

CSE211-Formal Languages and Automata Theory

U2L13 – Pumping Lemma for CFL and Properties of CFL

Dr. P. Saravanan

School of Computing SASTRA Deemed University

Agenda

- Recap of previous class
 - Normal Forms
- Pumping Lemma for CFL
 - Definition
 - Examples
- Closure Properties
- Decision Properties

- Theorem (pumping lemma for CFL's)
 - Let L be a CFL. There exists an integer constant n such that if $z \in L$ with $|z| \ge n$, then we can write z = uvwxy, subject to the following conditions:
 - 1. $|vwx| \leq n$;
 - 2. $v, x \neq \varepsilon$ (that is, v, x are not both ε);
 - 3. for all $i \ge 0$, $uv^i wx^i y \in L$.
- Used to prove that the given language is not a context-free language

Example 1

- Prove by contradiction the language $L = \{0^m 1^m 2^m \mid m \ge 1\}$ is not a CFL by the pumping lemma.
- Proof.
 - Step 1: an integer constant *n*=9
 - Step 2: such that if $z \in L$ with $|z| \ge 9$, then we can write z = 000111222,
 - Step 3: Divide the string z into z= uvwxy such that

```
|vwx| \le n; and v, x \ne \varepsilon (that is, v, x are not both \varepsilon); z = 00 \ 01 \ 11 \ 2 \ 22
```

■ Step 4: for all $i \ge 0$, $uv^i wx^i y \in L$

For
$$i=0 => uv^0wx^0y => 001122 \in L$$

For $i=1 => uv^1wx^1y$
 $=> 000111222 \in L$
For $i=2 => uv^2wx^2y$
 $=> 00 0101 11 22 22 \notin L$

So the given language is not a CFL

■ Prove that $L=\{ww \mid w \in \{0, 1\}^*\}$ is not a CFL.

Some differences between CFL's and RL's

- CFL's are not closed under intersection, difference, or complementation
- But the intersection or difference of a CFL and an RL is still a CFL.
- We will introduce a new operation --- substitution.

Substitution

Definitions:

- A substitution s on an alphabet S is a function such that for each $a \in S$, s(a) is a language L_a over any alphabet (not necessarily S)
- For a string $w = a_1 a_2 ... a_n \in S^*$, $s(w) = s(a_1)s(a_2)...s(a_n) = L_{a_1}L_{a_2}...L_{a_n}$, i.e., s(w) is a language which is the concatenation of all L_{ai} 's
- Given a language L, $s(L) = \bigcup_{w \in L} s(w)$

- A substitution s on an alphabet $S = \{0, 1\}$ is defined as $S(0) = \{a^nb^n \mid n \ge 1\}$, $S(1) = \{aa, bb\}$.
- Let w = 01, then $s(w) = s(0)s(1) = \{a^nb^n \mid n \ge 1\}\{aa, bb\}$ = $\{a^nb^naa \mid n \ge 1\}\cup\{a^nb^{n+2} \mid n \ge 1\}$.

The CFL's are closed under the following operations:

- 1. Union
- 2. Concatenation
- 3. Closure (*), and positive closure (+)
- 4. Homomorphism
- 5. Inverse Homomorphism
- 6. Reversal

Not Closed

- 1. Intersection
- 2. Difference and 3. Complementation

- Theorem 7.27
 - If L is a CFL and R is an RL, then $L \cap R$ is a CFL.
- The following are true about CFL's L, L₁, and L₂, and an RL R:
- 1. L R is a CFL;
- 2. L is not necessarily a CFL;
- 3. $L_1 L_2$ is *not* necessarily a CFL.

Facts:

- Unlike RLs' decision problems which are all solvable, very little can be said about CFL's.
- Only two problems can be decided for CFL's:
 - whether the language is empty;
 - whether a given string is in the language.
- Computational complexity for conversions between CFG's and PDA's will be investigated.

- Testing Emptiness of CFL's
- The problem of testing emptiness of a CFL *L* is *decidable*.
- Testing Membership in a CFL
- A way for solving the membership problem for a CFL L is to use the CNF of the CFG G for L in the following way:
 - The parse tree of an input string w of length n using the CNF grammar G has 2n-1 nodes.
 - We can generate all possible parse trees and check if a yield of them is w.
- The number of such trees is exponential in n.

Preview of Un-decidable CFL Problems

- The following are undecidable CFL problems ----
 - Is a given CFL inherently ambiguous?
 - Is the intersection of two CFL's empty?
 - Are two CFL's the same?
 - Is a given CFL equal to S*, where S is the alphabet of this language?

Summary

- Recap of previous class
 - Normal Forms
- Pumping Lemma for CFL
 - Definition
 - Examples
- Closure Properties
- Decision Properties

- John E. Hopcroft, Rajeev Motwani and Jeffrey D.
 Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class: Unit III

Context-Sensitive Language Thank you.