Wave shaping oscillators Lecture (7) Biastable multivibrator

Op-Amp Astable (Bistable) Multivibrator

Positive-feedback loop Bistable Operation

(Schmitt-trigger Circuit)

$$egin{align} v^+ = V_T = rac{R_1}{R_1 + R_2} V_O = eta V_O \ eta = rac{R_1}{R_1 + R_2} \ V_{TH} = eta L^+ \ V_{TH} = eta (+V_{CC}) \ V_{TL} = eta L^- \ V_{TL} = eta (-V_{CC}) \ \end{array}$$

Positive-feedback loop Bistable Operation

Inverting Multivibrator

Schmitt-Trigger Circuit (Summary)

$$x V^{+} = \frac{Vo.R_{1}}{R_{1} + R_{2}}$$

$$\begin{array}{ccc}
\text{(i) For Vo} &= L^{+} \\
V^{+} &= \frac{R_{1}}{R_{1} + R_{2}}L^{+}
\end{array}$$

$$V_0 = I^{-1}$$

$$V_0 = L^{+} \quad \text{i.i.l.} \quad V_m > \beta^{L^{+}}$$

$$V^{\dagger} = \frac{L^{-}R}{R+R}$$

Example

Applications:

1. Astable Multivibrator (Square-Wave Generator)

Connecting a bistable multivibrator with inverting transfer characteristics in a feedback loop with an RC circuit results in a square-wave generator.

Astable Multivibrator

$$V_{T} = rac{R_{1}}{R_{1} + R_{2}} V_{O} = eta V_{O}$$
 $V_{TH} = eta L^{+} = eta (+V_{CC})$
 $V_{TH} = eta L^{-} = eta (-V_{CC})$
 $V_{TH} = eta L^{-} = eta L_{CC}$

1. Square-Wave Generator

Derive:-

In General,

Vc = VF+(Vin:-VF) C

VF = Final-Value

Vini = initial Value

T= time-Constant

F=RC

at
$$c = T_1$$
, $v_c = \beta L^+$

$$at c - 11
- \pi/7
- BL+ = L+ + (BL- L+) e
- 7,17
- 7,17$$

$$\frac{\pi}{e} = \frac{\beta L - L^{+}}{\beta L^{+} - L^{+}}$$

$$\frac{T}{T} = \ln \frac{\beta L^{-} L^{+}}{\beta L^{+} - L^{+}}$$

$$\pi = \sqrt{\ln \frac{\beta L - L^+}{\beta L^+ - L^+}}$$

$$= L^{-} = -L^{+}$$

$$T_1 = RC \ln \left[\frac{-\beta L^+ - L^+}{\beta L^+ - L^+} \right]$$

$$T_1 = RC \ln \frac{-\beta - 1}{\beta - 1}$$

$$T_1 = RC + \ln \frac{-(1+\beta)}{-(1-\beta)}$$

For symmetrical square-war

$$T = 2RC \ln\left(\frac{1+\beta}{1-\beta}\right).$$

Example

$$\frac{5 \text{dint:on}}{x} = \frac{1}{1 - \frac{1}{10 \times 10^3}} = \frac{-4}{10 \times 10^3} =$$

$$T = 2RC \ln(\frac{1+\beta}{1-\beta})$$

$$\int_{0}^{4} = 2 RC \ln \left(\frac{1.6}{0.4} \right)$$

$$RC = 1.233152 \times 16^4$$

$$: \mathcal{R} = \frac{1.233152 \times 10^{4}}{0.1 \times 10^{6}}$$

$$\mathcal{R} = 1.233 \text{ km}$$

$$\beta = 0.6 = \frac{R_1}{R_1 + R_2}$$

$$6 + 0.6R_1 = 10$$
 $0.6R_1 = 4$

Square-Wave Generator with Amplitude Stabilization:

Using Zener-Bridge Stabilizer:

Operation:

For
$$V_{0}$$
 $V_{0} = 5V$ $V_{0} = 5V$

Example

Design a square wave generator with amplitude stabilization using Zener-bridge circuit. The peak-to-peak output waveform should be 8V of frequency 5KHz. Assuming that $\beta = 0.5$, the Op Amp saturation voltages = $\pm 12V$ and the current through R1 and R2 is 0.2mA.

- 1. Draw the circuit diagram.
- 2. Calculate Vz.
- 3. Calculate R, R1, R2 and C.

Solution:

$$V_{oP} = 4V$$

 $f = G \, \text{kHz}, \beta = 0.5, L^{+} = 12V, L^{-} = -12V,$
 $IR_{i}, R_{2} = 0.2 \, \text{m}^{2}$

Calculate Vz.

3. Calculate R, R1, R2 and C.

*
$$T = 2RC \ln(\frac{1+\beta}{1-\beta})$$

 $\frac{1}{F} = 2RC \ln(\frac{1+\beta}{1-\beta})$
 $\frac{1}{5\times10^3} = 2RC \ln(\frac{1+o.5}{1-o.5})$
 $RC = 9.1024 \times 10^{-5}$
 $Let C = 10NF \rightarrow$
 $R = 9102.42 = 9.1Kn$

*
$$IR_{1,2} = \frac{V_0}{R_1 + R_2}$$
 $\Rightarrow 0.2 \text{ mA} = \frac{4}{R_1 + R_2}$

$$R_1 + R_2 = 20 \text{ Kn} \text{ } 0$$

$B = 0.5 = \frac{R_1}{R_1 + R_2}$ $\Rightarrow 0.5 = \frac{R_1}{20}$

i. $R_1 = 10 \text{ Kn}$

sub. In $t \cdot 0$

i. $R_2 = 10 \text{ Ks}$

2. Triangular and Square waveforms

Circuit

VTH---> Higher threshold level

VTL---> Lower threshold level

For T₁

$$v_{1}(t) = \frac{-1}{RC} \int v_{2}(t) dt$$

$$v_{1}(t) = \frac{-1}{RC} \int V_{CC} dt = \frac{-V_{CC}}{RC} \int dt$$

$$v_{1}(t) = \frac{-V_{CC}}{RC} t$$

$$slope = \frac{-V_{CC}}{RC} = \frac{-L^{+}}{RC}$$

Integrator

For T₂

$$v_{1}(t) = \frac{-1}{RC} \int v_{2}(t)dt$$

$$v_{1}(t) = \frac{-1}{RC} \int -V_{CC}dt = -\frac{-V_{CC}}{RC} \int dt$$

$$v_{1}(t) = -\frac{-V_{CC}}{RC}t$$

$$slope = -\frac{-V_{CC}}{RC} = \frac{-L}{RC}$$

Integrator

$$slope = \frac{L^{+}}{RC} = \frac{V_{TH} - V_{TL}}{T_{H}}$$

$$T_{H} = RC \frac{V_{TH} - V_{TL}}{L^{+}}$$

$$slope = \frac{-L^{-}}{RC} = \frac{V_{TH} - V_{TL}}{T_{L}}$$

$$T_{L} = RC \frac{V_{TH} - V_{TL}}{-L^{-}}$$

$$T_{L} = RC \frac{V_{TH} - V_{TL}}{L^{+}} = T_{H}$$

$$T_L = RC \, rac{V_{TH} - V_{TL}}{L^+} = T_H$$
 $T = T_L + T_H = 2RC \, rac{V_{TH} - V_{TL}}{L^+}$
 $T = 2RC \, rac{eta L^+ - eta L^-}{L^+}$
 $T = 2RC \, rac{eta L^+ - eta L^-}{L^+}$
 $F = 2RC \, rac{eta L^+ + eta L^+}{L^+} = 4RC eta$
 $eta = rac{R_1}{R_2}$
 $T = 4RC \, rac{R_1}{R_2}, \quad f = rac{1}{T}$

Non-linear Op-Amp applications

12 Anti-Logarithmic Amplifier (Anti-Log Amplifier)

Analog Multiplier

1. Block-Diagram

2. Circuit-Diagram

$$\Box V_{o1} = -V_T \ln(\frac{X}{I_s R})$$

$$\Box V_{o2} = -V_T \ln(\frac{Y}{I_s R})$$

$$\square V_{o3} = -\frac{R}{R} \left(-V_T \ln \left(\frac{X}{I_s R} \right) - V_T \ln \left(\frac{Y}{I_s R} \right) \right) = V_T \ln \left(\frac{X}{I_s R} \right) + V_T \ln \left(\frac{Y}{I_s R} \right) = V_T \ln \left(\frac{X Y}{I_s R} \right)$$

$$\Box V_{o4} = -I_{s}R e^{V_{T} \ln \left(\frac{X.Y}{(I_{s}R)^{2}}\right)/V_{T}} = -I_{s}R\left(\frac{X.Y}{(I_{s}R)^{2}}\right) = \left(\frac{-1}{I_{s}R}\right)X.Y$$

$$\square V_{o4} = \left(\frac{-1}{I_s R}\right) X. Y$$

$$\Box V_o = -\frac{R}{R} \left(\frac{-1}{I_s R} \right) X. Y = \frac{1}{I_s R} X. Y$$

$$V_o = \frac{1}{I_s R} X.Y = K X.Y$$

Where
$$K = \frac{1}{I_s R}$$

Analog Devider

1. Block-Diagram

2. Circuit-Diagram

$$\Box V_{o1} = -V_T \ln(\frac{X}{I_s R})$$

$$\Box V_{o2} = -V_T \ln(\frac{Y}{I_s R})$$

$$\square V_{o3} = \frac{R}{R} \left(-V_T \ln \left(\frac{Y}{I_S R} \right) - \left(-V_T \ln \left(\frac{X}{I_S R} \right) \right) \right) = V_T \ln \left(\frac{X}{I_S R} \right) - V_T \ln \left(\frac{Y}{I_S R} \right) = V_T \ln \left(\frac{X}{Y} \right)$$

$$\square V_{o4} = -I_s R e^{V_T \ln(\frac{X}{Y})/V_T} = -I_s R(\frac{X}{Y})$$

$$\square V_{o4} = -I_s R\left(\frac{X}{Y}\right)$$

$$\mathbf{V}_o = \mathbf{I}_s R\left(\frac{X}{Y}\right) = K\left(\frac{X}{Y}\right)$$

Where $K = I_s R$

