

Summer 2015 Examination

Model Answer Page No: 1/32 Subject & Code: Basic Maths (17104)

~	Sub.	Model Answers	Marks	Total Marks
INO.	Que.	Important Instructions to the Examiners:		Marks
		 The Answers should be examined by key words and not as word-to-word as given in the model answer scheme. The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's Answers and the model answer. In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding. For programming language papers, credit may be given to 		
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, FIRST SEE whether the method falls within the scope of the curriculum, and THEN ONLY give appropriate marks in accordance with the scheme of marking.		

Subject & Code: Basic Maths (17104)

Page No: 2/32

Que. No.	Sub.	Model Answers	Marks	Total Marks
1)	Que.	Attempt any TEN of the following:		IVIAIKS
	a)	$\begin{bmatrix} 4 & 3 & 9 \\ 5 & 1 & 2 & 7 \\ 3 & -2 & 7 \\ 0 & 1 & 2 \end{bmatrix} = 0$		
	,	Find x, if $\begin{vmatrix} 4 & 3 & 9 \\ 3 & -2 & 7 \\ 11 & 4 & x \end{vmatrix} = 0$.		
			1/2	
	Ans.	$\therefore 4(-2x-28)-3(3x-77)+9(12+22)=0$		
		$\therefore -8x - 112 - 9x + 231 + 306 = 0$	1/2	
		$\therefore -17x + 425 = 0$ 425		
		$\therefore x = \frac{425}{17}$	1/2	
		$\therefore \boxed{x = 25}$	1/2	2
		$\begin{bmatrix} 1 & 4 \end{bmatrix}$		
	b)	Prove that the matrix $\begin{bmatrix} 1 & 4 \\ 6 & 9 \end{bmatrix}$ is a nonsingular matrix.		
		11 41		
	Ans.	$ \begin{vmatrix} 1 & 4 \\ 6 & 9 \end{vmatrix} = 9 - 24 $	1	
		=-15	1	
		≠ 0	1/2	
		Given matrix is non-singular.	1/2	2
		Го 17		
	c)	If $A = \begin{bmatrix} 3 & 4 & -2 \\ 2 & 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -1 \\ 3 & 4 \\ 0 & 2 \end{bmatrix}$, find AB.		
		$\begin{bmatrix} 1 & 1 & 1 & 2 & 1 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 \end{bmatrix}$		
	Ans.	$\therefore AB = \begin{bmatrix} 3 & 4 & -2 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 3 & 4 \\ 0 & 2 \end{bmatrix}$		
		$\begin{bmatrix} \therefore AB = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix}$		
			1	
		$= \begin{bmatrix} 6+12-0 & -3+16-4 \\ 4+3+0 & -2+4+0 \end{bmatrix}$	1	
		$=\begin{bmatrix} 18 & 9 \\ 7 & 2 \end{bmatrix}$	1	2
		$\begin{bmatrix} -1 & 2 \end{bmatrix}$	1	_

Subject & Code: Basic Maths (17104)

Page No: 3/32

Sub.	26.114	3.6.1	Total
Que.	Model Answers	Marks	Marks
d)	Resolve into partial fractions $\frac{1}{x^3 - x}$.		
Ans.	$\frac{1}{x^{3}-x} = \frac{1}{x(x+1)(x-1)}$ $= \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1}$ $\therefore [1 = (x+1)(x-1)A + x(x-1)B + x(x+1)C]$ $Put \ x = 0$ $\therefore 1 = (0+1)(0-1)A + 0 + 0$ $\therefore 1 = -A$	1/	
	$\therefore \boxed{-1 = A}$ $Put \ x = -1$ $\therefore 1 = 0 - 1(-1 - 1)B + 0$ $\therefore 1 = 2B$ $\therefore \boxed{\frac{1}{2} = B}$ $Put \ x = 1$	1/2	
	$\therefore 1 = 0 + 0 + 1(1+1)C$ $\therefore 1 = 2C$ $\therefore \frac{1}{2} = C$	1/2	
el	$\therefore \frac{1}{x^3 - x} = \frac{-1}{x} + \frac{\frac{1}{2}}{x + 1} + \frac{\frac{1}{2}}{x - 1}$	1/2	2
(-)	Define compound angle.		
Ans.	Compound Angle: An angle formed by sum or difference of many angles is said to be compound angle. Note: The above definition is a sample format. Students may express the same into other words also. Please give due credit to the students.	2	2
	Que. d) Ans.	Que. Resolve into partial fractions $\frac{1}{x^3-x}$. Ans. $\frac{1}{x^3-x} = \frac{1}{x(x+1)(x-1)}$ $= \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1}$ $\therefore \boxed{1 = (x+1)(x-1)A + x(x-1)B + x(x+1)C}$ $Put \ x = 0$ $\therefore 1 = (0+1)(0-1)A + 0 + 0$ $\therefore 1 = -A$ $\therefore \boxed{-1 = A}$ $Put \ x = -1$ $\therefore 1 = 0 - 1(-1-1)B + 0$ $\therefore 1 = 2B$ $\therefore \boxed{\frac{1}{2} = B}$ $Put \ x = 1$ $\therefore 1 = 0 + 0 + 1(1+1)C$ $\therefore 1 = 2C$ $\therefore \boxed{\frac{1}{x^3-x} = \frac{-1}{x} + \frac{1}{x+1} + \frac{1}{x-1}}$ $e)$ Define compound angle. Ans. Compound Angle: An angle formed by sum or difference of many angles is said to be compound angle. Note: The above definition is a sample format. Students may express the same into other words also. Please give due credit to the students.	Que. Model Answers Marks d) Resolve into partial fractions $\frac{1}{x^3-x}$. Ans. $\frac{1}{x^3-x} = \frac{1}{x(x+1)(x-1)}$ $= \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1}$ $\therefore 1 = (x+1)(x-1)A + x(x-1)B + x(x+1)C$ $Put x = 0$ $\therefore 1 = (0+1)(0-1)A + 0 + 0$ $\therefore 1 = -A$ $\therefore -1 = A$ $Put x = -1$ $\therefore 1 = 0 - 1(-1-1)B + 0$ $\therefore 1 = 2B$ $\therefore \frac{1}{2} = B$ $Put x = 1$ $\therefore 1 = 0 + 0 + 1(1+1)C$ $\therefore 1 = 2C$ $\therefore \frac{1}{x^3-x} = \frac{-1}{x} + \frac{1}{x^2} + \frac{1}{x^2}$ $\frac{1}{x^3-x} = \frac{-1}{x} + \frac{1}{x^2} + \frac{1}{x^2}$ $\frac{1}{x^3-x} = \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2}$ $\frac{1}{x^2} = \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2}$ $\frac{1}{x^2} = \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2}$ $\frac{1}{x^2} = \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2}$ $\frac{1}{x^2} = \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2}$ $\frac{1}{x^2} = \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2}$ $\frac{1}{x^2} = \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2}$ $\frac{1}{x^2} = \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2}$ $\frac{1}{x^2} = \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2}$ $\frac{1}{x^2} = \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2}$ $\frac{1}{x^2} = \frac{1}{x^2} + \frac{1}{x^2}$

Subject & Code: Basic Maths (17104)

Page No: 4/32

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
1)	f)	Prove that $\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta$		
	Ans.	$\sin\left(\frac{\pi}{2} + \theta\right) = \sin\frac{\pi}{2}\cos\theta + \cos\frac{\pi}{2}\sin\theta$ $= \cos\theta + 0$	1/ ₂ 1	
		$=\cos\theta$	1/2	2
	g)	Express $4\cos 30^{\circ}\sin 20^{\circ}$ as the sum or difference of trignometric ratios.	, -	
	Ans.	$4\cos 30^{\circ} \sin 20^{\circ} = 2(2\cos 30^{\circ} \sin 20^{\circ})$		
		$= 2 \left[\sin \left(30^{\circ} + 20^{\circ} \right) - \sin \left(30^{\circ} - 20^{\circ} \right) \right]$	1	
		$=2\left[\sin 50^{\circ}-\sin 10^{\circ}\right]$	1	2
	h)	Find the principal value of $\cos\left[\frac{\pi}{2} - \sin^{-1}\left(\frac{1}{2}\right)\right]$		
	Ans.	$\cos\left[\frac{\pi}{2} - \sin^{-1}\left(\frac{1}{2}\right)\right] = \cos\left[\frac{\pi}{2} - \frac{\pi}{6}\right]$	1/2	
		$=\cos\left[\frac{\pi}{3}\right]$	1/2	
		$=\frac{1}{2} \ or \ 0.5$	1	2
		OR		
		$\cos\left[\frac{\pi}{2} - \sin^{-1}\left(\frac{1}{2}\right)\right] = \cos\left[90^{\circ} - 30^{\circ}\right]$	1/2	
		$=\cos[60^{\circ}]$	1/2	
		$=\frac{1}{2} or 0.5$ OR	1	2
		$\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$	1/2	
		$\therefore \cos\left[\frac{\pi}{2} - \sin^{-1}\left(\frac{1}{2}\right)\right] = \cos\left[\frac{\pi}{2} - \frac{\pi}{6}\right]$		
		$=\cos\left[\frac{\pi}{3}\right]$	1/2	
		$=\frac{1}{2} or 0.5$	1	2

Subject & Code: Basic Maths (17104)

Page No: 5/32

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
1)	i) Ans.	Show that the lines $5x+6y-1=0$ and $6x-5y+3=0$ are perpendicular.		
		i) For the line $5x+6y-1=0$ $\therefore slope \ m_1 = -\frac{A}{B} = -\frac{5}{6}$	1/2	
		ii) For the line $6x-5y+3=0$ $\therefore slope \ m_2 = -\frac{A}{B} = -\frac{6}{-5} = \frac{6}{5}$	1/2	
		$\therefore m_1 = -\frac{5}{6} = -\frac{1}{6/5} = -\frac{1}{m_2}$ $\therefore \text{ the lines are perpendicular.}$	1/2	2
		OR	OR	
		$\therefore m_1 \cdot m_2 = -\frac{5}{6} \times \frac{6}{5} = -1$	1/2	
		: the lines are perpendicular.	1/2	2
	j)	Find the equation of straight line passing through $(4, -5)$ and having slope $-\frac{2}{3}$.		
	Ans.	$\therefore \text{ the equation is}$ $y - y_1 = m(x - x_1)$ $\therefore y + 5 = -\frac{2}{3}(x - 4)$ $\therefore 3y + 15 = -2x + 8$ $\therefore 2x + 3y + 7 = 0$	1 ½ ½	2
	k)	Find the range and coefficient of range of the following distribution:		

Subject & Code: Basic Maths (17104)

Page No: 6/32

Que. No.	Sub.	Model Answers	Marks	Total Marks
No. 1)	Que.			Marks
	Ans.	Range = Largest Value - Smallest Value $= 50-10$ $= 40$ Coefficient of Range = Largest Value - Smallest Value	1/ ₂ 1/ ₂	
		$= \frac{\text{Largest Value} + \text{Smallest Value}}{\text{Largest Value}}$ $= \frac{50 - 10}{50 + 10}$	1/2	
		$=\frac{2}{3}$	1/2	2
	<i>l</i>)	If the mean is 82.5, standard deviation is 7.2, find the coefficient of variance.		
	Ans.	Coeff. of Variance = $\frac{S.D.}{\overline{x}} \times 100$		
		$=\frac{7.2}{82.5}\times100$	1	
		= 8.727	1	2
2)		Attempt any four of the following:		
	a)	Solve the following equations by using Crammer's rule: $x+y=4-z$, $y+z=1-2x$, $x+z=y$		
	Ans.	x + y + z = 4 $2x + y + z = 1$		
		$x-y+z=0$ $D = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 1(1+1)-1(2-1)+1(-2-1)$		
		=-2	1	
		$D_{x} = \begin{vmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{vmatrix} = 4(1+1)-1(1-0)+1(-1-0)$		
		= 6	1/2	

Subject & Code: Basic Maths (17104)

Page No: 7/32

Que.	Sub.	Model Answers	Marks	Total
No. 2)	Que.	1		Marks
<i></i>)		$\begin{bmatrix} 1 & 4 & 1 \\ D & - 2 & 1 & 1 \\ \end{bmatrix} = 1(1 \ 0) \ A(2 \ 1) + 1(0 \ 1)$		
		$D_{y} = \begin{vmatrix} 1 & 4 & 1 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 1(1-0) - 4(2-1) + 1(0-1)$		
		$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	1/	
		·	1/2	
		$D = \begin{bmatrix} 1 & 1 & 7 \\ 2 & 1 & 1 \end{bmatrix} = 1(0+1)-1(0-1)+4(-2-1)$		
		$D_z = \begin{vmatrix} 1 & 1 & 4 \\ 2 & 1 & 1 \\ 1 & -1 & 0 \end{vmatrix} = 1(0+1)-1(0-1)+4(-2-1)$	1/	
		=-10	1/2	
		D_x 6 2	1/2	
		$\therefore x = \frac{D_x}{D} = \frac{6}{-2} = -3$		
		$y = \frac{D_y}{D} = \frac{-4}{-2} = 2$	1/2	
		$z = \frac{D_z}{D} = \frac{-10}{-2} = 5$	1/2	4
				_
	b)	Find the matrix X such that $ \begin{bmatrix} 4 & 5 \\ -3 & 6 \end{bmatrix} + X = \begin{bmatrix} 10 & -1 \\ 0 & -6 \end{bmatrix} $		
	Ans.	$\therefore X = \begin{bmatrix} 10 & -1 \\ 0 & -6 \end{bmatrix} - \begin{bmatrix} 4 & 5 \\ -3 & 6 \end{bmatrix}$	1	
		$= \begin{bmatrix} 10-4 & -1-5 \\ 0+3 & -6-6 \end{bmatrix}$	1	
		$= \begin{bmatrix} 6 & -6 \\ 3 & -12 \end{bmatrix}$	2	4
		OR		
		Let $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$		
		$\begin{bmatrix} Lei & X - \\ c & d \end{bmatrix}$		
		$ \begin{bmatrix} 4 & 5 \\ -3 & 6 \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 10 & -1 \\ 0 & -6 \end{bmatrix} $		
		$\left \begin{array}{ccc} \cdot \cdot \begin{bmatrix} 4+a & 5+b \\ -3+c & 6+d \end{array} \right = \begin{bmatrix} 10 & -1 \\ 0 & -6 \end{bmatrix}$	1	
		$\begin{bmatrix} \cdot \cdot \lfloor -3+c & 6+d \end{bmatrix}^- \begin{bmatrix} 0 & -6 \end{bmatrix}$	1	
		$\therefore 4 + a = 10 \qquad 5 + b = -1$	1	
		-3+c=0 $6+d=-6$		
		$\therefore a = 6 \qquad b = -6$	1	
		$c = 3 \qquad d = -12$		
		$\therefore X = \begin{bmatrix} 6 & -6 \\ 3 & -12 \end{bmatrix}$	1	4
		[3 -14]	1	

Subject & Code: Basic Maths (17104)

Page No: 8/32

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)		If $A = \begin{bmatrix} 1 & -2 \\ -3 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 2 & -5 \\ 1 & 0 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 6 & -7 & 0 \\ -1 & 2 & 5 \\ 1 & 0 & 3 \end{bmatrix}$, prove that		- Trial Re
ĺ		(AB)C = A(BC)		
	Ans.	$A = \begin{bmatrix} 1 & -2 \\ -3 & -1 \end{bmatrix}, B = \begin{bmatrix} 4 & 2 & -5 \\ 1 & 0 & 3 \end{bmatrix}, C = \begin{bmatrix} 6 & -7 & 0 \\ -1 & 2 & 5 \\ 1 & 0 & 3 \end{bmatrix}$		
		$AB = \begin{bmatrix} 1 & -2 \\ -3 & -1 \end{bmatrix} \begin{bmatrix} 4 & 2 & -5 \\ 1 & 0 & 3 \end{bmatrix}$		
ĺ		$= \begin{bmatrix} 4-2 & 2-0 & -5-6 \\ -12-1 & -6-0 & 15-3 \end{bmatrix}$	1/2	
		$= \begin{bmatrix} 2 & 2 & -11 \\ -13 & -6 & 12 \end{bmatrix}$	1/2	
		$(AB)C = \begin{bmatrix} 2 & 2 & -11 \\ -13 & -6 & 12 \end{bmatrix} \begin{bmatrix} 6 & -7 & 0 \\ -1 & 2 & 5 \\ 1 & 0 & 3 \end{bmatrix}$		
		$= \begin{bmatrix} 12-2-11 & -14+4-0 & 0+10-33 \\ -78+6+12 & 91-12+0 & 0-30+36 \end{bmatrix}$	1/2	
		$= \begin{bmatrix} -1 & -10 & -23 \\ -60 & 79 & 6 \end{bmatrix}$	1/2	
		$BC = \begin{bmatrix} 4 & 2 & -5 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 6 & -7 & 0 \\ -1 & 2 & 5 \\ 1 & 0 & 3 \end{bmatrix}$		
ĺ		$= \begin{bmatrix} 24-2-5 & -28+4-0 & 0+10-15 \\ 6-0+3 & -7+0+0 & 0+0+9 \end{bmatrix}$	1/2	
		$= \begin{bmatrix} 17 & -24 & -5 \\ 9 & -7 & 9 \end{bmatrix}$	1/2	
		$A(BC) = \begin{bmatrix} 1 & -2 \\ -3 & -1 \end{bmatrix} \begin{bmatrix} 17 & -24 & -5 \\ 9 & -7 & 9 \end{bmatrix}$		
		$= \begin{bmatrix} 17-18 & -24+14 & -5-18 \\ -51-9 & 72+7 & 15-9 \end{bmatrix}$		
		$= \begin{bmatrix} -1 & -10 & -23 \\ -60 & 79 & 6 \end{bmatrix}$	1/2	
1		$\therefore (AB)C = A(BC)$ OR	1/2	4

Subject & Code: Basic Maths (17104)

Page No: 9/32

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
2)		$ (AB)C = \left\{ \begin{bmatrix} 1 & -2 \\ -3 & -1 \end{bmatrix} \begin{bmatrix} 4 & 2 & -5 \\ 1 & 0 & 3 \end{bmatrix} \right\} \begin{bmatrix} 6 & -7 & 0 \\ -1 & 2 & 5 \\ 1 & 0 & 3 \end{bmatrix} $ $ = \left\{ \begin{bmatrix} 4-2 & 2-0 & -5-6 \\ -12-1 & -6-0 & 15-3 \end{bmatrix} \right\} \begin{bmatrix} 6 & -7 & 0 \\ -1 & 2 & 5 \\ 1 & 0 & 3 \end{bmatrix} $	1/2	
		$= \begin{bmatrix} 2 & 2 & -11 \\ -13 & -6 & 12 \end{bmatrix} \begin{bmatrix} 6 & -7 & 0 \\ -1 & 2 & 5 \\ 1 & 0 & 3 \end{bmatrix}$ $\begin{bmatrix} 12 - 2 - 11 & -14 + 4 - 0 & 0 + 10 - 33 \end{bmatrix}$	1/2	
		$= \begin{bmatrix} 12-2-11 & -14+4-0 & 0+10-33 \\ -78+6+12 & 91-12+0 & 0-30+36 \end{bmatrix}$ $= \begin{bmatrix} -1 & -10 & -23 \\ -60 & 79 & 6 \end{bmatrix}$	1/2	
		$A(BC) = \begin{bmatrix} 1 & -2 \\ -3 & -1 \end{bmatrix} \left\{ \begin{bmatrix} 4 & 2 & -5 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 6 & -7 & 0 \\ -1 & 2 & 5 \\ 1 & 0 & 3 \end{bmatrix} \right\}$ $\begin{bmatrix} 1 & -2 \end{bmatrix} \left[\begin{bmatrix} 24 - 2 - 5 & -28 + 4 - 0 & 0 + 10 - 15 \end{bmatrix} \right]$	1/.	
		$ = \begin{bmatrix} 1 & -2 \\ -3 & -1 \end{bmatrix} \left\{ \begin{bmatrix} 24 - 2 - 5 & -28 + 4 - 0 & 0 + 10 - 15 \\ 6 - 0 + 3 & -7 + 0 + 0 & 0 + 0 + 9 \end{bmatrix} \right\} $ $ = \begin{bmatrix} 1 & -2 \\ -3 & -1 \end{bmatrix} \begin{bmatrix} 17 & -24 & -5 \\ 9 & -7 & 9 \end{bmatrix} $ $ = \begin{bmatrix} 17 - 18 & -24 + 14 & -5 - 18 \\ -51 - 9 & 72 + 7 & 15 - 9 \end{bmatrix} $	1/2	
		$= \begin{bmatrix} -1 & -10 & -23 \\ -60 & 79 & 6 \end{bmatrix}$ $\therefore (AB)C = A(BC)$	1/2	4
	d)	Express the matrix A as sum of symmetric and skew-symmetric matrices, if $A = \begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix}$		
	Ans.	$\therefore A' = \begin{bmatrix} -1 & 2 & 5 \\ 7 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$	1	

Sub.

Que.

e)

Que.

No.

2)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

OR

Subject & Code: Basic Maths (17104)

 $\therefore A + A' = \begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix} + \begin{bmatrix} -1 & 2 & 5 \\ 7 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$

 $\therefore A - A' = \begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix} - \begin{bmatrix} -1 & 2 & 5 \\ 7 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$

 $= \begin{bmatrix} 0 & 5 & -4 \\ -5 & 0 & 4 \\ 4 & -4 & 0 \end{bmatrix}$

 $\therefore A = \frac{1}{2}(A+A') + \frac{1}{2}(A-A')$

 $\therefore A = \frac{1}{2}(A+A') + \frac{1}{2}(A-A')$

 $= \frac{1}{2} \begin{bmatrix} -2 & 9 & 6 \\ 9 & 6 & 4 \\ 6 & 4 & 10 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & 5 & -4 \\ -5 & 0 & 4 \\ 4 & -4 & 0 \end{bmatrix}$

Resolve into partial fractions $\frac{x+5}{x^2-x}$

Ans. $\frac{x+5}{x^2-x} = \frac{x+5}{x(x-1)} = \frac{A}{x} + \frac{B}{x-1}$

 $\therefore x+5=(x-1)A+xB$

 $= \begin{bmatrix} -2 & 9 & 6 \\ 9 & 6 & 4 \\ 6 & 4 & 10 \end{bmatrix}$

Page No: 10/32 Total Marks Model Answers Marks 1 1 $= \frac{1}{2} \begin{bmatrix} -2 & 9 & 6 \\ 9 & 6 & 4 \\ 6 & 4 & 10 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & 5 & -4 \\ -5 & 0 & 4 \\ 4 & -4 & 0 \end{bmatrix}$ 1 $= \frac{1}{2} \left\{ \begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix} + \begin{bmatrix} -1 & 2 & 5 \\ 7 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix} \right\} + \frac{1}{2} \left\{ \begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix} - \begin{bmatrix} -1 & 2 & 5 \\ 7 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix} \right\}$ 1+1 4 1

Page No: 11/32

Subject & Code: Basic Maths (17104)

Que.	Sub.	26.114	3.6 1	Total
No.	Que.	Model Answers	Marks	Marks
2)		$Put \ x = 0$		
		$\therefore 0+5=(0-1)A+0$		
		$\therefore 5 = -A$	1	
		$ \begin{array}{c} $		
		$\therefore \boxed{6 = B}$	1	
		<u> </u>		
		$\therefore \frac{x+5}{x^2-x} = \frac{-5}{x} + \frac{6}{x-1}$	1	4
		Note for partial fraction problems: The problems of partial		
		fractions could also be solved by the method of "equating equal power coefficients". This method is also applicable. Give appropriate marks in accordance with the scheme of marking in the later/previous problems as the solution by this method is not discussed. For the sake of convenience, the solution of the above problem with the help of this method is illustrated hereunder.		
		$\frac{x+5}{x^2-x} = \frac{x+5}{x(x-1)} = \frac{A}{x} + \frac{B}{x-1}$	1	
		$\therefore x + 5 = (x - 1)A + xB$		
		$\therefore x + 5 = xA - A + xB$		
		$\therefore 1 \cdot x + 5 = (A + B)x - A$		
		$\therefore A + B = 1, \qquad -A = 5$	4	
		$\therefore A = -5$ $\therefore B = 1 - A = 1 + 5$	1	
		$\therefore B = 1 - A = 1 + 3$ $\therefore B = 6$	1	
		$\therefore \frac{1}{x^2 - x} = \frac{-5}{x} + \frac{6}{x - 1}$	1	4
		Note: The above problem can also be solved as follows: $\frac{x+1}{x^2-x} = \frac{x+1}{(x-1)x} = \frac{A}{x-1} + \frac{B}{x}$		
		In this case, we get		
		$\therefore \boxed{A=6} \qquad \boxed{B=-5}$		
		$\therefore \frac{x+1}{x^2-x} = \frac{6}{x-1} + \frac{-5}{x}$		

Subject & Code: Basic Maths (17104)

Page No: 12/32

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	f) Ans.	Resolve into partial fractions $\frac{x^2 + 36x + 6}{(x-1)(x^2 + 2)}$ $\frac{x^2 + 36x + 6}{(x-1)(x^2 + 2)} = \frac{A}{x-1} + \frac{Bx + C}{x^2 + 2}$ $\therefore x^2 + 36x + 6 = (x^2 + 2)A + (x-1)(Bx + C)$	1/2	
		Put x-1=0 i.e., x=1 ∴ 1²+36(1)+6=A(1²+2)+0 ∴ 43 = 3A ∴ $\frac{43}{3}$ = A Put x=0 ∴ 0+0+6=(0+2)A+(0-1)(0+C)	1	
		$\therefore 6 + 0 + 0 - (0 + 2)A + (0 - 1)(0 + C)$ $\therefore 6 = 2A - C$ $\therefore 6 - 2A = -C$ $\therefore 6 - 2\left(\frac{43}{3}\right) = -C$ $\therefore -\frac{68}{3} = -C$		
		$\therefore \frac{68}{3} = C$ Put $x = 2$ $\therefore 2^2 + 36(2) + 6 = (2^2 + 2)A + (2 - 1)(2B + C)$ $\therefore 82 = 6A + 2B + C$	1	
		$\therefore 82 - 6A - C = 2B$ $\therefore 82 - 6\left(\frac{43}{3}\right) - \frac{68}{3} = 2B$ $\therefore -\frac{80}{3} = 2B$		
		$\therefore \frac{-\frac{40}{3} = B}{\left(x - 1\right)\left(x^2 + 2\right)} = \frac{\frac{43}{3}}{x - 1} + \frac{-\frac{40}{3}x + \frac{68}{3}}{x^2 + 2}$	1/2	4

Subject & Code: Basic Maths (17104) **Page No:** 13/32

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		IVIAIKS	Marks
3)		Attempt any four of the following:		
	a)	Find the inverse of the matrix $\begin{bmatrix} 1 & 2 & 4 \\ -1 & 2 & 3 \\ 1 & 4 & 1 \end{bmatrix}$		
	Ans.	Let $A = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 2 & 3 \\ 1 & 4 & 1 \end{bmatrix}$ $\therefore A = 1(2-12) - 2(-1-3) + 4(-4-2) = -26$ $\therefore A^{-1} \text{ exists.}$	1/2	
		Matrix of Cofactor of A is,		
		$C(A) = \begin{bmatrix} \begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} & - \begin{vmatrix} -1 & 3 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} -1 & 2 \\ 1 & 4 \end{vmatrix} \\ - \begin{vmatrix} 2 & 4 \\ 4 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 4 \\ 1 & 1 \end{vmatrix} & - \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} \\ \begin{vmatrix} 2 & 4 \\ 2 & 3 \end{vmatrix} & - \begin{vmatrix} 1 & 4 \\ -1 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ -1 & 2 \end{vmatrix} \end{bmatrix}$	1/2	
		$\begin{vmatrix} -10 & 4 & -6 \\ 14 & -3 & -2 \end{vmatrix} =(*)$	1½	
		$= \begin{bmatrix} -10 & 4 & -6 \\ 14 & -3 & -2 \\ -2 & -7 & 4 \end{bmatrix}$ $adj(A) = \begin{bmatrix} -10 & 14 & -2 \\ 4 & -3 & -7 \\ -6 & -2 & 4 \end{bmatrix}$	1/2	
		$\therefore A^{-1} = \frac{1}{ A } adj(A)$ $= \frac{1}{-26} \begin{bmatrix} -10 & 14 & -2\\ 4 & -3 & -7\\ -6 & -2 & 4 \end{bmatrix}$	1	4
		(*) Note: In the matrix <i>C</i> (<i>A</i>), if 1 to 3 elements are wrong (either in sign or value), deduct ½ mark, if 4 to 6 elements are wrong, deduct ½ marks, if 7 to 9 are wrong, deduct all the 2 marks. Further, if all the elements in the last i.e., <i>adj</i> (<i>A</i>) are correct, then only give ½ mark.		
		OR	OR	

Subject & Code: Basic Maths (17104) **Page No:** 14/32

Que.	Sub.	26.114	3.6.1	Total
No.	Que.	Model Answers	Marks	Marks
3)		Matrix of minors of A is, $M(A) = \begin{bmatrix} 2 & 3 & -1 & 3 & -1 & 2 \\ 4 & 1 & 1 & 1 & 1 & 4 \\ 2 & 4 & 1 & 4 & 1 & 2 \\ 4 & 1 & 1 & 1 & 1 & 4 \\ 2 & 4 & 1 & 4 & 1 & 2 \\ 2 & 3 & -1 & 3 & -1 & 2 \end{bmatrix}$ $= \begin{bmatrix} -10 & -4 & -6 \\ -14 & -3 & 2 \\ -2 & 7 & 4 \end{bmatrix}$ $(*)$ $C(A) = \begin{bmatrix} -10 & 4 & -6 \\ 14 & -3 & -2 \\ -2 & -7 & 4 \end{bmatrix}$	1/2	4
				•
		OR	OR	
		$A_{11} = \begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} = -10 \qquad A_{12} = -\begin{vmatrix} -1 & 3 \\ 1 & 1 \end{vmatrix} = 4 \qquad A_{13} = \begin{vmatrix} -1 & 2 \\ 1 & 4 \end{vmatrix} = -6$ $A_{21} = -\begin{vmatrix} 2 & 4 \\ 4 & 1 \end{vmatrix} = 14 \qquad A_{22} = \begin{vmatrix} 1 & 4 \\ 1 & 1 \end{vmatrix} = -3 \qquad A_{23} = -\begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} = -2$ $A_{31} = \begin{vmatrix} 2 & 4 \\ 2 & 3 \end{vmatrix} = -2 \qquad A_{32} = -\begin{vmatrix} 1 & 4 \\ -1 & 3 \end{vmatrix} = -7 \qquad A_{33} = \begin{vmatrix} 1 & 2 \\ -1 & 2 \end{vmatrix} = 4$ $\therefore C(A) = \begin{bmatrix} -10 & 4 & -6 \\ 14 & -3 & -2 \\ -2 & -7 & 4 \end{bmatrix}$ Note: In the above, if 1 to 3 elements are wrong, deduct $\frac{1}{2}$ mark, if 4 to 6 elements are wrong, deduct 1 marks, and if 7 to 9 are wrong, deduct all the marks. Further, if all the elements in the following matrices C(A) and adj (A) are correct, then only give the marks.	1½	4

Subject & Code: Basic Maths (17104)

Page No: 15/32

Que.	Sub.	N. 1.1.A	N 1	Total
No.	Que.	Model Answers	Marks	Marks
3)	b)	Solve by matrix method: $3x+y+2z=3$, $2x-3y-z=-3$, $x+2y+z=4$		
	Ans.	$\therefore A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 3 \\ -3 \\ 4 \end{bmatrix}$		
		A = 3(-3+2)-1(2+1)+2(4+3) = 8	1/2	
		$\therefore adj(A) = \begin{bmatrix} -1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11 \end{bmatrix}(*)$	1	
		$\therefore A^{-1} = \frac{1}{ A } adj(A)$ $= \frac{1}{8} \begin{bmatrix} -1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11 \end{bmatrix}$	1	
		$\begin{bmatrix} -\frac{8}{8} \begin{bmatrix} -3 & 1 & 7 \\ 7 & -5 & -11 \end{bmatrix} \\ \therefore \text{ the solution is,} \\ X = A^{-1}B \end{bmatrix}$		
		$= \frac{1}{8} \begin{bmatrix} -1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11 \end{bmatrix} \begin{bmatrix} 3 \\ -3 \\ 4 \end{bmatrix}$		
		$=\frac{1}{8} \begin{bmatrix} 8\\16\\-8 \end{bmatrix}$		
		$= \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$	1/2	4
		 ∴ x = 1, y = 2, z = -1 (*) Note: Many other methods are followed to find adj(A) as discussed in the Q. 3 (a). Please give appropriate marks in accordance with the scheme of marking as discussed therein. 		
		discussed in the Q. 3 (a). Please give appropriate marks in accordance with the scheme of marking as		

Subject & Code: Basic Maths (17104) **Page No:** 16/32

Que.	Sub.	N. 1.1.A	3.4 1	Total
No.	Que.	Model Answers	Marks	Marks
3)	c)	Resolve into partial fractions $\frac{x^3+1}{x^2+6x}$		
	Ans.	$\frac{x^3 + 1}{x^2 + 6x} = x - 6 + \frac{36x + 1}{x^2 + 6x}$	1	
		$\therefore \frac{36x+1}{x^2+6x} = \frac{36x+1}{x(x+6)} = \frac{A}{x} + \frac{B}{x+6}$ $\therefore \boxed{36x+1 = (x+6)A + xB}$	1/2	
		Put $x = 0$ $\therefore 0 + 1 = (0 + 6)A + 0$		
		$\therefore 1 = 6A$ $\therefore \frac{1}{6} = A$	1	
		Put $x+6=0$ i.e., $x=-6$ $\therefore 36(-6)+1=0-6B$		
		$\therefore -215 = -6B$ $\therefore \boxed{\frac{215}{6} = B}$	1/2	
		$\therefore \frac{x^3 + 1}{x^2 + 6x} = \frac{\frac{1}{6}}{x} + \frac{\frac{215}{6}}{x + 2}$	1/2	
		$\therefore \frac{x^3 + 1}{x^2 + 6x} = x - 6 + \frac{\frac{1}{6}}{x} + \frac{\frac{215}{6}}{x + 2}$	1/2	4
	d)	Resolve into partial fractions $\frac{\tan \theta + 1}{(\tan \theta + 2)(\tan \theta + 3)}$		
	Ans.	$Put \tan \theta = x$		
		$\frac{\tan \theta + 1}{(\tan \theta + 2)(\tan \theta + 3)} = \frac{x+1}{(x+2)(x+3)} = \frac{A}{x+2} + \frac{B}{x+3}$	1	
		$\therefore x+1=(x+3)A+(x+2)B$ Put $x=-2$		
		$\therefore -2+1 = (-2+3)A+0$ $\therefore \boxed{A=-1}$	1	

Subject & Code: Basic Maths (17104)

Page No: 17/32

Que.	Sub.	Model Answers	Marks	Total
No. 3)	Que.	1120 1121 1121 1101 1101	1,141116	Marks
		Put $x = -3$		
		$\therefore -3+1=0+(-3+2)B$	1	
		B = 2	1	
		$\therefore \frac{x+1}{(x+2)(x+3)} = \frac{-1}{x+2} + \frac{2}{x+3}$	1/2	
		$\therefore \frac{\tan \theta + 1}{(\tan \theta + 2)(\tan \theta + 3)} = \frac{-1}{\tan \theta + 2} + \frac{2}{\tan \theta + 3}$	1/2	4
		OR		
		$\frac{\tan\theta + 1}{(\tan\theta + 2)(\tan\theta + 3)} = \frac{A}{\tan\theta + 2} + \frac{B}{\tan\theta + 3}$	1	
		$\therefore \tan \theta + 1 = (\tan \theta + 3) A + (\tan \theta + 2) B$		
		$Put \tan \theta = -2$		
		$\therefore -2+1=(-2+3)A+0$		
		$\therefore A = -1$	1	
		$Put \tan \theta = -3$		
		$\therefore -3+1=0+(-3+2)B$		
		$\therefore B = 2$	1	
		$\therefore \frac{\tan \theta + 1}{(\tan \theta + 2)(\tan \theta + 3)} = \frac{-1}{\tan \theta + 2} + \frac{2}{\tan \theta + 3}$	1	4
	e)	If $\cos A = -\frac{3}{5}$, $\sin B = \frac{20}{29}$, where A and B are the angles in the		
		third and second quadrant respectively, find $tan(A+B)$.		
	Ans.	$\cos A = -\frac{3}{5} \qquad \qquad \sin B = \frac{20}{29}$		
		5 A 3 29 20 B 21		

Sub.

Que.

f)

Ans.

Que.

No.

3)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Basic Maths (17104)

Page No: 18/32 Total Model Answers Marks Marks As A is the third quadrant, tan A is positive and B is in the second quadrant, tan B is negative. 1+1 $\therefore \tan A = \frac{4}{3} \quad and \quad \tan B = -\frac{20}{21}$ $\therefore \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $=\frac{\frac{4}{3}-\frac{20}{21}}{1-\left(\frac{4}{3}\right)\left(-\frac{20}{21}\right)}$ 1 $=\frac{24}{143}$ or 0.168 ---(**)1 4 Note (*): Due to the use of advance scientific calculators which is permissible in the exam, students may write the step (**) directly after step (*). Writing such step is to be considered. Note: To evaluate value of tan A and tan B, many times the relations between sine ratio and cosine ratio is used (as illustrated hereunder), instead of using Triangle Method as illustrated in the above solution. As the main object is to find the values, please consider these methods also. $\tan A = \frac{\sqrt{1 - \cos^2 A}}{\cos A} = \frac{\sqrt{1 - \frac{9}{25}}}{3/5} = \frac{4}{5}$ $\tan B = -\frac{\sin B}{\sqrt{1 - \sin^2 B}} = -\frac{\frac{20}{29}}{\sqrt{1 - \frac{400}{100}}} = -\frac{20}{21}$ Without using calculator find the value of $\sin(150^{\circ}) - \tan(315^{\circ}) + \cos(300^{\circ}) + \sec^{2}(360^{\circ})$ $\sin(150^{\circ}) = \sin(90^{\circ} + 60^{\circ})$ $\sin(180^{\circ}-30^{\circ})$ or $\frac{1}{2}$ $=\cos 60^{\circ}$ or sin 30°

 $\frac{1}{2}$

Page No: 19/32

Subject & Code: Basic Maths (17104)

Que. No.	Sub.	Model Ar	nswer	s	Marks	Total Marks
3)	Que.					IVIALKS
,		$\tan(315^{\circ}) = \tan(270^{\circ} + 45^{\circ})$	or	tan (360° –45°)		
		$= \tan \left(3 \times 90^{\circ} + 45^{\circ}\right)$	or	$\tan\left(4\times90^{\circ}-45^{\circ}\right)$	1/4	
		$=$ $-\cot 45^{\circ}$	or	-tan 45°	1/2 1/2	
		= -1				
		$\cos(300^{\circ}) = \cos(270^{\circ} + 30^{\circ})$	or	$\cos\left(360^{\circ}-60^{\circ}\right)$		
		$=\cos\left(3\times90^{\circ}+30^{\circ}\right)$	or	$\cos(4\times90^{\circ}-60^{\circ})$		
		$= \sin 30^{\circ}$	or	cos 60°	1/2	
		$=\frac{1}{2}$			1/2	
		$\sec^{2}(360^{\circ}) = \sec^{2}(0^{\circ}) = 1$			1/2	
		$\therefore \sin(150^\circ) - \tan(315^\circ) + \cos(300^\circ)$	L sec ²	(360%)		
			TSCC	(300)		
		$=\frac{1}{2}+1+\frac{1}{2}+1$				4
		= 3			1/2	4
		OR				
		By taking the various combination		he above different		
		trigonometric ratios, students may				
		his/her convenience by taking all them is illustrated for the sake of		=		
				Ö		
		$\therefore \sin(150^{\circ}) - \tan(315^{\circ}) + \cos(300^{\circ})$	+ sec ²	(360°)		
		$= \sin(90^{\circ} + 60^{\circ}) - \tan(360^{\circ} - 45^{\circ}) + \cot(360^{\circ} - 45^{\circ})$	os (270	$0^{\circ} + 30^{\circ}) + \sec^2(0^{\circ})$		
		$= \cos 60^{\circ} - \tan \left(4 \times 90^{\circ} - 45^{\circ}\right) + \cos \left(3 \times 90^{\circ} - 45^{\circ}\right)$	×90°+	$(30^{\circ}) + \sec^2(0^{\circ})$		
		$= \cos 60^{\circ} + \tan 45^{\circ} + \sin 30^{\circ} + \sec^{2} (0^{\circ})$)		1/ ₂ +1/ ₂ + 1/ ₂	
					72	
		$=\frac{1}{2}+1+\frac{1}{2}+1$			1/2+1/2+	
		2 2			1/2+1/2	
		= 3				
					1/2	4

Subject & Code: Basic Maths (17104)

Page No: 20/32

	0.1	T	<u> </u>	m . 1
Que. No.	Sub.	Model Answers	Marks	Total Marks
4)	Que.	Attempt any four of the following:		IVIAIKS
		The same of the following.		
	a)	Prove that $1 + \tan A \cdot \tan 2A = \sec 2A$		
			1	
	Ans.	$1 + \tan A \cdot \tan 2A = 1 + \frac{\sin A}{\cos^2 A} \times \frac{\sin 2A}{\cos^2 A}$	1	
		COS A COS ZA		
		$= \frac{\cos A \cos 2A + \sin A \sin 2A}{\cos A \cos 2A}$		
		$=\frac{\cos(A-2A)}{\cos A\cos 2A}$	1	
		$\cos A \cos 2A$ $\cos (-A)$		
		$=\frac{\cos(-A)}{\cos A\cos 2A}$		
		$\cos A \cos A$	1	
		$=\frac{\cos A}{\cos A\cos 2A}$	1	_
		$= \sec 2A$	1	4
		OR		
		$1 + \tan A \cdot \tan 2A = 1 + \tan A \left(\frac{2 \tan A}{1 - \tan^2 A} \right)$	1	
			1	
		$=\frac{1-\tan^2 A + 2\tan^2 A}{2}$	1	
		$1-\tan^2 A$		
		$=\frac{1+\tan^2 A}{1-\tan^2 A}$	1	
			1	_
		= sec 2 <i>A</i>	1	4
	b)	Prove that $\sin(A-B) = \sin A \cos B - \cos A \sin B$		
	Ans.			
		P _A		
		A A		
		R Q		
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	
		В		
		A-B		
		O M N		
		1 - 1		

Page No: 21/32

Subject & Code: Basic Maths (17104)

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wiodel Alisweis	IVIAINS	Marks
4)		$\sin(A-B) = \frac{NQ}{OQ}$ $= \frac{RM}{OQ}$ $= \frac{PM - PR}{OQ}$ $= \frac{PM}{OQ} - \frac{PR}{OQ}$	1	
			1	
		$= \frac{PM}{OP} \times \frac{OP}{OQ} - \frac{PR}{PQ} \times \frac{PQ}{OQ}$ $= \sin A \cos B - \cos A \sin B$	1	4
		Note: The above is proved by different ways in several books. Consider all these proof but check whether the method is falling within the scope of curriculum and give appropriate marks in accordance with the scheme of marking. In accordance with the Teacher's Manual published by MSBTE, the result is treated as Fundamental Result which is not proved by the help of any another result. If the above result is proved by students using any another result, suppose using sin (A+B), then this result i.e., sin (A+B) must have been proved first.		
	c)	If A and B both are obtuse angles and $\sin A = \frac{5}{13}$, $\cos B = -\frac{4}{5}$, find the quadrant of the angle $A + B$.		
	Ans.	$\sin A = \frac{5}{13}, \cos B = -\frac{4}{5}$		
		As A and B are abtuse angles, $\cos A$ is negative and $\sin B$ is positive. $\therefore \cos A = -\sqrt{1 - \sin^2 A} = -\sqrt{1 - \left(\frac{5}{13}\right)^2} = -\frac{12}{13}$	1/2	
		$\sin B = +\sqrt{1 - \cos^2 B} = +\sqrt{1 - \left(-\frac{4}{5}\right)^2} = \frac{3}{5}$	1/2	
		$\therefore \cos(A+B) = \cos A \cos B - \sin A \sin B$		
		$= -\frac{12}{13} \cdot \left(-\frac{4}{5}\right) - \frac{5}{13} \cdot \frac{3}{5} \qquad(*)$	1	
		$=\frac{33}{65}$ (*)	1	

Subject & Code: Basic Maths (17104)

Page No: 22/32

Que.	Sub.	Madal American	Maulia	Total
No.	Que.	Model Answers	Marks	Marks
4)		As A and B are abtuse angles, $180^{\circ} < A + B < 360^{\circ}$. In III quadrant, cos is -ve.	1	
		$\therefore A + B$ is in IV quadrant.	1	
		OR		
		$\sin A = \frac{5}{13} \qquad \cos B = -\frac{4}{5}$ $13 \qquad 5 \qquad 3$		
		A B A		
		As A and B are abtuse angles, $\cos A$ is negative and $\sin B$ is positive.		
		$\therefore \cos A = -\frac{12}{13}$	1/2	
		$\sin B = \frac{3}{5}$	1/2	
		$\therefore \cos(A+B) = \cos A \cos B - \sin A \sin B$		
		$= -\frac{12}{13} \cdot \left(-\frac{4}{5}\right) - \frac{5}{13} \cdot \frac{3}{5} \qquad(*)$	1	
		$=\frac{33}{65}$ (*)	1	
		As A and B are abtuse angles, $180^{\circ} < A + B < 360^{\circ}$.		
		In III quadrant, cos is -ve. $\therefore A + B$ is in IV quadrant.	1	4
		OR		
		A and B both are obtuse angles, tan A and tan B are negative.		
		$\therefore \tan A = -\frac{5}{12} and \tan B = -\frac{3}{4}$	1/2+1/2	
		$\therefore \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$		
		$= \frac{-\frac{5}{12} - \frac{3}{4}}{1 - \left(-\frac{5}{12}\right)\left(-\frac{3}{4}\right)} \qquad(*)$	1	
		$= -\frac{56}{33} or -1.697 \qquad(**)$	1	
		In the III quadrant tan is +ve and in the IV quadrant, tan is -ve. $\therefore A + B$ is in the IV quadrant.	1	4

Subject & Code: Basic Maths (17104)

Page No: 23/32

Que.	Sub.	Model Answers	Marks	Total
No. 4)	Que.	Note (*): Due to the use of advance scientific calculators which is permissible in the exam, students may write the step (**) directly after step (*). Writing such step is to be considered.		Marks
	d)	Prove that $\frac{\sin 8x - \sin 5x}{\cos 7x + \cos 6x} = \sin x + \cos x \cdot \tan \frac{x}{2}$		
	Ans.	$\frac{\sin 8x - \sin 5x}{\cos 7x + \cos 6x} = \frac{2\cos\left(\frac{8x + 5x}{2}\right)\sin\left(\frac{8x - 5x}{2}\right)}{2\cos\left(\frac{7x + 6x}{2}\right)\cos\left(\frac{7x - 6x}{2}\right)}$		
		$= \frac{2\cos\left(\frac{13x}{2}\right)\sin\left(\frac{3x}{2}\right)}{2\cos\left(\frac{13x}{2}\right)\cos\left(\frac{x}{2}\right)}$	1	
		$=\frac{\sin\left(\frac{3x}{2}\right)}{\cos\left(\frac{x}{2}\right)}$	1	
		$=\frac{\sin\left(x+\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}$		
		$= \frac{\sin x \cos\left(\frac{x}{2}\right) + \cos x \sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}$	1	
		$= \sin x + \cos x \cdot \tan \frac{x}{2}$	1	4
	e)	Prove that $2 \tan^{-1} x = \tan^{-1} \left(\frac{2x}{1 - x^2} \right)$		
	Ans.	$2\tan^{-1} x = \tan^{-1} x + \tan^{-1} x$	1	
		$= \tan^{-1} \left(\frac{x+x}{1-x \cdot x} \right)$	2	
		$= \tan^{-1} \left(\frac{2x}{1 - x^2} \right)$	1	4

Subject & Code: Basic Maths (17104)

Page No: 24/32

Que.	Sub.	Model Answers	Marks	Total
No. 4)	Que.			Marks
,	f)	Prove that $\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{27}{11}\right)$		
	Ans.	Let $A = \cos^{-1}\left(\frac{4}{5}\right)$		
		$\therefore \cos A = \frac{4}{5}$		
		5 A 4		
		$\therefore \tan A = \frac{3}{4} \qquad(*)$	1	
		$\therefore A = \tan^{-1} \left(\frac{3}{4} \right)$		
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right)$	1	
		$= \tan^{-1} \left(\frac{\frac{3}{4} + \frac{3}{5}}{\frac{1 - \frac{3}{4} \cdot \frac{3}{5}}{5}} \right)$	1	
		$= \tan^{-1}\left(\frac{27}{11}\right)$	1	4
		Note (*): To evaluate value of tan A, various methods are used by students, such as 'using the relation between sin A and tan A' or 'first to find sin A using cos A and find tan A' etc., instead of using Triangle Method as illustrated in the above solution. As main object is to find the value of tan A, please consider these methods also.		

Subject & Code: Basic Maths (17104)

Page No: 25/32

Que.	Sub.	Model Approved	Marilea	Total
No.	Que.	Model Answers	Marks	Marks
5)		Attempt any four of the following:		
	a)	Prove that $\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 2\theta + \cos 4\theta} = \tan 2\theta$		
	Ans.	$\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 2\theta + \cos 4\theta} = \frac{\sin 2(2\theta) + \sin 2\theta}{1 + \cos 2(2\theta) + \cos 2\theta}$	1	
		$= \frac{2\sin 2\theta \cos 2\theta + \sin 2\theta}{2\cos^2 2\theta + \cos 2\theta}$	1	
		$= \frac{\sin 2\theta (2\cos 2\theta + 1)}{\cos 2\theta (2\cos 2\theta + 1)}$	1	
		$= \frac{\sin 2\theta}{\cos 2\theta}$ $= \tan 2\theta$	1	4
	b)	Prove that $\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A$		
	Ans.	$\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \frac{\sin 4A + \sin 6A + \sin 5A}{\cos 4A + \cos 6A + \cos 5A}$	1+1	
		$= \frac{2\sin 5A\cos(-A) + \sin 5A}{2\cos 5A\cos(-A) + \cos 5A}$ $-\frac{\sin 5A[2\cos(-A) + 1]}{2\cos(-A) + 1}$		
		$= \frac{\sin 5A \left[2\cos(-A) + 1\right]}{\cos 5A \left[2\cos(-A) + 1\right]}$ $= \tan 5A$	1	4
	c)	Prove that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$, $x > 0$, $y > 0$, $xy < 1$		
	Ans.	Put $\tan^{-1} x = A$ and $\tan^{-1} y = B$ $\therefore x = \tan A$ and $y = \tan B$		
		$\therefore \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$	1	
		$=\frac{x+y}{1-xy}$	1	
		$\therefore A + B = \tan^{-1} \left(\frac{x + y}{1 - xy} \right)$	1	
		$\therefore \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$	1	4

Subject & Code: Basic Maths (17104)

Page No: 26/32

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	THOUGH THE WOLD	TTIMING	Marks
5)	d)	Find the angle between the lines $y = 5x + 6$ and $y = x$		
	Ans.	For $y = 5x + 6$ i.e., $5x - y + 6 = 0$ or $-5x + y - 6 = 0$		
		$slope \ m_1 = -\frac{a}{b} = 5$ $For \ y = x \qquad or \qquad x - y = 0,$	1	
		$slope \ m_1 = -\frac{a}{b} = 1$	1	
		$\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $	1	
		$= \left \frac{5-1}{1+(5)\cdot(1)} \right $		
		$=\frac{2}{3}$ or 0.667	1/2	
		$\therefore \theta = \tan^{-1}\left(\frac{2}{3}\right) or \tan^{-1}\left(0.667\right)$	1/2	4
	e)	If $P(x_1, y_1)$ is any point and $Ax + By + C = 0$ is a line, prove that the perpendicular distance of a point P from the line is given by $\left \frac{Ax_1 + By_1 + C}{\sqrt{a^2 + b^2}} \right $		
	Ans.	$R (0, -\frac{C}{B})$ $Q (-\frac{C}{A}, 0)$ $x_1 \qquad y_1 \qquad 1$ $Area of \Delta PQR = \frac{1}{2} -\frac{C}{A} \qquad 0 \qquad 1$		
		$\begin{vmatrix} 0 & -\frac{C}{B} & 1 \end{vmatrix}$	1	
		$= \frac{C}{2AB} (Ax_1 + By_1 + C)$ Now $QR = \sqrt{\left(-\frac{C}{A} - 0\right)^2 + \left(0 + \frac{C}{B}\right)^2} = \frac{C\sqrt{A^2 + B^2}}{AB}$	1/2	

Subject & Code: Basic Maths (17104)

Page No: 27/32

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5)	Que.			Iviaiks
,		But Area of $\triangle PQR = \frac{1}{2} \times AB \times PM$		
		$= \frac{1}{2} \times \frac{C\sqrt{A^2 + B^2}}{AB} \times p$	1	
		2 110	1/2	
		$\therefore \frac{1}{2} \times \frac{C\sqrt{A^2 + B^2}}{AB} \times p = \frac{C}{2AB} (Ax_1 + By_1 + C)$	72	
		$\therefore p = \frac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}}$	1/	
		· ·	1/2	
		As length is always +ve,		4
		$p = \frac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}}$	1/2	4
		\(\sqrt{A}^{-} + B^{-} \)		
	f)	Find the equation of line passing through the point of		
		intersection of the lines $2x+3y=13$, $5x-y=7$ and		
		perpendicular to the line $3x - y + 7 = 0$		
	Ans.	2x + 3y = 13		
		5x - y = 7		
		$\therefore 2x + 3y = 13$		
		15x - 3y = 21		
		$\therefore 17x = 34$	1/ ₂ 1/ ₂	
		$\therefore x = 2$	/2	
		y = 3		
		$\therefore \text{ Point of intersection} = (2, 3)$		
		Slope of the line $3x - y + 7 = 0$ is,	1	
		$m_0 = -\frac{a}{b} = -\frac{3}{-1} = 3$		
		∴ Slope of the required line is,	1	
		$m = -\frac{1}{m_0} = -\frac{1}{3}$		
		∴ equation is,		
		$y - y_1 = m(x - x_1)$		
		$\therefore y-3=-\frac{1}{3}(x-2)$	1/2	
		$\therefore x + 3y - 11 = 0$	1/2	4
	1			

Subject & Code: Basic Maths (17104)

Page No: 28/32

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Mark
6)		Attempt any four of the following:		
	a)	Find the equation of the lines passing through the point (6, 5)		
		and parallel to the line having intercepts 2 and 4 on X and Y		
		axis respectively.		
	Ans.	slope of given line is $m_0 = -\frac{y - \text{int}}{x - \text{int}} = -\frac{4}{2} = -2$	1	
			or	
		OR (a. a.)		
		Given line is passing through $(2, 0) & (0, 4)$		
		: slope of given line is $m_0 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 0}{0 - 2} = -2$	1	
		∴ Slope of the required line is,	1	
		$m = m_0 = -2$		
		∴ equation is,		
		$y - y_1 = m(x - x_1)$		
		$\therefore y-5=-2(x-6)$	1	
		$\therefore y - 5 = -2x + 12$		
		$\therefore 2x + y - 17 = 0$	1	4
	b)	Find the acute angle between the lines $3x-2y+4=0$ and $2x-3y-7=0$.		
	Ans.	For $3x - 2y + 4 = 0$,		
		slope $m_1 = -\frac{a}{b} = -\frac{3}{-2} = \frac{3}{2}$	1/2	
		For $2x-3y-7=0$,		
		slope $m_2 = -\frac{a}{b} = -\frac{2}{-3} = \frac{2}{3}$	1/2	
		$\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $		
		$= \frac{\frac{3}{2} - \frac{2}{3}}{1 + \left(\frac{3}{2}\right) \cdot \left(\frac{2}{3}\right)}$	1	
		$\left 1+\left(\frac{3}{2}\right)\cdot\left(\frac{2}{3}\right)\right $		
		$=\frac{5}{12}$ or 0.417	1	
		_ -=	1	1

Subject & Code: Basic Maths (17104)

Page No: 29/32

Que.	Sub.											Total
No.	Que.		-	Mode	l Ans	swer	S				Marks	Marks
6)	c)	The two sets of obs	ervat	ions a	re gi Set		oelow:					
		Set I										
		x = 82.5										
		$\sigma = 7.3$										
		Which of the two se										
	Ans.	$C.V.(I) = \frac{\sigma}{x} \times 100 = \frac{\sigma}{x}$	1									
		$C. V.(II) = \frac{\sigma}{x} \times 100 = \frac{8.35}{98.75} \times 100 = 8.456$										
		$\therefore C.V.(II) < C.V.(I)$										
		∴ Set II is more con	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	4								
		Set II is more con										
	d)	Find the variance a	g:									
		Class	55-	65-	75-	85-	95-	105-	115-	1		
			65	75	85	95	105	115	125			
		Frequencies	10	12	15	20	14	7	2			
	Ans.	Class	xi	f_i	f_i $f_i x_i$ x_i^2 $f_i x_i^2$							
		55-65	60	10	600		3600		36000			
		65-75	70	12	840		4900	58	3800			
		75-85	80	15	12	00	6400	96	96000			
		85-95	90	20	18	00	8100	16	162000		1	
		95-105	100	14	14	00	10000	14	140000			
		105-115	110	7	77	70	12100	84	84700			
		115-125	120	2	24		14400		3800			
				80 6850 606300								
		$\overline{x} = \frac{\sum f_i x_i}{N} = \frac{6850}{80} = 8$	35.625	_							1	
		$S.D. = \sqrt{\frac{\sum f_i x_i^2}{N}} - \left(\frac{\sum f_i x_i^2}{N}\right)$	$\left[\frac{f_i x_i}{N}\right]$	2								
		$=\sqrt{\frac{606300}{80} - \left(\frac{6850}{80}\right)^2}$										
		=15.7197										
		$\therefore Variance = (S.D.)^2 = 15.7197^2 = 247.109$										
		Coeff. of Variance =										
		=	15.71	$\frac{97}{25} \times 10$	00						1/2	
					•							4
		=	18.35	9							1/2	4

Subject & Code: Basic Maths (17104)

Page No: 30/32

Que.	Sub.			N	1 A					3.4 1	Total	
No.	Que.			Mode	ı Ansv	wers				Marks	Marks	
6)		$\therefore Variance = \sum_{co}$	`	$\left(\frac{f_i x_i}{N}\right)^2$	OR					OR		
		$= \frac{606300}{80} - \left(\frac{6850}{80}\right)^{2}$ $= 247.109$ $Coeff. of Variance = \frac{\sqrt{Variance}}{\overline{x}} \times 100$ $= \frac{\sqrt{247.109}}{82.625} \times 100$										
		1	4									
					OR							
		Class	7,12	f_i	d_{i}	$f_i d_i$	$d_i^{\ 2}$	$f_i d_i^2$				
		55-65		10	-3	-30	9	90				
		65-75		12	-2	-24	4	48				
		75-85		15	-1	<i>-</i> 15	1	15		1		
		85-95		20	0	0	0	0				
		95-10	5 100	14	1	14	1	14				
		105-11	.5 110	7	2	14	4	28				
		115-12	25 120	2	3	6	9	18				
				80		-35		213				
		$A = 90, h = 1$ $\therefore \overline{x} = A + \frac{\sum f_i c}{N}$ $= 90 + \frac{-35}{80}$ $= 85.625$ $S.D. = h \times \sqrt{\frac{\sum f_i c}{N}}$	$\frac{l}{l} \times h$,						1		
		$S.D. = h \times \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2}$ $= 10 \times \sqrt{\frac{213}{80} - \left(\frac{-35}{80}\right)^2}$ $= 15.7197$										

Subject & Code: Basic Maths (17104)

Page No: 31/32

Que.	Sub.]	Model	Answe	rs					Marks	Total
No. 6)	Que.											Marks
0)		∴Variance = (S.D	1/2									
		`										
		Coeff. of Varian										
			1	4								
		OB										
		OR										
		$\therefore Variance = h^2 \left[\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N} \right)^2 \right]$ $= 10^2 \left[\frac{213}{80} - \left(\frac{-35}{80} \right)^2 \right]$										
		= 10 [-	$\frac{1}{80} - \frac{1}{80}$	5								
		= 247.1	09								1	
		Coeff. of Variance = $\frac{\sqrt{Variance}}{\frac{r}{r}} \times 100$										
		coeff. of variance										
			$=\frac{\sqrt{247}}{82.6}$	$\frac{109}{100}$ ×	100							
											1	4
		=18.359										
	e)	Calculate the star	ndard d	eviatio	on of the	e follo	wing	g table:				
		Weekly expe	nditure	Below	05	10	15	20	25			
		No. of Studer			06	16	28	38	46			
	Ans.		1									
		Class	xi	f_{i}	$f_i x_i$	x_i^2		$f_i x_i^2$				
		0-5	2.5	6	15	6.2		37.5				
		5-10	7.5	10 12	75 150	56.2		562.5			1+1	
		10-15 15-20	12.5 17.5	10	150 175	156. 306.		1875 3062.				
		20-25	22.5	8	180	506.		4050				
		46 595 9587.5										
		$S.D. = \sqrt{\frac{\sum f_i x_i^2}{N}} - \left($	$\left(\frac{\sum f_i x_i}{N}\right)^2$	2								
		$=\sqrt{\frac{9587.5}{46}-\left(\frac{5}{46}\right)^{2}}$	$\frac{595}{46}$) ²								1	
		= 6.412									1	4

Subject & Code: Basic Maths (17104)

Page No: 32/32

Que.	Sub.											Total
No.	Que.				Model	Ansv	vers				Marks	Marks
6)		OR										
			Class	xi	f_i	d_{i}	$f_i d_i$	$d_i^{\ 2}$	$f_i d_i^2$			
			0-5	2.5	6	-2	-12	4	24			
			5-10	7.5	10	-1	-10	1	10			
			10-15	12.5	12	0	0	0	0		1+1	
			15-20	17.5	10	1	10	1	10		171	
			20-25	22.5	8	2	16	4	32			
					46		4		76			
		$S.D. = h \times$ $= 5 \times$	$\sqrt{\frac{\sum f_i d_i^2}{N}}$ $\sqrt{\frac{76}{46}} - \left(\frac{4}{46}\right)$	$\frac{1}{1 - \left(\frac{\sum J}{N}\right)^2}$	$\left(\frac{f_i d_i}{d_i}\right)^2$						1	
		= 6.41	12	3)							1	_
		- 0.4	1								1	4
	f)	Calculate the mean deviation about the mean of the following distribution:										
	Ans.		1			1		-, 1				
			xi	f_i	$f_i x_i$	D_i	$x_i = x_i - \overline{x} $	$x \mid j$	C_iD_i			
			3	4	12		2.3	g	9.2			
			4	9	36		1.3		1.7			
			5 6	10 8	50 48		0.3		5.6		1+1	
			7	6	42		1.7		0.2		1.1	
			8	3	24		2.7		3.1			
				40	212				7.8			
		$\bar{x} = \frac{\sum f_i x_i}{N} = \frac{212}{40} = 5.3$ $M.D. = \frac{\sum f_i D_i}{N}$										
		$=\frac{4^{\prime}}{2}$	10								1/2	
		=1.									1/2	4