# Single Source Fixed Charge Network Flow Problem

Artur Rodrigues Luciana Maroun Thanis Paiva

#### Modelagem

- Baseia-se num grafo direcionado G = (N,A)
   com 1 único nó de oferta e os demais nós de demanda/transbordo.
- Os arcos são capacitados(limitados superiormente) e apresentam custos fixos.
- Objetivo: Selecionar um subconjunto de arcos tais que o fluxo que passe por eles atenda às demandas com um custo mínimo.

## Modelagem



#### Formulação Matemática

Nó de oferta,  $b_f < 0$  e  $b_f = -\sum_{i \in N \setminus \{f\}} b_i$ Nós de demanda,  $b_i > 0$ Nós de transbordo,  $b_i = 0$ Arcos,  $\forall \ (i,j) \in A, \ c_{ij} \geq 0, u_{ij} \geq 0$ Fluxo definido pela variável  $x_{ij}$  e pela variável binária  $y_{ij}$  tal que:

$$y_{ij} = \begin{cases} 1 & \text{se } x_{ij} > 0 \\ 0 & \text{se } x_{ij} = 0 \end{cases}$$

#### Formulação Matemática

$$\min \sum_{(i,j)\in A} c_{ij} y_{ij}$$

$$\sum_{j\in V^{-}(i)} x_{ij} - \sum_{j\in V^{+}(i)} x_{ij} = b_i, i \in N$$

$$0 \le x_{ij} \le u_{ij} y_{ij}, (i,j) \in A$$

$$y \in \{0,1\}$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

#### Heurística do Caminho Mínimo

```
\forall (i,j) \in A \text{ faça}
             x_{ij} \leftarrow 0
enquanto \exists i \in V \mid b_i > 0 faça
             C \leftarrow caminho\_minimo(f, i)
             fluxo \leftarrow min(capacidade_C, b_i)
             se fluxo = 0 faça
                           retorne "Solução Inválida"
             \forall (i, j) \in A \text{ faça}
                           u_{ij} \leftarrow u_{ij} - fluxo
                           c_{ij} \leftarrow 0
                           se u_{ij} = 0 faça
                                        c_{ij} \leftarrow \infty
se b_f = 0 e \sum_{i \in N - \{f\}} b_i
             retorne x
```

Complexidade: O(kn³)

k: valor máximo de demanda

n: número de nós























Solução encontrada.

$$Custo = 22$$
  
 $x_{12} = 10$   
 $x_{23} = 5$   
 $x_{14} = 3$   
 $x_{43} = 2$   
 $x_{15} = 7$   
 $x_{54} = 7$ 

#### Comportamento da Heurística

- Prioriza custos e não considera capacidades para escolher caminhos
- Caminhos escolhidos inicialmente podem não compor a solução ótima
- Um caminho não escolhido pode comportar um fluxo que na heurística percorre vários caminhos mínimos, estes totalizando um maior custo

#### Implementação

- Python
  - Container types (listas e dicionários)
  - Vasto número de bibliotecas
- Biblioteca NetworkX
  - Estruturas e funções de grafos já prontas (ex.: dijkstra-path)
- Ainda mais rápido com PyPy (just-in-time compiler)

#### Gerador de Instâncias

- Gera instâncias com base nos seguintes parâmetros:
  - Número de nós de demanda e transbordo
  - Densidade
  - Valor máximo para demanda
  - Valor máximo para capacidades nos arcos
  - Valor máximo para custos nos arcos
- Viabilidade garantida através do solver
- Objeto python e entrada para o GLPSOL

# Experimentos – Resultados

|                  |           |        | Tempo (s)  |            | Função Objetivo |            |           |  |
|------------------|-----------|--------|------------|------------|-----------------|------------|-----------|--|
| Numéro de<br>nós | Densidade | GLPK   | Heurística | Aceleração | GLPK            | Heurística | Distância |  |
| 10 nós           | 0.249     | 0.1    | 0.001      | 172.12     | 112             | 158        | 41.1%     |  |
|                  | 0.5       | 0.1    | 0.001      | 91.66      | 153             | 281        | 83.7%     |  |
|                  | 0.749     | 0.1    | 0.001      | 77.34      | 161             | 252        | 56.5%     |  |
|                  | 1         | 0.1    | 0.001      | 73.10      | 114             | 174        | 52.6%     |  |
| 20 nós           | 0.25      | 0.2    | 0.002      | 92.94      | 108             | 146        | 35.2%     |  |
|                  | 0.5       | 8.3    | 0.006      | 1355.10    | 355             | 576        | 62.3%     |  |
|                  | 0.75      | 3.3    | 0.006      | 524.14     | 161             | 301        | 87.0%     |  |
|                  | 1         | 5.1    | 0.010      | 487.99     | 94              | 166        | 76.6%     |  |
| 30 nós           | 0.249     | 10.7   | 0.008      | 1318.06    | 315             | 553        | 75.6%     |  |
|                  | 0.5       | 1390.7 | 0.014      | 102611.97  | 370             | 578        | 56.2%     |  |
|                  | 0.749     | 453.2  | 0.017      | 25966.88   | 205             | 306        | 49.3%     |  |
|                  | 1         | 925.7  | 0.035      | 26493.99   | 212             | 342        | 61.3%     |  |
| Média            |           |        |            |            |                 |            | 49.1%     |  |
| DPA              |           |        |            |            |                 |            | 16.4%     |  |

#### Experimentos – Resultados



## Experimentos – Resultados

|             |      | Tempo (s)  |            | Função Objetivo |            |           |  |
|-------------|------|------------|------------|-----------------|------------|-----------|--|
| Demanda Max | GLPK | Heurística | Aceleração | GLPK            | Heurística | Distância |  |
| 10          | 0.1  | 0.0007     | 153.14     | 51              | 56         | 9.8%      |  |
| 20          | 0.1  | 0.0005     | 216.45     | 40              | 45         | 12.5%     |  |
| 30          | 0.1  | 0.0008     | 128.53     | 39              | 59         | 51.3%     |  |
| 40          | 0.1  | 0.0006     | 168.35     | 77              | 81         | 5.2%      |  |
| 50          | 0.1  | 0.0005     | 200.00     | 45              | 60         | 33.3%     |  |
| 60          | 0.1  | 0.0006     | 177.94     | 46              | 52         | 13.0%     |  |
| 70          | 0.1  | 0.0005     | 202.84     | 49              | 56         | 14.3%     |  |

#### Dúvidas?

https://github.com/arturhoo/single-source-fcnf-heuristic