Homework 2

- a) Show that $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + x^2 y^2 + x^3 y^3$ defines a scalar product in \mathbf{R}^3 .
- b) Show that $\langle \mathbf{x}, \mathbf{y} \rangle = x^1 y^1 + x^2 y^2$ does not define a scalar product in \mathbf{R}^3 .
- c) Show that $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + x^2 y^2 x^3 y^3$ does not define a scalar product in \mathbf{R}^3 .
- d) Show that $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + 3x^2 y^2 + 5x^3 y^3$ defines a scalar product in \mathbf{R}^3 .
- e) Show that $(\mathbf{x}, \mathbf{y}) = x^1 y^2 + x^2 y^1 + x^3 y^3$ does not define a scalar product in \mathbf{R}^3 .
- f[†]) Find necessary and sufficient conditions for entries a, b, c of symmetrical matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ such that the formula

$$(\mathbf{x}, \mathbf{y}) = (x^1, x^2) \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} y^1 \\ y^2 \end{pmatrix} = ax^1y^1 + b(x^1y^2 + x^2y^1) + cx^2y^2$$

defines a scalar product in \mathbb{R}^2 .

- 2 a) Let e, f and g be three vectors in 3-dimensional Euclidean space E^3 such that all these vectors have unit length and they are pairwise orthogonal. Show explicitly that the ordered set of these vectors $\{e, f, g\}$ is a basis.
- b) Let \mathbf{a}, \mathbf{b} and \mathbf{c} be three vectors in 3-dimensional Euclidean space \mathbf{E}^3 such that vectors \mathbf{a} and \mathbf{b} have unit length, and are orthogonal to each other and vector **c** has length $\sqrt{3}$ and it forms an angle $\varphi = \arccos \frac{1}{\sqrt{3}}$ with vectors **a** and **b**.

Show that the ordered set $\{a, b, c - a - b\}$ of vectors is an orthonormal basis in E^3 .

- **3** a) Show explicitly that matrix $A_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ is an orthogonal matrix. b) Show explicitly that under the transformation $(\mathbf{e}_1', \mathbf{e}_2') = (\mathbf{e}_1, \mathbf{e}_2) \, A_{\varphi}$ an orthonormal basis transforms
- to an orthonormal one.
 - c) Show that for orthogonal matrix A_{φ} defined above the following relations are satisfied:

$$A_{\varphi}^{-1} = A_{\varphi}^{T} = A_{-\varphi}, \qquad A_{\varphi} \cdot A_{\theta} = A_{\varphi+\theta}.$$

4 Let $\{e_1, e_2, e_3\}$ be an orthonormal basis of Euclidean space \mathbf{E}^3 . Consider the ordered set of vectors $\{\mathbf{e}_1',\mathbf{e}_2',\mathbf{e}_3'\}$ which is expressed via basis $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ as in the exercise 7 of the Homework 1.

Write down explicitly transition matrix which transforms the basis $\{e_1, e_2, e_3\}$ to the ordered set of the vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$. What is the rank of this matrix? Is this matrix orthogonal?

Find out is the ordered set of vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ a basis in \mathbf{E}^3 . Is this basis an orthonormal basis of \mathbf{E}^3 ? (you have to consider all cases a),b) c) and d)).

5[†] Prove the Cauchy–Bunyakovsky–Schwarz inequality

$$(\mathbf{x},\mathbf{y})^2 \leq (\mathbf{x},\mathbf{x})(\mathbf{y},\mathbf{y})\,,$$

where \mathbf{x}, \mathbf{y} are arbitrary two vectors and (,) is a scalar product in Euclidean space.

Hint: For any two given vectors \mathbf{x} , \mathbf{y} consider the quadratic polynomial $At^2 + 2Bt + C$ where $A = (\mathbf{x}, \mathbf{x})$, $B = (\mathbf{x}, \mathbf{y}), C = (\mathbf{y}, \mathbf{y}).$ Show that this polynomial has at most one real root and consider its discriminant.