Tidy data; Reshaping data to tidy it up

STAT-611

Tidy vs. Messy

Outline

- 1. What is tidy data?
- 2. How to make messy data tidy—the idea
- 3. How to make messy data tidy—examples
- 4. How to make messy data tidy—the tools

Based on Hadley Wickham's work. Search on hadley wickham tidy data hadley wickham reshape2

for more information

1. What is tidy data?

- The idea
 - We want data arranged in a way that is most useful for analysis
- Small data set example
 - N of days to recover from separate sore-throat events under each of two treatments:

name	treatmentA	treatmentB
John Smith		5
Jane Doe	1	4
Mary Johnson	2	3

Tidy data—definition

- For tidy data:
 - 1. Each variable forms a column,
 - 2. Each observation forms a row,
 - 3. Each table (or file) stores data about one class of experimental unit.
- If data is not tidy, it will be called messy
- This may still be vague
 - 1. What is a variable?
 - 2. What is "one class of experimental unit"?

More on variables

- It will also be useful to think of variables (columns) as being split into two groups:
 - 1. The *identifier (id) variables* identify the unit that measurements take place on.

 Usually discrete; often fixed by design. (In ANOVA notation (Yijk), id variables are the indices on the variables (i; j; k); in database notation, id variables are a composite primary key.)
 - 2. The *measured variables* represent what is measured on that unit (the Y's).

ld vs. Measured

Which vars are id vars? Which are measured?

name	treatmentA	treatmentB
John Smith		5
Jane Doe	1	4
Mary Johnson	2	3

 Next: How many observations are on each row—1 or 2?

2. How to make messy data tidy—the idea

- If "experimental unit" here is meant to be associated with one subject and at one point in time, then each row contains two observations. (Assume the "if" is true here.)
- In that case the data is not tidy.

•	How to mal	ke	name	treatmentA	treatmentB
			John Smith		5
	it tidy?		Jane Doe	1	4
			Mary Johnson	2	3

Tidy Data

 This data is now tidy according to the definition and assumptions:

name	treatment	value
John Smith	Α	
John Smith	В	5
Jane Doe	Α	1
Jane Doe	В	4
Mary Johnson	Α	2
Mary Johnson	В	3

- Missing data value? Keep or discard?
- Also, let's put id vars first, then measured vars

3. How to make messy data tidy: examples. Is this data tidy or messy?

 First 10 rows of data on income/religion from a Pew Forum study. (5 last cols not shown ...)

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k
Agnostic	27	34	60	81	76
Atheist	12	27	37	52	35
Buddhist	27	21	30	34	33
Catholic	418	617	732	670	638
Don't know/refused	15	14	15	11	10
Evangelical Prot	575	869	1064	982	881
Hindu	1	9	7	9	11
Historically Black Prot	228	244	236	238	197
Jehovah's Witness	20	27	24	24	21
Jewish	19	19	25	25	30

Problem and Solution

 As in the first example: Column headers are values, not variable names. The fix (first 10 rows):

religion	income	freq
Agnostic	<\$10k	27
Agnostic	\$10-20k	34
Agnostic	\$20-30k	60
Agnostic	\$30-40k	81
Agnostic	\$40-50k	76
Agnostic	\$50-75k	137
Agnostic	\$75-100k	122
Agnostic	\$100-150k	109
Agnostic	>150k	84
Agnostic	Don't know/refused	96

2 id vars, 1 measured var

• Often the multiple column headers may be time: week1, week2, ...; Jan, Feb, ...; 2001, 2002,...

Is this data tidy or messy?

 First 10 rows of data on tb (tuberculosis) counts for different countries, years, sexes, and ages

iso2	year	m014	m1524	- :	m65	mu	f014
AD	2000	0	0	_	0		
AE	2000	2	4	•••	10		3
AF	2000	52	228		80		93
AG	2000	0	0	•••	1		1
AL	2000	2	19		16		3
AM	2000	2	152	•••	21		1
AN	2000	0	0		0		0
AO	2000	186	999	•••	194		247
AR	2000	97	278		330		121
AS	2000						

Problem and Solution

 As in the 2nd example: Some column headers are values, not variable names. In addition,

the column headers represent more than one id var

Solution

(4 id var's,

1 measured var)

iso2	year	sex	age	cases
AD	2000	m	0-14	0
AD	2000	m	15-24	0
AD	2000	m	25-34	1
AD	2000	m	35-44	0
AD	2000	m	45-54	0
AD	2000	m	55-64	0
AD	2000	m	65+	0
ΑE	2000	m	0-14	2
ΑE	2000	m	15-24	4
ΑE	2000	m	25-34	4
AF.	2000	m	35-44	6

Is this data tidy or messy?

 First 10 rows and 5 days of data on min and max recorded temperatures at different locations and times (year, month, day)

id	year	month	element	đ1	d2	d3	d4	đ5
MX000017004	2010	1	tmax					
MX000017004	2010	1	tmin					
MX000017004	2010	2	tmax		273	241		
MX000017004	2010	2	tmin		144	144		
MX000017004	2010	3	tmax					321
MX000017004	2010	3	tmin					142
MX000017004	2010	4	tmax					
MX000017004	2010	4	tmin					
MX000017004	2010	5	tmax					
MX000017004	2010	5	tmin					

Problem and Solution

Variables are stored in both rows and

	columns.	id	year	month	day	element	value
		MX000017004	2010	1	30	tmax	278
•	Partial sol'n ->	MX000017004	2010	1	30	tmin	145
	2	MX000017004	2010	2	2	tmax	273
•	But "element"	MX000017004	2010	2	2	tmin	144
	bat cicinciit	MX000017004	2010	2	3	tmax	241
	contains	MX000017004	2010	2	3	tmin	144
	Contains	MX000017004	2010	2	11	tmax	297
	names of vars,	MX000017004	2010	2	11	tmin	134
	•	MIX00001/004	2010	2	23	tmax	299
	not values.	MX000017004	2010	2	23	tmin	107

Problem and Solution

Variables are stored in both rows and

columns.

- Final sol'n →
- Four id vars, two measured vars.

id	year	month	day	tmax	tmin
MX000017004	2010	1	30	278	145
MX000017004	2010	2	2	273	144
MX000017004	2010	2	3	241	144
MX000017004	2010	2	11	297	134
MX000017004	2010	2	23	299	107
MX000017004	2010	3	5	321	142
MX000017004	2010	3	10	345	168
MX000017004	2010	3	16	311	176
MX000017004	2010	4	27	363	167
MX000017004	2010	5	27	332	182

4. How to make messy data tidy—the tools

- In all of these examples, we mostly have had to simply reshape the data
 - Many columns to one id var, from column names, and one measured var, from column values (income levels; days)
 - One column of var names to two column names (tmin, tmax)
 - Many columns to two id vars, from column names, (sex & age) and one measured var

Reshaping in R

- reshape function from the stats package
 - useful and standard, but we will not use in this course
- reshape2 package, with primary functions
 - melt, to put a data frame into a canonical format
 - dcast, to reshape a melted data frame into desired form (dcast: o/p is data frame; acast:o/p is array)

Also

- colsplit helper function
- use of dcast to summarize (aggregate) data in different shapes

What melt does

Uses idea of id vars and measured vars:

	subject	time	age	weight	height
1	John Smith	1	33	90	2
2	Mary Smith	1			2

• Which vars are id? Which are measured?

What melt does

Takes this one level of abstraction further, from this:

	subject	time	age	weight	height
1	John Smith	1	33	90	2
2	Mary Smith	1			2

To this—"There are only id vars and a value var":

	subject	time	variable	value
1	John Smith	1	age	33
2	John Smith	1	weight	90
3	John Smith	1	height	2
4	Mary Smith	1	height	2

Sometimes called *molten data*

 This is not usually the final version of the data—instead, this is done to put things into a canonical (standard) form, for later processing by dcast.

What dcast does

• In these examples, all of the original id variables are used. (Note: *value* has a special meaning)

- Left side of "~" → "down". Right side → "across"
- ... \rightarrow all other id vars

What dcast does

More examples

```
R> cast(smithsm, ... ~ subject)
 time variable John Smith Mary Smith
                  33.00
                              NA
          age
 1 weight 90.00
                              NA
 1 height 1.87
                            1.54
R> cast(smithsm, ... ~ time)
    subject variable
1 John Smith
               age 33.00
2 John Smith weight 90.00
3 John Smith height 1.87
4 Mary Smith height 1.54
```

We will see more interesting examples in our R code

More information

- See tidy-data.pdf for
 - more examples
 - some other problems
 - some other ideas
- See reshape*.pdf for
 - some other ideas
- (Note: some function names have been updated since those papers were written)