcngar	3240
ytnmgnaarg	tnccnggnac	ngayccnaay	ttygargtnt	tyccntayac	nathwsnaay	3300
gtnttytayc	arcartayyt	nacngtnytn	ccngarggna	thttyacnyt	ngcnytntgy	3360
ttygtnccna	cnttygtngt	ntgytayytn	ytnytnggny	tngayathmg	nwsnggnath	3420
ytnaayytny	tnwsnathat	hatgathytn	gtngayacna	thggnytnat	ggcngtntgg	3480
ggnathwsnt	ayaaygcngt	nwsnytnath	aayytngtna	cngcngtngg	natgwsngtn	3540
garttygtnw	sncayathac	nmgnwsntty	gcngtnwsna	cnaarccnac	nmgnytngar	3600
mgngcnaarg	aygcnacnat	httyatgggn	wsngcngtnt	tygcnggngt	ngcnatgacn	3660
aayttyccng	gnathytnat	hytnggntty	gcncargcnc	arytnathca	rathttytty	3720
ttymgnytna	ayytnytnat	hacnytnytn	ggnytnytnc	ayggnytngt	nttyytnccn	3780
gtngtnytnw	sntayytngg	nccngaygtn	aaycargcny	tngtnytnga	rgaraarytn	3840
gcnacngarg	cngcnatggt	nwsngarccn	wsntgyccnc	artayccntt	yccngcngay	3900
gcnaayacnw	sngaytaygt	naaytayggn	ttyaayccng	arttyathcc	ngarathaay	3960
gcngcnwsnw	snwsnytncc	naarwsngay	caraartty			3999

<210> 14

<220>

<211> 20

<212> DNA

<213> Artificial sequence

<223> primer

48/73 <400> 14 20 tcttcaccct tgctctttgc <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 24 aatgatggag agtaggttga ggat <210> 16 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 26 tgcccacctt tgttgtctgc taccta <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 21 atcgctgaca ggatgcagaa g <210> 18

PCT/US2003/022467

WO 2004/009772

PCT/IIS2003/022467 WO 2004/000772

W	O 2004/009772	49/73	PCT/US2003/022
<211>	22		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	primer		
<400> tcaggag	18 gag caatgatctt ga		22
<210>	19		
<211>	30		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	primer		
<400> agatta	19 ctgc cctggctcct agcaccatta		30
<210>	20		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	primer		
<400> atcctc	20 atcc tgggctttgc		20

<210> 21

<211> 21

<212> DNA

<213> Artificial Sequence

21

29

20

<220> <223> primer <400> 21 gcaaggtgat caggaggttg a <210> 22 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 cccagcttat ccagattttc ttcttccgc <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 tcttcaccct tgctctttgc <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer

<400> 24

WO 2004/009772 PCT/US2003/022467 51/73 24 aatgatggag agtaggttga ggat <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 24 tgcccacctt tgttgtctgc tacc <210> 26 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 23 agcacctgtc cactgaagat ttc <210> 27 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 21 tggacgctga gcttcagttc t

<210> 28

<211> 24

WO 2004/009772 PCT/US2003/022467

	52/73
--	-------

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 28 cttctctgcg ctgcctcgat ggaa 24

<210> 29

<211> 21

<220>

<220>

<211> 25

<212> DNA

<213> Artificial Sequence

<223> primer

<400> 29 agtaaaaagg gctcgcagga t

<210> 30 <211> 21

<212> DNA

<213> Artificial Sequence

<223> primer

<400> 30

ggcagctggt gacatcagag a 21

<210> 31

<212> DNA

<213> Artificial Sequence

WO 2004/009772	53/73	PCT/US2003/022467

<220>	·	
<223>	primer	
<400> aggaggo	31 cat gcaggcctac tctga	25
<210>	32	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	primer	
<400> gagtcc	32 acgg tcagtccatg t	21
<210>	33	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	primer	
<400> ttatga	acaa caatgccaag caa	23
<210>	34	
<211>	34	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	primer	
<400> agtcct	34 tagg tagtggctta gtccctggaa gctc	34

WO 2004/009772 PCT/US2003/022467

52

50

```
<210> 35
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<223> probe
<400> 35
gtaatacgac tcactatagg gccctgacgg tccttcctga gggaatcttc ac
<210> 36
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> probe
<400> 36
gtaatacgac tcactatagg gcctgggaag ttggtcatgg ccactccagc
<210> 37
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> FLAG tag
 <400> 37
 Asp Tyr Lys Asp Asp Asp Lys
                5
 1
```

<210> 38

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> motif

<400> 38

Tyr Gln Arg Leu

<210> 39

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<223> antigen

<400> 39

Glu Gln Phe His Lys Tyr Leu Pro Trp Phe Leu Asn Asp Pro Pro Asn 1 5

Ile Arg Cys

<210> 40

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> antigen

<400> 40

Glu Ala Phe Tyr Gln Arg Ser Phe Ala Glu Lys Ala Tyr Glu Ser Cys 1 5 10 15

<210> 41

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> antigen

<400> 41

Gly Gln Thr Ser Leu Val Asp Trp Lys Asp His Phe Leu Tyr Cys 1 5 10 10

<210> 42

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<223> antigen

<400> 42

Cys Ala Asn Ala Pro Leu Thr Phe Lys Asp Gly Thr Ala Leu Ala Leu 1 5 10 15

Ser

<210> 43

<211> 5092

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (57)..(4136)

<223>

Met 1														59		
gcg Ala	gag Glu	gcc Ala	ggc Gly 5	ctg Leu	agg Arg	ggc Gly	tgg Trp	ctg Leu 10	ctg Leu	tgg Trp	gcc Ala	ctg Leu	ctc Leu 15	ctg Leu	cgc Arg	107
ttg Leu	gcc Ala	cag Gln 20	agt Ser	gag Glu	cct Pro	tac Tyr	aca Thr 25	acc Thr	atc Ile	cac His	cag Gln	cct Pro 30	ggc Gly	tac Tyr	tgc Cys	155
gcc Ala	ttc Phe 35	tat Tyr	gac Asp	gaa Glu	tgt Cys	ggg. Gly 40	aag Lys	aac Asn	cca Pro	gag Glu	ctg Leu 45	tct Ser	gga Gly	agc Ser	ctc Leu	203
atg Met 50	aca Thr	ctc Leu	tcc Ser	aac Asn	gtg Val 55	tcc Ser	tgc Cys	ctg Leu	tcc Ser	aac Asn 60	acg Thr	ccg Pro	gcc Ala	cgc Arg	aag Lys 65	251
atc Ile	aca Thr	ggt Gly	gat Asp	cac His 70	ctg Leu	atc Ile	cta Leu	tta Leu	cag Gln 75	aag Lys	atc Ile	tgc Cys	ccc Pro	cgc Arg 80	ctc Leu	299
tac Tyr	acc Thr	ggc	ccc Pro 85	aac Asn	acc Thr	caa Gln	gcc Ala	tgc Cys 90	tgc Cys	tcc Ser	gcc Ala	aag Lys	cag Gln 95	ctg Leu	gta Val	347
tca Ser	ctg Leu	gaa Glu 100	Ala	agt Ser	ctg Leu	tcg Ser	atc Ile 105	Thr	aag Lys	gcc Ala	ctc Leu	ctc Leu 110	acc Thr	cgc Arg	tgc Cys	395
cca	gcc Ala 115	Cys	tct Ser	gac Asp	aat Asn	ttt Phe 120	gtg Val	aac Asn	ctg Leu	cac His	tgc Cys 125	cac His	aac Asn	acg Thr	tgc Cys	443
ago Ser 130	Pro	aat Asn	cag Gln	agc Ser	ctc Leu 135	ttc Phe	atc Ile	aat Asn	gtg Val	acc Thr 140	Arg	gtg Val	gcc Ala	cag Gln	cta Leu 145	491
GJ7 ggg	g gct / Ala	gga Gly	. caa . Gln	ctc Leu 150	Pro	gct Ala	gtg Val	gtg Val	gcc Ala 155	Tyr	gag Glu	gcc Ala	ttc Phe	tac Tyr 160	Gln	539
cat His	ago Ser	ttt Phe	gcc Ala 165	Glu	cag Gln	agc Ser	tat Tyr	gac Asp 170	Ser	tgc Cys	agc Ser	cgt Arg	gtg Val 175	Arg	gtc Val	587
cci Pro	gca Ala	gct Ala 180	a Ala	acg Thr	ctg Leu	gct Ala	gtg Val 185	. Gly	acc Thr	atg Met	tgt Cys	ggc Gly 190	Val	tat Tyr	ggc	635
tc: Se:	gco r Ala 195	a Lei	t tgc ı Cys	: aat : Asn	gcc Ala	cag Gln 200	Arg	tgg Trp	ctc Leu	aac Asn	ttc Phe 205	Gln	gga Gly	gac Asp	aca Thr	683
gg Gl	c aat y Asr	ggt Gly	c ctg / Lev	g gcc 1 Ala	cca Pro	ctg Leu	gac Asp	ato Ile	acc Thr	ttc Phe	cac His	ctc Leu	ttg Leu	gag Glu	cct Pro	731

58/73

210	215	220		225
ggc cag gcc gtg g Gly Gln Ala Val G 2	gg agt ggg att ly Ser Gly Ile 30	cag cct ctg aa Gln Pro Leu As 235	nt gag ggg gtt n Glu Gly Val 240	gca 779 Ala
cgt tgc aat gag t Arg Cys Asn Glu S 245	cc caa ggt gac er Gln Gly Asp	gac gtg gcg ac Asp Val Ala Th 250	cc tgc tcc tgc ar Cys Ser Cys 255	caa 827 Gln
gac tgt gct gca t Asp Cys Ala Ala S 260				
tcc acc ttc tac c Ser Thr Phe Tyr I 275			eu Val Leu Ile	
atc ctc tgc tct g Ile Leu Cys Ser V 290	al Phe Ala Val	gtc acc atc ct Val Thr Ile Le 300	eu Leu Val Gly	ttc 971 Phe 305
cgt gtg gcc ccc g Arg Val Ala Pro A				
ggc acc agc ctc t Gly Thr Ser Leu S 325	ct gac aag ctc er Asp Lys Leu	agc ttc tcc ac Ser Phe Ser Th 330	cc cac acc ctc ar His Thr Leu 335	ctt 1067 Leu
ggc cag ttc ttc c Gly Gln Phe Phe G 340	ag ggc tgg ggc In Gly Trp Gly 345	Thr Trp Val Al	ct tcg tgg cct La Ser Trp Pro 350	ctg 1115 Leu
acc atc ttg gtg o Thr Ile Leu Val I 355			la Leu Ala Ala	
ctg gtc ttt aca g Leu Val Phe Thr (370				
ccc aac agc caa g Pro Asn Ser Gln A	gcc cgg agt gag Ala Arg Ser Glu 190	aaa gct ttc ca Lys Ala Phe Hi 395	at gac cag cat is Asp Gln His 400	ttc 1259 Phe
ggc ccc ttc ttc c Gly Pro Phe Phe 2 405				
tcc agc tac agg t Ser Ser Tyr Arg 1 420		. Leu Leu Gly Pr		
gga atc ctg gac o Gly Ile Leu Asp I 435			eu Glu Leu Gln	
agg ctg cgg cac o Arg Leu Arg His : 450				

WO 2004/009772 PCT/US2003/022467 59/73

tcc Ser	ctg Leu	cag Gln	gac Asp	atc Ile 470	tgc Cys	tac Tyr	gcc Ala	ccc Pro	ctc Leu 475	aat Asn	ccg Pro	gac Asp	aat Asn	acc Thr 480	agt Ser	1499
ctc Leu				tgc Cys												1547
				ctg Leu												1595
tcc Ser	caa Gln 515	gtc Val	gac Asp	tgg Trp	aag Lys	gac Asp 520	cat His	ttt Phe	ctg Leu	tac Tyr	tgt Cys 525	gcc Ala	aat Asn	gcc Ala	ccg Pro	1643
				gat Asp												1691
				gtc Val 550												1739
aag Lys	gac Asp	tat Tyr	tct Ser 565	gag Glu	gca Ala	gag Glu	gcc Ala	ctg Leu 570	atc Ile	atg Met	acg Thr	ttc Phe	tcc Ser 575	ctc Leu	aac Asn	1787
aat Asn	tac Tyr	cct Pro 580	Ala	Gly ggg	gac Asp	ccc Pro	cgt Arg 585	Leu	gcc Ala	cag Gln	gcc Ala	aag Lys 590	ctg Leu	tgg Trp	gag Glu	1835
				gag Glu			Arg									1883
	Phe			acg Thr												1931
				gct Ala 630												1979
				tac Tyr					Leu					Ser		2027
agc Ser	cga Arg	gtg Val 660	Met	gtg Val	gac Asp	tcc Ser	aag Lys 665	Ala	acg Thr	ctg Leu	ggc	ctc Leu 670	ggc	Gly aaa	gtg Val	2075
gcc Ala	gtg Val 675	Val	: ctg Leu	gga Gly	gca Ala	gtc Val 680	Met	gct Ala	gcc Ala	atg Met	ggc Gly 685	ttc Phe	ttc Phe	tcc Ser	tac Tyr	2123
ttg Leu 690	Gly	ato Ile	c cgc Arg	tcc Ser	tcc Ser 695	Leu	gtc Val	atc Ile	ctg Leu	caa Gln 700	Val	gtt Val	cct Pro	ttc Phe	ctg Leu 705	2171

									60,	73						
gtg Val	ctg Leu	tcc Ser	gtg Val	ggg Gly 710	gct Ala	gat Asp	aac Asn	atc Ile	ttc Phe 715	atc Ile	ttt Phe	gtt Val	ctc Leu	gag Glu 720	tac Tyr	2219
														att Ile		2267
cga Arg	gcc Ala	cta Leu 740	ggc Gly	agg Arg	gtg Val	gct Ala	ccc Pro 745	agc Ser	atg Met	ctg Leu	ttg Leu	tgc Cys 750	agc Ser	ctc Leu	tct Ser	2315
														gct Ala		2363
														ttc Phe		2411
														aag Lys 800		2459
cag Gln	gag Glu	gcc Ala	tcc Ser 805	cgg Arg	ttg Leu	gac Asp	gtc Val	tgc Cys 810	tgc Cys	tgt Cys	gtc Val	aag Lys	ccc Pro 815	cag Gln	gag Glu	2507
														ttc Phe		2555
														gtt Val		2603
	Leu													atg Met		2651
		_			Leu									gac Asp 880		2699
				Tyr										gtg Val		2747
			Tyr					Leu					Ser	agc Ser		2795
		Met					Ser							ttc Phe		2843
	Thr	_				Tyr								tct Ser		2891
ctg	gcc	atc	cct	gcc	tcc	tcc	tgg	gtg	gat	gac	ttc	att	gac	tgg	ctg	2939

WO 2004/009772 PCT/US2003/022467 61/73

Leu Ala Ile Pro Ala Ser Ser Trp Val Asp Asp Phe Ile Asp Trp Leu 950 955 960	
acc ccg tcc tcc tgc tgc cgc ctt tat ata tct ggc ccc aat aag gac Thr Pro Ser Ser Cys Cys Arg Leu Tyr Ile Ser Gly Pro Asn Lys Asp 965 970 975	2987
aag ttc tgc ccc tcg acc gtc aac tct ctg aac tgc cta aag aac tgc Lys Phe Cys Pro Ser Thr Val Asn Ser Leu Asn Cys Leu Lys Asn Cys 980 985 990	3035
atg agc atc acg atg ggc tct gtg agg ccc tcg gtg gag cag ttc cat Met Ser Ile Thr Met Gly Ser Val Arg Pro Ser Val Glu Gln Phe His 995 1000 1005	3083
aag tat ctt ccc tgg ttc ctg aac gac cgg ccc aac atc aaa tgt Lys Tyr Leu Pro Trp Phe Leu Asn Asp Arg Pro Asn Ile Lys Cys 1010 1015 1020	3128
ccc aaa ggc ggc ctg gca gca tac agc acc tct gtg aac ttg act Pro Lys Gly Gly Leu Ala Ala Tyr Ser Thr Ser Val Asn Leu Thr 1025 1030 1035	3173
tca gat ggc cag gtt tta gac aca gtt gcc att ctg tca ccc agg Ser Asp Gly Gln Val Leu Asp Thr Val Ala Ile Leu Ser Pro Arg 1040 1045 1050	3218
ctg gag tac agt ggc aca atc tcg gct cac tgc aac ctc tac ctc Leu Glu Tyr Ser Gly Thr Ile Ser Ala His Cys Asn Leu Tyr Leu 1055 1060 1065	3263
ctg gat tca gcc tcc agg ttc atg gcc tat cac aag ccc ctg aaa Leu Asp Ser Ala Ser Arg Phe Met Ala Tyr His Lys Pro Leu Lys 1070 1075 1080	3308
aac tca cag gat tac aca gaa gct ctg cgg gca gct cga gag ctg Asn Ser Gln Asp Tyr Thr Glu Ala Leu Arg Ala Ala Arg Glu Leu 1085 1090 1095	3353
gca gcc aac atc act gct gac ctg cgg aaa gtg cct gga aca gac Ala Ala Asn Ile Thr Ala Asp Leu Arg Lys Val Pro Gly Thr Asp 1100 1105 1110	3398
ccg gct ttt gag gtc ttc ccc tac acg atc acc aat gtg ttt tat Pro Ala Phe Glu Val Phe Pro Tyr Thr Ile Thr Asn Val Phe Tyr 1115 1120 1125	3443
gag cag tac ctg acc atc ctc cct gag ggg ctc ttc atg ctc agc Glu Gln Tyr Leu Thr Ile Leu Pro Glu Gly Leu Phe Met Leu Ser 1130 1135 1140	3488
ctc tgc ctt gtg ccc acc ttc gct gtc tcc tgc ctc ctg ctg ggc Leu Cys Leu Val Pro Thr Phe Ala Val Ser Cys Leu Leu Leu Gly 1145 1150 1155	3533
ctg gac ctg cgc tcc ggc ctc ctc aac ctg ctc tcc att gtc atg Leu Asp Leu Arg Ser Gly Leu Leu Asn Leu Leu Ser Ile Val Met 1160 1165 1170	3578
atc ctc gtg gac act gtc ggc ttc atg gcc ctg tgg ggc atc agt Ile Leu Val Asp Thr Val Gly Phe Met Ala Leu Trp Gly Ile Ser	3623

	wo	2004/	00977	72					62/73	}				PCT/US	2003/022
1175					1180					1185					
tac Tyr 1190	aat Asn	gct Ala	gtg Val	tcc Ser	ctc Leu 1195	atc Ile	aac Asn	ctg Leu	gtc Val	tcg Ser 1200	gcg Ala	gtg Val	ggc Gly	atg Met	3668
tct Ser 1205	gtg Val	gag Glu	ttt Phe	gtg Val	tcc Ser 1210	cac His	att Ile	acc Thr	cgc Arg	tcc Ser 1215	ttt Phe	gcc Ala	atc Ile	agc Ser	3713
acc Thr 1220	aag Lys	ccc Pro	acc Thr	tgg Trp	ctg Leu 1225	gag Glu	agg Arg	gcc Ala	aaa Lys	gag Glu 1230	gcc Ala	acc Thr	atc Ile	tct Ser	3758
atg Met 1235	gga Gly	agt Ser	gcg Ala	gtg Val	ttt Phe 1240	gca Ala	ggt Gly	gtg Val	gcc Ala	atg Met 1245	acc Thr	aac Asn	ctg Leu	cct Pro	3803
ggc Gly 1250	atc Ile	ctt Leu	gtc Val	ctg Leu	ggc Gly 1255	ctc Leu	gcc Ala	aag Lys	gcc Ala	cag Gln 1260	ctc Leu	att Ile	cag Gln	atc Ile	3848
ttc Phe 1265	ttc Phe	ttc Phe	cgc Arg	ctc Leu	aac Asn 1270	ctc Leu	ctg Leu	atc Ile	act Thr	ctg Leu 1275	Leu	ggc Gly	ctg Leu	ctg Leu	3893
cat His 1280	Gly	ttg Leu	gtc Val	ttc Phe	ctg Leu 1285	Pro	gtc Val	atc Ile	ctc Leu	agc Ser 1290	Tyr	gtg Val	Gly	cct Pro	3938
gac Asp 1295	Val	aac Asn	ccg Pro	gct Ala	ctg Leu 1300	Ala	ctg Leu	gag Glu	cag Gln	aag Lys 1305	Arg	gct Ala	gag Glu	gag Glu	3983
gcg Ala 1310	Val	gca Ala	gca Ala	gtc Val	atg Met 1315	Val	gcc Ala	tct Ser	tgc Cys	cca Pro 1320	Asn	cac His	ccc Pro	tcc Ser	4028
cga Arg 1325	Val	tcc Ser	aca Thr	gct Ala	gac Asp 1330	Asn	atc Ile	tat Tyr	gtc Val	aac Asn 1335	His	agc Ser	ttt Phe	gaa Glu	4073
ggt Gly 1340	Ser	atc Ile	aaa Lys	ggt Gly	gct Ala 1345	Gly	gcc Ala	atc Ile	agc Ser	aac Asn 1350	Phe	ttg Leu	ccc Pro	aac Asn	4118
aat Asn 1355	Gly		g Gln	_	tga :	taca	gcca	ga g	gccc	tgtct	agg	ctct	atg		4166
gaaa	tgaa	icc a	aagg	gtta	ıt ggg	gato	ttc	cttg	tgac	tg cc	cctt	gaca	cac	gccctcc	4226
tcaa	atcc	ta g	ggga	ggcc	ca tto	ccat	gag	actg	rcctg	tc ac	tgga:	ggat	ggc	ctgctct	4286
tgag	ggtat	cc a	aggca	agcac	cc act	gatg	ıgct	cctc	tgct	cc ca	tagt	gggt	ccc	cagtttc	4346

caagtcacct aggccttggg cagtgcctcc tcctgggcct gggtctggaa gttggcagga

acagacacac tccatgtttg tcccacactc actcactttc ctaggagccc acttctcatc

caacttttcc cttctcagtt cctctctcga aagtcttaat tctgtgtcag taagtcttta

4406

4466

4526

acacgtago	a gtgtccctga	gaacacagac	aatgaccact	accctgggtg	tgatatcaca	4586
ggaggccag	ja gagaggcaaa	ggctcaggcc	aagagccaac	gctgtgggag	gccggtcggc	4646
agccactco	cc tccagggcgc	acctgcaggt	ctgccatcca	cggccttttc	tggcaagaga	4706
agggcccag	gg aaggatgctc	tcataaggcc	caggaaggat	gctctcataa	gcaccttggt	4766
catggatta	ag cccctcctgg	aaaatggtgt	tgggtttggt	ctccagctcc	aatacttatt	4826
aaggctgt	g ctgccagtca	aggccaccca	ggagtctgaa	ggctgggagc	tcttggggct	4886
gggctggt	cc tcccatcttc	acctcgggcc	tggatcccag	gcctcaaacc	agcccaaccc	4946
gagctttt	gg acagctctcc	agaagcatga	actgcagtgg	agatgaagat	cctggctctg	5006
tgctgtgc	ac ataggtgttt	aataaacatt	tgttggcaga	aaaaaaaaaa	aaaaaaaaaa	5066
aaaaaaaa	aa aaaaaaaaa	aaaaaa				5092

<210> 44

<211> 1359

<212> PRT

<213> Homo sapiens

<400> 44

Met Ala Glu Ala Gly Leu Arg Gly Trp Leu Leu Trp Ala Leu Leu 1 5 10 15

Arg Leu Ala Gln Ser Glu Pro Tyr Thr Thr Ile His Gln Pro Gly Tyr 20 25 30

Cys Ala Phe Tyr Asp Glu Cys Gly Lys Asn Pro Glu Leu Ser Gly Ser 35 40 45

Leu Met Thr Leu Ser Asn Val Ser Cys Leu Ser Asn Thr Pro Ala Arg 50 55 60

Lys Ile Thr Gly Asp His Leu Ile Leu Leu Gln Lys Ile Cys Pro Arg 70 75 80

Leu Tyr Thr Gly Pro Asn Thr Gln Ala Cys Cys Ser Ala Lys Gln Leu 85 90 95

Val Ser Leu Glu Ala Ser Leu Ser Ile Thr Lys Ala Leu Leu Thr Arg 100 105 110

WO 2004/009772 PCT/US2003/022467 64/73

Cys	Pro	Ala 115	Cys	Ser	Asp	Asn	Phe 120	Val	Asn	Leu	His	Cys 125	His	Asn	Thr
Cys	Ser 130	Pro	Asn	Gln	Ser	Leu 135	Phe	Ile	Asn	Val	Thr 140	Arg	Val	Ala	Gln
Leu 145	Gly	Ala	Gly	Gln	Leu 150	Pro	Ala	Val	Val	Ala 155	Tyr	Glu	Ala	Phe	Tyr 160
Gln	His	Ser	Phe	Ala 165	Glu	Gln	Ser	Tyr	Asp 170	Ser	Cys	Ser	Arg	Val 175	Arg
Val	Pro	Ala	Ala 180	Ala	Thr	Leu	Ala	Val 185	Gly	Thr	Met	Cys	Gly 190	Val	Tyr
Gly	Ser	Ala 195	Leu	Cys	Asn	Ala	Gln 200	Arg	Trp	Leu	Asn	Phe 205	Gln	Gly	Asp
Thr	Gly 210		Gly	Leu	Ala	Pro 215	Leu	Asp	Ile	Thr	Phe 220	His	Leu	Leu	Glu
Pro 225		Gln	Ala	Val	Gly 230	Ser	Gly	Ile	Gln	Pro 235	Leu	Asn	Glu	Gly	Val 240
Ala	Arg	Cys	Asn	Glu 245	Ser	Gln	Gly	Asp	Asp 250	Val	Ala	Thr	Cys	Ser 255	Cys
Gln	Asp	Cys	Ala 260	Ala	Ser	Cys	Pro	Ala 265	Ile	Ala	Arg	Pro	Gln 270	Ala	Leu
Asp	Ser	Thr 275						Met				Leu 285	Val	Leu	Ile
Ile	Ile 290	Leu	Cys	Ser	Val	Phe 295	Ala	Val	Val	Thr	Ile 300	Leu	Leu	Val	Gly
Phe 305		Val	Ala	Pro	Ala 310	Arg	Asp	Lys	Ser	Lys 315	Met	Val	Asp	Pro	Lys 320
Lys	Gly	Thr	Ser	Leu 325	Ser	Asp	Lys	Leu	Ser 330	Phe	Ser	Thr	His	Thr 335	Leu
Leu	Gly	Gln	Phe 340	Phe	Gln	Gly	Trp	Gly 345	Thr	Trp	Val	Ala	Ser 350	Trp	Pro

WO 2004/009772 PCT/US2003/022467 65/73

Leu	Thr	Ile 355	Leu	Val	Leu	Ser	Val 360	Ile	Pro	Val	Val	Ala 365	Leu	Ala	Ala
Gly	Leu 370	Val	Phe	Thr	Glu	Leu 375	Thr	Thr	Asp	Pro	Val 380	Glu	Leu	Trp	Ser
Ala 385	Pro	Asn	Ser	Gln	Ala 390	Arg	Ser	Glu	Lys	Ala 395	Phe	His	Asp	Gln	His 400
Phe	Gly	Pro	Phe	Phe 405	Arg	Thr	Asn	Gln	Val 410	Ile	Leu	Thr	Ala	Pro 415	Asn
Arg	Ser	Ser	Tyr 420	Arg	Tyr	Asp	Ser	Leu 425	Leu	Leu	Gly	Pro	Lys 430	Asn	Phe
Ser	Gly	Ile 435	Leu	Asp	Leu	Asp	Leu 440	Leu	Leu	Glu	Leu	Leu 445	Glu	Leu	Gln
Glu	Arg 450		Arg	His	Leu	Gln 455	Val	Trp	Ser	Pro	Glu 460	Ala	Gln	Arg	Asn
Ile 465		Leu	Gln	Asp	Ile 470	Cys	Tyr	Ala	Pro	Leu 475	Asn	Pro	Asp	Asn	Thr 480
Ser	Leu '	Tyr	Asp	Cys 485	Cys	Ile	Asn	Ser	Leu 490	Leu	Gln	Tyr	Phe	Gln 495	Asn
Asn	Arg	Thr	Leu 500		Leu	Leu	Thr	Ala 505		Gln	Thr	Leu	Met 510	Gly	Gln
Thr	Ser	Gln 515		Asp	Trp	Lys	Asp 520	His	Phe	Leu	Tyr	Cys 525	Ala	Asn	Ala
Pro	Leu 530		Phe	Lys	Asp	Gly 535		Ala	Leu	Ala	Leu 540		Cys	Met	Ala
Asp 545		Gly	Ala	Pro	Val 550		Pro	Phe	Leu	Ala 555		Gly	Gly	Tyr	Lys 560
Gly	. Lys	Asp	Tyr	Ser 565	Glu	Ala	Glu	Ala	Leu 570		Met	Thr	Phe	Ser 575	Leu
Asn	a Asn	ı Tyr	Pro 580		Gly	Asp	Pro	Arg 585		Ala	Gln	Ala	Lys 590	Leu	Trp
Glu	ı Glu	ı Ala	. Phe	Leu	Glu	Glu	Met	Arg	Ala	Phe	Gln	Arg	Arg	Met	Ala

595 600 605

Gly Met Phe Gln Val Thr Phe Met Ala Glu Arg Ser Leu Glu Asp Glu 610 620

Ile Asn Arg Thr Thr Ala Glu Asp Leu Pro Ile Phe Ala Thr Ser Tyr625630

Ile Val Ile Phe Leu Tyr Ile Ser Leu Ala Leu Gly Ser Tyr Ser Ser 645 650 655

Trp Ser Arg Val Met Val Asp Ser Lys Ala Thr Leu Gly Leu Gly Gly 660 665 670

Val Ala Val Val Leu Gly Ala Val Met Ala Ala Met Gly Phe Phe Ser 675 680 685

Tyr Leu Gly Ile Arg Ser Ser Leu Val Ile Leu Gln Val Val Pro Phe 690 695 700

Leu Val Leu Ser Val Gly Ala Asp Asn Ile Phe Ile Phe Val Leu Glu 705 710 715 720

Tyr Gln Arg Leu Pro Arg Arg Pro Gly Glu Pro Arg Glu Val His Ile 725 730 735

Gly Arg Ala Leu Gly Arg Val Ala Pro Ser Met Leu Leu Cys Ser Leu 740 745 750

Ser Glu Ala Ile Cys Phe Phe Leu Gly Ala Leu Thr Pro Met Pro Ala 755 760 765

Val Arg Thr Phe Ala Leu Thr Ser Gly Leu Ala Val Ile Leu Asp Phe 770 780

Leu Leu Gln Met Ser Ala Phe Val Ala Leu Leu Ser Leu Asp Ser Lys 785 790 795 800

Arg Gln Glu Ala Ser Arg Leu Asp Val Cys Cys Cys Val Lys Pro Gln 805 810 815

Glu Leu Pro Pro Pro Gly Gln Gly Glu Gly Leu Leu Gly Phe Phe 820 825 830

Gln Lys Ala Tyr Ala Pro Phe Leu Leu His Trp Ile Thr Arg Gly Val 835 840 845 875

880

Val	Leu 850	Leu	Leu	Phe	Leu	Ala 855	Leu	Phe	Gly	Val	Ser 860	Leu	Tyr	Ser	Met
Cys	His	Ile	Ser	Val	Gly	Leu	Asp	Gln	Glu	Leu	Ala	Leu	Pro	Lys	Asp

870

865

- Ser Tyr Leu Leu Asp Tyr Phe Leu Phe Leu Asn Arg Tyr Phe Glu Val 885 890 895
- Gly Ala Pro Val Tyr Phe Val Thr Thr Leu Gly Tyr Asn Phe Ser Ser 900 905 910
- Glu Ala Gly Met Asn Ala Ile Cys Ser Ser Ala Gly Cys Asn Asn Phe 915 920 925
- Ser Phe Thr Gln Lys Ile Gln Tyr Ala Thr Glu Phe Pro Glu Gln Ser 930 935 · 940
- Tyr Leu Ala Ile Pro Ala Ser Ser Trp Val Asp Asp Phe Ile Asp Trp 945 950 955 960
- Leu Thr Pro Ser Ser Cys Cys Arg Leu Tyr Ile Ser Gly Pro Asn Lys 965 970 975
- Asp Lys Phe Cys Pro Ser Thr Val Asn Ser Leu Asn Cys Leu Lys Asn 980 985 990
- Cys Met Ser Ile Thr Met Gly Ser Val Arg Pro Ser Val Glu Gln Phe 995 1000 1005
- His Lys Tyr Leu Pro Trp Phe Leu Asn Asp Arg Pro Asn Ile Lys 1010 1015 1020
- Cys Pro Lys Gly Gly Leu Ala Ala Tyr Ser Thr Ser Val Asn Leu 1025 1030 1035
- Thr Ser Asp Gly Gln Val Leu Asp Thr Val Ala Ile Leu Ser Pro 1040 1045 1050
- Arg Leu Glu Tyr Ser Gly Thr Ile Ser Ala His Cys Asn Leu Tyr 1055 1060 1065
- Leu Leu Asp Ser Ala Ser Arg Phe Met Ala Tyr His Lys Pro Leu 1070 1075 1080

WO 2004/009772 PCT/US2003/022467 68/73

Lys	Asn 1085	Ser	Gln	Asp		Thr 1090	Glu	Ala	Leu	Arg	Ala 1095	Ala	Arg	Glu
Leu	Ala 1100	Ala	Asn	Ile	Thr	Ala 1105	Asp	Leu	Arg	Lys	Val 1110	Pro	Gly	Thr
Asp	Pro 1115		Phe	Glu	Val	Phe 1120	Pro	Tyr	Thr	Ile	Thr 1125	Asn	Val	Phe
Tyr	Glu 1130	Gln	Tyr	Leu	Thr	Ile 1135	Leu	Pro	Glu	Gly	Leu 1140	Phe	Met	Leu
Ser	Leu 1145	Cys	Leu	Val	Pro	Thr 1150	Phe	Ala	Val	Ser	Cys 1155	Leu	Leu	Leu
Gly	Leu 1160		Leu	Arg	Ser	Gly 1165	Leu	Leu	Asn	Leu	Leu 1170	Ser	Ile	Val
Met	Ile 1175		Val	Asp	Thr	Val 1180	Gly	Phe	Met	Ala	Leu 1185	Trp	Gly	Ile
Ser	Tyr 1190		Ala	Val	Ser	Leu 1195		Asn	Leu	Val	Ser 1200	Ala	Val	Gly
Met	Ser 1205		Glu	Phe	Val	Ser 1210		Ile	Thr	Arg	Ser 1215	Phe	Ala	Ile
Ser	Thr 1220		Pro	Thr	Trp	Leu 1225		Arg	Ala	Lys	Glu 1230	Ala	Thr	Ile
Ser	Met 1235		Ser	Ala	Val	Phe 1240		Gly	Val	Ala	Met 1245	Thr	Asn	Leu
Pro	Gly 1250		Leu	Val	Leu	Gly 1255		Ala	Lys	Ala	Gln 1260	Leu	Ile	Gln
Ile	Phe 1265		Phe	Arg	Leu	Asn 1270		Leu	Ile	Thr	Leu 1275		Gly	Leu
Leu	His 1280		Leu	Val	. Phe	Leu 1285		Val	Ile	Leu	Ser 1290	Tyr	Val	Gly
Pro	Asp 1295		. Asn	ı Pro) Ala	Leu 1300		Leu	Glu	Gln	Lys 1305	Arg	Ala	Glu

Glu Ala Val Ala Val Met Val Ala Ser Cys Pro Asn His Pro 1310 1315 1320

Ser Arg Val Ser Thr Ala Asp Asn Ile Tyr Val Asn His Ser Phe 1325 1330 1335

Glu Gly Ser Ile Lys Gly Ala Gly Ala Ile Ser Asn Phe Leu Pro 1340 1345 1350

Asn Asn Gly Arg Gln Phe 1355

<210> 45

<211> 4471

<212> DNA

<213> Mus musculus

<400> 45 ggatcacttc ctggctctgg gatggcagct gcctggcagg gatggctgct ctgggccctg 60 ctcctgaatt cggcccaggg tgagctctac acacccactc acaaagctgg cttctgcacc 120 ttttatgaag agtgtgggaa gaacccagag ctttctggag gcctcacatc actatccaat 180 atctcctgct tgtctaatac cccagccccg ccatgtcaca ggtgaccacc tggctcttct 240 ccagcgcgtc tgtccccgcc tatacaatgg ccccaatgac acctatgcct gttgctctac 300 caagcagctg gtgtcattag acagtagcct gtctatcacc aaggccctcc ttacacgctg 360 420 cccggcatgc tctgaaaatt ttgtgagcat acactgtcat aatacctgca gccctgacca 480 gagcctcttc atcaatgtta ctcgcgtggt tcagcgggac cctggacagc ttcctgctgt ggtggcctat gaggcctttt atcaacgcag ttttgcagag aaggcctatg agtcctgtag 540 600 ccgggtgcgc atccctgcag ctgcctcgct ggctgtgggc agcatgtgtg gagtgtatgg ctctgccctc tgcaatgctc agcgcctggc tcaacttcca aggagacaca gggaatggcc 660 720 tggctccgct ggacatcacc ttccacctct tggagcctgg ccaggccctg gcagatggga tgaagccact ggatgggaag atcaaaccct gcaatgagtc ccagggtgaa gactcggcag 780 840 cctgttcctg ccaggactgt gcagcatcct gccctgtcat ccctccgccc ccggccctgc 900 gcccttcttt ctacatgggt cgaatgccag gctggctggc tctcatcatc atcttcactg ctgtctttgt attgctctct gttgtccttg tgtatctccg agtggcttcc aacaggaaca 960 agaacaagac agcaggctcc caggaagccc ccaacctccc tcgtaagcgc agattctcac 1020 1080 ctcacactgt ccttggccgg ttcttcgaga gctggggaac aatggtggcc tcatggccac

tcactgtctt	ggcactgtcc	ttcatagttg	tgatagcctt	gtcagtaggc	ctgaccttta	1140
tagaactcac	cacagaccct	gtggaactgt	ggtcggcccc	taaaagccaa	gcccggaaag	1200
aaaaggcttt	ccatgacgag	cattttggcc	ccttcttccg	aaccaaccag	atttttgtga	1260
cagctaagaa	caggtccagc	tacaagtacg	actccctgct	gctagggccc	aagaacttca	1320
gtgggatcct	atccctggac	ttgctgcagg	agctgttgga	gctacaggag	agacttcgac	1380
acctgcaagt	gtggtcccat	gaggcacagc	gcaacatctc	cctccaggac	atctgctatg	1440
ctcccctcaa	accgcataac	accagcctca	ctgactgctg	tgtcaacagc	ctccttcaat	1500
acttccagaa	caaccacaca	ctcctgctgc	tcacagccaa	ccagactctg	aatggccaga	1560
cctccctggt	ggactggaag	gaccatttcc	tctactgtgc	caatgcccct	ctcacgtaca	1620
aagatggcac	agccctggcc	ctgagctgca	tagctgacta	cggggcgcct	gtcttcccct	1680
tccttgctgt	tgggggctac	caagggacgg	actactcgga	ggcagaagcc	ctgatcataa	1740
ccttctctat	caataactac	cccgctgatg	atccccgcat	ggcccacgcc	aagctctggg	1800
aggaggcttt	cttgaaggaa	atgcaatcct	tccagagaag	cacagctgac	aagttccaga	1860
ttgcgttctc	agctgagcgt	tctctggagg	acgagatcaa	tcgcactacc	atccaggacc	1920
tgcctgtctt	tgccatcagc	taccttatcg	tcttcctgta	catctccctg	gccctgggca	1980
gctactccag	atggagccga	gttgcggtgg	attccaaggc	tactctgggc	ctaggtgggg	2040
tggctgttgt	gctgggagca	gtcgtggctg	ccatgggctt	ctactcctac	ctgggtgtcc	2100
cctcctctct	ggtcatcatt	caagtggtac	ctttcctggt	gctggctgtg	ggagctgaca	2160
acatcttcat	ctttgttctt	gagtaccaga	ggctgcctag	gatgcccggg	gagcagcgag	2220
aggctcacat	tggccgcacc	ctgggtagtg	tggcccccag	catgctgctg	tgcagcctct	2280
ctgaggccat	ctgcttcttt	ctaggggccc	tgacctccat	gccagctgtg	aggacctttg	2340
ccttgacctc	: tggcttagca	atcatctttg	acttcctgct	ccagatgaca	gcctttgtgg	2400
ccctgctctc	cctggatagc	aagaggcagg	aggcctctcg	ccccgacgtc	gtgtgctgct	2460
tttcaagccg	g aaatctgccc	ccaccgaaac	aaaaagaagg	cctcttactt	tgcttcttcc	2520
gcaagatata	a cactcccttc	ctgctgcaca	gattcatccg	ccctgttgtg	ctgctgctct	2580
ttctggtcct	gtttggagca	aacctctact	taatgtgcaa	catcagcgtg	gggctggacc	2640
aggatctggd	c tctgcccaag	gattcctacc	tgatagacta	cttcctcttt	ctgaaccggt	2700
acttggaagt	ggggcctcca	gtgtactttg	acaccacctc	aggctacaac	ttttccaccg	2760
aggcaggcat	gaacgccatt	tgctctagtg	caggctgtga	gagcttctcc	ctaacccaga	2820
aaatccagta	a tgccagtgaa	ttccctaatc	agtcttatgt	ggctattgct	gcatcctcct	2880

gggtagatga	cttcatcgac	tggctgaccc	catcctcctc	ctgctgccgc	atttataccc	2940
gtggccccca	taaagatgag	ttctgtccct	caacggatac	ttccttcaac	tgtctcaaaa	3000
actgcatgaa	ccgcactctg	ggtcccgtga	gacccacaac	agaacagttt	cataagtacc	3060
tgccctggtt	cctgaatgat	acgcccaaca	tcagatgtct	taaagggggc	ctagcagcgt	3120
atagaacctc	tgtgaatttg	atctcagatg	gccagattat	agcctcccag	ttcatggcct	3180
accacaagcc	cttacggaac	tcacaggact	ttacagaagc	tctccgggca	tcccggttgc	3240
tagcagccaa	catcacagct	gaactacgga	aggtgcctgg	gacagatccc	aactttgagg	3300
tcttccctta	cacgatctcc	aatgtgttct	accagcaata	cctgacggtt	ctccctgagg	3360
gaatcttcac	tcttgctctc	tgcttcgtgc	ccacctttgt	ggtctgctac	ctcctactgg	3420
gcctggacat	acgctcaggc	atcctcaacc	tgctctccat	cattatgatc	ctcgtggaca	3480
ccatcggcct	catggctgtg	tggggtatca	gctacaatgc	tgtgtccctc	atcaaccttg	3540
tcacggcagt	gggcatgtct	gtggagttcg	tgtcccacat	tacccggtcc	tttgctgtaa	3600
gcaccaagcc	tacccggctg	gagagagcca	aagatgctac	tatcttcatg	ggcagtgcgg	3660
tgtttgctgg	agtggccatg	accaacttcc	cgggcatcct	catcctgggc	tttgctcagg	3720
cccagcttat	ccagattttc	ttcttccgcc	tcaacctcct	gatcaccttg	ctgggtctgc	3780
tacacggcct	ggtcttcctg	cccgttgtcc	tcagctatct	ggggccagat	gttaaccaag	3840
ctctggtact	ggaggagaaa	ctagccactg	aggcagccat	ggtctcagag	ccttcttgcc	3900
cacagtaccc	cttcccggct	gatgcaaaca	ccagtgacct	atgttaacta	aggctttaat	3960
ccagaattta	tccctgaaat	taatgctgct	agcagctctc	tgcccaaaag	tgaccaaaag	4020
ttctaatgga	gtaggagctt	gtccaggctc	catggttctt	gctgataagg	ggccacgagg	4080
gtcttccctc	tggttgtttc	caaggcctgg	ggaaagttgt	tccagaaaaa	aattgctggc	4140
attcttgtcc	tgaggcagcc	agcactggcc	actttgttgt	cataggtccc	cgaggccatg	4200
atcagattac	ctcctctgta	aagagaatat	cttgagtatt	gtatgggatg	tatcacatgt	4260
caattaaaaa	ggccatggcc	tatggcttag	gcaggaaata	gggtgtggaa	catccaggag	4320
aagaaaggat	tctgggataa	aggacacttg	ggaacgtgtg	gcagtggtac	ctgagcacag	4380
gtaattagcc	atgtggcgaa	atgtagatta	atataaatgc	atatctaagt	tatgattcta	4440
gtctagctat	atggccaagg	tatttataaa	t			4471

<210> 46

<211> 25

<212> DNA

72/73

<213>	Artificial sequence
<220>	

<223> primer

<220>

<213> Artificial sequence

<223> primer

<400> 46
atgttaggtg agtctgaacc taccc 25

<210> 47

<211> 25 <212> DNA

<213> Artificial sequence

<223> primer

<400> 47
ggattgcatt tccttcaaga aagcc 25

<210> 48

<211> 25 <212> DNA

<220>

<400> 48

tatggctctg ccctctgcaa tgctc 25

<210> 49 <211> 28

<212> DNA

<213> Artificial sequence

<220>
<223> primer

WO 2004/009772 PCT/US2003/022467 73/73

<400> 49

tcagcagcct ctgttccaca tacacttc 28

<210> 50

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> primer

<400> 50

gttccacagg gtctgtggtg agttc 25