class 7: machine learning

annmarie (A16442048)

#Clustering Machine

The broad goal here is to find groupings (clusters) in your input data.

##Kmeans

First let's make up some data to cluster

```
x <- rnorm(1000)
hist(x)</pre>
```

Histogram of x

Make a vector of length 60 with 30 points centered at -3 and 30 points centered at +3

```
tmp<- c(rnorm(30,mean=-3),rnorm(30,mean=3))</pre>
  tmp
 [1] -4.1750299 -4.1278625 -4.9094769 -6.4107414 -2.0819699 -3.4762160
 [7] -4.1274236 -3.8183303 -2.8846979 -3.7471283 -1.2748656 -2.7544763
[13] -2.4230582 -2.7387696 -2.2832829 -0.6028947 -2.7547609 -1.8370850
[19] -4.6158747 -4.5031047 -4.8821544 -2.0494528 -2.4103399 -4.2194639
2.2933821
              4.1581031
                         2.9981996 0.8020326
                                            2.0939172
[31]
                                                      2.7854799
     3.3827543
                                                      2.3567267
[37]
               5.1378849
                         3.1836089
                                  1.8334374
                                            3.5912891
[43]
     1.8673270
               2.9991467
                         3.7217181
                                  3.5998720
                                            3.6318973
                                                      2.8608169
[49]
     3.0114606
               2.2391972
                         4.1754539
                                  3.2326960
                                            2.5806761
                                                      2.9334324
```

1.7862344 3.2201723 3.3435324 5.5210955

I will now make an x and y dataset with 2 groups of points.

3.3612721

```
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```

1.4095896

[55]


```
k <- kmeans(x,centers=2)</pre>
 k
K-means clustering with 2 clusters of sizes 30, 30
Cluster means:
       X
              У
1 3.003747 -3.193437
2 -3.193437 3.003747
Clustering vector:
Within cluster sum of squares by cluster:
[1] 85.63941 85.63941
(between_SS / total_SS = 87.1 %)
Available components:
[1] "cluster"
              "centers"
                        "totss"
                                   "withinss"
                                              "tot.withinss"
[6] "betweenss"
              "size"
                        "iter"
                                   "ifault"
   Q. From your result project k how many points are in each cluster?
 k$size
[1] 30 30
   Q. What "component" of your result object details the cluster membership?
 k$cluster
 Q.Cluster centers?
 k$centers
```

```
x y
1 3.003747 -3.193437
2 -3.193437 3.003747
```

Q.Plot of our clustering results

```
plot(x, col=k$cluster)
points(k$centers, col="blue", pch=15, cex=2)
```


We can cluster into 4 grps

```
#kmeans
k4 <- kmeans(x,center=4)
#plot results
plot(x,col=k4$cluster)</pre>
```


A big limitation of kmeans is that it does what you ask even if you ask for silly clusters.

##Hierarchical Clustering

The main base R function for Hierarchical CLustering is hclust(). Unlike kmeans() you can not just pass it your data as input. You first need to calculate a distance matrix.

```
d <- dist(x)
hc <- hclust(d)
hc</pre>
```

Call:

hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

Use plot() to view results

```
plot(hc)
abline(h=10,col="red")
```

Cluster Dendrogram

d hclust (*, "complete")

To make the "cut" and get out cluster membership vector we can use the cutree() function.

```
grps <- cutree(hc,h=10)
grps</pre>
```

Make a plot of our data colored by hclust results

```
plot(x, col=grps)
```


Principal Component Analysis (PCA)

Here we will do Principal Component Analysis (PCA) on some food data from the UK.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url,row.names=1)
x</pre>
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334
Fresh_fruit	1102	1137	957	674

Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
ncol(x)
[1] 4

nrow(x)
[1] 17
```

barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))

pairs(x, col=rainbow(10), pch=16)

$\#\#\mathrm{PCA}$ to the rescue

The main base R function for PCA is called prcomp(),

```
pca <-prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	2.921e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

Q. How much variance is captured in 2 PCs?

96.5%

To make our main "PC score plot" (aka "PC1 vs PC2 plot", or "PC Plot" or "ordination plot").

```
attributes(pca)
```

```
$names
```

```
[1] "sdev" "rotation" "center" "scale" "x"
```

\$class

[1] "prcomp"

We after after the pca\$x result component to make our PCA plot.

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```


Another important result from PCA is how the original variables (in this case the foods)contribute to the PCs.

This is contained in the pca\$rotation object - folks often call this the "loadings" or "contributions" to the PCs.

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.409382587
Carcass_meat	0.047927628	0.013915823	0.06367111	0.729481922
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.331001134
Fish	-0.084414983	-0.050754947	0.03906481	0.022375878
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.034512161
Sugars	-0.037620983	-0.043021699	-0.03605745	0.024943337
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	0.021396007
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	0.001606882
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.031153231
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	-0.017379680
Processed_Veg	-0.036488269	-0.045451802	0.05289191	0.021250980
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.227657348
Cereals	-0.047702858	-0.212599678	-0.35884921	0.100043319
Beverages	-0.026187756	-0.030560542	-0.04135860	-0.018382072
Soft_drinks	0.232244140	0.555124311	-0.16942648	0.222319484
Alcoholic_drinks	-0.463968168	0.113536523	-0.49858320	-0.273126013
Confectionery	-0.029650201	0.005949921	-0.05232164	0.001890737

We can make a plot along PC1

```
library(ggplot2)

contrib <- as.data.frame(pca$rotation)

ggplot(contrib)+
  aes(PC1,rownames(contrib)) +
  geom_col()</pre>
```

