Lecture 3

- Measurement of RMS value
- Measurement of Power and Energy

DC Power

 $P = Energy/Time = V \cdot I$

WHY
$$P = V \cdot I$$
?

I volt = work necessary to move a I columb

I ampere = I columb of change moving in I second

ampere = charge/time
$$[A] = [C]/[s]$$

 $P = V \cdot I = work/charge \cdot charge/time = work/time$

 $P = V \cdot I$

 $P = V \cdot I$ load R_I R_{V} load

Correction of methodic error

$$P = V_m \cdot I_{load}$$
$$= V_m \cdot (I_m - I_V)$$

$$I_V = V_m/R_V$$

 $P = V \cdot I$ load load

Correction of methodic error

$$P = V_{load} \cdot I_{load}$$
$$= (V_m - V_A) \cdot I_m$$

$$V_A = I_A \cdot R_A$$

Ideally

AC POWER

AC POWER

The average value of the instantaneous power is the effective power we are interested in

$$P = \frac{1}{T} \int_0^T p dt = \frac{1}{T} \int_0^T v \cdot i dt$$

If the current is $\pi/2$ shifted then the average power is 0

If the current is $\pi/2$ shifted then the average power is 0

If the phase difference between voltage and current is an angle φ

$$P = V_{RMS} \cdot I_{RMS} \cdot \cos \varphi$$

Let's go back to the case when $\varphi = \pi/2$

Let's go back to the case when $\varphi = \pi/2$

REACTIVE POWER

Represents the energy which oscillates between the generator and the load without producing any transfer on energy

$$Q = V_{RMS} \cdot I_{RMS} \cdot \sin \varphi$$

Finally we have three powers to measure

[VA]
$$S = V_{RMS} \cdot I_{RMS} \cdot Sin\varphi$$

$$[VAR]$$

$$P = V_{RMS} \cdot I_{RMS} \cdot Cos\varphi$$

$$[W]$$

$$S = \sqrt{P^2 + Q^2}$$

In case of non-harmonic waveforms: $S = \sqrt{P^2 + Q^2 + D^2}$

But why should we measure all of them?

In this case I can't simply use a voltmeter and an ammeter, because besides voltage and current I have to measure also the phase between them

The wattmeter

It has two coils: a voltmeter coil and ammeter coil

BE CAREFUL:

- I) both coils have a sign
- 2) if $I>I_{max}$ the instrument is saturated (bad!). But if simultaneousely $V<<V_{max}$ the total reading will appear ok

The wattmeter

Still we have to apply correction of methodical error

The wattmeter

Still we have to apply correction of methodical error

B is better if you don't correct methodical error because P_{CC}<P_{VC}

Measurement of reactive power

to sin ϕ shifting the voltage by $\pi/2$

Three phase industrial net

CASE A - Symmetrical voltage system - balanced load ACTIVE POWER

If the load is balanced and all voltages have the same amplitude, all the currents have also the same amplitude

$$|V_1| = |V_2| = |V_3|$$
 $|\phi_1| = |\phi_2| = |\phi_3|$
 $|I_1| = |I_2| = |I_3|$

CASE A - Symmetrical voltage system - balanced load ACTIVE POWER

$$|V_1| = |V_2| = |V_3|$$
 $|I_1| = |I_2| = |I_3|$
 $|\phi_1| = |\phi_2| = |\phi_3|$

Each phase absorbs the same power. It's enough to measure one of them and triple it

 P_m is the power measure by the wattmeter

CASE A - Symmetrical voltage system - balanced load REACTIVE POWER

Again, we can measure one reactive power and then triple it... but how can we obtain $\pi/2$ phase shift?

$$Q = V_{RMS} \cdot I_{RMS} \cdot \sin \varphi = V_{RMS} \cdot I_{RMS} \cdot \cos \left(\frac{\pi}{2} - \varphi \right)$$

We can still use a wattmeter to measure reactive power but V_{23} is larger than V_1 !

$$V_{23} = \sqrt{3} V_1$$

Therefore, we must divide the measured power by $\sqrt{3}$

$$Q = 3 P_{m} / \sqrt{3}$$

CASE B - Symmetrical voltage system - UNbalanced load ACTIVE POWER

The voltages are still symmetrical, but each line absorbs a different current.

The vectorial sum of the currents is 0.

$$| | + |_2 + |_3 + |_{N} = 0$$

CASE B - Symmetrical voltage system - UNbalanced load

I can't do anything else than measure the power of each line and then sum them up

$$P = P_1 + P_2 + P_3$$

Special case: load with no N connection

ONLY 2 WATTMETERS are required to measure the total power

CASE B - Symmetrical voltage system - UNbalanced load

I can't do anything else than measure the power of each line and then sum them up

$$P = P_1 + P_2 + P_3$$

Aaron connection

$$P = P_{13} + P_{23}$$

$$P = \frac{1}{T} \int_{0}^{T} (v_{1} \cdot i_{1} + v_{2} \cdot i_{2} + v_{3} \cdot i_{3}) dt$$

$$= \left(v_{1} \cdot i_{1} + v_{2} \cdot i_{2} - v_{3} \cdot (i_{1} + i_{2}) \right)$$

$$= \left((v_{1} - v_{3}) \cdot i_{1} + (v_{2} - v_{3}) \cdot i_{2} \right)$$

$$= \left(v_{13} \cdot i_{1} + v_{23} \cdot i_{2} \right)$$

REACTIVE POWER

REACTIVE POWER

REACTIVE POWER

 $\pi/2$ between V_2 and V_{13}

$$Q_2 = V_2 \cdot I_2 \cdot \sin \varphi_2$$

$$Q_2 = \frac{V_{31}}{\sqrt{3}} \cdot I_2 \cdot \cos \left(\frac{\pi}{2} - \varphi_2\right)$$

REACTIVE POWER

REACTIVE POWER

$$Q = \frac{P_{A}}{\sqrt{3}} + \frac{P_{B}}{\sqrt{3}} + \frac{P_{C}}{\sqrt{3}}$$

ELECTRONIC WATTMETER

A) Analog multiplier

Analog multiplier can be based on

- Hall effect
- log-antilog
- -TDM (Time Division Multiplier)

Hall effect multiplier

$$V = k \cdot F = k \cdot (I \cdot B)$$

B is created from a voltage by a solenoid and multiplied by the current

LOG-ANTILOG MULTIPLIER

It's based on the funny property which makes possible to transform a multiplication to an addition in logarithmic world

$$log(A \cdot B) = log A + log B$$

TDM (Time division multiplier)

ELECTRONIC WATTMETER

B) Digital multiplier

Both current and voltage are sampled, then the product is calculated numerically

What if the current is too high?

CURRENT TRANSFORMER

BE CAREFUL: never open the secondary winding

CURRENT TRANSFORMER

BE CAREFUL: if you remove the ammeter short circuit the secondary winding

VOLTAGE TRANSFORMER

Always leave secondary winding open

Measurement of power with MEASUREMENT TRANSFORMS

How can I convert a current into a voltage?

- Transformer and current to voltage converter (with opamp)
- Coaxial shunt
- Hall effect sensor (I measure the magnetic field produced by the current)

MEASUREMENT OF ENERGY

We must integrate the power

We convert the signal representing the power into frequency and then we count the pulses

MEASUREMENT OF RMS VALUE

$$V_{RMS} = \sqrt{\frac{1}{T} \int_{0}^{T} v(t)^{2} dt}$$

Analog instruments and cheap digital intruments

Rectified Mean value (RM)

RM value and RMS are different!

Rectified Mean value

$$V_{RM} = \frac{I}{T} \int_0^T |v(t)| dt$$

RMS value

$$V_{RMS} = \sqrt{\frac{1}{T}} \int_{0}^{T} v(t)^{2} dt$$

For sinewaves:

$$V_{RMS} = \frac{V_{MAX}}{\sqrt{2}} \qquad V_{RM} = \frac{2}{\pi} V_{MAX}$$

Cheap instruments measure V_{RM} but they multiply the scale 1.11 times to show V_{RMS}

$$V_{RMS} = \frac{V_{RM} \cdot \frac{\pi}{2}}{\sqrt{2}} \approx I.II \cdot V_{RM}$$

Wrong measurement if the voltage is NOT sinewave!

SMARTER METHODS TO MEASURE RMS VALUE

- Sampling the waveform followed by numerical computation of the RMS value

- Multiplication
 - hall effect
 - log-antilog
 log is defined only for positive values!
 You must add dc value to use log-antilog multiplier for negative value
- Thermal RMS to DC converter

THERMAL RMS to DC CONVERTER

It compares the heat produced by I_X (unknown) and the heat produced by I_N (known)

THERMAL RMS to DC CONVERTER

STEP I

The heat produced by I_X generates heat which generates in turn V_t .

I change V_P so that is equals V_t

THERMAL RMS to DC CONVERTER

STEP 2

I change I_N until the heats it generates gives rise to a voltage V_t equal to V_P

In this condition the two heats are equivalent and