

Building Better Credit Scores: Machine Learning and NLP for Optimized Risk Assessment

Daniel Mathew Tracy Pham Mentor: Brian Duke Mentor: Kyle Nero

Mentor: Berk Ustun berk@ucsd.edu

UCSan Diego MALICIOĞLU DATA SCIENCE INSTITUTE

Introduction

Traditional credit scoring models often disadvantage those with limited credit history, such as young adults, recent immigrants, and cash-reliant individuals. We propose a fairer, more transparent measure that leverages detailed bank transaction data. By analyzing cash flow patterns and spending behavior with advanced modeling, we develop a probability-based scoring model to more accurately assess delinquency risk and improve credit access.

Figure 1. Traditional credit scoring model.

Key Datasets

Our analysis utilizes four key datasets to assess creditworthiness:

- Account Data Consumers' account types, balances, and balance dates.
- Consumer Data Consumers' credit scores and delinquency targets.
- Transaction Data Transactions with categories, amounts, & credit/debit indicators.
- Category Mappings Links transaction category IDs to transaction category names.

Data Exploration

Figure 2. Balance over Time of Delinquent vs. Non-Delinquent Consumer

Figure 3. Tax Transactions in the Last 14 Days

Figure 4. Distribution of Credit Score of Delinquent vs. Non-Delinquent Consumers

Model Pipeline

drmathew@ucsd.edu tnp003@ucsd.edu brian.duke@prismdata.com kyle.nero@prismdata.com

Figure 5. Cash Score Model Pipeline

We adopted a cyclic feature generation process to iteratively improve model performance.

Model Evaluation - We used the following metrics to assess model performance:

- ROC AUC: Measures class distinction, with higher values indicating better performance and discriminative power between positives and negatives.
- Accuracy: Proportion of correct predictions.
- Precision: Ratio of true positives to predicted positives.
- Recall: Ratio of true positives to actual positives.
- Confusion Matrix: Displays true/false positives and negatives to assess errors.

Feature Engineering

Feature Generation:

- Risk Indicators: Identified high-risk behaviors by focusing on specific transaction categories (i.e. gambling, overdraft fees, buy now pay later).
- Standardization: Standardized non-categorical features to ensure consistent scaling.
- Resampling: Utilized SMOTE and undersampling techniques to redistribute training data and balance the majority and minority classes.

Figure 6. Category-Based Feature Generation Process

Feature Selection:

- Correlation Analysis: Removed features highly correlated with each other.
- Lasso (L1) Regularization: Selected top features ranked by L1 feature importance.
- Embedded Method: Utilized Random Forest to effectively rank and select features.

Findings

Figure 7. Comparison of ROC curves for different models (Left: w/ Credit Score, Right: w/o Credit Score)

Model	ROC-AUC	Accuracy	Precision	Recall	F1-Score	Training	Prediction
Logistic Regression (w/o Credit Score)	0.7079	0.8445	0.2383	0.2785	0.2568	1.3368	0.4016
Logistic Regression (w/ Credit Score)	0.7241	0.8571	0.2674	0.3548	0.3050	1.7175	0.3315
LightGBM (w/o Credit Score)	0.7796	0.8991	0.3878	0.0802	0.1329	4.1249	0.0931
LightGBM (w/ Credit Score)	0.8162	0.9068	0.4167	0.1382	0.2076	3.9720	0.0859
CatBoost (w/o Credit Score)	0.7704	0.9019	0.4474	0.0717	0.1236	38.6703	0.0788
CatBoost (w/ Credit Score)	0.8260	0.9170	0.4681	0.1095	0.1774	40.9512	0.0960

Table 1. Cash Score Model (w/o Credit Score vs. w/ Credit Score) Evaluation Metrics

Figure 8. Confusion Matrix of CatBoost (w/o Credit Score)

Figure 9. Confusion Matrix of CatBoost (w/ Credit Score)

Figure 11. Delinquency Rate Heatmap

Next Steps

- Feature Engineering: Optimize aggregated feature metrics on categories and time windows, and implement clustering algorithms to select optimal features.
- Model Refinement: Attempt deep learning models with extended hyperparameter tuning sessions to extract more complex patterns and improve predictive power.
- Bias & Fairness: Evaluate for potential biases in predictions across demographics and implement fairness constraints to ensure equitable credit assessments.