#1666 : Autonomous Exploration for Navigating in MDPs using Blackbox RL Algorithms

Pratik Gajane¹, Peter Auer² and Ronald Ortner²

¹Eindhoven University of Technology ²Montanuniversität Leoben

Motivation

• Exploration in reinforcement learning(RL) is a hard problem.

Motivation

- Exploration in reinforcement learning(RL) is a hard problem.
- (Near)-optimal RL algorithms exist for regret minimization in various settings.

Motivation

- Exploration in reinforcement learning(RL) is a hard problem.
- (Near)-optimal RL algorithms exist for regret minimization in various settings.
- Our work:

- Markov Decision Process (MDP) with
 - No external rewards and unknown transition probabilities,

- Markov Decision Process (MDP) with
 - No external rewards and unknown transition probabilities,
 - Countable (possibly infinite) state space S,

- Markov Decision Process (MDP) with
 - No external rewards and unknown transition probabilities,
 - Countable (possibly infinite) state space S,
 - Finite action space with A #actions, and

- Markov Decision Process (MDP) with
 - No external rewards and unknown transition probabilities,
 - Countable (possibly infinite) state space S,
 - Finite action space with A #actions, and
 - Starting state s₀.

- Markov Decision Process (MDP) with
 - No external rewards and unknown transition probabilities,
 - Countable (possibly infinite) state space S,
 - Finite action space with A #actions, and
 - Starting state s₀.
- Assumption: In every state, RESET action available which leads back to s_0 .

- Markov Decision Process (MDP) with
 - No external rewards and unknown transition probabilities,
 - Countable (possibly infinite) state space S,
 - Finite action space with A #actions, and
 - Starting state s₀.
- Assumption: In every state, RESET action available which leads back to s₀.
- Input: L ≥ 1.
 Goal: Find a policy for every state reachable from the starting state s₀ in L steps.

Navigation time $_{\pi}(s)$

Expected #steps before reaching state s for the first time following policy π from the starting state s_0 .

Navigation time $_{\pi}(s)$

Expected #steps before reaching state s for the first time following policy π from the starting state s_0 .

Reachable states S_L

 $S_L := \{ s \in S : \min_{\pi} (\text{Navigation time}_{\pi}(s)) \leq L \}.$

Navigation time $_{\pi}(s)$

Expected #steps before reaching state s for the first time following policy π from the starting state s_0 .

Reachable states S_{I}

$$S_L := \{ s \in S : \min_{\pi} (\text{Navigation time}_{\pi}(s)) \leq L \}.$$

• Incrementally reachable states $\mathcal{S}_L^{\to} := \mathbf{A}$ subset of \mathcal{S}_L that allows for incremental discovery.

Navigation time $_{\pi}(s)$

Expected #steps before reaching state s for the first time following policy π from the starting state s_0 .

Reachable states S_{I}

 $S_L := \{ s \in S : \min_{\pi} (\text{Navigation time}_{\pi}(s)) \leq L \}.$

- Incrementally reachable states $\mathcal{S}_L^{\to} := A$ subset of \mathcal{S}_L that allows for incremental discovery.
- Goal: Find a policy $\forall s \in S_I^{\rightarrow}$ with navigation time $\leq (1 + \epsilon)L$.

Central idea: Use an arbitrary online RL algorithm ${\mathfrak A}$ to find a suitable navigation policy for a state.

- Central idea: Use an arbitrary online RL algorithm $\mathfrak A$ to find a suitable navigation policy for a state.
- META-EXPLORE proceeds in rounds.
 In each round, it evaluates a target state.

- Central idea: Use an arbitrary online RL algorithm $\mathfrak A$ to find a suitable navigation policy for a state.
- META-EXPLORE proceeds in rounds.
 In each round, it evaluates a target state.
- Target states are chosen from the set of candidate states.

- Central idea: Use an arbitrary online RL algorithm $\mathfrak A$ to find a suitable navigation policy for a state.
- META-EXPLORE proceeds in rounds.
 In each round, it evaluates a target state.
- Target states are chosen from the set of candidate states.
- If $(1 + \epsilon)L$ -step policy found for the target state, Successful round and target state becomes *known*.

Else

Failure round.

META-EXPLORE

Initialization: Initialize

Set of candidate states $\mathcal{U} \leftarrow \{\}$ Set of known states $\mathcal{K} \leftarrow \{s_0\}$

META-EXPLORE

Initialization: Initialize

```
Set of candidate states \mathcal{U} \leftarrow \{\}
Set of known states \mathcal{K} \leftarrow \{s_0\}
```

In each round r = 1,2,...
 State Discovery
 Choice of Target State
 Target State Evaluation

META-EXPLORE

Initialization: Initialize

```
Set of candidate states \mathcal{U} \leftarrow \{\}
Set of known states \mathcal{K} \leftarrow \{s_0\}
```

In each round r = 1,2,...
 State Discovery
 Choice of Target State
 Target State Evaluation

META-EXPLORE: State Discovery

State Discovery

• Exploring the neighborhood of known states to add to the set of candidate states *U*.

META-EXPLORE: State Discovery

State Discovery

- Exploring the neighborhood of known states to add to the set of candidate states \(\mathcal{U} \).
- In a newly known state, every action is sampled $\tilde{O}(L)$ times.

META-EXPLORE: State Discovery

State Discovery

- Exploring the neighborhood of known states to add to the set of candidate states \(\mathcal{U} \).
- In a newly known state, every action is sampled $\tilde{O}(L)$ times.
- Any newly discovered states and the neighboring states of previously known states are added to the set of candidate states \(\mathcal{U} \).

META-EXPLORE

META-EXPLORE

Initialization: Initialize

Set of candidate states $\mathcal{U} \leftarrow \{\}$ Set of known states $\mathcal{K} \leftarrow \{s_0\}$

In each round r = 1,2,...
 State Discovery
 Choice of Target State
 Target State Evaluation

META-EXPLORE: Choice of Target State

Choice of Target State

• Chosen arbitrarily from the set of candidate states.

META-EXPLORE: Choice of Target State

Choice of Target State

- Chosen arbitrarily from the set of candidate states.
- Algorithm stops when the set of candidate states is empty.

META-EXPLORE

META-EXPLORE

• Initialization: Initialize

```
Set of candidate states \mathcal{U} \leftarrow \{\}
Set of known states \mathcal{K} \leftarrow \{s_0\}
```

In each round r = 1,2,...
 State Discovery
 Choice of Target State
 Target State Evaluation

META-EXPLORE: Target State Evaluation

What do we need to use an online RL algorithm 3?

META-EXPLORE: Target State Evaluation

What do we need to use an online RL algorithm \mathfrak{A} ? An MDP such that regret minimization leads to time-effective navigating to the target state.

META-EXPLORE: Target State Evaluation

What do we need to use an online RL algorithm \mathfrak{A} ? An MDP such that regret minimization leads to time-effective navigating to the target state.

Induced MDP: In the induced MDP M_{s̄} for target state s̄, the learner

has loss 0 in 5, and suffers loss 1 in every other state.

META-EXPLORE: Target State Evaluation

• Run \mathfrak{A} on $\mathcal{M}_{\bar{s}}$ till target \bar{s} is reached $f(regret(\mathfrak{A}), L, \epsilon)$ times.

- Run $\mathfrak A$ on $\mathcal M_{\overline{s}}$ till target \overline{s} is reached f(regret($\mathfrak A$), L, ϵ) times.
- Every time \bar{s} is reached, record *history* of \mathfrak{A} in the current round.

- Run $\mathfrak A$ on $\mathcal M_{\overline{s}}$ till target \overline{s} is reached $f(regret(\mathfrak A), L, \epsilon)$ times.
- Every time \bar{s} is reached, record *history* of $\mathfrak A$ in the current round.
- History \equiv state-action-reward-next state transitions.

- Run $\mathfrak A$ on $\mathcal M_{\overline{s}}$ till target \overline{s} is reached f(regret($\mathfrak A$), L, ϵ) times.
- Every time \bar{s} is reached, record *history* of \mathfrak{A} in the current round.
- History = state-action-reward-next state transitions.
- A performance check (based on average #steps to reach s) decides if a round is successful.

- Run $\mathfrak A$ on $\mathcal M_{\overline{s}}$ till target \overline{s} is reached f(regret($\mathfrak A$), L, ϵ) times.
- Every time \bar{s} is reached, record *history* of \mathfrak{A} in the current round.
- History ≡ state-action-reward-next state transitions.
- A performance check (based on average #steps to reach s̄)
 decides if a round is successful.
- At the end of a successful round, $\mathcal{K} = \mathcal{K} + \bar{s}$ and all associated history points are added to the output for \bar{s} .

Navigation Policy for Known States

For each known state $s \in \mathcal{K}$,

• $h \stackrel{\text{uniform}}{\sim}$ history points associated with s.

Navigation Policy for Known States

For each known state $s \in \mathcal{K}$,

- $h \stackrel{\text{uniform}}{\sim}$ history points associated with s.
- 2 Run \mathfrak{A} from the history point h.

Navigation Policy for Known States

For each known state $s \in \mathcal{K}$,

- $h \stackrel{\text{uniform}}{\sim}$ history points associated with s.
- **2** Run \mathfrak{A} from the history point h.
- **1** If s is not reached in $\approx \frac{L}{\epsilon}$ steps, RESET and go to step 1.

Theorem

If META-EXPLORE is run with an online RL algorithm $\mathfrak A$, then with high probability, it

Theorem

If META-EXPLORE is run with an online RL algorithm \mathfrak{A} , then with high probability, it

• discovers a set of states $\mathcal{K} \supseteq S_l^{\rightarrow}$,

Theorem

If META-EXPLORE is run with an online RL algorithm \mathfrak{A} , then with high probability, it

- **1** discovers a set of states $\mathcal{K} \supseteq S_L^{\rightarrow}$,
- 2 has a sample complexity better than previous work in terms of L,

Theorem

If META-EXPLORE is run with an online RL algorithm \mathfrak{A} , then with high probability, it

- **1** discovers a set of states $\mathcal{K} \supseteq S_L^{\rightarrow}$,
- has a sample complexity better than previous work in terms of L,
- **3** for each $s \in \mathcal{K}$, outputs a policy with navigation time $\leq (1 + \epsilon)L$.

Concluding Remarks

 Conversion of RL algorithms into exploration algorithms with an upper bound on sample complexity.

Concluding Remarks

- Conversion of RL algorithms into exploration algorithms with an upper bound on sample complexity.
- Not included in this presentation: Experimental results.

Concluding Remarks

- Conversion of RL algorithms into exploration algorithms with an upper bound on sample complexity.
- Not included in this presentation: Experimental results.

Thank You.

Scan the following to see the paper See you at the poster D1.

References

- [LA12] Shiau Hong Lim and Peter Auer. "Autonomous Exploration For Navigating In MDPs". In: *Proceedings of the 25th Annual Conference on Learning Theory.* 2012, pp. 40.1–40.24.
- [TPVL20] Jean Tarbouriech et al. "Improved Sample Complexity for Incremental Autonomous Exploration in MDPs". In: Advances in Neural Information Processing Systems. 2020, pp. 11273–11284.

Diameter of an MDP

Consider the stochastic process defined by a stationary policy $\pi: \mathcal{S} \to \mathcal{A}$ operating on an MDP M with initial state s_0 . Let $T(s'|M,\pi,s)$ be the random variable for the first time step in which state s' is reached in this process. Then the diameter of M is defined as

$$D(M) := \max_{s \neq s'} \min_{\pi: S \to A} \mathbb{E}\left[T(s'|M, \pi, s)\right]$$

Incrementally Reachable States: Definition

Definition (Incrementally reachable states)

Let \prec be some partial order on S. The set S_L^{\prec} of states reachable in L steps with respect to \prec , is defined inductively as follows:

- $s_0 \in \mathcal{S}_l^{\prec}$,
- if there is a policy π on $\{s' \in \mathcal{S}_L^{\prec} : s' \prec s\}$ with navigation time $\pi(s) \leq L$, then $s \in \mathcal{S}_L^{\prec}$.

We define the set $\mathcal{S}_{L}^{\rightarrow}$ of states incrementally reachable in L steps with respect to some partial order to be $\mathcal{S}_{L}^{\rightarrow} := \bigcup_{\prec} \mathcal{S}_{L}^{\prec}$, where the union is over all possible partial orders.

Incrementally Reachable States: Illustration

- Two environments where the starting state s_0 is shown in white.
- On the left, each transition is deterministic and is depicted with an edge.
- On the right, each transition from s_0 to the first layer is equiprobable, and the rest of the transitions are deterministic.
- For L = 3, states belonging to S_L are shown in pink.
- On the left, $\mathcal{S}_L^{\rightarrow} = \mathcal{S}_L$. On the right, $\mathcal{S}_L^{\rightarrow} = \{s_o\} \neq \mathcal{S}_L$.

Induced MDP: Definition

In the induced MDP $\mathcal{M}_{\bar{s}}$ for target state \bar{s} ,

• all the actions in state \overline{s} have loss 0 and lead back to s_0 ,

Induced MDP: Definition

In the induced MDP $\mathcal{M}_{\bar{s}}$ for target state \bar{s} ,

- all the actions in state 5 have loss 0 and lead back to s₀
- all the states $\{s|s \notin \mathcal{K} \land s \neq \bar{s}\}$ merged into an auxiliary state at which only RESET is possible suffering loss 1,

Induced MDP: Definition

In the induced MDP $\mathcal{M}_{\bar{s}}$ for target state \bar{s} ,

- all the actions in state 5 have loss 0 and lead back to s_0 ,
- all the states $\{s|s \notin \mathcal{K} \land s \neq \bar{s}\}$ merged into an auxiliary state at which only RESET is possible suffering loss 1,
- actions in all the other states behave the same as in the original MDP and suffer loss 1.

META-EXPLORE: Target State Evaluation

• Run $\mathfrak A$ on $\mathcal M_{\overline{s}}$ for #episodes where #episodes=f(regret($\mathfrak A$), L, ϵ).

- Run $\mathfrak A$ on $\mathcal M_{\overline{s}}$ for #episodes where #episodes=f(regret($\mathfrak A$), L, ϵ).
- Episode := begins at s_0 and ends only when \bar{s} is reached.

- Run $\mathfrak A$ on $\mathcal M_{\overline{s}}$ for #episodes where #episodes=f(regret($\mathfrak A$), L, ϵ).
- Episode := begins at s_0 and ends only when \bar{s} is reached.
- At the end of an episode, record *history* of \mathfrak{A} in the current round.

- Run $\mathfrak A$ on $\mathcal M_{\overline{s}}$ for #episodes where #episodes=f(regret($\mathfrak A$), L, ϵ).
- Episode := begins at s_0 and ends only when \bar{s} is reached.
- At the end of an episode, record *history* of $\mathfrak A$ in the current round.
- History \equiv state-action-reward-next state transitions.

- Run $\mathfrak A$ on $\mathcal M_{\bar{s}}$ for #episodes where #episodes=f(regret($\mathfrak A$), L, ϵ).
- Episode := begins at s_0 and ends only when \bar{s} is reached.
- At the end of an episode, record *history* of $\mathfrak A$ in the current round.
- History ≡ state-action-reward-next state transitions.
- A performance check (based on #steps for episode completion)
 decides if a round is successful.

- Run $\mathfrak A$ on $\mathcal M_{\bar{s}}$ for #episodes where #episodes=f(regret($\mathfrak A$), L, ϵ).
- Episode := begins at s_0 and ends only when \bar{s} is reached.
- At the end of an episode, record *history* of $\mathfrak A$ in the current round.
- History
 ≡ state-action-reward-next state transitions.
- A performance check (based on #steps for episode completion) decides if a round is successful.
- At the end of a successful round, $\mathcal{K} = \mathcal{K} + \bar{s}$ and all associated history points are added to the output for \bar{s} .

Theorem

If META-EXPLORE is run with an online RL algorithm $\mathfrak A$ with a regret upper bound of $B(\#States, \#Actions) \cdot T^{\alpha} \cdot D^{\beta}$, then with prob. $1 - \delta$, it

Theorem

If META-EXPLORE is run with an online RL algorithm $\mathfrak A$ with a regret upper bound of $B(\#States, \#Actions) \cdot T^{\alpha} \cdot D^{\beta}$, then with prob. $1 - \delta$, it

1 discovers a set of states $\mathcal{K} \supseteq S_L^{\rightarrow}$,

Theorem

If META-EXPLORE is run with an online RL algorithm $\mathfrak A$ with a regret upper bound of $B(\#States, \#Actions) \cdot T^{\alpha} \cdot D^{\beta}$, then with prob. $1 - \delta$, it

- **1** discovers a set of states $\mathcal{K} \supseteq S_L^{\rightarrow}$,
- terminates after

$$\tilde{O}\left(\frac{S^2A \cdot [\mathbf{B}(S,A)]^{\frac{1}{1-\alpha}} \cdot L^{2+\frac{\alpha+\beta-1}{1-\alpha}}}{\epsilon^{\max\left(4,\frac{1}{1-\alpha}\right)}}\right)$$

exploration steps, where $S := |\mathcal{K}| \leq |\mathcal{S}_{(1+\epsilon)I}^{\rightarrow}|$.

Theorem

If META-EXPLORE is run with an online RL algorithm $\mathfrak A$ with a regret upper bound of $B(\#States, \#Actions) \cdot T^{\alpha} \cdot D^{\beta}$, then with prob. $1 - \delta$, it

- **1** discovers a set of states $\mathcal{K} \supseteq S_L^{\rightarrow}$,
- terminates after

$$\tilde{O}\left(\frac{S^2A \cdot [\mathbf{B}(S,A)]^{\frac{1}{1-\alpha}} \cdot L^{2+\frac{\alpha+\beta-1}{1-\alpha}}}{\epsilon^{\max\left(4,\frac{1}{1-\alpha}\right)}}\right)$$

exploration steps, where $S := |\mathcal{K}| \leq |\mathcal{S}_{(1+\epsilon)L}^{\rightarrow}|$.

3 for each $s \in \mathcal{K}$, outputs a policy with navigation time $\leq (1 + \epsilon)L$.

Relation to Existing Work

UCBEXPLORE [LA12] $\tilde{O}(SAL^3/\epsilon^3)$ DISCO [TPVL20] $\tilde{O}(SAGL^3/\epsilon^2)$ META-EXPLORE using UCRL2b $\tilde{O}(S^3GA^2L^2/\epsilon^4)$