Final Project Documentation

Ryan McHugh

April 2020

Carberry Pi Documentation

```
// Logo
Carberry Pi
```

Outline of this Document

- 1. Introduction
- 2. Hardware
- 3. Carberry Pi Software
 - 3.1 Dashboard
 - 3.2 Diagnostics
 - 3.3 Configuration
 - 3.4 Displaying Engine Codes
 - 3.5 Architecture
- 4. Connecting the Pieces
- 5. Getting Up and Running

Introduction

• Carberry Pi is an automotive application of a mini-computer in the car. As the quintessential project for my undergraduate studies, this concept provides a deep-dive into an area of future interest.

Hardware

Carberry Pi requires a few tools of the trade.

Namely:

- Raspberry Pi (this project uses a Raspberry Pi 3 model B)
- Professional Grade OBDII Cable
- Raspberry Pi Touchscreen
- DS3231 RTC IC (Real Time Clock)

Carberry Pi Software

Dashboard

Figure 1: Dashboard

Diagnostics

Configuration

• Currently a work-in-progress

Figure 2: Diagnostics

Figure 3: Configuration

Architecture

Written in

- Backend: Python
 - Utilizes python-obd library for OBD information
- Frontend: PyQt (Qt-Quick Focused) Javascript

Interface Architecture

- Dynamic loading allows react-like module instantiation and destruction
 - Each component is loaded into a view as a separate entity
 - These components can then be pushed/popped onto or from the mainstackview
 - A separate script (javascript) manages the creation/destruction of the back button
- Time
 - The time is based on the RTC (Real Time Clock) of the Raspberry Pi itself.
 - As such, changing the locality has no effect on the time value.

Connecting the Pieces

// tutorial with picture layout of connecting each component

Getting Up and Running

Recommended OS: DietPi

The *DietPi* (debian-based) operating system distribution acts as a lightweight desktop environment for running GUIs on the Pi.

Of Course, you may run this application on another operating system of your choosing.

Recommended DE: LXDE

This project uses LXDE as it is a lightweight desktop environment that suits the limited hardware of the Rasperry Pi wonderfully.

** The autostart functionality of the installation script requires LXDE.

** The use of another desktop environment will require appending a command that executes the *start_carberry.sh* script to the startup file of the respective DE.