SC2001: Example class 1 Theoretical Analysis

September 16, 2024

1 Hybrid Merge-Insertion Sort Analysis

- 1. Let n be the input size / no. of elements to be sorted.
- 2. Divide n elements into $\frac{n}{S}$ subarray of size S, the size of each subarray.
- 3. For each subarray of size n_s , perform insertion sort:
 - Best case: O(S)
 - Worst case: $O(S^2)$
- 4. Since there are $\frac{n}{S}$ subarrays of size S, total cost of applying insertion sort as:
 - Best case: $\frac{n}{S} \cdot S = O(n)$
 - Worst case: $\frac{n}{S} \cdot S^2 = O(nS)$
- 5. Merge $\frac{n}{S}$ sorted subarray of size S

• Each merge() doubles the subarray size. Suppose *l* iterations of merge() has to be performed to recover input size *n*:

$$2^{l}S = n$$

$$2^{l} = \frac{n}{s}$$

$$l \lg 2 = \lg\left(\frac{n}{s}\right)$$

$$l = \log_{2}\left(\frac{n}{s}\right)$$
(1)

• Since the cost of merge() is O(n), the worst case total cost of merging M is:

$$M = l \cdot n$$

$$= \log_2(\frac{n}{s}) \cdot n$$

$$= O(\lg(\frac{n}{s}) \cdot n)$$
(2)

- 6. Combining insertion-sort & merging in Hybrid Merge-Insertion sort, we have:
 - Best Case: $O(n + \lg(\frac{n}{s}) \cdot n)$
 - Best Worse: $O(nS + \lg(\frac{n}{s}) \cdot n)$