

Maraller Tune

513 1862 1899 Millon Sowden S.226N Feb 13th 1866 3

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

With worden

http://www.archive.org/details/nationalarithmet00sanguoft

0 21-

NATIONAL

ARITHMETIC,

IN

THEORY AND PRACTICE;

DESIGNED FOR THE USE OF

CANADIAN SCHOOLS.

BY JOHN HERBERT SANGSTER, Esq.,
MATHEMATICAL MASTER AND LECTURER IN CHEMISTRY AND NATURAL
PHILOSOPHY IN THE NORMAL SCHOOL FOR UPPER CANADA.

Sanctioned by the Council of Public Enstruction for Apper Canada.

THIRD EDITION-CAREFULLY REVISED AND CORRECTED.

Montreal:

PRINTED AND PUBLISHED BY JOHN LOVELL;
AND SOLD BY R. & A. MILLER.

Toronto :

R. & A. MILLER, 62 KING STREET EAST. 1862.

Entered, according to the Act of the Provincial Parliament, in the year one thousand eight hundred and fifty-nine, by JOHN LOVELL, in the Office of the Registrar of the Province of Canada.

PREFACE.

In preparing the following work (undertaken at the suggestion of the Chief Superintendent of Education for Upper Canada), it has been the constant aim of the Author to present it to Canadian teachers and students as a thoroughly reliable Treatise on the Theory and Practice of Numbers, and as an Arithmetic, in some degree, commensurate with the higher qualifications of teachers and the improved methods of instruction now generally

found in our schools.

The Arithmetic now offered to the public is based upon the Irish National Treatise; -in fact, it was at first intended merely to adapt that work to the decimal currency, and to abbreviate the somewhat tedious reasons there given for the various rules. So many alterations and improvements suggested themselves, however, that the original design was speedily abandoned, and, with the exception of the first ten or fifteen pages, which are taken entire from the work in question, the Treatise, as at present issued, is, in all essential respects, an entirely new book. Nevertheless, as it was the sole object of the Author to prepare a complete text-book on the subject of Arithmetic, he has not hesitated to adopt whatever he considered good, either in the Irish National or in the numerous other excellent works on the subject.

By far the greater number of the problems are original; and it is hoped that the practical manner in which many of them are put, will tend to render the study of Arithmetic more interesting and useful than it has hitherto been. It will be observed, that a thorough series of review examples has been given at the close of each of the sections up to the seventh, and a very extensive set at the end of the book. This is deemed an important feature in the present work, as in some degree insisting upon that careful revision of what has been learned from time to time, without which, the pupil arrives at the end of the book with all the rules and principles so confounded with one another, as to render his

knowledge in a great measure worthless.

Since the only difference between simple and denominate numbers is that the one increase and decrease according to the scale of tens and the other according to different scales, there is no reason why the rules relating to them should be separated; and therefore in the following pages no distinction is made between simple and compound rules. A somewhat extended

experience has convinced the Author that, except to the merest beginners, the science of Arithmetic is more successfully presented by this than by the ordinary method of making the pupil learn one set of rules for simple numbers and a completely diffe-

rent set for compound numbers.

It will be observed that towards the end of the Treatise the rules are mainly deduced algebraically. Some teachers may not, at first, be disposed to regard this as an improvement, but it was not adopted until after careful deliberation and consultation with many of the most successful teachers of Arithmetic in the Province. It is generally conceded that a pupil should commence, in some sort, the study of Algebra as soon as he has progressed through Proportion in Arithmetic. In schools in which this view is adopted by the teacher, no difficulty can be experienced, as, even in the deduction of the rules, the algebraic principles used are of the simplest possible character.

As some teachers, however, prefer always giving the rule in a purely arithmetical form, this has invariably been appended in

all the cases usually treated of in Common Arit metic.

With regard generally to algebraic formulæ, it may be further remarked, that an algebraic formula is simply the most abbreviated form in which it is possible to express a rule or principle. Once the pupil is properly taught their use, he is in a manner independent of mere memory, since from a very few general principles he is able, without any reference to a text-book, to deduce for himself the whole series of rules for Simple and Compound Interest, Discount, Annuities, Progression, and Position. Even when the pupil is merely required to commit the rules to memory, it is obvious that he can do so much more readily when they are given to him in the shape of algebraic formulæ than in long worded paragraphs. Let any one, for instance, compare the work necessary for committing the eleven rules for Simple Interest with that required to commit the corresponding formulæ, and the result will be a thorough conviction of the superiority of the latter mode of giving the rules. In short, every experienced teacher will admit, that even while the pupil remains at school it is next to impossible to make him remember all the different rules for Interest, Progression, and Annuities; and that directly he leaves the school to enter upon the business of life, these rules are either altogether forgotten or are so confounded with one another as to become mere useless mental lumber. After many years' trial, the Author is persuaded that the only successful mode of treating the rules in question, is to enable the pupil to deduce them algebraically, and then to interpret and apply the resulting formulæ.

The attention of the teacher is respectfully directed to the Recapitulation at the end of the first section, where, it is thought,

the definition and essential principles of Notation and Numeration are so concisely worded that they may be advantageously

committed to memory by the pupil.

The examination questions throughout the work have been carefully prepared, and are designed both to enable the self-taught student to test, at each section, the extent and thoroughness of his knowledge of the principles therein contained, and also to guide the pupil as to what principles and definitions are of such importance that they require to be committed to memory. This latter object is further secured by the arrangement of type,—all the definitions and leading principles being printed in large type, the explanations, reasons, and remarks in small type, and the problems in a size intermediate to the two.

Great pains have been taken to render the wording of the rules as perfect as possible; and it will be observed that, in order to catch the eye when glancing over the page, they are

invariably printed in Italics.

It is believed that the sections on Proportion, Fractions, Interest, &c., contain a larger amount of information and a better selection of examples than are commonly given; and that the section on the Properties of Numbers and the different scales of Notation will tend very materially to enlarge the pupil's acquaintance with the general principles of the science of Arithmetic.

Although the Preface is not the proper place for discussing methods of teaching Arithmetic, the Author cannot refrain from urging upon his fellow-teachers the following points:

1st. The pupil should be thoroughly drilled upon the use of the signs and symbols of Arithmetic, because these constitute the language proper to the subject.

2nd. He should be required to commit to memory all the essential definitions, and also the tables of money, weights, and measures. The teacher would do well to examine his pupils on these tables once a month or oftener, since if the pupil has to turn back to his book for each table as it is required, it is not to be expected that his progress will be very rapid or thorough. It may be fairly questioned, whether more than half the difficulty and obscurity that cling to the subject of Arithmetic does not arise from the fact that the pupil is not familiar with the signs, the tables, and the principles of notation.

3rd. The teacher should give his class, from time to time, questions of his own construction, either to solve at home or as ordinary school-room work, and the pupils should be encouraged and required to write questions themselves under each rule. This is an important exercise, and no teacher who once adopts it will ever throw it aside.

4th. In all operations in which there are both multiplication and division, the pupil should be taught to first indicate the processes by their appropriate signs and then cancel as far as possible.

5th. The teacher is respectfully reminded, that without frequent and thorough reviews there can be no real progress. Experience has shown that from one-third to one-half of the time devoted to Arithmetic can be profitably devoted to revision and recapitulation.

6th. The teacher should require from his pupil the absolutely correct answer to each question. 'Near enough' is productive of great mischief to the pupil, as it encourages a habit of such carelessness in his operations, that no confidence can be placed on his results. It is not enough that the pupil understands the principles,—although this of course is important. It is possible so to train the pupil that his operations in Arithmetic shall be at once rapid and accurate, and this should be the aim of the teacher.

Toronto, December, 1859.

PREFACE TO THE SECOND EDITION.

The Author embraces the opportunity afforded by the issue of a Second Edition, both to thank his fellow-teachers in Canada for the kind and flattering reception they have given his work, and to offer a few words of explanation on what, as far as he can learn, is the only feature that does not meet with very general approval. He refers to the union of the Compound with the Simple Rules. It has been objected to the arrangement adopted in the National Arithmetic, that a pupil must know the Simple Rules before he can work problems in Reduction or in the Compound Rules. Now this is undoubtedly true, and would be a fatal objection to any such arrangement in an Elementary or Primary Arithmetic. The National is, however, an advanced or second book on arithmetic, and the pupil is assumed to have progressed through an elementary text-book before he enters it. If the National Arithmetic were designed for beginners, where would be the necessity for a First or Elementary book on Arithmetic? The objections have arisen altogether from a misconception of the design of the book. The pupil is supposed to have worked through some elementary text-book on arithmetic. and to have acquired a certain amount of practical skill in arithmetical operations. He then commences the National, and, in progressing through it, not only meets with additional and more advanced practical exercises, but also learns the reasons and the mutual relations of the several rules. In the Elementary he is taught how to multiply an abstract by an abstract number, or an applicate by an abstract number. In the National he is shown that these operations, though differing in detail, are essentially the same in principle; and he is thus enabled to generalize and classify.

Another objection urged is, that if the National Arithmetic be designed for a second book on the science, the simple problems given at the commencement of each rule, and indeed the earlier rules themselves, should not be inserted. This is also a mistake. The object has been to exhibit a gradual progression from the simple to the more difficult,—to shew that the most simple and the most complicated problems depend essentially upon the same principles. Indeed, were the National Arithmetic intended merely as a second practical work on arithmetic, three fourths of it might have been omitted, and nothing given but the few rules omitted in the Elementary.

SECTION I.

	PAGE
Definitions	. 17
Notation and Numeration	. 18
Arabic Notation	. 21
Roman Notation	. 23
Exercises in Notation	. 33
Exercises in Numeration	
Denomination of Numbers	. 34
Tables of Money, Weights, and Measures	. 35
Reduction Descending	
Reduction Ascending	
Recapitulation to Section I	
Miscellaneous Exercises on Section I	
Examination Questions on Section I	
•	
SECTION II.	
Fundamental Rules	00
	62
Addition	63
Proof of Addition	
Application	
Recapitulation	74
Examination Questions on Addition	75
Subtraction	76
Proof of Subtraction	79
Application	82
Recapitulation	83
Examination Questions on Subtraction	84
Multiplication	85.
Multiplication Table	87
To Multiply by a Composite Number	90

P	AGE
To Multiply when the Multiplier contains Decimals	94
Proof of Multiplication	95
Contractions in Multiplication	97
	100
	101
	102
General Rule for Division	105
General Principles	108
Proof of Division	109
General Principles	111
To Divide by a Composite Number	112
To Divide when both Divisor and Dividend are Denominate	
Numbers	113
To Divide when the Divisor or Dividend or both contain	
Decimals	114
Contractions in Division	115
Exercises in Division	116
Examination Questions on Section II	117
Miscellaneous Exercises on Sections I and II	118
CD COLOR TV	
SECTION III.	
Properties of Numbers	120
Table of Prime Numbers	125
To Resolve a Number into its Prime Factors	126
To Find all the Divisors of a Number	127
Number of Divisors	128
To Find a Common Divisor of two or more Numbers	129
To Find the Greatest Common Measure of two Numbers	129
To Find the Greatest Common Measure of more than two	
Numbers	130
Second Method of finding the Greatest Common Measure	131
Least Common Multiple	132
Scales of Notation	136
To Reduce a Number from One Scale to Another	137
To Reduce a Number from Any Scale into the Decimal	139
Fundamental Rules in Different Scales	141
Duodecimal Multiplication	149

	AGE
Examination Questions on Section III	147
Miscellaneous Exercises on Sections I-III	149
CHAMION IV	
SECTION IV.	
Vulgar and Decimal Fractions	150
General Principles	151
Definitions of Fractions	152
Reduction of Fractions	154
To Reduce a Mixed Number to a Fraction	155
To Reduce an Improper Fraction to a Mixed Number	156
To Reduce a Fraction to its Lowest Terms	156
To Reduce several Fractions to a Common Denominator	157
To Reduce several Fractions to their Least Common Deno-	
minator	158
To Reduce a Compound Fraction to a Simple One	159
Cancellation	160
To Reduce a Complex Fraction to a Simple One	161
Reduction of Denominate Fractions	162
To Reduce one Denominate Number to the Fraction of Ano-	
ther	164
Addition of Fractions	166
Addition of Denominate Fractions	168
Subtraction of Fractions	169
Multiplication of Fractions	
To Multiply a Denominate Number by a Fraction	
Division of Fractions	
To Divide a Denominate Number by a Fraction	
Multiplication and Division of Complex Fractions	
Examination Questions on Vulgar Fractions	
Miscellaneous Exercises on Vulgar Fractions	
Decimals and Decimal Fractions	
To Reduce a Decimal Fraction to its Corresponding Decima	
To Reduce a Decimal to a Decimal Fraction	
To Reduce a Vulgar Fraction to a Decimal	
To Reduce a Denominate Number of Several Denomination	3
to an Equivalent Decimal of a Given Denomination	
To Find the Value of a Decimal of a Denominate Number	. 185

	PAGE
Circulating or Repeating Decimals	186
To Determine the Number of Places in the Decimal corres-	
ponding to a Given Vulgar Fraction	189
To Reduce a Pure Repetend to a Vulgar Fraction	190
To Reduce a Mixed Repetend to a Vulgar Fraction	191
Addition of Circulating Decimals	194
Subtraction of Circulating Decimals	194
Multiplication of Circulating Decimals	195
Division of Circulating Decimals	196
Miscellaneous Exercises in Decimals	196
Examination Questions on Section IV	197
Miscellancous Exercises on Sections I-IV	198
SECTION V.	
Ratio	200
Proportion	206
Simple Proportion	208
Compound Proportion	213
Conjoined Proportion	218
Examination Questions on Section V	220
Miscellaneous Exercises on Sections I-V	222
,	
SECTION VI.	
79	004
Practice	224
Table of Aliquot Parts	224
Bills of Parcels	228
Tare and Tret	230
Examination Questions	230
Miscellaneous Exercises on Sections I-VI	231
00 amon 11 mm	
SECTION VII.	
Percentage	232
To Find the Percentage of any Given Number	233
Commission	234
Brokerage	235

	PAGE
To compute Commission or Brokerage when it is to be	,
deducted in advance from a given amount and the	;
balance invested	236
Stock	237
Insurance	239
To compute the sum for which property must be insured in	ı
order to cover both its value and the premium paid	240
Custom-House Business	241
Specific Duties	242
Ad Valorem Duties	243
Assessment of Taxes	244
Examination Questions on Section VII	245
SECTION VIII.	
Interest	246
Simple Interest	247
Deduction of Rules for Simple Interest	248
Special Rules for 6 per cent	252
Special Rules for other rates	255
Partial Payments	256
Compound Interest	258
Table of Amounts of \$1 or £1 at Compound Interest	260
Discount	262
Bank Discount	264
Equation of Payments	. 266
Simple Partnership	269
Compound Partnership	270
Examination Questions on Section VIII	. 272
SECTION IX.	
Profit and Loss:	274
Barter	. 278
Alligation	. 279
Exchange of Currencies	. 285
Foreign Moneys of Account	286
Table showing the Value of the Foreign Coins most fre	-
quently met with	. 287

A	AGE
Canadian and United States Currencies	288
To Reduce Dollars and Cents to Old Canadian Currency	,
or to the Currency of Any State	288
To Reduce Old Canadian Currency or Any State Currency	6
to Dollars and Cents	289
To Reduce Dollars and Cents to Sterling Money	290
To Reduce Sterling Money to Dollars and Cents	290
Exchange	290
Arbitration of Exchange	294
Examination Questions on Section IX	296
SECTION X.	
Involution	297
Evolution	299
Extraction of the Square Root	300
Application of Square Root	305
Extraction of the Cube Root	308
Horner's Method	313
Application of Cube Root	314
Extraction of the Roots of Higher Orders	315
Logarithms	316
To Find the Logarithm of a Number	318
To Find the Natural Number corresponding to a Given	310
Logarithm	322
Logarithmic Arithmetic	324
Multiplication of Numbers by their Logarithms	324
Division of One Number by Another by means of Logarithms	325
To Raise a Number to Any Power by means of Logarithms	326
Extraction of Roots by means of Logarithms	326
Examination Questions on Section X	329
Examination Questions on Decision A	020
SECTION XI.	
Arithmetical Progression	331
Table of Rules	333
Geometrical Progression	337
Table of Rules	340

- P	AGE
Position	345
Single Position	346
Double Position	348
Compound Interest	354
Annuities	357
Annuities at Simple Interest	358
Annuities at Compound Interest	360
Table showing the Amount of an Annuity of \$1 or £1 for	
any number of payments	362
Table showing the Present Value of an Annuity of \$1 or £1	363
Examination Questions on Section XI	366
Examination Problems	367
Arithmetical Recreations	378
Tables of Logarithms	381
Tables of Squares, Cubes and Roots	397
Answers to Miscellaneous Exercises	405
Answers to Examination Problems	410

SIGNS USED IN THIS TREATISE.

+the sign of addition; as 5+7, or 5 to be added to 7, -the sign of subtraction; as 4-3, or 3 to be subtracted from 4.

× the sign of multiplication: as 8×9, or 8 to be mul-

tiplied by 9.

÷the sign of division; as 18÷6, or 18 to be divided

by 6.

() which is used to show that all the quantities united by it are to be considered as but one. Thus $(4+3-7)\times 6$ means 4 to be added to 3, 7 to be taken from the sum, and 6 to be multiplied into the remainder. The latter is equivalent to the whole quantity within the brackets.

= the sign of equality; as 5+6=11, or 5 added to 6,

is equal to 11.

 $\frac{3}{4} > \frac{1}{2}$, and $\frac{2}{3} < \frac{3}{6}$, mean that $\frac{3}{4}$ is greater than $\frac{1}{2}$, and that $\frac{2}{3}$ is less than $\frac{3}{6}$.

: is the sign of ratio or relation; thus 5: 6, means the

ratio of 5 to 6, and is read 5 is to 6.

:: indicates the equality of ratios; thus 5:10::7:14, means that there is the same relation between 5 and 10 as between 7 and 14; and is read 5 is to 10 as 7 is to 14.

 \checkmark the radical sign. By itself, it is the sign of the square root; as \checkmark 5, which is the same as $5^{\frac{1}{2}}$, the square root of 5. \checkmark 3, is the cube root of 3, or $3^{\frac{1}{3}}$. \checkmark 4 is the 7th root of 4, or $4^{\frac{1}{7}}$, &c.

EXAMPLE. $[\sqrt{(8-3+7)\times 4\div 6}+31]\times \sqrt[3]{9\div 101}\times 5^2=556\cdot 25$, &c., may be read thus: take 3 from 8, add 7 to the difference, multiply the result by 4, divide the product by 6, take the square root of the quotient and to it add 31, then multiply the sum by the cube root of 9, divide the product by the square root of 10, multiply the quotient by the square of 5, and the product will be equal to $556\cdot 25$, &c.

These signs are fully explained in their proper places.

ARITHMETIC.

SECTION I.

DEFINITIONS.

- 1. Science is a collection of the general *principles* or leading *truths* relating to any branch of knowledge, arranged in systematic order so as to be readily remembered, referred to, and applied.
- 2. Art is a collection of rules serving to facilitate the performance of certain operations. The rules of Art are based upon the principles of Science.
 - 3. Arithmetic is both a Science and an Art.
- 4. As a Science, Arithmetic treats of the nature and properties of numbers; as an Art, it teaches the mode of applying this knowledge to practical purposes. The former may be called Theoretical, and the latter Practical Arithmetic. To Practical Arithmetic belong all the operations we perform upon numbers, as addition, subtraction, multiplication, division, the extraction of roots, &c. The discussion of the principles upon which these operations are founded, constitutes the theory of Arithmetic.
- 5. Any single thing, as a horse, an apple, a day, an inch, is called a unit or one.
- 6. Numbers are expressions for one or more units, Thus, the words one, two, three, four, five, &c., or the characters 1, 2, 3, 4, 5, &c., are expressions by which we indicate how many single things or units are to be taken.
 - 7. Numbers are divided into two classes:
 - 1. Abstract numbers.
 - 2. Applicate, Concrete, or Denominate numbers.

8. If the units referred to by a number have reference to particular objects, as seven days, nine inches, &c., it is called an applied, applicate, concrete, or denominate number. If the units represented by a number have no reference to any particular object, as when we say twice eight are sixteen, or seven and two are nine, it is called an abstract number.

NOTATION AND NUMERATION.

9. To avail ourselves of the properties of numbers, we must be able both to form an idea of them ourselves, and to convey this idea to others by spoken and by written language—that is,

by the voice, and by characters.

The expression of number by characters, is called notation; the reading of these, numeration. Notation, therefore, and numeration, bear the same relation to each other as writing and reading, and, though often confounded, they are in reality perfectly distinct.

- 10. It is obvious that, for the purposes of Arithmetic, we require the power of designating all possible numbers; it is equally obvious that we cannot give a different name, or character to each, as their variety is boundless. We must, therefore, by some means or another, make a limited system of words and signs suffice to express an unlimited amount of numerical quantities. With what beautiful simplicity and clearness this is effected, we shall better understand presently.
- 11. Two modes of attaining such an object present themselves; the one, that of combining words or characters already in use, to indicate new quantities; the other, that of representing a variety of different quantities by a single word or character, the danger of mistake at the same time being prevented. The Romans simplified their system of notation by adopting the principle of combination; but the still greater perfection of ours is due also to the expression of many numbers by the same character.
- 12. It will be useful, and not at all difficult, to explain to the pupil the mode by which, as we may suppose, an idea of considerable numbers was originally acquired, and of which, indeed, although unconsciously, we still avail ourselves; we shall see, at the same time, how methods of simplifying both numeration and notation were naturally suggested.

Let us suppose no system of numbers to be as yet constructed, and that a heap, for example, of pebbles, is placed before us that we may discover their amount. If this is considerable, we cannot ascertain it by looking at them altogether, nor even by separately inspecting them; we must, therefore, have recourse to that contrivance which the mind always uses when it desires to grasp what, taken as a whole, is too great for its powers. If we examine an extensive landscape, as the eye cannot take it all in at one view, we look successively at its different portions, and form our judgment on them in detail. We must act similarly with reference to large numbers; since we cannot comprehend them at a single glance, we must divide them into a sufficient number of parts, and, examining these in succession, acquire an indirect, but accurate idea of the whole. This process becomes by habit so rapid, that it seems, if carelessly observed, but one act, though it is made up of many; it is indispensable, whenever we desire to have a clear idea of numbers—which is not, however, every time they are mentioned.

13. Had we, then, to form for ourselves a numerical system, we should naturally divide the individuals to be reckoned into equal groups, each group consisting of some number quite within the limit of our comprehension; if the groups were few, our object would be attained without any further effort, since we should have acquired an accurate knowledge of the number of groups, and of the number of individuals in each group, and therefore a satisfactory, although indirect estimate of the whole.

We ought to remark that different persons have very different limits to their perfect comprehension of number. The intelligent can conceive with ease a comparatively large one; there are savages so rude as to be incapable of forming an idea of one that is extremely small.

14. Let us call the number of individuals that we choose to constitute a group, the ratio; it is evident that the larger the ratio, the smaller the number of groups; and the smaller the ratio, the larger the number of groups.

15. If the groups into which we have divided the objects to be reckoned, exceed in amount that number of which we have a perfect idea, we must continue the process, and, considering the groups themselves as individuals, must form with them new groups of a higher order. We must thus proceed until the number of our highest group is sufficiently small.

16. The ratio used for groups of the second and higher orders, would naturally, but not necessarily, be the same as that adopted for the lowest; that is, if seven individuals constitute a group of the first order, we should probably make seven groups of the first order constitute a group of the second also; and so on.

17. It might, and very likely would happen, that we should not have so many objects as would exactly form a certain number of groups of the highest order—some of the next lower might be left. The same might occur in forming one or more of the other groups. We might, for example, in reckoning a heap of pebbles, have two groups of the fourth order, three of

the third, none of the second, five of the first, and seven individuals or simple units.

- 18. If we had made each of the first order of groups consist of ten pebbles, and each of the second order consist of ten of the first, each group of the third of ten of the second, and so on with the rest, we had selected the decimal system, or that which is not only used at present, but which was adopted by the Hebrews, Greeks, Romans, &c. It is remarkable that the language of every civilized nation gives names to the different groups of this, but not to those of any other numerical system. Its very general diffusion, even among rude and barbarous people, has most probably arisen from the habit of counting on the fingers, which is not altogether abandoned, even by us.
- 19. It was not indispensable that we should have used the same ratio for the groups of all the different orders. We might, for example, have made four pebbles form a group of the first order, twelve groups of the first order a group of the second, and twenty groups of the second a group of the third order. In such a case we had adopted a system exactly like that to be found in the table of sterling money, in which four farthings make a group of the order of pence, twelve pence a group of the order of shillings, twenty shillings a group of the order of pounds. While it must be admitted that the use of the same system for applicate, as for abstract numbers, would greatly simplify our arithmetical processes—as will be evident hereafter—a glance at the tables given further on, and those set down in treating of exchange, will show that a great variety of systems have actually been constructed.
- 20. When we use the same ratio for the groups of all the orders, we term it a common ratio. There appears to be no particular reason why ten should have been selected as a "common ratio" in the system of numbers ordinarily used, except that it was suggested, as already remarked, by the mode of counting on the fingers; and that it is neither so low as unnecessarily to increase the number of orders of groups, nor so high as to exceed the conception of any one for whom the system was intended. (See Section III.)
- 21. A system of numbers is called binary, ternary, quaternary, quinary, senary, septenary, oetenary, nonary, denary, undenary or duodenary, according as two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve, is the common ratio. The denary and duodenary systems are more commonly known as the decimal and duodecimal systems. Ours is therefore a decimal or denary system of numbers.

If the common ratio were sixty, it would be a sexagesimal system. Such a one was formerly used, and is still, to some extent, retained—as will be perceived by the tables bereafter given

for the measurement of arcs and angles, and of time. A duodecimal system would have twelve for its "common ratio"; a vigesimal, twenty, &c.

22. A little reflection will show that it was useless to give different names and characters to any numbers except to those which are less than that which constitutes the lowest group, and to the different orders of groups; because all possible numbers must consist of individuals, or of groups, or of both individuals and groups. In neither case would it be required to specify more than the number of individuals, and the number of each species of group, none of which numbers—as is evident—can be greater than the common ratio. This is precisely what we have done in our numerical system, except that we have formed the name of some of the groups by combining those already used. Thus, "tens of thousands," the group next higher than thousands, is designated by a combination of words already applied to express other groups—which tends still further to simplification.

	23.	Arabic	system	of	Notation :-	_
--	-----	--------	--------	----	-------------	---

Units of Comparison, or simple units,

First group, or units of the second order, Second group, or units of the third order, Third group, or units of the fourth order, Fourth group, or units of the fifth order, Fifth group, or units of the sixth order, Sixth group, or units of the seventh order,

Vames.		Cha	racters.
One			1
Two			2 3
Three			3
Four			4
Five			5
Six			6
Seven			6 7
Eight			8
Nine			9
Ten			10
Hundred			100
Thousand	•		1,000
Ten Thou	Sund		10,000
Hundred			100,000
Million			1,000,000

24. The characters which express the first nine numbers are the only ones used. They are called digits, from the custom of counting them on the fingers, already noticed,—"digitus" meaning in Latin a finger, and they have also been called significant figures, to distinguish them from the cipher, or 0, which has no value when standing alone, and which is used merely to give the digits their proper position with reference to the decimal point.

25. The decimal point is a point or dot used to indicate the

position of the simple units.

The pupil will distinctly remember that the place where the "simple units" are to be found is that immediately to the left-hand of this point, which, if not expressed, is supposed to stand at the right-hand side of all the digits. Thus, in 468.76 the 8 expresses "simple units," being to the left of the decimal point;

in 49 the 9 expresses "simple units," the decimal point being understood at the right of it.

26. We find by the table just given, that, after the first nine numbers, the same digits are constantly repeated, their positions with reference to the decimal point being, however, changed; that is, to indicate succeeding groups, the digit is moved, by means of a cipher, one place further to the left. Any one of the digits may be used to express its respective number of any of the groups :- thus 8 would be eight "simple units"; 80, eight groups of the first order, or eight "tens" of simple units; 800, eight groups of the second, or units of the third order; and so on. We might use any of the digits with different groups; thus, for example, 5 for groups of the third order, 3 for those of the second, 7 for those of the first, and 8 for the "simple units," then the whole set down in full would be 5000, 300, 70, 8, or, for brevity's sake, 5378. For we never use a cipher, when the place it would occupy may be filled up by a digit; and it is evident that in 5378 the 378 keeps the 5 four places from the decimal point (understood), just as well as ciphers would have done; also the 78 keeps the 3 in the third, and the 8 keeps the 7 in the second place.

27. It is important to remember that each digit has two values, an absolute and a relative. The absolute value is the number of units it expresses, whatever these units may be, and is unchangeable; thus 6 always means six; sometimes, indeed, six tens; at other times six hundreds, &c. The relative value depends on the order of units indicated, and on the nature of the "simple

unit."*

[•] What has been said on this very important subject is intended principally for the teacher, though an ordinary amount of industry and intelligence will be quite sufficient for the purpose of explaining it, even tehild, particularly if each point is illustrated by an appropriate example; the pupil may be made, for instance, to arrange a number of pebbles in groups, sometimes of one, sometimes of another, and sometimes of several orders, and then be desired to express them by characters—the "unit of comparison" being occasionally changed from individuals, suppose to tens, or hundreds, or to scores, or dozens, &c. Indeed the pupils must be well acquainted with these introductory matters, otherwise they will contract the labit of answering without any very detinite ideas of many things they may be called upon to explain, and which they should be expected perfectly to understand. Any trouble bestowed by the teacher at this period will be well repaid by the ease and rapidity with which the learner will afterwards advance. To be assured of this, he has only to recollect that most of his future reasonings will be derived from, and his explanations grounded on the very principles we have endeavoured to unfold. It may be taken as a truth, that what a child learns without understanding, he will acquire with persons of more advanced years—when we appeal successfully to their understandings, the pride and pleasure they feel in the attainment of knowledge, cause the labour and the weariness which it costs to be undervalued or forgotten.

Pebbles will answer well for examples—indeed, their use in computing

ROMAN SYSTEM OF NOTATION.

28. Our ordinary numerical characters have not been always, or everywhere, used to express numbers; the letters of the alphabet naturally presented themselves for the purpose, as being already familiar, and, accordingly, were very generally adopted—for example, by the Hebrews, Greeks, Romans, &c. each, of course, using their own alphabet. The pupil should be acquainted with the Roman notation on account of its beautiful simplicity, and its being still employed in inscriptions, &c.: it is found in the following table:—

	Charac	ters.	Numb	ers Expressed.
	I			. One.
	I	I.		. Two.
	I	II.		. Three.
Anticipated	changeI	III.	or IV.	. Four.
Change .	. 7	Τ.		. Five.
0	1	TI.		. Six.
	7	II.		. Seven.
		III.		. Eight.
Anticipated	changeI	\mathbf{X} .		. Nine.
Change .	• • • •	X.		. Ten.
. 0	2	XI.		. Eleven.
	_	XII.	-	. Twelve.
	_	XIII		. Thirteen.
		XIV.		. Fourteen.
		XV.		. Fifteen.
	_	XVI.		. Sixteen.
	_	XVI.		. Seventeen.
		XVI		. Eighteen.
	-	XIX		. Nineteen.
		XX.		. Twenty.
		XXY	K., &c.	. Thirty, &c.

has given rise to the term calculation, "calculus" being, in Latin, a pebble; but while the teacher illustrates what he says by groups of particular objects, he must take care to notice that his remarks would be equally true of any others. He must also point out the difference between a group and its equivalent unit, which, from their perfect equality, are generally confounded. Thus, he may show that a penny, while equal to, is not identical whofour farthings. This seemingly unimportant remark will be better appreciated hereafter; at the same time, without inaccuracy of result, we may, if we please, consider any group either as a unit of the order to which it belongs, or so many of the next lower as are equivalent.

Characters. Numbers Expressed.

Anticipated changeXL. . Forty. Change . . Fifty. LX., &c., . Sixty, &c. Anticipated changeXC. . Ninety.. . One hundred. Change . CC., &c., . Two hundred, &c. Anticipated changeCD. . Four hundred. D. or In. Change . Five hundred, &c. . Nine hundred. Anticipated changeCM. M. or CIO. . One thousand, &c. Change . \overline{V} , or $I_{\Omega\Omega}$. Five thousand. $\overline{\mathrm{X}}$.or $\mathrm{CCI}_{\Omega\Omega}$. Ten thousand, &c. . Fifty thousand, &c. CCCIAAA . One hundred thousand, &c

29. Thus we find that the Romans used very few characters—fewer indeed than we do, although our system is still more simple and effective from our applying the principle of "position," unknown to them.

They expressed all numbers by the following symbols, or combinations of them: I. V. X. L. C. D. or Io. M., or CIo. In constructing their system, they evidently had a quinary in view; that is, as we have said, one in which five would be the common ratio; for we find that they changed their character, not only at ten, ten times ten, &c.; but also at five, ten times five, &c. A purely decimal system would suggest a change only at ten, ten times ten, &c.; a purely quinary, only at five, five times five, &c. As far as notation was concerned, what they adopted was neither a decimal nor a quinary system, nor even a combination of both; they appear to have supposed two primary groups, one of five, the other of ten "units of comparison"; and to have formed all the other groups from these, by using ten as the common ratio of cach resulting series.

30. They anticipated a change of character,—one unit before it would naturally occur; that is, not one "simple unit," but one of the units under consideration. In this point of view, four is one unit before five; forty, one unit before fifty—tens being now the units under consideration; four hundred, one unit before five hundred—hundreds having become the units contemplated.

31. From the table (28) it will be seen that as often as any letter is repeated, so many times is its value repeated. Thus I, standing alone, denotes one, II denotes two, &c. So X denotes ten, XX twenty, &c.

When a letter of less value is placed before a letter of greater value, it takes away its own value from the greater; but when placed after it, it adds its own value to the greater. Thus V denotes five, IV denotes four, and VI six; so X denotes ten, IX nine, and XI eleven, &c.

A line or bar placed over any letter increases its value a thousand-fold. Thus V denotes five, \overline{V} denotes five thousand; X denotes ten, \overline{X} denotes ten thousand, &c.

32. To express a number by the Roman method of notation:

RULE.—Find the highest number within the given one, that is expressed by a single character, or the "anticipation" of one (28); set down that character, or anticipation, as the case may be, and take its value from the given number. Find what highest number less than the remainder is expressed by a single character, or "anticipation"; put that character or "anticipation" to the right hand of what is already written, and take its value from the lust remainder; proceed thus until nothing is left.

EXAMPLE.—Set down the number eighteen hundred and forty-four, in Roman characters. One thousand expressed by M. is the highest number within the given one, indicated by one character or by an "anticipation"; we put down

M

and take one thousand from the given number, which leaves eight hundred and forty-four. Five hundred, D, is the highest number within the last remainder (eight hundred and forty-four) expressed by one character, or an "anticipation"; we set down D to the right hand of M,

MD.

and take its value from eight hundred and forty-four, which leaves three hundred and forty-four. In this the highest number expressed by a single character, or an "anticipation," is one hundred, indicated by C: which we set down, and for the same reason two other C's.

MDCCC.

This leaves only forty-four, the highest number within which, expressed by a single character or an "anticipation" is forty, XL,—an "anticipation" we set this down also,

MDCCCXL.

Four, expressed by IV, still remains; which, being also added, the whole is as follows:—

MqCCCXLIV.

EXERCISE, 1.

- 33. Express the following numbers in the Roman notation :-
- 1. Twenty-five.
- 2. Forty-three.
- 3. Sixty-seven.
- 4. Eighty-nine.
- 5. Ninety-eight.
- 6. One hundred and thirty-seven. 7. Three hundred and seventy-one.
- 8. Four hundred and two.
- 9. Six hundred and seventeen.
- 10. Nine hundred and ninety-nine.
- 11. One thousand four hundred and forty-six. 12. Three thousand eight hundred and five.
- 13. Eight thousand six hundred and seventy.
- 14. Twelve thousand one hundred and sixty-nine.
- 15. Four hundred and ninety-seven thousand, six hundred and eighty-two.

Answers.

- 3. LXVII. 2. XLIII. 1. XXV. 6. CXXXVII. 5. XCVIII. 4. LXXXIX.
- 9. DCXVII. 8. CDII. 7. CCCLXXI. 12. MMMDCCCV.
- 11. MCDXLVI. 10. CMXCIX. 13. VMMMDCLXX. 14. XMMCLXIX.

15. CDXCVMMDCLXXXII.

EXERCISE 2.

34. Read the following expressions :-

- 3. DCLXVIII. 2. CCLXXII. 1. XCVII.
- 6. VMMMXXXIII. 5. XV. 4. CMIX.
- 7. XVDCCCLXXXVIII. 8. DCXLVMCMIV.9. XXVXXV.
- 1. Ninety-seven.
- 2. Two hundred and seventy-two.
- Six hundred and sixty-eight.
- 4. Nine hundred and nine.
- 5. Fifteen thousand.
- 6. Eight thousand and thirty-three.
- 7. Fifteen thousand eight hundred and eighty-eight.
- 8. Six hundred and forty-six thousand nine hundred and four.
- 9. Twenty-five thousand and twenty-five.

ARABIC SYSTEM OF NOTATION.

- 35. In the Common or Arabic system of Notation the same character may have different values, according to the place it holds with reference to the decimal point (25), or perhaps more strictly to the simple units. This is the principle of position.
- 36. The places occupied by the units of the different orders (23), may be described as follows:—simple units, one place to the left of the decimal point, expressed, or understood; tens, two places; hundreds, three places, &c.
- 37. When, therefore, we are desired to write any number, we have merely to put down the digits expressing the amounts of the different units in their proper places, according to the order to which each belongs. If, in the given number, there is any "place" in which there is no digit, a cipher must be set down in that place, when required to keep another digit in its own position.—But a cipher produces no effect, when it is not between one or more digits and the decimal point; thus, 0536, 536·0, and 536 would mean the same thing—the first is, however, incorrect. 536 and 5360 are different; in the latter case the cipher affects the value, because it alters the position of the

EXAMPLE.—Let it be required to set down six hundred and two. The six must be in the third, and the two in the first place; for this purpose we are to put a cipher between the 6 and 2—thus 602. Without a cipher the six would be in the second place—thus, 62; and would mean, not six hundreds, but six tens.

38. In numerating, we begin with the digits of the highest order, and proceed downwards, stating the number which belongs to each order.

To facilitate notation and numeration, it is usual to divide the places occupied by the different orders of units into periods. For a certain distance, the English and French methods of division agree; the English billion is, however, a thousand times greater than the French. This discrepancy is not of much importance, since we are rarely obliged to use so high a number;—we shall prefer the French method. To give some idea of the amount of a billion, it is only necessary to remark, that, according to the English method of notation, there has not been one billion of seconds since the birth of Christ. Indeed, to reckon even a million, counting on an average three per second for eight hours a day, would require nearly 12 days. The following are the two methods:

FRENCH METHOD.	\(\times \) Hundreds of Octillions. \(\times \) Tens of Octillions. \(\times \) Hundreds of Septillions. \(\times \) Faptillions. \(\times \) Septillions. \(\times \) Septillions. \(\times \) Hundreds of Sextillions. \(\times \) Faptillions. \(\times \) Tundreds of Sextillions. \(\times \) Tens of Sextillions. \(\times \) Tens of Sextillions.	c) Sextulous. A) Hundreds of Quintillions. C) Tens of Quintillions. Q) Quintillions. Hundreds of Quadrillions. A) Hundreds of Quadrillions. C) Quadrillions. Q) Quadrillions.	33333	3 3 3 3 3 3 3 3 3
ENGLISH METHOD.	Hunds, of Thous, of Quadrillions. Tens of Thous, of Quadrillions. Thousands of Quadrillions. Octilions. Thundreds of Quadrillions. Tens of Quadrillions. Tens of Quadrillions. Spirit of Applications. Applications. Spirit of Spiritions. Applications. Applications.	Thionsands of Trillions. Hurdreds of Trillions. Tens of Trillions. Trillions. Hurds of Thous of Billions. Tens of Thous of Billions.	Thousand so Dillions. Hundreds of Billions. Tons of Billions. Billions. Hunds, of Thous, of Millions. Then of Plousands of Millions. Then of Millions.	Hundreds of Millions. Thens of Millions. Millions. Hundreds of Thousands. Tens of Thousands. Thousands. Thousands. Thousands. Thousands.

39. Use of Periods.—For the purpose of reading or writing numbers, we divide them by separating points, into periods—the first separating point being the decimal point, expressed or understood, and the other separating points being placed after every third digit, or place, to the right and left of the decimal point. Each period has three places—of which one or more may be occupied by digits. The lowest place in every period—or that to the right hand, is the "units' place of that period: and the highest, the "hundreds'" place. And this is true, whether the period is to the left or to the right of the decimal point.

40. The period to the left of the decimal point contains the simple units. The first period to the left of the units' period, contains the thousands; and the first period to the right of it, the thousandths. The second period to the left of the units' period, contains the millions; and the second to the right of it, the millionths. The third period to the left of the units' period, contains the billions; and the third to the right of it the billionths. The fourth period to the left of the units' period, contains the trillions; and the fourth to the right of it, the trillionths. The fifth period to the left of the units' period, contrillionths. The fifth period to the left of the units' period, con-

tains the quadrillions; and the fifth to the right of it, the quadrillionths. The sixth period to the left of the units' period, contains the quintillions; and the sixth to the right of it, the quintillionths. The seventh period to the left of the units' period. contains the sextillions; and the seventh to the right of it, the sextillionths. The eighth period to the left of the units' period. contains the septillions; and the eighth to the right of it, the septillionths. The ninth period to the left of the units' period, contains the octillions; and the ninth to the right of it, the octillionths. The tenth period to the left of the units' period, contains the nonillions; and the tenth to the right of it, the nonillionthe

The pupil should be made perfectly familiar with the names of the The pupil should be made perfectly familiar with the names of the periods and of the places in each period—so as to be able, without the slightest hesitation, to name the period and place to which any digit belongs, or into which it ought to be put. When he can read or write any one digit, belonging to any period and place, he should be tangint to read and write a number consisting of two, three, four, &c., digits, whether they are close together, or separated by any number of ciphers.

The whole of what has been said above will become more evident from an attentive consideration of the following table:

of Quadrillions.	$\left. ight\}$ of Trillions.	of Billions.	of Millions.	of Thousands.	of Units.	of Thousandths.	of Millionths.	of Billionths.	$\left. \left. \left. ight. ight$	$\left. \left. \left. \right. \right\} $ of Quadrillionths.	$\bigg\} \text{ of Quintillionths.}$
	174	9 Tens		463	c Hundreds Trons 7 Units	E Hundreds 9 Tens 4 Units		e Hundreds Tens c Units	471		
6th Period.	5th Period.	4th Period.	3rd Period. $\begin{cases} 8 \\ 8 \end{cases}$	2nd Period.	1st Period.	1st Period.	2nd Period.	3rd Period. $\begin{cases} c \\ c \\ c \end{cases}$	4th Period.	5th Period. $\begin{cases} 5 \\ 0 \\ 0 \end{cases}$	6th Period.

EXAMPLES.—Let it be required to read off the following number, 576934. EXAMPLES.—Let it be required to read off the following number, 57893. We put a point to the left of the 9, and find that there are exactly two periods—thus, 576,934; this does not always occur, as the highest or lowest period is often imperfect, consisting only of one or two digits. Dividing the number thus into parts, shows at once that 5 is in the third place of the second period—that is, in the Hundreds' place of the Thousands' period: and therefore, that it expresses five hundred thousands: that the 7, being in the second place of the same period indicates tens of thousands: and the 6, being in the first indicates thousands. The 9, being in the third place of the first period, indicates hundreds of units: the 3, being in the second place of the same period, indicates tens of units; and the 4, being in the first, indicates units ("of comparison," or "simple units"). The number, therefore, may be read as follows—"five hundreds of thousands, seven tens of thousands, and six thousands; nine hundreds of units, three tens of units, and four units"; or more briefly, "five hundred and seventy-six thousand nine hundred and thirty-four."

41. To prevent the separating point or that which divides into periods, from being mistaken for the decimal point, the former should be a comma (,)—the latter a full stop (.) Without this distinction, two numbers which are very different might be confounded: thus, 498,763, and 498,763, one of which is a thousand times greater than the other. After a while we may dispense with the separating point, though it is convenient to retain it with large numbers, as they are then read with greater case.

42. To write down any integral or whole number, it is merely necessary to remember the order of the periods, and that every period contains three places, each of which must be filled, either by a digit The one, two, or three digits, belonging to the highest or a cipher. period are first written in their appropriate places; then the next lower period is filled with the digits, or ciphers belonging to it; afterwards the next; and so on, till the whole number is set down.

EXAMPLE.-Let it be required to write the number seventy-three tril-EXAMPLE—Let it be required to write the number seventy-turee trilions two hundred and nine billions eighteen thousand and six. The highest period here mentioned is that of trillions, which we know to be the fifth to the left of the decimal point (40). We therefore set down the digits 73, bearing in mind that we are to put in four complete periods, or twelve places between the 3 and the decimal point. The next period we have is that of billions, which we fill with digits 209 (two hundred and nine). The next period, that of millions, has no significant figures, and we accordingly fill it thus, 600. We now come to the period of thousands, in which we have the digits 18, but, inasmuch as the third place of this period must also be filled, we insert there a cuber, and the full neriod become must also be filled, we insert there a cipher, and the full period becomes 018. Lastly, the lowest period, or that of units, is to contain only the digit 6,—the other two places being filled with ciphers, the complete period is written 606. Now setting these periods one after the other in their proper order, we obtain for the entire number the expression, 73,209, 000,018,006.

43. To write down any decimal number we proceed very much in the same way. We have to remark, that in any decimal the last digit to the right gives the denomination to the number. Thus, 68 is read sixty-eight hundredths; 4078 is read four thousand and seventy-eight tenths of thousandths, &c.

Now, when we wish to write any decimal, we first ascertain how many places the proposed denomination or order is to the right of the decimal point; and then, if the given digits will not bring the number to its proper position, we insert between these digits · and the decimal point the requisite number of ciphers.

EXAMPLE. 1.-Let it be required to write the number, seven hundred and sixteen thousand and eighty-nine billionths. Now we know (40) that billionths occupy the 9th place to the right of the decimal point. Were we to place the decimal point immediately before the digits themselves, thus, '716089, they would express not so many billionths but so many millionths: since millionths occupy the 6th and billionths the 9th place. It is obvious, then, that to give the digits their proper value, we must insert three ciphers between them and the decimal point, and the number is then correctly written 2007 (18 08). then correctly written '000,716,039.

EXAMPLE 2.—Write the number six thousand two hundred and one hundredths of trillionths. From (40) we know that hundredths of trillionths occupy the 14th place. The given digits (6201) being only four in number, require the aid of ten ciphers in order to fill the 14 places, and the number is thus written, 000,000,000,062,01.

EXAMPLE 3.—Write the number, six millions seven hundred and twenty-seven thousand and twelve tenths of billionths. The given digits, 6727012, are only seven in number, while the denomination tenths of billionths implies that ten places must be filled. We have, therefore, to insert three ciphers between the given digits and the decimal point, and the resulting expression, 000,672,701,2, represents the given number.

- 44. The simple units are, as we have said, always found in the first period to the left of the decimal point. The digits to the left hand, progressively increase in a tenfold degree-those occupying the first place to the left of the simple units being ten times greater than the simple units; those occupying the second place, ten times greater than those which occupy the first, and one hundred times greater than the units of comparison themselves; and so on. Moving a digit one place to the left, multiplies it by ten-that is, makes it ten times greater; moving it two places, multiplies it by one hundredthat is, makes it one hundred times greater; and so of the rest. If all the digits of a quantity be moved one, two, &c., places to the left, the whole is increased ten, one hundred, &c., timesas the case may be. On the other hand moving a digit, or a quantity one place to the right, divides it by ten, that is makes it ten times smaller than before; moving it two places divides it by one hundred, or makes it one hundred times smaller, &c.
- 45. We possess this power of easily increasing, or diminishing, any number in a tenfold, &c., degree, whether the digits are all at the right, or all at the left of the decimal point; or partly at the right or partly at the left. And the pupil must remember that the quantities increase in a tenfold degree to the left, and decrease in the same degree to the right wherever the decimal point may happen to be. We therefore put quantities ten times less than simple units one place to the right of them, just as we put those which are ten times less than hundreds, &c., one place to the right of hundreds, &c. Quantities to the left of the decimal point are called integers because none of them is less than a whole simple "unit"; and those to the right of it, decimals. When there are decimals in a given number, the decimal point is always expressed, and is found at the right-hand side of the simple units.
- 46. The periods to the left of the decimal point may be called the ascending, and those to the right of it the descending series:

 —taken together, however, they constitute but one series, which is an ascending or a descending series, according as it is read from right to left or from left to right. Periods that are equally distant from the units of comparison bear a very close relation to

each other, which is indicated even by the similarity of their names; the only difference being in the terminations (40). We have seen also, that when we divide integers into periods (40), the first separating point must be put to the right of the thousands. In dividing decimals into periods, the first point must be put to the right of the thousandths also.

- 47. Care must be taken not to confound what we now call "decimals," with what we shall hereafter designate "decimal fractions"; for they express equal, but not identically the same quantities—the decimals being what shall be termed the "quotients" of the corresponding decimal fractions. This remark is made here to anticipate any inaccurate idea on the subject, in those who already know something of arithmetic.
- 48. There is no reason for treating integers and decimals by different rules, and at different times, since they follow precisely the same laws, and constitute parts of the very same series of numbers (46). Besides, any quantity may, as fur as the decimal point is concerned, be expressed in different ways; for this purpose we have merely to change the unit of comparison. let it be required to set down a number indicating five hundred and seventy-four men. If the unit be one man, the quantity would stand as follows, 574. If a band of ten men, it would become 57.4-for as each man would then constitute only the tenth part of the "unit of comparison," four men would be only four tenths, or 0.4; and since ten men would form but one unit, seventy men would be merely seven simple units, or 7, &c. Again if it were a band of one hundred men, the number must be written 5.74; and lastly, if a band of a thousand men, it would be 0.574. Should the "unit" be a band of a dozen, or a score of men, the change would be still more complicated; as, not only the position of a decimal point, but the very digits also, would be altered.
- 49. It is not necessary to remark that moving the decimal point so many places to the *left*, or the digits an equal number of places to the *right*, amounts to the same thing.

Sometimes in changing the decimal point, one or more ciphers are to be added; thus, when we move 42.6 three places to the left, it becomes 42600; when we move 27 five places to the right it is 0.00027, &c.

50. It follows from what we have said, that a decimal, though less than what constitutes the unit of comparison, may itself consist of not only one, but several individuals. Of course it will often be necessary to indicate the nature of the "simple units;" as 3 scores, 5 dozen, 6 men, 7 companies, 8 regiments, &c. But its nature does not affect the abstract properties of numbers; for it is true to say that seven and five, when added

together, make twelve, whatever the unit of comparison may be:—provided, however, that the same standard be applied to both; thus 7 men and 5 men are 12 men; but 7 men and 5 horses are neither 12 men nor 12 horses; 7 men and 5 dozen men arc neither 12 men nor 12 dozen men. When, therefore, numbers are to be compared, &c., they must have the same unit of comparison :- or without altering their value, they must be reduced to those which have. Thus we may consider 5 tens of men to become 50 individual men-the unit being altered from ten men to one man, without the value of the quantity being changed. This principle must be kept in mind from the very commencement, but its utility will become more obvious hereafter.

EXERCISE 3.

- 51. Write down the following Numbers :-
- 1. One hundred and ninety-four. 2. One thousand and seventy-six.
- 3. Twenty thousand five hundred and eight.

4. Two hundred and one thousand and three. 5. Eighty millions four thousand and thirty-three.

6. Sixteen quadrillions five hundred and ninety-seven trillions three billions forty-four millions and ninety-one.

7. Ninety-seven hundredths.

8. Six hundred and forty-three thousandths.

9. One hundred and twenty-two thousand and eighty-nine millionths.

10. Thirty-nine tenths of millionths.

11. Sixty-three hundredths of trillionths.

- 12. Seventeen billions four thousand and one, and ninc hundred and sixty-seven billionths. 13. Seven trillions eight hundred and two billions twenty-three
- thousand and eleven, and nine thousand nine hundred and ninety-nine billionths. One quadrillion one trillion one billion one million one 14.

thousand one hundred and one, and one trillionth.

15. Eight hundred and ninty-six trillions and two, and nine hundred and four hundredths of millionths.

Answers.

- 1, 194. 2. 1076. 3, 20508.
- 4. 201003. 5, 80004033. 6. 16597003044000091. 7. .97. 8. .643. 9. 122089.
 - 10. .0000039.
 - 11. .00000000000063.
 - 12. 17000004001.000000967.
 - 13. 7802000023011-000009999.
 - 14. 1001001001001101.0000000000001. 15. 8960000000000002.00000904.

Exercise 4.

52. Read the following numbers :-

1. 904.

2, 7060. 3. 90004.

4, 40300201. 5. 7060504030.

6. 70003000000400.

7. 604.03.

8. 90767.004003. 9. 9001.00070306.

10. 1237.9134671342913.

11. .00100100100101. 12. 100.2003004005006007.

Answers.

1. Nine hundred and four.

2. Seven thousand and sixty.

3. Ninety thousand and four.

4. Forty millions three hundred thousand two hundred and

5. Seven billions sixty millions five hundred ar I four thousand and thirty.

6. Seventy trillions three billions and four hundred.

7. Six hundred and four, and three hundredths.

8. Ninety thousand seven hundred and sixty-seven, and four thousand and three millionths.

9. Nine thousand and one, and seventy thousand three hundred and six hundredths of millionths.

10. One thousand two hundred and thirty seven, and nine trillion, one hundred and thirty-four billion six hundred and seventy-one million three hundred and forty-two thousand nine hundred and thirteen tenths of trillionths.

11. One hundred billion one hundred million one hundred thousand one hundred and one hundredths of trillionths.

12. One hundred, and two quadrillion three trillion four billion five million six thousand and seven tenths of quadrillionths.

ON THE DENOMINATION OF NUMBERS.

53. When two numbers have the same unit they are said to be of the same denomination; when the units are not the same, they are said to be of different denominations. For example, 16 shillings and 28 shillings are two numbers of the same denomination; but 23 shillings and three farthings are not of the same denomination, the unit of 23 shillings being one shilling, and of three farthings, one farthing. The kind of unit always expresses the denomination.

Even in abstract or simple numbers, different names are given to the units as we proceed to the right or left of the decimal point, viz., simple units or units of the first order; tens, or units of the second order; hundreds, or units of the third order, &c. Considered in this relation to each other, these units may be regarded as denominate numbers.

The following Tables show the various kinds of denominate numbers in general use, and also the relative values of their different units.

TABLES OF MONEY, WEIGHTS, AND MEASURES.

STERLING MONEY.

54. The denominations are pounds, shillings, pence, and farthings.

TABLE.

4 farthings (qr.) make 1 penny marked d.

12 pence "1 shilling, "s.

20 shillings "1 pound, "£

$$qr.$$
 d.

4 = 1 s.

48 = 12 = 1 £

960 = 240 = 20 = 1

Other English coins, some of them now out of use:

 Moidore
 =
 27s.
 | Noble
 =
 6s. 8d.

 Guinea
 =
 21s.
 | Crown
 =
 5s.

 Pistole
 =
 16s. 10d.
 | Angel
 =
 10s.

 Mark or Merk
 =
 13s. 4d.
 | Groat
 =
 4d.

The letters £ s. d. and qr. are the initials of the Latin words, libra, solidus, denarius, and quadrans, which respectively signify a pound, a shilling, a penny, and a farthing, or quarter. The mark \nearrow , which sometimes separates the shillings and pence, is a corruption of the long f (s), arising from the rapidity with which it is made.

It is now customary to write farthings as fractions of a penny, as \(\frac{1}{2}\)d. \(\frac{1}{2}\)d., to represent 1 qr., 2 qr., and 3 qr.

Sterling money is supposed to have received its name from the *Esterlings* or German traders in England, by whom it is said to have been first coined.

The pound is so called, because in aucient times it was equal to a pound Troy of silver. Its present value in Canada is \$4.5666, and hence the value of an English shilling is 24\footnote{1}{2} cents. The guinea was so called from being originally coined from gold brought from Guinea, on the coast of Africa.

The present standard gold coin of Great Britain consists of 23 parts pure gold and 2 parts of copper. The standard silver coin consists of 37 parts pure silver and 3 parts copper. In copper coin 24 pence weigh a pound avoirdupois.

FEDERAL MONEY.

55. Federal money is the currency of the United States. The denominations are eagles, dollars, dimes, cents and mills.

TABLE.

1000

10000 The sign \$ is the symbol for the old Spanish coin of 8 reals. On one side of the Spanish real the pillars of Hercules were represented supporting the world—on the piece of eight reals the pillars were retained and the Swritten over them—thus S. Many bowever consider the sign S a contraction of the letters U. S., the initials of United States made by dropping the curve of the U and writing the Sover it.

The present standard for both gold and silver coin in the United States is 900 parts of pure metal and 100 parts of alloy. The alloy for gold is silver and copper, of which not more than one half must be silver; that for sll-

The gold coins are the Eagle, the Double Eagle, Half Eagle, Quarter Eagle, and Dollar; the silver coins are the Dollar, Half Dollar, Quarter Pollar, Dime, Half Dime and three cent piece; the copper coins are the Cent and the Half Cent; Mills are never coined.

OLD CANADIAN MONEY.

56. The denominations are pounds, dollars, shillings, pence, and farthings.

TABLE. 4 farthings make 1 penny, marked d. 1 shilling, 12 pence " 1 dollar, 5 shillings 1 pound, 4 dollars qr. 1 4 48 12 5 240 000 = 240

NOTE.—Every 3d. of the old coinage is equal to 5 cents of the new. The York shilling is equal to the eighth part of a \$, or to 7½d. or to 12½ cents.

NEW CANADIAN OR DECIMAL MONEY.

57. The denominations are dollars and cents.

The coins are cents, five-cent pieces, ten-cent pieces, and twenty-cent pieces.

100 cents (c) make 1 dollar, marked \$

AVOIRDUPOIS WEIGHT.

58. Is used in weighing heavy articles. Its name is derived from French—and ultimately from Latin words signifying "to have weight." Its denominations are tons, hundredweights, quarters, pounds, ounces, and drams.

TABLE.

marked oz

16 drams make 1 ounce

- '			·urc		,		*****		
16	ou	nces	60	1 pou	nd,		"	lb.	
25	po	unds	ci	1 qua	rter	•		qr.	
4	Łqτ	arters	66	1 hun	dred	weig	ght,"	cwt	
20) ev	rt.	66	1 ton			, 'cc	ť.	
d.		oz.			,				
16	=	1		lb.					
256	=	16	=	1		qr.			
6400	=	400	=	25	=	1		cwt.	
25600	=	1600	=	100	=	4	=	1	- 1
512000	=	32000	=	2000	=	80	=	20 =	

It was formerly the custom to allow 23 lbs. to the quarter, 112 lbs. to the hundredweight, and 2240 to the ton. This has now fallen into disnse; and among merchants in Canada the qr., cwt., and ton are universally considered as respectively equal to 25 lbs., 100 lbs., and 2000lbs. The Custom Houses continue to regard the cwt. as equal to 112lbs., and some few articles are still weighed by the old cwt. by farmers and others. The English cwt. is 112 lbs.

TROY WEIGHT.

59. The denominations of Troy Weight are pounds, ounces, pennyweights, and grains.

TABLE.

24 grains (grs.) mal	e 1	pennyweight,	marked	dwt.
20 pennyweights "	1	ounce,	"	OZ.
12 ounces "		pound,	"	lb,

grs. dwt.

$$24 = 1$$
 oz.
 $480 = 20 = 1$ lb.
 $5760 = 240 = 12 = 1$

This weight was introduced into Europe from Cairo, in Egypt, and was first adopted in Troyes, a city of France—whence its name. It is used in philosophy, in weighing gold, precious stones, &c.

Note.—The origin of all weights used in England, was a grain of wheat taken from the middle of the ear and well dried. A weight equal to 32 of these grains was called a pennyweight, being equal to the weight of a silver penny then in use: 20 of these pennyweights constituted an ounce, which was the 12th part of a pound (Lat. "uncia," a 12th part—compare "inch" the twelfth part of a foot.) In later times the pennyweight came to be divid-

ed into 24 equal parts instead of 32, but these still retain the name of grains. The "Carat," which is equal to about four grains (somewhat less than Troy grains), is used in weighing diamonds. The term carat is also applied in estimating the fineness of gold: the latter, when perfectly pure, is said to be "24 carats fine." If there are 23 parts gold, and one part some other naterial, the mixture is said to be "23 carats fine"; if "2 parts out of the 24 are gold, it is, "22 carats fine," &c. The whole mass is, in all cases supposed to be divided into 24 parts, of which the number consisting of gold is specified. Our gold coin is 22 carats fine; pure gold, being very soft, would too soon wear out. The degree of fineness of gold articles is marked upon them at the Goldsmiths' Hall; thus we generally perceive "18" on the cases of gold watches; this indicates that they are "18 carats fine"—the lowest degree of purity which is stamped.

A Troy ounce contains	 		480
An Avoirdupois ounce	 		4371
A Troy pound			
An Avoirdupois pound	 		7,000

A Troy pound is equal to 372.965 French grammes.

175 Troy pounds are equal to 144 avoirdupois; 175 Troy are equal to 192 avoirdupois ounces.

APOTHECARIES' WEIGHT.

60. The denominations of Apothecaries' Weight are pounds, ounces, drams, scruples, and grains.

TABLE

					DDII.			
20 grai	ins (grs.)	make	1	seruple,	marked	sc. or	Э
3 seri	aples	3	"		dram,	"	dr. or	
8 dra	ms		"	1	ounce,	"	oz. or	Ę
12 oun	ces		"	1	pound,	"	lb.	_
grs. 20	=	1	•	3				
480	=	3 24	=	8	$= 1 \frac{3}{1}$	1b.	295	
5760	=	288	= 5	96	= 12	= 1.		

Apothecaries mix their medicines by this weight, but buy and sell by avoirdupois.

The pound and ounce of this weight are the same as in Troy weight.

LONG MEASURE.

61. The denominations of Long Measure are leagues, miles, furlongs, rods, yards, feet, inches, and lines.

		T_{A}	ABLE.			
12 lines (l.)	make	1	inch,	marked	in.	
12 inches	- 66	1	foot,	"	ft.	
3 feet	66		yard,	"	yd.	
$5\frac{1}{2}$ yards	66	1	rod, pole, o	or perch,	rd. or	p.
40 rods or perches	66	1	furlong,	- "	fur.	•
8 furlongs	66		mile,	"	m.	
3 miles	66	1	league,	"	lea.	
$69\frac{1}{6}$ miles (nearly)	"	1	degree or	360th pa	rt of	the
			earth's c	circumfer	ence.	

in.		ft.							
12	=	1		yd.					
36	=	3	=	1		rd.			
198	=	161	=	51	=	1		fur.	
7920	=	660	=	220	=	40	= .	1	m.
63360	=	5280	=	1760	=	320	=	8 =	= 1.

100 links, 4 rods, or 22 yards, make 1 Gunter's chain. Each

link therefore is equal to 7200 inches.

Eleven Irish are equal to 14 English miles. The Paris foot is equal to 12.792 English inches, the Roman foot to 11.604 English inches, and the French metre to 39.383 English inches.

4 inches make I hand (used in measuring horses).
3 inches "I palm.
18 inches "I cubit.
3 feet "a common pace.
5 feet "a Roman pace.

6 feet " a fathom.

120 fathoms " a cable's length.

SQUARE MEASURE.

62. This measure is used for estimating artificers' work, such as flooring, plastering, painting, paving, &c., and, in short, any kind of work where surface alone is concerned. It is always employed in measuring land, and hence it is frequently called Land Measure.

A square is a four sided figure having all of its sides equal and perpendicular one to another. the length of each side be an inch, a foot, or a yard, &c., the square is called a square inch, a square foot, or a square yard, &c. will be observed from the adjacent figure that a square foot contains 12× 12 or 144 square inches, and similarly a square yard may be shown to contain 3×3 or 9 square feet.

	11	foot =	12 inch	es.
1 foot = 12 inches.		001 =	12 inch	99.

The denominations of Square Measure are square miles, acres, roods, square perches, square yards, square feet, and square inches.

TABLE.

144 square inches make 1 square foot, marked sq. ft. 9 square feet 1 square yard, sq. yd. sq. rd. 301 square yards 1 square rod, 40 square rods 1 rood, . . 4 roods l acre, 46 1 square mile. 640 acres s. m.

sq. ii	n.	sq	. ft.						
144	=	• 1		sq. y	d.				
1296	=	9	=	1		sq. r	d,		
39204	=	2721	=	301	=	1		r.	
1568160	=	10890	=	1210	=	40	=	1	acre.
6272640	=	43560	=	4840	=	160	=	4	= 1.

63. In measuring land, Gunter's chain is used. It is divided into 100 links.

marked ١. 7 % inches make 1 link, 100 links or 4 rods 1 chain, c. 80 chains 1 mile, m. 1 square chain," 10000 square links sq. c 10 square chains 1 acre.

SOLID OR CUBIC MEASURE.

64. This measure is used for finding the solid contents of timber, stone, &c. A cube is a solid bounded by six equal surfaces or squares, and having eight equal edges. It is called a cubic inch, a cubic foot, or a cubic yard, according as each of these edges is arrinch, a foot, or a yard in length.

The accompanying figure represents a cubic yard—each edgebeing 3 feet in length. The top, 3 feet.

being 3 feet in length. The top, which is equal to the base, contains 3×3 or 9 square feet; hence, if it were only one foot in height it would contain 9 cubic feet; but it is 3 feet in height, and must therefore contain 9×3 or 27 cubic feet. A cubic yard then contains 3×3×3 or 27 cubic feet.

Similarly it may be shown that a cubic foot contains $12 \times 12 \times 12$ or 1728 cubic inches.

The denominations of Cubic Measure are cords, tons, cubic feet, and cubic inches.

TABLE.

1728 cubic inches 27 cubic feet

make 1 c. ft. marked c. ft. "I cubic yd." c. yd.

*40 c. ft. of round timber, or \ " 1 ton, " ton.

128 cubic feet make 1 cord of firewood, marked c.

A pile of cord-wood 4 feet high, 4 feet wide, and 8 feet long, contains 128 cubic feet or one cord. One foot in length of such a pile is called a cord-foot. It is equal to 16 solid feet, and is consequently equivalent to the eighth part of a cord.

CLOTH MEASURE.

65. The denominations of Cloth Measure are French ells, English ells, Flemish ells, quarters, nails, and inches.

A ton of round timber is that quantity of timber which, when hewn, will make 40 cubic feet.

TABLE.

21 inches (in.) make	1 nail, marked na.
4 nails "	1 quarter " qr.
3 quarters "	1 Flemish ell, " Fl. e.
4 quarters "	1 yard, " yd.
.5 quarters "	1 English ell, " E. e.
6 quarters	1 French ell, "F. e.
in. na.	100
$2\frac{1}{4} = 1$ qr.	
9 = 4 = 1	Fl. e.
27 = 12 = 3 =	1 yd.
36 = 16 = 4 =	$1_{1}^{1} = 1$ Eng. e.
45 = 20 = 5 =	$1^{\frac{3}{4}} = 1^{\frac{1}{4}} = 1$ Fr. e.
54 = 24 = 6 =	$2^{\circ} = 1^{\frac{1}{2}} = 1^{\frac{1}{2}} = 1$

Note .- The Scotch ell contains 4 quarters 1 inch.

DRY MEASURE.

66. By this are measured all dry wares, as grain; beans, coal, oysters, &c.

The denominations of Dry Measure are chaldrons, bushels, peeks, gallons, quarts, and pints.

TABLE.

Our Standard of Dry Measure is the Winchester bushel. This is an upright cylinder whose internal diameter is 181 inches and depth 8 inches. the contains 2150'4 cubic inches of 77'627 lbs. Avoirdupois of pure distilled water at 62° Fahr. and 30 in. barometer. The standard unit of Dry Measure in the United States is also the Winchester bushel, so called because the standard measure was formerly kept at Winchester, England. The standard unit of Dry Measure in Great Britain is the Imperial bushel, which is an upright cylinder whose internal diameter is 18789 inches and depth 8 inches. It contains 2218 192 cubic inches or 80 lbs. Avoirdupois of pure distilled water at 62 Pahr. and 30 in. barometer.

Grain is often bought and sold by weight, allowing for a bushel, 60 lbs. of wheat, 56 lbs. of rye, 56 lbs. of Indian corn, 48 lbs. of barley, 34 lbs. of oats, 60 lbs. of peas, 50 lbs. of beans, 40 lbs. of buckwheat, 60 lbs. of timothy or

red clover seed.

LIQUID MEASURE.

67. Liquid Measure is used for measuring all liquids.

The denominations of Liquid Measure are tuns, pipes, hogsheads, barrels, gallons, quarts, pints, and gills.

TABLE.

4 gills (g.)	make	1	pint,	marked	pt.
2 pints	66		quart,	' 66	qt.
4 quarts	"		gallon,	66	gal.
31½ gallons	CC		barrel,	"	bar.
2 barrels	. "		hogshead,	**	hhd.
· 2 hogsheads			pipe,	66	pi.
2 pipes	.66		tun,	"	tun.
	- A				

· 6.	pe.					
4 =	• 1	qt.				1
8 =	2 =	1	gal.			
32 =	8 =	\4 =	1	bar.		
1008 =	252 =	126 =	$31\frac{1}{2} =$	1 .	hhd.	
2016 =	504 =	252 ==	63 =	$^2 =$	1 pi.	
4032 =	1008 =	504 =	126 =	4 =	2 = 1	tun.
					4 = 2	± 1

The English Imperial gallon contains 277 274 cubic inches or 10 lbs. avoirdupe 5 of pure distilled water, weighed at a temperature of 62° Fahr, and under a barometric pressure of 30 inches.

In the United States the wine gallon contains 231 cubic inches, and the begat alon 232 cubic inches. The gallon of Great Britain is therefore about equal to 1.2 gallons United States Wine Measure.

By an Act of the Imperial Parliament, 1826, the Imperial gallon of 277°274 cubic inches, was adopted as the only gallon, and is therefore the standard for both liquid and dry measure.

Beer is sold usually by the gallon; sometimes, however, in casks of 5 gals., 10 gals., 20 gals., &c. The beer barrel contains 36 gallons, and the hogshead 54 gallons.

TIME MEASURE.

68. Time is naturally divided into days and years—the former measured by the revolution of the earth on its axis, and the latter by the revolution of the earth round the sun.

The denominations of Time Measure are years, months, weeks, days, hours, minutes, and seconds.

TABLE.

60 seconds (sec	.) make	: 1	minute,	marked	min.
60 minutes	. "	1	hour,	"	h
24 hours	"	1	day,	"	d.
7 days	66	1	week,	"	wk.
4 weeks	"	1	lunar month		mo.
13 lunar month		`		,	

12 calendar months or make 1 civil year, marked yr. 3651 days (nearly)

```
sec.
                min.
      60 =
                 1
                        h.
    3600 =
                60 =
                         1
                                da
   86400 =
              1440 =
                       24
  604800 = 10080 =
                      168 =
                                            * Vr.
31557600 = 525960 = 8766 = 3651 =
                                       52f_{\rm f} = 1.
```

The twelve calendar months, into which the civil or legal year is divided. and the number of days in each, are as follows:

> First month, January, has 31 days. February, Second 28 ** Third March, 31 ** ** Fourth April, 30 " Fifth May, 31 44 " June, Sixth 30 " Seventh " .. July, 31 " Eighth August, 31 September, " ... Ninth 30 Tenth ** October, .. 31 November, " December, " Eleventh" ** 30 Twelfth " 31

The number of days in the respective months may be recalled by recollecting the following well-known lines:

> Thirty days hath September, April, June, and November; February has twenty-eight alone, And all the rest have thirty-one; But lesp-year coming once in four, February then has one day more.

The number of days in each month may also be recollected by counting the months on the four fingers and three intervening spaces. Thus, January on the first finger; February in space between first and second fingers; March on second finger; April in second space; May on third finger; June in third space; July on fourth finger; August on first finger (since there are no more spaces); September in first space, &c. Now, when counted thins, all the months having 31 days come on the fingers, and all having 30 only fall into the spaces.

The solar year is the time elapsing from the passage of the sun from either solstice back to the same again, and is equal to 365d, 5h, 49m, 48sec.

The sidereal year is the time between two successive conjunctions of the

sun with some star, and is equal to 365d. 6h. 9m. 14;sec.

The civil or legal year is that in common use among different nations, and is equal to 365 days for three years in succession and to 366 days for the fourth,

This additional day is given to every fourth year, in order to make the civil year agree with the solar. It was originally added by repeating the sixth of the calends of March in the Roman calendar—corresponding with the 24th of February with us. The day was called the intercalary day, from the Latin intercalo, to insert; and the year was called bissextile, from the Latin bis, twice, and sextilis, sixth (i.e., sixth calend, taken twice). We now call it Leap Year, because it leaps a day more than a common year. This correction was made by Julius Cesar, emperor of Rome, and hence the civil year is often called the Julian year.

The addition of one day every four years would be strictly correct, if the solar year contained 365d. 6h.; but it only contains 365d. 5h. 48m. 48s., or 11m. 12s. less than 865d. 6h. Adding 1 day every 4 years, gives us then an error of excess of 44m. 48s., or about 3 days for every 400 years. Thus the Julian calendar was behind the solar time, since the Julian year was longer than the natural year. This error, at the time of Pope Gregory XIII., amounted to 10 days, which he corrected in 1582 by suppressing 10 days in the month of October, the day after the 4th being called the 15th. Hence this calendar is sometimes called the Gregorian calendar.

This correction was not adopted in England till 1752, when the error amounted to 11 days. By Act of Parliament, 11 days after the 2d of September were therefore omitted. The civil year, by the same act, was made to commence on the 1st of January, instead of the 25th of March, as it had done previously.

Dates reckoned by the old method or Julian calendar, are called Old Style; and those reckoned by the new method are called New Style.

To change any date from Old to New Style, we must add 11 days to it; and if the given date in Old Style is between the 1st of January and the 25th March, we must add 1 to the year in New Style.

Russia still reckons dates according to Old Style. The difference now amounts to 12 days.

69. To ascertain whether a year is LEAP YEAR.

Divide the given year by 4, and if there is no remainder it is Leap Year. The remainder, if any, shows how many years have elapsed since a Leap Year occurred.

Thus, dividing the year 1847 by 4, the remainder is 3; hence it is 3 years since the last Leap Year, and the ensuing year will be Leap Year.

To this rule there is an exception; for we have seen that a solar year is 11m. 12s. less than a Julian year, which is 365½ days. This error, in 400 years, amounts to about 3 days; consequently, if a day is added every fourth year, that is, if we have 100 leap years in 400 years, according to the Julian ealendar, the reckoning would fall 3 days behind the solar time. Thus reckoning from the commencement of the Christian era, when it was January 1st, 401, by the Julian time, it was January 4th by the solar time.

To remedy this error, only 1 centennial year in 4 is regarded as leap year; or, which is the same in effect, whenever the centennial year, or the number expressing the century, is not divisible by 4, that year is not a leap year, while the other centennial years are. Thus, 17, 18, 19, denoting 1700, 1800, and 1900, are not divisible by 4, consequently they are not leap years, though according to the rule above they would be; on the other hand, 16 and 20, denoting 1600 and 2000, are divisible by 4, and are therefore leap years. There is still a slight error, but it is so small that in 5000 years it scarcely amounts to a day.

70.—TABLE SHOWING THE NUMBER OF DAYS FROM ANY DAY OF ONE MONTH TO THE SAME DAY OF ANY OTHER MONTH IN THE SAME YEAR.

From any	To the same day of											
day of	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
January												
February	334	365	28	59	89	120	150	181	212	242	273	303
March	306	337	365	31	61	92	122	153	184	214	245	275
April	275	306	334	365	30	61	91	122	153	183	214	244
May												
June	214	245	273	304	334	365	30	61	92	122	153	183
July												
August	153	184	212	243	273	304	334	365	31	61	92	122
September.	122	153	181	212	242	273	303	334	365	30	61	91
October	92	123	151	182	212	243	273	304	335	365	31	61
November.	61	92	120	151	181	212	242	273	304	334	365	30
December	31	62	90	121	151	182	212	243	274	304	335	365

The months counted from any day of, are arranged in the left-hand vertical column; those counted to the same day of are in the upper horizontal line; the days between these periods are found in the angle of intersection, in the same way as in a common table of multiplication. If the end of February be included between the two points of time, a day must be added in leap years.

EXAMPLE 1.—How many days are there from the 15th of March to the 4th of October? Looking down the vertical row of numbers at the head of which October is placed, and at the same time along the horizontal row at the left hand side of which is March, we perceive in their intersection the number 214: so many days, therefore, intervene between the 15th of March and the 15th of October. But the 4th of October is 11 days earlier than the 15th: we therefore subtract 11 from 214, and obtain 203, the number required.

EXAMPLE 2.—How many days are there between the 3rd of January and the 19th of May? Looking as before in the table, we find that 120 days intervene between the 3rd of January and the 3rd of May; but as the 19th is 16 days later than the 3rd, we add 16 to 120, and obtain 136, the number required.

Since February is in this case included, if it were a leap year, as that month would then contain 29 days, we should add 1 to the 136, and 137 would be the answer.

EXAMPLES.

- 1. How many days from May 3d to the 4th of next July?

 Ans. 62 days.
- 2. How many days from July 4th to the 25th of next December?

 Ans. 174 days.
- 3. How many days from March 21st to the 23rd of the next September?

 Ans. 186 days.

- 4. How many days from September 23rd to the 21st of the next March?

 Ans. 179 days.
- 5. How many days from June 21st to the 22nd of the next December?

 Ans. 184 days.
- 6. How many days from December 22nd to the 21st of the next June?

 Ans. 181 days.
- 7. How many days from March 21st to the 21st of the next June?

 Ans. 92 days.
- 8. How many days from January 13th, 1848, to September 17th of the same year?

 Ans. 248 days.
- 71. The unit of time is the basis of that of Length, Mass, and Pressure: the connections being as follows:—
- A Pound Pressure means that amount of pressure which is exerted towards the earth, at the level of the sea, by the quantity of matter called a pound.
- A Pound of Matter means a quantity equal to that quantity of pure water which, at the temperature of 62° Fahr., would occupy 27°272 cubic inches.

A cubic inch is that cube whose side, taken 39'1393 times, would measure the effective length of a London seconds-pendulum.

A London seconds-pendulum is that which, by the unassisted and unopposed effect of its own gravity, would make 86400 vibrations in an artificial solar day, or 86163'99 in a natural sidereal day.

CIRCULAR MEASURE.

72. Circular Measure, sometimes called Angular Measure, is chiefly used by astronomers, navigators, and surveyors, for measuring angles and for reckoning *latitude* and *longitude*, and the motion of the heavenly bodies.

The Denominations of Circular Measure are signs, degrees, minutes, and seconds.

TABLE.

60 seconds (") make 1 minute, marked '
60 minutes " 1 degree, " °
30 degrees " 1 sign, " s.
12 signs or 360 deg. 1 circle, " c.

$$^{\prime\prime}_{60} = 1$$
 $^{3600}_{3600} = 60 = 1$
 $^{1}_{108000} = 1800 = 30 = 1$
 $^{2}_{1296000} = 21600 = 360 = 12 = 1.$

The circumference of every circle is supposed to be divided into 360 equal parts called degrees, as in the subjoined figure. Since a degree is simply the 360 part of the circum-ference of a circle, it is obvious that its length must depend upon the size of the circle. If the circum-ference he 360 miles in length, then a degree of that circle will be one mile long; if the circle be 360 inches in circumference, then a degree will be one inch, &c.

The divisions of the circumference of the circle into 360 equal parts took its origin from the length of the year, which, in round numbers, was sup-

150 posed to contain 360 days, or 12 months of 30 days each. The 12 signs cor-

respond to the 12 months. The term minute is from the Latin minutum "a small part." The term seconds is an abbreviated expression for second minutes, or minutes of the second order.

MISCELLANEOUS TABLE.

73.	12	individual tl	hings	make	1	dozen.	
	12	dozen		"	1	gross.	
	12	gross		"	1	great gross.	
	20	individual t	hings	"	1	score.	
		sheets of pay		"		quire.	
	20	quires		"		ream.	
	112	pounds		ı ı	1	quintal.	
	200	· "		66		barrel of pork or	beef.
	196	"		6.6	1	barrel of flour.	
	14	"	• • • • •	44	1	stone.	er .

BOOKS.

A sheet folded into two leaves is called a folio.

- folded into four leaves is called a quarto, or 4to.
 - folded into eight leaves is called an octavo, or 8vo.
 - folded into twelve leaves is called a duodecimo,
 - folded into eighteen leaves is called an 18mo

74. When figures are written by the side of each other, thus.

2587931272.

the language implies that the unit in each place is equivalent to ten units of the place next to the right; or that ten units of any particular place are equivalent to one unit of. the place immediately to the left.

75. When figures are written thus,

\$ d. e. m. 1 4 6 5

the language implies that 10 units of the lowest denomination make one of the second; ten of the second, one of the third; and ten of the third, one of the fourth.

76. When figures are written thus,

T. cwt. qr. lb. oz. dr. 16 11 3 21 14 3

the language implies that 16 units of the lowest denomination make one of the second; 16 units of the second, one of the third; 25 units of the third, one of the fourth; 4 of the fourth, one of the fifth; and 20 of the fifth, one of the sixth.

All other denominate numbers are formed on the same principle; and in all of them we pass from a lower to the next higher denomination by considering how many units of the one make one unit of the other.

REDUCTION.

77. Reduction is the changing the denomination of a number from one unit to another, without altering the value of the number. For example, if we desire to reduce 7 of the order of hundreds to a lower denomination, we multiply the 7 by 10, and thus obtain 70 of the order tens, which are equal to 7 of the third order or hundreds. If we wish to reduce to a still lower denomination, we multiply the tens by ten, and this gives us 700 of the first order or simple units, which are just equal to 70 tens or 7 hundreds.

If, on the contrary, we wish to reduce 900 of the first order or simple units, to units of the third order or hundreds, we divide by 10, and thus obtain 90 of the second order, which we again divide by 10 and obtain 9 units of the third order or hundreds.

Hence reduction of denominate numbers is divided into

two parts:-

1st. To reduce a number from a higher denomination to a lower; this is called Reduction Descending.

Ans. 93312.

2nd. To reduce a number from a lower denomination to a higher: this is called Reduction Ascending.

REDUCTION DESCENDING.

EXAMPLE.

78. Reduce £6 16s. 0ld. to farthings. £ s. d. 16 6 20 136 shillings = £6 16s. 1632 pence = £6 16s. 0d.

6529 farthings = £6 16s. 01d.

EXPLANATION.—In this example we multiply the £6 by 20, because each pound is equal to 20 shillings; 6 pounds are therefore equal to 120 shillings, and the 16 shillings given in the question make 136 shillings. Then we multiply the number of shillings by 12, because each shilling is equal to 2 pence, and, since there are no pence in the question, we simply set down the result, 1632 pence. Lastly, we multiply the 1632 pence by 4, because each penny is equal to 4 farthings, and to the result we add the one farthing given in the question.

From the above example and solution we deduce the

following-

RULE.

Multiply the highest given denomination by that quantity which expresses the number of the next lower contained in one of its units; and add to the product that number of the next lower denomination which is found in the quantity to be reduced.

Proceed in the same way with the result; and continue the process

until the required denomination is obtained.

How many farthings in 23328 pence?

EXERCISE 5.

1. HOW MANY INTERNATIONAL PORCE	
2. How many shillings in £348?	Ans. 6960.
3. How many pence in £38 10s.?	Ans. 9240.
4. How many pence in £58 13s.?	Ans. 14076.
5. How many farthings in £58 13s.?	Ans. 56304.
6. How many farthings in £59 13s. 6\fmathcal{d}.?	Ans. 57291.
5. How many farthings in 200 100. Of a.	Ans. 15129.
7. How many pence in £63 0s. 9d.?	Ans. 1666.
8. How many pounds in 16 cwt., 2 qrs., 16 lb.?	
9. How many pounds in 14 cwt., 3 qrs., 16 lb.?	
10. How many grains in 3 lb., 5 oz., 12 dwts., 16	grains (

Ans. 19984.

- 11. How many grains in 7 lb., 11 oz., 15 dwt., 14 grains? Ans. 45974.
- 12. How many hours in 20 (common) years? Ans. 175200 13. How many feet in 1 mile? Ans. 5280.
- 14. How many minutes in 46 years, 21 days, 8 hours, 56 min-
- utes (not taking leap-year into account)? Ans. 24208376.
 - 15. How many square yards in 74 square perches?
 - Ans. 2238.5 (2238 and a half). 16. How many square yards in 46 acres, 3 roods, 12 perches?
 - Ans. 226633. 17. How many square acres in 767 square miles? Ans. 490880.
 - 18. How many cubic inches in 767 cubic feet? Ans. 1325376.
 - 19. How many quarts in 767 pecks?
 - 20. How many pints in 797 pecks?

Ans. 12752.

REDUCTION ASCENDING.

79. Example.—Reduce 856347 farthings to pounds, &c.

4)856347

12)2140863d.

20)17840s. 63d.

£892 0s. 63d. = 856347 farthings.

EXPLANATION .- We divide the farthings by 4, because every four farthings are equal to one penny, and it is evident that what remains after taking away are equal to one penny, and it is evident that what remains after taking away four farthings as often as possible from the farthings must be farthings. We thus obtain 856347 farthings, equal to 214036 pence and 3 farthings. Then we divide the pence by 12, because every 12 pence are equivalent to one shilling, and what remains after taking 12 pence as often as possible from the pence must be pence. We thus ascertain that 214086 pence and 3 farthings are equal to 17840 shillings and 6 pence 3 farthings. Lastly we divide 17840 shillings by 20, because every 20 shillings are equal to one pound. By this process we have reduced 856347 farthings to £392 0s. 63d.

From the above example and solution we deduce the following-

RULE.

Divide the given number by that number which it takes of the given denomination to make one of the next higher. Set down the remainder, if any, and proceed in the same manner with each successive denomination till you come to the one required. The last quotient, with the several remainders annexed, will be the answer required.

EXERCISE 6.

- 1. Reduce 32750 farthings to pounds, shillings, and pence. Ans. £34 2s. 5d.
- 2. Reduce 23547 troy grains to pounds, &c. Ans. 4 lb. 1 oz. 1 dwt, 3 grs.

3. Reduce 397024 yards to miles, furlongs, &c. Ans. 225 m. 4 fur. 26 r. 1 yd.

4. How many hours are there in 28635 seconds? Ans. 7 h. 57 min. 15 sec.

5. How many cwt., qrs., and pounds in 1666 pounds? Ans. 16 cwt. 2 qrs. 16 lb.

6. How many cwt., &c. in 1491 pounds?

Ans. 14 cwt. 3 qrs. 16 lb.

7. How many pounds troy in 115200 grains?

8. How many pounds in 107520 oz. avoirdupois? Ans. 6720. 9. How many cubic feet, &c. in 1674674 cubic inches?

Ans. 969 feet, 242 inches.

10. How many yards in 767 Flemish ells?

Ans. 575 yards, 1 quarter. 11. How many leagues in 183810 feet?

Ans. 11 lea. 1 m. 6 fur. 20 rd.

12. How many cubic yards in 138297 cubic inches? Ans. 2 c. yds. 26 ft. 57 in. 13. How many cords of wood are there in 67893 cubic feet? .

Ans. 530 cords, 53 cub. ft. 14. In 3561829 seconds, how many weeks?

Ans. 5 wks. 6 dys. 5 h. 23 min. 49 sec. 15. In 1597 quarts, how many bushels?

Ans. 49 bushels, 3 pks. 1 gal. 1 qt. 16. In 1000 cord-feet of wood, how many cords?

Ans. 125 cords.

Ans. 2° 46' 40" 17. In 10,000" how many degrees? 18. In 70,000 square links, how many square chains?

Ans. 7 square chains. 19. In 11521 grains apothecaries' weight, how many pounds? Ans. 2 lbs. 0 7 0 3 0 D 1 gr.

20. In 26025 square feet, how many roods? Ans. 2 r. 15 sq. p. 17 sq. yds. 8 sq. ft. 36 sq. in.

REDUCTION OF THE OLD CANADIAN CURRENCY TO THE NEW OR DECIMAL CURRENCY.

80. Example.-Reduce £76 14s. 10 d. to cents.

30400 cents. -£76×400 14s.× 20 280

EXPLANATION .- We multiply £76 by 400, because each pound is equal to 4 dollars or

101d.=43 far. $\times 5 \div 12 = 17 + \frac{1}{2}$ E76 14s. 10\frac{1}{2}d.

= \frac{30697 \frac{1}{2}}{2} \text{cts.}

\$\text{to multiply}\$

by 20, because each shillings, by 20 and divide the result by 12, because each farthings in a cent. farthing is equal to A of a cent.

That each farthing is equal to for of a cent is evident from the fact that

48 farthings (or one shilling) are equal to 20 cents; or 12 farthings equal 5 cents, or one farthing equal $\frac{5}{12}$ of a cent.

From the above example and solution we deduce the following—

RULE.

Multiply the pounds by 400, the shillings by 20, and take five-twelfths of the number expressing how many farthings there are in the given pence and farthings. Add the three results together and their sum will be the number of cents required.

Consider the last two figures as cents, and the result will be

dollars and cents.

Note.—We take five-twelfths of the farthings by multiplying them by five and dividing the result by twelve.

EXERCISE 7.

1. How many cts. are there in £3 7s. $1\frac{1}{4}$ d.? Ans. $1342\frac{1}{12}$ cts.

2. How many dollars are there in £29 18s. 31d.?

- Ans. 11965 $\frac{5}{2}$ cents, or \$119.65 $\frac{5}{2}$ cents.

 3. How many cents are there in 11 $\frac{1}{2}$ d.?

 Ans. 18 $\frac{3}{2}$ cents.
- 4. How many dollars and cents are there in £69 15s. 6d.?

 Ans. 27910 cents, or \$279.10.
- 5. How many dollars and cents in 18s. 8\frac{1}{2}d.? Ans. \$3.74\frac{1}{6}.
- 6. How many dollars and cents in £17 16s. 53d.?

Ans. \$71.29 7.

- 7. How many dollars and cents in £87? Ans. \$348.00.
- 8. How many dollars and cents in 15s. 11 $\frac{1}{2}$ d.? Ans. \$3.19 $\frac{7}{12}$. 9. How many dollars and cents in £16 6s. 2d.? Ans. \$65.23.
- 10. Reduce £2 9s. 11d. to dollars and cents. Ans. \$9.98\frac{1}{3}.

RECAPITULATION.

I. Science is a collection of the general principles or leading truths of any branch of knowledge systematically arranged.

II. Art is a collection of rules serving to facilitate the

performance of certain operations.

III. The rules of art are based upon the principles of science.

IV. Arithmetic is both a science and an art.

V. The science of arithmetic discusses the properties of numbers and the principles upon which the elementary operations of arithmetic are founded.

VI. The science of arithmetic is called Theoretical

Arithmetic.

VII. The art of arithmetic is called Practical Arithmetic.

VIII. Practical Arithmetic is the application of rules based upon the science of numbers, to practical purposes, as the solution of problems, &c.

IX. Numbers are expressions for one or more things of

the same kind.

X. Unity, or the unit of a number, is one of the equal

things which the number expresses.

XI. Numbers are divided into two classes, viz.: simple or abstract numbers; and applicate, concrete, or denominate numbers.

XII. An applicate, concrete, or denominate number is a number whose unit indicates some particular object or thing.

XIII. A simple or abstract number is a number whose

unit indicates no particular object or thing.

XIV. Numbers may be expressed either by words or by characters.

XV. The expression of numbers by characters is called Notation.

XVI. The reading of numbers, expressed by characters, is called Numeration.

XVII. The characters we use to express numbers are either letters or figures.

XVIII. The expression of numbers by letters is called

Roman Notation.

XIX. The expression of numbers by figures is called Arabic Notation.

XX. In the Roman Notation only seven numeral letters

are used, viz.: I, V, X, L, C, D, M.

XXI. When these letters stand alone, I denotes one, V five, X ten, L fifty, C one hundred, D five hundred, M one thousand.

XXII. All other numbers are expressed by repetitions and combinations of these letters.

XXIII. In combinations of these numerical letters, every time a letter is repeated its value is repeated; also when a letter of a lower value stands before one of a higher, its value is to be subtracted; but when a letter of a lower comes directly after one of a higher value, its value is to be added.

XXIV. A bar or dash written over a letter or combination of letters, multiplies the value by one thousand. As we have already a character for one thousand, viz., M, and can, by repeating it, express two or three thousand, we do not dash the I, or combinations into which it enters.

XXV. Anciently, IV was written IIII; IX was written VIIII; XL was written XXXX, &c.; D was written ID, and M was written CID. Affixing C to ID increases its value ten times—thus ID=500; IDD=5000; IDD=50000, &c. Prefixing C and affixing D to CID increases its value also ten times, thus CID=1000; CCIDD=10000; CCCIDD=10000, &c.

XXVI. The figures or characters used in the Arabic or common system of notation are 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, one, two, three, four, five, six, seven, eight, nine, zero.

XXVII. The first nine of these characters are called significant figures, because each one has always some value or denotes some number. They are also called digits (Lat. digitus, "a finger"), from the almost universal habit of counting on the fingers.

XXVIII. The last or zero is called a cipher or naught, because it is valueless, that is, stands for nothing. It is not, however, useless, since it serves to give the significant

figures their appropriate places.

XXIX. When the 0 stands to the left of an integral number, or to the right of a decimal, i. e. when it does not come between the decimal point and some significant figure, it is both valueless and useless.

XXX. The digits 1, 2, 3, &c. standing immediately to the left of the decimal point expressed or understood, are called simple units, or units of the first order.

XXXI. The decimal point is a small dot or point, used to indicate the position of the simple units.

XXXII. The digits 1, 2, 3, &c. standing one place to the left of the simple units, are called tens, or units of the second order to the left. When they stand one place to the right of the simple unit, they are called tenths, or units of the second order to the right.

XXXIII. The digits 1, 2, 3, &c. when standing two places to the left of the simple unit, are called hundreds, or units of the third order to the left. When standing two places to the right, they are called hundredths, or units of the third order to the right, &c.

XXXIV. Commencing at the simple units and proceeding to the left, we have units of the first order or simple units; next, units of the second order or tens; next, units of the third order or hundreds; next, units of the fourth order or thousands; next, units of the fifth

order or tens of thousands, &c.

XXXV. Commencing at the simple units and proceeding to the right, we have units of the first order or simple units; next, units of the second order or tenths; next, units of the third order or hundredths; next, units of the fourth order or thousandths; next, units of the fifth order or tenths of thousandths, &c.

XXXVI. Each digit has two values, viz.: a simple or

absolute value, and a local or relative value.

XXXVII. The simple or absolute value of a digit is the value it expresses when simply considered as representing a certain number of repetitions of the digit one.

XXXVIII. The local or relative value of a digit is the value it expresses when considered as occupying a certain

position with reference to the decimal point.

XXXIX. The ratio of one number to another is the relation which one bears to the other with respect to magnitude, when the comparison is made by considering, not by how much the one is greater or less than the other, but what number of times it contains it, or is contained in it.

XL. When several numbers, or groups of units, are so arranged that the second and third have the same ratio to one another as the first and second, and the third and fourth the same ratio as the second and third, &c.,—they (the numbers or groups of units) are said to have a common ratio.

XLI. The common ratio of our system of numbers is 10-by saying which we merely mean that the different orders increase or decrease from one another in a ten-fold

proportion, i. e. that 10 units of any one order make one

unit of the next higher, and vice versa.

XLII. A system of numbers is called a binary, ternary, quaternary, quinary, senary, septenary, octenary, nonary, denary, &c. system, according as two, three, four, five, six, seven, eight, nine, or ten is the common ratio of the orders. Ours is a denary or decimal system.

XLIII. To facilitate the reading of a number we divide it into periods of three places each, by placing separating points after every third figure right and left of the decimal

point.

XLIV. The periods to the left of the decimal point are units, thousands, millions, billions, trillions, &c. The periods to the right of the decimal point are thousandths.

millionths, billionths, trillionths, &c.

XLV. The lowest order used in any reading, whether it be thousands, units, hundredths, tenths of thousandths, hundredths of millionths, &c., gives the name or denomination to the part or whole of the number used in the reading.

XLVI. Numbers to the left of the decimal point are integers or whole numbers; those to the right of the deci-

mal point are called decimals.

XLVII. A number is multiplied by 10 every time the decimal point is moved one place to the right, and divided by 10 every time the decimal point is moved one place to the left. Thus, moving the decimal point two, four or six places, either multiplies or divides the number by 100, 10,000, or 1,000,000, according as we move it to the right or to the left.

XLVIII. A number may be read in several ways by changing the nature of the simple unit. Thus the num-

ber 576.24 may be read:

dredths.

4th. Five thousand, seven hundred and sixty-two tenths, and four hundredths.

¹st. Five hundreds, seven tens, six units, two tenths, and four hundredths.
2nd. Fifty-seven tens, six units, two tenths, and four hundredths.
3rd. Five hundred and seventy six units, two tenths, and four hun-

⁵th. Fifty-seven thousand, six hundred and twenty-four hundredths.
6th. Five hundred, and seven thousand, six hundred and twenty-four hundredths.

7th. Fifty-seven tens, and six hundred and twenty-four hundredths.
8th. Five hundred and seventy-six units, and twenty-four hundredths.
9th. Fifty-seven tens, sixty-two tenths, and four hundredths.
10th. Five hundreds, seven hundred and sixty-two tenths, and four hundredths, &c.

EXERCISE 8.

MISCELLANEOUS PROBLEMS.

- 1. Reduce 6789634 links to acres, and prove by reducing the result to links.
 - Read 67845398678904 and 5900704060040000.00060604.
 - 3. Set down 4769 in Roman numerals.
 - 4. Make 42986 ten thousand times greater.
- 5. Reduce £16 18s. 61d. Old Canadian Currency to Dollars and Cents.
 - 6. Read LXXVMMCMXCL.
- 7. Write down, in Arabic numerals, six hundred and five billions, seventy thousand and sixteen, and nine millionths.
 - 9. Make 469789 one hundred times greater.
- 7. Read the number 6798 in all the ways it can be read. (See Recapitulation XLVIII.)
 - 10. Divide 69800463 by one million.
 - 11. Divide 8439 by ten thousand.
 - 12. Multiply 6789 by one hundred thousand.
 - 13. Multiply 60432986 by ten millions.
- 14. Write down one quadrillion one billion one thousand and one, and one trilliouth.
- 15. Write down seven thousand six hundred and nine tenths of millionths.
 - 16. Read 90807060504030 and

400404040040000060432.01010203040506

- 17. Reduce 6789463 inches to acres, and prove by reducing the result to inches.
 - 18. Reduce 617 cord-feet of wood to cords.
 - 19. Reduce 91867 cubic feet of wood to cords.

- 20. Write down 718, 614, 499, 999, 8643, 96149, 163986, and 444444 in Roman numerals.
 - 21. Read CCCXXXIII, MCMLXXXIX, and MI.
 - 22. Read 6129 in as many ways as it can be read.
 - 23. Give all the readings of 634986.
 - 24. Give all the readings of 19.639.
- 25. Reduce 18s. 9\flac{1}{2}d.; £6 2s. 11d.; 3s. 7d.; and £189 7s. $4\frac{3}{4}d$. to dollars and cents.
- 26. Give all the readings of the number \$69.863 Federal money.
 - 26. Give all the readings of 9 bush. 3 pk. 1 gal. 3 qts. 1 pt.
- 28. Were the years 1693, 1856, 1728, 1549, 867, 444, 1600, and 927, leap years or not? If not, how many years after or before leap year?
 - 29. How many days from this to the 17th of next March?
- 30. Answer the following questions: What is the meaning of the symbols £ s. d. and q.? In the expression "18/" what does the long mark (/) represent? What is the derivation of the word sterling? Why are the pound and guines so called? What is the derivation of the sign \$? What is the derivation of the words "grain," "pennyweight," "ounce," and "inch"? What is a "carat"? What is a square? Show that a square yard contains 9 square feet. Show that a cubic yard contains 27 cubic feet. What is a cubic yard? What is meant by a ton of round timber? What must be the dimensions of a pile of wood in order that it shall contain a cord? What is meant by a cord-foot? What are the dimensions of the Imperial bushel?-of the Winchester bushel? Which of these is our standard? Which that of the United States? How many pounds of wheat go to the bushel?—of rye?—of oats?—of barley?—of peas?—of beans?—of buckwheat?—of Indian corn? What is our standard for liquid measure? How many cubic inches of water are there in the Imperial gallon? How many pounds Avoirdupois? What are the standard gallons of the United States? Explain why a day is added to every fourth year. What is the origin of the divisions of the circle into degrees and signs? What is the derivation of the terms "minute" and "second"? How many sheets of paper are there in a quire? How many quires in a ream? How many pounds are there in a barrel of flour? What is the meaning of folio?-of 4to or quarto?-of 8vo or octavo?-of 12mo or duodecimo? -of 16mo?-of 18mo?

2. What is art? (II.)4. Is arithmetic a science or an art?

6. What is the science of arithmetic

called? (VI.)
8. What is practical arithmetic?

10. What is the unit of a number?(X)
12. What are applicate or denomi-

nate numbers? (XII.) 14. By how many methods may numbers be expressed? (XIV.)

QUESTIONS TO BE ANSWERED BY THE PUPIL.

NOTE .- Numbers in Roman numerals, thus, XVI, refer to the articles in the recapitulation: those in Arabic numerals, thus, 16, refer to the numbered articles of the Section.

(VIII.)

1. What is science? (I.)

8. Upon what are the rules of art based? (III.) 5. What are the objects of the science

of arithmetio? (V.) What name is given to the art of arithmetic? (VII.)

What are numbers? (IX.)

11. How many classes of numbers are there? (XI.)
18. What are simple or abstract numbers? (XII.)
18. What is Not than 2 (XII.)

bers? (XIII.)

15. What is Notation? (XV.)

16. What is Numeration? (XVI.)

17. What characters do we use to express numbers? (XVII.)

18. What is Roman Notation? (XVIII.)

19. What is Arabic Notation? (XIX.)

20. What numeral letters are used in Roman Notation? (XXI.)

21. What is the value of each of those letters when standing alone? (XXII.)

22. How are all other numbers expressed in Roman Notation? (XXII.)

33. In combination, when a letter is repeated, what does it indicate? (XXIII.)

When a letter of a lower is placed before one of a higher value, what

does it indicate? (XXIII.) 25. When a letter of a lower is placed after one of a higher value, what

does it indicate? (XXIII.) 26. What effect has a bar or dash written over a letter or expression? (XXIV.)
27. How do we always write 1000, 2000, 3000? (XXIV.)
28. Why do we not dash the I or expressions into which it enters? (XXIV.)
29. How were four, nine, forty, &c., anciently written? (XXV.)
30. How were 500 and 1000 anciently written? (XXV.)

31. How were the expressions IO and CIO increased in value in ten-fold proportion? (XXV.)

32. What are the characters used in Arabic or Common Notation? (XXVI.) 33. What are significant figures, and why are they so called? (XXVII.)

84. What are digits, and why are they so called? (XXVII.)
85. Why is 0 called "cipher" or "naught"? (XXVIII.)
86. Is the cipher of any value? Is it of any uso? (XXVIII.)

37. When is the cipher or 0 both valueless and useless (XXIX.)
38. When are digits called simple units or units of the first order? (XXX.)

39. What is the decimal point? (XXXI.)

40. When are digits called tens or units of the second order to the left?
(XXXII.) When are digits called tenths or units of the second order to the right?

(XXXII.) 42. When are digits called hundreds, thousands, hundredths, thousandths.

&c.? (XXXIII.) 43. Name the different orders to the left of the decimal point,-to the right. (XXXIV.) (XXXV.)

44. How many values has each digit? What are they? (XXXVI.)
45. What is the simple or absolute value of a digit? (XXXVII.)
46. What is the local or relative value of a digit? (XXXVII.)
47. What is meant by the ratio one number bears to another? (XXXXIX.)

48. What is meant by a common ratio? (XL.)

49. What is meant by saying that 10 is the common ratio of our system of numbers? (XLI.)

50. What name is given to a system having 10 for its common ratio?-to one having 6?—to one having 3?—to one having 2?—to one having 12?—to one having 7? (XLII.)

Why are periods used? How many places are there in each period?

(XLIII.)

Name the periods right and left of the decimal point. (XLIV.)

53. What order gives the name or denomination to the number read? (XLV.)
54. What are integers? What are decimals? (XLVI.)

55. How does it affect a number to remove the decimal point to the right? How to remove it to the left? (XLVII.) 56. How may a number be read in several ways? (XLVIII.)

57. When figures are written thus, 673'32 what does the notation imply?

58. When figures are written thus, 6d. 23h. 16 min. 37 sec., what does the notation imply? (75 and 76.)

59. What is Reduction ? (77.)

60. Into what two parts is Keduction divided ? (77.)

61. What is Reduction Descending? Give an example. (77.) 62. What is Reduction Ascending? Give an example. (77.) 63. Give the rule for Reduction Descending. (78.)

64. Give the rule for Reduction Ascending. (79.)

64. Give the rule for Reduction Ascending. (79.)
65. What are the denominations of Sterling money? Give the table. (54.)
69. How are pounds, shillings, and pence reduced to farthings? Give the process and the reason for each step. (54 and 78) (Answer this and similar succeeding questions after the following model.) We multiply the pounds by twenty, and add in the shillings because each pound is equal to twenty shillings. We multiply the shillings by twelve and add in the pence, because each shilling is equal to twelve pence. And lastly, we multiply the pence by four and add in the farthings, because each penny is equal to four farthings.
67. What are the deapoints for Seferal money? Give the table (55.)
68. What are the deapoints for Seferal money? Give the table (55.)

67. What are the denominations of Federal money? Give the table. (55.)68. What are the denominations of Canadian money, old currency? Give

the table. (58.)

69. What are the denominations of Canadian money, new currency? Give the table. (57.) 70. How is Old Canadian Currency reduced to New? Give the process and

reasons for each step. (80.) 71. What are the denominations of Avoirdupois weight? Give the table. (58)
72. How many pounds are there in the new cwt.? How many in the old

cwt. ? (58.)

73. How are tons reduced to drams? (58 and 78.)

74. What are the denominations of Troy weight? Give the table. (39.)
75. How are grains Troy reduced to pounds Troy? Give the process and reason for each step. (59 and 79.) (Answer this and succeeding similar questions after the following model.) We divide the grains by 24, resulting pennyweights by 20, because every 20 pennyweights are equal to one ounce. And lastly, we divide the resulting ounces by 12, because every 12 ounces are equal to one pound.

76. What are the denominations of Apothecarles' weight? Give the table. (60.) 77. How are pounds, ounces, &c., Apothecaries' weight reduced to grains

(60 and 78.) Answer as in question 66.

78. What are the denominations of Long measure? Give the table. (61.) 79. How are lines reduced to leagues? (61 and 79). Answer after model in

question 75.
What are the denominations of Square measure? Give the table. (62.) 81. How are square miles reduced to square inches? (62 and 78). Answer after model

32. How are links reduced to acres? (63 and 79.) Answer after model,

83. What are the denominations of Solid measure? Give the table (64.)

84. How are cubic inches reduced to cubic feet? (64 and 79.) 85. How are cubic feet of wood reduced to cords? (64 and 79.)

- 86. What is a cord-foot? (64.)
- 86. What is a cord-foot? (64.)
 87. What are the denominations of Cloth measure? Give the table. (65.)
 88. How are English ells reduced to inches? (65 and 78.) Answer after model.
 89. What are the denominations of Dry measure? Give the table. (66.)
 90. How are pints reduced to chaldrons? (66 and 79.) Answer after model.
 91. What are the denominations of Liquid measure? Give the table. (67.)
 92. How are tuns reduced to gills? (67 and 78.) Answer after model.
 93. What are the denominations of Time measure? Give the table. (68.)
 94. How are seconds reduced to years? (68 and 79.) Answer after model.
 95. Name the months and the number of days in cach. (63.)
 96. What is the Solar year and its length?—the Sidereal year and its length?—the Civil year and its length? (68.)
 97. How can we ascertain whether any given year be Leap year? (69.)

97. How can we ascertain whether any given year be Leap year? (69.) 98. Show that the unit of time is the basis of the units of length, mass or

capacity, and weight. (71.)
99. What are the denominations of Circular measure? Give the table. (72.) 100. Upon what does the length of a degree depend? (72.) How are degrees reduced to seconds? (72 and 78.)

SECTION II.

FUNDAMENTAL RULES.

1. Arithmetic may be divided into four parts:—

1st. The Arithmetic of Whole Numbers, or that which treats of the properties of entire units.

2nd. The Arithmetic of Fractions, or that which treats

of the parts of units.

3rd. The Arithmetic of Ratios, which treats of the relations of numbers, whether integral or fractional, to each other and to the unit 1.

4th. The Application of Arithmetic to practical and

useful purposes.

2. The Arithmetic of Whole numbers includes Addition, Subtraction, Multiplication, Division, Involution, Evolution, &c.

3. The Arithmetic of Fractions may be divided into

two parts:-

1st. Vulgar or Common Fractions, in which the unit is divided into any number of equal parts.

2nd. Decimal Fractions in which the unit is divided

according to the scale of ten.

4. The Arithmetic of Ratios relates to the comparison of numbers with respect to their quotients, and embraces Proportion and Progression.

5. Addition, Subtraction, Multiplication, Division, are called the fundamental rules, or ground rules of Arithmetic, because all the other operations of Arithmetic are performed

by means of them.

6. Whatever operations we may perform upon a number, we can only either increase it or diminish it. If we increase it, the process belongs to addition; if we diminish it, to subtraction. All the rules of Arithmetic are therefore resolvable into these two. Multiplication is only a short method of performing a peculiar kind of addition, in which the addends are all the same; and division is merely an abridged method of performing a particular kind of subtraction, in which the same quantity is to be taken away from a given number as often as possible.

When any number of quantities, either different, or repetitions of the same, are united together so as to form but one, we term the process, simply, "Addition." When the quantities to be added are the same, but we may have as many of them as we please, it is called "Multiplication;" when they are not only the same, but their number is indicated by one of them, the process belongs to "Involution." That is, addition restricts us neither as to the kind, nor the number of the quantities to be added; multiplication restricts us as to the kind, but not the number; involution restricts us both as to the kind and number. All, however, are really comprehended under the same rule—addition.

ADDITION.

7. The sum of two or more numbers is a number which contains as many units, and no more, as are found in all the given numbers.

8. Addition is the process of finding the sum of two or

more numbers.

9. The quantities to be added together are called ad-dends, and the result of the addition is called the sum of the addends.

10. Only those quantities can be added which have the same unit, or, in other words, which are of the same denomination.

Thus it is evident that 6 days and 7 miles cannot be added, since the result would neither be 13 days nor 13 miles; nor can 5 shillings and 3 pence be added, as the result would neither be shillings nor pence. Similarly, we cannot add units and tens, or tenths and hundredths, or units and sevenths, &c.

11. Hence, in writing down the addends preparatory to adding, we must be careful to set units of the same denomination in the same vertical column, i. e. units under units, tens under tens, hundreds under hundreds, &c.; shillings under shillings, pence under pence, &c.; miles under miles, furlongs under furlongs, rods under rods, &c.

ings	under s	hillings, 1	oence ui	ader r	ence, &c.	miles	under
niles,	iuriong	gs under 1			under rods	,	
			Exero	ISE 9.		(2)	
		(1)				Shillin	O'S
		Apple	S.	3		(9	.5
		$dends \begin{cases} 2\\ 3 \end{cases}$			Adden	ada) 8	
	Au	denus 3 3				7	
		(-	~			`_	
Sı	m of A	ddends 7			um of Adde	nds 24	
1,70	и от эт	440245	(3	3)			
				ſ9			
			ddends] 7			
		-	Luuenus	6 8			
				8)	9		
		~ .		_			
		Sum of .	Addends				
(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
cwt.	pence.	sevenths.		tens.	millionths.		miles.
9	4	6	1	7	6	9	7
6	-7	5	9	8	9 8	8	. 2
9	8	4	8 7	9	3	2	3
8	9	3 5	4	5	2	3	4
7	6	ь	4	_		_	
39	34	23	30	35	28	23	17
12.		no require	u to auu II	togen	ner 987 and IV.	τ.	7.
	I. 987	987	98		987		87
	689	689	68		689	6	89
	003			_		-	
1	500	160	1	6	16	16	76
	160	1500	16	0	16		
	16	16	150	0	15		
-				_	1.670		
	000	70		6	1676		
	600	600	80	0			
	70	6	90	70			

EXPLANATION.—We place the given numbers, 987 and 689, under each other, according to (11) and draw a line to separate the addends from the

It is manifest that so long as we add the units of the several orders it is quite immaterial whether we commence at the highest, at the lowest, or at

an intermediate denomination.

In the first of the above operations we have commenced continually at the highest or left-hand order. The hundreds added make 15 hundreds or one thousand and five hundred, which we set down; the tens added make 18 tens, equal to 1 hundred and 6 tens, and the units added, make 16 units, equal to 1 ten and 6 units, all of which we set down in their appropriate columns.

priate columns.

Next considering the partial sums 1500, 160, and 16, as so many new addends, we proceed similarly with them and obtain a new set of partial sums, viz : 1000, 600, 70, and 6. But, from the principles of notation (Sec. I). these last numbers (i. e. 1000, 600, 70 and 6) may be written in one line, thus, 1676, which therefore is the sum of the addends 987 and 689.

In (II), (III), (IV), (V) the same result is obtained by a slightly different

In (II) we have commenced at the tens, and in (III), (IV), and (V) at the units or lowest order. (IV) is simply (III) with the unnecessary o's omitted. (V) is (IV) somewhat modified as follows:—9 units and 7 units make 16 units, equal to 6 units, which we set down, and one ten which we carry to the next column or column of tens; 1 ten and 8 tens make 9 tens, and 8 tens make 17 tens, equal to 7 tens, which we set down, and 1 hundred, which we carry to the column of hundreds; 1 hundred and 6 hundreds make 7 hundreds, and 9 hundreds make 16 hundreds, equal to 6 hundreds and 1 thousand, both of which we set down.

13. From (I), (II), and (III), it is manifest that it is as legitimate to commence at the lowest denomination as at the highest: and from (IV) and (V), that it is most convenient to commence at the lowest denomination.

14. From (V) we learn that when we have obtained the sum of the units, in any column, we reduce it to the next higher denomination, and, setting down the remainder under the column added, carry the units of the next higher denomination to their proper column.

15. The reasoning in (12), (13) and (14) applies to any numbers whatever, whether abstract or denominate, and from it, for addition, we deduce the following general-

RULE.

Write down the numbers so that units of the same denomination shall fall in the same column (Arts. 10 and 11).

Draw a line beneath the addends (Art. 12).

Add up the units of the lowest denomination and divide their sum by so many as make one of the denomination next higher (Arts. 13 and 14).

Set down the remainder and carry the quotient to the next higher denomination (Art. 14).

Proceed in the same manner through all the denominations to the last.

16. We commence at the lowest order or tenths of thousandths. There

EXAMPLE. 698.9649 84.76 9.896 98.462 989.9

1881-9829

being nothing to add to the 9 tenths of thousandths we simply set down the 9 in its appropriate column. Next we add the thousandths, thus:—2 thousandths and 6 thousandths are 8 thousandths and 4 thousandths are 12 thousandths, which are equal to 2 thousandths and 1 hundredth. The 2 thousandths we write down in its own column and carry the hundredth to the column of hundredths. Next we add the column of hundredths. thus:- 1 hundredth (carried) and 6 hundredths make hundredths and 9 hundredths make 16 hundredths, and

6 hundredths make 23 hundredths and 6 hundredths make 23 hundredths which are equal to 8 hundredths and two tenths. We set down the 8 hundredths and carry the two tenths to the next column or column of tenths. Adding the tenths we find their sum to be 39 tenths, equal to 9 tenths, which we set down, and 3 units which we carry. The simple units added make 41 units, equal to 1 unit, which we set down and 4 tens which we carry; the tens added make 38 tens, equal to 8 tens and 3 hundreds; the hundreds added (with the three hundreds we carry) make 18 hundreds, or 8 hundreds, and 1 thousand, both of which we set down in their proper columns.

17. We commence as in (16) with the lowest denomination, which, in this example, is cents. 89 cents and 42 cents and 56 cents and 89 cents, added, make 276 cents. But every 100 cents make one dollar, 276 cents are therefore equal to 2 dollars and 76 cents. The 76 cents we set down in EXAMPLE. \$69.89 11.26 73:42 their proper place and carry the 2 dollars to the column of 91.89 dollars.

\$246.76

18. Example. -Add together £52 17s. 33d., £47 5s. 61d., and £66 14s. 21d.

> d. £ 52 17 addends. 47 66 £166 17 01 sum.

and I make three farthings, which, with I, make 6 farthings; these are and a make three larthings, which, with a, make a farthings; these are equivalent to one of the next denomination, or that of pence, to be carried, and two of the present, or one half-penny, to be set down. I penny (carried) and 2 are 3, and 6 are 9, and 3 are 12 pence—equal to one of the next denomination, or that of shillings, to be carried, and no pence to be set down; we therefore put a cipher in the pence place of the sum. I shilling (carried) and 14 arc 15, and 5 are 20, and 17 are 37 shillings—equal to one of the next denomination, or that of pounds to be carried, and 17 of the prethe next denomination, or that of pounds, to be carried, and 17 of the present, or that of shillings, to be set down. 1 pound and 6 are 7, and 7 are 14, and 2 are 16 pounds,—equal to 6 units of pounds, to be set down, and 1 ten of pounds to be carried; 1 ten and 6 are 7 and 4 are 11 and 5 are 16 tens of pounds, to be set down.

When the addends are very numerous, we may divide them into two or more parts by horizontal lines, and, adding each part separately, may after-

wards find the amount of all the sums.

Or, in adding each column, we may put down an asterisk, thus, as often as we come to a quantity which is at least equal to that number of the denomination added which is required to make one of the next—carrying forward what is above this number, if anything, and putting the last remainder, or —when there is nothing left at the end—a cypher under the column; we carry to the next column one for every asterisk. Using the same example.

404 11 10

2 pence and 4 are 6, and 2 are 8, and 9 are 17 pence—equal to 1 shilling and 5 pence; we put down a dot or an asterisk and carry 5, 6 and 2 are 7, and 4 are 11, and 9 are 20 pence—equal to 1 shilling and 8 pence; we put down a dot or an asterisk and carry 8. 8 and 2 are 10 and 6 are 16 pence equal to 1 shilling and 4 pence; we put down a dot and carry 4. 4 and 4 are 8 and 2 are 10—which being less than 1 shilling, we set down under column of pence to which it belongs, &c. We find on adding them up, that there are three dots; we therefore carry 3 to the column of shillings. 3 shillings and 8 are 11, and 4 are 16, and 4 are 19, and 3 are 22 shillings—equal to 1 pound and 2 shillings: we put down a dot and carry 2. 2 and 17 are 19, &c. Care is necessary, lest the dots, not being distinctly marked, may be considered as either too few or too many. This method though now but little used, seems a convenient one.

PROOF OF ADDITION.

19. FIRST METHOD .- Go through the process again, beginning at the top and adding downwards.

This method of proof is merely doing the same work twice, in

a slightly different manner.

SECOND METHOD .- Separate the addends into two parts. Add each part separately, in the usual way, and then add their sums. If the last sum is the same as that found by the first addition, the work may be presumed to be correct.

This method of proof is founded on the axiom that "the

whole is equal to the sum of all its parts."

Example.—Find the sum of 509267, 235809, 72910, and 83925.

OPERATIO	ON. PI	PROOF BY BECOME				
509267		509267	72910			
235809		235809	83925			
72910						
83925	Partial sums	745076	156835			
	First partis	al sum 74	5076			
Sum 901911	Second par	tial sum 15	6835			
	Pı	oof 90	1911			

EXERCISE 10. (1) (3) (4) (2) (5)(6) Dollars. Bushels. Days. Pounds. Acres. Dollars. (7-30)

The sum of the numbers in each row of the following table, whether taken vertically or horizontally, or from corner to corner, is 24156. Let the pupil be required to make these 24 distinct additions.*.

					_~				_	
2016	4212	1656	3852	1296	3492	936	3132	576	2772	216
252	2052	4248	1692	3888	1332	3528	972	3168	612	2412
2448	288	2088	4284	1728	3924	1368	3564	1008	2808	648
684	2484	324	2124	4320	1764	3960	1404	3204	1044	2844
2880	720	2520	360	2160	4356	1800	3600	1440	3240	1080
1116	2916	756	2556	396	2196	3996	1836	3636	1476	3276
3312	1152	2952	792	2592	36	2232	4032	1872	3672	1512
1548	3348	1188	2998	432	2628	72	2268	1068	1908	3708
3744	1584	3384	828	3024	468	2664	108	2304	4104	1944
1980	3780	1224	3420	864	3060	504	2700	144	2340	4140
4176	1620	3816	1260	3456	900	3096	540	273€	180	2376

^{*} This table is formed by multiplying the numbers in the magic square of 11 by 38.

0	^

(31)	(32)	(33)	(34)	(35)	(36)
74564	5676	76746	67674	42.37	0.87
7674	1567	71207	75670	56.84	5.273
376	63	100	36	27.92	8.127
6	6767	56	77	62.41	25.63
82620					
(37)	(38)		(39)	(40)	
3.785	85.7		.00007	5471.3	
20.766	6034.8		.06236	563-47	
0.253	57.8		.0572	21.502	
10.004	712.5		.21	0.0007	
34.808					
(41)	(4	12)	(43)	(44)	
81.0235	0.0	007	8456.5	576.34	
576.03	5000.0		0.37	4000.005	
4712.5	427.0		8456.302	213.5	
6.53712			0.007	2753.0	
5376.09062			a		

MONEY.

. (45)	(46)	(47)	(48)
£ s. d.	£ s. d.	£ s. d.	£ s. d.
4567 14 61	76 14 7	3767 13 11	5674 17 61
776 15 71	667 13 6	4678 14 10	4767 16 111
76 17 93	67 15 7	767 12 9	3466 17 103
$51 0 10\frac{1}{4}$	5 4 2	10 11 5	5984 2 21
44 5 6	3 4	3 4 11	8762 9 9
5516 14 33			

AVOIRDUPOIS WEIGHT.

(49)	(50)	(51)	(52)
cwt. qrs. lb.	cwt. qrs. lb.	cwt. qrs. lb.	cwt. qrs. lb.
76 3 14	476 1 241	447 1 7	14 2 12
37 2 15	756 3 211	576 1 6	3 3 7
14 1 11	767 1 16	467 1 71	2 15
	567 2 15	563 1 6	7 0 3
128 3 15	973 1 12	428 0 01	_ 14

TROY WEIGHT.

(53)	(54)	(55)
lb. oz. dwt. grs.	lb. oz. dwt. grs.	lb. oz. dwt. grs.
7 0 5 9	57 9 12 14	87 3 7 12
5 6 6 7	67 9 11 11	11 12 3
9 5 6 8	66 8 10 5	16 · · 14
	74 6 5 3	44 12 10 13
21 11 18 0	12 3 5 4	67 8 9 10

TIME.

(56)	(57)		. ((58)	
yrs. ds. hrs. ms.	yrs. ds. hr	s. ms.	yrs.	ds. hrs.	ms.
99 359 9 56	60 90 0	50	50	127 7	50
88 0 8 57	6 76 1	57		120 9	44
77 120 7 49	3	58	76	121 11	44
	6 1 2	0	6	47 3	41
265 115 2 42			8)	9 11	17

CLOTH MEASURE.

	(59)		(6	30)		(61)		- 1	(62)	
yds.	qrs.	nls.	yds. q	rs.	nls.	yds. c	rs.	nls.	yds.	qrs.	nls.
567	3	2	147	3	3	157	2	1	156	1	1
476	1	0	173	1	0	143	3	2	176	3	1
72	. 3	3	148	2	1		1	2	54	1	0
5	2	1	92	3	2	54	0	3	573	2	3
1122	2	2	-	_	_			_			

CANADIAN MONEY.

(63)	(64)	(65)	(66)
\$978.63	\$ 69.42	\$719:43	\$9868.47
492.29	189.87	912.99	986.10
83.43	674.29	68.68	91.89
729.47	86.43	50.00	7.45
9.00	982.78	9.73	.98
			-
\$2292.82	\$	\$	\$

- 67. 0.4+74.47+37.007+75.05+747.077=934.004.
- 68. 56.05+4.75+0.007+36.14+4.672 = 101.619. 69. 0.76+0.0076+76+0.5+5+0.05 = 82.3176.
- 70. 0.5+0.005+5+50+500 = 555.505.
- 71. 0.367 + 56.7 + 762 + 97.6 + 471 = 1387.667.

72. Add eight hundred and fifty-six thousand, nine hundred and thirty-three; one million, nine hundred and seventy-six thousand, eight hundred and fifty-nine; two hundred and three millions, eight hundred and ninety-five thousand, seven hundred and fifty-two.

Ans. 206729544.

73. Add three millions, and seventy-one thousand; four millions, and eighty-six thousand; two millions, and fifty-one thousand; one million; twenty-five millions, and six; seventeen millions, and one; ten millions, and two; twelve millions, and twenty-three; four hundred and seventy-two thousand, nine hundred and twenty-three; one hundred and forty-three thousand; one hundred and forty-three millions. Ans. 217823955.

74. Add one hundred and thirty-three thousand; seven hundred and seventy thousand; thirty-seven thousand; eight hundred and forty-seven thousand; thirty-three thousand; eight hundred and seventy-six thousand; four hundred and ninety one thousand.

Ans. 3187000.

75. Add together one hundred and sixty-seven thousand; three hundred and sixty-seven thousand; nine hundred and six thousand; two hundred and forty-seven thousand; ten thousand; seven hundred thousand; nine hundred and seventy-six thousand; one hundred and ninety-five thousand; ninety-seven thousand.

Ans. 3665000.

APPLICATIONS.

1. How many miles is it from the lower end of Lake Huron to the Gulf of St. Lawrence, passing through the River St. Clair, 25 miles long; Lake St. Clair, 20 miles; River Detroit, 23 miles; Lake Erie, 250 miles; Niagara River, 34 miles; Lake Ontario, 180 miles; and the River St. Lawrence, 750 miles long?

Ans. 1282 miles.

2. The city of Toronto has a population of about 50000; Hamilton, 25000; Kingston, 15000; London, 10000; Ottawa, 10000; Montreal, 75000; and Quebec, 45000. What is the population of these seven cities taken together? Ans. 230000.

3. In the year 1856 Canada exported:—Produce of the mine, \$165000; produce of the sea, \$500000; produce of the forest, \$10000000; animals and their produce, \$2500000; agricultural products, \$15000000; manufactures and ships, \$1600000; and various other products to the amount of \$2235000. What was the total value of Canadian exports for that year?

Ans. \$32000000.

4. A wholesale merchant sells, during the year, goods to the amount of \$11080 in Toronto; \$9427 in Galt; \$1798 in Berlin; \$16423 in Hamilton; \$7496 in Guelph; \$6429 in Woodstock; \$5297 in Chatham; and \$8426 in Goderich. Required the amount of the year's sales. Ans. \$66376.

5. The Grand Trunk Railway is 962 miles long, and cost \$60000000; the Great Western is 229 miles long, and cost \$14000000; the Ontario, Simcoe, and Huron is 95 miles long, and cost \$3300000; the Toronto and Hamilton is 38 miles long, and cost \$2000000. What is the aggregate length and cost of these four roads? Ans. Length, 1324 miles, and cost \$79300000.

6. The circulation of promissory notes for the four weeks ending February 3, 1844, was as follows :- Bank of England. about £21228000; private banks of England and Wales, £4980000; Joint Stock Banks of England and Wales, £3446000; all the banks of Scotland, £2791000; Bank of Ireland, £3581000; all the other banks of Ireland, £2429000; what was the total circulation? Ans. £38455000.

7. Chronologers have stated that the creation of the world occurred 4004 years before Christ; the deluge, 2348; the call of Abraham, 1921; the departure of the Israelites from Egypt, 1491; the foundation of Solomon's temple, 1012; the end of the captivity, 536. This being the year 1859, how long is it since each of these events?

Ans. From the creation, 5863 years; from the deluge, 4207; from the call of Abraham, 3780; from the departure of the Israelites, 3350; from the foundation of the temple 2871; and from the end of the captivity, 2395.

8. Add together the following: -2d., about the value of the Roman sestertius; 71d., that of the denarius; 11d., a Greek obolus; 9d., a drachma; £3 15s., a mina; £225, a talent; 1s. 7d., the Jewish shekel; and £3423s. 9d., the Jewish talent. Ans. £571 2s.

9. Add together 2 dwt. 16 grains, the Greek drachma; 1 lb.

1 oz. 1 dwt., the mina: 67 lb. 7 oz. 5 dwt., the talent.

Ans. 68 lb. 8 oz. 8 dwt. 16 grains. 10. What was the population of the British provinces in North America in 1834, the population of Lower Canada being stated at 549005, of Upper Canada, 336461; of New Brunswick, 152156; of Nova Scotia and Cape Breton, 142548; of Prince Edward's Island, 32292; of Newfoundland, 75000? Ans. 1287462.

11. A owes to B £567 16s. 71d.; to C £47 16s.; and to D £56 0s. 1d. How much does he owe in all? Ans. £671 128. 81d.

12. A man has owing to him the following sums :- £3 10s. 7d.; £46 0s. 71d.; and £52 14s. 6d. How much is the entire?

Ans. £102 5s. 81d.

13. A merchant sends off the following quantities of butter:-47 cwt. 2 grs. 7 lb.; 38 cwt. 3 grs. 8 lb.; and 16 cwt. 2 grs. 20 lb. How much did he send off in all? Ans. 103 cwt. 10 lb,

- 14. A merchant receives the following quantities of tallow, viz:-13 cwt. 1 qr. 6 lb.; 10 cwt. 3 qrs. 10 lb.; and 9 cwt. 1 qr. 15 lb. How much has he received in all?
- Ans. 33 cwt. 2 qrs. 6 lb. 15. A silversmith has 7 lb. 8 oz. 16 dwts.; 9 lb. 7 oz. 3 dwts.; and 4 lb. 1 dwt. What quantity has he?
- Ans. 21 lb. 4 oz. 16. A merchant sells to A, 76 yards 3 quarters 2 nails; to B, 90 yards 3 quarters 3 nails; and to C, 190 yards 1 nail. How much has he sold in all?

 Ans. 357 yards 3 quarters 2 nails.

17. A merchant in Toronto sells goods to the following amounts during the week, viz:—Monday, \$429.38; Tuesday, \$711.43; Wednesday, \$419.87; Thursday, \$1080.42; Friday, \$1304.65; Saturday, \$2498.91. Required the whole amount of

the week's sales.

Ans. \$6444.66. 18. Looking over my last month's expenditure, I find that I have paid the following sums, viz: - Baker's bill, \$5.73; Butcher's bill, \$20.91; Groceries, \$12.75; Fruit, \$3.29; Rent, \$16.25; Servants' wages, \$10; Tailor's account, \$17.87; Shoemaker's bill, \$11.63; and sundries, \$9.47. Required how much I paid in all. Ans. \$107.90.

19. Add together \$607.19; \$298.97; \$789.87; \$1723.10; and S123.00.

Ans. \$3542.13. 20. A farmer sells seven loads of wheat, the first containing 1763 lbs., the second 1827 lbs., the third 1329 lbs., the fourth 1901 lbs., the fifth 1666 lbs., the sixth 1879 lbs., and the seventh 1185 lbs. What was the aggregate weight of the seven loads and how many bushels did they contain?

Ans. 11550 lbs. or 1924 bushels. Note.-The bushels are found by dividing the aggregate weight by 60

lbs., the weight of one bushel.

- 21. Having effected an insurance on my household furniture, &c., I am required to make a detailed statement of its value. I find this to be as follows: - Carpets \$250.00, table and bed linen \$90.88, beds and bedding \$173.60, furniture \$791.23, pictures and engravings \$207.18, books \$1649.19, plate and plated ware \$307.18. Required the total value of my household furniture. Ans. \$3469.26.
- 22. Toronto has a population of 45000, Hamilton 20000, Brockville 4000, Prescott 2500, Kingston 15000, Ottawa City 10000, Chatham 4000, Goderich 2000, London 10000, Port Hope 4000, Cobourg 5000, Montreal 70000, and Quebec 50000. What is the entire population of these 13 cities and towns?

Ans. 241500. 20. The pupil should not be allowed to leave addition until he can read up the columns without hesitation. For instance, in the following questions, which are inserted for the sake of practice in rapid addition, he should not be permitted to spell the columns thus, 6 and 4 are 10, and 4 are 14, and 4 are 18, and 5 are 23

&c., but should be required to read them, i. c., simply touch each digit with his pencil and name the sum, thus:—6, 10, 14, 18, 23, 31, 32, 35, 42, 43, 44, 49, 53, &c., &c.

31, 32, 35,	42, 43, 44, 49	, 55, &c., &c.	
I.	II.	III.	IV.
244658	275634	135790	123456
492327	386731	246824	786123
635425	987654	135790	456789
321465	321456	864212	123456
732849	989123	579246	788123
376731	456789	835792	459789
935746	123456	468357	123456
847963	789123	924689	789123
745143	456789	753246	456789
234561	123456	835792	123456
746874	789123	468357	789123
934746	456789	924683	456789
872345	123459	579246	123456
934756	789123	835798	789123
842345	456789	642875	456789
873456	123456	334683	123456
864580	789123	579864	789123
234672	456789	297531	456789
325871	246842	135795	871178
479234	-357931	246834	936639
845645	642248	824248	248842
823456	756139	357964	525255
245734	246842	872278	736376
872475	657931	375946	875578
896731	642248	624862	473468
456841	753139	375937	934579
314567	246842	872459	894645
814563	357931	837645	123875
427831	642248	644875	767457
932768	753913	472963	875345
456345	375913	875847	874563
345634	426428	864314	375534
734734	573931	734561	937565
734564	624824	273475	875734
834756	735813	845675	698945

RECAPITULATION.

I. Addition is the process of finding the sum of two or more numbers.

II. The numbers to be added are called Addends.

III. The result of the addition is called the sum of the addends.

IV. In writing numbers down preparatory to adding them, we write units under units, tens under tens, &c., because it is more convenient, since only like quantities, i. e., quantities of the same name, can be added together.

V. We draw a line under the addends in order to sepa-

rate them from the sum.

VI. We begin the addition at the column containing the lowest denomination, and work from right to left, because, by so doing, we are enabled to carry, from the column added, the number of units of the next higher denomination it contains, to their appropriate column, and thus perform the work by one addition, which would otherwise require two or more.

VII. We divide the sum of the units of any one denomination by the number required to make one of the next higher, in order to know how many we are to carry to the

next higher.

VIII. The addition of simple numbers was formerly called Simple Addition; and the addition of compound or denominate numbers, Compound Addition. As the same rule applies to the addition of all numbers, there is no reason why, in a second course, we should treat of the addition of simple and denominate numbers separately.

QUESTIONS.

- NOTE.—Arabic numerals, thus (14), refer to the articles of the Section, and Roman numerals, thus (VI.) to the Recapitulation.
 - 1. Into what parts may Arithmetic be divided? (1)
 2. Of what does the Arithmetic of whole numbers treat? (1)
 3. What rules are included in the Arithmetic of Whole Numbers? (2)

3. What does the Arithmetic of Fractions treat? (1)
5. How is the Arithmetic of Fractions divided? (3)
6. How is the unit divided in Vulgar or Common Fractions? (3)
7. How is the unit divided in Decimal Fractions? (8)
8. Of what does the Arithmetic of Ratios treat? (1)
9. What rules of Arithmetic are embraced in the Arithmetic of Ratios? (4)
10. What are the fundamental rules of Arithmetic? (5)

10. What are the fundamental rules of Arithmetic? (5)
11. Why are they so called? (5)
12. Upon what rules do all the operations of Arithmetic ultimately de-

12. Upon what rules do all the operations of Albahara.

pend? (6)

13. What is the sum of two numbers? (7)

14. What is Addition? (9 or I.).

15. What are addends? (9 or II.)

16. What kind of quantities only can be added? (10)

17. What is the rule for Addition? (15)

18. Why must we place units of the same denomination in the same vertical column? (IV.)

19. Why do we draw a line under the addends? (V.)

20. Why do we begin to add at the lowest denominations? (VI.)

21. Why do we divide the sum of the units of any one denomination by as many as make one of the next higher? (VII.)
22. How do we prove addition? (18.)
23. Upon what axiom is the 2nd method of proof founded? (19)

24. So far as the result is concerned, does it make any difference where we commence to add? (12.)

25. Exhibit the work when we commence addling at the left-hand side, or highest denomination. (12)

26. When the addends are very numerous, what plans may we adopt? (18) 27. Upon what principle does the former of these plans proceed? (19) 23. What different rules were formerly made in addition? (VIII.) 29. Is this distinction necessary? Why not? (VIII). 30. Illustrate the difference between spelling and reading in addition. (20)

SUBTRACTION.

- 21. Subtraction is the process of finding the difference between two numbers.
- 22. The greater of the two given numbers, or that which is to be lessened, is called the Minuend (Lat. Minuendus, "to be lessened"); the smaller, or that which is to be subtracted, the Subtrahend (Lat. Subtrahendus, "to be subtracted").
- 23. If anything is left after making the subtraction, it is called the remainder, difference, or excess.
- 24. Only quantities of the same denomination (i. e. which have the same unit) can be subtracted the one from the other.
- 25. Subtraction is indicated by —, called the minus, or negative sign. Thus 5-4=1, read five minus four equal to one, indicates that if 4 is subtracted from 5, unity is left.

Quantities connected by the negative sign cannot be taken, indifferently, in any order; because, for example, 5-4 is not the same as 4-5. In the former case the positive quantity is the greater, and 1 (which means + 1) is left; in the latter, the negative quantity is the greater, and -1, or one to be subtracted, still remains. To illustrate yet further the use and nature of the signs, let us suppose that we have five pounds and owe four; -the five pounds we have will be represented by 5, and our debt by -4; taking the 4 from the 5, we shall have 1 pound (+1) remaining. Next, let us suppose that we have only four pounds and owe five; if we take the 5 from the 4 (that is, if we pay as far as we can) a debt of one pound, represented by - 1, will still remain: consequently 5-4=1; but 4-5=-1

26. When several numbers, connected by the signs x andare placed within brackets, thus, (7+4-6-3+9,) the whole expression is to be considered as one quantity. The negative sign before such an expression indicates that the value of the whole expression within the brackets, is to be subtracted, or, what amounts to the same thing, that the numbers having the sign+before them are to be subtracted, and those having the sign-, added. Hence a minus sign before a bracket, has the effect of changing the signs of all the quantities within the brackets, when the brackets are removed. So, also, when we desire to place a quantity within brackets, we must change its sign, if the sign preceding the first bracket be minus.

The following examples will show how the brackets affect numbers, according as we make them include an additive, or a

subtractive quantity :-

27-4+7-3 = 27 27-(4+7-3) = 19 But 27-(4-7+3) = 27. [changing all the signs of the original quantities, but the first.]

Again 48+7-3-8+7-2=49. 43+(7-3-8+7-2)=49; what is in the brackets being additive, it is not necessary to change any signs. 48+7-(3+8-7+2)=49; it is now necessary to change all the signs in the brackets. the signs.

48+7-3-8+(7-2)=49; it is not necessary in this case.

27. When the numbers are small they can be subtracted mentally, thus: from 6 shillings take 4 shillings, and the result is evidently 2 shillings; from 9 pounds take 4 pounds, and the remainder is 5 pounds; from 16 days, take 9 days, and the remainder is 7 days; from 14 sixteenths take 5 sixteenths, and the remainder is 9 sixteenths, &c.

When the numbers are too large to be conveniently retained in the mind, they may be written as in addition.

Example 1 .- From 97 take 43, that is, from 9 tens and 7 units take 4 tens and 3 units.

OPERATION. 90+7 or 97 = Minuend. 40+3 or 43 = Subtrahend. EXPLANATION .- 3 units from 7 units leaves 4 units, and 40 units or 4 tens from 90 units or 9 tens, leave 50 units or 5 tens. 50+4 or 54 = Remainder.

Example 2.-Let it be required to subtract 746 from 978, or from 900+70+8 to take 700+40+6.

OPERATION. 900+70+8 or 700+40+6 or 7 4 6

2

00+30+2 or

EXPLANATION.—6 units from 8 units, and 2 units remain; 40 units or 4 tens from 70 units or 7 tens, 4 6 and 30 units or 3 tens remain; and 700 units or 7 hundreds, from 900 units or 9 hundreds, and 200 units, or 2 hundreds remain. Example 3.-From 842 take 661.

EXPLANATION.—In placing the subtrahend under the minueud, in this OPERATION. example, we find that, while we can sub-

I. III.
842 or 800+40+2 or 700+140+2
subtract the units from the units, we cannot subtract the construction the subtract and the subtract and

181 or 100+80+1 difficulty by considering the minuend to be, not \$00+40+2. but 700+140+2, or in other words, we berrow one of the order of hundreds and reduce it to tens. Now we have 1 unit from 2 units and 1 unit remains; 60 units or 6 tens from 140 units or 14 tens, and 80 units or 8 tens remain; 600 units or 6 hundreds, from 700 units or 7 hundreds, and 100 units or 1 hundred remain.

EXAMPLE 4.—Let it be required to subtract 3 cwt. 2 qrs. 7 lbs. from 9 cwt. 1 qr. 8 lbs.

EXPLANATION.—As we cannot subtract 2 qrs. from 1 qr. we borrow 1 cwt. qrs. lb. cwt. qrs. lb. cwt. qrs. lb. cwt. qrs. lb. 1 qr. 8 lb. we then consider as 8 cwt. 5 qrs. 3 2 7 = 3 2 7 7 lb. Thus, 7 lbs. from 8 lbs. and 1 lb. remain; 2 qrs. from 5 qrs. and 3 grs. remain; and 3 cwt. from 8 cwt. and 5 cwt. remain;

28. Hence, to find the difference between two numbers, we deduce the following:—

RULE

Write the subtrahend under the minuend, so that units of the same denomination may be in the same vertical column. (24) Draw a line under the subtrahend to separate it from the remainder. Subtract each digit in the subtrahend from the one over it in the

minuend, beginning at the lowest denomination.

When the units of any one denomination of the minuend fall short of those of the same denomination in the subtrahend, borrow one of the next higher denomination in the minuend, reduce it to its equivalent units of the required denomination, add them to the units of that denomination given in the minuend, and from their sum subtract the units of that denomination given in the subtrahend.

29. The following is the complete work of a question in Subtraction:

EXAMPLE 5.—From 6400 lbs. 0 oz. 0 dwt. 7:0006 grs. take 987 lbs. 3 oz. 17 dwt. 22:6349 grs.

(10) 9 9 5 3 10 10 6 4 0 0 lbs. 9 8 7	11 13 0 oz. 3	19 24 9 9 9 39 6 191818(10) 0 dwt. 5 0 0 0 6 grs 17 22 6 3 4 9	s. Minuend. Subtrahend.
<i>a</i> , 0 .	• ,	1. 220010	Japanamona

EXPLANATION.—Here, as we cannot take 9 tenths of thousandths of a grain from 6 tenths of thousandths of a grain, we borrow one grain, there being no tenths, hundredths, or thousandths in the minuend. Now this one grain is equivalent to ten of the order of tenths of grains. Borrow one tenth and there remain 9 tenths, and the one tenth we borrowed is equal to 10 hundredths. Borrow 1 hundredth, there remain 9 hundredths, and the one hundredth we borrowed is equal to 10 thousandths. Borrow 1 thousandth, there remain 9, and the 1 thousandth is equal to 10 of the order of tenths of thousandths—the order for which it was necessary to borrow. 10 of the order of tenths of thousandths of grains, make 16, from which take 9 of the order of tenths of thousandths of grains, and there remain 7 of the order of tenths of thousandths of grains, 4 of the order of thousandths from 9 of the order of thousandths and 5 of the order of thousandths and 5 of the order of hundredths remain; 3 of the order of hundredths and 6 hundredths remain; 6 tenths from 9 tenths and 3 tenths remain.

6 tenths from 9 tenths and 3 tenths remain.

Again, as we cannot take 22 grains from 6 grains, we borrow from the next available higher order, which, in this case, is hundreds of pounds. 1 of the order of hundreds of pounds reduced, as above, to its equivalent lower denomination, is equal to 9 tens of lbs., 9 units of lbs. 11 oz. 19 dwt. 24 grains, added to 6, make 30 grains, and 22 grains from 30 grains, leave 8 grains; 17 dwt, from 19 dwt. leave 2 dwt; 3 oz. from 11 oz. leave 8 oz.; 7 units of lbs. leave 1 leave 2 units of lbs. 8 tens of lbs. from 9 units of lbs. leave 2 units of lbs.; 8 tens of lbs. from 9 tens of lbs. leave 1 ten of lbs. We cannot take 9 hundreds of lbs., from 3 hundreds of lbs., and 3 hundreds of lbs., which is equal to 10 hundreds of lbs., and 3 hundreds of lbs., and 4 hundreds of lbs. remain; 0 thousands of lbs., from 5 thousands of lbs.

and 5 thousands of lbs. remain.

30. If any digit of the minuend be smaller than the corresponding digit of the subtrahend, practically, we can proceed in either of two ways. First, we may increase that denomination of the minuend which is too small, by borrowing one from the next higher, (considered as so many of the lower denomination, or that which is to be increased,) and adding it to those of the lower, already in the minuend. In this case we alter the form, but not the value of the minuend; which, in the example given below, would become—

hundreds. tens. units.

7 8 12=792, the minuend.

7 2 7=427, the subtrahend.

3 6 5=365, the difference.

Or, secondly, we may add equal quantities to both minuend and subtrahend, which will not alter the difference; then we would have hundreds. tens. units.

7 9 2+10 = 792 + 10, the minuend + 10. 2+1 7 = 427 + 10, the subtrahend + 10.

In this mode of proceeding we do not use the given minuend and subtrahend, but others which produce the same remainder.

PROOF OF SUBTRACTION.

31. FIRST METHOD.—Add together the remainder and subtrahend; the sum should be equal to the minuend.

For the remainder expresses by how much the subtrahend is smaller than the minuend; adding, therefore, the remainder to the subtrahend, should make it equal to the minuend; thus,

8754 minuend.
5839 subtrahend.
2915 difference.

Sum of difference and subtrahend, 8754 = minuend.

SECOND METHOD.—Subtract the remainder from the minuend, and what is left should be equal to the subtrahend.

For the remainder is the excess of the minuend over the subtrahend; therefore, taking away this excess should leave both equal; thus

8634 minuend 7985 subtrahend. PROOF: 8634 minuend. 649 remainder.

649 remainder. New remainder, 7985 = subtrahend. In practice, it is sufficient to set down the quantities once; thus

8634 minuend. 7985 subtrahend.

649 remainder.

Difference between remainder and minuend, 7985 = subtrahend

Exercise 11.

(3)

Take 9919919		377776	62358	22020	
1080081	etilizatesi ot. gam				-
(6) From 85:73 Take 42:16		763 4	7.630	(10) 52·137 · 20·005	
43.57			11		
(11) From 9.00063 Take 0.00048	(12) 874·32 5·63705,		(14) 47632·0 0·845	400	15) -3270 -006
0.00015					
23. 5700— 24. 9777—	674 = 49111 $6007 = 93599$ $6077 = 4699$ $977 = 7579$	15. 28. 29. 29. 24. 30. 31. 32. 31. 32. 33. 33. 34. 35. 399. 36.	60000— 75477— 7·97— 1·75— 97·07— 7·05— 10·761— 10009— 176·1—	1·05= 0·074= 4·769= 4·776= 9·001=	59999. 75401. 6·92. 1·676. 92·301. 2·274. 1·76. ·97909. 76·093.

MONEY.

From Take	(38) \$9876.43 987.49	(39) \$427.63 197.21	(40) \$721·73 91·00	(41) \$16·25 9·75
	\$8888.94	\$230.42	\$	\$
From Take	(42) \$1234.50 999.96	(43) \$671.98 99.67	(44) \$286·29 611·89	(45) \$7·19 1·86
	\$234.54	\$572.31	\$	\$

		(46)		£ (4	7)			(48)	((49))	((50))
From	£	s.	d.	£	S.	d.	£	8.	d.	£	8.	d.	£	8.	d.
Take	1098	12	8	486	13	9	10	14	5	39	17	4	6	15	7
			_				-		_	_		-			

£663 16 10

	(51)		(52)	(53)	(54)	(55)
	£ s.	d.	£ s. d.	£ s. d.	£ s. d.	£ s. d.
From	98 14	2	47 14 6	97 16 6	147 14 4	560 15 6
Take	77 15	3	38 19 9	88 17 7	120 10 8	477 17 7

AVOIRDUPOIS WEIGHT.

							. (
	cwt.	qrs.	lb.	cwet.	grs.	. lb.	cwt.	ırs.	lb.	cwt.	qrs.	lb.
From				175	2	15	9664	2	23	554	0	0
Take		3	15	27	2	7	9073	0	24	476	3	5
								-				
	100	2	0									

TROY WEIGHT

			(60))		(6	1)			(6)	2)	
From Take	654	oz. 9	dw 19	t. grs.	lb.	OZ.	dwt 10 17	grs.	917	0	dwt. 1 14 18	9
	457	9	2	13								-

TIME.

	PEC	(6	3)			(64)				(65)	
From Take	767	131	6	30	yrs. 475 160	14	13	16	567	126	14	12
	291	20	16	17							is	-

APPLICATIONS.

1. A shopkeeper bought a piece of cloth containing 42 yards for £22 10s., of which he sells 27 yards for £15 15s.; how many yards has he left, and what have they cost him?

Ans. 15 yards; and they cost him £6 15s.

2. A merchant bought 234 tons, 17 cwt., 1 quarter, 23 lb., and sold 147 tons, 18 cwt., 2 quarters, 24lb.; how much remained unsold?

Ans. 86 tons, 18 cwt. 2qrs. 24lb.

3. In 1856 the revenue of Canada was as follows:—customs, \$4500000; public works, \$500000; crown lands, \$500000; and casual, \$320000. For the same year the expenditure was as follows:—interest on public debt, &c., \$1000000; civil government, \$225000; legislation, \$450000; administration of justice, \$450000; education, \$380000: collection of revenue, \$940000; public works, &c., \$1755000. How much did the total revenue of that year exceed the total expenditure?

Ans. \$620000.

- 4. The census of 1852 gives the population of Upper Canada as 962004, and that of Lower Canada as 890261. By how much did the population of the former exceed that of the latter?

 Ans. 71743.
- 5. Upper Canada contains 147832 square miles; Lower Canada, 209990 square miles; Nova Scotia and Cape Breton, 18746 square miles; New Brunswick, 27620 square miles; Prince Edward's Island, 2173 square miles; Newfoundland, 36000 square miles; and Hudson's Bay Territory, 2436000 square miles. By how much does the aggregate extent of these British North American Provinces fall short of the total area of the United States—the latter being 2936116 square miles?
- Ans. 57755 square miles.

 6. A merchant has 209 casks of butter, weighing 400 cwt. 2 grs. 14lb.; and ships off 173 casks, weighing 213 cwt. 2 grs.

24lb. How many casks has he left; and what is their weight?

Ans. 36 casks, weighing 186 cwt. 3 qrs. 15lb.

7. If from a piece of cloth containing 496 yards, 3 quarters, and 3 nails, I cut 247 yards, 2 qrs., 2 nails, what is the length of the remainder.

**Ans. 249 yards, 1 quarter, 1 nail.

8. A field contains 769 acres, 3 roods, and 20 perches, of

which 576 acres, 2 roods, 23 perches are tilled; how much remains untilled?

Ans. 193 acres, 37 perches.

9. I owed my friend a bill of £76 16s. 91d., out of which I

paid £59 17s. 103d.; how much remained due?

Ans. £16 18s. 10\frac{3}{4}d.

10. The population of London is 2363141, and that of Paris is 1053262. How much does the population of London exceed that of Paris?

Ans. 1309879.

11. The population of Liverpool is 384265, and that of New York 515547. How much does the population of New York exceed that of Liverpool?

Ans. 131282.

12. Lake Huron contains 20000 square miles: by how much does it exceed the area of Lakes Erie and Ontario—the former containing 11000 square miles, and the latter 7000 sq. miles?

Ans. 2000 square miles.

13. A merchant has \$6947.87 in bank; \$4789.63 in stock; \$9491.11 in property; and \$14167.93 on his books against his customers: his debts amount to \$19478.25. How much is he worth after paying what he owes?

Ans. \$15918.29.

14. What is the value of 6-3+15-4?

Ans. 14. Ans. 33.

15. Of 43+(7-3-14)? 16. Of 47·6-(2+1-24+16-0·34)?

Ans. 52.94.

17. What is the difference between 15+13-6-81 and 15+13-(6-81+62)?

Ans. 100.

32. Before the pupil leaves subtraction he should be able to take any of the nine digits, continually, from a given number, without stopping or hesitating, thus, in subtracting 7 continually from 94, he should say, 94, 87, 80, 73, 66, 59, &c. In the following examples, which are inserted for practice, he should not be allowed to spell the subtraction, thus, 6 from 9 and 3 remain, 4 from 2, we can't, but 4 from 12 and 8 remain, &c.; but should be required to read as follows:—6, 9..3; 4, 12..8; 9, 13..4; 10, 11..1; 10, 18..8, &c.

(18)

$9800046043019181697800041081329 \\ 191347813191681473199916199846$

(19)

74321913047123098706540456007139 1342345678912345678912345678912

RECAPITULATION.

- I. Subtraction is the process of finding the difference between two numbers.
- II. The greater of the two numbers is called the minutend.

III. The smaller of the two numbers is called the subtrahend.

IV. What is left after making the subtraction is called the remainder or difference.

V. Only quantities of the same denomination can be subtracted.

VI. Subtraction is indicated by the sign —, which is called minus, or the negative sign.

VII. When several numbers are inclosed in brackets. they are to be considered as constituting only one quantity.

VIII. When a negative sign precedes the first bracket it indicates that all the quantities within the brackets are to have their signs changed when the brackets are removed.

IX. When quantities are removed into brackets, preceded by the negative sign, all their signs must be changed.

X. We begin subtraction at the lowest denomination, because it is sometimes necessary to borrow from the higher denominations and reduce.

XI. Instead of thus borrowing and reducing, we may consider any denomination in the minuend increased by as many units of that denomination as make one of the next higher, and then add one to the next higher denomination in the subtrahend. This is merely adding the same quantity under different forms to both minuend and subtrahend, and consequently cannot affect the value of the remainder. (30.)

QUESTIONS TO BE ANSWERED BY THE PUPIL.

Note.-Numbers in Roman numerals, thus(V), refer to the Recapitula. tion; those in Arabic numerals, thus (25), refer to the articles of the Section.

- 1. What is Subtraction? (L)
 2. What is the minnend? (H.)

- 1. What is the minnend? (11.)
 2. What is the minnend? (11.)
 3. What is the derivation of the word minnend! (22)
 4. What is the subtrahend! (111.)
 5. What is the derivation of the word subtrahend! (22)
 6. What is the remainder? (1V.)
- 7. What kind of quantities can be subtracted? (V.)
- 8. How is subtraction indicated ? (VI.)
- 9. When several numbers are inclosed together in brackets, how are they to be taken? (VII and 26.)
- 10. What effect has a negative sign preceding brackets? (VIII and 26.)
- When quantities are removed into brackets, preceded by the sign—what must be done with them? (1X and 26.)
 What is the rule for subtraction? (28.)

- 13. Why must we put units of the same denomination in the same verti-

- 13. Why must we put units of the same denomination in the same vertical column? (24)
 14. When a digit in the subtrahend is greater than the corresponding digit in the minuend, what is done? (27 Example 3, or 29)
 15. What other plan may be adopted? (30)
 16. Upon what principle does this plan proceed? (XI.)
 17. Why do we begin to subtract at the right-hand side? (X.)
 18. How do we prove subtraction? (31)
 19. Upon what principles are these methods of proof founded? (31)
 20. Illustrate the difference between spelling and reading in subtraction. (32) tion. (32)

MULTIPLICATION.

33. Multiplication is a short process of taking one number as many times as there are units in another. Hence multiplication is a short method of performing addition.

34. The number to be taken or multiplied is called the multiplicand, and in addition would be called an addend.

35. The number denoting how many times the multiplicand is to be taken, or, in other words, that by which

we multiply, is called the multiplier.

36. The number arising from taking the multiplicand as many times as there are units in the multiplier, is called the product, and corresponds to the sum of the addends in addition.

The multiplicand and multiplier are called the factors of the product because they make or produce it, (Lat. factor, "a maker, agent, or producer.")

37. A prime number is one which cannot be exactly divided by any whole number, except the unit one and itself.

38. A composite number is the product of two or more integral factors, neither of which is unity. Thus 16 is a composite number, and its factors are 8 and 2, or 4 and 4.

39. Since the product is the result which arises from taking the multiplicand as many times as there are units

in the multiplier, it follows:

1st. If the multiplier be equal to unity, the product will

be equal to the multiplicand.

2nd. If the multiplier be greater than unity, the product will be as many times greater than the multiplicand as the multiplier is greater than unity.

3rd. If the multiplier be less than unity, that is, if it be

a proper fraction, the product will be as many times less than the multiplicand as the multiplier is less than unity.

40. Let it be required to multiply any two numbers together, say 7 and 6.

· If we make in a horizontal line as many stars as there are units in the multiplicand, and make as many such lines of stars as there are units in the multiplier, it is manifest that the entire number of stars will represent the number of units which result from taking the multiplicand as many times 6 as there are units in the multiplier.

But it is evident that we may consider the 42 stars in the above figure, either as 7 stars taken 6 times, or as 6 stars

7 times, that is, $6 \times 7 = 42 = 7 \times 6$.

Hence either of the factors may be used as multiplier without altering the product.

-41. Let it be required to multiply the number 8 by the composite number 6, of which the factors are 3 and 2.

If we write 8 stars in a horizontal line and make 6 such lines, we shall evidently have in all 8×6 = 48, the number of units in all the lines.

But we may consider the 6 lines as 2 sets of 3 lines each, and in each set of 3 lines there are $8\times3=24$ units. Therefore in the 2 sets there are $24\times2=48$ units. Again we may consider the 6 lines as 3 sets of 2 lines each, and in each set of 2 lines there are $8\times2=16$ units. Therefore in 3 such sets. there are $16 \times 3 = 48$ units.

Hence $8 \times 6 = 48$ $8 \times 3 = 24$ and $24 \times 2 = 48 = 8 \times 6$

 $8 \times 2 = 16$ and $16 \times 3 = 48 = 8 \times 6$ And as the same may be shewn for any other composite number as well as for 6, we may conclude that,

When the multiplier is a composite number we may multiply by each of the factors in succession, and the last product will be the entire product sought."

42. As the multiplication of the higher numbers may be resolved into the multiplication of one digit by another, the pupil should make himself perfectly familiar with the following table:

This table is called the Multiplication Table, and was calculated by Pythagoras, a celebrated Greek philosopher who flourished about 500 years before Christ. It was calculated after the following manner:—2 and 2 are 4—twice 2 are 4: 3 and 3 are 6; twice 3 are 6; 4 and 4 are 8—twice 4 are 8, &c.

MULTIPLICATION TABLE.

The state of the s			
Twice 3 times 4 time	s 5 times	6 times	7 times
	4 1 are 5	l are 6	1 are 7
2 - 4 2 - 6 2 -	8 2 - 10	2 - 12	2 - 14
3 - 6 3 - 9 3 -	12 3 - 15	3 - 18	3 - 21
4 - 8 4 - 12 4 -	16 4 - 20		4 - 28
5 - 10 5 - 15 5	20 5 - 25		5 - 35
6 - 12 6 - 18 6 -	24 6 - 30		6 - 42
7 - 14 7 - 21 7 -	28 7 - 35		7 49
	32 8 - 40		8 - 56
The state of the s	36 9 - 45		9 - 63
1.2	40 10 - 50	1	4 T
100 100 100 100 100 100 100 100 100 100	control of	1 20	10.00
		The same of the	
	48 12 - 60	12 - 72	12 - 84
	times 11	times	12 times
	are 10 1		1 are 12
2 - 16 2 - 18 2	20 2	- 22	2 - 24
3 - 24 3 - 27 3	_ 30 3	— 33	36
4 - 32 4 - 36 4	- 40 . 4	- 44	4 - 48
5 - 40 5 - 45 5	- 50 5	- 55	5 60
	- 60 6	. 1	6 - 72
7 - 56 7 - 63 7	- 70 7		7 - 84
	- 80 8	0.01	8 - 96
9 - 72 9 - 81 9	- 90 9		9 - 108
10 - 80 10 - 90 10	- 100 10		0 - 120
13 - 00 13 34 00 (131		121 1	A CONTRACTOR OF THE PARTY OF TH
$\begin{vmatrix} 11 - 36 \\ 12 - 96 \end{vmatrix}$ $\begin{vmatrix} 12 - 108 \\ 12 \end{vmatrix}$			
12 - 30 1 12 - 100 1 12	- 140 14	1.104 1.	2 - 144

It appears from this table, that the multiplication of the same two numbers in whatever order taken, produce the same product.

Note.—Though the part of the multiplication table given above is enough for the nupil to commit to memory at first, yet, after he has made some proficiency in arithmetic, he may find it advantageous to commit what follows, as it will enable him, in many cases, to shorten his work in a considerable degree. The labour of committing a still more extended table would be scarcely compensated by the advantage resulting.

* * * * * * * * * * * * * * * * * * *					-20	The same of the
					13 times	19 times
		2 are :30			2 are 36	2 are 38
3 - 39	3 - 42	3 - 45	3 - 48	3 - 51	3 - 54	3 57
4 - 52			4 - 64	4 - 68	4 - 72	4 5 576
5 65	5 70	5 - 75	5 - 80		5 - 90	5 - 95
6)-78	6 - 84		6 - 96	6 - 102	6 - 108	6 - 114
7 - 91	7 98		7 112	7 - 119	7 - 126	7 - 133
8 - 104	3 - 112		8 - 128	8 - 136	8 - 144	8 - 152
9 - 117	9 - 126	9 - 135	19 - 144	9 - 153	F9 - 162	9 - 171

48. The multiplication of one quantity by another is expressed by ×; thus 7 × 9 = 63; means that 7 multiplied by 9 is equal to 63.

44. Quantities connected by the sign of multiplication are multiplied by any number, if we multiply any one of the factors by that number; thus $(9 \times 10 \times 2) \times 27 = 9 \times 10 \times 54$, or $9 \times 270 \times 2$; that is, if we multiply the factor 2 or the factor 10 by 27, we, in

effect, multiply the whole number (9×10×2) by 27.

45. When a quantity within brackets, consisting of several terms connected by the signs + and -, is to be multiplied by any number, each of its parts or terms must be multiplied. This arises from the fact that we consider the several terms within the bracket as constituting but one quantity, and to multiply the whole, we must multiply each of its parts. Thus $(7+8-3) \times 3 = 7 \times 3 + 8 \times 3 - 3 \times 3$; and $(8+7-5) \times (13-2)$ means that each of the terms within the former bracket is to be multiplied by each of the terms within the latter, or by their difference.

46. Let it be required to multiply 768 by 9.

Now $768 \times 9 = (700 + 60 + 8) \times 9 = 700 \times 9 + 60 \times 9 + 8 \times 9 \text{ (Art.45)}$. Hence, so far as the result is concerned, it matters not whether we commence multiplying at the lowest or at the highest denomination; $700 \times 9 + 80 \times 9 + 8 \times 9$ being without the result of the constant of the second of the constant of the second of the constant of the con evidently equal to 8×9+60×9+700×9.

Commencing the multiplication at the left-hand side, or highest denomi-

nation, the work is as follows:

	OPERATION.	
768	which may	768
9	be thus ab-	9
	breviated,	
6300	-	63
540		54
72		72
_		
0010		0010

EXPLANATION.-7 hundreds multiplied by 9, or taken 9 times, are 63 hundreds; 6 tens multiplied by 9, are 54 tens; and 8 units multiplied by 9, are 72 units. 63 hundreds, 54 tens, and 72 units, added together, make 6912. The second operation shows the only abbreviation possible when we commence at the highest denomination.

Let us now take the same question and commence at the right-hand or lowest denomination.

101163	t delioiminate			
		PERA	TION.	
1. 768 9	which may be thus ab- breviated.	11. 768 0	and thus still farther abbre- viated.	111. 768 9
72 540 6300	7	72 64 63		6912
6912		6912		

EXPLANATION .- No. II. differs from No. I. only in having the unnecessary 0's omitted. In No. III. the principle of carrying is taken advantage of, thus—8 units, multiplied by 9, are 72 units, equal to 2 units and 7 tens to carry-6 tens, multiplied by 9, are 54 tens, and 7 tens,

make 61 tens, equal to 1 ten, and 6 hundreds to carry; 7 hundreds, multiplied by 9, are 63 hundreds, and 6 hundreds, make 69 hundreds, equal to 6 thousands and 9 hundreds.

Hence, in order that we may be enabled to take advantage of the principle of CARRYING, we commence the multiplication at the right-hand or lowest denomination.

47. From the last article (46), for multiplying by any integral multiplier, not exceeding 12, (or 20 if the extended Multiplication Table be used) we deduce the following :-

sion beginning with the lowest, by the multiplier, and divide each product, so formed, by the number of that denomination which makes one unit of the next higher; write down each remainder under units of its own order, and carry the quotient to the next product.

Example 1.-Multiply \$7896.43 by 11.

OPERATION. EXPLANATION .- 3 hundredths of dollars, or cents, multi-

\$7896:43 plied by 11, make 33 hundredths, equal to 3 hundredths, to set down, and 3 tenths to carry; 4 tenths of dollars, or tens of cents, multiplied by 11, make 44 tenths of dollars, and 3 tenths we carried, make 47 tenths, equal to 7 tenths and 3 tenths we carried, make 47 tenths, equal to 7 tenths and 4 units we carried, make 70 units, equal to 0 units to set down and 7 tens to carry; 9 tens, multiplied by 11, make 99 tens, and 7 tens, make 106 tens, equal to 6 tens and 10 hundreds; 8 hundreds, multiplied by 11, make 88 hundreds, and 10, make 98 hundreds, and 10, make 98 hundreds, and 10 hundreds; 12 hundreds and 9 thousands, rother and 10 hundreds; 13 hundreds, and 10 hundreds; 14 hundreds, and 10 hundreds; 15 hundreds, and 10 hundreds; 16 hundreds, and 10 hundreds; 17 hundreds, and 10 hundreds; 18 hundreds, and 19 hundreds and 8 hundreds, and 10 hundreds; 18 hundreds;

Example 2.—Multiply 3 cwt. 2 grs. 11 lbs. 7 oz. 6 drs. by 7.

OPERATION. cwt. qrs. lbs. oz. dr. 11 7 95 1 3 10

EXPLANATION .- 7 times 6 drams are 42 drams, equal to 10 drams to set down and 2 oz. to carry; 7 times 70 are 49 oz., and 20z., make 51 oz., equal to 3 oz. to set down and 3 lbs. to carry; 7 times 11 lbs. are 77 lbs., and 3 lbs., make 80 lbs., equal to 5 lbs. to set down and 3 qrs., to carry; 7 times 2 qrs. are 14 qrs. and 3 qrs., make 17 qrs., equal to 1 qr. to set down times?

and 4 cwt. to carry; 7 times 3 cwt. are 21 cwt., and 4 cwt., make 25 cwt.

		Exercise 12	2.	
Multiply	(1) 48960	(2) 75460	(3) 678000	(4) 57800
Ву	5 244800	9	8	
Multiply	(5) 5·2736	(6) 8·7563	(7) 0·21375	(8) 0·0067
By	2	4	6	8
	10.5472			
Multiply	(9) \$767·62	(10) \$672.56	(11)· \$789·76	(12) \$573·46
By	2	2	6	5
•	\$1535.24			
Multiply	(13) 866342	(14) 738579	(15) 4716375	(16) 8429763
By	11 -	12	11	12
		-		

- 17. Multiply £32 8s. 61d. by 5. Ans. £162 2s. 81d. 18. Multiply £43 11s. 43d. by 8. Ans. £348 11s. 2d.
- 19. Multiply £125 13s. 01d. by 12. Ans. £1507 16s. 3d.
- 20. Multiply 10 cwt. 3 grs. 5 lbs. by 3. Ans. 32 cwt. 1 gr. 15 lbs.
- 21. Multiply 7 yds. 3 qrs. 1 na. by 7. Ans. 54 yds. 2 qrs. 3 na.
- 22. Multiply 11 oz. 10 dwt. 19 grs. by 12.

Ans. 11 lbs. 6 oz. 9 dwt. 12 gr.

48. When the multiplier is a composite number, and can be resolved into two or more factors, neither of which is greater than 12, we deduce from (41) the following:-

Multiply by each of the factors in succession and the last product will be the entire product sought.

Example 1.—Multiply 3 hrs. 7 min. 14 sec. by 64.

OPERATION. hrs. min. sec. ×64=8×8 3 7 14 8 1.0 57 52

EXPLANATION .- Multiplying 3 hrs. 7 min. 14 sec. by 8, we obtain 1 day 0 hrs. 57 min. 52 sec., which we again multiply by 8, and obtain 8 days 7 hrs. 42 min. 56 sec., which is the product of 3 hrs. 7 min. 14 sec., by 8 times 8 or 64.

8 7 42 56 Ans.

EXAMPLE 2 .- Multiply 796:437 by 132.

OPERATION. $796.437 \times 132 = 11 \times 12$

12

EXPLANATION .- We first multiply the given number by 11, or, in other words, 11 take it 11 times, and then take this result 12 times, which is evidently 8760'807=11 times multiplicand. equivalent to taking the given number 12 times 11 or 132 times.

105129 684=12 times 11 times multiplicand.

Example 3.—Multiply 16 cwt. 3 qrs. 11 lb. by 270.

EXPLANATION. -270=10 times 27 or $10\times3\times9$. If, therefore, we take the given multiplicand 3 times, and then this product 9 times, and then this second product 10 times, it is evident we shall have, in effect, taken the given multiplicand 3×9×10 or 270 times.

Exercise 13.

- Multiply \$169.78 by 36.
- 2. Multiply 796342.3 by 121.
- 3. Multiply \$33460 by 144.
- 4: Multiply 735 by 648.
- 5. Multiply £3 7s. 6d. by 18.

Ans. \$6112.08.

Ans. 96357418.3.

Ans. \$4818240.

Ans. 476280.

Ans. £60 15s. 0d.

6. Multiply £5 14s. 6½d. by 22. Ans. £125 19s. 11d.

7. Multiply £3 4s. 7d. by 810. Ans. £2615 12s. 6d.

8. Multiply, 11 cwt. 3 qrs. 14 lb. 7 oz. by 54.

Ans. 642 cwt. 1 qr. 4 lbs. 10 oz.

9. Multiply 26 bush. 3 pks. 1 gal. 1 qt. 1 pt. by 49.

Ans. 1319 bush. 0 pks. 1 gal. 1 qt. 1 pt.

10. Multiply 2 yds. 2 qrs. 2 na. 2 in. by 63.

Ans. 168 yds. 3 qrs. 2 na. 0 in.

11. Multiply 5 days 17 hrs. 33 min. 11 sec. by 288.

Ans. 1650 days, 15 hrs. 16 min. 48 sec.

49. When the multiplicand is a denominate number and the multiplier is greater than 12, but not a composite number, we proceed according to the following:—

RULE

Take the nearest composite number to the given multiplier, multiply successively by its factors and add to or subtract from the product so many times the multiplicand as the assumed composite number is less or greater than the given multiplier.

Example 1.-Multiply £62 12s. 6d. by 76.

OPERATION. £ s. d. 62 12 6 8 501 0 0 EXPLANATION.—We take 76— 9×8+4, and thus we get 72 times the multiplicand, and to it adding 4 times the multiplicand, obtain the desired product, viz., 76 times the multiplicand.

4509 0 0 = 72 times multiplicand. 250 10 0 = 4 times multiplicand.

£4759 10 0 = 76 times multiplicand.

Instead of multiplying as above, we might have multiplied by 7 and 10 and increased the result by 6 times the multiplicand, or we might have multiplied by 7 and 11, and decreased the result by once the multiplicand, &c.

Example 2.—Multiply 17 lbs. 3 oz. 7 dr. 2 ser. 16 grs. by 789.

lb. 17	oz.	dr. 7	ser.	grs. 16 × 9 = 9 times multiplicand. 10
173	3	7	1	$0 \times S = 80$ times multiplicand.
1733	3	1	1	0 7
12132 1386 155	10 7 11	1 2 7	1 2 1	0 = 700 times multiplicand, 0 = 80 times multiplicand. 4 = 9 times multiplicand.
13675	5	8	1	4 = 789 times multiplicand.

EXPLANATION.—We divide the given multiplier into 700+80+9, and obtain the 3 partial products, which we add together, for the entire product.

EXAMPLE 3.—Multiply 3 wks. 6 days 17 hrs. 21 min. 12 sec. by 4736.

OPERATION.

wks.	ds.	h. 17	min 21	sec. 12×6== 10	wks. 23	ds 5	. h	min 7	sec. 12 ==	6 times multiplicand.
39	4	5	32	0×3==	118	5	16	36	0 ==	30 times multiplicand.
396	0	7	20	0×7=	2772	2	3	20	0 =	700 times multiplicand.

3960 3 1 20 $0 \times 4 = 15841$ 5 5 20 0 = 4000 times multiplicand.

'Ans. 18756 4 9 23 12 = 4786 times multiplicand.

Example 4.—Multiply £47 16s. 2d. by 5783.

 $5783 = 5 \times 1000 + 7 \times 100 + 8 \times 10 + 3$.

OPERATION.

478 1 $8\times8=$ 3824 13 4=product by tens of the multiplicand.

4780 16 $8 \times 7 = 33465$ 16 8 = product by hundreds of the multiplicand.

47808 6 8×5 = 239041 13 4 = product by thousands of the multiplicand.

Ans. 276475 11 10 = product by entire multiplier.

Exercise 14.

- 1. Multiply £12 2s. 4d. by 83. Ans. £1005 13s. 8d.
- 2. Multiply £963 0s. 0\flackd. by 999. Ans. 962040 2s. 5\flackd.
- 3. Multiply £3 6s. 51d. by 3178. Ans. £10556 18s. 41d.
- 4. Multiply 16 bush, 3 pks. 1 gal. by 678.

Ans. 11441 bush, 1 pk. 0 gal.

- 5. Multiply 23 m. 6 fur. 33 rds. 4 yds. by 247.
- Ans. 5892 m. 2 fur. 10 rds. 31 yds. 6. Multiply 3S. 16° 30′ 45″ by 721. Ans. 2559S. 25° 30′ 45″

50. It may be proper here to caution the pupil against the absurd attempt to multiply one denominate number by another. Multiplication is merely a particular kind of addition, and when we are required to multiply a quantity by any number, we are simply required to repeat it as many times as there are units in the multiplier. It is evident, then, that to talk of multiplying £19 19s. 11½d., by £19 19s. 11½d., or, in other words, of adding or repeating £19 19s. 11½d. £19 19s. 11½d. times is simply ridiculous. Nevertheless, great pains have been taken to show that 2s. 6d may be multiplied by 2s. 6d. can be taken 2½ times, and the result will be 6s. 3d; or it can be taken one-eighth

of a time, and the result will be 3 dd.; but this is a very different thing from taking it 2s. 6d. times. In fact it is quite as nonsensical to talk of taking 2s. 6d. 2s. 6d. times as it would be to talk of taking 6 lbs. of beef 6 lbs. of beef times; or, 7 bars of music 7 bars of music times, &c. Duodecimal multiplication, which is sometimes adduced, as a proof that one denominate number can be multiplied by another, affords no support whatever to the theory, as will be fully shown hereafter. (See Sec. III.)

51. Let it be required to multiply 729 by 478.

OPERATION. EXPLANATION.—From the preceding examples it is evident that when units are multiplied into any order whatever, the 729 set down in the hundreds column, and 3 thousands to carry, &c. Lastly, we add the several partial products together.

Hence, when the multiplicand is an abstract number, the multiplier being greater than 12 and not a composite number, we have the following:-

Multiply the multiplicand by each figure of the multiplier separately, beginning with the lowest, and write the partial products in sepurate lines, placing the first figure of each line directly under the figure by which you multiply, and, lastly, add the several purtial products together.

EXAMPLE. - Multiply 7423 by 6709.

OPERATION. 7423 6709 66807 519610 44538

EXPLANATION. - Here, as there are no tens in the multiplier, e may either proceed directly to the hundreds after multiplying by the units, or we may set down a 0 under the tens, and then write the product by the hundreds in the same line, always remembering to place the first digit of the partial product under the figure by which we are multiplying in order that all the digits of the same order may come in the same vertical column.

49800907

EXERCISE 15. (1)(3)(4)(5)Multiply 325 765 732997 667 Βv 95 765 456 345 347

- 6. Multiply 7071 by 556.
- 7. Multiply 15607 by 3094.
- 8. Multiply 39948123 by 6007.
- 9. Multiply 2778588 by 9867.

- Ans. 3931476.
- Ans. 48288058.
- Ans. 239968374861. .Ans. 27416327796.

52. Let it be required to multiply 63.5 by .97.

EXPLANATION.—Since (51) any order, multiplied by units, will give that order—tenths, multiplied by units, will give tenths. Hence it is obvious that tenths, multiplied by tenths OPERATION. 63'5 will give the next lower order, or hundredths; and also that tenths, multiplied by hundredths, will give the next lower .97 order again, or thousandths. In the above example, therefore, 4.449 we proceed thus:—5 tenths, multiplied by 7 hundredths, give 35 thousandths, equal to 5 thousandths to set down and 3 hundredths to carry; 3 units, multiplied by 7 hundredths, give and 2 hundredths to carry; 3 units, multiplied by 7 hundredths, give 57.15 61'595

21 hundredths, and 3 hundredths we carried, make 24 hundredths, equal to 4 hundredths to set down and 2 tenths to carry; 6 tens, multiplied by 7 hundredths. dredths, give 42 tenths, and 2 tenths we carried, make 44 tenths, equal to 4 tenths and 4 units. Again, 5 tenths, multiplied by 9 tenths, give 45 hundred tenths, give 45 hund dredths, equal to 5 hundredths to set down and 4 tenths to carry, &c.

53. Strictly speaking, all examples in multiplication of decimals should be worked according to the above method. An attentive consideration of the reasonings in (52) will, however, show that the lowest digit of the product of any two numbers containing decimals, must always be a number of places to the right of the decimal point, equal to the sum of the decimal places, in both multiplicand and multiplier.

Hence, when the multiplicand or multiplier, or both,

contain decimals, we deduce the following-

RULE.

Multiply as though there were no decimals, and then remove the decimal point in the product as many places to the left us there are decimals in both the multiplicand and the multiplier.

EXAMPLE 1 .- Multiply 5.63 by 0.00005.

EXPLANATION .- We multiply 563 by 5, and remove the OPERATION. decimal point seven places to the left, since there are live decimal places in the multiplier and two in the multiplicand, that is, we have taken a number a hundred times too great a hundred thousand times too often, and 563 the product 2815 is therefore ton million times too great, 2815 Ans. '0002815

and to make it what it should be, we divide it by ton millions; or, in other words, remove the decimal point seven places to the left.

EXAMPLE 2 .- Multiply 2.073 by 5.12.

EXPLANATION .- We multiply as though both were whole OPERATION. numbers, and cut off five decimals, since there are three in the 2.073 multiplicand and two in the multiplier. 512

4146 2073 10365

10'61376

EXERCISE 16.

Multiply :003296 By 5.782	(2) 41·78 ·0629	(3) 36·1234 2·0006
Product ·019057472 4. Multiply 3·2517 by ·023. 5. Multiply 64·001 by 340. 6. Multiply 482000 by ·37. 7. Multiply 3782·4 by ·00917. 8. Multiply 87·96 by 220.	2.627962	Ans. ·0747891. Ans. 21760·34. Ans. 178340. Ans. 34·684608. Ans. 19351·2.

PROOF OF MULTIPLICATION.

54. If the multiplier is not greater than 12, multiply the multiplicand by the multiplier, minus one, and add the multiplicand to the product. The sum should be the same as the product of the multiplicand by the whole multiplier.

If the multiplier be greater than 12 and the multiplicand an abstract number:-

FIRST METHOD .- Multiply the multiplier by the multiplicand, and if the product thus obtained agree with the other the work may be considered correct.

This method of proof depends upon the principle (40) that the product of two numbers is the same whichever is taken as multiplier.

Second Method .- Divide the product by one of the factors, and if the quotient thus obtained is equal to the other factor, the work

This is simply reversing the operation, i. e., breaking up the product into its factors.

THIRD METHOD .- Divide the sum of the digits of the multiplicand by 9 and set down the remainder; divide also the sum of the digitsof the multiplier by 9 and set down the remainder; multiply these two remainlers together, divide the sum of the digits in their product by 9, and if the remainder thus obtained is equal to the remainder obtained by dividing the sum of the digits in the product of the multiplicand and the multiplier by 9, the work is generally correct: if these two last remainders are different, it must be wrong.

EXAMPLE 1.—Let the quantities multiplied be 9426 and 3785. Taking the nines from 9426, we get 3 as remainder.

And from 3785, we get 5.

47130 75408 3×5=15, from which 9 being taken, 6 are left. 65982 28278

Taking the nines from 35677410, 6 are left.

The remainders being equal, we are to presume the multiplication is correct. The same result, however, would have been obtained even if we had displaced digits, added or omitted cyphers, or fallen into errors which had counteracted each other; but, with ordinary care, none of these are likely to occur.

Example 2.—Let the numbers be 76542 and 8436.

Taking the nines from 76542, the remainder is 6. 8436, it is 3. Taking them from

> 459252 229626 6×3=18, the remainder from which is 0. 306168 612336

Taking the nines from 645708312 also, the remainder is 0.

The remainders being the same, the multiplication may be considered

NOTE.—This proof applies, whatever may be the position of the decimal point in either of the given numbers.

EXAMPLE 3.—Let the numbers be 4.63 and 5.4.

From 4'63, the remainder is 4.

From 5'4, it is 0.

1852 4×0=0, from which the remainder is 0.

From 25'002 the remainder is 0.

55. The principle on which this process depends is, that if any number is divided by 9, and the sum of its digits also be divided by 9, the remainders, are, in both cases, the same.

Thus taking the number 7825, we have.

$$78_{9}^{2}2 = \frac{7000 + 800 + 20 + 5}{2000} = 2000 + 88_{9}^{2} + 28_{9}^{2} + \frac{5}{9}$$

$$= \frac{7 \times 100^{2} + 8 \times 10^{2} + 2 \times 10^{2} + \frac{5}{9}}{7 \times (111 + \frac{1}{9}) + 8 \times (11 + \frac{1}{9}) + 2 \times (1 + \frac{1}{9}) + \frac{5}{9}}$$

$$= \frac{777}{7} + \frac{7}{8} + \frac{8}{9} + \frac{2}{9} + \frac{5}{9}$$

$$= \frac{777}{7} + \frac{88}{9} + 2 + \frac{7}{9} + \frac{5}{9} + \frac{5}{9}$$

$$= \frac{777}{7} + \frac{88}{9} + 2 + \frac{7}{7} + \frac{8}{9} + \frac{2}{9} + \frac{5}{9}$$

$$= \frac{777}{7} + \frac{88}{9} + 2 + \frac{7}{7} + \frac{8}{9} + \frac{2}{9} + \frac{5}{9}$$

Hence the remainder arising from the division of 7825 by 9 is evidently the same as that arising from dividing 7+8+2+5 or 22, which is the sum of its digits, by 9.

56. Casting the nines from the factors, multiplying the resulting remainders, and easting the nines from the product, will leave the same remainder as if the nines were cast from the product of the factors-provided the multiplication has been correctly performed.

Thus, let the factors be 573 and 464.

Casting the nines from 5+7+3 (which we have just seen is the same as casting the nines from 573), we obtain 6 as remainder. Casting the nines from 4-6-4, we get 5 as remainder. Multiplying 6 and 5 we obtain 30 as product, which, when the nines are taken away, will give 3 as a remainder. We can show that 3 will be the remainder, also, if we cast the nines from the product of the factors;—which is effected by setting down this product, and taking, in succession, quantities that are equal to it—as follows:

 $573 \times 464 = \text{(the product of the factors)}.$ = $(5 \times 100 + 7 \times 10 + 3) \times (4 \times 100 + 6 \times 10 + 4)$

 $= \left\{ 5 \times (99+1) + 7 \times (9+1) + 3 \right\} \times \left\{ 4 \times (99+1) + 6 \times (9+1) + 4 \right\}$

 $=(5\times99+5+7\times9+7+3)\times(4\times99+4+6\times9+6+4.)$

5×99 expresses a number of nines: it will continue to do so when multiplied by all the quantities within the second brackets, and is, therefore, to be cast out; and, for a similar reason, 7×9. Again 4×99 expresses a number of nines; it will continue to do so when multiplied by the quantities within the first brackets, and is therefore to be cast out; and for a similar reason, 6×9. There will then be left only (5+7+3)×(4+6+4)—from which the nines are still to be cast out, the remainders to be multiplied together, and the nines to be cast from their product;—but we have done all this already, and obtained 3 as remainder.

CONTRACTIONS IN MULTIPLICATION.

57. I. To multiply by 5:

Affix a 0 to the multiplicand and divide the result by 2.

Reason $5 = \frac{10}{2}$.

II. To multiply by 15:

Affix a 0 to the multiplicand and to the result add half of itself. Reason $15 = 10 + \frac{1}{2}$.

III. To multiply by 25:

Affix two 0s to the multiplicand and divide the result by 4.

Reason 25 = 100.

IV. To multiply by 125:

Affiix three 0s to the multiplicand and divide the result by 8.

Reason 125 = 10,000.

V. To multiply by 75:

Affix two 0s to the multiplicand and from the result take one-fourth of itself.

Reason 75 = 100 - 100.

VI. To multiply by 175:

Affix two 0s-multiply the result by 7 and divide by 4.

Reason 175 = 700.

VII. To multiply by 275:

Affix two 0s-multiply the result by 11 and divide by 4.

Reason 275 = 1100.

VIII. To multiply by 13, 14, 15, &c., or by 1 with either of the other digits affixed to it:

EXAMPLE. Multiply by the units' figure of the multiplier, 2325×13 and write each figure of the partial product one place to the right of that from which it arises; finally, add the partial product to the multiplicand, and the result will be the answer required.

Ans. 30225 and the result will be the answer required.

Reason.—This is the same in effect as if we actually multiplied by the common method. We merely make the multiplicand serve for the second

partial product.

IX. To multiply by 21, 31, 41, &c., or by 1 with either of the other significant figures prefixed to it:

EXAMPLE. Multiply by the tens' figure of the multiplier, and write the first figure of the partial product in the tens' place; finally, add this partial product to the multiplicand, and the result will be the answer required.

REASON.—The reason of this method of contraction is substantially the same as that of the preceding.

X. To multiply by 101, 102, 103, 104, &c., or by 10 with either of the other digits affixed to it:

Multiply by the units' figure of the multiplier and write the partial product, thus obtained, two places to the right of the multiplicand—finally, add the partial product to the multiplicand.

REASON.-Substantially the same as No. 8.

XI. To multiply by any number of nines:

Remove the decimal point of the multiplicand so many places to the right (by affixing 0's if necessary) as there are nines in the multiplier; and subtract the multiplicand from the result.

EXAMPLE 1 .- Multiply 7347 by 999.

7347×990=7347000—7347=7339653.

We, in such a case, merely multiply by the next higher convenient composite number, and subtract the multiplicand as many times as we have taken it too often; thus, in the example just given—
7347×990=7347×(1000—1)=7347000—7347=7339653.

Example 2 .- Multiply 678943 by 999999.

 $\begin{array}{ccc} 678943 \times 1000000 = 678943000000 \\ 678943 \times 1 = & 678943 \end{array}$

678043×090000 = 678942321057 Example 3.—Multiply 78.9645 by 99993.

78:9645×100000=7896450
78:9645× 7 = 552:7515
78:6645×99093 =7895897:2485

XII. When it is not necessary to have as many decimal places in the product, as are in both multiplicand and multiplic-

Reverse the multiplier, putting its units' place under the place of that denomination in the multiplicand, which is the lowest of the required product.

Multiply by each digit of the multiplier beginning with the denomination over it in the multiplicand; but adding what would have been obtained, on multiplying the preceding digit of the multiplicand—unity, if the number obtained would be between 5 and 15; 2, if between 15 and 25; 3, if between 25 and 35, &c.

Let the lowest denominations of the products, arising from the different digits of the multiplicand, stand in the same vertical column.

Add up all the products for the total product; from which cut off the required number of decimal places.

Example 1 .- Multiply 5.6784 by 9.7324, so as to have four decimals in the product.

Short method	Ordinary Method
56784	5-6784
42379	9-7324
511056	22/7136
\$9749	113 568
1703	1703 52
113	39748
22	511056
55.2643	55'2614 6016

9 in the multiplier expresses units; it is therefore put under the fourth decimal place of the multiplicand-that being the place of the lowest decimal required in the product.

In multiplying by each succeeding digit of the multiplier we neglect an additional digit of the multiplicand; because, as the multiplier decreases, the number multiplied must increase -to keep the lowest denomination of the different products, the same as the lowest denomination required in the total product. In the example given, 7 (the second digit of the multiplier) multiplied by 3 (the second digit of the multiplicand) will evidently produce the same denomination as 9 (one denomination higher than the 7), multiplied by 4 (one denomination lower than the 8). Were we to multiply the lowest denomination of the multiplicand by 7, we should get (53) a result in the fifth place to the right of the decimal point; which is a denomination supposed to be, in the present instance, too inconsiderable for notice—since we are to have only four decimals in the product. But we add unity for every ten that would arise, from the multiplication of an additional digit of the multiplicand; since every such ten constitutes one in the lowest denomination of the required product. When the multiplication of an additional digit of the multiplicand would give more than 5, and less than 15, it is nearer to the truth to suppose we have ten than either 0 or 20; and therefore it is more correct to add 1 than either 0 or 2. When it would give more than 15 and less than 25 it is nearer to the truth to suppose we have therefore it is more correct to add 1 than either 0 or z. When it would give more than 15 and less than 25, it is nearer to the truth to suppose we have 20, than either 10 or 30; and therefore it is more correct to add 2 than 1 or 3; &c. We may consider 5 either as 0 or 10; 15 either as 10 or 20; &c. On inspecting the results obtained by the abridged, and ordinary methods, the difference is perceived to be inconsiderable. When greater accuracy is desired, we should proceed as if we intended to have more decimals in the product, and afterwards reject those that are unnecessary.

Example 2.—Multiply 8.76532 by 0.5764, so as to have three decimal places.

There are no units in the multiplier; but, as the rule directs, we put its units' place under the third decimal place of the multiplicand. In multiplying by 4, since there is no digit over it in the multiplicand, we merely set down what would have resulted from the multiplying the preceding denomination of the multiplicand.

EXAMPLE 3 .- Multiply 0.23257 by 0.243, so as to have four

decimal places.

0.0565 We are obliged to place a cipher in the product to make up the required number of decimals.

EXERCISE 17.

1. The canals in Canada amount to 216 miles in length, and their average cost was \$83469 per mile. What was the total cost of the canals of Canada?

2. The Great Western Railroad is 229 miles in length, and its cost was about \$61135.37 per mile. What was the total

cost of this road?

3. The Austrian empire contains 255226 square miles, and the population averages 143 per square mile. What is the entire population of the Austrian empire?

4. France contains 203736 square miles, and the population averages 176 per square mile. What is the entire population of

France?

5. Great Britain contains 116700 square miles, and the population averages 235 per square mile. What is the entire po-

pulation of Great Britain?

6. The total number of Common Schools in operation in Canada West, during the year 1857, was 3721; allowing an average of 73 pupils to each, how many children were in attendance at the Common Schools?

7. 32000 seeds have been counted in a single poppy; how many

would be found in 297 of these?

8. 9344000 eggs have been found in a single cod fish; how many would there be in 35 such?

9. Multiply 123 lbs. 4 oz. 7 drs. 2 scr. 17 gr. by 749.

10. Multiply 1698732 by 999998.11. Multiply 123 bush. 1 pk. 1 gal. 1 qt. 1 pt. by 640.

12. What will be the cost of a chest of tea containing 89

lbs. at 73 cents per lb.?

13. How much cloth will it take to make the clothes for a regiment of soldiers containing 1143 men, if each suit requires 7 yds. 3 qrs. 2 na. 1 in.?

14. Multiply 1634.5789 by 635000.

15. A person dying bequeathed the whole of his property to his three sons. To the youngest he gave \$968.49; to the second, 3.4 times as much as the youngest; and to the eldest 3.7 times as much as to the second. Required the value of his property.

QUESTIONS TO BE ANSWERED BY THE PUPIL.

Note. - The numbers after the questions refer to the articles of the section.

 What is multiplication? (33)
 What is the multiplier? (35) 2. What is the multiplicand? (34)
4. What is the product? (36)

5. Why are the multiplier and multiplicand called the factors of the pro-

5. Why are the multiplier and multiplicand cance the lact (36)
duct (36)
6. What is a prime number? (37)
7. What is a composite number? (38)
8. If the multiplier be greater than unity, how will the product compare with the multiplicand? (39)
9. If the multiplier be equal to unity, how will the product compare with the multiplicand? (39)
10. If the multiplier be less than unity, how will the product compare with the multiplier be less than unity, how will the product compare with the multiplicand? (39)
11. Show that either of the factors may be used as multiplier without altering the value of the product. (40)
12. Show that when the multiplier is a composite number we may obtain the entire product by multiplying by each of the factors in succession. (41)

13. By whom was the multiplication table calculated? (42)
14. How was it calculated? (42)
15. What is the sign of multiplication? (43)
16. How do we multiply a quantity consisting of several factors connected

by the sign of multiplication? (44)

17. How do we multiply a quantity consisting of several terms, connected by the signs + and — enclosed within a bracket? (45)

18. What is meant by (7+3-2+5) × (9+3-7)? (45)

19. Why do we begin multiplying a number at the right-hand side? (46)

20. What is the rule for multiplication when the multiplier is not greater them 19 (48) than 12? (47)

21. What is the rule when the multiplier is a composite number, none of

its factors being greater than 12? (48)
22. What is the rule when the multiplicand is a denominate number, and the multiplier greater than 12, but not a composite number ? (49)
3. Show the absurdity of attempting to multiply one denominate number

by another. (50)

24. When the multiplicand is an abstract number, and the multiplier greater than 12, but not a composite number, what is the rule? (51)

25. When the multiplicand or multiplier, or both, contain decimals, what

26. Give the reason of this rule. (52 and 53)
27. How do we prove multiplication when the multiplier is less than 12?(54)
28. How do we prove multiplication when the multiplicand is an abstract number and the multiplier is greater than 12? (54)

29. Upon what does the proof by casting out the nines depend? (55)
30. Prove that casting the nines from the factors, multiplying the resulting remainders, and casting the nines from the product, will leave the same remainder as if the nines were cast from the product of the

same remainder as it the lines were east from the product of the factors. (56)

32. What short methods have we for multiplying by 5, 25 and 125 ? (57)

33. What short methods of multiplying by 15 and 75 ? (57)

34. How may we multiply by 175? How by 275? (57)

35. How may we multiply by 21, 31, 41, 5. &c.? How by 101, 102, 103, &c.? (57)

36. How may we multiply by 21, 31, 41, &c.? (57)

37. How may we contract the work when we require only a limited number of decimals? (57) of decimals? (57)

DIVISION.

- 58. Division is the process of finding how many times one number is contained in another.
 - 59. The number by which we divide is called the divisor.
 - 60. The number to be divided is called the dividend.
- 61. The number obtained by division, that is, the number which shows how many times the divisor is contained in the dividend is called the quotient (Lat. quoties, " how many times.")
- 62. If the divisor be less than the dividend, the quotient will be greater than unity.

If the divisor be equal to the dividend, the quotient will

be equal to unity.

If the divisor be greater than the dividend, the quotient will be less than unity.

63. It is sometimes found that the dividend does not contain the divisor an exact number of times; in such cases the quantity left after the division is called the remainder.

The remainder, being a part of the dividend, is, of course,

of the same denomination.

The remainder must be less than the divisor—otherwise the divisor would be contained once more in the dividend.

64. Division is merely a short method of performing a particular kind of subtraction (Art. 6, Sec. II.) The dividend corresponds to the minuend, the divisor to the

subtrahend, and the remainder to the difference. quotient has no corresponding quantity in subtractionsince it simply tells how many times the divisor can be subtracted from the dividend.

It will help us to understand how greatly division abbreviates subtraction, if we consider how long a process would be required to discover—by actually subtracting it—how often 7 is contained in 3563493724, while as we shall find, the same thing can be effected by division in less than a minute.

- 65. Since the quotient shows how many times the dividend contains the divisor, it follows that the divisor and quotient are the factors of the dividend. Hence if the divisor and quotient be multiplied together, and the remainder, if any, added to the product, the result will be equal to the dividend.
- 66. We have three ways of expressing the division of one quantity by another :-

1st. By the sign: ÷ written between them; thus, 15÷

3 = 5.

2nd. By the sign: written between them; thus, 15:3=5. 3rd. By writing the dividend above and the divisor below a horizontal line; thus, $\frac{15}{3} = 5$.

- Two quantities written thus 1 constitute what is called a fraction, and the expression is read six-elevenths.

 It is usual and proper to write the remainder obtained in division, in the form of a fraction; thus 17÷3 gives 5 as a quotient and 2 as a remainder. Now the remainder, 2, is written above the line, and divisor 3 below the line; the whole quotient being expressed thus 5\(\frac{2}{3}\) (read five and two-thirds); the meaning of which is, that 3 is contained in 17, 5 times and \(\frac{2}{3}\) of a time.
- 67. When a quantity consisting of several terms connected by the sign of multiplication is to be divided, dividing any one of the factors will be the same as dividing the product; thus 5×10×25÷5=5×10×25, for each is equal to 250.
- 68. When a quantity consisting of several terms connected by the signs + and -, contained within brackets, is to be divided, it is necessary, on removing the brackets, to put the divisor under each of the terms of the quantity;

6+3-7+9 thus $(6+3-7+9) \div 3$, or we do not divide the whole unless we divide all its parts.

69. It will be seen from (68) that the horizontal line

which separates the dividend from the divisor assumes the place of a pair of brackets when the dividend consists of several terms; and, therefore, when the quantity to be divided is subtractive, it will sometimes be necessary to

change the signs, as already directed (26); thus: $\frac{6}{2} + \frac{13-3}{2} = \frac{6+13-3}{2}$; but $\frac{27}{3} - \frac{15-6+9}{3} = \frac{27-15+6-9}{3}$

70. Example 1. Let it be required to divide 798 by 3.

EXPLANATION.—Place the divisor a little to the left of the OPERATION. dividend and separate them by a short curve line. Also draw a straight line beneath the dividend. 3)798 266

 $\frac{798}{3} = \frac{700 + 90 + 8}{3} = \frac{600 + 190 + 8}{3} = \frac{600 + 180 + 18}{3} = \frac{600}{3} + \frac{180}{3} + \frac{18}{3} = 200$ +60+6=266 (See 68).

Instead of going through this long operation it is evident that we may proceed as follows: 3 units into 7 hundreds will go 2 (hundreds) times and leave a remainder 1, which being of the order of hundreds, is equal to 10 tens; 10 tens and 9 tens make 10 tens, and 3 into 19 goes 6 (tens) times and leaves a remainder 1, which, being of the order of tens is equal to 10 units; 10 units and 8 units make 18 units, and 3 units into 18 units goes 6 (units) times.

Example 2. Let it be required to divide 917 lb. 13 oz. 12 dr. by 4.

OPERATION. EXPLANATION.—Placing the dividend and divisor as before, lb. oz. dr. 4)917 13 12 (tens) times and 1 over; 1 thouse, 4 on 11, 2 (tens) times and 3 over; 3 tens, equal to 30 units, and 7 units make 37 units; 4 in 37, 9 times and 1 over, which is 1 lb. because the 917 are pounds (63); 1lb., equal to 160z. and 180z. make 29 oz., 4 in 29, 7 times and 1 over, which is 1 oz., since the 29 are oz.; 1 oz. is equal to 16 drams and 12 drams make 28 drams; 4 in 28, 7 times. Observe that any order divided by units gives that order in the quotient.

Example 3. Let it be required to divide 9789 by 26.

EXPLANATION.—Placing the dividend and divisor as before, we say 26 in 9 (thousands) no times; 26 in 97 (hundreds), 3 (hundreds) times. We place the 3 (hundreds) to the right of the dividend and multiplying the divisor 26 by it, get 78 hundred, which we subtract from the 97 hundred, and obtain a remainder 19 hundreds are causal to 190 terms and 20 OPERATION. 26)9789(376 78 198 182 hundreds. 19 hundreds are equal to 190 tens, and 8 tens, make 198 tens; 26 in 198, 7 (tens) times. Multiplying the 26 by the 7 tens, we get 182 tens, which, sub-169 156 tracted from 198 tens, leaves a remainder of 16 tens. 16 tens are equal to 160 units and 9 units make 169 13 rem. Ans. 37623 units: 26 in 169, goes 6 times, and leaves a remainder 13.

This 13 should be divided by 26, but since 13 does not contain 26, the division cannot be effected, and we can only indicate it,

which we do by placing the 26 under the 13, as is explained in (Art. 66).

The complete quotient is therefore 37626 read 376 and thirteen-twentysixths or 376 and 13 divided by 26.

71. From the preceding illustration and examples we deduce, for the division of numbers, the following general

RIILE.

Beginning with the highest order of units in the dividend, pass on to the lower orders until the fewest number of figures be found that will contain the divisor; divide these figures by it, for the first figure of the quotient; this figure will be of the same order as that of the lowest used in the partial dividend.

Multiply the divisor by the quotient figure so found, and subtract the product from the dividend, being careful to place units of the same order in the same vertical column. Reduce the remainder to units of the next lower order, and add in the units of that order found in the dividend: this will furnish a new dividend.

Proceed in a similar manner until units of every order shall have

been divided.

EXAMPLE 1.-Divide 98765 by 7.

EXPLANATION.—Here we say 7 in 9, 1 and 2 over; in 28 4 and 0 over; in 7, 1 and 0 over; in 6, 0 times and 6 over; in 65, 9 and 2 over. Beneath this 2 we write the divisor 7, to in-OPERATION. 7)98765 dicate its division. We may, however, carry on the division 141092

by considering the 2 units reduced to tenths, &c., and the quotient be-

comes 14109 2857.

Thus 2 units, equal to 20 tenths, 7 in 20, 2 and 6 over; 6 tenths are equal to 60 hundredths, 7 in 60, 8 times and 4 over; 4 hundredths are equal to 40 thousandths, 7 in 40, 5 and 5 over; 5 thousandths are equal to 50 tenths of thousandths, &c.

Example 2.—Divide 124789 by 12.

OPERATION. EXPLANATION.—Here again we may either stop at the units and write the remainder 1 over the divisor 12, or we may reduce the 1 unit to tenths, &c., as in the second operator. 12) 124789 1039971 ration.

or 12)124789

10399.083+

Example 3.—Divide £1986 14s. 71d. by 9.

OPERATION.

9) £1986 14 7½

Over; 9 in 6, 0 and 6 over; £6 are equal to 120s. and 14s. make 134s.; 9 in 134 14, and 8 over; 8s. are equal 4d. are equal to 16 farthings and 2 farthings make 18 farthings; 9 in 18, 2, i. e. one ninth of 18 farthings is 2 farthings, written thus ½d.

72. In example 3, we are, in reality, required to find one-ninth of the dividend. The obvious meaning is, not that 9 is contained in £1986 14s. 71d. £220 14s. 111d. times, which would be nonsense, but that £220 14s. 111d. is the ninth part of £1986 14s. 71d.: so also in all similar questions.

Notwithstanding this, all such examples are reducible to a species of subtraction. Thus, in the above example, we for the moment, consider the divisor 9 to be of the same denomination as the dividend, and ascertain how many times £9 will go into (i. e., can be subtracted from) £1986. We get, as a result, 220 times, and a remainder of £6. Then we argue, from the principles already established, that since £9 is contained in £1986 220 times, with a remainder of £6; £220 is contained in £1986 9 times, with a remainder of £6; that is, that the ninth part of £1986 is £220, with a remainder £6. Next reducing this £6 to shillings, and adding in the 14s., we obtain a total of 134s., and we find that 9s. is contained in 134s. 14 times, with a remainder of 8s., whence we conclude that 14s. is contained in 134s. 9 times. with a remainder of 8s., that is, that the ninth part of 134s. is 14s. with a remainder of 8s., or that the ninth part of £1986 14s. is £220 14s., with 8s. still undivided, &c.

Example 4.—Divide 978964 by 3429.

OPERATION. 3429)978964(2851 6 9 2 6858

29316 27432

18844 17145

ber of figures that will contain the divisor) goes 2 times, we therefore put 2 in the quotient. Multiplying 3429 by 2, we get 6858, which we subtract from 9789; and obtain as remainder 2931, which we reduce to the next lower order (tens) and add in the 6 tens, 3429 into 29316 goes 8 times. We therefore place 8 in the quotient. Multiplying 3429 by 8 we get 27432, which we subtract from 29316, and obtain 1884 as a remainder. Reducing to units and adding in the 4, or what amounts to the same thing, bringing down

EXPLANATION. -3429 into 9789 (the smallest num-

1699 the 4 and writing it after the 1884 we get 1884: and 3429 into 18844 goes 5 times, with a remainder 1699, under which we write the divisor 3429.

73. When the dividend is an abstract number, it is evident that bringing down the next figure and writing it to the right of the remainder, is the same in effect as reducing the remainder to the next lower denomination and adding in the units of that order found in the dividend. Thus, in the last example, bringing down the 6 and writing it directly to the right of the first remainder, 2931, makes the next partial dividend 29316, which is the same as reducing the 2931 to the next lower order and adding to the result the 6 of that order found in the dividend.

Example 5 .- Divide 6421284 by 642.

612

1284

OPERATION. EXPLANATION.—642 goes once into 642, and leaves no 642)6421284(10002 remainder. Bringing down the next digit of the dividend gives no digit in the quotient, in which, therefore, we put a cipher after the 1. The next digit of the dividend, in the same way, gives no digit in the quotient, in

1234 which, consequently, we put another elpher, and, for similar reasons, another in bringing down the next; but the next digit makes the quantity brought down 1234, which contains the divisor twice, and gives no remainder:—we put 2 in the quotient.

Note .- After the first quotient figure is obtained, for each figure of the dividend which is brought down, either a significant figure, or a cipher, must be put in the quotient.

74. When there is a remainder, we may continue the division, adding decimal places to the quotient, as follows—
EXAMPLE 6.—Divide 796347 by 847, and the result by 7234.

OPERATION. 847)796347(940·197168, &c. 7623 3404 3388 1670 847 8930 7623 6070 5929 1410 847 5630 5082 5480 5082 398, &c. 7234)940·197166(0·129969, &c. 723.4 216:79 144.68 72.117 65'106 7.0111 6.2106 50056 43404 66526 65106

75. When the divisor is large, the pupil will find assistance in determining the quotient figure, by finding how many times the first figure of the divisor is contained in the first figure, or, if necessary, the first two figures of the dividend. This will give pretty nearly the right figure. Some allowance, must, however, be made for carrying from the product of the other figures of the divisor, to the product of the first into the quotient figure. After multiplying the divisor by the quotient figure, if the product is greater than the corresponding partial dividend, this shows the quotient was taken too great, and must be diminished. If the remainder, after subtraction, is greater than the divisor, the quotient was taken too small, and must be increased.

Example 7.—Divide 279 cwt. 3 qrs. 14 lb. 9 oz. by 129.

OPERATION. cwt. qrs. lb. oz. cwt. qr. lb. oz. dr. 279 3 14 9(2 0 16 15 9729 129)279 258 4=qrs. in cwt. 87 = qrs. 25 = Ibs. in ar. 449 174 2189 = lbs. 129 899 774 125 16= oz. in lb. 759 1252009 = oz.129 719 645 16 = drams in oz. 441 74 1184 = drams.

EXPLANATION .- 129 in 279, i. c., the 129th part of 279 cwt. is 2 cwt., with a remainder of 21 cwt. This 21 cwt. we reduce to quarters by multiplying by 4 and adding in the 3 qrs. The 129th part of 87 qrs. is equal to 0 qr. and we therefore place to 0 qr. and we therefore place of a 0 in the quarters' place of the quotient. We next reduce qrs. to lbs. by multiplying by 25 and adding in the 14lbs. of the dividend. We 14lbs. of the dividend. 1409. Or the dividend. We thus obtain 2189 lbs., of which the 129th part is 16 lb., with an undivided remainder of 125 lbs. Reducing 125 lbs. to oz., and adding in the 9 oz., we obtain 2009 oz., of which the 129th part is 15 oz., with an undivided remainder of 74 oz. Reducing the 74 oz. to oz. Reducing the 74 oz. to drams, we obtain 1184 drams, of which the 129th part is 9 drams, with an undivided remainder of 23 drams, under which we place the divisor 129 to indicate its division. Thus we find the total quotient to be 2 cwt. 0 qr. 16 lb. 15 oz. 9723 drs.

76. The general principles on which the operations in division depend are:-

1st. The quotient arising from the division of the whole dividend by the divisor, is equal to the sum of the quotients arising from the division of the several parts of the dividend by the divisor. (68)

2nd: The divisor and quotient are the factors of the di-

vidend. (65)

1116

23 remainder.

3rd. The product of the divisor, by the entire quotient, is equal to the sum of the products of the divisor by the several parts of the quotient. (45)

We ask how many times the divisor is contained in a part of the dividend, and thus a part of the quotient is found; the product of the divisor by this part is taken from the dividend, showing how much of the latter remains undivided; then a part of the remaining dividend is taken and another part of the quotient is found, and the product of the divisor, by it, is taken away from what before remained; and thus the operation proceeds till the whole of the dividend is divided, or till the remainder is less than the divisor.

77. We begin at the left-hand side, because what remains of the higher denomination may still give a quotient in a lower; and the question is, how often the divisor will go into the dividend—its different denominations being taken in any convenient way. We cannot know how many of the higher we shall have to add to the lower denominanations, unless we begin with the higher.

PROOF OF DIVISION.

78. FIRST METHOD.—Multiply the quotient by the divisor, and to the product add the remainder, if any; the result should be equal to the dividend. (65)

Example 8.—Divide £5681 13s. 4d. by 700.

SECOND METHOD.—Subtract the remainder, if any, from the dividend, divide the dividend, thus diminished, by the quotient; and if the result is equal to the given divisor, the work is right.

This is merely doing the same work by a different method.

THIRD METHOD.—Cast the nines out of the divisor and quotient, and multiply the remainders together; add to their product the remainder, if any, after division, and cast the nines out of this sum; the remainder thus obtained should be equal to the remainder obtained by casting the nines out of the dividend.

Since the divisor and quotient answer to the multiplier and multiplicand, and the dividend to the product, it is evident that the principle of casting out the 9s will apply to the proof of division as well as to that of multiplication.

FOURTH METHOD. -Add the remainder and the respective products

of the divisor into each quotient figure together; and if the sum is equal to the dividend, the work is right.

This mode of proof depends upon the principle that the whole of a quantity is equal to the sum of all its parts.

Example 9 .- Divide 147856 by 97.

97)147856(1524)
97*
508
485*
235
194*
416
388*
28*

NOTE.—The asterisks shew the lines to be added.

EXERCISE 18.

(1) 12)876967	(2) 7)891023	9)76		7	8)654	(4) 32·9	78	
73080 ₁ ⁷ g	127289	8	482	8 §	81	79-1	2225	
(5) \$ cts. 9)6789·60	(6) \$ cts. 11)4298·76	£ 4)19	(7) s. 6	d. 4	wks. 9)69	(8 ds. 4		min. 30
\$754.40	\$390.7971	4	16	7	7	5	4	50
9. Divide 79	8965 by 6423.	-	-8		1	Ans	. 124	2413.
10. Divide £	176 14s. 6d. by	12.			Ans.	£14	149	6 d.
11. Divide 56	789 by 741.					1	Ins. 7	6473.
12. Divide 67	85158 by 7894					Ans	. 859	1212.
13. Divide £	4728 16s. 2d. b	y 317.			Ans. £	14 1	88. 4	5,4,d.
14. Divide \$	Ar	s. \$	228.1	9313.				
15. Divide 97	Ans. 1	6179	93.83	33+.				
16. Divide 71234 by 9.						A	lns. 7	9148
17. Divide 97	7076 by 47600					Ans	. 203	48 76 .

18. Divide 7289 lbs. 6 oz. 4 drs. 2 scr. 13 grs. by 498.

Ans. 14 lbs. 7 oz. 5 dr. 0 scr. 12487 gr.

19. Divide £157 16s. ₹d. by 487.

Ans. 6s. 5₹d. A%.

20. Divide 7867674 by 9712.

Ans. 810 371 1.

21. Divide 422 m. 3 fur. 38 rds. by 37, Ans. 11 m. 3 fur. 14 rds.

GENERAL PRINCIPLES.

79. If a given divisor is contained in a given dividend a certain number of times, the same divisor will be contained in double that dividend twice as many times; in three times that dividend thrice as many times, &c. Hence,

When the divisor remains the same, multiplying the dividend by any number has the effect of multiplying the

quotient by the same number.

Thus $9 \div 3 = 3$; 9×2 or $18 \div 3 = 6 = 3 \times 2$, 9×5 or $45 \div 3 = 15 = 3 \times 5$, &c.

80. If a given divisor is contained in a given dividend a certain number of times, the same divisor will be contained in half that dividend half as many times; in one-third of that dividend one-third as many times, &c. Hence,

When the divisor remains the same, dividing the dividend by any number, has the effect of dividing the quotient by the same number.

Thus $48 \div 3 = 16$; $48 \div 3$ or $24 \div 3 = 8 = \frac{1}{2}$; $48 \div 3$ or $6 \div 3 = 2 = \frac{1}{8}$ 6, &c.

81. If a given divisor is contained in a given dividend a certain number of times, half that divisor will be contained in the same dividend twice as many times, one-third of that divisor thrice as many times, &c. Hence,

When the dividend remains the same, dividing the divisor by any number has the effect of multiplying the quotient by that number.

Thus $48 \div 6 = 8$; $48 \div \frac{6}{5}$ or $48 \div 3 = 16 = 8 \times 2$; $48 \div \frac{6}{3}$ or $48 \div 2 = 24 = 8 \times 3$, &c.

82. If a given divisor is contained in a given dividend a certain number of times, twice that divisor will be contained in the same dividend only half as many times, three times that divisor only one-third as many times, &c. Hence,

When the dividend remains the same, multiplying the divisor by any number has the effect of dividing the quotient by the same number.

Thus $48 \div 2 = 24$; $48 \div t$ wice 2 or $48 \div 4 = 12 =$ half of 24. $48 \div e$ ight times 2 or $48 \div 16 = 3 =$ one-eighth of 24, &c.

83. If a given divisor is contained in a given dividend a certain number of times, twice that divisor is contained in twice that dividend the same number of times; thrice that divisor in thrice that dividend the same number of times, &c. Hence,

When the divisor and dividend are both multiplied by the same number, the quotient will remain unchanged.

Thus 12:4=3; 24 or twice 12:8 or twice 4=3; 72 or thrice 24:24 or thrice 8=3, &c.

Ans. 15016.

Ans. 5124 64.

84. If a given divisor is contained in a given dividend a certain number of times, half that divisor is contained in half that dividend the same number of times; one-third that divisor in onethird that dividend the same number of times, &c. Hence,

When the divisor and dividend are both divided by the same number, the quotient will remain unchanged.

Thus $48 \div 24 = 2$: 24 or half of $49 \div 12$ or half of 24 = 2, &c.

TO DIVIDE BY A COMPOSITE NUMBER.

85 .- Divide the dividend by one of the factors of the divisor; then the resulting quotient by another factor; and so on till all the factors are used. The last quotient will be the answer.

Multiply each remainder by all the preceding divisors and add their products to the first remainder, if any, for the true remainder.

When the divisor is separated into only two factors, the rule for finding the true remainder may be thus expressed :-

Multiply the last remainder by the first divisor, and to their product add the first remainder, if any; the result will be the true remainder.

Example. Divide 718 lbs. by 72.

3)718	$\begin{array}{ccc} \text{OPERATION.} \\ \text{1st remainder} &= 1 \text{ lb.} \end{array}$	
4)239-1	2nd remainder=3×3 = 9 lb.	
6)59-3	3rd remainder= $5\times4\times3=60$ lb.	
9-5	true remainder 70 lb.	

Ans. 97 9.

That dividing by the factors of a number will give the same quotient as dividing by the number itself, follows directly from Art. 84.

In the last example, dividing by 3 distributes the 718 lbs. into 230 parcels of 3 lbs. each, and leaves a remainder of 1 lb.; dividing next by 4 distributes the 230 parcels into 50 still larger parcels, each containing 4 of the smaller or 3 lb. parcels, and leaves a remainder 3, which is not 3 lbs. but 3 parcels, each of 3 lb.; lastly, dividing the 50 by 6 distributes it into 9 large parcels of 72 lbs. each, and leaves a remainder 5, which is, of course, 5 of the 12 lb. parcels. Hence the reason of the rule for finding the true remainder.

EXERCISE 19.

2. Divide 26406 by 42.	Ans. 628 20.
3. Divide 25431 by 96.	Ans. 26487.
4. Divide £24 17s. 6d. by 24.	Ans. £1 0s. 83d.
5. Divide £740 13s. 4d. by 49.	Ans. £15 2s. 3d2.20.
6. Divide £547 12s. 4d. by 56.	Ans. £9 15s. 6d1.19.
7 Divide 6789436 by 35	Ans. 19398314

8. Divide 753293 by 147 ($=7 \times 7 \times 3$)

Divide 3766 by 25.

9. Divide 1798 lbs. 6 oz. 11 dwt. 9 grs. by 81.

Ans. 22 lbs. 2 oz. 9 dwt. 047 grs.

86. When both the divisor and the dividend are denominate numbers—

RULE.

Reduce both the divisor and the dividend to the lowest denomination contained in either, and then proceed as in Art, 71.

Example 1.-Divide £37 5s. 91d. by 3s. 61d.

170)35797(2101770 times. 340 179 170

 $\frac{170}{97}$ 87. In the above and all similar

87. In the above and all similar questions we are required to find what fraction the divisor is of the dividend; or, in other words, how often the divisor is contained in, or can be subtracted from, the dividend, and the quotient must necessarily be an abstract number.

Example 2.—Divide 729 cwt. 3 qrs. 16 lb. by 3 qrs. 9 lb. 7 oz.

qrs. lbs. 9 25	
_	transmission .
84	2919
16	25
511	14611
84	5838
1351 oz.	72991
	16
	437946
	72991
1351	11167856 00 (0CA-5)

1351)1167856 0z.(864 136 T times 10808

EXERCISE 20.

- 3. Divide £171 1s. 10 d. by £57 0s. 7 d. Ans. 3.
- 4. Divide 91b. 9 oz. 3 dwts. 12 grs. by 5 dwts. 9 grs. Ans. 436.
- 5. Divide 2366 acres 3 roods 36rds. by 91 acres 6 rds. Ans. 26.

88. When the dividend alone contains decimal places, the preceding rules are sufficient; but when the divisor contains decimals, it becomes necessary to prepare the quantities for division according to the following—

RULE

Remove the decimal point as many places to the right in both the dividend and the divisor, as there are decimals in the divisor, and then proceed as in Art. 71.

This is simply multiplying both dividend and divisor by the same number, and therefore (Art.83) does not affect the quotient. Thus removing the decimal point one place to the right, in both dividend and divisor, is equivalent to multiplying each by 10; two places, the same as multiplying each by 100; three places, by 1000, &c.

EXAMPLE 1 .- Divide 87.6 by .0009

Multiplying each by 10000, or, in other words, removing the decimal point four places to the right, in each, (since there are four decimals in the divisor,) gives us \$76000÷9, and this (Art. 83) must give the same quotient as \$7.6÷10000, therefore

 $87.6 \div 0009 = 876000 \div 9 = 97333.33. &c.$

Example 2.—Divide .06 by 8.934.

 $.06 \div 8.934 = 60 \div 8934.$

8934)60'000(0'0067, &c.

53.604

6:3960

1422

Removing the decimal point three places to the right, in each, we get $60 \div 931$, and we then proceed thus; 8934 into 60 (units), 0 tunits) times; set down 0 with the decimal point after 1t; 8934 into 600 (tentis), 0 times; into 6000 (thousandths), 6 (thousandths) times, &c.

EXAMPLE 3.—Prepare $93.004 \div 0000069$ for division. $Ans. 93.004 \div 0000069 = 930040000 \div 69$.

EXERCISE 21.

- 1. $43 \div .0006947 = 4300000000 \div 6947$.
- 2. $9378.92 \div 9.7891 = 93789100 \div 97891$.
- 3. $4.96723 \div 23.934 = 4967.23 \div 23034$.
- 4. $.793 \div .49 = 79.3 \div 49.$

5. $\cdot 001 \div 674.937 = 1 \div 674937$.

6. Divide 47.655 by 4.5.7. Divide 756.98 by 76.73612.

8. Divide 47.5782975 by 26.175.

9. Divide 1 by 7.6345.

10. Divide 75.347 by 0.3829.

11. Divide .0002 by .000000008

Ans. 10·59. Ans. 9·864+. Ans. 1·8177. Ans. 0·1309+. Ans. 196·7798+. Ans. 25000.

CONTRACTIONS IN DIVISION.

89. To divide by 10, 100, 1000, &c.

Remove the decimal point as many places to the left in the dividend as there are 0s in the divisor.

90. To divide by 25.

Multiply by 4 and divide by 100.

Reason 25 = 100.

91. To divide by 15, 35, 45, or 55.

Double the dividend, and divide the product by 30, 70, 90, or 110 as the case may be.

REASON.—This method is simply doubling both the divisor and dividend. We must therefore divide the remainder, if any, by 2, for the true remainder.

92. To divide by 125.

Multiply the dividend by 8, and divide the product by 1000.

REASON.—This contraction is multiplying both the dividend and divisor by 8. For the *true* remainder, therefore, we must divide the remainder, if any, by 8.

93. To divide by 75, 175, 225, or 275.

Multiply the dividend by 4, and divide the product by 300, 700, 900, or 1100, as the case may be.

REASON. -75 = 300, 175 = 700, &c. For the *true* remainder, divide the remainder, if any thus found, by 4.

94. When there are many decimals in the dividend and but few are required in the quotient, we may abbreviate the division by the following—

BULE.

Proceed as in Art. 71 till the decimal point is placed in the quotient, and then cut off a digit to the right hand of the divisor, at each new digit of the quotient; remembering to carry what would have been obtained by the multiplication of the digit neglected—unity if this multiplication would have produced more than 5 and less than 15; 2 if more than 15, and less than 25, &c.

Example. - Divide 754.337385 by 61.347.

Ordinary Method. 61347)754337:385(12:296 61347		Contracted Method. 61847)754337:385(12:296 61347			
14086 12269		140867 · · · · · · · · · · · · · · · · · · ·			
1817 1226	3·3 9·4	18173 · 12269 ·			
552	3°98 1°23	5904· 5521·			
	2.755 3.082	383· 368·			

According as the denominations of the quotient become small, their products by the lower denomination of the divisor become inconsiderable, and may be neglected, and consequently, the portions of the dividend from which they would have been subtracted. What should have been carried from the multiplication of the digit neglected—since it belongs to a higher denomination than what is neglected—must still be retained.

EXERCISE 22.

1. The Ontario, Simcoe, and Huron Railway is 95 miles in length, and cost \$3300000. What was the cost per mile?

2. The Ridcau Canal is 126 miles in length, and cost \$3860000.

What was the average cost per mile?

3. The distance of the earth from the sun is 95270400 miles; how long would it take a cannon ball, going at the rate of 28800 miles per day, to reach the sun?

4. The national debt of France is 1145012096 dollars, and the number of inhabitants is 35781628; what is the amount of

indebtedness of each individual?

5. The national debt of Great Britain is 3764112127 dollars, and the number of inhabitants is 27475271; what is the amount of indebtedness of each individual?

6. What is the ninth part of \$972?

- 7. What is each man's part, if \$972 be divided equally among 108 men?
 - 8. Divide a legacy of \$8526 equally between 294 persons.
- 9. Divide 340480 ounces of bread equally between 792 persons.
- 10. A cubic foot of distilled water weighs 1000 ounces; what will be the weight of one cubic inch?
- 11. How many Sabbath days' journeys (each 1155 yards) in the Jewish day's journey, which was equal to 33 miles and 2 furlongs English?

12. How many pounds of butter, 19 cents per lb., would pur-

chase a cow, the price of which is \$47.50?

13. Divide 978.634 by 96.34762.

14. Divide 729 bush. 1 pk. 1 gal. 1 qt. 1 pt. by 297.

15. Divide 179 cwt. 3 or. 4 lb. 16 oz. by 9 lb. 7 oz. 8 drs.

16. The circumference of the earth is about 25000 miles; if a vessel sails 93 m. 4 fur. 7 rds. a day, how long will it require to sail round the earth?

OUESTIONS TO BE ANSWERED BY THE PUPIL.

NOTE .- The numbers after the questions refer to the articles of the

1. What is division? (58)
2. What is the divisor? (59)
3. What is the dividend? (60)
4. What is the quotient? What is the derivation of the word quotient (61)? 5. Explain when the quotient will be equal to unity, and when greater or less than unity. (62)

6. Under what circumstances does a remainder arise in division? (63)

7. What is the denomination of the remainder? (63) 8. Why can it never be as great as the divisor? (63)

What is the correspondence between the minuend and the subtrahend in subtraction and the divisor and the dividend in division? (64)
 What may we consider as the factors of the dividend? (65)
 How many ways have we of expressing the division of one quantity by another? What are they? (66)

When a quantity consisting of several terms, connected by the sign ×, is to be divided by any number, how may the work be performed? (67)
 When a quantity consisting of several terms, connected by the signs + or -, contained within brackets, is to be divided, what must be done

upon removing the brackets? (68)

14. Give the general rule for division. (71)
15. In the question "Divide 11 m. 7 fur. 20 per. 3 yds. by 279," explain what is really required. (72) Show that all such questions are reducible to a species of subtraction. (72)

16. In dividing abstract numbers, explain what bringing down the next figure of the dividend is equivalent to. (73)

17. When there is a remainder, how is it to be written? (71, Example 1)
18. What are the three general principles upon which the operations of division depend? (76)

19. Why do we begin dividing at the left-hand side? (77)

20. How may division be proved? (78)

21. The divisor remaining unchanged, what effect has multiplying the

- dividend by any number? (79)
- 22. The divisor remaining unchanged, what effect has dividing the dividend by any number? (30)

 23. The dividend remaining unchanged, what effect has dividing the divisor
- by any number? (81)

 24. The dividend remaining unchanged, what effect has multiplying the divisor by any number? (82)
- 25. What is the effect upon the quotient when the divisor and the dividend are both multiplied by the same number? (83)
- 26. What is the effect upon the quotient when the divisor and the dividend are both divided by the same number? (84)
 27. How do we divide by a composite number? (85)

28. When we divide by the divisors of a composite divisor, how do we obtain the correct remainder? (85) 29. When the divisor is separated into only two factors, how may the rule

for obtaining the correct remainder be worded? (85) 30. When the divisor and the dividend are both denominate numbers, what is the rule? (86)

31. When one denominate number is divided by another, what kind of a number must the quotient always be? (87)

32. In the question "Divide 37 lb. 2 oz. 15 dr. by 1 lb. 9 oz. 11 dr.," what are

we in reality required to do? (87)
33. When the divisor contains decimals, how do we proceed? (88) Upon

what principle do we do this? (88)

4. How do we divide by 1, followed by any number of 0s? (89)

55. How do we contract the work when dividing by 25? How by 15, 35, 45,

or 55? (90, 91)

36. How do we divide by 125? How by 75, 175, 225, or 275? (92, 93)

37. How do we abbreviate the work when there are many decimals in the dividend and but few are required in the quotient? (94)

EXERCISE 23.

MISCELLANEOUS EXERCISE. (On preceding rules.)

1. Multiply 789643 by 999998.

2. Read the following numbers: 67813420-021030046.

72000000.0000000072, 1001000100.0010000010000001.

3. Express 709, 4376, 9999, 86004, and 3947596 in Roman numerals.

4. Multiply 749 lb. 10 oz. avoirdupois by 72.

5. What is the price of 17 pairs of gloves at 4s. 71d per pair?

6. The planet Neptune is 2850 millions of miles from the sun; how long would it take a locomotive to travel from the sun to Neptune, at the rate of 30 miles an hour?

7. Reduce £729 17s, 64d, to dollars and cents.

8. From \$10000 subtract \$9876.23.

9. Write down five hundred and twenty billions, six millions, two thousand and forty-three, and five thousand and sixteen trillionths.

Reduce 7964327 inches to acres, roods, &c.

11. Add together the following quantities: \$729.43, \$16.70, \$976.81, \$9987.17, \$429.00, \$129.19.

12. Multiply 6 weeks 4 days 3 hours 17 minutes by 429.

13. Take the number 741, and, by removing the decimal point: (1) multiply it by 1000000; (2) divide it by 100000; (3) make it millions; (4) make it billionths; (5) make it trillionths; (6) make it hundredths of thousandths; (7) make it tenths.

14. Multiply 78.96 by .00042.

15. How many hogsheads of sugar, each containing 13 cwt. 2 qrs. 14 lbs., may be put on board a ship of 324 tons burden?

16. A furmer's yearly income was 9237 dollars. He paid for repairing his house 136 dollars, for hired help on his farm 4 times as much lacking 95 dollars, and for other expenses 1902 dollars; how much does he save yearly?

17. How many suits of clothes can be made from a piece of cloth containing 39 yds. 2 grs. 3 nls.; each suit requiring 3 yds.

1 qr. 2 nls.?

18. There is a farm consisting of 732 acres; 25 acres of which is planted with corn and potatoes; 197 acres sown with rye; 156 with oats; 97 with wheat; 199 is pastured; and the ramainder is meadow. How many acres of meadow?

19. Bought 96 acres 3 roods 17 perches of land, for which I pay \$7764; what did I pay for it per perch?

20. A lady, having 312 dollars, paid for a bonnet 20 dollars, for a shawl 75 dollars, for a silk dress 97 dollars, and for some delaines 83 dollars; how much had she remaining?

21 A silversmith received 36 lb. 8 oz. 14 dwt. 16 grs. of silver to make 12 tankards; what would the weight of each tankard be?

22. I bought four fields; in the first there were 6 acres 3 rds. 12 perches; in the second, 7 acres 2 roods; in the third, 9 acres and 13 perches; in the fourth, 5 acres 2 roods 36 perches. How much in all?

23. A merchant expended 294 dollars for broadcloth, consisting of three different kinds; the first at 5 dollars a yard; the second at 7 dollars; and the third at 9 dollars a yard. He had as many yards of one kind as of another—how many yards of each kind did he buy?

24: A silversmith made three dozen spoons, weighing 5 lb. 9 oz. 8 dwt.; a tea-pot, weighing 3 lb. 2 oz. 16 dwt. 16 grs.; two pair of silver candlesticks, weighing 4 lb. 6 oz. 17 dwt.; a dozen silver forks, weighing 1 lb. 8 oz. 19 dwt. 22 grs.; what was the weight of all the articles?

25. Reduce £972 11s. 114d. to dollars and cents.

26. Reduce 179 lbs. 3 oz. 3 dr. 1 scr. 14 grs. to grains.

27. There is a house 56 feet long, and each of the two sides of the roof is 25 feet wide; how many shingles will it take to cover

it, if it require 6 shingles to cover a square foot?

28. A merchant bought 4 bales of cotton; the first contained 6 cwt. 2 qr. 11 lb.; the second, 5 cwt. 3 qr. 16 lb.; the third, 8 cwt. 0 qr. 7 lb.; the fourth, 3 cwt. 1 qr. 17 lb. He sold the whole at 15 cents a pound; what did it amount to?

29. A merchant has 29 bales of cotton cloth, each bale containing 57 yards; what is the value of the whole at 15 cents a

yard?

30. A man willed an estate of \$370129 to his two children and wife, as follows: to his son, \$139468; to his daughter, \$98579; and to his wife the remainder. How much did he will to his wife?

Divide £1694 16s. 044d. by £9 19s. 114d.
 Reduce £19 19s. 114d. to dollars and cents.

33. A merchant having purchased 12 cwt. of sugar, sold at one time 3 cwt. 2 qrs. 11 lb., and at another time he sold 4 cwt. 1 qr. 15 lb.; what is the remainder worth, at 15 cents per pound?

34. Bought 4 chests of hyson tea; the weight of the first was 2 cwt. 0 qr. 17 lb.; the second 3 cwt. 2 qrs. 15 lb.; the third, 2 cwt. 1 qr. 20 lb.; the fourth, 5 cwt. 3 qr. 17 lb.; what is the value of the whole at 371 cents a pound?

35. Express 100200300709 in Roman numerals.

36. Divide 43.2 by 76.8437.

37. Divide 123.4 by .000000066.

38. From \$2789.27 take 17 times \$63.29.

39. Add together \$278.43, \$417.16, \$11.27, \$2110.40, \$723.15,

and £29 6s. 113d. and divide the sum by 173.

40. In 1857 the total number of volumes in the Common Schooland other Public Libraries of Canada West was estimated at 491544 and the number of libraries at 2076. How many volumes were there upon an average to each library?

SECTION III.

PROPERTIES OF NUMBERS, PRIME NUMBERS, MEASURES, GREATEST COMMON MEASURE, LEAST COMMON MULTIPLE, SCALES OF NOTATION, AND APPLICA-TION OF THE FUNDAMENTAL RULES TO DIFFERENT SCALES. DUODECIMALS.

1. A divisor, or measure of a number, is a number which will divide it exactly; that is, leaving no remainder.

2. A multiple of a number is a number of which the given number is a divisor.

3. An integer, or integral number, is a whole number.

4. Integers are either prime or composite, odd or even.
5. An Even Number is that of which 2 is a divisor.

6. An Odd Number is that of which 2 is not a divisor. 7. A Prime Number is one which has no integral divisor

except unity and itself, thus 2, 3, 5, 7, 11, 13, 17, 19, 23,

29, &c., are primes.

8. A Composite Number is a number which is not prime; or is a number which has other integral divisors besides unity and itself, thus 4, 6, 9, 10, 12, 14, 15, 16, 21, &c., are composite numbers.

9. The Factors of a number are those numbers which,

when multiplied together, produce or make it.

10. Factors are sometimes called measures, submultiples,

or aliquot parts.

11. A Common Measure of two or more numbers, is a number which will divide each of them without a remainder; thus 7 is a common measure of 14, 35, and 63.

12. Two or more numbers are prime to one another when they have no common divisor except unity; thus, 9 and 14 are "prime to each other."

Hence all prime numbers are prime to each other; but composite numbers may or may not be prime to one another.

13. Commensurable Numbers are those which have some common divisor.

Thus 55 and 33 are commensurable, the common divisor being 11.

14. Incommensurable Numbers are those which are prime to one another.

Thus 55 and 34 are incommensurable.

15. A Square Number is one which is composed of two equal factors.

Thus 25=5×5 is a square number: so also 64=8×8, &c.

16. A Cube Number is one which is composed of three equal factors.

Thus $343=7\times7\times7$ is a cube number: so also $27=3\times3\times3$, &c.

17. A Perfect Number is one which is exactly equal to the sum of all its divisors.

Thus, 6=1+2+3 is a perfect number; so also 28=1+2+4+7+14 is a perfect number.

All the numbers known to which this property really belongs, are the eight following: 6; 28; 496; 8128; 33550336; 8589869056; 137438691328; and 2305843008139952128.

Note.-All perfect numbers terminate with 6, or 28.

18. Amicable Numbers are such pairs of integers that each of them is exactly equal to the sum of all the divisors of the other.

Thus, 220 and 284 are amicable; for, 220=1+2+4+71+142, which are all the divisors of 284, and 284=1+2+5+11+4+10+22+20+44+55+110, which are all divisors of 220.

Other amicable numbers are 17296 and 18416; also 9363583 and 9437056.

19. By the term properties of numbers, is meant those qualities or elements which are inseparable from them. Some of the most important properties of numbers are the following:

I. The sum of two or more even numbers is an even

number.

II. The difference of two even numbers is an even number.

· III. The sum or difference of two odd numbers is an even number.

IV. The sum of three, five, seven, &c., odd numbers, is an odd number,

V. The sum of two, four, six, eight, &c., odd numbers, is an even number.

VI. The sum or difference of an even and an odd num-

ber, is an odd number,

VII. The product of two even numbers, or of an even and an odd number, is an even number.

VIII. If an even number be divisible by an odd num-

ber, the quotient will be an even number.

IX. The product of any number of factors will be even if one of the factors be even.

X. An odd number is not divisible by any even number.

XI. The product of any number of factors is odd if they are all odd.

XII. If an odd number divide an even number, it will

also divide half of it.

XIII. Any number that measures two others must likewise measure their sum, their difference, and their product.

Thus, if 6 goes into 24 four times, and into 18 three times, it will go into

24+18 or 42, three plus four, or seven times.
Also, if 6 goes into 24 four times, and into 42 seven times, it will go into 42-24 or 18, seven minus four, or three times. Lastly, if 6 goes into 24 four times, and into 12 twice, it will evidently go into 12 times 24, twelve times 4 times, or 48 times.

XIV. If one number measure another, it must likewise

measure any multiple of that other.

Thus, if 7 measures 21, it must evidently measure 6 times 21, or 11 times 21, or 17 times 21, &c.

XV. Any number, expressed by the decimal notation, divided by 9, will leave the same remainder as the sum of its digits divided by 9. (See Art. 55, Sec. II.)

This property of the number 9 affords an ingenious method of proving each of the fundamental rules. The same property belongs to the number 3; for 3 is a measure of 9, and will therefore be contained an exact number

of times in any number of 9s. But it belongs to no other digit.

The preceding is not a necessary but an incidental property of the number 9. It arises from the law of increase in the decimal notation. If the radix of the system were 8, it would belong to 7; if the radix were 12, it would belong to 11; and, universally, it belongs to the number that is one less than the radix of the system of notation.

XVI. If the number 9 be multiplied by any single digit, the sum of the figures composing the product will make 9.

Thus $9 \times 4 = 36$, and 3 + 6 = 9; so also $8 \times 9 = 72$ and 7 + 2 = 9.

XVII. If we take any two numbers whatever; then one of them, or their sum, or their difference, is divisible by 3. Thus, take 11 and 17; though neither the numbers themselves, nor their sum, is divisible by 3, yet their difference is, for it is 6.

XVIII. Any number divided by 11, will leave the same remainder as the sum of its alternate digits in the even places, reckoning from the right, taken from the sum of its alternate digits in the odd places, increased by 11, if necessarv.

Take any number as 3\$405603, and mark the alternate figures. Now the sum of those marked, viz: 8+11+6+3=17. The sum of the others, viz: 8+4+5+1=12. And 17-12=5, the remainder sought. That is, 88405603 divided by 11, will leave 5 remainder.

Again, take 5847362, the sum of the marked figures is 14; the sum of those not marked is 21. Now 21 taken from 25, (i.e. 14 increased by 11) leaves 4, the remainder sought=remainder obtained by dividing 5847362 by 11.

XIX Any number ending in 0, or an even number, is divisible by 2.

XX. Any number ending in 5 or 0 is divisible by 5.

XXI. Any number ending in 0 is divisible by 10. XXII. When two right-hand figures are divisible by 4, the whole is divisible by 4.

XXIII. When the three right-hand figures are divisible

by 8, the whole number is divisible by 8.

XXIV. When the sum of the digits of a number is divisible by 9, the number itself is divisible by 9.

XXV. When the sum of the digits of a number is divi-

sible by 3, the number itself is divisible by 3.

XXVI. When the sum of the digits, standing in the even places, is equal to the sum of the digits standing in the odd places, the number is divisible by 11.

Thus to illustrate the last five properties. The number 7416 is divisible by 4, because 16, the last two digits, is

divisible by 4.

—is divisible by 8, because 416, its last three digits, is divisible by 8.

—is divisible by 9, because the sum of its digits, 7+4+1

+6=18, is divisible by 9.

—is divisible by 3, because the sum of its digits, 7+4+1
+=18, is divisible by 3.

So also the number 4567321 is divisible by 11, since the sum of the digits

in the odd places, 1+3+6+4=14=2+7+5, the sum of the digits in the even places.

XXVII. Every composite number may be resolved into prime factors.

For since a composite number is produced by multiplying two or more factors together, it may evidently be resolved into those factors; and if these factors themselves are composite, they also may be resolved into other factors, and thus the analysis may be continued until all the factors are prime numbers.

XXVIII. The least divisor of any number is a prime number.

For every whole number is either prime or composite (Art. 4); but a composite number can be resolved into factors (XXVII): consequently, the least divisor of any number must be a prime number.

XXIX. Every prime number, except 2, if increased or diminished by 1 is divisible by 4. (See table of prime numbers on next page).

XXX. Every prime number except 2, is odd; and therefore terminates in an odd digit.

Note.—It must not be inferred from this that all odd numbers are prime.

XXXI. All prime numbers, except 2 and 5, must terminate with 1, 3, 7, or 9. Every number that ends in any other digit than 1, 3, 7, or 9, is a composite number.

For all prime numbers, except 2, must end in an odd digit (XXX), and all numbers ending in 5 are divisible by 5.

XXXII. Every prime number, except 2 and 3, if increased or diminished by 1, is divisible by 6.

20. To find the prime numbers between any given

RULE.

Write down all the odd numbers, 1, 3, 5, 7, 9, &c. Over every third from 3 write 3; over every fifth from 5 write 5; over every seventh from 1 write 1; over every eleventh from 11 write 11; and so on.

Then all the numbers which are thus marked are composite; and the others, together with 2, are prime.

Also the figures thus placed over, are factors of the numbers over which they stand.

EXAMPLE.

Find all the prime numbers less than 100.

	**** ****	Primo	AL CHALL DOLL	3 1000		A00.		
		-		3			3.2	
1	3	- 5	7	9	11	13	15	17
	3.7		5	3			3.11	5.7
19	21	23	25	27	29	31	33	35
	3.13			3.2		7	3.17	
37	39	41	43	45	47	49	51	53
5.11	3.19			3.7	5.13		3.53	
55	57	59	61	63	65	67	69	71
	3°5	7.11		3		5.17	3.29	
73	75	77	79	81	83	85	87	89
7.13	3.31	5.19		3'11				
91	93	95	97	99				

Hence, rejecting all the numbers which have superiors, the primes less than 100 are 1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, together with the number 2

This process may be extended indefinitely, and is the method by which primes are found even by modern computators. It was invented by Eratosthenes, a learned librarian at Alexandria (Born B. C. 275). He inscribed the series of odd numbers upon parchment, then cutting out such numbers as he found to be composite, his parchment with its holes somewhat resembled a sieve: hence, this method is called 'Eratosthenes' Sieve.'

TABLE OF PRIME NUMBERS FROM 1 TO 3407.

1	173	409	659	941	1223	1511	1811	2129	2423	2741	3079
2	179	419	661	947	1229	1523	1823	2131	2437	2749	3083
3	181	421	673	953	1231	1531	1831	2137	2441	2753	3039
5	191	431	677	967	1237	1543	1847	2141	2447	2767	3109
7	193	433	683	971	1249	1549	1861	2143	2459	2777	3119
11	197	439	691	977	1259	1553	1867	2153	2467	2789	3121
13	199	443	701	983	1277	1559	1871	2161	2473	2791	3137
17	211	449	709	991	1279	1567	1873	2179	2477	2797	3163
19	223	457	719	997	1283	1571	1877	2203	2503	2801	3167
23	227	461	727	1009	1289	1579	1879	2207	2521	2803	3169
29	229	463	733	1013	1291	1583	1889	2213	2531	2819	3181
31	233	467	739	1019	1297	1597	1901	2221	2539	2833	3137
37	239	479	743	1021	1301	1601	1907	2237	2543	2837	3191
41	241	487	751	1031	1303	1607	1913	2239	2549	2843	3203
43	251	491	757	1033	1307	1609	1931	2243	2551	2851	3209
47	257	499	761	1039	1319	1613	1933	2251	2557	2857	3217
53	263	503	769	1049	1321	1619	1949	2267	2579	2861	3221
59	269	509	773	1051	1327	1621	1951	2269	2591	2879	3229
61	271	521	787	1061	1361	1627	1973	2273	2593	2887	3251
67	277	523	797	1063	1367	1637	1979	2281	2609	2897	3253
71	281	541	809	1069	1373	1657	1987	2287	2617	2993	3257
73	283	547	811	1087	1381	1663	1993	2293	2621	2909	3259
79	293	557	821	1091	1399	1667	1997	2297	2633	2917	3271
83	307	563	823	1093	1409	1669	1999	2309	2647	2927	3299
89	311	569	827	1097	1423	1693	2003	2311	2657	2939	3301
97	313	571	829	1103	1427	1697	2011	2333	2659	2953	3307
101	317	577	839	1109	1429	1699	2017	2339	2663	2957	3313
103	331	587	853	1117	1433	1709	2027	2341	2671	2963	3319
107	337	593	857	1123	1439	1721	2029	2347	2677	2969	3323
109	347	599	859	1129	1447	1723	2039	2351	2683	2971	3329
113	349	601	863	1151	1451	1733	2053	2357	2687	2999	3331
127	353	607	877	1153	1453	1741	2063	2371	2689	3001	3343
131	359	613	881	1163	1459	1747	2069	2377	2693	3011	3347
137	367	617	883	1171	1471	1753	2081	2381	2699	3019	3359
139	373	619	887	1181	1481	1759	2083	2383	2707	3023	3361
149	379	631	907	1187	1483	1777	2087	2389	2711	3037	3371
151	383	641	911	1193	1487	1783	2089	2393	2713	3041	3373
157	389	643	919	1201	1489	1787	2099	2399	2719	3049	3389
163	397	647	929	1213	1493	1789	2111	2411	2729	3061	3391
167	401	653	937	1217	1499	1801	2113	2417	2731	3067	3407

When it is required to determine whether a given number is a prime, we first notice the terminating figure; if it is different from 1, 3, 7, or 9, the number is composite; but if it terminate with one of the above digits, we must endeavour to divide it with some one of the primes, as found in the table, commencing with 3. There is no necessity for trying 2, for 2 will divide only the even numbers. If we proceed to try all the successive primes of the table until we reach a prime which is not less than the square-root

of the number, without finding a divisor, we may conclude with certainty

that the number is a prime. The reason why we need not try any primes greater than the square-root of the number, is drawn from the following consideration: If a composite number is resolved into two factors, one of which is less than the square-root of the number, the other must be greater than the square-root.

The square of the last prime given in our table is 11607649; hence, this table is sufficiently extended to enable us to determine whether any

number not exceeding 11607649 is a prime. It is obvious that numbers may be proposed which would require by this method very great labor to determine whether they are primes, still this is the only sure and general method as yet discovered.

21. TO RESOLVE A COMPOSITE NUMBER INTO ITS PRIME FACTORS.

Divide the given number by the smallest number which will divide it without a remainder; then divide the quotient in the same way, and thus continue the operation till a quotient is obtained which can be divided by no number greater than 1. The several divisors with the last quotient, will be the prime factors required. (19-XXVII.)

REASON.—Every division of a number, it is plain, resolves it into two factors, viz the divisor and the quotient. But according to the rule, the divisors, in every case, are the smallest numbers that will divide the given number or the successive quotients without a remainder, consequently they are all prime numbers. (19-XXVIII.) And since the division is continued till a quotient is obtained, which cannot be divided by any number but unity or itself, it follows that the last quotient must also he a prime number; for, a prime number is one which cannot be exactly divided by any whole number except unity and itself. (Art. 7.)

Note.—Since the least divisor of every number is a prime number, it is evident that a composite number may be resolved into its prime factors by dividing it continually by any prime number that will divide the given number and the successive quotients without a remainder. Hence,

unber and the successive quotients without a remainder. Hence, A composite number can be divided by any of its prime factors without a remainder, and by the product of any two or more of them, but by no other

Thus, the prime factors of 42 are 2.3, and 7. Now 42 can be divided by 2,3, and 7; also by 2×3 , 2×7 , 3×7 , and $2\times3\times7$; but it can be divided by no other number.

Example 1.—Resolve 210 into its prime factors.

We first divide the given number by 2, which is the least number that will divide it without a remainder, OPERATION. 2)210 and which is also a prime number. We next divide by 3, then by 5. The several divisors and the last quotient 8)105 are the prime factors required. 6)35

Ans. 2, 3, 5, and 7.

Proop. $-2\times3\times5\times7=210$. Example 2.—Resolve 728 into its prime factors.

OPERATION. 2)728 2)364 2) 183

Therefore, 2×2×2×7×13, or 29×7×13, are the prime factors of 788.

EXERCISE 24.

3. Resolve 11368 into its prime factors.	Ans.* $2^3 \times 7^2 \times 29$.
4. What are the prime factors of 2934?	Ans. $2 \times 3^2 \times 163$.
5. What are the prime factors of 1011?	Ans. 3×337
6. What are the prime factors of 1000?	Ans. $2^3 \times 5^3$.
7. What are the prime factors of 1024?	Ans. 210.
8. What are the prime factors of 32320?	Ans. $2^6 \times 5 \times 101$.
9. What are the prime factors of 707?	Ans. 7×101 .
10. What are the prime factors of 1118?	Ans. $2 \times 13 \times 43$.

DIVISORS.

22. From Art. 21, Note, for finding all the divisors of any number, we deduce the following—

PIII.E

Resolve the number into its prime factors; form as many series of terms as there are prime factors, by making 1 the first term of each series, the first power of one of the prime factors for the second term, the second power of this factor for the third term, and so on, until we reach the highest that occurred in the decomposition. Then multiply these series together, and the partial products thus obtained will be the divisors sought.

EXAMPLE 1 .- What are the divisors of 48?

Here we find $48=24\times3$. Therefore our series of terms will be $1\cdot\cdot2\cdot\cdot4\cdot\cdot8\cdot\cdot16$ and $1\cdot\cdot3$; multiplying these together.

1 .. 2 .. 4 .. 8 .. 16

1 . 2 . 4 . 8 . 16 . 3 . 6 . 12 . 24 . 48

Therefore the divisors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24, and 48.

We begin each series with 1, because, were we not to do so, the different powers of the prime factors would not themselves appear among the partial products.

EXAMPLE 2 .- What are the divisors of 360.

The prime factors of 360 are $2^3 \times 3^2 \times 5$ and therfore the series are $1 \cdot 2 \cdot 4 \cdot 8$; $1 \cdot 3 \cdot 9$ and $1 \cdot 5$.

OPERATION.

1 .. 2 .. 4 .. 8

1 ·· 2 ·· 4 ·· 8 ·· 3 ·· 6 ·· 12 ·· 24 ·· 9 ·· 18 ·· 36 ·· 72—products of 1st and 2nd series 1 ·· 5

1 ·· 2 ·· 4 ·· 8 ·· 3 ·· 6 ·· 12 ·· 24 ·· 9 ·· 18 ·· 36 ·· 72 ·· 5 ·· 10 ·· 20 ·· 40 ·· 15 ·· 30 ·· 60 ·· 120 ·· 45 ·· 90 ·· 180 ·· 360.

Therefore the divisors of 360 are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360.

^{*}The small figures written to the right of the factors and above the line, are called exponents, and show how often the digit is taken as factor.

EXERCISE 25.

1. What are the divisors of 100?

Ans. 1, 2, 4, 5, 10, 20, 25, 50, 100.

2. What are the divisors of 810?

Ans. { 1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 81, 90, 135, 162, 270, 405, 810.

3. What are the divisors of 920 ?

Ans. 1, 2, 4, 5, 8, 10, 20, 23, 40, 46, 92, 115, 184, 230, 460, 920.

4. What are the divisors of 25000?

Ans. { 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 625, 1000, 1250, 2500, 3125, 5000, 6250, 12500, 25000.

NUMBER OF DIVISORS.

23. Since the series of terms which we multiplied together, by the last rule, to obtain the divisors of any number commenced with 1, it follows that the number of terms in each series will be one more than the units in the exponent of the factors used.

Hence, to find the *number* of divisors of any number, without actually setting them down, we have the following—

RULE.

Resolve the number into its prime factors and express them as in examples 3, 4, and 6, in Art. 21. Increase each exponent by unity and multiply the resulting numbers together. The product will be the number of divisors.

EXAMPLE.—How many divisors has 4320?

 $4320=2^5 \times 3^3 \times 5$. Here the exponents are 5, 3, and 1: each of which being increased by one, we obtain 6, 4, and 2, the continued product of which is $6\times4\times2=48$ —the number of divisors sought.

Exercise 26.

1. How many divisors has 88200?	Ans. 108.
2. How many divisors has 3500?	Ans. 24.
3. How many divisors has £336?	Ans. 42.
4. How many divisors has 824?	Ans. 8.
5. How many divisors has 49000?	Ans. 48.
6. How many divisors has 81000?	Ans. 80.
7. How many divisors has 75600?	Ans. 120.
8. How many divisors has 25600?	Ans. 33.

GREATEST COMMON MEASURE.

24. The greatest common measure, or greatest common divisor of two or more numbers, is the greatest number that will divide each of them without a remainder,

25. To find a common divisor or common measure of two or more numbers:—

RULE.

Resolve the given numbers into their prime factors, then if any factor be common to all, it would be a common measure.

If the given numbers have not a common factor they cannot have a common measure greater than unity, and consequently are either prime numbers or are prime to each other. (Arts. 7 and 12.)

Example.-Find a common divisor of 14, 35, and 63.

 $14=2\times7$; $35=5\times7$, and $63=3\times3\times7$. The factor 7 is common to all the given numbers, and is therefore a common measure of them.

EXERCISE 27.

1.	Find a common	divisor of 21, 18, 27 and 36.	Ans. 3.
2.	Find a common	divisor of 21, 77, 42, and 35.	* Ans. 7.
3.	Find a common	divisor of 26, 52, 91, and 143.	Ans. 13.

3. Find a common divisor of 26, 52, 91, and 143.

4. Find a common divisor of 82, 118, and 146.

Ans. 2.

4. Find a common divisor of 62, 116, and 146.

26. To find the greatest common measure of two quantities:—

RULE

Divide the larger by the smaller; then the divisor by the remainder; next the preceding divisor by the new remainder:—continue this process until nothing remains, and the last divisor will be the greatest common measure. If this be unity, the given numbers are prime to each other.

EXAMPLE.—Find the greatest common measure of 3252 and 4248

3252)4248(1 3252 996)\$252(3 2988 264)996(3 792 204)264(1 204 60)204(3 180 24)60(2 48 12)24(2 24

996, the first remainder, becomes the second divisor; 264, the second remainder, becomes the third divisor, &c. 12, the last divisor, is the required greatest common measure.

F PROOF.—In order to establish the truth of this rule, it is necessary to remember (19-XIII. and XIV.) that if one number measure another it will likewise measure any integral multiple of that other; and if one number measure two others, it will also measure their sum or their difference.

First, then, 12 is a common measure of 3252 and 4248. Beginning at the

end of the process: because 12 measures 12, it also measures 24, a multiple of 12; because 12 measures 24, it measures 48, a multiple of 24; because 12 measures 12 and also 48, it measures 60, which is their sum; because 12 measures 00, it measures 180, a multiple of 60; because 12 measures 180, and the 81 it measures 180, a multiple of 60; because 12 measures 180, and measures 00, 11 measures 180, a multiple of 60; because 12 measures 180, and also 24, it measures their sum, which is 204; becauses 12 measures 204, and likewise 60, it measures their sum, 264; because 12 measures 264, it measures 792, a multiple of 264; and because 12 measures 792, and also 204, it measures their sum, which is 996; because 12 measures 998, it measures 2988, a multiple of 996; and because 12 measures 2988, and also 264, it measures their sum, 3252; and because 12 measures 3252, and also 966, it measures their sum, which is 4248. 12, therefore, measures cach of the given numbers, and is a common measure; next it is their greatest common measure. For, if not, let some other as 18, he greater. Then, theripping now at

For, if not, let some other as 13, be greater. Then, (beginning now at the top of the process) because 13 measures 3252, and also 4248, it measures their difference, which is 996; because 13 measures 996, it measures 2988, a multiple of 996, and because 13 measures 3252, and also 2988, it also measures their difference, which is 264; because 13 measures 264, it also measures 792 a multiple of 264; and because 13 measures 792, and also 996, it measures their difference, which is 204; because 13 measures 264, and also 204, it measures their difference, which is 60; because 13 measures 60, it measures 180, a multiple of 60; and because 18 measures 180, and also 204, it measures their difference, which is 24: because 13 measures 24, it measures 45, a multiple of 24: and because 13 measures 60, and also 48, it measures their difference, which is 12. That is, 13 measures or divides 12-a greater num-

ber measures a less, which is impossible.

Therefore 13 is not a common measure of 3252 and 42.8; and in a similar manner it may be shown that no number greater than 12 is a common measure. Therefore 12 is the greatest common measure.

As the rule might be proved for any other example equally well, it is

truc in all cases.

EXERCISE 28.

1. What is the greatest common measure of 296 and 407?

Ans. 37.

2. What is the greatest common measure of 506 and 308? Ans. 22.

3. What is the greatest common measure of 74 and 84? Ans. 2. 4. What is the greatest common measure of 1825 and 2555?

Ans. 365.

5. What is the greatest common measure of 556 and 672? Ans. 4.

27. To find the greatest common measure of more than two numbers :--

RULE.

Find the greatest common measure of two of them; then, of this common measure and a third; next of this last common measure and a fourth, &c. The last common measure found will be the greatest common measure of all the given numbers.

EXAMPLE 1 .- Find the greatest common measure of 679, 5901, and 6734.

By the last rule we find that 7 is the greatest common measure of 679 and 5901; and by the same rule that it is the greatest common measure of 7 and 6734 (the remaining number), for 6734:7=962, with no remainder. Therefore 7 is the required number.

Example 2.—Find the greatest common measure of 936, 736, and 142.

The greatest common measure of 936 and 736 is 9, and the greatest common measure of 8 and 142 is 2; therefore 2 is the greatest common measure

of the given numbers.

This rule may be shown to be correct in the same way as the last; except that in proving the number found to be a common measure, we are to begin at the end of all the processes, and go through all of them in succession; and in proving that it is the greatest common measure, we are to begin at the commonement of the first process, or that used to find the common measure of the two first numbers, and proceed successively through all.

EXERCISE 29.

1. What is the greatest common measure of 110, 140, and 680?

Ans. 10.

2. What is the greatest common measure of 1326, 3094, and 4420?

Ans. 442.

3. What is the greatest common measure of 468, 922, and 375?

Ans. They have none.

4. What is the greatest common measure of 204, 1190, 1445, and 2006?
Ans. 17.

SECOND METHOD.

28. It is manifest that the greatest common measure or greatest common divisor of two or more numbers, must be their greatest common factor, and that this greatest common factor must be the product of all the prime factors that are common to all the given numbers.

Hence to find the greatest common measure of two or

more numbers, we have the following:-

RULE.

Resolve each of the given numbers into its prime factors; and the product of those factors, which are common to all, will be the greatest common measure.

EXAMPLE 1.—What is the greatest common measure of 1365 and 1995?

3)1365	3)1995
5)455	5)665
7)91	7)133
-	

Hence, 3, 5, 7, and 13 are the prime factors.

Hence, 3, 5, 7, and 19 are the prime factors.

And the factors that are common to both are 3, 5, 7. Hence $3\times5\times7=105$ greatest common measure.

EXAMPLE 2.—What is the greatest common measure of 108, 126, and 162?

 $108=2^2\times3^3$, $126=2\times3^2\times7$, and $162=2\times3^4$. Hence, the factors that are common are 2 and 3^2 , and the greatest common measure=2×32=18.

EXERCISE 30.

1. Work by this method all the preceding examples.

2. What is the greatest common measure of 56, 84, 140, 168? Ans. 28.

3. What is the greatest common measure of 241920, 380160, 69120, 103680? Ans. 34560.

4. What is the greatest common measure of 10800, 28040, and 2160? Ans. 40.

LEAST COMMON MULTIPLE.

29. One number is a common multiple of two or more others when it can be divided by each of them without a remainder.

30. One number is the least common multiple (l. c. m.) of two or more others when it is the least number that can

be divided by each of them without a remainder.

31. It is evident that a dividend will contain a divisor an exact number of times, when it contains, as factors, every factor of that divisor; and hence, the question of finding the least common multiple of several numbers is reduced to finding a number which shall contain all the prime factors of each number and none others. numbers have no common prime factor, their product will be their least common multiple.

Suppose we wish to see what is the least common multiple of 9, 12, 16, 20, and 35. Resolving these into their prime factors, we obtain $9=3^{\circ}$, $12=2^{\circ} \times 5$, $16=2^{\circ}$, $20=2^{\circ} \times 5$, and $35=7\times 5$. Now it is plain that 2° must enter into the least common multiple as a factor, and, since 2° is a multiple of 2° , we do not consider 2° also a factor of the least common multiple. So also 3° must be a factor of the least common multiple; and since it contains 3, we do not again multiply by 3. Lastly, 5 and 7 must enter into the least common multiple.

The factors of the least common multiple are then 24, 32, 5 and 7; and these, multiplied together, give 24 × 32 × 5 × 7=5040=least common multiple,

Hence, to find the least common multiple of two or more numbers, we have the following:-

Resolve the numbers into their prime factors (Art. 21), select all the different factors which occur, observing when the same factor as different powers, to take the highest power. The continued proct of the factors thus selected will be the least common multiple.

EXERCISE 31.

- What is the least common multiple of 8, 9, 10, 12, 25, 32, 75, and 80?
- Here $8 = 2^3$, $9 = 3^2$, $10 = 2 \times 5$, $12 = 2^2 \times 3$, $25 = 5^2$, $32 = 2^5$, $75 = 5^2 \times 3$, $80 = 2^4 \times 5$. Therefore the least common multiple $= 2^5 \times 3^2 \times 5^2 = 7$ 200.
- 2. What is the least common multiple of 6, 7, 42, 9, 10, and 630?

 Ans. $2 \times 3^2 \times 5 \times 7 = 630$.
- 3. What is the least common multiple of the nine digits?
- Ans. $2^3 \times 3^2 \times 5 \times 7 = 2520$. 4. What is the least common multiple of 6, 9, 12, 15, 18, 21, and 30? Ans. 1260.
- 5. What is the least common multiple of 670, 100, 335, and 25?

 Ans. 6700.
- 6. What is the least common multiple of 8, 10, 18, 27, 36, 44, and 396?

Ans. 11880.

SECOND METHOD.

32. We may also find the least common multiple of two or more numbers by the following:—

RULE.

Write the given numbers in a line, with two points between them. Divide by the LEAST number which will divide any two or more of them without a remainder, and set the quotients and the undivided numbers in a line below.

Divide this line and set down the results as before; thus continue the operation till there are no two numbers which can be divided by any number greater than 1.

The continued product of the divisors and the numbers in the last

line will be the least common multiple sought.

Example 1.—What is the least common multiple of 16, 48, and 108?

 $\begin{array}{c} 2)16 \ldots 48 \ldots 108 \\ 2)8 \ldots 24 \ldots 54 \\ 2)4 \ldots 12 \ldots 27 \\ \hline 2)2 \ldots 6 \ldots 27 \\ \hline 3)1 \ldots 3 \ldots 27 \\ \hline \end{array}$

Ans. $2\times2\times2\times2\times3\times9=432=$ least common multiple.

The least common multiple of 1, 1, and 9 is 9, and the least common multiple of 1, 1, and 9×3, will be the least common multiple of 1, 3, and 27, the numbers of the fifth line; the least common multiple of 1, 3 and 27, ×2, will be the least common multiple of 2, 6, and 27, the numbers of the fourth line; the least common, multiple of 2, 6, and 27,×2, will be the least common, multiple of 2.

mon multiple of 4, 12, and 27, the numbers in the third line; the least common multiple of 4, 12, and 27, ×2, will be the least common multiple of 8, 24, and 54, the numbers in the second line; and the least common multiple of 8, 24, and 54, \times 2, will be the least common multiple of 16, 48, and 108, the given numbers.

The reason of the preceding rule depends upon the principle that the least common multiple of two or more numbers, is composed of all the prime factors of the given numbers, each taken the greatest number of times it is found in either of the given numbers.

Note.—In finding the least common multiple by this method, it is necessary to divide by the smallest number, which will divide two or more of them without a remainder because the divisor may otherwise be a composite number (Art. 21), and have a factor common to it, and one of the quotients in the last line. Consequently the continued product of the divisors and these quotients or undivided numbers in the last line, would be too great

for the least common multiple.

Thus in the third of the following operations the divisor 9 is a composito number, containing the factor 3, common to it and the 3 in the quotient: consequently the product is three times too large. In the second operation the divisor 12 is a composite number, and contains the factor 6 common to it, and the 6 in the quotient: therefore the product is six times too large. The object of arranging the given numbers in a line, is that all of them may be resolved into their prime factors at the same time; and also to

present at a glance the factors that compose the least common multiple required.

Example 2.—What is the least common multiple of 12, 18, 36?

2)12 15 36	II. 12)12 18 36	2)12 18 36
2)6 918	3)118 3	2)6 9 18
8)3 9 9	1 6 1 12×3×6=216	9)3 9 9
3)1 3 3	12×3×0==216	$ \begin{array}{c} 3 \cdot \cdot \cdot 1 \cdot \cdot 1 \\ 2 \times 2 \times 9 \times 3 = 108. \end{array} $
$2 \times 2 \times 3 \times 3 = 36 = 1$	i. c. m.	

EXERCISE 32.

- 1. Find the least common multiple of 12, 20, and 24. Ans. 120.
- 2. Find the least common multiple of 14, 21, 3, 2, and 63.
- Ans. 126. 3. Find the least common multiple of 18, 12, 39, 216, and 234.
- 4. Find the least common multiple of 8, 18, 15, 20, and 70. Ans. 2520.
- 5. Find the least common multiple of 24, 16, 18, and 20.
- 6. Find the least common multiple of 60, 50, 144, 35, and 18. Ans. 25200.
- 7. Find the least common multiple of 27, 54, 81, 14, and 63. Ans. 1134.

THIRD METHOD.

. 33. The least common multiple of several numbers is most expeditiously found by the following:

Write the given numbers in a line. Take any one of them as divisor, and strike out of each of the given numbers all the factors that are

common to it and the assumed number.

Arrange the uncancelled factors of the given numbers, and the uncancelled numbers in a line, take the least other number which exactly contains one or more of them, and strike out all the factors of the numbers in the second line which are common to any of them and the second assumed number.

Proceed thus until the assumed numbers cancel all the factors

of the given numbers.

Multiply all the assumed numbers together for the least common multiple of the given numbers.

EXAMPLE 1 .- What is the least common multiple of 16, 27, 45, 60, 88, 96, 100.

Assume 100 |
$$16 \cdot \cdot \cdot 27 \cdot \cdot 45 \cdot \cdot 60 \cdot \cdot 88 \cdot \cdot 96 \cdot \cdot 100$$

Assume 24 | $4 \cdot \cdot \cdot 27 \cdot \cdot \cdot 9 \cdot \cdot \cdot 8 \cdot \cdot \cdot 24 \cdot \cdot 24$
Assume 39 | $9 \cdot \cdot \cdot \cdot 31 \cdot \cdot \cdot \cdot 11$
 $100 \times 24 \times 99 = 237600 = 1. \text{ c. m.}$

EXPLANATION.—4, a factor of 100, reduces 16 to 4, 88 to 22, and 96 to 24; 5, another factor of 100, reduces 45 to 9; and 20, another factor of 100, reduces 60 to 3. The numbers in the second line then are 4, 27, 9, 3, 22, and 24. duces 60 to 3. The numbers in the second line then are 4, 27, 9, 3, 22, and 24. We assume 24 of which a factor, 4, cancels 4; auchter factor 2 reduces 22 to 11; and another factor, 3, reduces 27 to 9 and 9 to 3. The numbers in the third line then are 9, 3, and 11. For this line we assumed 99, of which a factor, 3, cancels 3; another factor, 9, cancels 9; and a third, 11, cancels 11. Now since the least common multiple of a series of numbers is a number which still contains all the prime factors of each number, and none others, it is manifest that the least common multiple of the given numbers will be the same as the least common multiple of 100 and 4, 27, a 3, 22, and 4.

the same as the least common multiple of 100, and 4, 27, 9, 3, 22, and 25, because only those factors, which were common to the given numbers and

100 were struck out.

Similarly, the least common multiple of 100, 24, and 9, 3, and 11, will be the same as the least common multiple of 100, and the numbers in the same as the second line, since only those factors which were common to 24 and the numbers of the second line are struck out.

Finally the least common multiple of 100, 24, and 99, is equal to the

least common multiple of the given numbers.

Example 2.- What is the least common multiple of 120, 40, 39, 65, 88, and 16?

EXPLANATION.—We first assume 120. Now this cancels 120 and 40. Also, 3, a factor of 120, reduces 39 to 13, and 5, another factor, reduces 65 to 13. Also 8, another factor, reduces 83 to 11 and 16 to 2. Next assume 13, this cancels 13 and 13. Next assume 22, of which 11, one factor, cancels the 11, and another factor 2, cancels 2.

Example 3.—Find the least common multiple of 12, 16, 20, 24, 30, 48, 56, and 64.

Assume 70 Assume 70 Assume 70 Assume 70 Sq.
$$24 \cdot 20 \cdot 24 \cdot 20 \cdot 40 \cdot 40 \cdot 50 \cdot 64 \cdot 50 \cdot 70 \cdot 20 \cdot 100 \cdot 1$$

EXERCISE 33.

 What is the least common multiple of 300, 200, 150, 50, 60, 75, and 125?

 What is the least common multiple of 20, 60, 15, 165, 210, 63, and 27?

Ans. 41580.

What is the least common multiple of 12, 132, 144, 60, 96, and 1728?
 Ans. 95040.
 Work also by this method all the preceding questions in least common multiple.

DIFFERENT SCALES OF NOTATION.

- 34. The radix or base of a scale of notation is its common ratio. Thus in our system the radix is 10; in the duodecimal system the radix is 12, &c.
- 35. If the expression 12345 represents a number in the common or decimal scale of notation, we read it twelve thousand three hundred and forty-five; but if it expresses a number in any other scale, we cannot so read it, because the names thousands, hundreds, &c., belong only to the decimal scale. In order to read it properly in any other scale we should have to invent names for the different orders. In place, however, of doing this, we simply read over the digits and indicate the scale. For example, if the expression 24678 be a number in the nonary scale, we read it thus—two, four, six, seven, eight in the nonary scale.
- 36. We may express the number 4578 (decimal scale) by writing the order of each digit beneath it, thus,

and then read it 8 units, 7 of the order of tens, 5 of the order of hundreds or tens squared, or second order of tens, 4 of the third order of tens, &c. Similarly if 4578 express a number in the *nonary* scale, we may write it.

and read it 8 units, 7 nines, 5 of the second order of nines, 4 of the third order of nines, &c.

- 37. The expression 10 always represents the radix of the scale. In the decimal scale 10 is equal ten; in the binary scale 10 is equal two; in the undenary scale 10 is equal eleven, &c.
- 38. It is obvious that, in any scale, the highest digit used must be one less than the radix. Thus, in the decimal scale, the highest digit is 9; in the ternary, 2; in the octenary, 7, &c. In writing numbers in the duodenary scale we use the letter t to represent ten, and e, eleven, and in the undenary scale t likewise represents ten.
- 39. Let it be required to reduce 337 from the decimal to the octenary scale.

EXPLANATION.—If we divide 337 by 8, we distribute it into 42 groups of 8 each, and have a remainder of 1 unit. If now we divide these groups of 8 by 8, we obtain 5 groups of a still higher order, each containing 8 of the former groups, with a remainder of 2 of these groups.

337, in the decimal scale, is therefore equal to 521 in the octeany scale; i. e. the successive remainders written in order constitute the equivalent expression in the required scale. OPERATION. 8)337 8)42-1

Hence, to reduce a number from one scale to another, we have the following:-

RULE.

Divide the number continually by the radix of the proposed scale, till the quotient is less than the radix.

Write all the remainders, thus obtained, in regular order from left to right, beginning with the last, and placing 0s where there are no remainders. The result will be the required number.

Example 1.—Reduce 7342 from the common to the quinary scale.

OPERATION. 5)7342 5)1468-2 5)293 - 3Therefore $7342 \ denary = 213332 \ quinary$. 5)58-3 5)11-3 2-1

EXAMPLE 2.—Express nine millions, three hundred and forty-two thousand and twenty-seven, in the duodenary scale.

OPERATION.
12)9342027

12)778502—3

12)64575—2

12)5406—3

12)450—6

12)37—6

3—1

EXERCISE 34.

- Change 592835 from the decimal to the duodenary scale. Ans. 2470te.
- 2. Express the common number 3700 in the quinary scale.
- Ans. 104300.
 3. Express 10000 in the undenary scale.

 Ans. 7571.
- 4. Express a million in the senary scale. Ans. 33233344.
- 5. Express 10000 in the octenary scale.

 Ans. 23420.
- Transform 12345654321 into the duodenary scale.
 Ans. 248664et69.
- 7. Express 10000 in the nonary scale.

 Ans. 14641.
- Transform 300 from the common to the binary scale.
 Ans. 100101100.

EXAMPLE 1 .- Transform 2313042 from the quinary to the octenary scale.

OPERATION.

8)2313042

8)131310-7

8)10100-5

8)311-2

8)20-1

EXPLANATION.—We divide here as before, bearing in mind, however, that the ratio is no longer ten, but five. We proceed thus.—9 in 2, no times; twice five (the radix) is ten, and 3 make thirteen; 8 in 13, 1 and 5 over; 5 : limes 5 are 25, and 1 make 26; 8 in 28, 3 times and 2 over; twice 5 are 10, and 3 make 13, 8 in 13, once and 5 over, &c.

Therefore 2313042 quinary = 121257 octenary,

Note.—The Roman Numeral written over the number indicates the radix of the seale.

EXAMPLE 2.—Transform 378t13 from the undenary to the duodenary scale.

Observe the first two figures here are not thirty-seven, but $3 \times 11 + 7 = 40$. We say 12 inte 40, 3 times and 4 over; next, 12 into $4 \times 11 + 8$ or 52, &c.

12)3132-4

12)294-9

12)26-9

12)26-9

12)2-4

Example 3.—Transform t423t from the duodenary to the nonary scale.

OPERATION. SII. 9 into 16, $(1 \times 12 + 4)$ 1 and 7 over; 9 into 86, (7×9) 11971—1 9)11971—1 9)1649—4 9)206—3 9)28—6 3—5

EXERCISE 35.

1. Transform 37704 from the nonary to the octenary scale.

Ans. 61415.

 Transform 444 and 4321 from the quinary to the septemary scale. Ans. 235 and 1465.

Transform 1212201 from the quaternary to the nonary scale.
 Ans. 10000.

40. A number may be transformed from any scale to the decimal by the preceding rule, but the following is more convenient.

Multiply the left hand figure by the given radix, and to the pro-

duct add the next figure.

Then multiply this sum by the radix and add the next figure. Continue this process until all the figures have been used. Then the last product will be the number in the decimal scale.

NOTE.—Both this and the preceding rule are the same in principle as reducing denominate numbers from one denomination to another.

EXAMPLE 1.—Reduce 76345 from the octenary scale to the decimal scale.

OPERATION.
VIII.
76345
8
62 of the fourth order.
8
409 of the third order.
8
3996 of the second order.

31973 units = required number in decimal scale.

EXAMPLE 2.—Transform ettete from the duodenary to the common or decimal scale.

OPERATION.
XII.
ettete
12
142 = number of fifth order.
12
1714 = number of fourth order.
12
20570 = number of third order.
12
246958 = number of second order.

2963507 = units = required number in decimal scale.

EXERCISE 36.

- 1. Change 20212331 from the quaternary into the decimal scale.

 Ans. 35261.
- Change 101202220 from the ternary into the decimal scale.
 Ans. 7854.
- 3. Transform 1522365 from the nonary into the decimal scale.

 Ans. 841568.
- 4. Transform 33233344 from the senary into the decimal scale.

 Ans. 1000000.

EXAMPLE 5.—Transform 2734, octenary scale, into the undenary, septenary, and quinary scales, and prove the results by reducing all four numbers to the decimal scale.

VIII. 11)2734	VIII. 7)2734	VIII. 5)2734
11)210-4	7)326-2	5)454-0
11)14-4	7)36-4	5)74-0
1—1	4-2	5)14-0
e 2734 octenaru=	-1144 undenary42	2-2 enary=22000 qui

Therefore 2734 octenary=1144 undenary=42 enary=22000 quinary. $\frac{8}{23}$ $\frac{11}{12}$ $\frac{7}{30}$ $\frac{5}{12}$ $\frac{8}{11}$ $\frac{11}{7}$ $\frac{7}{5}$ $\frac{5}{136}$ $\frac{11}{214}$ $\frac{60}{7}$ $\frac{8}{11}$ $\frac{11}{7}$ $\frac{7}{25}$

1500 denary. 1500 denary. 1500 denary. 1500 denary. Since the results all agree when reduced to the denary scale, we conclude the work is correct.

6. Transform 132713 nonary, into the ternary, duodenary, and octenary scales, and prove the results by reducing all four numbers to the denary scale.

7. Transform t2t290 duodenary, into the nonary, senary, quaternary, and binary scales, and prove the result by reducing all five numbers to the decimal scale.

FUNDAMENTAL RULES.

41. The fundamental rules of arithmetic are carried on in the different scales as with numbers in the ordinary or decimal scale; observing that, when we wish to find what to carry in addition, subtraction, multiplication, &c., we divide, not by ten, but by the radix of the particular scale used.

Example 1.—Add together 34120, 3121, 13102, 31410, 12314, 112243 and 444444 in the senary scale.

OPERATION. Observe the sum of the first line is 14, which, divided by 6, the radix of the scale, gives us 2 to set down and 2 to carry; 3121 the sum of the second line is 16, which, divided by the radix, 6, gives us 4 to set down and 2 to carry, &c.

1144042 Ans.

12314 112243

EXAMPLE 2.—From 43t76 take 9t09, in the undenary scale.

OPERATION.

XI.

Observe, here we say 9 from 6, we cannot, but 9 from 17 (1 43t76

9709 35068 EXAMPLE 3.—Multiply 3426 by 567, in the octenary scale.

OPERATION. VIII. 3426

21556

567 30632 25204 Observe, we say 7 times 6 are 42, 8 (the radix) into 42 5 to carry and 2 to set down; 7 times 2 are 14 and 5 make 19, equal to 3 to set down and 2 to carry, &c.

2460472 Ans.

Example 4.—Divide 671384 by 7876, in the nonary scale.

OPERATION.

7876)671384(757591 dns.

52424 43823 7501 Here 7876 will go into 67183 7 times (observe it would go 8 times in the *decimal* scale); and 7876 multiplied by 7 gives 61786, this being subtracted, gives a remainder, 5242, to which we bring down the next digit, 4, and proceed as in common division.

NOTE.—After the units' figure is brought down, we may either write the remainder in the form of a fraction, as in example 29, or we may place a point, and annexing 0s, continue the division as in the following example.

Observe, this point is called the decimal or denary point only in the decimal system. In every other scale of notation it takes its name from the system—thus, in the duodenary or duodecimal system it is called the duodenary or duodecimal point, in the senary system, the senary point, &c.

EXAMPLE 5 .- Divide #134567 by e473, in the duodenary scale.

OPERATION. XII. XII. e473)t134567(t7t* 1e, &c. 95t06

> 753e6 67829 97897 95¢06 1¢91°0 e47°3 e45°90 ¢52°79

EXERCISE 37.

- 1. Multiply 252 by 252, in the senary scale. Ans. 122024.
- Divide 32e75721 by 62te, in the duodenary scale. Ans. 62te.
 From 201210 take 102221, in the ternary scale. Ans. 21212.
- Multiply 57264 by 675, in the octenary scale. Ans. 51117344.
 Add together 101, 1001, 1111, 1011, 1000, 1111, and 10101,
- in the binary scale.

 Ans. 1010100.

6. Divide 142613 by 2143, in the septenary scale.

Ans 50.5254+.

 Add together 65432, 43210, 1444, 65001, and 54321, in the septenary scale.

Ans. 326041.

8. From 7t348 take 5e6t4, in the duodenary scale. Ans. 1t864.

9. Multiply 34t7 by 6666, in the duodenary scale.

Ans. 1t36e296.

10. Divide 1010100001 by 100101, in the binary scale.

Ans. 10010 100101.

42. All the methods of proof given in Sec. II., for the fundamental rules in the common scale, apply to the various other scales; but it must be remembered that, in using the principle of the proof by nines for multiplication and division, we use, not nine, but a number one less than the radix of the scale.

Thus, in applying this principle to the proof in Example 4, sevens cast out of 57264, give a remainder 3; sevens cast out of 675, give a remainder 4, 4×3, and sevens cast out, give a remainder 5; sevens cast out of 51117344,

give a remainder 5.

If the radix be 12, we cast out the 11s; if the radix be 6, we cast out the

43. Numbers containing digits to the right of the separating point, are dealt with according to the rules given

in Arts. 53 and 88, Sec. II.

EXAMPLE.—Multiply 37·14t3 by 6·1et in the duodenary scale.

OPERATION. We place the separating point in the product so as to have seven digits to the right of it, because there are four to the right of the point in the multiplicand and three in the multiplicand and three in the multiplicand and 4+3=7. (Art. 53, Sec. II.)

2ee2066 3363549 371423 1968516

1#1'#08#836

DUODECIMAL MULTIPLICATION.

44. The term duodecimal is commonly applied to a set of denominate fractions having 1 foot (linear, square, or cubic measure) for their unit.

The foot is supposed to be divided into 12 equal parts, called *primes*; each of which is divided into 12 equal parts,

called seconds, &c.

TABLE.
12 fourths'" make 1 third, marked'''
12 thirds " 1 second, " "

12 seconds " 1 prime, "

12 primes " 1 foot, " ft.

45. The term "inch," sometimes used in this table, is objectionable, corresponding to "prime" only when the unit is a linear foot. When the unit is a square foot, the prime is $\frac{1}{12}$ of a square foot, or is a surface 12 inches long and 1 inch wide; when the unit is a cubic foot, the prime is $\frac{1}{12}$ of a cubic foot, or is a solid 12 inches long, 12 inches wide, and 1 inch thick.

46. Let AEHG represent the surface of a rectangular table four feet in length and three in breadth. Now, if AE be divided into four equal parts, and AH into three equal parts, each of these parts, Ab, bc, fl, &c., will be 1 foot long, and if lines bk, ce, dm are drawn through b, c, and d, parallel to AH, and lines fp, lo through f and l, parallel to AE, they will divide the whole surface into the small figures, Absf, bsrc, &c.

And since Ab-1 foot and Ab-1 foot

And, since Ab=1 foot, and Af=1 foot, Afsb is a square foot, so likewise is

each of the other figures, bsrc, crxd, &c.

Now it is evident that there are as many vertical rows of these square feet as there are linear feet in AE, and as many squares in each row as there are linear feet in AH, that is in this case the number of square feet in the $surface=4\times3=12$.

As the same method of proof would apply in any similar case, it appears

The area of any rectangular surface is found in square feet, and fractions of a square foot, by multiplying the number expressing how many linear feet, &c., there are in the length, by the number expressing how many linear feet, &c., there are in the breadth.

Note .- In linear measure, primes are linear inches; in square measure, seconds are square inches; and in cubic measure, thirds are cubic inches,

47. The example under Section 43, page 143, is, in effect, equivalent to finding the area of a rectangle, one side of which is 43 feet 1'4" 10" and 3" long, and the other 6 ft. 1' 11" 10" long. The answer may be translated 265 sq. ft. 10' 0" 8" 11" 8"" 3"" and 6"""

Note.-111, the number to the left of the separating point, is a number in the duodenary scale. In order to read it in common terms, we convert it to an equivalent number in the decimal scale (Art. 40), and thus obtain 265. It is obvious that, since the orders primes, seconds, thirds, &c., form a series of numbers descending in a 12-fold proportion from left to right, we must allow the digits to the right of the point to remain as they are.

Example.—Find the area of a rectangular ceiling 43 ft. 4'

7" long by 20 ft. 11' 10" wide.

OPERATION. Here, since 43 and 20 are numbers in the common scale, we must reduce them to the duodenary scale before attaching them by the point to the other parts of the numbers. We thus obtain for the first, 37, and for the second, 18. After multiplying and pointing off four places in the product, we find 63' to the right of the point; this, reduced to an equiva-lent number in the common scale, gives us 910, to which we attach the other four digits, with their indices, as below. XII. 37:47 18'et

30194 33925 24608 3747

48. The common arithmetical rule for duodecimal multiplication is as follows:---

Write the multiplier under the multiplicand having quantities of the same denomination under each other.

Multiply each term of the multiplicand by each term of the mul-

tiplier separately.

Write the partial products under one another, so as to have quantities of the same name in the same vertical column, and add the several partial products together.

NOTE .- Considering the foot to have no index, the denomination of the product of any two factors is found by adding their indices.

Thus. 3"×2" give 6""; 4 ft.×7"" give 28""; 2 ft.×3 ft. give 6 ft.; 9'×11 give 99", &c.

This is commonly expressed, for the sake of brevity, by saying—feet into feet produce feet, feet into primes produce primes, &c., primes into feet produce primes, primes into primes produce seconds, &c., seconds into seconds produce fourths, seconds into thirds produce fifths, &c.

Example 1.-Multiply 43 ft. 4' 7" by 20 ft. 11' 10".

OPERATION. 20 11

9" 10"" 867

Here 7 and 10, multiplied together, give us 70, and adding their indices, we see that the product is so many fourths— $70^{\prime\prime\prime\prime}$, are equal to $10^{\prime\prime\prime\prime}$ to set down and $5^{\prime\prime\prime}$ to carry. Next $4'\times10''=40'''$ and 5''' make 45'''=3'' 9'', &c.

910 5' 0" 2" 10"

49. In comparing this example with the previous number it will be seen that the two methods very closely agree—the only difference being that, in the latter method, upon reaching the units or feet, we drop the duodecimal scale and carry on the process in the decimal scale, while, in the former, we carry on the whole process in the duodecimal scale, and afterwards reduce that part of the expression to the left of the separating point to the common or decimal scale.

50. Provided we multiply every part of the multiplicand by every part of the multiplier, it is perfectly immaterial where we commence the process. It is customary, however, to commence, not as we have done in the last example, with the lowest denomination of both multiplier and multiplicand, but with the highest of the multiplier and the lowest of the multiplicand. Hence duodecimal multiplication is frequently called Cross Multiplication.

Example 2.—Multiply 3 ft. 2' 7" 4" by 1' 3" 7"

EXERCISE 38.

1. Multiply 4 ft. 7' 6" 10" by 9 ft. 7' 11" 11".

Ans. 44 sq. ft. 9' 1" 8" 0" 5" 2""

2. Multiply 19 ft. 10' 3" by 11 ft. 2' 7".

Ans. 222 sq. ft. 8' 0" 5" 9"".

3. Multiply 9" 7" 4"" by 7" 3"" 11"".

Ans. 5" 10" 4" 11" 8" 8"

4. How many square inches, &c., are there in a sheet of paper 91 inches and 5 inches 7" 4" wide?

Ans. 4' 6" 8" 6"" or 5417 sq. inches. 5. What is the superficial contents of a sheet of glass whose length is 7 ft. 4' 11" and breadth 3 ft. 2' 2"?

Ans. 23 sq. ft. 6' 9" 7" 10"".

51. The solid contents are found by multiplying together the length, breadth, and thickness.

EXAMPLE.—How many cords of wood are there in a pile 79 ft. 8 inches long, 4 ft. 2 inches wide, and 7 ft. 11 inches high? OFBRATION.

7184 2268 237.04 7.0 214349 141774 No. of ft. in cord = t8)1620 t88(18'6469 duodenary *t*8

FIRST METHOD. 67.8

8BC01 79 4	8' 2'	METHO:
18 318	3' 8'	4"
331	11' 11'	4"
804 2323	3' 7'	4" 8"

2627 10' 8" 8""÷128. (number of ft, in cord) = 2014995 cords. Ans.

2011618 com. scale. 780

714 57.£ 540 378 3'68, &c.

^{14 194 1/24, &}amp;c. of a square foot.

EXERCISE 39.

- 1. Multiply together 15 ft., 1 ft., 1 ft. 2', and 8'.
 - Ans. 11 cubic ft. 8'=11 cubic ft. 1152 cubic in.
- 2. Multiply together 53 ft. 6 in., 10 ft. 3 in., and 2 ft.
 - Ans. 1096 cubic ft. 9'.
- 3. How many cords of wood in a pile 10 ft. long, 5 ft. high, and 7 ft. wide? Ans. 2 cords 94 cubic ft.
- 4. How many cords of wood are there in a pile 4 ft. wide, 5 ft. 3 in. high, and 70 ft. long? Ans. 1134.
- 5. What are the exact cubic contents of a block of marble 4 ft. 7' 8" long by 9 ft. 6' wide and 2 ft. 11' thick?

Ans. 128 cubic ft. 6' 5" 2".

6. How many bricks, 8 inches long, 4 inches wide, and 2 inches thick, will it require to make a wall 25 ft. long, 20 ft. high, and 2 ft. 6 inches thick? Ans. 33750 bricks.

52. It is sometimes asked how we can multiply feet, inches, &c., by feet,

18 to sometimes asked how we can multiply feet, inches, &c., by feet, inches, &c., while we cannot multiply pounds, shillings and pence by pounds, shillings and pence. The answer is very simple.

1st. When we say that feet multiplied by feet give square feet, we merely use, as we have seen, (Art. 46), an abbreviated form of expression for the following, viz: that "the number of square feet contained in any rectangular surface, is equal to the product of two numbers, one of which represents the number of linear feet in one side; and the other the number of linear feet in the adjacent side."

and. When we are multiplying together primes, seconds, &c., we are merely multiplying together a set of factors having 12 or powers of 12 for denominators; and when we say that seconds multiplied by fourths, give sixths; primes, multiplied by seconds, give thirds, &c., we simply mean that the product of any two of these fractions is a fraction having for its denominator a power of 12, which power is indicated by the sum of the indices of the factors.

It is hence obvious that duodecimal multiplication affords no support

whatever to the idea that money may be multiplied by money.

QUESTIONS TO BE ANSWERED BY THE PUPIL.

Note. - The numbers after the questions refer to the articles of the Section.

1. What is the measure of a number? (1)
2. What is the multiple of a number? (2)
3. What is an integer? (3)
4. Of how many kinds are integers? (4)
5. What is an even number? (5)

- 6. What is an odd number? (6)
- 7. What is a prime number ? (7) 8. What is a composite number ? (8)
- 9. What are the factors of a number? (9)
- 10. By what other names are factors known? (10)
- 11. What is a common measure of two or more numbers? (11)
 12. When are two or more numbers prime to each other / (12)
- 13. Are all prime numbers prime to each other? (12)
- 14. Are all composite numbers prime to each other? (12)
 15. What are commensurable numbers? (13) 15. What are commensurable numbers? (13)
 16. What are incommensurable numbers? (14)
 17. What is a square number? (15)

- 18. What is a cube number? (16)
 19. What is a perfect number? (17)
- How do all perfect numbers termin-20. Mention some perfect numbers. ate? (17)
- What are amicable numbers? Mention some amicable numbers. (18) 22. What is meant by the properties of numbers? (19)
- What is the sum of two or more even numbers? (19.L.)
- 24. What is the difference of two even numbers? (19-II.)
 25. What is the sum of 3, 5, 7, &c., odd numbers? (19-IV.)
 28. What is the sum of 2, 4, 6, 8, &c., odd numbers? (19-V.)
 27. What is the sum or difference of an odd and an even number? (19-VI.)
- 28. When is the product of any number of factors even? (19-1X.)
- 29. When is the product of any number of factors odd? (19-X1.)
- 39. When will a number measure the sum, difference and product of two numbers? (19-XIII.) 31. If the number 9 be multiplied by any single digit to what is the sum
- of the digits in the product equal? (19-XVI.) 32. By what is any number ending in 0 divisible? (19-XIX, &c.)
- 33. By what is any number ending in 5 divisible? (19-XX.
- 34. By what is any number ending in 2 divisible? (19-XIX.)
- When is a number divisible by 4? (19-XXII.) 35. When is a number divisible by 8? (19-XXIII.)
- 36. When is a number divisible by 9? (19-XXIV.)
 When is a number divisible by 3? (19-XXIV.)
 When is a number divisible by 3? (19-XXV.) When is a number divisible by 3? (19-XXV
- 39. When is a number divisible by 11? (19-XXVI.)
- 40. Show that every composite number may be resolved into prime factors. (19-XXVII.)
- 41. Show that the least divisor of any number is a prime number. (19-XXVIII.)
- 42. With what digits must all prime numbers except 2 and 5 terminate? (19-XXXI.)
- 43. How do you find the prime numbers between any limits? (20)
- What is this process called and why? (20)
- 45. When it is required to ascertain whether a given number is prime or not, what is the first thing we do? (20)
 - When we try the primes of the table as divisors, which is the highest we need use? (20)
- 47. Why is it unnecessary to try any divisor greater than the square root of the number? (20)
- 49. How do we resolve a composite number into its prime factors? (21)
- 49. By what numbers can a composite number he divided ? (21-Note.)
- 50. What is the rule for finding all the divisors of a number ? (22)

- 51. How do we find simply how many divisors a number has? (23)
 52. What is the greatest common measure of two or more numbers ? (24)
- 53. How do we find a common measure of two or more numbers? (25)
 54. How do we find the greatest common measure of two numbers? (26)
- 55. Prove the rule in Art. 26.
 56. How do we find the G. C. M. of three or more numbers? (27)
- 57. What is the second method of finding the G. C. M.? (28)
- 58. Upon what principle does this method rest? (28) What is a common multiple of two or more numbers? (29)
- 60. What is the least common mutiple of two or more numbers? (30)
- 61. Give the first rule for finding the 1, c. m. of two or more numbers. (31) 62. Give the second rule. (32). What is the reason of this rule? (32)
- 63. Give the most convenient and expeditious rule for fluding the l. c. m. of several numbers. (33)
- 64. What is meant by the radix or base of a system of notation? (34)
- 65. How do we read numbers in different scales ? (35)
- 66. Express the number 234213 quinary as in Art.
- 67. What does the expression 10 always represent? (37)
 - What is the highest digit used in any scale? (38) 69. How do we reduce a number from one scale to another? (89)

70. What is the rule for transforming a number from any scale into the

decimal? (40)
71. How are the fundamental operations carried on in the different scales? (41)

72. How is the separating point named in the different scales? (41-Note.)
73. How are operations in the different scales proved? (42)
74. What are duodecimals? (44)

75. Give the table of duodecimals. (44) 76. What is a prime? (45)

77. How is the area of a rectangular surface found? (46)
78. What is the rule for duodecimal multiplication? (48)
79. How may the rule for finding the denomination of the product be concisely worded? (48)

80. How are solid contents found? (51)

81. Show that duodecimal multiplication affords no support to the idea that money may be multiplied by money, &c. (52)

EXERCISE 40.

MISCELLANEOUS EXERCISE.

(On preceding rules.).

1. Add together \$729.18, \$710.50, \$166.78, £9314s. 71d., £276 19s. 101d., \$497.81 and £275 4s. 113d.

2. Multiply 47 miles, 6 fur. 17 per. 4 yds. 2 ft. 7 in. by 576.

3. How many divisors has the number 243000?

4. From 713427 octenary take 4234434 quinary and give the answer in both scales.

5. Divide 79.342 by .00006378.

6. Express 79423 and 234567 in Roman numerals.

7. What is the l. c. m. of 5, 7, 9, 11, 15, 18, 20, 21, 22, 24, 28, 30, 33, 35, 36, 40, 42, 44, 45, 48, and 50.

8. Give all the readings of 376.342. 9. Multiply 64276.3427 by 9999993000.

10. Transform 78263 nonary into the quinary and undenary scales and prove the results by reducing all the numbers to the septenary scale.

11. Form a table of all the prime numbers less than 200.

12. Reduce £672 7s. 7d. to dollars and cents.

- 13. What is the G. C. M. of 243000, 891, 37800 and 35100. 14. Give all the readings of 6 yards 3 qrs. 3 nails 2 inches.
- 15. Write down as one number, seven hundred and forty-two quintillions, nine hundred and five billions, seventy-eight thousand and fourteen, and eighty-seven million, two hundred thousand and eleven tenths of trillionths.

16. Read the following numbers:

71300100200401.000000070402 134900101000100100.000200020002 4700000000020007-000000000000278

- 17. Add together £178 16s. 43d., £97 15s. 111d., £693 19s. 113d., £216 11s. 9\d., £678 14s. 7\d., £197 13s. 11\dd., £117 6s. 5d., and £91 1s. 13d.
- 18. What are the prime factors of 276000?

- 19. Multiply 6 ft. 2' 7" 9" 10"" by 13 ft. 11' 11" 11" 7"".
- 20. Divide 7te9.047 by 713t96 in the duodenary scale.
- 21. What number in the common scale is the greatest that can be expressed by seven figures in the quaternary scale?
- 22. What number in the common scale is the least that can be expressed as an integral number by five figures in the octenary scale?
- 23. Reduce 74002702 square inches to acres.
- 24. What is the least common multiple of 240, 780, 1620, and 1728?
- 25. Divide \$7894.16 among 3 men, 4 women and 6 children, so that each woman shall have twice as much as a child and each man 5 times as much as a woman. What is the share of each?
- 26. What are the greatest and least integral numbers in the common scale that can be expressed by 10 figures in the binary scale?
- 27. Divide 729 yds. 3 qrs. 3 na. 1 in. by 7 yds. 1 qr. 1 na. 1 in.
- 28. Multiply 762.4978 by 63.423.
- 29. From 723426 take 938-9126141.
- 30. From 129 lb. take 63 lb. 4 oz. 7 drs. 2 scr.
- 31. What are the divisors of 1064?
- 32. How many yards of carpet 2 ft. 7 in. wide, will be required to cover a floor 30 ft. 6 in. long and 20 ft. 11 in. wide?

SECTION IV.

VULGAR AND DECIMAL FRACTIONS, &c.

- 1. A fraction is an expression representing one or more of the equal parts into which any quantity may be divided.
- 2. If a quantity be divided into 2, 5, 9, or 34, &c., equal parts, then one of these parts is called one-half, one-fifth, one-ninth, or one-thirty-fourth, &c., as the case may be.
- one-half is written...... $\frac{1}{3}$ one-ninth is written $\frac{1}{9}$ one-hundredth is written $\frac{1}{100}$ one-fourth is written... $\frac{1}{3}$ one-sixty-eighth is written. $\frac{1}{9}$ one-sixty-eighth is written eleven-seventeenths is written $\frac{1}{1}$, &c.
 - 3. The division of one number by another may be in-

dicated in three different ways, viz: by using the full sign of division. + or either of its parts, --, or:

Thus we may indicate the division of 17 by 8, by writing them thus $17 \div 8$, or thus 17: 8, or thus $\frac{1}{8}$?

Now the last of these, viz: $\frac{1.7}{8}$ is a fraction, and so in every other case, a fraction indicates the division of one number, called the *numerator*, by another number, called the denominator.

4. In a fraction the number below the line is called the denominator, because it indicates into how many equal parts the unit is divided, -i. e., it tells the denomination of the parts. The number above the line is called the numerator, because it numerates or tells how many of these equal parts are to be taken. (Art. 2)
5. The numerator and denominator are called the terms

of the fraction.

6. Since every fraction expresses the division of the numerator by the denominator, it follows that-

The value of the fraction is the quotient obtained by dividing the numerator by the denominator.

7. Hence, 1st. When the numerator is less than the denominator, the value of the fraction is less than 1.

2nd. When the numerator is equal to the denominator

the value of the fraction is equal to 1.

3rd. When the numerator is greater than the denominator the value of the fraction is greater than 1.

8. From (Art. 6) and (Arts. 79-84, Sec. II.) it is mani-

fest that-

1st. Multiplying the numerator of a fraction by any number multiplies the fraction by that number.

2nd. Multiplying the denominator of a fraction by any

number divides the fraction by that number.

3rd. Multiplying both numerator and denominator of a fraction by the same number does not affect the value of the fraction.

4th. Dividing the numerator of a fraction by any num-

ber divides the fraction by that number.

5th. Dividing the denominator of a fraction by any number multiplies the fraction by that number.

- 6th. Dividing both numerator and denominator of a fraction by the same number does not affect its value.
- 9. Fractions are divided into two classes: --- vulgar and decimal.
- 10. A Decimal Fraction is a fraction in which the denominator is 1, followed by one or more 0s.
- 11. All other fractions are called Vulgar or Common Fractions.

Note.- The word vulgar is here used in the sense of common.

12. There are six kinds of vulgar fractions—proper, improper, mixed, simple, compound, and complex.

13. A Proper Fraction is one in which the denominator

is greater than the numerator.

A Proper Fraction may also be defined to be a fraction whose value is less than 1.

Thus 11, 4, 78, 128, 143, 299 are proper fractions.

The following diagrams represent unity, seven-sevenths, and the proper fraction, five-sevenths,

The very faint lines indicate what ‡ wants to make it equal to unity and identical with ‡. In the diagrams which are to follow, we shall, in this manner, generally subjoin the difference between the fraction and unity. The teacher should impress on the mind of the pupit that he might have chosen any other unity to exemplify the nature of a fraction.

14. The following will show that 4 may be considered as either the 5 of 1 or the 1 of 5, both—though not identical—being perfectly equal.

In one case we may suppose that the five parts belong to but 1 unit; in the other, that each of the five belongs to different units of the same kind. Lastly, 4 may be supposed as the $\frac{1}{7}$ of one unit five times as large as the former; thus—

15. An Improper Fraction is a fraction whose denominator is not greater than its numerator.

An Improper Fraction may also be defined to be a fraction whose value is equal to or greater than 1.

Thus, $\frac{9}{4}$, $\frac{16}{7}$, $\frac{7}{2}$, $\frac{11}{11}$, $\frac{269}{14}$, $\frac{143}{143}$, $\frac{3}{3}$, $\frac{29}{28}$, &c., are improper fractions.

16. A Mixed Number is a number made up of a whole number and a fraction.

Thus, 163, 1934, 113, 9991, 63, 21, &c., are mixed numbers.

17. An Improper Fraction is always equal either to a whole number or to a mixed number. The following will exemplify an improper fraction, and its equivalent mixed number:

18. A Simple Fraction expresses one or more equal parts of unity.

Thus, $\frac{4}{7}$, $\frac{9}{8}$, $\frac{6}{6}$, $\frac{11}{17}$, $\frac{4}{5}$, $\frac{16}{28}$, &c., are simple fractions.

19. A Compound Fraction expresses one or more equal parts of a fraction; or in other words, is a fraction of a fraction.

Thus, $\frac{2}{3}$ of $\frac{2}{4}$, $\frac{4}{5}$ of $\frac{7}{9}$ of $\frac{11}{3}$ of $\frac{9}{5}$ of $\frac{129}{6}$, &c., are compound fractions.

20. \$\frac{1}{2}\$ means, not the four-ninths of unity, but the four-ninths of the three-fourths of unity:—that is, unity being divided into four parts, three of these are to be divided into nine parts and then four of these nine are to be taken; thus—

Note.—The word "of," placed between the several parts of a compound fraction, is equal to and may be replaced by \times , the sign of multiplication.

21. A Complex Fraction is one having a fraction or a mixed number in its numerator or denominator, or in both.

Thus,
$$-\frac{2}{3}$$
, $\frac{5}{3}$, $\frac{3}{7}$, $\frac{4}{5}$, $\frac{91}{18}$, $\frac{91}{213}$, $\frac{7}{213}$, $\frac{5}{23}$, &c., are complex fractions.

Note. $\frac{3}{4}$ means, that we are to take the fourth part, not of unity, but of the $\frac{3}{4}$ of unity. This will be exemplified by—

- 22. Since fractions, like integers, are capable of being increased or diminished, they may be added, subtracted, &c.
- 23. Every integer may be considered as a fraction having unity for its denominator.

Thus, 13 may be written 12; 6, 6; 29, 29, &c.

REDUCTION OF FRACTIONS.

24. Since (Art. 8) multiplying both numerator and denominator by the same number does not alter the value of the fraction, we may reduce an integer to a fraction having any proposed denominator, by the following:—

RULE.

Write the integral number in the form of a fraction having I

for its denominator. (Art. 23.)

And multiply both numerator and denominator of the resulting

expression by the proposed denominator. (Art. 8.)

EXAMPLE 1 .- Reduce 16 to a fraction having 11 for its denominator.

$$16 = \frac{1}{16} \times \frac{1}{11} = \frac{1}{11} \frac{1}{6}$$
.

Example 2 .- Reduce 173 to a fraction having 31 for its denominator.

$$173 = \frac{173}{31} \times \frac{31}{31} = \frac{5363}{31}$$
.

EXERCISE 41.

- 1. Reduce 29 to a fraction having 12 for its denominator.
- Ans. 3,48. 2. Reduce 243 to a fraction having 3 for its denominator.
- Ans. 789.
- 3. Reduce 7, 23, and 101 to fractions having 13 for denominator. Ans. 21, 299, 1313.
- 4. Reduce 4, 37, 126, 73, and 1007 to fractions having 101 for denominator.
- 5. Reduce 204, 7011, and 1999 to fractions having 207 for denominator.

25. Let it be required to reduce the mixed number 817 to an improper

 $8\frac{7}{11}$ is equal to the whole number 8, and the fraction $\frac{7}{11}$, and by (Art. 24.) $8 = \frac{88}{17}$, therefore 877 = 88 + 77 = 95.

Hence, to reduce a mixed number to an improper fraction, we deduce the following:-

RULE.

Multiplying the whole number by the denominator of the fraction. to the product add the given numerator and place the sum over the given denominator.

Example 1.—Reduce 734 to an improper fraction.

EXPLANATION.—We multiply the whole number, 73, by 9 and add in the numerator, 4. This gives us 661, which we write over the given denominator, 9, and the resulting fraction, £ g_{\perp} , is the improper fraction sought. OPERATION. 784 9

561 Ans.

Example 2.—Reduce 27617 to an improper fraction.

$$276\frac{17}{20} = \frac{276 \times 20 + 17}{20} = \frac{5537}{20} Ans.$$

Exercise 42.

1. Reduce the mixed numbers, 73,4, 18,4, and 12838 to improper fractions. Ans. 13°_{3} , 2°_{1} , and 13°_{3} . 2. Reduce the mixed numbers 384°_{3} , 673°_{13} , 4792°_{26} , and 568°_{2} .

to improper fractions. Ans. 3461, 8757, 114801, and 16474.

26. Since every fraction indicates the division of the numerator by the denominator-to reduce an improper fraction to a mixed number, we have the following:-

Divide the numerator by the denominator and the quotient will be the required mixed number.

Example 1.—Reduce 204 to a mixed number.

 $204 = 201 \div 7 = 291$ Ans.

Example 2.—Reduce 20047 to a mixed number. $20047 \div 11 = 1822 \frac{5}{17}$ Ans.

EXERCISE 43.

1. Reduce the improper fractions 407, 2432, and 19476 to Ans. 31-4, 47-8, and 16-217. mixed numbers.

fractions 2847, 3964, and 2381 to 2. Reduce the improper Ans. 8831, 15811, and 78. mixed numbers.

27. To reduce a fraction to its lowest terms :-

RULE.

Divide both terms by their greatest common measure.

This is simply dividing both terms by the same number-which does not affect the value of the fraction. (Art. 8.)

The greatest common measure may be found by (Art. 26, Sect. III.) or, very frequently, by inspection.

EXAMPLE 1.—Reduce \(\frac{50}{6} \) to its lowest terms.

Greatest common measure = 25. Dividing both terms by 25; \$9 = \$ Ans.

Example 2.—Reduce 126 to its lowest terms.

Greatest common measure of 126 and 162 = 18:

Dividing both terms by 18 we get $\frac{1}{6}$ $\frac{2}{9}$ = $\frac{7}{4}$ Ans.

EXERCISE 44.

1. Reduce # \$ % to its lowest terms.

Ans. Thu.

2. Reduce 17378 to its lowest terms.

Ans. 1521.

- 3. Reduce 39859 and 379 to their lowest terms. Ans. 1 and 3.
- 4. Reduce \$176, 518 and \$3718 to their lowest terms.

Ans. 17, 87, and 5368.

28. Instead of dividing both terms by their greatest common measure we may divide both by any common measure. We thus reduce the fraction to lower terms, and, continuing the division as long as the terms have a common measure, we shall finally have reduced the fraction to its lowest terms.

Note .- It is advisable to commit to memory the properties of numbers given in Art. 19, Sec. III from XVIII to XXIV.

Example 21.—Reduce 222480 to its lowest terms.

```
\frac{223480}{434160} dividing by 10. (XXI. of Art. 19, Sec. III.)
=\frac{232}{434}\frac{23}{16} dividing by 8. (XXIII. of Art. 19, Sec. III.)
=\frac{2781}{6487} dividing by 9, (XXIV. of Art. 19, Sec. III.)
       309 dividing by 3. (XXV. of Art. 19, Sec. III.)
    103 Ans.
```

Example 22.—Reduce 3878 to its lowest terms.

3895 dividing by 5. (XX. in Art. 19, Sec. III.)

= 169 dividing by 9. (XXIV. in Art. 19, Sec. III.) $=\frac{5}{8}$ dividing by 3. (XXV. in Art. 19, Sec. III.)

= \$7 Ans.

EXERCISE 45.

Reduce ²⁰⁴/₈₀ to its lowest terms.
 Reduce ⁵³⁵⁵/₁₃₈₈₀₀ to its lowest terms.

Ans. 17. Ans. $\frac{119}{3040}$.

3. Reduce $\frac{2304000}{5376000}$ to its lowest terms.

- Ans. 3. Ans. 63.
- 4. Reduce 1134 to its lowest terms. 5. Reduce $\frac{28}{308}$, $\frac{549}{7143}$ and $\frac{16230}{27000}$ to their lowest terms.
 - Ans. 15, 2386, and 181.

29. To reduce fractions of different denominators to equivalent fractions having the same denominator :-

RULE.

Multiply each numerator by all the denominators except its own for a new numerator, and all the denominators together for a new denominator.

This is merely multiplying both numerator and denominator of each fraction by the same quantity, viz: the product of all the other denominators, and consequently (Art. 8.) it does not alter the value of the fraction.

EXAMPLE 1.—Reduce 3, 71 and 5 to a common denominator.

3×11× 9=297=1st numerator. 7× 4× 9=252=2nd numerator. 5× 4×11=220=3rd numerator. 4×11× 9=396=common denominator.

Therefore the equivalent fractions are 306, 306, and 320

Example 2.—Reduce $\frac{1}{2}$, $\frac{3}{6}$, $\frac{4}{7}$, and $\frac{9}{1}$ to equivalent fractions having a common denominator.

1×5×7×11=385=1st numerator. 3×2×7×11=462=2nd numerator. 4×2×5×21=440=3rd numerator. 9×2×5× 7=630=4th numerator. 2×5×7×11=770=common denominator.

And the equivalent fractions are 345, 448, 448 and 639.

EXERCISE 46.

- Reduce 2, 5, 8, 3, and 5 to equivalent fractions having a common denominator.
- minator.

 3. Reduce \S , $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{3}$, $\frac{1}{3}$, and $\frac{1}{2}$ to fractions having a common denominator.
- Ans. 13013, 15036, 15014, 15008, and 170074. 4. Reduce 1^6 , $\frac{5}{7}$, and $\frac{7}{8}$ to a common denominator.
- Ans. 1001, 1001, and 16161.
- 5. Reduce 6, 4, 5, and 12 to a common denominator.

 Ans. \$156, \$338, \$358, and \$230.
- 6. Reduce 1, 3, 3, and 3 to a common denominator.

 Ans. 193, 148, 178, and 196.
- 30. To reduce fractions to equivalent fractions having their least common denominator:—

RULE.

Find the least common multiple of all the denominators. (Art.

33, Sec. III.)

Multiply both terms of each fraction by the quotient obtained by dividing this least common multiple by the denominator of that fraction.

This is merely multiplying both terms by the same quantity, as in Art. 29.

EXAMPLE 1.—Reduce $\frac{1}{4}$, $\frac{7}{12}$, $\frac{3}{3}$, and $\frac{9}{16}$ to their least common denominator.

The least common multiple of 4, 12, 3, and 16, is 48.

Multiplying both terms of the 1st fraction by 12 (i.e. 42) it becomes \(\frac{1}{4} \).

" " 2nd " by 4 (i.e. 42) it becomes \(\frac{1}{4} \).

" " 3rd " by 16 (i.e. 42) it becomes \(\frac{1}{4} \).

" 4th " by 3 (i.e. 42) it becomes \(\frac{1}{4} \).

The equivalent fractions having their least common denominator, are therefore 18, 24, 34, and 27.

Example 2.—Reduce \$\frac{4}{5}, \frac{6}{11}, \frac{29}{20}, \frac{31}{44}, \frac{19}{56}, \text{ and } \frac{3}{4} \text{ to their least} common denominator.

The least common multiple of 5, 11, 20, 44, 55, and 4, is 220. The multiplier for both terms of the first fraction is $^{2}\frac{2}{3}0 = 44$, for second. 220 = 20; for the third, 220 = 11; for the fourth, 220 = 5; for the fifth, 230 = 4; and for the sixth, 230 = 55.

Multiplying by these numbers, we obtain $\frac{176}{270}$, $\frac{120}{220}$, $\frac{319}{220}$, $\frac{155}{220}$, $\frac{76}{220}$,

and 164 for the required fractions.

EXERCISE 47.

- 1. Reduce 4, 3, 4, 3, and 75 to their least common denominator. Ans. 120, 150, 120, 120, and 120.
- 2. Reduce 15, 3, 4, 18, and 19 to their least common denominator. Ans. $\frac{1}{23}$, $\frac{5}{6}$, $\frac{1}{23}$, $\frac{5}{6}$, $\frac{1}{8}$, $\frac{3}{10}$, $\frac{13}{16}$, and $\frac{133}{30}$ to their least com-
- mon denominator.
- Ans. \(\frac{128}{248}\), \(\frac{128}{248}\), \(\frac{128}{248}\), \(\frac{1248}{248}\), \(\frac{128}{248}\), \(\frac{1248}{248}\), \(\frac{1248}{248}\),
- Ans. $\frac{570}{600}$, $\frac{140}{600}$, $\frac{165}{600}$, and $\frac{12}{600}$. nator.
- 6. Reduce 1, 2, 3, 4, 5, 7, 11, 15, and 21 to their least common denominator.
- Ans. 24, 32, 36, 40, 42, 44, 45, and 46. 7. Reduce 5, 11, 20, 27, 35, and 15 to their least common denominator.
- 8. Reduce $\frac{14}{16}$, $\frac{7}{2}$, $\frac{4}{3}$, $\frac{11}{12}$, $\frac{12}{17}$, $\frac{12}{3}$, $\frac{12}{7}$, $\frac{2}{7}$, and $\frac{2}{3}$ to their least common denominator.

Ans. 3624, 8085, 12320, 8470, 5240, 5240, 5778, 7920, and 7646.

31. Let it be required to reduce $\frac{12}{7}$ of $\frac{1}{3}$ to a simple fraction.

12 of 15 means 12 times 14 of 15. We get 14 of 15, i. e. divide 15 by 17, when we multiply the denominator 11 by 17 (Art. 8). Therefore $\frac{1}{17}$ of $\frac{6}{11} = \frac{6}{11 \times 17}$, and to multiply this result by 12, we multiply the numerator, 6, by 12, (Art. 8.)

Therefore $\frac{12}{12}$ of $\frac{6 \times 12}{11 \times 17} = \frac{72}{187}$.

Hence to reduce a compound fraction to a simple one we deduce the following:-

RULE.

Multiply all the numerators together for a new numerator, and all the denominators together for a new denominator.

Example 3.—Reduce & of \$ of \$ to a simple fraction.

 $\frac{2}{3}$ of $\frac{4}{9}$ of $\frac{5}{9} = \frac{2 \times 4 \times 5}{3 \times 7 \times 9} = 1^{\frac{10}{89}}$ Ans.

Note. - In all cases the answer must be reduced to its lowest terms.

EXERCISE 48.

1. Reduce \$ of \$ of \$ of \$\frac{3}{11}\$ of \$\frac{35}{72}\$ to a simple fraction.

2. Reduce $\frac{2}{3}$ of $\frac{4}{3}$ of $\frac{6}{7}$ of $\frac{61}{767}$ of $\frac{5}{2}$ to a simple fraction. Ans. $\frac{7}{16}$.

3. Reduce $\frac{2}{3}$ of $\frac{6}{167}$ of $\frac{7}{3}$ to a simple fraction. Ans. $\frac{7}{16}$.

Ans. 3126. 4. Reduce of 4 of 1 of 13 to a simple fraction.

32. Since the several numerators of the compound fraction form the factors of the numerator of the simple fraction, and also the several denominators of the compound fraction, the factors of the denominator of the simple fraction, it follows (Art. 8.) that,-

Before applying the rule in (Art. 31) we may cast out or cancel all the factors that are common to a numerator and a denominator of the compound fraction.

EXAMPLE 1.—Reduce of of \$ of \$ of \$ of \$ to a simple fraction.

$$\frac{6}{11} \text{ of } \frac{4}{7} \text{ of } \frac{3}{5} \text{ of } \frac{22}{27} \text{ of } \frac{35}{16} = \frac{6 \times 4 \times 3 \times 22 \times 35}{11 \times 7 \times 5 \times 27 \times 16} = \frac{2}{11 \times 7 \times 5} \times \frac{21 \times 3}{21 \times 7 \times 5} = \frac{1}{3} \text{ Ans.}$$

Here 6 and 27 contain a common factor, 3, which is east out, and these numbers thus reduced to 2 and 9. Next this 2 reduces 16 to 8, and the 9 is reduced to 3 by the third numerator, which is thus cancelled. Again, 11 cancels 11 (the first denominator) and reduces 22 to 2, and this 2 reduces the 8, before obtained from the 16, to 4. Next, this 4 is cancelled by the 4 in the numerator. Again, 7 cancels the 7 in the denominator and reduces the 33, in the numerator, to 5, and this 5 cancels the 5 in the denominator. All the numerators are now reduced to unity as also all the denominators. All the numerators are now reduced to unity, as also all the denominators but the fourth, which is 3. The resulting fraction is therefore $\frac{1 \times 1 \times 1 \times 1}{1 \times 1 \times 3 \times 1}$ but this is simply 1.

Example 2 .- Reduce 7 of \$ of \$ of \$ to a simple fraction.

$$\frac{7}{11} \text{ of } \frac{4}{6} \text{ of } \frac{3}{5} \text{ of } \frac{65}{20} = \frac{7 \times 4 \times 3 \times 55}{11 \times 6 \times 5 \times 20} = \frac{7 \times 4 \times 8 \times 55}{11 \times 6 \times 5 \times 20} = \frac{7}{10} \frac{4}{2} \frac{1}{2} \frac{7}{2} = \frac{7}{10} \frac{4}{2} \text{ arg.}$$

Note.-If any of the terms of the compound fraction are whole or mixed numbers, they must be reduced to fractions (Arts. 23 and 25). The process of cancelling exemplified above should always be adopted when possible,

EXERCISE 49.

1. Reduce $\frac{5}{9}$ of $\frac{9}{7}$ of $\frac{2}{3}$ of $\frac{3}{16}$ to a simple fraction.

Ans. $\frac{5}{84}$.

2. Reduce \(\frac{2}{3} \) of \(\frac{4}{3} \) of \(\frac{18}{13} \) of \(\frac{1}{3} \)

Ans. 101.

3. Reduce \(\frac{2}{7} \) of \(\frac{4}{11} \) of \(5\frac{1}{2} \) to a simple fraction. Ans. \(\frac{4}{7} \).

4. Reduce $\frac{1}{9}$ of $\frac{1}{18}$ of $\frac{11}{200}$ of $\frac{50}{169}$ of $\frac{13}{17}$ of $\frac{2}{6}$ to a simple fraction.

5. Reduce γ_1^3 of $\frac{1}{7}$ of $\frac{3}{7}$ of $\frac{3}{7}$

6. Reduce 4 of 3r of 154 to a simple fraction.

Ans. 24.

33. Let it be required to reduce the complex fraction $\frac{\frac{q}{3}}{\frac{3}{4}}$ to a simple fraction.

Since (Art. 8) we may multiply both numerator and denominator of a fraction by the same number, without altering its value—we may multiply both terms of the given fraction by \$\frac{4}{5}\$, i. e., by the denominator with its terms inverted, without altering its value.

Therefore
$$\frac{\frac{6}{7}}{\frac{3}{4}} = \frac{\frac{6}{7} \times \frac{3}{4}}{\frac{3}{4} \times \frac{4}{3}} = \frac{\frac{6}{7} \times \frac{4}{3}}{\frac{1}{1}} = \frac{6}{7} \times \frac{4}{3} = \frac{6 \times 4}{7 \times 3}$$
.

Hence, to reduce a complex fraction to a simple one, we deduce the following:—

RULE

Reduce the expression (Arts. 23 and 25) to the form of fraction fraction

i. e., reduce both numerator and denominator to simple fractions.

Then multiply the extremes or outside numbers together for a new numerator, and the means or intermediate numbers together for a new denominator.

EXAMPLE 1.—Reduce $\frac{4\frac{1}{4}}{\sqrt{1}}$ to a simple fraction.

$$\frac{\frac{4\frac{1}{7}}{71}}{\frac{7}{11}} = \frac{\frac{9}{7}}{\frac{7}{11}} = \frac{9\times11}{2\times7} = \frac{99}{14} = 7\frac{1}{14} \text{ Ans.}$$

NOTE.—Factors that are common to one of the extremes and one of the means, are to be struck out or cancelled. (Art. 32).

EXAMPLE 2.—Reduce $\frac{7\sqrt{1}}{1+3}$ to a simple fraction.

$$\frac{\frac{7_{11}^{4}}{1_{11}^{3}} = \frac{\frac{81}{11}}{\frac{90}{10}} = \frac{7 \times 9}{10} = \frac{63}{10} = 6_{10}^{3}. Ans.}{7}$$

EXERCISE 50.

- 1. Reduce $\frac{\frac{1}{4}\frac{8}{5}}{1\frac{1}{2}\frac{7}{5}}$ to a simple fraction. Ans. $\frac{5}{2}$.
- 2. Reduce $\frac{\frac{1}{2}}{71\frac{\pi}{4}}$ to a simple fraction. Ans. $\frac{3}{26}$
- 3. Reduce $\frac{15\frac{3}{8}}{7\frac{3}{8}}$ to a simple fraction. Ans. 2.
- 4. Reduce $\frac{11\frac{2}{3}}{12\frac{8}{5}}$, $\frac{3\frac{1}{4}}{9}$ and $\frac{2}{\frac{7}{3}}$ to simple fractions.

Ans. $\frac{1}{2}$, $\frac{5}{4}$, $\frac{1}{3}$, and $\frac{10}{2}$.

5. Reduce $\frac{\gamma^7 y}{15 \frac{3}{4}}$, $\frac{5 \frac{7}{8}}{\gamma^3 5}$ and $\frac{2 \frac{2}{8}}{3 \frac{3}{4}}$ to simple fractions.

Ans. 17, 311, and 70.

- 6. Reduce $\frac{16\frac{2}{3}}{11\frac{2}{3}}$, $\frac{6\frac{1}{8}}{13}$, $\frac{17}{18\frac{1}{3}}$, $\frac{21\frac{3}{8}}{10\frac{2}{3}}$, and $\frac{\frac{1}{2}}{4\frac{3}{8}}$ to simple fractions.

 Ans. $1\frac{2}{7}$, $\frac{2}{6\frac{1}{8}}$, $\frac{6}{8\frac{1}{8}}$, $2\frac{1}{10}$, and $\frac{4}{65}$.
- 34. A denominate fraction is a fraction of a denominate number.

Thus, 4 of a lb., -1, of a mile, 3 of a day, &c., are denominate fractions.

- 35. Reduction of denominate fractions consists in changing them from one denomination to another without altering their values.
 - 36. Let it be required to reduce ‡ of a pint to the fraction of a bushel.

Since 1 qt. = 2 pints, $\frac{4}{7}$ of a pint = $\frac{1}{3}$ of $\frac{4}{7}$ of a quart.

Also because 1 gal. = 4 qts. 4 of a pint = 1 of 4 of 4 of a gal.

Similarly $\frac{4}{7}$ of a pint $=\frac{1}{4}$ of $\frac{1}{2}$ of $\frac{1}{4}$ of $\frac{1}{4}$ of a bushel. $=\frac{1}{4}\frac{4}{8}=\frac{1}{112}$ bushel.

Hence to reduce a denominate fraction from a lower to a higher denomination, we deduce the following:—

RULE

Take the number expressing how many of the given denomination are required to make one of the next higher; also the number expressing how many of this denomination are required to make one of the next higher again, and so on until the required denomination be reached.

Write the fractions formed by these numbers as denominators, with 1 as numerator and the given fraction in the form of a compound fraction, which reduce to u simple fraction. (Art. 31.)

EXAMPLE 1.—Reduce γ_1^3 of a minute to the fraction of a week.

Ans. γ_1^3 of $\frac{1}{50}$ of $\frac{1}{24}$ of $\frac{1}{7} = \frac{3}{35}\frac{1}{950}$ of a week.

EXAMPLE 2.—Reduce \$\frac{4}{6}\$ of a grain troy, to the fraction of an ounce.

 $\frac{64}{5}$ of $\frac{1}{24}$ of $\frac{1}{20} = \frac{2}{975}$ of an oz. Troy.

EXERCISE 51.

- Reduce ³/₂ of an oz. to the fraction of a pound, avoirdupois.
 Ans. ¹/₂₀ lb.
- 2. Reduce $\frac{2}{3}$ of $\frac{3}{7}$ of a penny to the fraction of a pound.

 Ans. $\mathcal{L}_{\frac{1}{3}\frac{1}{3}\frac{1}{3}}$.
- 3. Reduce \(\frac{2}{3} \) of 8\(\frac{2}{3} \) days to the fraction of a week. Ans. \(\frac{5}{18} \) wk.
- 4. Reduce $\frac{5}{1}$ of $16\frac{1}{6}$ nails to the fraction of an English ell.

 Ans. $\frac{2}{8}$ E.e.
- 5. Reduce $\frac{9}{7}$ of a yard to the fraction of a perch.

 Ans. $\frac{94}{847}$ per.
- 6. Reduce $\frac{2}{3}$ of $\frac{4}{7}$ of 21_{14}^{1} of a cord foot to the fraction of a cord.

 Ans. $1_{\frac{1}{2}\frac{1}{2}4}$ cord.
- 7. Reduce $^3_{5}$ of $^4_{7}$ of $9\frac{1}{2}$ square perches to the fraction of an acre. Ans. $_{73\frac{3}{6}0}$ acre.

37. Let it be required to reduce 1 of a day to the fraction of a minute. Since there are 24 hours in a day and 60 minutes in an hour; 1 of a day will be 24 times 4 of an hour and 60 times 24 times 4 of a mi-

nute; that is, \$ of a day is equal to \$\frac{4}{24}\times 24\$ times \$\frac{4}{5}\$ of a minute.

Therefore $\frac{1}{2}$ of a day $= \frac{5}{4}$ of $\frac{24}{1}$ of $\frac{50}{10}$ of a minute $= \frac{1152}{1152}$ minute.

Hence, to reduce a denominate fraction from a higher to a lower denomination, we have the following:—

RULE.

Take the number expressing how many of the next lower denomination make one of the given denomination; also, the number, expressing how many of the next lower again make one of this denomination, and so on till the required denomination be reached.

Write the fractions formed by these numbers as numerators, with 1 as denominator, as the given fraction in the form of a compound fraction, which reduce to a simple fraction. (Art. 31.)

EXAMPLE 1.—Reduce $\frac{2}{3}$ of a £ to the fraction of a penny. $\frac{2}{3}$ of $\frac{1}{3}$ 0 of $\frac{1}{3}$ 2 $\frac{1}{3}$ 20 pence.

Example 2.—Reduce $\frac{3}{3}$ of $\frac{5}{8}$ of $\frac{12}{11}$ of a furlong to the fraction of a foot.

 $\frac{2}{3}$ of 5 of $\frac{1}{12}$ of $\frac{1}{10}$ of $\frac{1}{12}$ of $\frac{3}{1} = 300$ ft. Ans.

Exercise 52.

1. Reduce 14 of a bushel to the fraction of a quart.

Ans. 448 qt.

- 2. Reduce \(\frac{2}{3} \) of a gal. to the fraction of \(\frac{1}{3} \) of a gill.
- Ans. $\frac{160}{3}$. Reduce 3 of 2 pecks to the fraction of $\frac{1}{3}$ of $\frac{2}{3}$ of a pint.

Ans. 234.

- 4. Reduce ½7 of a lb. to the fraction of a scruple.
- Ans. 2118 scr.

 5. Reduce $\frac{1}{8000}$ of $\frac{2}{3}$ of $\frac{1}{3}$ of $\frac{2}{11}$ of $\frac{2}{3}$ of a lb. avoirdupois to the fraction of a dram.

 Ans. $\frac{193}{376}$ dr.
- 38. To find the value of a denominate fraction in terms of a lower denomination:—

RULE.

Divide the numerator by the denominator according to the rule given in Art. 71, Sec. II.

This is only actually performing the work which the fraction indicates. (Art. 3)

EXAMPLE.—What is the value of 11 of a mile?

11 miles:13

13)11 miles (6 fur. 30 per. 4^3 _J yds. Ans. 8 = fur. in a mile.

88 = number of furlougs.

78

10

40 = perches in furlong.

400 = perches.

10

54 = yards in a perch.

55 = number of yards.

52

3

EXERCISE 53.

 What is the value of 3 of a bushel and also of f of a lb. avoirdupeis?

Ans. 1 pk. 0 gal. 0 qt. 1 tr pt. and 13 oz. 113 drams.

2. What is the value of 27 of a yard of cloth?

Ans. 2 qrs. 0 na. 1,5 inches.

What is the value of § of a lb. troy; and also of 1 13 sq. mile?
 Ans. 10 oz. 13 dwt. 8 grs.; and 62 acres, 1 rood, 8 sq. per.
 \$q. yds. 2 ft. 79 1 in.

- What is the value of § of a furlong; and of § of a £?
 Ans. 35 rds. 3 yds. 0 ft. 2 in.; and 11s. 5 d.
 - 39. Let it be required to reduce 2s. 73d, to the fraction of £7 18s.

 $\frac{2s. 7\frac{3}{2}d.}{27.18s.} - \frac{127}{7584} \frac{farthings.}{farthings.}$ Therefore 2s. $7\frac{3}{2}d. = \frac{127}{7584}$ of £7 1s.

Hence, to reduce one denominate number to the fraction of another, we deduce the following:-

RULE

Reduce both quantities to the lowest denomination contained in either.

Then place that quantity which is to be the fraction of the other as numerator and the remaining quantity as denominator.

Example 1.—Reduce 3 days 4 hours to the fraction of a week.

3 days 4 hours = 76 hours.

1 week = 168 hours.

And the required fraction is $\frac{768}{168} = \frac{19}{48}$ Ans.

EXAMPLE 2.—What fraction is 3 lb. 4 oz. 2 dr. 2 scr. 7 grs. of 63 lb. 4 oz. 7 dr. Apothecaries' weight?

3 lb. 4 oz. 2 dr. 2 scr. 7 grs. = 19367 grs. 63 lb. 4 oz. 7 dr. = 365220 grs. And the fraction is $\frac{1935720}{365220}$ Ans.

Exercise 54.

- 1. What fraction is 6 bush. 1 pk. 1 gal. 1 qt. 1 pt. of 50 bush.?

 Ans. 411
 3206.
- 2. What fraction is 35 per. 9 ft. 2 in. of a furlong? Ans. 8.
- 3. What fraction is 7 h. 12 m. of a day?

 Ans. $_{13}^{9}$
- What fraction is 2 sq. yds. 2 ft. 120 in. of 3 sq. per. 131 yds. 1 ft. 72 in.?
- 5. What fraction is 7 oz. 7 dr. 2 scr. 14 grs. of 21 lbs. Apoth.?

 Ans. $\frac{\pi^2}{240}$.
- 6. Reduce 9 min. 48 sec. to the fraction of a day. Ans. $\frac{49}{7200}$.
- 7. Reduce 16 bush. 1 pk. 1 pt. to the fraction of 69 bush.

 Ans. 1417.
- 8. Reduce 3 qrs. 31 na. to the fraction of an ell Eng. Ans. 31.
- 9. What part of a lb. Troy is 13 dwt. 7 grs.?

 Ans. 319/60.
- 10. What part of 54 cords of wood is 4800 cubic feet? Ans. 36.

ADDITION OF VULGAR FRACTIONS.

40. Addition of fractions is the process of finding a single fraction which shall express the value of all the fractions added.

Addition may be illustrated as follows:-

41. In order that fractions may be added they must have a common denominator.

Thus $\frac{2}{3}+\frac{3}{4}$ make neither $\frac{5}{4}$ nor $\frac{5}{4}$; but if we reduce them to equivalent fractions having a common denominator, as $\frac{8}{12}$ and $\frac{9}{12}$, we are enabled to add them and thus obtain for their sum $\frac{1}{4}$?

These fractions, before and after they receive a common denominator, will be represented as follows:—

We have increased the number of the parts just as much as we have diminished their size.

42. For the addition of fractions we have therefore the following:—

RULE.

Reduce compound and complex fractions to simple ones, and all to a sommon denominator. (Arts. 29, 31, and 33.)

Add all the numerators together, and beneath their sum place the common denominator.

Reduce the resulting fraction, when it is an improper fraction, to a mixed number. (Art. 26.)

NOTE.—If mixed numbers occur among the addends, the integral portions are to be added separately and their sum added to the sum of the fractions.

EXAMPLE 1.-Add together 14, 13, 12, 17, and 19.

Here, since the fractions have already a common denominator, we have simply to add the numerators and place 11, the common denominator, beneath their sum.

Thus
$$\frac{1}{1} + \frac{3}{1} + \frac{2}{1} + \frac{7}{1} + \frac{10}{10} = \frac{4+3+2+7+10}{11} = \frac{2}{10} = 2 \frac{4}{11} Ans.$$

Example 2.—Add together 2, 3, 4, 5 and 11.

These fractions reduced to their least common denominator by Art. 30, become 28, 24, 28, 48, 44.

And
$$\frac{3}{5} + \frac{2}{5} + \frac{1}{5} + \frac{3}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = \frac{26 + 24 + 28 + 48 + 44}{56} = \frac{17}{5} = \frac{2}{5} = \frac{1}{3} = 3\frac{1}{14}$$
 Ans.

Example 3.—Add together 3, 4, 11 and 1 of 4 of 11 of 61 of 51. 1 of 4 of 8 of 49 of 51 is equal to 7 (Art. 31).

The fractions to be added are therefore $\frac{3}{2} + \frac{1}{2} + \frac{1}{3} + \frac{7}{8}$.

These reduced to a common denominator (Art. 29), become $\frac{1226}{322} + \frac{2}{3}664 + \frac{2}{3}689 + \frac{2}{3}689 + \frac{2}{3}689 = \frac{2}{3}889 = 2\frac{2}{3}8889 = 28889 = 2\frac{2}{3}8889 = 28889 = 2\frac{2}{3}8889 = 28$

Example 4.—Add together $9\frac{1}{2}$, $11\frac{3}{4}$, $16\frac{7}{9}$, $43\frac{2}{5}$, and $7\frac{1}{8}$

Here the last fraction is a complex fraction and is equal to 5.

 $9\frac{1}{4} + 11\frac{1}{4} + 16\frac{1}{4} + 43\frac{1}{4} + \frac{1}{4} + \frac{1}{4}$

And 9+11+16+43=79. Also $\frac{1}{2}+\frac{2}{3}+\frac{7}{3}+\frac{2}{6}+\frac{4}{5}=\frac{1}{3}\frac{2}{6}\frac{6}{6}+\frac{2}{3}\frac{2}{6}\frac{6}{6}+\frac{2}{3}\frac{2}{6}\frac{6}{6}+\frac{1}{3}\frac{4}{6}\frac{4}{6}+\frac{2}{3}\frac{2}{6}\frac{6}{6}=\frac{1}{3}\frac{2}{6}\frac{6}{6}=3\frac{1}{3}\frac{2}{6}\frac{6}{6}$.

Therefore the sum of the given quantities is $79+3\frac{19}{360}=82\frac{19}{360}$.

Example 5.—Add together &, 3 and 53.

Here adding the three fractions together we obtain 1342 for their sum, to which we add the integral number 5 and thus obtain the entire sum 6319.

EXERCISE 55.

1. Add together 11, 12 and 23. Ans. $\frac{30}{12} = 2\frac{4}{12}$.

1. Add together $\frac{1}{12}$, $\frac{6}{12}$, $\frac{7}{12}$, $\frac{9}{12}$, $\frac{11}{12}$ and $\frac{5}{12}$. 2. Add together $\frac{1}{12}$, $\frac{6}{12}$, $\frac{7}{12}$, $\frac{9}{12}$, $\frac{11}{12}$ and $\frac{5}{12}$. Ans. $\frac{39}{12} = \frac{1}{4}$.

3. Add together 43, 114, 162, 213 and 195.

Ans. $71+\frac{18}{7}=73\frac{4}{7}$.

4. Add together $16\frac{1}{23}$, $11\frac{17}{23}$, $18\frac{4}{23}$, $17\frac{19}{23}$ and $112\frac{23}{23}$. Ans. 17714.

Ans. $6^{\frac{29}{132}}$. 5. Add together $4\frac{1}{4}$, $1\frac{1}{3}$ and $\frac{7}{13}$.

Ans. 6431 6. Add together $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$, $\frac{6}{7}$, $\frac{7}{8}$ and $\frac{3}{9}$.

7. Add together $\frac{3}{4}$, $\frac{5}{6}$, and $\frac{4}{5}$.

Ans. 223. Ans. 35477.

8. Add together $\frac{4}{5}$, $\frac{5}{6}$, $\frac{6}{7}$, $\frac{3}{8}$ and $\frac{8}{11}$. 9. Add together $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$ and $\frac{1}{7}$. Ans. 1 33. 10. Add together $16\frac{3}{11}$, $47\frac{2}{9}$, $21\frac{17}{33}$, $\frac{7}{18}$ and $19\frac{1}{2}$.

Ans. 10488.

- 11. Add together $17\frac{1}{2}$, $43\frac{3}{7}$, $168\frac{4}{9}$, $207\frac{3}{27}$ and $506\frac{125}{28}$. Ans. 94347.
- 12. Add together $6\frac{3}{4}$, $11\frac{4}{7}$, $\frac{9}{36}$, $16\frac{7}{16}$, $\frac{1}{2}$, $\frac{5}{27}$ and $17\frac{1}{12}$. Ans. 53193.
- 13. Add together 1, 2, 7 and 681. Ans. 69191.
- 14. Add together 173 3, 85 and 9111. Ans. 273295.
- 15. Add together $1\frac{15}{16}$, $2\frac{23}{4}$, $3\frac{24}{5}$ and $4\frac{29}{36}$. Ans. 13328.
- 16. Add together $\frac{1}{6}$, $\frac{3}{12}$, $\frac{4}{46}$, $\frac{5}{24}$, $\frac{7}{16}$, $\frac{2}{3}$, $\frac{1}{2}$ and $\frac{5}{6}$. Ans. $3\frac{5}{48}$. 17. Add together 7, $11\frac{1}{2}$, 18, $26\frac{3}{7}$ and 79 $\frac{4}{14}$.

Ans. 142 45.

18. Add together $\frac{2}{3}$, 7_{11}^2 and $\frac{4}{5}$ of $\frac{3}{7}$ of $10\frac{1}{2}$. Ans. 11_{163}^{74} . 203

19. Add together 1, 1 of 3 of 15 of 23, and 7,

- Ans. 15 13. 20. Add together 35, 111 and 147. Ans. 2923.
- 21. Add together $\frac{1}{2}$ of $\frac{3}{4}$, $\frac{2}{3}$ of $\frac{6}{7}$, $\frac{3}{5}$ of $\frac{7}{8}$, $\frac{2}{7}$ of 1_{20}^{7} and $4\frac{1}{2}$ of 1 of 1 of 1 of 1. Ans. 11261.
- 22. Add together 411, 1052, 3003, 2413 and 4721.
- Ans. 116128. 23. Add together 92,5, 37,8 and 74. Ans. 137355.
- 24. Add together 211, 351, 27 and 3 of 7. Ans. 615.
- 25. Add together 23 of 32, 111, 24 of 41 of 13, and 42 of 2 of 21 of 13. Ans. 341138.

43. In order to add denominate fractions they must not only have a common denominator, but they must be fractions of the same unit, i. e., must be of the same denomination.

Thus £3, 3s. and &d. cannot be added together, as the result would be

neither $\frac{9}{8}$ of a pound, $\frac{9}{8}$ of a shilling, nor $\frac{9}{8}$ of a penny.

But if we reduce them all to the fraction of a pound, or all to the fraction of a shilling, or all to the fraction of a penny, it is obvious that we may then add the resulting fractions, having first reduced them to a common

Hence, for the addition of denominate fractions, we have the following:-

RULE.

Reduce all the fractions to the same denomination (Arts. 36 and 37). Reduce the resulting fractions to a common denominator (Arts. 29 and 30). Add (as in Art. 42) and find the value of the resulting fraction (Art. 38).

EXAMPLE 1 .- Add together & of a day and 3 of an hour. $\frac{2}{3}$ of a day = $\frac{2}{3}$ of $\frac{2}{3}$ = $\frac{1}{3}$ of an hour.

 $\frac{1}{3}$ h. $+ \frac{3}{3}$ h. $= \frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$

Example 2.—Add together If of a pound, & of a shilling, and 3 of a penny.

> $\frac{7}{11}$ of a $\mathcal{L} = \frac{7}{11}$ of $\frac{20}{11}$ of $\frac{1}{12} = \frac{1680}{11}$ of a penny = $152\frac{8}{11}$ pence. of a shilling = 3 of 1,2 = 24 of a penny = 44 pence.

280+308+165 152% + 4! + ? = 156 += 157368 pence = 13s. 1868d.

Note.-In place of proceeding as above, we may find the value of each fraction separately (Art. 38) and add the results.

Example 3.—Add together & of a bushel, & of a peck, and 2 of a gal.

 $\frac{4}{5}$ of a bushel = 3 pks. 0 gal. 1 qt. $1\frac{1}{k}$ pts. of a peck = 1 gal. 3 qts. of a gal. 15 pts.

Sum=1 bush. 0 pks. 0 gal. 1 qt. 03 f pts. Ans.

EXERCISE 56.

1. What is the sum of 41lb. Apothecaries' weight, 3 oz. 4 _T dr. and 4 ₅ ser.? Ans. 4 oz. 6 drs. 2 sers. $18\frac{1}{2}\frac{7}{3}$ grs. 2. Add together 3 ₂ yd. 4 ₂ ell Eng. and 4 ₂ qr.

Ans. 3 qrs. 3 na. $1\frac{39}{140}$ in.

3. Add together + of a yard, + of a foot, and + of an in. Ans. 7 inches.

4. What is the sum of ⁷/₁₁ of a mile, ⁴/₁₃ of a furlong, and $\frac{9}{22}$ of a yard? Ans. 5 fur. 16 rds. 0 yds. 0 ft. $3\frac{93}{143}$ in.

5. What is the sum of \(\frac{1}{4}\) wk. \(\frac{1}{3}\) day, \(\frac{1}{6}\) h.?

Ans. 2 days 2 h. 12 m.

6. Add together £1, 3s., and 5ad. Ans. 3s. 131d.

7. What is the sum of \$\frac{1}{2}\$ of 21s. \$\frac{5}{2}\$ of 5s. \$\frac{5}{2}\$ of £3 12s. 6d. £7 and 48d.? Ans. £3 12s. 412d.

SUBTRACTION OF VULGAR FRACTIONS.

44. Subtraction of vulgar fractions is the process of finding the difference between two fractions.

We have seen that before fractions can be added they must have a common denominator and that when denominate fractions are to be added they must be also of the same denomination, and this is manifestly the case also in the subtraction of fractions.

Hence, for the subtraction of fractions, we have the following:-

RULE.

Reduce compound and complex fractions to simple ones and all to the same denomination, if not already such.

Reduce both of the resulting fractions to a common denominator.

Subtract the numerator of the subtrahend from the numerator of the minuend, and beneath the difference write the common denominator.

Note.—In the case of mixed numbers it frequently happens that the fractional part of the subtrahend is greater than the fractional part of the minuend. When this occurs, instead of reducing both quantities to improper fractions and then applying the rule, it is much better to borrow unity from the integral part of the minuend and considering it as a fraction, having the common denominator, add it to the fractional part of the minuend. (See 3rd, 4th and 5th Examples below.)

Example 1.—From 3 take 127.

 $\frac{3}{7} - \frac{1}{17} = \frac{5}{1}\frac{1}{9} - \frac{1}{1}\frac{4}{9} = \frac{3}{1}\frac{7}{9}$ Ans.

Here reducing $\frac{3}{7}$ and $\frac{5}{12}$, to a common denominator they become $\frac{5}{12}$ and $\frac{1}{12}$.

EXAMPLE 2.—From $\frac{3}{5}$ of $\frac{2}{7}$ of $\frac{1}{2}V_0$ of 49 take $\frac{84}{3\frac{1}{2}}$ of $\frac{1}{5}$ of $\frac{1}{3}$.

Here $\frac{3}{5}$ of $\frac{2}{7}$ of $\frac{1}{2}V_0$ of 49 = $\frac{2}{5}$.

And $\frac{84}{3\frac{1}{4}}$ of $\frac{1}{3}$ of $\frac{1}{5}$ of $\frac{1}{3}$ = $\frac{1}{5}$.

And $\frac{2}{5} - \frac{1}{5} = \frac{1}{4}\frac{2}{5} - \frac{2}{3}c = \frac{7}{3}c$. Ans.

Example 3.-From 192121 take 1618.

 $_{1}^{2}$ ₇ and $_{1}^{4}$ 6 reduced to a common denominator become $_{1}^{3}$ 7₆ and $_{1}^{4}$ 7₆. 192 $_{1}^{2}$ 7₆—16 $_{1}^{4}$ 7₆ = 192 $_{1}^{3}$ 7₆—16 $_{1}^{4}$ 7₆ = 191 $_{1}^{4}$ 7₆ = 191 $_{1}^{4}$ 7₆ = 191 $_{1}^{4}$ 7₆ = 175 $_{1}^{4}$ 7₆ Ans.

Here, since we cannot subtract $\frac{166}{16}$ from $\frac{326}{16}$ we have to borrow 1 from the integral part of the minuend, and considering it as $\frac{176}{176}$ add it to $\frac{32}{176}$. We thus reduce $192\frac{326}{16}$ to $191\frac{268}{16}$ and then make the subtraction.

Example 4.—From $29_1^2_f$ take $16\frac{4}{3}$.

 $\begin{array}{lll} & & & & & & & & & & & & \\ 29_{1}^{2}_{1} & -16_{1}^{4} & = 29_{1}^{4}_{1} & -16_{1}^{4}_{1} & = 28_{1}^{4}_{1} &$

Example 5.—From 117,3 take 67 40.

 $117_{7}^{3} - 67_{4}^{4} = 117_{7}^{4}_{3} - 67_{7}^{4}_{5} = 116_{7}^{4}_{5} - 67_{7}^{4}_{5} = 116_{7}^{4}_{5} - 67_{7}^{4}_{5} = 49_{7}^{4}_{5}^{3} Ans.$

Example 6.—What is the difference between 1 of 1 of $\frac{5}{7}$ of $2\frac{3}{3}$ days and $\frac{3}{7}$ of $\frac{1}{3}$ of $5\frac{5}{6}$ hours?

 $\frac{1}{2}$ of $\frac{3}{2}$ of $\frac{5}{2}$ of $\frac{2}{3}$ days = $\frac{5}{2}$ of a day = $\frac{5}{4}$ of an hour = $\frac{1}{2}\frac{2}{9}$ hours = $\frac{1}{3}\frac{1}{6}$ hours = $\frac{1}{3}\frac{1}{6}$ hour.

And $17\frac{1}{7}$ h. $-1\frac{1}{35}$ h. $=17\frac{5}{35} - 1\frac{1}{35} = 16\frac{4}{35}$ hours. Ans.

EXERCISE 57.

Ans. 2. 1. From & take Jo.

Ans. 0. 2. From 1496+17 of 13 of 16 take 64

Ans. 95274270. 3. From 98217 take 2918.

4. What is the difference between 69 1 and 18 86 ? Ans. 501 683.

5. What is the difference between 100½ and 9½? Ans. 907. Ans. 15. 6. What is the difference between 61 and 1 of 91?

Ans. \$748 7. From 611 43 take 610 188. 8. From \ of 2 take \ of \ + \. Ans. 38.

9. From 3 of a lb. avoirdupois take 8 of a dram.

Ans. 10 oz. 97 drs. 10. What is the difference between $24\frac{1}{24}$ and $21\frac{1}{21}$? Ans. $2\frac{167}{68}$.

11. What is the difference beween of a mile, and 171 of a fur-Ans. 1 fur. 5 rd. 3 yds. 1 ft. 10 in. long? 12. Find the value of \(\frac{2}{3} \) of \(\frac{135}{16} \) \(\frac{1}{16} \) of 28\(\frac{1}{2} \). Ans. 523.

10% 13. Find the value of $12_{1764}^{319} + \frac{1}{2}$ of $\frac{3}{7}$ of $\frac{3}{4}$ of $8\frac{1}{4}$ of Ans. 229.

14. Find the value of $3\frac{1}{12} + 8\frac{1}{9} - 3\frac{3}{10} - 2\frac{5}{6} + 5\frac{1}{5} + 6\frac{1}{2} - 16\frac{1}{4}$. Ans. $\frac{5}{46}$.

15. From tof an acre take tof a perch.

Ans. 1 rood 17 p. 22 yds. 2 ft. 108 in.

16. From $16\frac{1}{7}$ take $9\frac{1}{19}$, and from $169\frac{17}{100}$ take $83\frac{17}{26}$. Ans. 6 134 and 85-671

MULTIPLICATION OF VULGAR FRACTIONS.

45. Let it be required to multiply 3 by 3.

Here we are required to multiply $\frac{3}{11}$ by $\frac{7}{8}$, that is by $\frac{1}{8}$ of 7.

Now if we multiply 3 by 7 we shall have multiplied by a quantity 8 times too great, and the product will be 8 times too great.

If, therefore, we multiply 131 by 7 we shall have to divide the result by 8

in order to get the product of $\frac{3}{11} \times \frac{7}{8}$.

But (Art. 8) we multiply 3 by 7, when we multiply the numerator by 7, and we divide the result by 8 when we multiply the denominator by 8.

Therefore, $\frac{3}{11} \times \frac{3}{8} = \frac{3}{11 \times 8}$, that is to multiply fractions together, we multiply the numerators together for a new numerator, and the denominators together for a new denominator.

Hence, for the multiplication of vulgar fractions we deduce the following:-

RULE.

Reduce compound and complex fractions to simple ones (Arts. 31. and 33) and whole and mixed numbers to improper fractions (Arts. 23 and 25).

Cancel any factors that are common to a numerator and a de-

nominator of the resulting fractions (Art. 32).

Multiply all the reduced numerators together for a new numerator, and all the reduced denominators together for a new denominator.

Reduce the result, if necessary, to a mixed number.

EXAMPLE 1 .- Multiply 3 by 19.

Here we cancel the first denominator and reduce the second numerator to 3.

Example 2.—Multiply together 7, 1, 31 and 44.

Example 3.—Multiply together \$, 31, 67, 93, 21, and 63.

STATEMENT.

$$\frac{2}{\frac{4}{9}} \times \frac{3}{11} \times \frac{44}{7} \times \frac{48}{5} \times \frac{5}{2} \times \frac{68}{1} = \frac{2 \times 3 \times 4 \times 48}{1} = 1152 \text{ Ans.}$$

Example 4.—Multiply together $\frac{1}{19}$, 18_{1}^{7} , 9, $\frac{1}{2}$ of $\frac{3}{4}$ of 7, and $\frac{3}{6}$ of $\frac{11}{4}$ of 25.

STATEMENT.

CANCELLED.

$$\frac{1}{179} \times \frac{205}{11} \times \frac{\frac{3}{6}}{5} \times \frac{\frac{3}{16}}{5} \times \frac{\frac{1}{16}}{5} \times \frac{\frac{1}{16}}{14} = \frac{205 \times 3 \times 3 \times 3}{179} = \frac{5535}{179} = 30 \frac{1}{179} \text{ Ans.}$$

Example 5.—Multiply together 3, 3,4, 41, 3, 61 and 518.

ETATEMENT.

t×Y×t×t×f×H·

CANCELLED.

$$\frac{7}{9} \times \frac{247}{81} \times \frac{9}{2} \times \frac{9}{5} \times \frac{43}{5} \times \frac{77}{15} = \frac{247 \times 43 \times 77}{81 \times 5 \times 15} = \frac{817817}{6075} = 1343695.$$

EXERCISE 58.

1. What is the product of $\sqrt{g} \times \frac{5}{5}$?	Ans. 35.
2. What is the product of $\{x, x\}$?	Ans. $\frac{1}{2}$.
3. What is the product of 18 × 14?	Ans. $\frac{1}{18}$.
4. Multiply together 3, 6 and 76.	Ans. 445.
5. Multiply together 14, $15\frac{1}{16}$ and $3\frac{5}{2}$.	Ans. 7493.
6. Multiply together 30 , 83 , 71 and 14 .	Ans. $5\frac{29}{32}$.
7. Required the product of $\frac{4}{3}$, $\frac{6}{11}$, $\frac{9}{17}$, $\frac{18}{200}$ and $\frac{4}{3}$.	Ans. 4676.
8. Required the product of $\frac{6}{7}$, $\frac{11}{8}$, $\frac{6}{33}$, 21, $\frac{3}{8}$ and 5.	Ans. $13\frac{1}{2}$.
9. Required the product of \(\frac{6}{3}\), \(\frac{3}{11}\), \(\frac{4}{19}\) and 209.	Ans. $9\frac{s}{b}$.
10. Find the value of $6\frac{1}{4} \times 11\frac{3}{4} \times 16\frac{4}{15} \times \frac{3}{15} \times \frac{3}{80}$ of $\frac{1}{9}$.	Ans. 12.
11. Find the value of $\frac{4}{7}$ of $\frac{9}{16}$ of $77 \times \frac{3}{7}$ of $\frac{8}{13}$ of	f 91×6§₹.
	Ans. 11274.

12. Multiply together $\frac{1}{8}$, $\frac{3}{9\frac{1}{8}}$, $\frac{7\frac{1}{9}}{\frac{3}{8}}$, $\frac{4\frac{3}{4}}{7\frac{3}{18}}$, $\frac{27}{27}$, and $1\frac{1}{8}$. Ans. 707. Ans. 10%.

13. Multiply $\frac{1}{4}$ of 8 by $\frac{2}{7}$ of 19.
14. Multiply $\frac{2}{10}$ of 7 by $\frac{1}{12}$ of 87_{13}^{3} .
15. Find the value of $6\frac{3}{4} \times \frac{7}{8} \times \frac{4}{7} \times \frac{4}{7}$. Ans. 4031.

Ans. 270.

16. Find the value of $3\frac{5}{3} \times 4\frac{7}{3} \times 15$. Ans. 2681. 17. Multiply \(\frac{1}{2} \) of 8\(\frac{3}{2} \) of \(\frac{1}{2} \) of 9\(\frac{1}{2} \) by 8\(\frac{1}{2} \) \(\frac{1}{2} \) of 6\(\frac{1}{2} \) of \(\frac{2}{3} \) of

Ans. 4729394. 151 of 1138.

18. Find the value of $\frac{27}{37\frac{1}{4}} \times \frac{87\frac{2}{3}}{98\frac{1}{4}} \times \frac{2}{2\frac{1}{4}} \times \frac{81\frac{6}{12}}{128}$. Ans. As.

19. Multiply \$8₁⁷₁ by $\frac{1}{7}$ of $\frac{3}{8}$ of $\frac{17}{8}$.

20. Find the value of $\frac{75\frac{3}{8}}{6\frac{1}{11}} \times \frac{\frac{2}{7}}{1^2}$ of $6\frac{3}{8} \times \frac{1}{17}$ of $2\frac{3}{2} \times \frac{7\frac{1}{8}}{15} \times \frac{\frac{3}{4}}{\frac{3}{4}} \times 14\frac{3}{4} \times \frac{100}{121}$ $\times \frac{4}{51} \times \frac{4}{9}$. Ans. 17478.

46. To multiply an integral denominate number by a fraction, we have the following:-

Multiply the denominate number by the numerator of the fraction and divide the result by the denominator.

NOTE.—This is merely considering the denominate number as a fraction having 1 for its denominator (Art. 23), and applying the preceding rule.

Example 1.—How much is 4 of \$129.63.

\$ of \$129.63 \$\frac{\$129.63 \times 4}{9} \$\frac{\$518.52}{9}\$\$\$ \$57.61\frac{1}{3}\$. Ans.

Example 2.—How much is 3 of 1 of 10 lb. 6 oz. 4 dr. Avoir? $\frac{7}{11}$ of $\frac{1}{2}$ of 10 lb. 6 oz. 4 dr. $\frac{7}{22}$ of 10 lb. 6 oz. 4 dr. $\frac{10 \text{ lb. 6 oz. 4 dr.} \times 7}{22}$ 3 lbs. 4 oz. 14 drams. Ans.

EXERCISE 59.

- 1. How much is 1376 of 4 days 5 h.? Ans. 5 days 38 m. 20 sec.
- How much is 15 of £29?
 How much is 5 of 186 acres 3 roods?
 Ans. £8 19s. 67d.
 How much is 5 of 186 acres 3 roods?
- 4. How much is 14 of 2 of 30 of 231 times 24 b. 30 m.?
- Ans. 1 hour 38 min. 5. How much is 3 of 4 of 31 of 3 of 33 bush. 2 pk. 1. gal.? Ans. 2 bush. 2 pk. 0 gal. 3 qt. 117 pt.
- 47. From the principles already established, it is evident that-

1st. When the multiplier is less than unity, the product is less than the multiplicand.

2nd. To multiply a fraction by a whole number, we may either multiply the numerator of the fraction or divide the

denominator by that number. (Art. 8).

3rd. To multiply a whole number by any fraction having unity for its numerator, we simply divide the whole number by the denominator.

Thus, to multiply by $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{7}$, $\frac{1}{7}$, &c., we divide by 2, 3, 4, 7, 11, &c.

4th. When multiplying by a mixed number of which the fractional part has unity for its numerator, it is better to multiply by the integral part of the multiplier first and then by the fractional part, afterwards adding the two partial products together.

DIVISION OF VULGAR FRACTIONS.

48. Let it be required to divide ? by 1.

Here we are required to divide 2 by f that is, by to of 5.

Now if we divide ? by 5, we use a divisor 11 times too great, and the quotient is 11 times less than the required quotient.

Therefore, to obtain the correct quotient of 3 + 5, after dividing 3 by 5, we shall have to multiply the result by 11.

But (Art. 8) we divide the fraction 3 by 5, when we multiply the denominator 7 by 5, and we multiply the result by 11 when we multiply the numerator 3 by 11.

Therefore $\sqrt[3]{+5} = \frac{3 \times 11}{7 \times 5} = \sqrt[3]{\times} \times \frac{1}{5} = \text{dividend} \times \text{divisor with its terms in-}$ verted.

Hence for the division of fractions we have the following:-

RULE.

Reduce compound and complex fractions to simple ones; whole and mixed numbers to improper fractions.

Invert the terms of the divisor and proceed as in multiplication.

In addition to the foregoing analysis, the following may be given as a proof of the truth of this rule.

 $\frac{3}{7} \cdot \frac{5}{11} = \frac{\frac{3}{7}}{\frac{5}{11}}$ because the dividend of any question in division may be made the numerator and the divisor the denominator of a fraction.

Now since we may multiply both terms of the fraction $\frac{3}{16}$ by any number, we may multiply them by $\frac{1}{5}$, i. e., the denominator with its terms inverted.

Therefore $\frac{\frac{3}{7}}{\frac{5}{7}} = \frac{\frac{3}{7} \times \frac{1}{6}}{\frac{7}{1} \times \frac{1}{16}} = \frac{\frac{3}{7} \times \frac{11}{6}}{1}$ (because $\frac{5}{17} \times \frac{11}{6} = 1$) $= \frac{3}{7} \times \frac{11}{3}$: whence the truth of the rule,

Example 1.—Divide
$$1^3 g$$
 by $1^4 f$.
 $1^3 g \div 1^4 f = \frac{3}{19} \times \frac{1}{4} = \frac{3}{7} \frac{3}{6}$ Ans.

EXAMPLE 2.—Divide
$$\frac{3}{4}$$
 of $\frac{1}{11}$ by $\frac{3}{1}$ of $8\frac{3}{4}$.

 $\frac{3}{4}$ of $\frac{1}{11}$ of $\frac{3}{11}$ = $\frac{3}{4}$ $\frac{3}{11}$ $\frac{3}{11}$

Example 3.—Divide 8‡ by
$$3_1^3r$$
.
 $84 \div 3_1^3 = {}^6r \div {}^3{}^6 = {}^6r \times {}^1{}^1 = {}^5 \times {}^1{}^1 = {}^5{}^4 = 2{}^1{}^2$ Ans.

EXAMPLE 4.—Divide
$$\gamma_{7}^{3}$$
 of γ_{1}^{4} of $\frac{8\frac{3}{4}}{1^{\frac{3}{4}}} \times 3\frac{1}{7}$ by $\frac{4}{17}$ of $\frac{9\frac{3}{7}}{8\frac{3}{4}} \times 4\frac{3}{5}$.

STATEMENT.

TERMS OF DIVISOR INVERTED.

 $= \frac{8}{17} \times \frac{4}{11} \times \frac{885}{12} \times \frac{22}{7} \times \frac{17}{12} \times \frac{245}{264} \times \frac{8}{15} = \frac{35}{2 \times 3} = \frac{35}{6} = 55 \text{ Ans.}$

EXERCISE 60.

1. Divide 1 of 3 by 2 of 82.	Ans. $\frac{8}{175}$.
2. Divide 15 by 13 and divide the result by 5.	Ans. 5.
3. Divide 82 by 26 5.	Ans. $3\frac{286}{2023}$.
4. Divide $2\frac{1}{2}$ by $\frac{3}{4} + \frac{5}{8}$.	Ans. 1^{9}_{11} .
5. Divide 12 by 4 of 22 of 16 of 82 of 16.	Ans. $2\frac{5}{22}$.
6. Divide 21 by (5 6 of 9.)	Ans. $7\frac{7}{80}$.
7. Divide 481 by $\frac{2}{9} + \frac{3}{8}$ of 6.	Ans. 1955.
8. Divide 61 by 3 of 3 + 3	Ans. 6371.

SBCT. IV.

9. Divide 41 of 31 by 21 of 61.

Ans. 116.

10. Divide $\frac{7\frac{1}{3}}{11\frac{3}{4}}$ by $\frac{3}{4\frac{1}{8}}$.

Ans. 6 17.

11. Divide & of 7 by 1 of 17%.

Ans. 349.

12. Divide 11/8 of 19/9 of 2 of 18/ by 4 of 28/ of 2 of 5. Ans. 35/7.

13. Divide $\frac{1\frac{3}{4}}{4\frac{1}{4}}$ by $\frac{2\frac{1}{3}}{2\frac{1}{4}}$. Ans. 3.

14. Divide $\frac{3}{25}$ by $\frac{4\frac{1}{5}}{174}$.

Ans. 1.

15. Divide 14\frac{1}{2} of $\frac{1}{2}$ by $\frac{3}{4}$ of $8\frac{3}{13}$ of $\frac{6\frac{1}{4}}{193}$. Ans. 1263.

16. Divide 151 of $\frac{2}{3}$ of $\frac{7}{3}$ of $\frac{7}{3}$ by $\frac{4\frac{5}{9}}{7}$ of $\frac{3}{4\frac{3}{4}}$ of $\frac{7}{3\frac{1}{4}}$ of $\frac{2\frac{3}{4}}{4}$.

49. To divide an integral denominate number by a fraction :-

RULE.

Multiply it by the denominator and divide the result by the numerator of the fraction.

NOTE.—This is, in effect, merely considering the denominate number as a fraction having 1 for its denominator (Art. 23) and applying the foregoing rule.

EXAMPLE.—Divide 6 days 17 hours 11 minutes by \$1.

6 days 17h. 11m. $\div \frac{6}{11} = 6$ days 17h. 11m. $\times \frac{11}{6} = \frac{6 \text{ days 17h. 11m.} \times 11}{6}$ = 14 days 18h. 36m. 12 sec. Ans.

EXERCISE 61.

1. Divide £8 14s. 64d. by $\frac{1_{11}^{8}}{12}$. Ans. £8 88. 51d.

2. Divide 1m. 5 fur. 91 yds. 2 feet by 27 of 171. Ans. 2 fur. 124 yds. 2 ft.

3. Divide 3 acres, 3 roods and 3 perches by 2.

Ans. 6 acres 1 rood 5 per.

4. Divide £7 16s. 2d. by 4.

Ans. £17 11s. 41d.

50. To reduce a fraction having a complex fraction in its numerator or denominator or both to a simple fraction we have simply to apply as often as necessary the rule given in Art. 33.

Norm.-Particular attention must be paid to the relative length and heaviness of the separating lines as they determine the various numerators and denominators.

EXAMPLE 1.—Simplify
$$\frac{\frac{3\frac{1}{4}}{\frac{3\frac{1}}{4}}{\frac{3\frac{1}{4}}{\frac{3\frac{1}{4}}{\frac{3\frac{1}{4}}{\frac{3\frac{1}{4}}{\frac{3\frac{1}{4}}{\frac{3\frac{1}{4}}{\frac{3\frac{1}{4}}{\frac{3}}{4}}}{\frac{3\frac{1}{4}}{\frac{3\frac{1}{4}}{\frac{3}{4}}}{\frac{3\frac{1}{4}}{\frac{3\frac{1}{4}}{\frac{3}}{4}}}}}}}}}}}}}}}}}}}}}}}}}$$

M

EXERCISE 62.

	LIAL	110101		
1. Multiply	12½ 7 3½ 9 3 7 5 4½	by	3 of 32 	Ans. 2117.
2. Divide	13 7 61 91 3	by	§ 7	Ans. $7\frac{1}{2}\frac{5}{3}$ 7.
3. Divide	12½ 5½ 3½ 5½	b y	31 162 1	Ans. $3\frac{1}{4}$.

51. From what has already been said, the truth of the following principles is evident.

1st. When the dividend is equal to the divisor, the quotient will be 1.

2nd. When the dividend is greater than the divisor, the

quotient will be greater than 1.

3rd. When the dividend is less than the divisor, the quotient will be less than 1.

4th. The quotient will be as many times greater or less than 1 as the dividend is greater or less than the divisor,

5th. To divide a fraction by a whole number, we may either divide the numerator or multiply the denominator by that number.

6th. To divide a whole number by a fraction having 1 for its numerator, we simply multiply the whole number by the denominator of the fraction.

Thus, to divide by $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$, &c., we multiply by 2, 3, 5, 7, &c,

QUESTIONS TO BE ANSWERED BY THE PUPIL.

Note .- The numerals after the Questions refer to the numbered articles of the Section.

- 1. What is a fraction? (1 and 3)
- 2. What does every fraction indicate? (3) 3. What is the denominator of a fraction, and why is it called so? (4)
 4. What is the numerator of a fraction, and why is it so called? (4)

- 4. What is the numerator of a fraction? (5)
 5. What are the terms of a fraction obtained? (6)
 6. How is the value of a fraction obtained? (6) 7. When is the fraction equal to 1, and when greater or less than 1 ? (7) 8. What effect has multiplying the numerator of a fraction by any num-
- ber ? (8)
- 9. How does multiplying the denominator of a fraction by any number affect the value of the fraction? (8) 10. How does multiplying both terms of a fraction by the same number
- affect its value ?(8 11. How does dividing the numerator by any number affect the value of the fraction?(8)
- 12. How does dividing the denominator by any number affect the value of
- the fraction? (8) 13. How does dividing both numerator and denominator by the same number affect the value? (8)
- 14. Into what classes are fractions divided? (9)
- 15. What is the distinction between vulgar and decimal fractions? (10

- and 11.)

 16. What is the meaning of the word "vulgar" as applied to fractions? (11)

 17. Enumerate the six different kinds of vulgar fractions. (12)

 18. What is a proper fraction? (13)

 19. What is an improper fraction? (15)

 20. What is an improper fraction always be equal? (17)

 21. To what must an improper fraction always be equal? (17)

 22. What is a simple fraction? (18)

 23. What is a complex fraction? (21)

 24. What is a complex fraction? (21)

 25. How may we convert an integer into a fraction? (23)

 26. How may we reduce a whole number to a fraction having a given denominator? (24)

 27. How is a mixed number reduced to an improper fraction? (25)

- 27. How is a mixed number reduced to an improper fraction? (25)
 28. How is an improper fraction reduced to a mixed number? (26)
 29. How is a fraction reduced to its lowest terms? (27 and 28)
 30. How are fractions reduced to a common denominator? (29)
 31. How are fractions reduced to their least common denominator? (30)
 32. How is a composite fraction reduced to a simple case? (30)
- 32. How is a compound fraction reduced to a simple one? (31)

33. What is meant by cancelling? (32) 34. Upon what principle may we cancel factors common to numerator and

denominator ? (32 and 8)

35. How do we reduce complex fractions to simple ones ? (33)

36. What is a denominate fraction ? (34)

37. In what does reduction of denominate fractions consist? (35)

38. How do we reduce a denominate fraction from a lower to a higher

denomination? (38)

39. How do we reduce a denominate fraction from a higher to a lower denomination? (37)

40. How do we find the value of a denominate fraction? (38)

41. How do we reduce one denominate number to the fraction of another? (39)

42. What is addition of fractions? (40)

42. What is addition of fractions: (40)
43. What kind of fractions only can be added? (41)
44. What is the rule for addition of fractions? (42)
45. When mixed numbers are to be added how do we proceed? (42, note)
46. What is the rule for the addition of denominate fractions? (43)
47. What is the wile for the subtraction of fractions? (43)

47. What is the rule for the subtraction of fractions? (44)
48. What is the rule for multiplication of fractions? (45)

49. Give a proof of the truth of this rule. (45)
50. How do we multiply an integral denominate number by a fraction? (46)
51. How may we multiply a fraction by a whole number? (47)
52. How do we multiply a whole number by a fraction having 1 for nume-

53. How do we multiply a whole number by a mixed number, the fractional part of which has 1 for numerator? (47)

54. What is the rule for division of fractions? (48)

55. Give a proof of the truth of this rule, (48)
56. How do we divide an integral denominate number by a fraction? (49)
57. How do we divide a fraction by a whole number? (51)

58. How do we divide a whole number by a fraction having 1 for its numerator? (51)

Exercise 63.

MISCELLANEOUS EXERCISE ON VULGAR FRACTIONS.

- 1. The Ottawa River is 800 miles long; the Gatineau 420 miles, the Chaudière 100 miles, the Richelieu 160 miles, and the Niagara 35 miles. The entire length of the St. Lawrence, from the upper end of Lake Superior to the Sea is 2000 miles. How will the lengths of these different rivers be expressed as fractions of that of the St. Lawrence?
- 2. The population of Goderich is ? of that of Peterborough, the population of Peterborough is 11 of that of Brockville, the population of Brockville is 13 of that of Prescott, the population of Prescott is 1 of that of Ottawa City, the population of Ottawa City is 21 of that of Port Hope, and the population of Port Hope is 34 of that of Toronto. What fraction is the population of Goderich of that of Toronto?
- 3. What will 67 pounds of tea cost, at 657 cents per lb.?
- 4. Suppose I have ? of a ship, and that I buy 17 more; what is my entire share?

5. A boy divided his marbles in the following manner; he gave to A $\frac{1}{3}$ of them, to B $\frac{1}{10}$, to C $\frac{1}{3}$, and to D $\frac{1}{6}$, keeping the rest to himself; how many did he give away, and how many did he keep?

many did he keep?

6. Find the value of $\frac{5_6^4-2_3^1}{3_3^2+\frac{2}{3_0}}$ of $\frac{4_2^1+5_0^2}{4_2^1}$ of $\frac{2_3^3+1_3^2}{7_{23}^2-2_1^2}$.

7. What cost 16707 pounds of coffee at 123 cents per pound?

8. A tree whose length was 136 feet, was broken into two pieces by falling; 3 of the length of the longer piece equalled 3 of the length of the shorter. What was the

length of the two pieces respectively?

9. A farmer bought at one time 971 acres of land, for 1000 dollars; at another, 127% acres, for 1375% dollars; at another, 500% acres for 6831% dollars; and at another, 333% acres for 40131% dollars. What was the whole quantity of land that he purchased, and the sum that he paid for it?

10. Find the value of $(12\frac{5}{6} - 8\frac{3}{4} - 1\frac{1}{10} + \frac{8}{15}) \times 4\frac{1}{2} \times (7\frac{5}{12} - 6\frac{1}{2})$, and also of $(\frac{2}{3} \div 1\frac{5}{7}) - (\frac{5}{8} \div 3\frac{2}{11})$.

11. What is the value of 19% barrels of flour, at \$6% a barrel?

- 12. What is the value of $376\frac{11}{18}$ acres of land, at \$75\frac{3}{3} per acre? 13. Bought at one time 1473 bushels of coal, and at another time 320 bushels. Having consumed 156 bushels, I desire to know what quantity of the coal purchased is still on hand?
- 14. Divide $\frac{7(\frac{1}{3} \text{ of } \frac{3}{4})}{\frac{1}{6}(\frac{3}{3\frac{1}{4}} \text{ of } 7)}$ by $7\frac{7}{3}$; and find the value of $\frac{\frac{1}{4} + \frac{1}{3} + \frac{1}{4}}{\frac{1}{2\frac{1}{4}} + \frac{1}{3\frac{1}{4}} + \frac{1}{4\frac{1}{2}}}$

15. If 174 bushels of wheat sow 74 acres how many bushels

will it require to sow one acre?

16. Multiply the sum of $3\frac{2}{3}$, $4\frac{2}{3}$, and $4\frac{4}{5}$, by the difference of $7\frac{6}{7}$ and 52; and divide the product by the sum of 94; and 934.

17. Divide 2 by the sum of $2\frac{2}{3}$, $\frac{4}{5}$, and 4; add $1\frac{2}{3}$ — $\frac{7}{9}$ to the quotient; and multiply the result by the difference of 51 and

18. Find the value of $(\frac{1}{2} + \frac{1}{3}) \times (1\frac{1}{3} + 2\frac{3}{4}) \times (2\frac{1}{14} - 1\frac{1}{2}) \times (3\frac{1}{10} - \frac{3}{1})$;

and also of (13+2)+(52+3).

19. A person dies worth \$40000, and leaves hof his property to his wife, 1 to his son, and the rest to his daughter. The wife at her death leaves 3 of her legacy to the son, and the rest to her daughter; but the son adds his fortune to his sister's and gives her \(\frac{1}{3} \) of the whole. How much will the sister gain by this; and what fraction will her gain be of the whole?

DECIMALS AND DECIMAL FRACTIONS.

52. A decimal fraction is a fraction having unity with one or more 0s to the right of it for denominator:

Thus 70,00, 170, 10, 1000000, &c. are decimal fractions.

53. A decimal fraction is reduced to its corresponding decimal by dividing the numerator by the denominator; but since (Art. 52) this denominator is unity followed by one or more 0s, we divide the numerator by the denominator when we move the decimal point as many places to the left in the numerator, as there are 0s in the denominator.

Example 1. Reduce 743 to a decimal.

Ans. .743.

2. Reduce Tugganou to a decimal.

Ans. .00092376.

EXERCISE 64.

1. Reduce $\frac{567}{1000}$, $\frac{98}{100000}$ and $\frac{7}{6}$ to decimals.

Ans.: 567,:00098 and .7.

2. Reduce 10023000 and 10000000 to decimals.

Ans. .0000023 and .0000176.

3. Reduce $\frac{278643}{10000000}$ to a decimal.

Ans. .000278643.

- 54. It is as inaccurate to confound a decimal fraction with its corresponding decimal as to confound a vulgar fraction with its quotient: Thus the value of \$\frac{1}{4}\$ is `75, so also the value of \$\frac{1}{100}\$ is `75 but `75 and \$\frac{7}{100}\$ are no more identical than are \$\frac{1}{4}\$ and `75.
- 55. To reduce a decimal to its corresponding decimal fraction:—

RULE.

Consider the significant part of the decimal as numerator and beneath it write for denominator 1 followed by as many 0s as there are places in the decimal.

Example 1. Reduce 043 to a decimal fraction. Ans. 7087.

2. Reduce 00000576 to a decimal fraction. Ans. 7005765000

EXERCISE 65.

1. Reduce '73, '092 and '0003 to decimal fractions.

Ans. 730, 7925, and 10000.

2. Reduce 137 and 000006943 to decimal fractions.

Ans. 1000, and 1000000000.

3. Reduce ·13578967 and ·023004003 to decimal fractions.

Ans. 1035789855, and 18388888885.

56. Decimal fractions follow exactly the same rules as vulgar fractions.—It is, however, generally more convenient to obtain their quotients, and then perform on them the required processes of addition, &c., by the methods already described (Sect. II).

To reduce a vulgar fraction to a decimal or to a decimal fraction :--

RULE.

Divide the numerator by the denominator and the quotient will be the required "decimal"; the latter may be changed to its corresponding decimal fraction by (Art. 55).

This is merely actually performing the division which the fraction indicates.

EXAMPLE 1. Reduce 7 to a decimal and also to a decimal fraction.

-875 Ans. = $\frac{875}{1000}$ Ans.

2. Reduce of to a decimal.

16)9. .5625 Ans.

EXERCISE 66.

1. Reduce 1 and 3 to decimals.

Ans. . 5 and . 375.

 Reduce ⁹/₂₅ and ½ to decimal fractions.
 Reduce ⁷/₂₅, ⁷/₁₂₅, and ¹/₃ to decimals. Ans. 36 and 25.

Ans. .9733 +, 4.666 + and .44117+.*

4. Reduce 4, 5, and 4 to decimals.

Ans. .857142 +, .4166 + and .44444 +.

5. Reduce 117 and 1718 to decimals.

Ans. .15178571428 + and .554012 +.

57. Let it be required to reduce £3 7s. 63d. to the decimal of a pound.

OPERATION.

2d=75d hence 62d=675d. If now we divide this by 12 we shall have its value as the decimal of a shilling, 62d=675d=5625s. hence 7s 62d=75625s. Next if we divide this by 20 we shall have its value as a decimal of a

pound.
7s. 64d=7 5625s=£378125.
Therefore £3 7s 64d=£3 378125.

Hence to reduce a denominate number of different denominations to an equivalent decimal of a given denomination we deduce the following:-

^{*} The sign + written after these answers simply indicates that there is still a remainder and consequently that the division may be carried on further.

RULE.

Divide the lowest denomination named by that number which makes one of the next higher denomination.

Annex this quotient to the number of the next higher denomination given and divide as before.

Proceed thus through all the denominations to the one required, and the last result will be the one sought.

Example 1. Reduce 3 days, 12 hours, 3 minutes, 30 seconds, to the decimal of a week.

60)30=sec.=30 scc.

60)3'5=decimal of a minute=3 min. 30 sec.

24)12'0583=decimal of an hour=12 h. 3 m. 30 sec.

7)3'5024305=decimal of a day=3 days 12h. 3m. 30 sec.

Ans. '5003472-decimal of a week-3 days 12h, 3m, 30 sec.

EXAMPLE 2. Reduce 187 lb. 13 oz. 11 drams to the decimal of a ton.

OPERATION.

60)11 drams.

16)13.6875 ounces.

2000)187.85546875 lbs.

'093927734375 ton. Ans.

Here we divide the 11 drams by 16 and thus obtain '6875 to which we pre-fix the given 13 72. Next we divide this by 16 and obtain '8546875 to which we bring down the 187 lb. and divide the result by 2000, the number of lbs. in a ton.

NOTE .- To divide by 2000 remove the decimal point three places to the left and divide by 2; similarly to divide by 60, 20, &c., remove the decimal point one place to the left and divide by 6, 2, &c.

EXERCISE 67.

- 1. Reduce 3 yds 2 ft. 1 in. to the decimal of a furlong. Ans. .01679+.
- 2. Reduce 3 dwt. 17 grs. Troy, to the decimal of a pound. Ans. .01545138+.
- 3. Reduce 2 scr. 7 grs. to the decimal of a pound, Apoth. Ans. . 0081597+.
- 4. Reduce 5 fur. 35 per. 2 yd. 2 ft. 9 in. to the decimal of a mile. Ans. . 73603+.
- 5. Reduce 3 gr. 2 na. to the decimal of a yard. Ans. .875.
- 6. Reduce 5s. to the decimal of 13s. 4d.

Ans. .375.

 Reduce 5s, first to the fraction of 13s, 4d, and then reduce the resulting fraction to a decimal.

Thus 5s. reduced to the fraction of 13s. 4d. $= \frac{60}{150} = \frac{3}{2} = 375$.

- 7. Reduce 12 h. 55 min. 21 sec. to the decimal of a day. Ans. .5384375.
- 8. Reduce ? of 1 of 61d. to the decimal of £1.
- Ans. .012053+. 9. Reduce % of ½ of a mile to the decimal of 31 inches. Ans. 3620.571428+.
- 10. Reduce \(\frac{1}{3}\) of \(\frac{2}{5}\) of 3\(\frac{1}{2}\) lb. Avoir, to the decimal of \(\frac{2}{3}\) of an oz. Ans. 9.2444+.
- 11. Reduce 3 pk. 1 gal. 1 qt. 1 pt. to the decimal of a bushel. Ans. . 921875.

58. Let it be required to find the value in terms of a lower denomination of . 7825 of a yard.

OPERATION.	EXPLANATION.—Since there are 3 feet in a yard, it is evident that any decimal of a yard
*7825	is three times as great a decimal of a 100t.
3	Honce to reduce the decimal OI 2 Varu to a
	decimal of a foot we multiply it by 3. This
2:3475	gives us two feet and 3475 of a 100th Silli-
12	larly multiplying the decimal of a 1000 by 12
	reduces it to an equivalent decimal of an
4:1700	inch. We thus find 3475 of a foot equal to 4
12	inches and '17 of an inch. Again, multiply-
	ing this last by 12 reduces it to the decimal
2.0400	of a line and we thus find the whole quantity
	of a line, and the second lines

Ans. 2 ft. 4 in. 2.04 lines. 7825 of a yard equal to 2 ft. 4 in. 2.04 lines. Note.—In these multiplications we only multiply the number to the right of the separating point.

Hence, to find the value of a denominate number in terms of integers of a lower denomination we have the following: -

RULE.

Multiply the given decimal by the number of units of the next lower denomination that make one of the given denomination.

Point off as many decimal places as there were in the multiplier, and the integral portion, if any, will be units of that lower denomination; the decimal part may be reduced to a still lower denomination, and so on.

EXAMPLE 1 .- Find the value of £.97875.

OPERATION. 97875 20 19.57500s. 12 Ans. 19s. 63d. + 3 of a farthing. 6'90000d. 3'60000f.

EXAMPLE 2.—Find the value of '7863625 of a pound Apothecaries weight.

0PERATION. .7863025 12 9'4363500 oz. 8 3'4408000 drs. 3 1'4724000 scr. 20 9'4460000 grs.

EXERCISE 68.

1. Find the value of 0.3945 of a day.

Ans. 9 hours 28 min. 4.8 sec.

Ans. 9 oz. 3 dr. 1 scr. 9.448 grains.

2. Find the value of 0.3965 of a mile.

Ans. 3 fur. 6 per. 4 yds. 2 ft. 6.24 in.

3. Find the value of 0.309153 of an oz. Troy.

Ans. 6 dwt. 4.39344 grains.

Find the value of 22.75 of £2 2s. 6d. Ans. £48 6s. 101d.
 Find the value of 11.17825 of 7 bush. 1 ph. 1 gal. 1 qt.

Ans. 82 bush. 3 pks. 0 gal. 1 qt. 0.4905 pt.*

6. Find the value of 2057 of a lb. Troy.

Ans. 2 oz. 9 dwt. 8.832 grains.

7. Find the value of ·176 of 1 fur. 36 per. 2 yds. 5 in.

Ans. 13 per. 2 yds. 1 ft. 4 in.

8. Find the value of .625 of a league. Ans. 1 mile 7 fur.

9. What is the value of '015625 of a bushel? Ans. 1 pint.

10. What is the value of '9378 of an acre?

Ans. 3 roods 30 per. 1 yd. 4 ft. 9 25 inches.

11. Find the value of '2775 of 1 sq. yd. 3 ft. 72 in.

Ans. 3 sq. ft. 671 in.

CIRCULATING OR REPEATING DECIMALS.

59. Let it be required to reduce § and § to decimals.

9)5 '555555, &c.

'857142857142857142, &c.

[&]quot;If the given quantity be expressed in more than one denomination it should be reduced to one before applying the rule. Thus in this example 7 bush. 1 pk. 1 gal. 1 qt. =237 qts. and 11'17825 × 237 = 2649'24525 qts. = 82 bush 3 pks. 0 gal. 1 qt. 0'4905 pints.

In these and many other cases the division does not terminate, and the value of the fraction can only be approximately expressed. In the former of the above examples the figure 5 is constantly repeated, and in the latter the series of figures 857142.

- 60. Decimals which do not terminate, i. e., which consist of the same digit or set of digits constantly repeated, are called Repeating or Circulating Decimals.
- 61. The digit or set of digits, which repeats, is called a repetend, period or circle.

Note.—The terms period and circle are commonly used only when the repetend contains two or more digits.

62. A Single Repetend is one in which only a single digit repeats,

Thus '3333 &c.; '7777 &c.; '88888 &c. are single repetends.

63. A Single Repetend is expressed by writing the digit that repeats with a dot over it,

Thus, '333 &c. is written '3; '777 &c. is written '7.

64. A Circulating Decimal or Compound Repetend is one in which more than one digit repeats,

Thus, '347347347 &c.; '202020 &c.; '123412341234, &c., are Circulating Decimals or Compound Repetends.

65. A Circulating Decimal is expressed by writing the recurring period once with a dot over its first and last digits.

Thus, '347347 &c. is written '347; '2020 &c. '20; '12341234 &c. is written '1234.

- 66. A Pure Repetend or Circulating Decimal is one in which the repetend commences immediately after the decimal point.
- 67. A Mixed Repetend or Circulating Decimal is one which contains one or more ciphers or significant figures between the repetend and the decimal point.

Thus, 3, 7, 1 are Pure Repetends.

'78917, '0378, '002 are Mixed Repetends.

'72, '043, '81376 are Pure Circulating Decimals.

1378, 673205, '0717866 are Mixed Circulating Decimals.

68. Similar Repetends are those which commence at the same number of places from the decimal point,

Thus, '71345, '912786 and '00071346 are Similar Repetends.

69. Dissimilar Repetends are those which commence at a different number of places from the decimal point,

Thus, '7342, '928627 and '9134278 are Dissimilar Repotends,

70. Coterminous Repetends are those which terminate at the same number of places from the decimal point,

Thus, '7437, '6243 and '1347 are Coterminous Repetends.

71. Similar and Coterminous Repetends are those which both commence and end at the same distance from the decimal point,

Thus, '734267, 16'471212, 198'161341 are Similar & Coterminous Repetends.

72. In reducing a fraction to a decimal we place a point after the numerator, and annex 0s to it until it is exactly divisible by the denominator. But since the point does not affect the division, merely determining the place of the point in the resulting quotient, it is manifest that we may leave it altogether out of consideration, so that annexing 0s to the numerator becomes in effect multiplying it by such a power of 10 as will make it contain the denominator. Now if the fraction, before proceeding to the division be reduced to its lowest terms the denominator. division, be reduced to its lowest terms, the denominator can have no facdivision, be reduced to its lowest terms, the denominator can have no factor in common with the numerator; and if the denominator be exactly contained in the numerator with the 0s annexed, it can only be from its being contained in that power of 10 by which the original numerator was multiplied. But since 10 contains only the factors 2 and 5, any power of 10 can contain only the factors 2 and 5; and hence, in order that the denominator may be exactly contained in the numerator with 0s annexed, it must contain only the factors 2 and 5, or powers of 2 and 5.

Hence, when a vulgar fraction is reduced to its lowest terms, if the denominator contain no factors other than 2 and 5, the corresponding decimal will be finite; but if the denominator contain any other factor than 2 and 5, as 3, 7, 11, &c., the corresponding decimal will be infinite, i. e., will be a repetend.

EXAMPLE.—Can 76, 24, 75 and 156 be exactly expressed as decimals?

16, the denominator of the first, $=2\times2\times2\times2$, (i. e. contains no prime factor other than 2 or 5) therefore it can be exactly expressed by a decimal.

 $25 = 5 \times 5$ (i. c. no prime factor other than 2 or 5) therefore

to can be exactly expressed by a decimal.

 $12 = 2 \times 2 \times 3$ (i. e. does contain a factor other than 2 or 5) therefore for cannot be exactly decimated.

 $125 = 5 \times 5 \times 5$ (i. e. no factor other than 2 or 5) therefore cun be exactly decimated.

- EXERCISE 69.

Of the following fractions, which can and which cannot be exactly decimated, i. e., reduced to equivalent decimals?

- 1. $\frac{7}{8}$, $\frac{17}{626}$, $\frac{13}{32}$, $\frac{21}{1024}$, and $\frac{173}{300}$.
- $2. \frac{6}{176}, \frac{4}{8}, \frac{7}{22}, \frac{6}{500}, \frac{111}{254}$
- 3. 11, 6, 7, 2, and 1280.

73. We may determine the number of places in the decimal or finite part of the decimal corresponding to a vulgar fraction by the following:—

RULE.

Reduce the fraction to its lowest terms, and decompose the denominator into its prime factors.

If the denominator contains no factors other than 2 or 5, or

powers of 2 or 5, the whole decimal is finite.

If the denominator does not contain 2 or 5 as factor, the decimal

contains no finite part.

The highest exponent of 2 or 5 will indicate the number of decimal places in the finite part of the corresponding decimal.

Example 1.—How many decimal places will be required to express $\frac{4197}{5}$?

Here, $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$. Therefore the equivalent decimal will contain 5 places.

EXAMPLE 2.—How many decimal places will be required to express 1249?

Here, $1600 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 = 2^6 \times 5^\circ$. Hence 6 is the highest exponent, and the number of decimal places will therefore be 6.

EXERCISE 70.

- How many decimal places will be required to express the following fractions, viz: — 116, 40, 11010 and 1034?
- Ans. 4, 3, 6 and 10.
 2. How many places will there be in the finite part of the deci-

mals corresponding to $\frac{7}{96}$, $\frac{111}{896}$, $\frac{437}{15120}$ and $\frac{1}{6134}$?

Ans. 5, 7, 4 and 11.

74. In decimating vulgar fractions where many places are required in the decimal, the method of continually dividing becomes very tedious. In such cases we may sometimes shorten the work as follows:—

EXAMPLE.—What decimal is equivalent to the vulgar fraction 313?

 $_{29}^{1}$ = 0.03448 $_{2}^{8}$. Therefore $_{2}^{8}$ = 0.27586 $_{2}^{6}$ and substituting this value for $_{2}^{8}$ we get:—

 $_{2_{9}^{1}}$ = 0.0344827586 $_{2_{9}^{6}}$. Hence $_{2_{9}^{6}}$ = 0.2068965517 $_{3_{9}^{7}}$ and substituting this for $_{2_{9}^{6}}$ we get:—

 $\frac{1}{29}$ = 0·03448275862068965517 $\frac{7}{3}$. Hence $\frac{7}{29}$ = 0·241379310344-82758620 $\frac{3}{2}$ and substituting this value for $\frac{7}{29}$ we get:— $\frac{1}{29}$ = 0·0344827586206896551724137931. Ans.

75. The number of places in a period cannot exceed the units in the denominator minus one.

This is manifest from the fact that all the remainders that occur must be less than the denominator, and their number cannot be greater than the denominator, minus one; because we carry on the division by affixing os, and it follows that whenever we obtain a remainder like one that has previously occurred, the digits of the decimal will begin to repeat.

- Thus 9 = 0.857142, where the small figures above the line represent the successive remainders, none of which, of course, can be as great as 7, the divisor,—the next remainder after the 6 would be 4, and consequently the digits would commence to repeat.
- 76. Those repetends that have as many places, minus one, as there are units in the denominators of their equivalent vulgar fractions are sometimes called *perfect repetends*.

The following are the only fractions having a denominator less than 100 that give perfect repetends when decimated:—

77. To reduce a pure repetend to an equivalent vulgar fraction:—

RULE.

Put the period for numerator, and as many nines as there are places in the period for denominator.

Example.—What vulgar fractions are equivalent to '7, '93. ·704 and ·007043.

Ans. $\cdot 7 = \frac{7}{4}$; $\cdot 93 = \frac{93}{93} = \frac{31}{33}$; $\cdot 704 = \frac{7}{3}\frac{9}{3}$; $\cdot 007043 = \frac{7}{3}\frac{9}{3}\frac{1}{3}\frac{1}{3}$.

Reason $\frac{1}{6} = 1$ therefore $\frac{2}{9}$, $\frac{3}{9}$, $\frac{4}{9}$, &c., = $\frac{1}{2}$, $\frac{1}{3}$, &c., hencee 1, 2, 3, &c., = 1, 2, 3,

Similarly $\frac{1}{00} = 01$, therefore $\frac{7}{00} = 07$; 33 = 23; 33 = 79; &c.

Hence $0i := \frac{1}{2} : 07 = \frac{7}{2} : \frac{23}{23} = \frac{33}{23} : 17 = \frac{17}{23} : &c.$

So also $\frac{1}{167} = .001$; $\frac{5}{167} = .005$; $\frac{167}{167} = .167$; &c.

Hence 001 = 30; 243 = 343; &c., whence the reason of the rule is evident.

EXERCISE 71.

1. Reduce 8, 05, 342, 7004 and 002003 to equivalent vulgar fractions.

Ans. $\frac{8}{9}$, $\frac{5}{99}$, $\frac{342}{999} = \frac{38}{111}$, $\frac{7994}{9999}$ and $\frac{29993}{999939}$.

2. Reduce ·19, ·1067, ·11115 and ·704103 to equivalent vulgar fractions.

Ans. $\frac{19}{19}$, $\frac{19}{19}$, $\frac{7}{19}$, $\frac{11115}{1999}$ = $\frac{1235}{111}$ and $\frac{704103}{19999}$ = $\frac{234701}{33333}$.

3. Reduce '102, '0013, '00007103, '01020304 and '987654321 to ' equivalent vulgar fractions. Ans. 334, 3939, 99399999, 1020304 and 109739369.

78. To reduce a mixed repetend to an equivalent vulgar fraction :-

RULE.

Subtract the finite part from the whole and set down the differ-

ence for the numerator.

For denominator put as many 9s as there are places in the 'infinite' part followed by as many 0s as there are places in the 'finite' part.

EXAMPLE.—Reduce .73, .1234 and .7132092 to their equivalent vulgar fractions.

OPERATION.

73— 7 = 66 = numerator of first fraction.
1234—12 = 1222 = " second".
7132092—713 = 7131379 = " third".
90 = 1st Denominator, since the repetend contains one place in the finite, and one place in the infinite part.
9000 = 2nd Denominator, since the repetend contains two places in the finite part and two in the infinite part.

9999000 = 3rd Denominator, since the infinite part of the decimal, contains four places and the finite part three places.

Hence, $73 = \frac{1}{5} = \frac{1}{15}$, $1234 = \frac{1}{5} = \frac{6}{15} = \frac{6}{15} = \frac{6}{15} = \frac{6}{15} = \frac{1}{15} = \frac{$

REASON.—Let it be required to reduce 978734 to an equivalent vulgar fraction.

Let
$$x = .978734$$
 (I)

Then
$$100x = 97.8734$$
 (II)

And 1000000x = 978734.8734 (III); subtracting (II) from (III) gives 999900x = 978734-97.

Whence $x = \frac{978734 - 97}{999900} = Whole repetend minus the finite part$

for a numerator; and as many 9s as there are places in infinite part, followed by as many 0s as there are places in finite part for denominator.

The rule may also be explained as follows:-

Taking the same example 978734 and multiplying it by 100, we get

 $978734 \times 100 = 978734 = 97 + 8734 = 97 + 8734 = 97 + 8734 = 97 + 8734 = 100$ (Art. 77.) Now, since we multiplied by 100 this result is 100 times too great. There-

fore $978734 = \frac{1}{1}670 + \frac{1}{1}834\frac{1}{2}\frac{1}{9}\frac{1}{100}$ and to add these fractions we must reduce them to a common denominator when they become:

 $\frac{97 \times 9999}{999900} + \frac{8734}{999900} = (since 9999 = 10000-1)$

 $\frac{97\times (10000-1)}{999900} + \frac{8734}{999000} = \frac{97\times 10000-97}{999900} + \frac{8734}{999900} = \frac{970000-97}{999900} + \frac{8734}{999900}$

=\frac{975734-97}{999900} = Whole repetend minus finite part for numerator; and as many 9s as there are places in infinite part, followed by as many 0s as there are places in finite part for denominator.

Whence the truth for the rule is manifest.

EXERCISE 72.

- 1. Reduce '8325, '147658, and '4320075 to their equivalent vulgar fractions.

 Ans. \$\frac{2}{3}\frac{1}{3} = \frac{1}{3}\
- 2. Reduce 875.4965 and 301.82756 to their equivalent mixed numbers.

 Ans. 8751218 and 3011488.
- 3. Reduce '083, '0714285, and '123456 to their equivalent vulgar fractions.

 Ans. 12, 14, and \$222000.
- 4. Reduce '7034, '96432, '00207, and '143271 to their equivalent vulgar fractions.

 Ans. 4881, 823, 73807 and 141838.

79. There are several properties belonging to repetends which it is necessary to remember. They are as follows:

1st. Any finite decimal may be regarded as a repetend if we make the 0s recur:

Thus, 27 = 270 = 2700 = 27000 = 2700000, &c.

2nd. A repetend having any number of places may be reduced to one having twice, thrice, &c., that number of places.

Thus a repetend having 2 places may be reduced to one having 4, 6, 8, 10, 12, &c., places.

For example, '372='37272='3727272, &c.

·232134 = ·2321342134 = ·23213421342134, &c.

3rd. Two or more repetends, having a different number of places in each, may be reduced to others having the same number of places in each, by the following:-

Take the numbers indicating how many places there are in each repetend, and find their least common multiple. Reduce each repetend to that number of places.

Thus, let it be required to reduce 147, 932, 8417, to repetends having the same number of places.

Here the numbers of places are 1, 2, and 3, and the least common multiple of 1, 2 and 3 is 6, and hence each new repetend must have 6 places.

Therefore $\cdot 147 = \cdot 14777777$, $\cdot 932 = \cdot 9323232$, and $\cdot 8417 = \cdot 8417417$.

4th. Any repetend may be transformed into another having a finite part and an infinite part containing as many places as the original repetend, and hence any two or more repetends may be made similar,

Tous, 4123 = 41231 = 412312, &c.

7.654321 = 7.6543216 = 7.65432165, &c.

5th. Having made two or more repetends similar by the last article, they may be made coterminous by the preceding one, and hence two or more repetends may always be made similar and coterminous.

6th. If several repetends of equal places be added together their sum will be a repetend of the same number of places; since every set of periods will give the same sum.

ADDITION OF CIRCULATING DECIMALS.

80. To add circulating decimals :-

RULE.

Make the repetends similar and coterminous and write them under one another, so as to have the units of the same order in the same vertical column.

Add, beginning at the right hand side and carrying what would have been obtained if the decimals had been carried out two or three places further.

Example-Add together .783, .927, .421 and 9.123456.

Dissimilar.		Similar.		Similar and Coterminous.
783		783	=	78333333333333
927	=-	9272	=	92727272727272
421	=	42142	=	42142142142
9125466	==	9.123456	=	9 [·] 12345634563456 1 carried.
				

Sum, = 11.255483 766204

EXERCISE 73.

1 Add together .9, 6.327, 19.43, 27.0278 and .0347123.

Ans. 53.8198638274.

2. Add together 7.427, 9.1234, 17.2987643 and 18.67.

Ans. 52.526228203901471.

3. Add together 4.95, 7.164, 4.7123 and .97317.

Ans. 17.8092502138.

4. Add together 1.5, 99.083, 162, 814, 2.93, 3.769230, 97.26
and 134.09.

Ans. 339.626177443.

SUBTRACTION OF CIRCULATING DECIMALS.

81. To subtract one repetend from another:-

RULE.

Make the repelends similar and colerminous, and write one be-

neath the other, so as to have units of the same order in the same vertical column.

Subtract as in whole numbers, taking notice whether one would have been borrowed if the periods had been extended.

Example.—From 97.03429 take 11.03876.

Similar.	Similar and Coterminous.
97:03429	97.03.1292929
11 038768	11.038768768
	97.03429

True difference, 85'995524160

If the periods had been extended, we would have had to borrow one from the last figure of the minuend period; and bearing this in mind, we say 8 from 8, 6, &c.

EXERCISE 74.

1. From 729·3427 take 93·126. Ans. 636·216742.

2. From 1.437291 take .00713. Ans. 1.4301600597824.

3. From 1·2754 take ·47384. Ans. ·65370016280907.

4. From 42-18763 take 17-0000008432. Ans. 25-1876324900.

MULTIPLICATION OF CIRCULATING DECIMALS.

82. To multiply one repetend by another or by a finite decimal:—

RULE.

Change the decimals into their equivalent vulgar fractions (Arts. 77 and 78), multiply these together, and reduce the product to its equivalent decimal.

EXAMPLE 1.—Multiply ·3 by ·78.

$$3 = \frac{3}{3} = \frac{1}{3}$$
 and $78 = \frac{3}{4} = \frac{5}{3}$.

Therefore, $3 \times .78 = \frac{1}{3} \times \frac{26}{33} = \frac{26}{3} = 26 \text{ Ans.}$

Example 2.—Multiply .318 by .7432.

$$318 = \sqrt{7}$$
 and $7432 = \frac{55}{7}$.

Therefore, $318 \times 7432 = \frac{7}{22} \times \frac{55}{74} = \frac{35}{148} = 23648$.

EXERCISE 75.

1. Multiply 7.25 by 2.9.

Ans. 21.75.

2. Multiply .297 by 7.72.

Ans. 2.29513.

3. Multiply .818 by .77.

Ans. .63.

4. Multiply 1.735 by .47053.

Ans. 81654168350.

5. Multiply 4.722 by .198.

Ans. 935.

DIVISION OF CIRCULATING DECIMALS.

83. To divide one repetend by another or by a finite decimal:—

Change the decimals into their equivalent vulgar fractions, divide as in Art. 48, and reduce the result to its corresponding decimal.

Example.—Divide '427 by '818.

 $.427 = 147_0$ and $.818 = 191_0$.

Therefore, $\cdot 427 \div 818 = 1470 \div 191 = 1470 \times 191 = 170 \times 191 = 190 = 0.52$.

Exercise 76.

Divide '082 by '123.
 Divide 389 185 by 15.7.

Ans. 24.6.

3. Divide ·81654168350 by ·47053.

Ans. 1.735.

4. Divide ·45 by ·118881.

Ans. 3.8235294117647058.

Exercise 77.

MISCELLANEOUS EXERCISE ON DECIMALS.

- 1. Reduce' of 3 of 14 of 14 to its equivalent decimal.
- 2. Multiply :67 by 2:13.
- 3. Find the value of 678125 of a week.
- 4. Reduce 92437 to its equivalent fraction.
- 5. Add together 67:234,98:713, and 91:03471234, and from their
- sum take 100·123456789.
 6. Reduce 5 fur. 36 rds. 2 yds. 2 ft. 9 in. to the decimal of a mile.

- 7. Find the difference between 17.42857i sq. ft. and 100.8 sq. in.
- 8. What is the value of .91789772 of two acres?
- 9. Reduce 11.287 and 1.0428571 to vulgar fractions.
- 10. Divide 47.345 by 1.76.
- 11. From 85.62 take 13.76432

12. What is the difference between .734 of a lb. and .198 of an oz. avoirdupois?

13. How many yards of carpet 2 ft. 51 in. wide will be required to cover a floor 27.3 ft. long and 20.16 ft. wide.

- 14. Multiply 3.145 by 4.297.
- 15. How many finite places are there in the decimals corresponding to 3, 24, 8, 11, 6, and 119?
- 16. Add together 813, 61·126, 32833, and 5·624.
- $\left(\frac{4\cdot4-2\cdot83}{1\cdot6+2\cdot629} \text{ of } \frac{6\cdot8 \text{ of } 3}{2\cdot25}\right) + \frac{2\cdot8 \text{ of } 2\cdot27}{1\cdot136} \text{ to a sim-}$ 17. Reduce ple quantity.

· QUESTIONS TO BE ANSWERED BY THE PUPIL.

Note.-The numbers after the questions refer to the articles of the Section.

What is a decimal fraction? (52)
 What is the distinction between a decimal and its corresponding decimal

What is the distinction between a decimal and its corresponding decimal fraction? (54 and Art. 47 Soct. I.)
 How is a decimal reduced to its corresponding decimal fraction? (55)
 How is a vulgar fraction reduced to a decimal? (56)
 How would you reduce 4 oz. 17 dwt. 16 grs. to the decimal of a lb.? (57)
 How would you find the value of '71345 of a French ell? (58)
 What is meant by repeating or circulating decimals? (60)
 What is a single repetend, or circle? (61)
 What is a single repetend, and how is it expressed? (62 & 63).
 What is a circulating decimal or compound repetend, and how is it expressed? (64 & 65)

expressed? (64 & 65)

11. What is a pure repetend? (66)
12. What is a mixed repetend? (67)
13. What are similar repetends? Give an example. (68)
14. What are disimilar repetends? Give examples. (69)
15. What are coterminous repetends? Give examples. (70)
16. When are repetends said to be both similar and coterminous? Give examples. (71) 17. When can a vulgar fraction be exactly expressed by a decimal? (72)

18. Show that this must necessarily be the case. (72)

19. How day we ascertain the number of places in the finite part of the decimal corresponding to any vulgar fraction? (73)

20. If the decimal corresponding to any vulgar fraction contain a repetend, what is the greatest number of places that repetend can contain?(75)

21. Show that this must necessarily be the case.
22. What are perfect repetends? (76)
23. How is a pure repetend reduced to a vulgar fraction? (77)

24. How is a mixed repetend reduced to a vulgar fraction? (78)

25. Show the truth of this rule. (73)

26. Show that any finite decimal may be made into a repetend. (79)

27. Show that any repetend may be reduced to another having twice, thrice, &c., as many places. (79). 28. Show that any number of repetends may be made to have the same

number of places, and give the rule. (79)

29. Show that any pure repetend may be transformed into a mixed repetend. (79)

30. Show that two or more repetends may be made similar and coterminous. (79)

31. How are circulating decimals added? (80)
32. How are circulating decimals subtracted? (81)
33. How do we multiply circulating decimals together? (82)

34. How do we divide one circulating decimal by another? (83)

EXERCISE 78.

MISCELLANEOUS EXERCISE.

(On preceding Rules.)

- Transform 4312131 quinary, into the nonary, ternary, and octenary scales, and prove the results by reducing all four numbers to the decimal scale.
- 2. Write down seven hundred and two trillions seven millions thirty thousand and seventeen, and four millions and seventysix tenths of quadrillionths.

3. Divide 976.432 by .00000096.

- 4. What is the value of $\frac{(2\frac{7}{8} + .5625 1.5 + \frac{1}{18}) \div \frac{1}{8}!}{(1\frac{7}{8} \times \frac{1}{8} \times 296 \times \frac{1}{16} + \frac{1}{18}!) \div 9472947}$
- 5. Divide 97 lb. 3 oz. 4 dr. 1 ser. 17 grs. by 9 lb. 7 oz. 7 dr. 2 ser.
- 6. A wall is to be built 15 yards long, 7 feet high, and 13 in. thick, with a doorway 6 ft. high and 4 ft. wide; how many bricks will it require, the solid contents of each being 108 cubic inches?

7. Multiply 9 ft. 6' 4" 7" by 11 ft. 7' 9" 11""

8. Find the value of $\frac{4\frac{2}{7} + \frac{8}{3} - \frac{7}{2}}{\frac{3}{4} \text{ of } \frac{7}{18} + \frac{1}{6} \text{ of } \frac{5}{4}}$.

9. Reduce 782436 pints to bushels, &c.

- 10. Find the least common multiple of 77, 42, 27, 21,33, 14, 7, 11, 63, and 30.
- 11. Divide 36t87942 by 28e4 in the duodecimal scale. Also change 3762814 from the nonary to the decimal scale.

12. How many divisors has the number 150528?

13. Find the value of '1234625 of 2 weeks and 2 days.

14. Multiply 27 lb. 4 oz. 3dr., avoirdupois, by 7281.

- 15. Add together \$98.17, \$42.29, £16 3s. 81d., \$97.19,\$127.871, and from their sum subtract £67 17s. 71d.
- 16. Reduce .8, .76, .9123, and .003327 to their equivalent vulgar fractions.

17. Take the number 704 and by removing the decimal point, (1) Make it 10000 times greater; (2) make it 10000000 times less; (3) make it billions; (4) make it hundredths of billionths; (5) make it tenths of millionths; (6) make it hundredths.

 $[\{(2\frac{1}{3}\times 5 \text{ of } 1\frac{5}{5}) + 9\frac{1}{2}7 + 09 + \frac{2}{2}\frac{3}{3}\} - 11\frac{6}{7}] \div (\frac{1}{3}\frac{1}{5} \text{ of } \cdot 16)^{\frac{1}{5}} \\ [(\cdot 763276 \times 11) \times \frac{1}{3} \text{ of } \frac{1}{10}\frac{1}{5}] \times (\frac{1}{2} \text{ of } \cdot 2 \text{ of } \cdot 3 \text{ of } \cdot 25 \text{ of } 96) \div 2 \\ \end{bmatrix}$

18. Reduce ½ of .6732467-13.

 Divide £550 3ş. 1½d. among 4 men, 6 women, and 8 children, giving to each man double of a woman's share; and to each woman triple of a child's.

20. Add together 16_1^{7} , $19\frac{4}{5}$, $23\frac{7}{8}$, and $129\frac{6}{7}$. 21. Write down all the divisors of 8100.

22. Find the G. C. M. of 2691, 11817 and 9828.

23. Find the exact length of the lunar month which contains 2551443 seconds, and of the solar year, which contains 31556928 seconds.

 How many times will a carriage wheel turn in going from Toronto to Hamilton, a distance of 38 miles, the circumfer-

ence of the wheel being 14 feet 11 inches?

25. What is the weight of the water contained in a rectangular cistern 11 feet wide, 13 feet long, and 15 feet deep, and how many gallons of water does it contain?

Note.—A cubic foot of water weighs 62.5 lbs. and a gallon weighs 10 lbs.

26. Reduce £73 17s. 113d. to dollars and cents.

27. From 93.1 take $76\frac{17}{2}$ and divide the result by $\frac{1}{2}$ 5. Find the value of $\frac{5\frac{5}{2} \div \frac{2}{3}}{3} \times \frac{2}{3}$ of $\frac{1\frac{1}{2}}{2}$ of $4\frac{1}{9}$.

28. Find the value of $\frac{1}{1_0^2}$ of $\frac{5}{9} \div 10_{13}^{1} \times \frac{3}{8}$ of $\frac{13_{13}^{7}}{13_{13}^{7}}$ of $\frac{5}{3}$.

 Transform 91342 underary into the quinary, duodenary and binary scales and prove the results by reducing all four numbers to the decimal scale.

30. What are the prime factors of 7680?

- 31. Reduce 72 miles, 3 fur., 7 per., 2 yds., 1 ft., 7 in. to lines. 32. Find the price of 97 pairs of gloves at 47 cents per pair.
- 33. What is the worth of a pile of cord wood 73 feet long, 4 feet wide and 11 feet high, at \$3.62\frac{1}{2} per cord?

34. Divide 93.723 by 29.4173.

35. How many bushels of oats are there in 73429 lbs?

- 36. What is the worth of 719630 lbs. of wheat at \$1.80 per bushel?
- 37. Add together \$72.14 and \$93.76; multiply the sum by 9.47 and divide the product equally among 11 persons.

38. Find the G. C. M. of 21389 and 180781.

^{*} These questions though apparently difficult are not so in reality—they are designed for exercise in cancelling, and do not require much work.

39. Reduce 17, \$, \frac{9}{7}, \frac{3}{8}, \frac{11}{4}, \frac{7}{9}, \text{ and } \frac{1}{2} \text{ to equivalent fractions,}

having a common denominator.

40. Purchased 17 yards of cotton at 11 cents per yard, 19 yards of ribbon at 37½ cents a yard, 14½ yards of silk at \$2.17 a yard, a parasol \$4.75, a bonnet \$11.50, 67 yards of sheeting at 27 cents a yard, 15 yards of French merino at \$1.37½ a yard, and trimmings \$7.93. Required the amount of my bill.

SECTION V.

RATIO AND PROPORTION.

1. Two numbers having the same unit may be compared with one another in two ways.

1st. By considering how much greater or less one is than

the other; and

2nd. By considering how many times one contains the

other.

2. Ratio is the relation which one number bears to another with respect to magnitude, when the numbers are compared by considering, not how much greater or less one is than the other, but how many times or parts of a time one contains the other. Hence:

The ratio of two numbers is the quotient arising from the

division of one by the other.

Thus the ratio of 18 to 6 is 3, since $18 \div 6 = 3$, the ratio of 7 to 21 is $\frac{1}{2}$, since

 $7 \div 21 = \sqrt{1} = \frac{1}{2}$

- 3. The ratio of one number to another, whon measured with respect to their difference, is sometimes called arithmetical ratio, to distinguish it from the ratio considered as in (Art. 2), which is called geometrical ratio. In the following pages, whenever the term ratio is used, geometrical ratio is meant; we shall use the term difference in place of arithmetical ratio.
- 4. Since ratio simply expresses the quotient arising from the division of one number by another, and since (Art. 66, Sect. II.) we have three ways of indicating division, it follows that we have three ways of expressing the ratio of one number to another.

Thus the ratio of 9 to 4 is expressed either by $9\div4$, or by $\frac{9}{4}$, or by 9:4. The ratio of 7 to 13 is indicated either by $7\div13$, or by $\frac{7}{13}$, or by 7:13.

5. Ratio can exist only between numbers of the same kind.

Thus it is obvious that no comparison with respect to magnitude can be made between 6 hours and 11 pounds, or between 19 days and 16 miles, &c. i.e., these numbers are not of the same kind, and therefore no ratio can exist between them.

6. Numbers are of the same kind when they are of the same denomination, or when they have the same unit, or when one can be multiplied so as to exceed the other.

7. The two given numbers which constitute the ratio are called the terms of the ratio; when spoken of together

they are called a couplet.

8. The first term of a couplet is called the antecedent;

the last term, the consequent.

When the ratio is expressed in the form of a fraction, the numerator is the antecedent and the denominator the consequent.

- 9. Ratio is either direct or inverse, simple or compound.
- 10. A Direct Ratio is that which arises from the division of the antecedent by the consequent.
- 11. An Inverse or Inverted Ratio is that which arises from the division of the consequent by the antecedent.

Thus the inverse ratio of 15 to 3 is 3:15 or $\frac{3}{15}$, or $3\div15$, or $\frac{1}{5}$.

12. An Inverse Ratio is sometimes called a reciprocal ratio.

Thus the reciprocal ratio of 15 to 3 is 3:15 or $\chi^3_5 \equiv \frac{1}{5} \equiv$ inverse ratio of 15 to 3.

13. The reciprocal of a quantity is unity divided by that quantity.

Thus the reciprocal of 8 is $\frac{1}{8}$; of 11, $\frac{1}{11}$; of $\frac{2}{7}$, $\frac{7}{2}$; of $\frac{3}{13}$, $\frac{1}{8}$; of $\frac{1}{9}$, 9; of $\frac{3}{13}$, &c.

- 14. When the direct ratio of two numbers is expressed by points, the inverse or reciprocal ratio is expressed by inverting the order of the terms; when by a fraction, by inverting the fraction.
- 15. A Simple Ratio is one that has but one antecedent and one consequent.

Thus 9:3, 7:11, 18:2, &c., are simple ratios.

16. A Compound Ratio is a ratio produced by compounding or multiplying together the corresponding terms of two or more simple ratios.

Thus, the simple ratio of 9:3 is 3. the simple ratio of 24:2 is 12. The ratio compounded of these is 216:6=36.

17. It must be distinctly remembered that a compound ratio is of the same nature as any other ratio, and, like a simple ratio, consists of one antecedent and one consequent. The term compound ratio is used merely to indicate the *origin* of the ratio in particular cases.

18. Ratios are compounded by multiplying together all the antecedents for a new antecedent, and all the consequents for a new consequent.

Thus, the ratio compounded of 2:7, 2:3, 5:11, and 4:3 is $2 \times 2 \times 5 \times 4:7$ $\times 3 \times 11 \times 3$ or 80:963.

EXERCISE 79.

1. What is the ratio of 27 to 3?	Ans. 9.
2. What is the ratio of 7 to 11?	Ans. Tr.
3. What is the ratio of 9 to 27?	Ans. $\frac{1}{3}$.
4. What is the ratio of 42 to 5?	Ans. 83.
5. What is the ratio of 72 to 6?	Ans. 12.

Required the ratio of the following numbers:-

		0
6. 5 to 25.	Ans. $\frac{1}{5}$.	13. \$17 to \$8.50. Ans. 2.
7. 49 to 7.	Ans. 7.	14. \$93 to \$31. Ans. 3.
8. 83 to 7.	Ans. 117.	15. 14 bus. to 2 pks. Ans. 28.
9. 187 to 11.	Ans. 17.	16. 40 m. to 12 fur. Ans. 263.
10. 19 to 152.		17. 24 lb. to 12 oz.
11. 23 to 299.		18. 17 shillings to £51.
12. 147 to 21.		19. 16 acres to 30 sq. per.

Required the inverse	ratio of	the following numbers:—
20. 7 to 21.	Ans. 3.	27. 6 days to 4 weeks. Ans. 43.
21. 12 to 2.	Ans. $\frac{1}{6}$.	28. 11 min. to 30 sec. Ans. 12.
22. 27 to 6.	Ans. 3.	29. 4 lbs. to 12 oz. Ans. 76.
23. 9 to 36.	Ans. 4.	30. 3 qts. to 43 gals. Ans. 571.
24. 19 to 57.		31. 70 per, to 2 miles.
25. 81 to 9.		32. 7 Flem. ells to 9 Eng. ells.
26. 187 to 17.		33. 11 oz. to 68 scruples.

Required the reciprocal ratio of the following numbers:-

34. 7 to 42.	Ans. $\frac{1}{7}: \frac{1}{42} = 6$.	39. $\frac{1}{24}$ to $\frac{1}{36}$.	Ans. 3.
35. ½ to ½.	Ans. $8:2=4$.	40. 72 to 18.	Ans. 1.
36. 42 to 28	Ans. $\frac{1}{42}:\frac{1}{28}=\frac{2}{3}$.	41. 512 to 32.	Ans. γ^1_{6} .
37. 17 to 68.		42. ¼ to %.	
38. 19 to 17.		43. 3 to 3.	

Required the ratios compounded of the following ratios:-

```
44. 2 to 3, 5 to 7 and 1 to 7.
                                                  Ans. 10 to 147.
                                                  Ans. 136 to 18.
45. 8 to 6 and 17 to 3.
46. 9 to 8, 7 to 6, 5 to 6, 4 to 3 and 2 to 1.
                                                  Ans. 2520: 864.
47. 1 to 7, 1 to 3, 3 to 1 and 5 to 1
                                                     Ans. 15:21.
48. 2 to 5, 3 to 7, 4 to 5, 21 to 2 and 1 to 9.
                                                  Ans. 504:3150.
```

19. Since the antecedent of a couplet is a dividend, the consequent a divisor, and the ratio the quotient, it follows from the principles established in Arts. 79-84, Sect. II., that :-

1st. Multiplying the antecedent of a couplet or dividing the consequent by any number multiplies the ratio by that number.

Thus the ratio of 28 to $112 = \frac{1}{4}$. The ratio of 28 \times 3 to $112 = \frac{3}{4} = \frac{1}{4} \times 3 =$ three times the ratio of 28 to 112.

2nd. Dividing the antecedent of a couplet or multiplying the consequent by any number divides the ratio by that number.

Thus the ratio of 64 to 16 = 4.

The ratio of $64 \div 2$ to $16 = 32 : 16 = 2 = 4 \div 2 = \text{half the ratio of } 64 \text{ to } 16$.

3rd. Multiplying or dividing both antecedent and consequent of a couplet by the same number does not alter the value of the ratio.

Thus the ratio of 18 to 6 is 3, The ratio of 18 \times 7:6 \times 7 = 126:42=3 = ratio of 18 \div 2:6 \div 2=9:3.

20. Since any number of ratios to be compounded together may be expressed as fractions, and then compounded by the rule for multiplication of fractions (Art. 45, Sect. IV.) it follows that:

When several ratios are to be compounded together we may, before multiplying the corresponding terms together, cancel any factor that is common to an antecedent and a consequent.

Example 1.—Compound together 4:17, 34:55, 11:2, 13:7, and 21:65.

EXPLANATION.—17 cancels 17 and reduces 34 to 2 and this 2 cancels 2, the third consequent; 11 reduces 55 to 5; 13 reduces 65 to 5 and 7 reduces 21 to 3. The only antecedents now left are 4 and 3 which multiplied together make 12, and the only remaining consequents are 5 and 12: 25 Ans. 5 which multiplied together make 25. The ratio 12 to 25 is therefore the ratio compounded of all the given ratios.

EXAMPLE 2.—Compound the following ratios :--OPERATION.

7:16 $= 9 \times 2 : 13$ or 18 : 13 Ans.

EXAMPLE 3.—Find the ratio compounded of the following ratios :-

EXERCISE 80.

- Find the ratio compounded of 9:16, 25:31, 341:18 and 48:100.
 Ans. 33:8.
- 2. Find the ratio compounded of 18: 25, 7: 9, 11:12, and 91:49.

 Ans. 143: 150.
- 3. Find the ratio compounded of 1:2, 2:3, 3:4, 4:5, 5:6 and 7:11.

 Ans. 7:66.
- 4. Find the ratio compounded of 2: 5, 8: 11, 14: 17 and 187: 112.

 Ans. 2: 5.
- 5. Find the ratio compounded of 3: 5, 7:9, 11:13, 15:17 and 19:21.

 Ans. 209:663.
- 21. If the antecedent of a couplet be equal to the consequent, the ratio is equal to 1 and is called a ratio of equality.

If the antecedent be greater than the consequent the ratio is greater than 1 and is called a ratio of greater inequality.

If the antecedent be less than the consequent the ratio is less than 1, and is called a ratio of less inequality.

Thus the ratio of 7: 7 = 1 is a ratio of equality. The ratio of 7: $2 = 3\frac{1}{2}$ is a ratio of greater inequality. The ratio of 7: $14 = \frac{1}{2}$ is a ratio of less inequality.

EXERCISE 81.

In examples 1-43 of Exercise 79 point out which are ratios of greater and which ratios of less inequality.

22. Ratios are compared with one another by expressing them in the form of fractions—reducing these to their equivalent fractions having a common denominator and comparing the numerators.

Ratios may also be compared by actually dividing the antecedent by the consequent and thus ascertaining which gives the greatest quotient.

Note.-The latter method is usually the more convenient.

EXAMPLE 1.—Which is the greatest and which the least of the following ratios, viz: 3:4,7:8, and 9:10?

By 1st Rule 7: $8 = \frac{3}{7} = \frac{30}{30}$ Hence 9: 10 is greatest and 3: 4 $0 = \frac{3}{7} = \frac{30}{40}$ least.

By 2nd Rule 7: $8 = 7 \div 8 = .75$ Hence 9: 10 is greatest 9: $10 = 9 \div 10 = .9$ and 3: 4 least.

EXAMPLE 2.—Compare together the following ratios, 7:8, 2:3 and 11:13 and 5:6.

EXERCISE 82.

1. Point out which is greatest and which least of the ratios 7:4,6:3,17:8, and 11:5.

Ans. 11:5 is greatest and 7:4 least.

2. Point out which is greatest and which least of the ratios 16:9, 10:3, 7:2, and 8:3.

Ans. 7:2 is greatest and 16:9 least.
3. Point out which is greatest and which least of the ratios 7:33, 11:49, 16:71, and 21:106.

Ans. 16:71 is the greatest and 21:106 least.

23. If the terms of two or more couplets, having the same ratio, be added together, the resulting couplet will have the same ratio.

Thus, the ratio of 6:2=3, the ratio of 21:7=3, and the ratio of 33:11=3, and the ratio 6+21+33 to 2+7+11, that is, of 60 to 20 is also 3. That is, if 6:2=21:7=33:11, then 6+21+33:2+7+11=6:2.

24. If from the terms of any couplet the terms of another couplet having the *same ratio* be subtracted, then the resulting couplet will have the same ratio.

Thus, the ratio of 35 to 5 is 7, and the ratio of 14 to 2 is 7. So also the ratio of 35-14:5-2, that is, of 21:3 is 7, or, if 35:5=14:2, then 35-14:5-2=35:5.

25. A ratio of greater inequality is diminished by adding the same number to both terms.

Thus, the ratio of 48:8=6.

The ratio of 48+12:8+12 or 60:20=3 which is less than ratio 48:8.

26. A ratio of less inequality is increased by adding the same number to both terms.

Thus, the ratio of 8:48= $\frac{1}{6}$.

The ratio of 8+12:48+12 or $20:60=\frac{1}{3}$ which is greater than ratio of 8:48.

PROPORTION.

27. Proportion is an equality of ratios.

Thus, the ratios 15:3 and 25:5 constitute a proportion, since 15:3=5=25:5.

28. The terms of the two couplets are called proportionals.

29. Proportion may be expressed in two ways,

1st. By placing =, the sign of equality, between the ratios

2nd. By placing four points, thus::, between the two ratios.

Thus, we may express the proportion existing between 15, 3, 25, and 5 by 15:3=25:5, or by 15:3::25:5.

We read either of them by saying the ratio of 15 to 3 equals the ratio of 25 to 5; or simply 15 is to 3 as 25 is to 5.

Note.—The sign: is supposed to be derived from =, the sign of equality, the four points being merely the extremities of the lines.

- 30. In every proportion there must be four terms, since there must be two complets, and each complet consists of two terms.
- 31. When three numbers constitute a proportion, one of them is repeated so as to form two terms.

Thus, if 18, 6, and 2 are proportionals.

18:6::6:2.

In this case the 6, i. c., the term repeated, is called the middle term or a mean proportional between the other two numbers.

The 2 is called the third term or a third proportional to the other two

32. It is important to remember the distinction between ratio and proportion.

A ratio consists of two terms, an antecedent and a consequent.

A proportion consists of two couplets or four terms.

One ratio may be greater or less than another.

One proportion cannot be greater or less than another, since equality does not admit of degrees.

33. The outer terms of a proportion are called the extremes, and the two intermediate ones, the means.

Thus, in the proportion 3:17::21:119.

3 and 119 are the extremes.

17 and 21 are the means.

34. If four quantities be proportionals, the product of the extremes is equal to the product of the means.

6:11::18:33. Then $6 \times 33 = 11 \times 13$.

This may be established in the following manner: $-6:11=\frac{6}{11}$ and 18:33= $\frac{1}{4}$, and since 6:11::18:33, $\frac{6}{11}$ = $\frac{1}{3}$ (Art. 27.) Now, since multiplying equals by the same number does not destroy their equality, if we multiply these fractions by 11 we get $6 = \frac{18 \times 11}{33}$; and multiplying each of these by 33, we have $6 \times 33 = 18 \times 11$; but 6 and 33 are the extremes and 18 and 11 are the means; therefore in any geometrical proportion the product of the extremes equals the product of the means.

The same fact may be established more generally as

Let a, b, c and d be any four proportionals whatever. Then a:b::c:d

But
$$a:b = \frac{a}{b}$$
 and $c:d = \frac{c}{d}$

Therefore $\frac{a}{b} = \frac{c}{d}$ — Multiplying each of these equals by $b \times d$, we have $a \times d = b \times c$. But a and d are the extremes and b and c are the means, Therefore, &c.

35. This principle then may be considered the *test* of a geometrical proportion. If the product of the extremes equals the product of the means, the four quantities are proportional; if the products are not equal, the numbers are not proportional.

36. It follows from Art. 34 that:—

1st. If the product of the means be divided by one extreme, the quotient will be the other extreme.

2nd. If the product of the extremes be divided by one mean, the quotient will be the other mean.

and hence,

3rd. If any three terms of a proportion be given, the fourth may be found thus:

$$\begin{array}{l} \text{e found thus:} \\ 1 \text{st term} &= \frac{2 n d \text{ term}}{4 t h \text{ term}} \times 3 r d \text{ term} \\ 2 n d \text{ term} &= \frac{1 \text{st term}}{3 r d \text{ term}} \times 4 t h \text{ term} \\ 3 r d \text{ term} &= \frac{1 \text{st term}}{2 n d \text{ term}} \times 4 t h \text{ term} \\ 4 t h \text{ term} &= \frac{2 n d \text{ term}}{1 \text{ st term}} \times 3 r d \text{ term} \\ 1 \text{ st term}. \end{array}$$

EXAMPLE 1.—What is the fourth proportional to 7, 11 and 35? 4th term = $\frac{2\text{nd term} \times 3\text{rd term}}{1\text{st term}} = \frac{11 \times 35}{7} = 55 \text{ Ans.}$

Example 2.—The first, second and fourth terms of a proportion are 9, 16 and 128. Required the third term.

3rd term =
$$\frac{1\text{st} \times 4\text{th}}{2\text{nd}} = \frac{9 \times 12^{3}}{16} = 72 \text{ Ans.}$$

EXERCISE 83.

- 1. The second, third and fourth terms of a proportion are 17, 11, and 931. What is the first term?
- 2. The first, third, and fourth terms of a proportion are 21, 63 and 39. Required the second term. Ans. 13.
- 3. The first three terms of a proportion are 2, 3 and 7. is the fourth term?
- 4. The last three terms of a proportion are 91, 88 and 104. Required the first term. Ans. 77.

Find the fourth proportional to

- 5. 4 yds. 18 yds. and \$96. Ans. \$432. 6. 5 lb. 2 lb. and \$3.75. Ans. \$1.50. .
- 7. 1 cwt. 215 cwt. and \$7.50. Ans. \$1612.50 8. 6 miles, 1 mile and 27 shillings. Ans. 4s. 6d.
- 10 lb. 150 lb. and £6 3s. 9d. Ans £92 16s. 3d. 4 days, 27 days and \$100. Ans. \$675.

37. It will be useful to remember the following properties of a Geometrical proportion. As the proofs are given in every common work on Algebra, it has not been thought advisable to insert them here. a, b, c and d stand for any four proportionals whatever.

Or if 15:6:; 10:4 If a:b::c:d Alternately a:c::b:d 15:10::6:4 Atternately b:a:d:c 6: 15::4:10

By Composition a+b:b::c+d:d 15+6:6::10+4:4, or 21:6::14:4

By Conversion a:a+b::c:c+d:d 15-6:6::10-4:4, or 9:6::14:4

By Conversion a:a+b::c:c+d 15:15+6::10:10+4, or 15:21::10:14

Or a:a-b::c:c-d 15:15+6::10:15-4, or 15:21::10:16

38. Proportion in Arithmetic is usually divided into simple, compound and conjoined.

SIMPLE PROPORTION.

- 39. Simple Proportion is frequently called the Rule of Three, because when three terms are given, by means of them a fourth may be found. It is also sometimes called the Golden Rule from its extensive utility.
- 40. Example.-If 16 barrels of flour cost \$112, what will 129 barrels cost?

In this and every other question in Simple Proportion there are two ratios, one of which is perfect (i.e. has both terms given) and the other imperfect and from the nature of proportion we know that these two ratios must be both of the same kind, that is, they must be both ratios of greater inequality or both ratios of less inequality.

Now in the above example, the ratio of \$112 to the answer is a ratio of less inequality since it is evident that, if 16 barrels cost \$112, 129 barrels will see the property of the state of the same property of the same property.

will cost more. Therefore the other ratio is also a ratio of less inequality and must be written 16:129.

And since the ratios are equal.

barrels. dollars. 16:129::112: Ans.

Also (Art. 36) Ans. = \frac{112 \times 129}{2003.

PROOF .- Set 903 in the fourth place, thus: 16:129::112:903

and see if the product of extremes = product of means (Art. 35.)

 $16 \times 903 = 14448 = 129 \times 112$.

From the preceding illustrations and principles we deduce for Simple Proportion the following general

BULE.

Set the given term of the imperfect ratio in the third place, and the letter x_1 to represent the answer, in the fourth.

Then, if, by the nature of the question, the ratio of the third term to the answer is a ratio of greater inequality, make the remaining ratio a ratio of greater inequality also; but if the ratio of the third term to the answer be a ratio of less inequality, make the other ratio a ratio of less inequality also.

Lastly, (Art. 36,) multiply the second and third terms together, divide the product by the first term, and the quotient will be the

answer in the same denomination as the third term.

PROOF .- Multiply the first term and the answer together, and, if the product is equal to the product of the second and third terms, the work is correct. (Art. 35.)

EXAMPLE 1.-If a man can walk 155 miles in 12 days, how many miles can he walk in 60 days?

Here the imperfect ratio is 155 miles to x, and, in order to ascertain whether it is a ratio of greater or less inequality, we have merely to ask the following simple question—If a man can walk 155 miles in 12 days, can he walk more or less in 60 days? Evidently more. Therefore the ratio of 155:x is a ratio of less inequality, or, in other words, the antecedent must be the least of the two numbers, and the statement is

days. miles. 12:60::155:x.

Whence the answer $=\frac{60\times155}{12}=775$ miles.

41. Since the second and third terms multiplied together, constitute a dividend, and the first term is a divisor, it is manifest, from the principles of division (Arts. 79-84, Sect. II.), that we may cancel any factor that is common to the first term and either of the other terms.

Thus in the last example we have 12:60::155: x and, dividing the first and second by 12, we get 1:5::155:x and $155\times 5=775$ Ans.

EXAMPLE 2.—If 96 bushels of wheat cost \$128, what will 15 bushels cost?

As the answer to the question must be in dollars, the imperfect ratio is \$128: x, and from the nature of the question, we know that 15 bushels will cost less than 96 bushels; we therefore place 15, the smaller of the remaining terms, in the second place, and the other term, 96, in the first place. Hence the statement is 96:15 bushels::\$128:x.

OPERATION.

bush. 8 96:15::128:x Here 32 reduces 96 to 3 and 128 to 4, and 3 cancels 3 and reduces 15 to 5.

 $3 \times 4 = 20 Ans. The teacher would do well to insist upon his pupils per-

forming all questions in Proportion by analysis.

Thus, to solve the last question, we begin as follows: If 96 bushels cost \$128,1 bushel will cost $\frac{1}{96}$ of \$128, or \$133 $\frac{1}{3}$. Then if 1 bushel cost \$133 $\frac{1}{3}$. 15 bushels will cost 15 times as much, which is \$20.

EXAMPLE 3.—If 27 men can mow 60 acres of grass in a day, how many acres can 93 men mow?

OPERATION.
men. acres.
27: 98:: 69: x
9 31 20
3
31×20

since 93 men will evidently mow more than 27 men, we make 93 the second term and 27 the first. Hence the statement is 27:93::60:x. Then 3 reduces 27 to 9 and 93 to 31, aud 3 again reduces 9 to 3 and 60 to 20, and the answer is equal to 31 multiplied by 20, and divided by 3.

Here the imperfect ratio is 60: x acres, and

3-=2063 acres Ans.

This question may be thus performed by analysis:

If 27 men mow 60 acres a day, 1 man will mow $\frac{1}{27}$ of 60 acres, or $2\frac{\alpha}{3}$ acres; 93 men will therefore mow 93 times $2\frac{\alpha}{3}$ acres $= 206\frac{\alpha}{3}$ Ans.

EXERCISE 84.

- 1. If 11 baskets of peaches cost \$13.42, what will 87 baskets cost?

 Ans. \$106.14.
 - 2. If 28 cords of wood cost \$266, what will 25 cords cost?

 Ans. \$237.50.
 - 3. If a man receives \$29.20 for 16 days' work, for how many days should he work for \$83.60?

 Ans. 45% days.
 - 4. If 16 bags potatoes are sold for \$12.80, what will 150 bags bring?

 Ans. \$124.80.
 - 5. If a stick 7 feet long cast a shadow of 5 feet, what will be the height of a tree which casts a shadow of 112 feet long? Ans. 1566 feet.
 - If a stack of hay will feed 27 cows for 99 days, how long will it feed 55 cows?
 Ans. 482 days.
 - 7. If 9 bushels of peas sow 5 acres, how many bushels will be required to sow 48 acres?

 Ans. 86% bushels.
 - 8. If 3 men put up 73 perches of fencing in 2 days, how long will they take to put up 803 perches?

 Ans. 22 days.
- If 176 pails of maple sap make 100 lbs. of sugar, bow much sugar will 1128 pails make?
 Ans. 640¹⁰/₁ lbs.
- 10. If it cost \$20.88 to weave 108 yards of cloth, what will it cost to weave 465 yards?
 Ans. \$89.90.

11. If \$16 pay for the carriage of 72 barrels of flour, for the carriage of how many barrels will \$1278 pay? Ans. 5751 barrels.

12. If 11 men plough 165 acres in a week, how many acres would 3 men plough in the same time?

Ans. 45 acres.

13. If 4 barrels flour make 250 four-pound loaves of bread, how many such loaves will 67 barrels make?

Ans. 41871 loaves.

14. If 190 bushels of apples make 16 barrels of cider, how many barrels of cider will 38 bushels of apples make?

Ans. 3_0^{+} barrels. 15. If 90 men can build a wall in 12 days, how many men could

15. If 90 men can build a wait in 12 days, now many men could build it in 15 days?

Ans. 72 men.

16. If 17 days' work pay for 2 barrels of flour, for how many barrels will 279 days' work pay?

Ans. 3214 barrels.

17. If a train travel 27 miles per hour, how far will it travel in 24 hours?
Ans. 648 miles.

18. If 7 cows make 30 lbs. of butter a week, how much may be expected from 23 cows? Ans. 98‡ lbs.

42. If any of the terms contain fractions or mixed numbers, apply the rules in Section IV.

EXAMPLE 1.—If $\frac{2}{6}$ of a basket of peaches cost $\frac{2}{7}$ of a dollar, how much will $\frac{3}{11}$ of a basket of peaches cost?

OPERATION.

 $\frac{3}{8}: \frac{3}{1}: \frac{3}{1}: x$. Therefore answer $= \frac{2}{7} \times \frac{3}{1}: \frac{2}{5} = \frac{3}{7} \times \frac{3}{1}: \frac{5}{2} = 19\frac{3}{7}$ cents.

Example 2.—If $\frac{9}{16}$ of a bushel cost $\frac{1}{11}$ of a pound, what will $\frac{1}{16}$ of a bushel cost?

OPERATION.

 ${}^{9}_{16}:\frac{11}{12}::\mathcal{L}^{4}_{17}:x.$ Therefore answer $={}^{4}_{17}\times\frac{1}{12}:{}^{9}_{16}={}^{4}_{17}\times\frac{11}{12}\times{}^{16}_{9}=$ $\mathcal{L}^{19}_{9}:=11s.$ $10^{2}_{0}d.$

NOTE.—If the first term be a fraction, invert it and connect it to the others by the sign of multiplication.

Exercise 85.

- 1. If $\frac{3}{16}$ of a ship cost \$9750, what will $\frac{2}{26}$ cost? Ans. \$42000.
- How much will 1 of a yard come to if 6 of a yard cost 6 of a shilling?
 Ans. 26d.
- 3. If \$7.49 pay for $\frac{7}{9}$ of a ton of coals, what will $8\frac{1}{3}$ tons cost?

 Ans. \$80.25.
- 4. If 5⁴ yards of broadcloth cost \$28.42, what will ⁴ of a yard come to?
 Ans. \$2.80.
- 5. If $\frac{1}{2}$ of a dollar pay for $\frac{1}{6}$ of a bag of apples, for what part of a bag will $\frac{1}{2}$ of a dollar pay?

 Ans. $\frac{1}{2}$ of a bag.
- If \$100 stock is worth \$981, what will \$472 1/26 stock be worth?

- 7. If 17 \$\frac{3}{2}\$ tons of hay last a certain number of horses 107₁\$\frac{3}{2}\$ days, how many days will 11\frac{1}{1}\$ tons last the same number of horses?
 Ans. 70\frac{3}{8}\$\frac{5}{4}\$ days.
- 8. If $22\frac{4}{3}$ cords of wood last as long as $15\frac{7}{13}$ tons of coal, how many cords of wood will last as long as $11\frac{2}{3}$ tons of coal?

 Ans. $16\frac{7}{3}$ cords of wood.
- 9. If \(\frac{1}{2} \) of \(\frac{3}{6} \) of \(3\frac{1}{3} \) yards of broadcloth \(\cost \frac{7}{7} \) of \(\frac{3}{1} \), what \(\text{will } \frac{3}{6} \) of \(\frac{1}{2} \) of \(\frac{1}{3} \) of a yard \(\cost \frac{7}{7} \).
- 43. When the first and second terms are not of the same denomination or contain different denominations—

RULE.

Reduce both to the lowest denomination contained in either, and then apply the rule in Art. 40.

EXAMPLE.—If 11 bushels 2 pks. 1 gal. cost \$74, what will 76 bushels 1 pk. 1 gal. 1 qt. 1 pt. cost?

OPERATION.

The lowest denomination contained in either is pints.

11 bush. 2 pks. 1 gal.: 76 bush. 1 pk. 1 gal. 1 qt. 1 pt.:: \$74:x; this reduced becomes 744: 4891:: \$74:x.

Ans. $\frac{$74 \times 4891}{} = $486.47 +$

In this example 11 bush. 2 pk. 1 gal. = 744 pints and 76 bush. 1 pk. 1 gal. 1 qt. 1 pt. = 4891 pints.

EXERCISE 86.

- What will 37 sq. yds. 4 ft. 120 in. of painting cost, if 9 sq. yds. 2 ft. cost \$3.50?

 Ans. \$14.245.
- How much will 12 lb. 10 oz. of silver come to at \$1.25 per oz.?
 Ans. \$192.50.
- If 10 yards of ribbon cost \$3.40, what will 3 yds. 2 qrs. cost?
 Ans. \$1.19.
- If 15 oz. 12 dwt. 16 grs. cost \$3.80, what will 13 oz. 14 grs. cost?
 Ans. \$3.167.
- 5. What will 3 lb. 1 oz. 11 dwt. cost, if 12 lb. 6 oz. 4 dwt. cost \$600?
- 6. If a man can pump 54 barrels of water in 2 hrs. 46 min. 30 sec., in what time will he pump 24 barrels?
- Ans. 1 h. 14 min.

 7. What will 73 yds. 3 qrs. 2 na. 1 in. of velvet cost, if 3 Flem. ells 2 qrs. 1 na. cost £4 17s. 8½d?

 Ans. £128 6s. 10 %dd.
- 8. If 43 oz. avoirdupois cost 831 shillings, what will 811 lbs. cost?

 Ans. £13 9s. 04d.
- 9. In the copy of a work containing 327 pages, a remarkable passage commences at the end of the 156th page. On what page might it be expected to begin in a copy containing 400 pages?

 Ans. On the 191st page.

10. If the rent of 46 acres, 3 roods, and 14 perches be £100, what will be the rent of 35 acres, 2 roods and 10 perches?

Ans. £75 18s. 62167d.

11. When A had travelled 68 days at the rate of 12 miles a day,
B, who had travelled 48 days, overtook him. How many
miles a day did B travel, allowing both to have started
from the same place?

Ans. 17.

12. If $21\frac{1}{3}$ shillings pay for $16\frac{1}{7}$ lbs. of prunes, how many pounds can be bought for $32\frac{2}{7}$ shillings?

Ans. $24\frac{67}{16}\frac{5}{6}\frac{5}{6}$ lbs.

13. A ton of coal yields about 9000 cubic feet of gas; a street lamp consumes about 5, and an argand burner (one in which the air passes through the centre of the flame) 4 cubic feet in an hour. How many tons of coal would be required to keep 17493 street lamps, and 192724 argand burners in shops, &c., lighted for 1000 hours? Ans. 953734.

14. The gas consumed in London requires about 50000 tons of coal per annum. For how long a time would the gas this quantity may be supposed to produce (at the rate of 9000 cubic feet per ton), keep one argand light, (consuming 4

cubic feet per hour) constantly burning?

Ans. 12842 years and 170 days.

15. Suppose 11270 lbs. of beef for a ship's use were to be cut up in pieces of 4 lb., 3 lb., 2 lb., 1 lb., and ½ lb.—there being an equal number of each.

How many pieces would there be of each?

Ans. 12842 years and 170 days.

16. The sloth does not advance more than 100 yards in a day.
How long would it take to crawl from Toronto to Kingston,

allowing the distance to be 180 miles?

Ans. 3168 days, or about 82 years.

17. Suppose that a greyhound makes 27 springs while a hare makes 25, and that their springs are of equal length. How many springs must the hound make to overtake the hare, if the latter has a start of 50 springs?

Ans. 675.

COMPOUND PROPORTION.

44. Compound Proportion is an equality between a compound ratio and a simple ratio.

Thus 7:11 compounded with 22:21::34:51, is a compound ratio. Or $7\times22:11\times21::34:51$, and applying Art. 40 we have $7\times22\times51=11\times21\times34$.

45. Compound Proportion is also called the Double Rule of Three. It enables us to obtain the answer by a single statement, although two or more proportions are contained in the question.

46. In Compound Proportion there are three or more ratios, one of which is imperfect and all the others perfect.

47. Let it be required to solve the following question: If 18 men dig a trench 30 yards long, in 24 days, by working 8 hours a day, how many men will dig a trench 60 yards long, in 64 days, working 6 hours a day?

Let us suppose the time to be the same in both cases, and this question

becomes the same as the following:

If 18 men dig 30 yards of trench, how many men will dig 60 yards? Here it is evident the answer will be the same fraction of 18 that 60 yards is of 30 yards; or, in other words, the required number of men=\frac{6}{9} of 18

Next let us take into account the number of days; but suppose they work

the same number of hours per day in both cases.

The question then becomes: If $\frac{60}{30}$ of 18 men require 24 days to dig a

trench, how many men will dig it in 64 days?

In this case it is plain that the answer will be the same fraction of 10 of 18 men that 24 days is of 64 days; that is, the required number of men= 24 of 50 of 18 men.

Lastly, let us take into consideration the time worked each day.

The question then becomes: If 24 of 60 of 18 men dig a trench in a certain number of days, working 8 hours per day, how many men will dig it working 6 hours per day?

In this case the answer is obviously= 8 of 24 of 30 of 18 men, or dividing

 $\frac{Answer}{18} = {}^{8}_{6} \times {}^{2}_{6} \times {}^{4}_{3} \times {}^{6}_{3}$ these equals by 18.

Or taking the reciprocals $\frac{18}{Answer} = \$ \times \$^4 \times \3 .

That is the ratio compounded of 6:8, 64:24, and 30:60 = ratio of 30: 60 18: Answer, or, 64: 24 6: 8 :: 18: Answer.

The answer is equal to the continued product of the third term, and all the second terms, divided by the continued product of all the first terms.

From the preceding principles and illustrations, we deduce the following general

RULE FOR COMPOUND PROPORTION.

Place that number which is of the same kind as the answer in the third term, and the letter x to represent the answer in the fourth term.

Then take the other numbers in pairs, or two of a kind, and

arrange them as in simple proportion.

Finally multiply together all the second terms and the third term, divide the result by the product of the first term, and the quotient will be the fourth term or answer required.

Note.—Since the third term and second terms multiplied together constitute a dividend, and the first terms multiplied together a divisor, we may (Arts. 79-84, Sect. II) cancel any factors that are common to any of the first terms and to the third term or any of the second terms.

Example 1 .- If 5 compositors, in 16 days, 11 hours long, can compose 25 sheets of 24 pages in each sheet, 44 lines in each page, and 40 letters in a line; in how many days, each 10 hours long, may 9 compositors compose a volume, to be printed in the same letter, consisting of 36 sheets, 16 pages to a sheet, 50 lines to a page, and 45 letters to a line?

STATEMENT.

SAME CANCELLED. 9 comp. : 5 comp. 10 hours : 11 hours. 25 sheets: 36 sheets. days. 24 pages: 16 pages. 44 lines: 50 lines. :: 16:x 40 letters: 45 letters.

EXPLANATION.—The imperfect ratio is that of 16 days to an unknown number of days. We place this ratio to the right hand-side, as in Simple Proportion. Now we compare each pair of terms with this ratio, in order to decide whether they constitute a ratio of greater or less inequality. Thus, if 5 compositors require 16 days, will 9 compositors require more or Thus, if 5 compositors require 16 days, will 0 compositors require more or less? Evidently less; therefore it is a ratio of greater inequality, and woust write it 9:5. Next, if 11 hours to the day require 16 days, will 10 hours to the day require more or less?—more; therefore we must write 10:11. Next, if 25 sheets require 16 days, will 36 days require more or less?—more; therefore we write 25:36. Next, if 44 lines to a page require 16 days, will 50 lines to a page require more or less?—more: therefore we write 44:50. Lastly, if 40 letters to a line require 16 days, will 45 letters to a line require more or less?—more; therefore we write 40:45.
The statement is now complete, and we cancel as follows; 5 cancels 5, the first consequent, and reduces 25, the third antecedent, to 5, and 5 cancels this 5, and reduces 50, the fifth consequent, to 10, and 10 cancels this 10 and 10, the second antecedent. Again, 9 cancels the first antecedent and reduces 36, the third consequent, to 4, and 4 cancels this 4 and reduces 44, the fifth antecedent, to 11, and 11 cancels this 11 and 11, the second con-

and reduces so, the third consequent, to 4, and 4 cancers this 4 and reduces 44, the fifth antecedent, to 11, and 11 cancels this 11 and 11, the second consequent. Again, 8 reduces 24 to 3 and 16 to 2, 3 cancels this 3 and reduces 45 to 15. 2 cancels the 2 resulting from the 16 and reduces 40 to 20, and 5 reduces this 20 to 4 and the 15 resulting from 45 to 3. Lastly, 4 cancels this 4 and reduces 16, the third term, to 4. There remain but 3

and 4 which multiplied together make 12. Ans.

EXAMPLE 2.—If 24 men can saw 90 cords of woods in 6 days when the days are 9 hours long, how many cords can 8 men saw in 36 days, when they are 12 hours long?

STATEMENT.

SAME CANCELLED.

24 men : 8 men.
6 days : 36 days.
9 hours: 12 hours.
2 cords.

$$24 : 8^{2} \times 8^{2} \times 8^{2} \times 8^{2} \times 10^{2} \times 10^{2}$$

Hero the imperfect ratio is 90: Ans. If 24 men saw 90 cords, will 8 men saw more or less?—less; therefore it is a ratio of greater inequality, and we write 24:8. Next, if 6 days saw 90 cords of wood, will 36 days saw more or less?-more; therefore it is a ratio of less inequality, and we write 6:36. Lastly, if 9 hours per day saw 90 cords, will 12 hours per day saw more or less?—more; therefore it is a ratio of less inequality, and we write 9:12.

EXAMPLE 3.—If 248 men, in 5½ days, of 11 hours each, dig a trench of 7 degrees of hardness, 232½ yards long, 3¾ wide, and 2½ deep; in how many days, of 9 hours long, will 24 men dig a trench of 4 degrees of hardness, 337½ yards long, 5¾ wide, and 3½ deep?

STATEMENT.

$$\begin{array}{c} 24:248 \text{ men,} \\ 9:11 \text{ hours.} \\ 7:4 \text{ degrees.} \\ 232\frac{1}{2}:337\frac{1}{2} \text{ yds. long.} \\ \frac{8}{3}:5\frac{5}{3} \text{ yds. wide.} \\ \frac{2}{3}:3\frac{1}{3} \text{ yds. deep.} \end{array} \right\} :: 5\frac{1}{2} \text{ days: } Ans. \text{ or,} \left\{ \begin{array}{c} 24:2\frac{1}{3} \\ \frac{9}{3}:1\frac{1}{1} \\ \frac{7}{4}:\frac{1}{4} \\ \frac{1}{6}:5\frac{1}{2} \\ \frac{1}{3}:2\frac{1}{6} \\ \frac{3}{3}:\frac{7}{2} \end{array} \right\} :: \frac{11}{2}:x.$$

The answer will be $(2 \stackrel{1}{\uparrow} {}^{8} \times {}^{1}_{1}{}^{1} \times \stackrel{1}{\uparrow} \times {}^{6} \stackrel{7}{\downarrow} {}^{5} \times \stackrel{7}{\downarrow} \times {}^{1}{\downarrow}) \div ({}^{2}_{1}{}^{4} \times {}^{6}_{\uparrow} \times \stackrel{1}{\uparrow} \times {}^{4}_{\uparrow} \times {}^{4}_{\downarrow} \times {$

CANCELLED.

$$\frac{\frac{8}{248} \times \frac{1}{1}}{\frac{1}{1}} \times \frac{\frac{4}{1}}{\frac{1}{1}} \times \frac{\frac{4}{9}}{\frac{1}{9}} \times \frac{\frac{4}{9}}{\frac{1}{9}} \times \frac{\frac{1}{9}}{\frac{1}{9}} \times \frac{\frac{1}{1}}{\frac{1}{9}} \times \frac{\frac{1}{1}}{\frac{1}} \times \frac{\frac{1}{1}}{\frac{1}{9}} \times \frac{\frac{1}{1}}{\frac{1}{9}} \times \frac{\frac{1}{1}}{\frac{1}}{\frac{1}}{\frac{1}{9}} \times \frac{\frac{1}{1}}{\frac{1}} \times \frac{\frac{1}{1}}{\frac{1}}{\frac{1}} \times \frac{\frac{1}{1}}{\frac{1}} \times \frac{\frac{1}{1}}{\frac{1}}{\frac{1}} \times \frac{\frac{1}{1}}{\frac{1}}{\frac{1}} \times \frac{\frac{1}{1}}{\frac{1}} \times \frac{\frac{1}{1}}{\frac{1}}{\frac{1}}{\frac{1}}{\frac{1}}{\frac{1}}{\frac{1}}} \times \frac{\frac{1}{1}}{\frac{1}} \times \frac{\frac{1}{1}}{\frac{1}}{\frac{1}}{\frac{1}}{\frac{1}}{\frac{1}$$

Exercise 87.

- If 120 bushels of corn last 14 horses 56 days, how many days will 90 bushels last 6 horses?
 Ans. 98 days.
- If a wall of 28 feet high were built in 15 days by 63 men, how many men would build a wall 32 feet high in 8 days?
 Ans. 135 men.
- If 1 lb. of thread make 3 yards of linen of 1½ yards wide, how many pounds of thread would be required to make a piece of linen of 45 yards long and 1 yard wide? Ans. 12lb.
- 4. If 3 lb. of worsted make 10 yards of stuff of 1½ yards broad, how many pounds would make a piece 100 yards long and 1½ broad?

 Ans. 25 lb.
- If 12 horses in 5 days draw 44 tons of stones, how many horses would draw 132 tons the same distance in 18 days?
 Ans. 10 horses.
- 6. If 27s. are the wages of 4 men for 7 days, what will be the wages of 14 men for 10 days?
 Ans. £6 15s.
- 7. 3 masters, who have each 8 apprentices, earn \$144 in 5 weeks—each consisting of 6 working days. How much would 5 masters, each having 10 apprentices, earn in 8 weeks, working 5½ days per week—the wages being in both cases the same?
 Ans. \$440,

8. If 6 shoemakers, in 4 weeks, make 36 pair of men's and 24 pair of women's shoes, how many pair of each kind would 18 shoemakers make in 5 weeks?

Ans. 135 pair of men's and 90 pair of women's shoes.

- 9. A'wall is to be built of the height of 27 feet; and 9 feet high of it are built by 12 men in 6 days. How many men must be employed to finish the remainder in 4 days? Ans. 36.
- 10. If a footman travels 130 miles in 3 days, when the days are 14 hours long, in how many days of 7 hours each will he travel 390 miles?
 Ans. 18.
- 11. If the price of 10 oz. of bread, when the flour is 1s. 10\(\frac{1}{2}\)d. per stone, is 1d., what must be paid for 3lb. 12 oz. when the flour is 2s. 6d. per stone?
 Ans. 8d.
- 12. If 5 compositors in 16 days of 14 hours long, can compose 20 sheets of 24 pages in each sheet, 50 lines in a page, and 40 letters in a line; in how many days of 7 hours long may 10 compositors compose a volume to be printed in the same letter, containing 40 sheets, 16 pages in a sheet, 60 lines in a page, and 50 letters in a line?

 Ans. 32 days.
- 13. If 336 men, in 5 days of ten hours each, dig a trench of 5 degrees of hardness, 70 yards long, 3 wide and 2 deep, what length of trench of 6 degrees of hardness, 5 yards wide, and 3 deep, may be dug by 240 men in 9 days of 12 hours each?

 Ans. 36 yards.
- 14. If a pasture of 16 acres will feed 6 horses for 4 months, how many acres will feed 12 horses for 9 months?

Ans. 72 acres.

- 15. If 25 persons consume 300 bushels of corn in one year, how much will 139 persons consume in 7 years at the same rate?

 Ans. 11676 bushels.
 - Ans. 11676 bushels.
- 16. If 32 men build a wall 36 feet long, 8 feet high, and 4 feet wide, in 4 days; in what time will 48 men build a wall 864 feet long, 5 feet high, and 3 feet wide?

Ans. 30 days.

- 17. If a regiment of 679 soldiers consume 702 bushels of wheat in 336 days, how many bushels will an army of 22407 soldiers consume in 112 days? Ans. 7722 bushels.
- 18. If 12 tailors in 27 days can finish 13 suits of clothes, how many tailors in 19 days of the same length, can finish the clothes of a regiment of soldiers consisting of 494 men.

 Ans. 648 tailors.
- 19. If 17 head of cattle consume 5 acres 2 roods 10 perches of pasture in 30 days, how many acres would be consumed by 40 head in 51 days?

Ans, 22 acres 1 rood.

20. If 180 bricks, 8 inches long, and 2 wide, are required for a walk 20 feet long, and 6 feet wide, how many bricks will be required for a walk 100 feet long and 4 feet wide?

Ans. 600 bricks.

CONJOINED PROPORTION.

- 48. Conjoined Proportion is a kind of Compound Proportion, in which the ratio of one of the terms to its corresponding term is made to depend on equivalencies among the intermediate terms of the proportion.
- 49. Conjoined Proportion is sometimes called the Chain Rule from the peculiar manner in which the different pairs of terms are linked, as it were, together. It relates principally to exchanges between different countries, in respect to specie, weights, and measures, but is applicable to common business transactions.
- 50. Example 1.—Suppose 7 yards of velvet in Toronto cost as much as 9 in Montreal, and 16 in Montreal as much as 24 in Paris, how many yards in Toronto will cost as much as 54 in Paris.

EXPLANATION.—This question may be stated as a problem in Compound Proportion as follows:

The imperfect ratio is 7 yards Toronto to an unknown 9:16 \\ \frac{24:54}{24:54}\\ \displaystyle \text{7:} \text{\$x\$} \text{number of yards Toronto. Then, if 9 yards Montreal, pay for 7 yards Toronto, will 16 yards pay for more or less ?—more; therefore we write 9:16. Next, if 24 yards Paris pay for a certain number $\left(\frac{16\times7}{9}\right)$ yards Toronto, will 54 yards Paris

pay for more or less?—more; therefore we write the ratio 24:54. Now (Art. 47) the answer $=\frac{16\times54\times7}{9\times24}$; and it is evident that we may consider

all the factors of the numerator as antecedents, and all the factors of the denominator as consequents, and then make the statement thus:

STATEMENT.

7 yds. Toronto = 9 yds. Montreal. 16 " Montreal = 24 " Paris. 54 " Paris = x " Toronto.

Since the left-hand numbers constitute a dividend and the right-hand numbers a divisor, we may cancel factors that are common. Merely writing the numbers and doing this we have—

SAME CANCELLED.

7 = 94 16 = 24 6 54 = $x = 4 \times 7 = 28$ yds. Ans.

From the preceding principles and illustrations we deduce the following;

RULE FOR CONJOINED PROPORTION.

Write the equivalent terms, as they occur, right and left of the sign of equality, taking care that terms of the same name shall almans be on opposite sides.

Multiply all the terms on the same side as the odd term for a dividend and all on the other side for a divisor. The quotient will

be the required term.

EXAMPLE 2 .- If 25 sheep eat as much hay as 19 goats, and 33 goats as much as 10 cows, and 38 cows as much as 22 horses, how many horses will eat as much as 60 sheep?

SAME CANCELLED. STATEMENT. Or writing the 25 sheep =19 goats numbers merely, 33 goats =10 cows B BB =1011 4 $\delta \xi = \xi z_{20}^{20}$ 38 cows =22 horses | cancelling and ap- 12 x horses=60 sheep | plying the rule.

Ans. $4 \times 2 = 8$ horses.

Here, since the term 25 sheep is on the left hand-side, we put the odd term, 60 sheep, on the right-hand side.

Norg.—The sign=in such questions, merely means equal in value, or equal in time, or equal in effect, &c.

EXAMPLE 3 .- If 19 lbs. of tea in Guelph cost as much as 20 lbs. in Hamilton, and 7 in Hamilton as much as 91 lbs. in Quebec, and 30 lbs. in Quebec as much as 293 lbs. in Boston, and 81 lbs. in Boston as much as 51 lbs. in London, and 10 lbs. in London as much as 57 lbs. in Hong Kong; how many lbs. in Hong Kong are worth 100 lbs. in Guelph?

SAME CANCELLED. STATEMENT. = 20 Hamilton $19 = 20^{10}$ 19 Guelph 7 Hamilton = 91 Quebec 2 = 91= 29% Boston 30 Quebec BO = 383 41 81 Boston = 51 London $\hat{8}^{\frac{1}{3}} = 5^{\frac{1}{3}}_{\frac{3}{3}}$ 10 London = 57 Hong Kong 76 = 57 $x = i \theta \theta^{1\theta}$ x Hong Kong= 100 Guelph

Ans. $10 \times 9\frac{1}{2} \times 5\frac{1}{3} = 506\frac{3}{2}$ lbs.

EXERCISE 88.

1. If 17 cords of wood are equivalent to 116 lbs. of tea, and 87 lbs. of tea to 23 barrels of flour, and 19 barrels of flour to 34 days' work, and 92 days' work to 57 baskets of peaches, and 31 baskets of peaches to 24 dollars, and 12 dollars to 2 tons of coal; how many cords of wood may be purchased Ans. 1355. for 35 tons of coal?

2. If 6 lbs. of tea are worth 29 lbs. of sugar, and 17 lbs. of sugar pay for 1 bushel of wheat, and 27 bushels of wheat are equivalent to 4 tons of coal, and 34 tons of coal purchase 15 cows, and 29 cows cost \$1160; how many pounds Ans. 26263. of tea can be purchased for \$20?

- 3. If 11 bushels of barley pay for 21 bushels of potatoes, and 19 bushels of potatoes for 29 bushels of oats, and 115 bushels of oats for 44 bushels of wheat, and 141 bushels of wheat for 38 bushels of peas, and 60 bushels of peas for 55 bushels of rye, and 75 bushels of rye for 111 bushels of clover seed; for how many bushels of barley will 36 bushels of clover Ans. 874. seed pay?
- 4. If 16 baskets of pears pay for 29 turkeys, and 17 turkeys for 7 days' work, and 71 days' work for 187 loaves of bread, and 31 loaves of bread cost as much as 4 lbs, of veal, and veal is 11 cents per pound, and \$7.92 pay for 63 lbs. of sugar; how many pounds of sugar will 21 baskets of pears pur-Ans. 4041. chase?
- 5. Suppose A can do as much work in 7 days as B can in 11 days, and B as much in 5 days as C can in 8 days, and C as much in 15 days as D can in 21 days, and D as much in 11 days as E can in 5 days; in how many days would A do as much work as E can do in 42 days? Ans. 261.
- 6. If 7 barrels of flour pay for 23 cords of wood, and 6 cords of wood pay for 11 cwt. of beef, and 46 cwt. of beef cost £28, and £77 pay for 9 sheep, and 5 sheep are worth as much as 8 tons of coal; how many barrels of flour may be purchased for 9 tons of coal? Ans. 131.
- 7. If 15s. in N. England be the same in value as 20s in N. York. and 24s. in N. York the same as 22s. 6d. in N. Jersey, and 30s. in N. Jersey the same as 20s. in Canada; how many pounds in N. England are the same in value as £240 7s. 6d. in Canada? Ans. £288 98.

QUESTIONS TO BE ANSWERED BY THE PUPIL.

NOTE.—The numbers following the questions refer to the numbered articles of the section.

- 1. In how many ways may one number be compared with another with respect to magnitude? (1)
- 2. What is ratio? (2)
- 3. What is the difference between the Geometrical and the Arithmetical ratio of numbers? (3)
- 4. How many ways have we of expressing the ratio of one number to another? (4)
- 5. Between what kind of quantities only can ratio exist? (5) 6. When are quantities said to be of the same kind? (6)
 7. What is a couplet? (7)
- 8. What is the antecedent?—the consequent? (8)
- 9. How many kinds of ratio are there? (9)
- 10. What is a direct ratio? (10)
 11. What is an inverse ratio? (11)
- 12. What is the reciprocal of a quantity? (13)
- 13. What is a reciprocal ratio? (12)
- 14. How is the reciprocal ratio of two numbers expressed ? (14)
 15. Show that "reciprocal ratio" and "inverse ratio" are interchangeable terms ? (12)

16. What is a simple ratio? (15)

17. What is a compound ratio? (16)

18. Since a compound ratio does not differ in nature from a simple ratio. why is the term used? (17)

19. How are ratios compounded together? (18)

20. How does multiplying the antecedent or dividing the consequent of a couplet by any number, affect the ratio? (19)

21. How does dividing the antecedent or multiplying the consequent of a couplet by any number, affect the ratio? Why? (19) 22. How does multiplying or dividing both antecedent and consequent of a

couplet by any number, affect the ratio? Why? (19)

23. How does it happen that we may caucel any factors common to an antecedent and a consequent, before compounding ratios together? (20)

24. When is a ratio called a ratio of equality? (21)

25. When is a ratio called a ratio of greater inequality? (21) 26. When is a ratio called a ratio of less inequality? (21)

27. How are ratios compared with one another? (22) 28. When equal ratios are added together, what is the nature of the resulting ratio? (23)

29. What effect has adding the same number to both terms of a ratio? (25

and 26)

30. What is Proportion ? (27)

- What are the terms of the two equal ratios called? (28) How many ways are there of expressing Proportion? (29)
- 33. What is the supposed derivation of the sign:: ? (29—Note)
 34. How many terms must there be in every proportion ? (30)
 35. When three numbers constitute a proportion, what is the repeated term called ?—What is the last term called ? (31)

Point out the distinctions between ratio and proportion. (32) What are "extremes" and "means"? (33)

Prove that if four quantities are proportional, the product of the ex-tremes is equal to the product of the means. (34)

39. What is the test of geometrical ratio? (35)

40. Deduce from this principle a rule for finding any one of the terms when the other three are given. (36) 41. If r: w:: x: y, what does the proportion become? 1st, by composition,

2nd, alternately; 3rd, by conversion; 4th, by division; 5th, inverse-

42. What are the different kinds of Proportion? (38) 43. What other names has Simple Proportion?—Why so called? (39)

- 44. Give the rule for making the statement in Simple Proportion. (40) 45. Give the rule for finding the unknown quantity after the statement is made. (40.)
- 46. Show that we may cancel any factors that are common to the first term and either of the others, before applying the rule. (41)

47. If any of the terms contain fractions, what is done? (42)

48. If the first and second terms are not of the same denomination, what is the rule? (43)

49. What is Compound Proportion? (44)

What other name has Compound Proportion? (45)

51. How many ratios are there in Compound Proportion, and how many of them are perfect? (46)

52. In stating a question in Compound Proportion, what do you make the third term? (47)

53. How do you know whether the other ratios are ratios of greater or less inequality? (47)

When the statement is made, how is the answer obtained? (47)

55. Show that before applying the rule we may cancel any factors, that are common to any of the first terms, and to the second and third terms. (47-Note)

56. What is Conjoined Proportion? (48)
57. Why is it sometimes called the Chain Rule? (49)

58, Give the rule for Conjoined Proportion. (50) 59. In what sense is the sign = taken in these statements? (50)

EXERCISE 89.

MISCELLANEOUS EXERCISE.

(On preceding Rules).

1. What is the ratio compounded of the ratios 7:8, 17:11, 23:29, 319:119, and 16:69?

2. Reduce £119 16s. 62d. to dollars and cents.

- 3. How many days are there from 12th March to the 17th of the following February?
- 4. Compare together the following ratios, and point out which is greatest and which least, 9: 13, 21: 27, 7:10, and 11: 15.

5. From 76.23478 take 19.1342291.

- 6. Multiply 71324t undenary by 23421 quinary and divide the result by t4e7 duodenary. Give the answer in each scale.
- 7. If 5.63 cubic inches of water weigh 3.25% ounces avoirdupois, what will be the weight of 7.9 cubic inches of nitric acid having a specific gravity of 1.220?

8. Divide 63 yds. 3 qrs. 2 na. 1 in. of ribbon equally among 17

9. What is the value of .913625 of an acre at 67 cents per sq. vard?

Multiply ½ of ⁷/₈ of ⁷/₈ of 20 bushels by ·5×·6×⁷/₈.

11. Of the ratios 6: 7, 17: 8, 23: 11, and 88: 176, point out (1) which is the greatest, (2) which is the least, (3) which are ratios of greater inequality, (4) which are ratios of less inequality, (5) what is the ratio compounded of these ratios.

12. The population in Canada in 1851 was 1842265, and in 1857 it was estimated at 2571437. What was the rate per

cent. of increase?

13. From one-half of two-thirds of eighteen twenty-ninths subtract one-eighth of two-thirds of five-sevenths.

14. Deduct 7 per cent. from 11 feet.

15. What is the value of 79 lbs. of tea at £.00163 per ounce?

16. If 3 men in 2½ days, working 12 hours a day, can cradle a field of wheat containing 20 acres, in how many days can 4 men, working 10 hours a day, cradle a field of wheat containing 35 acres?

17. Find the value of ($\frac{1}{8}$ of $\frac{9}{16} \times \cdot 02 \times \cdot 456$) $\div (\frac{1}{16}$ of $\frac{9}{3}$ of $\frac{1}{8}$ of 51).

18. A certain number is divided by 5, the result is divided by 1, this result by 13, and this last result by \$. The last quotient is 2; what was the original number?

- 19. If 50 barrels of flour in Toronto are worth 125 yards of cloth in New York, and 80 yards of cloth in New York 6 bales of cotton in Charleston, and 13 bales of cotton in Charleston 31 hogsheads of sugar in New Orleans; how many hogsheads of sugar in New Orleans are worth 1000 barrels of flour in Toronto?
- 20. Multiply 73.47 by .0063, and divide the result by 17.2345.
- 21. Reduce 2 roods 7 per. 4 yds. 3 ft. 117 in. to the decimal of 7 acres.
- 22. Deduct .73 of 11 furlongs from 2 of 1 of 1 of 70 miles.
- From 274312 nonary take 1101011010 binary, and multiply the result by 5555 septenary. Give the answer in all three scales.
- 24. Find the 1. c. m. of 44, 275, 18, 190, 209, and 225.
- 25. If 60 men in 6 weeks of 5 working days, of 10 hours each, build an embankment 800 yards in length, 18 feet in mean breadth and 11 ft. in mean height, how many men will make an embankment 8742 feet long, 20 feet wide and 8 ft. high, in 10 weeks, of 6 days each, and 11 working hours to each day?
- 26. How many divisors has the number 172000?
- 27. Multiply 42.7 by 9.7123.
- 28. Deduct 27 per cent. from \$73.42.
- 29. What are all the divisors of 6300?
- 30. If \$ of \$ of 3\frac{1}{2}\$ lbs. of coffee cost \$\frac{1}{2}\$ of \$\frac{2}{6}\$ of \$\frac{2}{2}\$ of \$\frac{1}{2}\$ of a dollar, what will \$\frac{2}{3}\$ of \$\frac{1}{2}\$ of of 6 of \$\frac{2}{3}\$ of 90 lbs. cost?
- 31. If \$2739'18 be divided among 7 men, 2 women, and 11 children, so that each child shall have ? of a woman's share, and each woman 3 for a man's share, what will be the amount received by each?
- 32. What is the reciprocal ratio of $\frac{9}{7}$: $\frac{13}{3}$; the direct ratio of 93:17, and the inverse ratio of $\frac{2}{5}$ of $\frac{7}{4}$?
- 33. Add together \$\frac{1}{2}\$ of 6\frac{1}{2}\$ yards, \$\frac{3}{6}\$ of \$\frac{4}{7}\$ of 8\frac{3}{2}\$ ft., and \$\frac{2}{7}\$ of \$7\frac{1}{10}\$ inches.
- 34. What is the ratio compounded of 23: 7, 4:11, 6:5, 13:11½,
- 35. A pint contains 9000 grains of barley, and each grain is one third of an inch long. How far would the grains in 23 bush. 2 pks. 1 gal. 1 qt. 1 pt. reach if placed one after another?
- 36. Reduce 10395 to its lowest terms.
- 37. Add together 1, 3, 3 and 7 in the octenary scale.
- 38. If 17 sheep eat as much grass as 6 cows, and 26 cows require 27½ acres, and 12 acres supply 13 horses, and 11 horses eat as much as 28 goats, how many goats will eat as much as 68 sheep?

39. Suppose that 50 men, by working 5 hours each day, can dig, in 54 days, 24 cellars, which are each 36 feet long, 21 feet wide and 10 feet deep, how many men would be required to dig, in 27 days, 18 cellars, which are each 48 feet long, 28 feet wide, and 9 feet deep, provided they work only 3 hours each day?

SECTION VI.

PRACTICE.

1. Practice is so called from its being the method of calculation *practised* by mercantile men; it is an abridged mode of performing processes dependent on the Rule of Three—particularly when one of the terms is unity.

The statement of a question in practice, in general terms, would be— One quantity of goods: another quantity of goods::price of former:price of latter.

- 2. The simplification of the Rule of Three by means of practice, is principally effected, either by dividing the given quantity into "parts," and finding the sum of the prices of these parts; or by dividing the price into "parts," and finding the sum of the prices of each of these parts; in either case, as is evident, we obtain the required price.
 - 3. An Aliquot Part is an exact or even part.

Thus, 2 shillings is an aliquot part of a pound; 12\frac{1}{2} cents is an aliquot part of a dollar; 6 months, 4 months, 3 months, 2 months, 1\frac{1}{2} months are aliquot parts of a year, &c.

TABLE OF ALIQUOT PARTS.

Parts of \$1.	Parts of a year.	Parts of a month.	Parts of £1.	Parts of 1s.	Parts of a swt.* of 113 lbs.
50 cts, = 12 33	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6s 8d = \frac{1}{3} 5s = \frac{1}{4} 4s = \frac{1}{6} 3s 4d = \frac{1}{6} 2s 6d = \frac{1}{8} 2s = \frac{1}{10}	4d = \frac{1}{3} \text{d} = \frac{1}{4} \text{d} = \frac{1}{6} \text{ld} = \frac{1}{12} \text{d} = \fr	56 lb = \frac{1}{2} 28 lb = \frac{1}{4} 16 lb = \frac{1}{7} 14 lb = \frac{1}{16} 7 lb = \frac{1}{16} \text{perts of a q q rot of 28 lbs.} 14 lb = \frac{1}{2} 3\frac{1}{2} lb = \frac{1}{6} 1\frac{1}{6} lb = \frac{1}{6}

^{*} Although we allow but 100 lbs. to the cwt. in Canada, it is often necessary to make calculations with the old cwt., of 112 lbs. This arises from the

Example 1 .- Find the price of 2783 yards of silk at \$3.371 per vard.

OPERATION.

The cost of 2783 yards at \$3.371 = cost at \$3 + cost at 25 c. 11 12783 371 cents. 2783 yds. at \$3 comes to 3 times as much as at \$1; i.e., 3349 to 3 times \$2783, or \$8349. 37 cts. equals 25 cts. + 121 69575 cents, hence, 2783 yds. at 37 cents = price at 25 cents + 8349

123 c. 1 347'871 price at 121 cents. Since 2783 yards at \$1 comes to \$2783, and 25 cents = 1

Ans. \$9392.62½ of a dollar: 2783 yards at \$1 comes to \$2783, and 25 cents = ½
Ans. \$9392.62½ of a dollar: 2783 yards at 25 cents come to ½ of \$2783,
i.e., to \$695.75. Again, because 2783 yards at 25 cents
come to \$695.75 and 12½ cents equals ½ of 25 cents, 2783 yards at 12½ cents
will come to ½ of \$695.75; i.e., to \$347.87½.

Then 2783 yards at \$337½ = price at \$3 + price at 25 cents + price at 12½
cents = \$8349 + \$695.75 + \$347.87½ = \$9392.62½.

EXAMPLE 2.- What is the cost of 972 oz. of gold dust at £3 14s. 81d. per oz.?

OPERATION. 10s. [1] 972 £2916 = cost at £3 3s. 4d 486 = cost at 0 10 10d. 162 = cost at 0 3 5d. 40 109. = cost at n 0 10 1}d. 20 5 = cost at O 5 1 3d. = cost at 0 O 11 £3629 16 3 = cost at £3 14

81 Example 3.—Find the price of 729 days' work at £1 7s. 14d.

per day.

OPERATION. £729 0 0 = price at £1 58. 1 1s. 8d. 182 5 0 = price at n 60 15 0 = price at 1 8 15 3 9 = price at 1d. 20 0 0 5 21 = price at 15 01 £987 18 111 = price at £1 7 11

Example 4.—What is the cost of 624 bush. 1 pk. 1 gal. 3 qt. of wheat at \$2.871 per bushel?

OPERATION. 50 cts. |2 624 \$1248 = price of 624 bush, at \$2.00 25 cts. 312 = price at 50 121 cts. 156 = price , .. at 25 " " 78 = price at 123 \$1794 = price of 624 bush, at \$2.871

fact that the latter is still in common use in Great Britain, several of the States of the American Union, &c. The aliquot parts of the new cwt., of 100 lbs. are the same as the aliquot parts of \$1.

\$1.344 a = price of 1 pk. 1 gal. 3 qt.

Then \$1794 \rightleftharpoons price of 624 bushels at \$2.874 per bushel, 1.34^{+3}_{-4} \rightleftharpoons price of 1 pk. 1 gal. 3 qt. at \$2.874 per bush.

 $$1795^{\circ}34^{4.9}_{6.4} = \text{price of } 624 \text{ bush. } 1 \text{ pk. } 1 \text{ gal. } 3 \text{ qt. at } 2.87 per bush.

EXAMPLE 5.—What is the price of 96 acres 1 rood 14½ per. at £7 11s. 5½d. per acre?

£726 18 = price of 96 acres at £7 11 5

1 rood
$$\frac{1}{4}$$
 | $\frac{27}{11}$ | $\frac{11}{10\frac{1}{2} + \frac{1}{4}}$ = price of 1 rood.
10 per. $\frac{1}{4}$ | $\frac{9}{10}$ | $\frac{5\frac{1}{4} + \frac{7}{10}}{9}$ = price of 10 perches.
3 9\frac{1}{4} + \frac{2}{10} = price of 4 perches.
5\frac{1}{4} + \frac{2}{3}\frac{2}{3} = price of \frac{1}{4} perch.

£2 11 7 $+\frac{1}{320}$ f. = price of 1 rd. 14\frac{1}{2}, per, at # 11s. 5\frac{1}{2}d. per as. £726 18 = price of 96 acres.

Ans. £729 9s. 7d. $+\frac{1}{320}$ f. = price of 96 acres 1 rood 144 per.

EXAMPLE 6.—What is the cost of 96413 square yards of plactering at 223 cents per square yard?

20 cts.
$$\begin{vmatrix} \frac{1}{5} \\ \frac{1}{5} \end{vmatrix} = \frac{964}{5192'80} = \frac{1}{24'10} = \frac{164}{24'10} = \frac{164}{24'10$$

Ans. \$217'06\ = cost of 964\frac{1}{3} yds. at 22\frac{1}{3} cts. per yd.

EXERCISE 90.

- Required the value of 92647 lbs. of tea at 35 cents per lb.
 Ane. \$32426.45.
- What is the cost of 94937 pails at 1s. 5d. each?
 Ane, £6724 14s. 1d.

3. What is the worth of 95972 boxes at 71 cents?

Ans. \$7197.90.

4. What is the cost of 62 acres at \$28.80 per acre?

Ans. \$1785.60.

- 5. Find the price of 2310 lbs. at 321 cents per lb. Ans. \$750.75.
- 6. Find the price of 2117 bags at 371 cents each. Ans. \$793.871.
- 7. Find the price of 7506 pair of shoes at 1s. 9 d. a pair. Ans. £680 4s. 71d.
- 8. What is the value of 1217 lbs. of coffee at 171 cents. per lb? Ans. \$212.971.
- 9. Find the price of 2103 cords of wood at \$3.071 per cord. Ans. \$6466.721.
- 10. What is the cost of 2096 oz. of gold dust at £3 18s. 104d. Ans. £8266 2s. 0d. per oz.?
- 11. Required the value of 6 oz. 18 dwt. 20 grs. of silver at \$1.55 Ans. \$10.7533.
- 12. What is the cost of 98 yds. 3 qrs. 1 na. of cloth at £1 15s. Ans. £172 18s. 51d. per yard?
- 13. What is the rent of 344 acres 3 roods 15 per. at £4 1s. 1d. Ans. £1398 1s. 03 dd. per acre?
- 14. What is the price of 5 oz. 6 dwt. 17 grs. of mercury at 5s. Ans. £1 113. 123d. 10d. per oz.?
- 15. Find the price of 4 yards 2 qrs. 3 nails of satin at £1 2s. 4d. Ans. £5 4s. 81d. per yard.
- 16. Find the price of 32 acres 1 rood 14 perches at £1 16s. per Ans. £58 4s. 1 d. acre.
- 17. Find the price of 3 gals. 5 pts. of spirits of wine at 7s. 6d. Ans. £1 7s. 21d. per gallon.
- 18. How much will 724 bushels of apples come to at \$1.671 per Ans. \$1212.70. bushel?
- 19. What is the cost of 721 bush. of wheat at \$1.93} per bush.? Ans. \$1396.933.
- 20. What is the cost of 4514 rods of fencing at £2 17s. 71d. per Ans. £13005 19s. 3d. rod?
- 21. What is the price of 3749? acres at £3 15s. 6d. per acre? Ans. £14153 17s. 93d.

Allowing 112 lbs. to the cwt., find the value of-

- · 22. 17 cwt. 1 qr. 17 lbs. at £1 4s. 9d. per cwt. Ans. £21 10s. 837gd.

 - 23. 78 cwt. 3 qrs. 12 lbs. at \$11.55 per cwt. Ans. \$910.80.
 - 24. 20 tons 19 cwt. 3 grs. 271 lbs. at £10 10s. per.ton? Ans. £220 9s. 111d. nearly.
- 25. 219 tons 16 cwt. 3 qrs. at \$45.50 per ton. Ans. \$10002.605

· Pan y

EXERCISE 91.

BILLS OF PARCELS.

(No. 1.)

QUEBEC, 16th April, 1859.

Mr. JOHN DAY,

Bought of RICHARD JONES.

	8.	d.				
15 yards of fine broadcloth, at	13	6	per yard,	10	2	6
24 yards of superfine ditto, at	18	9	ii	22	10	0
27 yards of yard wide ditto, at	-8	4	"	11	5	0
16 yards of drugget, at	6	3	**	5	0	0
16 yards of drugget, attended	2	10	44	1	14	0
12 yards of serge, at	_	8	u	2	13	4
32 yards of shalloon, at	-	•				

Ans. £53 4 10

(No. 2.)

MONTREAL, 24th June, 1859.

Mr. JAMES PAUL,

Bought of THOMAS NORTON.

	8.	d.	
9 pair of worsted stockings, at	4	6	per pair,
6 pair of silk ditto, at	15	9	- "
17 pair of thread ditto, at	5	4	**
23 pair of cotton ditto, at	4	10	**
14 pair of yarn ditto, at	2	4	"
18 pair of women's silk gloves, at	4	2	66
18 pair of women's site gloves, acce			per yard,
19 yards of flannel, at		• 2	Por June,

Ans. £23 15 41

(No. 3.)

TORONTO, 10th July, 1859.

Mr. Wa	. FILBERT,
--------	------------

Bought of GEORGE PRICE.

751	lbs. of sugar, at	71 93	cents per lb.,
63 126	lbs. of tea, at	13	"
354	lbs. of raisins, at	18‡ 15	"
17	lbs. of sago, at	9	"
581	lbs. of starch, at	22	41

(No. 4.)

HAMILTON.	1041	Antonia	1050
HAMILTON.	1211	Jugust.	1999.

Mr. John James,

Bought of JAMES THOMAS.

	\$ cts.	
198 Sangster's National Arithmetic, at	0.60	
197 Robertson's Philosophy of Grammar, at		
83 Hodgins' Geography, at	1.00	
57 Sangster's Algebraic Formula, at	0.121	
217 Strachan's Canadian Penmanship, at	0.371	
143 Hodgins' Geography of British Provinces, at	0.45	
227 Sangster's Elementary Arithmetic, at	0.30	

Ans. \$521.25

(No. 5.) ·

NIAGARA, 17th September, 1859.

Mr. ALEX. LEITH,

Bought of LAWRENCE MERCER.

	8.	d.		
91 yards of silk, at	12	9 p	er yard,	
13 yards of flowered ditto, at			ii .	
112 yards of lustring, at	6	10	"	
14 yards of brocade, at	11	3	**	
12½ yards of satin, at	10	8	cc .	
113 yards of velvet, at	18	0	"	

Ans. £44 15 10

(No. 6.)

KINGSTON, 11th July, 1859.

Dr. ALEX. HAMILTON,

Bought of TIMOTHY PESTLE.

14 02.	ipecacuanha, at	\$0.67
	landanum, at	
	emetic tartar, at	
25 "	cantharides, at	2.17
	gum mastic, at	0.61
56 "	gum camphor, at	0.27

Ans. \$136.94

(No. 7.)

LONDON, C. W., 1st May, 1859.

Mr. JAS. GREY,

Bought of MICHAEL LEWIS.

15½ lbs. of currants, at	8	d.	nor Ib	
174 lbs. of Malaga raisins, at	0		· 11 /	
193 lbs. of sun raisins, at		6 31	"	
8½ lbs. of pepper, at	1	6	u	
3 loaves of sugar, weight 32½ lbs., at 13 oz. of cloves, at		9 8 1	per oz.	

Ans. £3 13 БÌ

TARE AND TRET.

4. Tare and Tret is the name given to a rule by means of which merchants calculate the amount of certain allowances which were formerly made in buying and selling goods by weight in large quantities. They were as follows:

1. Tret, an allowance for waste in weighing.

2. Tare, an allowance for the actual or supposed weight of the box, bag, barrel, &c., containing the goods. And

3. Cloff, an allowance of 2 lbs. in every 336 for the

turn of the scale in retailing goods.

Of these the only one known in Canada is Tare; and as this is always set down in full in the invoice, Tare and Tret, as a rule, has no existence in Canadian mercantile transactions, and has therefore been altogether omitted.

QUESTIONS TO BE ANSWERED BY THE PUPIL.

NOTE.—The numbers after the questions refer to the articles of the section.

What is Practice? (1)
 Why is it so called? (1)

3. Of what rule is Practice merely a modification? (1)

4. What would be the general statement of a question in Practice? (1) 5. How is the process for finding the price of a number of articles simplifled by Practice? (2)

6. What is an aliquot part? (3)

^{7.} What are the aliquot parts of a dollar? (3)

231

8. What are the aliquot parts of a year? (3)
9. What are the aliquot parts of a month? (3)
10. What are the aliquot parts of a £? (3)
11. What are the aliquot parts of a shilling? (3)

12. What are the aliquot parts of a cwt. (112 lbs.) ? (3)

EXERCISE 92.

MISCELLANEOUS EXERCISE.

(On preceding Rules.)

1. Take the number 70204, and by removing the decimal point (1) multiply it by 100000; (2) divide it by 10000; (3) make it thousandths; (4) make it tenths of billionths; (5) make it tenths; and (6) make it hundredths of billionth's.

2. Divide 427.1 by .0000637.

- 3. What will 19 tons 19 cwt. 3 qrs. 271 lbs. of hops cost, at £19 19s. 113d per ton?
- 4. Add together 73.723, 11.342, 16.713, 19.034, 713.213437, and

12:345678. 5. Of the ratios 5: 7, 9:13, 12:17, and 7:10, point out (1)

which is greatest, (2) which is least, (3) what is the ratio compounded of these?

6. If 1 acre of land cost \$80.50, what will 25 acres, 2 roods, 35 rods cost?

7. What is the G. C. M. of 144, 485, and 63.

8. What is the price of 7439 cords of wood at \$3.68? a cord?

9. Reduce 131175, 311235, 189376, and 18333 to their lowest terms.

10. If 344 bushels of turnips are worth 17 bushels of potatoes, and 9 bushels of potatoes 59 lbs. of tea, and 6 lbs. of tea 11 stone of flour, and 13 stone of flour \$3.60, and 38 cents pay for 12 lbs. of bread; how many bushels of turnips are worth 119 lbs of bread?

11. If 27 men in 7 days, working 8 hours a day, paint 42 floors, each 20 feet long and 16 feet wide, with 3 coats of paint to each; in how many days, of 11 hours each, will 54 men paint 77 floors, each 24 feet long and 22 feet wide, giving each 5 coats of paint?

12. Take the number 7449164 and by removing the decimal point,

make it (1) One hundred thousand times greater.

(2) One million times less.

(3) Hundredths of quadrillionths.

(4) Thousandths.

(5) Tenths of billionths.

(6) Tenths.

13. Reduce 72342 nonary to equivalent expressions in the duodenary, senary, and ternary scales, and prove the results by reducing all four numbers to the decimal scale.

14. Express in the decimal scale the greatest and least numbers that can be formed with six digits in the binary, quaternary, senary, octenary, and duodenary scales.

15. Write down all the divisors of 1728.

16. What is the l. c. m. of the first fifteen even numbers, 2, 4, 6, 8, &c.?

17. From 97.91342 take 18.1234567.

18. What would be the cost of painting a ceiling 20 ft. 7 in. long and 19 ft. 5 in. 7" wide, at \$2.87\frac{1}{2} per square yard?

 Divide 916 acres, 3 roods, 17 per., 7 yards, by 43 acres, 1 rood, 2 per., 17 yds.

SECTION VII.

PERCENTAGE, COMMISSSION, BROKERAGE, STOCKS, INSURANCE, CUSTOM-HOUSE BUSINESS, ASSESSMENT.

1. The term Per Cent. is derived from the Latin word per, "by" or "for" and centum, "a hundred," and means "for a hundred." The term is usually employed to indicate the allowance paid for the use of money, but may also be used to express so much the hundred units of any other quantity.

Thus, the term 5 per cent. on so many dollars, gallons, miles, days, &c., signifies \$5 on every \$100, or 5 gallons on every 100 gallons, or 5 miles on every 100 miles, or 5 days on every 100 days, &c.

2. When the rate per cent. is known, the rate per unit is easily obtained by dividing the rate per cent. by 100.

Thus, 1 per cent. is equal to $\frac{1}{100}$ or '01 per unit. 2 per cent. is equal to $\frac{1}{100}$ or '02 per unit. 7 per cent. is equal to $\frac{1}{100}$ or '07 per unit. 9 per cent. is equal to $\frac{1}{100}$ or '09 per unit. 10 per cent. is equal to $\frac{1}{100}$ or '10 per unit. 18 per cent. is equal to $\frac{1}{100}$ or '18 per unit. 39 per cent. is equal to $\frac{1}{100}$ or '39 per unit. 95 per cent. is equal to $\frac{1}{100}$ or '95 per unit. 125 per ent. is equal to $\frac{1}{100}$ or '97 per unit. 378 per cent. is equal to $\frac{1}{100}$ or '378 per unit.

 $\frac{1}{2}$ per cent, is equal to $\frac{1}{100}$ or 005 per unit.

 $\frac{1}{4}$ per cent. is equal to $\frac{1}{100}$ or '0025 per unit.

 $\frac{3}{4}$ per cent, is equal to $\frac{3}{100}$ cr '0075 per unit.

 $\frac{1}{2}$ per cent. is equal to $\frac{1}{100}$ or '00125 per unit.

6½ per cent. is equal to $\frac{6\frac{1}{2}}{100}$ or '065 per unit, &c.

EXERCISE 93.

 What rate per unit is equivalent to 1.6 per cent., 11 per cent., 17 per cent., 63 per cent.?

2. What rate per unit is equivalent to 6 per cent., 25 per cent., 137 per cent.?

 What rate per unit is equivalent to 81 per cent., 91 per cent., 21 per cent.?

4. What rate per unit is equivalent to \(\frac{1}{2}\) per cent., \(\frac{7}{2}\) per cent.,

5. At 61 per cent., how much is it for 1?

Ans. .0625.

6. At 183 per cent., how much is it for 1?
7. At 233 per cent., how much is it for 1?
Ans. ·186.
Ans. ·23625.

8. At 2.734 per cent., how much is it for 1?

Ans. .02734.

9. At 82.7 per cent.; how much is it for 1?

Ans. .827.

10. At 19½ per cent., how much is it for 1?

Ans. .193.

8. To find the percentage of any given number—

....

Multiply the given number by the rate per unit expressed decimally, and point off the product as directed in Art. 53, Sec. II,

EXAMPLE 1 .- What is 7 per cent. on \$673.93?

OPERATION.

\$673'93×'07=\$47'1751

EXPLANATION.—7 per cent. is equivalent to '07 per unit; or, in other words, the percentage on each dollar is 7 cents. It is obvious then that the percentage on the whole sum will be as many times 7 cents as the sum contains dollars; that is '07×673'93.

EXAMPLE 2.-What is 61 per cent. on \$2934?

Ans. \$2934×.065=\$190.71.

EXAMPLE 3.—What is 47% per cent. on 7893 gallons of molasses?

Ans. 7893 gal. × 4775=3768.9075 gallons.

EXERCISE 94.

1. What is 5 per cent. of \$742.10?

Ans. \$37.10].

2. What is 11 per cent. of \$1000?

Ans. \$110.

3. How much is 10 per cent. of \$734.19? Ans. \$73.419.

- 4. How much is 871 per cent. of \$1624.50? Ans. \$1421.4375.
- 5. What is 121 per cent. on \$994.70?

 Ans.\$124.3375.
- 6. What is 81 per cent. on \$777.50?

 7. What is 21 per cent. of \$7135.80?

 Ans. \$160.5555.
- 8. A merchant imports 2740 boxes of oranges, and finds, upon receiving them, that 20 per cent. of the whole quantity are decayed. To how many boxes was his loss equivalent?

Ans. 548 boxes.

9. A gentleman purchases a farm for \$7490, agreeing to pay 10 per cent. down, 17 per cent. at the end of the first year, 27 per cent. at the end of the second year, and 46 per cent. at the end of the third year. What is the amount of each payment?

Ans. \$749 down.

\$1273.30 at the end of 1st year. \$2022.30 at the end of 2nd year. \$3445.40 at the end of 3rd year.

What is the difference between 4½ per cent. of \$740 and 2½ per cent. of \$1680?
 Ans. \$8.70.

11. If I purchase 729 gallons of brandy and lose 11 per cent. by leakage, &c., how much have I remaining?

Ans. 648 for gallons.

 Add together 25 per cent. of \$763.22, 16 per cent. of \$847.16, and 64 per cent. of \$1234.17.
 Ans. \$403.486225.

13. A person dying leaves an estate worth \$17429.40 to be divided among his three sons. The eldest is to receive 43 per cent. of the whole, the second 37 per cent. of the whole, and the youngest son the remainder; what is the share of each?

Ans. The eldest receives \$7494.64\, the second \$6448.87\, and the youngest \$3485.88.

14. A merchant purchases vinegar to the amount of 68978 gallons, and finds, upon receiving it, that 36 per cent. had leaked away. What was his loss? Ans. 2483208 gallons.
15. A brick kiln contains 29800 bricks, and it is found after

15. A brick kiln contains 29800 bricks, and it is found after burning that 17 per cent. of the entire quantity are worthless; how many good bricks were there in the kiln?

Ans. 24734.

COMMISSION.

4. Commission is the percentage charged by agents, or commission merchants, for their services in purchasing or selling goods, collecting bills, &c.

The person who buys or sells goods for another is called an Agent, a Commission Merchant, a Factor, or a Correspondent.

5. To find the commission on any sum at a given rate per cent. is simply to find the percentage on that sum, and the rule employed is the same as that in Art. 3, viz:

'Multiply the given amount by the rate per unit expressed decimally.

EXAMPLE 1.—What is the commission on \$790.80 at 3 per cent.?

Ans. \$790.80 \times .03 \Longrightarrow \$23.724.

EXAMPLE 2.—A commission merchant sells goods to the amount of \$7982.75; what is his commission at 2\frac{3}{2} per cent.?

Ans. \$7982.75 \times .0275 = \$219.525625.

EXERCISE 95.

- 1. What is the commission on \$1000 at 41 per cent.? Ans. \$45.
- 2. What is the commission on \$1678.30 at 21 per cent.?

 Ans. \$37.76175.
- 3. What is the commission on \$7531.19 at 34 per cent.?

 Ans. \$282.419625.
- 4. Find the commission on \$508'60 at 11 per cent.?
- Ans. \$6.3575.

 5. Find the commission on \$7863.50 at 13 per cent.?
 - Ans. \$137.61125.
- An agent collects debts to the amount of \$978.30; what is his commission at 2½ per cent.? Ans. \$21.9575.
- A correspondent purchases teas for me to the amount of \$7193·16; what have I to pay him for commission at 3½ per cent.?
 Ans. \$224.78625.
- A commission merchant sells goods to the amount of \$6734 10; what is his commission at 17 per cent.? Ans. \$1144 797.
- 9. An agent sells 718 barrels of flour at \$7:13 a barrel; what is his commission at 4½ per cent.?

 Ans. \$217:57195.
- 10. A commission merchant disposes of 8243 bushels of wheat at \$1.85 per bushel; what is the amount of his commission at 65 per cent.? Ans. \$857.7871875.

BROKERAGE.

6. Brokerage is the percentage charged by money dealers, called Brokers, for negotiating notes, mortgages, bills of exchange, &c., or for buying or selling stocks, &c.

7. Brokerage is merely another name for commission,

and is computed by the same rule.

EXERCISE 96.

- What is the brokerage on \$7893.87 at 2 per cent.?
 Ans. \$157.8774.
- 2. What is the brokerage on \$8000 at 7 per cent.? Ans. \$70.
- What is the brokerage on \$8643.22 at 11 per cent.?
 Ans. \$108.04025.
- What is the brokerage on \$78963.80 at 7 per cent.?
 Ans. \$690.93325.
- What is the brokerage on \$1987.27 at 33 per cent?
 Ans. \$74.522625.

8. Commission and Brokerage should both be computed on the amount of money collected or invested.

For example: If I receive \$10000 to invest and charge 5 per cent., my brokerage would be \$500 if I invested the whole \$10000; but if, as is usually the case, I am requested to deduct, from the amount sent, my brokerage or commission, and invest the remainder, it would obviously be unjust to charge commission on the whole amount,—i. e., on the sum invested and also on the sum I retain for commission. Hence, in all cases, the sum actually expended is the proper basis upon which to compute the commission, brokerage, &c.

9. To compute commission or brokerage when it is to be deducted in advance from a given amount, and the balance invested:—

BULE.

- 1. Divide the given amount by \$1, plus the commission on \$1, and the result will be the sum to be invested.
- 2. Subtract the part to be invested from the given amount, and the remainder will be the commission or brokerage.

EXAMPLE.—A correspondent receives \$16782, with instructions to deduct his commission at 3½ per cent., and invest the balance in sugar at 9½ cents per pound. How much sugar does he ship to his employer, and what is his commission?

OPERATION.

 $\$16782 \div 1.035 = \$16214.49275 = \text{sum to be invested.}$ \$16782 - \$16214.49275 = \$567.50725 = commission. $\$16214.49275 \div 94 \text{ cents} = 170678.871 \text{ lbs. } Ans.$

EXPLANATION.—The commission on \$1, at the rate of 3½ per cent., is \$0.035. Hence, for every time he receives \$1.035, he keeps \$0.035 for commission and invests \$1. It is plain, then, that if we divide the given amount, \$16782, by \$1.035, or in other words, find how often the latter sum is contained in the former, we shall find how often he invests \$1, i.e., how many dollars he invests.

The work may be proved by finding the commission on the sum invested (Art. 5), and comparing it with the commission as found by deducting the sum invested from the whole sum sent. If these are equal, the work is correct.

EXERCISE 97.

- 1. An agent receives \$4000, with instructions to purchase Great
 Western Railway stock. After deducting his brokerage at
 14 per cent., how much money had he to invest and what
 was his brokerage?

 Ans. Invested \$3950-61728.

 Commission \$49:38271.
- A merchant sends his agent \$7500, with instructions to deduct his commission at 4½ per cent., and purchase laces with the remainder. What is the commission, and what sum was expended in laces?
 Ans. Commission \$322.96651.
 Invested \$71.77.03349.
- 3. A commission merchant receives \$8470, with instructions to purchase the best brand of Canadian superfine flour at \$6.40 per barrel. He is to receive out of this sum 5 per cent. on the amount he invests. How many barrels of flour does he purchase?

 Ans. 1260₇5 barrels.

4. A broker receives \$11000, with instructions to invest it in Bank stock—deducting his brokerage at ½ per cent. What sum had he to invest? Ans. \$10904.584882.

5. If I remit to my agent \$13000, instructing him to purchase broad cloth at \$3.68 per yard, and he keeps 41 per cent. on the sum invested, for commission; how much cloth does he send me, and what is his commission?

Ans. 3427.0499 yds. of cloth. \$559.8086 commission.

STOCK.

10. Stock is a term used to denote the *Capital* of moneyed institutions, as Banks, Railroad Companies, Gas Companies, Insurance Companies, Manufactories, &c.

11. Stock is usually divided into portions of \$100 or £100 each, called shares, and the different individuals owning these are called shareholders or stockholders.

- 12. The Association of Shareholders, is called a Company or Corporation; and the Act of Parliament specifying their corporate powers, rights, and privileges is called a charter.
- 13. The nominal or par value of a share is its original cost of valuation.

14. The market or real value of a share is the sum for which it can be sold.

15. The rise and fall in the value of Stock is reckoned

at a certain per cent. on its nominal or par value.

16. When stocks sell for their original cost or valuation, they are said to be at par; when they sell for more than their original valuation, they are said to be at a premium or advance, or above par; when they do not bring their original cost or valuation, they are said to be at a discount, or below par.

NOTE.—Par is a Latin word, and means equal or a state of equality. Stock is at par when a hundred-dollar share sells for \$100; it is above par when it brings more than \$100, and below par when it will not bring as much as \$100.

, 17. Persons who deal in stocks are called stock-brokers or stock-jobbers.

18. To find how much stock either above or below par a given sum will purchase:—

RULE.

Divide the given amount by the worth of \$1 stock, and the result will be the stock required.

EXAMPLE 1.—How much stock at 10 per cent below par can be purchased for \$25000? Ans. \$25000 ÷ 0.90 = \$27777.77.

EXPLANATION.—When stock is 10 per cent. below par, each share of \$100 sells for only \$90, i. c. \$90 money will purchase \$100 stock, therefore \$0.90 money will purchase \$1 stock and the given sum will purchase \$1 stock as often as it, (the given sum) contains \$0.90.

EXAMPLE 2.—How much stock at 15 per cent. premium may be purchased for \$7000?

Ans. \$7000 ÷ 1.15 = \$6086.9565.

EXPLANATION.—When stock is 15 per cent. above par, it requires \$115 money to purchase \$100 stock, or \$115 money to purchase \$1 stock. Hence if we divide the whole sum to be invested by the value of \$1 stock, it is evident we must get the amount of stock produced.

EXAMPLE 3.—I own \$16400 stock of the Bank of Montreal, and sell out at 13 per cent premium. What do I receive?

Ans. $$16400 \times 1.13 = 18532 .

EXPLANATION.—Each \$100 stock brings me \$113 money, or \$1 stock brings \$1'13 money, therefore \$16400 stock must bring \$16400×1'13 money.

EXERCISE 98.

 A person has \$9000 which he wishes to invest in Grand Trunk Railway shares, then selling at 17 per cent. discount, what amount of stock can he purchase?
 Ans. \$10843.373.

If I invest \$8500 in Upper Canada Bank stock, which is selling 11 per cent. above par, what amount of stock do I receive?
 —Ans. \$7657-6576.

- 3. If I remit to my agent \$17500, with instructions to deduct his brokerage at 14 per cent., and invest the remainder in Great Western Railroad stock, then selling at 7 per cent. premium, what amount of stock do I receive.

 Ans. \$16153.22.
- 4. If I receive \$20000, with instructions to deduct my commission at 1½ per cent., and invest the balance in stock, which is then selling at 3 per cent. discount, what amount of stock do I remit to my employer?

 Ans. \$20263.937.
- 5. Mr. A. owns 200 shares in the Canada Life Assurance Company. The par value is \$100 a share, the stock at a premium of 5½ per cent.; if I purchase it through a broker who charges me ½ per cent. for the transaction; how much do my 200 shares cost me.

 Ans. \$21284-625.

INSURANCE.

- 19. Insurance is a written agreement by which an individual or an incorporated company becomes bound, in consideration of a certain sum paid in advance, to exempt the owners of certain kinds of property, as houses, household furniture, merchandise, ships, &c., from loss by fire, shipwreck, or other calamity.
- 20. The Written Instrument, or contract between the parties, is called a Policy of Insurance.
- 21. The sum paid for the insurance is called the *Premium*, and is usually a certain per cent. on the sum for which the property is insured.
- 22. Houses, merchandize, furniture, &c., are usually insured against risk of fire for the year, or other specified time.

Note.—The rate of insurance on dwelling houses, stores, goods, household furniture, &c., varies from 1 to 2 per cent. per annum, on the sum insured according to the character and position of the tenement; vessels are insured for the voyage or the year.

23. To compute the premium for insurance for 1 year, or a specified time, we use the same rule as for Commission or Brokerage.

EXAMPLE.—If I insure my house and furniture for \$7389, at the rate of 14 per cent. per annum, what premium must I pay yearly?

Ans. \$7389 \times 0125 = \$92.3625.

EXPLANATION.—11 per cent., i. e. \$1'25 per \$100, is equal to \$0'0125 per dollar. The premium, therefore will be as many times \$0'0125 as the sum insured contains \$1; i. e. the premium will be 0'0125 × 7380.

EXERCISE 99.

- 1. What is the premium for insurance on \$7500, at 13 per cent.?

 Ans. \$131.25.
- What is the premium for insurance on \$8375, at \$ per. cent.?
 Ans. \$62.8125.
- 3. What is the premium for insurance on \$6000, at $1\frac{7}{4}$ per cent.? Ans. \$112.50.
- 4. What is the premium for insurance on \$5000 at \$1.17 per cent. (i. e. per \$100)?

 Ans. \$58.50.
- 5. What is the premium for insurance on \$6400, at \$0.90 per cent.?
 Ans. \$57.60.
- What is the premium for insurance on \$4500, at \$0.35 per cent.?

 Ans. \$15.75.
- What premium must I pay for insuring a cargo of flour worth \$36000, from Quebec to Liverpool, at \$3 per cent.?
 Ans. \$1080.
- 8. A firm, owning four steamers running on lake Ontario, effect an insurance with a company in Toronto to the amount of \$27000 on each, paying \$4.82 per cent. (i. e. $4\frac{2}{100}$ per cent.) What is the total premium on the four steamers?

 Ans. \$5205.60.
- 9. What is the annual premium on an insurance for \$39000, at 2\frac{1}{2} per cent.?
- A farmer insures his barns and their contents to the amount of \$17800. What premium does he pay at 1 per cent.
- Ans. \$89.

 11. A vessel running between Hamilton and Oswego is insured for \$12350, at the rate of 13 per cent. per month. To what does the premium of insurance amount for 7 months, beginning with the 10th of April and ending with the 10th of November?

 Ans. \$1235.
- 24. To find what sum must be insured on property so that, if destroyed, its value and the premium may both be recovered:

RULE.

Divide the value of the property by \$1, minus the premium on \$1 at the given rate per cent.

EXAMPLE 1.—A ship-owner wishes to insure a vessel valued at \$17450, so that if it be wrecked he may recover both the value of the vessel and the premium. In order to do so, for what sum must he insure, at \$4.60 per cent.?

Ans. \$17450 ÷ 954 = \$18291.40461.

EXPLANATION.—If I insure goods to the value of \$100, at 46 per cent, and they are destroyed, I receive only \$95'40 towards my loss, since I paid \$4'60 for insurance; that is, for every \$1 of my loss I receive \$0'954. Since, then, the recovery of \$0'354 requires \$1 to be insured, the recovery of \$17450 will require as many dollars to be insured as \$0'954 is contained times in \$17450.

PROOF.—\$19291'40461 \times '046=\$341'40461 \Longrightarrow the premium, and \$18291'40461 \Longrightarrow \$17450 \Longrightarrow value of the vessel.

EXAMPLE 3.—What sum must be insured on a house valued at \$6000, at 3 per cent. so that in case of fire the value of both premium and property may be secured?

Ans. $$6000 \div .97 = 6185.567 .

EXPLANATION.—For every dollar I lose (taking premium into account) I receive 97 cents; that is, in order to receive 97 cents, I must insure for \$1, and in order to receive \$6000, without any loss, I must insure for \$0000 ÷ 97 = \$6187.567.

EXERCISE 100.

- For what sum must I insure a cargo valued at \$17000, so that in case the whole is lost I may recover both the value of the property and the premium of 3½ per cent.? Ans. \$17616.58.
- For what sum must I insure on \$22750 in order to cover both the premium of 6 per cent. and the value of the property insured?

 Ans. \$24202-127.
- What sum must be insured at 2½ per cent. on property worth \$15000 so that the owner may be secured against all loss?
 Ans. \$15345.2685.
- 4. A steamer worth \$33000 is insured at 5½ per cent. for such a sum, that in case of its becoming a total wreck, the owners recover both the worth of the vessel, and the premium of insurance. For what sum is it insured?

Ans. \$35013.2625.

CUSTOM HOUSE BUSINESS.

25. All goods coming into Canada from Foreign countries are required by law to be landed at certain places or ports called *Ports of Entry*.

26. At every Port of Entry in Canada, the Government has an establishment called a Custom House, with one or more officers attached to it, called Custom-House Officers.

27. A certain charge called a *Duty*, fixed by Act of Parliament, is made upon nearly all goods entering Canada from Foreign countries.

28. It is the business of the Custom-House Officers to inspect the cargoes of all vessels entering at any of these

ports, to examine the invoice of goods, collect the duties,

&c., &c.

- 29. Besides the duties on merchandize all vessels engaged in commerce are required to pay certain charges for the privilege of entering the port, &c.; these charges are called harbor dues.
- 30. The duties levied by law on goods imported into Canada are of two kinds:

1st. Specific duties. 2nd. Ad Valorem duties.

31. A specific duty is a certain sum levied on the ton cwt., lb., gallon, square yard, &c., of a particular kind of merchandise, as so much per square yard on woolle is, flannels or cloths, so much per lb. on tea, so much per gallon on brandy, wine, &c.

32. An ad valorem duty is a certain percentage on the actual cost of the goods in the country in which they

were purchased.

Thus an ad valorem duty of 10 per cent, on satin purchased in France is a charge for duty of 10 per cent. of the sum the invoice of satin cost in

NOTE 1 .- The term ad valorem is from the Latin; and means according

to the value, i.e., upon the value.

NOTE 2.—An invoice is a written statement of the goods, showing the quantity of each sort and its value or price.

33. In the United States Custom Houses certain legal allowances are made for draft, tare, leakage, &c., before specific duties are imposed. In Canada, however, as before remarked, (Art. 4, Sect. VI.,) these are not known, the tare being found by actually weighing one or more of the boxes, &c., containing the goods, and the leakage by guaging the cask.

Note.—At present (1859) the various kinds of spirits are the only articles upon which specific duties are charged by the Canadian Tariff.

34. To calculate the specific duty on an invoice of goods :--

RULE.

Deduct the tare, leakage, &c., and multiply the remainder by the given duty per gallon, lb., yard, &c.

EXAMPLE 1 .- At 41 cents per lb. what is the specific duty on 7 bags of coffee weighing 73 lbs., each, allowing 4 lbs. per 100 or tare?

OPERATION.

Interest on \$1 for 6 years 7 months = \$0°395 Interest on \$1 for 26 days = 4

Therefore interest on \$1 for 6 yrs. 7 months $26 \text{ days} = $0^399\frac{1}{3}$ Then* $$0^399\frac{1}{3} \times 763^20 = 304^7712 . Ans.

EXERCISE 107.

- Find the interest on \$917.30 for 7 months 17 days at 6 per cent.
 Ans. \$34.704516.
- Find the interest on \$842.50 for 3 months 13 days at 6 per cent. Ans. \$14.462916.
- Required the interest on \$573.83 at 6 per cent. for 2 years 11 months 10 days.
 Ans. \$101.3766.
- Required the interest on \$642.30 at 6 per cent. for 6 years 9 months 19 days.
 Ans. \$262.16545.
- Required the interest on \$1427.87\(\frac{1}{2}\) at 6 per cent. for 5 years 5 months 7 days.
- Find the interest on \$709.63 for 4 years 7 months 16 days at 6 per cent.
 Ans. \$197.040596.
- 7. Find the amount of \$2463.20 at 6 per cent. for 7 years 7 months 22 days.
- 8. What is the interest on \$999.99 at 6 per cent. for 9 years 9 months 9 days?

 Ans. \$586.494135.
- months 9 days?

 9. What is the interest on \$68.70 for 3 years 4 months 27 days.

 at 6 per cent.?

 Ans. \$14.04915.
- at 6 per cent.?

 Ans. \$14.04915.

 10. Find the interest on \$742.63 at 6 per cent. for 3 years 28

 Ans. \$137.139.
- 11. To what sum will \$200 amount in 7 years 4 months 11 days at 6 per cent.?

 Ans. \$288.366.
- 12. To what sum will \$743.63 amount in 9 years 3 months 9 days at 6 per cent.?

 Ans. \$1157.460095.
- 27. To find the interest on any sum at any other rate per cent. for any given time:—

RULE.

Find the interest on the given principal for the given time at 6 per cent, by Art. 26.

Then add to or subtract from this interest such a fractional part of itself as the given rate exceeds or falls short of 6 per cent. per annum.

The amount is obtained by adding the interest and the principal together.

[•] In order to obtain the correct answer, this fraction when it occurs must be retained in the form of a vulgar fraction; and in that case it is better to make the interest of \$1 for the given time the multiplier.

EXAMPLE.—What is the interest on \$450 for 3 years 6 months 11 days at 8 per cent.?

OPERATION.

Interest on \$1 at 6 per cent, for given time=\$0.2115.
Interest on \$450 at 6 per cent, for given time=\$0.2115 × 450=\$95.325.

Hence interest on \$450 at 8 per cent. for given time=\$95'325+one third of \$95'325=\$127'10, Ans.

NOTE.—Since S = 6 + 2 = 6 + 3 of 6 we find the interest at 6 per cent., and increase it by one third of itself for the interest at 8 per cent.

So for interest at 9 percent, we should find the interest at 6 per cent, and increase it, by one-half of itself; for 7 per cent, increase the interest at 6 per cent by one-sizth; at 14 per cent, double the interest at 6 per cent, and increase it by § of the interest at 6 per cent, and increase it by § of the interest at 6 per cent.; at 5 per cent, find the interest at 6 per cent, and deduct one-sizth; at 4§ per cent.; find the interest at 6 per cent, and deduct one-fourth, &c., &c.

EXERCISE 108.

- Required the interest on \$1234.56 for 8 years 9 months 10 days at 7 per cent.

 Ans. \$758.5685.
- Required the interest on \$9876.54 for 2 years 1 month 11 days at 3 per cent.
- 3. Required the interest on \$715.30 for 3 years 7 months 10 days at 8 per cent.
- 4. To what sum will \$555.55 amount in 2 years 4 months 8 days at 12 per cent.?

 Ans. \$712.58546;
- 5. To what sum will \$7766-55 amount in 100 days at 5 per cent.?

 Ans. \$7874.41875.
- 6. To what sum will \$500 amount in 3 years 8 months 8 days at 16 per cent.?

 Ans. \$1195.111.
- at 16 per cent.?

 7. What is the interest on \$576 for 3 years 5 months 7 days at 5 per cent.?

 Ans. \$98.96.
- at 5 per cent.?

 8. What is the interest on \$2478.91 for 2 years 6 months 11 days at 4½ per cent.?

 Ans. \$282.285.
- 9. What is the interest on \$780 from May 9, to December 11, at 6 per cent.?

 Ans. \$28.08.
- 10. What is the interest on a note of \$1830.63 from August 16, 1851, to June 19, 1852, at 7 per cent, ? Ans. \$109.63439.
- 11. What is the amount of a note of \$6200 from Sept. 3, 1858, to January 9, 1859, at 6 per cent. ? Ans. \$6332.266.

PARTIAL PAYMENTS.

28. To compute the interest, on notes or bonds, when partial payments have been made:—

RULE.

If the interest be paid by days :

Multiply the sum by the number of days which have elapsed before any payment was made. Subtract the first payment, and multiply

the remainder by the number of days which passed between the first and second payments. Subtract the second payment, and multiply this remainder by the number of days which passed between the second and third payments. Subtract the third payment, &c.

Add all the products together, and find the interest of their sum

for one day.

If the interest is to be paid by the week or month, substitute weeks or months for days, in the above rule.

EXAMPLE.—How much principal and interest have I to pay on the following note on the 10th November, 1859?

TOBONTO, 18th October, 1858.

For value received, I promise to pay to Timothy Thomas, or order, the sum of six hundred and twenty dollars, on demand, with interest at 6 per cent.

THOMAS WILLIAMS.

The following endorsements were made on this note:

1858	-November 25th	, tl	here	was en	dorsed	\$ 47.50
	December 28th		"	46	66	108-93
1859	-February 11th,	•	"	44	"	216.18
46	June 6th,		44	44	66	60.10
44	September 2nd	, .	"	66	**	183.25

OPERATION.

From 18th October to 25th November there are 38 days.

" 25th Nov. to 28th December " 33 "
" 28th Dec. to 11th February " 45 "
" 11th February to 6th June " 115 "

"6th June to 2nd September "88 "2nd September to 10th Nov. "69 "

Whole sum \$620.00 for 38 days=\$23580.00 for 1 day.

First endorsement 47.50

Balance \$572'50 for 33 days=\$18892'50 for 1 day.

Balance \$463.57 for 45 days=\$20860.65 for 1 day.
Third endorsement 216.18

Balance \$247.39 for 115 days=\$28449.85 for 1 day. Fourth endorsement 60.10

Balance \$187.29 for 88 days=\$16481.52 for 1 day. Fifth endorsement 183.25

Balance \$4.04 for 69 days 278.76 for 1 day.

Whole interest = that of \$108523.28 for 1 day.

Interest on \$108523.29 at 6 per cent. for 1 year=\$6511.3968

Hence interest for 1 day=\$6511.3968+300=\$17.6894

Then interest due = \$17.8394

Balauce on note = 4:04

Principal and interest due =\$21.8794

K

EXERCISE 109.

1. What principal and interest was due on the following note on the 7th October, 1860?

GUELPH, June 2nd, 1859.

For value received, I promise to pay, on demand, to James George, or order, the sum of twelve hundred and seventeen dollars and thirty cents, with interest from date at 6 per cent.

On this note there were endorsed the following payments:

1859.—July 17th, received \$207.80

" Oct. 6th, " 209.60

" Dec. 11th, " 320.90

1860.—March 29th, " 421.83

Ans. \$98.6816.

What principal and interest was due on the following note on the 1st May, 1863?

PORT HOPE, June 17th, 1860.

For value received, I promise to pay, on demand, to Messrs. Henly & Jobson, or order, the sum of seven thousand, three hundred and forty-eight dollars and twenty-five onts, with interest from date at 8 per cent.

HENRY GOODPAY.

On this note there were endorsed the following payments:

1860.—September 5th, received \$2463.80
" December 7th, " 392.20
. 1861.—June 11th, " 982.20
. 1862.—February 7th, " 2842.90
" December 19th, " 317.23

Ans. \$1003.1333.

COMPOUND INTEREST.

- 29. In the present article we shall merely take some of the simpler problems in Compound Interest, leaving the full discussion of the rule until after the pupil is familiar with the use of Logarithms. (See Sect. XI.)
- 30. We have seen (Art. 10) that when money is lent at compound interest, the interest is added to the principal at the close of each period, and, with it, constitutes a new principal for the next term.

Hence to find the compound interest of any sum for any

given time at a given rate per cent :-

RITE.

Find the interest on the given principal for one period, i. e., ONE YEAR, HALF YEAR, or QUARTER, as the case may be, and add it to the principal.

Then find the interest on this amount for the NEXT PERIOD and

add it to the principal used for that period, as before.

Proceed in this manner with each successive year or period of

the proposed time.

Then the last result will be the amount of the given principal, at the given rate, for the given time. Subtract the given principal from this, and the remainder will be the Compound Interest required.

EXAMPLE.—What is the Compound Interest on \$1000 for 4 years at 5 per cent. per annum?

OPERATION.

\$1000.00 Principal. 50.00 Interest for 1st year.

\$1050.00 Amount for 1 year—principal for 2nd year.
52.50 Interest for 2nd year.

\$1102'50 Amount for 2 years—principal for 3rd year. 55'125 Interest for 3rd year.

\$1157.625 Amount for 3 years—principal for 4th year. 57.88125 Interest for 4th year.

\$1215.50625 Amount for 4 years. 1000.00 given Principal.

Ans. \$215.50625=Compound Interest required.

EXERCISE 110.

 What is the Compound Interest of \$1800 for 5 years at 6 per cent. per annum?
 Ans. \$608.806.

 What is the Compound Interest of \$700 for 3½ years at 7 per cent. half-yearly?
 Ans. \$424.040.

Note.—Since the payments are made half-yearly, and bear interest at the rate of 7 per cent. per half year, we simply find the amount of the given principal at 7 per cent. for 7 payments.

3. What are the amount and Compound Interest of \$673.40 for 2 years at 3 per cent. quarterly?

Ans. \$853.0429 = Amount. \$179.6429 = Interest.

4. What are the amount and Compound Interest of \$860 for 3 years at 4 per cent. half-yearly?
Ans. \$1088.1743 = Amount. \$228.1743 = Interest.

31. Compound Interest is most expeditiously calculated by the following—

TABLE

SHEWING THE AMOUNTS OF \$1 OR £1 AT COMPOUND INTEREST, FOR ANY NUMBER OF PAYMENTS FROM 1 TO 50.

	3	4	5	6	1	3	1 4	1 5	1 6
No of Pay-	pe r	per	per	per	No. of Pay-	per	per	per	per
menta	cent.	cent.	cent.	cent.	ments	cent.	cent.	cent.	cent.
									cciro.
1	1.03900	L'04000	1.02000	1,00000		2 15659	2 77247	3.55567	4.54938
2	1.09050	t 08160.	1 10250	1 12360		2 22129	2 '88537	3.73340	
3	1.69273	1 12486	1 15762	1 19102		2 28793	2 99870	3:92013	
4	1.12551	1 16986	1 21551	1 26248		2 '35657	3 11865	4.11614	5 41839
5	1.15927	1 '21665	1 27628	1 '33823	30	2 42726	3 24340	4:32194	
	1 -10405	1.00003							
6	1 19405	1 26532	1 34010	1 41852		2.20008			6.08810
7	1 22987	1 31393	1 40710	1 50363	0.5	2.22208			6 45339
8	1 '26677 1 '30477	1 30307	1 4//40	1 59385		2.65233			6 '84059
9	i 343 J2	1 45001	1 00100	1 68948		2.73190			7 '25102
10	1 34332	1 45024	1 02339	r 35089	35	2.81386	3 *94609	5.21601	7 '68609
11	l '38423	1 '530 15	1 .71024	1 .00000					
	1 42576	1 '60102	1 70590	1 99390		2.89858			
13	1.46853	1 66507	1 .80565	3 11220		2.98523			
14	1 51259	1 73168	1 .02003	4 19599		3.07475		6.38548	
15	1 '55797	1.80091	2 '07893	9 '30056	39	3.16703	1 61637		
10	. 00/01		0,000	2 00000	40	3 26201	4 80102	1.03999	10 '28572
16	1 '60471	1 '87298	2 18287	2.54035	41	3-35990	4 *00006.3		
17	1 65285	1 '94790	2 29202	2 69277		3 46070			10 '90286
18	1 '70243	2 '02582	2 40662	2 85434		3 56152			11 55703
19	1 75351	2 10685	2 52695	3 '02560		3.67145	2 400 (5		12.25045
20	1 '80611	2 19112	2 65330	3 20713	45	3 78160	E .0 (110)		12 '93548
	1		l.		30	0 /3100	9 94110	9.59501	13 76461
21	1.86039	2 27877	2 78596	3 '39956	46	3 '89504	8 '07.189	0 : 49 100	14 '59049
22	1 '91610 :	2 36992	2 '92526	3 60354		4.01100	8 '91799		15 46592
23	1 '97359	3 46472	3 07152	3 '81975	48	4.13225	6 57053	10:40127	16 90092
24	2 '03279	2 '56330];	3 '22510	4 '04893	49	4 . 25622	6 183335	10.02140	17 37700
25	2 09378	2 66554	3 38635	1 29187	50	4:38391	7 10668	11 46740	18 42515
								Tr 301.30	10 32315

32. To compute Compound Interest by the above Table:—

RULE.

Find by the table the amount of \$1 for the given time and at the given rate.

Multiply the sum thus found by the given principal, and the result will be the required amount.

Subtract the principal from this amount, and the remainder will be the Compound Interest.

EXAMPLE.—What are the amount and Compound Interest of \$3400 at 5 per cent. for 15 years?

OPERATION.

By the table the amount of \$1 at 5 per cent, for 15 years \$2.07893. Then \$2.07893×3400 = \$7068.362 = Amount, 3400 = Principal.

EXAMPLE.—What is the amount and compound interest of £47 10s. for 6 years at 3 per cent. half yearly?

OPERATION.

£47 10s. =£47.5.

We find by the table that

£1'42576 is the amount of £1 for the given time and rate.
47'5 is the multiplier.

 $\begin{array}{c} \textbf{£ s. d.} \\ \textbf{£67.7236} = \textbf{£ s. d.} \\ \textbf{47.10} & \textbf{51 is the required amount.} \\ \textbf{47.10} & \textbf{0 is the given principal.} \end{array}$

And £20 4 51 is the required interest.

EXERCISE 111.

- What are the amount and compound interest on \$875 for 11 years at 6 per cent?
 Ans. Amount = \$1661.0125.
- Interest = \$786.0125.

 2. What are the amount and compound interest on \$643.98 for 13 years at 4 per cent, half yearly?

Ans. Amount = \$1785.41523. Interest = \$1141.43253.

- What are the amount and compound interest of 1 cent at 6 per cent. per annum for 45 years? Ans. Amount = \$\frac{1}{3}7646.
 Interest = \$\frac{1}{2}7646.
- 4. What are the amount and compound interest of \$78.20 for 7 years at 3 per cent. quarterly?

 Ans. Amount = \$178.916.
 Interest = \$100.716.
- 5. What are the amount and compound interest of \$777.77 for 9 years, at 5 per cent. half-yearly?

Ans. Amount = \$1871.7968. Interest = \$1094.0268.

6. What are the amount and compound interest of £44 5s. 9d. for 11 years at 6 per cent. per annum?

Ans. Amount = £84 1s. 5d. Interest = £39 15s. 8d.

7. What are the amount and compound interest of £32 4s. 9\fmadd. for 3 years at 4 per cent. half-yearly?

Ans. Amount =£40 15s. 10 d. nearly. Interest =£8 11s. 1d.

33. Given the amount, time and rate—to find the principal; that is, to find the present worth of any sum to be due hereafter—a certain rate of interest being allowed for the money now paid—

RULE.

Find by the Table the amount of \$1 at the given rate and for the given time, and divide it into the given amount. The quotient will be the principal. EXAMPLE—What principal will amount to \$10000 in 12 years at 6 per cent. compound interest?

OPERATION.

Amount of \$1 for 12 years at six per cent. = \$2.0122. $$10000 \div 2.0122 = 4969.684 . Ans.

EXERCISE 112.

 What principal will amount to \$7439.87 in 7 years at 4 per cent. compound interest?
 Ans. \$5653.697.

 What principal will amount to \$9193.90 in 20 years at 5 per cent. compound interest?
 Ans. \$3465.081.

What ready money ought to be paid for a debt of £595 10s.
 2½d. to be due 3 years hence, allowing 6 per cent. per annum compound interest?

Ans. £500.

4. What ready money ought to be paid for a debt of \$7111.11, to be due 7 years hence, allowing 6 per cent. compound interest?
Ans. \$4729.295.

5. What principal, put to interest for 6 years, would amount to £268 0s. 4td. at 5 per cent. per annum?

Ans. £200.

DISCOUNT.

- 34. Discount is an allowance made for payment of a debt before it is due.
- 35. The present worth of a debt payable at some future time, without interest, is that sum of money which, being put out at legal interest, will amount to the debt by the time it becomes due.

Thus, if I owe a man \$100 and give him a note for that amount, payable one year hence without interest, the *present* value of my note is less than \$100, since \$100 being put out at interest for 1 year at 6 per cent. will amount to \$106.

36. From Art. 13 it is evident that to find the present worth of a note, payable at some future time, without interest, is simply to find what principal, put to interest at the rate specified, will amount to the sum named on the face of the note in the given time; i.e. by the time the note becomes due.

Hence to find the present worth of any sum to be paid at some future time without interest, we have (Art. 18) the following:—

Rule.
$$P = \frac{A}{1+rt}$$

INTERPRETATION.—The present worth is found by dividing the amount of the note, debt, &c., by the amount of \$1, at the specified rate per cent. for the given time.

Note .- The discount is found by deducting the present value

from the note, debt, &c.

Example 1 .- What is the present value of a note for \$860 payable 3 years hence, allowing discount at the rate of 6 per cent. per annum?

OPERATION.

Here A = 8860, r = 06, and t = 3. Whence 1 + rt = 1.18. Then $P = \frac{A}{100} = \frac{860}{100} = 3728^{\circ}81^{\circ}_{\circ}\frac{1}{6}$. Ans.

1+rt 1.18 PROOF.—Interest on \$728.8131 for 3 years at 6 per cent.. = \$131.1883. Added principal. = 728.8121

Amount = \$860.00

EXAMPLE 2.-What is the discount on a note for \$728.63 due 9 months hence, allowing discount at 7 per cent. per annum?

OPERATION.

Here A = \$728.63, r = .07, and t = .75 year. Whence 1 + rt = 1.0525.

Then $P = \frac{A}{1+rt} = \frac{728.63}{1.0525} = 692.255 present worth.

Then amount on face of note...\$728.63 Present value..... 602.285

Discount 8 36'344 Ans.

EXERCISE 113.

1. What is the present worth of a note for \$962, payable in one Ans. \$925. year, at 4 per cent. discount?

2. What is the present worth of \$2202, payable in 5 years and 9 months, at 6 per cent. per annum discount?

Ans. \$1637.174.

- 3. What sum will discharge a debt of \$1003.50, to be due in 8 months hence, allowing 6 per cent. per annum discount? Ans. \$964.9038.
- 4. What ready money will now pay a debt of \$716 due 7 months hence, allowing discount at 8 per cent.? Ans. \$684.0764.

5. What ready money will now pay a debt of \$1342.50, due Ans. \$1313.266. 125 days hence, at 61 per cent. ?

- 6. If a legacy of \$2400 is left to me on the 3rd of May, to be paid on the Christmas day following, what must I receive as present payment, allowing 5 per cent. per annum discount? Ans. \$2324.84.
- 7. Find the discount on a bill of \$2202 at 5 per cent., payable Ans. \$79.59036. 9 months hence.
- 8. What is the present worth of a note for \$4360, payable one Ans. \$4018.43317. year and 5 months hence, at 6 per cent.?
- 9. What is the present worth of a note for \$1647, due 11 months Ans. \$1561.13744. hence, at 6 per cent.?

10. Required the present worth of a note for \$2000 due 3 years 7 months hence, at 6 per cent. Ans. \$1646.09053.

11. What is the discount on a note for \$2070.90, payable 1 year

7 months hence, at 5 per cent.?

12. What is the present worth of a note of \$970.63, payable in Ans. \$151.919. 11 months at 8 per cent.? Ans. \$904.313.

Note.-When the payments are to be made at different times, flid the present value of the sums separately; their sum will be the present value of the note, and, as before, this subtracted from the whole amount will

13. What is the discount on \$3024, the one half payable in 5 and the remainder in 12 months, 7 per cent. per annum being

 A merchant owes \$440, payable in 20 months, and \$896, payable in 24 months; the first he pays in 5 months, and the second in one month after that. What did be pay, allowing 8 per cent. per annum?

BANK DISCOUNT.

- 37. Bank Discount is a charge made by a bank for the payment of money on a note before the note is due, and differs materially from discount as commonly calculated.
- 38. Banks consider the discount to be the same as the interest on the whole amount of the note, from the time it is discounted until the time it becomes due. Bank Discount is therefore greater than the true discount by the interest on the discount.
- 39. The three days of grace, which by mercantile usage, are allowed to elapse after a note falls due, before it is payable, are always included by banks in the time for which they calculate the discount.
 - 40. Two kinds of notes are discounted at banks:

1st. Business notes or business paper. These are notes actually given by one individual to another for property sold or value received.

2nd. Accommodation notes, called also accommodation paper. Those are notes made for the purpose of borrowing money from the banks.

41. To find the bank discount on a note:-

RULE.

Add 3 days to the time which the note has to run before it becomes due, and calculate the interest for this time at the given rate per cent.

EXAMPLE.—What is the bank discount on a note of \$700, payable in 69 days, allowing discount at 6 per cent.?

OPERATION.

Here the time the note has to run is 72 days = 2 months 12 days.

Interest of \$1 at 6 per cent. for 2 months 12 days, is \$0.012.
Interest of \$700 at 6 per cent. for 2 months 12 days = \$0.012 × 700 = \$6.40. Ans.

EXERCISE* 114.

- What is the bank discount on a note for \$986, having 2 years and 3 months to run, allowing discount at 7 per cent.?
 Ans. \$155.8701.
- If I have a note for \$640, payable in 100 days, and get it discounted at the rate of 8 per cent. per annum, what discount am I charged?
 Ans. \$14.6488.
- 3. I sell a horse and carriage for \$563.80, and receive a note for that sum, payable, without interest, 91 days hence. Now if I get this discounted at the rate of 6 per cent. per annum, what sum do I receive?

 Ans. \$554.967.
- 42. It is often necessary to make a note of which the present value shall be a certain sum.

Thus, suppose I require to receive from the bank \$1000, and wish to give my note, payable in 7 months, at 6 per cent., what amount must I put on the face of the note?

Now the interest on \$1 at 6 per cent. for 7 months and 3 days (i. e. days of grace) is \$0.0355, and this will be the bank discount on \$1 for 7 months at 6 per cent.

To get the present value of \$1, we subtract \$0.0355 from \$1, which gives is \$0.9645.

Hence, for every \$0.9645 I receive, I must put \$1 on the face of the note;

and therefore to receive \$1000, I must put $\frac{1}{0.9645}$, i. e. \$1036'806 on the face of the note.

Present value..... \$1000.00

Hence to find the face of a note, due at some future time and discounted at a given rate per cent. per annum, that shall have a known present value, we have the following:—

^{*} These examples are worked by the rule given in Arts. 26 and 27. If the absolutely correct answer is required, it must be obtained by deducting from these results $\frac{1}{\sqrt{3}}$ of the interest for the days used, as before explained. In example 2, it will be observed, this makes a difference of 20 cents.

RULE.

Find the present value of \$1 for the same time (adding the three days of grace) and at the same rate; divide the required present value of the note by this, and the quotient will be the face of the note.

EXAMPLE.—For what sum must a note be drawn at 8 months 18 days, so that discounted immediately at 6 per cent. it shall produce \$670?

OPERATION.

Interest on \$1 for 8 months 21 days at 6 per cent.—80 0435, and this taken from \$1 gives us \$0 9565—present worth of \$1.

Then 0.9565 = \$700.47. Ans.

EXERCISE* 115.

What sum must I put on the face of a note payable in 90 days so that I may obtain \$3755 when discounted at a bank at 7 per cent.?

Ans. \$3824.15.

 For what sum must a note be drawn payable in 6 months in order that its proceeds at 5 per cent. bank discount may be \$1147.80?

Ans. \$1177.734.

 For what sum must a note be drawn payable in 45 days so that its proceeds at 3½ per cent. bank discount may be \$713.90?

Ans. \$717.2471.

EQUATION OF PAYMENTS.

43. Equation of Payments is the process of finding the equated or average time when two or more payments, due at different times, may be made at once without loss to either party.

44. The average time for the payment of several sums due at different times is called the mean time or equated

time.

45. To find the equated time for any number of payments:—

RULE.

First multiply each debt by the time before it becomes due; then divide the sum of the products thus obtained by the sum of the payments, and the quotient will be the equated time required.

* Work by Arts. 26 and 27.

[†] This rule is based upon the supposition that what is gained by keeping certain payments after they become due is equal to what is lost by paying other payments before they become due. This, however, is not exactly true; for the gain is the interest, while the loss is equal only to the

Norn.-When there are both days and months, they must all be reduced to the same unit; i. e., the payments must all be reckoned for so many days, or so many months or parts of a month. If one of the payments is due on the day from which the equated time is reckoned, the corresponding product will be nothing; but in finding the sum of the debts, this payment must be added with the others. (See Example 3 below.)

EXAMPLE 1 .- A merchant purchases a vessel for \$7000,\$2000 to be paid in 3 months, \$2000 in 5 months, and the balance in 11 months. Now if he wishes to make the whole in one payment for what time must his note be drawn?

OPERATION. \$2000 × 3=\$ 6000 × 1 2000 × 5= 10000 × 1 3000×11= 33000×1

\$49000 (7 months. Ans. 7000)

EXPLANATION .- The interest of \$2000 for three months is equal to the interest of \$6000 for one month. Similarly, the interest of the second payment is equal to the interest of \$10000 for one month, and the inter-

est of the third payment is equal to the interest of \$33000 for one month. Hence, the interest of the several payments, at the given times, will be equal to that of \$49000 for one month; and if we divide this \$49000 by the sum of the payments, \$7000, we obtain 7 months for the equated time. \$49000×1

That is, \$7000: \$49000::1 month: Ans. = 87000 = 7 months.

EXAMPLE 2.—A person owes another £20, payable in 6 months; £50, payable in 8 months; and £90, payable in 12 months. At what time may all be paid together, without loss or gain to either party?

OPERATION. $20 \times 6 = 120$ $50 \times 8 = 400$ $90 \times 12 = 1080$ 160) 1600 (10 months. Ans. 160

discount, which (Art. 33) is always less than the interest: but the discrepancy is so trifling as not to make any material difference in the result.

With this exception, the rule is true, and may be demonstrated as follows:—Let p= first payment, and t= the time before it becomes due; p'= other payment, and t'= the time before it becomes due; x= equated time, and r= the rate of interest per unit.

And since x, the equated time, lies between t and t' the time between t

and x is = x - t, and that between t' and x is = t' - x.

The interest of p for the time x-t is (from Art. 13) pr(x-t). Also interest of p' for the time t'-x is p'r(t'-x)Hence pr(x-t) = p'r(t'-x)

And $x = \frac{pt + p't'}{p + p'}$, which is the rule, and may be similarly proved for any number of payments.

Example 3 -A debt of \$450 is to be paid thus: \$100 immediately, \$300 in four, and the rest in 6 months. When should it be paid altogether?

OPERATION. \$100×0= 0 $300 \times 4 = 1200$ $50 \times 6 = 300$ 450 450)1500(3 months. Ans.

EXERCISE 116.

1. A owes B \$600, of which \$200 is payable in 3 months, \$150 in 4 months, and the rest in 6 months; but it is agreed that the whole sum shall be paid at one payment. When should the payment be made? Ans. In 41 months.

2. A debt is to be discharged in the following manner: 1 at present, and 4 every three months after until all is paid. What is the equated time? Ans. 41 months.

3. A debt of \$120 will be due as follows: \$50 in 2 months, \$40 in 5, and the rest in 7 months. When may the whole be paid together? Ans. In 41 months.

4. I owe \$1000 to be paid down, \$1500 in 1 month, \$600 in 3 months, \$700 in 5 months, and \$1400 in 7 months. For what time must my note be drawn so that the whole may be paid in one payment? Ans. 3 to months.

5. Bought of Messrs. Hendric & Robarts, goods to the following

amounts, on the credit of six months:

15th of January, a bill of \$3750, 10th of February, a bill of 6th of March, a bill of 8th of June, a bill of

I wish on 1st of July to give my note for the amount; at what time must it be made payable? Ans. 31st August.

PARTNERSHIP OR FELLOWSHIP.

46. Partnership or Fellowship is the joining together of two or more persons for the transaction of business, agreeing to share the profits and losses in proportion to the amount of money each invests in the business.

47. The persons thus associated are called Partners,

and the association itself a Company or Firm.

48. The money employed is called the Capital or Stock. 49. The gain or loss to be shared is called the Dividend.

SIMPLE PARTNERSHIP.

50. When the partners employ their shares of the capital for the same period of time, the partnership is called Simple Partnership.

It is also called Single Partnership or Partnership without Time.
51. It is evident that the whole stock which suffers the gain or loss must bear the same proportion to the stock of each partner that the whole gain or loss bears to his share of the gain or loss.

Hence, for partnership without time, we have the following :-

RULE.

As the whole stock is to each man's share of the stock, so is the whole gain or loss to each man's share of the gain or loss.

Example. - A and B enter into trade with a capital of \$3700, of which A contributes \$2000 and B the remainder. \$1200. What is each man's share of the profits?

OPERATION.

Whole stock: A's stock: whole profit: A's profit.

2000×1200 That is, \$3700: \$2000:: \$1200: 3700 = \$648.648 = A's share.

Again, whole stock: B's stock: whole profit: B's profit.

That is, \$3700: \$1700:: 1200: 1700×1200 =8551'351 = B's share.

NOTE .- After A's share has been found, B's share may be obtained by subtracting A's profit from the whole profit.

EXERCISE 117.

1. Two merchants enter into partnership with a stock of \$4300, of which A contributes \$3000. They gain \$1117; how should this be divided between them?

Ans. A's share = \$779.302;

B's share = \$337.697.

2. Three persons A, B and C, agree to form a company for the manufacture of woollen cloths. A puts in \$6470, B \$3780, and C \$9860. By the end of the year they find that they have gained \$7890. What portion of this profit belongs to each? Ans. A's share = \$2538.453.

B's share = \$1483.053. C's share = \$3868.493.

- 3. B and C buy certain merchandize, amounting to \$320, of which B pays \$120, and C \$200; and they gain \$80. How is it to be divided? Ans. B \$30 and C \$50.
- 4. B and C gain by trade \$728; B put in \$1200, and C \$1600. Ans. B \$312 and C \$416. What is the gain of each?
- 5. Two persons are to share \$100 in the proportions of 2 to B and 1 to C. What is the share of each?

Ans. B \$66.663 and C:\$33.331.

- 6. A merchant failing, owes to B £500 and C £900; but has only £1100 to meet these demands. How much should each creditor receive? Ans. B £3929 and C £7074.
- 7. Three merchants load a ship with butter; B gives 200 casks, C 300, and D 400; but when they are at sea it is found necessary to throw 180 casks overboard. How much of this loss should fall to the share of each merchant?

Ans. B should lose 40 casks, C 60, and D 80. 8. Three persons are to pay a tax of \$100, according to their

estates. B's yearly property is \$800, C's \$600, and D's \$400. How much is each person's share? Ans. B's \$44.444, C's \$33.331, and D's \$22.223.

9. Divide 120 into three such parts as shall be to each other as 1, 2 and 3. Ans. 20, 40, and 60.

10. A ship worth \$900 is entirely lost; } of it belonged to B, 1 to C, and the rest to D. What should be the loss of each, \$540 being received as insurance?

Ans. B \$45, C \$90 and D \$225. 11. Three persons have gained \$1320; if B were to take \$6, C

ought to take \$4, and D \$2. What is each person's share? Ans. B's \$660, C's \$440, and D's \$220.

12. Three persons join; B and C put in a certain stock, and D puts in £1090; they gain £110, of which B takes £35, and C £29. How much did B and C put in; and D's share of Ans. B put in £829 6s. 1111d., the gain? " £687 33. 517d., and D's part of the profit is £46.

COMPOUND PARTNERSHIP.

52. When the partners employ their capital for different periods of time, the partnership is called Compound Partnership or Compound Fellowship.

It is likewise called Double Partnership, or Partnership With Time. For example; Suppose A puts in \$200 for 3 years, and B \$300 for 4 years, and they make a certain gain or loss. This would give a case of Compound Partnership.

In such cases it is plain that each man's share of the profit depends upon two circumstances:

1st. The amount of his stock; and 2nd. The period for which it is continued in the business.

Also that when the times are equal, the shares of the gain or loss are as the stocks; when the stocks are equal, the shares are as the times; and when neither the times nor the stocks are equal, the shares are as their products.

Hence, for Compound Partnership we have the following:

Multiply each man's stock by the time he continues it in trade; then say, as the sum of the products is to each particular product, so is the whole gain or loss to each man's share of the gain or loss,

EXAMPLE.—A contributes \$120 for 6 months, B \$336 for 11 months, and C \$384 for 8 months; and they lose \$56. What is C's share of the loss?

OPERATION.

\$120 \times 6=\$720 for one month) 336 \times 11 = 3696 for one month) = \$7488 for one month. 884 \times 8 = 3072 for one month) \$3072 \times 56 \$7488: \$3072::\$56: C's share; or $\frac{83072\times56}{7488}$ = \$22.974.

EXPLANATION.—It is clear that \$120 contributed for 6 months are, as far as the gain or loss is concerned, the same as 6 times \$120, or \$720, contributed for one month. Hence A's contribution may be taken as \$720 for 1 month; and, for the same reason, B's as \$3696 for the same time; and C's as \$2072, also for the same time. This reduces the question to one in Simple Fellowship.

EXERCISE 118.

- Three merchants enter into partnership; B puts in \$357 for 5 months, C \$371 for 7 months, and D \$154 for 11 months; and they gain \$347.20. What should be each person's share of it?
 Ans. B's \$102, C's \$148.40, and D's \$96.80.
- B, C, and D pay \$160 as the year's rent of a pasture. B puts 40 cows on it for 6 months, C 30 for 5 months, and D 50 for the rest of the time. How much of the rent should each person pay? Ans. B \$87.27,37, C \$54.54,54, and D \$18.18,77.
- 3. Three dealers, A, B, and C, enter into partnership, and in a certain time make £291 13s. 4d. A's stock, £150, was in trade 6 months; B's, £200, 3 months; and C's, £125, 16 months. What is each person's share of the gain?
- Ans. A's is £75, B's, £50, and C's, £166 13s. 4d.

 4. Three persons have received \$665 interest; B had put in \$4000 for 12 months, C \$3000 for 15 months, and D \$5000 for 8 months. How much is each person's part of the interest?

 Ans. B's \$240, C's \$225, and D's \$200.
- 5. Three troops of horse rent a field, for which they pay \$320; the first sent into it 26 horses for 12 days, the second 64 for 15 days, and the third 80 for 18 days. What must each pay?

 Ans. The first must pay \$70,
 The second "100,
 The third "150.
- 6. Three merchants are concerned in a steam-vessel; the first, A, puts in \$960 for 6 months; the second, B, a sumunknown for 12 months; and the third, C, \$640, for a time not known when the accounts were settled. A received \$1200 for his stock and profit, B \$400 for his, and C \$1040 for his: what was B's stock, and C's time?

 Ans. B's stock was \$1600; and C's time was 15 months.

Norg.—If A gain \$240 in 6 months, he would gain \$480 in 12 months; that is, A's stock and profit at the end of 12 months would be \$960+\$480

2400×960 Then \$1440: 2400:: \$960: B's stock; or 1440 = \$1600 B's stock. Again, B's stock : C's stock :: B's profit : C's profit for samé time, viz :

640×800 12 months. That is \$1600 : \$640 :: \$800 : 1600 = \$320 = C's profit for 12 months.

Lastly, C's profit for 12 months : C's given profit :: 12 months ; C's 400 × 12 time: that is, \$320: \$400:: 12 months: 320 = 15 mo. = Cs time.

7. In the foregoing question A's gain was \$240 during 6 months, B's \$800 during 12 months, and C's \$400 during 15 months; and the sum of the products of their stocks and times is 34560. What were their stocks? Ans. A's was \$ 960, R'a

C's 8. In the same question the sum of the stocks is \$3200; A's stock was in trade 6 months, B's 12 months, and C's 15 months; and at the settling of accounts, A is paid \$240 of the gain, B \$800, and C \$400. What was each person's stock? Ans. A's was \$960, B's \$1600, and C's \$640,

QUESTIONS TO BE ANSWERED BY THE PUPIL.

NOTE .- The numbers following the questions refer to the articles of the Section.

1. What is interest? (1)
2. What is the meaning of the terms per cent. and per annum? (1)
3. In what respect does interest differ from Commission and Brokerage?

(2)
4. What is the principal? (3)
5. What is meant by the rate per cent? (4)
6. What is meant by the rate per unit? (5)
7. What is the interest? (6)
8. What is the amount? (7)
9. Of how many kinds is interest? (8)

10. Explain the distinction between Simple and Compound Interest. (9 and 10.) 11. In using formulas for interest, what is the meaning of the letters P. A.

I. t. and r? (12)

12. Deduce algebraically a full set of rules for Simple Interest. (12)

13. How is the interest found when the principal, rate per cent, and time are given? (13) Note.—Answer this and succeeding similar questions by giving the formula.

14. Interpret this forumla. (13)

15. When the interest, rate per cent., and time are given, what is the rule for finding the principal? (14)
16. Interpret this formula. (14)

17. How is the rate per cent. found when the interest, principal, and time are given ? (15)

18. Interpret this formula. (15)

19. When the interest, principal, and rate are given, how is the time found? (16)

20. Interpret this formula. (16)

21. When the principal, rate, and time are given, how is the amount found? (17)

22. Interpret this formula. (17)

23. When the amount, rate and time are given, how do we find the principal? (18)

24. Interpret this formula. (18)

25. When the amount, principal, and time are given, how do we find the rate ? (19) 26. Interpret this formula. (19)

27. When the amount, principal, and rate are given, how do we find the

time? (20) 28. Interpret this formula. (20) 29. How do we find the time in which any sum of money will amount to

any given number of times itself at a given rate? (21) 30. Interpret this formula. (21) 31. How do we find the rate at which any sum will amount to a given num-

ber of times itself in a given time? (22)

32. Interpret this formula. (22) 33. When the time and rate are given, how do we find to how many times itself a given sum will amount? (23)

34. Interpret this formula. (23)

- 35. How do we find the interest on \$1 at 6 per cent. per annum for any number of months? (24)
- 36. How do we find the interest on \$1 at 6 per cent. for any number of days? (25) 37. How do we find the interest of any sum for any given time at 6 ner
- cent. ? (26) 38. How may we find the interest at any other rate than 6 per cent. ? (27)

39. How do we compute interest on notes, &c., when partial payments are made? (28) 40. What is the rule for calculating Compound Interest? (30)

41. How is Compound Interest calculated by the table given in Art. 31? (32) 42. How do we ascertain the present worth of a debt due some given time hence, allowing Compound luterest at a given rate? (33)
43. What is Discount? (34)
44. What is meant by the present worth of a debt, note, &c.? (35)
45. How do we compute the present worth of a debt or note? (36)
46. What is Bank Discount? (37)

47. What is the distinction between Bank Discount and True Discount? (38 and 35)

43. What are days of grace? (39)

- What are the two kinds of notes discounted at banks? (40) 49. What are the two kinds of notes discounted at banks? (40) 50. How do we calculate the bank discount on notes, &c. (41)
- How do we find what amount to put on the face of a note so that its present value shall be a certain sum? (42)

52. What is meant by the Equation of Payments? (43)

53. What is meant by the mean time or equated time of payment? (44)

54. How do we find the equated time of payment? (45) 55. What is Partnership or Fellowship? (46) 56. What are the persons associated together in partnership called? (47)

57. What is the money employed in the business called? (48)

- 58. What is meant by the dividend? (49)
 59. What is the distinction between Simple and Compound Fellowship? (50 and 52)
- 80. By what other names is Simple Partnership known? (50)
 61. What is the rule for Simple Partnership? (51)

62. What is the rule for Compound Partnership? (52)

SECTION IX.

PROFIT AND LOSS, BARTER, ALLIGATION, CURRENCIES, EXCHANGE, &c.

PROFIT AND LOSS.

1. Profit and Loss is a rule by which we are enabled to ascertain what we gain or lose in mercantile transactions. It also instructs us how much we must increase or diminish the price of our goods in order that our gain or loss may be so much per cent.

CASE I.

2. To find the total gain or loss on a certain quantity of goods when the prime cost and selling price are given:

FIRST RULE:

Find the price of the goods at prime cost and also at the selling price. The difference will be the whole gain or loss.

EXAMPLE 1.—What do I gain if I buy 207 cords of wood at \$3.78 per cord and sell it at \$4.25?

OPERATION.

207 cords @ \$4.25 \implies \$870.75 = whole sum for which goods were sold. 207 cords @ \$3.78 \implies \$782.46 = whole cost.

Difference = \$97'29 = whole gain = Ans.

EXAMPLE 2.—If I purchase 900 bushels of wheat at \$1.47 per bushel and sell it at \$1.25, what do I lose upon the whole transaction?

OPERATION.

900 bushels @ \$1'47 = \$1323 = whole cost. 900 bushels @ \$1'25 = \$1125 = whole sum received for wheat.

\$198= whole loss = And.

SECOND RULE.

Find the difference between the buying and selling price of a buhsel, lb., yard, &c.

Multiply the gain or loss per bushel, lb., yard, &c., by the number of bushels, lbs., or yards, and the result will be the whole gain or loss.

Example. Bought 211 yards of flannel at 371 cents per yard, and sold it at 45 cents; required my total gain?

OPERATION.

\$0.375 = buying price. \$0.45 = selling price.

 $\$0.075 = \text{gain per yard } \$0.075 \times 211 = \$15.825$. Ans. Note,—This second rule affords the shorter method of finding the gain or loss.

EXERCISE 119.

1. Bought 317 lbs. of butter at 9 cents per lb., and sold it at 121 cents; what was my gain on the whole? Ans. \$11.095.

2. Bought 2138 bushels of potatoes at 871 cents per bushel, and sold them at \$1.20; what was my gain on the whole?

Ans. \$694.85. 3. Bought 13 barrels of sugar, each weighing 317 lbs. net at 15 cents per lb., and sold the whole for \$735; how much did I

gain or lose on the transaction? Ans. Gained \$116.85. 4. Bought 17 kegs of wine, each containing 22 gallons, at \$3.15 per gallon, and paid in addition \$26.33 for carriage, &c., and an ad valorem duty of 371 per cent. I sold the whole for \$1625; what was my gain or loss? Ans. Loss \$21.2175.

CASE II.

3. Let it be required to find for what sum I must sell a house which cost \$2900 so that I may gain 15 per cent.

Here for every \$100 the house cost me I am to receive \$115, or for every

Here for every \$100 the house cost me 1 am to receive \$115, or for every \$1 cost 1 am to receive \$1'15.

The selling price must evidently be as many times \$1'15 as the buying price contains \$1; i. e., \$1'15×2900 = \$3335'00. Ans.
Again: If a person buys a horse for \$230, and afterwards sells it so as to lose 11 per cent.; how much does he receive for it?

Here for every \$1 he paid for the horse he receives only \$0.89 (since he loses 1) per cent., i. e. 11 cents on the \$1.)

Then, the selling price will obviously bc \$0.59×230=\$204.70. Ans.

Hence, to find at what price an article must be sold so as to gain or lose a specified per centage, the cost price being given :-

Find (Art. 2, Sect. VII.) how much must be received for each dollar of the buying price, and multiply this by the whole buying price. The result will be the selling price.

EXAMPLE. -- Bought a quantity of oatmeal for \$1793.80. For

what must I sell it so as to gain 8 per cent.?

OPERATION.

Here for every \$1 I expend I desire to receive \$1'03; hence, the selling price will be \$1.08×1793.80 = \$1937.304. Ans.

EXAMPLE.—Bought a lot of sheep for \$7000, and am willing to lose 3 per cent. For what sum must I sell?

PERATION.

Here for every \$1 I expend I am willing to receive \$0.97, and hence the set ing price will be \$0.97 × 7000 = \$6.790. Ans.

EXERCISE 120.

- Bought cordwood at \$3.25 per cord; at what rate per cord must I sell it in order to gain 30 per cent.? Ans. \$4.221.
- Bought a stock of goods for \$13420; for how much must it be sold in order to gain 5 per cent.?

 Ans. \$14091.
- 3. Bought a quantity of wood at 11 cts. alb., and wish to sell so as to gain 15 per cent.; at what rate per lb. must I sell it?

 Ans. 12 ½ cents.
- Bought axes at \$15.25 a doz., and desire to sell them so as to gain 23 per cent.; at what rate per doz. must I sell?
 Ans. \$18.753.
- 5. Bought a farm for \$7890, and am willing to lose 11 per cent.; at what price must I sell?

 Ans. \$7022.10.

CASE III.

4. Let it be required to find what per cent, of profit a merchant makes by buying tea at 43 cents per lb. and selling it at 67 cts.

Here the gain on each lb. is 24 cents.

That is every 43 cents invested gives a gain of 24 cents.

Therefore every cent invested gains $\frac{1}{43}$ of 24 cents = $\frac{2}{4}\frac{4}{3}$ cents. And hence, the gain per cent. = $\frac{2}{4}\frac{4}{3}\times 100 = \frac{2}{4}\frac{9}{3}\frac{0}{1} = 55$ 8 per cent.

Hence to find the rate per cent. of profit or loss when the prime cost and selling price are given, we have the following:—

RULE.

Find the difference between the buying and selling price, and hence the gain or loss per unit.

Multiply this by 100, and the result will be the gain or loss per cent.

Example.—A speculator invests \$44400 in stocks, and sells out for \$50000; what per cent. does he make by the operation?

OPERATION.

Here the whole gain is \$50000-\$11400 = \$5600.

That is \$44400 gain \$3600, and therefore \$1 gains 4,400 = 117 of a dollar

Hence gain per cent = 11 × 100 = 1100 = 126. Ans.

Note.—The above and all similar questions may be solved by Proportion . Thus this question is, if \$44400 gain \$5000, what will \$100 gain \$6000000

And the statement is \$45100: \$100:1 \$5600! Ans = 41400 = 12.6

EXERCISE 121.

1. Bought tea at 60 cents a lb., and sold it at 871 a lb.; how Ans. 454. much did I gain per cent.?

2. Bought coffee at 13 cents and sold it at 11 cents a pound; Ans. 15,57. what was my loss per cent.?

3. Bought flour at \$6.20 a barrel, and sold it at \$7.80; what Ans. 251 per cent. was the per cent. of profit?

4. Bought cloth at \$2.75 per yard, and sold it at \$3.10; what Ans. 12 per cent. was my gain per cent.?

5. Bought oats at \$0.47 per bushel, and sold them at \$0.56; Ans. 197 per cent. what was my gain per cent.?

6. Bought meat at 12 cents per lb., and sold it at 101 cents a pound; what was my loss per cent.? Ans. 121 per cent.

7. Bought a horse for \$93, and sold it for \$127; what per cent. Ans. 3652. of profit did I make?

8. A man bought a farm for \$6742.50, and sold it for \$6000; Ans 11 per cent. what was his loss per cent.?

9. If I purchase a house for \$5700, a horse for \$275, and pay \$1987.32 for household furniture and a carriage, and then sell the whole for \$8750, what is my gain or loss per cent? Ans. Gain 9.89 or nearly 10 per cent.

10. I purchase 723 yards of black silk velvet in Paris and pay \$4.25 a yard; I further pay 7 per cent. for insurance, \$23.70 for carriage, \$2.70 for harbor dues, \$3.16 for wharfage and storage, and an ad valorem duty of 22 per cent., and then sell the whole for \$5270; what is my gain or loss Ans. Gain 31.96749 or nearly 32 per cent. per cent.?

CASE IV.

5. Let it be required to find the prime cost of cloth which I sold for \$4 and gained 10 per cent. thereby.

Here the gain on \$1 was 10 cents, or what I sold for \$1'10 cost me only Therefore the cost price will contain \$1 as many times as the selling price

contains \$1.10. That is the cost price = 140 = \$3.636. Ans.

. Hence, to find the cost price, the selling price and the gain or loss per cent. being given, we have the following:-

RULE.

Find the gain or loss per unit, and add it to unity if it be gain, but subtract it from unity if it be loss.

Divide the selling price by the quantity thus obtained, and the

result will be the cost price.

Or say as \$100+gain per cent. (or as \$100-loss per cent.) is to \$100 so is the selling price to the cost price.

EXAMPLE.—Sold a quantity of coal for \$719, and lost 7 per cent. by the transaction; what was the prime cost?

OPERATION.

1ST RULE.—Loss on \$1 is 7 cents, or for every \$1 paid I receive \$0.98. Hence $\cos t = \$^{j} \frac{1}{9} \frac{9}{3} = \$773 \cdot 118$.

2ND RULE.—\$93: \$100:: \$719: Ans, = $\frac{100 \times 719}{93}$ = \$773'118.

EXERCISE 122.

 For what did I buy a quantity of sugar which I sold for \$24.60, losing 4 per cent.?

Ans. \$25.625.

 A gentleman sold his library for \$2360, which was 10 per cent. less than cost; what did he give for it? Ans. \$2622.22.

 A farmer sold his farm for \$7400, gaining 11 per cent. on the prime cost; what did he give for it? Ans. \$6666.666.

4. A merchant sold a quantity of silk velvet for \$3789.40. gaining 17 per cent. by the transaction; required the buying price?
Ans. \$3238.803.

 Sold a lot of cattle for \$2740, losing 13 per cent. by the transaction; what did I give for them? Ans. \$3149.425.

BARTER.

- 6. Barter signifies an exchange of goods or articles of commerce at prices agreed upon so that neither party in the transaction may sustain loss.
- 7. The principle of solution depends upon finding the value of the commodity whose price and quantity are given, and thence the equivalent quantity of a second commodity of a given price, or the equivalent price of a given quantity of a second commodity.

EXAMPLE 1.—How much tea at \$1.10 per lb. ought to be given for 712 lb. of sugar at 13 cents per lb.?

OPERATION.

712 lbs. of sugar at 13 cents per lb. \$92.56, and \$92.56; \$1.10=84.1454 lbs. 2\frac{1}{2} oz. Ans.

EXAMPLE 2.—I desire to barter 96 lbs. of sugar, which cost me 8 cents per lb., but which I sell at 13 cents, giving 9 months' credit, for calico which another merchant sells for 17 cents per yard, giving 6 month's credit. How much calico ought I to receive?

OPERATION.

I first find at what price I could sell my sugar, were I to give the same credit as he does—

If 9 months give me 5 cents profit, what ought 6 months to give? 6×5 30

9:6::5: $\frac{1}{9} = \frac{1}{9} = 3\frac{1}{3}$ cents.

Hence, were I to give 6 months' credit, I should charge 8+3}=11} cents. per lb. Next-

As my selling price is to my buying price, so ought his selling to be to his buying price, both giving the same credit.

11 $\frac{1}{1}$: 8::17: $\frac{3 \times 11}{11\frac{1}{2}}$ = 12 cents. The price of my sugar, therefore, is 96×8 cents, or \$7.68; and of his calico, 12 cents per yard.

\$7.68 Hence $\frac{1}{12}$ = 64, is the required number of yards. EXERCISE 123.

- 1. A has coffee which he barters at 10 cents the lb. more than it cost him, against tea which stands B in \$2, but which he rates at \$2.50 per lb. How much did the coffee cost at first? Ans. 40 cents.
- 2. A has silk which cost \$2.80 per lb.; B has cloth at \$2.50, which cost only \$2 the yard. How much must A charge for his silk, to make his profit equal to that of B? Ans. \$3.50.
- 3. I have cloth at 8 cents the yard, and in barter charge for it 13 cents, and give 9 months' time for payment; another merchant has goods which cost him 12 cents per lb., and with which he gives 6 months' time for payment. How high must he charge his goods to make an equal barter? Ans. At 17 cents.

4. K and L barter. K has cloth worth \$1.60 the yard, which he barters at \$1.85 with L, for linen cloth at 60 cents per yard, which is worth only 55 cents. Who has the advantage; and how much linen does L give to K for 70 yards of his cloth? Ans. L gives K 2158 yards; and K has the advantage.

5. B has five tons of hutter, at \$102 per ton, and 101 tons of tallow, at \$135 per ton, which he barters with C; agreeing to receive \$600.30 in ready money, and the rest in beef at \$4.20 per barrel. How many barrels is he to receive?

Ans. 316.

ALLIGATION.

8. Alligation is the method of finding the value of a mixture of ingredients of different values, or of forming a compound which shall have a given value.

NOTE.—The term alligation is derived from the Latin word alligo " to tie or bind," the reference being to the manner of connecting or tying the numbers together in a certain class of questions.

9. Alligation is divided into Alligation Medial and

Alligation Alternate.

10. Alligation Medial (Latin medius, "mean or average,") enables us to find the value of a mixture when the ingredients, of which it is composed and their prices are known.

11. Alligation Alternate enables us to find what proportion must be taken of several ingredients, whose prices are known, in order to form a compound of a given price.

ALLIGATION MEDIAL.

12. Let it be required to find the price per lb. of a mixture containing 47 lbs. of sugar at 11 cents per lb., 29 lbs. at 13 cents, and 24 lbs. at 17 cents.

OPERATION.

47 lbs. at 11 ccnts = 517 ccnts. 29 lbs. at 13 ccnts = 377 ccnts. 24 lbs. at 17 ccnts = 408 ccnts.

Then 100 lbs. cost 1302 cents and 1 lb. will cost 1302 = 131 cents.

Hence for Alligation Medial we deduce the following:-

RULE.

Divide the entire cost of the whole mixture by the sum of the ingredients, and the quotient will be the price per unit of the mixture.

EXAMPLE 1.—What will be the price per lb. of a mixture of tea containing 7 lbs. at \$0.50 per lb., 11 lbs. at \$0.80, 19 at \$1.06, and 3 lbs. at \$1.23?

OPERATION.

7 lbs. @ \$0 50 = \$3:50 11 " @ \$0:80 = \$8:80 19 " @ \$1:06 = \$20:14 3 " @ \$1:23 = \$3:69

40 lbs. = sum of ingre- \$36'13 = Total cost.

40)\$36.13(\$0.90\frac{1}{4}\frac{3}{0}\$. Ans.

.13

EXAMPLE 2.—A goldsmith has 3 lbs. of gold 22 carats fine, and 2 lbs. 21 carats fine. What will be the fineness of the mixture?

In this case the value of each kind of ingredient is represented by a number of carats—

OPERATION.

3 lbs. × 22 = 66 carats
2 " × 21 = 42 "
5 5)108 " .

The mixture is 21% carats fine.

EXERCISE 124.

Having melted together 7 oz. of gold 22 carats fine, 12½ oz.
 21 carats fine, and 17 oz. 9 carats fine, I wish to know the fineness of each ounce of the mixture?

Ans. 15‡\$ carats.

2. A vintner mixed 2 gallons of wine, at 14s. per gallon, with 1 gallon at 12s., 2 gallons at 9s., and 4 gallons at 8s. What is one gallon of the mixture worth?

Ans. 10s.

3. A farmer mixes 15 bushels of wheat worth \$1.20 with 30 bushels worth \$1.50, and 60 bushels worth \$1.10 and 83 bushels worth \$1.75. What is one bushel of the mixture worth?

Ans. \$1.458.

4. A grocer mixes together 12 lbs. of tea at 50 cents, 16 lbs. at 72 cents, 12 lbs. at 65 cents, 18 lbs. at 85 cents, and 100 lbs. at 42 cents. How much per lb. is the mixture worth?

Ans. 5321 cents.

ALLIGATION ALTERNATE.

13. Alligation Alternate is the reverse of Alligation Medial, and may be proved by it.

CASE I.

14. Given the prices of the ingredients, to find the proportion in which they must be mixed in order that the compound may be worth a given price:—

RULE.

Set down the prices of the ingredients in two columns, placing those greater than the price of the compound to the left, and those less than it to the right.

Between these columns form two others composed of the differences between the prices of the several ingredients and of the compound; writing each difference next to the number by which it was obtained.

Link, by means of a line, the left-hand differences to the right-

hand differences in any order.

Then each difference will express how much of the quantity with whose difference it is connected, should be taken to form the required

mixture.

If any difference is connected with more than one other difference, it is to be considered as repeated for each of the differences with which it is connected; and the sum of the differences with which it is connected is to be taken as the required amount of the quantity whose difference it is.

EXAMPLE 1.—How many pounds of tea at 5s. and 8s. per lb., would form a mixture worth 7s. per lb.?

OPERATION.

Prices. Differences. Prices.

7=8-1-2+5=7

It is connected with 2s., the difference between the 7, the required price, and 5s.: hence there must be 1 lb. at 5s. 2 is connected with 1, the difference between 8s. and the required price; hence there must be 2 lbs. at 8s. Then 1 lb. of tea at 5s. and 2 lbs. at 8s. per lb., will form a mixture worth 7s, per lb.—as may be proved by the last rule.

It is evident that any equimultiples of these quantities would answer

equally as well; hence a great number of answers may be given to such a

question.

EXAMPLE 2.- How much sugar at 9d., 7d., 5d., and 10d., will produce sugar at 8d. per lb.?

OPERATION.

Prices. Differences. Prices.

 $8 = \begin{cases} \frac{9-1}{10-2} - \frac{1+7}{3+5} \\ = 8 \end{cases}$ 1 is connected with 1, the difference between 7d. and the mean, 8; hence there is to be 1 lb. of sugar at 7d. per lb. 2 is connected with 3, the difference between 5d. and the mean; hence there is to be 2 lbs. at 5d. 1 is connected with 1 the difference between 5d and the mean; hence there is to be 2 lbs. at 5d. 1 is connected with 1 the difference between 5d and the mean between 5d. ence of tween st. and the mean; hence there is to be 2 los. as 50... I is connected with 1, the difference between 9d. and the mean; hence there is to be 1 lb. at 9d. And 3 is connected with 2, the difference between 10d. and the mean; hence there are to be 3 lbs. at 10d. per lb. Consequently we are to take 1 lb. at 7d. and 2 lbs. at 5d., 1 lb. at 9d. and 3 lbs. at 10d. If we examine the price of the mixture these will give (Art. 12) we shall find it to be the given mean.

EXAMPLE 3.-What quantities of tea at 4s., 6s., 8s., and 9s, per lb., will produce a mixture worth 5s.?

OPERATION.

$$5 = \begin{cases} 8 - 3 & -1 + 4 = 5 \\ 6 - 1 & -1 + 4 = 5 \\ 9 - 4 & -1 + 4 = 5 \end{cases}$$

3, 1, and 4 are connected with 1s., the difference between 4s. and the mean; therefore we are to take 3 lbs.+1 lb.+4 lbs. of tea, at 4s. per lb. 1 is connected with 3s., 1s., and 4s., the differences between 8s., 6s., and 9s., and the mean; therefore we are to take 1 lb. of tea at 8s., 1 lb. of tea at 6s., and 1 lb, at 9s, per lb.

Example 4.—How much of any thing at 3s., 4s., 5s., 7s., 8s., 9s., 11s., and 12s. per lb., would form a mixture worth 6s. per lb.?

OPERATION.

Prices. Differences. Prices.

$$6 = \begin{cases} 7 - 1 & 3+3 \\ 8-2 & 2+4 \\ 9-3 & 1+5 \\ 11-5 & 12-6 \end{cases} = 6$$

1 lb. at 3s. 2 lbs. at 4s., 3 lbs. at 7s., 2 lbs. at 8s, 3+5+6; i.e., 14 lbs. at 5s., 1 lb. at 9s., 1 lb, at 11s., and 1 lb. at 12s. per lb, will form the required mixture.

NOTE.—The principle upon which this rule proceeds is that the exc ss of one ingredient above the mean is made to counterbalance what 11 c other wants of being equal to the mean. Thus in example 7, 11 b. at 1: per 1b. gives a deficiency of 2s.; but this is corrected by 2s. excess in 1t 2 lbs. at 8s. per 1b.

In example 8, 1 b. at 7d. gives a deficiency of 1d., 1 b. at 9d. gives an excess of 1d.; but the excess of 1d. and the deficiency of 1d. exactly neutralize

each other.

Again, it is evident that 2 lbs., at 5d, and 3 lbs. at 10d. are worth just as much as 5 lbs. at 8d.—that is, 8d. will be the average price if we mix 2 lbs. at 5d. with 3 lbs. at 10d.

EXERCISE 125.

 How much wheat at \$1.60, \$1.40, \$1.10, and \$1 per bushel must be mixed together in order to form a mixture worth \$1.25 per bushel? Give at least two sets of answers.

Ans. 35 bushels at \$1.10, 15 at \$1.60, 15 at \$1.00, and 25 at \$1.40. 35 bushels at \$1.00, 15 at \$1.40, 15 at \$1.10, and 28 at \$1.60.

2. How much wine at 60 cents, 50 cents, 42 cents, 38 cents, and 30 cents per quart, will make a mixture worth 45 cents a quart? Ans. 15 qts. at 42 c., 5 qts. at 30 c., 3 qts. at 60 c. and 22 qts, at 50 c. and 5 quarts at 38 cents.

3. A merchant has sugar worth 10 cents, 12 cents, 14 cents, 15 cents, 16 cents, 17 cents, and 18 cents per pound, and

wishes to form a mixture worth 12; cents a lb. How many pounds of each must be use? Ans. 21 lbs. at 14 c., 11 lbs. at 10 c., 16 lbs. at 12 c. and 1 lb. at each other price.

4. A grocer has sugar at 5d., 7d., 12d., and 13d. per lb. How much of each kind will form a mixture worth 10d, per lb.? Ans. 2 lbs. at 5d., 3 lbs. at 7d., 5 lbs. at 12d., and 3 lbs. at 13d.

CASE II.

15. When a given quantity of one of the ingredients is to be taken :-

I. Find the proportional quantities of the ingredients as in Case I. II. Then say, as the amount of the ingredient as thus found is to the given amount of the same ingredient, so is the amount of any other ingredient (found by Case I.) to the required quantity of that other.

EXAMPLE 1 .- 29 lbs of tea at 4s. per lb., is to be mixed with teas at 6s., 8s., and 9s. per lb., so as to produce what will be worth 5s. per lb. What quantities must be used?

OPERATION.

By Case I we find that 8 lbs. of tea at 4s., and 1 lb. at 6s., 1 lb. at 8s., and 1 lb. at 9s., will make a mixture worth 5s. per lb.

Therefore 8 lbs. (the quantity of tea at 4s. per lb., as found by the rule); 29 lbs. (the given quantity of the same tea) :: 1 lb. (the quantity of tea at

6s. per lb., as found by the rule;) or 8 lb. = 3 lbs. Ans.

We may in the same manner find what quantities of tea at 8s. and 9s. per lb., correspond with 29 lb. of tea at 4s. per lb.

EXAMPLE 2.—A refiner has 10 oz. of gold 20 carats fine, and melts it with 16 oz. 18 carats fine. What must be added to make the mixture 22 carats fine?

10 oz. of 20 carats fine $=10\times20=200$ carats. 16 oz. of 18 carats fine $=16\times18=288$

26: 1 :: 488 : 1819 carats, the fine-

ness of the mixture.

24-22 = 2 carats baser metal, in a mixture 22 carats fine.

24—18 $\frac{1}{3}$ = $5_1\frac{3}{2}$ carats baser metal in a mixture $18\frac{1}{4}\frac{9}{3}$ carats fine. Then 2 carats: 22 carats: $5_1\frac{3}{3}$; $57_1\frac{7}{3}$ carats of pure gold—required to change $5_1\frac{3}{3}$ carats baser metal into a mixture 22 carats fine. But there are already in the mixture $18\frac{1}{19}\frac{9}{3}$ carats gold; therefore $57\frac{1}{15}-18\frac{1}{9}\frac{9}{3}=38\frac{1}{3}\frac{9}{3}$ carats gold are to be added to every ounce. There are 26 oz.; therefore $26\times33\frac{1}{3}\frac{9}{3}=1008$ carats of gold are wanting. There are 24 carats in every oz; therefore $\frac{1}{2}\frac{9}{4}$ 8 carats = 42 oz. of gold must be added. There will then be a mixture containing:—

 $\begin{array}{lll} \text{oz. car.} & \text{car.} \\ 10 \times 20 = & 200 \\ 16 \times 18 = & 288 \\ 42 \times 24 = & 1008 \end{array}$

68: 1 oz. :: 1496 : 22 carats, the required fineness.

EXERCISE 126.

1. How much molasses at 16 cents, at 19 cents, and at 23 cents per quart must be mixed with 87 quarts at 31 cents in order that the mixture may be worth 25 cents per quart?

Ans. 3012 qts. at each price.

2. How much oats at 37 cents per bushel and barley at 68 cts. per bushel must be mixed with 70 bushels of peas at 80 cts. a bushel so that the mixture may be worth 75 cents per bushel?
Ans. 75 bush. at each price.

 How much brass at 14d. per lb., and pewter at 101d, per lb., must I melt with 50 lbs. of copper at 16d. per lb., so as

to make the mixture worth 1s. per 1b.?

Ans. 50 lbs. of brass, and 200 lbs. of pewter.

4. How much gold of 21 and 23 carats fine must be mixed with 30 oz. of 20 carats fine, so that the mixture may be 22 carats fine?
Ans. 30 of 21, and 90 of 23.

CASE III.

16. When the quantity of the compound is given as well as the price:—

I. Find the proportional quantities as in Case I.

II. Then say, as the sum of the proportional quantities is to each proportional quantity, so is the given quantity to the corresponding part of each.

EXAMPLE-What must be the amount of tea at 4s. per lb. in 736 lb. of a mixture worth 5s.per lb., and containing tea at 6s., 8s., and 9s., per lb.?

To produce a mixture worth 5s. per lb., we require 8 lbs. at 4s., 1 at 8s., 1 at 6s., and 1 at 9s. per lb. (Art. 14). But all of these added together, will make 11lbs. in which there are 8 lbs. at 4s. Therefore

lbs. lbs. oz. lbs. lbs. lbs.

11 : 8:: 736: 8×736 = 535 4,4, the required quantity of tea at 4s.

That is, in 736 lbs. of the mixture there will be 535 lbs. 44, oz. at 4s. per lb. The amount of each of the other ingredients may be found in the same way.

EXERCISE 127.

- 1. A druggist is desirous of producing, from medicine at \$1.00, \$1.20, \$1.60, and \$1.80 per lb., 168lbs. of a mixture worth \$1.40 per lb; how much of each kind must he use for the purpose? Ans. 28lbs. at \$1.00, 56lbs. at \$1.20, 56lbs. at \$1.60, and 28 lbs. at \$1.80 per lb.
- 2. 27lbs. of a mixture worth 4s. 4d. per lb. are required. It is to contain tea at 5s. and at 3s. 6d. per lb.; how much of each must be used? Ans. 15lbs. at 5s., and 12lbs. at 3s. 6d.
- 3. How much brandy at \$2.40, \$2.60, \$2.80, and \$2.90, per gallon, must there be in one hogshead of a mixture worth \$2.70 per gallon? Ans. 18 gals. at \$2.40, 9 gallons at \$2.60, \$9 gals at \$2.80, and 27 gals. at \$2.90 per gallon.

EXCHANGE OF CURRENCIES.

17. Exchange of Currencies is the process of changing a sum of money expressed in the denomination of one country to an equivalent sum expressed in the denominations of another country.

18. By the currency of a country is meant the coins, or money, or circulating medium of trade of that country.

19. The intrinsic value of a coin is determined by the

kind, purity, and quantity of metal it contains.

20. The relative value or commercial value of a coin is its market value, and is fixed by law and commercial usage.

FOREIGN MONEYS OF ACCOUNT,

WITH THE PAR VALUE OF THE UNIT, AS FIXED BY COMMERCIAL USAGE, EXPRESSED IN DOLLARS AND CENTS.

AUSTRIA60 kreutzers = 1 florin (silver) =	\$0.485
BELGIUM100 cents = 1 guilder or florin; 1 guilder (silver) =	.40
Brazil1000 recs = 1 milree =	*828
BREMEN5 schwares = 1 grote; 72 grotes = 1 rix-dollar(silver)=	787
British India-12 pice=1 anna; 16 annas=1 Company's rupee=	•445
BUENOS AYRES8 rials=1 dollar currency (variable), mean value=	-93
CANTON10 cash t=1 candarines; 10 cand.=1 mace; 10 mace=	
1 tael=	1.48
CAPE OF GOOD HOPE.—6 stivers=1 schiling; 8 schilings = 1 rix-dollar	-313
CEYLON4 pice=1 fanam; 12 fanams = 1 rix-dollar=	40
CUBA, COLOMBIA AND CHILL.—8 rials = 1 dollar =	1.00
DENMARK.—12 pfenning = 1 skilling; 16 skillings = 1 marc; 6 marcs = 1 rix-dollar =	.52
ENGLAND4 farthings=1 penny; 12 pence=1 shilling; 20shil£1=	4.867
France10 centimes=1 decime; 10 decimes=1 franc=	•186
GREECE100 lepta=1 drachme; 1 drachme (silver)=	.166
Holland100 cents=1 florin or guilder; 1 florin (silver) =	*40
HAMBURGH12 pfenning =1 schiling; 16 schil.=1 marc; 3 marcs	
=1 rix-dollar =	.841
MALTA20 grains = 1 taro; 12 tari =1 scudo; 24 scudl =1 pezza =	1.00
MILAN12 denari=1 soldo; 20 soldi=1 lira=	.20
Mexico8 rials=1 dollar=	1.00
MONTE VIDEO100 centesimos = 1 rial; 8 rials = 1 dollar =	.835
NAPLES10 grant = 1 carlino; 10 carlini = 1 ducat (silver)=	.80
Norway120 skillings = 1 rix-dollar specie (silver) =	1.06
PAPAL STATES 10 bajocchi=1 paolo; 10 paoli=1scudo or crown=	1.00
PERU8 rials=1 dollar (silver)=	1.00
PORTUGAL400 rees = 1 cruzado; 1000 rees = 1 milree or crown =	1.12
PRUSSIA12 pfennings=1 grosch (silver); 30 groschen = 1 thaler or	
dollar =	.69
RUSSIA100 copecks = 1 ruble (silver) =	.78
Sardinia100 centesimi = 1 lira =	.186
Sweden48 skillings = 1 rix-dollar specie=	1.06
Sicily20 grani = 1 taro; 30 tari = 1 oncia (gold)=	2.40
SPAIN,-84 maravedis=1 real of old plate :=	·10
8 reals = 1 plastre; 4 plastree;=1 pistole of exchange.	
20 reals vellon = 1 Spanish dollar =	1.00

[•] The current silver rupee of Bombay, Madras, and Bengal, is worth \$0.444. In India also they use couries for coin. These are small shells found in the Maldives and elsewhere: 2500 cowries make a rupee, and 100000 rupees make a lae.

[†] The cash, made of copper and lead, is said to be the only money coined in China.

t The old plate real is not a coin, but is the denomination in which exchanges are usually made.

7.88

St. Domingo100 centimes = 1 dollar =	£0·838
Trees we 12 densi di pezza: 1 soldi di pezza: 2 soldi di pezza = 1	
DAZZA OT N MRIS: I DEZZA (SHVCF) =	
TURKEY.—3 aspers=1 para; 40 paras = 1 piastre (variable) about	·096 ·186
VENICE100 centesimi = 1 lira =	
UNITED STATES OF AMERICA10 mills=1 cent; 10 cents = 1 dime	1.00
10 dimes=1 dollar=	1.00
21. The following table exhibits the commercial	value
of the Foreign coins most frequently met with.	
GUINEA	\$5.10
SOVEREIGN of Great Britain	4.867
Crown of England'	1 216
HALE-CROWN of England.	•608
SHILLING of England	241
DOLLAR of the United States	1.00
FRANC of France	.18
FIVE-FRANC PIECE of France	.93
LIVRE TOURNOIS OF France	·18½
FORTY-FRANC PIECE of France	7.66
CROWN OF France	1.06
Louis-D'OR of France	4.56
FLORIN of the Netherlands	•40
GUILDER of the Netherlands	•40
FLORIN of Southern Germany	-40
THALER OF RIX-DOLLAR Of Prussia and Northern Germany	
RIX-DOLLAR of Bremen	783
FLORIN Of Prussia	223
MARC-BANCO of Hamburgh	35
FLORIN of Austria and city of Augsburg	481
FLORIN of Saxony, Bohemia, and Trieste	. '48
FLORIN of Nuremburg, Frankfort, and Creveld	. '40
RIX-DOLLAR of Denmark	. 1.00
SPECIE-DOLLAR of Denmark	. 1.05
DOLLAR of Sweden and Norway	1.06
MILREE of Portugal	. 1.12
MILREE of Madeira	7.00
MILREE of Azores	. 83
REAL-VELLON of Spain	. '05
REAL-PLATE of Spain	10
PISTOLE of Spain	. 8.91
RIAL of Spain	13
PISTEREEN	18
Cross Pistareen	16
RUBLE (silver) of Russia	75

IMPERIAL of Russia.....

DOUBLOON of Mexico	\$15.60
HALF-JOE of Portugal	8.53
Lira of Tuscany and Lombardy	·16
LIRA of Sardinia	187
Ounce of Sieily	2.40
DUCAT of Naples	.80
CROWN of Tuscany	1.05
Florence Livre.	.15
Genoa "	-18
Geneva "	.21
Leghorn Dollar.	•90
Swiss Livre	-27
Scupo of Malta	.40
Turkish Plastre.	.05
PAGODA of India	1.84
RUPEE of India	444
	1.48
TAEL of China	1 48

22. In Canada all accounts were kept in pounds, shillings, pence, and farthings, previous to the adoption of the decimal coinage by Act of Provincial l'arliament in 1853. In the United States also accounts were simi-larly kept prior to the adoption of Federal Money In 1788. In the States at the time Federal money was adopted, the Colonical currency or bills of credit had become more or less depreciated in value, i. e., a colonial shifling was worth less than a shilling sterling, &c., and the depreciation in value being greater in the enrrencies of some colonies than in others gave rise to the different values of the present old currencies of the different States.

TABLE OF CURRENCIES

IN CANADA AND THE UNITED STATES.

In Canada, Nova Scotia, New Brunswick, &c., \$1 = 5s. or £1. In N. Y., N. C., Ohio, and Mich., In N. Eng., Va., Ky., Ten., Ia., Ill., Miss., \$1 = 8s.or £2 Missouri, \$1 = 6s.or £-3 In Penn., New Jer., Del., and Md., \$1 = 7s. 6d. or £3.In Georgia and S. C., $$1 = 4s. 8d. \text{ or } \pounds_{36}^{7}$

Note.-The remaining States use the Federal money exclusively.

23. To reduce dollars and cents to old Canadian Currency, or to any State Currency:-

RULE.

Multiply the given sum by the value of \$1 in the required currency expressed as a fraction of a pound. The product will be pounts and decimals of a pound.

Reduce (Art. 58, Sect. IV.) decimals to shillings, pence, and farthings.

EXAMPLE 1.—Reduce \$493.72 to Old Canadian Currency.

OPERATION.

 $49372 \times \frac{1}{5} = £123.43 = £123.8s.7\frac{1}{5}d.$ Ans.

Example 2.—Reduce \$749.80 to New England Currency.

OPERATION.

 $749.80 \times \frac{3}{10} = £224.94 = £224.188.93 d. Ans.$

EXAMPLE 3 .- Reduce \$1111-11 to New York Currency.

OPERATION.

 $1111^{\circ}11 \times \frac{2}{5} = £444^{\circ}444 = £444^{\circ}88, 10\frac{1}{2}\frac{4}{5}d, Ans.$

EXERCISE 128.

- 1. Reduce \$1974.80 to New Jersey Currency. Ans. £740 11s.
- 2. Reduce \$765.43 to Michigan Currency. Ans. £306 3s. 5% d.

3. Reduce \$7172.19 to Old Canadian Currency.

Ans. £2043 0s. 112d.

24. To Reduce Old Canadian Currency or any State Currency to dollars and cents:—

RULE.

Express the given sum decimally and divide it by the value of a dollar expressed as a fraction of a pound; the quotient will be dollars, cents, &c.

EXAMPLE 1.—Reduce £179 18s. 43d., Old Canadian Currency, to dollars and cents.

OPERATION.

£179 18s. $4\frac{3}{4}d.=$ £179'9197916 and 179'9197916: $\frac{1}{4}=$ \$719'67916. Ans. Note.—Old Canadian Currency may be most expeditiously reduced to dollars and cents by the rule given in Art. 80, Sect. 1.

EXAMPLE 2. Reduce £234 18s. 94d., Ohio Currency, to dollars and cents.

OPERATION.

£234 18s. $9\frac{1}{4}$ d.=£234 9395416 and 234 9385416 $\div \frac{2}{3}$ = \$587 34635416. Ans.

EXERCISE 129.

- 1. Reduce £743 18s. 11d., New England Currency, to dollars and cents.

 Ans. \$2479.8194.
- Reduce £119 9s. 81d., Maryland Currency, to dollars and cents.
 Ans. \$318.625.
- Reduce £473 17s. 13d., Georgia Currency, to dollars and cents. Ans. \$2030.816964.

25. To reduce dollars and cents to sterling money :-

RULE.

Divide the given sum by the value of £1 sterling (\$4.8674), the quotient will be pounds sterling and decimals of a pound.

Reduce the decimal part (Art. 58, Sect IV) to shillings and pence.

Example.—Reduce \$749.83 to sterling money.

OPERATION.

749.83-4.867=£154.0641=£154 1s. 31d. Ans.

EXERCISE 130.

- 1. Reduce \$1006.90 to sterling money. Ans. £206 17s. 73d.
- 2. Reduce \$916.87 to sterling money. Ans. £188 7s. 81d.
- 3. Reduce \$2114.81 to sterling money. Ans. £434 10s. 43d.

26. To reduce sterling money to dollars and cents :--RULE.

Express the given sum decimally and multiply by the legal value of £1 sterling (\$4.867).

Example.—Reduce £78 11s. 43d. to dollars and cents.

OPERATION.

£78 11s. 43d.=£78 5697916, and 78 5697916×4 867=\$382 399. Ans.

EXERCISE 131.

1. Reduce £2043 11s. 3d, sterling to dollars and cents.

Ans. \$9946.01868.

2. Reduce £777 7s. 7d. sterling to dollars and cents.

Ans. \$3783.50437.

3. Reduce £557 19s. 51d. sterling to dollars and cents.

Ans. \$2715.65418.

EXCHANGE.

27. Exchange is a commercial term, denoting the payment of money by a person residing in one place to a person residing in another, by draft or bill of exchange.

- 28. A bill of exchange is a written order addressed to a person directing him to pay, at a specified time and place, a certain sum of money to another person or his order.
- 29. The person who signs the bill of exchange is called the drawer or maker of the bill.

30. The person on whom it is drawn is called the drawee, and, after he has accepted it, the acceptor.

31: The person to whom the money is directed to be

paid is called the payee.

- 32. The person who purchases the bill of exchange, i. e., the person in whose favor it is drawn, is called the buyer or remitter.
- 33. The person who has legal possession of the bill is called the holder.
- 34. The acceptance of a bill or draft is a promise on the part of the drawee to pay it at maturity or the specified time. The usual mode of accepting a bill is for the drawee to attach his signature to the word "accepted," written either across the face of the note or on its back.

NOTE.-A draft or bill of exchange should be presented to the drawer. for his acceptance, immediately on its receipt.

35. If the payee or holder of a bill or draft wishes to sell it or transfer it, he endorses it, i. e., he writes his name on the back.

Note.--If the endorser directs the bill to be paid to a particular person. the endorsement is call a special endorsement and the person therein named is called the endorsee.

If the endorser simply writes his name on the back of the hill, the endorsement is called a blank endorsement.

When the endorsement is blank, or when the bill is made payable to bearer, it may be transferred from one to another at pleasure, and the drawee is bound to pay it to the holder at maturity. If the drawee or acceptor of a bill fail to pay it, the endorsers are responsible for the payment.

36. When the drawee of a bill refuses acceptance, or, having accepted, fails to make payment when it becomes due, the bill is immediately pro-

37. A protest is a formal declaration in writing, made by a public officer called a Notary Public, at the request of the holders of the bill, notifying the drawer, endorsers, &c., of its non-acceptance or non-payment.

Note. - If the drawer and endorsers are not notified within a reasonable time of the non-acceptance or non-payment of the bill, they are not re-

sponsible for its payment.

When a bill is protested for non-acceptance, the drawer must pay it immediately, even though the specified time has not arrived.

38. The time specified for the payment of a bill varies, and is a matter of

agreement between the drawer and buyer. Some are payable at sight, some at a certain number of days or months after sight or after date. In both cases it is customary to allow three days of grace.

39. Bills of Exchange are divided into inland and foreign bills. When

39. Bills of Exchange are divided into inland and foreign bills. When both drawer and drawer reside in the same country, they are called inland bills or drafts; when in different countries, foreign bills.

NOTE.—Three bills are commonly drawn for the same amount, &c., and are called respectively the First, Second, and Third of Exchange, and together constitute a set. These are sent by different ships or conveyances; and when the first that arrives is accepted or paid, the others become void. This plan is adopted in order to avoid the delays which might arise from accidents microriage &c. accidents, miscarriage, &c.

FORM OF AN INLAND BILL OR DRAFT.

\$3000.

TORONTO, 1st July, 1859.

Ten days after sight, pay to the order of George McCallum, Esq., Three Thousand Dollars, value received, and charge the same to

RIDOUT & STEVEN.

Messrs. Hardman & Morris, Bankers, Hamilton.

FORM OF A FOREIGN BILL OF EXCHANGE.

Exchange 8000 francs.

TORONTO, 17th July, 1859.

At sixty days sight of this first of exchange (the second and third of the same date and tenor unpaid) pay to Edward Atkinson, Esq., or order, the sum of Eight Thousand Francs, with or without further advice.

JOHN HENDERSON.

Messrs. Duhamel & Beaubarnois, Bankers, Paris.

- 40. The par of exchange is that amount of the money of one country actually equal to a given sum of the money of another, and is either intrinsic or commercial.
- 41. The intrinsic par of exchange is the real value of the money of different countries, as determined by the weight and purity of their standard coins.

Thus, the English sovereign is intrinsically worth \$4861 of the gold coin of the United States.

42. The commercial par of exchange is a comparison of the coins of different countries, according to their nominal or market value.

Thus, the English sovereign varies in market value from \$483 to \$485. Note.—The intrinsic par is always the same solong as the standard coins are of the same kind, quantity, and quality of metal; the commercial par is determined by commercial usage, and fluctuates, being different at different times.

43. The Course of Exchange signifies the current price paid in one country for bills of exchange drawn on another.

Note.—The course of exchange is constantly fluctuating from various causes. When the exports of a country just equal its imports, the exchange will be at par; when the balance of trade is against a place, i. e. when its imports exceed its exports, bills on foreign countries will be above par, because there will be a greater demand for them to pay the bills due abroad; when the balance of trade is in favor of a country, i. e. when its exports exceed its imports, bills of exchange on foreign countries will be below par since fewer of them will be required,

The course of exchange can never very greatly exceed the intrinsic par value, because when the premium on bills of exchange becomes great it is less expensive to importers to pay for the insurance and transportation of bullion and coin to meet their payments than to transmit bills of exchange.

44. By an old act of Provincial Parliament it was enacted that £100 sterlings or 100 sovereigns should be equivalent to £111½ Canadian money, i. c. to \$44444 or £1 sterling = \$4444. It was found however that this was very much below the real or intrinsic value of the sterling pound, accordingly, while its legal value was only \$4444, the market or commercial value varied from \$430 to \$456. By an act recently passed by the Provincial Parliament, the value of the pound sterling was fixed at \$4866.

Now the new paris equal to the old par plus nine and a-half per cent. of the old par, that is, \$4*441+9\frac{1}{2}\$ per cent. of \$4*444, which is 422, make \$4*866=
the new par. Consequently the rate of exchange between Canada and Great Britain must reach the nominal premium or 9\frac{1}{2}\$ per cent. before it is

at par, according to the new standard.

45. Rates of exchange between Canada and Great Britain are commonly reckoned, at a certain per cent. on the old par of exchange, instead of on the new par.

EXAMPLE 1.—A merchant in Hamilton wishes to remit to London £749 3s. 6d. sterling; exchange being at 10 per cent. premium; how much must he pay for the bill of exchange?

OPERATION.

Old commercial par of £1 sterling = \$4.444

To which add 10 per cent. of itself = '444

Gives price of £1 = 4.888

Then £749 3s. 6d.=£749 175 \times 4 888 = \$3662 63\frac{1}{3}\$. Ans.

EXAMPLE 2.—A merchant in Toronto wishes to remit 144479 francs to Paris, exchange being at a premium of 2 per cent. What will be the cost of his bill in dollars and cents?

OPERATION.

Commercial value of the franc = 18.6 cents.
Add 2 per cent. = '372''

Gives value for remitting = 18.972 "Then $18.972 \times 144479 = 27410.55588 . Ans.

EXAMPLE 3.—What sum in dollars and cents will purchase a bill of exchange on Hamburg for 14667 marcs banco, exchange being at 1½ per cent. discount?

OPERATION.

Commercial value of the mare banco = 35
Deduct 1½ per cent. = 525

cents.

Gives value for remitting = 34.475Then 34.475 cents $\times 14667 = 5056.448 . Ans.

EXERCISE 132.

- 1. If I wish to remit \$16785.25 to Paris, for how many france and centimes can I obtain a bill—exchange being 5 francs 4 centimes to the dollar?
 - Ans. 84597 francs 66 centimes.
- 2. What is the cost of a bill of exchange for 4000 marcs banco at one per cent. above par?

 Ans. \$1414.
- How much must I give for a draft on New York for \$35678 at 2½ per cent. premium?
 Ans. \$36480.755.
- 4. What will a bill of exchange on St. Petersburg for 2560 rubles cost in dollars and cents, at 2 per cent. discount, the par being 75 cents per ruble?

 Ans. \$1881.60.
- 5. What will be the cost of a bill of exchange on Great Britain for £800 sterling at 8 per cent. premium?

Ans. \$3840.00.

ARBITRATION OF EXCHANGE.

46. Arbitration of exchange is the process of changing a given amount of the money of one country into an equivalent sum of the money of another, through the medium of one or more intervening currencies with which the first and last are compared.

Note.—Arbitration enables a person to ascertain whether it is more advantageous to draw or remit a bill of exchange direct from one country to another or indirectly through other places.

- 47. When there is but one intervening country, the operation is termed simple arbitration; when there are two or more intervening countries, compound arbitration.
- 48. All question in arbitration of exchange may be solved by one or more statements in simple proportion; it is more convenient, however, to consider them as problems in Conjoined Proportion, and work them by the rule given in Art. 50, Sec. V.

Note.—Care must be taken to reduce all the money of the same country to the same denomination before linking them as directed in the rule.

EXAMPLE 1.—A merchant in Toronto wishes to remit 2000 marcs banco to Hamburg, and the exchange between Toronto and Hamburg is 35 cents for one marc banco. He finds, however, that the exchange between Toronto and Lisbon is \$1.08 for 1 milree, that between Lisbon and Paris is 6 milrees for 38 francs, and that between Paris and Hamburg is 19 francs for 10 marcs banco. How much will he gain by the circuitous exchange?

OPERATION.

STATEMENT.	SAME CANCELLED.
108 cents = 1 mi	lree. $3^{108} = 1$
6 milrees = 38 fra	
19 francs = 10 ms	arcs banco. $200 \frac{19}{2000} = 10$
$_{1}2000 \text{ marcs banco} = x.$	z^{00} $gqqq = x$.
$x = 200 \times$	$3 \times 108 = $648.$
	1 1 1' an amahanga

 $2000 \times 35 = $700.00 =$ what he has to pay by direct exchange. 648.00 =what he has to pay by circuitous exchange.

Difference=\$ 52.00 = what he gains by the latter mode.

Example 2.—£824 Flemish being due to me at Amsterdam, it is remitted to France at 16d. Flemish per franc; from France to Venice at 300 francs per 60 ducats; from Venice to Hamburg at 100d. per ducat; from Hamburg to Lisbon at 50d. per 400 rees; from Lisbon to England at 5s. 8d. sterling per milree; and from England to Canada at \$4.867 per £1 sterling. Shall I gain or lose, and how much, the exchange between Canada and Amsterdam being 7s. 1d. Flemish per dollar?

OPERATION.

STA'	TEMENT.	SAME CANCELLED	•
		2	
16d. Flemish	= 1 franc.	$50 \frac{16}{800} = \frac{1}{60}$	
	= 60 ducats.	g = g g = g g	
	- 100d Flowigh	$1 = 100_{8}$	
50d. Flemish	= 400 rees.	10 50 = 400 8 10 1000 = 68 17 4 240 = 4.867	
1000 rees	= 68d. British.	$^{10}_{31000} = 6817$	
240d. British	a = \$4.867.	3 240 = 4.867	3296
x	= 197760d. Flemish.	pgrryt = x	17114

 $x = \frac{17 \times 4.867 \times 3296}{2 \times 50} = \$2727.07\frac{3}{4} = \text{amount remitted.}$

Then since exchange between Canada and Amsterdam is 7s. 1d. Flemish per dollar we have

85d. Flemish = 100 cents. x " = 197760d. Flemish.

Here $x = \frac{197760 \times 100}{85} = $232658 = \text{sum I should have received had it}$

been transmitted direct from Amsterdam to Canada. Hence by the circuitous exchange I gain the difference between \$2727-07\frac{1}{4} and \$2326-38 that is \$400-40\frac{1}{4}.

EXERCISE 133.

1. If London would remit £1000 sterling to Spain, the direct exchange being 42½d, per piastre of 272 maravedis; it is asked whether it will be more profitable to remit directly, or to remit first to Holland at 35s, per pound; thence to France at 19½d, per franc; thence to Venice at 300 france per 60 ducats; and thence to Spain at 360 maravedis per ducat? Ans. The circular exchange is more advantageous by 103 piastres, 3 reals, 20 maravedis.

2. A merchant wishes to remit \$4888.40 from Montreal to London, and the exchange is 10 per cent. He finds that he can remit to Paris at 5 francs 15 centimes to the dollar, and to Hamburg at 35 cents per marc banco. Now, the exchange between Paris and London is 25 francs 80 centimes for £1 sterling, and between Hamburg and London 133 marcs banco for £1 sterling. How had he better remit?

Ans. If he remits direct to London he will obtain a bill for £1000.

If he remits through Paris he will obtain a bill for only £975 15s. 81d.

If he remits through Hamburg he will obtain

a bill for £1015 15s. 5d.

Hence the best way to remit is through Hamburg, and the next best way is direct to London.

3. A merchant in Quebec wishes to remit 1200 marcs banco to Hamburg, and the exchange of Quebec on Hamburg is 35 cents for 1 marc. He finds the exchange of Quebec on Paris is 18 cents for 1 franc; that of Paris on London, is 25 francs for £1 sterling; that of London on Lisbon, is 180 pence for 3 milrees; that of Lisbon on Hamburg, is 5 milrees for 18 marcs banco. How much will he gain by the circuitous exchange?

Ans. Direct exchange \$420; circuitous exchange

\$375; gain \$45.

QUESTIONS TO BE ANSWERED BY THE PUPIL.

NOTE.—The numbers after the questions refer to the numbered articles of the section.

What is profit and loss? (1)
 How do we find the total gain or loss on a quantity of goods when the cost price and selling price are given? (2)

3. How do we find at what price an article must be sold so as to gain or lose a specified percentage, the cost price being given? (3)

How do we find the rate per cent. of profit or loss? (4) 5. How do we find the cost price when the selling price and the gain or loss per cent. are given? (5) 6. What is barter? (6)

7. What is alligation? (8)

8. Into what rules is alligation subdivided? (9)

9. What is alligation medial? (10) 10. What is alligation alternate? (11)

11. How is alligation alternate proved? (13)

12. Give the different rules for alligation. (12, 14-16) 13. What is meant by the exchange of currencies? (17) 14. What is meant by the currency of a country? (18)

15. How is the intrinsic value of a coin determined? (19)

16. What fixes the commercial value of a coin? (20)
17. How do you account for the fact that the \$\mathbb{8}\$ is of different values in the American States? (22) 18. Give the value of the pound currency in Canada, and in the different States. (22)

19. How do we reduce dollars and cents to old Canadian currency or to any state currency? (23)

20. How do we reduce old Canadian currency or any state currency to dollars and cents? (24)

21. How do we reduce dollars and cents to sterling money? (25)

- 21. How do we reduce doilars and cents to Sterning money? (23)
 22. How do we reduce sterling money to dollars and cents? (26)
 23. What is a bill of Exchange? (28)
 24. Explain the terms drawer, drawee, acceptor, payee, holder, endorser, and endorsee. (29-35)
 25. How is a bill accepted? (34)
 26. What is the difference between a blank endorsement and a special

endorsement? (35) 27. What is meant by protesting a bill? (36, 37)

28. Explain what is meant by the First, Second, and Third of Exchange.

29. What is the par of Exchange? (40)
30. Explain the difference between the intrinsic par and the commercial par of Exchange. (41, 42)
31. What is the course of Exchange? (43)
32. Explain what is meant by saying the par of Exchange between Canada

and Britain is 91 per cent. (44) 33. Upon what is the rate of Exchange between Canada and Britain reckoned? (45)

34. What is arbitration of Exchange? (46) 35. What is the difference between simple and compound arbitration? (47) 36. By what rule are questions in arbitration of Exchange worked? (43)

SECTION X.

INVOLUTION, EVOLUTION, LOGARITHMS, AND LOGARITHMIC ARITHMETIC.

1. A power of any number is the product obtained by multiplying that number by itself one or more times.

Thus $25 = 5 \times 5$ is a power of 5; $81 = 3 \times 3 \times 3 \times 3$ is a power of 3, &c.

2. The number which, being multiplied once or oftener by itself, produces the power, is called the root of that power.

Thus 5 is the root of 25, since $5\times5=25$; 3 is the root of 81, since $3\times3\times$ $3 \times 3 = 81.$

3. The powers of a number are called the first, second, third, fourth, fifth, &c., according as the root is taken once, twice, thrice, four times, five times, &c., as factor.

Thus, 81 is called the fourth power of 3, because 3 is taken 4 times as factor, in order to produce 81.

4. The second power of a number is also called its square, because a square surface, the length of one of whose sides is expressed by a given number, will have its area expressed by the second power of that number. (See Art. 62, Sec. I.)

- 5. The third power of a number is also called its cube; because if the length of one side of a cube be expressed by a given number, the solid contents of the cube will be expressed by the third power of that number. (See Art. 64, Sec. I.)
- 6. The index or exponent of a power is a small figure written to the right, indicating how often the root has to be taken as factor in order to produce the given power.

```
= 2 = First power of 2.
                                                                                        Thus, 2^1 = 2
11113, 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 1115 power of 2.

2^{3} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{-} 2^{
```

taking 8 seven times as factor, &c.

7. $(5+8)^2$ means that the sum of 5 and 8 is to be squared as one number and is a very different thing from 5^2+8^2 , which means the sum of the squares of 5 and 8.

Thus $(5+8)^2 = 13^2 = 169$, while $5^2+8^2 = 25+64 = 89$. Therefore $(5+8)^2 = 25+80+64 = 18t$ part squared, plus twice product of 1st part by 2nd part, plus 2nd part squared.

- 8. The process of finding a power of a given number by multiplying it into itself is called Involution.
 - 9. To involve a number to any required power:—

Take the given number as factor as many times as there are units in the index of the required power and find the continued product of these factors.

Note. - Fractions are involved by multiplying both numerators and denominators as above, and mixed numbers should be reduced to fractions before applying the rule.

EXAMPLE 1 .- What is the fifth power of 7?

OPERATION.

Here the index of the required power is 5 and hence the given number 7 must be taken 5 times as factor.

 $7 \times 7 \times 7 \times 7 \times 7 = 16807$ Ans. Example 2.—What is the third power of ??

Ans.
$$(\frac{3}{4})^3 = \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} = \frac{27}{64}$$
 Ans.

EXERCISE 134.

- 1. Find the fifth power of 3.
- 2. Required the tenth power of 20.
- 3. Required the sixth power of 1.05.
- 4. Find the seventh power of 2.
- 5. Find the fifth power of &.
- 6. Required the third power of 113.
- Ans. 243.
- Ans. 10240000000000.
- Ans. 1.340095640625.
- Ans. 78187
- Ans. 8_{9049}^{312b} . Ans. $18_{919}^{18} = 1481 \frac{68}{18}$.

10. Let it be required to find the product of 43 by 42. $4^3 = 4 \times 4 \times 4$ and $4^2 = 4 \times 4$. Therefore $4^3 \times 4^2 = (4 \times 4 \times 4) \times (4 \times 4)$ = $4 \times 4 \times 4 \times 4 \times 4 = 4^5 = 4^3 + 2$.

Hence two or more powers of the same number are multiplied together by adding their indices or exponents.

Thus,
$$6^5 \times 6^2 \times 6^3 = 6^5 + 2 + 3 = 6^{10}$$
.
 $5 \times 5^2 \times 5^3 \times 5^7 = 5^{1+2} + 3 + 7 = 5^{13}$, &c., &c.

11. Let it be required to divide 35 by 32.

$$3^5 = 3 \times 3 \times 3 \times 3 \times 3$$
 and $3^2 = 3 \times 3$.
Therefore $3^5 \div 3^2 = \frac{3^5}{3^2} = \frac{3 \times 3 \times 3 \times 3}{3 \times 3} = 3 \times 3 \times 3 = 3^3 = 3^5 \cdot 2$.

Hence, to divide one power of a number by another power of the same number, we subtract the index of the divisor from the index of the dividend.

Thus,
$$75 \div 73 = 75 = 3 = 72$$

 $3^{11} \div 3^{4} = 3^{11} - 4 = 3^{7}$, &c., &c.

12. Let it be required to find the third power of 72. $(72)^3 = 72 \times 72 \times 72 = 7 \times 7 \times 7 \times 7 \times 7 \times 7 \times 7 = 76 = 72 + 3$

Hence to find any required power of a given power, we multiply the index of the given power by the index of the required power.

Thus, $(2^4)^5 = 2^4 + 5 = 2^{20}$; $(3^2)^7 = 3^2 \times 7 = 3^{14}$, &c., &c.

EXERCISE 135.

- 1. Multiply together 42,44,45, and 47.
- 2. Divide 1311 by 132. Ans. 139.
- Ans. 315. 3. Find the fifth power of 33. 4. Find the value of $\{(7^4 \times 7^3) \div (7^2 \times 7^2)\}^6$ Ans. 718.
- 5. Find the value of $\{(5^3 \times 5^4 \times 5^{11} \times 5^9) \div (5^3 \times 5^2 \times 5^7 \times 5^5)\}^3$ Ans. 530

Ans. 418.

EVOLUTION.

13. Evolution is the process of finding any required root of a given power.

NOTE.—Evolution is the reverse of involution; the latter teaches how to find a power of a number by multiplying it into itself; the former, how to find the root of a power by resolving it into equal factors. It follows that powers and roots are correlative terms. If one number is a power of another the latter is a root of the former.

14. A root of a number may be indicated by either of two methods.

1st. By using √, called the radical sign (Lat. radix, a root).

2nd. By using a fractional index having unity for its numerator, and the number expressing the degree of the root for denominator.

Thus, The square root of 7 is expressed either by 1/7 or by 71. The cube root of 6 is The seventh root of 2 is

Note.—The figure placed in the radical sign, or as denominator of the fractional index denotes the root.

A fractional index with numerator greater than one is sometimes used ; in such cases the denominator denotes the root, and the numerator the power to be taken.

Thus, 23 means either the cube root of the square of 2 or the square of the cube root of 2.

The radical sign \sqrt{a} corrupted form of the letter r, the initial letter of the Latin word radix, "a root."

EXERCISE 136.

1. Express the square root of 17 and the cube root of 11.

Ans. 17 or 17 and 1/11 or 113

- 2. Express the fifth root of 4.
- 3. Express the fourth root of 53 Ans. 1/53 or 54
- 4. Express the sixth root of 74. Ans. $\sqrt[6]{7}$ or $7^{\frac{1}{6}} = 7^{\frac{2}{3}}$
- 5. Express the third power of the fifth root of 1. Ans. (⁵√2)³ or 2⁸
 6. Express the eleventh power of the tenth root of 161.

15. Let it be required to extract the fifth root of 315.

The fifth root of 316 is expressed either by \$/316, or by 3 6.

Taking the latter mode, we have $3^{\frac{15}{6}} = 3^{\frac{3}{6}} = 3^{\frac{15}{6}} = 5$.

Hence, to extract any root of a given power of a number we divide the index of the power by the index of the root'

Thus, The seventh root of 214 is 214 -7 = 22 The fourth root of 212 is 212 -4=23, &c., &c.

EXTRACTION OF THE SQUARE ROOT.

16. To extract the square root of a number, is to find a number which, being multiplied once by itself, will produce the given number.

RULE.

I. Point off the given number into periods of two figures each. beginning at the decimal point.

II. Find the highest square contained in the left-hand period and place its root to the right of the number, in the place occupied by

the quotient in division.

III. Subtract the square of the digit put in the root, from the left-hand period, and to the remainder bring down the next period to the right, for a new dividend.

IV. Double the part of the root already found for a TRIAL DIVISOR. V. Find how many times the trial divisor is contained in the dividend, exclusive of the right-hand digit, and place the figure thus obtained both in the root and also to the right of the trial divisor.

VI. Multiply the divisor thus completed by the digit last put in the root; subtract the product from the dividend, and to the

remainder bring down the next period for a new dividend.

VII. Again, double the part of the root already found for a new TRIAL DIVISOR; proceed as in V. and VI., and continue the process until all the periods are brought down.

Note .-- If the given number is not a perfect square, its exact square root cannot be found; but by annexing periods of ciphers, we can obtain any required approximation to it.

EXAMPLE 1 .- What is the square root of 22420225?

22420225(4735, is the required root.

87)642 609

943)3302 2829

9465)47325

EXPLANATION.—Here 22 is the left hand period, and the highest square in 22 is 16, of which the square root is 4. We place 4 square root is 4. We place 4 in the root and subtract 16 from 22 This leaves a remainder 6, to which we bring down the next period, 42, and thus obtain 642 for the new dividend. Our next step is to find the trial divisor, which we obtain by doubling the part of the root already found. This gives us 8, (= 4 doubled) and we ask how

many times 8 will go into 64 (the dividend exclusive of the right hand digit). Bearing in mind that we are to put the digit thus obtained both in the root and in the divisor, and that the completed divisor will be over 80, we find that the required digit is 7, which we accordingly place both in the root and in the divisor. The complete divisor is 87, which multiplied by 7, gives 609, and this subtracted from 642, gives a remainder 33, to which we bring down the next posied 69, and thus act as 60 for the past divided we bring down the next period, 02, and thus get 3302 for the next dividend.

Again, doubling the part of the root already found, we obtain 94 (= 47 doubled) for a trial divisor, and as this will go into 330 (the dividend exclusive of the right hand digit) 3 times, we place 3 both in the root and

in the divisor.

Multiplying the 943 thus obtained by 3; subtracting and bringing down the next period, we get 47325 for the next dividend. The next trial divisor is 946 (=473 doubled) which will go into 4732 (the dividend exclusive of the right hand figure) 5 times; and we therefore place 5 both in the root and in the divisor. Multiplying and subtracting, we find no remainder, 473 is therefore the square root of 22420225.

PROOF.-4735×4735=22420225.

EXPLANATION AND REASON.

17. We may consider every number as consisting of its tens plus its units; that is, if the tens be represented by the letter a and the units by the letter b. Number = a+b; and Number = a+b; and Number squared $= (a+b)^2 = a^2 + 2ab + b^2$.

Hence the square of a number is equal to the square of the tens, plus twice the product of the tens by the units, plus the square of the units.

Thus, 69 = 60 + 9

And $(69)^2 = (60+9)^2 = (60)^2 + 2 + 60 \times 9 + 9^2 = 3600 + 1080 + 81 = 4761$.

18. Let it now be required to extract the square root of 4761.

I. It is evident that the square of a number consisting of a single digit can never contain more than two digits or less than one; conversely the square root of a number of one or two digits must be a number of one digit. Again the square of a number consisting of two digits can never contain more than four or less than three digits; conversely the square root of a number of three or four digits must be a number consisting of two digits. Similarly, the square of a number consisting of three digits can contain neither more than six nor less than five digits, and conversely, the square root of a number consisting of five or six digits, must be a number of three digits, &e.; that is, one digit in the root is equivalent to two digits in the square, or conversely, two digits in the square are equivalent to one digit in the root.

Hence, if we divide the given number into periods of two figures each beginning at the decimal point, the number of periods will indicate the number of digits in the root.

II. Taking the number 4761, we divide it into periods, thus, 4761, and since there are two periods in the square there must be two digits in the root. We thus learn that 4761 is the square of a certain number of tens, plus a certain number of units. Now it is manifest that the square of the tens can only be found in the second period, 47, since tens squared can give no digit of a lower order than hundreds. Also, that no part of the square of the units can be found in the second period, 47, since any single unit squared can give no digit of a higher order than tens.

Therefore the square of the units is found only in the first or lowest period, the square of the tens only in the second period, the square of the hundreds only in the third period, &c.

OPERATION.

4761(69 = square root. = highest square in 2nd period.

6 tcns×2=12 tens+9 units=129) 1161 = remainder which contains, 1st. twice product of tens by units, 2nd, the square of the units.

 $1161 = twice 6 tens \times 9 + 92$.

III. In extracting the square root of this number, we look first for the digit occupying the place of tens in the root. We know (11.) that the square of cens is contained in the second period, 47, and the highest square contained in 47 must be the square of the highest digit that can possibly stand in the place of tens in the root. But the highest square in 47 is 36, the square root of which is 6. Placing 36 under the 47, 6 in the root, we subtract and bring down the next period, 61, and thus get a total remainder of 1161. Now

(Art. 17) the whole number 4761 consists of the square of the tens, plus (Art. 17) the whole number 4761 consists of the square of the tens, plus twice the product of the tens by the units, plus the square of the units; and since we have subtracted from it 36, (or if the ciphers be annexed 3640) the square of the tens, the remainder, 1161, must contain twice the product of the tens by the units, plus the square of the units; that is, twice 6 tens x by a certain number of units, plus the square of that number of units; and because we do not know as yet what the units' figure of the root is, we use twice the tens for a trial divisor.

IV Since we are now seeking the units' digit of the root, and since tens.

IV. Since we are now seeking the units' digit of the root, and since tens multiplied by units can give no digit of a lower order than tens, the right hand digit of the dividend can form no part of twice the product of the tens by the units, and we have simply to ascertain how often 12 tens (=twice 6 tens) will go in 116 tens. Evidently 9 times.

V. Lastly, we place the digit thus found in the root, because it is a figure of the root, and in the divisor, because the dividend contains not only twice the product of the tens by the units, but also the square of the units.

Now when we multiply the 9 by 9 we get the course of the units and when

Now when we multiply the 9 by 9 we get the square of the units, and when we multiply the 12 tens by 9 units, we get twice the product of the tens of the root by the units.

EXAMPLE 2.—Extract the square root of 127449.

127449(357 65)374

OPERATION.

707)4949 4949

EXPLANATION AND REASON.—From the pointing off we learn that the given number is the square of a certain number of hundreds, plus a certain

number of tens, plus a certain number of units.

I. We are first then to look for the digit in the place of hundreds, and since hundreds squared can give no digit of a lower order than tens of thousands or of a higher order than hundreds of thousands, we see that the square of the hundreds can be found only in the left hand period. The highest square contained in the left hand period is 9, the square root of

which is the left hand digit of the entire root.

11. After subtracting, we bring down the next period only, because we are now looking for the digit in the place of tens in the root. And since tens squared can give no digit of a lower order than hundreds, the lowest period cannot enter into any part of the square of tens, much less can it enter into any part of twice the product of the hundreds by the tens, and therefore when looking for the tens of the root, we pay no attention to the right hand period of the square.

III. The remainder of the process is similar, and the reason for the various

steps the same as in example 1.

19. To extract the square root of a decimal:—

RULE.

I. Annex one cipher, if necessary, in order that the number of decimal places may be even.

II. Point off into periods of two figures each, beginning at the decimal point, and extract the square root as in whole numbers, remembering that the number of decimal places in the root will be equal to the number of periods in the square.

EXERCISE 137.

1. Extract the square root of 195364.

Ans. 442.

2. Extract the square root of .0676.

Ans. .26. Ans. 992.

3. Extract the square root of 984064.

4. Extract the square root of 5, true to five decimal places.

Ans. 2.23606. 5. Extract the square root of .5 true to six decimal places.

6. Extract the square root of 60.487129.

Ans. .707106. Ans. 7.777.

7. Extract the square root of 79792266297612001.

Ans. 282475249.

8. Extract the square root of 0.0000012321.

Ans. 0.00111.

20. To extract the square root of a fraction:

RULE.

I. Reduce mixed numbers to improper fractions, and compound and complex fractions to simple ones, and the resulting fraction to its lowest terms.

II. Extract the square root of both numerator and denominator separately, if they have exact roots; but if they have not both exact roots, reduce the fraction to its corresponding decimal, by Art. 56, Sec. IV., and then extract the root as in Art. 19.

EXAMPLE 1.—Extract the square root of 21.

OPERATION.

Ans.
$$2\frac{1}{4} = \frac{9}{4}$$
 and $\sqrt{\frac{9}{4}} = \frac{\sqrt{9}}{\sqrt{4}} = \frac{3}{2} = 1\frac{1}{2}$.

Example 2.—Extract the square root of 33.

OPERATION.

$$3\frac{3}{4} = \frac{3}{4} = 3.42857142$$
 and $\sqrt{3.42857142} = 1.8516$.

EXERCISE 138.

1. Find the square root of .1.

Ans. 1. Ans. 1.

2. Find the square root of Tat.

Ans. 2.267786.

3. Find the square root of 51. 4. Find the square root of 217.

Ans. .63509.

5. Find the square root of 131.

Ans. 3.63318.

21. Let it be required to extract the square root of 63513.423 septenary,

OPERATION. 43)235 162 466) 4313 4161 5051)122 '42 50 '51 505 '25) 41 '6130 34 3564

505 '335) 4 '223300 3 436344 *453623

EXPLANATION .- We point off into periods of two places each, as in the decimal or common 63513'4230(236'155 + scale. Then the highest square in 6, the first period, is 4, of which the square root is 2. Sub-tracting 4 from the 6 and bringing down the next period, 35, we get 235 for the dividend. Next doubling the 2 we obtain 4, and we find that this will go into 23, the dividend exclusive of the right hand figure, 3 times. Placing this 3 in both root and divisor, multiplying (bearing in mind that 7 is the common ratio of the system) and subtracting, we obtain a remainder of 43, to which we bring down the next period, 13, and thus get 4313 for the next dividend, &c.

Example. - Extract the square root of 4731392 undenary true to two places to the right of the separating point.

OPERATION. 4731392(2182.99. Ans. 41) 73 428)3213 3019 4352) 11592 4354 '9) 3999 '00 3594 '64 4355 79) 404 0700 359 5744 55 *5£67

EXERCISE 139.

- 1. Extract the square root of 11333311 septenary. Ans. 2626. 2. Extract the square root of 33233344 senary. Ans. 4344.
- 3. Extract the square root of 4234 10123 quinary. Ans. 43.412.
- 4. Extract the square root of 88888 888 nonary. Ans. 888.88.
- 5. Extract the square root of 248664et69 duodenary. Ans. 54373.

APPLICATION OF SQUARE ROOT.

22. A triangle is a figure having three sides, and consequently three angles. When one of the angles is a right angle, like the corner of a square, the triangle is called a right angled triangle.

- 23. In a right angled triangle the side opposite the right angle is called the hypothenuse, and the sides containing the right angle, are called the base and the perpendicular.
- 24. It is shown by elementary geometry that the square described on the hypothenuse of a right angled triangle is equal to the sum of the squares described on the other two sides.

Or if h be the hypothenuse, b the base, and p the perpendicular; then

$$h^{2} = b^{2} + p^{2}, \text{ and hence}$$

$$h = \sqrt{b^{2} + p^{2}}$$

$$b = \sqrt{h^{2} - p^{2}}$$

$$p = \sqrt{h^{2} - b^{2}}$$

That is—to find the hypothenuse of a right angled triangle when the other sides are given we add the square of the base to the square of the perpendicular and extract the square root of the sum.

To find the length of the base we subtract the square of the perpendicular from the square of the hypothenuse and extract the square

root of the remainder.

To find the length of the perpendicular we subtract the square of the base from the square of the hypothenuse and extract the square root of the remainder.

25. The following principles are also established by geometry:—

Circles are to each other as the squares of their diameters.

If the diameter of a circle be multiplied by 3.1416, the product is the circumference.

If the square of half the diameter of a circle be multiplied by

3.1416, the product is the area.

If the square root of half the square of the diameter of a circle

be extracted, it is the side of an inscribed square.

If the area of a circle be divided by 3.1416, the quotient is the square of half the diameter.

EXAMPLE 1.—If the hypothenuse of a right angled triangle is 12 feet long and the base 10 feet, how long is the perpendicular?

OPERATION.

$$12^2 = 144$$

 $10^2 = 100$

difference = 44 and $\sqrt{44}$ = 6.63324. Ans.

EXAMPLE 2.—If the foot of a ladder be placed 20 feet from the side of a house, how long must it be in order to reach to the top of the house, the latter being 46 feet high?

OPERATION. $46^2 = 2116$ $20^2 = 400$

sum = 2516 and $\sqrt{2516} = 50.15$. Ans.

EXERCISE 140.

 Suppose a ladder 100 feet long be placed 60 feet from the foot of a tree; how far up the tree will the top of the ladder reach?
 Ans. 80 feet.

2. Two persons start from the same place, and go, the one due north 50 miles, the other due west 80 miles. How far apart are they?
Ans. 94.34 miles, nearly.

 How large a square stick of timber can be hewn from a round stick 24 inches in diameter? Ans. 16:97 in. to the side.

 A man has a laider 36 feet long, which, when put on the outside of a ditch 20 feet wide, exactly reaches the top of the wall. Required the height of the wall. Ans. 29 933.

5. A ladder 40 feet long is placed against a wall 14 feet high, and just reaches the top; it is then turned over and touches the top of another wall 26 feet high. Required the breadth of the street.
Ans. 22 622 yds.

6. If the area of a circle be 1760 yards, how many feet must there be in the side of a square to contain that quantity?

Ans. 125.857.

7. A certain general has an army of 141376 men. How many must be place in rank and file to form them into a square? Ans. 376.

8. What is the distance through the opposite corners of a square vard?

Ans. 4.24264 feet.

9. The distance between the lower ends of two equal rafters, in the different sides of a roof, is 32 feet, and the height of the ridge above the foot of the rafters is 12 feet. What is the length of a rafter?

Ans. 20 feet.

10. What is the distance measured through the centre of a cube from one corner to its opposite corner, the cube being 3 fect, or 1 yard, on a side? Ans. 5-196 feet.

11. If an iron wire $\frac{1}{10}$ inch in diameter will sustain a weight of 450 pounds, what weight might be sustained by a wire an inch in diameter?

Ans. 45000 lbs.

12. What length of rope must be tied to a horse's neck, in order that he may feed over an acre?

Ans. 7-136+perches.

13. Four men A, B, C, D, bought a grindstone, the diameter of which was 4 feet; they agreed that A should grind off his share first, and that each man should have it alternately until be had worn off his share; how much did each man grind off?

Note.—In this question we disregard the thickness of the grindstone. After the first has ground off his portion, there will remain a of the stone Then the whole stone: part remaining:: square of diameter of whole stone: square of diameter of part remaining. (Art. 25)

That is, 1: $\frac{3}{4}$: 4^2 : x^2 , and hence $x = 4 \times \sqrt{\frac{3}{4}} = 4 \times \sqrt{\frac{75}{75}} = 866 \times 4 = 3.464 = \text{diameter of stone after the first has ground off his portion.}$

Similarly, after the second has ground off his portion there will remain $\frac{1}{2}$ of the stone, and after the third has taken his portion. $\frac{1}{4}$ of the stone.

Hence $1:\frac{1}{2}::4^2:x^2$, whence x=4 $\sqrt{\frac{1}{2}}=2.828$ ft. = diameter after 2nd has taken his portion.

1: $\frac{1}{4}$:: $\frac{4^2 : x^2}{x^2}$, whence $x = 4 \times \sqrt{\frac{1}{4}} = 2$ ft. = diameter after 3rd has taken off his portion.

Hence A takes off 4-3:464 = :536 ft. = 6:432 inches.

B " 3:464-2:828 = :636 ft. = 7:632 inches.
C " 2:828-2 = :823 ft. = 9:936 inches.
D " remaining 2 ft. = 24 inches.

CUBE ROOT.

26. To extract the cube root of a number is to find a number which taken three times as factor will produce the given number:—

RULE.

- I. Point off the number into periods of three figures each beginning at the decimal point.
- II. Find the highest cube contained in the left hand period and place its root to the right of the number, in the place occupied by the quotient in division.
- III. Subtract the cube of the digit put in the root from the left hand period, and to the remainder bring down the next period to the right for a new dividend.
- IV. Multiply the square of the part of the root already found by 300 for a TRIAL DIVISOR.
- V. Find how many times the trial divisor is contained in the dividend and put the figure thus obtained in the root.
 - VI. Complete the TRIAL DIVISOR by adding to it:
 - 1st. The part of the root previously found x the last digit put in the root x 30 and

2nd. The square of the last digit put in the root.

- VII. Multiply the divisor thus completed by the digit last put in the root; subtract the product from the dividend, and to the remainder bring down the next period for a new dividend.
- VIII. Again multiply the square of the part of the root already found by 300 for a new TRIAL DIVISOR, find what digit to place next in the root as in V, complete the divisor by making the two additions to the trial divisor described in VI, multiply, subtract and bring down as directed in VII, and continue the process until all the periods are brought down.

EXAMPLE.—What is the cube root of 429172932007?

	429172932007 7543 Ans.
1st trial divisor = $7^2 \times 300 = 14700$ 1st increment = $7 \times 5 \times 30 = 1050$ 2nd " = $5^2 = 25$	86172 = 1st dividend.
1st complete divisor = 15775	78875 = product of comp. div. by 5.
2nd trial divisor = $75^{\circ} \times 300$ = 1687500 1st increment = $75 \times 4 \times 30$ = 9000 2nd " = 4° = 16	7297932 = 2nd dividend.
2nd complete divisor = 1696516	6786064==product of comp. div. by 4.
3rd trial divisor = 7542×300 = 170554800 1st increment = 754×3×30 = 67860 2nd " = 32 = 9	511868007 = 3rd dividend.
3rd complete divisor =170622669	511868007 = product of comp. div. by 3.

EXPLANATION.—After pointing off we find that the highest cube number contained in the left hand period is 343, of which the cube root is 7. We therefore place 7 in the root and subtract 343 from the first period. This gives us a remainder of 86, to which we bring down the next period 172, and thus obtain 86172 for a new dividend.

and thus obtain 86172 for a new dividend.

Next we take 7, the part of the root already found, square it and multiply the 49 thus obtained by 300, this gives the first trial divisor 14700 which we find will go into the dividend 86172 (making due allowance for the

increase of the divisor) 5 times.

Next we complete the divisor by adding to it

1st, $7\times5\times30=1050$, and 2nd, $5^2=25$ which gives us

15775 for a complete divisor. This we multiply by 5, the digit last put in the root, subtract the product 78875 from the 1st dividend, and to the remainder 7297 bring down the next period 932, &c., &c.

27. EXPLANATION AND REASON.—We have seen (Art. 17) that we may consider every number as consisting of its *tens* plus its *units*, or if a=tens and b=units, then

Number = a+b; and Number cubed = $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

Hence the cube of a number is equal to the cube of the tens, plus three times the product of the tens squared multiplied by the units, plus three times the product of the tens multiplied by the square of the units, plus the cube of the units.

```
Thus 69 = (60+9); and 69^3 = (60+9)^3 = 60^3 + 3 \times 60^2 \times 9 + 3 \times 60 \times 9^2 + 9^3
= 21600 + 97200 + 14580 + 729
= 328509.
```

28. Let it now be required to extract the cube root of 328509.

I. It is manifest that the cube of a single digit can never contain more than three digits or less than one digit, and hence the cube root of a number (i. e., perfect cube) of one, two or three digits must be a number of one digit. Again the cube of a number consisting of two digits can never contain more than six or less than four digits, and conversely the cube root of a perfect cube consisting of four, five or six digits must be a number of two digits. Similarly the cube root of a perfect cube consisting of seven, eight or nine digits must be a number of three digits, &c.

Hence, one digit in the root is equivalent to three digits in the cube, and conversely three digits in the cube are equivalent to one digit in the root, and therefore if we divide the given number into periods of three digits each, beginning at the decimal point, the number of periods will indicate the number of digits in the root.

II. The cube of the units can be found only in the period immediately to the left of the decimal point, since any unit cubed can give no digit of a higher order than hundreds. Also the cube of the tens can be found only in the second period to the left of the decimal point, since tens cubed can give no digit of a higher order than hundreds of thousands, or of a lower order than thousands. Similarly the cube of the hundreds can be found only in the third period to the left of the decimal point, &c.

Hence, counting from the decimal point towards the left, the cube of the units can be found only in the first period the cube of the tens only in the second period, the cube of the hundreds only in the third period, &c.

III. Taking the number 328509 we divide it into periods, thus 328509, and since there are two periods in the cube there must be two digits in the

> OPERATION. 323509(69 216

 $6^2 = 36 \times 300 = 10800[112509]$ $6 \times 9 = 54 \times 30 = 1620$ 92 = 81

12501 112509

root. We thus learn that 328509 ia the cube of a certain number of tens plus a certain number of units. We first then look for the digit in the place of tens in the root. We know (II) that the cube of the tens is contained in the second period 328, and the highest cube contained in 328 must evidently be the cube of the highest digit that can occupy the place of tens in the root-which digit we are seeking. The highest cube

contained in 328 is 216, of which the cube root is 6. We then subtract 216 from 328 and to the remainder bring down 509, the next period, which gives us 112509 for a new dividend.

IV. From the given number we have only subtracted 216 (or if the ciphers be affixed, 216000) the remainder, 112509 therefore consists (Art. 27) of three times the product of the square of the tens by the units, plus three times the product of the tens by the square of the units, plus the cube of the units; that is, 112509 consists of (6 tens) $^2 \times 3 \times a$ certain number of units+(6 tens) $\times 3 \times$ (that number of units) 4 +(that number of units) 3 ; and because we do not know as yet what the units' figure is, we use (6 tens) 2 × 3 for a trial divisor.

But $(6 \text{ tens})^2 \times 3 = (60)^2 \times 3 = (6 \times 10)^2 \times 3 = 6^2 \times 10^2 \times 3 = 6^2 \times 300$; or in other words, any number of tens squared, multiplied by 3, is equal to that same number of units squared and multiplied by 300. Hence we obtain

the constant multiplier 300. V. $6^2 = 36$, and this multiplied by 300 gives us 10800. In asking how often this is contained in 112509 we have to bear in mind that we must in-

crease the trial divisor by the two additions indicated in the sixth section of the rule. Making allowance for these additions, we find the unita' figure of the root to be 9.

VI. If we were to multiply the 10800 we have obtained as a trial divisor by 9, the units' figure of the root, we should only get three times the product of the square of the tens by the units; but we require also three times the product of the tens by the square of the units and lastly the cube of the units. Our complete divisor must therefore evidently consist of-

1st. Three times the square of tens.2nd. Three times the tens multiplied by the units.3rd. The square of the units; or representing the tens. The square of the units; or representing the tens by a and the units by b, the divisor must $= 3i^2 + 3ab + b^2$, and this multiplied by b, the digit in the units' place will give $(3a^2 + 3ab + b^2)b = 3a^2b + 3ab^2 + b^3 =$ the dividend.

Now (6 tens) \times 3 = (60) \times 3 = 6 \times 10 \times 3 = 6 \times 30, i.e. the product of any number of *tens* multiplied by 3 is equal to the product of that same number of units multiplied by 30.

Hence we obtain the constant multiplier 30.

The additions we make then are $6 \times 30 \times 9 = 1620$, and $9^2 = 81$, and thus we obtain the complete divisor $12501 = (60)^2 \times 3 + 60 \times 3 \times 9 + 9^2$, and multiplying this by 9, we get

 $\{(60)^2 \times 3 + 60 \times 3 \times 9 + 9^2 \}$ $9 = 60^2 \times 3 \times 9 + 60 \times 3 \times 9^2 + 9^3 = three$ times the square of the tens multiplied by the units, plus three times the tens multiplied by the square of the units, plus the cube of the units.

NOTE. - When there are more than two periods, the reasons are analogous, since we never have to do with more than tens and units of the root at one time; i.e., when we are seeking the second digit of the root, we call the first digit tens and the second units; when we are seeking the third digit of the root, we consider the first two as so many tens, and the third as units, &c.

The reason for bringing down only one period at a time is similar to the reason for the same step in the extraction of the square root (for which

see Art. 18, Example 2).

29. To extract the cube root of a decimal:-

RULE.

I. Annex two ciphers, if necessary, in order to make the last

period complete.

II. Point off into periods of three places each, beginning at the decimal point, and extract the cube root as in whole numbers, remembering that the number of decimal places in the root. will be equal to the number of periods in the cube.

EXERCISE 141.

DAERCISE 141:	
 What is the cube root of 62712728317? Extract the cube root of 1953125. Extract the cube root of 1076890625. What is the cube root of 697864103? What is the cube root of 102503·232? Find the cube root of 179597·069288. Find the cube root of 483·736625. Find the cube root of 636056. 	Ans. 3973. Ans. 125. Ans. 1025. Ans. 1887. Ans. 46.8. Ans. 56.42. Ans. 7.85. Ans. 86.

30. To extract the cube root of a mixed number or a yulgar fraction :-

RULE.

I. Reduce mixed numbers to improper fractions, and compound or complex fractions to simple ones, and the resulting fraction to its lowest terms.

II. Extract the cube root of both numerator and denominator separately, if they have exact roots; but if they have not both exact roots, reduce the fraction to its corresponding decimal by Art. 56, Sect. IV, and then extract the root as in Art. 29.

EXAMPLE 1 .- What is the cube root of 33?

$$\sqrt[3]{3\frac{3}{8}} = \sqrt[3]{\frac{21}{8}} = \frac{\sqrt[8]{27}}{\sqrt[8]{8}} = \frac{3}{2} = 1\frac{1}{2}$$
. Ans.

EXAMPLE 2.- Extract the cube root of 17%.

OPERATION.

 $17\frac{1}{8} = 17.125$, and $\sqrt[8]{17.125} = 2.577$, nearly.

EXERCISE 142.

1.	Extract the cube ro	ot of 🖧.		Ans. 4721.
2.	Extract the cube ro	ot of 3_7 .	· 0	Ans 5609.
3.	Extract the cube ro	ot of 1 of 21.		Ans. 941.

4. Extract the cube root of 281. Ans. 3.063.

5. Extract the cube root of 32_1^8 .

Ans. 3.198.

31. In extracting the cube root of a number in any scale, other than the decimal, we proceed in the same manner, pointing off into periods of three figures each, finding a trial divisor and afterwards completing it as in the preceding examples.

Note.—In all scales having a radix higher than 3, the constant multipliers are 300 and 30; but as in the binary and ternary scale we cannot use a digit so high as 3, these multipliers become respectively 1100 and 110 for the binary scale, and 1000 and 100 for the ternary scale.

Example 3.—Extract the cube root of 613412.132 septenary.

OPERATION.

$$\begin{array}{c} 6^2 = 51 \times 300 = 21300 \\ 6 \times 30 = 240 \times 5 = 1660 \\ 5^2 = 34 \\ \hline & & & & & & & & \\ 23221 \\ 650^2 = 63040 \times 300 = 25215000 \\ 650^2 = 630400 \times 300 = 25215000 \\ 650 \times 30 = 20100 \times 4 = 143400 \\ 4^2 = & & & & \\ & & & & \\ 22 \\ \hline & & & & & \\ 252323422 \\ \hline & & & & \\ & & & & \\ 220 \times 201346 \\ \hline \end{array}$$

EXERCISE 143.

- Express one million in the senary scale and then extract its cube root.
 Ans. 244.
- 2. Extract the cube root of 6131271 octenary. Ans. 165.32.
- 3. Extract the cube root of 10221012.102 ternary.

Ans. 112.012.

4. Extract the cube root of teteet in the duodenary scale true to two places to the right of the separating point.

Ans. e7.t2.

- Extract the cube root of 421030.4412 quinary true to two
 places to the right of the separating point. Ans. 44.004.
- 32. Since many teachers prefer Horner's method of extracting the cube root to the common method, we shall give it here. Upon closely examining it the student will find that the reasons for the several steps of the process are identical with those given in Arts. 27 and 28. The constant multipliers 300 and 30 are still used, but in a disguised form.

RULE

- I. Point off as in the common method.
- II. Find the greatest cube in the first period on the left hand; place its root, on the right of the number for the first figure of the root, and also in col. I. on the left of the number. Then multiplying this figure into itself, set the product for the first term in col. II.; and multiplying this term by the same figure again, subtract this product from the period, and to the remainder bring down the next period for a dividend.
- III. Adding the figure placed in the root to the first term in col. I., multiply the sum by the same figure, add the product to the first term in col. II., and to this sum annex two ciphers, for a divisor; also add the figure of the root to the second term of col. I.
- IV. Find how many times the divisor is contained in the dividend, and place the result in the root, and also on the right of the third term of col. I. Next multiply the third term thus increased by the figure last placed in the root, and add the product to the divisor; then multiply this sum by the same figure, and subtract the product from the dividend. To the remainder bring down the next period for a new dividend.
- V. Find a new divisor in the same manner that the last divisor was found, then divide, &c., as before; thus continue the operation till the root of all the periods is found.

EXAMPLE.—What is the cube root of 78314.6, true to two decimal places.

OPERATION.

Col. I, 1st term 4	Col. II. 16×4 =	78314.600 (42.78+.
2nd " 8	4800, 1st divisor)	14314
3rd " 122	5014×2 =	10088
4th " 124	529200, 2d divisor	4226600
5th " 1267	538069×7 =	3766483
6th " 1274	54698700, 3d divisor	r)460117000
7th " 12818	54801244×8 =	438409952

EXPLANATION.—The cube root of the greatest cube in 78 is 4 which is placed in the root and also in column I, then multiplying this 4 by itself gives us 16 which is the 1st term in column II, and again multiplying this 16 by 4 gives us 64, the number which we are to subtract from the first period 78.

Subtracting and bringing down the next period 314 we get 14314 for the

next dividend.

Now adding 4, the figure placed in the root, to 4 the 1st term in col. I. gives us 8, the 2nd term in col. I, multiplying this 8 by the 4, i. c., the figure in the root, gives us 32 which we add to the 1st term of col. II, and affix two ciphers. We thus obtain 4800 the second term of col. II, which is our trial divisor.

We then find that 4800 goes 2 times in the dividend. This 2 we place in the root and also to the right of the sum of the 1st and 2ud terms of col. I. The 1st and 2ud terms of col. I., added together make 12 and the 2 of the root affixed makes 122, the third term of col. I. Then we multiply this 122 by 2, the last digit put in the root, this gives us 244 which we add to 4800, the second term of col. II. and thus obtain 5044, the 3rd term. Lastly this third term multiplied by 2, gives us the number to subtract, &c.

NOTE.—For examples in this method work any of the preceding questions.

tions.

APPLICATION OF THE CUBE ROOT.

33. Principles Assumed.—I. Spheres are to one another as the cubes of their diameters.

11. Cubes and all other regular solids are to one another as the cubes of their like dimensions.

EXERCISE 144.

- 1. If a cannon ball 3 inches in diameter weighs 8 lbs., what will be the weight of a ball of the same metal 4 inches in diameter? $3^3:4^4::8 \text{ lbs.}:Ans. = 1839 \text{ lbs.}$
- 2. If a ball 3 inches in diameter weighs 4 lbs., what will be the weight of a ball that is 6 inches in diameter? Ans. 32 lbs.
- 3. If a globe of gold one inch in diameter be worth \$120, what is the value of a globe 31 inches in diameter? Ans. \$5145.
- 4. If the weight of a well proportioned mun, 5 feet 10 inches in height be 180 pounds, what must have been the weight of Goliath of Gath, who was 10 feet 4% inches in height? Ans. 1015-1 lbs.

- A person has a cube of clay whose sides are 973 ft. long; he wishes to take out of the same 5 cubes whose sides are 45 feet, 62 feet, 30 feet, 80 feet, and 20 feet. He requires to know the length of the side of the cube that can be formed Ans. 972.69 ft. out of the remaining clay.
- 6. What is the side of a cube which will contain as much as a chest 8 feet 3 inches long, 3 feet wide, and 2 feet 7 inches Ans. 47.9843 inches. deep?
- 7. Four ladies purchased a ball of exceeding fine thread, 3 in. in diameter. What portion of the diameter must each wind off so as to share off the thread equally? Ans. 1st lady must wind off . 27432 inches.

2nd .34458 " " .. .49122 3rd " 4th 1.88988

NOTE.—This question is solved by a method similar to that adopted in Example 13, Exercise 140.

EXTRACTION OF THE ROOTS OF HIGHER ORDERS.

34. When the index of the root is a power of 2 or 3, or a multiple of any power of 2 by any power of 3-

RULE.

Resolve the given index into its prime factors.

Extract the root denoted by one of these factors, then of this root, extract the root denoted by another factor, and so on till all the prime factors be used.

Thus, for the 4th root extract the square root of the square root.

for the 6th root extract the cube root of the square root.

for the 8th root extract the square root of the square root of the square root.

for the 12th root extract the cube root of the square root of the square root.

for the 16th root extract the square root four times. for the 18th root extract the cube root of the cube root of the square root, &c., &c.

EXERCISE 145.

1. What is the fourth root of 19987173376?	Ans. 376.	
2. What is the sixth root of 308915776? 3. Extract the ninth root of 40353607.	Ans. 7.	
4. Extract the eighteenth root of 387420489.	Ans. 3.	

5. Extract the twenty-seventh root of 134217728. Ans.

LOGARITHMS.

35. The Logarithm of a number is the index of the power to which it is necessary to raise a given root or base, in order to produce the given number.

36. The Base of a system of logarithms is the fixed number to which all the logarithms of that system belong

as indices.

Thus $10^{3} = 1000$; here 3 is called the logarithm of 1000, to the base 10. So also $2^{5} = 32$; here 5 is called the logarithm of 32, to the base 2, &c., &e.

37. A System of Logarithms is a collection of the logarithms of a series of numbers corresponding to the same base.

Any number whatever may be taken as the base of the system; but it is obvious that some numbers are much more convenient than others.

- 38. Two system of logarithms have been constructed and tables calculated with great care. They are,-Ist. The Common System or Briggeau System, whose base is 10.
- 2nd. Napierian System, whose base is 2.71828.

The Napierian System was invented by Baron Napier, and the peculiar base, 271528, was adopted chiefly because the logarithms having that base are more simply expressed and more easily calculated than any other. It has hence been called the Natural System of Logarithms. These logarithms were also formerly called Hyperbolic logarithms, from certain relations found to exist between them and the asymptotic spaces of the hyperbola, and which were erroneously believed to be peculiar to them.

The Common System was shortly afterwards invented by Briggs and adopted by Baron Napier, and is the system now universally employed for the purposes of calculation.

39. The Characteristic of a logarithm is the part which stands to the left of the decimal point.

40. The Mantissa (handful) is that part of the logar-

ithm which stands to the right of the decimal point.

41. Since 10 is the base of the common system of logarithms and at the same time the radix of our system of notation, we have-

100000	$= 10^{5}$;	whence	log.	100000	=	5
10000	= 104;	whence	log.	10900	=	4
1000	$= 10^3$:	whence	log.	1000	=	3
100	$=10^{2}$;	whence	log.	100	=	2
10	$= 10^{1}$;	whence	log.	10	=	1
1	$= 10^{\circ}$;	whence	log.	1	=	0
.1	$= 10^{-1};$	whenco	log.	-1	=	
.01	$=10^{-2}$;	whence	log.	.01	=	
.001	$= 10^{-3}$;	whence	log.	'001	=	-3
10001	= 10-4;	whence	log.	.0001	=	-4

42. From this it appears that the logarithm of any number between 1 and 10 will be more than 0 and less than 1; i. e., will be a fraction or a decimal; so also the logarithm of any number between 10 and 100 will be greater than I and less than 2; i. e., will be I and a fraction, or a decimal; so also the logarithm of any number between 100 and 1000 will be 2 and a decimal, &c.

Hence, the characteristic of any number containing digits to the left of the decimal point is positive and numerically one less than the number of such digits.

Thus, the characteristic of 7842 is 3; of 978.26 it is 2; of 813426789 it is 8;

of 3 00429 it is 0; of 26789 426789 it is 4, &c.

43. It also appears, from Art. 41, that the logarithm of every number between 1 and 1 will be less than 0 and greater than-1; that is, it will be equal to-1, plus some decimal; the logarithm of every number between '1 and '01 will be less than —1 and greater than —2; or, in other words, will be —2 plus some decimal; so also the logarithm of every number between '01 and '001 will be—3 plus some decimal, &c., &c.

Hence, the characteristic of the logarithm of a decimal is negative and numerically one greater than the number of Os which come between the decimal point and the first significant figure.

Thus, the characteristic of the logarithm of '000001 is 6; the characteristic of the logarithm of '00000000002347 is 11; the characteristic of the logarithm of '000278926345 is 4, &c., &c.

NOTE .- The negative sign affects only the characteristic-the mantissa or decimal portion of a logarithm is always positive. indicate this it is customary to write the negative sign over the characteristic, as in the above examples, and not before it.

EXERCISE 146.

What are the characteristics of the logarithms of the following numbers :

1. 723, 9126.4, 81234.567, 912678.96124567, 23.912342.

Ans. 2, 3, 4, 5, and 1. 2. .027, .002134, .000000698, .8126714, .0000000002134.

3. 1:1111111, 1111111:11, 1000000000, \cdot 0000000002162, 7, 12.78.

Ans. 0, 5, 9, 9, 0, and 1.

44. Since (Art. 11), to divide one power of a number by another power of the same we subtract the index of the divisor from the index of the dividend, and since common logarithms are indices to the base 10, let us take the number 47280 and successively dividing it by 10, examine the results.

Numbers:		Logarithn
47.290	***************************************	$=4^{\circ}674677$
4700		= 3.674677
477712		= 2 6/4677
47170		= 1 0/40//
4.728		= 0 674677
14798		=1.674677
*04798		= 2.674677
00472	8	=3.674677

Here we have simply performed the same operation by two different methods, lst. dividing the numbers by 10, and 2nd, from the logarithms corresponding to the numbers, subtracting 1, the logarithm of 10.

From this illustration it is evident that,-

1st. The characteristic of the logarithm of a number is dependent wholly upon the position of the decimal point in that number, and is not at all affected by the sequence of the digits that compose that number; and

2nd. The Mantissa or decimal part of the logarithm of a number is dependent wholly upon the sequence of the digits that compose that number, and is not at all affected

by the position of the decimal point.

NOTE.—It is only common logarithms (i. e., those having 10 for their base) that possess the important property of having the same mantissa for the same figure, whether integral or decimal, or both, and it was this property that induced Briggs to adopt that base in preference to the Napierian base, 2.71828.

45. Since the characteristic of the logarithm of any number does not depend upon the value of the digits composing that number, and is so easily found by attention to the rules found in Arts. 42, 43, it is customary to omit it altogether in logarithmic tables, and mere y give the mantissa.

The annexed tables contain the logarithms of all numbers from 1 to 10000 calculated to 6 decimal places. When greater accuracy is required tables calculated to a greater number of places are used. By means of the proportional parts and difference given in the tables, the logarithm corresponding to all numbers whatever, may be found with sufficient accuracy for all practical purposes.

46. To find the logarithm of any number not greater than 100:—

RULE.

Find on the first page of the table of logarithms, the given number in the column marked No., and directly opposite to it, -in the column marked log., will be found the logarithm.

Example 1 .- What is the logarithm of 47? Ans. 1.672098.

NOTE .- By saying that 1 672098 is the logarithm of 47, we simply mean that the base 10, raised to the power 1.672098, is equal to 47, or briefly 101.672098 = 47.

Example 2.—What is the logarithm of 93? Ans. 1.968483.

47. To find the logarithm of any number consisting of not more than four digits :-

Find, in the column marked N, the first three digits of the given number.

Then the mantissa will be found in the intersection of the horicontai line containing these three digits and the vertical column at the head of which stands the fourth digit.

To this mantissa attach the characteristic as found by the rules

in Arts. 6, 42, 43,

EXAMPLE 1 .- What is the logarithm of 7983?

Looking in the column marked N, we find the first three digits 798, on page 393 in the fourth horizontal division, counting from the top of the page and in the last line but one of that division. Carrying the eye along this horizontal line till we come to the vertical column, at the head of which stands the remaining digit, 3, we obtain for the mantissa of the required logarithm '902166, to which we prefix the characteristic 3 (sine there are four digits to the left of the decimal point in the given number), and thus obtain the required logarithm 3.802166.

EXAMPLE 2.-What is the logarithm of .0000001234?

The first three digits, viz: 123, are found in the fourth line of the third horizontal division on page 382, and at the intersection of this line with the column headed 4, is found '091315. To this we attach the characteristic 7, (since there are six 0s, between the decimal point and the first significant figure) and thus obtain the required logarithm, 7 091315.

EXERCISE 147.

- 1. What are the logarithms of 5794, 57.94, 5794000, and .0005794? Ans. 3.762978, 1.762978, 6.762978, and 4.762978.
- 2. What are the logarithms of 1.169, 11690, and $\frac{1169}{1300000}$? Ans. 0.067815, 4.067815, and 3.067815.
- 3. What are the logs. of '734, 7340000000, and '00000000734? Ans. 1.865694, 9.865696, and 9.865696.
- 4. What are the logarithms of 978.4, 9.784, 978400, and .9784? Ans. 2.990516, 0.990516, 5.990516, and 1.990516.
- 48. To find the logarithm of a number containing more than four digits :-

FIRST METHOD .- Find the mantissa corresponding to the logarithm of the first four digits by the last rule. Subtract this mantissa from the next following mantissa in the tables. Multiply the difference thus obtained by the remaining digits of the given number, and cut off from the product as many digits as there were in the multiplier (but at the same time adding unity if the highest cut off be not less than 5).

Add the number thus obtained to the mantissa of the logarithm corresponding to the first four digits, and the result will be the man-

tissa of the given number.

Lastly, attach the characteristic to this mantissa.

Example 1 .- What is the logarithm of 53803.2?

OPERATION.

The mantissa of the logarithm of 5380 (the first four digits) is '730782 and the next following mattissa is '730863.
Then from '730863
Subtract '730782

81; and 81×32 (remaining digits of given number) Difference

= 2502, from which we cut off two digits, since we multiplied by a number of two digits, and since the highest digit cut off is not less than 5, we add unity to the part retained, which gives us 26.

Then mantissa of logarithm of first four digits '730782

Mantissa of logarithm of given number '730808

To which attach the characteristic 4 and required logarithm = 4.730808.

NOTE.—Except at the beginning of the tables, where the mantissas increase rapidly in magnitude, the difference may be taken from the right hand column, (headed D) and opposite the first three digits of the given number, where the mean difference of the mantissas in that line will be found.

Example 2.—What is the logarithm of 832.17242?

OPERATION.

Mantissa of logarithm of 8321. Difference from column $D=52$; and $52\times7242=376584$ from which	20176
we cut off four digits and add.	38

Difference of natural numbers =1; difference of logarithms = 75

And since it is shown in common works on Algebra that, with small increments in the natural numbers the logarithms corresponding to them increase in arithmetical progression, in order to find the logarithm of any number between those given above, we consider that the increment of the logarithm to be added to 3.758761, bears the same proportion to 75 (the increment for 1), that the increment of the natural number does to 1.

For example.—Let it be required to find the logarithm of 5738'47. Here the increment of the given number being '47, we form the proportion 1: '47:75: '47'75 = 35'25, the increment to be added to 3 '758'61, and this addition begins here.

addition having been made, we get 3 758796 for the logarithm of 573847.
Similarly, if the increment of the natural number had been 047 or 0047, the corresponding increment of the log, would have been 3 525 or 3525.
These illustrations sufficiently explain the reasons of the last rule.

- 50. Taking the same number as in the last article and dividing the difference 75 by 10, we obtain 7.5 the difference corresponding to an increase of one unit in the fifth place of the natural number; the double of this, or 15 for two units, the treble or 22.5 for the three units, and so on; and each of the numbers thus obtained will be the increment of the logarithm corresponding to an increase of that number of units in the fifth place of the natural number. The increments thus obtained, and corresponding to each of the nine digits, are inserted in the left hand column of the tables, headed P. P. (Proportional Parts.)
- 51. The numbers in the column headed P.P., as already explained, are the increments in the locarithm for an increase in the fifth place of the natural numbers. They express also the increments for the digits in the sixth, seventh, eighth, ninth, &c., places of the natural number, when they are divided by 10, 100, 1000, &c., as the ease may be.
- 52. Hence to find the logarithm of any number containing more than four digits:—

RULE.

SECOND METHOD.—Find the mantissa of the logarithm corres-

ponding to the first four digits of the given number.

Find in the same horizontal division as that in which the mantissa is found, the proportional part in the column headed P. P., corresponding to the digit in the fifth place of the given number, and set it down beneath the part of the mantissa already found, so that their right hand digits may be in the same vertical line. Find the P. P. corresponding to the digit in the sixth place of the given number, and set it down so that its right hand figure may be one place to the right of the last. Find the P. P. corresponding to the digit in the seventh place of the given number and set it down one place to the right of the last, and so on till all the digits of the given number be used.

Add the part of the mantissa already found, and the P. Ps. as written, together, and reject from the result all but the first six digits to the left, adding one to the last retained, if the highest of the rejected digits be not less than 5—the result will be the mantissa of the logarithm of given number.

Lastly, attach the proper characteristic to this mantissa, and the

result will be the required logarithm.

EXAMPLE 1 .- What is the logarithm of 8372.468?

OPERATION.

Sum = '922853| 52

Therfore required mantissa = '922854 and required log. = 3'922854. Example 2.—What is the logarithm of 403567?

OPERATION.

Mantissa of logarithm of 403500 = 605944
P. P. corresponding to 60 = 64
P. P. to 7 = 75

Sum = '6059155

Therefore required logarithm is 5.605916.

EXERCISE 148.

FIND THE LOGARITHMS OF THE FOLLOWING NUMBERS BY THE FIRST METHOD—OBTAINING THE DIFFERENCES BY SUBTRACTION.

- What are the logarithms corresponding to 8193217, 73.9245, and .843742?
 Ans. 6.913455, 1.868789, and T.926210.
- Find the logarithms corresponding to 000234564 and 001007013.
 Ans. 4370261 and 3003035.

USING THE TABULAR DIFFERENCES.

3. Find the logarithms corresponding to 52:376 and 129:476.

Ans. 1:719133 and 2:112189.

USING THE PROPORTIONAL PARTS.

4. Find the logarithms corresponding to 000471398 and 9136712.

Ans. 4.673387 and 6.960790.

Find the logarithms corresponding to 4:23429 and 763:12987.
 Ans. 0:626780 and 2:882598.

53. To find the logarithm of a vulgar fraction:-

Subtract the logarithm of the denominator from the logarithm of the numerator.

54. To find the logarithm of a mixed number:-

RITLE.

Either reduce the mixed number to a fraction and proceed as in Art. 53, or reduce the fractional part to a decimal, attach it to the whole number and proceed as in Arts. 48-52.

55. To find the natural number corresponding to any given logarithm:—

RULE.

FIRST METHOD.—Find that logarithm in the table which is next lower than the given one, and the four digits corresponding to it

will be the first four digits of the required number.

II. Subtract this logarithm from the given logarithm, to the remainder annex one cipher and divide by the tabular difference corresponding to the four digits already obtained, the quotient will be the fifth digit.

III. To the remainder attach another cipher and again divide by the tabular difference, the quotient will be the sixth digit, and thus proceed till a sufficient number of digits has been obtained.

IV. The characteristic of the logarithm shows where to place the

decimal point.

NOTE.—The number cannot be carried with accuracy to more places than the logarithm has decimal places. (See Art. 56)

EXAMPLE 1.—Find the number corresponding to the logarithm 4.923267.

OPERATION.

Given log. '923267 Next lower in tables, '923244 = log. of 8380.

Difference = 23 Tabular difference = 52. Then 23000 \div 52 gives 442 for digits in 5th, 6th, and 7th places.

Hence the digits of the natural number are 8380442; and since the characteristic is 4, i.e. one less than the number of digits to the left of the decimal point, the required number is 83804'42.

SECOND METHOD.—Find the first four digits of the required number and also the difference between the given logarithm and the next lower in the table as in the last rule.

II. Find in the same horizontal division of the table the highest P. P. that does not exceed this difference. Opposite to it in the column headed N. will be found the digit of the fifth place.

III. Subtract this P. P. from the difference, to the remainder annex one cipher and find the highest P. P. not exceeding the number thus formed. Opposite to it in column N. will be found the sixth digit.

IV. Continue this process by the addition of ciphers till the required number of digits be found.

EXAMPLE 2.—Find the natural number corresponding to the logarithm 3.553259.

OPERATION.

Given log. '553259 Next lower in table '553155 = log. of 3574

Difference 10	04	to	[place.
Highest P. P. not greater than 104 = 9	98 corresponds		8 for fifth
Highest P. P. not greater than 60 = 4 Highest P. P. not greater than 110 = 11	_		Iningo

Therefore digits of required number are 3574849; and since the characteristic is 3, there must be four digits to the left of the decimal point.

Hence required number is 3574'849.

EXERCISE 149.

BY FIRST METHOD.

1. Find the natural numbers corresponding to the logarithms 4.137139, 0.718134 and 4.635421.

Ans. 13713.227, 5.225578 and .0004319376.

Of what numbers are 2.921686 and 1.922165 the logarithms?
 Ans. 835 and 8359211.

BY SECOND METHOD.

- 3. Of what numbers are 5.407968, 7.408386 and 3.416369 the logarithms?

 Ans. 255839.4, 25608588 and .0026083.
- 4. What are the natural numbers corresponding to the logarithms 4.877777 and 0.555555?

 Ans. 75470.5168 and 3.5938.

56. In order to ascertain how many figures of these results may be relied

upon as correct, let us take from the tables any logarithm, as 4 235635. Now the real value of this logarithm if carried to a greater number of places might be anything between 4235635 and 42356345, and might therefore differ from the given logarithm by very nearly 0000005, which is therefore the extreme limit of the error attached to tables of six places; i. e. any difference less than '0000005 might occur without producing any change in the logarithm as given in the table.

Now it is demonstrated in works treating of the theory of logarithms that the difference between the logarithms of numbers, which differ only by unity, is less than the modulus of the system divided by the smaller number. The modulus of the common system of logarithms is 4342945. humber. The modules of the common system of logarithms and if we let n represent the smaller number, the difference between the logarithms of n and of n+1 is less than 4342945-n. Now we have shown that the difference between the true logarithm and

Now we have shown that the unlessed between the thought that given in the table to six places, may be nearly equal to 0000005, which that given in the table to six places, may be nearly equal to 0000005, which is therefore less than $4342945 \div n$, or n is less than 0000005 But 0000005= 868589. That is, unless the number whose logarithm is given be less than 888589 its value cannot be found accurately beyond the first five digits, but if it be less than 888589, then the first six figures found from the table will

If tables of seven or eight places are used, the result can be depended on to seven or eight places, if the number be less than 803589 or if the mantissa be less than 9378; but if greater, then the result can be relied on only to one less number of figures than the decimals of the logarithm.

LOGARITHMIC ARITHMETIC.

57. The Arithmetical Complement of a logarithm is the remainder obtained by subtracting the logarithm from 10.

Thus the arithmetical complement of 2.713426 is 10-2.713426 = 7.286574.

EXERCISE 150.

- 1. Find the arithmetical complements of 5.631642 and 0.714000. Ans. 4.368358 and 9.286000.
- 2. Find the arithmetical complements of 3:123456 and 7:213149. Ans. 12.876544 and 16.786851.
- 3. Find the arithmetical complements of 6.124357 and 2.000837. Ans. 3.875643 and 11.999163.
- 58. To multiply two or more numbers together by means of logarithms :-

RULE.

I. Add their logarithms and the sum will be the logarithm of their product.

II. Find the natural number corresponding to this logarithm.

Note 1.- For reason see Art. 10.

NOTE 2.—The following exercises are all worked by the difference, and not by the proportional parts:

Example.-Multiply 5631 by 47.

Logarithm of 5631 = 3.750586 " 47 = 1.672098

5·422684 5·422590 == logarithm of 264600

94 =

Ans. 264657

EXERCISE 151.

1. Multiply 61, 22, and 65 together. Ans. 87230.

2. Multiply 52, 734, and 6 together. Ans. 229008.

3. Multiply together 35.86, 2.1046, .8372 and .00294.

Ans. .185761.

4. Multiply .00008764 by .86359. An

Ans. .000075685.

59. To divide numbers by means of their logarithms:—

RULE

I. Subtract the logarithm of the divisor from the logarithm of the dividend: the result will be the logarithm of the required quotient.

II. Find the natural number corresponding to this.

Note.-For reason see Art. 11.

Example 1 .- Divide 6732.7 by 478.

OPERATION.

Logarithm of 6732.7 = 3.828189 Logarithm of 478 = 2.679428

Difference = 1.148761 1.148003 = logarithm of 14.0800 1.58 = 51

Ans. 14:0851

Example 2 .- Divide .036584 by .00078593.

OPERATION.

Logarithm of '036584 = 2.563291

Logarithm of '00078593 = 4.895384

Difference = $\frac{1.667907}{1.667826}$ = logarithm of 46.5400

81 = Ans. 46'5487

60. Instead of subtracting the logarithm of the divisor, we may add its arithmetical complement—the result, with 10 subtracted from the characteristic, will be the logarithm of the quotient.

Thus, in the last example the arithmetical complement of 4 \$95384 is 13 104616, and this added to 2 563291 gives 11 667907, and subtracting 10 from this characteristic, gives us 1 667907, the same as obtained by the other method.

Note.—This method of using the arithmetical complement is very convenient when we have to divide one number by the product of several others.

EXERCISE 152.

1. Divide 6.734 by .0009278. Ans. 725.8033.

Divide 437.89 by 62.735.
 Divide 93.217 by .0007132.
 Ans. 130702.4.

4. Divide 9835267 by the product of 23, 189 and 2.748.

Ans. 823-339.

61. To raise a quantity to any power by means of logarithms:—

RULE.

I. Multiply the logarithm of the given number by the index of the required power, the result will be the logarithm of the required power.

II. Find the natural number corresponding to this logarithm.

Note.-For reason see Art. 12.

EXAMPLE 1.—Find the 10th power of 2.

OPERATION.

Logarithm of 2 = 0.301030.

 $0.301030 \times 10 = 3.010300 = logarithm of 1024$. Ans.

EXAMPLE 2.—Find the 7th power of 2.71.

OPERATION.

Logarithm of $2^{\circ}71 = 0.432969$. Then $0.432969 \times 7 = 3.030783 = \text{logarithm of } 1073.45$. Ans.

Note.—In order to obtain the correct result when the characteristic bappens to be negative, it must be recollected that the mantissa is always positive.

EXERCISE 153.

1. What is the 5th power of 5?

Ans. 3125.

2. What is the 6th power of 1.073?

Ans. 1.5261.

What is the 4th power of '0279?
 What is the 11th power of 1:111?
 Ans. 00000060592.
 Ans. 3:1831.

62. To extract any root of a given number by means of logarithms:—

RULE.

I. Find the logarithm of the given number and divide it by the index of the required root, the result will be the logarithm of the root.

II. Find the natural number corresponding to this logarithm.

Note.-For reason see Art. 15.

Example.—What is the cube root of 12345?

OPERATION.

Logarithm of 12345 = 4.091491. Then $4.091491 \div 3 = 1.363830 = logarithm of 23.11159$. Ans.

63. To extract any root when the characteristic of the logarithm of the given number is negative:-

I. If the characteristic is exactly divisible by the divisor, divide in the ordinary way, but make the characteristic of the quotient negative.

II. If the negative characteristic is not exactly divisible add what will make it so, both to it and to the decimal part of the logarithm. Then proceed with the division.

Example 22.—Extract the fourth root of .0076542.

OPERATION.

Logarithm of $.0076542 = \overline{3}.883899$.

Now since 3 is not exactly divisible by 4 we add-1 to the characteristic and +1 to the mantissa which gives us $\overline{4} + 1.883899$ and this is evidently = 3.883899.

Then $\frac{1}{4} + 1.883899 \div 4 = 1.4709747 = logarithm of .295784. Ans.$ EXERCISE 154.

,	Extract the 7th root of 913426000.	Ans.	19.0588.
1.	Extract the 1th 100t of bibizooss.	ana	1.04444.
9	Extract the 11th root of 1.61342.	JINS.	1.04444

Ans. .0934817. 3. Extract the 5th root of .000007139. Ans. .41575.

4. Extract the 7th root of '002147.

64. When the logarithms of two or more prime numbers are given, the logarithm of any multiples of these factors by each other can be easily obtained by attention to the foregoing rules.

Thus if the logarithm of 2 and 3 be given :-

1st. We can obtain the logarithm of any power of 2 or 3 by Art. 61, and

any root of 2 or 3 by Art. 62.

2nd. We know the logarithm of 10 to be 1, and hence we can obtain the logarithm of 5 since $10 \div 2 = 5$ and also of 3.3 since $10 \div 3 = 3.3$, hence we can also obtain the logarithm of any power or root of 5 or 3.3.

3rd. By Arts. 58, 59, we can obtain the logarithm of any power or root of

2, 3, 5 and 3.3 multiplied by any power or root of 2, 3, 5 or 3.3.

EXAMPLE 27.—Given the logarithm of 2 = 0.301030 and the logarithm of 3 = 0.477121. Find the logarithms of 500, 24, 54, 120, 75000, 163, 1, and 13.5.

OPERATION.

Since $5 = 10 \div 2$ the logarithm of $5 = \log 10 - \log 2 = 1 - 0.301030 = 0.698970$. Then logarithm of 500 = 2.698970. 24=8 × 3 = 2^3 × 3 ·· log. 24 = (log. 2) × 3 + (log. 3.)

 $\log_{10} 2 = 0.301030 \times 3 = 0.903090$ log, 3= 477121

Sum = 1:380211=log.24

 $54 = 27 \times 2 = 3^3 \times 2 \cdot \log \cdot 54 = (\log \cdot 3) \times 3 + (\log \cdot 2)$ log. 3 = 0.477121 × 3 = 1.431363

log. 2= 0.301030

Sum = 1.732393 = log, 54.

 $120 = 4 \times 3 \times 10 = 2^2 \times 3 \times 10$. $\log 120 = (\log 2) \times 2 + (\log 5) + (\log 10)$ log. $2 = 0.301030 \times 2 = 0.602060$ log. 3 = 0.477121 $\log 10 =$

Sum = 2.079181 = log. 120.

 $75000 = 25 \times 3 \times 1000 = 5^2 \times 3 \times 1000 \therefore \log.75000 = (\log.5) \times 2 + (\log.3)$ + (log. 1000.)

 $5 = 0.698970 \times 2 = 1.397940$ log. log. 3 =0.477121 log. 1000 =

Sum = 4.875061 = log. 75000.

 $16\frac{2}{3} = 3.3 \times 5$... logarithm of $16\frac{2}{3} = (\log. 3.3) + (\log. 5.)$ Since 10÷3=3'3, log. 3'3=log. 10-log. 3=1-0'477121=0'522870

logarithm 5=

Sum =1.221849=log. 163.

 $\frac{1}{2} = 5$... by changing only the characteristic = $\overline{1}$:698970 = logarithm $\frac{1}{2}$. $13.5 = .5 \times 27 = .5 \times 33$... logarithm $13.5 = (\log. 3) \times 3 + (\log. ... 5)$ logarithm $3 = 0.477121 \times 3 = 1.431363$

logarithm 5 ==

1.698970

Sum =1.130333=log. 13.5

EXERCISE 155.

1. Given logarithm 2 = 0.301030 and log. 7 = 0.845098, find the

logarithms of 14000, 4.9, .00196, 1750, 1428-571428, .00000112 and 3.0625.

Ans Log. 14000 = 4.146128.

Log. 4.9 = 0.690196.

 $Log. \cdot 00196 = \overline{3} \cdot 292256.$

Log. 1750 = 3.243038.

Log. 1428.571428 = 3.154902.

 $Log. \cdot 00000112 = \overline{6} \cdot 049218.$

Log. 3.0625 = 0.486076.

NOTE. $-1428.571428 = \frac{1}{4} \times 10000$, also $3.0625 = 49 \div 16$.

Example 2.—Given logarithm 1 = 1.698970 logarithm 3 = 0.477121logarithm 11= 1.041393

Find the logarithms of 491, 363, 4.09, 2.4, 392.72, 2933331 and 19.965.

491 = 1.694605Ans. Logarithm of Logarithm of 363 = 2.559907. Logarithm of 4.09 = 0.611819. 2.4 = 0.388181.Logarithm of Logarithm of 392.72 = 2.594090. Logarithm of 2933333 = 5.467362. Logarithm of 19.965 = 1.300270.

QUESTIONS TO BE ANSWERED BY THE PUPIL.

NOTE.—The numbers after the questions refer to the numbered articles of the section.

- What is the power of a number? (1)
 What is a root of a number? (2)
 Why is the second power of a number called its square? (4)
 Why is the third power of a number called its cube? (5)
 What is the index or exponent of a power? (6)
 What is involution? (8)
 How do we multiply two or more different powers of the same number taxether? (10)
- 7. How do we multiply two or more different powers of the same number together? (10)

 8. How do we divide any power of a number by another power of the same number? (11)

 9. How do we find any required power of a given power? (12)

 10. What is evolution? (13)

 11. By what methods do we indicate a root of a number? (14)

 12. How do we extract any root of a given power of a number? (15)

 13. What is meant by extracting the square root of a number? (16)

 14. What is the first storn in extracting the square root of a number? (16)

14. What is the first step in extracting the square root of a number? (16) 15. Why do we point off into periods of two figures each? (18-I) 16. What is the second step in the process of extracting the square root?

(16)17. How do we know that the square root of the highest square in the left hand period is the highest digit of the root? (18-II)

18. What is the third step in the process of extracting the square root? (16)

- 19. Why do we bring down only the next period to the right? (18-II in Ex. 2
- 20. What is the fourth part of the process for extracting the square root?
- 21. Why do we double the part of the root already found for a trial divisor ? (18-III).
- 22. What is the next step in extracting the square root of a number? (16)
 23. Why do we not include the right hand figure of the dividend when seeking how many times the trial divisor is contained in it? (18-IV.)
 24. Why do we place the digit thus found in both the divisor and the root? (18-V)
 25. What are the other steps used in extracting the square root? (16)
 26. What are the other steps used in extracting the square root? (16)

26. How do we extract the square root of a decimal? (19)

- 27. How do we extract the square root of a fraction or mixed number? (20) 28. What is a triangle? (22) What is a right-angled triangle? (23)
- 29. How may any one side of a right-angled triangle be found when the other two are given? (24)
- 30. What proportion exists between different circles? (25)
- 31. How may the area of a circle be found when its diameter is known?
- 32. What is meant by extracting the cube root of a number? (26)
- 33. Give the different steps of the process of extracting the cube root. (26) 34. If a number consist of a certain number of tens, plus a certain number
- of units, of what does its cube consist? (27) 35. Why do we divide off into periods of three figures each? (28, I.)
- 36. How do we know that the cube root of the highest cube contained in the left hand period is the highest digit of the root? (28, 11)
- 37. Whence do we obtain, in the cube root, the constant multipliers 300 and 30. Illustrate by an example. (28 IV, and VI.)
- 38. Why do we make the two additions, indicated in the rule, to the trial divisor ? (28, VI.)
- 39. How do we extract the cube root of a decimal? (29)
- 40. How do we extract the cube root of a fraction or mixed number? (30) 41. In extracting the cube root of a number in any other scale, what
- changes must we make in the rule? (31)
- 42. Give the different steps of Horner's method of extracting the cube root. (32)
- 43. What proportion exists between the magnitude of similar solids? (33) 41. How do we extract the higher roots when the index is a power of 2 or 3 or a multiple of 2 by 3? (34)
- 45. What is a logarithm? (35)
- 46. What is the base of a system of logarithms? (36)
- 47. What is a system of logarithms? (37)
 48. What systems of logarithms have been constructed and how do they differ from one another? (38)
- 49. What is the characteristic of a logarithm ? (39)
 50. What is the decimal part of the logarithm called ? (40)
- 51. How do we find the characteristic of a logarithm ? (42 and 43)
- 52. Why is the negative sign written over the characteristic of the logarithm of a decimal? (43, Note.)
- 53. Show that the characteristic of the logarithm of a number depends only on the position of the decimal point in the number, and the mantissa only in the sequence of figures. (44)
- 54. Explain clearly what is meant by the numbers in column D of the tables. (49)
- 55. Explain how the proportional parts in column P. P. are obtained. (50)56. Explain how the numbers in the column headed P. P. become the incre
 - ments to be added to the logarithms for an increase in the sixth, seventh, eighth, &c., place in the natural number. (51)
- 57. How do we find the logarithm of a vulgar fraction? (53)
- 58. Explain to how many figures we may rely upon the accuracy of the results obtained by logarithmic tables. (56)
- 59. What is the arithmetical complement of a logarithm? (57)
- 60. How do we multiply numbers by means of their logarithms? (58) 61. How do we divide numbers by means of their logarithms? (59, 69)
- 62. How do we involve and evolve quantities by means of logarithms? (61, 62, 63)

SECTION XI.

PROGRESSION, POSITION, COMPOUND INTEREST, AND ANNUITIES.

PROGRESSION.

1. Quantities are said to be in Arithmetical Progression when they increase or decrease by a common difference.

Thus, 2, 5, 8, 11, 14, &c., are in arithmetical progression, the common dif-ference being 3.

12, 10, 8, 6, &c., are in arithmetical progression, the common difference being 2.

2. In every progression the first and the last terms are called the extremes, and the intermediate terms the means.

ARITHMETICAL PROGRESSION.

3. In arithmetical progression there are five things to be considered:

- The first term.
 The last term.
- 3. The common difference. 4. The number of terms.

5. The sum of the series.

These quantities are so related to one another that any three of them being given the other two can be found, and hence there are 20 distinct cases arising from these combinations.

4. If we represent these five quantities by letters, thus:

a = the first term. l = the last term. d = the common difference. n = the number of terms. s = the sum of the series.

We shall be able easily to deduce algebraic formulæ which, being interpreted, become the common arithmetical rules for arithmetical progression.

5. The general expression for an arithmetical series then becomes

a+(a+d)+(a+2d)+(a+3d)+(a+1d)+(a+5d)+, &c. where the coefficient of d is always 1 less than the number of the terms. Thus in the third term the coefficient of d is 2, which is I less than the number of the terms. Thus in the third term the coefficient of d is 2, which is I less than the number of the term: in the fifth term the coefficient of d is 4, which is I less than the number of the term, &c. Hence l = a + (n-1) d; that is, the last term of an arithmetical series is equal to the first term added to the product of the common difference by the less than the number of the series is

one less than the number of terms.

6. Since the sum of the series is equal to the sum of all the terms taken in any order whatever, we have

 $\begin{array}{ll} \mathbf{3} = & a + |a + d + |a + 2d + |a + 3d + | \dots l - 3d + |l - 2d + |l - d + |l \\ \mathbf{4} \text{Iso } s = & l + |l - d + |l - 2d + |l - 3d + | \dots d + 3d + |a + 2d + |a + d + |a \\ \text{Hence } 2s = & (a + l) + (a + l) + (a + l) + (a + l) + \dots \text{to } n \text{ terms.} \\ \text{But } & (a + l) + (a + l) \dots \text{to } n \text{ terms.} \end{array}$

Therefore 2s=(a+l)n, and dividing these equals by 2, we have $s=(a+l)\frac{n}{2}$. That is, the sum of the series is found by adding together the first and last terms and multiplying their sum by half the number of terms.

Note.—In adding the corresponding terms of the foregoing series together the d's cancel out, thus adding the second terms of the right hand members together we have a+d+l-d, where the d's cancel, and the sum becomes a+l: so also in the third terms we have a+2d+l-2d=a+t, &c.

7. From the formula obtained in Art. 5, we find by transposing the terms

$$l = a + (n-1)d$$

$$a = l - (n-1)d$$

$$d = \frac{l - a}{n-1}$$

$$n = \frac{l - a}{d} + 1$$

and substituting these values of l, a, d, and n in the formula obtained in Art. 6, we find

$$s = \left\{ 2a + (n-1)d \right\} \frac{n}{2}$$

$$s = \left\{ 2l - (n-1)d \right\} \frac{n}{2}$$

$$s = \frac{(l-a)(l+a)}{2d} \cdot \frac{l+a}{2}$$

We thus obtain the five fundamental formulas from which the other fifteen are derived by transposing the terms, &c. Thus

$$\begin{array}{lll} l = a + (n-1)d \text{ gives formulas for } l, a, n, d = 4 \\ s = (a+l)\frac{n}{2} & \text{``} & \text{``} s, a, l, n = 4 \\ s = \left\{2a + (n-1)d\right\}\frac{n}{2} & \text{``} s, a, n, d = 4 \\ s = \left\{2l - (n-1)d\right\}\frac{n}{2} & \text{``} s, l, n, d = 4 \\ s = \frac{(l+a)(l-a)}{2d} + \frac{l+a}{2} & \text{``} s, a, l, d = 4 \\ & \text{Total 20} \end{array}$$

8. THE FOLLOWING TABLE GIVES THE 20 FORMULAS FOR ARITHMETICAL PROGRESSION WITH THEIR RELATIONS, &c.

No.	Given	Required.	Formulas.	Whence derived
	a, d, n		l = a + (n-1)d	fundamental.
	a, d, s		$l = -\frac{1}{2s}d + \sqrt{2ds + (a - \frac{1}{2}d)^2}$	VIII.
III.	a, n, s		$l = \frac{2s}{n} - a$	₹.
IV.	d, n, s		$l = \frac{s}{n} + \frac{(n-1)d}{2}$	VII.
v.	a, l, n		$s = (a+l)\frac{n}{2}$	fundamental.
VI.	a, d, n		$s = \left\{2a + (n-1)d\right\} \frac{n}{2}$	V. and I.
VII.	d, l, n		$s = \left\{2l - (n-1)d\right\} \frac{n}{2}$	V. and XVII.
VIII.	a, d, l		$s = \frac{(l+a)(l-a)}{2d} + \frac{l+a}{2}$	V. and XIII.
IX.	a, n, l		$d = \frac{l - a}{n - 1}$	I.
X.	a, n, s	đ	$d = \frac{2s - 2an}{n(n-1)}$	VI.
XI.	à, 1, 8		$d = \frac{(l+a)(l-a)}{2s-l-a}$	VIII.
XII.	l, n, s		$d = \frac{2nl-2s}{n(n-1)}$	VII.
XIII.	a, d,	1	$n = \frac{t-a}{d} + 1$	I.
XIV.	a, d,		$n = \frac{d-2a}{2d} + \sqrt{\frac{2s}{d} + \left(\frac{2a-d}{2d}\right)^2}$	VI.
XV.	a, l, s	n	$n = \frac{2s}{l+a}$	v
XVI.	d, l,	8	$n = \frac{2l+d}{2d} + \sqrt{\left(\frac{2l+d}{2d}\right)^2 - \frac{2d}{d}}$	VII.
XVII.	d, n,	a	$a = l - (n-1)d$ $a = \frac{s}{n} - \frac{(n-1)d}{2}$	I.
XVIII	d, n,		$a = \frac{s}{n} - \frac{(n-1)a}{2}$	VI.
XIX	l, n, s		$a = \frac{2s}{n} - l$	v.
XX	. d, l, s		$a = \frac{1}{2}d + \sqrt{(l + \frac{1}{2}d)^2 - 2ds}$	VIII.

9. The following examples will enable the student to understand clearly the interpretation and application of these formulæ.

10. To find the last term of an arithmetical series when the first term, the common difference, and the number of terms are given:—

RULE.

$$l = a + (n-1)d$$
. (1.)

INTERPRETATION.—The last term of a series is found by adding the first term to the product of the common difference by 1 less than the number of terms.

EXAMPLE.—What is the tenth term of the arithmetical series 1, 3, 5, &c.?

OPERATION.

Here we have given the first term 1, the common difference 2 and the number of terms 10; to find the tenth or last term.

Then $l = a + (n-1)d = 1 + (10-1) \times 2 = 1 + 9 \times 2 = 1 + 18 = 19$. Ans.

11. To find the common difference of an arithmetical series when the first term, the last term, and the number of terms are given:—

RITLE

$$d = \frac{l-a}{n-1} \cdot \text{(ix.)}$$

Interpretation.—To find the common difference of an arithmetical series,—Subtract the first term from the last term and divide the difference thus obtained by one less than the number of terms.

EXAMPLE.—The first term of an arithmetical series is 3, the 13th term 55: find the common difference.

OPBRATION.

Here we have given the first term 3, the last term 55, and the number of terms 13, to find the common difference.

Then
$$d = \frac{l-a}{n-1} = \frac{55-3}{13-1} = \frac{52}{12} = 4\frac{1}{12} = Ans$$
.

12. To find the sum of an arithmetical series when the first term, the last term, and the number of terms are given:—

RULE.

$$s = (a+l) \frac{n}{2}. \quad (v.)$$

INTERPRETATION.—Add the first and last terms together and multiply their sum by half the number of terms.

EXAMPLE.—Find the sum of an arithmetical series whose first term is 2, last term 50, and number of terms 17.

OPERATION.

Here we have given the first term 2, the last term 50 and the number of terms 17 to find s, the sum of the series.

Then
$$s = (a+l) \frac{n}{2} = (2+50) \times \frac{17}{2} = 52 \times \frac{17}{2} = 26 \times 17 = 442$$
. Ans.

13. To find the common difference when the last term, the number of terms, and the sum of the series are given:—

RULE.

$$d = \frac{2nl-2s}{n(n-1)}.$$
 (XII.)

INTERPRETATION.—Take twice the product of the number of terms by the last term, and from it subtract twice the sum of the series. Divide the resulting difference by the product of the number of terms by 1 less than the number of terms and the quotient will be the common difference.

EXAMPLE.—In an arithmetical series the last term is 80, the number of terms 11 and the sum of the series 746, required the common difference.

OPERATION.

Here we have given l, n, and s to find d and since l = 30, n = 11 and s = 746 we have:

$$d = \frac{2nl-2s}{n(n-1)} = \frac{(2\times11\times80)-(2\times746)}{11\times(11-1)} = \frac{1760-1492}{11\times10} = \frac{268}{110} = 2\frac{3}{8}\frac{4}{6}. Ans.$$

14. To find the number of terms of an arithmetical series when the first term, the common difference, and the sum of the series are given:—

TTT.

$$n = \frac{d-2a}{2d} + \sqrt{\frac{2s}{d} + \left(\frac{2a-d}{2d}\right)^2}$$
. (xiv.)

INTERPRETATION. — I. Subtract the common difference from twice the first term, divide the remainder by twice the common difference, square the quotient, add the result to the quotient obtained by dividing twice the sum of the series by the common difference and extract the square root of this sum.

II. Next, from the common difference subtract twice the first term, divide the remainder by twice the common difference, and to the quotient add the square root obtained in I. The sum will be

the number of terms.

Example—The first term of an arithmetical progression is 7, the common difference 1, and the sum of all the terms 142. What is the number of terms?

OPERATION.

Here we have given a, d, and s, to find n and since a = 7, $d = \frac{1}{4}$, and s = 142, we have

$$n = \frac{142, \text{ we nave}}{2d} + \sqrt{\frac{2a}{d}} + \left(\frac{2a-d}{2d}\right)^2 = \frac{\frac{1}{4} - 2 \times 7}{2 \times \frac{1}{4}} + \sqrt{\frac{142 \times 2}{4}} + \left(\frac{2 \times 7 - \frac{1}{4}}{2 \times \frac{1}{4}}\right)^2 = \frac{\frac{1}{4} - 14}{\frac{1}{3}} + \sqrt{\frac{184}{4}} + \left(\frac{14 - \frac{1}{4}}{\frac{1}{3}}\right)^2 = -\frac{18\frac{1}{4}}{\frac{1}{2}} + \sqrt{1136 + \left(\frac{13\frac{3}{4}}{\frac{1}{3}}\right)^2} = -27\frac{1}{2} + \sqrt{\frac{1136}{4} + \left(\frac{17\frac{1}{3}}{2}\right)^2} = -27\frac{1}{2} + \sqrt{\frac{1136}{4} + \left(\frac{17\frac{1}{3}}{2}\right)^2} = -27\frac{1}{2} + \sqrt{\frac{1136}{4} + \left(\frac{17\frac{1}{3}}{2}\right)^2} = -27\frac{1}{2} + 43\frac{1}{2}.$$

$$= 16. \text{ Ans.}$$

EXERCISE 156.

- In an arithmetical series the first term is 4, the number of terms 17 and the sum of the series 884. What is the last term?

 Ans. 100.
- 2. The extremes of an arithmetical series are 21, and 497, and the number of terms is 41. What is the common difference?
 Ans. 11⁴/₁₀.
- In an arithmetical series, the first term is 12, the last term 96, and the common difference is 6. Required the number of terms?

 Ans. 15.
- 4. In an arithmetical series, the last term is 14, the common difference 1 and the sum of the series 105. Required the number of terms?
 Ans. 15.
- 5. The first term of an arithmetical series is \$, the common difference \$, and the sum of the series 1180. What is the last term?
 Ans. 39\$.
- 6. If the extremes of an arithmetical series are 8 and 170 and the sum of the series 4895, what is the common difference?
 Ans. 3.
- 7. If the extremes of an arithmetical series are 5 and 27½ and the common difference 2½, what is the number of terms?

 Ans. 11.
- 8. If the first term of a series is 2, the last term 478 and the number of terms 86, what is the sum of the series?
- 10. In an arithmetical series the first term is 5, the number of terms 11 and the common difference 2½. What is the last term?
 Ans. 27½.
- 11. In an arithmetical series the last term is 199, the common difference is 11 and the number of terms 19. Required the sum of the series?
 Ans. 1900.
- 12. The sum of an arithmetical series is 39840, and the extremes are 2 and 478. What is the number of terms? Ans. 166.
- The sum of an arithmetical series is 83500 and the extremes are 998 and 2. Required the common difference? Ans. 6.

14. A snail crawls up a flag staff 130 feet high and upon reaching the top begins to descend. In what time will he again reach the ground it he goes 2 feet the first day, 4 feet the second, 6 feet the third, and so on ?

Ans. 15 days, 15 hours, 10 min, 27.264 sec.

15. The sum of an arithmetical series is 83500, the first term is 2 and the common difference 6, what is the last term? Ans. 998.

16. A person wishes to discharge a debt of \$1125 in 18 annual payments which shall increase in arithmetical progression. How much must his first payment be in order that the last may be \$120?

17. In an arithmetical series the extremes are 5 and 27% and the number of terms is 11. What is the common difference?

An . 21.

18. 220 stones are placed in a straight line exactly 21 yards apart, the first being 21 yards from a basket, how far will a person go whilst picking up the stones, returning with one at a time and depositing it in the basket?

Ans. 69 16 miles. 19. The sum of an arithmetical series is 39840, the number of terms is 166 and the last term is 478. What is the first

Ans. 2. term?

20. A person travelled from Toronto to Kingston, in 12 days, walking 4 miles the first day, 6 miles the second, 8 miles the third, and so on. How far is Toronto from Kingston? Ans. 180 miles.

21. The clocks of Venice strike from 1 to 24. How many strokes does one of these clocks make in the day?

Ans. 300.

GEOMETRICAL PROGRESSION.

15. Quantities are said to be in Geometrical Progression when they increase or decrease by a common multiplier.

Thus 3, 12, 48, 192, &c., are in geometrical progression, the common ratio or common multiplier being 4.

100, 20, 4, 4, 4, &c., are in geometrical progression, the common ratio being 1.

16. In geometrical progression there are five things to be considered:

1. The first term. 2. The last term.

^{3.} The common ratio.
4. The number of terms.
5. The sum of the series.

As in arithmetical progression, these five quantities are so related that any three of them being given the other two can be found, and hence there are 20 distinct cases arising from their combinations.

17. Representing these five quantities by letters, thus,

a = the first term. l = the last term.

r = the common ratio.

n = the number of terms. s = the sum of the series.

the general expression for a geometrical series becomes

where the index of r is always one less than the number of the term.

Thus in the third term the index of r is 2, which is one less than the number of the term; in the fifth term the index of r is 4, which is one less than the number of the term, &c.

Hence $l = ar^{n-1}$; that is, the last term is equal to the first term multiplied by the common ratio raised to that power which is indicated by one less than the number of terms.

18. Since the sum of the series is equal to the sum of all the terms.

 $s = a + ar + ar^2 + ar^3 + \dots - ar^{n-3} + ar^{n-2} + ar^{n-1}$, multiplying by r we get $sr = ar + ar^2 + ar^3 + \dots - ar^{n-3} + ar^{n-2} + ar^{n-1} + ar^n$ Hence $sr - s = ar^n - a$; or $s(r-1) = a(r^n-1)$, and therefore $s = \frac{a(r^n-1)}{r-1}$

That is, the sum of the series is found by finding that power of the common ratio which is expressed by the number of terms—subtracting 1 from this, dividing the remainder by one less than the common ratio and multiplying the quotient by the first term.

Note.—The second of the above series is found from the first by multiplying both sides of the equation by r, and in subtracting we take the terms of the upper series from the corresponding terms of the lower. Only the first three or four and the last three or four terms are written and between ar^3 and ar^{m-3} there may be any number of intermediate terms. The ar^{m-3} in the lower series is obtained by multiplying the term before ar^{m-3} in the upper series, which is ar^{m-4} , by r.

19. From the formula obtained in Art. 17 we get by transposing the terms, &c.

$$\begin{split} l &= ar^{n-1} \\ a &= \frac{l}{r^{n-1}} \\ r &= \left(\frac{l}{a}\right)^{\frac{1}{n-1}} \\ r &= \frac{\log l - \log a}{\log r} + 1. \end{split}$$

And substituting these values of l, a, r, n in the formula obtained in Art. 18 we find

$$s = \frac{rl - a}{r - 1}$$

$$s = \frac{l(r^{n} - 1)}{(r - 1)r^{n} - 1}$$

$$s = \frac{\frac{n}{l^{n} - 1} - \frac{n}{a^{n} - 1}}{\frac{1}{l^{n} - 1} - a^{n} - 1}$$

and these together with the two formulas obtained in Arts. 17 and 18.

$$s = \frac{a(r^n - 1)}{r - 1}$$

$$l = a^{n-1}$$

are the fundamental formulas of geometrical progression from which the other fifteen are derived by reduction. Thus,

$$s = \frac{rl - a}{r - 1}. \text{ gives for mulas for } s, r, l, \text{ and } a = 4$$

$$s = \frac{l(r^{n} - 1)}{(r - 1)r^{n} - 1} \qquad \text{``} s, r, l, \text{ and } n = 4$$

$$s = \frac{-a}{l^{n} - 1} \qquad \text{``} s, l, n, \text{ and } a = 4$$

$$s = \frac{a(r^{n} - 1)}{r - 1} \qquad \text{``} s, r, a, \text{ and } n = 4$$

$$l = ar^{n} - 1 \qquad \text{``} l, a, r, \text{ and } n = 4$$

$$Total \quad 20$$

20. The following table gives the 20 formulas for geometrical progression with their relations, &c. It will be observed that questions involving formulas III, XII, XIV, and XVI cannot be solved by common arithmetic, but require the aid of the higher mathematics. All the formulas for n involve the use of logarithms.

No.	Given.	Required.	Formulas.	Whence derived.
II. III.	a, r, n, a, r, s, a, n, s, r, n, s,	,	$l = ar^{n-1}$ $l = \frac{a + (r-1)s}{r}$ $l(s-l)^{n-1} - a(s-a)^{n-1} = 0$ $l = \frac{(r-1)sr^{n-1}}{r^{n-1}}$	fundamental. VI. VII. VIII.
	a, r, n, a, r, l,		$s = \frac{a(r^{n}-1)}{r-1}$ $s = \frac{rl-a}{r-1}$	fundamental. V. and I.
VII.	a, n, l,	8	$s = \frac{\prod_{n=1}^{n} \prod_{n=1}^{n}}{\prod_{n=1}^{n} a}$ $\frac{1}{l^{n-1} - a^{n-1}}$	V. and XIII
VIII.	r, n, l		$s = \frac{l(r^{n}-1)}{(r-1)r^{n-1}}$	V. and IX
IX.	r, n, l		$a = \frac{l}{r^{n-1}}$	I.
X.	r, n, s	a	$a = \frac{(r-1)s}{r^n-1}$	v.
	r, l, s	1	a = r(l-s)+s	VI.
XII.	n, l, s	,	$a(s-a)^{n-1}-l(s-l)^{n-1}=0$	VII.
XIII.	a, n, l	,	$r = \left(\frac{l}{a}\right)_{n-1}^{-1}$	1.
XIV.	a, n, s	,	$r^n - \frac{s}{a} r + \frac{s - a}{a} = 0$	v.
xv.	a, l, s	,	$r = \frac{s-a}{s-t}$	VI.
XVI.	n, l, s	,	$\left r^n - \frac{s}{s-l} r^{n-1} + \frac{l}{s-l} = 0 \right $	VIII.
XVII.	a, r,	1,	$n = \frac{\log l - \log a}{\log r} + 1$	I.
xviii	a, r,	5,	$n = \frac{\log [a + (r-1)s] - \log a}{\log r}$	
XIX.	a, l,		$n = \frac{\log \cdot l - \log \cdot a}{\log \cdot (s-a) - \log \cdot (s-l)} + 1$	vII.
xx	. r, l,	8,	$n = \frac{\log l - \log [rl - (r-1)s]}{\log r} + 1$	VIII

APPLICATIONS.

21. Given the first term, the common ratio, and the number of terms, to find the last term:—

RITLE.

$$l = ar^{n-1}$$
. (1.)

INTERPRETATION.—Multiply the first term by the common ratio raised to that power which is indicated by one less than the number of terms. The result will be the last term.

Example.—What is the 9th term of the series 7, 21, 63, &c.?

OPERATION.

Here a = 7, r = 3, and n = 9.

Then $l = ar^{n-1} = 7 \times 3^{9-1} = 7 \times 3^8 = 7 \times 6561 = 45927$. Ans.

22. Given the first term, the common ratio, and the last term, to find the sum of the series:—

BULE.

$$s = \frac{rl - a}{r - 1} \quad (VI.)$$

INTERPRETATION.—Subtract the first term from the product of the common ratio by the last term and divide the remainder by one less than the common ratio.

EXAMPLE.—The first term of a geometrical series is 5, the common ratio 4, and the last term 1000000. What is the sum of all the terms?

OPERATION.

Here
$$a = 5$$
, $r = 4$, and $l = 1000000$.
Then $s = \frac{rl - a}{r - 1} = \frac{4 \times 1000000 - 5}{4 - 1} = \frac{3999905}{3} = 13333313$. Ans.

23. Given the first term, the common ratio and the number of terms, to find the sum of the series:—

RULE.

$$s = a \left(\frac{r^n - 1}{r - 1} \right) \text{ (v.)}$$

INTERPRETATION.—Find that power of the common ratio which is indicated by the number of terms, subtract one from it, and divide the remainder by one less than the common ratio.

Lastly, multiply the quotient thus obtained by the first term of the series, and the result will be the sum of all the terms.

EXAMPLE.—The first term of a geometrical series is 3, the common ratio is 4, and the number of terms 9. Required the sum of the series.

OPERATION.

Here a = 3, r = 4, and n = 9.

Then
$$s = a \left(\frac{r^n - 1}{r - 1} \right) = 3 \times \frac{4^9 - 1}{4 - 1} = 3 \times \frac{262144 - 1}{3} = 262143$$
. Ans.

24. To find the common ratio when the first term, the last term, and the sum of the terms are given:—

RULE.

$$r = \frac{s - a}{s - l}$$
 (xv.)

INTERPRETATION.—Divide the difference between the first term and the sum by the difference between the last term and the sum: the quotient will be the common ratio.

EXAMPLE.—The first term of a geometrical series is 1, the last term 19683, and the sum of all the terms, 29524. What is the common ratio?

OPERATION.

Here a = 1, l = 19683, and s = 29524.

Then
$$r = \frac{s-a}{s-t} = \frac{29524 - 1}{29524 - 19683} = \frac{29523}{9841} = 3$$
. Ans.

EXERCISE 157.

- 1. A nobleman dying left 11 sons, to whom he bequeathed his property as follows: to the youngest he gave £1024; to the next, as much and a half: to the next 1½ of the preceding son's share; and so on. What was the eldest son's fortune; and what was the amount of the nobleman's property? Ans. The eldest son received £59049, and the father was worth £175099.
- The first term of a geometrical progression is 7, the last term is 1240029, and the sum of all the terms is 1860040. What is the ratio?
- 3. What debt can be discharged in a year by monthly payments in geometrical progression, the first term being £1, and the last £2048; and what will be the common ratio?

 Ans. The debt will be £4095; and the ratio 2.
- 4. The ratio of the terms of a geometrical progression is $\frac{3}{2}$, the number of terms is 8, and the last term is $106\frac{5}{4}0\frac{3}{2}$. What is the sum of all the terms?

 Ans. $307\frac{3}{4}\frac{1}{2}$.
- 5. In a geometrical progression the first term is 1, the number of terms 7, and the common ratio 3, what is the sum of the series?
 Ans. 1093.

6. The first term of a geometrical progression is 1, the last term is 10077696, and the number of terms is 10. What is the sum of all the terms? Ans. 12093235.

7. The first term of a geometrical progression is 6, the last term is 3072, and the sum of all the terms is 6138. What Ans. 2. is the ratio?

8. The ratio of the terms of a geometrical progression is 2, the number of terms is 11, and the sum of all the terms is 20470. What is the last term? Ans. 10240.

9. A gentleman married his daughter on New Year's day, and gave her husband 1 shilling towards her portion, and was to double it on the first day of every month during the Ans. £204 15s. year. What was her portion?

10. What will be the price of a horse sold for 1 farthing for the first nail in his shoes, 2 farthings for the second, 4 for the

third, &c., allowing 8 nails in each shoe?

Ans. £4473924 5s. 33d. 11. The first term of a geometrical progression is 4, the last term is 78732 and the number of terms is 10. What is Ans. 3. the ratio?

12. A person travelling, goes 5 miles the first day, 10 miles the second day, 20 miles the third day, and so on increasing in geometrical progression. If he continue to travel in this way for 7 days, how far will he go the last day? Ans. 320 miles.

13. The first term of a geometrical progression is 5, the last term is 327680, and the ratio is 4. What is the sum of Ans. 436905. all the terms?

14. A king in India, named Sheran, wished (according to the Arabic author Asephad,) that Sessa, the inventor of chess, should himself choose a reward. He requested the king to give him 1 grain of wheat for the first square, 2 grains for the second square, 4 grains for the third square, and so on; reckoning for each of the 64 squares of the board twice as many grains as for the preceding. Sheran was angry at a demand apparently so insignificant; but when it was calculated, to his astonishment it was found to be an enormous quantity. What was the number of grains of wheat and what was its worth at \$1.50 per bushel, reckoning 7680 grains to a pint?

Ans. 18446744073709551615 grains. 37529996894754 bushels. \$56294995342131.

15. The ratio of the terms of a geometrical progression is 3, the number of terms is 10, and the sum of all the terms is Aus. 196830. 295240. What is the last term?

16. The first term of a geometrical progression is 1, the last term is 2049, and the number of terms is 12. What is the sum of all the terms?
Ans. 4095.

17. The first term of a geometrical progression is 5, the ratio is 4, and the number of terms 9. What is the last term?

Aus. 327630.

25. When the common ratio of a geometrical series is a proper fraction, i.e., less than 1, the series is a descending one, and when the number of terms becomes very large r^n becomes very small. In an infinite descending series r^p becomes infinitely small, i.e. its value becomes = 0, and therefore ar^n may be neglected and the formula for finding the sum becomes

 $s = \frac{ar^{a} - a}{r - 1} = \frac{-a}{r - 1} = \frac{a}{1 - r}.$ Hence for finding the sum of any infinite series when r is less than 1:-

RULE.

$$s = \frac{a}{1 - r} (xxi.)$$

INTERPRETATION.—The sum of an infinite series is found by dividing the first term by unity minus the common ratio.

EXAMPLE 1.—What is the sum of the infinite series $1 + \frac{1}{6} + \frac{1}{2}i_5 + \frac{1}{12}i_5$, &c.?

OPERATION.

Here
$$a = 1$$
 and $r = \frac{1}{5}$
Then $s = \frac{a}{1-r} = \frac{1}{1-\frac{1}{5}} = \frac{1}{\frac{1}{5}} = \frac{5}{4} = 1\frac{1}{5}$. Ans.

Example 2.- What is the sum of the infinite series .734?

OPERATION.

Here
$$a = \frac{734}{1000}$$
 and $r = \frac{734}{1000}$.
Then $s = \frac{a}{1 - r} = \frac{7 \cdot \frac{36}{100}}{1 - \frac{1000}{1000}} = \frac{734}{1000} = \frac{734}{1000}$. Ans.

Exercise 158.

- 1. What is the sum of the infinite series 2, 36, 18, &c.?
- 2. What is the sum of the infinite series 4, 2, 1, $\frac{1}{2}$, $\frac{1}{4}$, &c.?
- Ans. 8.
 3. What is the sum of the infinite series 79?

 Ans. 18.
- 4. What is the sum of the infinite series 1234?

 Ans. 1234?
- 26. To insert any number of means between two given extremes:

RULE.

If the series is an arithmetical one, find the common difference by formula IX. ART. 8. Then add this common difference to the first term and the result will be the second term; add the common difference to the second and the result will be the third term, &c.

If the series is a geometrical one, find the common ratio by formula XIII. ART. 20. Then multiply the first term by the common ratio and the product will be the second term; multiply the second term by the common ratio and the result will be the third, &c.

Example 1.—Insert 7 arithmetical means between 3 and 51.

OFFRATION.

Since there are 7 means and 2 extremes the number of terms is 9.

Then $d = \frac{l-a}{n-1} = \frac{51-3}{9-1} = \frac{48}{8} = 6$.

1st term = 3; 2nd = 3 + 6 = 9; 3rd = 9 + 6 = 15; 4th = 15 + 6 = 21: 5th = 21 + 6 = 27; 6th = 27 + 6 = 33, and so on.

And series is 3, 9, 15, 21, 27, 83, 89, 45, 51.

EXAMPLE 2 .- Insert 6 geometrical means between 1 and 128.

OPERATION.

Since there are 6 means and 2 extremes the number of terms is 8.

Then
$$r = \left(\frac{l}{a}\right) \frac{1}{-1} = \left(\frac{128}{1}\right) \frac{1}{1} = (128) \frac{1}{7} = 2.$$

Hence 2nd term = $1 \times 2 = 2$; 3rd term = $2 \times 2 = 4$; 4th = $4 \times 2 = 8$, &c. And series is 1, 2, 4, 8, 16, 32, 64, 128.

EXERCISE 159.

- Insert 9 arithmetical means between 2 and 92.
 Ans. 2, 11, 20, 29, 38, 47, 56, 65, 74, 83, 92.
- Insert 4 arithmetical means between 7 and 50.
 Ans. 7, 15⁸, 24¹, 32⁶, 41⁸, 50.
- Find 8 geometrical means between 4096 and 8.
 Ans. 2048, 1024, 512, 256, 128, 64, 32, and 16.
- Find 7 geometrical means between 14 and 23514624.
 Ans. 84, 504, 3024, 18144, 108864, 653184, and 3919104.

POSITION.

27. Position is a rule which enables us to solve, by means of assumed numbers, a class of problems which we could not otherwise solve without the aid of algebra.

NOTE.—Position is also called the Rule of Palse, or the Rule of Trial and Error.

28. Position is divided into:

1st. Single Position—when only one assumed number is used.

2nd. Double Position—when two assumed numbers are used.

29. Single position is employed in the solution of those problems in which the required number is increased or decreased in any given ratio, i. e., when it is increased or diminished by any part of itself, or when it is multiplied or divided by any given number.

30. Double Position is employed in the solution of those problems in which the *result* found by increasing or decreasing the required number in any given ratio, is itself increased or diminished by some other number which is no known part or multiple of the required number.

SINGLE POSITION.

31. Single Position proceeds upon the principle that the results are proportional to the numbers used, and is employed in all cases when the problem can be stated algebraically in the form of ax = b, where x = the required number, a the given multiplier, integral or fractional, and b the given result.

32. Let it be required to find a value of x such that ax = b. Suppose x' to be this value, and instead of b we obtain b' for the result. Then we have ax = b and ax' = b', and dividing we get $\frac{ax'}{ax} = \frac{b}{b'}$ or $\frac{x'}{x} = \frac{b'}{b'}$, whence b':

 $b:: x': x \text{ or } x = \frac{b}{b'} \times x'$

Hence for single position we deduce the following:-

HULE.

Assume a number, and perform with it the operations described in the question; then say, as the result obtained is to the number used, so is the true or given result to the number required.

EXAMPLE 1.—What number is that which being increased by its fourth part and diminished by its fifth part gives 63 for the result?

OPERATION.

Assume any number, 49.* Then one-fourth of number = 10, and one-fifth = 8.

^{*} For the sake of convenience we assume a number of which we can take the required parts without using fractions.

40 + 10 - 8 = 42, which by the question should have been 63.

Then—Result obtained: Result required:: Number used: Number required.

Or, 42: 63:: 40: $\frac{63 \times 40}{42}$ = 60. Ans. PROOF. -60 +1 of 60-1 of 60 = 63.

Example 2.- A teacher being asked how many pupils he had, replied, if you add 1, 1, and 1 of the number together, the sum will be 18; what was their number?

OPERATION.

Assume 60 to be the number of pupils. Then one-third of 60 = 20 one-fourth of 60 = 15 one-sixth of 60 = 10

Sum = 45, but it should, by question, equal 18,

Then 45: 18:: 60: $\frac{18 \times 60}{45} = 24$. Ans.

PROOF. -1 of 24 × 1 of 24 + 1 of 24 = 18.

Exercise 160.

- 1. A gentleman distributed 78 pence among a number of poor persons, consisting of men, women, and children; to each man he gave 6d., to each woman 4d., to each child 2d.; there were twice as many women as men, and three times as many children as women. How many were there Ans. 3 men, 6 women, and 18 children.
- 2. A person bought a chaise, horse, and harness, for £60; the horse came to twice the price of the harness, and the chaise to twice the price of the horse and harness. What did he give for each? Ans. He gave for the harness, £6 13s. 4d.; for the horse, £13 6s. 8d.; and for the chaise, £40.
- 3. A's age is double that of B's; B's is treble that of C's; and the sum of all their ages is 140. What is the age of each?
- Ans. A's is 84, B's 42, and C's 14.

 4. After paying away 1 of my money; and then 3 of the remainder, I had 72 guineas left. What had I at first? Ans. 120 guineas.

^{*} All questions in position may be solved by simple analysis, and very frequently this is the better method, and indeed the teacher should insist upon the pupil thus solving each problem. The following will serve as examples of the mode of solution.

Example 5.—Since 140 is equal to A's age, + B's age, + C's age, and B's age is equal to three times C's, and A's to 6 times C's, it follows that 140 is equal to 1+3+6=10 times C's age, and hence C's age is $+_{0}$ of 140 = 14; B's = $14 \times 3 = 42$; and A's = $14 \times 6 = 84$.

- 5. A can do a piece of work in seven days; B can do the same in 5 days; and C in 6 days. In what time will all of them execute it?
 Ans. In 1\frac{1}{3}\frac{3}{3} days.
- 6. A and B can do a piece of work in 10 days; A by himself can do it in 15 days. In what time will B do it?
- Ans. In 30 days,

 7. A cistern has three pipes; when the first is opened all the water runs out in one hour; when the second is opened, it runs out in two hours; and when the third is opened, in three hours. In what time will it run out, if all the pipes are kept open together?

 Ans. In 76 hours.

 What is that number whose 1, 6 and 7 parts, taken together, make 27?

9. There are 5 mills; the first grinds 7 bushels of corn in 1 hour, the second 5 in the same time, the third 4, the fourth 3, and the fifth 1. In what time will the five grind 500 bushels, if they work together?

Ans. In 25 hours.

10. There is a cistern which can be filled by a pipe in 12 hours; it has another pipe in the bottom, by which it can be emptied in 18 hours. In what time will it be filled, if both are left open?
Ans. In 36 hours.

DOUBLE POSITION.

33. When the number sought is to be increased or diminished by some absolute number, which is not a known multiple, or part of it—or when two propositions, neither of which can be banished, are contained in the problem, we use double position, assuming two numbers. If the number sought is, during the process indicated by the question, to be involved or evolved, we obtain only an approximation to the quantity required. In other words double position is employed in all cases in which the problem stated algebraically would take the form of

ax + b = c

where x is the number sought, a the given multiplier, integral or fractional, b the given increment, and c the given result.

Example 7. By Analysis.—Since A can do the whole work in 7 days, in 1 day he will do $\frac{1}{2}$ of the whole work, similarly in 1 day B will do $\frac{1}{2}$, and C $\frac{1}{6}$ of the whole work. Therefore working together they will do $\frac{1}{2} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2} \frac{9}{16}$ of the whole work, and they will require as many days to do the whole work as $\frac{1}{2} \frac{9}{16} \frac{9}{16}$ is contained times in 1, i. e., $1 \div \frac{1}{2} \frac{9}{16} \frac{9}{16} = 1 \frac{1}{4} \frac{9}{16} \frac{3}{4}$ days. Ans.

34. Let it be required to find a value for x such as to satisfy the equation, ax+b=c.

In such a case assume any two known numbers n and n' and perform on these the operations indicated in the question, and let the errors in the result be e and e', both suppose in excess.

Then an + b = c + e (I) and an' + b = c + e' (II), and, by the question, ax + b = c (III).

Subtracting III from I we get an-ax = e, or a(n-x) = e (IV).

Subtracting III from II we get an'-ax=e', or a(n'-x)=e' (V.)

Dividing IV by V we get $\frac{a(n-x)}{a(n'-x)} = \frac{e}{e'}$ or $\frac{n-x}{n'-x} = \frac{e}{e'}$.

And reducing this we get $x = \frac{n'e - ne'}{e - e'}$.

Hence for double position we deduce the following:-

RULE.

I. Assume two convenient numbers, and perform upon them the processes supposed by the question, marking the error derived from each with+or-, according as it is an error of excess, or of defect.

II. Multiply each assumed number into the error which belongs to the other; and, if the errors are both plus, or both minus, divide the difference of the products by the difference of the errors. But, if one is a plus, and the other is a minus error, divide the sum of the products by the sum of the errors. In either case, the result will be the number sought, or an approximation to it.

EXAMPLE 1.—There is a fish whose head is 8 feet long, his tail is as long as his head and half his body, and his body is as long as his head and tail; what is the whole length of the fish?

OPERATION.

Assume 24 ft. as the length of body.

Then tail = $8+\frac{1}{2}$ of 24-8+12=20Body = head + tail = 8+20=28Assumed length of body = 24Error = 4Error = 4

Errors. Assumed numbers. Products. $\begin{array}{cccc} +4 & \times & 28 & = & 112 \\ +2 & \times & 24 & = & 48 \end{array}$

Difference of errors = 2 difference of products = 64Then $64 \div 2 = 32 = \text{length of body}$ $8 + \frac{1}{2}$ of $32 = 8 + 16 \times 24 =$ tail tail head

64 = length of fish.

EXAMPLE 2.—A laborer contracted to work 80 days for 75 cents per day, and to forfeit 50 cents for every day he should be idle during that time. He received \$25; now how many days did he work, and how many days was he idle?

OPERATION.

Suppose he worked 50 days; then he wa	s idle 30 days.	
Sum earned $= 50 \times 75 = 37.50 Sum forfeited $= 30 \times 50 = 15.00$	True result Result obtained	= \$25.00 = 22.50
Sum received = 22:50	Fran	- 9-50

Again: suppose he worked 40 days; then he lost 40 days.

Sum earned =
$$40 \times 75 = \$30^{\circ}00$$

Sum forfeited = $40 \times 50 = 20^{\circ}00$
Sum received = $10^{\circ}00$

Result required = $\$25^{\circ}00$
Result obtained = $10^{\circ}00$

Errors.			Assumed numbers.	Products	
-1		Χ	50	=	750
2	4	X	40	=	100

Difference of errors = 121. Difference of products = 650.

Therefore result required = $650 \div 12\frac{1}{2} = 52$ days.

Number of idle days = 80-52 = 28. Ans.

PROOF.—Sum earned $= 52 \times 75 = 39.00 Sum forfeited $= 28 \times 50 = 14.00$

Sum received = \$25.00.

EXAMPLE 3.—What number is that which, being multiplied by 3, the product increased by 4, and that sum divided by 8, the quotient shall be 32?

OPERATION.

Assume 40 to be the number.

Then $40 \times 3 = 120 + 4 = 124 \div 8 = 151 =$ result obtained. 32 = result required.

Again: assume 100 to be the number.

Then $100 \times 3 = 300 + 4 = 304 \div 8 = 38 =$ result obtained. 32 = result required.

$$Error = +6$$

Errors. Assumed numbers.
$$-16\frac{1}{2}$$
 \times 100 $= 1650$ $+ 6$ \times 40 $= 240$

Sum of error $= 22\frac{1}{2}$ Sum of products $= 1890$

Required number =
$$\frac{1890}{221}$$
 = 84. Ans.

Proof. $-84 \times 3 = 252 + 4 = 256 \div 8 = 32$.

NOTE.—In this example we take the sum of the errors for a divisor and the sum of the products for a dividend, because the errors are not both plus or both menus.

Example.—What is that number which is equal to 4 times its square root + 21?

OPERATION.

Assume 64	Assume 81
√64 = 8	$\sqrt{81} = 9$
4	4
-	
32	36
21	21
53, result obtained. 64, result required.	57, result obtained. 81, result required.
-11, difference.	-24, difference.
	- T
891	1536
	891

The first approximation is 49 6154

It is evident that 11 and 24 are not the errors in the assumed numbers multiplied or divided by the same quantity, and, therefore, as the reason upon which the rule is founded, does not apply, we obtain only an approximation. Substituting this, however, for one of the assumed numbers, we obtain a still nearer approximation.

SECOND RULE.

Find the errors by the last rule; then divide their difference (if they are both of the same kind), or their sum (if they are of different kinds), into the product of the difference of the numbers and one of the errors. The quotient will be the correction of that error which has been used as multiplier.

Note.—This rule depends upon the principle that the difference between the assumed numbers and the true numbers are proportional to the differences of the results obtained using the assumed numbers and that given in the problem. As in the last rule, when the question could not by algebra be resolved by an equation of the first degree, the rule gives only an approximation to the correct result.

EXAMPLE.—If to four times the price of my horse £10 be added the result will be £100. What is the price of my horse?

OPERATION.

Assume, £19, and secondly £25 as the price of the horse—

Then 19

25

4

76

10

86, the result obtained, 100, the result required.

-14 is an error of defect.

+10 is an error of excess.

The errors are of different kinds; and their sum is 14+10=24; and the difference of the assumed numbers is 25-19=6. Therefore

14, one of the errors, 6, the difference of the numbers. Then divide by 24)84

and 3.5 is the correction for 19, the number which gave an error of 14.

19+(the error being one of defect, the correction is to be added) 3.5=22.5 = £22 los. is the required quantity.

EXERCISE 161.

- A son asked his father how old he was, and received the following answer: Your age is now ½ of minc, but 5 years ago it was only 6. What are their ages?
 Ans. 80 and 20.
- Required what number it is from which if 34 be taken, 3 times the remainder will exceed it by \$\frac{1}{4}\$ of itself?
 Ans. 58\$\frac{2}{7}\$.
- A and B go out of a town by the same road. A goes 8 miles each day; B goes 1 mile the first day, 2 the second, 3 the third, &c. When will B overtake A?

	Α.	В.		Λ.	В.
Suppose	5	1	Suppose	7	1
	8	2	• •	8	2
		3			3
	40	4		58	4
	15	5		28	5
	_	_		_	в
	5)25	15		7)28	7
				-	-
	-5			-4	28
	7			5	
	-				
	35			20	
	20				
	-		5-4=1=differ	ence o	ferror
	1)15				

We divide the entire error by the number of days in each case, which gives the error in one day.

- 4. What are those numbers which, when added, make 25; but when one is halved and the other doubled, give equal results?
 Ans. 20 and 5.
- 5. Two contractors, A and B, are each to build a wall of equal dimensions; A employs as many men as finish 22; perches in a day; B employs the first day as many as finish 6 per., the second as many as finish 9, the third as many as finish 12, &c. In what time will they have built an equal number of perches?
 Ans. 12 days.
- What is the number whose ½, ¼, and ¾ multiplied together, make 24?

And 512 the quotient. $\sqrt[3]{512} = 8$, is the required number.

We multiply the alternate error by the cube of the supposed number, because the error belongs to $\frac{3}{64}$ part of the cube of the assumed numbers and not to the numbers themselves; for in reality it is the cube of some number that is required—since 8 being assumed, according to the question we have $\frac{8}{2} \times \frac{8}{4} \times \frac{38}{8} = 24$; or $\frac{3}{64} \times 8^3 = 24$.

- What number is it whose ½, ½, å, and ½, multiplied together, will produce 6998¾?

 Ans. 36.
- 8. A said to B, give me one of your shillings and I shall have twice as many as you will have left. B answered, if you give me one shilling I shall have as many as you. How many had each? Ans. A 7, and B 5.
- There are two numbers which, when added together, make 30; but the 1, 1, and 1 of the greater are equal to 1, 1, 1, 1 of the lesser. What are they?
 Ans. 12 and 18.
- 10. A gentleman has 2 horses, and a saddle worth £50. The saddle, if set on the back of the first horse, will make his value double that of the second; but if set on the back of the second horse, will make his value treble that of the first. What is the value of each horse? Ans. £30 and £40.
- 11. A gentleman finding several beggars at his door, gave to each 4d. and had 6d. left, but if he had given 6d. to each, he would have 12d. too little. How many beggars were there?
 Ans. 9.

COMPOUND INTEREST.

35. Let P = the principal, I = the interest, A = the amount, t = the number of payments, and r = the rate per unit for one payment. Then since r is the interest of \$1 for one payment, the amount of \$1 for

one payment is 1+r, and since the principal is always proportional to the amount:

amount:

$$1:1+r::P:P(1+r)=$$
 Amount of P at end of 1st period.
 $1:1+r::P(1+r):P(1+r)=$ Amount of P at end of 2nd period.

1:
$$1+r$$
:: P $(1+r)^2$: P $(1+r)^3$ = Amount of P at end of 3rd period.
1: $1+r$:: P $(1+r)^3$: P $(1+r)^4$ = Amount of P at end of 4th period.

And so on; hence at the end of the
$$t^{tA}$$
 period $A = P(1+r)$; which is

$$A = P (1+r)_{t} (I)$$

$$P = \frac{A}{(1+r)^{t}} (II)$$

$$P = \frac{A}{(1+r)^{t}} (II)$$

$$P = \frac{A}{(1+r)^{t}} (II)$$

$$P = \frac{A}{P} \text{ extracting the } t^{th} \text{ root, and transposing the } t^{th} \text{ poor, and transposing the } t^{th} \text{ root.}$$

Obtaining as before
$$(1+r)^i = \frac{A}{P}$$
 and applying the principle of logarithms we get $\log (1+r)$ $\times t = \log A - \log P$, and dividing each side

by log.
$$(1+r)$$
 we get $t = \frac{\log A - \log P}{\log (1+r)}$ which is (IV) of the margin.

Lastly to find the time in which any sum of money will amount to
$$n$$
 times itself at a given rate per cent. compound interest, we substitute n P for A in formula (1), which gives us n P $=$ P $(1+r)^r$ and dividing each of these by P we get $n = (1+r)^r$ whence $\log n = \log n$.

$$(1+r) \times t$$
; or $t = \frac{\log n}{\log (1+r)}$ which is formula (V).

APPLICATIONS.

When the principal, rate per cent., and time are given to find the amount:-

$$A = P (1+r)^t$$
 or $\log A = \log P + \log (1+r) \times t$. (I)

INTERPRETATION .- Multiply the logarithm of the amount of \$1 for one payment by the number of payments, and to the product add the logarithm of the principal; the result will be the logarithm of the amount,

II. Find the natural number corresponding to this logarithm and the result will be the answer.

EXAMPLE.—To what sum will \$750 amount in 3 years, at 2 per cent., quarterly compound interest?

OPERATION.

Here P = 750, r = .02, and t = 12, since there are 13 quarters in 3 years. Then $A = P(1 + r)^t$ or \log , $A = \log$, $P + \log$, $(1 + r) \times t = 2.875061 + 0.006600 <math>\times$; $12 = 2.078261 = \log$, of Answer. Hence amount = 396117.

36. When the amount, rate, and time are given to find the principal :-

$$P = \frac{A}{(1+r)^{i}}$$
; or log. $P = \log A - \log (1+r) \times t$. (II.)

INTERPRETATION .- Take the number expressing the amount of \$1 for one payment, and raise it to the power indicated by the number of payments.

II. Divide the given amount by the number thus obtained and the quotient will be the required principal.

BY LOGARITHMS.

Take the logarithm of the amount of \$1 for one payment, and

multiply it by the number of payments.

Subtract the logarithm thus obtained from the logarithm of the given amount; the remainder will be the logarithm of the required principal.

Example. - What principal put out at compound interest, at the rate of 31 per cent, half yearly, will amount to \$8764.00 in 11 years?

OPERATION.

Here A = 8764, r = .035 and t = 22.

Then $P = \frac{A}{(1+r)^t}$ or $\log P = \log A - \log (1+r) \times t$. $\log P = \frac{13.942702 - 0.014940 \times 22 = 3.942702 - 0.328680 = 3.614022$.

Hence P = \$4111.70. Ans.

37. When the amount, principal, and time are given to find the rate per cent :-

$$r = t \left| \frac{A}{P} \right| - 1$$
; or $\log \cdot (1+r) = \frac{\log \cdot A - \log \cdot P}{t}$ (III.)

INTERPRETATION .- Divide the amount by the principal, and extract that root of the quotient which is indicated by the number of payments.

II. Subtract 1 from the root thus obtained and the remainder will be the rate per unit, multiply this by 100 and the result will be the rate per cent.

BY LOGARITHMS.

Subtract the logarithm of the principal from the logarithm of the given amount, and divide the difference by the number of payments; the result will be the logarithm of the amount of \$1 for one payment.

Find the natural number corresponding to this, and from it subtract 1, the result will be the rate per unit, and this multiplied by

100 gives the rate per cent.

EXAMPLE.—At what rate per cent. compound interest, payable half-yearly, will \$278 amount to \$6742 in 27 years?

Here
$$\Lambda = 6742$$
, $P = 278$ and $t = 54$.

Then
$$\log. (1+r) = \frac{\log. \Lambda - \log. P}{t} = \frac{3.828789 - 2.444045}{54} = \frac{1.384744}{54}$$

= 0256434. Hence 1+r=1.06, r=06, and rate per cent. =6. Ans.

38. When the amount, principal, and rate are given to find the time:—

$$t = \frac{\log A - \log P}{\log (1+r)}$$
 (IV.)

INTERPRETATION.—Subtract the logarithm of the principal from the logarithm of the given amount, and divide the remainder by the logarithm of the amount of \$1 for one payment; the quotient will be the number of the payments.

EXAMPLE.—In what time will \$729 amount to \$7143 at 21 per cent. compound interest, quarterly?

Here
$$\Lambda = 7143$$
, $P = 729$ and $r = 025$.

Then
$$t = \frac{\log_2 \Lambda - \log_2 P}{\log_2 (1+r)} = \frac{3.853881 - 2.802728}{0.010724} = \frac{0.991153}{0.010724} = 92.42 \text{ payments} = 23.105 \text{ years} = 23 \text{ years 1 month 7.8 days.}$$

Ans.

39. To find in what time any sum of money will amount to n times itself at any given rate per cent. compound interest:—

RULE.

$$t = \frac{\log n}{\log (1+r)} \quad (V.)$$

INTERPRETATION.—Find the logarithm of the number expressing to how many times itself the given sum is to amount, and divide it by the logarithm of the amount of \$1 for one payment; the result will be the required time.

EXAMPLE 1.—In what time will any sum of money amount to five times itself at 5 per cent. per annum, compound interest?

Here n=5 and r=06.

Then
$$t = \frac{\log n}{\log (1+r)} = \frac{0.698970}{0.021189} = 32.987 \text{ yrs.} = 32 \text{ years } 11 \text{ months } 25$$

EXAMPLE 2.—In what time will any sum of money amount to nine times itself at 31 per cent. quarterly, compound interest?

OPERATION.

Here n = 9 and r = 036. Then $t = \frac{\log_2 n}{\log_2 (1+r)} = \frac{0.964243}{0.014940} = 68.8716$ payments = 15.9679 years = 15 years 11 months 18 days. Ans.

EXERCISE 162.

What is the amount and compound interest of \$713.29 for 7
years at 4½ per cent, half yearly?

Ans. Amount = \$1320.96.

Compound interest = \$607.67.

2. In what time will any sum of money amount to seven times itself at 14 per cent. quarterly, compound interest?

Ans. 32 years 8 months 2 days.

3. In what time will \$111.11 amount to \$1111.11 at 8 per cent.

per annum, compound interest? Ans. 29 years 11 mos.

- 4. At what rate per cent. quarterly will \$222.22 amount to \$3333.33 in 30 years, compound interest being allowed?

 Ans. 27.
- 5. In what time will any sum of money double itself at 7 per cent. per annum, compound interest?

 Ans. 10 years 2 months 28 days.
- 6. What principal put out at compound interest at the rate of 2½ per cent. quarterly will amount to \$100 in 7 years?

 Ans. \$53.63.
- 7. To what sum will \$2468.13 amount in 13 years at compound interest 3% per cent. half yearly?

 Ans. \$6427.705.
- 8. What principal will amount to \$7137.40 in 11 years, compound interest at the rate of 41 per cent. half yearly being allowed?
 Ans. \$2856.723.
- 9. In what time will any sum of money amount to 19 times itself at 51 per cent. half yearly, compound interest?

 Ans. 28 years 9 months 8 days.

ANNUITIES.

40. An Annuity is any periodical income payable at equal intervals, as yearly, half yearly, quarterly, &e.

41. An Annuity in possession is one that is entered

upon already.

42. An Annuity in reversion or a deferred annuity is one whose first payment is not to be made until after the expiration of a given time or until the occurrence of a specified event.

43. An Annuity certain is one that is to continue for a

fixed number of years.

- 44. An Annuity contingent or a life annuity is one that is to continue to be paid only so long as one or more individuals shall live.
- 45. A Perpetuity is an annuity that is to continue for ever.
- 46. An Annuity is in arrears when one or more payments are retained after they have become due.
- 47. The amount of an annuity is the sum of the payments forborne (i.e. in arrears) and the whole interest due upon them.
- 48. The present worth of an annuity is that sum which, being put out at interest until the annuity ceases, would produce a sum equal to what would have been accumulated had the annuity been left unpaid until that time.
- 49. Annuities are calculated at both simple and compound interest.

ANNUITIES AT SIMPLE INTEREST.

50. Let a = a single payment of the annuity, t = number of payments r = rate per unit for one period, and $\Lambda =$ amount of the annuity.

Then when the annuity is forhorne any number of payments, the last payment being made at the time it falls due, is equal to a; last payment but one $\equiv a +$ interest on a for one period $\equiv a + ar$; last but two $\equiv a +$ interest on a for two payments $\equiv a + 2ar$; last but three $\equiv a + 3ar$; last but four $\equiv a + 4ar$, &c.; and hence the first payment $\equiv a +$ interest on a for one less than the number of payments $\equiv a + (t-1) ar$.

Hence the payments forborne, with their interest, constitute a series in arithmetical progression where the first term is a, the last term a+(t-1) ar, the common difference ar, the sum of the series Λ , and the number of terms t.

Then (Art. 5.)
$$\Lambda = a + (a+ar) + (a+2ar) + (a+3ar)$$
, &c. $+ \left\{ a + (t-1)ar \right\}$
Whence (Art. 6.) $\Lambda = \left\{ a + (t-1)ar \right\} \frac{t}{2} = (1 + \frac{(t-1)r}{2}) ta$ which is formula I in the margin.

$$\Lambda = at \left(1 + \frac{(t-1)r}{2}\right) \quad \text{(I.)}
a = \frac{2\Lambda}{t\left(2 + (t-1)\right)r} \quad \text{(II.)}
r = \frac{2(\Lambda - at)}{at(t-1)} \quad \text{(III.)}
t = \sqrt{\frac{8r\Lambda}{a} + (2-r)^{2} - (2-r)} \quad \text{(IV.)}$$

Formulas II., III., and IV., are derived from formula I, by transposition, &c.

No general formula has yet been discovered for the summation of a series for finding the present value of an annuity at simple interest. The rule generally adopted for finding the present value of an annuity at simple interest is the following:—

Find the present worth of each payment by itself, discounting from the time it falls due—the sum of the present worth of all the

payments will be the present worth of the annuity.

NOTE. The absolute absurdity of purchasing annuities by simple interest is evident from the fact that the interest of the sum required to purclass an annuity, discounting at 5 per cent, simple interest, actually exceeds the annuity; i. e., to purchase an annuity to continue only a limited number of years, requires a sun which will yield a larger yearly interest for ever. Hence the various rules given for finding the present value of annuities at simple interest are, in effect, valueless.

APPLICATIONS.

51. When the annuity, number of payments forborne, and the rate per cent. of interest are given, to find the amount:-

RULE.

$$A = at \left\{ (1 + \frac{(t-1)r}{2} \right\}$$
 (1.)

INTERPRETATION .- Multiply the rate per unit by one less than the

number of payments and to half the result add 1.

Multiply the number thus obtained by the product of the annuity by the number of payments and the result will be the required

Example.-If a pension of \$600 per annum be forborne 5 years, to what sum will it amount at 4 per cent. simple interest?

Here
$$a = 600$$
, $t = 5$, $r = 04$.

Here
$$a = 600$$
, $t = 5$, $r = 04$.
Then $A = at \left\{ 1 + \frac{(t-1)r}{2} \right\} = 600 \times 5 \left\{ 1 + \frac{(5-1) \times 04}{2} \right\} = 3000 \times (1 + \frac{1}{2}) = 3000 \times 1.08 = 3240 . Ans.

52. When the amount of the annuity forborne, the

number of payments forborne, and the rate per cent. of interest allowed, are given, to find the annuity :-

$$a = \frac{2\mathcal{A}}{t\left\{2+(t-1)r\right\}} \quad \text{(II.)}$$

INTERPRETATION .- Multiply the rate per unit by one less than

the number of payments and to the product add 2.

Multiply this sum by the number of payments, and divide twice the given amount of the annuity by the product thus obtained; the result will be the annuity required.

EXAMPLE.—What annuity payable quarterly, will amount to \$3225.25 in 7 years, at 41 per cent. per annum, simple interest?

OPERATION.

Here since the rate is $4\frac{1}{2}$ per cent. per annum or '045 per unit per annum, the rate per quarter $= 0.045 \div 4 = 0.0125$.

Then t = 28, A = \$3225.25 and r = 01125.

$$a = \frac{2A}{t\left\{2 + (t-1)r\right\}} = \frac{3225 \cdot 25 \times 2}{28\left\{2 + (28-1) \times 01125\right\}} = \frac{6450 \cdot 50}{28 \times (2 + 30375)}$$

 $= \frac{6450 \cdot 50}{28 \times 2 \cdot 30375} = \frac{6450 \cdot 50}{64 \cdot 505} = $100 = \text{quarterly payment, and hence annual annuity} = $400. Ans,$

53. The application and interpretation of the remaining formulæ will be readily understood from the foregoing examples.

EXERCISE 163.

 In what time will an annuity of \$1000 per annum, payable half-yearly, amount to \$8365, allowing simple interest, at the rate of 6 per cent. per annum? Ans. 14 payments, or 7 years.

Note.—In this question we use formula IV, r being equal to '03 and a = 500.

 If a rent of \$450 per annum, payable quarterly, be forborne for 11 years, to what does it amount, allowing 6 per cent. per annum simple interest?

Ans. \$6646.374.

Note.—Take a = \$112.50, r = .015 and t = 44.

At what rate per cent. per annum, simple interest, will an annuity of \$300, payable yearly, amount to \$1680 in 5 years?

Ans. 6 per cent.

4. The rent of a farm is forborne for 8 years, and then amounts to \$2080. Now assuming the rent to be paid half-yearly, and simple interest at the rate of 8 per cent. per annum allowed, what was the rent of the farm?

Ans. \$200.

ANNUITIES AT COMPOUND INTEREST.

54. Let A, a, r, $t = \text{same quantitles as in last articles and also let <math>v =$

present value of the annuity.

Then, as before, the last payment of a forborne annuity being paid when due, =a; last payment but one, =a+ interest of a for one payment =a+ar=a-(1+r); a os also last payment but two, $=a(1+r)^2$; last but three $=a(1+r)^2$ &o., and first payment $=a(1+r)^{-1}$.

Hence A, the amount of the annuity $= a + a(1+r) + a(1+r)^2 + a(1+r)^3 + 3a(1+r)^{-1}$ which is a geometrical series and is equal (Art. 18.)

$$A = \frac{a\left\{(1+r)^i-1\right\}}{r} \left(\mathrm{I}\right)$$

$$a = \frac{Ar}{(1+r)!-1}$$
(II)

$$r = \sqrt[4]{\frac{Ar+a}{a}} - 1 \text{ (III)}$$

$$t = \frac{\log (Ar + a) - \log a}{\log (1 + r)}$$
(IV)

$$v = \frac{a}{r} \left\{ 1 - \frac{1}{(1+r)'} \right\}$$
 (V)

$$a = \frac{vr(1+r)^{t}}{(1+r)^{t}-1}$$
 (VI)

$$t = \frac{\log a - \log (a - vr)}{\log (1 + r)}$$
(VII)

$$v = \frac{a}{r} \left\{ \frac{1}{(1+r)^{\epsilon}} \frac{1}{(1+r)^{\epsilon+\epsilon}} \right\}$$
 (viii

$$v = \frac{a}{r} (IX)$$

$$a = vr(X)$$

$$r = \frac{a}{v} (XI)$$

$$v = \frac{a}{r(1+r)^4} \text{(XII)}$$

to
$$\frac{a \left\{ (1+r)r-1 \right\}}{r}$$
, which is formula I of margin.

Since the present value of an annuity at compound interest is that principal which put out at compound interest for the given time, would produce the amount of the aunuity we have from Art. 35, formula 1,
$$v$$
, $(1+r)^t = A =$

$$\frac{a\left\{(1+r)^{t-1}\right\}}{r} \text{ whence by di-}$$

viding by
$$(1+r)^r$$
, we get formula V in the margin.

To find the present value of an annuity which is to commence after
$$t$$
 years and then continue for s years, we have from formula V, v for $s + t$ years, $=$

$$\frac{a}{r}\left\{\frac{(1+r)^{s+t}-1}{(1+r)^{s+t}}\right\} \text{ and for } t \text{ years}$$

alone,
$$v = \frac{a}{r} \left\{ \frac{(1+r)\iota - 1}{(1+r)^{\iota}} \right\}$$

Therefore for t years to commence after s years. v =

$$\frac{a}{r} \left\{ \frac{(1+r)^{r+1}}{(1+r)^{r+1}} - \frac{(1+r)^{t}-1}{(1+r)^{t}} \right\}$$
or $v = \frac{a}{r} \left\{ \frac{1}{(1+r)^{t}} - \frac{1}{(1+r)^{t+1}} \right\}$

which is formula VIII in the margin.

When an annuity lasts for ever as in the case of landed property, $(1+r)^{\epsilon}$ in formula V becomes infinitely great, and therefore

 $\frac{1}{(1+r)^t} = \frac{1}{\alpha} = 0 \text{ and the formula}$ for finding the present value of a perpetuity is reduced to the form given in IX.

Formulas X and XI are derived from IX.

The present value of a freehold estate to a person to whom it will revert after s years and then continue for ever, is found from formula VIII and is represented by formula XII in the margin.

55. To facilitate the calculation of annuities the following tables are given, the first showing the amount of an annuity of \$1 at compound interest, and the second, the present value of an annuity of \$1 at compound interest.

TABLE OF THE AMOUNTS OF AN ANNUITY OF \$1 OR £1.

Pay- ments.	3 per cent.	4 per cent.	5 per cent.	6 per cent
1	1.00000	1.00000	1.00000	1.00000
2	2:03000	2.04000	2.06000	2.06000
3	3.09090	3.12160	2·05000 3·15250	3.18360
4	4.18363	4.24646	4.31012	4.37462
5	5.30918	5.41632	5.52563	5.63706
67	6.46841	6.63297	6.80191	6.97532
7	7.66246	7.89829	8.14201	8.39384
8	8.89234	9.21428	9.54911	9.89747
10	10.15911	10.58279	11.02658	11.49131
11	11:46388 12:80779	12·00611 13·48635	12:57789 14:20679	13·18079 14·97164
12	14.19203	15.02580	15:91713	16.86994
13	15:61779	16.62684	17-71298	18.88214
14	17 08632	18:29191	19.59863	21.01506
15	18.59891	20.02359	21.57856	23.27598
16	20.15688	21.82453	23.65749	25.67258
17	21.76159	23.69751	25.84037	28-21288
18	23.41443	25.64541	28.13238	30.90565
19	25.11687	27.67123	30.53900	33.75999
20	26.87037	29.77808	33.06595	36.78559
21	28.67648	31 96920	35.71925	39.99278
22	30.53678	34.24797	38.50521	43.39229
23	32.45288	36.61789	41.43047	46 99583
24 25	34·42647 36·45926	39·08260 41·64591	44.50200 47.72710	50·81558 54·86451
26	38.55304	44:31174	51.11345	59.15639
27	40.70963	47:08431	54.66931	63.70576
28	42.93092	49.96758	58.40258	68-52811
29	45.21885	52-96629	62.32271	73.63980
30	47:57541	56 08494	66.43885	79.05819
31	50.00268	59:32833	70.76079	84.80168
32	52.50276	62.70147	75.29829	90.88978
33	55:07784	66 20953	80:06377	97.34316
34	57.73018	69 85791	85.06696	104-18375
35	60.46208	73.65222	90.32031	111.43478
36	63 27594	77:59831	95.83623	119-12087
37 33	66·17422 69·15945	81·70225 85·97034	101·62814 107·70954	127·26812 135·90420
39	72-23423	90.40915	114 09502	145.05846
40	75.40126	95 02551	120:79977	154.76196
41	78-66330	99.82654	127.83976	165.04768
42	82.02320	104.81960	135:23175	175.95054
43	85.48389	110.01238	142-99334	187-50758
44	89-04841	115.41288	151-14300	199.75803
45	92:71986	121.02939	159.70015	212.74351
46	96.50416	126.87957	168-68516	226.50812
47	100.89650	132 94539	178 11924	241.09861
48	104-40839	189 26321	188 02539	256 66458
49 50	108·54065 112·79687	145·88373 152·66708	198·42666 209·34799	272.96840 290.33590

TABLE OF PRESENT VALUES OF AN ANNUITY OF \$1 OR £1.

lo, of Pay- nents.	3 per cent.	4 per cent.	5 per cent.	6 per cent.	
		1.		-	
1	0.97097	0.96154	0.95238	0.94340	
2 3	1.91347	1.88619	1.86941	1.83339	
	2.82861	2.77519	2.87519	2.67301	
4	3.71710	3.62999	3.54595	3.46510	
5	4.57971	4.45182	4.32943	4.21236	
6	5.41719	5.24214	5.07569	4.91732	
6 7 8 9	6.23028	6.00205	5.78637	5.58238	
8	7.01969	6.73274	6.46321	6.20979	
	7.78611	7.43533	7.10782	6.80169	
10	8 53920	8.11089	7.72173	7.36009	
11	9.25262	8.76058	8.30641	7.88687	
12	9.95400	9.38507	8.86325	8.38384	
13	10.63496	9.98565	9:39357	8.85268	
14	11.29607	10.56312	9.89864	9.29498	
15	11.93794	11.11849	10.37965	9.71225	
16	12.56110	11.65239	10.83777	10.10589	
17	13.16612	12.16567	11.27406	10.47726	
18	13.75351	12.65940	11.68958	10.82760	
19	14.32380	13 13394	12.08532	11.15811	
20	14.87748	13 59032	12.46221	11 46992	
21	15.41502	14 02916	12.82116	11.76407	
22	15.93692	14.45111	13.16300	12.04158	
23	16.44361	14.85648	13.48857	12.30338	
24	16.93554	15.24696	13.79864	12.55036	
25	17.41315	15.62208	14.09394	12·78335 13·09316	
26	17.87684	15.98277	14.37518	13.21053	
27	18-32703	16.32958	14.64303	13:40616	
28 29	18.76411	16.66306	14.89812	13.59072	
29	19-18846	16.98371	15.14107	13.76483	
30	19.60044	17·29203 17·58849	15:37245	13.92909	
7 31	20.00043	17.87355	15·59281 15·80267	14.0840	
32	20.38877	18:14764	16:00255	14.2302	
33	20.76579	18:41119	16.19290	14-36814	
34	21·13184 21·48722	18.66461	16:37419	14-4982	
35 36	21.83225	18.90828	16.64685	14-6209	
36		19:14258	16.71128	14.7367	
37	22·16724 22·49246	19:36786	16.86789	14.8460	
38	22-80822	19.58448	17:01704	14.9490	
39	23.11477	19.79277	17.15908	15.9463	
40	23.41240	19-99305	17-29436	15.1380	
41	23.70136	20.18562	17.42320	15.2245	
42	23.98190	20.37079	17.54591	15:3061	
43	24.25428	20.54844	17.66277	15 8831	
44	24.61871	20.72004	17.77407	15.4558	
45	24.77545	20.88465	17-88006	15.5243	
46	25.02471	21.04293	17-98101	16.5890	
47 48	25.28677	21.19613	18-07714	15.6600	
. 49	25.59166	21.50166	18-16872	16.7075	
50		21.72977	18-25592	16.7618	

APPLICATIONS.

56. To find the amount of an annuity forborne for any number of years at compound interest:

$$A = \frac{a\{(1+r)^{i}-1\}}{r}$$
 (1.)

INTERPRETATION .- From the amount raised to the power indicated by the number of payments subtract 1 and multiply the remainder by the annuity. Lastly : divide the sum thus obtained by the rate per unit and the quotient will be the required amount.

By the Table.-Find from the table the amount of \$1 for the given number of payments and at the given rate; multiply it by the given annuity and the quotient will be the amount.

Example.-If a yearly rent of \$400 be forborne for 23 years, to what sum will it amount at 5 per cent. compound interest?

OPERATION.

Here
$$a = 400$$
, $t = 23$, $r = .05$.
Then $A = \frac{a\left\{(1+r)^t - 1\right\}}{r} = \frac{400\left\{(1.05)^{2.3} - 1\right\}}{.05} = \frac{400 \times 2.071475}{.05} = \frac{828.590}{.05}$

BY THE TABLE.—Amount of \$1 at the given rate and time = \$41'43047. Then \$41.43047 × 400 = \$16572.188.

NOTE.—These two methods give results slightly different. This arises from the fact that the table shows only an approximation to the correct amount of the annuity for \$1; all the figures except the first five of its decimal being rejected.

57. To find the present value of an annuity at compound interest:-

RULE.

$$v = \frac{a}{r} \left\{ 1 - \frac{1}{(1+r)^t} \right\}$$
 (v.)

INTERPRETATION .- Divide 1 by that power of the amount of \$1 which is indicated by the number of payments and subtract the result from 1.

Multiply the remainder by the quotient arising from the division of the given annuity by the rate per unit and the result will be the required present value.

By the Table. - Find the present value of an annuity of \$1 for the given number of payments and at the given rate, and multiply this by the given annuity.

EXAMPLE.—What is the present value of an annuity of \$40, to continue 5 years, allowing 5 per cent. compound interest?

Here a = 40, t = 5, and r = 05.

Then
$$v = \frac{a}{r} \left\{ 1 - \frac{1}{(1+r)^t} \right\} = \frac{40}{.05} \times \left\{ 1 - \frac{1}{(1.05)^5} \right\} = \frac{4000}{5} \times (1 - .7835)$$

= 800× 2165 = \$173.20. Ans.

OR BY THE TABLE.—Present value of an annuity of \$1 for given rate and time = \$4*32948 and \$4*32948 \times 40 = \$173*179. Ans.

58. To find the present worth of a perpetuity:-

RULE.

$$V = \frac{a}{r}$$
. (rx.)

INTERPRETATION.—Divide the annuity by the rate per unit and the quotient will be the value of the perpetuity.

EXAMPLE.—What is the present value of a freehold estate of \$75—allowing the purchaser 6 per cent. compound interest for his money?

OPERATION.

Here a = 75, and r = 06.

Then
$$V = \frac{a}{r} = \frac{75}{06} = \frac{7500}{6} = $1250$$
. Ans.

59. To find the present worth of a perpetuity in reversion:—

BULE.

$$V = \frac{a}{r(1+r)}, \quad (xn.)$$

INTERPRETATION.—Find that power of the amount of \$1 for one payment that is indicated by the number of payments that have to elapse before the annuity reverts, multiply this by the rate per unit and divide the given annuity by the product—the result will be the present value.

EXAMPLE.—What is the present value of the reversion of a perpetuity of \$79.20 per annum, to commence 7 years hence—allowing the buyer 41 per cent. for his money?

OPERATION.

Here
$$s = 79'20, s = 7, \text{ and } r = 046.$$

$$79'20$$
Then $V = \frac{r}{r(1+r)^2} = \frac{79'20}{045 \times (1+045)^7} = \frac{79'20}{045 \times 1'360962} = \frac{79'20}{06123879} = \frac{79'20}{06123879}$

60. With due attention to the foregoing interpretations and examples, the pupil will not experience any difficulty in applying the remaining formulæ.

EXERCISE 164.

- 1. What is the annual rental of a freehold estate, purchased for \$3000 when the rate of interest is at 4 per cent.? Ans. \$120.
- 2. If a perpetuity of \$563 can be purchased for \$11260 ready money, what is the rate of interest allowed?

Ans. 5 per cent.

- 3. A freehold estate producing \$75 per annum is mortgaged for the period of 14 years; what is its present value, reckoning compound interest at 5 per cent. per annum? Ans. \$757.608.
- 4. Required the present value of a deferred annuity of \$90, to be entered upon at the expiration of 12 years, and then to be continued for 7 years at 4 per cent. compound interest? Ans. \$337.39.
- 5. What is the present value of an estate whose rental is \$1500, allowing 5 per cent. compound interest? Ans. \$30000, or 20 years' purchase.
- 6. For how many years may an annuity of £22 be purchased for £308 12s. 10d., allowing compound interest at 4 per cent.? Ans. 21 years.
- 7. What is the present value of an annuity of \$154 for 19 years at 5 per cent. compound interest? Ans. \$1861-13.
- 8. What annuity, accumulating at 31 per cent. compound interest, will amount to £600 in 40 years? Ans. £6 13s, 11d.
- 9. In how many years will an annuity of \$8 per annum amount to \$187.315625 at 3 per cent. compound interest? Ans. 18 years.
- 10. What will an annuity of \$74 amount to in 30 years at 4 per Ans. \$4150.28. cent. compound interest?

QUESTIONS TO BE ANSWERED BY THE PUPIL.

NOTE. The numbers after the questions refer to the numbered articles of the section.

- When are quantities said to be in arithmetical progression? (1)
 What are the extremes? What the means? (2)
 What five quantities are to be considered in arithmetical progression? (3)

4. How are these related to each other? (8) 5. How many cases arise from these combinations? (8)

- 6. Deduce the fundamental formulæ for arithmetical progression. (4-7)
- 7. When are quantities said to be in geometrical progression? (15)

 8. What five quantities are to be considered in geometrical progression? (16)

 9. How are these related and how many cases arise from their combinations? (16)
- 10. Deduce the fundamental formulæ for geometrical progression. (17-19) 11. What rule do you use when finding the sum of any infinite series when the ratio is less than 1? (25)

- 12. Prove this rule. (25)
 13. How do we insert any number of arithmetical means between two given extremes? (26)

 14. How do we insert any number of geometrical means between two
- extremes? (26)
 15. What is position? (27)
 16. Into what rules is position divided? (28)

When is a single position used? (29)

- 17. When is a single position used? (29)18. What class of questions require the use of double position? (30)
- 19. Give and prove the common rule for single position. (32) 20. Give and prove the common rule for double position. (34)
- 21. Deduce algebraically a complete set of rules for compound interest. (35)

22. What is an annuity ? (40)
23. When is an annuity said to be in possession? (41)
24. What is a deferred annuity or an annuity in reversion? (42)

- 24. What is a deterred annuity or an annuity in rev 25. What is a contingent annuity? (41) 26. What is a perpetuity? (45) 27. When is an annuity said to be in arrears? (46) 28. What is the amount of an annuity? (47) 29. What is the present worth of an annuity? (48) 20. Deduce at the present worth of an annuity?
- 30. Deduce a set of rules for computing annuities at simple interest. Illustrate the absurdity and injustice of computing the present value of annuities at simple interest. (50)

32. Deduce a set of rules for annuities at compound interest. (54)

EXERCISE 165.

EXAMINATION PROBLEMS.

FIRST SERIES.

- 1. Write down as one number seven trillions and ninety millions, and nineteen and four million two hundred thousand and six hundredths of trillionths.
- 2. Deduct 19 per cent. from \$7580 and divide the remainder among A, B, C, and D, so that A may have \$111-11 more than B; B \$90.90 more than C, and D one third as much as A, B and C together.
- 3. A and B can perform a piece of work in 8 days, when the days are 12 hours long; A, by himself, can do it in 12 days, of 16 hours each. In how many days of 14 hours long will B do it?
- 4. Reduce £179 14s. 82d. to dollars and cents, and divide the result by .00000048.
- 5. What is the l. c. m. of 44, 18, 30, 77, 56 and 27?

- 6. In what time will any sum of money amount to 20 times itself at 5½ per cent. simple interest?
- Divide 7342163 octenary by 61351 nonary, and give the answer in the duodenary scale true to two places to the right of the separating point.
- 8. Multiply 43 lbs. 3 oz. 17 dwt. 11 grs. by 7831.
- 9. Find the sum of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}$, ad infinitum.

 $y = \frac{\frac{21}{3}}{4\frac{1}{4}}$

10. Divide 1 of 3 of 192 by—4

2 3

- 11. Extract the 17th root of 129140163.
- 12. There is a number consisting of two places of figures, which is equal to four times the sum of its digits, and if 18 be added to it, its digits will be inverted. What is the number?

SECOND SERIES.

- Divide \$897.43 among A, B and C, so that B may have \$93.40 less than A, and \$69.18 more than C.
- 14. If 7 lbs. of wheat contain as much nutritive matter as 9 lbs. of rye, and 5 lbs. of rye as much as 8 lbs. of oats, and 13 lbs. of oats as much as 21 lbs. of buckwheat, and 27 lbs. of buckwheat as much as 20 lbs. of barley, and 24 lbs. of barley as much as 26 lbs. of peas, and 11 lbs. of peas as much as 35 lbs. of potatoes; how many pounds of potatoes contain as much nourishment as 16 lbs. of wheat?
- 15. Reduce \(\frac{1}{3}\) of 4\(\frac{1}{3}\) of 7\(\frac{1}{3}\) of \(\frac{9}{19\(\frac{1}{3}\)} \) of 3 oz. 4 drs. 2 scr. 5 grains to the decimal of \(\frac{1}{3}\) of \(\frac{1}{3}\) of \(\frac{1}{3}\) of 6\(\frac{1}{3}\) times 7 lbs. 3oz., Apothecaries Weight.
- From 623.42793 take 93.4267192; mark distinctly the resulting repetend.
- 17. If I own a vessel valued at \$7493 and wish to insure it at a premium of 4% per cent. so as to recover, in case of the destruction of the vessel, both the premium paid and the value of the vessel, for what sum must I insure?
 - 18. If 18 men in 20 weeks of 5 working days each, working 11 hours a day, dig 11 cellars, each 20 feet long, 16 feet wide

and 5 feet deep; how many men will be required to dig 24 cellars, each 22 feet square and 4 feet deep, in 36 weeks

of 6 days each, working 9 hours per day?

19. A certain number is divided by 9 and the quotient multiplied by 17; the product is then divided by 300 and 33 is added to the quotient; the result is next divided by 3, and from this quotient 31 is subtracted, and the resulting difference divided by 121. Now 1 of 3 of 1 of this last quotient is 2. Required the original number.

20. What is the 1. c. m. of 480, 768, 348, and 1176? 21. What is the G. C. M. of 17598, 46090, and 171347?

22. In a certain adventure A put in \$12000 for 4 months, then adding \$8000, he continued the whole 2 months longer; B put in \$25000, and after 3 months took out \$10000, and continued the rest for 3 months longer; C put in \$35000 for 2 months, then withdrawing ? of his stock, continued the remainder for 4 months longer; they gained \$15000; what was the share of each?

23. Three merchants traffic in company, and their stock is £400; the money of A continued in trade 5 months, that of B 6 months, and that of C 9 months; and they gained £375, which they divide equally. What stock did each

put in?

24. A fountain has 4 pipes, A, B, C, and D, and under it stands a cistern, which can be filled by A in 6, by B in 8, by C in 10, and by D in 12 hours; the cistern has 4 pipes, E, F, G, and H; and can be emptied by E in 6, by F in 5, by G in 4, and by H in 3 hours. Suppose the cistern is full of water, and that 8 pipes are all open, in what time will it be emptied?

THIRD SERIES.

25. Express 74938 and 17498679 in Roman Numerals.

26. 2310 loaves of bread are divided among charitable institutions in the following manner: as often as the first receives 4 the second receives 3, and as often as the first receives 6 the third gets 7; how many will each have?

27. How much sugar at 4, 5, and 9 cents a pound, must be mixed with 72 pounds at 12 cents a pound, so that the mixture may be worth 8 cents a pound?

28. What principal put out at simple interest will amount to \$4444.44 in 4 years, 4 months 4 days at 4.44 per cent.?

29. For what sum must a ship valued at \$23470 be insured so as, in case of its destruction, to recover both the value of the vessel and the premium of 21 per cent.?

- 30. What principal will amount to \$7493.47 in 8 years, allowing simple interest at 7 per cent.?
- 31. I send to my agent in Manchester \$17460 and instruct him to deduct his commission at 31 per cent., and invest the balance in broadcloths at \$2.95 per yard. When I receive the goods I have to pay in addition \$1347.90 for carriage, \$479.40 for insurance, \$169.83 for storage, wharfage, and harbour dues, and an ad valorem duty at 24 per cent, on the invoice of goods. Required how many yards of cloth my agent ships to me and what I gain or lose per cent. on the whole transaction if I sell the goods for \$25000.
- 32. Transpose 134234 quinary into the ternary, octenary, and duodenary scales, and prove the results by reducing all four numbers to the denary scale.
- 33. What is the difference between $\frac{2}{3}$ of $\frac{9\frac{1}{4}}{1\frac{1}{4}}$ of $\frac{9\frac{1}{4}}{16}$ of $\frac{3}{4}$ of

£43 18s. 111d., and 3% of 171 of 56 of 1.75 of 61 times \$97.18?

34. Given the logarithm of 2 = 0.3010303 = 0.477121

13 = 1.113943

Find the logarithms of $\frac{1}{13}$, 19.5, 1125, 28.16, 65000, .0005, 152·1, and 8·112.

- 35. Extract the cube root of 871tet 72 duodenary true to two places to the right of the separating point.
- 36. A person passed i of his age in childhood, ig of it in youth, of it + 5 years in matrimony; he had then a son whom he survived 4 years, and who reached only i the age of his father. At what age did this person die?

FOURTH SERIES.

- 37. Divide 63 miles 3 fur. 7 per. 3 yds. 2 ft. 7 in. by 7 fur. 23 per. 31 yds.
- 38. Divide 6.3 by .000000274.
- 39. If 1 yards of cloth cost \$13, how much will 63 yards cost?
- 40. Find the interest on \$4237.71 at 64 per cent. for 1.67 years.
- 41. In what time will \$674.30 amount to \$1000 at 81 per cent.?
- 42. What are the amount and compound interest of \$813.71 for 7 years at 4 per cent. half-yearly?
- 43. A owes B \$4300 to be paid as follows, viz.: \$300 down, \$700 at the end of 4 months, \$750 at the end of 7 months, \$850 at the end of 9 months, \$400 at the end of 13 months, and the balance at the end of 19 months. Required the equated time for the whole debt.

44. Deduct 23 per cent. from \$4200 and divide the remainder between A, B, C, D, and E, so that A may have \$17.10 more than B, C \$19.23 less than B, D \$42.11 less than C, and E half as much as A, B, C, and D together.

45. What principal put out at simple interest at 16 per cent. will

amount to \$3786.30 in 11 years?

46. Find the value of

$$\frac{\left\{(3\frac{3}{7}-2\frac{7}{16})\times 46\div\frac{2}{5} \text{ of } \cdot 142857\right\} \div 8\frac{1}{5} \text{ times } \left(\frac{1}{2}+\frac{1}{7}+\frac{1}{5}-\frac{3}{2}\frac{3}{4}\frac{7}{16}\right)}{\left\{(\cdot 73\times 12345\div\frac{2}{7}\frac{7}{8})+\frac{3}{7}+9\frac{3}{5}+17\frac{4}{11}\right\} \div 27\cdot 4922077}$$

47. Add together 312312302 and 2312132 quaternary; multiply the sum by twenty-three thousand and eleven times 4234 quinary; from the product subtract 555+444+333+222+111 senary; divide the remainder by 6542 septenary, and give the answer in the octenary scale.

48. What is the square of 'l and also of 'l?

FIFTH SERIES.

49. Read the following numbers: 1000300500600.00070080009. 7600290024007.000000067400209.

50. Find the l. c. m. of 2, 9, 16, 27, 48, and 81.

51. In what time will any sum of money amount to 7 times itself at 6 per cent. per annum compound interest?

52. How often will a coach wheel turn in going from Toronto to Brampton, a distance of 20 miles; the wheel being 14 ft. 10 in. in circumference?

53. How many divisors has the number 1749600?

54. Divide $\frac{2}{3}$ of $\frac{96}{\frac{5}{6}}$ by $\frac{\frac{1}{2} \text{ of } 7}{\frac{3}{4}}$

55. A can do a piece of work in 12 days, and A and B together can do it in 5 days; in what time can B alone do it?

56. What principal will amount to \$8899.77 in 11 years at 6 per cent. half yearly, compound interest?

57. Divide the number 10 into three such parts, that if the first be multiplied by 2, the second by 3, and the third by 4,

the three products will be equal.

58. There are three fishermen, A, B, and C, who have each caught a certain number of fish; when A's fish and B's are put together, they make 110; when B's and C's are put together they make 130; and when A's and C's are put together they make 120. If the fish be divided equally among them, what will be each man's share; and how many fish did each of them catch?

- 59. What is the forty-seventh term and also the sum of the first 93 terms of the series 7, 11, 15, 19, &c.?
- 60. In what time will any sum of money amount to 21 times itself at 7 per cent. compound interest?

SIXTH SERIES.

- 61. Divide \$3700 among three persons, A, B, and C, so that B may have \$387 less than A and \$196.87 more than C.
- 62. What are all the divisors of 5716?
- 63. What is the value of

$$\frac{\left\{ (17_{17}^{7} - 10_{61}^{59}) - (\cdot 4 + \frac{1}{5} + \cdot 9 - \frac{1}{2}) \right\} \div (\cdot 8378 \div \frac{1}{4} \text{ of } 31)}{\cdot 6322632 \times \frac{1}{2} \text{ of } 9 \frac{1}{3} \div (\frac{1}{5} \text{ of } 4\frac{1}{9} \text{ of } \frac{1}{11} \text{ of } 85\frac{1}{4}\frac{6}{5} \div 101)}$$

- 64. Divide \$7200 among 3 men, 4 women, and 17 children, giving each man twice as much as a woman, and each woman three times as much as a child. What is the share of each?
- 65. How many divisors has the number 25400 ?
- 66. What is the difference between $\frac{9}{3}$ of $4\frac{1}{2}$ of $\frac{9\frac{7}{7}}{14}$ of $\frac{1}{6}$ of £3 16s.

11½d, and
$$\frac{3}{11}$$
 of $\frac{43}{3}$ of $\frac{19\frac{1}{2}}{\frac{34}{13}}$ of $\frac{25}{117}$, of $\frac{11}{23}$ of ·85 of $\frac{1}{42\frac{1}{2}}$ of \$1783?

- 67. Compare together the ratios 7:13, 9:16, 8:15 and 10:19 and point out which is the greatest, which the least, and what the ratio compounded of these given ratios.
- 68. Divide 67.432 by 7.9036.
- 69. Reduce 9 per. 9 yds. 7 ft. 120 in. to the decimal of $\frac{1}{2}$ of $\frac{2}{5}$ of $\frac{2}{7}$ of 35 acres 2 roads.
- 70. Add together 17:0342, 27:06357, 98:123456, 829:6423, 986:1234298, 9:876342, and 813:9864234567.
- 71. In the ruins of Persepolis there are two columns left standing upright. The one is 64 feet above the plain and the other 50. In a straight line between these stands a small statue, the head of which is 97 feet from the top of the higher column and 86 feet from the top of the lower, the base of which is 76 feet from the base of the statue. Required the distance between the tops of the columns.
- 72. In a mixture of spirits and water, 1 of the whole plus 25 gallons was spirits, but 1 of the whole minus 5 gallons was water. How many gallons were there of each?

SEVENTH SERIES.

- 73. Extract the square root of 401241.3424 in the quinary scale.
- 74. A father being asked by his son how old he was, replied, your age is now of mine; but 4 years ago it was only of what mine is now: what is the age of each?
- 75. Divide . 72347 by . 0032.

76. Extract the 11th root of 97294764.372.

- 77. Find two numbers, the difference of which is 30, and the relation between them as 71 is to 31.
- 78. What is the l. c. m. of 35, 16, 18, 28, 62, 63 and 40?

79. Sum the series 1+7+13+19+&c., to 101 terms.

- 80. What is the ratio compounded of 19:7, 11:56, 35:121, 113:29, 8:43 and 44:3.
- 81. Find two numbers whose sum and product are equal, neither of them being 2.

NOTE.—In this question take any number for the first of the two, as for example 7. Then 7+some other number=7×that other number.

Assume for this second number any other, as 3.
Then 7+3=10=7×3, gives an error of-11.

Assume some other for the second as 5.

Then $7+5=13=7\times5$ gives an error of -23. Then $23\times3=69$ $11\times5=55$ Whence second number $=\frac{14}{12}=1\frac{1}{6}$.

82. Find the value of

$$\frac{\left(\left\{\left(9\frac{1}{3}+4\frac{1}{2}\right\}+3\frac{1}{7}-16\frac{3}{3}\frac{4}{8}\right)\times 54\right\}\div 1\frac{4}{7}\right)\times 35 \text{ times } \cdot 142857.}{\left\{\cdot 97\times \cdot 24378\times \left(1\frac{1}{44}\times 4\frac{1}{4}6\frac{6}{1}\right)\right\}\times \left(4\frac{3}{17}-2\frac{4}{7}\right).}$$

- 83. The hour and minute hands of a watch are together at 12; when will they be together again?
- 84. Given the logarithm of 2 = 0.301030 logarithm of 7 = 0.845098

logarithm of 11 = 1.041393

Find the logarithms of 3850000, 3181.81, .0000154, /,

1.571428 and 93.17.

EIGHTH SERIES.

85. Find the difference between the simple and compound interest of \$700 in 3 years at 41 per cent. per annum.

36. X, Y, and Z, form a company. X's stock is in trade 3 months, and he claims 12 of the gain; Y's stock is 9 months in trade; and Z advanced \$3024 for 4 months. and claims half the profit. How much did X and Y contribute?

87. There is a fraction which multiplied by the cube of 1½ and divided by the square root of 1½, produces ¾; find it.

88. Find the cube root of 80677568161.

- 89. How much sugar, at 4d., 6d., and 8d. per lb. must there be in 112 lbs. of a mixture worth 7d. per lb.
- 90. Find three such numbers as that the first and ½ the sum of the other two, the second and ½ the sum of the other two, the third and ¼ the sum of the other two, will make 34.

NOTE.-Assume 40 as the sum of the three numbers.

Then 1st+2nd+3rd=40 and $1st+\frac{1}{2}(2nd+3rd)=34$. . . $\frac{1}{2}(2nd+3rd)=6$ and 2nd+3rd=12.

 $2nd + \frac{1}{3}(1st + 2nd) = 34 \cdot \cdot \cdot \frac{2}{3}(1st + 2nd) = 6 \text{ and } 1st + 3rd = 9.$ $3rd + \frac{1}{3}(1st + 2nd) = 34 \cdot \cdot \cdot \frac{2}{3}(1st + 2nd) = 6 \text{ and } 1st + 2nd = 8.$ Then adding these together, twice $(1st + 2nd + 3rd) = 29 \cdot \cdot \cdot \cdot 1st + 2nd$

 $+3rd = 14\frac{1}{2} = sum$. But should equal 40-therefore error = $-25\frac{1}{2}$.

Similarly assume some other number and apply the rule, and the true sum 58 will be found, from which the numbers may be easily obtained.

- 91. Insert 4 arithmetical means between 1 and 40.
- 92. The sum of all the terms of a geometrical progression is 1860040, the last term is 1240029, and the ratio is 3. What is the first term?
- 93. If 6 apples and 7 pears cost 33 pence, and 10 apples and 8 pears 44 pence, what is the price of one apple and one pear?
- 94. Multiply $\frac{1}{4}$ of $\frac{3}{4}$ of $\frac{3}{6}$ of $\frac{28\frac{1}{2}}{6}$ by $\frac{2}{3}$ of $\frac{3}{4}$ of $\frac{3}{4}$.
- 95. From a sum of money, \$50 more than the half of it is first taken away; from the remainder, \$30 more than its fifth part; and again from the second remainder, \$20 more than its fourth part. At last there remained only \$10. What was the original sum?
- 96. A gentleman hires a servant, and promises him, for the first year, only \$60 in wages, but for each following year \$4 more than the preceding. How much will the servant receive for the 17th year of his engagement, and how much for all 17 years together?

NINTH SERIES.

- Write down as one number eleven trillions and eleven, and eleven tenths of billionths.
- 98. Reduce £749 16s. 51d. sterling to dollars and cents.
- 99. What are the prime factors of 177408?
- 100. At what rate per cent. per annum will \$704 amount to \$11111.11 in 11 years at compound interest?

- 101. How many scholars are there in a school to which if 9 be added the number will be augmented by one-thirteenth?
- 102. Three different kinds of wine were mixed together in such a way that for every 3 gallons of one kind there were 4 of another, and 7 of a third: what quantity of each kind was there in a mixture of 292 gallons?
- 103. Divide £500 among four persons, so that when A has £1, B shall have £1, C 1, and D 1.
- 104. What is the present worth of an annuity of \$100 to continue 23 years, at 6 per cent. compound interest?
- 105. Twenty-five workmen have agreed to labor 12 hours a day for 24 days, to pay an advance made to them of \$900; but having each lost an hour per day, five of them engage to fulfil the agreement by working 12 days: how many hours per day must these labor?
- 106. A man has several sons, whose ages are in arithmetical progression; the age of the youngest is 5 years, the common difference of their ages is 6 years, and the sum of all their ages is 161. What is the age of the eldest?
- 107. If a man dig a small square cellar, which will measure 6 feet each way, in one day, how long will it take him to dig a similar one that shall measure 10 feet each way?
- 108. A servant agreed to live with his master for £8 a year, and a suit of clothes. But being turned out at the end of 7 months, he received only £2 13s. 4d. and the suit of clothes: what was its value?

TENTH SERIES.

- 109. What number is that of which 1, 1, and 1 added together, will make 48?
- 110. If an ox, whose girth is 6 feet, weighs 600 lbs., what is the weight of an ox whose girth is 8 feet?
- 111. Four women own a ball of butter, 5 inches in diameter. It is agreed that each shall take her share separately from the surface of the ball. How many inches of its diameter shall each take?
- 112. Divide 71213.43 by 12.342 in the nonary scale and extract the square root of the quotient true to three places to the right of the separating point.
- 113. Five merchants were in partnership for four years; the first put in \$60, then, 5 months after, \$800, and at length \$1500, four months before the end of the partnership; the second put in at first \$600, and six months after \$1800; the third put in \$400, and every six months after he added

\$500; the fourth did not contribute till 8 months after the commencement of the partnership; he then put in \$900, and repeated this sum every six months; the fifth put in no capital, but kept the accounts, for which the others agreed to pay him \$1.25 a day. What is each one's share of the gain, which was \$20,000?

114. In what time will any sum of money amount to 16 times itself at five per cent. per annum. 1st. at simple interest?

2nd. at compound interest?

115. Three persons purchased a house for \$9202; the first gave a certain sum; the second three times as much; and the third one and a half times as much as the two others to-

gether: what did each pay?

116. A piece of land of 165 acres was cleared by two companies of workmen; the first numbered 25 men and the second 22; how many acres did each company clear, and what did the clearing cost per acre, knowing that the first company received \$86 more than the second?

117. The greatest of two numbers is 15 and the sum of their

squares is 346: what are the two numbers?

118. To what sum will \$1200 amount in 10 years at 61 per

cent. simple interest?

110. If 496 mcn, in 5½ days of 11 hours each, dig a trench of 7 degrees of hardness, 465 feet long, 3¾ wide, 2½ deep, in how many days of 9 hours long will 24 men dig a trench of 4 degrees of hardness, 337½ feet long, 5¾ wide, and 3½ deep?

120. Four men, A, B, C, and D, took a prize of \$6213, which they are to divide in proportion to the following fractions: if possible, A, B, and C, are to have \$\frac{1}{16}\$; B, C, and D, \$\frac{3}{16}\$; A, C, and D, \$\frac{7}{16}\$; and A, B, and D, \$\frac{3}{16}\$ of the prize. What

does each receive?

ELEVENTH SERIES.

121. Reduce '7, '83, '727, '91325 and 8.671347 to their equivalent vulgar fractions.

122. Reduce 713321 underary, and 12123100000 quaternary to

equivalent expressions in the denary scale.

123. Add together 3? of 2! of 7!! of a £, 9? of 3% of a shilling, and 8! of 4! of a penny, and divide the sum by !! of 5?4

of a of 31d.

124. If 24 pioneers, in 21 days of 121 hours long, can dig a trench 139.75 yds. long, 41 yds. wide, and 21 yds. deep, what length of trench will 90 pioneers dig in 41 days of 93 hours long, the trench being 47 yds. wide, and 31 yds. deep?

- 125. A person, by disposing of goods for \$182, loses at the rate of 9 per cent.; what ought they to have been sold for to realize a profit of 7 per cent.?
- 126. In what time will any sum of money amount to 11½ times itself at 6 per cent. per annum.

1st At simple interest?
2nd At compound interest?

- 127. It is desired to cut off an acre of land from a field 15} perches in breadth; what length must be taken?
- 128. Express a degree (69½ miles) in metres, when 32 metres are equal to 35 yds.
- 129. Find 7 geometrical means between 3 and 19683.
- 130. Sum the infinite series $7 + 1\frac{3}{4} + \frac{7}{15}$, &c.
- 131. Four men bought a grindstone of 60 inches diameter.

 Now, how much of the diameter must be ground off by each man, one grinding his part first, then another, and so on, that each may have an equal share of the stone, no allowance being made for the axle?
- 132. Divide 100 guineas into an equal number of guineas, half-guineas, crowns, half-crowns, shillings, and sixpences, and reduce the remainder to a fraction of a pound.

TWELFTH SERIES.

- 133. The owner of 1^4 of a ship sold 1^3 of 3^6 of his share for \$12 $_3^4$; what would $\frac{2\frac{1}{2}}{4\frac{1}{4}}$ of 3^6 of the ship cost at the same rate?
- 134. At what rate per cent. per annum will \$700.90 amount to \$1679.40 in 5 years, compound interest being allowed?
- 135. A person paid a tax of 10 per cent. on his income; what must his income have been, when, after he had paid the tax, there was \$1250 remaining?
- 136. The sum of £3 13s. 6d. is to be divided among 21 men, 21 women, and 21 children, so that a woman may have as much as two children, and a man as much as a woman and a child: what will each man, woman, and child receive?
- 137. Distribute \$200 among A, B, C, and D, so that B may receive as much as A; C as much as A and B together, and D as much as A, B, and C together.
- 138. Find the difference between \2 and \3.
- 139. Reduce $3^{6.7}_{223}, 17^{6.7}_{13} + \frac{1}{15} + \frac{1}{15} + 144^{\frac{1}{2}}_{11}, 2^{\frac{1}{2}}_{12} \frac{1}{2}7, \frac{2}{1}$ of $\frac{2}{15}$ and $6347 \div 2\frac{1}{2}$, to their simplest forms.
- 140. Find the cube root of 884736, and the fourth root of 95951

- 141. A general levied a contribution of \$520 on four villages, containing 250, 300, 400, and 500 inhabitants respectively: what must they each pay?
- 142. A person had a salary of \$520 a year, and let it remain unpaid for 17 years. How much had he to receive at the end of that time, allowing 6 per cent. per annum copound interest, payable half-yearly?
- 143. Insert four arithmetical means between 2 and 79; also find the 9th term and the sum of the first 207 terms of the series 3, 7, 11, 15, &c.
- 144. A, B, and C, start at the same time, from the same point, and in the same direction, round an island 73 miles in circumference; A goes at the rate of 6, B at the rate of 10, and C at the rate of 16 miles per day. In what time will they be all together again?

ARITHMETICAL RECREATIONS.

- 1. If the third of 6 be 3 what must the fourth of 20 be?
- 2. If the half of 5 be 7 what part of 9 will be 11?
- 3. Place four nines so that their sum shall be 100.
- 4. What part of 3 pence is the third of two pence?
- 5. If a herring and a half cost 13d, how much will 11 herrings cost?
- 6. If 12 apples are worth 21 pears, and 3 pears cost a cent, what will be the price of 100 apples?
- 7. Find a number such that 5 shall be the three-sevenths of it.
- 8. A hundred hurdles are so placed as to inclose 200 sheep, and with two hurdles more the field may be made to hold 400; how is this to be done?
- 9. A gentleman who owned four hundred acres of land in the form of a square, desired to keep 100 acres also in the form of a square in one corner, and divide the remainder, a b c d e f, equally among his four sons, so that each son should have his lot of the same shape as his brother's. How may this be done?

- 10. Place four threes so as to make 34.
- 11. Write down 13 in such a way that rubbing half of it out 8 shall remain.
- 12. Two thirsty persons cast away on a desert island, find an 8 gallon cask of water. They wish to divide it equally between them, but have no other measures than the 8 gallon cask, a five gallon cask and a three gallon cask. How can they divide it?
- 13. How must a board 16 inches long and 9 inches wide be cut into two such parts, that when they are joined together they may form a source?
- 13. Place the 9 digits in the accompanying figure, one digit to each division, in such a way that when added vertically, horizontally or diagonally, the sum shall always be the same.

- 16. Three persons bought a quantity of sugar weighing 51 lbs., and wish to partit equally between them. They have no weights but a 41b, weight and a 7 lb. weight. How can they divide it?
- 16. Suppose 26 hurdles can be placed in a rectangular form so as to inclose 40 square yards of ground; how can they be placed when two of them are taken away, so as to inclose 120 square yards?
- 17. A person has a fox, a goose and a peck of oats to carry over a river, but on account of the smallness of the boat he can only carry over one How can this be done so as not to leave the fox with the goose, nor the goose with the oats?
- 18. In a distant and sparsely settled village of Canada, there was stationed a small detachment of troops consisting of a sergeant and 24 men. Having constructed temporary barracks, the sergeant divided them into 9 compartments, allotting the centre one to himself, and the rest to his men. One evening the sergeant wishing to ascertain if all were in, visited each compartment, and fluding 3 men in each, making 9 in each row, retired. Four men, however, went out, and the sergeant feeling shortly afterwards uneasy, returned to count his men, but still finding 9 in each row, retired again; the 4 men than came back, bringing each another man with him, and the sergeaut upon going his round once more, counted as before, and retired perfectly satisfled. After he left, four more men were introduced, and once more the sergeant entertaining a suspicion that all was not right, counted, but finding the number still the same in each row, he left. No sooner had he left, than four more men came in, making 12 strangers; and once more the sergeant inspected the compartments to his satisfaction. Finally the 12 strangers left, taking with them 6 of the soldiers, and the sergeant counting once more retired to rest persuaded that no one had gone out or come in, and that his suspicions were unfounded. How was this possible?
- 19. Write down 12 so that by rubbing out one half 7 shall remain.

20. Place the first 25 numbers 1, 2, 3, 4, 5, &c., in the divisions of the accompanying figure, so that the columns added in any order, i. e., upwards, horizontally, or diagonally, may amount to the same sum.	
--	--

- 21. What is the difference between half-a-dozen dozen and six dozen dozen? 0
- 22. If a cross be made of 13 counters as in the margin, nine may be reckoned in three ways, i. e., by counting from the bottom up to the top of the perpendicular line; from the bottom up to the cross and then to the right ; or from the bottom up to the cross and then to the left. Now take away two of the counters and with the others form a cross which shall possess the same property of counting nine when thus reckoned.

o 00000 0 Ω 0

- 23. Seven out of 21 bottles being full of wine, 7 half full and 7 emptyit is required to distribute them among 3 persons, so that each may have the same quantity of wine and the same number of bottles.
- 24. Two travellers, one of whom had with him 5 bottles of wine and the other 3, were joined by a third person, who, after the wine was drunk, left 8 shillings for his just share of it; how is this to be divided between the other two?
- 25. A person having by accident broken a basket of eggs offered to pay for them on the spot if the owner could tell how many he had; to which he replied that he only knew there were between 50 and 100, and that when he counted them by 2's and 3's at a time none remained; but when he counted them by 5 at a time there were 3 remaining; how many eggs had he?

- It is required to find 4 such weights that they weigh any number of pounds from 1 to 40.
- 27. In the accompanying figure it is required to fill seven out of the eight points with counters in the following manner, i. e, the counter has to start from an unoccupied point, pass along the line and be deposited at the other extremity. Thus, in commencing, the counter may start from any point, since all are unoccupied, starting from 1 the counter may be carried either to 6 or to 4 and there deposited states the next counter may start from any point except 6, and so on.

- 28. A brazen lion, placed in the middle of a reservoir, throws out water from its mouth, its eyes and its right foot. When the water flows from its mouth alone, it fills the reservoir in 6 hours; from the right eye it fills it in 2 days; from the left eye in 3 days, and from the foot in 4 days. In what time will the basin be filled by the water flowing from all these apertures at once?
- Desire a person to think of any three numbers, each less than 10, and then tell him the numbers thought of.
- 30. Three men. Jones, Brown, and Smith, with their sons Harry, Tom and Ned, had each a piece of land in the form of a square. Jones' piece was 23 rods longer on each side than Tom's, and Brown's piece was 11 rods longer on each side than Harry's. Each man possessed 63 square rods of land more than his son. Which of the persons were father and son respectively?
- 31. A sea-captain, on a voyage, had a crew of 30 men, half of whom were blacks. Being becalmed on the passage for a long time, their provisions began to fail, and the captain became satisfied that, unless the number of men were greatly diminished, all would perish of hunger before they could reach any friendly port. He therefore proposed to the sailors that they should stand in a row on deek, and that every ninth man should be thrown over-board, nutil one-half of the crew were thus destroyed. To this they all agreed. How should they stand so as to save the whites?
- 32. Direct a person to multiply together two numbers, one of which you select, and, unseen by you, to rub out one of the digits of the product—it is required to tell, upon his reading the remaining digits of the product, what figure was rubbed out.
- 33. It is required to write down beforehand the answer to a question in addition of a given number of lines, you writing the second, fourth, sixth, &c., addends, and some other person the intermediate ones.

MATHEMATICAL TABLES.

LOGARITHMS OF NUMBERS FROM 1 TO 10,000, WITH DIFFERENCES AND PROPORTIONAL PARTS.

,					from 1 to	200.			
No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.
1	0.000000	21	1.322219	41	1.612784	61	1.785330	81	1.908485
2	0.301030	22	1.342423	42	1.623249	62	1.792392	82	1.913814
3	0.477121	23	1.361728	43	1.633468	63	1.799341	83	1.919078
4	0.602060	24	1.380211	44	1.643453	64	1.806180	84	1-924279
5	0-698970	25	1.397940	45	1.653213	65	1.812913	85	1-929419
6	0.778151	26	1.414973	46	1.662758	66	1.819544	86	1.93119
7	0-845098	27	1.431364	47	1.672098	67	1.826075	87	1.939519
8	0.903090	28	1.447158	48	1.681241	68	1.832509	88	1.94448
9	0.954243	29	1.462398	49	1.690196	69	1.838849	89	1-949390
10	1.000000	30	1-477121	50	1.698970	70	1.845098	90	1.954243
11	1.041393	31	1.491362	51	1.707570	71	1.851258	91	1-95904
12	1-079181	32	1.505150	52	1.716003	72	1.857332	92	1.96378
13	1-113943	33	1.518514	53	1.724276	73	1.863323	93	1.96348
14	1.146128	34	1.631479	54	1.732394	74	1.869232	94	1-97312
15	1.176091	35	1.544068	55	1.740363	75	1.875061	95	1-97772
16	1.204120	36	1.556303	56	1.748188	76	1.880814	96	1-982271
17	1.230449	37	1.568202	57	1.755875	77	1.886491	97	1-986777
18	1-255273	33	1.579784	58	1.763428	78	1.892095	98	1-99123
19	1.278754	39	1.591065	59	1.770852	79	1-897627	99	1-99563
20	1-301030	40	1.602060	60	1-778151	80	1-903090	100	2-00000

PP	N.	0		1	2	3	4	5	1		7	8	9	1
	100	0000	00 00	0434	ОООНЕ	8 0019	01 0017	1 0 001	aclass				-	+
41	1 1	1 20	44	4/21	015	1 660	9 60	3 64		598 009 594 7	029	0034		
124	2			9026		1 987	6 0103	0 0107	24 011	147 011	321	77		
166	3			3259		0 01410	10 45:	1 49			779	01199 619		
207	1 6	70.	33	7451	786			W 91	16 9	32 9		0203		
248	6	53	W. U.2	1603 5715	02201					64 024	(75	445		6 4
290	7	93		9789		5 633 5 03 060	3 694		0 7	57 8	164	857		
331	- 8		24 03	3326	422	7 462					216	03261	9 03302	žI4
373	9	74	26	825	822					30 6	230	669		
	110	04139	3 04	1787	04218	04257	6 04296	9 04336	2 0437			-	-	-1-
38 76	1 2	53:		5714	610	649	5 684				053	04454		
113	3	921		16116	999	05038	0 05076			38 051		844 05230		
151	3	05307 690		3463	053846		0 461	3 499			760	614	9 05269	
189	5	06069		286 075						85 9	563	994		
227	6	445		832	5206	06182 558						6370		
265	7	818		557	8928						71	744	3 781	5 3
302	8	07188	2 072		072617							7114	5 07151	4 37
340	9	554	7 5	912	6276						451 94	481 845		2 36
35	120	07918		543	079904	080266	080626	08098	7 0813	47 0817	07	8206	-	-
70	1 2	08278	5 033	144	083503			457			91	564		
04	3	636		716	7071	7426		813	6 84		45	919		
39	4	09342	5 090	772	090611			U9166				9272		35
74	5	6910		257	4122 7604	4471				18 58	66	6216	656	34
09	6	10037			101059	7951 101403					35	9681		
44	7	380		146	4487	4828						03119		
78	8	7210		549	7888	8227						6531		
13	9	110590	110	26	111263	111599			924 11260	1 95 5 1129		$\frac{9916}{13275}$		3 33
32		113943		77	14611	114944	115278	115611	11594	3 1162	-1-			-
64	2	7271		03	7934	8265	8595	8926	925			9915	116940 120245	
97	3	120574 3852			21231	121560			12254	4 1228		23198		
29	4	7105		78 29	4504	4830	5156			6 61		6456		32
51	5	130334			7753	8076	8399	8722			68	9690	130012	32
)3	6	3539	34	58	4177	131298		131939				32900	3219	
25	7	6721		37	7354	4496 7671	4814 7987	5133				6086	6403	318
9	8	9379				140822	141136	8303 141450				9219	9564	1316
N)	9	143015	33	27	3639	3951	4263	4574	14176			2389	142702	
1	40	46128	1464	29 1							_1_	5507	5818	311
0	1	9219	95	27	9835	1501.0	147367 150449	147676	14798	14829	14 14	8603	148911	309
0	2 1	52254	1525	94 1.	529(a)	3205	3510	3815	15106	15137			151982	307
0	3	5336	56	10	5943	6246	6549	6852	412t			4728	5032	305
0	41.	8362	86	51	H165	9266	9567	9863	16016	745 16046		7759	8061	
	5 1	61368				62266		162863	3161	346		1769	161068	
5	6	4353	46.		4947	6244	5541	6833	613			3758 6726	4055 7022	299
ő.		7317 70262	76		7908	8203	8197	8792	9086			9674	9968	297 298
	91	3186	347					171726	172019	17231	1 17		172895	293
-	-1-				3769	4960	4351	4641	4932	522		5512	5802	291
	7 1	76091 8977	1763/		6670 1 9552	76959		177536	177825		3 178	3401	178689	289
6	2 1		18211			9839 32700	180126	180413	130699	18098	6 18	272	181558	287
	3	4691	497		5259	6542	2985	3270	3,44	3439	9 4	1123	4407	235
	4	7521	780		8034	8366	86 47	6108 8928	6391	667	€ €	966	7239	283
	5 1	90332	19061						9209	9490		771	190051	281
	6	3125	340	3	3681	3959	4237	4514	192010 4792	192239		567	2846	279
	7	GUIN)	617		6453	8729	7005	7281	7656	5069 7832		346	5623	278
	8 2	8657	893	2	92116	GIVI			201303	200577	200	107		276
1	7 20	11397	3)167	0 20	1943,2	02216 2	02488	2761	3033	3305				274
1	1	1		1				4101	2033	3305	3	577	3848	272

PP	N.	0	1	2	3	4	5	6	7	8	9	D
	160	204120	204391	204663	204934	205204	205475	205746	206016	206286	206586	27
26 53 79	1	6826	7096	7365	7634	7904	8173	8441	8710	8979	9247	26
83	2	9515	9783	210051			210853	211121	211338	211654	211921	26
79	3	212183	212454	2720	2986	3252	3513	3783	4049	4314	4579	26
105	4	4844	5109	5373	5638	5902 8536	6166	6430	6694 9323	6957 9585	7221 9846	26 26
132 158	6	7484 220108	7747 220370	8010 220631	8273 220892	221153	8798 221414	9060 221675	221026	222196	222456	26
184	7	2716	2976	3236	3496	3755	4015	4274	221936 4533	4792	5051	25
210	8	5309	5568	5826	6084	6342	6600	6858	7115	7372	7630	25
237	9	7887	8144	8400	8657	8913	9170	9426	9682	9938	230193	2
-	170	230449	230704	230960	231215	231470		231979	232234	232488	232742	25
25	1	2996	3250	3504	3757	4011	4264	4517	4770	5023	5276	2
50	2	5528	5781	6033	6285	6537	6789	7041	7292	7544	7795	25
74	3	8046	8297	8548	8799	9049	9299	9550	9800	240050	240300	25
99	4	240549	240799	241048		4030	241795	242044 4525	242293	2541 5019	2790 5266	24
24	5	3038 5513	3286 5759	3534 6006	3782 6252	6499	6745	6991	4772 7237	7432	7728	24
149 174	6	7973	8219	8464	8709	8954	9198	9443	9687	9932	250176	2
198	8	250420	250664	250908	251151	251395	251638	251881	252125	252368	2610	24
23	ğ	2853	3096	3338	3580	3822	4064	4306	4548	4790	5031	24
	180	255273	255514	255755	255996	256237	256477	256718	256958	257196	257439	24
24	1	7679	7918	8158	8398	8637	8877	9116	9355	9594	9833	Z
47	3	260071	26 0310	260548	260787	261025	261263	261501	261739	261976	262214	23
71		2451	2688	2925	3162	3399	3636	3873	4109	4346	4582	23
94	4	4818	5054	5290	5525	5761 8110	5996 8344	6232 8578	6467 8812	6702 9046	6937 9279	23
18	5	7172 9513	7406	7641 9980	7875 270213		270679	270912	271144	271377	271609	23
141 165	6	271842	9746 272074	272306	2538	2770	3001	3233	3464	3696	3927	23
88	8	4158	4389	4620	4850	5081	5311	5542	5772	6002	6232	23
212	9	6462	6692	6921	7151	7330	7609	7838	8067	8296	.8525	22
	190	278754	278982	279211	279439	279667	279896	280123	280351	230578	280806	22
22	1	281033	281261	281488	281715	281942	232169	2396	2622	2849	3075	22
45	2	3301	3527	3753	3979	4205	4431	4656	4882	5107	5332	22
67	3	5557	5782	6007	6232 8473	6456 8696	6681 8920	6905 9143	7130 9366	7354 9589	7578 9812	21
89	4	7802 290035	3026 290257	8249 290480	290702	290925	291147	291369	291591	291813	292034	22
112 134	5	2256	2478	2699	2920	3141	3363	3584	3904	4025	4246	22
156	7	4466	4687	4907	5127	5347	5567	5787	6007	6226	6446	22
78	8	. 6665	6884	7104	7323	7542	7761	7979	8198	8416	8635	21
ωĭ	9	8853	9071	9289	9507	9725	9943	300161	300378	300595	300613	21
	200	301030	301247	301464	301681	301898	302114	302331	302547	302764	302980	21
21	1	3196	3412	3628	3844	4059	4275 6425	4491	4706. 6854	4921 7068	5136 7282	21 21
42	2	5351	5566	5781 7924	5996 8137	6211 8351	8564	6639 8778	8991	9204	9417	21
64	3	7496	7710		310268	310431	310693	310906	311113	311330	311542	21
85	4	9630 311754	9843 311966	2177	2389	2600	2812	3023	3234	3145	3656	21
106	5	3867	4078	4289	4499	4710	4920	5130	6340	5551	5760	21
127 148	7	5970	6180	6390	6599	6809	7018	7227	7436	7646	7854	20
170	8	8063	8272	8481	8689	8398	9106	9314	9522	9730	9934	20
191	ğ	320146	320354	320562	320769	320977	321184	321391	321598	321905	322012	20
	210	322219	322426	322633	322839	323046	323252	323458	323/65	323871	324077	20
20	1	4282	4488	4694	4899	5105	5310	5516	5721	5926	8176	20
40	2	6336	6541	6745	6950	7155	7359 9398	7563	7767 9905	7972 330006	330211	20
61	3	8380	8583	8787	8991 331022	9194 331225	331427	9601 331630	331832	2034	2236	30
81	4	330414		330819 2842	3044	3246	3447	3649	3350	4051	4253	20
101	5	2438 4454	2640 4655	4856	6057	5257	5458	5658	6859	6069	6260	20
121	6	6460	6660	6860	7060	7260	7459	7659	7858	8008	8257	20
141 162	8	8456	8656	8855	9054	9253	9451	9650	9649	340047	340246	19
182	9			3408/1		341237			341830	2025	2225	19

PP	N.	0	1	2	3	4	5	6	7	8	9	I
	220							34360	34390	343999	34419	3 19
19	1	439					637			5962	616	li
39 58	2 3	6353 8303							7720	7918		
77	4		350142	350636	88% 350829	9083						
97	5			2568	2761		314		351603 3532			
116	6			4493	4685			5260				119
135	7	6020		6408	6599		6981	7172				
154	8	793			8500	8696	8886	9076	9266			19
174	9	9833	360025	360215	360404	360593	360783	360972	361161		361539	iį
19	230 1	361728		362105	362294				363048			
37	2	3612 5489		3988 5862	6049	4363			4926			
56	3	7356		7729	7915			6610				
74	4	9216		9587	9772		370143	8473 370329	8659 370513		9030 370883	
93	5	371068	371253	371437	371622			2175	2360	2544	2728	18
111	6	2912		3280	3464	3647	3831	4015	4198	4382	4565	lis
130	7	4748	4932	5115	5298	5481	5664		6029	6212	6394	18
148 167	- 8 9	6577 8398		6942 8761	7124 8943	7306 9124	7488 9306		7852 9668	8034 9849	8216	
-	_								9000	9849	380030	18
18	240 1	380211 2017	380392 2197	380573 2377	380754 2557	380934	381115		381476	381656	381837	18
35	2	3815	3995	4174	4353	2737 4533	2917 4712	3097 4891	3277	3456	3636	18
53	3	5606	5785	5964	6142	6321	6499	6677	6856	5249 7034	5428	17
71	4	7390	7568	7746	7923	8101	8279	8456	8634	8811	7212 8989	17 17
89	5	9166	9343	9520	9698	9875	390051	390228	390405	390552	390759	17
106	6	390935	391112	391288	391464	391641	1817	1993	2169	2345	2521	170
24	7	2697	2873	3048	3224	3400	3575	3751	3926	4101	4277	176
42 159	8	4452 6199	4627 6374	4802 6548	4977 6722	5152 6896	5326 7071	5501 7245	5676 7419	5850 7592	6025 7766	170
-	-											174
27	250	397940 9674	398114 9847	398287 400020	398461 400192	398634	398808	398981	399154	399328	399501	173
34	2	401401	401573	1745	1917	400365 2089	400538 2261	400711 2433	400883 2605	401056	401228	173
51	3	3121	3292	3464	3635	3907	3978	4149	4320	2777 4492	2949 4663	172
68	4	4834	5005	5176	5346	6517	5688	6858	6029	6199	6370	17
85	5	6540	6710	6881	7051	7221	7391	7561	7731	7901	8070	170
02	6	8240	8410	8579	8749	8918	9087	9257	9426	9595	9764	169
19 l 36	7	9933		410271	410440	410609	410777	410946	411114	411283	411451	169
53	8	411620 3300	1788 3467	1956 3635	2124 3803	2293	2461	2629	2796	2964	3132	168
-					3503	3970	4137	4305	4472	4639	4806	167
16	260 1	414973 6641	415140 6807	415307 6973	415474 7139	415641 7306	415808 7472	415974	416141 7804		416474	167
33	٤l	8301	8467	8633	8798	8964	9129	7638 9295	9460	7970 9625	8135 9791	166
49	3	9956			420451	420616	420781	420945	421110		421439	165
66	4	421604	1768	1933	2097	2261	2426	2590	2754	2918	3082	164
82	В	3246	3410	3574	3737	3901	4065	4228	4392	4555	4718	164
98 15	6	4882	5045	5208	6371	5534	5697	5860	6023	6186	6349	163
31	á	6511 8135	6674 8297	6936 8450	6999 8621	7161 8783	7324 8944	7486 9106	7648 9268	7811 9429	7973	162
48	9	9752					430559				9591 431203	162 161
2	70	431364	431525	431685	131846	432007	432167	432328	132489	432649	132809	161
16	11	2969	3130	3290	3450	3610	3770	3930	4090	4249		160
32	2	4569	4729	4498	5048	5207	5367	6526	5695	5844		159
47	3	6163	6322	6481	6640	6799	6957	7116	7275	7433	7592	159
63	41	7751	7909	8(167	8226	8384	8542	8701	8359	9017	9175	158
79	5	9333 440909	9491 441066	9648	9806 41381		440122	440279		110594		158
11	7	2480	2637	2793	2950	441538 3106	1695 3263	1852 3419	2009 3576	2166	2323	167
26	8	4045	4201	4357	4513	4669	4825	4931	5137	3732 5293		187 186
42	ğ	5604	6760	5915	6071	6226	6382	6537	6692	6848		150
	- 1						~~~	~~~	0000	~~~		·w

PP	N.	.0	1	2	3	4	5	6	7	8	9	D.
	280	447158					447933	449099	448242	448397	416552	153
15	1 2	8706	8861						9787	9941	450095	15
31 46	3	450249 1786	450403 1940	450557 2003	450711 2247	450865 2400			451326	451479	1633	154
61	4	3318	3471	3624	3777	3930		2706	2369	3012	3165	153
77	5	4845	4997	6150	5302			4235 8758	4387 5910	45±0 6062	4692 6214	15. 15.
92	6	6366	6518	6670	6521	6973	7125	7276	7428	7579	7731	153
107	7	7882	8033	8184	8336	8487	8638	8789	8940	9091	9242	15
122 138	8 9	9392 460898	9543 461048	9694 461198	9845 461348	9995 461499	460146	480298 1799	1948	460597 2098	460748 2248	151
	290	462398	462548	462697	462847	462997	463146	463296	463145	463594	463744	15
15	1	3893	4042	4191	4340	4490	4639	4788	4936	6085	5234	14
29	2	5383	5532	5630	5820	5977	6126	6274	6423	6571	6719	140
44	3	6868	7016	7164	7312	7460	7608	7756	7904	8052	8200	14
59 74	5	8347 9822	8495 9969	8643 470116	8790 470263	8938	9085	9233	9330	9527	9675	14
88	6	471292	471438	1585	1732	470410 1878	470557 2025	470701	470851	470998	471145	147
103	7	2756	2903	3049	3195	3341	3487	2171 3633	2318 3779	2464 3925	2610 4071	140
118	- 8	4216	4362	4508	4653	4799	4941	6090	6235	5381	5526	14
132	9	5671	5816	5962	6107	6252	6397	6542	6687	6832	6976	140
14	300 1	477121 8566	477266 8711	477411 8855	477555 8999	477700	477844 9287	477989	478133	478278	478422	145
29	2	480007	480151	480294	480438	9143 480582	490725	9431	9575	9719 481156	9863	144
43	3	1443	1586	1729	1872	2016	2159	2302	4S1012 2445	2588	481299 2731	144
57	4.	2874	3016	3159	3302	3445	3587	3730	3872	4015	4157	143
72	5	4300	4413	4585	4727	4869	5011	5158	5295	5437	6579	149
86	6	5721	5863	6005	6147	6259	6430	6573	6714	6855	6997	142
100 114	8	7138	7280 8692	7421 8833	7569	7704	7845	7986	8127	8269	8410	141
129	9	8551 9958	490099	490239	8974 490380	9114 490520	9255 490661	490801	9537 490941	9677 491081	9318 491222	141
	310	491362	491502	191642	491782	491922	492062	492201	492341	492491	492621	140
14	1 2	2760	2900	3040	3179	3319	3453	3597	3737	3876	4015	139
28	3	4155	4294	4433	4572	4711	4850	4989	6128	8267	5496	139
41 55	4	5544 6930	5638 7068	5822 7206	5960 7344	7483	6238	6376	6515	6653	6791	139
69	5	8311	8448	8586	8724	8862	7621 8999	7769 9137	7897 9278	8035 9412	8173	138 138
83	6	9687	9834	9962	500099	500236	500374	500511	500643	500785	9550 500922	137
97	7	501059	501196	501333	1470	1607	1744	1880	2017	2154	2291	137
110	8	2427	2564	2700	2837	2973	3109	3246	3383	3518	3655	136
124	9	₇ 3791	3927	4063	4199	4335	4471	4607	4743	4578	6014	186
13	320	505150 6505	505286 6640	505421 6776	505557 6911	505693 7046	505929 7181	505964 7316	506099 7451	506234 7586	506370 7721	136 135
27	2	7856	7991	8126	8260	8395	8530	8664	8799	8934	9068	135
40	3	9203	9337	9471	9606	9740	9874				510411	134
54	4				510947	511081	511218	1349	1482	1616	1750	134
67	5	1883	2917	2151	2281	2418	2551	2681	2818	2951	3054	133
94	6	3218 4548	3351 4631	3484 4813	3617	3750	333	4016	41-19	4252	4115	133
107	8	5874	6006	6139	4946 6271	5079 6403	5211 6535	6668	6500	5699 6932	5741 7064	133 132
21	9	7195	7328	7460	7592	7724	7855	7957	8119	8251	83-2	132
	330							519303		519566		131
13	1	9828			520221	520353	520484	520615	5207 45	520876	521007	131
26 39	3	521138 2444	521269 2575	1400	1530	2966	1792	1922	2053	2183	2314	131
52	4	3746	3876	2705	2935 4136	4266	3096 4396	\$226 4526	3356 4656	31%5 47%5		130 130
65	3	5045	5174	5304	5434	5563	5693	5822	5951	6081		129
78 91	6	6339	6469	6598	6727	6956	6985	7114	7243	7372		129
91	7	7630	7759	7888	8016	8145	8274	8402	8531	8660	8788	129
04	8	8917	90451	9174	9302	9430	9559	9687	9315	9943		123
17	9	530200	530328	530456	530584	530712	530840	530968	531096	531223	1351	123

PI	N.	0	1	2	3	4	5	6	7	8	9	D,
	340						53211	7 53224		532500	53262	128
13	1		2882				4 339	1 3518	364	3772		9 127
25 33	3	4026			440	453				5041	516	1127
50	4		5421 6685	6547		580						
63									7441 8699	7567		
76	6				945							
88	1 7	540329		540580	54070.		54095	5 5410%	541205			
101	8	1579	1704	1829	1953	3 207	8 220	3 2327	2452			125
113	9	2825	2950	3074	3199	332	344	3571	3696	3820		
1	350	544068	544192	544316								
12	1	5307	5431	5555						6296	6419	
37	3	6543 7775	6666 7898	6789 8021			7159 7 838					
49	1 4	9003	9126	9249	9371				8635 9861			
61	5	550228	550351	550473								122
73	6	1450	1572	1694	1816							
85	7	2668	2790	2911	3033	315					3762	121
98 110	8 9	3883 5094	4004 5215	4126 5336	4247 5457	4368 5578			4731 5940	4852 6061	4973 6182	
-	_									-	-	-
12	260 1	556303 7507	556423 7627	556544	556664 7868				557146	557267	557387	120
24	2	8709	8829	7748 8948	9068				8349 9548	8469 9667	8589	
36	ร	9907	560026	560146	560265				500743	560863	9787 560982	
48	4	561101	1221	1340	1459				1936	2055	2174	liij
60	5	2293	2412	2531	2650	2769	2887	3006	3125	3244	3362	
.71	6	3481	3600	3718	3837	3955	4074	4192	4311	4429	4548	119
83	7	4666	4784	4903	5021	5139	5257		5494	5612	5730	118
95 107	8	5848 7026	5966 7144	6084 7262	6202 7379	6320	6437 7614	6555 7732	6673 7849	6791 7967	6909 8084	118 118
	370	563202	568319	568436	563554		-					
12	1	9374	9491	9608	9725	568671 9842	568788 9959		569023 570193	569140	569257 570426	117
23	2	570543	570660	570776	570893	571010			1359	1476	1592	117
35	3	1709	1825	1942	2058	2174	2291	2407	2523	2639	2755	116
46	- 4	2872	2988	3104	3220	3336	3452		3684	3,900	3915	116
58	5	4031	4147	4263	4379	4494	4610	4726	4841	4957	5072	116
70	6	5188	5303	5419	5534	5650	5765		5996	6111	6226	115
81 93	7 8	6341 7492	6457 7607	6572 7722	6687 7836	6802 7951	6917 8066	7032 8181	7147 8295	7262 8410	7377 8525	115
104	9	8639	8754	8863	8983	9097	9212	9326	9441	9555	9669	115 114
	380	579784	579898	580012	580126	580241	580355	580469	580583	530697	580811	
11	350		581039	1153	1267	1381	1495	1608	1722	1836	1950	114 114
23	2	2063	2177	2291	2404	2518	2631	2745	2858	2972	3085	114
34	3	3199	3312	3426	3539	3652	3765	3:79	3992	4105	4218	113
45	4	4331	4444	4557	4670	4783	4896	5009	5122	5235	5348	113
57	5	5461	5574	5656	5799	5912	6024	6137	6250	6362	6475	113
68	6	6587	6700	6812	6925	7037	7149	7262	7374	7486	7599	112
79 90	7 8	7711 8532	7823 8944	7935 9056	8047 9167	8160 9279	8272 9391	8384 9503	8496 9615	8608 9726	8720 9838	112
102	ŷ			590173	590284	590396	590507	590619			590953	112
-	390	591065	591176	591287	591399	591510	591621	591732	591843	591955	592006	111
11	350	2177	2288	2399	2510	2621	2732	2843	2954	3064	3175	iii
22	2	3286	3397	3508	3618	3729	3840	3950	4061	4171	4282	111
33	3	4393	4503	4614	4724	4834	4945	5055	5165	5276	5346	110
44	4	5496	8606	5717	5827	5937	6047	6157	6267	6377	6487	110
55	5	6597	6707	6817	6927	7037	7146	7256	7366	7476	7586	110
66	6 7	7695 8791	7805 8900	7914 9009	8024 9119	8134 9228	8243 9337	8353 9446	8462 9556	8572 9665	8681 9774	110
88	á	9383				600319	600428				600864	109
99			601082	1191	1299	1408	1517	1625	1734	1843	1951	109

PE	N	. 0	1	2	3	4	5	6	7	8	9	h
	40				602386	60249	60260	3 60271	1 60281	9 60292	elenana	ή,
11		314		3361	3469	357						
21 32	1	2 422		4442	4550	465	8 476					71
32	`			5521	5628	573	584		1 605		6 627	
43		639										3 i
54 64		745				788	1 799	1 809				íli
						895				4 938	948	
75 86										1 61044	7 61055	1
96	1 3			610873	610979						1617	ı
	-	-	_	1936		2145	225	4 230	246	257	2678	լ
11	410			612996 4053	613102 4159	613207 4264						
21	1 2			5108	5213	5319		4473				
32	3	595	6055	6160	6265	6370						
42	4			7210	7315	7430						
53	5			8257	8362	8466						l
63	6			9302	9406	9511						
74	7	620136		620344	620448	620552	620656	62076	620864	620968		
84	8	1176	1280	1334	1488	1592		1799	1903		2110	
95	9	_		2421	2525	2628	2732	2835	2939	3043		
10	420	623249	623353	623456	623559	623663		623869			624179	10
20	1 2	4232		4488	4591	4695					5210	1
31	3	5312 6340		5518	5621 6648	5724					6238	10
41	4	7366	7468	6546 7571	7673	6751	6853				7263	
51	5	8339	8491	8593	8695	7775 8797	7878 8900					10
ői	6	9410	9512	9613	9715	9817	9919			9206		
71	7	630428		630631		630835	630936		1139	1241		10
82	8	1444	1545	1647	1748	1849	1951		2153	2255	1342 2356	10
92	9	2457	2559	2660	2761	2862	2963	3064	3165	3266	3367	id
	430	633468	633569	633070	633771	633872	633973	634074	634175	634276	634376	10
10	1	4477	4578	4679	4779	4530	4981	5081	5182	5283	5333	iò
20	2	5484	5584	5685	5785	5886	5986	6087	6187	6237	6388	10
30 40	3	6488	6588	6688	6789	6889	6959	7089	7189	7:290	7390	10
50	5	7490 8489	7590 8589	7690	7790	7890	7990	8090	8190	8290	8389	10
60	6	9486	9586	8689 9686	8789 9785	8888	8988	9088	9188	92.7	9337	10
70	7	640481				9835 640879	9984 640978	640084	640183	64023	640382	9
9ŏ	8	1474	1573	1672	1771	1871	1970	2069	1177 2168	1276 2267	1375	9
80 90	9	2465	2563	2662	2761	2860	2959	3058	3156	3255	2366 3354	9
-	+-											_
10	440	643453 4439	643551 4537	643650 4636	643749 4734	643847 4832	643946 4931	644044 5029	644143 5127	644242 5226	644310 5324	9
20	2	5422	5521	5619	5717	5815	5913	6011	6110	6208	5306	9
29	3	6404	6502	6600	6698	6796	6894	6992	7099	7187	7235	9
39 19	4	7383	7481	7579	7676	7774	7872	7969	8067	8165	8262	9
2	5	8360	8458	8555	8653	8750	8848	8945	9043	9140	9237	9
59 59	6	9335 650308	9432 650405	9530 550502 (9627 550599 6	9724	9821	659919			650210	9
78	8	1278	1375	1472	1569	1666	650793 1762	0890 1859	0987 1956	1084	1181	9
8	ğ	2246	2343	2440	2536	2633	2730	2826	2923	2053 3019	2150 3116	9
1	450	653213	653309	553405 6	53502 6	53598	653695	C# 270:				_
0	1	4177	4273	4369	4465	4562	4658	653791 4754	653338 4856	653994 4946	654090	9
ğ		5138	5235	5331	5427	5523	5619	6715	5810	5906	5042	9
9	3	6098	6194	6290	6386	6482	6577	6673	6769	6564	6960	96
8	4	7056	7152	7247	7343	7438	7534	7629	7725	7820	7916	9
9 8 8 8 8	5	8011	8107	8202	8298	8393	8488	8544	8679	8774	8370	9
8	6	8965	9060	9155	9250	9346	9441	9536	9631	9726	9.721	93
7	7				60201 6	60296	560391	660486	660581	660676	660771	9
7	8	660865	0960	1055	1150	1245	1339	1434	1529	1623	1718	9:
ol	9	1813	1907	2002	2096	2191	2286	2330	2475	2569	2663	9

PP	N.	0	1	2	3	4	5	6	7	8	9	D.
	460	662759	662852	662947	663041	663133	663230	663321	663418	663512	663607	94
9	- 1	3701	3795	3889	3983	4078	4172	4266		4454	4548	34
19	2	4642	4736	4830	4924	5018	5112	5206	5299	5393	5487	9
28	3	5581	5675	5769	5862	5956			6237	6331	6424	9
38	4	6518		6705	6799	6892			7173	7266	7360	94
47 56	5 6	7453 8386	7546 8479	7640	7733	7826	7920	8013		8199	8293	93
66	7	9317	9410	8572 9503	8665 9596	8759 9689	8852 9782	8945 9875	9038 9967	9131 670060	9224 670153	93
75	8	670246	670339	670431	670524			670802		0988	1080	9:
85	9	1173	1265	1358	1451	1543		1728	1821	1913	2005	93
9	470	672098	672190	672283	672375	672167		672652	672744	672836	672929	92
18	1 2	3021 3942	3113 4031	3205 4126	3297 4218	3390 4310		3574	3666	3758	3850	9
28	3	4861	4953	5045	5137	5228	4402 5320	4494 5412	4586 5503	4677 5595	4769 5687	9:
37	4	5778	5870	5962	6053	6145	6236	6328	6419	6511	6602	9:
46	5	6694	6785	6876	6968	7059	7151	7242	7333	7424	7516	91
55	6	7607	7698	7789	7881	7972	8063	8154	8245	8336	8427	91
64	7	8518	8609	8700	8791	8882		9064		9246	9337	91
74 83	8	9428 680336	9519 680426	9610 680517	9700 680607	9791 680698	9882 680789	9973 680879	680063 0970	680154 1060	680245 1161	91
	480	681211	681332	681422	681513	681603		681784	681874	681964	682055	90
9	1	2145	2235	2326	2116	2506	2596	2686	2777	2367	2957	91
18	2	3047	3137	3227	3317	3107	3497	3587	367	3767	3857	90
27	3	3947	4037	4127	4217	4307	4396	4486	45,0	4666	4756	9/
36 45	4	4845	4935	5025	5114	5204	5294	5383	5473	5563	5652	90
51	5 6	5742 6636	5831 6726	5921	6010	6100	6189	6279 7172	6368	6458	6547	8
63	7	7529	7618	6815 7707	6904 7796	6994 7886	7083 7975	8064	7261 8153	7351 8242	7440	89
72	8	8120	8509	8598	8687	8776	8865	8953	9042	9131	8331 9220	89 89
81	9	9309	9398	9486	9575	9664	9753	9811	9930	690019	690107	89
	190	690196	690235	690373	690462	690550	690639	690728	690816	690905	690993	89
.9	1	1081	1170	1259	1347	1435	1524	1612	1700	1789	1877	88 83
$\frac{18}{26}$	2	1965	2053	2142	2230	2318	2406	2494	2583	2671	2759	83
35	4	2847 3727	2935 3915	3023	3111	3199 4078	3297 4166	3375 4254	3463	3551	3639	88
44	5	4605	4693	4781	4868	4956	5044	5131	4342 5219	4430 5307	4517 5394	88 81
53	6	5482	5569	5657	5714	5832	5919	6007	6094	6182	6269	82
62	7:	6356	6114	6531	6618	6706	6793	6830	6968	7055	7142	8787
70	8	7229	7317	7 104	7491	7578	7665	7752	7839	7926	8014	87
79	9	8101	8188	8275	8362	8449	8535	8622	8709	8796	8883	87
9	500 1	698970 98 3 8			699231 700098	699317 700184	699404	699491	699578		699751	87
17	2		700790	0877	0963	1050	700271	700358	700444	700531 1395	700617 1482	87 80
26	3	1568	1654	1711	1827	1913	1999	2086	2172	2258	2344	86
34	4	2431	2517	2603	2689	2775	2861	2947	3/133	3119	3205	86
13	- 5	3291	3377	3 463	3519	3635	3721	3807	3493	3979	4065	86
52	6	4151	4236	4322	4408	4494	4579	4665	4751	4837	4922	86
60 69	7	5998	5004 5949	5179	5265	5350	5436	5522	5607	5693	5778	86
77	9	6718	6803	6035 6535	6120	6206 7059	6291 7144	6376 7229	6162 7315	6547 7400	6632 7485	85 85
- [510	707570	707655	707740	707826	707911	707996	708081	708166	708251	708336	85
8	- 1	8421	8506	8594	8676	8761	8846	8931	9015	9100	9185	85
17	2	9270	9355	9440	9524	9609	9694	9779	9863	9948	710033.	85
25			710202	710287 1132	710371		710540	710625		710794	0879	85
3.1	1	0.963	1043		1217	1301	1345	1470	1554	1639	1723	84
12 50	5	$\frac{1807}{2650}$	1892	1976 2818	2000	2141	2229	2313	2397	2481	2566	81
59	7	3491	2734 3575	3659	37 (2	2986 3826	3070 3910	3154 3994	3233 4078	3323 4162	3407 4246	84
	8	1330	4114	4197	4581	4665	4749	4833	4916	5000	5084	84
67			5251	5335	5418	5502	5586					

PP	'n.	0	1	2	3	1	5	6	7	s	9	D.
	520	716003	716087	716170	716254	716337	716421	716504	716588	716671	716754	8
8 17	1	6838	6921	7004	7088	7171	7254	7339	7421	7504	7587	8
25	2	7671	7754	7837	7920	8003	8086	8169	8253	8336	8419	88
33	3	8502 9331	8585 9414	8668	8751	8834	8917	9000	9053		9248	8
41	5	720159	720242	9497 720325	9580 720407	9663 720490	9745 720573		9911	9994	720077	8
50	8	0986	1068	1151	1233	1316	1398	1481	720738 1563	720821	0903 1728	8
58	7	1811	1893	1975	2058	2140	2222	2305	2387	2469	2552	8
66	8	2634	2716	2798	2881	2963	3045	3127	3209	3291	3374	8
75	9	3456	35 38	3620	3702	3784	3866	3948	4030	4112	4194	8
8	530 1	724276 5095	724358 6176	724440 5258	724522	724604	724685	724767	724819	724931	725013	8
16	2	5912	5998	6075	5340 6156	5422 6238	5503 6320	5585	5667	5748	5830	8
24	3	6727	6809	6890	6972	7053	7134	6401 7216	6483 7297	6564 7379	6646	8 8
32	4	7541	7623	7704	7785	7866	7948	8029	8110	8191	7460 8273	8
41,	5	8354	8435	8516	8597	8678	8759	8841	8922	9003	9084	8
49	6	9165	9246	9327	9408	9189	9570	9651	9732	9813	9893	8
57	7	9974	730055	730136	730217	730298	730378	730 159	730540	730621	730702	8
65 73	8	730782 1589	0863 1669	0944 1750	1024 1830	1105 1911	1186 1991	1266 2072	1347 2152	1428 2233	150s 2313	8
	540	732394	732474	732555	732635	732715	732796	732×76	732956	733037	733117	84
8	1	3197	3278	3358	3438	3518	3598	3679	3759	3539	3919	2.5
16	3	3999	4079	4160	4240	4320	4400	4480	4560	46 (0)	4720	8
24	3	4800	4880	4960	5040	5120	5200	5279	5359	5439	5519	H
32	4	5599	5679	5759	5838	5918	5998	6978	6157	6237	6317	8
40 48	5 6	6397 7193	7272	6556	6635	6715	6795	6574	6954	7034	7113	8
56	7	7987	8067	7352 8146	7431 8225	7511 8305	7590 8384	7670 8163	7749	7829	7905	79
64	8	8781	8860	8939	9018	9097	9177	9256	8543 9335	8622 9414	870I 9493	75
72	9	9572	9651	9731	9810	9559	9968	740047	740126	740205	740284	7
	550	740363	740442	740521	740600	740678	740757	749836	740915	710994	741073	79
8	1	1152	1230	1309	1388	1467	1546	1624	1703	1782	1860	75
16	3	1939	2018	2096	2175	2254	2332	2411	24.0	2563	2647	78
23 31	4	2725 3510	2504 3588	2882 3667	2961 3745	3039 3823	3118 3902	3196	3275	3353	3431	78
39	5	4293	4371	4119	4528	4606	4684	3950 4762	4058 4840	4136 4919	4215 4997	75
47	6	5075	5153	5231	5309	5357	5465	5513	5621	5699	5777	75
55	7	5855	6933	6011	6089	6167	6245	6323	6401	6479	5777 6556	73
62	8	6634	6712	6790	6868	6945	7023	7101	7179	7256	7334	7
70	9	7412	7489	7567	7645	7722	7800	7878	7955	8033	8110	72
8	560	718188 8963	748266	748343	748421	748498	748576	748653	748731	748508	748885	77
15	1 2	9736	9040 9814	9118 9891	9195 9968	9272 750045	9350 750123	750200	9504	95×2 750351	9659	77
23	3	750508	750586	750663	750740	0817	0894	0971	750277 1048	1125	750431 1202	77
31	4	1279	1356	1433	1510	1587	1664	1741	1818	1895	1972	77
39	5	2048	2125	2202	2279	2356	2433	2509	25.45	2663	2740	77
46	6	2816	2893	2970	3047	3123	3200	3277	3353	3430	3500	77
54 62	8	3583	3660	3736	3813	3550	3:466	4042	4119	4195	4272	77
69	9	4348 5112	4425 5189	4501 5265	4578 5341	4651 5417	4730 5494	4807 5570	4883 5646	4960 5722	5036 5799	76
-	570	755875	755951	756)27	756103	756180	756256	756332	756408		756560	
8	1	6636	6712	6788	6864	6910	7016	7092	7168	7214	7320	76
15	2	7396	7472	7548	7624	7700	7775	7851	7927	SD03	8079	76
23 30	3	8155	8230	8306	8382	8458	8533	8609	Niss	8761	8536	76
30	4	8912	8988	2063	9139	9214	9290	9366	9141	9517	9592	76
38	5	9668	9743	9919	9894	9970	760045	760121	760196		760347	7.5
46 53	6	760422 1176	760498 1251	760573 1326	760649 1402	760724 1477	0799 1552	0875	0950 1702	1025	1101 1853	7.5
61	7 8	1928	2003	2078	2153	2228	2303	1627 2378	2453	1778 2529	2604	75
68	9	2679	2754	2829	2904	2978	3053	3123	3203	3278	3353	75

P	P	٧.	0	1	2	3	4	5	6	7	8	9	D
	5	80	76342				3 76372	7639	02 7638	77 7639	52 76402	7 76410	1 75
1	7	1	417				0 447		50 46	24 469	99 477	4 484	
2		3	492 566							70 54			1 75
30)	4	641						41 61 85 68				
3		5	715	6 723	730				27 76	01 767			
5		6	789				0 819	4 820	38 83	42 841			
59		78	8639 9377		2 878 1 952							0 9303	74
67		9	770113						16 98. 34 7705.				
	59		770852			77107	3 77114	6 77122	7712	93 77136	7 77144	0 77151	-
15		1	1587						5 20	28 210	2 217		
22		3	2322 3055	2395 3128								8 2981	73
29		3	3786				334		2 42				73
37		5	4517										73
44		6	5246		5392	5463	553	5 561					73
51 58		7	5974		6120					11 648	3 6556	6629	73
66		$\frac{8}{9}$	6701 7427	6774 7499	6846 7572						9 7282	7354 8079	73 72
	60	0	778151	778224	778296	778368	778141	77851	-1		-		72
7		Ц	8874		9019	9091	9163	923	6 930	8 938			72
14 22		2 .	9596								780173	780245	72
29		ì	780317 1037	780389 1109	780461 1481	780533 1253							7.3
36		51	1755	1827	1899	1971	2042						72 72
43		3	2473	2544	2616	2688	2759						72
50	[3		3189	3260	3332	3403	3475	3546		8 3689	3761	3832	71
58 65	8		3904 4617	3975 4689	4046 4760	4118 4831	4189 4902					4546 5259	71 71
_	610	7	85330	785401	785472	785543	785615		-	-		-	_
7	1		6041	6112	6183	6254	6325	6396				785970 6680	71 71
14	1 :	1	6751	6822	6893	6964	7035	710€	717	7 7248	7319	7390	71
21 28	3		7460 8168	7531 8239	7602 8310	7673	7744	7815				8098	71
36	5		8875	8946	9016	8381 9087	8451 9157	8522 9228	8593 9299			8804	71
43	6	1	9581	9651	9722	9792	9863	9933				9510 790215	71
50	7		90285	790356	790126	790496	790567	790637				0918	70
57 64	9		0988	1059	1129	1199	1269	1340		1480	1550	1620	70
03		- [-	1691	1761	1831	1901	1971	2041	2111	2181	2252	2322	70
7	620 1	17	92392 3092	792462 3162	792532 3231	792602 3301	792672 3371	792742 3441	792812		792952 3651	793022 3721	70
14	2		3790	3860	3930	4000	4070	4139	4209		4349	4418	70 70
21 28	3	Ł	4488	4558	4627	4697	4767	4836	4906	4976	5045	5115	70
28 35	5		5185 5880	5254 5949	6324 6019	5393 6088	5463	5532	5602		5741	5811	70
42	ő		6571	5611	6713	6782	6158 6852	6227 6921	6297		6436	65051	69
49	7	L	7268	7337	7 106	7475	7515	7614	7683		7129 7821	7198 7890	69 69
56	8	L	7960	8029	8098	8167	8236	8305	8374		8513	8582	69
63	9	ļ_	8651	8720	8789	8858	8927	8996	9065	9134	9203	9272	69
7	630						799616 800305	799685 800373	799754		799892	799961	69
14	2	ľ	0717	0786	0554	0923	0992	1061	800442 1129	800511	800580 1266	800648 1335	69
21	3		1404	1472	1541	1609	1678	1747	1815	1884	1952	2021	69
24	4	1	2089	2158	2226	2295	2363	2432	2500	2568	2637	2705	69
35	5 6		2774	2842	2910	2979	3047	3116	3184	3252	3321	3389	68
48	7	1	3457 4139	3525 4208	3594 4276	4344	3730 4412	3798 4480	3867	3935	4003	4071	68
55	- 8		4821	4589	4957	5025	5093	5161	4548 5229	4616 5297	4685 5365	4753 5433	68
62	9	İ	5501	8569	5637	5705	5773	5841	5908	5976	6044	6112	68
- 1		ı				- 1		- 1			40.1		~

1	J.,	1.			1.	Ι.	Τ_					
PP	N.	0	1	3	3	4	5	6	7	5	9	D.
١.	640	806180	806248						806655	806723	806790	68
13	1 2	6958 7535	6926 7603	6994 7670		7129				7400	7467	68
20		8211	8279	8346	8414	8481			8008 8684	8076 8751	8143 8818	63 67
27	4	8886	8953	9021	9088	≥9156	9223	9290	9353	9425	9492	67
34 40	5 6	9560 810233	9627 810300	9694 810367						810098	810165	67
47	1 7	0904	0971	1039	810434 1106				0703 1374	0770 1441	0837 1508	67 67
54	8	1575	1642	1709	1776	1843	1910	1977	2044	2111	2178	67
60	9	2245	2312	2379	2445	2512	2579	2646	2713	2780	2847	67
7	650	812913 3581	812980 3648	813047 3714	813114 3781	813181 3848	813247 3914	813314 3981	813381	813448 4114	813514 4181	67
13	2	4243	4314	4381	4117	4514	4581	4647	4714	4780	4847	67 67
20	3	4913	4980	5046	5113	5179	5246	5312	5378	5445	5511	66
26 33	4	5578 6241	5644 6308	6374	5777 6440	5843 6506	5910	5976	6042	6109	6175	66
40	5 6	6904	6970	7036	7102	7169	6573	6639 7301	6705 7367	6771 7433	6838 7499	66
16	7	7565	7631	7698	7764	7830	7235 7896	7962	8028	8094	8160	66
53 59	8	8226 8385	8292 8951	8358	8424	8490	8556	8622	8688	8754	8820	66
-59	-			9017	9083	9149	9215	9231	9346	9412	9478	66
7	660	819544 820201	819610 820267	819676 820333	819741 820399	819807 820464	819873 820530	819939 820595	520004 0661	820070 0727	820136 0792	66 66
13	2	0858	0924	0989	1055	1120	1186	1251	1317	1382	1448	66
20	3	1514	1579	1645	1710	1775	1841	1906	1972	2037	2103	65
26 33	5	2168 2822	2233 2887	2299 2952	2364 3018	2430 3083	2495 3148	2560 3213	2626 3279	2691 3344	2756 3409	65 65
39	6	3474	3539	3605	3670	3735	3800	3365	3930	3996	4061	65
46	7	4126	4191	4256	4321	4386	4451	4516	4581	4616	4711	65
52 59	8	4776 5426	4841 5491	4906 5556	4971 5621	5036 5686	5101 5751	5166 5815	5231 5880	5296 5945	5361 6010	65 65
	670	826075	826140	826204	826269	826334	826399	826464	826528	826593	826658	65
6	1	6723	6787	6552	6917	6981	7046	7111	7175	7240	7305	65
13 19	3	7369	7434	7499 8144	7563 8209	7628 8273	7692 8338	7757 8402	7821 8467	7886 8531	7951 8595	65
26	4	8660	8724	8789	8853	8918	8952	9046	9111	9175	9239	64
32	5	9304	9368	9432	9497	9561	9625	9690	9754	9818	9482	64
38 45	6	9947 830589	830011	830075 0717	830139 0781	830204 0845	830268 0909	830332 0973	830396 1037	830460	830525 1166	64
51	7 8	1230	1294	1358	1422	1436	1550	1614	1678	1742	1806	64
58	9	1870	1934	1998	2062	2126	2189	2253	2317	2351	2445	64
_	680	832509		832637	832700	832764	832328	832392	832956		833033	61
13	1 2	3147 3784	3211 3348	3275 3912	3338 3975	3402 4039	3466 4103	3530 4166	3593 4230	3657 4294	3721 4357	61
19	3	4421	4484	4548	4611	4675	4739	4802	4866	4929	4993	64
25	4	5056	5120	5183	5247	5310	5373	5437	5500	5564	5627 6261	63
32 38	5	5691 6324	5754 6387	5817 6451	5881 6514	5944 6577	6007 6641	6704	6134	6830	6261 6894	63
44	6	6957	7020	7083	7146	7210	7273	7336	7399	7462	7525	63
50	8	7538	7652	7715	7778	7841	7904	7967	8030	8093	8156	63
57	9	8219	8282	8345	8408	8471	8534	8597	8660	8723	8786	63
	690			838975	839039 9667	839101	839164 9792	839227 9855	839289 9918		839415 840043	63
13	1 2	9478	9541 840169	9604 840232	840294	9729 840357	840420	840482		840608	0671	63
19	3	0733	0796	0859	0921	0984	1046	1109	1172	1234	1297	63
25	4	1359	1422	1455	1547	1610 2235	1672 2297	1735 2360	1797 2422	1960 2484	1922 2547	63
32	5 6	1985 2609	2047 2672	2110 2734	2172 2796	2559	2921	2983	3046	3108	3170	62
14	7	3233	3295	3357	3420	3482	3544	3606	3669	3731	3793	62
50	8	3855	3918	3980	4042	4104 4726	1166	4229 4850	4291 4912	4353	4415 5036	62 62
57	У	4177	4539	4601	4664	1/20	4788	2550	1912	19/19	3030	04

PI	PN		0	1	2	3	4	5	6	7	8	9	b
	70		45098				4 84534	6 84540	8 84547	0 8455	32 8455	a lourer	1
- 6		1	571				4 596						
12		21	633				3 659	5 664					5
19 25		3	695					726	732		3 74		
31		61	7573				8 781		1 794	3 800	14 80		2
37		6	8189 8905							9 862	0 . 86	32 874	3
43	1	7	9419								35 929	7 935	3
50			5003								99	11 997	21 (
56		9	0646										
	710	12	51259	85132	-	-	-	-	-	-	5 113	1197	
6	113		1870										
12	1 2		2480	2541			272				7 235		
18	1 3		8090	3150					4 345	5 290 5 351	7 296		
24	! !		3698	8759	3820	3881	394	1 400	2 406				
31 37	1 0		4906	4367	4429	4489	454						
43	7		4913	4974		5093					7 539		
49	8		5519 6124	8590		5701			2 588				
55	ő		6729	6185 6789		6306				654			
-	_	-1		0/32	6850	6910	6970	703	1 709	715	721	2 7272	0
6	720		7332 7935	857393 7995	857453	857513		85763	85769		85781	5 857875	6
12	à		8537	8597	8056 8657	8116				835	7 841		. 6
18	3		9133	9198	9259	8718 9318				995	901	9078	
24	4		9739	9799	9850	9919		9439				9679	. 0
30	- 5		0338	800333	800458	860318		86003		86015			1 6
36	- 6		0937	0996	1056	1116			1295				6
42	7		1534	1594	1654	1714	1773		1893				6
48	8		2131	3 191	2251	2310	2370	2430					6
54	9	_	2723	2787	2847	2905	2965	3025				2668 3263	6
6	730			863392	863442	863701	863561	863620	863680	863739	863790	863368	55
12	1 2		3917 1311	3977	40.36	4006	4155	4214	4274	4333			50
18	3		5104	4570 5163	4630	4639	4749	4808	4867	4926			50
24	4		5696	5755	5222	5282	5341	5400		5519	5578		59
30	8		1287	6346	6405	6465	5933	5992		6110	6169	6228	59
36	6		3478	6937	6996	7055	6524 7114	6583	6642		6760		59
41	7	1 7	1467	7526	7595	7644	7703	7173	7232	7291	7350	7409	69
47	8	- 8	056	8115	8174	8233	8292	8350	8109	7890 8469	7939		59
53	9	8	614	8703	8762	8821	8879	8933	8997	9056	8527 9114	8586	59
7	740	Ser	232	869290	869349	D#0.400					9114	9173	59
6	ĭ		818	9877	9935	869408 9994	869466 870053	869525 870111	869584	869612	869701	869760	59
12	2	S70	404	870462	870521	870579	0638	0696	870170 0755	870228	870237	870345	69
17	8		930	1047	1106	1164	1223	1281	1339	0813 1398	0872 1456	0930	58
13	4		573	1631	1690	1748	1806	1806	1923	1981	2040	1515 2098	58 58
5	5		156	2215	2273	2331	2389	2148	2506	2564	2622	2681	58
ñ	6		739	3797	2355	2913	2972	3030	3088	3146	3204	3262	58
6	8		002	3060	3437	3495	3553	3611	3669	3727	3785	3944	58
52	9		182	4540	4018	4076	4134	4192	4250	4303	3785 4366	4424	58
-1-	-1				9.1913	4656	4714	4772	4830	4888	4945	5003	58
6	50	975	061 8 640	5693			875293	875351	875409	875166	875524	875582	59
2	21		218	6276	5756 6333	5913	5971	5929	5987	6045	6102	6160	58
71	3		795	6853	6910	6391	6419	6507	6564	6622	6680	6737	58
3	4		371	7429	7497	7544	7026 7002	7083	71-11	7199	7256	7314	59
9	5	7	247	8004	8062	8119	8177	7659 8234	7717	7774	7832	7889	58
5	ß	8	522	8579	8637	8694	8752	8309	8292 8866	8349 8924	8407	8164	57
1	7		196	9153	9211	9268	9325	9333	9440	9497	8981 9555	9039	57
6	8		369	9726	9784	9341	9998					9612	57
2	9	3300	12 8	80299	880864	350113	880171	880523	0585	0642	0699	830185 0756	57 57
										0014	0000	V/00	WI:

PP	n.	0	1	2	3	4	5	6	7	s	9	D.
	760	880814	880871	890929	880985	881042	\$81099	881156	881213	881271	881328	57
6	1	1385	1442	1499	1556	1613	1670	1727	1784	1841	1895	57
11	2	1955	2012	2069	2126	2183	2240	2:297	2354	2411	2468	57
17	3	2525	2581	2638	2695	2752	2809	2866	2923	2980	3037	57
17 23 29 34	4	3093	3150	3207	3264	3321	3377	3434	3491	3548	3605	57
24	6	3661 4229	3718 4285	3776	3:32 4399	3888	3945	4002	4059	4115	4172	57
40	7	4795	4352	4342 4909	4965	4455 5022	4512 5078	4569 5135	4625 5192	4682 5248	4739 5305	57 57
46	8	5361	5418	5474	5531	5587	5644	5700	6757	5813	5870	57
61	9	5926	5983	6039	6096	6152	6209	6265	6321	6378	6434	56
	770	886491	886547	886604	886660	886716	886773	886829	886885	886942	886998	56
11	1 2	7054 7617	7111	7167	7223 7786	7280	7336	7392	7449	7505	7561	56
17	3	8179	7674 8236	7730 8292	8348	7842 8404	7898 8460	7955 8516	8011 8573	8067	8123	56
22	4	8741	8797	8853	8909	8965	9021	9077	9134	8629 9190	8695 9246	56 56
28	5	9302	9358	9414	9470	9526	95.32	9638	9694	9750	9806	56
34	6	9862	9918	9974	890030	890086	890141	890197	890253	890309	890365	56
39	7	890421	890477	890533	0589	0645	0700	0756	~0812	0868	0924	56
45	8	0980	1035	1091	1147	1203	1259	1314	1370	1426	1482	56
50	9	1537	1593	1649	1705	1760	1816	1872	1928	1983	2039	56
6	780 1	892095 2651	892150 2707	892206 2762	892262 2818	892317 2573	892373 2929	892429 2985	892484 3040	892540 3096	\$92595 3151	56 56
ıĭ	2	3207	3262	3318	3373	3429	3164	3540	3595	3651	3706	56
17	3	3762	3817	3873	3928	3954	4039	4094	4150	4205	4261	55
22	4	4316	4371	4427	4482	4538	4593	4648	4704	4759	4814	55
27	5	4870	4925	4980	5036	5091	5146	5201	5257	5312	5367	55
33	6	5423	5478	5533	5588	5614	5699	5754	5,909	5864	5920	55
38 44	7	5975 6526	6030	6085 6636	6140	6195	6251	6306	6361	5416	6471	55
49	8	7077	6581 7132	7187	6692 7242	6747 7297	6×02 7352	6567 7407	6912 7462	6967 7517	7022 7572	55 55
	790	897627	897632	897737	897792	897847	897902	897957	898012	898067	898122	55
5	1	8176	8231	8286	8341	8.196	8451	8500	8561	8616	8670	55
11	2	8725	8780	8835	8890	8944	8999	9054	9109	9164	9218	55
17	3	9273 9821	9328	9383	9437	9492	9547	9602	9656	9711	9766	55
22 27	5	900367	9875 900422	9930 900476	9985 900531	900039 0586	900094	900149 0695	9002)3	900259	900312 0859	55 55
33	6	0913	0968	1022	1077	1131	1186	1240	1295	1349	1404	55
38	7	1458	1513	1567	1622	1676	1731	1785	1840	1894	1943	54
44	8	2003	2057	2112	2166	2221	2275	2329	2344	2438	2492	54
49	9	2547	2601	2655	2710	2764	2818	2573	2927	2981	3036	54
	800	903090	903144	903199	903253	903307	903361	903416	903470	903524	903578	54
5	1	3633	3687 4229	3741	3795	\$849 4391	3904 4445	3958	4012	4066	4120 4661	54 54
11 16	3	4174 4716	4770	4324	4337 4878	4932	4986	4499 5040	5094	4607 5148	5202	54
22	4	5256	5310	5364	5418	5472	5526	5580	5634	5688	5742	54
27	6	6796	5850	5904	5958	6012	6066	6119	6175	6227	6281	51
32	6	6335	6339	6413	6497	6351	6604	6658	6712	6766	6820	54
38	7	6874	6927	6981	7035	7039	7143	7196	7250	7304	7358	54
43 49	8	7411 7949	7465 8002	7519 8056	757 3 8110	7626 8163	76-80 8217	7734 8270	7787 8324	7841 8378	7895 8431	54 51
-	810	908485	908539	908592	908646	908699	908753	908807	908860	908914	908967	51
6	1	9021	9074	9128	9181	9235	9239	9342	9396	9449	9503	51
ni	2	9556	9610	9663	9716	9770	9523	9877	9930	9984	910037	53
16	3	910091	910144	910197	910251	910304	910358	910411	910464	910518	0571	53
21	4	0624	0678	0731	0784	0838	0.91	0944	0998	1051	1104	53
27	5	1158	1211	1264	1317	1371	1424	1477	1530	1584	1637	53 53
32	6	1690 2222	1743	1797 2328	1850 2381	1903 2435	1956 2488	2009 2541	2063 2594	2116 2647	2169 2700	53
37 42	7 8	2753	2275 2806	2859	2351	2966	3019	3072	3125	3178	3231	53
48	9	3234	3337	3390	3443	3496	3549	3602	3655	3708	3761	53

-		N.	0		1	2	1	3	4	Ļ	5	•	6	7	r :	8	9		I
	-	S20	9138	14 91	3867	9139	20 9	3973	3 914	000	9140	200			-		1-		_
١,	5	1 2		43	4396		49	450:	2 4	555		508 91	413			766			4
1	6	3	51		$\frac{4925}{5453}$		77 05	5030 5559		283	51	36	518	9 52	241 5	294			1
2	11	4	59.	27	5980		33	6085		511 1381		91	5716		69 5	822	68	75	-
3	$\frac{7}{3}$	5	64		6507	65	59	6612	66	664			624. 677(349	64		ı
3	71	7	69: 756		7033 7558	70 76		7138		90	72	43	7295	73		875 400	695 745		2
4:	2	-8	803	30	3083	81		$\frac{7663}{8188}$		16 40	77 82		7820	78	73 7	925	797	18	i
4	8 _	9	858	55 8	607	86		8712		64	88		5345 5869			450 973	850 902		1
١,		30	91907		130	9191		9235			9193	40 919	0392	9194		_		-1-	_
10			$960 \\ 92012$		653 176	970		758	98		986	62 9	914	99	67 920	119	91954 92007		5
16		3	064	5 0	697	073)280)801	9203 08		9203) 090		436	9204	39 03	541	059		5
21 26	!	4	116		218	127	0	322	13		14:		$\frac{958}{478}$	10		162	111		5
31		5	168 220		738 258	179		842	189	94	194	16 i	998	203		S2 02	163 215	1	5
36	1	7	272	5 2	777	231 282		362 881	241 293		246		518	257	0 26	22	267		5
42		8	324	1 3	296	334	8 3	399	345		298 350		037 555	308	9 31		319	2	5
47	-	9	376	2 3	814	-386		917	390		402		072	412			3710 4220		5.
5	8	10 19	$\frac{324279}{4796}$		331	92438			92148		2453		589	92464	1 9246	93	924744	-1-	5
10	1	2	5312	5	364	489 541		951 167	500 551		505		106	515	7 52	09	5261		5
15 20		3	5828	3 5	379	593	5	982	603		5570 6080		521 137	567 618		25	5776	1	5
26		5	6342 6857		91	644		197	654	8	6600	0 6	51	670			6291 6805		5 I
31		6	7370		22	6959 7473)111 521	706: 7570		711		65	721	6 726		7319		31
36		7	7883	79	35	7986		37	808		7627 8140		78	7730 8243		31	7832	1	51
46		8	8396 8908			8498 9010		19	8601		8652	87	03	8754	880		8345 8857		51 51
-	85	1-	29119	-	-1-		-	61	9112	-1-	9163	92	15	9266	931	7	9368		si
5		ı [9930	99		29521 30032	9395	72^{+9})29623)3013 (29674	9297		2977	92982	7 9	29879	5	1
10 15		2 9;	30410	9304	91	0542	0.5	92	0643		30185 0694	9302	36 5	930287 0796			30389	. 5	ı
20	- 1		$0949 \\ 1458$	10		1051	11		1153	3	1204	12		1305			0898 1407	5 5	
26	- 4	5	1966	20		$\frac{1560}{2068}$	16 21		1661 2169		1712			1814	186	5	1915	5	
31 36	(2174	253	24	2575	26		2677		$\frac{2220}{2727}$	22 27	71	2322 2829		2	2423	5	ı
41	7		2981 3487	303		3082	31.		3183		3234	32	35	3335	2879 338		2930 3437	5	
16	9		3993	40		3589 4094	36.		3690 4195		3740	379		3841	3893	2	3943	5	
	860	03	1400	93454	- -			-1-		-	4246	429	-1-	4347	4397		4448	51	
5	- 1		5003	505	4	34599 5104	93463		34700 5205	93	4751 5255	93480 530		34852 5356	934902	93	14953	50	
5	3		5507 6011	606		5608	563	43	5709	1	5759	540		5860	5406 5910		5157 5960	50 50	
0	4		6514	656		6111 6614	616		6212 6715		6262	631		6363	6413		6163	50	
5	5		7016	706	6	7117	716		7217	1	6765 7267	681 731		6865	6916		6966	50	ı
5	6		7518	756		7618	766	8	7718	7	769	781		7367 7869	7418 7919		7468 7969	50	
n [- 8		5520	806		8119 8620	816 867		8219		269	832	0	8370	8120		8170	50 50	
5	9	1	0020	907		9120	917	Ü	8720 9220		770	882 932		8870 9369	8920 9419	1	8970	50	1
	570	939	519	93956	939	9619	33966	0 03	9710			939819	-	-		-	2469	50	
5	2		W11122 2	11000	5,940	1118	14016	940	0218	940		93981: 94031;			939918 940417	939	968 1467	50	1
5	3		014	106		0616	066	3 (0716	0	765	0814	5	0865	0915	931	964	50 50	1
1	4	1	511	1561		611	1163 1660	1	1213 1710		263 760	1313		1362	1412	1	162	50	1
3	6	2	508 504	2058	2	2107	2157	1	2207		256	1809 2306		1859 2355	1909 2405			50	
	7		2004	2554		099	2653	1 2	2702	2	752	2501	1 3	2851	2901	2		50 50	
)	8	3	195;	3511		593	3149		3198 3692		142	3297	1 3	3346	3396	3	445	49	
,	9	3	989	4038		038	4137	1 9	1186		236	3792 4285	1	3841	3990	3		49	

PP	N.	o	1	2	3	4	5	6	7	8	9	D.
	880	914483	944532	944581	944631	944680	944729	944779	944528	944877	944927	49
5	1	4976	5025	5074	5124	5173	5222	5272	5321	5370	5419	49
10	2	5469	5518	5567	5616	5665	5715	5764	5813	5.402	5912	49
15	3	5961	6010	6059	6108	6157	6207	6256	6305	6354	6403	45
20	4	6452	6501	6551	6600	6649	6698	6747	6796	6845	6594	45
25 29	5	6943 7434	6992	7041	7090	7140	7189	7238 7728	7287	7336	7385	49
34	7	7924	7483 7973	7532 8022	7581 8070	7630 8119	7679 8168	8217	7777 8266	7826 8315	7875 8364	45
39	8	8413	8462	8511	8560	8609	8657	8706	8755	8804	8853	45
44	ğ	8902	8951	8999	9048	9097	9146	9195	9244	9292	9341	45
_	890	949390	949439	949488			949634		949731	949780	949829	4
5 10	1	9878	9926	9975	950024	950073		950170	950219	950267	950316	45
15	3	950365 0851	950414	950462 0949	0511	0560 1046	0608	0657 1143	0706 1192	0754 1240	0803	40
20	4	1338	1386	1435	1483	1532	1580	1629	1677	1726	1775	49
24	5	1823	1872	1920	1969	2017	2066	2114	2163	2211	2260	4
29	6	2308	2356	2405	2453	2502	2550	2599	2647	2696	2744	43
34	7	2792	2841	2889	2938	2986	3034	3083	3131	3180	3225	4
39	8	3276 3760	3325 3808	3373 3856	3421 3905	3470 3953	3518 4001	3566 4049	3615 4098	3663 4146	3711 4194	4:
-	900	954243	954291	954339	954387	954435	954484	954532		954628	954677	45
5	1	4725	4773	4821	4869	4918	4966	5014	5062	5110	5155	48
10		5207	5255	5303	5351	5399	5447	5495	5543	5592	5640	4.5
14	2 3	5688	5736	5784	5832	5880	5928	5976	6024	6072	6120	43
19	4	6168	6216	6265	6313	6361	6409	6457	6505	6553	6601	4
24	5	6649	6697	6745	6793	6840	6855	6936	6984	7032	70.50	4.
29 34	6	7128	7176	7224	7272	7320	7368	7416 7894	7464	7512 7990	7559 8038	4:
38	8	7607 8086	7655 8134	7703 8181	7751 8229	7799	7847 8325	8373	7942 8421	5468	8516	4
43	9	8564	8612	8659	8707	8277 8755	8803	8850	8898	8946	8994	45
	910	959041	959089	959137	959185	959232	959280	959328	959375	959423	959471	45
5	1	9518	9566	9614	9661	9709	9757	9804	9852	9900	9947	43
.9	2	9995	960042	960090		960185	960233	960281 0756	960328	960376	960423	45
14 19	3	960471 0946	0518 0994	0566 1041	0613 1089	0661 1136	0709 1184	1231	1279	1326	1374	47
24	5	1421	1469	1516	1563	1611	1658	1706	1753	1801	1848	47
28	6	1895	1943	1990	2038	2085	2132	2480	2227	2275	2322	47
33	7	2369	2417	2464	2511	2559	2606	2653	2701	2748	2795	47
35	- 8	2843	2×90	2937	2985	3032	3079	3126	3174	3221	3268	47
42	9	3 316	3363	3410	3457	3504	3552	3599	3646	3693	3741	47
	920 1	963788 4260	963835 4307	963882 4354	963929 4401	963977 4448	964024 4495	964071 4542	961118 4590	964165	964212 4681	47
5	9	4731	4778	4825	4872	4919	4966	5013	5061	5108	5155	47
14	2	5202	5219	5296	5343	5390	5437	5131	5531	5578	5625	47
19	4	5672	5719	5766	5813	5860	5907	5954	6001	6043	6095	47
23	5	6142	6189	6236	6283	6329	6376	6423	6470	6517	6564	47
23 28 33	6	6611	6658	6705	6752	6799	6845	6892	6939	6986	7033 7501	47
33	7	7080	7127	7173	7220	7267 7735	7314	7361 7829	7408	7451 7922	7969	47
38 42	8	7548 8016	7595 8062	7642 8109	7688 8156	8203	7782 8249	8296	8343	8390	8436	47
-	930	968483	968530	968576	968623	968670	968716	968763	968810	968856	968903	47
5	1	8950	8996	9043	9090	9136	9183	9229	9276	9323	9369	47
9	2	9416	9463	9509	9556	9602	9649	9695	9742	97.59	9837	47
14	3	9882	9928	9975	970021	97(11)64	970114	970161	970207	970254	970300	47
18	4	970347	970393	970440	0486	0533	0579	0626	0672 1137	0719 1183	0765 1229	4/
23 28	5	0812	0858	0904	0951	0997	1044	1090	1601	1647	1693	41
28	6	1276	1322	1369 1832	1415 1879	1461 1925	1971	2018	2064	2110	2157	40
32 37	7 8	1740 2203	1786 2249	2295	2342	2388	2434	2431	2127	2573	2619	46
41	ŝ	2666	2712	2758	2804	2851	2897	2943	2959	3035	3032	46

P	P	N.	0	1		2		3	4		5		6	7	1	3	9	
		40	97312			9732		7326		13	9733	59 97	340.	9734	51 973	197	9735	1
	8	2	356 405		336	368		372			38	20	386	6 39	13 3	959	400	
1		3	451		197 558.	414		4189		35	42		132			120	446	
1	8	4	497		18	506		5116			474 520		78			30	492	
2	3	5	543	2 5	78	559		5570			566		707			340 799	534	
2		6	589		37	598		6023			612		16			53	630	
3		8	635		96	644		648	65	33	657	9 6	622	66	71 67	17	676	
4		9	680 726		54 12	690 735		6946 740 8			703 749		083			75 32	722 767	0
_		50	97772		69	97781	5 97	7861	97790)6	97795	2 977	998	-		-	97813	
į		ì	818		26	827	2	8317	836	3	840	9 8	454			46	859	
1		3	863 909	7 86 3 91	83	872		8774			886	5 8	911	897	6 90	02	904	٠ ار
is		4	954			918 963		9230 9685			932		366		2 94		950.	
2		5	98000			93009		0140	98018	5 6	977 98023		821	986	7 99 2 9803		995	
27		6	0458	3 05	03	0549	9	0594	064		068	5 0	730	077			98041: 086;	
32	1	7	0912			1003		1048	109		113	9 1	184	122			132	
41		8	1366 1819			1456 1909		1501 1954	154 200		159: 204:		637 090	168 213	3 17	28	1773 2226	3 4
_	96	0	982271	9823	6	982362	98	2407	98245	2 9	82497	_	_	98258	-	-1	982678	-
5		1	2723		39	2814		2859	290		2949		94	304			3130	
14		2	3175			3265		3310	3356	6	3401	3	146	349	1 35		3581	
18		3	3626 4077	367		3716		3762	3807	7	3852		97	394			4032	1
23		31	4527	457		4167		1212 1662	4257		4302 4752		97	439		37	4182	
$\frac{27}{32}$		6	4977	502		5067		112	5157		5202		47	4845 5295		7	4932 5382	
		7	5426			5516		5561	5606		5651		96	574			5830	
36 41		3	5875 6324	636		5965 6413		010 453	6055 6503		6100 6548			6189	623	14	6279	4
_	270	وا	86772	98681	- -	86861	-		986951	-	36996		-		-	- -	6727	4
5	1	1	7219	726		7509		353	7395	130	7443			987082 7532			87175	4
9	1 3	1	7666	771		7756	7	300	7845		7890	79		7979			7622	4:
14 18	1.3		8113	815		8202	8	247	8291		8336	83		8425	847		8514	4
23	1		8559 9005	860 904		8648 9094		698 138	8737		8782	88		8871	1991	6	8960	4
27	l		9450	949		9559		583	918		9227 9672	92	72	9316			9405	4
32	7		9895	993	9	9983			990072		00117	9901		9761 990206	980		9850 90294	44
36	8		90339	99038		90428		172	0516	1	0561	06		0650	069		0738	44
41	8	-1-	0783	082	7	0871	0	910	0960	L	1004	10		1093	113		1182	4
4	980		91226 1669	991276		91315 1758	991	359	91403 1846		1448 1890	99149		91536	991580		01625	44
9	2		2111	215		2200		264	2288		2333	193		1979 2421	2023		2067	44
13	3		2554	2598	3	2612	2	648	2730		2774	23		2863	2907		2509 2951	41
18	4		2995	3039		30.48		127	3172		3216	324	(1)	3304	3318		3392	44
26	6		3436	34N 3921		3524 3965		568	3613		3657	376		3745	3789		3833	44
31	7	1	4317	436		4405		149	4493		4097 4537	434		4185	4229		4273	44
35	8	1	4757	4801		4845		889	4933		4977	502	1	4625 5065	4669 5108		4713	41
ω.	9	L	6196	5240		8254	53	328	5372		5416	546		5504	5547		5152 5591	44
4	990	99	05635 6074	995679	99		9957		95811			99539		95942	995986	99	6030	41
0	2	1	6512	6117 6555	1	6161		13	6219	9	6293	633		6380	6424		6468	41
3	3		6949	6993		7037		150	7124		6731 7168	677 721		6818 7255	6862		6906	44
8	4	1	7346	7430		7474	75		7561		7605	764		7692	7299 7736		7343	44
2	5		7823	7867		7910	79	54	7998		041	808		8129	8172	1	7779 8216	44
6	6		8259	8303		6347	83		8434	8	477	852	il	8564	8608		3652	44
5	7 8		8695 9131	8730 9174		8782 9218	92	26	8860		913	895		9000	9043	5	9087	44
ő	9		9565	9609		9652	96		9305 9739		348	939		9435	9479		522	44
	-			00/3	Ι '		00	00	01130	3	783	9820	"	9870	9913		9957	43

Fo.	Square.	Oube.	Sq. Root.	CubeBoot	No.	Square.	Cube.	Sq. Root.	CubaRoo
1	1	1	1-0000000	1.000000	64	4096	262144	8:0000000	4:00000
2	4	. 8	1.4142136	1.259921	65	4225	274625	8 0622577	4.03073
3	9	27	1.7320508	1.442250	66		287496	8.1240384	4-04124
5	16 25	64 125	2:0000000 2:2360680	1.587401 1.709976	67 68	4624	300763	8-1853523	4:06164
6	36	216	2.4494397	1.817121	69	4761	314432 328509	8:2462113 8:3066239	4:08165
7	49	343	2:6457513	1.912931	70	4900	343000	8:3666003	4.12128
8	64	512	2.8284271	2.000000	71	5041	357911	8.4261498	4-14081
	81	729	3.0000000	2.050084	72	5184	373248	8.4852814	4.16016
10	100	1000	3.1622777	2.154435	73		399017	5.5.140037	4-17933
11 12	121 144	1331 1728	3·3166248 3·4641016	2·223980 2·289428	74 75	5476	405224 421875	8:6023253 8:6602540	4-19-33
13	169	2197	3.6055513	2:351335	78	5625	438976	8.7177979	4-23552
14	196	2744	3.7416574	2.410142	77	5920	456533	8:7749644	4-25432
15	225	3375	3.8729333	2-466212	78	6084	474552	8.8317609	4:27260
16	256	4096	4:0000000	2.519842	79	6241	493039	8.8881944	4:29084
17	289	4913	4-1231056	2.571282	80	6400	612000	8.9442719	4:30887
18	324	5832	4.2426407	2.620741	81	6561	531441	9-0000000	4.3267
19	361	6859	4.3588989	2.668402	82	6724	551368	9-0553551 9-1104336	4:34140
20 21	400 441	8000 9261	4:4721360 4:5825757	2·714418 2·758924	83 84	6899 7066	571787	9-1651514	4:3795
21 22	484	10643	4.6904158	2.802039	85	7225	61 4125	9-2195445	4.39683
23	529	12167	4.7958315	2.843867	86		636056	\$-2736185	4:41400
24	576	13824	4-8989795	2.884499	87	7569	658503	9-3273791	4.43104
24 25	625	15625	5.0000000	2.924018	88	7744	681472	9-3505315	4:44790
26	676	17576	5 0990195	2.962496	89	7921	704969	9-4339811	4:4647
27	729	19683	6.1961524	3.000000	90	8100	729000	9-4865330	4-48140
23	784	21952	5.2915026	3.036589	91	8281	753571	9-5393990	4:49794
23 29 30	841 900	24389 27000	5·3851648 5·4772256	3·072317 3·107232	92 93		778688 804357	9-6436508	4:531)6
30 31	961	29791	5.5677644	3.141381	94	8836	830594	9-6953597	4.5468
32	1024	32768	5.6568543	3.174802	95	9025	857375	9.7467943	4.56290
33	1089	35937	5.7445626	3.207534	96	9216	884736	9-7979590	4:5788
34	1166	39304	6.8309519	3.239612	97	9409	912673	9-8458578	4-59-170
35	1225	42875	5-9160798	3.271066	98	9604	941192	9-8994949	4.6104
35 36 37	1296	46656	6.0000000	3.301927	99 100	9801	970209 1000000	10-0000000	4 6415
37 33	1369	50653 54872	6.0827625	3-361975	101	10201	1030301	10-049-756	4.6570
39	1521	59319	6.2449980	3.391211	102	10404	1061208	10-0995049	4:6723
40	1600	64000	6.3245553	3.419952	103	10009	1092727	10-1485916	4:6975
41	1681	68921	6-4031242	3:448217	104	10816	1124864	10-1990390	4:70266
12	1764	74088	6.4807407	3.476027	105	11025	1157625	10-2469508	4.71769
43	1849	. 79507	6.5574385	3.503398	106	11236	1191016	10-2956301	4:73260
44	1936	85184	6.6332496	3.556893	107	11449	1225043 1259712	10.3923048	47623
45	2025	91125 97336	6.7823300	3.583048	109	11881	1295029	10-4403065	4.7768
46 47	2209	103823	6.8556546	3.603326	110	12100	1331000	10-48-0895	4.7914
48	2304	110592	6.9282032	3.634241	iii	12321	1367631	10-5356533	4.805%
49	2401	117649	7.0000000	3.659306	112	12544	1404928	10-553/052	4.83029
50	2500	125000	7.0710678	3.684031	113	12769	1442597	10-6301458	4.8345
51	2601	132651	7-1414284	3.709430	114	12996	1481544 1520875	10:6770733	4:86294
52	2704	140608	7-2111026	3:732511 3:756286	115	13225	1560896	10.7703296	4-87695
53	2809 2916	148877 157464	7·2801099 7·3484692	3 779763	117	13689		10-8166535	4-89-797
54 55	3025	166375	7.4161985	3.802953	118	13924		10-9627:05	4.90430
56	3136	175616	7.4833148	3.825862	119	14161	1635159	10-9087121	4-91-465
57	3249	185193	7.5498344	3:848501	120	14400		10-9544512	4 9324
58	3364	195112	7.6157731	3.870377	121	14641	1771561	11-0000000	4-94/906
59	3481	205379	7.6811457	3.892996	122	14884	1815848	11-0453/510	4-95937
60	3600	216000	7-7459667	3.914367	123	15129	1860867 1906624	11-13/52/7	4-98663
61	3721	226981	7.8102497	3·936497 3·957892	124	15376	1953125	11-1303399	5.0000
62 63	3344	238328	7·8740079 7·9372539	3.979057	126	15876	2000376	11-22-19722	5-01329
	3969	250047	1 201 700	2010001	120		2000010		

Edin Land 1

No.	Square.	Cube.	Sq. Root.	CubeBoot	No.	Square.	Cube.	Sq. Root.	CubeRoo
127	16129	2048383	11-2694277	5.026526	190	36100	6859000	13.7840488	5.74389
128	16384	2097152	11.3137085	5.039684	191	36481	6967871	13.8202750	5.75896
129	16641	2146689	11.3578167	5.052774	192	36864	7077838	13.8564065	5.76899
130 131	16900	2197000	11-4017543	5.065797	193	37249	7189057		5.77899
32	17161 17424	2248091 2299968	11.4455231 11.4891253	5.078753 5.091643	194 195	37636 38025	7301384 7414875		5 78896
33	17689	2352637	11.5325626	5.104469	196	38416	7529536	14:0000000	5.79889 5.80878
34	17956	2406104	11.5758369	5.117230	197	38809	7645373		5.81827
35	18225	2460375	11.6189500	5.129928	198	39204	7762392	14.0712473	5 82364
36	18496	2515456	11.6619038	5.142563	199	39601	7890599		5.83847
37 38	18769	2571353	11.7046999	5-155137	200	40000	8000000		5.84803
39	19044 19321	2628072 2685619	11·7473444 11·7898261	5·167649 5·180101	201 202	. 40401	8120601	14-1774469	5.85776
40	19600	2744000	11 8321596	5.192494	203	40804 41209	8242408 8365427	14·2126704 14·2478068	5.86746
41	19881	2803221	11.8743421	5.204828	203	41616	8489664	14 2828569	5·87713 5·88676
42	20164	2863288	11.9163753	5.217103	205	42025	8615125	14:3178211	5-89636
43	20449	2924207	11.9582607	5.229321	206	42436	8741816		5.90594
44	20736	2935934	12.0000000	5.241483	207	42849	8869743		5.91548
45	21025		12 0415946	5.253588	208	43264	8998912	14.4222051	5.92499
46	21316	3112136	12.0830460	5.265637	209	43681	9123329	14-4568323	5.93447.
47 48	21609 21904		12·1243557 12·1655251	5.277632	210	44100	9261000		5.94392
49	22201	3307949	12 2065556	5·289572 5·301459	211 212	44521 44944	9393931 9528128	14.5258390	6.95334
50	22500	3375000	12 2474487	5.313293	213	45369	9663597	14·5602198 14·5945195	5.96273 5.97209
51	22801	3442951	12.2882056	5.325074	214	45796	9800344	14 6287388	5.98142
52	23104		12.3288280	5:336803	215	46225	. 9338375	14 6628783	5.99072
53	23409		12.3693169	5.348481	216	46656	10077696	14.6969385	6.00000
54	23716		12-4096736	5.360108	217	47089	10218313	14.7309199	6.00924
55	24025		12 4498996	5.371685	218	47524	10360232	14.7648231	6.01846
56 57	24336 24649		12·4899960 12·5299641		219 220	47961	10503459	14.7986486	6.027650
53	24964		12.5698051	5.406120	221	48400 48841		14 8323970 14 8660687	6:03681 6:04594
59	25281		12.6095202		222	49284		14.8996644	6.05504
0	25600		12-6491106	5.428835	223	49729	11089567		6.06412
11	25921	4173281	12.6885775	5.440122	224	50176	11239424	14.9666295	6.07317
2	26244		12:7279221	5.451362	225	50625		15.0000000	6.08220
3	26569	4330747	12-7671453		226	51076	11543176	15.0332964	6.091199
51	26896 27225	4410944	12-8062485	5.473704	227	51529	11697083	15.0665192	6.100170
6	27556	4492125 4574295	12·8452326 12·8840987	5·484806 5·495865	228 229	51984	11852352 12008989	15.0996689	6-109113
7	27889		2.9228480		230	52441 52900		15·1327460 15·1657509	6·118033 6·12692
is	23221		2.9614814		231	53361		15-1986842	6.135792
9	28561	4826809	3.0000000		232	53824		15.2315462	6.14463
0	28900		3.0384048	5.539658	233	54289	12649337	15.2643375	6-153449
1	29241		3.0766968		234	54756		15-2970585	6.162239
3	29584 29929	5088448 1	3-1148770		235	55225		15.3297097	6.171003
4	30276		3:1529464		236	55696 56169		15.3622915	6-179747
5	30625		3.2287566		238	56644		15:3948043 15:4272486	6·188463 6·197154
6	30976		3.2664992		239	57121		15.4596248	6.205821
7	31329	5545233 1	3:3041347	5 61 1673 12	2 m)	57600		15-4919334	6 214464
8	31681		3.3416641		241	58081	13997521	15-5241747	6:223084
9	32011		3.3790882		242	58564	14172488	15.5563492	6.231679
9	32400		3.4164079		243	59049		15.5884573	6.240251
2	32761		3:4536240		244	59536		15-6204994	6.248800
3	33124 33489		3·4907376 3·5277493		246	60025		15·6524758 15·6843871	6.257324
4	33356	6229504 1	3.5646600	5.687734 2	247	61009		15.7162336	6·265826 -6·274305
3	31225		3.6014705	5.693019 2	248	61504		15.7480157	6.282760
6	34596		3.6381817		49	62001		15.7797338	6.291194
7	34969	6539201 1	3.6747943	5.718479 2	250	62500		15.8113983	6-299604
8	35344	6641672 1	3.7113092	5.728651 2	251	63001	15813251	15:8429795	6.307993
9	35721	6751269 1	3.7477271	5.735791 2		63504	16003008		6.316359

No.	Square.	Cube.	Sq. Root.	CubeRoot	No.	Square.	Cube.	Sq. Root.	CubeRoo
253	64009	16194277	15-9059737	6:324704	316	99856	31554496	17:7763388	6-81129
254	64516	16387064	15-9373775	6:333026	317	100459	31855013	17:8044938	6.81846
255	65025	16581375	15-9687194	6.341326	318	101124	32157432	17:8325545	6.82563
256 257	65536 66049	16777216 16974593	16-0000000	6.349604	319	101761	32461759	17:8605711	6.83277
258	66564	17173512	16-0312195 16-0623784	6:357861 6:366095	320	102400	32768000	17:8885438	6.83990
258 259	67081	17373979	16-0934769	6-374311	321 322	103041	33076161 33386248	17:9164729 17:9443584	6.84702
260	67600	17576000	16-1245155	6:382504		104329	33698267	17:9722008	6.8612
261	68121	17779581	16-1554944	6.390676		104976	31012224	18.0000000	6.8632
262	68644	17984728	16-1864141	6.398828	325	105625	34328125	18:0277564	6.8753
263	69169	18191447	16-2172747	6.406958	326	106276	34645976	18:0554701	6.8823
264 265	69696	18399744	16.2430768	6.415068	327	106929	34965783	18:0831413	6.8894
266	70225 70756	18609625 18821096	16-2788206	6.423158	323	107584	35287552	18-1107703	6:89643
267	71289	19034163	16:3095064 16:3491346	6:431228 6:439277	329 330	108241 108900	35611239	18-1383571	6-9034
268	71824	19248832	16:3707055	6.447305	331	109561	35937000 36264691	18-1659021 18-1934054	6.91043
269	72361	19465109	16:4012195	6.455315	332	110224	36594368	18:2208672	6.9243
270	72900	19683000	16-4316767	6.463304	333	110889	36926037	18:2482876	6 9313
71	73441	19902511	16:4620776	6:471274	334	111556	37259704	18:2756669	6.9382
272	73984	20123648	16.4924225	6.479224	335	112225		18:3030052	6.9451
773	74529	20346417	16.5227116	6.487154	336	112896	37937056	18:3303028	6.95203
74	75076		16.5529454	6.495065	337	113569		18:3575598	6.9589
75 76	75625 76176		16-5831240		338	114244	38614472	18-3847763	6-96581
77	76729		16.6132477 16.6433170		339	114921		18:4119526	6-9726
78	77284		16.6733320		340 341	115600 116281	39651821	18:4390589 18:4661853	6.97953
79	77841	21717639	16-7032931	6.534335	342	116964	40001658	18:4932420	6-99319
280 l	78400		16.7332005	6.542133	343	117649	40353607	18-5202592	7-0000
281	78961	22188041	16.7630546	6.549912	344	118336	40707584	18:5472370	7.00679
82	79524	22425768	16 7928556	6.557672	345 346	119025	41063625	18:5741756	7:01357
83	80089		16.8226033			119716	41421736	18:6010752	7.02134
84 85	80656		16.8522995		347	120409	41781923	18 627 9360	7-02710
36	81225 81796		16:8819430 16:9115345		348	121104 121801	42144192 42508549	18:6547581	7-0335
37	82369		16.9410743		349 350	122500	42875000	18:6815417 18:7082869	7-04055
38	82944		16.9705627	6 603854	351	123201	43243551	18:7349940	7-05400
89	83521		17-0000000	6.611489	352	123904		18 7616630	7-06069
90	84100	24389000	17-0293564		353	124609	439~6977	18:7882942	7-06737
91	84681		17:0587221		354	125316		18:8148877	7-07404
92	85264		17.0880075		355	126025		18-8414437	7-0(4)69
93	85349		17-1172423	6.641852	356	126736		18-8679623	7-08734
94	86436		17-1464282	6-649399	357	127449		18:8911436	7-09397
96	87025 87616		17·1755640 17·2046505		358 359	128164		18-9205579 18-9472953	7·10058 7·10719
97	88209	26199073	17-2336-79		360	129600		18 9736660	7.11378
93	88804		17-2626762		361	130321		19-000000	7-12036
99	89401	26730899	17-2916165	6.686882	362	131044	47437928	19-0262976	7:12693
00	90000		17:3205081		363	131769		19-0525589	7:13349
01	90601		17:3493516		364	132496		19-0757840	7·14003
02	91204		17:3781472		365	133225		19-1049732	7.14656
03	91809		17·4068952 17·4355958		366	133956 134689		19·1311265 19·1572441	7:15399
04	92416 93025		17-4642492		363	135424		19 1833261	7:15959
06	93636		17-4923557		369	136161	50243409		7-17259
07	94249		7-5214155		370	136900	5065300		7-17905
03	94364		7.5499288		371	137641	51064m11	19-2613603	7:185510
09	95431	29503629	7.5783958	6:760614	372	135384	51478848		7:19196
10	96100		7 6063169		373	139129	51895117		7-19840
11	96721		7.6351921		374	139876	52313624		7:2043
12	97344		7.6635217	6.7 2423	375	140625		9-3649167	7.21124
13	97969		17:6918060		376	141376 142129		19:3907194	7:217650
14	98596 99225	30959144 1 31255875 1	7:7200451		378	142384	54010152 1	0-11047/5	7-23012
10	33463	O TONOTO	1 (TOWNSON)	0 001004	10	. 2200'8	2 W 10102	- I Lamania I	, 20092

Νo.	Square.	Cube.	Sq. Root.	CubeRoot	No.	Square.	Cube.	Sq. Root.	OubeRoo
379	143641	54439939	19.4679223	7.236797	412	195361	92203299	21.0237960	7:61741
320	144400	54872000	19:4935887	7.243156	443	196249	86938307	21.0475652	7.62315
381	145161	55306341	19.5192213	7.249504	444	197136	87528384	21.0713075	7.62388
132	145924	55742968	19.5418203	7.255841	445	198025	88121125	21.0950231	7.63460
153	146689	56181887	19 5703858	7.262167	416	198916	88716536	21-1187121	7.64032
84	147456	56623104	19.5959179	7.268482	447	199809	89314623	21.1423745	7.64602
385	148225	57066625	19.6214169	7.274786	418	200704	89915392	21.1660105	7.65172
386	148996	57512456	19.6468827	7-281079	449	201601	90518849	21.1896201	7.65741
87	149769	57960603	19.6723156	7.287362	450	202500	91125000	21.2132034	7.66309
88	150541	58411072	19-6977156	7.293633	151	203401	91733851	21.2367606	7.66876
189 190	151321	58863869	19.7230829	7.299894	452	204304	92345403	21.2602916	7.67443
91	152100 152881	59319000	19:7484177	7:306143	453	205209	92959677	21.2837967	7.68008
92	153664	59776471 60236288	19·7737199 19·7989899	7.312383	454	206116	93576664	21.3072758	7.68573
93	154419	60698457	19.8242276	7·318611 7·324829	456 456	207025 207936	94196375	21:3307290 21:3541565	7 69137
94	155236	61162984	19.8494332	7.331037	457	208840	94818816 95443993	21.3775583	7·69700 7·70262
95	156025	61629875	19.8746060	7:337231	458	209764	96071912	21.4009346	7-70823
96	156816	62099136	19.8997487	7.343420	150	210681	96702579	21.4242853	7-71384
97	157609	62570773	19 9248588	7.349597	460	211600	97336000	21.4476106	7.71944
98	158404	63044792	19-9499373	7.355762	461	212521	97972181	21-4709106	7.72503
99	159201	63521199	19-97-19841	7.361918	462	213444	98611128	21-4941853	7.73061
001	1600001	64000000	20.0000000	7.368063	463	214369	99252847	21.5174348	7.73618
01	160801	64481201	20:0249844	7.374198	464	215296	99897344	21.5406592	7.74175
02	161604	64964808	20 0 199377	7.380322	165	216225	100544625	21.5638587	7.74731
03	162409	65450827	20:07:18599	7:386437	466	217156		21.5870331	7.75286
04	163216	65939264	20.0997512	7:392542	467	218089	1018475/3	21.6101828	7.75840
05	164025		20.1246118	7:398636	468	219024	102503232	21.6333077	7.76393
06	164836		20:1494417	7 404720	469	219961	103161709	21.6564078	7.76946
07	165649		20.1742410	7-410795	470	220900	103823000	21.6794334	7.77498
80	166464		20-1990099	7-416859	471	221841	104487111	21.7025344	7.78049
09	167231		20-2237484	7.422914	472	222784	105154048	21.7255610	7.78599
10	168100 168921		20·2454567 20·2731349	7.428959	473	223729	105823817	21.7485632	7.79148
12				7:431994	474	224676		21.7715411	7.79697
13	169744	69934528	20·2977831 20·3221014	7.441019	474	225625		21.7914947	7.80245
14	171396	70414997	20.3469899	7·447034 7·453040	476	226576		21·8174242 21·8403297	7·80792 7·81338
15	172225		20.3715488	7:459036	477 478	227529 228484		21.8403297	7.81335
16	173056		20.3960781	7.465022	479	229411		21 8860686	7.82429
17	173589		20.1205779	7.470999	1:0	230400		21 9089023	7.82973
18	174724		20-4450483	7.176966	481	231361		21.9317122	7.83516
19	175561		20.4694395	7.482924	132	232324		21.9544984	7.84059
3)	176400	74053000	20.4939015	7.488872	443	233289	112678587	21.9772610	7.84601
21	177241		20.5182945	7-494911	484	23-1256		22.0000000	7.85142
22	178084	75151448	20.5426336	7:500741	135	235225	114084125	22.0227155	7.85682
23	178929		20.5669638	7:506661	486	236196	114791256	22:0454077	7.86222
24	179776		20.5912603	7:512571	487	237169		22.0680765	7.86761
25	150625		20:6155231	7.518473	488	238144		22.0907220	7.87299
36	181476		20 6397674	7:524365	489	239121		22.1133414	7.87836
27	152329		20 6639783	7:530248	190	240100		22.1359436	7.88373
28	183194		20.6881609	7:536121	191	241081		22-1585198	7.88909
29	184041		21.7123152	7.541986	192	242064	119095488	22.1810730	7.89444
30)	184900		20-736-111	7.517842	193	243049	119523157	22.2036033	7.89979
31	185761		20-7605395	7:553698	491	244036		22-2261108	7.90512
22	186624		20.7846097	7:559526	195	245025		22 2485955	7.91046
33	187489. 188356		20:8086529	7:565355	196	246016	122023936	22-2710575	7.91578
35			20:8506536	7:571174	497	247009		22-2934968	7-921100
168	189225 190096		2018/06130	7:576985 7:582786	198	245004		22:3159136	7.92640
	190969		20:9045450		199	249001		22-33×3079	7-93171
17	191844		20-9284495		500	250000 251001	125000000	22:3606798	7-93700
30	192721		20-9523263		701	252004		22:3830293	7.942293
()	193600		20:9761770		502 503	253009	126506008 127263527	22:4053565	7:94757: 7:952848
11	194481		21 0000000	7.611662		254016		22·4276615 22·4·199443	7.95811
	- J = 8075	CAT 00141		. 011002	100	~ 1010	127021001	LA TIUUTIO	, 30011

No.	Square.	Cube.	Sq. Root.	CubeRoo	No.	Square.	Cube.	Sq. Root.	CubeRoo
505	255025	128787625	22:4722051	7.963374	568	322624	193250432	23:8327506	8:21863
506	256036	129554216	22-4941433	7-968627	569	323761	184220009		8-296493
507	257049	130323843	22.5166605	7.973873	570	324900		23:8746728	8-29134
503	258064	131096512	22.5388553	7-979112	571	326041	186169411	21:8956063	8-296194
509	259081	131872229	22.5610283	7.984344		327184	187149248	23.9165215	8:301030
510	260100	132651000	22.5831796	7.989570		324329	188132517		8:31546
511 512	261121	133432831	22:6053091	7-994788		329476	189119224	23:95:2971	8:31069-
513	262144 263169	134217728 135005697	22:6274170	8-000000		330625	190109375		8:315517
514	264196	135796744	22:6495033 22:6715681	8-005205		331776		24-0000000	8 32033
515	265225		22 6936114	8:010403 8:015595		332929	192100033	24-0208243	8:325147
516	266256		22-7156334	8.020779		335241		24-0416306 24-0624188	8:33475
5:7	267289		22 7376340	8.025957	580	336400	1051104.33	24-0531892	8-33955
518	268324		22.7596134	8.031129		337561	196122941	24 1039416	8:344341
519	269361	139798359		8.036293	582	338724	197137368	24:1246762	8:349126
520	270400	140608000	22.8035035	8:041451	583	339889	198155297	24:1453929	8:353903
21	271441	141420761	22.8254244	8.046603	584	341056	199176704	24:1660919	8.35 078
22	272484	142236648	22.8473193	8-051748	585	342225	200201625	24:1867732	8:363446
23	273529	143055667	22 8691933	8:056886	586	343396		24:2074369	9-36520
24	274576	143877824	22.8910463	8 062018	587	344569		24-2280829	8:372967
26	275625	144703125	22-9128785	8.067143		345744	203297472	24 2487113	8:377719
27	276676 277729	145531576 146363183	22:9564806	8.072262	589	346921		24-2693222	8:382465
23	278784	147197952	99-079-2500	8:077374 8:082480	591	348100 349281		24:2599156 24:3104916	8:357206
29	279841	148033889		8.087579		350464			8:396673
30	280900		23 0217289	8.092672	593	351649	208527857	24:3515913	8:40139
31	281961	149721291	23 0434372	8.097759	594	352836	209584584	24-3721152	8.406118
32	283024	150568768	23.0651252	8.102839	595	354025		24.3926218	8:410:33
33	284089	151419437	23.0867928	8.107913	596	355216		24-4131112	8:415542
34	285156		23.1084400	8.112980	597	356409		24 4335834	8:420246
35	236225	153130375	23 1300670	8.118041	598	357604		24.4540385	8:424945
36	287296	153990656	23.1516738	8.123096	599	358801		24-4744765	8:42963
37	288369		23-1732605	8:128145	600	360000		24:494:974	8:434327
38	289444 290521		23-194-270	8-133187	602	361201		24.5153013	8:439010
40	291600		23·2163735 23·2379001	8·138223 8·143253	603	362404	218167208 219256227	24:5356883 24:5560583	8:4436:3
41	292681	158340421	23.2594067	8-148276	604	363609 364816		24.5764115	8:453025
42	293764		23-2-08935	8-153294	605	366025	221445125		8-457691
43	294849	160103007	23:3023604	8-158305	606	367236	222545016		8 462148
44	295936		23-3233076	8-163310	607	365449	223648543		8:467000
45	297025		23-3452351	8-16-309	608	369664		24-6576560	8:471647
46	293116	162771336	23:3666429	8:173302	609	370881	225866529	24-6779254	8.476249
47	299209		23:3890311	8:178289	610	372100	226981000	24.6981781	8-480926
13	300304		23-4093998	8:183269	611	373321	225099131		8.435559
19	301401		23-4307490		612	374544	229220923		8 490185
50	302500	166375000	23-4520788		613	375769	230346397	24 7553565	8:494316
51	303601	167284151 2 168196608 2	23-4733892		615	376996 378225	231475544 1 232908375 1	24:7790234	8:504035
52 53	304704	169112377	23·4946×02 23·5159520		616	379456	233744996	24-7991935	8-503642
54	306916		23.5372046		617	379400	234885113		8.513243
55	308025		23-55843-0		618	381924	236029032		8:517840
56	309136		23.5796522		619	383161		24 8797106	8.522432
57	310249		23.6008474	8-227825	620	384400	23325000		8:527019
53	311364		23-6220236	8-232746	621	385641	239483061		8:531601
59	312431	174676379	23.6431808	8.237661	622	346844	240641848		8.536178
60	313600	175616000	23.6643191	8.242571	623	388129		24-9599579	8.540750
61	314721		3 6854386	0 24/ 11/1	624	3:9376		24 9799930	8 545317
62	315844		23.7065392	ا السالت ا	625	390625		25-OUDUDIN)	8.549379
63	316969		23.7276210		626	391476		25.0199920	8-554437
64	318096		23:7486842	0 -0-1	627	393129		25-0399681	8-558930
65	319225		23.7697236		628	394384		25-0599232	8-563533
66	320356		23.7907545		630	395641	248358189		8:5640811
67	321489	1 484263 2	23.8117618	8.286773	wu	396900	250047000	CONSCION.	8.572619

No.	Square.	Cube.	Sq. Root.	CubeRoot	No.	Squaro.	Cube.	Sq. Root.	CubeRoo
631	398161	251239591	25-1197134	8-577152	694	481636	334255384	26:3438797	8:85359
632	399424	252435968	25.1396102	8.581681	695	483025	335702375		8-85784
633	400689	253636137	25.1534913	8.586205	696	484416	337153536	26-3818119	8.86209
634	401956	254840104	25.1793566	8.590724		485809	338608573	26.4007576	8.86633
635	403225	256047875	25-1992063	8.595238	698	487204	340068392	26.4196996	8.87057
636 537	404496 405769	257259456 258474853	25·2190404 25·2388585	8·599747 8·604252	699	488601	341532099	26.4386081	8.87481
538	407044	259094072	25.2586619	8.608753	700 701	490000	343000000 344472101		8.87904
339	408321	260917119	25.2784493	8.613248	702	4924)4	345948408	26 476 1046 26 4952826	8·88326 8·88748
340	409600	262144000	25.2982213	8.617739	703	494209	347428927	26.5141472	8-89170
341	410881	263374721	25.3179778	8.622225	704	495616	348913664	26-5329983	8.89592
342	412164	264609288	25:3377189	8.626706		497025	350402625	26.5518361	8.90013
143	413419	265847707	25 3574447	8.631183	705	498436	351895816	26.5706605	8.90433
544	414736	267089984	25:3771551	8.635655		499849	353393243	26.5894716	8.90853
145	416025	268336125	25.3968502	8.640123	703	501264	354894912	26.6082694	8.91273
46 47	417316 418609	269586136 270840023	25.4165301	8:611585	709	502681	356400829	26 6270539	8.91693
118	419904	272097792	25·4361947 25·4558441	8·649044 8·653497	710	504100 505521	357911000	26-6458252	8-92112
19	421201	273359449	25.475.1784	8.657946	711 712	506944	359425431 360944128	26.6645833	8-92530
50	422500	274625000	25.4950976	8.662301	713	508369	362467097	26·6833281 26·7080598	8·929·19 8·93366
51	423801	275994451	25.5147016	8.666831	714	509796	363994344	26.7207784	8.93784
52	425104	277167808	25.5342907	8.671266	715	511225	365525875	26 7394839	8.94201
53	426409	278445077	25.5538647	8.675697	716	512656	367061696	26.7581763	8-94618
54	427716	279726264	25.5734237	8.680124	717	514089	368601813	26.7768557	8.95034
55	429025	281011375	25.5929678	8.684546		516524	370146032	26.7955220	8.95450
56	430336	282300416	25.6124969	8.688963		516961	371694959	26.8141754	8.95865
57	431649	283593393	25 6320112	8.693376		518400	373248000	26.8328157	8 96230
58 59	432964 434281	284890312	25-6515107 25-6709953	8:697784	721	519841	374805361	26.8514432	8.96695
60	435600	230191179	25 6904652	8.702188	722	521284	376367048	26.8700577	8.97110
6il	436921		25.7099203	8·706587 8·710983	723 724	522729 524176	377933067 379503424	26.8886593	8.97524
62	438244		25 7203607		725	525625	381078125	26·9072481 26·9258240	8.97937
63	439569		25.7487864	8.719759	726	527076	382657176	26.9443872	8.98763
61	410896		25.7681975	8.724141	727	528529	384240583	26.9629375	8-99176
65	442225	294079625	25 7875939	8.728518	728	529984	383828352	26.9814751	8.99588
66	443556		25.8069753	8.732892	729	631441	387420489	27-0000000	9.00000
67	444889		25 8263431		730	532900	389017000	27.0185122	9.00411
68	446224		25.8456960	8.741624	731	534361	390617891	27.0370117	9.00822
69	447561		25-8650343		732	535824	392223168	27:0554985	9.012329
70	448900		25-8943582 25-9036677		733	537289	393832837	27 0739727	9.01643
72	451584		25 9229628		734 735	539756 540225	395446904	27.0924344	9.02052
73	452929	304821217	25.9422435		736	541696		27·1108834 27·1293199	9.02462
74	454276	306182024	25.9615100		737	543169		27.1477439	9.03280
75	455625		25-9907621		733	544644		27-1661554	9.03688
76	456976	308915776	26-0000000	8.776383	739	546121		27.1845544	9-04096
77	458329		26-0192237		740	547600	405224000	27.2029410	9.045041
78	459684	311665752	26-0384331		741	549081	406869031	27.2213162	9.049114
79	461041		26.0576291		742	550564	408518488	27-2396769	9.053183
30 31	462400		26-0769096		743	552049	410172407	27.2590263	9.057248
2	463761 465124		26 0959767 26 11512:7		744	653536		27-2763634	9.061310
3	466489		26-1342687	8:802272 8:806572		555025 556518		27·2946881 27·3130006	9-065367
11	467856		6.1533937	8.810868	7.17	559009		27.3130006	9·069422 9·073473
3	469225		8-1725047	8.815160		559504		27.3195887	9.077520
6	470596		6-1910017		749	561001		27:3678641	9.081563
7	471969		6-2106949		750	562500		27.3861279	9.085603
3	473314	325660672	6-2297541		751	864001		27-4043792	9.089639
9	474721	327082769 2	16-24RHI95		752	665504		27-4226184	9.093672
()	476100		8-2678511	8-836556	753	567009		27-4408455	9-097701
11	477431		1-29/14749		754	568516	428661064	27-4590604	9.101726
2	478964		0.5058929	345085	755	67(H)25		27-4772633	9.105748
3	490249	832613557 3	0-5248932	8-849341	168	671536	432081216	27-4951542	9.109766

No.	Square.	Cube.	Sq. Root.	CubeRoot	No.	Square.	Cube.	Sq. Root	CubeRoc
57	573049	420=00300	CT -104000						
53	574564	438/98/93	27:5136330 27:5317998	9-113781		672400	551368000	28.6356421	9-35990
59	576081		27 5499546	9-117793 9-121801	S21 S22	674041 675684	553387661	28 6 30976	9-36370
60	577600		27.5680975	9:125:05	323	677329	555412248 557441767	28-6705424 28-6-79766	9:36750
61	579121		27:5862284	9429306	524	678976	559476224	28.7054002	9-37130
62	580644		27:6043475	9-133-13	325	680625	561515625	28-7228132	9.37848
63	582169	444194947	27.0224546	9-137797	.26	652276		28-7402157	9-38267
64	583696		27.6405499	9-141788	327	683929		28:7576077	9-34:10
65	585225	417697125	27.6596334	9.145774	523	685584	567663552		9-3902-
66	586756	449455096	27:6767050	9.149757	329	687241	569722789		9-3940
67 63	589239 589824	451217663	27:6947648	9-153737	530	688900	571787000	28:8097206	9.39779
69			27:7128129	9.157714		690561		28.8270706	9-40156
70	591361 592900		27:730:492	9-161686		692224		28.8414102	9-40.53
ήil	594441	459214011	27:7488739 27:7668868	9:165656 9:169622	-33 -34	693559	578009537	28:8617394	9-40910
72	595984		27:7848880	9.173585		697225	580093704		9-412%
73	597529		27.802-775	9-177544	36	695496	582182875 584277056	28 8463666 28 9236646	9.41660
74	599076		27:8208555	9-181500	337	700569		28-9309523	9-4241
75	600625		27.8338218	9-185443		702244		28-9482297	9-42789
76	602176		27.8567766	9-189402		703921		28-965 1967	9.4316
77	603729		27.8747197	9-193347	510	705600		28-9827535	9.4353
78	605234	470910952	27 8926514	9.197289	341	707281	594823321		9-43913
79	606841		27.9105715	9-201229		708964	596947688		9-44257
80	608400		27.9284801	9.205164		710649	599077107	29:0344623	9-4469
81	609961		27-9463772	9-209096	814	712336	601211584	29:0516781	9.4503
82	611524	478211768		9.213025	+15	714025	603351125		9-45-107
83 84	613089	480048687	27-9821372	9-216950	316	715716		29-0860791	9-4578
85	614656 616225	481890304	28.0000000	9.220873	847	717409		29-1032644	9.40151
86	617796		28:0178515 28:0356915	9·224791 9·228707	848	719104		29-120-1396	9.4652
87	619369		28 0535203	9.232619	S49 S50	720991 722500		29-1376046 29-1547595	9-46-06
88	620944	489303872	28-0713377	9.237524	851	72 1201	616295051	29-1719043	
89	622521		28 0891135	9.240433	-52	725904		29-1890390	9-4-010
90	624100		28.1069386	9 241335	553	727609		29-2061637	9-4835
91	625681	494913671	28:12472:22	9.248231	854	729316	622535864	20-2232784	9-43751
92	627264	496793038	28 1424946	9.252130	855	731025	625024375	29:2403830	9-49125
93	623849	498677257	28 1602557	9-256022	456	732736	627222016	29-2574777	9-4949
94	630436		28 17 800 56	9-259911	857	731449	629422793	29:27 45623	9.49.6
95	632025		28 1957414	9.263797	853	736164		29:2916370	9:50231
96	633616		28.2134720	9-267680	559	737881		29-3087018	9.50308
97 98	635209 636804		28.2311834	9.271559	5(0)	739600		23-3257566	9.50065
99	638401		23·2433038 23·2665881	9:275435 9:279308	462	743044		29-342-915 29-3598365	9·51337 9·51703
00	640000	512000000		9:283178	863	744769	642735617	29:376%616	9.52073
oil	641601		25:3019434	9.257044	361	7 46496		29:393:769	9-5244
02	643204		28:3196045	9-190907	\$65	71-225	647214625	29-4108823	9-52907
031	644809	517781627	28:3372546	9-294767	466	749356	649461896	29-1278779	9-53174
1)4	646416	519718464	28-3544934	9-298624	867	751659	6517143/33		9:53541
05	643025	521669125	29-3725219	9-302477	163	753424	653772032	20:4648497	9-539439
06	649636		28:3901391	9:306325	469	755161	656234949		9-54274
07	651249	525557943	28-4077451	9.310175	570	756900	658503000		9:54640
08	652864	527514112		9:31 (019	-71	758641	660776311		9-55005
09	654481		23.4129253	9.317860	772	760384	663054848		9-55374
10	656100	531441000		9:321697 9:325532	573	762129		29-5465734	9.55736
12	657721 659344		28:4780617 28:4956137		574	763876 765625	667627624 669921875,	29:5434910 29:5463949	9:56101
13	660969	537367797	28.5131549	9.323003	376	767376	672221376	29:5972972	9:56-29
14	662596	539353144	28.5306.52	9.337017	377	769129	674526133	29 61 11853	9.57193
18	664225		28.5482043		478	700854		29-6310618	9.57557
16	665856		28-5657137		579	772641	679151439	29.6479325	9-57920
17	667439		28-5-32119		380	774400	6-1472000	29-66-17939	9-54254
18	669124	547343432	28.6006993	9.352236	581	776161		29-6316412	9-5-646
19	670761		28.6181760		382	777924	686128968		9.59009

₹o.	Square.	Cube.	Sq. Root.	CubeRoot	No.	Square.	Cube.	Sq. Root.	CubeRoo
883	779689	688465397	29:7153159	9.593716	942	887361	835896888	30-6920185	9:80280
34	781456	690807104	29.7321375	9.597337	943	889249	838561807	30.7083051	9.80627
385	783225	693151125	29.7489496	9.600955	944	891136	841232384	30.7245830	9.80973
886	784996	695506456	29:7657521	9.604570	945	893025	843908625	30.7408523	9.81319
337	786769	697864103	29.7825452	9.608182	946	894916	846590536	30.7571130	9.81665
333	788544	700227072	29.7993289	9.611794	947	896809	849278123	30.7733651	9.82011
389	790321	702595369	29.8161030		948	898704	851971392	30.7896086	9.82357
90	792100	704969000	29:8328678	9.619002	949	90060L	854670349	30.8058436	9.82702
391	793881	707347971	29.8496231		950	902500	857375000	30.8220700	9.83047
92	795664	709732288	29:8663690	9.626201	951	904401	860085351	30.8382879	9.83392
93	797449	712121957	29.8831056	9.629797	952	906304	862801408	30.85-14972	9.83736
94	799236	714546984	29.8998328	9.633390	953	908209	865523177 868250664	30.8706981	9.84081
95	801025	716917375	29.9165506	9-636981	954 955	910116	870983875	30 8868904	9 84761
196	802816	719323136	29:9332591	9-640569	956	912025 943936		30 9192497	9.85112
397	804609	721734273	29-9499583 29-9666481	9·644154 9·647737	957	915849	876467493	30 9354166	9.85450
398 399	808104	724150792 726572699	29:9633287	9.651317	958	917764	879217912	30.9515751	9.8579
H)O	810000	729000000	30.0000000	9.654894	959	919681	881974079	30.9677251	9.86142
100	811801	731431701	30.0166620	9.658468	960	921600	884736000	30.9838668	9.8648
102	813604	733870808	30:0333148	9.662040	961	923521	887503631	31.00000000	9.86427
03	815409	736314327	30.0499584	9.665609	962	925444	890277128	31.0164248	9.87169
100	817216	738763261	30:0665928	9-669476	963	927369	893056347	31 0322413	9.87511
H).5	819025	741217625	30:0832179	9.672740	964	929296	895841344	31 0483494	9.87853
06			30:0998339	9.676302	965	931225		31 0644491	9.8819
107	822649	746142643		9.679860	966	933156	901428696	31 0805405	9.8853
108	824464	748613312	30:1330333	9.683416	967	935089	904231063	31 0966236	9.88876
4)9	826231	751089429	30:1496269	9.686970	968	937024	907039232	31.1126984	9.89217
910	828100	753571000	30:1662063	9-690521	969	93×961	909853209	31 1287648	9.89553
11	829921	756058031	30:1827765	9.694069	970	940900		31 1448230	9.89898
912	831744	758550528		9.697615	971	942841		31 1608729	9.9023
113	833569	761048497	30-2158899	9.701158	972	944784		31-1769145	9.9057
114	835396	763551944	30-2324329	9.704699	973	946729	921167317	31-1929479	9.90917
115	837225	766060875		9.708237	974	948676	924010424	31.2089731	9.91257
116	839056	768575296		9.711772	975	950625	926859375	31 2249900	9.91596
117	840889			9.745305	976	952576	929714176 932574833	31.2409987	9.9193
918 919	842724	773620632		9-718835 9-722363	977 978	954529 956484	935441352	31 27 29915	9.9261
919 920		778688000		9.725888	979	958441	938313739	31 2 89757	9.92950
121	848241			9.729414	980	960400	941192000	31:3049517	9-9328
122	850084	783777448		9.732934	981	962361	944076141	31-3209195	9.9362
23	851929	786330467	30:3809151	9.736148	982	964324	946966168	31.3368792	9.9396
21	853776	788889024		9.739963	983	966289	949862087	31:3528308	9.9430
125	855625			9.743476	984	968256	952763904	31:3687743	9.9463
126	857476			9.746986	985	970225	955671625	31:3847097	9.9497
27	859329	796597983		9:750493	986	972196	958585256	31.4006369	9.9531
124	861184	799478752		9.753998	987	974169	961504803	31.4165561	9.9564
123	863041	801765089	30:4795013	9.757500	988	976144	964430272	31-4324673	9.95983
130	864900	804357000		9.761000	989	978121	967361669	31-4483704	9.9631
931	866761	806954491	30-5122926	9:764497	990	980100	970299000	31-4642654	9.96653
132	868624	809557568		9.767992	991	982081	973242271	31-4801525	9.96990
13.3	870489		30:5450487	9-771484	992	984064		31-4960315	9-97326
34	872356			9.774974	993	986019	979146657	31.5119025	9.9766
35	874225	817400375		9.778462	994	983036	982107784	31.5277655	9.97996
36	876096	820025456		9:782946	995	D90025	985074875	31.5436206	9-98330
37	877969			9.785429	996	992016	988047936	31.5594677	9.9866
134	879844	825293672		9.788909	997	994000	991026973		9-98999
139	881721	827936019		9.792386	998	996001	994011992	31.5911380	9-99332
141	883600	834584000		9:795861	999	998001			
41	885481	833237621	30.6757233	9:799334	1000	1000000	1000000000	31-6227766	10.00000

ANSWERS TO MISCELLANEOUS EXERCISES.

EXERCISE 8.

 Sixty-seven trillions eight hundred and forty-five billions three hundred and ninety-eight millions six hundred and seventy-eight thousand nine hundred and four.

Five quadrillions nine hundred trillions seven hundred and four billions sixty millions forty thousands, and sixty thousand six hundred and four hundredths of millionths.

3. MVDCCLXIX.

- 4. 429860000.
- 5. \$67.314.
- 6. 77991.
- 7. 605000070016.000009.
- 8. 46978900.
- 10. 69.800463.
- 11. .8439.
- **12.** 678900000. **13.** 604329860000000.
- **14.** 1000001000001001·000000000001.
- 15. .0007609.

 Ninety trillions eight hundred and seven billions sixty millicns five hundred and four thousand and thirty.

- Four quintillions four quadrillions forty trillions four hundred billions sixty thousand four hundred and thirty-two, and one trillion ten billion two hundred and three million forty thousand five hundred and six hundredths of trillionths.
- 18. 771 cords.
- 19. 717 cords 91 cubic feet.
- 20. DCCXVIII, DCXIV, CDXCIX, CMXCIX, VMMMDCXLIII, XCVMCXLIX, CLXMMMCMLXXXVI, CDXLMVCDXLIV.

21. 333, 1989, and 1000001.

25. \$3.75,5, \$24.58}, 713, and \$757.47\1.

EXERCISE 17.

- 1. \$18029304.
- 2. \$139999999.73.
- 3. 36497318.
- 4. 35857536.
- 5. 27424500.6. 271633.
- 7, 9504000.
- 8. 327040000.

- 9. 92438 lbs. 8 oz. 2 dr. 1 scr. 13 grs.
- 10. 1698728602536.
- 11. 78990 bushels.
- 12. \$64.97.
- 13. 9032 yds. 3 qrs. 2 na.
- **14.** 1037957601·5.
- 15. \$16444.9602.

EXERCISE 22.

1.	\$34736.8421.	10.	·578 oz
		11.	503.

3. 3308 dys. or 9 yrs. 20% dys. 12. 250 lbs.

4. \$32. 5. \$137.

6. \$108.

8. \$29. 9. 429 88.

7. \$9.

13. 10.157.

14. 2 bush. 1 pk. 1 gal. 2 qts. 12 pts.

15, 18983 55.

16. 267 days 718434 hours.

EXERCISE 23.

1. 789641420714.

2. Sixty-seven millions eight 15. 475 341 hhds. hundred and thirteen thou- 16. \$6750. sand four hundred

twenty, and twenty-one 18. 58 acres. thirty thousand 19. \$0.501. million and forty-six billionths.

seventy-two billionths.

One billion one million and 23. 14 yds. one hundred, and ten tril- 24. 15 lbs. 4 oz. 1 dwt. 14 grs. lion ten million and one 25. \$3890.383. tenths of quadrillionths.

3. DCCIX, MYCCCLXXVI MXCMXCIX, LXXXVMIV, 29. \$247.95.

MMMCMXLVMMDXCVI.

4. 53973 lbs.

5. £3 18s, 113d.

6. 10837 yrs. 119 days 2 hours.

7. \$2919.50 A.

8. \$123.77.

9. 520006002043-000000005016.

10. 1 acre 1 rood 3 per. 4 yds. 5 ft. 11 in.

11. \$12268.30.

12. 54 years 19 weeks 3 days 16 hours 33 minutes.

100741, 741000000, 40, 236492. 13, 741000000, -000000741, -000000000741, -00741, and 741.

14. .0331632.

and 17. 1121.

20. \$37.

Seventy-two millions, and 21. 3 lbs. 0 oz. 14 dwt. 131 grs.

22. 29 acres 0 roods 21 per.

26, 1032694.

27. 16800. 28. \$360.15.

30. \$132082. 31. 169.49.

32. \$79.9972.

33. \$59.85.

34. \$532.121.

35. CCCCCCCCCCX.

36. .56218+.

37. 1869696969.69.

38. \$1713.34.

39. \$21.1433.

Exercise 40.

1. \$4688.1677.

2. 27536 miles 1 fur. 21 per. 0 yds. 1 ft. 6 in.

3, 96.

4. 500313 octenary and 20222133 quinary.

5. 1243994.98275.

6. LXXMXCDXXIII and CCXXXMVDLXVII.

7. 277200.

8. See XLVIII Recapitulation. Sec. I., page 57.

9. 642762977065601.1.

15. 742000000905000078014·0000087200011.

16. Seventy-one trillions three [18. $2^5 \times 5^3 \times 3 \times 23$. hundred billions one hun- 19. 87 ft. 1' 1" 3" 0"" dred millions two hundred thousand four hundred and one, and seventy thousand four hundred and two trillionths.

One hundred and thirty-four quadrillions nine hundred trillions one hundred and one billions one hundred thousand and one hundred. and two hundred million twenty thousand and two trillionths.

Four quadrillions seven hundred trillions twenty thousand and seven, and two hundred and seventy-eight hundredths of trillionths.

17. £2272 0s. 31d.

10. -

11. See Table, page 125.

12. \$2689·513.

13. 27.

14. See Recapitulation XLVIII page 57.

8""" 10""" 10"""

20. .011436.

21. 16383.

22. 4096.

23. 11 acres 3 rds, 7 per, 19 yds. 0 ft. 130 in.

24. 336960.

25. Child's share, \$179.4173; woman's, \$358.82 t; man's \$1794.12 4.

26, 1023 and 512.

27. 99 472.

28. 48359.8979694.

29. 722487.0873859.

30. 65 lbs. 7 oz. 0 drs. 1 scr. 31. 1, 2, 4, 7, 8, 14, 19, 28, 38, 56, 76, 133, 152, 266, 532, 1064.

32. 82 42 yards.

EXERCISE 63.

1. $\frac{2}{5}$, $\frac{21}{100}$, $\frac{1}{20}$, $\frac{2}{25}$, and $\frac{7}{400}$.

2. 46.

3. \$4.523 ..

Gave away 23 and kept 11. 14. 1 and 12776.

6. 153.

7. \$212 99}}.

8. Longer part 72 feet and 17. 483. shorter part 64 feet.

10. 14-81 and 271.

11. \$134·15#. 12. \$28387.061.

13. 31137 bushels.

15. 213 bushels.

16. 4.

18. 536 and 283.

9. 1058 43 acres; \$13219.683. 19. \$1333.33 or to of the whole.

EXERCISE 77.

1. .8.

2. 1.4445566778.

3. 4 days 17 hours 55 min. 30 sec.

4. 19988.

5. 156.85931270094.

6. .739157196 of a mile.

7. 16 sq. ft. 1048 inches.

8. 1 acre 3 roods 13 per.22 yds.

9. 1119 and 130. 14. 13.5169533. 10. 26.7837428571. 15. 3, 3, 1, 4, 1, and 9, 11. 71.86193. 16. 476.65028119. 12. 11:546 oz. 17. 9.

EXERCISE 78.

2. 702000007030017.0000000004000076.

3. 1017116666.6. 10, 20790. 4. 2%. 11. 1375t·12 and 2049151. 5. 10,3837. 12. 66. 6. 5044 bricks. 13. 1 day 23 hours 24 min. 3414 7. 111 sq. ft. 0' 9" 7" 4"" 5""" seconds.

5''''' 14. 19860 lbs. 2 oz. 94 drs. 15. \$158.75.

8. 8 1 5 5 5.

13. 75 yards.

9. 12225 bush 2pks 0 gal 2 qts. 16. 8, 76, \$448, and \$2770. 17. 7040000, .0000704, 704000000000, .00000000704, .0000704,

7.04.1S. 3-5062. 19. Man's share £66 0s. 4\d., 25. 134062\frac{1}{2} lbs. or 13406\frac{1}{2} gals.

woman's =£33 0s. 21d., 26. \$295.5972. =£11 0s. 03d., child's

20. 190-519.

21. 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 25, 27, 30, 36, 45, 50, 54, 60, 75, 81, 90, 100, 108, 135, 150, 162, 180, 225, 270, 300, 324, 405, 450, 540, 675, 810, 900, 1350, 1620, 2025, 2700, 4050, 8100,

22. 117.

23. Lunar month=29 days 12 hours 44 min. 3 seconds. Solar year=365 days 5 hours 48 min. 48 seconds. 40. \$103.354.

24. 13450 | 38.

27. 247,77.

28. 6 69 8. 29. ----30. $2^9 \times 3 \times 5$.

31. 55045884 lines. 32. \$45.59.

33. \$90.9631. 34. 3.185988.

35. 215933. 36. \$21588.90.

37. \$142.8248.

38. 293. 39. 1478, 1818, 2378, 4370, 2318, 2318, 2318.

EXERCISE 89.

1. 2:3. 2. \$479.305.

3. ---

4. Greatest 21:27; least 9:13.

5. 57.100555661872493.

6. 53ee3 7737 duodenary, 12014313 410042 quinary, and 76010 9972 undenary. 1257t

7. 5.57052 oz.

8. 3 yds. 3 qrs. 0 na. 011 in.

9. \$2962.70.

10. 1 bush. 2 pk. 0 gal. 1 qt.

11. 17:8; 88:176; 17:8 and 23:11; 6:7 and 88:176; 1173:616.

12. 39 per cent.

13. 355.

23. 764876837 nonary; 10011110101000011001111010000 binary; 11146453021 septenary.

24. 188100.

25. 80100

26. 48.

27. 415.471137804.

28, \$53.5966.

14. 10_{100}^{23} .

15. £2 1s. 21d. nearly.

16. 3 6 days. 17. 50875.

18, 52,

19. 5035. 20. 026856599989+.

21. .0778.

22. 4.32958 miles.

29. 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 25, 28, 30, 35, 36, 42, 45, 50, 60, 63, 70, 75, 84, 90, 100, 105, 126, 140, 150, 175, 180, 210, 225, 252, 300, 315, 350, 420, 450, 525, 630, 700, 900, 1050, 1260, 1575, 2100, 3150, 3600.

30. \$5.04.

31. Each mau's share, \$325.99 137; each woman's, \$88.90 148; each child's, \$25.40128.

32. 125, 518, 236.

33, 3 yds. 2 ft. 83 in.

34. 104:5.

35. 71 miles 5 fur. 34 per. 3 yards.

36. ⅔.

37. Ž 652.

38. 70 goats. 39, 200,

EXERCISE 92.

1. 7020400000, 7.0204, 70.204, | 5. 5:7; 9:13; 54:221. .0000070204, 7020.4, and ·00000070204.

2. 6704866.561.

3. £399 19s. 5\464\d.

4. 846.372095763.

·0007449164; 744916·4.

13. -

14. Binary 63 and 32, Quaternary 4095 and 1024, Senary 46655 and 7776, Octenary 262143 and 32768, Duodenary 2985983 and 248832.

6. \$2070-3593.

7. They have none.

8. \$27431.314. 9. 11, 714235, 35, and 16,7f.

10. 2340.

11. 125 days.

744916400000; 7.449164; .00000000007449164; 7449.164;

15. 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 96, 108, 144, 192, 216, 288, 432, 576, 864, 1728.

16. 720720.

17. 79.789966677748855.

18. \$127.98.

19. 21.19117.

EXERCISE 165.

1. 7000090000019.00000004200006.

2. A, \$1639.32\frac{1}{3}; B,\$1528.21\frac{1}{3}; C, \$1437.313; D, \$1534.95.

3. 134.

4. \$1497803819.4444.

5, 83160.

6. 361 y'rs. 10 m'ths. 25 days.

7. 40.38.

8. 33943 lbs.4 oz.8dwt.141 grs.

9, 2,

10. 1293.

11. 3.

12. 24.

13. A, \$384.47; B, \$291.07; C, \$221.89.

14. 13534 lbs.

15. ·165229.

16. 530.00121864500.

17. \$7854.29.

18. 268.

19, 81000,

20, 5456640.

21. They have none.

22. A, \$3492.06; B, \$4761.91; C, \$6746.03.

23. A, £16714; B, £13913; C, £93,13.

24. 212 hours.

25. LXXMVCMXXXVIII and

XVMMCDXCVMMMDCLXXIX. 26. 1st gets 792 loaves; 2nd,

594; 3rd, 924. 27. 72, 18 and 54 lbs., or 24, 96,

and 96 lbs. respectively.

28. \$3725.764.

29. 24010.23. 30. \$4803·5064.

31. 5739.29 yds. Gain 253

per cent. 32. -

33. \$126·12.

3.051153, 1.449735; 4.812913; 34. 2.886057; 1.290035; 4.698970; 2.182129; 0.909217.

35. t8·t2. 36. 84 years.

37. 66.80578 times.

38, 22992700.72992700.

39. \$5.482.

44. A, \$571.9675; B, \$554.8675; C, \$535.6375; D, \$493.5275; and E, \$1078.

45. \$1372.02898.

46. 1.

47. 117042723743437 octenary.

48. ·01 and ·012345679.

49. One quadrillion three hundred billions fifty million and six thousand, and seven hundred million eighty thousand and | 50. 1296. nine trillionths.

40. \$460.0034.

41. 5 yrs. 8 mos. 5 days.

42. Amount \$1409.07. pound Int. \$595.36.

43. 10 months 18 days.

Seven trillions six hundred billions two hundred and ninety millions thirtyfour thousand and seven, and sixty-seven millions four hundred thousand two hundred and nine quadrillionths.

51. 33.395 years.

```
52. 7119 30.
                                   68. 8·5318452.
53. 144.
                                   69. .019156118.
54. 35%%.
55. 84 days.
                                   70. 2781.848813156689829957.
56. $2469·71.
                                   71. 157.036 feet.
57. 418, 213, and 214.
                                   72. 85 spirits, 35 water.
58. Each man had 60; A caught
                                  73. 422.32.
                                   74. 70 and 14.
       50, B 60, C 70.
59. 191 and 17763.
                                   75. 223·82460585.
60. 44.997 years.
61. A,$1556.95\(\frac{3}{2}\); B,$1169.95\(\frac{3}{2}\);
                                  76. 5.32341.
       C, $973.083.
                                   77. 58 and 28.
62. 1, 2, 4, 1429, 2858, 5716.
                                  78. 156240.
                                   79. 30401.
63. 256.
                                  80. 2284:1617.
84. Man's share = $919.1443,
       Woman's = $459.5721,
                                  81. 3 and 1\frac{1}{2}, or 4 and 1\frac{1}{3}, or 5
       and child's= $153.1917.
                                          and 11, &c.
                                   82. <del>187</del>.
65. 24.
66. $21.03.
                                  83. 5 minutes past 1 o'clock.
67. Greatest 9:16; least 10:19;
       comp. raflo 21: 247.
84. 6·585461; 3·502675; 5·187521; 2·113509; 0·196295;
       1.969276.
85. $4.314.
                                  91. 1, 8\frac{1}{5}, 16\frac{3}{5}, 24\frac{3}{5}, 32\frac{1}{5}, 40.
86. X $672 and Y $1120.
                                  92. 7.
                                  93. Apple 2d., pear 3d.
87. 24r.
                                  94. 14.
88. 4321.
89. 183 lbs. at 4d.; 183 lbs. at 95. $275.
       6d.; and 74% lbs. at 8d. 96. $124 and $1564.
90. 10, 22, 26.
97. 11000000000011.0000000011.
                                  101. 117.
98. $3649.3932.
99. 2^8 \times 3^2 \times 7 \times 11.
                                  102. 624 gal., 833 gal., and 146
                                         gal.
100. 281.
103. A, £194 16s. 112d.; B, £129 17s. 474d.; C, £97 8s. 044d.;
       D, £77 18s. 577d.
                                  111. 1st, '46 inches; 2nd, '57
104. $1230.338.
                                          in.; 3rd, 82 in.; 4th,
105. 10 hours.
                                         3.149 in.
106. 41 years.
                                  112. 71.117.
107. 4.629 days.
                                  113. $2019.651 ; $4871.803 ;
108. £4 16s.
                                         $4815.805; $6467.739;
109. 4443.
                                          $1825.
110. 1422·2 lbs.
```

115. 1st, \$920.20; 2nd. \$2760.60; 3rd, \$5521.20.
 116. Paid each workman \$28.663; 1st company cleared 8737 acres; 2d company, 7744 acres; cost of clearing, \$8493 per acre.

114. 1st 300 yrs; 2nd 56.827 yrs.

117. 15 and 11.

118. \$2340 00. 119. 132 days.

120. A, \$2180; B, \$1635; C, \$1308; D, \$1090.

121. 4, \$3, 727, 45658, 811188 122 86157 and 411.363

122. 86157 and 411363. 123. Sum £580s. 8765.d.; quotient 3241456.

124. 491₇₆₀ yds.

125. \$214.

126. 1st 175 yrs.; 2nd 41.914 yrs.

127. 1010 perches.

128. 111104.

129. 9, 27, 81, 243, 729, 2187, 6561.

130. 9¹₃.

131. 8.04 in. 9.534 in. 12.426 in. and 30 inches.

132. 51 of each, rem. £1 $^{29}_{40}$. 133. \$200.

134. 19 per cent.

135. \$1388 888. 136. 1s. 9d., 1s. 2d., and 7d. 137. A, \$25; B, \$25; C, \$50;

D, \$100.

138. 057. 139. $\frac{3^{2}7}{16^{2}7}$; $162^{\frac{2}{14}9}$; $1\frac{1}{17}\frac{2}{17}$; $\frac{54}{253}$; $\frac{2}{2308}$.

140. 96; 17%.

141. \$8918; \$10717; \$14318; and \$17926.

142. \$15009.84.

143. 17², 32⁴, 48¹, and 63³; 35 and 85905.

144. 361 days.

Opinions of the Press on the National Arithmetic.

This is one of Lovell's series of School books, a series which we hope some day to see introduced into all our Canadian Schools. It has been prepared expressly for these schools by the Mathematical Master of the Upper Canada Normal School. From the brief examination we have been enabled to give it, we are inclined to think it will give a more thorough knowledge of the science of numbers than any other Arithmetic we remember, and we hope Canadian teachers will give it a trial. - Montreal Gazette.

It is the production of one of our most useful and energetic teachers, and it shows a thorough knowledge of the subject, and adaptation to the wants of the country. Mr. Sangster, by this volume, has supplied a want long felt; and it augurs well for the future teachers of our children that the Author of such a work as this, is Mathematical Master in our National

Normal School. - Ottawa Citizen.

We think it is admirably adapted for, and should be speedily introduced

into, all our Canadian schools.—Carleton Place, C. W., Herald.

This Arithmetic is not only infinitely better adapted to the wants of this country than any other in use, but the simplicity of its rules, the practical illustrations of the theory and practice of arithmetic in the many original problems, give it a stamp of nationality highly creditable to the Author. It is divested of all the useless, lumbering material to be found to a greater or less extent in those heretofore in use in this country. The problems possess an eminently practical character—and by that very adaptation to our wants, they are the more interesting. The learner, instead of covering his slate with figures, with a vague and confused notion as to what they all mean, works a problem in this arithmetic feeling at once that he is doing a useful and interesting work, and watches the results with a dware of interest that what he had to a wheal his achieved when the contractions are the contractions.

with a degree of interest that must help to make his schoolboy days cheerful and pleasant.—Markham, C. W., Economist.
We hall with much satisfaction the appearance of this work, rendered absolutely necessary by the recent introduction of the Decimal Currency into Canada. For a long time the want of a Canadian Treatise on Arithmetic, combining the above mentioned system with the application of the Modern Scientific methods of analysis and formulæ, to the elucidation of the various rules, was felt. Dr. Ryerson, conscious that such a work was needed, requested the Author to adapt the Arithmetic published by the Irish Board of Education, to the Decimal Currency of Canada, and to abbreviate some of the tedious reasons for the rules there given. Mr. Sangster in complying with the request of the Chief Superintendent of Education, transcribed ten or fifteen pages from the commencement of the original work, but finding so many "alterations and improvements" necessary, "abandoned" the design and determined to write a new Treatise on the subject. The admirable volume which now lies before us is the result of that determination. - From what fame says of Mr. Sangster's capabilities as an excellent Teacher, and an accomplished Mathematician, the volume before us has not exceeded our expectations, though it surpasses every Treatise on the subject which has yet come into our hands in three essential requisites, namely: Methodical arrangement of matter; conciseness yet comprehensiveness in the demonstration of the various rules; and the immense practical utility which it possesses by the number of examination questions given at the end of each section to test the knowledge of the student as he progresses. These advantages must inevitably cause it to supersede in a very short time those spurions Treatises on the subject at present in existence throughout the Province: for this reason we are glad the work is entitled the "NATIONAL ARITHMETIC."—Brant, C.W., County Herald.

Mr. Sangster's Book is the best going—has no competitor—cannot be matched—positively overflowing with matter. We highly recommend it. It combines beautiful printing, stout binding, with all that is wanted to make a young person have a complete storehouse of mathematical knowledge at his fingers ends. No book we have yet seen, on this indispensable branch of knowledge, car compare with it .- Cayuga, C. W., Sentinel,

The undersigned, having long felt it would be highly desirable to have a SERIES OF EDUCATIONAL WORKS, PREPARED AND WRITTEN IN CANADA, and adapted for the purposes of Canadian Education, begs to call attention to the Text Books with which he has already commenced this series. These works have met with a very general welcome throughout the Province; and the Publisher feels confident that the eulogiums bestowed upon them are fully merited, as considerable talent and care have been enlisted in their preparation.

The following Text Books have already been published:

 LOVELL'S GENERAL GEOGRAPHY, with 51 Colored Maps, 113 Beautiful Engravings, and a Table of Clocks of the World. By J. George Hodgins, Ll.B., F.R.G.S.

> [This Book is especially adapted for, and worthy of introduction into every College, Academy, and School in the British Province.
>
> Parents should see that it is in their children's hands.

2. NATIONAL ARITHMETIC, in Theory and Practice, adapted to Decimal Currency. By J. H. SANGSTER, Esq., M.A.

3. KEY to ditto. By the same.

 ELEMENTARY ARITHMETIC, in Decimal Currency. By the same.

NATURAL PHILOSOPHY, PART I., including Statics, Hydrostatics, &c., &c. By the same.

6. GENERAL PRINCIPLES OF LANGUAGE; or the Philosophy of Grammar. By Thomas Jaffrey Robertson, Esq., M. A.

7. AN EASY MODE OF TEACHING THE RUDIMENTS OF LATIN GRAMMAR TO BEGINNERS. By the same.

 CLASSICAL ENGLISH SPELLING BOOK. By G. G. VASEY.

9. ENGLISH GRAMMAR MADE EASY. By the same.

 THE A-B-C SIMPLIFIED, and Reading Made Easy to the capacity of Little Children. By the same.

 STUDENT'S GUIDE TO ENGLISH GRAMMAR, or the Way to speak and Write Grammatically. By the Rev. J. G. Armstrong, M. A.

12. ELEMENTS OF ELOCUTION. By J. BARBER, M.R.C.S.

13. OUTLINES OF CHRONOLOGY. By Mrs. Gordon.
14. BRITISH AMERICAN READER. By J. D. Borthwick, Esq.

The following are in Press:

- ELEMENTARY TREATISE ON ALGEBRA. By J. H. SANGSTER, Esq., M. A.
- NATURAL PHILOSOPHY, PART II. By the same.
 KEY to the Elementary Arithmetic. By the same.

18. EASY LESSONS IN GENERAL GEOGRAPHY. By J. George Hodgins, LL.B., F.R.G.S.

 BOOKKEEPING by Single and Double Entry. By John G. Dinning, Esq.

The following Text Books, printed from New Stereotype plates and in good Bindings, have also been published:

20. The FIRST NATIONAL BOOK OF LESSONS.

21. The SECOND ditto ditto
22. The THIRD ditto ditto
23. The FOURTH ditto ditto

24. The FIFTH ditto ditto
25. PINNOCK'S IMPROVED EDITION OF GOLDSMITH'S
HISTORY OF ENGLAND. By W. C. TAYLOR, LL.D.,
T.C.D.

26. LENNIE'S ENGLISH GRAMMAR.

27. KIRKHAM'S ENGLISH GRAMMAR.

28. FRENCH WITHOUT A MASTER.

29. FRENCH GENDERS taught in Six Fables.

In preparation:—A SCHOOL HISTORY OF CANADA, AND OF THE OTHER BRITISH PROVINCES, with Illustrations. By J. George Hodgins, LL.B., F.R.G.S.

Messrs. R. & A. MILLER, Montreal and Toronto, are the General Agents in Canada for the sale of Lovell's Series of School Books.

Extracts from Opinions on Lovell's General Geography.

Your work on Geography supplies a want which teachers have long felt and complained of.—Rev. Dr. Leach.

A most excellent and in all respects suitable school book.—Rev. Dr. Irvine.

Such portions as I have paid particular attention to, appear to me to be very accurate.—Rev. W. Snodgrass.

It will become a necessity in our Seminaries of Education.— Rev. Dr. Bancroft.

The work under review seems to merit the highest commendation,—Rev. J. Ellegood.

The plan and manner of execution, are both admirable.—Rev. W. Scott.

The fairness and impartiality with which the different countries are described will commend it to general use.—Rev. E. J. Rodgers.

It seems to me just what is needed, suited to the requirements of the country in its matter, form, and price.—Rev. J. B. Bonar.

I think the publication of the work ought to be regarded as a matter of sincere congratulation to the country at large.

—Rev. W. S. Darling.

Where all is excellent it is difficult to particularize, but I may state that I consider the introductory part deserving of especial commendation.—Rev. Dr. Brooke.

The classification appears to be faultless, the definitions concise and lucid, and the information given in regard to the derivation and pronunciation of proper names is very valuable. It is indeed multum in parvo, and will doubtless become the standard Geography of our Schools.—Rev. I. B. Howard.

I am really delighted that at last a School Geography, almost perfect, is provided for the youth of the British North American Provinces.—Rev. John Carry.

Your Geography is all that can be desired; and, after a thorough examination, I am convinced, from its merits, it will at once be adopted in all our schools. It is a marvel of cheapness, admirable in plan, and a fine specimen of what can be done by an enterprising and liberal publisher. We shall at once introduce it into our School, as its want has long been felt.—Rev. H. J. Borthwick, Principal of the County of Carleton Senior Grummar School.

I hail it as the best Geography extant for our Canadian Schools. I can give no better proof of my appreciation of its merits than by introducing it immediately as the standard textbook in our Academy.—J. Douglass Borthwick, Principal of Huntingdon Academy.

It is my intention to adopt at once this Geography as a text-book in the Grammar School department of this Institution.—
Rev. S. S. Nelles, President of Victoria College.

I shall be most happy to recommend it to the schools in my superintendency, as well as to the heads of families, and hope it will be patronized as extensively as it deserves.—Rev. J. Gilbert Armstrong.

When it comes to be known by the public, I should think it must command a very extensive, if not universal, circulation in the Schools of British North America.—Rev. John Cordner.

The plan of your School Geography is excellent.—Rev. Dr. Leitch, Principal of Queen's College.

So far as I can judge, Lovell's General Geography is well adapted to our Canadian Schools.—Rev. A. J. Parker.

No existing work can be held to excel it .- Rev. A. de Sola,

