Неориентированные графы, степени, изоморфизм

- **Граф** (математическая структура для представления связей между объектами):
- Обозначается как $G = (X, \Gamma)$.
- Состоит из:
- 1° Непустое множество X (множество всех вершин графа).
- 2° Отображение Γ множества X в X (правило, определяющее связи между вершинами).
- Элементы графа:
- **Вершина** (точка, узел графа): Каждый элемент множества X.
- Дуга (направленное ребро): Пара элементов (x, y), где $y \in \Gamma x$ (показывает направленную связь от $x \kappa y$).
- Множество дуг (все связи в графе):
- Обозначается через U (полный набор всех связей).
- Дуги обозначаются буквами α, β, ω (при необходимости с индексами).

Определение. Степень вершины v_i (обозн. d_i или $\deg v_i$) -- число рёбер, инцидентных v_i (количество связей, примыкающих к вершине).

Теорема 2.1 (Эйлера) Сумма степеней вершин графа равна удвоенному числу рёбер:

$$\sum_{i} \deg v_i = 2q$$

Следствие 2.1(а). Число вершин с нечётными степенями всегда чётно (важно для существования эйлеровых путей).

Ограничения степеней:

В (p,q)-графе (где p -- число вершин, q -- число рёбер): $0 \leq \deg v \leq p-1$ для любой вершины v

Обозначения:

- $\delta(G)=\min\deg G$ -- минимальная степень (наименьшее число связей у вершины)
- $\Delta(G) = \max \deg G$ -- максимальная степень (наибольшее число связей у вершины)

Определение. Регулярный (однородный) граф (все вершины имеют одинаковое число связей): $\delta(G) = \Delta(G) = r = \deg G$

Следствие 2.1(б). Каждый кубический граф имеет чётное число вершин (следует из теоремы Эйлера).

- Изолированная: $\deg v = 0$ (вершина без связей)
- Концевая (висячая): $\deg v = 1$ (вершина с единственной связью) Графы G и H изоморфны (изоморфны: $G \cong H$ или G = H), если существует взаимно однозначное соответствие между их вершинами, сохраняющая смежность.

Маршруты, связность, метрика графа

Определение. *Маршрут* в графе G (последовательность переходов по вершинам и рёбрам) — чередующаяся последовательность вершин и рёбер $v_0, x_1, v_1, \ldots, x_n, v_n$, где:

- Начинается и заканчивается вершиной (точкой графа)
- Каждое ребро инцидентно (напрямую соединяет) предшествующей и следующей вершинам

Обозначение: $(v_0 - v_n)$ -маршрут (путь от вершины v_0 до v_n) записывается как $v_0v_1v_2\dots v_n$

Классификация маршрутов:

- Замкнутый: $v_0 = v_n$ (начальная и конечная вершины совпадают)
- $Открытый: v_0 \neq v_n$ (начальная и конечная вершины различны)
- *Цепь* (trail): все рёбра различны (по каждому ребру проходим не более одного раза)
- *Простая цепъ* (path): все вершины и рёбра различны (нигде не повторяемся)
- Простой цикл: замкнутый маршрут с $n \geq 3$ различными вершинми (замкнутый путь без повторений вершин, кроме начальной/конечной)

Длина маршрута $v_0v_1...v_n=n$ (количество пройденных рёбер) Важные метрики:

- Обхват графа g(G): длина кратчайшего простого цикла (минимальное количество рёбер в замкнутом пути без повторений)
- Окружение графа c(G): длина длиннейшего простого цикла (максимальное количество рёбер в замкнутом пути без повторений) **Примечание:** g(G) и c(G) не определены для графов без циклов (для деревьев и лесов).

Самодополнительные графы

Дополнение графа \overline{G} (граф с теми же вершинами, но противоположными связями):

- Множество вершин: $V(\overline{G}) = V(G)$
- ullet Две вершины смежны в $\overline{G} \Leftrightarrow$ несмежны в G

Полный граф K_p (все вершины попарно соединены):

- \bullet Содержит p вершин
- Имеет $\binom{p}{2}$ рёбер
- Является регулярным степени p-1
- Частный случай: K_3 -- треугольник

Вполне несвязный граф $\overline{K_p}$ -- дополнение полного графа (регулярный граф степени 0).

Рис. 1: Граф - Его дополние - переворачиваем - Получили тот же граф

Экстремальные графы

Теорема 2.3 (Турана): Наибольшее число рёбер у графов с r вершинами без треугольников равно $|r^2/4|$.

Доказательство (по индукции для чётных r):

- 1. База: очевидна для малых r.
- 2. Шаг: для r=2n+2, где утверждение верно для всех чётных r < 2n:
- Пусть G граф с p = 2n + 2 вершинами без треугольников.
- Существуют смежные вершины u, v (граф не вполне несвязный).
- В подграфе $G' = G \{u, v\}$ максимум n^2 рёбер.
- \bullet Нет вершины w, смежной с u и v одновременно.
- Если w смежна с k вершинами G', то v смежна максимум с (2n-k) вершинами.

Конструктивное доказательство существования:

Для чётного $p(p, p^2/4)$ -граф без треугольников строится так:

- \bullet Берём два множества V_1 и V_2 по p/2 вершин.
- ullet Соединяем каждую вершину из V_1 с каждой из V_2 .

Примечания:

- Доказательство существования чисел r(m,n) см. у М. Холла.
- По определению бесконечный граф не является графом.
- Обзор бесконечных графов: см. Нэш-Вильямс.

Теорема 2.4: Граф является двудольным тогда и только тогда, когда все его простые циклы чётны.

Доказательство:

- Если G двудольный граф, то его вершины можно разбить на V_1 и V_2 , и любое ребро соединяет вершины из разных множеств.
- Каждый простой цикл $v_1v_2\dots v_nv_1$ содержит вершины из V_1 и V_2 , так что длина n цикла чётна.
- Обратное: если все простые циклы чётны, то каждое ребро соединяет V_1 и V_2 .

Дополнительные результаты:

•
$$ex(p, C_p) = \left| \frac{1}{2} + \frac{p(p-1)}{2} \right|$$

$$\bullet \ ex(p, K_{4-x}) = \left| \frac{p^2}{4} \right|$$

•
$$ex(p, K_{3,x} - x) = \left\lfloor \frac{p^2}{4} \right\rfloor$$

Обобщение Турана:
$$ex(p, K_n) = \frac{(n-2)(p^2-r^2)}{2(n-1)} + {r \choose 2}$$
, где $p \equiv r \pmod{(n-1)}$ и $0 \le r < n-1$.

Числа Рамсея

Мотивационная задача: В любой группе из 6 человек найдутся либо 3 попарно знакомых, либо 3 попарно незнакомых (переформулировка в терминах графов).

Теорема 2.2 (о существовании треугольника): В графе G с 6 вершинами либо G, либо \overline{G} содержит треугольник.

Доказательство: Пусть v -- произвольная вершина графа G. Среди 5 оставшихся вершин найдутся 3 вершины u_1, u_2, u_3 , смежные с v в G (иначе они были бы смежны в \overline{G}). Если любые две из u_1, u_2, u_3 смежны в G -- получаем треугольник с v. Если нет -- u_1, u_2, u_3 образуют треугольник в \overline{G} .

Число Рамсея r(m,n) (минимальное число вершин, гарантирующее наличие либо K_m , либо K_n):

- Симметричность: r(m,n) = r(n,m)
- Верхняя оценка (Эрдёш-Секереш): $r(m,n) \leq {m+n-2 \choose m-1}$

Теорема Рамсея (для бесконечных графов): Каждый бесконечный граф содержит либо \aleph_0 попарно смежных вершин, либо \aleph_0 попарно несмежных вершин.

Примечание: Задача нахождения точных значений r(m,n) остаётся открытой. Известные значения приведены в таблице 2.1.

Эйлеровы графы

Эйлеров граф -- граф, содержащий цикл со всеми вершинами и рёбрами (имеет эйлеров цикл). Обязательно связный.

Теорема 7.1 (критерий эйлеровости). Для связного графа G эквивалентны:

- 1. G -- эйлеров граф
- 2. Все вершины имеют чётную степень
- 3. Рёбра можно разбить на простые циклы

Доказательство:

- $(1)\Rightarrow(2)$: В эйлеровом цикле каждое прохождение вершины даёт +2 к её степени. Каждое ребро используется один раз \Rightarrow степени чётны.
- (2)⇒(3): В связном графе с чётными степенями:
- ullet Найдём простой цикл Z
- Удалим его рёбра -- получим граф G_1 с чётными степенями
- Повторяем до пустого графа \hat{G}_n
 - $(3) \Rightarrow (1)$: Имея разбиение на циклы:
- Берём цикл Z_1
- ullet Находим цикл Z_2 с общей вершиной v
- ullet Строим замкнутую цепь из Z_1 и Z_2
- Продолжаем до полного эйлерова цикла

Следствие 7.1(a). В связном графе с 2n вершинами нечётной степени $(n \ge 1)$ рёбра можно разбить на n открытых цепей.

Следствие 7.1(6). В связном графе с двумя вершинами нечётной степени существует открытая цепь, содержащая все рёбра (начинается и заканчивается в вершинах нечётной степени).

Деревья

Основные определения: Ациклический граф -- граф без циклов. Дерево -- связный ациклический граф. Лес -- граф без циклов (компоненты -- деревья).

Теорема 4.1. Для графа G эквивалентны: 1) G — дерево 2) любые две вершины соединены единственной простой цепью 3) G связен и p=q+1 4) G ациклический и p=q+1 5) G ациклический, и добавление любого ребра создаёт ровно один цикл 6) G связный, не K_p при $p\geq 3$, добавление ребра создаёт один цикл 7) G не $K_3\cup K_1$ и не $K_3\cup K_2$, p=q+1, добавление ребра создаёт один цикл

Доказательство (схема): $1\Rightarrow 2$: От противного: две цепи образуют цикл $2\Rightarrow 3$: Индукция по числу вершин $3\Rightarrow 4$: От противного: цикл длины n требует $q\geq p$ $4\Rightarrow 5$: Единственность компоненты из p=q+k $5\Rightarrow 6$: K_p при $p\geq 3$ содержит цикл $6\Rightarrow 7$: Анализ возможных циклов $7\Rightarrow 1$: Исключение случаев с циклами

Следствие 4.1(a). В нетривиальном дереве есть минимум две висячие вершины. Доказательство: Из $\sum d_i = 2(p-1)$ в дереве.

Диаметр и радиус графа

Расстояние d(u,v) между вершинами (длина кратчайшей простой цепи):

$$d(u,v) = \begin{cases}$$
длина кратчайшей $(u-v)$ -цепи, если вершины соединены $\infty,$ если вершины не соединены

Свойства метрики (для связного графа):

- 1. $d(u,v) \ge 0$; $d(u,v) = 0 \Leftrightarrow u = v$ (неотрицательность)
- 2. d(u,v) = d(v,u) (симметричность)
- 3. $d(u,v) + d(v,w) \ge d(u,w)$ (неравенство треугольника) **Термины:**
- Геодезическая -- кратчайшая простая (u-v)-цепь
- Диаметр графа d(G) -- длина самой длинной геодезической Степени графа: Для графа G определяется G^k (k-я степень):
- $V(G^k) = V(G)$ (те же вершины)
- Вершины u,v смежны в $G^k \Leftrightarrow d(u,v) \leq k$ в G Примеры: $C_5^2 = K_5, P_4^2 = K_1 + K_3$

Хроматическое число графа

— это минимальное количество цветов, необходимых для раскраски графа так, чтобы никакие две смежные вершины не имели одинакового цвета. Граф G называется n-раскрашиваемым, если $\chi(G) \leq n$, и *n*-хроматическим, если $\chi(G) = n$.

Известные результаты

- $\bullet \ \chi(K_p) = p$
- $\chi(K_p x) = p 1$ $\chi(K_p') = 1$
- $\bullet \ \chi(K_{m,n}) = 2$
- $\bullet \ \chi(C_{2n}) = 2$
- $\chi(C_{2n+1}) = 3$
- $\chi(T)=2$ для любого нетривиального дерева T

Теорема 12.1: Граф двуцветен тогда и только тогда, когда он не содержит нечётных простых циклов.

Теорема 12.2: Для любого графа $G, \chi(G) \leq 1 + \max \delta(G'),$ где максимум берется по всем порожденным подграфам G' графа G.

Следствие 12.2 (a): Для любого графа $G, \chi < 1 + \Delta$.

Теорема 12.3 (Брукс): Если $\Delta(G) = n$, то граф G всегда nраскрашиваем, за исключением следующих двух случаев:

- 1. n=2 и G имеет компоненту, являющуюся нечетным циклом;
- 2. $n \ge 2$ и K_{n+1} компонента графа G.

Теорема 12.5: Для любых двух положительных целых чисел t и n существует n-хроматический граф, обхват которого превосходит t.

Теорема 12.6: Для любого графа G сумма и произведение чисел χ и $\bar{\chi}$ удовлетворяют неравенствам:

$$2\sqrt{p} \le \chi + \bar{\chi} \le p + 1,\tag{1}$$

$$p \le \chi \bar{\chi} \le \left(\frac{p+1}{2}\right)^2. \tag{2}$$

Заключение Представленные теоремы и оценки дают представление о сложности задачи нахождения хроматического числа графа и показывают, что даже для простых графов эта задача может быть нетривиальной.

Цикломатическое число графа

Мультиграф (X,U) -- пара из множества вершин X и множества рёбер U, где пара вершин может соединяться несколькими рёбрами.

Важные числовые характеристики:

- \bullet Для мультиграфа G с n вершинами, m рёбрами, p компонентами:
- Ранг графа: $\rho(G) = n p$
- Цикломатическое число: $\nu(G) = m n + p = m \rho(G)$

Теорема 1. При добавлении ребра между a и b:

- Если а, в соединены цепью или совпадают:
- $-\rho(G') = \rho(\bar{G})$
- $-\nu(G') = \nu(\bar{G}) + 1$
- Иначе:
- $-\rho(G) = \rho(\bar{G}) + 1$
- $-\nu(G')=\nu(G)$

Векторное представление циклов:

- Каждому ребру присваивается ориентация
- Для цикла μ : $c^k = r_k s_k$, где r_k, s_k -- число проходов по/против ориентации
- Цикл представляется вектором $(c^1, ..., c^m)$
- Циклы независимы \Leftrightarrow их векторы линейно независимы

Теорема 2. Цикломатическое число $\nu(G)$ равно максимальному количеству независимых циклов.

Следствия:

- 1. $\nu(G) = 0 \Leftrightarrow$ граф без циклов
- 2. $\nu(G) = 1 \Leftrightarrow$ граф содержит ровно один цикл

Теорема 3. В сильно связном графе цикломатическое число равно максимальному количеству независимых контуров.

Плоские графы и формула Эйлера

Планарный граф: Граф, который можно нарисовать без пересечения рёбер.

Плоский граф: Граф, нарисованный на плоскости.

 Γ рани: Области, определяемые плоским графом; внешняя грань — неограниченная.

Цикл: Путь, начинающийся и заканчивающийся в одной вершине без повторений.

Формула Эйлера: Для полиэдров: V-E+F=2, где V — вершины, E — рёбра, F — грани.

Графовая версия: Для связного плоского графа: p - q + r = 2. Следствия и теоремы:

- Следствие 11.1 (а): Если каждая грань n-цикл, то $q = \frac{n(p-2)}{n-2}$.
- Максимальный планарный граф: Граф, который перестаёт быть планарным при добавлении ребра.
- Следствие 11.1 (б): Для максимального плоского графа q=3p-6.
- Условие планарности: Для $p \ge 3$, $q \le 3p 6$.
- Непланарные графы: K_5 и $K_{3,3}$.
- Теорема Уитни: Граф планарен, если каждый его блок планарен.
- **Теорема 11.3**: Для любой грани f двусвязного плоского графа G найдётся изоморфный плоский граф с внешней гранью f. Дополнительные концепции:
- Выпуклый многогранник: Многогранник, содержащий любые соединяющие его точки отрезки.
- **Теорема Штейница и Радемахера**: Граф 1-скелет выпуклого многогранника, если он планарен и трёхсвязен.
- **Teopeмa 11.7**: Любой планарный граф изоморфен плоскому графу с прямыми рёбрами.

Линейно независимые циклы

Линейно независимые циклы

- Пространство циклов и пространство коциклов определяются над полем $F_2 = \{0, 1\}$.
- **0-цепь** линейная комбинация вершин $\sum e_i v_i$.
- 1-цепь линейная комбинация рёбер $\sum e_i x_i$.
- Граничный оператор ∂ : переводит 1-цепи в 0-цепи.
- $-\partial$ линейный оператор.
- Если x = uv, то $\partial x = u + v$.
- **Кограничный оператор** δ : переводит 0-цепи в 1-цепи.
- $-\delta$ линейный оператор.
- $-\delta v = \Sigma e_i x_i$, где $e_i = 1$, если ребро x_i инцидентно v.

Циклы и Коциклы

- **Циклический вектор** 1-цепь с границей 0 (набор простых циклов без общих рёбер).
- Пространство циклов векторное пространство всех циклических векторов.
- **Базис циклов** максимальный набор независимых простых циклов.
- Коцикл минимальный разрез графа.
- Пространство коциклов множество всех кограниц графа.
- **Базис коциклов** базис пространства коциклов, состоящий из коциклов.

Циклический ранг

- **Теорема 4.5**: Циклический ранг m(G) равен числу хорд любого остова в G.
- Следствие 4.5 (a): m(G) = q p + 1 для связного (p, q)-графа.
- Следствие 4.5 (б): m(G) = q p + k для (p,q)-графа с k компонентами.

Коциклический ранг

- **Теорема 4.6**: Коциклический ранг $t^*(G)$ равен числу рёбер любого остова.
- Следствие 4.6 (a): $t^*(G) = p 1$ для связного (p, q)-графа.
- Следствие 4.6 (б): $t^*(G) = p k$ для (p,q)-графа с k компонентами.

Замечания

- Уравнение Эйлера Пуанкаре: p q = k m(G).
- Графы как симплициальные комплексы: вершины 0-симплексы, рёбра 1-симплексы.

Хроматическое число плоского графа

Основные утверждения:

- $\chi(H) \leq \chi(G) + 1 \text{ M } \overline{\chi}(H) \leq \overline{\chi}(G) + 1.$
- Если $\chi(H) < \chi(G) + 1$ или $\overline{\chi}(H) < \overline{\chi}(G) + 1$, то $\chi(H) + \overline{\chi}(H) \le p + 1$.
- Всегда $\chi(H) + \overline{\chi}(H) \le p + 1$.
- $\overline{\chi}\chi \leq \left(\frac{p+1}{2}\right)^2$.

Теорема о пяти красках:

Теорема. Каждый планарный граф 5-раскрашиваем.

Доказательство: Индукция по числу p вершин.

- База: для $p \le 5$ граф p-раскрашиваем.
- Шаг: для графа \bar{G} с p+1 вершинами, найдется вершина v степени 5 или менее. Граф G-v 5-раскрашиваем.
- Если все пять цветов используются, переставляем цвета, чтобы получить 5-раскраску.

Гипотеза четырёх красок:

- Каждая плоская карта 4-раскрашиваема.
- Эквивалентно: каждый планарный граф 4-раскрашиваем.

Теорема 12.8:

Теорема. Каждый планарный граф, имеющий меньше четырех треугольников, 3-раскрашиваем.

Следствие 12.8 (а):

• Каждый планарный граф, не содержащий треугольников, 3-раскрашива **Теорема 12.9:**

Теорема. Гипотеза четырех красок справедлива тогда и только тогда, когда каждая кубическая плоская карта, не имеющая мостов, 4-раскрашиваема.

Доказательство:

- Любая плоская карта 4-раскрашиваема тогда и только тогда, когда справедлива гипотеза четырех красок.
- Если 4-раскрашиваем всякая плоская карта, не содержащая мостов, то и всякая кубическая плоская карта, не содержащая мостов, также 4-раскрашиваема.

Примеры неплоских графов

Порядковые числа в графах

Пример использования порядковых чисел

Порядковое число графа G — минимальное число цветов, необходимых для раскраски вершин графа так, чтобы никакие две смежные вершины не имели одинаковый цвет.

Теорема 5.1: Для любого графа G его порядковое число $\chi(G)$ удовлетворяет неравенству:

$$\chi(G) \le \Delta(G) + 1$$

где $\Delta(G)$ — максимальная степень вершины в графе G.

Пример: Рассмотрим граф K_4 (полный граф с четырьмя вершинами).

- Все вершины соединены друг с другом.
- $\Delta(K_4) = 3$.
- $\chi(K_4) = 4$, так как каждая вершина должна иметь уникальный цвет.

Алгоритм раскраски графа:

- 1. Выберите вершину v с максимальной степенью.
- 2. Назначьте v минимально возможный цвет, не совпадающий с цветами её соседей.
- 3. Повторите для всех вершин графа.

Замечание: Порядковое число графа может быть равно $\Delta(G)$, если граф является двудольным.

Следствие 5.1(a): Если граф G планарен, то $\chi(G) \leq 4$ (теорема о четырёх красках).

Применение: Раскраска графов используется в задачах планирования, таких как распределение частот в беспроводных сетях и составление расписаний.

Функция Гранди

- Функция Гранди: Для конечного графа (X, Γ) функция g(x) это наименьшее неотрицательное целое число, не принадлежащее множеству $g(\Gamma x) = \{g(y) \mid y \in \Gamma x\}.$
- **Пример 1:** Граф на рис. 3-3 допускает две функции Гранди. Если $\Gamma x = \{y_1, y_2, \ldots\}$, то g(x) наименьшее число, отличное от $g(y_1), g(y_2)$.
- Пример 2: Граф на рис. 3-2 допускает единственную функцию Гранди g(x), где g(x) = o(x) для $x \neq a$, а в a принимает значение ω (трансфинитное число).
- **Теорема 5:** Прогрессивно конечный граф допускает одну функцию Гранди g(x), и $g(x) \le o(x)$.
- Доказательство: Индукция по множествам:

$$X(0) = \{x \mid \Gamma x = \emptyset\},\$$

$$X(1) = \{x \mid \Gamma x \subseteq X(0)\},\$$

$$X(2) = \{x \mid \Gamma x \subseteq X(1)\}.$$

- Теорема 6: Если $|X| < \infty$, то $g(x) \le \Gamma$. Если g(x) = n, то g принимает в Γx все значения $0, 1, 2, \ldots, n-1$, следовательно, $|X| \ge n g(x)$.
- Заключение: Для Γ -конечного или прогрессивно ограниченного графа значения g(x) остаются конечными.

Внутреннее устойчивое множество Γ раф $G = (X, \Gamma)$, множество $S \subseteq V$ называется *внутренне устойчивым*, если $\Gamma S \cap S = \emptyset$. Число внутренней устойчивости

$$\alpha(G) = \max_{S \in \mathfrak{S}} |S|$$

Связь с хроматическим числом

$$\alpha(G)\gamma(G) \ge |X|$$

Пример Граф с $\gamma(G) = 4$, где белые вершины образуют наибольшее внутрение устойчивое множество.

Лемма 1

$$\alpha(G \times H) \ge \alpha(G) \cdot \alpha(H)$$

Емкость графа

$$\theta(G) = \sup_{n} \sqrt[n]{\alpha(G^n)}$$

Лемма 2 Сохраняющее отображение σ переводит S во внутренне устойчивое множество $\sigma(S)$.

Лемма 3 Если $\sigma(X)$ внутренне устойчиво, то $\theta(G) = \alpha(G)$.

Теорема 7 (Шеннон) Если для G или H существует σ , то

$$\alpha(G \times H) = \alpha(G)\alpha(H)$$

Следствие Если σ переводит вершины G во внутренне устойчивое множество, то

$$\alpha(G) = \sup_{n} \sqrt[n]{\alpha(G^n)} = \alpha(G)$$

Внешнее устойчивое множество Граф $G=(X,\Gamma)$, множество $T\subseteq X$ внешне устойчиво, если для каждой вершины $x\notin T$ имеем $\Gamma_x\cap T\neq\varnothing$ (каждая вершина вне T соединена с T). Если \mathcal{T} — все внешне устойчивые множества, то $X\in\mathcal{T}$ и $T\in\mathcal{T}$ $A\supseteq T\Rightarrow A\in\mathcal{T}$.

Число внешней устойчивости

$$\beta(G) = \min_{T \in \mathcal{T}} |T|$$

(минимальное внешне устойчивое множество).

Алгоритм нахождения наименьшего внешне устойчивого множества

- 1. Удаляем вершину x, если $\Delta x \subseteq \Delta y$ для $y \neq x$ (вершина y заменяет x). Пример: удаляем c,d,f.
- 2. Если есть висячее ребро (x,y), то $x \in T$. Пример: $a \in T$.
- 3. Исключаем a и $\Delta a = \{\overline{a}, \overline{b}, \overline{c}\}.$
- 4. Повторяем шаги 1 и 2. Если граф неприводим, временно добавляем в T вершину, например b.
- 5. Исключаем b и $\Delta b = \{a, e, f\}$.
- 6. Упрощаем граф: исключаем g, так как $\Delta g \subseteq \Delta e = \{g\}$. Включаем e в T, получаем $T = \{a, b, e\}$.

Ядро графа Пусть $G=(X,\Gamma)$ — конечный или бесконечный граф. Множество $S\subseteq X$ называется $\mathit{ядром}$ графа, если S устойчиво как внутренне, так и внешне, т.е. если

$$x \in S \Rightarrow \Gamma x \cap S = \varnothing, \tag{3}$$

$$x \notin S \Rightarrow \Gamma x \cap S \neq \varnothing. \tag{4}$$

Из условия (1) следует, что ядро S не содержит петель. Из условия (2) — что S содержит все такие вершины x, для которых $\Gamma x = \varnothing$. Пустое множество \varnothing не может быть ядром.

Теорема 1

Если S — ядро графа (X, Γ) , то множество S — максимальное в семействе $\mathfrak S$ внутренне устойчивых множеств, т.е.

$$A \in \mathfrak{S}, A \supset S \Rightarrow A = S$$

Теорема 2

В симметрическом графе без петель каждое максимальное множество семейства $\mathfrak S$ внутренне устойчивых множеств представляет собой ядро.

Следствие

Симметрический граф без петель обладает ядром.

Характеристическая функция

Функция $\varphi_S(x)$ множества S определяется как:

$$\varphi_S(x) = \begin{cases} 1, & \text{при } x \in S \\ 0, & \text{при } x \notin S \end{cases}$$

Теорема 3

Для того чтобы множество S было ядром, необходимо и достаточно чтобы для характеристической функции $\varphi_S(x)$ выполнялось соотношение

$$\varphi_S(x) = 1 - \max_{y \in \Gamma_X} \varphi_S(y)$$

Теорема 4

Прогрессивно конечный граф обладает ядром.

Теорема Ричардсона

Конечный граф, не содержащий контуров нечетной длины, обладает ядром.

Игры на графе, игра НИМ

Определение игры на графе Γ раф (X,Γ) дает возможность определить некоторую игру двух игроков, которых мы назовем (A) и (B). Положениями этой игры служат вершины графа, начальная вершина x_0 выбирается жребием, и противники играют поочередно: сперва игрок (A) выбирает вершину x_1 в множестве Γx_0 , затем (B) выбирает вершину x_2 в множестве Γx_1 , после этого (A) опять выбирает вершину x_3 в Γx_2 , и т.д. Если один из игроков выбрал вершину x_n , для которой $\Gamma x_n = \emptyset$, то партия оканчивается, игрок, выбравший вершину последним, выиграл, а его противник проиграл. Ясно, что если граф не является прогрессивно конечным (граф, в котором любая последовательность вершин заканчивается), то партия может никогда не окончиться.

Игра НИМ В честь известного развлечения, которое здесь обобщено, будем описанную только что игру называть upou Hum, а определяющий ее граф обозначать через (X,Γ) ; сейчас наша задача состоит в том, чтобы охарактеризовать выигрышные положения, т.е. те вершины графа, выбор которых обеспечивает выигрыш партии независимо от ответов противника.

Теорема 1. Если граф имеет ядро S (множество вершин, из которых можно выиграть), и если один из игроков выбрал вершину в ядре, то этот выбор обеспечивает ему выигрыш или ничью.

Действительно, если игрок (A) выбрал вершину $x_1 \in S$, то либо $\Gamma x_1 = \emptyset$, и тогда он уже выиграл партию, либо его противник (B) вынужден выбрать вершину $x_2 \in X \setminus S$, а значит, следующим ходом игрок (A) может выбрать x_3 опять в S и продолжать в том же духе. Если в какой-либо определенный момент один из игроков выбрал вершину x_n , для которой $\Gamma x_n = \emptyset$, то $x_n \in S$, и выигравшим партнером необходимо является (A).

Метод вычисления выигрышных позиций Основной метод для хорошего игрока состоит, следовательно, в вычислении какойлибо функции Гранди (функция, определяющая выигрышные позиции), если она существует, с помощью этой функции g(x) получаем ядро

$$S = \{x | g(x) = 0\}$$

рассматриваемого графа. Если начальная вершина x_0 такова, что $g(x_0) = 0$, то игрок (A) находится в критическом положении, ибо его противник может обеспечить себе выигрыш или ничью. Напротив, если $g(x_0) \neq 0$, то игрок (A) сам обеспечивает себе выигрыш или ничью, выбирая такую вершину x_1 , что $g(x_1) = 0$.

Следствие. Если граф прогрессивно конечен, то существует од-

на и только одна функция Гранди g(x), каждый выбор такой вершины y, для которой g(y)=0, является выигрышным, а каждый выбор такой вершины z, что $g(z)\neq 0$, — проигрышным. (Непосредственно)