Linear Algebra

Aakash Jog

Contents

Ι	General Information	7
1	Contact Information	7
2	Grades	7
II	Fields	8
1	Definition1.1 Examples of Fields	8 8 9
2	Examples	9
II	I Matrices	10
1	Definition	10
2	Addition of Matrices 2.0.1 Properties	10 10
3	Multiplication of a matrix by a scalar	10
4	Multiplication of matrices	11
5	Zero Divisor	11
6	Theorem ('Good properties of matrix multiplication')	12

7	Squa	are Ma	atrices	13
	7.1	Diagor	nal Matrices	13
		7.1.1	Proof	13
	7.2	Upper	-triangular Matrices	13
	7.3	Lower-	triangular Matrices	13
	7.4	Theore	em	14
		7.4.1	Proof	14
	7.5	Identit	y Matrix	14
	7.6	Theore	em	14
		7.6.1	Proof	14
	7.7	Inverse	e of Matrix	15
		7.7.1	If $AB = I_n$ and $CA = I_n$, then $B = C \dots \dots \dots$	15
		7.7.2	Inverse of a Matrix	15
		7.7.3	If $AB = I$, then $BA = I \dots \dots \dots \dots \dots$	16
		7.7.4	If A is invertible, then A <u>cannot</u> be a zero divisor	16
		7.7.5	If A and B are invertible, then $A + B$ may or may not	
			be invertible	16
		7.7.6	If A and B are invertible, then AB must be invertible.	17
8	Trai	nspose	of a Matrix	17
	8.1	Proper	rties of A^t	17
9	٨	oint M	[a4min	17
9	Aajo	$\begin{array}{c} \mathbf{oint} \ \mathbf{M} \\ 9.0.1 \end{array}$		18
		9.0.1	Froperties of Adjoint Matrices	10
10	Row	Oper	ations on Matrices	18
	10.1	Eleme	ntary Row Operations	18
	10.2	Theore	ems	18
		10.2.1	$E_{\rm I}A$ = the matrix obtained from A by an elementary	
			row operation I	18
		10.2.2	$E_{\rm II}A$ = the matrix obtained from A by an elementary	
			row operation II	19
		10.2.3	$E_{\text{III}}A = \text{the matrix obtained from } A \text{ by an elementary}$	
			row operation III	19
		10.2.4	All elementary matrices are invertible, moreover, the	
			inverses of $E_{\rm I}, E_{\rm II}, E_{\rm III}$ are also elementary matrices of	
			the same type	20
	10.3	Row-o	guivalent of a Matrix	22

11			elon Form of a Matrix	23			
			tion	23 23			
12	Rov	v Rank	k of a Matrix	23			
13	Gau	ıss The	eorem	23			
	13.1	Elimir	nation Algorithm	24			
		13.1.1	Example	24			
			Spaces of Matrices				
	13.3	Colum	nn Equivalence	25			
IV	7 I	Linear	r Systems	27			
1	Defi	inition		27			
2	Equ	ivalen	t Systems	27			
3	Solu	ition o	of a System of Equations	28			
4	Homogeneous Systems 29						
	4.1		tion				
	4.2		ons of Homogeneous Systems				
		4.2.1	Example	30			
	4.9	4.2.2		31			
	4.3	4.3.1	rties	31			
		4.5.1	solutions, then $c+d$ is also a solution	31			
		4.3.2	For a homogeneous system $Ax = 0$, if c is a solution	91			
		1.0.2	and $\alpha \in \mathbb{F}$, then, αc is a solution too	31			
	4.4	Funda	umental Solutions				
		4.4.1	Theorem: Any solution d of the system $Ax = \mathbb{O}$ can be				
			obtained from the basic solutions v_1, \ldots, v_t as a linear				
			combination of the basic solutions, $d = \alpha_1 v_1 + \dots + \alpha_t v_t$.	32			
	4.5			32			
5	Non		ogeneous Systems	33			
	5.1	Defini		33 33			
	5.2 Solutions of Non-Homogeneous Systems						
		5.2.1	Case I: $\widetilde{r} = r$				
		0.2.2	Case II: $\widetilde{r} > r$	33			

	5.3	General Solution	34					
\mathbf{V}	\mathbf{V}	ector Spaces	35					
1	Defi	inition	35					
	1.1	Examples	35					
		1.1.1 Geometric Vectors in Plane	35					
		1.1.2 Arithmetic Vector Space	35					
		1.1.3	36					
2	Pro	perties	36					
		2.0.4 Proof of 1	36					
3	Sub	spaces	36					
	3.1	Examples	37					
	3.2	Operations on Subspaces	38					
4	Spa	ns	38					
5	Linear Dependence 41							
	5.1	Properties of Linearly Dependent and Independent Sets	42					
	5.2	Changing a Basis	46					
	5.3	Representation of Vectors in a Basis	49					
		5.3.1 Properties of Representations	49					
6	Determinants 50							
	6.1	Definition	50					
	6.2	Properties	50					
	6.3	Practical Methods for Computing Determinants						
	6.4	Expansion along a row/ column						
	6.5	Determinant Rank	54					
7	Linear Maps 54							
	7.1	Definition	54					
	7.2	Properties	54					
	7.3	Matrix of a Linear Map	54					
	7.4	Change of Bases	56					
	7.5	Operations on Linear Maps	57					
	7.6	Kernel and Image	59					
		7.6.1 Dimensions of Kernel and Image	60					

\mathbf{V}	I Linear Operators	62
1	Definition	62
2	Similar Matrices 2.1 Properties of Similar Matrices	62 63
3	Diagonalization	63
4	Eigenvalues and Eigenvectors	63
5	Characteristic Polynomial 5.1 Properties	65 66
\mathbf{V}	II Inner Product Spaces	71
1	Definition	71
2	Computation of Inner Products 2.1 Change of Basis	73 75
3	Norms 3.1 Definition	75 75 76
4	Orthogonality 4.1 Definition	76 76 76
5	Orthogonal and Orthonormal Bases	7 6
6	Unitary Matrices	79
7	Projections 7.1 Definition	81 81 82 82 85
8	Angle	88
9	Triangle Inequality	88

10 Orthogonal Decomposition			
11 Distance	90		
12 Adjoint Map 12.1 Construction 12.2 Properties			
13 Special Linear Operators	94		

Part I

General Information

1 Contact Information

Prof. Boris Kunyavskii kunyav@gmail.com

2 Grades

Final Exam: 80%Midterm Exam: 10%Homework: 10%

Passing Criteria: 60%

Part II

Fields

1 Definition

Definition 1 (Field). The set \mathbb{F} is a field if there are operations +, \cdot satisfying the following properties:

- (A1) $\forall a, b \in \mathbb{F}; a+b=b+a$
- (A2) $\forall a, b \in \mathbb{F}; (a+b)+c=a+(b+c)$
- (A3) There is an element $0 \in \mathbb{F}$ s.t. a + 0 = 0 + a = a
- (A4) $\forall a \in F, \exists b \in \mathbb{F} \text{ s.t. } a+b=0$
- (M1) $\forall a, b \in \mathbb{F}, a \cdot b = b \cdot a$
- (M2) $\forall a, b \in \mathbb{F}, (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- (M3) There is an element $1 \in \mathbb{F}$ s.t. $a \cdot 1 = 1 \cdot a = a(1 \neq 0)$
- (M4) $\forall a \in \mathbb{F}, (a \neq 0), \exists b \in \mathbb{F} \text{ s.t. } a \cdot b = 1$
- (AM) $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$

If \mathbb{F} is a field, one can define subtraction and division as follows.

$$a - b \doteq a + (-b)$$
$$\frac{a}{b} \doteq a \cdot \frac{1}{b}$$

1.1 Examples of Fields

- $1. \mathbb{R}$
- $2. \mathbb{C}$
- 3. \mathbb{F}_p

1.2 Examples of Non-fields (Rings)

1. \mathbb{Z} , as M4 is not satisfied.

If we define $\mathbb{F}_2 = 0, 1; 0 + 0 = 0; 0 + 1 = 1 + 0 = 1;$ then, necessarily, 1 + 1 = 0, otherwise, 1 will have no additive inverse.

2 Examples

Example 1. Let p be a prime number. \mathbb{F}_p is defined as follows.

$$\forall m \in \mathbb{Z}, m = a \cdot p + \overline{m}$$

The operations + and \bullet are defined as

$$\overline{a} + \overline{b} = \overline{(a+b)}$$
$$\overline{a} \cdot \overline{b} = \overline{(a \cdot b)}$$

- 1. \mathbb{F}_p is a field.
- 2. If \mathbb{F} is a set of q elements, we can define on \mathbb{F} a structure of a field iff $q = p^t$, where p is prime, $t \geq 1$.

Example 2. For a field of 4 elements $\{0, 1 \alpha, \beta\}$, the addition and multiplication tables are as follows.

+	0	1	α	β
0	0	1	α	β
1	1	0	β	α
α	α	β	0	1
β	β	α	0	1

Part III Matrices

1 Definition

Definition 2 (Matrix). Let \mathbb{F} be a field, $m, n \geq 1$.

Then, $A(m \times n)$ is a table consisting of m rows and n columns, filled by elements of \mathbb{F} .

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

2 Addition of Matrices

Definition 3 (Addition of matrices). Let A, B be $m \times n$ matrices over \mathbb{F} . Then, C = A + B is defined as follows.

$$c_{ij} = a_{ij} + bij$$

2.0.1 Properties

1. $A + B = B + A, \forall A, B$ s.t. the sum is defined

2.
$$(A+B)+C=A+(B+C), \forall A,B,C$$
 s.t. the sums are defined

- 3. There is a matrix \mathbb{O} , s.t. $A + \mathbb{O} = \mathbb{O} + A = A$
- 4. For any $A, \exists B \text{ s.t. } B = -A$

3 Multiplication of a matrix by a scalar

Definition 4 (Multiplication of a matrix by a scalar). Let A be a $m \times n$ matrix over \mathbb{F} . Let $\alpha \in \mathbb{F}$ be a scalar. Then, $C = \alpha A$ is defined as follows.

$$c_{ij} = \alpha a_{ij}$$

4 Multiplication of matrices

Definition 5 (Multiplication of matrices). Let A be a $m \times n$ matrix over \mathbb{F} . Let B be a $n \times p$ matrix over \mathbb{F} .

Then, C = AB is defined as follows.

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}$$

Example 3. For matrices A, B, of same size, is AB = BA?

Solution.
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\therefore AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$\therefore AB \neq BA$$

Remark 1. $A \neq \mathbb{O}, B \neq \mathbb{O}$, but $AB = \mathbb{O}$.

5 Zero Divisor

Definition 6 (Zero divisor). We say that a square matrix $A \neq \mathbb{O}$ is a <u>zero divisor</u> if either there is a square matrix B s.t. $AB = \mathbb{O}$, or there is a square matrix C, s.t. $CA = \mathbb{O}$.

Remark 2. $\mathbb{O}B = C\mathbb{O} = \mathbb{O}$.

Remark 3. $AC = BC \Rightarrow A = B$. In general, we cannot cancel matrices on either side of an equation.

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, C = \mathbb{O}$$

$$AB = CB = \mathbb{O} \& B \neq \mathbb{O}$$

But, we cannot cancel B, as $A \neq C$.

6 Theorem ('Good properties of matrix multiplication')

Theorem 1.

$$(AB)C = A(BC) \tag{1.1}$$

$$A(B+C) = AB + AC \tag{1.2}$$

$$(A+B)C = AC + BC \tag{1.3}$$

$$(\alpha A) = \alpha (AB) \tag{1.4}$$

Proof. Denote AB = D, BC = G, (AB)C = F, A(BC) = H

We need to prove F = H

Let the dimensions of the matrices be as follows.

 $A_{m\times n}, B_{n\times p}, C_{p\times q}$

 $\therefore F_{m \times q}, H_{m \times q}$

$$d_{ik} = \sum_{j} a_{ij}b_{jk}$$

$$\therefore g_{jl} = \sum_{k} b_{jk}bkl$$

$$f_{il} = \sum_{k} d_{ik}ckl = \sum_{k} (\sum_{j} a_{ij}b_{jk})c_{kl} = \sum_{k} \sum_{j} a_{ij}b_{jk}c_{kl}$$

$$h_{il} = \sum_{j} a_{ij}g_{jl} = \sum_{j} a_{ij}(\sum_{k} b_{jk}c_{kl}) = \sum_{k} \sum_{j} a_{ij}b_{jk}c_{kl}$$

$$f_{il} = h_{il}$$

$$F = H$$

7 Square Matrices

Let A be a square matrix of size $n \times n, n \ge 1$

7.1 Diagonal Matrices

Definition 7 (Diagonal matrix). We say that A is a <u>diagonal matrix</u> if $a_{ij} = 0$, whenever $i \neq j$.

Theorem 2. Let A and B be diagonal $n \times n$ matrices.

$$a_{rr} = \alpha_r, b_{rr} = \beta_r$$

Then, AB = BA = C, C is a diagonal matrix with $c_{rr} = a_{rr}b_{rr}$.

7.1.1 Proof

$$a_{ij} = \begin{cases} 0, i \neq j \\ \alpha_i, i = j \end{cases}$$

$$b_{ij} = \begin{cases} 0, i \neq j \\ \beta_i, i = j \end{cases}$$

$$c_{ik} = \sum_{j=1}^n a_{ij}bjk = a_{ii}b_{ik} = \alpha_i b_{ik} = \begin{cases} 0, i \neq k \\ \alpha_i \beta_i, i = k \end{cases}$$
Similarly for BA .

7.2 Upper-triangular Matrices

We say that A is an <u>upper-triangular matrix</u> if $a_{ij} = 0$, whenever i > j.

7.3 Lower-triangular Matrices

We say that A is a <u>lower-triangular matrix</u> if $a_{ij} = 0$, whenever i < j.

Remark

Diagonal matrices are upper-triangular and lower-triangular. Conversely, if a matrix is both upper-triangular and lower-triangular, it is a diagonal matrix.

7.4 Theorem

If A and B are both upper-triangular, then AB and BA are upper-triangular too

7.4.1 Proof

Denote C = AB.

$$\therefore c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}$$

Suppose i > k, then, either i > j or j > k. So, in each case, at least one of a_{ij} or b_{jk} is 0.

7.5 Identity Matrix

Let $n \geq 1$. We call I_n the $n \times n$ identity matrix.

$$I_n = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

7.6 Theorem

Let I_n be the identity $n \times n$ matrix. Then, for any $n \times n$ matrix B, we have

$$I_n B = B I_n = B$$

7.6.1 Proof

$$I_n = (e_{ij}); e_{ij} = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$$

Denote $C = I_n B$. We have

$$c_{ik} = \sum_{j=1}^{n} e_{ij}b_{jk} = e_{ii}b_{ik} = 1 \cdot b_{ik} = b_{ik}$$
$$\therefore C = B \Rightarrow I_n B = B$$

Similarly for $BI_n = B$.

7.7 Inverse of Matrix

Let A be an $n \times n$ matrix. We say that A is <u>invertible</u> if there exist B, C, s.t. $AB = I_n$ and $CA = I_n$

Remark

 $A = \mathbb{O}$ is not invertible because $\mathbb{O}B = C\mathbb{O} = \mathbb{O} \neq I_n$

Remark

There are non-zero matrices which are not invertible.

Let
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

If possible, let there be C s.t. $CA = I_2$.

Let
$$B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

We have $\hat{C}A = I$.

$$\therefore (CA)B = IB$$

$$\therefore C(AB) = B$$

$$\therefore C\mathbb{O} = B$$
$$\therefore \mathbb{O} = B$$

But, $B \neq 0$. Therefore, C does not exist.

7.7.1 If $AB = I_n$ and $CA = I_n$, then B = C

$$C = CI$$

$$= C(AB)$$

$$= (CA)B$$

$$= IB$$

= B

7.7.2 Inverse of a Matrix

If A is invertible, i.e. if there exists B, s.t. AB = BA = I, then, B is called the inverse of A, and is denoted by A^{-1} .

7.7.3 If AB = I, then BA = I.

7.7.4 If A is invertible, then A cannot be a zero divisor.

If possible, let A be a zero divisor.

Therefore, either $AB = \mathbb{O}$, for some $B \neq \mathbb{O}$; or $CA = \mathbb{O}$, for some $C \neq \mathbb{O}$

Case I: $AB = \mathbb{O}$

$$AB = \mathbb{O}$$

$$\therefore A^{-1}(AB) = A^{-1}\mathbb{O}$$

$$\therefore (A^{-1}A)B = \mathbb{O}$$

$$\therefore IB = \mathbb{O}$$

$$\therefore B = \mathbb{O}$$

This contradicts the assumption $B \neq \mathbb{O}$

Case II: $CA = \mathbb{O}$

$$CA = \mathbb{O}$$

$$\therefore (CA)A^{-1} = \mathbb{O}A^{-1}$$

$$\therefore C(A^{-1}A) = \mathbb{O}$$

$$\therefore CI = \mathbb{O}$$

$$\therefore C = \mathbb{O}$$

This contradicts the assumption $C \neq \mathbb{O}$

7.7.5 If A and B are invertible, then A + B may or may not be invertible.

If A = B, then A + B = 2A is invertible.

If A = -B, then $A + B = \mathbb{O}$ is not invertible.

7.7.6 If A and B are invertible, then AB must be invertible.

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$$

= AIA^{-1}
= AA^{-1}
= I
Similarly, $(B^{-1}A^{-1})(AB) = I$
 $\therefore (AB)^{-1} = B^{-1}A^{-1}$

8 Transpose of a Matrix

Let A be a $m \times n$ matrix, $A = (a_{ij})_{1 \le i \le m; 1 \le j \le n}$

 $B = A^t$ is defined as follows.

$$b_{ji} = a_{ij}$$

8.1 Properties of A^t

- 1. $(A+B)^t = A^t + B^t$
- $2. \ (\alpha A)^t = \alpha A^t$
- $3. (AB)^t = B^t A^t$
- 4. If A is invertible, then, A^t must be invertible, and $(A^t)^{-1} = (A^{-1})^t$

9 Adjoint Matrix

$$A^* \doteq \overline{A}^t$$

For example,

$$A = \begin{pmatrix} 1 & 1+i & 2-1 \\ i & -5i & 3 \end{pmatrix}$$
$$B = \begin{pmatrix} 1 & -i \\ 1-i & 5i \\ 2+i & 3 \end{pmatrix}$$

9.0.1 Properties of Adjoint Matrices

- 1. $(A+B)^* = A^* + B^*$
- $2. \ (\alpha A)^* = \overline{\alpha} A^*$
- 3. $(AB)^* = B^*A^*$
- 4. If A is invertible, then A^* is invertible, and $(A^*)^{-1} = (A^{-1})^*$

10 Row Operations on Matrices

10.1 Elementary Row Operations

Let A be a $m \times n$ matrix with rows $a_1, \ldots a_m$. We define 3 types of elementary row operations.

I $a_i \leftrightarrow a_j$ (Switch of the i^{th} and j^{th} rows.)

II $a_i \to \alpha a_i (\alpha \neq 0)$ (Multiplication of a row by a non-zero scalar.)

III $a_i \to a_i + \alpha a_j (j \neq i)$ (Addition of a row multiplied by a scalar, and another row.)

 $E_{\rm I}, E_{\rm II}, E_{\rm III}$ are matrices obtained from the identity matrix by applying elementary row operations I, II, III, respectively. These matrices are called elementary matrices.

10.2 Theorems

Let $e_i = \begin{pmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{pmatrix}$ be a $1 \times m$ matrix. Let A be any $m \times n$ matrix. Then, $e_i A =$ the i^{th} row of A.

10.2.1 $E_{\mathbf{I}}A =$ the matrix obtained from A by an elementary row operation \mathbf{I}

Proof

Let A be any $m \times n$ matrix.

$$\therefore E_{1}A = \begin{pmatrix} e_{1}A \\ \vdots \\ e_{j}A \\ \vdots \\ e_{i}A \\ \vdots \\ e_{m}A \end{pmatrix}$$

10.2.2 $E_{II}A =$ the matrix obtained from A by an elementary row operation II

Proof

Let A be any $m \times n$ matrix.

$$\therefore E_{\mathbf{I}}A = \begin{pmatrix} e_{1}A \\ \vdots \\ \alpha e_{i}A \\ \vdots \\ e_{m}A \end{pmatrix}$$

10.2.3 $E_{\text{III}}A = \text{the matrix obtained from } A \text{ by an elementary row operation III}$

Proof

Let A be any $m \times n$ matrix.

$$\therefore E_{I}A = \begin{pmatrix}
e_{1}A \\
\vdots \\
a_{i1} + \alpha a_{j1} \cdots + a_{in} + \alpha a_{jn} \\
\vdots \\
e_{j}A \\
\vdots \\
e_{m}A
\end{pmatrix}$$

$$\begin{vmatrix}
1^{\text{st}} \text{ row of } A \\
\vdots \\
i^{\text{th}} \text{ row of } A + \alpha(j^{\text{th}}) \text{ row of } A \\
\vdots \\
j^{\text{th}} \text{ row of } A \\
\vdots \\
m^{\text{th}} \text{ row of } A
\end{pmatrix}$$

10.2.4 All elementary matrices are invertible, moreover, the inverses of $E_{\rm I}, E_{\rm II}, E_{\rm III}$ are also elementary matrices of the same type.

$$E_{\rm I}^{-1} = E_{\rm I}$$

$$\Leftrightarrow E_{\rm I}^2 = I_m$$

$$E_{\mathrm{I}}^{2} = E_{\mathrm{I}}E_{\mathrm{I}}$$

$$= \begin{pmatrix} e_{1}E_{\mathrm{I}} \\ \vdots \\ e_{j}E_{\mathrm{I}} \\ \vdots \\ e_{m}E_{\mathrm{I}} \end{pmatrix}$$

$$= \begin{pmatrix} 1^{\mathrm{st}} \text{ row of } A \\ \vdots \\ j^{\mathrm{th}} \text{ row of } A \\ \vdots \\ i^{\mathrm{th}} \text{ row of } A \end{pmatrix}$$

$$= \begin{pmatrix} e_{1} \\ \vdots \\ e_{j} \\ \vdots \\ e_{m} \end{pmatrix}$$

$$= I_{m}$$

$$\vdots$$

$$e_{m}$$

Similarly for $E_{\rm II}$, to get the inverse, α is replaced by $\frac{1}{\alpha}$

$$E_{\text{II}} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & \alpha & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

$$\therefore E_{\text{II}}^{-1} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & \frac{1}{\alpha} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Similarly for $E_{\rm III}$, to get the inverse, α is replaced by $-\alpha$

$$E_{\text{III}} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & \alpha & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

$$\therefore E_{\text{III}}^{-1} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & -\alpha & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

10.3 Row-equivalent of a Matrix

A matrix A' is a <u>row-equivalent</u> of A, if A' is obtained for A, by a finite sequence of elementary row operations.

11 Row Echelon Form of a Matrix

11.1 Definition

Let A be an $m \times n$ matrix.

Denote the i^{th} row of A by a_i .

The leading entry of a non-zero row a_i is its first non-zero entry.

Denote the column where the leading entry occurs by l_i .

$$a_{ij} = 0 \text{ if } j < l(i)$$

$$a_{ij} \neq 0$$
 if $j = l(i)$

We say that A is in row echelon form (REF) if the following conditions hold.

- 1. The non-zero rows are at the top of A. (r = the number of non-zero rows)
- 2. The leading entries go right as we go down, i.e. $l(1) < l_2 < \cdots < l(r)$
- 3. All leading entries equal 1, i.e. if j = l(i), then, $a_{ij} = 1$
- 4. Any column which contains a leading entry must have all other entries equal to 0, i.e. if j = l(i), then, $a_{kj} = 0$; $\forall k \neq i$

11.2 Notation

The REF of A will be denoted by A_R .

12 Row Rank of a Matrix

The number of non-zero rows in A_R is called the row rank of A. It is denoted by r.

$$r \leq n$$

13 Gauss Theorem

Any $m \times n$ matrix A can be brought to REF by a sequence of elementary row operations.

13.1 Elimination Algorithm

Step 1 Find the first non-zero column C_p of A.

Step 2 Denote by a_{ip} the first non-zero entry of C_p .

Step 3 Switch the 1^{st} and i^{th} rows.

Step 4 Multiply the 1st row by $\frac{1}{a_{ip}}$.

Step 5 Using row operations of type III, make all other entries of the $p^{\rm th}$ column zeros.

Step 6 Ignoring the top row and C_p , repeat steps Step 1 to Step 5.

13.1.1 Example

$$\begin{pmatrix}
0 & 0 & 0 & -1 \\
0 & -1 & 4 & 7 \\
0 & -1 & 7 & 6
\end{pmatrix}
\xrightarrow{R_1 \to R_2}
\begin{pmatrix}
0 & -1 & 4 & 7 \\
0 & 0 & 0 & -1 \\
0 & -1 & 7 & 6
\end{pmatrix}
\xrightarrow{R_1 \to R_2}
\begin{pmatrix}
0 & 1 & -4 & -7 \\
0 & 0 & 0 & -1 \\
0 & -1 & 7 & 6
\end{pmatrix}
\xrightarrow{R_3 \to R_3 + R_1}$$

$$\begin{pmatrix}
0 & 1 & -4 & -7 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 \\
0 & 0 & 3 & -1
\end{pmatrix}
\xrightarrow{R_2 \to R_3}
\begin{pmatrix}
0 & 1 & -4 & -7 \\
0 & 0 & 3 & -1 \\
0 & 0 & 0 & -1
\end{pmatrix}
\xrightarrow{R_2 \to R_2}
\begin{pmatrix}
0 & 1 & -4 & -7 \\
0 & 0 & 1 & -\frac{1}{3} \\
0 & 0 & 0 & -1
\end{pmatrix}
\xrightarrow{R_1 \to R_1 + 4R_2}$$

$$\begin{pmatrix}
0 & 1 & 0 & -\frac{25}{3} \\
0 & 0 & 1 & -\frac{1}{3} \\
0 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_3 \to -R_3}
\begin{pmatrix}
0 & 1 & 0 & -\frac{25}{3} \\
0 & 0 & 1 & -\frac{1}{3} \\
0 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_1 \to R_1 + \frac{25}{3}R_3}
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -\frac{1}{3} \\
0 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_2 \to R_2 + \frac{1}{3}R_3}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_2 \to R_2 + \frac{1}{3}R_3}$$

13.2 Row Spaces of Matrices

Definition 8 (Row space of a matrix). Let A be a $m \times n$ matrix over \mathbb{F} . R(A) is defined as

$$R(A) = \operatorname{span} v_1, \dots, v_m$$

where v_1, \ldots, v_m are rows of A.

R(A) a subspace of the vector space of all rows of length n, is called the row space of A.

Definition 9 (Row rank of a matrix). dim R(A) is called the row-rank of A, and is denoted by rr(A).

Theorem 3. Let P be a $l \times m$ matrix. Then

- 1. $R(PA) \subseteq R(A)$
- 2. If P is an invertible $m \times m$ matrix, then R(PA) = R(A)

Corollary 3.1.

$$A' \stackrel{\mathbf{R}}{\sim} A \implies \mathbf{R}(A') = \mathbf{R}(A)$$

Theorem 4. If A is in REF, and if r is the number of non-zero rows in A, then

$$rr(A) = r$$

Corollary 4.1. The following are equivalent

- 1. $A \stackrel{R}{\sim} A'$
- 2. There is an invertible matrix P, s.t. A' = PA
- 3. R(A) = R(A')
- 4. A and A' have the same REF

13.3 Column Equivalence

Definition 10 (Elementary column operations, column equivalence, column echelon form, column space and column rank). If A is a $m \times n$ matrix, we can define elementary column operations, column equivalence $(A \stackrel{C}{\sim})$ and column echelon form (CEF), the column space of A (C(A)), and the column rank of A (cr(A)).

Theorem 5.

$$\operatorname{cr}(A) = \operatorname{rr}(A) = r$$

Proof. Let $r = rr(A) = \dim R(A)$. Choose r rows of A which form a basis of R(A), WLG, say v_1, \ldots, v_r . Let

$$X_{r \times n} = \begin{pmatrix} v_1 \\ \vdots \\ v_r \end{pmatrix}$$

$$\operatorname{span}(X) = \operatorname{R}(A)$$

Hence, any row of A can be expressed as a linear combination of v_1, \ldots, v_r

$$v_i = \sum_{j=1}^r y_{ij} v_j$$

Let

$$Y_{m \times r} = (y_{ij})$$

Therefore,

$$A = YX$$

Considering each column of A as a linear combination of columns of Y,

$$C(A) \subseteq C(Y)$$

 $\therefore cr(A) \le cr(Y) \le r = rr(A)$
 $\therefore cr(A) \le rr(A)$

Similarly,

$$\operatorname{rr}(A) \le \operatorname{cr}(A) : \operatorname{cr}(A) = \operatorname{rr}(A)$$

Corollary 5.1. The following are equivalent

- 1. $A \stackrel{C}{\sim} A'$
- 2. There is an invertible matrix Q, s.t. A' = QA
- 3. C(A) = C(A')
- 4. A and A' have the same CEF

Part IV

Linear Systems

1 Definition

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Here, all x_i are taken to be unknowns, and all a_{ij} , b_i are given.

A <u>solution</u> to such a system is a collection d_1, \ldots, d_n , s.t. after replacing x_i by $\overline{d_i}$, we get equalities.

We assume that all a_{ij} , b_i belond to \mathbb{F} , and we are looking for solutions $d_i \in \mathbb{F}$.

Given such a system, we define
$$A_{m \times n} = (a_{ij}), b_{m \times 1} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, x_{n \times 1} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Then, we can write the system as

$$Ax = b$$

A solution to this system is
$$d_n=\begin{pmatrix}d_1\\\vdots\\d_n\end{pmatrix}$$
 , s.t. $Ad=b$ Let D be the set of all $d=\begin{pmatrix}d_1\\\vdots\\d_n\end{pmatrix}$

D may be empty, infinite, or a singleton set.

2 Equivalent Systems

Two systems Ax = b and A'x = b' are called <u>equivalent</u>, if every solution of the first system is also a solution of the second system, and vice versa.

3 Solution of a System of Equations

We want to bring a given system

$$Ax = b$$

to the form

$$A_R x = b_R$$

using elementary row operations.

We denote the augmented or extended matrix of the system as follows.

$$\overline{A}_{m\times(n+1)} = (A_{m\times n}|b_{m\times 1})$$

Then apply Gaussian elimination method to \overline{A} , in order to get the matrix

$$(A_R|b_R)$$

As A_R is obtained from A using elementary row operations,

$$A_R = E_n \dots E_2 E_1 A$$

where every E_i is an elementary matrix.

Let $P = E_n \dots E_2 E_1$. P is invertible, as it is a product of elementary matrices.

$$A_R = PA$$

$$\therefore A_R d = PAd$$

$$= Pb$$

$$= b_R$$

Conversely, let d be a solution to

$$A_R d = b_R$$

$$\therefore PAd = b_R$$

$$\therefore P^{-1}(PAd) = P^{-1}b_R$$

$$\therefore Ad = b$$

If we have a system Ax = b, we may and will assume that A is in REF, i.e. $A = A_R, b = b_R$.

Let $l(1), \ldots l(r)$ denote the numbers of the columns containing leading entries.

Let
$$b = \begin{pmatrix} b_1 \\ \vdots \\ b_r \\ b_{r+1} \\ \vdots \\ b_m \end{pmatrix}$$

$$1 \cdot x_{l(1)} + \dots = b_1$$

$$1 \cdot x_{l(2)} + \dots = b_2$$

$$\vdots$$

$$1 \cdot x_{l(r)} = b_r$$

$$0 = b_{r+1}$$

$$\vdots$$

$$0 = b_m$$

Homogeneous Systems 4

Definition 4.1

A system of the form

$$Ax = \mathbb{O}$$

is called a homogeneous system.

Remark

Any homogeneous system is consistent and has a trivial solution $x = \mathbb{O}$

4.2Solutions of Homogeneous Systems

If r = number of non-zero rows, let t = n - r = number of free variables. If t > 0, denote the numbers of the columns that do not contain leading entries by $z(1), \ldots, z(t)$

4.2.1 Example

$$A = \begin{pmatrix} 0 & 1 & 2 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Therefore,

$$m=4$$

$$n = 6$$

$$r = 3$$

$$t = 3$$

$$l(1) = 2$$

$$l(2) = 4$$

$$l(3) = 5$$

$$z(1) = 1$$

$$z(2) = 3$$
$$z(3) = 6$$

Therefore,

$$x_2 + 2x_3 - 3x_6 = 0$$

$$x_4 - x_6 = 0$$

$$x_5 + 7x_6 = 0$$

Therefore,

$$x_2 = -2x_3 + 3x_6$$

$$x_4 = x_6$$

$$x_5 = -7x_6$$

$$\begin{pmatrix} x_2 \\ x_4 \\ x_5 \end{pmatrix} = C_{3\times 3} \begin{pmatrix} x_1 \\ x_3 \\ x_6 \end{pmatrix}$$

where
$$C_{3\times 3} = \begin{pmatrix} 0 & -2 & 3\\ 0 & 0 & 1\\ 0 & 0 & -7 \end{pmatrix}$$

The free variables x_1, x_3, x_6 can be considered as parameters, $x_1 = \gamma_1, x_2 =$

$$\gamma_2, x_3 = \gamma_3.$$

Therefore,

$$x_2 = -2\gamma_3 + 3\gamma_6$$

$$x_4 = \gamma_6$$

$$x_5 = -7\gamma_6$$

4.2.2 General Solution

4.2.2.1 Case I: t = 0

If t = 0, there are no free variables, and the system has a unique trivial solution.

4.2.2.2 Case II: t > 0

$$\begin{pmatrix} x_{l(1)} \\ x_{l(2)} \\ \vdots \\ x_{l(r)} \end{pmatrix} = C_{r \times t} \begin{pmatrix} x_{z(1)} \\ x_{z(2)} \\ \vdots \\ x_{z(t)} \end{pmatrix}$$

C is filled by coefficients of the equations obtained after shifting the terms containing all z_i to the RHS.

4.3 Properties

4.3.1 For a homogeneous system Ax = 0, if c and d are solutions, then c + d is also a solution.

$$Ac = \mathbb{O}$$

$$Ad = \mathbb{O}$$

$$A(c+d) = Ac + Ad$$

$$= \mathbb{O} + \mathbb{O}$$

$$= \mathbb{O}$$

4.3.2 For a homogeneous system Ax = 0, if c is a solution and $\alpha \in \mathbb{F}$, then, αc is a solution too.

$$Ac = \mathbb{O}$$

$$\therefore A(\alpha c) = \alpha(Ac)$$

$$= \alpha \mathbb{O}$$

$$= \mathbb{O}$$

4.4 Fundamental Solutions

We define t fundamental solutions or basic solutions, $v_1, \ldots v_t$. We define t columns, each of length n as follows. For the ith column v_i , we set

$$x_{z(1)} = 0$$

$$x_{z(i)} = 1$$

$$\vdots$$

$$x_{z(t)} = 0$$

and for $x_{l(1)}, ..., x_{l(r)},$

$$\begin{pmatrix} x_{l(1)} \\ \vdots \\ x_{l(r)} \end{pmatrix} = C \begin{pmatrix} x_{z(1)} \\ \vdots \\ x_{z(t)} \end{pmatrix} = i^{\text{th}} \text{column of } C$$

4.4.1 Theorem: Any solution d of the system $Ax = \mathbb{O}$ can be obtained from the basic solutions v_1, \ldots, v_t as a linear combination of the basic solutions, $d = \alpha_1 v_1 + \ldots \alpha_t v_t$

One can choose another collection v'_1, \ldots, v'_t s.t. any solution of $Ax = \mathbb{O}$ can be obtained as a linear combination of v'_1, \ldots, v'_t . In such a case, we get another form of the general solution.

4.5

$$r \leq \min m, n$$

If r = n, i.e. t = 0, the system has a unique solution.

If r < n, i.e. t > 0, the system has more than one solutions. Its general solution can be expressed as in terms of t parameters, where each free variable serves as a parameter, whose value can be any element of \mathbb{F} .

If m < n, then r < n. Therefore, the system has more than one solution.

5 Non-Homogeneous Systems

5.1 Definition

Consider a system $Ax = b; b \neq \mathbb{O}$. The extended matrix is defined as

$$\widetilde{A} = (A|b) = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$

5.2 Solutions of Non-Homogeneous Systems

Let \widetilde{r} be the number of non-zero rows in the REF of \widetilde{A} , i.e. $\widetilde{A_R}$.

5.2.1 Case I: $\widetilde{r} = r$

$$b'_{r+1} = \dots = b'_m = 0$$

5.2.1.1 Case a: r = n, i.e. t = 0

Therefore,

$$x_1 = b_1'$$

. . .

$$x_r = b'_r$$

Hence, the system has a unique solution.

5.2.1.2 Case b: r < n, i.e. t > 0

Therefore,

$$x_{l}(1) = b'_{1} + c_{11}x_{z(1)} + \dots + c_{1t}x_{z(t)}$$

$$\vdots$$

$$x_{l}(r) = b'_{1} + c_{r1}x_{z(1)} + \dots + c_{rt}x_{z(t)}$$

5.2.2 Case II: $\widetilde{r} > r$

In this case, the $(r+1)^{\text{th}}$ row represents an equation of the form 0=1. Therefore, the system is inconsistent.

5.3 General Solution

The general solution of Ax = b can be expressed by adding the general solution of Ax = b and any particular solution of Ax = b.

If c is a solution of $Ax = \mathbb{O}$, and d is a solution of Ax = b, then c + d is a solution of Ax = b.

Conversely, if d and d' are solutions of Ax = b, then, c = d' - d is a solution of $Ax = \mathbb{O}$.

Part V

Vector Spaces

1 Definition

Let \mathbb{F} be a field. A vector space V, over \mathbb{F} , is a set on which there are two operations, denoted by + and \cdot , where

+ is the addition of elements of V

· is the multiplication of an element of V by an element of \mathbb{F}

s.t. the sum of elements of V lies in V, and the product of an element of V by an element of \mathbb{F} lies in V, and the following properties hold.

(A1)
$$x + y = y + x; \forall x, y \in V$$

(A2)
$$(x+y) + x = x + (y+z); \forall x, y, z \in V$$

(A3)
$$\exists \mathbb{O} \in V$$
, s.t. $\mathbb{O} + x = x + \mathbb{O} = x; \forall x \in V$

(A4)
$$\forall x \in V, \exists y \in V, \text{ s.t. } x + y = \mathbb{O}. \ (y \text{ is denoted as } -x.)$$

(M1)
$$\alpha(x+y) = \alpha x + \alpha y; \forall \alpha \in \mathbb{F}, \forall x, y \in V$$

(M2)
$$(\alpha + \beta)x = \alpha x + \beta y; \forall \alpha, \beta \in \mathbb{F}, \forall x \in V$$

(M3)
$$(\alpha\beta)x = \alpha(\beta x) = \beta(\alpha x); \forall \alpha, \beta \in \mathbb{F}, \forall x \in V$$

(M4)
$$1 \cdot x = x; \forall x \in V$$

Elements of V are called vectors, and elements of \mathbb{F} are called scalars.

1.1 Examples

1.1.1 Geometric Vectors in Plane

1.1.2 Arithmetic Vector Space

Let \mathbb{F} be a field, and $n \geq 1 \in \mathbb{Z}$.

Let $V = \mathbb{F}^n$ be a set of ordered n-tuples.

We define

$$(\alpha_1, \dots, \alpha_n) + (\beta_1, \dots, \beta_n) = (\alpha_1 + \beta_2, \dots, \alpha_n + \beta_n)$$
$$\alpha(\alpha_1, \dots, \alpha_n) = (\alpha\alpha_1, \dots, \alpha\alpha_n)$$

1.1.3

Let \mathbb{F} be a field, and $m, n \geq 1 \in \mathbb{Z}$.

Let $V = \mathbb{F}^{mn}$ be the set of all $(m \times n)$ matrices over \mathbb{F} , i.e. a set of ordered mn-tuples. For $X, Y \in V$, we use the usual definitions of X + Y and αX from algebra of matrices.

2 Properties

1.
$$\alpha \mathbb{O} = \mathbb{O}; \forall \alpha \in F$$

2.
$$\alpha(-x) = -(\alpha x)$$

3.
$$x - y \doteq x + (-y)$$

4.
$$0x = \mathbb{O}; \forall x \in V$$

5.
$$(-1)x = -x; \forall x \in V$$

6.
$$(\alpha - \beta) = \alpha x - \beta x; \forall \alpha, \beta \in F, \forall x \in V$$

2.0.4 Proof of 1

$$\alpha \mathbb{O} = \alpha(\mathbb{O} + \mathbb{O})$$
$$= \alpha \mathbb{O} + \alpha \mathbb{O}$$

For $\alpha \mathbb{O} \exists y \text{ s.t. } \alpha \mathbb{O} + y = \mathbb{O}$. Therefore,

$$\alpha \mathbb{O} + y = (\alpha \mathbb{O} + \alpha \mathbb{O}) + y$$
$$\therefore \mathbb{O} = \alpha \mathbb{O} + (\mathbb{O} + y)$$
$$= \alpha \mathbb{O} + \mathbb{O}$$
$$= \alpha \mathbb{O}$$

3 Subspaces

Let V be a vector space over \mathbb{F} . Let $U \subseteq V$. U is called a subspace of V if the following properties hold.

Axiom 1 $\mathbb{O} \in U$

Axiom 2 If $x, y \in U$, then, $(x + y) \in U$

Axiom 3 If $x \in U, \alpha \in \mathbb{F}$, then, $\alpha x \in U$

3.1 Examples

Example 4. Let V be the set of all geometric vectors in plane.

If U_1 is the set of all vectors along the x-axis, U_2 is the singleton set of a specific vector along the x-axis, and U_3 is the set of all vectors along the x-axis and a specific vector not along the x-axis. Which of U_1, U_2, U_3 are subspaces of V?

Solution. U_1 is a subspace of V as it satisfies all three axioms. U_2 is not a subspace of V as it does not satisfy any of the three axioms. U_3 is not a subspace of V as it does not satisfy Axiom 3

Example 5.

$$\mathbb{F} = \mathbb{R}$$

$$V = \mathbb{C} = \{ \alpha + \beta i; \alpha, \beta \in \mathbb{R} \}$$

where + is addition in \mathbb{C} and \cdot is multiplication by real scalars.

$$U_1 = \{\alpha + 0i\}$$
$$U_2 = \{0 + \beta i\}$$

Which of U_1, U_2, U_3 are subspaces of V?

Solution. Both U_1 and U_2 are subspaces of V, as they satisfy all three axioms.

Example 6. Let $V = \mathbb{F}$, where + is addition in \mathbb{F} , and \cdot is multiplication in \mathbb{F} .

$$U_1 = \{\alpha + 0i\}$$
$$U_2 = \{0 + \beta i\}$$

Which of U_1, U_2 are subspaces of V?

Solution. Neither U_1 nor U_2 are subspaces of V.

Example 7. Let $V = \{f : [0,1] \to \mathbb{R}\}$, where + and \cdot is defined as follows.

$$(f+g)(x) = f(x) + g(x)$$
$$(\alpha f)(x) = \alpha f(x)$$

 \mathbb{O} is the function with graph x = 0.

$$U = \{\text{all continuous functions}[0,1] \to \mathbb{R}\}\$$

Is U is subspace?

Solution. $\mathbb{O} \in \mathbb{R}$. Therefore, Axiom 1 is satisfied. Similarly, Axiom 2 and Axiom 3 are also satisfied.

3.2 Operations on Subspaces

Let V/F be a vector space, and U_1, U_2 be subspaces of V.

$$U_1 \cap U_2 = \{x \in V : x \in U_1 \text{ and } x \in U_2\}$$

$$U_1 \cup U_2 = \{x \in V : x \in U_1 \text{ or } x \in U_2\}$$

$$U_1 + U_2 = \{x \in V : x = x_1 + x_2, x_1 \in U_1, x_2 \in U_2\}$$

Example 8. Let V be a set of geometric vectors in 3D space. Let U_1 be the xy-plane, and U_2 be the yz-plane. If $U_1 \cap U_2$ a subspace of V? Solution.

$$\mathbb{O} \in U_1, \mathbb{O} \in U_2 \Rightarrow \mathbb{O} \in U_1 \cap U_2$$

$$x, y \in U_1 \cap U_2 \Rightarrow x, y \in U_1, x, y \in U_2$$

$$\Rightarrow x + y \in U_1, x + y \in U_2$$

$$= x + y \in U_1 \cap U_2$$

Similarly, if $x \in U_1 \cap U_2$, $\alpha in \mathbb{F}$, then, $\alpha x \in U_1 \cap U_2$. Therefore, $U_1 \cap U_2$ is a subspace of V.

4 Spans

Definition 11 (Span). Let V/\mathbb{F} be a vector space. Let $S \subset V$ be non-empty.

$$\operatorname{span}(S) = \{ x \in V : x = \alpha_1 v_1 + \dots + \alpha_m v_m, \alpha_1, \dots, \alpha_m \in \mathbb{F}, v_1, \dots, v_m \in S \}$$

 $\operatorname{span}(S)$ is the collection of all linear combinations of finite number of vectors of S with coefficients from \mathbb{F}

Theorem 1. $\operatorname{span}(S)$ is a subspace of V

Proof.

$$\mathbb{O} = 0v \Rightarrow \mathbb{O} \in \operatorname{span}(S)$$

$$x, y \in \operatorname{span}(S) \Rightarrow x = \alpha_1 v_1 + \dots + \alpha_m v_m, \beta_1 w_1 + \dots + \beta_m w_m$$

$$\Rightarrow x + y = \alpha_1 v_1 + \dots + \alpha_m v_m + \beta_1 w_1 + \dots + \beta_m w_m \in \operatorname{span}(S)$$

$$x \in \operatorname{span}(S), \alpha \in \mathbb{F} \Rightarrow \alpha_1 v_1 + \dots + \alpha_m v_m$$

 $\Rightarrow \alpha x = \alpha(\alpha_1 v_1 + \dots + \alpha_m v_m)$
 $\Rightarrow \alpha x = \alpha \alpha_1 v_1 + \dots + \alpha \alpha_m v_m \in \operatorname{span}(S)$

Definition 12 (Spanning sets and dimensionality). Let V/\mathbb{F} be a vector space. A set $S \subseteq V$ is said to be a spanning set, if $\operatorname{span}(S) = V$. If V has at least one finite spanning set, V is said to be finite-dimensional. Otherwise, V is said to be infinite-dimensional.

Remark 4. V may have many finite spanning sets, of different sizes

Definition 13 (Basis of a vector space). Let V/\mathbb{F} be a vector space. We say that $B = \{v_1, \dots, v_n\} \subset V$ is a basis of V if every vector $v \in V$ can be expressed in a unique way

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n \quad ; \alpha_1, \dots, \alpha_n \in \mathbb{F}$$

that is, as a linear combination of elements of B.

Definition 14 (Isomorphic spaces). Let V/\mathbb{F} and W/\mathbb{F} be vector spaces. We say that V is isomorphic to W if there is a map $\varphi: V \to W$, s.t.

- 1. φ is one-to-one and onto
- 2. $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2); \forall v_1, v_2 \in V$
- 3. $\varphi(\alpha v) = \alpha \varphi(v); \forall v \in V, \forall \alpha \in \mathbb{F}$

Theorem 2. If a vector space V/\mathbb{F} has a basis $B = \{v_1, \dots, v_n\}$ consisting of n elements, then it is isomorphic to the space

$$W = \mathbb{F}^n = \left\{ \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \right\}$$

Proof. Let $B' = \{e_1, \ldots, e_n\}$, where

$$e_1 = \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$$

B' is a basis of Q, as any $w = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in W$ can be expressed in a unique way

$$w = \alpha_1 e_1 + \dots + \alpha_n e_n$$

Let $\varphi: V \to W$,

$$\varphi(v_1) = e_1$$

:

$$\varphi(v_n) = e_n$$

For any $v = \alpha_1 v_1 + \dots + \alpha_n v_n \in V$,

$$\varphi(v) = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

Therefore,

$$\varphi(\alpha_1 v_1 + \dots + \alpha_n v_n) = \alpha_1 e_1 + \alpha_n e_n$$
$$= \alpha_1 \varphi(v_1) + \dots + \alpha_n \varphi(v_n)$$

If $v \neq v'$,

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n$$
$$v' = \alpha'_1 v_1 + \dots + \alpha'_n v_n$$

Hence φ is one-to-one.

For any
$$w = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in W$$
.

Let $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$. Therefore,

$$\varphi(v) = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = w$$

Therefore, φ is onto.

5 Linear Dependence

Definition 15 (Linearly dependent subsets). Let V/\mathbb{F} be a vector space. Let $S \subseteq V$ be a finite subset. S is said to be linearly dependent if there exist scalars $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$, not all equal to zero, s.t.

$$\alpha_1 v_1 + \dots + \alpha_n v_n = \mathbb{O}$$

Otherwise, S is said to be linearly independent if all $\alpha_1 = \cdots = \alpha_n = 0$.

Example 9. Is $S = \{v_1, \dots, v_l, v, \alpha v\}$ linearly dependent?

Solution.

$$(0)v_1 + \cdots + (0)v_l + (-\alpha)v + (1)\alpha v = \mathbb{O}$$

Therefore, as not all coefficients are zero, S is linearly dependent.

Example 10. Is $S = \{v_1, \dots, v_l, \mathbb{O}\}$ linearly dependent?

Solution.

$$(0)v_1 + \dots + (0)v_l + (1)\mathbb{O} = \mathbb{O}$$

Therefore, as not all coefficients are zero, S is linearly dependent.

Theorem 3. Any basis $B = \{v_1, \ldots, v_n\}$ of a vector space V is linearly independent.

Proof. Let

$$\alpha_1 v_1 + \dots + \alpha_n v_n = \mathbb{O}$$

Also,

$$(0)v_1 + \dots + (0)v_n = \mathbb{O}$$

$$(3.1)$$

Therefore, there are two representations of $v = \mathbb{O}$ as linear combinations of elements of B. By the definition of basis, they must coincide. Therefore,

$$\alpha_1 = 0$$

$$\vdots$$

$$\alpha_n = 0$$

Hence, B is linearly independent.

5.1 Properties of Linearly Dependent and Independent Sets

Theorem 4. If $S \subseteq S'$ and S is linearly dependent, then S' is also linearly dependent.

Theorem 5. If $S \subseteq S'$ and S' is linearly independent, then S is also linearly independent.

Theorem 6. Let $S = \{v_1, \ldots, v_n\}$. S is linearly dependent iff one of the v_i s is a linear combination of the others.

Proof of statement. Suppose

$$v_n = \alpha_1 v_1 + \dots + \alpha_{n-1} v_{n-1}$$

 $\therefore \alpha_1 v_1 + \dots + \alpha_{n-1} v_{n-1} + (-1)v_n = \mathbb{O}$

Therefore, S is linearly dependent.

Proof of converse. Suppose

$$\alpha_1 v_1 + \dots + \alpha_{n-1} v_{n-1} + \alpha_n v_n = \mathbb{O}$$

not all of α_i s are 0. WLG, let $\alpha_n \neq 0$

$$\therefore v_n = -\frac{\alpha_1}{\alpha_m} v_1 - \dots - \frac{\alpha_{n-1}}{\alpha_m} v_{m-1}$$

Theorem 7. Let $S = \{v_1, \ldots, v_m\}$. Let $w \in V$. Suppose w is a linear combination of $v_i s$

$$w = \alpha_1 v_1 + \dots + \alpha_n v_n$$

Then, such an expression is unique iff S is linearly dependent.

Proof of statement. Let

$$w = \alpha_1 v_1 + \dots + \alpha_n v_n$$

be unique.

If possible, let

$$\beta_1 v_1 + \dots + \beta_n v_n = \mathbb{O}$$

not all β_i s are zero.

Then,

$$(\alpha_1 + \beta_1)v_1 + \dots + (\alpha_n \beta_n)v_n = w$$

This is another expression for w, and contradicts the assumption.

Proof of converse. If possible, let S be linearly independent. Assume

$$w = \alpha_1' v_1 + \dots + \alpha_n' v_n$$

Therefore,

$$(\alpha_1 - \alpha_1')v_1 + \dots + (\alpha_n - \alpha_n')v_n = \mathbb{O}$$

Therefore, S is linearly dependent, which contradicts the assumption. \Box

Theorem 8 (Main Lemma on Linear Independence). Suppose V is spanned by n vectors.

Let
$$S = \{v_1, \ldots, v_m\} \subset V$$
. Suppose $m > n$.

Then, S is linearly dependent.

Proof. Let $E = \{w_1, \dots, w_n\}$ be a spanning set for V, V = span(E). Therefore, all elements of S can be represented as linear combination

Therefore, all elements of S can be represented as linear combinations of elements of E.

$$v_1 = \beta_{11}w_1 + \dots + \beta_{1n}w_n$$

$$\vdots$$

$$v_m = \beta_{m1}w_1 + \dots + \beta mnw_n$$

Let

$$\alpha_1 v_1 + \dots + \alpha_m v_m = \mathbb{O}$$

$$\therefore \alpha_1(\beta_{11} w_1 + \dots + \beta_{1n} w_n) + \dots + \alpha_m(\beta_{m1} w_1 + \dots + \beta_{mn} w_n) = \mathbb{O}$$

$$\therefore (\alpha_1 \beta_{11} + \dots + \alpha_m \beta_{m1}) w_1 + \dots + (\alpha_1 \beta_{1n} + \dots + \alpha_m \beta_{mn}) = \mathbb{O}$$

Therefore

$$\alpha_1 \beta_{11} + \dots + \alpha_m \beta_{m1} = 0$$

$$\vdots$$

$$\alpha_1 \beta_{1n} + \dots + \alpha_m \beta_{mn} = 0$$

These equations form a homogeneous linear system with respect to $\alpha_1, \ldots, \alpha_m$. As m > n, the system has a non-zero solution. Therefore not all α_i s are zero. Hence S is linearly dependent.

Definition 16 (Alternative definition of a basis). $B = \{v_1, \ldots, v_n\}$ is said to be a basis of V if B is a spanning set and B is linearly independent.

Theorem 9. If B and B' are bases of V, then they contain the same number of elements.

Proof. If possible, let B contain n elements $\{v_1, \ldots, v_n\}$, and B' contain m elements $\{w_1, \ldots, w_m\}$, m > n.

Therefore, B is a spanning set and B' contains more elements than n, hence by Main Lemma on Linear Independence, B' is linearly dependent. Also, B' is a basis, so it is linearly independent.

This is a contradiction.
$$\Box$$

Definition 17 (Dimension of a vector space). Let V/\mathbb{F} be a finite-dimensional vector space. The number of elements in any basis B of V is called the dimension of V.

$$n = \dim V$$

Remark 5. If V and W are vector spaces over \mathbb{F} , s.t.

$$\dim V = \dim W$$

then, V is isomorphic to W

Theorem 10. If $S = \{v_1, \ldots, v_m\}$ is a spanning set of V, and if S is not a basis of V, a basis B of V can be obtained by removing some elements from S.

Proof. If S is linearly independent, then it is a basis.

Otherwise, if S is linearly dependent, it has an element, WLG, say v_m , which is a linear combination of the others.

$$v_m = \alpha_1 v_1 + \dots + \alpha_{m-1} v_{m-1}$$

Let

$$S' = S - \{v_m\}$$

S' is a spanning set.

Therefore, $\forall v \in V$

$$v = \beta_1 v_1 + \dots + \beta_{m-1} v_{m-1} + \beta_m v_m$$

= $\beta_1 v_1 + \dots + \beta_{m-1} + \beta_m (\alpha_1 v_1 + \dots + \alpha_{m-1} v_{m-1})$
= $\gamma_1 v_1 + \dots + \gamma_{m-1} v_{m-1}$

If S' is linearly independent, then it is a basis, else the same process above can be repeated till we get a basis.

Therefore, a basis is a smallest spanning set.

Theorem 11. If $B_0 = \{v_1, \dots, v_n\}$ is a linearly independent set, and if B_0 is a basis of V, a basis of V can be obtained by adding elements to B_0 .

Theorem 12. Let V be a vector space, s.t. $\dim V = n$. If B satisfies 2 out of the 3 following conditions, then it is a basis.

- 1. B has n elements.
- 2. B is a spanning set.
- 3. B is linearly dependent.

Theorem 13 (Dimension Theorem).

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

Theorem 14.

$$U + W = \operatorname{span}(U \cup W)$$

If

$$U = \operatorname{span}(B)$$
$$W = \operatorname{span}(B')$$

then,

$$U + W = \operatorname{span}(B \cup B')$$

Proof. Let
$$v \in U + W$$
. Then,

$$v = u + w \quad ; u \in U, w \in W$$
 $u \in U \cup W$
 $w \in U \cup W$
 $\therefore v \in \operatorname{span}(U \cup W)$

Let

$$v \in \operatorname{span}(U \cup W) : v = \alpha_1 v_1 + \dots + \alpha_k v_k \quad ; v_i \in U \cup W$$

Let

$$v_1, \dots, v_l \in U$$

 $v_{l+1}, \dots, v_k \in W$

Therefore,

$$v = (\alpha_1 v_1 + \dots + \alpha_l v_l) + (\alpha_{l+1} v_{l+1} + \dots + \alpha_k v_k)$$

$$\therefore v \in U + W$$

5.2 Changing a Basis

Let $B = \{v_1, \ldots, v_n\}$ be a basis of V, s.t. dim V = n. Let $B' = \{v'_1, \ldots, v'_n\}$. As B is a spanning set, all of v'_1, \ldots, v'_n can be expressed as a linear combination of v_1, \ldots, v_n .

$$v_1' = \gamma_{11}v_1 + \dots + \gamma_{n1}v_n$$

$$\vdots$$

$$v_n' = \gamma_{1n}v_1 + \dots + \gamma_{nn}v_n$$

Definition 18 (Transition matrix). The matrix

$$C = \begin{pmatrix} \gamma_{11} & \dots & \gamma_{1n} \\ \vdots & & \vdots \\ \gamma_{n1} & \dots & \gamma_{nn} \end{pmatrix}$$

is called the transition matrix from B to B'.

If B and B' are considered as row vectors of length n filled by vectors,

$$v_1' = \gamma_{11}v_1 + \dots + \gamma_{n1}v_n$$

$$\vdots$$

$$v_n' = \gamma_{1n}v_1 + \dots + \gamma_{nn}v_n$$

can be written as

$$B_{1\times n}' = B_{1\times n}C_{n\times n}$$

Theorem 15. B' is a basis of V iff C is invertible.

Proof of statement. Let B' = BC be a basis.

B' is a basis, and hence is a spanning set. Therefore, any vector from B can be expressed as a linear combination of elements of B'. Therefore,

$$B = B'Q$$
$$= BCQ$$

Also,

$$B = BI$$

Therefore,

$$I = CQ$$

Similarly,

$$B' = BC$$
$$= B'QC$$

Also,

$$B' = B'I$$

Therefore,

$$I = QC$$

Therefore,

$$CQ = QC = I$$

Hence C is invertible.

Proof of converse. Let B' = BC and C be invertible. Therefore, B' is a basis iff B' is a spanning set.

Let $z \in V$. As B is a spanning set,

$$z = \alpha_1 v_1 + \dots + \alpha_n v_n$$

Therefore,

$$z = Bg$$

where

$$g = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

$$\therefore z = Bg$$

$$= B(Ig)$$

$$= B(CC^{-1})g$$

$$= (BC)(C^{-1}g)$$

Let
$$C^{-1}q = f$$

$$\therefore z = B' f$$

Therefore, z can be expressed as a linear combination of vectors from B'. \square

Remark 6. Let B be a basis of V. If

$$BP = BQ$$

where P and Q are $n \times n$ matrices, then

$$P = Q$$

Example 11. Let $B = \{e_1, e_2\}$ and $B' = \{e'_1, e'_2\}$, where

$$e'_1 = e_1 + e_2$$

 $e'_2 = -e_1 + e_2$

Solution.

$$e'_1 = e_1 + e_2$$

$$e'_2 = -e_1 + e_2$$

$$\therefore C = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$e_{1} = \frac{1}{2}e'_{1} - \frac{1}{2}e'_{2}$$

$$e_{2} = \frac{1}{2}e'_{1} + \frac{1}{2}e'_{2}$$

$$\therefore C^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

5.3 Representation of Vectors in a Basis

Let V be a vector space of dimension n. Let $B = \{v_1, \ldots, v_n\}$ be a basis of V.

Let $z \in V$.

z can be written as a unique linear combination of elements of B.

$$z = \alpha_1 v_1 + \dots + \alpha_n v_n$$

The representation of z w.r.t B can be represented as

$$[z]_B = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

5.3.1 Properties of Representations

1.
$$[z_1 + z_2]_B = [z_1]_B + [z_2]_B$$

$$2. \ [\alpha z]_B = \alpha[z]_B$$

3.
$$[z_1]_B = [z_2]_B \iff z_1 = z_2$$

4.
$$\forall \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{F}^n, \exists z \in V, \text{ s.t. } [z]_B = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

6 Determinants

6.1 Definition

Definition 19 (Determinants). Given an $n \times n$ matrix $A, n \geq 1$, det(A) is defined as follows.

$$n = 1$$
 $\det(a) = a$ $n = 2$ $\det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}$ \vdots $n = n$

The determinant of a $n \times n$ matrix is the summation of n! summands. Each summand is the product of n elements, each from a different row and column.

Summand	Permutation	Number of Elementary Permutations ¹	Parity
$a_{11}a_{22}a_{33}$	$ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} $	0	even
$a_{12}a_{23}a_{31}$	$ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} $	$2 ((1,2,3) \to (2,1,3) \to (2,3,1))$	even
$a_{13}a_{21}a_{32}$	$ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} $	$2 ((1,2,3) \to (1,3,2) \to (3,1,2))$	even
$a_{13}a_{22}a_{31}$	$ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) $	$1 ((1,2,3) \to (3,2,1)$	odd
$a_{12}a_{21}a_{33}$	$ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right) $	$1 ((1,2,3) \to (2,1,3)$	odd
$a_{11}a_{23}a_{32}$	$ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} $	$1 ((1,2,3) \to (1,3,2)$	odd

6.2 Properties

Theorem 16. If A, A' are matrices s.t. all rows except the i^{th} row are identical, and A'' is obtained by addition of i^{th} row of A and i^{th} row of A',

¹Any permutation can be represented as a result of a series of elementary permutations, i.e. permutations of 2 elements only. The parity of a particular permutation depends of the parity of the number of elementary functions required for it.

then

$$\det(A'') = \det(A) + \det(A')$$

Theorem 17. If A' is obtained from A by switching two rows, then

$$\det(A') = -\det(A)$$

Theorem 18. If A' is obtained from A by multiplication of a row by a scalar α , then

$$det(A') = \alpha det(A)$$

Theorem 19. If A' is obtained from A by adding to the i^{th} row the j^{th} row multiplied by a scalar α , then

$$\det(A') = \det(A)$$

Corollary 19.1 (Corollary of Property 2). If A has two identical rows, then det(A) = 0.

Theorem 20. The determinant of upper triangular and lower triangular matrices is the product of the elements on the principal diagonal.

Theorem 21.

$$\det(A^t) = \det(A)$$

Corollary 21.1. In all above theorems, the properties which are applicable to rows, are also applicable to columns.

Theorem 22. If A, B, C are some matrices, and \mathbb{O} is the zero matrix,

$$\begin{pmatrix} A_{m \times m} & B \\ \mathbb{O} & C_{n \times n} \end{pmatrix} = \det(A) \cdot \det(C)$$

Theorem 23.

$$det(AB) = det(A) det(B)$$

Corollary 23.1. If A is invertible, then

$$det(A) \neq 0$$

Proof. A is invertible.

Therefore, $\exists P$, s.t.

$$PA = I$$

$$\therefore \det(PA) = \det(I)$$

$$\det(P) \det(A) = 1$$

$$\therefore \det(A) \neq 0$$

Theorem 24. If

$$det(A) \neq 0$$

then A is invertible.

Proof. If possible let A be non invertible.

Let the REF of A be A_R .

As A is non invertible, A_R has a zero row. Therefore,

$$\det(A_R) = 0$$

But

$$\det(A) = 0$$

This is not possible as elementary row operations cannot change a non-zero determinant to zero.

Therefore, A is invertible.

Theorem 25.

$$det(A) \neq 0$$

iff the rows of A are linearly independent iff the columns of A are linearly independent.

Proof. If possible, let the rows of A be linearly dependent.

Therefore, either all of them are zeros, or one row is the linear combination of the others.

Case 1 (All rows are zeros).

$$\therefore \det(A) = 0$$

Case 2 (One row is a linear combination of the others). Let

$$v_n = \alpha_1 v_1 + \dots + \alpha_{n-1} v_{n-1}$$

$$\therefore A = \begin{pmatrix} v_1 \\ \vdots \\ v_{n-1} \\ v_n \end{pmatrix}$$

$$v_n \to v_n - \alpha_1 v_1 + \dots + \alpha_{n-1} v_{n-1}$$

$$\therefore A' = \begin{pmatrix} v_1 \\ \vdots \\ v_{n-1} \\ \mathbb{O} \end{pmatrix}$$

$$\therefore \det(A') = 0$$
$$\therefore \det(A) = 0$$

This contradicts $det(A) \neq 0$. Therefore, the rows of A must be linearly independent.

If v_1, \ldots, v_n are linearly independent,

$$\dim \mathbf{R}(A) = n$$
$$\therefore r = n$$

Therefore, there are no zero rows in REF of A. Hence A is invertible.

$$\therefore \det(A) \neq 0$$

6.3 Practical Methods for Computing Determinants

6.4 Expansion along a row/ column

Let A be a $m \times n$ matrix, and let A_{ij} be the matrix obtained by removing the i^{th} row and j^{th} column from A.

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

6.5 Determinant Rank

Definition 20 (Determinant rank). Let A be any $m \times n$ matrix. Consider all square sub-matrices of A and compute their determinants. If there is an $r \times r$ sub-matrix of A s.t. its determinant is non-zero, but the determinants of all $(r+1) \times (r+1)$ sub-matrices of A are zero, then, r is called the determinant rank of A.

Theorem 26. The determinant rank of A is equal to the rank of A.

7 Linear Maps

7.1 Definition

Definition 21 (Linear map). Let V and W be vector spaces over the same field \mathbb{F} .

$$\varphi: V \to W$$

is said to be a linear map if

1.
$$\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2); \forall v_1, v_2 \in V$$

2.
$$\varphi(\alpha v) = \alpha \varphi(v); \forall v \in V, \forall \alpha \in \mathbb{F}$$

7.2 Properties

1.
$$\varphi(\mathbb{O}) = \mathbb{O}$$

2.
$$\varphi(-v) = -\varphi(v)$$

7.3 Matrix of a Linear Map

Definition 22 (Matrix of a linear map). Let $\varphi: V \to W$ be a linear map. Let

$$n = \dim V$$

$$m = \dim W$$

Let

$$B = \{v_1, \dots, v_n\}$$

$$B' = \{w_1, \dots, w_m\}$$

be bases of V and W respectively. Let

$$\varphi(v_1) = \alpha_{11}w_1 + \dots + \alpha_{m1}w_m$$

$$\vdots$$

$$\varphi(v_n) = \alpha_{1n}w_1 + \dots + \alpha_{mn}w_m$$

The matrix

$$A = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & & \vdots \\ \alpha_{m1} & \dots & \alpha_{mn} \end{pmatrix}$$

is called the matrix of φ with respect to the bases B and B'. It is denoted as

$$A = [\varphi]_{B,B'}$$

Theorem 27. Let

$$\varphi: V \to W$$

be a linear map.

Let B and B' be bases of V and W respectively, and let

$$A = [\varphi]_{B,B'}$$

be the matrix of φ with respect to B and B'. Then, $\forall x \in V$,

$$[\varphi(z)]_{B'} = A[z]_B$$

Proof. Let

$$B = \{v_1, \dots, v_n\}$$

$$B' = \{w_1, \dots, w_m\}$$

Case 3 $(z \in B)$. WLG, let $z = v_i$. Then,

$$[z]_B = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

i.e. all rows except the i^{th} row are 0. Let this vector be e_i . Therefore,

$$A[z]_B = Ae_i$$

is the i^{th} column of A.

$$[\varphi(z)]_{B'} = [\varphi(v_i)]_{B'}$$

is the i^{th} row in the formulae of $\varphi(v_1), \ldots, \varphi(v_n)$. Therefore, it is the i^{th} column of A.

Case 4 ($z \in V$ is an arbitrary vector). Let

$$z = \alpha_1 v_1 + \dots + \alpha_n v_n$$

Therefore,

$$[\varphi(z)]_{B'} = [\varphi(\alpha_1 v_1 + \dots + \alpha_n v_n)]_{B'}$$

$$= [\alpha_1 \varphi(v_2) + \dots + \alpha_n \varphi(v_n)]_{B'}$$

$$= \alpha_1 [\varphi(v_1)]_{B'} + \dots + \alpha_n [\varphi(v_n)]_{B'}$$

$$= \alpha_1 \cdot (1^{\text{st}} \text{column of } A) + \dots + \alpha_n c_n \cdot (n^{\text{th}} \text{column of } A)$$

$$= A[z]_B$$

7.4 Change of Bases

Theorem 28. Let V, W be vector spaces over \mathbb{F} , $\dim(V) = n$, $\dim(W) = m$. Let $\varphi : V \to W$ be a linear map. Let B, \widetilde{B} be bases of V and let B' and $\widetilde{B'}$ be bases of W. Let $A = [\varphi]_{B,B'}$ and $\widetilde{A} = [\varphi]_{\widetilde{B},\widetilde{B'}}$ be the matrices of φ w.r.t.

the pairs B, B' and \widetilde{B} , $\widetilde{B'}$. Let P denote the transition matrix from B to \widetilde{B} , and let Q denote the transition matrix from B' to $\widetilde{B'}$. Then,

$$\widetilde{A}_{m \times n} = Q_{m \times m}^{-1} A_{m \times n} P_{n \times n}$$

Proof. $\forall z \in V$,

$$[\varphi(z)]_{B'} = A[z]_B \tag{28.1}$$

$$[\varphi(z)]_{\widetilde{B'}} = A[z]_{\widetilde{B}} \tag{28.2}$$

We have

$$[z]_B = P[z]_{\widetilde{B}} \tag{28.3}$$

$$[\varphi(z)]_{B'} = Q[\varphi(z)]_{\widetilde{B'}} \tag{28.4}$$

Therefore,

(28.1) in $(28.4) \implies$

$$A[z]_B = Q[\varphi(z)]_{\widetilde{R'}} \tag{28.5}$$

(28.3) in $(28.5) \implies$

$$AP[z]_{\widetilde{B}} = Q[\varphi(z)]_{\widetilde{B'}}$$
 (28.6)

Multiplying on the left by Q^{-1} ,

$$\begin{split} Q^{-1}AP[z]_{\widetilde{B}} &= [\varphi(z)]_{\widetilde{B'}} \\ &\therefore [\varphi(z)]_{\widetilde{B'}} = Q^{-1}AP[z]_{\widetilde{B}} \end{split}$$

Comparing with (28.2),

$$\widetilde{A} = Q^{-1}AP$$

7.5 Operations on Linear Maps

Definition 23 (Operations on linear maps). Let

$$\varphi: V \to W$$
$$\varphi': V \to W$$

be linear maps.

$$\varphi + \varphi' : V \to W$$

is defined as

$$(\varphi + \varphi')(v) = \varphi(v) + \varphi'(v)$$

and

$$\alpha \varphi : V \to W$$

is defined as

$$(\alpha\varphi)(v) = \alpha\varphi(v)$$

Definition 24 (Composed map). Let

$$\varphi: V \to W$$
$$\varphi': W \to U$$

be linear maps.

$$(\varphi' \circ \varphi) : V \to U$$

is defined as

$$(\varphi'\circ\varphi)(v)=\varphi'(\varphi(v))$$

Theorem 29 (Matrix of composed map). Let $\varphi: V \to W$, $\varphi': W \to U$ be linear maps. Let $(\varphi \circ \varphi'): V \to U$ be the composed map. Let $\dim V = n$, $\dim W = m$, $\dim U = l$. Let B, B', B'' be bases of V, W, U respectively. Let $A = [\varphi]_{B,B'}, A' = [\varphi']_{B',B''}$ be the matrices of φ, φ' . Let $A'' = [\varphi' \circ \varphi]_{B,B''}$ be the matrix of the composed map. Then,

$$A'' = A'A$$

Proof. Let $z \in V$.

$$[(\varphi' \circ \varphi)(z)]_{B''} = [\varphi'(\varphi(z))]_{B''}$$
$$= A'[\varphi(z)]_{B'}$$
$$= A'A[z]_{B}$$

By definition,

$$[(\varphi' \circ \varphi)(z)]_{B''} = A''[z]_B$$

Therefore,

$$A'' = A'A$$

7.6 Kernel and Image

Definition 25 (Kernel and image). Let $\varphi: V \to W$ be a linear map.

$$\ker \varphi \doteq \{v \in V : \varphi(v) = \mathbb{O}\}$$
$$\operatorname{im} \varphi \doteq \{\phi(v) : v \in V\}$$

Theorem 30. $\ker \varphi$ is a subspace of V and $\operatorname{im} \varphi$ is a subspace of W. *Proof.*

$$\varphi(\mathbb{O}) = \mathbb{O}$$
$$\therefore \mathbb{O} \in \ker \varphi$$

If $v_1, v_2 \in \ker \varphi$, then

$$\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2)$$
$$= \mathbb{O} + \mathbb{O}$$
$$= \mathbb{O}$$

$$v_1 v_2 \in \ker V$$

If $v \in \ker \varphi$, $\alpha \in \mathbb{F}$, then

$$\varphi(\alpha v) = \alpha \varphi(v)$$

$$= \alpha \mathbb{O}$$

$$= \mathbb{O} : \alpha v \in \ker \varphi$$

Therefore, $\ker \varphi$ is a subspace of W.

$$\varphi(\mathbb{O}) = \mathbb{O}$$
$$\therefore \mathbb{O} \in \operatorname{im} \varphi$$

If $w_1, w_2 \in \operatorname{im} \varphi$, then

$$w_1 = \varphi(v_1)$$

$$w_2 = \varphi(v_2)$$

$$\therefore w_1 + w_2 = \varphi(v_1) + \varphi(v_2)$$

$$= \varphi(v_1 + v_2)$$

$$\therefore w_1 + w_2 \in \operatorname{im} \varphi$$

If $w \in W$, $\alpha \in \mathbb{F}$, then

$$\alpha w = \alpha \phi(v)$$
$$= \varphi(\alpha v)$$
$$\therefore \alpha w \in \operatorname{im} \varphi$$

Therefore, im φ is a subspace of W.

7.6.1 Dimensions of Kernel and Image

Theorem 31. Let $\varphi: V \to W$ be a linear map. Then

$$\dim(\ker(\varphi)) + \dim(\operatorname{im}(\varphi))$$

Proof. Let $\ker \varphi = U$, $U \subseteq V$.

Let $B_0 = \{v_1, \dots, v_k\}$ be a basis of U.

Completing B_0 to a basis B of V,

$$B = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$$

Let

$$w_{k+1} = \varphi(v_{k+1})$$

$$\vdots$$

$$w_n = \varphi(v_n)$$

Therefore, we need to prove that B' is a basis of $W' = \operatorname{im}(\varphi)$, by proving that B' is a spanning set and that B' is linearly independent.

Take $w \in \text{im}(\varphi)$, so that there is $v \in V$ s.t. $\varphi(v) = w$.

Representing v as a linear combination of elements of B,

$$v = \alpha_1 v_1 + \dots + \alpha_k v_k + \alpha_{k+1} v_{k+1} + \dots + \alpha_n v_n$$

$$\therefore w = \varphi(v)$$

$$= \varphi(\alpha_1 v_1 + \dots + \alpha_k v_k + \alpha_{k+1} v_{k+1} + \dots + \alpha_n v_n)$$

$$= \alpha_1 \varphi(v_1) + \dots + \alpha_k \varphi(v_k) + \alpha_{k+1} \varphi(v_{k+1}) + \dots + \alpha_n \varphi(v_n)$$

$$= \alpha_{k+1} \varphi(v_{k+1}) + \dots + \alpha_n \varphi(v_n)$$

$$= \alpha_{k+1} w_{k+1} + \dots + \alpha_n w_n$$

$$\in \operatorname{span}(B')$$

Therefore, B' is a spanning set for W'. Let

$$\beta_{k+1}w_{k+1} + \dots + \beta_nw_n = \mathbb{O}$$

Therefore, B' is linearly independent iff

$$\beta_{k+1} = \dots = \beta_n = 0$$

As φ is a linear map,

$$\varphi(\beta_{k+1}v_{k+1} + \dots + \beta_n v_n) = \mathbb{O}$$

$$\therefore \beta_{k+1}v_{k+1} + \dots + \beta_n v_n \in \ker \varphi$$

Therefore, it can be expressed as a linear combination of vectors of B_0 , which is a basis of ker φ .

Let

$$\beta_{k+1}v_{k+1} + \dots + \beta_n v_n = \alpha_{k+1}v_{k+1} + \dots + \alpha_n v_n$$

$$\therefore \alpha_{k+1}v_{k+1} + \dots + \alpha_n v_n - \beta_{k+1}v_{k+1} - \dots - \beta_n v_n = \mathbb{O}$$

As $\{v_1, \ldots, v_n\}$ is a basis of V, all coefficients must be 0 Therefore,

$$\beta_{k+1}v_{k+1} = \dots = \beta_n v_n = 0$$

Hence, as B' is a spanning set of im φ and also linearly independent, B' is a basis of im φ .

Therefore,

$$\dim(\operatorname{im}\varphi) = \operatorname{size of } B'$$

$$= n - k$$

$$= n - \dim(\ker\varphi)$$

$$\therefore \dim(\operatorname{im}\varphi) + \dim(\ker\varphi) = \dim V$$

Corollary 31.1.

$$\dim(\operatorname{im}\varphi) = r$$

where r is the rank of A

Corollary 31.2. Let $A_{m \times n}$ be a matrix of rank r. Let C(A) be the column space of A, and let $\dim C(A)$ be the column rank of A. Then

$$\dim C(A) = r$$

Proof. Define

$$\varphi: \mathbb{F}^n \to \mathbb{F}^m$$

s.t. $A = [\varphi]_{B,B'}$, where B is the standard basis of \mathbb{F} .

$$B = \left\{ \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix} \right\}$$
$$= \left\{ e_1, \dots, e_n \right\}$$

 $\forall v \in \mathbb{F}^n$, we have

$$[\varphi(v)]_{B'} = A[v]_B$$

If $v = e_i$,

$$[\varphi(e_i)] = Ae_i$$

which is the i^{th} column of A. So, the space spanned by $\{\varphi(e_1), \ldots, \varphi(e_n)\}$ is equal to C(A). But it is also in φ . Therefore,

$$\operatorname{im} \varphi = \operatorname{C}(A)$$

and

$$\dim(\operatorname{im}\varphi) = \dim(\operatorname{C}(A))$$

 $\therefore r = \dim(\operatorname{C}(A))$

Remark 7. Let $\varphi: V \to W$ be a linear map. Let $w \in \operatorname{im}(\varphi)$, so that there is $v \in V$ s.t. $\varphi(v) = w$. Then any v' s.t. $\varphi(v') = w$ can be written down as $v' = v + v_0$ where $v_0 \in \ker \varphi$.

Part VI

Linear Operators

1 Definition

Definition 26 (Linear operator). A linear operator or transformation

$$T:V\to V$$

is a linear map from a vector space V to itself.

2 Similar Matrices

Let B and \widetilde{B} be bases of V. Let A and \widetilde{A} be the representing matrices

$$A = [T]_B$$

$$\widetilde{A} = [T]_{\widetilde{B}}$$

Both these are $n \times n$ matrices, where $n = \dim V$. Let P denote the transition matrix from B to \widetilde{B} . Then,

$$\widetilde{A} = P^{-1}AP$$

Definition 27 (Similarity of matrices). Let A, \widetilde{A} be $n \times n$ matrices. A is said to be similar to \widetilde{A} , denoted as $A \sim \widetilde{A}$, if there exists an invertible $n \times n$ matrix P, s.t. $\widetilde{A} = P^{-1}AP$.

2.1 Properties of Similar Matrices

- 1. $A \sim A$
- 2. If $A \sim \widetilde{A}$, then $\widetilde{A} \sim A$
- 3. If $A \sim \widetilde{A}$ and $\widetilde{A} \sim \widetilde{\widetilde{A}}$, then $A \sim \widetilde{\widetilde{A}}$
- 4. If $A \sim \widetilde{A}$, then $\det(A) = \det(\widetilde{A})$
- 5. If $A \sim I$, then A = I

3 Diagonalization

Given a square matrix $A_{n\times n}$, decide whether or not A is similar to some diagonal matrix D. If it is, find D, and P s.t. $P^{-1}AP = D$. Alternatively,

Given an operator $T:V\to V$, decide whether or not there exists a basis B of V, s.t. $[T]_B$ is a diagonal matrix D. If it exists, find D, and B, s.t. $[T]_B=D$.

Definition 28 (Diagonalizability). If A is similar to a diagonal matrix, A is said to be diagonalizable. P, s.t. $P^{-1}AP = D$ is called a diagonalizing matrix for A. D is called a diagonal form of A.

4 Eigenvalues and Eigenvectors

Definition 29 (Eigenvalue and eigenvector). Let A be a $n \times n$ matrix over \mathbb{F} . $\lambda \in \mathbb{F}$ is said to be an eigenvalue of A, if $\exists v \in \mathbb{F}, v \neq 0$, such that

$$Av = \lambda v$$

v is called an eigenvector corresponding to λ .

Definition 30 (Alternate definition of eigenvalue and eigenvector). Let $T: V \to V$ be a linear operator, where V is a vector space over \mathbb{F} . $\lambda \in \mathbb{F}$ is said to be an eigenvalue of A, if $\exists v \in V, v \neq 0$, such that

$$T(v) = \lambda v$$

v is called an eigenvector corresponding to λ .

Definition 31 (Spectrum). The collection of all eigenvalues of a matrix, or a linear operator is called the spectrum.

Theorem 1. Let A be a $n \times n$ matrix. $\lambda \in \mathbb{F}$ is an eigenvalue of A iff

$$\det(\lambda I_n - A) = 0$$

Proof. λ is an eigenvalue of A

 $\iff \det(\lambda I - A) = 0$

$$\iff \exists v \in \mathbb{F}^n, v \neq 0, \text{ s.t. } Av = \lambda v$$

$$\iff \exists v \in \mathbb{F}^n, v \neq 0, \text{ s.t. } (\lambda I - A)v = \mathbb{O}$$

$$\iff v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\iff (\lambda I - A) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0 \text{ has a non-zero solution}$$

$$\iff \text{there are free variables}$$

Theorem 2 (General criterion for diagonalization). Let A be a $n \times n$ matrix. A is diagonalizable if and only if there exists a basis $B = \{v_1, \ldots, v_n\}$ of \mathbb{F}^n consisting of eigenvectors of A. In such a case, the diagonal entries of D are eigenvalues of A, and B can be chosen as consisting of the columns of P, where $P^{-1}AP = D$.

Corollary 2.1. If A has no eigenvalues, then it is not diagonalizable.

Theorem 3. Let $\lambda_1, \ldots, \lambda_s$ be pairwise distinct eigenvalues of an $n \times n$ matrix A, i.e. $\forall i \neq j, \lambda_i \neq \lambda_j$. Let v_1, \ldots, v_s be eigenvalues of A corresponding to $\lambda_1, \ldots, \lambda_s$. Then the set $S = \{v_1, \ldots, v_s\}$ is linearly independent.

Proof. If possible, let S be linearly dependent. Let S' denote a linearly dependent subset of S of smallest possible size, say l. WLG, let $S' = \{v_1, \ldots, v_l\}$. Hence, $\exists \alpha_1, \ldots, \alpha_l \in \mathbb{F}$, s.t.

$$\alpha_1 v_1 + \dots + \alpha_l v_l = \mathbb{O} \tag{3.1}$$

Multiplying (3.1) on both sides by A,

$$\alpha_1 A v_1 + \dots + \alpha_l A v_l = \mathbb{O} \tag{3.2}$$

$$\alpha_1 \lambda_1 v_1 + \dots + \alpha_l \lambda_l v_l = \mathbb{O} \tag{3.3}$$

Multiplying (3.1) on both sides by λ_l

$$\alpha_1 \lambda_1 v_1 + \dots + \alpha_l A v_l = \mathbb{O} \tag{3.4}$$

Subtracting (3.4) from (3.3)

$$\alpha_1(\lambda_1 - \lambda_l)v_1 + \dots + \alpha_{l-1}(\lambda_{l-1} - \lambda_l)v_{l-1} = \mathbb{O}$$
(3.5)

Solving,

$$\alpha_1 = \alpha_l = 0$$

This is a contradiction.

Corollary 3.1. Let $A_{n\times n}$ have n distinct eigenvalues. Then, A is diagonalizable.

Proof. Let v_1, \ldots, v_n be eigenvectors of A, corresponding to $\lambda_1, \ldots, \lambda_n$. As they are distinct, by the above theorem, they are linearly independent. The number of elements in the set $\{v_1, \ldots, v_n\}$ is n. Therefore, the set is a basis. Hence, according to General criterion for diagonalization, A is diagonalizable.

5 Characteristic Polynomial

Definition 32 (Characteristic Polynomial). Let A be any $n \times n$ matrix.

$$p_A(x) = \det(xI_n - A)$$

is called the characteristic polynomial.

5.1 Properties

- 1. The roots of $p_A(x)$ are the eigenvalues of A.
- 2. $\deg p_A(x) = n$
- 3. The coefficient of x^n is 1.
- 4. The constant term is $\alpha_0 = (-1)^n \det(A)$.
- 5. The coefficient of x^{n-1} is $\alpha_{n-1} = -(a_{11} + \dots + a_{nn})$.

Theorem 4. If $A \sim A'$, then $p_A(x) = p_{A'}(x)$.

Proof.

$$A' = P^{-1}AP$$

$$\therefore p_{A'}(x) = \det(xI - A')$$

$$= \det(xI - P^{-1}AP)$$

$$= \det(P^{-1}(xI)P - P^{-1}AP)$$

$$= \det(P^{-1}(xI - A)P)$$

$$= \det(P^{-1})\det(xI - A)\det(P)$$

$$= \det(xI - A)$$

$$= p_A(x)$$

Definition 33 (Alternative definition of characteristic polynomial). Let $T: V \to V$ be a linear operator. The characteristic polynomial of T is defined as the characteristic polynomial of any representing matrix of T.

Theorem 5. Let f(x), g(x) be polynomials. Then $\exists q(x), r(x), s.t.$

$$f(x) = g(x)q(x) + r(x)$$

and $\deg r(x) < \deg g(x)$.

Definition 34 (Remainder). If

$$f(x) = q(x)q(x) + r(x)$$

r(x) is called the remainder after division of f(x) by g(x). If $r(x) = \mathbb{O}$, f(x) is said to be divisible by g(x).

Corollary 5.1. Let f(x) be a polynomial and let α be a root of f. Then f(x) is divisible by $(x - \alpha)$.

Definition 35 (Algebraic multiplicity of eigenvalue). Let A be a $n \times n$ matrix, and let $p_A(x)$ be the characteristic polynomial of A, and let λ be an eigenvalue of A. The algebraic multiplicity of λ is defined as the largest possible integer value of k such that $p_A(x)$ is divisible by $(x - \lambda)^k$.

Definition 36 (Eigenspace). Let A be a $n \times n$ matrix, and let λ be an eigenvalue of A. The eigenspace of A corresponding to λ is defined as

$$V_{\lambda} = \{ v \in \mathbb{F}^n; Av = \lambda v \}$$

Theorem 6. An eigenspace of a matrix is a subspace of the field over which the matrix is defined.

Definition 37 (Geometric multiplicity of eigenvalue). $m = \dim V_{\lambda}$ is called the geometric multiplicity of λ .

Theorem 7. Let λ be an eigenvalue of $A_{n \times n}$. Let k be the algebraic multiplicity of λ and let m be the geometric multiplicity of λ . Then

$$m \le k$$

Proof.

$$m = \dim V_{\lambda}$$

Therefore, let $B_0 = \{v_1, \ldots, v_m\}$ be a basis of V_{λ} . Completing B_0 to $B = \{v_1, \ldots, v_m, v_{m+1}, \ldots, v_n\}$, a basis of \mathbb{F}^n . Let $P_{n \times n}$ be a matrix with columns v_1, \ldots, v_n .

$$P = \begin{pmatrix} v_1 & \dots & v_m & v_{m+1} & \dots & v_n \end{pmatrix}$$

P is invertible as v_1, \ldots, v_n are linearly independent. Consider $A' = P^{-1}AP$.

$$P^{-1}AP = P^{-1}A \begin{pmatrix} v_1 & \dots & v_m & v_{m+1} & \dots & v_n \end{pmatrix}$$

$$= P^{-1} \begin{pmatrix} Av_1 & \dots & Av_m & Av_{m+1} & \dots & Av_n \end{pmatrix}$$

$$= P^{-1} \begin{pmatrix} \lambda v_1 & \dots & \lambda v_m & \star & \dots & \star \end{pmatrix}$$

$$= \begin{pmatrix} P^{-1}(\lambda v_1) & \dots & P^{-1}(\lambda v_m) & \star & \dots & \star \end{pmatrix}$$

$$= \begin{pmatrix} \lambda e_1 & \dots & \lambda e_m \end{pmatrix} & \star & \dots & \star \end{pmatrix}$$

$$= \begin{pmatrix} \lambda I_m & \star \\ 0 & \widetilde{A} \end{pmatrix}$$

$$p_{A'}(x) = \det(xI_n + A')$$

$$= \det\begin{pmatrix} xI_m & 0 \\ 0 & xI_{n-m} \end{pmatrix} - \begin{pmatrix} \lambda I_m & \star \\ 0 & \widetilde{A} \end{pmatrix}$$

$$= \det\begin{pmatrix} (x - \lambda)I_m & \star \\ 0 & xI_{n-m} - \widetilde{A} \end{pmatrix}$$

$$= \det((x - \lambda)I_m) \cdot \det(xI_{n-m} - \widetilde{A})$$

$$= (x - \lambda)^m \cdot p_{\widetilde{A}}(x)$$

As $A \sim \widetilde{A}$,

$$p_A(x) = p_{A'} = (x - \lambda)^m p_{\widetilde{A}}(x)$$

By the definition of Algebraic multiplicity of eigenvalue, $k \geq m$.

Theorem 8. If a matrix $A_{n \times n}$ is diagonalizable, then its characteristic polynomial $p_A(x)$ can be represented as a product of linear factors.

$$p_A(x) = (x - \lambda_1)^{k_1} \dots (x - \lambda_s)^{k_s}$$

where k_i is the algebraic multiplicity of λ_i and $\lambda_1, \ldots, \lambda_s$ are pairwise distinct.

Proof. As A is diagonalizable, let $A \sim D$,

$$\begin{pmatrix} \lambda_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda_s & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \lambda_s \end{pmatrix}$$

Then,

$$p_A(x) = p_D(x)$$

$$= \det \begin{pmatrix} x - \lambda_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & x - \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & x - \lambda_s & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & x - \lambda_s \end{pmatrix}$$

$$= (x - \lambda_1)^{k_1} \dots (x - \lambda_s)^{k_s}$$

Theorem 9 (Explicit criterion for diagonalization). Let A be an $n \times n$ matrix, s.t. $p_A(x)$ splits completely. Then A is diagonalizable if and only if $\forall \lambda_i$ of A, the algebraic multiplicity coincides with the geometric multiplicity.

Proof of statement. If p_A splits completely, then $k_1 + \cdots + k_n = n$. If A is diagonalizable, then by the General criterion for diagonalization, there is $B = \{v_1, \ldots, v_n\}$, a basis of \mathbb{F}^n , s.t. each v_i is an eigenvector of A. Dividing v_1, \ldots, v_n into s groups corresponding to $\lambda_1, \ldots, \lambda_s$, to each λ_i , there correspond at most $m_i = \dim V_{\lambda_i}$ eigenvectors, as they are a part of a basis and hence linearly independent. Therefore,

$$n < m_1 + \cdots + m_s$$

As p_A splits completely,

$$n = k_1 + \cdots + k_s$$

Also, $k_i \geq m_i$

$$\therefore k_1 + \dots + k_s = m_1 + \dots + m_s$$

moreover, $\forall i$, s.t. $1 \leq i \leq s$,

$$k_i = m_i$$

Proof of converse.

$$\forall i, \text{ s.t. } 1 \leq 1 \leq s$$

$$\therefore k_i = m_i$$

As
$$k_1 + \cdots + k_s = n$$
,

$$m_1 + \cdots + m_s = n$$

Let the bases of the eigenspaces $V_{\lambda_1}, \ldots, V_{\lambda_s}$ be B_1, \ldots, B_s .

$$|B_1| = m_1$$

$$\vdots$$

$$|B_s| = m_s$$

Let $B = B_1 \cup \cdots \cup B_s$. |B| = n.

It is enough to prove that B is linearly independent.

Let

$$B = \{v_1, v_2, \dots, w_1, w_2, \dots, u_1, u_2, \dots\}$$

Suppose

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \beta_1 w_1 + \beta_2 w_2 + \dots + \gamma_1 u_1 + \gamma_2 u_2 + \dots = \mathbb{O}$$

If possible, let at least one coefficient be non-zero. WLG, let $\alpha_1 \neq 0$. Hence, as v_1, v_2, \ldots form B_1 which is a basis of v_{λ_1} ,

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots \neq \mathbb{O}$$

Let

$$w = \beta_1 w_1 + \beta_2 w_2 + \dots$$

$$\dots$$

$$u = \gamma_1 u_1 + \gamma_2 u_2 + \dots$$

Therefore,

$$v + w + \dots + u = \mathbb{O}$$

where $v \neq \mathbb{O}$ and $v \in V_{\lambda_1}, w \in V_{\lambda_2}, \dots, u \in V_{\lambda_s}$.

But as $\lambda_1, \ldots, \lambda_s$ are pairwise distinct, v, w, \ldots, u are linearly independent. This is a contradiction. Therefore, B is a basis. Hence, as B consists of eigenvectors of A, by the General criterion for diagonalization, A is diagonalizable.

Theorem 10 (Criterion for triangularization). An operator $T: V \to V$ is triangularizable, i.e. there is a basis B of V such that $[T]_B$ is upper triangular, if and only if $p_T(x)$ splits completely.

Theorem 11 (Jordan Theorem). Let $T: V \to V$ be a linear operator such that $p_T(x)$ splits completely. Then there exists a basis B of V such that $[T]_B$ is of the form

$$[T]_B = \begin{pmatrix} J_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & J_l \end{pmatrix}$$

where each J_i is of the form

$$\begin{pmatrix} \lambda & 1 & 0 & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 & 0 & 0 \\ 0 & 0 & \ddots & \ddots & 0 & 0 \\ 0 & 0 & 0 & \ddots & 1 & 0 \\ 0 & 0 & 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & 0 & \lambda \end{pmatrix}$$

where λ is some eigenvalue of T.

Part VII

Inner Product Spaces

1 Definition

Definition 38 (Inner product). Let \mathbb{F} be \mathbb{R} or \mathbb{C} . Let V be a vector space over \mathbb{F} . An inner product on V is a function in two vector arguments with scalar values which associates to two given vectors $v, w \in V$ their product $\langle v, w \rangle \in \mathbb{F}$ so that the following properties are satisfied.

1.
$$\langle \alpha_1 v_1 + \alpha_2 v_2, w \rangle = \alpha_1 \langle v_1, w \rangle + \alpha_2 \langle v_2, w \rangle, \forall v_1, v_2, w \in V, \forall \alpha_1, \alpha_2 \in \mathbb{F}$$

2.
$$\langle v, w \rangle = \overline{\langle w, v \rangle}, \forall v, w \in V$$

3. $\langle v, v \rangle$ is a real non-negative number, $\forall v \in V$

Example 12. The dot product of two vectors is defined as follows. Is it an inner product?

$$V = \mathbb{F}^n$$

$$\left\langle \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}, \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} \right\rangle = \alpha_1 \overline{\beta_1} + \dots + \alpha_n \overline{\beta_n}$$

Solution. All three axioms are satisfied by this product. Hence, it is an inner product.

Theorem 1 (Sesquilinearity).

$$\langle v, \beta_1 w_1 + \beta_2 w_2 \rangle = \overline{\beta_1} \langle v, w_1 \rangle + \overline{\beta_2} \langle v, w_2 \rangle$$

$$\forall v, w_1, w_2 \in V, \beta_1, \beta_2 \in \mathbb{F}$$

Definition 39 (Length). The length of a vector

$$v = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

is defined to be

$$||v|| = \sqrt{\alpha_1^2 + \dots + \alpha_n^2}$$

Example 13. Let V be the vector space consisting of all continuous functions $f:[a,b]\to\mathbb{R}$.

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x) \, \mathrm{d}x$$

Solution. All three axioms are satisfied by this product. Hence, it is an inner product.

2 Computation of Inner Products

Definition 40 (Gram matrix). Let V be an inner product space. Let

$$B = \{v_1, \dots, v_n\}$$

be a basis of V.

$$G_B = \begin{pmatrix} \langle v_1, v_1 \rangle & \dots & \langle v_1, v_n \rangle \\ \vdots & & \vdots \\ \langle v_n, v_1 \rangle & \dots & \langle v_n, v_n \rangle \end{pmatrix}$$

is called the Gram matrix of the inner product with respect to B.

Example 14. Find the Gram matrix of $V = \mathbb{F}^n$ with standard dot product with respect to

$$B = \left\{ \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix} \right\}$$

Solution.

$$G_B = \begin{pmatrix} \langle e_1, e_1 \rangle & \dots & \langle e_1, e_n \rangle \\ \vdots & & \vdots \\ \langle e_n, e_1 \rangle & \dots & \langle e_n, e_n \rangle \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$

Example 15. Find the Gram matrix of $V = \mathbb{F}^n$ with standard dot product with respect to

$$B = \left\{ \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 6 \\ 7 \end{pmatrix} \right\}$$

Solution.

$$G_B = \begin{pmatrix} \langle v_1, v_1 \rangle & \langle v_1, v_2 \rangle \\ \langle v_2, v_1 \rangle & \langle v_2, v_2 \rangle \end{pmatrix}$$
$$= \begin{pmatrix} 25 & 46 \\ 46 & 85 \end{pmatrix}$$

Theorem 2.

$$\langle v, w \rangle = [v]_B^t G_B \overline{[w]}_B$$

Proof. Let

$$B = \{v_1, \dots, v_n\}$$

be a basis of V.

The Gram matrix is

$$G_B = \left(\langle v_i, v_j \rangle \right) = \left(g_{ij} \right)$$

To compute $\langle v, w \rangle$, find

$$[v]_B = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$
$$[w]_B = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

$$\langle v, w \rangle = \langle \alpha_1 v_1 + \dots + \alpha_n v_n, \beta_1 v_1 + \dots + \beta_n v_n \rangle$$

$$= \alpha_1 \overline{\beta_1} \langle v_1, v_1 \rangle + \dots + \alpha_1 \overline{\beta_n} \langle v_1, v_n \rangle$$

$$+ \alpha_2 \overline{\beta_1} \langle v_2, v_1 \rangle + \dots + \alpha_2 \overline{\beta_n} \langle v_2, v_n \rangle$$

$$+ \dots$$

$$+ \alpha_n \overline{\beta_1} \langle v_n, v_1 \rangle + \dots + \alpha_n \overline{\beta_n} \langle v_n, v_n \rangle$$

$$= \alpha_1 g_{11} \overline{\beta_1} + \dots + \alpha_1 g_{1n} \overline{\beta_n}$$

$$+ \alpha_2 g_{21} \overline{\beta_1} \rangle + \dots + \alpha_2 g_{2n} \overline{\beta_n}$$

$$+ \dots$$

$$+ \alpha_n g_{n1} \overline{\beta_1} + \dots + \alpha_n g_{nn} \overline{\beta_n}$$

$$= [v]_B^t G_B \overline{[w]_B}$$

2.1 Change of Basis

Theorem 3. Let B, \widetilde{B} be bases of V. Let P be the transition matrix from B to \widetilde{B} . Then

$$G_{\widetilde{B}} = P^t G_B \overline{P}$$

where \overline{P} is the matrix obtained by replacing all elements of P by their complex conjugates.

Proof.

$$[v]_B = P[v]_{\widetilde{B}}$$

$$\begin{split} \langle v, w \rangle &= [v]_B^t G_B \overline{[w]_B} \\ &= (P[v]_{\widetilde{B}})^t G_B \overline{(P[w]_{\widetilde{B}})} \\ &= [v]_{\widetilde{B}}^t (P^t G_B \overline{P}) \overline{[w]_{\widetilde{B}}} \end{split}$$

Also,

$$\langle v, w \rangle = [v]_{\widetilde{B}}^t G_{\widetilde{B}} \overline{[w]_{\widetilde{B}}}$$

Therefore,

$$G_{\widetilde{B}} = P^t G_B \overline{P}$$

3 Norms

3.1 Definition

Definition 41 (Norm). Let V be a vector space over \mathbb{F} with inner product. $\forall v \in V$,

$$||v|| \doteq \sqrt{\langle v, v \rangle}$$

||v|| is called the norm of v.

3.2 Properties

1. Positivity

$$||v|| \ge 0, \forall v \in V$$

 $||v|| = 0 \iff v = \mathbb{O}$

2. Homogeneity

$$\|\alpha v\| = |\alpha| \|v\|, \, \forall v \in V, \forall \alpha \in \mathbb{F}$$

3. Triangle Inequality

$$||u + v|| \le ||u|| + ||v||, \forall u, v \in V$$

4 Orthogonality

4.1 Definition

Definition 42 (Orthogonality). A vector $u \in V$ is said to be orthogonal to $v \in V$ if

$$\langle u, v \rangle = 0$$

It is denoted as $u \perp v$.

4.2 Properties

- 1. If $u \perp v$, then $v \perp u$.
- 2. If $u \perp v$, $\alpha, \beta \in \mathbb{F}$, then $\alpha u \perp \beta v$.
- 3. $\mathbb{O} \perp v, \forall v \in V$.

5 Orthogonal and Orthonormal Bases

Let V be a vector space over \mathbb{F} with an inner product. Let $S \subset V$.

Definition 43 (Orthogonal set). S is said to be orthogonal if any two distinct vectors from S are orthogonal.

Definition 44 (Orthonormal set). S is said to be orthonormal if it is orthogonal and the norm of every vector is 1.

Definition 45 (Orthogonal basis). S is said to be an orthogonal basis of V if it is orthogonal and a basis of V.

Definition 46 (Orthonormal basis). S is said to be an orthonormal basis of V if it is orthonormal and a basis of V.

Theorem 4. Let S be an orthogonal set such that $\mathbb{O} \notin S$. Then S is linearly independent.

Proof. Let

$$\alpha_1, \dots, \alpha_m \in \mathbb{F}$$
 $v_1, \dots v_m \in S$

Let

$$\alpha_1 v_1 + \dots + \alpha_m v_m = \mathbb{O}$$

S is linearly independent if and only if

$$\alpha_1 = \dots = \alpha_m = 0$$

$$\alpha_1 v_1 + \dots + \alpha_m v_m = \mathbb{O}$$

Multiplying both sides by v_1 ,

$$\langle \alpha_1 v_1 + \dots + \alpha_m v_m, v_1 \rangle = \langle \mathbb{O}, v_1 \rangle$$

$$\therefore \alpha_1 \langle v_1, v_1 \rangle + \dots + \alpha_m \langle v_m, v_1 \rangle = 0$$

As v_1, \ldots, v_m are orthogonal,

$$\langle v_2, v_1 \rangle = \dots = \langle v_m, v_1 \rangle$$

$$\therefore \alpha_1 \langle v_1, v_1 \rangle = 0$$

As $v_1 \neq \mathbb{O}$

$$\langle v_1, v_1 \rangle \neq 0$$

 $\therefore \alpha_1 = 0$

Similarly,

$$\alpha_2 = \dots = \alpha_m = 0$$

Corollary 4.1. Any orthonormal set is linearly independent.

Corollary 4.2. Any orthonormal set consisting of $n = \dim V$ vectors is an orthonormal basis of V.

Example 16. Is the set

$$S = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$$

orthonormal?

Solution. The norm of the elements of S is not 1. Hence S is not orthonormal.

Theorem 5. Let $B = \{v_1, \ldots, v_n\}$ be an orthonormal basis of V. Let $v \in V$.

Let
$$[v]_B = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$
. Then,
$$\alpha_1 = \langle v, v_1 \rangle$$

$$\vdots$$

$$\alpha_n = \langle v, v_n \rangle$$

Proof.

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n$$

$$\therefore \langle v, v_1 \rangle = \langle \alpha_1 v_1 + \dots + \alpha_n v_n, v_1 \rangle$$

$$= \alpha_1 \langle v_1, v_1 \rangle + \dots + \alpha_n \langle v_n, v_1 \rangle$$

$$= \alpha_1$$

Similarly, in general, $\forall 1 \leq i \leq n$,

$$\langle v, v_i \rangle = \alpha_i$$

Theorem 6 (Pythagoras Theorem). Let $B = \{v_1, \ldots, v_n\}$ be an orthonormal

basis of
$$V$$
. Let $v \in V$. Let $[v]_B = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$. Then,

$$||v||^2 = |\alpha_1|^2 + \dots + |\alpha_n|^2$$

Proof.

$$||v||^{2} = \langle v, v \rangle$$

$$= \langle \alpha_{1}v_{1} + \dots + \alpha_{n}v_{n}, \alpha_{1}v_{1} + \dots + \alpha_{n}v_{n} \rangle$$

$$= \alpha_{1}\overline{\alpha_{1}} + \dots + \alpha_{n}\overline{\alpha_{n}}$$

$$= |\alpha_{1}|^{2} + \dots + |\alpha_{n}|^{2}$$

6 Unitary Matrices

Definition 47. Let $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. Let A be an $n \times n$ matrix. A is said to be a unitary matrix if

$$A^* = \overline{A}^t = \overline{A}^t = A^{-1}$$

If $\mathbb{F} = \mathbb{R}$, unitary matrices are called orthogonal matrices.

- 1. I is a unitary matrix.
- 2. If A_1 and A_2 are unitary matrices, then $(A_1A_2)^* = A_2^*A_1^*$.
- 3. If A is unitary, A^{-1} is also unitary.

Theorem 7. Let A be an $n \times n$ matrix. Let v_1, \ldots, v_n be the columns of A. Let A be an $n \times n$ matrix. Let r_1, \ldots, r_n be the columns of A. Then the following are equivalent.

- 1. A is unitary.
- 2. $\{v_1, \ldots, v_n\}$ is an orthonormal basis of \mathbb{F}^n , with respect to standard dot product.
- 3. $\{r_1, \ldots, r_n\}$ is an orthonormal basis of \mathbb{F}^n , with respect to standard dot product.

Proof. As A is unitary, A^t is also unitary.

$$(A^t)^* = (\overline{A^t})^t$$
$$= (A^*)^t$$
$$= (A^{-1})^t$$
$$= (A^t)^{-1}$$

$$A \text{ is unitary}$$

$$\iff A^* = A^{-1}$$

$$\iff AA^* = I$$

$$\iff A\overline{A}^t = I$$

$$\iff (A\overline{A}^t)_{ik} = I_{ik}$$

$$= \sum_{j=1}^n a_{ij}\overline{a_{ik}}$$

$$= r_i \cdot \overline{r_k} \iff \{r_1, \dots, r_n\} \text{ is an orthonormal basis}$$

Theorem 8. Let V be an inner product space. Let B be an orthonormal basis of V. Let B' be another basis of V. Let P be the transition matrix from B to B'. Then B' is orthonormal if and only if P is unitary.

Proof of statement.

$$G_{B'} = P^t G_B \overline{P}$$

If B' is orthonormal,

$$\therefore I = P^t I \overline{P}$$
$$= P^t \overline{P}$$

Therefore, P is unitary.

Proof of converse. If P is unitary,

$$G_{B'} = P^t G_B \overline{P}$$

As B is orthonormal,

$$G_B = I$$
$$\therefore G_{B'} = P^t \overline{P}$$

As P is unitary,

$$P^{t}\overline{P} = I$$
$$\therefore G_{B'} = I$$

Therefore, B' is orthonormal.

7 Projections

7.1 Definition

Definition 48. Let $S \subset V$ be a set of vectors.

$$S^{\perp} \doteq \{ v \in V | \langle u, v \rangle = 0 \forall u \in S \}$$

Theorem 9. S^{\perp} is a subspace of V.

Proof.

$$\langle u, \mathbb{O} \rangle = 0 : \mathbb{O} \in S^{\perp}$$

If $v_1, v_2 \in S^{\perp}$,

$$\langle u, v_1 + v_2 \rangle = \langle u, v_1 \rangle + \langle u, v_2 \rangle$$

= 0 + 0
= 0

If $v \in S^{\perp}$,

$$\langle u, \alpha v \rangle = \overline{\alpha} \langle u, v \rangle$$
$$= 0$$

Theorem 10.

$$S^{\perp} = \operatorname{span}(S)^{\perp}$$

Proof. Let $v \in S^{\perp}$, $u \in \text{span}(S)$.

Let $\alpha_1, \ldots, \alpha_m \in \mathbb{F}, u_1, \ldots, u_m \in S$.

Therefore,

$$u = \alpha_1 u_1 + \dots + \alpha_m v_m$$

$$\therefore \langle u, v \rangle = \langle \alpha_1 u_1 + \dots + \alpha_m v_m, v \rangle$$

$$= \alpha_1 \langle u_1, v \rangle + \dots + \alpha_m \langle u_m, v \rangle$$

$$= \alpha_1 \cdot 0 + \dots + \alpha_m \cdot 0$$

$$= 0$$

Therefore, $v \in S^{\perp}$.

Therefore, $S^{\perp} \subset \operatorname{span}(S)^{\perp}$.

 $S \subset \operatorname{span}(S)$. Therefore, let $v \in \operatorname{span}(S)^{\perp}$. Then,

$$\langle u, v \rangle = 0$$

for all $u \in \text{span}(S)$. Hence for all $u \in S$,

$$\langle u, v \rangle = 0$$

Therefore, $\operatorname{span}(S)^{\perp} \subset S^{\perp}$.

Definition 49 (Projection). Let V be an inner product space. Let W be a subspace of V. Let $v \in V$. Let $B = \{w_1, \ldots, w_m\}$ be a basis of W. The projection of v onto W is defined as follows.

$$\pi_B(v) = \frac{\langle v, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 + \dots + \frac{\langle v, w_m \rangle}{\langle w_m, w_m \rangle} w_m$$

7.2 Properties

- 1. $\pi_B(v) \in W$
- 2. $\pi_B(v) = v \iff v \in W$
- 3. $v \pi_B(v) \in W^{\perp}$

7.3 Gram - Schmidt Process

Input Any basis $B = \{v_1, \dots, v_n\}$ of V.

Intermediate Output Orthogonal basis $\widetilde{B} = \{\widetilde{v_1}, \dots, \widetilde{v_n} \text{ of } V\}$

Final Output Orthonormal basis $B^0 = \{v_1^1, \dots, v_n^0\}$ of V

Step 1 $\widetilde{v_1} = v_1$, denote $w_1 = \operatorname{span}\{\widetilde{v_1}\} = \operatorname{span}\{v_1\}, B_1 = \{\widetilde{v_1}\}$

Step 2
$$\widetilde{v_2} = v_2 - \pi_{B_1}(v_2) = v_2 - \frac{\langle v_2, \widetilde{v_1} \rangle}{\langle \widetilde{v_1}, \widetilde{v_1} \rangle} \widetilde{v_1}$$

As $\widetilde{v_2} \perp \widetilde{v_1}$, $B_2 = \{\widetilde{v_1}, \widetilde{v_2}\}$ is an orthogonal set. Denote $W_2 = \operatorname{span}\{\widetilde{v_1}, \widetilde{v_2}\} = \operatorname{span}\{v_1, v_2\}$.

Step 3
$$\widetilde{v_3} = v_3 - \pi_{B_2}(v_3) = v_3 - \frac{\langle v_2, \widetilde{v_1} \rangle}{\langle \widetilde{v_1}, \widetilde{v_1} \rangle} \widetilde{v_1} - \frac{\langle v_3, \widetilde{v_2} \rangle}{\langle \widetilde{v_2}, \widetilde{v_2} \rangle}$$

As $\widetilde{v_3} \in W_2^{\perp}$, $B_3 = \{\widetilde{v_1}, \widetilde{v_2}, \widetilde{v_3}\}$ is an orthogonal set. Denote $W_2 = \operatorname{span}\{\widetilde{v_1}, \widetilde{v_2}, \widetilde{v_3}\} = \operatorname{span}\{v_1, v_2, v_3\}$.

:

Step n The n^{th} step gives $\widetilde{B_n} = \{\widetilde{v_1}, \dots, \widetilde{v_n}\}$ which is an orthogonal basis of V.

 B^0 is obtained by normalization of $\widetilde{B_n}$.

$$v_1^0 = \frac{1}{\|\widetilde{v_1}\|}$$

$$\vdots$$

$$v_n^0 = \frac{1}{\|\widetilde{v_n}\|}$$

Example 17.

$$B = \{v_1, v_2, v_3\}$$

$$= \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

Solution.

$$\widetilde{v}_{1} = v_{1}$$

$$= \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$\widetilde{v}_{2} = v_{2} - \frac{\langle v_{2}, \widetilde{v}_{1} \rangle}{\langle \widetilde{v}_{1}, \widetilde{v}_{1} \rangle}$$

$$= \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$\widetilde{v}_{3} = v_{3} - \frac{\langle v_{3}, \widetilde{v}_{1} \rangle}{\langle \widetilde{v}_{1}, \widetilde{v}_{1} \rangle} \widetilde{v}_{1} - \frac{\langle v_{3}, \widetilde{v}_{2} \rangle}{\langle \widetilde{v}_{2}, \widetilde{v}_{2} \rangle} \widetilde{v}_{2}$$

$$= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - 0 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\therefore \widetilde{B}_{3} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

Therefore, normalizing $\widetilde{B_3}$,

$$v_1^0 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}$$

$$v_2^0 = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}$$

$$v_3^0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\therefore B^0 = \left\{ \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$v_2$$

7.4 Inequalities

Theorem 11 (Bessel's Inequality). Let $\{v_1, \ldots, v_m\}$ be an orthonormal set. Let $v \in V$ be any vector. Then

$$||v||^2 \ge |\langle v, v_1 \rangle|^2 + \dots + |\langle v, v_m \rangle|^2$$

and the equality holds if and only if $v \in \text{span}\{v_1, \dots, v_m\}$.

Proof. $\{v_1, \ldots, v_m\}$ can be completed to an orthonormal basis

$$B = \{v_1, \dots, v_m, v_{m+1}, \dots, v_n\}$$

Using Pythagoras Theorem,

$$||v||^{2} = |\langle v, v_{1} \rangle|^{2} + \dots + |\langle v, v_{m} \rangle|^{2} + |\langle v, v_{m+1} \rangle|^{2} + \dots + |\langle v, v_{n} \rangle|^{2}$$

\therefore \||v||^{2} \geq |\langle v, v_{1} \rangle|^{2} + \dots + |\langle v, v_{m} \rangle|^{2}

The equality holds if and only if

$$\left| \langle v, v_{m+1} \rangle \right|^2 + \dots + \left| \langle v, v_n \rangle \right|^2 = 0$$

if and only if

$$|\langle v, v_{m+1} \rangle|^2 = 0$$

$$\vdots$$

$$|\langle v, v_n \rangle|^2 = 0$$

If $v \in \text{span}\{v_1, \dots, v_m\}$,

$$v = \alpha_1 v_1 + \dots + \alpha_m v_m$$

Therefore,

$$\langle v, v_{m+1} \rangle = \langle \alpha_1 v_1 + \dots + \alpha_m v_m, v_{m+1} \rangle$$
$$= \alpha_1 \langle v_1, v_{m+1} \rangle + \dots + \alpha_m \langle v_m, v_{m+1} \rangle$$

as the basis is orthonormal, $\langle v_i, v_{m+1} \rangle$

$$\langle v, v_{m+1} \rangle = 0$$

Similarly,

$$\begin{aligned} |\langle v, v_{m+2} \rangle|^2 &= 0 \\ \vdots \\ |\langle v, v_n \rangle|^2 &= 0 \end{aligned}$$

Conversely, if

$$|\langle v, v_{m+1} \rangle|^2 = 0$$

$$\vdots$$

$$|\langle v, v_n \rangle|^2 = 0$$

let

$$v = \alpha_1 v_1 + \dots + \alpha_m v_m + \alpha_{m+1} v_{m+1} + \alpha_n v_n$$

$$\therefore 0 = \langle v, v_{m+1} \rangle$$

$$\therefore 0 = \langle \alpha_1 v_1 + \dots + \alpha_m v_m + \alpha_{m+1} v_{m+1} + \alpha_n v_n, v_{m+1} \rangle$$

All $\langle v_i, v_{m+1} \rangle$ except $\langle v_{m+1}, v_{m+1} \rangle$ are 0. Therefore,

$$|\langle v, v_{m+1} \rangle|^2 + \dots + |\langle v, v_n \rangle|^2 = 0$$

Theorem 12 (Cauchy - Schwarz Inequality). Let $u, v \in V$ be any vectors. Then

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||$$

and the equality holds if and only if $\{u, v\}$ is linearly dependent.

Proof. If $u = \mathbb{O}$, the equality holds.

Let $u \neq \mathbb{O}$.

Let

$$u^{0} = \frac{1}{\|u\|}$$
$$\|u^{0}\| = 1$$

Applying Bessel's Inequality to the orthonormal set $\{u^0\}$,

$$||v||^{2} \ge |\langle v, u^{0} \rangle|^{2}$$

$$|\langle v, u^{0} \rangle|^{2} = \left| \left\langle v, \frac{1}{\|u\|} u \right\rangle \right|^{2}$$

$$= \left| \frac{1}{\|u\|} \langle v, u \rangle \right|^{2}$$

$$= \left(\frac{1}{\|u\|} |\langle v, u \rangle| \right)^{2}$$

$$= \frac{1}{\|u\|^{2}} |\langle v, u \rangle|^{2}$$

$$\therefore ||v||^{2} \ge \frac{1}{\|u\|^{2}} |\langle v, u \rangle|^{2}$$

By Bessel's Inequality, the equality holds if and only if

$$v \in \operatorname{span}\{u^0\} = \operatorname{span}\{u\}$$

Therefore, v and u are linearly independent.

8 Angle

Definition 50 (Angle). Let V be a vector space over \mathbb{R} with inner product \langle, \rangle . Let $u, v \in V$, $u \neq \mathbb{O}$, $v \neq \mathbb{O}$. The angle between u and v is defined as

$$\cos \varphi \doteq \frac{\langle u, v \rangle}{\|u\| \cdot \|v\|}$$

9 Triangle Inequality

Theorem 13 (Triangle Inequality Theorem). Let $u, v \in V$. Then

$$||u + v|| \le ||u|| + ||v||$$

Proof.

$$||u+v||^{2} = \langle u+v, u+v \rangle$$

$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$

$$= ||u||^{2} + \langle u, v \rangle + \overline{\langle u, v \rangle} + ||v||^{2}$$

$$= ||u||^{2} + 2\Re (\langle u, v \rangle + ||v||^{2})$$

As $\Re(z) \leq |z|$,

$$||u + v||^2 \le ||u||^2 + 2|\langle u, v \rangle| + ||v||^2$$

Hence, by Cauchy - Schwarz Inequality,

$$||u + v||^{2} \le ||u||^{2} + 2||u|| ||v|| + ||v||^{2}$$

$$\therefore ||u + v||^{2} \le (||u|| + ||v||)^{2}$$

$$\therefore ||u + v|| \le ||u|| + ||v||$$

10 Orthogonal Decomposition

Theorem 14. Let W be a subspace of V. Then

$$V = W \oplus W^{\perp}$$

Proof. Let B be an orthogonal basis of V. Consider a projection $\pi_B(v)$. Therefore,

$$v = \pi_B(v) + (v - \pi_B(v))$$

$$\pi_B(v) \in W$$

$$v - \pi_B(v) \in W^{\perp}$$

Therefore,

$$V = W + W^{\perp}$$

If possible, let $u \in W \cap W^{\perp}$. Therefore, $u \in W$ and $u \in W^{\perp}$. By the definition of orthogonality,

$$\langle u \in W, u \in W^{\perp} \rangle = 0$$

$$\therefore u = 0$$

Therefore,

$$V = W \oplus W^{\perp}$$

Corollary 14.1. Let B be an orthogonal basis of W. Then $\pi_B(v)$ does not depend on the choice of B.

Proof. As B is an orthogonal basis of W,

$$v = \pi_B(v) + (v - \pi_B(v))$$

Let B' be another orthogonal basis of W. Therefore,

$$v = \pi_{B'}(v) + (v - \pi_{B'}(v))$$

Therefore,

$$\pi_B(v) \in W$$

$$\pi_{B'}(v) \in W$$

and

$$v - \pi_B(v) \in W^{\perp}$$

$$v - \pi_{B'}(v) \in W^P \perp$$

As

$$V=W\oplus W^\perp$$

such a representation is unique. Therefore,

$$\pi_B(v) = \pi_{B'}(v)$$

Theorem 15. Let $u, v \in V$, s.t. $u \perp v$. Then

$$||u \pm v||^2 = ||u||^2 + ||v||^2$$

Proof.

$$||u \pm v||^2 = ||u||^2 + ||v||^2$$

$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$

$$= \langle u, u \rangle + \langle v, v \rangle$$

$$= ||u||^2 + ||v||^2$$

11 Distance

Definition 51 (Distance). Let $u, v \in V$. The distance d(u, v) from u to v is defined as

$$d(u, v) \doteq ||u - v||$$

Theorem 16. Let $u, v \in V$. Then

$$d(u, v) \ge 0$$

and the equality holds if and only if u = v.

Theorem 17. Let $u, v \in V$. Then

$$d(u, v) = d(v, u)$$

Theorem 18. Let $u, v \in V$. Then

$$d(u, v) + d(v, w) > d(u, w)$$

Theorem 19. The projection $\pi_W(v)$ is the vector in W closest to v, i.e.

$$d(v, \pi_W(v)) = \min_{w \in W} d(v, w)$$

Proof. Let $v \in V$. For any vector $w \in W$,

$$(d(v,u))^2 = ||v-w||^2$$

$$= ||(v = \pi_W(v)) + (\pi_W(v) - w)||^2$$

$$= ||v - \pi_W(v)||^2 + ||\pi_W(v) - w||^2$$

$$\geq ||v - \pi_W(v)||^2$$

$$\therefore (d(v,u))^2 \geq d(v,\pi_W(v))^2$$

12 Adjoint Map

Definition 52 (Linear functional). A linear functional $\varphi: V \to \mathbb{F}$ is a linear map, with \mathbb{F} considered as a 1 dimensional vector space over itself.

Theorem 20 (Riesz's Representation Theorem). Let V be an inner product space, s.t. $n = \dim V$. Let $\varphi : V \to \mathbb{F}$ be any linear functional. Then there exists a unique vector $u \in V$, dependent on φ , s.t. $\forall v \in V$,

$$\varphi(v) = \langle v, u \rangle$$

Proof. If possible, let $u_1, u_2 \in V$, s.t. $\forall v \in V$,

$$\varphi(v) = \langle v, u_1 \rangle = \langle v, u_2 \rangle$$

Therefore,

$$\langle v, u_1 - u_2 \rangle = 0$$

Let $v = u_1 - u_2$. Therefore,

$$\langle v, u_1 - u_2 \rangle = \langle u_1 - u_2, u_1 - u_2 \rangle$$

$$\therefore \langle u_1 - u_2, u_1 - u_2 \rangle = 0$$

$$\therefore u_1 - u_2 = 0$$

$$\therefore u_1 = u_2$$

Therefore, u, if it exists, is unique.

Let

$$B = \{v_1, \dots, v_2\}$$
$$\widetilde{B} = \{1\}$$

be orthonormal bases of V and \mathbb{F} respectively. Let

$$A = [\varphi]_{B,\widetilde{B}}$$
$$= (\alpha_1 \dots \alpha_n)$$

be the representation matrix. Therefore,

$$[\varphi(v)]_{\widetilde{B}} = A[v]_B$$

Let

$$v = \beta_1 v_1 + \dots + \beta_n v_n$$

$$\therefore [v]_B = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

Therefore,

$$[\varphi(v)]_{\widetilde{B}} = \begin{pmatrix} \alpha_1 & \dots & \alpha_n \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

$$= \alpha_1 \beta_1 + \dots + \alpha_n \beta_n$$

$$= \beta_1 \alpha_1 + \dots + \beta_n \alpha_n$$

$$= \beta_1 \overline{\alpha_1} + \dots + \beta_n \overline{\overline{\alpha_n}}$$

$$= \begin{pmatrix} \beta_1 & \dots & \beta_n \end{pmatrix} \overline{\begin{pmatrix} \overline{\alpha_1} \\ \vdots \\ \overline{\alpha_n} \end{pmatrix}}$$

$$= \begin{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}, \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \rangle$$

Let $u \in V$, s.t.

$$[u]_B = \begin{pmatrix} \overline{\alpha_1} \\ \vdots \\ \overline{\alpha_n} \end{pmatrix}$$

$$[\varphi(v)]_{\widetilde{B}} = \langle v, u \rangle$$

and

$$[\varphi(v)]_{\widetilde{B}} = \varphi(v) \cdot 1$$
$$\therefore \varphi(v) = \langle v, u \rangle$$

12.1 Construction

- 1. Let $T: V \to W$ be a linear map.
- 2. Fix $w \in W$.
- 3. Let $\varphi_w : V \to \mathbb{F}$ be a linear functional, s.t. $\varphi_w(v) = \langle T(v), w \rangle$. $\varphi_w(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 \varphi_w(v_1) + \alpha_2 \varphi_w(v_2)$.
- 4. By Riesz's Representation Theorem, $\exists ! u \in V$, s.t. $\varphi_w(v) = \langle v, u \rangle$.
- 5. Define $T^*(w) = u$. Therefore, it can be expressed as

$$\langle T(v), w \rangle = \langle v, T^*(w) \rangle$$

12.2 Properties

Theorem 21. Let B be an orthonormal basis of V and let \tilde{B} be an orthonormal basis of W. Let $A = [T]_{B,\tilde{B}}$ be the representing matrix of $T: V \to W$ with respect to B, \tilde{B} . Let $\tilde{A} = [T^*]_{B,\tilde{B}}$ be the representing matrix of $T^*: W \to V$ with respect to B, \tilde{B} . Then

$$\tilde{A} = \overline{A}^t = A^*$$

Theorem 22. If $T_1, T_2 : V \to W$, then

$$(T_1 + T_2) = T_1^* + T_2^*$$

Theorem 23. If $T: V \to W$, $\alpha \in \mathbb{F}$, then

$$(\alpha T)^* = \overline{\alpha} T^*$$

Theorem 24.

$$(T^*)^*$$

Theorem 25. If $T: V \to W$, $S: W \to U$, then

$$(S \circ T)^* = T^* \circ S^*$$

13 Special Linear Operators

Definition 53. Let $T:V\to V$ be a linear operator, and let $T^*:V\to V$ is the adjoint operator.

T is said to be

- 1. normal if $T^* \circ T = T \circ T^*$
- 2. self-adjoint if $T^* = T$ (If $\mathbb{F} = \mathbb{R}$, T is called symmeteric.)
- 3. unitary if $T^* = T^{-1}$ (If $\mathbb{F} = \mathbb{R}$, T is called symmeteric.)

Remark 8. The same terminology is used for square matrices.

Remark 9. If B is orthonormal basis of V, $A = [T]_B$, then A is the normal, self-adjoint or unitary according to T.

Theorem 26. Let $v \in V$. T is normal if and only if

$$||T(v)|| = ||T^*(v)||$$

Corollary 26.1. Let $T: V \to V$ be normal, let λ be its eigenvalue, and let v be an eigenvector of T corresponding to λ . Then $\overline{\lambda}$ is an eigenvalue of T^* , and v is an eigenvector of T^* corresponding to $\overline{\lambda}$.

Theorem 27. If T is normal, λ_1 , λ_2 are its eigenvalues, v_1 , v_2 are eigenvectors corresponding to λ_1 , λ_2 respectively. If $\lambda_1 \neq \lambda_2$, then $v_1 \perp v_2$.

Theorem 28. Let T be a self-adjoint operator. Then any eigenvalue λ of T is real.

Theorem 29. Let $T: V \to V$ be a unitary operator. Then

- 1. T preserves inner products.
- 2. T preserves norms.
- 3. T preserves distances.
- 4. T preserves angles (in real case).