Birla Institute of Technology and Science, Pilani **Instruction Division** First Semester 2016-17 **Course Handout (Part-II)**

Date:02/08/2016

In addition to Part I (General Handout for all the courses appended to the time table), this portion gives further specific details regarding the course.

Course No.	CS F215/EEE F215/INSTR F215		
Course Title	Digital Design		
Instructor-in-charge	S.MOHAN		
Team of Instructors			
(i) For Lecture	S. Gurunarayanan, S.Mohan		
(ii) For Tutorial	Harshvardhan S., Lucky Sharan, Ashish Patel, Devesh S., Vineet Kumar,		
	Nitin Chaturvedi, G. Meenakshi Sundaram, , Mahesh Angira		
(ii) For Practical	Lucky Sharan, Mahesh Angira, Jahagirdar Ankush, Dhananjay,		
	Vineet Kumar, Ravinder Kumar, Vineeta Tiwari, Anuj Ojha, Devesh S.,		
	Meenakshi S., Harshvardhan S.		
Course Description	This course covers the topics on logic circuits and		
	minimization, Combinational and sequential logic circuits, Programmable		
	Logic devices, State table and state diagrams, Digital ICs, Arithmetic		
	operations and algorithms, Introduction to Computer organization,		
	Algorithmic State Machines, RTL level realization of Digital systems		
Scope and Objective	The objective of the course is to impart knowledge of the basic tools for		
	the design of digital circuits and to provide methods and procedures		
	suitable for a variety of digital design applications. The course also		
	introduces fundamental concepts of computer organization. Laboratory		
	exercises on Combination and Sequential logic design will be given as a		
T. (D. I	part of the course.		

- T1: M.Moris Mano and Michael D. Ciletti "Digital Design", PHI, 5th Edition, 2013 T2: G Raghurama. S Gurunarayanan, Sudeept Mohan, Karthik, "Laboratory Manual", EDD notes 2007.

Reference Books:

R1: Donald D.Givonne, "Digital Principles and Design" TMH, 2003

R2: W. Stallings, "Computer Organization and Architecture" PHE, 10th Edition, 2015

Lect. No.	Learning Objectives	Topics to be covered	Reference to Text Book
1	Introduction to Digital Systems and Characteristics of Digital ICs.	Digital Systems, Digital ICs	1.1; 1.9; 2.3, 10.1,2
2-3	Simplification of Boolean functions	K-Maps (4,5 variables), QM Method	3.1 to 3.4, 3.5 to 3.8
4-6	Combinational Logic, Arithmetic circuits	Adders, Subtracters Multipliers	4.1 - 4-7
7	Simulation and synthesis basics using HDL	Hardware Description Languages	3.11
8-9	Sequential Logic	Flip-Flops & Characteristic tables, Latches.	5.1 to 5.4
10-13	Digital Integrated Circuits	TTL, MOS Logic families and their characteristics	10.3, 10.5, 10.7 to 10.9
14-16	MSI Components	Comparators, Decoders, Encoders, MUXs, DEMUXs	4.8 to 4.11
17	Simulation of Combinational Logic Functions.	HDL for Combinational Logic	4.12
18-20	Clocked Sequential Circuits	Analysis of clocked sequential circuits, state diagram and reduction	5.5, 5.7
21	Simulation of Sequential	HDL for Sequential Logic	5.6

	Logic Functions.		
22-24	Memory and PLDs	RAM, ROM, PLA, PAL	7.1, 7.5 to 7.7
25-28	Registers & Counters	Shift registers, Synchronous &	6.1 to 6.5
		Asynchronous counters, clock	
		skew & Clock Jitter	
29	Analysis of arithmetic units	Multiplication & Division	R2
		algorithms	
30-31	Design of Digital Systems	Algorithmic State Machines	R1. Chapter 8
32-38	Modular approach for CPU	RTL, HDL description	8.1,8.2, 8.4 to 8.8
	Design		
39-40	Memory Organization	Memory Hierarchy & different	R2
		types of memories	

Evaluation Scheme:

Evaluation Scheme.	1				
Component	Duration	Maximum	Date & Time	Venue	Remarks
		Marks			
MID SEMESTER TEST	90 mins	90	<test 1=""></test>	To be	CB
			_	announced	
Assignments/Tutorials	To be	45	Continuous	To be	=
	announced			announced	
Comprehensive Examination	3 Hrs	120	<test c=""></test>	To be	CB/OB
			_	announced	
Practical: Regularity, Lab reports		20	Regular lab		
& Viva			sessions		
Lab test		25	To be ann	ounced	

(b) Practicals

S.No.	Name of experiment	
1.	BOOLEAN FUNCTIONS IMPLEMENTATION	
2.	DESIGN OF ARITHMATIC CIRCUITS	
3.	IMPLEMENTATION OF BCD ADDER	
4.	DECODERS, MULTIPLEXERS AND DEMULTIPLEXERS	
5.	LATCHES & FLIP-FLOPS	
6.	OPERATION OF A 4-BIT COUNTER	
7.	COMPARATORS & ARITHMETIC LOGIC UNIT	
8.	COUNTER DESIGN	
9.	SHIFT REGISTERS	
10.	DESIGN OF SEQUENCE DETECTOR	
11.	MEMORIES AND FPGAS	

Assignments: Assignment sheets will be given in tutorial classes. There will be evaluation based on these assignments in the tutorial classes. There will also be Simulation based assignments, which will be given as take home assignments.

Chamber Consultation Hour: To be announced in class

Notices: All notices will be displayed on the CS, LTC and EEE notice boards