

Compuertas lógicas básicas

Las Compuertas Lógicas son circuitos electrónicos conformados internamente por transistores que se encuentran con arreglos especiales con los que otorgan señales de voltaje como resultado o una salida de forma booleana, están obtenidos por operaciones lógicas binarias (suma, multiplicación).

Las compuertas lógicas trabajan en dos estados "1" y "0", los cuales pueden asignarse a la lógica positiva o lógica negativa.

- La lógica positiva es aquella que con una señal en alto se acciona, representando un 1 binario y con una señal en bajo se desactiva. representado un 0 binario.
- La lógica negativa proporciona los resultados inversamente, una señal en alto se representa con un 0 binario y una señal en bajo se representa con un 1 binario.

A continuación se presentaran las compuertas lógicas básicas.

Compuerta AND

Esta compuerta es representada por una multiplicación en el Algebra de Boole. Indica que es necesario que en todas sus entradas se tenga un estado binario 1 para que la salida otorgue un 1 binario. En caso contrario de que falte alguna de sus entradas con este estado la sálida permanecerá en 0.

Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

$$Q = A + B$$

Pinout AND

7408 de 2 entradas

7411 de 3 entradas

7421 de 4 entradas

Compuerta OR

Esta compuerta permite que con cualquiera de sus entradas que este en estado binario 1, su salida pasara a un estado 1 también. Para lograr un estado 0 a la salida, todas sus entradas deben estar en el mismo valor de 0.

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

$$Q = A + B$$

Pinout OR

7432 de 2 entradas

Compuerta NOT

En este caso esta compuerta solo tiene una entrada y una salida y esta actúa como un inversor. Para esta situación en la entrada se colocara un 1 y en la salida otorgara un 0 y en el caso contrario esta recibirá un 0 y mostrara un 1.

Q	Q'
0	1
1	0

$$Q = \overline{Q}$$

$$\mathbf{Q} \longrightarrow \mathbf{Q}$$

Pinout NOT

Compuerta NAND

También denominada como AND negada, esta compuerta trabaja al contrario de una AND ya que al no tener entradas en 1 o solamente alguna de ellas, esta concede un 1 en su salida, pero si esta tiene todas sus entradas en 1 la salida se presenta con un 0.

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

$$Q = \overline{A * B}$$

Pinout NAND

7400 de 2 entradas

7410 de 3 entradas

74120 de 4 entradas

7430 de 4 entradas

74133 de 13 entradas

Compuerta NOR

La compuerta OR también tiene su versión inversa. Esta compuerta cuando tiene sus entradas en estado 0 su salida estará en 1, pero si alguna de sus entradas pasa a un estado 1 sin importar en qué posición, su salida será un estado 0.

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

$$Q = \overline{A + B}$$

Pinout NOR

7402 de 2 entradas

7427 de 3 entradas

74260 de 5 entradas

Compuerta XOR

También llamada OR exclusiva, esta actúa como una suma binaria de un digito cada uno y el resultado de la suma seria la salida. Otra manera de verlo es que con valores de entrada igual el estado de salida es 0 y con valores de entrada diferente, la salida será 1.

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

$$Q = A * B + \overline{A * B}$$

Pinout XOR

7486 de 2 entradas

74386 de 2 entradas

Compuerta AOI

La lógica AND-OR-Invert (AOI) y las puertas AOI son funciones lógicas compuestas (o complejas) de dos niveles construidas a partir de la combinación de una o más puertas AND seguidas de una puerta NOR .

INPUT		OUTPUT		
Α	В	С	D	Q
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Pinout AOI

7451 de 2-3 entradas

7453 de 3-2-2-3 entradas

7455 2-ancho, 4-entradas

