Mathematical and Logical Foundations of Computer Science

Week 2 - Additional Examples

Vincent Rahli

University of Birmingham 2020/21

Propositions

Upper case letters stand for variables, while lower case letters stand for atomic propositions. We will often use variables rather than specific atomic propositions.

Here are examples of propositions:

- $P \rightarrow Q \rightarrow R$
 - it stands for $P \to (Q \to R)$
 - ▶ because → is right-associative
 - ▶ this is different from $(P \rightarrow Q) \rightarrow R$
 - lacktriangleright it uses 2 variables P and Q
- $p \rightarrow q \rightarrow r$
 - it stands for $p \to (q \to r)$
 - ▶ because → is right-associative
 - this is different from $(p \rightarrow q) \rightarrow r$
 - ightharpoonup it uses 2 atoms p and q

Propositions

Here are further examples of propositions:

- $P \wedge Q \to P \vee Q$
 - it stands for $(P \land Q) \rightarrow (P \lor Q)$
 - ▶ because ∧ and ∨ have precedence over →
 - ▶ this is different from $P \land (Q \rightarrow P \lor Q)$
 - ightharpoonup it uses 2 variables P and Q
- $\neg \neg P \rightarrow P$
 - it stands for $(\neg(\neg P)) \rightarrow P$
 - ▶ because ¬ has precedence over →
 - ▶ this is different from $\neg\neg(P \to P)$
 - ▶ it uses 1 variable P

Propositions

Those are not propositions:

- $P \wedge \wedge Q$
 - this is not derivable from the syntax of propositional logic
 - ▶ it is not possible to have two ∧ next to each other
- $P \rightarrow \wedge Q$
 - this is not derivable from the syntax of propositional logic
 - it is not possible to have a \wedge next to a \rightarrow

Natural Deduction Proofs

Here is a Natural Deduction proof of $A \vee B \vdash C \rightarrow (A \vee B) \wedge C$

$$\frac{A \vee B \quad \overline{C}^{1}}{(A \vee B) \wedge C} \stackrel{[\wedge I]}{} C \to (A \vee B) \wedge C \qquad 1 \ [\to I]$$

Note that $C \to (A \lor B) \land C$ is read as $C \to ((A \lor B) \land C)$

Natural Deduction Proofs

Here is a Natural Deduction proof of $Q \vdash (Q \rightarrow R) \rightarrow R$

$$\frac{\overline{Q \to R} ^{1} Q}{R} \xrightarrow{[\to E]} \frac{[\to E]}{(Q \to R) \to R} \xrightarrow{[\to I]}$$

Natural Deduction Proofs

Here is a Natural Deduction proof of $\vdash \neg (A \land B) \rightarrow A \rightarrow \neg B$

$$\frac{-(A \wedge B)}{-(A \wedge B)} \stackrel{1}{\stackrel{A}{\longrightarrow}} \stackrel{B}{\stackrel{A}{\longrightarrow}} \stackrel{[\wedge I]}{\stackrel{[\neg E]}{\longrightarrow}} \frac{\bot}{A \wedge B} \stackrel{3}{\stackrel{[\neg I]}{\longrightarrow}} \frac{\bot}{A \rightarrow \neg B} \stackrel{3}{\stackrel{[\neg I]}{\longrightarrow}} \frac{\bot}{A \rightarrow \neg B} \stackrel{1}{\stackrel{[\rightarrow I]}{\longrightarrow}} \frac{\bot}{A \wedge B} \stackrel{1}{\longrightarrow} \stackrel{$$

Note that $\neg(A \land B) \to A \to \neg B$ is read as $\neg(A \land B) \to (A \to \neg B)$