t^{2-1} arety |X(t)| + t = X(t), $[a; 6] = [-\frac{3}{2}, \frac{3}{2}]$. A. $X(t) = \frac{t^2-1}{2} \operatorname{arctg}[X(t)] + t$ $P: C[-\frac{3}{2}, \frac{3}{2}] \rightarrow C[-\frac{3}{2}; \frac{3}{2}]$, 900 = +2-1 arolg(x(t))+t PCxJ=X $P[x] = y(t, |x(t)|), \quad y(t, u) = \frac{t^2}{2}$ and yu + tY(t, u) Henpepulha Ha unomermbe [-3;3] x [0;+00) u 4 (tr) respersible guppepengunpyena no u, rpuren mon brea $(t,u) \in [-\frac{3}{2}; \frac{3}{2}] \times [0;+\infty)$ capabeguila eyenia: $|\psi_u(t,u)| = \frac{t^2-1}{2+2u^2} \le \frac{t^2-1}{2} < 1$, $t \in [-\frac{3}{2}; \frac{3}{2}]$ d= 2 - kosp, chamus enepampa P $d_{\text{max}} = (t = \pm 1, S) = \frac{1, 5 \cdot 1, 5 \cdot 1}{2} = \frac{1, 25}{2} = 0,625$ B. Memog npoemuse umepaisuri - grigoryev_15.m

 $X(t) = 2 \int (t+s)^2 x(s) ds - 2t^2$ $\varepsilon = 10^3$ A. P. C[0;1] -> C[0;1], P[x]= 2 (t+s)2x(s)ds-2+2 K(t,s)=2(++s)2 - ggpo unmerpaller. onepamopa, PD=x 2= 2 max \$[(+s)2/2s < 1 telo;1] = 0 \(\(\(\(\) \)^2 \(\) \(\(\) $\int (t+s)^2 ds = \int (t^2+2ts+s^2) ds = \left(st^2+s^2+t+\frac{s^3}{3}\right) \left[\frac{1}{s^2}\right] = \frac{1}{s^2}$ $= t^2 + t + \frac{1}{3}$ $\max_{t \in [0,1]} (t^2 + t + \frac{1}{3}) = 2\frac{1}{3}$ $\alpha = 2 \cdot \frac{7}{3} < 1 = 3$ => npu 2 < 3/7 k ypalmeneno npunerum rpulyun craudalouj. enepamopol B. Tyoms 2=== , marga x(t) ===== [(++s)2x(s)ds-2+2, L= 3. Memog reportable unepayuri - grigoryev_16.m C. $\chi(t) = -2t^2 + \frac{t^2}{7} \int \chi(s) ds + \frac{2t}{7} \int s \chi(s) ds + \frac{1}{7} \int s^2 \chi(s) ds$. $\chi(t) = -2t^2 + C_1t^2 + C_2t + C_3$, C_1 , C_2 , $C_3 \in \mathbb{R}$, $C_1 = \frac{1}{7} \int X(s) ds$, $C_2 = \frac{2}{7} \int SX(s) ds$, $C_3 = \frac{1}{7} \int S^2X(s) ds$. $C_1 = \frac{1}{7}\int_{-2s^2+C_1}^{2s^2+C_2s^2+C_3} + C_3 + C_3 + C_3 + C_3 + C_3$ $C_2 = \frac{2}{7} \int (-2s^3 + C_1s^3 + C_2s^2 + C_3s) ds = \frac{2}{7} \left(\frac{C_1}{4} + \frac{C_2}{2} + \frac{C_3 - 1}{2} \right)$

$$C_3 = \frac{1}{7} \int (-2s^4 + C_4s^4 + C_2s^3 + C_3s^2) ds = \frac{1}{7} \left(\frac{C_4 - 2}{5} + \frac{C_2}{7} + \frac{C_3}{3} \right)$$

$$C_1 = \frac{C_4 - 2}{24} + \frac{C_2}{144} + \frac{C_3}{7}$$

$$C_2 = \frac{RC_4}{2E_{34}} + \frac{2C_2}{24} + \frac{C_3}{7}$$

$$C_3 = \frac{C_4 - 2}{35} + \frac{C_2}{49} + \frac{C_3}{21}$$

$$C_4 = \frac{17703}{262166}$$

$$C_5 = \frac{C_4 - 2}{35} + \frac{C_4}{49} + \frac{C_3}{21}$$

$$C_6 = \frac{17703}{262166}$$

$$C_7 = \frac{16489}{134083} - \frac{23373}{131083} + \frac{17703}{262166}$$

$$C_7 = \frac{16489}{134083} - \frac{17703}{134083} + \frac{17703}{262166}$$

$$C_7 = \frac{16489}{134083} - \frac{17703}{134083} + \frac{17703}{262166}$$