MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 – FEBRUARY 2010 SOLUTION KEY

Team Round - continued

F) Note: $a_n = \frac{1}{2 + a_{n-1}}$ So, rather than thinking of a_4 as $\frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}$,

we look at $a_4 = \frac{1}{2+a_3} = \frac{1}{2+\frac{5}{12}} = \frac{12}{29}$

Lining up the *a*-sequence evidence $\begin{bmatrix} 1 & 2 & \boxed{5} & \underline{12} & X & Z \\ 2 & 5 & \underline{12} & 29 & Y & T \end{bmatrix}$, we notice that Y = Z and T = X + 2Y.

Therefore, the *a*-sequence continues $\frac{29}{2(29)+12} = \frac{29}{70}, \frac{70}{169}, \frac{169}{408}, \frac{408}{985}, \frac{985}{2378}, \frac{2378}{5741}$.

$$a_{10} = \frac{2378}{5741} \rightarrow A_{10} = 1 + \frac{2378}{5741} = \frac{8119}{5741}$$