Tutorial 4

Vector Spaces

- 1. An $n \times n$ matrix A is said to be symmetric if $A^T = A$. Let S be the set of all 3×3 symmetric matrices. Show that S is a subspace of $M_{3\times 3}$, the vector space of all 3×3 matrices.
- 2. (a) Let P be the plane in \mathbb{R}^3 with equation x+y-2z=4. Find two vectors in P and check that their sum is not in P.
 - (b) Let P_0 be the plane through (0,0,0) and parallel to P. Write the equation for P_0 . Find two vectors in P_0 and check that their sum is in P_0 .
- 3. Let H and K be subspaces of a vector space V. The **intersection** of H and K, written as $H \cap K$, is the set \mathbf{v} in V that belong to both H and K. Show that $H \cap K$ is a subspace of V.

4. Determine if the following set is a vector space:

$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{ll} a-2b & = & 4c \\ 2a & = & c+3d \end{array} \right\}$$

5. Find the matrix A if the following set is C(A):

$$\left\{ \begin{bmatrix} 2s + 3t \\ r + s - 2t \\ 4r + s \\ 3r - s - t \end{bmatrix} : r, s, t \text{ real} \right\}$$

- 6. For the matrix $D=\begin{bmatrix}2&-6\\-1&3\\-4&12\\3&-9\end{bmatrix}$, find a nonzero vector in $\mathbf{N}(D)$ and a nonzero vector in $\mathbf{C}(D)$.
- 7. Find the basis for the set of vectors in \mathbb{R}^3 in the plane x+2y+z=0.
- 8. Let $\mathbf{v}_1 = \begin{bmatrix} 4 \\ -3 \\ 7 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 9 \\ -2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 7 \\ 11 \\ 6 \end{bmatrix}$ and $H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. It can be verified that $4\mathbf{v}_1 + 5\mathbf{v}_2 3\mathbf{v}_3 = \mathbf{0}$. Find a basis for H.
- 9. Consider the polynomials $\mathbf{p}_1(t) = 1 + t$, $\mathbf{p}_2(t) = 1 t$ and $\mathbf{p}_3(t) = 2$ (for all t). By inspection, write a linear dependence relation among \mathbf{p}_1 , \mathbf{p}_2 and \mathbf{p}_3 . Then find a basis for Span{ \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 }.
- 10. Use an inverse matrix to find the \mathcal{B} -coordinate of the vector \mathbf{x} , i.e., $[\mathbf{x}]_{\mathcal{B}}$, for $\mathcal{B} = \left\{ \begin{bmatrix} 3 \\ -5 \end{bmatrix}, \begin{bmatrix} -4 \\ 6 \end{bmatrix} \right\}$ and $\mathbf{x} = \begin{bmatrix} 2 \\ -6 \end{bmatrix}$.
- 11. Find the dimension of the subspace H of \mathbb{R}^2 spanned by $\begin{bmatrix} 2 \\ -5 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 10 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 6 \end{bmatrix}$.
- 12. Determine the dimensions of $\mathbf{N}(A)$ and $\mathbf{C}(A)$ for $A = \begin{bmatrix} 1 & 0 & 9 & 5 \\ 0 & 0 & 1 & -4 \end{bmatrix}$.
- 13. If a 3×8 matrix A has rank 3, find dim $\mathbf{N}(A)$, dim $\mathbf{C}(A^T)$, and rank of A^T .
- 14. Suppose the solutions of a homogeneous system of 5 linear equations in 6 unknowns are all multiples of 1 nonzero solution. Will the system necessarily have a solution for every possible choice of constants on the right sides of the equations?
- 15. Verify that the rank of $\mathbf{u}\mathbf{v}^T \leq 1$ if $\mathbf{u} = \begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$.
- 16. Let $A = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $B = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be bases for V and suppose $\mathbf{a}_1 = 4\mathbf{b}_1 \mathbf{b}_2, \mathbf{a}_2 = -\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3$ and $\mathbf{a}_3 = \mathbf{b}_2 2\mathbf{b}_3$.
 - (a) Find the change-of-coordinates matrix from \mathcal{A} to \mathcal{B} .
 - (b) Find $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x} = 3\mathbf{a}_1 + 4\mathbf{a}_2 + \mathbf{a}_3$.

Answers

1.

2. (a) e.g., (4,0,0) and (0,4,0) (b) e.g., (2,0,1) and (0,2,1)

3.

4. Yes

5.
$$D = \begin{bmatrix} 0 & 2 & 3 \\ 1 & 1 & -2 \\ 4 & 1 & 0 \\ 3 & -1 & -1 \end{bmatrix}$$

6. e.g., $\mathbf{N}(A) = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{C}(D)$ is either column of D.

7.
$$\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$$

8. e.g., $\{\mathbf{v}_1, \mathbf{v}_2\}, \{\mathbf{v}_1, \mathbf{v}_3\}, \{\mathbf{v}_2, \mathbf{v}_3\}.$

9.
$$\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{p}_3 = \mathbf{0}, \{\mathbf{p}_1, \mathbf{p}_2\}$$

10.
$$\begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

11. 2

12. dim
$$N(A) = 2$$
, dim $C(A) = 2$.

13. dim
$$N(A) = 5$$
, dim $C(A^T) = 3$, rank of $A = 3$.

14. Yes

15.

16. (a)
$$P_{C \leftarrow \mathcal{B}} = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 1 & 1 \\ 4 & 1 & 0 \\ 0 & 1 & -2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 8 \\ 2 \\ 2 \end{bmatrix}$

End