1. Tentukan bagian yang dicari dari perbandingan berikut!

a)
$$\left(\frac{3}{T_1}\right)^2 = \left(\frac{1}{9}\right)^3$$

b)
$$\left(\frac{T_2}{8}\right)^2 = \left(\frac{3}{12}\right)^3$$

c)
$$\left(\frac{1}{27}\right)^2 = \left(\frac{R_2}{18}\right)^3$$

2. Gunakan cara

$$x = \frac{d\sqrt{m_1}}{\sqrt{m_1} + \sqrt{m_2}}$$

dimana

d: jarak dua benda awal

x: jarak dari yang ditanyakan dari m_1

 m_1, m_2 : massa dua benda awal.

- a) Dua buah benda bermassa 4kg dan 9 kg berada pada jarak 15 m. Ada benda bermassa 2,78 kg diletakkan di antara kedua benda. Berapakah jarak benda ketiga (terakhir) dari benda 4 kg, jika besar gaya yang dirasakan adalah NOL
- b) Dua buah benda A dan B bermassa 81 juta kg dan 144 juta kg dipisahkan pada jarak 42 juta km. Di manakah letak agar medan gravitasi totalnya NOL?...

Pembahasan

 a) Karena yang dihitung adalah ruas kiri, pastikan tidak ada pangkatnya yang kiri

kiri
$$\left(\frac{3}{T_1}\right)^2 = \left(\frac{1}{9}\right)^3$$

$$\sqrt{\left(\frac{3}{T_1}\right)^2} = \sqrt{\left(\frac{1}{9}\right)^3}$$

$$\left(\frac{3}{T_1}\right) = \left(\frac{1}{3}\right)^3$$

$$\left(\frac{3}{T_1}\right) = \left(\frac{1}{27}\right)$$

$$\left(\frac{3}{1}\right) = \left(\frac{T_1}{3}\right)$$

b)

$$\left(\frac{T_2}{8}\right)^2 = \left(\frac{3}{12}\right)^3$$

$$\sqrt{\left(\frac{T_2}{8}\right)^2} = \sqrt{\left(\frac{3}{12}\right)^3}$$

$$\left(\frac{T_2}{8}\right) = \sqrt{\left(\frac{3^1}{12^4}\right)^3}$$

$$\left(\frac{T_2}{8}\right) = \sqrt{\left(\frac{1}{4}\right)^3}$$

$$\left(\frac{T_2}{8}\right) = \left(\frac{1}{2}\right)^3$$

$$\left(\frac{T_2}{8}\right) = \left(\frac{1}{8}\right)$$

c) Untuk bagian ini, karena yang dicari adalah R_2 yang ada di ruas kanan, maka pastikan di ruas kanan tidak ada pangkatnya. (dalam hal ini hilangkan pangkat 3 dengan $\sqrt[3]{}$

$$\left(\frac{1}{27}\right)^2 = \left(\frac{R_2}{18}\right)^3$$

$$\sqrt[3]{\left(\frac{1}{27}\right)^2} = \sqrt[3]{\left(\frac{R_2}{18}\right)^3}$$

$$\left(\frac{1}{3}\right)^2 = \frac{R_2}{18}$$

$$\frac{1}{9} = \frac{R_2}{18}$$

$$R_2 = 2$$

 Untuk mengerjakan bisa menggunakan gambar dengan asumsi gaya yang ditari A sama besar dengan gaya yang ditarik B. Atau dengan rumus yang sudah dijelaskan sebelumnya

$$x = \frac{d\sqrt{m_1}}{\sqrt{m_1} + \sqrt{m_2}}$$

$$x = \frac{15.\sqrt{4}}{\sqrt{4} + \sqrt{9}}$$

$$x = \frac{15^3.2}{5}$$

$$x = 6m$$

 Untuk mengerjakan soal nomor dua sama dengan soal 1, satuan karena sama2 menggunakan juta km maka bisa dicoret (diabaikan). Misal x adalah jarak dari benda yang 81 juta kg.

$$x = \frac{d\sqrt{m_1}}{\sqrt{m_1} + \sqrt{m_2}}$$

$$x = \frac{42.\sqrt{81}}{\sqrt{81} + \sqrt{144}}$$

$$x = \frac{42^2.9}{21}$$

$$x = 18$$
juta km

Jadi kalau dihitung dari benda 144 juta kg adalah 42-18=24 juta km.

Tips belajar jenis-jenis soal:

- a. Soal tentang lokasi gaya gravitasi F_g / medan gravitasi g jumlahnya Nol ada di soal nomor : 2, 19, 21, esay (16, 20)
- b. Soal tentang perbandingan gaya atau medan gravitasi ada di soal nomor : 3, 5, 6, 9, 10, 11, 12, 13, 15, 16, 17, 18, essay (2, 7, 11)
- c. Soal tentang perbandingan Kepler: 22, 23, 24, 25, 26, 27, 28, 29, 30, essay (13, 17, 19)
 - No 5, $r_1=R$ sedangkan r_2 adalah R dari permukaan bumi, jadi $r_2=2R$
 - No 7, gambar gaya yang bekerja pada tiap titik. Misal, di titik R ada gaya tarik ke kiri (A) dan ke kanan (S). Cari yang mendapat gaya searah dan dekat ke massa yang lebih besar. Jawaban teori untuk soal nomor 7 adalah titik P
 - No 11 berada di ketinggian $\frac{1}{2}$ dari permukaan bumi. Jadi $r_2=R+\frac{3}{2}R=\frac{3}{2}R$
 - No 17 $\frac{g_2}{g_1}=\frac{0.5}{1}=\frac{1}{2}$ kemudian cari r_2 dengan perbandingan
 - Soal 23 sampai 29 gunakan $\left(\frac{T_2}{T_1}\right)^2 = \left(\frac{R_2}{R_1}\right)^3$
 - Soal vektor, terutama yang sudut 30 menggunakan prinsip sama sisi (gaya sama), 45 prinsip sama kaki, sudut 60 gunakan $\sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos(\theta)}$

1. Tiga buah planet dengan perbandingan massa $M_A=3M_B=5M_C$. jari-jari planet $R_A=2R_B=5R_C$. Jika di planet A