Bidyut Kr. Patra

Book: P.Hayes. Computer Architecture and Organization, McGraw-Hill

Control Design: Hardwired Approach

Outline

- Method 1: Classical Method of sequential circuit design. (Optimized in terms of Flip-flop (FF) requirement)
- Method 2: One hot method. (Simple circuit)

Classical Method:GCD Processor

 Design a control unit for GCD processor using Classical method.

GCD Processor

Procedure for computing GCD in HDL

gcd(in:X, Y;out:Z)

- register XR, YR, TEMPR;
- $XR := X; YR := Y; \{Input the data\}$
- while (XR > 0) do begin if $(XR \le YR)$ then begin
 - TEMPR:=YR;
 - YR:=XR;
 - $\textbf{3} \quad XR := TEMPR; \ \{ \ Swap \ XR \ and \ YR \}$
- XR:=XR-YR; {Subtract}
- Z := YR {Output the result} end gcd;

Example

$$X = 20, Y = 12$$

Conditions		Actions	
		XR := 20; YR = 12;	
XR > 0:	XR > YR:	XR := XR - YR = 8;	
XR > 0:	XR <= YR:	XR := 12; YR = 8;	;XR = XR - YR = 4;
XR > 0:	XR <= YR:	XR := 8; YR = 4;	;XR = XR - YR = 4;
XR > 0:	XR <= YR:	XR := 4; YR = 4;	;XR = XR - YR = 0;
XR <= 0		Z=4	

Table: Example

$$GCD(20, 12) = 4.$$

Hardware for GCD Processor

State Table for Control Unit of GCD Processor

Design the State Table defining the Control Unit of the GCD Processor.

GCD Processor

Procedure for computing GCD in HDL

```
gcd(in:X, Y;out:Z)
```

- register XR, YR, TEMPR;
- ② XR := X; YR := Y; {Input the data: S_0 }
- while (XR > 0) do begin if $(XR \le YR)$ then begin
 - TEMPR:=YR;
 - YR:=XR;
 - **3** XR:=TEMPR; { Swap XR and YR: S_1 }
- **4** XR:=XR-YR; {Subtract: S_2 }
- Z := YR {Output the result: S_3 } end gcd;

State Table

Table: State Table of Control Unit (GCD Processor)

State	Inputs $XR > 0$			Outputs							
	$XR \geq YR$										
	0-	10	11	Subtract	Swap	SelectXY	LoadXR	LoadYR			
S_0	S ₃	S_1	S_2	0	0	1	1	1			
S_1	S ₂	S_2	S_2	0	1	0	1	1			
S_2	S ₃	S_1	S_2	1	0	0	1	0			
<i>S</i> ₃	S ₃	S ₃	S ₃	0	0	0	0	0			

Steps of Classical Design Method

- Construct a P-row state table that defines the desired input-output behaviour.
- ② Select minimum number p of D-type flip-flops and assign p-bit binary code to each state. $\{S_0: 00, S_1: 01, S_2: 10, S_3: 11\}$
- **3** Design a combinational circuit C that generate the primary output signal $\{z_i\}$ and secondary outputs $\{D_i\}$ that must be applied to the FFs.

Table: Excitation Table for the control unit of GCD Processor

Inputs		PS		NS		Outputs				
XR > 0	(XR >= YR)	D_1	D_0	D_1^+	D_0^+	Sub	Sw	XY	XR	YR
0	d	0	0	1	1	0	0	1	1	1
0	d	0	1	1	0	0	1	0	1	1
0	d	1	0	1	1	1	0	0	1	0
0	d	1	1	1	1	0	0	0	0	0
1	0	0	0	0	1	0	0	1	1	1
1	0	0	1	1	0	0	1	0	1	1
1	0	1	0	0	1	1	0	0	1	0
1	0	1	1	1	1	0	0	0	0	0
1	1	0	0	1	0	0	0	1	1	1
1	1	0	1	1	0	0	1	0	1	1
1	1	1	0	1	0	1	0	0	1	0
1	1	1	1	1	1	0	0	0	0	0

Steps of Classical Design Method

- Construct a P-row state table that defines the desired input-output behaviour. √
- Select minimum number p of D-type flip-flops and assign p-bit binary code to each state. √
- **3** Design a combinational circuit C that generate the primary output signal $\{z_i\}$ and secondary outputs $\{D_i\}$ that must be applied to the FFs.

Table: Excitation Table for the control unit of GCD Processor

Inputs		PS		NS		Outputs				
XR > 0	(XR >= YR)	D_1	D_0	D_1^+	D_0^+	Sub	Sw	XY	XR	YR
0	d	0	0	1	1	0	0	1	1	1
0	d	0	1	1	0	0	1	0	1	1
0	d	1	0	1	1	1	0	0	1	0
0	d	1	1	1	1	0	0	0	0	0
1	0	0	0	0	1	0	0	1	1	1
1	0	0	1	1	0	0	1	0	1	1
1	0	1	0	0	1	1	0	0	1	0
1	0	1	1	1	1	0	0	0	0	0
1	1	0	0	1	0	0	0	1	1	1
1	1	0	1	1	0	0	1	0	1	1
1	1	1	0	1	0	1	0	0	1	0
1	1	1	1	1	1	0	0	0	0	0

Step 3: Generate output signals

$$\begin{split} D_1^+ &= \overline{XR > 0} + (XR \ge YR) + D_0 \\ D_0^+ &= D_1.D_0 + \overline{(XR \ge XY)}.\overline{D_0} + \overline{(XR > 0)}.\bar{D_0} \\ Subtract &= D_1.\bar{D_0} \\ Swap &= \bar{D_1}.D_0 \\ SelectXY &= \bar{D_1}.\bar{D_0} \\ LoadXR &= \bar{D_0} + \bar{D_1} \\ LoadYR &= \bar{D_1} \end{split}$$

Table: Outputs of the Control ckt.

One-hot Method

THANK YOU