The invention claimed is:

1	1. (Original) A method for producing a shortened representation of a collection of
2	bits, comprising the steps of:
3	inputting the collection of "n" bits;
4	summing a key having at least "n" bits with the collection of bits to produce a
5	sum;
6	squaring the sum to produce a squared sum;
7	performing a modular "p" operation on the squared sum, where "p" is at least as
8	large as a first prime number greater than 2 ⁿ to produce a modular "p" result;
9	performing a modular 2 ¹ operation on the modular "p" result to produce a
10	modular 2 ¹ result where, "1" is less than "n"; and
11	outputting the modular 2 ^l result.
1	2. (Original) A method for producing a shortened representation of a collection of
2	bits, comprising the steps of:
3	inputting the collection of "n" bits;
4	summing a first key having at least "n" bits with the collection of bits to produce a
5	first sum;
6	squaring the first sum to produce a squared sum;
7	summing the squared sum with a second key having at least "n" bits to produce a
8	second sum;
9	performing a modular "p" operation on the second sum, where "p" is at least as
10	large as a first prime number greater than 2 ⁿ to produce a modular "p" result;
11	performing a modular 2 ^l operation on the modular "p" result to produce a
12	modular 2 ^l result where, "l" is less than "n"; and
13	outputting the modular 2 ¹ result.
1	3. (Original) A method for producing a shortened representation of a collection of
2	bits, comprising the steps of:
3	inputting a collection of "n" bits;

4	summing a key having at least "n" bits with the collection of bits to produce a
5	sum;
6	squaring the sum to produce a squared sum;
7	repeating the previous three steps at least once to produce a plurality of squared
8	sums, where a different key is used each time the steps are repeated;
9	summing the plurality of squared sums to produce a summation;
10	performing a modular "p" operation on the summation, where "p" is at least as
11	large as a first prime number greater than 2 ⁿ to produce a modular "p" result;
12	performing a modular 21 operation on the modular "p" result to produce a
13	modular 2 ¹ result where, "1" is less than "n"; and
14	outputting the modular 2 ^l result.