<u>Вопрос 18.</u> Базис на прямой, на плоскости и в пространстве. Разложение вектора по базису. Линейная комбинация векторов. Линейно зависимая и линейно независимая система векторов.

Линейной комбинацией векторов \overline{a}_1 , \overline{a}_2 , ..., \overline{a}_m с коэффициентами a_1 , a_2 , ..., a_m называется вектор $\overline{a}_{1^*}a_{1^*}$ $\overline{a}_{2^*}a_{2^*} + \dots + \overline{a}_{m^*}a_m$

Систему векторов называют линейно зависимой, если из этих векторов можно составить нулевую линейную комбинацию, причем хотя бы один из коэффициентов должен быть отличен от нуля, т.е:

Говорят, что векторы \overline{a}_1 , \overline{a}_2 , ..., \overline{a}_m линейно зависимы, если существуют числа a_1 , a_2 , ..., a_m не все равные нулю и такие, что линейная комбинация $\overline{a}_{1*}a_{1} + \overline{a}_{2*}a_{2} + \dots + \overline{a}_{m*}a_{m} =$ нулевому вектору (0, над ним $\overline{}$)

Если это равенство возможно только при $a_1 = a_2 = \dots = a_m = 0$, то векторы \overline{a}_1 , \overline{a}_2 , ..., \overline{a}_m линейно независимые

ЛЕММА 1. Векторы \overline{a}_1 , \overline{a}_2 , ..., \overline{a}_m линейно зависимы тогда и только тогда, когда хотя бы один из них линейно выражается через остальные

Пусть $V^{(3)}(V^{(2)})$ – множество свободных векторов пространства (плоскости)

Максимально линейно зависимое множество векторов в $V^{(3)}$ ($V^{(2)}$) — базис этого множества

Векторы \overline{a}_1 , \overline{a}_2 , ..., \overline{a}_m образуют базис, если:

- 1) \overline{a}_1 , \overline{a}_2 , ..., \overline{a}_m линейно независимы
- 2) \overline{a}_1 , \overline{a}_2 , ..., \overline{a}_m линейно независимы для любого \overline{a} из $V^{(3)}$ ($V^{(2)}$)

ТЕОРЕМА 1. Любые два базиса множества $V^{(3)}$ ($V^{(2)}$) состоят из равного числа векторов ЛЕММА 2 (о базисе $V^{(3)}$ и $V^{(2)}$).

- 1) Базисом множества $V^{(2)}$ являются любые два неколлинеарных вектора
- 2) Базисом множества $V^{(3)}$ являются любые три некомпланарных вектора

СЛЕДСТВИЕ 1 (критерий линейной независимости 2-ух и 3-ех ненулевых векторов)

- 1) Два ненулевых вектора линейно независимы тогда и только тогда, когда они коллинеарны
- 2) Три ненулевых вектора независимы тогда и только тогда, когда они компланарны

ТЕОРЕМА 2 (о базисе).

Каждый вектор множества $V^{(3)}$ ($V^{(2)}$) линейно выражается через любой его базис, причем единственным образом

Разложение векторов по базису:

Пусть дан вектор и декартовая система координат. Совместим а с началом координат.

а_х*і – составляющая данного вектора на оси Ох

а_v*j – составляющая на Оу

Т.е. вектор \overline{a} равен сумме составляющих на оси Ох и на оси Оу

По теореме Пифагора $a^2 = a_x^2 + a_y^2 = a = \sqrt{(ax^2 + ay^2)}$

