Homework 5

Earle Aguilar (804501476) 2/17/2017

5.1

Source	DF	SS	MS	F	Р
A	1	0.322	0.322	0.037	
В	2	80.554	40.2771	4.59	
Interaction	2	45.348	22.674	2.58	
Error	12	105.327	8.7773		
Total	17	231.551			

5.4

a

According to the ANOVA the main effects of depth cut and feed rate are significant p-values < 0.001 there is a significant interaction between the factors as well p-value = 0.01797.

```
model1 <- lm(surface_finish ~ depth_of_cut + feed_rate + depth_of_cut*feed_rate,df1)
anova(model1)

## Analysis of Variance Table
##
## Response: surface_finish
## Df Sum Sq Mean Sq F value Pr(>F)
```

```
## depth_of_cut
                           3 2125.11 708.37 24.6628 1.652e-07 ***
## feed_rate
                           2 3160.50 1580.25 55.0184 1.086e-09 ***
## depth of cut:feed rate 6
                             557.06
                                       92.84
                                              3.2324
                                                        0.01797 *
## Residuals
                              689.33
                                       28.72
                          24
## Signif. codes:
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

b

The errors seem to follow normal distribution since they qq-plot shows they are approximately linear. There is no indication of non-constant variance in the residual plot.

```
par(mfrow = c(2,2))
qqnorm(model1$residuals)
qqline(model1$residuals)
plot(model1, 1)
```

Normal Q-Q Plot

 \mathbf{c}

Feed Rate	Estimate
0.20	81.58333
0.25	97.58333
0.30	103.8333

\mathbf{d}

Feed rate: $p - value = 1.086 \times 10^{-9}$ Depth of cut: $p - value = 1.653 \times 10^{-7}$ Feed rate*depth of cut: p - value = 0.01797

5.5

$$CI(\mu_1 - \mu_2) = (y_{1..}^- - y_{2..}^-) \pm t_{\frac{\alpha}{2}, ab(n-1)} \sqrt{\frac{2MS_E}{n}}$$

$$= -16 \pm 2.064 * \sqrt{\frac{2 * 28.72}{3}}$$
(2)

$$= -16 \pm 2.064 * \sqrt{\frac{2 * 28.72}{3}} \tag{2}$$

$$CI = [-25.03, -6.97]$$
 (3)

5.10

 \mathbf{a}

The ANOVA table shows that there is significant interaction between glass type and both temperature and temperature squared. The effects of glass type and temperature also significantly affect the response.

```
model2 <- lm(Light_Output ~ Glass_Type *(Temperature + I(Temperature^2)) , df2)
anova(model2)</pre>
```

```
## Analysis of Variance Table
##
## Response: Light_Output
                              Df Sum Sq Mean Sq F value
                                                            Pr(>F)
## Glass_Type
                               2 150865
                                          75432 206.371 3.886e-13 ***
## Temperature
                               1 1779756 1779756 4869.126 < 2.2e-16 ***
## I(Temperature^2)
                               1 190579 190579 521.394 9.665e-15 ***
## Glass_Type:Temperature
                               2 226178 113089 309.393 1.152e-14 ***
## Glass_Type:I(Temperature^2)
                                                  88.058 5.069e-10 ***
                              2
                                   64374
                                           32187
## Residuals
                              18
                                    6579
                                             366
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

b

```
Glass Type I
```

```
\begin{aligned} &LightOutput = -3646.00 + 59.47*Temperature - 0.1728*Temperature^2 \\ &\textbf{Glass Type II} \\ &LightOutput = -3415.00 + 56.00*Temperature - 0.1623*Temperature^2 \end{aligned}
```

Glass Type III

 $LightOutput = -7845.33 + 136.13*Temperature - 0.5195*Temperature^2$

 \mathbf{c}

The residuals are not following a normal distribution according to the Normal Q-Q plot. There are no signs of non-constant variance in residual plot.

```
par(mfrow=c(2,2))
qqnorm(model2$residuals)
qqline(model2$residuals)
plot(model2,1)
```


5.17

Source	DF	SS	MS	Expected MS	F
A	a-1	SS_A	MS_A	$\sigma^2 + \frac{bc\sum \tau_i^2}{(a-1)}$	$\frac{MS_A}{MS_E}$
В	b-1	SS_B	MS_B	$\sigma^2 + \frac{ac\sum \beta_i^2}{(b-1)}$	$\frac{MS_B}{MS_E}$
C	c-1	SS_C	MS_C	$\sigma^2 + \frac{ab\sum \gamma_i^2}{(c-1)}$	$\frac{MS_C}{MS_E}$
AB	(a-1)(b-1)	SS_{AB}	MS_{AB}	$\sigma^2 + \frac{c\sum\sum(\tau\beta)_{ij}^2}{(a-1)(b-1)}$	$\frac{MS_{AB}}{MS_E}$
BC	(b-1)(c-1)	SS_{BC}	MS_{BC}	$\sigma^2 + \frac{a\sum\sum(\gamma\beta)_{jk}^2}{(b-1)(c-1)}$	$\frac{MS_{BC}}{MS_{E}}$
Error	(ab-b)(c-1)	SS_E	MS_E	σ^2	
Total	abc-1	SS_{Total}			

5.43

Source	SS	DF	MS	F
A	350.00	2	175	21.0084
В	300.00	2	150	18.0072
AB	200.00	4	50	6.0024
Error	150.00	18	8.33	
Total	1000.00	26		

5.44

Source	SS	DF	MS	F
A	350.00	2	175	31.11
В	300.00	2	150	26.67
AB	200.00	4	50	8.89
Block	60.00	2	30	5.33
Error	90.00	16	5.625	
Total	1200.00	26		