

Multivariate statistics

Factor Analysis

May 24, 2024

Orlando Sabogal-Cardona
@Antonio Sabogal
orlando.sabogal.20@ucl.ac.uk

General idea

For the sake of simplicity, let's assume only three variables $\{Y_1, Y_2, Y_3\}$

 Y_1

 Y_2

 Y_3

For the sake of simplicity, let's assume only three variables $\{Y_1, Y_2, Y_3\}$

For the sake of simplicity, let's assume only three variables

 $\{Y_1, Y_2, Y_3\}$

$$Y_1 = \lambda_1 * \eta + \varepsilon_1$$

$$Y_2 = \lambda_2 * \eta + \varepsilon_2$$

$$Y_3 = \lambda_3 * \eta + \varepsilon_3$$

Latent variables

- ➤ How would you define well-being? How would you measure it?
- ➤ What about anxiety or intelligence?
- > Fear of crime?
- > Satisfaction with travel?

Latent variables

- ➤ Unobserved or hidden variables that are inferred from observed data.
- ➤ They represent underlying concepts or constructs that cannot be directly measured.
- They may represent complex phenomena.

https://quantitudepod.org/s2e21-yes-virginia-there-are-latent-variables/

Variance

$$Y_j = \lambda_j * \eta + \varepsilon_j$$

UNIQUE

COMMON

Variance

$$Y_j = \lambda_j * \eta + \varepsilon_j$$

UNIQUE

COMMON

Shred among indicators (communality). <u>Caused by the factors.</u>

Variance

$$Y_j = \lambda_j * \eta + \varepsilon_j$$

absent factor.

Actually...

Actually...

$$Y_1 = \tau_1 + \lambda_1 * \eta + \varepsilon_1$$

$$Y_2 = \tau_2 + \lambda_2 * \eta + \varepsilon_2$$

$$Y_3 = \tau_3 + \lambda_3 * \eta + \varepsilon_3$$

Actually...

Does that make sense to you? How likely do you think it is?

Confirmatory Factor Analysis

Exploratory Factor Analysis

Principal Component Analysis (?)

Factor Analysis

Purpose

- Data reduction
- Find consistent correlations among groups of variables
 - Confirm hypothesis of factor structures

EFA vs PCA

- Factors vs components. Factor cause variables
- PCA all variance is analyzed; in FA, only shared variance
 - PCA is computationally simpler and does not produce improper solutions.
 - They often produce similar results
 - EFA generalizes better to CFA (and SEM) than EFA

Thank you!

Orlando Sabogal-Cardona
@Antonio Sabogal
orlando.sabogal.20@ucl.ac.uk