

Musculoskeletal modeling

OpenSim workflow

OpenSim enables us to build, exchange, and analyze computer models of the musculoskeletal system and dynamic simulations of movement.

OpenSim model

An OpenSim model represents the dynamics of a system of rigid bodies and joints that are acted upon by forces to produce motion.

Components of an OpenSim Model

Bodies, joints, constraints, contact geometry, forces, markers, and controllers

Tree Topology of Multibody Models

• You can view the topology of your model (Window>topology view).

How to find what you need

• Confluence website

http://simtk-confluence.stanford.edu:8080/display/OpenSim/OpenSim+Support

1 Import data in OpenSim

Coordinate Systems

Measure Markers in Lab Coordinate System

coordinate frame g

Rotation Matrix

$${}^{A}\mathbf{R}^{B} = \begin{bmatrix} r_{xx} & r_{xy} & r_{xz} \\ r_{yx} & r_{yy} & r_{yz} \\ r_{zx} & r_{zy} & r_{zz} \end{bmatrix}$$

OpenSim Model Coordinate System

coordinate frame 0

1) Import data in OpenSim - matlab example

...\Functions\ImportData_API.m

```
% c3d import-export
      import org.opensim.modeling.*
      c3dPath='C:\Users\u0088756\Documents\PostDoc\Data\DataNexus\ExpFried1\TrapdoorExp\Fried1 v2\Session
      c3d = osimC3D(c3dPath,1); % on is with computation COP, 2 is applied as torques
      % Get some stats...
      nTrajectories = c3d.getNumTrajectories();
      rMakers = c3d.getRate marker();
      nForces = c3d.getNumForces();
11
      rForces = c3d.getRate force();
12
13
      % Get Start and end time
14
      t0 = c3d.getStartTime();
      tn = c3d.getEndTime();
16
17
      % Rotate the data
      c3d.rotateData('x'.-90):
19
      c3d.rotateData('y',180);
20
21
      % Write the marker and force data to file
22
      c3d.writeTRC('C:\Users\u0088756\Desktop\test data markers.trc');
23
      c3d.writeMOT('C:\Users\u0088756\Desktop\test data forces.mot');
```

1) Import data in OpenSim - matlab example

Preview experimental data

2) Scaling Tool: Scale Model

Scale tool in OpenSim

This step was already done Scaled_model.osim

3) Inverse kinematics

Weighted Least Squares Minimization

$$\min_{\boldsymbol{q}} \left[\sum_{m=1}^{\text{# markers}} w_m \| \boldsymbol{x}_m^{\text{exp}} - \boldsymbol{x}_m(\boldsymbol{q}) \|^2 \right]$$

4) Run Inverse dynamics

q = generalized coordinates

F = external forces

M(q) = mass matrix

C(q,qd) = coriolis terms

G(q) = gravitational terms

4) Run Inverse dynamics

Solved algebraically from the ground up

$$x, \dot{x}, \ddot{x}$$
 $\Sigma F_x = m\ddot{x}$

$$y, \dot{y}, \ddot{y} \Longrightarrow \Sigma F_{y} = m\ddot{y}$$

$$\theta, \dot{\theta}, \ddot{\theta}$$
 $\Sigma T = I\ddot{\theta}$

Joint Moments that generate the motion

5) Solve for muscle forces

Static optimization

$$\tau = \sum_{i}^{nM} d_i F_i + \tau_{res}$$

With force as a function of:

Muscle fiber length, velocity and activation

6) Limitations of static optimization

Accounting for contraction dynamics

- Activation dynamics ?
- Compliant tendons ?

Minizing activations squared?

. . .

6) Simulation muscle-tendon dynamics

https://simtk.org/projects/optcntrlmuscle

