DST de Mathématiques N°1

Problème 1:

a) J'écris $f(x)=-5x^2+20x+1,5$ sous la forme de $a(x-\alpha)^2+\beta$:

$$\alpha = \frac{\delta}{2a}$$
 $\beta = \frac{\Delta}{a}$

$$\beta = \frac{\Delta}{4a}$$

Je calcule delta:

$$\Delta = b^2 - 4(ac)$$

$$\Delta = 20^2 - 4((-5)*1,5)$$

$$\Delta = 400 - (-7,5)$$

$$\Delta = 407,5$$

Delta est égal à 407,5, je peux donc calculer $\frac{\Delta}{4*(-5)}$.

$$A = -5\left(x - \left(\frac{-b}{2a}\right)\right)^2 + \frac{\Delta}{4a}$$

$$A = -5\left(x - \frac{-20}{2^*(-5)}\right)^2 + \frac{\Delta}{4^*(-5)}$$

$$A = -5\left(x - \frac{20}{10}\right)^2 + \frac{407.5}{-20}$$

$$A=-5\left(x-\frac{20}{10}\right)^2-20,375$$
.

La forme canonique de f(x) est $-5\left(x-\frac{-20}{2^*(-5)}\right)^2-20,375$, avec $\alpha=-\frac{20}{10}$ et $\beta=-20,375$.

Partie 2:

Partie A:

1) Pour étudier le signe de du Trinôme -x²+4x-1 je calcule delta :

$$\Delta = b^2 - 4(ac)$$

$$\Delta = 4^2 - 4((-1)*(-1))$$

$$\Delta = 16-4$$

Comme delta est supérieur à 0, je calcule les valeurs de x_1 et de x_2 .

Je dresse donc un tableau de signes :

X	-∞		$\frac{-4-\sqrt{12}}{-2}$		$4+\sqrt{12}$		+∞
4x-1		-	Ŷ	+		+	
$-x^2+4x-1$		-	Q	-	0	-	
$\frac{4x-1}{-x^2+4x-1}$		+	0	-	0	-	
Dg(x)		+	Q	-	Ò	-	

2) Je résous l'inéquation $(x-3)^2-(3x-1)^2 \le 0$

$$(x-3)^2-(3x-1)^2\leq 0$$

$$x^2-6x+9-(9x^2-6x+1)\leq 0$$

$$x^2-9x^2-6x-6x+9+1 \le 0$$

$$-8x^2-12x+10 \le 0$$

$$\Delta = b^2 - 4(ac)$$

$$\Delta = -12^2 - 4(-8*10)$$

$$\Delta = 144 + 320$$

Comme delta est supérieur à 0, je calcule les valeurs de x_1 et de x_2 .

$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$	$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$			
$x_1 = \frac{-(-12)-\sqrt{464}}{2^*-8}$	$x_2 = \frac{-(-12) + \sqrt{464}}{2^* - 8}$			
$x_1 = \frac{12 - \sqrt{464}}{-16}$	$x_2 = \frac{12 + \sqrt{464}}{-16}$			

Parie B:

1)

L= Longueur

L = Largeur

Aire du rectangle : $\frac{L*l}{2}$

2)

Aire d'un triangle= $\frac{b^*h}{2}$

b= base

h= hauteur

je cherche à prouver que le coté x du drapeau mesure $\frac{2}{3}\sqrt{39}$.