Revitalize Region Feature for Democratizing Video-Language Pre-training

Guanyu Cai^{1,2,*}, Yixiao Ge³, Alex Jinpeng Wang², Rui Yan², Xudong Lin⁴, Ying Shan³, Lianghua He^{1,†}, Xiaohu Qie³, Jianping Wu⁵, and Mike Zheng Shou²

¹Tongji University

²Show Lab, National University of Singapore

³ARC Lab, Tencent PCG

⁴Columbia University

⁵Tsinghua University

Video-Language, Pre-training

Video-language pre-training

- Jointly learns video and language representations
- Down stream task
 - Text-to-video retrieval
 - Video question answering

Motivation

- Recent methods
 - Data-hungry: massive model parameters, uncurated raw inputs
 - Massive pre-training data and long pre-training time
- Remove visual redundancy
 - Temporal, sparsely sampled video is sufficient
 - Spatial, a frame is actually worth around 30 objects

Method – Architecture

Method - Architecture

- Input: paired video V and sentence T
- Video Encoder, $\{r_n\}_{n=0}^N = E_V(\{o_n + l_n + \mathbf{P}_m\}_{l=0}^L)$
 - Pooled RoI, Regions detected by **Faster RCNN**. $\{o_n\}_{n=0}^N$
 - [CLS] token o_0 to represent the whole video.
 - Location vector with FC, $\{l_n = [x1, y1, x2, y2, w, h, w * h]\}_{n=0}^N$
 - Learned temporal position embeddings, P
- Language Encoder, $\{t_l\}_{l=0}^L = E_L(\{w_l\}_{l=0}^L)$
 - T is tokenized into word tokens $\{w_l\}_{l=0}^L$
 - [CLS] token w_0 to represent the whole sentence.

Method - Reduce Visual Redundancy

- Temporal, ClipBERT
 - Pre-training, single frame is sampled for each video.
 - Finetuning, dense sampling. (8 frames)
- Spatial
 - Extract **30 region** features per frame.
 - Sorted Selection. Top-k detection confidence.

Method - Objective

- Video-sentence alignment
 - Contrastive learning with [CLS] in batch

$$\mathcal{L}_{\text{v2l}}^{\text{global}} = -\frac{1}{B} \sum_{i}^{B} \log \frac{\exp(r_{\text{cls}}^{i^{T}} t_{\text{cls}}^{i} / \sigma)}{\sum_{i}^{B} \exp(r_{\text{cls}}^{i^{T}} t_{\text{cls}}^{j} / \sigma)}$$

$$\mathcal{L}_{\text{l2v}}^{\text{global}} = -\frac{1}{B} \sum_{i}^{B} \log \frac{\exp(t_{\text{cls}}^{i^{T}} r_{\text{cls}}^{i} / \sigma)}{\sum_{j}^{B} \exp(t_{\text{cls}}^{i^{T}} r_{\text{cls}}^{j} / \sigma)}$$

Method - Objective

- Region-Word Alignment

• n-th region, l-th word
$$a_{n,l} = \frac{\exp(\langle r_n, t_l \rangle)}{\sum_{k=1}^{L} \exp(\langle r_n, t_k \rangle)}$$

• n-th region, j-th sentence

$$\alpha_n = \sum_{l=1}^{L} a_{n,l} t_l$$

• i-th video and j-th sentence

$$S_{i,j} = \frac{1}{N} \sum_{n=1}^{N} \langle r_n, \alpha_n \rangle$$

		V	Video _i				
		r_1	r_2	r_N			
	t_L	$a_{1,L}$					
ncej	t_3	<i>a</i> _{1,3}					
Sentence _j	t_2	a _{1,2}					
	t_1	a _{1,1}					
		a_1	a_2	a_N			

Method - Objective

- Region-Word Alignment
 - Final contrastive loss

$$\mathcal{L}_{\text{v2l}}^{\text{local}} = -\frac{1}{B} \sum_{i}^{B} \log \frac{\exp(S_{i,i}/\sigma)}{\sum_{j}^{B} \exp(S_{i,j}/\sigma)}$$

		Video ₁		Vi	ideo	2	Vi	deo	В	
		r_1	r_2	r_N						
ce_j	t_L									
ıten	t_2		$S_{0,0}$							
Ser	t_1									
$ Sentence_1 Sentence_2 Sentence_j $										
ıten						S _{1,1}				
Ser										
ce ₁										
ıten								2	$S_{B,B}$	
Ser										

Experiments

- Pre-training Datasets
 - WebVid2.5M, video-language pairs
 - Google Conceptual Captions, 3.3M image-language pairs
- Downstream Tasks
 - Text-to-Video Retrieval, Video Question Answering
- Implementation Details
 - V100 GPUs, batch size of 128 per GPU
 - 50 epochs

Complexity Analysis

					1			roiwaiu	Dac	Kwaru		
Method	Data	GPU Hrs	R@1	ET -		5.1				3.6		
Frozen [4]	5.8M	4800	31.0	9		395.1				758.6		
UniVL [36]	132M	2496	21.2		-							
HERO [30]	7.6M	8064	20.5		9	7.						
VIOLET [16]	185.8M	2240	34.5	Frozen	87.	217						
ClipBERT [29]	5.6M	768	22.0	ш.								
Ours (4F/1.0)	5.8M	1600	36.3	- (0								
Ours (1F/1.0)	5.8M	800	36.0	Ours	38.4							
Ours (1F/0.5)	2.9M	416	36.4	0								
Ours (1F/0.2)	1.2M	104	34.6	_	0	200	4	Tim	600 e(ms)	800	1,000	1,2

Table 1: Comparing the pre-training efficiency with existing video-language pre-training methods. 4F means that 4 frames per video are sampled for pre-training. 0.2 means that only 20% pre-training data are used.

Figure 3: Comparing the running time of a training loop with existing video-language pretraining methods. Batchsize is set to 16 and mixed precision is disabled for all methods.

Forward Rackward

Downstream task

Method	T	ext→Vio	deo
Method	R@1	R@5	R@10
JSFusion [53]	9.1	21.2	34.1
MEE [38]	9.3	25.1	33.4
CE [35]	11.2	26.9	34.8
MMT [17]	12.9	29.2	38.8
AVLNet [42]	17.0	38.0	48.6
Dig [48]	15.8	34.1	43.6
Frozen [4]	15.0	34.1	39.8
VTMCE [1]	14.9	33.2	-
MDMMT [11]	18.8	38.5	47.9
Ours	25.2	45.5	54.5
Zero-shot			
Ours	14.3	25.8	32

Method	T	ext→Vio	deo			
Method	R@1	R@5	R@10			
MMT [17]	26.6	57.1	69.6			
ActBERT [56]	16.3	42.8	56.9			
SupportSet [41]	30.1	58.5	69.3			
AVLNet [42]	27.1	55.6	66.6			
TACo [51]	29.6	59.7	72.7			
ClipBERT [29]	22.0	46.8	59.9			
Frozen [4]	31.0	59.5	70.5			
Ours	36.0	61.0	71.8			
Zero-shot						
SupportSet [41]	12.7	27.5	36.2			
Frozen [4]	18.7	39.5	51.6			
Ours	24.0	44.0	52.6			

(a) LSMDC retrieval

(b) MSRVTT retrieval

Table 4: Comparisons with state-of-the-art results on video-language retrieval.

Downstream task

Method	MSRVTT
JSFusion [53]	83.4
ActBERT [56]	85.7
ClipBERT [29]	88.2
VideoCLIP [50]	92.1
MERLOT [54]	90.9
VIOLET [16]	91.9
Ours	92.4

Method	MSRVTT	MSVD
Co-Mem [18]	32.0	31.7
HMEMA [14]	33.0	33.7
SSML [2]	35.0	35.1
HCRN [27]	35.6	36.1
DualVGR [47]	35.5	39.0
ClipBERT [29]	37.4	-
Ours	38.3	39.5

(a) MSRVTT Multiple Choice

(b) MSRVTT QA and MSVD QA

Table 5: Comparisons with state-of-the-art results on video question answering.