CHAPTER 3 Implementing Arithmetic

Two Interpretations

unsigned signe $167_{10} \leftarrow 1010011 \rightarrow -89_{10}$ 1_2

- Signed vs. unsigned is a matter of interpretation; thus a single bit pattern can represent two different values.
- Allowing both interpretations is useful:
 Some data (e.g., count, age) can never

be negative, and having a greater range is useful.

Which is Greater: 1001 or 0011?

Answer: It depends!

So how does the computer decide:

"if (x > y).." /* Is this true or false? */

It's a matter of <u>interpretation</u>, and depends on how x and y were declared: signed? Or unsigned?

Which is Greater: 1001 or 0011?

Office flataware / taaci flatiales

Both:

Unsigned and 2's Complement

Why Not Sign+Magnitude?

Subtraction Is Easy!

Signed vs. Unsigned Multiplication

Unsigned

Signed (2's complement)

Binary

1100

0100

-16 **1111**0000

Decimal	Binary	
12	1100	Decima
<u>× 4</u>	<u>0100</u>	-4
48	0011 0000	<u>× +4</u>

Multiplying two n-bit numbers produces 2n bits of product. Least-significant halves of products are always identical, but most-significant halves will sometimes differ.

Arithmetic Shifting

Left Shift = Multiplying by a power of 2:

$$13 \times 8 = 1101_2 \times 2^3 = 1101000_2$$

"Arithmetic" Right Shift = Dividing by a power of 2?

$$+13 \div 4 = 01101_2 \div 2^2 = 00011_2 = +3_{10} \text{ YES}$$

 $-13 \div 4 = 10011_2 \div 2^2 = 11100_2 = -4_{10} \text{ NO!}$

Multiplication by a Constant

$$13_{10} \times N = 1101_2 \times N = 8N + 4N + 1N$$

$$= (N << 3) + (N << 2) + N$$

2 shifts + 2 additions

On an old CPU, a multiply may take 100 times as long as an add or a shift, and the above will be 25 times faster!

Multiplication by a Constant

Consider $30_{10} \times N = 00011110_2 \times N$

This requires 4 shifts and 3 additions.

But
$$30_{10} = 32_{10} - 2_{10} = 2^5 - 2^1$$
 00100000 - 000011110

- Thus: $30_{10} \times N = (2^5 2^1) \times N = 2^5N 2^1N$
- And requires only 2 shifts and 1 subtraction

Division by a constant = Multiplication by a constant!

$$A \times 2^{8}/1 = a_{7}.....a_{0} \times 2^{8}/1 = a_{7}.....a_{0} 0.....0$$
 $A \times 2^{8}/2 = a_{7}.....a_{0} \times 2^{8}/2 = A/2$
 $A \times 2^{8}/4 = a_{7}.....a_{0} \times 2^{8}/4 = A/4$

Generalizing

 $A \times 2^{8}/B = a_{7}.....a_{0} \times 2^{8}/B = A/B$

Reciprocal Multiplication

$$A_{7..0} \div B_{7..0} = A \times (1/B)$$

=
$$[A \times (2^8/B)]_{15..0} \div 2^8$$

$$= [A \times (2^8/B)]_{15..8}$$

Problems: Reciprocal Multiplication

868116UMtyptipaitietion

Multiplication & Division by C=2^k

Multiplication:

- Logical Left Shift by K bit positions
- Fills vacated bit positions on the right with 0's

Division:

- Arithmetic Right Shift by K bit positions
- Fills vacated bit positions on the left with copy of sign bit
- Truncates towards negative infinity
- (integer division truncates towards zero)
- Anomaly when dividend is an odd negative number

Multiplication & Division by C≠2^k

Multiplication:

- Combination of left shifts, additions and subtractions
- Determined by binary pattern of constant C

Division:

- Use Reciprocal Multiplication (multiplier is 2^N/C)
- Quotient left in most-significant half of double-length product
- Least-significant half contains the fractional bits

Fixed-Point Reals

Three components:

Fixed vs. Floating

Floating-Point:

Pro: Large dynamic range determined by exponent; resolution determined by significand.

Con: Implementation of arithmetic in hardware is complex (slow).

Fixed-Point:

Pro: Arithmetic is implemented using regular integer operations of processor (fast).

Copyre 6 20 10 1 Parite de la rise de la ris

Fixed-Point & Scale Factors

- The position of the binary point is determined by a scale factor.
- Different variables can have different scale factors.
- Determine scale factor by expected range and required resolution.
- Programmer must keep track of scale factors! (Tedious)

Fixed-Point Add/Subtract Using Operands w/Same Scale Factors

Operand/ Result	Bit Pattern	Integer	×Scale Factor	=Value
A	00011 110	+30	$2^{-3} = 1/8$	+3.750
В	00110 011	+51	2 ⁻³ = 1/8	+6.375
A+B	01010 001	+81	2-3 = 1/8	+10.125
A - B	11101 011	-21	2-3 = 1/8	-2.625

Fixed-Point Add/Subtract Using Operands w/<u>Different</u> Scale Factors

- Must align binary points before adding or subtracting; this makes scale factors the same.
- Two possibilities:
 - If you shift the operand with fewer fractional bits left, be careful that it doesn't cause an overflow.
 - If you shift the operand with more fractional bits right, be careful that it doesn't cause a loss of precision.
- *coEitheroapproachs.maiyhbeeused, but the scale factor of the resulting sum or difference

Fixed-Point Multiplication/Division

- No need to pre-align binary points!
- Number of fractional bits in result (determines the scale factor):
 - Multiplication: The number of fractional bits in the multiplicand plus the number in the multiplier.
 - Division: The number of fractional bits in the dividend less the number in the divisor.

Multiplying Fixed-Point Real Numbers.

Operand/ Result	Bit Pattern	Int	×Scale Factor	=Value
Α	00000000011.1 10	30	$2^{-3} = 1/8$	+3.7500
В	0000000001100. 11	×51	$2^{-2} = 1/4$	+12.750 0
$A \times B$	00000101111.110 10	=153 0	2 ⁻³⁻² = 1/32	+47.812 5

Dividing Fixed-Point Real Numbers.

Operand/ Result	Bit Pattern	Int	×Scale Factor	=Value
Α	00000101111 ₁ 110 10	1530	2 ⁻⁵ = 1/32	+47.812 5
В	000000001110.0 11	÷115	$2^{-3} = 1/8$	+14.375 0
A÷B	0000000000011	=13	$2^{-5+3} = 1/4$	+3.2500

Shifting Before Dividing Fixed-Point Real Numbers.

Operand/ Result	Bit Pattern	Int	×Scale Factor	=Value
2 ³ ×A	00101111 ₁ 110100 00	1224 0	2-8 = 1/256	+47.812 5
В	000000001110.0 11	÷115	$2^{-3} = 1/8$	+14.375 0
2³×A ÷ B	0000000011.010 10	=106	$2^{-8+3} = 1/32$	+3.3125

16.16 Fixed-Point Format

Problems: 8.8 Fixed-Point Representation

$$-10.72_{10}$$
 [] ?₂= -(10.72[]2⁸)/2⁸ = -2744/2⁸
= -0000101010111000/2⁸
= 11110101.01001000

45.37₁₀ [] **?**₂

Q Number Format

Qm.n:

```
m = # integer bits (not counting sign)
n = # fractional bits
m+n+1 = total number of bits
```

Qn:

```
m = 0 is assumed (n + 1 = word size)
16 bits: Q15 = Q0.15 \square x<sub>*</sub>xxx xxxx xxxx
```

Q Number Format

Qm.n Range: -2^{m} to $+(2^{m} - 2^{-n})$

When n = 0, the number is an integer:

 -2^{m} to $+(2^{m}-1)$

If word size = 8 bits: 1000000. to 0111111.

When m = 0, the number is a fraction:

-1 to $+(1-2^{-n})$ Copyright © 2000, Daniel W. Lewis. All Rights Reserved.

If word size = 8 bits: 1.0000000 to

31 0 Note: On a 32-bit Whole Fractional Multiplicand CPU, you can simply Part Part use the regular integer multiply instruction, which 31 0 produces a 64-bit Whole Fractional Multiplier product stored in a Part Part pair of 32-bit registers. 31 0 63 Fractional Whole Discard Product Discard Part Part

16.16 Fixed-Point Division

"Brute-Force" 32.32 Format Implied binary point O··· 00.00 ··· 0 32-bits 32-bits

This format uses lots of bits, but memory is relatively cheap and it supports both very large and very small numbers. If all variables use this same format (i.e., a common scale factor), programming is simplified. This is the strategy used in the Sony PlayStation.

Problem: How do you compute the product of two 64-bit numbers using a 32-bit CPU?

Strategy:

- 1. Consider how to compute the 128-bit product of two 64-bit *unsigned* integers.
- 2. Modify that result to handle *signed* integers.
- 3. Note how discarding the 64 unused bits of the 128-bit product simplifies the computation.

$$A_{u}B_{u} = (2^{32}A_{hi} + A_{lo})(2^{32}B_{hi} + B_{lo})$$
$$= 2^{64}A_{hi}B_{hi} + 2^{32}(A_{hi}B_{lo} + A_{lo}B_{h}) + A_{lo}B_{lo}$$

$$A_{hi} B_{lo} + A_{lo} B_{h}$$

A_{lo} B_{lo} not used

First consider a 64-bit unsigned number:

$$A_{u} = 2^{63}A_{63} + 2^{62}A_{62} + \dots + 2^{0}A_{0}$$

$$= 2^{63}A_{63} + (2^{62}A_{62} + \dots + 2^{0}A_{0})$$

$$= 2^{63}A_{63} + A_{62..0}$$

where
$$A_{62...0} = 2^{62}A_{62} + ... + 2^{0}A_{0}$$

Thus the 128-bit product of two 64-bit unsigned operands would be:

$$A_{u}B_{u} = (2^{63}A_{63} + A_{62..0})(2^{63}B_{63} + B_{62..0})$$

$$= 2^{126}A_{63}B_{63} + 2^{63}(A_{63}B_{62..0} + B_{63}A_{62..0})$$

$$+ A_{62..0}B_{62..0}$$

Now consider a 64-bit signed number:

$$A_s = -2^{63}A_{63} + 2^{62}A_{62} + \dots + 2^{0}A_{0}$$

$$= -2^{63}A_{63} + (2^{62}A_{62} + \dots + 2^{0}A_{0})$$

$$= -2^{63}A_{63} + A_{62..0}$$

Thus the 128-bit product of two 64-bit signed operands would be:

$$A_{s}B_{s} = (-2^{63}A_{63} + A_{62..0})(-2^{63}B_{63} + B_{62..0})$$

$$= 2^{126}A_{63}B_{63} - 2^{63}(A_{63}B_{62..0} + B_{63}A_{62..0})$$

$$+ A_{62..0}B_{62..0}$$

Unsigned vs. Signed Multiplication

$$A_{u}B_{u} = 2^{126}A_{63}B_{63}$$

$$+ 2^{63}(A_{63}B_{62..0} + B_{63}A_{62..0})$$

$$+ A_{62..0}B_{63..0}$$

$$A_s B_s = 2^{126} A_{63} B_{63}$$

$$- 2^{63} (A_{63} B_{62..0} + B_{63} A_{62..0})$$

Copyright © 2000 Da Da Gall Rights Reserved.

Thus the 128-bit product of two 64-bit signed operands would be:

$$A_s B_s = A_u B_u - 2 (2^{63} A_{63} B_{62..0} + 2^{63} B_{63} A_{62..0})$$

$$= A_u B_u - 2^{64} A_{63} B_{62..0} - 2^{64} B_{63} A_{62..0}$$

What does this result mean?

$$\begin{array}{c} A_s B_s = A_u B_u - 2^{64} A_{63} \ B_{62..0} - 2^{64} B_{63} \ A_{62..0} \\ \\ If A is negative, \\ subtract B_{62..0} \\ from the most-significant half of \\ A_s B_s \end{array}$$

```
A,B, (64 bits)
don't need
                                       don't need
                B_{31..0}
don't need
                            (Subtract if A < 0)
don't need
                             (Subtract if B < 0)
                 A<sub>c</sub>B<sub>c</sub> (64 bits)
 not used
                                        not used
```