

Chapter 4: Interest Rate Derivatives

4.3 Swaptions

Interest Rate Models

Damir Filipović

4.3 Swaptions

- Payer and receiver swaptions
- Moneyness
- Callable bonds
- Black's price formula
- Bachelier's price formula
- Swaption quotes in terms of implied volatilities

Swaptions

A payer (receiver) swaption with strike rate K gives the holder right to enter a payer (receiver) swap with fixed rate K at swaption expiry date.

Usually the swaption expiry date equals first reset date T_0 of underlying swap.

Swaption Payoff

The payer swaption payoff at expiry date T_0 is

$$V_p(T_0)^+ = N\left(\sum_{i=1}^n P(T_0, T_i)\delta(F(T_0, T_{i-1}, T_i) - K)\right)^+$$

This payoff cannot be decomposed into more elementary payoffs.

The dependence between different forward rates will enter valuation procedure.

Moneyness

An equivalent expression for the payer swaption payoff at expiry date T_0 is

$$N\sum_{i=1}^{n}P(T_0,T_i)\delta\left(R_{swap}(T_0)-K\right)^{+}.$$

A payer (receiver) swaption is said to be

- at-the-money (ATM) if $K = R_{swap}(t)$
- in-the-money (ITM) if $K < R_{swap}(t)$ (receiver: $K > R_{swap}(t)$)
- out-of-the-money (OTM) if $K > R_{swap}(t)$ (receiver: $K < R_{swap}(t)$)

The $x \times y$ -swaption has expiry in x years and underlying swap length is y years.

Application: Callable Bond

Swaptions can be used to synthetically create callable bonds.

Example: company issued 10-year bond with 4% annual coupon and principal N.

- It wants to add the right to call (prepay) the bond at par after 5 years.
- But it cannot change original bond.

Time-5 value of bond

$$p(5) = N\left(\sum_{k=6}^{10} P(5,k) \times 4\% + P(5,10)\right)$$

Application: Callable Bond

Solution: buy a 5×5 receiver swaption with strike rate 4%:

- The fixed leg of the swap cancels the fixed coupon payments.
- The exchange of notionals between t = 5 and T = 10 is equivalent to paying floating.

Time-5 value of swaption

$$V_r(5)^+ = (p(5) - N)^+$$

Black's Formula for Swaptions

Black's formula for payer and receiver swaptions price is

$$Swpt_p(t) = N\delta \sum_{i=1}^{n} P(t, T_i) (R_{swap}(t)\Phi(d_1) - K\Phi(d_2))$$
$$Swpt_p(t) = N\delta \sum_{i=1}^{n} P(t, T_i) (K\Phi(-d_2) - R_{swap}(t)\Phi(-d_1))$$

where Φ is the standard normal cumulative distribution function and

$$d_{1,2} = rac{iglius \left[rac{R_{ ext{ iny SWap}}(t)}{K}
ight] \pm rac{1}{2}\sigma^2(T_0-t)}{\sigma\sqrt{T_0-t}}.$$

 σ : Black (or relative) volatility

Bachelier's Formula for Swaptions

Bachelier's formula for payer and receiver swaptions price is

$$Swpt_p(t) = N\delta \sum_{i=1}^{n} P(t, T_i) \sigma \sqrt{T_0 - t} \left(D\Phi(D) + \phi(D) \right)$$

$$Swpt_r(t) = N\delta \sum_{i=1}^n P(t, T_i) \sigma \sqrt{T_0 - t} \left(-D\Phi(-D) + \phi(-D) \right)$$

where Φ is the standard normal cumulative distribution function, $\phi = \Phi'$, and

$$D = \frac{R_{swap}(t) - K}{\sigma \sqrt{T_0 - t}}.$$

 σ : normal (basis point, absolute) volatility

Swaption Quotes

Swaption prices are quoted in terms of Black or normal implied volatilities.

The accrual period $\delta = T_i - T_{i-1}$ for underlying swap can differ from prevailing δ for caps within the same market region.

E.g. euro zone: caps are written on semiannual LIBOR ($\delta=1/2$), while swaps pay annual coupons ($\delta=1$).

Example of Swaption Quotes - Black ATM volatilities

Black's implied volatilities (in %) of EUR ATM swaptions on August 30, 2013. Maturities are 1,2,3,4,5,7,10 years, swaps lengths from 1 to 10 years:

Lenghts										
	1 YR	2 YR	3 YR	4 YR	5 YR	6 YR	7 YR	8 YR	9 YR	10 YR
Maturities										
1 YR	83.56	66.6	59.1	53	48.82	44.02	40.42	37.61	35.34	33.53
2 YR	67.95	53.7	47.89	43.7	40.8	37.86	35.48	33.53	31.92	30.65
3 YR	52.12	44.2	40.85	38.01	35.72	33.72	32.03	30.62	29.48	28.53
4 YR	43.26	38.03	35.61	33.59	31.86	30.52	29.38	28.51	27.78	27.16
5 YR	37.37	33.45	31.75	30.29	29.03	28.11	27.41	26.87	26.46	26.09
7 YR	29.64	27.44	26.44	25.6	24.99	24.63	24.37	24.24	24.23	24.17
10 YR	23.76	22.86	22.58	22.39	22.27	22.39	22.52	22.69	22.9	23.01

An interest rate model for swaptions valuation must fit given volatility surface.

Example of Swaption Quotes - Normal ATM volatilities

Normal implied volatilities (in bps) of EUR ATM swaptions on August 30, 2013. Maturities are 1,2,3,4,5,7,10 years, swaps lengths from 1 to 10 years:

Lenghts										
	1 YR	2 YR	3 YR	4 YR	5 YR	6 YR	7 YR	8 YR	9 YR	10 YR
Maturities										
1 YR	53.7	69.76	78.5	83.79	87.32	86.59	85.79	85.02	84.22	83.48
2 YR	76.91	85.01	87.9	88.9	89.8	88.84	87.83	86.85	85.86	84.9
3 YR	89.26	92.79	92.98	92.21	91.36	90.24	89.08	87.95	86.8	85.7
4 YR	94.31	94.1	92.89	91.68	90.43	89.6	88.74	87.95	87.15	86.25
5 YR	92.94	91.83	90.82	89.81	88.79	88.23	87.64	87.15	86.64	85.95
7 YR	88.22	87.2	86.29	85.4	84.49	84.08	83.66	83.36	83.04	82.47
10 YR	82.41	81.13	80.35	79.6	78.84	78.46	78.07	77.79	77.52	76.97

An interest rate model for swaptions valuation must fit given volatility surface.