

FDAE - Team 5 Fong Zheng Feng Victor Thuvaarakesh Kiruparan Tiang Soon Yong

Problem
Definition &
Motivation

Data
Preparation &
EDA

Machine Learning Models

Outcome,
Insights,
Recommendation

PROBLEM DEFINITION & MOTIVATION

W

Statistics of cancers in Singapore

Ten most common cancers affecting men & women (2017 - 2021)								
Men	No. of cases	Women	No. of cases					
Prostate	6,912	Breast	12,735					
Colon & rectum	6,697	Colorectal & rectum	5,542					
Lung	5,567	Lung	,388					
Lymphoid neoplasms	2,986	Corpus uteri (uterus)	3,133					
Liver	2,984	Lymphoid neoplasms	2,221					
Non-melanoma skin	2,136	Ovary & fallopian tube	1,855					
Kidney	1,734	Non-melanoma skin	1,713					
Stomach	1,684	Thyroid	1,666					
Myeloid neoplasms	1,430	Pancreas	1,187					
Pancreas	1,417	Stomach	1,111					
		Cervix uteri	1,106					

12,735 cases, highest cases among the rest. Forms up 18.4% of all the cases

VM

Statistics of cancers in Singapore

Breast Cancer is the leading cause of cancer deaths in Singapore

Problem Definition & Motivation

Motivation:

Breast cancer is one of the leading causes of cancer-related deaths among women. Early detection plays a crucial role in improving treatment outcomes and reducing mortality rates. By accurately predicting the malignancy of breast tumors, healthcare providers can intervene promptly and initiate appropriate treatment strategies.

Problem Definition:

Develop a predictive model to classify breast tumors as malignant or benign based on relevant clinical and diagnostic features. The model should accurately distinguish between malignant and benign tumors to assist healthcare professionals in early diagnosis and treatment decision-making.

DATA PREPARATION & EXPLORATORY DATA ANALYSIS

Breast Cancer Wisconsin (Diagnostic) Data Set

Predict whether the cancer is benign or malignant

k kaggle.com

of Data Columns: 32 # of Data Samples: 569 non-null

"id" is irrelevant # of Features: 30 Numerical Response: 1 Categorical, "Diagnosis"

Classification Problem Mixed Structured Data

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	 rac
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	
1	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	
2	84300903	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	
4	84358402	M	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	
5 rc	ows × 32 c	olumns									

RangeIndex: 569 entries, 0 to 568 Data columns (total 32 columns):

<class 'pandas.core.frame.DataFrame'>

0	id	569	non-null	int64
1	diagnosis	569	non-null	object
2	radius_mean	569	non-null	float64
3	texture_mean	569	non-null	float64
4	perimeter_mean	569	non-null	float64
5	area_mean	569	non-null	float64
6	smoothness_mean	569	non-null	float64
7	compactness_mean	569	non-null	float64
8	concavity_mean	569	non-null	float64
9	concave points_mean	569	non-null	float64
10	symmetry_mean	569	non-null	float64
11	fractal_dimension_mean	569	non-null	float64
12	radius_se	569	non-null	float64
13	texture_se	569	non-null	float64
14	perimeter_se	569	non-null	float64
15	area_se	569	non-null	float64
16	smoothness_se	569	non-null	float64
17	compactness_se	569	non-null	float64
18	concavity_se	569	non-null	float64
19	concave points_se	569	non-null	float64
20	symmetry_se	569	non-null	float64
21	fractal_dimension_se	569	non-null	float64
22	radius_worst	569	non-null	float64
23	texture_worst	569	non-null	float64
24	perimeter_worst	569	non-null	float64
25	area_worst		non-null	float64
26	smoothness_worst	569	non-null	float64
27	compactness_worst	569	non-null	float64
28	concavity_worst	569	non-null	float64
29	concave points_worst	569	non-null	float64
30	symmetry_worst	569	non-null	float64
31	fractal_dimension_worst	569	non-null	float64
ltype	es: float64(30), int64(1),	, obj	ject(1)	

Non-Null Count Dtype

Scatterplots of Features against Response

Scatterplots of Features against Response

Outlier Cleaning

Boxplots of Features against Response

Outlier Cleaning

Method:

IQR Threshold: 1.5*IQR

Z-Score Threshold: **2*S.D**

Findings:

Outliers removal causes

- Correlation decreased
- Lost of **meaningful** data
- Reduced variability

Decision:

Proceed with Original dataset

Correlation against Response

		eri agamet i	(00)01100	
diagnosis	1.00	1.00	1.00	- 1.00
radius_mean	0.73	0.31	0.05	
texture_mean	0.42	0.28	0.19	
perimeter_mean	0.74	0.32	0.04	- 0.75
area_mean	0.71	0.33	0.05	- 0.75
smoothness_mean	0.36	0.10	-0.06	
compactness_mean	0.60	0.21	-0.06	
concavity_mean	0.70	0.44	0.05	- 0.50
concave points_mean	0.78	0.42	0.00	0.00
symmetry_mean	0.33	0.03	0.00	
fractal_dimension_mean	-0.01	-0.07	-0.06	
radius_se	0.57	0.27	-0.02	- 0.25
texture_se	-0.01	0.10	0.03	
perimeter_se	0.56	0.27	-0.05	
area_se	0.55	0.40	0.02	
smoothness_se	-0.07	-0.04	-0.04	- 0.00
compactness_se	0.29	0.08	-0.05	
concavity_se	0.25	0.21	0.07	
concave points_se	0.41	0.22	0.00	
symmetry_se	-0.01	-0.17	-0.07	- -0.25
fractal_dimension_se	0.08	-0.04	-0.07	
radius_worst	0.78	0.43	0.11	
texture_worst	0.46	0.33	0.24	
perimeter_worst	0.78	0.43	0.09	0.50
area_worst	0.73	0.46	0.12	No.
smoothness_worst	0.42	0.18	0.01	
compactness_worst	0.59	0.27	0.05	Transaction and
concavity_worst	0.66	0.41	0.16	- -0.75
concave points_worst	0.79	0.43	0.15	
symmetry_worst	0.42	0.11	0.09	
fractal_dimension_worst	0.32	0.09	0.03	4.00
	Original	IQR	Z Score	-1.00

Data Balancing

Question:

Upsample before/after train_test_split()?

Method:

DecisionTreeClassifier()

Findings:

of data samples before upsample: 569 # of data samples after upsample: 714 Classification Accuracy

	Train	Test
Original	1.0	0.909091
Upsample Before	1.0	0.966480
Upsample After	1.0	0.922222

Decision:

Proceed with the dataset upsampled before train_test_split()

Boxplots of Data Sample

Feature Selection

Question:

How many features should we use?

Method:

Recursive feature elimination with cross-validation (RFECV)

Findings:

Accuracy starts relatively **high** (0.85) even with 1 feature

Accuracy **stagnates** after 5 features
More Features = More **Vulnerable** to errors

Decision:

Test our models with [1, 3, 5, 7] Features

Line Plot with Errorbar

Feature Selection

Question:

Which features should we use?

Method: SelectKBest r_regression

Findings:

Sorted Feature List according to its score

Decision:

Feature List 0 = Top 7

Feature List 1 = Top 5

Feature List 2 = Top 3

Feature List 3 = Top 1

Top 7 **{**

	Features	F_Scores	Abs_Corr
27	concave points_worst	1268.834068	0.800347
22	perimeter_worst	1064.277962	0.774055
20	radius_worst	1043.774301	0.771026
7	concave points_mean	1026.771557	0.768450
2	perimeter_mean	844.058725	0.736501
0	radius_mean	788.349625	0.724875
23	area_worst	761.055501	0.718784
6	concavity_mean	668.240159	0.695807
3	area_mean	635.460792	0.686730
26	concavity_worst	591.151026	0.673522
5	compactness_mean	412.370230	0.605604
2 5	compactness_worst	374.511520	0.587105
10	radius_se	281.321498	0.532178
12	perimeter_se	254.017559	0.512790
13	area_se	232.364209	0.496038
21	texture_worst	211.132272	0.478239
1	texture_mean	174.173304	0.443334
24	smoothness_worst	166.290037	0.435125
17	concave points_se	157.303993	0.425387
28	symmetry_worst	155.327814	0.423188
4	smoothness_mean	130.955007	0.394148
8	symmetry_mean	111.988029	0.368659
29	fractal_dimension_worst	92.296412	0.338754
15	compactness_se	77.120465	0.312617
16	concavity_se	67.103586	0.293478
19	fractal_dimension_se	9.574370	0.115190
14	smoothness_se	4.053819	0.075242
18	symmetry_se	0.268262	0.019407
11	texture_se	0.125171	0.013258
9	fractal_dimension_mean	0.016431	0.004804
	11/1/11	/////	

MACHINE LEARNING MODELS

- Logistic Regression
- Binary Decison Tree
- Random Forest
- K Nearest Neighbour

- Supervised Learning Model
- Test for binary outcomes
- Logistic Regression without parameter tuning
- Logisctic Regression with parameter tuning

Cross Validation Grid Search

Model without Parameter Tuning

Feature List 0 was the best - 7 Best features

Train Set

Accuracy: 0.957

FNR: 0.0483

Test Set

Accuracy: 0.944

FNR: 0.0568

Model with Parameter Tuning using GridSearchCV

Feature List 0 was the best - 7 Best features

Train Set

Accuracy: 0.968

FNR: 0.0409

Test Set

Accuracy: 0.966

FNR: 0.0455

Tuned Logistic Regression (feature List 0) - 7 Best Features

- Accuracy increased from 0.944 to 0.966
- FNR decreased from 0.0568 to 0.0455

	accuracy	f1_score	precision	recall	balanced_accuracy	FNR
Logistic Regression (Feature List 0)	0.944134	0.943182	0.943182	0.943182	0.944118	0.056818
Tuned Logistic Regression (Feature List 0)	0.966480	0.965517	0.976744	0.954545	0.966284	0.045455

BINARY DECISION TREE

- Evaluate the accuracy of 4 different Trees
- Changed the optimal depth to "None" expands until all leaf nodes are pure (no errors)

BINARY DECISION TREE

Feature List 0 was the best - 7 Best features

Train Set

Accuracy: 1.0

FNR: 1.0

Test Set

Accuracy: 0.972

FNR: 0.0227

RANDOM FOREST CLASSIFIER

- Trains multiple decision trees on random subsets of train data
- Compares outcomes of all trees and derives a final prediction
- n_estimator = 200

RANDOM FOREST CLASSIFIER

Feature List 0 - 7 Best Features

Train Set

Accuracy: 1.0

FNR: 1.0

Test Set

Accuracy: 0.983

FNR: 0.0227

K-NEAREST NEIGHBOUR CLASSIFICATION

- Uses proximity to make classifications and predictions
- l parameter "n_neighbours"
- Tuned the parameter by iteratively plotting classification accuracy while incrementing number of neighbour.
- Considered the Test Set
- Number of Neighbours = 9

NEAREST NEIGHBOUR CLASSIFICATION

Feature List 0 was the best - 7 Best features

Train Set

Accuracy: 0.935

FNR: 0.0781

Test Set

Accuracy: 0.966

FNR: 0.0455

FINAL DECISION

	accuracy	f1_score	precision	recall	balanced_accuracy	FNR
Random Forest (Feature List 0)	0.983240	0.982857	0.988506	0.977273	0.983142	0.022727
Random Forest (Feature List 1)	0.983240	0.982857	0.988506	0.977273	0.983142	0.022727
Decision Tree (Feature List 0)	0.972067	0.971751	0.966292	0.977273	0.972153	0.022727
Random Forest (Feature List 2)	0.972067	0.971751	0.966292	0.977273	0.972153	0.022727
Tuned Logistic Regression (Feature List 0)	0.966480	0.965517	0.976744	0.954545	0.966284	0.045455
KNearNeighbours (Feature List 0)	0.966480	0.965517	0.976744	0.954545	0.966284	0.045455
Decision Tree (Feature List 1)	0.960894	0.960000	0.965517	0.954545	0.960789	0.045455
Decision Tree (Feature List 2)	0.955307	0.955056	0.944444	0.965909	0.955482	0.034091
KNearNeighbours (Feature List 1)	0.949721	0.948571	0.954023	0.943182	0.949613	0.056818
Logistic Regression (Feature List 0)	0.944134	0.943182	0.943182	0.943182	0.944118	0.056818
KNearNeighbours (Feature List 2)	0.938547	0.937853	0.932584	0.943182	0.938624	0.056818
Random Forest (Feature List 3)	0.916201	0.917127	0.892473	0.943182	0.916646	0.056818
KNearNeighbours (Feature List 3)	0.916201	0.914286	0.919540	0.909091	0.916084	0.090909
Decision Tree (Feature List 3)	0.910615	0.911111	0.891304	0.931818	0.910964	0.068182

Random Forest (Feature List 0)

Accuracy: 0.983

FNR: 0.0227

OUTCOME, INSIGHTS AND RECOMMENDATIONS

- concave points_worst
- perimeter_worst
- radius_worst
- concave points_mean
- perimeter_mean
- radius_mean
- area_worst

Random Forest

- Validate the performance of the developed models through collaboration with healthcare professionals. Ensure that the model generalize well to diverse patient populations and is robust.
- Regular updates to incorporate new data, emerging research findings. Continuous improvement ensures that the models remain relevant and effective over time.
- Many models are available for a classification problem, can possibly look into other models that can also achieve a high if not better accuracy score

WE WANT TO SAY

THANKYOU

FOR YOUR ATTENTION

