Four circles C_1 , C_2 , C_3 , and C_4 are concurrent at a point O, with pairs C_1 , C_3 and C_2 , C_4 externally tangent at O.

The circles intersect again at A, B, C, D as shown. Show that $AB \cdot OD \cdot OC = CD \cdot OA \cdot OB$

Seometry [medium] BMO 2001

A triangle ABC has \angle ACB > \angle ABC. The internal bisector of \angle BAC meets BC at D. The point E on AB is such that \angle EDB = qo° . The point \angle on AC is such that \angle BED = \angle DEF. Show that \angle BED = \angle FDC.

Two circles Ci and C2 intersect at a point A.

A chord BC of Ci is parallel to the tangent of C2 at A.

AB and AC intersect C2 at D and E. Prove that

BCED is cyclic.