2020微生物组—扩增子16S分析研讨会第10期

36溯源和马尔可夫链实战

王金锋 中科院北京生科院 2020年12月6日

易生信, 毕生缘; 培训版权所有。

目录

- SourceTracker
- FEAST
- 。马尔可夫链

SourceTracker

工具网址: https://github.com/danknights/sourcetracker

NIH Public Access

Author Manuscript

Nat Methods. Author manuscript; available in PMC 2013 October 07.

Published in final edited form as:

Nat Methods.; 8(9): 761–763. doi:10.1038/nmeth.1650.

Bayesian community-wide culture-independent microbial source tracking

Dan Knights¹, Justin Kuczynski², Emily S. Charlson^{3,4}, Jesse Zaneveld², Michael C. Mozer¹, Ronald G. Collman³, Frederic D. Bushman³, Rob Knight^{5,6}, and Scott T. Kelley⁷

SourceTracker数据输入格式

样本ID号

- 脚本实现: SourceTracker.Rmd
- 输入数据:
- 1.样本信息表
- 2.OTU丰度表

Sourcetracker开头 两行使用带#号表头

> OTU编号或 细菌分类名

样本描述信息

	A		В	С	D 🁚	E
	# QIIME-formatted OTU table				_	
	#OTU ID		X2d1h	X3d2w	X3d7d	X3d1h
•	Streptococcus		13848.35359	22595.64891	22952.09406	3396.990231
	Neisseria		12784.38959	10592.64816	11563.50209	3537.798117
	Prevotella		4453.509399	3428.357089	17170.34302	5825.926252
	Haemophilus		5845.493923	510.1275319	4635.1180	2216844
	Rothia		2275.1167	720.180045	()	5 416307
	Veillonella		1614.870264	1590.397599	9134.1949	度 5.660213
	Fusobacterium		8982.715842	1860.465116	991.1573219	1672.093637
	Actinomyces		9924.723496	3090.772693	3585.657371	11942.26877
	Capnocytophaga		11426.04819	32618.15454	2089.204159	13068.73185
	Porphyromonas		857.8998276	292.5731433	1496.453212	79.20443545
	Leptotrichia		7801.000883	2198.049512	1904.576815	20214.73202
	Granulicatella, _{是, 立} ;	版权所有。	899.9537407	2303.075769	1370.129239	167.2093637
	Bifidobacterium		0	7.501875469	281.7996307	8.800492828

使用R语言读取数据


```
。 ## 读取数据
```

- >metadata = read.table('metadata_sourcetracker_trim.txt',sep='\t',h=T,row.names=1,check=F,comment= ")
- >otus = read.table('otu_sourcetracker.txt',sep='\t', header=T,row.names=1,check=F,skip=1,comment='')
- > otus = t(as.matrix(otus))
- o > common.sample.ids = intersect(rownames(metadata), rownames(otus)) ## 提取otu表与metadata共有id
- > otus = otus[common.sample.ids,]
- o > metadata = metadata[common.sample.ids,] ## 从otu表中提取具有metadata信息的样本
- > if(length(common.sample.ids) <= 1) {</pre>
- message = paste(sprintf('Error: there are %d sample ids in common '),
- o 'between the metadata file and data table')
- o stop(message)}

使用R语言进行溯源分析

- > train.ix = which(metadata\$SourceSink=='source') ## 提取训练集 0
- > test.ix = which(metadata\$SourceSink=='sink') ## 提取测试集 0
- ## 提取环境信息 > envs = metadata\$Env 0
- > if(is.element('Description' ,colnames(metadata))) desc = metadata\$Description ##提取样本标签
- > source('SourceTracker.r') ## 载入SourceTracker包 0
- > tune.results = tune.st(otus[train.ix,], envs[train.ix]) ## 使用交叉验证计算alpha值 0
- > alpha1 = tune.results\$best.alpha1 0
- > alpha2 = tune.results\$best.alpha2 0
- > st = sourcetracker(otus[train.ix,], envs[train.ix]) ## 使用训练集训练sourcetracker
- > results = predict(st,otus[test.ix,], alpha1=alpha1, alpha2=alpha2) ## 计算各来源比例 0

使用R语言进行可视化

- o > labels = sprintf('%s %s' , envs,desc) ##展示样本标签
- 。 ## 展示SourceTracker溯源分析结果
- ## 可选择多种不同展示形式
- > plot(results, labels[test.ix], type='pie')

> plot(results, labels[test.ix], type='bar')

目录

- SourceTracker
- FEAST
- 。马尔可夫链

FEAST

ARTICLES

https://doi.org/10.1038/s41592-019-0431-x

FEAST: fast expectation-maximization for microbial source tracking

Liat Shenhav¹, Mike Thompson[©]², Tyler A. Joseph³, Leah Briscoe², Ori Furman⁴, David Bogumil⁴, Itsik Pe'er³ and Eran Halperin[©]^{1,2,5,6*}

FEAST数据输入格式

- 脚本实现: FEAST.Rmd
- 输入数据:
- 1.样本信息表
- 2.OTU丰度表

OTU编号或 细菌分类名

А		В	С	D	Е	F		
#SampleID		Description	Env	SourceSink	Study	Details		
Run20100430_H2O-1		PCR water 1	Lab 1	sink	Lab 1	PCR_water_sample_1_2010_04_30_run		
Run20100430_H2O-2		PCR water 2	Lab 1	sink	Lab 1	PCR_water_sample_2_2010_04_30_run PCR_water_sample_3_2010_04_30_run		
Run20100430_H2O-3		PCR water 3	Lab 1	sink	Lab 1			
Run20100430_H2O-4		PCR water 4	Lab 1	sink	Lab 1	PCR_water_sample_4_2010_04_30_run		
BF1		Alfisol 1	Soil	source	88_Soils	NA		
CA2		Alfisol 2	Soil	source	88_Soils	NA		
CO2		Alfisol 3	Soil	source	88_Soils			
DF3		Alfisol 4	Soil	source	88_Soils	样本所属类别		
HI4		Andisol 1	Soil	source	88 Soils	Source: 来源		
HJ2		Andisol 2	Soil	source	88_Soils			
JT1		Aridisol 3	Soil	source	88_Soils	Sink: 溯源目标		
MD5		Aridisol 4	Soil	source	88_Soils	NA		
样本ID号 样本描述信息					样本ID号			

Α	В	С	D 🁚	E
# QIIME-formatted OTU table				
#OTU ID	X2d1h	X3d2w	X3d7d	X3d1h
Streptococcus	13848.35359	22595.64891	22952.09406	3396.990231
Neisseria	12784.38959	10592.64816	11563.50209	3537.798117
Prevotella	4453.509399	3428.357089	17170.34302	5825.926252
Haemophilus	5845.493923	510.1275319	4635.1180	2216844
Rothia	2275.1167	720.180045	7 30	5.916307
Veillonella	1614.870264	1590.397599	9134.1949	5.660213
Fusobacterium	8982.715842	1860.465116	991.1573219	1672.093637
Actinomyces	9924.723496	3090.772693	3585.657371	11942.26877
Capnocytophaga	11426.04819	32618.15454	2089.204159	13068.73185
Porphyromonas	857.8998276	292.5731433	1496.453212	79.20443545
Leptotrichia	7801.000883	2198.049512	1904.576815	20214.73202
Granulicatella。 培训版权所有。	899.9537407	2303.075769	1370.129239	167.2093637
Bifidobacterium	0	7.501875469	281.7996307	8.800492828

使用R语言进行溯源和可视化

○ ## 读取数据

- > metadata = Load metadata(metadata path = "metadata example FEAST.txt")
- > otus = Load_CountMatrix(CountMatrix_path = "otu_example_FEAST.txt")
- o > dir path = getwd() ## 设置结果输出路径
- 。 ## 使用FEAST进行溯源
- > FEAST_output = FEAST(C = otus, metadata = metadata,
- o different_sources_flag = 1, dir_path = dir_path,outfile="demo")
- 。 ## 展示FEAST溯源分析结果
- > PlotSourceContribution(SinkNames = rownames(FEAST output),
- SourceNames = colnames(FEAST_output), dir_path = dir_path,
- o mixing_proportions = FEAST_output,

潜在来源

FEAST展示不同环境样本中潜在来源所占比例

Plot_title = "Test_",Same_sources_flag = 0, N = 4)

溯源目标

目录

- SourceTracker
- FEAST
- 。马尔可夫链

马尔可夫链测试数据

- 以DiGiulio et al. 2015年发表在PNAS上的阴道菌群数据为例
- 使用R语言对状态转移矩阵 进行计算,并对马尔可夫链 进行可视化

Temporal and spatial variation of the human microbiota during pregnancy

Daniel B. DiGiulio^{a,b,c,1}, Benjamin J. Callahan^{a,d,1}, Paul J. McMurdie^{a,d}, Elizabeth K. Costello^{a,e}, Deirdre J. Lyell^{a,f}, Anna Robaczewska^{a,b,c}, Christine L. Sun^{a,e}, Daniela S. A. Goltsman^{a,e}, Ronald J. Wong^{a,g}, Gary Shaw^{a,g}, David K. Stevenson^{a,g}, Susan P. Holmes^{a,d}, and David A. Relman^{a,b,c,e,2}

^aMarch of Dimes Prematurity Research Center, Stanford University School of Medicine, Stanford, CA 94305; ^bDepartment of Medicine, Stanford University School of Medicine, Stanford, CA 94305; ^cVeterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304; ^dDepartment of Statistics, Stanford University, Stanford, CA 94305; ^eDepartment of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; ^fDepartment of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305; and ^gDepartment of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305

马尔可夫链数据输入格式

人人心口

- 脚本实现: MarkovChain.Rmd
- 輸入数据:包含不同时间点信息的信息列表
- 必需列:样本编号、 个体编号、时间点、 状态/分组信息

			时间点	状态/分	
Rowname	SampleID	SubjectID	Time	Group	CST
1000301298	1000301298	10003	198	7	Α
1000301308	1000301308	10003	205	7	Α
1000301318	1000301318	10003	212	8	Α
1000301328	1000301328	10003	219	8	Α
1000301338	1000301338	10003	226	8	Α
1000401368	1000401368	10004	264	9	С
1000401378	1000401378	10004	271	10	С
1000501278	1000501278	10005	188	7	С
1000501308	1000501308	10005	211	8	С
1000501318	1000501318	10005	218	8	С
1000501368	1000501368	10005	258	9	С
1000501378	1000501378	10005	265	9	С

使用R语言计算概率转移矩阵

- o >data markov = read.table("data markov.txt",header = T,sep = '\t',row.names = 1) ##数据读取
- > > data_markov\$SubjectID = as.character(data_markov\$SubjectID)
- > > data_markov\$CST = as.factor(data_markov\$CST)
- > > CSTs = levels(data markov\$CST)
- > > nstates = nlevels(data_markov\$CST)
- o >data markov prev = samdat.prune prev(data markov) ##调用转换周期函数
- > rownames(data_markov_prev) = data_markov_prev\$SampleID
- o >data_markov_prev\$PrevCST = data.frame(data_markov)[data_markov_prev\$PrevID,"CST"] ##提取每个样本前一个时间点的状态
- o >data_markov_prev\$CurCST = data_markov_prev\$CST ##提取每个样本当前时间点状态
- o >ttab = table(data_markov_prev\$PrevCST, data_markov_prev\$CurCST) ##计算不同状态间的转换频数
- o >trans = matrix(ttab, nrow=nstates) ##计算概率转移矩阵
- o >trans = trans/rowSums(trans) ##标准化至1

使用R语言进行可视化


```
>plotMC(mcPreg,
```

- o edge.arrow.size = 0.8, edge.arrow.width = 1, ##设置箭头大小与宽度
- o edge.label = edge.labels, edge.label.font = 2, edge.label.cex = 0.8, ##设置边标签字体与大小
- o edge.label.color = "black", ##设置边标签颜色
- o edge.width = (15*wts + 0.1)*0.6, edge.curved = sapply(elcat, function(x) x %in% elrev), ##设置边宽度与弯曲度
- o edge.color = "#a3a3a3", ##设置边颜色
- o layout = layout, edge.loop.angle = edge.loop.angle,
- o vertex.size = vert.sz, vertex.color = "#a9303b" , ##设置点大小与颜色
- o vertex.label.font = 2, vertex.label.cex = c(2,.5,2,2,1), ##设置点标签字体与大小
- vertex.label.color = vert.font.clrs, vertex.frame.color = NA)

R语言输出文件

- 输出结果:
- 1.状态转移矩阵
- 2.马尔可夫链

> CSTtrans

A 0.4520000 0.05200000 0.26000000 0.09600000 0.14000000 B 0.2000000 0.26666667 0.06666667 0.00000000 0.46666667 C 0.3088235 0.07352941 0.42647059 0.15686275 0.03431373 D 0.3000000 0.01111111 0.34444444 0.33333333 0.01111111 E 0.5573770 0.00000000 0.36065574 0.03278689 0.04918033

状态转移矩阵

总结

- 1.使用SourceTracker或FEAST进行溯源分析时,对尽可能多的潜在 环境进行溯源会得到更好的效果
- 2.涉及人体跨位点或跨代传递的溯源,配对数据是最佳选择
- 2.溯源分析涉及多重复的时间序列时,可以根据需要对同一个时间点的溯源结果取用平均值或中位数
- 3.使用马尔可夫链进行状态转移分析时,状态的划分不宜过多,以3-5个为最佳

扫码关注生信宝典, 学习更多生信知识

扫码关注宏基因组, 获取专业学习资料

