Mathematik für Informatiker

Kevin Kraft

17. Juli 2024

Universität Ulm

Grenzwerte

Grenzwerte bestimmen

Als Produkt schreiben und Kürzen:

$$\lim_{x \to 2} \frac{x^2 + 5x - 14}{x - 2} = \frac{(x - 2)(x + 7)}{x - 2} = 9$$

Grenzwerte bestimmen

Als Produkt schreiben und Kürzen:

$$\lim_{x \to 2} \frac{x^2 + 5x - 14}{x - 2} = \frac{(x - 2)(x + 7)}{x - 2} = 9$$

Höchste Potenz ausklammern

$$\lim_{x\to\infty}\frac{6x^4+12x^2-13}{3x^4-7x^3+2x+1}=\lim_{x\to\infty}\frac{x^4\big(6+12x^{-2}-13x^{-4}\big)}{x^4\big(3-7x^{-1}+2x^{-3}+x^{-4}\big)}=\frac{6}{3}=2$$

$$\lim_{x\to 0}\frac{|x|}{x}$$

Wähle zwei Nullfolgen und zeige, dass sie auf unterschiedliche Grenzwerte führen. Widerspruch zur Eindeutigkeit.

$$\lim_{x\to 0}\frac{|x|}{x}$$

Wähle zwei Nullfolgen und zeige, dass sie auf unterschiedliche Grenzwerte führen. Widerspruch zur Eindeutigkeit.

Sei (x_k) eine Nullfolge mit $x_k \ge 0$ für alle $k \in \mathbb{N}$.

$$\lim_{k \to \infty} \frac{|x_k|}{x_k} = \lim_{k \to \infty} 1 = 1$$

Sei (y_k) eine Nullfolge mit $y_k \leq 0$ für alle $k \in \mathbb{N}$.

$$\lim_{k \to \infty} \frac{|y_k|}{y_k} = \lim_{k \to \infty} -1 = -1$$

Ist f(x) stetig?

$$f(x) = \left\{ \begin{array}{cc} \frac{|x| \cos \frac{1}{x^2}}{1+x^4} & x \neq 0 \\ 1 & x = 0 \end{array} \right\}$$

Sei (x_k) eine beliebige Nullfolge. Dann gilt.

4

Ist f(x) stetig?

$$f(x) = \left\{ \begin{array}{cc} \frac{|x| \cos \frac{1}{x^2}}{1 + x^4} & x \neq 0 \\ 1 & x = 0 \end{array} \right\}$$

Sei (x_k) eine beliebige Nullfolge. Dann gilt.

$$0 \le \left| \lim_{k \to \infty} f(x_k) \right| = \lim_{k \to \infty} \frac{\left| x_k \right| \cos\left(\frac{1}{x_k^2}\right)}{1 + x_k^4} \le \lim_{k \to \infty} |x_k| = 0$$

4

Ist f(x) stetig?

$$f(x) = \left\{ \begin{array}{cc} \frac{|x|\cos\frac{1}{x^2}}{1+x^4} & x \neq 0\\ 1 & x = 0 \end{array} \right\}$$

Sei (x_k) eine beliebige Nullfolge. Dann gilt.

$$0 \le |\lim_{k \to \infty} f(x_k)| = \lim_{k \to \infty} \frac{|x_k| \cos\left(\frac{1}{x_k^2}\right)}{1 + x_k^4} \le \lim_{k \to \infty} |x_k| = 0$$

Also gilt für f(x)

$$\lim_{x\to 0} f(x) = 0$$

f(x) ist nicht stetig in $x_0 = 0$

4

Stetigkeit: $\epsilon - \delta$ -Definition

Stetigkeit: $\epsilon - \delta$ -Definition

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in U_{\delta}(x_0)$$
 $|f(x) - f(x_0)| < \epsilon$

Stetigkeit: $\epsilon - \delta$ -Definition

$$\forall \epsilon > 0 \; \exists \delta > 0 : \forall x \in U_{\delta}(x_0)$$
 $|f(x) - f(x_0)| < \epsilon$

$$x \in U_{\delta}(x_0) \Leftrightarrow |x - x_0| < \delta$$

Wichtige Tricks zum umformen

Das muss man mindestens einmal finden: $|x - x_0| < \delta$

Wichtige Tricks zum umformen

Das muss man mindestens einmal finden: $|x - x_0| < \delta$

3. binomische Formel:

$$|x^2 - x_0^2| = |x - x_0| |x + x_0|$$

Erweitern mit 3. binomischer Formel:

$$\sqrt{x} - \sqrt{x_0} = \sqrt{x} - \sqrt{x_0} \frac{\sqrt{x} + \sqrt{x_0}}{\sqrt{x} + \sqrt{x_0}} = \frac{x - x_0}{\sqrt{x} + \sqrt{x_0}}$$

Wichtige Tricks zum umformen

Das muss man mindestens einmal finden: $|x - x_0| < \delta$

3. binomische Formel:

$$|x^2 - x_0^2| = |x - x_0| |x + x_0|$$

Erweitern mit 3. binomischer Formel:

$$\sqrt{x} - \sqrt{x_0} = \sqrt{x} - \sqrt{x_0} \frac{\sqrt{x} + \sqrt{x_0}}{\sqrt{x} + \sqrt{x_0}} = \frac{x - x_0}{\sqrt{x} + \sqrt{x_0}}$$

Nützliche Abschätzungen:

$$1+\sqrt{x}\geq 1\;,\quad a+x^2\geq a$$

Wenn
$$\delta \le \frac{x_0}{2}$$
 $\Rightarrow \frac{x_0}{2} \le x \le \frac{3x_0}{2}$

Abschätzung $\delta \leq \frac{x_0}{2}$

Abschätzung $\delta \leq \frac{x_0}{2}$

Beispiel: $f(x) = x^2$

$$f(x) = x^2$$
 ist zu zeigen:

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in U_{\delta}(x_0) \quad (\Leftrightarrow |x - x_0| < \delta)$$

 $|x^2 + x_0^2| < \epsilon$

Beispiel: $f(x) = x^2$

$$f(x) = x^2$$
 ist zu zeigen:

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in U_{\delta}(x_0) \quad (\Leftrightarrow |x - x_0| < \delta)$$

 $|x^2 + x_0^2| < \epsilon$

Zunächst geschickt umformen:

$$|x^{2} - x_{0}^{2}| = |x - x_{0}| |x + x_{0}| = |x - x_{0}| |x - x_{0} + x_{0}|$$

$$\leq |x - x_{0}| (|x - x_{0}| + 2|x_{0}|)$$

$$< \delta(\delta + 2|x_{0}|) < \epsilon$$

Beispiel: $f(x) = x^2$

$$f(x) = x^2$$
 ist zu zeigen:

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in U_{\delta}(x_0) \quad (\Leftrightarrow |x - x_0| < \delta)$$

 $|x^2 + x_0^2| < \epsilon$

Zunächst geschickt umformen:

$$|x^{2} - x_{0}^{2}| = |x - x_{0}| |x + x_{0}| = |x - x_{0}| |x - x_{0} + x_{0}|$$

$$\leq |x - x_{0}| (|x - x_{0}| + 2|x_{0}|)$$

$$< \delta(\delta + 2|x_{0}|) < \epsilon$$

Schätze
$$\delta$$
 ab: $\delta \leq 1$

$$\Rightarrow |x^2 - x_0^2| < \delta(1 + 2|x_0|) < \epsilon \quad \Rightarrow \quad \delta = \frac{\epsilon}{1 + 2|x_0|}$$

$$\delta = \min\left(1, \frac{\epsilon}{1 + 2|x_0|}\right)$$

Beispiel:
$$f(x) = \frac{2}{1+\sqrt{x}}$$

$$|f(x) - f(x_0)| = \left| \frac{2}{1 + \sqrt{x}} - \frac{2}{1 + \sqrt{x_0}} \right| = \left| \frac{2(1 + \sqrt{x_0}) - 2(1 + \sqrt{x})}{\underbrace{(1 + \sqrt{x})}_{\geq 1} \underbrace{(1 + \sqrt{x_0})}_{\geq 1}} \right|$$

$$\leq 2|\sqrt{x_0} - \sqrt{x}|$$

$$\leq 2|\sqrt{x_0} - \sqrt{x}|$$
(Erweitern mit $\sqrt{x_0} + \sqrt{x}$)
$$= 2\frac{|x_0 - x|}{\sqrt{x_0} + \sqrt{x}}$$

Beispiel:
$$f(x) = \frac{2}{1+\sqrt{x}}$$

$$|f(x) - f(x_0)| = \left| \frac{2}{1 + \sqrt{x}} - \frac{2}{1 + \sqrt{x_0}} \right| = \left| \frac{2(1 + \sqrt{x_0}) - 2(1 + \sqrt{x})}{\underbrace{(1 + \sqrt{x})}_{\geq 1} \underbrace{(1 + \sqrt{x_0})}_{\geq 1}} \right|$$

$$\leq 2|\sqrt{x_0} - \sqrt{x}|$$

$$\leq 2|\sqrt{x_0} - \sqrt{x}|$$

$$= 2\frac{|x_0 - x|}{\sqrt{x_0} + \sqrt{x}}$$
(Erweitern mit $\sqrt{x_0} + \sqrt{x}$)

Zum Abschätzen, wähle $\delta \leq \frac{x_0}{2}$.

Beispiel:
$$f(x) = \frac{2}{1+\sqrt{x}}$$

$$|f(x) - f(x)| = \left| \frac{2}{1 + \sqrt{x}} - \frac{2}{1 + \sqrt{x_0}} \right| = \left| \frac{2(1 + \sqrt{x_0}) - 2(1 + \sqrt{x})}{\underbrace{(1 + \sqrt{x})}_{\geq 1} \underbrace{(1 + \sqrt{x_0})}_{\geq 1}} \right|$$

$$\leq 2|\sqrt{x_0} - \sqrt{x}|$$

$$\leq 2|\sqrt{x_0} - \sqrt{x}|$$

$$= 2\frac{|x_0 - x|}{\sqrt{x_0} + \sqrt{x}}$$

Zum Abschätzen, wähle $\delta \leq \frac{x_0}{2} \Rightarrow \sqrt{x} \geq \sqrt{\frac{x_0}{2}}$.

$$|f(x) - f(x_0)| \le \frac{2\sqrt{|x - x_0|}}{\sqrt{x_0} + \sqrt{\frac{x_0}{2}}} < \frac{2}{(1 + \frac{1}{\sqrt{2}})\sqrt{x_0}} \delta < \epsilon$$

Beispiel:
$$f(x) = \frac{2}{1+\sqrt{x}}$$

$$|f(x) - f(x)| = \left| \frac{2}{1 + \sqrt{x}} - \frac{2}{1 + \sqrt{x_0}} \right| = \left| \frac{2(1 + \sqrt{x_0}) - 2(1 + \sqrt{x})}{\underbrace{(1 + \sqrt{x})}_{\geq 1} \underbrace{(1 + \sqrt{x_0})}_{\geq 1}} \right|$$

$$\leq 2|\sqrt{x_0} - \sqrt{x}|$$

$$\leq 2|\sqrt{x_0} - \sqrt{x}|$$

$$= 2\frac{|x_0 - x|}{\sqrt{x_0} + \sqrt{x}}$$

Zum Abschätzen, wähle $\delta \leq \frac{\mathsf{x_0}}{2} \Rightarrow \sqrt{\mathsf{x}} \geq \sqrt{\frac{\mathsf{x_0}}{2}}.$

$$|f(x) - f(x_0)| \le \frac{2\sqrt{|x - x_0|}}{\sqrt{x_0} + \sqrt{\frac{x_0}{2}}} < \frac{2}{(1 + \frac{1}{\sqrt{2}})\sqrt{x_0}} \delta < \epsilon$$

$$\delta = \min\left(\frac{x_0}{2}, \ \frac{(1+\frac{1}{\sqrt{2}})\sqrt{x_0}}{2}\epsilon\right)$$

Gleichmäßige Stetigkeit

Definition: Gleichmäßige Stetigkeit

Definition 10.2.17: Gleichmäßige Stetigkeit

Es sei $D\subseteq\mathbb{R}.$ Eine Funktion $f:D\to\mathbb{R}$ heißt gleichmäßig stetig auf $D:\Leftrightarrow$

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x_1, x_2 \in D\left(|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon\right).$$

Abbildung 3.1: Liebezeit, Skript: Mathematik für Informatiker, 2023

Unterschied zu Stetigkeit?

Definition: Gleichmäßige Stetigkeit

Definition 10.2.17: Gleichmäßige Stetigkeit

Es sei $D\subseteq\mathbb{R}.$ Eine Funktion $f:D\to\mathbb{R}$ heißt gleichmäßig stetig auf $D:\Leftrightarrow$

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x_1, x_2 \in D\left(|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon\right).$$

Abbildung 3.1: Liebezeit, Skript: Mathematik für Informatiker, 2023

Unterschied zu Stetigkeit?

Es existiert ein δ , dass für alle $x_1, x_2 \in D$ gelten muss.

Schlussfolgerung:

Definition: Gleichmäßige Stetigkeit

Definition 10.2.17: Gleichmäßige Stetigkeit

Es sei $D\subseteq\mathbb{R}.$ Eine Funktion $f:D\to\mathbb{R}$ heißt gleichmäßig stetig auf $D:\Leftrightarrow$

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x_1, x_2 \in D\left(|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon\right).$$

Abbildung 3.1: Liebezeit, Skript: Mathematik für Informatiker, 2023

Unterschied zu Stetigkeit?

Es existiert ein δ , dass für alle $x_1, x_2 \in D$ gelten muss.

Schlussfolgerung: δ darf nicht von x_0 abhängen, wenn f(x) auf \mathbb{R} definiert ist.

Abhängigkeit von δ von x_0

Abhängigkeit von δ von x_0

Sind $f(x) = x^2$ und $\tilde{f}(x) = \frac{2}{1+\sqrt{x}}$ glm. stetig?

Für
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = x^2$:

$$\delta = \min\left(1, \frac{\epsilon}{1 + 2|x_0|}\right)$$

Sind
$$f(x) = x^2$$
 und $\tilde{f}(x) = \frac{2}{1+\sqrt{x}}$ glm. stetig?

Für $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^2$:

$$\delta = \min\left(1, \frac{\epsilon}{1 + 2|x_0|}\right)$$

Hängt von x_0 ab, also **nicht** gleichmäßig stetig.

Für
$$\tilde{f}:(0,\infty)\to\mathbb{R};\ \tilde{f}=\frac{2}{1+\sqrt{x}}$$
:

$$\delta = \min\left(\frac{x_0}{2}, \ \frac{(1 + \frac{1}{\sqrt{2}})\sqrt{x_0}}{2}\epsilon\right)$$

Hängt von x_0 ab, also **nicht** gleichmäßig stetig.

Was ware für $f:[a,b] \to \mathbb{R}$; $f(x)=x^2$

Vorher:

$$\delta = \min\left(1, \frac{\epsilon}{1 + 2|x_0|}\right) \stackrel{|x_0| \to \infty}{\longrightarrow} 0$$

Jetzt: Sei $M = \max(|a|, |b|)$. Wähle

$$\delta = \frac{\epsilon}{1 + 2M}$$

Was ware für $f:[a,b] \to \mathbb{R}$; $f(x) = x^2$

Vorher:

$$\delta = \min\left(1, \frac{\epsilon}{1 + 2|x_0|}\right) \overset{|x_0| \to \infty}{\longrightarrow} 0$$

Jetzt: Sei $M = \max(|a|, |b|)$. Wähle

$$\delta = \frac{\epsilon}{1 + 2M}$$

da für alle $x_0 \in [a, b]$ gilt:

$$\frac{\epsilon}{1+2M} \le \frac{\epsilon}{1+2|x_0|}$$

Beispiel: $f : \mathbb{R} \to \mathbb{R}$; f(x) = 3x - 2

Ist
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = 3x - 2$ gleichmäßig stetig auf \mathbb{R} ?

Sei $x \in U_{\delta}(x_0)$:

$$|f(x) - f(x_0)| = |3x - 2 - 3x_0 + 2| = |3x - 3x_0|$$

$$= 3|x - x_0|$$

$$< 3\delta < \epsilon$$

$$\delta = \frac{\epsilon}{3}$$

f ist gleichmäßig stetig, da δ nicht von x_0 abhängt.

Gleichmäßige Stetigkeit von linearen Funktionen

Gleichmäßige Stetigkeit von linearen Funktionen

Alternative Form

Nicht mit Kanonen auf Spatzen schießen

 $\epsilon-\delta$ nur benutzen, wenn es konkret dransteht!

- Zeige mit der Definition...
- Zeige mit Hilfe der $\epsilon \delta$ -Definition...

Stattdessen:

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0)$$

Beispiel 1:

$$f(x) = \left\{ \begin{array}{ll} \cos(\pi x) & \text{für } x < 1 \\ x - 2 & \text{für } x \ge 1 \end{array} \right\}$$

Beispiel 1:

$$f(x) = \begin{cases} \cos(\pi x) & \text{für } x < 1 \\ x - 2 & \text{für } x \ge 1 \end{cases}$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x - 2) = -1$$

$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \cos(\pi x) = -1$$

$$f(1) = -1$$

f ist stetig in $x_0 = 1$.

Beispiel 2:

$$f(x) = \begin{cases} e^x & \text{für } x < 0\\ \ln(x+1) & \text{für } x \ge 0 \end{cases}$$

Beispiel 2:

$$f(x) = \begin{cases} e^{x} & \text{für } x < 0\\ \ln(x+1) & \text{für } x \ge 0 \end{cases}$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} e^{x} = 1$$
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 1^{-}} \ln(x+1) = 0$$
$$f(0) = 0$$

f ist nicht stetig in $x_0 = 0$.

Beispiel 3:

$$f(x) = \begin{cases} 0 & \text{für } x = -1\\ \frac{(x+1)(x+2)}{(x+1)} & \text{sonst} \end{cases}$$

Beispiel 3:

$$f(x) = \begin{cases} 0 & \text{für } x = -1\\ \frac{(x+1)(x+2)}{(x+1)} & \text{sonst} \end{cases}$$

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} \frac{(x+1)(x+2)}{x+1} \lim_{x \to -1^{+}} (x+2) = 1$$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{(x+1)(x+2)}{x+1} \lim_{x \to -1^{-}} (x+2) = 1$$

$$f(0) = 0$$

f ist nicht stetig in $x_0 = -1$.

Unstetigkeiten

Beispiele 10.2.6 (Klassifizierung von Unstetigkeitsstellen). (i) Die Funktion

$$f(x) = \begin{cases} x^2, & 0 \le x < 1, \\ x - 1, & x \ge 1, \end{cases}$$

hat in $x_0=1$ eine Sprungstelle. Rechts- und linksseitiger Grenzwert existieren, sind aber verschieden.

Abbildung 10.6: Funktion mit Sprungstelle.

(ii) Hebbare Unsstetigkeit (in $x_0 = 2$):

$$f(x) = \begin{cases} x^2, & x < 2, \\ 0, & x = 2, \\ 2x, & x > 2. \end{cases}$$

Rechts- und linksseitiger Grenzwert existieren und stimmen überein, stimmen aber nicht mit dem Funktionswert an der Stelle überein. Die Unstetigkeit kann durch Setzen eines anderen Wertes für $f(x_0)$ behoben werden.

- (iii) Polstelle: Einer der Funktionsgrenzwerte $\lim_{x \to x_0^+} f(x)$, $\lim_{x \to x_0^-} f(x)$ ist $\pm \infty$. Der andere Grenzwert existiert ggf. uneigentlich. Beispiel: $x_0 = 0$, $f(x) = \frac{1}{2}$ für x > 0 und f(x) = 0 sonst.
- (iv) Unstetigkeit zweiter Art: Der Funktionsgrenzwert in x₀ existiert auch im uneigentlichen Sinn weder von links noch von rechts. Beispiel:

Zwischenwertsatz

Zwischenwertsatz 10.2.7

Es seien I=[a,b] ein kompaktes Intervall und $f:I\to\mathbb{R}$ stetig mit f(a)< f(b). Dann existiert für jeden Zwischenwert $y\in (f(a),f(b))$ ein $\xi\in (a,b)$ mit $f(\xi)=y$.

Abbildung 4.2: Liebezeit, Skript: Mathematik für Informatiker, 2023

Aufgabe: Zeige, dass $e^{2x} + 3x^2 = 4$ auf $\mathbb R$ eine Lösung besitzt.

Zwischenwertsatz

Zwischenwertsatz 10.2.7

Es seien I=[a,b] ein kompaktes Intervall und $f:I\to\mathbb{R}$ stetig mit f(a)< f(b). Dann existiert für jeden Zwischenwert $y\in (f(a),f(b))$ ein $\xi\in (a,b)$ mit $f(\xi)=y$.

Abbildung 4.2: Liebezeit, Skript: Mathematik für Informatiker, 2023

Aufgabe: Zeige, dass $e^{2x} + 3x^2 = 4$ auf \mathbb{R} eine Lösung besitzt.

Wähle I = [0, 1] als kompaktes Intervall und $f(x) = e^{2x} + x^2$. f ist als Komposition stetiger Funktionen stetig. Außerdem gilt:

$$f(0) = e^0 + 0 = 1 < 4$$
, $f(1) = e^2 + 1 > 2^2 + 1 = 5 > 4$

Nach ZWS existiert in $\xi \in I \subset \mathbb{R}$ mit $f(\xi) = 4$. ξ ist ein Lösung der Gleichung.