Transductores y análisis léxico

Clase 12

IIC 2223

Prof. Cristian Riveros

¿cuánto se parece un autómata a un algoritmo?

¿cuáles son las diferencias?

Memoria.
 "Movimiento" de la máquina.

3. Output.

En esta clase, veremos como extender autómatas con 3.

Outline

Transductores

Aplicación: Análisis léxico

Outline

Transductores

Aplicación: Análisis léxico

Transductores

Definición de transductor

Definición

Un transductor (en inglés, transducer) es una tupla:

$$\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- \blacksquare Ω es el alfabeto de output.
- $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Omega \cup \{\epsilon\}) \times Q$ es la relación de transición.
- $I \subseteq Q$ es un conjunto de estados iniciales.
- F ⊆ Q es el conjunto de estados finales.

Definición de transductor

Configuración de un transductor

Sea $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ un transductor.

Definiciones

- Un par $(q, u, v) \in Q \times \Sigma^* \times \Omega^*$ es una configuración de \mathcal{T} .
- Una configuración (q, u, ϵ) es inicial si $q \in I$.
- Una configuración (q, ϵ, v) es **final** si $q \in F$.

"Intuitivamente, una configuración (q, au, vb) representa que $\mathcal T$ se encuentra en el estado q procesando la palabra au y leyendo a, y hasta ahora grabó la palabra vb y el último símbolo impreso es b."

Ejecución de un transductor

Sea $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ un transductor.

Definición

Se define la relación $\vdash_{\mathcal{T}}$ de siguiente-paso entre configuraciones de \mathcal{T} :

$$(p, u_1, v_1) \vdash_{\mathcal{T}} (q, u_2, v_2)$$

si, y solo si, existe $(p, a, b, q) \in \Delta$ tal que $u_1 = a \cdot u_2$ y $v_2 = v_1 \cdot b$.

Ejecución de un transductor

Sea $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ un transductor.

Definición

Se define la relación $\vdash_{\mathcal{T}}$ de siguiente-paso entre configuraciones de \mathcal{T} :

$$(p, u_1, v_1) \vdash_{\mathcal{T}} (q, u_2, v_2)$$

si, y solo si, existe $(p, a, b, q) \in \Delta$ tal que $u_1 = a \cdot u_2$ y $v_2 = v_1 \cdot b$.

$$\vdash_{\mathcal{T}} \subseteq (Q \times \Sigma^* \times \Omega^*) \times (Q \times \Sigma^* \times \Omega^*).$$

Se define $\vdash_{\mathcal{T}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{T}}$:

para toda configuración
$$(q,u,v)$$
: $(q,u,v) \vdash_{\mathcal{T}}^* (q,u,v)$

si
$$(q_1, u_1, v_1) \vdash_{\mathcal{T}}^* (q_2, u_2, v_2)$$
 y
 $(q_2, u_2, v_2) \vdash_{\mathcal{T}} (q_3, u_3, v_3) : (q_1, u_1, v_1) \vdash_{\mathcal{T}}^* (q_3, u_3, v_3)$

Ejecución de un transductor

Se define $\vdash_{\mathcal{T}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{T}}$:

para toda configuración
$$(q,u,v)$$
: $(q,u,v) \vdash_{\mathcal{T}}^* (q,u,v)$

si
$$(q_1, u_1, v_1) \vdash_{\mathcal{T}}^* (q_2, u_2, v_2)$$
 y
 $(q_2, u_2, v_2) \vdash_{\mathcal{T}} (q_3, u_3, v_3) : (q_1, u_1, v_1) \vdash_{\mathcal{T}}^* (q_3, u_3, v_3)$

Función definida por un transductor

Sea $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ un transductor y $u, v \in \Sigma^*$.

Definiciones

■ \mathcal{T} entrega v con input u si existe una configuración inicial (q_0, u, ϵ) y una configuración final (q_f, ϵ, v) tal que:

$$(q_0, u, \epsilon) \vdash_{\mathcal{T}}^* (q_f, \epsilon, v)$$

• Se define la función $[\![\mathcal{T}]\!]: \Sigma^* \to 2^{\Omega^*}$:

$$\llbracket \mathcal{T} \rrbracket (u) = \{ v \in \Omega^* \mid \mathcal{T} \text{ entrega } v \text{ con input } u \}$$

■ Se dice que $f: \Sigma^* \to 2^{\Omega^*}$ es una función racional si existe un transductor \mathcal{T} tal que $f = [\![\mathcal{T}]\!]$.

Un transductor define una función de palabras a conjunto de palabras.

Función definida por un transductor

Funciones versus relaciones

Dos interpretaciones para un transductor

 $1. \ \mathcal{T} \ \text{define la función} \ [\![\mathcal{T}]\!] : \Sigma^* \to 2^{\Omega^*} :$

$$\llbracket \mathcal{T} \rrbracket (u) = \{ v \in \Omega^* \mid \mathcal{T} \text{ entrega } v \text{ con input } u \}$$

2. \mathcal{T} define la relación $[\mathcal{T}] \subseteq \Sigma^* \times \Omega^*$:

$$(u,v) \in \llbracket \mathcal{T}
rbracket$$
 si, y solo si, \mathcal{T} entrega v con input u

Desde ahora, hablaremos de función o relación **indistintamente** y hablaremos de las **relaciones racionales** (definidas por un transductor).

Lenguaje de input y lenguaje de output

Definiciones

Para una relación $R \subseteq \Sigma^* \times \Omega^*$ se define:

- $\blacksquare \pi_1(R) = \{ u \in \Sigma^* \mid \exists v \in \Omega^*. (u, v) \in R \}.$
- $\blacksquare \ \pi_2(R) \ = \ \big\{ \ v \in \Omega^* \ \big| \ \exists u \in \Sigma^*. \ (u,v) \in R \ \big\}.$

¿cuál es el lenguaje definido por $\pi_1(\llbracket \mathcal{T} \rrbracket)$ y $\pi_2(\llbracket \mathcal{T} \rrbracket)$?

Lenguaje de input y lenguaje de output

Definiciones

Para una relación $R \subseteq \Sigma^* \times \Omega^*$ se define:

y demuestre que $\mathcal{L}(\mathcal{A}_1) = \pi_1(\llbracket \mathcal{T} \rrbracket)$.

- $\blacksquare \pi_1(R) = \{ u \in \Sigma^* \mid \exists v \in \Omega^*. (u, v) \in R \}.$

Teorema

Si $\mathcal T$ es un transductor, entonces $\pi_1(\llbracket \mathcal T \rrbracket)$ y $\pi_2(\llbracket \mathcal T \rrbracket)$ son lenguajes regulares sobre Σ y Ω , resp.

Demostración:
$$\pi_1(\llbracket \mathcal{T} \rrbracket)$$

Para $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$, defina $\mathcal{A}_1 = (Q, \Sigma, \Delta_1, I, F)$ tal que: $(p, a, q) \in \Delta_1$ si, y solo si, $\exists b \in \Omega \cup \{\epsilon\}$. $(p, a, b, q) \in \Delta$

Operaciones de relaciones

Teorema

Sea \mathcal{T}_1 y \mathcal{T}_2 dos transductores con Σ y Ω alfabetos de input y output.

Las siguientes son relaciones racionales.

- $1. \quad \llbracket \mathcal{T}_1 \rrbracket \cup \llbracket \mathcal{T}_2 \rrbracket = \{(u,v) \in \Sigma^* \times \Omega^* \mid (u,v) \in \llbracket \mathcal{T}_1 \rrbracket \vee (u,v) \in \llbracket \mathcal{T}_2 \rrbracket \}.$
- $2. \ \llbracket \mathcal{T}_1 \rrbracket \cdot \llbracket \mathcal{T}_2 \rrbracket = \{(u_1u_2, v_1v_2) \in \Sigma^* \times \Omega^* \mid (u_1, v_1) \in \llbracket \mathcal{T}_1 \rrbracket \land (u_2, v_2) \in \llbracket \mathcal{T}_2 \rrbracket \}.$
- 3. $[\mathcal{T}_1]^* = \bigcup_{k=0}^{\infty} [\mathcal{T}_1]^k$.

Demostración.

Operaciones de relaciones

Teorema

Existen transductores \mathcal{T}_1 y \mathcal{T}_2 con Σ y Ω alfabetos de input y output, tq:

$$[\![\mathcal{T}_1]\!] \cap [\![\mathcal{T}_2]\!] \ = \ \{(u,v) \in \Sigma^* \times \Omega^* \mid (u,v) \in [\![\mathcal{T}_1]\!] \land (u,v) \in [\![\mathcal{T}_2]\!]\}$$

NO es una relación racional.

Demostración

Considere los siguientes transductores:

Definición

Decimos que un transductor ${\mathcal T}$ define una función (parcial) si:

para todo $u \in \Sigma^*$ se tiene que $|[T](u)| \le 1$.

Definición

Decimos que $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ es determinista si cumple que:

- 1. \mathcal{T} define una función $[\mathcal{T}]: \Sigma^* \to \Omega^*$.
- 2. para todo $(p, a_1, b_1, q_1) \in \Delta$ y $(p, a_2, b_2, q_2) \in \Delta$,
- si $a_1 = a_2$, entonces $b_1 = b_2$ y $q_1 = q_2$.
- 3. si $(p, \epsilon, b, q) \in \Delta$, entonces $\Delta \cap (\{p\} \times (\Sigma \cup \{\epsilon\}) \times (\Omega \cup \{\epsilon\}) \times Q) = \{(p, \epsilon, b, q)\}.$

Definición

Decimos que $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ es determinista si cumple que:

- 1. \mathcal{T} define una función $[\mathcal{T}]: \Sigma^* \to \Omega^*$.
- 2. para todo $(p, a_1, b_1, q_1) \in \Delta$ y $(p, a_2, b_2, q_2) \in \Delta$, si $a_1 = a_2$, entonces $b_1 = b_2$ y $q_1 = q_2$.
- 3. si $(p, \epsilon, b, q) \in \Delta$, entonces $\Delta \cap (\{p\} \times (\Sigma \cup \{\epsilon\}) \times (\Omega \cup \{\epsilon\}) \times Q) = \{(p, \epsilon, b, q)\}.$

¿son todas las funciones definidas por transductores deterministas?

Definición

Decimos que $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ es determinista si cumple que:

- 1. \mathcal{T} define una función $[\mathcal{T}]: \Sigma^* \to \Omega^*$.
- 2. para todo $(p, a_1, b_1, q_1) \in \Delta$ y $(p, a_2, b_2, q_2) \in \Delta$, si $a_1 = a_2$, entonces $b_1 = b_2$ y $q_1 = q_2$.
- 3. si $(p, \epsilon, b, q) \in \Delta$, entonces $\Delta \cap (\{p\} \times (\Sigma \cup \{\epsilon\}) \times (\Omega \cup \{\epsilon\}) \times Q) = \{(p, \epsilon, b, q)\}.$

Contraejemplo

¿cuál es la ventaja de los transductores deterministas?

Outline

Transductores

Aplicación: Análisis léxico

Sintaxis y semántica de un lenguaje de programación

Definición

1. La sintaxis de una lenguaje es un conjunto de reglas que describen los programas válidos que tienen significado.

¿cuáles son programas válidos en Python?

- myint = 7
 print myint
- mystring = 'hello"
 print(mystring)

Sintaxis y semántica de un lenguaje de programación

Definición

- 1. La sintaxis de una lenguaje es un conjunto de reglas que describen los programas válidos que tienen significado.
- 2. La semántica de un lenguaje define el significado de un programa correcto según la sintaxis.

¿cuál es la semántica de este programa en Python?

```
mylist = []
mylist.append(1)
mylist.append(2)
for x in mylist:
    print(x)
```

La estructura de un compilador

Verificación de sintaxis

En este proceso se busca:

- verificar la sintaxis de un programa.
- entregar la estructura de un programa (árbol de parsing).

Consta de tres etapas:

- 1. Análisis léxico (Lexer).
- 2. Análisis sintáctico (Parser).
- 3. Análisis semántico.

Por ahora, solo nos interesará el Lexer.

(el funcionamiento del Parser lo veremos cuando veamos gramáticas)

Análisis léxico (Lexer)

- El análisis léxico consta en dividir el programa en una sec. de tokens.
- Un token (o lexema) es un substring (válido) dentro de un programa.
- Un token esta compuesto por:
 - tipo.
 - valor (el valor mismo del substring).

Análisis léxico (Lexer)

Tipos usuales de tokens en lenguajes de programación:

- **number** (constante): 2, 345, 495, ...
- **string** (constante): 'hello', 'iloveTDA', ...
- keywords: if, for, ...
- identificadores: pos, init, rate ...
- **delimitadores**: '{', '}', '(', ')', ',', ...
- operadores: '=', '+, '<', '<=', ...</pre>

Análisis léxico (Lexer)

```
Ejemplo
pos = init + rate * 60
                         Tipo
                                Valor
                          id
                                 pos
                         EQ
                                  =
                          id
                                 init
                        PLUS
                          id
                               rate
                        MULT
                        number
                                 60
```

- Un generador de análisis léxico es un software que, a través de un programa fuente, crea el código necesario para hacer el análisis léxico.
- El más conocido es Lex para lenguaje C:
 - Versión moderna es Flex.
 - Para Java existe JFlex.
 - Para Python existe PLY.

El formato de un programa en Lex es de la forma:

Las reglas de traducción tienen la siguiente forma:

```
Patrón { Acción }
```

- Patrón esta definido por una expresión regular.
- Acción es código C embebido.

```
Ejemplo de lex.1
 %{
 #include "misconstantes.h" \ def de IF, ELSE, ID, NUMBER *\
 %}
 delim [ \t \]
          {delim}+
 WS
 id [A-Za-z]([A-Za-z0-9])*
 number [0-9]+
 %%
 \{ws\} \{\* sin accion *\}
 if {return(IF);}
 else {return(ELSE);}
 {id} {printID(); return(ID);}
 {number} {printNumber(); return(NUMBER);}
 %%
 void printID(){printf("Id: %s\n",yytext);}
 void printNumer(){printf("Number: %s\n",yytext);}
```

Resolución de conflictos en Lex

Si varios prefijos del input satisfacen uno o más patrones:

- 1. Se prefiere el prefijo más largo por sobre el prefijo más corto.
- 2. Si el prefijo más corto satisface uno o más patrones, se prefiere el patrón listado primero en el programa lex.1.

Para efectos del ejemplo, desde ahora supondremos que cada patrón esta separado por un símbolo especial ""...".

¿cómo evaluamos los patrones en lex.1?

Sea $T_1, ..., T_k$ los patrones y $C_1, ..., C_k$ las acciones en el programa "lex.1", respectivamente.

Primer paso

Para cada patrón T_i construimos un NFA $A_i = (Q_i, \Sigma, \Delta_i, I_i, F_i)$.

¿cómo evaluamos los autómatas A_1, \ldots, A_k en paralelo, encontrando todos los tokens del input?

¿cómo evaluamos los patrones en lex.1?

- $A_i = (Q_i, \Sigma, \Delta_i, I_i, F_i)$ el NFA para el patrón T_i .
- lacksquare C_i la acción de T_i .

Construimos el transductor determinista:

$$\mathcal{T} = \left(Q, \Sigma, \{C_i\}_{i \leq k}, \Delta, \{q_0\}, F\right)$$

- $Q = 2^{\bigcup_{i=1}^k Q_i}$
- $(S, a, \epsilon, S') \in \Delta \quad \text{ssi} \quad S' = \{q \mid \exists i. \exists p \in S. (p, a, q) \in \Delta_i\}.$
- $(S, \neg, C_i, q_0) \in \Delta \text{ ssi } S \cap F_i \neq \emptyset \text{ } \text{y} \text{ } (S, \neg, \epsilon, q_0) \in \Delta \text{ } \text{ssi } S \cap \bigcup_{i=1}^k F_i = \emptyset.$
- $q_0 = \bigcup_{i=1}^k I_i$
- $F = \{S \mid \exists i. \ S \cap F_i \neq \emptyset\}$

Conclusión: el análisis léxico es equivalente a ejecutar un transductor.