

Departamento de Engenharia Informática FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA PÓLO II – Pinhal de Marrocos 3030-290 Coimbra, Portugal

Algoritmos e Estruturas de Dados

Exame de Treino

Nome:	N. Est./St ID:		
email:	Avaliação para 50 pontos		
Pontuação Exame:	Pontuação Aval. Cont. AED T:	Pontuação Exame (050):	
GRUPO A	A – Análise de Complexidade e Técnicas	de Desenho de Algoritmos	
A.1 (10 pontos) Consider complexidade O-grande	e a seguinte figura e ilustre os elemento	os relevantes para representar a notação de	
Descreva agora sucintame coerente com letras usada:		itmo tem complexidade temporal O(N²). Seja	
	ação incorreta penaliza em 5 pontos) Considuintes afirmações são verdadeiras:	dere as técnicas de desenho de algoritmos	
dinâmica tende a criar uma pode ser transformada nun guarde resultados interméd	a recursão mais curta (menor profundidade na iteração sem recurso a pilha auxiliar □ a dios □a recursão terminal pode facilmente s s seleções feitas acima como verdadeiras. E	oritmo recursivo em iterativo □ a programação da árvore de recursão) □ a recursão indireta recursão terminal beneficia de um método que ser convertida numa estrutura iterativa Explique sucintamente os conceitos envolvidos	

GRUPO B – Estruturas de Dados

B.1 (5 pontos) Considere uma Árvore VP. Indique as propriedades a que obedece uma árvore deste tipo:

Prop. #1	
Prop. #2	
Prop. #3	
Prop. #4	
Prop. #5	

B.2 (20 pontos) Considere a árvore AVL representada abaixo. Mostre a evolução da árvore quando elimina sequencialmente os seguintes elementos:
40 50 45

B.3 (15 pontos) Considere o espaço de memória abaixo. Crie uma tabela de dispersão que utilize todo o espaço de memória disponível. Use como função de dispersão o resto da divisão e como função de dispersão *quadratic probing*. Faça as parametrizações que achar necessárias e adequadas. Mostre o resultado da inserção das seguintes chaves **21 10 32 18 19 20 29.** Apresente os cálculos efetuados.

00	
01	
02	
03	
04	
05	
06	
07	
08	
09	
10	

GRUPO C – Algoritmos de Ordenamento

C.1 (20 pontos) Considere o algoritmo de ordenamento *HeapSort* usado para colocar por ordem <u>decrescente</u> os seguintes elementos: **2 8 16 1 3 10 11 12**. Mostre a evolução do espaço de memória para os primeiros 4 elementos. Comece por mostrar no espaço de memória a *Heap Tree* inicial.

	pode ter complexidade O(N log N)?
stifique:	
3 Considere a rede	e de ordenamento apresentada na figura:
	0 —
	1
	1
	1
	0
	0
	0
	0
3.1 (5 pontos) Mos	stre na figura acima os valores à saída da rede de ordenamento
2.2 (E nantas) Ous	tipo de rada á cata?
3.2 (5 pontos) Que	e tipo de rede é esta?
ıraterize a entrada	e as saídas produzidas em termos do que foi estudado sobre redes de ordenamento:

GRUPO D – Mapeamento de Cadeias de Carateres

(este grupo aparecerá em alternativa a outro grupo ou parte de outro grupo)

D.1 (10 pontos) Considere a seguinte cadeia de carateres:

GCTTTAACTACGACAC

e o seguinte padrão a procurar na cadeia acima:

CGAC

Mostre os passos principais do processo de Mapeamento recorrendo ao algoritmo de Boyer-Moore

