Árvore-B Virtual

Prof. Ms. Anderson Canale Garcia

Adaptado de:

Profa. Dra. Cristina D. Aguiar

Contexto

• Índice Simples X Árvore-B

Acessos a Disco

Problema

 encontrar uma maneira de fazer um uso eficiente de índices que são muito grandes para serem armazenados inteiramente em memória principal (i.e., RAM)

Objetivo

 encontrar uma maneira de diminuir o número médio de acessos a disco para pesquisa

Exemplo

- 1 MB de registros
- 256 K de RAM para uso
- 4 K de tamanho de página
 - 64 chaves por página
 - Árvore-B em três níveis

Como melhorar?

Melhorias de Desempenho

- Manter a página raiz em memória principal
 - ainda deixa espaço disponível em RAM
 - diminui o número de acessos a disco em 1 no pior caso

- Manter em um buffer-pool (i.e., em RAM) um certo número de páginas da árvore-B
 - abordagem mais genérica

Árvore-B Virtual

Pesquisa

- primeiro procura a página no buffer-pool para evitar acessos a disco
- se a página não estiver no buffer-pool, o acesso é realizado em disco e a página é copiada para o buffer-pool

Substituição de Páginas

Page Fault

- processo de acessar o disco para trazer uma página que não está no buffer-pool
- causas
 - a página nunca foi utilizada
 - a página foi substituída no buffer-pool por outra página

Decisão crítica

– qual página deve ser substituída no bufferpool, quando este encontra-se cheio?

Opções

- Política LRU (least recently used)
 - substitui a página que foi acessada menos recentemente
- Substituição baseada na altura da página
 - mantém as páginas que estão nos níveis mais altos da árvore (i.e., próximas à raiz)
 - utiliza a política LRU para as demais páginas (i.e., páginas mais utilizadas)

Exemplo

Conclusão

O uso de *buffers*deve ser feito em
qualquer situação
real de utilização de
árvore-B