CHAPTER 3: TIME-DOMAIN ANALYSIS OF DISCRETE-TIME SYSTEMS

linear, time-invariant, discrete-time (LTID)

3.1 Introduction

discrete-time signal: sequence of numbers

Figure 3.2 Processing a continuous-time signal by means of a discrete-time system.

continuous-time exponential $x(t) = e^{-t}$ sampled every T = 0.1 seconds results in a discrete-time signal x(nT):

$$x(nT) = e^{-nT} = e^{-0.1n}$$

3.1-1 Size of a Discrete-Time Signal

Size measured by energy:

$$E_x = \sum_{n=-\infty}^{\infty} \left|x[n]
ight|^2 \qquad \qquad (3.1.1\text{-}1)$$

if E_x is finite, signal is **energy signal**. Else, measured by signal power:

$$P_x = \lim_{N o \infty} rac{1}{2N+1} \sum_{-N}^N |x[n]|^2 \hspace{1.5cm} (3.1.1-2)$$

*2N+1 samples in interval from -N to N

3.2 Signal Operations

Shifting (by M units)

$$x_s[n] = x[n-M]$$

Time Reversal

$$x_r[n] = x[-n]$$

Sampling Rate Alteration: Downsampling, Upsampling, Interpolation

Downsampling: Compression by factor M

$$x_d[n] = x[Mn], M \in \mathbb{N}^+$$

Interpolated signal

$$x_e[n] = egin{cases} x[n/L] & n = 0, \pm L, \pm 2L, \dots \ 0 & ext{otherwise} \end{cases}$$

Upsampling: L times that of x[n]: general sequence:

$$x_e[n] = x[0], \underbrace{0, 0, \dots, 0, 0}_{L-1 \ zeros}, x[1], \underbrace{0, 0, \dots, 0, 0}_{L-1 \ zeros}, x[2], \underbrace{0, 0, \dots, 0, 0}_{L-1 \ zeros}, \dots$$

3.3 Discrete-Time Signal Models

3.3-1 Discrete-Time Impulse Function $\delta[n]$

Unit impulse sequence: Kronecker delta

$$\delta[n] = \begin{cases} 1 & n=0 \\ 0 & n \neq 0 \end{cases} \tag{3.3.1-1}$$

3.3-2 Discrete-Time Unit Step Function u[n]

$$u[n] = egin{cases} 1 & ext{for } n \geq 0 \ 0 & ext{for } n < 0 \end{cases}$$

3.3-3 Discrete-Time Exponential γ^n

continuous-time exponential $e^{\lambda t}$ can be alternatively expressed as:

$$e^{\lambda t} = \gamma^t$$
 $(\gamma = e^{\lambda} \text{ or } \lambda = \ln \gamma)$

discrete:

$$\gamma^n = e^{\lambda n} \qquad (\gamma = e^{\lambda} ext{ or } \lambda = \ln \gamma)$$

Figure 3.8 The λ plane, the γ plane, and their mapping.

e.g. signal $e^{\lambda n}$ where λ lies on left half-plane ($\lambda=a+jb, a<0$), exponential decay

Figure 3.9 Discrete-time exponentials γ^n .

3.3-4 Discrete-Time Sinusoid $cos(\Omega n + \theta)$

General discrete-time sinusoid:

$$C\cos(\Omega n + heta) = C\cos(2\pi F n + heta)$$
 where $F = \Omega/2\pi$

Figure 3.11 A discrete-time sinusoid $\cos(\frac{\pi}{12}n + \frac{\pi}{4})$.

Sampled Continuous-Time Sinusoid Yields a Discrete-Time Sinusoid

A continuous-time sinusoid, $\cos wt$, sampled every T seconds yields a discrete-time sinusoid. Sample signal x[n]:

$$x[n] = \cos \omega n T = \cos \Omega n$$
 where $\Omega = \omega T$

3.3-5 Discrete-Time Complex Exponential $e^{j\Omega n}$

$$e^{j\Omega n} = (\cos\Omega n + j\sin\Omega n)$$

 $e^{-j\Omega n} = (\cos\Omega n - j\sin\Omega n)$

For r=1 and $\theta=n\Omega$,

$$e^{j\Omega n}=re^{j heta}$$