

ROBT206 - Microcontrollers with Lab

Lectures 5-6 – Standard Forms

23-25 January, 2018

Topics

Today's Topics

Standard Forms

Course Logistics

Important Dates and Tasks

Reading Assignment: Mano Chapter 1& 2

Quiz #1 in Thursday 1 February

Homework #I due to end of 4th of February (Sunday)

Mano textbook:

Problems: 1.4, 1.7, 1.9, 1.10, 1.16, 1.18, 1.23, 1.24,

2.1, 2.2, 2.3, 2.4, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.13, 2.14,

2.16, 2.21, 2.22

Overview - Canonical Forms

- What are Canonical Forms?
- Minterms and Maxterms
- Index Representation of Minterms and Maxterms
- Sum-of-Minterm (SOM) Representations
- Product-of-Maxterm (POM) Representations
- Representation of Complements of Functions
- Conversions between Representations

Canonical Forms

- It is useful to specify Boolean functions in a form that:
 - Allows comparison for equality.
 - Has a correspondence to the truth tables
- Canonical Forms in common usage:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

Minterms

- Minterms are AND terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \bar{x}), there are 2^n minterms for n variables.
- **Example:** Two variables (X and Y) produce $2 \times 2 = 4$ combinations:

XY

 $X\overline{Y}$

ΧY

ΧŢ

Thus there are **four minterms** of two variables.

Maxterms

- Maxterms are OR terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., \overline{x}) or complemented (e.g., x), there are 2^n maxterms for n variables.
- **Example:** Two variables (X and Y) produce $2 \times 2 = 4$ combinations:
 - X+Y
 - X+Y
 - $\overline{X}+Y$
 - $\nabla + \nabla$

Standard Order

- Minterms and maxterms are designated with a subscript
- The subscript is a number, corresponding to a binary pattern
- The bits in the pattern represent the complemented or normal state of each variable listed in a standard order.
- All variables will be present in a minterm or maxterm and will be listed in the **same order** (usually alphabetically)
- Example: For variables a, b, c:
 - Maxterms: $(a + b + \overline{c})$, (a + b + c)
 - Terms: (b + a + c), a \overline{c} b, and (c + b + a) are NOT in standard order.
 - Minterms: a b c, a b c, a b c
 - Terms: (a + c), bc, and $(\bar{a} + b)$ do not contain all variables

Index Example in Three Variables

- Example: (for three variables)
- Assume the variables are called X,Y, and Z.
- The standard order is X, then Y, then Z.
- The $\underline{\text{Index 0}}$ (base 10) = 000 (base 2) for three variables).
- All three variables are complemented for minterm 0 (X,Y,Z) and no variables are complemented for Maxterm 0 (X,Y,Z).
 - \triangleright Minterm 0, called m₀ is XY Z
 - Maxterm 0, called M_0 is (X + Y + Z).
 - Minterm 6?
 - Maxterm 6?

Minterm Truth Table

Minterms for Three Variables

X	Y	Z	Product Term	Symbol	m _o	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m_2	0	0	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m_3	0	0	0	1	0	0	0	0
1	0	0	$X\overline{Y}\overline{Z}$	m_4	0	0	0	0	1	0	0	0
1	0	1	$X\overline{Y}Z$	m_5	0	0	0	0	0	1	0	0
1	1	0	$XY\overline{Z}$	m_6	0	0	0	0	0	0	1	0
1	1	1	XYZ	m ₇	0	0	0	0	0	0	0	1

Maxterm Truth Table

Maxterms for Three Variables

X	Y	Z	Sum Term	Symbol	Mo	M ₁	M ₂	M ₃	M_4	M ₅	M ₆	M ₇
0	0	0	X+Y+Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X+Y+\overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	$\overline{X} + Y + Z$	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M_7	1	1	1	1	1	1	1	0

Index Examples – Four Variables

Index	B inary	Minter	m Maxterm
i	Pattern	n m _i	M_{i}
0	0000	abcd	a+b+c+d
1	0001	abcd	?
3	0011	?	a+b+c+d
5	0101	abcd	$a+\overline{b}+c+\overline{d}$
7	0111	?	$a+\overline{b}+\overline{c}+\overline{d}$
10	1010	abcd	$\bar{a} + b + \bar{c} + d$
13	1101	abcd	?
15	Ш	abcd	$\bar{a} + \bar{b} + \bar{c} + \bar{d}$

Minterm and Maxterm Relationship

- Review: DeMorgan's Theorem $\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$ and $\overline{\mathbf{x} + \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$
- ▶ Two-variable example:

$$\mathbf{M}_2 = \overline{\mathbf{x}} + \mathbf{y}$$
 and $\mathbf{m}_2 = \mathbf{x} \, \overline{\mathbf{y}}$

- Thus M₂ is the complement of m₂ and vice-versa.
- Since DeMorgan's Theorem holds for *n* variables, the above holds for terms of *n* variables giving:

$$\mathbf{M}_{i} = \overline{\mathbf{m}}_{i}$$
 and $\mathbf{m}_{i} = \overline{\mathbf{M}}_{i}$

Thus M_i is the complement of m_i.

Function Tables for Both

Minterms of2 variables

ху	m ₀	m _l	m ₂	m ₃
0 0	I	0	0	0
0 1	0		0	0
10	0	0		0
11	0	0	0	

Maxterms of 2 variables

ху	M ₀	Mı	M ₂	M ₃
0 0	0			
0 1		0	I	
10			0	
11				0

Each column in the maxterm function table is the complement of the column in the minterm function table since M_i is the complement of m_i.

Sum of Minterms and Product of Maxterms

The minterm and maxterm representation of functions may look very different:

X	Y	Minterm	Maxterm	F
0	0	$\overline{X}\overline{Y}$	X + Y	0
0	1	$\overline{X}Y$	$X + \overline{Y}$	1
1	0	$X\overline{Y}$	$\overline{X} + Y$	1
1	1	XY	$\overline{X} + \overline{Y}$	1

The sum of the minterms where the function is 1:

$$F = \overline{X}Y + X\overline{Y} + XY$$

The product of the maxterms where the function is 0:

$$F = X + Y$$

Sum of Minterms Example

Example: Find $F_1 = m_1 + m_4 + m_7$

	_				_			
FI	= x	У	z + x	У	Z	+ X	У	Z

X	y	Z	index	ml	+	m4	+	m7	= FI
0	0	0	0	0	+	0	+	0	= 0
0	0		I	ı	+	0	+	0	=
0	I	0	2	0	+	0	+	0	= 0
0	I	I	3	0	+	0	+	0	= 0
I	0	0	4	0	+	I	+	0	= 1
I	0	I	5	0	+	0	+	0	= 0
I	I	0	6	0	+	0	+	0	= 0
I	I	I	7	0	+	0	+	I	=

Sum of Minterm Function Example

- $F(A, B, C, D, E) = m_2 + m_9 + m_{17} + m_{23}$
- ► F(A, B, C, D, E) =

Product of Maxterms

Example: Implement FI in maxterms:

$$F_{1} = M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{5} \cdot M_{6}$$

$$F_{1} = (x + y + z) \cdot (x + \overline{y} + z) \cdot (x + \overline{y} + \overline{z})$$

$$(\overline{x} + y + \overline{z}) \cdot (\overline{x} + \overline{y} + z)$$

$$x y z \quad i \quad M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{5} \cdot M_{6} = FI$$

$$0 0 0 \quad 0 \quad 0 \cdot I \cdot I \cdot I \cdot I = 0$$

$$0 0 I \quad I \quad I \cdot I \cdot I \cdot I \cdot I = I$$

$$0 1 0 \quad 2 \quad I \cdot 0 \cdot I \cdot I \cdot I = 0$$

$$0 1 I \quad 3 \quad I \cdot I \cdot 0 \cdot I \cdot I = 0$$

$$1 0 0 \quad 4 \quad I \cdot I \cdot I \cdot I \cdot I = I$$

$$1 0 1 \quad 5 \quad I \cdot I \cdot I \cdot I \cdot I \cdot I = 0$$

$$1 1 0 \quad 6 \quad I \cdot I \cdot I \cdot I \cdot 0 = 0$$

$$1 1 1 \quad 7 \quad 1 \cdot I \cdot I \cdot I \cdot I = I$$

Product of Maxterms Example

- $F(A,B,C,D) = M_3 \cdot M_8 \cdot M_{11} \cdot M_{14}$
- F(A, B, C, D) =

Canonical Sum of Minterms

- Any Boolean function can be expressed as a <u>Sum of Minterms</u>.
 - For the function table, the minterms used are the terms corresponding to the I's
 - For expressions, <u>expand</u> all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term ($\mathbf{v} + \overline{\mathbf{v}}$).
- Example: Implement $\mathbf{f} = \mathbf{x} + \overline{\mathbf{x}} \overline{\mathbf{y}}$ as a sum of minterms.

First expand terms:

Then distribute terms:

Express as sum of minterms:

$$f = x(y + \overline{y}) + \overline{x} \overline{y}$$

$$f = xy + x\overline{y} + \overline{x} \overline{y}$$

$$f = m_3 + m_2 + m_0$$

Another SOM Example

- Example: $\mathbf{F} = \mathbf{A} + \overline{\mathbf{B}} \mathbf{C}$
- There are three variables, A, B, and C which we take to be the standard order.
- Expanding the terms with missing variables:

- Collect terms (removing all but one of duplicate terms):
- Express as SOM:

Shorthand Form for Sum of Minterms (SOM)

From the previous example, we started with:

$$F = A + \overline{B}C$$

We ended up with:

$$F = m_1 + m_4 + m_5 + m_6 + m_7$$

This can be denoted in the formal shorthand:

$$F(A,B,C) = \Sigma_m(1,4,5,6,7)$$

Note that we explicitly show the standard variables in order and drop the "m" designators.

Canonical Product of Maxterms

- Any Boolean Function can be expressed as a <u>Product of Maxterms</u> (<u>POM</u>).
 - For the function table, the maxterms used are the terms corresponding to the 0's.
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law, "ORing" terms missing variable v with a term equal to 0 and then applying the distributive law $v \cdot \overline{v}$ again.
- Example: Convert to product of <u>max</u>terms:

$$f(x,y,z) = x + \overline{x} y$$

Apply the distributive law:

$$x + \overline{x} \overline{y} = (x + \overline{x})(x + \overline{y}) = I \cdot (x + \overline{y}) = x + \overline{y}$$

Add missing variable z:

$$x + \overline{y} + z \cdot \overline{z} = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$$

Express as POM: $f = M_2 \cdot M_3$

Another POM Example

Convert to Product of Maxterms:

$$f(A,B,C) = AC + BC + \overline{AB}$$

Use x + yz = (x+y)(x+z) with

$$x = (AC + BC), y = \overline{A} \text{ and } z = \overline{B}$$

to get:
$$f = (A\overline{C} + BC + \overline{A})(A\overline{C} + BC + \overline{B})$$

Then use
$$x + \overline{x}y = x + y$$

to get:
$$f = (\overline{C} + BC + \overline{A})(A\overline{C} + C + \overline{B})$$

Another POM Example

and a second time to get:

$$f = (\overline{C} + B + \overline{A})(A + C + \overline{B})$$

Rearrange to standard order,

$$f = (\overline{A} + B + \overline{C})(A + \overline{B} + C)$$

to give
$$f = M_2 * M_5$$

Function Complements

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical forms.
- Alternatively, the complement of a function expressed by a Sum of Minterms form is simply the Product of Maxterms with the same indices.
- F(x, y, z) = Σ_{m} (1,3,5,7) \overline{F} (x, y, z) = Σ_{m} (0,2,4,6) \overline{F} (x, y, z) = Π_{m} (1,3,5,7)

Conversion Between Forms

- ▶ To convert between sum-of-minterms and product-of-maxterms form (or vice-versa) we follow these steps:
 - Find the function complement by swapping terms in the list with terms not in the list.
 - Change from products to sums, or vice versa.
- Example: Given F as before: $F(x,y,z) = \Sigma_m(1,3,5,7)$
- Form the Complement: $\mathbf{F}(\mathbf{x},\mathbf{y},\mathbf{z}) = \Sigma_{m}(\mathbf{0},\mathbf{2},\mathbf{4},\mathbf{6})$
- Then use the other form with the same indices this forms the complement again, giving the other form of the original function: $F(x,y,z) = \prod_{M}(0,2,4,6)$

Standard Forms

- Standard Sum-of-Products (SOP) form: equations are written as an OR of AND terms
- Standard Product-of-Sums (POS) form: equations are written as an AND of OR terms
- Examples:

SOP:
$$ABC+\overline{A}\overline{B}C+B$$

POS: $(A+B)\cdot(A+\overline{B}+\overline{C})\cdot C$

These "mixed" forms are neither SOP nor POS

$$(AB+C)(A+C)$$

 $ABC+AC(A+B)$

Standard Sum-of-Products (SOP)

- A sum of minterms form for *n* variables can be written down directly from a truth table.
 - Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input AND gates, and
 - The second level is a single OR gate (with fewer than 2ⁿ inputs).
- This form often can be simplified so that the corresponding circuit is simpler.

SOP as a Circuit

Standard Sum-of-Products (SOP)

▶ A Simplification Example:

$$F(A,B,C) = \Sigma m(1,4,5,6,7)$$

Writing the minterm expression:

Simplifying:

Simplified F contains 3 literals compared to 15 in minterm F

AND/OR Two-level Implementation of SOP Expression

- ▶ The two implementations for F are shown below
 - it is quite apparent which is simpler!

Expressions to Schematics

Expressions to Schematics

$$F = \overline{X}Y + X\overline{Y}$$

Expressions to Schematics

$$F = \overline{X}Y + X\overline{Y} = (X + Y)(\overline{X} + \overline{Y})$$

Any Questions?

