

GRIPPING DEVICE

Patent number: JP2002036162
Publication date: 2002-02-05
Inventor: MOCHIZUKI TOSHIRO; MIYAWAKI YOSHINORI
Applicant: KURODA PREC IND LTD
Classification:
- international: B25J15/08; B25J15/08; (IPC1-7): B25J15/08
- european:
Application number: JP20000221426 20000721
Priority number(s): JP20000221426 20000721

[Report a data error here](#)

Abstract of JP2002036162

PROBLEM TO BE SOLVED: To miniaturize and lighten a gripping device and to prevent a gripped member from being damaged.

SOLUTION: This gripping device is composed of a bottomed cylindrical case 1 having rigidity, a claw member 2 inserted into the case and partially elastically deformable, a rubber sleeve 3 inserted into the claw member 2, and a rigid fixing member 4 inserted into the rubber sleeve 3 and fixing the case 1, the claw member 2 and the rubber sleeve 3 to a conveying device S. The claw member 2 has, for example, three arms 14 axially extended and positioned at equal intervals in the circumferential direction, and an expanding slot for promoting the radial elastic deformation of the arms 14. A recessed annular fluid receiving chamber 25 for receiving the pressure fluid is formed on an outer peripheral face of the fixing member 4, and fluid passages 26 and 27 are formed inside of the fixing member 4 for guiding the pressure fluid from a fluid passage Sb of the conveying device S to the fluid receiving chamber 25. The excess deformation of the arms 14 is controlled by a lower end part 1d of the case 1.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-36162

(P2002-36162A)

(43)公開日 平成14年2月5日(2002.2.5)

(51)Int.Cl.⁷
B 25 J 15/08

識別記号

F I
B 25 J 15/085-23-1*(参考)
M 3 F 0 6 1
K

審査請求 未請求 請求項の数 8 O L (全 4 頁)

(21)出願番号 特願2000-221426(P2000-221426)

(71)出願人 000170853

黒田精工株式会社

神奈川県川崎市幸区下平間239番地

(22)出願日 平成12年7月21日(2000.7.21)

(72)発明者 望月 俊夫

長野県北安曇郡池田町大字池田2081-1

黒田精工株式会社長野工場内

(72)発明者 宮脇 義則

長野県北安曇郡池田町大字池田2081-1

黒田精工株式会社長野工場内

(74)代理人 100075948

弁理士 日比谷 征彦

Fターム(参考) 3F061 AA01 BA04 BB10 BD01 BE12

DB04 DB06

(54)【発明の名称】 把持装置

(57)【要約】

【課題】 小型軽量化すると共に被把持体の損傷を防止する。

【解決手段】 把持装置は剛性を有する有底円筒体のケース1と、ケース1の内部に挿着した部分的に弾性変形可能な爪部材2と、爪部材2の内部に挿着したゴムスリーブ3と、ゴムスリーブ3の内部に挿着してケース1、爪部材2及びゴムスリーブ3を搬送装置Sに固定する剛性の固定部材4とからなる。爪部材2は軸線に沿う方向に延在し周方向に等間隔で位置する例えば3本のアーム14と、アーム14の径方向への弾性変形を助長する割構とを有する。固定部材4の外周面に圧力流体を受容する凹環状の流体受容室25を設け、固定部材4の内部に圧力流体を搬送装置Sの流体流路Sbから流体受容室25に導く流体流路26、27を設ける。アーム14の過剰な変形はケース1の下端部1dにより規制する。

【特許請求の範囲】

【請求項1】複数本のアームを軸線に沿う方向に向けて円周方向に配置し、径方向に変形させて円板状の被把持体の内径又は外径を把持する把持装置であって、前記アームの径方向には径方向に弹性変形可能な弾性筒状体と、該弾性筒状体の側面を一壁として流体受容室を形成する剛性体とを順次に配置し、該剛性体には外部から前記流体受容室に連通する流体路を形成し、該流体路を介して圧力流体を前記流体受容室に流入させることにより、前記弾性筒状体と前記アームを順次に弹性変形させて前記被把持体を把持することを特徴とする把持装置。

【請求項2】前記アームは筒状本体の一端部に一体に形成し、該筒状本体には前記アームの弹性変形を助長する割溝を設けた請求項1に記載の把持装置。

【請求項3】前記剛性体は対象装置に対する取付部を有する請求項1に記載の把持装置。

【請求項4】前記アームの過剰な変形を規制する規制手段を設けた請求項1に記載の把持装置。

【請求項5】前記規制手段は前記アームの弹性変形方向に配置した剛性筒状体とした請求項4に記載の把持装置。

【請求項6】前記剛性筒状体、前記アーム、前記弾性筒状体、及び前記剛性体は外方から内方に向けて順次に配置した請求項5に記載の把持装置。

【請求項7】前記アームの端部に爪状突起を設けた請求項1に記載の把持装置。

【請求項8】前記弾性筒状体はゴムスリーブとした請求項1に記載の把持装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、CD、DVD、MD等や円板状のワークを自動的に把持する把持装置に関するものである。

【0002】

【従来の技術】例えば、実開昭62-195254号公報及び実開平2-80346号公報に開示されている外径拡張チャックは、クランピング爪又はクランピングローラを固定した複数のスライドブロックを放射方向に拡縮してワークの内径を把持するようになっている。

【0003】また、特開平10-188418号公報に開示されているディスク保持装置は、複数の爪状部材をコイルばねにより径方向の外方に常時付勢してディスクの内径を把持するようになっている。

【0004】

【発明が解決しようとする課題】しかしながら、前二者はクランピング爪又はクランピングローラを固定した複数のスライドブロックを有すると共に、これらのスライドブロックをエアシリングで駆動するので、構造が複雑で低コスト化や小型軽量化が困難である上に、重量が大

きく作動速度が低いという問題を有している。

【0005】同様に、後者は複数の爪状部材をコイルばねで付勢するので、構造が複雑で低コスト化や小型軽量化が困難であるという問題を有している。また、ディスクを保持又は開放する際に爪状部材がコイルばねの弾发力によってディスクに衝突し、ディスクが損傷するという問題もある。

【0006】また、前述した従来装置においては、摺動部を有しているためクリーンルーム等において使用する場合に、摺動部からの発塵によって環境を汚染してしまう、実質的に使用できないという問題もある。

【0007】本発明の目的は、上述の問題点を解消し、小型軽量化すると共に被把持体の損傷を防止し得る把持装置を提供することにある。

【0008】

【課題を解決するための手段】上記目的を達成するための本発明に係る把持装置は、複数本のアームを軸線に沿う方向に向けて円周方向に配置し、径方向に変形させて円板状の被把持体の内径又は外径を把持する把持装置であって、前記アームの径方向には径方向に弹性変形可能な弾性筒状体と、該弾性筒状体の側面を一壁として流体受容室を形成する剛性体とを順次に配置し、該剛性体には外部から前記流体受容室に連通する流体路を形成し、該流体路を介して圧力流体を前記流体受容室に流入させることにより、前記弾性筒状体と前記アームを順次に弹性変形させて前記被把持体を把持することを特徴とする。

【0009】

【発明の実施の形態】本発明を図示の実施の形態に基づいて詳細に説明する。図1は実施の形態の分解斜視図、図2は底面図、図3は図2のA-A線に沿った断面図であり、この実施の形態に係る把持装置は搬送装置Sに取り付けられ、内径孔W aを有する円板状のワークWを把持し得るように構成されている。

【0010】ケース1の内側には爪部材2が配置され、爪部材2の内側にはゴムスリーブ3が配置され、ゴムスリーブ3の内側にはケース1、爪部材2及びゴムスリーブ3を搬送装置Sに固定する固定部材4が配置されている。

【0011】ケース1は爪部材2の後述のアームの過剰な変形を規制し得る硬さを有しており、筒部1aと端壁1bを有する有底円筒体とされ、端壁1bには固定部材4の後述するねじ部を挿通する挿通孔1cが形成されている。

【0012】爪部材2は部分的な弹性変形を可能とする材料から形成され、最も大径の部分でもケース1の筒部1aの内径よりも小径の外周面を有している。円筒状の爪部本体1は、爪部材2の全体の長さの3分の2程度の長さを有しており、上端部にはケース1の筒部1aに嵌合する上方フランジ12が設けられ、外周面の下端部

には、ケース 1 の筒部 1 a に間隙をおいて対向する下方フランジ 1 3 が設けられている。

【0013】下方フランジ 1 3 の下端面には、軸線に沿う方向に延在してケース 1 から下方に突出する例えは 3 本のアーム 1 4 が周方向に等間隔で設けられている。アーム 1 4 の長さは爪部材 2 の全体の長さの 3 分の 1 程度とされ、アーム 1 4 の外側の下端部には外向きの爪部 1 4 a が形成されている。爪部本体 1 1 とアーム 1 4 の内面同士は連続する円筒面とされ、下方フランジ 1 3 とアーム 1 4 の外側同士も連続する円筒面とされている。

【0014】下方フランジ 1 3 を含む爪部本体 1 1 には、アーム 1 4 の径方向への弾性変形を助長する割溝 1 5 a、1 5 b が上方フランジ 1 2 の近傍まで形成されている。そして、下方フランジ 1 3 の外周面とケース 1 の内周面との間隙は、アーム 1 4 の過剰な変形がケース 1 の下端部 1 d により規制される大きさとされている。

【0015】固定部材 4 は金属等の比較的硬い材料から形成され、ゴムスリーブ 3 に嵌合し得る外径で、ゴムスリーブ 3 よりも若干長い円柱状の固定部本体 2 1 を有している。固定部本体 2 1 の上端面には、ケース 1 の挿通孔 1 c に挿通され搬送装置 S の雄ねじ部 S a に螺合される雄ねじ部 2 2 が形成されている。固定部本体 2 1 の外周面の下部には、ゴムスリーブ 3 の下端面を押さえるフランジ部 2 3 が形成され、固定部本体 2 1 の下端面には、スパナ等の工具が嵌合される例えは六角形の工具用溝 2 4 が形成されている。

【0016】固定部本体 2 1 の外周面には、圧力空気等の圧力流体を受容する流体受容室 2 5 が、上下方向の幅を有して凹状に形成されている。そして、雄ねじ部 2 2 と固定部本体 2 1 には、圧力流体を搬送装置 S の流体流路 S b から流体受容室 2 5 に導くための軸線方向に向う流体流路 2 6 と、この流体流路 2 6 の内端から径方向に等間隔で 3 分岐して流体受容室 2 5 に連通する 3 つの流体流路 2 7 とが形成されている。

【0017】この把持装置を組み立てる際には、爪部材 2 の爪部本体 1 1 の内部にゴムスリーブ 3 を嵌合し、爪部材 2 とゴムスリーブ 3 の上端面同士を一致させる。次に、雄ねじ部 2 2 を先に固定部材 4 をゴムスリーブ 3 の内部に嵌合し、固定部本体 2 1 とゴムスリーブ 3 の上端面同士を一致させる。

【0018】この際に、固定部本体 2 1 の外周面の上部とゴムスリーブ 3 の内周面の上部とを接着、焼付け等により一体化することが好ましい。また、固定部本体 2 1 の外周面の下部とゴムスリーブ 3 の内周面の下部とを同様な手段で一体化することも好ましい。

【0019】そして、一体となつた爪部材 2、ゴムスリーブ 3 及び固定部材 4 をケース 1 に嵌合し、雄ねじ部 2 2 をケース 1 の挿通孔 1 c を通して隔壁 1 b から突出させる。最後に、雄ねじ部 2 2 を搬送装置 S の雄ねじ部 S a に螺合し、固定部材 4 の工具用溝 2 4 に工具を嵌合し

て固定部材 4 を装置本体 S に対して締め付ける。

【0020】ワーク W を把持する際には、搬送装置 S は圧縮空気を流通させない状態でアーム 1 4 をワーク W の内径孔 Wa に挿入し、爪部 1 4 a をワーク W の下面に位置させる。

【0021】次に、圧縮空気を流体流路 S b、流体流路 2 6、流体流路 2 7 を介して流体受容室 2 5 に流通させる。これにより、流体受容室 2 5 に流入した圧縮空気はゴムスリーブ 3 を径方向の外方に膨張させ、この膨張したゴムスリーブ 3 はアーム 1 4 を径方向の外方に撓ませ、アーム 1 4 の外面を内径孔 Wa の内周面に圧接させてワーク W を把持する。なお、ワーク W を解放する場合には、流体受容室 2 5 への圧縮空気の供給を停止すればよい。

【0022】このように実施の形態では、圧縮空気によってゴムスリーブ 3 を弾性変形させ、この弾性変形させたゴムスリーブ 3 によって爪部材 2 のアーム 1 4 を変形させるので、従来のスライドブロックやコイルばねを必要とせず、構造の簡素化と小型軽量化が可能となる。また、アーム 1 4 をワーク W にゴムスリーブ 3 の弾性によって柔軟に接触させる上に、アーム 1 4 の過剰な変形をケース 1 の下端部 1 d によって規制するので、ワーク W を傷付けることはない。

【0023】なお、上述の実施の形態ではケース 1、爪部材 2、ゴムスリーブ 3、固定部材 4 を外方から内方に順次に設けたが、ワーク W の外径を把持する場合には、それらを内方から外方に順次に配置する構成とすることも可能である。

【0024】

【発明の効果】以上説明したように本発明に係る把持装置は、流体流路を介して圧力流体を流体受容室に流入させることにより、弾性筒状体とアームを順次に弾性変形させて被把持体を把持するので、従来のスライドブロックやコイルばね等を必要とせず、構造を簡素化できて小型軽量化が可能となる。また、従来のエアシリンダを使用することなく圧力流体を弾性筒状体に直接作用させるので、作動速度を向上させることができる上に、アームを被把持体に柔軟に接觸させることができ、被把持体の損傷を防止できる。

【0025】また、摺動部を有していないため発塵等の環境汚染の心配がなく、クリーンルーム等における使用が可能になる等の効果もある。

【図面の簡単な説明】

【図1】実施の形態の分解斜視図である。

【図2】底面図である。

【図3】図2のA-A線に沿った断面図である。

【符号の説明】

1 ケース

2 爪部材

3 ゴムスリーブ

4 固定部材
 1 1 爪部本体
 1 2 上方フランジ
 1 3 下方フランジ
 1 4 アーム
 1 5 a、1 5 b 割溝
 2 1 固定部本体

2 2 雄ねじ部
 2 3 フランジ部
 2 4 工具用溝
 2 5 流体受容室
 2 6、2 7 流体流路
 S 搬送装置
 W ワーク

【図1】

【図2】

【図3】

