-- CONHECIMENTOS ESPECÍFICOS --

Uma variável aleatória contínua X possui função de distribuição acumulada dada pela expressão a seguir, na qual a é um parâmetro tal que $a \in (0,1)$.

$$F(x) = \begin{cases} 1 - a^x, & \text{se } x \ge 0 \\ 0, & \text{se } x < 0 \end{cases}$$

A partir dessas informações, julgue os itens a seguir.

- 51 Se a = 0.75, então o primeiro quartil de X é igual a 1.
- **52** $P(X = 0.5) = 1 \sqrt{a}$.
- **53** A função de densidade da variável aleatória X é dada pela forma f(x), tal que $f(x) = xa^{x-1}$, se $x \ge 0$, e f(x) = 0, se x < 0.
- 54 Na transformação $Y = 1 a^X$, a variável aleatória Y segue uma distribuição contínua com média 1/2 e variância 1/12.
- **55** A média de X é $-\frac{1}{\ln a}$

A sequência de variáveis aleatórias contínuas $W_1, W_2, ..., W_n$ representa uma amostra aleatória simples de tamanho n retirada de uma população descrita por uma função de densidade na forma $f(w) = 504 \times w^5 (1-w)^3$, na qual $0 \le w \le 1$.

Considerando as informações precedentes, julgue os itens a seguir, com relação às variáveis aleatórias $\overline{W} = \frac{1}{n} \sum_{i=1}^{n} W_i$ e $V = \frac{1}{n-1} \sum_{i=1}^{n} (W_i - \overline{W})^2$.

- **56** A variância de \overline{W} é inferior a $\frac{1}{n}$.
- 57 Se n=5 e se a variância populacional for representada como σ^2 , a quantidade $4 \times \frac{V}{\sigma^2}$ segue uma distribuição qui-quadrado com 4 graus de liberdade.
- **58** \overline{W} converge em probabilidade para 0,5 à medida que $n \to +\infty$.
- **59** O valor esperado da variável aleatória V é igual a um valor inferior a 0,05.
- **60** Se μ representa a média populacional e se n=10, então a razão $\frac{\overline{W}-\mu}{\sqrt{V/10}}$ segue uma distribuição t de *Student* com 9 graus de liberdade.

Considerando que as variáveis aleatórias X e Y sejam normais, mutuamente independentes e identicamente distribuídas, e supondo que μ e σ representem, respectivamente, a média e o desvio padrão dessas distribuições, julgue os itens subsequentes.

- **61** Se $\mu = 0$ e $\sigma = 1$, então $X^2 + Y^2$ segue distribuição qui-quadrado com dois graus de liberdade.
- 62 Se S = X + Y e D = X Y, então S e D são variáveis aleatórias independentes.
- **63** Nas condições apresentadas, Var[X + Y] > Var[X Y].
- **64** A razão $\frac{X-Y}{2\sigma}$ se distribui conforme uma distribuição normal padrão.

Julgue os próximos itens, com base na distribuição de probabilidade condicional $P(X=x|W=w)=\frac{e^{-w}w^x}{x!}$, em que x=0,1,2,3...,w>0 e W segue uma distribuição exponencial com média igual a 1.

- **65** E[Var(X|W)] = W.
- **66** Var(X) = 1.
- **67** E(X|W=w)=w
- **68** $P(X = 3) = \frac{1}{16}$
- **69** O valor esperado da variável aleatória *X* é igual a *w*.

Julgue os seguintes itens, considerando duas variáveis aleatórias R e S, tais que E[R] = E[S] = 0, $E[R^2] = 9$, $E[S^2] = 4$ e Cov[R,S] = -6.

- **70** Se *R* segue uma distribuição *t* de *Student*, então seu grau de liberdade é igual a 2,25.
- 71 Se R e S seguem distribuições normais, então a combinação linear $R + \frac{3}{2}S$ também segue uma distribuição normal.
- 72 A correlação entre (R + S) e (R S) é igual a 1.
- 73 O valor esperado de $(R + S)^2$ é igual a 1.

Para uma variável aleatória X, de média $\mathrm{E}(X)=\mu$ e variância $\mathrm{Var}(X)=\sigma^2$, uma amostra aleatória de tamanho n é constituída por um conjunto $\{X_1,X_2,\cdots,X_n\}$ de n variáveis aleatórias idênticas a X e estatisticamente independentes entre si. Essa amostra aleatória de X tem média amostral definida como sendo a variável aleatória $\bar{X}_n=(X_1+X_2+\cdots+X_n)/n$. Se um estimador estatístico para um parâmetro θ , associado à distribuição de probabilidade de X, for denotado por $\hat{\theta}$, então o estimador para μ , da referida amostra aleatória, será $\hat{\mu}_n=\bar{X}_n$.

Com base nessas informações, julgue os itens a seguir, considerando que os resultados do teorema do limite central são fundamentais para embasar a análise da qualidade dos estimadores estatísticos de um parâmetro.

- 74 O estimador $\hat{\theta}$ de um parâmetro θ , baseado no método da função de verossimilhança, é não enviesado e suficiente, isto é, $E(\hat{\theta}) = \theta$.
- **75** É correto afirmar que $E(\hat{\mu}_n) = \mu e \sqrt{Var(\hat{\mu}_n)} = \sigma/n$.
- 76 A variável normalizada e centralizada do estimador $\hat{\mu}_n = \bar{X}_n$ é $(\hat{\mu}_n \mu)\sqrt{n}/\sigma$ e tem, assintoticamente, distribuição normal unitária N(0,1) para $n \to \infty$.
- 77 Para uma amostra aleatória da variável X, cuja distribuição depende de m parâmetros $\{\theta_1, \theta_2, \cdots, \theta_m\}$, deve-se obter m estimadores, minimizando a função de verossimilhança $L(\theta_1, \theta_2, \cdots, \theta_m)$.
- 78 Para um valor $0 < \alpha < 1$, o intervalo de confiança, com confiança 1α , para a estimativa de $E(X) = \mu$, utilizando-se o estimador \hat{u}_n , será assintoticamente $(n \to \infty)$ dado por $(\bar{X}_n z_\alpha \, \sigma / \sqrt{n} \,, \bar{X}_n + z_\alpha \, \sigma / \sqrt{n} \,)$, em que z_α é o quantil α da distribuição N(0,1).

Espaço livre

Um modelo de regressão linear entre uma variável aleatória Y (dependente) e uma variável não aleatória X (independente) é definido por $Y = \beta_0 + \beta_1 X + \epsilon$, em que ϵ , denominado erro aleatório, é uma variável aleatória independente de X com média $E(\epsilon) = 0$ e desvio padrão $Var(\epsilon) = \sigma^2$. Um modelo de regressão linear é essencialmente um modelo para a probabilidade condicional de Y com relação a X, denotada por P(Y|X); ele é chamado de simples se ϵ for uma variável aleatória gaussiana. Fixando-se n valores X_1, X_2, \dots, X_n para a variável independente X, pode-se definir *n* variáveis aleatórias $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, com $i = 1, \dots, n$. Pelo método dos mínimos quadrados, é possível obter estimadores $\hat{\beta}_0$ e $\hat{\beta}_1$ para os parâmetros β_0 e β_1 e definir o $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ como o estimador para Y_i . Nesse contexto, são definidos os erros, denominados resíduos, como $Y_i - \hat{Y}_i = e_i$, a soma dos quadrados dos resíduos SQE = $\sum_i e_i^2$, a soma dos quadrados totais $SQT = \sum_{i} (Y_i - \overline{Y})^2$ e a soma dos quadrados de regressão SQR = $\sum_{i} (\hat{Y}_{i} - \bar{Y})^{2}$, com $\bar{Y} = \sum_{i} Y_{i}/n$.

Com base nessas informações, julgue os próximos itens, considerando uma variável T, com média nula e desvio padrão unitário, definida por uma distribuição t de Student com 30 graus de liberdade, que tenha o seguinte intervalo com probabilidade de 0.95: P(-2.042 < T < 2.042) = 0.95.

- 79 Considere que, para uma regressão linear simples da relação $Y = \beta_0 + \beta_1 X$, em uma amostra de 32 valores de X, obteve-se: $\hat{\beta}_1 = 2$ como estimativa para β_1 ; soma dos quadrados dos resíduos igual a 600; e $\sum_{i=1}^{32} (X_i \bar{X})^2 = 2.000$, em que \bar{X} é a média dos valores de X na amostra. Considere ainda que tenha sido feito o teste da hipótese de não existir a relação linear $Y = \beta_0 + \beta_1 X$, tomando-se como hipótese nula que $\beta_1 = 0$. Nessas condições, assumindo um teste com erro de tipo I igual a 5%, é correto afirmar que a hipótese de não existir a relação linear deve ser aceita.
- **80** Na análise de adequação do modelo, é fundamental verificar se a variância dos resíduos não depende da variável *X*.
- 81 Para um modelo de regressão linear, vale a relação linear $E(Y) = \beta_0 + \beta_1 X$ para a média E(Y) da variável Y.
- **82** Para um modelo de regressão que não seja simples, a soma dos resíduos não será nula.
- 83 Para o modelo de regressão linear, a média e a variância do estimador do parâmetro β_1 serão respectivamente dados por $\mathrm{E}(\hat{\beta}_1) = \beta_1$ e $\mathrm{Var}(\hat{\beta}_1) = \sigma^2/\Sigma_i(X_i \bar{X})$ e, para o modelo de regressão linear simples, $\hat{\beta}_0$ e $\hat{\beta}_1$ têm distribuições de probabilidades gaussianas.
- Um estimador não viciado para a variância de $\hat{\beta}_i$ é obtido pela variância amostral dada por $S^2 = \text{SQE}/[(n-2)\sum_i(X_i-\bar{X})^2]$, em que $\bar{X} = \sum_i X_i/n$ e a variável centralizada de $\hat{\beta}_i$, normalizada por S, tem uma distribuição t de Student com n-1 graus de liberdade.
- 85 O coeficiente de determinação para um modelo de regressão linear é definido como $r^2 = (SQT SQE)/SQT$ e sua raiz quadrada corresponde ao coeficiente de correlação linear entre as variáveis $Y \in X$.

Para uma variável aleatória X e um parâmetro θ , associado à distribuição de probabilidade de X, pode-se utilizar um estimador $\hat{\theta}$ para testar a hipótese do parâmetro θ assumir um valor específico θ_0 . A fim de construir um teste, é necessário conhecer a distribuição do estimador, que definirá uma estatística de teste, e supor como hipótese nula, H_0 , a hipótese de que $\theta = \theta_0$. Para esse teste, existem dois tipos de erros: tipo I, rejeitar a hipótese H_0 quando ela é verdadeira; tipo II, não rejeitar a hipótese H_0 quando ela é falsa.

Com base nessas informações, julgue os seguintes itens.

- **86** Testes de hipótese nulas com probabilidade de erro de tipo II muito pequenos são muito significativos para provar a verdade da hipótese nula.
- 87 Se o estimador $\hat{\theta}$ tem intervalo de aceitação com probabilidade $1-\alpha$, então a probabilidade do erro de tipo I será α .
- 88 Em alguns casos, dependendo do tipo de distribuição para o estimador $\hat{\theta}$, é possível definir erros muito pequenos para os dois tipos de erros.
- **89** Testes com probabilidade de erro de tipo I pequenos são significativos para provar a falsidade de hipótese nula H_0 .

No que se refere a técnicas de amostragem, julgue os itens que se seguem.

- **90** Em uma amostragem estratificada, deve-se fixar a probabilidade de escolher um elemento do estrato como igual à porcentagem do estrato em relação à população.
- 91 O tipo de amostragem é sistemático se, em uma linha de produção, a cada 50 itens produzidos, o último é retirado para fazer uma amostra semanal e medir a quantidade de itens com defeitos; porém, se os itens retirados forem estatisticamente descorrelacionados, as propriedades de avaliação de erros inferenciais desse tipo de amostragem devem ser consideradas como equivalentes a amostragens aleatórias.
- **92** Em uma população que se divide em estratos, não é possível obter resultados significativos para as inferências feitas a partir de uma amostragem aleatória simples, portanto, isso implica que se deve necessariamente escolher amostras estratificadas.
- 93 Em uma amostragem aleatória simples, qualquer amostra de determinado tamanho terá a mesma probabilidade de ser escolhida.
- 94 Considerando a população de trabalhadores de fábricas de roupas em determinada região, a seleção aleatória de algumas fábricas para se medir as características dos seus trabalhadores representa uma amostragem aleatória simples dos trabalhadores de fábricas de roupas da região.

Espaço livre

Considere os seguintes intervalos, respectivamente com probabilidades 0,95 e 0,90, para uma variável aleatória Z com distribuição de probabilidade normal com média nula e desvio padrão unitário N(0,1): P(-1,96 < Z < 1,96) = 0,95 e P(-1,65 < Z < 1,65) = 0,90.

A partir dessas informações, julgue os itens a seguir.

- 95 Considere que, em uma cidade, a renda dos trabalhadores do setor turístico tem desvio padrão de 500 reais e, em uma amostra aleatória desses 100 trabalhadores, obteve-se uma renda média de 2.000 reais. Nesse caso, o intervalo de confiança, com 95% de confiança, para a renda média dos trabalhadores do setor turístico dessa cidade é [1.902, 2.098].
- 96 Considere os dados na tabela a seguir, relativos à distribuição de notas entre 0 e 10, obtidos de uma amostra aleatória de 256 estudantes que realizaram uma prova. Nesse caso, o intervalo de confiança, com 90% de confiança, para a percentagem de estudantes com nota superior ou igual a 6, tem tamanho inferior a 0,12.

intervalo das notas	número de estudantes
8 até 10 – [8, 10)	26
6 até 8 – [6, 8)	38
4 até 6 – [4, 6)	64
2 até 4 – [2, 4)	77
0 até 2 - [0, 2)	51
total	256

Em relação às abordagens clássica, burocrática e sistêmica da administração, julgue os itens a seguir.

- **97** Os adeptos da abordagem sistêmica na administração defendem a seleção de alguns sistemas sociais a serem estudados quanto à manutenção, ao atingimento de metas, à adaptabilidade e à integração.
- **98** A administração burocrática, segundo Weber, corresponde a um sistema que busca organizar, de forma estável e duradoura, a cooperação de poucos indivíduos, cada um detendo funções semelhantes.
- 99 O pensamento central da escola clássica pode ser sintetizado na afirmação de que o profissional será um bom administrador à medida que seus passos forem planejados, organizados e coordenados de maneira cuidadosa e racional.

No que se refere à evolução da administração pública no Brasil após 1930, às reformas administrativas e à nova gestão pública, julgue os próximos itens.

- 100 A reforma administrativa para a implantação da administração pública gerencial começou a ser discutida no país em 1980.
- **101** Em 1930, ocorreu a consolidação do modelo de administração burocrática no Brasil, iniciada, ainda no século XIX, por Dom Pedro II.
- **102** O Estado social percebe o cidadão como titular de direitos sociais, e o aparelho estatal como uma fonte de atendimento às necessidades a ele associadas.
- 103 A crise do Estado no início dos anos 1980 e a posterior crise da União Soviética e das economias dos regimes do Leste Europeu fizeram a efetividade do Estado social ser questionada.

- A respeito das funções da administração, julgue os itens subsequentes.
- **104** A função controle mede, regula ou corrige o desempenho da organização e dos recursos utilizados para o atingimento dos objetivos organizacionais.
- **105** O planejamento é uma atividade constante nas organizações bem-sucedidas, configurando-se como a primeira das funções administrativas que compõem o processo administrativo.

Acerca da estrutura organizacional, julgue os itens subsecutivos.

- 106 A departamentalização permite a criação de órgãos que abrangem a combinação de recursos humanos, financeiros, materiais e tecnológicos, sem representar um papel específico ou focar o alcance do planejamento da organização.
- 107 O organograma consiste na representação gráfica da estrutura organizacional, da superposição de órgãos, de forma a representar os órgãos que têm maior ou menor autoridade hierárquica em relação aos demais.

Em relação à cultura organizacional, julgue os itens que se seguem.

- **108** A cultura organizacional compõe-se apenas de comportamentos aprendidos que sejam visivelmente manifestos.
- 109 O estudo do que é ensinado aos novos membros de um grupo é uma forma de conhecer aspectos superficiais de determinada cultura.
- 110 Valores expostos constituem regras implícitas, não escritas, vulgarmente conhecidas como "macetes", que o iniciante deve aprender para ser aceito como membro de uma organização.

Considerando que qualidade é definida como a totalidade das características de uma entidade que lhe confere a capacidade de satisfazer necessidades explícitas e implícitas dos clientes, julgue os seguintes itens, a respeito da gestão da qualidade.

- 111 As sete ferramentas para o controle estatístico de qualidade desenvolvidas por Ishikawa são as seguintes: folha de verificação; estratificação; diagrama de Pareto; histograma; diagrama de Ishikawa; diagrama de dispersão; e gráfico de controle de processos, ou de Shewhart.
- **112** O controle de qualidade envolve técnicas e atividades operacionais que visam satisfazer os requisitos da qualidade.

Em relação ao comportamento organizacional, julgue os itens que se seguem.

- 113 O comportamento organizacional só pode ser compreendido a partir do estudo de indivíduos e grupos em organizações de grande porte, não sendo, portanto, possível sua percepção em ambientes de trabalho de pequenas e médias empresas.
- **114** A motivação corresponde às forças responsáveis pelo nível, pela direção e pela persistência do esforço que uma pessoa dispende no trabalho.

No que diz respeito à gestão de processos, julgue os itens a seguir.

- **115** A modelagem de processos abrange a identificação, o mapeamento, a análise e o redesenho dos processos.
- **116** A análise de processos é acompanhada de várias técnicas, entre as quais se incluem mapeamento, entrevistas e simulações.

Acerca da administração direta e indireta federal, julgue os próximos itens.

- 117 A CAPES é uma autarquia federal vinculada ao Ministério da Educação.
- 118 A administração federal direta possui personalidade jurídica própria, sendo composta pelos ministérios e pelas empresas estatais a eles vinculadas.

A respeito dos atos administrativos, julgue os itens que se seguem.

- 119 Entre os atributos dos atos administrativos está o da autoexecutoriedade, que consiste na obrigação de a administração pública utilizar-se da supremacia do interesse público sobre o privado para criar, unilateralmente, obrigações para si e para o particular, sem necessitar da anuência deste.
- 120 Os atos nulos são aqueles que apresentam defeitos graves insuscetíveis de convalidação, os quais tornam obrigatória a sua anulação.

Espaço livre