Homework 11: Continuity (Due April 8, 2022)

Directions. Assignments should be **stapled** and written clearly and legibly.

1. Let a > 0. Use the definition of limit to prove that $\lim_{x \to a} \sqrt{x} = \sqrt{a}$.

Hint: Use the inequality $|\sqrt{x} - \sqrt{a}| = \frac{|x - a|}{\sqrt{x} + \sqrt{a}} \le \frac{|x - a|}{\sqrt{a}}$

- 2. Let $f: D \to \mathbb{R}$. Use the definition of continuity to prove that if c is an isolated point of D, then f is continuous at c.
- 3. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a function which satisfies $|f(x)| \leq |x|$ for all $x \in \mathbb{R}$. Prove that f is continuous at 0.
- 4. Suppose that f, g, h are three functions which are defined on (a, b) and continuous at $c \in (a, b)$.
 - (a) Prove that if $f(c) \neq 0$, then there exists a neighborhood U of c such that $f(x) \neq 0$ for every $x \in U$.
 - (b) Prove that if $g(c) \neq h(c)$, then there exists a neighborhood U of c such that $g(x) \neq h(x)$ for every $x \in U$. (Hint: consider the function p(x) = g(x) h(x), and apply part (a)).
- 5. Let D be a subset of \mathbb{R} containing 0, and let $f: D \to \mathbb{R}$ be bounded on D (i.e., f(D) is a bounded subset of \mathbb{R}). Define a new function $g: D \to \mathbb{R}$ by g(x) = xf(x).
 - (a) Use the definition of continuity to prove that g is continuous at x = 0.
 - (b) Suppose $c \neq 0$. Prove that g is continuous at c if and only if f is continuous at c. (Hint: Use a theorem on continuity.)