

Ecole Nationale Supérieure d'Arts et métiers. Mathématiques

Alg-C

Programmation langage C

Introduction à l'algorithmique

A.BELCAID

anasss.belcaid@gmail.com

Salle 1, TD 2 / 22 février 2016

Références I

- Thomas H. CORMEN et al. *Introduction to Algorithms*. 2nd. McGraw-Hill Higher Education, 2001. ISBN: 0070131511.
- Claude Delannoy. Le guide complet du langage C. Broché, 2014.
- Claude Delannoy. *Programmer en langage C : Cours et exercices corrigés.* Broché, 2014.
- Brian W. Kernighan. *The C Programming Language*. Sous la dir. de Dennis M. Ritchie. 2nd. Prentice Hall Professional Technical Reference, 1988. ISBN: 0131103709.

- 1.1 Définition
- 1.2 Codage

2. ALGORITHMIQUE

- 2.1 Définition
- 2.2 Caractéristiques
- 2.3 Exemples
- 2.4 Complexité
- 2.5 Types de bases
- 2.6 Variables
- 2.7 Déclaration
- 2.8 Affectation
- 2.9 Entrée/Sortie
- 2.10 Exercices

Definition

Une Information

Definition

Une Information, est une **donnée** suscebtible d'être traitée, transférée ou sauvegardée.

Definition

Une Information, est une **donnée** suscebtible d'être traitée, transférée ou sauvegardée.

Definition

Un Traitement

Definition

Une Information, est une **donnée** suscebtible d'être traitée, transférée ou sauvegardée.

Definition

Un Traitement est un ensemble d'opérations effectuées sur des informations, selon un **ordre** précis, et des **règles** bien définies, afin d'obteni des informations mieux **exploitables**.

Informatique, concaténation du mot information, et traitement automatique, est la science de traitement automatique de l'information.

a

Codage

Definition

Un Codage est une convention pour changer la représentation des données, pour faciliter leur conservation, manipulation et leur transimission, en utilisant des lettres, chiffres et symboles.

Codage

Definition

Un Codage est une convention pour changer la représentation des données, pour faciliter leur conservation, manipulation et leur transimission, en utilisant des lettres, chiffres et symboles.

Exemple

Codage binaire : $(9)_{|2} = 1001$

Un Codage est une convention pour changer la représentation des données, pour faciliter leur conservation, manipulation et leur transimission, en utilisant des lettres, chiffres et symboles.

Exemple

Codage binaire : $(9)_{|2} = 1001$

Chiffre de César : Décalage de chaque lettre.

Un Codage est une convention pour changer la représentation des données, pour faciliter leur conservation, manipulation et leur transimission, en utilisant des lettres, chiffres et symboles.

Exemple

Codage binaire : $(9)_{|2} = 1001$

Chiffre de César : Décalage de chaque lettre.

ROT13: wikipedia: ROT 13

Un Codage est une convention pour changer la représentation des données, pour faciliter leur conservation, manipulation et leur transimission, en utilisant des lettres, chiffres et symboles.

Exemple

Codage binaire : $(9)_{|2} = 1001$

Chiffre de César : Décalage de chaque lettre.

ROT13 : wikipedia :ROT 13

mp3:

Un Codage est une convention pour changer la représentation des données, pour faciliter leur conservation, manipulation et leur transimission, en utilisant des lettres, chiffres et symboles.

Exemple

```
Codage binaire : (9)_{|2} = 1001
```

Chiffre de César : Décalage de chaque lettre.

ROT13 : wikipedia :ROT 13

mp3:

Avi,mgeg,...

Un entier A representé dans une base β par une séquence de chiffres $a_i < \beta$:

$$(A)_{|\beta}=a_na_{n-1}\ldots a_1a_0$$

Si:

$$A = \sum_{i=0}^{n} a_i \beta^i$$

Exemples

1.
$$(410)_{|10} =$$

Exemples

1.
$$(410)_{|10} = 4 * 10^2 + 1 * 10^1 0 * 10^0 = 410$$

2.
$$(1001101)_{|2} =$$

Exemples

1.
$$(410)_{|10} = 4 * 10^2 + 1 * 10^1 0 * 10^0 = 410$$

2.
$$(1001101)_{|2} = 2^6 + 2^3 + 2^2 + 2^0 = 77$$

3.
$$(8010)_{|8}$$

1.
$$(410)_{|10} = 4 * 10^2 + 1 * 10^1 0 * 10^0 = 410$$

2.
$$(1001101)_{|2} = 2^6 + 2^3 + 2^2 + 2^0 = 77$$

3.
$$(8010)_{|8}$$
 Ecriture fausse

4.
$$(ABC2)_{|16}$$
=

1.
$$(410)_{10} = 4 * 10^2 + 1 * 10^1 0 * 10^0 = 410$$

2.
$$(1001101)_{|2} = 2^6 + 2^3 + 2^2 + 2^0 = 77$$

3.
$$(8010)_{|8}$$
 Ecriture fausse

4.
$$(ABC2)_{16} = 10 * 16^3 + 11 * 16^2 + 12 * 16^1 + 2 * 16^0 = 43969$$

$$\begin{array}{c|c}
15_{|10} \\
2)\underline{15} & 1 \\
2)\underline{7} & 1 \\
2)\underline{3} & 1 \\
2)\underline{1} & 1
\end{array}$$
1111

$$\begin{array}{c|cc}
15_{|10} \\
2)\underline{15} & 1 \\
2)\underline{7} & 1 \\
2)\underline{3} & 1 \\
2)\underline{1} & 1
\end{array}$$
1111

$$\begin{array}{c|ccc}
28_{|10} \\
2)\underline{28} & 0 \\
2)\underline{14} & 0 \\
2)\underline{7} & 1 \\
2)\underline{3} & 1 \\
2)\underline{1} & 1
\end{array}$$
11100

Codage binaire

$$\begin{array}{c|ccc}
15_{|10} & & & \\
2)\underline{15} & & 1 \\
2)\underline{7} & & 1 \\
2)\underline{3} & & 1 \\
2)\underline{1} & & 1
\end{array}$$
1111

$$\begin{array}{c|ccc}
28_{|10} \\
2)\underline{28} & 0 \\
2)\underline{14} & 0 \\
2)\underline{7} & 1 \\
2)\underline{3} & 1 \\
2)\underline{1} & 1
\end{array}$$
11100

$$\begin{array}{c|cccc}
156_{|10} & & & \\
2)156 & | & 0 \\
2)78 & | & 0 \\
2)39 & | & 1 \\
2)19 & | & 1 \\
2)9 & | & 1 \\
2)4 & | & 0 \\
2)2 & | & 0 \\
2)1 & | & 1
\end{array}$$

A vous la main!!

Exercice

- 1. $(68)_{|2} =$
- 2. $(423)_{|2} =$
- 3. $(137)_{|8} =$
- 4. $(450)_{|16} =$

A vous la main!!

Exercice

- 1. $(68)_{|2} = 1000100$
- $(423)_{|2} =$
- 3. $(137)_{|8} =$
- 4. $(450)_{|16} =$

Exercice

- 1. $(68)_{|2} = 1000100$
- **2.** $(423)_{|2} = 1101001111$
- 3. $(137)_{|8} =$
- 4. $(450)_{|16} =$

Exercice

- 1. $(68)_{|2} = 1000100$
- **2.** $(423)_{|2} = 1101001111$
- 3. $(137)_{|8} = 211$
- 4. $(450)_{|16} =$

Exercice

- 1. $(68)_{12} = 1000100$
- **2.** $(423)_{|2} = 1101001111$
- 3. $(137)_{|8} = 211$
- 4. $(450)_{|16} = 1$ *C*2

Conversion de base

Conversion

Pour passer d'une représentation d'un nombre dans une base β_1 à une autre base β_2 . On peut :

- ► Calculer la valeur dans la base décimale.
- ▶ Coder la valeur trouvée dans la base β_2 .

Exemple

1.
$$(467)_{|8} =$$

Conversion

Pour passer d'une représentation d'un nombre dans une base β_1 à une autre base β_2 . On peut :

- ► Calculer la valeur dans la base décimale.
- ▶ Coder la valeur trouvée dans la base β_2 .

Exemple

- 1. $(467)_{|8} = 311 = (100110111)_{|2}$.
- 2. $(34B)_{|16} =$

Conversion

Pour passer d'une représentation d'un nombre dans une base β_1 à une autre base β_2 . On peut :

- ► Calculer la valeur dans la base décimale.
- ▶ Coder la valeur trouvée dans la base β_2 .

Exemple

- 1. $(467)_{|8} = 311 = (100110111)_{|2}$.
- 2. $(34B)_{|16} = 843 = (1101001011)_{|2}$

Codage des nombres négatifs

Definition

Il existe plusieurs méthodes pour coder un nombre négatif en binaire. La méthode la plus répondue est **Complément à deux**.

Pour cette méthode on doit fixer le nombre de bits réservés pour le codage.

Codage des nombres négatifs

Definition

Il existe plusieurs méthodes pour coder un nombre négatif en binaire. La méthode la plus répondue est **Complément à deux**.

Pour cette méthode on doit fixer le nombre de bits réservés pour le codage.

Ainsi pour coder un nombre -A avec $A \ge 0$ en n bits. On effectue les opérations suivantes :

1. Coder A sur n bits.

$$\frac{-21}{0 \ | \ 0 \ | \ 0 \ | \ 1 \ | \ 0 \ | \ 1 \ | \ 0 \ | \ 1}$$

Il existe plusieurs méthodes pour coder un nombre négatif en binaire. La méthode la plus répondue est **Complément à deux**.

Pour cette méthode on doit fixer le nombre de bits réservés pour le codage.

Ainsi pour coder un nombre -A avec $A \ge 0$ en n bits. On effectue les opérations suivantes :

- 1. Coder A sur n bits.
- Complément à un, une opération qui consiste à inverser chaque bit du codage.

$$-21 =$$

0	0	0	1	0	1	0	1
1	1	1	0	1	0	1	0

Il existe plusieurs méthodes pour coder un nombre négatif en binaire. La méthode la plus répondue est **Complément à deux**.

Pour cette méthode on doit **fixer** le nombre de bits réservés pour le codage.

Ainsi pour coder un nombre -A avec $A \ge 0$ en n bits. On effectue les opérations suivantes :

- 1. Coder A sur n bits.
- 2. Complément à un, une opération qui consiste à inverser chaque bit du codage.
- 3. Ajouter 1 au code obtenu.

-21 =											
0	0	0	1	0	1	0	1				
1	1	1	0	1	0	1	0				
1	1	1	0	1	0	1	1				

91 -

2.2. Codage 14/₃₃

Codage des nombres réels

Definition

Pour le codage des nombres réels. On code la partie entière en base 2, et la partie réelle en base 2^{-1} .

Codage des nombres réels

Definition

Pour le codage des nombres réels. On code la partie entière en base 2, et la partie réelle en base 2^{-1} .

Exemple

Convertir le nombre 6.625 en base binaire.

1. Coder la partie entière :

$$6_{|2} = 110$$

2. Coder la partie réelle par des multiplications par 2.

$$0.625_{12} = 0.101$$

3. finalement:

$$6.625_{|2} = 110.101$$

Algorithme

Définition

Un Algorithme est une suite **d'opérations** de calcul élémentaires, organisée selon des règles précises, dont le but est de résoudre un problème bien définit.

Les opérations d'un algorithme doivent être simples et directes :

Algorithme

Définition

Un Algorithme est une suite **d'opérations** de calcul élémentaires, organisée selon des règles précises, dont le but est de résoudre un problème bien définit.

Les opérations d'un algorithme doivent être simples et directes :

▶ Opérations arithmétique : +, -, /, *, ...

Définition

Un Algorithme est une suite **d'opérations** de calcul élémentaires, organisée selon des règles précises, dont le but est de résoudre un problème bien définit.

Les opérations d'un algorithme doivent être simples et directes :

- ▶ Opérations arithmétique : +, -, /, *, . . .
- ▶ Opérations logiques : a < b, a = b, P ou Q.

Définition

Un Algorithme est une suite **d'opérations** de calcul élémentaires, organisée selon des règles précises, dont le but est de résoudre un problème bien définit.

Les opérations d'un algorithme doivent être simples et directes :

- ▶ Opérations arithmétique : +, -, /, *, . . .
- ▶ Opérations logiques : a < b, a = b, P ou Q.
- transfert des données : lecture et écriture.

Algorithmique

Algorithmique

L'étude des **algorithmes** et des problèmes qui s'y attachent a donné lieu à une branche en informatique : ALGORITHMIQUE.

Algorithmique

- L'étude des **algorithmes** et des problèmes qui s'y attachent a donné lieu à une branche en informatique : ALGORITHMIQUE.
- ► l'algorithmique est un ensemble de règles et des techniques qui sont impliqués dans la définition et la conception d'algorithmes efficaces.

Algorithmique

- L'étude des **algorithmes** et des problèmes qui s'y attachent a donné lieu à une branche en informatique : ALGORITHMIQUE.
- ▶ **l'algorithmique** est un **ensemble de règles** et des **techniques** qui sont impliqués dans la définition et la conception d'algorithmes efficaces.
- l'algorithmique est aussi une science qui étudie l'efficacité ou la rapidité des algorithmes en regardant le nombre d'opérations, ou le temps de calcul qu'il nécessite.

1. Calculer la représentation en *binaire* d'un entier naturel.

- 1. Calculer la représentation en binaire d'un entier naturel.
- 2. Calculer les racines d'un polynôme de deuxième degré.

- 1. Calculer la représentation en *binaire* d'un entier naturel.
- 2. Calculer les racines d'un polynôme de deuxième degré.
- 3. Calculer le plus grand diviseur commun de deux entiers.

- 1. Calculer la représentation en binaire d'un entier naturel.
- 2. Calculer les racines d'un polynôme de deuxième degré.
- 3. Calculer le plus grand diviseur commun de deux entiers.
- 4. Mutiliplication de deux matrices.

- 1. Calculer la représentation en *binaire* d'un entier naturel.
- 2. Calculer les racines d'un polynôme de deuxième degré.
- 3. Calculer le plus grand diviseur commun de deux entiers.
- 4. Mutiliplication de deux matrices.
- 5. Trouver le chemin le plus court dans un graphe complexe.

Recherche des sommets

Definition

Pour un vecteur V de \mathbb{R}^n , un sommet à la position i vérifie :

$$V_{i-1} \leq V_i \geq V_{i+1}$$

avec la **convention** que $V_{-1} = -\infty$ et $V_n = -\infty$

Recherche des sommets

Definition

Pour un vecteur V de \mathbb{R}^n , un sommet à la position i vérifie :

$$V_{i-1} \leq V_i \geq V_{i+1}$$

avec la **convention** que $V_{-1} = -\infty$ et $V_n = -\infty$

$-\infty$	4	8	6	9	10	8	7	6	5	$-\infty$
	0	1	2	3	4	5	6	7	8	

Algorithme 1 : Force brute

Données : V vecteur de \mathbb{R}^n

1 **for** i=0 à n-1 **do**

 $_{2} \quad | \quad \text{if } V_{i-1} \leq V_{i} \geq V_{i+1} \text{ then }$

Sommet $\leftarrow V_i$

 $\frac{1}{2}$

4 | end 5 end

Résultat : Sommet

Algorithme 2 : Recherche du max

Données : V vecteur de \mathbb{R}^n

- 1 $Max \leftarrow -\infty$
- 2 **for** i=0 \hat{a} n-1 **do**
- if $V_i > Max$ then

/* nouveau maximum $Max \leftarrow V_i$

5 end

6 end

Résultat : *Max*

Algorithme 3 : Diviser pour régner

1 RechSommet(
$$A,i,j$$
):

/* Calculer le milieu

*/

 $mid = \frac{i+j}{2}$

3 if $(A_{mid-1} \le A_{mid} \ge A_{mid+1})$ then

4 | Return A_{mid}

5 else if $A_{mid} \le A_{mid+1}$ then

/* Sommet à droite

*/

Return RechSommet($A, mid + 1, j$)

7 else

/* Sommet à gauche

*/

Return RechSommet($A, i, mid - 1$)

9 end

Notion de type

Définition

Un type en algorithmique est une information permettant de **traduire** les valeurs depuis une représentation binaire (celle de l'ordinateur) vers une autre représentation plus adaptée.

Notion de type

Définition

Un type en algorithmique est une information permettant de **traduire** les valeurs depuis une représentation binaire (celle de l'ordinateur) vers une autre représentation plus adaptée.

Caractéristiques

Un **type** est caractérisé par :

- un nom.
- un ensemble de valeurs.
- un ensemble d'opérations définis sur ces valeurs.

entier : représente une partie de \mathbb{Z} , avec les opérations arithmétiques simples :

$$+,-,*,/,\%$$

entier : représente une partie de \mathbb{Z} , avec les opérations arithmétiques simples :

$$+,-,*,/,\%$$

Réel : utilisé pour représenter une **partie** de \mathbb{R} muni des mêmes opérations que les **entiers**.

¹codes/algorithmique/types.py

entier : représente une partie de \mathbb{Z} , avec les opérations arithmétiques simples :

$$+,-,*,/,\%$$

Réel : utilisé pour représenter une **partie** de \mathbb{R} muni des mêmes opérations que les **entiers**.

Caractère: représente un caractère imprimable, et seront écrits entre : {', "}

¹codes/algorithmique/types.py

entier : représente une partie de \mathbb{Z} , avec les opérations arithmétiques simples :

$$+,-,*,/,\%$$

Réel : utilisé pour représenter une **partie** de \mathbb{R} muni des mêmes opérations que les **entiers**.

Caractère: représente un caractère imprimable, et seront écrits entre : {', "}

booleén : sera utilisé pour stocker les valeurs de Vrai, Faux, menu par les

opérations logiques : ou,et,non.

¹codes/algorithmique/types.py

Variables

Définition

Une Variable est une donnée qu'un programme peut manipuler.

Toute variable possède:

Variables

Définition

Une Variable est une **donnée** qu'un programme peut manipuler. Toute variable possède :

type: précisant sa nature: (entier, réel, caractère, booléen).

3.6. Variables 24/₃₃

Variables

Définition

Une Variable est une donnée qu'un programme peut manipuler.

Toute variable possède :

type: précisant sa nature: (entier, réel, caractère, booléen).

nom: Un identificateur que l'utilisateur choisit pour manipuler cette

variable.

3.6. Variables 24/33

Variables

Définition

Une Variable est une donnée qu'un programme peut manipuler.

Toute variable possède :

type: précisant sa nature: (entier, réel, caractère, booléen).

nom : Un identificateur que l'utilisateur choisit pour manipuler cette

variable.

valeur : qui peut évoluer au cours du programme, mais doit respecter le type.

Déclaration

Dans un algorithme, toutes les variables utilisées doivent être déclarées.

Déclaration

Dans un algorithme, toutes les variables utilisées doivent être déclarées.

Déclaration

Une variable est déclarée au début d'un algorithme en précédant son nom par VAR, puis on précise son type après ':'.

Exemple

Var salaire : Entier.
Var taux : Réel.
Var racine1,racine2 : Réel.
Var testDiscriminant : Booléen

3.8. Affectation 26/33

Affectation

Definition

L'opération d'affectation est une **attribution** d'une valeur à une variable. elle se note par le signe \leftarrow

3.8. Affectation 26/33

Affectation

Definition

L'opération d'affectation est une **attribution** d'une valeur à une variable. elle se note par le signe \leftarrow

Definition

L'opération d'affectation est une **attribution** d'une valeur à une variable. elle se note par le signe \leftarrow

- 1 Var A, B : Entier
- 2 Var C : Caractère
- $\mathbf{a} A \leftarrow 1$ Affecte la valeur de 1 à A.
- $A \mapsto A \quad \{\text{donne à } B \text{ la valeur de } A, A \text{ ne change pas}\}$
- $5 \text{ A} \leftarrow A + 1$ augment la valeur de A par 1.
- 6 c='2' un caractère.
- $7 \text{ c} \leftarrow A$ erreur, car A et c ne sont pas de même types.

Exercices

Donner les valeurs des variables déclarées à la fin de chaque algorithme.

Algorithme 4 : Affectation 1

1 Var A : Entier.

$$2 A \leftarrow 13$$

з
$$B \leftarrow 7$$

4
$$B \leftarrow A - B$$

$$A \leftarrow A/2$$

6
$$B \leftarrow A + 1$$

Algorithme 5 : Affectation 2

- 1 Var A : Entier.
- 2 Var x : Réel.
- 3 Var test : Réel

$$A \leftarrow 13$$

$$x \leftarrow 7.5$$

$$6 A \leftarrow A + x$$

7
$$\mathbf{x} \leftarrow \mathbf{x}/2$$

$$\mathbf{s} \ \mathbf{x} \leftarrow 2(\mathbf{A} + \mathbf{x})$$

9 test
$$\leftarrow x > A$$

lecture-Écriture

Les instructions de lecture et écriture(**Entrée/sortie**) permettent au programmeur de communiquer avec l'utilisateur.

Definition

La lecture est l'opération de base qui consiste à lire des données tapées au clavier.

lecture-Écriture

Les instructions de lecture et écriture(**Entrée/sortie**) permettent au programmeur de communiquer avec l'utilisateur.

Definition

La lecture est l'opération de base qui consiste à lire des données tapées au clavier.

lecture-Écriture

Les instructions de lecture et écriture(**Entrée/sortie**) permettent au programmeur de communiquer avec l'utilisateur.

Definition

La lecture est l'opération de base qui consiste à lire des données tapées au clavier.

Lire(Salaire)

Est une **instruction** qui permet à l'utilisateur d'entrer une **nouvelle valeur** pour la variable salaire. à son exécution le programme s'interrompt, pour attendre la saisie de cette valeur.

L'écriture est une instruction permettant à l'algorithme (ou programmeur) de communiquer (ou afficher) les résultats des valeurs calculées à l'utilisateur.

Ecrire(Var)

L'écriture est une instruction permettant à l'algorithme (ou programmeur) de communiquer (ou afficher) les résultats des valeurs calculées à l'utilisateur.

Ecrire(Var)

L'écriture est une instruction permettant à l'algorithme (ou programmeur) de communiquer (ou afficher) les résultats des valeurs calculées à l'utilisateur.

Ecrire(Var)

Affichera le contenu de la variable Var.

▶ Var a,b : Entier

L'écriture est une instruction permettant à l'algorithme (ou programmeur) de communiquer (ou afficher) les résultats des valeurs calculées à l'utilisateur.

Ecrire(Var)

- ▶ Var a,b : Entier

L'écriture est une instruction permettant à l'algorithme (ou programmeur) de communiquer (ou afficher) les résultats des valeurs calculées à l'utilisateur.

Ecrire(Var)

- ▶ Var a,b : Entier
 - ▶ Var C : Caractère
 - $\triangleright a \leftarrow 4 \quad b \leftarrow 5 \quad C \leftarrow$ 'somme'

L'écriture est une instruction permettant à l'algorithme (ou programmeur) de communiquer (ou afficher) les résultats des valeurs calculées à l'utilisateur.

Ecrire(Var)

- ► Var a,b : Entier
 - ▶ Var C : Caractère
 - $\triangleright a \leftarrow 4 \quad b \leftarrow 5 \quad C \leftarrow$ 'somme'
 - ▶ Ecrire(a)

L'écriture est une instruction permettant à l'algorithme (ou programmeur) de communiquer (ou afficher) les résultats des valeurs calculées à l'utilisateur.

Ecrire(Var)

- ▶ Var a,b : Entier

 - $\triangleright a \leftarrow 4 \quad b \leftarrow 5 \quad C \leftarrow$ 'somme'
 - ▶ Ecrire(a)
 - ▷ Ecrire('b=',b)

L'écriture est une instruction permettant à l'algorithme (ou programmeur) de communiquer (ou afficher) les résultats des valeurs calculées à l'utilisateur.

Ecrire(Var)

- ► **Var** a,b : Entier
 - ▶ Var C : Caractère
 - $\triangleright a \leftarrow 4 \quad b \leftarrow 5 \quad C \leftarrow$ 'somme'
 - ▶ Ecrire(a)
 - ▷ Ecrire('b=',b)
 - ▶ Ecrire(C,a+b)

Conversion Température

Voici un exemple d'un algorithme qui demande une température en Celsius, et la convertis en Fahrenheit.

Conversion Température

Voici un exemple d'un algorithme qui demande une température en Celsius, et la convertis en Fahrenheit.

Algorithme 7: Conversion Celsius à Fahrenheit

- 1 **Var** C,F : **Réel**.
- 2 {LECTURE}
- 3 Ecrire('donner une température en Celsius : ');
- 4 Lire(C)
- 5 {Traitement}
- 6 F ← 1.8 C + 32
- 7 {Affichage}
- 8 Ecrire(C,'C =', F,'F')

Exercice

Moyenne

Ecrire un **algorithme** qui calcule la **moyenne** arithmétique et géométrique de deux entiers.

Algorithme 9: Moyennes de deux entiers

- 1 **Var** a,b : **Entier**.
- 2 Var Ma, Mg : Réel.

Moyenne

Ecrire un **algorithme** qui calcule la **moyenne** arithmétique et géométrique de deux entiers.

- 3 Ecrire('Donner deux entiers : ');
- 4 Lire(a)
- 5 **Lire**(b)

6
$$Ma \leftarrow (a+b)/2$$

7
$$Mg \leftarrow \sqrt{ab}$$

- 8 Ecrire('Moyenne arithmetique =',Ma)
- 9 Ecrire('Moyenne géométrique = ',Mg)

Classique absolu

Permuation

Ecrire un algorithme qui lit deux **réels**, puis permute leur valeurs.

Algorithme 11: Permutation de deux valeurs

- 1 **Var** x,y, tmp : **Réel**.
- 2 Ecrire('Donner deux réels : ');
- з **Lire**(a)
- 4 Lire(b)
- 5 $tmp \leftarrow x$
- $6 \ x \leftarrow y$
- $y \leftarrow tmp$
- 8 Ecrire('x=',x)
- 9 Ecrire('y= ',y)

Permuation

Ecrire un algorithme qui lit deux **réels**, puis permute leur valeurs.

Pièces de monnaie

pièce de monnaie

Donner un **algorithme** qui reçoit une **somme d'argent**(< 50*DH*) puis l'affiche en forme de pièces de monnaies élémentaires, d'une manière optimisée.

Exemple

34DH=

Pièces de monnaie

pièce de monnaie

Donner un **algorithme** qui reçoit une **somme d'argent**(< 50*DH*) puis l'affiche en forme de pièces de monnaies élémentaires, d'une manière optimisée.

Exemple

34DH=1*20DH + 1*10DH+2*2DH

pièce de monnaie

Donner un **algorithme** qui reçoit une **somme d'argent**(< 50*DH*) puis l'affiche en forme de pièces de monnaies élémentaires, d'une manière optimisée.

Exemple

34DH=1*20DH + 1*10DH+2*2DH

Algorithme 14: Décomposition

- 1 Var somme,q: Entier.
- 2 Ecrire('Entrer une Somme (<50): ');
- 3 Lire(somme)
- 4 somme,'Dh='

$$q \leftarrow \frac{Somme}{20}$$

- 6 ecrire(q,'*20DH +')
- 7 $somme \leftarrow somme 20 * q$

$$s \ q \leftarrow \frac{\textit{Somme}}{10}$$

- 9 **ecrire**(q, ** 10DH +*)
- 10 $somme \leftarrow somme 10 * q$

11
$$q \leftarrow \frac{Somme}{\tau}$$

- 12 **ecrire**(q,'*5DH +')
- 13 $somme \leftarrow somme 5 * q$
- 14 **ecrire**(somme,'*1DH')