Out[33]:

```
Score without poly features: 0.63
```

As we would expect looking at the grid search results visualized in Figure 6-4, using no polynomial features leads to decidedly worse results.

Searching over preprocessing parameters together with model parameters is a very powerful strategy. However, keep in mind that GridSearchCV tries all possible combinations of the specified parameters. Therefore, adding more parameters to your grid exponentially increases the number of models that need to be built.

Grid-Searching Which Model To Use

You can even go further in combining GridSearchCV and Pipeline: it is also possible to search over the actual steps being performed in the pipeline (say whether to use StandardScaler or MinMaxScaler). This leads to an even bigger search space and should be considered carefully. Trying all possible solutions is usually not a viable machine learning strategy. However, here is an example comparing a RandomForest Classifier and an SVC on the iris dataset. We know that the SVC might need the data to be scaled, so we also search over whether to use StandardScaler or no preprocessing. For the RandomForestClassifier, we know that no preprocessing is necessary. We start by defining the pipeline. Here, we explicitly name the steps. We want two steps, one for the preprocessing and then a classifier. We can instantiate this using SVC and StandardScaler:

In[34]:

```
pipe = Pipeline([('preprocessing', StandardScaler()), ('classifier', SVC())])
```

Now we can define the parameter_grid to search over. We want the classifier to be either RandomForestClassifier or SVC. Because they have different parameters to tune, and need different preprocessing, we can make use of the list of search grids we discussed in "Search over spaces that are not grids" on page 271. To assign an estimator to a step, we use the name of the step as the parameter name. When we wanted to skip a step in the pipeline (for example, because we don't need preprocessing for the RandomForest), we can set that step to None:

In[35]:

```
from sklearn.ensemble import RandomForestClassifier
param_grid = [
    {'classifier': [SVC()], 'preprocessing': [StandardScaler(), None],
     'classifier__gamma': [0.001, 0.01, 0.1, 1, 10, 100],
     'classifier__C': [0.001, 0.01, 0.1, 1, 10, 100]},
    {'classifier': [RandomForestClassifier(n estimators=100)],
     'preprocessing': [None], 'classifier_max_features': [1, 2, 3]}]
```

Now we can instantiate and run the grid search as usual, here on the cancer dataset:

In[36]:

```
X_train, X_test, y_train, y_test = train_test_split(
        cancer.data, cancer.target, random_state=0)
    grid = GridSearchCV(pipe, param_grid, cv=5)
    grid.fit(X train, y train)
    print("Best params:\n{}\n".format(grid.best_params_))
    print("Best cross-validation score: {:.2f}".format(grid.best score ))
    print("Test-set score: {:.2f}".format(grid.score(X_test, y_test)))
Out[36]:
    Best params:
    {'classifier':
     SVC(C=10, cache size=200, class weight=None, coef0=0.0,
         decision_function_shape=None, degree=3, gamma=0.01, kernel='rbf',
         max iter=-1, probability=False, random state=None, shrinking=True,
         tol=0.001, verbose=False),
     'preprocessing':
     StandardScaler(copy=True, with mean=True, with std=True),
     'classifier__C': 10, 'classifier__gamma': 0.01}
    Best cross-validation score: 0.99
    Test-set score: 0.98
```

The outcome of the grid search is that SVC with StandardScaler preprocessing, C=10, and gamma=0.01 gave the best result.

Summary and Outlook

In this chapter we introduced the Pipeline class, a general-purpose tool to chain together multiple processing steps in a machine learning workflow. Real-world applications of machine learning rarely involve an isolated use of a model, and instead are a sequence of processing steps. Using pipelines allows us to encapsulate multiple steps into a single Python object that adheres to the familiar scikit-learn interface of fit, predict, and transform. In particular when doing model evaluation using cross-validation and parameter selection using grid search, using the Pipeline class to capture all the processing steps is essential for proper evaluation. The Pipeline class also allows writing more succinct code, and reduces the likelihood of mistakes that can happen when building processing chains without the pipeline class (like forgetting to apply all transformers on the test set, or not applying them in the right order). Choosing the right combination of feature extraction, preprocessing, and models is somewhat of an art, and often requires some trial and error. However, using pipelines, this "trying out" of many different processing steps is quite simple. When