МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Лабораторная работа №5

«Параметрический синтез и исследование цифровой системы управления с объектом в виде двух последовательно включенных апериодических звеньев первого порядка из условия обеспечения заданного по качеству переходного процесса»

по дисциплине Системы управления в электроприводе

Выполнил: Студент группы

R34362 Ванчукова Т. С.

Преподаватель: Ловлин С.Ю.

Содержание

адание	4
Сод работы	7
Задание 1. Синтез системы с использованием «метода переоборудования»	7
Задание 1.1	7
Задание 1.2	8
Задание 2. Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T1 \approx T0, T2 >> T0$, $\epsilon = 0$	
Задание 2.1. Аппроксимация апериодическим звеном	11
Задание 2.2. Синтез цифрового ПИ-регулятора	12
Задание 2.3. Моделирование системы	13
Задание 3. Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T1 >> T0$, $T2 >> T0$, $\epsilon = 0$	
Задание 3.3. Аппроксимация апериодическим звеном	15
Задание 3.4. Синтез цифрового регулятора скорости методом переоборудование	16
Задание 4. Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T1 >> T0$, $T2 >> T0$, $\epsilon = 0$	
Задание 4.1. Аппроксимация апериодическим звеном	18
Задание 4.1. Синтез цифрового ПД ПИ регулятора скорости методо переоборудования	
Задание 5. Синтез системы из условия получения в ней стандартной настройки на «симметричный оптимум» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T1 \approx T0$, $T2 = 0$	
Задание 5.1. Расчет регулятора скорости	20
Задание 5.2. Моделирование систем, настроенной на симметричный оптиум	й
Задание 5.3. Апроксимация апереодическим звеном	23
Задание 5.4. Синтез цифрового ПИ-регулятора методом	

переоборудования	4
Задание 6. Синтез системы из условия получения в ней стандартной настройки на «симметричный оптимум» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T1 >> T0$, $T2 >> T0$, $\epsilon = 0$.	6
Задание 7. Синтез системы из условия получения в ней стандартной настройки на «симметричный оптимум» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T1 >> T0$, $T2 >> T0$, $\epsilon = T0$.	1
Результаты работы	
Выводы	5

Задание

Задание 1. Синтез системы с использованием «метода переоборудования»

- 1.1 Для случая $T_1 \approx T_0$, $T_2 >> T_0$, $\varepsilon = 0$ построить эквивалентную модель и осуществить ее настройку на «оптимум по модулю», определив тип регулятора и соотношения для расчета его параметров (синтез осуществляется при $T_{3an} = 0$).
- 1.2 Путем моделирования определить величину периода дискретности управления T_0 , при которой обеспечивается качество переходного процесса в исследуемой цифровой системе, близкое к процессу в эквивалентной модели. Снять осциллограммы переходных процессов для значений $T_0 = (0,1-1)\ T_\mu$. Параметры переходных процессов занести в таблицу 1. Представить схему модели.

Задание 2. Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T_1 \approx T_0$, $T_2 >> T_0$, $\epsilon = 0$.

- 2.1 Построить эквивалентную модель системы и осуществить ее настройку на «оптимум по модулю», определив тип регулятора и соотношения для расчета его параметров.
- 2.2 Определить величину постоянной времени T_{3an} , при которой процессы в исследуемой цифровой системе и эквивалентной модели максимально приближены друг к другу ($T_{3an} = T_0/2$).
- 2.3 Построить полную эквивалентную модель, учитывающую динамические свойства цифрового регулятора, определить ее малую некомпенсированную постоянную T_{μ} , и осуществить расчет параметров регуляторов полной модели и цифровой системы ($T_{\mu} = T_1 + T_{3an}$). Снять осциллограммы переходных процессов для значений $T_1 = 1$; $T_2 = 5 10$; $T_0 = 1$. Параметры переходных процессов занести в таблицу 2, представить схему модели.

Задание 3. Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T_1 >> T_0$, $T_2 >> T_0$, $\epsilon = 0$.

- 3.1 Построить эквивалентную модель системы и осуществить ее настройку на «оптимум по модулю», определив тип регулятора и соотношения для расчета его параметров.
- 3.2 Определить величину постоянной времени T_{3an} , при которой процессы в исследуемой цифровой системе и эквивалентной модели максимально приближены друг к другу ($T_{3an} = T_0/2$).
- 3.3 Построить полную эквивалентную модель, учитывающую динамические свойства цифрового регулятора, определить ее малую некомпенсированную постоянную T_{μ} , и осуществить расчет параметров регуляторов полной модели и цифровой системы ($T_{\mu} = T_{\mu}r_1 + T_{3an}$). Снять осциллограммы переходных процессов для значений $T_1 = 5$; $T_2 = (10-15)$; $T_0 = 1$. Параметры переходных процессов занести в таблицу 3, представить схему модели.

Задание 4. Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T_1 >> T_0$, $T_2 >> T_0$, $\varepsilon = T_0$.

- 4.1 Построить эквивалентную модель системы и осуществить ее настройку на «оптимум по модулю», определив тип регулятора и соотношения для расчета его параметров.
- 4.2 Определить величину постоянной времени T_{3an} , при которой процессы в исследуемой цифровой системе и эквивалентной модели максимально приближены друг к другу ($T_{3an} = T_0/2$).
- 4.3 Построить полную эквивалентную модель, учитывающую динамические свойства цифрового регулятора, определить ее малую некомпенсированную постоянную T_{μ} , и осуществить расчет параметров регуляторов полной модели и цифровой системы ($T_{\mu} = T_{\mu}r_1 + T_{3an} + T_0$). Снять осциллограммы переходных процессов для значений $T_1 = 5$; $T_2 = (10-15)$; $T_0 = 1$. Параметры переходных процессов занести в таблицу 4, представить схему модели.

Задание 5. Синтез системы из условия получения в ней стандартной настройки на «симметричный оптимум» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T_1 \approx T_0$, $T_2 >> T_0$, $\epsilon=0$.

Задание 6. Синтез системы из условия получения в ней стандартной настройки на «симметричный оптимум» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T_1 >> T_0$, $T_2 >> T_0$, $\epsilon = 0$.

Задание 7. Синтез системы из условия получения в ней стандартной настройки на «симметричный оптимум» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T_1 >> T_0$, $T_2 >> T_0$, $\epsilon = T_0$.

Ход работы

Задание 1. Синтез системы с использованием «метода переоборудования»

Задание 1.1

Передаточная функция объекта

$$\frac{K_{ob}}{(T_1 T_2) s^2 + (T_1 + T_2) s + 1'}$$

где

$$K_{ob} = rac{kdw}{Ce}, \ kdw = rac{180}{\pi},$$

$$T_1 = -rac{\sqrt{-J(4Ce^2L - JR^2)} - JR}{2Ce^2},$$

$$T_2 = rac{\sqrt{-J(4Ce^2L - JR^2)} + JR}{2Ce^2}.$$

Расчет регулятора скорости

$$T_{1} = T_{u}$$

$$W_{ob} = \frac{K_{ob}}{(T_{1}s + 1)(T_{2}s + 1)}$$

$$W_{ol} = \frac{1}{2T_{\mu}s \cdot (T_{\mu}s + 1)}$$

$$W_{reg} = \frac{W_{ol}}{W_{ob}} = \frac{T_2 s + 1}{2 \cdot K_{ob} T_{\mu} s}$$

Расчет коэффициентов:

$$T_{\mu} = T_{1}$$

$$Kpa = \frac{T_{2}}{2 \cdot K_{ob} \cdot T_{\mu}}$$

$$Kia = \frac{1}{2 \cdot K_{ob} \cdot T_{\mu}}$$

$$Kpd = \frac{T_2}{2 \cdot K_{ob} \cdot T_{\mu}}$$

$$Kid = \frac{1}{2 \cdot K_{ob} \cdot T_{\mu}}$$

Задание 1.2

Рисунок 1 — Схема моделирования

Рисунок 2 — График моделирование работы, настроенный на технический оптиум при $T_0 = 0.5 \cdot \mathrm{T}_{\mu}$

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 3.7 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 7.4 \cdot T_{\mu}$$

 t_0 — время начала переходного процесса t_{p1} — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \ge D, D = 0.05 \cdot |y_0 - y_{ss}|$$

 t_{p2} — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \le D, D = 0.05 \cdot |y_0 - y_{ss}|$$

Вычислим перерегулирование Δy :

$$\Delta y = \frac{|\sup(y) - y_{ss}|}{|y_0 - y_{ss}|} = 8.8 \%$$

Рисунок 3 — График моделирование работы, настроенный на технический оптиум при $T_0 = 0.1 \cdot \mathrm{T}_{\mu}$

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 4 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 6.3 \cdot T_{\mu}$$

$$\Delta y = 5 \%$$

Рисунок 4 — График моделирование работы, настроенный на технический оптиум при $T_0=1\cdot \mathrm{T}_{\mu}$

$$t_{p1} = t_1 - t_0 = 3.4 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 3.4 \cdot T_{\mu}$$

$$\Delta y = 15.3 \%$$

Задание 2. Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T1 \approx T0, T2 >> T0$, $\epsilon = 0$

Задание 2.1. Аппроксимация апериодическим звеном

Рисунок 5 – Схема моделирование

Рисунок 6 – График функционала системы

Задание 2.2. Синтез цифрового ПИ-регулятора

$$To = T_1$$

$$T_z = 0.5 \cdot T_0$$

$$T_\mu = T_1 + T_z$$

$$Kpa = \frac{T_2}{2 \cdot K_{ob} \cdot T_\mu}$$

$$Kia = \frac{1}{2 \cdot K_{ob} \cdot T_\mu}$$

$$Kpd = \frac{T_2}{2 \cdot K_{ob} \cdot T_\mu}$$

$$Kid = \frac{1}{2 \cdot K_{ob} \cdot T_\mu}$$

Задание 2.3. Моделирование системы

Рисунок 7 — График моделирование работы, настроенный на технический оптиум при $T_0=1\cdot \mathrm{T}_{\mu}$

$$t_{p1} = t_1 - t_0 = 3.5 \cdot T_{\mu}$$

 $t_{p2} = t_{end} - t_0 = 3.5 \cdot T_{\mu}$

Рисунок 8 — График моделирование работы, настроенный на технический оптиум при $T_0 = 2 \cdot \mathrm{T}_{\mu}$

$$t_{p1} = t_1 - t_0 = 3.1 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 3.1 \cdot T_{\mu}$$

Вычислим перерегулирование Δy :

$$\Delta y = 4.8 \%$$

Задание 3. Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая T1 >> T0, T2 >> T0, $\epsilon = 0$

Задание 3.1. Расчет регулятора скорости

$$W_{ob} = \frac{K_{ob}}{(T_1 s + 1)(T_2 s + 1)}$$

$$W_{ol} = \frac{1}{2T_{\mu} s \cdot (T_{\mu} s + 1)}$$

$$W_{reg} = \frac{(T_1 s + 1)(T_2 s + 1)}{2 K_{ob} T_{\mu} s (T_{\mu} s + 1)}$$

Задание 3.2. Моделирование работы системы, настроенной на технический оптиум

Рисунок 9 – Схема моделирования

Рисунок 10 — График моделирование работы, настроенный на технический оптиум при $T_0 = 0.1 \cdot \mathrm{T}_{\mu}$

$$t_{p1} = t_1 - t_0 = 3 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 16.9 \cdot T_{\mu}$$

Вычислим перерегулирование Δy :

$$\Delta y = 41.6 \%$$

Задание 3.3. Аппроксимация апериодическим звеном

Рисунок 11 – График функционала системы

Рисунок 12 – Схема моделирования

Задание 3.4. Синтез цифрового регулятора скорости методом переоборудование

$$T_{\mu r} = 0.5 \cdot To$$
 $T_{\mu} = T_{\mu r} + T_{z}$
 $Kpa = \frac{T_{2}}{2 * K_{ob} * T_{\mu}}$
 $Kia = \frac{1}{2 * K_{ob} * T_{\mu}}$
 $Kpa2 = 1$
 $Kda2 = T_{1}$
 $Kpd = \frac{T_{2}}{2 * K_{ob} * T_{\mu}}$
 $Kid = \frac{1}{2 * K_{ob} * T_{\mu}}$
 $Kid = \frac{1}{2 * K_{ob} * T_{\mu}}$
 $Kd2dg = \frac{1}{exp(\frac{To}{T1}) - 1}$
 $Kp2dg = 1$

Рисунок 13 – График моделирование работы, настроенный на технический оптиум при $T_0 = 0.1 \cdot \mathrm{T}_{\mu}$

$$t_{p1} = t_1 - t_0 = 3 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 3 \cdot T_{\mu}$$

$$\Delta y = 4.7 \%$$

Задание 4. Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая T1 >> T0, T2 >> T0, $\epsilon = 0$

Задание 4.1. Аппроксимация апериодическим звеном

Рисунок 14 – Схема моделирования

Рисунок 15 – График функционала системы

Задание 4.1. Синтез цифрового ПД ПИ регулятора скорости методом переоборудования

$$T_z = 1.5 \cdot To$$

$$T_{\mu r} = 0.5 \cdot To$$

$$T_{\mu} = T_{\mu r} + T_z$$

Расчет коэффициентов такой же, как в задании 3.4.

Рисунок 16 – График моделирование работы при $T_0 = 0.1 \cdot \mathrm{T}_{\mu}$

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 3 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 3 \cdot T_{\mu}$$

$$\Delta y = 4.7 \%$$

Задание 5. Синтез системы из условия получения в ней стандартной настройки на «симметричный оптимум» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая $T1 \approx T0$, T2 >> T0, $\epsilon = 0$

Задание 5.1. Расчет регулятора скорости

$$W_{ob} = \frac{K_{ob}}{(T_2 s + 1) (T_{\mu} s + 1)}$$

$$W_{ol} = \frac{4T_{\mu} s + 1}{8T_{\mu}^2 s^2 (T_{\mu} s + 1)}$$

$$W_{reg} = \frac{W_{ol}}{W_{ob}} = \frac{(T_2 s + 1) (4 \text{ Tu } s + 1)}{8 \text{ Kob Tu}^2 s^2}$$

Задание 5.2. Моделирование систем, настроенной на симметричный оптиум

$$T_{\mu} = T_{1}$$
 $To = 0.1 * T_{\mu}$
 $Kpa = \frac{T_{2}}{2 * K_{ob}T_{\mu}}$
 $Kia1 = \frac{1}{2 * K_{ob} * T_{\mu}}$
 $Kia2 = \frac{T_{2}}{8 * K_{ob} * T_{\mu}^{2}}$
 $Kiia = \frac{1}{8 * K_{ob} * T_{\mu}^{2}}$
 $Kpd = \frac{T_{2}}{2 * K_{ob}T_{\mu}}$
 $Kid1 = \frac{1}{2 * K_{ob} * T_{\mu}}$
 $Kid2 = \frac{T_{2}}{8 * K_{ob} * T_{\mu}^{2}}$
 $Kid2 = \frac{T_{2}}{8 * K_{ob} * T_{\mu}^{2}}$
 $Kiid = \frac{1}{8 * K_{ob} * T_{\mu}^{2}}$

Рисунок 17 – Схема моделирования

При $T_0 = 0.1 \cdot T_{\mu}$ Время переходного процесса для входа в 5%:

$$t_{p1} = t_1 - t_0 = 2.9 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 14.8 \cdot T_{\mu}$$

Вычислим перерегулирование Δy :

$$\Delta y = 45.3\%$$

Рисунок 18 — График моделирование работы, настроенный на симметричный оптиум при $T_0 = 0.1 \cdot \mathrm{T}_{\mu}$

Рисунок 19 — График моделирование работы, настроенный на симметричный оптиум при $T_0=1\cdot \mathrm{T}_{\mu}$

$$t_{p1} = t_1 - t_0 = 2.7 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 20.2 \cdot T_{\mu}$$

Вычислим перерегулирование Δy :

$$\Delta y = 67.5~\%$$

Задание 5.3. Апроксимация апереодическим звеном

Рисунок 20 – График функционала системы

Рисунок 21 – Схема моделирования

Задание 5.4. Синтез цифрового ПИ-регулятора методом переоборудования

$$T_z = 0.5 \cdot To$$

$$T_\mu = T_1 + T_z$$

Расчет коэффициентов такой же, как в задании 5.2.

Рисунок 22 — График моделирование работы, настроенный на симметричный оптиум при $T_0=1\cdot \mathrm{T}_{\mu}$

Время переходного процесса для входа в 5%:

$$t_{p1} = t_1 - t_0 = 2.5 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 12.8 \cdot T_{\mu}$$

$$\Delta y = 46.2\%$$

Рисунок 23 — График моделирование работы, настроенный на симметричный оптиум при $T_0 = 2 \cdot \mathrm{T}_{\mu}$

$$t_{p1} = t_1 - t_0 = 2.3 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 9.2 \cdot T_{\mu}$$

$$\Delta y = 46.7 \%$$

Задание 6. Синтез системы из условия получения в ней стандартной настройки на «симметричный оптимум» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая T1 >> T0, T2 >> T0, $\epsilon = 0$.

Задание 6.1. Синтез регулятора скорости

$$W_{ob} = \frac{K_{ob}}{(T_2 s + 1) (T_2 s + 1)}$$

$$W_{ol} = \frac{4T_{\mu} s + 1}{8T_{\mu}^2 s^2 (T_{\mu} s + 1)}$$

$$W_{reg} = \frac{W_{ol}}{W_{ob}} = \frac{(T_1 s + 1) (T_2 s + 1) (4 \text{ Tu } s + 1)}{8 \text{ Kob Tu}^2 s^2 (T_{\mu} s + 1)}$$

Задание 6.2. Моделирование работы системы настроенной на "симметричный оптимум"

$$To = 0.1 \cdot T_{1}$$

$$T_{\mu r} = 0.5 \cdot To$$

$$T_{\mu} = T_{\mu r}$$

$$Kpa = \frac{T_{2}}{2 * K_{ob} T_{\mu}}$$

$$Kia1 = \frac{1}{2 * K_{ob} * T_{\mu}}$$

$$Kia2 = \frac{T_{2}}{8 * K_{ob} * T_{\mu}^{2}}$$

$$Kiia = \frac{1}{8 * K_{ob} * T_{\mu}^{2}}$$

$$Kpd = \frac{T_{2}}{2 * K_{ob} T_{\mu}}$$

$$Kid1 = \frac{1}{2 * K_{ob} * T_{\mu}}$$

$$Kid2 = \frac{T_{2}}{8 * K_{ob} * T_{\mu}^{2}}$$

$$Kid2 = \frac{1}{8 * K_{ob} * T_{\mu}^{2}}$$

$$Kid2 = \frac{1}{8 * K_{ob} * T_{\mu}^{2}}$$

$$Kid2 = \frac{1}{8 * K_{ob} * T_{\mu}^{2}}$$

$$Kd2dg = \frac{1}{exp(T_{0}) - 1}$$

$$Kp2dg = 1$$

Рисунок 24 — График моделирование работы, настроенный на симметричный оптиум при $T_0 = 0.1 \cdot \mathrm{T_1}$

$$t_{p1} = t_1 - t_0 = 2.5 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 66.8 \cdot T_{\mu}$$

Вычислим перерегулирование Δy :

$$\Delta y = 110.7 \%$$

Рисунок 25 – Схема моделирования

Задание 6.3. Аппроксимация

Рисунок 26 – Схема моделирования

Рисунок 27 – График функционала системы

Задание 6.4. Синтез цифрового ПД ПИ регулятора скорости методом переоборудования

$$To = 0.1 \cdot T_1$$

$$T_z = 0.4 \cdot To$$

$$T_{\mu r} = 0.5 \cdot To$$

$$T_{\mu} = T_{\mu r} + T_z$$

Рисунок 28 — График моделирование работы, настроенный на симметричный оптиум при $T_0 = 0.1 \cdot T_1$

$$t_{p1} = t_1 - t_0 = 2.3 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 12.5 \cdot T_{\mu}$$

$$\Delta y = 53.7 \%$$

Задание 7. Синтез системы из условия получения в ней стандартной настройки на «симметричный оптимум» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая T1 >> T0, T2 >> T0, $\epsilon = T0$.

Задание 7.1. Аппроксимация

Рисунок 29 – Схема моделирования

Рисунок 30 – График функционала системы

Задание 7.2. Синтез цифрового ПД ПИ регулятора скорости методом переоборудования

$$To = 0.1 \cdot T_1$$

$$T_z = 1.4 \cdot To$$

$$T_{\mu r} = 0.5 \cdot To$$

$$T_{\mu} = T_{\mu r} + T_z$$

Расчет коэффициентов аналогичен расчету из предыдущего задания.

Рисунок 31 — График моделирование работы, настроенный на симметричный оптиум при $T_0 = 0.1 \cdot \mathrm{T}_1$

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 2.5 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 9 \cdot T_{\mu}$$

Вычислим перерегулирование Δy :

$$\Delta y = 51.8 \%$$

Результаты работы

Таблица 1

T_0	t_{p1} , c	$t_{p2}, { m c}$	∆y, %
$T_0 = 0.1 \cdot T_{\mu}$	4	6.3	5
$T_0 = 0.5 \cdot T_{\mu}$	3.7	7.4	8.8
$T_0 = 1 \cdot T_{\mu}$	3.4	7.8	15.3

Таблица 2

T_{0}	$T_{\mu} = T_1 + T_z$	t_{p1} , c	t_{p2},c	Δy, %
$T_o = T_1$	0.0033	3.5	3.5	4.5
$T_o = 2T_1$	0.0044	3.1	3.1	4.8

Таблица 3

T_0	$T_{\mu} = T_{\mu r} + T_z$	t_{p1} , c	t_{p2} , c	Δy , %
$T_0 = 0.1 \cdot T_1$	$2.7 \cdot 10^{-4}$	3.0	3.0	4.7

Таблица 4

T_0	$T_{\mu} = T_{\mu r} + T_z$	t_{p1} , c	t_{p2} , c	∆y, %
$T_0 = 0.1 \cdot T_1$	$4.4 \cdot 10^{-4}$	3.1	3.1	4.1

Таблица 5

T_0	$T_{\mu} = T_1 + T_z$	t_{p1} , c	t_{p2} , c	Δy, %
$T_o = T_1$	0.0033	2.5	12.8	46.2
$T_o = 2T_1$	0.0044	2.3	9.2	46.7

Таблица 6

T_0	$T_{\mu} = T_{\mu r} + T_z$	t_{p1} , c	$t_{p2}, { m c}$	∆y, %
$T_0 = 0.1 \cdot T_1$	$3.94 \cdot 10^{-4}$	2.3	12.5	53.7

Таблица 7

T_0	$T_{\mu} = T_{\mu r} + T_{z}$	t_{p1} , c	t_{p2} , c	Δy, %
$T_0 = 0.1 \cdot T_1$	$8.3 \cdot 10^{-4}$	2.5	9.0	51.8

Выводы

В процессе выполнения работы исследовали систему управления с объектом в виде двух последовательно включенных апериодических звеньев первого порядка из условия обеспечения заданного по качеству переходного процесса.

В ходе проведенного исследования было определено, что при увеличении T_0 перерегулирование увеличивается, время переходного процесса уменьшается.

При настройке системы на симметричный оптиума увеличилось время переходного процесса и перерегулирование по сравнению с техническим оптиумом. При величине периода дискретности управления $T_o=0.5$ (при вводе задержки $T_o=1.4$) обеспечивается качество переходного процесса в исследуемой цифровой системе, близкое к процессу в эквивалентной непрерывной системе.

В случае $T_1 \approx T_0$, $T_2 >> T_0$, $\epsilon = 0$ можно наблюдать наилучшую сходимость аналоговой и цифровой систем, при $T_1 >> T_0$, $T_2 >> T_0$, $\epsilon = 0$ можно наблюдать наихудшую сходимость, и при техническом оптиуме, и при симметричном оптиуме.