Evaluacija obučavajućih sistema

Milan M.Milosavljević

Cuklus sinteze

Pomeraj i varijansa

- <u>Pomeraj</u> (Bias) koliko je procena blizu istinite vrednosti ?
- <u>Varijansa</u> koliko se procena menja od jednog do drugog uzorka podatak ?

- Kompromis izmedju varijanse i pomeraja
- U većini situacija, moguće je smanjiti jednu od ovih veličina samo na račun druge

Evaluacija obučavanja

- Holdout
- Kros validacija
 - Slučajno semplovanje
 - K- tostruka kros-validacija
 - Leave-one-out krosvalidacija
- Bustrep (Bootstrap)

Holdout metod

- Podeliti podatke u dve grupe:
 - > Trening skup za obuku klasifikatora
 - ➤ Test skup za ocenu greške obučenog klasifikatora

Holdout metod

- Holdout metod ima dva ozbiljna nedostatka
- U slučaju kada raspolažemo sa malo podataka, odvajanje podataka samo za testiranje predstavlja neracionalni luksuz
- Budući da se radi o jednom eksperimentu obučavanja i testiranja, holdout procena je po pravilu vrlo nepouzdana usled varijabilnosti trening i test skupa.
- Nedostaci holdout metoda se mogu prevazići korišćenjem složenijih resempling metoda uz cenu veće računske kompleksnosti.

Opšta struktura resempling metoda

Slučajno proredjivanje (subsampling)

- Slučajnim proredjivanjem se od jednog obučavajućeg skupa formira K različitih podela na trening i test skup.
- Svaka podela se dobija slučajnom selekcijom fiksnog broja primera bez vraćanja.
- Finalna procena je usrednjena vrednost pojedinačnih procena

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

K - tostruka krosvalidacija

K - tostruka krosvalidacija

Kreira se podela podataka na K jednakih delova.

Za svaki eksperiment se koristi K-1 delova za trening i preostali za testiranje.

Prednost se sastoji u tome što su svi primeri na kraju upotrebljeni i za trening i za

testiranje.

Finalna procena je usrednjena vrednost pojedinačnih procena

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

LOO (Leave-one-out) krosvalidacija

 LOO krosvalidacija je poseban slučaj K-tostruke krosvalidacije u kojoj je K=N, gde je N ukupan broj primera.

 Finalna procena je usrednjena vrednost pojedinačnih procena

$$\mathsf{E} = \frac{1}{\mathsf{K}} \sum_{i=1}^{\mathsf{K}} \mathsf{E}_i$$

Koliko treba da bude K

- Sa velikim K
 - Pomeraj procene greške je mali (estimator greške je veoma precizan)
 - Varijansa procene greške je vrlo velika
 - Računska kompleksnost vrlo velika (veliki broj eksperimenata)
- Sa malim K
 - Računska kompleksnost se smanjuje (manji broj eksperimenata)
 - Varijansa procene greške je mala
 - Pomeraj procene greške je vrlo velik (tzv. konzervativna procena greške, tj. veća od istinite vrednosti)
- Uobičajeni izbor u praksi je K=10.

Butstrep

- Butstrep je tehnika resemplovanja sa zamenjivanjem (ponavljanjem).
 - Iz skupa podataka od N primera
 - Formirati trening skup slučajnim izabrom N primera sa ponavljanjem
 - 2. Preostali primeri, koji nisu izabrani za trening skup, formiraju test skup.
 - 3. Procena greške se dobija usrednjavanjem grešaka na test skupovima.

Butstrep

Butstrep

- U poredjenju sa osnovnim postupkom krosvalidacije, butstrep povećava varijansu. Ovo je poželjno svojstvo, budući da je realnija simulacija realnog eksperimenta na osnov koga su sakupljeni analizirani podaci.
- Resempling sa zamenjivanjem, kakav se koristi u butstrepu, ne menja apriorne verovatnoće klasa tokom procedure resemplovanja.
- Dodatna prednost butstrepa je svojstvo dobijanja precizne procene i pomeraja i varijanse greške klasifikatora.

Podela na tri skupa

- Ukoliko se istovremeno estimira i model i njegova tačnost, potrebno je dati skup podataka podeliti na tri disjunktna dela.
 - Trening skup služi za obučavanje (procena parametara klasifikatora)
 - Validacioni skup skup podataka koji služi za podešavanje parametara klasifikatora
 - Test skup skup podataka koji služi <u>samo</u> za procenu tačnosti potpuno obučenog klasifikatora. <u>Nakon procene</u> <u>tačnosti finalnog modela na test skupu, ne sme se vršiti</u> <u>dalje podešavanje modela.</u>

Podela na tri skupa

Podela na tri skupa

Procedura istovremene procene modela i tačnosti:

- 1. Podeliti raspoložive podatke na trening, test i validacioni skup
- 2. Izabrati arhitekturu i parametre obučavanja
- 3. Obučiti model na trening skupu
- 4. Proceniti tačnost modela na validacionom skupu
- 5. Ponoviti korake 2 4, koristeći različite arhitekture i parametre obučavanja
- 6. Selektovati najtačniji model i ponovo ga obučiti na združenim podacima trening i validacionog skupa
- 7. Proceniti tačnost finalnog modela na test skupu

Gornja procedura podrazumeva holdout metod. Ukoliko se koristi krosvalidacija ili bootstrap, korake 3 i 4, treba ponoviti za svako K.

Mere performansi ML sistema

	Predicted class	
True Class	Yes	No
Yes	TP: True Positive	FN: False Negative
No	FP: False Positive	TN: True Negative

- Error rate = # of errors / # of instances = (FN+FP) / N
- Recall = # of found positives / # of positives
 - = TP / (TP+FN) = sensitivity = hit rate
- Precision = # of found positives / # of found= TP / (TP+FP)
- Specificity = TN / (TN+FP)
- False alarm rate = FP / (FP+TN) = 1 Specificity

Receiver Operating Characteritic -ROC

Receiver Operating Characteritic -ROC

Receiver Operating Characteritic -ROC

Precision and Recall

Precision:
$$\frac{a}{a + b}$$

Recall:
$$\frac{a}{a + c}$$

(a) Precision and recall

(b) Precision
$$= 1$$

(c) Recall
$$= 1$$