Using the OpenVINO™ Toolkit for Deploying Accelerated Deep Learning Applications – Part1 [2021.4]

July 2021

Agenda

Part 1: OpenVINO Workshop (90mins):

- Overview of OpenVINO Toolkit
- Model Optimizer
- Inference Engine
- VPU Accelerators
- Multiple models in one application
- Deployment Manager
- Conditional Compilation [NEW]
- DevCloud Overview

- Part2: Hands-On Training (30mins):
 - DevCloud Registration
 - Sample Tutorials

intel

Notices and Disclaimers

- Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.
- Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.
- Your costs and results may vary.
- Intel technologies may require enabled hardware, software or service activation.
- All product plans and roadmaps are subject to change without notice.
- Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
- © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

intel

Introduction to Intel® Distribution of OpenVINO™ Toolkit

July 2021

Intel® Distribution of OpenVINO™ Toolkit

- Tool Suite for High-Performance, Deep Learning Inference
- Fast, accurate real-world results using high-performance, AI and computer vision inference deployed into production across Intel® architecture from edge to cloud

Streamlined Development, Ease of Use

Write Once, Deploy Anywhere

- Enables deep learning inference from the edge to cloud.
- Supports heterogeneous execution across Intel accelerators, using a common API for the Intel® CPU, Intel® Integrated Graphics, Intel® Gaussian & Neural Accelerator (Intel® GNA), Intel® Neural Compute Stick 2, Intel® Vision Accelerator Design with Intel® Movidius™ Vision Processing Units (VPU).
- Speeds up time-to-market through an easy-to-use library of CV functions and pre-optimized kernels.
- Includes optimized calls for CV standards, including OpenCV* and OpenCL*.

Choose Between Release Types

Standard Releases vs Long-Term Support Releases

Standard Release (3-4 releases a year): Users looking to take advantage of new features, tools and support in order to keep current with the advancements in deep learning technologies

Long-Term Support Release: Users looking for a stable and reliable version that is maintained for a longer period, and are looking for little to no new feature changes

Supported OSes and installation options

July 2021

Supported OSes - Development Platform

https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/system-requirements.html

Processors

- 6th to 11th generation Intel® Core™ and Intel® Xeon® processors
- Pentium® processor N4200/5, N3350/5, N3450/5 with Intel® HD Graphics
- Intel Atom® processor with SSE4.1 support

Development Platform

- Ubuntu* 20.04 LTS (64 bit)
- Ubuntu 18.04 LTS (64 bit)
- Windows* 10 (64 bit)
- CentOS* 7 (64 bit)
- macOS* 10.15 (64 bit)

Supported OSes – Target System Platform

https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/system-requirements.html

CPU

Processors

- 6th to 11th generation Intel® Core™ processors
- Intel® Xeon® Scalable processors (formerly code-named Skylake)
- 2nd generation Intel Xeon Scalable processors (formerly code-named Cascade Lake)
- 3rd generation Intel Xeon Scalable processors (formerly code-named Cooper Lake and Ice Lake)
- Pentium® processor N4200/5, N3350/5, N3450/5 with Intel® HD Graphics
- Intel Atom® processor with SSE4.1 support

Compatible Operating Systems

- Ubuntu* 18.04 LTS (64 bit)
- Ubuntu* 20.04 LTS (64 bit)
- Windows* 10 (64 bit)
- CentOS 7* (64 bit)
- Red Hat* Enterprise Linux* 8 (64 bit)
- macOS* 10.15 (64 bit)
- Yocto Project* Poky Zeus v3.0.x (64 bit)

Supported OSes – Target System Platform

https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/system-requirements.html

GPU

Processors

- 6th to 9th generation Intel[®] Iris[®] Plus graphics, Intel® UHD Graphics, Intel® HD Graphics[†], and Xe architecture
- Intel[®] Iris[®] X^e MAX graphics

VPU

- Processor
 - Intel® Movidius™ Myriad™ X VPU
- Supported Hardware
 - Intel® Neural Compute Stick 2
 - Intel® Vision Accelerator Design with Intel® Movidius[™] Vision Processing Unit (VPU)

Compatible Operating Systems

- Ubuntu* 18.04 LTS (64 bit)
- Ubuntu* 20.04 LTS (64 bit)
- Windows* 10 (64 bit)
- CentOS* 7 (64 bit)

Compatible Operating Systems

- Ubuntu* 18.04 LTS (64 bit)
- Windows* 10 (64 bit)
- Raspbian* OS

intel Internet of Things Group

- Download the online or local installation package
 - https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
- Build OpenVINO™ toolkit from source on GitHub*/Gitee*
 - https://github.com/openvinotoolkit/openvino.git
 - https://gitee.com/openvinotoolkit-prc/openvino.git
- Python* Package Installer
 - https://pypi.org/project/openvino/
 - https://pypi.org/project/openvino-dev/

- Intel® Edge Software Hub
 - Edge Insights for Vision
- Customize a Dockerfile*
 - https://github.com/openvinotoolkit/docker_ci
- Docker* Hub
 - docker pull openvino/ubuntu20_runtime
 - docker pull openvino/ubuntu20_dev
 - docker pull openvino/ubuntu18_runtime
 - docker pull openvino/ubuntu18_dev
- Intel® DevCloud for the Edge
 - https://devcloud.intel.com/edge

- Download the online or local installation package
 - https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
- Build OpenVINO™ toolkit from source on GitHub*/Gitee*
 - https://github.com/openvinotoolkit/openvino.git
 - https://gitee.com/openvinotoolkit-prc/openvino.git
- Python* Package Installer
 - https://pypi.org/project/openvino/
 - https://pypi.org/project/openvino-dev/

- Intel® Edge Software Hub
 - Edge Insights for Vision
- Customize a Dockerfile*
 - https://github.com/openvinotoolkit/docker_ci
- Docker* Hub
 - docker pull openvino/ubuntu20_runtime
 - docker pull openvino/ubuntu20_dev
 - docker pull openvino/ubuntu18_runtime
 - docker pull openvino/ubuntu18_dev
- Intel® DevCloud for the Edge
 - https://devcloud.intel.com/edge

- Download the online or local installation package
 - https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
- Build OpenVINO™ toolkit from source on GitHub*/Gitee*
 - https://github.com/openvinotoolkit/openvino.git
 - https://gitee.com/openvinotoolkit-prc/openvino.git
- Python* Package Installer
 - https://pypi.org/project/openvino/
 - https://pypi.org/project/openvino-dev/

- Intel® Edge Software Hub
 - Edge Insights for Vision
- Customize a Dockerfile*
 - https://github.com/openvinotoolkit/docker_ci
- Docker* Hub
 - docker pull openvino/ubuntu20_runtime
 - docker pull openvino/ubuntu20_dev
 - docker pull openvino/ubuntu18_runtime
 - docker pull openvino/ubuntu18_dev
- Intel® DevCloud for the Edge
 - https://devcloud.intel.com/edge

- Download the online or local installation package
 - https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
- Build OpenVINO™ toolkit from source on GitHub*/Gitee*
 - https://github.com/openvinotoolkit/openvino.git
 - https://gitee.com/openvinotoolkit-prc/openvino.git
- Python* Package Installer
 - https://pypi.org/project/openvino/
 - https://pypi.org/project/openvino-dev/

- Intel® Edge Software Hub
 - Edge Insights for Vision
- Customize a Dockerfile*
 - https://github.com/openvinotoolkit/docker_ci
- Docker* Hub
 - docker pull openvino/ubuntu20_runtime
 - docker pull openvino/ubuntu20_dev
 - docker pull openvino/ubuntu18_runtime
 - docker pull openvino/ubuntu18_dev
- Intel® DevCloud for the Edge
 - https://devcloud.intel.com/edge

- Download the online or local installation package
 - https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
- Build OpenVINO™ toolkit from source on GitHub*/Gitee*
 - https://github.com/openvinotoolkit/openvino.git
 - https://gitee.com/openvinotoolkit-prc/openvino.git
- Python* Package Installer
 - https://pypi.org/project/openvino/
 - https://pypi.org/project/openvino-dev/

- Intel® Edge Software Hub™
 - Edge Insights for Vision
- Customize a Dockerfile*
 - https://github.com/openvinotoolkit/docker_ci
- Docker* Hub
 - docker pull openvino/ubuntu20_runtime
 - docker pull openvino/ubuntu20_dev
 - docker pull openvino/ubuntu18_runtime
 - docker pull openvino/ubuntu18_dev
- Intel® DevCloud for the Edge
 - https://devcloud.intel.com/edge

- Download the online or local installation package
 - https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
- Build OpenVINO™ toolkit from source on GitHub*/Gitee*
 - https://github.com/openvinotoolkit/openvino.git
 - https://gitee.com/openvinotoolkit-prc/openvino.git
- Python* Package Installer
 - https://pypi.org/project/openvino/
 - https://pypi.org/project/openvino-dev/

- Intel® Edge Software Hub
 - Edge Insights for Vision
- Customize a Dockerfile*
 - https://github.com/openvinotoolkit/docker_ci
- Docker* Hub
 - docker pull openvino/ubuntu20_runtime
 - docker pull openvino/ubuntu20_dev
 - docker pull openvino/ubuntu18_runtime
 - docker pull openvino/ubuntu18_dev
- Intel® DevCloud for the Edge
 - https://devcloud.intel.com/edge

- Download the online or local installation package
 - https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
- Build OpenVINO™ toolkit from source on GitHub*/Gitee*
 - https://github.com/openvinotoolkit/openvino.git
 - https://gitee.com/openvinotoolkit-prc/openvino.git
- Python* Package Installer
 - https://pypi.org/project/openvino/
 - https://pypi.org/project/openvino-dev/

- Intel® Edge Software Hub
 - Edge Insights for Vision
- Customize a Dockerfile*
 - https://github.com/openvinotoolkit/docker_ci
- Docker* Hub
 - docker pull openvino/ubuntu20_runtime
 - docker pull openvino/ubuntu20_dev
 - docker pull openvino/ubuntu18_runtime
 - docker pull openvino/ubuntu18_dev
- Intel® DevCloud for the Edge
 - https://devcloud.intel.com/edge

- Download the online or local installation package
 - https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
- Build OpenVINO™ toolkit from source on GitHub*/Gitee*
 - https://github.com/openvinotoolkit/openvino.git
 - https://gitee.com/openvinotoolkit-prc/openvino.git
- Python* Package Installer
 - https://pypi.org/project/openvino/
 - https://pypi.org/project/openvino-dev/

- Intel® Edge Software Hub
 - Edge Insights for Vision
- Customize a Dockerfile*
 - https://github.com/openvinotoolkit/docker_ci
- Docker* Hub
 - docker pull openvino/ubuntu20_runtime
 - docker pull openvino/ubuntu20_dev
 - docker pull openvino/ubuntu18_runtime
 - docker pull openvino/ubuntu18_dev
- Intel® DevCloud for the Edge
 - https://devcloud.intel.com/edge

Special install options for different Linux* OSes

APT Repository Package Manager

- Runtime Packages
 - sudo apt-cache search intel-openvino-runtimeubuntu18
 - sudo apt-cache search intel-openvino-runtimeubuntu20
- Developer Packages
 - sudo apt-cache search intel-openvino-devubuntu18
 - sudo apt-cache search intel-openvino-devubuntu20

YUM Repository Package Manager

- To install the latest version.
 - sudo yum install intel-openvino-runtime-centos7
- To install a specific version
 - sudo yum install intel-openvino-runtime-centos7-<VERSION>.<UPDATE>.<BUILD NUM

Red Hat* Quay

 docker run -it --rm quay.io/openvino/rhel8_runtime

Raspbian* OS

https://storage.openvinotoolkit.org/

intel Internet of Things Group

OpenVINO™ Toolkit Add-ons

July 2021

OpenVINO™ Model Server (OVMS)

OpenVINO™ Model Server (OVMS) is a scalable, high-performance solution for serving machine learning models optimized for Intel® architectures. The server provides an inference service via gRPC or REST API - making it easy to deploy new algorithms and AI experiments using the same architecture as TensorFlow* Serving for any models trained in a framework that is supported by OpenVINO.

OpenVINO™ Security Add-on (OVSA)

The OpenVINO™ Security Add-on works with the OpenVINO™ Model Server on Intel® architecture. Together, the OpenVINO™ Security Add-on and the OpenVINO™ Model Server provide a way for Model Developers and Independent Software Vendors to use secure packaging and secure model execution to enable access control to the OpenVINO™ models, and for model Users to run inference within assigned limits.

Neural Network Compression Framework (NNCF)

Contains a PyTorch*-based framework and samples for neural networks compression.

The framework is organized as a Python* package that can be built and used in a standalone mode. The framework architecture is unified to make it easy to add different compression methods.

The samples demonstrate the usage of compression algorithms for three different use cases on public models and datasets.

Computer Vision Annotation Tool (CVAT)

CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our team to annotate million of objects with different properties. Many UI and UX decisions are based on feedbacks from professional data annotation team.

OpenVINO Notebooks

A collection of ready-to-run Jupyter* notebooks for learning and experimenting with the OpenVINO™ Toolkit. The notebooks provide an introduction to OpenVINO basics and teach developers how to leverage our API for optimized deep learning inference.

List of Notebooks

Each notebook is located in a directory. Please follow the instructions in the README before launching Jupyter Lab or Jupyter Notebook.

hello-world:

001-hello-world

tool-usage:

- 101-tensorflow-to-openvino
- 102-pytorch-onnx-to-openvino

demos:

- 201-vision-monodepth
- 202-vision-superresolution
- 205-vision-background-removal

training-tutorials:

• 301-tensorflow-training-openvino

OpenVINO™ integration with TensorFlow (Preview Release)

A product delivers OpenVINO™ inline optimizations and runtime needed for an enhanced level of TensorFlow compatibility, designed for developers who want to get started with OpenVINO™ in their inferencing applications to enhance inferencing performance with minimal code modifications.

```
#pip3 install -U tensorflow==2.4.1
#pip3 install openvino-tensorflow

# Import package and set backend
# import openvino_tensorflow

openvino_tensorflow.set_backend('GPU'))

# Load a TF Saved Model
model = tf.keras.models.load_model('resnet50_saved_model')

# Get the input size of the model
network_input_size = saved_model_loaded.input.shape()

# Resize the input image
resized_image = resize(input_image, network_input_size)

# Run inference
model.predict(resized_image)
```


OpenVINO

intel

OpenVINO™ Extra Modules

https://github.com/openvinotoolkit/openvino_contrib

- No stable API
- Not well-tested
- Not part of official OpenVINO distribution
- Library maintains backward compatibility for better performance
- Developed separately and published in the openvino_contrib repository at first
- Will be moved to the central OpenVINO repository when mature and popular

- arm_plugin: ARM CPU Plugin -allows to perform deep neural networks inference on ARM CPUs, using OpenVINO API.
- java_api: Inference Engine Java API -provides Java wrappers for Inference Engine public API.
- mo_pytorch: PyTorch extensions for Model Optimizer -- native PyTorch to OpenVINO IR converter

Open Model Zoo

July 2021

Open Model Zoo

https://github.com/openvinotoolkit/open model zoo

- Pre-trained models
 - Intel® pre-trained models
 - Public pre-trained models
- Demo Applications
 - Console applications written in C, C++, Python*:
- Tools
 - Model Downloader
 - Accuracy Checker

intel Internet of Things Group

Pre-trained Models

Open-sourced repository of pre-trained models and support for public models

Intel® Pre-trained Models

Object Detection Models
Object Recognition Models
Reidentification Models
Semantic Segmentation
Models
Instance Segmentation Models

Human Pose Estimation

Models
Image Processing
Text Detection
Text Recognition
Text Spotting

Action Recognition Models
Image Retrieval
Compressed Models
Question Answering
Machine Translation

Public Pre-trained Models

Classification
Segmentation
Object Detection
Face Recognition
Human Pose Estimation

Monocular Depth Estimation
Image Inpainting
Style Transfer
Action Recognition
Colorization

Sound Classification
Speech Recognition
Image Translation

PRE-TRAINED MODELS

https://github.com/openvinotoolkit/open_model zoo/tree/master/models

Internet of Things Group intel®

Pre-trained Models

Open-sourced repository of pre-trained models and support for public models

Installation Path

GitHub* Repo

OpenVINO™ Documentation

Internet of Things Group intel®

Pre-trained Models

Open-sourced repository of pre-trained models and support for public models

Internet of Things Group

Demos Applications

Quickly get started with example demo applications

Take advantage of **pre-built, open-sourced** example implementations with step-by-step guidance and required components list

3D Human Pose Estimation Python* Demo
3D Segmentation Python* Demo
Action Recognition Demo
BERT Question Answering Python* Demo
BERT Question Answering Embedding
Python* Demo
Classification C++ Demo
Colorization Python* Demo
Crossroad Camera C++ Demo
Formula Recognition Python* Demo
Gaze Estimation Demo

Gesture Recognition Python* Demo
Handwritten Text Recognition Python*
Demo

Human Pose Estimation Demo
Human Pose Estimation Python* Demo
Image Inpainting Python Demo
Image Retrieval Python* Demo
Image Segmentation C++ Demo
Image Segmentation Asynchronous C++
Demo

Image Segmentation Python* Demo
Image Translation Python* Demo
Instance Segmentation Python* Demo
Interactive Face Detection C++ Demo
Machine Translation Python* Demo
Monodepth Python* Demo

<u>Multi-Camera Multi-Target Tracking Python*</u> Demo

Multi-Channel Demos

TensorFlow* Object Detection Mask R-CNNs

Segmentation Demo

Object Detection C++ Demo

Object Detection Python* Demo

Pedestrian Tracker Demo

Security Barrier Camera Demo

Speech Recognition Demo

Single Human Pose Estimation Python*

<u>Demo</u>

Smart Classroom Demo

Sound Classification Python* Demo

Super Resolution Demo

Text Detection Demo

Text Spotting Python* Demo

Text-to-Speech Python* Demo

Speech Library and Speech Recognition

Demos

DEMO APPLICATIONS

https://github.com/openvinotoolkit/open_model zoo/tree/master/demos

Internet of Things Group intel

Demos Applications

Quickly get started with example demo applications


```
Open P README.md
/opt/intel/openvino_2021.3.394/deployment_too..._model_zoo/demos/object_detecti... Save = 
31 ## How It Works
32
33 On the start-up, the application reads command-line parameters and location twork to the Inference
34 Engine. Upon getting a frame from the OpenCV VideoCapture, it perform note and displays the results.
35
36 Async API operates with a notion of the "Infer Request" that encapsulating inputs/outputs and separates
37 *scheduling and waiting for result*.
```

```
object_detection_demo.py
               /opt/intel/openvino_2021.3.394/deploy...zoo/demos/object_detection_demo/python
    if 'GPU' in device:
        if 'GPU' in devices nstreams:
             config user specified['GPU THROUGHPUT STREAMS'] = devices
s['GPU'] \
                 if int(devices nstreams['GPU']) > 0 \
                 else 'GPU THROUGHPUT AUTO
    return config user specified
def draw detections(frame, detections, palette, labels, threshold):
    size = frame.shape[:2]
    for detection in detections:
        if detection.score > threshold:
             xmin = max(int(detection.xmin), 0)
             ymin = max(int(detection.ymin), 0)
             xmax = min(int(detection.xmax), size[1])
```

intel

Tools

 Provides an easy way of accessing a number of public models as well as a set of pre-trained Intel models

 Check for accuracy of the model (original and after conversion) to IR file using a known data set

- downloader.py (model downloader) downloads model files from online sources and, if necessary, patches them to make them more usable with Model Optimizer;
- converter.py (model converter) converts the models that are not in the Inference Engine IR format into that format using Model Optimizer.
- quantizer.py (model quantizer) quantizes full-precision models in the IR format into low-precision versions using Post-Training Optimization Toolkit.
- **info_dumper.py** (model information dumper) prints information about the models in a stable machine-readable format.

TOOLS

https://github.com/openvinotoolkit/open_model zoo/tree/master/tools

Internet of Things Group intel®

Model Optimizer

July 2021

Converting and Preparing Models

Model Optimizer

- A Python* based tool to import trained models and convert them to Intermediate Representation
- Optimizes for performance or space with conservative topology transformations
- Hardware-agnostic optimizations

Inference Engine

- High-level, C/C++ and Python, inference runtime API
- Interface is implemented as **dynamically loaded plugins** for each hardware type
- Delivers advanced performance for each type without requiring users to implement and maintain multiple code pathways

GPU = Intel® CPU with integrated GPU/Intel® Processor Graphics, Intel® NCS = Intel® Neural Compute Stick (VPU) *VAD = Intel® Vision Accelerator Design Products (HDDL-R)

OpenCL and the OpenCL logo are trademarks of Apple* Inc. used by permission by Khronos*

Model Optimizer: Generic Optimization

- Model optimizer performs generic optimization
 - Drop unused layers (dropout)
 - Node merging
- The simplest way to convert a model is to run mo.py with a path to the input model file
 - By default, generic optimization will be automatically applied, unless manually set disable

```
python3 /opt/intel/openvino/deployment_tools/model_optimizer/mo.py \
    --input_model models/public/resnet-50/resnet-50.caffemodel \
```

Linear Operation Fusing

- 1. BatchNorm and ScaleShift decomposition: BN layers decomposes to Mul->Add->Mul->Add->Mul->Add sequence; ScaleShift layers decomposes to Mul->Add sequence.
- 2. Linear operations merge: Merges sequences of Mul and Add operations to the single Mul->Add instance.
- **3. Linear operations fusion:** Fuses Muland Add operations to Convolution or FullyConnected layers.

Linear Operation Fusing

- 1. BatchNorm and ScaleShift decomposition: *BN* layers decomposes to *Mul->Add->Mul->Add->Mul->Add* sequence; ScaleShift layers decomposes to *Mul->Add* sequence.
- 2. Linear operations merge: Merges sequences of Mul and Add operations to the single Mul->Add instance.
- 3. Linear operations fusion: Fuses Mul and Add operations to Convolution or FullyConnected layers.

Linear Operation Fusing

- 1. BatchNorm and ScaleShift decomposition: BN layers decomposes to Mul->Add->Mul->Add->Mul->Add sequence; ScaleShift layers decomposes to Mul->Add sequence.
- 2. Linear operations merge: Merges sequences of Mul and Add operations to the single Mul->Add instance.
- **3. Linear operations fusion:** Fuses Mul and Add operations to Convolution or FullyConnected layers.

Linear Operation Fusing

- 1. BatchNorm and ScaleShift decomposition: BN layers decomposes to Mul->Add->Mul->Add->Mul->Add sequence; ScaleShift layers decomposes to Mul->Add sequence.
- 2. Linear operations merge: Merges sequences of Mul and Add operations to the single Mul->Add instance.
- **3. Linear operations fusion:** Fuses Muland Add operations to Convolution or FullyConnected layers.

Model Optimizer: Framework Specific Optimization

Grouped Convolutions Fusing

 Grouped convolution fusing is a specific optimization that applies for TensorFlow* topologies. The main idea of this optimization is to combine convolutions results for the Split outputs and then recombine them using Concat operation in the same order as they were out from Split.

Model Optimizer: Topology Specific Optimization

ResNet* optimization (stride optimization)

- This optimization is to move the stride that is greater than 1 from Convolution layers with the kernel size = 1 to upper Convolution layers.
- In addition, the Model Optimizer adds a Pooling layer to align the input shape for a Eltwise layer, if it was changed during the optimization.

Model Optimizer: Quantization

--data_type {FP16,FP32,half,float}

- Data type for all intermediate tensors and weights.
- If original model is in FP32 and --data_type=FP16 is specified, all model weights and biases are quantized to FP16.

```
python3 /opt/intel/openvino/deployment_tools/model_optimizer/mo.py \
    --input_model models/public/resnet-50/resnet-50.caffemodel \
    --data_type FP16 \
    --model_name resnet-50-fp16 \
    --output_dir irfiles/
```

PLUGIN	FP32	FP16	INT8
CPU plugin	Supported and preferred	Supported	Supported
GPU plugin	Supported	Supported and preferred	Supported*
VPU plugins	Not supported	Supported	Not supported
GNA plugin	Supported	Supported	Not supported

Note:
To create INT8 models, you will need DL Workbench
or Post Training Optimization Tool

Model Optimizer: Other Common Parameters

- --scale, --scale_values, --mean_values, --mean_file
 - Usually, neural network models are trained with the normalized input data. This means that the input data values are converted to be in a specific range, for example, [0, 1] or [-1, 1]. Sometimes the mean values (mean images) are subtracted from the input data values as part of the preprocessing
- --input_shape
 - when the input data shape for the model is not fixed, like for the fully-convolutional neural networks. In this case, for example, TensorFlow* models contain -1 values in the shape attribute of the Placeholder operation. Inference Engine does not support input layers with undefined size, so if the input shapes are not defined in the model, the Model Optimizer fails to convert the model.
- --reverse_input_channels
 - Inference Engine samples load input images in the BGR channels order. However, the model may be trained on images loaded with the opposite order

July 2021

Deploying Inference

Model Optimizer

- A Python* based tool to import trained models and convert them to Intermediate Representation
- Optimizes for performance or space with conservative topology transformations
- Hardware-agnostic optimizations

Inference Engine

- High-level, C/C++ and Python, inference runtime API
- Interface is implemented as dynamically loaded plugins for each hardware type
- Delivers advanced performance for each type without requiring users to implement and maintain multiple code pathways

GPU = Intel® CPU with integrated GPU/Intel® Processor Graphics, Intel® NCS = Intel® Neural Compute Stick (VPU) *VAD = Intel® Vision Accelerator Design Products (HDDL-R)
OpenCL and the OpenCL logo are trademarks of Apple* Inc. used by permission by Khronos*

Optimal Model Performance Using the Inference Engine

Core Inference Engine Libraries

- Create Inference Engine Core object to work with devices
- Read the network
- Manipulate network information
- Execute and pass inputs and outputs

Device-specific Plugin Libraries

For each supported target device,
 Inference Engine provides a plugin
 a DLL/shared library that
 contains complete implementation
 for inference on this device.

GPU = Intel® CPU with integrated graphics/Intel® Processor Graphics/GEN
Intel® GNA = Gaussian mixture model and Neural Network Accelerator

Common Workflow for Using the Inference Engine API

http://docs.openvinotoolkit.org/latest/ docs IE DG Integrate with customer application new API.html

Internet of Things Group intel®

Three Typical Types of Models for Computer Vision Use Cases

 The complexity of the problem (data set) dictates the network structure. The more complex the problem, the more 'features' required, the deeper the network.

intel Internet of Things Group

Synchronous vs Asynchronous Execution

- In IE API model can be executed by Infer Request which can be:
- Synchronous blocks until inference is completed.
 - exec_net.infer(inputs = {input_blob: in_frame})

- Asynchronous checks the execution status with the wait or specify a completion callback (recommended way).
 - exec_net.start_async(request_id = id, inputs={input_blob: in_frame})
 - If exec_net.requests[id].wait() != 0 do something

Internet of Things Group intel.

Throughput Mode for CPU

- **Latency** inference time of 1 frame (ms).
- Throughput overall number of frames inferred per 1 second (FPS)
- "Throughput" mode allows the Inference Engine to efficiently run multiple infer requests simultaneously, greatly improving the overall throughput.
- Device resources are divided into execution "streams" – parts which runs infer requests in parallel

CPU plugin:

ie = IECore() ie.GetConfig(CPU, KEY CPU THROUGHPUT STREAMS)

Conventional approach

Every CNN operation is parallelized internally over full number of CPU cores

A lot of sync between the threads (red arrows)

Only option to improve efficiency is batching

Throughpu

Throughput-oriented approach

CPU cores are evenly distributed between (execution) streams

Less threads per stream => less sync, better locality, finer granularity

"Parallelize the outermost loop" rule of thumb

Requests are executed one by one

Heterogeneous Support

- You can execute different layers on different HW units
- Offload unsupported layers on fallback devices:
 - Default affinity policy
 - Setting affinity manually
- All device combinations are supported (CPU, GPU, MYRIAD, HDDL)

```
InferenceEngine::Core core;
auto executable_network =
core.LoadNetwork(reader.getNetwork(),
"HETERO:GPU,CPU");
```


Multi-device Support

Automatic load-balancing between devices (inference requests level) for full system utilization

- Any combinations of the following devices are supported (CPU, GPU, VPU, HDDL)
- As easy as "-d MULTI:CPU,GPU" for cmd-line option of your favorite sample/demo

Accelerators based on Intel® Movidius™ Vision Processing Unit

July 2021

REDEFINING THE AI DEVELOPMENT KIT INTEL® NEURAL COMPUTE STICK 2

Vision Processing Unit (VPU)	Intel® Movidius™ Myriad™ X VPU	
Software Development Kit	Intel® Distribution of OpenVINO™ toolkit	
Operating Software Support	Ubuntu* 16.04 or 18.04 LTS (64 bit), Windows® 10 (64 bit), CentOS* 7.4 (64 bit), macOS* 10.4.4, Raspbian*, and other via the open-source distribution of OpenVINO™ toolkit	
Supported Framework	TensorFlow*, Caffe*, MXNet*, ONNX*, and PyTorch* / PaddlePaddle* via ONNX* conversion	
Connectivity	USB 3.1 Type-A	
Dimensions	72.5mm X 27mm X 14mm	
Operating Temperature	0° - 40° C	
Material Master Number	964486	
MSRP	\$69 as of July 14 th 2019	

NEXT GENERATION AI INFERENCE INTEL® MOVIDIUS™ MYRIAD™ X VPU

Neural Compute Engine

An entirely new deep neural network (DNN) inferencing engine that offers flexible interconnect and ease of configuration for on-device DNNs and computer vision applications

16 SHAVE Cores

VLIW (DSP) programmable processors are optimized for complex vision & imaging workloads

Hardware-based encoder

for up to 4K video resolution and includes a new stereo depth block that is capable of processing dual 720p feeds at up to 180Hz.

MyriadX

Examples of Intel® Vision Accelerator Design Products Accelerators based on Intel® Movidius™ VPU

Example card based on Vision Accelerator Designs

Interface

M.2*, Key E

miniPCle*

PCle* x4

Currently manufactured by

Software tools

INTEL® DISTRIBUTION OF OPENVINO™ TOOLKIT

*Please contact Intel representative for complete list of ODM manufacturers. Other names and brands may be claimed as the property of others.

Internet of Things Group intel.

Intel[®] Vision Accelerator Design With Intel[®] Movidius[™] Vision Processing Unit (VPU)

- Specialized processors designed to deliver high-performance machine vision at ultra-low power.
- Supports up to 16 video streams per device
- Ideal for camera and network video recorder (NVR) use cases with power, size, and cost constraints
- Supports small memory footprint networks

Multiple Models in One Application Security Barrier Demo

July 2021

Video Analytics in Intel® Distribution of OpenVINO™ Toolkit

Topology	Туре	Description
vehicle-license-plate- detection-barrier-0106	Object Detection	MobileNetV2 + SSD-based vehicle and (Chinese) license plate detector
vehicle-attributes- recognition-barrier-0039	Object Recognition	vehicle attributes classification algorithm for a traffic analysis scenario
license-plate-recognition- barrier-0001	Object Recognition	small-footprint network trained end-to-end to recognize Chinese license plates in traffic

intel

vehicle-license-plate-detection-barrier-0106 Use Case/High-Level Description

 MobileNetV2 + SSD-based vehicle and (Chinese) license plate detector for the "Barrier" use case

Internet of Things Group intel® 7

vehicle-attributes-recognition-barrier-0039 Use Case/High-Level Description

 Vehicle attributes classification algorithm for a traffic analysis scenario

Type: regular Color: black

license-plate-recognition-barrier-0001 Use Case/High-Level Description

- Small-footprint network trained E2E to recognize Chinese license plates in traffic scenarios.
- Note: The license plates in the image are modified from the originals.

Security Barrier Demo

Deployment Manager

April 2021

Deployment Manager

The Deployment Manager of Intel® Distribution of OpenVINO™ creates a deployment package by assembling the **model**, **IR files**, **your application**, and associated **dependencies** into a runtime package for your target device.

- Create Deployment Package
 - Interactive Mode
 - Standard CLI Mode
 - ./deployment_manager.py <--targets> [--output_dir] [-archive name] [--user data]
- Deploy Package on Target
 - 1. Unpack the archive
 - tar xf openvino_deployment_package.tar.gz -C
 destination dir>
 - 2. Install additional dependencies
 - sudo -E ./install_openvino_dependencies.sh
 - 3. Set up the environment variables
 - source ./bin/setupvars.sh

```
Deployment Manager
Version 0.6

1. [] Inference Engine Runtime for Intel(R) CPU

2. [] Inference Engine Runtime for Intel(R) Processor Graphics

3. [] Inference Engine Runtime for Intel(R) Movidius(tm) VPU

4. [] Inference Engine Runtime for Intel(R) Gaussian Neural Accelerator

5. [] Inference Engine Runtime for Intel(R) Vision Accelerator Design with Intel(R) Movidius(tm) VPUs

a. Select/deselect all
q. Cancel and exit

Add or remove items by typing the number and hitting "Enter"
Press "Enter" to continue.
```

Conditional Compilation for Particular Models

April 2021

Conditional Compilation for Particular Models

https://github.com/openvinotoolkit/openvino/wiki/ConditionalCompilation

Conditional compilation can significantly reduce OpenVINO™ binaries size by excluding unnecessary components for particular models inference:

- layers and graph transformations in nGraph and plugins
- nGraph operations
- jit kernels in a CPU plugin
- arbitrary code that is not used for particular model inference

However, conditional compilation has a significant drawback - the resulting OpenVINO runtime will work only with a limited set of models and devices.

Conditional compilation has two stages:

- Collecting information about code usage
 - Run CMake with Selective Build and Instrumentation and Tracing Enabled
 - Select a models to be used
 - Run target application with ITT collector and generate a .csv file contains the analysis statistics
- Building the result binaries without unused components or parts
 - Re-run CMake with the .csv file loaded
 - Watch for the CPU plugin library size

Building for devices with different ISA

• The analysis step should be performed on target devices and all CSV files with statistics should be copied to the build machine.

Intel® DevCloud for the Edge

July 2021

Accelerate Test Cycles with the Intel® DevCloud for the Edge

A Development Sandbox for Developers, Researchers, and Startups to Test AI and Vision Workloads Remotely before Deployment.

With the Intel® DevCloud for the Edge users can:

- **Prototype** on the latest hardware and software to future proof the solution
- **Benchmark** the customized AI application
- Run AI applications from anywhere in the world
- **Reduce** development time and cost

DL Workbench + Intel® DevCloud for the Edge

Developers can now graphically analyze models using the DL Workbench on Intel® DevCloud for the Edge (instead of local machine only) to compare, visualize and fine-tune a solution against multiple remote hardware configurations

For more information visit https://devcloud.intel.com/edge/

intel Internet of Things Group

Accelerate Test Cycles with the Intel® DevCloud for the Edge

A Development Sandbox for Developers, Researchers, and Startups to Test AI and Vision Workloads Remotely before Deployment.

With the Intel® DevCloud for the Edge users can:

- **Prototype** on the latest hardware and software to future proof the solution
- Benchmark the customized Al application
- Run AI applications from anywhere in the world
- Reduce development time and cost

DL Workbench + Intel® DevCloud for the Edge

Developers can now graphically analyze models using the DL Workbench on Intel® DevCloud for the Edge (instead of local machine only) to compare, visualize and fine-tune a solution against multiple remote hardware configurations

For more information visit ▶ https://devcloud.intel.com/edge/

Access the Intel® DevCloud for the Edge through your web browser

Develop and test
applications online using
GitHub* and datasets
stored in the Intel®
DevCloud's cloud storage

Test sample code to showcase benchmarking capabilities to customers.
Customers can also test their own applications for benchmark performance results

Access the Intel® DevCloud for the Edge through your web browser

Develop and test
applications online using
GitHub* and datasets
stored in the Intel®
DevCloud's cloud storage

Test sample code to
showcase benchmarking
capabilities to customers.
Customers can also test their
own applications for
benchmark performance
results

Access the Intel® DevCloud for the Edge through your web browser

Develop and test
applications online using
GitHub* and datasets
stored in the Intel®
DevCloud's cloud storage

Test sample code to
showcase benchmarking
capabilities to customers.
Customers can also test their
own applications for
benchmark performance
results

Access the Intel® DevCloud for the Edge through your web browser

Develop and test
applications online using
GitHub* and datasets
stored in the Intel®
DevCloud's cloud storage

Test sample code to
showcase benchmarking
capabilities to customers.
Customers can also test their
own applications for
benchmark performance
results

intel

Runs tests to benchmark How it Works Access the Intel® DevCloud the application's for the Edge through your performance on selected web browser Intel processors and Datasets ... Video Streams/Images accelerators GitHub* C **N 2** Development Storage Server Servers Develop and test JupyterLab* applications online using Produces the inference GitHub* and datasets video/image as output Model Visualizer Results + stored in the Intel® Telemetry Dashboard DevCloud's cloud storage Deep Learning Workbench (DLWB) 7 Procurement CPU GPU VPU Test sample code to **OHTTPS**showcase benchmarking Provides performance 口名 capabilities to customers. results to find the optimal Customers can also test their Inference hardware for the tested Al Video/Image own applications for Output vision application benchmark performance results

Intel® DevCloud for the Edge: https://devcloud.intel.com/edge

intel

Resources to Get Started

Intel[®] Distribution of OpenVINO[™] Toolkit:

https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html

Intel® Edge Software Hub

Download prevalidated software to learn, develop, and test your solutions for the edge.

Intel[®] Edge Software Hub:

https://software.intel.com/content/www/us/en/develop/topics/iot/edge-solutions.html

Intel® DevCloud

Intel® DevCloud for the Edge:

https://devcloud.intel.com/edge/home

To get access to the full video series, please complete the short form: http://intel.ly/38B9ix6

#