Exploring a million songs

Parallel Regression Trees in Ufora

Ronen Hilewicz, VP of Engineering Ronen@Ufora.com

Agenda

- Ufora language and distributed runtime
- Million Song Database
- The Problem Year Prediction
- Prior Approaches
- Regression Trees Refresher
- Demo
- Performance and Scalability

What is FORA

An implicitly parallel language and runtime for data science

IMPLICIT PARALLELISM

Code that would normally execute serially...

... in Ufora will **split** across multiple processes on multiple machines, ...

... use more data, and finish faster.

Million Song Database

 A 280GB free collection of audio features and metadata for a million contemporary popular music tracks

Does not contain any audio – only the derived features

 Provided by Columbia's LabROSA (Recognition and Organization of Speech and Audio)

Created by The Echo Nest

The Data

Static Metadata:

Title • Artist • Album • Genre • Year • Artist Location • etc.

Dynamic Metadata (from EchoNest API):

Song/Artist Hotttness • Familiarity • Similar Artists • Artist Keywords

Audio Features:

- Key Mode Time-Signature Tempo
- Loudness Energy
- sections [bars [beats [tatums [segments

Demo

Exploring the Dataset

Year Prediction

From audio features, try to predict the year when the song was released

Year Prediction - Prior Approaches

The Million Song Dataset, T. Bertin-Mahieux, D. Ellis, B. Whitman and P. Lamere, ISMIR '11

Methods:

- Baseline: Uniform prediction
- k nearest neighbors (k-NN)
- Vowpal Wabbit linear regression using gradient descent

Challenges:

Only half the dataset has year info

Prior Results

Constant	8.13	10.80
1-NN	9.81	13.99
50-NN	7.58	10.20
VW	6.14	8.76

Our Approach

- Regression Trees
 - Highly parallelizable
 - Have been implemented at scale using MapReduce (PLANET)
 - Recently implemented a regression and classification tree library in Ufora

Regression Trees Refresher

Learning The Model

- Using a greedy top-down approach
- Partition D^* along the split predicate, and proceed recursively on the partitions to build child nodes.
- We select split predicates that minimize the *impurity* in *Y* values of the training records that are passed to the node. In other words, we want to maximize

$$|D| \times Var(YD) - (|DL| \times Var(YDL) + |DR| \times Var(YDR))$$

Where YDL and YDR are the Y values in the partitions DL and DR of D

Demo

Building the Model

Results

Constant	8.13	10.80
1-NN	9.81	13.99
50-NN	7.58	10.20
Tree Model	6.87	9.66
VW	6.14	8.76

Performance (in seconds)

Depth	SciKit	Ufora
1	7.02	1.4
5	35.14	6.43
8	56.21	10.7
10	85.16	17.18

Comparison of Approaches

Resources

http://labrosa.ee.columbia.edu/millionsong/

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The Million Song Dataset. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), 2011.

- Vowpal Wabbit https://github.com/JohnLangford/vowpal_wabbit/wiki
- SciKit Learn http://scikit-learn.org/

Biswanath Panda, Joshua S. Herbach, Sugato Basu, Roberto J. Bayardo PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce

 $D_{\text{total}} = 1$: $D_{\text{total}} = 2541$. $D_{\text{total}} = 2541$.

We're Hiring!

- Lead Front End Engineer Javascript, node.js, Angular.js
- Senior C++ Engineer C++, boost, Python

info@ufora.com

ronen@ufora.com