Trigonometric Identities MCQs for Entry Test -Exercise 10.3

Introduction

This document contains 20 multiple-choice questions based on Exercise 10.3 of the trigonometry chapter, designed for entry test preparation. Each question tests concepts such as double-angle identities, half-angle identities, triple-angle identities, cotangent and secant identities, specific angle evaluations, power reduction, and advanced identities. Solutions with detailed explanations are provided at the end.

Multiple-Choice Questions

- 1. If $\sin \alpha = \frac{12}{13}$, $0 < \alpha < \frac{\pi}{2}$, what is $\sin 2\alpha$?
 - A) $\frac{120}{169}$
 - B) $\frac{119}{169}$
 - C) $\frac{144}{169}$
 - D) $\frac{25}{169}$
- 2. If $\cos \alpha = \frac{3}{5}$, $0 < \alpha < \frac{\pi}{2}$, what is $\cos 2\alpha$?
 - A) $\frac{7}{25}$
 - B) $\frac{-7}{25}$
 - C) $\frac{9}{25}$
 - D) $\frac{-9}{25}$
- 3. What is $\tan 2\alpha$ if $\tan \alpha = \frac{12}{5}$?
 - A) $\frac{60}{11}$
 - B) $\frac{-60}{11}$
 - C) $\frac{120}{119}$
 - D) $\frac{-120}{119}$
- 4. Which identity holds for $\frac{1-\cos\alpha}{\sin\alpha}$?
 - A) $\tan \alpha$
 - B) $\tan \frac{\alpha}{2}$

- C) $\cot \alpha$
- D) $\cot \frac{\alpha}{2}$

5. What is $\cot \alpha - \tan \alpha$?

- A) $\cot 2\alpha$
- B) $2 \cot 2\alpha$
- C) $\tan 2\alpha$
- D) $2 \tan 2\alpha$

6. What is the value of $\sin 18^{\circ}$?

- A) $\frac{\sqrt{5}+1}{4}$
- B) $\frac{\sqrt{5}-1}{4}$
- C) $\sqrt{\frac{10+2\sqrt{5}}{16}}$
- D) $\sqrt{\frac{10-2\sqrt{5}}{16}}$

7. What is $\cos 36^{\circ}$?

- A) $\frac{\sqrt{5}+1}{4}$
- B) $\frac{\sqrt{5}-1}{4}$
- C) $\sqrt{\frac{10+2\sqrt{5}}{16}}$

8. What is $\sin 54^{\circ}$?

- A) $\frac{\sqrt{5}+1}{4}$
- B) $\frac{\sqrt{5}-1}{4}$
- C) $\sqrt{\frac{10+2\sqrt{5}}{16}}$
- D) $\sqrt{\frac{10-2\sqrt{5}}{16}}$

9. What is $\cos 144^{\circ}$?

- A) $\frac{\sqrt{5}+1}{4}$
- B) $-\frac{\sqrt{5}+1}{4}$
- C) $\frac{\sqrt{5}-1}{4}$
- D) $\sqrt{\frac{10-2\sqrt{5}}{16}}$

10. Simplify $\sin^4 \theta$.

- A) $\frac{3-4\cos 2\theta + \cos 4\theta}{8}$ B) $\frac{3-4\cos 2\theta + \cos 4\theta}{8}$

- C) $\frac{1-4\cos 2\theta+\cos 4\theta}{8}$
- D) $\frac{3-4\cos 2\theta+\cos 4\theta}{8}$

11. What is $\frac{\sin 2\alpha}{1+\cos 2\alpha}$?

- A) $\tan \alpha$
- B) $\cot \alpha$
- C) $\tan \frac{\alpha}{2}$
- D) $\cot \frac{\alpha}{2}$

12. Which identity holds for $\frac{\cos \alpha - \sin \alpha}{\cos \alpha + \sin \alpha}$?

- A) $\sec 2\alpha \tan 2\alpha$
- B) $\sec \alpha \tan \alpha$
- C) $\csc 2\alpha \cot 2\alpha$
- D) $\csc \alpha \cot \alpha$

13. What is $\sqrt{\frac{1+\sin\alpha}{1-\sin\alpha}}$?

- $A) \ \frac{\sin\frac{\alpha}{2} + \cos\frac{\alpha}{2}}{\sin\frac{\alpha}{2} \cos\frac{\alpha}{2}}$
- B) $\frac{\sin \alpha + \cos \alpha}{\sin \alpha \cos \alpha}$
- $C) \ \frac{\sin\frac{\alpha}{2} \cos\frac{\alpha}{2}}{\sin\frac{\alpha}{2} + \cos\frac{\alpha}{2}}$
- D) $\tan \frac{\alpha}{2}$

14. What is $\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta}$?

- A) 1
- B) 2
- C) 3
- D) 4

15. What is
$$\frac{\cos 3\theta}{\cos \theta} + \frac{\sin 3\theta}{\sin \theta}$$
?

- A) $2\cos 2\theta$
- B) $4\cos 2\theta$
- C) $2 \cot 2\theta$
- D) $4 \cot 2\theta$

16. What is $\frac{2\sin\theta\sin2\theta}{\cos\theta+\cos3\theta}$?

- A) $\tan \theta \tan 2\theta$
- B) $\cot \theta \cot 2\theta$
- C) $\tan \theta \cot 2\theta$
- D) $\cot \theta \tan 2\theta$

FIXPerk City

- 17. What is $\frac{\sin 3\theta}{\cos \theta} + \frac{\cos 3\theta}{\sin \theta}$?
 - A) $2 \cot 2\theta$
 - B) $4 \cot 2\theta$
 - C) $2\cos 2\theta$
 - D) $4\cos 2\theta$
- 18. If $\cos 36^{\circ} \cos 72^{\circ} \cos 108^{\circ} \cos 144^{\circ} = k$, what is k?
 - A) $\frac{1}{8}$
 - B) $\frac{1}{16}$
 - C) $\frac{1}{32}$
 - D) $\frac{1}{4}$
- 19. What is $\frac{\csc\theta+2\csc2\theta}{\sec\theta}$?
 - A) $\cot \theta$
 - B) $\cot \frac{\theta}{2}$
 - C) $\tan \theta$
 - D) $\tan \frac{\theta}{2}$
- 20. What is $1 + \tan \alpha \tan 2\alpha$?
 - A) $\sec 2\alpha$
 - B) $\csc 2\alpha$
 - C) $\sec \alpha$
 - D) $\csc \alpha$

Solutions and Explanations

1. Solution to Question 1:

$$\sin \alpha = \frac{12}{13}, \quad \cos \alpha = \sqrt{1 - \frac{144}{169}} = \frac{5}{13}$$

$$\sin 2\alpha = 2\sin \alpha\cos \alpha = 2 \cdot \frac{12}{13} \cdot \frac{5}{13} = \frac{120}{169}$$

Answer: A) $\frac{120}{169}$

2. Solution to Question 2:

$$\cos \alpha = \frac{3}{5}, \quad \sin \alpha = \sqrt{1 - \frac{9}{25}} = \frac{4}{5}$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = \frac{9}{25} - \frac{16}{25} = \frac{-7}{25}$$

Answer: B) $\frac{-7}{25}$

3. Solution to Question 3:

$$\tan\alpha = \frac{12}{5}, \quad \tan2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha} = \frac{2\cdot\frac{12}{5}}{1-\left(\frac{12}{5}\right)^2} = \frac{\frac{24}{5}}{1-\frac{144}{25}} = \frac{\frac{24}{5}}{\frac{-119}{25}} = \frac{24\cdot25}{-119\cdot5} = \frac{-120}{119}$$

Answer: D) $\frac{-120}{119}$

4. Solution to Question 4:

$$\frac{1 - \cos \alpha}{\sin \alpha} = \frac{2 \sin^2 \frac{\alpha}{2}}{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}} = \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} = \tan \frac{\alpha}{2}$$

Answer: B) $\tan \frac{\alpha}{2}$

5. Solution to Question 5:

$$\cot \alpha - \tan \alpha = 2 \cot 2\alpha = 2 \frac{\cos 2\alpha}{\sin 2\alpha} = \frac{2(\cos^2 \alpha - \sin^2 \alpha)}{2 \sin \alpha \cos \alpha} = \frac{\cos^2 \alpha}{\sin \alpha \cos \alpha} - \frac{\sin^2 \alpha}{\sin \alpha \cos \alpha} = \cot \alpha - \tan \alpha$$

Answer: B) $2 \cot 2\alpha$

6. Solution to Question 6:

$$\sin 18^{\circ} = \frac{\sqrt{5} - 1}{4}$$
 (derived using $\cos 3\theta = \sin 2\theta$ for $\theta = 18^{\circ}$)

Answer: B) $\frac{\sqrt{5}-1}{4}$

7. Solution to Question 7:

$$\cos 36^{\circ} = \frac{\sqrt{5} + 1}{4}$$
 (derived using $\sin 3\theta = \sin 2\theta$ for $\theta = 36^{\circ}$)

Answer: A) $\frac{\sqrt{5}+1}{4}$

8. Solution to Question 8:

$$\sin 54^{\circ} = \sin(90^{\circ} - 36^{\circ}) = \cos 36^{\circ} = \frac{\sqrt{5} + 1}{4}$$

Answer: A) $\frac{\sqrt{5}+1}{4}$

9. Solution to Question 9:

$$\cos 144^{\circ} = \cos(180^{\circ} - 36^{\circ}) = -\cos 36^{\circ} = -\frac{\sqrt{5} + 1}{4}$$

Answer: B) $-\frac{\sqrt{5}+1}{4}$

10. Solution to Question 10:

$$\sin^4 \theta = \left(\frac{1 - \cos 2\theta}{2}\right)^2 = \frac{1 - 2\cos 2\theta + \cos^2 2\theta}{4} = \frac{1 - 2\cos 2\theta + \frac{1 + \cos 4\theta}{2}}{4} = \frac{3 - 4\cos 2\theta + \cos 4\theta}{8}$$

Answer: A) $\frac{3-4\cos 2\theta+\cos 4\theta}{8}$

11. Solution to Question 11:

$$\frac{\sin 2\alpha}{1 + \cos 2\alpha} = \frac{2\sin \alpha \cos \alpha}{2\cos^2 \alpha} = \frac{\sin \alpha}{\cos \alpha} = \tan \alpha$$

Answer: A) $\tan \alpha$

12. Solution to Question 12:

$$\frac{\cos \alpha - \sin \alpha}{\cos \alpha + \sin \alpha} = \frac{1 - \sin 2\alpha}{\cos 2\alpha} = \frac{1}{\cos 2\alpha} - \frac{\sin 2\alpha}{\cos 2\alpha} = \sec 2\alpha - \tan 2\alpha$$

Answer: A) $\sec 2\alpha - \tan 2\alpha$

13. Solution to Question 13:

$$\sqrt{\frac{1+\sin\alpha}{1-\sin\alpha}} = \sqrt{\frac{\sin^2\frac{\alpha}{2} + \cos^2\frac{\alpha}{2} + 2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{\sin^2\frac{\alpha}{2} + \cos^2\frac{\alpha}{2} - 2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}} = \frac{\sin\frac{\alpha}{2} + \cos\frac{\alpha}{2}}{\sin\frac{\alpha}{2} - \cos\frac{\alpha}{2}}$$

Answer: A) $\frac{\sin\frac{\alpha}{2} + \cos\frac{\alpha}{2}}{\sin\frac{\alpha}{2} - \cos\frac{\alpha}{2}}$

14. Solution to Question 14:

$$\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta} = \frac{\sin 3\theta \cos \theta - \cos 3\theta \sin \theta}{\sin \theta \cos \theta} = \frac{\sin 2\theta}{\sin \theta \cos \theta} = \frac{2\sin \theta \cos \theta}{\sin \theta \cos \theta} = 2$$

Answer: B) 2

15. Solution to Question 15:

$$\frac{\cos 3\theta}{\cos \theta} + \frac{\sin 3\theta}{\sin \theta} = \frac{\cos 3\theta \sin \theta + \sin 3\theta \cos \theta}{\cos \theta \sin \theta} = \frac{\sin 4\theta}{\cos \theta \sin \theta} = \frac{2\sin 2\theta \cos 2\theta}{\sin \theta \cos \theta} = 4\cos 2\theta$$

Answer: B) $4\cos 2\theta$

16. Solution to Question 16:

$$\frac{2\sin\theta\sin2\theta}{\cos\theta+\cos3\theta} = \frac{2\sin\theta\sin2\theta}{4\cos^3\theta-2\cos\theta} = \frac{2\sin\theta\sin2\theta}{2\cos\theta(2\cos^2\theta-1)} = \frac{\sin2\theta}{\cos2\theta} \cdot \frac{\sin\theta}{\cos\theta} = \tan2\theta\tan\theta$$

Answer: A) $\tan \theta \tan 2\theta$

17. Solution to Question 17:

$$\frac{\sin 3\theta}{\cos \theta} + \frac{\cos 3\theta}{\sin \theta} = \frac{\sin 3\theta \sin \theta + \cos 3\theta \cos \theta}{\cos \theta \sin \theta} = \frac{\cos 2\theta}{\cos \theta \sin \theta} = 2 \cdot \frac{\cos 2\theta}{2 \sin \theta \cos \theta} = 2 \cot 2\theta$$

Answer: A) $2 \cot 2\theta$

18. Solution to Question 18:

$$\cos 108^{\circ} = \cos(180^{\circ} - 72^{\circ}) = -\cos 72^{\circ}$$

$$\cos 36^{\circ} \cos 72^{\circ} \cos 108^{\circ} \cos 144^{\circ} = \left(\frac{\sqrt{5}+1}{4}\right) \left(\frac{\sqrt{5}-1}{4}\right) \left(-\frac{\sqrt{5}-1}{4}\right) \left(-\frac{\sqrt{5}+1}{4}\right) = \left(\frac{4}{16}\right)^{2} = \left(\frac{4}{16}\right)^$$

Answer: B) $\frac{1}{16}$

19. Solution to Question 19:

$$\frac{\csc\theta + 2\csc 2\theta}{\sec\theta} = \left(\frac{1}{\sin\theta} + \frac{2}{2\sin\theta\cos\theta}\right)\cos\theta = \frac{\cos\theta + 1}{\sin\theta\cos\theta}\cdot\cos\theta = \frac{2\cos^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} = \cot\frac{\theta}{2}$$

Answer: B) $\cot \frac{\theta}{2}$

20. Solution to Question 20:

$$1 + \tan \alpha \tan 2\alpha = 1 + \frac{\sin \alpha}{\cos \alpha} \cdot \frac{\sin 2\alpha}{\cos 2\alpha} = \frac{\cos \alpha \cos 2\alpha + \sin \alpha \sin 2\alpha}{\cos \alpha \cos 2\alpha} = \frac{\cos \alpha}{\cos \alpha \cos 2\alpha} = \frac{1}{\cos 2\alpha} = \sec 2\alpha$$

Answer: A) $\sec 2\alpha$

