Campo creado por un hilo conductor muy largo	$B = \frac{\mu_0 i}{2 \pi d}$		
Campo en el centro de N espiras circulares de radio r	$B = \frac{\mu_0 i}{2 r} N$		
Campo en el centro de un solenoide de longitud L y N espiras	$B = \frac{\mu_0 i}{L} N$		
Fuerza sobre una carga movil en un campo magnético	$\vec{F} = q \vec{v} \times \vec{B}$		
Fuerza sobre un hilo conductor en un campo magnético	$\vec{F} = i \cdot \vec{L} \times \vec{B}$		
Fuerza entre dos hilos conductores paralelos	$F = \frac{\mu_0}{2\pi d} i_1 i_2 L$		
Momento de la fuerza magnética sobre N espiras	$M = i S B N \operatorname{sen} \alpha$		
Flujo que atraviesa una espira	$\phi = B S \cos \alpha$		
Partícula girando en una trayectoria circular perpendicular a	$F_{MAG} = F_{CEN} \rightarrow q v B = m \frac{v^2}{r}$		
un campo magnético uniforme.	$r = \frac{m v}{q B}$, $T = \frac{2 \pi r}{v}$, $f = \frac{1}{T}$		

Símbolo	Magnitud		Unidad
\overline{B}	Campo magnético o inducción magnética	(Tesla)	$T = N \cdot A^{-1} \cdot m^{-1}$
\overline{q}	Carga	(Culombio)	$C = A \cdot s$
i	Intensidad de corriente	(Amperio)	A = C/s
μ_0	Permeabilidad del vacío (constante)	$= 4\pi \cdot 10^{-7}$	$T \cdot m/A$
N	Número de espiras		
r	Radio de la espira		m
d	Distancia al hilo conductor o entre dos hilos conductores		m
F , F_{MAG} , F_{CEN}	Fuerza, Fuerza magnética, Fuerza centrípeta		N
ν	Velocidad de la partícula		m/s
L	Longitud del hilo o del solenoide		m
S	Sección (área) de la espira		m^2
M	Momento de la fuerza magnética		N·m
α	Ángulo entre el vector <i>campo magnético</i> y e perpendicular (normal) al plano de la espira		°, radianes
heta	Ángulo entre el vector <i>campo magnético</i> y e velocidad	el vector	°, radianes
m	Masa de la partícula		kg
T	Periodo de la órbita		S
f	Frecuencia		$Hz = s^{-1}$
ϕ	Flujo magnético	(Weber)	$Wb = T \cdot m^2$