Дискретная математика

Типовик 4

Ученик: Титов Даниил, М3104

Преподаватель: Lipenx

Содержание

1	и слоёные. Сколькими способами можно купить 7 пирожных?	3
2	Сколькими способами можно распределить 150 студентов по 25 человек в группе?	3
3	Сколько различных слов можно получить, переставляя буквы в слове МАТЕМАТИКА?	3
4	У игрока есть 5 четырёхгранных костей. Сколькими способами может выкинуть ровно две 1 и одну 3 на них, если кости нумерованы?	3
5	Для представленного графа определите 5.1 Есть ли в графе Эйлеров цикл или Эйлерова цепь? Если есть, то выпишите. Если нет, то обоснуйте отсутствие 5.2 Есть ли в графе Гамильтонов цикл, Гамильтонова цепь? Если есть, то выпишите. Если нет, то обоснуйте отсутствие	4
6	Нарисуйте орфорграф с 3мя компонентами сильной связности, имеющий не более 11 вершин и не менее 8.	5
7	Граф задан матрицей расстояний 7.1 Построить минимальное остовное дерево	5 6 6 7

1 В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоёные. Сколькими способами можно купить 7 пирожных?

Так как мы знаем:

- 1. Что нам не важно, в каком порядке мы будем покупать пирожные
- 2. Что пирожные могут повторяться

То мы будем использовать "Combinations with repetitions":

$$\overline{C_n^k} = \frac{(n+k-1)!}{k!(n-1)!}$$

$$\overline{C_n^4} = \frac{(7+4-1)!}{(7+4-1)!} = 10!$$

$$\frac{C_n^k}{C_n^k} = \frac{(n+k-1)!}{k!(n-1)!}$$

$$\frac{C_7^4}{C_7^4} = \frac{(7+4-1)!}{4!(7-1)!} = \frac{10!}{4!*6!} = \frac{5040}{24} = 210$$

Сколькими способами можно распределить 150 студентов по 25 $\mathbf{2}$ человек в группе?

Так как мы знаем:

- 1. Что порядок элементов (студентов) не важен
- 2. Что студенты не могут повторяться

То мы будем использовать "Combinations" 6 раз ($\frac{125}{25}=6$):

$$C_n^k = \frac{n!}{k!(n-k)!}$$

$$C_{150}^{25} * C_{125}^{25} * C_{100}^{25} * C_{75}^{25} * C_{75}^{25} * C_{50}^{25} * 1 = \frac{150!}{25!*(150-25)!} * \frac{125!}{25!*(125-25)!} * \frac{100!}{25!*(100-25)!} * \frac{75!}{25!*(75-25)!} * \frac{50!}{25!*(75-25)!} = \frac{150!}{25!*(50-25)!} * \frac{125!}{25!*(125-25)!} * \frac{100!}{25!*(75-25)!} * \frac{75!}{25!*(75-25)!} * \frac{100!}{25!*(75-25)!} * \frac{100!}{$$

Сколько различных слов можно получить, переставляя буквы в 3 слове МАТЕМАТИКА?

Так как мы знаем:

- 1. Что нам важно, в каком порядке у нас будут стоять буквы
- 2. Что мы выбираем все элементы (буквы) в слове
- 3. Что повторений элементов не может быть

То мы будем использовать "Permutations":

$$P_n = n!$$

$$P_{10} = 10! = 3628800$$

У игрока есть 5 четырёхгранных костей.Сколькими способами может выкинуть ровно две 1 и одну 3 на них, если кости нумерованы?

Так как мы знаем:

- 1. Что нам важно, в каком порядке у нас будут выкинуты кости
- 2. Что мы выбираем все элементы (цифры) в последовательности
- 3. Что элементы могут повторяться

То мы будем использовать "Permutations with repetitions":

$$\overline{P_n}(k_1, ..., k_l) = \frac{n!}{k_1! * ... * k_l!}$$

$$\overline{P_5}(1,1,3,2,2) + \overline{P_5}(1,1,3,2,4) + \overline{P_5}(1,1,3,4,4) = \frac{5!}{2!*1!*1!} + \frac{5!}{2!*1!*2!} + \frac{5!}{2!*1!*2!} = 60 + 30 * 2 = 120$$

5 Для представленного графа определите

Представленный граф:

5.1 Есть ли в графе Эйлеров цикл или Эйлерова цепь? Если есть, то выпишите. Если нет, то обоснуйте отсутствие

Эйлеров путь в графе - это путь, проходящий по всем рёбрам графа ровно по одному разу

Эйлеров цикл - эйлеров путь, являющийся циклом, то есть замкнутый путь, проходящий через каждое ребро графа ровно по одному разу

Соответственно у нас нет ни Эйлерова пути, ни Эйлерова цикла, так как каждая из вершин имеет нечётную степень

5.2 Есть ли в графе Гамильтонов цикл, Гамильтонова цепь? Если есть, то выпишите. Если нет, то обоснуйте отсутствие

 Γ амильтонов nymь - простой путь (путь без петель), проходящий через каждую вершину графа ровно один раз

 Γ амильтонова цепь - простой цепь (нет повторяющихся вершин), обладающая свойством гамильтонова пути

6 Нарисуйте орфорграф с 3мя компонентами сильной связности, имеющий не более 11 вершин и не менее 8.

Вот мой граф, и тут разными цветами отмечены разные компоненты сильной связности:

7 Граф задан матрицей расстояний

Матрица:

$$\begin{pmatrix}
0 & 3 & - & 5 & - & 2 \\
0 & 5 & 4 & - & 4 \\
0 & 4 & 5 & 5 \\
0 & 3 & 6 \\
0 & 2 \\
0
\end{pmatrix}$$

Граф:

7.1 Построить минимальное остовное дерево

7.2 Построить фундаментальную систему циклов, ассоциированную с этим остовом

7.3 Найти кратчайшие пути от вершины 4 до всех остальных вершин графа

Найти кратчайшее расстояние можно при помощи алгоритма Дейкстры, соответственно, используя этот алгоритм, я и получил следующие результаты:

