Квантовая физика ФМХФ МФТИ

1.3 Эффект Комптона Егор Берсенев

1 Теоретическое введение

Рассеяние γ -лучей в веществе относится к числу явлений, в которых особенно легко наблюдать двойственную природу излучения. Появление дополнительной длинноволновой компоненты при рассеянии γ -лучей объясняется, если считать, что γ -излучение представляет собой поток фотонов, имеющих энергию $\hbar\omega$ и импульс $p=\hbar\omega/c$. Эффект Комптона — увеличение длины волны рассеянного излучения по сравнению с падающим — интерпретируется как результат упругого соударения двух частиц: γ -кванта и свободного электрона.

Пусть электрон до соударения покоился (его энергия равна энергии покоя равна mc^2), а γ -квант имел начальную энергию $\hbar\omega_0$. После соударения электрон приобретает энергию γmc^2 , где $\gamma=(1-\beta^2)^{-1/2}$, $\beta=v/c$, а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения. Энергия рассеянного излучения — $\hbar\omega_1$. Запишем з.с.и. и з.с.э:

$$\begin{cases} mc^2 + \hbar\omega_0 = \gamma mc^2 + \hbar\omega_1 \\ \frac{\hbar\omega_0}{c} = \gamma mc\cos\theta + \frac{\hbar\omega_1}{c}\cos\theta \\ \gamma mv\sin\varphi = \frac{\hbar\omega_1}{c}\sin\theta \end{cases}$$

Решая эти уравнения совместно и переходя от частот к длинам волн, получаем:

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = lambda_k (1 - \cos \theta)$$
 (1)

Основной целью работы является проверка соотношения (1). Преобразуем эту формулу к энергии γ -квантов:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta \tag{2}$$

2 Экспериментальная часть

Результаты измерений:

θ	N	θ	N
0	854	60	476
10	807	70	432
20	724	80	385
30	683	90	347
40	629	100	317
50	546	110	294

Таблица 1: Измерения

Егор Берсенев 1

Квантовая физика ФМХФ МФТИ

Построим график $\frac{1}{N_0}(1\cos\theta)$

По данным графика рассчитаем энергию покоя электронов:

$$E_r = E_\gamma = \frac{N(90)}{N(0) - N(90)} = 0.662 \cdot \frac{348.43}{813.01 - 348.43} = 0.4965 \pm 0.011 \,\text{MeV}$$
 (3)

3 Обсуждение результатов и выводы

В ходе работы мы наблюдали рассеяние свободных гамма-квантов на свободных электронах графита. В ходе эксперимента выяснен интересный характер диаграммы направленности излучения источника γ -квантов: при больших углах обнаруживаются фоновые γ -кванты, проходящие через боковую стенку источника. По результатам опыта была получена масса покоя электрона: $496 \pm 11 \, \mathrm{MeV}$. Табличное значение $512 \, \mathrm{MeV}$, а значит наш эксперимент находится в хорошем согласии с теорией.

Егор Берсенев 2