Software Engineering - Introduction

Samit Bhattacharya

Comp Sc & Engg

Indian Institute of Technology Guwahati

Basic Issues

- Why it is needed?
 - —Suppose I want an adder: it'll give me sum of two input numbers. I ask you to help me get one. What you will do?
 - —What are the issues

- Difference between program vs product
 - -Program: small codes
 - —Product: large (& complex) systems

Styles of programming

- Exploratory style of programming
 - Think in terms of coding (keep on coding as you try to solve the problem)
 - We do this often
 - We should avoid this as this is more suitable for small codes (not for products)

- Modern style (our focus)
 - Follows different stages of development (coding is only a part of it)
 - Required for maintenance & customer satisfaction
 - Key concerns: modularity & life cycle

What we shall learn

- How to build large systems following the SDLC stages
 - —Different SDLC models
 - Feasibility study
 - —Specification
 - Design
 - —Prototyping
 - Coding in module and combining those
 - Testing
 - -Project management, cost estimation etc
- Note how coding is only one part (involves lots of documentations)

Things to do & marks distribution

Project ideas to be floated (to be done in groups of 3/4)

- Theory and lab grading will be together (to get good grade, you have to perform well in both)
 - Periodic evaluations (exams): 25%
 - Class interaction (including project progress review presentations): 25%
 - Project implementation: 50%
 - Theory grade (exam+interaction), lab grade (project+interaction)
 - Attendance important (one grade less if <75%, 2 grades less if < 60%)

References

- Rajib Mall Fundamentals of S/W Engineering
- Roger Pressman –S/W Engineering: A Practitioner's Approach
- Samit Bhattacharya Human Computer Interaction: User Centric Computing for Design
- Handouts: as applicable
- My NPTEL lectures