การแปลงสัญญาณ A/D และ D/A

รหัสวิชา 30127-2004 (2-3-3) ดิจิทัลและไมโครคอนโทรลเลอร์

Digital And Microcontroller

การแปลงสัญญาณ A/D และ D/A

การแปลงสัญญาณ A/D และ D/A

- 1. การแปลงสัญญาณอนาล็อกเป็นดิจิทัล (Analog to Digital Converter : ADC)
 - 1.1 วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลแบบสัญญาณลาดเอียง
 - 1.2 วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลแบบแฟลช
 - 1.3 วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลด้วยการประมาณค่าต่อเนื่อง
 - 1.4 วงจรรวมชนิดแปลงสัญญาณอนาล็อกเป็นดิจิทัล
- 2. การแปลงสัญญาณดิจิตอลเป็นอนาล็อก (Digital to Analog Converter : DAC)
 - 2.1 วงจรแปลงสัญญาณดิจิทัลเป็นอนาล็อกแบบโครงข่ายตัวต้านทาน
 - 2.2 วงจรแปลงสัญญาณดิจิทัลเป็นอนาล็อกแบบ R/2R แลดเดอร์
 - 2.3 วงจรรวมชนิดแปลงสัญญาณดิจิทัลเป็นอนาล็อก

Digital And Microcontroller

2

การแปลงสัญญาณ A/D และ D/A

1. การแปลงสัญญาณอนาล็อกเป็นดิจิทัล (Analog to Digital Converter : ADC)

สัญญาณแบบอนาล็อกเป็นสัญญาณที่มีการเปลี่ยนแปลงของสัญญาณแบบต่อเนื่อง เช่น แรงคันไฟฟ้า เป็นคัน โดยการแปลงสัญญาณอนาล็อกเป็นดิจิทัล (Analog to Digital Converter: ADC) คือการแปลงสัญญาณทางไฟฟ้าแบบต่อเนื่องไม่คงที่ให้อยู่ในรูปของข้อมูลทางดิจิตอล คือ ข้อมูล เลขฐานสอง โดยวงจรการแปลงสัญญาณอนาล็อกเป็นดิจิทัลพื้นฐานจะมี 3 ลักษณะได้แก่

1.1 วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลแบบสัญญาณลาดเอียง

Digital And Microcontroller

การแปลงสัญญาณ A/D และ D/A

มีส่วนประกอบ 4 ส่วน

- วงจรเปรียบเทียบ (Comparator) ทำหน้าที่เปรียบเทียบแรงดัน อนาล็อกอินพุตที่จุด A กับแรงดันป้อนกลับที่จุด B เพื่อส่งสัญญาณลอจิกไปควบคุม สัญญาณนาฬิกา
- 2. วงจรแอนด์เกต (AND Gate) ทำหน้าที่ เปิด- ปิด สวิตซ์ลัญญาณ นาฬิกา เพื่อป้อนเข้าวงจรนับ
- 3. วงจรนับบีซีดี (BCD Counter) เป็นวงจรนับขนาด 4 บิต เพื่อ แสดงผลการนับตามจำนวนสัญญาณนาฬิกาที่แอนด์เกตจ่ายออกมา แล้วส่ง สัญญาณดิจิทัลไปยังวงจร D/A
- 4. วงจรแปลงสัญญาณดิจิทัลเป็นอนาล็อก (D/A) ทำหน้าที่แปลงรหัส ดิจิทัลที่แสดงผลทางไบนารีเอาต์พุตให้เป็นแรงดันอนาล็อก เพื่อป้อนกลับไปที่อินพุต B ซึ่งแรงดันนี้จะเป็นลักษณะลาดเอียง

Digital And Microcontroller

1

การแปลงสัญญาณ A/D และ D/A

1.4 วงจรรวมชนิดแปลงสัญญาณอนาล็อกเป็นดิจิทัล

วงจรรวมชนิด ADC แบ่งตามการต่อใช้งานสามารถแบ่งออกได้เป็น 2 กลุ่มคือ (1) วงจรรวม ADC ชนิดข้อมูลเอาต์พุตเป็นสัญญาณรูปแบบขนาน และ (2) วงจรรวม ADC ชนิดข้อมูลเอาต์พุตเป็นสัญญาณ รูปแบบอนุกรม โดยวงจรรวมชนิด ADC ได้แก่เบอร์ ADC0804, ADC0832, LTC1298, CS5550 เป็น ดัน

ไอซีวงจรรวมเบอร์ ADC0804

Vref/2V	แรงดันอินพุต(V)	ค่าความแยกชัด(mV)
เปิดวงจร	0-5.0	19.6
2.25	0-4.5	17.6
2.00	0-4.0	15.7
1.50	0-3.0	11.8

f = 1/(1.1RC)

Digital And Microcontroller

การแปลงสัญญาณ A/D และ D/A

2. การแปลงสัญญาณดิจิทัลเป็นอนาล็อก (Digital to Analog Converter : DAC)

การแปลงสัญญาณดิจิทัลเป็นอนาล็อก (Digital to Analog Converter : DAC) หมายถึง การแปลง น้ำหนักของเลขฐานสองผ่านวงจรแปลงสัญญาณทางดิจิทัลให้เป็นระดับ

DIGITAL INPUT				ANALOG OUTPUT			
D	С	В	A	Vour			
0	0	0	0	0			
0	0	0	1	1			
0	0	1	0	2			
0	0	1	1	3			
0	1	0	0	4			
0	1	0	1	5			
0	1	1	0	6			
0	1	1	1	7			
1	0	0	0	8			
1	0	0	1	9			
1	0	1	0	10			
1	0	1	1	11			
1	1	0	0	12			
1	1	0	1	13			
1	1	1	0	14			
1	1	1	1	15			

การแปลงสัญญาณ A/D และ D/A

2.1 วงจรแปลงสัญญาณดิจิทัลเป็นอนาล็อกแบบโครงข่ายตัวต้านทาน

Digital And Microcontroller

การแปลงสัญญาณ A/D และ D/A

2.2 วงจรแปลงสัญญาณดิจิทัลเป็นอนาล็อกแบบ R/2R แลดเดอร์

Digital And Microcontroller

	D_3	D_2	D_1	D_0	V_{out} (–V)	D_3	D_2	D_1	D_0	V_{out} (–V)
	0	0	0	0	0.000	1	0	0	0	-5.000
	0	0	0	1	-0.625	1	0	0	1	-5.625
out	0	0	1	0	-1.250	1	0	1	0	-6.250
	0	0	1	1	-1.875	1	0	1	1	-6.875
	0	1	0	0	-2.500	1	1	0	0	-7.500
	0	1	0	1	-3.125	1	1	0	1	-8.125
	0	1	1	0	-3.750	1	1	1	0	-8.750
	0	1	1	1	-4.375	1	1	1	1	-9.375

Digital And Microcontroller

10

การแปลงสัญญาณ A/D และ D/A

2.3 วงจรรวมชนิดแปลงสัญญาณดิจิทัลเป็นอนาล็อก

วงจรรวมชนิดแปลงสัญญาณดิจิทัลเป็นอนาล็อก (DAC) แบ่งตามการต่อใช้งานจะสามารถแบ่ง ออกเป็น 2 ชนิด คือการต่อใช้งานแบบขนาน และการต่อใช้งานแบบอนุกรม โดยวงจรรวมชนิด DAC ได้แก่เบอร์ MC144110 , MC1408 , DAC0804 , DAC0808 , AD558 เป็นต้น

ไอซีวงจรรวมเบอร์ DAC0808

การแปลงสัญญาณ A/D และ D/A

สิ่งสำคัญที่บ่งบอกถึงความสามารถของวงจร ADC และ DAC คือ

- ค่าความแยกชัด หรือค่าความละเอียดในการแปลงสัญญาณ ที่เรียกว่าค่า K หรือ ค่า Step Size ซึ่งเป็นค่าที่บ่งบอกถึงความสามารถในการแปลงสัญญาณ 1 บิตต่อการ เปลี่ยนแปลงของแรงดันก็โวลท์
- 2. ค่าความเร็วในการแปลงสัญญาณจะมีหน่วยเป็น mS หรือ uS ถ้าใช้เวลาในการ แปลงสัญญาณยิ่งมีค่าน้อยแสดงว่าวงจรมีประสิทธิภาพสูง

Digital And Microcontroller

12