METODY NUMERYCZNE – LABORATORIUM

Zadanie 1 – wyznaczanie miejsca zerowego funkcji metodą bisekcji i regułą falsi

Opis rozwiązania

Celem zadania było zaimplementowanie dwóch metod, pozwalających obliczyć pierwiastek równania nieliniowego – metodę bisekcji oraz regułę falsi.

Za pomocą **metody bisekcji**, dzielimy podany przedział na pół i odrzucamy część, w której na krańcu przedziału funkcja ma taki sam znak, jak wcześniej wyznaczony środek przedziału. Algorytm wykonuje się podaną przez użytkownika liczbę iteracji lub do momentu, gdy osiągnięta zostanie podana dokładność.

Algorytm:

- Sprawdzamy, czy na krańcach przedziału funkcja przyjmuje różne znaki: f(a) * f(b) < 0.
- · Dzielimy przedział na dwie równe części.
- · Odrzucamy przedział, na którego krańcu znak jest taki sam jak znak środka.
- · Przyjęty wcześniej środek staje się krańcem przedziału, który nie został odrzucony.
- · Powtarzamy algorytm do momentu, kiedy osiągnięta zostanie podana ilość iteracji lub podana dokładność.
- · Po zakończeniu algorytmu zwracamy środek aktualnie dzielonego przedziału jako x oraz liczbę wykonanych iteracji.

Regula falsi polega na przeprowadzeniu prostej przez wykres funkcji. Funkcja ta przecina oś OX w punkcie, który jest przybliżeniem szukanego pierwiastka.

Algorytm:

- Sprawdzamy, czy na krańcach przedziału funkcja przyjmuje różne znaki: f(a) * f(b) < 0.
- Przeprowadzamy prostą przez punkty A(a, f(a)) oraz B(b, b(x)).
- · Punkt przecięcia prostej z osią OX staje się przybliżeniem szukanego pierwiastka.
- · Prowadzimy kolejną prostą przez otrzymany punkt X(x, f(x)) oraz jeden z wcześniejszych punktów A lub B
- · Powtarzamy algorytm do momentu, kiedy osiągnięta zostanie podana ilość iteracji lub podana dokładność.
- · Po zakończeniu algorytmu zwracamy aktualny punkt przecięcia z osią OX jako x oraz liczbę wykonanych iteracji.

Wyniki

1.
$$f(x) = x^3 - x^2 - 2x + 1$$

Metoda	Lewy kraniec	Prawy kraniec	Epsilon	Iteracje	Obliczone miejsce zerowe	Wartość teoretyczna
Bisekcja	-2	0	0.01	9	-1.24609	-1.24698
			0.00001	16	-1.24697	
Reguła falsi			0.01	11	-1.24603	
			0.00001	19	-1.24697	

2.
$$f(x) = \sin(x) - \cos(x)$$

Metoda	Lewy kraniec	Prawy kraniec	Epsilon	Iteracje	Obliczone miejsce zerowe	Wartość teoretyczna
Bisekcja	-3	-1	0.01	7	-2.35937	-2.35619
			0.00001	13	-2.35620	
Reguła falsi			0.01	2	-2.36307	
			0.00001	4	-2.35619	

3.
$$f(x) = 2^x - 3x$$

Metoda	Lewy kraniec	Prawy kraniec	Epsilon	Iteracje	Obliczone miejsce zerowe	Wartość teoretyczna
Bisekcja	0	2	0.01	7	0.45312	0.45782
			0.00001	15	0.45782	
Reguła falsi			0.01	3	0.45870	
			0.00001	5	0.45782	

4.
$$f(x) = tg(x) - 1$$

Metoda	Lewy kraniec	Prawy kraniec	Epsilon	Iteracje	Obliczone miejsce zerowe	Wartość teoretyczna
Bisekcja	3	4	0.01	7	3.92968	3.92699
			0.00001	16	3.92698	
Reguła falsi			0.01	3	3.92560	
			0.00001	3	3.92560	

5.
$$f(x) = \cos(x) + x^3 - 1$$

Metoda	Lewy kraniec	Prawy kraniec	Epsilon	Iteracje	Obliczone miejsce zerowe	Wartość teoretyczna
Bisekcja	0.1	1	0.01	4	0.49375	0.49007
			0.00001	14	0.49006	
Reguła falsi			0.01	1	0.10660	
			0.00001	19	0.00440	

Wnioski

- 1. Obie metody pozwalają uzyskać wynik zbliżony do teoretycznego.
- 2. Jak możemy zauważyć na podstawie ostatniej funkcji, reguła falsi nie sprawdza się dobrze przy pierwiastkach równania, przy których występuje duże wypłaszczenie wykresu funkcji.
- 3. Na podstawie uzyskanych wyników nie możemy określić, która z dwóch metod jest bardziej wydajna.
- Wartość epsilona jest odwrotnie proporcjonalna do ilości iteracji. Mniejszy epsilon pozwala na uzyskanie najdokładniejszego wyniku.
- 5. Aby wyniki dla obu metod były miarodajne, musimy wybrać przedział, w którym znajduje się tylko jedno miejsce zerowe.