# Teorema di Rolle

#### enunciato

**Se** una funzione f(x):

- è continua nell'intervallo chiuso e limitato [a, b]
- è derivabile nei punti interni dell'intervallo (a, b)
- assume valori uguali agli estremi dell'intervallo cioè f(a) = f(b)

**allora** esiste almeno un punto c interno all'intervallo (a,b) in cui la derivata prima si annulla, cioè

$$f'(c) = 0$$



# dimostrazione

La prima ipotesi del teorema di Rolle è la stessa del teorema di Weierstrass, per cui la funzione f(x) ammette un massimo e un minimo assoluto nell'intervallo chiuso e limitato [a,b].

Chiamiamo  $x_m$  l'ascissa del punto di minimo assoluto e  $x_M$  l'ascissa del punto di massimo assoluto. Si possono presentare tre casi:

# primo caso

Entrambi i punti  $x_M$  e  $x_m$  sono interni all'intervallo (a, b).

Per il teorema di Fermat, nei punti di massimo e di minimo la derivata prima della funzione si annulla

cioè: 
$$f'(x_m) = 0 \ e \ f'(x_M) = 0$$

Posto  $c_1 = x_m$  e  $c_2 = x_M$  si ha la tesi



### secondo caso

Solo uno dei due punti  $x_m$  o  $x_M$  è interno all'intervallo (a,b). Ad esempio sia  $x_M$  il punto di massimo interno e l'altro coincidente con uno degli estremi dell'intervallo.

Anche in questo caso per il teorema di Fermat, la derivata prima della funzione in  $x_M$  è nulla, cioè:

$$f'(x_M) = 0$$

Posto  $c = x_M$  si ha la tesi



## terzo caso

Entrambi i punti  $x_m$  e  $x_M$  sono agli estremi dell'intervallo [a, b].

Sia  $x_m = a$  ed  $x_M = b$  allora la funzione sarà costante in tutto l'intervallo quindi la sua derivata prima è nulla in tutti i punti dell'intervallo (a, b), da cui la tesi



**In sintesi**: il teorema di Weierstrass assicura la presenza di un massimo e di un minimo assoluto nell'intervallo [a, b] e in tali punti per il teorema di Fermat la derivata prima in tali punti è uguale a zero.