Optimisation

Janvier 2019

Tous documents autorisés

Toute affirmation intuitive non argumentée sera à éviter

Exercice 1. Le problème de Képler (10pt).

Soient a, b, c trois réels positifs. On appelle \mathcal{E} l'ensemble des points M de coordonnées (x, y, z) tels que $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$ (ellipsoide). On pose $\phi(x, y, z) = x^2/a^2 + y^2/b^2 + z^2/c^2 - 1$ et f(x, y, z) = -xyz.

(1) Donner une interprétation géométrique du problème (\mathcal{P}) suivant, dit de Képler :

$$\max_{(x,y,z) \in \mathcal{E}} xyz$$

$$x \ge 0, y \ge 0, z \ge 0$$

et montrer que ce problème admet un ensemble de solutions non vide.

La suite de l'exercice est centrée sur les conditions nécessaires d'optimalité au premier ordre (KKT).

- (2) Supposer dans un premier temps qu'aucune des contraintes d'inégalité n'est active.
- (2.1) Montrez que les contraintes sont qualifiées en tout point de l'ellipsoide \mathcal{E} .
- (2.2) Exprimer la condition nécessaire d'optimalité au premier ordre et montrer qu'elle conduit à la résolution du système (S):

$$\begin{cases} (x, y, z) \in \mathcal{E} \\ -yz + 2\lambda x/a^2 = 0 \\ -zx + 2\lambda y/b^2 = 0 \\ -xy + 2\lambda z/c^2 = 0 \end{cases}$$

- (2.3) Montrer que ces équations impliquent $-3xyz + 2\lambda = 0$. En déduire en remplaçant dans (S) que $3x^2 = a^2$ et achever la résolution de S.
- (2.4) Conclure les questions (2) précisément en revenant au problème d'optimisation de départ.
- (3) On considère que la seule contrainte d'inégalité active est x=0. Exprimer à nouveau la condition nécessaire d'optimalité du premier ordre. Montrez que cette condition n'admet pas de solution.
- (4) En utilisant la condition nécessaire d'optimalité du premier ordre, montrer qu'il n'est pas possible d'avoir deux contraintes d'inégalité actives en un point solution. Est-il possible d'avoir les 3 contraintes d'inégalité actives en une solution?
- (5) En guise de résumé de l'exercice, décrire l'ensemble solution du problème (\mathcal{P}) .

Problème. Plus profonde descente (10pt).

On note $\| \bullet \|_2$ la norme Euclidienne. Soit f une fonction continûment différentiable de \mathbb{R}^n dans \mathbb{R} , minorée. On s'intéresse au problème

$$\min_{x \in \mathbb{R}^n} f(x);$$

On appelle direction de plus profonde descente normalisée (DDN) en x, tel que $\nabla f(x) \neq 0$, toute solution du problème en lavariable d suivant

$$\mathcal{P} : \min\{\nabla f(x)^T d, d \in \mathbb{R}^n, ||d||_2 = 1\}.$$

(1) Préliminaire (peut-être admis en première lecture). Soit pour cette question x tel que $\nabla f(x) \neq 0$. Montrer que $d = -\frac{1}{\|\nabla f(x)\|} \nabla f(x)$ est une direction DNN. Est-ce l'unique DNN en x?

On suppose de plus que la Hessienne de f est bornée au sens suivant

$$\exists M > 0, \forall x \in \mathbb{R}^n, \ \max_{d \neq 0} \frac{|d^T \nabla^2 f(x) d|}{\|d\|^2} \le M.$$

On considère l'algorithme de descente suivant :

Plus profonde descente	
Initialisation	Choisir $\alpha \in]0, 1/2[, \beta \in]0, 1[$, un point de départ x_0
Itération	For $j = 0, 1, 2, \dots$
	1. Si $\nabla f(x) = 0$, arrêt de l'algorithme
	2. On pose $d_j = -\frac{1}{\ \nabla f(x_j)\ } \nabla f(x_j)$
	3. Recherche linéaire : Poser $t_j = \beta^i$ où i est le plus petit $i \in \mathbb{N}$ tel que
	$f(x + \beta^i \ \nabla f(x_j) \ _2 d_j) \le f(x) + \alpha \beta^i \ \nabla f(x_j) \ _2 \nabla f(x_j)^T d_j$
	4. Mettre à jour : $x_{j+1} = x_j + t_j \nabla f(x_j) _2 d_j$
	finFor

- (2) Etude de la convergence de la recherche linéaire.
 - (2.1) Montrer par un développement de Taylor-Lagrange sans reste que pour tout $x \in \mathbb{R}^n$, pour tout t > 0, et pour tout $d \in \mathbb{R}^n$, $f(x + t d) \leq f(x) + t \nabla f(x)^T d + \frac{1}{2} M t^2 ||d||^2$.
 - (2.2) On pose $d = -\frac{1}{\|\nabla f(x)\|} \nabla f(x)$. Vérifier que que pour tout t > 0, $f(x + t\|\nabla f(x)\|_2 d) \le f(x) t\|\nabla f(x)\|_2^2 + \frac{1}{2}Mt^2\|\nabla f(x)\|_2^2$.
 - (2.3) En déduire que pour $\hat{t} = 1/M$, on a $f(x + \hat{t} \| \nabla f(x) \|_2 d) \le f(x) + \alpha \frac{\| \nabla f(x) \|_2}{M} \nabla f(x)^T d$.
 - (2.4) Montrer que si $0 \le t \le 1/M$, on a $-t + Mt^2/2 \le -t/2$. Déduire alors de 2.2 que la recherche linéaire est bien définie (l'étape 3. de l'algorithme s'arrête en un nombre fini de tests de valeurs pour i croissant).
 - (2.5) Question difficile. Montrer que t_i de l'étape 3. de l'algorithme vérifie

$$f(x_j) - f(x_{j+1}) \ge \alpha \min(1, \beta/M) \|\nabla f(x_j)\|_2^2 \ge 0.$$

On pourra, pour $d = -\frac{1}{\|\nabla f(x)\|} \nabla f(x)$ représenter pour t > 0 les fonctions $t \mapsto f(x - t d)$, $t \mapsto f(x) - \alpha t \|\nabla f(x)\|^2$ et $t \mapsto f(x) - t \|\nabla f(x)\|_2^2 + \frac{1}{2}Mt^2\|\nabla f(x)\|_2^2$.

(3) Quelle propriété de f permet-elle d'obtenir un résultat de convergence de l'algorithme à partir de (2.5)? Enoncer précisément ce résultat de convergence.