AMA1500 - Foundation Mathematics for Accounting and Finance Assignment 3

Due: 5pm on 21 April 2025, online submission via Blackboard

Questions

1. (48 marks, 4 marks each)) Evaluate the following integrals.

(a)
$$\int x^5 \sqrt{x^2 - 1} dx$$
 (e) $\int e^x \ln(1 + e^x) dx$ (i) $\int \sin 5x \cos 3x dx$

(e)
$$\int e^x \ln(1+e^x) dx$$

(i)
$$\int \sin 5x \cos 3x dx$$

(b)
$$\int_0^{\pi^2} x \cos(x^2) dx$$

(f)
$$\int \cos(\sqrt{x})dx$$

(b)
$$\int_0^{\pi^2} x \cos(x^2) dx$$
 (f) $\int \cos(\sqrt{x}) dx$ (j) $\int \frac{1}{x^2 - 8x + 15} dx$

(c)
$$\int \frac{1}{4x - x^2} dx$$

(g)
$$\int \frac{\ln^3 x}{x} dx$$

(c)
$$\int \frac{1}{4x - x^2} dx$$
 (g) $\int \frac{\ln^3 x}{x} dx$ (k) $\int \frac{x^2 + 2x + 7}{x^3 + x^2 - 2} dx$ (d) $\int x^2 e^{4x} dx$ (h) $\int \sin^2 x \cos^4 x dx$ (l) $\int_{-6}^{-3} \frac{\sqrt{x^2 - 9}}{x} dx$

(d)
$$\int x^2 e^{4x} dx$$

(h)
$$\int \sin^2 x \cos^4 x dx$$

(1)
$$\int_{-6}^{-3} \frac{\sqrt{x^2 - 9}}{x} dx$$

2. (24 marks, 4 marks each) Evaluate the following integrals

(a)
$$\int \frac{\cos(2x)}{\sin^2(2x) + 4} \, dx$$

(a)
$$\int \frac{\cos(2x)}{\sin^2(2x) + 4} dx.$$
(b)
$$\int x^2 \cos(2x + 3) dx.$$

$$\int (24) x \cdot i dx$$

$$= x \omega_2 i \sqrt{x} - \int \frac{1}{2\sqrt{1}} \sin(x) x dx$$

(b)
$$\int x^2 \cos(2x+3) dx$$
.

(c)
$$\int \frac{5x^2 - 2x + 42}{x^3 - 27} \, dx.$$

(d)
$$\int x^3 (\ln(x))^2 dx.$$

(e)
$$\int_0^{\frac{\pi}{4}} \sin^2(3x) \, dx$$
.

(f)
$$\int_0^2 (2x^2 - 5)^6 x \, dx$$
.

3. (12 marks, 4 marks each) Determine whether the following improper integrals are convergent or not.

(a)
$$\int_0^\infty \frac{1}{\sqrt[3]{2x+7}} dx$$
 (b) $\int_0^\infty x e^{1-3x} dx$ (c) $\int_{-\infty}^0 \frac{dx}{(2-3x)^3}$

(b)
$$\int_0^\infty x e^{1-3x} dx$$

(c)
$$\int_{-\infty}^{0} \frac{dx}{(2-3x)^3}$$

4. (5 marks) Find the area of the region enclosed by the curve y = (x+1)(x+2)(x-3)and the straight line y - 6x - 6 = 0. (12+3x+2)(x-1)

5. (5 marks) Find the arc length along the curve $y = x^2 - \frac{1}{8} \ln x$ from (1, 1) to (3, f(3)). 6. (6 marks) Let R be the region bounded between the x-axis and the curve $y = x^2 - 4x$.

Find the volume generated by rotating R about the y-axis.

