LA CODIFICA DELL'INFORMAZIONE

Introduzione ai sistemi informatici D. Sciuto, G. Buonanno, L. Mari, McGraw-Hill Cap.2

Codifica dati e istruzioni

- Algoritmi = **istruzioni** che operano su **dati**.
- Per scrivere un programma è necessario rappresentare **istruzioni** e **dati** in un formato tale che l'esecutore automatico sia capace di
 - memorizzare istruzioni e dati;
 - manipolare istruzioni e dati.

Codifica dati e istruzioni

- Alfabeto dei simboli
 - cifre "0", "1", …, "9", separatore decimale (","), separatore delle migliaia (".") e segni positivo ("+") o negativo ("–").
- Regole di composizione (sintassi), che definiscono le successioni "ben formate"
 - "1.234,5" è la rappresentazione di un numero;
 - "1,23,45" non lo è.
- Codice (semantica)
 - "1.234,5" = $1 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0 + 5 \times 10^{-1}$
 - "1,23,45" = ??
- Lo stesso alfabeto può essere utilizzato con codici diversi:
 - "123,456" = $1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 4 \times 10^{-1} + 5 \times 10^{-2} + 6 \times 10^{-3}$, [IT]
 - "123,456" = $1 \times 10^5 + 2 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 6 \times 10^0$, [UK]

Codifica Binaria

- Alfabeto binario: usiamo dispositivi con solo due stati
- Problema: assegnare un **codice univoco** a tutti gli oggetti compresi in un insieme predefinito (e.g. studenti)
- Quanti oggetti posso codificare con k bit:
 - 1 bit \Rightarrow 2 stati (0, 1) \Rightarrow 2 oggetti (e.g. Vero/Falso)
 - 2 bit \Rightarrow 4 stati (00, 01, 10, 11) \Rightarrow 4 oggetti
 - 3 bit \Rightarrow 8 stati (000, 001, ..., 111) \Rightarrow 8 oggetti
 - •
 - k bit $\Rightarrow 2^k$ stati $\Rightarrow 2^k$ oggetti
- Quanti bit mi servono per codificare N oggetti:
 - $N \le 2^k \Rightarrow k \ge \log_2 N \Rightarrow k = \lceil \log_2 N \rceil$ (intero superiore)
- Attenzione: c'è l'ipotesi implicita che i codici abbiano tutti la **stessa** lunghezza

I giorni della settimana in binario

Lunedì	000
/ Martedì	001
Mercoledì	010
Giovedì	01 1
Venerdì	100
Sabato	_ 10 1
Domenica	110
	11 1
Domenica	110

1 bit 2 "gruppi" 4 "gruppi"

2 bit

3 bit 8 "gruppi"

Codifica binaria dei caratteri

- Quanti sono gli oggetti compresi nell'insieme?
 - 26 lettere maiuscole + 26 minuscole \Rightarrow 52
 - 10 cifre
 - Circa 30 segni d'interpunzione
 - Circa 30 caratteri di controllo (EOF, CR, LF, ...)

circa 120 oggetti complessivi
$$\Rightarrow \mathbf{k} = \lceil \log_2 120 \rceil = 7$$

- Codice ASCII: utilizza 7 bit e quindi può rappresentare al massimo 2⁷=128 caratteri
 - Con 8 bit (= byte) rappresento 256 caratteri (ASCII esteso)
 - Esistono codici più estesi (e.g. UNICODE) per rappresentare anche i caratteri delle lingue orientali

bit, Byte, KiloByte, MegaByte, ...

bit = solo due stati, "0" oppure "1".

Byte = 8 bit, quindi $2^8 = 256$ stati

KiloByte [KB] = 2^{10} Byte = 1024 Byte $\sim 10^3$ Byte

MegaByte [**MB**] = 2^{20} Byte = 1 048 576 Byte ~ 10^6 Byte

GigaByte [**GB**] = 2^{30} Byte $\sim 10^9$ Byte

TeraByte [**TB**] = 2^{40} Byte $\sim 10^{12}$ Byte

PetaByte [**PB**] = 2^{50} Byte $\sim 10^{15}$ Byte

ExaByte [**EB**] = 2^{60} Byte $\sim 10^{18}$ Byte

ASCII su 7 bit

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
010	sp	!	11	#	\$	%	&	1	()	*	+	,	•		/
011	0	1	2	3	4	5	6	7	8	9	•	•	<	11	>	?
100	@	Α	В	С	D	Ε	F	G	Н		J	K	L	М	N	0
101	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	[١]	٨	_
110	•	а	b	С	d	е	f	g	h		j	k	1	m	n	0
111	р	q	r	S	t	u	٧	W	Х	Υ	Z	{		}	~	can

La codifica delle istruzioni

- Si segue lo schema presentato per i caratteri alfanumerici:
 - quali e quante sono le istruzioni da codificare?
 - qual è la lunghezza delle successioni di bit da utilizzare ?
 - qual è la corrispondenza tra istruzioni e successioni di bit ?

Istruzioni aritmetico-logiche				Istruzioni di controllo			
Codice	Istruzione		Codice	Istruzione		Codice	Istruzior
01100000	ADD		00010101	LOAD		10011001	IF_EQ
01100100	SUB		00110110	STORE		10110110	GOSUB
01111110	AND		•••	••• ••• •••		10101100	RETURN
••• •••	••• •••		•••	••• ••• •••		•••	••• •••

Oltre al codice operativo

- ... è necessario far riferimento ai **dati** necessari per completare l'esecuzione dell'istruzione,
 - e.g. addizione: è necessario che sia specificato (anche implicitamente) dove leggere i due operandi da sommare e dove scrivere il risultato;
- il **numero** dei dati da specificare è variabile, in funzione delle istruzioni.

Codice Operativo			
Codice Operativo	Indirizzo 1		
Codice Operativo	Indirizzo 1	Indirizzo 2	
Codice Operativo	Indirizzo 1	Indirizzo 2	Indirizzo 3

Numeri naturali

- Sistema di numerazione posizionale in base b
 - $c_k c_{k-1} \dots c_0$ rappresenta $c_k \times b^k + c_{k-1} \times b^{k-1} + \dots + c_0 \times b^0$
 - b=10 \Rightarrow 1101_{dieci} indica 1×10³ + 1×10² + 0×10 + 1×10⁰
- Conversione binario ⇒ decimale
 - basta scrivere il numero secondo la notazione posizionale utilizzando già il sistema decimale
 - b=2 \Rightarrow 1101_{due} indica $1 \times 2^3 + 1 \times 2^2 + 0 \times 2 + 1 \times 2^0 = 13_{dieci}$
- Conversione decimale ⇒ binario
 - Si potrebbe utilizzare lo stesso metodo indicato sopra, ma è molto complesso
 - b=10 \Rightarrow 345_{dieci} indica 11×1010² + 100×1010¹ + 101×1010⁰ = 11 x 1100100 + 100 x 1010 + 101 x 1 = 101011001

Conversione decimale binaria

Si calcolano i resti delle divisioni per due

18:2=9	resto 0
9:2=4	resto 1
4:2=2	resto 0
2:2=1	resto 0
1:2=0	resto 1

137 : 2 =	68	resto 1
68 : 2 =	34	resto 0
34 : 2 =	17	resto 0
17:2=	8	resto 1
8:2=	4	resto 0
4:2=	2	resto 0
2:2=	1	resto 0
1:2=	0	resto 1

10001001

Numeri interi

- Alfabeto binario
 - anche il segno è rappresentato da 0 o 1
 - è indispensabile indicare il numero k di bit utilizzati
- Codifica con Modulo e segno
 - 1 bit di segno (0 positivo, 1 negativo)
 - k-1 bit di modulo
 - Esempio: $+6_{\text{dieci}} = 0110_{\text{ms}}$ $-6_{\text{dieci}} = 1110_{\text{ms}}$
 - si rappresentano i valori da -2^{k-1}+1 a 2^{k-1}-1
 - con 4 bit i valori vanno da –7 a +7
 - con 8 bit i valori vanno da –127 a +127
 - Attenzione: ci sono due rappresentazioni dello 0
 - con 4 bit sono $+0_{\text{dieci}} = 0000_{\text{ms}} 0_{\text{dieci}} = 1000_{\text{ms}}$

Diverse codifiche/interpretazioni

Codice	Nat	MS
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7

Codice	Nat	MS
1000	8	-0
1001	9	-1
1010	10	-2
1011	11	-3
1100	12	-4
1101	13	-5
1110	14	-6
1111	15	-7
A CONTRACTOR OF THE PARTY OF TH		

Ottali ed esadecimali

- Utili per rappresentare sinteticamente i valori binari
- Ottali (base b = 8)
 - Alfabeto ottale: cifre comprese tra 0 e 7
 - $354_{\text{otto}} = 3 \times 8^2 + 5 \times 8^1 + 4 \times 8^0 = 192 + 40 + 4 = 236_{\text{dieci}}$
 - $1461_{\text{otto}} = 1 \times 8^3 + 4 \times 8^2 + 6 \times 8^1 + 1 \times 8^0 = 512 + 256 + 48 + 1 = 817_{\text{dieci}}$
 - Ogni cifra ottale corrisponde a tre cifre binarie:
 - $11101100_{\text{due}} = [11] [101] [100] = 354_{\text{otto}}$
 - $1100110001_{\text{due}} = [1] [100] [110] [001] = 1461_{\text{otto}}$
- Esadecimali (base b = 16)
 - Alfabeto esadecimale: cifre 0 9 + lettere A F
 - $EC_{sedici} = 14 \times 16^1 + 12 \times 16^0 = 224 + 12 = 236_{dieci}$
 - $331_{\text{sedic}} = 3 \times 16^2 + 3 \times 16^1 + 1 \times 16^0 = 768 + 48 + 1 = 817_{\text{dieci}}$
 - Ogni cifra esadecimale corrisponde a quattro cifre binarie:
 - $11101100_{\text{due}} = [1110] [1100] = \text{EC}_{\text{sedici}}$
 - $1100110001_{\text{due}} = [11] [0011] [0001] = 331_{\text{sedici}}$

Numeri razionali

- Rappresentazione in virgola fissa
 - $0.1011_{\text{due}} = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}$ = $0.5 + 0.125 + 0.0625 = 0.6875_{\text{dieci}}$
 - $11.101_{\text{due}} = 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$ = $2 + 1 + 0.5 + 0.125 = 3.625_{\text{dieci}}$
- Rappresentazione in virgola mobile (float)
 - usata spesso anche in decimale per rappresentare numeri molto grandi o molto piccoli: 0.1357×10^{64}
 - mantissa parte frazionaria compresa tra 0 e 1 [0.1357]
 - **esponente** numero **intero**
 - utilizza 1 bit per il segno (s), h bit per l'esponente (e) e k bit per la mantissa (m): R = s × m × 2^e

Numeri razionali

- Rappresentazione in virgola mobile (notazione scientifica)
 - il numero $-123.450.000.000_{\rm dieci}$ viene rappresentato come $0.12345 \times 10^{12}_{\rm dieci}$
 - il numero $0.0000012345_{\rm dieci}$ viene rappresentato come $0.12345~\rm x$ $10^{-5}_{\rm dieci}$
 - vale anche per i numeri binari: il numero 101010000_2 diventa $0.10101 \times 10^{01001}_{\rm due}$
 - Quanti bit utilizzare per la rappresentazione? Si può modificare la precisione dei risultati, ma standard dell'IEEE:
 - a precisione singola (32 bit: 8 esponente, 23 mantissa)
 - a precisione doppia (64 bit: 11 esponente, 52 mantissa)

Approfondimento: il complemento a 2

Numeri interi in complemento a 2

- Alfabeto binario
 - anche il segno è rappresentato da 0 o 1
 - è indispensabile indicare il numero k di bit utilizzati

Complemento a 2

• X corrisponde al binario naturale di $2^k + X$

$$\begin{array}{ll} +6_{\rm dieci} & \Rightarrow 2^4 + 6 = 22 \Rightarrow & [1]0110 \Rightarrow 0110_{\rm C2} \\ -6_{\rm dieci} & \Rightarrow 2^4 - 6 = 10 \Rightarrow & [0]1010 \Rightarrow 1010_{\rm C2} \end{array}$$

- si rappresentano i valori da -2^{k-1} a 2^{k-1}-1
 - con 4 bit i valori vanno da –8 a +7
 - con 8 bit i valori vanno da –128 a +127
- Attenzione: c'è una sola rappresentazione dello 0
 - con 4 bit è $+0_{\text{dieci}} = 0000_{\text{C2}}$ mentre $1000_{\text{C2}} = -8_{\text{dieci}}$

Complemento a 2 - Alcune osservazioni

- i numeri positivi iniziano con 0, quelli negativi con 1
- data la rappresentazione di un numero su k bit, la rappresentazione dello stesso numero su k+1 bit si ottiene aggiungendo (a sn) un bit uguale al primo (estensione del "segno")
 - Rappresentazione di –6 su 4 bit = 1010
 - Rappresentazione di –6 su 5 bit = 11010
 - Rappresentazione di –6 su 8 bit = 11111010
- la sottrazione si effettua come somma algebrica
 - 4-6=+4+(-6)=0100+1010=1110=-2
 - 9-6=+9+(-6)=01001+11010=[1]00011=+3

ho fissato a priori il n. di bit da usare

Diverse codifiche/interpretazioni

Codice	Nat	MS	C2
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
		NOTICE THE RESIDENCE	

Codice	Nat	MS	C2
1000	8	-0	-8
1001	9	-1	-7
1010	10	-2	-6
1011	11	-3	-5
1100	12	-4	-4
1101	13	-5	-3
1110	14	-6	-2
1111	15	-7	-1