Topics in Commutative Algebra

Craig Huneke

Notes by Ananthnarayan H.

Contents

1.	Divisor Class Groups	1
	1.1 Preliminaries	1
	1.2 The Class Group	2
	1.3 UFDs and Class Group	4
	1.4 Some Examples of Class Groups of Hypersurfaces	7
	1.5 Finite Extensions and Class Groups	11
	1.6 Divisors Attached to Modules	15
	1.7 Another View of the Class Group (leading to Lipman's Theorem)	18
	1.8 Class Groups of Graded Rings	22
	1.9 Faithfully Flat Extensions	24
	1.10 Lipman's Theorem	26
	1.11 Auslander's Theorems	31
2.	Coefficient Fields and Cohen's Structure Theorem(s)	40
3.	Matlis Duality and Gorenstein Rings	45
	3.1 Review of Injective Modules	45
	3.2 More on Injectives: Essential Extensions and the Injective Hull	48
	3.3 Matlis Duality: Study of $E_R(\mathbf{k}) = E$	52
	3.4 Zero-dimensional Gorenstein Rings	57
	3.5 Free Resolutions of Gorenstein Quotients of Regular Local Rings	60
	3.6 Teter's Theorem	63
	3.7 Gorenstein Rings in Arbitrary Dimensions	69
	3.8 Fibers of Flat Maps	75
4.	Canonical Modules	84
	4.1 Canonical Modules for Homomorphic Images of Regular Local Rings	84
	4.2 Canonical Modules over Cohen-Macaulay Rings	89
	4.3 Some Characterizations of Gorenstein Rings	95
\mathbf{R}	eferences	104

1. The Divisor Class Group

§ 1.1 Preliminaries

Let R be a domain and K be its fraction field.

Definition 1 A ring R is integrally closed if whenever $x \in K$ and $x^n + r_1 x^{n-1} + \cdots + r_n = 0$ for some r_i in R, then x is in R.

Recall:

 R_i : R_P is a regular local ring for every P in $\operatorname{Spec}(R)$ with $\operatorname{ht}(P) \leq i$. S_i : $\operatorname{depth}(R_P) \geq \min\{i, \dim(R_P)\}$, for every P in $\operatorname{Spec}(R)$.

Theorem 1 (Serre's criterion) A Noetherian domain R is integrally closed if and only if it satisfies R_1 and S_2 .

Remark 1 S_2 means that principal ideals are unmixed i.e. any nonzero x in R has associated primes of height 1 only (i.e. no embedded primes).

Proof: Let $Q \in \operatorname{Ass}(R/xR)$ be such that $\operatorname{ht}(Q) \geq 2$. Since x is a non-zerodivisor, $\operatorname{depth}(R_Q) = 1$ which is less than $\min\{2, \dim(R_Q)\}$. So R doesn't satisfy S_2 .

Conversely assume that all principal ideals are unmixed, but R does not satisfy S_2 . Then there is a Q in $\operatorname{Spec}(R)$ such that $\operatorname{depth}(R_Q) < \min\{2, \dim(R_Q)\}$. Then $\operatorname{depth}(R_Q) = 1$ i.e. Q is associated to any non-zero element in Q. But $\dim(R_Q) \geq 2$, which is a contradiction .

To Paraphrase: A ring R is integrally closed if and only if (a) R_P is a DVR for each prime P of height 1 in R and (b) principal ideals in R are unmixed.

Since $R_{\mathfrak{p}}$ is a DVR, there is an associated valuation $v_{\mathfrak{p}}: \mathsf{K} \longrightarrow \mathbb{Z}$ such that

$$R_{\mathfrak{p}} = \{ \alpha \in \mathsf{K} : v_{\mathfrak{p}}(\alpha) \ge 0 \}.$$

Since $R_{\mathfrak{p}}$ is a DVR, $\mathfrak{p}R_{\mathfrak{p}} = (tR_{\mathfrak{p}})$ (t is called the uniformizing parameter). Moreover, given any r in R, there is a unique n such that $r \in (t^n)_{\mathfrak{p}} \setminus (t^{n+1})_{\mathfrak{p}}$. In such a case, $v_{\mathfrak{p}}(r) = n$. For $\alpha = a/b$ in K, where a, b are in $R, v_{\mathfrak{p}}(\alpha) = v_{\mathfrak{p}}(a) - v_{\mathfrak{p}}(b)$. Note that $v_{\mathfrak{p}}(r) = \lambda_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/R_{\mathfrak{p}}r)$.

Primary Decomposition

We discuss the primary decompositions of principal ideals in Noetherian integrally closed domains R. Let x be a nonzero element in R. The ideal (x) has a primary decomposition:

$$(x) = q_1 \cap q_2 \cap \dots \cap q_n$$

where q_i is \mathfrak{p}_i -primary and $\mathrm{Ass}(R/xR) = \{\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_n\}$. It follows from the above discussion that

- (i) All \mathfrak{p}_i have height 1 (and hence are minimal over x).
- (ii) $q_i = xR_{\mathfrak{p}_i} \cap R$ is unique.

Now, there is an n_i such that $xR_{\mathfrak{p}_i} = \mathfrak{p}_i^{n_i}R_{\mathfrak{p}_i}$ and hence $q_i = \mathfrak{p}_i^{(n_i)}$, which by definition is the contraction of $\mathfrak{p}_i^{n_i}R_{\mathfrak{p}_i}$ to R. But $n_i = v_{\mathfrak{p}_i}(x)$. Hence

$$(x) = \bigcap_{\operatorname{ht}(\mathfrak{p})=1} \mathfrak{p}^{(v_{\mathfrak{p}}(x))}.$$

This intersection makes sense as $v_{\mathfrak{p}}(x) = 0$ if x is not in \mathfrak{p} . (*)

Convention: $\mathfrak{p}^{(0)} = R$.

§ 1.2 The Class Group

Let R be an integrally closed Noetherian domain, $X^1(R) = \{ \mathfrak{p} \in \operatorname{Spec}(R) : \operatorname{ht}(\mathfrak{p}) = 1 \}$. Let X(R) be the free abelian group on $X^1(R)$. A typical element $z \in X(R)$ has the form

$$z = \sum_{\mathfrak{p} \in X^1(R)} n_{\mathfrak{p}} \mathfrak{p}$$

where $n_{\mathfrak{p}} \in \mathbb{Z}$, such that at most finitely many $n_{\mathfrak{p}}$ are non-zero.

An element in X(R) is called a divisor (effective if $n_{\mathfrak{p}} \geq 0$ for every \mathfrak{p}). If $x \in R$, we define $\operatorname{div}(x) = \sum_{\mathfrak{p} \in X^1(R)} v_{\mathfrak{p}}(x) \mathfrak{p}$. (By *, this is a finite sum).

More generally, if I is an ideal in R, we may still speak of $v_{\mathfrak{p}}(I)$, as $IR_{\mathfrak{p}}$ will be a power of the maximal ideal of $R_{\mathfrak{p}}$, and we define

$$\operatorname{div}(I) = \sum_{\mathfrak{p} \in X^1(R)} v_{\mathfrak{p}}(I)\mathfrak{p}.$$

If the ring R needs to be specified, we write $\operatorname{div}_R(I)$ instead of $\operatorname{div}(I)$.

We can extend the definition of divisor to elements of K. Let $\alpha = a/b \in \mathsf{K}, \ a, b$ in R. Define $\mathrm{div}(\alpha) = \mathrm{div}(a) - \mathrm{div}(b)$. We need to check that this is well-defined. Suppose that a/b = c/d. Then ad = bc. Hence for any $\mathfrak{p} \in \mathrm{Spec}(R), \ v_{\mathfrak{p}}(ad) = v_{\mathfrak{p}}(bc)$ i.e. $v_{\mathfrak{p}}(a) + v_{\mathfrak{p}}(d) = v_{\mathfrak{p}}(b) + v_{\mathfrak{p}}(c)$ i.e. $v_{\mathfrak{p}}(a) - v_{\mathfrak{p}}(b) = v_{\mathfrak{p}}(c) - v_{\mathfrak{p}}(d)$. Hence, $\sum_{\mathfrak{p} \in X^1(R)} [v_{\mathfrak{p}}(a) - v_{\mathfrak{p}}(b)] \mathfrak{p} = \sum_{\mathfrak{p} \in X^1(R)} [v_{\mathfrak{p}}(c) - v_{\mathfrak{p}}(d)] \mathfrak{p}$ and so

$$\operatorname{div}(a) - \operatorname{div}(b) = \operatorname{div}(c) - \operatorname{div}(d)$$

i.e. $\operatorname{div}(\alpha)$ is well-defined.

The set of all such principal divisors, denoted P(R), is actually a subgroup. For $\operatorname{div}(\alpha) + \operatorname{div}(\beta) = \operatorname{div}(\alpha \cdot \beta)$, and $\operatorname{div}((\alpha)^{-1}) = -\operatorname{div}(\alpha)$.

Definition 2

- 1. The class group of R is defined to be Cl(R) := X(R)/P(R).
- 2. Two divisors D_1 and D_2 are said to be linearly equivalent if $D_1 D_2 \in P(R)$.

Lemma 2 Any divisor is linearly equivalent to an effective divisor.

Proof: Write $D = \sum n_{\mathfrak{p}}^+ \mathfrak{p} - \sum n_{\mathfrak{p}}^- \mathfrak{p}$, where $n_{\mathfrak{p}}^+ \geq 0$ and $n_{\mathfrak{p}}^- > 0$. Then $I = \bigcap \mathfrak{p}^{(n_{\mathfrak{p}}^-)}$ is not zero since $n_{\mathfrak{p}}^-$ is not zero for only finitely many $\mathfrak{p} \in X^1(R)$. Choose nonzero x in I. Then $\operatorname{div}(x) - \sum n_{\mathfrak{p}}^- \mathfrak{p}$ is effective since $v_{\mathfrak{p}}(x) \geq n_{\mathfrak{p}}^-$ for every \mathfrak{p} . Hence $D + \operatorname{div}(x)$ is effective.

Proposition 3 (Localization sequence) Let W be a multiplicatively closed subset of R. Then there is a short exact sequence

$$0 \longrightarrow H \longrightarrow Cl(R) \longrightarrow Cl(R_W) \longrightarrow 0,$$

where $H = \langle [\mathfrak{p}] : \mathfrak{p} \cap W \neq \emptyset \rangle$.

Proof: Define $X(R) \xrightarrow{\pi} X(R_W) \longrightarrow 0$ by

$$\mathfrak{p} \mapsto \left\{ \begin{array}{c} 0 \text{ for } \mathfrak{p} \cap W \neq \emptyset \\ \mathfrak{p}_W \text{ for } \mathfrak{p} \cap W = \emptyset \end{array} \right.$$

Claim: $P(R) \hookrightarrow P(R_W)$.

To prove the claim, consider div(a), a in R. Write

$$(a) = \mathfrak{p}_1^{n_1} \cap \ldots \cap \mathfrak{p}_k^{n_k} \cap \mathfrak{q}_1^{m_1} \cap \ldots \cap \mathfrak{q}_l^{m_l}$$
 (*)

where $\mathfrak{p}_i \cap W \neq \emptyset$ and $\mathfrak{q}_i \cap W = \emptyset$. Then $\pi(\operatorname{div}(a)) = \sum_{1}^{l} m_i(\mathfrak{q}_i)_W$.

Localizing * at W, we get $\operatorname{div}(\frac{a}{1}) = \pi(\operatorname{div}(a))$. Hence we get an induced map $\pi: Cl(R) \longrightarrow Cl(R_W)$. Obviously $\pi(H) = 0$, hence $H \subseteq \operatorname{Ker}(\pi)$. We want to prove $H \supseteq \operatorname{Ker}(\pi)$.

Consider a divisor D representing a class $[D] \in Cl(R)$ such that $\pi([D]) = 0$. We may assume by lemma 2 that D is an effective divisor. Let $D = \sum_{i=1}^{l} m_i \mathfrak{q}_i + \sum_{j=1}^{k} m_{l+j} \mathfrak{q}_{l+j}$, where $\mathfrak{q}_i \cap W = \emptyset$, i = 1, 2, ..., l and $\mathfrak{q}_{l+j} \cap W \neq \emptyset$, j = 1, 2, ..., k. Then, $0 = \pi([D]) = \sum_{1}^{l} m_i[(\mathfrak{q}_i)_W]$. So there is an element $a \in R_W$ such that $\operatorname{div}_{R_W}(a) = \sum_{i=1}^{l} m_i(\mathfrak{q}_i)_W$.

For any unit u, $\operatorname{div}(ua) = \operatorname{div}(a)$. Hence without loss of generality we can assume that a is in R. Since $\operatorname{div}_{R_W}(a) = \sum m_i(\mathfrak{q}_i)_W$, $aR = (\bigcap_{i=1}^l \mathfrak{q}_i^{(m_i)}) \cap (\bigcap_{j=1}^m \mathfrak{p}_j^{(k_j)})$, where $\operatorname{ht}(\mathfrak{p}_j) = 1$ and $\mathfrak{p}_j \cap W \neq \emptyset$. Hence $[\operatorname{div}_R(a)] = \sum_{i=1}^l m_i[\mathfrak{q}_i] + \sum_{j=1}^m k_j[\mathfrak{p}_j]$. But $[\operatorname{div}_R(a)] = 0$ and $\sum_{j=1}^m k_j[\mathfrak{p}_j] \in H$. Hence $\sum_{i=1}^l m_i[\mathfrak{q}_i] \in H$ which implies that $[D] \in H$.

§ 1.3 UFDs and Class Group:

We are aiming for the following theorem

Theorem 4 Let R be a Noetherian integrally closed domain. Then R is a UFD if and only if Cl(R) = 0.

Definition 3 A ring R is a UFD if every element r in R factors uniquely, up to order and units, into irreducibles.

Aside: Let R be a domain. Then $\bigcap_{\operatorname{depth}(R_{\mathfrak{p}})=1} R_{\mathfrak{p}} = R$. If R is integrally closed, $\operatorname{depth}(R_{\mathfrak{p}}) = 1$ if and only if $\dim(R_{\mathfrak{p}}) = 1$. So $\bigcap_{\mathfrak{p} \in X^1(R)} R_{\mathfrak{p}} = R$.

Proposition 5 Let R be a Noetherian ring. Then R is a UFD if and only if every prime ideal of height 1 is principal.

Proof: Note that in a Noetherian ring every nonzero prime ideal contains an irreducible element. This follows from the fact that every element is a product of irreducible elements.

Suppose that R is a UFD and \mathfrak{p} is a prime ideal in R of height 1. Then there is an irreducible element π in \mathfrak{p} . Since R is a UFD, (π) is a prime and hence is equal to \mathfrak{p} since $\operatorname{ht}(\mathfrak{p}) = 1$. To prove the converse, it is enough to show that every irreducible element π generates a prime ideal. Let \mathfrak{p} be a minimal prime containing π . Then, since $\operatorname{ht}(\mathfrak{p}) = 1$ and π is irreducible, $\mathfrak{p} = (\pi)$.

Lemma 6 Let D be an effective divisor. Then [D] = 0 in Cl(R) if and only if $D = \operatorname{div}(a)$ for some a in R.

Proof: If $D = \operatorname{div}(a)$, then by definition, [D] = 0 in Cl(R). Conversely, suppose [D] = 0. Then $D = \operatorname{div}(\frac{a}{b})$ for some $a, b \in R$. Since $D = \operatorname{div}(a) - \operatorname{div}(b)$ is effective, for any $\mathfrak{p} \in X^1(R)$, $v_{\mathfrak{p}}(a) \geq v_{\mathfrak{p}}(b)$. Hence $a \in \mathfrak{p}^{(v_{\mathfrak{p}}(b))}$ for every \mathfrak{p} which implies that $a \in (b)$, i.e. $a/b \in R$.

Proof of Theorem 4: Let us first assume that R is a UFD. If \mathfrak{p} is a prime of height 1 in R, then there is an $a \in R$ such that $\mathfrak{p} = (a)$ i.e. $\mathfrak{p} = \operatorname{div}(a)$. This implies that $[\mathfrak{p}] = 0$ in Cl(R) and hence Cl(R) = 0. For the converse, let \mathfrak{p} be in $X^1(R)$. Then $[\mathfrak{p}] = 0$ in Cl(R) and \mathfrak{p} is an effective divisor. Hence by Lemma 6, there is an $a \in R$ such that $\mathfrak{p} = \operatorname{div}(a)$, i.e. \mathfrak{p} is principal.

Corollary 7 (Nagata's Lemma) Let R be an integrally closed domain, W be a multiplicatively closed subset of R generated by prime elements. Then $Cl(R) \simeq Cl(R_W)$. In particular, if R_W is a UFD, then R is a UFD.

Proof: The second statement follows from the first by Theorem 4. We know that the sequence $0 \longrightarrow H \longrightarrow Cl(R) \longrightarrow Cl(R_W) \longrightarrow 0$ is exact, where $H = <[\mathfrak{p}]: \mathfrak{p} \cap W \neq \emptyset >$. Suppose $0 \neq w \in \mathfrak{p} \cap W$. Then $w = w_1 w_2 \dots w_r$ where w_i are prime elements. Hence $w_i \in \mathfrak{p}$ for some i and hence $\mathfrak{p} = (w_i)$. This implies that $[\mathfrak{p}] = 0$ in Cl(R) i.e. H = 0 which proves the isomorphism.

Corollary 8 If R is a Noetherian domain, x a prime element in R such that R_x is a UFD, then R is a UFD.

Proof: If R is integrally closed, then the result is immediate from Cor. 7. But R is integrally closed under the given hypothesis.

Example 1 If $n \geq 5$, then $\mathbb{C}[X_1, X_2, \dots, X_n]/(X_1^2 + \dots + X_n^2)$ is a UFD. We can write $X_1^2 + X_2^2 = UV$ where $U = X_1 + iX_2$ and $V = X_1 - iX_2$. Then

$$R := \mathbb{C}[X_1, \dots, X_n]/(X_1^2 + \dots + X_n^2) \simeq \mathbb{C}[U, V, X_3, \dots, X_n]/(UV + X_3^2 + \dots + X_n^2).$$

We claim that U is a prime in R i.e. R/(U) is a domain.

But $R/(U) \simeq \mathbb{C}[V, X_3, \dots, X_n]/(\sum_{i=3}^n X_i^2) = \mathbb{C}[X_3, \dots, X_n][V]/(\sum_{i=3}^n X_i^2)$ and for $n \geq 3, X_1^2 + \dots + X_n^2$ is a prime element. Hence, R/(U) is a domain. Thus U is a prime element. Hence, in order to prove that R is a UFD, by Cor. 8, it is enough to prove that R_U is a UFD. Now,

$$R_U \simeq \mathbb{C}[U, U^{-1}, V, X_3, \dots, X_n]/(V + U^{-1}(\sum_{i=3}^n X_i^2)) \simeq \mathbb{C}[U, U^{-1}, X_3, \dots, X_n]$$

$$= \mathbb{C}[U, X_3, \dots, X_n]_U$$
 which is a UFD by Theorem 4 and Prop. 3.

Aside: We used the following facts:

1. For $n \geq 3, X_1^2 + \cdots + X_n^2$ is a prime element.

Proof: If $X_1^2 + \cdots + X_n^2 = l_1 l_2$, we may assume that both l_1 and l_2 are linear by homogeneity. Differentiating both sides partially with respect to X_i , we get $2X_i = (l_1)_{X_i} l_2 + l_1(l_2)_{X_i}$ i.e. $(X_1, X_2, \dots, X_n) \subseteq (l_1, l_2)$, which contradicts the fact that $\operatorname{ht}((l_1, l_2)) \leq 2$.

2.
$$\mathbb{C}[U, U^{-1}, V, X_3, \dots, X_n]/(V + U^{-1}(X_3^2 + \dots + X_n^2)) \simeq \mathbb{C}[U, U^{-1}, X_3, \dots, X_n]$$

Proof: More generally, $R[X_1, \dots, X_n]/(X_1 - f(X_2, \dots, X_n)) \simeq R[X_2, \dots, X_n]$ since $R[X_1, \dots, X_n] \simeq R[X_1', \dots, X_n]$ where $X_1' = X_1 - f(X_2, \dots, X_n)$.

Remark 2 If n=4, then R is not a UFD. We can write $X_1^2+X_2^2=UV$, $X_3^2+X_4^2=-WZ$. Then $R\simeq \mathbb{C}[U,V,W,Z]/(UV-WZ)$. Then $\overline{UV}=\overline{WZ}$ where $\overline{U},\overline{V},\overline{W},\overline{Z}$ are all irreducible.

Example 2 $Cl(\mathbb{C}[U, V, W, Z]/(UV - WZ)) \simeq \mathbb{Z}$. (Proof postponed)

Example 3 In general, if k is a field, $X = (X_{ij})_{r \times s}$ is an $r \times s$ matrix of variables and $I_k(X)$ be the ideal generated by the $k \times k$ minors of X for some $k \leq r$, $k[X_{ij}]/I_k(X)$ is an integrally closed domain and its class group is \mathbb{Z} .

Theorem 9 Let R be an integrally closed Noetherian domain. Then R[X] is integrally closed and the map $\Phi: Cl(R) \longrightarrow Cl(R[X])$, defined as $\Phi([\mathfrak{p}]) = [\mathfrak{p}[X]]$ is an isomorphism.

Proof: Define $\tilde{\Phi}: X(R) \longrightarrow X(R[X])$ by $\mathfrak{p} \mapsto \mathfrak{p}[X]$ for every prime \mathfrak{p} of height 1 in R. We want to show that $\tilde{\Phi}$ defines a map $\Phi: Cl(R) \longrightarrow Cl(R[X])$. It is enough to show that $\tilde{\Phi}(\operatorname{div}_R(a)) = \operatorname{div}_{R[X]}(a)$. In order to show this, write $(a) = \bigcap_{\operatorname{ht}(\mathfrak{p})=1} \mathfrak{p}^{(v_{\mathfrak{p}}(a))}$. Then $aR[X] = \bigcap_{\operatorname{ht}(\mathfrak{p}[X])=1} (\mathfrak{p}[X])^{(v_{\mathfrak{p}}(a))}$ since R[X] is a free R-module. (If M is a free R-module, then $(\bigcap I_i)M = \bigcap (I_iM)$.) Hence $\operatorname{div}_{R[X]}(a) = \sum_{\operatorname{ht}(\mathfrak{p}[X])=1} v_{\mathfrak{p}}(a)(\mathfrak{p}[X]) = \tilde{\Phi}(\sum_{\mathfrak{p}\in X^1(R)} v_{\mathfrak{p}}(a)\mathfrak{p}) = \tilde{\Phi}(\operatorname{div}_R(a))$. Thus, $\tilde{\Phi}$ induces a map Φ on Cl(R).

We want to show that Φ is surjective. In order to prove this, consider $W = R \setminus 0$, a multiplicatively closed subset of R[X]. We have the short exact sequence

$$0 \longrightarrow H \longrightarrow Cl(R[X]) \longrightarrow Cl(R[X]_W) \longrightarrow 0,$$

where $H = \langle Q : \operatorname{ht}(Q) = 1, Q \cap W \neq \emptyset \rangle$. Now, $R[X]_W = R_W[X] = \mathsf{K}[X]$ which is a UFD. Hence Cl(R[X]) = H. Let Q be in $X^1(R[X])$. Then $Q \cap R = \mathfrak{q} \neq 0$ i.e. $\operatorname{ht}(\mathfrak{q}) = 1$ and since $\operatorname{ht}(Q) = 1$, $Q = \mathfrak{q}[X]$. So Cl(R[X]) is generated by $\Im(\Phi)$.

It remains to show that Φ is injective. Let $D \in X(R)$ represent $[D] \in Cl(R)$. Without loss of generality, we may assume that $D = \sum n_i \mathfrak{p}_i$ is effective. Suppose

 $\Phi([D]) = 0$ i.e. $\sum n_i(\mathfrak{p}_i[X]) = \operatorname{div}_{R[X]}(f(X))$. By lemma 6 we can assume $f \in R[X]$. Hence we have $(f) = \bigcap (\mathfrak{p}_i[X])^{(n_i)}$. We want to show f is a constant. Let $a \in \bigcap \mathfrak{p}_i^{(n_i)}$. Then $a \in \bigcap (\mathfrak{p}_i[X])^{(n_i)}$ i.e. there is a $g \in R[X]$ such that a = f(X)g(X). This implies that f is a constant, i.e. $D = \operatorname{div}_R(f(0))$. Hence [D] = 0.

Corollary 10 If R is integrally closed, $Cl(R) \simeq Cl(R[X_1, X_2, \dots, X_n])$.

§ 1.4 Some Examples of Class Groups of Hypersurfaces

We need the Jacobian criterion for the following discussion.

Theorem 11 (The Jacobian criterion) Let k be a perfect field (i.e. $\operatorname{char}(k) = 0$ or $\operatorname{char}(k) = p$ and $k = k^{1/p}$), $S = k[X_1, \ldots, X_n]$, $\mathfrak{p} = (f_1, \ldots, f_l)$ be a prime ideal of height c in S and $R := S/\mathfrak{p}$. Let \mathfrak{q} be a prime in S containing \mathfrak{p} . Then the following are equivalent:

- (1) $R_{\mathfrak{q}}$ is a regular local ring.
- (2) $I_c(\partial f_i/\partial X_j)_{l\times n}$ is not contained in \mathfrak{q} . In particular, if $\operatorname{ht}(I_c(\partial f_i/\partial X_j)_{l\times n}) = c + m$, then R satisfies R_{m-1} .

Let $R = k[X_1, ..., X_n]/(f)$, where f is irreducible and k is perfect. Since f is a non-zerodivisor, R is Cohen-Macaulay. Hence R satisfies S_2 . In this case, by the Jacobian criterion and Serre's criterion, the following are equivalent:

- (1) R is integrally closed.
- (2) R is R_1 .
- (3) $\operatorname{ht}(I_1(\partial f/\partial X_i)) \geq 3$ i.e. $\operatorname{ht}((\partial f/\partial X_1, \dots, \partial f/\partial X_n)) \geq 3$.

Example 4 Let $R = \mathbb{C}[X, Y, Z]/(Y^2 - XZ)$. Then $f = Y^2 - XZ$ and $I = (\partial f/\partial X, \partial f/\partial Y, \partial f/\partial Z) = (2Y, X, Z)$ has height 3. Hence R is integrally closed.

We have the short exact sequence

$$0 \longrightarrow H \longrightarrow Cl(R) \longrightarrow Cl(R_X) \longrightarrow 0,$$

where
$$H=<[\mathfrak{p}]:X\in\mathfrak{p}, \mathrm{ht}(\mathfrak{p})=1>.$$

Now $R_X \simeq \mathbb{C}[X,X^{-1},Y,Z]/(Y^2X^{-1}-Z) \simeq \mathbb{C}[X,X^{-1},Y]$ which is a UFD. This implies that $Cl(R_X)=0$ and Cl(R)=H. Hence in order to determine Cl(R), we need to know the primes in R that contain X.

We have $R/XR \simeq \mathbb{C}[X,Y,Z]/(Y^2-XZ,X) \simeq \mathbb{C}[Y,Z]/(Y^2)$. Thus there is a unique minimal prime containing X in R, that is $\mathfrak{p}=(X,Y)$. Hence

$$Cl(R) = \mathbb{Z}[\mathfrak{p}] \simeq \mathbb{Z}/n\mathbb{Z}$$
 for some n (possibly 0).

The primary decomposition of XR is of the form $\mathfrak{p}^{(l)}$ for some l. Hence we have $0 = [\operatorname{div}(x)] = l[\mathfrak{p}]$. Now l is the largest positive integer such that $X \in \mathfrak{p}^l R_{\mathfrak{p}} = (X,Y)^l R_{(X,Y)}$. But Z is a unit in $R_{\mathfrak{p}}$ and hence $X = Z^{-1}Y^2 \in \mathfrak{p}^2 R_{\mathfrak{p}}$. (Note: $\mathfrak{p}R_{\mathfrak{p}} = (Y)R_{\mathfrak{p}}$). So l = 2 and $Cl(R) = \mathbb{Z}/2\mathbb{Z}$.

Example 5 Let $R = \mathbb{C}[X, Y, U, V]/(XY - UV)$. Then f = XY - UV and $(I_1(\partial f/\partial X, Y, U, V)) = (Y, X, -U, -V)$ has height 4. Hence R is integrally closed. As before, by localizing at X, we see that

$$Cl(R) = <[\mathfrak{p}]: \operatorname{ht}(\mathfrak{p}) = 1, X \in \mathfrak{p} > .$$

Now $R/XR \simeq \mathbb{C}[Y,U,V]/(UV)$ i.e. $XR = (X,U) \cap (X,V)$ (since $(UV) = (U) \cap (V)$). Let $\mathfrak{p} = (X,U)$ and $\mathfrak{q} = (X,V)$. So $Cl(R) = \mathbb{Z}[\mathfrak{p}] + \mathbb{Z}[\mathfrak{q}]$. Now $\operatorname{div}(x) = \mathfrak{p} + \mathfrak{q}$ i.e. $[\mathfrak{q}] = -[\mathfrak{p}]$. Hence

$$Cl(R) = \mathbb{Z}[\mathfrak{p}] \simeq \mathbb{Z}/n\mathbb{Z}$$
 for some n .

We claim that n = 0.

To prove the claim, we first identify R with the subring of the polynomial ring $S = \mathbb{C}[a,b,c,d]$ generated by ab,cd,ac,bd; we map $\mathbb{C}[X,Y,U,V]$ onto this subring by sending X to ab, Y to cd, U to ac and V to bd. Since f is clearly in the kernel, and both R and this subring have the same dimension, it follows they are isomorphic. Clearly $\mathfrak{p} = aS \cap R$. We claim that $\mathfrak{p}^{(n)} \subseteq a^nS \cap R \subseteq \mathfrak{p}^n$, which will prove that $\mathfrak{p}^{(n)} = \mathfrak{p}^n$. As \mathfrak{p}^n is clearly not principal, this will prove our claim.

Let $g \in \mathfrak{p}^{(n)}$. Then there exists an element $w \notin \mathfrak{p}$ such that $wg \in \mathfrak{p}^n$. Passing up to S this implies that $wg \in a^nS$. As a is prime in S and $w \notin aS$, this forces $g \in a^nS \cap R$. Note that under our identification of R as a subring, R has a \mathbb{C} -basis consisting of monomials $a^ib^jc^kd^l$ where i+l=j+k. If $h \in R$ and a^n divides h in S, it follows that h is a sum of monomials such that each monomial is divisible by b^jc^k where $j+k \geq n$. Thus $a^nS \cap R \subseteq (aS \cap R)^n = \mathfrak{p}^n$.

Theorem 12 (Andreotti-Salmon) Let (S, \mathfrak{m}, sk) be a regular local ring of dimension 3. Let $0 \neq f$ be an element of S such that R = S/(f) is integrally closed. Then R is a UFD if and only if $f \neq \det(A)$ where A is an $n \times n$ matrix with coefficients in \mathfrak{m}_s and $n \geq 2$.

Proof:[Due to Eisenbud]

In order to prove this, we use the Hilbert-Burch Theorem in the following form:

Theorem 13 (Hilbert-Burch) Let S be a regular local ring, I an ideal of height 2 in S such that S/I is Cohen-Macaulay. Let $I = (f_1, f_2, \ldots, f_n)$ (not necessarily minimal). Then there is an $n \times (n-1)$ matrix A with coefficients in S such that

 $\Delta_i = f_i$, where Δ_i is the i^{th} $(n-1) \times (n-1)$ minor of A (obtained by deleting the i^{th} row of A).

Conversely, if A is an $n \times (n-1)$ matrix with coefficients in S and $\operatorname{ht}(\Delta_1, \Delta_2, \dots, \Delta_n)$ = 2, then $S/(\Delta_1, \Delta_2, \dots, \Delta_n)$ is Cohen-Macaulay.

Suppose that R is a UFD. Assume that there is an $n \times n$ matrix A with entries in \mathfrak{m}_S , $(n \geq 2)$ such that $f = \det(A)$. Let $A = [C_1 : C_2 : \cdots : C_n]$ where C_i is the ith column of A. Set $B := [C_1 : C_2 : \cdots : C_{n-1}]$ i.e. $A = [B : C_n]$. Let $I = I_{n-1}(B)$. By expanding $\det(A)$ along the last column, $f = \det(A) \in \mathfrak{m}I$. This forces $\det(I) = 2$ [since $(f) \subseteq I$, $\det(f) = 1$ and $(f) \neq I$ by NAK].

By the Hilbert-Burch Theorem, S/I is Cohen-Macaulay and in particular, I is unmixed of height 2. Therefore, IR has height 1 and is unmixed in R. Hence we can write $IR = \bigcap_{i=1}^{l} \mathfrak{p}_i^{(n_i)}$, $\mathfrak{p}_i \in X^1(R)$. But Cl(R) = 0 implies there is an $a \in R$ such that $(a) = \bigcap_{i=1}^{l} \mathfrak{p}_i^{(n_i)} = I$. Therefore $IS \subseteq (a, f)S \subseteq aS + \mathfrak{m}I$. This forces I = aS by NAK which contradicts the fact that $\operatorname{ht}(I) = 2$. Thus $f \neq \operatorname{det}(A)$.

Conversely assume $f \neq \det(A)$ for any matrix A with entries in \mathfrak{m}_S . We need to prove that R is a UFD. It is enough to show that every prime \mathfrak{q} of height 1 in R is principal.

Let Q be a prime in S corresponding to \mathfrak{q} . Then $\operatorname{ht}(Q)=2$. Since $\dim(S/Q)=\dim(S)-\operatorname{ht}(Q)=1$, S/Q is Cohen-Macaulay. [Fact: Every 1 dimensional domain is Cohen-Macaulay.] Write $Q=(f,g_2,\ldots,g_n)$. By the Hilbert-Burch Theorem, there is an $n\times(n-1)$ matrix A such that $\Delta_1=f,\Delta_2=g_2,\ldots,\Delta_n=g_n$, where Δ_i is the $(n-1)\times(n-1)$ minor of A obtained by deleting the ith row. If we show n=2, then \mathfrak{q} is principal.

Suppose $n \geq 3$. Then $(n-1) \geq 2$ and $f = \det(B)$ for the $(n-1) \times (n-1)$ matrix B obtained by deleting the first row of A. This is a contradiction unless B has an entry that is not in \mathfrak{m}_S i.e. a unit. If A has a unit entry, by elementary row and column transformations we can transform A such that $a_{nn-1} = 1$. In fact we can further ensure that the other entries in the nth row and the (n-1)th column are zeroes. Let A' be the $(n-1) \times (n-2)$ matrix obtained by deleting the last row and last column of A (after the transformation). By the above observation, $I_{n-1}(A') = I_{n-1}(A)$ and $f = \det(B) = \det(B')$, where B' is the $(n-2) \times (n-2)$ matrix obtained by deleting the first row of A'. So if there is a unit entry in A, we can reduce n by 1 and therefore, can reduce down to n=2. Hence \mathfrak{q} is principal.

Some more examples:

Example 6 $\mathbb{C}[X, Y, Z]_{(X,Y,Z)}/(X^2 + Y^3 + Z^5).$

Example 7 $\mathbb{C}[X, Y, Z]_{(X,Y,Z)}/(X^2 + Y^3 + Z^7)$.

Example 8 $\mathbb{R}[X, Y, Z]_{(X,Y,Z)}/(X^2 + Y^2 + Z^m)$ for any $m \ge 2$.

Example 9 $\mathbb{C}[|X, Y, Z|]/(X^2 + Y^3 + Z^5)$.

Example 10 $\mathbb{C}[|X, Y, Z|]/(X^2 + Y^3 + Z^7)$.

The first four are examples of UFDs whereas the last one is not.

We will prove that $R = \mathbb{C}[X, Y, Z]_{(X,Y,Z)}/(X^2 + Y^3 + Z^{2m-1})$ is a UFD, where m is any positive integer.

Let $S = \mathbb{C}[X,Y,Z]_{(X,Y,Z)}$ and $\mathfrak{m}_S = (X,Y,Z)$. By the Andreotti-Salmon Theorem it is enough to show that $f = X^2 + Y^3 + Z^{2m-1}$ is not $\det(A)$ for any $n \times n$ matrix A, $n \geq 2$, with entries in \mathfrak{m}_S . If there is such a matrix, then it must be a 2×2 matrix (due to the X^2 term). Suppose f = ad - bc. Write

$$a = a_1X + a(X, Y, Z), b = b_1X + b(X, Y, Z),$$

$$c = c_1 X + c(X, Y, Z)$$
 and $d = d_1 X + d(X, Y, Z)$

where a(X, Y, Z), b(X, Y, Z), c(X, Y, Z) and d(X, Y, Z) have no linear terms in X. Then, we have $a_1d_1 - b_1c_1 = 1$. Therefore, by elementary row and column operations, we can assume $a_1 = 1$, $d_1 = 1$, $d_1 = 0$ and $d_1 = 0$. Hence we have

$$a = X + a(X, Y, Z), b = b(X, Y, Z), c = c(X, Y, Z) \text{ and } d = X + d(X, Y, Z).$$

Using the X term in a, by elementary column operations, we can ensure that b(X, Y, Z) is independent of X. This can be done because b(X, Y, Z) has a finite degree in X. Similarly, by row operations, we may assume that c(X, Y, Z) is also independent of X i.e. b = b(Y, Z) and c = c(Y, Z). Now since ad - bc = f, and the only term involving X in f is X^2 , by comparing coefficients of higher powers of X, it is clear that a(X, Y, Z) and d(X, Y, Z) are also independent of X. Hence we now have

$$a = X + a(Y, Z), b = b(Y, Z), c = c(Y, Z) \text{ and } d = X + d(Y, Z).$$

Moreover, by comparing coefficients of X in ad - bc = f, we get d(Y, Z) = -a(Y, Z). Therefore, by canceling the X^2 term, we are now left with

$$-b(Y,Z)c(Y,Z) - a(Y,Z)^{2} = Y^{3} + Z^{2m-1}.$$

By replacing -b(Y, Z) by b(Y, Z) and using reductions as above, we may assume that

$$b(Y, Z) = Y + b(Z), \ c(Y, Z) = Y^2 + c(Z) \text{ and } a(Y, Z) = a(Z).$$

Comparing coefficients of Y and Y^2 in

$$[Y + b(Z)][Y^2 + c(Z)] - [a(Z)]^2 = Y^3 + Z^{2m-1},$$

we get b(Z) = 0 and c(Z) = 0. Thus we end up having $-[a(Z)]^2 = Z^{2m-1}$, an obvious contradiction.

Remark: If $f = X^2 + Y^3 + Z^{2m}$, where m is any positive integer, then f can be written as a determinant of a 2×2 matrix. We have f = ad - bc where $a = X + iZ^m$, $d = X - iZ^m$, b = Y and $c = -Y^2$.

For general information:

Theorem 14 (Grothendieck) Let $R \simeq S/(f_1, f_2, ..., f_c)$ be a complete intersection (i.e. S is a regular local ring and $f_1, f_2, ..., f_c$ form a regular sequence in S). Suppose that $R_{\mathfrak{p}}$ is a UFD for every prime \mathfrak{p} in R such that $\operatorname{ht}(\mathfrak{p}) \leq 3$. Then R is a UFD.

Theorem 15 (Flenner) Let (R, \mathfrak{m}) be a Noetherian graded ring over a field k (\mathfrak{m} is the unique homogeneous maximal ideal). Let \hat{R} denote the completion of R in the \mathfrak{m} – adic topology. If R satisfies R_2 then the natural map $Cl(R) \longrightarrow Cl(\hat{R})$ is an isomorphism.

Aside: Example 6 is a UFD whereas example 10, which is its completion, is not a UFD. This has got to do with 'rational singularities'. Also note that example 6 is R_1 but not R_2 .

§ 1.5 Finite Extensions and Class Groups

Setup: Let $R \subseteq S$ be integrally closed domains where S is a finite R -module. Let K and L be their respective fraction fields and n = [L : K] (= [S : R]).

The Going Up and Going Down theorems hold in this setup. In particular, if \mathfrak{q} is a prime of height i in R and Q is a prime ideal in S minimal over $\mathfrak{q}S$, then $\operatorname{ht}(Q) = \operatorname{ht}(\mathfrak{q}) = i$ and $Q \cap R = \mathfrak{q}$.

Definition 4

(a) If $Q \in \text{Spec}(S)$, define the ramification index of Q over R as

$$e_Q := \lambda(S_Q/(Q \cap R)S_Q).$$

(b) Let $\kappa(Q)$ and $\kappa(\mathfrak{q})$ be the respective fraction fields of S_Q/QS_Q and $R_{\mathfrak{q}}/\mathfrak{q}R_{\mathfrak{q}}$ where $\mathfrak{q}=Q\cap R$. Then we define

$$f_Q := [\kappa(Q) : \kappa(\mathfrak{q})].$$

Note that since S is a finite extension over R, S/Q is finite over R/\mathfrak{q} . Hence $\kappa(Q)$ is finite over $\kappa(\mathfrak{q})$ which implies that $f_Q < \infty$ for every prime ideal Q in S.

Theorem 16 (Ramification Theorem) With notations as above, let \mathfrak{q} be a prime ideal in R. Then

$$\sum_{Q,Q\cap R=\mathfrak{q}} e_Q f_Q = n = [\mathsf{L}:\mathsf{K}].$$

Proof: Let $W = R \setminus \mathfrak{q}$. We can replace R by R_W and S by S_W and nothing changes. Hence without loss of generality, we may assume that R is a DVR. So S is semilocal and the maximal ideals are exactly the original Q's contracting to \mathfrak{q} . Better yet, S is a free R-module since S is torsion free (Fact: Over a DVR, a torsion free module is free). So $S \simeq R^n$ (since $K^n \simeq L \simeq S \otimes_R K$). This gives us $\lambda_R(S/\mathfrak{q}S) = \lambda_R((R/\mathfrak{q})^n) = n$. Let Q_1, Q_2, \ldots, Q_l be the maximal ideals of S (i.e. the primes in S contracting to \mathfrak{q}). By the Chinese Remainder Theorem, $S/\mathfrak{q}S \simeq \prod_{i=1}^l S_{Q_i}/\mathfrak{q}S_{Q_i}$. Hence we get

$$n = \sum \lambda_R(S_{Q_i}/\mathfrak{q}S_{Q_i}) = \sum \lambda_{S_{Q_i}}(S_{Q_i}/Q_iS_{Q_i})[\kappa(Q_i):\kappa(\mathfrak{q})] = \sum_{Q,Q\cap R=\mathfrak{q}}e_Qf_Q,$$

which proves the theorem.

Some definitions: We want to define maps $i: X(R) \longrightarrow X(S)$ and $j: X(S) \longrightarrow X(R)$ such that $j \circ i = n \ 1_{X(R)}$.

For $\mathfrak{q} \in X^1(R)$ define

$$i(\mathfrak{q}):=\sum_{Q\cap R=\mathfrak{q}}e_QQ$$

and for $Q \in X^1(S)$ define

$$j(Q) := f_Q(Q \cap R).$$

Then for \mathfrak{q} in $X^1(R)$,

$$j\circ i(\mathfrak{q})=\sum_{Q,Q\cap R=\mathfrak{q}}e_{Q}f_{Q}\mathfrak{q}=n\cdot\mathfrak{q}$$

by the ramification theorem. Thus $j \circ i = n \, 1_{X(R)}$.

Theorem 17 With notations as above, i and j induce maps $i: Cl(R) \longrightarrow Cl(S)$ and $j: Cl(S) \longrightarrow Cl(R)$ such that $j \circ i = n \ 1_{Cl(R)}$.

Proof: The last statement follows from (*). It suffices to prove that $i(\operatorname{div}(a)) \in P(S)$ for a in R and $j(\operatorname{div}(b)) \in P(R)$ for b in S. First we show that $i(\operatorname{div}_R(a)) = \operatorname{div}_S(a)$. Suppose $\operatorname{div}_R(a) = \sum_{\mathfrak{q} \in X^1(R)} v_{\mathfrak{q}}(a)\mathfrak{q}$. Then

$$i(\operatorname{div}_R(a)) = \sum_{\mathfrak{q} \in X^1(R)} \left[v_{\mathfrak{q}}(a) \sum_{Q \cap R = \mathfrak{q}} e_Q Q \right] = \sum_{Q \in X^1(S)} v_{Q \cap R}(a) e_Q Q.$$

On the other hand $\operatorname{div}_S(a) = \sum_{Q \in X^1(S)} v_Q(a)Q$. Hence it is enough to prove that $v_Q(a) = v_{Q \cap R}(a)e_Q$.

In order to prove this, consider t and u, the respective uniformizing parameters of $R_{\mathfrak{q}}$ and S_Q where $\mathfrak{q} = Q \cap R$. Since $\mathfrak{q}S_Q = tS_Q$, $v_Q(t) = \lambda_{S_Q}(S_Q/\mathfrak{q}S_Q) = e_Q$ i.e. $tS_Q = u^{e_Q}S_Q$. If $v_{\mathfrak{q}}(a) = l$, then $aS_Q = t^lS_Q = u^{e_Ql}S_Q$. Hence $v_Q(a) = e_Qv_{(Q\cap R)}(a)$ which proves that $i(\operatorname{div}_R(a)) = \operatorname{div}_S(a)$.

In order to show that $j: X(S) \longrightarrow X(R)$ induces a map on the class groups, we need to show that for any b in S, $j(\operatorname{div}_S(b))$ is a principal divisor in R i.e. $j(\operatorname{div}_S(b)) = \operatorname{div}_R(x)$ for some x in R. The question is: what is x?

Think of the multiplication by $b: L \longrightarrow L$ as a K-linear map. This gives an $n \times n$ matrix. Let us denote its determinant by $\det(b)$. We will now prove that x is $\det(b)$ i.e. we will show that (i) $\det(b)$ is in R and (ii) $j(\operatorname{div}_S(b)) = \operatorname{div}_R(\det(b))$. This will prove the theorem.

(i) In order to prove that $\det(b)$ is in R, consider \mathfrak{q} in $X^1(R)$. Now $R_{\mathfrak{q}}$ is a DVR and $S_{\mathfrak{q}} = (R \setminus \mathfrak{q})^{-1}S$ is a torsion-free $R_{\mathfrak{q}}$ module which implies that $S_{\mathfrak{q}} \simeq R_{\mathfrak{q}}^{\oplus n}$. The map $L \xrightarrow{b} L$ is induced by the map $S \xrightarrow{b} S$ by tensoring with L. Choose a basis for $S_{\mathfrak{q}}$ over $R_{\mathfrak{q}}$; it forms a basis for Lover K. Computing the determinant using this basis shows that $\det(b)$ is in $R_{\mathfrak{q}}$. Hence $\det(b) \in \bigcap_{\mathfrak{q} \in X^1(R)} R_{\mathfrak{q}} = R$ since R is integrally closed.

(ii) Now we have
$$j(\operatorname{div}_S(b)) = j\left(\sum_{Q \in X^1(S)} v_Q(b)Q\right)$$

$$= \sum_{Q \in X^1(S)} v_Q(b) [\kappa(Q) : \kappa(Q \cap R)] (Q \cap R)$$

$$= \sum_{\mathfrak{q} \in X^1(R)} \left(\sum_{[Q \in X^1(S), Q \cap R = \mathfrak{q}]} v_Q(b) [\kappa(Q) : \kappa(\mathfrak{q})] \right) \mathfrak{q}.$$

In order to prove that $j(\operatorname{div}_S(b)) = \operatorname{div}_R(\det(b))$, we only need to show that $v_{\mathfrak{q}}(\det(b)) = \sum_{Q \cap R = \mathfrak{q}} v_Q(b) [\kappa(Q) : \kappa(\mathfrak{q})]$. Nothing changes upon passing to $R_{\mathfrak{q}}$ and $S_{\mathfrak{q}}$. Therefore without loss of generality we may assume that R is a DVR, S is semilocal and all the maximal ideals of S contract to $\mathfrak{m}_R(=\mathfrak{q}R_{\mathfrak{q}})$. As before, $S \simeq R^{\oplus n}$. We use the following lemma:

Lemma 18 Let V be a DVR and $\Phi: V^n \longrightarrow V^n$ such that $\Delta = \det(\Phi) \neq 0$. Let $N = \operatorname{Coker}(\Phi)$. Then $\lambda_V(N) = \lambda_V(V/\Delta V)$.

By the lemma applied to $0 \longrightarrow S \stackrel{\cdot b}{\longrightarrow} S \longrightarrow S/bS \longrightarrow 0$, we get $\lambda_R(S/bS) = \lambda_R(R/(\det(b))) = v_{\mathfrak{q}}(\det(b))$. Now by the Chinese Remainder Theorem,

$$S/bS \simeq \prod_{Q \neq 0} (S_Q/bS_Q).$$

Hence we have

$$\begin{split} \lambda_R(S/bS) &= \sum_{Q \neq 0} \lambda_R(S_Q/bS_Q) \\ &= \sum_{Q \neq 0} \lambda_{S_Q}(S_Q/bS_Q)[\kappa(Q) : \kappa(\mathfrak{q})] = \sum_{Q \cap R = \mathfrak{q}} v_Q(b)[\kappa(Q) : \kappa(\mathfrak{q})] \end{split}$$

which proves the result.

Proof (of lemma 18): By the structure theorem for modules over PIDs, we can write N as the sum of cyclic modules. Let $N \simeq V/(d_1) \oplus \cdots \oplus V/(d_l)$. Now $\det(\Phi)N = 0$ by Cramer's Rule and hence N is torsion. Hence $d_i \neq 0$ for any j. So there is a generating set for N such that we have the short exact sequence $\stackrel{r}{\rightarrow} V^l \longrightarrow N \longrightarrow 0$ where Φ is multiplication by the diagonal matrix $\begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \ddots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & & 0 & d_\ell \end{pmatrix}. \text{ So } \det(\Phi) = \det \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \ddots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & d_\ell \end{pmatrix} = d_1 d_2 \dots d_\ell. \text{ (See }$

By (*), we get that

$$\lambda_R(N) = \sum_{j=1}^l \lambda_R(V/d_j) = \lambda_R(V/(d_1 \dots d_l)) = \lambda_R(V/\det(\Phi))$$

which proves the lemma.

Aside: In general, if $R^m \xrightarrow{\phi} R^n \longrightarrow N \longrightarrow 0$, with rank(N) = r, then $I_{n-r}(\phi)$ (called the Fitting ideal), does not depend on the presentation ϕ .

A generalization of the lemma:

Let R be a Noetherian local ring, $f: \mathbb{R}^m \longrightarrow \mathbb{R}^n \ (m > n)$ be a map such that $\operatorname{grade}(I_n(f)) = m - n + 1$. (This is the maximal possible grade.) Assume that N :=Coker(f) has finite length. Then $\lambda_R(N) = \lambda_R(R/I_n(f))$.

Example 11

1. Let $R = \mathbb{C}[X,Y,Z]/(Y^2 - XZ)$. Recall that we proved that $Cl(R) \simeq \mathbb{Z}/2\mathbb{Z}$. The main theorem of this section does not quite recover this, but does prove the class group is 2-torsion, as follows. Note that $R \simeq \mathbb{C}[S^2, ST, T^2]$. Let S be $\mathbb{C}[S, T]$. The respective quotient fields of S and R are $L := \mathbb{C}(S,T)$ and $K := \mathbb{C}(S/T,T^2)$. Then [L:K]=2. We are in the setup of theorem 17. Hence we have maps $Cl(R) \stackrel{i}{\longrightarrow} Cl(S)$ and $Cl(S) \xrightarrow{j} Cl(R)$ such that $j \circ i = 2 \cdot Id_{Cl(R)}$. But S is a UFD and hence Cl(S) = 0.

Therefore we can conclude that $2 \cdot Cl(R) = 0$.

2. Let $R = \mathbb{C}[S^n, S^{n-1}T, \dots, ST^{n-1}, T^n]$. Then as above, $n \cdot Cl(R) = 0$. In fact it can be proved that $Cl(R) \simeq \mathbb{Z}/n\mathbb{Z}$ (see the exercises).

§ 1.6 Divisors Attached to Modules

Definition 5 The Grothendieck group of R denoted by $G_0(R)$ is the free abelian group on isomorphism classes of modules $\{M\}$ modulo the subgroup generated by the relations

$$\{M_2\} = \{M_1\} + \{M_3\}$$

whenever there is a short exact sequence $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$.

In this section, we want to attach divisors to modules over an integrally closed Noetherian domain R. This can be done by defining a map from $G_0(R)$ to Cl(R). We will do this in two steps.

Step 1:

We define a map from the torsion modules over R to Cl(R) as follows:

Let T be a torsion R-module, i.e. there is a nonzero x in R such that $x \cdot T = 0$. We will denote the image of T in Cl(R) by [T]. Consider the map

$$T \mapsto [T] := \sum_{\mathfrak{p} \in X^1(R)} \lambda(T_{\mathfrak{p}})[\mathfrak{p}].$$

Since $\operatorname{ann}_R(T) \neq 0$, there are at most finitely many primes \mathfrak{p} of height 1 containing $\operatorname{ann}_R(T)$. For such primes \mathfrak{p} , $\lambda(T_{\mathfrak{p}}) < \infty$. If \mathfrak{p} is a height 1 prime not containing $\operatorname{ann}_R(T)$, then $T_{\mathfrak{p}} = 0$ and hence $\lambda(T_{\mathfrak{p}}) = 0$. Thus the sum is finite.

Remark 3

- 1. If $0 \longrightarrow T_1 \longrightarrow T_2 \longrightarrow T_3 \longrightarrow 0$ is a short exact sequence of torsion modules, then $[T_2] = [T_1] + [T_3]$. This follows from the fact that for any $\mathfrak{p} \in X^1(R)$, $0 \longrightarrow (T_1)_{\mathfrak{p}} \longrightarrow (T_2)_{\mathfrak{p}} \longrightarrow (T_3)_{\mathfrak{p}} \longrightarrow 0$ is exact and length is additive on short exact sequences.
- 2. Let T_1 and T_2 be torsion and $f: T_1 \longrightarrow T_2$ be a map such that Ker(f) and Coker(f) have annihilators of height at least 2. Then $[T_1] = [T_2]$. This is true since for any prime ideal \mathfrak{p} of height 1, $Ker(f)_{\mathfrak{p}} = 0 = Coker(f)_{\mathfrak{p}}$.
- 3. If $\sum n_{\mathfrak{p}}[\mathfrak{p}]$ is an effective divisor and $I = \bigcap \mathfrak{p}^{(n_{\mathfrak{p}})}$, then note that $[R/I] = \sum n_{\mathfrak{p}}[\mathfrak{p}]$.

Step 2:

We now want to extend the definition of the divisor of a module to all finitely generated R-modules M. Let $r = \operatorname{rank}(M) := \dim_{\mathsf{K}}(M \otimes_R \mathsf{K})$ i.e. $(M \otimes_R \mathsf{K}) \simeq \mathsf{K}^r$, where

Kis the fraction field of R. Recall that $\operatorname{Hom}_R(R^r, M) \otimes_R \mathsf{K} \simeq \operatorname{Hom}_{\mathsf{K}}(\mathsf{K}^r, M \otimes_R \mathsf{K})$. This implies that there is a map $f: R^r \longrightarrow M$ which becomes an isomorphism after tensoring with K . Therefore $\operatorname{Ker}(f)$ and $\operatorname{Coker}(f)$ are torsion and hence $\operatorname{Ker}(f)$ is 0 (since $\operatorname{Ker}(f)$ injects into R^r , which is free). This gives us a short exact sequence

$$0 \longrightarrow R^r \stackrel{f}{\longrightarrow} M \longrightarrow T \longrightarrow 0 \tag{*}$$

where $T \simeq \operatorname{Coker}(f)$ is torsion.

Definition 6

We define the map []: free group isomorphism classes of R-modules $\longrightarrow Cl(R)$ by $M \mapsto [M] := [T]$ where T is as in (*).

We need to show that [M] is well-defined i.e. it is independent of the short exact sequence (*). Let $F \simeq R^r$, $G \simeq R^r$ be free, T and L be torsion modules such that we have the two short exact sequences $0 \longrightarrow F \longrightarrow M \longrightarrow T \longrightarrow 0$ and $0 \longrightarrow G \longrightarrow M \longrightarrow L \longrightarrow 0$. We need to prove [T] = [L] in Cl(R). Since $F \otimes_R \mathsf{K} \simeq M \otimes_R \mathsf{K} \simeq G \otimes_R \mathsf{K}$, by clearing denominators, we can find a nonzero element x in R such that $xG \subseteq F$. But $xG \simeq G$ and M/xG is torsion, hence without loss of generality we may assume that $G \subseteq F$.

Justification: Consider

By the Snake Lemma we get $0 \longrightarrow G/xG \longrightarrow L' \longrightarrow L \longrightarrow 0$. Hence by remark 3.1 [L'] = [L] + [G/xG]. Now $[G/xG] = r[R/xR] = r[\operatorname{div}(x)]$ by remark 3.3. Thus [G/xG] = 0 and therefore [L'] = [L]. Hence we can assume $G \subseteq F$. Thus we have

$$0 \longrightarrow G \longrightarrow M \longrightarrow L \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow F \longrightarrow M \longrightarrow T \longrightarrow 0$$

Applying Snake Lemma again, if K = F/G, then we have the short exact sequence $0 \longrightarrow K \longrightarrow L \longrightarrow T \longrightarrow 0$. Now all these are torsion and we have [L] = [T] + [K]. In order to prove [L] = [T], we will show that [K] = 0 in Cl(R).

We have the short exact sequence $0 \longrightarrow R^r \stackrel{\phi}{\longrightarrow} R^r \longrightarrow K \longrightarrow 0$. We will prove that [K] = 0 by proving that the associated divisor to K is $\operatorname{div}_R(\det(\phi))$. Recall that $[K] = \sum_{\mathfrak{p} \in X^1(R)} \lambda(K_{\mathfrak{p}})[\mathfrak{p}]$. For \mathfrak{p} in $X^1(R)$, $R_{\mathfrak{p}}$ is a DVR and therefore by lemma 18 applied to the short exact sequence

$$0 \longrightarrow R_{\mathfrak{p}}^r \stackrel{\phi}{\longrightarrow} R_{\mathfrak{p}}^r \longrightarrow K_{\mathfrak{p}} \longrightarrow 0,$$

we get $\lambda(K_{\mathfrak{p}}) = \lambda((R^r/\det(\phi))_{\mathfrak{p}}) = v_{\mathfrak{p}}(\det(\phi))$. Hence $[K] = [\operatorname{div}_R(\det(\phi))] = 0$ in Cl(R).

Corollary 19 If F is a free R-module, then [F] = 0.

Proposition 20 If $0 \longrightarrow M_1 \stackrel{i}{\longrightarrow} M_2 \stackrel{\pi}{\longrightarrow} M_3 \longrightarrow 0$ is a short exact sequence of finitely generated R-modules, then $[M_2] = [M_1] + [M_3]$.

Proof: Choose free submodules $R^{r_i} =: F_i$ of M_i , i = 1, 3 such that $M_i/F_i \simeq T_i$ are both torsion. Let $x_1, x_2, \ldots, x_{r_1}$ be a basis for $F_1, y_1, \ldots, y_{r_3}$ be a basis for F_3 . Choose z_j in M_2 such that $\pi(z_j) = y_j$, $j = 1, \ldots, r_3$. Then $F_2 := Rx_1 + \cdots + Rx_{r_1} + Rx_1 + \cdots + Rx_{r_3}$ is free of rank $r_1 + r_3$. Thus we have the commutaive diagram where each row is exact.

Define $[T_2] = M_2/F_2$. Then by the Snake Lemma, we get the short exact sequence $0 \longrightarrow T_1 \longrightarrow T_2 \longrightarrow T_3 \longrightarrow 0$. Since T_1 and T_3 are torsion, so is T_2 . Hence we have $[M_2] = [T_2] = [T_1] + [T_3] = [M_1] + [M_3]$.

Remark 4 Let us compare $[\mathfrak{p}]$ as an R-module and $[\mathfrak{p}]$ as an element of Cl(R) for any $\mathfrak{p} \in X^1(R)$. In order to avoid confusion, let us denote $[\mathfrak{p}]$ as an R-module by $[{}_R\mathfrak{p}]$. Consider $0 \longrightarrow \mathfrak{p} \longrightarrow R \longrightarrow R/\mathfrak{p} \longrightarrow 0$. Then $[R] = [R/\mathfrak{p}] + [{}_R\mathfrak{p}]$. Since [R] = 0, we have $[{}_R\mathfrak{p}] = -[R/\mathfrak{p}]$. Now R/\mathfrak{p} is torsion. Therefore, by definition, $[R/\mathfrak{p}] = \sum_{\mathfrak{q} \in X^1(R)} \lambda_{R_{\mathfrak{q}}}((R/\mathfrak{p})_{\mathfrak{q}})[\mathfrak{q}] = [\mathfrak{p}]$. This gives us

$$[_R \mathfrak{p}] = -[\mathfrak{p}].$$

Corollary 21 If R is an integrally closed Noetherian domain in which every prime ideal \mathfrak{p} of height 1 has a finite free resolution, then R is a UFD.

Proof: Let \mathfrak{p} be a prime ideal of height 1 in R. Let

$$\mathbf{F}_{\bullet}: \quad 0 \longrightarrow F_n \longrightarrow \cdots \longrightarrow F_0 \longrightarrow \mathfrak{p} \longrightarrow 0$$

be a finite free resolution of \mathfrak{p} where $F_i \simeq R^{r_i}$. By Prop. 20, $[{}_R\mathfrak{p}] = \sum_{j=0}^n (-1)^j [F_j] = 0$. By the previous remark, $[\mathfrak{p}] = 0$ which implies that Cl(R) = 0. Hence R is a UFD.

Corollary 22 A regular local ring is a UFD.

Proof: Every module over a regular local ring R has a finite free resolution. Therefore, by the previous corollary, R is a UFD.

§ 1.7 Another View of the Class Group (leading to Lipman's Theorem)

Let R be an integrally closed Noetherian domain with fraction field Q(R) = K. Let $(_)^* = \operatorname{Hom}_R(_, R)$. Recall that if M is an R-module,

- 1. M is reflexive if $M \simeq M^{**}$ via the canonical map.
- 2. $\operatorname{rank}(M) = \dim_{\mathsf{K}}(M \otimes_R \mathsf{K}).$

Remark 5 If $M \simeq M^{**}$ then the canonical map is an isomorphism (see the exercises).

Definition 7 We define cl(R) := set of isomorphism classes of rank 1, finitely generated reflexive R-modules. This is an abelian group under the operation

$$[M] \cdot [N] = [(M \otimes N)^{**}].$$

The multiplicative identity is [R] and the inverse of [M] is $[M^*]$.

We will prove that cl(R) = Cl(R).

Proposition 23 Every rank 1 reflexive module M is isomorphic to a height 1 unmixed ideal I in R. Conversely every unmixed ideal I of height 1 is a rank 1 reflexive R-module.

Discussion/Remarks: Let M be a finitely generated torsion-free module of rank 1 over R. Then $M \otimes_R \mathsf{K} \simeq \mathsf{K}$. Since M is torsion-free, $M \hookrightarrow M \otimes_R \mathsf{K} \simeq \mathsf{K}$.

Aside: Classically (in algebraic number theory) finitely generated R-submodules of Kare called "fractionary ideals" or "orders". Let $M = \langle r_i/x_i : i = 1, \ldots, n \rangle$ as an R-module, where $r_i, x_i \in R$ for all i. By clearing denominators, we can find an x in R such that xM = I, an ideal in R. Thus every rank 1, finitely generated torsion-free R-module is just an ideal in R up to isomorphism.

In view of the above discussion, to prove the correspondence of Prop. 23, it is enough to show that I is an unmixed ideal of height 1 if and only if $I \simeq I^{**}$. This is due to

the fact that every reflexive module is torsion-free.

Aside: Any submodule of a free module is torsion-free. So, for any R-module M, M^* is torsion-free.

We first prove the following lemma

Lemma 24 Let x be a non-zero element in an ideal I of R. Then $I^* \simeq (x) :_R I$.

Proof: Define $\Phi: I^* \longrightarrow (x):_R I$ by $f \mapsto f(x)$ for any f in I^* . Note that if $i \in I$, then $if(x) = xf(i) \in (x)$. Hence f(x) is an element of $(x):_R I$. We want to prove that Φ is an isomorphism. To prove Φ is injective, consider $f \in I^*$ such that f(x) = 0. Then xf(i) = if(x) = 0 for each i in I. But x is a non-zerodivisor and hence f = 0 in I^* . Now it remains to show that Φ is surjective. Let a be in $(x):_R I$. Define $f_a: I \longrightarrow R$ by multiplication by a/x. If $i \in I$, then $a/x \cdot i \in R$ and $f_a(x) = a$. Therefore $\Phi(f_a) = a$ and hence Φ is surjective.

Aside: Note that if(x) = xf(i) for all i in I gives us

- 1. f(i)/i = f(x)/x for every non-zero i in I and
- 2. each f in I^* is given by $i \mapsto i \cdot f(x)/x$.

Corollary 25 Let $x, y \in I$ be nonzero. Then $I^{**} \simeq (y) :_R ((x) :_R I)$. In particular, if x is non-zero then $I^{**} \simeq (x) :_R ((x) :_R I)$.

By the corollary, to prove Prop. 23, it is enough to prove the following statement: Let I be an ideal in R and $x \in I$ be non-zero. Then I is an unmixed ideal of height 1 if and only if $I = (x) :_R ((x) :_R I)$.

Proof: Any ideal of the form $(x):_R J \neq R$ is unmixed of height 1. This follows by primary decomposition. In general, every associated prime of $K:_R J$ is associated to K. As R satisfies S_2 , (x) is an unmixed ideal of height 1.

Hence if $I=(x):_R(x):_RI)$, then I is an unmixed ideal of height 1. (Note: If $(x):_RJ=R$, then J=(x) and hence $(x):_RJ=R\simeq(x)$.)

Conversely suppose I is a height 1, unmixed ideal. Clearly $I \subseteq (x) :_R ((x) :_R I)$. To prove equality, since I is unmixed, it is enough to prove equality after localizing at an arbitrary prime minimal over I.

(Fact: If $I \subseteq J$, then I = J if and only if $I_{\mathfrak{p}} = J_{\mathfrak{p}}$ for every prime \mathfrak{p} associated to I.)

Hence without loss of generality we may assume that R is a DVR with maximal ideal \mathfrak{p} . Let $(t) = \mathfrak{p}$. Then $I = (t^k)$ where $k = v_{\mathfrak{p}}(I)$. Since $x \in I$, $l := v_{\mathfrak{p}}(x) \geq k$. Then $(x) = (t^l)$ gives us $(x) :_R I = (t^{l-k})$ and hence $(x) :_R ((x) :_R I) = (t^l) :_R (t^{l-k}) = (t^k) = I$. Thus if I is an unmixed ideal of height 1, then $I = (x) :_R ((x) :_R I)$. \square

Remark 6 I^* can be identified with $\{\alpha \in K : \alpha I \subseteq R\} = I^{-1}$.

Comment about Height 1 Unmixed Ideals

Recall that if I is unmixed, all the associated primes of I are minimal over I. If $\operatorname{ht}(I)=1$, then $\operatorname{ht}(\mathfrak{p})=1$ where \mathfrak{p} is any prime minimal over I. Therefore, if I is an unmixed ideal of height 1, then all its associated primes are also of height 1. This implies that

$$I = \bigcap_{\mathfrak{p} \in X^1(R)} \mathfrak{p}^{(v_{\mathfrak{p}}(I))}.$$

Lemma 26 Let R be an integrally closed Noetherian domain, I, J ideals in R. Consider the following statements:

- (1) $I \simeq J$ as R-modules.
- (2) There exist non-zero elements a and b in R such that aI = bJ.
- (3) $[\operatorname{div}(I)] = [\operatorname{div}(J)]$ where $\operatorname{div}(I)$ is defined as in §2.

Then (1) and (2) are equivalent and they imply (3). If I and J are unmixed ideals of height 1, then (3) implies (1) and (2).

Proof: (1) \Rightarrow (2): Let $\Phi: I \xrightarrow{\simeq} J$ be an isomorphism. Then $I \xrightarrow{\Phi} R$. Hence Φ is given by multiplication by some element $\alpha = a/b$ of K. Therefore $J = \Phi(I) = a/b \cdot I$ which gives us aI = bJ.

- (2) \Rightarrow (1): We have $I \simeq aI$ and $bJ \simeq J$. Hence aI = bJ implies $I \simeq J$.
- (2) \Rightarrow (3): Let $\mathfrak{p} \in X^1(R)$. Then aI = bJ gives us $v_{\mathfrak{p}}(a) + v_{\mathfrak{p}}(I) = v_{\mathfrak{p}}(aI) = v_{\mathfrak{p}}(bJ) = v_{\mathfrak{p}}(b) + v_{\mathfrak{p}}(J)$.

Then

$$\sum_{\mathfrak{p}\in X^1(R)}(v_{\mathfrak{p}}(a)+v_{\mathfrak{p}}(I))\mathfrak{p}=\sum_{\mathfrak{p}\in X^1(R)}(v_{\mathfrak{p}}(b)+v_{\mathfrak{p}}(J))\mathfrak{p}$$

and hence $[\operatorname{div}(I)] = [\operatorname{div}(J)].$

Let us assume that I and J are unmixed ideals of height 1 and that $[\operatorname{div}(I)] = [\operatorname{div}(J)]$. We want to show that there are elements a and b in R such that aI = bJ. Since $[\operatorname{div}(I)] = [\operatorname{div}(J)]$, there is an element $\alpha = a/b$ in Ksuch that $\operatorname{div}(I) - \operatorname{div}(J) = \operatorname{div}(\alpha) = \operatorname{div}(\alpha) - \operatorname{div}(b)$. Hence $\operatorname{div}(aI) = \operatorname{div}(bJ)$. If we can show that both aI and bJ are unmixed of height 1, $\operatorname{div}(aI) = \operatorname{div}(bJ)$ implies that their primary components are the same and hence aI = bJ. Thus we have reduced the problem to proving: If I is an unmixed ideal of height 1, then so is aI.

Let Q be in $Ass_R(R/aI)$. Then there is a y in R, not in aI, such that $Q = (aI :_R y)$. Now $(aI :_R y)$ is a subset of $(a :_R y)$ as well as $(I :_R y)$ which are both of height 1 unless they are the whole ring. If $\operatorname{ht}(Q) \geq 2$, then $(a :_R y) = R$. Hence there is a $z \in R \setminus I$ such that y = az. This implies that $Q = (aI :_R az) = (I :_R z)$. Therefore $Q \in Ass_R(R/I)$ which is not possible since I is unmixed. \square

Let M be a rank 1, reflexive R-module. Then there is an unmixed ideal I of height 1 in R such that $M \simeq I$. This gives us a set map $cl(R) \xrightarrow{\theta} Cl(R)$ defined as $[M] \mapsto [\operatorname{div}(I)]$. This is well-defined by lemma 26. We will prove that θ is an isomorphism between the two groups.

Lemma 27 Let R be an integrally closed Noetherian domain, x be a non-zero element in an ideal I of R. Write $I = \bigcap_{i=1}^{l} \mathfrak{p}_{i}^{(n_{i})} \cap J$ where $\operatorname{ht}(\mathfrak{p}_{i}) = 1$ and $\operatorname{ht}(J) \geq 2$. Then

$$(x):_{R}((x)_{R}:I) = \begin{cases} \bigcap_{i=1}^{l} \mathfrak{p}_{i}^{(n_{i})} & \text{if } l \geq 1 \\ R & \text{if } l = 0 \end{cases}$$

Proof: By Corollary 25, it suffices to prove that $(x) :_R I = (x) :_R (\bigcap_{i=1}^l \mathfrak{p}_i^{(n_i)})$. Set $q = \bigcap_{i=1}^l \mathfrak{p}_i^{(n_i)}$. We have inclusions $Jq \subseteq I \subseteq q$ which induce containments $(x) : q \subseteq (x) : I \subseteq (x) : qJ$. However, (x) : qJ = (x) : q, and (x) : q is an unmixed ideal of height one. Since J has height at least two (and therefore is not in any prime of height one), it follows that $(x) :_R q = (x) :_R qJ$.

Theorem 28 Let R be an integrally closed Noetherian domain. Then $cl(R) \xrightarrow{\theta} Cl(R)$ is an isomorphism of groups.

Proof: We first show that θ is a group homomorphism i.e. we need to show that if M and N are rank 1, reflexive R-modules, then $\theta([M][N]) = \theta([M]) + \theta([N])$.

Choose ideals I and J in R such that $I \simeq M$ and $J \simeq N$. Then $[M][N] = [I][J] = [(I \otimes_R J)^{**}]$. Hence we need to find an ideal $L \simeq (I \otimes_R J)^{**}$ and show that $[\operatorname{div}(L)] = [\operatorname{div}(I)] + [\operatorname{div}(J)]$. We claim that $(I \otimes_R J)^{**} \simeq (IJ)^{**}$.

Consider the surjective homomorphism $i \otimes_R j \mapsto ij$ from $I \otimes_R J$ to IJ. Let T be its kernel. Since $I \otimes_R J \otimes_R \mathsf{K} \simeq IJ \otimes_R \mathsf{K}$, $T \otimes_R \mathsf{K} = 0$. Therefore T is a torsion submodule. Hence we get $(IJ)^* \simeq (I \otimes_R J)^*$ since any torsion module maps to 0 in R. Dualizing again gives us $(I \otimes_R J)^{**} \simeq (IJ)^{**}$.

Now, by lemma 27 $(IJ)^{**}$ = height 1 unmixed component of $IJ = \bigcap_{\mathfrak{p} \in X^1(R)} \mathfrak{p}^{(v_{\mathfrak{p}}(IJ))}$. This implies that

$$\operatorname{div}((IJ)^{**}) = \sum_{\mathfrak{p} \in X^1(R)} v_{\mathfrak{p}}(IJ)\mathfrak{p} = \sum_{\mathfrak{p} \in X^1(R)} v_{\mathfrak{p}}(I)\mathfrak{p} + \sum_{\mathfrak{p} \in X^1(R)} v_{\mathfrak{p}}(J)\mathfrak{p} = \operatorname{div}(I) + \operatorname{div}(J)$$

which proves that θ is a group homomorphism.

To prove that θ is onto, consider a class represented by $\sum n_{\mathfrak{p}}\mathfrak{p}$. Let $I = \bigcap \mathfrak{p}^{(n_{\mathfrak{p}})}$. By lemma 27, I is reflexive. Hence by Prop. 23, I is unmixed and $\operatorname{ht}(I) = 1$. Then $[I] \mapsto [\operatorname{div}(I)] = \sum n_{\mathfrak{p}}[\mathfrak{p}]$. Hence θ is surjective.

We want to show that θ is injective. Consider an unmixed ideal I, of height 1 such that $[\operatorname{div}(I)] = 0$ in Cl(R). Then there is an element $x \in R$ such that $\operatorname{div}(I) = \operatorname{div}(x)$.

Since I is an unmixed ideal of height 1, $I = (x) \simeq R$. Hence θ is injective.

As a consequence of the above theorem, if R is an integrally closed Noetherian domain, t a non-zero element in R such that R/tR is also integrally closed, then we can define a map $j:Cl(R)\longrightarrow Cl(R/tR)$ by mapping the isomorphism class of a rank 1 reflexive module M to the class of $(M/tM)^{**}$. (It needs to be checked that this map makes sense and is well-defined).

§ 1.8 Class Groups of Graded Rings

We are aiming for the following theorems

Theorem 29 If R is an integrally closed Noetherian domain which is graded over a field, then Cl(R) is generated by $[\mathfrak{p}]$, where \mathfrak{p} ranges over all homogeneous prime ideals of height 1.

Theorem 30 With the same assumptions as in Theorem 29, let \mathfrak{m} be the unique maximal homogeneous ideal in R. Then the natural map $Cl(R) \longrightarrow Cl(R_{\mathfrak{m}})$ is an isomorphism.

General Remarks and Lemmas on Graded Rings

We say R is graded over a field if $R = \bigoplus_{i \geq 0} R_i$ as an abelian group where R_0 is a field and $R_i R_j \subseteq R_{i+j}$ for all i and j.

An ideal I in R is said to be homogeneous if I is generated by homogeneous elements or equivalently $I = \bigoplus_{i \geq 0} (I \cap R_i)$. If I is any ideal in R, then we can define

$$\tilde{I} = \langle r \in I : r \text{ is homogeneous} \rangle$$

which is the ideal generated by the elements in $\bigcup_{i>0} (R_i \cap I)$.

Notation: By $X_{\text{hom}}^1(R)$, we mean $\{\mathfrak{p} : \mathfrak{p} \text{ is a homogeneous prime of height } 1\}$.

Remark 7 Let R be a graded ring over a field and M be a finitely generated graded R-module. Let \mathfrak{m} be the unique maximal homogeneous ideal in R. Then

- (a) (Graded NAK) If $L \subseteq M$ is a graded submodule and $M = L + \mathfrak{m}M$, then L = M.
- (b) If $M_{\mathfrak{m}} = 0$, then M = 0.
- (c) If R is Noetherian and $M_{\mathfrak{m}}$ is a free $R_{\mathfrak{m}}$ -module, then M is a free R-module.

- **Proof:** (a) Passing to M/L, we may assume that L=0. Suppose $M\neq 0$. Choose a non-zero homogeneous element x in M of least degree. This is possible since M is finitely generated and R is \mathbb{N} -graded. Then $M\neq \mathfrak{m}M$ since x cannot be in $\mathfrak{m}M$.
- (b) Since M is finitely generated and $M_{\mathfrak{m}}=0$, there is an element $r=r_0+m$ in R, r_0 a non-zero element in R_0 and $m \in \mathfrak{m}$ such that rM=0 i.e. $r_0M=mM$. Since r_0 is a unit, we have M=mM and hence by graded NAK, M=0.
- (c) Let $M_{\mathfrak{m}} \simeq R_{\mathfrak{m}}^n$. Since $R_{\mathfrak{m}}$ is local, any set of generators for $M_{\mathfrak{m}}$ contains a free basis. So, without loss of generality we may assume that there are homogeneous elements z_1, z_2, \ldots, z_n in M which form a basis after localizing.

Consider the map from R^n to M mapping the standard basis elements e_i to z_i , $1 \le i \le n$. Let K and C be the kernel and the cokernel respectively. Then K and C are finitely generated graded R-modules such that $K_{\mathfrak{m}} = 0$ and $C_{\mathfrak{m}} = 0$. Hence by (b), K = 0 and C = 0.

Lemma 31 If R is graded and \mathfrak{p} is a prime ideal in R, then so is $\tilde{\mathfrak{p}}$.

Proof: Let $a = \sum_{i=d}^{e} a_i$, $b = \sum_{j=f}^{g} b_j$, a_i, b_j homogeneous elements for all i, j, be elements of R such that $ab \in \tilde{\mathfrak{p}}$, $b \notin \tilde{\mathfrak{p}}$. Assume $b_f \notin \tilde{\mathfrak{p}}$. Then as $\tilde{\mathfrak{p}}$ is homogeneous $a_d b_f \in \tilde{\mathfrak{p}} \subseteq \mathfrak{p}$. This implies that $a_d \in \mathfrak{p}$ and hence is in $\tilde{\mathfrak{p}}$. Continuing this way, $a_i \in \tilde{\mathfrak{p}}$, for every i. Thus, $a \in \tilde{\mathfrak{p}}$ i.e. $\tilde{\mathfrak{p}}$ is a prime ideal.

Lemma 32 Let R be a graded domain over a field. Let W be the multiplicatively closed subset of all homogeneous non-zero elements. Then

- (1) R_W is graded (with possibly negative degrees).
- (2) $L := (R_W)_{(0)}$ is a field.
- (3) Let t be a non-zero homogeneous element in R_W of least positive degree, then $R_W = L[t, t^{-1}]$ and t is transcendental over L.

Proof: (1) Set $\deg(a/b) = \deg(a) - \deg(b)$ for non-zero a, b in $\bigcup R_i$. It is easy to show that this gives a grading on R_W .

- (2) Let $\alpha = a/b$ be a non-zero element in $(R_W)_0$. Then $\deg(\alpha) = 0$ implies that $\deg(a) = \deg(b)$. Therefore $\alpha^{-1} = b/a$ is also in $(R_W)_0$ i.e. $L = (R_W)_0$ is a field.
- (3) Let α be a non-zero homogeneous element algebraic over L. i.e. there are l_1, \ldots, l_n in L such that $\alpha^n + l_1\alpha^{n-1} + \cdots + l_n = 0$. If $\deg(t)$ is not 0, by looking at the piece in $n \cdot \deg(\alpha)$, we get $\alpha^n = 0$, which is not possible. Thus if α is a homogeneous element of non-zero degree, it is transcendental over L.

Suppose that t is a non-zero homogeneous element of least positive degree in R_W . By the above observation, $L[t, t^{-1}] \subseteq R_W$. In order to prove $L[t, t^{-1}] \supseteq R_W$, consider

 $a/b \in R_W$. Let $\deg(a/b) = n$ and $\deg(t) = r$. We have $\deg(a) = n + \deg(b)$. By the choice of t, $\deg(a) \geq r$. By the Division Algorithm, we can find integers q and s such that $\deg(a) = qr + s$, where $0 \leq s < r$. Then the degree of $at^{-q} \in R_W$ is $\deg(a) - qr = s$. Since s < r, by the choice of t, s = 0. Thus $a \in L[t, t^{-1}]$.

Proof of Theorem 29: Let $W = \bigcup R_i \setminus 0$. We have the short exact sequence $0 \longrightarrow H \longrightarrow Cl(R) \longrightarrow Cl(R_W) \longrightarrow 0$, where $H = <[\mathfrak{p}] : \mathfrak{p} \in X^1(R), \mathfrak{p} \cap w \neq \emptyset >$. By lemma 32, R_W is a UFD. Hence $Cl(R) = <[\mathfrak{p}] : \mathfrak{p} \in X^1(R), \mathfrak{p} \cap w \neq \emptyset >$ i.e.

 $Cl(R) = <[\mathfrak{p}] : \mathfrak{p} \in X^1(R), \mathfrak{p}$ contains a non-zero homogeneous element >.

Now if \mathfrak{p} contains a non-zero homogeneous element, $\tilde{\mathfrak{p}}$ is not zero . Since, by lemma 31, $\tilde{\mathfrak{p}}$ is prime and $\operatorname{ht}(\mathfrak{p}) = 1$, we have $\mathfrak{p} = \tilde{\mathfrak{p}}$ i.e.

$$Cl(R) = < [\mathfrak{p}] : \mathfrak{p} \in X^1(R), \mathfrak{p} \text{ is homogeneous} > .$$

Thus Cl(R) is generated by $[\mathfrak{p}]$, where \mathfrak{p} ranges over all homogeneous prime ideals of height 1.

Proof of Theorem 30 By the localization sequence, the map $Cl(R) \xrightarrow{\pi} Cl(R_{\mathfrak{m}})$ is always surjective. We want to show that π is injective.

Let D be a divisor representing a class [D] in Cl(R) such that $\pi([D]) = 0$. Without loss of generality we can assume D is effective and moreover $D = \sum n_{\mathfrak{p}}\mathfrak{p}$ where \mathfrak{p} is a homogeneous prime of height 1. Set $I = \bigcap_{\mathfrak{p} \in X^1_{\text{hom}}(R)} \mathfrak{p}^{(n_{\mathfrak{p}})}$. Then as an exercise one can check that I is homogeneous. Now div(I) = D. Since $\pi([D]) = 0$, $I_{\mathfrak{m}}$ is a principal ideal in $R_{\mathfrak{m}}$ and hence is free. Therefore by remark $T(\mathfrak{p})$ is free i.e. $T(\mathfrak{p})$ is principal. This implies that $T(\mathfrak{p})$ is a principal divisor i.e. $T(\mathfrak{p})$ in $T(\mathfrak{p})$ in $T(\mathfrak{p})$.

§ 1.9 Faithfully Flat Extensions

We want to prove

Theorem 33 Let R be an integrally closed Noetherian local domain. Suppose that ϕ : $R \longrightarrow S$ is a faithfully flat homomorphism, where S is an integrally closed Noetherian domain. Then there is a "natural map" $Cl(R) \xrightarrow{\tilde{\phi}} Cl(S)$ which is injective.

Lemma 34 Assume the conditions of Theorem 33. Then

- (1) For every finitely generated R-module M, $M^{**} \otimes_R S \simeq (M \otimes_R S)^{**}$.
- (2) If M is a rank r R-module, then $M \otimes_R S$ is a rank r S-module.

Proof: (1) Recall that $\operatorname{Hom}_R(M,N) \otimes_R S \simeq \operatorname{Hom}_S(M \otimes_R S, N \otimes_R S)$ as long as $R \longrightarrow S$ is flat and M is finitely presented. Then

$$\operatorname{Hom}_S(\operatorname{Hom}_S(M \otimes_R S, S), S) \simeq \operatorname{Hom}_S(\operatorname{Hom}_R(M, R) \otimes_R S, S)$$

$$\simeq \operatorname{Hom}_R(\operatorname{Hom}_R(M,R),R) \otimes_R S$$

i.e. $M^{**} \otimes_R S \simeq (M \otimes_R S)^{**}$.

(2) Let K and L be the fraction fields of R and S respectively. By faithful flatness, $\mathsf{K} \subset \mathsf{L}$. Then

$$(M \otimes_R S) \otimes_S \mathsf{L} \simeq M \otimes_R \mathsf{L} \simeq (M \otimes_R \mathsf{K}) \otimes_\mathsf{K} \mathsf{L} \simeq \mathsf{K}^{\oplus r} \otimes_\mathsf{K} \mathsf{L} \simeq \mathsf{L}^{\oplus r}.$$

Thus if M is a rank r R-module, then $M \otimes_R S$ is a rank r S-module.

Proof of Theorem 33: Define $\tilde{\phi}:Cl(R)\longrightarrow Cl(S)$ by sending the isomorphism class of a rank 1, reflexive R-module M to the class of $M\otimes_R S$. By the above lemma, $M\otimes_R S$ is a rank 1, reflexive S-module. We need to check that $\tilde{\phi}$ is a group homomorphism, i.e. $\tilde{\phi}([M][N])=\tilde{\phi}([M])\tilde{\phi}([N])$. Now $[M][N]=[(M\otimes_R N)^{**}]$. Hence

$$\tilde{\phi}([M][N]) = [(M \otimes_R N)^{**} \otimes_R S]$$
$$= [((M \otimes_R S) \otimes_S (N \otimes_R S))^{**}] = \tilde{\phi}([M])\tilde{\phi}([N]).$$

To prove injectivity, it is enough to prove that if M is a reflexive R-module of rank 1 such that $M \otimes_R S \simeq S$, then $M \simeq R$.

Let $R^m \xrightarrow{[a_{ij}]} R^n \longrightarrow M \longrightarrow 0$ be a finite presentation for M over R (i.e. $a_{ij} \in \mathfrak{m}_R$). This induces the presentation $S^m \xrightarrow{[a_{ij}]} S^n \longrightarrow M \otimes_R S \longrightarrow 0$ of $M \otimes_R S$ over S. Since $R \longrightarrow S$ is faithfully flat, there is a maximal ideal \mathfrak{n} in S containing $\mathfrak{m}_R S$. If $\mathfrak{l} \simeq S/\mathfrak{n}$, then tensoring with \mathfrak{l} over S, we get $\mathfrak{l}^m \xrightarrow{[0]} \mathfrak{l}^n \longrightarrow M \otimes_R \mathfrak{l} \longrightarrow 0$ i.e. $M \otimes_R \mathfrak{l} \simeq \mathfrak{l}^n$. Since $M \otimes_R S \simeq S$, we must have n = 1. Therefore $M \simeq R/J$. But M is reflexive and hence torsion-free i.e. J = 0, which completes the proof.

Example 12

- (1) If (R, \mathfrak{m}) is an integrally closed Noetherian local domain such that \hat{R} is integrally closed, then $Cl(R) \hookrightarrow Cl(\hat{R})$.
- (2) If (R, \mathfrak{m}) is an integrally closed Noetherian local domain, then $R[[T_1, \ldots, T_n]]$ is integrally closed (see the exercises). Moreover $Cl(R) \hookrightarrow Cl(R[[T_1, \ldots, T_n]])$.

§ 1.10 Lipman's Theorem

Definition 8 An integrally closed Noetherian domain R is said to have a discrete divisor class group (DCG) if the map $Cl(R) \longrightarrow Cl(R[[T]])$ is an isomorphism.

Some background lemmas

Lemma 35 Let R be a Noetherian ring, M,N finitely generated R-modules. Then for any $i < \operatorname{depth}_{\operatorname{ann}_R(M)} N$, $\operatorname{Ext}_R^i(M,N) = 0$.

Recall: In general, $depth_I(N) = length$ of the longest regular sequence on N which is in I.

Proof: Induct on depth_{ann_R(M)}(N) = n. The case n = 0 is vacuously true. If n = 1, we need to prove that $\operatorname{Hom}_R(M, N) = 0$.

Choose $x \in \operatorname{ann}_R(M)$ which is a non-zero divisor on N. Let $f \in \operatorname{Hom}_R(M, N)$ and m be any element in M. Then 0 = f(xm) = xf(m). Hence f(m) = 0 for every m in M which implies f = 0 in $\operatorname{Hom}_R(M, N)$ i.e. $\operatorname{Hom}_R(M, N) = 0$.

Now suppose that $n \geq 2$. Choose $x \in \operatorname{ann}_R(M)$ which is a non-zerodivisor on N. Consider the short exact sequence

$$0 \longrightarrow N \xrightarrow{\cdot x} N \longrightarrow N/xN \longrightarrow 0.$$

By applying $\operatorname{Hom}_R(M, _)$, we get

$$0 \longrightarrow \operatorname{Hom}_{R}(M,N) \stackrel{\cdot x}{\longrightarrow} \operatorname{Hom}_{R}(M,N) \longrightarrow \operatorname{Hom}_{R}(M,N/xN) \longrightarrow$$
$$\cdots \longrightarrow \operatorname{Ext}_{R}^{i}(M,N) \stackrel{\cdot x}{\longrightarrow} \operatorname{Ext}_{R}^{i}(M,N) \longrightarrow \operatorname{Ext}_{R}^{i}(M,N/xN) \longrightarrow$$

But $\operatorname{depth}_{\operatorname{ann}_R(M)}(N/xN) = \operatorname{depth}_{\operatorname{ann}_R(M)}(N) - 1 = n - 1$. By induction, $\operatorname{Ext}_R^i(M,N) = 0$ for all i < n - 1. Now multiplication by x is zero on M and hence on $\operatorname{Ext}_R^i(M,N)$ (since $\operatorname{ann}_R(M) \cup \operatorname{ann}_R(N) \subseteq \operatorname{ann}_R(\operatorname{Ext}_R^i(M,N))$ for all i). Therefore the long exact sequence breaks up into short exact sequences

$$0 \longrightarrow \operatorname{Ext}^i_R(M,N) \longrightarrow \operatorname{Ext}^i_R(M,N/xN) \longrightarrow \operatorname{Ext}^{i-1}_R(M,N) \longrightarrow 0.$$

This implies that $\operatorname{Ext}^i_R(M,N)=0$ for any $i<\operatorname{depth}_{\operatorname{ann}_R(M)}(N)$.

Lemma 36 (Ext Shifting) Let R be a Noetherian ring, M,N be finitely generated R-modules. Assume that xN = 0 and x is a non-zerodivisor on both R and M. Set $\overline{R} := R/xR$ and $\overline{M} := M/xM$. Then for every $i \ge 0$,

$$Ext_{R}^{i}(M, N) = Ext_{\overline{R}}^{i}(\overline{M}, N).$$

Proof: Let \mathbf{F}_{\bullet} be a free resolution of M. Since x is a non-zerodivisor on M, $\overline{\mathbf{F}_{\bullet}} := \mathbf{F}_{\bullet} \otimes_{R} \overline{R}$ is a free resolution of \overline{M} . Therefore

$$\operatorname{Ext}_{\overline{R}}^{i}(\overline{M}, N) \simeq H^{i}(\operatorname{Hom}_{\overline{R}}(\overline{\mathbf{F}_{\bullet}}, N))$$

$$\simeq H^i(\operatorname{Hom}_R(\mathbf{F}_{\bullet}, N))$$

(since xN = 0). But $H^i(\operatorname{Hom}_R(\mathbf{F}_{\bullet}, N)) \simeq Ext^i_R(M, N)$ which proves the result. \square

An aside about M^{**} and reflexive modules

We have to be careful in assuming M^{**} is reflexive. The first step is to know that it is non-trivial. Here is an example to illustrate this fact.

Example 13 Let $R = \mathsf{k}[X,Y]/(X,Y)^2$ where kis a field. Let $M = \mathsf{k} = R/(x,y)$ where x and y are the respective images of X and Y modulo $(X,Y)^2$. We have $\mathsf{k}^* = \operatorname{Hom}_R(\mathsf{k},R) = 0 :_R (x,y) = (x,y) \simeq \mathsf{k}^2$. Then $\mathsf{k}^{**} \simeq \mathsf{k}^4$. In fact $\mathsf{k}^{*n} \simeq \mathsf{k}^{2^n}$ for every positive integer n. Hence k^{*n} is not reflexive for any n.

Aside:

Some questions

- 1. Does M^{**} need to be reflexive over a one dimensional domain?
- 2. Let R be an Artinian local ring that is not Gorenstein and M an R-module that is not reflexive. Is it true that
 - (a) M^{*^n} is not reflexive for any n?
 - (b) $k|M^{*^n}, n >> 0$?

Some Facts

- 1. Over a Gorenstein local Artinian ring, every module is reflexive.
- 2. Over an Artinian local ring that's not Gorenstein, $k^* \simeq k^t$ for some t > 1 i.e. k is never reflexive.

Remark 8 If R is an integrally closed Noetherian domain and M is any finitely generated R-module, then M^{**} is reflexive. In fact we will show that the first syzygy of any torsion-free module is reflexive. This will imply that M^* itself is reflexive.

Suppose M is torsion-free over R. Let F be a free R-module mapping onto M with kernel N i.e. we have a short exact sequence

$$0 \longrightarrow N \longrightarrow F \longrightarrow M \longrightarrow 0.$$

By dualizing we get

$$0 \longrightarrow M^* \longrightarrow F^* \longrightarrow N^* \longrightarrow \operatorname{Ext}_R^1(M,R) \longrightarrow 0.$$

Let K be the cokernel F^*/M^* . We have the short exact sequence

$$0 \longrightarrow K \longrightarrow N^* \longrightarrow \operatorname{Ext}^1_R(M,R) \longrightarrow 0.$$

By dualizing we get

$$0 \longrightarrow N^{**} \longrightarrow K^* \longrightarrow \operatorname{Ext}^1_R(\operatorname{Ext}^1_R(M,R),R) \longrightarrow \cdots$$

Now depth_{ann(Ext¹_R(M,R))}(R) ≥ 2 and hence Ext¹_R(Ext¹_R(M,R),R) = 0 by lemma 35. This implies that $N^{**} \simeq K^*$ which gives us

$$0 \longrightarrow N \longrightarrow F \longrightarrow M \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow Mt.f.$$

$$0 \longrightarrow K^* \longrightarrow F^{**} \longrightarrow M^{**} \longrightarrow \operatorname{Ext}_R^1(K,R) \longrightarrow 0$$

where the second short exact sequence is obtained by dualizing $0 \longrightarrow M^* \longrightarrow F^* \longrightarrow K \longrightarrow 0$.

Applying the Snake Lemma, we get that $N \simeq N^{**}$ i.e. any first syzygy of a torsion-free module is reflexive. We use the fact that the map from M to M^{**} is injective since M is torsion free.

Now let M be any arbitrary R-module. Then if F is a free module mapping onto M with kernel N, by dualizing we get $0 \longrightarrow M^* \longrightarrow F^* \longrightarrow N^*$. If C is the cokernel F^*/M^* , then $C \hookrightarrow N^*$ and hence is torsion-free. Since M^* is the first syzygy of C, this implies that M^* is reflexive.

Note that since a reflexive module is torsion-free, every syzygy of a torsion-free module is reflexive.

Justification for depth_{ann(Ext¹_R(M,R))}(R) ≥ 2 :

Since M is torsion-free, $M_{\mathfrak{p}}$ is free over the DVR $R_{\mathfrak{p}}$ for every \mathfrak{p} in $X^1(R)$. Hence $(\operatorname{Ext}^1_R(M,R))_{\mathfrak{p}}=0$ for every \mathfrak{p} in $X^1(R)$. This implies that $\operatorname{ht}(\operatorname{ann}(\operatorname{Ext}^1_R(M,R)))\geq 2$. Therefore $\operatorname{depth}_{\operatorname{ann}(\operatorname{Ext}^1_R(M,R))}(R)\geq 2$ since R satisfies S_2 .

Setup for Lipman's Theorem

Let R be an integrally closed Noetherian domain, t a non-zero element in R such that R/tR is also an integrally closed domain. (eg. R = A[[T]], where A is integrally closed, then $A \simeq R/TR$). By abuse of language, we write M^* to mean the dual of M as usual, but we also write $(M/tM)^*$ to mean the $Hom_{R/tR}(M/tM, R/tR)$.

We define $j: Cl(R) \longrightarrow Cl(R/tR)$ as follows: If M is a reflexive R-module of rank 1, then $j([M]) := [(M/tM)^{**}]$. By remark 8, $(M/tM)^{**}$ is a reflexive R/tR-module. We need to show that it has rank 1.

It is enough to prove that M/tM has rank 1 i.e. it is enough to show that $(M/tM) \otimes_{\frac{R}{tR}} \mathsf{L} \simeq \mathsf{L}$ where L is the fraction field of R/tR. But we have

$$M/tM\otimes_{\frac{R}{tR}}\mathsf{L}\simeq M\otimes_{\frac{R}{tR}}\mathsf{L}\simeq M_{(t)}\otimes_{\frac{R}{tR}}\mathsf{L}\simeq R_{(t)}\otimes_{\frac{R}{tR}}\mathsf{L}$$

since $M_{(t)} \simeq R_{(t)}$ as $M_{(t)}$ is a torsion-free module of rank one over the DVR $R_{(t)}$. Therefore, we now have

$$M/tM \otimes_{\frac{R}{tR}} \mathsf{L} \simeq R_{(t)} \otimes_{\frac{R}{tR}} \mathsf{L} \simeq R_{(t)} \otimes_R \mathsf{L} \simeq \mathsf{L} = R_{(t)}/tR_{(t)}.$$

Exercise: Let \mathfrak{p} be a prime ideal in R and M be an R-module. Then show that $\operatorname{rank}_{R/\mathfrak{p}}(M/\mathfrak{p}M) = \mu(M_{\mathfrak{p}}).$

Theorem 37 (Lipman) Let S be an integrally closed Noetherian domain, t be a non-zero element in Jac(S). Suppose that R := S/tS is also an integrally closed domain and that the map $j_{\mathfrak{p}} : Cl(S_{\mathfrak{p}}) \longrightarrow Cl(R_{\mathfrak{p}})$ is injective for every \mathfrak{p} in the set

$$\{\mathfrak{p} \in \operatorname{Spec}(S) : t \in \mathfrak{p}, \operatorname{depth}(R_{\mathfrak{p}}) \le 2\}.$$

Then $j: Cl(S) \longrightarrow Cl(R)$ is injective.

We will first prove a couple of lemmas.

Lemma 38 Let S and R be as in Theorem 37, M is a finitely generated S-module and $t \in S$ a non-zerodivisor on M. Suppose $\overline{M} := M/tM$ has the property that \overline{M}^{**} is free and $\overline{M}_{\mathfrak{p}}$ is reflexive for every \mathfrak{p} in the set $\{\mathfrak{p} \in \operatorname{Spec}(S) : t \in \mathfrak{p}, \operatorname{depth}(R_{\mathfrak{p}}) \leq 2\}$. Then,

- (1) $\operatorname{Ext}_{S}^{1}(M, S) = 0.$
- (2) $\overline{M^*} \simeq \overline{M}^* := \operatorname{Hom}_R(\overline{M}, R).$

Proof: Apply $\operatorname{Hom}_S(M, _)$ to $0 \longrightarrow S \stackrel{\cdot t}{\longrightarrow} S \longrightarrow S/tS \longrightarrow 0$ giving

$$0 \longrightarrow \operatorname{Hom}_{S}(M, S) \stackrel{\cdot t}{\longrightarrow} \operatorname{Hom}_{S}(M, S) \longrightarrow \operatorname{Hom}_{S}(M, S/tS)$$

$$\longrightarrow \operatorname{Ext}^1_S(M,S) \stackrel{\cdot t}{\longrightarrow} \operatorname{Ext}^1_S(M,S) \longrightarrow \operatorname{Ext}^1_S(M,S/tS) \longrightarrow \cdots$$

Note that by the Ext-shifting lemma

$$\operatorname{Hom}_S(M,R) \simeq \operatorname{Hom}_R(\overline{M},R)$$
 and $\operatorname{Ext}^1_S(M,R) \simeq \operatorname{Ext}^1_R(\overline{M},R)$.

Hence it follows immediately from the above long exact sequence that (1) implies (2). Since $t \in \operatorname{Jac}(S)$, by NAK it is also clear from the same long exact sequence that to prove (1), it suffices to prove $\operatorname{Ext}^1_S(M,R)$ ($\simeq \operatorname{Ext}^1_R(\overline{M},R)$) = 0.

Let K and C denote the kernel and cokernel respectively of the natural map $\overline{M} \longrightarrow \overline{M}^{**}$. The assumptions give that $K_{\mathfrak{p}} = 0$ and $C_{\mathfrak{p}} = 0$ for every \mathfrak{p} in R such that $\operatorname{depth}(R_{\mathfrak{p}}) \leq 2$. Hence $\operatorname{ann}_R(K)$ and $\operatorname{ann}_R(C)$ are not contained in any such \mathfrak{p} i.e. $\operatorname{depth}_{\operatorname{ann}_R(K)}(R) \geq 3$ and $\operatorname{depth}_{\operatorname{ann}_R(C)}(R) \geq 3$.

Let I be the cokernel \overline{M}/K . We have the two short exact sequences: $0 \longrightarrow K \longrightarrow \overline{M} \longrightarrow I \longrightarrow 0$ and $0 \longrightarrow I \longrightarrow \overline{M}^{**} \longrightarrow C \longrightarrow 0$. By applying $\operatorname{Hom}(_,R)$ to both, we get

$$0 \longrightarrow I^* \longrightarrow \overline{M}^* \longrightarrow K^* \longrightarrow \operatorname{Ext}^1_R(I,R) \longrightarrow \operatorname{Ext}^1_R(\overline{M},R) \longrightarrow \operatorname{Ext}^1_R(K,R) \text{ and}$$

$$0 \longrightarrow C^* \longrightarrow \overline{M}^{**} \longrightarrow I^* \longrightarrow \operatorname{Ext}^1_R(C,R) \longrightarrow$$

$$\longrightarrow \operatorname{Ext}^1_R(\overline{M}^{**},R) \longrightarrow \operatorname{Ext}^1_R(I,R) \longrightarrow \operatorname{Ext}^2_R(C,R).$$

Recall that by lemma 35, $\operatorname{Ext}_R^i(K,R) = \operatorname{Ext}_R^i(C,R) = 0$ for i < 3. So from the first exact sequence above it is clear that in order to prove $\operatorname{Ext}_R^1(\overline{M},R) = 0$, it is enough to show that $\operatorname{Ext}_R^1(I,R) = 0$.

From the second exact sequence above, we get that $\operatorname{Ext}_R^1(I,R) \simeq \operatorname{Ext}_R^1(\overline{M}^{**},R)$ which is zero since \overline{M}^{**} is free over R. This proves the lemma.

Aside: In general, if N is a finitely generated R-module, such that $N_{\mathfrak{p}} = 0$ for every \mathfrak{p} such that $\operatorname{depth}(\mathfrak{p}) \leq k$, then $l = \operatorname{depth}_{\operatorname{ann}_R(N)}(R) \geq k + 1$. This can be seen as follows:

Let a_1, \ldots, a_l be a maximal regular sequence in $\operatorname{ann}_R(N)$. Then $\operatorname{ann}_R(N) \subseteq Q$ for every Q in $\operatorname{Ass}_R(R/(a_1, \ldots, a_l))$. This means that $\operatorname{depth}(R_Q) = l$. Since $N_Q \neq 0$, $l \geq k+1$.

Lemma 39 Let T be a Noetherian ring, M a finitely generated T-module. Suppose that there is an element $x \in \text{Jac}(T)$ such that x is a non-zerodivisor on M. If M/xM is free over T/xT, then M is a free T-module.

Proof: Let z_1, \ldots, z_r be elements of M such their images $\overline{z_1}, \ldots, \overline{z_r}$ in M/xM form a basis for M/xM over T/xT. Then $M \subseteq Tz_1 + \cdots + Tz_r + xM$ which implies that $M = Tz_1 + \cdots + Tz_r$ by NAK.

Let e_i , $1 \leq i \leq r$ be the standard basis for T^r . Then the map $e_i \mapsto z_i$ maps T^r onto M. Let N be its kernel. Let $n = (t_1, \ldots, t_r) \in N$. Then $\sum_{i=1}^r t_i z_i = 0$ in M. Hence $\sum_{i=1}^r t_i \overline{z_i} = 0$ in M/xM. Since $\overline{z_i}$ is a basis for M/xM, $t_i \in xT$ for each i. Write $t_i = xt_i'$ for some t_i' in T. Then we have $\sum_{i=1}^r xt_i'z_i = 0$ which implies that $\sum_{i=1}^r t_i'z_i = 0$ since x is a non-zerodivisor on M. Therefore, as above, $t_i' \in xT$ for each i. Continuing thus, we see that for each i, $t_i \in \bigcap_{n=1}^\infty x^n = 0$ by Krull's Intersection

Theorem. Thus $t_i = 0$ for each i, which proves that N = 0 i.e. $M \simeq T^r$. Thus M is a free T-module.

Proof of Lipman's Theorem: Suppose j([M]) = 1 for a rank 1, reflexive S-module M. Then $(M/tM)^{**} \simeq R$ is free. Moreover since $j_{\mathfrak{p}}$ is injective for every \mathfrak{p} such that depth $(R_{\mathfrak{p}}) \leq 2$, $M_{\mathfrak{p}} \simeq S_{\mathfrak{p}}$ is a free $S_{\mathfrak{p}}$ -module. In particular, $\overline{M_{\mathfrak{p}}}$ is reflexive (since it is free). By Lemma 38, $\operatorname{Ext}_S^1(M,S) = 0$ and $\overline{M}^* = \overline{M}^*$. But R is integrally closed. Hence by remark 8, $\overline{M}^* \simeq \overline{M}^{***}$. Since \overline{M}^{**} is free, so is \overline{M}^{***} which implies that \overline{M}^* is a free R-module of rank 1 i.e. $\overline{M}^* \simeq R$. Therefore by lemma 39, M^* is a free S-module and hence $M^* \simeq S$. Then $M \simeq M^{**} \simeq S^* \simeq S$ which proves that j is injective.

Corollary 40 Let R be an integrally closed Noetherian domain, S := R[[T]]. If R satisfies S_3 and R_2 , then the natural map $Cl(R) \xrightarrow{i} Cl(S)$ is an isomorphism. In particular, if R is a UFD, then so is S.

Proof: Recall that $i([M]) = [M \otimes_R S]$ for any rank 1 reflexive R-module M. The map $Cl(R) \xrightarrow{i} Cl(S)$ is injective since $R \longrightarrow S$ is faithfully flat. In Lipman's Theorem, let t = T. If $j_{\mathfrak{p}} : Cl(S_{\mathfrak{p}}) \longrightarrow Cl(R_{\mathfrak{p}})$ is injective for every \mathfrak{p} in the set $\{\mathfrak{p} \in \operatorname{Spec}(S) : T \in \mathfrak{p}, \operatorname{depth}(R_{\mathfrak{p}}) \leq 2\}$, then by Lipman's Theorem, $j : Cl(S) \longrightarrow Cl(R)$ is injective.

Now since R is S_3 , depth $(R_{\mathfrak{p}}) \leq 2$ implies that $\dim(R_{\mathfrak{p}}) \leq 2$. Hence by R_2 , $R_{\mathfrak{p}}$ is a regular local ring. This gives us $R_{\mathfrak{p}}[[T]]$ is regular and hence a UFD. This means that $j_{\mathfrak{p}}$ is trivially injective. (Note that since $\mathfrak{p} = (\mathfrak{p} \cap R, T), R_{\mathfrak{p}}[[T]] \simeq S_{\mathfrak{p}}$). Hence $j: Cl(S) \longrightarrow Cl(R)$ is injective.

So, we have $Cl(R) \stackrel{i}{\hookrightarrow} Cl(S) \stackrel{j}{\hookrightarrow} Cl(R)$. If M is a rank 1, reflexive R-module,

$$(j \circ i)([M]) = j([M \otimes_R S]) = [(M \otimes_R S \otimes_S R)^{**}] = [M^{**}] = [M]$$

i.e. $j \circ i : Cl(R) \longrightarrow Cl(R)$ is the identity map on Cl(R). Hence i is an isomorphism. \square

§ 1.11 Auslander's Theorems

In this section we are aiming for the following two theorems of Auslander:

Theorem 41 (Auslander) Let

 $\mathfrak{S} := \{(R, M) : (R, \mathfrak{m}, \mathsf{k}) \text{ is a Noetherian local ring and } M \text{ is a } \}$

finitely generated reflexive R-module (i.e. $M \simeq M^{**}$).

Suppose that \mathfrak{S} satisfies the following three conditions:

(i) $(R, M) \in \mathfrak{S} \implies (R_{\mathfrak{p}}, M_{\mathfrak{p}}) \in \mathfrak{S} \text{ for every } \mathfrak{p} \in \operatorname{Spec}(R),$

(ii) $(R, M) \in \mathfrak{S}$ and $depth(R) \leq 3 \implies M$ is free, and

(iii) depth(R) > 3, $(R, M) \in \mathfrak{S}$ and $M_{\mathfrak{p}}$ is free for every $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \{\mathfrak{m}\} \Longrightarrow there$ is an element $x \in \mathfrak{m}_R$, a non-zerodivisor on R such that $(R/xR, (M/xM)^{**}) \in \mathfrak{S}$.

Then, for every $(R, M) \in \mathfrak{S}$, M is free.

Theorem 42 (Auslander) Let $(R, \mathfrak{m}, \mathsf{k})$ be a regular local ring, M a reflexive R-module such that $\mathrm{Hom}(M,M) \simeq M^{\oplus t}$. Then M is free.

A lemma we use in this section is the following:

Lemma 43 Let $(R, \mathfrak{m}, \mathsf{k})$ be a Noetherian local ring. Consider an exact sequence $0 \to K \to A \to B \to C \to 0$ of R-modules, where $\lambda_R(K) < \infty$ and $\lambda_R(C) < \infty$. Then $\operatorname{Ext}^i_R(A, R) \simeq \operatorname{Ext}^i_R(B, R)$ for $i < \operatorname{depth}(R) - 1$.

Proof: Let $I = \operatorname{Coker}(K \to A) = \operatorname{Ker}(B \to C)$. Thus we get two short exact sequences

$$0 \to K \to A \to I \to 0$$
 and $0 \to I \to B \to C \to 0$.

Apply $\operatorname{Hom}_{R}(-,R)$ to the two short exact sequences to get

$$0 \to K^* \to A^* \to I^* \to \operatorname{Ext}^1_R(K,R) \to \operatorname{Ext}^1_R(A,R) \to \operatorname{Ext}^1_R(I,R) \to \cdots$$

and

$$0 \to C^* \to B^* \to I^* \to \operatorname{Ext}^1_R(C,R) \to \operatorname{Ext}^1_R(B,R) \to \operatorname{Ext}^1_R(I,R) \to \cdots$$

Since K and C are modules of finite length, $\operatorname{Ext}_R^i(K,R) = 0 = \operatorname{Ext}_R^i(C,R)$ for $i < \operatorname{depth}(R)$.

Thus from the above long exact sequences, we get $\operatorname{Ext}_R^i(A,R) \simeq \operatorname{Ext}_R^i(I,R)$ for $i < \operatorname{depth}(R)$ and $\operatorname{Ext}_R^i(B,R) \simeq \operatorname{Ext}_R^i(I,R)$ for $i < \operatorname{depth}(R) - 1$ which proves the lemma.

Proof of Theorem 41: Induct on $\dim(R)$. If $\dim(R) \leq 3$, then $\operatorname{depth}(R) \leq 3$ and hence M is free whenever $(R, M) \in \mathfrak{S}$ by (ii).

Suppose $(R, M) \in \mathfrak{S}$. Assume that M' is free whenever $(R', M') \in \mathfrak{S}$ with $\dim(R') < \dim(R)$. If $\operatorname{depth}(R) \leq 3$, M is free by (ii). Hence we may assume that $\operatorname{depth}(R) > 3$. By (i), we have $(R_{\mathfrak{p}}, M_{\mathfrak{p}}) \in \mathfrak{S}$ for every prime ideal \mathfrak{p} in R. Since $\dim(R_{\mathfrak{p}}) < \dim(R)$ for $\mathfrak{p} \neq \mathfrak{m}$, by assumption, $M_{\mathfrak{p}}$ is free. Choose an $x \in \mathfrak{m}$ as in (iii). Since $\dim(\overline{R}) < \dim(R)$, by induction \overline{M}^{**} is free, where denotes going modulo x.

Apply $\operatorname{Hom}_R(M, _)$ to the short exact sequence $0 \to R \xrightarrow{\cdot x} R \to \overline{R} \to 0$ to get the long exact sequence

$$0 \to M^* \stackrel{\cdot x}{\to} M^* \to \overline{M}^* \to \operatorname{Ext}^1_R(M,R) \stackrel{\cdot x}{\to} \operatorname{Ext}^1_R(M,R) \to \operatorname{Ext}^1_R(M,\overline{R}) \to \cdots . \quad (*)$$

Claim: $\operatorname{Ext}_R^1(M,R) = 0$.

Since $M \simeq M^{**}$, x is a non-zerodivisor on M. By NAK, to prove the claim it is enough to prove that $\operatorname{Ext}^1_R(M,\overline{R}) \simeq \operatorname{Ext}^1_{\overline{R}}(\overline{M},\overline{R}) = 0$.

Let K and C be defined by the exact sequence $0 \to K \to \overline{M} \to \overline{M}^{**} \to C \to 0$. Both K and C have finite length, since for every $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}$, $M_{\mathfrak{p}}$ (and therefore $\overline{M}_{\mathfrak{p}}$) is free (and hence reflexive). Since $\operatorname{depth}(\overline{R}) \geq 3$, by Lemma 43, we have

$$\operatorname{Ext}_{\overline{R}}^{i}(\overline{M}^{**}, \overline{R}) \simeq \operatorname{Ext}_{\overline{R}}^{i}(\overline{M}, \overline{R}) \quad i = 0, 1.$$
 (**)

Thus in order to prove the claim, we now need to prove that $\operatorname{Ext}^1_{\overline{R}}(\overline{M}^{**}, \overline{R}) = 0$. But by (iii), $(\overline{R}, \overline{M}^{**}) \in \mathfrak{S}$. Hence by induction, \overline{M}^{**} is \overline{R} -free. This implies that $\operatorname{Ext}^1_{\overline{R}}(\overline{M}^{**}, \overline{R}) = 0$ and hence proves the claim that $\operatorname{Ext}^1_{\overline{R}}(M, R) = 0$.

Therefore, by (*), we have $\overline{M}^* \simeq \overline{M}^*$. But by (**) we have $\overline{M}^* \simeq \overline{M}^{***}$. Hence \overline{M}^{**} being \overline{R} -free forces \overline{M}^{***} to be \overline{R} -free, which in turn implies that \overline{M}^* is \overline{R} -free.

Thus $\overline{M^*}$ is \overline{R} -free which implies that M^* is R-free. Therefore M^{**} is R-free. But M is reflexive, which proves the result.

Proof of Theorem 42: Let \mathfrak{S} be the class of all pairs (R, M), where $(R, \mathfrak{m}, \mathsf{k})$ is a regular local ring and M is a finitely generated reflexive R-module such that $\operatorname{Hom}_R(M, M) \simeq M^{\oplus t}$ for some t. We will prove that \mathfrak{S} satisfies the conditions (i) - (iii) of Theorem 41.

Clearly (i) is true. In order to prove (ii), if $\dim(R) \leq 2$, we claim that since M is a finitely generated reflexive R-module, it is free. To see this consider a presentation $F \xrightarrow{\phi} G \to M^* \to 0$ of M^* . Applying *, we get $0 \to M^{**} \to G^* \xrightarrow{\phi^*} F^* \to C \to 0$, where $C = \operatorname{Coker}(\phi^*)$. Since $\dim(R) \leq 2$ and R is regular, $\operatorname{pd}_R(C) \leq 2$ forcing M^{**} to be free. Since M is reflexive, this implies that M is free. (To sum it all up, M is free since it is a second syzygy.)

Thus without loss of generality we may assume that $\dim(R)=3$. Since M is reflexive, as seen above, it is a second syzygy and hence $\operatorname{depth}(M)\geq 2$. If $\operatorname{depth}(M)=3$, then by the Auslander-Buchsbaum formula, $\operatorname{pd}_R(M)=0$, i.e. M is free. So we may assume that $\operatorname{depth}(M)=2$ and hence $\operatorname{pd}_R(M)=1$.

Note that by our reductions, $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module for any non-maximal prime ideal \mathfrak{p} in R. Moreover, by tensoring $\operatorname{Hom}_R(M,M) \simeq M^{\oplus t}$ with K , the fraction field of R, we see that t is the rank of M. Hence (ii) follows by the following proposition.

Proposition 44 Let $(R, \mathfrak{m}, \mathsf{k})$ be a Noetherian local ring such that $\operatorname{depth}(R) \geq 3$. Suppose that M is a finitely generated reflexive R-module such that:

- a) $M_{\mathfrak{p}}$ is $R_{\mathfrak{p}}$ -free for every $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}.$
- b) $pd_R(M) \le 1$.
- c) $\lambda_R(\operatorname{Ext}^1_R(\operatorname{Hom}_R(M,M),R)) \leq \lambda_R(\operatorname{Ext}^1_R(M^{\oplus t},R))$, where t is the rank of M. Then M is free.

In order to prove (iii) in Theorem 42, let $x \in \mathfrak{m} \setminus \mathfrak{m}^2$. Then x is a non-zerodivisor on $M \simeq M^{**}$. Applying $\operatorname{Hom}_R(M, _)$ to the short exact sequence $0 \to M \xrightarrow{\cdot x} M \to M/xM \to 0$ and denoting going modulo x by $\bar{\ }$, we get the long exact sequence

$$0 \to \operatorname{Hom}_R(M,M) \xrightarrow{x} \operatorname{Hom}_R(M,M) \to \operatorname{Hom}_R(M,\overline{M}) \to \operatorname{Ext}^1_R(M,M).$$

Note that $\operatorname{Hom}_R(M,M) \simeq M^{\oplus t}$, $\operatorname{Hom}_R(M,\overline{M}) \simeq \operatorname{Hom}_{\overline{R}}(\overline{M},\overline{M})$ and $\operatorname{Ext}^1_R(M,M)$ has finite length (since $M_{\mathfrak{p}}$ is free for $\mathfrak{p} \neq \mathfrak{m}$). Hence, from the long exact sequence, we get a short exact sequence $0 \to \overline{M}^{\oplus t} \to \operatorname{Hom}_{\overline{R}}(\overline{M},\overline{M}) \to L \to 0$, where the cokernel L has finite length.

Since $\operatorname{depth}(\overline{R}) > 2$ and L has finite length, we have $\operatorname{Ext}_{\overline{R}}^i(L, \overline{R}) = 0$, i = 0, 1, 2. Applying $\operatorname{Hom}_{\overline{R}}(_, \overline{R})$ to the above short exact sequence, we get $\operatorname{Hom}_{\overline{R}}(\overline{M}, \overline{M})^{**} \simeq (\overline{M}^{**})^{\oplus t}$. It suffices to show that $\operatorname{Hom}_{\overline{R}}(\overline{M}, \overline{M})^{**} \simeq \operatorname{Hom}_{\overline{R}}(\overline{M}^{**}, \overline{M}^{**})$ to finish the proof, since this will imply that $(\overline{R}, \overline{M}^{**}) \in \mathfrak{S}$. By applying the following lemma twice, the proof is complete.

Lemma 45 Let $(R, \mathfrak{m}, \mathsf{k})$ be a Cohen-Macaulay local ring, M a finitely generated Rmodule, such that $M_{\mathfrak{p}}$ is free for every $\mathfrak{p} \in \operatorname{Spec}(R)$ such that $\operatorname{ht}(\mathfrak{p}) \leq 1$. Then, $\operatorname{Hom}_R(M, M)^* \simeq \operatorname{Hom}_R(M^*, M^*)$.

Note: The key point in the proof of the lemma as well as Prop. 44 is the existence of a natural map $M^* \otimes_R M \to \operatorname{Hom}_R(M, M)$, given by $f \otimes m \mapsto [x \mapsto f(x)m]$, which is an isomorphism if and only if M is free.

Let K and C be the kernel and the cokernel respectively of this map. Then we get an exact sequence

$$0 \to K \to M^* \otimes_R M \to \operatorname{Hom}_R(M, M) \to C \to 0.$$
 (*)

Proof: Let K and C be as in (*). Since $M_{\mathfrak{p}}$ is free whenever $\operatorname{ht}{\mathfrak{p}} \leq 1$, we have $K_{\mathfrak{p}} = 0 = C_{\mathfrak{p}}$ for every $\mathfrak{p} \in \operatorname{Spec}(R)$ such that $\operatorname{ht}(\mathfrak{p}) \leq 1$. Hence $\operatorname{ht}(\operatorname{ann}(K)) \geq 2$ and $\operatorname{ht}(\operatorname{ann}(C)) \geq 2$. This gives us $\operatorname{Ext}^1_R(K,R) = 0 = \operatorname{Ext}^1_R(C,R)$, which forces $\operatorname{Hom}_R(M,M)^* \simeq (M^* \otimes_R M)^*$. But by the $\operatorname{Hom} - \otimes$ adjointness, $(M^* \otimes_R M)^* \simeq \operatorname{Hom}_R(M^*,M^*)$ proving the lemma.

Let us now prove Prop. 44, to complete the proof of Auslander's Theorems.

Proof of Proposition 44: Let K and C be as in (*). By (i), K and C are mprimary. This forces $\operatorname{Ext}^1_R(M^* \otimes_R M, R) \simeq \operatorname{Ext}^1_R(\operatorname{Hom}_R(M, M), R)$ by Lemma 43 since $1 < \operatorname{depth}(R) - 1$.

Thus (c) can be replaced by (c')

$$\lambda_R(\operatorname{Ext}^1_R(M^* \otimes_R M, R)) \le \lambda_R(\operatorname{Ext}^1_R(M^{\oplus t}, R)), \qquad t = \operatorname{rank}(M).$$

We have reduced the problem to proving M is free, assuming (a), (b) and (c'). Suppose M is not free. Without loss of generality, we may assume that $\operatorname{pd}_R(M) = 1$. Let

$$(\#) 0 \to R^{n-t} \xrightarrow{\phi} R^n \to M \to 0$$

be a minimal resolution of M over R.

Step 1: We claim that $\lambda_R(\operatorname{Ext}^1_R(M,M)) > t\lambda_R(\operatorname{Ext}^1_R(M,R))$.

Note that since $M_{\mathfrak{p}}$ is free for every $\mathfrak{p} \neq \mathfrak{m}$, $\operatorname{Ext}_{R}^{i}(M,_{-})_{\mathfrak{p}} = 0$ for every $\mathfrak{p} \neq \mathfrak{m}$ and $\operatorname{Ext}_{R}^{i}(M,_{-})$ are all of finite length.

Set $L = \operatorname{Ext}_R^1(M, R)$. Tensor (#) with L to get

$$0 \to \operatorname{Tor}_1^R(M, L) \to L^{n-t} \stackrel{\phi \otimes 1}{\to} L^n \to M \otimes_R L \to 0.$$

Note that $\operatorname{Ker}(\phi \otimes 1) \neq 0$ since $\operatorname{soc}(L^{n-t}) \mapsto 0$. Hence

$$\lambda_R(M \otimes_R N) + (n-t)\lambda_R(L) > n\lambda_R(L)$$
, i.e. $\lambda_R(M \otimes_R L) > t\lambda_R(L)$.

In order to prove the claim, we show that $M \otimes_R L \simeq \operatorname{Ext}^1_R(M, M)$. Apply * to (#) to get

$$0 \to M^* \to R^{*n} \xrightarrow{\phi^*} R^{*(n-t)} \to L \to 0.$$

Tensoring with M gives an exact sequence

$$M \otimes_R R^{*n} \to M \otimes_R R^{*(n-t)} \to M \otimes_R L \to 0.$$
 (1)

Apply $\operatorname{Hom}_{R}(-, M)$ to (#) to get

$$\operatorname{Hom}_R(R^n, M) \to \operatorname{Hom}_R(R^{n-t}, M) \to \operatorname{Ext}_R^1(M, M) \to 0.$$
 (2)

(1) and (2) give $M \otimes_R L \simeq \operatorname{Ext}^1_R(M, M)$, which proves the claim.

Step 2: We claim that $\operatorname{Ext}_R^1(M, M) \hookrightarrow \operatorname{Ext}_R^1(M^* \otimes M, R)$. Applying $\otimes_R M^*$ to (#), we get the exact sequence

$$0 \to \operatorname{Tor}_1^R(M,N) \to M^* \otimes_R R^{n-t} \to M^* \otimes_R R^n \to M^* \otimes_R M \to 0.$$

Since $M_{\mathfrak{p}}$ is free for all $\mathfrak{p} \neq \mathfrak{m}$, $\operatorname{Tor}_{1}^{R}(M, N)$ has finite length. But $M^{*} \otimes_{R} R^{n-t}$ is reflexive. Hence $\operatorname{Tor}_{1}^{R}(M, N) = 0$. Thus we get a short exact sequence

$$0 \to M^* \otimes_R R^{n-t} \to M^* \otimes_R R^n \to M^* \otimes_R M \to 0.$$

Applying $\operatorname{Hom}_R(_,R)$ to the above sequence, we get

$$0 \to (M^* \otimes_R M)^* \to (M^* \otimes_R R^n)^* \to (M^* \otimes R^{n-t})^* \to \operatorname{Ext}_R^1(M^* \otimes_R M, R).$$

By the Hom $-\otimes$ adjointness we know that, for any N, $(N\otimes M^*)^*\simeq \operatorname{Hom}_R(N,M^{**})$. But in this case, $M^{**}\simeq M$. Hence the above sequence becomes

$$\operatorname{Hom}_R(M,M) \to \operatorname{Hom}_R(R^n,M) \to \operatorname{Hom}_R(R^{n-t},M) \to \operatorname{Ext}^1_R(M^* \otimes_R M,R).$$

This proves step 2 since $\operatorname{Ext}^1_R(M,M) \simeq \operatorname{Coker}(\operatorname{Hom}_R(R^n,M) \to \operatorname{Hom}_R(R^{n-t},M)).$

Combining Step 1 and Step 2, we get a contradiction to (c'), proving that $\operatorname{pd}_R(M) \neq 1$. Thus M is free.

Exercises

- (1) Let R be a Noetherian domain and let \mathfrak{q} be a height one prime. If $0 \neq x \in \mathfrak{q}$, give a description of $\mathfrak{q}^*(x)$.
- (2) Let R be a Noetherian integrally closed domain and let \mathfrak{q} be a prime of height at least two. If $0 \neq x \in \mathfrak{q}$, give a description of $\mathfrak{q}^*(x)$.
- (3) Let R be a Noetherian ring. Prove that R satisfies Serre's condition S_i iff whenever $x_k \in R$, $1 \le j \le i-1$ and $(x_1, ..., x_j)$ has height j, then $(x_1, ..., x_j)$ has no associated primes of height greater than j.
- (4) Let R be a Noetherian domain and let $x \in R$ be a prime element. If R_x is integrally closed, prove that R is integrally closed. Extend this to localizing at a multiplicatively closed set generated by prime elements.
- (5) Prove that the ring $R = k[x, y, z]_{(x,y,z)}/(f)$ is a UFD, where k is a field of characteristic 0 or characteristic at least 11, and $f = x^2 + y^3 + z^7$.
- (6) Let R be an integrally closed domain, and suppose that $x, y, z \in R$ are elements which satisfy the following conditions:
 - (a) x is a prime element.
 - (b) x, y form a regular sequence.
 - (c) There exists positive integers i, j, k such that $z^{i-1} \notin (x, y)R$, but $z^i \in (x^j, y^k)$ and such that $ijk ij jk ik \ge 0$.

Prove that R[[T]] is not a UFD.

(7) Let M be a finitely generated module over a ring R. Let A be a r by s matrix presenting M, i.e. there is an exact sequence

$$R^s \xrightarrow{A} \to R^r \to M \to 0.$$

Prove that the r by r minors of A annihilate M.

- (8) Let X be a generic 2 by 3 matrix over a field k, and let R be the quotient ring of k[X] modulo the ideal of 2 by 2 minors of X. Show that R is integrally closed, and find the class group.
- (9) Let X be a generic symmetric 3 by 3 matrix over a field k, and let R be the quotient ring of k[X] modulo the ideal of 2 by 2 minors of X. Show that R is integrally closed, and find the class group.

- (10) Let R be an integrally closed Noetherian domain, and let M be a finitely generated R module. Fix an arbitrary prime filtration $0 = M_0 \subseteq M_1 \subseteq ... \subseteq M_n = M$, where $M_{i+1}/M_i \cong R/\mathfrak{p}_{i+1}$. Define a map from M to the class group of R by sending M to the sum of the classes of all \mathfrak{p}_i which are height one (counted as many times as they appear in the filtration). Prove that this map is well-defined, and that it agrees with the map from M to the class group of R which we defined in class.
- (11) Let R be a Noetherian ring and let M be a finitely generated R-module. Set $()^* = \operatorname{Hom}_R(,R)$. Prove that $M \cong M^{**}$ if and only if the canonical map from M to M^{**} is an isomorphism.
- (12) Let R, S be Noetherian integrally closed domains, and assume that $\phi: R \longrightarrow S$ is a faithfully flat map. Assume that rank one projective R-modules are free. Prove that the induced map on class groups $Cl(R) \longrightarrow Cl(S)$ is injective.
- (13) Let $R = \bigoplus_{i \geq 0} R_i$ be a Noetherian graded integrally closed domain over a field $k = R_0$. Let \mathfrak{l} be an extension field of k, and set $S = R \otimes_k \mathfrak{l}$. Prove that the map from $R \longrightarrow S$ is faithfully flat. Assuming that S is an integrally closed domain, prove that the embedding of R into S induces an injection on the class groups of R and S.
- (14) Prove an integrally closed Noetherian domain R is a UFD if and only if $R_{\mathfrak{m}}$ is a UFD for all maximal ideals \mathfrak{m} of R and rank one projective R-modules are free.
- (15) Find the class group of $R = \mathbb{C}[x, y, z]/(xy z^n)$.
- (16) Let R be an integrally closed Noetherian domain and let M be a finitely generated torsion-free R-module. Prove that there are at most finitely many primes $\mathfrak{p}_1, ..., \mathfrak{p}_n$ of height two such that $M_{\mathfrak{p}_i}$ is not $R_{\mathfrak{p}_i}$ -free.
- (17) Let $R = \mathbb{C}[[x, y, z]]/(f)$ be integrally closed. Give an algorithm to decide whether or not Cl(R) is torsion-free.
- (18) Let R be a Noetherian ring and let $I \subseteq J$ be ideals. Prove that I = J iff $I_{\mathfrak{p}} = J_{\mathfrak{p}}$ for every associated prime \mathfrak{p} of I.
- (19) Let R be an integrally closed Noetherian domain and let M be a finitely generated R-module. Prove that M is reflexive if and only if every regular sequence x, y in R is a regular sequence on M.

- (20) A polynomial $f \in R[X_1, ..., X_n]$ is said to be *primitive* if the coefficients of f generated the unit ideal. Prove that the set of primitive polynomials forms a multiplicatively closed set W. Set $R(X_1, ..., X_n) = R[X_1, ..., X_n]_W$. Prove that the natural map from $Cl(R) \longrightarrow Cl(R(X_1, ..., X_n))$ is an isomorphism.
- (21) Prove that the ring $R = \mathsf{k}[x,y,z]_{(x,y,z)}/(f)$ is a UFD, if k is the real numbers, and $f = x^2 + y^2 + z^m$.
- (22) Let k be a field of characteristic 0. Prove that the ring $k[x^n, x^{n-1}y, ..., xy^{n-1}, y^n]$ generated by all monomials in x, y of degree n is integrally closed and has a cyclic class group of order n.
- (23) (For those who know tight closure.) Let R be a complete local integrally closed domain of positive (possibly large) characteristic with algebraically closed residue field. Let x, y be a regular sequence of test elements. Prove there is a map from $(x,y)^*/(x,y)$ to Cl(R[[T]]) which is bijective (and make sense out of this statement!). In particular, given an element $z \in (x,y)^*$, $z \notin (x,y)$, show there is a nonzero element of the class group of Cl(R[[T]]) which can be constructed from z.
- (24) Let R be a Noetherian ring, and $t \in R$ a non-zerodivisor such that R is complete in the t-adic topology. Assume that R/tR is an integrally closed domain. Prove that R is an integrally closed domain.
- (25) Let R be a Noetherian ring, and $t \in R$ a non-zerodivisor such that R is complete in the t-adic topology. Assume that R/tR is a seminormal domain. Prove that R is a seminormal domain.

2. Coefficient Fields and Cohen's Structure Theorem(s)

For the results proved in this section, the ring need not necessarily be Noetherian unless otherwise mentioned.

Lemma 1 (Hensel's Lemma) Let $(R, \mathfrak{m}, \mathsf{k})$ be a complete and separated local ring (separated means $\bigcap_{n\geq 0} \mathfrak{m}^n = 0$). Let F(X) be a monic polynomial in R[X]; write to denote going modulo \mathfrak{m} . Assume $\overline{F} = g \cdot h$ in $\mathsf{k}[X]$, where g and h are monic polynomials such that (g,h) = 1. Then there are liftings G and H of g and h respectively, both monic such that $F = G \cdot H$ in R[X].

Proof: Inductively we claim that there are monic polynomials $G_n, H_n \in R[X]$ such that:

- a) $\overline{G_n} = g$ and $\overline{H_n} = h$,
- b) $F G_n \cdot H_n \in \mathfrak{m}^n R[X]$ and
- c) $G_{n-1} \equiv G_n(mod \mathfrak{m}^{n-1}R[X])$ and $H_{n-1} \equiv H_n(mod \mathfrak{m}^{n-1}R[X])$.

If we prove that G_n and H_n exist for all n with the above properties, then $G := \lim G_n$ and $H := \lim H_n$ exist. Note that $F - G \cdot H \in \bigcap \mathfrak{m}^n R[X] = 0$ by assumption. Let G_1 and H_1 be any monic liftings of g and h respectively. Then (a) holds by construction and (b) holds since $\overline{F - G_1 H_1} = \overline{F} - gh = 0$.

Assume that G_n and H_n have been chosen satisfying (a) - (c). By (b), $F - G_n H_n \in \mathfrak{m}^n R[X]$. Choose $y_1, \ldots, y_l \in \mathfrak{m}^n, L_i(X) \in R[X]$ such that $F - G_n H_n = \sum_{i=1}^l y_i L_i$.

Since (g,h) = 1, there are $a_i(X)$ and $b_i(X)$ in k[X] such that $\overline{L_i} = a_i g + b_i h$. We can also assume that $\deg b_i < \deg g$ by the division algorithm. We claim that $\deg a_i < \deg h$.

Note that $\deg g + \deg h = \deg F$. On the other hand, $\deg(F - G_n H_n) < \deg F$ since the leading term cancels. Hence $\deg L_i < \deg F = \deg g + \deg h$. This forces $\deg a_i g < \deg g + \deg h$ which proves the claim.

Lift $a_i(X)$ and $b_i(X)$ to $A_i(X)$ and $B_i(X)$ respectively without changing the respective degrees. Then $F - G_n H_n = \sum_{i=1}^l y_i L_i$ and $L_i - A_i G - B_i H \in \mathfrak{m}R[X]$ since $\overline{L_i - A_i G_n - B_i H_n} = \overline{L_i} - a_i g - b_i h = 0$. Hence

$$F - G_n H_n - \Sigma y_i (A_i G_n + B_i H_n) \in \mathfrak{m}^{n+1} R[X] \tag{*}$$

Define $G_{n+1} := G_n + \Sigma y_i B_i$ and $H_{n+1} := H_n + \Sigma y_i A_i$. Then

- (a) $\overline{G_{n+1}} = \overline{G_n} = g$ and $\overline{H_{n+1}} = \overline{H_n} = h$ since $y_i \in \mathfrak{m}$.
- (b) By (*), $F G_{n+1}H_{n+1} \in \mathfrak{m}^{n+1}R[X]$.
- (c) $G_n \equiv G_{n+1} \pmod{\mathfrak{m}^{n+1}} R[X]$ and $H_n \equiv H_{n+1} \pmod{\mathfrak{m}^{n+1}} R[X]$ since $y_i \in \mathfrak{m}^n$. Thus G_n and H_n exist for each n satisfying (a) - (c) which completes the proof.

Corollary 2 Let R be a ring satisfying the hypothesis of Hensel's Lemma. With notations as above, let F(X) be a monic polynomial in R[X] be such that $\overline{F(X)}$ has a simple root α over k. Then F has a root $a \in R$ such that $\overline{a} = \alpha$.

Example 1 Let $(R, \mathfrak{m}, \underline{\mathsf{k}})$ be a local ring complete in the *I*-adic topology for an ideal I in R. Suppose that $\overline{e^2} \equiv \overline{e} \pmod{I}$. Then there is an element $e \in R$ such that $e \mapsto \overline{e} \pmod{I}$ and $e^2 = e$.

Definition 1 Let $(R, \mathfrak{m}, \mathsf{k})$ be a local ring. If there is a field $L \subseteq R$ such that the restriction $L \subseteq R \xrightarrow{\pi} \mathsf{k}$ is an isomorphsm, i.e. $\pi|_L : L \xrightarrow{\sim} \mathsf{k}$, then L is called a coefficient field for R.

Example 2 1. Let $R = \mathsf{k}[X,Y]_{(X)}$ where kis a field. The residue field is $\mathsf{k}(Y)$ and there is a copy of $\mathsf{k}(Y)$ in R, i.e. there is a coefficient field for R.

2. Let $V := \mathbb{R}[X]_{(X^2+1)}$. Then $V/\mathfrak{m}_V \simeq \mathbb{C}$. But \mathbb{C} is not a subfield of V, i.e. V does not have a coefficient field.

The obvious question one can ask at this point is: When does a ring $(R, \mathfrak{m}, \mathsf{k})$ have a coefficient field? The following two theorems due to Cohen give some conditions under which the ring has a coefficient field.

Theorem 3 (I.S.Cohen) Suppose $(R, \mathfrak{m}, \mathsf{k})$ is a complete and separated local ring such that $\mathbb{Q} \subseteq R$ (i.e. R has equal characteristic 0). Then R has a coefficient field.

Proof: Consider the set of all subfields in R, this set is non-empty as $\mathbb{Q} \subseteq R$. Use Zorn's Lemma to choose a maximal such subfield, say L. We claim that L is a coefficient field for R. Note that $L \simeq \pi(L)$ where $\pi: R \longrightarrow k$ is the canonical projection. The content of the theorem is that $\pi(L) = k$.

Let $\alpha \in \mathsf{k}$. Suppose α is transcendental over $\pi(L)$. Let $a \in R$ be a lift of α . Then $a \notin L$. Now for any $f(X) \in L[X]$, $\pi(f(a)) = \overline{f}(\alpha) \neq 0$. Hence $f(a) \notin \mathfrak{m}$. This implies that L(a) is a subfield of R contradicting the maximality of L. Thus α must be algebraic over $\pi(L)$.

Let f(X) be the minimal monic polynomial for α over $\pi(L)$. Passing to $\mathsf{k}[X]$, we have $f(X) = (X - \alpha)h(X)$ and $(X - \alpha, h(X)) = 1$ (α is a simple root of f(X) since we are in characteristic 0). Let $F(X) = \pi^{-1}(f(X))$ in L[X] (this makes sense since $L \simeq \pi(L)$). Thus F is a monic polynomial over R which factors modulo \mathfrak{m} . By Hensel's lemma, F(X) = (X - a)H(X) where $a \in R$ is a lift of α . Hence a is algebraic over L, which implies that L[a] is a subfield of R. By maximality of L, $a \in L$. Hence $\pi(a) = \alpha \in \pi(L)$. Thus L is a coefficient field for R.

Theorem 4 (I.S.Cohen) Let $(R, \mathfrak{m}, \mathsf{k})$ be a complete and separated local ring such that $\mathbb{Z}_p \subseteq R$, where $p \in \mathbb{N}$ is a prime (i.e. R has characteristic p). Then R has a coefficient field.

Proof: Let us first consider the case when $\mathfrak{m}^2 = 0$. We claim that $R^p := \{r^p : r \in R\}$ is a field.

Note that since $\operatorname{char}(R) = p$, R^p is a ring. If r^p is a non-zero element in R^p , then $r \notin \mathfrak{m}$. Thus r is a unit and hence the inverse of r^p is $(r^{-1})^p \in R^p$. Now choose any maximal subfield L in R containing R^p . We claim that L is a coefficient field for R.

Consider $\pi(L) \subseteq \mathsf{k}$ where π is the natural projection of R onto k . We want to show that $\pi(L) = \mathsf{k}$. By way of contradiction suppose $\alpha \in \mathsf{k} \setminus \pi(L)$. Lift α to $a \in R$. Note that $a^p \in R^p \subseteq L$. Since $\alpha^p = \pi(a^p)$, the minimal monic polynomial for α over $\pi(L)$ must be $X^p - \pi(a^p)$. This polynomial is irreducible over $\pi(L)$. We use the fact that if F is a field of characteristic p, α algebraic over F such that $\alpha^p \in F$, then either $\alpha \in F$ or the minimal monic polynomial of α over F is $X^p - \alpha^p$.

Thus it follows that $X^p - a^p$ is irreducible over L. Hence a is algebraic over L and clearly $L[a] \subseteq R$ is a larger field than L contradicting the maximality of L. This proves that $\pi(L) = \mathsf{k}$ when $\mathfrak{m}^2 = 0$. (In fact we only used $\mathfrak{m}^p = 0$).

Let us now consider the general case. Inductively we claim that there exist coefficient fields $L_n \subseteq R/\mathfrak{m}^n$, with maps $L_{n+1} \longrightarrow L_n$ such that the diagram

$$0 \longrightarrow L_n \longrightarrow R/\mathfrak{m}^n$$

$$\uparrow^{\pi_n}$$

$$0 \longrightarrow L_{n+1} \longrightarrow R/\mathfrak{m}^{n+1}$$

commutes for all $n \in \mathbb{N}$.

In such a case, $\lim_{\stackrel{\longleftarrow}{n}} L_n \subseteq \lim_{\stackrel{\longleftarrow}{n}} R/\mathfrak{m}^n = \widehat{R} = R$ since R is complete. Clearly $\lim_{\stackrel{\longleftarrow}{n}} L_n$ will be a coefficient field for R.

Choose $L_1 = \mathsf{k}$. L_2 exists by the first case. Suppose we have constructed $L_n \subseteq R/\mathfrak{m}_n$. If π_n is the natural surjection from \mathfrak{m}^{n+1} to \mathfrak{m}^n , define $A := \pi_n^{-1}(L_n) \subseteq R/\mathfrak{m}^{n+1}$. A is a local subring of R/\mathfrak{m}^{n+1} such that $A/\mathfrak{m}_A \simeq L_n \simeq \mathsf{k}$. Moreover, $\mathfrak{m}_A^2 = 0$. Hence by the first case we can find a coefficient field for R/\mathfrak{m}^{n+1} say L_{n+1} which proves the result.

Corollary 5 Let $(R, \mathfrak{m}, \mathsf{k})$ be a complete and separated local ring. Suppose that $\mathbb{Z}_p \subseteq R$ and k is perfect (i.e. $\mathsf{k} = \mathsf{k}^p$). Then there is a unique coefficient field L for R given by $L := \bigcap_{p \in \mathbb{N}} R^{p^n}$.

Proof: First of all, we claim that $L = \bigcap_{n \in \mathbb{N}} R^{p^n}$ is a field. Consider $a \in L$. This means that for each $n \in \mathbb{N}$, there is a $b_n \in R$, such that $b_n^{p^n} = a$. If $a \in \mathfrak{m}$, then $b_n \in \mathfrak{m}$ for each n. Since the ring R is separated, this implies that a = 0. If a is not in \mathfrak{m} , then a is a unit in R. Hence so are each of the b_n 's. This forces $a^{-1} \in R^{p^n}$ for each n. Thus $a \in L$, $a \neq 0$, implies that $a^{-1} \in L$. Therefore L is a subfield of R.

Secondly, we will show that any arbitrary coefficient field \mathbb{F} for R (such a field exists by Theorem 4) is contained in L. Since the coefficient field must be a maximal subfield, this will prove that L is indeed a coefficient field for R.

Let \mathbb{F} be a coefficient field for R. Then $\mathbb{F} \simeq \mathsf{k}$. Since k is perfect, $\mathbb{F} = \mathbb{F}^{p^n} \subseteq R^{p^n}$ for each $n \in \mathbb{N}$. Hence $\mathbb{F} \subseteq \bigcap_{n \in \mathbb{N}} R^{p^n} = L$.

We will now prove a lemma that will be used in the following two theorems. This is a version of NAK for complete rings.

Lemma 6 (Complete NAK) Let R be a ring, $I \subseteq R$ be an ideal such that R is complete in the I-adic topology. Let M be an R-module such that $\bigcap_{n\in\mathbb{N}} I^nM = 0$. If $x_1, \ldots, x_r \in M$ is such that the elements $x_i + IM$, $1 \le i \le r$, generate M/IM, then $M = Rx_1 + \cdots + Rx_r$.

Proof: Set $N := Rx_1 + \cdots + Rx_r$. Then M = N + IM. Let $u \in M$. Then

$$u = \sum a_{i_0} x_i + m_1$$
 where $a_{i_0} \in R$ and $m_1 \in IM$.

Since $IM = IN + I^2M$, we get

$$u = \sum a_{i_0} x_i + \sum a_{i_1} x_i + m_2$$
 where $a_{i_1} \in I$ and $m_2 \in I^2 M$.

Inductively, there we get $a_{i_n} \in I^n$, $m_{n+1} \in I^{n+1}M$ such that

$$u = \Sigma[(a_{i_0} + a_{i_1} + \dots + a_{i_n})x_i] + m_{n+1}.$$

The partial sums $\Sigma(a_{i_0} + a_{i_1} + \cdots + a_{i_n})$ form a Cauchy sequences in R in the I-adic topology, so there are $\tilde{r_i}$ such that $u = \Sigma \tilde{r_i} x_i$ such that $u - \Sigma \tilde{r_i} x_i \in \bigcap_{n \in \mathbb{N}} I^n M = 0$. Thus $u \in N$, proving the lemma.

Theorem 7 Let $(R, \mathfrak{m}, \mathsf{k})$ be a complete and separated local ring. Assume that R contains a field (and hence a coefficient field by Cohen's Theorems). Let k be a coefficient field for R. If $\mathfrak{m} = (x_1, \ldots, x_r)$ then there is a map $\phi : \mathsf{k}[[T_1, \ldots, T_r]] \longrightarrow R$ defined by $T_i \mapsto x_i$. In particular, R is Noetherian.

Proof: Note that ϕ makes sense since R is complete i.e.

$$\sum_{\substack{\alpha_v \in \mathsf{k} \\ v = (v_1, \dots, v_r) \in \mathbb{N}^r}} \alpha_v \underline{T}^v \mapsto \sum_{\substack{\alpha_v \in \mathsf{k} \\ v = (v_1, \dots, v_r) \in \mathbb{N}^r}} \alpha_v \underline{x}^v \in R.$$

The content of the theorem is that ϕ is onto. Set $S := \mathsf{k}[[T_1, \ldots, T_r]], \ I = (T_1, \ldots, T_r)$ and M = R as an S-module via the map ϕ . Note that $R/IR = R/\mathfrak{m} \simeq \mathsf{k}$ which is generated by one element as an S-module. Hence by the complete NAK, R is generated by a single element, namely the image of 1, i.e. $R \simeq S/\mathsf{ann}_S R$.

Theorem 8 (Complete Version of Noether Normalization) Let $(R, \mathfrak{m}, \mathsf{k})$ be a complete Noetherian ring containing a field. Set $d := \dim(R), x_1, \ldots, x_d$ be a system of parameters. Fix a coefficient field k and let $S := \mathsf{k}[[T_1, \ldots, T_d]] \xrightarrow{\phi} R$ be defined by $T_i \mapsto x_i$. Then ϕ is injective and R becomes a finitely generated S-module via the map ϕ .

Proof: Let $I = (T_1, \ldots, T_d) \subseteq S$. Then $R/IR \simeq R/(x_1, \ldots, x_d)$ is Artinian and hence finitely generated over $S/I \simeq k$. Fix a generating set $\bar{y}_1, \ldots, \bar{y}_n$ of R/IR over $k \simeq S/I$. By the complete NAK, $R = Sy_1 + \cdots + Sy_n$. This implies that R is integral over $\phi(S)$. Hence

$$d = \dim(R) = \dim(\phi(S)) \le \dim(S) - \operatorname{ht}(\operatorname{Ker}(\phi)) = d - \operatorname{ht}(\operatorname{Ker}(\phi)).$$

Therefore $ht(Ker(\phi)) = 0$ and hence $Ker(\phi) = 0$ completing the proof.

3. Matlis Duality and Gorenstein Rings

§ 3.1 Review of Injective Modules

Theorem 1 Let R be a (commutative) ring, E an R-module. Then the following are equivalent:

- (a) Let $0 \to M \xrightarrow{i} N$ be an injection of R-modules. Then every homomorphism $f: M \to E$ induces a map $\tilde{f}: N \to E$ extending f.
- (b) (Baer's Criterion) Let I be an ideal in R. Then every homomorphism $f: I \to E$ induces a map $\tilde{f}: R \to E$ extending f.
- (c) $\operatorname{Hom}_R(_, E)$ preserves short exact sequences (contravariantly).
- (d) Whenever $E \subseteq M$, E|M (i.e. E splits off M).

Proof: It is clear that (a) implies (b). In order to prove the converse, let M, N, E and $f: M \to E$ be as in (a). We can think of M as a submodule of N. Let

$$\Lambda := \{ (K, f_K) : M \subseteq K \subseteq N \text{ and } f_K|_M = f \}.$$

Partially order Λ by $(K, f_K) \leq (L, f_L)$ if $K \subseteq L \subseteq N$ and $f_L|_K = f_K$. By Zorn's Lemma, there is a maximal element (K, f_K) in Λ .

Let x be a non-zero element in N. Set $I := (K :_R x)$. Consider the map $g : I \to E$ given by $g(i) = f_K(ix)$. By (b), g extends to $\tilde{g} : R \to E$. Hence we get a map $h : K + Rx \to E$ defined by $h|_K = f_K$ and $h(x) = \tilde{g}(1)$. Since $(K + Rx, h) \in \Lambda$, by maximality of (K, f_K) , x is in K, i.e. K = N.

In order to prove the equivalence of (a) and (c), let K be the cokernel of the map $i: M \hookrightarrow N$. We have the short exact sequence $0 \to M \xrightarrow{i} N \to K \to 0$. Applying $\operatorname{Hom}_R(_, E)$ we get

$$0 \to \operatorname{Hom}_R(K, E) \to \operatorname{Hom}_R(N, E) \stackrel{\operatorname{Hom}_R(i, E)}{\to} \operatorname{Hom}_R(M, E) \to \operatorname{Ext}^1_R(K, E) \to \cdots$$

Now (a) is true if and only if $\operatorname{Hom}_R(i, E)$ is surjective i.e $\operatorname{Hom}_R(-, E)$ preserves short exact sequences.

If $E \subseteq M$, by applying (a) to $0 \to E \to M$, we see that E|M. We will prove the converse after a short discussion.

Definition 1 Any module E satisfying any of the properties (a) - (c) in theorem 1 is said to be an injective R-module.

Some ways to construct injective modules:

1. If E_i s are injective R-modules, then so is $\prod E_i$.

Warning: $\bigoplus E_i$ is injective if and only if R is Noetherian.

- 2. If E is an injective R-module and I|E, then I is also injective.
- 3. If $R \to S$ is a ring homomorphism and E is an injective R-module, then $\operatorname{Hom}_R(S, E)$ is an injective S-module.

Proof: $\operatorname{Hom}_R(S, E)$ is an injective S-module if and only if $\operatorname{Hom}_S(_, \operatorname{Hom}_R(S, E))$ preserves short exact sequences of S-modules. By the $\operatorname{Hom}_R(_\otimes_S S, E)$ preserves short exact sequences of R-modules. But this is true since E is an injective R-module.

Definition 2 An R-module M is said to be divisible if whenever t is a non-zerodivisor in R and u is an element of M, one can find a v in M (not necessarily unique) such that u = tv.

Some examples of divisible modules:

- 1. Let R be a domain. Then its fraction field K is a divisible R-module.
- 2. If N is a submodule of a divisible module M, then M/N is divisible.
- 3. Direct sums of divisible modules are divisible.
- 4. Let E be an injective R-module. Then E is divisible. Proof: Let t be a non-zerodivisor in R and $u \in E$. Since E is injective, we have

$$E = E$$

$$\downarrow 1 \mapsto u \qquad \qquad \downarrow f$$

$$0 \longrightarrow R \stackrel{\cdot t}{\longrightarrow} R$$

where f(t) = u, i.e. tf(1) = u. This proves that E is divisible.

The question is: When does the converse of 4 hold? The following proposition answers this for us.

Proposition 2 If R is a PID, then every divisible R-module is injective.

Proof: Let E be divisible over R. We will use Baer's criterion to prove that E is injective. Let I=(t) be a nonzero ideal in R and $f:I\to E$ be a homomorphism. We want to show that f extends to $\tilde{f}:R\to E$. Since E is divisible, there is an element v such that f(t)=tv. Define $\tilde{f}(1):=v$. This extends f to R.

Exercise: Let R be a domain. Then a torsion-free and divisible R-module is injective.

Remark 1

- 1. From the above proposition, with $R = \mathbb{Z}$, we see that $K = \mathbb{Q}$ is an injective \mathbb{Z} -module and hence so is \mathbb{Q}/\mathbb{Z} .
- 2. Let M be an arbitrary \mathbb{Z} -module. Then for some N we have the short exact sequence $0 \to N \to \oplus \mathbb{Z} \to M \to 0$. Hence $M \simeq (\oplus \mathbb{Z})/N \hookrightarrow (\oplus \mathbb{Q})/N$ which is divisible and hence injective.

Thus every \mathbb{Z} -module injects into an injective \mathbb{Z} -module.

3. Let R be any ring, and let E be an injective \mathbb{Z} -module. Hence $\operatorname{Hom}_{\mathbb{Z}}(R,E)$ is an injective R-module.

Let M be an arbitrary R-module. By the previous remark, there is an injective \mathbb{Z} -module I, such that $M \overset{\phi}{\hookrightarrow} I$ as a \mathbb{Z} -module. Consider the induced map $\Phi: M \to \operatorname{Hom}_{\mathbb{Z}}(R,I)$ defined by $u \mapsto [r \mapsto \phi(ru)]$. If u is a nonzero element of M, then $\phi(u) \neq 0$ and hence $\Phi(u)(1) = \phi(u) \neq 0$, i.e. the image of u in $\operatorname{Hom}_{\mathbb{Z}}(R,I)$ is nonzero. Therefore, we have $M \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R,I)$ which is an injective R-module.

Thus we have proved:

Proposition 3 Every R-module injects into an injective R-module.

Proof of (d) implies (a) in Theorem 1: Let E be an R-module such that whenever $E \subseteq M$, E|M for any R-module M. Now by Prop. 3, there is an injective R-module I such that we can embed $E \hookrightarrow I$. Therefore E|I and hence is injective. \square

Injective Resolutions

A consequence of Prop.3 is the existence of an injective resolution for an R-module M. An injective resolution of M is an exact sequence

$$0 \to M \to I^0 \to I^1 \to I^2 \to \cdots$$

where each I^i is an injective R-module. The existence of an injective resolution can be shown as follows: If M is an R-module, there is an injective R-module I^0 such that $M \hookrightarrow I^0$. Let C^0 be the cokernel of this map. Then there is an injective R-module I^1 such that $C^0 \hookrightarrow I^1$. Looking at the cokernel C^1 of this inclusion we get another injective I^2 such that $C^1 \hookrightarrow I^2$. Putting all these together we get an injective resolution for $M: 0 \to M \to I^0 \to I^1 \to I^2 \to \cdots$.

We say that M has a finite injective dimension over R if there is an exact sequence

$$0 \to M \to I^0 \to I^1 \to \cdots \to I^n \to 0$$

where each I^i is injective.

We define $id_R(M) = \min\{n : M \text{ has an injective resolution of length } n\}$ and set $id_R(M) = \infty$ if M has no finite injective resolutions.

§ 3.2 More on Injectives: Essential Extensions and the Injective Hull

We have seen that every R-module can be embedded into an injective R-module. The goal in this section is to find a "minimal" such module.

Definition 3 Given R-modules M and N, $M \subseteq N$, we say that N is an essential extension over M (or N is essential over M) if every nonzero submodule K of N has a nontrivial intersection with M i.e. if $0 \neq K \subseteq N$, then $K \cap M \neq 0$.

Remark 2

1. Let R be a domain with fraction field K. Then $R \subseteq K$ is essential since given any nonzero R-submodule L of K, by clearing denominators $L \cap R \neq 0$.

Now K is also torsion-free and divisible as an R-module. Hence K is an injective R-module. Let I be any injective R-module such that $R \subseteq I$. We will show that $\mathsf{K} \subseteq I$.

The inclusion $R \stackrel{i}{\hookrightarrow} I$ induces a map $\mathsf{K} \stackrel{\tilde{i}}{\rightarrow} I$ since I is injective and $R \subseteq \mathsf{K}$. We have $\mathrm{Ker}(\tilde{i}) \cap R = \mathrm{Ker}(i)$. Therefore as $\mathrm{Ker}(i) = 0$ and K is essential over R, $\mathrm{Ker}(\tilde{i}) = 0$, i.e. $\mathsf{K} \subseteq I$.

Thus K is a minimal injective R-module containing R in the sense that whenever I is any injective R-module containing $R, K \hookrightarrow I$.

- 2. The above proof shows that if E is essential over M and I is an injective R-module containing M, $E \hookrightarrow I$.
- 3. Essentialness is transitive, i.e. if M_1 is essential over M_2 and M_2 is essential over M_3 , then M_1 is essential over M_3 .
- 4. If M_1 is essential over M_3 and $M_3 \subseteq M_2 \subseteq M_1$, then M_1 is essential over M_2 and M_2 is essential over M_3 .
- 5. If $N_1 \subseteq M_1$ and $N_2 \subseteq M_2$ are essential, then so is $N_1 \oplus N_2 \subseteq M_1 \oplus M_2$.

Proposition 4 An R-module E is injective if and only if there is no proper essential extension of E.

Proof: Let us assume that E is injective. Suppose L is an essential extension of E. Since E is injective by Theorem 1, E|L, i.e. there is a submodule N of L such that

 $L = E \oplus N$. But $N \cap E = 0$ and $E \subseteq L$ is essential. Hence N = 0 which implies that E = L.

Conversely suppose that E has no proper essential extensions. Let I be an injective R-module such that $E \hookrightarrow I$. If $E \neq I$, since E has no proper essential extensions, there is a nonzero submodule N of I such that $E \cap N = 0$. By Zorn's Lemma, we can find a maximal such N. Then $E \hookrightarrow I/N$ and by maximality of N, this is an essential extension. Therefore $E \simeq I/N$. Now $E \cap N = 0$ and I = E + N implies that $I \simeq E \oplus N$, i.e. E|I and hence is injective.

Theorem 5 Let R be a ring, M and E R-modules such that $M \subseteq E$. Then the following are equivalent:

- (1) E is a maximal essential extension of M.
- (2) E is a minimal injective R-module containing M.
- (3) E is injective and essential over M.

Proof:

- $(1) \Rightarrow (3)$: E is essential over M by assumption and is injective by Prop 4 and by using transitivity of essentialness.
- $(3) \Rightarrow (2)$: Suppose there is an injective R-module I such that $M \subseteq I \subseteq E$. Then since E is essential over M, E is essential over I. Since I is injective, by Prop. 4, E = I.
- (2) \Rightarrow (1): Let $\Lambda := \{N : M \subseteq N \subseteq E, N \text{ is an essential extension of } M\}$. By Zorn's Lemma, using transitivity of essentialness, Λ has a maximal element N. We will show that N has no proper essential extensions.

If L is essential over N, then L is essential over M. Hence since E is an injective module containing M, by remark 2.2, $L \hookrightarrow E$. Thus N = L. This implies that N is injective by Prop. 4. But by hypothesis, E is a minimal injective module containing M, hence E = N. Thus E is a maximal essential extension of M.

Definition 4 Let M be a fixed R-module. Any module satisfying E containing M satisfying any one (and hence all) of the above equivalent conditions is said to be an injective hull (or injective envelope) of M.

Existence and Uniqueness of the Injective Hull:

Let M be a fixed R module. Let I be an injective R-module containing M. By the proof of (2) implies (1) in Theorem 5, there is a maximal essential extension E of M contained in I. Moreover there is no proper essential extension of E. Hence E is an injective hull of M.

If E' is any injective hull of M, then using injectivity of E and essentialness of E' over M, $E' \hookrightarrow E$, by remark 2.2. But since E' is injective, by Prop. 4, E cannot be a proper essential extension of E' i.e. $E \simeq E'$. Thus the injective hull is unique up to isomorphism and this module is denoted by $E_R(M)$.

Example 1 If R is a domain with fraction field K, then by remark 2.1, $E_R(R) = K$.

Warning: We will see that for any $\mathfrak{p} \in \operatorname{Spec}(R)$, $E_R(R/\mathfrak{p})$ is not the same as $E_{R/\mathfrak{p}}(R/\mathfrak{p}) = \kappa(\mathfrak{p})$, the fraction field of R/\mathfrak{p} . In general, the base ring makes a big difference.

Theorem 6 (Matlis) Let R be Noetherian. Then

- (1) E is an indecomposable injective R-module if and only if $E \simeq E_R(R/\mathfrak{p})$ for some \mathfrak{p} in $\operatorname{Spec}(R)$.
- (2) Every injective R-module can be written as a direct sum of indecomposable injective R-modules.

Proof: (1) Let E be an indecomposable injective R-module. Choose $\mathfrak{p} \in \mathrm{Ass}_R(E)$ (defined to be the set $\{\mathfrak{p} \in \mathrm{Spec}(R) : \mathfrak{p} = \mathrm{ann}_R(x) \text{ for some nonzero } x \in E\}$. Then $R/\mathfrak{p} \hookrightarrow E$ and hence $E_R(R/\mathfrak{p})|E$. This gives us $E \simeq E_R(R/\mathfrak{p})$ since E is indecomposable.

We now need to prove that for every $\mathfrak{p} \in \operatorname{Spec}(R)$, $E_R(R/\mathfrak{p})$ is indecomposable. Suppose $E_R(R/\mathfrak{p}) = E_1 \oplus E_2$. We have $R/\mathfrak{p} \stackrel{i}{\hookrightarrow} E_R(R/\mathfrak{p}) = E_1 \oplus E_2$. Let $i(\bar{1}) = y = (y_1, y_2)$ in $E_1 \oplus E_2$. Hence we have $\mathfrak{p} = \operatorname{ann}_R(y) = \operatorname{ann}_R(y_1) \cap \operatorname{ann}_R(y_2)$. This forces (without loss of generality) $\mathfrak{p} = \operatorname{ann}_R(y_1)$ and $\mathfrak{p} \subseteq \operatorname{ann}_R(y_2)$. But then R/\mathfrak{p} embeds into E_1 via the projection map, and since E_1 is injective and $E_R(R/\mathfrak{p})$ is essential over R/\mathfrak{p} , the projection map from $E_R(R/\mathfrak{p})$ onto E_1 must be an embedding, i.e. $E_R(R/\mathfrak{p}) = E_1$, proving $E_R(R/\mathfrak{p})$ is indecomposable.

(2) Let E be an injective R-module. Consider the set Λ ; an element of Λ is a collection of indecomposable injective submodules of E say $\{E_i\}$ such that $\Sigma E_i = \oplus E_i$. Order by inclusion. We will first show that Λ is not empty.

Choose \mathfrak{p} in $\mathrm{Ass}_R(E)$. As in the proof of (1), $E_R(R/\mathfrak{p}) \hookrightarrow E$ and is indecomposable by 1. Hence $\{E_R(R/\mathfrak{p})\}\in\Lambda$, i.e. Λ is not empty. We can apply Zorn's Lemma to get a maximal such $\{E_i\}$ in Λ . We need the following lemma:

Lemma 7 Let R be a Noetherian ring and E_i be injective R-modules. Then $\bigoplus_i E_i$ is injective.

By the lemma, for every $\{E_i\} \in \Lambda$, $\Sigma E_i = \oplus E_i$ is injective. Let $\{E_i\}$ be maximal in Λ and let $I := \oplus E_i$. Then I|E, i.e. there is a submodule N of E such that $E = I \oplus N$. Note that N|I and hence is injective. If $N \neq 0$, there is a \mathfrak{p} in $\mathrm{Spec}(R)$ such that $E_R(R/\mathfrak{p}) \hookrightarrow N$. This implies that $\{E_i\} \cup \{E_R(R/\mathfrak{p})\} \in \Lambda$, which contradicts the maximality of $\{E_i\}$. Hence N = 0 and $E = \Sigma E_i = \oplus E_i$.

Proof of Lemma 7: We use Baer's criterion to prove that $\oplus E_i$ is injective. Let I be an ideal in R and $f: I \to \oplus E_i$ be given. Since I is finitely generated, there are i_1, \ldots, i_k such that $f(I) \subseteq \bigoplus_{j=1}^k E_{i_j}$. Since each E_i is injective, f extends to a map

$$\tilde{f}: R \to \bigoplus_{j=1}^k E_{i_j}$$
, proving the lemma.

Remark 3

1. The proof of (1) in Theorem 5 shows that $\operatorname{Ass}_R(E_R(R/\mathfrak{p})) = \{\mathfrak{p}\}$. In fact something much more general is true. For a finitely generated R-module M, $\operatorname{Ass}(E_R(M)) = \operatorname{Ass}(M)$.

To prove this, firstly observe that $\operatorname{Ass}(M) \subseteq \operatorname{Ass}(E_R(M))$. For the other inclusion, consider a prime ideal $\mathfrak{p} \in \operatorname{Ass}(E_R(M))$. Then $R/\mathfrak{p} \hookrightarrow E_R(M)$. Since $E_R(M)$ is an essential extension of M, $N := M \cap R/\mathfrak{p} \neq 0$. Hence $\emptyset \neq \operatorname{Ass}(N) \subseteq \operatorname{Ass}(R/\mathfrak{p}) = \{\mathfrak{p}\}$. Since $\operatorname{Ass}(N) \subseteq \operatorname{Ass}(M)$, this proves the other inclusion.

2. The converse of lemma 7 is true but harder to prove.

Example 2 We know that $E_{\mathbb{Z}}(\mathbb{Z}) = \mathbb{Q}$ and that \mathbb{Q}/\mathbb{Z} is an injective \mathbb{Z} -module. In addition

$$\mathbb{Q}/\mathbb{Z} \simeq \bigoplus_{p \in \mathbb{Z}, \text{ p a prime}} E_{\mathbb{Z}}(\mathbb{Z}/p\mathbb{Z}).$$

See exercise 16.

Theorem 8 Let R be a Noetherian ring. Then

$$E_R(R/\mathfrak{p}) = E_{R_\mathfrak{p}}(\kappa(\mathfrak{p})).$$

Proof: First of all, we claim that $E_R(R/\mathfrak{p})$ is an $R_{\mathfrak{p}}$ -module. Let $s \in R \setminus \mathfrak{p}$. Since $\mathrm{Ass}_R(E_R(R/\mathfrak{p})) = \{\mathfrak{p}\}$, s is a non-zerodivisor on $E_R(R/\mathfrak{p})$. This means that $sE \simeq E$. But $sE \subseteq E$ is injective and hence sE|E. The indecomposability of E forces E = sE. Therefore s is a unit on E i.e. E has a $R_{\mathfrak{p}}$ -module structure.

The map $R/\mathfrak{p} \hookrightarrow E_R(R/\mathfrak{p})$ factors through $\kappa(\mathfrak{p})$ since $\kappa(\mathfrak{p})$ is essential over R/\mathfrak{p} . Now $R/\mathfrak{p} \hookrightarrow E_R(R/\mathfrak{p})$ is an essential extension as R-modules, hence so is $\kappa(\mathfrak{p}) \hookrightarrow E_R(R/\mathfrak{p})$. This implies that $\kappa(\mathfrak{p}) \hookrightarrow E_R(R/\mathfrak{p})$ is a fortiori an essential extension as $R_\mathfrak{p}$ -modules. We need to prove that $E_R(R/\mathfrak{p})$ is an injective $R_\mathfrak{p}$ -module to complete the proof.

This can be seen as follows:

$$E_R(R/\mathfrak{p}) = (E_R(R/\mathfrak{p}))_{\mathfrak{p}} = (\operatorname{Hom}_R(R, E_R(R/\mathfrak{p})))_{\mathfrak{p}}$$

$$= \operatorname{Hom}_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}, E_R(R/\mathfrak{p})_{\mathfrak{p}}) \quad \text{since } R_{\mathfrak{p}} \text{ is flat over } R$$

$$= \operatorname{Hom}_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}, E_R(R/\mathfrak{p})) = \operatorname{Hom}_R(R_{\mathfrak{p}}, E_R(R/\mathfrak{p}))$$

which is an injective $R_{\mathfrak{p}}$ -module.

Example 3

Let $\mathfrak{p} = \operatorname{Ker}(\mathbb{C}[X, Y, Z] \longrightarrow \mathbb{C}[t^3, t^4, t^5])$. Then $\mathfrak{p} = (X^3 - YZ, Y^2 - XZ, Z^2 - X^2Y)$. Write

$$E_R(R/\mathfrak{p}^n) = E_R(R/\mathfrak{p})^{\oplus a(n)} \bigoplus E_R(\mathbb{C})^{\oplus b(n)}$$

where $R = \mathbb{C}[X, Y, Z]$. Find a(n) and b(n) as functions of n. (See exercise 24.)

Theorem 9 Let R be a Noetherian ring, $I \subseteq \mathfrak{p} \subseteq R$ be ideals, $\mathfrak{p} \in \operatorname{Spec}(R)$. Then

$$E_{R/I}(R/\mathfrak{p}) = \operatorname{Hom}_R(R/I, E_R(R/\mathfrak{p})).$$

Proof: We already know that $\operatorname{Hom}_R(R/I, E_R(R/\mathfrak{p}))$ is an injective R/I-module. Therefore it is enough to show that it is essential over R/\mathfrak{p} .

Now $\operatorname{Hom}_R(R/I, E_R(R/\mathfrak{p})) \simeq 0 :_{E_R(R/\mathfrak{p})} I \subseteq E_R(R/\mathfrak{p})$. Since $R/\mathfrak{p} \subseteq E_R(R/\mathfrak{p})$, and $I \subseteq \mathfrak{p}$, we obtain that $R/\mathfrak{p} \subseteq 0 :_{E_R(R/\mathfrak{p})} I$. Moreover, since $E_R(R/\mathfrak{p})$ is essential over R/\mathfrak{p} , so is $0 :_{E_R(R/\mathfrak{p})} I$, by remark 2.4. This proves that $\operatorname{Hom}_R(R/I, E_R(R/\mathfrak{p}))$ is the injective hull of R/\mathfrak{p} over R/I.

Corollary 10 Let $(R, \mathfrak{m}, \mathsf{k})$ be a Noetherian local ring and $E = E_R(\mathsf{k})$ be the injective hull over R of k . Then for any ideal I in R, $E_{R/I}(\mathsf{k}) = 0$:

Proof: By Theorem 9,
$$E_{R/I}(\mathbf{k}) \simeq \operatorname{Hom}_R(R/I, E) \simeq 0 :_E I$$
.

§ 3.3 Matlis Duality: Study of $E_R(\mathbf{k}) = E$

Notations and Remarks:

- 1. By $(R, \mathfrak{m}, \mathsf{k}, E)$, we mean that R is a Noetherian local ring with unique maximal ideal \mathfrak{m} , residue field $\mathsf{k} = R/\mathfrak{m}$ and $E := E_R(\mathsf{k})$, the injective hull of the residue field k over R.
- 2. By $(_)^{\vee}$ we mean $\operatorname{Hom}_R(_, E)$. Recall that $^{\vee}$ preserves short exact sequences (contravariantly).
- 3. Cor. 10 can be rephrased as: For any ideal I in (R, \mathfrak{m}, k, E) ,

$$E_{R/I}(\mathbf{k}) \simeq (R/I)^{\vee} \simeq 0 :_E I.$$

Let us first study the case when $\dim(R) = 0$.

Theorem 11 Let (R, \mathfrak{m}, k, E) be zero-dimensional, M a finitely generated R-module. Then

- (1) $k^{\vee} \simeq k$.
- (2) $\lambda_R(M) = \lambda_R(M^{\vee})$. In particular, M^{\vee} is finitely generated.
- (3) $\operatorname{Hom}_R(E, E) \simeq R \ (i.e. \ R \simeq R^{\vee\vee}).$
- (4) More generally, the natural map $M \to M^{\vee\vee}$ is an isomorphism.

Comment: $^{\vee}$ basically flips the structure of the module, M^{\vee} is looking at M upside down. We will make this more precise as we go along.

Proof: (1) We have $k^{\vee} = \operatorname{Hom}_{R}(k, E) \simeq E_{k}(k)$ by Cor. 10. But $E_{k}(k) \simeq k$ since k is both essential and divisible (hence injective) as a module over itself. Thus $k^{\vee} \simeq k$.

- (2) Since $\mathfrak{m} \in \operatorname{Ass}_R(M)$, $\mathsf{k} \hookrightarrow M$. Let N be the cokernel of this inclusion. By applying $^\vee$ to the short exact sequence $0 \to \mathsf{k} \to M \to N \to 0$, we get the short exact sequence $0 \to N^\vee \to M^\vee \to \mathsf{k}^\vee \to 0$. Note that $\lambda_R(N) = \lambda_R(M) 1$. Hence an induction on $\lambda_R(M)$ together with (1) gives (2).
- (3) Consider the map $R \to \operatorname{Hom}_R(E, E) = R^{\vee\vee}$ given by $r \mapsto \mu_r$ (multiplication by r). In order to prove that this map is an isomorphism, it is enough to show that it is a monomorphism (or epimorphism), since by (2) $\lambda_R(R) = \lambda_R(R^{\vee}) = \lambda_R(R^{\vee\vee})$. We will show that it is injective.

Suppose for some $r \in R$, μ_r is the zero map i.e. rE = 0. Hence $\operatorname{Hom}_R(R/rR, E) \simeq 0 :_E r = E$. Therefore by Cor. 10, $E \simeq E_{R/rR}(\mathsf{k})$ which gives us $\lambda(E) = \lambda(E_{R/rR}(\mathsf{k}))$. But by (2), $\lambda(R) = \lambda(E)$ and $\lambda(E_{R/rR}(\mathsf{k})) = \lambda(R/rR)$. This forces $\lambda(rR) = 0$ i.e. r = 0.

(4) Take a presentation $G \to F \to M \to 0$ of M, where F and G are free modules. From this, we get

where the second row is exact by the exactness of $^{\vee\vee}$. Since $G \simeq G^{\vee\vee}$ and $F \simeq F^{\vee\vee}$, by the five lemma, $M \simeq M^{\vee\vee}$. (One needs to check that the squares commute). \square

Remark 4

- 1. Hidden in the proof of (3) above is a fact worth noting separately: E is a faithful R-module.
- 2. Note that we did not need $\dim(R) = 0$ in the proof of (1).

Theorem 12 Let (R, \mathfrak{m}, k, E) be a Noetherian local ring. Then

- (1) Every element of E is killed by \mathfrak{m}^n for some n.
- (2) $k^{\vee} \simeq k$.
- (3) $M^{\vee} \neq 0$ for an arbitrary nonzero module M.
- (4) $E \simeq E_{\widehat{R}}(\mathbf{k})$.
- (5) $\operatorname{Hom}_R(E, E) (= R^{\vee\vee}) \simeq \widehat{R}.$
- (6) E is Artinian.

Proof: (1) Let z be a nonzero element in E. Then $\emptyset \neq \operatorname{Ass}_R(Rz) \subseteq \operatorname{Ass}_R(E) = \{\mathfrak{m}\}$. Thus Rz is a finite length R-module. So $\mathfrak{m}^n z = 0$ for some n.

- (2) The proof is the same as in (1) of Theorem 11 as noted in remark 4.2.
- (3) If M is a nonzero finitely generated R-module, then $M/\mathfrak{m}M \neq 0$ by NAK. This gives a surjection $M \longrightarrow M/\mathfrak{m}M \longrightarrow k$. We get an inclusion $\mathsf{k}^{\vee} \hookrightarrow M^{\vee}$ by applying $^{\vee}$. Therefore, by using (2), $M^{\vee} \neq 0$.

Suppose M is not finitely generated. Let m be a nonzero element in M. Then $(Rm)^{\vee} \neq 0$. Since we have a surjection $M^{\vee} \longrightarrow (Rm)^{\vee}$, $M^{\vee} \neq 0$.

(4) Firstly notice that E is an \widehat{R} -module since by (1) $E = \bigcup_{n\geq 0} (0:_E \mathfrak{m}^n)$. This is due to the fact that each $0:_E \mathfrak{m}^n$ is a \widehat{R} -module since $\widehat{R}/\widehat{\mathfrak{m}^n} \simeq R/\mathfrak{m}^n$.

We want to prove that $E \simeq E_{\widehat{R}}(\mathsf{k})$. Note that since $\mathsf{k} \subseteq E$ is an essential extension of R-modules, it is also an essential extension of \widehat{R} -modules. This implies that $\mathsf{k} \subseteq E \subseteq E_{\widehat{R}}(\mathsf{k})$. It is enough to prove that $\mathsf{k} \subseteq E_{\widehat{R}}(\mathsf{k})$ is an essential extension as R-modules to prove the required isomorphism, since E is a maximal essential extension of k as R-modules.

Note that the R-submodules of $E_{\widehat{R}}(\mathsf{k})$ are precisely the \widehat{R} -submodules of $E_{\widehat{R}}(\mathsf{k})$ by (1). Therefore $E \simeq E_{\widehat{R}}(\mathsf{k})$.

(5) Let $E_n = 0 :_E \mathfrak{m}^n = \operatorname{Hom}_R(R/\mathfrak{m}^n, E)$. Then $E_n \simeq E_{R/\mathfrak{m}^n}(\mathsf{k})$ by Cor. 10.

Claim: $\operatorname{Hom}_R(E, E) \simeq \lim_{\stackrel{\longleftarrow}{\longrightarrow}} \operatorname{Hom}_R(E_n, E_n)$ under the map $f \leftrightarrow (f_n)$ where $f_n = f|_{E_n}$.

The crucial point is that $f|_{E_n}(E_n) \subseteq E_n$. This is true since if $z \in E_n$, then $\mathfrak{m}^n f(z) = f(\mathfrak{m}^n z) = 0$, i.e. $f(z) \in E_n$. Then using the fact that $\bigcup_n E_n = E$, the above claim is true.

But $\operatorname{Hom}_R(E_n, E_n) = \operatorname{Hom}_{R/\mathfrak{m}^n}(E_n, E_n) \simeq R/\mathfrak{m}^n$ by the zero-dimensional case (Theorem 11.3) since $E_n = 0 :_E \mathfrak{m}^n = E_{R/\mathfrak{m}^n}(\mathsf{k})$ by Cor. 10. Thus we have

$$\operatorname{Hom}_R(E, E) \simeq \lim_{\stackrel{\longleftarrow}{\longleftarrow}} \operatorname{Hom}_R(E_n, E_n) \simeq \lim_{\stackrel{\longleftarrow}{\longleftarrow}} R/\mathfrak{m}^n = \widehat{R}.$$

(6) Finally we want to prove that E is Artinian. Let $\{N_n\}$ be a decreasing chain of submodules of E. By applying $^{\vee}$, we get $E^{\vee} \longrightarrow N_1^{\vee} \longrightarrow N_2^{\vee} \longrightarrow \cdots$. By (5), $E^{\vee} = \widehat{R}$. Set $J_i = \operatorname{Ker}(\widehat{R} \longrightarrow N_i)$. We have $J_1 \subseteq J_2 \subseteq \cdots$. Since \widehat{R} is Noetherian, there is an n such that $J_i = J_n$ whenever $i \geq n$. This implies that $N_i^{\vee} = N_n^{\vee}$ for all $i \geq n$ as $N_i^{\vee} \simeq \widehat{R}/J_i$.

Let C_i be the cokernel of the inclusion $N_{i+1} \hookrightarrow N_i$. By applying $^{\vee}$, we get $0 \to C_i^{\vee} \to N_i^{\vee} \to N_{i+1}^{\vee} \to 0$. This forces $C_i^{\vee} = 0$ for $i \geq n$. Therefore by (3), $C_i = 0$ for $i \geq n$ which proves that E is Artinian.

Theorem 13 (Matlis Duality) Let (R, \mathfrak{m}, k, E) be a Noetherian local ring. Then there is a one-one arrow reversing correspondence between finitely generated \widehat{R} -modules and Artinian R-modules, i.e.

$$\{finitely\ generated\ \widehat{R}\text{-}modules\} \stackrel{\vee}{\rightleftharpoons} \{Artinian\ R\text{-}modules\}.$$

In particular, if M is either an Artinian R-module, or a finitely generated \widehat{R} -module, $M^{\vee\vee} \simeq M$.

Some remarks about Artinian R-modules: Let M be an Artinian R-module. 1. M is an \widehat{R} -module. To see this, consider $x \in M$. Then there is an n such that $\mathfrak{m}^n x = \mathfrak{m}^{n-1} x$. Therefore by NAK, $\mathfrak{m}^n x = 0$. If $\widehat{r} \in \widehat{R}$, choose $r \in R$ such that $\widehat{r} - r \in \mathfrak{m}^n \widehat{R}$. Then we can define $\widehat{r} x = rx$ which gives a \widehat{R} - module structure on M.

2. M is essential over $\operatorname{soc}_R(M) = 0 :_M \mathfrak{m}$. If N is a nonzero submodule of M, for a nonzero $x \in N$, there is a smallest $n \in \mathbb{N}$ such that $\mathfrak{m}^n x = 0$. Then $0 \neq \mathfrak{m}^{n-1} x \subseteq \operatorname{soc}_R(M) \cap N$.

Proof of Theorem 13: Let M be a finitely generated \widehat{R} -module. Then we have $\widehat{R}^{\oplus n} \to M \to 0$ for some n. This gives us $0 \to M^{\vee} \to (\widehat{R}^{\vee})^{\oplus n}$, so $M^{\vee} \hookrightarrow E^{\oplus n}$ and hence is Artinian.

Suppose M is an Artinian R-module. Then $\operatorname{soc}_R(M)$ is a finite dimensional vector space over k. (If not, then we can find an infinite descending chain of subspaces of $\operatorname{soc}_R(M)$ which are necessarily R-submodules of M). Hence $\operatorname{soc}_R(M) \simeq k^{\oplus t}$ for some $t \in \mathbb{N}$. Therefore $E_R(\operatorname{soc}_R(M)) \simeq E^{\oplus t}$. Since $\operatorname{soc}_R(M) \subseteq M$ is essential, $M \hookrightarrow E^{\oplus t}$. This gives us $\widehat{R}^{\oplus t} \simeq (E^{\vee})^{\oplus t} \longrightarrow M^{\vee}$, so M^{\vee} is a finitely generated \widehat{R} -module.

Now we need to show that if M is either an Artinian R-module, or a finitely generated \widehat{R} -module, $M^{\vee\vee} \simeq M$. First, suppose that M is a finitely generated \widehat{R} -module. Note that $\widehat{R}^{\vee\vee} \simeq E^{\vee} \simeq \widehat{R}$. As in Theorem 11.4, taking a presentation of M, applying $^{\vee\vee}$ and using the five lemma, we see that $M \simeq M^{\vee\vee}$.

If M is Artinian, then as we have seen above, there is a $t_0 \in \mathbb{N}$ such that $M \hookrightarrow E^{\oplus t_0}$. Let C be the cokernel of this inclusion. Then C is Artinian. Hence there is a $t_1 \in \mathbb{N}$ such that $0 \to M \to E^{\oplus t_0} \to E^{\oplus t_1}$ is exact. Since $E^{\vee\vee} \simeq \widehat{R}^{\vee} \simeq E$, we can apply $^{\vee\vee}$ to the above "injective presentation" of M and use five lemma to conclude that $M \simeq M^{\vee\vee}$.

Example 4 Let M, N be finitely generated modules over a complete Noetherian local ring $(R, \mathfrak{m}, \mathsf{k}, E)$. Then

(a)
$$\operatorname{Tor}_i^R(M,N)^{\vee} \simeq \operatorname{Ext}_R^i(M,N^{\vee})$$
 and (b) $\operatorname{Tor}_i^R(M,N^{\vee}) \simeq \operatorname{Ext}_R^i(M,N)^{\vee}$.

In order to prove (a), consider a free resolution \mathbf{F}_{\bullet} of N. Then $\operatorname{Tor}_{i}^{R}(M, N) = H_{i}(M \otimes_{R} \mathbf{F}_{\bullet})$. By the exactness of $^{\vee}$, we have

$$\operatorname{Tor}_{i}^{R}(M,N)^{\vee} \simeq H^{i}((M \otimes_{R} \mathbf{F}_{\bullet})^{\vee})$$

$$=H^{i}(\operatorname{Hom}_{R}(M\otimes_{R}\mathbf{F}_{\bullet},E))\simeq H^{i}(\operatorname{Hom}_{R}(M,Hom(\mathbf{F}_{\bullet},E)))$$

by the Hom- \otimes adjointness. But $\operatorname{Hom}(\mathbf{F}_{\bullet}, E)$ is an injective resolution of N^{\vee} . Hence $H^{i}(\operatorname{Hom}_{R}(M, Hom(\mathbf{F}_{\bullet}, E))) = \operatorname{Ext}_{R}^{i}(M, N^{\vee})$. This proves part (a). Part (b) can be done as an exercise. See exercise 6.

Note: The above example can be generalised, but one has to be careful!!!

Proposition 14 Let R be a Noetherian ring, \mathfrak{p} and \mathfrak{q} prime ideals in R. Then (a)

$$[E_R(R/\mathfrak{p})]_{\mathfrak{q}} = \left\{ \begin{array}{c} 0 \text{ for } \mathfrak{p} \not\subseteq \mathfrak{q} \\ E_R(R/\mathfrak{p}) \text{ for } \mathfrak{p} \subseteq \mathfrak{q} \end{array} \right.$$

(b)
$$\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), E_{R}(R/\mathfrak{q})_{\mathfrak{p}}) = \begin{cases} \kappa(\mathfrak{p}) \text{ for } \mathfrak{p} = \mathfrak{q} \\ 0 \text{ for } \mathfrak{p} \neq \mathfrak{q} \end{cases}$$

Proof: (a) We have proved in Theorem 8 that $E_R(R/\mathfrak{p})$ is an $R_{\mathfrak{p}}$ -module, even more an $R_{\mathfrak{q}}$ -module if $\mathfrak{p} \subseteq \mathfrak{q}$.

If $\mathfrak{p} \not\subseteq \mathfrak{q}$, choose $x \in \mathfrak{p}$, $x \notin \mathfrak{q}$. For every $z \in E_R(R/\mathfrak{p})$, there is an $n \in \mathbb{N}$ such that $x^n z = 0$. This implies that $\frac{z}{1} = 0$ in $[E_R(R/\mathfrak{p})]_{\mathfrak{q}}$ since $x \notin \mathfrak{q}$. (b) If $\mathfrak{q} \not\subseteq \mathfrak{p}$, $E_R(R/\mathfrak{q})_{\mathfrak{p}} = 0$ by (a).

If $\mathfrak{q} = \mathfrak{p}$, then $\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), E_R(R/\mathfrak{p})_{\mathfrak{p}}) \simeq \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), E_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p})))$ since $E_R(R/\mathfrak{p})_{\mathfrak{p}} = E_R(R/\mathfrak{p}) \simeq E_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}))$ by Theorem 8. But $\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), E_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}))) = \kappa(\mathfrak{p})^{\vee} \simeq \kappa(\mathfrak{p})$ by Theorem 11.1. Therefore $\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), E_R(R/\mathfrak{p})_{\mathfrak{p}}) \simeq \kappa(\mathfrak{p})$.

Now suppose \mathfrak{q} is strictly contained in \mathfrak{p} . We have $\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), E_R(R/\mathfrak{q})_{\mathfrak{p}}) \simeq (\operatorname{Hom}_R(R/\mathfrak{p}, E_R(R/\mathfrak{q})))_{\mathfrak{p}}$ by flatness of $R_{\mathfrak{p}}$ over R. Consider $f: R/\mathfrak{p} \to E_R(R/\mathfrak{q})$. Then $\mathfrak{p}f(\bar{1}) = 0$. Hence $\mathfrak{p} \subseteq \operatorname{ann}_R(f(\bar{1}))$. But $\operatorname{Ass}_R(E_R(R/\mathfrak{q})) = \{\mathfrak{q}\}$ and this forces $\operatorname{ann}_R(x) \subseteq \mathfrak{q}$ for every nonzero x in $E_R(R/\mathfrak{q})$. Therefore $f(\bar{1}) = 0$ since \mathfrak{p} is not contained in \mathfrak{q} .

Corollary 15 Let R be a Noetherian ring and I be an injective R-module. Write $I \simeq \bigoplus_{\mathfrak{p} \in \operatorname{Spec}(R)} E_R(R/\mathfrak{p})^{t_{\mathfrak{p}}}$. Then $t_{\mathfrak{p}} = \dim_{\kappa(\mathfrak{p})}(\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}}))$. In particular, $t_{\mathfrak{p}}$ does not depend on the decomposition chosen.

Proof: Localize $I \simeq \bigoplus_{\mathfrak{p} \in \operatorname{Spec}(R)} E_R(R/\mathfrak{p})^{t_{\mathfrak{p}}}$ at \mathfrak{p} and use Prop. 14(b).

Remark 5 Combining Theorem 6 and Cor. 15, we see that any injective module over a Noetherian ring R has a unique direct sum decomposition (up to isomorphism) into indecomposable (injective) R-modules.

Corollary 16 Let I be an injective module over a Noetherian ring R. For every prime ideal \mathfrak{p} in R, $I_{\mathfrak{p}}$ is an injective $R_{\mathfrak{p}}$ -module.

Proof: Write $I \simeq \bigoplus_{\mathfrak{q} \in \operatorname{Spec}(R)} E_R(R/\mathfrak{q})^{t_{\mathfrak{q}}}$. Then $I_{\mathfrak{p}} \simeq \bigoplus_{(\mathfrak{q} \in \operatorname{Spec}(R), \mathfrak{q} \subseteq \mathfrak{p})} E_R(R/\mathfrak{q})^{t_{\mathfrak{q}}}$ by Prop. 14(a). Hence $I_{\mathfrak{p}}$ is injective.

Strange but true: From the above proof, we see that $I \longrightarrow I_{\mathfrak{p}}$.

§ 3.4 Zero-dimensional Gorenstein Rings

Theorem 17 Let (R, \mathfrak{m}, k, E) be a zero-dimensional Noetherian local ring. The following are equivalent:

- (1) $id_R(R) < \infty$.
- (2) R is injective (as a module over itself).
- (3) $R \simeq E$.
- (4) $\operatorname{soc}_R(R)$ is a 1-dimensional k-vector space.
- (5) The ideal (0) in R is irreducible.
- (6) For every ideal I in R, $0:_R (0:_R I) = I$.

Definition 5 When any one (and hence all) of the above conditions are satisfied, we say that (the zero-dimensional ring) R is Gorenstein.

Recall that:

1. For any R-module M,

 $\operatorname{id}_R(M) := \inf \{ n: 0 \to M \to E^0 \to E^1 \to \cdots \to E^n \to 0, \text{ where each } E^i \text{ is injective} \}.$

- 2. An ideal I in R is *irreducible* if $I = J \cap K$ for ideals J and K in R implies that I = J or I = K.
- 3. For any R-module M, $\operatorname{soc}_R(M) := 0 :_M \mathfrak{m}$.

Proof: $(3) \Rightarrow (2) \Rightarrow (1)$ is immediate.

 $(1) \Rightarrow (3)$: Consider an injective resolution

$$0 \to R \to I^0 \to I^1 \to \cdots \to I^n \to 0$$

of R. The only indecomposable injective R-module is E since $\operatorname{Spec}(R) = \{\mathfrak{m}\}$. Therefore each $I^i \simeq E^{\oplus b_i}$; we can choose $b_i < \infty$ since R and E are Artinian. Applying $^{\vee}$ and rewriting E^{\vee} as R and R^{\vee} as E, we get a long exact sequence

$$0 \to R^{b_n} \to \cdots \to R^{b_1} \to R^{b_0} \to E \to 0$$
.

which implies that $\operatorname{pd}_R(E) < \infty$. By the Auslander-Buchsbaum formula, $\operatorname{pd}_R(E) + \operatorname{depth}(E) = \operatorname{depth}(R)$. Since $\operatorname{dim}(R) = 0$, $\operatorname{depth}(E) = \operatorname{depth}(R) = 0$ and hence $\operatorname{pd}_R(E) = 0$ i.e. E is free. (An alternate argument can be given more simply–refine the resolution to a minimal free resolution of E. If E is not free, then there is an injective map of two free modules at the end of the resolution; but this is impossible since any socle element goes to zero.) Therefore $E \simeq R^{\oplus m}$. But $\lambda_R(R) = \lambda_R(E)$ by Theorem 11.2 which forces m = 1. Thus $E \simeq R$.

 $(3) \Rightarrow (6)$: We want to prove that $0:_R (0:_R I) = I$. Note that $I \subseteq 0:_R (0:_R I)$.

Consider the short exact sequence $0 \to I \to R \to R/I \to 0$. Applying $^{\vee}$ we get the short exact sequence $0 \to (R/I)^{\vee} \to E \to I^{\vee} \to 0$. Since $R \simeq E$ (by hypothesis), $(R/I)^{\vee} \simeq 0 :_R I$ and hence $I^{\vee} \simeq \operatorname{Hom}_R(I,R) \simeq R/(0 :_R I)$.

Applying $^{\vee}$ again, we get $I^{\vee\vee} \simeq \operatorname{Hom}_R(R/(0:_RI),R) \simeq 0:_R(0:_RI)$. Since $I^{\vee\vee} \simeq I$ by Theorem 11.4, we get $I=0:_R(0:_RI)$.

- (6) \Rightarrow (4): Let x be a nonzero element in $\operatorname{soc}_R(R)$. Then $0:_R x = \mathfrak{m}$. Therefore $\mathsf{k} \simeq (x) = 0:_R (0:_R x) = 0:_R \mathfrak{m}$.
- (4) \Rightarrow (3): We know that $\mathbf{k} \simeq \operatorname{soc}_R(R) \subseteq R$ is an essential extension. Since E is the maximal essential extension of \mathbf{k} , $R \hookrightarrow E$. Therefore $R \simeq E$ since $\lambda_R(R) = \lambda_R(E)$.
- $(4) \Rightarrow (5)$: Suppose $J \neq (0)$, $K \neq (0)$ are ideals in R. Since $\operatorname{soc}_R(R) \subseteq R$ is an essential extension, $J \cap \operatorname{soc}_R(R) \neq (0)$ and $K \cap \operatorname{soc}_R(R) \neq (0)$. But $\operatorname{soc}_R(R)$ has length 1 which forces $\operatorname{soc}_R(R) \subseteq J \cap K$. Hence $J \cap K \neq (0)$, i.e. (0) is irreducible.
- (5) \Rightarrow (4): If $\dim(\operatorname{soc}_R(R)) \geq 2$, choose u, v linearly independent in $\operatorname{soc}_R(R)$. Then $(u) \cap (v) = (0)$ contradicts the irreducibility of (0).

Remark 6 Note that if R is Gorenstein then $R \simeq E$ means that $M^* \simeq M^{\vee}$ for every R-module M. Therefore $M^{\vee\vee} \simeq M$ implies that M is reflexive.

Theorem 18 Let (S, \mathfrak{m}, k, E) be a zero-dimensional Noetherian local ring. Let I be an ideal in S and R := S/I. The following are equivalent:

- (1) R is Gorenstein.
- (2) $0 :_E I \simeq R$.
- (3) $0 :_E I$ is a cyclic R-module.
- (4) There is a nonzero element u in E such that $0:_S u = I$.

Proof: (1) \Rightarrow (2): 0 :_E $I \simeq E_{S/I}(k)$ by Cor. 10. Hence 0 :_E $I \simeq R$ since R = S/I and $R \simeq E_R(k)$ by assumption.

- $(2) \Rightarrow (3)$ is clear.
- (3) \Rightarrow (4): Let u be a generator for $0:_E I$ and let $J=0:_S u$. Then $I\subseteq J$. Since u generates $0:_E I\simeq R^\vee,\ JR^\vee=0$. This implies that $JR\simeq JR^{\vee\vee}=0$ Therefore $J\subseteq I$, which proves $I=0:_S u$.

 $(4) \Rightarrow (1)$: Let $I = 0 :_S u$. Therefore $Ru \simeq Su$ and hence $Ru \hookrightarrow E$.

Consider $0 \to Ru \to E \to E/Ru \to 0$. Apply $^{\vee}$ to get $0 \to (E/Ru)^{\vee} \to S \to \operatorname{Hom}_S(R, E) \to 0$. Clearly $I \cdot \operatorname{Hom}_S(R, E) = 0$. Therefore $\operatorname{Hom}_S(R, E) \simeq S/J$ where $I \subseteq J$. Counting lengths we see that

$$\lambda_S(S/J) \le \lambda_S(S/I) = \lambda_S(R) = \lambda_S(\operatorname{Hom}_S(R, E)) = \lambda_S(S/J).$$

This forces J=I and $R\simeq \operatorname{Hom}_S(R,E)\simeq E_R(\mathsf{k})$. (The last isomorphism is by Cor. 10).

Exercise: Let R be a Noetherian local ring, I be any unmixed ideal in R of height 0. Prove that $0:_R (0:_R I) = I$ if and only if $R_{\mathfrak{p}}$ is Gorenstein for every prime ideal \mathfrak{p} in R of height 0.

A way to get Gorenstein rings:

Let $R := \mathsf{k}[X_1, \ldots, X_n]$, char(k) = 0. Set $E := \mathsf{k}[Y_1, \ldots, Y_n]$ where Y_i acts on R as $\frac{\partial}{\partial X_i}$, i.e. $Y_i X_j = \delta_{ij}$. Take $f(Y_1, \ldots, Y_n) \in E$; then $R/(0:_R f)$ is Gorenstein.

Example 5 The ring $S := k[X_1, \dots, X_n]/(X_iX_j, X_i^2 - X_i^2)_{i \neq j}$ is Gorenstein.

If we take $f = Y_1^2 + \dots + Y_n^2$ $(=\frac{\partial^2}{\partial X_1^2} + \dots + \frac{\partial^2}{\partial X_n^2})$; then $\operatorname{ann}_R(f) = (X_i X_j, X_i^2 - X_j^2)_{i \neq j}$ which shows that S is Gorenstein.

Remark 7 We can show that $k[X_1, ..., X_n]/(X_iX_j, X_i^2 - X_j^2)_{i \neq j}$ is Gorenstein by showing that the socle is one-dimensional over k. See Example 10.

Discussion: Let V be an n-dimensional vector space over k. Recall that a symmetric bilinear form on V is a pairing $V \times V \longrightarrow k$ given by $(v,w) \mapsto < v, w > \in k$ such that <, > is linear in each variable and is symmetric, i.e. < v, w > = < w, v > for every $v, w \in V$.

For a subspace, $W \subseteq V$, we define

$$W^{\perp} = \{ v \in V : \langle w, v \rangle = 0 \text{ for every } w \in W \}.$$

We say that the form \langle , \rangle is non-degenerate if $V^{\perp} = 0$.

Let $\{v_1, \ldots, v_n\}$ be a k-basis for V. Given a symmetric bilinear form <, > on V, we can associate to it a symmetric matrix as follows:

$$<,>\longleftrightarrow (< v_i,v_j>).$$

One can check that $\langle \cdot, \cdot \rangle$ is non-generate if and only if the matrix $(\langle v_i, v_j \rangle)$ is invertible.

If <, > is a symmetric bilinear form on V, then construct a ring $R := \mathsf{k} \oplus V \oplus R_2$ as a k -vector space, where $R_2 = \mathsf{k}$. The multiplicative structure on R is as follows: In degree 0, k acts as scalars, $R_1 \cdot R_2 = 0 = R_2 \cdot R_2$ and for $x, y \in R_1$, $x \cdot y = < x, y >$. Associativity follows trivially since $R_1^3 = 0$.

Conversely, let $R = \mathsf{k} \oplus R_1 \oplus R_2$, with Hilbert function 1, n, 1, i.e. $\dim_{\mathsf{k}}(R_1) = n$ and $R_2 \simeq \mathsf{k}$. Fix a generator Δ of R_2 . Associated to R, there is a symmetric bilinear form on R_1 given by $\langle x, y \rangle = \alpha$ for $x, y \in R_1$, where $x \cdot y = \alpha \Delta$.

Question: The ring R is an Artinian graded ring. When is it Gorenstein?

Note that $R \simeq \mathsf{k}[X_1,\ldots,X_n]/I$, where I is a homogeneous ideal such that $\mathfrak{m}^3 \subseteq I$. Now R is Gorenstein if and only if $0:_R \mathfrak{m} = \mathrm{soc}(R)$ is a one-dimensional k-vector space. Since $\mathfrak{m}^3 = 0$, we see that $\mathfrak{m}^2 \subseteq \mathrm{soc}(R)$. Hence R is Gorenstein if and only if $\mathfrak{m}^2 = \mathrm{soc}(R)$.

In other words, R is Gorenstein if and only if $R_1 \cap \operatorname{soc}(R) = 0$, i.e. $\operatorname{soc}(R)$ does not contain any linear forms. Note that

$$x \in 0 :_R \mathfrak{m} \cap R_1 \Leftrightarrow x \cdot y = 0 \text{ for all } y \in R_1 \Leftrightarrow \langle x, R_1 \rangle = 0.$$

Thus R is Gorenstein if and only if <, > is a non-degenerate symmetric bilinear form on R_1 .

Example 6 Let V be a 3-dimensional vector space over a field k . Then the matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ corresponds to a non-degenerate symmetric bilinear form on V. The corresponding ring $R = \mathsf{k} \oplus \mathbb{R}_1 \oplus \mathbb{R}_2$ is Gorenstein, where $R_1 = \mathsf{k} x \oplus \mathsf{k} y \oplus \mathsf{k} z$, $R_2 = \mathsf{k} \Delta$ satisfying $x^2 = y^2 = z^2 = \Delta$, xy = 0, yz = 0 and xz = 0, i.e. $R \simeq \mathsf{k}[X,Y,Z]/(X^2 - Y^2, X^2 - Z^2, XY, YZ, XZ)$ is Gorenstein.

Remark 8 Gorenstein rings with Hilbert function 1, n, n, 1 have not been classified.

Question: If R is a graded zero-dimensional Gorenstein ring with Hilbert function 1, n, m, n, 1, is it necessary that $m \ge 2n - 2$?

§ 3.5 Free Resolutions of Gorenstein Quotients of Regular Local Rings

Set-up: Let $(T, \mathfrak{m}_T, \mathsf{k})$ be a regular local ring of dimension n. Let R := T/I be a zero-dimensional quotient of T. Since $\operatorname{depth}(R) = 0$, by the Auslander-Buchsbaum formula, $\operatorname{pd}_T(R) = \operatorname{depth}(T) = n$. Consider a minimal free resolution of R:

$$\mathbf{F}_{\bullet}: \quad 0 \to T^{b_n} \xrightarrow{\phi_n} \cdots \to T^{b_1} \xrightarrow{\phi_1} T \to R. \quad (*)$$

Theorem 19 With notation as above, $b_n = \dim_{\mathsf{k}}(\operatorname{soc}(R))$. In particular, R is Gorenstein if and only if $b_n = 1$.

Proof: Compute $\operatorname{Tor}_n^T(\mathsf{k},R)$ in two different ways. Since (*) is a minimal resolution of R over T, $\operatorname{Tor}_n^T(\mathsf{k},R) \simeq \mathsf{k}^{b_n}$.

Now, a resolution of kis given by the Koszul complex of a minimal set of generators of $\mathfrak{m}_T = (x_1, \ldots, x_n)$. We have

$$0 \longrightarrow T \xrightarrow{\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}} T^n \longrightarrow \cdots \longrightarrow T^n \longrightarrow T \longrightarrow \mathsf{k} \longrightarrow 0.$$

 $0 \longrightarrow I \longrightarrow I \longrightarrow \cdots \longrightarrow I \longrightarrow I \longrightarrow \mathsf{k} \longrightarrow 0.$ $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ Therefore $\mathrm{Tor}_n^T(\mathsf{k},R)$ is isomorphic to the homology of $0 \longrightarrow R \stackrel{(x_1)}{\longrightarrow} R^n$ which is $\mathrm{soc}(R)$.

Corollary 20 If f_1, \ldots, f_n is a regular sequence in \mathfrak{m}_T , then $R := T/(f_1, \ldots, f_n)$ is Gorenstein.

Proof: A resolution of R over T is given by the Koszul complex $K(f_1, \ldots, f_n; T)$ and hence $b_n = 1$.

Corollary 21 (Serre) If $\dim(T) = 2$ and R := T/I is Gorenstein, then $\mu(I) = 2$, i.e. I = (f, g) where f, g is a regular sequence in T.

Proof: Let $\mu(I) = b$. Since $\dim(T) = 2$ and R is Gorenstein, there is a resolution of R over T that looks like

$$0 \to T \to T^b \to T \to R \to 0.$$

Tensoring with Q(T), the fraction field of T, gives b=2.

Corollary 22 If T is a regular local ring of dimension n and f_1, \ldots, f_n is a regular sequence, then (f_1, \ldots, f_n) is an irreducible ideal in T.

Proof: Since $R := T/(f_1, \ldots, f_n)$ is Gorenstein, $(0) \subseteq R$ is irreducible which is equivalent to $(f_1, \ldots, f_n) \subseteq T$ being irreducible.

A natural question that arises from Cor. 20 is the following:

We know that $\operatorname{soc}_T(T/(f_1,\ldots,f_n))$ is 1-dimensional. Is there any way to compute it? Answer: Let $\mathfrak{m}_T=(x_1,\ldots,x_n)$. Write $f_i=\sum_{j=1}^n a_{ij}x_j,\ i=1,\ldots,n$. Let $A:=(a_{ij})_{n\times n}$. Then $\det(A)$ is a generator for $\operatorname{soc}_T(T/(f_1,\ldots,f_n))$.

Example 7 Let $x_1^{l_1} = f_1, \dots, x_n^{l_n} = f_n$. Then $\det(A) = x_1^{l_1-1} \cdots x_n^{l_n-1}$ represents the socle.

In the polynomial case there is another answer.

Let $T = \mathsf{k}[X_1, \ldots, X_n]$, $\mathsf{rad}(f_1, \ldots, f_n) = (X_1, \ldots, X_n)$ and $I = (\partial f_i / \partial X_j)_{1 \leq i, j \leq n}$. Then $\mathsf{det}(I)$ represents the socle of $T/(f_1, \ldots, f_n)$.

The two answers overlap in the graded case when the f_i 's are homogeneous of degree m_i such that $\operatorname{char}(\mathsf{k}) \not\mid m_i$. By Euler's formula,

$$m_i f i = \sum X_j \frac{\partial f_i}{\partial X_i}.$$

Since $(m_1 \cdots m_n)^{-1} \in \mathbf{k}$, we can write

$$f_i = \sum X_j \frac{1}{m_i} \frac{\partial f_i}{\partial X_j}.$$

By the first case $\det(\frac{1}{m_i}\frac{\partial f_i}{\partial X_j})$ represents the socle. This agrees with the second answer since $\det(\frac{1}{m_i}\frac{\partial f_i}{\partial X_j}) = \frac{1}{m_1 \cdots m_n} \det(\frac{\partial f_i}{\partial X_j})$.

Example 8 Let us compute $soc_T(T/(f,g))$ where T = k[X,Y], $f = X^3 + Y^7$ and $g = X^2Y^3$. With notations as before,

$$A = \left[\begin{array}{cc} X^2 & Y^6 \\ XY^3 & 0 \end{array} \right].$$

Therefore $\det(A) = -XY^9$. Hence $\operatorname{soc}_T(R) \simeq (XY^9)$. Every ideal containing (f, g) properly must contain XY^9 .

Theorem 23 With the same notations as in Theorem 19, $E_R(k) \simeq \operatorname{Coker}(\phi_n^*)$ and has a free resolution

$$0 \to T^* \stackrel{\phi_1^*}{\to} (T^*)^{b_1} \to \cdots \to (T^*)^{b_n} \to E_R(\mathsf{k}) \to 0 \qquad (**)$$

over T. In particular, $\operatorname{Ext}_T^n(R,T) \simeq E_R(\mathsf{k})$.

Proof: Apply $\operatorname{Hom}_T(_,T)$ to (*). The homology is $\operatorname{Ext}_T^i(R,T)$. But $\operatorname{depth}_{\operatorname{ann}(R)}(T) = n$. Hence $\operatorname{Ext}_T^i(R,T) = 0$ for i < n and

$$0 \to T^* \stackrel{\phi_1^*}{\to} \cdots \stackrel{\phi_n^*}{\to} (T^*)^{b_n} \to \operatorname{Ext}_T^n(R,T) \to 0$$

is exact. By the Ext-shifting lemma, $\operatorname{Ext}_T^n(R,T) \simeq \operatorname{Hom}_{T/(f_1,\dots,f_n)}(R,T/(f_1,\dots,f_n))$ for a regular sequence $\underline{f}:=f_1,\dots,f_n$ in I. By Cor. 20, $T/(\underline{f})$ is Gorenstein and hence $E_{T/(\underline{f})}(\mathsf{k}) \simeq T/(\underline{f})$. Then $\operatorname{Hom}_{T/(\underline{f})}(R,T/(\underline{f})) \simeq \operatorname{Hom}_{T/(\underline{f})}(R,E_{T/(\underline{f})}(\mathsf{k})) \simeq E_R(\mathsf{k})$ by Theorem 9.

Corollary 24 $\mu(E_R(\mathsf{k})) = b_n$.

Proof: Since ϕ_i^* has entries in \mathfrak{m}_T , (**) is a minimal resolution for $E_R(\mathsf{k})$. This implies that $\mu(E_R(\mathsf{k})) = b_n$.

Definition 6 Let $(R, \mathfrak{m}, \mathsf{k}, E)$ be a zero-dimensional Noetherian local ring. The number $\mu(E_R(\mathsf{k})) = \dim_{\mathsf{k}}(\operatorname{soc}_T(R)) = b_n$ is called the type of R.

Remark 9 Observe that in the above proof we have $E_R(\mathsf{k}) \simeq \operatorname{Hom}(T/I, T/\underline{f}) \simeq ((f):_T I)/(f)$. From this we get:

R is Gorenstein if and only if $E_R(\mathsf{k})$ is cyclic $(b_n=1)$ if and only if $(\underline{f}):_T I=(\underline{f},g)$. But since T/f is Gorenstein, $I=(f):_T ((f):_T I)=(f:_T g)$.

Conversely if $g \notin (\underline{f})$, reversing the above arguments shows that $T/((\underline{f}):_T g)$ is Gorenstein.

Example 9 Let $I = (X^3, Y^3, Z^3), g = X^2 + Y^2 + Z^2$. Then

$$I :_T g = (X^3, Y^3, Z^3, XYZ, X(Y^2 - Z^2), Y(X^2 - Z^2), Z(X^2 - Y^2))$$

is a 7-generated Gorenstein ideal.

Theorem 25 (J. Watanabe) Let $I \subseteq T := k[X, Y, Z]$ be such that T/I is a zero-dimensional Gorenstein ring. Then I has an odd number of generators.

§ 3.6 Teter's Theorem

In this section, we are aiming for the following theorem of Teter.

Theorem 26 (Teter,1974) Let $(R, \mathfrak{m}_R, \mathsf{k}, E)$ be an Artinian ring¹. Then the following are equivalent:

- 1 $R \simeq S/(\Delta)$, where $(S, \mathfrak{m}_S, \mathsf{k})$ is a (zero-dimensional) Gorenstein ² ring and $(\Delta) = \mathrm{soc}(S)$.
- 2 There is an isomorphism $\mathfrak{m}_R \stackrel{\phi}{\to} \mathfrak{m}_R^{\vee}$ such that for every x, y in \mathfrak{m}_R , $\phi(x)(y) = \phi(y)(x)$.

General Discussion

Let $(R, \mathfrak{m}_R, \mathsf{k})$ be an Artinian ring. Define

$$g(R) = \min\{\lambda(S) - \lambda(R) : S \text{ is a Gorenstein ring mapping onto } R\}.$$

¹All rings in this section are local

²In this section, a Gorenstein ring is a self-injective ring i.e. is zero dimensional.

The number g(R) gives a numerical value for how close can one get to an Artinian ring R by a Gorenstein ring.

The question is: How does one intrinsically compute g(R)?

Comments:

- 1. Note that g(R) is zero if and only if R is Gorenstein.
- 2. When is g(R) = 1? This occurs if and only if $R \simeq S/\operatorname{soc}(S)$ for a Gorenstein ring S and is answered completely by Teter.
- 3. Observe that g(R) is always finite. This can be seen as follows:

By Cohen's Structure Theorem, we can write R as the quotient of a regular local ring T by an \mathfrak{m}_T -primary ideal. Let R:=T/K where K is \mathfrak{m}_T -primary. If $\dim(T)=d$, choose a regular sequence x_1,\ldots,x_d in K and write $S:=T/(x_1,\ldots,x_d)$. Then S is a complete intersection ring and hence Gorenstein. If we set $J:=K/(x_1,\ldots,x_d)$, we see that $R \simeq S/J$ and hence $g(R) < \infty$.

4. One can say something even better. We will show that $g(R) \leq \lambda(R)$. Let $E = E_R(\mathsf{k})$ and define $S := R \oplus E$. Then S is a local ring under the following operations:

$$(r, u) + (s, v) = (r + s, u + v)$$
 and $(r, u) \cdot (s, v) = (rs, rv + su)$.

Note that E is an ideal in S and that $E^2 = 0$. Hence $\mathfrak{m}_S := \mathfrak{m} \oplus E$, the unique maximal ideal in S, is nilpotent, showing that S is Artinian.

Now we know that $\operatorname{Hom}_R(S, E)$ is an injective S-module. But

$$\operatorname{Hom}_R(S,E) = \operatorname{Hom}_R(R \oplus E,E) \simeq \operatorname{Hom}_R(R,E) \oplus \operatorname{Hom}_R(E,E) \simeq E \oplus R$$

by Theorem 11. Thus $\operatorname{Hom}_R(S, E) \simeq S$, i.e. S is self-injective and hence Gorenstein. Since $\lambda_R(S) = 2\lambda(R)$, and S maps onto R via the natural projection, $g(R) \leq \lambda_R(S) - \lambda(R) = \lambda(R)$.

Example 10 The ring $S = \mathsf{k}[X_1, \dots, X_n]/(X_iX_j, X_i^2 - X_j^2)_{i \neq j}$ is Gorenstein. Let $\mathfrak{m} = (X_1, \dots, X_n), \ I = (X_iX_j, X_i^2 - X_j^2)_{i \neq j}$. Then $\mathfrak{m}^3 \subseteq I$.

There is a one dimensional space of quadrics in \mathfrak{m}/I , i.e. $\dim(\mathfrak{m}/I)_2 = 1$, for example, X^2 generates this space.

Let $l = \Sigma \alpha_i X_i$ be any linear form. If $\alpha_j \neq 0$, then $X_j(l) = \alpha_j X_i^2 \notin I$. Hence $l\mathfrak{m} \not\subseteq I$. In other words, there are no linear forms in the socle of S. Therefore $soc(S) = (X_1^2)$ has dimension 1 over k. Hence S is Gorenstein.

The Hilbert series of S is $H_S(t) = 1 + nt + t^2$.

Since
$$S/\operatorname{soc}(S) \simeq \mathsf{k}[X_1, \dots, X_n]/\mathfrak{m}^2 =: R, g(R) = 1.$$

Question: Suppose that $I = I_r(X_{r \times s})$ (r < s) defines a Cohen-Macaulay quotient. How close can we get to I by a Gorenstein ideal J?

Lemma 27 Let $(R, \mathfrak{m}, \mathsf{k}, E)$ be an Artinian ring. Then the following are equivalent: 1. There is an isomorphism $\phi : \mathfrak{m} \to \mathfrak{m}^{\vee}$ such that

$$\forall x, y \in \mathfrak{m}, \quad \phi(x)(y) = \phi(y)(x).$$

2. There is an isomorphism $\theta: \mathfrak{m}^{\vee} \to \mathfrak{m}$ such that

$$\forall f, g \in \mathfrak{m}^{\vee}, \quad g(\theta(f)) = f(\theta(g)).$$

3. There is a surjective homomorphism $\psi: E \to \mathfrak{m}$ such that

$$\forall u, v \in E, \quad \psi(u)(v) = \psi(v)(u).$$

Remark 10 Let $\mathfrak{m} \stackrel{i}{\hookrightarrow} R$. This induces a surjective map $E \stackrel{i^{\vee}}{\longrightarrow} \mathfrak{m}^{\vee}$, such that

for every
$$x \in \mathfrak{m}$$
 and $u \in E$, $i^{\vee}(u)(x) = xu$.

Proof: The map $\operatorname{Hom}_R(R,E) \xrightarrow{i^{\vee}} \operatorname{Hom}_R(\mathfrak{m},E)$ is given by $u \mapsto u \circ i$. Hence $i^{\vee}(u)(x) = xu$.

Proof of the Lemma: (1) \Rightarrow (2): Set $\theta := \phi^{-1}$. We need to prove $\forall f, g \in \mathfrak{m}^{\vee}$, $g(\phi^{-1}(f)) = f(\phi^{-1}(g))$.

Write $x = \phi^{-1}(f)$ and $y = \phi^{-1}(g)$. Then we have $\phi(x)(y) = \phi(y)(x)$. Rewriting this in terms of f, g and ϕ^{-1} gives us the required property.

- $(2)\Rightarrow(3)$: We have an isomorphism $\mathfrak{m}^{\vee} \stackrel{\theta}{\to} \mathfrak{m}$. Define $E \stackrel{\psi}{\to} \mathfrak{m}$ by $\psi = \theta \circ i^{\vee}$. Let u, v be in E. Write $i^{\vee}(u) = f$ and $i^{\vee}(v) = g$. We have $g(\theta(f)) = f(\theta(g))$ rewriting which we get $i^{\vee}(v)(\psi(u)) = i^{\vee}(u)(\psi(v))$. By the above remark, this is the same as $\psi(u)v = \psi(v)u$.
- (3) \Rightarrow (1): We have the two surjective maps $E \xrightarrow{\psi} \mathfrak{m}$ and $E \xrightarrow{i^{\vee}} \mathfrak{m}^{\vee}$. Note that since E is Artinian, it is essential over its socle. Moreover, $\operatorname{soc}(E)$ is one-dimensional. Hence $\lambda(\operatorname{Ker}(\psi)) = 1 = \lambda(\operatorname{Ker}(i^{\vee}))$ forces $\operatorname{Ker}(\psi) = \operatorname{soc}(E) = \operatorname{Ker}(i^{\vee})$.

Define $\phi: \mathfrak{m} \to \mathfrak{m}^{\vee}$ as $x \mapsto i^{\vee}(\psi(u))$ for any preimage u of x under ψ . We want to show that this map is well-defined. Suppose $\psi(u) = \psi(v)$ for $u, v \in E$. Then $u - v \in \text{Ker}(\psi) = \text{Ker}(i^{\vee})$, i.e. $i^{\vee}(u) = i^{\vee}(v)$. Thus ϕ is well-defined and hence by the Snake Lemma, is an isomorphism.

Let $x, y \in \mathfrak{m}$. Choose $u, v \in E$ such that $\psi(u) = x$ and $\psi(v) = y$. We have $\psi(u)v = \psi(v)u$, i.e. $i^{\vee}(u)(\psi(v)) = i^{\vee}(v)(\psi(u))$ by the above remark. By definition $\phi(x) = i^{\vee}(u)$ and $\phi(y) = i^{\vee}(v)$. Hence we get $\phi(x)(y) = \phi(y)(x)$.

Proof of Teter's theorem: (1) \Rightarrow (2): Let $R \simeq S/\operatorname{soc}(S)$, where S is Gorenstein. Since S is Gorenstein, it is self-injective and hence $\operatorname{Hom}_S(_,S)$ is exact. Since $\operatorname{soc}(S) \simeq \mathsf{k}$, we have the short exact sequence $0 \to \mathsf{k} \to S \to R \to 0$. By applying

 $\operatorname{Hom}_S(_,S)$, we get $0 \to \operatorname{Hom}(R,S) \to S \to \mathsf{k} \to 0$ since $\operatorname{Hom}_S(\mathsf{k},S) \simeq \operatorname{soc}(S) \simeq \mathsf{k}$. This gives us $\operatorname{Hom}_S(R,S) \simeq \mathfrak{m}_S$. But $\operatorname{Hom}_S(R,S) = \operatorname{Hom}_S(R,E_S(\mathsf{k})) \simeq E_R(\mathsf{k}) = E$. Thus

$$R \simeq S/\operatorname{soc}(S) \implies E \simeq \mathfrak{m}_S.$$

(Observe that $\mathfrak{m}_S \cdot \operatorname{soc}(S) = 0$, hence \mathfrak{m}_S is an R-module.)

Define $\psi: E \longrightarrow \mathfrak{m}_R$ by the canonical surjection $\mathfrak{m}_S \longrightarrow \mathfrak{m}_R$. Let $u, v \in \mathfrak{m}_S$. Then $\psi(u)(v) = u \cdot v = \psi(v)(u)$. The statement of (2) follows by the lemma.

The idea of $(2) \Rightarrow (1)$: We use the fact that R is a quotient a regular local ring $(T, \mathfrak{m}_T, \mathsf{k})$ by an ideal I contained in \mathfrak{m}_T^2 . This follows from Cohen's Structure theorem.

We are looking for a Gorenstein ring S := T/J, $J \subseteq I$ such that $I = J :_T \mathfrak{m}_T$. Teter looks in the vector space $I/\mathfrak{m}_T I$ for a subspace V of codimension 1, that lifts back to an ideal J in T such that S = T/J is actually Gorenstein. Note that if we can find such a J, then $\mathfrak{m}_T I \subseteq J$.

Proof of (2) \Rightarrow (1): We have $\phi: \mathfrak{m}_R \xrightarrow{\simeq} \mathfrak{m}_R^{\vee}$. By the Hom $-\otimes$ adjointness, $\phi \in \operatorname{Hom}_R(\mathfrak{m}_R, \operatorname{Hom}_R(\mathfrak{m}_R, E))$ gives a map $\tilde{\phi} \in \operatorname{Hom}_R(\mathfrak{m}_R \otimes_R \mathfrak{m}_R, E)$ defined by $\tilde{\phi}(x \otimes y) = \phi(x)(y)$ for any $x, y \in \mathfrak{m}_R$. Note that the condition of (2) implies that

$$\tilde{\phi}(x \otimes y) = \tilde{\phi}(y \otimes x).$$

We have

$$\mathfrak{m}_{T}/I\otimes\mathfrak{m}_{T}/I \xrightarrow{\tilde{\phi}} E$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\tilde{\phi}}$$

$$\mathfrak{m}_{T}^{2}/\mathfrak{m}_{T}I \xrightarrow{=} \mathfrak{m}_{T}^{2}/\mathfrak{m}_{T}I$$

where $(x+I) \otimes (y+I) \stackrel{\tilde{\phi}}{\mapsto} \phi(x+I)(y+I)$ and $(x+I) \otimes (y+I) \stackrel{\pi}{\mapsto} (xy+\mathfrak{m}_T I)$.

We claim that there is a map $\widehat{\phi} : \mathfrak{m}_T^2/\mathfrak{m}_T I \to E$ such that:

- (a) the above diagram commutes.
- (b) $\widehat{\phi}|_{(I/\mathfrak{m}_T I)} \neq 0.$
- (c) $\operatorname{Ker}(\widehat{\phi}|_{(I/\mathfrak{m}_T I)}) =: J/\mathfrak{m}_T I$ is a subspace of $I/\mathfrak{m}_T I$ of codimension 1 and
- (d) $J :_T \mathfrak{m}_T = I$.

In order to prove (a), it is enough to prove that $\operatorname{Ker}(\pi)$ is generated by elements in $\mathfrak{m}_T/I \otimes \mathfrak{m}_T/I$ of the form $(x+I) \otimes (y+I) - (y+I) \otimes (x+I)$. In such a case $\tilde{\phi}$ restricts to $\hat{\phi}$ making the diagram commute.

Let \mathfrak{m}_T be minimally generated by x_1, \ldots, x_n . Let $\Sigma(\bar{a}_i \otimes \bar{b}_i)$ be an element of $\operatorname{Ker}(\pi)$, where $\bar{x} = x + I$. Since $a_i, b_i \in \mathfrak{m}_T$, without loss of generality we may assume

that $\Sigma(\bar{a}_i \otimes \bar{b}_i) = \Sigma_{i=1}^n(\bar{c}_i \otimes \bar{x}_i) \in \text{Ker}(\pi)$. Hence $\Sigma_{i=1}^n c_i x_i \in \mathfrak{m}_T I$. This implies that there are elements $u_i \in I$ such that $\Sigma_{i=1}^n c_i x_i = \Sigma_{i=1}^n u_i x_i$ in T. Hence $\Sigma_{i=1}^n (c_i - u_i) x_i = 0$ in T. But x_1, \ldots, x_n is a regular sequence on T, so $(c_1, \ldots, c_n) - (u_1, \ldots, u_n)$ can be written in terms of the Koszul syzygies i.e.

$$(c_1 - u_1, \dots, c_n - u_n) = \sum_{i < j} u_{ij} (x_j e_i - x_i e_j)$$

where $\{e_i\}_{i=1}^n$ is the standard basis of T^n .

Going modulo I, we see that

$$(\bar{c}_1,\ldots,\bar{c}_n) = \sum_{i < j} \bar{u}_{ij}(0,\ldots,\bar{x}_j,\ldots,-\bar{x}_i,\ldots,0).$$

Let $(a_1, \ldots, a_n) \overset{\bullet}{\otimes} (b_1, \ldots, b_n)$ denote $\Sigma(a_i \otimes b_i)$. Then

$$\Sigma(\bar{c}_i \otimes \bar{x}_i) = (\bar{c}_1, \dots, \bar{c}_n) \overset{\bullet}{\otimes} (\bar{x}_1, \dots, \bar{x}_n)^T$$

$$= \Sigma_{i < j} \bar{u_{ij}}(0, \dots, \bar{x_j}, \dots, -\bar{x_i}, \dots, 0) \overset{\bullet}{\otimes} (\bar{x}_1, \dots, \bar{x}_n)^T = \Sigma \bar{u_{ij}}(\bar{x_i} \otimes \bar{x_j} - \bar{x_j} \otimes \bar{x_i})$$

verifying (a).

We now have a map $\mathfrak{m}_T^2/\mathfrak{m}_T I \xrightarrow{\widehat{\phi}} E$ where $\widehat{\phi}(\overline{\Sigma a_i b_i}) = \Sigma \phi(a_i)(b_i)$. Restrict $\widehat{\phi}$ to $I/\mathfrak{m}_T I$, call it g. Since $\mathfrak{m}_T \cdot I/\mathfrak{m}_T I = 0$, $g: I/\mathfrak{m}_T I \to \operatorname{soc}(E) \simeq \mathsf{k}$.

Let $J \subseteq T$ be defined by $J/\mathfrak{m}_T I = \operatorname{Ker}(g)$. Then $J :_T \mathfrak{m}_T = I$ as can be seen as follows:

Suppose u is an element of T such that $u \cdot \mathfrak{m}_T \subseteq J$, i.e. for each $j, u \cdot x_j \in J$. Then $g(\overline{ux_j}) = 0$ since $J/\mathfrak{m}_T I = \operatorname{Ker}(g)$. So $\phi(\bar{u})(\bar{x_j}) = 0$ for each j. But $\phi(\bar{u}) \in \mathfrak{m}_R^{\vee}$ and this says $\phi(\bar{u})(\mathfrak{m}_R) = 0$. Hence $\phi(\bar{u}) = 0$. But ϕ is an isomorphism. Hence $u \in I$ which proves (d).

Note that the exact sequence $0 \to J/\mathfrak{m}_T I \to I/\mathfrak{m}_T I \xrightarrow{g} \mathsf{k}$ shows that $\lambda(I/J) \leq 1$. But $\lambda((J:_T\mathfrak{m}_T)/J) \geq 1$. Hence $\lambda(I/J) = 1$ and therefore $g: I/\mathfrak{m}_T I \longrightarrow \mathsf{k}$ which proves (b) and (c).

Thus S := T/J is a Gorenstein ring (since $soc(S) \simeq (J :_T \mathfrak{m}_T)/J$ is one dimensional) such that $R \simeq S/soc(S)$.

The following theorem is an improvement of Teter's Theorem.

Theorem 28 (Huneke, Vraciu) Let (R, \mathfrak{m}, k, E) be an Artinian ring such that $1/2 \in R$, $soc(R) \subseteq \mathfrak{m}_R^2$. Then the following are equivalent. 1. There is a Gorenstein ring S such that $R \simeq S/soc(S)$.

2. There is a surjective map $E \longrightarrow \mathfrak{m}_R$.

Obvious question: If $E \longrightarrow I$ for some ideal I in R, does there exist a Gorenstein ring S mapping onto R such that $\lambda(S) - \lambda(R) \le \lambda(R/I)$?

General question on socles: Let $I \subseteq \mathsf{k}[X_1,\ldots,X_n] =: S$ such that R := S/I is Cohen-Macaulay (maybe Gorenstein). Does there exist an ideal $\Delta \not\subseteq I$ such that for every system of parameters f_1,\ldots,f_d , the image of Δ in $R/(f_1,\ldots,f_d)$ generates the socle?

Remark 11 Condition (2) of Teter's theorem is equivalent by Lemma 27 to (2'): there exists $E \xrightarrow{f} \mathfrak{m}_R$ such that for every u and v in E, f(u)(v) = f(v)(u).

Proof of Theorem: $(1) \Rightarrow (2)$ follows from Teter's theorem and (2').

To prove $(2) \Rightarrow (1)$, given $f: E \longrightarrow \mathfrak{m}_R$, we construct another $g: E \longrightarrow \mathfrak{m}_R$ such that g(u)(v) = g(v)(u) and then invoke Teter's theorem to conclude the proof.

Let us postpone the proof of $(2) \Rightarrow (1)$ until the end of the following

Discussion: We will construct an involution \sim on $E^* = \operatorname{Hom}_R(E, R)$. Let $f \in \operatorname{Hom}_R(E, R)$. Fix $u \in E$. Consider $\phi_{f,u} : E \to E$ defined by $\phi_{f,u}(v) = f(v) \cdot u$. Since $\operatorname{Hom}_R(E, E) \simeq R$, there is an element $r_{f,u} \in R$ such that $\phi_{f,u}(v) = r_{f,u} \cdot v$.

Define $\tilde{f}: E \to R$ by $\tilde{f}(u) = r_{f,u}$. Verify that $\tilde{f} \in E^*$. Note that for every u and v in E, we have

$$\tilde{f}(u)v = r_{f,u}(v) = \phi_{f,u}(v) = f(v)u$$
 Property P.

Also note that $\tilde{\tilde{f}} = f$. This happens due to Property P. In particular, $E^* \stackrel{\sim}{\to} E^*$ is an isomorpism and $(\sim)^2 = Id$. So \sim is an involution.

Proof of (2) \Rightarrow (1): Let $g = f + \tilde{f}$. Note that for every u, v in E, $g(u)v = f(u)v + \tilde{f}(u)v = \tilde{f}(v)u + f(v)u$ by Property P. Hence

$$g(u)v = g(v)u$$
 for every $u, v \in E$.

To prove g is onto, it suffices to prove that $\lambda(\operatorname{Ker}(g)) = 1$, since $\lambda(E) = \lambda(R) = \lambda(\mathfrak{m}_R) + 1$. So we need to prove that $\operatorname{Ker}(g) \subseteq \operatorname{soc}(E)$. Quick Remark: Note that

$$\mathfrak{m}_R(f(u)v - f(v)u) = 0$$
 for every $u, v \in E$.

This follows since $f(u)v - f(v)u \in \text{Ker}(f) = \text{soc}(E)$ (by counting lengths).

Let $u \in \text{Ker}(g)$. We will show that $u \in \text{soc}(E)$ which will finish the proof that g is surjective.

Case 1: $u \in \mathfrak{m}_R E$.

Write $u = \sum_i r_i u_i$, $r_i \in \mathfrak{m}_R$ and $u_i \in E$. Then for every $v \in E$,

$$f(u)v = (\sum r_i f(u_i))v = \sum (r_i f(u_i)v) = \sum (r_i u_i f(v)) = u f(v)$$

by the above remark. Hence $u \in \text{Ker}(g)$ implies that for every $v \in E$,

$$0 = g(u)v = f(u)v + \tilde{f}(u)v = f(u)v + f(v)u = 2f(u)v.$$

Since $1/2 \in R$, f(u)v = 0 for every $v \in E$. But E is faithful, hence f(u) = 0, i.e. $u \in \text{Ker}(f) = \text{soc}(E)$.

Case 2: $u \notin \mathfrak{m}_R E$.

We will show that this contradicts $soc(R) \subseteq \mathfrak{m}_R^2$.

Claim: $\mathfrak{m}_R^2 u = 0$.

Let $r \in \mathfrak{m}_R$. Then $ru \in \operatorname{Ker}(g)$ and $ru \in \mathfrak{m}_R E$. By case 1, this gives us $ru \in \operatorname{soc}(E)$ which implies that $\mathfrak{m}_R^2 u = 0$. The proof is complete using the following lemma.

Lemma 29 A minimal generator $u \in E$ such that $\mathfrak{m}_R^2 u = 0$ corresponds to a socle element $x \in \operatorname{soc}(R)$ such that $x \notin \mathfrak{m}_R^2$.

Proof: We have $u \in 0 :_E \mathfrak{m}_R^2 \simeq \operatorname{Hom}_R(R/\mathfrak{m}_R^2, E) = E_{R/\mathfrak{m}_R^2}(\mathsf{k})$. Consider the following where $J = 0 :_E \mathfrak{m}_R^2$:

Applying $\operatorname{Hom}_{R}(_, E)$, we get

Hence there is an element $x \in soc(R)$ such that $x \in \mathfrak{m}_R^2$.

§ 3.7 Gorenstein Rings in Arbitrary Dimensions

Definition 7 A Noetherian local ring (R, \mathfrak{m}, k, E) is Gorenstein if $id_R(R) < \infty$.

Remark 12 If R is Gorenstein, then so is $R_{\mathfrak{p}}$ for any prime ideal \mathfrak{p} in R. This is true due to the fact that if \mathbf{I}^{\bullet} is an injective resolution of R over R, then $\mathbf{I}^{\bullet}_{\mathfrak{p}}$ is an injective resolution of $R_{\mathfrak{p}}$ over $R_{\mathfrak{p}}$.

Thus we can define a Noetherian ring R to be Gorenstein if and only if $R_{\mathfrak{p}}$ is Gorenstein for every prime ideal \mathfrak{p} in R (or equivalently $R_{\mathfrak{m}}$ is Gorenstein for every maximal ideal \mathfrak{m} in R).

Minimal Injective Resolutions

Let R be a Noetherian ring and M be an R-module.

Definition 8 We say that an injective resolution $0 \to M \to I^0 \stackrel{\phi_0}{\to} I^1 \stackrel{\phi_1}{\to} \dots$ of M over R is minimal if

$$E_R(I^i/\phi_{i-1}(I^{i-1})) \simeq I^{i+1}.$$

The following theorem gives a homological criterion for an injective resolution to be minimal.

Theorem 30 Let R be a Noetherian ring and $M \subseteq I$ R-modules where I is injective. Then $I \simeq E_R(M)$ if and only if for every \mathfrak{p} in $\operatorname{Spec}(R)$ the map $\theta_{\mathfrak{p}}$: $\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), M_{\mathfrak{p}}) \to \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}})$ is an isomorphism.

Remark 13 Note that $\theta_{\mathfrak{p}}$ is always injective since localization is exact and Hom is left exact. The advantage of the theorem is that it is a local property. The disadvantage, however, is that we need to check the condition for every prime ideal \mathfrak{p} in R.

Proof of Theorem 30: Suppose $I = E_R(M)$ so that $M \subseteq I$ is essential. By remark 13 we need to show that $\theta_{\mathfrak{p}} : \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), M_{\mathfrak{p}}) \to \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}})$ is surjective for every \mathfrak{p} in $\operatorname{Spec}(R)$.

Fix \mathfrak{p} in Spec(R) and a homomorphism $\phi \in \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}}) \simeq (\operatorname{Hom}_{R}(R/\mathfrak{p}, I))_{\mathfrak{p}}$. Suppose $\phi \neq 0$. Choose $\psi : R/\mathfrak{p} \to I$ and $s \notin \mathfrak{p}$ such that $\psi/s = \phi$. Then $\psi \neq 0$. Let $\psi(\bar{1}) = z$. Since $M \subseteq I$ is essential, $Rz \cap M \neq 0$. Let r be an element in R such that $rz \in M$, $rz \neq 0$. This forces $r \notin \mathfrak{p}$. Let $\chi : R/\mathfrak{p} \to M$ be defined by $\bar{1} \mapsto rz$. Then $s\chi/sr \in \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), M_{\mathfrak{p}})$. We claim that $s\chi/sr = \phi$. This is true since $\phi(\bar{1}) = z/1$ and $s\chi/sr(\bar{1}) = z/1$.

Conversely suppose that $\theta_{\mathfrak{p}}$ is an isomorphism for each \mathfrak{p} in $\operatorname{Spec}(R)$. Let N be a non-zero submodule of I. We want to prove that $N \cap M \neq 0$. Let $\mathfrak{p} \in Ass_R(N)$. Then we have $R/\mathfrak{p} \hookrightarrow N \hookrightarrow I$. Let $\bar{1} \mapsto z$ in N under the map. This extends to a map $\phi : \kappa(\mathfrak{p}) \to I_{\mathfrak{p}}$ defined by $1 \mapsto z/1$. Choose $\psi : \kappa(\mathfrak{p}) \to M_{\mathfrak{p}}$ such that $\theta_{\mathfrak{p}}(\psi) = \phi$.

It follows that $z/1 \in M_{\mathfrak{p}}$ which implies that there is an $s \notin \mathfrak{p}$ such that $sz \in M$. Since $\mathfrak{p} = \operatorname{ann}_R(z)$, $sz \neq 0$ i.e. $sz \in M \cap N$ is a non-zero element. Thus I is essential over M.

Corollary 31 Let R be a Noetherian ring, M an R-module and

$$\mathbf{I}^{\bullet} : 0 \to M \to I^0 \to I^1 \to \dots$$

be an injective resolution of M over R. Then \mathbf{I}^{\bullet} is minimal if and only if the maps $\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}}^n) \to \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}}^{n+1})$ are zero for each n and \mathfrak{p} in $\operatorname{Spec}(R)$.

Proof: Let $N_n = \operatorname{Ker}(I^n \to I^{n+1})$. Then by definition, \mathbf{I}^{\bullet} is minimal if and only if $I^n \simeq E_R(N_n)$. By Theorem 30, this happens if and only if $\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), (N_n)_{\mathfrak{p}}) \stackrel{\sim}{\to} \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}}^n)$ for each n and \mathfrak{p} in $\operatorname{Spec}(R)$.

Localize the left exact sequence $0 \to N_n \to I^n \to I^{n+1}$ at \mathfrak{p} and apply $\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), _)$. Using the facts that localization is flat and Hom is left-exact, the sequence $0 \to \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), (N_n)_{\mathfrak{p}}) \to \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}}^n) \to \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}}^{n+1})$ is exact. Hence

$$\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), (N_n)_{\mathfrak{p}}) \simeq \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}}^n) \Leftrightarrow \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), (I^n)_{\mathfrak{p}}) \xrightarrow{0} \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}}^{n+1})$$
 proving the result.

Definition 9 Let R be a Noetherian ring, \mathfrak{p} a prime ideal in R and M an R-module. Then the Bass numbers $\mu_j(\mathfrak{p}; M)$ are defined to be $\dim_{\kappa(\mathfrak{p})}(\operatorname{Ext}_{R_{\mathfrak{p}}}^j(\kappa(\mathfrak{p}), M_{\mathfrak{p}}))$ for each $j \geq 0$.

Corollary 32 Let R be Noetherian, M be an R-module and $0 \to M \to I^0 \to I^1 \to \dots$ be a minimal resolution of M. Write $I^j = \bigoplus E_R(R_{\mathfrak{p}})^{a_j(\mathfrak{p})}$. Then $a_j(\mathfrak{p}) = \mu_j(\mathfrak{p}; M)$.

Proof: We have $\operatorname{Ext}_{R_{\mathfrak{p}}}^{j}(\kappa(\mathfrak{p}), M_{\mathfrak{p}}) = H^{j}(\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), \mathbf{I}_{\mathfrak{p}}^{\bullet}))$. By Cor. 31, the differentials are 0. Hence $\operatorname{Ext}_{R_{\mathfrak{p}}}^{j}(\kappa(\mathfrak{p}), M_{\mathfrak{p}}) \simeq \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}}^{j})$ where $I_{\mathfrak{p}}^{j} = \bigoplus (E_{R}(R_{\mathfrak{p}})_{\mathfrak{p}})^{a_{j}(\mathfrak{p})}$. But by Prop. 14,

$$\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), E_{R}(R/\mathfrak{q})_{\mathfrak{p}}) = \begin{cases} \kappa(\mathfrak{p}) \text{ for } \mathfrak{p} = \mathfrak{q} \\ 0 \text{ for } \mathfrak{p} \neq \mathfrak{q} \end{cases}$$

which proves the corollary.

Corollary 33 If M is finitely generated, then $\mu_j(\mathfrak{p}; M)$ is finite for every $j \geq 0$ and \mathfrak{p} in $\operatorname{Spec}(R)$.

Proof: The proof follows since $\operatorname{Ext}_{R_{\mathfrak{p}}}^{i}(\kappa(\mathfrak{p}), M_{\mathfrak{p}})$ can be computed from a minimal projective resolution of $\kappa(\mathfrak{p})$ and the fact that these modules are finitely generated over $R_{\mathfrak{p}}$.

To Paraphrase: For an R-module M, given any \mathfrak{p} in $\operatorname{Spec}(R)$, $\mu_i(\mathfrak{p}:M)$ is the number of copies of $E_R(R/\mathfrak{p})$ at the ith spot in a minimal resolution of M over R. Moreover, if M is finitely generated, then $\mu_i(\mathfrak{p}:M)$ is finite.

Lemma 34 (Bass) Let R be a Noetherian ring and M a finitely generated R-module. Let $\mathfrak{p} \subseteq \mathfrak{q}$ be prime ideals in R such that $\operatorname{ht}(\mathfrak{q}/\mathfrak{p}) = 1$. If $\mu_i(\mathfrak{p}, M) \neq 0$, then $\mu_{i+1}(\mathfrak{q}, M) \neq 0$.

Proof: Localizing at \mathfrak{q} , we may assume that R is a local ring with maximal ideal $\mathfrak{q} = \mathfrak{m}$. Choose $x \in \mathfrak{m} \setminus \mathfrak{p}$. Consider the short exact sequence $0 \to R/\mathfrak{p} \stackrel{\cdot x}{\to} R/\mathfrak{p} \to R/(\mathfrak{p}, x) \to 0$. Apply $\operatorname{Hom}_R(_, M)$ to get

$$\ldots \to \operatorname{Ext}_R^i(R/\mathfrak{p}, M) \xrightarrow{\cdot x} \operatorname{Ext}_R^i(R/\mathfrak{p}, M) \to \operatorname{Ext}_R^{i+1}(R/(\mathfrak{p}, x), M) \to \ldots$$

By NAK, $\operatorname{Ext}_R^{i+1}(R/(\mathfrak{p},x),M) \neq 0$.

Since $\operatorname{ht}(\mathfrak{m}/\mathfrak{p})=1,\ \sqrt{(\mathfrak{p},x)}=\mathfrak{m}$, so we filter $R/(\mathfrak{p},x)$ with copies of $\mathsf{k}=R/\mathfrak{m}$. Hence if $\operatorname{Ext}_R^{i+1}(\mathsf{k},M)=0$, then so is $\operatorname{Ext}_R^{i+1}(R/(\mathfrak{p},x),M)$.

Corollary 35 Let M be a finitely generated module over a Noetherian local ring R. Then

$$id_R(M) = \sup\{I : \operatorname{Ext}_R^i(\mathbf{k}, M) \neq 0\}.$$

Thus at the last spot in a minimal injective resolution, $E_R(\mathbf{k})$ appears.

Proof: Let $0 \to M \to I^0 \to I^1 \to \dots$ be a minimal injective resolution of M over R. If $I^i \neq 0$, then there is a \mathfrak{p} in $\operatorname{Spec}(R)$ such that $\mu_i(\mathfrak{p}; M) \neq 0$. Then $\mu_{i+\operatorname{ht}(\mathfrak{m}/\mathfrak{p})}(\mathfrak{m}; M) \neq 0$ by Bass' Lemma. Hence $\operatorname{Ext}_R^{i+\operatorname{ht}(\mathfrak{m}/\mathfrak{p})}(\mathsf{k}, M) \neq 0$.

Some Applications

Theorem 36 A regular local ring R is Gorenstein.

Proof: Let $\dim(R) = d$. Let $\mathbf{I}^{\bullet}: 0 \to M \to I^{0} \to I^{1} \to \dots$ be a minimal injective resolution of M. Then we claim that $I^{n} = 0$ for n > d.

For every \mathfrak{p} in $\operatorname{Spec}(R)$, $\operatorname{pd}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p})) = \dim(R_{\mathfrak{p}}) \leq d$. Hence $\operatorname{Ext}_{R_{\mathfrak{p}}}^{n}(\kappa(\mathfrak{p}), R_{\mathfrak{p}}) = 0$ for n > d. Thus $\mu_{n}(\mathfrak{p}; R) = 0$ for n > d which implies that $\operatorname{id}_{R}(R) \leq d$, i.e. R is Gorenstein.

Observation: If R is a regular local ring, then $id_R(R) = \dim(R)$. From the proof of theorem 36, $id_R(R) \leq \dim(R)$. The other inequality follows from the fact that $\operatorname{Ext}_R^d(\mathsf{k},R) \neq 0$ (which follows from Bass' Lemma).

Theorem 37 Let $(R, \mathfrak{m}, \mathsf{k})$ be a Noetherian local ring, M a finitely generated Rmodule and x be an element in R which is a non-zerodivisor on both M and R. Then $\mathrm{id}_R(M) < \infty$ if and only if $\mathrm{id}_{R/xR}(M/xM) < \infty$.

Proof: Let \mathbf{I}^{\bullet} be a minimal injective resolution of M. Recall that this means $\operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}}^{n}) \stackrel{0}{\to} \operatorname{Hom}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}), I_{\mathfrak{p}}^{n+1})$ for every \mathfrak{p} in $\operatorname{Spec}(R)$. Apply $\operatorname{Hom}_{R}(R/xR, _)$ to \mathbf{I}^{\bullet} . Since $\operatorname{pd}_{R}(R/xR) = 1$, $\operatorname{Ext}_{R}^{i}(R/xR, M) = 0$ for $i \geq 2$ i.e. $\operatorname{Hom}_{R}(R/xR, I^{\geq 2})$ is an injective resolution of N over R/xR, where $N = \operatorname{Ker}(\operatorname{Hom}_{R}(R/xR, I^{2}) \to \operatorname{Hom}_{R}(R/xR, I^{3}))$. In fact, it is a minimal injective resolution.

To prove this we need to show that for every \mathfrak{p} in $\operatorname{Spec}(R/xR)$, the map

$$\operatorname{Hom}_{(R/xR)_{\mathfrak{p}}}(\kappa(\mathfrak{p}), \operatorname{Hom}_{R}(R/xR, I^{n})_{\mathfrak{p}}) \to \operatorname{Hom}_{(R/xR)_{\mathfrak{p}}}(\kappa(\mathfrak{p}), \operatorname{Hom}_{R}(R/xR, I^{n+1})_{\mathfrak{p}})$$

is zero for every $n \geq 2$. This is true since $\operatorname{Hom}_{(R/xR)_{\mathfrak{p}}}(\kappa(\mathfrak{p}), \operatorname{Hom}_R(R/xR, I^n)_{\mathfrak{p}}) \simeq \operatorname{Hom}_{R-\mathfrak{p}}(\kappa(\mathfrak{p}), I^n_{\mathfrak{p}})$ for all n by $\operatorname{Hom} - \otimes$ adjointness and the corresponding maps are 0 as noted before. The minimality proves that $\operatorname{id}_{R/xR}(N) < \infty$ if and only if $\operatorname{id}_R(M) < \infty$.

Note that $N = \Im(\operatorname{Hom}_R(R/xR, I^1) \to \operatorname{Hom}_R(R/xR, I^2))$ as $\operatorname{Ext}^2_R(R/xR, M) = 0$. Since $\operatorname{Ext}^0_R(R/xR, M) = 0$, we have the sequence $0 \to \operatorname{Hom}_R(R/xR, I^0) \overset{i}{\to} \operatorname{Hom}_R(R/xR, I^1) \overset{\pi}{\to} N \to 0$ which is exact on both ends. The middle homology is $\operatorname{Ext}^1_R(R/xR, M)$ (i.e. the only non-vanishing Ext is $\operatorname{Ext}^1_R(R/xR, M)$).

Let $Z = \text{Ker}(\pi)$ and $W = \text{Coker}(\pi)$ (i.e.

$$0 \to \operatorname{Hom}_R(R/xR, I^0) \xrightarrow{i} \operatorname{Hom}_R(R/xR, I^1) \to W \to 0$$

is exact). Let $E^i = \operatorname{Hom}_R(R/xR, I^i)$. Then $E^1/Z \simeq N$ and $E^1/E^0 \simeq W$. By Snake Lemma, we get a short exact sequence $0 \to Z/E^0 \to W \to N \to 0$ i.e. there is a short exact sequence $0 \to \operatorname{Ext}^1_R(R/xR, M) \to W \to N \to 0$.

Note that since $\mathrm{id}_{R/xR}(W) = \sup\{i : \mathrm{Ext}^i_{(R/xR)}(\mathsf{k},W) \neq 0\}$, W has finite injective dimension over R/xR. Thus we get the following equivalences:

$$\operatorname{id}_R(M) < \infty \Leftrightarrow \operatorname{id}_{R/xR}(N) < \infty \Leftrightarrow \operatorname{id}_{R/xR}(\operatorname{Ext}^1_R(R/xR, M)) < \infty.$$

Finally compute $\operatorname{Ext}^1_R(R/xR,M)$ from the projective resolution $0 \to R \xrightarrow{\cdot x} R \to R/xR \to 0$. Applying $\operatorname{Hom}_R(-,M)$ we get

$$0 \to \operatorname{Hom}_R(R/xR, M) \to M \xrightarrow{\cdot x} M \to \operatorname{Ext}^1_R(R/xR, M) \to \operatorname{Ext}^1_R(R, M) \to \dots$$

Since R is free, $\operatorname{Ext}_R^1(R,M)=0$. Moreover, $\operatorname{Hom}_R(R/xR,M)=0$ since x is a non-zerodivisor on M. Thus $\operatorname{Ext}_R^1(R/xR,M)\simeq M/xM$ proving the result. \square

Corollary 38 Let $(R, \mathfrak{m}, \mathsf{k})$ be a Noetherian local ring, x_1, \ldots, x_n a regular sequence in R. Then R is a Gorenstein ring if and only if $R/(x_1, \ldots, x_n)$ is Gorenstein.

Proof: The proof is immediate from theorem 37 by induction. \Box

Corollary 39 If R is a regular local ring and f_1, \ldots, f_n is a regular sequence, then $R/(f_1, \ldots, f_n)$ is Gorenstein i.e. a complete intersection ring is Gorenstein.

Proof: Using the fact that a regular local ring is Gorenstein, the statement follows from Cor. 38.

Theorem 40 Let R be a Gorenstein ring. Then R is Cohen-Macaulay.

Proof: Without loss of generality we may assume that $(R, \mathfrak{m}, \mathsf{k})$ is local. If R is zero-dimensional, then there is nothing to prove. Hence we may assume that $\dim(R) > 0$. Induct on $\dim(R)$. It is enough to prove that $\operatorname{depth}(R) > 0$, i.e. there is a non-zerodivisor x in R. This will imply that R/xR is Gorenstein and hence Cohen-Macaulay, by induction which in turn forces R to be Cohen-Macaulay.

Suppose depth(R) = 0. There exists a short exact sequence $0 \to k \to R \to N \to 0$. Applying $\operatorname{Hom}(_-,R)$ (and noting that $\operatorname{Ext}_R^i(R,R) = 0$ for i > 0) we get $\operatorname{Ext}_R^i(k,R) \simeq \operatorname{Ext}_R^{i+1}(N,R)$ for i > 0. If $t = \operatorname{id}_R(R)$, $\operatorname{Ext}_R^t(k,R) \neq 0$ by Bass' Lemma and hence $\operatorname{Ext}_R^{t+1}(N,R) \neq 0$, which is impossible since $\operatorname{id}_R(R) = t$.

Note that we need t > 0 to use the fact that $\operatorname{Ext}_R^t(R,R) = 0$. We will show that t = 0 forces $\dim(R) = 0$ which will complete the proof. If t = 0, then R is injective as a module over itself. Hence $R \simeq \bigoplus E_R(R/\mathfrak{p})^{a(\mathfrak{p})}$. But by Cor. 35, $a(\mathfrak{m}) \neq 0$. Thus by counting lengths, we see that $a(\mathfrak{p}) = 0$ for $\mathfrak{p} \neq \mathfrak{m}$ and $a(\mathfrak{m}) = 1$, i.e. $R \simeq E_R(\mathsf{k})$ which implies that R is Artinian.

Let us prove an analogue of the Auslander-Buchsbaum formula which has plenty of applications. We will henceforth refer to it as **Formula 1**.

Theorem 41 (Formula 1) Let M and N be finitely generated modules over a Noetherian local ring $(R, \mathfrak{m}, \mathsf{k})$ such that $\mathrm{id}_R(M) < \infty$. Then

$$\operatorname{depth}(N) + \sup\{i : \operatorname{Ext}_R^i(N, M) \neq 0\} = \operatorname{id}_R(M).$$

Proof: Set $t := id_R(M)$. Induct on depth(N). Let depth(N) = 0.

Note that the formula is true for $N=\mathsf{k}$ by Cor. 35 since $\operatorname{depth}(\mathsf{k})=0$. Since $\operatorname{depth}(N)=0$, we have a short exact sequence $0\to\mathsf{k}\to N\to N'\to 0$. Apply $\operatorname{Hom}_R(\Blue,M)$ to get

$$\ldots \longrightarrow \operatorname{Ext}_R^t(N,M) \longrightarrow \operatorname{Ext}_R^t(\mathsf{k},M) \longrightarrow \operatorname{Ext}_R^{t+1}(N',M) \longrightarrow \ldots$$

As observed before, $\operatorname{Ext}_R^t(\mathsf{k},M) \neq 0$ by Cor. 35 and $\operatorname{Ext}_R^{t+1}(N',M) = 0$ since $\operatorname{id}_R(M) = t$. Hence $\operatorname{Ext}_R^t(N,M) \neq 0$.

Suppose depth(N) > 0. Choose x in \mathfrak{m} , a non-zerodivisor on N. Applying $\operatorname{Hom}_R(_, M)$ to the short exact sequence $0 \to N \xrightarrow{x} N \to N/xN \to 0$ we get

$$\ldots \longrightarrow \operatorname{Ext}_R^i(N,M) \xrightarrow{\cdot x} \operatorname{Ext}_R^i(N,M) \longrightarrow \operatorname{Ext}_R^{i+1}(N/xN,M) \longrightarrow \ldots$$

By NAK, $\sup\{i : \operatorname{Ext}_R^i(N,M) \neq 0\} = \sup\{i : \operatorname{Ext}_R^i(N/xN,M) \neq 0\} - 1$. Since $\operatorname{depth}(N/xN) = \operatorname{depth}(N) - 1$, the formula is true for N/xN by induction and hence for N.

Theorem 42 Let $(S, \mathfrak{m}_S, \mathsf{k})$ be a regular local ring of dimension n. Let $R \simeq S/I$, where I is an ideal of height h in S. Then the following are equivalent:

- 1. R is Gorenstein.
- 2. R is Cohen-Macaulay and $b_h = 1$ where $b_i = \dim_{\mathsf{k}}(\mathrm{Tor}_i^S(\mathsf{k},R))$ for all i.
- 3. $b_h = 1$.

Proof: It is clear that (2) implies (3). For the converse, we need to show that R is Cohen-Macaulay. By the Auslander-Buchsbaum formula, $\operatorname{pd}_S(R) + \operatorname{depth}(R) = \operatorname{depth}(S) = n$. We know that $\operatorname{dim}(R) = n - h =: d$. In order to prove that R is Cohen-Macaulay, it is enough to show $\operatorname{pd}_S(R) = h$ i.e. $b_i = 0$ for every i > h + 1. Consider a minimal free resolution of R over S:

$$\mathbf{F}_{\bullet}: \ldots S^{b_{h+1}} \to S \xrightarrow{\phi_h} S^{b_{h-1}} \xrightarrow{\phi_{h-1}} \ldots \to S^{b_1} \to S \to R \to 0.$$

Let $\phi(1) = (a_1, \ldots, a_{b_{h-1}})^T$. This vector is not zero since it spans $\operatorname{Ker}(\phi_{h-1})$. (Note that $\operatorname{Ker}(\phi_{h-1})$ is non-zero since \mathbf{F}_{\bullet} is a minimal free resolution of R over S and by the Auslander-Buchsbaum formula, $\operatorname{pd}_S(R) \geq h$). Since S is a domain, this implies that $\operatorname{Ker}(\phi_h) = 0$. Hence $b_i = 0$ for i > h.

(1) \Leftrightarrow (2): By theorem 40, if R is Gorenstein then it is Cohen-Macaulay. Hence, we may assume that R is Cohen-Macaulay and then prove R is Gorenstein if and only if $b_h = 1$. Since R is Cohen-Macaulay, there is a R-regular sequence x_1, \ldots, x_d in S. Then $Tor_i^S(S/(x_1, \ldots, x_d)S), R) = 0$ for every i > 0. Therefore by tensoring a minimal resolution of R over S by $S/(x_1, \ldots, x_d)S$, we see that $b_i^S(R) = b_i^{S/(x_1, \ldots, x_d)S}(R/(x_1, \ldots, x_d)R)$. We may assume that (without loss of generality) $S/(x_1, \ldots, x_d)S$ is a regular local ring.

This reduces the problem to the case where $d = \dim(R) = 0$. In this case, by theorem 19, we know that R is Gorenstein if and only if $b_h = 1$.

Warning:

1. In (2) implies (3), we need S to be a domain. Let $S = \mathsf{k}[X,Y]/(XY)$. Then we have the linear resolution

$$\dots \xrightarrow{x} S \xrightarrow{y} S \xrightarrow{x} S \xrightarrow{y} \dots$$

2. Let $S = \mathsf{k}[X,Y,U,V]$, $I = (X,Y) \cap (U,V) = (XU,XV,YU,YV)$. Then $\mathsf{ht}(I) = 2$. Then $0 \to S \to S^4 \to S^4 \to S \to S/I \to 0$ is a minimal resolution of S/I over S. In this case $b_3 = 1$, but S/I is not Gorenstein, in fact not even Cohen-Macaulay. Observe that $b_2 = 4$, $b_2 \neq 1$.

§ 3.8 Fibers of Flat Maps

Theorem 43 Let $(R, \mathfrak{m}_R, \mathsf{k}) \stackrel{\phi}{\to} (S, \mathfrak{m}_S, \mathfrak{l})$ be a flat local homomorphism of rings. Then

- 1. $\dim(S) = \dim(R) + \dim(S/\mathfrak{m}_R S)$.
- 2. If $\mathfrak{m}_R S = \mathfrak{m}_S$, then for an R-module M of finite length, $\lambda_R(M) = \lambda_S(M \otimes_R S)$.
- 3 If z_1, \ldots, z_n is a regular sequence on $S/\mathfrak{m}_R S$, then z_1, \ldots, z_n is S-regular and $R \longrightarrow S/(z_1, \ldots, z_n)$ is flat.
- 4. $\operatorname{depth}(R) + \operatorname{depth}(S/\mathfrak{m}_R S) = \operatorname{depth}(S)$.
- 5. S is Cohen-Macaulay iff R and S/\mathfrak{m}_RS are both Cohen-Macaulay.
- 6. S is Gorenstein iff R and S/\mathfrak{m}_RS are both Gorenstein.

Note that since ϕ is flat and local (i.e. $\phi(\mathfrak{m}_R) \subseteq \mathfrak{m}_S$), ϕ is injective and hence the extension $R \stackrel{\phi}{\to} S$ is faithfully flat.

Warning: The analogue of (5) (or (6)) by replacing Cohen-Macaulay (or Gorenstein) by "regular" is not true. as can be seen from the following example.

Example 11 The extension $R := \mathsf{k}[[X^2]] \longrightarrow \mathsf{k}[[X]] =: S$ is flat (where X is an indeterminate). Both R and S are regular but $S/\mathfrak{m}_R S \simeq \mathsf{k}[[X]]/(X^2)$ is not regular.

However, if R and $S/\mathfrak{m}_R S$ are both regular, then so is S.

Proof of Theorem 43:

(1) Induct on $\dim(R)$. Suppose $\dim(R) = 0$. Then \mathfrak{m}_R is nilpotent. Hence $\mathfrak{m}_R S$ is nilpotent which implies $\dim(S) = \dim(S/\mathfrak{m}_R S)$.

Suppose $\dim(R) > 0$. Without loss of generality, we may assume that R is reduced by replacing R by R/N and S by S/NS, where N is the nilradical of R. Note that the extension $R \longrightarrow S$ is still flat. This is due to the fact that if $R \longrightarrow S$ is flat, T is any R-algebra, then $T \longrightarrow T \otimes_R S$ is also flat. Also note that going modulo N leaves the respective dimensions unchanged.

Let x be a non-zerodivisor on R. By tensoring $0 \to R \xrightarrow{\cdot x} R$ with S, we see that $y := \phi(x)$ is a non-zerodivisor on S. This gives us $\dim(R/xR) = \dim(R) - 1$ and $\dim(S/yS) = \dim(S) - 1$. The proof is complete by using induction on the extension $R/xR \longrightarrow S/yS$.

(2) Without loss of generality suppose $n := \lambda_R(M) < \infty$. Fix a filtration

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$$
 where $M_{i+1}/M_i \simeq R/\mathfrak{m}_R$.

Tensoring with S gives us

$$0 = M_0 \otimes_R S \subseteq M_1 \otimes_R S \subseteq \cdots \subseteq M_n \otimes_R S = M \otimes_R S$$

where
$$M_{i+1} \otimes_R S/M_i \otimes_R S \simeq R/\mathfrak{m}_R \otimes_R S \simeq S/\mathfrak{m}_R S = S/\mathfrak{m}_S$$
.

Hence $\lambda_S(M \otimes_R S) = n$.

(3) We just need to prove the case n = 1. The statement follows for n > 1 by applying induction to the extension $R \to S/z_1S$.

Let z be a non-zerodivisor on $S/\mathfrak{m}_R S$. By tensoring the short exact sequence $0 \to \mathfrak{m}_R^n/\mathfrak{m}_R^{n+1} \to R/\mathfrak{m}_R^n \to R/\mathfrak{m}_R^n \to 0$ with S, we get the short exact sequence

$$0 \to \mathfrak{m}_R^n/\mathfrak{m}_R^{n+1} \otimes_R S \to R/\mathfrak{m}_R^{n+1} \otimes_R S \to R/\mathfrak{m}_R^n \otimes_R S \to 0.$$

If $\dim_{\mathsf{k}}(\mathfrak{m}^n/\mathfrak{m}^{n+1})=d_n$, then $\mathfrak{m}_R^n/\mathfrak{m}_R^{n+1}\otimes_R S\simeq (S/\mathfrak{m}_RS)^{\oplus d_n}$. Hence we have the short exact sequence

$$0 \to (S/\mathfrak{m}_R S)^{\oplus d_n} \to S/\mathfrak{m}_R^{n+1} S \to S/\mathfrak{m}_R^n S \to 0.$$

By induction on n, we see that z is a non-zerodivisor on $S/\mathfrak{m}_R^n S$ for each n. Now if $u \in S$ is such that $z \cdot u = 0$, then $u \in \bigcap_{n=0}^{\infty} \mathfrak{m}_R^n S = (0)$ by the Krull Intersection theorem. Hence z is a non-zerodivisor on S.

Now we need to prove that $R \longrightarrow S/zS$ is flat. It is enough to show that $\operatorname{Tor}_1^R(M, S/zS) = 0$ for every finitely generated module M. By taking a prime filtration of M, we may assume that $M = R/\mathfrak{p}$ for some prime ideal \mathfrak{p} in R.

Consider the short exact sequence $0 \to S \xrightarrow{z} S \to S/zS \to 0$. Since S is flat over R, $\operatorname{Tor}_1^R(R/\mathfrak{p}, S) = 0$. Hence the induced long exact sequence on homology gives

$$0 \to \operatorname{Tor}_1^R(R/\mathfrak{p}, S/zS) \to S/\mathfrak{p}S \stackrel{\cdot z}{\to} S/\mathfrak{p}S \to S/(z,\mathfrak{p})S \to 0.$$

Since the map $R/\mathfrak{p}R \to S/\mathfrak{p}S$ is flat and the closed fiber (i.e. the ideals over the maximal ideal) of $R \to S$ and $R/\mathfrak{p} \to S/\mathfrak{p}S$ are the same, by the first part of (3) z is a non-zerodivisor on $S/\mathfrak{p}S$. This forces $\mathrm{Tor}_1^R(R/\mathfrak{p}, S/zS) = 0$.

(4) Choose a maximal regular sequence x_1, \ldots, x_s in R. By flatness of S over R, their images in S form an S-regular sequence. Hence by passing to $R/(x_1, \ldots, x_s)$ and $S/(x_1, \ldots, x_s)S$, we may assume that $\operatorname{depth}(R) = 0$.

Choose a regular sequence z_1, \ldots, z_t in S, which is a maximal regular sequence on $S/\mathfrak{m}_R S$. This is possible by (3). We can replace S by $S/(z_1, \ldots, z_t)$ and assume that $\operatorname{depth}(S/\mathfrak{m}_R)S = 0$. Thus (4) is reduced to proving $\operatorname{depth}(S) = 0$ assuming $\operatorname{depth}(R) = 0$ and $\operatorname{depth}(S/\mathfrak{m}_R S) = 0$.

Now depth(R) = 0 implies that $\mathsf{k} \hookrightarrow R$. Tensoring with S, we see that $S/\mathfrak{m}_R S \hookrightarrow S$. But depth $(S/\mathfrak{m}_R S) = 0$ implies $\mathfrak{l} \hookrightarrow S/\mathfrak{m}_R S$. Thus $\mathfrak{l} \hookrightarrow S$ which forces depth(S) = 0.

- (5) = (1) + (4) which is a very well-known fact.
- (6) Whichever direction we want to prove, by (5) we can assume that R, S and $S/\mathfrak{m}_R S$ are Cohen-Macaulay, since we know that Gorenstein rings are Cohen-Macaulay.

By using the same reductions as in (4), without loss of generality we may assume that depth(R) = 0 = depth(S) and hence dim(R) = 0 = dim(S) since they are both Cohen-Macaulay. We need to prove that

$$\dim_{\mathfrak{l}}(\operatorname{soc}(S)) = 1 \Leftrightarrow \dim_{\mathsf{k}}(\operatorname{soc}(R)) = 1 \text{ and } \dim_{\mathfrak{l}}(\operatorname{soc}(S/\mathfrak{m}_R S)) = 1.$$

Let $r = \dim_{\mathsf{k}}(\mathrm{soc}(R))$, $f = \dim_{\mathsf{l}}(\mathrm{soc}(S/\mathfrak{m}_RS))$ and $s = \dim_{\mathsf{l}}(\mathrm{soc}(S))$. Then $\mathsf{k}^r \hookrightarrow R$. By tensoring with S, we get $(S/\mathfrak{m}_RS)^r \hookrightarrow S$. Since $\mathfrak{l}^f \hookrightarrow S/\mathfrak{m}_RS$, we have $\mathfrak{l}^{rf} \hookrightarrow S$. Hence $s \geq rf$. This proves that if S is Gorenstein, then so are R and S/\mathfrak{m}_RS .

We have $0:_R \mathfrak{m}_R \simeq \mathsf{k}^r$. Hence by flatness, $0:_S \mathfrak{m}_R S \simeq (S/\mathfrak{m}_R S)^r$. We also have $0:_S \mathfrak{m}_S \simeq \mathfrak{l}^s$. Since $\mathfrak{m}_R S \subseteq \mathfrak{m}_S$, $0:_S \mathfrak{m}_S \subseteq 0:_S \mathfrak{m}_R S$.

Now $0:_S \mathfrak{m}_S \simeq 0:_{0:_S \mathfrak{m}_R S} \mathfrak{m}_S \simeq 0:_{(S/\mathfrak{m}_R S)^r} \mathfrak{m}_S$. Since $0:_{S/\mathfrak{m}_R S} \mathfrak{m}_S \simeq \mathfrak{l}^f$, we see that $\mathfrak{l}^s \simeq 0:_S \mathfrak{m}_S \simeq 0:_{(S/\mathfrak{m}_R S)^r} \mathfrak{m}_S \simeq \mathfrak{l}^{rf}$. Hence s=rf.

Corollary 44 Let $(R, \mathfrak{m}, \mathsf{k})$ be a Noetherian local ring. Then R is Gorenstein if and only if \widehat{R} is Gorenstein.

Proof: The proof is immediate from (6) in Theorem 40 since $\widehat{R}/\mathfrak{m}\widehat{R} \simeq \widehat{R}/\widehat{\mathfrak{m}}$ is Gorenstein.

Corollary 45 If R is Gorenstein, then so is $R[X_1, ..., X_n]$.

Proof: By induction on n, we need to prove that R[X] is Gorenstein if R is. Let $Q \in \operatorname{Spec}(R[X])$ and $\mathfrak{q} = Q \cap R$. Since $(R[X])_Q \simeq (R_{\mathfrak{q}}[X])_Q$, without loss of generality we may assume that (R,\mathfrak{m}) is a local Gorenstein ring and $Q \cap R \simeq \mathfrak{m}$. Since $(R,\mathfrak{m}) \to (R[X])_Q$ is local and flat, to prove that $(R[X])_Q$ is Gorenstein, it is necessary and sufficient to prove that $(R[X]/\mathfrak{m}R[X])_Q$ is Gorenstein. But $(R[X]/\mathfrak{m}R[X])_Q \simeq k[X]_Q$ is Gorenstein (since k[X] is a P.I.D).

Exercises

- (1) Let R be a commutative Noetherian ring. Prove that the injective hull E(R) of R is a flat R-module iff the tensor product of any two injective R-modules is injective.
- (2) Let R be a commutative Noetherian ring. Prove that the injective hull E(R) of R is a flat R-module iff R_p is Gorenstein for all minimal primes p of R.
- (3) Let $(R, \mathfrak{m}, \mathsf{k})$ be a Noetherian complete local ring. By $^{\vee}$ denote $\operatorname{Hom}_R(\ , E)$ where E is the injective hull of k , the residue field of R. Prove that an R-module M satisfies $M \simeq M^{\vee\vee}$ (under the natural map) iff M has a finitely generated submodule N such that M/N is Artinian.
- (4) Let $(R, \mathfrak{m}, \mathsf{k})$ be a 1-dimensional regular local ring with quotient field K and $E = E_R(\mathsf{k})$. Let L be the fraction field of the completion of R. Prove that $L \simeq \operatorname{Hom}_R(\mathsf{K}, E)$.
- (5) Let $(R, \mathfrak{m}, \mathsf{k}), \mathsf{K}$, and E be as in exercise 4. Prove that $\operatorname{Ext}^1_R(E, R) \simeq R$. Prove that the extension $0 \to R \to \mathsf{K} \to E \to 0$ generates $\operatorname{Ext}^1_R(E, R)$.
- (6) Define a module M over a commutative Noetherian local ring $(R, \mathfrak{m}, \mathsf{k}, E)$ to be <u>Matlis reflexive</u> if $M \simeq M^{\vee\vee}$ under the natural map where $^{\vee}$ is $\mathrm{Hom}_R(\quad, E)$. Let M, N be Matlis reflexive R-modules. Prove that for all $i \geq 0$, $\mathrm{Ext}_R^i(M, N)$ and $\mathrm{Tor}_i^R(M, N)$ are also Matlis reflexive and

$$\operatorname{Ext}_R^i(M,N)^{\vee} \simeq \operatorname{Tor}_i^R(M,N^{\vee}).$$

- (7) Let R be a local Gorenstein ring, and let $I \subseteq J$ be two ideals of height 0. Assume that $\dim(R) = 1$ and R/I is Cohen-Macaulay. If (0:J) + J = (I:J) + J and this ideal has positive height, then I = 0.
- (8) Let R be a local commutative Noetherian ring and let M be an Artinian Rmodule. Let $f \in \operatorname{Hom}_R(M, M)$. If $\operatorname{Ker} f$ has finite length, prove that $\operatorname{Coker} f$ has finite length and

$$\lambda(\operatorname{Ker} f) \ge \lambda(\operatorname{Coker} f).$$

(9) Let (R, \mathfrak{m}) be a Gorenstein ring, and suppose that I is an ideal in R such that R/I is Gorenstein. Let $g \in R$, $g \notin I$. Prove that R/(I:g) is Gorenstein if and only if R/(I:(I:g)) is Cohen-Macaulay.

- (10) Let R be a commutative Noetherian ring. If G is a flat R-module and I is an injective R-module, prove that $\operatorname{Hom}_R(G,I)$ is an injective R-module.
- (11) Let $(R, \mathfrak{m}, \mathsf{k})$ be a complete Gorenstein local ring of dimension d. Set E equal to an injective hull of the residue field k . Prove that $\operatorname{Ext}_R^d(E,R) \simeq R$, and $\operatorname{Ext}_R^i(E,R) = 0$ for $i \neq d$.
- (12) Let (R, \mathfrak{m}) be a 0-dimensional Noetherian local ring with E = an injective hull of R/\mathfrak{m} , and $\vee = \operatorname{Hom}_R(\quad, E)$. Show that the following statements are equivalent for an ideal $I \subseteq R$.
 - (a) $I \simeq I^{\vee}$
 - (b) There is an exact sequence

$$0 \to T \to E \to I \to 0$$

such that IT = 0.

- (13) Let I be an \mathfrak{m} -primary ideal in a Noetherian local ring $(R, \mathfrak{m}, \mathsf{k}, E)$, and write I an an intersection of t distinct irreducible ideal, irredundantly. Prove that $E_R(R/I) \cong E^t$.
- (14) Let R be a Noetherian local ring. Prove that an R-module M is Artinian iff M is an essential extension of its socle and its socle is finite-dimensional.
- (15) Let $(R, \mathfrak{m}, \mathsf{k}, E)$ be an Artinian local ring. Let M be a finitely generated Rmodule. Prove that $\mu(M) = \dim_{\mathsf{k}}(\operatorname{soc}(M^{\vee}))$.
- (16) Show that $\mathbb{Q}/\mathbb{Z} \cong \oplus E_{\mathbb{Z}}(\mathbb{Z}/p\mathbb{Z})$, where the sum ranges over all prime integers p.
- (17) Let R be a Noetherian ring. Prove that the following two conditions are equivalent:
 - (a) R is a Gorenstein ring.
 - (b) For every finitely generated R-module M, there exists an integer n, depending on M, such that $\operatorname{Ext}_R^i(M,R)=0$ for all $i\geq n$.
- (18) Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring. The type of R is by definition the type of the Artinian ring $R/(x_1,...,x_d)$, where $x_1,...,x_d$ is a system of parameters. Prove this is well-defined.

- (19) Let $(R, \mathfrak{m}, \mathsf{k}, E)$ be an Artinian local ring. We know that both R and E are faithful R-modules, both having the same length. Either prove or give a counterexample to the following claim: If M is a finitely generated faithful R-module, then the length of M is at least the length of R.
- (20) Let $(R, \mathfrak{m}, \mathsf{k}, E)$ be an Artinian local ring. Make a ring out of $S = R \oplus E$ by component-wise addition and multiplication as follows:

$$(r, u)(s, v) = (rs, rv + su).$$

Prove that S is a Gorenstein local ring which maps onto R.

- (21) Let (R, \mathfrak{m}) be a local Gorenstein ring, and let M be a finitely generated Rmodule. Prove that M has finite projective dimension if and only if M has
 finite injective dimension.
- (22) Let $(R, \mathfrak{m}, \mathsf{k}, E)$ be an Artinian local ring. Prove or give a counterexample to the following statement: for every finitely generated R-module M, either M^{*^n} is reflexive for large n or $\mathsf{k}|M^{*^n}$ for large n.
- (23) Let $(R, \mathfrak{m}, \mathsf{k}, E)$ be an Artinian local ring. Classify all finitely generated R-modules M such that $\operatorname{Hom}_R(M, M) \cong R$.
- (24) Let (R, \mathfrak{m}) be a three dimensional regular local ring and let \mathfrak{p} be a height two prime of R. Decompose

$$E_R(R/\mathfrak{p}^2) \cong E_R(R/m)^a \oplus E_R(R/\mathfrak{p})^b$$
.

Prove that $a = \binom{n-1}{2}$ and b = 2 where $n = \mu(\mathfrak{p})$.

- (25) Find $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z},\mathbb{Z})$.
- (26) Let (R, \mathfrak{m}) be a Noetherian local Gorenstein ring. Prove that a finitely generated R-module M is reflexive iff M is a second syzygy, i.e. there exists an exact sequence,

$$0 \to M \to F \to G$$

where F and G are finitely generated free R-modules.

- (27) Let $(R, \mathfrak{m}, \mathsf{k})$ be a Noetherian local ring. Prove that R is regular iff $\mathrm{id}_R(\mathsf{k}) < \infty$.
- (28) Let $(R, \mathfrak{m}, \mathsf{k})$ be a regular local ring of dimension d. Assume that R/I is 0-dimensional and Gorenstein. Prove that $\operatorname{Ext}_R^d(R/I, R) \cong R/I$.

- (29) Let $(R, \mathfrak{m}, \mathsf{k})$ be a 0-dimensional Gorenstein local ring with socle Rx. If $\mu(m) \geq 2$, prove that R/Rx is never Gorenstein.
- (30) Let R be a Noetherian ring and let \mathfrak{p} and \mathfrak{q} be distinct prime ideals of R. Prove that $E_R(R/\mathfrak{p})$ is not isomorphic to $E_R(R/\mathfrak{q})$.
- (31) Prove or give a counterexample to the following claim: let $(R, \mathfrak{m}, \mathsf{k}, E)$ be a Noetherian local ring, and suppose that

$$0 \to M \to F \to N \to 0$$

is exact, where F is finitely generated and free. If $E \otimes_R M \to E \otimes_R F$ is injective, then N is flat.

(32) Let E be an injective R-module, and let $I_1, ..., I_n$ be ideals of R. Prove that

$$\operatorname{ann}_{E}(I_{1}\cap ...\cap I_{n}) = \sum_{i} \operatorname{ann}_{E}(I_{i}).$$

- (33) Let $(R, \mathfrak{m}, \mathsf{k}, E)$ be a complete Noetherian local ring and let M be a faithful R-module which is an essential extension of k . Prove that $M \cong E$.
- (34) Let $(R, \mathfrak{m}, \mathsf{k}, E)$ be a complete Noetherian local ring. If E is flat over R, prove that R is a 0-dimensional Gorenstein ring.
- (35) Let $(R, \mathfrak{m}, \mathsf{k}, E)$ be a complete Noetherian local ring. Prove that $E \otimes_R E \neq 0$ iff $\operatorname{depth}(R) = 0$.
- (36) Prove or give a counterexample: Let (R, m) be a d-dimensional local Gorenstein ring and let M be a finitely generated R-module such that $\dim(M) = \operatorname{depth}(M) = d$. Then for any ideal q, generated by a system of parameters,

$$\lambda(M \otimes R/q) = \lambda(\operatorname{Hom}_R(M, R/q)).$$

(37) Let $(R, \mathfrak{m}, \mathsf{k}, E)$ be a Noetherian local ring, M a finitely generated R-module, and

$$0 \to M \to I^0 \to I^1 \to \cdots \to I^j \to \cdots$$

a minimal injective resolution of M. Prove that if $\mathfrak{p} \in \operatorname{supp} M$, then the injective hull $E_R(R/\mathfrak{p})$ is a direct summand of I^j if and only if depth $_{R_{\mathfrak{p}}}M_{\mathfrak{p}} \leq j \leq \operatorname{id}_{R_{\mathfrak{p}}}M_{\mathfrak{p}}$ (which may be infinite).

- (38) Let R be a Noetherian local ring. A finitely generated R-module M is said to be Gorenstein projective if $\operatorname{Ext}_R^i(M,R)=0$ and $\operatorname{Ext}_R^i(\operatorname{Hom}_R(M,R),R)=0$ for i>0. Over a complete Noetherian local ring $(R,\mathfrak{m},\mathsf{k},E)$, given an Artinian module M, prove that $\operatorname{Hom}_R(M,E(\mathsf{k}))$ is Gorenstein projective if and only if $\operatorname{Hom}_R(E(\mathsf{k}),M)$ is nonzero and Gorenstein projective.
- (39) Let R be a Noetherian domain and let E be an R-module which is both torsion-free and divisible. Prove that E is injective.
- (40) Suppose that R is a Noetherian ring and \mathfrak{p} and \mathfrak{q} are primes, M a finitely generated R-module, and Q a prime minimal over $\mathfrak{p} + \mathfrak{q}$. Assume that $\mu_i(\mathfrak{p}, M) \neq 0$ and $\mu_j(\mathfrak{q}, M) \neq 0$. Prove or disprove: $\mu_{i+j}(Q, M) \neq 0$.
- (41) Let $(R, \mathfrak{m}, \mathsf{k}, E)$ be a Noetherian local ring, and suppose that M is a finitely generated R-module having finite injective dimension. Prove that R is Cohen-Macaulay.
- (42) Let (R, \mathfrak{m}, k, E) be a Artinian local ring. Prove that E has a minimal generator killed by \mathfrak{m}^n if and only if R has a nonzero socle element which is not in \mathfrak{m}^n .
- (43) Let $(R, \mathfrak{m}, \mathsf{k}, E)$ be a Artinian local ring. Prove that $E \otimes_R E$ and $E^* = \operatorname{Hom}_R(E, R)$ are Matlis duals. In general, consider the operations () and ()*. Is there a relationship between these two operations on the class of finitely generated R-modules?

§ 4.1 Canonical Modules for Homomorphic Images of Regular Local Rings

Let us first see what the canonical module is for a Cohen-Macaulay quotient of a regular local ring. Let $(T, \mathfrak{m}_T, \mathsf{k})$ be a regular local ring, $R \simeq T/I$ be Cohen-Macaulay. Set $\mathrm{ht}(I) = c$. By the Auslander-Buchsbaum formula, R is Cohen-Macaulay \Leftrightarrow $\mathrm{depth}(R) = \dim(R) \Leftrightarrow \mathrm{pd}(R) = \dim(T) - \dim(R) = \mathrm{ht}(I) = c$.

Consider a minimal resolution \mathbf{F}_{\bullet} of R over T. By the above argument \mathbf{F}_{\bullet} has length c. Let

$$\mathbf{F}_{\bullet}: 0 \to T^{b_c} \xrightarrow{\phi_c} T^{b_{c-1}} \to \cdots \to T^{b_1} \to T \to R \to 0.$$

Apply $\operatorname{Hom}_T(_, T)$ (i.e. apply *).

Define the canonical module of R denoted by ω_R (or K_R) to be $\operatorname{Coker}(\phi^*)$, i.e.

$$(T^{b_{c-1}})^* \xrightarrow{\phi^*} (T^{b_c})^* \to \omega_R \to 0.$$

Question: Is the canonical module of R independent of the choice of T? The answer is yes, but the proof is postponed.

Lemma 1 Let R, T be as above. Then

1. A free resolution of ω_R over T is given by

$$0 \to T^* \to (T^{b_1})^* \to \cdots \to (T^{b_{c-1}})^* \xrightarrow{\phi^*} (T^{b_c})^* \to \omega_R \to 0.$$

- 2. $\operatorname{ann}_T(\omega_R) = I$.
- 3. ω_R is Cohen-Macaulay.

Proof:

- (1) The cohomology of \mathbf{F}_{\bullet}^* are the $\operatorname{Ext}_T(R,T)$ modules. Since $R \simeq T/I$ and I has a regular sequence of length c on T, $\operatorname{Ext}_T^i(R,T) = 0$ for all i < c. For i = c, the homology is $0 :_T I$, which is zero since T is a domain. Moreover, by definition $\operatorname{Ext}_T^c(R,T) = \omega_R$. Hence \mathbf{F}_{\bullet}^* is a free resolution of ω_R over T.
- (2) Since $\omega_R = \operatorname{Ext}_T^c(R,T)$, $I = \operatorname{ann}_T(R) \subseteq \operatorname{ann}_T(\omega_R)$. To prove the other inclusion, apply $\operatorname{Hom}_T(_,T)$ again to \mathbf{F}_{\bullet}^* . We see that $\operatorname{Ext}_T^i(\omega_R,T) = 0$ for i < c and $\operatorname{Ext}_T^0(\omega_R,T) = R$. Hence $\operatorname{ann}_T(\omega_R) \subseteq \operatorname{ann}_T(R) = I$.
- (3) Since $\operatorname{ann}_T(\omega_R) = I$, $\dim(\omega_R) = \dim(R)$. And since $\operatorname{pd}(\omega_R) = c = \operatorname{pd}(R)$, by the Auslander-Buchsbaum formula, $\operatorname{depth}(\omega_R) = \operatorname{depth}(R)$. Since R is Cohen-Macaulay, this proves that $\operatorname{depth}(\omega_R) = \dim(\omega_R) = \dim(R)$. Hence ω_R is Cohen-Macaulay. \square

Definition 1 Let $(R, \mathfrak{m}, \mathsf{k})$ be a local ring and M a finitely generated R-module. We say that M is maximal Cohen-Macaulay (or MCM) if $\operatorname{depth}(M) = \dim(R)$.

Example 1 By (3) in lemma 1, ω_R is MCM as an R-module when R is Cohen-Macaulay.

Proposition 2 Let T be a regular local ring, R = T/I be zero-dimensional. Then $\omega_R \simeq E_R(\mathsf{k})$. In particular, R is a zero-dimensional Gorenstein local ring if and only if $R \simeq \omega_R$.

Proof: We know that $\omega_R \simeq \operatorname{Ext}_T^c(R,T)$, where $c = \operatorname{ht}(I)$ (= $\dim(T)$). Choose \underline{x} , a maximal regular sequence in I. Then

$$\omega_R \simeq \operatorname{Hom}_{T/(\underline{x})}(T/I, T/(\underline{x})) \quad \left(\simeq \frac{(\underline{x}) :_T I}{(\underline{x})}\right).$$

Now $S := T/(\underline{x})$ is a complete intersection ring and hence Gorenstein. Therefore, $S \simeq E_S(\mathbf{k})$. This gives us

$$\omega_R \simeq \operatorname{Hom}_S(R, S) \simeq \operatorname{Hom}_S(R, E_S(\mathsf{k})) \simeq E_R(\mathsf{k}).$$

The rest of the statement follows from the fact that R is a zero-dimensional Gorenstein ring if and only if $R \simeq E_R(\mathbf{k})$.

Let us now define the canonical module for a ring that is not necessarily Cohen-Macaulay.

Definition 2 Let T be a regular Noetherian ring, $R \simeq T/I$ for an ideal $I \subseteq T$. Set c := ht(I). We define a canonical module for R (with respect to T) to be $\omega_R := \text{Ext}_T^c(R,T)$.

Good Note: We are not assuming that T is local or that R is Cohen-Macaulay. Bad Note: This makes for some problems.

Proposition 3 Let T be a regular local ring, $R \simeq T/I$ be a Cohen-Macaulay quotient. Then the following are equivalent:

- 1. ω_R is cyclic.
- 2. $\omega_R \simeq R$.
- 3. R is Gorenstein.

Proof: Set ht(I) =: c. (3) \Leftrightarrow (1) follows from the fact that R is Gorenstein if and only if $b_c = 1$ and (2) \Rightarrow (1) is clear. Hence we only need to prove (1) \Rightarrow (2).

Since ω_R is cyclic, there is an ideal J in T containing I such that $\omega_R \simeq T/J$. But by lemma 1.2, $\operatorname{ann}_T(\omega_R) = I$. Hence J = I, i.e. $\omega_R \simeq R$.

Discussion: Assume further that R is a domain, i.e. $I = \mathfrak{p}$ is a prime ideal in T. Since $T_{\mathfrak{p}}$ is a regular local ring, we can choose a maximal regular sequence $\underline{x} := x_1, \ldots, x_c \in \mathfrak{p}$, such that $(x_1, \ldots, x_c)_{\mathfrak{p}} = \mathfrak{p}T_{\mathfrak{p}}$. Notice that this implies $\underline{x} :_T \mathfrak{p} \not\subseteq \mathfrak{p}$. In particular, $\operatorname{ht}((\underline{x} :_T \mathfrak{p}) + \mathfrak{p}) > c$. Since (\underline{x}) is an unmixed ideal of height c, it follows that $(\underline{x} :_T \mathfrak{p}) + \mathfrak{p}$ is not contained in any associated prime of (\underline{x}) . We claim that this forces $\underline{x} :_T \mathfrak{p} \cap \mathfrak{p} \subseteq \underline{x}$.

By Prime Avoidance, there is an element $y \in ((\underline{x} :_T \mathfrak{p}) + \mathfrak{p}) \setminus \bigcup_{Q \in \mathrm{Ass}(\underline{x})} Q$. Then $(\underline{x}) :_T y = (\underline{x})$. Now, we have $((\underline{x} :_T \mathfrak{p}) + \mathfrak{p})((\underline{x} :_T \mathfrak{p}) \cap \mathfrak{p}) \subseteq (\underline{x})$. Hence

$$y((\underline{x}:_T \mathfrak{p}) \cap \mathfrak{p}) \subseteq (\underline{x}) \implies ((\underline{x}:_T \mathfrak{p}) \cap \mathfrak{p}) \subseteq (\underline{x}):_T y = (\underline{x}).$$

Thus we have $((\underline{x}:_T \mathfrak{p}) \cap \mathfrak{p}) \subseteq (\underline{x})$ which means that $((\underline{x}:_T \mathfrak{p}) \cap \mathfrak{p}) = \underline{x}$.

Recall that by the Ext Shifting Lemma,

$$\omega_R = \operatorname{Ext}_T^c(R,T) \simeq \operatorname{Hom}_{T/(\underline{x})}(T/\mathfrak{p},T/(\underline{x})).$$

Hence

$$\omega_R \simeq (\underline{x} :_T \mathfrak{p})/\underline{x} \simeq ((\underline{x} :_T \mathfrak{p}) + \mathfrak{p})/\mathfrak{p} \subseteq R = T/\mathfrak{p}.$$

Upshot: If R is a domain, then $\omega_R \hookrightarrow R$.

Theorem 4 Let R be a domain and $\omega_R \subseteq R$ via the embedding in the above discussion. Then $ht(\omega_R) = 1$ and R/ω_R is Gorenstein.

Proof: Set $d := \dim(R)$. By Lemma 1, ω_R is a Cohen-Macaulay R-module with $\operatorname{depth}(\omega_R) = d$. Consider the short exact sequence $0 \to \omega_R \to R \to R/\omega_R \to 0$.

Since depth(ω_R) = depth(R) = d, depth(R/ω_R) $\geq d-1$. But then

$$d > \dim(R/\omega_R) \ge \operatorname{depth}(R/\omega_R) \ge d - 1$$

forcing R/ω_R to be a Cohen-Macaulay module of dimension d-1. Hence $\operatorname{ht}(\omega_R)=1$. Now since $\operatorname{ht}_R(\omega_R)=1$, $\operatorname{ht}_T((\underline{x}:_T\mathfrak{p})+\mathfrak{p})=\operatorname{ht}_T(\mathfrak{p})+1=c+1$, where T, \mathfrak{p} and \underline{x} are as in above discussion. Hence in order to prove that R/ω_R is Gorenstein, it is enough to prove that $\operatorname{Ext}_T^{c+1}(T/(\underline{x}:_T\mathfrak{p}+\mathfrak{p}),T)$ is cyclic by lemma 1.

Consider the short exact sequence

$$0 \to T/(\underline{x}) \to T/(\underline{x}:_T \mathfrak{p}) \oplus T/\mathfrak{p} \to T/(\underline{x}:_T \mathfrak{p} + \mathfrak{p}) \to 0.$$

Apply $\operatorname{Hom}_T(_,T)$ to get

$$\operatorname{Ext}_T^c(T/(\underline{x}),T) \to \operatorname{Ext}_T^{c+1}(T/(\underline{x}:_T \mathfrak{p}+\mathfrak{p}),T) \to \operatorname{Ext}_T^{c+1}(T/\mathfrak{p},T) \oplus \operatorname{Ext}_T^{c+1}(T/(\underline{x}:_T \mathfrak{p}),T).$$

Since $\operatorname{ht}(\underline{x}) = c$, $\operatorname{Ext}_T^c(T/(\underline{x}), T) \simeq \omega_{T/(\underline{x})}$. But $T/(\underline{x})$ is Gorenstein. Therefore $\omega_{T/(\underline{x})} \simeq T/(\underline{x})$. Hence, by the above sequence in Ext's, in order to prove that $\operatorname{Ext}_T^{c+1}(T/(\underline{x}:_T \mathfrak{p}+\mathfrak{p}), T)$ is cyclic, it is enough to prove that both $\operatorname{Ext}_T^{c+1}(T/\mathfrak{p}, T)$ and $\operatorname{Ext}_T^{c+1}(T/(\underline{x}:_T \mathfrak{p}), T)$ are zero.

We know that T/\mathfrak{p} is Cohen-Macaulay. By Lemma 6, $T/(\underline{x}:_T\mathfrak{p})$ is also Cohen-Macaulay. Hence both have projective dimension c. So $\operatorname{Ext}_T^i(T/(\underline{x}:_T\mathfrak{p}),T)=0$ and $\operatorname{Ext}_T^i(T/\mathfrak{p},T)=0$ for all i>c. This completes the proof.

Corollary 5 (M.P.Murthy) Let R be a Cohen-Macaulay ring with a canonical module ω_R . Further assume that R is a UFD. Then R is Gorenstein.

Proof: Since $ht(\omega_R) = 1$ and R/ω_R is Cohen-Macaulay, ω_R is an unmixed ideal of height 1 in R. Recall that if R is a UFD, the class group of R, Cl(R) = 0. Therefore the class of ω_R in Cl(R) is zero. Hence $\omega_R \simeq R$, i.e. R is Gorenstein.

In proof of theorem 4, we have used the fact that $T/(\underline{x}:_T \mathfrak{p})$ is Cohen-Macaulay. This follows from the following lemma:

Lemma 6 Let T be regular local ring, I an ideal such that T/I is Cohen-Macaulay and x a maximal regular sequence in I. Then $T/(x:_T I)$ is Cohen-Macaulay.

More generally we prove

Theorem 7 (Peskine-Szpiro) Let $(S, \mathfrak{m}_S, \mathsf{k})$ be a Gorenstein local ring, I an ideal in S such that R := S/I is Cohen-Macaulay and \underline{x} a maximal regular sequence in I. Then $S/(\underline{x}:S)$ is Cohen-Macaulay.

Remark 1 This theorem due to Peskine and Szpiro is the fundamental theorem for linkage.

Proof of Theorem 7: Without loss of generality, we can replace S by $S/(\underline{x})$, so we may assume that $\underline{x} = 0$, i.e. ht(I) = 0. Consider the short exact sequence

$$0 \to I \to S \to S/I \to 0$$
 (*).

Since $\operatorname{depth}(S) = \operatorname{depth}(S/I) = \dim(S)$, we see that (by the depth lemma), $\operatorname{depth}(I) = \dim(S)$, i.e. I is a MCM S-module.

Apply $\operatorname{Hom}_{S}(-,S)$ to (*). Since $\operatorname{Ext}_{S}^{i}(S,S)=0$ for all i>0, we get

$$0 \to 0:_S I \to S \to \operatorname{Hom}_S(I,S) \to \operatorname{Ext}^1_S(S/I,S) \to 0 \qquad (\#)$$

Remark 2 Let M be a MCM S-module. Since $id(S) < \infty$, by Formula 1,

$$\operatorname{depth}(M) + \sup\{i : \operatorname{Ext}_{S}^{i}(M, S) \neq 0\} = \operatorname{depth}(S).$$

Hence $\operatorname{Ext}_{S}^{i}(M, S) = 0$ for all i > 0.

In particular, $\operatorname{Ext}_{S}^{i}(S/I, S) = 0$ for all i > 0. By (#), this forces

$$S/(0:_S I) \simeq I^* := \text{Hom}_S(I, S).$$

Thus Theorem 7 is true if we prove Theorem 8.

Theorem 8 Let $(S, \mathfrak{m}_S, \mathsf{k})$ be a local Gorenstein ring. If M is MCM, then (a) M^* is MCM.

(b) $M \simeq M^{**}$.

Proof: Consider the short exact sequence $0 \to N \to F \to M \to 0$ where F is a finitely generated free S-module. Note that $\operatorname{Ext}^i_S(M,S)=0$ for all i>0 by Formula 1. Hence the corresponding long exact sequence on Exts gives $0 \to M^* \to F^* \to N^* \to 0$. Since N is also MCM, repeating the process with N instead of M, and continuing the same way, we see that there is an exact sequence

$$0 \longrightarrow M^* \longrightarrow F_0^* \longrightarrow F_1^* \longrightarrow \cdots$$
.

If the above sequence is finite, then M has finite projective dimension over S. In such a case, since M is MCM, pdM = 0 by the Auslander-Buchsbaum formula, i.e. M is free. Then both (a) and (b) hold.

Hence we may assume that the above sequence is infinite.

(a) Using the lemma

Lemma 9 If $0 \to M_1 \to M_2 \to M_3 \to 0$ is a short exact sequence of S-modules, and $s := \operatorname{depth}(M_2) > \operatorname{depth}(M_3) =: t$, then $\operatorname{depth}(M_1) = t + 1$.

repeatedly, we see that M^* is MCM, i.e. (a) holds.

(b) Since N is MCM, part (a) proves that N^* is MCM and then $\operatorname{Ext}_S^1(N^*, S) = 0$. Applying * to $0 \to M^* \to F^* \to N^* \to 0$, we get that $0 \to N^{**} \to F^{**} \to M^{**} \to 0$ is a short exact sequence. Consider

$$0 \longrightarrow N \longrightarrow F \longrightarrow M \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow N^{**} \longrightarrow F^{**} \longrightarrow M^{**} \longrightarrow 0$$

This proves that whenever M is a MCM module, the map $M \to M^{**}$ is surjective by Snake lemma. Applying the same fact to $N, N \longrightarrow N^{**}$ which forces $M \to M^{**}$

to be injective. Thus $M \simeq M^{**}$.

Note that Lemma 9 can be proved by the Ext characterization of depth.

§ 4.2 Canonical Modules over Cohen-Macaulay Rings (in more generality, in more depth)

Setup: Let $(S, \mathfrak{m}_S, \mathsf{k})$ be a Gorenstein local ring. We say that a finitely generated S-module $M \in \mathrm{CM}_S(i)$ (or simply $\mathrm{CM}(i)$) if $\mathrm{depth}(M) = \dim(M) = i$. For example, if $\lambda_S(M) < \infty$, then $M \in \mathrm{CM}(0)$. If $d := \dim(S)$, then $M \in \mathrm{CM}(\mathsf{d})$ if and only if M is a MCM module.

Theorem 10 Let $(S, \mathfrak{m}_S, \mathsf{k})$ be a Gorenstein local ring of dimension n. Suppose that $M \in \mathrm{CM}(i)$. Then

- 1. $\operatorname{Ext}_{S}^{j}(M,S) = 0$ for all $j \neq n i$.
- 2. $\operatorname{Ext}_{S}^{n-i}(M,S) \in \operatorname{CM}(i)$.
- 3. $\operatorname{Ext}_{S}^{n-i}(\operatorname{Ext}_{S}^{n-i}(M,S),S) \simeq M$.

Proof: Since $\dim(M) = i$, $\operatorname{ht}(\operatorname{ann}_S(M)) = n - i$. Choose a maximal regular sequence $x_1, \ldots, x_{n-i} \in \operatorname{ann}_S(M)$. Let $\overline{S} = S/(x_1, \ldots, x_{n-i})$. Then $\dim(\overline{S}) = i$. We know that $\operatorname{Ext}_S^j(M, S) = 0$ for j < n - i and $\operatorname{Ext}_S^j(M, S) \simeq \operatorname{Ext}_{\overline{S}}^{j-(n-i)}(M, \overline{S})$ for $j \ge n - i$. By replacing S by \overline{S} , without loss of generality we may assume that $\dim(S) = \dim(M) = n$, i.e. M is a MCM S-module.

Thus, assuming that M is a MCM S-module, statements (1) - (3) reduce to proving (i) $\operatorname{Ext}_{S}^{j}(M,S)=0$ for all j>0.

- (ii) $M^* \in CM(n)$, i.e. M^* is MCM.
- (iii) $M^{**} \simeq M$.

which have already been proved. The statement (i) is precisely remark 2 and statements (ii) and (iii) are the conclusions of Theorem 8.

Let us now see what a canonical module of a local ring $(R, \mathfrak{m}_R, \mathsf{k})$ is in a much more general setting than discussed before.

Definition 3 Let $(S, \mathfrak{m}_S, \mathsf{k}_S)$ be a Gorenstein local ring of dimension n and $(R, \mathfrak{m}_R, \mathsf{k}_R)$ be a Noetherian local ring such that $R \in \mathrm{CM}_S(\mathrm{d})$. We write $\omega_R := \mathrm{Ext}_S^{n-d}(R, S)$ and call ω_R a canonical module of R (with respect to S).

Remark 3 We will ultimately prove that ω_R is independent of S.

Some properties of ω_R

Corollary 11 (of Theorem 10) With notations as in definition 3, we have

- (a) $\omega_R \in CM_S(d)$ and
- (b) $\operatorname{Ext}_{S}^{n-d}(\omega_{R}, S) \simeq R.$

Remark 4 If $S \longrightarrow R$ and $\mathfrak{p} \in \operatorname{Spec}(S)$, then $\omega_{R_{\mathfrak{p}}} \simeq (\omega_R)_{\mathfrak{p}}$ (where $\omega_{R_{\mathfrak{p}}}$ is a canonical module of $R_{\mathfrak{p}}$ with respect to $S_{\mathfrak{p}}$).

Proof: Since $\dim(S) - \dim(R) = \dim(S_{\mathfrak{p}}) - \dim(R_{\mathfrak{p}}) = i(\text{say})$, we have

$$\omega_{R_{\mathfrak{p}}} \simeq \operatorname{Ext}_{S_{\mathfrak{p}}}^{i}(R_{\mathfrak{p}}, S_{\mathfrak{p}}) \simeq (\operatorname{Ext}_{S}^{i}(R, S))_{\mathfrak{p}} \simeq (\omega_{R})_{\mathfrak{p}}.$$

Proposition 12 Let the notation be as in definition 3 of ω_R . Suppose x is a nonzerodivisor on R. Then

- 1. x is a non-zerodivisor on ω_R .
- 2. $\omega_R/x\omega_R \simeq \omega_{R/xR}$ (with respect to either S or S/xS).

Proof: As in the proof of Theorem 10, without loss of generality we may assume that $\dim(R) = \dim(S) = d$, by going modulo a maximal regular sequence in $\operatorname{ann}_S(R)$. Hence R is MCM and $\omega_R = \text{Hom}_S(R, S)$.

By remark 2, $\operatorname{Ext}_{S}^{j}(R,S)=0$ for all j>0. Hence applying $\operatorname{Hom}_{S}(-,S)$ to the short exact sequence $0 \to R \xrightarrow{\cdot x} R \to R/xR \to 0$, we get another short exact sequence $0 \to \omega_R \xrightarrow{\cdot x} \omega_R \to \operatorname{Ext}^1_S(R/xR, S) \to 0.$

This proves (1) immediately and we further have

$$\frac{\omega_R}{x\omega_R} \simeq \operatorname{Ext}_S^1(R/xR, S) \simeq \operatorname{Hom}_{S/xS}(R/xR, S/xS) \simeq \omega_{R/xR}$$

with respect to either S or S/xS, which proves (2).

Corollary 13 ω_R is a MCM R-module.

Proof: By Prop. 12, depth(R) \leq depth(ω_R). But since R is Cohen-Macaulay, $\operatorname{depth}(R) = \dim(R) \ge \dim(\omega_R) \ge \operatorname{depth}(\omega_R).$

Theorem 14 (Duality) Let $M \in CM_R(k)$. Then

- 1. $\operatorname{Ext}_R^{\jmath}(M,\omega_R) = 0$ for all $j \neq d k$.
- 2. $\operatorname{Ext}_{R}^{d-k}(M, \omega_{R}) \in \operatorname{CM}_{R}(k)$. 3. $\operatorname{Ext}_{R}^{d-k}(\operatorname{Ext}_{R}^{d-k}(M, \omega_{R}), \omega_{R}) \simeq M$.
- 4. $\operatorname{Hom}_R(\omega_R, \omega_R) \simeq R$.

Corollary 15 Let w_1 and w_2 be two canonical modules of R (with respect to Gorenstein rings S_1 and S_2 respectively). Then $\operatorname{Ext}_R^j(w_1, w_2) = 0$ for $j \neq 0$.

Proof of Theorem 14: Choose a maximal regular sequence $\underline{x} := x_1, \ldots, x_{d-k}$ in $\operatorname{ann}_R(M)$. Let $\overline{R} := R/\underline{x}R$. By Prop. 12, x_1, \ldots, x_{d-k} is a regular sequence on ω_R . This gives us $\operatorname{Ext}^i_R(M, \omega_R) = 0$ for i < d-k and

$$\operatorname{Ext}_R^i(M,\omega_R) \simeq \operatorname{Ext}_{\overline{R}}^{i-(d-k)}(M,\omega_R/\underline{x}\omega_R) \simeq \operatorname{Ext}_{\overline{R}}^{i-(d-k)}(M,\omega_{\overline{R}}) \text{ for } i \geq d-k.$$

Replacing R by \overline{R} , we may assume that $\dim(M) = \dim(R) = d$. Now, replacing S by S modulo a maximal regular sequence in $\operatorname{ann}_S(R)$, we may assume that $\dim(S) = \dim(R) = d$. Then $\omega_R \simeq \operatorname{Hom}_S(R, S)$. Using the lemma

Lemma 16 With notations as above, $\operatorname{Ext}_R^j(M,\omega_R) \simeq \operatorname{Ext}_S^j(M,S)$.

statements (1) - (3) follow from Theorem 10. To prove (4), replace M by R in (3). Note that d = k. By (3),

$$R \simeq \operatorname{Ext}_R^{d-k}(\operatorname{Ext}_R^{d-k}(R,\omega_R),\omega_R) = \operatorname{Hom}_R(\operatorname{Hom}_R(R,\omega_R),\omega_R) \simeq \operatorname{Hom}_R(\omega_R,\omega_R)$$

proving the theorem. \Box

Proof of Lemma 16: We want to prove that $\operatorname{Ext}_R^j(M,\omega_R) \simeq \operatorname{Ext}_S^j(M,S)$. Let \mathbf{I}^{\bullet} be an injective resolution of S over itself. Then

$$\operatorname{Ext}_S^j(M,S) = H^j(\operatorname{Hom}_S(M,\mathbf{I}^{\bullet})) = H^j(\operatorname{Hom}_S(M \otimes_R R,\mathbf{I}^{\bullet}))$$

$$\simeq H^j(\operatorname{Hom}_R(M,\operatorname{Hom}_R(R,\mathbf{I}^{\bullet})))$$
 by the $\operatorname{Hom} - \otimes$ adjointness.

However $\operatorname{Ext}_S^j(R,S)=0$ for j>0 by Theorem 10 since $R\in\operatorname{CM}_S(\operatorname{d})$, where $d=\dim(S)$. Thus $\operatorname{Hom}_S(R,\mathbf{I}^{\bullet})$ is an acyclic complex of injective R-modules with $H^0(\operatorname{Hom}_S(R,\mathbf{I}^{\bullet}))\simeq\operatorname{Hom}_S(R,S)=\omega_R$. Hence $\operatorname{Hom}_S(R,\mathbf{I}^{\bullet})$ is an injective resolution of ω_R over R which implies that $H^j(\operatorname{Hom}_R(M,\operatorname{Hom}_S(R,\mathbf{I}^{\bullet})))=\operatorname{Ext}_R^j(M,\omega_R)$. This proves the lemma. \square

The following is really a corollary, but is important enough to be accorded the status of a theorem.

Theorem 17 Let ω_1 and ω_2 be two canonical modules for a Cohen-Macaulay local ring R (with respect to two Gorenstein rings S_1 and S_2). Then $\omega_1 \simeq w_2$.

Corollary 18 If R is Gorenstein, then $\omega_R \simeq R$.

Proof: Compute
$$\omega_R$$
 over R : $\omega_R = \operatorname{Hom}_R(R,R) \simeq R$.

Proof of Theorem 17: Let $\underline{x} = x_1, \ldots, x_d$ be a maximal regular sequence in R (where $d := \dim(R)$). Set $R_i := R/(x_1, \ldots, x_i)R$. Then $\omega_j/(x_1, \ldots, x_i)\omega_j$ is a canonical module of R_i with respect to S_j by Prop. 12. Denote this by $w_j^{(i)}$. By induction on d-i, we claim that $w_1^{(i)} \simeq \omega_2^{(i)}$.

When i = d, R_d is Artinian. Hence by Prop. 2, $w_1^{(d)} \simeq E_{R_d}(\mathsf{k}) \simeq \omega_2^{(d)}$. Observe that $\operatorname{Ext}_{R_i}^1(\omega_1^{(i)},\omega_2^{(i)}) = 0$ for each i < d by Cor. 15. Hence the proof follows by induction using the following lemma.

Lemma 19 Let M, N be finitely generated R-modules, x a non-zerodivisor on N. Assume further that $\operatorname{Ext}^1_R(M,N)=0$. If $M/xM\simeq N/xN$, then $M\simeq N$.

Proof: Let denote going modulo x. Apply $\operatorname{Hom}_R(M, _)$ to the short exact sequence $0 \to N \xrightarrow{\cdot x} N \to \overline{N} \to 0$. Since $x \cdot \operatorname{Hom}_R(M, \overline{N}) = 0$, the induced long exact sequence gives the short exact sequence

$$0 \to \operatorname{Hom}_R(M, N) \xrightarrow{\cdot x} \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_R(M, \overline{N}) \to 0. \tag{*}$$

Since $\operatorname{Hom}_R(M, \overline{N}) \simeq \operatorname{Hom}_R(\overline{M}, \overline{N})$, an isomorphism between \overline{M} and \overline{N} induces a surjective map $\overline{\phi}: M \xrightarrow{\sim} \overline{N}$. By (*), $\overline{\phi}$ can be lifted to a homomorphism $\phi: M \to N$. Since $\overline{\phi}$ is surjective, $\phi(M) + xN = N$. By NAK, ϕ is surjective.

We want to now prove that ϕ is injective. Let $K := \text{Ker}(\phi)$. Then we have the short exact sequence $0 \to K \to M \xrightarrow{\phi} N \to 0$. Tensoring with \overline{R} , the induced long exact sequence on homology is

$$\cdots \operatorname{Tor}_{1}^{R}(N, \overline{R}) \to \overline{K} \to \overline{M} \xrightarrow{\overline{\phi}} \overline{N} \to 0.$$

Since x is a non-zerodivisor on N, $\operatorname{Tor}_1^R(N,\overline{R})=0$. This forces $\overline{K}=0$ and hence by NAK, K=0.

Definition 4 Let $(R, \mathfrak{m}, \mathsf{k})$ be a Cohen-Macaulay local ring. We say that R has a canonical module ω_R if ω_R is finitely generated and $\widehat{\omega_R} = \omega_{\widehat{R}}$.

Note: $\omega_{\widehat{R}}$ exists by Cohen's Structure Theorem.

Remark: If ω_R exists, it is unique up to isomorphism. This can be proved by using exercise (1) and theorem 17 for \widehat{R} .

Theorem 20 Let $(R, \mathfrak{m}, \mathsf{k})$ be a Cohen-Macaulay local ring. Then R has a canonical module if and only if there is a Gorenstein local ring $(S, \mathfrak{m}_S, \mathsf{k})$ mapping onto R.

Proof: If there is a Gorenstein local ring $(S, \mathfrak{m}_S, \mathsf{k})$ mapping onto R, then the canonical module exists and is unique up to isomorphism by construction.

To prove the converse, let ω_R be a canonical module for R. Set $S = R \oplus \omega_R$ as a set. Define an additive structure on S componentwise and multiplication by

$$(r_1, u_1) \cdot (r_2, u_2) = (r_1 r_2, r_1 u_2 + r_2 u_1) \quad r_1, r_2 \in R; u_1, u_2 \in \omega_R.$$

An alternative way is to think of the elements of S as matrices;

$$S = \left\{ \left(\begin{array}{cc} r & u \\ 0 & r \end{array} \right) : r \in R, u \in \omega_R \right\}$$

with addition and multiplication being the usual operations on matrices. We denote S with these operations by $R \times \omega_R$.

Under these operations, S is a commutative Noetherian ring and $\omega_R \subseteq S$ is an ideal such that $\omega_R^2 = 0$. Moreover $S/\omega_R \simeq R$. Since ω_R is nilpotent and S/ω_R is local, S is also local.

We will now prove that S is Gorenstein. To prove this, let $\underline{x} = x_1, \ldots, x_d$ be a system of parameters in R. By abuse of notation, we think of \underline{x} a sequence of elements in S. By Prop. 12. \underline{x} forms a regular sequence on ω_R . This forces \underline{x} to be an S-regular sequence. Hence it is enough to prove that S/\underline{x} is Gorenstein. But

$$S/\underline{x}S \simeq (R/\underline{x}) \ \mathsf{K} \ (\omega_R/\underline{x}\omega_R) \simeq (R/\underline{x}) \ \mathsf{K} \ (\omega_{R/\underline{x}}) \simeq (R/\underline{x}) \ \mathsf{K} \ (E_{R/\underline{x}}(\mathbf{k})).$$

Thus it is enough to show that if $(R, \mathfrak{m}, \mathsf{k}, E)$ is an Artinian local ring, then $S = R \ltimes E$, with operations defined as above, is Gorenstein. This can be proven as an exercise.

Theorem 21 Let $(R, \mathfrak{m}, \mathsf{k})$ be a Cohen-Macaulay local ring with a canonical module ω_R . The following are equivalent:

- 1. $\omega_R \simeq I \subseteq R$.
- 2. $\widehat{R}_{\mathfrak{p}}$ is Gorenstein for every minimal prime \mathfrak{p} in \widehat{R} .

Furthermore if either of (and hence both) these conditions hold, then $I \not\subseteq \bigcup_{Q \in Min(R)} Q$.

Proof: $(1) \Rightarrow (2)$: Consider the completions of both sides in (1). We have

$$\omega_{\widehat{R}} = \widehat{\omega_R} \simeq \widehat{I} \simeq I\widehat{R} \subseteq \widehat{R}.$$

Thus $\omega_{\widehat{R}}$ is an ideal in \widehat{R} .

Let \mathfrak{p} be a minimal prime in \widehat{R} . We want to prove that $\widehat{R}_{\mathfrak{p}}$ is Gorenstein. We have $(\omega_{\widehat{R}})_{\mathfrak{p}} \subseteq \widehat{R}_{\mathfrak{p}}$. But

$$(\omega_{\widehat{R}})_{\mathfrak{p}} \simeq \omega_{\widehat{R}_{\mathfrak{p}}} \simeq E_{\widehat{R}_{\mathfrak{p}}}(\widehat{R}_{\mathfrak{p}}/\mathfrak{p}\widehat{R}_{\mathfrak{p}}).$$

Hence by counting lengths, $E_{\widehat{R}_{\mathfrak{p}}}(\widehat{R}_{\mathfrak{p}}/\mathfrak{p}\widehat{R}_{\mathfrak{p}}) \simeq \widehat{R}_{\mathfrak{p}}$, i.e. $\widehat{R}_{\mathfrak{p}}$ is Gorenstein. Moreover $I\widehat{R} \nsubseteq \mathfrak{p}$, proving the last statement of the theorem.

We use the following lemma to prove the converse.

Lemma 22 If R is a zero-dimensional Noetherian ring, M a finitely generated R-module and $M_{\mathfrak{p}} \simeq R_{\mathfrak{p}}$ for every prime ideal \mathfrak{p} in R, then $M \simeq R$.

 $(2) \Rightarrow (1)$ Let \mathfrak{q} be a minimal prime in R. Choose $\mathfrak{p} \in \text{Min}(\widehat{R})$ such that $\mathfrak{p} \cap R = \mathfrak{q}$. Since $R \to \widehat{R}$ is flat, so is $R_{\mathfrak{q}} \to \widehat{R}_{R \setminus \mathfrak{q}}$. Hence $R_{\mathfrak{q}} \to \widehat{R}_{\mathfrak{p}}$ is a flat, local map.

Suppose $\widehat{R}_{\mathfrak{p}}$ is Gorenstein. Hence by *Fibers of Flatness*, $R_{\mathfrak{q}}$ is Gorenstein. We will show that if $R_{\mathfrak{q}}$ is Gorenstein for every minimal prime \mathfrak{q} in R, then ω_R is an ideal in R.

Let \mathfrak{q} be a minimal prime in R. Then $(\omega_R)_{\mathfrak{q}} \simeq \omega_{R_{\mathfrak{q}}} \simeq R_{\mathfrak{q}}$ since $R_{\mathfrak{q}}$ is Gorenstein. Let $W = R \setminus \bigcup_{\mathfrak{q} \in \operatorname{Min}(R)} \mathfrak{q}$. By Aplying the lemma to R_W and $(\omega_R)_W$, we see that $(\omega_R)_W \stackrel{\phi}{\simeq} R_W$. Thus

$$\phi \in \operatorname{Hom}_{R_W}(\omega_{R_W}, R_W) \simeq (\operatorname{Hom}_R(\omega_R, R))_W.$$

Choose $\psi: \omega_R \to R$ and $w \in W$ such that $\phi = \psi/w$.

We claim that ψ is injective. To see this, observe that $(\text{Ker}(\psi))_W = 0$. But W consists of non-zerodivisors on R and hence on ω_R (by Prop. 12). This forces $\text{Ker}(\psi) = 0$ proving that ω_R is an ideal in R.

Remark: If R is Cohen-Macaulay, then Ass(R) = Min(R). Hence, in this case, $I \nsubseteq \bigcup_{\mathfrak{q} \in Min(R)} \mathfrak{q}$ if and only if I contains a non-zerodivisor.

Exercise: Prove lemma 22.

Theorem 23 Let $(R, \mathfrak{m}, \mathsf{k})$ be a 1-dimensional Cohen-Macaulay Noetherian local ring. If $\widehat{R}_{\mathfrak{p}}$ is Gorenstein for every minimal prime \mathfrak{p} in \widehat{R} , then

- 1. R has a canonical module ω_R and
- 2. ω_R is isomorphic to an \mathfrak{m} -primary ideal of R.

Proof: Note that (2) follows from (1) at once by Theorem 21 once we show that ω_R exists.

By Theorem 21 applied to \widehat{R} , we see that $\omega_{\widehat{R}} \subseteq \widehat{R}$. Let $\omega_{\widehat{R}} \simeq J \subseteq \widehat{R}$. Since $J \not\subseteq \bigcup_{\mathfrak{p} \in \mathrm{Min}(\widehat{R})} \mathfrak{p}$ and \widehat{R} is 1-dimensional, J is \mathfrak{m} -primary. Hence there is an $n \in \mathbb{N}$ such that $\widehat{\mathfrak{m}}^n \subseteq J$. But $R/\mathfrak{m}^n \simeq \widehat{R}/\widehat{\mathfrak{m}}^n$. Hence $J/\widehat{\mathfrak{m}}^n \simeq I/\mathfrak{m}^n$ for some ideal I in R. Then

$$\widehat{I} \simeq I \widehat{R} = J \simeq \omega_{\widehat{R}}.$$

Thus, by the definition I is a canonical module of R, i.e. ω_R exists and $\omega_R \simeq I$ proving (1).

§ 4.3 Some Characterizations of Gorenstein Rings

We are aiming for the following classical result which almost started the definition of Gorenstein rings.

Theorem 24 Let $(R, \mathfrak{m}, \mathsf{k})$ be a 1-dimensional Noetherian local ring with an infinite residue field such that \widehat{R} is reduced (i.e. R is analytically unramified). Let K be the total ring of quotients of R and \overline{R} be the integral closure of R in K . Let $\mathfrak{C}_R := \{\alpha \in \mathsf{K} : \alpha \overline{R} \subseteq R\}$ be the conductor of \overline{R} into R. Then R is Gorenstein if and only if $2\lambda(R/\mathfrak{C}_R) = \lambda(\overline{R}/\mathfrak{C}_R)$.

Setup: Let R be a reduced ring, K be it's total ring of quotients and \overline{R} be the integral closure of R in K. We assume throughout that \overline{R} is a finitely generated R-module.

Discussion: If $\overline{R} = R(a_1/b_1) + \cdots + R(a_n/b_n)$, $a_i, b_i \in R$, $b_i \notin \mathfrak{p}$ for any $\mathfrak{p} \in \mathrm{Ass}(R)$, then $(b_1, \ldots, b_n)\overline{R} \subseteq R$. Note that since R is reduced, $\mathrm{Ass}(R) = \mathrm{Min}(R)$.

Definition: Define $\mathfrak{C}_{\overline{R}/R}$ (sometimes denoted simply by \mathfrak{C}_R) := $\{\alpha \in \mathsf{K} : \alpha \overline{R} \subseteq R\}$ to be the conductor of \overline{R} to R.

Remark 5

- 1. $\mathfrak{C}_R \subseteq R$ is an ideal. Moreover \mathfrak{C}_R is an ideal in \overline{R} . Finally, \mathfrak{C}_R is the largest common ideal of R and \overline{R} .
- 2. Note that under the above assumptions, \mathfrak{C}_R contains a non-zerodivisor. In particular, if R is a 1-dimensional local ring, then \mathfrak{C}_R is \mathfrak{m} -primary (assuming $R \neq \overline{R}$).

Illustrative Examples:

Example 2 Let $R = \mathsf{k}[[t^3, t^5]]$ where k is a field. Then $\overline{R} = \mathsf{k}[[t]]$. Note that the powers of t in R are $0, 3, 5, 6, 8, 9, 10, \ldots$ Then $\mathfrak{C}_R = (t^8, t^9, t^{10})R = (t^8)\overline{R}$.

Note that $R/\mathfrak{C}_R \simeq \mathsf{k} \cdot 1 + \mathsf{k} \cdot t^3 + \mathsf{k} \cdot t^5 + \mathsf{k} \cdot t^6$ and $\overline{R}/R \simeq \mathsf{k} \cdot t + \mathsf{k} \cdot t^2 + \mathsf{k} \cdot t^4 + \mathsf{k} \cdot t^7$. As k -vector spaces $\lambda(\overline{R}/R) = 4 = \lambda(R/\mathfrak{C}_R)$. This is not a coincidence. The equality $\lambda(\overline{R}/R) = \lambda(R/\mathfrak{C}_R)$ holds since R is Gorenstein.

Exercise: If (a, b) = 1, a, b > 0. Prove that

$$\mathfrak{C}_R = \langle t^j : j \rangle (a-1)(b-1) \rangle R \text{ where } R = \mathsf{k}[[t^a, t^b]].$$

Example 3 Let $R = \mathsf{k}[[t^3, t^4, t^5]]$. Then $\overline{R} = \mathsf{k}[[t]]$ and $\mathfrak{C}_R \simeq (t^3, t^4, t^5)R = \mathfrak{m}_R$. In this case $\lambda(\overline{R}/R) = 2 \neq 1 = \lambda(R/\mathfrak{C}_R)$. This implies that R is not Gorenstein.

Remark 6 Let M, N be finitely generated R-submodules of K which contain a non-zerodivisor apiece. Then

- 1. $M \otimes_R \mathsf{K} \simeq \mathsf{K}, N \otimes_R \mathsf{K} \simeq \mathsf{K}$ and
- 2. $\operatorname{Hom}_R(M,N) \otimes_R \mathsf{K} \simeq \operatorname{Hom}_{\mathsf{K}}(M \otimes_R \mathsf{K}, N \otimes_R \mathsf{K}) \simeq \operatorname{Hom}_{\mathsf{K}}(\mathsf{K},\mathsf{K}) \simeq \mathsf{K}$. Therefore $\operatorname{Hom}_R(M,N) \overset{i}{\hookrightarrow} \mathsf{K}$ as the Hom is torsion-free.

Let $f \in \operatorname{Hom}_R(M,N)$. Choose $x \in M \cap R$, a non-zero divisor. Then i(f) can be identified with f(x)/x. This can be seen as follows: For any $y \in M \cap R$, $x \cdot f(y) = y \cdot f(x)$ and hence $f(y) = y \cdot (f(x)/x)$.

This extends to all $y \in M$. Thus we have,

$$\operatorname{Hom}_R(M,N) = \{ \alpha \in \mathsf{K} : \alpha M \subseteq N \}.$$

In particular,

$$\operatorname{Hom}_R(\overline{R}, R) = \{ \alpha \in \mathsf{K} : \alpha \overline{R} \subseteq R \} = \mathfrak{C}_R.$$

We use the following lemma to prove the main theorem in this section.

Lemma 25 Let $(R, \mathfrak{m}, \mathsf{k})$ be a Cohen-Macaulay local ring of dimension d with a canonical module ω_R . Let L be a finitely generated R-module. If $\lambda_R(L) < \infty$, then $L^{\vee} \simeq \operatorname{Ext}_R^d(L, \omega_R)$.

In particular, $\lambda_R(\operatorname{Ext}_R^d(L,\omega_R)) = \lambda_R(L)$.

Proof: Choose a maximal regular sequence $\underline{x} = x_1, \dots, x_d \in \operatorname{ann}_R(L)$. Since R is Cohen-Macaulay, \underline{x} is not only a regular sequence on R, but also on ω_R . Hence

$$\operatorname{Ext}_R^d(L,\omega_R) \simeq \operatorname{Ext}_R^0(L,\omega_R/\underline{x}\omega_R) \simeq \operatorname{Hom}_R(L,\omega_{R/\underline{x}R}) \simeq \operatorname{Hom}_{R/\underline{x}R}(L,E_{R/\underline{x}R}(\mathsf{k}))$$

$$\simeq \operatorname{Hom}_{R/xR}(L, \operatorname{Hom}_R(R/\underline{x}R, E_R(\mathsf{k}))) \simeq \operatorname{Hom}_R(L \otimes_R R/\underline{x}R, E_R(\mathsf{k})) \simeq L^{\vee}.\square$$

Definition: Let (R, \mathfrak{m}, k) be a Cohen-Macaulay local ring. Then we define

$$\operatorname{type}(R) := \mu(\omega_{\widehat{R}}).$$

With this background, we will now prove the main theorem of this section. The following statement is stronger than what we stated in Theorem 24.

Theorem 26 Let $(R, \mathfrak{m}, \mathsf{k})$ be a 1-dimensional reduced Noetherian local ring with an infinite residue field such that \overline{R} is a finite R-module. Assume $\widehat{R}_{\mathfrak{p}}$ is Gorenstein for every minimal prime \mathfrak{p} in \widehat{R} . Then $\lambda(\overline{R}/R) \geq \lambda(R/\mathfrak{C}_R) + \operatorname{type}(R) - 1$. The equality holds if R is Gorenstein. Thus R is Gorenstein if and only if $\lambda(R/\mathfrak{C}_R) = \lambda(\overline{R}/R)$.

Remark: The condition $\lambda(R/\mathfrak{C}_R) = \lambda(\overline{R}/R)$ is usually written as

$$2\lambda(R/\mathfrak{C}_R) = \lambda(\overline{R}/\mathfrak{C}_R).$$

Proof of Theorem 26: By theorem 23, ω_R exists. Moreover, we can assume it to be an \mathfrak{m} -primary ideal in R. Hence $\operatorname{type}(R) = \mu(\omega_R)$.

Consider the short exact sequence $0 \to \omega_R \to \omega_R \overline{R} \to \omega_R \overline{R}/\omega_R \to 0$. Apply $\operatorname{Hom}(_-,\omega_R)$ and observe that (1) $\operatorname{Hom}_R(\omega_R \overline{R}/\omega_R,\omega_R) = 0$ since ω_R contains a non-zerodivisor and (2) $\operatorname{Ext}_R^1(\omega_R \overline{R},\omega_R) = 0$ by Theorem 14 since $\omega_R \overline{R} \in \operatorname{CM}_R(1)$ to get

$$0 \to \operatorname{Hom}_R(\omega_R \overline{R}, \omega_R) \to \operatorname{Hom}_R(\omega_R, \omega_R) \to \operatorname{Ext}_R^1(\omega_R \overline{R}/\omega_R, \omega_R) \to 0.$$
 (*)

Since $(\omega_R \otimes_R \overline{R})/(torsion) \simeq \omega_R \overline{R}$, $\operatorname{Hom}_R(\omega_R \overline{R}, \omega_R) \simeq \operatorname{Hom}_R(\omega_R \otimes_R \overline{R}, \omega_R)$ which, by the $\operatorname{Hom} - \otimes$ adjointness, is isomorphic to $\operatorname{Hom}_R(\overline{R}, \operatorname{Hom}_R(\omega_R, \omega_R))$. Thus using $\operatorname{Hom}_R(\omega_R, \omega_R) \simeq R$,

$$\operatorname{Hom}_R(\omega_R \overline{R}, \omega_R) \simeq \operatorname{Hom}_R(\overline{R}, R) \simeq \mathfrak{C}_R.$$

and therefore (*) reduces to

$$0 \to \mathfrak{C}_R \to R \to \operatorname{Ext}^1_R(\omega_R \overline{R}/\omega_R, \omega_R)) \to 0.$$

Moreover, by lemma 25,

$$\lambda(\operatorname{Ext}_R^1(\omega_R\overline{R}/\omega_R,\omega_R)) = \lambda(\omega_R\overline{R}/\omega_R).$$

Hence

$$\lambda(R/\mathfrak{C}_R) = \lambda(\omega_R \overline{R}/\omega_R) \tag{**}.$$

Since k is infinite, we can choose $x \in \omega_R$, a minimal reduction of ω_R . Hence $\omega_R \overline{R} = x \overline{R}$ which implies that

$$\lambda(\omega_R \overline{R}/\omega_R) = \lambda(x\overline{R}/\omega_R) = \lambda(x\overline{R}/xR) - \lambda(\omega_R/xR) = \lambda(\overline{R}/R) - \lambda(\omega_R/xR).$$

Thus (**) gives $\lambda(\overline{R}/R) = \lambda(R/\mathfrak{C}_R) + \lambda(\omega_R/xR)$. Hence we just need to show that $\lambda(\omega_R/xR) \ge \operatorname{type}(R) - 1$.

But x is a minimal generator of ω_R , so that

$$\lambda(\omega_R/xR) \ge \mu(\omega_R/xR) = \mu(\omega_R) - 1 = \text{type}(R) - 1$$

proving the inequality in the theorem.

Recall that R is Gorenstein if and only if $\operatorname{type}(R) = 1$. Thus if R is Gorenstein, $\omega_R \simeq R$ and hence (**) gives $\lambda(R/\mathfrak{C}_R) = \lambda(\overline{R}/R)$. Since $\operatorname{type}(R) = 1$, this proves the equality in the theorem. If R is not Gorenstein, then $\operatorname{type}(R) \geq 2$, forcing $\lambda(\overline{R}/R) > \lambda(R/\mathfrak{C}_R)$, proving the second part of the theorem.

Remark 7 We will now show that the assumption k is infinite is not necessary to prove the above theorem. We used the fact that k was infinite to claim the existence of an element $x \in \omega_R$ such that $\omega_R \overline{R} = x \overline{R}$ using a minimal reduction. What we need to show is that such an element exists even if the field is not necessarily infinite.

Note that since \overline{R} is reduced, semilocal and integrally closed in its total ring of fractions, it is a direct product of DVRs. This is due to the following reason: The total ring of quotients K of \overline{R} (or R) is $\kappa_1 \times \cdots \times \kappa_t$, where $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_t\} = \operatorname{Min} R$ and $\kappa_i = \kappa(\mathfrak{p}_i)$, the residue field of $R_{\mathfrak{p}_i}$. Consider the idempotent elements $e_i \in K$ corresponding to κ_i . Then $e_i^2 - e_i = 0$, and hence $e_i \in \overline{R}$ for each i.

Thus \overline{R} is a principal ideal ring, i.e. every ideal in \overline{R} is principal. In particular, there is an element $t \in \overline{R}$ such that $\omega_R \overline{R} = t \overline{R}$.

Warning: t need not be in R as can be seen in example 4 below.

To finish the proof, choose a non-zerodivisor $c \in \mathfrak{C}_R$. Then $ct \in R$ and $c\omega_R \simeq \omega_R$. Hence replace ω_R by $c\omega_R$ and t by ct. Thus we have $c\omega_R\overline{R} = ct\overline{R}$, concluding the proof.

The following is an example to illustrate the fact that the element t, chosen as in the above remark, need not be in R.

Example 4 Let $R = \mathbb{Z}_2[[X,Y]]/(XY(X+Y))$. Then R is a reduced 1-dimensional ring. We have $\mathfrak{m}_R \overline{R} = (X,Y)\overline{R}$ and

$$\overline{R} \stackrel{\phi}{\simeq} \mathbb{Z}_2[[Y]] \times \mathbb{Z}_2[[X]] \times \mathbb{Z}_2[[X]], \text{ where } \phi(f) = (f(\text{mod}X), f(\text{mod}Y), f(\text{mod}(X+Y))).$$

The elements X, Y and X + Y in \overline{R} correspond to (0, X, X), (Y, 0, Y) and (Y, X, 0) respectively under ϕ . Then $\mathfrak{m}_R \overline{R} \not\simeq f \overline{R}$, for f = X, Y or X + Y. But

$$\mathfrak{m}_R \overline{R} \simeq (Y, X, X) \overline{R}.$$

Notation:

- 1. By W, we denote the set $\mathbb{N} \cup \{0\}$.
- 2. For a subset $H \subseteq \mathbb{W}$, by t^H we denote the set $\{t^i : i \in H\}$.

The following is an example to illustrate the theorem.

Example 5 We will show that $R = \mathsf{k}[t^6, t^7, t^8]$ is Gorenstein. Let $H := \{i \in \mathbb{W} : t^i \in R\}$ and $C := \{i \in \mathbb{W} : t^i \in \mathfrak{C}_R\}$. Then

$$H = \{0, 6, 7, 8, 12, 13, 14, 15, 16, 18, 19, \ldots\}$$
 and $C = \{18, 19, 20, \ldots\}$.

Thus

$$\lambda(\overline{R}/R) = |\mathbb{W} \setminus H| = |\{1, 2, 3, 4, 5, 9, 10, 11, 17\}| = 9$$
 and

$$\lambda(R/\mathfrak{C}_R) = |H \setminus C| = |\{0, 6, 7, 8, 12, 13, 14, 15, 16\}| = 9.$$

Hence by the above theorem, R is Gorenstein. In fact, R is a complete intersection ring.

Definition 5 Let H be a subset of \mathbb{W} containing 0, closed under addition, such that $c + \mathbb{W} \subseteq H$ for some $c \in \mathbb{W}$. H is said to be symmetric if there is an $m \in \mathbb{W}$ such that for every $n \geq 0$, $n \in H \Leftrightarrow m - n \notin H$.

Proposition 27 The ring $R = k[[t^H]]$ is Gorenstein if and only if H is symmetric.

Proof: Let $c \in \mathbb{W}$ be given by $\mathfrak{C}_R = (t^i : i \geq c)$. Note that by definition of c, $t^{c-1} \notin R$. Suppose $\mathsf{k}[[t^H]]$ is Gorenstein. Set m = c - 1.

If $n \in H$, then $t^n \in R$. Then $t^{c-1-n} \notin R$ else $t^{c-1} = t^n \cdot t^{c-1-n} \in R$ which is not true.

Since $\lambda(\overline{R}/R) = \lambda(R/\mathfrak{C}_R)$, H must contain exactly a half of the elements in $(\mathbb{W} \setminus H) \cup (H \setminus C) = \{0, 1, \dots, c-1\}$. Hence $t^n \in R \Leftrightarrow t^{c-1-n} \notin R$, i.e. $n \in H \Leftrightarrow m-n \notin H$.

Conversely, if H is symmetric, then $|\mathbb{W} \setminus H| = |H \setminus C|$, i.e. $\lambda(\overline{R}/R) = \lambda(R/\mathfrak{C}_R)$, which implies that R is Gorenstein.

Example 6

Question: Is $R = \mathsf{k}[[t^3, t^5, t^7]]$ Gorenstein? If not, what is ω_R ? In this case, $H = \{0, 3, 5, 6, 7, 8, \ldots\}$, hence c = 5. Therefore R is not Gorenstein since c - 1 has to be odd for H to be symmetric.

Let us now find out what the canonical module ω_R of R is. There are two basic ways to find ω_R :

Method I: Find a Gorenstein ring $S \subseteq R$ and compute $\omega_R = \text{Hom}_S(R, S)$.

We can choose $\mathsf{k}[[t^3]] \subseteq \mathsf{k}[[t^3, t^5, t^7]] = R$. A better choice is $S := \mathsf{k}[[t^3, t^5]] \subseteq R$, since R and S are birational and $\dim(S) = \dim(R)$. Note that S is a hypersurface and hence Gorenstein. In this case,

$$\omega_R \simeq \operatorname{Hom}_S(R, S) \simeq \{ \alpha \in \mathsf{k}[[t]] : \alpha R \subseteq S \},$$

i.e. ω_R is the conductor of R to S. It is enough to find the set $\{j \in \mathbb{N} \cup \{0\} : t^j R \subseteq S\}$. We have $H_R = \{0, 3, 5, 6, 7, 8, \ldots\}$ and $H_S = \{0, 3, 5, 6, 8, 9, 10, \ldots\}$. Hence $\{j \in \mathbb{N} \cup \{0\} : t^j R \subseteq S\} = \{3, 5\}$, i.e. $\omega_R \simeq < t^3, t^5 >$. Note that ω_R is also an ideal in R. In this case, $\operatorname{type}(R) = \mu(\omega_R) = 2$. Method II: Map a regular local ring $T \longrightarrow R$, compute a resolution of R over T and take the cokernel of the dual of the last map.

A Variation of method II: (works better if R is a domain). Let T be as above. Write $R \simeq T/I$, for an ideal $I \in T$. Let \underline{x} be a maximal regular sequence in I. Then if $c = \operatorname{ht}(I)$, we have

$$\omega_R \simeq \operatorname{Ext}_T^c(R,T) \simeq \operatorname{Hom}_{T/(x)}(R,T/(\underline{x})) \simeq (\underline{x}:_T I)/(\underline{x}).$$

Let $T:=\mathsf{k}[[X,Y,Z]] \stackrel{\phi}{\longrightarrow} \mathsf{k}[[t^3,t^5,t^7]]=R.$ Then

second column (giving $\omega_R \simeq (t^7, t^9)$).

$$\mathfrak{p} := \operatorname{Ker}(\phi) = I_2\left(\left(\begin{array}{cc} X & Z & Y \\ Y & X^3 & Z \end{array}\right)\right) = (X^4 - YZ, Y^2 - XZ, Z^2 - X^3Y).$$

Let Δ_1 , Δ_2 and Δ_3 respectively denote the three generators of \mathfrak{p} . Then

$$X\Delta_1 + Z\Delta_2 + Y\Delta_3 = 0 = Y\Delta_1 + X^3\Delta_2 + Z\Delta_3 \tag{*}$$

Since Δ_1 , Δ_2 is a regular sequence in \mathfrak{p} , $(\Delta_1, \Delta_2) :_T \mathfrak{p} = (\Delta_1, \Delta_2) :_T \Delta_3 = (Y, Z)$ by (*). Therefore the image of (Y, Z) in R is a canonical module, i.e. $\omega_R \simeq (t^5, t^7)$. Note that these generators of ω_R correspond to the third column of the matrix $\begin{pmatrix} X & Z & Y \\ Y & X^3 & Z \end{pmatrix}$. We could have chosen the first column (giving $\omega_R \simeq (t^3, t^5)$) or the

Exercises

- (1) Let $(R, \mathfrak{m}) \to (S, \mathfrak{n})$ be a flat local homomorphism of Noetherian rings. Assume that $R/\mathfrak{m} \simeq S/\mathfrak{n}$ under the induced map. Let M, N be two finitely generated R-modules. If $M \otimes_R S \simeq N \otimes_R S$, prove that $M \simeq N$.
- (2) Let (R, \mathfrak{m}) be a Noetherian local ring, and assume that $M \in \mathrm{CM}_{\mathrm{R}}(i)$. Is $R/\mathrm{ann}M$ Cohen-Macaulay?
- (3) Let (R, \mathfrak{m}) be a Noetherian local ring, and let $M \in \mathrm{CM}_{\mathbf{R}}(i)$. Assume that $x \in \mathfrak{m}$ is a non-zerodivisor M. Is $\mathrm{ann}(M/xM) = \mathrm{ann}M + Rx$?
- (4) Let $R = \mathsf{k}[[t^7, t^9, t^{10}]]$ where k is a field of characteristic $\neq 7$.
 - (a) Compute ω_R by mapping a regular local ring onto R.
 - (b) Compute ω_R by considering $\operatorname{Hom}_B(R,B)$ where $B=\mathsf{k}[[t^7,t^9]]$.
- (5) Let (S, \mathfrak{n}) be a RLR, R = S/I, and assume that $R \in \mathrm{CM}_S(n-2)$ where $n = \dim(S)$. Let C be an $t \times (t+1)$ matrix giving a resolution:

$$0 \longrightarrow S^t \xrightarrow{C} \longrightarrow S^{t+1} \longrightarrow S \longrightarrow R \longrightarrow 0.$$

Assume that any two maximal minors of C form a regular sequence in S (this is always possible), which generate $I_{\mathfrak{p}}$ for all $\mathfrak{p} \in \text{Min}(I)$.

Let B be any $t \times (t-1)$ matrix obtained from C by deleting 2 columns. Prove that

$$\omega_R \simeq I_{t-1}(B)R$$
.

- (6) (Stanley) Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring with canonical module $\omega_R \subseteq R$. Let $\underline{x} = x_1, \ldots, x_d$ be a maximal regular sequence on R. Let $S = R/(\underline{x})$ and $I = (\omega_R + (\underline{x}))/(\underline{x}) \subseteq S$. Show that $I^{\vee} = I$, where $^{\vee} = \operatorname{Hom}_S(^{\vee}, E)$ with E an injective hull of the residue field of S.
- (7) Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension d. Let M be a finitely generated R-module. Assume that $\operatorname{Ext}_R^i(M, M) = 0$ for all $1 \leq i$ and assume that $\operatorname{Hom}_R(M, M)$ is free. Prove that if R is Gorenstein, then M is free.
- (8) (Greco) Let R be a complete local reduced ring of dimension one. Assume the residue field of R is infinite and assume that R is not Gorenstein. Let \overline{R} be the

integral closure of R in its total quotient ring. Let $\mathfrak{C} \simeq \operatorname{Hom}_R(\overline{R}, R) \subseteq R$, the conductor of \overline{R} to R. Prove or give a counterexample to the inequality:

$$\min\{\lambda(R/K)|\omega_R \simeq K \subseteq R\} \ge e(R) + \lambda(R/\mathfrak{C}) - \lambda(\overline{R}/R)$$

where e(R) is the multiplicity of R. (So $e(R) = \min\{\lambda(R/(x)|x \text{ is a non-zerodivisor in } R\}).$

- (9) Prove that the inequality in exercise 8 can be strict by considering $k[[t^5, t^6, t^8]] = R$.
- (10) Let (R, \mathfrak{m}) be a complete local domain satisfying S_2 . Let \mathfrak{C} be the conductor of \overline{R} , the integral closure of R, to R. Prove that \mathfrak{C} is a height one unmixed ideal.
- (11) Let R be a complete 1-dimensional domain with integral closure \overline{R} . Let $\mathfrak{C} = \operatorname{Hom}_R(\overline{R}, R)$, the conductor of \overline{R} to R. Suppose that I is an ideal of R such that $I \supseteq \mathfrak{C}$. Let J be any other ideal of R isomorphic to I. Prove that $J\overline{R} \subseteq I\overline{R}$.
- (12) (R. Wiegand) Let R be a 1-dimensional complete local domain which is Gorenstein. Prove that for every finitely generated torsion-free R-module M without nontrivial free summands, there is a ring S, $R \subseteq S \subseteq \overline{R}$ (= integral closure of R) such that M is an S-module. (Hint: consider the inverse of the "trace ideal", the ideal generated by all f(x) where $f \in M^*$ and $x \in M$. Use exercise 11.)
- (13) Prove that the assumption that R is Gorenstein in exercise 12 is needed by considering the canonical module of a Cohen-Macaulay 1-dimensional complete domain.
- (14) Let (R, \mathfrak{m}) be a 1-dimensional Noetherian local ring whose completion is reduced. Let K be the total ring of quotients of R. Prove that R is Gorenstein iff $\mathfrak{m}^{-1} = \{x \in K : x\mathfrak{m} \subseteq R\}$ is generated by 2 elements as an R-module.
- (15) Let S be a Gorenstein local ring, and assume that R = S/I is CM. Let J be generated by a maximal regular sequence in I, and assume that x is an element of S which is a non-zerodivisor on S/J. Prove that (J:I)+Sx=(J,x):(I,x). (Hint: consider the canonical modules of R and R/Rx.)
- (16) Let R be a 1-dimensional Noetherian local domain with finite integral closure. Prove that the conductor of R cannot be contained in a principal ideal of R unless R is integrally closed.

(17) Let R be a Noetherian semilocal ring, and let M be a finitely generated Rmodule such that $M_{\mathfrak{m}} \simeq R^{r}_{\mathfrak{m}}$ for all maximal ideals. Prove that $M \simeq R^{r}$.

(18) Let k be a field, and let a,b be two relatively prime positive integers. Set $R = \mathsf{k}[[t^a,t^b]]$. Prove that the conductor of R is generated by all t^j where $j \geq (a-1)(b-1)$.

References

- [1] M. Auslander, On the purity of the branch locus, Amer. J. Math 84 (1962), 116-125.
- [2] N. Bourbaki, Commutative Algebra, (1972), Addison-Wesley, Reading, Massachusetts.
- [3] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1999.
- [4] S. Choi, The divisor class group of surfaces of embedding dimension three, J. Algebra, 119 (1988), 162-169.
- [5] D. Eisenbud, Some directions of recent progress in commutative algebra, Algebraic geometry, Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., (1974), pp. 111-128. Amer. Math. Soc., Providence, R.I., 1975.
- [6] R. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik, **74** (1973), Springer-Verlag, New York, Heidelberg, Berlin.
- [7] J. Lipman, Unique factorization in complete local rings, Algebraic geometry, Proc. Symos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., (1974), pp. 531-546.
- [8] J. Lipman, Rings with discrete divisor class group: theorem of Danilov-Samuel, Amer. J. Math. **101** (1979), no. 1, 203-211.
- [9] P. Roberts, Homological invariants of modules over commutative rings, Seminaire de Mathematiques Superieures, 72. Presses de l'Universite de Montreal, Montreal, Que., 1980.
- [10] W. Teter, Rings which are a factor of a Gorenstein ring by its socle, Inventiones Math. **23** (1974), 153-162.