REPORT DOCUMENTATION PAGE					OMB No. 0704-0188	
maintaining the data needed, a including suggestions for reductions.	and completing and reviewing bing this burden to Departmer	this collection of information. So It of Defense, Washington Head Ports should be aware that notwite	end comments regarding this burd quarters Services. Directorate for	len estimate or any other Information Operations a aw. no person shall be su	thing existing data sources, gathering and aspect of this collection of information, and Reports (0704-0188), 1215 Jefferson Davis bject to any penalty for failing to comply with a	
1. REPORT DATE (DD		2. REPORT TYPE Technical Paper	E DO NOT RETURN TOUR FOR	3. E	DATES COVERED (From - To)	
4. TITLE AND SUBTIT	LE			5a.	CONTRACT NUMBER	
					O4611 - 96 - C - 000 GRANT NUMBER	
				5c.	PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)					PROJECT NUMBER	
6. AUTHOR(S)						
					TASK NUMBER	
				5f. °	WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)					PERFORMING ORGANIZATION	
					PORT	
$C \Omega \Lambda$	HRTA, I					
2r/	TKIA, a	,,,,				
O CRONCODING (MONITODING ACENCY NAME (C) AND ADDRESS (ES)					SPONSOR/MONITOR'S	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)					RONYM(S)	
Air Force Research	Laboratory (AFMC	2)				
AFRL/PRS					11. SPONSOR/MONITOR'S	
5 Pollux Drive Edwards AFB CA 93524-7048					NUMBER(S)	
12. DISTRIBUTION / A		MENIT				
12. DISTRIBUTION / F	WAILABILITT STATE	ENIENI				
Approved for public	release; distribution	on unlimited.				
13. SUPPLEMENTAR	Y NOTES					
14. ABSTRACT						
			2	nnono	27 0/0	
			4	UUZU0	27 068	
				_		
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMB					19a. NAME OF RESPONSIBLE	
			OF ABSTRACT	OF PAGES	PERSON Leilani Richardson	
a. REPORT	b. ABSTRACT	c. THIS PAGE	٦ .		19b. TELEPHONE NUMBER (include area code)	
Unclassified	Unclassified	Unclassified	A		(661) 275-5015	

REPORT DOCUMENTATION PAGE

2 items enclosed

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

Form Approved

F04611 - 96-C-0001 = ktr#

MEMORANDUM FOR PRS (Contractor Publication)

FROM: PROI (TI) (STINFO)

6 Mar 1998

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-1998-065 Bill Calhoon "Application of Turbulence Models in Reacting Flows" (Statement A)

APPLICATION OF TURBULENCE MODELS IN REACTING FLOW

W. H. CALHOON, JR. SPARTA, INC. AIR FORCE RESEARCH LAB EDWARDS AFB, CA

COMPLEX HIGH PERFORMANCE CFD APPLICATIONS, TREATMENT OF TURBULENCE MODELS IN **ARL MSRC PET SHORT COURSE ON** 16 - 17 MAR. 1998

> Public Domain Public Release

OUTLINE

- 1. INTRODUCTION
- 2. OBJECTIVES
- 3. WHAT IS A "COMPLEX" REACTING FLOW?
- 4. FLOW MODELING: STEADY VS. UNSTEADY
- 5. REACTING FLOW EQUATIONS
- 6. TURBULENCE-CHEMISTRY INTERACTION MODELING
- 7. SAMPLE PROBLEM

APPLICATION OF CFD TO REACTING FLOW 1. INTRODUCTION:

- REQUIRES CHARACTERIZATION OF THE INTERACTION OF TURBULENCE AND CHEMISTRY
- TURBULENT COMBUSTION MODELING:
- 1) IS AN ENTIRE FIELD OF RESEARCH
- 2) HAS BEEN THE SUBJECT OF INTENSE RESEARCH FOR ~ 25 YEARS
- 3) MOST OF RESEARCH RESTRICTED TO:
- LOW SPEED FLOWS
- SMALL MEAN PRESSURE VARIATIONS
- SIMPLE CONFIGURATIONS

KEY FEATURES OF TURBULENT REACTING FLOW

• TURBULENT STIRRING:

- A PROCESS OF STRETCHING INTERMATERIAL AREA BETWEEN **DIFFERENT FLUIDS (E.G., FUEL AND OXIDIZER)**
- CHARACTERIZED BY SCALAR LENGTH SCALE REDUCTION

MOLECULAR MIXING:

- THE PROCESS OF DIFFUSION OF SUBSTANCES ACROSS INTERMATERIAL AREA (E.G., MOLECULAR DIFFUSION)
- FLUIDS MAY BE WELL STIRRED BUT NOT MOLECULARLY MIXED:
- CRUDE EXAMPLE: MIXING OF OIL AND WATER
- COMBUSTION ONLY OCCURS WHEN REACTANTS ARE **MOLECULAR MIXED**

2. OBJECTIVES

- 1) PROVIDE A "TIP OF THE ICEBERG" INTRODUCTION TO THE FIELD OF TURBULENT COMBUSTION
- 2) BRIEFLY COVER TWO MODELS APPLICABLE TO "COMPLEX" **FLOWS**
- 3) PROVIDE REFERENCES FOR SELF STUDY

3. WHAT IS A "COMPLEX" TURBULENT REACTING FLOW?

- CHARACTERISTICS OF A "COMPLEX" REACTING FLOW:
- MULTIPLE SOURCES OF REACTANTS AND FUEL STREAMS
- NONUNIFORM COMPOSITIONS IN THE FUEL STREAMS
- CHEMICAL NONEQUILIBRIUM
- HIGH SPEED FLOWS
- 1) COMPRESSIBILITY EFFECTS
- 2) LARGE PRESSURE VARIATIONS
- 3) SHOCK WAVE HEATING
- 4) HEATING DUE TO VISCOUS ENERGY DISSIPATION
- COMPLEX MIXING
- 1) SHOCK-SHEAR LAYER INTERACTIONS
- 2) SEPARATED/RECIRCULATING FLOWS

CHARACTERISTICS OF A "COMPLEX" REACTING FLOW, CONT'D

- THESE COMPLEX CHARACTERISTICS ELIMINATE TURBULENT **COMBUSTION MODELS BASED ON:**
- 1) MIXTURE FRACTION FORMULATIONS
- E.G., TWO STREAM CONFIGURATIONS
- 2) INFINITE/FAST CHEMISTRY ASSUMPTIONS
- 3) TABULARIZED FORMULATIONS
- E.G., LAMINAR FLAMELET MODEL
- 4) REDUCED FORMS OF THE ENERGY EQUATIONS
- E.G., LOW SPEED, ~ CONSTANT PRESSURE FLOWS

SIGNATURES IMPORTANT TO MISSILE DEFENSE SYSTEMS:

•TYPING, TRACKING AND INTERCEPTOR AIMPOINT SELECTION

Schematic of viscous/inviscid structure in plume nearfield.

EXAMPLE OF A "COMPLEX" REACTING FLOW: MISSILE EXHAUST PLUMES

STEADY STATE VS. UNSTEADY

- TURBULENCE BY DEFINITION IS UNSTEADY
- UNSTEADY SIMULATION METHODS PREFERABLE

• STEADY STATE METHOD:

• REYNOLDS AVERAGED NAVIER-STOKES (RANS)

UNSTEADY METHODS:

- UNSTEADY RANS
- LARGE-EDDY SIMULATION (LES)

STEADY STATE VS. UNSTEADY

STEADY STATE METHODS LIMITED BY TURBULENT TRANSPORT **MODELS FOR SCALARS**

• EXAMPLE : NONREACTING SHEAR LAYER MIXING

SHEAR LAYER MIXING CHARACTERISTICS

density functions in the cross stream direction (a) liquid, Re = 23,000, (b) gas, Re = 25,000, Mixing layer normalized fuel probability

(c) steady state calculation

(Broadwell, J.E. and Mungal, M.G., 1991)

STEADY STATE VS. UNSTEADY

UNSTEADY METHODS:

- GOOD REPRESENTATION OF SCALAR TURBULENT TRANSPORT
- HIGH RESOLUTION REQUIRED
- COSTLY TIME ACCURATE SIMULATION REQUIRED
- LES MODELS FOR COMPLEX FLOWS IMMATURE

STEADY STATE METHODS:

- LOWER RESOLUTION REQUIREMENTS
- CONVERGENCE ACCELERATION TECHNIQUES APPLICABLE
- THE ONLY ALTERNATIVE FOR MANY COMPLEX FLOWS
- POOR REPRESENTATION OF TURBULENT TRANSPORT PRODUCED **BY CURRENT MODELS**

5. REACTING FLOW EQUATIONS

- EQUATION SET (GAS PHASE):
- MASS, MOMENTUM, ENERGY AND SPECIES CONSERVATION
- SUPPLEMENTED WITH STATE EQUATIONS
- MASS, MOMENTUM AND ENERGY EQUATIONS THE SAME AS FOR NONREACTING EXCEPT:
- ADDITION HEAT FLUX TERM IN ENERGY EQUATIONS:

$$q_{j} = -\lambda \frac{\partial T}{\partial x_{j}} + \rho \sum_{k=1}^{K} Y_{k} h_{k} V_{k,j} + q_{j}^{R}$$

 MOLECULAR PROPERTIES (VISCOSITY, THERMAL CONDUCTIVITY) **ARE A FUNCTION OF THE LOCAL MIXTURE**

SPECIES CONSERVATION AND STATE EQUATIONS

• SPECIES CONSERVATION:

•
$$\frac{\partial \rho Y_k}{\partial t} + \frac{\partial \rho u_j Y_k}{\partial x_j} = -\frac{\partial \rho V_{k,j} Y_k}{\partial x_j} + \dot{w}_k$$

•
$$Y_k = \rho_k / \rho$$
 , $\sum_{k=1}^k \rho_k = \rho$, $\dot{w}_k = f(\rho, Y_k, T)$

• STATE EQUATIONS:

•
$$p = \rho R^o T \sum_{k=1}^K \frac{Y_k}{W_k}$$

•
$$h = e + \frac{p}{\rho} = e + R^{o}T \sum_{k=1}^{K} \frac{Y_k}{W_k} = \sum_{k=1}^{K} Y_k \left[\Delta h_k^o + \int_{T^o}^T C_{p,k}(T') dT' \right]$$

•
$$c_{p,k}(T) = \sum_{n=0}^{N} a_{n,k} T^{N}$$

RANS SPECIES AND STATE EQUATIONS

• VARIABLE DECOMPOSITION: $\phi = \overline{\phi} + \phi' = \widetilde{\phi} + \phi''$

SPECIES CONSERVATION:

•
$$\frac{\partial \overline{\rho} \tilde{Y}_k}{\partial t} + \frac{\partial \overline{\rho} \tilde{u}_j \tilde{Y}_k}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\overline{\rho} D_K \frac{\partial \tilde{Y}_k}{\partial x_j} \right] - \frac{\partial}{\partial x_j} \left[\overline{\rho} u_j' Y_k''' \right] + \overline{\dot{w}}_k$$

STATE EQUATIONS:

•
$$\overline{p} = \overline{\rho} R^o \sum_{k=1}^K \frac{\widetilde{T}\widetilde{Y}_k}{W_k} + R^o \sum_{k=1}^K \frac{\overline{\rho}T''Y_k''}{W_k}$$

•
$$\tilde{e} + R^o \sum_{k=1}^K \frac{\tilde{T}\tilde{Y}_k}{W_k} + \frac{1}{\rho} R^o \sum_{k=1}^K \frac{\overline{\rho T''Y_k''}}{W_k} = \sum_{k=1}^K \tilde{Y}_k \Delta h_k^o + \tilde{h}^s$$

•
$$\tilde{h}^s = \frac{1}{\overline{\rho}} \sum_{k=1}^K \rho Y_k \int_{T^o}^T c_{p,k}(T') dT' = f(\overline{\rho T''Y_k''}, \overline{\rho T'''^{n+1}Y_k''})$$

RANS UNCLOSED TERMS

TURBULENT TRANSPORT: $\rho \omega_1' Y_k''$

MODELED BY:

1) GRADIENT DIFFUSION:

$$\overline{\rho u_j' Y_k''} = -\frac{\overline{\rho} v_T}{S c_T} \frac{\partial \widetilde{Y}_k}{\partial x_j}$$

2) SECOND ORDER CLOSURE

SCALAR MOMENTS:

• MEAN REACTION RATE: $ec{
u}_k$

• TEMPERATURE-SPECIES CORRELATIONS: $ho T''Y_k'', \ldots, \ldots$

• MODEL THE SINGLE POINT JOINT PDF OF ho , T AND $Y_k\colon P(
ho,T,Y_k)$

•
$$\vec{w}_k = \int_{0}^{\infty} \int_{0}^{1} \dots \int_{0}^{1} \dot{w}_k P(\rho', T', Y'_k) dY'_1 \dots dY'_k d\rho' dT'$$

6. TURBULENCE-CHEMISTRY INTERACTION MODELING

- INTERACTION OF TURBULENCE AND CHEMISTY CONTAINED IN THE SINGLE POINT PDF $P(\rho, T, Y_{\nu})$
- \bullet $P(\rho,T,Y_c)$ REPRESENTS THE COMBINED EFFECTS OF:
- TURBULENT TRANSPORT (LARGE AND SMALL SCALE)
- MOLECULAR DIFFUSION
- ESTABLISHED MODELS FOR $P(\rho,T,Y_{\ell})$:
- LAMINAR MODEL
- EDDY DISSIPATION CONCEPT

LAMINAR MODEL FOR THE PDF

• LAMINAR MODEL FOR $P(\rho, T, Y_{\nu})$:

•
$$P(\rho, T, Y_k) = \delta(\rho - \overline{\rho})\delta(T - \tilde{T})\sum_{k=1}^K \delta(Y_k - \tilde{Y_k})$$

$$ullet$$
 $\overline{\dot{w}}_k = \overline{\dot{w}}_k (\overline{
ho}, \widetilde{T}, \widetilde{Y}_k)$

$$\bullet \overline{\rho T''Y_k''} = 0$$

• COMMENTS:

- CAN BE IN ERROR BY AN ORDER OF MAGNITUDE
- WIDELY USED AS A FIRST APPROXIMATION
- CAN GIVE GOOD RESULTS WHEN FLUCTUATIONS ARE UNIMPORTANT
- NO GENERAL CRITERIA OF THE APPLICABILITY RANGE OF THE MODEL

EDDY DISSIPATION CONCEPT (EDC)

• OBSERVATIONS:

- REACTIONS ONLY OCCUR WHEN SPECIES MOLECULARLY MIXED
- IMPORTANT, ONLY OCCUPY A SMALL FRACTION OF THE TOTAL FLUID MICROSCALE STRUCTURES, WHERE MOLECULAR EFFECTS ARE VOLUME

• EDC MODEL:

- FLUID CONSISTS OF FINE SCALE STRUCTURES AND SURROUNDING FLUID
- CHEMICAL REACTIONS ONLY OCCUR IN THE FINE SCALES
- FINE SCALES ASSUMED HOMOGENEOUSLY MIXED
- FINE SCALES REPRESENT BY A "PERFECTLY STIRRED REACTOR" (PSR)

$$\bullet P(\rho, T, Y_k) = \delta(\rho - \hat{\rho})\delta(T - \hat{T}) \sum_{k=1}^K \delta(Y_k - \hat{Y}_k)$$

$$+ \delta(\rho - \rho^*)\delta(T - T^*) \sum_{k=1}^K \delta(Y_k - Y_k^*)$$

EDDY DISSIPATION CONCEPT (EDC)

• MEAN REACTION RATE:

$$\bullet \ \overline{\dot{w}}_k = A_{EDC} \dot{f} \Delta m_k$$

$$ullet$$
 Δm_k - MASS PER UNIT VOLUME CHANGE IN FINE SCALE SPECIES

MOST ELEMENTARY FORM FOR FAST CHEMISTRY:

•
$$F + rO \rightarrow P$$

$$\bullet \ \phi_p = W_F / rW_O$$

$$\bullet \ \varphi_{st} = (W_F + rW_O)/W_F$$

•
$$A_{EDC} = CONSTANT$$

$$\overline{\dot{w}}_{F} = -A_{EDC} \overline{\rho}(\widetilde{\varepsilon} / \widetilde{k}) \min \left[\widetilde{Y}_{F}, \widetilde{Y}_{O} \varphi_{st} \right]
\overline{\dot{w}}_{O} = -A_{EDC} \overline{\rho}(\widetilde{\varepsilon} / \widetilde{k}) \min \left[\widetilde{Y}_{F} / \varphi_{st}, \widetilde{Y}_{O} \right]$$

$$\dot{\vec{w}}_P = -\dot{\vec{w}}_F \varphi_p$$

EDDY DISSIPATION CONCEPT (EDC)

• MORE GENERAL FORMS OF EDC MODEL:

- ullet A_{EDC} , \dot{f} ESTIMATED FROM ENERGY CASCADE THEORY
- CAN INCLUDE REVERSIBLE REACTIONS
- $\Delta m_{_{k}}$ FROM PSR CALCULATION FOR FINITE RATE CHEMISTRY
- CAN FORMULATE AN EXTINCTION MODEL

COMMENTS:

- VERY INEXPENSIVE FOR FAST CHEMISTRY
- HIGH SENSITIVITY TO MODEL PARAMETER, A_{EDC} , **AND INFLOW TURBULENCE**
- GOOD FOR RUNNING PERMUTATIONS AROUND A KNOWN CALIBRATION POINT

MISSILE PLUME AFTERBURNING CESSATION TURBULENCE CHEMISTRY INTERACTIONS: **EXAMPLE OF THE IMPORTANCE OF**

AFTERBURNING CESSATION IMPORTANT TO:

- SURVEILLANCE SENSOR DEVELOPMENT
- DETERMINATION OF NOISE EQUIVALENT TARGET THRESHOLD
- SENSOR DYNAMIC RANGE
- MISSILE TYPING
- PLUME-TO-HARDBODY HANDOVER AND AIMPOINT SELECTION ALGORITHMS

EXAMPLE OF RAPID CESSATION EVENT

SPATIAL RADIANT INTENSITY

POSSIBLE MECHANISMS FOR RAPID **AFTERBURNING CESSATION**

- SHEAR LAYER RELAMINARIZATION (VELOCITY MATCHING):
- AFTERBURNING INHIBITED BY LACK OF TURBULENT MIXING
- DAMKOHLER NUMBER EFFECT:
- DAMKOHLER NUMBER IS RATIO OF MIXING AND CHEMICAL TIME
- LARGE SCALE TURBULENT MIXING COOLS PLUME FASTER THAN AFTERBURNING HEATS THE PLUME (LOW DAMKOHLER NUMBER)
- CLASSICAL FLAME EXTINCTION MECHANISM:
- HIGH TURBULENT MIXING RATES AT THE SMALL SCALES CAUSES **LOCAL FLAME EXTINCTION AND EVENTUAL AFTERBURNING CESSATION**

COMPUTATIONAL METHODOLOGY

SIMULATIONS ACCOMPLISHED USING THE "GASP" CODE:

- GENERAL AERODYNAMIC SOLVER FOR COMPRESSIBLE **REACTING FLOWS**
- INCLUDES MODERN, WIDELY ACCEPTED TURBULENCE MODELS
- DRAWBACK: NEGLECTS THE EFFECT OF TURBULENCE-CHEMISTRY INTERACTIONS
- FINITE RATE/EXTINCTION VERSION OF EDC MODEL IMPLEMENTED TO ACCOUNT FOR TURBULENCE-CHEMISTRY INTERACTIONS

•MISSILE MODELING:

- SIMULATE THE ENTIRE MISSILE BODY, BASE AND PLUME
- ASSUME ONLY AXISYMMETRIC BODY CONFIGURATION

PREDICTED TOTAL RADIANT INTENSITY

DAMKOHLER NUMBER VARIATION WITH **ALTITUDE ENGINE MODELS**

CONTOUR PLOT OF THE EXTINCTION MODEL BINARY SWITCH

COMPARISON OF TEMPERATURE CONTOURS USING EXTINCTION MODEL

EFFECT OF EXTINCTION MODEL ON SPATIAL RADIANT INTENSITY PREDICTIONS **DURING THE CESSATION EVENT**

CONCLUSIONS

- INTERACTIONS IN REACTING FLOW SIMULATIONS CAN BE PROPERLY ACCOUNTING FOR TURBULENCE-CHEMISTRY CRITICAL
- TURBULENT COMBUSTION MODELS HAVE BEEN DEVELOPED **FOR COMPLEX FLOWS**
- TURBULENT COMBUSTION MODELS EFFICIENT ENOUGH FOR ROUTINE APPLICATION