

CSE583 Aerodynamic Force and Moment

Kuang-Ying"Eddie" Ting
University of Washington, Seattle, WA 98195

Outline

- Background
- Motivation
- Project Overview
- Progress at UW and Experimental Setup
- Samples
- Project Outline

Supersonic Configuration Evolution

Late 1990s to Present

Motivation

Supersonic airliners/SSBJs are optimized at cruise speed and often neglect low-speed impact at takeoff, approach, and landing. Studies on how the shapes and configurations affect handling qualities, dynamic, stability and control of the aircraft.

Project Overview

W

Workflow

Progress at UW

Supersonic Metrics

- Cruise L/D
- Transonic Acceleration
- Reduced Sonic Boom
- LTO noise
- S&C Requirement
- Holding and Climb

Test Model & Geometry

Test Entries and Configurations

Year	Month	Test period (days)	Total Runs (#)	Data collection
2020	July	5	152	Force & moment and flow visualization
2020	August	3	23	Force & moment
2020	September	6	133	Force & moment
2021	June	7.5	148	Force & moment
2021	August	4	54	Flow visualization
2021	September	6	225	Force & moment
2021	November	5	150	Force & moment and flow visualization
Total		36.5	885	

	Fuselage Canard		Wing	Horizontal tail	Vertical tail	Nacelle
Model	2015	2015, 2018	2015, 2017, 2020	2015, 2015 RUAV, 2020	2015, 2020	2020
Variants	Nominal/long	Forward/nominal/afterward	Outboard	Low/Mid-tail/T-tail	Nominal	Top/bottom

(a) Component dimensions

(b) Control surfaces and deflections

Components	Model	Λ (°)	b (ft)	\bar{c} (ft)	S_{ref} (ft ²)	t/c		Model	Deflections (°)
Canard	2015	50	1.22	0.536	0.61	0.04	All-moving	2015, 2018	$0, \pm 5, \pm 10, \pm 15,$
	2018	47.6	1.48	0.540	0.68	0.04	canard		±30, ±20, ±25,
Wing	2015	40.9	4.67	2.17	8.29	0.05	LE IB	2015, 2017, 2020	0, 15, 30
	2017	38	5.5	1.90	8.67	0.05	LE OB		0, 15, 30
	2020	53.5	4.41	2.24	8.09	0.05	TE IB	2015, 2017, 2020	15, 30
Horizontal	2015	50	1.17	0.67	0.73	0.04	(flaps)		
tail	2015 RUAV	50	1.43	0.82	1.09	0.04	TE OB	2015, 2017, 2020	$0, \pm 10, \pm 25,$
	2020	49.2	1.74	0.61	1.01	0.07	(ailerons)		$\pm 10R, \pm 25R$
Vertical	2015	53.1	0.72	0.87	0.58	0.05	All-moving	2015, 2015 RUAV,	$0, \pm 5, \pm 10, \pm 15$
tail	2020	53.1	0.72	1.29	0.94	0.07	stabilator	2020	
	Model	d_f (ft)	l_f (ft)				Rudder	2015	0, 10, 25
Fuselage	2015	0.54	9.55					2020	0, 10, 20

Figures/ Configuration		For-body		Aft-body			Wing		Car	ard	Horizontal tail					Vertical tail		l Fins		Nacelles		
SCALOS configurations		F15	F15.L	A15	A20	W15	W17	W20	C15	C18	H15.L	H15.A	H20.T	H20.M	H20.L	V15	V20	VF1	DF1	N20.T	N20.B	NSRI
	7+N20.B+V15 15.F+VF1+DF1 UW-S-17A	x		x			x		x						x	x		x	x		x	
	0+N20.T+V20 +H20.T+C15.F UW-S-20A	x			x			x	x				x				x			x		
F15.L+A20+W	0+N20.T+V20 +H20.T+C15.F UW-S-20AL		x		x			x	x				x				x			x		
	0+N20.B+V20 +H20.T+C15.F UW-S-20B	x			x			x	x				x				x				x	
	0+N20.T.NSRD +H20.T+C15.F UW-S-20C	X			x			x	x				x				x			x		x
F15.L+A20+W2 +V20	0+N20.T.NSRD +H20.T+C15.F UW-S-20CL		x		x			x	x				x				x			x		x
	0+N20.T+V20 +H20.T+C18.F UW-S-20D	x			×			х		x			x				x			x		
	0+N20.B+V15 15.F+VF1+DF1 UW-S-20E	x		x				x	x						x	x		x	x		x	
	0+N20.B+V15 +H20.L+C15.F UW-S-20F	x		x				x	x						x	x					x	
	0+N20.T+V15 15.F+VF1+DF1 UW-S-20G	x		x				x	x				× :		x	x		x	x	x		
	0+N20.T+V20 H20.M+C15.F UW-S-20H	X			x			x	x					x			x			x		
	5+N20.B+V15 15.F+VF1+DF1 UW-S-21A	x		x		x			x						x	x		x	x		x	
	5+N20.B+V15 +H20.L+C15.F UW-S-21B	x		x		x			x						x	x					x	
	5+N20.B+V15 18.F+VF1+DF1 UW-S-21C	x		x		x				x					x	x		x	x		x	

Kirsten Wind Tunnel

Wind Tunnel Data Reduction

- 1. Balance Interaction
- 2. Weight Tares
- 3. Moment Transfer
- 4. Blockage Correction
- 5. Flow Angularity
- 6. Wall Correction
- 7. Correction for AOA
- 8. Axis Transfer

Wind Tunnel Data Reduction

Axis, Force, and Moments

- 3 axes (body, wind, and stability)
- 3 forces (lift, drag, sideforce)
- 3 moments (pitch, roll, yaw)
- 7 CG locations (15%, 20%, 25%, 30%, 33%, 35%, 40%)
- Total of

UNIVERSITY of WASHINGTON

Sample - 1

UNIVERSITY of WASHINGTON

Sample - 2

UNIVERSITY of WASHINGTON

Sample - 2

Proposal

Core

- 1. Search run log
- 2. Extract data
- 3. Data truncation
- 4. Data interpolation
- 5. Data manipulation
- 6. Data variables
- 7. Data Visualization
- 8. Debug features

Goal

- 1. Regression
- 2. Learning

Thank you!

Acknowledgement

NASA CST Grants

KWT Staff and Crew

2021 UW Capstone students, Anwar Moustafa and Colton Hill

2022 UW Capstone students, Josh Ignacio

Flow Physics – Wing only

