CS 107, Probability, Spring 2019 Lecture 19

Michael Poghosyan

AUA

01 March 2019

Content

- CDF and its Properties
- Discrete r.v.

LZ

Laplace's Law of Succession

We know that the Sun has risen each day for the past 5000 years.

LZ

Laplace's Law of Succession

We know that the Sun has risen each day for the past 5000 years.

Question: What is the probability that it will rise tomorrow?

Laplace's Law of Succession

We know that the Sun has risen each day for the past 5000 years.

Question: What is the probability that it will rise tomorrow?

Laplace's answer was:

Laplace's Law of Succession

We know that the Sun has risen each day for the past 5000 years.

Question: What is the probability that it will rise tomorrow?

Laplace's answer was: $\frac{N+1}{N+2}$, where N=1,826,213.

Assume we have an Experiment with Sample Space Ω .

• Any function $X : \Omega \to \mathbb{R}$ is called a Random Variable (r.v.) (on the Experiment);

- Any function $X : \Omega \to \mathbb{R}$ is called a Random Variable (r.v.) (on the Experiment);
- Can you give some examples of r.v.?

- Any function $X : \Omega \to \mathbb{R}$ is called a Random Variable (r.v.) (on the Experiment);
- Can you give some examples of r.v.?
- If X is a r.v. $A \subset \mathbb{R}$, then $X \in A$ is an Event;

- Any function $X : \Omega \to \mathbb{R}$ is called a Random Variable (r.v.) (on the Experiment);
- Can you give some examples of r.v.?
- If X is a r.v. $A \subset \mathbb{R}$, then $X \in A$ is an Event; In particular, for any a < b, the followings are Events: a < X < b, $a \le X \le b$, $a < X \le b$, $a \le X < b$

- Any function $X: \Omega \to \mathbb{R}$ is called a Random Variable (r.v.) (on the Experiment);
- Can you give some examples of r.v.?
- If X is a r.v. $A \subset \mathbb{R}$, then $X \in A$ is an Event; In particular, for any a < b, the followings are Events: a < X < b, $a \le X \le b$, $a < X \le b$, $a \le X < b$
- Having a Complete Information about a r.v. = being able to calculate $\mathbb{P}(X \in A)$ for any $A \subset \mathbb{R}$;

- Any function $X: \Omega \to \mathbb{R}$ is called a Random Variable (r.v.) (on the Experiment);
- Can you give some examples of r.v.?
- If X is a r.v. $A \subset \mathbb{R}$, then $X \in A$ is an Event; In particular, for any a < b, the followings are Events: a < X < b, $a \le X \le b$, $a < X \le b$, $a \le X < b$
- Having a Complete Information about a r.v. = being able to calculate $\mathbb{P}(X \in A)$ for any $A \subset \mathbb{R}$;
- To be able to calculate $\mathbb{P}(X \in A)$ for any $A \subset \mathbb{R}$, it is enough to know the values of the CDF at any point:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R}.$$

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Then:

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Then:

Properties of CDF

• $0 \le F(x) \le 1$, for any $x \in \mathbb{R}$;

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Then:

- $0 \le F(x) \le 1$, for any $x \in \mathbb{R}$;
- $F(-\infty) = 0$ and $F(+\infty) = 1$;

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Then:

- $0 \le F(x) \le 1$, for any $x \in \mathbb{R}$;
- $F(-\infty) = 0$ and $F(+\infty) = 1$;
- F is an increasing function, i.e., if $x_1 \le x_2$, then $F(x_1) \le F(x_2)$;

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Then:

- $0 \le F(x) \le 1$, for any $x \in \mathbb{R}$;
- $F(-\infty) = 0$ and $F(+\infty) = 1$;
- F is an increasing function, i.e., if $x_1 \le x_2$, then $F(x_1) \le F(x_2)$;
- F is right-continuous at every point, i.e. $F(x_0+)=F(x_0)$ at any $x_0\in\mathbb{R}$

Now we want to answer the inverse question: which functions F can serve as CDFs for some r.v.?

Now we want to answer the inverse question: which functions *F* can serve as CDFs for some r.v.? It turns out that the above properties **completely characterize CDFs**:

Now we want to answer the inverse question: which functions *F* can serve as CDFs for some r.v.? It turns out that the above properties **completely characterize CDFs**:

Characterization of CDFs

Assume $F: \mathbb{R} \to \mathbb{R}$ is a function satisfying

- $0 \le F(x) \le 1$, for any $x \in \mathbb{R}$;
- $F(-\infty) = 0$ and $F(+\infty) = 1$;
- F is an increasing function, i.e., if $x_1 \le x_2$, then $F(x_1) \le F(x_2)$;
- F is right-continuous at every point, i.e. $F(x_0+) = F(x_0)$ at any $x_0 \in \mathbb{R}$

Now we want to answer the inverse question: which functions *F* can serve as CDFs for some r.v.? It turns out that the above properties **completely characterize CDFs**:

Characterization of CDFs

Assume $F: \mathbb{R} \to \mathbb{R}$ is a function satisfying

- $0 \le F(x) \le 1$, for any $x \in \mathbb{R}$;
- $F(-\infty) = 0$ and $F(+\infty) = 1$;
- F is an increasing function, i.e., if $x_1 \le x_2$, then $F(x_1) \le F(x_2)$;
- F is right-continuous at every point, i.e. $F(x_0+)=F(x_0)$ at any $x_0\in\mathbb{R}$

Then there exists an Experiment with a Sample Space Ω , Probability Measure \mathbb{P} and a r.v. $X:\Omega\to\mathbb{R}$ such that F(x) is the CDF of X: $F(x)=F_X(x), \qquad x\in\mathbb{R}$.

Graphical Example of a CDF

Figure: CDF of some r.v. X

Now we want to calculate Probabilities using the CDF.

Now we want to calculate Probabilities using the CDF. Assume X is a r.v., and F(x) is its CDF. Then:

Now we want to calculate Probabilities using the CDF. Assume X is a r.v., and F(x) is its CDF. Then:

•
$$\mathbb{P}(X = a) = F(a) - F(a-);$$

Now we want to calculate Probabilities using the CDF. Assume X is a r.v., and F(x) is its CDF. Then:

- $\mathbb{P}(X = a) = F(a) F(a-);$
- $\mathbb{P}(a < X \leq b) = F(b) F(a)$;

Now we want to calculate Probabilities using the CDF. Assume X is a r.v., and F(x) is its CDF. Then:

- $\mathbb{P}(X = a) = F(a) F(a-);$
- $\mathbb{P}(a < X \leq b) = F(b) F(a);$
- $\mathbb{P}(a \le X \le b) = F(b) F(a-);$

Now we want to calculate Probabilities using the CDF. Assume X is a r.v., and F(x) is its CDF. Then:

- $\mathbb{P}(X = a) = F(a) F(a-);$
- $\mathbb{P}(a < X \le b) = F(b) F(a);$
- $\mathbb{P}(a \le X \le b) = F(b) F(a-);$
- $\mathbb{P}(a \le X < b) = F(b-) F(a-);$

Now we want to calculate Probabilities using the CDF. Assume X is a r.v., and F(x) is its CDF. Then:

- $\mathbb{P}(X = a) = F(a) F(a-);$
- $\mathbb{P}(a < X \le b) = F(b) F(a);$
- $\mathbb{P}(a \le X \le b) = F(b) F(a-);$
- $\mathbb{P}(a \le X < b) = F(b-) F(a-);$
- $\mathbb{P}(a < X < b) = F(b-) F(a);$

Now we want to calculate Probabilities using the CDF. Assume X is a r.v., and F(x) is its CDF. Then:

Probabilities through CDF

- $\mathbb{P}(X = a) = F(a) F(a-)$;
- $\mathbb{P}(a < X \leq b) = F(b) F(a);$
- $\mathbb{P}(a \le X \le b) = F(b) F(a-);$
- $\mathbb{P}(a \le X < b) = F(b-) F(a-);$
- $\mathbb{P}(a < X < b) = F(b-) F(a);$

Here it is possible that $a = -\infty$ or/and $b = +\infty$

Problem: Is the following a CDF of some r.v. X? If yes, calculate $\mathbb{P}(X = 2)$, $\mathbb{P}(2 < X \le 3)$, $\mathbb{P}(X \le 5)$, $\mathbb{P}(X > 2)$:

Problem: Is the following a CDF of some r.v. X? If yes, calculate $\mathbb{P}(X = 2)$, $\mathbb{P}(2 < X \le 3)$, $\mathbb{P}(X \le 5)$, $\mathbb{P}(X > 2)$:

Figure: CDF of some r.v. X

Problem: Is the following a CDF of some r.v. X? If yes, calculate $\mathbb{P}(X = 1)$, $\mathbb{P}(0 < X \le 3)$, $\mathbb{P}(X \le 1)$, $\mathbb{P}(X > 0)$:

Problem: Is the following a CDF of some r.v. X? If yes, calculate $\mathbb{P}(X = 1)$, $\mathbb{P}(0 < X \le 3)$, $\mathbb{P}(X \le 1)$, $\mathbb{P}(X > 0)$:

Figure: CDF of some r.v. X

Figure: CDF of some r.v. X

Problem: For the r.v. X given through its CDF below, which values are more probable:

Problem: For the r.v. X given through its CDF below, which values are more probable:

Figure: CDF of some r.v. X

Figure: CDF of some r.v. X

Problem: Below you can find graphs of 2 CDFs: Red is for r.v. X, and Black is for Y. Which one is larger: $\mathbb{P}(2 < X < 4)$ or $\mathbb{P}(2 < Y < 4)$?

Problem: Below you can find graphs of 2 CDFs: Red is for r.v. X, and Black is for Y. Which one is larger: $\mathbb{P}(2 < X < 4)$ or $\mathbb{P}(2 < Y < 4)$?

Discrete R.V.s

In our course, we will consider 2 types of r.v.: **Discrete** and **Continuous**.

¹Right Hand Side

In our course, we will consider 2 types of r.v.: **Discrete** and **Continuous**. Assume X is a r.v. defined on Ω , i.e., $X : \Omega \to \mathbb{R}$.

¹Right Hand Side

In our course, we will consider 2 types of r.v.: **Discrete** and **Continuous**. Assume X is a r.v. defined on Ω , i.e., $X : \Omega \to \mathbb{R}$.

Discrete Random Variable

We say that the r.v. X is **Discrete**, if the Range of X,

 $Range(X) = \{X(\omega) : \omega \in \Omega\} = \text{The set of all possible values of } X$

is finite or countably infinite.

¹Right Hand Side

In our course, we will consider 2 types of r.v.: **Discrete** and **Continuous**. Assume X is a r.v. defined on Ω , i.e., $X : \Omega \to \mathbb{R}$.

Discrete Random Variable

We say that the r.v. X is **Discrete**, if the Range of X,

 $Range(X) = \{X(\omega) : \omega \in \Omega\} = \text{The set of all possible values of } X$

is finite or countably infinite.

So if X is Discrete, then the Range of X can be written as

$$Range(X) = \{x_1, x_2, x_3, ...\},\$$

where the set on the RHS¹ can be also finite.

¹Right Hand Side

Example:

• Let *X* be the number of Heads when tossing 5 coins. What is the range of *X*? Is *X* discrete?

Example:

- Let X be the number of Heads when tossing 5 coins.
 What is the range of X? Is X discrete?
- Can you give some more?

Example:

- Let *X* be the number of Heads when tossing 5 coins. What is the range of *X*? Is *X* discrete?
- Can you give some more?
- If Ω is Discrete, then X will be Discrete;

Example:

- Let X be the number of Heads when tossing 5 coins.
 What is the range of X? Is X discrete?
- Can you give some more?
- If Ω is Discrete, then X will be Discrete;
- If Ω is not Discrete, then X CAN BE Discrete.