法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

第6课 图像分割

Image Segmentation

主讲人:张宗健

悉尼科技大学博士

主要研究方向: 计算机视觉、视觉场景理解、图像&语言、深度学习

图像检索CbIR、Human ReID等

本章结构

- □ 显著性检测 (Saliency Detection)
- □ 物体分割 (Object Segmentation)
- □ 语义分割 (Semantic Segmentation)
- □ 三大数据集介绍(Pascal VOC, MSCOCO, Cityscapes)
- □ 应用案例:
 - 自动驾驶场景图片的语义分割-全卷积网络DeepLab

2类问题

- · 显著性物体分割 (Salient object segmentation)
 - 最能引起人的视觉注意的物体区域
- 注视点预测 (Fixation prediction)
 - 通过对眼动的预测和研究探索人类视觉注意机制

两种策略的视觉注意机制

- 自底而上基于数据驱动的注意机制
 - 从数据出发
 - 与周边有较强对比度或差异
 - 颜色、亮度、边缘等特征
- 自上而下基于任务驱动的目标的注意机制
 - 从认知因素出发,如知识、预期、兴趣等

Pascal VOC数据集

- 显著物体标注
- 眼动数据

原始图像 (PASCAL VOC)

眼动追踪实验

人工图像标注

眼动数据

显著物体轮廓

DNN模型

· 由VGG网络修改而成

前景背景分割

- 前景一般包含物体
- 需要交互提供初始标记

Graph Cuts 分割

- 基于图论的分割方法
- 分割模型
 - 每个像素是一个节点
 - 加2个节点F/B
 - 边
 - 像素跟F/B的连接
 - 相邻像素的连接
 - 最小割最大流算法优化

GrabCut分割

- 前景/背景的颜色模型
 - 高斯混合模型
 - Kmeans算法获得

GrabCut分割

- 迭代进行Graph Cuts
 - 优化前景和背景的颜色模型
 - 能量随着不断迭代变小
 - 分割结果越来越好

GrabCut分割

- 算法流程
 - 使用标记初始化颜色模型(K=5)
 - 执行Graph Cuts ____

什么是语义分割

- 目标
 - · 从像素水平 (pixel-level) 上, 理解、识别图片的内容
 - 根据语义信息分割
- 輸入
 - 图片
- 输出
 - 同尺寸的分割标记(像素水平)
 - · 每个像素会被识别为一个类别 (category)

语义分割的用处

- 机器人视觉和场景理解
- 辅助/自动驾驶
- 医学X光

算法研究阶段

- 2015之前: 手工特征+图模型 (CRF)
- 2015开始:深度神经网模型
 - 思路:改进CNN,并使用预训练CNN层的参数
 - 传统CNN的问题
 - 后半段网络无空间信息
 - 输入图片尺寸固定
 - 全卷积网络 (Fully Convolutional Networks)
 - 所有层都是卷积层
 - 解决降采样后的低分辨率问题

全卷积网络(Fully Convolutional Networks-FCN)

- 卷积化 (Convolutionalization)
 - 将所有全连接层转换成卷积层
 - 适应任意尺寸输入,输出低分辨率分割图片
- 反卷积 (Deconvolution)
 - 将低分辨率图片进行上采样,输出同分辨率分割图片
- 跳层结构(Skip-layer)
 - 精化分割图片

FCN-卷积化(Convolutionalization)

- 基础CNN网络: AlexNet, VGG16, GoogLeNet
- 卷积化后的核尺寸(通道数,宽,高)
 - (4096, 1, 1)
 - (4096, 1, 1)
 - (1000/21, 1, 1)
- 分辨率降低32倍
 - 5个卷积层
 - 每层降2倍

FCN- 卷积化的降维问题

- 一对多操作
- 卷积的逆操作
 - 小数步长1/f
 - 卷积核尺寸不变
- 前向和后向传播
 - 对应于卷积操作的后向和前向传播,优化上做颠倒
 - 反卷积核是卷积核的转置,学习率为0
- · 也叫转置卷积(Transposed convolution)
- 可以拟合出双线性插值

- · 外围全补零 (Full padding) 反卷积
- 输入: 2x2
- 输出: 4x4
- 参数设置
 - 卷积核尺寸: 3x3
 - 步长: 1
 - Padding: 2
- 被Skip-layer使用

- 插零分数步长反卷积
- 输入: 3x3
- 输出: 5x5
- 参数设置
 - 卷积核尺寸: 3x3
 - 步长: 2
 - Padding: 1

- 反池化操作(Unpooling)
 - 记录池化时的位置
 - 将输入特征按记录位置摆放回去(近似)

FCN-跳层结构 (Skip-layer)

- 原因:直接使用32倍反卷积得到的分割结果粗糙
- 使用前2个卷积层的输出做融合
 - 跳层:Pool4和Pool3后会增加一个1x1卷积层做预测
 - 较浅网络的结果精细,较深网络的结果鲁棒

FCN-跳层结构 (Skip-layer)

FCN构架图例

蓝色	绿色	黄色	橙色	灰色
卷积层	池化层	逐像素相加	反卷积层	剪裁层
	获取特征	融合结果	上采样	统一尺寸

- 第1步
 - 使用AlexNet作为初始网络,保留参数
 - 舍弃2个全连接层

- 第2步 (FCN-32s网络)
 - · 替换为两个同深度的卷积层(4096,1,1)→16x16x4096
 - 追加一个预测卷积层 (21,1,1) →16x16x21
 - 追加一个步长为32的双线性插值反卷积层→500x500x21

- 第3步 (FCN-16s网络)
 - 对最终层Conv7结果2倍上采样→34x34x21
 - 提取Pool4输出,追加预测卷积层 (21,1,1)→34x34x21
 - 相加融合→34x34x21
 - 追加一个步长为16的双线性插值反卷积层→500x500x21

- 第3步 (FCN-8s网络)
 - 对上次融合结果2倍上采样→70x70x21
 - 提取Pool3输出, 追加预测卷积层 (21,1,1) →70x70x21
 - 相加融合→70x70x21
 - 追加一个步长为8的双线性插值反卷积层→500x500x21

FCN训练

- SGD with momentum (0.9)
 - Learning rate
 - 0.001(AlexNet), 0.0001(VGG16), 0.00001(GoogLeNet)
 - Minibatch: 20
- 初始化
 - 卷积层
 - · 前5个卷积层使用初始CNN网络的参数
 - 剩余第6和7卷积层初始化为0
 - 反卷积层
 - 最后一层反卷积层固定为双线性插值不做学习
 - 剩余反卷积层初始化为双线性插值

FCN的跳层结构性能

• FCN-8s最优

	pixei	mean	mean	1.W.
		acc.		
FCN-32s-fixed	83.0	59.7	45.4	72.0
FCN-32s	89.1	73.3	59.4	81.4
FCN-32s-fixed FCN-32s FCN-16s	90.0	75.7	62.4	83.0
FCN-8s	90.3	75.9	62.7	83.2

FCN的基础网络性能

• FCN-VGG16最优

	FCN-	FCN-	FCN-
	AlexNet	VGG16	GoogLeNet ⁴
mean IU	39.8	56.0	42.5
forward time	50 ms	210 ms	59 ms
conv. layers	8	16	22
parameters	57M	134M	6M
rf size	355	404	907
max stride	32	32	32

FCN-8s的Pascal VOC竞赛结果

- 边缘准确性比较差
 - 第1个卷积层大量补零
 - 之后做裁剪
 - 保证输出分辨率
 - 带来噪声

	mean IU VOC2011 test	mean IU VOC2012 test	inference time
R-CNN [12]	47.9	-	-
SDS [17]	52.6	51.6	$\sim 50 \text{ s}$
FCN-8s	62.7	62.2	\sim 175 ms

DeepLab全卷积网络

- 基本结构
 - 优化后的DCNN+传统的CRF图模型
- 新的上采样卷积方案
 - · 带孔 (hole) 结构的膨胀卷积 (Atrous/Dilated convolution)
- 多尺度图片表达
 - Atrous空间全字塔池化(Atrous Spatial Pyramid Pooling)
- 边界分割的优化
 - 使用全连接条件随机场CRF进行迭代优化

DeepLab全卷积网络

- 模块1: DCNN输出粗糙的分割结果
- · 模块2: 全连接CRF精化分割结果

- · 孔 (Hole) 算法
 - · 解决原始FCN网络的输出不密集问题(100padding)
 - 降低池化层的降采样倍数
 - VGG16网络Pool4和Pool5层的步长: 2→1
 - 减小降采样倍数:32→8
 - · 后续卷积核的感受野(Field-Of-View)会受影响(变小)
 - · 这些卷积核无法用来fine-tune
 - 更改卷积核的结构→加孔(Hole)
 - 无上采样功能
 - 恢复感受野,可以用来fine-tune
 - 保证了网络最终的密集输出(仅8倍降采样)

- 孔 (Hole) 算法
 - 卷积核结构
 - 尺寸不变(3x3),元素间距变大(1→2)
 - 步长不变 (1)
 - 优势
 - 参数数量不变
 - 计算量不变
 - 高分辨输出
 - 采用层
 - Conv5: 孔尺寸2
 - Conv6: 孔尺寸4 (a) 普通池化

DeepLab-DCNN

- 膨胀卷积(Atrous/Dilated convolution)
 - 孔算法的正式名称
 - 与降低池化层步长配对使用,以取代上采样反卷积
 - 孔尺寸→Rate
 - · Rate越大,感受野越大

卷积核尺寸3x3

Rate = 1 无插零

Rate = 2 插1个零

Rate = 4 插3个零

(b) Dense feature extraction

- 膨胀卷积效果
 - 稀疏特征提取:x2降采样→7x7卷积→x2上采样
 - 稠密特征提取:7x7膨胀卷积
- 优势
 - 参数&计算量一样
 - 灵活控制分辨率

- Atrous空间全字塔池化(Atrous Spatial Pyramid Pooling)
 - 不同感受野(rate)捕捉不同尺度上的特征
 - 在Conv6层引入4个并行膨胀卷积
 - Rate: 6, 12, 18, 24

- Atrous空间全字塔池化(Atrous Spatial Pyramid Pooling)
 - 4个并行膨胀卷积
 - 感受野: 13x13, 25x25, 37x37, 49x49
 - Fc6 \rightarrow Fc7 \rightarrow Fc8
 - 深度:4096→2014→类别数量
 - 卷积核: 3x3→1x1→1x1
 - 融合: 概率相加

DeepLab-全连接CRF

- 作用:通过迭代精化分割结果(恢复精确边界)
- 输入
 - FCN网络输出结果的8倍双线性插值
 - 上一轮迭代结果
- · 能量计算基于图片RGB像素值

$$E(x) = \sum_{i} \theta_{i}(x_{i}) + \sum_{ij} \theta_{ij}(x_{i}, x_{j})$$

$$\theta_{i}(x_{i}) = -\log P(x_{i})$$

$$\theta_{ij}(x_{i}, x_{j}) = \mu(x_{i}, x_{j}) \left[w_{1} \exp\left(-\frac{||p_{i} - p_{j}||^{2}}{2\sigma_{\alpha}^{2}} - \frac{||I_{i} - I_{j}||^{2}}{2\sigma_{\beta}^{2}}\right) + w_{2} \exp\left(-\frac{||p_{i} - p_{j}||^{2}}{2\sigma_{\alpha}^{2}}\right) \right]$$
(3)

DeepLab-全连接CRF

DCNN output

- · 第一行: 飞机类别的分值 (softmax之前)
- · 第二行:飞机类别的概率值(softmax之后)

CRF Iteration 10

CRF Iteration 2

CRF Iteration 1

Image/G.T.

Cityscapes数据集分割效果

Cityscapes数据集性能

• ResNet-101 优于 VGG16

Full	Aug	LargeFOV	ASPP	CRF	mIOU
VGG-16					
		✓			62.97
		✓		✓	64.18
\checkmark		✓			64.89
\checkmark		✓		✓	65.94
ResNet-101					
\checkmark					66.6
\checkmark		✓			69.2
\checkmark			\checkmark		70.4
\checkmark	\checkmark		\checkmark		71.0
√	✓		✓	✓	71.4

语义分割数据集

Pascal VOC - 2012

- 20个物体类别
 - 人类
 - 动物 (鸟、猫、牛、狗、马、羊)
 - 交通工具(飞机、自行车、船、公共汽车、小轿车、 摩托车、火车)
 - 室内 (瓶子、椅子、餐桌、盆栽植物、沙发、电视)
- 像素级标签9,993张图片

语义分割数据集

MSCOCO

- 80个类别
- COCO-stuff扩展集: 172类别
 - Object: 80
 - Stuff: 91
 - Unknown: 1
- 主要用于:
 - 实例级别的分割 (Instance-level)
 - 图片描述 (Image Captioning)
- http://mscoco.org/

语义分割数据集

Cityscapes

- 30个类别
- 标注:
 - 5,000张像素标注 (pixel level)
 - 20,000张多边形标注 (instance level)
- 辅助/自动驾驶中的语义场景理解
- 采集于50个城市
- https://www.cityscapes-dataset.com

演示环节

- Github
 - https://github.com/349zzjau
- 百度网盘
 - http://pan.baidu.com/s/1gfpCCwj
- 演示内容
 - DeepLab

疑问

□问题答疑: http://www.xxwenda.com/

■可邀请老师或者其他人回答问题

Q & A

小象账号: 349zzjau

课程名:基于深度学习的计算机视觉 课后调查问卷http://cn.mikecrm.com/h5chJQt

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop

