Mathematik 1

SKRIPT ZUM MODUL MATHEMATIK 1 FÜR INF, SWT UND MSV

Simon König

INHALTSVERZEICHNIS

I Grundlagen										
1	Logik 1.1 Logische Junktoren									
2	Grundlegende Rechenmethoden 2.1 Summen- und Produktzeichen	7 7 7								
3	3.1 Direkter Beweis	10 10 10 10								
4	4.3.1 Abbildungseigenschaften	11 11 12 13 13								
5		15 16								
П	Lineare Algebra	17								
1	Verknüpfungen	18								
2	Algebraische Strukturen									
3	Vektorräume									
4	Lineare Abbildungen24.1 Matrizen24.2 Darstellende Matrix2									
5	Matrizenrechnung	31								

INHALTSVERZEICHNIS INHALTSVERZEICHNIS

6	Basiswechsel - Koordinatentransformation									
	6.1	Transformationsmatrix	34							
	6.2	Basiswechsel	35							
7	Erweiterte Matrixrechnungen									
	7.1	Elementare Zeilenoperationen	36							
8 Lineare Gleichungssysteme										
9	Determinanten und der Gauß-Algorithmus									
	9.1	Determinanten								
		9.1.1 Berechnung der Determinante	41							
	9.2	Bemerkungen	44							
		9.2.1 LEIBNIZ'sche Formel	44							
Ш	Ar	nalysis	45							
1	Kon	vergenz in metrischen Räumen	46							
	1.1	Metrische Räume	46							
	1.2	Konvergenz								
		1.2.1 Alternative Beschreibung der Konvergenz								

Grundlagen

1: LOGIK

Definition 1.1: Aussage

Eine Aussage ist ein Satz, von dem es Sinn macht, zu fragen, ob er wahr oder falsch ist.

1.1 Logische Junktoren

Wir verknüpfen mehrere Aussagen zu größeren aussagelogischen Formeln mithilfe von logischen Junktoren:

Negation: $\neg A$

Konjuktion: $A \wedge B$ Disjunktion: $A \vee B$

Mit diesen grundlegenden Junkoren kann man alle Verknüpfungen darstellen. Um Schreibarbeit zu sparen gibt es verkürzende Schreibweisen:

IMPLIKATION: $A \Rightarrow B \equiv \neg (A \land \neg B)$

ÄQUIVALENZ: $A \Leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$

						$A \Rightarrow B$	$A \Leftrightarrow B$
_	f	f	W	f	f w w	W	W
	f	W	w	f	W	W	f
	W	f	f	f	W	f	f
	W	W	f		W	W	W

1.2 Prädikatenlogik und Quantoren

 $\label{lem:continuous} Ein \ Pr\"{a}dikat \ ist \ ein \ Ausdruck, \ der \ die \ Form \ einer \ Aussage \ hat, \ aber \ Variablen \ enth\"{a}lt. \ Eine \ Aussage \ wird \ daraus \ erst, \ wenn \ wir \ angeben, \ f\"{u}r \ welche \ m \ das \ Pr\"{a}dikat \ gelten \ soll.$

Sei M eine Menge und P(m) für jedes $m \in M$ eine Aussage. Wir beschreiben die Aussage mit dem Allquantor:

$$\forall m \in M : P(m)$$

d.h. P(m) soll für jedes Element m aus M gelten.

Mit dem Existenzquantor bekommt das Prädikat eine andere Bedeutung:

$$\exists m \in M : P(m)$$

d.h. es soll mindestens ein $m \in M$ existieren, für das P(m) gilt.

BEISPIEL $M=\mathbb{N}, P(m)$: "m ist eine gerade Zahl." $(\forall m\in M: P(m))$ ist falsch.

 $(\exists m \in M : P(m))$ ist jedoch wahr.

1.2.1 Verneinung von Aussagen

Verneinung von quantifizieren Prädikat-Aussagen: "Prädikat verneinen und Quantoren tauschen."

$$\neg(\forall m \in M : P(m)) \equiv \exists m \in M : \neg P(m)$$

1.2.2 Reihenfolge der Quantoren

Bei Quantoren kommt es auf die Reihenfolge an:

$$\begin{split} \forall n \in \mathbb{N} & \exists m \in \mathbb{N} : m \geq n \quad \text{ist wahr} \\ \exists n \in \mathbb{N} & \forall m \in \mathbb{N} : m \geq n \quad \text{ist falsch} \end{split}$$

2: Grundlegende Rechenmethoden

2.1 Summen- und Produktzeichen

$$\sum_{k=-m}^{n} a_k := a_m + a_{m+1} + \ldots + a_n$$

Bei der Summe ist k der Summationsindex, m die untere und n die obere Summationsgrenze

$$\prod_{k=m}^{n} a_k := a_m \cdot a_{m+1} \cdot \ldots \cdot a_n$$

BEMERKUNG:

- Ist die obere Summationsgrenze kleiner als die untere, so handelt es sich um eine *leere Summe*, ihr Wert ist 0.
- Entsprechend ist der Wert des leeren Produkts 1.

2.2 Teilbarkeit und Primzahlen

Definition 2.1: Teilbarkeit

Seien $n\in\mathbb{Z}, m\in\mathbb{N}$. Die Zahl m heißt ein Teiler von n, in Zeichen $k\cdot m=n$, wenn es ein $k\in\mathbb{Z}$ gibt, so dass $k\cdot m=n$. In diesem Fall heißt n auch teilbar durch m. Die Zahl 0 ist durch alle $m\in\mathbb{Z}$ teilbar

Falls $m|n_1$ und $m|n_2$, dann folgt $m|n_1 + n_2$.

Definition 2.2: Größter gemeinsamer Teiler

Sei $a \in \mathbb{Z}$, die Menge aller Teiler von a ist $\mathcal{D}(a) \coloneqq \{d \in \mathbb{N} \mid d \mid a\}$. Die Menge aller gemeinsamer Teiler von a und b mit $a,b \in \mathbb{Z} \setminus \{0\}$ ist $\mathcal{D}(a,b) = \mathcal{D}(a) \cap \mathcal{D}(b)$. Die Zahl $\operatorname{ggT}(a,b) = \max(\mathcal{D}(a,b))$ heißt größter gemeinsamer Teiler von a und b. Da eine ganze Zahl (außer der 0) nur endlich viele Teiler hat, existiert ggT(a,b).

Satz 2.1: Teilung mit Rest

Seien $a,b\in\mathbb{N}$ mit a>b. Dann gibt es Zahlen $q\in\mathbb{N},r\in\mathbb{N}_0$ mit

$$0 \leq r < B$$
 Rest kleiner als der Teiler $a = q \cdot b + r$

Mit diesem Satz folgt das Lemma, auf dem der Euklidische Algorithmus basiert:

Lemma 2.1:

Seien $a, b, q, r \in \mathbb{N}$, so dass $a = q \cdot b + r$. Dann gilt

$$\mathcal{D}(a,b) = \mathcal{D}(b,r)$$

Insbesondere gilt:

$$ggT(a, b) = ggT(b, r)$$

Beweis:

Wir beweisen die Gleichheit der beiden Mengen, indem wir die beiden Inklusionen nachweisen:

- "⊆" Sei $d \in \mathcal{D}(a,b)$ d.h. $d|a \wedge d|b$. Wegen $a=q \cdot b + r \Leftrightarrow r=a-q \cdot b$ folgt, dass d auch r teilt. Es folgt also $d \in \mathcal{D}(b,r)$.
- " \supseteq " Sei $d \in \mathcal{D}(b,r)$ d.h. $d|b \wedge d|r$, dann folgt aus $a=q \cdot b + r$, dass d auch a teilt, womit $d \in \mathcal{D}(a,b)$ folgt.

$$\mathcal{D}(a,b) = \mathcal{D}(b,r)$$

Dieses Lemma liefert die Idee für einen Algorithmus zur Bestimmung des größten gemeinsamen Teilers zweier natürlicher Zahlen.

Sei a>b. Teilt b die Zahl a ohne Rest, so ist b der $\operatorname{ggT}(a,b)$. Ansonsten ermittle den Rest bei der Teilung von a durch b und suche statt $\operatorname{ggT}(a,b)$ den $\operatorname{ggT}(b,r)$.

Nach dem Satz zur Teilung mit Rest sind \dot{b} und r beide kleiner als a, also kommt das Verfahren nach endlich vielen Schritten zum Ende.

Definition 2.3: Primzahl

Eine natürliche Zahl heißt *Primzahl*, wenn sie genau zwei Teiler besitzt, nämlich 1 und die Zahl selbst.

$$p \in \mathbb{N} \operatorname{mit} |\mathcal{D}(p)| = 2$$

Satz 2.2: Primfaktorzerlegung

Jede natürliche Zahl $n \in \mathbb{N} \land n \ge 2$ ist ein Produkt aus Primzahlen (1 ist das leere Produkt).

Beweis:

A(n): "Jede natürliche Zahl kleiner oder gleich n ist das Produkt von Primzahlen."

- **IA** A(2) ist wahr, denn 2 ist selbst eine Primzahl.
- **IS** Fallunterscheidung:
 - 1. n+1 ist prim. Dann ist A(n+1) wahr.

2. n+1 ist nicht prim. Dann gibt es natürliche Zahlen 1 und m, sodass $n+1=l\cdot m$, wobei l,m< n+1.

Nach Induktionsvoraussetzung sind somit l und m Produkte von Primzahlen, somit auch n+1.

3: BEWEISE

Wir wollen eine Aussage $A\Rightarrow B$ beweisen. Dazu gibt es mehrere Ansätze, diese werden am Beispiel gezeigt:

$$A \equiv |x - 1| < 1$$
$$B \equiv x < 2$$

3.1 Direkter Beweis

A wird als wahr angenommen, und daraus muss $B\equiv x<2$ gefolgert werden. Fallunterscheidung:

•
$$(x-1) \ge 0 \rightsquigarrow x-1 < 1 \Leftrightarrow x < 2$$

•
$$(x-1) < 0 \rightsquigarrow x < 1$$

3.2 Indirekter Beweis (Kontraposition)

Wir zeigen, dass $\neg B \Rightarrow \neg A$. Gelte also $\neg B$:

$$x \ge 2 \Rightarrow |x - 1| = x - 1 \ge 1 \Leftrightarrow x \ge 2$$

3.3 Widerspruchsbeweis

Wir zeigen, dass $\neg(A\Rightarrow B)$ bzw. $A\wedge \neg B$ auf einen Widerspruch führt. Angenommen, es gelte |x-1|<1 und $x\geq 2$ daraus folgt:

$$|x-1| = x-1 < 1 \Leftrightarrow x < 2$$
 Widerspruch!

4: MENGEN, RELATIONEN UND ABBILDUNGEN

4.1 Mengen

Eine Menge ist eine wohldefinierte Gesamtheit von Objekten, den Elementen der Menge.

$$\mathsf{z.B.}\,\mathbb{Q} = \left\{\frac{p}{q} \,\middle|\, p \in \mathbb{Z}, q \in \mathbb{N}\right\}$$

Definition 4.1: Teilmenge

Eine Menge M_1 ist *Teilmenge* von M, wenn

$$\forall x \in M_1 : x \in M$$
$$\Rightarrow M_1 \subseteq M$$

Für jede Menge M gilt $\varnothing \subseteq M$ und $M \subseteq M$.

Gilt $M_1\subseteq M$ und $M_1\neq M$ ist M_1 eine echte Teilmenge von M, d.h. $M_1\subset M$ oder $M_1\subsetneq M$

POTENZMENGE $\mathcal{P}(M) = \operatorname{Pot}(M)$ ist die Menge aller Teilmengen von M.

Schnittmenge $M_s = M_1 \cap M_2; \quad M_s \coloneqq \{m \in M_1 \mid m \in M_2\}$

VEREINIGUNG $M_v = M_1 \cup M_2; \quad M_v \coloneqq \{m \mid m \in M_2 \lor m \in M_2\}$

DIFFERENZ $M_1 \setminus M_2 := \{ m \in M_1 \mid m \notin M_2 \}$

Kartesisches Produkt $M_1 \times M_2 \coloneqq \{(m_1, m_2) \mid m_1 \in M_1 \land m_2 \in M_2\}$

Zwei Mengen M_1 und M_2 heißen disjunkt, falls $M_1\cap M_2=\varnothing$

4.2 Relationen

Definition 4.2: Relation

Eine Relation zwischen zwei Mengen M und N ist eine Teilmenge von $M \times N$.

$$R \subseteq M_1 \times M_2$$

ist $(x, y) \in R$, steht x mit y in Relation $\to x \sim y$.

 $R\subseteq M\times M$ heißt:

REFLEXIV falls $\forall x \in M : (x, x) \in R$

SYMMETRISCH falls $\forall x, y \in M : (x, y) \in M \Rightarrow (y, x) \in R$

ANTISYMMETRISCH falls $\forall x,y \in R: (x,y) \in M \land (y,x) \in R \Rightarrow x=y$

TRANSITIV falls $\forall x,y,z\in M:(x,y)\in R \land (y,z)\in R \Rightarrow (x,z)\in R$

Definition 4.3: Äquivalenzrelation

Eine Relation heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist.

Definition 4.4: Ordnungsrelation

Eine Relation heißt Ordnungsrelation, wenn sie reflexiv, antisymmetrisch und transitiv ist.

4.3 Abbildungen

Definition 4.5: Abbildung

Seien M und N zwei Mengen. Eine Zuordnungsvorschift, die jedem Element $x \in M$ ein Element $f(x) \in N$ zuweist, heißt Abbildung oder Funktion von M nach N.

$$f: M \to N, x \mapsto f(x)$$

M: Definitionsbereich, N: Wertebereich

Definition 4.6: Bild und Urbild

Sei $f:M\mapsto N$ eine Abbildung. Wir definieren

- $f \ddot{u} r x \in M$ heißt $f(x) \in N$ das *Bild* von x
- für eine Teilmenge $A\subseteq M$ heißt $f(A)=\{f(x)\,|\,x\in A\}$ das Bild der Teilmenge A
- für eine Teilmenge $B \subseteq N$ heißt $f^{-1}(B) = \{x \in M \mid f(x) \in B\}$ das *Urbild* von B

Definition 4.7: Graph einer Abbildung

Sei $f:M\to N$ eine Abbildung. Der Graph von f ist eine Teilmenge des Werte- und Definitionsbereichs

$$Graph(f) = \{(x, f(x)) \mid x \in M\} \subseteq M \times N$$

Fasst man eine Funktion als eine Relation auf, so ist der Graph das selbe wie R.

$$Graph(f) = R \subseteq M \times N$$

BEMERKUNG: Für Funktionen $f: \mathbb{R} \to \mathbb{R}$ ist der Graph eine Teilmenge der Ebene \mathbb{R}^2 .

Definition 4.8: Verkettung

Seien $f:M\to N$ und $g:N\to P$ Abbildungen. Dann ist die Verkettung:

$$g \circ f : M \to P$$
$$g \circ f(x) \coloneqq g(f(x))$$

Definition 4.9: Identität

Für jede Menge M ist

$$id_M: M \to M, x \mapsto x$$

die identische Abbildung auf M.

4.3.1 Abbildungseigenschaften

Sei $f: M \to N$ eine Abbildung. Dann heißt f:

INJEKTIV wenn jedes Element $y \in N$ höchstens ein Urbild hat.

SURJEKTIV wenn jedes Element $y \in N$ mindestens ein Urbild hat. $\forall y \in N \; \exists x \in M : f(x) = y$

BIJEKTIV wenn jedes Element $y \in N$ genau ein Urbild hat. $\forall y \in N \ \exists ! x \in M : f(x) = y$

BEMERKUNG:

1. Bijektivität gilt genau dann, wenn es eine Umkehrabbildung f^{-1} gibt:

$$f:M\to N \qquad \qquad f^{-1}:N\to M$$

$$f\left(f^{-1}(x)\right)\quad \text{mit }x\in N \qquad \qquad f^{-1}\left(f(x)\right)=x\quad \text{mit }x\in M$$

2. Man kann jede Abbildung surjektiv machen, indem man den Wertebereich durch das Bild von f ersetzt: $N \coloneqq f(M)$

4.4 Mächtigkeit von Mengen

Die Mächtigkeit einer Menge ist die Anzahl ihrer Elemente. Man schreibt |M| für die Mächtigkeit von M.

Zwei Mengen A und B sind gleich mächtig, wenn es eine bijektive Abbildung $f:A\to B$ gibt. Eine Menge heißt $abz\ddot{a}hlbar$ unendlich, falls $|A|=|\mathbb{N}|$ d.h. falls es eine bijektive Abbildung $f:A\to\mathbb{N}$ gibt.

Sie heißt *überabzählbar unendlich*, falls $|A| > |\mathbb{N}|$.

Es gilt immer auch für unendliche Mengen, dass |M| < |Pot(M)|.

Für endliche Mengen gilt $|Pot(M)| = 2^{|M|}$

4.5 Zahlenmengen

Definition 4.10: Natürliche Zahlen

Die natürlichen Zahlen sind eine Menge $\mathbb N$, auf der eine Abbildung $f:\mathbb N\to\mathbb N$ erklärt ist, die folgende Eigenschaften hat, wobei f(n) der Nachfolger von n heißt.

 $\mathbb{N}1$ Es gibt genau ein Element in \mathbb{N} , das nicht Nachfolger eines anderen Elements ist.

 $\mathbb{N}2$ f ist injektiv

 $\mathbb{N}3$ Ist $M\subseteq\mathbb{N}$ eine Teilmenge, die folgende Eigenschaften hat:

1. $1 \in M$

2. Falls $m \in M$ und $f(m) \in M$

Dann gilt: $M = \mathbb{N}$

$$\mathsf{D.h.}\ M\subseteq\mathbb{N}: 1\in M\land (m\in M\Rightarrow f(m)\in M)\Rightarrow M=\mathbb{N}$$

Man kann zeigen, dass die natürlichen Zahlen durch diese Eigenschaften (die Peano-Axiome) gekennzeichnet sind. Das heißt, dass es im wesentlichen nur eine solche Menge mit einer solchen Abbildung f gibt, nämlich $\mathbb N$.

Das Axiom $\mathbb{N}3$ heißt auch Induktionsaxiom. Aus ihm folgt:

Satz 4.1: Vollständige Induktion

Sei A(n) für jede natürliche Zahl $n \in \mathbb{N}$ eine Aussage, für die gilt:

- $\bullet \ \ A(1) \ {\rm ist \ wahr}$
- $\forall n \in \mathbb{N} : A(n) \Rightarrow A(n+1)$

dann ist A(n) für alle $n \in \mathbb{N}$ wahr.

5: KOMPLEXE ZAHLEN

Wir definieren \mathbb{C} als Menge $\mathbb{C} \coloneqq \mathbb{R} \times \mathbb{R}$, d.h. wir definieren die komplexen Zahlen als zusammengesetzte Zahlen, also als die Menge der geordneten Paare von reellen Zahlen. Wobei wir folgende Abbildungen mit $\mathbb{C} \times \mathbb{C} \to \mathbb{C}$ auf \mathbb{C} festlegen:

Addition
$$(a,b) + (c,d) := (a+b,c+d)$$

$$\textbf{Multiplikation} \ \ (a,b) \cdot (c,d) := (ac-bd,ad+bc)$$

BEMERKUNG: Die Menge der reellen Zahlen kann als Teilmenge von $\mathbb C$ aufgefasst werden. $\mathbb R\subset \mathbb C$ indem man die injektive Abbildung $\mathbb R\to \mathbb C, a\mapsto (a,0)$ benutzt. Die oben definierten Verknüpfungen schränken sich dann auf die Verknüpfungen in $\mathbb R$ ein:

•
$$(a,0) + (b,0) = (a+b,0)$$

•
$$(a,0) \cdot (b,0) = (a \cdot b - 0, a \cdot 0 + b \cdot 0) = (a \cdot b,0)$$

In diesem Sinne ist \mathbb{C} eine *Erweiterung* des Körpers \mathbb{R} .

Definition 5.1: Imaginäre Einheit

Wir führen die imaginäre Einheit ein. i := (0, 1) damit gilt:

$$(0,1)\cdot(0,1) = (0\cdot 0 - 1\cdot 1, 0\cdot 1 + 0\cdot 1) = (-1,0) = i^2 = -1$$

Es gilt also $\mathfrak{i}^2=-1$, daher schreibt man auch $\mathfrak{i}=\sqrt{-1}$. Die Zahlen $(0,y)=y\cdot\mathfrak{i},y\in\mathbb{R}$ heißten imaginäre Zahlen. Wir können uns wegen $\mathbb{C}=\mathbb{R}\times\mathbb{R}$ komplexe Zahlen als Punkte bzw. Vektoren in der *Gauß'schen Zahlenebene* vorstellen.

Satz 5.1:

Für jede komplexe Zahl $(a, b) \in \mathbb{C}$ gilt:

$$(a,b) = a + b \cdot i$$

Beweis:

Durch Ausrechnen der rechten Seite:

$$\begin{aligned} a + b \mathbf{i} &= (a, 0) + (b, 0) \cdot (0, 1) \\ &= (a, 0) + (b \cdot 0 - 0 \cdot 1, b \cdot 1 + 0 \cdot 0) \\ &= (a, 0) + (0, b) = (a, b) \end{aligned}$$

BEMERKUNG: Wie man leicht nachrechnet, gelten wie in \mathbb{R} die Kommutativ-, Assoziativ- und Distributivgesetze.

Definition 5.2: Konjugiert komplexe Zahl

Sei $z=a+b\mathfrak{i}\in\mathbb{C}$. Dann heißt \overline{z} die konjugiert komplexe Zahl $\overline{z}=a-b\mathfrak{i}$ von z.

Satz 5.2: Eigenschaften der konjugiert komplexen Zahl

Seien $z,w\in\mathbb{C}$ dann gilt:

1.
$$\overline{z+w} = \overline{z} + \overline{w}$$

2.
$$\overline{z \cdot w} = \overline{z} \cdot \overline{w}$$

3.
$$\frac{1}{2}(z+\overline{z})=\mathfrak{Re}(z)$$

4.
$$\frac{1}{2}(z-\overline{z})=\mathfrak{Im}(z)$$

5.
$$z \cdot \overline{z} > 0 \in \mathbb{R}$$
 falls $z \neq 0$

Definition 5.3: Betrag einer komplexen Zahl

Mit der komplexen Zahl $z=a+b\mathrm{i}$ und $a,b\in\mathbb{R}$ gilt für den Betrag von z:

$$\begin{aligned} |z| &= \sqrt{z \cdot \overline{z}} = \sqrt{a^2 + b^2} \\ |z| &= |\overline{z}| \end{aligned}$$

Insbesondere lässt sich das multiplikative Inverse wie folgt ausdrücken:

$$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}} = \frac{a - b \cdot \mathbf{i}}{a^2 + b^2}$$

5.1 Polarkoordinaten-Darstellung

1: VERKNÜPFUNGEN

Definition 1.1: Verknüpfung

Sei M eine Menge. Eine Abbildung $M \times M \to M, (a,b) \mapsto a \star b$ nennt man Verknüpfung.

- 1. Eine Verknüpfung heißt kommutativ, falls $a \star b = b \star a \quad \forall a, b \in M$ gilt.
- 2. Sie heißt assoziativ, falls $a\star(b\star c)=(a\star b)\star c \quad \forall a,b,c\in M$ gilt. Man kann auch $a\star b\star c$ schreiben.
- 3. Ein Element $e \in M$ heißt neutrales Element bezüglich der Verknüpfung \star , falls $a \star e = e \star a = a \quad \forall a \in M$ gilt.

Definition 1.2: Invertierbarkeit

Sei M eine Menge mit einer Verknüpfung \star , die ein neutrales Element e besitzt, ein Element $a \in M$ heißt invertierbar, falls es ein Element $a^{-1} \in M$ gibt, so dass gilt:

$$a \star a^{-1} = a^{-1} \star a = e$$

Definition 1.3: Homomorphismus

Seien (G,\star) und (H,*) Gruppen. Eine Abbildung $f:G\to H$ heißt (Gruppen-)Homomorphismus, falls gilt:

$$f(a \star b) = f(a) * f(b) \quad \forall a, b \in G$$

Lemma 1.1:

Ein Gruppenhomomorphismus $f:G\to H$ bildet stets das neutrale Element in G auf das neutrale Element in H ab.

Beweis:

Sei e das neutrale Element in G, dann folgt:

$$f(e) * f(g) = f(e \star g) = f(g)$$

Es folgt dann, dass f(e) das neutrale Element in H ist.

2: ALGEBRAISCHE STRUKTUREN

Definition 2.1: Magma

Eine Menge M mit einer Verknüpfung \star heißt Magma, falls sie unter dieser Verknüpfung abgeschlossen ist, das heißt:

$$\forall u,v \in M: u \star v \in M$$

Definition 2.2: Halbgruppe

Eine Menge M mit einer Verknüpfung \star heißt Halbgruppe, falls sie ein Magma ist und die Verknüpfung assoziativ ist:

HG1 $\forall u, v \in M : u \star v \in M$

HG 2 $\forall u, v, w \in M : u \star (v \star w) = (u \star v) \star w$

Definition 2.3: Monoid

Eine Menge M mit einer Verknüpfung \star heißt Monoid, falls sie eine Halbgruppe ist und ein neutrales Element bezüglich der Verknüpfung existiert:

M1 $\forall u, v \in M : u \star v \in M$

M 2 $\forall u, v, w \in M : u \star (v \star w) = (u \star v) \star w$

M3 $\exists e \in M \quad \forall u \in M : e \star u = u \star e = u$

Definition 2.4: Gruppe

Eine Menge G mit einer Verknüpfung \star heißt Gruppe, falls sie ein Monoid ist und zu jedem Element ein Inverses bezüglich der Verknüpfung exisitert:

- **G1** Die Verknüpfung assoziativ ist,
- G 2 ein neutrales Element besitzt,
- **G 3** jedes Element invertierbar ist.

Falls die Verknüpfung zusätzlich kommutativ ist, nennt man die Gruppe eine *abel'sche Gruppe* oder auch kommutative Gruppe.

Definition 2.5: Ring

Sei M eine Menge mit zwei Verknüpfungen $(+,\cdot)$ und den folgenden Eigenschaften:

R1 (M,+) ist eine abel'sche Gruppe mit neutralem Element 0.

- **R 2** die Verknüpfung \cdot ist assoziativ mit neutralem Element 1.
- R 3 es gelten die Distributivgesetze:

$$(a+b) \cdot c = ac + bc$$

 $c \cdot (a+b) = ca + cb$

R4 $0 \neq 1$

Dan heißt M ein Ring (genauer ein Ring mit Eins - unitärer Ring).

Ist zusätzlich auch die Multiplikation \cdot kommutativ und ist $M \setminus \{0\}$ eine Gruppe bezüglich \cdot (d.h. besitzt jedes Element ein Inverses bzgl. \cdot) so heißt M Körper.

Satz 2.1: Eindeutigkeit der neutralen Elemente

In einer Gruppe ist das neutrale Element stats eindeutig, d.h. ist e ein neutrales Element und gibt es ein Element:

$$a \in G, \forall g \in G : a \star g = g \star a = g$$

Dann ist a = e!

Beweis:

Gelte $a \star g = g$ für ein $g \in G$. Dann folgt:

$$(a \star q) \star q^{-1} = q \star q^{-1}$$

Mit G1 und G3 gilt:

$$a \star (g \star g^{-1}) = e$$

Dann folgt mit G3:

BEMERKUNG: Ähnlich dazu der Beweis, dass inverse Elemente eindeutig bestimmt sind.

Definition 2.6: Untergruppe

 $a \star e = e$ und damit a = e

Sei G eine Gruppe mit Verknüpfung \star und neutralem Element e. Eine nichtleere Teilmenge $U\subseteq G$ heißt $\mathit{Untergruppe}$ von G, falls gilt:

UG 1 $\forall a,b \in U: a \star b \in U$ (Abgeschlossenheit)

$$\operatorname{UG}\mathbf{2}\ \forall a\in U: a^{-1}\in U$$

Immer gilt, dass der Kern eines Homomorphismus $f:G\to H$ d.h. $\mathrm{Kern}(f)=f^{-1}(\{e\})$ eine Untergruppe von G ist.

3: VEKTORRÄUME

BEISPIEL

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}$$

$$\mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}$$

$$\vdots$$

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) \mid x_1, \dots, x_n \in \mathbb{R}^n\}$$

Wir schreiben die Elemente von \mathbb{R}^n auch als sogenannte Spaltenvektoren:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 anstatt von (x_1, x_2, \dots, x_n)

Mit der komponentenweisen Addition, der Vektoraddition:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

wird \mathbb{R}^n zu einer abel'schen Gruppe mit dem Nullvektor als neutrales Element und dem negierten Vektor als inverses Element bezüglich der Addition.

In der Vektorrechnung nennt man Zahlen (z.B. Elemente aus $\mathbb{R}, \mathbb{C}, \mathbb{Q}$) Skalare, um Zahlen und Vektoren deutlich zu unterscheiden.

$$\text{Sei } x := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R} \text{ und } \lambda \in \mathbb{R}. \text{ Dann ist die } \textit{skalare Multiplikation } x \cdot \lambda \text{ definiert durch } x \cdot \lambda \coloneqq \begin{pmatrix} \lambda \cdot x_1 \\ \vdots \\ \lambda \cdot x_n \end{pmatrix}$$

Die beiden Operationen Vektoraddition und skalare Multiplikation sind kennzeichnend für einen Vektorraum

Definition 3.1: Vektorraum

Sei K ein Körper, dessen neutrales Element bezüglich der Multiplikation mit 1_K bezeichnet wird. Sei V eine Menge mit einer Verknüpfung +, so dass (V,+) eine abel'sche Gruppe bildet.

Sei weiter eine Abbildung, genannt skalare Multiplikation $K \times V \to V$ gegeben, so dass folgende Bedingungen $\forall \alpha, \beta \in K; x, y \in V$ gelten:

V1
$$(\alpha \cdot \beta) \cdot x = \alpha \cdot (\beta \cdot x)$$
 (assoziativ)

V 2 $1_K \cdot x = x$ (neutrales Element des Körpers ist das neutrale bzgl \cdot)

V3
$$(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$$
 (distributiv 1)

V 4
$$\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$$
 (distributiv 2)

Dann ist V ein V ein V ektorraum über dem Körper K. Kurz auch K-Vektorraum. Die Verknüpfung + wird Vektoraddition genannt. Für $K=\mathbb{R}$ bzw. $K=\mathbb{C}$ spricht man auch von einem reellen, bzw. komplexen Vektorraum.

Elemente von V nennt man Vektoren.

BEISPIELE

- $\mathbb{R}^2, \mathbb{R}^3, \dots$
- C²
- $\{0\}$ ist ein Vektorraum für jeden Körper K
- Sei $V=\{f\,|\,f:\mathbb{R}\to\mathbb{R}\}$ die Menge der reellen Funktionen in einer Variable. Durch die punktweise Addition

$$(f+g)(x) = f(x) + g(x)$$

und die punktweise skalare Multiplikation

$$(\lambda f)(x) = \lambda \cdot f(x)$$

wird V zu einem Vektorraum.

Definition 3.2: Untervektorraum

Sei V ein K-Vektorraum. Eine nichtleere Teilmenge $U\subseteq V$ heißt Untervektorraum bzw. Teilvektorraum, falls gilt:

UV 1 Abschluss unter Vektoraddition:

$$\forall u, v : u, v \in U \Rightarrow u + v \in U$$

UV 2 Abschluss unter skalarer Multiplikation:

$$\forall u \in U, \lambda \in K : \lambda \cdot u \in U$$

BEISPIELE Die folgenden sind Untervektorräume von \mathbb{R}^2 :

•
$$U_1 \coloneqq \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} \middle| x \in \mathbb{R} \right\}$$
 (die x -Achse)

•
$$U_2 \coloneqq \left\{ \begin{pmatrix} x \\ x \end{pmatrix} \middle| x \in \mathbb{R} \right\}$$
 (die Winkelhalbierende des 1. und 3. Quadranten)

Lemma 3.1:

Für alle $\lambda \in K, v \in V$ wobei V ein K-Vektorraum ist, gilt:

1.
$$0_K \cdot v = 0_V$$

2.
$$(-\lambda) \cdot v = -(\lambda \cdot v)$$

Beweis:

1. Es gilt:

$$\begin{aligned} 0 \cdot v &= (0+0) \cdot v \underset{\text{(V 3)}}{=} 0 \cdot v + 0 \cdot v \\ 0 \cdot v + (-(0 \cdot v)) &= (0 \cdot v + 0 \cdot v) + (-(0 \cdot v)) \\ &= 0 \cdot v + (0 \cdot v + (-0 \cdot v)) \\ 0 &= 0 \cdot v + 0 = 0 \cdot v \end{aligned}$$

Definition 3.3: Linearkombination

Seien v_1, v_2, \dots, v_k Vektoren aus dem K-Vektorraum V und seien $\lambda_1, \lambda_2, \dots, \lambda_k \in K$. Dann heißt der Vektor

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_k v_k = \sum_{j=1}^k \lambda_j v_j$$

Linearkombination von den Vektoren v_1, v_2, \ldots, v_k . Die Skalare $\lambda_1, \lambda_2, \ldots, \lambda_k$ heißen *Koeffizienten* der Linearkombination.

Sind in der Linearkombination alle Koeffizienten gleich Null, handelt es sich um die *triviale Linearkombination*. Gibt es hingegen mindestens einen Koeffizienten $\lambda_j \neq 0$, handelt es sich um einee nichttriviale Linearkombination.

Definition 3.4:

Sei V ein K-Vektorraum, $M\subseteq V$ eine Teilmenge. Dann heißt die Menge aller Linearkombinationen

$$\{\lambda_1 v_1 + \ldots + \lambda_k v_k \mid v_1, v_2, \ldots, v_k \in M, \lambda_1, \lambda_2, \ldots, \lambda_k \in K\}$$

der Spann oder die lineare Hülle von M.

$$\mathrm{Span}(M) := \left\{ \sum_{j=1}^{k} \lambda_j v_j \,\middle|\, \lambda_j \in K, v_j \in M \right\}$$

BEISPIELE

•
$$v = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 in $\mathbb{R}^3 \sim \mathrm{Span}(\{v\}) = \left\{ \begin{pmatrix} \lambda \\ \lambda \\ 0 \end{pmatrix} \middle| \lambda \in \mathbb{R} \right\}$

• Span
$$\left(\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\} \right) = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \middle| x_1, x_2 \in \mathbb{R} \right\} (x_1, x_2 \text{-Ebene})$$

Satz 3.1:

Sei V ein K-Vektorraum und $M \subseteq V$. Dann ist $\mathrm{Span}(M)$ ein Untervektorraum von V.

Beweis:

- 1. $\mathrm{Span}(M)$ ist nicht leer, da der Nullvektor als leere Linearkombination mindestens enthalten ist.
- 2. Abschluss unter skalarer Multiplikation, sei $\lambda \in K$, $v \in \operatorname{Span}(M)$:

$$\begin{split} v &= \lambda_1 v_1 + \ldots + \lambda_k v_k \quad \text{wobei } v_1, \ldots, v_k \in M \\ \lambda v &= \lambda (\lambda_1 v_1 + \ldots + \lambda_k v_k) \\ &= \lambda (\lambda_1 v_1) + \ldots + \lambda (\lambda_k v_k) \\ &= (\lambda \lambda_1) v_1 + \ldots + (\lambda \lambda_k) v_k \end{split}$$

3. Abschluss unter Addition:

Definition 3.5: Erzeugendensystem

Gilt $V = \operatorname{Span}(M)$ für einen K-Vektorraum V und eine Teilmenge $M \subseteq V$, so sagt man M ist ein *Erzeugendensystem* von V.

Interessant ist die minimale Anzahl an Vektoren in einem Erzeugendensystem, bzw. ein *minimales Erzeugendensystem*.

Definition 3.6: Lineare Abhängigkeit

Eine Menge von Vektoren $M \subseteq V$ heißt *linear abhängig*, wenn es eine nichttriviale Linearkombination gibt, die den Nullvektor ergibt. Andernfalls heißt M *linear unabhängig*!

Satz 3.2:

Eine Menge von Vektoren ist genau dann linear abhängig, wenn einen Vektor $v \in M$ gibt, der sich als Linearkombination mit Vektoren aus $M \setminus \{v\}$ darstellen lässt.

" \Rightarrow " Angenommen, M ist linear abhängig. Dann gibt es Vektoren v_1,\ldots,v_n und Koeffizienten $\lambda_1,\ldots,\lambda_n\in K$, so dass die Linearkombination *nichttrivial* den Nullvektor ergibt. Dann folgt:

$$\lambda_j v_j = -\lambda_1 v_1 - \lambda_2 v_2 - \dots - \lambda_{j-1} v_{j-1} - \lambda_{j+1} v_{j+1} - \dots - \lambda_n v_n \quad |\lambda_j \neq 0$$

$$v_j = \frac{1}{\lambda_j} \cdot (-\lambda_1 v_1 - \lambda_2 v_2 - \dots - \lambda_{j-1} v_{j-1} - \lambda_{j+1} v_{j+1} - \dots - \lambda_n v_n)$$

Damit ist v_i als nichttriviale Linearkombination von Vektoren aus $M \setminus \{v_i\}$ dargestellt.

" \Leftarrow " Angenommen, es gibt einen Vektor $v \in M$ sowie Vektoren $v_1, \ldots, v_n \in M \setminus \{v\}$ und Koeffizienten $\lambda_1, \ldots, \lambda_n \in K$, so dass gilt:

$$v = \lambda_1 v_1 + \ldots + \lambda_n v_n$$

$$0 = \lambda_1 v_1 + \ldots + \lambda_n v_n - 1 \cdot v$$

Dies ist eine nichttriviale Linearkombination mit Vektoren aus M, die 0 ergibt.

Definition 3.7: Basis

Eine Teilmenge B eines Vektorraums V heißt Basis von V falls B ein linear unabhängiges Erzeugendensystem ist.

BEISPIELE Für jeden Körper K gibt es die Standardbasis bzw. die $kanonische Basis \{e_1, e_2, \dots, e_n\}$ von K^n :

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Diese sind linear unabhängig, nach der Folgerung zu Punkt 3. Die Standardbasis ist ein Erzeugendensystem, da

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$

Im Allgemeinen gibt es verschiedene Basen von demselben Vektorraum.

Satz 3.3: Charakterisierungen von Basen

Für eine Teilmene $B\subseteq V$ eines Vektorraums sind folgene Sätze äquivalent:

- ullet B ist eine Basis
- Jeder Vektor in V lässt sich auf genau eine Weise als Linearkombination von Vektoren aus B schreiben.
- B ist ein minimales Erzeugendensystem von V.
- B ist eine maximal linear unabhängige Teilmenge von V

BEMERKUNG: Jeder Vektorraum besitzt eine Basis, jede Basis hat gleich viele Elemente. (auch \varnothing oder $|B| = \infty$ möglich)

Definition 3.8: Dimension

Die Anzahl der Elemente der Basis ${\cal B}$ eines Vektorraums ${\cal V}$ nennt man ${\it Dimension}$

$$\dim(V) = |B|$$

4: LINEARE ABBILDUNGEN

Lineare Abbildungen sind Strukturerhaltende Abbildungen zwischen Vektorräumen, sie werden deshalb auch Vektorraumhomomorphismen genannt.

Definition 4.1: Lineare Abbildungen

Seien V und W Vektorräume über dem selben Körper K. Eine Abbildung $f:V\to W$ heißt linear , falls

- **L1** $\forall u, v \in V : f(u+v) = f(u) + f(v)$ (Additivität)
- **L 2** $\forall v \in V, \lambda \in K : f(\lambda v) = \lambda \cdot f(v)$ (Homogenität)

BEMERKUNG: L 1 ist dazu äquivalent, dass f ein Gruppenhomomorphismus zwischen den abel'schen Gruppen (V,+) und (W,+) ist.

BEISPIELE

- Für alle $\lambda \in K$ ist $f: V \to V, v \mapsto \lambda v$ eine Lineare Abbildung
- Insbesondere sind die identische Abbildung

$$id_V: V \to V, v \mapsto v$$

und die Nullabbildung

$$n_V: V \to V, v \mapsto 0$$

linere Abbildungen.

• $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ ist *nicht* linear, denn

$$4 = f(2) = f(1+1) \neq f(1) + f(1) = 2$$

4.1 Matrizen

Allgemein lassen sich lineare Abbildungen durch sog. *Matrizen* darstellen. Sei A eine $m \times n$ -Matrix, d.h. ein rechteckiges Zahlenschema mit m Zeilen und n Spalten:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{21} & a_{22} & \cdots & a_{2n} \end{pmatrix} = ((a_{ij}))_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

Dann ist durch

$$f(x_1, x_2, \dots, x_n) := A \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix}$$

Seite 26 von 49

eine lineare Abbildung $f:K^n\to K^m$ gegeben.

BEMERKUNG: Jede lineare Abbildung $f:K^n \to K^m$ lässt sich auf diese Weise mit einer $m \times n$ -Matrix mit Einträgen in K darstellen.

Satz 4.1:

Sei B eine Basis des K-Vektorraums V und sei W ein weiterer K-Vektorraum. Sei eine Abbildung $g:B\to W$ gegeben. Dann gibt es genau eine lineare Abbildung $f:V\to W$, die g in dem Sinne fortsetzt, dass $f(b)=g(b) \quad \forall b\in B$ gilt.

Beweis:

Sei v ein beliebiger Vektor aus V. Dann kann man diesen durch Linearkombination der Basisvektoren $b_1, \ldots, b_k \in B$ darstellen:

$$v = \lambda_1 b_1 + \ldots + \lambda_k b_k$$

Angenommen, f sei eine lineare Abbildung $f:V\to W$, dann gilt:

$$f(v) = f(\lambda_1 b_1 + \dots + \lambda_k b_k)$$

$$= f(\lambda_1 b_1) + \dots + f(\lambda_k b_k)$$

$$= \lambda_1 f(b_1) + \dots + \lambda_k f(b_k)$$

$$= \lambda_1 g(b_1) + \dots + \lambda_k g(b_k)$$

Damit ist der Wert von f(v) bestimmt, dies zeigt die Eindeutigkeit.

Um die Existenz einer solchen Abbildung zu zeigen, bemerken wir, dass die Linearkombination von v mit B eindeutig ist, da B eine Basis von V ist. Dies zeigt, dass $f:V\to W$ wohldefiniert ist, wenn wir die Formel von f(v) als Definition von f verwenden. Es ist noch zu zeigen, dass die so definierte Abbildung linear ist.

Seien zwei Vektoren $u, v \in V$ gegeben.

Dann gibt es $\lambda_1, \ldots, \lambda_k, \mu_1, \ldots, \mu_l, v_1, \ldots, v_k$ und w_1, \ldots, w_l so dass gilt:

$$u = \lambda_1 v_1 + \ldots + \lambda_k v_k$$
$$v = \mu_1 v_1 + \ldots + \mu_l w_l$$

Insbesondere gibt es Vektoren $b_1, \ldots, b_m \in B$ und Skalare $\alpha_1, \ldots, \alpha_m \in K$, $\beta_1, \ldots, \beta_m \in K$ so dass

$$u = \alpha_1 b_1 + \ldots + \alpha_m b_m$$
$$v = \beta_1 b_1 + \ldots + \beta_m b_m$$

Dann folgt mit unserer Definition:

$$f(u+v) = f(\alpha_1 b_1 + \ldots + \alpha_m b_m + \beta_1 b_1 + \ldots + \beta_m b_m)$$

$$= f((\alpha_1 \beta_1) b_1) + \ldots + f((\alpha_m \beta_m) b_m)$$

$$= (\alpha_1 \beta_1) g(b_1) + \ldots + (\alpha_m \beta_m) g(b_m)$$

$$= f(u) + f(v)$$

Damit ist die Additivität gezeigt.

Um die Homogenität zu zeigen, bemerken wir, falls $v = \lambda_1 b_1 + \ldots + \lambda_k b_k$ und $\mu \in K$:

$$f(\mu \cdot v) = f(\mu(\lambda_1 b_1 + \ldots + \lambda_k b_k)) = \mu \cdot f(v)$$

4.2 Darstellende Matrix

Wenn wir nun annehmen, dass V und W endlich dimensional sind, d.h es gibt endlich viele Basisvektoren v_1,\ldots,v_n von V und w_1,\ldots,w_m von W. Dann genügt es, dass man zu jedem Basisvektor v_j die eindeutig bestimmte Darstellung des Vektors $f(v_j)$ bezüglich der Basis $\{w_1,\ldots,w_m\}$ kennt.

Seien also durch

$$f(v_i) = a_{1i}w_1 + \ldots + a_{mi}w_m$$

die Einträge einer Matrix mit Koeffizietn $a_{ij} \in K$ gegeben:

$$A = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix}$$

Dann ist in der Matrix die gesamte Information über die lineare Abbildung f enthalten. Umgekehrt ist durch eine beliebige $m \times n$ -Matrix (m Zeilen, n Spalten) mit Einträgen aus K eine lineare Abbildung $V \to W$ bezüglich der Basen $\{v_1, \dots, v_n\}$ und $\{w_1, \dots, w_m\}$ gegeben. Die Matrix A heißt arstellende Matrix der linearen Abbildung bezüglich der Basen v_1, \dots, v_n und v_1, \dots, v_m .

Definition 4.2: Darstellende Matrix

Seien $m,n\in\mathbb{N}_0$. Die Menge der $m\times n$ -Matrizen mit Einträgen aus K wird mit $\mathrm{M}(m,n,K)$ bezeichnet. Seien v_1,\ldots,v_n und w_1,\ldots,w_m jeweils eine Basis des K-Vektorraums V bzw. W. Und sei $f:V\to W$ eine lineare Abbildung. Dann nennt man

$$A = ((a_{ij})) \in \mathcal{M}(m, n, K)$$

die darstellende Matrix von f bezüglich den Basen v_1, \ldots, v_n und w_1, \ldots, w_m von V bzw. W, falls

$$f(v_j) = a_{1j}w_1 + \ldots + a_{mj}w_m \quad \forall j \in \{1, \ldots, n\}$$

MERKREGEL Die Spalten der darstellenden Matrix sind die Bilder der Basisvektoren.

Lineare Abbildungen sind wegen der Additivität Insbesondere Gruppenhomomorphismen bezüglich der Addition. Analog wie für Gruppenhomomorphismen gilt:

Satz 4.2:

Bild und Kern einer linearen Abbildung $f:V\to W$ sind jeweils Untervektorräume von V bzw. W.

Beweis:

• $\operatorname{Bild}(f)$ ist ein Untervektorraum von W: Wegen $f(0) \in \operatorname{Bild}(f)$ ist $\operatorname{Bild}(f)$ nicht leer. Seien außerdem $f(u), f(v) \in \operatorname{Bild}(f)$, dann gilt:

$$f(u) + f(v) = f(u+v) \in Bild(f)$$

und ebenso

$$\lambda f(v) = f(\lambda \cdot v) \in \text{Bild}(f) \quad \forall \lambda \in K$$

• $\operatorname{Kern}(f)$ ist ein Untervektorraum von V:

Es gilt für jede lineare Abbildung, dass das neutrale Element eines Vektorraums auf das neutrale Element des Zielvektorraums abgebildet wird, d.h. f(0)=0. Also ist $\mathrm{Kern}(f)$ nicht leer.

Seien $u, v \in \text{Kern}(f)$, dann folgt:

$$f(u+v) = f(u) + f(v) = 0 + 0 = 0 \in \text{Kern}(f)$$

und ebenso

$$f(\lambda \cdot v) = \lambda f(v) = \lambda \cdot 0 = 0 \in \text{Kern}(f) \quad \forall \lambda \in K$$

Definition 4.3:

Eine lineare Abbildung $f: V \to W$ heißt

 $\label{eq:weak_problem} \left\{ \begin{aligned} &\text{Monomorphismus, falls } f \text{ injektiv ist} \\ &\text{Epimorphismus, falls } f \text{ surjektiv ist} \\ &\text{Isomorphismus, falls } f \text{ bijektiv ist} \\ &\text{Endomorphismus, falls } W = V \\ &\text{Automorphismus, falls } f \text{ ein bijektiver Endomorphismus ist} \end{aligned} \right.$

BEMERKUNG:

- Die Automorphismen ${\rm Aut}(V)$ eines Vektorraums V bilden eine Gruppe mit der Verkettung als Verknüpfung.
- Die Menge der Endo- bzw. Automorphismen wird mit $\operatorname{End}(V)$ bzw. $\operatorname{Aut}(V)$ bezeichnet.
- Die Menge der linearen Abbildungen $V \to W$ mit $\operatorname{Hom}(V, W)$.

Definition 4.4: Rang einer Abbildung

Die Dimension des Bildes einer linearen Abbildung f heißt auch Rang von f (engl. rank).

$$\operatorname{rk}(f) \coloneqq \dim(\ker f)$$

Satz 4.3: Dimensionsformel für lineare Abbildungen

Für lineare Abbildungen $f:V\to W$ gilt, falls V endlich dimensional ist, die *Dimensionsformel für lineare Abbildungen*:

$$\dim(V) = \operatorname{rk}(f) + \dim(\ker f)$$
$$= \dim(\operatorname{im} f) + \dim(\ker f)$$

Lemma 4.1:

Eine lineare Abbildung $f:V \to W$ ist genau dann injektiv, wenn ihr Kern trivial ist.

5: MATRIZENRECHNUNG

Sei M(m, n, K) die Menge der $m \times n$ -Matrizen mit Einträgen aus K.

Matrizen, deren Zeilenzahl mit der Spaltenzahl übereinstimmen nennt man *quadratisch*. Wir beschreiben sie mit M(n,K) := M(n,n,K).

Für eine Matrix $A \in M(n, K)$ schreibt man:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{21} & a_{22} & \cdots & a_{2n} \end{pmatrix} = ((a_{ij}))_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

Definition 5.1: Matrizenaddition

Die Addition zweier Matrizen $A=(a_{ij}), B=(b_{ij})\in M(m,n,K)$ gleicher Zeilen- und Spaltenzahl ist komponentenweise definiert:

$$C := A + B$$
 wobei $c_{ij} = a_{ij} + (b_{ij} \quad \forall 1 \le i \le m, 1 \le j \le n$

Definition 5.2: Skalare Multiplikation

Die skalare Multiplikation einer Matrix $A=(a_{ij}\in M(m,n,K) \text{ mit } \lambda\in K \text{ ist definiert durch:}$ $\lambda A\coloneqq \lambda(a_{ij}) \quad \forall 1\leq i\leq m, 1\leq j\leq n \text{ (wiederum komponentenweise)}$

BEMERKUNG: Mit diesen beiden Operationen wird M(m,n,K) zu einem K-Vektorraum. Dieser ist isomorph zu $K^{m\cdot n}$. D.h. es gibt einen Vektorraumisomorphismus $M(m,n,K)\to K^{m\cdot n}$.

$$M(m, n, K) \stackrel{\sim}{=} K^{m \cdot n}$$

Deswegen sieht man auch die Bezeichnung $K^{m \cdot n}$ für M(m, n, K).

Definition 5.3: Matrixprodukt

Seien $A \in M(l, m, K), B \in M(m, n, K)$ d.h. stimmen die Spaltenzahl von A mit der Zeilenzahl von B überein.

Dann ist das Matrixprodukt:

$$A \cdot B = C \in M(l, n, K)$$

definiert durch:

$$C = (c_{ij}) = \left(\sum_{k=1}^{m} a_{ik} \cdot a_{kj}\right)$$

MERKREGEL Zeile mal Spalte

BEMERKUNG:

- Die Matrixmultiplikation ist nicht kommutativ!
- Spezialfall: Anwenden einer Matrix auf einen Spaltenvektor: Man fasst Spaltenvektoren aus K^n als $n \times 1$ -Matrizen auf.

Satz 5.1:

Das Matrixprodukt entspricht der Verkettung von linearen Abbildungen.

Genauer: Seien U, V, W drei K-Vektorräume mit den Basen

$$\mathcal{B} = \{u_1, \dots, u_n\},\$$

$$\mathcal{C} = \{v_1, \dots, v_n\},\$$

$$\mathcal{D} = \{w_1, \dots, w_n\}$$

- $A \in M(l, m, K)$ die darstellende Matrix von $f: V \to W$ bezüglich \mathcal{C} und \mathcal{D} .
- $B \in M(m, n, K)$ die darstellende Matrix von $q: U \to V$ bezüglich \mathcal{B} und \mathcal{C} .

Dann ist $A\cdot B\in M(l,n,K)$ die darstellende Matrix von $f\circ g=f(g):U\to W$ bezüglich den Basen $\mathcal B$ und $\mathcal D$.

Beweis:

Es gilt:

$$g(u_j) = \sum_{i=1}^{m} (b_{ij} \cdot v_i)$$

und somit:

$$f(g(u_j)) = \sum_{i=1}^{m} (b_{ij} \cdot f(v_j)) = \sum_{i=1}^{m} b_{ij} \cdot \left(\sum_{p=1}^{l} a_{pi} \cdot w_p\right) = \sum_{p=1}^{l} \left(\sum_{i_1}^{m} a_{pi} \cdot a_{ij}\right) \cdot w_p$$

$$= \sum_{p=1}^{l} (c_{pj} \cdot w_p)$$
Matrix produkt

Die quadratischen Matrizen M(n,K) bilden einen im Allgemeinen nicht kommutativen Ring mit der Matrixaddition und -multiplikation. Es gelten:

$$A \cdot (B+C) = A \cdot B + A \cdot C$$
$$(A+B) \cdot C = A \cdot C + B \cdot C$$

Das neutrale Element bezüglich der Multiplikation ist die sogenannte $n \times n$ -Einheitsmatrix:

$$E = E_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

mit anderen Worten:

$$E = (\delta_{ij})_{1 \leq i \leq n}$$
 wobei $\delta_{ij} = egin{cases} 1, \mathsf{falls}\ i = j \\ 0 \ \mathsf{sonst} \end{cases}$

 δ_{ij} wird auch das Kronecker-Delta genannt.

 $\stackrel{\circ}{\operatorname{Die}}\, n imes n$ -Einheitsmatrix ist die darstellende Matrix der identischen Abbildung id_{K^n} .

Definition 5.4: Inverse Matrix

 $A\in M(n,K)$ heißt invertierbar, falls es eine Matrix A^{-1} gibt mit $A^{-1}\in M(n,K)$ so, dass $A\cdot A^{-1}=A^{-1}\cdot A=E_n$ gilt.

In diesem Fall nennt man A^{-1} die inverse Matrix von A.

Satz 5.2: Allgemeine lineare Gruppe

Die Menge $\mathrm{GL}(n,K) \coloneqq \left\{ A \in M(n,K) \,\middle|\, \exists A^{-1} : A \cdot A^{-1} = A^{-1} \cdot A = E_n \right\}$ bildet eine Gruppe mit der Matrixmultiplikation.

Beweis:

- 1. Matrixmultiplikation ist assoziativ, da sie die Abbildungsverkettung darstellt.
- 2. E_n ist das neutrale Element.
- 3. Außerdem besitzen invertierbare Matrizen natürlich ein Inverses.

 $\mathrm{GL}(n,K)$ wird auch als die allgemeine lineare Gruppe vom Grad n über dem Körper K bezeichnet.

Satz 5.3:

Eine Matrix A ist invertierbar genau dann, wenn die lineare Abbildung $x\mapsto A\cdot x$ bijektiv ist. Ihre Umkehrabbildung ist durch $x\mapsto A^{-1}\cdot x$ gegeben.

Beweis:

" \Leftarrow " $f:K^n \to K^n, f(x) = A \cdot x$ bijektiv, dann gilt für die darstellende Matrix B der Umkehrabbildung $f^{-1}:K^n \to K^n$, dass $A \cdot B = E_n = B \cdot A$. Das heißt, die darstellende Matrix B ist die Inverse von A.

">" Ist A invertierbar, dann ist durch $x\mapsto A^{-1}\cdot x$ die Umkehrabbildung gegeben, denn $A^{-1}\cdot (A\cdot x)=E\cdot x=x$

6: Basiswechsel - Koordinatentransformation

ERINNERUNG: Sei V ein endlich dimensionaler Vektorraum und $B=\{v_1,\ldots,v_n\}$ eine Basis von V. Dann hat jeder Vektor $v\in V$ eine Darstellung bezüglich B:

$$v = \lambda_1 v_1 + \ldots + \lambda_n v_n \in K$$

mit eindeutig bestimmten $\lambda_1, \ldots, \lambda_n$.

Außerdem ist der Koordinatenvektor von v bezüglich der Basis B:

$$v_B = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in K^n$$

Ist $C = \{w_1, \dots, w_n\}$ eine weitere Basis von V, dann hat v im Allgemeinen verschiedene Darstellungen v_B, v_C .

6.1 Transformationsmatrix

BEISPIEL: Seien zwei Basen für den Vektorraum $V=\mathbb{R}$ gegeben:

$$B = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ v_1 \end{pmatrix} \right\}, C = \left\{ \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ w_1 \end{pmatrix} \right\}$$

Dann lassen sich die Basisvektoren in ${\cal C}$ durch die in ${\cal B}$ ausdrücken:

$$w_1 = 2v_1$$

$$w_2 = 2v_1 - v_2$$

das heißt w_1 und w_2 haben bezüglich B die Koordinatendarstellungen

$$w_{1_B} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, w_{2_B} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Wir schreiben diese Vektoren jetzt als Spalten in die Transformationsmatrix

$$T_B^C = \begin{pmatrix} 2 & 2 \\ 0 & -1 \end{pmatrix}$$
 (Transformation von C nach B)

Das Anwenden dieser Matrix auf den Koordinatenvektor v_C eines Vektors $v \in V$ liefert den Koordinatenvektor v_b bezüglich der Basis B.

$$v_b = T_B^C \cdot v_C$$

Definition 6.1: Transformationsmatrix

Seien $B=\{v_1,\ldots,v_n\}$ und $C=\{w_1,\ldots,w_n\}$ zwei Basen eines K-Vektorraums gegeben. Und die Matrix $T_C^B\in M(n,K)$ deren Spalten durch Koordinatendarstellungen der Vektoren v_1,\ldots,v_n bezüglich der Basis C gebildet werden, das heißt:

$$T_C^B = \begin{pmatrix} | & & | \\ (v_1)_C & \cdots & (v_n)_C \\ | & & | \end{pmatrix}$$

diese heißt *Transformationsmatrix* oder auch *Basiswechselmatrix* von *B* nach *C*.

6.2 Basiswechsel

Basiswechsel bei einer darstellenden Matrix einer linearen Abbildung:

Sei $f:V\to W$ eine lineare Abbildung zwischen endlich dimensionalen K-Vektorräumen. Beim Übergang von einer Basis in V oder in W ändern sich nicht nur die Koordinatendarstellungen von einzelnen Vektoren, sondern auch die Einträge der darstellenden Matrix von f.

Satz 6.1:

Seien V und W endlich dimensionale K-Vektorräume. B,C Basen von V und D,E Basen von W. Sei f_D^B die darstellende Matrix einer linearen Abbildung $f:V\to W$ bezüglich der Basen B und D. Dann gilt für die darstellende Matrix bezüglich C und E:

$$f_E^C = T_E^D \cdot f_D^B \cdot T_B^C$$

Beweis:

Sei $v \in V$:

$$T_E^D \cdot f_D^B \cdot \underbrace{T_E^C \cdot v_C}_{v_D} = T_E^D \cdot f_D^B \cdot v_B = T_E^D \cdot (f(v))_D = (f(v))_E$$

MERKREGEL: "Kürzen":

$$T_E^D \cdot f_D^B \cdot T_B^{\mathcal{C}} \cdot v_{\mathcal{C}} = T_E^D \cdot f_D^{\mathcal{B}} \cdot v_{\mathcal{B}} = T_E^{\mathcal{D}} \cdot (f(v))_{\mathcal{D}} = (f(_v))_E$$

PROBLEM: Wie findet man geeignete Transformationsmatrizen, um eine lineare Abbildung möglichst einfach darzustellen, idealerweise als eine Diagonalmatrix?

7: ERWEITERTE MATRIXRECHNUNGEN

Um Gleichungssysteme systematisch zu lösen ist es zweckmäßg nicht die Gleichungen, sondern nur die Koeffizientenmatrix und die rechten Seiten zu betrachten.

Definition 7.1: Erweiterte Matrixschreibweise

Sei durch $A\in M(m,n,K)$ und $b\in K^m$ das lineare Gleichungssystem $A\cdot x=b$ gegeben, dann ist

$$(A \mid b) := \begin{pmatrix} a_{11} & \cdots & a_{1n} \mid b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \mid b_m \end{pmatrix}$$

die zum System gehörende erweiterte Matrix.

7.1 Elementare Zeilenoperationen

Die folgenden sogenannten elementaren Zeilenumformungen ändern nichts an der Lösungsmenge des linearen Gleichungssystems $A\cdot x=b$, wenn sie an der erweiterten Matrix $\begin{pmatrix} A & b \end{pmatrix}$ vorgenommen werden.

- **EU1** Vertauschen zweier Zeilen
- **EU2** Multiplikation einer Zeile mit einem Skalar ungleich 0
- EU2 Adition eines Vielfachen einer Zeile zu einer anderen

Definition 7.2: Zeilen-Stufenform

Eine Matrix $A \in M(m,n,K)$ liegt in *Zeilen-Stufenform* vor, falls es ein $k \in \{0,\ldots,m\}$ gibt, so dass gilt:

- Die ersten k Zeilen sind von 0 verschieden und der Spaltenindex des am weitesten links stehenden, von 0 verschiedenen Eintrags erhöht sich jeweils um mindestens 1 beim Übergang von einer Zeile zur darunterliegenden innerhalb der ersten k Zeilen.
- Die unteren m-k Zeilen sind alle Nullzeilen.

Satz 7.1:

Jede Matrix lässt sich mit endlich vielen elementaren Zeilenumformungen auf Zeilen-Stufenform bringen.

Beweis:

Das hier beschriebene Verfahren ist der sogenannte Gauß-Jordan'sche-Eliminationsalgorithmus!

- 1. Sortiere die Zeilen nach dem Auftreten des am weitesten links stehenden von Null verschiedenen Element. Nullzeilen unten einsortieren.
- 2. Führe dann Umformungen durch

Definition 7.3: Pivotelemente

Die *Pivotelemente* einer Matrix in Zeilen-Stufenform sind die in ihrer Zeile am weitesten links stehenden von Null verschiedenen Elemente, die nicht in einer Nullzeile stehen. Die *Pivotvariablen* sind die zugehörigen Variablen. x_j ist eine Pivotvariable genau dann, wenn in der j-ten Spalte von A ein Pivotelement steht.

Die Anzahl der Pivotvariablen ist gleich k (s.o.).

8: LINEARE GLEICHUNGSSYSTEME

Definition 8.1: Lineares Gleichungssystem

Ein lineares Gleichungssystem (LGS) in n Unbekannten mit m Gleichungen ist ein System der Form:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Wobei die Koeffizienten a_{ij} und die Elemente b_i auf der rechten Seite Elemente eines Körpers K sind.

Ein Vektor

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ v_n \end{pmatrix}$$

heißt Lösung, wenn die x_1, \ldots, x_n alle m Gleichungen gleichzeitig erfüllen. Sind alle Elemente b_i gleich 0, heißt das Gleichungssystem homogen, andernfalls inhomogen.

BEMERKUNG: Die Lösungsmenge ist $\mathbb{L} := \{x \in K^n \mid A \cdot x = b\}$

Definition 8.2: Zugehöriges homogenes System

Sei durch $A \cdot x = b$ ein LGS gegeben. Falls b = 0 gilt, dann handelt es sich um ein homogenes System, sonst um ein inhomogenes.

Man bezeichnet $A \cdot x = 0$ als das zu $A \cdot x = b$ gehörige homogene System.

Satz 8.1: Kennzeichnung der Lösungsmenge

Sei $A\cdot x=b$ ein lineares Gleichungssystem mit nichtleerer Lösungsmenge. Sei $p\in K^n$ eine beliebige Lösung des Systems.

Sei U die Lösung des zugehörigen homogenen Systems, dann gelten die Aussagen:

- 1. U ist ein Untervektorraum des K^n .
- 2. Die Lösungsmenge von $A \cdot x = b$ ist $p + U = \mathbb{L} = \{p + u \mid u \in U\}$

Beweis:

1. Gilt, da die Lösungsmenge U des homogenen Systems der Kern der linearen Abbildung $x\mapsto A\cdot x, K^n\to K^m$ ist.

2. Sei $x \in p + U$, das heißt x = p + u mit $u \in U$. Dann gilt:

$$A \cdot x = A(p+u) = A \cdot p + A \cdot u$$
 (u ist aus dem Kern)
= $b+u$

Das heißt, x ist eine Lösung von $A \cdot x = b$.

Umgekehrt: ist x eine Lösung von $A \cdot x = b$, dann gilt:

$$A(x-p) = b - b = 0$$

das heißt, $x - p \in U \Leftrightarrow x \in p + U$

BEMERKUNG:

- Man nennt p wie oben auch partikuläre oder spezielle Lösung des inhomogenen Systems.
- Teilmengen eines Vektorraums V der Form p+U wobei $p\in V, U\subseteq V$ und U ein Untervektorraum von V ist, nennt man auch *affine Unterräume* von V.

Allgemein ist eine Teilmenge $A\subseteq V$ ein affiner Untterraum wenn A leer ist oder von der Form $A=p+U, p\in V, u\subseteq V$ und U ein Untervektorraum ist.

- Die Lösungsmengen von linearen Gleichungssystemen sind immer affine Unterräume von ${\cal K}^n.$
- Durch weitere Zeilenumformungen lässt sich eine Matrix in Zeilen-Stufenform in die sogenannte reduzierte Zeilen-Stufenform bringen:

Jedes Pivotelement ist 1 und über (und natürlich darunter) jedem Pivotelement stehen Nullen.

• Will man ein LGS Ax = b simultan für verschiedene rechte Seiten $Ax = b_1, Ax = b_2, \dots$ lösen, kann man diese zu einer einzigen erweiterten Matrix zusammenfassen.

$$(A \mid b_1 \quad b_2 \quad \cdots)$$

• Insbesondere, setzt man für eine quadratische Matrix $A \in M(n,K)$ als rechte Seiten die Standardbasisvektoren ein, betrachtet man also die erweiterte Matrix

$$(A \mid e_1 \quad e_2 \quad \cdots \quad e_n) = (A \mid E_n)$$

erhält man ein Verfahren, mit dem man die Invertierbarkeit von ${\cal A}$ prüfen kann und ggf. die Inverse bestimmen kann.

Satz 8.2: Inverse Matrix berechnen

Sei $A \in M(n,K)$ eine quadratische Matrix und sei $(A|e_1|\dots|e_n) = (A \mid E_n) \in M(n,2n,K)$ die Matrix, die durch Nebeneinandersetzen von A und der $n \times n$ -Einheitsmatrix entsteht. Die Matrix A ist genau dann invertierbar, wenn sich diese erweiterte Matrix ohne Entstehen von Nullzeilen auf Zeilen-Stufenform bringen lässt.

In diesem Fall gilt: Ist (E|B) die reduzierte Zeilen-Stufenform von (A|E), dann ist B das Inverse von A.

9: DETERMINANTEN UND DER GAUSS-ALGORITHMUS

9.1 Determinanten

Definition 9.1: Determinante einer 2×2 -Matrix

Für eine 2×2 -Matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(2,K)$ definieren wir die *Determinante* von A durch

$$\det A = \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Satz 9.1: Invertierbarkeit einer 2×2 -Matrix

 $\text{Eine } 2\times 2\text{-Matrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(2,K) \text{ ist genau dann invertierbar, wenn } ad-bc \neq 0 \text{ gilt.}$

Wir wollen die Definition auf quadratische Matrizen beliebiger Größe erweitern:

$$\det: M(n,K) \to K$$

A soll genau dann invertierbar sein, wenn $\det A \neq 0$.

Dazu fassen wir eine $n \times n$ -Matrix als ein n-Tupel von n-Zeilenvektoren auf, also als ein Element von

$$(K^n)^n = \underbrace{K^n \times K^n \times \ldots \times K^n}_{n \text{ mal}}$$

- Eine Abbildung $d:V^n \to K$ wobei V ein K-Vektorraum ist, heißt $\mathit{multilinear}$, wenn

$$V \to K, x \mapsto d(v_1, \dots, v_{i-1}, x, v_{i+1}, \dots, v_n)$$

für jedes $i\in\{1,\dots,n\}$ und alle $v_k\in V$ eine lineare Abbildung ist. Oder kurz gesagt, wenn sie in allen Argumenten linear ist.

- Sie heißt alternierend, wenn sie den Wert 0 annimmt sobald zwei der Argumente gleich sind.
- Sie heißt normiert, falls $d(e_1,e_2,\dots,e_n)=1$ gilt, sie also auf die Einheitsmatrix angewendet die Zahl Eins ergibt.

(Die oben definierte Determinante für 2×2 -Matrizen hat diese Eigenschaften)

Definition 9.2: Determinante

Es gibt genau eine Abbildung

$$(K^n)^n \to K$$

die multilinear, alternierend und normiert ist.

Der Wert dieser Abbildung auf die Zeilen einer Matrix $A \in M(n,K)$ angewendet heißt Determinante einer Matrix:

 $\det A$

9.1.1 Berechnung der Determinante

Man kann ${
m det}A$ mithilfe des Gaußalgorithmus berechnen:

Satz 9.2:

Sei $A \in M(n,K)$ eine quadratische Matrix, dann ändert sich die Determinante bei elementaren Zeilenumformungen wie folgt:

- **EU 1** Beim Vertauschen zweier Zeilen multipliziert sich $\det A$ mit (-1).
- **EU 2** Wird eine Zeile mit $\lambda \in K$ multipliziert, dann multipliziert sich die Determinante ebenfalls mit λ , d.h. man muss $\det A$ mit dem Kehrwert multiplizieren um das richtige Ergebnis zu erhalten.
- **EU 3** Wird ein Vielfaches einer Zeile zu einer anderen addiert, ändert sich der Wert der Determinante nicht.

Beweis:

EU 1 wegen Multilinearität und alternierend:

$$\underbrace{\det(\dots, v+w, \dots, v+w, \dots)}_{=0} = \det(\dots, v, \dots, v+w, \dots) + \det(\dots, w, \dots, v+w, \dots)$$

$$= \underbrace{\det(\dots, v, \dots, v, \dots)}_{=0} + \det(\dots, v, \dots, w, \dots) + \underbrace{\det(\dots, w, \dots, w, \dots)}_{=0}$$

$$\det(\dots, v, \dots, w, \dots) = -\det(\dots, w, \dots, v, \dots)$$

- EU 2 folgt direkt aus der Multilineariät.
- EU 3 wegen der Multilinearität:

$$\det(\ldots, v, \ldots, w + \lambda \cdot v, \ldots) = \det(\ldots, v, \ldots, w, \ldots) + \lambda \cdot \underbrace{\det(\ldots, v, \ldots, v, \ldots)}_{=0}$$

BEMERKUNG: Diese Eigenschaften genügen, um jede Determinante auszurechnen (mit dem Gaußalgorithmus). Entweder entsteht eine Nullzeile oder man formt um bis zur Einheitsmatrix.

BEISPIEL:

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 0 & -2 \end{vmatrix} = -2 \begin{vmatrix} 1 \\ 1 \end{vmatrix} = -2 = 1 \cdot 4 - 2 \cdot 3$$

Lemma 9.1: Determinante von Matrizen in oberer Dreiecksgestalt

Für Diagonalmatrizen und allgemeiner, für obere Dreiecksmatrizen gilt:

$$\det \begin{pmatrix} \lambda_1 & * & \cdots & * \\ & \lambda_2 & \cdots & * \\ & & \ddots & \vdots \\ & & & \lambda_n \end{pmatrix} = \lambda_1 \cdot \lambda_2 \cdot \dots \cdot \lambda_n$$

Beweis:

Für die Diagonalmatrizen direkt aus der **(EU 2)** und der Normiertheit der Determinante. Für die obere Dreiecksgestalt gilt, dass man sie durch **(EU 3)** auf Diagonalgestalt bringen kann falls alle Elemente ungleich Null sind. Dabei ändert sich nichts am Wert der Determinante. Ist eines der Diagonalelemente Null, entsteht eine Nullzeile durch den Gaußalgorithmus $\rightsquigarrow \det A = 0$.

Satz 9.3: Determinante und Invertierbarkeit

Die Determinante einer Matrix ist genau dann von Null verschieden, wenn die Matrix invertierbar ist.

Beweis:

Die Matrix ist genau dann invertierbar, wenn in einer Zeilen-Stufenform keine Nullzeilen vorkommen. Dies ist genau dann der Fall wenn die Determinante von Null verschieden ist.

BEMERKUNG: Aus dem Satz folgt die Eindeutigkeit der Determinante, denn wir können ihren Wert berechnen.

Satz 9.4:

Sie $A \in M(n,K)$, dann bezeichnet für $i,j \in \{1,\ldots,n\}$ A_{ij} die Matrix aus M(n-1,K) die aus Streichen der *i*-ten Zeile und *j*-ten Spalte hervorgeht.

BEISPIEL:

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix} \rightsquigarrow A_{32} = \begin{pmatrix} 1 & 3 & 4 \\ 5 & 7 & 8 \\ 13 & 15 & 16 \end{pmatrix}$$

Satz 9.5: La-Place'scher Entwicklungssatz

Sie $A \in M(n, K)$ und $j \in 1, ..., n$, dann gilt:

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} \cdot a_{ji} \cdot \det A_{ij}$$

ERLÄUTERUNG: Dieses Verfahren wird auch Entwickeln nach der j-ten Spalte genannt.

$$A=egin{pmatrix} 1&2&3\\4&5&6\\7&8&9 \end{pmatrix} \quad ext{und } j=1 ext{ (Entwickeln nach der 1. Spalte)}$$

Den Faktor $(-1)^{i+j}$ können wir uns als schachbrettartiges Muster von Vorzeichen denken:

$$A = \begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$

$$\det A = 1 \cdot \det A_{11} - 4 \cdot \det A_{12} + 7 \cdot \det A_{13}$$

$$= \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 4 \cdot \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} + 7 \cdot \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix}$$

$$= 5 \cdot 9 - 6 \cdot 8 - 4(2 \cdot 9 - 3 \cdot 8) + 7(2 \cdot 6 - 3 \cdot 5)$$

$$= 45 - 48 - 4(18 - 24) + 7(12 - 15)$$

$$= -3 - 4(-6) + 7(-3)$$

$$= -3 + 24 - 21$$

$$= 0$$

Beweis:

Wir weisen nach, dass es sich bei der Formel um eine multilineare, alternierende, normierte Abbildung handelt.

INDUKTIONSVORAUSSETZUNG: Damit die Formel auch für 1×1 -Matrizen sinnvoll ist, setzen wir für $A \in M(1,K) \det A_{11} = 1$, d.h. die Determinante einer 0×0 -Matrix ist 1.

Induktions an fang: n=1

Die Formel lautet

$$\det A = \det A_{11} = a_{11} \cdot \det(A_{11}) = a_{11}$$

diese Abbildung ist linear, alternierend und normiert.

Induktions schrift: $n \rightarrow n+1$

Die Formel ist linear in der i-ten Zeile, da Linearkombination der Einträge a_{i1}, \ldots, a_{in} der i-ten Zeile. Sie ist auch linear in den anderen Zeilen, da Linearkombination der $\det A_{ij}$, die nach **IV** multilinear sind.

Sind zwei Zeilen gleich, dann sind nach **IV** alle $\det A_{ij} = 0$ außer die beiden, für die der Index einer der beiden Nullzeilen ist. Aber hier ist $a_{ij} = 0$! (Alternierend)

Die Formel
$$\underbrace{(-1)^{i+j}}_{=1} \cdot \underbrace{a_{jj}}_{=1} \cdot \underbrace{\det E_{ij}}_{=1}$$
 ist normiert.

Satz 9.6: Regel von Sarrus

Für die Determinante einer 3×3 -Matrix gilt:

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$$

MERKREGEL: "Jägerzaunregel"

VORSICHT! Verallgemeinert sich nicht auf höhere Dimensionen.

Beweis:

Entwickeln nach der ersten Spalte:

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \cdot \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \cdot \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$
$$= a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{21}(a_{12}a_{33} - a_{32}a_{13})$$
$$+ a_{31}(a_{12}a_{23} - a_{22}a_{13})$$
$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
$$- a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$$

9.2 Bemerkungen

9.2.1 LEIBNIZ'sche Formel

Satz 9.7:

Für die Determinante einer $n \times n$ -Matrix $A \in M(n,K)$ gilt:

$$\det A = \sum_{\sigma \in \operatorname{Sym}(n)} \operatorname{sgn}(\sigma) \cdot a_{1\sigma(1)} \cdot \ldots \cdot a_{n\sigma(n)}$$

wobei $\mathrm{Sym}(n) = \left\{\sigma: \{1,\dots,n\} \stackrel{\mathrm{bijektiv}}{\longrightarrow} \{1,\dots,n\} \right\}$ die Menge aller Permutationen von $\{1,\dots,n\}$ (auch die symmetrische Gruppe vom Grad n genannt) ist. Und wobei sgn das Vorzeichen der Permutation ist, d.h. $\mathrm{sgn}(\sigma) = +1$ bei einer geraden Permutation (Hintereinanderausführung von einer geraden Anzahl an Vertauschungen), $\mathrm{sng}(\sigma) = -1$ sonst.

3 Analysis

1: KONVERGENZ IN METRISCHEN RÄUMEN

1.1 Metrische Räume

Um Konvergenz (beliebig genaue Approximation) beschreiben zu können, benötigen wir den Begriff des Abstands.

Definition 1.1: Metrik, metrischer Raum

Sei X eine Menge. Eine Abbildung $\varrho:X\times X\to\mathbb{R}$ heißt Metrik (auch Abstandsfunktion), wenn sie für alle $x,y,z\in X$ folgende Eigenschaften hat.

M1 $\varrho(x,y) \geq 0$ und es gilt $\varrho(x,y) = 0$ gdw. x = y

M2 $\varrho(x,y) = \varrho(y,x)$, d.h. ϱ ist eine symmetrische Funktion

M3 $\varrho(x,z) \leq \varrho(x,y) + \varrho(y,z)$ (Dreiecksungleichung)

Eine Menge X versehen mit einer Metrik nennen wir metrischen Raum.

BEISPIELE:

- $X = \mathbb{R}, \varrho(x,y) = |x-y|$
- $X = \mathbb{R}^n$, in \mathbb{R}^n ist der *euklidische Abstand* gegeben durch

$$\varrho(x,y) = \varrho \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}
= \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}
= \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

vgl. dem Satz von Pythagoras

• Auf jeder nichtleeren Menge kann man die diskrete Metrik einführen:

$$d(x,y) = \begin{cases} 0, \text{ falls } x = y\\ 1, \text{ falls } x \neq y \end{cases}$$

• Ist V ein euklidischer Vektorraum, dann ist durch $\|v\| = \sqrt{< x, y>}$ eine Norm gegeben,falls für jede Norm $\|\cdot\|$ liefert $\varrho(x,y) \coloneqq \|x-y\|$ eine Metrik. Mit anderen Worten, jeder normierte Vektorraum ist ein metrischer Raum.

• In der Codierungstheorie führt man auf der Menge der n-stelligen Binärwörter

$$X = \{(x_1, x_2, \dots, x_n) \mid x_i \in \{0, 1\}\}\$$

den Hemmingabstand ein:

 $\varrho(x,y)=$ Anzahl von Stellen an denen sich x und y unterscheiden.

Z.B. $\varrho((0,0,1,1),(0,0,1,0))=1$. Anwendung: Fehlerkorrigierende Codes.

Mit Hilfe der Metrik führen wir den Begriff der Kugelumgebung eines Punktes in einem metrischen Raum ein.

Definition 1.2: Kugelumgebung

Sei ein Punkt $x_0\in X$ und $\epsilon>0$ eine reelle Zahl. Unter der Kugelumgebung von x_0 mit Radius ϵ um den Mittelpunkt x_0 versteht man die Menge

$$K_{\epsilon}(x_0) \coloneqq \{x \in X \mid \varrho(x, x_0) < \epsilon\}$$

BEISPIEL: Im \mathbb{R}^2 mit der euklidischen Metrik ist $K_{\epsilon}(x_0)$ die *offene Kreisscheibe* (das Innere der Kreisscheibe) um x_0 mit Radius ϵ . (Punkte auf dem Kreis sind nicht in K_{ϵ} !)

Definition 1.3: Offene und abgeschlossene Mengen

Sei X ein metrischer Raum. Eine Teilmenge $U\subseteq X$ heißt offen, falls zu jedem $x_0\in U$ eine Kugelumgebung mit $\epsilon>0$ existiert, die ganz in U enthalten ist.

Eine Teilmenge $A \subseteq X$ heißt abgeschlossen, falls ihr Komplement $X \setminus A$ offen ist.

BEISPIEL: Sei $X=\mathbb{R}$ und $\varrho(x,y)=|x-y|$. Dann ist das Intervall

Daim 13t das intervati

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$$

im obigen Sinne offen.

Das Intervall

$$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$$

ist abgeschlossen.

Das Intervall

$$(a, b] = \{x \in \mathbb{R} \mid a < x \le b\}$$

ist weder abgeschlossen noch offen.

1.2 Konvergenz

Sei X ein metrischer Raum.

Definition 1.4: Folgen

Eine Folge ist eine Abbildung $\mathbb{N} \to X$, so dass jedem Element $n \in \mathbb{N}$ ein Element $a_n \in X$ zugeordnet wird.

Wir schreiben oft auch $(a_n)_{n\in\mathbb{N}}, (a_n)$ oder auch einfach a_n für eine Folge.

Die Elemente a_n werden auch die Glieder der Folge oder Folgenglieder genannt.

BEISPIEL: Sei $(a_n)_{n\in\mathbb{N}}$ die Folge definiert durch $a_n=\frac{1}{n}$. Dann ist (a_n) die Folge der Kehrwerte der natürlichen Zahlen.

Jeder weiß, dass die Folge $a_n = \frac{1}{n}$ gegen Null geht, aber was bedeutet das eigentlich genau?

Definition 1.5: Konvergenz einer Folge

Die Folge $(a_n)_{n\in\mathbb{N}}$ aus dem metrischen Raum X konvergiert gegen das Element $a\in X$, falls es zu jedem $\epsilon>0$ einen Index $n_0\in\mathbb{N}$ gibt, so dass gilt:

$$a_n \in K_{\epsilon}(a) \quad \forall n \ge n_0$$

In diesem Fall heißt a der Grenzwert oder auch Limes der Folge (a_n) und man schreibt

$$\lim_{n\to\infty} (a_n), \lim(a_n), a_n\to a$$

1.2.1 Alternative Beschreibung der Konvergenz

• Eine Folge $(a_n)_{n\in\mathbb{N}}$ in einem metrischen Raum X konvergiert gegen $a\in X$, falls gilt:

$$\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \varrho(a_n, a) < \epsilon$$

• Eher eine Umschreibung: $(a_n)_{n\in\mathbb{N}}\to a\Leftrightarrow \varrho(a_n,a)\to 0$

BEISPIELE:

• Die Folge $a_n = \frac{1}{n}$ im metrischen Raum $\mathbb R$ konvergiert gegen 0. Dies lässt sich anhand der Definition beweisen:

Sei
$$\epsilon > 0$$

Zu zeigen ist, dass es einen Index (eine natürliche Zahl) $n_0 \in \mathbb{N}$ gibt, so dass:

$$\varrho(a_n,0) = \frac{1}{n} - 0 = \frac{1}{n} < \epsilon$$

für alle $n \ge n_0$ gilt. $1/n < \epsilon$ ist äquivalent zu $n > 1/\epsilon$.

Wir wählen daher n_0 als irgendeine natürliche Zahl, die größer als $1/\epsilon$ ist.

Dann gilt
$$|1/n - 0| = 1/n < \epsilon$$

- Eine Folge muss nicht konvergieren, z.B. hat $b_n=n$ keinen Grenzwert. Man nennt die Folge (b_n) divergent.
- Sei $X = \mathbb{R}$ und die Folge (c_n) definiert durch $c_n = (-1)^n$. Diese Folge hat ebenso keinen Grenzwert, ist also divergent. Man nennt die Folge (c_n) außerdem *alternierend*.

Manchmal (nicht in dieser Vorlesung) sagt man auch $b_n = n \to \infty$ (uneigentliche Konvergenz)

BEMERKUNG: Eine Folge (a_n) in einem metrischen Raum konvergiert genau dann gegen a, wenn $\varrho(a_n,a)\to 0$. Es muss aber nicht gelten, dass $\varrho(a_n,a)$ monoton gegen Null geht. Zum Beispiel konvergiert die Folge

$$a_n = \frac{1}{n+1+(-1)^n} \leadsto 1, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}, \frac{1}{5}, \frac{1}{8}, \frac{1}{7}, \dots$$

gegen Null.

Satz 1.1: Eindeutigkeit des Grenzwerts

Der Grenzwert einer konvergenten Folge in einem metrischen Raum ist eindeutig bestimmt.

Beweis:

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in X und seien $a,b\in X$ Grenzwerte von (a_n) . Wir nehmen $a\neq b$ an. Sei $\delta=\varrho(a,b)$ der Abstand der beiden Punkte a und b. Wir zeigen: $K_{\delta/2}(a)\cap K_{\delta/2}(b)=\varnothing$. Angenommen, es läge ein Punkt P in dieser Schnittmenge, dann gilt:

$$\varrho(a,P)<\frac{\delta}{2} \text{ und } \varrho(b,P)<\frac{\delta}{2}$$

Nach der Dreiecksungleichung gilt:

$$\varrho(a,b) \leq \varrho(a,P) + \varrho(b,P) < \frac{\delta}{2} + \frac{\delta}{2} = \delta$$

Widerspruch wegen $\varrho(a,b) = \delta$.

Wegen $(a_n) \to a$ gibt es ein $n_0 \in \mathbb{N}$ so, dass $a_n \in K_{\delta/2}$ für alle $n \geq n_0$ gilt. Damit gilt aber da $K_{\delta/2}(a)$ und $K_{\delta/2}(b)$ disjunkt sind, dass $a_n \not\in K_{\delta/2}(b)$ für alle $n \geq n_0$. Widerspruch zu $a_n \to b$

Definition 1.6: Beschränktheit

Eine Folge (a_n) in einem metrischen Raum X ist beschränkt, falls es ein $x_0 \in X$ und ein R > 0 gibt, so dass $a_n \in K_R(x_0)$ für alle $n \in N$ gilt.

Satz 1.2:

Konvergente Folgen sind beschränkt.

Beweis:

Sei a der Grenzwert der Folge und r>0 eine positive Zahl, dann gilt:

Es gibt dann ein $n_0 \in \mathbb{N}$, so dass die $a_n \in K_r(a)$ liegen.

Es gibt aber nur endlich viele Indizes, $(1,\ldots,n_0-1)$ deren Folgenglieder eventuell außerhalb der Kugelumgebung liegen. Wähle am Ende R als das Maximum von $(\varrho(a_1,a),\ldots,\varrho(a_{n_0-1},a),r)$