FFM234, Klassisk fysik och vektorfält -Veckans tal

Christian Forssén, Institutionen för fysik, Chalmers

Aug 10, 2019

Uppgift 11.8.8

Bestäm \vec{E} -fältet överallt i rummet från en sfäriskt symmetrisk laddningsfördelning bestående av två delar, nämligen en rymdladdning $\rho(r) = \rho_0$ för r < a/2 och $\rho = 0$ för r > a/2 och en ytladdning $\sigma = -\rho_0 a/24$ på sfären r = a.

Hint.

- Utnyttja den sfäriska symmetrin i problemet som gör att $\vec{E} = E_r \hat{r}$.
- Använd Maxwells första ekvation som säger att $\nabla \cdot \vec{E} = \rho/\epsilon_0$, där ρ är laddningstätheten.
- \bullet En volymsintegral av laddningstätheten (t.ex. över en sfär med radien r) ger den inneslutna laddningen.
- Motsvarande volymsintegral över VL av Maxwells första ekv (dvs över divergensen av \vec{E} -fältet) kan skrivas om med Gauss sats.
- En ytladdning har enheten laddning/area. Dvs den totala laddningen på det yttre skalet fås genom att integrera över ytan.

Answer.

$$E(r) = \frac{\rho_0}{3\epsilon_0}r \qquad \qquad \text{för } r < \frac{a}{2}$$
 (1)

$$E(r) = \frac{\rho_0}{24\epsilon_0} \frac{a^3}{r^2} \qquad \qquad \text{för } \frac{a}{2} < r < a$$
 (2)

$$E(r) = 0 f\"{or} r > a (3)$$

Solution. Att göra

Remarks. Uppgiften illustrerar användandet av Maxwells ekvationer och hur vi kan utnyttja en integralsats.