1.3 Cálculo diferencial em \mathbb{R}^n (cont.)

Derivadas parciais Plano tangente e diferenciais Funções diferenciáveis Derivadas parciais de ordem superior Resultados importantes sobre funções diferenciáveis Regra da cadeia Derivação da função implícita Derivada direcional e vetor gradiente Propriedades geométricas do vetor gradiente

Derivada direcional e vetor gradiente

Nesta seção vamos introduzir um tipo de derivada, chamada derivada direcional, que nos permite determinar a taxa de variação de uma função de duas ou mais variáveis em qualquer direção.

Para z = f(x, y), a derivada parcial de f em relação a

- ightharpoonup x é a derivada direcional de f na direção do eixo dos xx, ou seja, na direção do vetor unitário $\vec{i}=(1,0)$ e representa a taxa de variação de z na direção de \vec{i} .
- ightharpoonup y é a derivada direcional de f na direção do eixo dos yy, ou seja, na direção do vetor unitário $\vec{j}=(0,1)$ e representa a taxa de variação de z na direção de \vec{j} .

Definição

A derivada direcional de z=f(x,y) em (a,b) na direção e sentido do vetor unitário $\vec{u}=(u_1,u_2)$ é definida por

$$D_{\vec{u}}f(a,b) = \lim_{t \to 0} \frac{f((a,b) + t(u_1, u_2)) - f(a,b)}{t}$$
$$= \lim_{t \to 0} \frac{f(a + tu_1, b + tu_2) - f(a,b)}{t},$$

se este limite existir (for finito).

Observe-se que, se $\vec{u} = \vec{i} = (1,0)$,

$$D_{\vec{i}}f(a,b) = \lim_{t \to 0} \frac{f(a+t,b) - f(a,b)}{t} = \frac{\partial f}{\partial x}(a,b)$$

e, se $\vec{u} = \vec{j} = (0, 1)$,

$$D_{\vec{j}}f(a,b) = \lim_{t \to 0} \frac{f(a,b+t) - f(a,b)}{t} = \frac{\partial f}{\partial y}(a,b).$$

Observe-se que os pontos da forma

$$(x,y) = (a,b) + t(u_1, u_2) = (a + tu_1, b + tu_2), \quad t \in \mathbb{R},$$

são os pontos da reta (equação paramétrica) que passa em (a,b) e que tem a direção do vetor $\vec{u}=(u_1,u_2)$.

Se definirmos a função g, na variável t, da forma

$$q(t) = f(a + tu_1, b + tu_2),$$

então, pela definição de derivada de g para t=0, temos

$$g'(0) = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = \lim_{t \to 0} \frac{f(a + tu_1, b + tu_2) - f(a, b)}{t} = D_{\vec{u}}f(a, b).$$

Interpretação geométrica da derivada direcional

direção do vetor $\vec{u} = (u_1, u_2)$.

Figura 1: Derivada direcional em (a, b) na Com $\vec{u} = (u_1, u_2)$, $||\vec{u}|| = 1$ e $g(t) = f(a + tu_1, b + tu_2)$, temos

O plano vertical que passa em P na direção do vetor $ec{u}$ interseta a superfície Sde equação z = f(x, y)na curva C. O declive da reta tangente T à curva Cno ponto P é a derivada direcional de f na direção de \vec{u} (taxa de variação de f na direção de \vec{u} com respeito à distância).

$$D_{\vec{u}}f(a,b) = g'(0).$$

Exemplo

Calcular $D_{\vec{v}}f(a,b)$ quando

$$f(x,y) = x^2 + xy$$
, $(a,b) = (1,1)$ e $\vec{v} = (3,4)$,

usando a definição.1

•
$$\|\vec{v}\| = \sqrt{3^2 + 4^4} = 5 \neq 1$$
; tomemos $\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \left(\frac{3}{5}, \frac{4}{5}\right) = (u_1, u_2)$;

•
$$(a,b)+t(u_1,u_2)=(1,1)+t\left(\frac{3}{5},\frac{4}{5}\right)=\left(1+\frac{3}{5}t,1+\frac{4}{5}t\right);$$

•
$$g(t) = f(1 + \frac{3}{5}t, 1 + \frac{4}{5}t) = (1 + \frac{3}{5}t)^2 + (1 + \frac{3}{5}t)(1 + \frac{4}{5}t) = 2 + \frac{13}{5}t + \frac{21}{25}t^2;$$

•
$$D_{\vec{v}}f(1,1) = g'(0) = \left(\frac{13}{5} + \frac{42}{25}t\right)\Big|_{t=0} = \frac{13}{5}.$$

¹Observe que podemos escrever $D_{ec{v}}f(a,b)$ sem que $ec{v}$ seja unitário.

Na prática para o cálculo de derivadas direcionais usamos a fórmula dada pelo teorema seguinte.

Teorema

Se f é uma função diferenciável de duas variáveis x e y, então f tem derivadas direcionais na direção de qualquer vetor unitário $\vec{u}=(u_1,u_2)$ e

$$D_{\vec{u}}f(a,b) = \frac{\partial f}{\partial x}(a,b) u_1 + \frac{\partial f}{\partial y}(a,b) u_2.$$

Dem. Para demonstrar este resultado, basta considerar a função g(t)=f(x,y), onde $x=a+tu_1$ e $y=b+tu_2$ e aplicar a regra da cadeia ao cálculo de g'(t). De facto,

$$g'(t) = \frac{dg}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = \frac{\partial f}{\partial x}u_1 + \frac{\partial f}{\partial y}u_2$$

e quando t = 0, temos x = a e y = b.

Exercício

Sendo f definida por $f(x,y)=x^3y^2$, determine a derivada direcional de f em (x,y)=(2,-1) na direção do vetor $\vec{v}=\vec{i}+\vec{j}$.

Resolução.

Vetor unitário com a direção de
$$\vec{v}$$
: $\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}=\frac{1}{\sqrt{2}}(1,1)=\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$.

Derivada direcional de f em (2,-1) na direção de \vec{u} :

$$D_{\vec{u}}f(2,-1) = \frac{\partial f}{\partial x}(2,-1) \cdot \frac{\sqrt{2}}{2} + \frac{\partial f}{\partial y}(2,-1) \cdot \frac{\sqrt{2}}{2}$$
$$= 3x^2y^2\big|_{(2,-1)} \cdot \frac{\sqrt{2}}{2} + 2x^3y\big|_{(2,-1)} \cdot \frac{\sqrt{2}}{2}$$
$$= 6\sqrt{2} - 8\sqrt{2}$$
$$= -2\sqrt{2}$$

Se \vec{u} é um vetor unitário que faz um ângulo θ com o semi-eixo positivo dos xx, então

$$\vec{u} = (\cos \theta, \sin \theta)$$

e temos

$$D_{\vec{u}}f(a,b) = \frac{\partial f}{\partial x}(a,b)\cos\theta + \frac{\partial f}{\partial y}(a,b)\sin\theta.$$

Exercício

Determine a derivada direcional $D_{\vec{u}}f(x,y)$ para f definida por

$$f(x,y) = x^3 - 3xy + 4y^2,$$

sendo \vec{u} o vetor unitário dado pelo ângulo $\theta=\frac{\pi}{6}$. Qual o valor de $D_{\vec{u}}f(1,2)$?

Resolução.

Vetor unitário definido pelo ângulo $\theta=\frac{\pi}{6}$: $\vec{u}=(\cos\frac{\pi}{6},\sin\frac{\pi}{6})=\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)$.

Derivada direcional de f num ponto (x, y) na direção de \vec{u} :

$$D_{\vec{u}}f(x,y) = \frac{\partial f}{\partial x}(x,y) \cdot \frac{\sqrt{3}}{2} + \frac{\partial f}{\partial y}(x,y) \cdot \frac{1}{2}$$
$$= (3x^2 - 3y) \cdot \frac{\sqrt{3}}{2} + (-3x + 8y) \cdot \frac{1}{2}$$
$$= \frac{1}{2} [3\sqrt{3}x^2 - 3x + (8 - 3\sqrt{3})y]$$

Valor da derivada direcional em (1,2): $D_{\vec{u}}f(1,2)=rac{13-3\sqrt{3}}{2}$.

Vetor gradiente

O vetor gradiente de uma função f de duas variáveis em (a,b) é o vetor das derivadas parciais de f em (a,b) e denota-se por $\nabla f(a,b)$,

$$\overrightarrow{\nabla}f(a,b) = \left(\frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b)\right)$$
$$= \frac{\partial f}{\partial x}(a,b)\vec{i} + \frac{\partial f}{\partial y}(a,b)\vec{j}$$

Recorde-se que, para $\vec{u}=(u_1,u_2)$ unitário,

$$D_{\vec{u}}f(a,b) = \frac{\partial f}{\partial x}(a,b) u_1 + \frac{\partial f}{\partial y}(a,b) u_2 = \left(\frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b)\right) \cdot (u_1, u_2)$$

Com esta notação podemos, então, escrever

$$\boxed{D_{\vec{u}}f(a,b) = \overrightarrow{\nabla}f(a,b) \cdot \vec{u}}$$

O vetor gradiente ocorre não só no cálculo de derivadas direcionais mas também em muitos outros contextos.

Exercício

Em que direção a partir do ponto (2,0) a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por f(x,y) = xy tem uma taxa de variação igual a -1?

Resolução. Sabemos que $D_{\vec{u}}f(2,0)=-1$ e pretendemos determinar \vec{u} , não esquecendo que $\|\vec{u}\|=1$.

Seja, então, $\vec{u}=(u_1,u_2)$ um vetor unitário tal que $D_{\vec{u}}f(2,0)=-1$. Então, dado que $\frac{\partial f}{\partial x}=y$ e $\frac{\partial f}{\partial u}=x$,

$$D_{\vec{u}}f(2,0) = -1 \iff \overrightarrow{\nabla}f(2,0) \cdot \vec{u} = -1$$

$$\iff \left(\frac{\partial f}{\partial x}(2,0), \frac{\partial f}{\partial y}(2,0)\right) \cdot (u_1, u_2) = -1$$

$$\iff (0,2) \cdot (u_1, u_2) = -1 \iff 2u_2 = -1 \iff u_2 = -\frac{1}{2}.$$

Assim, $\vec{u}=(u_1,-\frac{1}{2}),\ u_1\in\mathbb{R}$. Mas como devemos ter $\|\vec{u}\|=1$, ou seja, $\sqrt{u_1^2+(-\frac{1}{2})^2}=1$, concluímos que $u_1^2+\frac{1}{4}=1\Longleftrightarrow u_1=\pm\frac{\sqrt{3}}{2}$. Temos, assim, duas possibilidades,

$$\vec{u} = \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) \quad \text{ou} \quad \vec{u} = \left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right).$$

Generalização

Para uma função f de n variáveis x_1, x_2, \ldots, x_n definimos o vetor gradiente de f em (a_1, a_2, \ldots, a_n) como sendo

$$\overrightarrow{\nabla} f(a_1, a_2, \dots, a_n) = \left(\frac{\partial f}{\partial x_1}(a_1, a_2, \dots, a_n), \dots, \frac{\partial f}{\partial x_n}(a_1, a_2, \dots, a_n)\right)$$

$$= \frac{\partial f}{\partial x_1}(a_1, a_2, \dots, a_n) \overrightarrow{e_1} + \dots + \frac{\partial f}{\partial x_n}(a_1, a_2, \dots, a_n) \overrightarrow{e_n}$$

e temos, para $\vec{u} = (u_1, \dots, u_n)$ unitário,

$$D_{\vec{u}}f(a_1, a_2, \ldots, a_n) = \overrightarrow{\nabla}f(a_1, a_2, \ldots, a_n) \cdot \vec{u}$$

Propriedades geométricas do vetor gradiente

Seja $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$, diferenciável em $P\in D$. Vimos que, para um vetor \vec{u} com $\|\vec{u}\|=1$,

$$D_{\vec{u}}f(P) = \overrightarrow{\nabla}f(P) \cdot \vec{u} = \|\overrightarrow{\nabla}f(P)\| \|\vec{u}\| \cos \theta.$$

onde $heta \in [0,\pi]$ é o ângulo entre $\overrightarrow{
abla} f(P)$ e \vec{u} . Ou seja,

$$\boxed{D_{\vec{u}}f(P) = \|\overrightarrow{\nabla}f(P)\| \cos \theta}$$

Propriedades geométricas do vetor gradiente

$$D_{\vec{u}}f(P) = \|\overrightarrow{\nabla}f(P)\| \cos \theta$$

Então, se $\overrightarrow{\nabla} f(P) \neq \vec{0}$,

o maior valor de $D_{\vec{u}}f(P)$ é igual a $\|\overrightarrow{\nabla}f(P)\|$ e ocorre quando $\cos\theta=1$, ou seja, quando $\theta=0$, o que significa que \vec{u} tem a direção e sentido do vetor gradiente,

$$\vec{u} = \frac{\overrightarrow{\nabla} f(P)}{\|\overrightarrow{\nabla} f(P)\|};$$

• o menor valor de $D_{\vec{u}}f(P)$ é igual a $-||\overrightarrow{\nabla}f(P)||$ e ocorre quando $\cos\theta=-1$ e, portanto, $\theta=\pi$, isto é, \vec{u} tem a direção do vetor gradiente mas sentido oposto,

$$\vec{u} = -\frac{\overrightarrow{\nabla}f(P)}{\|\overrightarrow{\nabla}f(P)\|};$$

 $ightharpoonup D_{\vec{u}}f(P)=0$ quando $\theta=\frac{\pi}{2}$, isto é, quando \vec{u} é ortogonal a $\overrightarrow{\nabla}f(P)$.

Exercício

- (a) Se $f(x,y) = xe^y$, determine a taxa de variação de f no ponto P = (2,0) na direção de P para $Q = (\frac{1}{2},2)$.
- (b) Em que direção tem f uma taxa máxima de variação a partir do ponto P? Qual o valor desta taxa máxima de variação?

Resolução.

(a) Calculemos primeiro o vetor gradiente em P = (2,0):

$$\overrightarrow{\nabla} f(x,y) = (e^y, xe^y);$$
 $\overrightarrow{\nabla} f(2,0) = (e^0, 2e^0) = (1,2)$

Vetor unitário na direção de $\overrightarrow{PQ} = Q - P = (-\frac{3}{2}, 2)$:

$$\overrightarrow{u} = \frac{\overrightarrow{PQ}}{\|\overrightarrow{PQ}\|} = \frac{\left(-\frac{3}{2},2\right)}{\frac{5}{2}} = \left(-\frac{3}{5},\frac{4}{5}\right)$$

Taxa de variação de f no ponto P na direção de P para Q:

$$D_{\vec{u}}f(2,0) = \overrightarrow{\nabla}f(2,0) \cdot \vec{u} = (1,2) \cdot (-\frac{3}{5}, \frac{4}{5}) = -\frac{3}{5} + \frac{8}{5} = 1.$$

(b) A taxa máxima de variação de f a partir de P ocorre na direção do vetor gradiente $\overrightarrow{\nabla} f(2,0) = (1,2)$ e o seu valor é $\|\overrightarrow{\nabla} f(2,0)\| = \sqrt{5}$.

- (a) Curvas de nível e vetor gradiente em P
- (b) Gráfico de f e vetor gradiente em P

Figura 2: $f(x, y) = xe^y$

Observe-se que o vetor gradiente $\overrightarrow{\nabla} f(2,0) = (1,2)$ parece ser perpendicular à curva de nível que contém P, curva de equação $f(x,y) = k \Longleftrightarrow xe^y = k$, com k = f(2,0) = 2.

Gradiente e estruturas de nível

- Sejam
 - \mathcal{E} a estrutura de nível k de f;
 - ullet um vetor unitário tangente à estrutura de nível ${\cal E}$.
- ► Então
 - $f(\mathbf{x})$ é constante para todo o $\mathbf{x} \in \mathcal{E}$ (por definição de estrutura de nível, $\mathbf{x} \in \mathcal{E} \iff f(\mathbf{x}) = k$);
 - sendo $P \in \mathcal{E}$ temos $D_{\vec{w}}f(P) = 0$.
- $\qquad \qquad \blacksquare \text{ Mas, com } \|\vec{w}\| = 1,$

$$0 = D_{\vec{w}}f(P) = \|\overrightarrow{\nabla}f(P)\| \cos \theta$$

Supondo $\overrightarrow{\nabla} f(P) \neq 0$ devemos ter

$$\cos \theta = 0 \Longrightarrow \theta = \frac{\pi}{2} \Longrightarrow \overrightarrow{\nabla} f(P) \perp \overrightarrow{w}$$

Ou seja

$$\overrightarrow{
abla} f(P)$$
 é ortogonal à estrutura de nível \mathcal{E} .

Consequências

- $ightharpoonup \overrightarrow{
 abla} f(P)$ aponta na direção e sentido de maior crescimento de f a partir de P;
- $ightharpoonup -\overrightarrow{\nabla} f(P)$ aponta na direção e sentido de maior decrescimento de f a partir de P;
- $ightharpoonup ||\overrightarrow{\nabla} f(P)||$ é maior quando as estruturas de nível de f estão mais próximas entre si e menor quando estas estão mais afastadas;
- $ightharpoonup \overrightarrow{
 abla} f(P)$ é um vetor ortogonal à estrutura de nível de f que passa em P.

- (a) Para uma função f de duas variáveis e um ponto P=(a,b) do seu domínio, $\overrightarrow{\nabla} f(a,b)$ é perpendicular à reta tangente à curva de nível f(x,y)=k em P, com k=f(a,b).
- (b) Para uma função f de três variáveis e um ponto P = (a, b, c) do seu domínio, $\overrightarrow{\nabla} f(a, b, c)$ é perpendicular ao plano tangente à superfície de nível f(x, y, z) = k em P, com k = f(a, b, c).

Reta tangente a uma curva de nível

lackbox Seja $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ diferenciável, $\mathcal C$ a curva de nível de f definida pela equação

$$f(x,y) = k, \qquad k \in \mathbb{R}$$

 $(a,b) \in \mathcal{C}$ tal que $\overrightarrow{\nabla} f(a,b) \neq \vec{0}$.

- Vimos que $\overrightarrow{\nabla} f(a, b)$ é um vetor ortogonal à estrutura de nível de f que passa em (a, b), isto é, à curva C.
- lacktriangle A equação da reta tangente a ${\mathcal C}$ em $(a,b)\in {\mathcal C}$ é dada por

$$\overrightarrow{\nabla} f(a,b) \cdot (x-a,y-b) = 0.$$

Observe-se que se P=(a,b) e Q=(x,y) é um ponto da reta, então o vetor $\overrightarrow{PQ}=(x-a,y-b)$ é ortogonal a $\overrightarrow{\nabla} f(a,b)$.

Exemplo

Seja
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 definida por $f(x,y) = x^2 + y^2$ e $P = (2,3)$.

 curva de nível de f que passa em P:

$$C = \{(x, y) \in \mathbb{R}^2 : f(x, y) = 13\}$$
$$= \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 13\}$$

Observe-se que f(P) = 13.

• vetor gradiente de f em P:

$$\overrightarrow{\nabla}f(2,3) = (4,6)$$

• reta tangente a $\mathcal C$ em P:

$$\overrightarrow{\nabla}f(2,3) \cdot (x-2,y-3) = 0$$

$$\Leftrightarrow 2x + 3y = 13$$

Plano tangente a superfícies de \mathbb{R}^3

- Já vimos
 - como construir o plano tangente ao gráfico de uma função real de duas variáveis:
 - que o gráfico de uma função real de duas variáveis define uma superfície em R³;
 - que nem toda a superfície de \mathbb{R}^3 é o gráfico de uma função real de duas variáveis (cf superfície esférica).
- Será possível construir o plano tangente a uma superfície que não seja o gráfico de uma função real de duas variáveis?

Seja ${\mathcal S}$ uma superfície em ${\mathbb R}^3$ e $P=(a,b,c)\in {\mathcal S}$.

▶ Se \mathcal{S} é o gráfico de uma função $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$, então o plano tangente a \mathcal{S} em P tem equação

$$z = f(a, b) + \frac{\partial f}{\partial x}(x - a) + \frac{\partial f}{\partial y}(x - b)$$
$$= c + \overrightarrow{\nabla} f(a, b) \cdot (x - a, y - b), \quad \overrightarrow{\nabla} f(a, b) \neq \vec{0}$$

onde $(a, b) \in D$ e c = f(a, b).

- ▶ Se S não é o gráfico de uma função de duas variáveis, S pode ser vista como superfície de nível k de uma função $g:U\subset\mathbb{R}^3\longrightarrow\mathbb{R}$.
 - $\overrightarrow{\nabla}g(P)$ é um vetor normal à superfície de nível de g que passa em P, isto é, é perpendicular ao plano tangente a S que passa em P.
 - Qualquer vetor do plano tangente a ${\cal S}$ que passa em P pode ser escrito como $\vec v=(x-a,y-b,z-c)$.
 - Assim $\overrightarrow{\nabla} g(P) \perp \vec{v}$, ou seja, $\overrightarrow{\nabla} g(P) \cdot \vec{v} = 0$.
 - ullet A equação do plano tangente à superfície de nível k de g, ${\cal S}$, em P é

$$\overrightarrow{\nabla}g(a,b,c)\cdot(x-a,y-b,z-c)=0,\qquad \overrightarrow{\nabla}g(a,b,c)\neq\vec{0}.$$

Observação

Todo o gráfico de uma função de duas variáveis pode ser visto como superfície de nível k = 0 de uma função de três variáveis:

$$f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$$
 $\qquad \qquad g:U\subset\mathbb{R}^3\longrightarrow\mathbb{R}$ $z=f(x,y)$ $\qquad f(x,y)-z=g(x,y,z)$ $\qquad g(x,y,z)=0$

Assim, se \mathcal{S} é uma superfície de \mathbb{R}^3 podemos sempre supor que é a superfície de nível k de uma função $g:U\subset\mathbb{R}^3\longrightarrow\mathbb{R}$ e a equação do plano tangente a \mathcal{S} em $P,\ P=(a,b,c)\in\mathcal{S}$, é

$$\overrightarrow{\nabla}g(P)\cdot(x-a,y-b,z-c)=0, \qquad \overrightarrow{\nabla}g(P)\neq \vec{0}.$$

► Importante: saber escolher a função g.

Exemplo

- Determine a equação do plano tangente à superfície S definida por $x^2 + y^2 xyz = 7$ no ponto (2,3,1) por dois processos diferentes:
- 1. considerando a superfície como a superfície de nível de uma função de 3 variáveis g(x,y,z);
- $g(x, y, z) = x^2 + y^2 xyz$ e S é a superfície de nível k = 7 de g.
- Temos

$$g'_x(x, y, z) = 2x - yz,$$
 $g'_y(x, y, z) = 2y - xz,$ $g'_z(x, y, z) = -xy$
 $g'_x(2, 3, 1) = 1,$ $g'_y(2, 3, 1) = 4,$ $g'_z(2, 3, 1) = -6$

donde $\overrightarrow{\nabla} g(2,3,1) = (1,4,-6) = \vec{i} + 4\vec{j} - 6\vec{k}$.

A equação do plano tangente é

$$\overrightarrow{\nabla}g(2,3,1) \cdot (x-2,y-3,z-1) = 0 \Leftrightarrow (1,4,-6) \cdot (x-2,y-3,z-1) = 0 \\ \Leftrightarrow (x-2) + 4(y-3) - 6(z-1) = 0 \\ \Leftrightarrow x + 4y - 6z = 8.$$

- 2. considerando a superfície como o gráfico de uma função de 2 variáveis f(x, y).
 - Temos

$$x^{2} + y^{2} - xyz = 7 \Leftrightarrow z = \frac{x^{2} + y^{2} - 7}{xy}, \quad x, y \neq 0;$$

- Podemos tomar $f(x,y) = \frac{x^2 + y^2 7}{xy}, (x,y) \in D \in (a,b) = (2,3)$
- Temos

$$f'_x(x,y) = \frac{x^2 - y^2 + 7}{x^2 y}, \qquad f'_y(x,y) = \frac{y^2 - x^2 + 7}{x y^2}$$

$$f'_x(2,3) = \frac{1}{6}, \qquad f'_y(2,3) = \frac{2}{3}$$

$$\text{donde } \overrightarrow{\nabla} f(2,3) = (\frac{1}{6}, \frac{2}{3}) = \frac{1}{6} \vec{i} + \frac{2}{3} \vec{j}.$$

• A equação do plano tangente é

$$z = f(2,3) + \overrightarrow{\nabla} f(2,3) \cdot (x-2, y-3) \Leftrightarrow z = 1 + \left(\frac{1}{6}, \frac{2}{3}\right) \cdot (x-2, y-3)$$
$$\Leftrightarrow z = 1 + \frac{1}{6}(x-2) + \frac{2}{3}(y-3)$$
$$\Leftrightarrow x + 4y - 6z = 8.$$

Reta normal a uma superfície

- ▶ Seja $\mathcal S$ a superfície de nível k de uma função diferenciável $g:U\subset\mathbb R^3\longrightarrow\mathbb R$ e $P\in\mathcal S$ tal que $\overrightarrow{\nabla}g(P)\neq \overrightarrow{0}$.
 - Já vimos que $\vec{\nabla}g(P)$ é um vetor normal a \mathcal{S} .
 - Dado o vetor $\vec{\nabla} g(P)$ e o ponto $P \in \mathcal{S}$, a reta que passa em P com a direção de $\vec{\nabla} g(P)$ tem equação vetorial

$$(x, y, z) = P + \lambda \overrightarrow{\nabla} g(P), \qquad \lambda \in \mathbb{R}.$$

 $lackbox{ A reta normal a } \mathcal{S}: g(x,y,z)=k \ ext{em } P \ ext{tem, então, equação}$ vetorial

$$(x, y, z) = P + \lambda \overrightarrow{\nabla} g(P), \qquad \lambda \in \mathbb{R}.$$

Exemplo

- Equação da reta normal a $\mathcal S$ definida por $z=x^2+y^2$ em P=(1,-2,5).
 - Aqui $g(x, y, z) = x^2 + y^2 z$ e k = 0 pelo que

$$g'_x(x, y, z) = 2x$$
, $g'_y(x, y, z) = 2y$, $g'_z(x, y, z) = -1$,
 $g'_x(1, -2, 5) = 2$, $g'_y(1, -2, 5) = -4$, $g'_z(1, -2, 5) = -1$

$$\overrightarrow{\nabla} g(1, -2, 5) = (2, -4, -1) = 2 \vec{i} - 4 \vec{j} - \vec{k}.$$

ullet A equação da reta normal a ${\mathcal S}$ em P é

$$(x, y, z) = (1, -2, 5) + \lambda(2, -4, -1), \qquad \lambda \in \mathbb{R}$$

ou ainda, na forma das equações paramétricas

$$\begin{cases} x = 1 + 2\lambda \\ y = -2 - 4\lambda \\ z = 5 - \lambda \end{cases}, \quad \lambda \in \mathbb{R}$$