Capacitor Discharge

Jay Grinols

Figure 1: Setup of our circuit.

The capacitance is defined as $C = \frac{Q}{\Delta V_C}$. We know that $I \cdot R = \Delta V_R$ from Ohm's Law. By Kirchhoff's Loop Rule, we know that the sum of differences in potential in a closed loop must be equal to 0.

$$\Delta V_C - \Delta V_R = 0$$

Substituting for ΔV , we obtain that

$$\frac{Q}{C} - I \cdot R = 0$$

Recall that $I = -\frac{dQ}{dt}$, since the capacitor is losing charge. Solving for the

first order separable differential equation...

$$\frac{Q}{C} - I \cdot R = 0$$

$$\frac{Q}{C} + \frac{dQ}{dt} \cdot R = 0$$

$$\frac{dQ}{dt} \cdot R = -\frac{Q}{C}$$

$$\int \frac{dQ}{Q} = -\int \frac{dt}{R \cdot C}$$

$$\ln Q = -\frac{1}{R \cdot C} \cdot t + C_1$$

$$Q(t) = C_2 \cdot e^{-\frac{t}{\tau}}$$

We know that $Q(t) = C \cdot \Delta V_C(t)$, and that $Q(0) = C \cdot \Delta V_0$.

$$C \cdot \Delta V_0 = C_2$$

$$Q(t) = C \cdot \Delta V_0 \cdot e^{-\frac{t}{\tau}}$$

$$C \cdot \Delta V_C(t) = C \cdot \Delta V_0 \cdot e^{-\frac{t}{\tau}}$$

$$\Delta V_C(t) = \Delta V_0 \cdot e^{-\frac{t}{\tau}}$$

$$\ln \Delta V_C(t) = -\frac{1}{\tau} \cdot t + \ln \Delta V_0$$