LICAL					
1121					
0011					

Model Question Paper-1 with effect from 2022-23 (CBCS Scheme)

Fourth Semester B.E. Degree Examination

Design and Analysis of Algorithms

Time: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

	_	Module -1	Bloom's Taxonomy Level	Marks
Q. 1	a	Define an Algorithm. Explain the characteristics of an Algorithm.	L1, L2	06
	b	Explain the Divide and Conquer technique.	L2	04
	С	Explain the Merge Sort algorithm. Apply Merge Sort algorithm to sort the given characters. U N I V E R S I T Y	L3	10
	1	OR		
	a	Explain the following Asymptotic notations: (i) Big O (ii) Big Ω (iii) Theta θ	L1, L2	06
	b	Explain how Strassen's algorithm is better for matrix multiplication.	L2	04
Q. 2	С	Write the algorithm for Binary Search. Apply Binary Search algorithm to find the key value 63 from the given array. 7 14 21 28 35 42 49 56 63 70	L3	10
		Module-2		
	a	What are Disjoint Sets? Give the Tree, Data and Array representation for the given three sets: $S_1 = \{3, 7, 8, 9\}$, $S_2 = \{2, 4, 5\}$ and $S_3 = \{1, 6\}$	L1, L2	05
Q. 3	b	Explain how Union algorithm works on Disjoint Sets with an example.	L2	05
	c	Solve the 4-Queens Problem by using the Backtracking approach.	L3	10
	1	OR		
	a	Explain the Graph Coloring Problem with an example.	L2	05
Q. 4	b	Apply Find algorithm to search for an element 4 in the given tree.	L3	05
	С	Apply Backtracking technique to solve the Sum of Subset Problem for the instance $d = 15$ and $S = \{3, 5, 6, 7\}$.	L3	10
	1	Module-3		
Q. 5	а	Find the all pairs shortest paths for the given graph using Floyd's algorithm.	L3	10

	b	Apply Dynamic Programming to solve the given travelling salesperson problem.	L3	10
		OR		
	a	Construct an Optimal Binary Search Tree for the given data: $n = 4$ $(a_1, a_2, a_3, a_4) = (do, if, int, while)$ $p(1:4) = (3, 3, 1, 1)$ $q(0:4) = (2, 3, 1, 1, 1)$.	L3	10
Q. 6	b	Using Dynamic Programming, solve the given instance of 0/1 Knapsack problem. Consider the capacity of Knapsack (m) = 5. Item 1 2 3 4 Weight 2 1 3 2 Value 12 10 20 15	L3	10
		Module-4		
Q. 7	а	Apply single source shortest path algorithm to the given graph by considering 'P' as source vertex.	L3	10
	b	Apply Greedy method for the following instance of Knapsack problem. Given: Knapsack capacity (M) = 15. Item 1 2 3 4 5 6 7 Weight 2 3 5 7 1 4 1 Profit \$10 \$5 \$15 \$7 \$6 \$18 \$3	L3	10
	1	OR		
Q. 8	а	Apply Prim's algorithm to obtain a minimum cost spanning tree for the given graph.	L3	10
	b	For the given data, find the optimal job sequence and maximum profit using Greedy approach. Job J1 J2 J3 J4 J5 Profit 60 100 20 40 20 Deadline 2 2 3 1 1	L3	10

		Module-5		
Q. 9	а	Solve the given instance of 0/1 Knapsack problem using Branch and Bound technique. Given: Knapsack Capacity (m) = 15 Item 1 2 3 4 Profit 10 10 12 18 Weight 2 4 6 9	L3	10
	b	Explain the following: (i) Class P (ii) Class NP (iii) NP Complete Problem (iv) NP Hard Problem.	L2	10
OR				
Q. 10	а	Apply the Branch and Bound algorithm to solve the travelling salesperson problem for the given graph.	L3	10
	b	Explain: (i) Cook's theorem (ii) Non-deterministic algorithms.	L2	10

USN

Model Question Paper-2 with effect from 2022-23 (CBCS Scheme)

Fourth Semester B.E. Degree Examination

Design and Analysis of Algorithms

Time: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	Bloom's Taxonomy Level	Marks
Q. 1	а	Apply Strassen's algorithm to multiply the following matrices. $\begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} * \begin{bmatrix} 1 & 2 \\ 6 & 5 \end{bmatrix}$	L3	10
4	b	What are the criteria that an algorithm must satisfy?	L1	05
	С	Explain Space Complexity and Time Complexity of an algorithm.	L2	05
	1	OR		
Q. 2	a	Apply Quick Sort algorithm to the following set of numbers. 65, 70, 75, 80, 85, 60, 55, 50, 45	L3	10
Q. 2	b	What are Asymptotic Notations? List and describe the various asymptotic notations.	L1, L2	10
	1	Module-2		
	a	Apply Backtracking technique to solve the Sum of Subset Problem for the instance $d = 7$ and $S = \{1, 3, 4, 6\}$.	L3	10
Q. 3	b	Explain the following operations of Disjoint Sets: (i) Union (ii) Find	L2	10
		OR		
Q. 4	а	Construct the state space tree using Graph Coloring approach for the given graph when m=3. A B C C	L3	10
	b	Discuss the N-Queens Problem using Backtracking approach.	L2	10
	а	What is an Optimal Binary Search Tree? Obtain an Optimal Binary Search Tree for the given data: $(a_1,a_2,a_3,a_4)=(\text{end, goto, print, stop})$ $p_1=\frac{1}{20} \text{ , } p_2=\frac{1}{5} \text{ , } p_3=\frac{1}{10} \text{ , } p_4=\frac{1}{20}$ $q_0=\frac{1}{5} \text{ , } q_1=\frac{1}{10} \text{ , } q_2=\frac{1}{5} \text{ , } q_3=\frac{1}{20} \text{ , } q_4=\frac{1}{20}$	L1, L3	10
Q. 5	b	Apply all pairs shortest path algorithm for the given graph.	L3	10

	1	OR		
Q. 6	а	State Traveling Salesperson Problem. For the given cost matrix, obtain the optimal cost tour for the travelling salesperson using Dynamic Programming. $\begin{bmatrix} 0 & 10 & 15 & 20 \\ 5 & 0 & 9 & 10 \\ 6 & 13 & 0 & 12 \\ 8 & 8 & 9 & 0 \end{bmatrix}$	L1, L3	10
	b	Solve the given instance of $0/1$ Knapsack problem using Dynamic Programming. Given the capacity of Knapsack (m) = 8. Item 1 2 3 4 Weight 2 3 4 5 Profit 1 2 5 6	L3	10
	· I	Module-4		
	а	Apply Greedy method for the following instance of Knapsack problem, where Knapsack capacity (M) = 5.	L3	07
Q. 7	b	Apply Dijkstra's algorithm to the given graph by considering 'a' as source.	L3	08
	С	What is Job Sequencing with Deadlines problem? Explain.	L2	05
Q. 8	а	Define minimum cost spanning tree. Obtain a minimum cost spanning tree for the given graph using (i) Prim's Algorithm and (ii) Kruskal's Algorithm. 10 28 25 3 Evaluin the concept of Poliability Posign when deviges are connected in	L1, L3	15
	b	Explain the concept of Reliability Design when devices are connected in series and parallel.	L2	05
		Module-5	14.12	05
	a b	State and explain Cook's theorem. Write a note on Non-deterministic algorithms.	L1, L2 L2	05 05
Q. 9	С	Obtain LC Branch and Bound solution to the given 0/1 Knapsack problem, which has a capacity of 15. Item	L3	10

BUE401

	OR		
	Explain the following: (i) Class P (ii) Class NP (iii) NP Complete Problem (iv) NP Hard Problem.	L1, L2	10
Q. 10	Solve the given traveling salesperson problem using Branch and Bound technique.	L3	10
