Techniques d'apprentissage IFT603

Machines à vecteurs de support Par Pierre-Marc Jodoin Hugo Larochelle

Méthode à Noyau

Au chapitre précédent, nous avons vu les méthodes à noyau ➤ Entraînement

$$\vec{a} = (K + \lambda I_N)^{-1} \vec{t}$$
> Prédiction Matrice

$$y(\vec{x}) = \sum_{n=1}^{N} (x(\vec{x}, \vec{x}_n)) a_n$$
 Noyau

Malheureusement, on doit toujours avoir accès aux données d'entraînement

Machine à vecteur de Support

(support vector machine, SVM en anglais)

- Algorithme principalement dédié à la classification binaire
- Après l'entraînement, SVM seulement un sous-ensemble des données
- Plusieurs des a_n vontêtre à 0

Au cœur des machines à vecteurs de support figure la notion de marge.

La marge est la plus petite distance entre la surface de séparation et les données d'entraînement

Classifieur à marge maximale

Un SVM cherche les paramètres $\vec{w}^{\rm T}$ et w_0 de l'hyperplan qui maximisent la marge

$$\begin{split} & \arg\max_{\vec{w},w_0} \{ \max\{\vec{w}, w_0) \} \\ & = \arg\max_{\vec{w},w_0} \left\{ \min_n \left(t_n \frac{y_{\vec{w}}(\vec{\phi}(\vec{x}_n))}{\|\vec{w}\|} \right) \right\} \\ & = \arg\max_{\vec{w},w_0} \left\{ \min_n \left(t_n \frac{\vec{w}^\mathsf{T} \vec{\phi}(\vec{x}_n) + w_0}{\|\vec{w}\|} \right) \right\} \\ & = \arg\max_{\vec{w},w_0} \left\{ \frac{1}{\|\vec{w}\|} \min_n \left(t_n (\vec{w}^\mathsf{T} \vec{\phi}(\vec{x}_n) + w_0) \right) \right\} \end{split}$$

Problème!

Il existe une infinité de solutions au problème de la page précédente!

La marge est la même si on multiplie \vec{w}^{T} et w_0 par une constante non nulle (a)

$$t_n \frac{\vec{w}^{\mathrm{T}} \vec{\phi}(\vec{x}_n) + w_0}{\|\vec{w}\|} = t_n \frac{\vec{\alpha} \vec{w}^{\mathrm{T}} \vec{\phi}(\vec{x}_n) + \alpha w_0}{\alpha \|\vec{w}\|}$$

Solution!

Contraindre la solution pour que les vecteurs de support

$$t_n y_{\vec{w}} \left(\vec{\phi} \left(\vec{x}_n \right) \right) = t_n \left(\vec{w}^{\mathsf{T}} \vec{\phi} \left(\vec{x}_n \right) + w_0 \right) = 1$$

13

Sans contrainte

$$t_n \left(\vec{w}^T \vec{\phi} \left(\vec{x}_n \right) + w_0 \right) > 0$$
Vecteur de support

Marge

14

Avec contrainte

$$t_{n}(\vec{w}^{T}\vec{\phi}(\vec{x}_{n}) + w_{0}) > 1$$
Vecteur de support
$$y = 1$$

$$y = 0$$

$$y = -1$$

En supposant que l'ensemble d'entraînement est linéairement séparable, on a :

$$\arg\max_{\vec{w},w_0} \left\{ \frac{1}{\|\vec{w}\|} \min_{n} \left(t_n \left(\vec{w}^T \vec{\phi} \left(\vec{x}_n \right) + w_0 \right) \right) \right\}$$

- 2 façons de résoudre ce problème :
 - > Approche primale > Approche duale

Approche primale

$$\arg\max_{\vec{w},w_0} \left\{ \frac{1}{\|\vec{w}\|} \frac{\min_{n} \left(t_n \left(\vec{w}^T \vec{\phi}(\vec{x}_n) + w_0 \right) \right)}{=1} \right\}$$

19

Approche primale

$$\arg\max_{\vec{w},w_0} \left\{ \frac{1}{\|\vec{w}\|} \min_{n} \left(t_n \left(\vec{w}^T \vec{\phi}(\vec{x}_n) + w_0 \right) \right) \right\}$$

Ce problème d'optimisation est un **programme quadratique** pour lequel il existe de nombreuses bibliothèques informatiques

Approche duale: inclure les noyaux dans SVM

Approche duale

$$\operatorname{arg} \min_{\vec{w}, w_0} \left\{ \frac{1}{2} \|\vec{w}\|^2 \right\} \\
\operatorname{t.q.} t_n \left(\vec{w}^{\mathsf{T}} \vec{\phi}(\vec{x}_n) + w_0 \right) \ge 1 \quad \forall n$$

On peut enlever les contraintes en introduisant les **multiplicateurs de Lagrange** (voir Bishop, Annexe E)

$$L(\vec{w}, w_0, \vec{a}) = \frac{1}{2} ||\vec{w}||^2 - \sum_{n=1}^{N} a_n \{ t_n (\vec{w}^{\mathsf{T}} \vec{\phi}(\vec{x}_n) + w_0) - 1 \} \quad \text{t.q } a_n \ge 0$$

Approche duale

$$\arg\min_{\vec{w}, y_0} \left\{ \frac{1}{2} \|\vec{w}\|^2 \right\}$$

$$\text{t.q. } \ell_n(\vec{w}^T \vec{\phi}(\vec{x}_n) + w_0) \ge 1 \quad \forall n$$

On peut enlever les contraintes en introduisant les multiplicateurs de Lagrange (voir Bishop, Annexe E)

$$L(\vec{w}, w_0, \vec{a}) = \frac{1}{2} ||\vec{w}||^2 - \sum_{n=1}^{N} a_n \{ t_n (\vec{w}^{\mathsf{T}} \vec{\phi}(\vec{x}_n) + w_0) - 1 \} \quad \text{t.q } a_n \ge 0$$

$$L(\vec{w}, w_0, \vec{a}) = \frac{1}{2} ||\vec{w}||^2 - \sum_{n=1}^{N} a_n \{ t_n (\vec{w}^T \vec{\phi}(\vec{x}_n) + w_0) - 1 \} \quad \text{t.q } a_n \ge 0$$

En annulant les dérivées $\frac{\partial L(\vec{w}, w_0, \vec{a})}{\partial \vec{w}} = 0 \quad \frac{\partial L(\vec{w}, w_0, \vec{a})}{\partial w_0} = 0$

$$\vec{w} = \sum_{n=1}^{N} a_n t_n \vec{\phi}(\vec{x}_n)$$
 $\sum_{n=1}^{N} a_n t_n = 0$

$$\left| L(\vec{w}, w_0, \vec{a}) = \frac{1}{2} ||\vec{w}||^2 - \sum_{n=1}^{N} a_n \{ t_n (\vec{w}^T \vec{\phi}(\vec{x}_n) + w_0) - 1 \} \quad \text{t.q } a_n \ge 0 \right|$$

En annulant les dérivées $\frac{\partial L(\vec{w}, w_0, \vec{a})}{\partial \vec{w}} = 0 \quad \frac{\partial L(\vec{w}, w_0, \vec{a})}{\partial w_0} = 0$

$$\vec{w} = \sum_{n=1}^{N} a_n t_n \vec{\phi}(\vec{x}_n)$$
 $\sum_{n=1}^{N} a_n t_n = 0$

on peut exprimer \vec{w} comme une combinaison linéaire des entrées

On peut alors réécrire $L(\vec{w}, w_0, \vec{a})$ comme suit

$$\tilde{L}(\vec{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_n k(\vec{x}_n, \vec{x}_m) \phi(\vec{x}_n), \phi(\vec{x}_n)$$

où on a toujours $a_n \ge 0$ et $\sum_{n=1}^{N} a_n t_n = 0$

On peut alors réécrire $L(\vec{w}, w_0, \vec{a})$ comme suit

$$\phi(x_n) \phi(x_m)$$

$$\bar{L}(\vec{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\vec{x}_n, \vec{x}_m)$$

où on a toujours $a_n \ge 0$ et $\sum_{n=1}^{N} a_n t_n = 0$

Solution par programme quadratique

Représentation duale avec l'astuce du noyau

$$\widetilde{L}(\vec{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\vec{x}_n, \vec{x}_m)$$

On peut démontrer que la solution à $\tilde{L}(\vec{a})$ satisfait

$$\begin{aligned} a_n &\geq 0 \\ t_n y \left(\vec{x}_n \right) - 1 &\geq 0 \\ a_n \left\{ t_n y \left(\vec{x}_n \right) - 1 \right\} &= 0 \end{aligned} \qquad \text{Implique} \qquad \begin{bmatrix} t_n y \left(\vec{x}_n \right) = 1 \text{ et } a_n \geq 0 \\ \text{ou} \\ t_n y \left(\vec{x}_n \right) > 1 \text{ et } a_n = 0 \end{aligned}$$

Lié aux conditions de Karush-Kuhn-Tucker (KKT) (voir Bishop, annexe E)

28

$$\widetilde{L}(\vec{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\vec{x}_n, \vec{x}_m)$$

On peut démontrer que la solution à $\tilde{L}(\vec{a})$ satisfait

$$\begin{aligned} a_n &\geq 0 & \text{Vecteurs de support} \\ t_n y \left(\vec{x}_n \right) - 1 &\geq 0 \\ a_n \left\{ t_n y \left(\vec{x}_n \right) - 1 \right\} &= 0 \end{aligned} \right] \quad \text{Implique} \quad \begin{cases} t_n y \left(\vec{x}_n \right) = 1 \text{ et } a_n \geq 0 \\ \text{ou} \\ t_n y \left(\vec{x}_n \right) > 1 \text{ et } a_n = 0 \end{aligned}$$

Lié aux conditions de Karush-Kuhn-Tucker (KKT) (voir Bishop, annexe E)

Prédiction avec la représentation duale

$$y_{w}(\vec{\phi}(\vec{x})) = \vec{w}^{T} \vec{\phi}(\vec{x}) + w_{0}$$

$$= \left(\sum_{n=1}^{N} a_{n} t_{n} \vec{\phi}(\vec{x}_{n})\right)^{T} \vec{\phi}(\vec{x}) + w_{0}$$

$$= \sum_{n=1}^{N} \left(a_{n} t_{n} \vec{\phi}(\vec{x}_{n})^{T} \vec{\phi}(\vec{x})\right) + w_{0}$$

$$= \sum_{n=1}^{N} \left(a_{n} t_{n} k(\vec{x}_{n}, \vec{x})\right) + w_{0}$$
Sculs les vecteurs de support vont voter!

Prédiction avec la représentation duale

$$y_{w}(\vec{\phi}(\vec{x})) = \vec{w}^{T} \vec{\phi}(\vec{x}) + w_{0}$$

$$= \left(\sum_{n=1}^{N} a_{n} t_{n} \vec{\phi}(\vec{x}_{n})\right)^{T} \vec{\phi}(\vec{x}) + w_{0}$$

$$= \sum_{n=1}^{N} \left(a_{n} t_{n} \vec{\phi}(\vec{x}_{n})^{T} \vec{\phi}(\vec{x})\right) + w_{0}$$

$$= \sum_{n=1}^{N} \left(a_{n} t_{n} k(\vec{x}_{n}, \vec{x})\right) + w_{0}$$

Voir équation 7.18 pour calculer \mathcal{W}_0

Données non séparables

SVM : Approche primale
$$\arg \max_{\vec{w}, w_0} \left\{ \frac{1}{\|\vec{w}\|} \frac{\min_n \left(t_n (\vec{w}^T \vec{\phi}(\vec{x}_n) + w_0) \right)}{\text{el}} \right\}$$

$$= 1$$

$$\text{Équivalent à} \qquad \arg \min_{\vec{w}, w_0} \left\{ \frac{1}{2} \|\vec{w}\|^2 \right\}$$

$$\text{t.q.} t_n (\vec{w}^T \vec{\phi}(\vec{x}_n) + w_0) \ge 1 \quad \forall n$$

$$\text{Ce problème d'optimisation est un programme quadratique pour lequel il existe de nombreuses bibliothèques}$$

SVM : Approche primale
$$\arg\max_{\vec{w},w_0} \left\{ \frac{1}{|\vec{w}|} \min_n \left(t_n(\vec{w}^T \vec{\phi}(\vec{x}_n) + w_0)\right) \right\}$$
Que faire s'il y a :

- Des données aberrantes dans l'ensemble d'entraînement?
- Si les données des 2 classes se chevauchent?
$$[t.q.t_n(\vec{w}^T \phi(\vec{x}_n) + w_0) \ge 1 \quad \forall n$$
Ce problème d'optimisation est un programme quadratique pour lequel il existe de nombreuses bibliothèques

Variables de ressort (slack variables)	
Permettre que certains exemples ne respectent pas la contrainte de marge	
$ \begin{bmatrix} \arg\min_{\vec{w}, w_0} \left\{ \frac{1}{2} \ \vec{w}\ ^2 \right\} \\ \text{t.q. } t_n y_{\vec{w}} (\vec{\phi}(\vec{x}_n)) \ge 1 \forall n \end{bmatrix} $ Devient	$\arg\min_{\vec{w}, w_0, \xi} \left\{ \frac{1}{2} \ \vec{w}\ ^2 \right\} + C \sum_{n=1}^{N} \xi_n$ $t.q. t_n y_{\vec{w}} (\vec{\phi}(\vec{x}_n)) \ge 1 - \xi_n$ $\forall n, \xi_n \ge 0$
Les variables de ressorts ξ_n correspondent aux violations des contraintes de marge.	

Variables de ressort (slack variables)

On va permettre que les exemples ne respectent pas la contrainte de marge

Les variables de ressorts ξ_n correspondent aux violations des contraintes de marge.

Variables de ressort (slack variables)

On va permettre que les exemples ne respectent pas la contrainte de marge

$$\begin{bmatrix} \arg\min_{\vec{w}, w_0} \left\{ \frac{1}{2} \|\vec{w}\|^2 \right\} \\ \text{t.q.} \ t_n y_{\vec{w}}(\vec{\phi}(\vec{x}_n)) \ge 1 \quad \forall n \end{bmatrix}$$
 Devient
$$\begin{bmatrix} \arg\min_{\vec{w}, w_0, \vec{\xi}} \left\{ \frac{1}{2} \|\vec{w}\|^2 \right\} + C \sum_{n=1}^{N} \xi_n \\ \text{t.q.} \ t_n y_{\vec{w}}(\vec{\phi}(\vec{x}_n)) \ge 1 - \vec{\xi}_n \\ \forall n, \vec{\xi}_n \ge 0$$

Si ξ_n est plus grand que 1, la donnée est alors mal classée.

Variables de ressort (slack variables)

On va permettre que les exemples ne respectent pas la contrainte de marge

La constante C > 0 est un hyper-paramètre

• Plus C est petit, plus on permet des données mal classées

Exemple (variables de ressort)

Variables de ressort – représentation duale

On peut montrer que la représentation duale demeure la même que sans variable de ressort

$$\tilde{L}(\vec{a}) = \sum_{n=1}^{N} a_{n} - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} k(\vec{x}_{n}, \vec{x}_{m})$$

mais avec les contraintes $C \ge a_n \ge 0$ et $\sum_{n=1}^{N} a_n t_n = 0$

Reste un problème de **programmation quadratique**

50

Variables de ressort – représentation primale

$$\arg\min_{\vec{w},w_0,\xi} \left\{ \frac{1}{2} \|\vec{w}\|^2 \right\} + C \sum_{n=1}^{N} \xi_n$$

$$\text{t.q. } t_n y_{\vec{w}}(\phi(\vec{x}_n)) \ge 1 - \xi_n$$

$$\forall n, \xi_n \ge 0$$

Variables de ressort – représentation primale

$$\arg\min_{\vec{w},w_0,\xi} \left\{ \frac{1}{2} \|\vec{w}\|^2 \right\} + C \sum_{n=1}^{N} \xi_n$$

$$\text{t.q. } \xi_n \ge 1 - t_n y_{\vec{w}} (\phi(\vec{x}_n))$$

$$\forall n, \xi_n \ge 0$$

Variables de ressort – représentation primale

$$\arg\min_{\vec{w},w_0} \frac{1}{2} \|\vec{w}\|^2 + C \sum_{n=1}^{N} \max(0,1-t_n y_{\vec{w}}(\phi(\vec{x}_n)))$$

Forme similaire à celle présentée au chapitre sur la segmentation linéaire!

Même forme qu'au chapitre 4!

 $\arg\min_{\vec{w}, w_0} \sum_{n=1}^{N} \max(0.1 - t_n y_{\vec{w}}(\phi(\vec{x}_n))) + \lambda ||\vec{w}||^2$ Fonction de perte

(Hinge loss)

Régularisation

Constante

Solution obtenue par descente de gradient

Résumé (SVM sans noyau - primal)

- Modèle: $y_{\vec{w}}(\phi(\vec{x}_n)) = \vec{w}^T \phi(\vec{x}_n) + w_0$
- **Problème**: $\arg \min_{\vec{w}, w_0, \vec{\xi}} \frac{1}{2} ||\vec{w}||^2 + C \sum_{n=1}^{N} \xi_n$ $t.q. \xi_n \ge 1 t_n y_{\vec{w}}(\phi(\vec{x}_n))$ $\forall n. \xi. \ge 0$
- Hyper-paramètres: C
- Entraînement : résoudre programme quadratique

Résumé (SVM sans noyau - primal)

- Modèle: $y_{\vec{w}}(\phi(\vec{x}_n)) = \vec{w}^T \phi(\vec{x}_n) + w_0$
- **Problème**: $\arg \min_{\vec{w}, v_0, \xi} \frac{1}{2} ||\vec{w}||^2 + C \sum_{n=1}^{N} \xi_n$ $t.q. \xi_n \ge 1 t_n y_{\vec{w}}(\phi(\vec{x}_n))$ $\forall n, \xi_n \ge 0$
- Hyper-paramètres: C
- Entraînement : descente de gradient

$$\arg\min_{\vec{w},w_0} \sum_{n=1}^{N} \max(0.1 - t_n y_{\vec{w}}(\phi(\vec{x}_n))) + \lambda \|\vec{w}\|^2$$

Résumé (SVM avec noyau - dual)

- Modèle: $y_{\vec{w}}(\phi(\vec{x}_n)) = \vec{w}^T \phi(\vec{x}_n) + w_0$
- **Problème**: $\arg\min_{\vec{a}} \sum_{n=1}^{N} a_n \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\vec{x}_n, \vec{x}_m)$ t.q. $C \ge a_n \ge 0$ et $\sum_{n=1}^{N} a_n t_n = 0$ Plusieurs des a_n seront à 0
- Hyper-paramètres: C
- Entraînement : programme quadratique
- **Prédiction**: $y(\vec{x}_n) = \sum_{n=1}^{N} a_n t_n k(\vec{x}_n, \vec{x}) + w_0$ Souls les vecteurs de l'appropriate l'ap

