This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously Presented) Compounds of formula I

in which

A stands for phenylene,

 $\label{eq:basic_bound} B \qquad \text{stands for a bond or for $C_1 - C_{12}$-alkylene, $C_2 - C_{12}$-alkinylene, $C_3 - C_{6}$-cycloalkylene, or phenylene that is optionally substituted in one or more places in the same way or differently with hydroxy, halogen, cyano, nitro, $C_1 - C_6$-alkyl, $C_2 - C_6$-alkenyl, $C_2 - C_6$-alkinyl, $C_3 - C_{10}$-cycloalkyl, $C_1 - C_6$-hydroxyalkyl, $C_2 - C_6$-alkenyl, $C_2 - C_6$-alkinyl, $C_3 - C_{10}$-cycloalkyl, $C_1 - C_6$-hydroxyalkyl, $C_2 - C_6$-alkenyl, $C_2 - C_6$-alkenyl, $C_3 - C_{10}$-cycloalkyl, $C_3 - C_{10$

C₆-hydroxyalkyl,
-(CH₂)_pSO₃R⁸, or with the group -NR⁸R⁹, -NR⁸COR⁹, -NR⁸CSR⁹,
-NR⁸SOR⁹, -NR⁸SO₂R⁹, -NR⁸CONR⁸R⁹, -NR⁸COOR⁹,
-NR⁸C(NH)NR⁹R¹⁰, -NR⁸CSNR⁹R¹⁰, -NR⁸SONR⁹R¹⁰,
-NR⁸SO₂NR⁹R¹⁰, -COR⁸, -CSR⁸, -S(O)₂R⁸,
-S(O)₂NR⁸R⁹, -SO₃R⁸, -CO₂R⁸, -CONR⁸R⁹, -CSNR⁸R⁹, -SR⁸ or
-CR⁸(OH) R⁹

X and Y, in each case independently of one another, stand for oxygen, sulfur or for the group -NR¹¹-, -NR¹¹(CH₂)-, -NR¹¹O-, -ONR¹¹-, -CR⁶R⁷, -C=O, =C=S, =SO, =SO₂, -C(O)O-, -OC(O)-, -S(O)O-, -OS(O)-, -S(O)₂O-, -OS(O)₂-, -CONR⁸-, -N(COR⁸)-, -N(CONR⁸)-, -N(CONR⁸R⁹)-, -NR⁸CO-, -OCONR⁸-, -NR⁸C(O)O-, -CSNR⁸-, -NR⁸CS-, -OCSNR⁸-, -NR⁸CSO-,

```
-SONR<sup>8</sup>., -NR<sup>8</sup>SO-, -SO<sub>2</sub>NR<sup>8</sup>-, -S(O)<sub>2</sub>N(COR<sup>8</sup>)-, -NR<sup>8</sup>SO<sub>2</sub>-,
-NR<sup>8</sup>CONR<sup>9</sup>-, -NR<sup>8</sup>CSNR<sup>9</sup>-, -NR<sup>8</sup>SONR<sup>9</sup>-, -NR<sup>8</sup>SO<sub>2</sub>NR<sup>9</sup>-,
-NR<sup>8</sup>C(O)NR<sup>9</sup>- or -NR<sup>8</sup>C(S)NR<sup>9</sup>-.
```

R1 and R5, in each case independently of one another, stand for hydrogen,

hydroxy, halogen, nitro, cyano, C_1 - C_6 -alkyl, C_2 - C_6 - alkenyl, C_2 - C_6 -alkinyl, C_3 - C_{10} -cycloalkyl, the group $-C_1$ - C_6 -alkyloxy- C_1 - C_6 -alkyloxy, $-(CH_2)_pPO_3(R^{10})_2$, $-NR^8R^9$, $-NR^8COR^9$, $-NR^8CSR^9$.

-NR⁸SOR⁹, -NR⁸SO₂R⁹, -NR⁸CONR⁹R¹⁰, -NR⁸COOR⁹,

 $-NR^8C(NH)NR^0R^{10}, -NR^8CSNR^0R^{10}, -NR^8SONR^0R^{10}, -NR^8SO_2NR^0R^{10}, -COR^8, -S(O)_R^8, -S(O)(NH)R^8, -S(O)_2R^8, -S(O)_2NR^8R^9, -S(O)_2N=CH-NR^8R^9$

-SO₃R⁸, -CO₂H, -CO₂R⁸, -CONR⁸R⁹, -CSNR⁸R⁹,

 $-SR^8$ or $-CR^8(OH)-R^9$, or for C_1-C_{10} -alkyl, C_2-C_{10} -alkenyl, C_2-C_{10} -alkinyl, or C_3-C_{10} -cycloalkyl, that is substituted in one or more places in the same way or differently with hydroxy, C_1-C_6 -alkoxy, halogen, phenyl or with the group $-NR^3R^4$, and the phenyl, C_3-C_{10} -cycloalkyl, C_3-C_{12} -aryl, and $-(CH_2)_p-C_3-C_{18}$ -heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C_1-C_6 -alkyl, C_1 -

R² stands for hydrogen or C₁-C₁₀-alkyl,

C6-alkoxy, or with the group -CF3 or -OCF37

R³ stands for hydrogen, halogen, nitro, cyano, C₁-C₁₀-alkyl, halo-C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl, C₃-C₁₀-cycloalkyl, hydroxy, C₁-C₆-alkoxy, C₁-C₆-alkylthio, amino, -NH-(CH₂)_p-C₃-C₁₀-cycloalkyl, C₁-C₆-hydroxyalkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁-C₆-alkyl), -NIC₁-C₆-alkyl), -SO₂(C₁-C₆-alkyl), -SO₂(C₁-C₆-alkyl), C₁-C₆-alkanoyl.

 $-\text{CONR}^8R^9, -\text{COR}^{10}, C_1-C_6-\text{alkylOAc}, \text{ carboxy, or for the group } -\text{NR}^8R^9, \text{ or for } C_1-C_{10}-\text{alkyl}, \\ C_2-C_{10}-\text{alkenyl}, C_2-C_{10}-\text{alkinyl}, \text{ or } C_3-C_{10}-\text{cycloalkyl}, \\$

that is substituted in one or more places in the same way or differently with hydroxy, halogen, C_1 - C_6 -alkoxy,

 $C_1\text{--}C_6\text{--alkylthio, amino, cyano, }C_1\text{--}C_6\text{--alkyl, -NH-}(CH_2)_p\text{--}C_3\text{--}C_{10}\text{--cycloalkyl,}$

C₃-C₁₀-cycloalkyl, C₁-C₆-hydroxyalkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₁-C₆alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, -NHC1-C6-alkyl, -N(C1-C6-alkvl)2, -SO(C1-C6-alkvl) -SO2(C1-C6-alkvl), C1-C6-alkanovl, -CONR⁸R⁹, -COR¹⁰, C₁-C₆-alkylOAc, carboxy, -(CH₂)₀PO₃(R¹⁰)₂ or with the group

-NR8R9.

stands for hydrogen, halogen or C1-C4-alkyl,

R⁶. R⁷. R⁸.

R⁹. R¹⁰

and R¹¹, in each case independently of one another, stand for hydrogen or for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, C3-C10-cycloalkyl,

m stands for 0 to 8, and

n and p stand for 0 to 6, or isomers, diastereomers, enantiomers or salts thereof.

- 2. (Cancelled)
- 3. (Previously Presented) Compounds of formula (I).

in which

- stands for phenylene, Α
 - В stands for a bond or for C1-C12-alkylene, C3-C8-cycloalkylene or phenylene or thiophenylene that is optionally substituted in one or more places in the same way or differently with hydroxy, C1-C6-alkyl, C1-C6-hydroxyalkyl or

-(CH2)0SO3R8,

- X and Y, in each case independently of one another, stand for oxygen or for the group -NR¹¹-, -NR¹¹(CH₂)-, -CONR⁸-, -SO₂NR⁸- or -NR⁸CONR⁹-,
- R¹ and R⁵, in each case independently of one another, stand for hydrogen,
 halogen, nitro, C₁-C₆-alkyl, or for -NR⁸R⁹, -C₁-C₆-alkyloxy-C₁-C₆-alkyloxy or
 --S(O)-NR⁸R⁹.
- R² stands for hydrogen,
- R³ stands for hydrogen, halogen, cyano, C₁-C₁₀-alkyl or -CONR⁸R⁹,
- R⁴ stands for hydrogen.
- R⁸.
- \mathbb{R}^9
- and R^{11} , in each case independently of one another, stand for hydrogen or for C_{1} - C_{10} -alkyl.
- n stands for 0 to 6,
- m stands for 0 to 4, and
- p stands for 0 to 6.
- or isomers, diastereomers, enantiomers or salts thereof.
- 4. (Previously Presented) Compounds of formula (I), according to claim 3, in which
 - A stands for phenylene,
 - B stands for a bond or for C₁-C₁₂-alkylene, cyclohexylene or phenylene that is optionally substituted in one or more places in the same way or differently with hydroxy, C₁-C₆-alkyl, C₁-C₆-hydroxyalkyl or -(CH₂)SO₃R⁸.
 - X stands for oxygen or for the group -CONR⁸-, -SO₂NR⁸- or -NR⁸CONR⁹-,
 - Y stands for oxygen or for the group -NR¹¹-,
 - R¹ and R⁵, in each case independently of one another, stand for hydrogen, amino, halogen, nitro, C₁-C₆-alkyl, or for the group –NR⁸R⁹, -C₁-C₆-alkyloxy- C₁-C₆alkyloxy or –S(O)-NR⁸R⁹.

- R² stands for hydrogen,
- R³ stands for hydrogen, halogen, cyano, C₁-C₁₀-alkyl, or -CONR⁸R⁹
- R⁴ stands for hydrogen,
- R⁸, R⁹ and R¹¹, in each case independently of one another, stand for hydrogen or for methyl or isobutyl,
- m stands for 0 to 4, and
- p stands for 0 to 6.

as well as isomers, diastereomers, enantiomers, and salts thereof.

- 5. (Previously Presented) Compounds of formula (I), according to claim 3, in which
 - A stands for phenylene,
 - B stands for a bond or for C₁-C₁₂-alkylene that is optionally substituted in one or more places in the same way or differently with hydroxy, C₁-C₆hydroxyalkyl or -(CH₂)SO₃R⁸,
 - X stands for oxygen or for the group -SO₂NR⁸- or -NR⁸CONR⁹-.
 - Y stands for the group -NR¹¹-,
 - R¹ and R⁵, in each case independently of one another, stand for hydrogen, amino, halogen, nitro or for the group -S(O)₂NR⁸R⁹,
 - R² stands for hydrogen,
 - R³ stands for halogen or cyano,
 - R⁴ stands for hydrogen,
 - R8, R9 and R11 in each case stand for hydrogen, and
 - m stands for 0 to 4,

or isomers, diastereomers, enantiomers or salts thereof.

- (Cancelled)
- (Cancelled)
- (Cancelled)
- (Previously Presented) Process for the production of the compounds of formula I according to claim 1, wherein either

a) compounds of formula VIII

in which R^1 , R^2 , R^3 , R^4 , R^5 , X, Y, A, B, m and n have the meanings that are indicated in formula I, and L stands for a leaving group, are cyclized with a an acid to compounds of formula I. or

b) the acyclic precursors of formula (IX)

in which R^1 , R^3 , R^4 , R^5 , X, Y, A, B, m and n have the meanings that are indicated in formula I, and L stands for a leaving group, are first reduced to amine in a solvent and a reducing agent at 0° C until reflux takes place and then the intermediately formed amine is cyclized to the compounds of formula I.

- 10. (Cancelled)
- (Cancelled)
- 12. (Previously Presented) A method for the treatment of hormoneindependent human breast cancer, human nonsmall-cell lung cancer, human colon cancer,
 hormone-independent human prostate cancer, or hormone-independent, multiple
 pharmaceutical agent-resistant human breast cancer, comprising administering to a host in
 need thereof a compound of formula I according to claim 1.
 - (Cancelled)
- 14. (Previously Presented) A pharmaceutical composition, comprising at least one compound according to claim 1 and a pharmaceutically acceptable carrier.
 - 15. (Cancelled)
 - 16. (Cancelled)
- 17. (Previously Presented) A pharmaceutical composition, comprising compound according to claim 3 and suitable formulation substances and vehicles.
 - 18. (Cancelled)
 - 19. (Cancelled)
 - 20. (Cancelled)
 - 21. (Cancelled)
 - 22. (Cancelled)
 - 23. (Cancelled)
 - 24. (Currently Amended) Compounds of formula I

$$\mathbb{R}^2$$
 \mathbb{N}
 \mathbb{N}

in which

- A stands for phenylene or thiophenylene,
- $B \qquad \text{stands for C_1-C_{12}-alkylene, C_3-C_8-cycloalkylene, or phenylene that is} \\$ optionally substituted in one or more places in the same way or differently with

hydroxy, C1-C6-alkyl, C1-C6-hydroxyalkyl, or -(CH2)oSO3R8,

X and Y, in each case independently of one another, stand for oxygen, sulfur or for the group -NR¹¹-, -NR¹¹(CH₂)-, -CONR⁸-, -SO₂NR⁸-, -S(O)₂N(COR⁸)-, -NR⁸SO₂-, or -NR⁸CONR⁹-,

R1 and R5, in each case independently of one another, stand for hydrogen,

halogen, nitro, C_1 - C_6 -alkyl or for the group $-C_1$ - C_6 -alkyloxy- C_1 - C_6 -alkyloxy, $-NR^8R^0$, $-NR^8COR^0$, $-S(O)_2NR^8R^9$, $-S(O)_2N$ =CH- NR^8R^9 , $-CO_1H$, $-CO_2R^8$, $-CO_1R^8R^9$.

- R² stands for hydrogen,
- R³ stands for hydrogen, halogen, cyano, C₁-C₁₀-alkyl, -CONR⁸R⁹
- R⁴ stands for hydrogen.
- R6, R7, R8,
- R9, R10
- and R¹¹, in each case independently of one another, stand for hydrogen or for C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, -N(C₁-C₆-alkyl)₂, or -SO(C₁-C₆-alkyl),
- m stands for 0 to 8.
- p stands for 0 to 6, and
- n stands for 1

or diastereomers, enantiomers or salts thereof.