Making improved predictions of Non-invasive Continuous Arterial Blood Pressure through leveraging EHR medication data

SIMON LEE¹, Ákos Rudas², & Jeffery N. Chiang²

- 1 BIG Summer Program, Institute for Quantitative and Computational Biosciences, UCLA
- 2 Department of Computational Medicine, University of California, Los Angeles, CA, USA

Background

Non-invasive non-continuous blood pressure measurements

Invasive **continuous** blood pressure measurements

There exists a computational tool that can predict ABP non-invasively and continuously

ABPImputation Package

Hill, B.L., Rakocz, N., Rudas, Á. et al. Imputation of the continuous arterial line blood pressure waveform from non-invasive measurements using deep learning. Sci Rep 11, 15755 (2021). https://doi.org/10.1038/s41598-021-94913-y

Table 2. RMSE table

Method	MIMIC	UCLA
PPG scaling	6.895 (6.876–6.914)	9.108 (9.078-9.137)
Sideris et al	13.940 (13.901–13.978)	13.111 (13.072–13.151)
1D V-Net	5.823 (5.806-5.840)	6.961 (6.937–6.985)

Table 2. Root mean square error (mean (95% CI)) for each cohort.

Predictions are pretty good! but can always be better!

How can we make predictions better

Our Input Data

EKG, PPG, & Medication time series

Data Scraping (much of my summer...)

LOGIC FLOW

- Read D_items.csv to extract vasopressor drug ID's
- 2. Filter INPUTEVENTS_MV.csv for only patients who recieved vasopressors
- 3. Scrape the amount of drug administered
- 4. Calculate in milliseconds, the administration rate
- 5. Glob.glob the specific patient files
- 6. Go to p0xxxxxxx.csv.gz (patient file) and build 5 zero columns for the vasopressor features
- 7. Match the drugs that were administered to the corresponding columns of the patient file
- 3. Find start and end time and fill in the rate
- Write out csv with new drug columns (Most painful part)

Optimization via parallel processing

- 1. Start at the start and end of patient list
- 2. Allocate 10 gpu cores each and begin writing out csv files with new drug columns
- Big Idea is widely inspired by TV show "Silicon Valley" middle out compression algorithm

Complications along the way...

I ended up crashing the halperin gpu server because of exceeding RAM capabilities. But finally generated my enormous dataset

Model

Current Patient sample

- 1 Patient
 - Split into training frame and testing frames
 - (<mark>32408, 400, 15)</mark>

Training set

Testing set

Bland Altamn on 1D Vnet

Bland Altamn on 1D Vnet with Medication

