Disciplina:

MODELAGEM E PREPARAÇÃO
DE DADOS PARA APRENDIZADO
DE MÁQUINA

Professor: Rafael Barroso

PARTE 1 TRATAMENTO DE DADOS NULOS

TRATAMENTO DE DADOS NULOS

STATISTICAL IMPUTATION

- Faz uso de medidas de tendência para preencher dados ausentes;
- São de fácil entendimento, rápido cálculo e costumam gerar boa performance de algoritmos de aprendizado de máquina;

- Para efetivo preenchimento, pode fazer uso de:
 - Média,
 - Moda,
 - Mediana,
 - Constante.

Other versions

Please **cite us** if you use the

sklearn.impute.SimpleImputer

sklearn.impute.SimpleImputer

Examples using

Toggle Menu

TRATAMENTO DE DADOS NULOS

KNN IMPUTATION

- Faz uso do conceito de criação de um modelo para prever o valor ausente;
- Para domínios numéricos, pode-se usar um modelo de regressão, mas algo tão simples como KNN também pode funcionar muito bem;
- KNN baseia-se em usar uma medida de distância e um número k de vizinhos para prever o valor.

CATEGÓRICAS

KNN IMPUTATION

PARTE 2 CONVERSÃO DE VARIÁVEIS CATEGÓRICAS

ORDINAL ENCODING

- Também conhecida como integer/label encoding;
- Cada categoria recebe um valor inteiro;
- Ex: {'Green':1, 'Yellow':2, 'Red': 3};
- Funciona devido a relação de ordem natural existente em valores numéricos (inteiros);

- A ideia é repassar aos algoritmos essa relação intrínseca de "ordem";
- Quando esta relação não está presente nos dados,
 ela será criada de forma artificial pelo encoder.

Ordinal Encoding

CATEGÓRICAS

ORDINAL ENCODING

ONE HOT ENCODING

- Usado em variáveis categóricas onde não há relação de ordem estabelecida;
- Para cada valor categórico é criado um código booleano/binário, gerando uma nova coluna que apresentará a ocorrência ou não dessa categoria para a observação;
- Dado que que a mesma observação não pode

- pertencer a duas ou mais categorias simultaneamente, então só um valor pode ser verdadeiro (daí o nome: *one hot*);
- Pode eliminar redundâncias, dado que se temos 3 possíveis categorias, apenas 2 demandam representação. Ou seja, para n categorias precisamos de n-1 representações.

One Hot Encoding

OUT [4]	: si	ibSp	Parch	Sex_male	Pclass_2	Pclass_3	Age_(20, 30]	Age_(30, 40]	Age_(40, 50]	Age_(50, 60]	Age_(60, 70]	Age_(70, 80]
	0	1	0	1	0	1	1	0	0	0	0	0
	1	1	0	0	0	0	0	1	0	0	0	0
	2	0	0	0	0	1	1	0	0	0	0	0
	3	1	0	0	0	0	0	1	0	0	0	0
	4	0	0	1	0	1	0	1	0	0	0	0

ONE HOT ENCODING

PARTE 3 CONVERSÃO DE VARIÁVEIS NUMÉRICAS

NORMALIZATION

- Reescala os dados para garantir que assumam valores entre 0 e 1;
- Dessa forma, demanda que os valores mínimos e máximos sejam conhecidos, podendo serem utilizados a partir daqueles disponíveis na amostra;
- Após a normalização, se um dado fora do intervalo entre mínimo e máximo for apresentado, a normalização retornará um valor fora do intervalo [0, 1].

$$y = \frac{x - x_{min}}{x_{max} - x_{min}}$$

CATEGÓRICAS

NORMALIZATION

STANDARDIZATION

- Reescala os dados de forma a buscar que a média seja igual a 0 e o desvio padrão igual a 1;
- Assim como a normalização, indicada para quando os dados apresentam escalas (muito) diferentes;
- Assume que os dados obedecem uma distribuição
 Gaussiana, mas pode ser aplicada também quando isso não ocorre;

É indicado que os valores de média e desvio
 padrão utilizados sejam da base de treino, sendo
 aplicados nas demais bases;

$$y = \frac{x - \overline{x}}{\sigma}$$

$$\overline{x} = \frac{\sum_{i=0}^{n} x}{n}$$

$$\sigma = \sqrt{\frac{\sum_{i=0}^{n} (x - \overline{x})^2}{n-1}}$$

STANDARDIZATION

CATEGÓRICAS

ROBUST SCALING

- É usado para reescalar variáveis com outliers;
- Faz uso da mediana e da distância interquartis para o processo;
- É matematicamente muito similar ao processo de normalization, mudando apenas o ponto de centralidade da média para mediana e o domínio sendo reduzido para p₂₅ e p₇₅.

$$y = \frac{x - p_{50}}{p_{75} - p_{25}}$$

CATEGÓRICAS

ROBUS SCALING

POWER TRANSFORM

- Busca diminuir a assimetria da distribuição;
- Efetivamente busca fazer com que a distribuição se aproxime de uma Gaussiana;
- Pode ser obtida de algumas maneiras, entre elas calculando-se o logaritmo ou a raiz quadrada dos valores. Contudo, essas transformações podem não ser as melhores para uma dada variável;
- Há a possibilidade de se buscar a melhor

transformação a partir, geralmente, de duas abordagens:

- Box-Cox,
- Yeo-Johnson;
- Ambas buscam determinar um fator λ que melhor se adequa aos dados.

POWER TRANSFORM

- $\lambda = -1$ → transformação recíproca/inversa;
- $\lambda = -0.5$ \rightarrow transformação recíproca por raiz quadrada;
- $\lambda = 0$ → transformação logarítmica;
- $\lambda = 0.5$ → transformação por raiz quadrada;
- $\lambda = 1$ → não há transformação;

POWER TRANSFORM

CATEGÓRICAS

DISCRETIZATION

- Algoritmos tendem a não performar bem com dados muito assimétricos ou com distribuição nãonormal;
- Uma opção é a discretização de dados numéricos;
- Binning: os dados são alocados em bins, identificados por números inteiros que mantenham sua ordem;

- As faixas (bins) podem ser definidas de 3 formas:
 - Uniform: cada faixa tem a mesma largura,
 - Quantile: cada faixa tem o mesmo número de observações (limites definidos pelos percentis),
 - Clustered: clusters são identificados e observações são agrupadas

DISCRETIZATION: UNIFORM

DISCRETIZATION: QUANTILE

DISCRETIZATION: CLUSTERED

CATEGÓRICAS

DISCRETIZATION

