HarrixOptimizationAlgorithms. Сборник описаний алгоритмов оптимизации. v. 1.0

А. Б. Сергиенко

19 октября 2013 г.

Аннотация

В данном документе дано собрано множество описаний нестандартных алгоритмов, модификаций стандартных. Здесь приведено лишь описание алгоритмов, а не их исследование эффективности. Большинство алгоритмов неэффективны.

Содержание

1	Введение	2
2	Условные обозначения	2
3	Модификации генетического алгоритма	3
	3.1 Пропорциональная селекция	3
Сг	писок литературы	3

1 Введение

Это своеобразная «свалка» алгоритмов оптимизации, которые используются автором. Большинство алгоритмов неэффективны. Здесь они приведены, чтобы можно было ссылаться на них.

Данный документ представляет его версию 1.0 от 19 октября 2013 г.

Последнюю версию документа можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

С автором можно связаться по адресу sergienkoanton@mail.ru или http://vk.com/harrix.

Сайт автора, где публикуются последние новости: http://blog.harrix.org/, а проекты располагаются по адресу http://harrix.org/.

2 Условные обозначения

```
a \in A — элемент a принадлежит множеству A.
```

 \bar{x} — обозначение вектора.

 $\arg f(x)$ — возвращает аргумент x, при котором функция принимает значение f(x).

Random(X) — случайный выбор элемента из множества X с равной вероятностью.

 $Random\left(\{x^i\mid p^i\}\right)$ — случайный выбор элемента x^i из множества X, при условии, что каждый элемент $x^i\in X$ имеет вероятность выбора равную p^i , то есть это обозначение равнозначно предыдущему.

random(a,b) — случайное действительное число из интервала [a;b].

int(a) — целая часть действительного числа a.

 $\mu(X)$ — мощность множества X.

Замечание. Оператор присваивания обозначается через знак «=», так же как и знак равенства.

Замечание. Индексация всех массивов в документе начинается с 1. Это стоит помнить при реализации алгоритма на С-подобных языках программирования, где индексация начинается с нуля.

Замечание. Вызывание трех функций: Random(X), $Random(\{x_i \mid p_i\})$, random(a,b) – происходит каждый раз, когда по ходу выполнения формул, они встречаются. Если формула итерационная, то нельзя перед ее вызовом один раз определить, например, random(a,b) как константу и потом её использовать на протяжении всех итераций неизменной.

Замечание. Надстрочный индекс может обозначать как возведение в степень, так и индекс элемента. Конкретное обозначение определяется в контексте текста, в котором используется формула с надстрочным индексом.

Замечание. Если у нас имеется множество векторов, то подстрочный индекс обозначает номер компоненты конкретного вектора, а надстрочный индекс обозначает номер вектора во

множестве, например, $\bar{x}^i \in X$ $(i=\overline{1,N}), \, \bar{x}^i_j \in \{0;1\}, \, (j=\overline{1,n}).$ В случае, если вектор имеет свое обозначение в виде подстрочной надписи, то компоненты вектора проставляются за скобками, например, $(\bar{x}_{max})_j = 0$ $(j=\overline{1,n}).$

Замечание. При выводе матриц и векторов элементы могут разделяться как пробелом, так и точкой с запятой, то есть обе записи $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}^T$ и $\begin{pmatrix} 1;1;1;1;1;1;1;1 \end{pmatrix}^T$ допустимы.

Замечание. При выводе множеств элементы разделяются только точкой с запятой, то есть допустима только такая запись: $\{1;1;1;1;1;1;1\}^{\mathrm{T}}$.

3 Модификации генетического алгоритма

3.1 GA001