NYC Taxi Fare prediction

CIS 731: ANN project

By: Gaurav Misra Hardik Patil

ANN Project

- 1. Data Summary
- 2. Data Exploration and cleaning
- 3. Deep Neural Network
- 4. Backpropagation
- ARIMA Model
- 6. Testing
- 7. Improvements

Data Summary

	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
0	2009-06-15 17:26:21.0000001	4.5	2009-06-15 17:26:21+00:00	-73.844311	40.721319	-73.841610	40.712278	1
1	2010-01-05 16:52:16.0000002	16.9	2010-01-05 16:52:16+00:00	-74.016048	40.711303	-73.979268	40.782004	1
2	2011-08-18 00:35:00.00000049	5.7	2011-08-18 00:35:00+00:00	-73.982738	40.761270	-73.991242	40.750562	2
3	2012-04-21 04:30:42.0000001	7.7	2012-04-21 04:30:42+00:00	-73.987130	40.733143	-73.991567	40.758092	1
4	2010-03-09 07:51:00.000000135	5.3	2010-03-09 07:51:00+00:00	-73.968095	40.768008	-73.956655	40.783762	1

Data features -

- Fare_amount (target)
- Pickup_datetime
- Pickup_longitude
- Pickup_latitude
- Dropoff_longitude
- Dropoff_latitude
- passenger_count

Removing inconsistencies -

- 1. Fare amount less than zero
- Drop Off location missing
- 3. Trips that either started or finished in water
- 4. Passenger count was less than zero
- 5. Trips that started or finished outside NYC

Adding New Features - Trip distance in km

Total fare amount by month - year .

JUL 120873.0 128220.0 131414.0 132635.0 159098.0 150000.0 nan 130k		
FEB 116939.0 94767.0 122696.0 130610.0 146777.0 143348.0 137234.0 MAR 125536.0 110680.0 138564.0 143354.0 168851.0 170265.0 151239.0 160k APR 123665.0 132362.0 129557.0 140865.0 164346.0 163842.0 153621.0 150k MAY 131621.0 141142.0 139251.0 144536.0 164190.0 172570.0 157171.0 JUN 124646.0 132744.0 136509.0 141815.0 162133.0 157709.0 149042.0 140k JUL 120873.0 128220.0 131414.0 132635.0 159098.0 150000.0 nan 130k AUG 123842.0 110744.0 117543.0 135492.0 141078.0 146172.0 nan 120k	JAN	1704
APR 123665.0 132362.0 129557.0 140865.0 164346.0 163842.0 153621.0 150k MAY 131621.0 141142.0 139251.0 144536.0 164190.0 172570.0 157171.0 JUN 124646.0 132744.0 136509.0 141815.0 162133.0 157709.0 149042.0 140k JUL 120873.0 128220.0 131414.0 132635.0 159098.0 150000.0 nan 130k AUG 123842.0 110744.0 117543.0 135492.0 141078.0 146172.0 nan 120k	FEB	1708
MAY 131621.0 141142.0 139251.0 144536.0 164190.0 172570.0 157171.0 JUN 124646.0 132744.0 136509.0 141815.0 162133.0 157709.0 149042.0 140k JUL 120873.0 128220.0 131414.0 132635.0 159098.0 150000.0 nan 130k AUG 123842.0 110744.0 117543.0 135492.0 141078.0 146172.0 nan 120k	MAR	160k
JUN 124646.0 132744.0 136509.0 141815.0 162133.0 157709.0 149042.0 JUL 120873.0 128220.0 131414.0 132635.0 159098.0 150000.0 nan 130k AUG 123842.0 110744.0 117543.0 135492.0 141078.0 146172.0 nan	APR	150k
JUL 120873.0 128220.0 131414.0 132635.0 159098.0 150000.0 nan 130k AUG 123842.0 110744.0 117543.0 135492.0 141078.0 146172.0 nan 120k	MAY	unt
AUG 123842.0 110744.0 117543.0 135492.0 141078.0 146172.0 nan	JUN	140k E
120k	JUL	130k =
	AUG	tota
	SEP	120K
OCT 140527.0 130815.0 142818.0 162768.0 174593.0 164582.0 nan	ОСТ	110k
NOV 127090.0 127009.0 131768.0 150595.0 160419.0 152692.0 nan	NOV	100k
DEC 128658.0 126701.0 136420.0 163520.0 159181.0 151686.0 nan	DEC	1500

Deep Neural Network

In DNN we used Sequential Model from keras.

Layers used - Dropout Layer, Dense, BatchNormalization

Activation function -relu

Optimizer - Adam and Adamax

Evaluation metric - rmse

Number of epochs - 80

Pearson correlation

fare_amount	1.000000
pickup_longitude	0.381347
pickup_latitude	-0.189143
dropoff_longitude	0.291213
dropoff_latitude	-0.154360
passenger_count	0.014121
latitude_diff	-0.016596
longitude_diff	0.088398
hour	-0.018280
day	0.000666
month	0.024430
year	0.116795
weekday	0.002760
quarter_of_year	0.021874
trip distance km	0.807037

Deep Neural Network

```
model = Sequential()
model.add(Dropout(0.2,input_shape=(para.shape[1],)))
model.add(BatchNormalization())
model.add(Dense(512,activation='relu'))#512 neurons in input layer
model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(Dense(256,activation='relu')) #256 neurons in hidden layer
model.add(BatchNormalization())
model.add(Dense(128,activation='relu')) # 128 neurons in hidden layer
model.add(BatchNormalization())
model.add(Dense(64,activation='relu'))
                                        # 64 neurons in hidden laver
model.add(BatchNormalization())
model.add(Dense(32,activation='relu'))
                                        # 32 neurons in hidden layer
model.add(BatchNormalization())
model.add(Dense(16,activation='relu')) # 16 neurons in hidden layer
model.add(BatchNormalization())
model.add(Dense(8,activation='relu')) # 8 neurons in hidden layer
model.add(BatchNormalization())
model.add(Dense(1)) # 1 neuron in output layer
```

The rmse for

Model 1 - 3.5715

Model 2 - 2.4585

Loss plot for DNN

Model 1

Model 2

Simple Backpropagation

In Backpropagation we used Sequential Model from keras.

Layers used - Dropout Layer, Dense, BatchNormalization

Activation function - relu

Optimizer - Adam

Evaluation metric - Rmse 5.322

Number of epochs - 200

ARIMA Model

- Considered 2 different sets of values for p, d and q.
- Arima Works better than remaining models because the log time series and the exponential averages are slightly increasing as time passes.

Likelihood of Arima Models:

- Arima (1,1,0) :: 84.5

- Arima (2,1,2) :: 98.85

ARIMA Model

ARIMA Model Results

Dep. Variable:	D.fare_amount	No. Observations:	77
Model:	ARIMA(1, 1, 0)	Log Likelihood	84.517
Method:	css-mle	S.D. of innovations	0.081
Date:	Fri, 29 Nov 2019	AIC	-163.034
Time:	13:29:23	BIC	-156.002
Sample:	02-01-2009	HQIC	-160.221
	- 06-01-2015		

ARIMA Model Results

Dep. Variable:	D.fare_amount	No. Observations:	77
Model:	ARIMA(2, 1, 2)	Log Likelihood	98.851
Method:	css-mle	S.D. of innovations	0.066
Date:	Fri, 29 Nov 2019	AIC	-185.701
Time:	13:29:25	BIC	-171.638
Sample:	02-01-2009	HQIC	-180.076
	- 06-01-2015		

Why ARIMA works well

Testing

- We are currently testing our data on simple models, for checking how DNN and Arima are better than ML algorithms.
- Algorithms which we are using for testing are: XGBoost, Linear Regression.

RMSE

- XGBoost :: 3.9

- Linear Regression :: 5.5

Improvements

- We don't have the drop off timestamp so we do not know when the trip ended.
- 2. Traffic density of the roads.
- 3. Distance was calculated using manhattan distance but can be improved by using google API.

Thank You!