Web Systems& Applications

Fakhreldin Ali

Feb-2024 fakhreldin.t.ali@gmail.com

Network Applications

Client-Server Interaction

М

Introduction

- -Application-level protocols provide high-level services
 - -DNS
 - -Electronic mail
 - -Remote login *Telnet*
 - -FTP
 - -World Wide Web
- -All of these applications use *client-server* architecture

Internet protocols and network applications

-Internet protocols provide

- -General-purpose facility for reliable data transfer
- -Mechanism for contacting hosts

-Application programs

- -Use internet protocols to contact other applications
- -Provide user-level services

Establishing contact through internet protocols

- -Application must interact with protocol software before contact is made
- -Listening application informs local protocol software that it is ready to accept incoming messages
- -Connecting application uses internet protocol to contact listener
- -Applications exchange messages through resulting connection

Client-server paradigm

- -Server application is "listener"
 - -Waits for incoming message
 - -Performs service
 - -Returns results
- -Client application establishes connection
 - -Sends message to server
 - -Waits for return message

Characteristics of client

- -Arbitrary application program
 - -Becomes client when network service is needed
 - -Also performs other computations

- -Invoked directly by user
- -Runs locally on user's computer
- -Initiates contact with server
- -Can access multiple services (one at a time)
- -Does not require special hardware or sophisticated operating system

M

Characteristics of server

- -Special purpose application dedicated to providing network service
- -Starts at system initialization time
- -Runs on a remote computer (usually centralized, shared computer)
- -Waits for service requests from clients; loops to wait for next request (*listening*)
- -Will accept requests from arbitrary clients; provides one service to each client
- -Requires powerful hardware and sophisticated operating system

"Server-class" computers

- -Shared, centralized computers that run many server applications are sometimes called "*servers*"
- -More precisely, the applications are the "servers" and the computer is a "server-class computer"
- -Servers can run on very simple computers...

Message exchanges

- -Typically, client and server exchange messages:
 - -Client sends *request*, perhaps with data
 - -Server send *response*, perhaps with data
- -Client may send multiple requests; server sends multiple responses
- -Server may send multiple response imagine video feed

Transport protocols and client-server paradigm

- -Clients and servers exchange messages through transport protocols; e.g., **TCP** or **UDP**
- -Both client and server must have same protocol stack and both interact with transport layer

Multiple services on one computer

- -Sufficiently powerful computer fast enough processor, multi-tasking OS may run multiple servers
- -Servers run as independent processes and can manage clients simultaneously

Multiple services on one computer

- -Can reduce costs by sharing resources among multiple services
- -Reduces management overhead only one server-class computer to maintain
- -One server can affect others by exhausting server-class computer resources
- -Failure of single server-class computer can bring down multiple servers

Basic Internet Concepts

What is the Internet?

- WWW
- Video conferencing
- ftp
- telnet
- Email
- Instant messaging
- ...

A communication infrastructure

Usefulness is in exchanging information

Abbreviated History

1943	First electronic digital computer Harvard Mark I
1966	Design of ARPAnet
1970	ARPAnet spans country, has 5 nodes
1971	ARPAnet has 15 nodes
1972	First email programs, FTP spec
1973	Ethernet operation at Xerox PARC
1974	Intel launches 8080; TCP design
1975	Gates/Allen write Basic for Altair 8800
1976	Apple Computer formed by Jobs/Wozniak
1977	111 hosts on ARPAnet
1979	Visicalc

... Abbreviated History

1981	Microsoft has 40 employees; IBM PC
1982	Sun formed
1983	ARPAnet uses TCP/IP -> birth of internet
1983	Design of DNS
1984	launch of Macintosh; 1000 hosts on ARPAnet
1985	Symbolic.com first registered domain name
1989	100,000 hosts on Internet
1990	Cisco Systems goes public \$288 M
	Tim Berners-Lee creates WWW at CERN
	First web page on November 13, 1990

... Abbreviated History

1993 Mosaic developed at UIUC

Web grows by 341,000% in a year

1994 Netscape, Amazon, Archtext formed

1995 Netscape, Windows 95, MetaCrawler

1997 Amazon

2000 Internet "bubble" bursts

Jan 2004 233,101,481: Number of Hosts advertised in the DNS

(Source: http://www.isc.org/)

How Many Online?

Structure of the Internet

