FP2: Torso Pose Estimation on the HRP4 Humanoid Robot

Michele Cipriano, Godwin K. Peprah, Lorenzo Vianello

Supervisor: Nicola Scianca

Professors: Giuseppe Oriolo, Alessandro De Luca

Autonomous and Mobile Robotics, Robotics 2 Department of Computer, Control and Management Engineering Sapienza University of Rome

Introduction

Intro.

Kinematic Model

Extended Kalman Filter

Accelerometer Integration

Gyroscope Integration

IMU

Experiments (5.1).

Filtering Linear Velocities

Trilateration

MPC Loop Closure

Regulation

Kinematic Model of the Unicycle

Brief description:

$$\dot{x} = v\cos(\theta)$$
$$\dot{y} = v\sin(\theta)$$
$$\dot{\theta} = \omega$$

with v and ω respectively linear and angular velocity.

Proportional Controller

Control law:

$$v = k_1 \| \mathbf{p}_g - \hat{\mathbf{p}}_t \|$$
$$\omega = k_2 e_{\theta}$$

with e_{θ} angle between the sagittal vector of the unicycle and the vector pointing from the unicycle towards the goal, $k_1=0.18$ and $k_2=0.014$. Forcing v and ω to zero when $\|\boldsymbol{p}_g-\hat{\boldsymbol{p}}_t\|<0.25$. Desired and final configuration:

$$\mathbf{q}_g = (-3, 5, \cdot)^T$$

 $\mathbf{q}_f = (-2.798, 5.090, 0.98\pi)^T$
 $\hat{\mathbf{q}}_f = (-2.885, 5.127, 0.979\pi)^T$

Proportional Controller: x-y Plot

Cartesian Regulation

Let's express the coordinates of the unicycle in a reference frame \mathcal{F}_g fixed at a position $(x_g, y_g)^T$ and rotated by θ_g around \mathcal{F}_w :

$$\begin{pmatrix} g_X \\ g_Y \\ g_\theta \end{pmatrix} = R_Z^{\mathsf{T}}(\theta_g) \begin{pmatrix} x - x_g \\ y - y_g \\ \theta - \theta_g \end{pmatrix}$$

Cartesian Regulation

Control law:

$$v = -k_1({}^{g}x\cos({}^{g}\theta) + {}^{g}y\sin({}^{g}\theta))$$
$$\omega = k_2(A\tan({}^{g}y, {}^{g}x) - {}^{g}\theta + \pi)$$

with $k_1=0.07$ and $k_2=0.01$. Forcing v and ω to zero when $\|p_g-\hat{p}_t\|<0.2$. Desired and final configuration:

$$\mathbf{q}_g = (-2, 3.2, \cdot)^T$$

 $\mathbf{q}_f = (-1.788, 3.105, 1.562\pi)^T$
 $\hat{\mathbf{q}}_f = (-1.823, 3.108, 1.562\pi)^T$

Cartesian Regulation: x-y Plot

Kinematic Model of the Unicycle in Polar Coordinates

Brief description:

$$\dot{\rho}_r = -v\cos(\gamma_r)$$

$$\dot{\gamma}_r = \frac{\sin(\gamma_r)}{\rho_r} v - \omega$$

$$\dot{\delta}_r = \frac{\sin(\gamma_r)}{\rho_r} v$$

Polar coordinates can be obtained from the generalized coordinates of the unicycle $(x, y, \theta)^T$ by computing:

$$\rho_r = \sqrt{{}^g x^2 + {}^g y^2}$$

$$\gamma_r = \text{Atan2}({}^g y, {}^g x) - {}^g \theta + \pi$$

$$\delta_r = \gamma_r + {}^g \theta$$

Posture Regulation

Control law:

$$v = k_1 \rho_r \cos(\gamma_r)$$

$$w = k_2 \gamma_r + k_1 \frac{\sin(\gamma_r) \cos(\gamma_r)}{\gamma_r} (\gamma_r + k_3 \delta_r)$$

with $k_1=0.1$, $k_2=0.007$ $k_3=0.004$. Forcing v and ω to zero when $\rho_r<0.2$. Desired and final configuration:

$$\mathbf{q}_g = (-2, 3.2, \pi)^T$$

$$\mathbf{q}_f = (-1.797, 3.194, 1.024\pi)^T$$

$$\hat{\mathbf{q}}_f = (-1.824, 3.222, 1.024\pi)^T$$

$$\bar{\mathbf{q}}_f = (-1.282, 3.424, 0.912\pi)^T$$

Posture Regulation: x-y Plot

Posture Regulation: Yaw Plot

Posture Regulation: Velocity Profile Plots

Conclusion

Conclusion.

References

- W. Hereman and J. William S. Murphy, "Determination of a Position in Three Dimensions Using Trilateration and Approximate Distances," 1995.
- B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, *Robotics:*Modelling, Planning and Control.

 Springer Publishing Company, Incorporated, 1st ed., 2008.