MATH GRE PREP: WEEK 5

UCHICAGO REU 2019

(1) Consider the following multiplication table.

	$\mid a \mid$	b	c	d	e
\overline{a}	d	c	e	a	b
b	e	d	a	b	c
c	b	e	d	c	a
d	a	b	c	d	e
e	c	a	b	$egin{array}{c} a \\ b \\ c \\ d \\ e \end{array}$	d

Which of the following properties are true?

- (I) The binary operation \cdot is associative.
- (II) The binary operation \cdot is both left and right cancellative (e.g., for all x, y, there exist unique p, q such that $x \cdot p = y$ and $q \cdot x = y$).
- (III) The binary operation \cdot has an identity element.
- (A) None of the above are true (the object is a magma).
- (B) II only (the object is a quasigroup).
- (C) I and III (the object is a monoid).
- (D) II and III (the object is a loop).
- (E) I, II, and III (the object is a group).

Date: August 6, 2019.

- (2) Let $X = \mathbb{Z}_{>0}$. Define the Hjalmar Ekdal topology \mathcal{T} on X by $Y \in \mathcal{T}$ if the successor of every odd integer in Y is also in Y. Which of the following are properties of this topology?
 - I. It is compact.
 - II. It is locally path connected. Namely, for every $x \in X$ and every neighborhood N of x, there is a subneighborhood that is path connected.
 - III. It is totally disconnected, i.e. all connected components are points.
 - (A) None
 - (B) I and II only
 - (C) I and III only
 - (D) II only
 - (E) III only
- (3) Given the following system of equations, what is x?

$$x + y + z = 10$$

$$w + y + z = 7$$

$$w + x + z = -3$$

$$w + x + y = 4$$

- (A) -2
- (B) -1
- (C) 0
- (D) 1
- (E) 2

- (4) Let A, B, C be sets with |A| = 15, |B| = 10, which of the following ensure that $|C| \ge 25$?
 - I. There are surjections $C \to A$ and $C \to B$ and A and B are disjoint.
 - II. $A \cup B \subseteq C$.
 - III. $C \setminus B \subseteq A$.
 - IV. $\mathcal{P}(A \setminus B) \setminus C = \emptyset$.
 - (A) I only
 - (B) II only
 - (C) IV only
 - (D) II and III
 - (E) III and IV
- (5) Let $A \subset \mathbb{R}$ be a set that contains the rationals.
 - I. If A has positive measure (e.g., length), then $A = \mathbb{R}$.
 - II. If A is open, then $A = \mathbb{R}$.
 - III. If A is connected, then $A = \mathbb{R}$.

Which of the above must be true?

- (A) All of these are true.
- (B) II only
- (C) I and III only
- (D) III only
- (E) I and II only

(6) What is

$$\frac{1}{1\cdot 2} + \frac{1}{3\cdot 4} + \frac{1}{5\cdot 6} + \cdots?$$

- (A) log 3
- (B) log 2
- (C) $2 \log 2$
- (D) e
- (E) $-\frac{1}{2} + \log 2$
- (7) Let $\alpha, \beta \in \mathbb{R}$ be such that

$$\lim_{x \to 0} \frac{x^2 \sin(\beta x)}{\alpha x - \sin x} = 1.$$

What is $6(\alpha + \beta)$?

- (A) 5
- (B) 6
- (C) 7
- (D) 8
- (E) 9

(8) Consider the following graph of f''(x), for f a function defined on [-3,3].

Which of the following is incorrect? (For ease of interpretation, note that every point given as an x-coordinate is a zero of f''(x), e.g., the point x = 0.1 corresponds to the point (0.1, 0) on the graph.)

- (A) It is possible that f is continuously differentiable.
- (B) The function f' achieves local maxima at x = -5/3, x = 1.2, x = 1.8, and x = 2.1.
- (C) The function f''' has a local maximum at x = 0.1.
- (D) If $f'(x) = \int_0^x f''(x)dx$, then f achieves its minimum in the range [0, 0.25].
- (E) The function f'' is differentiable wherever it is defined.

(9) Which of the following is the smallest value of n for which the following limit exists for all $r \geq n$?

$$\lim_{(x,y)\to(0,0)} \frac{x^r}{|x|^2 + |y|^2}$$

- (A) 1
- (B) 1.5
- (C) 2
- (D) 2.5
- (E) 3
- (10) What is the length of the curve $\langle t, t \cdot \sin t, t \cdot \cos t \rangle$, $0 \le t \le \pi$?
 - (A) $\frac{\pi}{4}\sqrt{2+\pi^2} + \frac{1}{2}\operatorname{arcsinh}(\pi/\sqrt{2})$
 - (B) $\frac{\pi}{2}\sqrt{2+\pi^2} + \operatorname{arcsinh}(\pi/\sqrt{2})$
 - (C) $\pi\sqrt{2+\pi^2} + \operatorname{arcsinh}(\pi/\sqrt{2})$
 - (D) $\pi\sqrt{2+\pi^2}+2\operatorname{arcsinh}(\pi/\sqrt{2})$
 - (E) $2\pi\sqrt{2+\pi^2} + 4 \operatorname{arcsinh}(\pi/\sqrt{2})$
- (11) Solve the following differential equation.

$$y' = \cos(x - y)$$

- (A) $y \tan \frac{x-y}{2} = C$
- (B) $x + \tan \frac{x-y}{2} = C$
- (C) $x + \cot(x y) = C$
- (D) $y + \sin(x y) = C$
- (E) $x + \cot \frac{x-y}{2} = C$

(12) For $r \in \mathbb{R}$, consider the limit:

$$\lim_{z\to e^{i\pi/2r}}\frac{z-e^{i\pi/2r}}{z^{2r}+1}.$$

What is the largest set (ordered by containment) where the above limit exists and is non-zero for all r in the set?

- (A) Ø
- (B) r > 0, and r is an integer
- (C) $r \ge 1/2$
- (D) r > 0
- (E) $r \neq 0$
- (13) Consider the matrix

$$\begin{pmatrix} 1 & 2 & x \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{pmatrix}.$$

For which value of x is this matrix not invertible?

- (A) -1
- (B) 0
- (C) 2
- (D) 3
- (E) 5
- (14) Let A be the unit 2-sphere in \mathbb{R}^3 . Let $F = (x^3 y^2 z^4, 2y^3, z^3 3zy^2)$ be a vector field. Let \overrightarrow{n} be the outward-pointing normal. Evaluate:

$$\iint_A F \cdot \overrightarrow{n} dS.$$

- (A) 3π
- (B) π
- (C) $\frac{12\pi}{5}$
- (D) $\frac{-3\pi}{2}$
- (E) 0

(15) A function f is called Hölder continuous of exponent α if:

$$\exists c \in \mathbb{R} : \forall x, y, |f(x) - f(y)| \le c|x - y|^{\alpha}.$$

Which of the following is incorrect?

- (A) If $f:[0,1]\to\mathbb{R}$ is Hölder continuous of exponent 3/2, then f is constant.
- (B) If $f:[0,1]\to\mathbb{R}$ is C^1 , then f is Hölder continuous of exponent α , for all $0\leq\alpha\leq1$.
- (C) If f is Hölder continuous of exponent $\alpha > 0$, then f is uniformly continuous.
- (D) If $f: \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous, then f is Hölder continuous of exponent α for all $0 < \alpha \le 1$.
- (E) The function $f(x) = \sqrt{x}$ is Hölder continuous of exponent 1/2.
- (16) Suppose that A is a real matrix with non-negative eigenvalues, and B is a real matrix with eigenvalues of absolute value less than one.
 - I. I + A is invertible
 - II. I + B is invertible
 - III. I A is inverible
 - IV. I B is invertible

Which of the above are true?

- (A) II only
- (B) II and IV only
- (C) I and III only
- (D) I, II, and IV only
- (E) All of the above are true.
- (17) What is the length of the curve $x^{2/3} + y^{2/3} = 4$?
 - (A) 48
 - (B) 52
 - (C) 56
 - (D) 60
 - (E) 64

- (18) Suppose A is a 3×3 matrix with entries in \mathbb{R} . Assume that $\det(A) = 6$, $\operatorname{tr}(A) = 6$, and that 3 is an eigenvalue of A. Compute $\operatorname{tr}(A^2)$.
 - (A) -7
 - (B) 7
 - (C) 14
 - (D) 36
 - (E) 40
- (19) Let M_n be the vector space of $n \times n$ matrices over \mathbb{R} . For a matrix $A \in M_n$, define $L_A \colon M_n \to M_n$ by

$$L_A(B) = AB$$
.

Let U be the subset of M_n comprising of upper triangular matrices with diagonal entries 1 endowed with the obvious linear structure. Which of the following is false?

- (A) The map $L_A : M_n \to M_n$ is linear.
- (B) If $A \in U$ then the restriction $L_A \mid_U$ is a linear isomorphism of U.
- (C) dim $M_n = n^2$ and dim $U = \frac{n(n-1)}{2}$
- (D) If $A = \lambda I$, then $\det L_A = \lambda^{n^2}$.
- (E) L_A is invertible if and only if A is invertible.
- (20) Consider the polynomial

$$x^3 - 3x + a.$$

Which is the largest range of a for which this polynomial has three distinct real roots?

- (A) a > 0
- (B) |a| < 2
- (C) $|a| \le 2$
- (D) |a| < 1/2
- (E) $|a| \le 3$

- (21) Find the maximum of x^2y on the curve $x^2 + 2y^2 = 6$.
 - (A) 3
 - (B) 4
 - (C) 5
 - (D) 6
 - (E) 7
- (22) Suppose that N is a nonzero 2 by 2 matrix over \mathbb{C}^2 such that $N^{2019} = 0$. Then which matrix need N be similar to, over \mathbb{C} , of course.

I.

 $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

II.

 $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

III.

 $\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$

- (A) I only
- (B) II only
- (C) I and II only
- (D) I and III only
- (E) I, II, and III

Answers

- (1) (D): Checking associativity is a pain: note it is not $\mathbb{Z}/5\mathbb{Z}$ the only group of order 5.
- (2) (D): Obviously non-compact, and $\{1,2\}$ is a connected component. Note $f(x) = \lfloor x \rfloor$ is a path from $0 \to 1$.
- (3) (B): Solve it (note: fastest to sum all of the equations).
- (4) (C): Consider disjointness in the other cases.
- (5) (D): Enumerate the rationals, and take exponentially decreasing open sets containing each one. Consider the union.
- (6) (B): Recognize the Taylor series for log.
- (7) (C): Use Taylor series to evaluate, should get $\alpha = 1$ and $\beta = 1/6$.
- (8) (E): It is not differentiable at about x = 2.8.
- (9) (D): You can take two different paths when r=2; else, just let y=0 to bound it from above.
- (10) (B): Compute the integral (hyperbolic substitution).
- (11) (E): Substitute u = x y, solve separable differential equation.
- (12) (C): There is an issue with choice of branch, e.g., let r = 1/4 and note $(e^{i\pi/2r})^{2r} = 1$.
- (13) (D): Set determinant equal to zero.
- (14) (C): Use Stokes theorem (after converting to spherical coordinates).
- (15) (D): This is only true locally. Note the identity function is Lipschitz, but not Hölder.
- (16) (D): Use Jordan blocks. Or recall that $\det(A+B) \ge \det(A) + \det(B)$.
- (17) (A): This is an astroid; you could parameterize, to make the integral easier.

- (18) (C): Eigenvalues are 1, 2, 3; note eigenvalues of square is square of eigenvalues.
- (19) (B): U is not a linear subspace.
- (20) (B): Differentiate to determine where local maximum/minimum is.
- (21) (B): Use Lagrange multiplers.
- (22) (E): Use Jordan Canonical form, and deduce.