## MATB42: Assignment #7

1. (a) Find an equation of the tangent plane to the surface S defined parametrically by  $\Phi(u,v) = (u^2 + v, v, u + v^2)$  at the point (9,0,3).

$$v = 0$$

$$u + v^2 = 3 \implies u = 3$$

$$\phi_u = (2(3), 0, 1)$$

$$\phi_v = (1, 1, 2(0))$$

$$\phi_u \times \phi_v = (-1, 1, 6)$$

So the tangent plane can be given by

$$0 = ((x - 9, y, z - 3) \cdot (-1, 1, 6))$$
  

$$0 = (9 - x + y + 6z - 18)$$
  

$$9 = -x + y + 6z$$

(b) Use symbolic algebra software to sketch the surface S and its tangent plane from part (a).



- 2. Use a surface integral to find the area of the triangle in  $\mathbb{R}^3$  with vertices (1,1,0), (1,2,1) and (3,3,2).
- 3. Calculate the surface area of the piece of the cone  $x^2 + y^2 z^2 = 0$  which lies outside the cylinder  $x^2 + y^2 = 4$ .

- 4. (a) Find the area of the portion of the unit sphere that is cut out by the cone  $z = \sqrt{x^2 + y^2}$ . (cf. page 391, #10)
  - (b) Find the area of the portion of the cone  $z = \sqrt{x^2 + y^2}$  that is cut out by the unit sphere.
- 5. Let  $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  be a parametrization of a 2-dim surface S in  $\mathbb{R}^3$ .
  - (a) Set

$$E = \|\phi_u\|^2, \qquad F = \phi_u \cdot \phi_v, \qquad G = \|\phi_v\|^2,$$

Show that the surface area of S is

$$A(S) = \iint_D \sqrt{EG - F^2} \, dA$$

$$\begin{split} \iint_D \sqrt{EG - F^2} \, dA &= \iint_D \sqrt{\|\phi_u\|^2 \|\phi_v\|^2 - (\phi_u \cdot \phi_v)^2} \, dA \\ &= \iint_D \sqrt{(\|\phi_u\| \|\phi_v\|)^2 - (\|\phi_u\| \|\phi_v\|)^2 \cos^2 \theta} \, dA \quad \text{Where $\theta$ is the angle between $\phi_u$ and $\phi_v$.} \\ &= \iint_D \sqrt{(\|\phi_u\| \|\phi_v\|)^2 (1 - \cos^2 \theta)} \, dA \\ &= \iint_D \sqrt{(\|\phi_u\| \|\phi_v\|)^2 (\sin^2 \theta)} \, dA \\ &= \iint_D \sqrt{\|\phi_u \times \phi_v)^2 \|} \, dA \end{split}$$

- (b) What does the formula for A(S) become if the vectors  $\phi_u$  and  $\phi_v$  are orthogonal?
- (c) Use parts (a) and (b) to compute the surface area of a sphere of radius a. (cf. Marsden & Tromba, page 399, # 23.)
- 6. For each of the following surfaces S, sketch S (using symbolic software) and evaluate the surface integral  $\int_S f \, dS$ , where f(x, y, z) = x.
  - (a) S is that part of the surface  $y = 4 x^2$  between z = 0 and z = 1, with  $y \ge 0$ .
  - (b) S is the upper half of the unit sphere centered at the origin.
  - (c) S is that part of the surface  $x = \sin y$  with  $0 \le y \le \pi$  and  $0 \le z \le 2$ .
- 7. Find the mass of the metallic surface S given by  $z = 1 \frac{x^2 + y^2}{2}$  with  $0 \le x \le 1$ ,  $0 \le y \le 1$ , if the mass density at  $(x, y, z) \in S$  is given by m(x, y, z) = xy.