SOME VC-DENSITY COMPUTATIONS IN SHELAH-SPENCER GRAPHS

ANTON BOBKOV

ABSTRACT. We compute vc-densities of minimal extension formulas in Shelah-Spencer random graphs.

We fix the density of the graph α .

Lemma 0.1. For any $A \in K_{\alpha}$ and $\epsilon > 0$ there exists an \mathcal{B} such that (A, \mathcal{B}) is minimal and $\delta(\mathcal{B}/A) < \epsilon$.

Proof. Let m be an integer such that $m\alpha < 1 < (m+1)\alpha$. Suppose \mathcal{A} has less than m+1 vertices. Make a construction $\mathcal{A}_0 = \mathcal{A}$ and \mathcal{A}_{i+1} is \mathcal{A}_i with one extra vertex connected to every single vertex of A_i . Stop when the total number of vertices is m+1. Proceed as in [?] 4.1. Resulting construction is still minimal.

Lemma 0.2. Let $A_1 \subset B_1$ and $A_2 \subset B_2$ be K_α structures with (A_2, B_2) a minimal pair with $\epsilon = \delta(B_2/A_2)$. Let M be some ambient structure. Fix embeddings of A_1, B_1, A_2 into M. Assume that it is not that case that $A_2 \subset B_2$ and A_1 is disjoint from A_2 (No!). Now consider all possible embeddings $f: B_2 \to M$ over A_1 . Let $A = A_1 \cup A_2$ and $B_f = B_1 \cup f(B_2)$ with $\delta_f = \delta(B_f/A)$. Then δ_f is at most $\delta(B_1 \cup A/A) + \epsilon$

Fix an embedding f. It induces the following substructure diagram in M. Denote

$$\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$$

$$\mathcal{B}_f^* = \mathcal{B}_1 \cup f(\mathcal{B}_2)$$

$$\mathcal{B}_1^* = \mathcal{B}_1 \cup \mathcal{A}$$

$$\mathcal{B}_2^* = f(\mathcal{B}_2) \cup \mathcal{A}$$

$$\mathcal{B}^* = \mathcal{B}_1^* \cap \mathcal{B}_2^*$$

From the diagram we see that

$$\delta(\mathcal{B}_f/\mathcal{A}) \leq \delta(\mathcal{B}_1^*/\mathcal{A}) + \delta(\mathcal{B}_2^*/\mathcal{B}^*)$$

Thus all we need to do is to verify that

$$\delta(\mathcal{B}_2^*/\mathcal{B}^*) \le \epsilon$$

Let \mathcal{B}' denote graph induced on all the vertices in $(f(B_2)/B_1) \cup A_2$. Then \mathcal{B}' is a substructure of \mathcal{B}_2 over \mathcal{A}_2 . By minimality we get that $\delta(\mathcal{B}'/\mathcal{A}_2) \leq \epsilon$. We need to show $\delta(\mathcal{B}_2^*/\mathcal{B}^*) \leq \delta(\mathcal{B}'/\mathcal{A}_2)$. Do the vertex computation

$$B_2^* - B^* = f(B_2) - (B_1 \cap f(B_2)) - A = f(B_2) - B_1 - A = f(B_2) - B_1 - A_2$$

and

$$B' - A_2 = f(B_2) - B_1 - A_2$$

So the sets of the extra vertices in the extension are the same. The base $\mathcal{B}_2^*/\mathcal{B}^*$ is larger so we can introduce some extra edges but no new vertices. This means that $\delta(\mathcal{B}_2^*/\mathcal{B}^*) \leq \delta(\mathcal{B}'/\mathcal{A}_2)$ giving us the original statement.

Let $\phi(x,y)$ be a formula in a random graph with |x| = |y| = 1 saying that there exists \mathcal{D} over $\mathcal{C} = \{x,y\}$ such that $(\mathcal{D},\mathcal{C})$ is minimal with relative dimension ϵ . Let N be such that $N\epsilon < 1 < (N+1)\epsilon$. Then we argue that $vc(\phi) = N$.

Fix a m-strong (for any m > |D|) set of non-connected vertices A. Fix some a*. We investigate the trace of $\phi(x, a*)$ on A. Suppose we have a_1, \ldots, a_k satisfying $\phi(a_i, a^*)$ as witnessed by $D_i/\{a_i, a*\}$. Let $\mathcal{D}^* = \bigcap \mathcal{D}_i$ and \mathcal{C}^*

Call \mathcal{M} n-composite embedding if there are distinct vertices $a_1, \ldots a_n$ and a* in M and there are an embeddings $\mathcal{D} \longrightarrow \mathcal{M}$ with \mathcal{C} going to $\{a_i, a^*\}$. Image of i-th embedding is denoted \mathcal{D}_i . Note that images of embeddings can intersect each other or a_j 's. Consider $\mathcal{D}^* = \bigcap \mathcal{D}_i$ and $\mathcal{C}^* = \{a_1, \ldots a_n, a^*\}$. Dimension of M is $\delta(\mathcal{D}^*/\mathcal{C}^*)$.

Lemma: Dimension of *n*-composite embedding is at most $-n\epsilon$.

Note: if \mathcal{D}_i are disjoint over \mathcal{C}^* then the dimension is exactly $-n\epsilon$.

Take n-composite embedding with maximal dimension. Suppose it is larger than $-n\epsilon$. Without loss of generality we may assume \mathcal{D}_n intersects with $\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_{n-1}$ over \mathcal{C}^* . Consider two cases. First, suppose that there is some element in \mathcal{D}_n outside of $\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_{n-1}$. Let $\mathcal{B}_1 = \mathcal{D}_1 \cup \ldots \cup \mathcal{D}_{n-1}$. Let $\mathcal{A}_1 = \{a_1, \ldots a_{n-1}\} \cup \{a*\}$. Let $\mathcal{B}_2 = \mathcal{D}_n$. Let $\mathcal{A}_2 = \{a_n, a*\}$.

Lemma applies to the above. Above dimension is minimized when \mathcal{D}_n is disjoint. Contradiction.

Second, suppose that $\mathcal{D}_n \subseteq \mathcal{B}_1$. In particular $a_n \in \mathcal{B}_1$. Consider Consider sets $\mathcal{B}_1 \dots \mathcal{B}_n$ with

- (1) $a_i \in \mathcal{B}_i$
- (2) $a_i \in A$
- (3) $a_i \neq a_i$
- (4) $a* \in \bigcap \mathcal{B}_i$

and s.t. $\mathcal{B}_i/\{a*, a_i\}$ is isomorphic to \mathcal{B}/\mathcal{A} . We look at all the possible embeddings with those properties. We argue that a disjoint configuration minimizes total dimension of the whole construction.

We argue by induction on n. Fix an embedding $\mathcal{B}_1, \ldots \mathcal{B}_n$ and consider possible choices for $\mathcal{B}_{n+1}, a_{n+1}$. We can pick a_n to be an element of A not used so far and embed \mathcal{B}_{n+1} over $\{a*, a_i\}$ disjoint from the entire construction. On the other hand suppose it is embedded such that there is an intersection. We set up to apply the previous lemma. Let

$$\mathcal{B}_1 = \bigcup_{1..n} \mathcal{B}_i$$

$$\mathcal{A}_1 = \{a_1, \dots a_n\}$$

$$\mathcal{B}_2 = \mathcal{B}_{n+1}$$

$$\mathcal{A}_2 = \{a^*, a_{n+1}\}$$

Applying the lemma say that the extra dimension cannot be larger than ϵ .

References

 Michael C. Laskowski, A simpler axiomatization of the Shelah-Spencer almost sure theories, Israel J. Math. 161 (2007), 157-186. MR MR2350161

E-mail address: bobkov@math.ucla.edu