(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2000-4421

(P2000-4421A)

(43)公開日 平成12年1月7日(2000.1.7)

(51) Int.Cl.7	:	識別記号		FΙ				テーマコード(参考)
H04N	5/91	;		H 0	4 N 5/91		N	5 C O 5 3
G11B	27/00	•		G 1	1 B 27/00		D	5D110
H04N	5/765			H 0 4	4 N 5/781		510L	
	5/781	·					520Z	
	5/92	•			5/91		J	
	-	:	審査請求	未請求	請求項の数11	OL	(全 20 頁)	最終頁に続く

(21)出願番号

(22)出願日

特願平10-169491

平成10年6月17日(1998.6.17)

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(71)出願人 000005821

松下電器產業株式会社

大阪府門真市大字門真1006番地

(72)発明者 影山 昌広

東京都国分寺市東恋ケ窪一丁目280番地

株式会社日立製作所中央研究所内

(74)代理人 100075096

弁理士 作田 康夫

最終頁に続く

(54) 【発明の名称】 光ディスク、光ディスクレコーダおよび光ディスクプレーヤ

(57)【要約】

【課題】 DVDにおいて、従来のAV機器では実現できなかった大量の静止画を扱おうとした場合、その管理情報が膨大となり民生用AV機器であるDVDレコーダおよびプレーヤにおいて取り扱いが困難になる問題が生じる。

【解決手段】 静止画および音声を管理するデータ量を 最小限に圧縮するため、静止画および音声夫々を管理す る情報を可変長サイズのテーブルにすることでデータの 冗長性と未使用領域の削減を実現した。

2

【特許請求の範囲】

【請求項1】少なくとも静止画データが記録された光ディスクであって、複数枚の静止画データを一つの静止画集として管理する静止画集管理情報(VOBSI)と、前記静止画集管理情報(VOBSI)で管理される静止画枚数に比例する可変長サイズの静止画管理情報テーブル(Video_Table)を有することを特徴とする光ディスク。

【請求項2】請求項1記載の光ディスクであって、前記静止画に同期して再生される音声が記録されている場合、前記静止画集内の静止画に同期再生される音声数に比例する可変長サイズの音声管理情報テーブル(Audio_Table)を有することを特徴とする光ディスク。

【請求項3】請求項1ないし2記載の光ディスクであって、前記静止画管理情報テーブル(Video_Table)は、静止画管理情報(VideoI)を有し、前記静止画管理情報(VideoI)には、静止画データサイズと、当該静止画と同期再生される音声管理情報

(AudioI) へのポインタ情報 (Ptr_to_A 20 udioI) を有することを特徴とする光ディスク。

【請求項4】請求項1ないし3記載の光ディスクであって、前記音声管理情報テーブル(Audio_Table)は、音声管理情報(AudioI)を有し、前記音声管理情報(AudioI)には、音声データのアドレスと、音声データサイズと、音声再生時間と、アフレコ使用時に他の音声管理情報(AudioI)へのリンクを張るポインタ情報(Ptr_to_AudioI)を有することを特徴とする光ディスク。

【請求項5】請求項1ないし4記載の光ディスクであっ 30 て、前記静止画集内の静止画毎に、再生時の表示の有無を示す再生職別フラグ(Playback_permission)を前記静止画管理情報(VideoI)に有することを特徴とする光ディスク。

【請求項6】請求項1ないし5記載の光ディスクに少なくとも静止画データを記録する光ディスクレコーダであって、静止画記録時に前記静止画を管理する静止画管理情報 (VideoI)を作成し、前記静止画集内の静止画枚数に比例する可変長サイズの前記静止画管理情報テーブル (Video_Table)に追加記録すること 40を特徴とする光ディスクレコーダ。

【請求項7】請求項6記載の光ディスクレコーダであって、前記静止画に同期再生される音声を録音した時に、前記音声データを管理する音声管理情報(Audio

I)を作成し、前記静止画集内の静止画に同期再生される音声数に比例する可変長サイズの前記音声管理情報テーブル(Audio_Table)に追加記録し、前記静止画を管理する静止画管理情報(VideoI)内の音声管理情報(AudioI)へのポインタ情報(Ptr_to_AudioI)を当該音声管理情報(Aud 50

i o I) として記録することを特徴とする光ディスクレ コーダ。

【請求項8】請求項6ないし7記載の光ディスクレコーダであって、同期再生される音声を有する静止画に対してアフターレコーディングを行った時に、録音した音声用の音声管理情報(AudioI)を作成し、前記音声管理情報テーブル(Audio_Table)に追加記録し、前記オリジナル音声用の音声管理情報(AudioI)内の他の音声管理情報(AudioI)へのポインタ情報(Ptr_to_AudioI)に当該音声管理情報(AudioI)を指し示すように記録することを特徴とする光ディスクレコーダ。

【請求項9】請求項6ないし8記載の光ディスクレコーダであって、前記静止画集内で、再生を行わない静止画に対して再生識別フラグ(Playback_Permission)を不可に設定することを特徴とする光ディスクレコーダ。

【請求項10】請求項1ないし5記載の光ディスクを再生する光ディスクプレーヤであって、前記静止画集管理情報(VOBSI)内の静止画管理情報テーブル(Videol)内の静止画管理情報(Videol)内の音声管理情報(Audiol)へのポインタ情報(Ptr_to_Audiol)に有効値が記述されている場合は、当該音声管理情報(Audiol)を検索し、更に他の音声管理情報(Audiol)へのリンクが張られている限り、新たな音声管理情報(Audiol)を検索して、前記静止画に同期再生する音声を決定し、静止画および音声の再生を行うことを特徴とする光ディスクプレーヤ。

【請求項11】請求項10記載の光ディスクプレーヤであって、再生する静止画を管理する静止画管理情報(VideoI)内の再生識別フラグ(Playback_Permission)を検索し、再生不可状態の場合は、前記静止画の再生を行わないことを特徴とする光ディスクプレーヤ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、読み書き可能な光 ディスクと、その記録方法、再生方法に関する。中でも 動画像データおよび静止画データおよびオーディオデー タを含むマルチメディアデータが記録された光ディスク と、その記録方法、再生方法に関する。

[0002]

【従来の技術】650MB程度が上限であった書き換え型光ディスクの分野で数GBの容量を有する相変化型ディスクDVD-RAMが出現した。また、ディジタルAVデータの符号化規格であるMPEG(MPEG2)の実用化とあいまってDVD-RAMは、コンピュータ用途だけでなくAVにおける記録・再生メディアとして期

待されている。つまり従来の代表的なAV記録メディア である磁気テープに代わるメディアとして普及が予測さ れる。

【0003】 (DVD-RAMの説明) 近年、書き換 え可能な光ディスクの高密度化が進みコンピュータデー タやオーディオデータの記録に留まらず、画像データの 記録が可能となりつつある。 例えば、光ディスクの信 号記録面には、従来から凸凹上のガイド溝が形成されて いる。

【0004】従来は凸または凹にのみ信号を記録してい 10 たが、ランド・グループ記録法により凸凹両方に信号を 記録することが可能となった。これにより約2倍の記録 密度向上が実現した(例えば特開平8-7282参 照)。

【0005】また、記録密度を向上させるために有効な CLV方式(線速度一定記録)の制御を簡易化し実用化 を容易とするゾーンCLV方式なども考案、実用化され ている(例えば特開平7-93873)。

【0006】これらの大容量化を目指す光ディスクを用 いて如何に画像データを含むAVデータを記録し、従来 20 のAV機器を大きく超える性能や新たな機能を実現する かが今後の大きな課題である。

【0007】このような大容量で書き換え可能な光ディ スクの出現により、AVの記録・再生も従来のテープに 代わり光ディスクが主体となることが考えられる。テー プからディスクへの記録メディアの移行はAV機器の機 能・性能面で様々な影響を与えるものである。

【0008】ディスクへの移行において最大の特徴はラ ンダムアクセス性能の大幅な向上である。仮にテープを ランダムアクセスする場合、一巻きの巻き戻しに通常数 30 分オーダーの時間が必要である。これは光ディスクメデ ィアにおけるシーク時間(数10ms以下)に比べて桁 違いに遅い。従ってテープは実用上ランダムアクセス装 置になり得ない。

【0009】このようなランダムアクセス性能によっ て、従来のテープでは不可能であったAVデータの分散 記録が光ディスクでは可能となった。

【0010】図1は、DVDレコーダのドライブ装置の ブロック図である。図中の11はディスクのデータを読 み出す光ピックアップ、12はECC (error c 40 orrecting code) 処理部、13はトラッ クバッファ、14はトラックバッファへの入出力を切り 替えるスイッチ、15はエンコーダ部、16はデコーダ 部、17はディスクの拡大図である。

【0011】17に示す様に、DVD-RAMディスク には、1セクタ=2KBを最小単位としてデータが記録 される。また、16セクタ=1ECCブロックとして、 ECC処理部12でエラー訂正処理が施される。

【0012】13に示すトラックバッファは、DVD-

め、AVデータを可変ビットレートで記録するためのバ ッファである。DVD-RAMへの読み書きレート(図 中Va) が固定レートであるのに対して、AVデータは その内容 (ビデオであれば画像) の持つ複雑さに応じて ビットレート (図中Vb) が変化するため、このビット レートの差を吸収するためのバッファである。例えば、 ビデオCDの様にAVデータを固定ビットレートとした 場合は必要がなくなる。

【0013】このトラックバッファ13を更に有効利用 すると、ディスク上にAVデータを離散配置することが 可能になる。図2を用いて説明する。

【0014】図2 (a) は、ディスク上のアドレス空間 を示す図である。図2 (a) に示す様にAVデータが [a1, a2] の連続領域と [a3, a4] の連続領域 に分かれて記録されている場合、a2からa3ヘシーク を行っている間、トラックバッファに蓄積してあるデー タをデコーダ部へ供給することでAVデータの連続再生 が可能になる。この時の状態を示すのが図2(b)であ

【0015】a1から読み出しを開始したAVデータ は、時刻t1からトラックバッファへの入力且つトラッ クバッファからの出力が開始され、トラックバッファへ の入力レート(Va)とトラックバッファからの出力レ ート(Vb)のレート差(Va-Vb)の分だけトラッ クバッファへはデータが蓄積されていく。この状態が a 2 (時刻 t 2) まで継続する。この間にトラックバッフ ァに蓄積されたデータ量をB(t2)とすると、a3を 読み出し開始できる時刻t3までの間、トラックバッフ ァに蓄積されているB(t2)を消費してデコーダへ供 給しつづけられれば良い。

【0016】言い方を変えれば、シーク前に読み出すデ ータ量([a1, a2])が一定量以上確保されていれ ば、シークが発生した場合でも、AVデータの連続供給 が可能である。

【0017】尚、本例では、DVD-RAMからデータ を読み出す、即ち再生の場合の例を説明したが、DVD RAMへのデータの書き込み、即ち録画の場合も同様 に考えることができる。

【0018】上述したように、DVD-RAMでは一定 量以上のデータが連続記録さえされていればディスク上 にAVデータを分散記録しても連続再生/録画が可能で ある。

【0019】 (MPEGの説明) 次にAVデータについ て説明をする。

【0020】先にも述べたが、DVD-RAMに記録す るAVデータはMPEG (ISO/IEC13818) と呼ばれる国際標準規格を使用する。

【0021】数GBの大容量を有するDVD-RAMで あっても、非圧縮のディジタルAVデータをそのまま記 RAMディスクにAVデータをより効率良く記録するた 50 録するには十分な容量をもっているとは言えない。そこ

で、AVデータを圧縮して記録する方法が必要になる。 AVデータの圧縮方式としてはMPEG(ISO/IE C13818) が世の中に広く普及している。近年のL SI技術の進歩によって、MPEGコーデック(伸長/ 圧縮LSI): が実用化してきた。これによってDVDレ コーダでのMPEG伸長/圧縮が可能となってきた。

【0022】MPEGは高効率なデータ圧縮を実現する ために、主に次の2つの特徴を有している。

【0023】一つ目は、動画像データの圧縮において、 従来から行われていた空間周波数特性を用いた圧縮方式 10 の他に、フレーム間での時間相関特性を用いた圧縮方式 を取り入れたことである。MPEGでは、各フレーム (MPEGではピクチャとも呼ぶ)をIピクチャ(フレ ーム内符号化ピクチャ)、Pピクチャ (フレーム内符号 化と過去からの参照関係を使用したピクチャ)、Bピク チャ(フレーム内符号化と過去および未来からの参照関 係を使用したピクチャ)の3種類に分類してデータ圧縮 を行う。

【0024】図3はI, P, Bピクチャの関係を示す図 である。図3に示すように、Pピクチャは過去で一番近 20 いIまたはPピクチャを参照し、Bピクチャは過去およ び未来の一番近いIまたはPピクチャを夫々参照してい る。また、図3に示すようにBピクチャが未来のIまた はPピクチャを参照するため、各ピクチャの表示順 (d isplay order) と圧縮されたデータでの順 番(cordingorder)とが一致しない現象が´__ 生じる。

【0025】MPEGの二つ目の特徴は、画像の複雑さ に応じた動的な符号量割り当てをピクチャ単位で行える 点である。MPEGのデコーダは入力バッファを備え、 このデコーダバッファに予めデータを蓄積する事で、圧 縮の難しい複雑な画像に対して大量の符号量を割り当て ることが可能になっている。

【0026】DVD-RAMで使用するオーディオデー タは、データ圧縮を行うMPEGオーディオ、ドルビー ディジタル(AC-3)と非圧縮のLPCMの3種類か ら選択して使用できる。ドルビーディジタルとLPCM はビットレート固定であるが、MPEGオーディオはビ デオストリーム程大きくはないが、オーディオフレーム 単位で数種類のサイズから選択することができる。

【0027】この様なAVデータはMPEGシステムと 呼ばれる方式で一本のストリームに多重化される。図4 はMPEGシステムの構成を示す図である。41はパッ クヘッダ、42はパケットヘッダ、43はペイロードで ある。MPEGシステムはパック、パケットと呼ばれる 階層構造を持っている。パケットはパケットヘッダ42 とペイロード43とから構成される。AVデータは失々 先頭から適当なサイズ毎に分割されペイロード43に格 納される。パケットヘッダ42はペイロード43に格納 してあるAVデータの情報として、格納してあるデータ 50

を識別するためのID (stream ID) と90k Hzの精度で表記したペイロード中に含まれているデー タのデコード時刻DTS (Decoding Time Stamp) および表示時刻PTS (Present ation Time Stamp) (オーディオデー タのようにデコードと表示が同時に行われる場合はDT Sを省略する)が記録される。パックは複数のパケット を取りまとめた単位である。DVD-RAMの場合は、 1パケット毎に1パックとして使用するため、パック は、パックヘッダ41とパケット (パケットヘッダ42 およびペイロード43)から構成される。パックヘッダ には、このパック内のデータがデコーダバッファに入力 される時刻を27MHzの精度で表記したSCR (Sv stem Clock Reference) が記録さ れる。

【0028】この様なMPEGシステムストリームをD VD-RAMでは、1パックを1セクタ (= 2 0 4 8 B) として記録する。

【0029】次に、上述したMPEGシステムストリー ムをデコードするデコーダについて説明する。図5はM PEGシステムデコーダのデコーダモデル (P-ST D) である。51はデコーダ内の規準時刻となるSTC (System Time Clock)、52はシス テムストリームのデコード、即ち多重化を解くデマルチ プレクサ、53はビデオデコーダの入力バッファ、54 はビデオデコーダ、55は前述したI、PピクチャとB ピクチャの間で生じるデータ順と表示順の違いを吸収す るためにI、Pピクチャを一時的に格納するリオーダバ ッファ、56はリオーダバッファにある I、Pピクチャ とBピクチャの出力順を調整するスイッチ、57はオー ディオデコーダの入力バッファ、58はオーディオデコ ーダである。

【0030】この様なMPEGシステムデコーダは、前 述したMPEGシステムストリームを次の様に処理して いく。STC51の時刻とパックヘッダに記述されてい るSCRが一致した時に、デマルチプレクサ52は当該 パックを入力する。デマルチプレクサ52は、パケット ヘッダ中のストリームIDを解読し、ペイロードのデー タを夫々のストリーム毎のデコーダバッファに転送す る。また、パケットヘッダ中のPTSおよびDTSを取 り出す。ビデオデコーダ54は、STC51の時刻とD TSが一致した時刻にビデオバッファ53からピクチャ データを取り出しデコード処理を行い、I、Pピクチャ はリオーダバッファ5.5に格納し、Bピクチャはそのま ま表示出力する。スイッチ56は、ビデオデコーダ54 がデコードしているピクチャが 1、 P ピクチャの場合、 リオーグバッファ55側へ傾けてリオーダバッファ55 内の前1またはPピクチャを出力し、Bピクチャの場 合、ビデオデコーダ54側へ傾けておく。オーディオデ コーダ58は、ビデオデコーダ54同様に、STC51

8

の時刻とPTS (オーディオの場合DTSはない) が一 致した時刻にオーディオバッファ 5 7 から 1 オーディオ フレーム分のデータを取り出しデコードする。

【0031】次に、MPEGシステムストリームの多重 化方法について図6を用いて説明する。図6(a)はビ デオフレーム、図6(b)はビデオバッファ、図6

(c) はMPEGシステムストリーム、図6 (d) はオーディオデータを夫々示している。横軸は各図に共通した時間軸を示していて、各図とも同一時間軸上に描かれている。また、ビデオバッファの状態においては、縦軸 10はバッファ占有量(ビデオバッファのデータ蓄積量)を示し、図中の太線はバッファ占有量の時間的遷移を示している。また、太線の傾きはビデオのビットレートに相当し、一定のレートでデータがバッファに入力されていることを示している。また、一定間隔でバッファ占有量が削減されているのは、データがデコードされた事を示している。また、斜め点線と時間軸の交点はビデオフレームのビデオバッファへのデータ転送開始時刻を示している。

【0032】以降、ビデオデータ中の複雑な画像Aを例 20 に説明する。図6 (b) で示すように画像Aは大量の符 号量を必要とするため、画像Aのデコード時刻よりも図 中の時刻 t 1 からビデオバッファへのデータ転送を開始 しなければならない。 (データ入力開始時刻 t 1 からデ コードまでの時間をvbv delayと呼ぶ)その結 果、AVデータとしては網掛けされたビデオパックの位. 置(時刻)で多重化される。これに対して、ビデオの様 にダイナミックな符号量制御を必要としないオーディオ データの転送はデコード時刻より特別に早める必要はな いので、デコード時刻の少し前で多重化されるのが一般 30 的である。従って、同じ時刻に再生されるビデオデータ とオーディオデータでは、ビデオデータが先行している 状態で多重化が行われる。尚、MPEGではバッファ内 にデータを蓄積できる時間が限定されていて、静止画デ ータを除く全てのデータはバッファに入力されてから1 秒以内にバッファからデコーダへ出力されなければなら ないように規定されている。そのため、ビデオデータと オーディオデータの多重化でのずれは最大で1秒(厳密 に言えばビデオデータのリオーダの分だけ更にずれるこ とがある) である。

【0033】尚、本例では、ビデオがオーディオに対して先行するとしたが、理屈の上では、オーディオがビデオに対して先行することも可能ではある。ビデオデータに圧縮率の高い簡単な画像を用意し、オーディオデータを不必要に早く転送を行った場合は、このようなデータを意図的に作ることは可能である。しかしながらMPEGの制約により先行できるのは最大でも1秒までである。

【0034】 (ディジタルスティルカメラの説明) 次に ディジタルスティルカメラについて説明する。 【0035】近年、JPEG(ISO/IEC 109 18-1)を用いたディジタルスティルカメラが普及している。ディジタルスティルカメラが普及してきた背景には、猛烈なPCの普及がある。ディジタルスティルカメラで撮影した画像は半導体メモリ、フロッピーディスク、赤外線通信などを通してPCに簡単にコピーが可能であり、PCにコピーした静止画像は、プレゼンテーションソフト、ワープロソフト、インターネットコンテンツとして使用することが可能である。

【0036】最近になって、更に音声の取り込みが可能なディジタルスティルカメラが登場してきた。音声の録音が可能となったことで、従来のフィルム式スティルカメラに比べて更なる差別化が可能となった。

【0037】図7は、ディジタルスティルカメラで記録 されたJPEGデータとPC上のディレクトリおよびフ ァイルの関係を示すである。

【0038】図7で示す様に、JPEGデータは夫々1つのファイル(拡張子"JPG")として記録される。また、ファイル数が一定数以上になると、ユーザが管理し難くなるため、図7の様にディレクトリ構造を持たせて、100程度毎にディレクトリを分けて記録するのが一般的である。

【0039】しかしながら、ディジタルスティルカメラで記録できる静止画の枚数は記録媒体であるフラッシュメモリやフロッピーディスクの記録容量に制限され、決して大量の静止画像が記録できるものではない。例えば、100MBのフラッシュメモリに50KBの静止画を記録していけば、約2000枚の静止画像しか一度に記録できない計算になる。

【0040】(ディジタルVTRの説明)次にディジタルVTR、特に最近普及が著しいDVCについて説明する。

【0041】DVCの登場は、従来のVTRには無かった新しい機能を実現可能にした。その中の一つが動画と静止画の混在した記録である。

【0042】図8はDVCで動画と静止画を記録した様子を示す図である。

【0043】図8に示す様に、DVCでは、テープ上の 記録順に動画と静止画の混在が可能であり、動画と静止 40 画を交互に記録したり、アルバムの様に連続した静止画 を記録することが可能である。

【0044】しかしながら、DVCはテープメディアであるため、ランダムアクセス性能が乏しく、また、コンピュータの様な管理情報を持てないため、任意の静止画を自由に再生することが容易ではない欠点を有している

【0045】DVD-RAMの登場は、ディジタルスティルカメラで制限された記録枚数の問題や、DVCにおけるランダムアクセス性能の問題を解決して、数万枚の静止画を自由に扱える新しい民生用AV機器の可能性を

意味している。

[0046]

【発明が解決しようとする課題】本発明は上記従来技術 において説明した次世代AV記録メディアとして期待さ れるDVD-RAMの性能を最大限に引き出す上で支障 となる以下の課題を解決し、書き換え可能な大容量光デ ィスクDVD-RAMの最大且つ本命の用途であるDV Dレコーダを実現するものである。

【0047】DVDレコーダで大量の静止画データを扱 う場合の最大の課題は、管理情報が膨大になることであ 10

【0048】図9を用いて、静止画データの管理情報に ついて説明する。

【0049】ディスク上に記録した静止画データに対し て、自由なアクセスを行うためには、当然のこととして アクセス先のアドレスやアクセスするデータのサイズな どの情報が必要になる。

【0050】更に、ディジタルスティルカメラの様に、 音声データを付けた場合、アドレス、サイズの他に、音 声データの再生時間までもが必要になってくる。更に、 アフレコを実現する場合はアフレコ用の音声データ管理 情報が必要になってくる。

【0051】4.7GBのデータ領域に対して、セクタ 単位 (1セクタ=2048B) のアクセスを行うために 。 は、アドレスとして4B、データサイズとして静止画用 に1B、音声用に2Bが必要であり、また、音声データ の場合は更に再生時間として2Bが必要になる。また、 音声のアフレコを実現する場合は、音声用の管理情報が 2倍必要になり、トータルで21Bの管理情報領域が必

【0052】仮に、65000枚の静止画像を記録した 場合、1枚の静止画毎に21Bの管理情報を使用する

65000枚 x 21B = 1365000Bとなり、トータルで約1. 4MBの管理情報が必要とな

【0053】1. 4MBのデータ量は、DVDの記録容 量から比べればわずかではあるが、ランダムアクセスを 考えると、システム制御部 (PCでいうCPU) が持つ メモリ上に常に持っておくべきデータである。近年、メ 40 モリの価格が大幅に下がっているとは言え、民生用AV 機器としてメガバイト単位のメモリを搭載することは困 難であるし、非常時を想定したメモリのバッテリーバッ クアップを考えるとメガバイトの管理情報を取り扱う事 は民生用AV機器として非現実的である。

[0054]

【課題を解決するための手段】上記課題を解決するた め、請求項1に係る発明は、少なくとも静止画データが 記録された光ディスクであって、複数枚の静止画データ を一つの静止画集として管理する静止画集管理情報 (V 50

OBSI) と、前記静止画集管理情報 (VOBSI) で 管理される静止画枚数に比例する可変長サイズの静止画 管理情報テーブル (Video_Table) を有する ことを特徴とする光ディスクとしている。

【0055】請求項2に係る発明は、請求項1記載の光 ディスクであって、前記静止画に同期して再生される音 声が記録されている場合、前記静止画集内の静止画に同 期再生される音声数に比例する可変長サイズの音声管理 情報テーブル (Audio_Table) を有すること を特徴とする光ディスクとしている。

【0056】請求項3に係る発明は、請求項1ないし2 記載の光ディスクであって、前記静止画管理情報テーブ ル (Video_Table) は、静止画管理情報 (V ideoI)を有し、前記静止画管理情報 (Video 1) には、静止画データサイズと、当該静止画と同期再 生される音声管理情報(AudioI)へのポインタ情 報 (Ptr_to_AudioI) を有することを特徴 とする光ディスクとしている。

【0057】請求項4に係る発明は、請求項1ないし3 記載の光ディスクであって、前記音声管理情報テーブル (Audio_Table) は、音声管理情報 (Aud ioI)を有し、前記音声管理情報 (AudioI) に は、音声データのアドレスと、音声データサイズと、音 声再生時間と、アフレコ使用時に他の音声管理情報(A udioI) へのリンクを張るポインタ情報 (Ptr_ to AudioI)を有することを特徴とする光ディ スクとしている。

【0058】請求項5に係る発明は、請求項1ないし4 記載の光ディスクであって、前記静止画集内の静止画毎 に、再生時の表示の有無を示す再生識別フラグ(Pla yback_permission) を前記静止画管理 情報 (VideoI) に有することを特徴とする光ディ スクとしている。

【0059】請求項6に係る発明は、請求項1ないし5 記載の光ディスクに少なくとも静止画データを記録する 光ディスクレコーダであって、静止画記録時に前記静止 画を管理する静止画管理情報(Videol)を作成 し、前記静止画集内の静止画枚数に比例する可変長サイ ズの前記静止画管理情報テーブル (Video Tab 1 e) に追加記録することを特徴とする光ディスクレコ ーダとしている。

【0060】請求項7に係る発明は、請求項6記載の光 ディスクレコーダであって、前記静止画に同期再生され る音声を録音した時に、前記音声データを管理する音声 管理情報(AudioI)を作成し、前記静止画集内の 静止画に同期再生される音声数に比例する可変長サイズ の前記音声管理情報テーブル (Audio_Tabl e) に追加記録し、前記静止画を管理する静止画管理情 報(VideoI)内の音声管理情報(AudioI) へのポインタ情報 (Ptr_to_AudioI) を当

11

該音声管理情報(AudioI)として記録することを 特徴とする光ディスクレコーダとしている。

【0061】請求項8に係る発明は、請求項6ないし7記載の光ディスクレコーダであって、同期再生される音声を有する静止画に対してアフターレコーディングを行った時に、録音した音声用の音声管理情報(AudioI)を作成し、前記音声管理情報テーブル(AudioTable)に追加記録し、前記オリジナル音声用の音声管理情報(AudioI)内の他の音声管理情報

(AudioI) へのポインタ情報 (Ptr_to_A 10udioI) に当該音声管理情報 (AudioI) を指し示すように記録することを特徴とする光ディスクレコーダとしている。

【0062】請求項9に係る発明は、請求項6ないし8 記載の光ディスクレコーダであって、前記静止画集内 で、再生を行わない静止画に対して再生識別フラグ(P layback_Permission)を不可に設定 することを特徴とする光ディスクレコーダとしている。

することを特徴とする光ディスクレコーダとしている。 【0063】請求項10に係る発明は、請求項1ないし 5記載の光ディスクを再生する光ディスクプレーヤであ 20 って、前記静止画集管理情報(VOBSI)内の静止画 管理情報テーブル(Video_Table)の順に静 止画再生を行い、静止画再生時に、前記静止画管理情報 (VideoI)内の音声管理情報(AudioI)へのポインタ情報(Ptr_to_AudioI)に有効 値が記述されている場合は、当該音声管理情報(AudioI)を検索し、更に他の音声管理情報(Auido I)へのリンクが張られている限り、新たな音声管理情報(AudioI)を検索して、前記静止画に同期再生 する音声を決定し、静止画および音声の再生を行うこと 30 を特徴とする光ディスクプレーヤとしている。

【0064】請求項11に係る発明は、請求項10記載の光ディスクプレーヤであって、再生する静止画を管理する静止画管理情報(VideoI)内の再生識別フラグ(Playback_Permission)を検索し、再生不可状態の場合は、前記静止画の再生を行わないことを特徴とする光ディスクプレーヤとしている。

[0065]

【発明の実施の形態】本発明の1実施例であるDVDレコーダとDVD-RAMを用いて本発明の詳細を説明す 40る。

【0066】(DVD-RAM上の論理構成) まずD VD-RAM上の論理構成について図10を用いて説明する。図10(a)は、ファイルシステムを通して見えるディスク上のデータ構成、図10(b)は、ディスク上の物理セクタアドレスを示している。 物理セクタアドレスの先頭部分にはリードイン領域がありサーボを安定させるために必要な規準信号や他のメディアとの識別信号などが記録されている。リードイン領域に続いてデータ領域が存在する。この部分に論理的に有効なデータ 50

が記録される。最後にリードアウト領域がありリードイン領域と同様な相準信号などが記録される

ン領域と同様な規準信号などが記録される。 【0067】データ領域の先頭にはボリューム情報と呼

【0067】データ領域の先頭にはボリューム情報と呼ばれるファイルシステム用の管理情報が記録される。ファイルシステムについては本特許の内容と直接関係がないので省略する。

【0068】ファイルシステムを通すことで、図10 (a) に示す様にディスク内のデータがディレクトリや ファイルとして扱うことが可能になる。

【0069】DVDレコーダが扱う全てのデータは、図 10(a)に示す様にROOTディレクトリ直下のVI DEO_RTディレクトリ下に置かれる。

【0070】DVDレコーダが扱うファイルは大きく2 種類に区別され、1つの管理情報ファイルと複数(少な くとも1つ)のAVファイルである。

【0071】(管理情報ファイル)次に、図11(a)を用いて管理情報ファイルの中身について説明する。ここでは、主に動画用の管理情報に関して説明する。

【0072】管理情報ファイル内には、大きく分けてVOBI(VOB情報)テーブルとPGCI(PGC情報)テーブルに区分けされる。VOBとはMPEGのプログラムストリームであり、PGCはVOB内の任意の部分区間(または全区間)を一つの論理再生単位とするCellの再生順序を定義するものである。言い換えれば、VOBはMPEGとして意味を持つ一つの単位であり、PGCはプレーヤが再生を行う一つの単位である。

【0073】VOBIテーブルは、中にVOBI数(Number_of_VOBIs)と各VOBIが記録され、VOBIは対応するAVファイル名(AV_File_Name)、ディスク内でのVOB識別子(VOB_ID)、AVファイル内でのスタートアドレス(VOB_Start_Address)、AVファイル内での終了アドレス(VOB_End_Address)、VOBの再生時間長(VOB_Playback_Time)、ストリームの属性情報(VOB_Attribute)から構成される。

【0074】PGCIテーブルは、中にPGCI数(Number_of_PGCIs)と各PGCIが記録され、PGCIはPGC内のCellI (Cell情報)数(Number_of_CellIs)と各CellIから構成され、CellIは対応するVOB_ID、VOB内での再生開始時刻(Cell_Start_Time)、VOB内での再生時間(Cell_Playback_Time)、VOB内での再生開始での再生開始アドレス(Cell_Start_Address)、VOB内での再生終了アドレス(Cell_End_Address)から構成される。

【0075】 (A V ファイル) 次に、図11 (b) を用いてA V ファイルについて説明する。

【0076】AVファイルは複数 (少なくとも一つ) の

VOBから構成され、AVファイル内でVOBは連続的 に記録されている。AVファイル内のVOBは前述した 管理情報ファイルのVOB情報で管理されている。プレ ーヤは、最初に管理情報ファイルにアクセスし、VOB の開始アドレスおよび終了アドレスを読み出すことで、 VOBへのアクセスが可能になる。また、VOB内は論 理的な再生単位としてCellが定義される。Cell はVOBの部分再生区間(または全区間)であり、ユー ザが自由に設定が可能である。このCe11によって、 実際のAVデータの操作を行う事無しに簡易な編集を行 10 う事が可能である。 VOBと同様にCellへのアクセ ス情報は、管理情報ファイル内のCell情報内で管理 されている。プレーヤは、最初に管理情報ファイルにア クセスし、Cellの開始アドレスおよび終了アドレス を読み出すことで、Cellへのアクセスが可能にな

【0077】Cellのアドレス情報はVOBを規準と し、VOBのアドレス情報はAVファイルを規準とする ため、実際には、Cellのアドレス情報にVOBのア ドレス情報を加算しAVファイル内でのアドレス情報を 20 計算して、プレーヤはAVファイルにアクセスを行う。

【0078】 (静止画データ用管理情報) 次に、図12 を用いて静止画データの管理情報について説明する。

【0079】静止画用管理情報は、VOBIテーブル内 にVOBIに代わってVOBSI(VOBS情報)が格 納される。VOBSは、静止画1枚と静止画に同期する 音声がある場合は音声を含めてVOBとした複数のVO Bの集合体である。

【0080】VOBSIには、対応するAVファイル名 (AV_File_Name)、ディスク内でのVOB 30 S識別子 (VOBS_ID)、AVファイル内でのスタ ートアドレス (VOBS_Start_Addres s)、AVファイル内での終了アドレス (VOBS_E nd Address)、VOBS内の静止画データ用 の管理情報を格納した静止画管理情報テーブル(Vid eo_Table)、VOBS内のオーディオデータ用 の管理情報を格納した音声管理情報テーブル (Audi o Table)から構成される。

【0081】静止画管理情報テーブル(Video_T able)には、静止画1枚毎の静止画管理情報 (Vi deoI)と、静止画管理情報数(Number_of Videols)が格納され、静止画管理情報(Vi deoI)は、静止画データのサイズ情報 (Size) 1 Bと、静止画と同時再生される音声の情報として、音 声管理情報テーブル (Audio_Table) 内の音 声管理情報へのポインタ情報 (Ptr_to_Audi o I) 1 Bを有している。

【0082】音声管理情報テーブル (Audio_Ta ble)には、各音声データ毎の音声管理情報 (Aud ioI) と、音声管理情報数 (Number_of_A 50

udio Is) が格納され、音声管理情報 (Audio I)は、音声データのアドレス情報(Address) 4Bと、音声データのサイズ情報 (Size) 2Bと、 音声の再生時間情報 (Playback_Time) 2 Bと、アフレコを行った場合の、アフレコ音声の情報と して、音声管理情報テーブル(Audio_Tabl e) 内のアフレコ音声を格納した音声管理情報 (Aud ioI) へのポインタ情報 (Ptr to Audio I) 1 Bを有している。

【0083】また、再生シーケンスを定義するPGCI テーブルでは、CellIレベルで動画とは異なる情報 を有する。静止画集用CellIは、対応するVOBS の識別子 (VOBS_ID) と、VOBS内での開始V OB番号 (Cell_Start_Video) と、V OBS内での終了VOB番号 (Cell_End_Vi deo)から構成される。

【0084】この構成によって、静止画集用Cell は、VOBS内での任意区間(任意の静止画から任意の 静止画まで)の再生指定が可能となる。

【0085】次に、図13を用いて、静止画と音声のリ ンクについて説明する。

【0086】静止画管理情報 (VideoI) は、オー ディオテーブル (Audio_Table) 内の音声管 理情報 (AudioI) へのポインタ情報 (Ptr_t o Audiol)を持ち、このフィールドが無効値 (=0) を有する場合は、静止画管理情報 (Video I) が管理する静止画は同期して再生される音声が存在 しない事を示している (Video#3およびVide o#4)。逆に、ポインタ情報 (Ptr_to_Aud ioI) が有効値を有する場合は、同期して再生される 音声が存在する事を示している (Video#1および Video#2)。

【0087】また、アフレコにより新たな音声データが 記録された場合は、音声管理情報(AudioI)内の 他の音声管理情報(AudioI)へのポインタ情報 (Ptr_to_AudioI) を持つ。アフレコの有 無は、前述した静止画管理情報 (VideoI) 内のポ インタ情報 (Ptr_to_AudioI) と同じよう に音声管理情報 (AudioI) 内のポインタ情報 (P tr_to_AudioI) が有効値を持つ場合はアフ レコ音声が存在する事を示している (Audio#1->Audio#3)。

【0088】次に、静止画管理情報(VideoI)お よび音声管理情報 (AudioI) とAVファイル内の 実データ(AVデータ)との関係について説明する。

【0089】静止画管理情報テーブル (Video_T able) 内の静止画管理情報 (VideoI) の順番 は、AVファイル内での静止画データの記録順に一致し ている。また、音声管理情報テーブル(Audio_T able) 内の音声管理情報 (AudioI) の順番

も、AVファイル内での音声データの記録順に一致して いる。

【0090】従って、例えば音声データの全く無い静止 画データだけから構成されるVOBSの場合、VOBS 先頭から静止画管理情報 (VideoI) 内に記録され ている静止画データサイズ(Size)を加算していく ことで、各静止画のAVファイル内でのアドレスが計算

【0091】静止画間に音声データが挟まれている場合 (音声1および音声2)、静止画データサイズを加算し 10 た後のアドレスを音声管理情報(Audiol)のアド レスと比較して、同一値である場合は、当該アドレスに は音声データが記録されていることを示していて、当該 音声データのデータサイズだけアドレスに加算する。こ の計算を繰り返し行うことにより、VOBS内の全静止 画データに対してアクセスすることが可能である。

【0092】次に、図14のフローチャートを用いて静 止画および音声へのアクセス方法について具体的に説明

【0093】最初に、カレントアドレスAdd、静止画 20 管理情報テーブル (Video_Table) 内のエン トリ番号を示す変数 i および音声管理情報テーブル (A udio_Table)内のエントリ番号を示す変数j を初期化する。

[0094]

Add = VOB_Start_Address

i = 1j = 1

(step1)変数jと音声管理情報数(Number _of_AudioIs) を比較して

j <= Number_of_AudioIs を満たす場合は音声データとのアドレス比較を行う s t ep3へ進み、その他の場合はstep5へ進む。

【0095】 (step2) カレントアドレスAddと オーディオ管理情報#jのアドレス情報を比較して Add == Audio[j].Address上式が成り立つ場合、カレントアドレスAddは音声管 理情報#j (Audio#j) が管理する音声データの 先頭アドレスであることを示しているので、カレントア ドレスを加算するstep4へ進む。上式が成り立たな 40 い場合は、step5へ進む。

【0096】 (step3) カレントアドレスAddに 音声管理情報#j (AudioI#j) の音声データサ イズの加算、変数jのインクリメントを行い、step 2へ戻る。

[0097]

Add += Audio[j]. Sizej ++

(step4) step2またはstep3で条件式を 満たさない場合、カレントアドレスAddは静止画デー 50

タアドレスを示すことを意味しているので、当該静止画 のアドレスが決定される。

【0098】 (step5) 次に、音声管理情報 (Au dioI)へのポインタの有無を調べ、存在する場合 は、当該静止画と同期再生される音声の検索を行う s t ep7へ進み、存在しない場合は、再生を行うstep 10へ進む。

【0099】 (step6) 当該静止画と同期再生され る音声をPtr_to_AudioIに仮り決めする。

[0100] (step7) Ptr_to_Audio Iが示す音声管理情報 (AudioI) が更に他の音声 管理情報 (AudioI) へのリンクが張られていない かを検索し、他の音声管理情報(Audiol)へのリ ンクが張られている場合は、再度 s t e p 7 へ戻る。

【0101】 (step8) step8において、音声 管理情報 (AudioI) への更なるリンクが張られて いないことが確認できた時点で、当該静止画と同期再生 される音声が決定される。

【0102】 (step9) step5で決定した静止 画データとstep9で決定した音声データ(存在する 場合のみ)を再生する。

【0103】 (step10) 変数 i をインクリメント する。

[0104]i++

(step11)変数 iを静止画管理情報数(Numb er_of_VideoIs) を比較して、

i <= Number of VideoIs 上式を満たす場合は、静止画集(VOBS)内に更に再 生する静止画データが存在することを示しているので、 s t e p 2 へ戻り、上式を満たさない場合は、静止画集 の再生を終了する。

[0105] (step12)

(VOBS I データサイズ) 次に、本実施例における静 止画集用管理情報サイズについて説明する。

【0106】図12で説明したように、静止画1枚に対 する管理情報は、静止画データサイズと音声へのポイン タ情報の2Bであるので、仮に65000枚の静止画を 撮影したとしても、

 $65000 \times 2B = 130000B$ 約130KBの容量に収まる。このサイズは、従来例で

示した1. 4MBと比較して、わずか10%程度であ

【0107】また、音声データを同時に記録した場合を 考えると、65000枚の静止画全てに音声データを付 けることは、大容量記録メディアであるDVD-RAM であっても容量的に非現実的である。

【0108】静止画1枚のサイズを50KBと仮定する

4. $7GB - 65000 \times 50KB = 1.45G$

30

であり、各音声データを192kbps、10秒と仮定

1. 45GB / 192kbps × 10sec = 6

すると、

約6000本までしか音声データが録音できないことが わかり、音声データ用管理情報は夫々9B必要であるか ら、

6000 × 9B = 54000B となりトータルで184KB、従来例の約13%で足り る事がわかる。

【0109】なお、図12乃至図14を用いて説明した管理方法の変形例として、静止画1枚毎の静止画管理情報 (VideoI)の中に、図12に示した静止画データのサイズ情報 (Size)1Bと音声管理情報へのポインタ情報 (Ptr_to_AudioI)1Bに加え、静止画データのアドレス情報 (Address)4Bを持っても良い。これにより、上述した方法よりも静止画1枚あたりの管理情報のデータサイズは6Bに増えるが、静止画データへのアクセスが容易になる。このとき、静止画と同期して再生する音声が無い場合には、図9に示した従来例の管理情報のデータサイズ (静止画1枚あたり21B)に比べて、約29%程度 (=6/21)に小さくできる。

【0110】 (DVDレコーダのブロック図) 図15は DVDレコーダのブロック図である。

【0111】図中、1501はユーザへの表示およびユーザからの要求を受け付けるユーザインターフェース部、1502は全体の管理および制御を司るシステム制御部、1503はカメラおよびマイクから構成される入力部、1504はビデオエンコーダ、オーディオエンコ 30ーダおよびシステムエンコーダから構成されるエンコーダ部、1505はモニタおよびスピーカから構成される出力部、1506はシステムデコーダ、オーディオデコーダおよびビデオデコーダから構成されるデコーダ部、1507はトラックバッファ、1508はドライブである。

【0112】まず、図15を用いてDVDレコーダにおける記録動作について説明する。

【0113】ユーザインターフェース部1501が最初にユーザからの要求を受ける。ユーザインターフェース 40部1501はユーザからの要求をシステム制御部1502に伝え、システム制御部1502はユーザからの要求を解釈および各モジュールへ処理要求を行う。ユーザからの要求が静止画像の撮影および録音であった場合、システム制御部1502は、エンコーダ部1504にビデオフレーム1枚のエンコードと音声のエンコードを要求する。

【0114】エンコーダ部1504は入力部1503から送られるビデオフレームを1枚だけをビデオエンコードおよびシステムエンコードして、トラックバッファ1 50

507に送る。

【0115】次にエンコーダ部1504はシステム制御部1502に静止画像データの作成が終了したことを伝え、システム制御部1502はドライブ1508を通してトラックバッファ1507に格納されている静止画像データをDVD-RAMディスクに記録する。

【0116】エンコーダ部1504はビデオのエンコー

ド終了後、直ちに入力部1503から送られる音声デー タのオーディオエンコードを開始し、生成したオーディ 10 オデータをトラックバッファ1507に順次転送する。 【0117】また、エンコーダ部1504はオーディオ エンコードを開始したことをシステム制御部1502に 伝え、システム制御部1502はドライブ1508を通 してトラックバッファ1507に格納されているオーデ ィオデータを逐次DVD-RAMディスクに記録する。 【0118】ユーザからのストップ要求は、ユーザイン ターフェース部1501を通してシステム制御部150 2に伝えられ、システム制御部1502はエンコーダ部 1504に録音停止命令を送り、エンコーダ部1504 はその直後のオーディオフレームまでのエンコードでエ ンコードを終了し、全てのオーディオデータをトラック バッファ1507に転送後、システム制御部1502に 対してエンコード処理終了を伝える。システム制御部1 502は、ドライブ1508を通してトラックバッファ 1507に格納されている残り全てのオーディオデータ

【0119】以上の動作終了後、システム制御部1502は前述したVOBSIおよびCellIを作成してドライブ1508を通してDVD-RAMディスクに記録をする。この時、重要なのは、静止画管理情報(VideoI)中の音声管理情報(AudioI)へのリンク情報(Ptr_to_AudioI)を同時に録音した音声データの音声管理情報(AudioI)を指すように生成することである。

をDVD-RAMディスクに記録する。

【0120】上述した、静止画および音声の記録を連続してユーザが行うことで、1つのVOBSが形成される。VOBSはデータ構造上の一単位であると同時に、ユーザが一度に続けて撮影した静止画のかたまりでもある。

【0121】次に、図15を用いてDVDレコーダにおける再生動作について説明する。

【0122】ユーザインターフェース部1501が最初にユーザからの要求を受ける。ユーザインターフェース部1501はユーザからの要求をシステム制御部1502はユーザからの要求の解釈および各モジュールへの処理要求を行う。ユーザからの要求が静止画集(VOBS)を指すPGCの再生であった場合、システム制御部1502は、ドライブ1508を通してPGC情報(PGCI)を読み出し、読み出したPGCIのCell情報(CellI)に記述

されているVOBS_IDから該当するVOBS情報 (VOBSI) を読み出す。

【0123】次に、システム制御部1502は、図14 で説明したフローチャートに従い、再生する静止画デー タのアドレスおよび同期再生される音声データの有無お よび当該音声データの決定を行う。

【0124】次に、システム制御部1502は静止画デ ータ、音声データ (存在する場合) の順でDVD-RA Mディスクからの読み出しおよびトラックバッファ15 07への格納をドライブ1508に要求する。

【0125】次に、システム制御部1502はデコーダ 部1506に対してデコード要求を出し、デコーダ部1 506はトラックバッファ1507からAVデータを読 み出しデコード処理を行う。デコードされてデータは、 出力部1505を通してモニタへの表示およびスピーカ からの出力が行われる。

【0126】なお、本実施例では、DVD-RAMを例 に説明をしたが、他のメディアにおいても同様の事が言 え、本発明はDVD-RAMや光ディスクにのみ制限さ れるものではない。

【0127】また、本実施例では、静止画像データ用V OBおよびオーディオデータ用VOBを他のVOBと分 けてAVファイルに記録したが、他のVOBと同一AV ファイル内に記録してもよいし、本発明はAVファイル・ の構成に制限を受けるものではない。

【0128】また、本実施例では、音声管理情報テーブ ル (Audio_Table) 内における音声管理情報 (AuidoI) の順番をAVファイル内におけるデー タ記録順に等しいとしたが、本質的には限定されるもの ではない。ただし、音声管理情報 (AudioI)のエ 30 ントリ順とAVファイル内の記録順が一致しない場合 は、静止画アドレス検出時の音声管理情報(Audio I) の検索対象が一つに限定できなくなり、全音声管理 情報 (AudioI) の検索が必要になる。

【0129】また、本実施例では、VOBSIで管理さ れる全静止画および全音声データは、AVファイル内の VOBS Start_AddressからVOBS_ End_Address内に固まって記録されるとした が、音声データ特に、アフレコした結果を記録した音声 データは、この制限に限定される必要はなく、他のV〇 40 BSが管理する記録領域 (VOBS_Start_Ad dressからVOBS_End_Addressま で) に含まれない限り、AVファイル内のどの位置に記 録されていても問題は生じない。

【0130】また、図16に示す様に静止画管理情報 (VideoI) 中に静止画データの再生時の有効/無 効を示す再生識別フラグ (Playback_Perm ission)を1ビット設けることで、再生時に再生 を行わない、即ちスキップする静止画を指定することが 可能になり、大量に撮影した静止画の中から好きな静止 50

画だけの再生を行うことが容易に可能になる。

【0131】また、図12において、余裕を見てアドレ スを4 Bで表したが、4.7 G Bのディスクに対してセ クタ (2048B) 数は最大2, 464, 153個 (= 4. 7×1024×1024×1024/2048) で あり、少なくとも22ビットあればディスク内のすべて のセクタアドレスを表すことができるため、アドレスを 3 Bで表してもよい。

[0132]

10

【発明の効果】本発明では、少なくとも静止画データが 記録された光ディスクであって、複数枚の静止画データ を一つの静止画集として管理する静止画集管理情報 (V OBSI) と、前記静止画集管理情報 (VOBSI) で 管理される静止画枚数に比例する可変長サイズの静止画 管理情報テーブル (Video_Table) を有して いて、また、前記静止画に同期して再生される音声が記 録されている場合、前記静止画集内の静止画に同期再生 される音声数に比例する可変長サイズの音声管理情報テ ーブル (Audio_Table) を有し、前記静止画 管理情報テーブル (Video_Table) は、静止 画管理情報 (VideoI) を有し、前記静止画管理情 報(VideoI)には、静止画データサイズと、当該 静止画と同期再生される音声管理情報 (AudioI) へのポインタ情報 (Ptr_to_AudioI) を有 している。

【0133】この結果、静止画および音声の管理情報が 最低限必要なデータサイズに圧縮ができ、従来の構成に 比べて1割強に抑えることが可能となる効果が得られ る。

【0134】また、前記音声管理情報テーブル (Aud io_Table)は、音声管理情報 (AudioI) を有し、前記音声管理情報 (AudioI) には、音声 データのアドレスと、音声データサイズと、音声再生時 間と、アフレコ使用時に他の音声管理情報(Audio I) へのリンクを張るポインタ情報 (Ptr to A udioI)を有することで、オリジナルの音声管理情 報を失うことなく、容易にアフレコを行うことが可能と なる効果が得られる。

【0135】また、前記静止画集内の静止画毎に、再生 時の表示の有無を示す再生識別フラグ (Playbac k_permission) を前記静止画管理情報 (V ideoI)に有することで、不必要な静止画をスキッ プして再生することが容易に設定可能となる効果が得ら

【図面の簡単な説明】

【図1】DVDレコーダのドライブ装置ブロック図。

【図2】(a) ディスク上のアドレス空間を示す図。

トラックバッファ内データ蓄積量を示す図。

【図3】MPEGビデオストリームにおけるピクチャ相 関図。

【図5】MPEGシステムデコーダ (P-STD) の構

特開2000-4421 (P2000-4421A) (12)

22

【図13】静止画と音声のリンク関係を示す図。

【図14】静止画データのアドレスおよび音声データの 有無を求めるフローを示す図。

【図15】DVDレコーダの構成図。

【図16】静止画有効フラグを示す図。

【符号の説明】

11光ピックアップ、12ECC処理部、13トラック バッファ、14スイッチ、15エンコーダ部、16デコ ーダ部、41パックヘッダ、42パケットヘッダ、43 【図8】ディジタルVTRにおける動画および静止画の 10 ペイロード、51STC、52デマルチプレクサ、53 ビデオバッファ、54ビデオデコーダ、55リオーダバ ッファ、56スイッチ、57オーディオバッファ、58 オーディオデコーダ、1501ユーザインターフェース 部、1502システム制御部、1503入力部、150 4エンコーダ部、1505出力部、1506デコーダ 部、1507トラックバッファ、1508ドライブ。

成図。 【図6】(a) ビデオデータを示す図。

(b) ビデオバッファを示す図。

(c) MPEGシステムストリームを示す図。

【図4】MPEGシステムストリームの構成図。

(d) オーディオデータを示す図。

【図7】ディジタルスティルカメラにおける静止画管理 方法を示す図。

記録状態を示す図。

【図9】静止画用管理情報の構成を示す図。

【図10】(a) ディレクトリ構造を示す図。

(b) ディスク上の物理配置を示す図。

【図11】(a) 管理情報データを示す図。

ストリームデータを示す図。

【図12】静止画集用管理情報の構成を示す図。

【図1】

1ECCブロック= 16セク

【図3】

【図2】

図2

(b) トラックバッファ内データ蓄積量

【図4】

义4.

【図7】

【図9】

【図10】

【図13】

【図14】

図15

【図16】

(20) 特開2000-4421 (P2000-4421A)

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

テーマコート* (参考)

H04N 5/91

R

5/92

Н

(72) 発明者 伊達 哲

東京都国分寺市東恋ケ窪一丁目280番地

株式会社日立製作所中央研究所内

(72) 発明者 伊藤 保

神奈川県横浜市戸塚区吉田町292番地 株

・式会社日立製作所マルチメディアシステム

開発本部内

(72) 発明者 村瀬 蓝

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 岡田 智之

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

Fターム(参考) 5C053 FA07 FA08 FA10 FA14 FA24

FA25 GB01 GB06 GB08 GB10

GB11 GB15 GB36 GB37 HA22

JA21 JA23 KA01 KA05 KA24

LA01

5D110 AA14 AA27 AA29 BB01 BB06

CA06 CA07 CA16 CC01 CD05

CD14 CJ01 CJ11 DA01 DA04

DA11 DA15 DE01