Security Coursework

Vulnerability	Exploit / Problem	Mitigation
1) There is a user	Someone could guess the password	The vulnerability can be secured
account called 'user'	'password' and gain access to the	by selecting an appropriately
which has a weak	server.	secured password, for example
password which is		random mixed case letters,
'password'.		numbers, and symbols.
2) The database	Private server customer information,	Ensure the database is secured
back-up contents can	including usernames and logins, full	through requiring a username and
be opened through	name, country and credit card	password to access it. Also ensure
the terminal.	numbers, can all be seen or changed	that access is audited.
	by opening the database back-up	
	through the command line. This can	
	be seen in Fig 1.	
3) Excessive and	Through the 'user' account, we can	Increase the permissions for 'user'
incorrect	view, read and write on several user	access to read, write and execute
permission/privileges	files and the contents found within	on files within
are given to the	their respective folders, such as	folders. The current permissions
users.	secret diary. These actions	can be seen in Fig 2.
	can be easily performed through the	Ensure the permissions for all
	command line. This is also an issue	other users are also correct.
	on other user accounts.	A privilege model should be used,
		such as the Bell-Lapadula model.
4) Ports are left	Root access can be gained through	Update the device protocol to SSH,
open, including port	the open network connections, to	which uses public key
8888 as seen in Fig 3,	read, write and execute on all files,	authentication, ensuring more
which can be easily	due to the use of an old protocol	secure communication and sharing
accessed through the	(such as telnet). This can be done	of data between ports.
command line.	once accessing the open port 8888,	The website server is not
	allowing commands to be executed	connected to port 8888, so
	through a remote shell.	consider closing it if it serves no
		function.
5) The website	A path traversal attack can be run on	A modern configured server
server paths are	the website resulting in leaked	should be integrated, where
unverified.	system information. This can allow	access is denied past a certain
	access to user data, through the	boundary. For example, regular
	server, such as passwords. This	expressions can be whitelisted,
	example can be seen in Fig 4.	hence only allowing valid inputs.
6) All the .c /Desktop	The .c files on the Desktop can be	The Bitcoins.c file can be complied
files are openly	opened and viewed, causing	with a stack protector, to stop
accessible and	potential vulnerabilities. For	stack smashing, preventing the
unencrypted. The	example, we can overflow the buffer	flag from accepting a string if the
Bitcoins.c file is	for Bitcoins.c, causing the CEOs	buffer overflows. We could also
particularly insecure.	bitcoin key to be displayed, as seen	check that our buffer bound is
	in Fig 5.	defined to ensure nothing goes
		over the 64 characters in length.
		All the .c files should also be
		encrypted.
7) The 'Login' page of	An SQL injection attack can be run	A prepared statement can be
the website accepts	through inputting an SQL statement	created, to prevent the use of the
SQL statements.	into one of the 'Login' fields, causing	statement seen in Fig 6, and
	private details of all the users to be	similar varieties. This will prevent

	displayed in a table. This can be seen in Fig 6, along with the relevant SQL statement.	code and data from being mixed up.
8) The list of user countries on the 'Stats' page, includes repeated countries, as seen in Fig 10.	An inference attack can be performed with the user countries and 'list of users'. The number of users is equal to the number of user countries, resulting in the inference that the users and countries matchup with one another in the order displayed, which happens to be true. This is against the anonymity policy listed on the webpage.	Remove all country duplicates from the user countries table on the website by creating a 'countries' table in the database.
9) The server has a weak audit trail.	Currently, security breaches cannot be tracked. If someone were to internally access the database, then we cannot tell which data was breached. Additionally, if someone tried to login many times, without success, then this knowledge would be useful to help avoid a future breach.	Any changes or access to the system server or database should be monitored. Specifically, ensure all database changes through SQL commands, changes to permissions and login attempts are audited.
10) The SQLite version used to store the database back-up is out of date.	Patch 3.18.0 is used, as seen in Fig 7, which is a few years out of date. Recent patches will ensure the best level of security and that bugs are fixed. However, without updating there is a risk of a data breach with sensitive data being accessed.	Update to the latest version of SQLite, which is version 3.38.
11) Passwords and sensitive information are not securely saved in the database.	If the database contents are accessed, as seen in Fig 6, sensitive information is instantly known, such as passwords and card numbers. A simple dictionary attack can be run, to crack the passwords and gain access to sensitive information, as they are unencrypted.	All database contents should be encrypted. Upon choosing passwords, they should contain at least a certain number of characters, numbers and special characters. To ensure a secure database login system, passwords require hashing, and a salt should be added before.
12) User information is available on the website.	The usernames stored in the database all contain the first name of the user, followed by a number. This makes the usernames easy to guess. This would aid a dictionary attack, which aims to access sensitive information.	Usernames should be adjusted to be unique and not depend on user information. They should contain at least a certain number of random characters, numbers and special characters.
13) The kernel version is out of date.	The current kernel version used is 3.16.55, as seen in Fig 8, which is out of date, leaving open many more vulnerabilities which are resolved in subsequent patches.	The Linux version should be updated to the latest version of 5.17.

14) Link	A link can be created to the	Ensure that the right level of
vulnerabilities exist	/etc/passwd file. Through executing	privilege/access is given to
between the	the zcip.script program, which can	programs through a system such
password file and	read/write root files, with this link, a	as AppArmor. Also, a flag should
the zcip.script.	new root user can be added to the	be added to all root level program
' '	system allowing complete control of	files, ensuring their level of
	the server.	authority is not abused.
15) The ARP protocol	ARP translates between MAC	Upgrade the system to use IPv6 to
is still in use (along	addresses and IP addresses,	make use of the NDP protocol,
with IPv4), as seen in	however this is an out of date	which is more secure in terms of
Fig 11.	protocol. This allows denial of	defending against the three listed
	service, man in the middle attacks	attacks.
	and session hijacking to be carried	
	out more easily.	
16) There is no	Smurf and Fraggle denial of service	Use SNORT which prevents
network traffic	attacks can be carried out and may	intrusion by tracking network
identifier in place.	succeed in shutting down the server,	traffic and data packets. It may
	due to the lack of network traffic	also be useful to download anti-
	detection.	virus / anti-malware software.
17) The website	Malicious code can be injected into	An SSL certificate should be added
server is not	the webpage through a cross-side	to the website. Currently the HTTP
configured securely.	scripting (XSS) attack, causing	protocol is used, which does not
The HTTP protocol is	sensitive information of users to be	encrypt responses and requests.
in use instead of	uncovered once the page is accessed	The HTTPS protocol should be
HTTPS.	by a victim. Cross-side scripting (XSS)	used instead also.
	attacks, including cookie theft, are	The server could be whitelisted,
	the most common form of attacks.	only allowing valid user inputs.
18) Hashed and	The /etc/passwd file can be printed	The Linux version should be
salted passwords can	to the terminal by any user, as seen	updated to the latest version of
be retrieved through	in Fig 9. A hacker can easily run a	5.17. This will move the passwords
the world-readable	rainbow table attack or a dictionary	to /etc/shadow, which is only
/etc/passwd file.	attack to find out what the	accessible by root users.
	passwords are, such as through Jack	
	the Ripper.	
19) User encrypted	The encryption key of Jess and	When encrypting files on the
files are poorly	Mark's files are identical to their	server, ensure that a different
secured.	user passwords to access the	secure password is chosen, which
	system. If their passwords are	contains at least a certain number
	Language along the annual state of the annual land	
1	known, their sensitive files can be	of random characters, numbers and special characters.

Reference Images

Fig 1 – Private customer information

Fig 2.1 and Fig 2.2 – Standard user permissions and

```
user@cybersec: 75 cd ..

user@cybersec: 7/home$ cd ..

user@cybersec: 7/home$ cd ..

user@cybersec: 7/5 ls

bin etc lib mnt run tmp

boot home lost+found proc sbin usr

dav init media root sys var

user@cybersec: 7/5 pscan -p 1000 -p 10000 127.0.0.1

Scanning 127.0.0.1 ports 1000 to 10000

Port Prot State Service
6000 tcp open unknown
9999 tcp open unknown
9999 tcp open unknown
9999 tcp open unknown
9999 tcp open unknown
9998 closed, 3 open, 0 timed out (or blocked) ports

user@cybersec: 75
```

```
user@cybersec:-5 cd ..
user@cybersec:/home5 cd ..
user@cybersec:/5 netcat 127.0.0.1 8888
cd home/alice
ls
Desktop
Downloads
Downloads
Images
Music
Public
Templates
Videos
confidential.txt
cat confidential.txt
This is my secret diary. It would be terrible if anyone other than me read this. Mark is so annoying! I really lo
ve Tux!
whoami
root
```

Fig 3.1 and Fig 3.2 – Using pscan to see the open ports and gained root access

Fig 4 – The hashed passwords can be accessed through both the public server and with root access

```
Bitcoins. Bitcoins.c. README
user@cybersec:-/Desktop/Bitcoins$ ls -al
total 20
drwxr.xr-xx 2 user user 4096 Oct 11 2019 .
drwxr.xr-xx 5 user user 4096 Oct 11 2019 .
-rwxr.xr-xx 1 user user 2752 Oct 11 2019 Bitcoins
-rwxr.xr-xx 1 user user 653 Apr 22 3:39 Bitcoins.c
-rwx-r-r-- 1 user user 653 Apr 22 3:39 Bitcoins.c
-rw-r--r-- 1 user user 178 Sep 11 2018 README
user@cybersec:-/Desktop/Bitcoins$ ./Bitcoins
-viser@cybersec:-/Desktop/Bitcoins$ ./Bitcoins
-wer@cybersec:-/Desktop/Bitcoins$ ./Bitcoins
-wer@cybersec:-/Desktop/Bitcoins$
```

Fig 5 – Password bypass from buffer overflow

Fig 6 - SQL injection attack

```
sqlite> SELECT sqlite_version()
...>;
3.18.0
sqlite>
```

Fig 7 – SQL version

```
sakura sa
```

Fig 8 - Kernel version

```
user@cybersec:/etc5 cat passwd
root:5655PatfS315Q1hAxE5f9MbzNDPCafYfF43NocPFwyvy896r.aQ2tGehy1sj.084fNw2wUe0w14
MwhuZQPW2vGmb;ffltR1Sx1:9:8:Root Administrator:/root:/bin/sh
nobody:x:99:99:Unpriv1teged User:/dev/null:/bin/false
www.x:80:803Web Server User:/var/www./bin/false
messagebus:x:25:25:108US Daemon User:/dev/null:/bin/false
groot:565.7MPKOFK)oFFkuckwSYF78itul 1.WQoTv41FymbVXOpKuIZJodR1DzKVeBNkSGTA90JfdCis
TrafAz]UBmxVX4GpU3rms5ace09hgxU1:0:0::/home/groot:/bin/sh
user:565CpK61BV5jiwHiZR8.g9FGCyPSyDVLAYIWhaDc4wVb1BWfh.:T7tns7Wpdba;FlJXSKHlv
h.tPPgqw4d1ZXZUAso5pOH0:1000:1000:1000:user_,:/home/user:/bin/sh
jes:565P863NytStShHBEUKHRIUu,/pubX74.0jF27WPF73PQPYZXZXBXncvb0bHXzX0003DZQn
10y4ZpVxdRMYZ]\NbJmuB6g/:1001:1001::/home/jess:/bin/sh
mark:565E;Pv4VXSN/C30313pngyZyKDMvX2SopGg31Knh6WRGTZOgartlrgJZSMc1NCSbXDpdRGRb9
pc0hb8NjyPhygolxXh366:1002:1002::/home/mark:/bin/sh
alice:565Ztb.011vSbUbxY.11VJ/hmBUJ7CFSKYVb1ZqCM1BoVMSpTDCPubn1Afd2/FWms6/3aC.im
JNakgBk/IR0py.LDgc4istV:1003::/home/alice:/bin/sh
karl:565jabJuSx4SkNhMDkl.(:tEqt.2xe4cza8VVMkxExAaTVUHMXZYGJBd34KNxExAaTVUHMXZYGJBd34KNxExAaTVUHMXZYGJBd34KNxExAaTVUHMXZYGJBd34KNxExAaTVUHMXZYGJBd34KNxExAaTVUHMXZYGJBd34KNxExAaTVUHMXZYGJBd34KNxExAaTVUHMXXZYGJBd34KNxExAaTVUHMXZYGJBd34KNxExAaTVUHMXZYGJBd34KNxExAaTVUHMXXZYGJBd34KNxExAaTVUHMXZYGJBd34KNxExAaTVUHMXZYGJBd46KSV.TfyYXCZxvXY
t41qU81Q13nnN.w66kvk4f1:1004:1004::/home/karl:/bin/sh
user@cybersec:/etc$

■
```

Fig 9 – World-readable passwd file

Fig 10 – Table containing repeated countries

```
user@cybersec:-$ arp -a
7 (10.0.2.2) at 52:54:80:12:35:02 [ether] on eth0
user@cybersec:-$ ndp -a
/bih/sh; ndp: not found
user@cybersec:-$ ndp -n -a
/bih/sh; ndp: not found
```

Fig 11 – ARP protocol still in use