Date: 05/12/2023

BITS Pilani

Pilani Campus

Graph Mining Presentation

Hate Speech Detection using LLMs

Ipshita Mahapatra - 2022H1030128P

Supervisor : Dr. Vinti Agarwal

Problem Statement

The objective of this task is to create an automatic classification system that predicts whether a given text contains caste/Immigration hate speech or not on Social media.

The dataset provided for this task contains texts(social media comments) in Tamil language.

Proposed Solution to Solve this problem-

Hate Speech Identification using LLMs

Fine Tuning LLMs using LoRA

LLMs - Large Language Models

- Advanced NLP Models
- Trained on Massive amounts of diverse text data
- Key Features -
 - Scale for Parameters
 - Pre-Training on Broad Data
 - Transfer Learning
 - Versatility

Examples - GPT, BERT

Fine Tuning LLMs

The issue with this model is that ΔW is as huge as W_0 which make it computationally expensive and heavy in terms of memory as well.

Fine Tuning using LoRA

Pre - trained Model = $P_{\Phi}(y|x)$

Fine Tuning using LoRA:

Initial weights of the pretrained Model = W₀ Updated weights -

$$W_0 + \Delta W = W_0 + BA$$

Where $W_0 \in R^{d \times k}$, $B \in R^{d \times r}$, $A \in R^{r \times k}$ and rank r = min(d, d)k) For the Output $h = W_0 x$, our modified forward pass yields:

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

Image Reference - https://dataman-ai.medium.com/fine-tune-a-gpt-lora-e9b72ad4ad3

Tamil-LLaMa

Pre-training and Fine tuning LLaMa-2 over Tamil language corpus.

Pre-Training - Casual Language Modeling Method

CLM method suggests that the Model is trained to predict the next word provided it is given a sequence of previous words.

$$P(x_1, x_2, \dots, x_T) = \prod_{t=1}^{T} P(x_t | x_1, x_2, \dots, x_{t-1})$$

Training infrastructure-

- Nvidia A100 GPU with 80GB of VRAM.
- The models were trained for 1 epoch on the entire dataset
- Microsoft Azure's Standard NC24adsA100v4 instance was used.
- Training time
 - o 7B model 48 hours
 - 13B model 60 hours
- The hyper parameters for pre-training as mentioned in Table 1

Table 1: Pre-Training Hyperparameters

Configurations	7B	13B
Training Data	12GB	4GB
Epochs	1	1
Batch Size	64	64
Initial Learning Rate	2e-4	2e-4
Max Sequence Length	512	512
LoRA Rank	64	64
LoRA Alpha	128	128
LoRA Target Modules	QKVO, MLP	QKVO, MLP
Training Precision	FP16	FP16

Tamil-LLaMa (Contd...)

Fine tuning - Using LoRA

The Hyperparameters used to finetune LLaMa 2 with Tamil Language corpus are mentioned in Table 2

Hardware Requirements-

The same A100 GPU with 80GB of VRAM was utilized.

Table 2: Fine-tuning Hyperparameters

Configurations	7B	13B
Training Data	145k	145k
Epochs	2	1
Batch Size	64	64
Dropout Rate	0.1	0.1
Initial Learning Rate	2e-4	2e-4
Max Sequence Length	512	512
LoRA Rank	64	64
LoRA Alpha	128	128
LoRA Target Modules	QKVO, MLP	QKVO, MLP
Training Precision	FP16	FP16

Tamil-LLaMa Comparative Results

- In manual examinations, the Tamil LLaMA models outperformed gpt-3.5-turbo and achieved outstanding ratings in GPT-4 evaluations, indicating superior performance.
- It should be highlighted, however, that GPT-4
 may automatically favour replies from its own
 model lineages, and certain areas, such as
 ethics, exhibit limits due to the lack of
 alignment efforts.
- Despite issues in literature and entertainment due to data restrictions, Tamil-LLaMA models provide a solid platform for future improvements and advancements in big language models for Tamil.

Table 3: GPT-4 rated performance scores for different models on Tamil instructions

Task Type	Tamil-LLaMA-7B	Tamil-LLaMA-13B	gpt-3.5-turbo
Question Answering	77.00	75.33	54.33
Open-ended QA	84.47	85.26	58.68
Reasoning	47.50	64.25	63.50
Literature	45.50	40.00	71.00
Entertainment	43.33	50.00	60.00
Creative Writing	92.50	95.62	59.69
Translation	60.56	66.67	92.78
Coding	63.57	76.07	57.14
Ethics	23.75	57.50	40.00
Overall	63.83	71.17	61.33

Tamil-LLaMA results

Comparative analysis of the following models

- Random
- LLaMA 2(7b parameters)
- Tamil-LLaMA 7B
- Tamil-LLaMA 13B

Over the IndicSentiment Benchmark(Tamil) shows that Tamil-LLaMA 7B outperforms all the other models, followed very closely by Tamil-LLaMA 13B

Performance comparison on the IndicSentiment-7B dataset

References

[1] Hu, E. J. (2021, June 17). LoRA: Low-Rank Adaptation of Large Language Models. arXiv.org. https://arxiv.org/abs/2106.09685

[2] Balachandran, A. (2023, November 10). *Tamil-Llama: A New Tamil Language Model Based on Llama 2*. arXiv.org. https://arxiv.org/abs/2311.05845

Thank You