Degree-of-Freedom of Ridge Regression

- Can we say the complexity of the ridge regression model, which returns a p-dim coefficient vector $\hat{\boldsymbol{\beta}}^{\text{ridge}}$, is p?
- Although $\hat{\beta}^{\text{ridge}}$ is p-dim, the ridge regression doesn't seem to use the full strength of the p covariates due to the shrinkage.
- For example, if λ is VERY large, the df of the resulting ridge regression model should be close to 0. If λ is 0, we are back to a linear regression model with p covariates.
- So the df of a ridge regression should be some number between 0 and p, decreasing wrt λ .

One way to measure the degree of freedom (df) of a method is

$$df = \sum_{i=1}^{n} Cor(y_i, \hat{y}_i).$$

Suppose a method returns the n fitted value as $\hat{\mathbf{y}} = \mathbf{A}_{n \times n} \mathbf{y}$ where \mathbf{A} is an n-by-n matrix not depending on \mathbf{y} (of course, it depends on \mathbf{x}_i 's). Then

$$df = \sum_{i=1}^{n} Cor(y_i, \hat{y}_i) = \sum_{i=1}^{n} A_{ii} = tr(\mathbf{A}).$$

For example, for a linear regression model with p coefficients, we all agree that the degree of freedom is p. If using the formula above we have

$$df = tr(\mathbf{H}) = p, \quad \hat{\mathbf{y}}_{LS} = \mathbf{H}\mathbf{y}$$

which also gives us df = p.

For ridge regression, we have $\hat{\mathbf{y}}_{\text{ridge}} = \mathbf{S}_{\lambda}\mathbf{y}$, where

$$\mathbf{S}_{\lambda} = \mathbf{X}(\mathbf{X}^{T}\mathbf{X} + \lambda I)^{-1}\mathbf{X}^{T} = \sum_{j=1}^{p} \frac{d_{j}^{2}}{d_{j}^{2} + \lambda} \mathbf{u}_{i} \mathbf{u}_{i}^{T}.$$

We can define the effective df of ridge regression to be

$$df(\lambda) = \operatorname{tr}(\mathbf{S}_{\lambda}) = \sum_{j=1}^{p} \frac{d_{j}^{2}}{d_{j}^{2} + \lambda}.$$

When the tuning parameter $\lambda=0$ (i.e, no regularization), $df(\lambda)=p$; when λ goes to ∞ , $df(\lambda)$ goes to 0.

Different from other variable selection methods, the df for ridge regression can vary continuously from 0 to p.