干扰腺相关病毒构建和包装手册

1. 服务流程	3
2. 仪器与试剂	4
3. 构建实例	5
3.1. 基因干扰腺相关病毒载体构建:	5
3.1.1. 目的基因	5
3.1.2. 载体信息	5
3.1.3. 干扰载体图谱(NC 序列)	5
3.2. 质粒构建步骤	6
3.2.1. RNA 靶点设计	6
3.2.2. 载体酶切	6
3.2.3. 目的序列合成及退火	6
3.2.4. 退火产物与载体进行连接	7
3.2.5. 转化涂板	7
3.2.6. 阳性克隆摇菌及质粒提取	7
3.2.7. 质粒质控(目的基因测序)	7
3.2.8. 测序引物	8
4. 腺相关病毒包装	9
4.1. HEK 293FT 细胞准备	9
4.2. 腺相关病毒包装系统转染	10
4.3. 腺相关病毒收集及浓缩	11
4.4. 病毒质量检测	12

4.4.1. 物理指标检测	13
4.4.2. 无菌检测	13
¬,¬,∠, /∪函/□///	±೨
4.4.3 病毒滴度测定	13

1. 服务流程

2. 仪器与试剂

表 1 主要仪器及生产商

仪器名称	生产厂家
Sorvall Legend Mircro 17 台式离心机	美国 ThermoFisher 公司
Sorvall ST 16R 冷冻离心机	美国 ThermoFisher 公司
微量移液器	德国 Eppendorf 公司
生物安全柜	新加坡 ESCO 公司
EVOS 荧光显微成像系统	美国 ThermoFisher 公司
恒温二氧化碳细胞培养箱	德国 Binder 公司
实验室耗材 I (移液枪头、1.5/2.0 mL 离心管)	美国 Axygen 公司
实验室耗材 Ⅱ(细胞培养皿、移液管等)	美国 Corning 公司
超低温冷冻冰箱	美国 ThermoFisher 公司
凝胶成像分析系统	北京赛智创业科技有限公司
凝胶电泳系统	美国 BioRad 公司

表2主要试剂及生产商

试剂名称	生产厂家
质粒小量快速提取试剂盒(离心柱型)	北京艾德莱生物科技有限公司
限制性内切酶类	美国 NEB 公司/美国 ThermoFisher 公司
DNA Ligase	北京合生基因科技有限公司
腺相关病毒包装试剂盒	北京合生基因科技有限公司
EpFect Transfection Reagent	北京合生基因科技有限公司
EvaGreen 2× Master Mix	北京合生基因科技有限公司
DMEM 高糖培养基	美国 Gibco 公司
RPMI 1640 培养基	美国 Gibco 公司
胎牛血清	美国 Gibco 公司

3. 构建实例

以 RNAi 阴性对照靶点序列为例描述载体构建及腺相关病毒包装过程。

3.1.基因干扰腺相关病毒载体构建:

3.1.1. 目的基因

NC 序列

3.1.2. 载体信息

载体编号	载体元件		原核抗性
XX	AAV-U6-shRNA-CAG-EGFP		AMP

3.1.3. 干扰载体图谱(NC序列)

干扰腺相关病毒载体示例

3.2. 质粒构建步骤

3.2.1. RNA 靶点设计

针对目的基因序列,遵循 RNAi 靶点设计原则,设计多个 RNAi 靶点序列,选择最优靶点构建目的载体。除了针对目的基因的靶点序列外,我们也使用一些无义序列作为 RNAi 阴性对照。另外,RNAi 靶点序列也可由客户提供,根据客户的需求构建在相应的载体上。

3.2.2. 载体酶切

酶切骨架载体,对载体酶切产物进行琼脂糖凝胶电泳, 回收目的条带:

酶切体系:

10x buffer 2 μL

酶 1 μL

酶 2 1 μL

Plasmid/product 2~3 µL

Add ddH₂O to 20 µL

3.2.3. 目的序列合成及退火

根据目的序列及骨架载体序列,设计引物序列;先合成单链引物序列,然后退火成双链 DNA。

ddH2O 14 μL

 $10 \times Buffer$ 2 μL

100 μM 正向引物 2 μL

100 μM 反向引物 2 μL

反应程序为:95 ℃ 3 min , 95 ℃ 到 25 ℃ 缓慢冷却,例如 -1 ℃/30 s

3.2.4. 退火产物与载体进行连接

退火产物 1 μL

骨架载体 1 μL

T4 ligase 1 uL

10× T4 ligase Buffer 1 μL

 ddH_2O 6 μL

Total 10 uL

3.2.5. 转化涂板

连接后产物 5-10 μ L 转化至 100 μ L 感受态,42°C金属浴,热激 1 min,冰上迅速预冷 2 min,在超净工作台中,加入 600 μ L 无抗培养基,37°C 摇床振荡培养 1 h,取适量菌液涂布在含有相应抗生素的平板上,在恒温培养箱中倒置培养 12-16 h。

3.2.6. 阳性克隆摇菌及质粒提取

挑选 3-4 个单菌落摇菌,加入相应抗性培养基摇菌过夜(8 mL LB 液体培养基),然后参照质粒抽提试剂盒进行质粒抽提。

3.2.7. 质粒质控(目的基因测序)

完成干扰腺相关病毒质粒构建后,针对目的基因序列测序,并比对鉴定,以获得构建正确的质粒。

基因干扰腺相关病毒载体信息

载体编号	shRNA 序列
NC	5' -AAACGTGACACGTTCGGAGAACGAACGTGTCACGTTT -3'

NC 载体测序结果:

图 3.1.1 基因干扰腺相关病毒质粒测序比对结果

3.2.8. 测序引物

引物名称	序列
NC 质粒	CAGGAAGAGGCCTATTTCCC

4. 腺相关病毒包装

4.1. HEK 293FT 细胞准备

在每一个 100 mm 组织培养盘加入 10 mL DMEM 生长培养基,稀释约 3×106 个 AAV-293 细胞,48 小时后用于转染。*

*注:为了获得较高的滴度,AAV-293 细胞的健康和传代的密度非常重要。当细胞汇合度达到 50%时须传代,并在细胞处于低代并生长健康时进行大量冻存。当传代和铺板用于转染时要避免细胞成团。AAV 质粒转染之前细胞或许会生长到较高的汇合度。

4.2. 腺相关病毒包装系统转染

推荐使用下述的磷酸钙转染方法转染细胞。本实验方案用于转染 HEK 293FT 细胞时,可稳定获得 >10¹² 病毒颗粒 / 毫升的产品滴度。* *注:这一环节中准备的转染试剂混合后,立即加入到细胞培养盘中。在室温过长时间的放置会形成大的颗粒不利于细胞的吞噬。

- 1) 转染前检查两天前传代的宿主细胞,达到70-80%的汇合度为宜。
- 2) 取出共转染的质粒,用 pH 7.5 的 TE 缓冲液将质粒的浓度调整到 1mg/mL。
- 3) 根据包装盘数计算所需的转染体系和质粒用量,如果包装一盘则吸取三种质粒各 10 μL(10 μg 每个)到一个 1.5 mL 的 EP 离心管中然后加入 1mL 的 0.3 M CaCl2。轻轻混合。
- 4) 吸取 1 mL 的 $2 \times \text{HBS}$ 溶液到另一个 15 mL 锥底管中。向其中滴加 1.03 mL 的 DNA/CaCl2 混合液(上一步),翻转或反复吹打温和混匀。
- 5) 立即将混合后的 DNA/CaCl2/HBS 溶液滴加到细胞培养盘上。加入同时轻轻晃动细胞培养盘,使溶液尽量均一分布。
- 6) 将细胞培养盘放回到 37℃培养箱放置 6 小时。
- *注:一般会设置一个病毒包装阴性对照,这可以通过将转染用到的三种质粒里面的一种替换为 TE 缓冲液来实现。
- 7) 转染结束后,将盘中的培养基替换为 10 mL 新鲜的培养基。
- 8) 将培养盘送回到孵箱中,另外培养66-72小时。

干扰腺相关病毒包装过程中荧光表达情况示例

载体编号 白光	绿色荧光
-------------	------

4.3. 腺相关病毒收集及浓缩

观察 HEK 293FT 细胞的形态变化可以得知 AAV 颗粒的包装程度。

- 一般来说,转染后三天收毒为宜。
- 1) 准备一个干冰乙醇浴(将乙醇倾入装有干冰的泡沫盒即可,也可用液氮替代干冰乙醇浴)和37°C水浴。
- 2) 将产毒的细胞连同培养基一同收集到一个 15 mL 的离心管中。收集细胞时,将培养盘倾斜一定角度以便将细胞刮到培养基中。
- 3) 200 g ,3 分钟 ,离心分离细胞和上清 ,将上清另外存放 ,细胞用 1mL PBS 重悬。
- 4) 将细胞悬浮液在干冰乙醇浴和 37℃水浴中反复转移,冻融四次。每次融解后稍加震荡。*
- *注:每次凝固和解冻大概需要十分钟的时间。
- 5) 10,000g 离心去除细胞碎片,将离心上清转移到一个新离心管中。
- 6) 在上清中加入 40% PEG8000 直到终浓度为 8%,在冰上放置 2 小时后 (每 15 分钟来回混匀一次), 2,500 g 离心 30 分钟。去掉上清液,沉淀用 PBS 重悬后与细胞裂解液上清合并。
- 7) 3,000 g 离心 30 分钟,将上清转移到另一个干净的管中。此时上清中不应该有可见的细胞碎片。如果仍有部分碎片,则再次离心。

- 8)加入 Benzonase 核酸酶消化去除残留的质粒 DNA(终浓度为 50 U/mL)。 合上管盖,颠倒几次以充分混合。在 37℃孵育 30 分钟。
- 9) 用 0.45 μm 过滤头过滤,取滤出液。向病毒浓缩液中添加固体 CsCl 直到密度为 1.41 g/m L(折射率为 1.372)。10m L病毒液中加如约 6.5g CsCl*,振荡溶解。

*注:CsCl溶解会吸热变冷。

- 10) 将样品加入到超速离心管中,用预先配好的 1.41 g/mL CsCl 溶液将离心管剩余空间填满。
- 11) 175,000 g 离心 24 小时,至形成密度梯度。按顺序分步收集不同密度的样品,取样进行滴度测定。收集富集有 AAV 颗粒的组分。
- 12) 重复上述过程一次。
- 13) 淋洗:在超滤装置中加入 4 mL 去离子水。
- *注:一旦在超滤装置浸湿后,不能任由膜再次晾干。如果不是淋洗后立即使用,应将水留在膜上直到开始实验。
- 14) 将密度梯度离心得到的病毒液加入到超滤装置中。加 PBS 到总体积为 4 mL,盖上盖子。

*注:如果用的是角转子,最大的体积不能超过 3.5mL。

- 15) 1,500 g 离心约 5 到 10 分钟,每 5 分钟检查一次剩余体积数,直到最终体积为 200-250 μL。
- *注:体积减少到 200 µL 以下,会导致病毒克隆聚集。如果滴度较高.要相应增加最小体积。
- 16) 将滤除液收集到一起以便消毒处理,将滤膜放回到装置中。
- 17) 加 1×PBS 稀释浓缩后的病毒使体积为 4 ml。
- 18) 重复上述过程 3 次。
- 19) 离心超滤管,使最终体积大约为 0.5ml。
- 20) 在病毒浓缩液中加入甘油使得终浓度为 5%。分装后保存在-80℃。

4.4.病毒质量检测

腺相关病毒的质量控制要点包括物理状态检测、无菌检测及病毒滴度检测。

4.4.1. 物理指标检测

- 1) 颜色判定:通过肉眼判定,腺相关病毒保存液呈澄清液体状。
- 2) 粘稠度判定:用 20-200 μL 规格移液器缓慢吸取 50 μL 腺相关病毒保存液体, 无明显粘稠感或吸液滞后现象;

4.4.2. 无菌检测

将病毒加入 293 细胞验证,正常培养 24 h 后镜检,无任何细菌及真菌污染情况,同时参照空细胞组,细胞间隙无明显颗粒存在,培养基澄清透明。

4.4.3. 病毒滴度测定

取病毒液 1µL,DNaseI 去除 DNA 污染并裂解病毒得到其基因组 DNA。稀释已知拷贝数的 DNA 标准品(103~109 copies/µL),与上述基因组同时进行 qRT-PCR 检测,根据 qRT-PCR 的实验数据绘制标准品滴度数量级log 值和 CT 值的标准曲线。计算其线性拟合方程后,带入样本 CT 值即可得出样本腺相关病毒液滴度。

如图所示,若标准曲线的线性拟合方程为: y= -0.281x + 11.294(R² = 0.996),目的腺相关病毒样本 CT 值为 9.35,带入公式可得 y = -0.281 × 9.35 + 11.294 = 8.667 = log(腺相关病毒样本滴度数量级 N)。

则目的腺相关病毒滴度计算公式为:

C (vg/mL)= N (vg/ μ L) × D × 1000 (D = 样本稀释倍数) 此例中 1 μ L 目的腺相关病毒样本稀释 9.6 倍 带入上述公式可知 C = 108.667 ×9.6×1000 = 4.45 × 10 12 vg/mL

