Question Number	Answer		Mark
14a	The electron only receives energy from one photon		
	Or there is a one to one interaction between photons and electrons	(1)	
	Some of the photon energy is needed to overcome the work function		
	Or There is a minimum energy required to release electrons from the (surface of the) plate	(1)	
	Remaining photon energy is transferred to kinetic energy of electron (and is therefore lower than photon energy)		
	Or Photon energy is shared between the work function and kinetic		
	energy of electron (so kinetic energy less than photon energy)	(1)	3
14b	Use of $E_k = \frac{1}{2} mv^2$	(1)	
	Use of $hf = \Phi + \frac{1}{2} mv^2$ max	(1)	
	Conversion of work function from eV into J	(1)	
	$f = 1.1 \times 10^{15}$ (Hz), so source A	(1)	4
	Example of calculation		
	$E_k = \frac{1}{2} mv^2 = \frac{1}{2} \times 9.11 \times 10^{-31} \text{ kg} \times (5.70 \times 10^5 \text{ m s}^{-1})^2 = 1.48 \times 10^{-19} \text{ J}$		
	$\Phi = 3.68 \text{ eV} \times 1.60 \times 10^{-19} \text{ J eV}^{-1} = 5.89 \times 10^{-19} \text{ J}$ $hf = 1.48 \times 10^{-19} \text{ J} + 5.89 \times 10^{-19} \text{ J} = 7.37 \times 10^{-19} \text{ J}$		
	$f = \frac{7.37 \times 10^{-19} \text{ J}}{6.63 \times 10^{-34} \text{Js}} = 1.11 \times 10^{15} \text{ Hz}$, so source A		
	Total for question 14		7