GENERAL MEASUREMENTS LAB PHYS 339 – SERVO

Prof. David Cooke March 13, 2018

MARKING SCHEME

Title	Weight
Introduction to the PC report Counting statistics report Calibration of Arduino microcontroller report Calibration of Arduino microcontroller test Properties of laser report Temperature controller report	10% 15% 5% 10% 15% 15%
Project proposal Project report	5% 20%
Log book	5%

Project proposals received will be reviewed and discussed shortly

LAB OVERVIEW

- GOAL OF THIS LAB:
 - Learn about CONTROL LOOPS
- MHAš
 - Control loops are used a lot in everyday life
 - Temperature control of a room
 - Cruise control in a car
 - Power distribution in the grid, flight of your stealth bomber.

CLASSICAL CONTROL THEORY

Want to reach a set point in some measurable quantity (e.g. speed of car)

CONTROL ACCURACY – mean speed close to set point (so you don't get speeding ticket but minimize travel time, maximize comfort)

CONTROL STABILITY – fluctuations about the mean should be small (so you don't get a ticket and make people behind you very, very angry!)

CONTROL RESPONSE – should respond to set point changes rapidly (so when you hit a hill, you don't slow down 20 km/hr!)

Open loop – a brick on the pedal, basically a projectile

On-off control: Sticky gas pedal

Proportional control: Learner's permit

Proportional-integral control: Slow but steady

Proportional-Integral-Derivative Control: The alert driver!

THE IMPLEMENTATION

$$\mathrm{MV}(t) = K_\mathrm{p} e(t) + K_\mathrm{i} \int_0^t e(au) \, d au + K_\mathrm{d} rac{de(t)}{dt} \, dt$$

e(t) = setpoint – measured temperatureMV(t) = manipulated variable (heater power)

 K_p = propertional gain, tuning parameter

K_i = integral gain, tuning parameter

K_d = derivative gain, tuning parameter

THE EXPERIMENT

- Control the temperature of an aluminum block wound with a heater and in contact with a thermocouple.
- Provided with example code: schmitt.ino (remember the Schmitt trigger?)
- Explore different schemes of temperature control by adding routines to this code.
- Keep in mind what you have learned about statistical analysis of data.