Build Night 1

Introduction & Problem Definition

Team Meeting Agenda

- Onboarding (Team contract, Slack and Github)
- Go over the structure of this project
- Define the Online Portfolio Selection (OLPS) problem
- Introduce the OLPS survey paper
- Discuss a basic framework for OLPS
- Assign readings (i.e. homework)

Open Contract

Project Structure

Project Schedule

- Welcome & Problem Definition
- Baseline + Follow-the-Winner Strategies I
- 3. Follow-the-Winner Strategies II
- 4. Follow-the-Loser Strategies I
- 5. Follow-the-Loser Strategies II
- 6. Pattern-Matching Strategies I
- 7. Pattern-Matching Strategies II
- 8. Backtesting, Experimentation, and Comparison
- 9. Flex Week
- 10. Poster Work & Presentation Practice

(you are here!)

How Each Week Will Look

- 1. Build Night starts off every week. Discuss previous homework/readings and progress.
 - a. Go ahead and solve problems/answer questions that came up in the previous week.
 - b. Review the readings that cover the new material OR work on code.
 - c. Do a quick code review/repo check with me.
 - d. At the end of the Build Night, go over progress with the whole group
- 2. Meeting outside of Build Nights without me present to work on things
 - a. Write code, discuss readings, (towards the end) work on poster
- (Some weeks) Meeting with Faculty Advisor to update them and receive guidance

Problem Definition

Portfolio selection, aiming to optimize the allocation of wealth across a set of assets, is a fundamental research problem in computational finance and a practical engineering task in financial engineering.

Simply put:

We figure out how much money should go to each stock or asset in our portfolio <u>based on previous</u> <u>performance</u>.

OLPS Example

Stock	One-day Change (\$)		
AAPL	- 0.50		
GOOG	<i>–</i> 3.35		
FB	+ 2.16		
MSFT	+ 0.01		

OLPS Example

Stock	One-day Change	Allocation Signal
AAPL	- 0.50	Allocate little less
GOOG	– 3.35	Allocate a lot less
FB	+ 2.16	Allocate a lot more
MSFT	+ 0.01	Allocate about the same

OLPS Example

Stock	One-day Change	Allocatio	How much less?
AAPL	- 0.50	Allocate I	How much more?
GOOG	– 3.35	Allocate a	a lot less
FB	+ 2.16	Allocate a lot more	
MSFT	+ 0.01	Allocate about the same	

OLPS Framework

ALGORITHM 1: Online portfolio selection framework.

Input: \mathbf{x}_1^n : Historical market sequence

Output: S_n : Final cumulative wealth

Initialize $S_0=1,\, \mathbf{b}_1=\left(rac{1}{m},\, \ldots,\, rac{1}{m}
ight)$

for t = 1, 2, ..., n **do**

Portfolio manager computes a portfolio \mathbf{b}_t ;

Market reveals the market price relative \mathbf{x}_t ;

Portfolio incurs period return $\mathbf{b}_t^{\top}\mathbf{x}_t$ and updates cumulative return $S_t = S_{t-1} \times (\mathbf{b}_t^{\top}\mathbf{x}_t)$;

Portfolio manager updates his/her online portfolio selection rules;

end

Homework

About Homework

- Very important to the success of your project
- This week:
 - Read Intro, Sections 1/2 in OLPS survey paper (you do NOT have to fully get the math, but please try to understand Example 2.1)
 - Python & Numpy Tutorial (linked to on Github)

