

Práctica 2 Divide y Venceras

MARIO LÍNDEZ MARTÍNEZ

JUAN AYUSO ARROYAVE

MARIO MARTÍN RODRÍGUEZ

INDICE

- Objetivos
- Definición del problema
- Algoritmo Específico
- Algoritmo Divide y Vencerás
- Comparación Eficiencias
- Conclusión

Objetivos

Objetivos

El objetivo de esta práctica es el uso de la técnica conocida como "Divide y Vencerás" sobre un algoritmo que debe ser solución al problema planteado. Para ello, en primer lugar, hemos diseñado un algoritmo que resuelve el problema y sobre dicho algoritmo hemos aplicado la técnica "Divide y Vencerás" para aprender su utilización correcta y para comprobar cómo la eficiencia mejora respecto al algoritmo original.

Para ver esto último hemos implementado un generador de casos y hemos estudiado la eficiencia teórica, empírica e híbrida (tanto del algoritmo específico como del "Divide y Vencerás"). Para finalizar hemos calculado los umbrales.

Definición del problema

Enunciado

Los diseñadores de un videojuego ubicado en la "Tierra Media" de J.R.R. Tolkien quieren implementar el reparto de vituallas a hobbits y enanos dispersos en territorio hostil, controlado por los orcos. Los enanos han conseguido domar varios dragones y los utilizan para sobrevolar el territorio enemigo y lanzar paquetes con provisiones desde ellos. Tras cada incursión pueden conocer la ubicación exacta en que aterriza cada uno de sus paquetes. Pero quieren caracterizar la superficie total cubierta en cada envío. Es decir, considerando como entrada el conjunto P de puntos pi = (xi, yi) donde han caído cada uno de los n paquetes lanzados, determinar el polígono convexo de menor superficie que incluye todos los puntos.

Traducción

Nosotros contamos con una serie indeterminada de puntos aleatorios y desordenados, de los cuales queremos conocer la envolvente conexa, es decir, queremos saber de qué forma tenemos que unir los puntos para que todos ellos estén contenidos en el polígono formado por la unión y que el área sea la menor posible.

Algoritmo Específico

Algoritmo Específico

Para la resolución del problema planteado hemos utilizado el algoritmo de Graham, el cual tiene una complejidad O(nlogn). El algoritmo consiste en lo siguiente:

En primer lugar, debemos encontrar el punto de menor valor en el eje Y. Si hay dos puntos con el mismo valor, se busca el que tenga menor valor en el eje X entre estos puntos. A ese punto lo llamaremos A.

Tras esto, debemos ordenar el resto de los puntos (Pi) de forma creciente en función del ángulo formado entre el segmento APi y el eje X.

Sin embargo, no hace falta calcular dicho ángulo ya que simplemente podemos ordenarlos calculando tangentes y cotangentes (si los puntos están en el primer y tercer cuadrante usamos la tangente, si están en el segundo y cuarto cuadrante utilizamos la cotangente). Para ordenar usamos el método de ordenación quicksort.

Por último, calculamos la envolvente conexa. Para ello, vemos si para cada punto, el movimiento desde los dos puntos anteriores se trata de un giro a la derecha o a la izquierda. Si gira a la derecha, el segundo punto no pertenece a la envolvente y si gira a la izquierda sí.

Giro a la derecha

Giro a la izquierda

Para ver hacia dónde es el giro, dados 3 puntos (x1,y1), (x2,y2), (x3,y3), usamos la siguiente fórmula:

$$(x2-x1)*(y3-y1) - (y2-y1)*(x3-x1)$$

Si el resultado es 0, están alineados, si es positivo giras a la izquierda y si es negativo giras a la derecha.

Eficiencia Teórica

La eficiencia teórica del algoritmo de Graham es de O(nlog(n)), como hemos mencionado previamente. Adaptándolo a nuestra implementación, debemos tener en cuenta la ordenación previa por el ángulo el cual posee una eficiencia O(nlog(n))Por lo tanto nuestro algoritmo será de eficiencia:

$$nlog(n) + nlog(n) = 2nlog(n) \in O(nlog(n))$$

Para realizar un análisis de eficiencia empírica deberemos ejecutar el mismo algoritmo para diferentes tamaños de entrada. Para este algoritmo, lo ejecutaremos para diferentes tamaños del vector de puntos al cual debemos calcular la envolvente conexa y obtendremos el tiempo. Estos tiempos los almacenamos en un fichero salidaE.dat. El código es el siguiente:

```
#!/bin/bash
printf "" > salidaE.dat

i=50000
while [ "$i" -le 1300000 ]
do
# Generamos los puntos
./generador $i

# Ejecutamos los puntos
./especifico data.txt >> salidaE.dat
echo "Terminado $i"

i=$(( $i + 50000 ))
done
```

Empezamos con un tamaño base de 50000 puntos y vamos aumentándolo de 50000 en 50000 hasta llegar al tamaño de 1300000 puntos.

Los tiempos obtenidos son los siguientes:

Tamaño	Tiempo (seg)	
50000	0,0389882	
100000	0,079321	
150000	0,121519	
200000	0,164437	
250000	0,210639	
300000	0,268356	
350000	0,280973	
400000	0,355062	
450000	0,377885	
500000	0,413531	
550000	0,469318	
600000	0,513199	
650000	0,577639	
700000	0,629695	
750000	0,689323	
800000	0,740768	
850000	0,771335	
900000	0,832012	
950000	0,809482	
1000000	0,922623	
1050000	0,935901	
1100000	1,02946	
1150000	1,04901	
1200000	1,15917	
1250000	1,15069	
1300000	1,19815	

Eficiencia Híbrida

Para la eficiencia híbrida, hemos realizado un ajuste con la función $f(x) = x\log(x)$ y como resultado hemos obtenido las siguientes constantes ocultas:

Constantes ocultas

Final set o	f parameters	Asymptotic Stan	dard Error
========	=======	=========	=======
a0	= 4.5831e-08	+/- 2.515e-10	(0.5487%)

Cuyo coeficiente de correlación es de 0,9982

Eficiencia Híbrida

Algoritmo Divide y Vencerás

Algoritmo Divide y Vencerás

Para aplicar el Divide y Vencerás, comenzamos ordenando el vector de forma creciente en función del punto con menor coordenada en el eje X. Para la ordenación utilizamos el método quicksort.

```
int comparePuntos (const void * a, const void * b) {
   Punto * p = (Punto *) a;
   Punto * q = (Punto *) b;

int retorno = 0;

if (p->getX() < q->getX()){
    retorno = -1;
   } else if (p -> getX() > q->getX()) {
    retorno = 1;
   }
   return (retorno);
}
```

```
void OrdenaPorOrdenada (vector<Punto> & p){
    qsort(p.data(), p.size(), sizeof(Punto), comparePuntos);
}
```

Una vez ordenado, dividimos el vector en partes iguales hasta que el número de puntos sea < 100, el cuál es el mínimo número de puntos que hemos considerado que debe tener cada partición.

A cada una de las divisiones le aplicamos el algoritmo de Graham explicado previamente en el algoritmo específico.


```
vector <Punto> DivideyVenceras_lims (vector<Punto> p, int inicial, int final){
    vector<Punto> solucion;
    if (final - inicial <= UMBRAL){
        solucion = EnvolventeConexa_lims(p, inicial, final);
    } else {
        int k = (final - inicial)/2;

        vector<Punto> U (p.begin(), p.begin()+k);

        vector<Punto> V (p.begin()+k, p.end());

        solucion = Fusion(DivideyVenceras_lims(U, 0, k), DivideyVenceras_lims(V, 0, final-k));
    }

    return (solucion);
}
```


Una vez calculadas las envolventes conexas, unimos las envolventes de todas las divisiones. Para ello calculamos la tangente superior e inferior entre los polinomios contiguos tanteando hasta obtenerlos.

Con las tangentes obtenidas, sólo nos queda fusionar las envolventes, que bastaría con añadir los puntos desde la tangente inferior hasta la tangente superior del polinomio derecho y después añadir desde la tangente superior hasta la tangente inferior del izquierdo.

Eficiencia Teórica

La eficiencia teórica de nuestro algoritmo divide y vencerás vendrá dada por: $T(n) = \{t(n) \ si \ n < 100 \ 2T \ (n \ 2) + F(n) \ si \ n \ge 100 \ Donde \ t(n)$ es la eficiencia del caso base, es decir la eficiencia teórica del algoritmo de Graham, que es $O(nlog2\ (n))$, como hemos mencionado previamente, mientras que F(n) es la eficiencia de la función de fusión, cuyo tiempo de ejecución será de $F(n) = 4n \ \epsilon \ O(n)$ Para hallar la eficiencia resolveremos la recursividad: $T(n) = 2T \ (n \ 2) + n \ Como \ F(n)$ tiene una eficiencia lineal podemos aplicar la fórmula maestra de tal forma que podemos concluir con que nuestro algoritmo es de orden $O(nlog2\ (n))$ ya que $I = 2 = 2 \ 1 = b$

```
#!/bin/bash
printf "" > dyv.dat
i=50000
while [ "$i" -le 1300000 ]
do
# Generamos los puntos
./generador $i
# Ejecutamos los puntos
./dyv data.txt >> dyv.dat
echo "Terminado $i"
i=\$((\$i + 50000))
done
```

Para realizar un análisis de eficiencia empírica deberemos ejecutar el mismo algoritmo para diferentes tamaños de entrada. Para el este algoritmo, lo ejecutaremos para diferentes tamaños del vector de puntos al cual debemos calcular la envolvente conexa y obtendremos el tiempo. Estos tiempos los almacenamos en un fichero dyv.dat. El código es el siguiente:

Empezamos con un tamaño base de 50000 puntos y vamos aumentándolo de 50000 en 50000 hasta llegar al tamaño de 1300000 puntos.

Los tiempos obtenidos son los siguientes:

Tamaño Tiempo (seg) 50000 0,0379006 100000 0,078322 150000 0,124648 200000 0,161875 250000 0,222204 300000 0,254597 350000 0,291347 400000 0,328745 450000 0,426585 500000 0,45631 550000 0,493431 600000 0,525796 650000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,859093 900000 0,877915 950000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,11873 1300000 1,15312			
50000 0,0379006 100000 0,078322 150000 0,124648 200000 0,161875 250000 0,222204 300000 0,254597 350000 0,291347 400000 0,328745 450000 0,426585 500000 0,45631 550000 0,493431 600000 0,525796 650000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,859093 900000 0,877915 950000 0,908031 1000000 0,938378 1050000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	Tamaño	Tiempo	
100000 0,078322 150000 0,124648 200000 0,161875 250000 0,222204 300000 0,254597 350000 0,291347 400000 0,328745 450000 0,426585 500000 0,45631 550000 0,493431 600000 0,525796 650000 0,565312 700000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,877915 950000 0,987915 950000 0,988378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873		(seg)	
150000 0,124648 200000 0,161875 250000 0,222204 300000 0,254597 350000 0,291347 400000 0,328745 450000 0,426585 500000 0,45631 550000 0,493431 600000 0,525796 650000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,877915 950000 0,987915 950000 0,908031 1000000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	50000	0,0379006	
200000 0,161875 250000 0,222204 300000 0,254597 350000 0,291347 400000 0,328745 450000 0,426585 500000 0,45631 550000 0,493431 600000 0,525796 650000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,877915 950000 0,987915 950000 0,908031 1000000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	100000	0,078322	
250000 0,222204 300000 0,254597 350000 0,291347 400000 0,328745 450000 0,426585 500000 0,45631 550000 0,493431 600000 0,525796 650000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,87915 950000 0,987915 950000 0,988378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	150000	0,124648	
300000 0,254597 350000 0,291347 400000 0,328745 450000 0,426585 500000 0,45631 550000 0,525796 650000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,877915 950000 0,938378 1050000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	200000	0,161875	
350000 0,291347 400000 0,328745 450000 0,426585 500000 0,45631 550000 0,493431 600000 0,525796 650000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,87915 950000 0,987915 950000 0,98378 1000000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	250000	0,222204	
400000 0,328745 450000 0,426585 500000 0,45631 550000 0,493431 600000 0,525796 650000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,879915 950000 0,987915 950000 0,938378 1000000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	300000	0,254597	
450000 0,426585 500000 0,45631 550000 0,493431 600000 0,525796 650000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,879915 950000 0,877915 950000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,0801 1250000 1,0801 1250000 1,11873	350000	0,291347	
500000 0,45631 550000 0,493431 600000 0,525796 650000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,859093 900000 0,877915 950000 0,908031 1000000 0,938378 1050000 1,070747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	400000	0,328745	
550000 0,493431 600000 0,525796 650000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,879915 950000 0,877915 950000 0,908031 1000000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	450000	0,426585	
600000 0,525796 650000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,879915 950000 0,970745 1000000 0,970747 1100000 1,01011 1150000 1,0801 10250000 1,0801 1250000 1,11873	500000	0,45631	
650000 0,565312 700000 0,599045 750000 0,638797 800000 0,678233 850000 0,859093 900000 0,877915 950000 0,908031 1000000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	550000	0,493431	
700000 0,599045 750000 0,638797 800000 0,678233 850000 0,859093 900000 0,877915 950000 0,908031 1000000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	600000	0,525796	
750000 0,638797 800000 0,678233 850000 0,859093 900000 0,877915 950000 0,908031 1000000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	650000	0,565312	
800000 0,678233 850000 0,859093 900000 0,877915 950000 0,908031 1000000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	700000	0,599045	
850000 0,859093 900000 0,877915 950000 0,908031 1000000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	750000	0,638797	
900000 0,877915 950000 0,908031 1000000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	800000	0,678233	
950000 0,908031 1000000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	850000	0,859093	
1000000 0,938378 1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	900000	0,877915	
1050000 0,970747 1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	950000	0,908031	
1100000 1,01011 1150000 1,04272 1200000 1,0801 1250000 1,11873	1000000	0,938378	
1150000 1,04272 1200000 1,0801 1250000 1,11873	1050000	0,970747	
1200000 1,0801 1250000 1,11873	1100000	1,01011	
1250000 1,11873	1150000	1,04272	
	1200000	1,0801	
1300000 1,15312	1250000	1,11873	
	1300000	1,15312	

Eficiencia Híbrida

Para la eficiencia híbrida, hemos realizado un ajuste con la función $f(x) = x\log(x)$ y como resultado hemos obtenido las siguientes constantes ocultas:

Constantes ocultas

Cuyo coeficiente de correlación es de 0.9962.

Eficiencia Híbrida

Comparación Eficiencias

Umbral teórico

Calcularemos el umbral teórico usando un solo nivel de recursividad:

$$t(n) = \begin{cases} h(n) = 2nlog_2(n) & \text{si } n < n_0 \\ 2t\left(\frac{n}{2}\right) + 4n & \text{si } n \ge n_0 \end{cases}$$

Calcularemos el umbral teórico usando un solo nivel de recursividad:

$$2nlog_2(n) = nlog\left(\frac{n}{2}\right) + 4n \quad \Leftrightarrow \quad [\dots] \qquad \Leftrightarrow n = 2^3 = 8$$

Esto tiene sentido pues como ya hemos visto las gráficas son prácticamente coincidentes

Umbral óptimo

Para calcular el umbral óptimo tendremos que igualar las expresiones calculadas previamente en el análisis híbrido.

$$4,5831 \cdot 10^{-8} x \log_2(x) = 4,57445 \cdot 10^{-8} x \log_2(x)$$

Lo cual se cumple para 4 valores:

- 0.999999991836

- 0.999999991859

- 0.999999992047

- 0.999999992007

Por lo que podemos tomar como umbral n = 1

Conclusión

Hemos llegado a la conclusión de que al aplicar el método Divide y Vencerás sobre un algoritmo, no siempre vamos a tener garantizado mejorar su eficiencia frente al de una implementación específica.

Para que sí que nos sea útil hemos comprobado la importancia de analizar nuestro problema previamente, así como de conocer previamente el valor del umbral para poder decidir entre usar el método Divide y Vencerás y el específico.