lecture 21, the formal language GPLI

phil1012 introductory logic

overview

this lecture

- an introduction to the formal language GPLI
- some of the limitations of GPL which motivate the shift to GPLI
- the identity relation
- translations into GPLI
- the semantics of identity

learning outcomes

- after doing the relevant reading for this lecture, listening to the lecture, and attending the relevant tutorial, you will be able to:
 - \circ explain the limitations of GPL and the motivations for GPLI
 - \circ explain what the identity relation is
 - translate propositions from English into GPLI
 - explain the motivation behind the semantics of identity
 - \circ determine whether a GPLI proposition is true or false on a model

required reading

• sections 13.1, 13.2, and 13.3 of chapter 13

expressive limitations of GPL

expressive limitations of GPL

- \bullet consider the following argument
 - P1. John loves something
 - P2. John does not love himself
 - C1. John loves something other than himself
- \bullet we have the following glossary:
 - \circ j: John
 - \circ Lxy: x loves y
- and we translate the premises as follows:
 - $\circ \exists x L j x$
 - $\circ \neg Ljj$
- but we have no way of translating the conclusion
- ullet we have no way of saying that John loves someone other than himself

introducing GPLI

introducing GPLI

- • we introduce a new two-place predicate into our logical language: the identity predicate • I^2
- \bullet in GPL \it{I}^{2} is not used for a two-place predicate. Although \it{I}^{1} , \it{I}^{3} , \it{I}^{4} , and so on are
- ullet we are extending GPL to GPLI which includes the symbol I^2 in addition to all the symbols of GPL
- ullet syntactically, I^2 functions just like a two-place predicate in GPL
- ullet semantically, I^2 is treated differently
 - its meaning does not vary from model to model
 - it is not given a glossary
 - in every model it expresses the identity relation
- \bullet since the two-place predicate I^2 is so special in GPLI we usually abbreviate it as follows:
 - 0 =
- \bullet and we abbreviate negations involving I^2 using: $\circ~\neq$
- it is important to remember, however, that = is just an abbreviation of a two-place preciate

the identity relation

the identity relation

- = expresses the identity relation
- but what is the relation of identity?
- B1 and B2 are identical
- B1 is identical to B2
- B1 and B2 are exactly the same in all respects
- B1 and B2 are identical
- B1 is identical to B2
- B1 and B2 are one and the same thing
- we have two relations:
 - identity (being one and the same thing)
 - exact similarity (being the same in all respects)
- how are they related?
 - \circ Leibniz's Law/Indiscernability of Identicals: if x is identical to y then x is exactly similar to y. (a logical truth)
 - \circ Identity of Indiscernibles: if x is exactly similar to y then x is identical to y. (controversial)
- ullet a and b are identical (the names 'a' and 'b' pick out the same thing):

- c and d are non-identical (the names 'c' and 'd' pick out different things):
 - $\begin{pmatrix} c & d \\ \downarrow & \downarrow \\ \downarrow & \end{pmatrix}$

the predicate =

the predicate =

- consider the following sentences:
- B1 is a banana
- B1 is B2
- the word 'is' has a different meaning in each. in the first case, it is the 'is' of predication. in the second, it is the 'is' of identity.
- we have the following glossary:
 - a: B1
 - ∘ *b*: B2
 - \circ By: x is a banana
- we have the following translations:
 - *Ba*
 - \circ a=b
- ullet recall that I^2 (or =) is part of the logical vocabulary
- we do not put an entry for it in the glossary

translations into GPLI

translations into GPLI

- ullet GPLI allows us to express more than just that a and b are identical
- \bullet let's take a look at the expressive power we have gained
- return to our example:
 - P1. John loves something
 - P2. John does not love himself
 - C1. John loves something other than himself
- here's a glossary:
 - j: John
 - \circ Lxy: x loves y
- how should we translate the conclusion of the argument?
 $\exists x (Ljx \land \neg I^2jx)$
- there is something that John loves and that thing is not John
- John loves something other than himself!

- let's look at some other examples . . .
- here's a glossary:

```
j \colon \mathsf{John}, \ m \colon \mathsf{Mary}, \ s \colon \mathsf{Sam} Lxy \colon x \ \mathsf{loves} \ y, \ Sx \colon x \ \mathsf{is} \ \mathsf{a} \ \mathsf{baker}, \ Px \colon x \ \mathsf{is} \ \mathsf{a} \ \mathsf{person}
```

• translate the following into GPLI:

John isn't Mary $\neg I^2 jm$ $j \neq m$

• here's a glossary:

```
j: John, m: Mary, s: Sam Lxy: x loves y, Sx: x is a baker, Px: x is a person
```

• translate the following into GPLI:

John loves someone other than himself

$$\exists x (Px \wedge Ljx \wedge \neg I^2xj) \exists x (Px \wedge Ljx \wedge x \neq j)$$

• here's a glossary:

```
j: John, m: Mary, s: Sam Lxy: x loves y, Sx: x is a baker, Px: x is a person
```

ullet translate the following into GPLI:

John loves everyone except Sam

$$\forall x \Big(\left(Px \land \neg I^2 xs \right) \to Ljx \Big)$$
$$\forall x \Big(\left(Px \land x \neq s \right) \to Ljx \Big)$$

• here's a glossary:

```
j\colon \operatorname{John}, m\colon \operatorname{Mary}, s\colon \operatorname{Sam} Lxy\colon x loves y, Sx\colon x is a baker, Px\colon x is a person
```

• translate the following into GPLI:

Some baker other than John loves Mary

$$\exists x (Bx \land \neg I^2 xj \land Lxm)$$

$$\exists x (Bx \land x \neq j \land Lxm)$$

• here's a glossary:

```
j: John, m: Mary, s: Sam Lxy: x loves y, Sx: x is a baker, Px: x is a person
```

• translate the following into GPLI:

Everyone loves themselves

• here's a glossary:

```
j: John, m: Mary, s: Sam Lxy: x loves y, Sx: x is a baker, Px: x is a person
```

• translate the following into GPLI:

John loves everyone other than himself

$$\forall x \Big(\Big(Px \land \neg I^2 xj \Big) \to Ljx \Big)$$
$$\forall x \Big(\Big(Px \land x \neq j \Big) \to Ljx \Big)$$

• here's a glossary:

```
j: John, m: Mary, s: Sam Lxy: x loves y, Sx: x is a baker, Px: x is a person
```

• translate the following into GPLI:

John loves everyone other than himself

$$\forall x \Big(\left(Px \wedge \neg I^2 xj \right) \to Ljx \Big) \wedge \neg Ljj$$

$$\forall x \Big(\left(Px \wedge x \neq j \right) \to Ljx \Big) \wedge \neg Ljj$$

• here's a glossary:

```
j \colon \text{John, } m \colon \text{Mary, } s \colon \text{Sam} Lxy \colon x \text{ loves } y, \ Sx \colon x \text{ is a baker, } Px \colon x \text{ is a person}
```

• translate the following into GPLI:

John loves everything but does not love himself

$$\forall x L j x \land \neg L j j$$

• (this is a contradiction. it is false in every model.)

the semantics of =

the semantics of =

- ullet since I^2 is a two-place predicate, its extension is a set of ordered pairs of members of the domain
- ullet once we have an extension for I^2 , the semantics for GPLI is just like the semantics of GPL
- ullet so all we need is an extension for I^2
- in a model in which the domain is {1, 2, 3}, the extension of I^2 will be the following set of ordered pairs: $\circ \ \{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$
- in a model in which the domain is $\{Bill, Ben\}$, the extension of I^2 will be the following set of ordered pairs:
 $\{\langle Bill, Bill \rangle, \langle Ben, Ben \rangle\}$

- ullet whatever the domain is, the extension of I^2 will contain exactly one ordered pair for each object in the domain: the pair containing that object in both the first and second place
- the identity relation is a relation which holds between each object and itself and between no other objects
- note! The extension of the identity predicate is not exactly the same on all models
- ullet given a domain, however, the extension of the identity predicate is fixed
- this is not true of other predicates
- this is why it is part of the logical vocabulary

propositions of the form I^2ab

- ullet I^2ab is true in a model if and only if the pair consisting of the referent of a and the referent of b is in the extension of I^2
 - \circ Domain: $\{Bill, Ben\}$
 - \circ Referents: a: Bill, b: Bill
 - \circ Extension of I^2
 - $\circ \ \{\langle Bill, Bill \rangle, \langle Ben, Ben \rangle\}$
- ullet I^2ab is true in a model if and only if a and b have the same referent on that model
- let's run through a couple of examples
- here's a model:
 - Domain: {Sydney, Canberra, Melbourne}
 - Referents: a: Melbourne, b: Canberra, c: Sydney
 - Extensions: N: $\{\langle Sydney, Canberra \rangle$, $\langle Canberra, Sydney \rangle$, $\langle Melbourne, Canberra \rangle$, $\langle Canberra, Melbourne \rangle$ }
- is the following true or false in the model?
 - $\circ \forall x \forall y (Nxy \rightarrow (I^2xb \vee I^2yb))$
- here's a model:
 - Domain: {Sydney, Canberra, Melbourne}
 - \circ Referents: a: Melbourne, b: Canberra, c: Sydney
 - Extensions: N: $\{\langle Sydney, Canberra \rangle, \langle Canberra, Sydney \rangle, \langle Melbourne, Canberra \rangle, \langle Canberra, Melbourne \rangle\}$
- is the following true or false in the model?
 - $\circ (I^2ab \rightarrow \forall x \forall y Nxy)$

wrapping up

this lecture

- ullet some of the limitations of GPL which motivate the shift to GPLI
- introducing GPLI
- the identity relation
- translations into GPLI
- the semantics of identity

next lecture

• lecture 22, trees for GPLI