OUTCOMES:

- 1. Ability to formulate research problem
- 2. Ability to carry out research analysis
- 3. Ability to follow research ethics
- 4. Ability to understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity
- 5. Ability to understand about IPR and filing patents in R & D.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓										
CO2	✓											
CO3	✓							✓				
CO4	✓				✓							
CO5	✓					✓						✓

REFERENCES:

- 1. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 2. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 3. Mayall, "Industrial Design", McGraw Hill, 1992.
- 4. Niebel, "Product Design", McGraw Hill, 1974.
- 5. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners" 2010

CP5161

DATA STRUCTURES AND ALGORITHMS LABORATORY

LTPC 0042

OBJECTIVES:

- To familiarize various data structure implementations.
- To implement heap and various tree structures like AVL, Red-black, B-Tree and segment trees.
- To understand efficient implementation of line segment intersection.
- To understand various search structures.
- To get understanding of problem to program mapping.

LIST OF EXPERIMENTS:

- 1. Binary Search Trees
- 2. Min/Max Heaps
- 3. Leftist Heaps
- 4. AVL Trees
- 5. Red-Black Trees
- 6. B-Trees
- 7. Segment Trees
- 8. Line segment intersection

TOTAL: 60 PERIODS

OUTCOMES:

Upon completion of the course, the student will be able to

- Achieve programming skill to convert a problem to a programming logic.
- Apply suitable data structure for the problem in hand.
- Implement heap and various tree structures like AVL, Red-black, B-Tree and segment trees.
- Understand the usage of data structures for geometric problems.
- Understand the importance of height balancing in search structures.

СО	РО							PSO			
	1	2	3	4	5	6	1	2	3		
1.	√		V	V		√	V	V	V		
2.	√			√		√		V	V		
3.			V			√		V			
4.			V	√		√		V			
5.			$\sqrt{}$			√		1			

CP5111

NETWORKING LABORATORY

L T P C 0 0 4 2

OBJECTIVES:

- Demonstrate the operation of wireless networks.
- Simulate and analyze the performance of GSM, CDMA, LTE and SDN.
- To gain knowledge and work on various protocol layers.
- To explore network simulators.
- Identify the different features of integrated and differentiated services.

LIST OF EXPERIMENTS:

- 1) Configure networks using:
 - a) Distance Vector Routing protocol
 - b) Link State Vector Routing protocol
- 2) Implement the congestion control using Leaky bucket algorithm.
- 3) Installation of NS3 and execution of TCL commands / scripts.
- 4) Implementation Point to Point network using duplex links between the nodes. Analyze the packet transfer by varying the queue size and bandwidth. (using simulator)
- 5) Implement the dynamic routing protocol by varying the CBR traffic for each node and use a flow monitor() to monitor losses at nodes. (using simulator)
- 6) Create a wireless mobile ad-hoc network environment and implement the OLSR routing protocol. (using simulator)
- 7) Implement CDMA by assigning orthogonal code sequence for 5 stations, generate the CDMA code sequence and communicate between the stations using the generated code.
- 8) Create a GSM environment and implement inter and intra handover mechanisms. (using simulator)
- 9) In LTE environment implement Round Robin and Token Bank Fair Queue scheduler in MAC layer.
- 10) Write python script to create topology in Mininet and configure OpenFlow switches with POX controller to communicate between nodes.

TOTAL:60 PERIODS