SageMaker Setup Instructions

- Send an email to <u>dgl-www@request-nb.mxnet.io</u>
- You will receive two emails. Click the notebook link the in the second one.
- Need help?
 - Join our slack channel

💢 Jupyter
Files Running Clusters
Select items to perform actions on them.
0 -
□ □ _legacy
□ □ applications
□ C asset
□ □ basic_tasks
□ C dgl_api
□ □ images
□ □ large_graphs
□ □ GNN_overview.pptx
□ □ README.md

Deep Graph Library an update

https:www.dgl.ai

Zheng Zhang
Director, AWS Shanghai AI Lab (<u>zhaz@amazon.com</u>)
<u>zz@nyu.edu</u> (on leave)

DGL-KE (preview)

DGL meta-objectives & architecture

- Forward and backward compatible
 - Forward: easy to develop new models
 - Backward: seamless integration with existing frameworks (MXNet/Pytorch/Tensorflow)
- Fast and Scalable

DGL: design & API

Flexible message propagation

Full propagation ("everyone shouts to everyone near you")

- Propagation by graph traversal
 - Topological order on sentence parsing tree
 - Belief propagation order
 - Sampling
- Propagation by random walk

DGL programming interface

- Graph as the core abstraction
 - DGLGraph
 - g.ndata['h']
- Simple but versatile message passing APIs

$$\operatorname{send}(\mathcal{E}, \phi^e), \quad \operatorname{recv}(\mathcal{V}, \bigoplus, \phi^v)$$

Active set specifies which nodes/edges to trigger the computation on.

 $\phi^e \ \phi^v \ \bigoplus$ can be user-defined functions (**UDF**s) or **built-in** symbolic functions.

Flexible message handling

Message function

Edge-wise:
$$\mathbf{m}_{k}^{(t)} = \phi^{e}(\mathbf{e}_{k}^{(t-1)}, \mathbf{v}_{r_{k}}^{(t-1)}, \mathbf{v}_{s_{k}}^{(t-1)}),$$

Node-wise:
$$\mathbf{v}_i^{(t)} = \phi^v(\mathbf{v}_i^{(t-1)}, \bigoplus_{\substack{k \\ \text{s.t. } r_k = i}} \mathbf{m}_k^{(t)}),$$

Update function

Reduce function

[Gilmer 2017, Wang 2017, Battaglia 2018]

Writing GNNs is intuitive in DGL

update_all is a shortcut for
send(G.edges()) + recv(G.nodes())

```
# code: PyTorch + DGL
# G: DGL Graph
# H: node repr matrix (n_nodes, in_dim)
# W: weights (in_dim * 2, out_dim)
import dgl.function as fn
G.ndata['h'] = H
G.update_all(
    fn.copy_u('h', 'm'),
    fn.max('m', 'h_n'))
H_N = G.ndata['h_n']
H = torch.relu(torch.cat([H_N, H], 1) @ W)
```

$$h_v^{(t+1)} = \max_{u \in \mathcal{N}(v)} h_u^{(t)}$$

```
# code: PyTorch + DGL
# G: DGL Graph
) # H: node repr matrix (n_nodes, in_dim)
# W: weights (in_dim * 2, out_dim)
import dgl.function as fn
G.ndata['h'] = H
G.update_all(
    fn.copy_u('h', 'm'),
    fn.mean('m', 'h_n'))
H_N = G.ndata['h_n']
H = torch.relu(torch.cat([H_N, H], 1) @ W)
```

$$h_v^{(t+1)} = rac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} h_u^{(t)}$$

Writing GNNs is intuitive in DGL (GAT)

```
def msg_func(edges):
    h_src = edges.src['h']
    h_dst = edges.dst['h']
    alpha_hat = MLP(
                                              # code: PyTorch + DGL
        torch.cat([h_dst, h_src], 1))
                                              # G: DGL Graph
    return {'m': h_src, 'alpha_hat': alpha}
                                              # H: node repr matrix (n_nodes, in_dim)
                                              # W: weights (in_dim * 2, out_dim)
def reduce_func(nodes):
    # Incoming messages are batched along
                                              import dgl.function as fn
    # 2nd axis.
                                              G.ndata['h'] = H
    m = nodes.mailbox['m']
                                              G.update_all(msg_func, reduce_func)
    alpha_hat = nodes.mailbox['alpha_hat']
                                              H N = G.ndata['h n']
    alpha = torch.softmax(alpha_hat, 1)
                                              H = torch.relu(torch.cat([H N, H], 1) @ W)
    return {'h_n':
        (m * alpha[:, None]).sum(1)}
```

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_i]\right)\right)}$$

Different scenarios require different supports

Single giant graph

Dynamic graph

Many moderate-sized graphs

Summary of DGL Programming Interface

		DGL		
Message Passing	arbitrary ϕ^e arbitrary ϕ^v arbitrary \bigoplus	✓ ✓	User-defined functions	Send, Recv
Propagation Order	full partial random walk sampling	✓ ✓ ✓	Active set	
Graph Type	many & small single & giant	✓ ✓	Batching APIs	Mutation APIs
Турс	dynamic heterogeneous	✓ ✓	Sampling APIs	Support multi-type
System	multi-platform	✓		

Performance evaluation

Initially paid a price for multi-backend (woops!)

Table 4: Training runtime comparison.

Dataset	Method	DGL DB	DGL GS	PyG
Cora	GCN	4.19s	0.32s	0.25s
	GAT	6.31s	5.36s	0.80s
CiteSeer	GCN	3.78s	0.34s	0.30s
	GAT	5.61s	4.91s	0.88s
PubMed	GCN	12.91s	0.36s	0.32s
	GAT	18.69s	13.76s	2.42s
MUTAG	RGCN	18.81s	2.40s	2.14s

Fast Graph Representation Learning with PyTorch Geometric

Evaluation: efficiency and memory consumption

Dataset	Model	A commo ov	Time		Memory	
Dataset	Model	Accuracy	PyG	DGL	PyG	DGL
Cora	GCN	81.31 ± 0.88	0.478	0.666	1.1	1.1
Cora	GAT	83.98 ± 0.52	1.608	1.399	1.2	1.1
CiteSeer	GCN	70.98 ± 0.68	0.490	0.674	1.1	1.1
	GAT	69.96 ± 0.53	1.606	1.399	1.3	1.2
PubMed	GCN	79.00 ± 0.41	0.491	0.690	1.1	1.1
rubivicu	GAT	77.65 ± 0.32	1.946	1.393	1.6	1.2
Reddit	GCN	93.46 ± 0.06	OOM	28.6	OOM	11.7
Reddit-S	GCN	N/A	29.12	9.44	15.7	3.6

Table 2: Training time (in seconds) for 200 epochs and memory consumption (GB).

Testbed: one V100 GPU (16GB)

Scalability: single machine, single GPU

Scalability with graph size

Scalability with graph density

Scalability: single machine, multi-GPU

p3.16xlarge, 8 V100 GPUs, 64 vCPU Data set: Reddit (232K nodes, 114M edges) GraphSage neighbor sampling

Scalability: single machine, NUMA

X1, 2TB, 128 vCPU
Data set: Reddit (232K nodes, 114M edges)
Controlled-variate sampling

Evaluation: auto-batching

Compare with DyNet for training TreeLSTM

Testbed: one V100 GPU (16GB)

What's new

Release 0.4 and 0.43

Heterogenous graph

• Example: recommendation system, GCMC

Supporting Heterogeneous Graph

```
1 import torch
 2 import torch.nn as nn
 3 import torch.nn.functional as F
 4 import dgl.function as fn
 6 class HeteroRGCNLayer(nn.Module):
       def init (self, in size, out size, etypes):
           super(HeteroRGCNLayer, self). init ()
           # define parameter W r for each relation
           self.weight = nn.ModuleDict({
11
                   name : nn.Linear(in size, out size) for name in etypes
12
               })
13
14
       def forward(self, G, feat dict):
15
           # G is a heterogeneous graph
           # feat dict is a dictionary of features of each node type
16
17
18
           for srctype, etype, dsttype in G.canonical etypes:
19
               # Compute W r * h
               Wh = self.weight[etype](feat_dict[srctype])
20
21
               # Save it to graph
22
               G.nodes[srctype].data['Wh %s' % etype] = Wh
23
               # Per-type message passing: (message func, reduce func)
               # All reducers write to the same field 'h', which is a hint for type-wise reducer.
24
25
               funcs[etype] = (fn.copy u('Wh %s' % etype, 'm'), fn.mean('m', 'h'))
26
           # Trigger message passing on heterograph using multi update all
27
           # Argument#1: per-type message passing functions.
           # Argument#2: type-wise reducer, could be: "sum", "max", "min", "mean", "stack"
28
29
           G.multi update all(funcs, 'sum')
30
           # Return the updated features of each node type.
31
           return {ntype : G.nodes[ntype].data['h'] for ntype in G.ntypes}
```


Example: graph convolutional matrix completion

Dataset	RMSE (DGL)	RMSE (Official)	Speed (DGL)	Speed (Official)	Speedup
MovieLens-100K	0.9077	0.910	0.0246 s/epoch	0.1008 s/epoch	5x
MovieLens-1M	0.8377	0.832	0.0695 s/epoch	1.538 s/epoch	22x
MovieLens-10M	0.7875	0.777*	0.6480 s/epoch	Long*	

^{*}Official training on MovieLens-10M has to be in mini-batch, which lasts for over 24+ hours

Example: drug discovery

Training time per epoch (1 V100 GPU)

	DGL	Official	Speedup
<u>ACNN</u>	0.36	1.58	4.4x

Atomic Convolutional Neural Network (ACNN)

Digress: even more examples of drug discovery

Training time per epoch (1 V100 GPU)

	DGL	Official	Speedup
<u>ACNN</u>	0.36	1.58	4.4x
<u>JTNN</u>	743	1826	2.5x
GCN (Tox21)	1.9	8.4	4.4x
AttentiveFP*	1.2	6.0	5x

^{*}Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism (GAT, deep, GRU aggregation)

DGL 0.43 Release

Minor release loaded with features:

- TF backend support
- 2 DGL domain packages
 - DGL-KGE
 - DGL-LifeSci (5 new models)
- Sampling API

0.43 – (1) TensorFlow backend support

- 15 common GNN modules (including heterography support)
- On average x3.5 faster than GraphNet, x1.9 than tf-geometric

Dateset	Model	DGL	GraphNet	tf_geometric
Cora	GCN	0.0148	0.0152	0.0192
Reddit	GCN	0.1095	ООМ	OOM
PubMed	GCN	0.0156	0.0553	0.0185
PPI	GCN	0.09	0.16	0.21
Cora	GAT	0.0442	n/a	0.058
PPI	GAT	0.398	n/a	0.752

0.43 - (2) DGL-KE:

Light-speed for knowledge graph embedding learning, at scale

• 2~5 speedup over PyTorch Big Graph/GraphVite

Full FreeBase

- 86M nodes
- **348M** edges
- **30min** on 4 48core machines

0.43 – (2) DGL-KE: runs on multi-GPU, too

Light-speed for knwledge graph embedding learning, with scale

2~5 speedup over PyTorch Big Graph/GraphVite

Full FreeBase

- **86M** nodes
- **348M** edges
- **100min** on 8-GPU

0.43 - (3) Sampling (for giant graph)

```
class NeighborSampler(object):
   def __init__(self, g, fanouts):
       self.g = g # The full graph structure
       self.fanouts = fanouts # fan-out of each layer
   def sample_blocks(self, seeds):
       # `seeds` are the set of nodes to build one sample from.
       blocks = []
        for famout in self.famouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = dql.sampling.sample neighbors(q, seeds, fanout, replace=True)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]
            blocks.insert(0, block)
        return blocks
```

Neighbor sampling, +control variate, random walk ...

- Works with many GNNs (PinSAGE, GraphSAGE, GCMC, ...)
- Support customization in Python.
- Support heterogeneous graphs.
- Use existing NN modules without code change.
- Multi-processing & multi-threading for maximum speed.

Distributed training: GCN (preliminary results)

Neighbor sampling

Data set: Reddit (232K nodes, 114M edges)

Testbed: c5n.18x, 100Gb/s network, 72vCPU

Distributed training of GCN on Reddit dataset.

Seeing the world from the lens of graphs

Transfomer is GAT (over a complete graph)

SegTree-Transformer (in ICLR'19 RLGM)

- $O(n\log n)$: less data hungry
- A good compromise in between

Figure 1: The Transformer - model architecture.

Graph in Natural Language Processing

- Knowledge Graph to Sentence
 - Input: a title and knowledge graph
 - Output: abstract text

<u>Title: Event Detection with Conditional Random Fields</u>

Graph in Natural Language Processing

- GraphWriter
 - Graph Attention
 - Copy or vocab

Graph Attention Head 1 Vi - 1			"Text From Graph
Head 2 \[\alpha^2_{ij} \] \[\psi^{\prime-1} \]	Graph Transforme	r (Title
Head N	h_t At	ttention	Layers
V _i ·-1	, , , , , , , , , , , , , , , , , , ,	C	t
		严	
	W_{t-1} Copy		Voc
	Mechani	sm	Soft

DGL	Official	Speedup
1192 (s)	1970 (s)	1.7x

"Text Generation

From Knowledge

Title Encoder

Vocab Softmax h_{t+1}

Graphs"

Scene graph extraction (experimental)

- Graph R-CNN for Scene Graph Generation
 - Per epoch time 45min (vs. 2.5hr)

Object Detection

Link exists with prob 68.99%

Link type: <man> <have> <shirt>, 43.29% <man> <wear> <shirt>, 39.64%

Open source, the source of innovation

Neurips'19 WWW'20 3481 4555 github stars
312k 1770k downloads for all versions on Pip
8.8K 13K downloads for all version on Conda
1.8K 6.4K anaconda downloads of 0.4+

32 model examples, 28 NN modules (including 14 15 GNN convolution modules) 6 10 pretrained models for chemistry GCN, generative, KG, RecSys... 45 53 contributors, 10 core developers

DGL: next step(s)

Welcome contributions! Please cite:

DEEP GRAPH LIBRARY: TOWARDS EFFICIENT AND SCALABLE DEEP LEARNING ON GRAPHS

Minjie Wang ^{1 3}, Lingfan Yu ¹, Da Zheng ³, Quan Gan ⁴, Yu Gai ², Zihao Ye ⁴, Mufei Li ⁴, Jinjing Zhou ⁴, Qi Huang ², Chao Ma ⁴, Ziyue Huang ⁵, Qipeng Guo ⁶, Hao Zhang ⁷, Haibin Lin ³, Junbo Zhao ¹, Jinyang Li ¹, Alexander Smola ³, Zheng Zhang ^{4 2}

¹ New York University, ² NYU Shanghai, ³ Amazon Web Services, ⁴ AWS Shanghai AI Lab

⁵ Hong Kong University of Science and Technology, ⁶ Fudan University,

⁷ Chongqing University of Posts and Telecommunications

George Karypis (Univ Minnesota/AWS)

We are hiring!

Q&A

