Simple Relational Correctness Proofs for Static Analyses and Program Transformations Nick Benton

Enrico Steffinlongo

Università Ca' Foscari - Computer science

May 29, 2015

Proving correctness of Program optimization

Lot of work on functional languages program optimization especially in

- formalization
- validation

Few work on imperative programming languages

- seems trivial
- but i's not

This work proposes three systems (one type based, and two Hoare-logics based) to prove correctness of optimization transformations.

Optimization transformations

What is the optimization of a program?

Transformation of a program to a semantically equivalent one in order to reduce the time used to compute, or to decrease the resources used.

Typical imperative program optimization includes:

- constant propagation
- dead-code elimination
- program slicing
- loop unrolling

Example

Optimization transformations: examples

```
X := 3
if X = 3 then
    X := 7;
else
                     ==>
    skip;
                             X := 7:
Z := X + 1;
                              Z := 8:
if X = 3 then
    Y := X;
else
                     ==>
    Y := 3;
                              Y := 3
X := -Y
                             X := Y
Z := Z - X
                              Z := Z + X
                     ==>
X := -X
```

Table: Transformation examples

The while-language: syntax

In this work we will use the while-language.

$$\begin{array}{lll} X \in \mathbb{V} & = & \{X,Y,\ldots\} & \text{variables} \\ n & \in & \mathbb{Z} & \text{numbers} \\ b & \in & \mathbb{B} & \text{boolean literal} \\ iop & \in & \{+,-,\times,\ldots\} \subseteq \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} & \text{integer operations} \\ bop & \in & \{<,=,\ldots\} \subseteq \mathbb{Z} \times \mathbb{Z} \to \mathbb{B} & \text{integer to boolean} \\ operations & \text{operations} \\ lop & \in & \{\land,\lor,\ldots\} \subseteq \mathbb{B} \times \mathbb{B} \to \mathbb{B} & \text{logical operations} \\ E & := & n|X|E \ iop \ E & \text{integer expressions} \\ E & := & n|X|E \ iop \ E & \text{integer expressions} \\ B & := & b|E \ bop \ E|\text{not} \ B|B \ lop \ B & \text{boolean expressions} \\ C & := & \text{skip}|X := E|C;C & \\ & |\text{if} \ B \ \text{then} \ C \ \text{else}C & \text{commands} \\ & S & \in & \mathbb{S} = \mathbb{V} \to \mathbb{Z} & \text{A valid State} \\ \end{array}$$

while-Programs: semantics

 Denotational semantics of Integer expression (similar to the one for Boolean expression)

Denotational semantics of commands

Dependency, Dead Code and Constant (DDCC)

The DDCC type system is used to prove correctness of some program transformations.

- non-standard type system
- derives typed equality between expressions and commands
- works on pairs of programs
- simple types for expressions
- maps from variables to simple types for states
- can be seen as a non-interference type system
- captures only decisions based on known variables. So it is not able to capture patterns like in example 2 in table {1}
- not capture code-motion transformation

Using DDCC we can prove the equivalence of the example 1 in table $\{1\}$

DDCC

A simple type $\phi_{\tau} := \mathbb{F}_{\tau} \mid \{c\}_{\tau} \mid \Delta_{\tau} \mid \mathbb{T}_{\tau} \text{ where } \tau \in \{\text{int}, \text{bool}\}$ and c is a constant.

- ullet $\mathbb{F}_{ au}$ is an empty type
- $\{c\}_{\tau}$ is the type of a constant c $(5 \in \{5,5\}_{int})$
- Δ_{τ} is the type of an unknown expression (if we do not know the value of X $(X + X) \in \Delta_{int}$)
- \mathbb{T}_{τ} is the type of an expression that we do not care.

A state type $\Phi := - \mid \Phi, X : \phi_{int}$ is a map from variable to simple types.

Judgements are of the form

- $\vdash E \sim E' : \Phi \Rightarrow \phi_{\tau}$ for expressions,
- $\vdash C \sim C' : \Phi \Rightarrow \Phi'$ for commands.

We will use $\vdash C : \Phi \Rightarrow \Phi$ as shorthand for $\vdash C \sim C : \Phi \Rightarrow \Phi$

DDCC core judgements

Some simple DDCC core judgements for are:

$$\begin{array}{l} \bullet \vdash n \sim n : \Phi \Rightarrow \{n\}_{int} \\ \bullet \vdash X \sim X : \Phi, X : \phi_{int} \Rightarrow \phi_{int} \\ \bullet \vdash \text{skip} \sim \text{skip} : \Phi \Rightarrow \Phi \\ \bullet \quad \frac{\vdash C_1 \sim C_1' : \Phi \Rightarrow \Phi' \quad \vdash C_2 \sim C_2' : \Phi' \Rightarrow \Phi''}{\vdash (C_1; C_2) \sim (C_1'; C_2') : \Phi \Rightarrow \Phi''} \\ \bullet \quad \frac{\vdash B \sim B' : \Phi \Rightarrow \Delta_{bool} \quad \vdash C \sim C' : \Phi \Rightarrow \Phi}{\vdash (\text{while } B \text{ do } C) \sim (\text{while } B' \text{ do } C') : \Phi \Rightarrow \Phi} \end{array}$$

These rules are able to prove relations between a phrase to itself.

DDCC judgements

Judgements used to prove equivalences of transformed programs.

sequential unit laws

associativity

commuting conversion for conditionals loop unrolling

self-assignment elimination dead-assignment elimination

equivalent branches for conditionals

constant folding

known branch for conditional

dead while

divergence for while

$$\frac{\vdash C \sim C : \Phi \Rightarrow \Phi}{\vdash (\operatorname{skip}; C) \sim C : \Phi \Rightarrow \Phi'}$$

$$\vdash (C_1; C_2); C_3 : \Phi \Rightarrow \Phi'$$

$$\vdash ((C_1; C_2); C_3) \sim (C_1; (C_2; C_3)) : \Phi \Rightarrow \Phi'$$

$$\begin{split} \vdash (X := X) \sim \text{skip} : \Phi, X : \phi_{int} \Rightarrow \Phi, X : \phi_{int} \\ \vdash (X := E) \sim \text{skip} : \Phi, X : \phi_{int} \Rightarrow \Phi, X : \mathbb{T}_{int} \\ \vdash C_1 \sim C_2 : \Phi \Rightarrow \Phi' \\ \hline \text{if } B \text{ then } C_1 \text{ else} C_2 \sim C_1 : \Phi \Rightarrow \Phi' \\ \hline \vdash F_\tau : \Phi \Rightarrow \{c\}_\tau \\ \hline \vdash F_\tau \sim c : \Phi \Rightarrow \{c\}_\tau \\ \hline \vdash B : \Phi \Rightarrow \{true\} \\ \hline \text{if } B \text{ then } C_1 \text{ else} C_2 \sim C' : \Phi \Rightarrow \Phi' \\ \hline \text{if } B \text{ then } C_1 \text{ else} C_2 \sim C' : \Phi \Rightarrow \Phi' \\ \hline \vdash B : \Phi \Rightarrow \{false\} \\ \hline \vdash (\text{while } B \text{ do } C \sim \text{skip} : \Phi \Rightarrow \Phi \end{split}$$

Relational Hoare Logic

To increase the capabilities of the analysis this work proposes a system based on Relational Hoare Logics. It is based on

$$GE := n \mid X\langle 1 \rangle \mid X\langle 2 \rangle \mid GE \text{ iop } GE :$$
 generalized expressions $\Phi := b \mid GE \text{ bop } GE \mid \text{not} \Phi \mid \Phi \text{ lop } \Phi :$ relational assertions

Judgements are of the form:

$$\vdash C \sim C' : \Phi \Rightarrow \Phi'$$

Relational Hoare Logic: semantics

The semantics of GE, and Φ are:

RHL: core

Some simple RHL core judgements are:

•
$$\vdash$$
 skip \sim skip : $\Phi \Rightarrow \Phi$

$$\bullet \vdash X := E \sim Y := E' : \Phi[E\langle 1 \rangle / X\langle 1 \rangle, E'\langle 2 \rangle / Y\langle 2 \rangle] \Rightarrow \Phi$$

$$\bullet \ \frac{\vdash C_1 \sim C_1' : \Phi \Rightarrow \Phi' \qquad \vdash C_2 \sim C_2' : \Phi' \Rightarrow \Phi''}{\vdash (C_1; C_2) \sim (C_1'; C_2') : \Phi \Rightarrow \Phi''}$$

$$\begin{array}{c} \bullet & \frac{\vdash C \sim C' : \Phi \land (B\langle 1 \rangle \land B'\langle 2 \rangle) \Rightarrow \Phi \land (B\langle 1 \rangle = B'\langle 2 \rangle)}{\vdash (\mathtt{while} \ B \ \mathtt{do} \ C) \sim (\mathtt{while} \ B' \ \mathtt{do} \ C') :} \\ \Phi \land (B\langle 1 \rangle = B'\langle 2 \rangle) \Rightarrow \Phi \land \mathtt{not}(B\langle 1 \rangle \lor B'\langle 2 \rangle) \end{array}$$

RHL: judgements

Judgements used to prove equivalences of transformed programs.

falsity	$C \sim C': \textit{false} \Rightarrow \Phi$
dead-assignment elimination	$\vdash (X := E) \sim \text{skip} : \Phi[E\langle 1 \rangle / X\langle 1 \rangle] \Rightarrow \Phi$
common branch	$ \begin{array}{c} \vdash C \sim D : \Phi \land B \langle 1 \rangle \Rightarrow \Phi' \\ \vdash C \sim D : \Phi \land \mathrm{not} B \langle 1 \rangle \Rightarrow \Phi' \\ \hline if \ B \ then \ C \ else C' \sim D : \Phi \Rightarrow \Phi' \end{array} $
dead while	$\vdash (\mathtt{while} \ B \ \mathtt{do} \ C \sim \mathtt{skip} : \Phi \wedge \mathtt{not} B \langle 1 \rangle \Rightarrow \Phi \wedge \mathtt{not} B \langle 1 \rangle$

Questions

Questions?

Thanks

Thanks!