1. $\alpha = \sqrt[3]{5}$ – корень многочлена $h = x^3 - 5$, h – неприводимый над $\mathbb Q$

$$\Rightarrow \beta = \frac{51 - 44\sqrt[3]{5} + \sqrt[3]{25}}{1 - \sqrt[3]{5} - 4\sqrt[3]{25}} \in \mathbb{Q}(\alpha) \simeq \mathbb{Q}[x]/(h)$$
 (по теореме)

 \Rightarrow (по следствию) β представим в виде $a_0 + a_1\alpha + a_2\alpha^2$

Формула понижения степени: $\overline{x}^3 = 5$

$$\frac{51 - 44\alpha + \alpha^2}{1 - \alpha - 4\alpha^2} = a_0 + a_1\alpha + a_2\alpha^2 \Rightarrow$$

$$51 - 44\alpha + \alpha^2 = (a_0 + a_1\alpha + a_2\alpha^2)(1 - \alpha - 4\alpha^2)$$

$$51 - 44\alpha + \alpha^2 = a_0 - a_0\alpha - 4a_0\alpha^2 + a_1\alpha - a_1\alpha^2 - 20a_1 + a_2\alpha^2 - 5a_2 - 20a_2\alpha$$

$$\Rightarrow \begin{cases} 51 = a_0 - 20a_1 - 5a_2 \\ -44 = -a_0 + a_1 - 20a_2 \\ 1 = -4a_0 - a_1 + a_2 \end{cases}$$

$$\begin{pmatrix} 1 & -20 & -5 & 51 \\ -1 & 1 & -20 & -44 \\ -4 & -1 & 1 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -20 & -5 & 51 \\ 0 & -19 & -25 & 7 \\ 0 & -81 & -19 & 205 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -20 & -5 & 51 \\ 0 & -19 & -25 & 7 \\ 0 & 1539 & 361 & -3895 \end{pmatrix}$$

$$\Rightarrow a_0 = 1, a_1 = -3, a_2 = 2$$

Ответ: $1 - 3\sqrt[3]{5} + 2\sqrt[3]{25}$

2.
$$\alpha = \sqrt{6} - \sqrt{5} + 1 \Rightarrow \alpha^2 - 2\alpha + 1 = 6 - 2\sqrt{30} + 5 \Rightarrow (\alpha^2 - 2\alpha - 10)^2 = 120$$

 $\Rightarrow \alpha^4 + 4\alpha^2 + 100 - 20\alpha^2 + 40\alpha - 4\alpha^3 = 120 \Rightarrow \alpha^4 - 4\alpha^3 - 16\alpha^2 + 40\alpha - 20 = 0$
 $\Rightarrow h = x^4 - 4x^3 - 16x^2 + 40x - 20$ – обнуляющий многочлен

Докажем, что h является минимальным:

Необходимо доказать, что $[\mathbb{Q}(\alpha):\mathbb{Q}]=4$

$$[\mathbb{Q}(\sqrt{6}):\mathbb{Q}]=2$$
, так как $x^2-\sqrt{6}$ – минимальный многочлен для $\sqrt{6}$

Базис в $\mathbb{Q}(\sqrt{6})$: $1, \sqrt{6}$

$$[\mathbb{Q}(\sqrt{5}):\mathbb{Q}]=2,$$
 так как $x^2-\sqrt{5}$ – минимальный многочлен для $\sqrt{5}$

Базис в $\mathbb{Q}(\sqrt{5})$: $1, \sqrt{5}$

Докажем, что $\sqrt{6} \notin \mathbb{Q}(\sqrt{5})$:

Пусть от противного $\sqrt{6} \in \mathbb{Q}(\sqrt{5}) \Rightarrow \sqrt{6} = a + b\sqrt{5}, a, b \in \mathbb{Q} \Rightarrow 6 = a^2 + 2ab\sqrt{5} + 5b^2 \Rightarrow \begin{cases} a^2 + 5b^2 = 6 \\ 2ab\sqrt{5} = 0 \end{cases} \Rightarrow a$ должно быть равно 0 или b должно быть равно 0, но такие a и b не

удовлетворяют равенству – получили противоречие $\Rightarrow \sqrt{6} \not\in \mathbb{Q}(\sqrt{5})$

$$F:=\mathbb{Q}(\sqrt{5})(\sqrt{6})\Rightarrow (\text{по лемме}) \ F:\mathbb{Q}]=4$$

$$\Rightarrow (\text{по лемме}) \ \text{базис в } F\colon 1, \sqrt{5}, \sqrt{6}, \sqrt{30}\Rightarrow \alpha\in F\Rightarrow \mathbb{Q}(\alpha)\subseteq F$$

$$\alpha\in\mathbb{Q}(\alpha)\Rightarrow \alpha^2\in\mathbb{Q}(\alpha)\Rightarrow 2\alpha+10+\sqrt{30}\in\mathbb{Q}(\alpha)\Rightarrow \sqrt{30}\in\mathbb{Q}(\alpha)$$

$$\begin{cases} \sqrt{30}\in\mathbb{Q}(\alpha)\\ \alpha\in\mathbb{Q}(\alpha) \end{cases} \Rightarrow \alpha\sqrt{30}\in\mathbb{Q}(\alpha)\Rightarrow 6\sqrt{5}-5\sqrt{6}+\sqrt{30}\in\mathbb{Q}(\alpha)\Rightarrow 6\sqrt{5}-5\sqrt{6}\in\mathbb{Q}(\alpha) \end{cases}$$

$$\alpha\in\mathbb{Q}(\alpha)\Rightarrow \sqrt{6}-\sqrt{5}\in\mathbb{Q}(\alpha)\Rightarrow \begin{cases} 6\sqrt{5}-5\sqrt{6}\in\mathbb{Q}(\alpha)\\ \sqrt{6}-\sqrt{5}\in\mathbb{Q}(\alpha) \end{cases} \Rightarrow \begin{cases} \sqrt{5}\in\mathbb{Q}(\alpha)\\ \sqrt{6}\in\mathbb{Q}(\alpha) \end{cases} \Rightarrow F\subseteq\mathbb{Q}(\alpha)$$

$$\begin{cases} F\subseteq\mathbb{Q}(\alpha)\\ \mathbb{Q}(\alpha)\subseteq F \end{cases} \Rightarrow F=\mathbb{Q}(\alpha)\Rightarrow [\mathbb{Q}(\alpha):\mathbb{Q}]=4\Rightarrow h-\text{минимальный многочлен для } \sqrt{6}-\sqrt{5}+1$$

Ответ: $x^4 - 4x^3 - 16x^2 + 40x - 20$

3. $|F_8| = 8 = 2^3 \Rightarrow$ можно взять $F_8 = \mathbb{Z}_2/(h)$, где h – неприводимый над \mathbb{Z}_2 многочлен степени 3 Нам подходит $h = x^3 + x + 1$ (поскольку он неприводим над $\mathbb{Z}_2 \Rightarrow \overline{x}^3 = \overline{x} + \overline{1}$ $\Rightarrow F_8 = \{\overline{0}, \overline{1}, \overline{x}, \overline{x} + \overline{1}, \overline{x}^2, \overline{x}^2 + \overline{1}, \overline{x}^2 + \overline{x}, \overline{x}^2 + \overline{x} + \overline{1}\}$

Дальше идёт один из страшных снов техающих. Всем техающим F

Некрасивая таблица сложения:

	$\overline{0}$	1	\overline{x}	$\overline{x} + \overline{1}$	\overline{x}^2	$\overline{x}^2 + \overline{1}$	$\overline{x}^2 + \overline{x}$	$\overline{x}^2 + \overline{x} + \overline{1}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	\overline{x}	$\overline{x} + \overline{1}$	\overline{x}^2	$\overline{x}^2 + \overline{1}$	$\overline{x}^2 + \overline{x}$	$\overline{x}^2 + \overline{x} + \overline{1}$
$\overline{1}$	$\overline{1}$	$\overline{0}$	$\overline{x} + \overline{1}$	\overline{x}	$\overline{x}^2 + \overline{1}$	\overline{x}^2	$\overline{x}^2 + \overline{x} + \overline{1}$	$\overline{x}^2 + \overline{x}$
\overline{x}	\overline{x}	$\overline{x} + \overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{x}^2 + \overline{x}$	$\overline{x}^2 + \overline{x} + \overline{1}$	\overline{x}^2	$\overline{x}^2 + \overline{1}$
$\overline{x} + \overline{1}$	$\overline{x} + \overline{1}$	\overline{x}	$\overline{1}$	0	$\overline{x}^2 + \overline{x} + \overline{1}$	$\overline{x}^2 + \overline{x}$	$\overline{x}^2 + \overline{1}$	\overline{x}^2
\overline{x}^2	\overline{x}^2	$\overline{x}^2 + \overline{1}$	$\overline{x}^2 + \overline{x}$	$\overline{x}^2 + \overline{x} + \overline{1}$	0	$\overline{1}$	\overline{x}	$\overline{x} + \overline{1}$
$\overline{x}^2 + \overline{1}$	$\overline{x}^2 + \overline{1}$	\overline{x}^2	$\overline{x}^2 + \overline{x} + \overline{1}$	$\overline{x}^2 + \overline{x}$	$\overline{1}$	$\overline{0}$	$\overline{x} + \overline{1}$	\overline{x}
$\overline{x}^2 + \overline{x}$	$\overline{x}^2 + \overline{x}$	$\overline{x}^2 + \overline{x} + \overline{1}$	\overline{x}^2	$\overline{x}^2 + \overline{1}$	\overline{x}	$\overline{x} + \overline{1}$	$\overline{0}$	$\overline{1}$
$\overline{x}^2 + \overline{x} + \overline{1}$	$\overline{x}^2 + \overline{x} + \overline{1}$	$\overline{x}^2 + \overline{x}$	$\overline{x}^2 + \overline{1}$	\overline{x}^2	$\overline{x} + \overline{1}$	\overline{x}	$\overline{1}$	$\overline{0}$

Некрасивая таблица умножения:

		$\overline{0}$	$\overline{1}$	\overline{x}	$\overline{x} + \overline{1}$	\overline{x}^2	$\overline{x}^2 + \overline{1}$	$\overline{x}^2 + \overline{x}$	$\overline{x}^2 + \overline{x} + \overline{1}$
	0	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
	1	$\overline{0}$	1	\overline{x}	$\overline{x} + \overline{1}$	\overline{x}^2	$\overline{x}^2 + \overline{1}$	$\overline{x}^2 + \overline{x}$	$\overline{x}^2 + \overline{x} + \overline{1}$
	\overline{x}	$\overline{0}$	\overline{x}	\overline{x}^2	$\overline{x}^2 + \overline{x}$	$\overline{x} + \overline{1}$	$\overline{1}$	$\overline{x}^2 + \overline{x} + \overline{1}$	$\overline{x}^2 + \overline{1}$
	$\overline{x} + \overline{1}$	$\overline{0}$	$\overline{x} + \overline{1}$	$\overline{x}^2 + \overline{x}$	$\overline{x}^2 + \overline{1}$	$\overline{x}^2 + \overline{x} + \overline{1}$	\overline{x}^2	1	\overline{x}
	\overline{x}^2	$\overline{0}$	\overline{x}^2	$\overline{x} + \overline{1}$	$\overline{x}^2 + \overline{x} + \overline{1}$	$\overline{x}^2 + \overline{x}$	\overline{x}	$\overline{x}^2 + \overline{1}$	1
	$\overline{x}^2 + \overline{1}$	0	$\overline{x}^2 + \overline{1}$	1	\overline{x}^2	\overline{x}	$\overline{x}^2 + \overline{x} + \overline{1}$	$\overline{x} + \overline{1}$	$\overline{x}^2 + \overline{x}$
	$\overline{x}^2 + \overline{x}$	$\overline{0}$	$\overline{x}^2 + \overline{x}$	$\overline{x}^2 + \overline{x} + \overline{1}$	1	$\overline{x}^2 + \overline{1}$	$\overline{x} + \overline{1}$	\overline{x}	\overline{x}^2
\overline{x}	$\overline{x}^2 + \overline{x} + \overline{1}$	$\overline{0}$	$\overline{x}^2 + \overline{x} + \overline{1}$	$\overline{x}^2 + \overline{1}$	\overline{x}	$\overline{1}$	$\overline{x}^2 + \overline{x}$	\overline{x}^2	$\overline{x} + \overline{1}$

4. Заметим, что случай, когда α – алгебраический, мы уже рассматривали на лекции, когда доказывали, что $K[x]/(h) \simeq K(\alpha)$:

Мы сказали, что $K[x]/(h) \simeq Im(\varphi)$, где φ переводит $f(x) \in K[x]$ в f(a)

То есть, $Im(\varphi) = K[\alpha]$. Дальше мы доказали, что $Im(\varphi) = K(\alpha)$. То есть, $K(\alpha) = K[\alpha]$, что нам и требуется.

Сейчас я фактически повторю доказательство с лекции, оформленное в более аккуратном виде (на самом деле это мы тоже уже делали, но на семинаре):

 $\alpha \in K[\alpha]$ (просто возьмём многочлен $x \in K[x]$), $K \in K[\alpha]$ (просто возьмём многочлены-константы из K[x]) $\Rightarrow K(\alpha) \subseteq K[\alpha]$

Пусть L' – любое поле, содержащее K и α . $\alpha \in L' \Rightarrow \alpha, \alpha^2, ..., \alpha^i, ... \in L', K \in L' \Rightarrow \forall f(x) \in K[x], \ f(\alpha) \in L' \Rightarrow K[\alpha] \subseteq L' \Rightarrow K[\alpha] \subseteq K(\alpha)$

$$\begin{cases} K(\alpha) \subseteq K[\alpha] \\ K[\alpha] \subseteq K(\alpha) \end{cases} \Rightarrow K[\alpha] = K(\alpha), \text{ что и требовалось доказать}$$

Утверждение: Если $K \subseteq F, \alpha \in F$ и α – трансцендентный, то $[K[\alpha]:K]=\infty$ (то есть, $dim_K K[\alpha]=\infty$)

Доказательство: Пусть от противного $[K[\alpha]:K]=n$ (то есть, расширение конечно). Так как размерность $K[\alpha]$ как векторного пространства над K равна n, то элементы $1, \alpha, ..., \alpha^n$ должны быть линейно зависимы над $K[\alpha]$ (так как элементов n+1, что больше $dim_K K[\alpha]$) \Rightarrow существует нетривиальная линейная комбинация данных элементов, равная 0:

 $k_0 + k_1 \alpha + ... + k_n \alpha^n = 0, \ k_i \in K, \ \forall i \Rightarrow k_0 + k_1 x + ... + k_n x^n \in K[x]$ – ненулевой многочлен, для которого α – корень $\Rightarrow k_0 + k_1 x + ... + k_n x^n$ – аннулирующий многочлен $\Rightarrow \alpha$ – алгебраический, получили противоречие

Таким образом, в случае трансцендентного α $K(\alpha)$ и $K[\alpha]$ конечномерными являться не будут, что протеворечит условиям