

Th de Rolle & Th des Accroissements Finis

Exercice 1

- 1. soit f la fonction définie par $f(x) = \sin(x) x^2$.
 - $(\exists c \in]\frac{\pi}{4}, \frac{\pi}{2}[)$ tel que f(c) = 0(a) Montrer que :
 - (b) En appliquant le Th de Rolle, montrer qu'il existe $\alpha \in \mathbb{R}$ tel que $\cos(\alpha) = 2\alpha$
- g(x) = (x-2)(x-1)(x+4)(x+3) .
 - (a) Montrer que l'équation g'(x) = 0 admet au moins trois solutions dans $\mathbb R$.
 - (b) En déduire sans calculer g''(x) que l'équation g''(x) = 0 admet au moins deux solutions dans \mathbb{R} .

3. Soit h une fonction dérivable sur [0,1] telle que $h(1)-h(0)=\frac{1}{2}$. Montrer que : $(\exists c\in]0,1[)$ $\frac{h'(c)}{c}=\frac{2}{(1+c^2)^2}$.

4. f une fonction continue sur [0,3] et dérivable sur [0,3] telle que f(0)=f(3)-1. Montrer que : $(\exists c \in]0,1[)$ tel que 3f'(3c) = 1

Exercice 2

Soit f une fonction continue sur [0,1] et dérivable sur [0,1] telle que :

$$f(0) = f(1) = 0$$
 et $f'_d(0) = 0$

- $g(x) = \frac{f(x)}{x}$ si $x \neq 0$ et g(0) = 0. 1. Soit g la fonction définie sur]0,1] par : Montrer que g est continue à droite en 0.
- $(\exists c \in]0,1[) \text{ tel que } f'(c) = \frac{f(c)}{c}.$ 2. Montrer que :

Exercice 3

a et b deux réels tels que a < b, f et g deux fonctions continues sur [a, b] et dérivables sur [a, b] telles que $g'(x) \neq 0$ pour tout $x \in]a, b[$.

- 1. Montrer que $g(a) \neq g(b)$.
- 2. Soit φ la fonction définie sur [a.b] par $\varphi(x) = f(x) f(a) k(g(x) g(a))$.
 - (a) Déterminer le réel k tel que $\varphi(b) = 0$.
 - (b) En déduire que : $(\exists c \in]a, b[)$ tel que $\frac{f'(c)}{g'(c)} = \frac{f(b) f(a)}{g(b) g(a)}$.

Exercice 4

a et b deux réels tels que a < b, f une fonction continue sur [a, b] et dérivable sur [a, b]. $\varphi(x) = \left(f(b) - f(a)\right)x^3 - \left(b^3 - a^3\right)f(x) .$ Soit φ la fonction définie sur [a.b] par

- 1. Montrer que φ est continue sur [a, b] et dérivable sur [a, b]
- $(\exists c \in]a, b[) \text{ tel que } (b^3 a^3) f'(c) = 3c^2 (f(b) f(a)).$ 2. Montrer que :
- 3. **Application**: On pose $f(t) = \sin(t) t$ et [a, b] = [0, x] pour tout x > 0 $\lim_{t \to 0^+} \frac{\sin(t) - t}{t^3}$ Calculer la limite suivante

Mathématiques 1 21 novembre 2022

Exercice 5

- 1. Montrer que $(\forall x > 0)(\exists c \in]x, x + 1[)$ tel que $\frac{1}{2\sqrt{x+1}} < \sqrt{x+1} \sqrt{x} < \frac{1}{2\sqrt{x}}$.
- 2. On pose $S_n = \sum_{k=1}^{k=n} \frac{1}{\sqrt{k}}$. Montrer que $S_n > 2\sqrt{n+1} 1$

Exercice 6

Soit f la fonction définie par $f(x) = \arctan(\sqrt[3]{t}) - \sqrt[3]{t}$.

- 1. Montrer que : $(\exists x > 0)(\exists c \in]0, x^3[)$ tel que $\arctan(x) x = -\frac{1}{3} \times \frac{x^3}{1 + \sqrt[3]{c^2}}$
- 2. (a) En déduire que : $-\frac{1}{3} < \frac{\arctan(x) x}{x^3} < -\frac{1}{3(1+x^2)}$
 - (b) Calculer la limite suivante $\lim_{t\to 0} \frac{\arctan(t)-t}{t^3}$