МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики Кафедра математического обеспечения и суперкомпьютерных технологий

Направление подготовки «Прикладная математика и информатика» Магистерская программа «Системное программирование»

Отчет по лабораторной работе

«Применение полностью связанной нейронной сети для определения пола человека по фотографии лица»

Выполнили: студенты группы 381603м4 Гладилов, Волокитин, Левин, Новак

Нижний Новгород 2017

СОДЕРЖАНИЕ

	(
4	Commonted	[L1]	22 021114	n/r

1	ПОСТАНОВКА ЗАДАЧИ	3
2	ФОРМАТ ВХОДА СЕТИ	4
3	ТЕСТОВЫЕ КОНФИГУРАЦИИ СЕТЕЙ	5
4	РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ	7
5	ИТОГИ	8

1 Постановка задачи

В данной лабораторной работе необходимо получить базовые навыки работы с выбранной библиотекой глубокого обучения — Caffe, а именно реализовать полностью связанную нейронную сеть и провести её тестирование сначала на наборе данных MNIST, а затем на выбранном наборе данных.

В ходе лабораторной работы будут решены следующие задачи:

- 1. Установка библиотеки Caffe на кластер и локальный компьютер
- 2. Проверка корректности установки библиотеки, а именно запуска тестового примера для решения задачи классификации рукописных цифр из набора данных MNIST
- 3. Разработка скриптов для подготовки тренировочного и тестового набора данных
- 4. Обучение и тестирование разработанных полностью связанных нейронных сетей для решение задачи распознавания пола по фотографии лица человека

2 Формат входа сети

Для описания входа сети в библиотеке Caffe используется слой ImageData.

```
layer {
  name: "gender"
  type: "ImageData"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    scale: 0.00390625
  }
  image_data_param {
    source: "/home/glebg/dev/deep-learning/train.lst"
    new_width: 150
    new_height: 150
    batch_size: 100
  }
}
```

Описание значений параметров слоя:

- top Указывает на то, какие данные выходят из слоя, в данном случае это исходная картинка и метка класса
- phase TRAIN (TEST) режим в котором используется слой
- transform_param описание преобразований над входными данными. В данном случае выполняется нормировка на 255
- Source файл *.lst где хранятся изображения и метки класса
- new_width/new_height размеры входного тензора
- batch_size размер пачки картинок.

В данной модели мы используем RGB картинки уменьшенные до размера 150x150 и нормализованные на 255

3 Тестовые конфигурации сетей

• SimpleFCN:

Рис. 1. Сеть с одним скрытым слоем, имеющим 1000 нейронов

• Elu+Tanh

Рис. 2. Два скрытых слоя. 400 и 50 нейронов.

• Relu+Sigmoid

Рис. 3. Два скрытых слоя.400 и 50 нейронов. Активации Relu+Sigmoid

• Three layers

Рис. 4. Три скрытых слоя. 400, 100, 20 нейронов соответственно

4 Результаты экспериментов

Конфигурация сети	Время обучения (с)	Точность
SimpleFCN+sigm (10000)	720	0.8338
(GeForce GTX 1080)		
SimpleFCN+tanh (2000)	534	0.786
(Tesla K20X)		
Elu+tanh (10000)	540	0.7878
(GeForce GTX 1080)		
Three layers (2000)	560	0.8158
(Tesla K20X)		
Relu+Sigmoid (2000)	653	0.8156
(GeForce GTX 1080)		

5 Итоги

В лабораторных работах нами было рассмотрено семейство полностью связанных нейронных сетей. Данный тип показал достаточно неплохие результаты (в среднем около 80%) точности классификации. Однако, существующие методы позволяют решать эту задачу с меньшей ошибкой. Мы ожидаем, что применение сверточных сетей позволит нам повысить результаты классификации.