CS463/516

Lecture 5

More MRI modalities

- We have seen T1 and T2 contrast, and basic MRI acquisition methods
- We will now see how MRI can generate even more interesting contrasts:
 - Blood oxygen level functional magnetic resonance imaging (BOLD fMRI)
 - Susceptibility weighted imaging (SWI)
 - Time of flight imaging (TOF)
 - Diffusion-weighted imaging (DWI)
 - You will work with all these modalities in this course, so its good to know how the contrast is generated

Susceptibility weighted imaging (SWI)

- Why are the veins dark on a SWI? (a)
- Magnetic susceptibility: a measure of how much a tissue will become magnetized in an applied magnetic field ${\cal B}_0$
 - Differences in susceptibility between tissues creates contrast
- Veins carry deoxygenated blood away from the brain (b)
 - Deoxygenated blood has a higher concentration of the *deoxyhemoglobin* molecule (c)
 - Deoxyhemoglobin is paramagnetic, which increases magnetic susceptibility
- At sufficient long echo time (TE), spins in tissue with higher magnetic susceptibility dephase relative to surrounding, reducing the MRI signal, and appearing dark

single slice

BOLD fMRI

- Blood oxygen level dependent functional magnetic resonance imaging (BOLD FMRI) is the most widely method for imaging human brain activity (2,000+ studies per year)
- BOLD effect: measures changes in deoxyhemoglobin over time. Mechanism:
 - brain region activates (a), demanding more energy (oxygen) (b).
 - Fresh oxygenated blood is sent to the region, washes away the deoxyhemoglobin (c)
 - BOLD signal increases due to decreased deoxyhemoglobin in vein
- Observe these changes by rapidly acquiring low-resolution SWI images over time (d)

MMM

BOLD signal time series (each voxel has a time series, so BOLD images are 4d)

BOLD fMRI

- Difficult to overstate the power of BOLD
 - Non-invasive, full-brain measurement
 - Excellent spatial resolution
 - voxel sizes <1mm, if desired
 - Good temporal resolution
 - can acquire 1 image every ~500 ms
- One caveat of BOLD: not a direct measure of neuronal activity
 - BOLD measures changes in deoxyhemoglobin content in the large pial veins on the cortical surface (a)
 - This is quite far 'downstream' from the true source of activity
 - The pial veins also pool the blood from multiple regions
 - To get a more accurate measure of neuronal activity, would prefer to measure deep in the cortex (b)

One of my articles linking neuronal activity to BOLD

JNeurosci THE JOURNAL OF NEUROSCIENCE

Decorrelated Input Dissociates Narrow Band y Power and BOLD in Human Visual Cortex

Russell Butler, Pierre-Michel Bernier, Jérémie Lefebvre, Guillaume Gilbert, and Kevin Whittingstall

Journal of Neuroscience 31 May 2017, 37 (22) 5408-5418; DOI: https://doi.org/10.1523/JNEUROSCI.3938-16.2017

- My PhD supervisor was obsessed with disproving BOLD
 - wanted to show BOLD != neuronal activity
- Performed experiments during my PhD with visual stimuli designed to *increase* BOLD while *decreasing* neuronal activity
 - We called this the 'dissociation experiment' because it dissociates neuronal activity and BOLD
 - a) the 5 visual stimuli used in our experiment (top) and the accompanying neuronal response
 - MC = Michelson contrast, SR = spatial randomization
 - SR designed to dissociate EEG and BOLD
 - b) the neuronal (EEG) response to the 5 stimuli (more on EEG later)
 - c) NBG vs BOLD for the 5 stimulus types
 - NBG stands for 'narrow-band gamma', is the EEG frequency band from 60-80 Hz which is thought to best represent neuronal activity
 - SR dissociates NBG and BOLD
 - d) modeling results (read full paper)

https://www.jneurosci.org/content/37/22/5408.abstract

a)

BOLD fMRI

• Despite its shortcomings, BOLD still by far the best tool we have for non-invasive

measurement of human brain activity

- Some exciting applications:
 - Mind reading: https://www.youtube.com/watch?v=0o17Zwzam1g
 - This video is old, new methods using deep learning perform better
 - Identifying psychopaths (b)
 - https://www.sciencedirect.com/science/article/pii/S0896627317305548
 - Neurosurgical planning (c)
 - https://thejns.org/focus/view/journals/neurosurg-focus/47/6/article-pE15.xml

Time of flight (TOF) imaging

- Time of flight angiography (TOF) is an MRI technique to visualize arterial blood vessels
- Uses 'saturation' RF pulse to manipulate the magnetization of tissue such that magnetization of *moving spins* is large, and stationary spins is small
 - Spins move quickly in the arterial vasculature (blood is flowing) quickly)
 - If we wait some time after saturating a slice, fresh blood will flow in, and appear brighter on the resulting image
 - Gives excellent contrast between arteries and surrounding tissue

Maximum intensity projection through z-axis of TOF

Diffusion weighted imaging (DWI)

- a) Diffusion is a mass transport system arising in nature which results in particle mixing without requiring bulk motion
- b) Fick's first law describes phenomenon, relates diffusive flux to any concentration difference: $\mathbf{J} = -D\nabla C$
 - Where ${\it J}$ is net particle flux (vector), ${\it C}$ is particle concentration, and ${\it D}$ is proportionality constant called 'Diffusion coefficient'
- c) Einstein used probabilistic framework to describe motion of ensemble: $\langle x^2 \rangle = 2D\Delta$
 - Where $\langle x^2 \rangle$ is mean-squared displacement of particle during diffusion time Δ , D is same as above
- **Diffusion MRI**: can infer features of local tissue anatomy and microstructure from particle displacement measures

Diffusion MRI

- How to make MRI sensitive to diffusion?
- Need to add diffusion weighting to MRI pulse sequence
- After RF excitation pulse, apply bipolar gradient:
- Bipolar gradient adds to each spin's precession a positive phase proportional to its average position along gradient direction during first gradient lobe (1) and a negative phase proportional to spin's average position during second lobe (2)
- Sum of these phases is related to difference between these two positions
- Bipolar gradient has no effect on spins which don't move, they are completely 'in phase' after gradient
- If spins are displaced due to diffusion, the signal is attenuated exponentially by a product of diffusion coefficient D and a factor b which is a function of the bipolar gradients (a)

b)

pathologies

Diffusion MRI

- Diffusion MRI one of the most powerful and flexible methods
- Some exciting applications:
- Diffusion tractography (a)
 - Reconstruct connections between brain areas by tracing a line along diffusion direction in individual voxels
- Microstructure imaging (b)
 - Use diffusion properties of tissue to infer local microstructure
- Perfusion of microvasculature (c)
 - Also known as 'intra-voxel incoherent motion', diffusion MRI can be used to provide information on blood volume and blood velocity in the capillary network

