

Respuesta temporal de sistemas continuos. Ejemplos - Estabilidad

Condición de Cardano-Vietta

<u>Ejemplo</u>: Aplicando la condición de Cardano-Vietta, determine la estabilidad o inestabilidad de los siguientes sistemas.

$$G(s) = \frac{s+3}{s^3+3s+1}$$
 Inestable

$$G(s) = \frac{8}{s^4 + 4s^3 + s^2 + 8s + 1}$$

$$G(s) = \frac{s^2 + 2s + 3}{s^4 - 8s^3 + 5s^2 - 4s + 1}$$

$$G(s) = \frac{s-1}{s^4 + 3s^3 + 6s^2 + 3s + 1}$$

Criterio de Routh

Ejemplo: Aplicando el criterio de Routh, determine la estabilidad del siguiente sistema

ans =

$$G(s) = \frac{8}{s^4 + 4s^3 + s^2 + 8s + 1}$$

s^4	1	1	1
s^3	4	8	0
s^2	a = -1	b= 1	c= 0
s^1	d=12	e = 0	
s^0	f = 1		

$$-0.1260 + 0.0000i$$

$$a = \frac{4 * 1 - 1 * 8}{4} = -1$$
 $d = \frac{8a - 4b}{a} = \frac{(-8 - 4)}{-1} = 12$

$$b = \frac{4 * 1 - 1 * 0}{4} = 1 \qquad e = \frac{0a - 4e}{a} = 0$$

$$c = \frac{4*0-1*0}{4} = 0$$
 $f = \frac{db-ae}{d} = b = 1$

Criterio de Routh – Sistema oscilatorio

Ejemplo: Aplicando el criterio de Routh, determine la estabilidad del siguiente sistema

$$G(s) = \frac{1}{s^4 + 2s^3 + 3s^2 + 6s + 8}$$

8	3	1	s^4
	6	2	s^3
	8	ε^+	s^2
		С	s^1
		8	s^0

$$c = \lim_{\varepsilon \to 0} \frac{6\varepsilon - 16}{\varepsilon} = -\infty < 0$$

>> pole(G)

$$0.4565 + 1.64$$

$$0.4565 - 1.64$$

$$-1.4565 + 0.78/01$$

Criterio de Routh – Sistema oscilatorio

Ejemplo: Aplicando el criterio de Routh, determine la estabilidad del siguiente sistema

$$G(s) = \frac{5}{s^3 + 2s^2 + s + 2}$$

0.0000 - 1.0000i

$$a = \frac{2 \cdot 1 - 2 \cdot 1}{2} = 0 \Rightarrow \frac{P(s) = 2s^2 + 2}{dt}$$

$$2\hat{a} = 0$$

$$2\hat{a} = 0$$

$$b = \frac{2\hat{a} - 0}{\hat{a}} = 2$$

Sistema críticamente estable: polos imaginarios puros (sin parte real)

Criterio de Routh – Análisis ganancia

Ejemplo: ¿Para qué rango de valores de K se puede asegurar que los sistemas dados por el siguiente diagrama de bloques es estable?

$$G_{LC} = \frac{K}{s^4 + 3s^3 + 3s^2 + 2s + K}$$

s^4	1	3	K
s^3	3	2	0
s^2	7/3	K	
S	$\frac{14-9K}{7}$	0	
1	K		

- Estable si 0<K<14/9
- Oscilatorio si K=14/9
- Inestable si K<0 o K>14/9