RAPPORT DE PROJET ARDUINO:

SECUR'DUINO: Coffre fort minimaliste

Introduction

L'objectif de notre projet était de concevoir un coffre-fort sur batterie utilisant plusieurs technologies pour assurer le (dé)verrouillage et la sécurité des objets à l'intérieur. Il se différencie des autres coffres forts par plusieurs points :

Le premier étant les technologies contrôlant son accès, à savoir un lecteur RFID combiné à un clavier à chiffres. Un choix qui combine modernité et sécurité renforcée avec la connaissance d'un code en plus d'avoir une simple carte d'accès.

Le deuxième point est son design, qui se veut « minimaliste ». Aucun composant ni quelconque autre éléments ne doit être visible à l'extérieur, le but étant qu'en plus de renforcer la sécurité, le coffre ne soit à première vue qu'une « simple boite ». Cela a nécessité la conception de beaucoup de systèmes complexes pour par exemple cacher et dévoiler le clavier, ou encore avoir des charnières qui soient invisibles.

A cela, sont aussi ajoutées d'autres fonctionnalités et composants plus classiques, comme une alarme sonore et des LEDS d'indication, le tout faisant de Secur'duino un coffre fort moderne, sûre et discret.

Cahier des Charges

Énoncé de la fonction	Critères d'appréciation	<u>Exigence</u>
Résister à une tentative d'intrusion physique	Matériau et épaisseur du coffre Résistance du système du loquet de la porte	N.C.* N.C.
Contrôler l'accès et l'ouverture du coffre	Vérification RFID Vérification du Code	Pas de limite d'essai 5 tentatives
Avertir Sonorement d'une intrusion	Déclenchement d'alarme si le code n'est pas le bon	30 secondes
Indiquer lumineusement le statut du coffre à l'utilisateur	Activation de LEDS Rouge et Verte, en fonction du (dé)verrouillage du coffre (allumage continue et clignotement)	3 secondes
Doit être minimaliste	Couleur Disposition des composants	Noire Pas de composants apparents
Empêcher le blocage du coffre en cas de coupure électrique	Batterie rechargeable depuis l'extérieur du coffre.	Pas d'autonomie précise

*N.C.: Non Communiqué, le coffre ayant été réalisé en bois et le développement étant plus accès sur son fonctionnement global que sa résistance, aucun tests ou prédictions de matériaux (acier, ...) n'ont été effectués.

Mécanique et Structure

<u>Dimensions</u> (Hauteur x Largeur x Profondeur) :
Coffre : 30 x 21 x 14,8 cm (Porte : 30 x 21 x 4,8 cm)

 Système de coulisse du cache clavier : Servomoteur n°1 relié à un enrouleur de câble, faisant une rotation de 180° maximum, pour la montée et descente du cache.

• <u>Système de verrouillage par crochet</u>: Servomoteur n°2 relié à un crochet **(1)** imprimé en 3D faisant une rotation de 90° pour bloquer le crochet dans une pièce imprimée en 3D avec une fente **(2)**.

 <u>Fixation de la porte depuis l'intérieur</u>: charnières imprimées en 3D avec fentes de coulissage pour les vis attachées à la porte (à droite sur la photo).
Elles permettent à la porte d'être alignée avec le coffre, et une ouverture à 90° sans butter contre le coffre.

- <u>Ouverture de la porte</u> : En position fermée, il faut d'abord faire **glisser la porte vers la gauche** puis l'**ouvrir avec une rotation classique**. Mouvement dans l'ordre inverse pour la fermeture.
- <u>Disposition des composants</u>: La batterie, carte Arduino et autres composants... sont à l'intérieur de la porte. Les fils électriques reliant les différents composants restent uniquement dans la porte, contrairement à si la carte et la batterie se trouvaient dans le coffre, ce qui aurait impliqué que des fils aillent de la porte au coffre et soient visibles quand nous l'ouvrons. Des supports ont été modélisés et imprimés en 3D pour tenir les servomoteurs depuis l'intérieur, sur le panneau avant de la porte.

Électronique et Programmation

Figure 1 : Schéma de branchement électronique

Figure 2 : Algorigramme du code

Coût du projet

Liste du matériel :

Composants	Quantité	Prix unitaire	Prix Lot
Servomoteur SG90	2	4,90 €	9,80 €
Lecteur RFID RC522	1	9,90 €	9,90€
Carte Arduino Uno R3	1	25 €	25 €
Clavier Code Arduino 4X4	1	7,60 €	7,60 €
LED Rouge / Verte	2	0,25 €	0,50€
Résistance	2	0,1 €	0,2 €
Carte PCB à souder	1	1,26 €	1,26 €
Autres: PLA Impression 3D, Bois,	//	//	25€
COÛT TOTAL			79,26 €

Estimation du temps, & Rémunération :

(Rémunération calculée d'après un salaire de 38 000 € pour 3600 h de travail)

DAVID_:

Temps: $8 \times 3h \text{ (cours)} + \sim 50h$

(temps libre) = **74h** Rémunération : **781** €

ULYSSES:

Temps : 8 x 3h (cours) = **24h** Rémunération : **253** €

Planning

Semaine	Tâches prévues	Tâches effectuées
1	Cahier des charges, Fonctions du coffre	Cahier des charges, Fonctions du coffre
2	Dimensions, dessin pièces et début du code	Dimensions, dessin pièces et début du code
3	Modélisation de toutes les pièces pour impression 3D	Maquette porte en carton, système coulisse, placement composants
4	Maquette du coffre + code	Réflexion charnières à utiliser, épaisseurs de bois dispos et nécessaires, test RFID à travers le bois
5	Impression 3D des pièces code : implémentation LEDS	Modélisation coffre, découpe de la face avant de la porte. Modélisation 3D de certaines pièces (supports servomoteurs) + réflexion sur le loquet
6	Implémentation blocage, Découpe, assemblage du coffre	Modélisation 3D d'autres pièces. Test de coulissage, début soudure carte PCB
7	Rectifications	Soudures carte PCB, modélisation 3D charnières, loquet , changement dimensions coffre et modélisation par planches. Finalisation du code
8	Derniers détails (peinture)	Découpe finale du coffre, usinage charnières, fixation composants, peinture noire sur le coffre

Problèmes & Solutions

<u>Pas de bois d'épaisseur 10mm au FabLab</u>: Ayant modélisé certaines planches du coffre par rapport à des épaisseurs de 10mm, car persuadé qu'il y en avait en stock, j'ai dû revoir les épaisseurs et certaines dimensions du coffre pour que les planches puissent être découpées convenablement. Cela m'a aussi permis de voir que certaines choses ne seraient pas allées si j'avais fait certaines découpes comme prévue dans du bois de 10 mm d'épaisseur, mais j'ai pu rectifier tout cela à temps.

<u>Soudure Carte PCB</u>: Une chose qui m'a pris beaucoup de temps par manque d'expérience, mais à force de pratique et de conseils, j'ai pu réussir à souder correctement sur la carte.

<u>Usinage de pièces</u>: Nombreuses sont les pièces imprimées en 3D qui ont du être réusinée à la Dremel, car je n'avais pas anticipé certaines choses, ou bien que l'imprimante n'avait pas été assez précise.

<u>Problème d'alimentation</u>: Un problème est survenue sur la fin avec l'activation de la LED « L » du port 13 de la carte Arduino, là où est branché le lecteur RFID. Le problème fait que parfois le lecteur ne fonctionne et rend le coffre non déverrouillable, chose qui est arrivée pendant la démonstration. Aucune solution n'a été trouvé pour ce problème.

Conclusion - Perspectives

La réalisation du coffre fort, a été du début jusqu'à la fin une expérience très intéressante et stimulante mais parfois elle s'est aussi avérée difficile et frustrante quand certaines choses ne voulaient pas fonctionner. Si nous avions encore 9 séances, nombreuses seraient les choses à améliorer, parmi lesquelles : la fixation des composants, le coulissement du cache pour que celui-ci fonctionne correctement mais aussi les charnières qui ne coulissent pas bien car usinées grossièrement, et surtout le « problème d'alimentation » avec le lecteur RFID.

Apports personnels:

« Lors de la présentation de la spécialité robotique, le responsable nous avait dit que nos projets pouvaient être orientés souvent plus sur une spécialité qu'une autre (mécanique, informatique ou électronique) et que cela reflétait ce vers quoi nous étions attirés le plus. Le fait d'avoir fait beaucoup de modélisation de pièces en 3D, d'usinage et une maquette du coffre, et moins d'informatique ou d'électronique, m'a montré que j'étais sûrement plus voué à faire une spécialité l'an prochain en rapport avec de la physique ou de la mécanique. »

DAVID

« Ce projet m'a permis de développer de nouvelles compétences en programmation en C (langage Arduino) et aussi de nouvelles connaissances en électronique. »

ULYSSES