Introdução aos Sistemas Digitais

Circuitos antimeticos

Representação de números negativos

Represente o número -17₁₀ em sinal e módulo, complemento para 1 e complemento para 2 com 8 bits.

Adição de números

É bastante difícil construir um circuito digital que some dois números representados em sinal e módulo dado que é necessário comparar as magnitudes dos operandos para determinar o sinal do resultado.

Números em complemento para 1 podem ser adicionados aplicando regras habituais de adição binária. Transportes para além do bit mais significativo devem ser somados ao resultado (para evitar que o zero seja contado duas vezes).

Números em complemento para 2 podem ser adicionados aplicando regras habituais de adição binária ignorando transportes para além do bit mais significativo.

Overflow ocorre se a soma de dois números positivos produzir um resultado negativo, ou se a soma de dois números negativos produzir um resultado positivo.

Em complemento para 2 *overflow* ocorre se no bit mais significativo $c_{in} \neq c_{out}$.

Subtração de números em complemento para 2

Números em complemento para 2 podem ser subtraídos complementando o segundo operando e realizando a operação de soma:

$$A - B = A + (-B)$$

Exemplos:

0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
-8	1	0	0	0
-7	1	0	0	1
-6 -5	1	0	1	0
-5	1	0	1	1
-4	1	1	0	0
-4 -3 -2	1	1	0	1
	1	1	1	0
-1	1	1	1	1

$$2-3 = 2+(-3) = -1$$
 $-5 - 6 = -5+(-6) = -11$

Para somar e subtrair números em complemento para 2 precisamos de apenas um circuito somador.

Circuitos somadores

Um *half adder* (semi-somador) soma dois operandos de 1 bit cada e produz um resultado de 2 bits que varia entre 0 e 2.

a	b	Cout	hs
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$c_{out} = a \cdot b$$

$$hs = a \oplus b$$

Somador completo

Para somar operandos com mais que 1 bit temos que assegurar a transferência de transportes (*carries*) entre vários bits. Tal somador multi-bit pode ser construído à custa de somadores completos – *full adders*.

C _{in}	а	b	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in}$$
$$s = a \oplus b \oplus c_{in}$$

Somadores em cascata (ripple adders)

Dois operandos binários de *n* bits podem ser somados com uma cascata de *n* somadores completos cada um dos quais calcula um bit do resultado.

Circuito iterativo – para calcular um resultado de n bits existem n módulos idênticos interligados em cascata em que cada um dos módulos "seguintes" faz cálculos com base nos resultados produzidos pelo módulo "anterior".

Somador/subtrator em cascata

Para realizar a operação de soma devemos fornecer nas entradas a, b, e $c_{in0} = 0$.

Para realizar a operação de subtração devemos fornecer nas entradas a, \bar{b} , e c_{in0} = 1.

Exercícios

É possível construir um circuito que faça a soma de dois valores de 2 bits em complemento para 2 só com 2 níveis de atraso?

Implemente um circuito que faça a soma de dois valores de 4 bits em complemento para 1 (a partir de somadores completos).

Somadores carry lookahead

$$s_i = a_i \oplus b_i \oplus c_i$$

$$c_{i+1} = a_i \cdot b_i + a_i \cdot c_i + b_i \cdot c_i$$

$$c_{i+1} = g_i + p_i \cdot c_i$$

Na fase i é gerado um carry se para alguma combinação de a_i e b_i é produzido $c_{i+1}=1$, independentemente das entradas $a_0,...,a_{i-1}, b_0,...,b_{i-1}$ e c_0 .

g – sinal de geração de carry

$$g_i = a_i \cdot b_i$$

Na fase i é propagado um carry se é produzido $c_{i+1}=1$ na presença de tal combinação de entradas $a_0,...,a_{i-1},$ $b_0,...,b_{i-1}$ e c_0 que causam $c_i = 1$.

p – sinal de propagação de *carry*

$$p_i = a_i + b_i$$

Somadores carry lookahead (cont.)

Para um somador de 4 bits:

$$c_{1} = g_{0} + p_{0} \cdot c_{0}$$

$$c_{2} = g_{1} + p_{1} \cdot c_{1} = g_{1} + p_{1} \cdot (g_{0} + p_{0} \cdot c_{0}) = g_{1} + p_{1} \cdot g_{0} + p_{1} \cdot p_{0} \cdot c_{0}$$

$$c_{3} = g_{2} + p_{2} \cdot c_{2} = g_{2} + p_{2} \cdot (g_{1} + p_{1} \cdot g_{0} + p_{1} \cdot p_{0} \cdot c_{0}) =$$

$$= g_{2} + p_{2} \cdot g_{1} + p_{2} \cdot p_{1} \cdot g_{0} + p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}$$

$$c_{4} = g_{3} + p_{3} \cdot c_{3} = g_{3} + p_{3} \cdot (g_{2} + p_{2} \cdot g_{1} + p_{2} \cdot p_{1} \cdot g_{0} + p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}) =$$

$$= g_{3} + p_{3} \cdot g_{2} + p_{3} \cdot p_{2} \cdot g_{1} + p_{3} \cdot p_{2} \cdot p_{1} \cdot g_{0} + p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}$$

Todos os sinais de transporte (*carry*) são calculados só com 3 níveis de atraso.

Comparação de somadores

Somador ripple de 4 bits

No máximo 8 níveis de atraso

Somador carry-lookahead de 4 bits

ieeta

Somadores comerciais

74x283 – somador *carry-lookahead* de 4 bits

Somadores BCD

Se somar 2 dígitos BCD (e carry) pode-se obter uma soma que varia de 0 a 19

soma	binário		BCD		
	carry out	soma	carry out	soma	
0	0	0000	0	0000	
1	0	0001	0	0001	
2	0	0010	0	0010	
3	0	0011	0	0011	
4	0	0100	0	0100	
5	0	0101	0	0101	
6	0	0110	0	0110	
7	0	0111	0	0111	
8	0	1000	0	1000	
9	0	1001	0	1001	
10	0	1010	1	0000	
11	0	1011	1	0001	
12	0	1100	1	0010	
13	0	1101	1	0011	
14	0	1110	1	0100	
15	0	1111	1	0101	
16	1	0000	1	0110	
17	1	0001	1	0111	
18	1	0010	1	1000	
19	1	0011	1	1001	

Casos que precisam de correção

Somar 6

Somadores BCD (cont.)

Somadores BCD (cont.)

Somadores BCD em cascata

Somadores BCD comerciais

74x583 – somador BCD (com carry-lookahead) de 4 bits

Unidades aritméticas e lógicas

Uma unidade aritmética e lógica (ALU – *Arithmetic and Logic Unit*) é um dispositivo combinatório que executa qualquer operação aritmética ou lógica (de um conjunto predefinido) sobre um par de operandos de b bits.

A operação a executar é especificada com entradas de seleção de função.

S3	S2	S1	S0	M=0 (op. aritm.)	M=1 (op. lógica)
0	0	0	0	F = A - 1 + CIN	$F = \bar{A}$
0	0	0	1	F = A <i>AND</i> B – 1 + CIN	$F = \bar{A} OR \bar{B}$
0	0	1	0	$F = A AND \bar{B} - 1 + CIN$	$F = \overline{A} OR B$
0	0	1	1	F = 1111 + CIN	F = 1111
0	1	0	0	$F = A + (A OR \overline{B}) + CIN$	$F = \bar{A} AND \bar{B}$
0	1	0	1	$F = A AND B + (A OR \overline{B}) + CIN$	F = B
0	1	1	0	F = A - B - 1 + CIN	$F = A XOR \bar{B}$
0	1	1	1	$F = A OR \overline{B} + CIN$	$F = A OR \overline{B}$
1	0	0	0	F = A + (A <i>OR</i> B) + CIN	$F = \overline{A} AND B$
1	0	0	1	F = A + B + CIN	F = A XOR B
1	0	1	0	$F = A AND \overline{B} + (A OR B) + CIN$	F = B
1	0	1	1	F = A OR B + CIN	F = A OR B
1	1	0	0	F = A + A + CIN	F = 0000
1	1	0	1	F = A AND B + A + CIN	F = A AND B
1	1	1	0	$F = A AND \overline{B} + A + CIN$	F = A AND B
1	1	1	1	F = A + CIN	F = A

Multiplicação de números sem sinal

Os processos de multiplicação no sistema binário obedecem às mesmas regras básicas existentes no sistema decimal.

Exemplo:

$$12 \times 13 = 156$$

Multiplicadores combinatórios

Multiplicação de números com sinal

Na multiplicação com sinal deve-se a cada passo fazer a extensão do sinal. Se o multiplicador for negativo, a última cópia do multiplicando deve ser negada.

Exemplos:

			-!	5 ×	3	= -	15
				1	0	1	1
			×	0	0	1	1
			0	0	0	0	0
			1	1	0	1	1
		1	1	1	0	1	1
		1	1	0	1	1	
	1	1	1	0	0	0	1
	0	0	0	0	0		
1	1	1	1	0	0	0	1
0	0	0	0	0			
1	1	1	1	0	0	0	1

			-;	y ×	-3	=	+10
				1	0	1	1
			×	1	1	0	1
			0	0	0	0	0
			1	1	0	1	1
		1	1	1	0	1	1
		0	0	0	0	0	
	1	1	1	1	0	1	1
	1	1	0	1	1		
1	1	1	0	0	1	1	1
0	0	1	0	1			

Exercícios

Calcule o resultado das operações seguintes em complemento para 2 com 4 bits de representação:

$$5 \times (-6) \qquad -7 \times (-8)$$

Exercícios (cont.)

Projete um circuito que calcule 2ⁿ, onde n=0,1,...,7, usando apenas um dos blocos combinatórios que conhece.

Projete um circuito que calcule números de Mersenne (M_n=2ⁿ-1), onde n=0,1,...,7, usando o circuito da alínea anterior e somadores *ripple-carry* de 4 bits.

Seja 20 ns o tempo de atraso do bloco da alínea anterior. Se a geração de cada bit de soma implicar um atraso de 5 ns apresente uma estimativa para o tempo total para produzir o resultado M_n .

