泛函分析

北京大学 龚诚欣 https://wqgcx.github.io/

0 简介

- 变分问题、泛函的极值或求值问题、微分方程、积分方程、物理问题
- •无穷维空间(一般是由函数构成的空间)上的极值理论:函数→泛函,映射→ 算子
- 无穷维空间的解析几何
- 有限→无限

1 度量空间

1.1 压缩映像原理

定义: H: 非空集合,ρ: H×H→R,称(H,ρ)是度量空间(距离空间),若ρ满 足: 1° ρ(x,y)≥0,ρ(x,y)=0 当且仅当 x=y; 2° ρ(x,y)=ρ(y,x); 3° ρ(x,z)≤ρ(x,y)+ρ(y,z)。 定义: $\{x_n\}_{n=1}^{\infty} \in (H,\rho)$,如果存在 $x_0 \in H$ 使得 $\lim \rho(x_0,x_n)=0$,则称 $\{x_n\}_{n=1}^{\infty}$ 收敛到 x_0 ,

记为 $\lim x_n=x_0$ 或 $x_n \rightarrow x_0$, $n \rightarrow +\infty$ 。

定义: $\forall \varepsilon > 0, \exists N, \forall m, n > N, \rho(x_m, x_n) < \varepsilon$,则称 $\{x_n\}_{n=1}^{\infty}$ 为一个基本列(Cauchy 列)。

定义: $E \subset (H,\rho)$,若 $\forall \{x_n\}_{n=1}^{\infty} \subset E \perp x_n \to x_0 \neq x_0 \in E$,则称 E 为闭集。若 (H,ρ) 的 所有 Cauchy 列都是收敛列,则称完备。

定义: 映射 $T:(H,\rho) \to (L,r)$,若 $\forall \{x_n\}_{n=1}^{\infty} \in H$, $x_n \to x_0 \in H$,有 $r(T(x_n),T(x_0)) \to 0$,即 $T(x_n) \to T(x_0)$,则称 T 连续。

定义: 映射 $T:(H,\rho) \rightarrow (H,\rho)$,若存在 $\alpha \in (0,1)$,s.t. $\forall x,y \in H$, $\rho(T(x),T(y)) \leq \alpha \rho(x,y)$,则称 T 为压缩映射。

定理: (Banach 不动点定理/压缩映像原理) (H,ρ) 完备, $T:(H,\rho)\to(H,\rho)$ 为压缩映射,则 T 在 H 上有唯一的不动点。

注记:条件可改为:

1°ρ(Tx,Ty) \leq ρ(x,y)且等号当且仅当 x=y(次压缩映射);

2°T的像是紧集。

"紧集"条件不可去,如考虑 $Tx=\pi/2+x$ -arctanx。

应用: F(t,x)关于 x 在 0 附近一致 Lipchitz 连续, 即 $\exists \delta > 0, L > 0, \forall t, \forall x, y \in B(0,\delta)$,

 $|F(t,x)-F(t,y)| \le L|x-y|$,则存在 $h_0>0$,当 $h< h_0$ 时,方程 $\frac{dx}{dt} = F(t,x), x(0) = \xi$ (初值问题)在 C[-h,h]上有唯一解。

应用: (隐函数存在定理) $f:R^n \times R^m \to R^m$ 满足 1° $f(x_0,y_0)=0$, $(x_0,y_0)\in (R^n \times R^m)$;

在 (x_0,y_0) 的邻域 $U_0 \times V_0 \subset U \times V$ 以及唯一的连续函数 $u:U_0 \to V_0$ s.t.: 1° f(x,u(x))=0, $x \in U_0$; 2° $u(x_0)=y_0$ 。

Fredholm 第二类积分方程: $x(t) = f(t) + \lambda \int_a^b k(t,s)x(s)ds$, λ 充分小;

1° 当 $f(t) \in C[a,b]$, $k(t,s) \in C([a,b] \times [a,b])$ 时, x 在 C[a,b]中有唯一解;

2° 当 $f(t) \in L^2[a,b]$, $k(t,s) \in L^2([a,b] \times [a,b])$ 时, $x 在 L^2[a,b]$ 中有唯一解。

1.2 完备化

定义: $(H,\rho),(H_1,\rho_1)$ 是距离空间,若存在满射 $f:H\to H_1$ 使得 $\rho(x,y)=\rho_1(fx,fy)$; 则称 f 为等距同构映射。若 $(H,\rho)\to (H_1,\rho_1)\subset (H_2,\rho_2)$,则称 (H,ρ) 等距嵌入 (H_2,ρ_2) 。

定义: (H,ρ) 是距离空间, $E \subset H$ 。若 $\forall x \in H$,存在 $\{x_n\} \subset E$ 使得 $x_n \to x$ $(n \to \infty)$,则 称 $E \neq H$ 的稠密子集。

定义: 在等距同构意义下含有(H,p)的最小的完备度量空间称为(H,p)的完备化。

命题: $(H,\rho)\subset (H_1,\rho_1)$, 其中 $\rho=\rho_1|_{H\times H}$, H 在 H_1 中稠密, (H_1,ρ_1) 完备,则 (H_1,ρ_1) 是 (H,ρ) 的完备化空间。

定理: (完备化定理)每一个度量空间都有在等距同构意义下唯一的完备化空间。

1.3 列紧集

定义: (H,ρ) 是距离空间,A 是 H 的一个子集,A 称为是有界的,如果 $\exists x_0 \in H$ 及r>0,使得 A \subset B(x_0,r)。

定义: (H,ρ) 是距离空间, $E \subset H$ 。若 E 中任意点列有收敛子列(极限在 H 中),称 E 列紧;若 E 中任意点列有收敛子列(极限在 E 中),称 E 自列紧;若 (H,ρ) 是列紧的,称为列紧空间。

注记: 列紧空间的(闭)子集是(自)列紧的; (Η,ρ)列紧,则完备。

定义: (H,ρ) 是距离空间, $M \subset H$ 。若 $N \subset M$ 满足 $\exists \varepsilon > 0$, $\forall x \in M$, $\exists y \in N$ 使得 $\rho(x,y) < \varepsilon$,则称 N 为 M 的一个 ε 网;若 N 是有限集,则称为有穷 ε 网;若 $\forall \varepsilon > 0$ 存在 M 的有穷 ε 网,则称 M 完全有界。

注记: Rⁿ中有界⇔ 完全有界。

定理: (Hausdorff) (H, ρ)是距离空间,M \subset H。则: 1°M 列紧⇒完全有界; 2°M 完全有界+H 完备/M 闭 \Rightarrow M 列紧。

定义: (H,p)是距离空间,若有可数的稠密子集,则称可分。

注记:完全有界⇒可分。

考虑(M, ρ)紧度量空间,C(M)={u|M→R 连续},d(u,v)=max{|u(x)-v(x)|,x∈M},则 (C(M),d)完备。

定义: 设 F⊂C(M)。

1°F一致有界: $\exists M_0 > 0$,使得 $\forall f \in F$, $\forall x \in M$,成立 $|f(x)| \leq M_0$;

 2° F 等度连续: $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得 \forall f \in F, \forall x,x' \in M 满足 ρ (x,x') $< \delta$,成立 $|f(x)-f(x')| < \varepsilon$ 。

定理: (Arzela-Ascoli) (M,ρ) 紧度量空间, $F \subset C(M)$ 列紧 \Leftrightarrow F 一致有界且等度连续。

1.4 线性赋范空间

引入: 考虑线性度量空间(H,p), K 是数域,则希望有:

1°加法对ρ连续, 即 $\rho(x_n,x)\to 0$, $\rho(y_n,y)\to 0$, 则 $\rho(x_n+y_n,x+y)\to 0$ ⇔ ρ有平移不变性, 即 $\rho(x,y)=\rho(x+z,y+z)$;

 2° 数乘对ρ连续,即 i) $\rho(x_n,x) \to 0$,则 $\forall a \in K$, $\rho(ax_n,ax) \to 0$; ii) $a_n \to a \in K$,则 $\forall x$

 \in H, $\rho(a_nx,ax)\rightarrow 0$.

设 $p:H\to R$,p(x):=p(x,0),则由距离公理可得函数 p 的条件。

定义: H 是线性空间, 函数||·||满足:

1° \forall x ∈ H, $\|x\| \ge 0$,且等号成立当且仅当 x=0; 2° $\|x+y\| \le \|x\|+\|y\|$;

 $3° \quad \forall \ x \! \in \! \text{H,} \quad ||\!| - \! x ||\!| = \! || x || \; ; \quad 4° \quad \lim_{a_n \to 0} || \ a_n x \ ||\!| = 0 \; , \quad \lim_{||x_n|| \to 0} || \ a x_n \ ||\!| = 0 \; ;$

则称 $\|\cdot\|$ 为 H 的一个准范数。以 $\|\mathbf{x}_n-\mathbf{x}\|\to 0$ 定义 $\mathbf{x}_n\to\mathbf{x}$,则称 H 为 F*空间;完备的 F*空间称为 F 空间。

注记: 准范数可诱导度量 $\rho(x,y)=||x-y||$,满足平移不变性、加法连续性和数乘连续性。

定义: H 是线性空间, 函数||·||满足:

 1° ∀x∈H, $||x|| \ge 0$, 且等号成立当且仅当 x=0; 2° $||x+y|| \le ||x|| + ||y||$;

 $3^{\circ} \forall a \in K, x \in H, ||ax|| = |a| \cdot ||x||$;

则称||·||为 H 的一个范数。此时称 H 为 B*空间; 完备的 B*空间称为 B 空间。

定义: H 是线性空间,映射 p:H→R 满足:

1° p(x+y)≤p(x)+p(y) (次可加性); 2° $p(ax)=a\cdot p(x)(a>0)$ (正齐次性);

则称 p 为次线性泛函。若 p 还满足 $p(x) \ge 0$ 且 $p(ax) = |a| \cdot p(x)$,则称 p 为半范数。

定义:对于线性空间 H 上的范数||·||₁, ||·||₂:

1° 若 $\|\mathbf{x}_{\mathbf{n}}\|_{1} \rightarrow 0 \Rightarrow \|\mathbf{x}_{\mathbf{n}}\|_{2} \rightarrow 0$,则称 $\|\cdot\|_{1}$ 比 $\|\cdot\|_{2}$ 强;

 2° 若 $\|\mathbf{x}_{n}\|_{1} \rightarrow 0 \Leftrightarrow \|\mathbf{x}_{n}\|_{2} \rightarrow 0$,则称 $\|\cdot\|_{1}$ 和 $\|\cdot\|_{2}$ 等价。

命题: $1^{\circ} \|\cdot\|_{2} \text{比}\|\cdot\|_{1}$ 强 $\Leftrightarrow \exists C > 0$, $\forall x \in H$, $\|x\|_{1} \leqslant C\|x\|_{2}$;

 $2^{\circ} \|\cdot\|_2$ 和 $\|\cdot\|_1$ 等价 $\Leftrightarrow \exists C_1, C_2 > 0$, $\forall x \in H$, $C_1 \|x\|_2 \le \|x\|_1 \le C_2 \|x\|_2$ 。

定理: H 是有限维线性空间,则 $\|\cdot\|_1$ 和 $\|\cdot\|_2$ 一定等价(与欧式范数等价)。

推论:有限维 B*空间一定是 B 空间; B*空间的有限维子空间一定为闭子空间。

推论: $(H, \|\cdot\|)$ 是有限维 B*空间,p 为次线性泛函。若 $p(x) \ge 0$ 且 p(x) = 0 当且仅当 x = 0,则 $\exists C_1, C_2 \ge 0$,使得 $C_1 \|x\| \le p(x) \le C_2 \|x\|$ 。

定义: $(H,\|\cdot\|)$ 是 B*空间,若 \forall x \neq y, $\|x\|=\|y\|=1$ \Rightarrow \forall a,b>0 且 a+b=1,有 $\|ax+by\|$ <1 成立,则称 $(H,\|\cdot\|)$ 严格凸。

定理: (最佳逼近问题)(H,||·||)是 B*空间, $\{e_1,e_2,\cdots,e_n\}$ 线性无关。 $\forall x \in H$,存在 $x_0 \in Span\{e_1,\cdots,e_n\}:=M$, $s.t.||x-x_0||=min\{||x-y||\ |\ y \in M\}$,且当(H,||·||)严格凸时唯一。

定理: B*空间(H,||·||)有限维⇔单位球面列紧。

引理: (F.Riesz 引理) 如果 H_0 是 B^* 空间 H 的一个真闭子空间,那么 $\forall 0 < \epsilon < 1$, $\exists y \in H \text{ s.t. } ||y||=1$ 且 $||y-x|| \ge 1-\epsilon$, $\forall x \in H_0$ 。

1.5 凸集与不动点

回忆: (Brouwer 不动点定理) B⊂Rⁿ是闭单位球, T:B→B 连续, 则存在 x∈B s.t. Tx=x。

定义: H是线性空间, E⊂H,

1° \forall x,y ∈ E, λ ∈ [0,1], 有 λ x+(1- λ)y ∈ E, 则称 E 为凸集;

 2° 若 $0 \in E$ 且 \forall x ∈ H, $\exists \lambda > 0$ s.t. $x/\lambda \in E$, 则称 E 为吸收凸集;

3° \forall x ∈ E, 有 \neg x ∈ E, 则称 E 为对称凸集;

4° 若 K=C, \forall x∈E, α∈C, $|\alpha|=1$, 有αx∈E, 则称 E 为均衡凸集。

定义: H 是线性空间, $E \subset H$,H 中包含 E 的最小凸集称为凸包,记为 Co(E)。 $Co(E) = \{\Sigma \lambda_i x_i (凸组合) | \Sigma \lambda_i = 1 , \lambda_i \ge 0 , x_i \in E \}$ 。

定义: H 是线性空间,凸集 $E \subset H$, $0 \in E$, $p(x) = \inf\{\lambda > 0 \mid x/\lambda \in E\}$ 称为 Minkowski 泛函。 $p(x) \in [0, +\infty]$,满足正齐次性、次线性性。(H,R):若 E 吸收,则 p(x)是实值 函数;若 E 对称,则 p(x)满足齐次性;若 E 吸收且对称,则 p(x)为半模;若 E 还是有界集,则 p(x)为模。(H,C):若 E 吸收且均衡,则 p(x)为半模。

命题: H 是 B*空间,闭凸集 E⊂H, 0∈E,则

1° E={x∈H:p(x)≤1};2° p(x)下半连续;3° 若0为内点,则E吸收且p(x)Lipschitz连续。

推论 1: $E \subset \mathbb{R}^n$ 是紧凸子集,则存在 $m \leq n$,使得 E 同胚于 \mathbb{R}^m 中的单位球。

推论 2: $E \subset \mathbb{R}^n$ 是紧凸子集, $T:E \to E$ 连续,则存在 x s.t. Tx = x。

推论 3: H 是 B*空间, 紧凸子集 E⊂H, T:E→E 连续, 则存在 x s.t. Tx=x。

定理: (Schauder 不动点定理) H 是 B*空间,闭凸子集 $E \subset H$, $T:E \to E$ 连续且 T(E)列紧,则存在 x s.t. Tx=x。

定义: $H \not\in B*$ 空间, $E \subset H$, $T:E \to H$ 连续且将有界集映成列紧集,则称 T 为紧映射。

推论: H 是 B*空间,有界闭凸子集 $E \subset H$,若 T: $E \to E$ 紧,则存在 x s.t. Tx=x。

定理: (Caratheodory) $f(t,x) \in C[-h,h] \times [\xi-b,\xi+b]$, $M=\max|f(t,x)|$, 则当 h < b/M

时,方程
$$\begin{cases} \frac{dx}{dt} = f(t,x) \\ x(0) = \xi \end{cases}$$
在[-h,h]上有解。

1.6 内积空间

定义: H 是线性空间, $a(\cdot,\cdot)$: H×H→K 满足 1° $a(\alpha_1x_1+\alpha_2x_2,y)=\alpha_1a(x_1,y)+\alpha_2a(x_2,y)$; 2° $a(x,\alpha_1y_1+\alpha_2y_2)= bar\{\alpha_1\}a(x,y_1)+bar\{\alpha_2\}a(x,y_2)$,则称为共轭双线性函数。特别地,q(x)=a(x,x)称为由 a 诱导的二次型。

命题: $q(x) \in R$, $\forall x \in H \Leftrightarrow a(x,y) = \overline{a(y,x)}$ 。

定义: H上的共轭双线性函数 $a(\cdot,\cdot)$ 满足: $1^{\circ}(x,y) = \overline{(y,x)}$; $2^{\circ}(x,x) \ge 0$ 且等号 当且仅当 x=0 成立; 则称(H,(·,·),K)为内积空间。特别地,若 H 完备,则称为 Hilbert 空间。

- 1° Cauchy-Schwarz 不等式: |(x,y)|≤||x||·||y||, 取等号当且仅当线性相关;
- 2°(H,||·||)构成 B*空间;
- 3°(·,·)关于||·||是一个二元连续函数;
- 4°内积空间一定严格凸;
- 5°平行四边形等式: ||x+y||²+||x-y||²=2(||x||²+||y||²);
- 6°内积可以被平行四边形等式诱导。

定义: (H,(·,·))是内积空间,

- 1° 若(x,y)=0,称正交,记为 $x \perp y$;
- 2° $\theta = \arccos[(x,y)/(||x|| \cdot ||y||)];$
- $3^{\circ} M \subset H, M^{\perp} := \{x \in H | \forall y \in M, (x,y) = 0\};$
- $4^{\circ} \text{ x=y+z} \perp \text{y} \perp \text{z}, \quad \text{M}||\mathbf{x}||^{2} = ||\mathbf{y}||^{2} + ||\mathbf{z}||^{2};$
- 5° $\forall n$, $x_n \perp y$, $x_n \rightarrow x$, 则(x,y)=0;
- 6° M[⊥]是闭线性子空间。

定义: H 是内积空间, $S=\{e_{\alpha}|\alpha\in A\}$,

- 1° 若 $\forall \alpha \neq \beta$, $e_{\alpha} \perp e_{\beta}$, 称 S 为正交集;
- 2° 若正交集还满足 $\|\mathbf{e}_{\alpha}\|=1$,称 S 为规范正交集;
- 3°若 S[⊥]={0}, 称 S 为完备正交集;
- 4°S 正交规范且 $\forall x \in H$, $x = \sum_{\alpha \in A} (x, e_{\alpha}) e_{\alpha}$, 则称 S 为一个基。

引理: (Bessel 不等式)H 是内积空间, $\{e_{\alpha}\}_{\alpha\in A}$ 规范正交集,则 \forall $x\in H$, $\sum_{\alpha\in A}|(x,e_{\alpha})|^{2}$ $\leq ||x||^{2}$ 。

推论: (收敛性) H 是 Hilbert 空间, $S=\{e_{\alpha}\}_{\alpha\in A}$ 规范正交集,则 $\forall x$, $\sum_{\alpha\in A}(x,e_{\alpha})e_{\alpha}$

$$\in \mathbf{H}, \ \ \mathbf{H} \| x - \sum_{\alpha \in A} (x, e_{\alpha}) e_{\alpha} \|^{2} = \| x \|^{2} - \sum_{\alpha \in A} |(x, e_{\alpha})|^{2} .$$

注记: 若 A 是可数集,称 $\sum_{\alpha=1}^{+\infty} (x,e_{\alpha})e_{\alpha}$ 称为 Fourier 级数。

命题: 非零的内积空间 H 中有完备正交集。

定理: H 是 Hilbert 空间, S 是规范正交集, 则以下等价:

1°S是完备的;

$$2^{\circ} \forall x \in H, ||x||^2 = \sum_{\alpha \in A} |(x, e_{\alpha})|^2;$$

3°S是一个基;

$$4^{\circ} (x,y) = \sum_{\alpha \in A} (x,e_{\alpha}) \overline{(y,e_{\alpha})} \circ$$

定义: Hilbert 空间(H_1 ,(·,·)₁),(H_2 ,(·,·)₂),线性同构 $T:H_1 \rightarrow H_2$ 保持内积不变,则称 (H_1 ,(·,·)₁)和(H_2 ,(·,·)₂)同构。

定理: H是 Hilbert 空间,

- 1° H 可分⇔ H 有至多可数的规范正交基 S;
- 2°若S元素个数有限,则H~Kn;
- 3° 若 S 元素可数,则 H~l²。

定理: H 是 Hilbert 空间, $M \subset H$ 是闭凸集,则 $\forall x \in H$,在 M 中存在唯一的最佳逼近元。

定理: H 是 Hilbert 空间, $M \subset H$ 是闭凸集, $\forall y \in H$, x_0 为最佳逼近元 $\Leftrightarrow \forall x \in H$, $Re(y-x_0,x_0-x) \ge 0$ 。

定理: (投影定理) M 是 Hilbert 空间 H 的闭线性子空间,则 \forall x \in H,存在 M 中唯一的投影,即 \exists x₀ \in M,y \in M^{\perp},使得 x=x₀+y。即是 M=H \oplus H^{\perp}。

推论: M 为 Hilbert 空间 H 的闭线性子空间,则 $(M^{\perp})^{\perp}=M$ 。

2 线性算子与线性泛函

2.1 线性算子的概念

定义: X,Y 是线性空间,T:D \subset X \to Y,满足 \forall x,y \in D,α,β \in K,T(αx+βy)=αTx+βTy,则称 T 为 X 到 Y 的线性算子。特别地,若 Y=R 或 C,则称为实或复线性泛函。D(T)=D 称为定义域,R(T)={Tx|x \in D}称为值域,N(T)={x \in X|Tx=0}称为核。定义: X,Y 是 F*空间,D(T) \subset X,T:D(T) \to Y,若 \forall {x_n} \subset D(T),x_n \to x \in D(T),

有 $Tx_n \rightarrow Tx_0$,则称 T 在 x_0 连续。

注记: 若 T 为线性算子,则 T 在 $x_0 \in D(T)$ 连续 \Leftrightarrow T 在 D(T)内任意点连续。

定义: X,Y 是 B*空间,线性算子 $T:X\to Y$,若存在 $M\geq 0$ 使得 \forall $x\in X$, $\|Tx\|_Y\leq M\|x\|_X$,则称 T 为有界线性算子(把有界集映成有界集)。

定义: 记
$$\|T\| = \sup_{x \in X \setminus \{0\}} \frac{\|Tx\|_{Y}}{\|x\|_{Y}} = \sup_{\|x\|=1} \|Tx\|_{Y}$$
, 称为 T 的范数。

定义:记 L(X,Y)为所有 X 到 Y 的有界线性算子集合。特别地,记 L(X)=L(X,X), X*=L(X,K)。

命题: X,Y 是 B*空间, T:X→Y 是线性算子, 则 T 有界 ⇔ T 连续。

定理: $X \in B^*$ 空间, $Y \in B$ 空间, $\forall T_1, T_2 \in L(X,Y)$, $\alpha_1, \alpha_2 \in K$, 定义($\alpha_1 T_1 + \alpha_2 T_2$) $(x) = \alpha_1 T_1 x + \alpha_2 T_2 x \in L(X,Y)$, 则 L(X,Y)按算子范数||·||构成 B 空间。

2.2 Riesz 定理及其应用

命题: X 是 Hilbert 空间, $y \in X$, 定义 $f_y: x \to (x,y)$, 则 $f_y \in X*$ 且 $||f_y||=||y||$ 。

定理: (Riesz) X 是 Hilbert 空间, \forall f \in X*,存在唯一 y_f \in X,使得 f(x)=(x,y_f),且 $\|f\|=\|y_f\|$ 。

推论: $f \to L^2[a,b]$ 上的有界线性泛函,则 $\exists v \in L^2[a,b]$,对 $\forall u \in L^2$, $f(u) = \int_a^b u v dt$ 。

应用: (Laplace 方程的 Dirichlet 问题)
$$\Omega \subset \mathbb{R}^n$$
,
$$\begin{cases} -\Delta u = f(x), x \in \Omega \\ u = g(x), x \in \partial \Omega \end{cases}$$
。不妨设 g=0,

否则
$$\forall$$
 g 延拓为 Ω 上的一个函数 \mathbf{u}_0 , 令 $\mathbf{v}=\mathbf{u}-\mathbf{u}_0$, 则
$$\begin{cases} -\Delta v = f(x) + \Delta u_0, x \in \Omega \\ v = 0, x \in \partial \Omega \end{cases}$$
。

定义: $H_0^1(\Omega) = \{ u \in L^2(\Omega) | u|_{\partial\Omega} = 0, |\nabla u| \in L^2(\Omega) \}$.

命题: $H_0^1(\Omega)$ 是 Hilbert 空间,按内积<u,v>₁= $\int \nabla u \cdot \nabla v dx$ 。

定理: (Poincare 不等式)
$$\sum_{|\alpha| < m} \int_{\Omega} |\partial^{\alpha} u(x)|^2 dx \le C(\Omega, m) \sum_{|\alpha| = m} \int_{\Omega} |\partial^{\alpha} u(x)|^2 dx$$
。特别地,

 $\stackrel{\text{def}}{=}$ m=1 时成立 $\int_{\Omega} |u(x)|^2 dx \le C \int_{\Omega} |\nabla u(x)|^2 dx$ 。

定义: $\mathbf{u} \in \mathbf{H}_0^1(\Omega)$ 满足 $\forall \mathbf{v} \in \mathbf{H}_0^1(\Omega)$, $\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v \left(= \int_{\Omega} -\Delta u \cdot v \right)$,则称 \mathbf{u} 为 Dirichlet 问题的弱解。

定理: $f \in L^2(\Omega)$, 则 Dirichlet 问题有唯一的弱解。

定理: X 是 Hilbert 空间,a(x,y)为 H 上的共轭双线性函数,且存在 M>0,使得 $a(x,y) \le M||x||\cdot||y||$ 。则存在 $A \in L(X)$,使得 a(x,y) = < x, Ay>。

2.3 纲与开映像定理

定义: $T:X \to Y$,若存在 T'使得 $\forall x \in D(T)$,T'Tx=x; $\forall y \in F(T)$,TT'y=y,则称 T'为 T 的逆算子。

注记: 1° 逆算子存在 \Leftrightarrow T 为一一映射; 2° 逆算子存在,则一定唯一; 3° T⁻¹ 是线性算子; 4° $(T^{-1})^{-1}$ =T。

定义: (X,ρ) 是度量空间, $E \subset X$, 若 \overline{E} 没有内点,则称 E 为疏集。

命题: $E \subset X$ 是疏集 $\Leftrightarrow \forall B(x_0,r_0)$,存在 $B(x_1,r_1) \subset B(x_0,r_0)$ 使得 $\overline{E} \cap \overline{B}(x_1,r_1) = \phi$ 。

定义: (X,ρ) 是度量空间, $E\subset X$,若 $E=\bigcup_{n=1}^{+\infty}E_n$, E_n 是疏集,则称 E 是第一纲集,

否则称为第二纲集。

定理: (Baire) 完备度量空间是第二纲集。

应用: C[0,1]中处处不可微函数的集合的余集为第一纲集。

定义: $T:X\to Y$, $\forall U\subset X$ 开, $T(U)\subset Y$ 开, 则称 T 为开映射。

定义: $T:X\to Y$,若 $\{x_n\}\subset D(T)$ 满足 $x_n\to x$, $Tx_n\to y$,则 $x\in D(T)$ 且 y=Tx,则称 T 为闭算子。

注记: 1° 连续算子 T 并不一定有 $x_n \rightarrow x$,则 $x \in D(T)$;

2°若D(T)闭且T连续,则T为闭算子;

3° 定义 T 的图象 $G(T):=\{(x,Tx)∈X\times Y|x∈D(T)\}$, $X\times Y$ 上模 $\|(x,y)\|:=\|x\|_X+\|y\|_Y$ 称为图模,则 T 为闭算子⇔ G(T)在($X\times Y,\|\cdot\|$)中为闭集;

4°闭算子不一定连续。

定理: (开映像定理) $X,Y \in B$ 空间, $T:X \to Y$ 是闭线性算子且为满射/R(T)是第二纲集,则 T 为开映射。(重要中间结论: 映射有内点)

定理: (逆算子定理) $X,Y \in B$ 空间, $T \in L(X,Y)$ 既单又满,则 $T^{-1} \in L(Y,X)$ 。

推论: (等价范数定理) 线性空间 X 上的两个模 $\|\cdot\|_1, \|\cdot\|_2$, X 关于他们分别都是 B 空间,且 $\|\cdot\|_2$ 比 $\|\cdot\|_1$ 强,则一定等价。

定理: (B.L.T.) X 是 B*空间, Y 是 B 空间, T:X \rightarrow Y 连续, 则 T 一定可以唯一延拓到 $\overline{D(T)}$ 上作为 $\overline{D(T)}$ 上的连续线性算子。

定理: (闭图像定理) X,Y 是 B 空间, $T:X\to Y$ 闭线性算子, 且 D(T)闭,则 T 连续。

定理: (共鸣定理) $X \neq B$ 空间, $Y \neq B$ 空间, $W \rightarrow L(X,Y)$ 是一族算子, 满足 $\forall x \in X$, $\sup ||Ax|| < +\infty$, $A \in W$ 。则存在 M > 0, $\forall A \in W$,||A|| < M。

定理: (Banach-Steinhaus 定理) X 是 B 空间, Y 是 B*空间, M \subset X 稠密子集, $\{A_n\}\subset L(X,Y)$, A \in L(X,Y)有 \forall x \in X, A_nx \rightarrow Ax \Leftrightarrow 1° $||A_n||$ —致有界; 2° \forall x \in M, A_nx \rightarrow Ax \circ

定理: (Lax-Milgram 定理) X 是 Hilbert 空间, $a(\cdot,\cdot)$ 共轭双线性,满足: 1°存在 M>0, $|a(x,y)| \leq M||x||\cdot||y||$; 2°存在 $\delta>0$, $|a(x,x)| \geq \delta ||x||^2$,则存在唯一有连续逆的 $A \in L(X)$,使得 a(x,y)=(x,Ay),且 $||A||^{-1} \leq 1/\delta$ 。

2.4 Hahn-Banach 定理

定理: (实 Hahn-Banach) X 是实线性空间, $X_0 \subset X$ 是线性子空间,p 是 X 上的次线性泛函, f_0 是 X_0 上的实线性泛函,满足 $\forall x \in X_0$, $f_0(x) \leq p(x)$ 。则存在 X 上的线性泛函 f,使得 $1^\circ \forall x \in X_0$, $f(x) = f_0(x)$; $2^\circ \forall x \in X$, $f(x) \leq p(x)$ 。

定理: (复 Hahn-Banach) X 是复线性空间, $X_0 \subset X$ 是线性子空间, $p \in X$ 上的半模, $f_0 \in X_0$ 上的复线性泛函,满足 $\forall x \in X_0$, $|f_0(x)| \leq p(x)$ 。则存在 X 上的线性泛函 f,使得 1° $\forall x \in X_0$, $f(x) = f_0(x)$; 2° $\forall x \in X$, $|f(x)| \leq p(x)$ 。

定理: X 是复线性空间, X 中含有均衡吸收凸集, 则 X 上存在非零线性泛函。

定理: $X \in B^*$ 空间, $X_0 \subset X$ 线性空间, $f_0 \in X_0^*$,则存在 $f \in X^*$, $1^\circ \forall x \in X^*$, $f_0(x)=f(x)$; $2^\circ ||f||=||f_0||$ 。

推论: (点与点可分离) X 是 B*空间,则:

1° $\forall x_0 \in X \setminus \{0\}$,存在 $f \in X^*$, s.t. $f(x_0) = ||x_0||$,且||f||=1;

2° $\forall x_1, x_2 \in X$, 存在 $f \in X^*$, s.t. $f(x_1) \neq f(x_2)$, 且||f||=1;

 $3^{\circ} x_0=0 \Leftrightarrow \forall f \in X^*, f(x_0)=0_{\circ}$

定理: (点与子空间可分离) $X \in B^*$ 空间, $M \subset X$ 线性子空间, $x_0 \in X$, $d(x_0,M)=d > 0$, 则存在 $f \in X^*$,使得 $1^\circ \forall x \in M$,f(x)=0; $2^\circ f(x_0)=d$; $3^\circ ||f||=1$ 。

推论: X 是 B*空间, M \subset X 是子集, $x_0 \in X$, $x_0 \neq 0$, 则 $x_0 \in \overline{\text{span}(M)} \Leftrightarrow \forall f \in X^*$,

f(M)=0 都有 f(x₀)=0。

定义: X 是 B*空间,

 $1^{\circ} X_0 \subset X$ 称为极大线性子空间 $\Leftrightarrow \forall X_1$ 满足 $X_0 \subset X_1 \subset X$,则 $X_1 = X \Leftrightarrow X = X_0 \oplus \{\lambda x_0\}$, $\lambda \in R$, $\forall x_0 \notin X_0 \Leftrightarrow \dim(X/X_0) = 1$.;

2°M 称为极大线性子流形/超平面 ⇔ M=X₀+x₀ 是极大线性子空间。

定理: M 是超平面 \Leftrightarrow M=X_f*, 其中 f \in X*, f 非零, X_f*:={x \in X|f(x)=r}。

定义: $X \in B^*$ 空间, 凸集 $E,F \subset X$,

1° 若存在 L=X_f, f∈X*使得 $f_{le} \le r$, $f_{le} \ge r$, 则称 L 分离 E,F;

2°若存在 L= X_f , $f \in X*$ 使得 $f_{le} < r$, $f_{lF} > r$,则称 L 严格分离 E,F。

定理: (Hahn-Banach 几何形式) $X \in B^*$ 空间,以 0 为内点的真凸子集 $E \subset X$, $x_0 \notin E$, 则存在超平面分离 x_0 和 E。

注记: 1°E可以是一般的有内点的真凸子集; 2°L= H_f 是闭的(即由 f 连续)。 定理: (凸集与凸集分离) X是 B*空间,凸集 $E_1,E_2\subset X$, $E_1\cap E_2$ 空, E_1 有内点,则存在 $f\in X*$, $r\in R$,使得 H_f 分离 E_1 和 E_2 。

定理: (点与凸集分离) $X \in B*$ 空间,闭凸集 $E \subset X$, $x_0 \notin E$,则存在 $f \in X*$, $s \in R$,使得 $f_{le} < s < f(x_0)$ 。

定理: (Mazur) X 是 B*空间, E 是有内点的凸集, F 是线性子空间, $E^{\circ} \cap F$ 空,则存在超平面 L 满足 $F \subset L$ 且 E 在 L 的一侧。

定义: 凸集 $E \subset X$, H_f 称为 E 在 x_0 处的支撑超平面 $\Leftrightarrow x_0 \in E$ 的闭包 \cap H_f 且 E 在 H_f 的一侧 \Leftrightarrow $f_{lE} \geqslant r = f(x_0)$ 或 $f_{lE} \leqslant r = f(x_0)$ 。

定理: $X \in B*$ 空间, $E \subset X$ 是有内点的闭凸集, x_0 是 E 的边界点,则存在 x_0 处的支撑超平面。

定义: $f:X\to R$, $x_0\in X$, 若存在 $A\in X*$ 使得 $f(x_0+\Delta x)=f(x_0)+A\Delta x+o(||\Delta x||)$, 称 f 在 x_0 处 Frechet 可导, $A=f(x_0)$ 称 Frechet 导数。

定义: $f:(a,b) \to X$, X 是 B*空间, $t \in (a,b)$, $f'(t) := \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}$ 。

定理: 若 f(t)处处存在,则 $\forall t_1,t_2 \in (a,b)$, $t_1 \subset t_2$, $\exists \theta \in (0,1)$,使得 $||f(t_2)-f(t_1)|| \leq ||f(\theta t_2+(1-\theta)t_1)|| \cdot |t_2-t_1|$ 。

定义: $f:X\to R$ 是凸泛函, $x_0\in X$, $\partial f(x_0):=\{x^*\in X^*|f(x)\geqslant f(x_0)+x^*(x-x_0)\}$ 称为 f 在 x_0 处的次微分。

定理: $f:X \to R$ 在 x_0 处连续,则 $\partial f(x_0)$ 不空。

2.5 共轭空间•弱收敛•自反空间

定义: $X \in B*$ 空间, X*(B 空间):=L(X,K)称为 X 的共轭空间。

例子: $(l^p)^*=l^q$, $(L^p)^*=L^q(1\leq p\leq \infty)$, $(l^{\infty)^*}\neq l^1$, 。

定义: $T:X\to X^{**}$, $X\to Z$ 称为自然映射, 其中 $Z:X^*\to K$, $f\to f(x)$, $T\in L(X,X^{**})$ 。

定理: $X \neq B$ *空间,则 $T:X \rightarrow X$ **为保范嵌入。

定义: 若 T 为满射,则 X 和 X**保范同构,称 X 为自反空间。

注记: 1° B*空间 X 自反,则 X 为 B 空间; 2° X 自反 \Leftrightarrow X*自反。

定义: X,Y 是 B*空间, $T \in L(X,Y)$, 若 $T*:Y* \to X*s.t. \forall y* \in Y*, (T*y*)(x)=y*(Tx)$, 称 T*为 T 的共轭算子。

定理: $T^* \in L(Y^*,X^*)$ 且映射※: $L(X,Y) \rightarrow L(Y^*,X^*),T \rightarrow T^*$ 是保范映射。

性质: 1° $T_1 \in L(X,Y), T_2 \in L(Y,Z)$, 则 $(T_2T_1)^*=T_1^*T_2^*$;

2°若T∈L(X,Y)且T-1∈L(Y,X),则(T*)-1存在且(T*)-1=(T-1)*;

3°T∈L(X,Y),则T**∈L(X**,Y**)是T的保范延拓。

定义: $X \in B*$ 空间, $\{x_n\} \subset X$, $x_0 \in X$,若 $\forall f \in X*$, $f(x_n) \to f(x_0)$,则称 $\{x_n\}$ 弱收敛到 x_0 。

注记: 1°强收敛⇒弱收敛; 2°有限维空间强收敛⇔弱收敛。

定理: (Mazur) X 是 B*空间, x_n 弱收敛到 $x_0 \in X$, 则 $\forall \epsilon > 0$, 存在 n 以及 $\lambda_i \ge 0$,

 $\Sigma \lambda_i = 1$,使得 $\|\Sigma \lambda_i x_i - x_0\| < \varepsilon$ 。

定理: (Banach) X 是 B*空间, X*可分⇒X 可分。

定义: $X \in B^*$ 空间, $\{f_n\} \subset X^*$, $f \in X^*$,若 $\forall x \in X$, $f_n(x) \to f(x)$,则称 f_n^* 弱收敛 到 f_n

定理: $X \in B^*$ 空间, $\{x_n\} \subset X$, $x \in X$,则 x_n 弱收敛到 $x \Leftrightarrow 1^\circ ||x_n||$ 一致有界; 2° 对 X^* 的稠密子集 M^* , $f(x_n) \to f(x)$ 。

定理: X 是 B 空间, $\{f_n\}$ $\subset X^*$, $f \in X^*$,则 f_n *弱收敛到 $f \Leftrightarrow 1$ ° $||f_n||$ 一致有界; 2 ° 对 X 的稠密子集 M, $f_n(x) \to f(x)$ 。

定义: X,Y 是 B*空间, $T_n \in L(X,Y)$, $T \in L(X,Y)$,

1°当||T_n-T||→0, 称 T_n一致收敛到 T;

2° ∀x∈X, T_nx→Tx, 称 T_n强收敛到 T:

3° 若 \forall x∈X, f∈Y*, f(T_nx)→f(Tx), 称 T_n 弱收敛到 T。

一致收敛⇒强收敛⇒弱收敛。

定义: 1° $A \subset X$ 弱列紧 ⇔ A 中任意点列有<mark>弱收敛子列</mark>;

2°A⊂X**弱列紧⇔A中任意点列有*弱收敛子列。

定理:可分 B*空间 X 的共轭空间 X*有界集一定*弱列紧。

定理: (范数可达) X 是自反空间,则 $\forall f \in X^*$,存在 $x \in X$, s.t.||x||=1,f(x)=||f||。

定理:有限维 Banach 空间是自反空间。

定理: (James) \forall f \in X*, 存在 x \in X, s.t. $\|x\|=1$, $f(x)=\|f\|$,则 X 自反。

定理: (Pettis) 自反空间 X 的闭子空间 X_0 自反。

定理: (Banach-Alaoglu 定理) X 是 B*空间,则 X*的单位球*弱列紧。

注记: 1° X 的可分闭子空间都自反,则 X 自反;

2° X 自反⇔ ∀ 闭凸子集 E,存在 $x_0 \in E$,使得 $||x_0|| = \inf\{||x||, x \in E\}$ ⇔ ∀ 闭凸子集 E, $\forall x \in X$,存在 $x_0 \in E$,使得 $||x_0|| = \inf\{||x_0|| = \inf\{|$

定理: (Eberlein-Smulian) 自反空间的单位(闭) 球/有界集是弱(自) 列紧的。注记: "⇐"也成立。

2.6 线性算子的谱

定义: X 是复 B 空间, A:D(A) $\subset X \to X$ 是线性算子,

1°若存在 $x_0 \in D(A)\setminus\{0\}$, $\lambda \in C$ 使得 $Ax_0 = \lambda x_0$,称 λ 为本征值, x_0 为本征元;

2° 若(λ I-A)⁻¹ \in L(X),则称 λ 为正则值;记 ρ (A)为所有正则值全体,称为预解集。

3°(a) λ I-A 既单又满,则 λ ∈ ρ (A); (b) λ I-A 不单,则 λ 为本征值,记 σ _{ρ}(A)为所有

本征值全体, 称为点谱; (c) λ I-A 单但不满, 且 $\overline{R(\lambda I - A)} = X$, 所有 λ 的集合称连

续谱,记为 $\sigma_c(A)$; (d) λ I-A 单且不满,且 $\overline{R(\lambda I-A)} \neq X$,称剩余谱,记为 $\sigma_r(A)$;

(e) $\sigma(A) = \sigma_p(A) \cup \sigma_c(A) \cup \sigma_r(A)$,称算子 A 的谱。

命题: ρ(A)不空,则 A 为闭线性算子; A 不为闭线性算子,则ρ(A)空。

定义: 算子值函数 $R_{\lambda}(A):\rho(A)\to L(X),\lambda\to (\lambda I-A)^{-1}$,称为 A 的预解式。 $\rho(A)$ 是开集, $R_{\lambda}(A)$ 解析,且谱点存在。

定理: (Von-Neumann) X 是 B 空间, T∈L(X), ||T||<1, 则(I-T)-1∈L(X), 且(I-T)-1

$$= \sum_{n=0}^{+\infty} T^n , ||(I-T)^{-1}|| \leq \frac{1}{1-||T||}.$$

推论: A 为闭线性算子,则ρ(A)是开集。

定理: (谱点存在) $A \in L(X)$, 则 $\sigma(A)$ 不空。

引理: (第一预解公式) $\forall \lambda, \mu \in \rho(A)$, $R_{\lambda}(A) - R_{\mu}(A) = (\mu - \lambda)R_{\lambda}(A)R_{\mu}(A)$ 。

定义: $A \in L(X)$, $r_{\sigma}(A) := \sup\{|\lambda| \mid \lambda \in \sigma(A)\}$ 称谱半径。

定理: (Gelfand) X 是 B 空间, $A \in L(X)$, 则 $r_{\sigma}(A) = \lim_{n \to \infty} \sqrt[n]{\parallel A^n \parallel}$ 。

3 广义函数与 Sobolev 空间

(I) 广义函数

记号: 1° $\Omega \subset \mathbb{R}^n$ 开, $\mathfrak{u} \in \mathbb{C}(\overline{\Omega})$,记 $\mathrm{supp}(\mathfrak{u}) = \{x \in \mathbb{R}^n \mid u(x) \neq 0\}$,称 \mathfrak{u} 的支集;

 2° k \in Z₊, $C_0^k(\Omega) = \{u \in C^k(\Omega) | \text{supp}(u) \subset (紧包含)\Omega\};$

3° 多重指标: $\alpha=(\alpha_1,\alpha_2,...,\alpha_n)$, $\alpha_i\in \mathbb{Z}$, $\alpha_i\geqslant 0$, $|\alpha|=\sum_{i=1}^n\alpha_i$,则 $x^\alpha=x_1^{\alpha_1}\cdots x_n^{\alpha_n}$, $\partial^\alpha=x_1^{\alpha_1}\cdots x_n^{\alpha_n}$

$$\frac{\partial^{|\alpha|}}{\partial^{\alpha_1}\cdots\partial^{\alpha_n}}$$

定义: $C_0^{\infty}(\Omega)$ 上的收敛性: $\{f_j(x)\}\subset C_0^{\infty}(\Omega)$, $f_0(x)\in C_0^{\infty}(\Omega)$, 若 1° 存在 $K\subset\subset\Omega$, 使得 supp $f_j\subset K$;

 $2^{\circ} \quad \forall \; \alpha = (\alpha_1, \alpha_2, \dots, \alpha_n), \quad \sup_{x \in K} |\partial^{\alpha} f_j(x) - \partial^{\alpha} f_0(x)| \to 0;$

则称 f_i 在 $C_0^{\infty}(\Omega)$ 上收敛到 f_0 。记 $D(\Omega)$ 为带有收敛性的空间 $C_0^{\infty}(\Omega)$,称基本空间。命题: $D(\Omega)$ 为序列完备空间。

定义: $f:D(\Omega) \to R$ 称为一个广义函数,如果 1° f 线性; 2° $\forall \{g_i\} \subset D(\Omega), g_i \to g$,有 $f(g_i) \to f(g)$ 。所有广义函数的集合记为 $D'(\Omega)$ 。

定义: $\{f_j\}\subset D'(\Omega)$, $f_0\in D'(\Omega)$, 若 $\forall g\in D(\Omega)$, $f_i(g)\to f(g)$, 则称 f_j 收敛到 f_o

定义: $f \in D'(\Omega)$, 若存在 $g \in D'(\Omega)$, 使得 $\forall h \in D(\Omega)$, $f(\partial_{x_i} h) = -g(h)$, 称 g 为 f

关于 x_i 方向的广义偏导数,记为 $\tilde{\partial}_{x_i} f$ 。若 $f \in \mathbb{C}^1$,则 $\tilde{\partial}_{x_i} f = \partial_{x_i} f$ 。

(II) Sobolev 空间

定义: k \in Z, k \geqslant 0, 1 < p < + ∞ , W^{k-p}(Ω):= {u \in L^p(Ω)| $\widetilde{\partial}^{\alpha}u$ \in L^p(Ω), $|\alpha|$ \leqslant k}, 模|u|=

$$(\sum_{|\alpha| \le k} \|\widetilde{\partial}^{\alpha} u\|_{L^{p}(\Omega)}^{p})^{1/p}$$
,称 Sobolev 空间。

定理: 1° W^{k-p}(Ω)为 Banach 空间;

2° W^{k·2}(Ω)为 Hilbert 空间,常记 H^k(Ω)。

注记: $W_0^{k\cdot p}(\Omega)$ 记为 $C_0^k(\Omega)$ 在 $W^{k\cdot p}(\Omega)$ 中的闭包。

定理: (Sobolev 嵌入定理)
$$W_0^{1,p}(\Omega) \rightarrow \begin{cases} L^{\frac{np}{n-p}}(\Omega), \ p < n \end{cases}$$

$$L^{\varphi}(\Omega), \quad p = n, 其中 \varphi(t) = e^{|t|^{\frac{n}{n-1}}} - 1,$$

$$C^{\alpha}(\overline{\Omega}), \quad p > n, 其中 \alpha < 1 - \frac{n}{p} \end{cases}$$

$$L^{\varphi}(\Omega) = \{u \mid \int_{\Omega} \left(e^{|u|^{\frac{n}{n-1}}} - 1\right) dx < +\infty\}, C^{\alpha}(\overline{\Omega}) = \{u \mid \sup_{\Omega} \frac{|u(x) - u(y)|}{|x - v|^{\alpha}} < +\infty\} \text{ (Orlicz } \widehat{\Xi} |\widehat{\Xi}|).$$

定理: 1° p0, s.t.
$$\|u\|_{L^{\frac{np}{n-p}}(\Omega)} \le C \|\widetilde{\partial}u\|_{L^{p}(\Omega)};$$

2° p=n 时, ∃ C₁,C₂>0, s.t.
$$\int e^{\left(C_1 \frac{\|u\|}{\|\tilde{\partial}u\|_{L^p(\Omega)}}\right)^{\frac{n}{n-1}}} dx \le C_2 |\Omega|;$$

3° p>n 时, $\exists C>0$, s.t. $\|u\|_{C^{\alpha}(\overline{\Omega})} \le C(1 + diam(\Omega)^{\alpha})\|\widetilde{\partial}u\|_{L^{p}(\Omega)}$ 。

4 紧算子与 Fredholm 算子

4.1 紧算子的定义和基本性质

定义: X,Y 是 B 空间, $A:X\to Y$ 线性, B_1 为 X 的单位球。若 $\overline{A(B_1)}$ 在 Y 中紧,则称 A 为紧算子。全体紧算子记为 C(X,Y)。(等价定义: $A\subset C(X,Y)$ ⇔ $\forall X$ 的有界集 E, $\overline{A(E)}$ 在 Y 中紧 ⇔ $\forall \{x_n\}\subset X$ 有界点列, $\{Ax_n\}$ 有收敛子列。

性质: 1° $C(X,Y) \subset L(X,Y)$; 2° $a,b \in C$, $A,B \in L(X,Y)$, 则 $aA+bB \in C(X,Y)$; 3° $A \in C(X,Y)$, $X_0 \subset X$ 闭子空间,则 $A|_{X_0} \in C(X_0,Y)$; 4° $A \in C(X,Y)$, $B \in C(Y,Z)$, 则 $BA \in C(X,Z)$; 5° $A \in C(X,Y) \Rightarrow R(A)$ 可分; 6° C(X,Y)在 L(X,Y)中闭; 7° $T \in C(X,Y)$ 分 $T* \in C(Y*,X*)$; 8° L(X)是一个代数,C(X)是 L(X)的一个理想。

定义: $A \in L(X,Y)$, 若 x_n 弱收敛到 x, $Ax_n \to Ax$, 则称 A 全连续。

命题: 1° $A \in C(X,Y)$,则 A 全连续; 2° A 全连续且 X 自反,则 $A \in C(X,Y)$ 。 定义: $T \in L(X,Y)$, $\dim R(T)=N<\infty$,称 T 为有穷秩算子。所有的有穷秩算子记为 F(X,Y)。

注记: 1° $F(X,Y) \subset C(X,Y)$; 2° $f \in X^*, y \in Y$, 定义 1 秩算子 $y \otimes f$: $x \to f(x)y$.

定理: $T \in F(X,Y) \Leftrightarrow$ 存在 $y_1, \dots, y_n \in Y$, $f_1, \dots, f_n \in X^*$, s.t. $T = \Sigma_i y_i \otimes f_i$.

定理: X 是 Hilbert 空间,则 $\overline{F(X)} = C(X)$ 。

定义: X 是可分 B 空间, 若存在 $\{e_n\}$ $\subset X$ s.t. \forall $x \in X$, 有唯一的 $\{c_n(x)\}$, $x = \Sigma_n c_n(x) e_n$, 称 $\{e_n\}$ 为 X 的 Schauder 基。

引理: c_n(x)∈X*。

定理: 可分 B 空间 X 上有一组 Schauder 基,则 $\overline{F(X)} = C(X)$ 。

4.2 Riesz-Fredholm 理论

考虑一般情形 $T=I-A \in L(X)$, 其中 A 是紧算子。

记号: 1° R(T)值域,N(T)核; 2° \forall M \subset X, $^{\perp}$ M={ $f \in X*|f|_M=0$ }; 3° \forall N \subset X*,N $^{\perp}$ ={ $x \in X| \forall f \in N, f(x)=0$ }; 4° $f \in X*, x \in X$, $f \perp X$ 代表 f(x)=0。

定理: (Fredholm) $A \in C(X)$, T=I-A, 则:

- $1^{\circ} N(T)=0 \Leftrightarrow R(T)=X;$
- $2^{\circ} \sigma(A) = \sigma(A^*);$
- $3^{\circ} \dim N(T) = \dim N(T^*) < \infty$;
- $4^{\circ} R(T)=N(T^{*})^{\perp}, R(T^{*})=^{\perp}N(T);$
- 5° codim R(T):=dim(X/R(T))=dim N(T).

Fredholm 方程: $\lambda x(t) - \int_a^b K(t,s)x(s)ds = f(t)(*)$, $\lambda x(t) - \int_a^b K(t,s)x(s)ds = 0(**)$ 。

 $(L^2$ 空间)二择一定理: $\lambda \neq 0$ 时:

- 1° 若(**)只有零解,则∀f,(*)有唯一解;
- 2° 若(**)有非零解,则(*)有解⇔ f 与共轭方程 $\lambda x(t) \int_{a}^{b} K(s,t)x(s)ds = 0$ (**)解空间正交。

定义: $T \in L(X)$, 若满足 R(T)闭,则称 T 为闭值域算子。

定理: $A \in C(X)$,则 T=I-A 为闭值域算子。

4.3 紧算子的谱理论

定理: $X \in B$ 空间, $A \in C(X)$, 则

- 1° $0 \in \sigma(A)$,除非 $\dim X < \infty$;
- $2^{\circ} \sigma(A) \setminus \{0\} = \sigma_p(A) \setminus \{0\};$
- 3° σ_p(A)至多以 0 为聚点。

定义: $X \in B$ 空间, $A \in L(X)$, $M \subset X \perp B$ $A(M) \subset M$,称 $M \to A$ 的不变子空间。 性质: 1° {0},X 都是不变子空间;

- 2° 若 M 是不变子空间,则 \overline{M} 也是;
- 3° \forall λ ∈ σ_p(A), N(λI-A)是 A 的不变子空间;
- 4° ∀ y ∈ X, L_v: {P(A)y|P 是多项式}为 A 的不变子空间。

定理: dimX≥2, A∈C(X), 则必有非平凡闭不变子空间。

定理: $A \in C(X)$,T=I-A,则存在 $p \in Z_+$,使得 $X=N(T^P) \oplus R(T^P)$,且 $T|_{R(Tp)}$ 有线性有界逆算子。

记号: p(T)为满足 $N(T^k)=N(T^{k+1})$ 的最小数,称零链长; q(T)为满足 $R(T^k)=R(T^{k+1})$ 的最小数,称像链长。

性质: 1° 当 $N(T^k)=N(T^{k+1})$,则 $\forall n \geq k$, $N(T^n)=N(T^{n+1})$;

- $2^{\circ} \cong R(T^{k})=R(T^{k+1})$,则则 $\forall n \geq k$, $R(T^{n})=R(T^{n+1})$;
- 3° A \in C(X),T=I-A,则 p=q< ∞ 。

4.4 Hilbert-Schmidt 定理

定义: X 是 Hilbert 空间, $A \in L(X)$,若(Ax,y)=(x,Ay)[=(x,A*y)],则称 A 为对称 算子或自共轭算子[蕴含 A=A*]。

性质: 1° A 对称 \Leftrightarrow (Ax,x) \in R;

$$2^{\circ}$$
 A 对称,则 $\sigma(A)\subset R$,且当 $\lambda\in C$ 且 $\mathrm{Im}\lambda\neq 0$ 时, $\|(\lambda I-A)^{-1}x\|\leq \frac{1}{|\mathrm{Im}(\lambda)|}\|x\|$;

- 3° X_1 ⊂X是闭线性子空间, A 在 X上对称 ⇒ $A|_{X_1}$ 上对称;
- 4° A 对称,则 \forall λ \neq λ' \in σ_p(A),N(λI-A) \perp N(λ'I-A);
- 5° 若 A 对称,则σ_r(A)空;
- 6°若A对称,则||A||=sup|(Ax,x)|(||x||=1)。

定理: $A \in C(X)$ 且对称,则存在 $x_0 \in X$, $||x_0|| = 1$ 满足 $Ax_0 = \lambda x_0$,其中 $|\lambda| = |(Ax_0, x_0)|$ = $\sup_{\|x\|=1} |(Ax,x)|$ 。

引理: X 是复 Hilbert 空间,A 对称紧,令 $M = \bigcup_{\lambda \in \sigma(A)} N(\lambda I - A)$,则 $X = \overline{\text{span}(M)}$ 。

定理: (Hilbert-Schmidt) X 是复 Hilbert 空间,A 对称紧,则存在可数 $\{\lambda_i\} \subset R$ 以 0 为聚点以及对应的本征值 $\{e_n\}$ 构成规范正交基, $s.t. \forall x \in X$, $x = \Sigma(x,e_i)e_i + v$, $v \in N(A)$ 。

推论: (极值刻画) 将本征值排列 $|\lambda_1| \ge \cdots$,则 $|\lambda_n| = \sup\{|(Ax,x)| \mid x \perp span\{e_1, \cdots, e_{n-1}\}, \|x\| = 1\}$ 。

推论: (极大极小刻画)排列 $\lambda_1^+ \geqslant \cdots \geqslant 0$, $\lambda_1^- \leqslant \cdots \leqslant 0$, 则 $\lambda_n^+ = \inf_{E_{n-1}} \sup_{x \in E_{n-1}^\perp, x \neq 0} \frac{(Ax, x)}{(x, x)}$,

 $\lambda_{n} = \sup_{E_{n-1}} \inf_{x \in E_{n-1}^{-1}, x \neq 0} \frac{(Ax, x)}{(x, x)}$,其中 E_{n-1} 是 X 的任意 n-1 维闭线性子空间。

推论: $A,B \in C(X)$ 且对称, $(Ax,x) \leq (Bx,x)$ 恒成立,则 $\lambda_i^+(A) \leq \lambda_i^+(B)$ 。

4.6 Fredholm 算子

定义: X,Y 是 B 空间, $T \in L(X,Y)$ 称为 Fredholm 算子,如果 1° R(T)闭; 2° dim $N(T) < \infty$; 3° codim $R(T) < \infty$ 。

定义: 若 $T \in F(X,Y)$, 记 ind(T):=dimN(T)-codimR(T)为 T 的指标。

定理: (Atkinson) 1°若 T \in F(X,Y),则存在 S \in F(Y,X)以及 A₁ \in C(X),A₂ \in C(Y) 使得 ST=I_X-A₁,TS=I_Y-A₂;2°若 T \in L(X,Y)且存在 R₁,R₂ \in L(Y,X)以及 A₁ \in C(X), A₂ \in C(Y)使得 R₁T=I_X-A₁, TR₂=I_Y-A₂,则 T \in F(X,Y)。

定理: $T_1 \in F(X,Y)$, $T_2 \in F(Y,Z)$, 则 $T_2T_1 \in F(X,Z)$, 且 $ind(T_2T_1) = ind(T_1) + ind(T_2)$ 。

定理: $T_1 \in L(X,Y)$, $T \in L(Y,Z)$, $T_1T_2 \in F(X,Z)$, 则 $T_1 \in F(X,Z) \Leftrightarrow T_2 \in F(X,Z)$ 。

命题: $T \in F(X,Y)$, $A \in C(X,Y)$, 则 $T+A \in F(X,Y)$, 且 ind(T+A)=ind(T)。

定理: $T \in F(X,Y)$,则存在 $\epsilon > 0$,当 $S \in L(X,Y)$ 满足 $\|S\| < \epsilon$ 时, $T+S \in F(X,Y)$ 且 ind(T+S)=ind(T)。(F(X,Y)在 L(X,Y)中开且 ind 局部等值)