

Linguagens Formais e Autómatos

Exame (normal) Resolvido

14 de Janeiro de 2015

Exercício 1 [4 valores] Aplique os algoritmos dados nas aulas para encontrar um autómato finito determinista mínimo equivalente ao AFND $A=(\{q_0,q_1,q_2,q_3\}\,,\{a,b\}\,,\delta,q_0,\{q_3\})$ com a transição δ definida pela tabela seguinte

 $egin{array}{c|cccc} q & a & b & \lambda \\ \hline q_0 & \{q_1,q_2\} & & \\ q_1 & & \{q_1,q_3\} & \\ q_2 & \{q_2\} & \{q_2\} & \{q_1\} \\ q_3 & \{q_3\} & \{q_3\} & \end{array}$

AFD equivalente

$$\begin{array}{c|cccc} p & a & b \\ \hline p_0 = \{q_0\} & \{q_1, q_2\} & \emptyset \\ p_1 = \{q_1, q_2\} & \{q_1, q_2\} & \{q_1, q_2, q_3\} \\ p_2 = \emptyset & \emptyset & \emptyset \\ p_3 = \{q_1, q_2, q_3\} & \{q_1, q_2, q_3\} & \{q_1, q_2, q_3\} \end{array}$$

AFD mínimo equivalente

O AFD acima já é mínimo.

Exercício 2 [2 valores] Considere o alfabeto $\Sigma = \{a,b\}$. Defina um AFND para reconhecer a linguagem $A \subseteq \Sigma^*$ das palavras que começam por aa e um AFND para reconhecer a linguagem $B \subseteq \Sigma^*$ das palavras que terminam em ab. Use esses dois autómatos para definir um terceiro AFND para reconhecer a linguagem das palavras que começam por aa e que terminam em ab.

Um AFND **bem preparado** para reconhecer A é $M_A=(Q_A=\{p_0,p_1,p_2,p_3\}\,,\{a,b\}\,,\delta_A,p_0,\{p_3\})$ com transição δ_A dada pela tabela

Um AFND **bem preparado** para reconhecer B é $M_B=(Q_B=\{q_0,q_1,q_2,q_3\}\,,\{a,b\}\,,\delta_B,q_0,\{q_3\})$ com transição δ_B dada pela tabela

$$egin{array}{c|cccc} q & a & b & \lambda \\ \hline q_0 & & & \{q_1\} \\ q_1 & \{q_1, q_2\} & \{q_1\} \\ q_2 & & \{q_3\} \\ q_3 & & & \end{array}$$

O AFND pedido é $M_C = (Q_A \times Q_B, \{a,b\}, \delta_C, (p_0,q_0), \{(p_3,q_3)\})$ com transição δ_C dada pela regra

$$(p', q') \in \delta_C((p, q), x)$$

 $\Leftrightarrow \begin{cases} p' \in \delta_A(p, x) \\ q' \in \delta_B(q, x) \end{cases}$

Exercício 3 Considere a GIC $G = (\{S\}, \{a\}, \{S \rightarrow SS \mid a\}, S)$.

- 1. **[0,5 valores]** Mostre que G é ambígua;
- 2. **[1,5 valores]** Apresente uma GIC não ambígua equivalente a G;

A gramática dada é ambígua porque a palavra de terminais aaa tem duas derivações direitas distintas:

$$S \Rightarrow_R SS \Rightarrow_R SSS \Rightarrow_R SSa \Rightarrow_R Saa \Rightarrow_R aaa$$

 $S \Rightarrow_R SS \Rightarrow_R Sa \Rightarrow_R SSa \Rightarrow_R Saa \Rightarrow_R aaa$

Uma versão não ambígua desta gramática é

$$S \rightarrow aS \mid a$$

Exercício 4 Seja L a linguagem $\{a^nb^mc^{2n}: n, m \geq 0\}$.

- 1. **[1 valor]** Defina um autómato de pilha para reconhecer *L*;
- 2. **[1 valor]** Para a demonstração de que L não é regular, que palavra p usaria? Que decomposição (ou decomposições) de p = uvw consideraria? Como, a partir daí, concluíria que L não é regular?

Um autómato de pilha para reconhecer a linguagem dada é

$$A = (Q = \{p_0, p\}, \Sigma = \{a, b, c\}, \Gamma = \{X\}, \delta, p_0, F = \{p\})$$

com a transição δ dada por

$$p_0 \xrightarrow{a,\lambda/XX} p_0$$

$$p_0 \xrightarrow{b,\lambda/\lambda} p$$

$$p \xrightarrow{c,X/\lambda} p$$

Para demonstrar que L **não é regular**, com vista a uma contradição: supondo que L é regular existe um AFD A que reconhece L. Seja K o número de estados de controlo de A e

$$p = a^K c^{2K} \in L \qquad \qquad \operatorname{com} n = K; m = 0$$

Então, pelo pumping lemma,

$$p = a^K c^{2K} = uvw \qquad \qquad \operatorname{com} |uv| < K; |v| > 0$$

Portanto tem de ser

$$\begin{split} u &= a^U \\ v &= a^V \\ U + V < K \Rightarrow K = U + V + W \\ w &= a^W c^{2K} \\ p &= a^U a^V a^W c^{2K} = a^{U+V+W} c^{2K} \end{split}$$

Ainda pelo pumping lemma tem de ser

$$p' = a^{U} a^{nV} a^{W} c^{2K} = a^{U+nV+W} c^{2K} \in L$$
 $\forall n \ge 0$

Fazendo, por exemplo, n=0 obtém-se

$$a^{U+W}c^{2K} \in L$$

Mas U+W < K porque K=U+V+W e V>0. Portanto a palavra $a^{U+W}c^{2K}$ não respeita a condição $a^nb^mc^{2n}$ que define L, o que é uma **contradição**.

Esta contradição resulta da suposição inicial que L seria uma linguagem regular. Portanto L não pode ser uma linguagem regular.

Exercício 5 [2 valores] Seguindo o processo dado nas aulas, obtenha a *Forma Normal de Greibach* para a gramática

$$G = (\{S, L\}, \{a, b, c\}, \{S \to ab \mid aLb, L \to c \mid LL \mid S\}, S).$$

O símbolo inicial da gramática não é recursivo e a gramática é não-contraível.

Existe uma produção unitária: $L \to S$. Aplicando o método de remoção de produções unitárias obtém-se a **gramática equivalente** com produções

$$S \to ab \mid aLb$$

$$L \to c \mid LL \mid ab \mid aLb$$

Esta gramática está **limpa**.

Uma gramática equivalente na forma normal de Chomsky é

$$\begin{split} S &\to AB \mid DB \\ L &\to c \mid LL \mid AB \mid DB \\ D &\to AL \\ A &\to a \\ B &\to b \end{split}$$

Há um caso de **recursão directa à esquerda**. A gramática que se obtém removendo esse caso é

$$S \rightarrow AB \mid DB$$

$$Z \rightarrow LZ \mid L$$

$$L \rightarrow cZ \mid ABZ \mid DBZ$$

$$\mid c \mid AB \mid DB$$

$$D \rightarrow AL$$

$$A \rightarrow a$$

$$B \rightarrow b$$

Ordenando os não-terminais por S < Z < L < D < A < B as produções ficam como estão. Substituindo de baixo para cima os primeiros não-terminais de cada produção, obtém-se a gramática

$$S \rightarrow aB \mid aLB$$

$$Z \rightarrow cZZ \mid aBZZ \mid aLBZZ \mid cZ \mid aBZ \mid aLBZ$$

$$\mid cZ \mid aBZ \mid aLBZ \mid c \mid aB \mid aLB$$

$$L \rightarrow cZ \mid aBZ \mid aLBZ$$

$$\mid c \mid aB \mid aLB$$

$$D \rightarrow aL$$

$$A \rightarrow a$$

$$B \rightarrow b$$

que está na forma normal de Greibach.

Exercício 6 [2 valores] Justifique se a gramática $G = (\{S, A\}, \{a, b, c\}, \{S \rightarrow aSb \mid A, A \rightarrow aAc \mid \lambda\}, S)$ é, ou não, $\mathcal{LL}(1)$.

O conjunto dos produtores da palavra vazia é

$$\Lambda = \{S,A\}$$

Os conjuntos dos **primeiros** e **seguintes** de cada não-terminal são

NT	PRIMEIROS	SEGUINTES
\overline{S}	<i>{a}</i>	<i>{b}</i>
A	$\{a\}$	$\{b,c\}$

Os **directores** da produção $S \to aSb$ são $\{a\}$ e da produção $S \to A$ são $\{a,b\}$.

Como o não-terminal S tem produções distintas cujos símbolos directores se intersectam, **a gramática** não é $\mathcal{LL}(1)$.

Exercício 7 Considere a gramática $G = (\{S, A, B\}, \{a, b\}, \dots, S)$ com produções

$$S \to AB \mid bAB$$
 $A \to aA \mid \lambda$

$$A \to aA \mid \lambda$$

$$B o Bb \mid \lambda$$

• [2,5 valores] Mostre que esta gramática **não é** $\mathcal{LR}(0)$ e identifique os tipos de conflitos que acontecem;

• [2,5 valores] Mostre que esta gramática não é $\mathcal{LR}(1)$ e identifique os critérios que falham. Sugestão: comece a construir o autómato finito dos itens $\mathcal{LR}(1)$ válidos e em cada estado que obtém confirme se são verificados os critérios $\mathcal{LR}(1)$;

Para verificar que a gramática não é $\mathcal{LR}(0)$.

Na construção do autómato dos itens $\mathcal{LR}(0)$ válidos o estado inicial tem os itens

$$S \rightarrow \cdot AB$$

$$S \rightarrow \cdot bAB$$

$$A \rightarrow \cdot aA$$

$$A \rightarrow \cdot$$

O último é um **item completo**. Portanto, nesse estado:

- 1. mais nenhum item pode ser completo (senão haveria um conflito redução/redução);
- 2. nos restantes itens o ponto, ·, não pode estar antes de um terminal (senão haveria um conflito transferência/redução);

Mas a segunda condição é violada pelos itens $A \to \cdot aA$ e $S \to \cdot bAB$. Portanto esta gramática não é $\mathcal{LR}(0)$ porque produz conflitos transferência/redução.

Para verificar que a gramática não é $\mathcal{LR}(1)$. Considere-se a gramática equivalente, estendida com a produção $S' \to S$ #.

Os não-terminais que produzem a palavra vazia são:

$$\Lambda = \{S, A, B\}$$

Os primeiros e seguintes de cada não-terminal são

NT	PRIMEIROS	SEGUINTES
\overline{S}	$\{a, b, \#\}$	{#}
A	$\{a\}$	$\{b,\#\}$
B	$\{b\}$	$\{b,\#\}$

Na construção do autómato dos itens $\mathcal{LR}(1)$ válidos o estado inicial tem os itens

$$\begin{array}{ll} S \rightarrow \cdot AB & ; \# \\ S \rightarrow \cdot bAB ; \# \\ A \rightarrow \cdot aA & ; b, \# \\ A \rightarrow \cdot & ; b, \# \end{array}$$

O último é um item completo: $[A o \cdot; b, \#]$. Para que esta gramática fosse $\mathcal{LR}(1)$ neste estado

- 1. havendo outro item completo os conjuntos dos símbolos da avanço (dos itens comopletos) teriam de ser disjuntos;
- 2. havendo um item $[B \to u \cdot av \; ; \; K]$ (com a um terminal) então $a \not \in \{b, \#\}$

Mas a segunda condição é violada pelo item $[S \to bAB; \#]$. Portanto esta gramática não é $\mathcal{LR}(1)$ porque produz um conflito transferência/redução.

Exercício 8 [1 valor] Suponha que programa MRI m resolve o problema de decisão M: "O número x é múltiplo do número y". Reduza o problema de decisão P: "O número x é par" a M.

A redução pedida é feita pelo programa MRI

3.
$$S_2$$

$$\begin{cases} 1. & \mathsf{Z}_2 \\ 2. & \mathsf{S}_2 \\ 3. & \mathsf{S}_2 \\ 4. & \mathsf{m} \left[1, 2 \to 1 \right] \end{cases}$$