Question 1

Table 1: Effect of model/promoter parameter on mRNA concentration

Parameters	10% increase			50% increase		
	Low I	Medium I	High I	Low I	Medium I	High I
BNIDing function, K	0	0	0	0	0	0
n	0	0	0	-	-	0
W ₁	0	0	0	+	+	0
W ₂	0	0	0	0	0	0
Elongation constant, e _x	0	0	+	+	+	+
length of gene, L _j	0	-	-	-	-	-
initiation rate constant, k _I	0	SI	+	+	+	+
cell volume	0	0	0	0	0	0
total/frac. RNAP available	SI	+	+	+	+	+
gene concentration, G _j	0	0	0	0	0	0
saturation constant, K _{XP}	0	0	0	0	0	0
doubling time	0	SI	+	SI	SI	+
half life	+	+	+	+	+	+
specific growth rate, μ	0	0	0	SD	-	-
degradation constant, k _D	SD	SD	-	-	-	-
dry mass/cell	0	SD	-	-	-	-

^{*}mRNA concentration at medium I read @ 0.05 mM

SI = slight increase

SD = slight decrease

[~] no/insignificant change

Question 2

Table 2: Reference for model/promoter parameters

Parameter (symbol)	Value (unit)	Source
Transcription Elongation constant (e_{TX})	42 nt/s	BNID 108487
Translation elongation rate (e _{TL})	14 aa/s	BNID 108487
Rate constant for initiation (k _i)	0.024 s ⁻¹	BNID 105135
Saturation constant (K _{X,P})	0.0225 μΜ	BNID 105135
RNAP in <i>E. coli</i> (R _{X,P}) ¹	8000 copies/cell	BNID 101441
RNAP activity ¹	24%	BNID 101441
Number of ribosomes ¹	45100 rib/cell	BNID 101441
Ribosome activity ¹	80%	BNID 101441
Protein half-life	20 hr	BNID 111930
E. coli cell volume	0.58 μm³	BNID 114928
Median half-life of <i>E. coli</i> mRNA ($t_{1/2}$)	~4 min	BNID 104324
Dry mass of <i>E. coli</i>	280 fg/cell	BNID 103904

 $^{^{1}}$ value @ $t_{doubling} = 0.5 hr$

Assumptions made for the purpose of modeling:

- The active RNAP is allocated for transcription of each gene type equally
- The active ribosome is allocated to each translation of each protein type equally
- BNIDing of only RNAP to promoter leads to negligible transcription ($W_{1X} = W_{2X} = W_{3X} = 0.0$)
- BNIDing functions (K_D) and weight factors for inducer are equal for all mRNA ($W_{11} = W_{12} = W_{13} = W_{23} = W_{32} = 300.0$)
- Translation initiation rate constant $(k_{TL,I})$ and saturation constant (K_{XP}) are same as transcription initiation $(k_{TX,I})$ and elongation (K_{XP}) rate constants.

Question 2 (conr'd)

Inducer (1)

Material balance:

$$\begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} -(k_d^m + \mu) & 0 & 0 & 0 & 0 & 0 \\ 0 & -(k_d^m + \mu) & 0 & 0 & 0 & 0 \\ 0 & 0 & -(k_d^p + \mu) & 0 & 0 & 0 \\ 0 & 0 & 0 & -(k_d^p + \mu) & 0 & 0 \\ 0 & 0 & 0 & 0 & -(k_d^p + \mu) & 0 \\ 0 & 0 & 0 & 0 & 0 & -(k_d^p + \mu) \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} + \frac{1}{p_2}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} Tx_1 \\ Tx_2 \\ Tx_3 \\ TL_1 \\ TL_2 \\ TL_3 \end{bmatrix}$$

In equ form,

$$\frac{dm_{i}}{dt} = 7x_{i} - (k_{d}^{m} + \mu) m_{i}$$

$$\frac{dp_{i}}{dt} = \pi L_{i} - (k_{d}^{p} + \mu) p_{i}$$

$$\int_{0}^{\infty} i = 1, 2, 3$$

$$u_1 = \frac{W_1 + W_2 f_I}{1 + W_1 + W_2 f_I}$$

$$f_{I} = \frac{2^{n}}{k^{n} + 1^{n}}$$

$$u_2 = \frac{W_2 + W_{12}f_{12} + W_{32}f_{32}}{1 + W_2 + W_{12}f_{12} + W_{32}f_{32}}$$

;
$$f_{12} = \frac{P_1^n}{K^n + P_1^n}$$
; $f_{32} = \frac{P_3^n}{K^n + P_3^n}$

;
$$f_{23} = \frac{\rho_2^n}{k^n + \rho_2^n}$$
; $f_{13} = \frac{\rho_2^n}{k^n + \rho_2^n}$

Assumptions, WI = W2 = W3 = 0.0

$$f_{x_i} = k_{E_i} \cdot R_{x,\tau} \cdot \frac{G_p}{(\kappa_{x_p} \, \gamma_i) + (z_i + 1) G_p}$$

$$K_{E,i} = \langle K_E \rangle \frac{L_X}{L_{X,i}}$$
 $\langle K_E \rangle = \frac{K_E}{L_X} \frac{K_E}{L_X}$

Take 2

$$r_{L_i^{\circ}} = \kappa_{E,TL_i^{\circ}} R_{L,T} \cdot \frac{m_i^{\circ}}{(\kappa_{X} \rho + Z_{L_i^{\circ}}) + (z_{L_i^{\circ}} + 1) m_i^{\circ}}$$

 \circ (6) \rightleftharpoons (c) \rightarrow codes and plots are atlached.