[CUAI] CS231n 스터디 1팀

2025.05.12

발표자 : 김성민

스터디원 소개 및 만남 인증

Study Info

- 스터디 시작일: 2025.03.17(월) ~ 6/2(월)
- 스터디 장소: 중앙대학교 스터디룸
- 스터디 시간: 매주 윌요일 1회 18:00~20:00
- 스터디 구성원 : 황민아, 조한서, 김승미, 김성민

목차

- 1. 스터디 진행 상황
- 2. 학습 내용

스터디 진행 상황

[1주차] 3/17

- 1. Introduction to CNN for Visual Recognition
- 2. Image Classification
- 3. Loss Functions and Optimization

[2주차] 3/24

- 4. Introduction to NN
- 5. CNN
- 6. Training Neural Networks, Part 1

[3주차] 3/31

- 7. Training Neural Networks, Part 2
- 8. Deep Learning Software

중간고사 4/22~28

[4주차] 5/5

9. CNN Architectures

10. RNN

[5주차] 5/12

12. Visualizing and Understanding

[6주차] 5/19

11. Detection and Segmentation

13. Generative Models

[7주차] 5/26

14. Reinforcement Learning

15. Efficient Methods and Hardware for Deep Learning

[8주차] 6/2

16. Adversarial Examples and Adversarial Training

기말고사 6/17~23

- AlexNet
- VGG
- GoogleNet
- ResNet

•••

AlexNet

CONV1

MAX

POOL1

NORM1

CONV2

MAX

POOL2

NORM2

CONV3

CONV4

CONV5

Max

POOL3

FC6 FC7

FC8

VGGNet

VGGNet

Softmax	
FC 1000	
FC 4096	
FC 4096	
Pool	
2x3 conv. 256	
3x3 conv. 384	
Pool	
3x3 conv., 384	
Pool	
5x5 conv., 256	
11x11 conv, 96	
input.	
AlexNet	

	Softmax
	PC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
PC 4096	3x3 conv. 512
Pool	3x3 conv, 512
3x3 conv. 512	3x3 conv. 512
3x3 conv. 512	3x3 conv. 512
3x3 conv., 512	Pool
Pool	3x3 conv. 512
3x3 conv. 512	3x3 conv. 512
3x3 conv., 512	3x3 conv, 512
3x3 conv. 512	3x3 conv, 512
Pool	Pool
3x3 conv., 256	3x3 corw, 256
3x3 conv. 256	3x3 conv., 256
Pool	Pool
3x3 conv., 128	3x3 conv. 128
3x3 conv., 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 comr, 64
3x3 conv, 64	3x3 comr, 64
Input	Input
VGG16	VGG19

GoogLeNet

ResNet

ResNet

Long Short Term Memory (LSTM) [Hochreiter et al., 1997]

f: Forget gate, Whether to erase cell

i: Input gate, whether to write to cell

g: Gate gate (?), How much to write to cell

o: Output gate, How much to reveal cell

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

First Layer: Visualize Filters

AlexNet: 64 x 3 x 11 x 11

ResNet-18: 64 x 3 x 7 x 7

ResNet-101: 64 x 3 x 7 x 7

DenseNet-121: 64 x 3 x 7 x 7

Weights:

西部側の日前が85回目の交易を3

Weights:

Weights

layer 1 weights

16 x 3 x 7 x 7

layer 2 weights

20 x 16 x 7 x 7

layer 3 weights

20 x 20 x 7 x 7

Last Layer: Nearest Neighbors

4096-dim vector

Test image L2 Nearest neighbors in feature space

Maximally Activating Patches

Occlusion Experiments

Saliency Maps

Gradient Descent

입력 이미지가 들어왔을 때 Weight 값을 update하기 위해 사용했던 방법

Gradient Ascent

해당 뉴런을 활성화시키는 General한 입력 이미지를 찾아내는 방법

감사합니다