Lógica

Mauro Polenta Mora

Ejercicio 7

Consigna

- (a) Considere una secuencia de formación de ψ en la que ocurren fórmulas que no son subfórmulas de ψ : $\varphi_1, \dots, \varphi_n \equiv \psi$ de la fórmula ψ . Sea φ_i la fórmula de la secuencia que no es subfórmula de ψ , y que aparece más a la derecha en la secuencia. Pruebe que si elimina φ_i de la secuencia de formación dada, la secuencia resultante sigue siendo una secuencia de formación para ψ .
- (b) A partir del resultado anterior, demuestre que si φ ocurre en una secuencia de formación de largo mínimo para ψ , entonces φ es una subfórmula de ψ .

Resolución (parte a)

Consideremos una secuencia de formación $s \in secFORM_{\psi}$ como la mencionada en la letra. Veamos la forma que tendrá esta secuencia:

$$s = \{\varphi_1, \dots, \varphi_i, \dots, \varphi_n, \psi\}$$

Donde φ_i es la fórmula que no es subfórmula de ψ y que aparece más a la derecha en la secuencia. Si eliminamos φ_i de la secuencia, tendremos:

$$s' = \{\varphi_1, \dots, \varphi_{i-1}, \varphi_{i+1}, \dots, \varphi_n, \psi\}$$

Ahora tenemos que ver que s' es una secuencia de formación para ψ

Por una parte, los siguientes elementos sabemos que cumplirán con las propiedades necesarias para ser una secuencia de formación:

$$\varphi_1, \dots, \varphi_{i-1}$$

Esto porque el elemento que eliminamos está a la derecha de estos elementos en la secuencia original s, y por lo tanto, no afecta a estos elementos.

Nos quedaría demostrar que los elementos $\varphi_{i+1}, \dots, \varphi_n, \psi$ también cumplen con las propiedades necesarias para ser una secuencia de formación.

Estos a priori cumplen con las propiedades necesarias para ser una secuencia de formación (porque ya eran parte de una secuencia de formación), excepto en los siguientes casos (tomando φ como un elemento cualquiera entre los mencionados anteriormente):

$$\begin{array}{ll} 1. \ \varphi = (\alpha_1 * \varphi_i) \ \text{con} \ * \in C_2 \\ 2. \ \varphi = (\neg \varphi_i) \end{array}$$

Por una parte, sabemos que todos los elementos con los que estamos trabajando son subfórmulas de ψ (porque quitamos el último elemento que no era una subfórmula), pero si φ es de algunas de las formas mencionadas anteriormente:

- 1. Si $\varphi = (\alpha_1 * \varphi_i)$ con $* \in C_2$ entonces φ_i es subfórmula de φ y por lo tanto de ψ . ABSURDO! φ_i no es subfórmula de ψ por hipótesis.
- 2. Si $\varphi = (\neg \varphi_i)$ entonces φ_i es subfórmula de φ y por lo tanto de ψ . ABSURDO! φ_i no es subfórmula de ψ por hipótesis.

Por lo tanto, hemos demostrado que s' es una secuencia de formación para ψ .

Resolución (parte b)

Probaremos esta parte por absurdo.

Supongamos que tenemos una secuencia $s \in secFORM_{\psi}$ de largo mínimo para ψ y que existe una fórmula φ_i que no es subfórmula de ψ .

Utilizando la parte anterior, sabemos que si eliminamos φ_i de la secuencia, la secuencia resultante sigue siendo una secuencia de formación para ψ .

Pero esto es absurdo, porque si la secuencia original era de largo mínimo, entonces la secuencia resultante no puede ser una secuencia de formación para ψ .

Esto demuestra que si φ ocurre en una secuencia de formación de largo mínimo para ψ , entonces φ es una subfórmula de ψ .