

(9) BUNDESREPUBLIK DEUTSCHLAND

① Offenlegungsschrift② DE 195 16 726 A 1

B 65 B 51/10 B 23 K 26/00 B 29 C 65/14 // B23K 26/18

DEUTSCHES PATENTAMT

 (21) Aktenzeichen:
 195 16 726.0

 (22) Anmeldetag:
 6. 5. 95

 (43) Offenlegungstag:
 7. 11. 96

① Anmelder:

Rovema - Verpackungsmaschinen GmbH, 35463 Fernwald, DE

(72) Erfinder:

Kammler, Roman, Dr., 67547 Worms, DE; Baur, Walter, Dr., 63584 Gründau, DE

(64) Verfahren zum Formen und Verschließen einer Faltschachtei

Bei einem Verfahren zum Formen und Verschließen einer Faltschachtel 47 aus mindestens einem Faltschachtelzuschnitt 11, wobei am Faltschachtelzuschnitt 11 entlang der zu verschweißenden Bereiche 27 jeweils eine thermoplastische Kunststoffschicht 1, 13, 14 angebracht ist, werden die Kunststoffschichten 1, 13, 14 nach oder während eines Faltungsvorganges durch Einstrahlung von infraroter Strahlung 10, z. B. Laserstrahlung 15 und eine unmittelbar danach erfolgende Druckaufbringung miteinander verschweißt. Die Strahlung 10 wird durch das Basismaterial 2 des Faltschachtelzuschnitts 11 in den zu verschweißenden Bereich 27, der die zu verschweißende Zone der Kunststoffschichten 1, 13, 14 beschreibt, eingestrahlt (Figur 6).

Beschreibung

Die Erfindung betrifft ein Verfahren zum Formen und Verschließen einer Faltschachtel aus einem einzigen, bereits vorgefertigtem und bereitgestelltem Faltschachtelzuschnitt oder aus mehreren Faltschachtelzuschnitten

Es sind formstabile Verpackungen bekannt, die aus einem einzigen Zuschnitt bzw. aus mehreren Zuschnitten aus Pappe geformt und dann verklebt werden. Derartige Verpackungen haben den Nachteil, daß die Verklebungen nicht ausreichend dicht sind, so daß Insekten in das Innere der Verpackung gelangen können.

Mit Bag-in-Box-Systemen werden zwar die oben erwähnten Nachteile weitgehend beseitigt, es ergeben 15 sich aber zusätzliche Probleme. Bei Bag-in-Box-Systemen wird ein relativ großer Verpackungsmittelaufwand (Beutel und Schachtel) betrieben. Sowohl aus Umweltals auch aus Kostengründen ist dieser von Nachteil. Der Beutel ist zwar insektendicht, jedoch können Insekten, von Duftstoffen angelockt, die durch das Hüllmaterial des Beutels diffundieren, durch Klebstellen der äußeren Schachtel in den Zwischenraum zwischen der Schachtel und dem Beutel gelangen. Dies ist, insbesondere für die Verpackung von Nahrungsmitteln, nicht akzeptabel.

Nachteilig bei den konventionellen Schweißverfahren wie Heißsiegeln und Impulsschweißen ist, daß die mittels herkömmlicher Schweißwerkzeuge von beiden Seiten in die Schweißnaht eingeführte Wärme relativ groß sein muß, wenn sie durch Faltschachtelmaterial wie Pappe geleitet werden soll. Die für eine Faltschachtelverschließung mittels Faltschachtelverklebung erreichbaren Verschließgeschwindigkeiten können schon allein durch die schlechte Wärmeleitung durch das Faltschachtelmaterial bei einer herkömmlichen Verschweißtechnik nicht erreicht werden. Zudem ist die Abkühlzeit für eine Schweißnaht gerade dann besonders lang, wenn eine besonders große Wärmemenge in die Schweißnaht und die angrenzenden Packstoffbereiche eingeleitet wurde.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Formen und Verschließen einer verschweißbaren Faltschachtel, bestehend aus einem Basismaterial und einer auf dem Basismaterial befindlichen Kunststoffschicht, zu finden, das es erlaubt, mit geringem 45 Energieaufwand und geringer Abkühlzeit und daher schnell Faltschachtelmaterial zu verschweißen und die Faltschachtel zu formen. Bei dem Verfahren soll es zudem möglich sein, die Wärmeenergie auf kurzem Weg in unterschiedliche Schweißnahtbereiche der verschweißbaren Faltschachtel einzubringen.

Gelöst ist die Aufgabe gemäß dem kennzeichnenden Teil des Anspruches 1. Danach erfolgt die Verschweißung thermoplastischer Kunststoffschichten einer Faltschachtel während eines Faltungsvorganges oder danach am Faltschachtelzuschnitt durch Einstrahlung infraroter Strahlung durch das Basismaterial in die zu verschweißenden Bereiche und eine sich unmittelbar an die Lasereinstrahlung anschließende Druckaufbringung auf diese Bereiche.

Das erfindungsgemäße Verfahren gestattet es, verschweißbare Faltschachteln mit einem geringen Energieaufwand und folglich mit einer kurzen Abkühlzeit zu verschweißen. Dadurch, daß die Strahlung durch das Basismaterial in den zu verschweißenden Kunststoff eingestrahlt und dort absorbiert wird, ist jede Kunststoffschicht auf kurzem Weg direkt von der Strahlung erreichbar. Die Einstrahlung ist nicht nur dazu geeignet,

2

nach, sondern auch während eines Faltungsvorganges der Faltschachtel in die zu verschweißenden Bereiche eingestrahlt zu werden. Die Strahlung kann ausgeschaltet, oder die Strahlung kann ausgeblendet sein, während die Strahlung nach Beendigung einer Schweißnaht auf eine andere Schweißnaht gerichtet wird. Die unterschiedlichen Schweißnahtbereiche der zu verschweißenden Faltschachtel werden kontinuierlich verschweißt.

Die Faltschachtel kann sowohl während des Formprozesses, als auch danach verschlossen werden. Die Faltschachtel kann entweder aus einem einzigen Faltschachtelzuschnitt geformt werden, und der Verschluß erfolgt durch das hermetische Verschließen der geformten Faltschachtel. Oder die Faltschachtel wird aus einem Faltschachtelzuschnitt gebildet, welcher lediglich zu einer an einer Seite offenen Faltschachtel führt, und die offene Faltschachtel wird mittels eines Deckels verschlossen.

Eine Verbrennung des Basismaterials, z. B. Pappe, kommt trotz der Energieabsorption nicht vor, da die Wärme dort für eine Verbrennung nicht ausreicht. Das erwärmte Basismaterial gibt seine Wärmemenge sogar teilweise an die Kunststoffschicht weiter, so daß dadurch die Aufschmelzung des Kunststoffes unterstützt wird. Ist die Strahlung eine Laserstrahlung (A2), so kann die Strahlung mit einer hohen Leistungsdichte ortsgenau in das Basismaterial der Faltschachtel eingestrahlt werden.

Weitere vorteilhafte Ausführungen des erfindungsgemäßen Verfahrens sind in den Ansprüchen 2 bis 23 beschrieben

Ein Strahl kann mittels eines teilweise durchlässigen Spiegels aufgespalten werden (Anspruch 3). Wird der Strahl nacheinander auf mehrere teilweise durchlässige Spiegel geführt, so erfolgt an jedem Spiegel eine Teilstrahlausblendung. Die einzelnen Strahlanteile können nicht nur zur gleichzeitigen Verschweißung mehrerer Schweißnähte einer Faltschachtel genutzt werden, sondern auch zur gleichzeitigen Verschweißung gleicher oder ungleicher Schweißnähte mehrerer Faltschachteln (Anspruch 14).

Wird die Strahlung mittels eines Spiegels in die Kunststoffschichten reflektiert (Anspruch 4), so kann die Verschweißung der Kunststoffschichten weitgehend unabhängig von der relativen Lage der Strahlungsquelle zum zu verschweißenden Bereich erfolgen.

Wird des weiteren der Spiegel während eine Schweißvorganges derart um einen Winkel gedreht, daß der Strahl entlang des zu verschweißenden Bereichs geführt wird (Anspruch 5), dann wird dabei allein durch die Drehbewegung des Spiegels eine streifen- oder linienförmige Verschweißung erreicht. Des weiteren kann aber auch der Faltschachtelzuschnitt während seiner Verschweißung durch eine ortsfeste Strahlung bewegt und/oder gedreht werden (Ansprüche 16 und 17).

Es ist eine geringere Leistung ausreichend, wenn entsprechend Anspruch 6 die Strahlung in einem Winkel von 90 Grad in die Kunststoffschichten eingestrahlt wird. Ein spitzer Einstrahlwinkel hätte zur Folge, daß das Basismaterial entlang einer längeren Wegstrecke von der Strahlung durchdrungen wird, damit die Strahlungsabsorption im Basismaterial erhöht wäre, und weniger Strahlung die Kunststoffschicht erreicht.

Eine höhere Absorption in der Kunststoffschicht ist noch dadurch erzielbar, daß gemäß Anspruch 7 der Strahl an der der Einstrahlfläche gegenüberliegenden Begrenzungsfläche einer Kunststoffschicht reflektiert

4

wird. Der Strahl passiert dann zweimal die zu erwärmende Kunststoffschicht.

Durch Drehen eines Faltschachtelzuschnittes nach der Verschweißung eines Bereiches (Anspruch 8) wird genauso wie durch ein Kippen (Anspruch 9) oder eine Hintereinanderausführung dieser beiden Bewegungen ein weiterer zu verschweißender Bereich in eine für die Verschweißung günstige Position gebracht.

Genaue und reproduzierbare Positionsparameter hinsichtlich der relativen Orientierung von Faltschachtelzuschnitt und Strahlungsquelle, z. B. Laser oder Infrarotstrahlungswendel, werden erreicht, wenn nach der Verschweißung eines Bereiches ein verwendeter Spiegel in eine Ausgangsposition zurückgestellt wird (Anspruch 10), um nach einem Kipp- oder Drehvorgang des Faltschachtelzuschnittes diesen oder den nächsten Faltschachtelzuschnitt zu verschweißen.

Ein kontinuierlicher Weitertransport des Faltschachtelzuschnittes mittels einer Transporteinrichtung (Anspruch 11), zum Beispiel einem Transportband, erlaubt eine kontinuierliche Verschweißung eines in Transportrichtung verlaufenden Bereiches bei feststehendem Spiegel und feststehender Strahlungsquelle. Wird dagegen ein Spiegel zusätzlich zu seiner, einen zu verschweißenden Bereich überstreichenden Bewegung noch mit einer Winkelgeschwindigkeit gedreht, welche mit der Geschwindigkeit der Transporteinrichtung korreliert ist (Anspruch 12), dann kann ein nicht in Transportrichtung ausgerichteter Schweißbereich ebenso wie ein zu verschweißender Bereich, welcher mit einer anderen Geschwindigkeit als der Transportgeschwindigkeit verschweißt werden soll, mittels Strahlung verschweißt werden.

Ein besonders schneller, den erwärmten und relativ schnell abkühlenden Bereich pressender Verfahrens- 35 schritt ist möglich, wenn die Druckaufbringung mittels eines über den zu verschweißenden Bereich rollenden Verschließrades erfolgt (Anspruch 13), welches eventuell auch Strahlung reflektiert. Dieses Rollverfahren ist herkömmlichen Druckaufbringungen insofern überle- 40 gen, als dabei Massenträgheitsmomente vernachlässigt werden können, und eine kontinuierliche Druckaufbringung auf die zu verschweißende Bereiche des Faltschachtelzuschnittes erfolgt. Als Gegenlager zu dem Verschließrad ist ein weiteres Rad von Vorteil. Dazu 45 drückt das Verschließrad den Faltschachtelzuschnitt gegen ein jenseits des zu verschweißenden Bereichs positioniertes mitlaufendes Rad. Das Verschließrad kann den zu verschweißenden Bereich des Faltschachtelzuschnittes aber auch gegen einen jenseits des Faltschach- 50 telzuschnittes positionierten Balken drücken. Bei einem kontinuierlich weitergeführten Faltschachtelzuschnitt ist ein ebenfalls mitgeführter Balken von Vorteil. Bei einem während des Schweißvorganges unbewegten Faltschachtelzuschnitt eignet sich ein feststehender 55 oder ein gegen den Faltschachtelzuschnitt gedrückter Balken.

Das erfindungsgemäße Verfahren bezieht sich auch auf Faltschachtelzuschnitte, die ohne thermoplastische Kunststoffschichten bereitgestellt werden, um somit konventionelle Faltschachtelzuschnitte zu verwenden. In diesem Fall werden die thermoplastischen Kunststoffschichten auf dem Faltschachtelzuschnitt in einem Verfahrensschritt angebracht. Diese Anbringung kann mittels Laserschweißung erfolgen. ten die innere Fig. 2 eine Packmaterial; Fig. 3 eine Stoffschichten stof

Eine besonders komplizierte Strahlführung ist erreichbar, wenn gemäß Anspruch 15 die Strahlung innerhalb eines innen verspiegelten, flexiblen Hohlleiters ge-

leitet wird.

Eine Intensitätserhöhung wird erreicht, wenn die Strahlung mittels einer Sammellinse fokussiert wird, was bei Einsatz eines Lasers aber auch entfallen kann.

Ist dagegen eine Strahlverbreiterung gewünscht, um eine breitere Schweißnaht zu erzeugen, so kann die Strahlverbreiterung mittels einer Streuungslinse erreicht werden. Für den Fall einer momentanen Nichtnutzung der Strahlung kann diese mittels einer Blende ausgeblendet werden.

Die Erwärmung eines zu verschweißenden Bereichs wird verbessert, wenn analog Anspruch 18 die Einstrahlung in den zu verschweißenden Bereich in Form zweier sich in diesem Bereich überlagernder Strahlen erfolgt. Leistungserhöhung in der Überlagerungszone. Die Überlagerung kann auf unterschiedliche Art und Weise erfolgen. Zum einen können die Strahlen von gegenüberliegenden Seiten in den zu verschweißenden Bereich eingestrahlt werden (Anspruch 19), zum anderen können sie von einer Seite und in unterschiedlichen Winkeln eingestrahlt werden (Anspruch 20). In jedem Fall ist es von Vorteil, wenn lediglich der zu verschwei-Bende Bereich eine Überlagerungszone aufweist und nicht das umgebende Basismaterial. Dann ist nämlich eine spätere Bereichsabkühlung beschleunigt, weil das Basismaterial nicht so sehr erwärmt wurde wie der zu verschweißende Bereich.

Eine verbesserte Bereichserwärmung ist auch dann erreicht, wenn analog Anspruch 21 der Bereich zuerst mittels eines Strahls vorgewärmt und dann mittels eines zweiten Strahls verschweißt wird. Die Zeitdifferenz zwischen diesen beiden Erwärmungsvorgängen sollte minimal sein, um einerseits eine zwischenzeitliche Abkühlung gering zu halten, und um andererseits den Gesamtvorgang innerhalb eines kurzen Zeitintervalls durchzuführen.

Die Verschweißung der Bereiche wird weiter optimiert, wenn die zu verschweißenden Faltschachtelzuschnitte dem Schweißverfahren angepaßte Eigenschaften haben. Liegt ein besonders gut wärmeleitendes Basismaterial vor (Anspruch 22), so erfolgt eine schnelle Abkühlung der verschweißten Bereiche. Erst nach der Abkühlung ist die Schweißnaht belastbar. Ist in den zu verschweißenden Bereichen eine die Strahlungsabsorption verbessernde Substanz vorgesehen (Anspruch 23), dann ist die Wärmeeinbringung in die aufzuschmelzenden und zu verschweißenden Bereiche verbessert. Durch eine Erhöhung des Wirkungsgrades ist einerseits eine größere Schweißgeschwindigkeit und andererseits eine geringere Leistungseinstrahlung möglich.

Die Erfindung wird anhand von Ausführungsbeispiele darstellenden Figuren im folgenden näher beschrieben. Es zeigt (Fig. 1 bis 6 in Schnittdarstellung):

Fig. 1 eine Schweißverbindung über Eck zwischen jeweils einem mit einer siegelfähigen Kunststoffschicht versehenem Basismaterial, wobei die Kunststoffschichten die innere Oberfläche der Verpackung auskleiden;

Fig. 2 eine Schweißverbindung mit überlappendem Packmaterial;

Fig. 3 eine Schweißverbindung mit nicht überlappendem Basismaterial, jedoch mit überlappenden Kunststoffschichten;

Fig. 4 eine Schweißverbindung von lediglich im Be-65 reich der Schweißverbindung mit einer Kunststoffschicht versehenen Basismaterialien;

Fig. 5 ein mit jeweils einer Aluminiumfolie und darauf einer Kunststoffolie versehenes Basismaterial, sowie ein

Basismaterial mit lediglich einer Kunststoffolie;

Fig. 6 in einer teilweisen Schnittdarstellung zwei zu verschweißende Verpackungsteile mit einem im Wesentlichen im Kunststoff und dem oberen Basismaterial absorbierten Laserstrahl, sowie ein Strahlung reflektierendes Verschließrad und ein mitlaufendes Rad zur Druckaufbringung auf den erwärmten, zu verschwei-Benden Bereich;

Fig. 7 in einer Seitenansicht die Aufspaltung eines Laserstrahls mittels teilweise durchlässiger Spiegel in 10 vier Strahlanteile;

Fig. 8 in einer Seitenansicht die Verschweißung eines linienförmigen Bereichs der Kunststoffschichten eines Faltschachtelzuschnittes durch Drehung eines den Laserstrahl reflektierenden Spiegels;

Fig. 9 in einer Seitenansicht eine infrarote Strahlung mit einer Sammellinse und einer Blende, sowie

Fig. 10 in einer schematischen Darstellung eine Vorrichtung zum Formen, Befüllen und Verschließen einer Faltschachtel.

Eine Verpackung trägt siegelfähige Kunststoffschichten 1a, 1b auf dem formstabilen Basismaterial 2a, 2b (Fig. 1). Die mit dem Basismaterial 2a, 2b gebildeten, zu verschweißenden Teile der Verpackung sind einseitig derart mit den Kunststoffschichten 1a, 1b versehen, daß beim Aufbau der Verpackung die Kunststoffschichten 1a, 1b gegeneinander liegen.

Die siegelfähige Kunststoffschicht 1a des einen Basismaterials 2a ragt nicht über den Rand 3a des Basismaterials 2a, auf dem sie aufgebracht ist, hinaus. Mittels La- 30 serschweißung mit der Kunststoffschicht 1b des anderen Basismaterials 2b verschweißt werden. Dabei wird die Schweißenergie direkt durch ein Basismaterial 2a, 2b in die Kunststoffschichten 1a, 1b eingestrahlt, so daß Kunststoffschichten 1a, 1b bilden eine Kontaktfläche 4a eines zu verschweißenden Bereichs 27. Die innere Oberfläche 5a, 5b der Verpackung wird vollständig von einer Kunststoffschicht 1a, 1b bedeckt. Die Verpackung kann aus Pappe und die Kunststoffschicht aus Polyethylen besteht. Das Basismaterial könnte aber auch aus Polyethylen bestehen.

Parallel zueinander verlaufende Basismaterialien 2e bis 2h können parallel zueinander versetzt (Fig. 2) oder Kante gegen Kante (Fig. 3) verbunden werden. Eine Kunststoffschicht (Fig. 3) ragt z. B. über den Rand 3g des Basismaterials 2g, auf dem sie aufgebracht ist.

Es genügt, wenn die Basismaterialien 2l, 2m lediglich im Bereich der Verschweißung mit jeweils einer Kunst- 50 stoffschicht 1l, 1m versehen sind (Fig. 4).

Eine Aluminiumschicht 9g kann sich zwischen einer Kunststoffschicht 1q und einem Basismaterial 2q befinden (Fig. 5). In diesem Fall hat eine Energieeinbringung durch das Basismaterial 2r mittels Strahlung einen höheren Wirkungsgrad, da die Strahlung an der Aluminiumschicht 9q reflektiert wird und somit die Kunststoffschichten 1q, 1r zweimal durchstrahlt.

Eine infrarote Laserstrahlung 15 kann ortsfest eingestrahlt werden bei bewegtem Faltschachtelzuschnitt 11 (Fig. 6), kann mit bewegtem Laserstrahl 15 auf einen feststehenden Faltschachtelzuschnitt 11 erfolgen (Fig. 8), oder mit bewegtem Laserstrahl auf einen bewegten Faltschachtelzuschnitt. In jedem Fall erfolgt die Verschweißung diskontinuierlich, das heißt kontinuier- 65 lich an jeweils einem zu verschweißenden Bereich.

In Fig. 6 wird der Faltschachtelzuschnitt 11 kontinuierlich mittels einer Transporteinrichtung 16 weiter

transportiert, während die infrarote Strahlung 10 als Laserstrahlung 15 ortsfest eingestrahlt wird. Die Transporteinrichtung 16 ist gleichzeitig eine Einrichtung 17 zur Druckaufbringung der Kraft einer Druckfeder 17a. Sie besteht aus einem über einen Antrieb (nicht dargestellt) angetriebenen Verschließrad 18, welches den Faltschachtelzuschnitt 11 gegen ein nicht angetriebanes mitlaufendes Rad 19 drückt. Der Laserstrahl 15 durendringt zunächst das Basismaterial 2u und dann die Kunststoffschichten 13, 14. Besonders bei relativ dünnen Kunststoffschichten 13, 14 mit geringem Absorptionskoeffizienten kann es vorkommen, daß ein nicht unwesentlicher Strahlanteil 15a wieder aus dem oberen Basismaterial 2u austritt. Dieser Strahlanteil 15a kann am Verschließrad 18 ebenso reflektiert und wieder in die Kunststoffschichten 13, 14 eingestrahlt werden, wie am Basismaterial 2u reflektierte Laserstrahlung 15b, wenn das Verschließrad 18 eine verspiegelte Rollfläche 24 hat. In das untenliegende Basismaterial 2v gelangt nur wenig Laserstrahlung 15.

Die Laserstrahlung 15 kann vor Erreichen der Kunststoffschichten mittels teilweise durchlässiger Spiegel 25a, 25b, 25c in einzelne Strahlanteile 15b, 15c, 15d, 15e aufgespalten werden (Fig. 7). Dabei bestimmt der Durchlässigkeitsgrad des Spiegels 25a, 25b, 25c die Intensitätsverteilung bezüglich der Strahlanteile 15b, 15c, 15d, 15e. Ein Strahlanteil kann mittels eines weiteren teilweise durchlässigen Spiegels zudem in weitere Strahlanteile aufgespalten werden. Mit den Strahlenanteilen können zeit-gleich mehrere Kunststoffschichten, auch unterschiedlicher Faltschachteln ver-schweißt werden, ohne ein zweites Lasergerät (Strahlungsquelle) zu benötigen.

Prinzipiell wird eine bestimmte Einstrahlrichtung diese miteinander verschweißt werden. Die beiden 35 leicht realisiert, wenn die Laserstrahlung 15 mittels eines Spiegels 26 in die Kunststoffschichten 13, 14 reflektiert wird (Fig. 8). Durch Drehung des Spiegels 26 mittels eines Antriebs (nicht dargestellt) wird die reflektierte Laserstrahlung 15 entlang eines streifenförmigen Beeine Faltschachtel sein, wobei das Basismaterial 2a, 2b 40 reichs 27 über das Basismaterial 2w in die Kunststoffschichten 13, 14 und zu dem Basis-material 2x geführt. Dieser streifenförmige Bereich 27 kann bei geringer Strahlbreite eher linienförmig sein. Die Länge des Bereiches 27 wird durch die Anfangs- und die Endposition des Spiegels 26 (durchgezogene beziehungsweise gestrichelte Linie) bestimmt. Nach der Verschweißung eines Bereichs 27 ist es sinnvoll, den Spiegel 26 wieder in seine Ausgangsposition zurückzustellen. Statt einer Drehung kann auch eine Verschiebung des Spiegels oder eine Kombination dieser beiden Bewegungen erfolgen. Wird der Faltschachtelzuschnitt auf einer Transporteinrichtung weitertransportiert und soll ein parallel zur Transporteinrichtung orientierter Bereich verschweißt werden, dann kann der Spiegel arretiert werden, sofern die Transporteinrichtung mit der gleichen Geschwindigkeit wie die Schweißgeschwindigkeit bewegt wird. Andernfalls muß zum Beispiel durch die Winkelgeschwindigkeit des Spiegels die Transportgeschwindigkeit mit der Schweißgeschwindigkeit korreliert werden. Dies gilt insbesondere für senkrecht zur Transporteinrichtung ausgerichtete Bereiche. Nach der Verschweißung der aufgrund der Lage des Faltschachtelzuschnittes und seines Faltungszustandes von der Laserstrahlung und der Einrichtung zur Druckaufbringung erreichbaren zu verschweißenden Bereiche, erfolgt entweder eine Drehung des Faltschachtelzuschnittes oder eine Kippung oder beides, um einen weiteren Bereich zu verschweißen, oder es erfolgt ein weiterer Faltungsvor-

gang. Faltungsvorgänge können analog zur Faltung in konventionellen Verpackungsmaschinen erfolgen.

Eine infrarote Strahlung 10 kann mittels einer Sammellinse 34 weiter fokussiert werden (Fig. 9). Die Einbringung der Sammellinse 34 in die Strahlung 10 erfolgt mittels eines Antriebs 33. Mit diesem kann auch die Sammellinse 34 parallel zur Strahlung 10 verschoben werden, so daß der Fokus verschoben wird. Es ist eine Verbreiterung der Strahlung 10 möglich, wenn die Sammellinse von der Schweißnaht weg, parallel zur Strah- 10 lung 10 verschoben ist.

Mittels einer beweglichen Blende 36, die durch einen Antrieb 35 angetrieben wird, kann die Strahlung 10 kurzfristig aus- und eingeblendet werden. Für eine längere Ausblendung ist ein wärmeabführendes Mittel an 15 der Blende, zum Beispiel eine Kühlung mittels Kühlwasser oder Kühlrippen notwendig.

Eine schematische Darstellung der erfindungsgemä-Ben Vorrichtung ist in Fig. 10 dargestellt.

An der Vorrichtung sind Einrichtungen 38 zur Ver- 20 schweißung von Faltschachtelzuschnitten 11 vorgesehen. Mittels einer Transporteinrichtung 16 werden die Faltschachtelzuschnitte 11 transportiert, mittels einer Befülleinrichtung 37 werden die bereits teilweise verschweißten Faltschachtelzuschnitte 11 befüllt.

Ein mit siegelfähigen Kunststoffschichten beschichteter Faltschachtelzuschnitt 11 (links in Fig. 10) wird auf einer als Transportband 39 ausgestalteten Transporteinrichtung 16 transportiert. Dabei werden seine Längslaschen 40 und eine seiner Querlaschen 41 umgeknickt. 30 17 Druckfeder Die dadurch entstandene Bodenfläche 42 wird mittels einer Laserstrahlung 15 verschweißt. Die Laserstrahlung 15 der Laserschweißeinrichtung 43 wird mit drei teilweise durchlässigen und teilweise reflektierenden Spiegeln 26 in drei Strahlanteile 15f, 15g, 15h aufgespal- 35 26 Spiegel ten. Der Strahlanteil 15f wird dazu verwendet, eine parallel zur Transporteinrichtung ausgerichtete Kunststoffnaht zu verschweißen, die Strahlanteile 15g, 15h dagegen, in rechtem Winkel dazu verlaufende Kunststoffnähte zu verschweißen. Direkt nach der Lasereinstrah- 40 lung werden die erwärmten Kunststoffschichten mit einer Einrichtung zur Druckaufbringung (nicht dargestellt) verschlossen.

Mittels einer (ebenfalls nicht dargestellten) Einrichtung zum Drehen der Faltschachtelzuschnitte werden 45 diese in die Position gedreht beziehungsweise gestellt, in der sie auf der bereits verschweißten Bodenfläche 42 stehen. Zudem werden sie alternierend auf drei parallel zueinander orientierte und mit gleicher Geschwindigkeit bewegte Transportbänder 39 geschoben. Während 50 46 Teilmengenwaage ihres Transports werden sie dort von drei jeweils mit einem Transportband 39 mitlaufenden Befülleinrichtungen 37 befüllt. Jede Befülleinrichtung 37 ist im wesentlichen eine in einem Kreislauf umlaufende Anordnung der Becher 44 mit einer verschließbaren Bodenfläche. 55 Die Anordnung der Becher 44 läuft entlang der Wegstrecke s mit der gleichen Geschwindigkeit wie das jeweilige Transportband 39 parallel zum Transportband 39. Entlang dieser Wegstrecke s wird die Bodenfläche 45 der Becher 44 geöffnet und Produkt fällt in die sich 60 darunter befindlichen Faltschachtelzuschnitte 11. Das die Becher 44 füllende Produkt stammt aus einer Teilmengenwaage 46.

Entlang der weiteren Transportstrecke münden die drei parallel zueinander orientierten Transportbänder 65 39 in ein einziges Transportband 39. Dort werden die kopfseitigen Laschen des Faltschachtelzuschnittes 11 umgelegt, der Faltschachtelzuschnitt 11 wird gedreht,

und die Kunststoffbereiche der kopfseitigen Laschen werden analog zu den bodenseitigen Laschen zur fertigen Faltschachtel 47 verschweißt. Auch besteht die Möglichkeit, daß das Verschweißen vor dem Drehen der befüllten Kartons realisiert wird.

Die Anzahl der Transporteinrichtungen 16 hängt von der Taktzahl der Kartons pro Minute ab und beschränkt sich nicht auf drei, wie in Fig. 10 dargestellt, sie kann eins, zwei und mehr als drei betragen.

Eine schnelle Formatumstellung ist gewährleistet, da die Laserstrahleinrichtung für verschiedene Formate programmiert ist.

Bezugszeichenliste

1 Kunststoffschicht

2 Basismaterial

3 Rand des Basismaterials

4 Kontaktfläche

5 innere Oberfläche der Verpackung

9 Aluminiumschicht

10 Infrarote Strahlung

11 Faltschachtelzuschnitt

12 Bereich

13, 14 Kunststoffschicht

15 Laserstrahlung

15a, 15b, 15c, 15d, 15e, 15f, 15g, 15h, 15i Strahlanteil

16 Transporteinrichtung

17 Einrichtung zur Druckaufbringung

18 Verschließrad

19 mitlaufendes Rad

24 verspiegelte Rollfläche

25a, 25b, 25c teilweise durchlässiger Spiegel

27 Bereich

33 Antrieb

34 Sammellinse

35 Antrieb

36 Blende

37 Befülleinrichtung

38 Einrichtung zur Verschweißung

39 Transportband

40 Längslasche

41 Querlasche

42 Faltschachtelbodenfläche

43 Laserschweißeinrichtung

44 Becher

45 Bodenfläche

47 Faltschachtel

Patentansprüche

1. Verfahren zum Formen und Verschließen einer Faltschachtel aus mindestens einem Faltschachtelzuschnitt, wobei an mindestens einem Faltschachtelzuschnitt entlang der zu verschließenden streifen- oder linienförmigen Bereiche auf einem Basismaterial jeweils eine thermoplastische Kunststoffschicht angebracht ist, welche zum Verschluß mit einer thermoplastischen Kunststoffschicht am zu verschließenden Bereich vorgesehen ist, dadurch gekennzeichnet daß nach oder während eines Faltungsvorganges die Verschweißung durch Einstrahlung von infraroter Strahlung (10) durch das Basismaterial (2) in die zu verschweißenden Bereiche (27) und eine unmittelbare Druckaufbringung

auf diese Bereiche (27) erfolgt.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Strahlung (10) eine Laserstrahlung (15) ist.
- 3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die Strahlung (10) vor Erreichen der Kunststoffschichten (13, 14) mittels eines teilweise durchlässigen Spiegels (25a, 25b, 25c) in einzelne Stahlanteile (15b, 15c, 15d, 15e) aufgespalten wird.
- 4. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die Strahlung (10) mittels eines Spiegels (26) in die Kunststoffschichten (13, 14) reflektiert wird.
- 5. Verfahren nach Anspruch 4, dadurch gekenn- 15 zeichnet, daß der Spiegel (26) während eines Schweißvorganges derart um einen Winkel gedreht wird, daß die Strahlung (10) entlang des zu verschließenden linien- oder streifenförmigen Bereichs (27) des Faltschachtelzuschnittes (11) geführt 20 wird.
- 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Strahlung (10) in einem Winkel von 90 Grad in die Kunststoffschichten (13, 14) eingestrahlt wird.
- 7. Verfahren nach Anspruch 1 oder Anspruch 6, dadurch gekennzeichnet, daß die Strahlung an der der Einstrahlfläche gegenüberliegenden Begrenzungsfläche einer Kunststoffschicht an einem Reflektor reflektiert wird.
- 8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Faltschachtelzuschnitt nach der Verschweißung eines Bereiches gedreht wird.
- 9. Verfahren nach Anspruch 1 oder Anspruch 8, dadurch gekennzeichnet, daß der Faltschachtelzu- 35 schnitt nach der Verschweißung eines Bereichs gekippt wird.
- 10. Verfahren nach mindestens einem der Ansprüche 8 und 9, sowie nach Anspruch 5, dadurch gekennzeichnet, daß nach der Verschweißung eines 40 Bereichs (27) der Spiegel (26) in eine Ausgangsposition zurückgestellt wird.
- 11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Faltschachtelzuschnitt (11) kontinuierlich mittels einer Transporteinrichtung (16) 45 weiter transportiert wird.
- 12. Verfahren nach Anspruch 5 und Anspruch 11, dadurch gekennzeichnet, daß der Spiegel (26) zusätzlich mit einer Winkelgeschwindigkeit gedreht wird, welche mit der Geschwindigkeit der Transporteinrichtung (16) korreliert ist.
- 13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Druckaufbringung durch eine Einrichtung zur Druckaufbringung (17) mittels eines über den zu verschließenden Bereich (12) rollenden 55 Verschließrades (18) erfolgt.
- 14. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß mit den Strahlanteilen (15a, 15b, 15c, 15d, 15e, 15f, 15g, 15h) zeitgleich Kunststoffschichten (1, 13, 14) mehrerer Faltschachteln (11) verschweißt werden.
- 15. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Strahlung innerhalb eines innen verspiegelten, flexiblen Hohlleiters geleitet wird.
- 16. Verfahren nach Anspruch 1, dadurch gekenn-65 zeichnet, daß die Strahlung (10) ortsfest eingestrahlt wird und während des Schweißvorganges der Faltschachtelzuschnitt (11) auf einer Transport-

einrichtung (16) bewegt wird.

- 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß der Faltschachtelzuschnitt (11) auf der Transporteinrichtung (16) gedreht wird.
- 18. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die Strahlung (10) in einen zu verschweißenden Bereich (27) in Form von zwei Strahlen eingestrahlt wird, und daß sich die Strahlen im zu verschweißenden Bereich (27) addieren.
- 19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die Strahlen von gegenüberliegenden Seiten in den zu verschweißenden Bereich (27) eingestrahlt werden.
- 20. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die Strahlen von einer Seite und in unterschiedlichen Winkeln in den zu verschweißenden Bereich (27) eingestrahlt werden.
- 21. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die Strahlung (10) in einem zu verschweißenden Bereich (27) in Form von zwei Strahlen eingestrahlt wird, wobei der eine Strahl der Vorwärmung des Bereichs (27) und der andere Strahl der Verschweißung des Bereichs (27) dient.
- 22. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß Faltschachtelzuschnitte (11) aus besonders gut wärmeleitendem Basismaterial verschweißt werden.
- 23. Verfahren nach Anspruch 1, Anspruch 2 oder Anspruch 22, dadurch gekennzeichnet, daß Faltschachtelzuschnitte (11) verschweißt werden, in deren zu verschweißenden Bereichen (27) eine die Strahlungsabsorption verbessernde Substanz vorgesehen ist.

Hierzu 5 Seite(n) Zeichnungen

Nummer: Int. Cl.6: Offenlegungstag: DE 195 16 726 A1 B 31 B 3/64 7. November 1996

Fig. 1

Fig. 2

Nummer: Int. Cl.⁶: DE 195 16 726 A1 B 31 B 3/64

Offenlegungstag:

7. November 1996

Nummer: Int. Cl.⁶: DE 195 16 726 A1 B 31 B 3/64 7. November 1996

Offenlegungstag:

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 195 16 726 A1 B 31 B 3/64**7. November 1996

Fig. 9

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 195 16 726 A1 B 31 B 3/64

7. November 1996

7021(6) Dogganiatorio anticiare do acidenza e

III. En la companya de la companya

DOXES OSINO INTEGRAL <u>ESSINEMEN</u>O

PUBNEDATE: November 7, 1996

EAUSAVAN ESTUS

APPLENCE | DESCRIPTION

P\$\$10\$\$15\LDATA\\DE\$[05167/26\L\May.6\\\095)

والمراقية والمهار والميد