Algorithm Analysis Tools

Anghelo De La Cruz

August 18, 2017

Contents

1		thematical Theory												1
		Summation Notation												
	1.2	Double Sum												2
	1.3	Double Index												2
2	2.1	urrence Relations Arithmetic Sequence Geometric Sequence												
3	Pro	of by Induction												2

Mathematical Theory 1

Summation Notation

Summation is the addition of numbers and is specified by a rule defined in the notation using the upper case Greek letter sigma $\sum_{i=1}^n i = 1+2+3+\cdots+n$

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \cdots + n$$

- i is the index of summation
- 1 is the starting point (lower limit of summation)
- n is the stopping point (upper limit of summation)
- i is the summation element

When we use the summation symbol, it is useful to remember the following rules:

1.2 Double Sum

In certain situations, using a double sum may be necessary.
which can be visualised as the sum of items of matrix:

1.3 Double Index

To represent the data of a table or a matrix, double index notation is commonly used. Where x_{ij} corresponds to the \$i\$th row and the \$j\$th column item.

2 Recurrence Relations

2.1 Arithmetic Sequence

This is a **linear** changing sequence shown by: **Example**

2.2 Geometric Sequence

This is an **exponential** changing sequence shown by:

3 Proof by Induction

There are 4 steps of math induction:

• Show P(1)

•