import numpy as np
import pandas as pd
import matplotlib.pyplot as py
import seaborn as sns

In [2]:

d=pd.read_csv(r"C:\Users\user\Downloads\15_Horse Racing Results.csv - 15_Horse Racing R
d

Out[2]:

	Dato	Track	Race Number	Distance	Surface	Prize money	_	Jockey	Jockey weight	Country	•••
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sverige	
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	СҮНо	52	Sverige	•••
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	СҮНо	52	Sverige	•••
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sverige	•••
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	СҮНо	52	Sverige	•••
•••	•••				•••		•••	•••		•••	
27003	14.06.2020	Sha Tin	11	1200	Gress	1450000	6	A Hamelin	59	Australia	
27004	21.06.2020	Sha Tin	2	1200	Gress	967000	7	K C Leung	57	Australia	
27005	21.06.2020	Sha Tin	4	1200	Gress	967000	6	Blake Shinn	57	Australia	•••
27006	21.06.2020	Sha Tin	5	1200	Gress	967000	14	Joao Moreira	57	New Zealand	•••
27007	21.06.2020	Sha Tin	11	1200	Gress	1450000	7	C Schofield	55	New Zealand	

27008 rows × 21 columns

In [3]:

d.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27008 entries, 0 to 27007
Data columns (total 21 columns):

Duca	COLUMNIS (COCAL ZI	corumis).	
#	Column	Non-Null Count	Dtype
0	Dato	27008 non-null	object
1	Track	27008 non-null	object
2	Race Number	27008 non-null	int64
3	Distance	27008 non-null	int64
4	Surface	27008 non-null	object

```
5
    Prize money
                         27008 non-null int64
    Starting position 27008 non-null int64
6
                         27008 non-null object
27008 non-null int64
27008 non-null object
7
    Jockey
    Jockey weight
8
9
    Country
                         27008 non-null int64
10 Horse age
                         27008 non-null object
11 TrainerName
                         27008 non-null object
12 Race time
13 Path
                         27008 non-null int64
                         27008 non-null int64
14 Final place
                         27008 non-null int64
27008 non-null object
27008 non-null object
15 FGrating
16 Odds
17 RaceType
18 HorseId
                         27008 non-null int64
19 JockeyId
                         27008 non-null int64
20 TrainerID
                         27008 non-null int64
```

dtypes: int64(12), object(9)

memory usage: 4.3+ MB

In [4]:

d.isna()

Out[4]:

0 0	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Country	•••	Trainer
0	False	False	False	False	False	False	False	False	False	False		
1	False	False	False	False	False	False	False	False	False	False		
2	False	False	False	False	False	False	False	False	False	False		
3	False	False	False	False	False	False	False	False	False	False		
4	False	False	False	False	False	False	False	False	False	False		
•••	•••			•••								
27003	False	False	False	False	False	False	False	False	False	False		
27004	False	False	False	False	False	False	False	False	False	False		
27005	False	False	False	False	False	False	False	False	False	False		
27006	False	False	False	False	False	False	False	False	False	False		
27007	False	False	False	False	False	False	False	False	False	False		

27008 rows × 21 columns

In [5]:

d.describe()

Out[5]:

	Race Number	Distance	Prize money	Starting position	Jockey weight	Horse age	Pat
count	27008.000000	27008.000000	2.700800e+04	27008.000000	27008.000000	27008.000000	27008.00000
mean	5.268624	1401.666173	1.479445e+06	6.741447	55.867373	5.246408	1.67802
std	2.780088	276.065045	2.162109e+06	3.691071	2.737006	1.519880	1.63178
min	1.000000	1000.000000	6.600000e+05	1.000000	47.000000	2.000000	0.00000

	Race Number	Distance	Prize money	Starting position	Jockey weight	Horse age	Pat
25%	3.000000	1200.000000	9.200000e+05	4.000000	54.000000	4.000000	0.00000
50%	5.000000	1400.000000	9.670000e+05	7.000000	56.000000	5.000000	1.00000
75%	8.000000	1650.000000	1.450000e+06	10.000000	58.000000	6.000000	3.00000
max	11.000000	2400.000000	2.800000e+07	14.000000	63.000000	12.000000	11.00000

In [6]: d.columns

In [7]: d.index

Out[7]: RangeIndex(start=0, stop=27008, step=1)

In [8]: d=d.head(10)

Out[8]:		Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Country	•••	Tra
	0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sverige		
	1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	СҮНо	52	Sverige		
	2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	СҮНо	52	Sverige		
	3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sverige		
	4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	СҮНо	52	Sverige		
	5	10.12.2017	Sha Tin	1	1800	Gress	1310000	4	СҮНо	52	Sverige		
	6	01.01.2018	Sha Tin	9	1800	Gress	1310000	9	C Schofield	54	Sverige		
	7	04.02.2018	Sha Tin	5	1800	Gress	1310000	6	Joao Moreira	57	Sverige		
	8	03.03.2018	Sha Tin	8	1800	Gress	1310000	3	СҮНо	56	Sverige		
	9	11.03.2018	Sha Tin	10	1600	Gress	1310000	8	СҮНо	57	Sverige		

```
In [9]: sns.pairplot(d)
Out[9]: <seaborn.axisgrid.PairGrid at 0x15e3228d7f0>
```



```
In [10]: sns.distplot(d['Final place'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:
 distplot` is a deprecated function and will be removed in a future version. Please adap
 t your code to use either `displot` (a figure-level function with similar flexibility) o
 r `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='Final place', ylabel='Density'>

Out[11]: <AxesSubplot:>


```
In [12]: x=d1[['Race Number', 'Distance','Starting position','Jockey weight','Horse age','HorseI
    y=d1[ 'Final place']
```

```
In [13]:
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

```
In [14]: from sklearn.linear_model import LinearRegression
```

```
Out[15]: LinearRegression()
In [16]:
           print(lr.intercept_)
          -13.137857695284605
In [17]:
           coeff =pd.DataFrame(lr.coef_,x.columns,columns=["Co-efficient"])
           coeff
                          Co-efficient
Out[17]:
             Race Number
                            -1.255220
                 Distance
                            -0.039076
          Starting position
                            -0.333333
            Jockey weight
                            -0.638051
                Horse age
                            11.005414
                  Horseld
                             0.000000
                 Jockeyld
                             0.005220
In [18]:
           prediction =lr.predict(x_test)
           py.scatter(y_test,prediction)
Out[18]:
          <matplotlib.collections.PathCollection at 0x15e3a8bf310>
           6
           4
           2
           0
          -2
          -4
                3
In [19]:
           print(lr.score(x_test,y_test))
          -7.655690133590424
In [20]:
           print(lr.score(x_train,y_train))
          1.0
In [21]:
           from sklearn.linear_model import Ridge,Lasso
```

```
In [22]:
          rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[22]: Ridge(alpha=10)
In [23]:
          rr.score(x_test,y_test)
         -0.2786163422067667
Out[23]:
In [24]:
          la=Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[24]: Lasso(alpha=10)
In [25]:
          la.score(x_test,y_test)
Out[25]: -0.15599586623458528
In [26]:
          from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[26]: ElasticNet()
In [28]:
          print(en.coef_)
                       -0.01096393 -0.23175916 0.14964244 0.
                                                                        0.
          -0.0051027 ]
In [27]:
          print(en.intercept_)
         59.64805791077679
In [29]:
          print(en.score(x_test,y_test))
         -0.07453509861157981
In [30]:
          from sklearn import metrics
In [31]:
          print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,prediction))
         Mean Absolute Error: 6.273459654550106
In [32]:
          print("Mean Squared Error:",metrics.mean_squared_error(y_test,prediction))
         Mean Squared Error: 59.62808758695625
```

t("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction)
Mean Squared Error: 7.721922531789363