ALU

1. Introducción

El propósito de este documento es presentar el Trabajo Práctico propuesto para la materia Circuitos Logicos Programables. Dicho trabajo práctico consiste en la implementación de una Unidad Aritmetico Logica (ALU por sus siglas en inglés, Arithmetic Logic Unit).

Una ALU es un circuito digital que es capaz de realizar operaciones aritméticas y lógicas entre los valores de los argumentos . Para este trabajo se considero el siguiente set de instrucciones:

- Suma
- Resta
- Multiplicación
- División
- Rotación lógica a la izquierda
- Rotación lógica a la derecha
- Rotación aritmética a la izquierda
- Rotación aritmética a la derecha
- AND
- OR
- XOR
- NAND
- NOR
- XNOR
- Comparación de igualdad (==)
- comparación mayor que (>)

La ALU implementada para este trabajo práctico responde al siguiente diagrama general.

Fecha: 20/10/2020

Figura 1. Diagrama ALU.

Donde el a_i y b_i son los argumentos de entrada para las operaciones, sel_i es el selector de operación, trig_i es el disparador de la operación, out_o es la salida de la operación realizada y c_o es el carry out de la operación.

El esquemático generado por la herramienta vivado en el análisis RTL es el siguiente:

Figura 2. Esquemático RTL.

Corriendo la etapa de implementación el esquemático es el siguiente:

Fecha: 20/10/2020

Figura 3. Esquemático RTL.

2. Simulación

A continuación, se muestran capturas de las pruebas realizadas sobre el vhdl de ALU implementado.

Suma

Figura 4. Simulación suma.

Fecha: 20/10/2020

Fecha: 20/10/2020 Versión: 1.0

Resta

Figura 5. Simulación resta.

Multiplicación

Figura 6. Simulación multiplicación.

División

Figura 7. Simulación división.

• Rotación lógica a la izquierda

Figura 8. Simulación de rotación lógica a la izquierda.

Rotación lógica a la derecha

Figura 9. Simulación de rotación lógica a la derecha.

Rotación aritmética a la izquierda

Figura 10. Simulación de rotación aritmética a la izquierda.

• Rotación aritmética a la derecha

Figura 11. Simulación de rotación aritmética a la derecha.

AND

Figura 12. Simulación de operación AND.

Fecha: 20/10/2020

OR

Figura 13. Simulación de operación OR.

XOR

Figura 14. Simulación de operación XOR.

NAND

Figura 15. Simulación de operación NAND.

NOR

Figura 16. Simulación de operación NOR.

Fecha: 20/10/2020

Versión: 1.0

Fecha: 20/10/2020

XNOR

Figura 17. Simulación de operación XNOR.

Comparación de igualdad (==)

Figura 18. Simulación de igualdad.

comparación mayor que (>)

Figura 19. Simulación de comparación mayor que.

3. Recursos utilizados de la FPGA

Los recursos utilizados de la FPGA son los siguientes:

Resource	Utilization	Available	Utilization %
LUT	71	17600	0.40
FF	18	35200	0.05
10	18	100	18.00
BUFG	1	32	3.13

Figura 20. Reporte de recursos utilizados.

Fecha: 20/10/2020