TD2

LOGIQUE SEQUENTIELLE: BASCULES, REGISTRES ET COMPTEURS

Objectif:

L'objectif de ce TD est de décrire différents circuits de logique séquentielle.

I. Bascule D

- 1. Modélisez une bascule D avec un SET et un RESET asynchrone dont la table de vérité est donnée ci-dessous.
- 2. Simulez et testez le comportement.

clk	SET	RESET	D	Q _{n+1}
\uparrow	0	0	0	0
\uparrow	0	0	1	1
Χ	1	Х	Χ	1
Х	0	1	Х	0

II. Registre de 8 bits

On désire modéliser un registre à 8 bits à partir de la bascule D de l'exercice précédent en utilisant une description structurelle.

- 1. Donnez une description structurelle à partir des instructions **component** et **port map**. Simulez et vérifiez le comportement.
- 2. À partir des instructions **for generate**, donnez une description structurelle d'un registre à 32 bits. On vérifiera le comportement du circuit en le simulant.

III. Registre à décalage de 8 bits (conversion série - parallèle)

On désire modéliser <u>un registre à décalage de 8 bits à chargement parallèle</u> à partir de la description du précédent registre. Le circuit est doté d'une entrée LOAD synchrone et d'une entrée // à 8 bits. Lorsque la commande LOAD est active la valeur interne du registre correspond à la valeur d'entrée. Une commande SHIFT synchrone permet de décaler à chaque cycle d'horloge la valeur interne du registre.

- 1. Donnez une description structurelle du registre à décalage. Simulez le comportement.
- 2. À l'aide de l'opérateur de concaténation, modélisez le registre à décalage. Simulez son comportement.

IV. Compteur binaire synchrone

On souhaite modéliser un compteur binaire 4 bits synchrone à l'aide de bascules D.

- 1. Combien de bascules D sont nécessaires pour synthétiser ce compteur ?
- 2. Donnez la table de vérité des sorties des bascules.
- 3. En utilisant la méthode de Marcus, déterminez les équations des entrées des bascules.
- 4. Décrivez en VHDL l'architecture de compteur.
- 5. Simulez et vérifiez le comportement de ce compteur.

V. Compteur bi-quinaire synchrone

Dans certaines architectures, il arrive de diviser la fréquence d'une horloge par dix. Pour cela, une des techniques possibles consiste à utiliser un compteur par dix. Il existe deux modes de comptage :

- Compteur BCD de 0 à 9
- Compteur en mode bi-quinary. Ce mode consiste en une division par 5 suivi d'une division par 2. La table de vérité d'un tel compteur est donnée ci-dessous.

BCD Count Sequence (See Note A)

(OCC HOLC A)							
Count	Output						
	QD	QC	QB	Q_A			
0	L	L	L	L			
1	L	L	L	Н			
2	L	L	Н	L			
3	L	L	Н	Н			
4	L	Н	L	L			
5	L	Н	L	Н			
6	L	Н	Н	L			
7	L	Н	Н	Н			
8	H	L	L	L			
9	Н	L	L	Н			

Bi-Quinary (5-2) (See Note B)

Count	Output			
	QA	Q_D	Qc	Q_B
0	L	L	L	L
1	L	L	L	н
2	L	L	Н	L
3	L	L	Н	н
4	L	Н	L	L
5	H	L	L	L
6	Н	L	L	Н
7	H	L	Н	L
8	Н	L	Н	Н
9	Н	Н	L	L

- 1. Quel est l'avantage d'un compteur en mode bi-quinary?
- 2. En utilisant la méthode de Marcus, déterminez les équations des entrées des bascules D, pour le compteur bi-quinary
- 3. Décrivez en VHDL l'architecture de compteur.
- 4. Simulez et vérifiez le comportement de ce compteur.