ECON 7920
Econometrics II
Philip Shaw
Problem Set 3

Due Date: March 1, 2022

Problem 1

Consider the population model that relates a student's term GPA (termgpa) to prior to term GPA (priGPA) and a student's ACT score (ACT). Assume the functional form for the conditional mean function is given by: $m(x, \theta_0) = \theta_{01} + \theta_{02} priGPA + \theta_{03} ACT$.

- a. Modify the qfunction.R file to reflect the population model presented above. Be sure to save the file and then source the file accordingly.
- b. Using the functional form above, calculate the analytical expression for the Hessian matrix for each i and each p. Recall that the Hessian matrix should take the following form:

$$H_{i} = \begin{bmatrix} h_{i,11} & h_{i,12} & h_{i,13} \\ h_{i,21} & h_{i,22} & h_{i,23} \\ h_{i,31} & h_{i,32} & h_{i,33} \end{bmatrix}$$
(1)

where $h_{i,11}$ is the derivative of $\frac{\partial q_i}{\partial \theta_{01}}$ with respect to θ_{01} , $h_{i,12}$ is the derivative of $\frac{\partial q_i}{\partial \theta_{01}}$ with respect to θ_{02} , and $h_{i,13}$ is the derivative of $\frac{\partial q_i}{\partial \theta_{01}}$ with respect to θ_{03} .

c. Given your Hessian matrix above, compute the sum of the Hessian:

$$\sum_{i=1}^{N} H_{i} = \begin{bmatrix} \sum_{i=1}^{N} h_{i,11} & \sum_{i=1}^{N} h_{i,12} & \sum_{i=1}^{N} h_{i,13} \\ \sum_{i=1}^{N} h_{i,21} & \sum_{i=1}^{N} h_{i,22} & \sum_{i=1}^{N} h_{i,23} \\ \sum_{i=1}^{N} h_{i,31} & \sum_{i=1}^{N} h_{i,32} & \sum_{i=1}^{N} h_{i,33} \end{bmatrix}$$
(2)

 $^{^1\}mathrm{For}$ this problem you will need the script files q function.R, qderivfun.R, and qderivfun2.R.

- d. Now compute the analytical expression for A_0 .
- e. Using the nls command in R and the dataset attend.csv, estimate the population model under consideration.²
- f. Given your estimates above, verify that the code qderivfun2.R produces the exact values for both $\sum_{i=1}^{N} \ddot{H}_i$ and \hat{A}_0 .
- g. Using your estimates above and the qderivfun.R script, calculate the estimated variance-covariance matrix $\hat{Avar}(\hat{\theta})$.
- h. Test the null hypothesis $H_0: \theta_{0j}=0$ versus $H_1: \theta_{0j}\neq 0$ for j=1,2,3.

 $[\]overline{\ ^2 nlsout=nls(termgpa~(b0~+~b1*priGPA+b2*ACT)}, \ start = list(b0~=~1,~b1~=~0.04321,b2=.9))$