setup

```
In [110]: import sympy as sym
import numpy as np
%matplotlib notebook
from matplotlib import pyplot as plt
from IPython.display import Image
```

Problem 1

Problem 2

```
In [2]: def x_init_gen(dim):
    x_inits = (np.zeros((dim,1)) - 10) + np.random.rand(dim,1) * 20
    return x_inits
```

```
#generate random nxn diagonal matrix with elements betwen 0.5 - 1.9
In [3]:
        def Q gen(dim):
            I = np.identity(dim)
            rand arr = (np.zeros((dim,1)) + 0.5) + np.random.rand(dim,1) *
        1.4
            Q = I * rand_arr
             return Q
In [4]: | #set up symbollic f and grad f for lambda evals
        n = sym.symbols('n')
        x = sym.MatrixSymbol('x', n, 1)
        Q = sym.MatrixSymbol('Q', n, n)
        f = sym.Rational(1,2) * x.T * Q * x
        grad f = f.diff(x)
        grad_2_f = grad_f.diff(x)
        f lam = sym.lambdify([x, Q], f)
        grad f lam = sym.lambdify([x, Q], grad f)
        grad 2 f lam = sym.lambdify([x,Q], grad 2 f)
        #define our function that performs gradient descent on ambigiously di
In [5]:
        mensonal funcs
        \#creates random x and 0 per descent
        def ambig dim grad desc(dim):
            eps = 0.1
            num its = 0
            Q = Q_gen(dim)
            x = x_init gen(dim)
            grad = grad f lam(x, Q)
            mag grad = np.linalg.norm(grad)
            while (mag_grad > eps):
                 x next = x - grad
                grad = grad_f_lam(x_next, Q)
                 mag grad = np.linalg.norm(grad)
                 x = x next
                 num its = num its + 1
             return num its
In [6]:
        n \text{ vals} = np.arange(1,101)
        ave it vals = np.zeros(100)
        #iterate over n = 1-100
        for n in range(1,101):
            # perform 100 random inits per n and average number of its
            ave = 0
            for i in range (100):
                 ave = ave + (1/100 * ambig dim grad desc(n))
            # add averaged val to list
            ave it vals[n-1] = ave
```

```
In [7]: plt.figure()
   plt.plot(n_vals, ave_it_vals)
   plt.xlabel("problem dimensionality [n]")
   plt.ylabel("average number of iterations")
   plt.title("problem dimensionality vs iteration steps to find minima")
   plt.show()
```


Probelm 3

```
In [8]: #define new function
    x_sym, y, a, b, c, d = sym.symbols('x y a b c d')
    f = sym.Matrix([(x_sym -a)**2 + (x_sym -a) * (y-b)+(y-b)**2])
    x_0 = c
    y_0 = d

g = sym.Matrix([x_sym, y]) - f.jacobian([x_sym,y]).jacobian([x_sym,y]).inv() * f.jacobian([x_sym,y]).T
```

Symbol

```
In [9]: \#Display \ Symbolic \ Equation \ display(g) \begin{bmatrix} a \\ b \end{bmatrix}
```

why is this type of problem useful to solve?

instead of simple gradient descent this is taking into account the curvature of the function, i.e. the second derivative as well

resolve problem 2 with hessian based descent

```
In [10]:
         #define our function that performs gradient descent on ambigiously di
         mensonal funcs
         \#creates random x and Q per descent
         def ambig_dim_grad_desc_3(dim):
             eps = 0.1
             num its = 0
             Q = Q_gen(dim)
             x = x init gen(dim)
             grad = grad f lam(x, Q)
             grad_2 = grad_2 f_{lam}(x, Q)
             mag grad = np.linalg.norm(grad)
             while (mag grad > eps):
                 x_next = x - np.matmul(np.linalg.inv(grad_2), grad)
                 grad = grad_f_lam(x_next, Q)
                 grad 2 = grad 2 f lam(x next, Q)
                 mag_grad = np.linalg.norm(grad)
                 x = x_next
                  num its = num its + 1
             return num its
```

```
In [13]: plt.figure()
   plt.plot(n_vals, ave_it_vals)
   plt.xlabel("problem dimensionality [n]")
   plt.ylabel("average number of iterations")
   plt.ylim([0, 10])
   plt.title("problem dimensionality vs iteration steps to find minima u sing hessian descent")
   plt.show()
```

problem dimensionality vs iteration steps to find minima using hessian desce

Noting the difference:

Because the equation is quadratic, applying a quadratic fit always finds the minima within 1 iteration regardless of the dimension

Probelm 4

```
In [24]:
         #define symbols
         theta, u1, u2, x, y = sym.symbols('theta u_1 u_2 x y')
         q = sym.Matrix([x, y, theta])
         u = np.array([1, -1/2])
         #get lambda eq for update
         qdot = sym.lambdify([q], sym.Matrix([sym.cos(theta)*u[0], sym.sin(the
         ta)*u[0], u[1]]))
         #get init conditions and controls
         q init = np.array([0,0,np.pi/2])
         T = 2 * np.pi
In [25]:
         #tommy's rk4
         def integrate(f,x0,dt):
             k1=dt*np.squeeze(f(x0))
             k2=dt*np.squeeze(f(x0+k1/2.))
             k3=dt*np.squeeze(f(x0+k2/2.))
             k4=dt*np.squeeze(f(x0+k3))
             xnew=x0+(1/6.)*(k1+2.*k2+2.*k3+k4)
              return xnew
In [26]:
         def simulate(f,x0, tspan,dt):
             N = int((max(tspan) - min(tspan))/dt)
             x = np.copy(x0)
             tvec = np.linspace(min(tspan), max(tspan), N)
             xtraj = np.zeros((len(x0),N))
              for i in range(N):
                  xtraj[:,i]=integrate(f,x,dt)
                  x = np.copy(xtraj[:,i])
              return xtraj
In [27]: def dynamics(q):
             q_dot = qdot(q)
              return q dot
In [28]:
         tspan = [0, T]
         dt = 0.1
         \# N = int((max(tspan)-min(tspan))/dt)
         # tvec = np.linspace(min(tspan), max(tspan), N)
         xvec = simulate(dynamics, q init,tspan, dt)
         # tvec = np.linspace(min(tspan), max(tspan), N)
```

```
In [29]: plt.figure()
   plt.plot(xvec[0,:], xvec[1,:])
   plt.title("semi circle traj")
   plt.xlabel("x")
   plt.ylabel("y")
   plt.show()
```



```
In [30]: tspan = [0, T]
dt = 0.1
N = int((max(tspan)-min(tspan))/dt)
tvec = np.linspace(min(tspan), max(tspan), N)
```

Problem 5

If desired trajectory is: $(x_d,y_d, heta_d)=(rac{4}{2\pi},0,rac{\pi}{2})$ How is the movement constrained?

The movement is constrained from 3 dimensions to 1.

```
In [96]:
         from scipy.optimize import minimize
          tspan = [0, T]
          dt = 0.1
          N = int((max(tspan) - min(tspan))/dt)
          #symbolic objective function
          Q = sym.Matrix([[1, 0, 0], [0, .1, 0], [0, 0, .01]])
          R = sym.Matrix([[1, 0],[0,.1]]) #u1 matters more than u2
          P = sym.Matrix([[10000, 0, 0], [0, 1000, 0], [0, 0, 10]])
          #these will be replaced with actual xi and ui vals per it
          x, y, theta, u1, u2, t = sym.symbols('x y theta u_1 u_2 t')
          x \text{ sym} = \text{sym.Matrix}([x, y, \text{theta}])
          u \text{ sym} = \text{sym.Matrix}([u1, u2])
          x_d = sym.Matrix([4/(2*sym.pi) *t, 0, sym.pi/2])
          \times 0 = \text{np.array}([0,0,\text{np.pi}/2])
          del_x = x_sym - x_d
          #construct l
          l = sym.Rational(1,2) * del_x.T * Q * del_x + sym.Rational(1,2) * u_s
          ym.T * R * u_sym
          l = sym.lambdify([x sym, u sym, t], l)
          #construct m
          m = sym.Rational(1,2) * del x.T * P * del x
          m = sym.lambdify([x sym, t], m)
          #construct f, our update function given above as qdot
          f = sym.lambdify([x_sym, u_sym], sym.Matrix([sym.cos(theta)*u1, sym.s
          in(theta)*u1, u2]))
          #define our discretized cost function
          def h(xu):
              x \text{ sym} = xu.reshape(5,N)[:3, :]
              u_sym = xu.reshape(5,N)[3:,:]
              val = 0
              #perform discrete integration
              for i in range(N):
                  val = val + l(np.expand_dims(x_sym[:,i],1), np.expand_dims(u_
          sym[:,i],1), i)
              val = val + m(np.expand dims(x sym[:,-1],1), N)
              return val
          #return a list of all constraints
          def g(xu):
                xu = xu.reshape(5, N)
              constraints = np.empty(3 * N)
              #first constraint is x0
              constraints[0] = xu[0] - x 0[0]
              constraints[N] = xu[N] - x 0[1]
              constraints[2*N] = xu[2*N] - x_0[2]
              #TODO: unflatten to use matrix math to make sexier
              for i in range(1,N):
                  #get state at i-1
                  x \text{ prev} = \text{np.array}([xu[i-1], xu[i+N-1], xu[i+2*N-1]])
                  #get controls
                  conrtols = np.array([xu[i+3*N], xu[i+4*N]])
                  #get update
                  update = f(x prev, conrtols)
                  #constraint equation from lecture 3
```

```
for itr in range(3):
                       constraints[i + itr * N] = xu[i + itr * N] - x_prev[itr]
          - dt * update[itr]
              return constraints
          # make sure inputs vectors of form: np.array([[el,el,el]]).T
 In [97]:
          #flatten x to: x, y, theta and append u
          xvec.shape
          uvec = np.zeros((u.shape[0], N)) + np.expand dims(u,1)
 In [98]:
          print(xvec.shape)
          print(uvec.shape)
          (3, 62)
          (2, 62)
 In [99]:
          xu = np.concatenate((xvec,uvec))
          print(xu.shape)
          (5, 62)
In [100]: | my_cons = {'type':'eq', 'fun':g}
In [101]: xu.flatten().shape
Out[101]: (310,)
In [102]: | my_min = minimize(h, xu.flatten(), constraints=my cons)
In [104]: soln = my_min.x.reshape(5,N)
```

```
In [116]: plt.figure()
    plt.plot(soln[0,:], soln[1,:])
    plt.ylim([-1, 10])
    plt.xlabel("x")
    plt.ylabel("y")
    plt.title("x vs y pos of diff driver")
    plt.show()
```



```
In [113]: plt.figure()
  plt.plot(tvec, soln[0,:])
  plt.plot(tvec, soln[1,:])
  plt.plot(tvec, soln[2,:])

plt.xlabel("time")
  plt.ylabel("x,y, and theta")
  plt.legend(["x actual", "y actual", "theta actual"])
  plt.title("plotting the evolution of state variables over time")
  plt.show()
```


note

while this is far from perfect, the infrastructure is sound and just requires tuning of the P, R, and Q parameters