Resolviendo desafíos de datos con grafos y motores de recomendación

Paolo Délano Alonso Solutions Arquitect, Neo4j paolo.delano@neo4.com

Las recomendaciones están en todas partes

Servicios financieros

Comercio minorista

Cuidado de la salud

Servicios gubernamentales

© 2022 Neo4j, Inc. All rights reserved.

Caso de estudio

Filtrado colaborativo

Ventaja: puede usar una historia similar para generar recomendaciones.

	Lámpara	Focos	Almohada
Mingo	Х		
Jane	Х	X	
Aditi			X

Filtrado colaborativo

Ventaja: puede usar una historia similar para generar recomendaciones.

	Lámpara	Focos	Almohada
Mingo	Х	?	
Jane	Х	Х	
Aditi			Х

Filtrado colaborativo

Desafío: Problema de arranque en frío.

	Lámpara	Focos	Almohada	Focos AR
Mingo	Х			
Jane	X	Х		
Aditi			X	
Fabien				

Filtrado colaborativo

Desafío: Problema de arranque en frío

	Lámpara	Focos	Almohada	Focos AR
Mingo	Х			
Jane	Х	Х		
Aditi			Х	
Fabien				

Filtrado colaborativo

Desafío: Dificultad para incluir contexto adicional.

		Lámpara	Bombillas	Almohada	**HE Bombillas
/	Mingo	Х			
	Jane	Х	Х		
\	Aditi			X	
	Fabien				

Filtrado colaborativo

Desafío: Volumen y variedad de datos de productos y clientes

	Lámpara	Bombillas	Almohada	**HE Bombillas	
Mingo	Х				-
Jane	Х	Х]
Aditi			Х		
Fabien					

neo4i

Recomendaciones personalizadas

Generar recomendaciones personalizadas es difícil debido a la gran dimensionalidad y a la escasez de datos.

Recomendaciones personalizadas

Generar recomendaciones personalizadas es difícil debido a la gran dimensionalidad y a la escasez de conjunto de datos.

Preguntas

- ¿Cómo mejoro los resultados de búsqueda y genero mejores recomendaciones?
- ¿Cómo resolver las identidades de los clientes y generar recomendaciones personalizadas?
- ¿Cómo tratar con datos amplios y escasos?
- ¿Cómo mejorar las recomendaciones para búsquedas poco frecuentes, nuevos productos y productos con muy pocos resultados?
- ¿Cómo conocer la intención del cliente y predecir/recomendar la siguiente mejor acción?

Recomendaciones personalizadas

Generar recomendaciones personalizadas es difícil debido a la gran dimensionalidad y a la escasez de conjunto de datos.

Preguntas

- ¿Cómo mejoro los resultados de búsqueda y genero mejores recomendaciones?
- ¿Cómo resolver las identidades de los clientes y generar recomendaciones personalizadas?
- ¿Cómo tratar con datos amplios y escasos?
- ¿Cómo mejorar las recomendaciones para búsquedas poco frecuentes, nuevos productos y productos con muy pocos resultados?
- ¿Cómo conocer la intención del cliente y predecir/recomendar la siguiente mejor acción?

Estado actual y limitaciones

- Historial para que cada cliente genere recomendaciones personalizadas.
 - Aumenta el problema de **dispersión**
 e información insuficiente.
- Reducir la dimensionalidad por factorización de matriz o embeddings.
 - Solo adecuado para recomendaciones basadas en contenido.
- Información de nivel macro para el problema de usuarios y productos nuevos.
 - Genera malas recomendaciones

¿Qué es la Ciencia de Datos Orientada a *Grafos*?

La Ciencia de Datos orientada a Grafos (Graph Data Science) es un enfoque basado en la ciencia para obtener conocimiento de las relaciones y estructuras en los datos, típicamente para hacer predicciones.

Los científicos de datos usan las relaciones para responder preguntas.

Propiedad denominada Grafo

Nodo

Representa una entidad en el grafo.

Relación

Conecta nodos entre sí.

Propiedad

Describe un nodo o relación. Ejemplo: nombre, edad, peso, etc

Recomendaciones basadas en el contexto

Recomendaciones basadas en el contexto: Arranque en

Recomendaciones basadas en el contexto: Arranque en

Recomendaciones basadas en el contexto: Contexto adicional

Recomendaciones basadas en el contexto: Contexto

Recomendaciones basadas en el contexto: Volumen y

Recomendaciones basadas en el contexto: Volumen y variedad

Ciclo de vida del cliente

Recomendaciones basadas en el contexto

Los algoritmos de grafos y los embeddings se utilizan para generar recomendaciones de productos y mejorar la relevancia de búsqueda.

Capturar las interacciones con los clientes y el recorrido del cliente mediante un grafo de conocimiento. Analizar las interacciones de los clientes mediante consultas de grafos y encontrar comunidades basadas en el comportamiento de compra común.

Generar recomendaciones de productos basadas en correlaciones entre productos, consultas de búsqueda y compras históricas.

Construir incrustaciones de nodos y resolver entidades basadas en la similitud de pares ponderados entre varias de ellas.

Grafos y Ciencia de Datos

Grafos nativos Machine Learning

Algoritmo de Grafos

Grafos de conocimiento

Encuentra los patrones que estás buscando en los datos conectados.

Técnicas de aprendizaje automático -Machine Learning- sin supervisión, para identificar comunidades, asociaciones y anomalías. y embeddings con aprendizaje automático supervisado para predecir relaciones, etiquetas y datos que faltan.

Gracias!

Escríbeme a paolo.delano@neo4j.com

