Feuille d'exercice n° 30 : Fonctions de deux variables

Exercice 1 () Montrer que $\mathbb{R}^2 \setminus \{(0,0)\}$ est un ouvert de \mathbb{R}^2 .

On considère la fonction f définie sur \mathbb{R}^2 par $f(x,y) = |x|^y$, avec la convention $0^0 = 1$. En quels points la fonction f est-elle continue ?

Exercice 3 () Étudier l'existence et, le cas échéant, calculer les dérivées partielles des fonctions suivantes.

1)
$$f(x,y) = 2xy^3 - 3y$$

2)
$$q(x,y) = \max(|x|,|y|)$$

2)
$$g(x,y) = \max(|x|,|y|)$$
 3) $h(x,y) = \sqrt{1+x^2y^2}$

On définit sur \mathbb{R}^2 la fonction f par Exercice 4

$$f(x,y) = \begin{cases} \frac{\sin(xy)}{|x| + |y|} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad x = y = 0 \end{cases}.$$

La fonction f est-elle continue? De classe \mathscr{C}^1 ?

Exercice 5 ($^{\circ}$ **)** Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathscr{C}^1 . Déterminer les dérivées (évenuellement partielles) des fonctions suivantes.

1)
$$g: x \mapsto f(x,x)$$

2)
$$h:(x,y) \mapsto f(y,f(x,x))$$

- Fonctions positivement homogènes -

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathscr{C}^1 , soit $\alpha \in \mathbb{R}$. La fonction f est dite positivement homogène de degré α si

$$\forall (x,y) \in \mathbb{R}^2, \ \forall t \in \mathbb{R}_+^*, \ f(tx,ty) = t^{\alpha} f(x,y).$$

- 1) Donner un exemple de fonction positivement homogène (avec son degré), et un exemple de fonction non homogène.
- 2) Montrer que si f est positivement homogène de degré α , alors ses dérivées partielles sont positivement homogènes de degré $\alpha - 1$.
- 3) Montrer que f est positivement homogène de degré α si et seulement si f vérifie la relation d'Euler :

$$\forall x, y \in \mathbb{R}^2, \ x \frac{\partial f}{\partial x}(x, y) + y \frac{\partial f}{\partial y}(x, y) = \alpha f(x, y).$$

Indication: étudier $\varphi: t \mapsto f(tx, ty)$.

Soit $\lambda \in \mathbb{R}$. Résoudre sur \mathbb{R}^2 l'équation aux dérivées partielles suivantes, en utilisant le Exercice 7 changement de variables u = x + y et v = x - y:

$$\frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y) = \lambda.$$

Exercice 8 (\circlearrowleft) – Coordonnées polaires – On définit $D = \mathbb{R}^2 \setminus \{ (x,0) \mid x \in \mathbb{R}_- \}$. Soit $f: D \to \mathbb{R}$ de classe \mathscr{C}^1 , on définit sur $\mathbb{R}_+^* \times] - \pi, \pi[$ la fonction

$$g:(r,\theta)\mapsto f(r\cos(\theta),r\sin(\theta)).$$

- 1) Représenter D et montrer que D est un ouvert de \mathbb{R}^2 .
- 2) Justifier que g est de classe \mathscr{C}^1 .
- 3) Exprimer les dérivées partielles de g en fonction de celles de f, et réciproquement.
- 4) Exemple : dériver $u \mapsto ||u||$ en coordonnées cartésiennes et en coordonnées polaires.
- 5) Application: résoudre sur D les équations aux dérivées partielles suivantes, en utilisant les coordonnées polaires.

$$\mathbf{a)} \ \ x \frac{\partial f}{\partial y} - y \frac{\partial f}{\partial x} = 0$$

b)
$$x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = \sqrt{x^2 + y^2}.$$

Exercice 9 () Étudier les extremums globaux des fonctions suivantes.

- 1) $f:(x,y)\mapsto x^3+y^3$, sur \mathbb{R}^2 .
- **2)** $g: u \mapsto ||u||^2 + \sin(||u||^2), \text{ sur }] 1, 1[^2.$
- 3) $h:(x,y)\mapsto x^2+3y^2-2x-10y+2xy+6 \text{ sur } \mathbb{R}^2.$

Exercice 10 On note

$$D = \left\{ (x, y) \in \mathbb{R}^2 \mid -1 < x < y < 1 \right\},$$

$$\overline{D} = \left\{ (x, y) \in \mathbb{R}^2 \mid -1 \leqslant x \leqslant y \leqslant 1 \right\}.$$

On admet que D est un ouvert de \mathbb{R}^2 .

- 1) Représenter D et \overline{D} .
- 2) Étudier sur \overline{D} les extremums de la fonction

$$f:(x,y)\mapsto x^3+5y^3+3x^2y+3xy^2-3y^2.$$

