Multi-Criteria Decision Making

TOPSIS METHOD

TOPSIS METHOD

- Technique of Order Preference by Similarity to Ideal Solution
- This method considers three types of attributes or criteria

- Qualitative benefit attributes/criteria
- Quantitative benefit attributes
- Cost attributes or criteria

TOPSIS METHOD

- ☐ In this method two artificial alternatives are hypothesized:
- ☐ Ideal alternative: the one which has the best level for all attributes considered.
- Negative ideal alternative: the one which has the worst attribute values.
- TOPSIS selects the alternative that is the closest to the ideal solution and farthest from negative ideal alternative.

Input to TOPSIS

- □ TOPSIS assumes that we have m alternatives (options) and n attributes/criteria and we have the score of each option with respect to each criterion.
- Let x_{ij} score of option i with respect to criterion j We have a matrix $X = (x_{ii})$ m×n matrix.
- ☐ Let J be the set of benefit attributes or criteria (more is better)
- Let J' be the set of negative attributes or criteria (less is better)

- Step 1: Construct normalized decision matrix.
- □ This step transforms various attribute dimensions into non-dimensional attributes, which allows comparisons across criteria.
- Normalize scores or data as follows:

$$r_{ij} = x_{ij} / (\sum_{i} x_{ij}^2)$$
 for $i = 1, ..., m; j = 1, ..., n$

- □ Step 2: Construct the weighted normalized decision matrix.
- Assume we have a set of weights for each criteria $\mathbf{w_i}$ for j = 1,...n.
- Multiply each column of the normalized decision matrix by its associated weight.
- □ An element of the new matrix is:

$$v_{ij} = w_j r_{ij}$$

- Step 3: Determine the ideal and negative ideal solutions.
- □ Ideal solution.

```
A^* = \{ v_1^*, ..., v_n^* \}, \text{ where}
v_j^* = \{ \max_i (v_{ij}) \text{ if } j \in J; \min_i (v_{ij}) \text{ if } j \in J' \}
```

■ Negative ideal solution.

```
A' = \{ \ v_1', ..., v_n' \}, \text{ where} v' = \{ \ \min_i \ (v_{ij}) \text{ if } j \in J ; \ \max_i \ (v_{ij}) \text{ if } j \in J' \}
```


- Step 4: Calculate the separation measures for each alternative.
- □ The separation from the ideal alternative is:

$$S_i^* = \sum_{i=1}^{n} (v_j^* - v_{ij}^*)^2$$
 $i = 1, ..., m$

□ Similarly, the separation from the negative ideal alternative is:

$$S'_{i} = \left[\sum_{i} (v'_{j} - v_{ij})^{2} \right]^{1/2}$$
 $i = 1, ..., m$

□ Step 5: Calculate the relative closeness to the ideal solution C_i*

$$C_{i}^{*} = S'_{i} / (S_{i}^{*} + S'_{i})$$
, $0 < C_{i}^{*} < 1$

Select the option with C_i^* closest to 1.

WHY?

Applying TOPSIS Method to Example

Weight	0.1	0.4	0.3	0.2
	Style	Reliability	Fuel Eco.	Cost
Civic	7	9	9	8
Saturn	8	7	8	7
Ford	9	6	8	9
Mazda	6 8	7		

Applying TOPSIS to Example

- \square m = 4 alternatives (car models)
- \square n = 4 attributes/criteria
- $\overline{\mathbf{x}_{ij}}$ = score of option i with respect to criterion j $\mathbf{X} = \{\mathbf{x}_{ij}\}$ 4×4 score matrix.
- □ J = set of benefit attributes: style, reliability, fuel economy (more is better)
- \Box J' = set of negative attributes: cost (less is better)

□ Step 1(a): calculate $(\Sigma x_{ij}^2)^{1/2}$ for each column

	Style	Rel.	Fuel	Cost
Civic	49	81	81	64
Saturn	64	49	64	49
Ford	81	36	64	81
Mazda	36	49	64	36
Σx_{ij}^2	230	215	273	230
$(\Sigma x^2)^{1/2}$	15.17	14.60	6 16.52	2 15.17

Step 1 (b): divide each column by $(\Sigma x^2_{ij})^{1/2}$ to get \mathbf{r}_{ij}

	Style	Rel.	Fuel	Cost	
Civic	0.46	0.61	0.54	0.53	
Saturn	0.53	0.48	0.48	0.46	
Ford	0.59	0.41	0.48	0.59	
Mazda	0.48	0.48	0.40		0.40

Step 2 (b): multiply each column by w_j to get v_{ij} .

	Style	Rel.	Fuel	Cost
Civic	0.046	0.244	0.162	0.106
Saturn	0.053	0.192	0.144	0.092
Ford	0.059	0.164	0.144	0.118
Mazda	0.040	0.192	0.144	0.080

Step 3 (a): determine ideal solution A*.

 $A^* = \{0.059, 0.244, 0.162, 0.080\}$

	Style	Rel.	Fuel	Cost
Civic	0.046	0.244	0.162	0.106
Saturn	0.053	0.192	0.144	0.092
Ford	0.059	0.164	0.144	0.118
Mazda	0.040	0.192	0.144	0.080

Step 3 (a): find negative ideal solution A'.

$$A' = \{0.040, 0.164, 0.144, 0.118\}$$

	Style	Rel.	Fuel	Cost
Civic	0.046	0.244	0.162	0.106
Saturn	0.053	0.192	0.144	0.092
Ford	0.059	0.164	0.144	0.118
Mazda	0.040	0.192	0.144	0.080

Step 4 (a): determine separation from ideal solution $A^* = \{0.059, 0.244, 0.162, 0.080\}$ $S_i^* = \left[\sum (v_j^* - v_{ij})^2 \right]^{\frac{1}{2}} \quad \text{for each}$ row

	Style	Rel.	Fuel	Cost
Civic	$(.046059)^2$	$(.244244)^2$	$(0)^2$	$(.026)^2$
Saturn	$(.053059)^2$	$(.192244)^2$	$(018)^2$	$(.012)^2$
Ford	$(.053059)^2$	$(.164244)^2$	$(018)^2$	$(.038)^2$
Mazda	$(.053059)^2$	$(.192244)^2$	$(018)^2$	$(.0)^2$

Civic

Saturn

Ford

Mazda

Steps of TOPSIS

Step 4 (a): determine separation from ideal solution S_i^*

0.008186

0.003389

$- \left[2 \left(v_{j} - v_{ij} \right) \right]$
29
57

0.090

0.058

□ Step 4 (b): find separation from negative ideal solution $A' = \{0.040, 0.164, 0.144, 0.118\}$

$$S_i' = [\Sigma (v_j'-v_{ij})^2]^{1/2}$$
 for each row

	Style	Rel.	Fuel	Cost
Civic	$(.046040)^2$	$(.244164)^2$	$(.018)^2$	$(012)^2$
Saturn	$(.053040)^2$	$(.192164)^2$	$(0)^2$	$(026)^2$
Ford	$(.053040)^2$	$(.164164)^2$	$(0)^2$	$(0)^2$
Mazda	$(.053040)^2$	$(.192164)^2$	$(0)^{2}$	$(038)^2$

Step 4 (b): determine separation from negative ideal solution S_i '

	$\Sigma (v_j - v_{ij})^2$	$S_{i}' = [\Sigma (v_{j}' - v_{ij})^{2}]^{1/2}$
Civic	0.006904	0.083
Saturn	0.001629	0.040
Ford	0.000361	0.019
Mazda	0.002228	0.047

Step 5: Calculate the relative closeness to the ideal solution $C_i^* = S'_i / (S_i^* + S'_i)$

	$S'_i/(S_i^*+S'_i)$	C_i^*		
Civic	0.083/0.112	0.74	←	BEST
Saturn	0.040/0.097	0.41		
Ford	0.019/0.109	0.17		
Mazda	0.047/0.105	0.45		