fraud-detect

August 3, 2025

[]:

1 Task

Build a classification model to detect fraudulent transactions using the data from "/content/creditcard.csv". The project should address the imbalanced nature of the dataset and use anomaly detection techniques.

1.1 Load the data

1.1.1 Subtask:

Load the credit card transaction data from the CSV file into a pandas DataFrame.

Reasoning: I will import the pandas library and load the data from the specified CSV file into a DataFrame. Then I will display the first few rows to verify the data has been loaded correctly.

```
[1]: import pandas as pd

df = pd.read_csv('/content/creditcard.csv')
    display(df.head())
```

```
۷6
   Time
               V1
                         V2
                                   ٧3
                                             ۷4
                                                       V5
                                                                            ۷7
                                                                                \
      0 -1.359807 -0.072781
                                       1.378155 -0.338321
0
                             2.536347
                                                           0.462388
        1.191857
                   0.266151
                             0.166480
                                       0.448154
                                                 0.060018 -0.082361 -0.078803
1
2
      1 -1.358354 -1.340163
                             1.773209
                                       0.379780 -0.503198
                                                           1.800499
                                                                     0.791461
3
      1 -0.966272 -0.185226
                             1.792993 -0.863291 -0.010309
                                                           1.247203
                                                                     0.237609
      2 -1.158233
                  0.877737
                             1.548718
                                       0.403034 -0.407193
                                                           0.095921
                                                                     0.592941
         ٧8
                   ۷9
                               V21
                                         V22
                                                   V23
                                                             V24
                                                                       V25
  0.098698
            0.363787
                       ... -0.018307
                                    0.277838 -0.110474
                                                        0.066928
                                                                  0.128539
  0.085102 -0.255425
                                              0.101288 -0.339846
                       ... -0.225775 -0.638672
 0.247676 -1.514654
                                    0.771679
                                              0.909412 -0.689281 -0.327642
                         0.247998
  0.377436 -1.387024
                       ... -0.108300
                                    0.005274 -0.190321 -1.175575
4 -0.270533
            0.817739
                       ... -0.009431
                                    V26
                  V27
                            V28
                                         Class
                                 Amount
             0.133558 -0.021053
0 -0.189115
                                 149.62
                                           0.0
1 0.125895 -0.008983
                      0.014724
                                   2.69
                                           0.0
```

```
2 -0.139097 -0.055353 -0.059752 378.66 0.0
3 -0.221929 0.062723 0.061458 123.50 0.0
4 0.502292 0.219422 0.215153 69.99 0.0
```

[5 rows x 31 columns]

1.2 Explore the data

1.2.1 Subtask:

Analyze the dataset to understand its structure, features, and the distribution of fraudulent vs. non-fraudulent transactions.

Reasoning: To analyze the dataset, I will first get a concise summary of the DataFrame using .info() to understand the data types and null values. Then, I will generate descriptive statistics for numerical columns with .describe(). Next, I will count the fraudulent and non-fraudulent transactions in the 'Class' column. Finally, I will visualize the class distribution using a seaborn count plot to better understand the imbalance in the data. All these steps are part of the initial data analysis requested by the user.

```
import seaborn as sns
import matplotlib.pyplot as plt

print("Dataset Info:")
df.info()

print("\nDescriptive Statistics:")
display(df.describe())

print("\nClass Distribution:")
class_counts = df['Class'].value_counts()
print(class_counts)

plt.figure(figsize=(8, 6))
sns.countplot(x='Class', data=df)
plt.title('Class Distribution')
plt.xlabel('Class (0: Non-Fraudulent, 1: Fraudulent)')
plt.ylabel('Count')
plt.show()
```

Dataset Info:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 85259 entries, 0 to 85258
Data columns (total 31 columns):
# Column Non-Null Count Dtype
--- 0 Time 85259 non-null int64
1 V1 85259 non-null float64
2 V2 85259 non-null float64
```

```
3
   V3
            85259 non-null float64
4
   ۷4
            85259 non-null
                           float64
5
   ۷5
            85259 non-null
                            float64
6
   ۷6
            85259 non-null float64
7
   ۷7
            85259 non-null float64
8
   ٧8
            85259 non-null float64
9
   ۷9
            85259 non-null float64
            85259 non-null float64
10
   V10
11
   V11
            85259 non-null float64
   V12
            85259 non-null float64
12
13
   V13
            85259 non-null float64
14
   V14
            85259 non-null float64
   V15
            85259 non-null float64
15
   V16
            85259 non-null
                           float64
16
   V17
            85259 non-null
                            float64
17
18
   V18
            85259 non-null float64
19
   V19
            85259 non-null
                           float64
   V20
20
            85259 non-null float64
21
   V21
            85259 non-null float64
   V22
22
            85259 non-null float64
   V23
            85259 non-null float64
23
24
   V24
            85259 non-null float64
25
   V25
            85259 non-null float64
26
   V26
            85259 non-null float64
27
   V27
            85258 non-null float64
28
   V28
            85258 non-null float64
           85258 non-null float64
29
   Amount
            85258 non-null float64
   Class
```

dtypes: float64(30), int64(1)

memory usage: 20.2 MB

Descriptive Statistics:

	Time	V1	V2	V3	V4	\
count	85259.000000	85259.000000	85259.000000	85259.000000	85259.000000	
mean	38698.541691	-0.262585	-0.039207	0.679054	0.163611	
std	15668.300002	1.878484	1.670189	1.366683	1.363280	
min	0.000000	-56.407510	-72.715728	-33.680984	-5.172595	
25%	31595.000000	-1.025883	-0.602941	0.184642	-0.722311	
50%	41180.000000	-0.258057	0.069615	0.762733	0.186825	
75%	50942.000000	1.153099	0.724933	1.390659	1.042062	
max	60684.000000	1.960497	18.902453	4.226108	16.715537	
	V5	V6	V7	V8	V9	\
count	85259.000000	85259.000000	85259.000000	85259.000000	85259.000000	
mean	-0.277616	0.094861	-0.111651	0.054145	-0.021205	
std	1.375170	1.303646	1.237707	1.223035	1.135023	
min	-42.147898	-26.160506	-31.764946	-73.216718	-9.283925	

25% 50% 75% max	-0.896999 -0.311837 0.257707 34.801666	-0.644375 -0.155047 0.488674 22.529298	-0.603378 -0.072501 0.416990 36.677268	-0.140721 0.070103 0.352738 20.007208	-0.690902 -0.097017 0.602616 10.392889	
count mean std min 25% 50% 75% max	V: 85259.00000.0292 0.7318634.83030.223660.05776 0.11826 22.61486	73 -0.105613 60 0.635127 82 -10.933144 96 -0.524879 64 -0.080822 90 0.309640	85259.000000 8 -0.037762 0.626519 -26.751119 -0.178156 -0.049921 0.080706	85259.0000 0.00898 0.5950 -2.8366 -0.3224 0.0645 0.40578	86 40 27 20 47 94	
count mean std min 25% 50% 75% max	V25 85259.000000 0.133598 0.441017 -7.495741 -0.130610 0.171852 0.421184 5.525093	V26 85259.000000 8 0.026270 0.497236 -2.534330 -0.326403 -0.072601 0.306305 3.517346	V27 35258.000000 8 0.001449 0.389486 -9.390980 -0.063467 0.009302 0.082480 12.152401	V28 35258.000000 0.001934 0.328312 -9.617915 -0.005899 0.022947 0.076063 33.847808	Amount 85258.000000 98.374057 268.381509 0.000000 7.680000 26.990000 89.900000 19656.530000	\
count mean std min 25% 50% 75% max	Class 85258.000000 0.002393 0.048857 0.000000 0.000000 0.000000 1.000000					

[8 rows x 31 columns]

Class Distribution:

Class

0.0 85054 1.0 204

Name: count, dtype: int64

1.3 Preprocess the data

1.3.1 Subtask:

Scale the 'Amount' feature and drop the 'Time' feature as it is not relevant for the model.

Reasoning: Scale the 'Amount' feature using StandardScaler and drop the 'Time' feature as instructed.

```
[3]: from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
df['Amount'] = scaler.fit_transform(df[['Amount']])

df = df.drop('Time', axis=1)

display(df.head())
V1 V2 V3 V4 V5 V6 V7
```

```
V1 V2 V3 V4 V5 V6 V7 \
0 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599
1 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803
2 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461
```

```
3 -0.966272 -0.185226 1.792993 -0.863291 -0.010309
                                                  1.247203
                              0.403034 -0.407193
4 -1.158233
            0.877737
                     1.548718
                                                 0.095921
                                                           0.592941
        V8
                 ۷9
                          V10
                                      V21
                                                V22
                                                         V23
                                                                   V24
                    0.090794
  0.098698 0.363787
                               ... -0.018307
                                           0.277838 -0.110474 0.066928
 0.085102 -0.255425 -0.166974
                               ... -0.225775 -0.638672
                                                   0.101288 -0.339846
2 0.247676 -1.514654
                    0.207643
                               ... 0.247998 0.771679 0.909412 -0.689281
3 0.377436 -1.387024 -0.054952
                               ... -0.009431 0.798278 -0.137458 0.141267
4 -0.270533 0.817739
                     0.753074
       V25
                V26
                          V27
                                   V28
                                          Amount
                                                 Class
0 0.128539 -0.189115 0.133558 -0.021053 0.190946
                                                    0.0
1 0.167170 0.125895 -0.008983
                               0.014724 -0.356525
                                                    0.0
2 -0.327642 -0.139097 -0.055353 -0.059752 1.044363
                                                    0.0
3 0.647376 -0.221929
                    0.062723
                               0.061458 0.093621
                                                    0.0
4 -0.206010 0.502292 0.219422
                               0.215153 -0.105761
                                                    0.0
```

[5 rows x 30 columns]

1.4 Split the data

1.4.1 **Subtask**:

Split the data into training and testing sets.

Reasoning: To prepare the data for model training, I will first handle missing values by dropping rows with NaN values. Then, I will separate the features (X) from the target variable (y), which is the 'Class' column. Finally, I will split the data into training and testing sets using train_test_split, ensuring a stratified split to maintain the class distribution, which is crucial due to the imbalanced nature of the dataset.

X_train shape: (68206, 29)
X_test shape: (17052, 29)

```
y_train shape: (68206,)
y_test shape: (17052,)
```

1.5 Train a model

1.5.1 **Subtask**:

Train a Logistic Regression model on the training data.

Reasoning: I need to train a Logistic Regression model. To do this, I will first import the LogisticRegression class, then create an instance of the model, and finally, train it on the X_train and y_train data.

```
[5]: from sklearn.linear_model import LogisticRegression

lr_model = LogisticRegression()
lr_model.fit(X_train, y_train)
```

[5]: LogisticRegression()

1.6 Evaluate the model

1.6.1 Subtask:

Evaluate the model's performance on the test data using metrics like accuracy, precision, recall, and the F1-score.

Reasoning: I will now evaluate the trained logistic regression model on the test data. I will import the necessary metrics from **sklearn.metrics**, make predictions on the test set, and then calculate and print the accuracy, precision, recall, and F1-score to assess the model's performance.

```
[6]: from sklearn.metrics import accuracy_score, precision_score, recall_score,

y_pred = lr_model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print(f"Accuracy: {accuracy}")
print(f"Precision: {precision}")
print(f"Recall: {recall}")
print(f"F1-score: {f1}")
```

Accuracy: 0.9986511846117757 Precision: 0.7647058823529411 Recall: 0.6341463414634146 F1-score: 0.69333333333333334