Don Bosco Institute of Technology, Kurla Academic Year 2019-20

EXPERIMENT NO: 10

Title: To implement a combinational multiplier/Booth's multiplier using simulator

Class:S.E Comps(Sem IV) Lecturer:Sejal.Chopra

Subject: PA Lab

EXPERIMENT NO: 10

Name:Hayden Cordeiro SECOMPS Rollno:05

Simulate a combinational multiplier/Booth's multiplier

				_
AIM	То		ation multiplier/	multiplie using
		al	Booth's	r
	implementsi			
	mulator.			
LEARNING	To explore a si	imulation to	ool for computer	organization
OBJECTIV	components.			
E				
LEARNI	Students can simulate the operation of multiplier unit .			
NGOUT				
COME				
	CSL 403.2: Ab	ility to esti	mate the output o	of computer operatio
LAB	hardware			
OUTCOME	using simulate	r.		
PROGRAM	PO11,			
OUTCOME	PO32,			
00100112	PO41,			
	PO52,			
	PO83,			
	PO93,			
	PO122,			
	PSO11			
	Evaluate			
BLOOM'S	Evaluate			
TAXONOMY				
LEVEL	C	N (1+ 1:	114:1:4:	24
TITE OPT				two unsigned binary
THEORY			ıltiplier is multiplie	
				to the position of the
				ducts are then summed
				ary multiplication is
			mediate products a	
	_			ately shifted copy of the
	multiplicand; if the multiplier bit is a 0, the product is simply 0.			
	Some features of the	multiplication s	scheme:	
			rolling the multiplier	
				oduct summation bit,the
			the next bit of the ne the carry is called car	
			llar and modular	Ty save addition
1-				

COMPONEN TS USED	Combinational Multiplier: To build a Combinational Multiplier, we need: 16 2input AND Gates 4 half adders 8 full adders Display unit to show the outputs. Wires to connect.
STEPS TO	Combinational Multiplier:
DESIGN	Start the simulator as directed. This simulator supports
THE	5valued logic.
CIRCUIT	To design the circuit we need 8 full adders, 4 half adders, 16 AND
	gates, 8 bit switch (to give input,which will toggle its value with a double click), 8 bit displays (to see the output), wires. The pin configuration of a component is shown whenever the mouse is hovered on any canned component of the palette or press the 'show pinconfig' button. Pin numbering starts from 1 and from the bottom left corner (indicated with the circle) and increases anticlockwise. For half adder input is in pin5,8 output sum is in pin4 and carry is pin1, For full adder input is in pin5,6,8 output sum is in pin4 and carry is in pin1 Click on the half adder component (in the Adder drawer in the pallet) and then click on the position of the editor window where you want to add the component (no drag and drop, simple click will serve the purpose), likewise add 3 more half adders, 8 full adders (from the Adder drawer in the pallet), 16 AND gates (from Logic Gates drawer of the pallet, if it is not seen scroll down in the drawer), 8 Bit switches, 8 bit Displays (from Display and Input drawerofthepallet, ifitisnotseenscrolldowninthedra wer) To connect any two components select the Connection

menu of Palette, and then click on the Source terminal and click on the target terminal. According to the circuit diagram connect all the components, connect bit switches to the input terminals. connect the output terminals to the Bit display component. After the connection is over click the selection tool in the pallete. See the output, bit switches are used to give input so that you can toggle its value with a double click and see the outputs with different inputs.

