

INGI2145: CLOUD COMPUTING (Fall 2015)

Algorithms in MapReduce

15 October 2015

What we have seen so far

 We saw how the MapReduce model could be used to filter, collect, and aggregate values

- This is useful for data with limited structure
 - We could extract pieces of input data items and collect them to run various reduce operations
 - We could "join" two different data sets on a common key
- But that's not enough...

Beyond average/sum/count

- Much of the world is a network of relationships and shared features
 - Members of a social network can be friends, and may have shared interests / memberships / etc.
 - Customers might view similar movies, and might even be clustered by interest groups
 - The Web consists of documents with links
 - Documents are also related by topics, words, authors, etc.

 We need a toolbox of algorithms for analyzing data that has both relationships and properties

Plan for today

Representing data in graphs

- Graph algorithms in MapReduce
 - Computation model
 - Iterative MapReduce
- A toolbox of algorithms
 - Single-source shortest path (SSSP)
 - k-means clustering
 - Classification with Naïve Bayes
 - PageRank

Thinking about related objects

- We can represent related objects as a labeled, directed graph
- Entities are typically represented as nodes;
 relationships are typically edges
 - Nodes all have IDs, and possibly other properties
 - Edges typically have values, possibly IDs and other properties

Encoding the data in a graph

- Recall basic definition of a graph:
 - G = (V, E) where V denotes vertices, E denotes edges of the form (v_1,v_2) where $v_1,v_2 \in V$
- Assume we only care about connected vertices
 - Then we can capture a graph simply as a set of edges
 - or as an adjacency list: v_i goes to [v_j, v_{j+1}, ...]

Graph encodings: Set of edges

(Alice, Facebook)

(Alice, Sunita)

(Jose, Twitter)

(Jose, Sunita)

(Mikhail, Facebook)

(Mikhail, Twitter)

(Sunita, Facebook)

(Sunita, Alice)

(Sunita, Jose)

Graph encodings: Adding edge types

(Alice, fan-of, Facebook)

(Alice, friend-of, Sunita)

(Jose, fan-of, Twitter)

(Jose, friend-of, Sunita)

(Mikhail, fan-of, Facebook)

(Mikhail, fan-of, Twitter)

(Sunita, fan-of, Facebook)

(Sunita, friend-of, Alice)

(Sunita, friend-of, Jose)

Graph encodings: Adding weights

Plan for today

Representing data in graphs

- Graph algorithms in MapReduce
 - Computation model
 - **Iterative MapReduce**
- A toolbox of algorithms
 - Single-source shortest path (SSSP)
 - k-means clustering
 - Classification with Naïve Bayes
 - PageRank

- Once the data is encoded in this way, we can perform various computations on it
 - Simple example: Which users are their friends' best friend?
- This is often done by
 - annotating the vertices with additional information, and
 - propagating the information along the edges
 - "Think like a vertex"!

All my friends have me as their best friend (highest strength edge)

- Example: Am I my friends' best friend?
 - Step #1: Discard irrelevant vertices and edges

alice→sunita: 0.9 sunita→alice: 0.9 jose→sunita: 0.3 sunita →jose: 0.3

Example: Am I my friends' best friend?

- Step #1: Discard irrelevant vertices and edges
- Step #2: Annotate each vertex with list of friends
- Step #3: Push annotations along each edge


```
sunita\rightarrowalice: 0.9 alice\rightarrowsunita: 0.9 sunita\rightarrowalice: 0.9 sunita\rightarrowjose: 0.3 jose\rightarrowsunita: 0.3 sunita\rightarrowjose: 0.3 jose\rightarrowsunita: 0.3 jose\rightarrowsunita: 0.3 sunita\rightarrowjose: 0.3
```

Example: Am I my friends' best friend?

- Step #1: Discard irrelevant vertices and edges
- Step #2: Annotate each vertex with list of friends
- Step #3: Push annotations along each edge

Example: Am I my friends' best friend?

- Step #1: Discard irrelevant vertices and edges
- Step #2: Annotate each vertex with list of friends
- Step #3: Push annotations along each edge
- Step #4: Determine result at each vertex

Can we do this in MapReduce?

```
map(key: node, value: [<otherNode, relType, strength>])
{
   for each otherNode, relType, strength in value:
      for each n in list of otherNodes:
        emit(n, <node, otherNode, relType, strength>)
}
reduce(key: __node__, values: list of <src, dst, relType, strength>)
{
   for each <src,dst> find the dst where strength is highest:
      if (node != dst) emit(node, "NO"); return
   emit(node, "YES")
}
```

Using adjacency list representation?

Can we do this in MapReduce?

```
map(key: node, value: <otherNode, relType, strength>)
{

}
reduce(key: _____, values: list of _____)
{
}
```

Using single-edge data representation?

A real-world use case

- A variant that is actually used in social networks today: "Who are the friends of multiple of my friends?"
 - Where have you seen this before?
- Friend recommendation!
 - Maybe these people should be my friends too!

Generalizing...

- Now suppose we want to go beyond direct friend relationships
 - Example: How many of my friends' friends (distance-2 neighbors) have me as their best friend's best friend?
 - What do we need to do?

How about distance k>2?

To compute the answer, we need to run multiple iterations of MapReduce!

Iterative MapReduce

The basic model:

```
copy files from input dir → staging dir N = 1
(optional: do some preprocessing)

while (!terminating condition) {
   map from staging dir N
   reduce into staging dir N+1
   N = N + 1 (optimization: use only 2 staging dirs alternately)
}

(optional: postprocessing)
move or process files from staging dir N+1 → output dir
```

- Note that reduce output must be compatible with the map input!
 - What can happen if we filter out some information in the mapper or in the reducer?

Graph algorithms and MapReduce

- A centralized algorithm typically traverses a tree or a graph one item at a time (there's only one "cursor")
 - You've learned breadth-first and depth-first traversals
- Most algorithms that are based on graphs make use of multiple map/reduce stages processing one "wave" at a time

Recap: MapReduce on graphs

- Suppose we want to:
 - compute a function for each vertex in a graph...
 - using data from vertices at most k hops away
- We can do this as follows:
 - "Push" information along the edges
 - "Think like a vertex"
 - Finally, perform the computation at each vertex
- May need more than one MapReduce phase
 - Iterative MapReduce: Outputs of stage i → inputs of stage i+1

Plan for today

- Representing data in graphs
- Graph algorithms in MapReduce
 - Computation model
- A toolbox of algorithms

- Single-source shortest path (SSSP)
- k-means clustering
- Classification with Naïve Bayes
- PageRank

Path-based algorithms

- Sometimes our goal is to compute information about the paths (sets of paths) between nodes
 - Edges may be annotated with cost, distance, or similarity
- Examples of such problems:
 - Shortest path from one node to another
 - Minimum spanning tree (minimal-cost tree connecting all vertices in a graph)
 - Steiner tree (minimal-cost tree connecting certain nodes)
 - Topological sort (node in a DAG comes before all nodes it points to)

Single-Source Shortest Path (SSSP)

Given a directed graph G = (V, E) in which each edge e has a cost c(e):

 Compute the cost of reaching each node from the source node s in the most efficient way (potentially after multiple 'hops')

SSSP: Intuition

- We can formulate the problem using induction
 - The shortest path follows the principle of optimality: the last step (u,v) makes use of the shortest path to u
- We can express this as follows:

```
bestDistanceAndPath(v) {
  if (v == source) then {
    return <distance 0, path[v]>
  } else {
    find argmin_u (bestDistanceAndPath[u] + dist[u,v])
    return <bestDistanceAndPath[u] + dist[u,v], path[u] + v>
  }
}
```

SSSP: Traditional Solution

Dijkstra's algorithm

```
V: vertices, E: edges, S: start node
foreach v in V
  dist S To[v] := infinity
                                 Initialize length and
                                   last step of path
  predecessor[v] = nil
                                  to default values
dist S To[S] := 0
o := v
                                      Update length and
while (Q not empty) do
                                      path based on edges
  u := Q.removeNodeClosestTo(S)
                                        radiating from u
  foreach v in V where (u,v) in E
    if (dist S To[v] > dist S To[u] + cost(u,v)) then
      dist S To[v] = dist S To[u] + cost(u,v)
      predecessor[v] = u
```



```
Q = \{s,a,b,c,d\}
```

dist_S_To: $\{(a,\infty), (b,\infty), (c,\infty), (d,\infty)\}$

predecessor: {(a,nil), (b,nil), (c,nil), (d,nil)}


```
Q = \{a,b,c,d\}
dist_S_To: \{(a,10), (b,\infty), (c,5), (d,\infty)\}
predecessor: \{(a,s), (b,nil), (c,s), (d,nil)\}
```



```
Q = \{a,b,d\}
```

dist_S_To: {(a,8), (b,14), (c,5), (d,7)} predecessor: {(a,c), (b,c), (c,s), (d,c)}


```
Q = \{a,b\}
```

dist_S_To: {(a,8), (b,13), (c,5), (d,7)} predecessor: {(a,c), (b,d), (c,s), (d,c)}

 $Q = \{b\}$

dist_S_To: {(a,8), (b,9), (c,5), (d,7)}

predecessor: {(a,c), (b,a), (c,s), (d,c)}

 $Q = \{\}$

dist_S_To: {(a,8), (b,9), (c,5), (d,7)}

predecessor: {(a,c), (b,a), (c,s), (d,c)}

SSSP: How to parallelize?

 Dijkstra traverses the graph along a single route at a time, prioritizing its traversal to the next step based on total path length (and avoiding cycles)

No real parallelism to be had here!

- Intuitively, we want something that "radiates" from the origin, one "edge hop distance" at a time
 - Each step outwards can be done in parallel, before another iteration occurs - or we are done
 - Scalability depends on the algorithm, not (just) on the problem!

SSSP: Revisiting the inductive definition

```
bestDistanceAndPath(v) {
  if (v == source) then {
    return <distance 0, path [v]>
  } else {
    find argmin_u (bestDistanceAndPath[u] + dist[u,v])
    return <bestDistanceAndPath[u] + dist[u,v], path[u] + v>
  }
}
```

- Dijkstra's algorithm carefully considered each u in a way that allowed us to prune certain points
- Instead we can look at all potential u's for each v
 - Compute iteratively, by keeping a "frontier set" of u nodes located at i edge-hops from the source

SSSP: MapReduce formulation

init:

The shortest path we have found so far from the source to nodeID has length ∞ ... (this is 0 for the source)

... this is the next ... and here is the adjacency hop on that path... list for nodeID

- For each node, node ID $\rightarrow \langle \infty, -, \{\langle \text{succ-node-ID,edge-cost} \rangle \} \rangle$
- map:
 - take node ID → <distance, next, {<succ-node-ID,edge-cost>}>
 - For each succ-node-ID:

emit succ-node ID → {<node ID, distance+edge-cost>}

 This is a new path from the source to succ-node-ID that we just discovered (not necessarily shortest)

■ emit node ID → distance,{<succ-node-ID,edge-cost>}

reduce:

Why is this necessary?

- distance := min cost from a predecessor; next := that predec.
- emit node ID → <distance, next, {<succ-node-ID,edge-cost>}>
- Repeat until no changes
- Postprocessing: Remove adjacency lists

Iteration 0: Base case

mapper: (a, < s, 10 >) (c, < s, 5 >) edges

reducer: (a,<10, ...>) (c,<5, ...>)

Iteration 1

mapper: (a, <s, 10>)(c, <s, 5>)(a, <c, 8>)(c, <a, 9>)(b, <a, 11>)

(b, <c, 14>) (d, <c, 7>) edges

reducer: (a, <8, ...>) (c, <5, ...>) (b, <11, ...>) (d, <7, ...>)

Iteration 2

mapper: (a, <s, 10>)(c, <s, 5>)(a, <c, 8>)(c, <a, 9>)(b, <a, 11>)

(b, <c, 14>) (d, <c, 7>) (b, <d, 13>) (d, <b, 15>) edges

reducer: (a, <8>) (c, <5>) (b, <11>) (d, <7>)

No change! Convergence!

Iteration 3

mapper: (a, <s, 10>)(c, <s, 5>)(a, <c, 8>)(c, <a, 9>)(b, <a, 11>)

(b, <c, 14>) (d, <c, 7>) (b, <d, 13>) (d, <b, 15>) edges

reducer: (a, <8>) (c, <5>) (b, <11>) (d, <7>)

Summary: SSSP

- Path-based algorithms typically involve iterative map/reduce
- They are typically formulated in a way that traverses in "waves" or "stages", like breadthfirst search
 - This allows for parallelism
 - They need a way to test for convergence
- Example: Single-source shortest path (SSSP)
 - Original Dijkstra formulation is hard to parallelize
 - But we can make it work with the "wave" approach

Plan for today

- Representing data in graphs
- Graph algorithms in MapReduce
 - Computation model
 - Iterative MapReduce
- A toolbox of algorithms
 - Single-source shortest path (SSSP)
 - k-means clustering NEXT
 - Classification with Naïve Bayes
 - PageRank

Learning (clustering / classification)

- Sometimes our goal is to take a set of entities, possibly related, and group them
 - If the groups are based on similarity, we call this clustering
 - If the groups are based on putting them into a semantically meaningful class, we call this classification
- Both are instances of machine learning

The k-clustering Problem

- Given: A set of items in a n-dimensional feature space
 - Example: data points from survey, people in a social network
- Goal: Group the items into k "clusters"
 - What would be a 'good' set of clusters?

Approach: k-Means

- Let m₁, m₂, ..., m_k be representative points for each of our k clusters
 - Specifically: the centroid of the cluster
- Initialize m₁, m₂, ..., m_k to random values in the data
- For t = 1, 2, ...:
 - Assign each point to the closest centroid

$$S_i^{(t)} = \left\{ x_j : \left\| x_j - m_i^{(t)} \right\| \le \left\| x_j - m_{i^*}^{(t)} \right\|, i^* = 1, ..., k \right\}$$

m_i becomes new centroid for its points

$$m_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{x_j \in S_i^{(t)}} x_j$$

A simple example (1/4)

A simple example (2/4)

A simple example (3/4)

A simple example (4/4)

Stable!

k-Means in MapReduce

This is the Map phase

- Classify
 - Assign each point to the closest centroid

$$S_i^{(t)} = \left\{ x_j : \left\| x_j - m_i^{(t)} \right\| \le \left\| x_j - m_{i^*}^{(t)} \right\|, i^* = 1, ..., k \right\}$$

This is the Reduce phase

- Recenter
 - m_i becomes new centroid for its points

$$m_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{x_j \in S_i^{(t)}} x_j$$

- Repeat until no change
 - Centroids have converged

Classification Step as Map

- init:
 - Read in global var centroids from file
 - Initially k random points

How do we know the centroids?

- map(centroid, point):
 - Compute nearest centroid based on centroids
 - emit(nearest centroid, point)

Recenter Step as Reduce

- Initialize global var centroids = []
- reduce(centroid, points[])
 - Recompute centroid from points in it
 - Foreach point in points:
 - emit(centroid, point)
 - Add centroid to global centroids

- cleanup (after all calls to reduce are made):
 - Save global centroids to file

Practical Notes

- After reduce phase finishes, must check if any centroid has changed and, in such case, start another MapReduce iteration
- Our solution doesn't fit pure MapReduce model
 - It uses global variable to efficiently know current centroids
 - This state is read and written to a shared file
 - When more than 1 reducer is used, it needs to avoid file conflicts and merge before next iteration of MapReduce
- Can you think of solution without global state?
 - What data needs to be passed around?
 - How many MapReduce jobs?

Plan for today

- Representing data in graphs
- Graph algorithms in MapReduce
 - Computation model
- A toolbox of algorithms
 - Single-source shortest path (SSSP)
 - k-means clustering
 - Classification with Naïve Bayes NEXT

Classification

- SPAM togler Mot
- Suppose we want to learn what is spam (or interesting, or ...)
 - Predefine a set of classes with semantic meaning
 - Train an algorithm to look at data and assign a class
 - Based on giving it some examples of data in each class
 - ... and the sets of features they have
- Many probabilistic techniques exist
 - Each class has probabilistic relationships with others
 - e.g., p (spam | isSentLocally), p (isSentLocally | fromBob), ...
 - But we'll focus on a simple, "flat" model: Naïve Bayes

A simple example

Suppose we just look at the keywords in the email's title:

```
Message(1, "Won contract")
Message(2, "Won award")
Message(3, "Won the lottery")
Message(4, "Unsubscribe")
Message(5, "Millions of customers")
Message(6, "Millions of dollars")
```

What is probability message "Won Millions" is

p(spam | containsWon,containsMillions)

= <u>p(spam) p(containsWon,containsMillions | spam)</u> p(containsWon,containsMillions)

Bayes' Theorem

Classification using Naïve Bayes

- Basic assumption: Probabilities of events are independent
 - This is why it is called 'naïve'
- Under this assumption,

p(spam) p(containsWon,containsMillions | spam) p(containsWon,containsMillions)

= p(spam) p(containsWon | spam) p(containsMillions | spam) p(containsWon) p(containsMillions)

$$= 0.5 * 0.67 * 0.33 / (0.5 * 0.33) = 0.67$$

So how do we "train" a learner (compute the above probabilities) using MapReduce?

What do we need to train the learner?

- p(spam)
 - Count how many spam emails there are
 - Count total number of emails

- p(containsXYZ | spam)
 - Count how many spam emails contain XYZ
 - Count how many emails contain XYZ overall
- p(containsXYZ)
 - Count how many emails contain XYZ overall
 - Count total number of emails

Easy

Easy

Easy

Training a Naïve Bayes Learner

map 1:

- takes messageId → <class, {words}>
- emits <word, class> → 1
- reduce 1:
 - emits <word, class> → <count>

Count how many emails in the class contain the word (modified WordCount)

map 2:

- takes messageId → <class, {words}>
- emits word \rightarrow 1
- reduce 2:
 - emits word → <totalCount>

Count how many emails contain the word overall (WordCount)

Summary: Learning and MapReduce

- Clustering algorithms typically have multiple aggregation stages or iterations
 - k-means clustering repeatedly computes centroids, maps items to them
 - Fixpoint computation
- Classification algorithms can be quite complex
 - In general: need to capture conditional probabilities
 - Naïve Bayes assumes everything is independent
 - Training is a matter of computing probability distribution
 - Can be accomplished using two Map/Reduce passes

Plan for today

- Representing data in graphs
- Graph algorithms in MapReduce
 - Computation model
 - Iterative MapReduce
- A toolbox of algorithms
 - Single-source shortest path (SSSP)
 - k-means clustering
 - Classification with Naïve Bayes
 - PageRankNEXT

Why link analysis?

- Suppose a search engine processes a query for "team sports"
 - Problem: Millions of pages contain these words!
 - Which ones should we return first?
- Idea: Hyperlinks encode a considerable amount of human judgment
 - What does it mean when a web page links another page?
 - Intra-domain links: Often created primarily for navigation
 - Inter-domain links: Confer some measure of authority
- So, can we simply boost the rank of pages with lots of inbound links?

Problem: Popularity ≠ relevance!

Other applications

- This question occurs in several other areas:
 - Who are the most "influential" individuals in a social network? (#friends?)
 - How do we measure the "impact" of a researcher? (#papers? #citations?)
 - Which programmers are writing the "best" code? (#uses?)
 - ...

- Imagine a contest for The Web's Best Page
 - Initially, each page has one vote
 - Each page votes for all the pages it has a link to
 - To ensure fairness, pages voting for more than one page must split their vote equally between them
 - Voting proceeds in rounds; in each round, each page has the number of votes it received in the previous round
 - In practice, it's a little more complicated but not much!

PageRank

Each page i is given a rank x_i

Goal: Assign the x_i such that the rank of each page is governed by the ranks of the pages linking to it:

Random Surfer Model

- PageRank has an intuitive basis in random walks on graphs
- Imagine a random surfer, who starts on a random page and, in each step,
 - with probability d, clicks on a random link on the page
 - with probability 1-d, jumps to a random page (bored?)
- The PageRank of a page can be interpreted as the fraction of steps the surfer spends on the corresponding page
 - Transition matrix can be interpreted as a Markov Chain

Iterative PageRank (simplified)

Initialize all ranks to be equal, e.g.:

$$x_i^{(0)} = \frac{1}{n}$$

Iterate until convergence

$$x_i^{(k+1)} = \sum_{j \in B_i} \frac{1}{N_j} x_j^{(k)}$$

No need to decide how many levels to consider!

Example: Step 0

Initialize all ranks to be equal

$$x_i^{(0)} = \frac{1}{n}$$

Example: Step 1

Propagate weights across out-edges

Example: Step 2

Compute weights based on in-edges

$$x_i^{(1)} = \sum_{j \in B_i} \frac{1}{N_j} x_j^{(0)}$$

0.50

Example: Convergence

$$x_i^{(k+1)} = \sum_{j \in B_i} \frac{1}{N_j} x_j^{(k)}$$
0.4

0.4

0.2

Naïve PageRank Algorithm Restated

Let

- N(p) = number outgoing links from page p
- B(p) = number of back-links to page p

$$PageRank(p) = \sum_{b \in B(p)} \frac{1}{N(b)} PageRank(b)$$

- Each page b distributes its importance to all of the pages it points to (so we scale by 1/N(b))
- Page p's importance is increased by the importance of its back set

In Linear Algebra formulation

Create an m x m matrix M to capture links:

•
$$M(i, j) = 1 / n_j$$
 if page i is pointed to by page j and page j has n_j outgoing links $= 0$ otherwise

Initialize all PageRanks to 1, multiply by M repeatedly until all values converge:

$$\begin{bmatrix} PageRank(p_1') \\ PageRank(p_2') \\ ... \\ PageRank(p_m') \end{bmatrix} = M \begin{bmatrix} PageRank(p_1) \\ PageRank(p_2) \\ ... \\ PageRank(p_m) \end{bmatrix}$$

Computes principal eigenvector via power iteration

A brief example

Running for multiple iterations:

Total rank sums to number of pages

Oops #1 – PageRank sinks

'dead end' - PageRank is lost after each round

Running for multiple iterations:

Oops #2 – PageRank hogs

PageRank cannot flow out and accumulates

Running for multiple iterations:

Stopping the Hog

Running for multiple iterations:

Improved PageRank

- Remove out-degree 0 nodes (or consider them to refer back to referrer)
- Add decay factor d to deal with sinks

$$PageRank(p) = (1 - d) + d \sum_{b \in B_p} \frac{1}{N(b)} PageRank(b)$$

- Typical value: *d*=0.85
- Intuition in the idea of the "random surfer":
 - Surfer occasionally stops following link sequence and jumps to new random page, with probability 1 - d

PageRank on MapReduce

Inputs

Of the form: page → (currentWeightOfPage, {adjacency list})

Map

 Page p "propagates" 1/N_p of its d * weight(p) to the destinations of its out-edges (think like a vertex!)

Reduce

 p-th page sums the incoming weights and adds (1-d), to get its weight'(p)

Iterate until convergence

- Common practice: run some fixed number of times, e.g., 25x
- Alternatively: Test after each iteration with a second MapReduce job, to determine the maximum change between old and new weights

Recap and Take-aways

- We've had a whirlwind tour of common kinds of algorithms used on the Web
 - Path analysis: route planning, games, keyword search, etc.
 - Clustering and classification: mining, recommendations, spam filtering, context-sensitive search, ad placement, etc.
 - Link analysis: ranking
- Many such algorithms (though not all) have a reasonably straightforward, often iterative, MapReduce formulation

Additional references

Data-Intensive Text Processing with MapReduce Jimmy Lin and Chris Dyer Morgan & Claypool Publishers, 2010

http://lintool.github.io/MapReduceAlgorithms/

Stay tuned

Next time you will learn about:

Beyond MapReduce - Higher-level languages, Graphs