

CPE/EE 695: Applied Machine Learning

Module 10-2: Unsupervised Learning

Dr. Shucheng Yu, Associate Professor

Department of Electrical and Computer Engineering

Stevens Institute of Technology

1870

Unsupervised Learning

In real world, the vast majority of data is unlabeled.

- Supervised learning is not applicable.
- Unsupervised learning is needed.

Examples of unsupervised learning tasks:

- Clustering to group similar instances into clusters
- Anomaly detection to detect abnormal instances
- Density estimation to estimate the probability density function (PDF) of the random process generating the data
- Dimensionality reduction to reduce high-dimension data to lowdimension data.

Clustering

Clustering can be used in different applications, such as

- Customer segmentation
- Data analysis
- Dimensionality reduction
- Anomaly detection
- Semi-supervised learning
- Image searching
- Image segmentation

Popular clustering algorithms:

- K-Means
- DBSCAN
- Others: agglomerative clustering, BIRCH, mean-shift, affinity propagation, spectral clustering, etc.

1870

K-Means

Five blobs of instances exists in below example. How to cluster the blobs efficiently? K-Means (by Stuart Lloyd, Bell Labs, 1957) can do this in just few iterations.

Basic idea of K-Means:

- Select the number k.
- 2) Randomly select *k* instances from the data. Use their locations as *k* centroids.
- 3) Repeat the following steps until the centroids are not moving (convergence):
 - a) Assign each instance to a closest centroid based on Euclidean distance.
 - b) Update each centroid with the mean of the instances assigned to it.

Problems with K-Means

Variability: Running K-Means multiple times result in different clustering

- Problem: how to know which one is the best clustering?
- Performance measure one:
 - Inertia the sum of distances between instances to their respective centroids.
- Run K-Means multiple times with different initial centroids, respectively. The clustering with the smallest inertia is picked as final solution.

Problems with K-Means

- How to determine the number of clusters k?
 - \circ The K-Means algorithm can return a clustering for any number k.
 - \circ The optimal choice of k shall have a good balance of inertia vs. efficiency.
 - The commonly used method is so-called the "elbow" rule
 - Plot the curve of Inertia vs. k
 - The curve drops fast before the "Elbow" but slow after.

Problems with K-Means

- How to determine the number of clusters k?
 - Another approach is to use so-called "silhouette score", which is the mean of so-called "silhouette coefficient" of each instance.
 - silhouette coefficient = $\frac{b-a}{\max(a,b)}$, $-1 \le \text{silhouette coefficient} \le 1$
 - where *a*: the mean distance to other instances; *b*: the mean of distance to instances in the closest cluster.
 - *silhouette coefficient* = +1: the instance is well inside its own cluster.
 - *silhouette coefficient* = 0: the instance is on the boundary of cluster.
 - *silhouette coefficient* = -1: the instance is misplaced in wrong cluster.

DBSCAN

- A density-based clustering algorithm
 - It classifies instances (points) into three types core, reachable and outliers, based on a parameter ε that specifies the radius of a neighborhood of a point.
 - A point p is a core point only if there are at least #Min points within ε distance
 of p including p.
 - A point q is **directly reachable** from p if q is within ε distance of p.
 - A point q is **reachable** from p if there exists a path $p \rightarrow ... \rightarrow q$, with each pair of neighboring nodes in the path are directly reachable.
 - Any nodes not reachable from any core point are outliers.

Gaussian Mixtures Model (GMM)

- GMM is a probabilistic model assuming that instances were generated from a mixture of several Gaussian distributions whose parameters are unknown. [see page 260 -261 of Geron textbook]
 - GMM works very well with clusters with different ellipsoidal shapes, sizes, density and orientation, while K-Means does not.
 - GMM can be used for clustering, density estimation and anomaly detection.
 - When observing an instance, you know it was generated from one of the Gaussian distributions but not exactly which one.
 - \circ Each instance x_i is therefore can be interpreted as:

$$(x_i, z_{i1}, z_{i2}, ..., z_{ik})$$

- where z_{ij} is a latent variable (whose value is not observable) representing Gaussian distribution j, assuming there are k Gaussian distributions.
- z_{ii} =1 if x_i was generated from Gaussian distribution j; z_{im} = 0 if $m \neq j$.

Gaussian Mixtures Model (GMM)

- The EM algorithm can be used to estimate the parameters of GMM.
 [see page 191 -193 of Mitchell textbook]
 - o Initialize hypothesis to $h = \langle u_1, u_2, ..., u_k \rangle$, assuming only means of the k distributions are unknown.
 - Step 1: calculate the expected value $E(z_{ij})$ for each latent variable z_{ij} , assuming the current hypothesis $h = \langle u_1, u_2, ..., u_k \rangle$ holds.
 - Step 2: Calculate a new maximum likelihood hypothesis $h' = \langle u_1', u_2', ..., u_k' \rangle$, assuming each each latent variable z_{ij} takes the value $E(z_{ij})$ calculated in Step 1. Then replace h with h' and iterate.
- Determining the number of clusters
 - To find a model that minimizes a theoretical information criterion:
 - Bayesian Information Criterion (BIC)

$$BIC = \log(m) p - 2\log(\hat{L}), \text{ or }$$

Akaike Information Criterion (AIC)

$$AIC = 2p - 2\log(\hat{L})$$

where m is the number of instances, p is the number of parameters learned by the model, \hat{L} is the maximized value of the likelihood function of the model.

Principle Component Analysis (PCA)

- PCA is a popular technique for dimensionality reduction
 - o PCA identifies the axis accounting for the largest amount of variance of training data, as shown by C1 in the figure.
 - Then it finds the second axis for the second largest amount of variance, so on and so forth.
 - o The i^{th} axis is called the i^{th} principal component (PC) of data.

(Image from Geron textbook)

- The axes are orthogonal to each other.
- Actually, principal components are eigenvectors of the data's covariance matrix.
- PC can be computed in two ways:
 - 1) Eigen-decomposition of the data covariance matrix or
 - 2) Singular value decomposition (SVD) of the data matrix.