RNS Institute of Technology Department of CSE

III Semester – II Test – December 2020

Analog & Digital Electronics (18CS33)

Duration: 90 mins. Max. Marks: 50 Time: 1:00-02:30 p.m. Date: 01/12/2020

NOTE: Answer FIVE full questions.

Don't write anything on question paper other than USN.

			Don't write anything on question paper other than USN.								
	Qn.No)	Questions	Marks	BCL	CO					
	1	a)	What is three-state buffer? Draw logic symbol and truth table for the 4 kinds of a three-state buffer.	5	L2	G02					
		b)	With neat diagram explain how three state buffers can be cascaded to get one 2-to-1 multiplexer.	5	L3	CO3					
			OR OR								
VISION: Preparing better computer professionals for a real world	2	a)	Realize the given functions using 2 input NAND gates $F1=\sum m(0,2,3,4,5)$, $F2=\sum m(1,2,6,7)$	3+3	L3						
		b)	For the following circuit: Assume that the inverters have a delay of 1ns and the other gates have a delay of 2ns. Initially A= 0 and B=C=D=1, and C changes to 0 at time 2ns. Draw a timing diagram and identify the transient that occurs.	4	L2	CO3					
	3	a)	Analyze the occurrence of static-1 and static-0 hazards in logic circuits with an example for each and sketch the relevant waveforms to illustrate the same.	2*3	L3	CO3					
Loon		b)	Show how to overcome the static-1 and static-0 hazards with relevant examples.	2*2							
ter			OR								
pet	4	a)	Realize the following functions using PLA	4		CO3					
ng		"	$f1(a,b,c,d)=\sum m(1,2,4,5,6,8,10,12,14)$	4	- L4						
repari		b)	Show how to implement the given circuits using a PAL i) Full adder ii) Full subtractor	3+3							
'											
/ISIOI	5	(a)	Write VHDL code to implement 4:1 multiplexer using conditional assignment statements	5	L3						
		b)	Write a VHDL statements that represent the following circuit i) Write statement for each gate ii) Write one statement for the whole circuit	3+2	L3	CO5					
	OR										
	6		Derive characteristic equations for the given flip flops i) SR flip flop ii) JK flip flop iii) D flip flop iv) T flip flop v) Gated D latch	5*2=10	L3	CO4					
	-	-		•							

for a real world	7	a)	Write a VHDL code to implement 4-bit parallel adder using structural style	6	L3				
		b)	Write a signal concurrent VHDL statements to represent the given circuit	4	L3	CO5			
nals	OR								
computer professionals	8	a)	Give an application of SR latch. Explain its working	5					
		b)	With a neat block diagram and wave form, explain how a D flip flop can be constructed using two gated D latches	5	L3	CO4			
ar p									
mput	9		With the following block diagram, logic diagram, truth table, timing diagram, explain the working of JK flip flop.	10	L3	CO4			
0.0	OR								
VISION: Preparing better	10	a)	Complete the given timing diagram of Negative edge triggered SR Flip Flop. Assume that Q begins at 0.	4	L4	CO4			
		b)	Write a note on flip flops with additional inputs. Show how clear and preset are given to a flip flop	6	L2				

Bloom's Cognitive Levels (BCL): L1: Remember, L2: Understand, L3: Apply, L4: Analyze, L5: Evaluate, L6: Create

Course Outcomes (CO):

CO3: Design and analyze various data processing circuits.

CO4: Explain Gates and flip flops and make us in designing different data processing circuits, registers and counters and compare the types

CO 5: Develop simple HDL programs