Proposition 2.18. (ii) For all $k \in \mathbb{N}$, $k^4 - 6k^3 + 11k^2 - 6k$ is divisible by 4.

Proof. Base Case: For k = 1, we have:

$$1^4 - 6 \cdot 1^3 + 11 \cdot 1^2 - 6 \cdot 1 = 0$$

Since 0 is divisible by 4, the base case holds.

Inductive Step: We need to show that if the statement holds for k = n, then it must hold for k = n + 1. Consider:

$$(n+1)^4 - 6(n+1)^3 + 11(n+1)^2 - 6(n+1)$$

$$n^4 + 4n^3 + 6n^2 + 4n + 1 - 6(n^3 + 3n^2 + 3n + 1) + 11(n^2 + 2n + 1) - 6n - 6$$

$$(n^4 - 6n^3 + 11n^2 - 6n) + 4(n^3 + 6n^2 + 9n + 1).$$

The equation $4(n^3 + 6n^2 + 9n + 1)$ is divisible by 4.

Thus the equation $k^4 - 6k^3 + 11k^2 - 6k$ is divisible by 4

Proposition 2.18. (iii) For all $k \in \mathbb{N}$, $k^3 + 5k$ is divisible by 6.

Proof. Base Case: For k = 1:

$$1^3 + 5 \times 1 = 6$$

which is divisible by 6.

Inductive Step: Assume the statement holds for k = n, meaning $n^3 + 5n$ is divisible by 6. For k = n + 1, we have:

$$(n+1)^3 + 5(n+1) = n^3 + 3n^2 + 3n + 1 + 5n + 5$$

= $(n^3 + 5n) + 3n^2 + 3n + 6$.

By the inductive step, $n^3 + 5n$ is divisible by 6. Since $3n^2 + 3n + 6$ is also divisible by 6, the statement is true for n + 1.

Proposition 2.21. There exists no integer x such that 0 < x < 1.

Proof. Assume for contradiction there exists an integer x such that

From Proposition 2.2, since x is not 0, x must be in \mathbb{N} or -x is in \mathbb{N} . If $x \in \mathbb{N}$, then by Proposition 2.20, $x \ge 1$, which contradicts x < 1. If $-x \in \mathbb{N}$, then x must be negative, which contradicts x > 0. Hence, no such x exists.

Proposition 2.24. For all $k \in \mathbb{N}$, $k^2 + 1 > k$.

Proof. Base Case (k = 1): For k = 1, the inequality becomes:

$$1^2 + 1 = 2 > 1$$
,

which is clearly true.

Inductive Step: We need to show that the inequality holds for k = k+1:

$$(k+1)^2 + 1 > k+1$$
.

Expanding the left-hand side gives us:

$$k^2 + 2k + 1 + 1 > k + 1$$
.

Simplifying the inequality, we get:

$$k^2 + 2k + 2 > k + 1$$
.

Since by the inductive hypothesis we know $k^2 + 1 > k$, and clearly 2k + 1 > 1 for $n \ge 1$, it follows that:

$$k^2 + 2k + 2 > k + 1$$
.

Hence, the inequality $(k+1)^2 + 1 > k+1$ is true, which completes the inductive step.

Therefore, by induction, the inequality $k^2 + 1 > k$ holds for all natural numbers k.

Proposition 2.27. For all integers k > 2, $2^k < k^3$.

Proof. Base Case (k = 3):

$$2^3 = 8 < 27 = 3^3$$

which holds true.

Inductive Step (Prove for k = n + 1):

$$2^{n+1} = 2 \cdot 2^n < 2 \cdot n^3,$$

since $2^n < n^3$ by the inductive step and n > 2 implies $2 < n^2$ so $2 \cdot n^3 < n^2 \cdot n^3 = n^5$ $2 \cdot n^3 < (n+1)^3$. Since n > 2, we have:

$$(n+1)^3 - 2 \cdot n^3 = n^3 + 3n^2 + 3n + 1 - 2n^3 = n^3 - 3n^2 + 3n + 1,$$

and since n > 2, $n^2 - 3n = n(n-3) \ge 0$, which implies that $n^3 - 3n^2 + 3n + 1 > 0$, thus $2 \cdot n^3 < (n+1)^3$.

Therefore, by induction, $2^k < k^3$ for all integers k > 2.

Proposition 2.28. Determine for which natural numbers $k^2 - 3k \ge 4$ and prove your answer.

Proof. We need to solve the inequality $k^2 - 3k \ge 4$ for natural numbers k. First, we rearrange the inequality as follows:

$$k^2 - 3k - 4 > 0$$

Factoring the quadratic expression, we get:

$$(k-4)(k+1) \ge 0$$

This product is non-negative if both factors are non-negative or non-positive. Since k is a natural number, k+1>0. Therefore, we only need to consider when $k-4\geq 0$, which simplifies to $k\geq 4$.

Thus, for all natural numbers $k \geq 4$, the inequality $k^2 - 3k \geq 4$ holds true.