

PHASE 1 HISTORICAL REVIEW

Technical Report

FEBRUARY 1988

Canada Tontario

Canada-Ontario Agreement Respecting Great Lakes Water Quality L'Accord Canada-Ontario relatif à la qualité de l'eau dans les Grand Lacs

PHOSPHORUS REMOVAL EFFICIENCY UPGRADING AT MUNICIPAL WASTEWATER TREATMENT PLANTS IN THE GREAT LAKES BASIN

PHASE 1 HISTORICAL REVIEW

FEBRUARY 1988

c Queen's Printer for Ontario, 1988

ISBN 0-7729-3400-2 (4 vol. set) ISBN 0-7729-3402-9 (phase 1) CORNER CONCRETE TOTAL PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF

ADDRESS ASSESSED.

THE OWNER.

This report was prepared by CANVIRO Consultants,

Division of CH2M HILL Engineering Ltd., Waterloo,

Ontario and was funded under the Canada-Ontario

Agreement on Great Lakes Water Quality.

the second secon

The second second

NOTE TO PHASE 1 REPORT

All 1985 data was not available at the time of completion of the Phase 1 report. Therefore, 1985 performance was reported based on available data. These performance data were updated in the final report when all data was available. Thus, there are inconsistencies between the data reported in the Phase 1 report and in the final project report.

TABLE OF CONTENTS

			Page
	OF CO	ONTENTS BLES	i
LIST	OF FIG	GURES	vi
1.0	INTRO	DDUCTION AND BACKGROUND	1
2.0	OBJEC	CTIVES OF PHASE 1 PROGRAM	3
3.0	ME THO	DDOLOGY	4
	3.1	Historical Data Review 3.1.1 Annual Data Review 3.1.2 Monthly Data Review	4 4 7
	3.2	Plant Contact and Plant Review	7
	3.3	Basin Flows, Loadings and Aggregate Average Phosphorus Concentrations	10
	3.4.	Phosphorus Management Strategies 3.4.1 Basin Loading Reduction 3.4.2 Remediation 3.4.3 Costs of Remediation	15 16 16 18
4.0	SUMMA	ARY OF PLANT PERFORMANCE	20
	4.1	Historical Data Review 4.1.1 General 4.1.2 Plant and Basin Summaries of Compliance	20 20 20
		4.1.3 Plant Phosphorus Removal Status 4.1.4 Effect of Sampling Frequency	39 51
	4.2	Plant Review	53
	4.3	Summary of Key Findings	56
5.0	LOADI	INGS TO THE GREAT LAKES BASINS	57
	5.1	Lake Erie Basin	57
	5.2	Lake Ontario/St. Lawrence River Basin	60
	5.3	Lake Huron Basin	60
	5.4	Lake Superior Basin	63
	5.5	Summary	63

TABLE OF CONTENTS (continued)

CONTROL	Page
6.0 PHOSPHORUS MANAGEMENT STRATEGIES	66
6.1 Effect on Basin Loadings	67
6.2 Costs of Implementation 6.2.1 Lake Erie Drainage Basin	72 72
6.2.2 Lake Ontario/St. Lawrence River Drainage Basin	74
6.3 Summary	. 78
7.0 SELECTION OF PHASE 2 PLANTS	81
8.0 REFERENCES	84
APPENDIX A - ACTUAL PLANT TP LOADINGS, FLOWS AND AGGREGATE AVERAGE PHOSPHORUS CONCENTRATIONS FOR 1983-1985	
APPENDIX B - HYPOTHETICAL PLANT TP LOADINGS, FLOWS AND AGGREGATE AVERAGE PHOSPHORUS CONCENTRATIONS FOR PHOSPHORUS MANAGEMENT	E

SCENARIOS - LAKE ERIE AND LAKE ONTARIO/ST. LAWRENCE

DRAINAGE BASINS

LIST OF TABLES

			Page
TABLE	1.	EQUATIONS FOR CALCULATION OF AVERAGES (ANNUAL AND LONG-TERM) AND STATISTICAL ANALYSES	6
TABLE	2.	DESCRIPTION OF FACTORS CAUSING SUPERIOR OR INFERIOR PHOSPHORUS REMOVAL PERFORMANCE	12
TABLE	3.	GROUPING OF PLANTS BY DRAINAGE BASIN	13
TABLE	4.	EQUATIONS FOR CALCULATION OF BASIN LOADINGS AND AGGREGATE AVERAGE CONCENTRATIONS	14
TABLE	5.	PLANTS IN THE LAKE ERIE DRAINAGE BASIN - DESIGN FLOW, PLANT TYPE AND CHEMICALS USED FOR PHOSPHORUS REMOVAL	22
TABLE	6.	PLANTS IN THE LAKE ONTARIO/ST. LAWRENCE DRAINAGE BASIN - DESIGN FLOW, PLANT TYPE AND CHEMICALS USED	23
TABLE	7.	PLANTS IN THE UPPER GREAT LAKES DRAINAGE BASIN - DESIGN FLOW, PLANT TYPE AND CHEMICALS USED FOR PHOSPHORUS REMOVAL	24
TABLE	8.	SUMMARY OF PLANT PERFORMANCE - LAKE ERIE	25
TABLE	9.	SUMMARY OF PLANT PERFORMANCE - LAKE ONTARIO/ST. LAWRENCE	26
TABLE	10.	SUMMARY OF PLANT PERFORMANCE - UPPER GREAT LAKES	27
TABLE	11.	MOE EFFLUENT CRITERIA (POLICY 0801, 1983)	29
TABLE	12.	MUNICIPAL WASTEWATER TREATMENT FACILITIES IN THE GREAT LAKES BASIN WITH SITE-SPECIFIC EFFLUENT QUALITY GUIDELINES	29
TABLE	13.	SUMMARY OF ANNUAL AND LONG-TERM COMPLIANCE FOR BOD, TSS, TP (1981-1985) FOR THE LAKE ERIE DRAINAGE BASIN	30
TABLE	14.	SUMMARY OF ANNUAL AND LONG-TERM COMPLIANCE FOR BOD, TSS, TP (1981-1985) FOR THE LAKE ONTARIO/ST. LAWRENCE DRAINAGE BASIN	31
TABLE	15.	SUMMARY OF ANNUAL AND LONG-TERM COMPLIANCE FOR BOD, TSS, TP (1981-1985) FOR THE UPPER GREAT LAKES DRAINAGE BASIN	32
TABLE	16.	SUMMARY OF ANNUAL AND MONTHLY COMPLIANCE FOR LAKE ERIE DRAINAGE BASIN (1984 & 1985)	34
TABLE	17.	SUMMARY OF ANNUAL AND MONTHLY COMPLIANCE FOR LAKE ONTARIO DRAINAGE BASIN (1984 & 1985)	35

LIST OF TABLES (continued)

		The state of the second	ray
TABLE	18.	SUMMARY OF ANNUAL AND MONTHLY COMPLIANCE FOR UPPER GREAT LAKES DRAINAGE BASIN (1984 & 1985)	36
TABLE	19.	NUMBER OF PLANTS IN ANNUAL AND MONTHLY COMPLIANCE WITH BOD5/TSS/TP REQUIREMENTS FOR 1984 AND 1985	37
TABLE	20.	LAKE ERIE NON-COMPLIANCE AVERAGES FOR 1984 & 1985	41
TABLE	21.	LAKE ONTARIO/ST. LAWRENCE NON-COMPLIANCE AVERAGES FOR 1984 & 1985	42
TABLE	22.	UPPER GREAT LAKES NON-COMPLIANCE AVERAGES FOR 1984 & 1985	43
TABLE	23.	SUMMATION OF PLANT PHOSPHORUS REMOVAL STATUS FOR 1984 LAKE ERIE DRAINAGE BASIN	44
TABLE	24.	SUMMATION OF PLANT PHOSPHORUS REMOVAL STATUS FOR 1985 LAKE ERIE DRAINAGE BASIN	45
TABLE	25.	SUMMATION OF PLANT PHOSPHORUS REMOVAL STATUS FOR 1984 LAKE ONTARIO/ST. LAWRENCE DRAINAGE BASIN	46
TABLE	26.	SUMMATION OF PLANT PHOSPHORUS REMOVAL STATUS FOR 1985 LAKE ONTARIO/ST. LAWRENCE DRAINAGE BASIN	47
TABLE	27.	SUMMATION OF PLANT PHOSPHORUS REMOVAL STATUS FOR 1984 LAKE HURON DRAINAGE BASIN	48
TABLE	28.	SUMMATION OF PLANT PHOSPHORUS REMOVAL STATUS FOR 1985 LAKE HURON DRAINAGE BASIN	49
TABLE	29.	SUMMARY OF PLANT PHOSPHORUS REMOVAL PERFORMANCE AND METHODS FOR LAKE ERIE DRAINAGE BASIN	54
TABLE	30.	SUMMARY OF PLANT PHOSPHORUS REMOVAL PERFORMANCE AND METHODS FOR LAKE ONTARIO DRAINAGE BASIN	55
TABLE	31.	SUMMARY OF PLANT PHOSPHORUS REMOVAL PERFORMANCE AND METHODS FOR UPPER GREAT LAKES DRAINAGE BASIN	56
TABLE	32.	SUMMARY OF BASIN FLOWS, PHOSPHORUS LOADINGS, AND AGGREGATE AVERAGE PHOSPHORUS CONCENTRATIONS	58

(continued)

	The state of the s	Page
TABLE 3	33. COMPARISON OF PHOSPHORUS MANAGEMENT STRATEGIES - EFFECT OF TP LOADING REDUCTION TO LAKE ERIE DRAINAGE BASIN	68
TABLE 3	34. COMPARISON OF PHOSPHORUS MANAGEMENT STRATEGIES - EFFECT OF TP LOADING REDUCTION TO LAKE ONTARIO/ST. LAWRENCE DRAINAGE BASIN	70
TABLE 3	55. RELATIVE COSTS OF PHOSPHORUS MANAGEMENT STRATEGY SCENARIOS FOR THE LAKE ERIE DRAINAGE BASIN	73
TABLE 3	6. RELATIVE COSTS OF PHOSPHORUS MANAGEMENT STRATEGY SCENARIOS FOR THE LAKE ONTARIO DRAINAGE BASIN	76
TABLE 3	7. CANDIDATE SITES FOR PHASE 2 ASSESSMENT SUPERIOR PERFORMANCE	82
TABLE 3	88. CANDIDATE SITES FOR PHASE 2 ASSESSMENT PLANTS NOT CONSISTENTLY COMPLYING	83

LIST OF FIGURES

			Pag
FIGURE	1.	ANNUAL DATA REVIEW FORMAT	5
FIGURE	2.	MONTHLY DATA REVIEW FORMAT	8
FIGURE	3.	PHOSPHORUS REMOVAL AND DESIGN QUESTIONNAIRE FORM	9
FIGURE	4.	RANKING SYSTEM FOR SUGGESTING GOOD OR POOR PLANT PHOSPHORUS REMOVAL PERFORMANCE	11
FIGURE	5.	GEOGRAPHIC DISTRIBUTION ONTARIO WATER POLLUTION CONTROL PLANTS IN THE GREAT LAKES DRAINAGE BASIN WITH CAPACITY >4546 m ³ /d (1 mgd)	21
FIGURE	6.	ANNUAL COMPLIANCE SUMMARY FOR 96 PLANTS IN ONTARIO	33
FIGURE	7.	COMPARISON OF BOD ₅ COMPLIANCE STATUS BASED ON ANNUAL AND MONTHLY ASSESSMENT FOR 1984 AND 1985	38
FIGURE	8.	COMPARISON OF TSS COMPLIANCE STATUS BASED ON ANNUAL AND MONTHLY ASSESSMENT FOR 1984 AND 1985	38
FIGURE	9.	COMPARISON OF TP COMPLIANCE STATUS BASED ON ANNUAL AND MONTHLY ASSESSMENT FOR 1984 AND 1985	38
FIGURE	10.	MONTHLY BOD5 COMPLIANCE FOR 96 PLANTS IN ONTARIO	40
FIGURE	11.	MONTHLY TSS COMPLIANCE FOR 96 PLANTS IN ONTARIO	40
FIGURE	12.	MONTHLY TP COMPLIANCE FOR 96 PLANTS IN ONTARIO	40
FIGURE	13.	SAMPLING FREQUENCIES FOR 96 PLANTS IN ONTARIO	52
FIGURE	14.	SAMPLING FREQUENCY VS. 1984 ANNUAL AVERAGE EFFLUENT TP CONCENTRATION FOR 96 PLANTS IN ONTARIO	52
FIGURE	15.	SAMPLING FREQUENCY VS. 1985 ANNUAL AVERAGE EFFLUENT TP CONCENTRATION FOR 96 PLANTS IN ONTARIO	52
FIGURE	16.	LAKE ERIE DRAINAGE BASIN - TOTAL FLOW VS. TIME	59
FIGURE	17.	LAKE ERIE DRAINAGE BASIN - TOTAL PHOSPHORUS LOADING VS. TIME	59
FIGURE	18.	LAKE ERIE DRAINAGE BASIN - AGGREGATE AVERAGE TP CONCENTRATION VS. TIME	59
FIGURE	19.	LAKE ONTARIO DRAINAGE BASIN - TOTAL FLOW VS. TIME	61
FIGURE	20.	LAKE ONTARIO DRAINAGE BASIN - TOTAL PHOSPHORUS LOADING VS. TIME	61

LIST OF FIGURES (continued)

			Page
FIGURE	21.	LAKE ONTARIO DRAINAGE BASIN - AGGREGATE AVERAGE TP CONCENTRATION VS. TIME	61
FIGURE	22.	LAKE HURON DRAINAGE BASIN - TOTAL FLOWS VS. TIME	62
FIGURE	23.	LAKE HURON DRAINAGE BASIN - TOTAL PHOSPHORUS LOADING VS. TIME	62
FIGURE	24.	LAKE HURON DRAINAGE BASIN - AGGREGATE AVERAGE TP CONCENTRATION VS. TIME	62
FIGURE	25.	LAKE SUPERIOR DRAINAGE BASIN - TOTAL FLOW VS. TIME .	64
FIGURE	26.	LAKE SUPERIOR DRAINAGE BASIN - TOTAL PHOSPHORUS LOADING VS. TIME	64
FIGURE	27.	LAKE SUPERIOR DRAINAGE BASIN - AGGREGATE AVERAGE TP CONCENTRATION VS. TIME	64
FIGURE	28.	EFFECT OF PHOSPHORUS MANAGEMENT STRATEGIES ON PHOSPHORUS LOADINGS ON THE LAKE ERIE DRAINAGE BASIN	69
FIGURE	29.	EFFECT OF MANAGEMENT STRATEGIES ON PHOSPHORUS LOADINGS TO THE LAKE ONTARIO DRAINAGE BASIN	71
FIGURE	30.	RELATIVE COSTS TO IMPLEMENT PHOSPHORUS MANAGEMENT STRATEGIES IN THE LAKE ERIE DRAINAGE BASIN	75
FIGURE	31.	RELATIVE COSTS TO IMPLEMENT PHOSPHORUS MANAGEMENT STRATEGIES IN THE LAKE ONTARIO/ST. LAWRENCE DRINAGE BASIN	77
FIGURE	32.	ESTIMATED COSTS VS. PHOSPHORUS LOADING REDUCTION FOR THE LAKE ERIE DRAINAGE BASIN	79
FIGURE	33.	ESTIMATED COSTS VS. PHOSPHORUS LOADING REDUCTION FOR THE LAKE ONTARIO/ST. LAWRENCE DRAINAGE BASIN	79

1.0 INTRODUCTION AND BACKGROUND

After completion in 1969 of a six year study of pollution in the Lower Great Lakes Drainage Basin, the International Joint Commission (IJC) recommended that all phosphorus discharges be reduced to their "lowest practical level". Subsequently, a number of organizations responded to this recommendation. The Canada Water Act (1970) of the Government of Canada, called for a staged reduction in phosphorus levels in detergents to a final limit of 5 percent (by weight as P205) by 31 December 1972. The Canada-Ontario Agreement on Great Lakes Water Quality, signed in August 1971, stipulated that phosphorus removal be implemented at selected municipal wastewater treatment facilities in the Lake Erie watershed by 31 December 1973 and in the Lake Ontario watershed by 31 December 1975. The Province of Ontario stated their intention to install phosphorus removal facilities at municipal and institutional wastewater treatment plants in the Lower Great Lakes basin, as well as the Ottawa River basin, parts of the Upper Great Lakes basin and throughout the inland recreational areas.

As an initial policy, the Province of Ontario required a minimum of 80% phosphorus removal from wastewater treatment plant influent, subject to further study. In April 1972, a Great Lakes Water Quality Agreement between Canada and United States, superceded the Ontario policy and limited effluent phosphorus concentrations to a daily average of 1 mg/L, assessed on an annual average basis, for wastewater treatment plants discharging in excess of one million gallons per day (4546 $\rm m^3/d$) to Lake Erie, Lake Ontario and the International section of the St. Lawrence River.

In 1978, a supplementary Great Lakes Water Quality Agreement set Target Phosphorus Loads for all of the Great Lakes basins. These loads, a result of point and non-point sources, were 11,000 tonnes/year to Lake Erie, 7,000 tonnes per year to Lake Ontario, and a total of 8650 tonnes per year to the Upper Great Lakes. In a 1983 supplement to the 1978 agreement, further loading reduction requirements were stipulated for the Lower Great Lakes drainage basins, above and beyond those achieved by meeting a 1 mg/L monthly average effluent phosphorus requirement for plants with capacity greater than 4546 m³/d (1 MGD). More specifically, a 2000 tonne/year load reduction was required for the Lake Erie drainage basin, of which 300 tonnes/year was allocated to Canada. A 430 tonne/year (revised from 1210 tonnes/year specified in the Agreement) load reduction was required for the Lake Ontario drainage

basin, although no allocation was stated. It was also stated that the required load reductions to the Upper Great Lakes to meet Target Loads would be achieved when all plants with a greater than 4546 $\rm m^3/day$ (1 MGD) flow capacity complied on a monthly average basis to effluent phosphorus concentrations of less than or equal to 1 $\rm mg/L$.

In response to the most recent amendment to the Canada-U.S. Agreement (October 1983), the Ontario Ministry of the Environment (MOE) has proposed to reduce total phosphorus loadings from major municipal facilities [>1 MGD (4546 $\rm m^3/d$)] by 50 tonnes per year into the Lake Ontario drainage basin and by 30 tonnes/yr into the Lake Erie basin.

In order to meet the proposed reduction, a number of management strategies could be considered. These include:

- i) improvements at plants which are not presently complying with the
 1.0 mg/L annual objective, to ensure consistent compliance;
- ii) modification to the existing method of assessing compliance, from an "annual average" to "monthly average" total phosphorus limit; and
- iii) selective improvements at some plants to achieve (or maintain, if already achieving) higher levels of phosphorus removal than presently required by the MOE.

CANVIRO has undertaken this study to identify the most cost-effective phosphorus management strategy that will meet the goals of the MOE. The investigation involves three phases. These include an in-depth review of historical plant performance data (Phase 1), field evaluations at selected plants to establish the critical factors affecting phosphorus removal performance (Phase 2), and demonstration of the cost-effectiveness of the strategies proposed to achieve phosphorus removal goals (Phase 3).

This progress report presents the results of Phase 1 of the study. Section 2 presents the specific objectives of the Phase 1 study. Section 3 presents a summary of the methodologies used. Section 4 summarizes the results of the historical data review in terms of plant performance and compliance on an annual and monthly basis and with respect to phosphorus removal methods. Section 5 presents the basin flows, phosphorus loadings and aggregate average phosphorus concentrations for 1981 to 1985 and projects these to 1990. Section 6 presents a discussion of the alternative phosphorus management strategies, their effects on basin loadings and the estimated costs associated with the implementation of each strategy. Section 7 presents those plants selected for the Phase 2 field study.

2.0 OBJECTIVES OF PHASE 1 PROGRAM

The principal objectives of the Phase 1 study were to:

- Review individual plant performance histories (1981-1985) for each plant with design flow greater than 4545 m³/day (1 MIGD) in the Great Lakes drainage basin and determine the status of these plants in relationship to meeting MOE effluent requirements for BOD₅, TSS and TP on an annual and monthly basis.
- Review individual plant phosphorus removal techniques (i.e. chemical and dosage used, point of addition, etc.) and identify possible reasons for the phosphorus removal performance reported.
- Develop management strategies that would improve plant performance and reduce basin phosphorus loadings, and project the effect of each of these strategies on basin phosphorus loadings to 1990.
- Review the advantages and disadvantages of each of the above strategies with respect to implementation costs and impacts on receiving basin loadings.
- · Recommend plants for Phase 2 field analysis.

3.0 METHODOLOGY

3.1 Historical Data Review

Plant operating data for 1981-1985 were obtained from two sources. The MOE database, containing information for MOE operated plants for all five years and municipally operated plants for 1984-1985, was transferred to CANVIRO's IBM-PC system. This was supplemented by manual entry of 1981-1983 data for municipally operated plants, from "1981-1983 Wastewater Treatment Summaries for Municipally Operated Plants in Ontario".

The MOE database provided average monthly values for each operating parameter considered, as well as the number of samples on which the monthly average was based. The Wastewater Treatment Summaries supplied only annual averages for each operating parameter.

Individual plant performance histories were prepared from the available data, consisting of a 5 year (1981-1985) annual review and a 2 year (1984 and 1985) monthly review.

3.1.1 Annual Data Review

The annual data review summarized annual average and long-term average daily flows, and influent and effluent BOD5, TSS and TP concentrations. Statistical analyses were done to determine if annual effluent BOD5, TSS and TP concentrations for any year were significantly different from the long-term averages (if sufficient data were available). Finally, an indication of whether the plant met an annual average effluent phosphorus concentration of 1 mg/L was shown for each year. Figure 1 presents the format of the annual review.

Table 1 summarizes the equations used to calculate the values in the annual review.

Compliance of annual effluent TP concentrations to a 1 mg/L limit was indicated by a Y (yes) or N (no) for each year and for the long-term average TP concentrations. It should be noted that these indicators do not consider site-specific TP effluent requirements.

ANNUAL DATA REVIEW

LOCATION

BASIN

PLANT NAME Plant Configuration Phosphorus Removal

Plant Design Capacity (1000 m³/day)

PARAMETER	1981	1982	1983	1984	1985	5 YEAR AVG. 81-85
Avg. Daily Flow (1000 m ³ /day)					•	
BOD5 - Influent (mg/L) BOD5 - Effluent (mg/L) Annual BOD5 Significantly Different from Mean Annual Average BOD5?	(Y/N)		1111			4
TSS - Influent (mg/L) TSS - Effluent (mg/L) Annual TSS Significantly Different from Mean Annual Average TSS?	(Y/N)					
Total P - Influent (mg/L) Total P - Effluent (mg/L) Annual TP Significantly Different from Mean Annual Average TP? TP in Compliance?	(Y/N) (Y/N)			-/-		

I.D. - Insufficient Data

FIGURE 1 - ANNUAL DATA REVIEW FORMAT

TABLE 1. EQUATIONS FOR CALCULATION OF AVERAGES (ANNUAL AND LONG-TERM)
AND STATISTICAL ANALYSES

CALCULATION:	EQUATION(S):
l. Annual Average $(\overline{X}_{\overline{1}})$	$\overline{X}_{i} = \frac{1}{n_{i}} \begin{array}{c} n \\ \Sigma \\ j \end{array}$
2. Long Term Average (XA)	$\overline{X}_{A} = \frac{1}{-} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} (\overline{X}_{ij}/n_{i})$ - if monthly data is unavailable then: n_{i} $\sum_{j=1}^{\infty} (\overline{X}_{ij}/n_{i}) = \overline{X}_{i}$ $j=1$
3. Statistical Analysis (t-distribution, 95% level of significance) H _O : X̄ _i = X̄ _A H _i : X̄ _i ≠ X̄ _A Reject H _O if t _i > t _{0.025}	$t_{i} = \frac{\overline{X}_{i} - \overline{X}_{A}}{Sp_{i} \overline{\frac{1}{n_{i}} + \frac{1}{N}}}$ $Sp_{i} = \frac{(n_{i}-1)S_{i}^{2} + (N-1)S_{A}^{2}}{(n_{i} + N - 2)}$ (Degrees of Freedom) _i = n _i + N - 2
Where: i = year j = month \(\overline{\capacita}_i = \text{annual average for year i} \) \(\overline{\capacita}_i = \text{monthly average for month j,} \) \(\overline{\capacita}_i = \text{number of months of available} \) \(\overline{\capacita}_i = \text{number of months of data for t.} \)	data in year i

 S_i^2 = variance of n_i months of data for year i

 S_A^2 = variance of N months of data

3.1.2 Monthly Data Review

Individual monthly data reviews were prepared to present monthly average effluent BOD5, TSS and TP concentrations and the number of samples upon which these were based, for 1984 and 1985. These values were obtained directly from the MOE database. Figure 2 shows the monthly review format. Again, compliance indicated by a Y or N was based only on a 1 mg/L effluent requirement and did not take into account site-specific requirements.

3.2 Plant Contact and Plant Review

In order to understand and explain phosphorus removal performance at each plant, it was necessary to obtain information on phosphorus removal methods being used and plant design data. This information was acquired through direct plant contact, from material supplied by MOE, and from previous CANVIRO studies.

Project engineers from CANVIRO contacted representatives familiar with the design and operation of each of the plants. In most cases, plant contact was made by telephone. A questionnaire form (Figure 3) was utilized by the project engineer to expedite the acquisition of information on plant operation and design. Key items in the questionnaire included:

- i) chemical used for phosphorus removal, usage rate, point of addition and dosage control method;
- ii) availability of data on orthophosphorus and/or filtered phosphorus in plant effluents;
- iii) sampling frequency and analytical methodology;
- iv) major industrial contributors; and
 - v) average and peak daily flows, fraction of combined and separate sewers serving the plant, and frequency of plant bypasses.

Design information on MOE operated plants was extracted from the "1981 Summary of Municipal Water and Wastewater Treatment Works". Also, design summaries were available for some plants from previous CANVIRO projects. For those plants where limited design information was available, process flowsheets and key design criteria were requested from plant personnel.

MONTHLY DATA

LOCATION

PLANT NAME

YEAR	MONTH	EFFLUENT BOD ₅ (mg/L)	n BOD	EFFLUENT TSS (mg/L)	n TSS	EFFLUENT TP (mg/L)	n TP	IS TP IN COMPLIANCE?
1984	JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV. DEC.							
1985	JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV. DEC.							

n - Number of samples

FIGURE 2 - MONTHLY DATA REVIEW FORMAT

ORM
ند
IRE
ONNA
1
ES
00
z
16
DESIGN
AND
OVAL
10
₹E!
10
2 U S
105
SPI
0
٩
1
3
SE R
0.5
-
_

DOSAGE CONTROL METHOD: NAMUAL	OPORTIONAL IS OFTEN	CHEMICAL SUPPLIER: CHEMICAL COST (F.O.B. Plant): EFFLUENT SAMPLIS INFORMATION: NUMBER OF SAMPLES PER MONTH FOR P ANALYSIS:	SAMPLE TIPE: CAAB MANUAL 24-NR COMPOSITE AUTOMATIC 24-NR COMPOSITE FLOW PROPORTIONAL 24-NR COMPOSITE SAMPLE PRESERVATION: REFRIGERATION	N THO	LOCATION OF AMALTICAL LABORATORY: ON-SITE CENTRAL MUNICIPAL LAB MOC LAB OTHER: INDUSTRIAL CONTRIBUTORS: NAJOR INDUSTRIAL CONTRIBUTORS (FLOW ANG/OF 8005/155/19):	2. 3. 4. 5. ESTIMATEO PERCENT INDUSTRIAL FLOW: 15 INFLUENT AND/ON EFFLUENT MEANT METAL CONCENTRATION DATA AVAILABLE? 165 IGN SUPPLARY AVAILABLE: TES
PLANT:	MANICIPALITY SERVEO: OFERATED BY: NOE MUNICIPALITY TREATMENT PROCESSES: PRIMARY FROM ACTIVATED CHICKS	000	DESIGN FLOW: DESIGN FLOW: DESIGN FLOW: MIGPO ESTIMATED MAXIMUM DAILY FLOW: LOOP LOOP LOOP LOOP LOOP LOOP LOOP LOO	TIPE OF COLLECTION SYSTEM: SPARATE BOSSSIEN COMBINED B SYSTEM COMBINED B SYSTEM ESTIMATED DURATION HOURS PER EVENT POINT OF BYPASS: AT INFLUENT WET MELL	AFTER PRIMARIES OTHER: TO CHLORINE CONTACTOR TO CUTFALL TO CUTFALL	TES NO PROSPHORUS REMOVAL; ALUN FENRIC CALORIDE 1985 PRESENT ALUN FENRIC CALORIDE FENRIC CALORIDE FENRIC CALORIDE FENRIC CALORIDE FENRIC CALORIDE ANUM. OFFICE USAGE; [LIVE ANUM. OFFICE USAGE; [LIVE ESTIMITED DOSAGE; (as marcal, may(t))

Individual plant reports were compiled, containing:

- 1. Annual Data Review
- 2. Monthly Data Review
- 3. Design Summary
- 4. Completed Questionnaire

Review of the data in this report allowed the project engineer, who had contacted the plant, to conduct preliminary analyses on phosphorus removal performance. Factors causing poor or extremely good removal efficiency were suggested using the ranking system presented in Figure 4. These factors are described in more detail in Table 2.

Basin Flows, Loadings and Aggregate Average Phosphorus Concentrations

Individual plant phosphorus loadings (tonnes P/year) to the receiving basins were calculated for 1981 to 1985 based on total plant flows and average effluent phosphorus concentrations. Grouping of individual plants according to their receiving basin (Lake Erie, Lake Huron, Lake Ontario and St. Lawrence River, and Lake Superior), shown in Table 3, enabled calculation of total phosphorus loadings to the basin. An IBM-PC BASIC program utilized the equations of Table 4 to generate these values.

Using the total basin flows, defined by the sum of the individual plants total flow for a given basin, aggregate average phosphorus concentrations (mg TP/L) were calculated. This was the total basin loading divided by the total basin flow and represented the average phosphorus concentration in the flows entering the receiving basin.

Using linear regression techniques, basin flows were predicted for each basin for 1986-1990. The predicted flows were compared to the total design capacity of the basin in order to determine when design flow capacity in each basin WPCPs would be exceeded. By using the basin flows, and assuming no change in treatment efficiency from 1985 performance (i.e. constant effluent phosphorus concentrations), the basin phosphorus loadings were also projected to 1990.

	CAUSE	KANK (1 - 4021	IMPORTAN
i)	High Clarifier Surface Loading			
ii)	Low P Removal Chemical Dosage			
iii)	High Influent P Concentration			
	Industrial Waste Factors			
v)	Poor Sludge Settleability			
	Poor Dosage Control			
	Sludge Management Problems			
	Sampling Problem			
	Analytical Problem			
	Bypassing			
	Infiltration/Inflow or Combined Sewers			-1 =
xii)	Others (please specify)			
OR PI	LANTS CONSISTENTLY ACHIEVING TP <<	l mg/L, RA	INK FACT	ORS, IN O
OR PI	TANCE, WHICH CONTRIBUTE TO SUPERIOR	R P REMOVA	L PERFOR	MANCE:
MPOR	TANCE, WHICH CONTRIBUTE TO SUPERIOR	R P REMOVA	L PERFOR	ORS, IN O MANCE: IMPORTAN
MPOR	TANCE, WHICH CONTRIBUTE TO SUPERIOR CAUSE Low Clarifier Surface Loading	R P REMOVA	L PERFOR	MANCE:
i)	TANCE, WHICH CONTRIBUTE TO SUPERIOR CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage	R P REMOVA	L PERFOR	MANCE:
i) ii) iii)	CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage Low Influent P Concentration	R P REMOVA	L PERFOR	MANCE:
i) ii) iii) iv)	TANCE, WHICH CONTRIBUTE TO SUPERIOR CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage Low Influent P Concentration Industrial Waste Factors	R P REMOVA	L PERFOR	MANCE:
i) ii) iii) iv) v)	CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage Low Influent P Concentration Industrial Waste Factors Good Sludge Settleability	R P REMOVA	L PERFOR	MANCE:
i) ii) iii) iv) v) vi)	TANCE, WHICH CONTRIBUTE TO SUPERIOR CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage Low Influent P Concentration Industrial Waste Factors	R P REMOVA	L PERFOR	MANCE:
i) ii) iii) iv) v) vi) vii)	CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage Low Influent P Concentration Industrial Waste Factors Good Sludge Settleability Good Dosage Control Final Effluent Polishing by Filtration Final Effluent Polishing by	R P REMOVA	L PERFOR	MANCE:
i) ii) iii) iv) v) vi) vii)	CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage Low Influent P Concentration Industrial Waste Factors Good Sludge Settleability Good Dosage Control Final Effluent Polishing by Filtration	R P REMOVA	L PERFOR	MANCE:
i) ii) iii) iv) vi) vii) vii)	CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage Low Influent P Concentration Industrial Waste Factors Good Sludge Settleability Good Dosage Control Final Effluent Polishing by Filtration Final Effluent Polishing by Tertiary Ponds	R P REMOVA	L PERFOR	MANCE:
i) ii) iii) iv) vi) vii) iii) ix) x)	CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage Low Influent P Concentration Industrial Waste Factors Good Sludge Settleability Good Dosage Control Final Effluent Polishing by Filtration Final Effluent Polishing by Tertiary Ponds Polymer Addition Superior Plant Operation	R P REMOVA	L PERFOR	MANCE:
i) ii) iii) iv) vi) vii) iii) ix) x)	CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage Low Influent P Concentration Industrial Waste Factors Good Sludge Settleability Good Dosage Control Final Effluent Polishing by Filtration Final Effluent Polishing by Tertiary Ponds Polymer Addition	R P REMOVA	L PERFOR	MANCE:
i) ii) iii) iv) vi) vii) iii) ix) x)	CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage Low Influent P Concentration Industrial Waste Factors Good Sludge Settleability Good Dosage Control Final Effluent Polishing by Filtration Final Effluent Polishing by Tertiary Ponds Polymer Addition Superior Plant Operation	R P REMOVA	L PERFOR	MANCE:
i) ii) iii) iv) vi) vii) iii) ix) x)	CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage Low Influent P Concentration Industrial Waste Factors Good Sludge Settleability Good Dosage Control Final Effluent Polishing by Filtration Final Effluent Polishing by Tertiary Ponds Polymer Addition Superior Plant Operation	R P REMOVA	L PERFOR	MANCE:
i) ii) iii) iv) vi) vii) iii) ix) x)	CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage Low Influent P Concentration Industrial Waste Factors Good Sludge Settleability Good Dosage Control Final Effluent Polishing by Filtration Final Effluent Polishing by Tertiary Ponds Polymer Addition Superior Plant Operation	R P REMOVA	L PERFOR	MANCE:
i) ii) iii) iv) vi) vii) viii) ix) x)	CAUSE Low Clarifier Surface Loading High P Removal Chemical Dosage Low Influent P Concentration Industrial Waste Factors Good Sludge Settleability Good Dosage Control Final Effluent Polishing by Filtration Final Effluent Polishing by Tertiary Ponds Polymer Addition Superior Plant Operation	R P REMOVA	L PERFOR	MANCE:

DESCRIPTION OF FACTORS CAUSING SUPERIOR OR INFERIOR PHOSPHORUS REMOVAL PERFORMANCE TABLE 2.

to perform ted wastewater x) Superior Plant Operation sample	Plant flows much less than design flow capacity Low clarifier design surface loading Dosing at much greater concentrations than stoichiometric ratio P concentration less than about 3 mg/L Industrial contribution of metals aiding in the precipitation of phosphorus Regular adjustment of chemical dosage to influent P concentration (manual or automatic) Improved removal of suspended solids, resulting in removal of non-filtrable P Addition of polymer for improved solids and phosphorus removal Good operator understanding and control of plant operational parameters	FACTORS CONTRIBUTING TO SUPERIOR P REMOVAL PERFORMANCE i) Low Clarifier Surface Loading ii) High P Removal Chemical Dosage iii) Low Influent P Concentration iv) Industrial Waste Factors vi) Good Sludge Settleability vi) Good Dosage Control vii) Final Effluent Polishing by Filtration ix) Polymer Addition x) Superior Plant Operation		FACTORS CONTRIBUTING TO POOR P REMOVAL PERFORMANCE i) High Clarifier Surface Loading ii) Low P Removal Chemical Design iii) High Influent P Concentration iv) Industrial Waste Factors vi) Poor Sludge Settleability vi) Poor Dosage Control vi) Sludge Management Problems ix) Analytical Problem ix) Analytical Problem x) Bypassing
			-High peak flows, solids carry-over and/or bypassing	xi) Infiltration/Inflow on Combined Sewers
to perform	-Addition of polymer for improvand phosphorus removal	ix) Polymer Addition		ix) Analytical Problem
-Limitations of "kits" for P removal analysis ix) Polymer Addition	-Improved removal of suspended solic resulting in removal of non-filtrab	viii) Final Effluent Polishing by Tertiary Ponds	-Infrequent sampling, biased sampling methods (e.g. at peak hours only), etc.	viii) Sampling Problem
-Infrequent sampling, biased sampling methods viii) Final Effluent Polishing (e.g. at peak hours only), etc. by Tertiary Ponds em -Limitations of "kits" for P removal analysis ix) Polymer Addition	-Improved removal of suspended solids resulting in removal of non-filtrabl	vii) Final Effluent Polishing by Filtration	-Limited capacity of sludge handling processs (digesters, dewatering equipment, storage, haulage) causes excessive solids losses in effluent) Sludge Management Problems
t -Limited capacity of sludge handling processs (digesters, dewatering equipment, storage, haulage) causes excessive solids losses in effluent -Infrequent sampling, biased sampling methods (e.g. at peak hours only), etc. em -Limitations of "kits" for P removal analysis ix) Polymer Addition	-Regular adjustment of chemical dosage fluent P concentration (manual or au	vi) Good Dosage Control) Poor Dosage Control
t -Limited capacity of sludge handling processs (digesters, dewatering equipment, storage, haulage) causes excessive solids losses in effluent -Infrequent sampling, biased sampling methods (e.g. at peak hours only), etc. em -Limitations of "kits" for P removal analysis ix) Polymer Addition	-Good suspended solids removal (i.e. < in effluent) at typical clarifier loa	v) Good Sludge Settleability		Poor Sludge Settleability
-Evidence of sludge solids carry-over from secondary clariflers rol -Highly variable influent P concentrations and no dosage control no dosage control control thited capacity of sludge handling processs (digesters, dewatering equipment, storage, haulage) causes excessive solids losses in effluent -Infrequent sampling, biased sampling methods (e.g. at peak hours only), etc. -Limitations of "kits" for P removal analysis ix) Polymer Addition	-Industrial contribution of metals aidi the precipitation of phosphorus	iv) Industrial Waste Factors	-Industrial contribution of contaminants sus- pected to affect phosphorus precipitation, or cause poor sludge settleability or contribute high P load	Industrial Waste Factors
-Industrial contribution of contaminants sus- pected to affect phosphorus precipitation, or cause poor sludge settleability or contribute high P load -Evidence of sludge solids carry-over from secondary clarifiers -Highly variable influent P concentrations and no dosage control -Highly variable influent P concentrations and no dosage control -Limited capacity of sludge handling processs (digesters, dewatering equipment, storage, haulage) causes excessive solids losses in effluent -Infrequent sampling, biased sampling methods -Limitations of "kits" for P removal analysis ix) Polymer Addition	-P concentration less than about 3 mg/L	iii) Low Influent P Concentration	-P concentration greater than about 8 mg/L	High Influent P Concentration
-P concentration greater than about 8 mg/L -Industrial contribution of contaminants susceptors along setleability or contribute -Industrial contribution of contaminants suscents pected to affect phosphorus precipitation, or cause poor sludge setleability or contribute -Evidence of sludge solids carry-over from secondary clarifiers -Evidence of sludge solids carry-over from secondary clarifiers -Imited capacity of sludge handling processs (digesters, dewatering equipment, storage, haulage) causes excessive solids losses in effluent -Infrequent sampling, biased sampling methods (e.g. at peak hours only), etc. -Limitations of "kits" for P removal analysis ix) Polymer Addition	-Dosing at much greater concentrations stoichiometric ratio		-Dosing much less than stoichiometric dosage required, i.e. molar ratio Metal:P<<1	Low P Removal Chemical Design
-Dosing much less than stoichiometric dosage required, i.e. molar ratio Metal:P< -P concentration greater than about 8 mg/L concentration greater than about 8 mg/L concentration of contaminants suspected to affect phosphorus precipitation, or cause poor sludge settleability or contribute high P load cause poor sludge settleability or contribute high P load cause poor sludge settleability or contribute high P load cause settleability or contribute secondary clarifiers secondary clarifiers secondary clarifiers control climited capacity of sludge handling processs in digesters, dewatering equipment, storage, haulage) causes excessive solids losses in effluent capacity biased sampling methods (e.g. at peak hours only), etc. -Infrequent sampling, biased sampling methods (e.g. at peak hours only), etc. -Limitations of "kits" for P removal analysis ix) Polymer Addition	-Plant flows much less than design flow capacity -Low clarifier design surface loading	i) Low Clarifier Surface Loading		High Clarifier Surface Loading
-Plant flows exceed design flow capacity -High peak flows [1/1] -Dosing much less than stoichiometric dosage required, i.e. molar ratio Metal:P< -Dosing much less than stoichiometric dosage required, i.e. molar ratio Metal:P< -Dosing much less than stoichiometric dosage required, i.e. molar ratio Metal:P< -Dosing much less than stoichiometric dosage -P concentration greater than about 8 mg/L Concentration -Industrial contribution of contaminants suscause poor sludge settleability or contribute high P load -Evidence of sludge settleability or contribute secondary clarifiers -Evidence of sludge settleability or contribute secondary secondary suppliers -Infustrial Dosage control -Evidence of sludge settleability o	DESCRIPTION	FACTORS CONTRIBUTING TO SUPERIOR P REMOVAL PERFORMANCE		FORS CONTRIBUTING TO P REMOVAL PERFORMANCE

TABLE 3. GROUPING OF PLANTS BY DRAINAGE BASIN

	LAKE ONTARIO/ST. LAWRENCE	LAKE SUPERIOR
Barrie WPCP	Belleville WPCP	Thunder Bay WPCP
Bradford WPCP	Brockville WPCP	
Collingwood WPCP	Burlington WPCP	
Esten Lake WPCP (Elliot Lake)	Caledon WPCP (Bolton)	
Plant Two (Elliot Lake)	Campbellford WPCP	
Goderich WPCP	Cobourg WPCP No.1	
Hanover WPCP	Cornwall WPCP	
Huntsville WPCP	Dundas WPCP	
Midland WPCP	Anger Ave. WPCP (Fort Erie)	
		10.1
		199
	1	
wasaga Beach WPCP		
STATE OF THE PARTY		
The second second		
The State of		
Million Control of the Control of th		
	South West WPCP (Oakville)	
	Orangeville WPCP	
	York-Durham WPCP (Pickering)	
	Picton WPCP	
	Seaway WPCP (Port Colborne)	
	Port Hope WPCP	
	Prescott-Edwardsburgh WPCP	
	Port Dalhousie WPCP (St. Catharines)	
	Port Weller WPCP (St. Catharines)	
	Trenton WPCP	
	Welland WPCP	
The state of the s	Corbett Cr. WPCP (Whitby)	
	Pringle Cr. WPCP No.2 (Whitby)	
	Bradford WPCP Collingwood WPCP Esten Lake WPCP (Elliot Lake) Plant Two (Elliot Lake) Goderich WPCP Hanover WPCP	Bradford WPCP Collingwood WPCP Esten Lake WPCP (Elliot Lake) Plant Two (Elliot Lake) Goderich WPCP Hanover WPCP Huntsville WPCP Widland WPCP North Bay WPCP Owen Sound WPCP Owen Sound WPCP Sault Ste. Marie WPCP Sudbury WPCP Hunner, Val-Caron, Val-Therese WPCP (Valley East) Mikkola WPCP (Valden) Malkerton WPCP Wasaga Beach WPCP Wasaga Beach WPCP Wasaga WPCP Wetro Toronto) Worth Toronto WPCP (Metro Toronto) Milton WPCP Clarkson WPCP (Mississauga) Lakeview WPCP (Mississauga) Lakeview WPCP (Mississauga) Napanee WPCP Port Darlington WPCP (Newcastle) Newmarket WPCP South West WPCP York-Durham WPCP (Nagara Falls) South East WPCP (Oakville) South East WPCP (Oakville) South East WPCP (Oakville) South West WPCP York-Durham WPCP

TABLE 4. EQUATIONS FOR CALCULATION OF BASIN LOADINGS AND AGGREGATE AVERAGE CONCENTRATIONS

DESCRIPTION	EQUATION							
TP Loading in year i for plant x - monthly data available.	$L_{ix} = 0.365 \sum_{j=1}^{n_{ix}} Q_{ijx} P_{ijx} [t/yr]$							
TP Loading in year i for plant x - only annual averages available.	L _{ix} = 0.365 Q _{ix} P _{ix} [t/yr]							
TP Loading in year i for a Drainage Basin	L _i = Σ L _{ix} [t/yr] x=1							
Aggregate Average TP Concentra- tion for year i, for a Drainage Basin	$P_i = L_i / \sum_{x=1}^{n} Q_{ix} [mg/L]$							
Where:								
Q_{ijx} = total flow for year i, more	nth j, plant x							
P_{ijx} = phosphorus concentration	in year i, month j for plant x							
Q _{ix} = total flow for year i, pla	ant x							
Pin = phosphorus concentration	for year i, plant x							
n_{ix} = number of months of availa	able data in year i for plant x							
m = number of plants in basin	0 0							

3.4 Phosphorus Management Strategies

Based on discussions with the Project Steering Committee, the following strategies were considered to reduce basin phosphorus loadings in each of the Lake Erie and Lake Ontario/St. Lawrence drainage basins:

Scenario 0:

Basin loadings as actually experienced in 1984 and 1985.

Scenario 1:

All plants comply with effluent TP \leq 1 mg/L on an annual average basis, or their site-specific requirements.

Scenario 2:

All plants comply with effluent TP \leq 1 mg/L on a monthly average basis, or their site-specific requirements.

Scenario 3:

All plants with design capacity >100,000 $\rm m^3/d$ in the Lake Erie drainage basin and >200,000 $\rm m^3/d$ in the Lake Ontario drainage basin comply with effluent TP < 0.9 $\rm mg/L$ on a monthly average basis.

All other plants comply on a monthly average basis with $TP \leq 1$ mg/L, or their site-specific requirements.

Scenario 4:

All plants comply with effluent TP \leq 0.9 mg/L on a monthly average basis, or their site-specific requirements.

For each management strategy evaluated, the loading reduction to each receiving basin (Lake Erie and Lake Ontario/St. Lawrence) which would have resulted in 1984 and 1985 was calculated. The projected basin loadings for 1986 to 1990 were estimated and compared to the projected loadings which would occur without any change in phosphorus removal efficiency (baseline case). The estimated additional costs of each phosphorus removal strategy for the years 1984 and 1985 were calculated.

3.4.1 Basin Loading Reduction

The effect that each management strategy would have on basin loading was determined using a modified form of the IBM-PC program described in Hypothetical loads for 1984 and 1985 for each scenario from Section 3.3. each individual plant were calculated by adjusting the effluent phosphorus concentrations which did not comply with the stated requirements of that For the scenario based on annual compliance (Scenario 1), the hypothetical load was calculated by adjusting the annual average effluent phosphorus concentration to 1 mg/L if the particular plant under consideration did not meet that requirement for either 1984 or 1985. If a particular plant was already complying with the annual requirement of 1 mg/L, no change was made to the discharge loading of phosphorus from that plant (that is, its performance was not downgraded to 1 mg/L if it was already discharging at a lower concentration). For the scenarios based on monthly compliance (Scenarios 2, 3 and 4), the hypothetical load was calculated by adjusting the average monthly effluent phosphorus concentration to 1 mg/L or 0.9 mg/L as required for those months in 1984 and 1985 that did not already meet that requirement. As in Scenario 1, plant performance was not downgraded for months that were already meeting the discharge limits specified by the particular scenario being evaluated. No consideration was given to the fact that plants were not actually attempting to meet monthly requirements in 1984 and 1985.

From the hypothetical loads for 1984 and 1985 for each plant, basin loadings and aggregate average phosphorus concentrations were calculated (as described in Section 3.3) for each scenario. Furthermore, using the predicted flows and the assumption that 1985 treatment efficiency is maintained, hypothetical basin loadings were predicted for 1986-1990 after implementation of each scenario. The basin loading reduction resulting from each scenario was compared to the "Base Load", defined as the actual 1983 phosphorus loadings for the Lake Erie and the Lake Ontario/St. Lawrence drainage basins.

3.4.2 Remediation

For every plant not presently complying with the phosphorus removal requirements suggested by the individual phosphorus removal strategies evaluated, some improvement in phosphorus removal efficiency would be required. These performance improvements will generally result in increased plant

operating costs. In order to estimate operating cost increases associated with each management strategy in each receiving basin considered (Lake Erie and Lake Ontario/St. Lawrence River), remediation methods were developed for each plant affected by the strategies proposed.

The remedial measures which would be implemented in each plant were based on the plant operating evaluations conducted in Phase 1. Generally, remediation involved an increase in chemical dosage. Remediation was applied only in those plants that exceeded the effluent criteria imposed for the specific scenario being evaluated and only for the time period (months or years) that was exceeded for that scenario. No consideration was given to the fact that plants were not attempting to meet monthly compliance requirements in 1984 and 1985. The objective of Phases 2 and 3 of the program are to better define specific remediation methods which could be applied to improve plant phosphorus removal performance. Therefore, fine-tuning of the remediation methods will result from the completion of these phases of the investigation.

The following assumptions were made in determining the extent of remediation required at each plant:

- i) Chemical dosage increase was the most cost-effective method for plants already using chemical phosphorus removal.
- ii) . Implementation of chemical addition (FeCl₃) for phosphorus removal at plants not presently using phosphorus removal would be an effective method of improving P removal efficiency at these plants.
- iii) Dosage increase for secondary plants using phosphorus removal was based on an increase equivalent to the metal-to-phosphorus weight ratio used in 1984 and 1985 and the difference between the effluent requirement and the operating point.
 - iv) For primary plants using chemicals for phosphorus removal, it was assumed that improved solids removal by 0.5 mg/L polymer addition would achieve the desired effluent P requirement.

v) Chemical dosage to secondary plants not presently using phosphorus removal was based on the amount of phosphorus removed without chemicals and the effluent phosphorus concentrations. Also, chemical addition was only considered to be required during those periods that the effluent concentration exceeded the imposed limits.

3.4.3 Costs of Remediation

In order to implement the improvements at each plant, costs would be incurred due to additional chemical usage (metal and/or polymer), and additional sludge production. Since prorated capital costs for equipment would be relatively small compared to chemical and sludge handling costs, no capital cost component was included.

The following assumptions were used to determine costs required at each plant:

- i) Costs for ferric, ferrous and alum addition were based on reported costs, FOB the plant (Reported 1984 and 1985 costs).
- ii) Polymer costs were assumed to be \$2.50/kg FOB the plant. No additional labour, power or maintenance costs were assigned to the polymer make-up and feed system.
- iii) Increased sludge production from increased chemical dosage was based on the averages of ranges of values suggested by U.S. EPA (1976) as 4.52-2.89 mg sludge/mg Al (avg. 3.71) and 2.70-1.92 mg sludge/mg Fe (avg. 2.31).
 - iv) No increase in sludge handling capacity (digesters, dewatering equipment) was provided.
 - v) Sludge disposal costs were based on \$2.50/m³ wet sludge for land disposal; \$50/tonne dry solids for dewatering and disposal, \$150/tonne for dewatering and incineration, and \$200/tonne for dewatering, heat treatment and incineration. Costs at each plant were based on the actual sludge disposal methods in use at that plant.

vi) For primary plants, it was assumed that improved solids removal by polymer addition would achieve a 1 mg/L effluent phosphorus requirement. Therefore, capital costs for upgrading to full secondary treatment were not considered.

As noted in Section 3.4.2, the objectives of Phases 2 and 3 of the program are to develop and demonstrate improved phosphorus control techniques which would improve phosphorus removal efficiencies at existing facilities at low cost. The results of Phases 2 and 3 will be used to improve the preliminary remediation costs presented in this Phase 1 report.

4.0 SUMMARY OF PLANT PERFORMANCE

4.1 Historical Data Review

4.1.1 General

In 1985, there were 96 municipal treatment plants with design capacity greater than 4546 $\rm m^3/day$ (1 MGD) discharging to the International section of the Great Lakes drainage basin. These included 44 plants in the Lake Ontario/St. Lawrence drainage basin, 31 in the Lake Erie drainage basin, 20 in the Lake Huron drainage basin and 1 in the Lake Superior drainage basin. Of these, 83 plants presently provide secondary treatment, while 13 provide only primary treatment. None of the 4 sewage lagoons in the Great Lakes Basin with capacities greater than 4546 $\rm m^3/day$ (1 MGD) (Strathroy lagoon, Listowel lagoon, Kincardine lagoon and Lindsay lagoon) were included in the review. All of the plants, their design capacity and type, and the chemicals used for phosphorus removal at each plant are listed in Tables 5 to 7. Figure 5 indicates the location of each plant.

Average daily flow and average effluent quality characteristics for 1981 to 1985, obtained from the annual performance data review prepared for each plant, are summarized in Tables 8 to 10. Also included in these summary tables is the 5 year long-term average daily flow and effluent quality for each plant.

4.1.2 Plant and Basin Summaries of Compliance

A number of summaries were developed to illustrate the compliance histories of individual plants. Compliance has been assessed in two ways in this report:

- i) Annual Compliance A plant was considered to be "in compliance" if the annual average effluent concentration of ${\tt BOD}_5$, TSS or TP did not exceed the MOE Guidelines for the year being evaluated.
- ii) Monthly Compliance A plant was considered to be "in compliance" if the monthly average effluent concentration of BOD5, TSS or TP did not exceed the MOE Guidelines for any month in the year being evaluated. (That is, a plant was considered to be out-of-compliance for the 1984 if the monthly average effluent concentration exceeded the MOE Guideline during any month in 1984.)

CHEMICAL PRESENTLY USED FOR PHOSPHORUS REMOVAL	Ferric Chloride	Ferric Chloride	Ferric/Ferrous Chloride	Ferric Chloride	_	Aluminum Chloride	Ferrous Chloride	Ferrous Chloride	Alum	Ferrous Chloride .	Ferrous Sulphate	Ferric Chloride	Ferrous Chloride	Ferrous Chloride	Ferrous Chloride	Ferrous Chloride	Lime	Alum	Alum	Ferric Chloride	Ferric Chloride/ Polymer in Summer	Ferric Chloride	Alum		Alum	Ferric Chloride	Ferrous Chloride	Aluminum Chloride	Alum	Ferric Chloride
PLANT TYPE	Primary, phosphorus removal - continuous Conventional activated sludge, phosphorus removal - continuous	- 1	High rate activated sludge, phosphorus removal - continuous	Conventional activated sludge, phosphorus removal - continuous	Conventional activated sludge, phosphorus removal - continuous, effluent polishing	Extended aeration, phosphorus removal - continuous	Conventional activated sludge, phosphorus removal - continuous	Conventional activated sludge, phosphorus removal - continuous	Conventional activated sludge, phosphorus removal - continuous, effluent polishing	Conventional activated sludge, phosphorus removal - continuous		Conventional activated sludge, phosphorus removal - continuous	Extended aeration, phosphorus removal - continuous	Extended aeration, phosphorus removal - continuous	Extended aeration, phosphorus removal - continuous	Primary, phosphorus removal - continuous	Conventional activated sludge, phosphorus removal - continuous, effluent polishing	Conventional activated sludge, phosphorus removal - continuous	sludge, phosphorus removal -	Conventional activated sludge, phosphorus removal - continuous	Conventional activated sludge, phosphorus removal - continuous	Conventional activated sludge, phosphorus removal - continuous	activated	activated sludge, phosphorus removal -	Conventional activated sludge, phosphorus removal - continuous					
DESIGN FLOW (10 ³ m ³ /d)	4.546	36.641	9.319	16.866	35.913	4.546	7.728	5.001	54.552	6.819	122.742	19.093	18.184	123.333	5.455	22.048	20.912	6.819	4.546	7.046	65.917	15.546	40.914	27.276	8.183	6.819	45.460	36,368	163.656	30.308
PLANT	Amherstburg WPCP Brantford WPCP	Galt WPCP (Cambridge)	Hespeler WPCP (Cambridge)	Preston WPCP (Cambridge)	Chatham WPCP	Dresden WPCP	Dunnville WPCP	Fergus WPCP	Guelph WPCP	Ingersoll New WPCP	Kitchener WPCP	Leamington WPCP	Adelaide WPCP (London)	Greenway WPCP (London)	Oxford WPCP (London)	Pottersburg WPCP (London)	Vauxhall WPCP (London)	Belle River-Maidstone WPCP	Corunna P.V. Plant (Moore)	Paris WPCP	Sarnia WPCP	Simcoe WPCP	St. Thomas WPCP	Stratford WPCP	Tillsonburg WPCP	Wallaceburg WPCP	Waterloo WPCP	Little River WPCP (Windsor)	Westerly WPCP (Windsor)	WOODS LOCK WPLP

TABLE 6. PLANTS IN THE LAKE ONTARIO/ST. LAWRENCE DRAINAGE BASIN - DESIGN FLOW, PLANT TYPE AND CHEMICALS USED

CHEMICAL PRESENTLY USED FOR PHOSPHORUS REMOVAL	Ferric/Ferrous Chloride Ferric Chloride No Chemical Used No Chemical Used No Chemicals Used Alum, Polymer Alum Ferric Chloride Ferric Chloride Ferric Chloride Ferric Chloride Ferric Chloride Ferric Chloride Ferrous Chloride Ferrous Chloride Ferrous Chloride Ferrous Chloride Ferrous Chloride Ferrous Chloride Alum Alum Alum Alum Alum Alum Ferric Chloride Alum Alum Ferric Chloride Alum Alum Ferric Chloride Alum Alum Alum Alum Ferric Chloride Alum Alum Alum Alum Alum Alum Alum Alum
PLANT TYPE	Conventional activated sludge, phosphorus removal - continuous Primary, hosphorus removal, continuous Conventional activated sludge, phosphorus removal - continuous Conventional activated sludge, phosphorus removal - continuous Conventional activated sludge, phosphorus removal - continuous Primary, phosphorus removal - continuous Conventional activated sludge, phosphorus removal - continuous Conventional
DESIGN FLOW (10 ³ m ³ /d)	29.454 25.571 93.193 4.546 16.047 37.505 18.184 16.366 18.184 4.546 13.638 409.14 6.1371 25.003 409.14 6.1371 25.003 45.460 12.911 109.104 227,300 4.546 13.638 34.095 34.095 36.283 36.3683 9.092 56.234 15.002 9.092 181.84 4.546 15.002 9.092 181.84 4.546 15.002 9.092 181.84 4.546 15.002 9.092 181.84 4.546 15.002 9.092 181.84 15.002 9.092 181.84 15.002 9.092 181.84 15.002 9.092 9.092 181.84 15.002 9.092 9.092 181.84 15.002 9.092
PLANT	Belleville WPCP Brockville WPCP Skyway WPCP (Burlington) Bolton WPCP (Caledon) (up to 1985) Campbellford WPCP Cobourg WPCP (Caledon) (up to 1985) Cobourg WPCP No.1 Cornwall WPCP Anger Ave. WPCP (Fort Erie) Baker Rd. WPCP (Grimsby) Acton WPCP & Lagoon (Halton Hills) Georgetown WPCP (Hamilton) Iroquois WPCP Kingston WPCP (Metro Toronto) Main WPCP (Metro Toronto) Main WPCP (Metro Toronto) Main WPCP (Mississauga) Lakeview WPCP (Mississauga) North Toronto WPCP (Nississauga) Lakeview WPCP (Mississauga) North Toronto WPCP (Nississauga) North Toronto WPCP (Nississauga) North Toronto WPCP (Nississauga) Napanee WPCP Ort Darlington WPCP (Nisgara Falls) South West WPCP (Oakville) South West WPCP (Oakville) Port Ualhousie WPCP (St. Catharines) Port Hope WPCP York-Durham WPCP (St. Catharines) Port Hope WPCP Port Ualhousie WPCP (St. Catharines) Prescott-Edwardsburgh WPCP Port Ualhousie WPCP Port Weller WPCP (St. Catharines) Pringle Cr. WPCP No.2 (Whitby) Pringle Cr. WPCP No.2 (Whitby)

TABLE 7. PLANTS IN THE UPPER GREAT LAKES DRAINAGE BASIN - DESIGN FLOW, PLANT TYPE AND CHEMICALS USED FOR PHOSPHORUS REMOVAL

PLANT	DESIGN FLOW (10 ³ m ³ /d)		PLANT	PLANT TYPE			CHEMICAL PRESENT PRESENTLY USED FOR PHOSPHORUS REMOVAL
Barrie WPCP Bradford WPCP	27.276 6.819	Conventional activated sl Conventional activated sl effluent polishing	sludge, sludge,	phosphorus removal	removal	- continuous,	Alum Alum, Polymer
Collingwood WPCP	24.548	pa	sludge,	phosphorus removal		- continuous	Alum
Esten Lake WPCP (Elliot Lake)	13.002	Conventional activated sl effluent polishing	sludge,	phosphorus removal		- continuous,	Alum
Plant Two (Elliot Lake)							
(up to 1982)	4.546	Primary					
Goderich WPCP	9.092	Conventional activated sl	sludge,	phosphorus	removal	- continuous	Alum
Hanover WPCP	6.364	Conventional activated sl	sludge,	phosphorus	removal	- continuous	Alum
Huntsville WPCP	4.546	Conventional activated sl	sludge,	phosphorus	removal	- continuous	Alum
Midland WPCP	13,638	Conventional activated sl	sludge,	phosphorus	removal	- continuous	Ferric Chloride
North Bay WPCP	36.368	Conventional activated sl	sludge,	phosphorus	removal	- continuous	Ferric/Ferrous Chloride
Orillia WPCP	18.184	Conventional activated sludge,	udge,	phosphorus	removal	- continuous	Alum
Owen Sound WPCP	24.548	Primary					Ferric Chloride
Parry Sound WPCP	6.592	Conventional activated sludge, phosphorus removal	udge,	phosphorus	removal	- continuous	Ferric Chloride
Port Elgin WPCP	6,455	Oxidation ditch					No Chemicals Used (installed in 1986)
Sault Ste. Marie WPCP	54.552	Primary					No Chemicals Used
Sturgeon Falls WPCP	4.546	Conventional activated sludge, phosphorus removal	udge,	phosphorus		- continuous	Ferric/Ferrous Chloride (50/50)
Sudbury MPCP	61.371	High rate activated sludge	96				No Chemicals Used (installed in 1986)
Thunder Bay WPCP	109.104	Primary, phosphorus removal - continuous	1 - C	ontinuous			Ferric Chloride
Hamner, Val-Caron, Val-							
Mithelese Wror (Valley East)	11.305	Conventional activated sludge, phosphorus	nage,	phosphorus	removal	- continuous	Ferric/Ferrous Chloride
mikkold wrch (walden)	4.540	Extended aeration					No Chemicals Used
Walkerton WPCP	7.546	Conventional activated sludge, phosphorus removal - continuous	ndge,	phosphorus	removal	- continuous	Ferric Chloride
Wasaga Beach WPCP	5.773	Extended aeration, effluent polishing, exfiltration	int pol	ishing, exf	iltratio	_	No Chemicals Used

GEOGRAPHIC DISTRIBUTION ONTARIO WATER POLLUTION CONTROL PLANTS IN THE GREAT LAKES DRAINAGE BASIN WITH CAPACITY > 4546 m3/d (1 mgd) I 2 FIGURE

TABLE 8. SUMMARY OF PLANT PERFURMANCE - LAKE ERIE

PLANT	DESIGN FLOW		1981	81			1982				1983				1984				1985		01	NG TER (1981	LONG TERM AVERAGE (1981-1985)	GE
	(103 m3/d)	0	800	155	TP	0	800	155	TP	0 8	800 TS	TSS TP		0 800	00 TSS	T TP	0	800	TSS	TP	0	800	155	10
Amherstburg WPCP P	4.546	5.5	6.02	32.0	1.8	9.0	36.1		61.2	_						-	-			-	5.1	42.7	29.0	2.82
Brantford WPCP	81.828	43.4	15.0	7.6	0.94	49.1	12.4		_		_	_	_		_	-	_				6.09	12.3	7.3	0.78
Galt WPCP (Cambridge)	36.641	29.4	9.1	9.6	0.85	32.1	9.3	_	_	_		_	_		_	-	_		_		31.6	12.8	13.4	98.0
Hespeler WPCP (Cambridge)	9.319	5.5	38.0	19.2	0.93	5.3	23.8 1	_	_	_	_	_	_				_			_	5.4	28.9	21.2	0.95
Preston WPCP (Cambridge)	16.866	7.7	9.1	9.1	0.76	7.8	11.9		_				_			-	_		_	_	8.0	1.91	12.8	0.72
Chatham WPCP	35.913	56.4	9.8	11.0	0.77	23.6	9.0		_	_	_	_	_		_	-	_		_	-	26.2	7.4	12.1	0.83
Oresden WPCP	4.546	1.0	8.9	19.4	0.51	1.2	4.6		-				_		_	_	_	_			1.7	4.7	11.5	0.41
Dunnville WPCP	7.728	4.0	33.1	18.9	0.64	4.5	12.6	_		_		.2 0.50			15.7	_			_	_	4.5	17.7	12.5	0.67
Fergus WPCP	100.3	3.0	6.9	13.0	69.0	3.3	7.0	_				_	_		_	-		_		-	3.4	8.9	17.4	0.63
Guelph WPCP	54.552	43.3	18.0	16.0	1.20	44.3	24.4			-			-		_	-			-	_	44.5	15.9	11.9	1.22
Ingersoll New WPCP	6.819	3.8	9.1	7.6	1.27	4.1	7.1		-	-	_				_					_	4.3	7.0	7.5	0.91
Kitchener WPCP	122.742	62.3	9.6	9.3	0.80	63.0	6.4		_			_				-	_	_		_	64.9	6.9	7.2	0.79
Leamington WPCP	19.093	7.8	16.9	7.9	1.00	7.6	14.8	_	_	_		_			_	-				_	7.2	13.1	12.3	0.87
Adelaide WPCP (London)	18.184	13.6	3.6	4.7	1.00	15.1	3.9			_				_		-			_	-	15.5	3.1	5.5	0.94
Greenway WPCP (London)	123.33	103.7	4.1	7.4	1.03	123.7	4.0	-	_	-		_	_			_	-		-	-	121.9	4.3	8.1	96.0
Oxford WPCP (London)	5.455	3.9	6.9	16.1	2.18	4.7	7.9	-	_				-	_		_					4.8	0.9	12.6	1.29
Pottersburg WPCP (London)	22.048	13.5	3.4	5.4	0.73	17.3	4.0	_				_	_			-	-			-	16.7	3.1	4.6	0.77
Vauxhall WPCP (London)	20.912	19.5	3.6	7.2	06.0	20.2		_	_	_		_	_			-	-			_	19.3	4.1	8.2	0.83
Belle River-Maidstone MPCP	6.819	3.8	0.6	10.9	0.40	4.7				-	_		_			-				-	5.0	7.5	11.4	0.52
Corunna P.V. Plant (Moore)	4.546	2.1	4.5	11.5	0.93	_						_				_	_		_		2.1	6.4	6.6	0.85
		2.1	18.1	57.5	1.86					_	_	-	-		-	-	_			_	2.3	11.3	14.4	0.93
Sarnia MCF		47.8	0.14	20.0	00:1		_	_		_		_	-			-	-				51.5	41.5	50.5	06.0
Samoo WPCP	15.546	#. 8	6.2	3.7	0.36	4.6	6.1	-	-	_		_				-	_			-	9.3	7.6	6.1	0.58
St. Thomas MPCP	40.914		0.6	82.6	1.34			_	_	_	_		_		_	-	-				21.8	7.1	22.7	1.15
Stratford WPCP	27.276	23.5	8.9	6.4	0.51	24.7	10.2	_		_		_				_	_			-	23.6	11.4	3.3	0.47
Tillsonburg WPCP	8.183	4.7	4.3	7.5	09.0	5.3	2.4	_	_	-			_		-	-				_	5.5	3.1	7.0	19.0
Wallaceburg WPCP	6.819	6.2	6.4	8.4	1.17	5.7	5.5	_		_		_			_	_				-	6.9	7.1	7.7	0.72
Waterloo WPCP	45.46	34.9	9.3	7.5	0.73	35.0	11.0	_		_	_	_	_				_			-	39.3	10.8	4.6	0.81
_		30.9	3.6	9.9		30.8	3.4	-				_	-			-	_			-	34.1	4.0	8.2	9.0
Westerly WPCP (Windsor) P	_	104.1	8.82	24.0	0.92	105.5	26.0	_		_			_		_	-	_				108.0	25.3	22.0	0.84
Woodstock WPCP	36.368	19.8	0.9	8.0	09.0	21.5	5.9	16.6		22.6 8	8.1 16.1	_		21.2 9.5	_	2 0.95	5 23.9	9.11 6.	3 16.5	1.02	21.8	8.3	15.5	06.0

P - Primary Plant

TABLE 9. SUMMARY OF PLANT PERFORMANCE - LAKE ONTARIO/ST. LAWRENCE

	9	18	50.	80	38	22	90	2 4 6	47.	1.0	10.	60.	08.	?:	15.	200	5.0	45.0	35	.26	.93	96.	44.	90	77	83	42	000	200	90	17	37	70	78	2 6	30	75	0.91	.64	.76	.55	69.	.78	.70	.18	.63	.93
G TERM AVERAGE	155	7				_									_																							13.7									
ERM AV	900	Т																-							_																						
LONG TERM (1981-1	B										_			_					-															-				0 11.1	-	_							4 14
	-	+		78.3	_	_	_	_		_	_	-		_	_		_	_		_		_		_	_	_		-				_		_		_		13.0	_	_			_			_	<u>•</u>
	16	000	0.0	0.74	0.47	0.86	1.54	0	27	2		200	200		100	2.40	200	20.0	1.0	1.08	1.09	0.85	0.29	0.00	0.65	1.41	0	3	C	9	2	2	0	2	2	-	0	1.13	9	9	0	0	0	0	0.59	0.70	0.94
5	TSS	100	200	7.5	4.2	5.5	10.0	24 6	2	30.0	7.07	2.4	2.0	2.5.6	130	200	19.0	0.0	10.5	18.2	26.0	6.8	2.6	9.5	15.7	10.3	14.		23.8	2	15.1	3	17.0	17.0	7.7	15.6	8.5	15.8	5.4	20.3	10.6	13.2	13.0	12.1	13.1	14.5	14.5
1986	800	300	22.0	6.3	2.9	6.4	14.7	A O A	9	38.0			2.4	20.00	600	2000	1000	0.0	10.0	511.5	22.3	15.1	2.5	11.6	16.5	5.8	13.4	: '	31.3	2 6	7.2	2,5	100	10.1	-	14.3	5.7	13.1	0.9	17.2	11.5	12.0	10.8	11.6	10.0	19.3	19.5
	0	0	17.5	67.0	4.1	6.8	8.5	47 7	13.4	13.	200	200	11.0	7.11	2000		1.00	10.4	103.3	3/8.1	683.8	34.7	12.3	71.2	230.5	7.4	8.1		57.1		29.0	8	27.1	27.2	26.0	150.0	3.1	13.2	9.6	5.5	41.6	42.1	11.2	35.8	13.5	5.5	6.5
	۵			0.72																									63.0	0.87	0.93	98 0	1.02*	1.02*	81	96.0	89.0	1.15	0.53	98.0	0.55	0.57	0.58	0.73	0.85	06.0	1.09
	155					_		_	_	_		_	_		_					_			_				_	П		-			4	4				15.8				-		-	_		6.81
1984	800	2	9 9	9.1		_		Т						_													_	_		-		-	_					13.2					_	_	_	_	
	0	+	-	_		_	-	-	-		_	_	-			-			=	_		-	-		-	-	_	_	-	-	_	-	-	-	_	_	-	14.1	-	_	_	-	-	_	-	_	-
	-	0					_	Т	_			_	_	_					_			_		-	_	_	_	_			_	_		4	-	_	_	89 14	_	_	_	_	_	_			
	=	+	-	0	0	0	0	0	0		0		0	-	2		<u> </u>	<u>- 2</u>	-	-i c	<u>.</u>		<u>.</u>	_	0	2	-	0	_	0	_	0	0	0	0	=	<u>.</u>	0	<u>.</u>	0	0	<u>.</u>	0	00	9 0	9 0	<u>.</u>
1983	155	+-	-	_	-		-	-	-	-	-	-		-		-	_	-	-	-	_	_		-		_	-			-	-		•	-	_		-	9.7	_	_	-	_	_	_	-	_	_
-	800	14.	16.2	7.7	3.7	4.2	5.0	39.2	4.0	25.4	6.0	2.3	9	15.0	03.0	20.00	77.	10	2.4	1.4.1	13.6	14.5	3.7	9.1	16.1	10.0	13.5	10.6	50.0	2.4	10.2	2.6	*14.4	*14.4	9.5	22.5	7.2	11.9	8	19.8	4.0	9.	14.1	11.1	1.5.1	D . 4	3.0
	0	20.5	15.7	9.98	3.5	7.0	14.2	49.2	11.8	13.1	10.7	5.6	0	2A7 A	2	60.1	16.3	162 A	3 3 9 5 5	2000	26.00	4.00	9.6	67.1	190.1	5.4	6.7	15.1	56.2	12.4	28.2	7.4	26.4	25.9	53.1	95.1	3.3	13.9	4.	9.	36.4	35.0	0.0	10.0		2.4	0.0
	10			0.93									0.49	1 15	3.00	200	000	100																				0.70		0.79	0.70	0.80	1.14	1.10	1.70	0.62	13.1
~	TSS	14.0	22.0	8.4	4.8	6.3	7.6	46.9	9.9	22.0	8.0	4.3	5.9	17.0	54 0	31.0	0	1	10.0	100	12.9	8.12	3.3	8.7	17.2	63.0	24.1	5.2	26.0	9.1	14.2	5.4	16.7	14.9	10.0	12.2	13.2	15.0	6.3	8.62	7.0	56.0	13.0	12.0	39.3	12.6	1. /2
198	800	19.6	22.4	8.0	5.9	4.2	6.7	47.4	4.9	54.0	7.0	2.5	5.5	11.2	85.0	23.0	4	181		0.41	0.11	18.5	4.6	7.6	19.7	48.4	18.1	14.8	42.0	2.7	16.7	3.1	15.1	17.4	11.7	14.1	7.1	7.0	4.0	17.9	7.0	45.0	15.1	0.11	18.0	13.8	17.3
	0	28.6	15.4	0.77	3.8	7.4	14.7	47.5	9.6	6.91	10.5	2.4	6.5	290.0	2	0.09	16.6	62.3	7 0 7	2002	3.60	30.0	0.6	59.5	194.6	0.9	5.2	16.5	51.9	11.8	30.0	8.1	30.9	29.6	54.4	84.5	3.6	12.9	9.9	4.4	36.8	35.6	9.6	38.1	6.4.	4.3	1.0
	TP	1.38	1.63	1.09	0.49	0.74	0.75	1.67	0.46	0.91	0.49	0.97	0.82					_	44		·	00.1			0.78 1	4.9		0.97	1.00	0.84	1.10	0.46	1.30	0.51	0.74	96.0	1.30	0.68	0.55	79.0	0.58	0.57	0.71	0.71	0.7	20.0	60.0
	TSS	16.2	19.2	10.1	2.0	7.3	9.01	52.6	6.1	27.0	8.4	8.2	5.0	31.6	22.0	35.0	13.0	16. A	24.2	_						63.5		7.2				4.9			8.6	-			•			_		20.0		0.0	
1981	800	6.91	21.6	7.2	4.1	5.3	_		5.5	36.0	11.4	2.9	3.6	_	_		12.5	22.6	V 91	17.1	10 91	20.0	4.5	5.9	16.5	30.2	,	12.8	27.0		11.8	4.0	25.0	5						4	2.6	14.7		5.0	_	0.4	7.
	0	27.3	16.0	75.1	3.1	6.7	13.8	48.6	8.1	17.2	_	5.6	10.6	264.1	3.5		16.0			752.4	26.4		3.5			5.9		13.4		_		7.1		27.7	51.9	_	_		_	_	-		6.01	26.9	-	4.4	3.0
3 x	3/4)	54	_	-	- 9	01	-	-	-	-	_	91	_	2		_	_	_	Ī	П	Ţ		-			2	-	-	_	-	_	99	-	-	_		_	_	7			_		_		20	,
DESIGN FLOW	(103 m3/d)	29.4	25.571	93.1	4.546	5.910	16.047	37.505	18.184	16.366	18.184	4.546	13.638	409.14	5.001	61.37	25.003	218.21	400 14	R18 28	46 460	200	17.911	109.104	227.30	9.092	4.546	13.638	58.189	22.730	47.733	7.9	34.095	34.095	68.190	181.84	4.546	15.002	3.092	5.683	01.3/1	200.	115.911	36 368	500.00	0 000	
			۵		_	×	×	۵		a	_	(\$		×	م	۵		to)	-	_	10	-	_	_			_		۵				_	_		Ī	_		-		nes!	_	_		_		1
										•		I HIII	113)	(uo:				Toror	-		Toron			-	-		astle)		15)				AWA)	GWG)		(6)		-			a char	ar ines			1044	24	
IN										t Erie	(sp)	(Ha)to	ton H1	Hamil 1				(Metro	oronto	onto	Metro			SSauga	ssauga		(Newo		re Fal	ville)	ville)		1 (0sh	2 (0sh		ckerin		Iborne	4000	T WALL	7 - 10			(+pv)	1	No.2 (Whithy)	
PLANT		a	۵	۵		РСР	0.1			P (For	(Grim	Agoon	P (Ha)	MPCP (PCP	MPCP	Ptro I	ro Tor	900		, , , , , ,	MISSI	(MISSI		N WPCP		(Niaga	Oak	(Oak	م	CP No.	P No.	d)	(P (P)		ort Co	4	S COOK	27	101		MA) d	D NO	P No.	
		e MPC	le MPC.	on MPC	PCP	ord W	IPCP N	MPCP	CP	. MPC	MPCP	P & L.	IN MPC	Ave.	MPCP	MPCP	TWP K	Creek	CP (Me	(Met	onto	2	1000	N. C.	MPCP	4	Ingto	MPCP.	MPCP	T MPC	t MPC	e K	T. M	- F	ugh M	AM Me	2 6	2 do	1	COWAL	200	000	200	r. WPC	700	r. MPCP	
		Belleville MPCP	Brockville WPCP	Burlington WPCP	Caledon MPCP	Campbellford WPCP	Cobourg WPCP No.1	Cornwall WPCP	Dundas MPCP	Anger Ave. WPCP (Fort Erie)	Baker Rd. WPCP (Grimsby)	Acton WPCP & Lagoon (Halton Hills)	Georgetown WPCP (Halton Hills)	Woodward Ave. WPCP (Hamilton)	Iroquots WPCP	Kingston WPCP	Kingston TWP WPCP	Highland Creek WPCP (Metro Toronto)	Humber MPCP (Metro Toronto)	Main WPCP (Metro Toronto)	North Toronto MPCP (Metro Toronto)	Milton MpCp	TOUR MAN	Clarkson MPLP (Mississauga)	Lakeview WPCP (Mississauga)	Napanee MPCP	Port Darlington WPCP (Newcastle)	Newmarket MPCP	Stamford WPCP (Niagara Falls)	South East WPCP (Oakville)	South West WPCP (Oakville)	Orangeville MPCP	Harmony Cr. WPCP No.1 (Oshawa)	Harmony Cr. WPCP No.2 (Oshawa	Peterborough WPCP	York-Durham MPCP (Pickering)	PICTON WPLP	Seaway WPCP (Port Colborne)	adou s	Dore Dalbourde 1900 (64 Cartering	Port Maller MOCO /ce Cotton	Tranton VDCD	Welland UPCP	Corbett Cr. WPCP (Whithy)	Pringle Cr. MPCP No 1 (Uhitha)	Prinole Cr.	
1		ge g	Bro	Bu	3	Cam	COP	Cor	Dun	Ang	Bak	Act	Geo	MOOM	Iro	Kin	Kin	HIGH	Hum	H	Nor	-	3	٠.	Lak.	Map	Por	New	Star	Sou	Sou	0	HAT	Harm	Pete	York	2	Sear	2	Dog	0	7	-	Corb	Prin	Prin	

P - Primary Plant X - No Chemicals Used for P Removal Combined Effluents

PERFORMANCE 9

1981 1982 1983 1984 1985 1983 1984 1984 1985 1984 1985		DESIGN																-				-	LONG TERM		AVERAGE	٢
110 m ³ /4 Q 800 155 TP Q 800 TS TP Q RO TS TP TS TS TS TS TS TS		FLOW		-	186			-	182			198	3			1984				1985		_	=		5)	
22.276 22.8 10.6 19.1 1.06 21.8 53.0 18.0 0.96 22.7 10.5 16.4 0.99 26.5 8.4 17.7 0.97 26.1 6.8 12.6 0.50 24.0 17.9 18.5 24.5		(103 m3/d)	0	800	TSS	TP	0	900	155	TP	0	800	TSS	TP	0	-				H	-	-	-	-	-	1
6.649 3.0 20.3 19.6 0.76 3.4 14.7 12.8 0.42 3.1 6.6 8.7 0.4 3.4 3.0 2.9 0.77 3.1 6.5 6.4 0.42 3.2 10.3 13.0 2.9 0.77 3.1 6.5 6.4 0.42 3.2 10.3 13.0 2.9 0.77 3.1 6.5 6.4 0.42 3.2 10.3 13.0 2.9 0.77 3.1 6.5 6.4 0.42 3.2 10.3 13.0 2.9 0.77 3.1 6.5 6.4 0.42 3.2 10.3 13.0 13.0 13.0 13.0 13.0 13.0 13.0	Barrie WPCP	27.276	8.22	10.6	1.61			53.0	18.0	96.0	22.7		-				-		+	+-	+		+		+	B.O.
11 1993) 9 0.02	Bradford WPCP	6.819	3.0	20.3	19.6	0.76	3.4	14.7	12.8	0.42	3.1	9.9	_		-	_	_	_		_	_		-			55
13.002 9.7 13.6 11.6 0.77 8.5 12.5 9.8 0.7 10.9 7.9 12.0 1.33 12.5 15.3 15.9 11.0 10.4 12.6 1 11.0 10.9 1 11.0 10.9 1 12.0 13.002 9.7 13.6 11.6 0.77 13.0 2.0 7.1 13.0 2.0 7.1 13.0 2.0 7.1 13.0 2.0 7.1 13.0 2.0 7.1 13.0 2.0 7.1 13.0 2.0 7.1 13.0 2.0 2.0 7.1 13.0 2.0 2.0 7.1 13.0 2.0 2.0 7.1 13.0 2.0 2.0 7.1 13.0 2.0 2.0 2.0 7.1 13.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	Collingwood WPCP	24.548	15.9	0.07	42.0	1.85		15.0	15.0	09.0	17.1	8.0	10.2	1.7	17.4		_	_	8.5	5.8 12			_			1.50
P 4.546 4.5 4.3 65.0 5.3	Esten Lake WPCP (Elliot Lake)	13.002	-	•			9.7	13	11.6	0.77	8.5	12.5	9.8	1.7	_	_	_		2.5	5.3 15	_				-	0.97
6.344 3.3 194 10.5 5.0 2.0 7.7 13.0 5.3 2.0 7.1 8.0 7.2 1.5 9.6 6.2 10.0 1.10 11.2 5.5 10.6 0.87 8.8 8.7 11.2 6.34 3.3 194 10.5 2.1 3.7 12.0 13.3 1.0 3.7 8.5 7.5 0.6 3.7 6.9 6.3 0.86 4.3 9.4 7.5 0.87 3.7 11.2 13.6 19.8 13.3 19.4 10.5 2.1 3.7 12.0 13.3 1.0 3.7 8.5 7.5 0.6 3.7 6.9 6.3 0.86 4.3 9.4 7.5 0.87 3.7 11.2 13.6 89 3.0 6.4 7.6 0.50 4.0 6.3 9.5 0.45 4.0 17.0 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2		4.546	4.5	4.3		5.3	:	;	:	:			1				_	_			_		_			
6.364 3.3 19.4 10.5 2.1 3.7 12.0 13.3 1.0 3.7 8.5 7.5 0.6 3.7 6.9 6.3 0.86 4.3 9.4 7.5 0.80 3.7 11.2 4.54 5.1 6.1 6.7 0.31 4.6 4.4 13.7 0.76 4.0 7.0 13.6 13.9 9.5 0.45 4.0 11.3 13.3 0.4 4.5 6.1 6.7 0.31 4.6 4.4 13.7 0.76 4.0 7.0 7.0 13.6 18.4 13.7 0.76 4.0 7.0 13.6 18.4 13.7 0.76 4.0 7.0 13.6 18.4 13.7 0.76 4.0 7.0 13.6 18.4 13.7 0.76 4.0 7.0 13.6 18.4 13.7 0.76 4.0 7.0 13.6 18.4 13.7 0.76 4.0 7.0 13.6 18.4 13.4 13.6 13.9 13.4 13.6 13.9 13.4 13.2 13.2 13.4 13.2 13.2 13.4 13.6 13.4 13.6 13.9 13.8 13.8 13.3 13.2 13.2 13.4 13.6 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8		9.095		10.0		2.0	7.7	13.0	5.3	2.0	7.1	8.0	7.2	1.5	9.6	6.2 10		_	1.2	5.5 10	_	_	00	.7 7.	9	64.
4.546 3.0 6.4 7.6 0.50 4.0 6.3 9.5 0.45 4.0 11.3 13.3 0.4 4.5 6.1 6.7 0.31 4.8 4.4 13.7 0.76 4.0 7.0 11.618 8.7 33.2 35.3 11.74 8.4 7.2 4.2 0.46 9.0 8.7 7.3 0.3 9.2 13.9 7.4 0.56 10.9 3.0 6.4 0.57 9.3 13.4 136.3 13.5 13.2 13.2 13.2 13.2 13.3 13.2 13.2 13.2	Hanover WPCP	6.364	3.3	19.4		2.1	3.7	12.0	13.3	1.0	3.7	8.5	7.5	9.0	3.7	6.9	.3 0	_	4.3	9.4 7	0	_	.7	.2	2	60
13.638 8.7 33.2 36.9 11.74 8.4 7.2 4.2 0.46 9.0 8.7 7.3 0.3 9.2 13.9 7.4 0.56 10.9 3.0 6.4 0.57 9.3 13.4 14 18.5 19.9 11.74 13.2 22.3 24.1 1.28 12.3 24.5 23.7 1.2 32.6 17.4 24.2 1.50 40.1 22.1 31.4 1.68 33.9 20.5 2 18.4 18.5 19.9 17.8 17.3 19.5 17.3 8.1 19.6 17.4 19.0 20.0 17.5 17.3 8.1 19.6 17.4 19.6 17.4 19.0 20.0 17.5 17.3 8.1 19.6 25.7 25.2 0.84 22.5 23.8 20.4 0.85 20.5 26.1 2 17.0 17.6 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	Huntsville WPCP	4.546	3.0		_	0.50	4.0	6.3	9.5	0.45	4.0	11.3	13.3	9.4	4.5	-	_	31	8.4	4.4 13	-	76 . 4	0.	0	0 6	0.45
36.368 33.3 15.5 19.9 1.38 31.3 22.3 24.1 1.28 32.3 24.5 23.7 1.2 32.6 17.4 24.2 1.50 40.1 22.1 31.4 1.68 33.9 20.5 20.5 18.1 18.184 15.2 12.0 13.8 0.48 17.4 19.0 20.0 0.30 17.5 17.3 8.1 0.3 18.4 18.5 14.8 0.41 19.2 18.4 19.8 0.58 17.6 17.0 18.1 18.1 18.2 12.7 26.1 0.82 22.8 24.5 19.8 1.01 19.6 28.8 23.8 1.3 19.6 25.7 25.2 0.84 22.5 23.8 20.4 0.85 20.5 26.1 2 6.592 5.2 24.3 38.6 1.14 4.4 6.7 9.3 0.85 4.2 9.7 0.9 3.4 3.4 8.7 0.86 3.9 6.6 5.7 0.56 4.2 9.3 17.6 17.0 18.2 18.4 18.1 8.8 1.15 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	Midland WPCP	13.638	8.7			11.74	8.4	7.2	4.2	0.46	0.6	8.7	7.3	3.3	9.2	-	_		-	3.0	0	57 9	3 13	4 12	100	85
He.184 15.2 12.0 13.8 0.48 17.4 19.0 20.0 0.30 17.5 17.3 8.1 0.3 18.4 18.5 14.8 0.41 19.2 18.4 19.8 0.58 17.6 17.0 1 24.548 18.1 27.7 26.1 0.82 22.8 24.5 19.8 1.01 19.6 28.8 23.8 1.3 19.6 25.7 25.2 0.84 22.5 23.8 20.4 0.85 20.5 26.1 2 6.592 5.2 24.3 38.6 1.14 4.4 6.7 9.3 0.85 4.2 9.7 0.9 3.4 3.4 8.7 0.86 3.9 6.6 5.7 0.56 4.2 9.3 1 8.4 1 8.8 2.5 23.8 20.4 0.85 20.5 26.1 2 6.592 5.2 24.3 38.6 1.14 4.4 6.7 9.3 0.85 4.2 9.7 0.9 3.4 3.4 8.7 0.86 3.9 6.6 5.7 0.56 4.2 9.3 1 8.4 2 6.5 2.5 23.8 20.4 0.85 20.5 26.1 2 6.5 2 9.7 0.9 3.4 3.4 8.7 0.86 3.9 6.6 5.7 0.5 2.7 1.56 3.7 5.2 2 9.3 1 8.4 2 9.3 1 1.9	North Bay WPCP	36.368	33.3	15.5	_	1.38	31.3	22.3	24.1	1.28	32.3	24.5	23.7	1.2		7.4 24	.2		~	2.1 31	-			_	_	42
P 24.548 18.1 27.7 26.1 0.082 22.8 24.5 19.8 1.01 19.6 28.8 23.8 1.3 19.6 25.7 25.2 0.84 22.5 23.8 20.4 0.85 20.5 26.1 2 6.592 5.2 24.3 38.6 11.14 4.4 6.7 9.3 0.85 4.2 9.7 0.9 3.4 3.4 8.7 0.86 3.9 6.6 5.7 0.56 4.2 9.3 1 6.55 3.6 5.4 3.6 2.13 3.5 4.7 2.7 2.4 3.6 2.8 3.6 11.4 4.0 6.7 9.3 0.85 4.2 9.7 0.9 3.4 3.4 8.7 0.86 3.9 6.6 5.7 0.56 4.2 9.3 1 75.5 2 40.3 30.6 10.8 2.1 3.5 5.1 67.8 54.6 3.08 46.9 74.1 55.3 4.1 45.9 83.1 61.8 4.61 50.3 83.2 60.0 4.23 48.5 76.4 5 4.5 6.7 7.1 6.2 0.70 6.4 5.2 4.8 6.6 6.6 0.5 6.8 6.0 5.3 0.33 5.6 4.6 6.0 0.46 6.5 5.6 1 4.5 6.7 7.1 1.6 1.6 1.7 7 13.1 1.5 5.4 1 1.8 5.1 1.8 5.1 1.1 1.40 4.4 18.1 8.9 1.70 4.8 14.3 4.0 1.5 5.1 14.3 2.8 1.14 5.6 14.3 5.1 10.9 9.4 55.1 14.3 2.8 1.14 5.6 14.3 5.1 11.3 5.1 1.3	Orillia wpcp	18.184	15.2		_	0.48	17.4	19.0	20.02	0.30	17.5	17.3	8.1	3.3	_		-	_			_			_	_	0.41
X 6.552 5.2 24.3 38.6 1.14 4.4 6.7 9.3 0.85 4.2 9.7 0.9 3.4 3.4 8.7 0.86 3.9 6.6 5.7 0.56 4.2 9.3 1.8 6.455 3.6 5.4 3.6 2.13 3.5 4.7 2.7 2.4 3.6 2.8 3.6 1.6 3.4 4.0 3.0 1.93 4.1 8.8 2.7 1.56 3.7 5.2 X 5.4 3.6 2.8 3.6 2.8 3.6 1.6 3.4 4.0 3.0 1.93 4.1 8.8 2.7 1.56 3.7 5.2 X 5.4 3.6 2.8 3.6 1.6 3.4 4.0 3.0 1.93 4.1 8.8 2.7 1.56 3.7 5.2 3.6 4.3 5.1 6.7 8 46.9 74.1 55.3 4.1 45.9 83.1 61.8 4.61 50.3 83.2 60.0 4.23 48.5 76.4 5 4.5 4.5 6.0 0.46 6.5 5.6 4.5 6.0 0.46 6.5 5.6 4.5 6.0 0.46 6.5 5.6 5.6 0.3 11.5 52.1 11.6 12.7 2.20 51.2 17.3 10.0 1.90 54.9 16.6 13.1 1.5 54.9 10.0 9.4 1.84 52.0 11.9 8.3 2.10 53.0 13.5 1 10.0 1.90 54.9 16.6 13.1 1.2 113.8 51.4 3.7 113.8 51.4 3.7 1.01 99.4 55.1 1.2 6.2 9.9 2.34 1.2 3.8 4.3 2.6 0.9 7.0 2.7 2.4 5.7 3.7 11.3 54.5 5.1 14.3 2.8 11.4 5.6 14.3 5.1 0.69 4.8 15.3 2.8 12.9 12.9 12.9 12.9 12.9 13.7 13.7 13.3 5.1 14.0 9.6 9.6 0.9 7.0 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7		24.548	18.1	27.7	26.1	0.85		24.5	19.8	1.01	19.6		23.8	1.3			0							_	_	96.0
X 6.455 3.6 5.4 3.6 2.13 3.5 4.7 2.7 2.4 3.6 2.8 3.6 1.6 3.4 4.0 3.0 1.93 4.1 8.8 2.7 1.56 3.7 5.2 XP 54.52 48.3 69.5 54.8 3.15 51.1 67.8 54.6 3.08 46.9 74.1 55.3 4.1 45.9 83.1 61.8 4.61 50.3 83.2 60.0 4.23 48.5 76.4 5 4.5 6.7 7.1 6.2 0.70 6.4 5.2 4.8 0.65 6.9 4.8 6.6 0.5 6.8 6.0 5.3 0.33 5.6 4.6 6.0 0.46 6.5 5.6 5.6 13.1 1.5 54.9 10.0 9.4 1.84 52.0 11.9 8.3 2.10 53.0 13.5 1 1.7 11.6 12.7 2.20 51.2 17.3 10.0 1.90 54.9 16.6 13.1 1.5 54.9 10.0 9.4 1.84 52.0 11.9 8.3 2.10 53.0 13.5 1 1.7 11.6 12.7 53.1 53.6 3.14 96.8 6.9 7.2 43.2 1.6 104.2 51.7 36.1 1.27 113.8 51.4 33.7 1.01 99.4 55.1 4 11.3 5 4 1 15.4 7.1 1.40 4.4 18.1 8.9 1.70 4.8 14.3 4.0 1.5 5.1 14.3 2.8 1.14 5.6 14.3 5.1 0.69 4.8 15.3 7.54 6 4.4 19.7 2.7 2.8 12.1 3.0 1.3 5.1 1.0 0.9 1.3 5	Parry Sound WPCP	6.592	5.5	24.3		1.14	-	6.7	9.3	0.85	4.2	5.5	9.7	6.0			0	_			-				_	98.0
XP 54-552 40.3 69.5 54.8 3.15 51.1 67.8 54.6 3.08 46.9 74.1 55.3 4.1 45.9 83.1 61.8 4.61 50.3 83.2 60.0 4.23 48.5 76.4 5 4.5 6.7 7.1 6.2 0.70 6.4 5.2 4.8 0.65 6.9 4.8 6.6 0.5 6.8 6.0 5.3 0.33 5.6 4.6 6.0 0.46 6.5 5.6 5.6 7.1 11.6 12.7 2.20 51.2 17.3 10.0 1.90 54.9 16.6 13.1 1.5 54.9 10.0 9.4 1.84 52.0 11.9 8.3 2.10 53.0 13.5 1 1.7 10.0 1.90 54.9 16.6 13.1 1.5 54.9 10.0 9.4 1.84 52.0 11.9 8.3 2.10 53.0 13.5 1 1.7 10.0 1.90 54.9 10.0 9.4 1.84 52.0 11.9 8.3 2.10 53.0 13.5 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Port Elgin WPCP x	6.455	3.6		-	2.13	3.5	4.7	2.7	2.4	3.6	8.2	3.6	9.1	3.4		_	93	1.4	_	_	-		_		16
X 61.371 52.1 11.6 12.7 2.20 51.2 17.3 10.0 1.90 54.9 16.6 13.1 1.5 54.9 10.0 9.4 1.84 52.0 11.9 6.3 2.10 53.0 13.5 1 P 109.104 81.7 53.1 53.6 3.14 96.8 69.6 76.1 3.10 100.5 47.2 43.2 1.6 104.2 51.7 36.1 1.27 113.8 51.4 33.7 1.01 99.4 55.1 4 1.365 4.1 15.4 7.1 1.40 4.4 18.1 8.9 1.70 4.8 14.3 4.0 1.5 5.1 14.3 2.8 1.14 5.6 14.3 5.1 0.69 4.8 15.3 7.546 X 5.733		54.552	48.3	9.69		3.15	51.1	8.79	54.6	3.08	46.9		55.3	1.1	00		4		-	_	-		_		90	3.86
X 61.371 52.1 11.6 12.7 2.20 51.2 17.3 10.0 1.90 54.9 16.6 13.1 1.5 54.9 10.0 9.4 1.84 52.0 11.9 8.3 2.10 53.0 13.5 1 P 109.104 81.7 53.1 53.6 3.14 96.8 69.6 76.1 3.10 100.5 47.2 43.2 1.6 104.2 51.7 36.1 1.27 113.8 51.4 33.7 1.01 99.4 55.1 4 1.365 4.1 15.4 7.1 1.40 4.4 18.1 8.9 1.70 4.8 14.3 4.0 1.5 5.1 14.3 2.8 1.14 5.6 14.3 5.1 0.69 4.8 15.3 7.0 2.7 5.8 1.17 54.5 2.6 11.2 6.2 9.9 2.34 1.2 3.8 4.3 2.66 0.9 7.0 2.7 2.5 6.1 12.0 7.0 0.93 4.9 16.0 13.7 1.3 5.1 16.0 11.7 0.99 5.9 14.0 9.6 0.9 0.5 2.1 15.6 1	Sturgeon Falls WPCP	4.546	6.7	7.1		0.70	_	5.5	4.8	0.65	6.9	4.8	9.9	3.5	_	6.0 8	.3 0		-	_	_	_		_	8	0.52
P 109.104 81.7 53.1 53.6 3.14 96.8 69.6 76.1 3.10 100.5 47.2 43.2 1.6 104.2 51.7 36.1 1.27 113.8 51.4 33.7 1.01 99.4 55.1 4 1.365 4.1 15.4 7.1 1.40 4.4 18.1 8.9 1.70 4.8 14.3 4.0 1.5 5.1 14.3 2.8 1.14 5.6 14.3 5.1 0.69 4.8 15.3 X 4.546 4.4 19.2 13.7 2.72 5.9 12.9 12.0 0.93 4.9 16.0 13.7 1.3 5.1 16.0 11.7 0.99 5.9 14.0 9.6 0.90 7.0 2 7.0	Sudbury MPCP x	61.371		11.6	12.7	2.20		17.3	10.0	1.90	54.9	16.6	13.1	1.5		0.0	.4		_	1.9 8	.3		_	_	~	.91
1.365 4.1 15.4 7.1 1.40 4.4 18.1 8.9 1.70 4.8 14.3 4.0 1.5 5.1 14.3 2.8 1.14 5.6 14.3 5.1 0.69 4.8 15.3 X 4.546 4.4 19.2 13.7 2.72 5.9 13.0 0.93 4.9 16.0 13.7 1.3 5.1 16.0 11.7 0.99 5.9 14.0 9.6 0.90 5.2 15.6 1 2.7 5.73	Thunder Bay WPCP	109.104	81.7	53.1	53.6	3.14		9.69	76.1	3.10	100.5	47.2	43.2	1.6	_		_	_	3.8 5	1.4 33		_	-	-	_	2.03
11.365 4.1 15.4 7.1 1.40 4.4 18.1 8.9 1.70 4.8 14.3 4.0 1.5 5.1 14.3 2.8 1.14 5.6 14.3 5.1 0.69 4.8 15.3 4.546 0.5 6.1 20.7 1.7 0.9 11.7 54.5 2.6 1.2 6.2 9.9 2.34 1.2 3.8 4.3 2.66 0.9 7.0 2	Hamner, Val-Caron, Val-Therese														_	-	_	_							_	
X 4.546 0.5 6.1 20.7 1.7 0.9 11.7 54.5 2.6 1.2 6.2 9.9 2.34 1.2 3.8 4.3 2.66 0.9 7.0 7.546 4.4 19.2 13.7 2.72 5.8 12.9 13.0 0.93 4.9 16.0 13.7 1.3 5.1 16.0 11.7 0.99 5.9 14.0 9.6 0.90 5.2 15.6 X 5.773 0.4 0.7 - 0.7 0.7 0.7 0.8 0.90 5.9 14.0 9.6 0.90 5.2 15.6	_	11.365	4.1	15.4	7.1	1.40	4.4	18.1	8.9	1.70	4.8		4.0	1.5		_	_	14	_	-	_	_		_	_	.29
7.546 4.4 19.2 13.7 2.72 5.8 12.9 13.0 0.93 4.9 16.0 13.7 1.3 5.1 16.0 11.7 0.99 5.9 14.0 9.6 0.90 5.2 15.6 X 5.773		4.546					0.5	1.9	20.7	1.7	6.0		_	9.5	-			34	-	_	-	-		_		.33
X 5.773	Walkerton WPCP	7.546	4.4	19.5	13.7	2.72	8.8	12	13.0	0.93	_	16.0	_	1.3	_		_	66	-	_	_	-	_	_		38
		5.773					4.0	:	:	1	0.7		•		-	-	-		_	-	_	-	_	_	_	_

Removal ۵. for imary Plant Chemicals Us 1 1 4.×

DOT THE SECOND

Effluent requirements that were used were based on MOE Effluent Criteria for BOD5, TSS and TP (Policy 0801, revised in 1983), as presented in Table 11. For primary plants, the exceedance of Effluent Design Objectives indicated non-compliance. For secondary plants, the exceedance of the Effluent Guidelines indicated non-compliance. For all plants, including those not practicing phosphorus removal, the phosphorus effluent requirement was considered to be 1 mg/L. Although the performance data from all plants was analyzed using the above guidelines, it should be noted that several plants have more stringent site-specific requirements with respect to BOD5, TSS and/or TP, as shown in Table 12.

Tables 13 to 15 present the annual compliance history (compliance with annual average effluent requirement) for the individual treatment facilities for the years 1981 to 1985 with respect to BOD5, TSS and TP. In the Lake Erie Basin, seventeen plants (54.8 percent of the 31 plants evaluated) were in compliance on an annual basis with all effluent requirements (BOD5, TSS and TP) for every year (1981 to 1985). In the Lake Ontario/St. Lawrence River Basin, fifteen plants (34.0 percent of the 44 plants evaluated) were in compliance with all requirements every year and in the Upper Great Lakes Basin, 3 plants (14.3 percent of 21 plants) were in compliance with all requirements every year. Overall, 35 plants (36.4 percent of 96 plants) met all requirements every year during 1981 to 1985.

In Figure 6, a histogram presents the number of plants that were not in compliance with respect to annual average BOD_5 , TSS and TP effluent concentrations for the 5 year period. These data indicated a decreasing trend in the number of plants that were not in compliance from 1981 to 1985 for all parameters. It should also be noted that there were a significantly greater number of plants that exceeded TP effluent limits compared to those that exceeded BOD_5 and TSS effluent limits.

Tables 16 to 18 summarize the compliance status for BOD₅, TSS and TP of these plants for the years 1984 and 1985 when compliance is assessed on a monthly basis, along with their compliance status on the basis of annual average effluent concentration. It should again be noted that plants were not attempting to meet a monthly compliance requirement during these years. From these data, summaries presenting the number of plants that were in compliance on an annual average basis compared to the number of plants that would be in compliance on a monthly average basis were developed and are presented in Table 19 and Figures 7 to 9. It can be observed that there are

TABLE 11.	MOE	EFFLUENT	CRITERIA	(POLICY	0801.	1983)

TREATMENT LEVEL & PROCESS		LUENT DES BJECTIVES		EFFL! GUIDE!	
TREATMENT LETTE & PROCESS	BOD ₅	TSS	TP	BOD ₅	TSS
A. Primary Treatment - Without P-removal - With P-removal	30% Removal 50% Removal	50% Removal 70% Removal	1.0		
B. Secondary Treatment - Conventional A.S Contact Stabilization - Extended Aeration	15 20 15	15 20 15	1.0 1.0 1.0	25 25 25	25 25 25

TABLE 12. MUNICIPAL WASTEWATER TREATMENT FACILITIES IN THE GREAT LAKES BASIN WITH SITE-SPECIFIC EFFLUENT QUALITY GUIDELINES

PLANT	BOI	D ₅	T:	SS	TF)
	mg/L	kg/d	mg/L	kg/d	mg/L	kg/d
Lake Erie Chatham WPCP Guelph WPCP Stratford WPCP	15	440	15		0.5 ¹ 0.5 ²	
Lake Ontario/St. Lawrence Belleville WPCP Acton WPCP (Halton Hills) Georgetown WPCP (Halton Hills) Milton WPCP	4.2	13.6	15.0		0.52	
Orangeville WPCP Picton WPCP Trenton WPCP	7.5	60	7.5	60	0.5 0.5 ² 0.5 ²	4.0
Upper Great Lakes Bradford WPCP Goderich WPCP Hanover WPCP	15 15	136	15 15	136	0.3	0.9

^{1.} River Temp \leq 10°C, TP \leq 1.0 mg/L, >10°C, TP \leq 0.5 mg/L

^{2.} May to October

^{3.} Soluble P

SUMMARY OF ANNUAL AND LONG-TERM COMPLIANCE FOR BOD, TSS, TP (1981-1985) FOR THE LAKE ERIE DRAINAGE BASIN TABLE 13.

AVERAGE 985)	4	z · · · · · · · z · · · · · z · · · · ·
3 TERM AVE	TSS	z
LONG T	800	z z
	TP	z
1985	TSS	
	800	z
	TP	z · · · · · · z · · · · · · · · · · · ·
1984	TSS	z · · z · · · · · · · · · · · · · · · ·
	800	z · ·zz · ·z · · · · · · · · · · · · ·
	ТР	z ·z · · · · · · z · · · · · · · · · ·
1983	TSS	z
	800	z
	TP	z · · · · · · · · · · · · · · · · · · ·
1982	TSS	z
	800	Z
	ТР	2
1981	TSS	z · · · · · · · · · · · · · · · · · · ·
	800	z · ·z · · ·z · · · · · · · · · · · · ·
PLANT		Amherstburg WPCP Brantford WPCP Galt WPCP (Cambridge) Hespeler WPCP (Cambridge) Preston (Cambridge) Preston (Cambridge) Chatham WPCP Chatham WPCP Dunnville WPCP Guelph WPCP Leamington WPCP Kitchener WPCP Leamington WPCP Kitchener WPCP Corenway WPCP (London) Oxford WPCP (London) Oxford WPCP (London) Pottersburg WPCP (London) Pottersburg WPCP (London) Sarnia WPCP (London) Paris WPCP Simcoe WPCP Simcoe WPCP Stratford WPCP Stratford WPCP Stratford WPCP Wallaceburg WPCP Wallaceburg WPCP Waterloo WPCP Little R. WPCP (Windsor) Westerly WPCP (Windsor) Westerly WPCP (Windsor)

- Primary Plant
- No Chemicals Used for P Removal
- Not in Compliance
- In Compliance

* Compliance Based on MOE 1983 Effluent Criteria (Table 11).

	z
	MICH
	×
	20
	u
	2
	2
	ы
	3
	3
	П.
	7
	ž
	4
	픚
	4
	_
	5
	0
	×
	-
	~
ĸ	_
1	W
ø	X
ĺ	1
ø	
	H
l	-
ø	~
	8
Į	Ľ.
ı	
ı	1985)
-	98
	9
	7
Ĩ	<u> </u>
	30
ı	5
I	
ı	_
Ē	=
H	
	Ŝ
ı	ISS
ı	-
ı	
	9
F	8
	FOR
	F
ı	
ı	E.
	ž
ı	K
l	_
ı	<u>a</u>
ı	Ξ
١	2
١	
ا	2
ı	W
ı	-
ı	5
	Z
	0,
	QN.
	A
	7
	ANNUAL
	Z
	A
	OF
	7
	>
	A.R
	1MAR)
	N M
	S
	-
	14.
	~
	1.1
	ABLE
	18
	Z

Lui							_																								_	_								_					_		
AVERAGE 985)	TP	zz					z						z	z	2	•	•	• :	z	٠	٠				٠ ء	2	-	•	•	. 2	:		•		z				•		•	•		• :	z		•
TERM AVER (1981-1985)	TSS		, (Z	•						Z		•	•				٠				• 2					•	•	•	•			,				•							
LONG T	800						z							z																																	
7	TP					z					. ,		z	1				• ;	z :	z					. 2		. (z		z	: '									
1985	TSS								-				-	1																																	
1	800										. ,			1																																	
	TP	zz		-	-							z	z	2				. :					_		. 2	2 2	: :					- 2					z								_	• ;	z
1984	TSS							. •		_				z				. ;	z								. ,		•		_							, ,									
15	008	2 .			-		z							Z		-	. 2	2							_											-				_							
	TP B			_	_	_	_	_		C		8			_			_	_	_	_				_	_	_	_	_				_	_	_	_	_			_		_		_	_	_	
33	TSS	22	_					-	-			-	2	2					_						_											_										<u>.</u>	
1983			_	_		_	_	_							_		-	_	_		_	_	_	_		_	_	_	_	_	-	_		_	_		-			_				_		_	
	800	•	_	•	•		Z	_	-	_	•	_	-	2	_		_	•	•	•	•	_	_	•		_			•				_	•	_	•	•	•	_		•	-	_	_	•	•	•
	S TP	zz	٠	•	•	z	z	•	z			•	z	z	z		. 2	2 2	2	• :	z	•	z	•	Z	z	-	-	•	· z		-	•	۰	z	•	٠	•	•	_		• 2	2 2	ZZ	2	• =	2
1982	TSS		_	•	•	-	Z	•	•	•	•	•	•	z	•		•	•	•	•	٠	•	•		Z	_	_		•	• •	_	-	•	•	•	•	•	•	_		• =	E	•	• 2	=	. 2	2
	800		_	•		•	z		z	•				z			•	•		•		٠	•	•	Z	•					•			•	٠		•				• =	2	•	•		•	•
	TP	zz	z		•		z						z	z	z	z	:	• =	2			•	٠		z	1				· z		z			٠	z			•					. 2	=		
1981	TSS								z				z	z					•			•	•		z	,							•				٠					•	•	• 2	:		•
	800			•	•		z										•								Z	. 1								•										•		•	
PI ANT		e WPCP	Skyway WPCP (Burlington)	Bolton WPCP (Caledon)		PCP No. 1 X			Anger Ave. WPCP (Fort Erie) P	Baker Rd. WPCP (Grimsby)	Acton WPCP & Lagoon (Halton Hills)	Georgetown WPCP (Halton Hills)		MPCP P		TWP WPCP	Highland Creek UPCP (Motro Toronto)	Hombon UDCD (Motto Towarto)	(Motor Toronto)	Main Wrue (Metro loronto)	North Toronto WPCP (Metro Toronto)	CP	Clarkson WPCP (Mississauga)	Lakeview WPCP (Mississauga)	PCP	Port Darlington WPCP (Newcastle)	WPCP	WPCP (Niagara Falls) P		South West WPCP (Oakville)	le WPCP	ir. WPCP No. 1 (Oshawa)	r. WPCP No. 2 (Oshawa)	ugh WPCP	York Durham WPCP (Pickering)	CD	Seaway WPCP (Port Colborne)	WPCP	Prescott-Edwardsburg WPCP P	Port Dalhousie WPCP (St. Catharines)	Port Weller WPCP (St. Catherines)	PCP	979	Corbett Cr. WPCP (Whithy)	r. WPCP No. 1 (Whithy)	r. WPCP No .2 (Whithy)	(62,1111)
		Belleville WPCP Brockville WPCP	SKYWAY WP	Bolton WP	Campbellford WPCP	Cobourg WPCP No. 1	Cornwall WPCP	Dundas WPCP	Anger Ave	Baker Rd.	Acton WPC	Georgetow	Woodward	Iroquois WPCP	Kingston WPCP	Kingston TWP WPCP	Hiphland	Humbon Lib	Mada Mon	Main WPCP	North Tor	Milton WPCP	Clarkson	Lakeview	Napanee WPCP	Port Darl	Newmarket WPCP	Stamford	South Eas	South Wes	Orangeville WPCP	Harmony Cr.	Harmony Cr.	Peterborough WPCP	York Durh	Picton WPCP	Seaway WP	Port Hope WPCP	Prescott-	Port Dalh	Port Well	Trenton WPCP	Welland WPCP	Corbett	Prinale C	Pringle C	6

* Compliance Based on MOE 1983 Effluent Criteria (Table 11).

P - Primary Plant
X - No Chemicals Used for P Removal
N - Not in Compliance
. - In Compliance

TABLE 15. SUMMARY OF ANNUAL AND LONG-TERM COMPLIANCE FOR BOD, TSS, TP (1981-1985) FOR THE UPPER GREAT LAKES DRAINAGE BASIN

PLANT		1981			1982			1983			1984			1985		LONG (19	LONG TERM AVERAGE (1981-1985)	VERAGE 85)
	800	TSS	TP	800	155	TP	800	TSS	TP	800	TSS	TP	800	TSS	TP	800	TSS	ط
Barrie WPCP	·		z	z														ŀ
Bradford WPCP										•							•	
Collingwood WPCP	z	z	z	•			•		z			z			z	•		z
Esten Lake WPCP (Elliot Lake)	,	1	1	•			•					z			z			
Goderich WPCP P (until 1983)	•		z			z			z			Z					•	2
Hanover WPCP	٠	٠	z	٠												•		2
Huntsville WPCP					•						٠						, ,	
Midland WPCP	z	z	z								٠							2
North Bay WPCP			z		z	z		z	z			z			z		z	2
Orillia WPCP											٠							: •
Owen Sound WPCP P	•			٠	•	z			z							•		
Parry Sound WPCP	•	z	z															
Port Elgin WPCP X			z			z			z			2			z			2
Sault Ste. Marie WPCP XP	٠	٠	z	٠		z			z			z			z			z
Sturgeon Falls WPCP		٠						•									•	
Sudbury WPCP X	٠		z	٠		z		•	z			z			z		•	z
Thunder Bay WPCP P	•	٠	z			z	•		z			z			z		•	z
Hamner, Val-Caron, Val-Therese WPCP																		
(Valley East)	•		z			z	•		z			z						z
Mikkola WPCP (Walden) X	1	1	1			z		•	z			z			z		•	z
Walkerton WPCP		٠	z						z							•	•	z
Wasaga Beach WPCP X	,	ı	1	1	1	1	1	1	1	1	1	ı	1	1	ı			,

* Compliance Based on MOE 1983 Effluent Criteria (Table 11).

Primary Plant
 No Chemicals Used for P Removal
 Not in Compliance
 In Compliance

FIGURE 6 - ANNUAL COMPLIANCE SUMMARY FOR 96 PLANTS IN ONTARIO

TABLE 16. SUMMARY OF ANNUAL AND MONTHLY COMPLIANCE* FOR LAKE ERIE DRAINAGE BASIN (1984 & 1985)

Compliance	1984					1985	85		
P N N N 3/10 3/10 N N N 4 6 N N N 10 10 N N N 10 10 N N N 10 11 N N N 10 10 N N N 10 11 N N N N 10 11 N N N N N 10 11 N N N N N N N N N N N N N N N N N N N	MPLIANCE (i f	I ANCE	ANNUAL	L COMPLIANCE	ANCE	MONTHLY (Mo's in	1LY COMPLIANCE in Compliance	ANCE ance)
P N N N 3/10 3/10 3/10	TSS TP		TP	800	TSS	П	800	TSS	Д
MPCP (a) N N N 10 10 N N 10 10 N N 10 10 N N 10/11	z		0/10			z	4/11	5/11	2
(1) N N N N N N N N N N N N N		•	•	•			•		11
MPCP WPCP		11 10	10						•
MPCP (a) WPCP (b) WPCP (c) WPCP (4 6	7	z	z	•	22	22	S
MPCP (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (7) (8) (8) (9) (10) (11) (10) (11) (11) (11) (11) (12) (13) (14) (15) (16) (17) (17) (18) (18) (19) (19) (19) (19) (19) (19) (19) (19		7 111	•			•	6	10	10
WPCP (e) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d			•			•	•	10	7
WPCP (e) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d			6				•	•	•
WPCP (e) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d			10				11		•
MPCP (a) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d		6	•		•			7	•
MPCP (e) (f) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h			9		·	•	•	•	10
WPCP			10		•		•		6
MPCP			•	•	•		•		•
MPCP		•	8/10		٠		11	10	8
MPCP		•	10		٠	·	•		•
MPCP	•	•	8	•	•	•	•	•	10
MPCP		•	6			٠	•	•	•
WPCP			•		•	•	•	•	11
P 11 10/11 10/11 10/11			11	•	٠		•	•	11
P 11 10 10 11 10/1		•	10		٠		•		6
P			2		•	•	•		7
P			•				11		11
P P 10/11 10	/6	. 01/	٠	•	•	•			11
P P 10/11 10/11 10/11			11					•	•
Stratford WPCP Tillsonburg WPCP Wallaceburg WPCP Waterloo WPCP Waterlow WPCP (Windsor) Little R. WPCP (Windsor) P Westerly WPCP (Windsor) P	. N 10		5/11			Z		11	7
Tillsonburg WPCP Wallaceburg WPCP Waterloo WPCP Little R. WPCP (Windsor) Westerly WPCP (Windsor) P			•	•	•	•	11	. :	•
Wallaceburg WPCP Waterloo WPCP Little R. WPCP (Windsor) Westerly WPCP (Windsor) P			•		-		·		11
Waterloo WPCP Little R. WPCP (Windsor) Westerly WPCP (Windsor) P			10				11	•	8/9
Little R. WPCP (Windsor) Westerly WPCP (Windsor) P			8	•			•	•	11
Westerly WPCP (Windsor) P	z .		7				•		8
			11					•	10
Woodstock WPCP			10		•	z			6/11

* Compliance based on MOE 1983 Effluent Criteria (Table 11). P - Primary PlantX - No Chemicals Used for P Removal

	Company of the last of the las									The state of the s		
PLANT	ANNOAL	COMPL I ANCE	ANCE	(Mo's in		COMPLIANCE Compliance)	ANNOAL	COMPLIANCE	ANCE	(Mo's in	Y COMPLIANCE	IANCE
	008	TSS	TP	800	155	TP	800	TSS	TP	800	155	TP
	z		z	8	8	8		•		8		
Brockville WPCP			z	=		9:		•	٠			0 :
Caledon WPCP		• •		• •		1		• •				9/10
				•		10/11				٠		0
Cobourg WPCP No.1 x	• =	•		٠٥	• •	9°	• 12	•	z	11		o 4
	2 .			n •	3 .	0 ~	٠ .				==	0 0
Anger Ave. WPCP (Fort Erie) P				9/10	5/10	8/10		z		6	9	10
Baker Rd. WPCP (Grimsby)						10/11		٠		11	٠	•
Acton WPCP + Lagoon						9						-
George town UPCP (Halton Hills)		•	• 2	. =	•	27				•		=
		•	2	1						•		•
(Hamilton) X			z	10	6	4		٠	z	7	6	m
	z	Z	z	1/9	6/0	2/8	•	z	z	0/1	0/1	0/1
Kingston WPCP				0	01	000					11	01
Highland Cr. upCp						01				9/6	9/6	•
(Metro Toronto)	z			2	7	10				=	1	
Humber WPCP (Metro Toronto)		z	z		. 00	2			·z	•	::	. 9
Main WPCP (Metro Toronto)				6	•	80		۰	z	80	7	2
(Metro Toronto)				ì		0		ļ		:		01
Milton WPCP						n .	•		•	11		2
Clarkson WPCP (Mississauga)						11						.01
Lakeview WPCP (Mississauga)					11	10	٠				11	
Napanee WPCP		•	z:		11	7	٠		z	•		0
Stamford WPCP (Niagara Falls) P			z	//10	8/10	4/10	٠		•	.:		7/11
11e)						00	•			1	:	8/11
Oakvi						000					10/11	8/11
		•	• ;	٠	٠	. (•		
Harmony Cr. WPCP No.1 (Ushawa)			z z			0 4				9/6	4/6	4/6
			: •	.11		8/11	• •			0/4		7/11
York-Durham WPCP (Pickering)		•	٠	٠		8			z			7
Seaway WPCP (Port Colborne)			• 2	.=		11	٠			٠	• :	= '
Port Hope WPCP			: •	:		, .			2 3	•	7	
Prescott-Edwardsburgh WPCP P			٠	8	10	11					11	
Port Dalhousie WPCP											Ì	
Port Weller WPCP			•	٠						11		
(St. Catharines)				11							-	9
Trenton WPCP				• ;		11					===	
Corbett Cr. WPCP (Whithy)				0170	٠٠			٠				10
Pringle Cr. WPCP No.1 (Whitby)				0,10	10	n 0		•		10/11		. 5
Ingle Cr. WPCP No.2 (Whith)										2	2	

TABLE IV. SUMMANT OF ANNUAL AND MUNICIPLICATION LOS CONTAINS

* Compliance based on MOE 1983 Effluent Criteria (Table 11).

P - Primary Plant
X - No Chemicals Used for P Removal
N - Not in Compliance
- In Compliance

TABLE 18. SUMMARY OF ANNUAL AND MONTHLY COMPLIANCE* FOR UPPER GREAT LAKES DRAINAGE BASIN (1984 & 1985)

			1984	4					1985	35		
PLANT	ANNUAL	COMPLIANCE	ANCE	MONTHLY (Mo's in	LY COMPLIANCE in Compliance	(ANCE	ANNUAL	ANNUAL COMPLIANCE	ANCE	MONTHLY (Mo's in	LY COMPLIANCE in Compliance	I ANCE
	800	TSS	TP	800	TSS	TP	BOD	TSS	TP	800	TSS	₽
Barrie WPCP						8					•	
Bradford NPCP			•			•				•	•	•
Collingwood WPCP	•		z		10/11	3/11	•		z	•	11	2
Esten Lake WPCP (Elliot Lake)	•	•	z	•		9			z	10	•	4
Goderich WPCP	•	•	z	•	•	4	•			•	•	6
Hanover WPCP				•		8			•	11	•	6
Huntsville WPCP	•		•							•	•	5/7
Midland WPCP	•	•	٠	10/11		10/11				•	•	•
North Bay WPCP	•	•	z	10	7	10	•	z	z	6	m	0
Orillia WPCP	-		•	8/11						6	6	6
Owen Sound WPCP P	•	•	•	6	•	10		•	•		•	6
Parry Sound WPCP		٠	•			8	•			•	•	•
Port Elgin WPCP X	•		z	•		-		•	z	•	•	-
Sault Ste. Marie WPCP XP	•	•	z	•		0			z	•	•	0
Sturgeon Falls WPCP	•	•								•	•	
Sudbury WPCP	•	•	z	•		0			z		•	0
Thunder Bay WPCP P		•	z	11	9.	2			z	•	•	8
Hamner, Val-Caron, Val-Therese WPCP (Valley East)			z	2		7				Ç		
Mikkola WPCP (Walden) X		•	z		10	. 0			. z	2	• •	• 0
Walkerton WPCP		•		10		8				10	•	7
Wasaga Beach WPCP X	,	_1	ı	1	1	1	1	1	1	1	ı	1
P - Primary Plant			*	omplianc	e based	on MOE	Compliance based on MOE 1983 Effluent Criteria (Table 11)	uent Cr	teria	(Table 11		

- Primary Plant
- No Chemicals Used for P Removal
- Not in Compliance
- In Compliance

TABLE 19. NUMBER OF PLANTS IN ANNUAL AND MONTHLY COMPLIANCE WITH BOD5/TSS/TP REQUIREMENTS FOR 1984 AND 1985

	VTHLY*	TP	10 (32.3%)	17	6 (28.6%)	33 34.4%)
	I ANCE MO!	TSS	24 (77.4%)	24 (54.4%)	17 (81.0%)	65 (67.73)
5	IN COMPL	800 ₅ TSS TP 800 ₅ TSS TP 800 ₅ TSS TP 800 ₅ TSS TP	29 27 19 23 10 30 30 28 23 24 10 (93.5%) (87.1%) (61.3%) (74.2%) (32.3%) (96.8%) (96.8%) (96.8%) (90.3%) (74.2%) (77.4%) (32.3%)	40 42 36 26 24 17 (90.9x) (95.5x) (72.9x) (54.5x) (63.6x) (15.9x) (97.7x) (95.5x) (81.8x) (59.1x) (54.4x) (38.6x)	20 20 10 13 17 4 20 19 12 14 17 6 (95.2%) (95.2%) (95.2%) (95.2%) (90.5%) (57.1%) (66.7%) (81.0%) (28.6%)	77 90 69 57 63 65 33 (80.2%) (93.8%) (71.9%) (70.8%) (21.9%) (96.9%) (95.8%) (80.2%) (65.6%) (67.7%) (34.4%)
1985	INUALLY*	TP	28 (90.3%)	36 (81.8%)	12 (57.1%)	(80.2%)
	IANCE AN	TSS	30 (96.8%)	42 (95.5%)	19 (90.5%)	92 (95.8%)
	IN COMPL	8008	30 (96.8%)	43 (97.7%)	20 (95.2%)	93 (36.98)
	NTHLY*	TP	10 (32.3%)	(15.9%)	(19.0%)	(21.9%)
	IANCE MO	TSS	23 (74.2%)	28 (63.6%)	(81.0%)	68 (70.8%)
4	IN COMPL	8005	19 (61.3%)	24 (54.5%)	13 (61.9%)	57 (59.4%)
1984	INUALLY*	TP	27 (87.1%)	32 (72.9%)	10 (47.6%)	(71.9%)
	IANCE AN	TSS	29 (93.5%)	42 (95.5%)	20 (95.2%)	90 (93.8%)
	IN COMPL	8008	(87.1%)	40 (90.9%)	20 (95.2%)	(80.2%)
TOTAL NUMBER	0F	PLANTS	31 (100%)	44 (100%)	21 (100%)	96 (100%)
	BASIN		Lake Erie	Lake Ontario & St. Lawrence	Upper Great Lakes	TOTAL

* Compliance based on MOE 1983 Effluent Criteria (Table 11).

FIGURE 7 - COMPARISON OF BOD5 COMPLIANCE STATUS BASED ON ANNUAL AND MONTHLY ASSESSMENT FOR 1984 AND 1985

FIGURE 8 - COMPARISON OF TSS COMPLIANCE STATUS BASED ON ANNUAL AND MONTHLY ASSESSMENT FOR 1984 AND 1985

FIGURE 9 - COMPARISON OF TP COMPLIANCE STATUS BASED ON ANNUAL AND MONTHLY ASSESSMENT FOR 1984 AND 1985

significantly fewer plants in compliance when evaluated on a monthly average basis for all parameters. The largest difference was consistently for TP, with up to 50% (1984 total, Table 18) more plants being in compliance when evaluated on an annual average than on a monthly average basis. In the Lake Erie Basin, only one plant (Kitchener WPCP) was in compliance with the BOD5, TSS and TP effluent requirements for both 1984 and 1985 when compliance was assessed on a monthly average basis. In the Lake Ontario/St. Lawrence River Basin, only three plants (Milton, Orangeville and Port Hope) were in compliance with all requirements for both years based on monthly average effluent concentration. In the upper Great Lakes Basin, two plants (Bradford and Sturgeon Falls) were in this compliance category. Overall, 7 plants (6.3 percent of the total) were in compliance with all effluent quality requirements (BOD5, TSS, TP) for all months of 1984 and 1985.

Figures 10 to 12 present histograms showing the number of months during 1984 and 1985 that plants exceeded the effluent requirements for BOD5, TSS and TP, respectively. Approximately two-thirds of the 96 plants evaluated were consistently in compliance with the BOD5 and TSS requirements (zero months out-of-compliance) in 1984 and 1985. Of those that were out-of-compliance, the majority exceeded the effluent requirement for three months or less. Conversely, almost fifty percent of the plants were out-of-compliance with the TP requirement for between 1 and 6 months of 1984 and 1985 and more than ten percent of these plants exceeded the 1 mg/L effluent TP requirement for more than half of 1984 and 1985 (more than 6 months of each year).

Tables 20 to 22 present the average effluent concentration of BOD_5 , TSS and TP for each plant for those months that were not in compliance with the effluent requirement. With a few exceptions, the average effluent TP concentration during months not in compliance with the 1 mg/L requirement is in the range of 1.0 to 1.5 mg/L. Exceptions were generally primary treatment facilities and plants not adding chemicals to achieve phosphorus removal.

4.1.3 Plant Phosphorus Removal Status

Tables 23 to 28 summarize plant performance status for 1984 and 1985 on an individual basin basis (Lake Erie, Lake Ontario/St. Lawrence River, Upper Great Lakes). Plants in each basin have been grouped in categories based on the annual average effluent TP concentration achieved during

FIGURE 10 - MONTHLY BOD5 COMPLIANCE FOR 96 PLANTS IN ONTARIO

FIGURE 11 - MONTHLY TSS COMPLIANCE FOR 96 PLANTS IN ONTARIO

FIGURE 12 - MONTHLY TP COMPLIANCE FOR 96 PLANTS IN ONTARIO

TABLE 20. LAKE ERIE NON-COMPLIANCE AVERAGES FOR 1984 & 1985

	AVERAGE FOR MO'S 0 of C	3.98	1.05	1.04	1.57	1.50	1.36	1.37	2.53		1.20	1.53	1	1.47	1.10	1.22	1.30	1.10	1.15	1.21	1.29	1.13	1.52	1.38	1.55	1	1.45	1.23	1.34	1.91	1.13	
TP	# MO's 0 of C*	20	-	2	10	2	2	8	3	0	8	2	0	9	2	9	က	7	2	2	12	-		-	11	0	-	9	2	80	က	
	# MO's DATA	22	24	24	24	23	24	24	24	24	24	24	24	22	24	24	24	24	24	24	24	24	23	24	23	24	24	21	24	24	24	
	AVERAGE FOR MO'S 0 of C*	35.5	ı	27.4	38.6	48.7	28.3	1	47.3	30.0	•		-	43.9	•	•	1	,	ı		27.4	1	33.2	79.8	40.0	1	1	,	1	ı	26.0	
TSS	# MO's 0 of C*	6	0	2	12	8	3	0	2	8	0	0	0	m	0	0	0	0	0	0	-	0	5	2	2	0	0	0	0	0	-	
	# MO's	20	24	24	22	24	24	24	24	24	24	24	23	22	24	24	24	24	24	24	24	24	24	24	23	24	24	23	24	24	24	
	AVERAGE FOR MO'S O of C*	46.1	1	26.3	36.4	35.4	1		8.66	1	8.92	•	•	44.8	ı	ı		8	1	1	1	24.4	47.3	93.8	39.7	6.92	1	27.0	31.5	1	28.1	
8005	# MO's 0 of C*	13	0	-	14	80	0	0	m	0	-	0	0	1	0	0	0	0	0	0	0	2	18	2	-	2	0	1	2	0	7	
	# MO's DATA	21	24	23	22	24	24	24	24	24	24	24	23	22	24	24	24	24	24	24	24	24	21	24	23	24	24	24	24	24	24	
	1 1	a											ľ							-	1	۵									۵	
	PLANT	Amhurstburg WPCP	Brantford WPCP	Galt WPCP (Cambridge)	Hespeler WPCP (Cambridge)	Preston WPCP (Cambridge)	Chatham WPCP	Dresden WPCP	Dunnville WPCP	Fergus WPCP	Guelph WPCP	Ingersoll New WPCP	Kitchener WPCP	Leamington WPCP	Adelaide WPCP (London)	Greenway WPCP (London)	Oxford WPCP (London)	Pottersburg WPCP (London)	Vauxhall WPCP (London)	Belle River - Maidstone WPCP	Corunna P.V. Plant (Moore)	Paris WPCP	Sarnia WPCP	Simcoe WPCP	St. Thomas WPCP	Stratford WPCP	Tillsonburg WPCP	Wallaceburg WPCP	Waterloo WPCP	Little River WPCP (Windsor)	Westerly WPCP (Windsor)	

* Out of Compliance based on $800/TSS/TP = 25/25/1 \, mg/L$. P - Primary Plant

TABLE 21. LAKE ONTARIO/ST. LAWRENCE NON-COMPLIANCE AVERAGES FOR 1984 & 1985

PLANT		8005	_		TSS			TP	
·	# MO's DATA	·# MO's 0 of C*	AVERAGE FOR MO's O of C*	# MO's DATA	# MO's 0 of C*	AVERAGE FOR MO's O of C*	. # MO's · DATA	# MO's 0 of C*	AVERAGE FOR MO' O of C
Belleville WPCP P	24	9	42.8	24	4	38.3	24	4	1.56
Brockville WPCP	18	8	33.3	18	3	29.2	24	8	1.20
Skyway WPCP (Burlington)	23	0	-	23	0	-	24	2	1.48
Campbellford WPCP X	21	0	-	22	0	-	24	4	1.24
Cobourg WPCP No.1 X	23	1	31.1	23	0	-	22	5	3.13
Cornwall WPCP P	24	22	45.1	24	8	30.8	24	10	1.20
Dundas WPCP	24	0	-	24	1	30.0	24	7	1.19
Anger Ave. WPCP (Fort Erie) P	22	15	37.4	22	10	33.9	22	4	1.18
Baker Rd. WPCP (Grimsby)	22	1	26.0	22	0	_	24	1	1.04
Acton WPCP + Lagoon (Halton Hills)	23	0		23	0		24	2	1.34
Georgetown WPCP (Halton Hills)	24	1	27.0	24	0		24	5	1.75
Woodward Ave. WPCP X	24	7	35.3	24	6	34.5	24	17	1.49
Iroquois WPCP P	9	8	123.7	9	9	83.5	8	6	2.59
Kingston WPCP P	24	6	31.2	24	11	38.3	24	6	1.19
Kingston Twp. WPCP	18	2	28.5	18	2	28.0	18	2	1.18
Highland Creek WPCP	10	-	20.0	•		20.0	.0	-	1.10
(Metro Toronto)	24	11	36.1	24	6	31.7	24	2	1.10
Humber WPCP (Metro Toronto)	24	0	-	24	6	36.3	24	16	1.50
Main WPCP (Metro Toronto)	24	7	30.4	24	5	39.4	24	11	1.27
North Toronto WPCP									
(Metro Toronto)	24	1	26.0	24	0	-	24	5	1.13
Milton WPCP	22	0	-	22	0		20	0	-
Clarkson WPCP (Mississauga)	24	0	-	24	0	-	24	3	1.13
Lakeview WPCP (Mississauga)	24	0	-	24	3	27.0	24	2	1.17
Napanee WPCP	18	0	-	18	1	28.0	24	15	2.26
Port Darlington WPCP (Newcastle)	21	3	53.7	21	2	38.1	21	9	2.16
Stamford WPCP (Niagara Falls) P	24	17	42.6	24	15	30.9	24	1	1.07
South East WPCP (Oakville)	23	0	-	23	0	-	23	7	1.25
South West WPCP (Oakville)	23	0		23	2	26.3	23	7	1.49
Orangeville WPCP	24	0	-	24	0	-	24	0	
Harmony Creek WPCP No.1 (Oshawa)	18	1	60.0	18	2	41.4	24	7	1.45
Harmony Creek WPCP No.2 (Oshawa)	18	1	41.0	18	0	-	24	6	1.50
Peterborough WPCP	22	1	28.0	22	0		24	6	1.33
York-Durham WPCP (Pickering)	23	0		23	1	34.0	24	8	1.26
Picton WPCP	17	0		17	1	32.0	24	1	2.50
Port Colborne WPCP (Seaway)	24	1	33.7	24	3	33.5	24	13	1.57
Port Hope WPCP	23	0	-	23	0		23	0	
Prescott-Edwardsburgh WPCP P	24	3	29.3	24	9	37.9	24	1	1.20
Port Dalhousie WPCP (St. Catharines)	24	1	27.0	24	0	_	24	0	-
Port Weller WPCP (St. Catharines)	24	i	23.0	24	1	33.8	24	2	1.11
Trenton WPCP	24	0	-	24	i	26.0	24	1	1.20
Welland WPCP	22	1	25.5	22	0	20.0	24	2	1.10
Corbett Creek WPCP (Whitby)	21	3	66.7	23	3	35.7	24	3	1.21
Pringle Creek WPCP No.1 (Whitby)	23	4	71.4	23	4	36.8	24	5	1.51
Pringle Creek WPCP No.2 (Whitby)	23	5	70.0	23	6	31.8	23	,	1.01

^{*} Out of Compliance based on BOD/TSS/TP = 25/25/1 mg/L.

P - Primary Plant

X - No Chemicals Used for P Removal

UPPER GREAT LAKES NON-COMPLIANCE AVERAGES FOR 1984 & 1985 TABLE 22.

-NA G		B0D5			TSS			TP	
	# MO's DATA	# MO'S 0 of C*	AVERAGE FOR MO'S 0 of C*	# MO's DATA	# MO's 0 of C*	AVERAGE FOR MO'S 0 of C*	# MO's DATA	# M0's 0 of C*	AVERAGE FOR MO's
Barrie WPCP	24	0	•	24	1	33.0	23	4	1.28
Bradford WPCP	23	0	,	24	0	,	23	0	1
Collingwood WPCP	24	0	1	23	2	34.5	23	18	1.98
Esten Lake WPCP (Elliot Lake)	22	2	45.5	24	0	1	24	13	1.78
Goderich WPCP	24	0	ı	24	0	1	24	11	1.32
Hanover WPCP	24	-	29.5	24	0	'	24	7	1.20
Huntsville WPCP	15	0	1	19	-	43.1	19	2	1.81
Midland WPCP	22	1	43.8	22	0	0	22		1.12
North Bay WPCP	24	5	30.1	24	14	34.9	24	22	1.67
Orillia WPCP	19	9	38.5	20	3	47.2	50	n	1.54
Owen Sound WPCP	23	10	30.6	23	6	27.5	23	5	1.07
Parry Sound WPCP	24	0	1	24	0	ı	24	4	1.24
Port Elgin WPCP X	24	1	75.0	- 24	0	1	24	22	1.87
Sault Ste. Marie WPCP X P	24	24	83.2	24	24	6.09	24	24	4.42
Sturgeon Falls WPCP	24	0	1	24	0	1	22	0	1
Sudbury WPCP X	24	-	56.9	24	0	,	24	24	1.97
Thunder Bay WPCP P	24	23	54.3	24	22	36.1	24	14	1.40
Hamner, Val-Caron, Val-Therese									
WPCP (Valley East)	24	4	30.8	24	0	1	23	2	1.85
Mikkola WPCP (Walden) X	24	0	1	24	0	6.92	24	24	2.50
Walkerton WPCP	24	5	28.5	24	2	,	24	6	1.19

* Out of Compliance based on BOD/TSS/TP = 25/25/1 mg/L.

P - Primary Plant X - No Chemicals Used for P Removal

TABLE 23. SUMMATION OF PLANT PHOSPHORUS REMOVAL STATUS FOR 1984 LAKE ERIE DRAINAGE BASIN

PLANTS COMPLYING WITH MONTHLY AVERAGE	Brantford WPCP Preston WPCP (Cambridge) Chatham WPCP Fergus WPCP Ritchener WPCP Pottersburg WPCP (London) Paris WPCP Sarnia WPCP Stratford WPCP Tillsonburg WPCP	10	262.02 (33.0%)	187.31 (27.3%)	0.72
PLANTS NOT COMPLYING WITH ANNUAL AVERAGE	Amhurstburg WPCP Dunnville WPCP St. Thomas WPCP Little R. WPCP (Windsor)	4	84.32 (10.6%)	114.51 (16.7%)	1,36
PLANTS ACHIEVING TP > 1.25 mg/L	Amhurstburg WPCP	1	4.546 (0.06%)	19.09	4.20
PLANTS ACHIEVING 1.0 < TP < 1.25 mg/L	Dunnville WPCP St. Thomas WPCP Little R. WPCP (Windsor)	m	79.77 (10.0%)	95.42 (13.9%)	1.20
PLANT ACHIEVING 0.75 < TP <1.0 mg/L	Galt WPCP (Cambridge) Hespeler WPCP (Cambridge) Chatham WPCP Guelph WPCP Adelaide WPCP (London) Greenway WPCP (London) Oxford WPCP (London) Pottersburg WPCP (London) Vauxhall WPCP (London) Corunna P.V. Plant (Moore) Sarnia WPCP Simcoe WPCP Waterloo WPCP	14	420.79 (52.9%)	376.027 (54.6%)	0.00
PLANTS ACHIEVING 0.5 < TP < 0.75 mg/L	Brantford WPCP Cambridge) Crambridge) Dresden WPCP Fergus WPCP Kitchener WPCP Kitchener WPCP Maidstone WPCP Belle River- Maidstone WPCP Paris WPCP Stratford WPCP Wallaceburg WPCP Westerly WPCP (Windsor)	12	284.57 (35.8%)	196.31 (28.5%)	69.0
VING 19/L	S.	1	5.3	2.12 (0.3%)	0.40
PLANTS ACHIEVING TP < 0.5 mg/L	Tillsonburg WPCP	Number Of Plants	Total Flow 5.3 (10 ³ m ³ /day) (0.77%)	Total P Loading (kg/day) (100%)	Aggregate Average TP Concentration (mg/L)

TABLE 24. SUMMATION OF PLANT PHOSPHORUS REMOVAL STATUS FOR 1985 LAKE ERIE DRAINAGE BASIN

MPLYING Y AVERAGE	dge) (London)		9.3	.97	0.68
PLANTS COMPLYING WITH MONTHLY AVERAGE	Galt WPCP (Cambridge) Dresden WPCP Ergus WPCP Kitchener WPCP Adelaide WPCP (London) Oxford WPCP Simcoe WPCP Stratford WPCP	6	164.9	111.97	0
PLANTS NOT COMPLYING WITH ANNUAL AVERAGE	Amhurstburg WPCP Hespeler WPCP (Cambridge) St. Thomas WPCP Woodstock WPCP	4	52.89 (6.3%)	67.58 (10.1%)	1.28
PLANTS ACHIEVING TP > 1.25 mg/L	Amhurstburg WPCP Hespeler WPCP (Cambridge)	2	10.05	21.99	2.19
PLANTS ACHIEVING 1.0 < TP < 1.25 mg/L	Moodstock WPCP	2	42.84 (5.1%)	45.59 (6.8%)	1.06
PLANT ACHIEVING 0.75 < TP <1.0 mg/L	Brantford WPCP Galt WPCP (Cambridge) Preston WPCP (Cambridge) Chatham WPCP Guelph WPCP Ingersoll New WPCP Kitchener WPCP Leamington WPCP Adelaide WPCP (London) Greenway WPCP (London) Belle River-Maidstone WPCP Corunna P.V. Plant Sarnia WPCP (Tillsonburg WPCP Little R. WPCP (Windsor) Westerly WPCP (Windsor)	15	639.61 (76.4%)	520.22 (77.4%)	0.81
PLANTS ACHIEVING 0.5 < TP < 0.75 mg/L	Dunnville WPCP Fergus WPCP Oxford WPCP (London) Vauxhall WPCP (London) París WPCP Simcoe WPCP Waterloo WPCP	8	108.33	74.02 (11.0%)	0.68
EVING 9/L	a 0 d	ю	36.19 (4.3%)	10.38	0.29
PLANTS ACHIEVING TP < 0.5 mg/L	Dresden WPCP Stratford WPCP Wallaceburg WPCP	Number Of Plants	Total Flow 36.19 (4.3%) (4.3%)	Total P Loading (kg/day) (100%)	Aggregate Average TP Concentration (mg/L)

TABLE 25. SUMMATION OF PLANT PHOSPHORUS REMOVAL STATUS FOR 1984 LAKE ONTARIO/ST. LAWRENCE DRAINAGE BASIN

PLANTS COMPLYING WITH MONTHLY AVERAGE	Milton WPCP Orangeville WPCP Port Hope WPCP (St. Catharines) (St. Catharines) (St. Catharines) Welland WPCP	9	146.9	83.3	0.57
PLANTS NOT COMPLYING WITH ANNUAL AVERAGE	Belleville WPCP Brockville WPCP Georgetown WPCP (Halton Hills) Harmony Cr. 1 & 2 WPCP (Oshawa) Seaway WPCP (Port Colborne) Pringle Cr. WPCP No. 2 (Whitby) Woodward Ave. WPCP (Hamilton) Iroquois WPCP Humber WPCP (Metro Toronto) Napanee WPCP Napanee WPCP Not Darlington WPCP Napanes WPCP Not Darlington WPCP	12	822.51 (30.7%)	1080.11 (40.12)	1.31
PLANTS ACHIEVING TP > 1.25 mg/L	Woodward Ave. WPCP (Hamilton) Iroquois WPCP Humber WPCP (Metro Toronto) Napanee WPCP Port Darlington WPCP (Newcastle)	v,	678.71 (25.3%)	929.91	1.37
PLANTS ACHIEVING 1.0 < TP < 1.25 mg/L	Belleville WPCP Brockville WPCP Georgetown WPCP (Halton Hills) Harmony Cr. 1 & 2 (Oshawa) Seaway WPCP (Port Colborne) Pringle Cr. WPCP No.2 (Whitby)	7	143.8 (5.4%)	150.29	1.04
PLANT ACHIEVING 0.75 < TP <1.0 mg/L	Cornwall WPCP Anger Ave. WPCP(Fort Erie) Kingston WPCP Kingston TWP. WPCP Highland Cr. WPCP (Metro Toronto) North Toronto WPCP (Metro Toronto) Clarkson WPCP(Mississauga) Lakeview WPCP(Mississauga) Lakeview WPCP(Mississauga) South East. WPCP (Oakville) South Mest WPCP (Oakville) Peterborough WPCP (Pickering) Prescott-Edwardsburgh WPCP Corbett Cr. WPCP (Whitby) Pringle Cr. WPCP (Whitby)	17	1525.5 (57.0%)	1415.2 (52.6%)	0.93
PLANT ACHIEVING 0.5 < TP < 0.75 mg/L	Skyway WPCP (Burlington) Bolton WPCP(Caledon) Campbellford WPCP Cobourg WPCP Mo. 1 Baker Rd. WPCP (Grimsby) Acton WPCP & Lag. (Halton Hills) Stamford WPCP (Niagara Falls) Picton WPCP Port Hope WPCP Port Hope WPCP (St. Catharines) Trenton WPCP (St. Catharines) Trenton WPCP (St. Catharines)	13	312.52 (11.7%)	188.62 (7.0%)	09*0
EVING mg/L	a	2	17.25 (0.6%)	6.18	0.36
PLANTS ACHIEVING TP < 0.5 mg/L	Orangeville WPCP	Number of Plants	Total Flow 17.25 (10 ³ m³/day) (0.6%) (100%)	Total P Loading (kg/day) (100%)	Aggregate Average TP Concentration (mg/L)

TABLE 26. SUMMATION OF PLANT PHOSPHORUS REMOVAL STATUS FOR 1985 LAKE ONTARIO/ST. LAWRENCE ORAINAGE BASIN

PLANTS COMPLYING WITH MONTHLY AVERAGE	Belleville WPCP Acton WPCP (Halton Hills) Georgetown WPCP (Halton Hills) Kingston WPCP Highland Cr. (Metro Toronto) Milton WPCP Lakev'ew WPCP (Mississauga) Stamford WPCP (Mississauga) Stamford WPCP (Niagara Falls) Orangeville WPCP Pricton WPCP Prescott=Edwardsburg WPCP Port Dalhousie WPCP (St. Catharines) Trenton WPCP	15	676.7 (24.4%)	425.8 (16.5%)	0.63
PLANTS NOT COMPLYING WITH ANNUAL AVERAGE	Cobourg WPCP No. 1 Woodward Ave. WPCP (Hamilton) Humber WPCP (Metro Toronto) Main WPCP (Metro Toronto) Napanee WPCP York Durham WPCP (Pickering) Seaway WPCP (Port Colborne)	7	1548.10 (55.8%)	1727.59 (66.8%)	1.12
PLANTS ACHIEVING TP < 1.25 mg/L	Cobourg WPCP No. 1 Woodward Ave. WPCP (Hamilton)	2	316.28	413.88	1.31
PLANTS ACHIEVING 1.0 < TP < 1.25 mg/L	Humber WPCP (Metro Toronto) Main WPCP (Metro Toronto) Napanee WPCP York Durham WPCP (Pickering) Seaway WPCP (Port Colborne)	5	1229.82 (44.4%)	1313.71 (50.8%)	1.07
PLANT ACHIEVING 0.75 < TP <1.0 mg/L	Brockville WPCP Campbellford WPCP Cornwall WPCP Bundas WPCP Kingston WPCP Kingston TWP WPCP Highland Cr. WPCP Metro Toronto) North Toronto WPCP Clarkson WPCP (Metro Toronto) North Toronto WPCP (Metro Toronto) South East WPCP (Oakville) South West WPCP (Oakville) Peterborough WPCP (Oakville)	15	592.51 (21.4%)	491.65	0.83
PLANTS ACHIEVING 0.5 < TP < 0.75 mg/L	Skyway WPCP (Burlington) Brockville W Bolton WPCP (Caledon) Anger Ave. WPCP (Halton Hills) (Halton Hills) Stamford WPCP (Halton Hills) Stamford WPCP (Mississauga) Orangeville WPCP Harmony Cr. No. 1 WPCP (St. Catharines) Harmony Cr. No. 2 WPCP (Nississ (Oshawa) Harmony Cr. No. 2 WPCP (Mississ Oshawa) Ficton WPCP Port Hope WPCP Port Darling Harmony Cr. No. 2 WPCP (Mississ Oshawa) Ficton WPCP Port Darling Harmony Cr. No. 2 WPCP (Mississ Oshawa) Ficton WPCP Prescott-Edwardsburgh South Mest W WPCP Corbett Cr. WPCP (Whitby) (Oskvill) Welland WPCP Corbett Cr. WPCP (Oskvill) (Oskvill) Welland WPCP Corbett Cr. WPCP (Nitby) (Whitby) (Whitby)	14	466.85	295.87 (11.4%)	0.63
'ING	edon) 1's) P WPCP '(nes)	7	166.89	70.37	0.42
PLANTS ACHIEVING TP < 0.5 mg/L	Belleville WPCP Bolton WPCP (Caledon) Acton WPCP (Halton Hills) Milton WPCP Stamford WPCP (Niagara Falls) Orangeville WPCP Port Dalhousie WPCP (St. Catharines)	Number of Plants	Total Flow (103 m3/day) (100%)	Total P Loading (kg/day) ((100%)	Aggregate Average TP Concentration (mg/L)

TABLE 27. SUMMATION OF PLANT PHOSPHORUS REMOVAL STATUS FOR 1984 LAKE HURON DRAINAGE BASIN

PLANTS COMPLYING WITH MONTHLY AVERAGE	Bradford WPCP Huntsville WPCP Orillia WPCP Sturgeon Falls WPCP	,e	29.75 (10.57)	11.2 (2.6%)	0.35
PLANTS NOT COMPLYING WITH ANNUAL AVERAGE	Collingwood WPCP Eastern L. WPCP (Elliott Lake) Goderich WPCP North Bay WPCP Sault Ste. Marie WPCP Sudbury WPCP Thunder Bay WPCP Thunder Bay WPCP (Valley East) (Valley East) (Walden)	6	180.83 (64.2%)	352.11 (83.0%)	1.95
PLANTS ACHIEVING TP > 1.25 mg/L	Collingwood WPCP Esten Lake WPCP (Elliot Lake) North Bay WPCP Port Elgin WPCP Sault Ste. Marie WPCP Sudbury WPCP Thunder Bay WPCP Mikkola WPCP (Walden)	7	166.12 (59.0%)	335.73 (79.1%)	2.02
PLANT ACHIEVING PLANT ACHIEVING PLANTS ACHIEVING 0.5 < TP < 0.75 mg/L 0.75 < TP < 1.0 < TP < 1.25 mg/L	Goderich WPCP Hamner, Val-Caron, Val-Therese WPCP (Valley East)	2	14.71 (5.2%)	16.38 (3.9%)	11.11
PLANT ACHIEVING 0.75 < TP <1.0 mg/L	Barrie WPCP Bradford WPCP Hanover WPCP Owen Sound WPCP Parry Sound WPCP Walkerton WPCP	9	61.54 (21.9%)	. 55.81 (13.0%)	0.91
PLANT ACHIEVING 0.5 < TP < 0.75 mg/L	Midland WPCP	-1	9.29	5.17 (1.2%)	0.56
VING /L	WPCP	e e	29.75	11.20 (2.6%)	0.38
PLANTS ACHIEVING TP < 0.5 mg/L	Huntsville WPCP Orillia WPCP Sturgeon Falls WPCP	Number of Plants	Total Flow 29.75 (10 ³ m ³ /day) (10.6%)	Total P Loading (kg/day) (100%)	Aggregate Average TP Concentration (mg/L)

* Thunder Bay WPCP is not included in Basin Values at bottom since it discharges into Lake Superior Drainage Basin.

TABLE 28. SUMMATION OF PLANT PHOSPHORUS REMOVAL STATUS FOR 1985 LAKE HURON DRAINAGE BASIN

PLANTS NOT COMPLYING PLANTS COMPLYING WITH ANNUAL AVERAGE WITH MONTHLY AVERAGE	Barrie WPCP Bradford WPCP Midland WPCP Parry Sound WPCP Sturgeon Falls WPCP Hamner Etc. (Valley East)	7	(9.62)	32.37 (5.2%)	0.54
PLANTS NOT COMPLYING WITH ANNUAL AVERAGE	Collingwood WPCP Esten L. WPCP (Elliott Lake) North Bay WPCP Port Elgin WPCP Sault Ste. Marie WPCP Sudbury WPCP Mikkola WPCP (Walden)	7	178.45 (59.2%)	455.58 (84.19)	2.38
PLANTS ACHIEVING TP < 1.25 mg/L	Collingwood WPCP North Bay WPCP Port Elgin WPCP Sault Ste. Marie WPCP Sudbury WPCP Mikkola WPCP (Walden)	9	166.4	450.55 (83.2%)	2.53
PLANT ACHIEVING PLANT ACHIEVING PLANTS ACHIEVING PLANTS ACHIEVING PLANTS NOT COMPLYING 0.5 < TP < 0.75 mg/L 0.75 < TP < 1.0 < TP < 1.25 mg/L TP < 1.25 mg/L WITH ANNUAL AVERAGE	Esten L. WPCP (Elliot Lake)	1	12.05 (4.0%)	5.03	1.10
PLANT ACHIEVING 0.75 < TP <1.0 mg/L	Goderich WPCP Hanover WPCP Huntsville WPCP Orillia WPCP Owen Sound WPCP Thunder Bay WPCP* Walkerton WPCP	9	67.56 (22.4%)	56.96 (10.5%)	0.84
PLANT ACHIEVING 0.5 < TP < 0.75 mg/L	Barrie WPCP Midland WPCP Parry Sound WPCP Hamner Etc. WPCP (Valley East)	ਚ	46.54 (15.5%)	25.16 (4.6%)	0.54
VING /L	WPCP	2	8.68	3.56	0.41
PLANTS ACHIEVING TP < 0.5 mg/L	Bradford WPCP Sturgeon Falls WPCP Midland WPCP Parry Sound Hamner Etc. (Valley	Number of Plants	Total Flow 8.68 (10 ³ m ³ /day) (2.8%) (100%)	Total P Loading (kg/day) (100%)	Aggregate Average TP Concentration (mg/L)

* Thunder Bay.WPCP is not included in Basin Values at bottom since it discharges into Lake Superior Drainage Basin.

each year. Also included in these summary tables are the plants that <u>did not</u> <u>comply</u> with the annual average TP requirement and those that <u>complied</u> with the monthly average TP requirement.

From the plant status summaries, basin flows, loadings and aggregate average TP concentrations for each status group were calculated. These values show the contribution from each status group to the flows and phosphorus loadings to the drainage basin. For example, Table 23 shows that the plants in the Lake Erie drainage basin in 1984 that were not in compliance with respect to TP contributed 10.6% of the total basin flow and 16.7% of the total basin TP loading. In the Lake Ontario Basin, the 1984 (Table 24) flow contribution of plants not in compliance with the annual average TP requirement was 822.51 x 10^3 m³/d (30.7 percent of the total) and the TP loading from these plants was 1080 kg/d (40.1 percent of the total TP loading). In the Upper Great Lakes Basin, these plants in 1984 (Table 26) contributed 64 percent of the basin flow and 83 percent of the TP loading.

From the data presented in Tables 23 to 28, it is apparent that the overall impact on the total basin TP loading of bringing plants into compliance with the 1 mg/L effluent requirement is more strongly influenced by the size of out-of-compliance plants and the effluent concentration at these plants than by the number of plants out-of-compliance.

From the information in Tables 23 to 28, the ranges of annual average concentrations found for all plants that complied on a monthly average basis were observed. For both 1984 and 1985, about 30 percent of all plants that complied on a monthly basis had annual average concentrations less than 0.5 mg/L, 50 percent had concentrations between 0.5 and 0.75 mg/L nd 20 percent had concentrations greater than 0.75 mg/L. It can be noted that in order to achieve monthly compliance, the majority of plants had to maintain annual average concentrations less than 0.75 mg/L. However, some plants did achieve monthly compliance with higher annual averages (>0.75 mg/L). This suggests that with good plant operation and monitoring and low influent phosphorus and flow variability, higher annual average concentrations can be maintained, while complying on a monthly basis. These results cannot be validated because in 1984 and 1985 plants were not attempting to achieve monthly phosphorus compliance.

4.1.4 Effect of Sampling Frequency

Plants that sample more frequently may better be able to control their chemical usage and ultimately their average effluent phosphorus concentrations. To determine if sampling frequency has an effect on the annual average phosphorus concentration, the number of samples upon which effluent phosphorus averages were based in 1984 and 1985 were reviewed relative to the reported concentrations.

Figure 13 presents a histogram of the number of plants and the frequency that they were sampling in 1984 and 1985. It can be observed that about 24 plants (>24%) were not doing any effluent phosphorus sampling other than the required monthly (or bimonthly) analyses done at regional MOE laboratories. About 40 (>40%) of the plants were doing on-site analyses more than twice per week.

Figures 14 and 15 compare the number of effluent TP samples taken in 1984 and 1985 at each plant to the annual average effluent TP concentration. It can be observed that annual average effluent concentrations tend to deviate more from the ideal 1 mg/L when less than 50 samples (<1/wk) were taken. Where greater than 50 samples (>1/wk) were taken, there does not appear to be any trend of increased efficiency with an increased number of samples. A number of reasons for the lack of trends indicated by these plots can be suggested:

- Plants that are sampling regularly are not using the obtained results to adjust chemical dosages.
- Depending on the type of sample taken (grab or composite) and time
 of day, sample analysis may not be representative of the actual
 average TP concentration.
- Infrequent sampling (i.e. <1/wk) does not allow for a damping effect for high or low days due to rainfall, industry peaks and shutdowns (e.g. weekends).
- 4. On-site analytical methods may be inaccurate.

In summary, there was found to be little or no correlation between sampling frequency and annual average effluent phosphorus concentrations.

THE RESERVE THE PARTY OF THE PA

FIGURE 13 - SAMPLING FREQUENCIES FOR 96 PLANTS
IN ONTARIO

FIGURE 14 - SAMPLING FREQUENCY VS. 1984 ANNUAL AVERAGE EFFLUENT TP CONCENTRATION FOR 96 PLANTS IN ONTARIO

FIGURE 15 - SAMPLING FREQUENCY VS. 1985 ANNUAL AVERAGE EFFLUENT TP CONCENTRATION FOR 96 PLANTS IN ONTARIO

4.2 Plant Review

Information generated as a result of direct contact with the individual plants is summarized in Tables 29 to 31. Included in these summary tables are the 1984 and 1985 annual average effluent phosphorus concentrations, the number of months of TP compliance in these years, the chemical and dosage used for phosphorus removal and the reasons that were suggested for phosphorus removal performance. The most commonly suggested reasons for superior phosphorus removal performance were low clarifier surface loading, effluent polishing, polymer addition, and low influent P concentration. Reasons suggested most often for poor phosphorus removal performance included high clarifier surface loading, poor (or no) dosage control and low P removal chemical dosage. Due to the volume of information acquired from the 96 plants contacted in Phase 1, it is not considered practical to append this plant design and performance data.

Plants which were recommended for inclusion in the Phase 2 program were selected based on the performance and operating data acquired. Details of plant selection are discussed further in Section 7.0.

4.3 Summary of Key Findings

From the results of the historical data review, a number of key findings have been identified:

- i) There was a general improvement in the number of plants that complied with BOD5, TSS and TP effluent criteria from 1981 to 1985, indicating improved plant performance.
- ii) There were significantly more plants that did not comply with TP requirements than with BOD5 and TSS in all years.
- A comparison of an 'annual average' method to a 'monthly average' method of assessing compliance shows that a larger percentage of plants are not in compliance based on the monthly average criterion. The largest increase is associated with compliance with effluent TP requirements.
 - iv) Based on the 'annual average' method of measuring compliance, a total of 18 plants would require improvements in their phosphorus removal performance based on 1985 data. This compares to a total of 63 plants which would require improvements to meet the monthly average compliance requirements for total phosphorus.

TABLE 29. SUMMARY OF PLANT PHOSPHORUS REMOYAL PERFORMANCE AND METHODS FOR LAKE ERIE ORAINAGE BASIN

	EFFLUENT TP	AVERAGE FLUENT TP	NUMBER OF MONTHS	- O- S-		DOSAGE		METAL : TP	٩		COMMENTS		
PLANT	(mg/L)	2	TP > 1 mg/L	1/6m	CHEMICAL USED	mg Metal/L	7	MOLAR RATIO	WTIO	RANK - MOST IMPORTANT			
	1984	1985	1984	1985	P-REMOVAL	1984	1985	1984	1985 1.		2.	ñ	
Amherstburg WPCP	4.2	3.25	10/10	10	FeCl3	8.1					Operator problems	Higher than avg. chemical required	10
Brantford WPCP	0.74	0.75	0	- (FeC12	4.6							_
Dalt while (Lamoridge)	50.0	20.00	7	<u>-</u>	rec13	2.1			_				_
Hespeler WPCP (Cambridge)	0.92	1.27	•	- : : :	FeC13/FeC13 50/50	7.5	7:		-	-	Poor dosage control	Poor sludge settleability	_
Chatham MPCP	0.78	0.00		19	Fec. 3	10.8	_	0.42:10	0.28:1	Effluent polithing ponds	Good Studge settleability	Good dosage control	_
Dresden WPCP	0.55	0.39	m	0	Alum (-'85) Poly Alum	3.9		_		guip	High chemical dosage	Separate sewers	
0000	,	09 0	•		Chloride ('86)	,		- 00					_
Ferons WPCP	1.02		n c	-	2	0.7	6:3	0.39:1 0.30:1		Low clarifier surface loading	Good sludge settleability	Bypassing during peak infiltration	=
Guelph WPCP	96.0	0.82	9	. ~	Alum	6.5	6.5	1.14:1 1.16:1		Effluent filtration	High chemical docade	Constitute alant contaction	-
Ingersoll New WPCP	0.52	0.81	~	~	FeCla	0.9		0.44:1 0.59:		Poor dosage control	Infiltration/inflow	2012 2012 2012 2012	_
Kitchener WPCP	69.0	0.76	0	0	Fe504	7.7	_	0.6:1		Good dosage control	Low clarifier surface loading	Superior plant operation	
Leamington WPCP	0.58	0.93	2	4	FeCl3	4.4	_	-					-
Adelaide WPCP (London)	0.93	98.0	2	0	Fec12	:	0.6	-	0.63:1				_
Greenway WPCP (London)	0.93	0.78	4	7	FeC12	;	3.24	:	0.3:1				_
Oxford WPCP (London)	0.88	0.74	m	0	FeC12	;	17.7	-	1.3:1	High chemical dosage	Low clarifier surface loading		_
Pottersburg WPCP (London)	0.85	0.65	0	-	FeC12	;	6.1	;	0.65:1	Industrial waste factors	Low clarifier surface loading	High chemical dosage	-
Vauxhall WPCP (London)	0.79	0.62	-	-	Line	8 2	45.0	;	_	Industrial waste factors	Low clarifier surface loading		_
Belle River-Maidstone WPCP	0.62	0.8	~ ~	m 1	Alum	3.05	2.26	2.26 1.27:1 0.82:1	_	Low clarifier surface loading	Low influent P concentration		
Corunna F. v. Flant (Poore)	20.00	20.0	- (٥.	Alum	7.32	6/./	⊸	_	Low clarifier surface loading	No industrial waste factors		_
Saruta MCD	20.00	0.00	-	٦.	Fell3	27.0	24.0	2.1:1		Unly 35% design capacity	High chemical dosage		
Sincoe WPCP	0.70	22.0	· -	٠, ٥	FeC13/ FOLISMEN IN SUMMER	10.01	_	1	1:67:0	Con clarifier surface loading	Polymer addition		
St. Thomas WPCP	1 20	1.12	6/11	· ·	Alum	2.4	_			Color of charactel addition	Low clarifier surface loading	Low peak flow/variable pump speeds	v
Stratford WPCP	0.56	0.23			Alum/Fec1.		_	7.71		Sefficion dellemental accircion	Complex plant operation	Low P removal chemical dosage	
Ifilsonburg WPCP	0.40	0.78	. 0	, -	Alum	4		86.1	_	or clarifier surface loading	High chemical dosage	Const. of the const. of the const.	
Wallaceburg WPCP	0.67	0.45	7	1/9	Fecla		0.5	1.24:10.74:1		High chemical docade	Good of set control	cood sindge settleability	
Waterloo WPCP	96.0	0.74	7	-	FeClo		6.2	0.44:10	_	Low clarifier surface loading	Good dosage control	Good sludge settleshillto	
Little R. WPCP (Windsor)	1.22	0.81	2	4	AICI3	7.8	9.9	1.6:1		Adequate chemical dosage	Satisfactory plant performance	_	
Westerly WPCP (Windsor)	0.73	0.85	-		FeC13 ('84) Alum ('85)		3.3	1.7:1		Presently using AICl3 (1986)	Adequate chemical dosage	Good plant operation	_
MOODS TOCK WPCP	0.95	1.02	~	E/11	64612	70 7		0 000					_

TABLE 30. SUMMARY OF PLANT PHOS HORUS REMOVAL PERFORMANCE AND METHODS FOR LAKE ONTARIO DRAINGAGE BASIN

EFFLUENT TP MONTHS (mg/L) TP > 1 mg/L
1984 1985 P-REMOVAL
0 FeCl3/FeCl2 3 FeCl3
1 1 FeCl3
2 3/10 No chemicals
6 Alum/polymer
2 FeCly
1/11 0 FeSO4
5 0 Fects
6 9 No chemicals
2 0 FeCl3
1 Alum
6 FeCl2
0/10 0/10 Alum
9 99
6/10 3/11 Alum
_
4/11 FeC13
_
3/11 resug
_
0/11 Alum
o Fects
2 FeC12
2 Alum
S Alum

TABLE 31. SUMMARY OF PLANT PHOSPHORUS REMOYAL PERFORMANCE AND METHOUS FOR UPPER GREAT LAKES ORAINAGE BASIN

				gulp	s		_				gulpe			_		-										
		3.		Low clarifier surface loading	Sludge management problem				Superior plant operation		Low clarifier surface loading	Construction	Industrial waste factors		Good dosage control			Superior plant operation							Superior plant operation	
COMMENTS		2.	Low clarifier surface loading	Polymer addition	High influent P concentration			Infiltration/inflow	Good dosage control		High chemical dosage	Poor dosage control	High chemical dosage		Good sludge settleability			Low influent P concentration							Good dosage control	
	RANK - MOST IMPORTANT	1.	0.68:1 0.58:1 Superior plant operation	0.83:1 1.1:1 Effluent filtration	0.38:1 0.39:1 High clarifier surface loading High influent P concentration Sludge management problems			0.5:1 High clarifier surface loading Infiltration/inflow	4.2 0.82:1 0.60:1 Low clarifier surface loading Good dosage control		0.82:1 0.64:1 Low influent P concentration	0.76:1 1.2:1 Infiltration/inflow	2.1:1 1.13:1 Low influent P concentration	1.05:1 0.9:1 Adequate chemical dosage	0.53:1 0.82:1 Low clarifier surface loading	No chemicals added	No chemicals added	0.62:1 0.63:1 No industrial wastes	No chemicals added	15.8 2.5:1 2.5:1 High clarifier surface loading			No chemicals added		0.4:1 Low clarifier surface loading Good dosage control	Me observed and address.
47.	0	1985	1.85.0	1:1:1	0.39:1			0.5:1	0.60:1		0.64:1	1.2.1	1.13:1	0.9:1	0.82:1	:		0.63:1	:	2.5:1		0.89:1	:		0.4:1	
MF TAI - TD	RATIO	1984	1:89.1	.83:1	.38:1			:	1:28.		1:28.	1:97.	1:1:	1:50.	.53:1	;	;	1:29.	;	1:5:1		1:1	;		;	
La	 	1985	5.0	6.7	3.8			1.89	4.2	_	5.1	20	3.1	7.9	4.5	1 1	:	3.9	1	15.8		8.4	:		6.7	
DOSAGE mg Metal/L		1984	0.3	6.3	5.9			:	9.4	_	7.3	20	3.9	8.0	3.8	;	:	3.3	;	17.3	_	10.3	;		:	
	CHEMICAL USED	/AL	Alum	Alum	Alum		Alum	Alum	Alum	Alum	FeC13	FeC13/FeC12 50/50	Alum	FeC13	FeC13	Installed in 1986	No chemicals used	FeC12/FeC13 50/50	Installed in 1986	FeCl3		FeC12/FeC13 50/50	No chemicals used	Alum (to 1985)	FeCl ₃ (1985-)	
R 0F	mg/L	1985	0	0	10		7	e	6	2/1	0	12	9	9	0	==	12	0/10	12	4		0	12	LC1		
NUMBER OF MONTHS	TP > 1 mg/L	1984	4	0	8/11		9	80	4	0	1/11	10	0	2	2	11	12	0	12	01		2	12	*		
NGE IT TP	:	1985	0.50	0.41	1.89		1.10	06.0	0.87	97.0	0.57	1.67	0 58	0.85	0.53	1.45	4.01	0.41	2.07	0.94		99.0	2.56	0.94		
AVERAGE FFFI IIFNT TP	(mg/L)	1984	96.0	0.87	1.53		1.35	1.13	0.88	0.32	0.57	1.49	0.40	0.83	0.79	1.87	4.74	0.32	1.82	1.25		1.11	2.34	96.0		
	PLANT		Barrie WPCP	Bradford WPCP	Collingwood WPCP	Esten Lake, WPCP	(Elliot Lake)	Goderich WPCP	Hanover WPCP	Huntsville WPCP	Midland WPCP	North Bay WPCP	Orillia WPCP	Owen Sound WPCP	Parry Sound WPCP	Port Elgin WPCP	Sault Ste. Marie WPCP	Sturgeon Fails WPCP	Sudbury WPCP	Thunder Bay WPCP	Hamner, Val-Caron, Val-	Therese WPCP (Valley East)	Mikkola WPCP (Walden)	Welkerton WPCP		Danch Danch Unch

5.0 LOADINGS TO THE GREAT LAKES BASINS

Total flows from municipal treatment facilities larger than 4546 m³/d, total phosphorus loadings and aggregate average phosphorus concentrations were calculated for 1981 to 1985 for each drainage basin (Lake Erie, Lake Ontario, Lake Huron and Lake Superior) using the methodologies described in Section 3.3. Individual plant loadings for 1984 and 1985 are shown in Tables Al to A3, Appendix A. Table 32 summarizes these parameters for all basins for 1981 to 1985. Based on the historical data, flows and phosphorus loadings to each basin were projected for 1986 to 1990. As described in Section 3.3, flow projections were based on linear regession of the historical flow data for each basin for the time period 1981 to 1985, and were compared to the total basin WPCP design flow capacity. As basin flows increase, the corresponding increase in hydraulic loading at individual plants may cause deterioration in phosphorus removal efficiencies. Evaluation of the present and projected flows that will exceed individual plant design capacity gives an indication of when effluent phosphorus quality will begin to deteriorate at individual plants if design capacities are not increased. The total basin phosphorus loadings from 1986 to 1990 were calculated based on the projected flows to each basin assuming 1985 effluent quality is maintained. The limitation of this assumption should be noted. The probable impact of increased flows on plant capability to maintain the present (1985) level of treatment, and resulting effect on total basin loadings, was not considered.

5.1 Lake Erie Basin

Actual and projected flows from treatment plants under consideration in the Lake Erie Basin are presented in Figure 16. Based on linear regression, the flow to Lake Erie from these plants has increased at an average rate of 2.5 percent per year for the period from 1981 to 1985. In 1985, 18.0 percent of the total basin flows were from 4 plants which had exceeded design capacity. This is predicted to increase to 39.9 percent in 1990, as a result of 11 plants exceeding design capacity. The total basin WPCP design flow capacity will be exceeded in 1991 if no expansions occur in the meantime.

The total phosphorus loading over the period from 1981 to 1985 has averaged 239.3 tonnes per year, with no apparent trend as indicated in Figure 17. The annual loading increase projected based on 1985 effluent quality and a 2.5 percent per year flow increase is also shown in Figure 17.

TABLE 32. SUMMARY OF BASIN FLOWS, PHOSPHORUS LOADINGS, AND AGGREGATE AVERAGE PHOSPHORUS CONCENTRATIONS

	1985	841.37 247.07 0.80	2795.14 950.06 0.93	302.69 189.88 1.72	113.95 38.95 0.94
	1984	772.03 222.55 0.79	2687.59 979.08 1.00	281.65 183.60 1.79	104.23 47.64 1.25
YEAR	1983	761.96 246.85 0.89	2702.66 949.45 0.96	272.54 163.05 1.64	100.61 55.23 1.50
	1982	741.95 250.74 0.93	2653.95 1026.61 1.06	272.46 152.03 1.53	96.83 109.56 3.10
	1981	701.65 229.42 0.90	2584.09 1071.69 1.14	260.80 211.14 2.22	81.74 93.68 3.14
	PARAMETER	Flow (1000 m ³ /d) Loading (tonnes/yr) Agg. Avg. TP (mg/L)	Flow (1000 m ³ /d) TP Loading (tonnes/yr) Agg. Avg. TP (mg/L)	Flow (1000 m³/d) TP Loading (tonnes/yr) Agg. Avg. TP (mg/L)	Flow (1000 m³/d) TP Loading (tonnes/yr) Agg. Avg. TP (mg/L)
	BASIN	LAKE ERIE	LAKE ONTARIO/ ST. LAWRENCE	LAKE HURON	LAKE SUPERIOR

FIGURE 16 - LAKE ERIE DRAINAGE BASIN - TOTAL FLOW VS. TIME

FIGURE 17 - LAKE ERIE DRAINAGE BASIN - TOTAL PHOSPHORUS LOADING VS. TIME

FIGURE 18 - LAKE ERIE DRAINAGE BASIN - AGGREGATE AVERAGE TP CONCENTRATION VS. TIME

The aggregate average TP concentration in treatment plants discharging to the Lake Erie Basin has shown a decreasing trend over the period from 1981 to 1985 as shown in Figure 18. The aggregate average concentration in 1984 and 1985 was approximately 0.8 mg/L, twenty percent lower than the IJC objective of 1.0 mg/L. The aggregate average concentration for the past five years has never exceeded 0.93 mg/L.

5.2 Lake Ontario/St. Lawrence River Basin

Total flows from municipal treatment plants in the Lake Ontario/St. Lawrence River Basin have increased at a rate of approximately 1.7 percent per year over the period from 1981 to 1985, as shown in Figure 19 and are projected to exceed basin design flow capacity in 1997. In 1985, 12.4 percent of the total basin flows were from 8 plants that had exceeded design capacity. If no plant expansions occur, this would increase to 28 percent of flows, from 11 plants in the basin.

Unlike the situation in the Lake Erie Basin, there has been a declining trend in the total phosphorus loading to the Lake Ontario/St. Lawrence River Basin, as shown in Figure 20, from a total loading in excess of 1000 tonnes/year to approximately 950 tonnes/year over the five-year period. Based on projected flow increases and 1985 performance, the total loadings are projected to exceed 1000 tonnes/year again by 1989.

Municipal treatment plants in the Lake Ontario/St. Lawrence River have shown the same trend toward better phosphorus removal performance over the time period from 1981 to 1985 as plants in the Lake Erie basin. As shown in Figure 21, the aggregate average TP concentration has declined from 1.14 mg/L in 1981 to 0.93 mg/L in 1985.

5.3 <u>Lake Huron Basin</u>

Flows from municipal treatment facilities in the Lake Huron Basin have increased at an average rate of 3.2 percent per year, as shown in Figure 22 and are projected to exceed total WPCP design flow capacity in 1986. In 1985, 23.3 percent of the total basin flows were from 4 plants that had exceeded design flow capacity. This is predicted to increase to 64.0 percent, from 9 plants if expansions do not occur at any WPCP.

As shown in Figure 23, there was a major decrease in the TP loading to the Lake Huron Basin between 1981 and 1982 as plants began practising

FIGURE 19 - LAKE ONTARIO DRAINAGE BASIN - TOTAL FLOW VS. TIME

FIGURE 20 - LAKE ONTARIO DRAINAGE BASIN - TOTAL PHOSPHORUS LOADING VS. TIME

FIGURE 21 - LAKE ONTARIO DRAINAGE BASIN - AGGREGATE AVERAGE TP CONCENTRATION VS. TIME

FIGURE 22 - LAKE HURON DRAINAGE BASIN - TOTAL FLOW VS. TIME

FIGURE 23 - LAKE HURON DRAINAGE BASIN - TOTAL PHOSPHORUS LOADING VS. TIME

FIGURE 24 - LAKE HURON DRAINAGE BASIN - AGGREGATE AYERAGE TP CONCENTRATION VS. TIME

phosphorus removal. Since that time, the basin TP loading has progressively increased. This increase is related to the increased flow from plants discharging to the Lake Huron Basin and to an increase in the aggregate average TP concentration from 1982 to 1985. As shown in Figure 24, there was a significant reduction in the aggregate average TP concentration in 1982 compared to 1981 as phosphorus removal systems were implemented. However, there were four plants (Port Elgin WPCP, Sault Ste. Marie WPCP, Sudbury WPCP and Walden WPCP) that had not implemented phosphorus removal by the end of 1985. As a result, the aggregate average TP concentration in the effluents from plants in the Lake Huron Basin has consistently exceeded 1 mg/L. It should be noted that Wasaga Beach WPCP, which is classified as an exfiltration plant, has not been included in the analysis of Lake Huron Basin loadings.

5.4 Lake Superior Basin

The Thunder Bay WPCP is the only plant greater than 4546 m³/day (1 MGD) discharging into the Lake Superior drainage basin. It has shown an increasing trend in flow of about 6.7 percent per year (Figure 25) and exceeded design flow capacity by 4 percent in 1985. The flows to an individual plant are more sensitive to population changes and industry than average flows from a number of plants. It should therefore be noted that the validity of the projected flows and loadings is limited because these factors were not considered. A definite decrease in basin loading was observed in 1983 (Figure 26) due to implementation of phosphous removal processes at the Thunder Bay WPCP. Performance of the phosphorus removal system at Thunder Bay have progressively improved since implementation. In 1985, effluent quality was better than 1 mg/L TP as shown in Figure 27.

5.5 Summary

There has been a general trend toward improved phosphorus removal process performance in all Great Lakes basins over the time period from 1981 to 1985, with the exception of the Lake Huron Basin. In 1985, the aggregate average phosphorus concentration from plants larger than 4546 $\rm m^3/d$ discharging to Lake Erie, Lake Ontario/St. Lawrence River and Lake Superior was less than 1 $\rm mg/L$. The aggregate average concentration in the Lake Huron Basin exceeded 1 $\rm mg/L$ because four plants had not, by the end of 1985, implemented phosphorus removal.

FIGURE 25 - LAKE SUPERIOR DRAINAGE BASIN - TOTAL FLOW VS. TIME

FIGURE 26 - LAKE SUPERIOR DRAINAGE BASIN - TOTAL PHOSPHORUS LOADING VS. TIME

FIGURE 27 - LAKE SUPERIOR DRAINAGE BASIN - AGGREGATE AVERAGE TP CONCENTRATION VS. TIME

Despite a linear increase in flow in all receiving basins over the time period from 1981 to 1985, the total phosphorus loadings to the Great Lakes decreased from 1606 tonnes/yr to 1426 tonnes/yr, a decline of approximately 11 percent. Plants in the Lake Ontario/St. Lawrence River Basin accomplished the largest reduction over this time period (121 tonnes/year). However, it should be noted that this improvement in basin phosphorus loadings may not be maintained as more plants near hydraulic capacity. More specifically, in 1985, a total of 16 plants (16.7 percent) that had exceeded their design capacity, contributed to 20.0 percent of the total flows to all basins. This is predicted to increase to 31 plants (32.3 percent) contributing to 38.9 percent of the total flows in 1990.

6.0 PHOSPHORUS MANAGEMENT STRATEGIES

Four phosphorus management strategies that would decrease the total phosphorus loading to the Lake Erie and Lake Ontario/St. Lawrence drainage basins were considered. Scenario O represented those loadings actually experienced in 1984 and 1985.

In Scenario 1, all plants would comply with annual average effluent phosphorus concentration of 1 mg/L or less. If plants have site specific requirement less than 1 mg/L, these would be met. In Scenario 2, all plants would comply with a monthly average effluent phosphorus requirement of 1 mg/L or less for all months. Again, more stringent site specific requirements would be met. In Scenario 3, large plants would comply with a more stringent monthly effluent requirement of 0.9 mg TP/L or less while the remaining plants would meet the 1 mg TP/L monthly requirement or their site specific requirement. For the Lake Erie Drainage basin, "large" plants would include those with design capacities greater than 100,000 m³/d (Kitchener WPCP, Greenway WPCP and Westerly WPCP), comprising 39 percent of the total basin design flow capacity. For the Lake Ontario drainage basin, plants with greater than 200,000 m³/d design capacity (Woodward Ave. WPCP, Highland Creek WPCP, Humber WPCP, Main WPCP, Lakeview WPCP and York-Durham WPCP), comprising 68 percent of the total basin design flow capacity would be considered as large plants. In Scenario 4, all plants would achieve monthly average effluent phosphorus concentrations of 0.9 mg/L for all months. Site specific requirements would also be met.

The stated scenarios were evaluated as described in Section 3.4.1 with respect to their effects on phosphorus loadings to the individual receiving basins (Lake Erie and Lake Ontario/St. Lawrence River). In the evaluation, actual 1984 and 1985 data were utilized. If a particular plant already met the requirements of the Scenario being evaluated, its performance was not downgraded. More specifically, only those modifications necessary to bring a plant into compliance for the Scenario were made. The "base" loading was defined as the actual 1983 total basin phosphorus loading. Basin loadings increased in 1986 to 1990 in proportion to the projected increases in basin flows (see Section 5.0).

6.1 Effect on Basin Loadings

Based on the 1984 and 1985 performance data, total phosphorus loadings from each plant were calculated for each scenario using the methods described in Section 3.4.1. The loadings from the individual plants are presented in Tables B-1 to B-8, Appendix B. A summation of plant loadings and flows for each basin for each scenario allowed calculation of total basin loadings for each management strategy. The basin loading reduction attributable to each scenario in each year was calculated by taking the difference between the calculated basin loading and the "base load" (actual 1983 load).

The actual, hypothetical and projected loadings and loading reductions for the Lake Erie Drainage basin are shown in Table 33 and Figure 28. Since most plants in this basin have consistently performed well, as indicated by aggregate average phosphorus concentrations of less than the compliance limit of 1 mg/L, only a 37.7 tonne/year (18 percent) loading reduction can be achieved in the most severe case (Scenario 4). As indicated in Figure 28, the "base load" to the Lake Erie Basin would be exceeded in 1986 if Scenario 1 was implemented as a phosphorus management approach strategy. The most severe management approach (Scenario 4) maintains the total phosphorus load to Lake Erie at levels below the "base load" until almost 1989.

The actual, hypothetical and projected loadings and loading reductions for each scenario for the Lake Ontario drainage basin are shown in Table 34 and Figure 29. In 1985, a loading reduction of 87.6 tonnes per year would have been realized if each plant had complied with the existing MOE effluent requirements (Scenario 1). If compliance were evaluated using monthly averages of 1 mg/L and each plant complied (Scenario 2), this reduction would have increased to 134.2 tonnes/year. Since there are two large plants that did not comply in 1985 (Woodward Ave. WPCP and Humber WPCP), bringing these plants into compliance to a limit of 0.9 mg/L (Scenario 3) caused an even more significant loading reduction to 160.4 tonnes/year. Scenario 4 caused only a small decrease in loading compared to Scenario 3.

As shown in Figure 29, the "base load" to the Lake Ontario/St. Lawrence River Basin would not be exceeded until 1990 if all plants complied with the existing annual average discharge requirement of 1 mg/L TP. Imposition of a monthly average compliance requirement (Scenario 2) extends this time period until 1995. Imposition of more stringent (0.9 mg/L) effluent concentration limits, on a selected (Scenario 3) or across-the-board basis (Scenario 4), extends the time period to 1998 and 1999, respectively.

COMPARISON OF PHOSPHORUS MANAGEMENT STRATEGIES - EFFECT OF TP LOADING REDUCTION TO LAKE ERIE DRAINAGE BASIN TABLE 33.

Agregate ion)	1990	980.94	288.05	277.19	263.52	260.75	256.31 (-9.46)
DINGS ind 1985 A	1989	949.90	278.94 288.05 (-32.09) (-41.20)	268.42	255.19 (-8.34)	252.50 (-5.65)	248.20 (-1.35)
PROJECTED TP LOADINGS (Based on Projected Flows and 1985 Aggregate Average Effluent TP Concentration)	1988	918.87	269.83	250.88 259.65 (4.03) (-12.88)	246.85	244.25 (2.6)	240.09
PROJECT Projecte age Efflu	1987	887.84	251.60 260.72 (-4.75) (-13.87)	250.88 (4.03)	238.51 (8.34)	236.00 (10.85)	231.98 (14.87)
(Based on Aver	1986	856.81	251.60	242.11 (4.74)	230.18 (16.67)	227.75 (19.10)	223.87 (22.98)
es/yr) FLOW &	1985	841.37	247.07	237.75	226.03 (20.82)	223.65 (23.20)	219.84 (27.01)
HYPOTHETICAL TP LOADINGS (tonnes/yr) (BASED ON ACTUAL FLOW & TP DATA)	1984	772.03	240.16 (6.69)	225.90 (20.95)	215.19 (31.69)	213.03 (33.82)	209.15
TP LOADI (BASED 0	1983	761.96	246.85				
	DESCRIPTION	FLOWS Actual and projected flows based on (10 ³ m ³ /d) linear regression of 1981-1985 basin flows.	SCENARIO 0 data, and projected flows.	SCENARIO 1 average effluent TP < 1 mg/L or site-specific requirements.	SCENARIO 2 average effluent TP < 1 mg/L or site-specific requirements.	SCENARIO 3 comply with 0.9 mg/L, all others comply with 1 mg/L or site-specific requirements - monthly basis	SCENARIO 4 average effluent TP < 0.9 mg/L or site-specific requirements.

) = Loading Reduction from 1983 Load (tonnes/yr)

FIGURE 28 - EFFECT OF PHOSPHORUS MANAGEMENT STRATEGIES ON PHOSPHORUS LOADINGS ON THE LAKE ERIE DRAINAGE BASIN

COMPARISON OF PHOSPHORUS MANAGEMENT STRATEGIES - EFFECT OF TP LOADING REDUCTION TO LAKE ONTARIO/ST. LAWRENCE DRAINAGE BASIN TABLE 34.

		TP LOAD (BASED (HYPOTHETICAL TP LOADINGS (tonnes/yr) (BASED ON ACTUAL FLOW & TP DATA)	AL nes/yr) FLOW &	(Based or Aver	PROJECTED TP LOADINGS Based on Projected Flows and 1985 Aggregate Average Effluent TP Concentration)	PROJECTED TP LOADINGS rojected Flows and 1999 e Effluent TP Concent	ADINGS and 1985 / oncentrati	on)
	DESCRIPTION	1983	1984	1985	1986	1987	1988	1989	1990
FLOWS (10 ³ m ³ /d)	Actual and projected flows based on linear regression of 1981-1985 basin flows.	2702.66	2687.59	2795.14	2821.41	2866.98	2912.56	2956.13	3003.70
SCENARIO 0	SCENARIO 0 data, and projected flows.	949.45	979.08	950.06	958.99		974.48 989.97 1004.78 1020.95 (-25.03) (-40.52) (-55.33) (-71.50)	1004.78	1020.95
SCENARIO 1	All plants comply annually with SCENARIO 1 average effluent TP < 1 mg/L or site-specific requirements.		886.02	881.86 (67.59)	890.15	904.53	918.91	932.65	947.66
SCENARIO 2	SCENARIO 2 average effluent TP < 1 mg/L or site-specific requirements.		832.92 (116.53)	832.92 (116.53) (134.15)	823.60 836.90 (125.85) (112.55)	836.90 (112.55)	850.21	862.92	876.81 (72.64)
SCENARIO 3	SCENARIO 3 comply with 0.9 mg/L, all others comply with 1 mg/L or site-specific requirements - monthly basis		795.65 (153.80)	786.07 (163.38)	793.46 (155.99)	806.27	819.09	831.34 (118.11)	844.72 (104.73)
SCENARIO 4	SCENARIO 4 average effluent TP < 0.9 mg/L or site-specific requirements.		785.53 (163.92)	785.53 777.27 (163.92) (172.18)	784.58 (164.87)	784.58 797.25 809.92 822.04 835.27 (164.87) (152.20) (139.53) (127.41) (114.18)	809.92	822.04	835.27

) = Loading Reduction from 1983 Load (tonnes/yr)

FIGURE 29 - EFFECT OF MANAGEMENT STRATEGIES ON PHOSPHORUS LOADINGS
TO THE LAKE ONTARIO DRAINAGE BASIN

6.2 Costs of Implementation

The costs of implementing each of the phosphorus management strategies described were developed for each basin using the methodologies and assumptions outlined in Section 3.4.2 and 3.4.3. These costs apply to years 1984 and 1985 as these are the only years for which monthly performance data are available. It is reiterated that these are preliminary cost estimates based on simplistic assumptions regarding the remedial steps to be taken at each plant, and do not include capital costs for plant expansions, sludge handling expansions or other equipment associated with chemical or polymer addition. It should again be noted that costs may be biased since in 1984 and 1985, plants were not attempting to achieve monthly averages of less than 1 mg/L. These cost estimates will be reassessed and revised based on the findings of Phases 2 and 3 of the program.

6.2.1 Lake Erie Drainage Basin

The costs of implementing each phosphorus management strategy in 1984 and 1985 at each plant in the Lake Erie drainage basin are presented in Table 35. Total cost for all plants in the basin are also presented. costs increase in proportion to the increase in phosphorus removal achieved by each scenario. However, annual costs range from approximately \$20,000 to implement Scenario 1, which essentially involves bringing all plants into compliance with the existing annual average effluent requirement of 1 mg/L. to \$50,000 to impose a basin-wide monthly requirement of 0.9 mg/L. half the costs associated with implementing Scenario 1 are incurred at one primary plant (Amherstburg) where polymer addition would need to be prac-Costs for Scenario 2 were significantly higher than costs for Scenario 1, since many plants that were in compliance with 1 mg/L on an annual average basis had some months in which this limit was exceeded. Estimated total costs required for Scenario 2 for 1984 and 1985 were \$80,000. Scenario 3 was similar to Scenario 2 except that a 0.9 mg TP/L limit for large plants (Kitchener WPCP, Greenway WPCP and Westerly WPCP) was imposed. Since these plants did perform fairly well in 1984 and 1985, there was a very small increase in costs for 1984 and 1985 to \$83,000. Scenario 4 imposed a 0.9 mg/L phosphorus limit on all plants causing a relatively small cost increase at each plant compared to Scenario 2. The cumulative effect resulted in an estimated total cost of \$95,000.

RELATIVE COSTS OF PHOSPHORUS MANAGEMENT STRATEGY SCENARIOS FOR THE LAKE ERIE DRAINAGE BASIN 2,222 3,918 284 119 48 160 770 5,213 195 4,978 282 219 257 1,285 1,030 355 177 134 47,390 1985 SCENARIO 6,258 2,641 58 432 367 236 470 259 166 300 503 362 1,923 519 284 8,380 1,907 183 47,829 13,956 6,387 131 1984 346 3,918 1,119 8,803 1,738 5,532 146 193 41,079 1,937 662 13,480 1985 SCENARIO 336 116 4,976 2,455 41,969 625 8,174 177 355 237 519 1,907 156 13,800 102 131 6,387 1984 746 146 200 346 13,480 1,937 8,083 5,532 3,347 504 39,177 611 1985 2 SCENARIO 4,976 2,455 5,812 334 107 625 336 8,174 116 177 355 237 ,271 131 40,573 13,800 1984 280 1,450 40 2,904 10,784 7,137 22,595 1985 SCENARIO 0,670 13,614 20 3,038 29,611 1984 Belle River - Maidstore WPCP Corunna P.V. Plant (Moore) Hespeler WPCP (Cambridge) Pottersburg WPCP (London) Little R. WPCP (Windsor) Westerly WPCP (Windsor) Vauxhall WPCP (London) Adelaide WPCP (London) Greenway WPCP (London) Galt WPCP (Cambridge) Oxford WPCP (London) Ingersoll New WPCP PLANT Amherstburg WPCP Tillsonburg WPCP Wallaceburg WPCP Leamington WPCP St. Thomas WPCP Kitchener WPCP Brantford WPCP Stratford WPCP Dunnville WPCP Waterloo WPCP Preston WPCP (Dresden WPCP Chatham WPCP Fergus WPCP Guelph WPCP Sarnia WPCP Simcoe WPCP Paris WPCP Moodstock TABLE 35. TOTALS

Figure 30 compares the relative costs of each phosphorus management strategy to the costs of bringing plants into compliance with the existing annual average 1 mg/L TP concentration limit. It can be noted that the total costs increase with the severity of the phosphorus requirements, to a maximum for Scenario 4 at 210 percent of the cost of Scenario 1 (1984).

6.2.2 Lake Ontario/St. Lawrence River Drainage Basin

The individual plant and total Lake Ontario/St. Lawrence basin costs for 1984 and 1985 for Scenarios 1 to 4 are presented in Table 36. Costs incurred by the implementation of any strategy in the Lake Ontario Basin are significantly higher than costs for the same management strategy in the Lake Erie Basin. There are two major reasons for this difference. A larger number of plants in the Lake Ontario basin requiring remediation use the more expensive alum for phosphorus removal, as opposed to ferrous chloride. In addition, the chemical addition at Woodward Ave. WPCP is a large component of the cost in this basin.

The costs associated with either Scenario 1 or Scenario 2 relate to remediation at the Woodward Ave. WPCP, since this plant was not adding chemicals to achieve phosphorus removal. Costs increased significantly for Scenario 2 compared to Scenario 1. Most plants were required to improve performance for some period of time in Scenario 2 in order to meet the monthly average requirement.

Selective imposition of more severe (0.9 mg/L) effluent requirements at large plants (Scenario 3) results in a further significant increase in phosphorus removal costs. Of the five plants affected (Woodward Avenue WPCP, Humber WPCP, Toronto Main WPCP, Lakeview WPCP and Highland Creek WPCP), only Lakeview typically met this requirement. Therefore, the other four plants incurred substantial costs to improve performance. As anticipated, basin-wide imposition of a monthly average 0.9 mg/L TP limit resulted in the highest cost, totalling near \$1 million over two years (1984 and 1985).

Figure 31 presents a histogram of the costs of each Scenario relative to the costs of meeting the present MOE effluent requirements (Scenario 1). The costs were significantly less in 1985 as a result of better performance at a number of plants. Costs increased with the severity of the phosphorus requirement, to a maximum for Scenario 4 of 310 percent of the cost of Scenario 1 in 1984.

FIGURE 30 - RELATIVE COSTS TO IMPLEMENT PHOSPHORUS MANAGEMENT STRATEGIES IN THE LAKE ERIE DRAINAGE BASIN

TABLE 36. RELATIVE COSTS OF PHOSPHORUS MANAGEMENT STRATEGY SCENARIOS FOR THE LAKE ONTARIO DRAINAGE BASIN

1984 1 1984 1 1 1 1 1 1 1 1 1	1985 0 3,678 185,649 2,848 2,848 5,115	1984 4,968 1,188 240 10,721	1985	1984	1985	1984	1985
2 2,828 189,896 18 2,044 2,044 19,643 2	3,678 3,678 185,649 2,848 5,115	4,968 1,188 240 10,721	1				
2	3,678 185,649 2,848 5,115	4,968 1,188 240 10,721			12		1
2 129,896 18 2,044 2,044 19,643 2,044 19,643 1,024	3,678 185,649 2,848 5,115	1,188 240 10,721	2.349	4.968	2.349	5.481	2.349
2 129,896 18 2,044 2,044 19,643 2 19,643 2 19,520 2 1,024 1,024	3,678 185,649 2,848 5,115	240	107	1,188	107	1.323	240
2 129,896 2,044 2,044 19,643 2,044 19,643 1,024	3,678 185,649 2,848 5,115 50,110	10,721	894	240	894	267	1,325
2 129,896 18 2,044	2,848 2,848 5,115		7,767	10,721	7,767	14,164	9,779
2 129,896 2,044 2,044 19,643 19,643 1,024	2,848 2,848 5,115	8,713	7,336	8,713	7,336	12,587	12,226
2	2,848 2,848 5,115 20,110	293	1,036	293	1,036	712	1,332
2 129,896 2,044 2,044 3,520 3,520 1,024	2,848 2,848 5,115 20,110	1,643	1,379	1,643	1,379	2.464	2.067
2 129,896 2,044 2,044 3,520 3,520 1,024	2,848 2,848 5,115 20,110	7		7		20	23
2,044 2,044 2,044 19,643 19,643 1,024	2,848 2,848 5,115 20,110	133		133		172	3
(Hamilton) 129,896 2,044 2,044 Toronto) Foronto) Sissauga) Sissaug	2,848 2,848 5,115 20,110	:	1	1	!	;	1
P (Metro Toronto) Toronto) Toronto) Sissauga)	2,848 5,115 20,110	259,753	278,474	340,926	292,397	340,926	292,397
P (Metro Toronto) Toronto) Toronto) Sissauga)	5,115	2,044	2,848	2,044	2,848	2,044	2,848
P (Metro Toronto) Toronto) Ioronto) Sissauga)	5,115	6,103		6,103		18,309	
CP (Metro Toronto) o Toronto) Toronto) ssissauga) sissiasauga) ssissauga) ssissauga) ssissauga) ssissauga) sissiasauga) ssissauga)	5,115	729	363	729	363	1,208	756
o Toronto) 19,643 Toronto) ssissauga) ssissauga) 6,273 PCP (Newcastle) 3,520 agara Falls) 0akville) 1 (Oshawa) 2 (Oshawa) 1,024	5,115	903		2,710	282	2,710	282
Toronto) Ssissauga) Ssissauga) Scissauga) CP (Newcastle) 3,520 agara Falls) Oakville) 1 (Oshawa) 2 (Oshawa) 1,024	20,110	21,636	12,786	25,499	16,036	25,499	16,036
Toronto) ssissauga) ssissauga) PCP (Newcastle) agara Falls) Oakville) 1 (Oshawa) 2 (Oshawa)		211,112	52,157	34,421	69,543	34,421	69,543
ssissauga) ssissauga) PCP (Newcastle) agara Falls) Oakville) 1 (Oshawa) 2 (Oshawa)		231	444	231	444	707	736
ssissauga) ssissauga) PCP (Newcastle) agara Falls) Oakville) 1 (Oshawa) 2 (Oshawa)							
ssissauga) PCP (Newcastle) agara Falls) Oakville) Oakville) 1 (Oshawa)		263	363	263	363	843	1,068
PCP (Newcastle) agara Falls) Oakville) Oakville) 1 (Oshawa)		138		219		219	
PCP (Newcastle) agara Falls) Oakville) Oakville) 1 (Oshawa)	788	6,341	828	6,341	828	6,735	2,514
agara Falls) Oakville) Oakville) 1 (Oshawa) 2 (Oshawa)		4,007	528	4,007	259	4,260	345
Oakville) 1 (Oshawa) 2 (Oshawa)		869		869	I	865	
Oakville) 1 (Oshawa) 2 (Oshawa) 1.		421	949	421	949	959	1,394
1 (Oshawa) 2 (Oshawa) 1.		2,432	2,024	2,432	2,024	3,040	2,589
1 (Oshawa) 2 (Oshawa) 1.							
2 (Oshawa)		8,289		8,289	×	10,057	282
Water to the same of the same		8,532		8,532		10,352	290
		734	1,581	734	1,581	1,239	1,924
WPCP (Pickering)	3,815	3,966	15,110	3,966	15,110	7,948	26,437
7		512	0 !	515	70	909	93
Dort Was uppe	388	1,1/9	815	1,179	815	1,395	903
Prescott-Edwardsburgh UPCP		20		30	. 2	970	
Port Dalhousie WPCP (St. Catharines)	ı	20		S S	S.	313	
Port Weller WPCP (St. Catharines)			5 015		210.3		0 574
Trenton WPCP	504	234	508	234	508	301	508
Welland WPCP			62		29	100	191
Corbett Cr. WPCP (Whitby)		831		831		1 384	124
Pringle Cr. 1 WPCP (Whitby)		1,209	350	1.209	350	1.406	458
Pringle Cr. 2 WPCP (Whitby)		1,555	730	1,555	730	1,951	1,113
TOTALS 164, 788 222	222 895	381 753	396 604	481 083	431 445	516 202	217 134

1. Belleville WPCP was under construction in 1984. 2. Georgetown WPCP had equipment problems in 1984 causing a typical treatment efficiencies.

FIGURE 31 - RELATIVE COSTS TO IMPLEMENT PHOSPHORUS MANAGEMENT STRATEGIES IN THE LAKE ONTARIO/ST. LAWRENCE DRAINAGE BASIN

THE RESERVE OF THE PARTY OF THE

the term of the same production and the second

6.3 Summary

In the evaluation of the phosphorus management alternatives, a number of factors must be considered. These include the basin phosphorus loading reduction that can be achieved compared to what is desired, and the ease of implementation and enforcing of any of the strategies.

The Ministry of the Environment proposed to reduce total phosphorus loadings (compared to the 1983 loading) from major municipal wastewater treatment plants (4546 m³/d and larger) into Lake Erie by 30 tonnes/yr and into Lake Ontario/St. Lawrence River by 50 tonnes/yr. It can be seen from Figure 28 and Table 33 that a 30 tonne/yr reduction in the Lake Erie basin would not have been achieved in 1985 with implementation of any of the proposed strategies. Furthermore, with a linear increase in basin flows of 2.5 percent per year, this goal would become more difficult to reach. Since most plants in the Lake Erie drainage basin met the MOE effluent requirements in 1984 and 1985, resulting in basin-wide aggregate average phosphorus concentrations of less than 0.85 mg/L, it can be deduced that even more stringent phosphorus limits than those proposed would be required to achieve the 30 tonnes/yr goal.

In the Lake Ontario drainage basin, a 50 tonne/yr reduction in total phosphorus loading could have been achieved in 1984 and 1985 had all the plants met the present MOE effluent requirements (Table 33 and Figure 26). Using a more stringent monthly average basis for assessing compliance (Scenario 2), and assuming linear flow increases, the 50 tonne/yr reduction could be achieved until 1991. Application of more stringent requirements (Scenarios 3 and 4) would cause an even greater reduction in total basin phosphorus loading.

There was a significant linear relationship between the phosphorus loading reduction achieved and the costs of achieving the reduction in both basins as shown in Figure 32 (Lake Erie) and Figure 33 (Lake Ontario). It should be noted that plants were not actually attempting to achieve the requirements of Scenarios 2, 3 and 4, and therefore, costs may be biased. Based on these costs data, the average cost of achieving further reductions in phosphorus loading in Lake Erie was approximately \$1,560/tonne compared to a cost of \$2,660/tonne in Lake Ontario. The higher costs in the Lake Ontario drainage basin can be attributed to:

FIGURE 32 - ESTIMATED COSTS VS. PHOSPHORUS LOADING REDUCTION FOR THE LAKE ERIE DRAINAGE BASIN

FIGURE 33 - ESTIMATED COSTS VS. PHOSPHORUS LOADING REDUCTION FOR THE LAKE ONTARIO/ST. LAWRENCE DRAINAGE BASIN

- i) A greater percentage of plants using the more expensive alum instead of ferric or ferrous chloride.
- ii) The implementation of chemical addition to the Woodward Ave. WPCP (Hamilton) and increased sludge handling (dewatering and incineration) costs associated.

To summarize, none of the proposed phosphorus management strategies will generate the 30 tonnne/yr phosphorus loading reduction in the Lake Erie drainage basin. Since, in general, plants in the Lake Ontario/St. Lawrence drainage basin have not performed as well as in Lake Erie, simply having plants meet the present MOE compliance limits will reduce the basin loading by greater than the proposed 50 tonnes per year.

The total costs to reduce basin loadings are directly proportional to the basin loading reduction achieved. Since this is the case, the selection of the optimal management alternative will depend on the desired phosphorus loading, the ease of implementation of remedial measures at each plant, and the difficulties associated with enforcing a new compliance requirement.

7.0 SELECTION OF PHASE 2 PLANTS

Based on the summary tables in Section 4 that present individual plant performance and compliance histories, and the more detailed information that was obtained through plant contact, a number of plants were recommended to the Project Steering Committee for the Phase 2 field sampling program. The purpose of the Phase 2 study is to establish critical factors affecting phosphorus removal. A total of twelve plants were to be selected; five which have historically demonstrated excellent phosphorus removal performance and seven which have consistently not complied with MOE phosphorus requirements. If the critical factors were obvious, and no additional information was necessary, then the plant was not considered to be a candidate. For example, at Woodward Ave. WPCP (Hamilton) historically poor phosphorus removal efficiency is because there has been no chemical addition for phosphorus re-Tables 37 and 38 present the plants considered as candidates for the Phase 2 program. Also included for each plant are drainage basin, plant type, effluent TP concentrations and compliance data for 1984 and 1985, design and 1984/1985 flows, and comments related to plant performance.

These plants were submitted to the Project Steering Committee, 9 May 1986. After some discussion, the twelve plants listed below were selected for the Phase 2 study.

- i) Collingwood WPCP
 - ii) Esten Lake WPCP (Elliot Lake)
- iii) Fergus WPCP
- iv) Humber WPCP (Metro Toronto)
 - v) Main WPCP (Metro Toronto)
- vi) Midland WPCP
- vii) Moore (Corunna) WPCP
- viii) Port Dalhousie WPCP (St. Catharines)
 - ix) Port Hope WPCP
 - x) St. Thomas WPCP
 - xi) Trenton WPCP
 - xii) York-Durham WPCP

TABLE 37. CANDIDATE SITES FOR PHASE 2 ASSESSMENT SUPERIOR PERFORMANCE

PI ANT	BASIN	PI ANT TYPE	EFFLUENT (mg/L)	INT TP	EFFLUENT TP NO. OF MONTHS (mg/L) OUT OF COMPLIANCE	(1)	FLOW (10 ³ m ³)		COMMENT
			1984	1985	(184 & 185)	DESIGN	1984	1985	
1. Port Dalhousie WPCP (St. Catharines)	Ontario	CAS	0.54	0.39	0	61.4	32.4	39.1	64% of Design Flow
2. Fergus WPCP	Erie	CAS	0.64	0.54	0	5.0	3.7	3.9	78% of Design Flow
3. Sturgeon Falls WPCP	Huron	CAS	0.32	0.41	0	4.5	6.8	5.7	Inf. TP 3.3 mg/L
4. Picton WPCP	Ontario	Cont. Stab.	0.70	0.52	1	4.5	3.2	3.3	0.5 mg/L Summer Requirement
5. Port Hope WPCP	Ontario	HRAS	0.51	0.57	1	9.1	8.4	9.1	Inf. TP 3.6 mg/L
6. Trenton WPCP	Ontario	CAS	0.58	99.0	1	15.9	10.8	11.3	0.5 mg/L Summer Requirement
7. Paris WPCP	Erie	EA	0.58	0.55		7.05	2.2	2.5	36% of Design Flow
8. Midland WPCP	Huron	CAS	0.57	0.57	1	13.6	9.5	11.0	81% of Design Flow

TABLE 38. CANDIDATE SITES FOR PHASE 2 ASSESSMENT PLANTS NOT CONSISTENTLY COMPLYING

	RASTN	PI ANT TYPE	(mg/L)	()	OUT OF		(103 m ³)		COMMENT
			1984	1985	('84 & '85)	DESIGN	1984	1985	CONTIENT
1. North Bay WPCP	UGL	CAS	1.49	1.67	22	36.4	32.5	40.3	High Inf. TP
2. Amherstburg WPCP E	Erie	Primary	3.50	3.25	20	4.6	2.0	4.6	Primary Plant
3. Collingwood WPCP	NGL	CAS	1.49	1.92	18	24.5	17.3	18.5	Influent TP > 10 mg/L
	•								
(Metro Toronto) On	Ontario	CAS	1.44	1.06	16	409.14	339.3	377.7	Influent TP 8-10 mg/L
5. Napanee WPCP On	Ontario	CAS	2.46	1.23	15	9.1	0.9	6.2	High Industrial Load
6. Woodward WPCP									12
(Hamilton) On	Ontario	CAS	1.23	1.30	15	409.1	323.1	307.8	No Chemical Addition
7. St. Thomas WPCP E	Erie	CAS	1.51	1.12	11	40.9	18.5	17.4	< 50% Design Flow
CP	_								
(Elliot Lake)	NGL	CAS	1.35	1.10	11	13.0	10.9	12.5	On-Line Dose Control
CP								7	
(Cambridge) E	Erie	HRAS	0.91	1.31	10	9.3	5.3	5.5	Poor Clarifier Design
10. Moore (Corunna) WPCP E	Erie	EA	0.87	0.84	11	4.5	1.4	2.8	Inconsistent
								7	Performance
	Ontario	CAS	0.97	1.08	10	818.28	2.929	683.1	Inconsistent
									Performance
12. Port Darlington WPCP									1100
(Newmarket)	Ontario	CAS	1.78	0.93	6	4.5	6.4	8.1	180% of Design Flow
13. Goderich WPCP	ner	CAS	1.13	06.0	11	9.1	9.6	11.2	120% of Design Flow
14. Iroquois WPCP On	Ontario	Primary	2.15	NA	8/9	5.0	3.2	4.5	Only 1 mo. data
									in 1985
WPCP	Ontario	CAS	0.98	1.03	∞	181.8	121.1	149.7	Inconsistent
(Fickering)									Performance

8.0 REFERENCES

- International Joint Commission (1972). "Great Lakes Water Quality with Annexes and Texts and Terms of Reference, Between the United States and Canada, Signed at Ottawa, April 15, 1972", Windsor, Ontario.
- International Joint Commission (1978). "Great Lakes Water Quality Agreement of 1978 with Annexes and Terms of Reference, Between the United States and Canada, Signed at Ottawa, November 22, 1978", Windsor, Ontario
- International Joint Commission (1981). "Supplemental Report on Phosphorus Management Strategies", Windsor, Ontario.
- U.S. Environmental Protection Agency (1976). "Process Design Manual for Phosphorus Removal", Technology Transfer, April 1976. EPA 625/1-76-001a.
- Ministry of the Environment (1976), "Summary Report on the Phosphorus Removal Program", Province of Ontario.

APPENDIX A

ACTUAL PLANT TP LOADINGS,
FLOWS AND AGGREGATE AVERAGE
PHOSPHORUS CONCENTRATIONS FOR 1983-1985

7
BASIL
DRAINAGE
ERIE
LAKE
1
LOADINGS
PHOSPHORUS
ACTUAL

		1983			1984			1985		
. •	AVG. EFF TP CONC.	AVERAGE DAILY Q	TOTAL P LOADING	AVG. EFF. TP CONC.	AVERAGE DAILY Q	TOTAL P LOADING (tonnes/yr)	AVG. EFF. TP CONC.	AVERAGE DAILY Q (1000 m3/d)	TOTAL P LOADING (tonnes/yr)	A SE
	00 0	i	6 24	3.50	5.00	6.39	3.25	4.55	5.	38
AMHERS I BURG	20.00		12.22	0 74		14.59	0.75	4	15.	84
		9 0	20.00			•			0	32
		30								83
	0.00	۵۰		0.91		1.1				30
SE (PRESTON)	- "	0 0	-			1.04		20.00		200
CHATHAM	20.00	1 66	0.40	9.19	20.11		300	2.35		33
DRAKSDEN	0.20	-			4.58	1.69				80
DONNATURE		6	0.73		3.72	0.87	0.64	3.88	0	78
##		44	25.06	96.0	43.51			47.69	14.	35
TAGEBEROLL CHEEN	0.31	6	0.45		5.27	0.88	0.81	4.34	1.	28
	0.87	68.00	20.84		68.46	17.32	0.76	64.87	17.	91
EAMINGTON		7	2.63		6.73	1.40	0.93	6.78		31
CONDON (ADELAIDE)	0.97	14	5.26		16.82	5.68	98.00		5.	34
	0.99	122	44.22		127.47	43.37	9.78	131.85	37.	48
		1	1.75		5.25	1.68	0.74	5.36	1.	44
-		17.	8.28	0.84	17.34	5.35	69.00	17.40	*	12
_		18,59	6.58	08.00	18.57	5.41	0.62	19.56	4	41
Ô	0.39	S.	0.77	0.62	5.00	1.14	0.84			98
			0.68	0.86	1.42	0.45	0.84	2.85	.0	87
PARIS	0.89				2.24	0.47		2.53	0	
SABATA ATMENTA	0.88	52		0.78	56.18	15.70	0.83	54.41	16.	43
SIMCOE	0.53	o		08.00	9.26	2.71	11.00	9.47	2	
ST. THOMAS		18.32	5.37	1.51	43.66	24.11	1.12	18.92	7.	75
STRATFORD **	0.40			0.54	22.05	4.34	0.23	24.99	2	07
STRATHROY LAGOON	1.19		1.64	1.60	3.43	2.00	1.19	4.37	1.	80
TILLSONBURG	0.74	5.47	1.47	0.40	5.30	0.78	9.78	5.41	1.	55
WALLACEBURG	0.34	6.12	0.75	0.65	5.47	1.30	0.42			37
WATERLOO	0.77	39.71	11.12	0.87	41.54	14.75	0.74	45.20		29
WINDSOR (LITTLE)	0.43	32.28	5.07	1.22	31.60	14.09	. 0.81	44.90		21
WINDSOR (WESTERLY)	88.0	105.01	34.11	0.71	100.48	25.88	0.85	124.48	38.	28
WOODSTOCK	0.92	22.59	7.58	10.84	21.13	7.25	1:02	23.92	8	88
	1 0.89	761.96	246.85	. 0.88	797.22	256.27	08.00	841.37	247.07	07
	1 1 1 1 1 1 1 1 1 1 1									1

		1983			1984			1985	
PLANT	AVG. EFF. TP CONC. (mg/L)	AVERAGE DAILY Q (1000 m3/d)	TOTAL P LOADING (tonnes/yr)	AVG. EFF. TP CONC. (mg/L)	AVERAGE DAILY Q (1000 m3/d)	TOTAL P LOADING (tonnes/yr)	AVG. EFF. TP CONC. (mg/L)	AVERAGE DAILY Q (1000 m3/d)	TOTAL P LOADING (tonnes/yr)
BELLEVILLE	1.11	29.43		1 .	9	1 .		6	7.1
BROCKVILLE	1.43	15.69	8.19	1.01	14.68	5	1 0.81	18.51	
BURLINGTON (SKYWAY)	0.54	9			7.	22.04		64.91	
CALEDON (BOLTON) **	0.18	3.46	0.23	. 2				•	
CAMPBELLFORD	0.70	.7.01	•	9	•	. 8		9 .	2.04
COBOURG (1)	18.0	14.18	4.19	. 7	8			8.50	٠
CORNWALL (CORNWALL)	0.97	49.17	٠	86.0	48.46		1 0.97		
** **	09.00	11.77	•	. 7	. 7			. 3	
FORT ERIE (ANGER AVE.)	0.85	13.05	4.05	7 .	12.84	3.54		6	3.43
GRIMSBY (BAKER ROAD)	0.86	10.71	3.36	9.70	10.73	2.76	99.00	10.75	2.21
HALTON HILLS (ACTON) **	0.83	2.55		. 5		0.67		6.	
	99.00	9.27		1.16	96.6	4.20		-	•
HAMILTON (WOODWARD)	1.10	287.76	115.54	1.23	•	145.64		7 .	
IROQUOIS	2.30	3.49	2.93	1.89		2.20		4.46	•
KINGSTON TWP.	0.92	16.26		. 0.94				. 3	
KINGSTON	68.0	60.02	19.53	6.		20.11		4	
LINDSAY LAGOON	6.31	96.8	1.01	8		3.90	0.63	3	
METRO TORONTO(HIGHLAND)	1.05	162.75	62.37	06.00	56.	51.70	1 0.77	163.35	45.73
	1.04	365.50	38.		9.2	178.48		377.69	3.2
METRO TORONTO(MAIN)	68.00	737.59	239.61	6.	76.2		1.08	0	9.1
METRO TORONTO(N. TORONTO)	1.01	35.37	3	8	. 7		1 0.85	9	
	1 0.57	8.59	2.0	. 3	8		1 0.27	12.32	
MISSISSAUGA (CLARKSON)		67.05	9	8	5	24.40		71.1	23.53
MISSISSAUGA (LAKEVIEW)		190.60		80	•	61.24		4	
NAPANEE		5.41	. i	2.32		٦,	1.23		2.80
NEWCASTLE (FORT DAKLINGT)		51.03	3.50	1.18	94.0	4.15		0.00	2.70
NEWMARKE!	00.00	15.05			00.03		0.00	9 6	•
NINGARA FALLS (SIMIFORD)	90.0	10.24	4 33	20.00				•	
		28 23			1 4	8.80	68	. œ	6. 9
		7.35	8		7		0.25	8.10	
OSHAWA (HARMONY CR. 1)		24.18							
(HARMONY		25.88	4		26.60	10.11		27.59	
PETERBOROUGH	0.77	53.14		08.80		.15.87		9.	
PICKERING (DUFFIN CREEK)	1.74	95.16	60.57	1 0.97		42.85		9.	•
PICTON	0.52	3.34	0.63	9.70	3.15	08.80	9.62	. 3	0.63
PORT COLBORNE (SEAWAY)		13.94	4.53			5.94			5.04
PORT HOPE	0.53	7.42	1.45		ც.	.5		. 5	•
PRESCOTT (EDWARDSBURGH)		4.60	1.42		4		1 0.62	-	
CATHARINES	0.53	36.32	3	. 5	2.4	6.40		41.53	
ST. CATHARINES (P. WELLER)		35.82	9.	. 5				6.	
TRENTON		9.82	•	. 5				1.1	9
Ω.	. 2	41.89		e.				33.44	. 7
(CORBETT		10.85		8	•	3.50			•
(PRINGLE CREEK	0.39	4.25	0.60	0.99		2.18	0.63		1.30
WHITEY (FKINGLE CREEK Z)	0.69	6.82	1.71	1.16	62.58	2.66	. 1	0.00	2.2
	0.96	2702.66	949.45	1.00	2687.59	979.08	69.83	2785.14	946.59

ACTUAL LOADINGS - LAKE ONTARIO / ST. LAWERENCE DRAINAGE BASIN

TOTAL P LOADING 189.88 (tonnes/yr) AVERAGE DAILY Q (1000 m3/d) 26.11 11.5.50 11.16.50 11.16.50 11.16.90 11.90 11.90 11.90 11.90 11.90 11.90 11.90 1 302.69 1985 AVG. EFF. (mg/L) 6.55 6.53 6.53 6.53 6.53 6.53 6.53 6.53 TP CONC. 0.00 0.00 0.00 0.00 0.00 0.00 1.17 17.63 17.63 17.63 17.63 17.63 17.63 14.63 14.63 14.63 16.86 17.63 1 P LOADING (tonnes/yr) 9.28 1.66 9.66 3.93 183.60 AVERAGE DAILY Q (1000 m3/d) 26.63 3.35 10.94 10.94 10.94 10.94 10.50 3.35 10.50 10 281.65 AVG. EFF (mg/L) 48 83 87 87 TP CONC. TOTAL P LOADING (tonnes/yr) 163.05 DAILY Q (mg/L) (1000 m3/d) AVERAGE 1983 AVG. EFF. * ELLIOT LAKE (ESTER L.) ** * VALLEY EAST (HAMNER ECT) WALDEN (MIKKOLA) SAULT STE MARIE STURGEON FALLS SUDBURY MIDLAND NORTH BAY ORILLIA OWEN SOUND PARRY SOUND WASAGA BEACH COLLINGWOOD HANOVER PORT ELGIN WALKERTON BRADFORD GODERICH BARRIE PLANT

ACTUAL PHUSPHOROUS LOADINGS - LAKE HURON DRAINAGE BASIN

38.82 TOTAL AVG. EFF. AVERAGE TOTAL P LOADING TP CONC. DAILY Q P LOADING tonnes/yr) (mg/L) (1000 m3/d) (tonnes/yr) 38.95 113.95 113.95 1985 0.84 0.94 AVG. EFF. AVERAGE TOTAL AVG. EFF. AVERAGE TOTAL TP CONC. DAILY Q P LOADING TP CONC. DAILY Q P LOADING (mg/L) (1000 m3/d) (tonnes/yr) (mg/L) (1000 m3/d) (tonnes/yr) 47.64 47.64 104.23 104.23 1.25 1.25 55.23 55.23 100.61 100.61 1.50 1.50 THUNDER BAY PLANT

ACTUAL PHOSPHOROUS LOADINGS - LAKE SUPERIOR DRAINAGE BASIN

APPENDIX B

HYPOTHETICAL PLANT TP LOADINGS, FLOWS

AND AGREEGATE AVERAGE PHOSPHORUS CONCENTRATIONS

FOR PHOSPHORUS MANAGEMENT SCENARIOS
LAKE ERIE AND LAKE ONTARIO/ST. LAWRENCE DRAINAGE BASINS

site specific req'ts.	AGGREGATE	1984		AGGREGATE		
PLANT	AVG. EFF. TP CONC. (mg/L)	AVERAGE DAILY Q (1000 m3/d)	TOTAL P LOADING (tonnes/yr)	AVG. EFF. TP CONC. (mg/L)	AVERAGE DAILY Q (1000 m3/d)	TOTAL P LOADING (tonnes/yr)
AMHERSTBURG	1.00	5.00	1.83	1.00	4.55	1.66
BRANTFORD	0.74	54.01	14.59	: 0.75		15.94
CAMBRIDGE (GALT)	0.83	31.50	10.24	98.00	31.99	9.32
CAMBRIDGE (HESPELER)	. 0.91	5.34	1.77			
CAMBRIDGE (PRESTON)	99.28	8.01	1.64	1 0.75	8.47	
CHATHAM **	9.79	25.71	7.46	66.00	29.71	10.78
DRESDEN	0.51	2.14	0.40	60.39	2.35	0.33
DUNNVILLE	1.00	4.59	1.68	09.00	4.93	1.09
FERGUS	0.84	3.72	0.87	0.54	3.88	0.76
GUELPH **	0.65	43.51	10.37	9.61	47.69	10.69
INGERSOLL (NEW)	0.46	5.27	0.83	. 0.81	4.34	1.28
KITCHENER		68.46		97.0	64.87	17.91
LEAMINGTON	1 0.67	6.73	1.40	6.93	6.78	2.31
LONDON (ADELAIDE)	0.93	16.82		0.86	17.06	5.34
LONDON (GREENWAY)	0.93	127.47	43.37	1 0.78	131.85	37.49
_	1 0.87	6.25			6.36	1.44
LONDON (POTTERSBURG)	0.84	17.34	5.35		17.40	4.12
~	08.80	18.57	5.41	0.62	19.56	4.41
MAIDSTONE (BELLE RIVER)	0.62	6.00	1.14	10.84	6.35	1.95
MOORE (CORUNNA)	98.0	1.42	0.45			0.87
PARIS	0.58	2.24	0.47		2.53	0.50
SARNIA	97.0	55.18	16.70		54.41	16.43
SIMCOE	08.00	9.26	2.71	1 0.71	9.47	2.48
ST. THOMAS	1.00	18.47	6.74	1.00	18.92	6.91
STRATFORD **	09.20	22.05	4.03	0.23	24.99	2.07
STRATHROY LAGOON	1.00	3.43	1.25	1.00	4.37	1.69
TILLSONBURG	0.40	5.30		97.00	5.41	1.55
WALLACEBURG		5.47	1.30	0.42	8.85	1.37
WATERLOO		41.54	14.75	. 0.74	45.20	12.29
WINDSOR (LITTLE)	1.00	31.60		10.81	44.90	13.21
WINDSOR (WESTERLY)		100.48		68.82	124.48	38.59
WOODSTOCK	0.84	21.13	7.25	1.00	23.92	8.73
	0.80	772.03	225.90	0.77	841.37	237.75

L MEALL and AVG. EFF. AVERAGE TOTAL TO TAGE AVG. EFF. DAILY Q P LOADING (mg/L) (1000 m3/d) (tonnes/yr) ALT (mg/L) (1000 m3/d) (tonnes/yr) ALT (mg/L) (1000 m3/d) (tonnes/yr) L SPELER (mg/L) (1000 m3/d) (tonnes/yr) ESPELER (mg/L) (mg/L) (1000 m3/d) (tonnes/yr) ESPELER (mg/L) (mg/L) (1000 m3/d) (tonnes/yr) ESPELER (mg/L) (mg/L) (mg/L) (mg/L) ESPELER (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) ESPELER (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) ESPELER (mg/L)	mo	A COURT A TE	1984		TTA STATE ATT	1985		
LT) (mg/L) (1000 m3/d) (tonnes/yr) (mg/L) (1000 m3/d) (tonnes/yr) LT) (mg/L) (1000 m3/d) (tonnes/yr) (mg/L) (1000 m3/d) (tonnes/yr) (mg/L) (0.86 5.00 1.83 1.00 1.85 15.50 1.52 1.52 1.64 1.52 1.64 1.52 1.64 1.52 1.64 1.65 1.55 1.64 1.65 1.64 1.64 1.65 1.64 1.64 1.65 1.64 1.65 1.64 1.65 1.64 1.65 1.64 1.65 1.65 1.65 1.64 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65	monthly TP = 1 mg/L and site specific req'ts.	AVG. EFF.	AVERAGE DAILY Q	2	AVG. EFF.	ERAC	3	
LT) O 74	PLANT	(mg/L) ((tonnes/yr)	(mg/L) (1000 m3/d)	(tonnes/yr)	
LT) CT) CT) CT) CT) CT) CT) CT)	MHERSTBURG	1 .	5.00		1.00		1.66	
LT) SPELER) SPELER SPELER) SPELER) SPELER SPELER) SPELER SPEL	BANTEORD	,	54.01			-	15.86	
SPECER) 6.78 5.34 1.52 0.89 5.50 1.52 ESTON) ** 0.78 5.34 1.52 0.89 5.50 1.52 ESTON) ** 0.76 25.71 7.45 0.85 29.71 2.35 2.35 2.35 2.35 2.35 0.35 2.35 0.35 2.35 0.35 2.35 0.35 2.35 0.35 0.36 4.36 0.35 0.36 4.36 0.35 0.36 4.36 0.35 0.36 4.36 0.35 0.36 4.36 0.35 0.36 4.36 0.35 0.36 4.36 0.36		0.88	31.50		08.80		9.32	
ESTON) ** 0.56 B.01 1.64 0.66 B47 ESTON) ** 0.79 26.71 7.45 0.85 29.71 0.63 4.59 1.06 0.60 4.93 2.35 0.63 4.59 1.06 0.60 4.93 2.35 0.63 4.31 10.02 0.60 4.34 W) 0.63 68.46 17.32 0.76 64.87 1 ESBURG) 0.80 127.47 0.99 0.76 64.87 1 EXBURG) 0.80 127.47 39.92 0.75 6.36 A) 0.80 127.47 39.92 0.75 6.36 ELE RIVER) 0.88 5.00 1.66 0.86 1.740 ** 0.78 18.57 5.29 0.74 5.36 A) 0.78 5.29 0.71 19.56 CON \$60 18.47 6.38 0.64 1.140 CON \$60 18.47 6.38 0.64 1.140 CON \$60 18.47 6.38 0.71 9.47 CON \$60 18.48 6.38 0.71 CON \$60 18.48 6.38 0.71 CON \$60 18.48 6.38 0.71 CON \$60 18.4	(HE			1.52	68.00	5.50		
** 6.79 25.71 7.45 6.85 29.71 ** 6.45 214 6.35 29.71 6.45 6.45 1.06 6 6 6 4.93 2.35 6.64 4.59 1.06 6 6 6 4.93 2.35 8.65 4.59 1.06 6 6 6 4.93 8.72 6.86 17.0 6 84 4.34 8.72 6.86 17.32 6.76 64.87 8.85BRG) 6.86 17.34 6.86 17.66 8.85BRG) 6.86 17.34 6.36 6.75 131.85 8.85BRG) 6.86 17.34 6.36 6.36 8.85BRG) 6.86 17.34 6.36 6.36 8.85BRG) 6.86 17.34 6.36 6.36 6.35 8.85BRG) 6.86 17.34 6.36 6.36 6.35 8.85BRG) 6.86 17.34 6.36 6.36 6.35 8.85BRG) 6.86 17.80 6.86 6.35 8.85BRG) 6.86 17.80 6.86 6.36 8.85BRG) 6.86 17.80 6.86 6.36 8.85BRG) 6.86 17.80 6.81 19.56 8.85BRG) 6.86 17.80 6.81 19.56 8.85 6.85 1.85 6.85 6.85 6.85 6.85 8.85 6.85 1.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6	(PR			1.64	99.00	8.47	•	
### 6.45				7.45	0.85		9.21	
** 6.63 4.59 1.06 0.60 4.93 *** 6.64 43.51 10.02 0.66 4.93 W) ** 6.63 43.51 10.02 0.60 47.69 WO 62 68 46 17.32 0.76 64.87 1.06 WAY) 6.69 68.46 17.32 0.76 64.87 1.06 WAY) 0.86 127.47 39.92 0.76 64.87 1.06 WAY) 0.86 127.47 39.92 0.75 131.86 D) 0.86 127.47 39.92 0.74 5.36 KSBURG) 0.84 17.34 5.39 0.64 17.40 A) 6.80 5.29 0.64 17.40 A) 6.80 6.80 6.35 A) 7.8 18.77 5.29 0.66 1.95 A) 6.80 6.80 6.35 A) 6.80 6.80 6.35 A) 6.80 6.80 6.35 A) 6.80 6.80 6.35 A) 6.80 6.80 6.80 6.35 A) 6.80 6.80 6.80 6.30 B) 6.80 6.80 6.80 CON 6.80 6.80 6.80 CON 6.80 6.80 6.80 CON 6.	RESDEN		2.14		0.39	2.35	0.33	
## (2.64 3.72 (2.64 47.69 1) ## (2.65 43.61 10.02 (2.66 47.69 1) ## (2.65 68.46 17.32 (2.66 47.69 1) ## (2.65 68.46 17.32 (2.76 64.87 1) ## (2.65 68.46 17.32 (2.76 64.87 1) ## (2.65 68.46 17.32 (2.76 64.87 1) ## (2.65 68.46 17.32 (2.76 64.87 1) ## (2.65 68.46 17.34 6.36 (2.66 1) ## (3.65 68.46 17.34 6.36 (2.66 1) ## (3.65 68.46 17.34 6.36 (2.66 1) ## (3.66	UNNVILLE		4.59	1.06	09.00	4.93		
** 0.63 43.51 10.02 0.60 47.69 1 W)	ERGUS	0.64		0.87		3.88		
W)		0.63		10.02		47.69		
DE De Ge Ge 46 17.32 De 76 Ge 78 De De 78 De 78 De 78 De 78 De 78 De 78 De De 78 De 78 De 78 De 78 De 78 De 78 De De 78 De De De 78 De 78 De De 78 De 78 De De De 78 De De De 78 De De De De De De De D	OLL (NE	0.42		08.80	0.70	4.34	1.11	
TDE	ITCHENER		8			4	17.91	
The	EAMINGTON				92.00		1.89	
WAY) WAY) WAY) WAY) WAY) WAY) WAY) WAY)	(ADELA					17.06		
D)	_		7.			-		
RSBURG)	_				1 0.74	5.36	1.44	
ALL) ALLE RIVER) Ø.58 5.00 1.06 Ø.58 6.35 A) Ø.58 5.00 1.06 Ø.58 6.35 A) Ø.58 2.24 Ø.78 Ø.78 Ø.76 9.85 A) *** Ø.76 9.86 18.92 *** Ø.95 18.47 Ø.86 18.92 A.03 OON *** Ø.95 1.21 Ø.86 4.37 Ø.78 Ø.79 9.47 1.21 Ø.86 4.37 Ø.79 Ø.86 4.37 Ø.79 Ø.86 4.49 Ø.79 Ø.89 A.4.99 I.E.) Ø.69 Ø.89 Ø.79 Ø.89 Ø.89 Ø.79 Ø.89 Ø.89 Ø.89 Ø.89 Ø.89 Ø.89 Ø.70 Ø.7	(POTTE					17.40	4.06	
LLE RIVER) 6.58 5.00 1.06 0.80 6.36 A) 0.75 1.42 0.39 0.66 2.85 A) 0.78 1.42 0.47 0.78 54.41 1 *** 0.76 99.26 2.58 0.71 99.2 ** 0.50 22.05 4.03 0.23 24.99 CON ** 0.60 2.30 0.76 5.41 ERLY) 0.69 1.004 8 25.49 0.93 124.48 ERLY) 0.76 31 21 0.63 44.90 1 CON 0.69 1.004 8 25.49 0.93 124.48 CON 0.70 31.60 93 124.48 CON 0.70 31.60 93 23.32	(VAUXH		•	5.29			4.36	
A)	LLE			1.06	08.00		1.85	••
** Ø.58 2.24 Ø.47 Ø.54 2.53 Ø. ** Ø.78 55.18 15.7Ø Ø.78 54.41 15.7 ** Ø.95 18.47 6.38 Ø.86 18.92 5. ** Ø.60 22.05 4.03 Ø.23 24.99 2. OON \$\begin{array}{cccccccccccccccccccccccccccccccccccc				0.39	99.0	2.85	0.69	
**	ARIS				0.54			
** 0.76 9.26 2.58 0.71 9.47 2. ** 0.95 18.47 6.38 0.86 18.92 5. ** 0.50 22.05 4.03 0.23 24.99 2. OON	ARNIA				82.00	54.41		
** 0.95 18.47 6.36 0.86 18.92 5.00 ** 0.50 22.05 4.03 0.23 24.99 2.0 0.86 3.43 1.21 0.86 4.37 1. 0.62 5.30 0.78 0.75 5.41 1. 0.62 5.47 1.23 0.40 85 1. 0.63 41.54 13.08 0.63 44.90 11. ERLY) 0.69 1.0048 25.49 0.63 44.90 10. 0.91 21.13 7.02 0.93 23.92 8. 0.72 0.72.03 215.16 0.74 841.37 226.	IMCOE **				0.71			
** 0.50 22.05 4.03 0.23 24.99 2. 00N	T. THOMAS						•	
OON			8	4.03		4		
LE) 6.40 5.30 0.78 0.75 5.41 1. 0.62 5.47 1.23 0.40 8.85 1. 0.86 41.54 13.08 0.72 45.20 11. 0.79 31.60 9.12 0.63 44.90 100. ERLY) 0.69 100.48 25.49 0.83 124.48 37. 0.91 21.13 7.02 0.93 23.92 8. 0.76 772.03 215.16 0.74 841.37 226.	LAG			1.21		4.37	1.37	
LE)	ILLSONBURG			0.78	: 0.75	5.41	1.49	
LE)	ALLACEBURG				0.40	8.85	1.28	
ERLY) 0.79 31.60 9.12 0.63 44.90 10. ERLY) 0.69 100.48 25.49 0.83 124.48 37. 0.91 21.13 7.02 0.93 23.92 8.	ATERLOO		41.54	13.08				
WESTERLY)	INDSOR (LITTLE)		31.60	9.12	69.63	44.80	10.35	
0.91 21.13 7.02 0.93 23.92 0.76 772.03 215.16 0.74 841.37	WEST			25.49		124.48		
.76 772.03 215.16 0.74 841.37	OODSTOCK	0.91	21.13			23.95	8.10	
			772.03	-	7.		226.03	

> 100,000 m3/d - 0.9 mg/L		1001		TA COUNTY AME	1900	
4	L AGGREGATE	AVERAGE	TOTAL	AUGREGATE.	29	TOTAL
	TP CONC.	DAILY Q (1000 m3/d)	P LOADING (tonnes/yr)	TF CONC.	DAILY Q (1000 m3/d)	P LOADING (tonnes/yr)
AMHERSTBURG	1.00	5.00	1.83	1.00	4.56	1.66
BRANTFORD	0.74	54.01	14.59	. 0.74		16.86
CAMBRIDGE (GALT)		31.50	10.17			9.32
_		5.34	1.52			
(PRES	. 5		1.64	99.0	8.47	
CHATHAM **	. 7	25.71			28.71	9.21
DRESDEN	0.45	2.14	0.35			0.33
DUNNVILLE	0.63	4.59			0	1.09
FERGUS	0.64	3.72	0.87	0.54		
GUELPH	0.63	43.51	10.02		47.69	10.52
INGERSOLL (NEW)		5.27		0.70	4.34	1.11
KITCHENER	69.0	68.46	17.32		64.87	
CEAMINGTON		6.73		92.00	6.78	
LONDON (ADELAIDE)		16.82				5.34
LONDON (GREENWAY)	0.85	127.47	38.36	0.73	131.85	35.10
LONDON (OXFORD)		5.25	1.53	0.74	5.36	1.44
LONDON (POTTERSBURG)	0.84	17.34		0.64	17.40	4.06
LONDON (VAUXHALL)	87.00	18.57	5.29	0.61	19.56	4.36
MAIDSTONE (BELLE RIVER)		5.00		0.80		1.85
MOORE (CORUNNA)	0.75	1.42	0.39	99.0	2.85	
PARIS	0.58					
SARNIA	9.78		15.70	1 0.78		
SIMCOE					9.47	
ST. THOMAS	96.0		6.38	98.0	18.92	
STRATFORD **			4.03		4	2.07
STRATHROY LAGOON			.2	1 0.86		1.37
TILLSONBURG			. 7			1.49
WALLACEBURG		5.47		4		2
WATERLOO		41.54	0		45.20	
(LITTLE	62.29		9	0.63	4	10.35
WINDSOR (WESTERLY)		100.48			4	36.74
WOODSTOCK	0.91	21.13	7.02	0.93	23.92	8.10
	0.76	772.03	213.32	0.73	841.37	223.65

Monthly compliance for		1984		3 + A C G G G G A + F	1986		
all plants: TP = 0.9 mg/L	AGGREGATE AVG. EFF. TP CONC.	AVERAGE DAILY Q	TOTAL P LOADING	AGGREGALE AVG. EFF. TP CONC.	AVERAGE DAILY Q	TOTAL P LOADING	
PLANT	(mg/L)	(1000 m3/d)	(tonnes/yr)	(mg/L) (1000 m3/d)	(tonnes/yr)	
AMHERSTRURG	06.0	5.00	1.64	08.00	4.55	1.49	
PD ANTEORD		54.01	14.58	0.74	58.45	15.71	
CAMBRIDGE (GALT)	0.86	31.50		0.79		9.26	
(HE		5.34	1.43		5.50	1.66	
(PR			1.64	0.64	8.47	1.97	
			7.20		29.71		
DRESDEN	0.43	2.14	0.33		2.35	0.32	
DUNNILLE	Ξ.	4.59	1.02	09.00	4.93	1.09	
FERGUS	0.64	3.72	0.87	0.54	3.88	97.0	
**	0.62	43.51	9.87	09.00	47.69	10.38	
INGERSOLL (NEW)	0.40	5.27	0.78	19.0	4.34	•	
KITCHENER	0.69	68.46	17.32	0.74	64.87	17.50	
LEAMINGTON	0.52	6.73	1.28		6.78		
LONDON (ADELAIDE)		16.82	5.27	1 0.83	17.06	•	
(GREEN		127.47	38.36		131.85	35.10	
(OXFOF		5.25	1.46	: 0.71	5.36	1.40	
LONDON (POTTERSBURG)		17.34	5.15		17.40	4.80	
LONDON (VAUXHALL)	0.75	18.57	5.12	09.00	19.56	4.30	
MAIDSTONE (BELLE RIVER)	4	5.00	1.03			1.78	
MOOKE (CORUNNA)	69.69	1.42	0.36	0.62	2.85	0.65	
PARIS		2.24			2.53	0.49	
SAKNIA	177	55.18	15.50	92.00	54.41	15.11	
SIMCOE							
ST. THOMAS	98.00	18.47	6.95	0.82		5.65	
STRATFORD **	0.50	22.05	4.00		24.99	2.07	
STRATHROY LAGOON	1 0.87	3.43	1.09	08.00	4.37	1.28	
TILLSONBURG	0.40	5.30	0.78	0.74	6.41	1.45	
WALLACEBURG	09.00	5.47	1.20	1 0.38	8.86	1.24	
WATERLOO	0.82	41.54	12.47	11.00	45.20		
WINDSOR (LITTLE)		31.60		09.00	44.90	9.81	
WINDSOR (WESTERLY)	69.0	100.48	25.21			36.74	
WOODSTOCK	0.86	21.13	6.67	0.88	23.92	7.71	
	0.74	772.03	209.15	0.72	841.37	219.84	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1

all plants: TP < 1 mg/L	AGGREGATE			A(3(3KP)(3A)		
	AVG. EFF.	AVERAGE	TOTAL P LOADING	AVG. RFF.	AVERAGE DAILY O	TOTAL P LOADING
PLANT	(mg/L) (C	<u> </u>	(March 1)	C 1
BELLEVILLE	0.81	48.23	13.67	0.48	39.91	7.18
BROCKVILLE	1.00	14.68	5.36	0.81	18.51	5.49
BURLINGTON (SKYWAY)	69.0		22.04	1 0.64	64.91	15.18
CALEDON (BOLTON) **	0.51	3.52	99.0	0.44	4.16	
CAMPBELLFORD	69.0	7.12	1.80	0.84	99.9	2.04
COBOURG (1)	0.70	12.96	3.29	1.00	8.50	3.10
CORNWALL (CORNWALL)	0.98	48.46	17.27	10.97	47.64	16.91
		12,75	3.64	0.82	13.33	3.89
FORT ERIE (ANGER AVE.)		8	5		12.92	
BAKER		10.73	2.76	0.56	1.	2.21
HALTON HILLS (ACTON) **		3.40	0.67	0.46	3.92	
LLS (1.00	96.8	3.63	0.50	11.14	2.02
HAMILTON (WOODWARD)	1.00	323.09	117.93	1.00	307.78	112.34
IROQUOIS	1.00	3.19	1.16	1.00	4.46	1.63
KINGSTON TWP.	0.94	15.56	5.36	0.88	16.33	6.27
KINGSTON	0.88	2	20.11	9.78	66.43	18.50
LINDSAY LAGOON	0.83	12.89	3.80	0.53	18.33	3.56
METRO TORONTO(HIGHLAND)	08.00	8	51.70	0.77	163.36	46.73
METRO TORONTO (HUMBER)	1.00	339.27	123.83	1.00	377.69	137.86
	0.97	676.22	239.39	1.00	683.07	
TORONTO(7		0.85	-	10.72
MILTON **	0.32	9.89	1.15	0.27		1.23
0		2	24.40	0.91	-	23.53
MISSISSAUGA (LAKEVIEW)	0.84	198.62	61.24	9.65	230.41	54.38
	1.00	6.02	2.20	1.00	6.22	2.27
NEWCASTLE (PORT DARLINGT)	1.00	6.40	2.34	0.93	8.07	2.73
	00.00	00.00	00.00	00.00	00.00	00.00
	0.62	56.10	12.70	0.45	57.01	9.45
OAKVILLE (SE)	0.87	12.48	3.96	9.85	13.27	4.11
OAKVILLE (SW)	0.92	24.79	8.32	69.83	28.92	9.39
	0.35	7.	0.95	0.25	8.10	0.74
(HARMONY	1.00	5.8	9.44	09.00	27.49	6.01
Z			. 7	09.20	27.59	5.04
		4	5	0.83	5.6	8
PICKERING (DUFFIN CREEK)		9	8		149.65	
	0.51	n .	. 5	0.51	E	0.62
PORT COLBORNE (SEAWAY)		30	- '	3		4.81
A TO DO LA		υ,	1.55	2	2	1.89
٤)		4.4			-	
OF CAMPANINES (F. DALH.)		4.2	4	ا ن	. 2	8
					41.99	
TRENJON		8		. 2	11.15	2.33
		7			33.44	
(CORBETT CREEK)			3.50	. 5	13.41	2.87
(PRINGLE CREEK	66.0	6.03	2.18	0.63	5.62	1.30
WHITHY (PRINCIR CREEK 2)	1 000	8 29	0000	0	0 8 9	
1	7.00	3			0	•

TP = 1 mg/L	AVE DAI (1000 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOTAL P LOADING (tonnes/yr) 11.30 4.94 19.76 0.66 0.66 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1	AVG. EFF. TP CONC. (mg/L)	AVERAGE DAILY Q (1000 m3/d)	TOTAL P LOADING
KYWAY) KYWAY) NWALL) GER AVE.) R ROAD) (ACTON) R ROAD) (ACTON) (ACT	(1000 m3/ 46. 14. 12. 12. 12. 12. 12. 13. 32.3.	(tonnes/yr) 11.30 4.94 19.76 6.66 1.77 1.77 2.42 15.72 3.53 3.59 3.29 3.29 3.29 3.29 6.69	(m)	(1000 m3/d)	(+onnes/vr)
KYWAY) ** 60. ON) ** 60. ON) ** 60. ONALL) ** 60. GER AVE.) ** 60. (ACTON) ** 60. (ACTON) ** 60. (ACTON) ** 60. (ACTON) ** 60. (HIGHLAND) ** 60. (HIGHLAND) 60. (HIGHLAND) 60. (HIGHLAND) 60. (HATIN) 60. (HATIN) 60. CLARKSON) 60.	441 641 641 641 641 641 641 641 641 641				(connes/yr)
KYWAY) ON) *** ON NWALL) *** GER AVE.) R ROAD) R ROAD) (ACTON) *** GEORGT.)** DWARD) ON (HIGHLAND) ON (HIGHLAND) ON (HIGHLAND) ON CHUMBER) ON ON ACLARKSON) *** ON ON ON CHARKSON) ON ON ON ON ON ON ON ON ON	4168 4. C. C. C. G. C.		٠.		7.18
KYWAY) ON) *** ON NWALL) *** GER AVE.) R ROAD) R ROAD) (ACTON) *** OGEORGT.)** OHARD) OGEORGT.)** OGEORGT.)* OGEORGT	68 			8	•
ON) *** 6. NWALL) *** 6. GER AVE.) ** 6. GER AVE.) ** 6. (ACTON) *** 6. GEORGT.)** 6. NGEORGT.)** 6. CHARKSON) 6. CLARKSON) 6.			9 .	•	
MALL) GER AVE.) R ROAD) R ROAD) (ACTON) *** (GEORGT.)** DWARD) N (HIGHLAND) (HUMBER) (MAIN) (IN.TORONTO) 20 20 20 20 20 20 20 20 20 2			6.43	•	8.65
NWALL	25 4 4 1 1 1 1 2 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				1.00
GER AVE.) R ROAD) R ROAD) (ACTON) *** (GEORGT.)** (GEORGT.)** (HIGHLAND) (HIGHLAND) (HUMBER) (MAIN) (IN.TORONTO) (A.TORONTO) (A.TORONTO)	82 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3		0.00	47.64	15.75
GER AVE.) R ROAD) (ACTON) ** (GEORGT.)** DWARD) N (HIGHLAND) (HUMBER) (MAIN) (N. TORONTO) CLARKSON) A	928 929 929 929			13.33	
R ROAD) ** (ACTON) ** (GEORGT.)** Ø. (GEORGT.)** Ø. (HIGHLAND) Ø. (HUMBER) Ø. (HUMBER) Ø. (MAIN) Ø. (IN.TORONTO) Ø. CLARKSON)	929. 929.				
(ACTON) ** 6. (GEORGT.)** 6. DWARD) 6. N 6. (HIGHLAND) 6. (HUMBER) 6. (HUMBER) 6. (MAIN) 6. (IN.TORONTO) 6. CLARKSON) 6.	. 922 . 6. 3.				
(GEORGT.)** DWARD) 0. 0. N (HIGHLAND) 0. (HUMBER) 0. (MAIN) (N. TORONTO) 0. CLARKSON)	323.			3.92	
DWARD) 6.0 N.0 (HIGHLAND) 6.0 (HUMBER) 6.0 (MAIN) 6.0 (IN.TORONTO) 6.0 CLARKSON) 6.0	323.	ä		7	2
0. (HIGHLAND) (HUMBER) (MAIN) (N. TORONTO) (N. TORONTO) (N. CLARKSON)	e, 4	112.44	6	307.78	102.77
(HIGHLAND) 6. (HUMBER) 6. (MAIN) 6. (N. TORONTO) 6. (CLARKSON) 6. (CLARK	4	1.02		4.	
(HIGHLAND) 0. (HIGHLAND) 0. (MAIN) 0. (N. TORONTO) 0. (N. TORONTO) 0. (CLARKSON) 0. (C	10.			0 4	•
(HIGHLAND) 0. (HUMBER) 0. (MAIN) 0. (N. TORONTO) 0. ** 0.	0 -	19.30	0.00		10.00
(HUMBER) 0. (HUMBER) 0. (MAIN) 0. (N. TORONTO) 0.	156	50.16	04.0	16.33	
TO(MAIN) FO(N. TORONTO) ** CCLARKSON)	100.	- 5		3 0	
TO(N. TORONTO) 6.	676	221 95			
** Ø.	35.	0 00		34 69	
(CLARKSON) 6	6				
1	75.	0		-	. 22.95
MISSISSAUGA (LAKEVIEW) 0.82	198.62	59.29	0.65	230.41	54.38
.00	.9	2.16	96.09	6.22	2.22
(PORT DARLINGT) : Ø.	6.			8.07	2.49
.00	ø.			0	
(STAMFORD); Ø.	56.1		₹.		9.45
(SE)	12.	•			
	24.				
** 60.3	7.			7	
HARMONY CR. I)	25.	7.35			•
CR. 2)	20.00	0	20.00	27.59	à .
CABBOO NIBBI	104	14.84	9.0	29.65	
FFIN CREEN)	121.	90.00		148.00	40.03
OLBORNE (SEAWAY)	. 4.				
0.5	8	1.55		2	
(EDWARDSBURGH) O.	4	1.43			1.16
0	32.	6.40	0.39	2	5.86
ST. CATHARINES (P. WELLER); 0.57	35.83	7.43		6	
.00	-	2.17	1 0.57	11.15	
	40.16	5.35	0.70	33.44	8.57
(CORBETT CREEK) . O.		3.27		13.41	
(PRINGLE CREEK 1) : 0.	0.	1.61	09.00		1.24
CREEK 2)	6.29	2.09	10.84	6.59	2.01
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					

PREDICTED LOADINGS FOR SCENERIO 2 - LAKE ONTARIO / ST. LAWERENCE DRAINAGE BASIN

71LLE 71LLE 71LLE 71LLE 71LLE 71LLE 71LF (SKYWAY) *** 51LFORD 6(1) *** 74 (1) *** 75 (1) *** 75 (1) *** 76 (1) *** 77 (1) *** 78 (1) *** 79 (1) *** 70 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000 ma3/d) 46.23 46.23 3.52 48.26 48.46 48.46 48.46 32.36 32.36 32.36 32.36 32.36 32.36 32.36	(tonnes/yr) 11.36 14.94 19.76 0.66 0.66 15.72 3.29 3.29 3.08 1.02 1.02 4.89 1.02 1.02	\ 	(1000 m3/d) 39.91 18.51 64.91 4.16 6.66	(tonnes/yr)
VILLE VILLE NGTON (SKYWAY) ON (BOLTON) ELLFORD RG (1) ALL (CORNWALL) SY (BAKER ROAD) N HILLS (ACTON) N HILLS (GEORGT.) TON (WOODWARD) OIS FON TWP. TORONTO(HIGHLAND TORONTO(HUGHLAND TORONTO(HUGHLAND TORONTO(HAMBER)			- 4 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
VILLE NGTON (SKYWAY) ON (BOLTON) ELLFORD ALL (CORNWALL) S ERIE (ANGER AVE.) BY (BAKER ROAD) N HILLS (GEORGT.) TON (WOODWARD) OIS TON TWP. TORONTO(HIGHLAND TORONTO(HIGHLAND TORONTO(HAMBER)			4 0 0 - N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			7.1
NGTON (SKYWAY) SN (BOLTON) ELLEORD RG (1) RG (1) SS (2) SS (1) SS (1) N HILLS (ACTON) N HILLS (GEORGT.) TON TON TON TON TORONTO(HIGHLAND TORONTO(HUMBER) TORONTO(HAMBR)			0 - N 0 m m N 0 m m - 4 0 m			
ELLEORD RG (1) RG (1) ALL (CORNWALL) S ERIE (ANGER AVE.) BY (BAKER ROAD) N HILLS (ACTON) N HILLS (GEORGT.) N HILLS (GEORGT.) TON (WOODWARD) TON TON TON TORONTO(HIGHLAND TORONTO(HUGHLAND TORONTO(HUMBER)			- 4 - 8 - 4 - 4 - 6 - 4 - 6 - 4 - 6 - 6 - 6 - 6			
ELLEOKD RG (1) ALL (CORNWALL) ALL (CORNWALL) ERIE (ANGER AVE.) BY (BAKER ROAD) N HILLS (GEORGT.) N HILLS (GEORGT.) TON TWP. TON TORONTO(HIGHLAND TORONTO(HUGHLAND TORONTO(HUMBER) TORONTO(HAMBER)			- W. G.			
ALL (CORNWALL) SELE (ANGER AVE.) BY (BAKER ROAD) N HILLS (ACTON) N HILLS (GEORGT.) TON (WOODWARD) JIS FON TWP. TORONTO(HIGHLAND TORONTO(HUMBER) TORONTO(HAMBER)			10 - 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1.86
SELE (ANGER AVE.) BY (BAKER ROAD) W HILLS (ACTON) W HILLS (GEORGT.) TON (WOODWARD) JIS TON TWP. TORONTO(HIGHLAND TORONTO(HUGHLAND TORONTO(HUMBER) TORONTO(HAMBER)			1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			7.0
ERIE (ANGER AVE.) BY (BAKER ROAD) BY (BAKER ROAD) N HILLS (ACTON) N HILLS (GEORGT.) ION (WOODWARD) DIS TON TWP. TOON TWP. TORONTO(HIGHLAND TORONTO(HUMBER) TORONTO(HAMBER)			10 4 - 4 0 c			15.75
EKIE (ANGEK AVE.) BY (BAKER ROAD) H HILLS (GEORGT.) I'M HILLS (GEORGT.) I'ON (WOODWARD) JIS TON TWP. TON Y LAGOON TORONTO(HIGHLAND TORONTO(HUMBER) TORONTO(MAIN)			. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		•	4
HILLS (ACTON) HILLS (GEORGT.) HILLS (GEORGT.) ION (WODWARD) JOIS TON TWP. TON TORONTO(HIGHLAND TORONTO(HUMBER) TORONTO(HUMBER)			10 m = 4 m		Э, E	
HILLS (GEORGT.) IN HILLS (GEORGT.) ION (WOODWARD) IOS TON TORONTO(HIGHLAND TORONTO(HUMBER) TORONTO(MAIN)			10 4		10.10	7.7
TON (WOODWARD) JIS TON TWP. TON TORONTO(HIGHLAND TORONTO(HUMBER) TORONTO(MAIN)			4			0.00
TORONTO(TORONTO(TORONTO(TORONTO(TORONTO(
TORONTO(TORONTO(TORONTO(TORONTO(-
TORONTO(TORONTO(TORONTO(98.0	16.33	
TORONTO (TORONTO)	0.93				4	18.50
TORONTO(TORONTO(۰			
TORONTO(0.85					
TORONTO(*	2		8		113,35
		8.		8	3	3.7
METRO TORONTO(N. TORONTO)			10.87			
	0.32	o			12.32	-
		0			71.	2
MISSISSAUGA (DAKEVIEW)	20.00	198.62	56.83	200	230.41	. c
NEWCASTLE(PORT DARLINGT)			2.10		A 072	2.2.2
						000
					57.01	
	0.81	2	3.67			3.71
£					28.92	8.04
60	ا	-		6.25	. 00	
OSHAWA (HARMONY OR 3)	20.0	25.86	7.35		- 6	
ROUGH			14 94	20.00	55 69	14 91
PICKERING (DUFFIN CREEK)					. 0	
PICTON					3	
PORT COLBORNE (SEAWAY)		14.08	4.32			
PORT HOPE			.5		3	1.99
MA			1,43		5.15	
ST. CATHARINES (P. DALH.)	6.54	32.40	4		9.	5.86
מ		35.83	4 .		g	
MHT. FAND	36.00	10.80	2.17			۰
WHITBY (CORBETT CREEK)		10 00	3 22	0.00	33.44	8.57
(PRINGLE CREEK 1			1.5.1		13.41	0 0
WHITBY (PRINGLE CREEK 2)	0.91		2.09		6.59	2.01
		- 1		. 1	- 1	

AGGREGA AGGREGA AVAY) ALL) ** ** ** ** ** ** ** ** **	AGGREGATE AVG. EFF. TP CONC. (mg/L) (AVERAGE DAILY Q (1000 m3/d) 39.91 18.51 6.66 8.56 8.56 8.50 47.64 112.92 112.92 112.92 116.33 66.43 16.33 16.33	TOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO
TP CONC. DAILY Q P LOADI (SKYWAY) (SKYWAY) (D. 65 (A 6.23 (LTON) (B 6 46.23 (LTON) (B 6 14.68 4.68 4.68 (A 6.23 (B 6 15.12 (B 7.12 (B 7.12 (B 7.12 (B 8 19.68 (B 19.73 (B 8 19.68 (B 19.73 (B 8 19.88 (B 19.88 (CON) (CLARKSON) (CLAKKSON) (CLAKSON) (CLAKKSON) (CLAKKSON) (CLAKKSON) (CLAKKSON) (CLAKKSON)		AALK 1330-1330-1330-1330-1330-1330-1330-1330	Ctonnes/y (tonnes/y 7. 7. 14. 14. 14. 18. 18. 18. 18. 18. 18. 18. 18
(SKYWAY) (SKYWAY) (SKYWAY) (SCKYWAY)			F. 4 4 0 1 0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
(SKYWAY) (SKYWAY) (SKYWAY) (D. 661 (D. 671			4 4 Q 4 9 4 9 9 9 9 9 9 4 4 9 9 9 9
** (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c			
E.) ** (E.) (E.			<u> </u>
ALL) *** *** *** *** *** *** ***			<u>જિમ્</u> લાહળ <u>જી</u> જુવાનું મુજી હું જુ
R AVE.) R AVE.) R AVE.) R AVE.) CTOAD) S. 46 CTOAD) CORD. CORD. CORD. ARD) CORD. ARD) ARD			* m m n 2 n 4 - 1 4 m m n
RAVE.) RAVE.) ROAD) CTON) *** CTOROT.) ** CO. 88 CO. 88 CO. 89			000004-4000
CTON) *** 0.68 10.73 2.75 CTON) *** 0.46 3.40 0.46 3.40 0.46 3.40 0.82 3.19 0.82 10.73 0.88 10.82 10.73 0.88 10.82 10.73 0.88 10.82 10.85 10.83 0.88 10.82 10.89 10.89 10.88 10.88 10.89 10.88 10.88 10.89 10.89 10.88 10.88 10.89 10.88 10.88 10.89 10.88 10.88 10.89 10.88 10.89 10.88 10.89 1			2204-4000
CTON) ** CTON) ** CCTON) ** CCTON) ** CON BE 3.40 CON BE 3.19 CON BE 3.10 CON			204-4000
ARD) ARD) O. 88 323.09 O. 88 IGHLAND) O. 89 O. 44 IZ. 89 IGHLAND) O. 88 IGHLAND) IGHLAND) O. 88 IGHLAND) IGHLAND) O. 88 IGHLAND) IGHLAND IGHLAND			4-4-0000
TGHLAND) 0.82 15.55 40 0.89 16.89 17.26 18.90 27.26 18.90 27.26 18.90 27.26 18.90 27.26 18.90 27.26 18.90 27.16 19.80 27.16 19.80 27.16 19.80 27.16 19.80 10.80 1			4 8 6 6 6
CREEK Color Colo			4000
IGHLAND) UMBER) UMBE			တ္က က
IGHLAND) O. 44 12.89 UMBER) O. 86 339.27 1099 AIN) O. 86 676.22 208 O. 85 662 208 I. 9.89 1. O. 79 198.62 56 I. 0. 85 6.40 1. O. 79 198.62 56 I. 0. 85 6.40 1. O. 79 12.48 3. CR.1) CR.2) O. 75 24.79 6. CR.2) O. 75 24.79 6. O. 85 660 7. IN CREEK) O. 75 24.79 66 O. 95 73 26.60 7. DSBURGH) O. 87 121.05 38 O. 58 660 7. O. 87 121.05 38 O. 58 660 7. I. 14.08 3. DSBURGH) O. 84 4.2 1. O. 54 66 O. 64 66 O. 65 66 O. 65 66 O. 65 66 O. 66 6			. v
UMBER) UMBER) UMBER) UMBER) 0.88 339.27 109. AIN) 0.85 0.85 0.85 0.85 0.85 0.89	6.45		c
ARKSON) ** ARKSON) ** O. 32 O. 85 O. 85 O. 79 O. 89 O. 70 O. 80 O. 70 O. 7			113
ARKSON) ** O. 32 O. 32 FEVIEW) O. 85 O. 85 O. 89 O. 79 O. 85 O. 80 O. 85 O. 80 O. 80 O. 80 O. 80 O. 80 O. 80 O. 77 O. 80 O. 77 O. 80 O. 77 O. 80 O. 77 O. 70 O. 75 O	0.86		213.
**			· 63
ARKSON) KEVIEW) O. 79 DARLINGT) O. 85 G. 60 O. 00 STAMFORD) O. 77 O. 77 O. 77 O. 77 O. 77 O. 75 O. 76 O. 7	0.27		
DARLINGT) DARLINGT) DARLINGT) 0.89 0.85 0.002 0.002 0.002 0.003	9.60	230 41	54 38
DARLINGT)	0.00	6.22	. 0
STAMFORD)	0.82		2
STAMFORD)	00.00	8	0
CR.1) ** (CR.1) (CR.2) (C.35 (CR.2) (CR	6.45	13 27	9.40
CR.1) ** 0.35 7.32 0.6 CR.2)	0.72	9.00	
CR.1)			0
CK.2) CK.2) CK.2) CK.2) CK.2) CK.2) CK.26 CK.26 CK.27	0.56	27.49	5.
FFIN CREEK)	0.50	27.59	12.64
(SEAWAY) 0.50 3.15 0.78 14.08 3.15 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0	9.0		455
(SEAWAY) 0.78 14.08 3. ARDSBURGH) 0.84 4.42 1. (P.DALH.) 0.54 32.40 6. (P.WELLER) 0.57 35.83 7. 0.54 10.80 2. 0.36 40.16 5.		3	0
ARDSBURGH) 0.51 8.35 1. (P.DALH.) 0.54 32.40 6. (C.WELLER) 0.57 35.83 7. (C.WELLER) 0.54 10.80 2. (C.MERK) 0.36 40.16 5.			e .
(P. DALH.) 0.54 32.40 6. (P. WELLER) 0.57 35.83 7. (P. WELLER) 0.57 36.83 7. (P. WELLER) 0.54 10.80 2. (P. T. CREEK) 0.76 10.95 3.	6.57	9.56	
(P.WELLER) 0.57 35.83 7. 0.54 10.80 2. 0.36 40.16 5. 17 CREEK) 0.36 40.16 5.		0.10	5.86
0.54 10.80 2.1 0.36 40.16 5.3 17 CREEK) 0.78 10.92 3.1	3 6	. 0	11.
CORBETT CREEK) : 0.78 10.92 3.1	2	-	2.
COKER	9.	33.44	
Spring Committee of the	2.	4. 0	2.83
(PRINGLE CREEK 1) ; 0.	0.79	9.02	1.21

