Brewing Data Cup

Datatón, 27-29 de noviembre, 2020

Juan Santos y Juvenal Campos Databuesos

2020-11-29

Descripción del problema

El objetivo es generar un modelo original, escalable y con lógica de negocio que permita proponer un esquema de logística para la repartición de producto proveniente de un Centro de Distribución Regional a lo largo de una semana, satisfaciendo la demanda local de manera óptima y eficiente.

Planteamiento del modelo.

• Primer intento: Generar un modelo de Programación lineal puro. 🔀

- (Problema: Muchas restricciones, difícil de computar).
- **Segundo intento:** Generar un modelo de *Machine Learning* para generar las zonas de reparto.
 - (Problema: Buena segmentación de los datos, pero mal balanceo)
- Tercer intento: Mezclar ML con Programación lineal.

o Resultado: Buen modelo, aprovechando lo mejor de ambos mundos.

Lógica del modelo.

A continuación se muestra el proceso de cálculo seguido por los modelos utilizados para obtener la agrupación en días de reparto.

Resultados.

El método de solución puede consultarse en el repositorio de Github.

Resultados.

El método de solución puede consultarse en el repositorio de Github.

	Dia 🕴	No. Paradas 🎙	Volumen repartido	Distancia	¢
1	D1	666	9,247	7,124	
2	D2	656	8,886	5,799	
3	D3	650	9,246.67	7,234	
4	D4	676	8,886.83	7,493	
5	D5	653	9,247.5	6,019	
6	D6	676	8,886	7,607	

Variable	Desviación estándar	Media	Desviación como pctje de la media
No. Paradas	11.53	662.83	1.73%
Volumen de reparto	197.6	9066.67	2.20%
Distancia entre puntos	774.47	6879.33	11.20%

Ventajas del Modelo

- Rápido (tiempo de cálculo de < 2 min).
- Baja demanda de CPU y RAM
- Escalamiento a grandes conjuntos de datos
- Construido con herramientas Open Source (Python: sklearn, pulp, pandas).
- Flexibilidad para que cada centro personalice sus zonas de reparto.

Potencial a futuro.

- Posibilidad de montar en una aplicación web o elaborar un servicio centralizado para calcular zonas de reparto regionales.
- Eventualmente, se podría robustecer el modelo incorporando en las restricciones de programación lineal:
 - Datos de capacidad y número de camiones repartidores.
 - Datos de almacenamiento en centros de reparto.
 - Ubicación de centros de reparto.
 - Cálculo de rutas de calle.
 - Clusterizado con datos socioeconómicos, etc.

Entre otros.

Gracias por su atención

