Arithmétique : DS du 25 octobre 2023

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable: Gilles Zémor

Durée : 1h30. Sans document. Les exercices sont indépendants.

- Exercice 1.
 - a) Montrer que dans \mathbb{F}_{16} il existe un élément $\alpha \neq 1$ tel que $\alpha^5 = 1$.
 - b) Quel est le polynôme minimal de α ? De $\alpha + 1$?
- EXERCICE 2. Quels sont les entiers $m \ge 1$ pour les quels le polynôme $X^2 + X + 1$ est irréductible dans $\mathbb{F}_{2^m}[X]$?
- EXERCICE 3. Tous les polynômes considérés sont dans $\mathbb{F}_2[X]$.
 - a) Quel est le pgcd de $X^8 + X + 1$ et $X^8 + X$?
 - b) Calculer X^{2^6} modulo $X^8 + X + 1$.
 - c) Que peut-on déduire de a) et de b) sur les facteurs irréductibles de $X^8 + X + 1$?
 - d) Donner les facteurs irréductibles de $X^8 + X + 1$.
- EXERCICE 4. Soit \mathbb{F}_q un corps fini. Montrer que si $a \in \mathbb{F}_q$, alors pour tout entier n, le polynôme $X^{q^n} X + na$ est divisible par $X^q X + a$ dans $\mathbb{F}_q[X]$. On pourra considérer les puissances successives de X^q modulo $X^q X + a$.
- EXERCICE 5. Soit p un nombre premier et soit k un diviseur de p-1. Le but de l'exercice est de montrer que pour tout $a \in \mathbb{F}_p^*$, le polynôme X^k-a a k racines distinctes dans \mathbb{F}_{p^k} .
 - a) Pourquoi k divise-t-il $p^k 1$?
 - b) Calculer $p^i \mod (p-1)$ et montrer que k divise $1+p+p^2+\cdots+p^{k-1}$.
 - c) Montrer que le polynôme $X^k 1$ a k racines distinctes dans \mathbb{F}_p . On pourra les exprimer comme puissances d'un élément primitif α de \mathbb{F}_p .
 - d) En déduire que si $X^k a$ a une racine dans \mathbb{F}_{p^k} , alors $X^k a$ a k racines distinctes dans \mathbb{F}_{p^k} .
 - e) On dira qu'un élément $b \in \mathbb{F}_{p^k}$ est une puissance k-ième si $b = c^k$ pour $c \in \mathbb{F}_{p^k}$. Montrer que les puissances k-ièmes de $\mathbb{F}_{p^k}^*$ sont de la forme β^{ik} où β est un élément primitif de \mathbb{F}_{p^k} . En déduire le nombre de puissances k-ièmes de $\mathbb{F}_{p^k}^*$.

- f) En déduire que $x\in \mathbb{F}_{p^k}^*$ est une puissance k-ième si et seulement si x est une racine de $X^{(p^k-1)/k}-1$.
- g) Montrer que $X^{p-1}-1$ divise $X^{(p^k-1)/k}-1$ dans $\mathbb{F}_p[X]$.
- h) En déduire que si $a \in \mathbb{F}_p^*$, alors a est une puissance k-ième dans $\mathbb{F}_{p^k}^*$.
- i) Conclure.