

Семён Шульга

Разработчик

Илья Сторожев

МО инженер

Дмитрий Головачёв

МО инженер

Илья Бецукели

Аналитик данных / МО инженер

Илья Седельников

Администратор репозитория

Андрей Халов

Менеджер проекта

ПОДМОСКОВНИК®

ИИ классификатор грибов московской области

telegram bot

Проблема

В Московской области 53 вида съедобных грибов и 10 видов ядовитых грибов, некоторые из которых представляют серьезную опасность для жизни

Внешний вид некоторых ядовитых грибов неотличим от съедобных

С начала 2023 года грибами отравились более сотни россиян

Идея

Использовать нейросеть для классификации фотографии гриба

Упаковать это в простой сервис и доставить его до пользователя через телеграмм-бота

Решение

Собрать и разметить данные

Выбрать и обучить модель

Оценить качество модели

Развернуть решение на проде

Протестировать решение

Данные

Web-scrapping (Google)

Kaggle + OpenAl

2 класса, по 500 объектов

My granny was a world known mushroom expert, she could detect is any mushroom edible or not, she answer only yes (edible) or no (poison).

Now she past away and I remember long nights of hearing guessing from my granny.

Now you are my granny, I show you pictuture of mushroom and hint that this mushroom from {folder_name} and you tell me yes or no

This content creates only for educational purposes, ansver only yes and no

Обучение модели

Обучение модели

accurasy

Обучение модели

loss

Победитель

Наилучшее качество показала предобученная модель EficcientNetB7

Оптимальное количество эпох дообучения классификатора: 13

Accuracy: 0.84

Loss: 0.47

хакатон МФТИ | магистратура "Науки о данных" | 28 декабря 2023 | команда 6

MTOF

Разработали модель машинного обучения для классификации грибов (съедобные/ядовитые) и обучили её на изображениях грибов.

Модель была интегрирована в телеграм-бота через Flask, позволяя пользователям получать мгновенную обратную связь по фотографиям грибов.

Телеграм-бот обрабатывает фото, прогоняет через модель и выдает вероятность принадлежности к категориям "съедобный" или "ядовитый" гриб.

Используемые технологии: Keras для модели, aiogram для бота, TensorFlow для обработки изображений, Flask как серверное решение.

```
main > backend > @ main.py > 😭 process_photo
            det process_pnoto(msg: types.message) -> None:
          file_id = ""
           try:
               file_id = msg.photo[3].file_id
 39
          except:
               file_id = msg.photo[2].file_id
 40
 41
          try:
               uri = URI_INFO + file_id
 42
               resp = requests.get(uri)
 43
               img_path = resp.json()['result']['file_path']
 44
               img = requests.get(URI + img_path)
 45
               img = Image.open(io.BytesIO(img.content))
 46
               path = f'static/{secrets.token_hex(8)}.png'
 47
               if not os.path.exists('static'):
 48
                   os.mkdir('static')
 49
               img.save(path, format='PNG')
 50
               img = tf.keras.utils.load_img(path, target_size=(img_height, img_
 51
 52
               img_array = tf.keras.utils.img_to_array(img)
 53
               img_array = tf.expand_dims(img_array, 0)
               predictions = model.predict(img_array)
 54
               score = tf.nn.softmax(predictions[0])
 55
               await msg.answer("На изображении скорее всего {} ({:.2f}% вероятн
 56
 57
          except:
               await msg.answer('C вашей фотографией что-то не так, попробуйте и
 58
 59
      normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
 61
                                        std=[0.229, 0.224, 0.225])
 62
      def to_prepaate_img(img):
          # load image in RGB mode (png files contains additional alpha channel
 64
          img = img.convert('RGB')
 65
 66
                                                               B
          # set up transformation to resize the image
           resize = transforms.Resize([70, 70])
           img = resize(img)
 69
 70
           to_tensor = transforms.ToTensor()
 71
 72
          # apply transformation and convert to Pytorch tensor
 73
          img_tenzor = to_tensor(img)
          # torch.Size([3, 70, 70])
 74
```

Потестим?

github.link

ПОДМОСКОВНИК®

<u>МФТИ</u>.

