Acids, bases and solution equilibria

A four lecture course for the 1st year

Jose M. Goicoechea

http://course.chem.ox.ac.uk/acids-bases-and-solutions-equilibria-year-1-2014.aspx

http://goicoechea.chem.ox.ac.uk/teaching.html

Acid-base reactions

$$NH_{3} + H_{3}O^{+} \longrightarrow NH_{4}^{+} + H_{2}O$$

$$H_{2}O + HI \longrightarrow H_{3}O^{+} + I^{-}$$

$$HSO_{4}^{-} + H_{2}O \longrightarrow SO_{4}^{2-} + H_{3}O^{+}$$

$$NH_{3} + BF_{3} \longrightarrow NH_{3}:BF_{3}$$

$$C_{5}H_{5}N + I_{2} \longrightarrow C_{5}H_{5}N:I_{2}$$

Redox reactions

A redox reaction is a reaction in which there is a change in oxidation state

Fe³⁺(aq) + Cr²⁺(aq)
$$\longrightarrow$$
 Fe²⁺(aq) + Cr³⁺(aq)

Zn(s) + 2H₃O⁺ \longrightarrow Zn²⁺ + H₂(g)

2PCl₃ + O₂ \longrightarrow 2OPCl₃

Ca(s) + H₂ \longrightarrow CaH₂(s)

O₂ + Pt + 3F₂ \longrightarrow [O₂]⁺[PtF₆]⁻

One or two electrons are transferred entirely

Species highlighted act as oxidants

Definitions of Acid/Base

Arrhenius/Ostwald

Brønsted/Lowry

Lux/Flood

'Solvent system'

Lewis

Usanovich

Arrhenius/Ostwald

Acids and bases dissociate in H_2O , releasing H^+ (H_3O^+) and OH^- .

Arrhenius

Ostwald

$$H_2O \longleftrightarrow H^+(aq) + OH^-(aq)$$

H⁺(aq) is an acid OH⁻(aq) is a base

Brønsted/Lowry

Proton theory retained but the definition is now independent of solvent

Brønsted

Lowry

An acid is a proton donor and a base is a proton acceptor.

$$NH_4^+ + NH_2^- \longrightarrow 2NH_3$$
 Other solvents are also capable of self-ionisation

$$HCI + NH_3 \longrightarrow [NH_4] + CI^-$$

Proton transferred from acid to base

Donor acid

Acceptor base

Brønsted/Lowry

Every acid has a conjugate base and every base has a conjugate acid

$$HA + B^- \longleftrightarrow A^- + HB$$

The conjugate base of a weak acid is a strong base, and the conjugate base of a strong acid is a weak base.

TRUE FACT!

Lux/Flood

A definition for anhydrous/dry systems: used in solid state chemistry

The concept focuses on the oxide ion (O^{2-})

A base is a oxide donor and an acid is an oxide acceptor.

$$CaO + SiO_2 \longrightarrow CaSiO_3$$

The Lux-Flood base is a basic anhydride

$$CaO + H_2O \longrightarrow Ca^{2+} + 2OH^{-}$$

The Lux-Flood acid is an acid anhydride.

$$SiO_2 + H_2O \longrightarrow H_2SiO_3$$

Solvent system

$$2H_2O \longrightarrow H_3O^+ + OH^-$$
 This definition is based on $2NH_3 \longrightarrow NH_4^+ + NH_2^-$ solvent autoionisation $2H_2SO_4 \longrightarrow H_3SO_4^+ + HSO_4^-$

An acid is a species that increases the concentration of cation^{solv}

A base is a species that increases the concentration of anion solv

Lewis

An acid is an electron pair acceptor A base is a an electron pair donor

$$NH_3 + BF_3 \longrightarrow NH_3BF_3$$

Has 'lone' pair

Has six valence electrons

More examples of Lewis acid/base interactions

$$AI^{3+} + 6H_2O$$
 \longrightarrow $\begin{bmatrix} OH_2 \\ H_2O/I/I, AI \\ OH_2 \\ OH_2 \end{bmatrix}^{3+}$

All metal cations in donor solvents are Lewis acids interacting with solvent molecules which act as Lewis bases

Usanovich

A broad definition which encompasses all other acid/base concepts

An acid is a species that reacts with bases. It gives up cations or accepts anions or electrons

A base is a species that reacts with acids. It gives up anions, combines with cations, or donates electrons.

Proton equilibria in water

$$HX(aq) + H_2O \longrightarrow H_3O^+ + X^-(aq)$$

$$K_a = \frac{[H_3O^+][X^-]}{[HX]}$$

$$pK_a = -log_{10}K_a$$

$$pH = -log_{10}[H_3O^+]$$

Autoprotolysis

$$2H_2O \iff H_3O^+ \text{ (aq.)} + OH^- \text{ (aq.)}$$
 $K_w = [H_3O^+][OH^-]$

For
$$H_2O$$
, $K_w = 10^{-14}$ at 25° C

Easy way to treat pK_a

Since
$$K_a = \frac{[H_3O^+][X^-]}{[HX]}$$

 $K_a = [H^+(aq.)]$ when $[HX] = [X^-]$ i.e. when HX is 50% converted to X^-

pK_a is pH at which HX is 50% dissociated

Acid	НА	HA A-		p <i>K</i> _a	
Hydriodic	НІ	I-	10 ¹¹	–11	
Perchloric	HCIO ₄	CIO ₄ -	10 ¹⁰	–10	
Hydrobromic	HBr	Br ⁻	10 ⁹	- 9	
Hydrochloric	HCI	CI-	10 ⁷	- 7	
Sulfuric	H ₂ SO ₄	HSO ₄ -	10 ²	-2	
Nitric	HNO ₃	NO ₃ -	10 ²	-2	
Hydronium ion	H ₃ O+	H ₂ O	1	0.0	
Chloric	HCIO ₃	CIO ₃ -	10-1	1	
Sulfurous	H ₂ SO ₃	HSO ₃ -	1.5 × 10 ⁻²	1.81	
Hydrogensulfate ion	HSO ₄ -	SO ₄ ²⁻	1.2 × 10 ⁻²	1.92	
Phosphoric	H ₃ PO ₄	H ₂ PO ₄ -	7.5 × 10 ⁻³	2.12	
Hydrofluoric	HF	F-	3.5 × 10 ⁻⁴	3.45	
Formic	НСООН	HCO ₂ -	1.8 × 10 ⁻⁴	3.75	
Ethanoic	CH₃COOH	CH ₃ CO ₂ -	1.74 × 10 ⁻⁵	4.76	
Pyridinium ion	HC ₅ H ₅ N ⁺	C ₅ H ₅ N	5.6 × 10 ⁻⁶	5.25	
Carbonic	H ₂ CO ₃	HCO ₃ -	4.3 × 10 ⁻⁷	6.37	
Hydrogen sulfide	H ₂ S	HS-	9.1 × 10 ⁻⁸	7.04	
Dihydrogenphosphate ion	H ₂ PO ₄ -	HPO ₄ ²⁻	6.2 × 10 ⁻⁸	7.21	
Ammonium ion	NH ₄ ⁺	NH ₃	5.6 × 10 ⁻¹⁰	9.25	
Hydrocyanic	HCN	CN-	4.9 × 10 ⁻¹⁰	9.31	
Hydrogencarbonate ion	HCO ₃ -	CO ₃ ²⁻	4.8 × 10 ⁻¹¹	10.32	
Hydrogenphosphate ion	HPO ₄ ²⁻	PO ₄ 3-	2.2 × 10 ⁻¹³	12.67	
Hydrogensulfide ion	HS-	S ²⁻	1.1 × 10 ⁻¹⁹	19	

Polyprotic acids

A polyprotic acid loses protons in succession, with each deprotonation becoming progressively less favourable.

The behaviour of such species in solution be represented by a distribution diagram

$$pK_{a1} = 2.21$$

 $pK_{a2} = 7.21$
 $pK_{a3} = 12.68$

$$\alpha(\mathsf{H}_{3}\mathsf{PO}_{4}) = \frac{[\mathsf{H}_{3}\mathsf{PO}_{4}]}{[\mathsf{H}_{3}\mathsf{PO}_{4}] + [\mathsf{H}_{2}\mathsf{PO}_{4}^{-}] + [\mathsf{HPO}_{4}^{2-}] + [\mathsf{PO}_{4}^{3-}]}$$

Hammet acidity function

$$H^+ + X^- \longleftrightarrow HX$$

For any base B:

$$H^+ + B \longrightarrow HB^+$$

$$H_0 = pK_{BH^+} - log \frac{[BH^+]}{[B]}$$

Very concentrated solutions: Hammet acidity function

$$HX + Ind \longrightarrow IndH^+ + X^-$$

Ind is a coloured indicator e.g.

 NH_2

$$H_0 = pK_{IndH^+} + log \frac{[Ind]}{[IndH^+]}$$

 H_0 is the Hammett function of HX

Pure
$$H_2SO_4$$
, $H_0 = -11.9$
Superacid (HSO₃F), $H_0 = -15.1$

Strength of Brønsted acids and bases

Two principal factors control acid/base strength:

1) Inherent properties of the species itself

To quantify this value we must measure proton transfer reactions in the gas phase. Chemistry controlled by ΔH

$$H^+(g) + X(g) \longrightarrow HX^+(g)$$
 $A_p = -\Delta H$
 $A_p = proton \ affinity \ of X$

2) Environment (e.g. solvation)

WORTH REMEMBERING!

Proton-Transfer reactions

$$HA(g) + B(g) \leftarrow A^{-}(g) + HB^{+}(g)$$

Can be considered as two "half reactions"

$$H^{+}(g) + B(g) \xrightarrow{\Delta H_{B}} HB^{+}(g)$$
 $H^{+}(g) + A^{-}(g) \xrightarrow{\Delta H_{A}} HA_{(g)}$

Then
$$\Delta H_{rxn} = \Delta H_B - \Delta H_A$$

 $\Delta H_{rxn} = A_{p(A)} - A_{p(B)}$

The reaction is favourable is $A_{p(B)} > A_{p(A)}$

$$A_p = B_{HX} + \Delta H_{ion} - EA$$

$$A_p = B_{HX} + \Delta H_{ion} - EA$$

GROUP Increasing B_{HX}

Proton affinity $(A_p; KJ/mol)$

H⁻	CH ₃	NH ₂ ⁻	OH ⁻	F ⁻	
1675	1745	1689	1635	1554	
	SiH ₃ ⁻	PH ₂ ⁻	SH	CI ⁻	
	1554	1552	1469	1395	
	GeH ₃ ⁻	AsH ₂ ⁻	SeH⁻	Br ⁻	
	1509	1515	1466	1354	
				_	
				1315	

A_p for H₂O: 723

PH₂⁻ and F⁻ have almost identical A_p values but their pK_a values differ (27 to 3.45, respectively) making F⁻ a much stronger acid in water.

Predictions ignoring solvation

$$HI + H_2O \longrightarrow I^- + H_3O^+$$

$$723 \longrightarrow 1315$$

This can't be right, other factors must be at play

Taking into account solvation effects

B(aq) + H⁺(aq)
$$\rightleftharpoons$$
 BH⁺(aq)

Large $-\Delta H_{hyd}$.

or alternatively...

Effective proton affinity (A_p'; KJ/mol) and pK_a

H ⁻	CH ₃	NH ₂ ⁻	OH ⁻	F⁻
	1380	1351	1188	1150
	49	39	15.7	3.2
	SiH ₃ ⁻	PH ₂ ⁻	SH ⁻	CI ⁻
		1283		1090
	35	27	7.05	-6.1
	GeH ₃ ⁻	AsH ₂ ⁻	SeH⁻	Br⁻
	GeH ₃ ⁻	AsH ₂ ⁻	SeH ⁻	Br ⁻ 1079
	GeH ₃ ⁻ 25	AsH ₂ ⁻ 23	SeH ⁻	
		_		1079
		_		1079 –8

A_p' for H₂O: 1130

Predictions taking into account solvation

$$HI + H2O \longrightarrow I^{-} + H3O^{+}$$

$$1130 \longrightarrow 1068$$

$$NH_3 + H_2O \longrightarrow OH^- + NH_4^+$$
1195
1188

Range of discrimination

HY + HY
$$\rightleftharpoons$$
 H₂Y⁺ + Y⁻

$$K_{auto} = [H_2Y^+][Y^-]$$

$$pK_{auto} = -logK_{auto}$$

Acid-base discrimination windows

Solvent levelling

$$H_2F^+(aq) + H_2O \longrightarrow HF + H_3O^+(aq)$$

$$NH_2^-(aq) + H_2O \longrightarrow OH^-(aq) + NH_3$$

Strongest acid that can exist is H₂Y⁺

Strongest base is Y-

Metal aqua ion acidity

$$\begin{bmatrix} OH_2 \\ H_2O/I_{I_{1/1}} \\ OH_2 \\ OH_2 \end{bmatrix} DH = \begin{bmatrix} OH_2 \\ H_2O/I_{I_{1/1}} \\ H_2O \\ OH_2 \\ OH_2 \end{bmatrix} (n-1) + COH_2 \\ OH_2 \\$$

$$M_{aq.}^{n+} \leftarrow MOH^{(n-1)+} + H_{aq.}^{+}$$

Arrange in order of increasing acidity:

 $[Na(OH_2)_6]^+$, $[Sc(OH_2)_6]^{3+}$, $[Mn(OH_2)_6]^{2+}$, $[Ni(OH_2)_6]^{2+}$

 $[Na(OH_2)_6]^+ < [Mn(OH_2)_6]^2^+ < [Ni(OH_2)_6]^2^+ < [Sc(OH_2)_6]^3^+$

Hydrolysis constants (p K_{hyd}) for cations at 25° C

Li+	Be ²⁺											
13.9	6.2											
Na+	Mg ²⁺											Al ³⁺
14.7	11.4											5.0
K+	Ca ²⁺	Sc ³⁺	Ti ³⁺	V ²⁺	Cr ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn ²⁺	Ga ³⁺
-	12.6	4.7	2.3	6.5	8.7	10.6	10.1	9.6	10.0	7.6	9.5	2.6
				V ³⁺	Cr ³⁺		Fe ³⁺	Co ³⁺				
				2.6	3.9		2.0	3.2				
Rb+	Sr ²⁺	Y3+						Rh ³⁺	Pd ²⁺	Ag+	Cd ²⁺	In ³⁺
-	13.1	8.0						3.2	1.6	11.8	7.9	3.2
Cs+	Ba ²⁺	La ³⁺						lr ³⁺	Pt ²⁺		Hg ²⁺	TI+
_	13.3	9.5						4.8	>2.5		2.5	13.3

Pauling's rules for oxoacids

$$O_pE(OH)_q$$

Rule 1:
$$pK_{a1} = 8 - 5p$$

WORTH REMEMBERING!

The higher the number of oxo- groups bound to the central element, the greater the acidity of the acid.

$HCIO_4$; $O_3CI(OH)$; $pK_a = -10$

The higher acidity is due to the greater number of resonance structures of the conjugate base

Pauling's rules to the test

$$pK_{a1} = 8 - 5p$$

Pauling's rules for oxoacids

The successive pK_a values of polyprotic acids (those with q > 1), increase by five for each successive proton transfer

Rule 2:
$$pK_{a2} = pK_{a1} + 5$$

 $pK_{a3} = pK_{a2} + 5$
 $pK_{a4} = pK_{a3} + 5$

WORTH REMEMBERING!

$$pK_{a1} = 1.8$$

 $pK_{a2} = 6.6$

$$pK_{a1} = 2.3$$

 $pK_{a2} = 6.9$
 $pK_{a3} = 11.5$

Compare the acidities of the following acids:

$$pK_a = 8 - 5p = 3$$

Real value: 2.12

$$pK_a = 8 - 5p = -2$$

Real value: -2

$$pK_a = 8 - 5p = -7$$

Real value: -10

So what's up with boric acid?

According to Pauling's first rule for oxoacids it should have a pK_a of 8. Tabulated values indicate $pK_a = 9.2$

However, it does not act as a conventional Brønsted acid! Not deprotonated at the hydroxide

Lewis acidity at boron results in the formation of an adduct weakening O–H bond in water

Poloxo- compounds

As the pH of a solution is increased the aqua ions of metals with basic or amphoteric oxides undergo polmerisation and precipitation

$$[Fe(OH_2)_6]^{3+}(aq) + (3 + n)H_2O \longrightarrow Fe(OH)_3 \cdot nH_2O + 3H_3O^+$$

 $[Al(OH_2)_6]^{3+}(aq) + (3 + n)H_2O \longrightarrow Al(OH)_3 \cdot nH_2O + 3H_3O^+$

Syntheses using acid/base reactions in alternative solvents

$$PH_{3} + NaNH_{2} \xrightarrow{PH_{3}} NaPH_{2} + NH_{3}$$

$$NaPH_{2} + CH_{3}CI \xrightarrow{CH_{3}CI} CH_{3}PH_{2} + NaCI$$

$$C_{2}H_{2} + NaNH_{2} \xrightarrow{C_{2}H_{2}} NaC_{2}H + NH_{3}$$

$$NaC_{2}H + C_{4}H_{9}CI \xrightarrow{C_{4}H_{9}CI} C_{4}H_{9}C_{2}H + NaCI$$

From 2012 Prelims:

4. Answer *BOTH* part (a) and part (b).

(a) Account for the variation in the pK_a values of the acids given below. [7]

Acid:	HF	HCl	HBr	HI	$HClO_4$	HCIO ₃
pK_a	3.5	-7	_9	-11	-10	-3

[3]

- (b) Account for each of the following observations:
 - (i) Addition of SbF₅ to liquid HF forms a very strong "superacid".
 - (ii) CO₂ acts as a Brønsted acid in aqueous solution.

Acids, bases and solution equilibria

LECTURE 2

Lewis acid/base theory

acid e- pair acceptor base e- pair donor adduct complex

How do these interactions take place?

In addition to a base with a lone pair of electrons the acid must also have an empty orbital capable of interacting with the lone pair on the base. Electronically saturated complexes will not form an adduct.

$$H^+ + :B \longrightarrow [H:B]^+$$

A Brønsted acid exhibits Lewis acidity because it donates H⁺, which in turn can accept a lone pair of electrons from a Lewis base.

$$M^{n+} + x:B \longrightarrow [M(B)_x]^{n+}$$
acid
metal

base
ligand

adduct
complex

e.g. aqua ions $[Fe(OH_2)_6]^{3+}$

(3) Main-group compounds with incomplete 'octet'

$$H_3C$$
 — Be — CH_3

Molecules that can arrange valence e⁻ to create a vacant orbital

$$\begin{array}{c} O \\ C \\ C \\ \end{array} + \begin{array}{c} \left[O - H\right]^{\Theta} \longrightarrow \begin{array}{c} O \\ C \\ \end{array} - OH \end{array}$$

(5) Compounds of heavy p-block elements

$$PF_{5} + F^{-} \longrightarrow [PF_{6}]^{-}$$

$$SbCl_{5} + Cl^{-} \longrightarrow [SbCl_{6}]^{-}$$

$$SiF_{4} + 2F^{-} \longrightarrow [SiF_{6}]^{2-}$$

H-bonding

Lewis acid/base interactions have a strong influence on the physical properties of compounds

Structure of BeCl₂

CI——Be——CI Gas phase High temperature

Solid state
One dimensional chain structure

Oligomerisation/Polymerisation

Structure of AIBr₃?

NOT monomeric AIBr₃!

Oligomerisation/Polymerisation

$$AI^{3+}_{(aq)} \xrightarrow{-H^{+}} [AI(OH_{2})_{5}(OH)]^{2+} \longrightarrow dimer$$

Brønsted acid

Lewis acid

$$H_{2}O_{1/1/1}, H_{2}O_{1/1/1}, H_{2}O_{1/1/$$

Strength of Lewis acids and bases

Factors:

- 1) Electronic properties
- 2) Structure

Techniques:

- 1) Spectroscopy
- 2) Electrochemistry
- 3) Calorimetry

Equilibrium constants

$$A + :B \longrightarrow A:B$$

$$K_f = \frac{[AB]}{[A][B]}$$

$$A + nB \Longrightarrow AB_n$$

$$\beta_n = \frac{[AB_n]}{[A][B]^n}$$

Experimental observations in WATER

$$Mg^{2+}$$

$$K_f: F^- > CI^- > Br^- > I^-$$

$$Hg^{2+}$$

$$K_f: I^- > Br^- > CI^- > F^-$$

Why???

HARD/SOFT interactions

Concept introduced by R. G. Pearson (1963)

Class a compounds = HARD Small, Highly charged, Low polarizability

Class b compounds = SOFT Large, Small or no charge, High polarizability

Observations by Ahrland, Chatt and Davies (1958)

Metal + Halide

Class a: $F^- > I^-$

Class b: $I^- > F^-$

TRUE FACT!
Well not really, but
close enough

Examples

Metal + Halide

Class a: $F^- > I^-$

Class b: $I^- > F^-$

$$AI^{3+}(aq) + HgF^{+}(aq) \longrightarrow AIF^{2+}(aq) + Hg^{2+}(aq)$$

However,

$$AII^{2+}(aq) + Hg^{2+}(aq) \longrightarrow AI^{3+}(aq) + HgI^{+}(aq)$$

Everyday examples

Goldschmidt classification of elements

Lithophiles: H-H

Chalcophiles: S-S

The tarnish on AI is OXIDE
The tarnish on Ag is SULPHIDE

Gold extracted as [Au(CN)₂]⁻

HARD/SOFT

Hard likes hard Soft likes soft

WHY???
Combination of Intrinsic and Extrinsic effects

HARD ACIDS

Non-polarisable, often small and highly charged

HARD BASES

Non-polarisable, ions based on 2p elements

SOFT ACIDS

Large, small charge, polarisable

SOFT BASES

I⁻, CN⁻, RS⁻, PR₃, CO

Typically involve elements from 3p and lower rows

Irving-Williams series

$$[M(H_2O)_n]^{2+} + L \iff [M(L)(H_2O)_{n-1}]^{2+} + H_2O$$

Ordering of K_f

$$Ba^{2+}< Ca^{2+}< Mn^{2+}< Fe^{2+}< Co^{2+}< Ni^{2+}< Cu^{2+}> Zn^{2+}$$

Approximately in order of decreasing r+

Logarithms of the stability constants for the 1:1 complexes between Ba²⁺ through Zn²⁺ and the bidentate ligands oxalic acid, glycine, ethylenediamine, mercaptoacetic acid, and mercaptoethylamine.

Steric effects

More steric effects: Frustrated Lewis Pairs

Steric bulk prevents association of Lewis acidic and Lewis basic sites:

Unquenched reactivity!

Figure form *Science* **2006**, *314*, 1124

No adduct formation!

Acidity of BX₃

The order of thermodynamic stability of complexes of : $N(CH_3)_3$ with BX_3 is $BF_3 < BCI_3 < BBr_3$

Opposite of what one would expect using halogen electronegativites as an argument.

 π -orbital overlap between full halogen p orbitals and empty B 2p orbitals must be broken in order to form acid/base adduct

Trends in Lewis acidity

$$Sil_4 < SiBr_4 < SiCl_4 < SiF_4$$

but

$$BF_3 < BCl_3 < BBr_3 < Bl_4$$

'Frontier' orbitals

LUMO Empty acceptor orbital

HOMO Donor orbital. Contains e- pair

HARD-HARD

Ion-ion, ion-dipole Non-polarlisable

SOFT-SOFT

Covalent bonding Polarisable

HARD ACIDS

Non-polarisable, often small and highly charged

HARD BASES

Non-polarisable, ions based on 2p elements

SOFT ACIDS

Cu⁺, Ag⁺, Cd²⁺, Hg²⁺, Tl⁺

Large, small charge, polarisable

SOFT BASES

I⁻, CN⁻, RS⁻, PR₃, CO

Typically involve elements from 3p and lower rows

HARD

LUMO ——

Hard base has high-lying LUMO

SOFT

Soft base has low-lying LUMO

Soft base has high-lying HOMO

Hard base has low-lying HOMO

HARD-HARD

Ion-ion, ion-dipole Non-polarlisable

SOFT-SOFT

Covalent bonding Polarisable

Interpretation of hardness and softness

Hard acid-base interactions are predominantly <u>electrostatic</u>.

Soft acid-base interactions are predominantly covalent.

π -acidity; π -basicity

Stabilise soft Lewis acids (soft bases)

Stabilise hard Lewis acids (hard bases)

What reactions are we measuring?

$$Hg^{2+}(aq) + 4X^{-}(aq) \longleftrightarrow HgX_4^{2-}(aq)$$

X	logK	
CI	16	
Br	22	
	30	

Gas phase

$$HgF_2 + Bel_2 \longrightarrow BeF_2 + Hgl_2$$

 ΔH (KJ/mol) for $MX_2(g) \rightarrow M(g) + 2X(g)$

BeF ₂	1264	HgF ₂	536
Bel ₂	578	Hgl ₂	291

Survivor HARD-SOFT

Competition!

$$HgF_{2(aq)} + I^{-}_{(aq)}$$

Very favourable

$$HgI_{2(aq)} + F^{-}_{(aq)}$$

Electron density is much higher Stronger enthalpy of solvation

Effect of solvent

The solvent is not an innocent bystander... it is involved in the chemical process.

$$HgCl_2 + 2Br^- \Longrightarrow HgBr_2 + 2Cl^-$$

$$\xrightarrow{\Omega_m} GAS PHASE$$

$$ln H_2O$$

Solvents

The solvent dielectric constant is a good guide for the importance of the solvent effect with charged species

However this is an oversimplification Need to consider the solvent effect in terrms of Acid/Base interactions

Solvents are characterised by their **DONOR** numbers and **ACCEPTOR** numbers

DONOR NUMBER

Measured by taking a base : B and determining ΔH_{rxn} with SbCl₅ in CH₂Cl-CH₂Cl

$$SbCl_5 + :B \longrightarrow SbCl_5 - B$$

DONOR NUMBER = $-\Delta H$ (kcal/mol)

ACCEPTOR NUMBER

Measured NMR chemical shifts of ³¹P in Et₃P=O (triethylphosphine oxide) in the pure solvent

$$Et_3P=O$$

Arbitrary scale:

Hexane =
$$0$$

SbCl₅ = 100

SOLVENT	DN	AN	3
Pyridine	33.1	14.2	12.3
DMSO	29.8	19.3	45
Diethylether	19.2	3.9	4.3
H ₂ O	18	54.8	81.7
Ethanoic acid	-	52.9	6.2
Acetone	17	12.5	20.7
Acetonitrile	14.1	19.3	36
Benzene	0.1	8.2	2.3
CCI ₄	-	8.6	2.2
SbCl ₅	-	100	-
CF ₃ COOH	-	105.3	-

SOLVENT	DONOR NUMBER	ACCEPTOR NUMBER
Acetic acid	-	52.9
Acetic anhydride	10.5	-
Acetone	17.0	12.5
Acetonitrile	14.1	19.3
Acetyl chloride	0.7	-
Antimony pentachloride	-	100
Benzene	0.1	8.2
Carbon tetrachloride	-	8.6
Chloroform	-	23.1
Dichloromethane	-	20.4
Diethylether	19.2	3.9
Dimetylsulfoxide (DMSO)	29.8	19.3
Dioxane	14.8	10.8
Ethanol	19.0	37.1
Ethyl acetate	17.1	-
Formamide	-	39.8
Hexamethylphosphorotriamide (HMPA)	38.8	10.6
Methanol	20.0	41.3
Methyl acetate	16.5	-
Methylsulfonic acid	-	126.1
Nitrobenzene	4.4	14.8
Nitromethane	2.7	20.5
Phosphorus oxychloride	11.7	-
Propanol	18.0	33.5
Pyridine	33.1	14.2
Tetrahydrofuran (THF)	20.0	8.0

Drago + Wayland

For:

$$A(g) + B(g) \longrightarrow AB(g)$$

$$-\Delta H = E_A E_B + C_A C_B$$

 $E_{A, B}$ = ionic susceptibility

 $C_{A, B}$ = covalent susceptibility

Drago - Wayland parametres

	E	С	
acids			
SbCl ₅	15.1	10.5	
BMe ₃	12.6	3.48	
SO ₂	1.88	1.65	
Iodine	2.05	2.05	
bases			
NH_3	2.78	7.08	
Benzene	0.23	2.9	
Pyridine	1.17	6.40	
Methylamine 1.30 5.88		5.88	

Drago-Weyland parametres reflect electrostatic (E) and covalent (C) factors, but <u>not</u> solvation Using the Drago - Wayland equation

$$Me_3B + NH_3 \rightleftharpoons Me_3B-NH_3$$

$$\Delta H = -(E_A E_B + C_A C_B)$$

$$\Delta H = -[(12.6 \times 2.78) + (3.48 \times 7.08)]$$

$$\Delta H = -59.7 \text{ kJ/mol}$$

Experimentally: $\Delta H = -57.5 \text{ kJ/mol}$

Superacids

A Lewis acid can be used to 'boost' the acidity of a Brønsted acid

$$2HF + SbF_5 \longrightarrow [H_2F]^+ + [SbF_6]^-$$

and...

$$2HSO_3F + SbF_5 \longrightarrow$$

$$[H_2SO_3F]^+ + [FSO_3-SbF_5]^-$$

Magic acid

Generation of reactive carbocations

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline \\ C & \\ H_3C \end{array} + SbF_5 \xrightarrow{C \\ H_3C } \begin{array}{c} CH_3 \\ \hline \\ C \\ \hline \\ H_3C \end{array} + [SbF_6]^-$$

Di-Xenon

$$XeF^+ + HF/SbF_5 \xrightarrow{Xe} [Xe_2]^+ + [Sb_4F_{21}]^-$$

ACID-BASE THEORY: CONCEPTS TO REMEMBER

Brønsted-Lowry acids/bases: proton transfer; p K_a

Proton affinity; Relative proton affinity. Solvent effect.

Pauling's rules for oxo-acids.

Hard-soft interactions. Effect of solvent.

Measures of solvent polarity and/or donor/acceptor ability.

From 2012 Prelims:

- **4.** Answer *BOTH* part (a) and part (b).
- (a) Account for the variation in the pK_a values of the acids given below. [7]

Acid:	HF	HC1	HBr	HI	$HClO_4$	$HClO_3$
pK_a	3.5	- 7	-9	-11	-10	-3

(b) Account for each of the following observations:

- [3]
- (i) Addition of SbF₅ to liquid HF forms a very strong "superacid".
- (ii) CO₂ acts as a Brønsted acid in aqueous solution.

Acids, bases and solution equilibria

LECTURE 3

Electron transfer

The simplest chemical reaction:

$$X^m + Y^n \longrightarrow X^{m-1} + Y^{n+1}$$

X = oxidant

Y = reductant

m, n are formal oxidation states before reaction

$$Fe^{3+}(aq) + Cr^{2+}(aq) \longrightarrow Fe^{2+}(aq) + Cr^{3+}(aq)$$

Atom transfer

$$XO + Y \longrightarrow X + YO$$

 $X + YH_2 \longrightarrow XH_2 + Y$

e.g.:

$${}^{\text{V}}_{\text{NO}_3^-} + {}^{\text{IV}}_{\text{SO}_3^{2-}} \longrightarrow {}^{\text{III}}_{\text{NO}_2^-} + {}^{\text{VI}}_{\text{SO}_4^{2-}}$$

$${}^{\text{IV}}_{\text{CO}_2} + {}^{\text{IV}}_{\text{O}_2} \longrightarrow {}^{\text{IV}}_{\text{CO}_2} + {}^{\text{O}}_{\text{H}_2}$$

Redox reactions occur entirely in solution...

... or at the interface; e.g. an electrode

$$Cu^{2+}(aq) + 2 e^{-} \longrightarrow Cu(s)$$

$$A_{ox} + H_2 \longrightarrow A_{red} + 2H^{+}_{(aq)}$$

1 atm H_2 "1 M" H+ (i.e. pH = 0) Standard Hydrogen electron

$$K = \frac{[A_{red}][H^+]^2}{[A_{ox}][H_2]} \longrightarrow p(H_2)$$

Van't Hoff equation

$$K = 10^{(-\Delta G^{\Theta/2.3RT})}$$

R = universal gas cte. 8.314472(15) $JK^{-1}mol^{-1}$

Write as Half-reactions

Electron is "common currency"...

$$A_{ox} + 2e^{-} \longrightarrow A_{red}$$
 1
 $2H^{+}_{aq} + 2e^{-} \longrightarrow 2H_{2}$ 2

overall reaction is: 1 – 2

$$\Delta G_{rxn}^{o} = \Delta G_{A}^{e} - \Delta G_{H}^{e}$$

By definition $\Delta G_H^{\theta} = 0$

$$\Delta G_{rxn}^{\theta} = \Delta G_{A}^{\theta}$$

$$\Delta G_{rxn}^{e} = -n F E^{e}$$

$$E^{\Theta} = \frac{2.3RT}{nF} \log K$$

$$A_{ox} + B_{red} \xrightarrow{K_{AB}} A_{red} + B_{ox}$$

The two half-reactions are:

$$A_{ox} + ne^- \longrightarrow A_{red} = E_A^e$$
 $B_{ox} + ne^- \longrightarrow B_{red} = E_B^e$

$$logK_{AB} = \frac{n F}{2.3RT} (E_A^{\theta} - E_B^{\theta})$$

Generalise for any system...

$$\Delta G = \Delta G^{e} + 2.3RTlogQ$$

Q = reaction quotient

$$E = E^{\theta} - \frac{2.3RT}{n F} \log \frac{[A_{red}]}{[A_{ox}]} =$$

$$= E^{\theta} + \frac{2.3RT}{n F} log \frac{[A_{ox}]}{[A_{red}]}$$

At 298K:

$$E^{e} + \frac{0.059}{n} log \frac{[A_{ox}]}{[A_{red}]}$$

We can now calculate equilibrium constants and direction of reaction for ANY redox reaction

But first consider 'simple' electron-transfer reactions

To note:

1)
$$nE^{\Theta}$$
 $\left(=-\frac{\Delta G^{\Theta}}{F}\right)$

2) Convention of direction of half-reaction

$$A_{ox} + ne^- \longrightarrow A_{red}$$

Always REDUCTION POTENTIAL

Observe:

However trends in E^e vary

OXIDATION STATES CONTROLLED BY CHEMISTRY

FROM PRELIMS 2006:

(iii) Account for the variation in the standard electrode potentials $E^{+}(M^{+}/M)/V$ of the Group I metals, as tabulated below:

[4]

Li Na K Rb Cs -3.03 -2.71 -2.93 -2.94 -3.02

Lattimer diagrams

$$MnO_2 \xrightarrow{0.95V} Mn^{3+}_{aq} \xrightarrow{1.51V} Mn^{2+}_{aq}$$

MnO₂
$$\longrightarrow$$
 Mn²⁺_{aq} $= 1.23V$

$$E^{\circ} = 0.56$$
 2.26 0.95 1.51 -1.18
 $MnO_4^- \longrightarrow MnO_4^{2-} \longrightarrow MnO_2 \longrightarrow Mn^{3+} \longrightarrow Mn^{2+} \longrightarrow Mn^0$

$$1.70$$
 1.23

$$E = \frac{\Sigma(nE^{\theta})}{\Sigma n}$$

$$\mathsf{E}^{\Theta}_{MnO_4^-/Mn^{2+}}$$

$$0.56 + (2 \times 2.26) + 0.95 + 1.51$$

$$= 1.51 \text{ V}$$

Observe:

Redox dispropotionation:

There are numerous examples in which a particular oxidation state is inherently unstable.

Let's consider a generic case, Mⁿ⁺

$$2M^{n+} \xrightarrow{K_{disp}} M^{(n+1)+} + M^{(n-1)+}$$

The two half reactions are:

$$M^{n+} + e^{-} \longrightarrow M^{(n-1)+} E^{\theta}_{1}$$

$$M^{(n+1)+} + e^{-} \longrightarrow M^{n+} E^{\theta}_{2}$$

$$logK_{disp} = \frac{n F}{2.3RT} (E^{\theta}_{1} - E^{\theta}_{2})$$

M^{n+} is unstable if $E_1^{\theta} > E_2^{\theta}$

Examples

$$2Cu^{+}(aq) \longrightarrow Cu^{2+}(aq) + Cu(s)$$

$$2Mn^{3+}(aq) \longrightarrow Mn^{2+}(aq) + MnO_{2}(s)$$

$$2ClO_{2}^{-}(aq) \longrightarrow ClO^{-}(aq) + ClO_{3}^{-}(aq)$$

These also include main-group species with an odd number of electrons AII, PIV, SV, SIII, PbIII etc. and T.M. compounds in +1 oxidation state

Let's consider Cu+

$$2Cu^{+}(aq) \xrightarrow{K_{disp}} 2Cu^{+}(aq) + Cu(s)$$

The two half reactions are:

$$Cu^{+}(aq) + e^{-} \longrightarrow Cu(s)$$
 $E^{\theta} = 0.52V$ $Cu^{2+}(aq) + e^{-} \longrightarrow Cu^{+}(aq)$ $E^{\theta} = 0.15V$

$$logK_{disp} = 16.9 (0.52 - 0.15)$$

$$K_{disp} = 10^{6.3}$$

Stability of Mn³⁺(aq)

$$2Mn^{3+}(aq) \longrightarrow Mn^{2+}(aq) + MnO_{2}(aq) + 4H^{+}$$

The two half reactions are:

$$Mn^{3+}_{(aq)} \longrightarrow Mn^{2+}_{(aq)} \quad E^{\theta} = 1.51V$$

$$MnO_{2}(s) + 4H^{+} \longrightarrow Mn^{3+}(aq) E^{e} = 0.95V$$

$$\Delta G^{\Theta} = -(1.51-0.95) F = -27 \text{ kJ/mol}$$

The Frost diagram

Oxidation number, N

Interpreting Frost diagrams

Frost diagram Manganese (acidic)

Latimer diagrams

N	N E ^e	
0	0	
+1	0 + 0.52	
+2	0.52 + 0.15	

$$+7$$
 $+6$ $+5$ $+4$ $+3$ $+2$ 0 $MnO_4^- \longrightarrow HMnO_4^- \longrightarrow (H_3MnO_4) \longrightarrow MnO_2 \longrightarrow Mn^{3+} \longrightarrow Mn^{2+} \longrightarrow Mn^0$ $0.90V$ $1.28V$ $2.9V$ $0.95V$ $1.5V$ $-1.18V$

N	Species	Calculation	nE ^e
0	Mn	0	0.0
+2	Mn ²⁺	2 × -1.18	-2.36
+3	Mn ³⁺	$1 \times 1.5 + -2.36$	-0.86
+4	MnO ₂	$1 \times 0.95 + -0.86$	0.09
+5	H ₃ MnO ₄	$1 \times 2.9 + 0.09$	2.99
+6	HMnO ₄ ⁻	1 × 1.28 + 2.99	4.27
+7	MnO ₄ -	$1 \times 0.90 + 4.27$	5.17

Frost diagram Manganese (acidic)

Acids, bases and solution equilibria

LECTURE 4

$$+7$$
 $+6$ $+5$ $+4$ $+3$ $+2$ 0 $MnO_4^- \longrightarrow HMnO_4^- \longrightarrow (H_3MnO_4) \longrightarrow MnO_2 \longrightarrow Mn^{3+} \longrightarrow Mn^{2+} \longrightarrow Mn^0$ $0.90V$ $1.28V$ $2.9V$ $0.95V$ $1.5V$ $-1.18V$

N	Species	Calculation	nE ^e
0	Mn	0	0.0
+2	Mn ²⁺	2 × -1.18	-2.36
+3	Mn ³⁺	$1 \times 1.5 + -2.36$	-0.86
+4	MnO_2	$1 \times 0.95 + -0.86$	0.09
+5	H ₃ MnO ₄	$1 \times 2.9 + 0.09$	2.99
+6	HMnO ₄ ⁻	1 × 1.28 + 2.99	4.27
+7	MnO ₄ -	$1 \times 0.90 + 4.27$	5.17

Frost diagram Manganese (acidic)

$$+7$$
 $+6$ $+5$ $+4$ $+3$ $+2$ 0 $MnO_4^- \longrightarrow MnO_4^{2-} \longrightarrow MnO_4^{3-} \longrightarrow MnO_2 \longrightarrow Mn_2O_3 \longrightarrow Mn(OH)_2 \longrightarrow Mn^0$ $0.56V$ $0.27V$ $0.93V$ $0.15V$ $-0.23V$ $-1.56V$

N	Species	Calculation	nE [®]
0	Mn	0	0.0
+2	Mn ²⁺	2 × -1.56	-3.12
+3	Mn ³⁺	$1 \times -0.23 + -3.12$	-3.35
+4	MnO ₂	$1 \times 0.15 + -3.35$	-3.20
+5	H ₃ MnO ₄	$1 \times 0.93 + -3.20$	-2.27
+6	HMnO ₄ ⁻	$1 \times 0.27 + -2.27$	-2.0
+7	MnO ₄ -	$1 \times 0.56 + -2.0$	-1.44

Frost diagram Manganese (basic)

Frost diagram Manganese

Stabilisation of oxidation states by complexation

$$[Fe^{III}(CN)_6]^{3-} + e^- \Longrightarrow [Fe^{II}(CN)_6]^{4-}$$

 $E^{\theta} = 0.41 \text{V}$

However,

$$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$$

$$E^{\theta} = 0.77V$$

$$M_{ox} + e^{-} \stackrel{E^{\theta}_{1}}{\longleftarrow} M_{red}$$

$$+L | K_{ox} + L | K_{red}$$

$$M_{ox}L + e^{-} \stackrel{E^{\theta}_{2}}{\longleftarrow} M_{red}L$$

$$\Sigma \Delta G^{\Theta} = 0$$

$$-nE_{1}^{\theta}F - RTInK_{red} + nE_{2}^{\theta}F + RTInK_{ox} = 0$$

$$\mathsf{E}_{2}^{\Theta} - \mathsf{E}_{1}^{\Theta} = \frac{2.3\mathsf{RT}}{\mathsf{n}\,F} \log \frac{\mathsf{K}_{\mathsf{red}}}{\mathsf{K}_{\mathsf{ox}}}$$

$$Fe^{3+} + e^{-} \stackrel{E^{\theta_{1}}}{\longrightarrow} Fe^{2+}$$

$$+6CN \left| \beta_{6}^{\text{ox}} \right| +6CN \left| \beta_{6}^{\text{red}} \right|$$

$$[Fe^{\parallel \parallel}(CN)_{6}]^{3-} + e^{-} \stackrel{E^{\theta_{2}}}{\longrightarrow} [Fe^{\parallel \parallel}(CN)_{6}]^{4-}$$

$$E_{2}^{o} - E_{1}^{o} = (2.3RT/F)log(\beta_{6}^{red}/\beta_{6}^{ox})$$

pH dependence of redox equilibria

Nernst equation

$$E = E^{\theta} + \frac{2.3RT}{n F} log \frac{[A_{ox}]}{[A_{red}]}$$

$$A_{ox} + 2H^+ + 2e^- \longrightarrow A_{red}H_2$$

$$E = E^{\theta} + \frac{2.3RT}{2 F} \log \frac{[A_{ox}][H^{+}]^{2}}{[A_{red}H_{2}]} =$$

=
$$E^{\theta}$$
 + $\frac{2.3RT}{2 F} log \frac{[A_{ox}]}{[A_{red}H_2]} - 2 \times \frac{2.3RT}{2 F} pH$

=
$$E^{e} + \frac{2.3RT}{2 F} log \frac{[A_{ox}]}{[A_{red}H_{2}]} - \frac{2.3RT}{F} pH$$

pH independent

pH dependent

$$= E^{e} + \frac{0.059}{2} \log \frac{[A_{ox}]}{[A_{red}H_{2}]} - 0.059pH$$

In general, for reaction:

$$A_{ox} + mH^+ + ne^- \implies A_{red}H_m$$

$$= E^{e} + \frac{0.059}{n} \log \frac{[A_{ox}]}{[A_{red}H_{m}]} - \frac{m}{n} 0.059pH$$

pH dependence

"Trimmed down" equation:

Assuming concentrations of A_{ox} , $A_{red}H_m$ are 1M (unit activities):

$$E_{pH} = E^{\theta} - 0.059 \frac{m}{n} pH$$

Oxo-transfer reactions

$$CIO_4^- + 2e^- \rightleftharpoons CIO_3^- + 'O'$$

'O' = O^{2-} , a very strong base

write as:

$$CIO_4^- + 2H^+ + 2e^- \longrightarrow CIO_3^- + H_2O$$

Pourbaix diagrams

Show how E varies with pH

 $gradient = \\ -0.059 \frac{m}{n}$

Pourbaix diagrams

Include proton transfer within Nernst framework

$$A_{ox} + H^+ \longrightarrow A_{ox}H^+$$

$$m = 1, n=0$$
 gradient = ∞

$$pH < pK^{H}_{ox}$$

$$A_{ox}H^+ + e^- \iff A_{red}H$$

 $m = 0, n = 1$ $gradient = 0$

$$pK^{H}_{ox} < pH < pK^{H}_{red}$$

$$A_{ox} + H^+ + e^- \rightleftharpoons A_{red}H$$

 $m = 1, n = 1$ $gradient = -0.059$

$$pH > pK^{H}_{red}$$

$$A_{ox} + e^{-} \rightleftharpoons A_{red}^{-}$$

 $m = 0, n = 1$ $gradient = 0$

Constructing a Pourbaix diagram

1 Fe³⁺(aq) + e⁻
$$\rightleftharpoons$$
 Fe²⁺(aq) E⁰ = 0.77V
m = 0, n = 1 slope = 0

2 Fe³⁺(aq) + 3H₂O
$$\Longrightarrow$$
 Fe(OH)₃(s) + 6H⁺
n = 0 slope = ∞ (pK \approx 3)

3 Fe(OH)₃(s) +3H⁺+e⁻
$$\implies$$
 Fe²⁺(aq) + 3H₂O
n = 1, m=3 slope = -0.177

Constructing a Pourbaix diagram (continued)

4 Fe²⁺(aq) + 2H₂O
$$\Longrightarrow$$
 Fe(OH)₂(s) +2H⁺
m = 0, n = 0 slope = ∞ (pK \approx 9)

5 Fe(OH)_{3(s)} +H⁺ +e⁻
$$\Rightarrow$$
 Fe(OH)_{2(s)} + H₂O

$$m = 1, n = 1$$
 $slope = -0.059$

For water the limits are:

$$O_2 + 2H^+ + 2e^- \implies 2H_2O \quad E^0 = 1.23V$$

 $m = 2, n = 2 \quad slope = -0.059$

$$2H^{+}_{aq} + 2e^{-} \longrightarrow H_{2}$$
 $E^{e} = 0V$
 $m = 2, n = 2$ $slope = -0.059$

