

MATHEMATICS VECTOR ANALYSIS

Previous year Questions from 1992 To 2017

Syllabus

Scalar and vector fields, differentiation of vector field of a scalar variable; Gradient, divergence and curl in cartesian and cylindrical coordinates; Higher order derivatives; Vector identities and vector equations. Application to geometry: Curves in space, Curvature and torsion; Serret-Frenet's formulae. Gauss and Stokes' theorems, Green's identities.

** Note: Syllabus was revised in 1990's and 2001 & 2008 **

ANALOG JAS I N S T I T U T E The Right Choice of Achievers

Corporate Office: 2nd Floor, 1-2-288/32, Indira Park 'X'Roads, Domalguda, Hyderabad-500 029.

Ph: 040-27620440, 9912441137/38, Website: www.analogeducation.in

Branches: New Delhi: Ph:8800270440, 8800283132 Bangalore: Ph: 9912441138,

9491159900 Guntur: Ph:9963356789 Vishakapatnam: Ph: 08912546686

- 1. Suppose U and W are distinct four dimensional subspaces of a vector space V, where dim V=6. Find the possible dimensions of subspace $U \cap W$. (10 Marks)
- 2. Evaluate the integral : $\iint_S \overline{F} \cdot \hat{n} ds$ where $\overline{F} = 3xy^2 \hat{i} + (yx^2 y^3) \hat{j} + 3zx^2 \hat{k}$ and S is a surface of the cylinder $y^2 + z^2 \le 4$, $-3 \le x \le 3$, using divergence theorem. (9 Marks)
- 3. Using Green's theorem, evaluate the $\int_C F(\bar{r}).d\bar{r}$ counterclockwise where $F(\bar{r}) = (x^2 + y^2)\hat{i} + (x^2 y^2)\hat{j}$ and $d\bar{r} = dx\hat{i} + dy\hat{j}$ and the curve C is the boundary of the region $R = \{(x,y) | 1 \le y \le 2 x^2\}$. (8 Marks)

2016

- 4. Prove that the vector $\vec{a} = 3\hat{i} + \hat{j} 2\hat{k}$, $\vec{b} = -\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{c} = 4\hat{i} 2\hat{j} 6\hat{k}$ can form the sides of a triangle find the length of the medians of the triangle (10 Marks)
- 5. Find f(r) such that $\nabla f = \frac{\vec{r}}{r^5}$ and f(1)=0 (10 Marks)
- 6. Prove that $\iint_C f d\vec{r} = \iint_S d\vec{S} \times \nabla f$ (10 Marks)
- 7. For the of cardioid $r = a(1 + \cos \theta)$ show that the square of the radius of curvature at any point (r, θ) is proportion to r. Also find the radius of curvature if $\theta = 0$, $\frac{\pi}{4}$, $\frac{\pi}{2}$. (15 Marks)

2015

- 8. Find the angle between the surfaces $x^2+y^2+z^2-9=0$ and $z=x^2+y^2-3$ at (2,-1,2) (10 Marks)
- 9. A vector field is given by $\vec{F} = (x^2 + xy^2)\hat{i} + (y^2 + x^2y)\hat{j}$. Verify that the field is irrotational or not. Find the scalar potential. (12 Marks)
- 10. Evaluate $\int_{C}^{e^{-x}(\sin y dx + \cos y dy)}$, Where *C* is the rectangle with vertices (0,0) (π ,0),

$$(\pi, \frac{\pi}{2}), (0, \frac{\pi}{2})$$
 (12 Marks)

2014

11. Find the curvature vector at any point of the curve $r(t) = t \cos t \hat{i} + t \sin t \hat{j}$, $0 \le t \le 2\pi$. Give its magnitude also. (10 Marks)

12. Evaluate by Stoke's theorem $\int_{r}^{r} (ydx + zdy + xdz)$, where Γ is the curve given by $x^2+y^2+z^2-2ax-2ay=0$, x+y=2a starting from (2a,0,0) and then going below the *z*-plane **(20 Marks)**

- 13. Show the curve $\vec{x}(t) = t\hat{i} + \left(\frac{1+t}{t}\right)\hat{j} + \left(\frac{1-t^2}{t}\right)\hat{k}$ lies in a plane. (10 Marks)
- 14. Calculate $\nabla^2(r^n)$ and find its expression in terms of r and n, r being the distance of any point (x,y,z) from the origin, n being a constant and ∇^2 being the Laplance operator. (10 Marks)
- 15. A curve in space is defined by the vector equation $\vec{r} = t^2 \hat{i} + 2t \hat{j} t^3 \hat{k}$. Determine the angle between the tangents to this curve at the points t = +1 and t = -1 (10 Marks)
- By using Divergence Theorem of Gauss, evaluate the surface integral $\iint \left(a^2x^2 + b^2y^2 + c^2z^2\right)^{-\frac{1}{2}} dS. \text{ where } S \text{ is the surface of the ellipsoid } ax^2 + by^2 + cz^2 = 1,$ a,b and c being all positive constants. (15 Marks)
- 17. Use Stroke's theorem to evaluate the line integral $\int_{c}^{c} (-y^2 dx + x^2 dy z^3 dz)$, where C is the intersection of the cylinder $x^2+y^2=1$ and the plane x+y+z=1 (15 Marks) **2012**
- 18. If $\vec{A} = x^2 yz\hat{i} 2xz^3\hat{j} + xz^2\vec{k}$, $\vec{B} = 2z\hat{i} + y\hat{j} x^2\vec{k}$ find the value of $\frac{\partial^2}{\partial x \partial y} (\vec{A} + \vec{B}) \text{ at (1,0,-2)}$ (12 Marks)
- 19. Derive the Frenet-Serret formulae. Define the curvature and torsion for a space curve. Compute them for the space curve x = t, $y = t^2$, $z = \frac{2}{3}t^3$. Show that the curvature and torsion are equal for this curve. (20 Marks)
- 20. Verify Green's theorem in the plane for $\int_{C}^{C} \left[xy + y^2 dx + x^2 dy \right]$ where C is the closed curve of the region bounded by y = x and $y = x^2$ (20 Marks)
- 21. If $\vec{F} = y\vec{i} + (x 2xz)\vec{j} xy\vec{k}$, evaluate $\iint_S (\vec{\nabla} \times \vec{F}) \cdot \vec{n} d\vec{s}$ where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the xy plane. (20 Marks)

- 22. For two vectors \vec{a} and \vec{b} give respectively by $\vec{a} = 5t^2\hat{i} + t\hat{j} t^3\hat{k}$ and $\vec{b} = \sin 5t\hat{i} \cos t\hat{j}$ determine:(i) $\frac{d}{dt}(\vec{a}.\vec{b})$ and (ii) $\frac{d}{dt}(\vec{a} \times \vec{b})$ (10 Marks)
- 23. If u and v are two scalar fields and \vec{f} is a vector field, such that $u\vec{f} = gradv$, find the value of \vec{f} curl \vec{f} (10 Marks)
- 24. Examine whether the vectors $\nabla u, \nabla v, \nabla w$ are copalanar, where u, v and w are the scalar functions defined by: $u = x + y + z, \\ v = x^2 + y^2 + z^2$ and w = yz + zx + xy (15 Marks)
- 25. If $u = 4y\hat{i} + x\hat{j} + 2z\hat{k}$ calculate double integral $\iint (\nabla \times \vec{u}) d\vec{s}$ over the hemisphere given by $x^2 + y^2 + z^2 = a^2$, $z \ge 0$ (15 Marks)
- 26. If \vec{r} be the position vector of a point, find the value(s) of n for which the vector. \vec{r} (i) irrotational, (ii) solenoidal (15 Marks)
- 27. Verify Gauss' Divergence Theorem for the vector $\vec{v} = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}$ taken over the cube $0 \le x, y, z \le 1$. (15 Marks)

2010

- 28. Find the directional derivative of $f(x,y)=x^2y^3+xy$ at the point (2,1) in the direction of a unit vector which makes an angle or $\frac{\pi}{3}$ with the x-axis. (12 Marks)
- 29. Show that the vector field defined by the vector function $\vec{v} = xyz \left(yz\vec{i} + xy\vec{j} + xy\vec{k} \right)$ is conservative. (12 Marks)
- 30. Prove that $div(f\vec{V}) = f(div\vec{V}) + (grad.f)\vec{V}$ where f is a scalar function. (20 Marks)
- 31. Use the divergence theorem to evaluate $\iint_s \vec{V} \cdot \vec{n} dA$ where $\vec{V} = x^2 z \vec{i} + y \vec{j} xz^2 \vec{k}$ and S is the boundary of the region bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4y. (20 Marks)
- 32. Verify Green's theorem for $e^{-x}sinydx + e^{-x}cosydy$ the path of integration being the boundary of the sqaure whose vertices are (0,0), $(\frac{\pi}{2},0)$, $(\frac{\pi}{2},\frac{\pi}{2})$, and $(0,\frac{\pi}{2})$

(20 Marks)

2009

33. Show that $div(gradr^n) = n(n+1)r^{n-2}$ where $r = \sqrt{x^2 + y^2 + z^2}$. (12 Marks)

- 34. Find the directional derivative of (i) $4xz^3-3x^2y^2z^2$ (i) at (2,-1,1) along z-axis (ii) $-x^2yz+4xz^2$ at (1,-2,1) in the direction of $2\hat{i}-\hat{j}-2\hat{k}$. (6+6=12 Marks)
- 35. Find the work done in moving the particle once round the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, z=0 under the field of force given by $\overline{F} = (2x y + z)\hat{i} + (x + y z^2)\hat{j} + (3x 2y + 4z)\hat{k}$. (20 Marks)
- 36. Using divergence theorem, evaluate $\int_{s}^{\infty} \overline{A}.d\overline{S}$ where $\overline{A} = x^{3}\hat{i} + y^{3}\hat{j} + z^{3}\hat{k}$ and S is the surface of the sphere $x^{2} + y^{2} + z^{2} = a^{2}$ (20 Marks)
- 37. Find the value of $\iint_s (\vec{\nabla} \times \vec{f}) . d\vec{s}$ taken over the upper portion of the surface $x^2 + y^2 2ax + az = 0$ and the bounding curve lies in the plane z = 0, when $\overline{F} = (y^2 + z^2 x^2)\hat{i} + (z^2 + x^2 y^2)\hat{j} + (x^2 + y^2 z^2)\hat{k}$ (20 Marks) 2008
- 38. Find the constants a and b so that the surface $ax^2-byz=(a+2)x$ will be orthogonal to the surface $4x^2y+z^3=4$ at the point (1,-1,2). (12 Marks)
- 39. Show that $\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$ is a conservative force field. Find the scalar potential for \vec{F} and the work done in moving an object in this field (1,–2,1) to (3,1,4). (12 Marks)
- 40. Prove that $\nabla^2 f(x) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$ where $r = (x^2 + y^2 + z^2)^{\frac{1}{2}}$. Hence find f(x) such that $\nabla^2 f(r) = 0$. (15 Marks)
- 41. Show that for the space curve x=t, $y=t^2$, $z=\frac{2}{3}t^3$ the curvature and torsion are same at every point. (15 Marks)
- 42. Evaluate $\int_{c} \vec{A} d\vec{r}$ along the curve $x^2 + y^2 = 1$, z = 1 from (0,1,1) to (1,0,1) if $\vec{A} = (yz + 2x)\hat{i} + xz\hat{j} + (xy + 2z)\hat{k}$. (15 Marks)
- 43. Evaluate $\iint_{s} \vec{F} \hat{n} ds$ where $\vec{A} = (yz + 2x)\hat{i} + xz\hat{j} + (xy + 2z)\hat{k}$, $\iint_{s} \vec{F} \hat{n} ds$ and S is the surface of the cylinder bounded by $x^2 + y^2 = 4$, z = 0 and z = 3 (15 Marks)

- 44. If \vec{r} denotes the position vector of a point and if \hat{r} be the unit vector in the direction of \vec{r} , $r = |\vec{r}|$ determined grad (\vec{r}) in terms of \hat{r} and \vec{r} . (12 Marks)
- 45. Find the curvature and torsion at any point of the curve x=acos2t. y=asin2t, z=2asint. (12 Marks)
- 46. For any constant vector, show that the vector \vec{a} represented by curl $(\vec{a} \times \vec{r})$ is always parallel to the vector \vec{a} , \vec{r} being the position vector of a point (x,y,z) measured from the origin. (15 Marks)
- 47. If $\vec{r} = x\hat{i} + y\hat{j} + x\hat{k}$ find the value(s) of n in order that $\vec{r}^n\vec{r}$ may be

 (i) solenoidal (ii) irrotational (15 Marks)
- 48. Determine $\int_{c}^{c} (ydx + zdy + xdz)$ by using Stoke's theorem, where C is the curve defined by $(x-a)^2+(y-a)^2+z^2=2a^2$, x+y=2a that starts from the point (2a,0,0) goes at first below the z-plane (15 Marks)

2006

- 49. Find the values of constants a,b and c so that the directional derivative of the function $f = axy^2 + byz + cz^2x^2$ at the point (1,2,-1) has maximum magnitude 64 in the direction parallel to z-axis. (12 Marks)
- 50. If $\overline{A} = 2\overline{i} + \overline{K}$, $\overline{B} = \overline{i} + \overline{j} + \overline{k}$, $C = 4\overline{i} 3\overline{j} 7\overline{K}$ determine a vector \overline{R} satisfying the vector equation $\overline{R} \times \overline{B} = \overline{C} \times \overline{B} \& \overline{R}. \overline{A} = 0$ (15 Marks)
- 51. Prove that $r^n r$ is an irrotational vector for any value of n but is solenoidal only if n+3=0 (15 Marks)
- 52. If the unit tangent vector \bar{t} and binormal \bar{b} make angles ϕ and ϕ respectively with a constant unit vector \bar{t} prove that $\frac{\sin \theta}{\sin \phi} \cdot \frac{d\theta}{d\phi} = -\frac{k}{\tau}$. (15 Marks)
- 53. Verify Stoke's theorem for the function $\overline{F} = x^2 \overline{i} xy \overline{j}$ integrated round the sqaure in the plane z=0 and bounded by the lines x=0, y=0, x=a and y=a, a>0. (15 Marks)

- 54. Show that the volume of the tetrahedron ABCD is $\frac{1}{6} \left(\overline{AB} \times \overline{AC} \right) \overline{AD}$ Hence find the volume of the tetrahedron with vertices (2,2,2), (2,0,0), (0,2,0) and (0,0,2) **(12 Marks)**
- 55. Prove that the curl of a vector field is independent of the choice of coordinates (12 Marks)

- 56. The parametric equation of a circular helix is $r = a \cos u \hat{i} + a \sin u \hat{j} + c u \hat{k}$ where c is a constant and u is a parameter. Find the unit trangent vector \hat{i} at the point u and the arc length measured form u=0 Also find $\frac{d\hat{i}}{ds}$ where S is the arc length. (15 Marks)
- 57. Show that $\operatorname{curl}\left(k \times \operatorname{grad}\frac{1}{r}\right) + \operatorname{grad}\left(k \cdot \operatorname{grad}\frac{1}{r}\right) = 0$ where r is the distance from the origin and K is the cunit vector in the direction OZ (15 Marks)
- 58. Find the curvature and the torsion of the space curve (15 Marks)
- 59. Evaluate $\iint_s x^3 dy dz + x^2 y dz dx + x^2 z dx dy$ by Gauss divergence theorem, where S is the surface of the cylinder $x^2 + y^2 = a^2$ bounded by z = 0 and x = b (15 Marks)

- 60. Show that if \overline{A} and \overline{B} are irrotational, then $\overline{A} \times \overline{B}$ is solenodial. (12 Marks)
- 61. Show that the Frenet-Serret formuale can be written in the form $\frac{d\overline{T}}{ds} = \overline{\omega} \times \overline{T}, \frac{d\overline{N}}{ds} = \overline{\omega} \times \overline{N} \& \frac{d\overline{B}}{ds} = \overline{\omega} \times \overline{B} \text{ , where } \overline{\omega} = \tau \overline{T} + k\overline{B} \text{ .}$ (12 Marks)
- 62. Prove the identity $\nabla \left(\overline{A}.\overline{B} \right) = \left(\overline{B}.\nabla \right) \overline{A} + \left(\overline{A}.\nabla \right) \overline{B} + \overline{B} \times \left(\nabla \times \overline{A} \right) + \overline{A} \times \left(\nabla \times \overline{B} \right)$ (15 Marks)
- 63. Derive the identity $\iiint_{V} (\phi \nabla^{2} \psi \psi D^{2} \phi) dV = \iint_{S} (\phi \nabla \psi \psi \nabla \phi) \hat{n} dS$ Where V is the volume bounded by the closed surface S. (15 Marks)
- 64. Verify Stoke's theorem for $\hat{f} = (2x y)\hat{i} yz^2\hat{j} z\hat{k}$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary. (15 Marks)

- 65. Show that if a'b' and c' are the reciprocals of the non-coplanar vectors, a, b and c, then any vector r may be expressed as r = (r.a')a + (r.b')b + (r.c')c. (12 Marks)
- Prove that the divergence of a vector field is invariant w.r. to co-ordinate transformations. (12 Marks)
- 67. Let the position vector of a particle moving on a plane curve be r(t), where t is the time. Find the components of its acceleration along the radial and transverse directions. (15 Marks)
- 68. Prove the identity $\nabla A^2 = 2(A.\nabla)A + 2A \times (\nabla \times A)$ where $\nabla = \hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}$ (15 Marks)

69. Find the radii of curvature and torsion at a point of intersection of the surface

$$x^2 - y^2 = c^2, \quad y = x \tanh\left(\frac{z}{c}\right). \tag{15 Marks}$$

70. Evaluate $\iint_{S} curl A.ds$ Where S is the open surface $x^2+y^2-4x+4z=0$, $z \ge 0$ and

$$A = (y^2 + z^2 - x^2)\hat{i} + (2z^2 + x^2 - y^2)\hat{j} + (x^2 + y^2 - 3z^2)\hat{k}.$$
 (15 Marks)

2002

71. Let \overline{R} be the unit vector along the vector $\overline{r}(t)$. Show that $\overline{R} \times \frac{\overline{dR}}{dt} = \frac{\overline{r}}{r^2} \times \frac{\overline{dr}}{dt}$ where

$$r = |\vec{r}|$$
 (12 Marks)

- 72. Find the curvature k for the space curve $x=a\cos\theta$, $y=a\sin\theta$, $z=a\theta\tan\alpha$ (15 Marks)
- 73. Show that $(curl\overline{v}) = grad(div\overline{v}) \nabla^2\overline{v}$ (15 Marks)
- 74. Let D be a closed and bounded region having boundary S. Further, let f is a scalar function having second partial derivatives defined on it. Show that

$$\iint_{s} (fgradf) \cdot \hat{n}ds = \iiint_{v} \left[|gradf|^{2} + f\nabla^{2} f \right] dv \text{ Hence } \iint_{s} (fgradf) \cdot \hat{n}ds \text{ or otherwise evaluate}$$
for $f = 2x + y + 2z$ over $s = x^{2} + y^{2} + z^{2} = 4$
(15 Marks)

75. Find the values of constants a,b and c such that the maximum value of directionial derivative of $f = axy^2 + byz + cx^2z^2$ at (1,-1,1) is in the direction parallel to y-axis and has magnitude 6. (15 Marks)

2001

- 76. Find the length of the arc of the twisted curve $r = (3t.3t^2,2t^3)$ from the point t=0 to the point t=1. Find also the unit tangent t, unit normal t and the unit binormal t=1 (12 Marks)
- 77. Show that $\operatorname{curl} \frac{a \times r}{r^3} = -\frac{a}{r^3} + \frac{3r}{r^5} (ax)$ where a is constant vector. (12 Marks)
- 78. Find the directional derivative of $f = x^2yz^3$ along $x=e^{-t}$, $y=1+2\sin t$, $z=t-\cos t$ at t=0 (15 Marks)
- 79. Show that the vector field defined by $F = 2xyz^3i + x^2z^3j + 3x^2yz^2k$ is irrotataional. Find also the scalar u such that F = grad u (15 Marks)
- 80. Verify Gauss' divergence theorem of $A=(4x,-2y^2,z^2)$ taken over the region bounded by $x^2+y^2=4$, z=0 and z=3 (15 Marks)

2000

81. In What direction from the point (-1,1,1) is the directional derivative $f=x^2yz^3$ a maximum? Compute its magnitude (12 Marks)

- 82. (i)Show that the covariant derivatives of the fundamental metric tensors g_{ij} , g^{ij} , δ^i_{j} , Vanish
 - (ii) Show that simultaneity is relative in special relativity theory. (6+6=12 Marks)
- 83. Show that
 - (i) $(A+B).(B+C)\times(C+A)=2A.B\times C$

(ii)
$$\nabla \times (A \times B) = (B \cdot \nabla)A - B(\nabla \cdot A) - (A \cdot \nabla)B + A(\nabla \cdot B)$$

(7+8=15 Marks)

- 84. Evaluate $\iint_{s} F.Nds$ Where $F=2xyi+yz^2j+xzk$ and S is the surface of the parallelepiped bounded by x=0, y=0, z=0, x=2, y=1 and z=3 (15 Marks)
- 85. If g_{ij} and γ_{ij} are tow metric tensors and defined at a point and $\begin{cases} l \\ ij \end{cases}$ and $\begin{cases} l \\ ij \end{cases}$ are the corre sponding Christoffel symbols of the second kind, then prove that $\begin{cases} l \\ ij \end{cases} \begin{cases} l \\ ij \end{cases}$ is a mixed tensor of the type A_{ij}^l
- 86. Establish the formula $E=mc^2$ the symbols have their usual meaning. (15 Marks)

1999

- 87. If $\bar{a}, \bar{b}, \bar{c}$ are the position vectors of A, B, C prove that $\bar{a} \times \bar{b} + \bar{b} \times \bar{c} + \bar{c} \times \bar{a}$ is vector perpendicular to the plane ABC (20 Marks)
- 88. If $\overline{f} = \nabla (x^3 + y^3 + z^3 3xyz) \operatorname{find} \nabla \times \overline{F}$. (20 Marks)
- 89. Evaluate $\int_{c}^{c} (e^{-x} \sin y dx + e^{-x} \cos y dy)$ (by Green's theorem), where C is the rectangle

whose vertices are (0,0), $(\pi,0)$, $\left(\pi,\frac{\pi}{2}\right)$ and $\left(0,\frac{\pi}{2}\right)$ (20 Marks)

1998

- 90. If r_1 and r_2 are the vectors joining the fixed points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ respectively to a variable point P(x, y, z) then the values of grad (r_1, r_2) and $curl(r_1 \times r_2)$. (20 Marks)
- 91. Show that $(a \times b) \times c = a \times (b \times c)$ if either b = 0 (or any other vector is 0) or c is collinear with a or b is orthogonal to a and c (both) (20 Marks)
- 92. Prove that $\begin{cases} i \\ ik \end{cases} = \frac{\partial}{\partial x_k} \left(\log \sqrt{g} \right)$. (20 Marks)

- 93. Prove that if \overline{A} , \overline{B} and \overline{C} are there given non-coplanar vectors \overline{F} then any vector can be put in the form $F = \alpha \overline{B} \times \overline{C} + \beta \overline{C} \times \overline{A} + \gamma \overline{A} \times \overline{B}$ for given determine α, β, γ .(20 Marks)
- 94. Verify Gauss theorem for $\vec{F} = 4x\hat{i} 2y^2\hat{j} + z^2\hat{k}$ taken over the region bounded by $x^2 + y^2 = 4$, z = 0 and z = 3 (20 Marks)

95. Prove that the decomposition of a tensor into a symmetric and an anti-symmetric part is unique. Further show that the contracted product $S_{ij}T_{ij}$ of a tensor T_{ij} with a symmetric tensor S_{ii} is independent of the anti-symmetric part of T_{ij} . (20 Marks)

1996

96. State and prove 'Quotient law' of tensors

(20 Marks)

- 97. If $\hat{x}_{i} + \hat{y}_{j} + \hat{z}_{k}$ and $r = |\vec{r}|$ show that
 - (i) $\vec{r} \times grad f(r) = 0$

(ii)
$$div(r^n \vec{r}) = (n+3)r^n$$
 (20 Marks)

98. Verify Gauss's divergence theorem for $\vec{F} = xy\hat{i} + z^2\hat{j} + 2yz\hat{k}$ on the tetrahedron x=y=z=0, x+y+z=1 (20 Marks)

1995

- 99. Consider a physical entity that is specified by twenty -seven numbers A_{ijk} in given coordinate system. In the transition to another coordinates system of this kind. Let $A_{ijk}B_{jk}$ transform as a vector for any choice of the anti-symmetric tensor. Prove that the quantities $A_{ijk}-A_{ijk}$ are the components of a tensor of third order. Is A_{ijk} the component of tensor? Give reasons for your answer (20 Marks)
- 100. Let the reason V be bounded by the smooth surfaces S and Let n denote outward drawn unit normal vector at a point on S. If ϕ is harmonic in V, Show that $\int_{s}^{\infty} \frac{\partial \phi}{\partial n} ds = 0$ (20 Marks)
- 101. In the vector field u(x) let there exists a surface curlv on which v=0. Show that, at an arbitary point of this surface curlv is tangential to the surface or vanishes.

(20 Marks)

1994

- 102. Show that $r^n \dot{r}$ is an irrotational vector for any value of n, but is solenoidal only if n=-3. (20 Marks)
- 103. If $\vec{F} = y\vec{i} + (x 2xz)\vec{j} xy\hat{k}$ evaluate $\iint_s (\Delta \times \vec{F})\vec{n}ds$ Where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the xy plane. (20 Marks)
- 104. Prove that $\begin{cases} i \\ ik \end{cases} = \frac{\partial}{\partial x} (\log \sqrt{g})$. (20 Marks)

- 105. Prove that the angular velocity or rotation at any point is equal to one half or the *curl* of the velocity vector *V*. (20 Marks)
- 106. Evaluate $\iint_{S} \Delta \times \overrightarrow{F} \, \overrightarrow{n} \, ds$ where S is the upper half surface of the unit sphere $x^2 + y^2 + z^2 = 1$ and $\overrightarrow{F} = z \hat{i} + x \hat{j} + y \hat{k}$ (20 Marks)

107. Show that $\frac{\partial A_p}{\partial x^q}$ is not a tensor even though A_p is a covariant tensor or rank one

(20 Marks)

- 108. If $\vec{F}(x,y,z) = (y^2 + z^2)\vec{i} + (z^2 + x^2)\vec{j} + (x^2y^2)\vec{k}$ then calculate $\int_c \vec{f} \, d\vec{x}$ where C consist of
 - (i) The line segment from (0,0,0) to (1,1,1)
 - (ii) the three line segments AB,BC and CD where A,B,C and D are respectively the points (0,0,0), (1,0,0), (1,1,0) and (1,1,1)
 - (iii) the curve $\vec{x} + \vec{ui} + \vec{u^2} \vec{j} + \vec{u^2} \vec{k}, u$ from 0 to 1. (20 Marks)
- 109. If \bar{a} and \bar{b} are constant vectors, show that

(i)
$$div\left\{x \times \left(\vec{a} \times \vec{x}\right)\right\} = -2\vec{x}\vec{a}$$

(ii)
$$div\left\{x \times (\vec{a} \times \vec{x}) \times (\vec{b} \times \vec{x})\right\} = -2\vec{a}(\vec{b} \times \vec{x}) - 2b(\vec{a} \times \vec{x})$$
 (20 Marks)

- 110. Obtain the formula $div\vec{A} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{-1}} \left\{ \left(\frac{g}{g_{ij}} \right)^{1/2} A(i) \right\}$ where A(i) are physical components
 - of \bar{A} and use it to derive expression of $div\bar{A}$ in cylindrical polar coordinates (20 Marks)