

Time slicing between processes.

Time slicing between processes.

Time slicing between processes.

Time slicing between processes.

Runtime on different partition sizes of A100 GPU.

Time slicing between processes.

GPU Memory Streaming Multiprocessors

Time slicing between processes.

Runtime on different partition sizes of A100 GPU.

Time slicing between processes.

Runtime on different partition sizes of A100 GPU.

BERT-SQuAD: 4.77x speedup, but at the cost of 7x more resources!

"MPS is only recommended for running **cooperative processes** effectively acting as a **single application**, such as multiple ranks of the same MPI job, such that the severity of the following memory protection and error containment limitations is acceptable."

"MPS is only recommended for running **cooperative processes** effectively acting as a **single application**, such as multiple ranks of the same MPI job, such that the severity of the following memory protection and error containment limitations is acceptable."

Serverless is multi-tenant and executes arbitrary user code.

"MPS is only recommended for running **cooperative processes** effectively acting as a **single application**, such as multiple ranks of the same MPI job, such that the severity of the following memory protection and error containment limitations is acceptable."

Serverless is multi-tenant and executes arbitrary user code.

Limited security!

Function can conduct side-channel attack.

"MPS is only recommended for running **cooperative processes** effectively acting as a **single application**, such as multiple ranks of the same MPI job, such that the severity of the following memory protection and error containment limitations is acceptable."

Serverless is multi-tenant and executes arbitrary user code.

Limited security!

Function can conduct side-channel attack.

No performance isolation!

Function can hog the memory bandwidth.

"MPS is only recommended for running **cooperative processes** effectively acting as a **single application**, such as multiple ranks of the same MPI job, such that the severity of the following memory protection and error containment limitations is acceptable."

Serverless is multi-tenant and executes arbitrary user code.

Limited security!

Function can conduct side-channel attack.

No performance isolation!

Function can hog the memory bandwidth.

No error containment!

Function can maliciously kill GPU contexts.

| Memory | 5 GB |
|----------|------|------|------|------|------|------|------|------|
| L2 Cache | 5 MB |

Memory	5 GB	
L2 Cache	5 MB	
Compute	GPC	

MIGnificient: Fast and Isolated GPU Functions

MIGnificient: Fast and Isolated GPU Functions

MIGnificient: Fast and Isolated GPU Functions

API Remoting over shared memory

API Remoting over shared memory

Concurrent containers on different partitions

API Remoting over shared memory

Concurrent containers on different partitions

Consecutive containers on the same partition

Sequential

```
Function
Container 1

Function
Container 2
```


Sequential

Sequential

Sequential

Switching

Sequential

Switching

Sequential

Switching

Sequential

Switching

Function Container 1 Function Container 2

Switching & Yield

Sequential

Switching

Switching & Yield

Sequential

Switching

Switching & Yield

Benchmark	Native CUDA	MIGnificient	
	Time Sharing	Sequential	Fast Function Switching
BFS	505.3 ± 2.5	990.5 ± 112	528.8 ± 14.6
hotspot	92.1 ± 0.8	195.1 ± 22.2	103 ± 9.9
ResNet-50	18 ± 0.3	53.3 ± 6	27.5 ± 0.7
AlexNet	15.4 ± 0.5	49.2 ± 5.5	26.4 ± 0.9
Vgg19	23.6 ± 1	54.5 ± 6.5	27.8 ± 1
BERT-SQuaD	40.2 ± 2.5	65.8 ± 7.5	41.4 ± 3.1

Two clients sending concurrently in total 10 requests. Unmodified benchmarks without yield. Bare-metal processes on RTX 4070 GPU.

Benchmark	Native CUDA	MIGnificient		
	Time Sharing	Sequential	Fast Function Switching	
BFS	505.3 ± 2.5	990.5 ± 112	528.8 ± 14.6	1.87x
hotspot	92.1 ± 0.8	195.1 ± 22.2	103 ± 9.9	1.89x
ResNet-50	18 ± 0.3	53.3 ± 6	27.5 ± 0.7	1.94x
AlexNet	15.4 ± 0.5	49.2 ± 5.5	26.4 ± 0.9	1.86x
Vgg19	23.6 ± 1	54.5 ± 6.5	27.8 ± 1	1.96x
BERT-SQuaD	40.2 ± 2.5	65.8 ± 7.5	41.4 ± 3.1	1.58x

Two clients sending concurrently in total 10 requests. Unmodified benchmarks without yield. Bare-metal processes on RTX 4070 GPU.

MIGnificient: Isolated Functions

MIGnificient: Isolated Functions

Idle container: CPU process + GPU context

Create CPU Process -> Import PyTorch -> Initialize CUDA Context -> Load Libraries -> Load Model from Disk

CUDA Memory Allocations

Create CPU Process -> Import PyTorch -> Initialize CUDA Context -> Load Libraries -> Load Model from Disk

CPU Process
CUDA Context
Libraries
CUDA Virtual Addresses

CUDA Memory Allocations

GPU Memory

Lukewarm Functions

CUDA Memory Allocations

Create CPU Process -> Import PyTorch -> Initialize CUDA Context -> Load Libraries -> Load Model from Disk

GPU Memory

Swap In

Create CPU Process -> Import PyTorch -> Initialize CUDA Context -> Load Libraries -> Load Model from Disk

Snapshot

Swap In

CUDA Memory Allocations

Create CPU Process -> Import PyTorch -> Initialize CUDA Context -> Load Libraries -> Load Model from Disk

ResNet-50: 23.45 ms of copying 142 MB snapshot versus 107 ms load time.

BERT: 214.47 ms of copying 1.3 GB snapshot versus 730.2 ms load time.

Conclusions

API remoting: network performance penalty.

Single tenant: underutilization.

MPS: insufficient isolation.

MIG: insufficient elasticity.

MIGnificient: spatial isolation with optimized scheduling and overlapping.

More of SPCL's research:

... or spcl.ethz.ch

Serverless HPC Projects