Day 2 Lab Part 2 ISI Short Course | June 1-3

Exploring the implied covariance function in fixed rank Kriging

Recall Ω is the covariance among the coefficients. Take this to be exponential in this example.

```
fields.style()
u<- seq( 0,1,length.out=8)
sGrid<- seq( 0,1,length.out= 100)

Omega<- Matern( rdist( u,u)/.2, smoothness=.5)
# smoothness .5 is also the negative exponential
X<- WendlandFunction( rdist( sGrid, u)/( (3*1.0)/8))

matplot( sGrid, X, type="l", col="orange3", lwd=2)
title("Wendland basis functions")</pre>
```

Wendland basis functions


```
image.plot( 1:8,1:8, Omega)
title("Covariance of coefficients")
```

Covariance of coefficients

covariance for the process
covG<- X%*%Omega%*%t(X)
image.plot(sGrid, sGrid, covG, col=viridis(256))
title("Process covariance matrix")</pre>

Process covariance matrix


```
locs<- c( 10, 20, 50, 85)
matplot( sGrid, covG[,locs], type="l", lty=1)
xline( sGrid[locs], col="grey30", lwd=2)
title("Some slices of cov g(s)")</pre>
```

Some slices of cov g(s)

Simulation of the FRK process

Simulating 3 realizations (\mathbf{M}) of g from this model. Here for efficient vectorized coding \mathbf{gSim} is a matrix 100X3 where each column is a realization.

Precision matrix for coefficients

Investigating the precision matrix for the coefficients. For this exponetial there are many zeroes.

```
Q<- solve( Omega)
par( pty="s")
image.plot( u, u, Omega, col=viridis(256))
title("Covariance matrix Omega")</pre>
```

Covariance matrix Omega


```
image.plot( u, u, Q, col=viridis(256))
title("Precision matrix for Omega (Q)")
```

Precision matrix for Omega (Q)

Exercises

- 1. How does the sparseness of the precision matrix (\mathbf{Q}) change when the smoothness is changed to 1.0 from .5?
- 2. Instead of 3 realizations generate 1000 (change 3 to 1000) and find the maximum value of the process for each of these (use the **apply** function across columns) Is the distribution of the maxima normally distributed?