RISC ARCHITECTURE BASED 8 BITS COMPUTER DESIGN AND IMPLEMENTATION ON FPGA USING VHDL

Ömer KARSLIOĞLU

Electrical & Electronics Engineering Student

What Is The Aim?

to design a computer for low power and low cost application and to implement on a FPGA

Based on 8 bit registers

RISC ISA - 16 bit instruction - (37 Instructions)

R-I-S-B-J Type Instruction Types

L1 Data Cache & Program Memory (ROM)

Customized ALU

Harward Architecture

2 Channel 2 Modes Timer x2

Interrupt Controller Unit

Usage Areas of This Computer System

Basic industrial application

Basic communication system

Sensor control

Low cost control system

• • •

Design Flow

Instruction Structure

The Computer Design

Program Memory (ROM Type)

Data Memory (RAM Type)

Output Ports

Memory

TIM1

TIM2

ICU

The computer is occured basically from CPU, Memory System and peripherals.

CPU has two main part:

- a) Control Unit: Manages everything in the computer architecture.
- b) Datapath: It processes instructions with fetch-decode-execution steps.

Datapath occured from three main parts:

Registers-ALU-BUS Structure

Memory System occured from three main part:

- a) Program Memory (ROM Type)
- b) L1 Data Cache (RAM Type)
- c) Output Ports

memory.vhd port_in_xx_ 16x8 bit data_out Mux 8 bit address address-8 bit data_out data in program_memory.vhd clock 8 bit 128 bytes ROM write address data in data out write clock data memory.vhd 96 bytes RAM address 16x8 bit data in **Output Ports** port out xx write clock port_out_xx Clock 16x8 bit reset 16 Output Ports Reset

Interrupt Controller Unit

Memory

ICU controls the all interrupt conditions.

It is directly connected to Control Unit.

ICU can provides external and software interrupt.

Peripherals

Interrupt Control Register-1

Interrupt Control Register-2

Interrupt Control Register-3

Interrupt Unit Output Register

Peripheral Interrupt Tick **Signals**

I/O Port **Signals**

Port Int. **Detectors**

Interrupt **Control Anlyzer** Circuit

CPU

TIMER Module Design

Control Register1

Control Register2

Auto Reload Register

> Prescaler Register

Timer Out Register (ro)

There are two channels in one timer module.

There are two modes:

a) Normal/Counter Mode

b) PWM Generation Mode

Also it has interrupt property.

IC_PortB_Signal_i[7:0]
IC_Reset_i

interrupt_control_reg1_i[7:0]

interrupt_control_reg2_i[7:0]

IC_Signal_i[7:0]

IC_Flag_o IC_Signal_o[7:0]

interrupt_controller_unit

cpu_module

from_memory[7:0]

Schematic

← | → | ⊕ | Q | 💥 | № | ⊕ | ⊕ | + | − | C | 5 Cells 38 I/O Ports 202 Nets

port_in_00[7:0] D

The Result

The system clock freq. set to 8 MHz (125ns period) with clock wizard.

Intra-Clock Paths - sys_clk

Statistics

Туре	Worst Slack	Total Violation
Setup	114,897 ns	0,000 ns
Hold	0,137 ns	0,000 ns
Pulse Width	62,000 ns	0,000 ns

The critical path is about the memory system and takes time nearly 10.103ns.

So store instructions may take more time than other instructions.

Name	Constraints
✓ ✓ synth_1	constrs_1
⊳ impl_1	constrs_1
synth_2 (active)	constrs_1
✓ impl_2 (active)	constrs_1

LUT	FF
806	261
730	335
720	337

The Demonstration

A RISC ARCHITECTURE BASED 8 BITS COMPUTER DESIGN AND IMPLEMENTATION ON FPGA USING VHDL

Thanks for listening

Ömer KARSLIOĞLU

June, 2022

ANKARA YILDIRIM BEYAZIT UNIVERSITY - FACULTY OF ENGINEERING AND NATURAL SCIENCES
DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING