Linear Regression

1. Introduction to Linear Regression

- In many real-world situations, there's a **dependent variable** Y whose value depends on **independent variables** $x_1, x_2, ..., x_r$.
- Ideal linear relation:

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_r x_r$$

where:

 \circ $\beta_0, \beta_1, ..., \beta_r$ = regression coefficients (unknown constants).

Reality:

There will always be some random error eee.

So the real model is:

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_r x_r + e$$

where e has mean 0.

This is called the Linear Regression Equation.

2. Estimating the Regression Line (Least Squares)

- Suppose you observe pairs (x_i, Y_i) for i = 1, ..., n.
- Want to find estimates A and B for α and β that minimize the **Sum of Squared Errors (SS)**:

$$SS = \sum_{i=1}^n (Y_i - A - Bx_i)^2$$

Goal:

Find A, B that minimize $SS \rightarrow called$ the **Method of Least Squares**.

Finding A and B (Normal Equations)

To minimize SS, take partial derivatives and set them to zero:

$$\frac{\partial SS}{\partial A} = 0$$
 and $\frac{\partial SS}{\partial B} = 0$

This gives two normal equations:

$$\sum Y_i = nA + B \sum x_i \ \sum x_i Y_i = A \sum x_i + B \sum x_i^2$$

From these, solving gives:

Estimators:

$$B=rac{\sum x_iY_i-nar{x}ar{Y}}{\sum x_i^2-nar{x}^2} ext{ and } A=ar{Y}-Bar{x}$$

where:

- \bar{x} = mean of x_i
- \bar{Y} = mean of Y_i
- So you first find B (the slope), then A (the intercept).

3. Final Form of Estimated Regression Line

The fitted line is:

$$\hat{Y} = A + Bx$$

This is the **estimated relationship** between x and y.

4. Distribution of Estimators A and B

Assumptions for Distribution

To talk about their distribution, we need some assumptions:

- The errors e_i (random deviations) are:
 - Independent (errors at different points don't affect each other),
 - Normally distributed (bell curve shaped),
 - **Mean 0**, **Variance** σ^2 (constant across all observations).

That is:

$$e_i \sim N(0,\sigma^2)$$

Thus:

$$Y_i = lpha + eta x_i + e_i \quad \Rightarrow \quad Y_i \sim N(lpha + eta x_i, \sigma^2)$$

This is called the classical linear regression model assumptions.

What Happens to B?

From the least squares formula, B is calculated as:

$$B=rac{\sum (x_i-ar{x})Y_i}{\sum (x_i-ar{x})^2}$$

Notice:

- B is a linear combination of the Y_i 's.
- Since the Y_i 's are **normal**, any linear combination of normal variables is also **normal**.

Thus, B is normally distributed.

Mean and Variance of B

Mean of B:

$$E[B]=\beta$$

(B is an **unbiased** estimator of the true slope β).

• Variance of B:

$$ext{Var}(B) = rac{\sigma^2}{\sum (x_i - ar{x})^2}$$

(Variance depends on how spread out the x_i values are — more spread gives smaller variance.)

What Happens to A?

From the formulas:

$$A=ar{Y}-Bar{x}$$

where \bar{Y} is the mean of Y_i .

Since B is normal and \bar{Y} is normal, A (being a combination of them) is also normally distributed.

Mean of A:

$$E[A] = \alpha$$

(\checkmark A is an **unbiased** estimator of the true intercept α).

Variance of A:

$$ext{Var}(A) = \sigma^2 \left(rac{\sum x_i^2}{n \sum (x_i - ar{x})^2}
ight)$$

5. Residuals and Estimating σ^2

• Residual = The difference between the actual observed value Y_i and the predicted value \hat{Y}_i from your regression line.

Mathematically:

$$\operatorname{Residual}_i = Y_i - (A + Bx_i)$$

where:

- Y_i = actual value,
- $A+Bx_i$ = predicted value based on your regression line.
- Residuals tell you how much your line is "off" at each data point.

Sum of Squares of Residuals (SSR)

 To measure the overall error across all points, we square each residual and add them up:

$$SSR = \sum_{i=1}^n (Y_i - A - Bx_i)^2$$

- This SSR gives the total squared error between your data and your fitted line.
- ▼ Think of it like "how badly" your line misses the data smaller SSR = better fit.

Why Estimate σ^2 ?

- σ^2 represents the **true variance** of the errors e_i in your model.

- In reality, we don't know σ^2 , because we don't know the true errors.
- So, we **estimate** it using the residuals from the fitted model.

How to Estimate σ^2 ?

From theory:

• It can be shown that:

$$rac{SSE}{\sigma^2} \sim \chi^2_{n-2}$$

(That is, it follows a **Chi-squared distribution** with n-2 degrees of freedom.)

Because we lose 2 degrees of freedom:

- 1 for estimating the intercept A,
- 1 for estimating the slope B.

Thus, the **unbiased estimator** of σ^2 is:

$$\hat{\sigma}^2 = rac{SSE}{n-2}$$

- ✓ So you:
 - · Calculate the residuals,
 - · Find SSE,
 - Divide SSE by n-2 to get $\hat{\sigma}^2$.

Symbol	Full Form	Formula	Use
SSR	Sum of Squares due to Regression	$\sum (\hat{y}_i - ar{y})^2$	Variation explained by regression
SSE	Sum of Squares of Errors (Residuals)	$\sum (y_i - \hat{y}_i)^2$	Variation not explained by regression
SST	Total Sum of Squares	$\sum (y_i - ar{y})^2$	Total variation in data
σ^2	Estimate of error variance (MSE)	$rac{SSE}{n-2}$	Used for inference (e.g., standard errors, confidence intervals)