2-stufiges schrägverzahntes koaxiales Getriebe

Alle im Folgenden auftretenden Angaben zu Seitenzahlen, Tabellen und Gleichungen beziehen sich auf "Roloff/Matek Maschinenelemente (24. Auflage)"

Konstanten per Vorgabe

D۲	oh	ma	ma	nt	۸n	trio	h		
υr	en	mo	me	Int	AΠ	trie	D		

$$T_{an} \coloneqq 50 \ \boldsymbol{N \cdot m}$$

$$T_{ab} = 500 \, \mathbf{N} \cdot \mathbf{m}$$

$$n_{an} = 2000 \ min^{-1}$$

$$F_R \coloneqq 3 \ \mathbf{kN}$$

$$\alpha_n = 20$$

$$\tau_{tzul} = 50 \frac{N}{mm^2}$$

$$B_{zul} \coloneqq 4 \frac{N}{mm^2}$$

$$K_A \coloneqq 2$$

theoretisches Übersetzungsverhältnis

$$i_{ges} = \frac{T_{ab}}{T_{an}} = 10$$

$$i_{12} \coloneqq 3.4$$

$$i_{23} \coloneqq \frac{i_{ges}^{I \ an}}{i_{12}} = 2.941$$
 $i_{ges} \coloneqq i_{12} \cdot i_{23} = 10$

$$i_{ges} \coloneqq i_{12} \cdot i_{23} = 10$$

gewählt nach TB21-11

orientiert an TB21-12

Ritzelzähnezahlen

$$z_1 \coloneqq 21$$

$$z_1 = 21$$
 $z_2 = z_1 \cdot i_{12} = 71.4$ $z_2 = 71$

$$z_2 = 71$$

$$z_3 \coloneqq 28 \hspace{1cm} z_4 \coloneqq z_3 \cdot i_{23} = 82 \hspace{1cm} z_4 \coloneqq 83$$

wirkliches Übersetzungsverhältnis

$$i_{12} = \frac{z_2}{z_1} = 3.381$$

$$i_{23} = \frac{z_4}{z} = 2.964$$

$$i_{12} \coloneqq \frac{z_2}{z_1} = 3.381 \qquad \qquad i_{23} \coloneqq \frac{z_4}{z_3} = 2.964 \qquad \qquad i_{ges} \coloneqq i_{12} \cdot i_{23} = 10.022$$

$$T_{ab}\!\coloneqq\!T_{an}\!\boldsymbol{\cdot}\!i_{ges}\!=\!501.105\;\boldsymbol{N}\!\boldsymbol{\cdot}\!\boldsymbol{m}$$

$$\frac{500 \cdot N \cdot m}{T_{ab}} = 0.998$$

Abweichung von 0,2% vom geforderten

Abtriebsdrehmoment

Durchmesser Antriebswelle

$$d_{min1} \coloneqq \sqrt[3]{rac{16 \cdot T_{an} \cdot K_A}{\pi \cdot au_{tzul}}} = 21.677 \,\, extbf{mm}$$

$$d_{W1} \coloneqq 30 \; \boldsymbol{mm}$$

Formel nach Vereinbarung

Durchmesser Vorlegewelle

$$d_{min2} := \sqrt[3]{rac{16 \cdot T_{an} \cdot i_{12} \cdot K_A}{\pi \cdot au_{tzul}}} = 32.535 \; mm$$
 $d_{W2} := 40 \; mm$

$$d_{W2} \coloneqq 40 \,\, \boldsymbol{mm}$$

Formel nach Vereinbarung

Durchmesser Abtriebswelle

$$d_{min3} \coloneqq \sqrt[3]{\frac{16 \cdot T_{an} \cdot i_{ges} \cdot K_A}{\pi \cdot \tau_{tzul}}} = 46.736 \ \textit{mm} \qquad d_{W3} \coloneqq 55 \ \textit{mm}$$

$$d_{W3} = 55 \, \, mm$$

Formel nach Vereinbarung

gewählt aufgrund von Passfededer-/ & Lagerabmaßen (TB12-2)

Modul 1;2

$$m_{n12} \coloneqq \frac{1.8 \cdot d_{W1} \cdot \cos{(\beta)}}{z_1 - 2.5} = 2.743 \ \textit{mm}$$
 $m_{n12} \coloneqq 3 \ \textit{mm}$

$$m_{n12} \coloneqq 3 \, \, \boldsymbol{mn}$$

Gl21.36

orientiert an TB21-1

Zahnradbreite

$$b_1 \coloneqq \frac{2 \cdot T_{an}}{d_{W_1}^2 \cdot B_{col}} = 27.778 \; mm$$

$$b_1 = 30 \ mm$$

Formel nach Vereinbarung orientiert an TB21-13b

$$b_2 \coloneqq b_1$$

$$b_3 \coloneqq \frac{2 \cdot T_{an} \cdot i_{12}}{d_{W2}^2 \cdot B_{rad}} = 52.827 \ mm$$

$$b_3 = 55 \ mm$$

Formel nach Vereinbarung orientiert an TB21-13b

$$b_4 \coloneqq b_3$$

Teilkreis 1 & 2

$$d_{T1} = z_1 \cdot \frac{m_{n12}}{\cos(\beta)} = 67.043 \ mm$$

$$d_{T2} = z_2 \cdot \frac{m_{n12}}{\cos(\beta)} = 226.67 \ mm$$

Gl21.38

Achsabstand 1;2

$$a_{d12} := \frac{d_{T1} + d_{T2}}{2} = 146.857 \ mm$$

Gl21.42

Modul 3;4

$$m_{n34} \coloneqq \frac{2 \cdot a_{d12} \cdot \cos{(eta)}}{\left(1 + i_{23}\right) \cdot z_3} = 2.486 \,\, m{mm}$$

$$m_{n34} \coloneqq 2.5 \ \textit{mm}$$
 Gl21.64

orientiert an TB21-1

Gl.21.38

Teilkreis 3 & 4

$$d_{T3} \coloneqq z_3 \cdot \frac{m_{n34}}{\cos(\beta)} = 74.492 \ \textit{mm} \qquad \qquad d_{T4} \coloneqq z_4 \cdot \frac{m_{n34}}{\cos(\beta)} = 220.817 \ \textit{mm}$$

Achsabstand 3;4

$$a_{d34} \coloneqq \frac{d_{T3} + d_{T4}}{2} = 147.655 \ \textit{mm}$$
 $a_{d12} \neq a_{ad34}$ $a_{d12} - a_{d34} = -0.798 \ \textit{mm}$ Gl.21.42

Fazit: Es ist eine Profilverschiebung notwendig, um die Differenz der Achsabstände auszugleichen! Es wird eine positive Profilverschiebung gewählt, um den Zahnfuß zu stärken und die Tragfähigkeit der Zähne zu erhöhen.

Stirneingreifswinkel

$$\alpha_t \coloneqq \operatorname{atan}\left(\frac{\tan\left(\alpha_n\right)}{\cos\left(\beta\right)}\right) = 21.173$$
 ° Gl. 21.35

Betriebseingriffswinkel

$$\alpha_w \coloneqq \operatorname{acos}\left(\cos\left(\alpha_t\right) \cdot \frac{a_{d12}}{a_{d34}}\right) = 21.959 \, ^{\circ} \qquad \qquad \qquad \mathsf{GI. 21.31}$$

Summe Profilverschiebungsfaktoren

$$inv\alpha_w := \tan\left(\alpha_w\right) - \alpha_w \cdot \frac{\pi}{180} = 0.01994$$
 $inv\alpha_t := \tan\left(\alpha_t\right) - \alpha_t \cdot \frac{\pi}{180} = 0.01779$

Ersatzzähnezahlen

$$\beta_b \coloneqq \operatorname{acos}\left(\cos\left(\beta\right) \cdot \frac{\cos\left(\alpha_n\right)}{\cos\left(\alpha_t\right)}\right) = 18.747^{\circ}$$
 Gl. 21.36

$$\cos\left(eta_b
ight)^2 = 0.897$$
 vgl. mit Additionstheorem $xyz \coloneqq \frac{1}{2}\left(1 + \cos\left(2 \cdot \beta_b\right)\right) = 0.897$

$$z_{n1} = \frac{z_1}{\cos\left(\beta_b\right)^2 \cdot \cos\left(\beta\right)} = 24.922$$

$$z_{n2} \coloneqq \frac{z_2}{\cos\left(\beta_b\right)^2 \cdot \cos\left(\beta\right)} = 84.26$$
 Gl. 21.47

Gl. 21.56

sinnvolle Wahl von x $x_1 \coloneqq \frac{\Sigma x}{2} + \left(\frac{1}{2} - \frac{\Sigma x}{2}\right) \cdot \frac{\log\left(\frac{z_2}{z_1}\right)}{\log\left(\frac{z_{n1} \cdot z_{n2}}{100}\right)} = 0.28128$ Gl. 21.33 $x_2 := \Sigma x - x_1 = -0.0105$ Beide Räder nach TB 21-3 ausführbar! Gl. 21.56 Verschiebungen $V_1 := x_1 \cdot m_{n12} = 0.844 \ mm$ $V_2 := x_2 \cdot m_{n12} = -0.031 \ mm$ $V_3 = 0 \ \boldsymbol{mm}$ $V_4 \coloneqq 0 \ \boldsymbol{mm}$ Gl. 21.49 **Kontrolle Achsabstand** Betriebswälzkreisdurchmesser $d_{w1} \coloneqq d_{T1} \cdot \frac{\cos\left(\alpha_{t}\right)}{\cos\left(\alpha_{w}\right)} = 67.408 \ \boldsymbol{mm}$ $d_{w2} \coloneqq d_{T2} \cdot \frac{\cos\left(lpha_t ight)}{\cos\left(lpha_w ight)} = 227.902 \; m{mm}$ Gl. 21.22a $a := \frac{d_{w1} + d_{w2}}{2} = 147.655$ mm vgl.: $a_{d34} = 147.655 \ mm$

Kopfspiel Soll

$$c_{12Soll} \coloneqq 0.25 \cdot m_{n12} = 0.75$$
 mm $c_{34} \coloneqq 0.25 \cdot m_{n34} = 0.625$ mm

Kopfhöhenänderung:
$$k \coloneqq a - a_{d12} - m_{n12} \cdot \left(x_1 + x_2\right) = -0.014 \ \textit{mm}$$

vgl. S. 794

Zahnräder		
Zahnrad Nr.1:		
$d_{T1} = 67.043 \; mm$		
Betriebswälzkreisdurchmesser	$d_{w1} \coloneqq \frac{2 \cdot z_1}{z_1 + z_2} \cdot a = 67.408 \; mm$	Gl.21-22a
Grundkreisdurchmesser	$d_{b1} \coloneqq z_1 \cdot \frac{m_{n12} \cdot \cos\left(\alpha_t\right)}{\cos\left(\beta\right)} = 62.517 \ \boldsymbol{mm}$	Gl.21-39
Kopfkreisdurchmesser	$d_{a1} := d_{T1} + 2 \cdot (m_{n12} + V_1 + k) = 74.702 \ mm$	Gl.21-24
Fußkreisdurchmesser	$d_{f1} \coloneqq d_{T1} - 2 \cdot \left(\left(m_{n12} + c_{12Soll} \right) - V_1 \right) = 61.231$	<i>mm</i> Gl.21-25
Zahnrad Nr.2:		
$d_{T2} = 226.67 \; \pmb{mm}$		
$d_{w2} \coloneqq \frac{2 \cdot z_2}{z_1 + z_2} \cdot a = 227.902 \ \textit{mm}$		Gl.21-22b
$d_{b2} \coloneqq z_2 \cdot \frac{m_{n12} \cdot \cos\left(\alpha_t\right)}{\cos\left(\beta\right)} = 211.3$	669 <i>mm</i>	Gl.21-39
$d_{a2} \coloneqq d_{T2} + 2 \cdot \left(m_{n12} + V_2 + k \right) =$	232.578 <i>mm</i>	Gl.21-24
$d_{f2} \coloneqq d_{T2} - 2 \cdot \left(\left(m_{n12} + c_{12Soll} \right) - \right.$	$(V_2) = 219.107 \ mm$	Gl.21-25
Zahnrad Nr.3:		
$d_{T3} = 74.492 \ \textit{mm}$		
$d_{w3} \coloneqq \frac{2 \cdot z_3}{z_3 + z_4} \cdot a = 74.492 \ mm$		Gl.21-22a
$\begin{aligned} d_{w3} &\coloneqq \frac{2 \cdot z_3}{z_3 + z_4} \cdot a = 74.492 \ \textit{mm} \\ d_{b3} &\coloneqq z_3 \cdot \frac{m_{n34} \cdot \cos\left(\alpha_t\right)}{\cos\left(\beta\right)} = 69.46 \end{aligned}$	54 <i>mm</i>	Gl.21-39
$d_{a3} \coloneqq d_{T3} + 2 \cdot \left(m_{n34} + V_2 + k \right) =$		Gl.21-40
$d_{f3}\!\coloneqq\!d_{T3}\!-\!2.5\!\cdot\!m_{n34}\!=\!68.242$ 1	nm	Gl.21-41

Zahnrad Nr.4:	
$d_{T4} = 220.817 \; m{mm}$	
$d_{w3}\!\coloneqq\!rac{2\!\cdot\! z_4}{z_3\!+\! z_4}\!\cdot\! a\!=\!220.817$ mm	
$d_{b4} \coloneqq z_4 \cdot \frac{m_{n34} \cdot \cos\left(\alpha_t\right)}{\cos\left(\beta\right)} = 205.911 \ \boldsymbol{mm}$	Gl.21-22b
	Gl.21-39
$d_{a4} := d_{T4} + 2 \cdot (m_{n34} + V_2 + k) = 225.725 \ mm$	Gl.21-40
$d_{f4}\!:=\!d_{T4}\!-\!2.5\!ullet\!m_{n34}\!=\!214.567$ mm	Gl.21-41
Kopfspiel nach Profilverschiebung	
$c_{12Ist} \coloneqq a - 0.5 \cdot \left(d_{a1} + d_{f2}\right) = 0.75 $ mm $c_{12Soll} - c_{12Ist} = -6.505 \cdot 10^{-16} $ mm	
Keine relevante Abweichung!	vgl. S. 794
Stirnmodul m	
$m_{t12} \coloneqq \frac{m_{n12}}{\cos(eta)} = 3.193 \; \textit{mm} \qquad m_{t34} \coloneqq \frac{m_{n34}}{\cos(eta)} = 2.66 \; \textit{mm}$	Gl.21-23
Profilüberdeckung	
$0.5 \cdot \left(\sqrt{{d_{a1}}^2 - {d_{b1}}^2} + \frac{z_2}{\left z_2\right } \cdot \sqrt{{d_{a2}}^2 - {d_{b2}}^2}\right) - a \cdot \sin\left(\alpha_w\right)$ $\varepsilon_{\alpha 1 2} \coloneqq \frac{\pi \cdot m_{t1 2} \cdot \cos\left(\alpha_t\right)}{= 1.47}$	
$arepsilon_{lpha 12} \coloneqq \frac{\pi \cdot m_{t12} \cdot \cos\left(lpha_t ight)}{\pi \cdot m_{t12} \cdot \cos\left(lpha_t ight)} = 1.47$	Gl.21-57
Laut S.787 ist der Wert für $arepsilon_{lpha}$ gut.	
$b_1 \cdot \sin(\beta)$	
$\varepsilon_{\beta 12} \coloneqq \frac{b_1 \cdot \sin(\beta)}{\pi \cdot m_{n12}} = 1.089$	Gl.21-44
$\text{Gesamt:} \varepsilon_{\gamma 12} \coloneqq \varepsilon_{\alpha 12} + \varepsilon_{\beta 12} = 2.559$	
$c_{\alpha 3 4} \coloneqq \frac{0.5 \cdot \left(\sqrt{d_{a 3}^{2} - d_{b 3}^{2}} + \frac{z_{4}}{\left z_{4}\right } \cdot \sqrt{d_{a 4}^{2} - d_{b 4}^{2}}\right) - a \cdot \sin\left(\alpha_{w}\right)}{\pi \cdot m_{t 3 4} \cdot \cos\left(\alpha_{t}\right)} = 1.316$	
$\varepsilon_{\alpha 34} := \frac{ z_4 }{\pi \cdot m_{\alpha 4} \cdot \cos(\alpha)} = 1.316$	Cl 24 F7
	Gl.21-57
Laut S.787 ist der Wert für ε_{lpha} gut.	
$arepsilon_{eta34} \coloneqq rac{b_3 \cdot \sin(eta)}{oldsymbol{\pi} \cdot m_{n34}} = 2.395$	
	Gl.21-44
Gesamt: $\varepsilon_{\gamma 34} \coloneqq \varepsilon_{\alpha 34} + \varepsilon_{\beta 34} = 3.711$	

Zusammen	fassung								
Nr.	d	d_b	d_a	d_f	d_w	b	m	V	z
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
$Zahnrad_1$									21
$Zahnrad_2$	226.67	211.37	232.61	219.032	227.66	30	3	-0.031	71
$Zahnrad_3$	74.49	69.46	79.49	68.24	74.49	55	2.5	0	28
$Zahnrad_4$	220.82	205.92	225.82	214.57	220.82	55	2.5	0	83
Passfederv	erbindu	ngen	TB 12-	2					
Material der	Passfede	r: E295							
$R_e\!\coloneqq\!295\!ullet_{oldsymbol{m}}$	$\frac{N}{um^2}$ S	$S_F \coloneqq 1.1$	η_{zul} := $-\frac{1}{2}$	$\frac{R_e}{S_F} = 268.3$	$182 \frac{N}{mm}$	${2}$ φ	o:=1	$n \coloneqq 1$	
$t_{tr1} \coloneqq \frac{1}{d_{W1} \cdot 3}$	$rac{2 \cdot T_{an}}{mm \cdot \eta_{zi}}$	$=$ $\frac{1}{n! \cdot \varphi \cdot n}$:4.143 m	b:	=8 <i>mm</i>	l_{tr1} -	+ b = 12.1	143 mm	
			Antrie	bswelle:	Passfede	er DIN 6	885 - A8	3x7x14	
$_{tr2}$:= $\dfrac{1}{d_{W2}\cdot 3}$	$rac{2 m{\cdot} T_{an} m{\cdot} i_{12}}{m{mm} m{\cdot} \eta_{zi}}$	$\frac{2}{u \cdot \varphi \cdot n} =$:10.506 1	mm b:	=12 mm	$oldsymbol{l}_{tr2}$ -	+ b = 22.5	506 <i>mm</i>	
			Vorle	jewelle:	Passfede	r DIN 68	385 - A1	2x8x25	
$_{tr3}\coloneqqrac{2ullet}{d_{W3}ullet 4}$	$T_{an}\!\cdot\!i_{12}\!\cdot\!$	$rac{i_{23}}{l\cdotarphi\cdot n}=$:16.987 1	nm b:	=16 m m	$oldsymbol{l}_{tr3}$ -	+ b = 32.9	987 mm	
			Abtrie	bswelle:	Passfede	er DIN 6	885 - A1	.6x10x36	
								G	GI12.1

Jade Hochschule Wilhelmshaven

Zahnrad 1:		
Umfangskraft:	$F_{t1}\!\coloneqq\!2\!ullet\!rac{T_{an}}{d_{T1}}\!=\!1.492$ kN	Gl.21.70
Radialkraft:	$F_{R1} \coloneqq rac{F_{t1} \cdot an\left(lpha_n ight)}{\cos\left(eta ight)} = 0.578 \; extbf{\emph{kN}}$	Gl.21.71
Axialkraft:	$F_{a1} \coloneqq F_{t1} \cdot \tan(\beta) = 0.543 \ \mathbf{kN}$	Gl.21.72
Zahnrad 2:		
Umfangskraft:	$F_{t2} \coloneqq \left F_{t1} \right = 1.492 kN$	
Radialkraft:	$F_{R2} \coloneqq \left F_{R1} \right = 0.578 \ $ kN	
Axialkraft:	$F_{a2} := F_{a1} = 0.543 \ kN$	
Zahnrad 3:		
Umfangskraft:	$F_{t3}\!\coloneqq\!2ullet\!rac{T_{an}\!\cdot\!i_{12}}{d_{T3}}\!=\!4.539\;m{kN}$	
Radialkraft:	$F_{R3} \coloneqq rac{F_{t3} \cdot an\left(lpha_n ight)}{\cos\left(eta ight)} = 1.758 \; extbf{kN}$	
Axialkraft:	$F_{a3} \coloneqq F_{t3} \cdot \tan(\beta) = 1.652 \ \mathbf{kN}$	
Zahnrad 4:		
Umfangskraft:	$F_{t4} \coloneqq F_{t3} = 4.539 \text{ kN}$	
Radialkraft:	$F_{R4} := \left F_{R3} \right = 1.758 \; kN$	
Axialkraft:	$F_{a4} \coloneqq \left F_{a3} \right = 1.652 \ $ kN	

Es werden hier nur die Beträge der Kräfte aufgeführt, die Orientierungen der Kräfte werden in den Berechnungen der Lagerkräfte passend (d.h entgegengesetzt) angenommen (siehe Freischnitte & Schnittverläufe der drei Wellen).

Lagerkräfte Antriebswelle

Freischnitt der Antriebswelle:

Wirkabstände: $X_1 = 33 \text{ mm}$ $X_2 = 26.5 \text{ mm}$

$$B_{Y1} \coloneqq rac{F_{R1} \cdot X_1 + F_{a1} \cdot rac{d_{T1}}{2}}{\left(X_1 + X_2
ight)} = 0.626 \ \emph{kN} \hspace{1cm} B_{Z1} \coloneqq rac{F_{t1} \cdot X_1}{\left(X_1 + X_2
ight)} = 0.827 \ \emph{kN}$$

$$A_{Y1} := F_{R1} - B_{Y1} = -0.049 \text{ kN}$$
 $A_{Z1} := F_{t1} - B_{Z1} = 0.664 \text{ kN}$

$$A_{R1} = \sqrt[2]{A_{Y1}^2 + A_{Z1}^2} = 0.666 \ \mathbf{kN}$$

$$B_{R1} := \sqrt[2]{B_{Y1}^2 + B_{Z1}^2} = 1.038 \text{ kN}$$

 $A_{R1} < B_{R1}$ A ist das Festlager aufgrund der kleineren radialen Belastung

$$A_{X1} := -F_{a1} = -0.543 \text{ kN}$$
 $B_{X1} := 0 \text{ kN}$

Schnittgrößenverläufe Antriebswelle

Berechnung für XY-Ebene:

$$s_{1max} \coloneqq X_1 = 33$$
 mm $s_{1min} \coloneqq 0$ mm $s_{2max} \coloneqq X_2 = 26.5$ mm

$$s_{2min} \coloneqq 0$$
 mm

positives Schnittufer

$$F_N := -A_{X1} = 0.543 \ kN$$

$$F_{QY} := A_{Y1} = -0.049 \ kN$$

negatives Schnittufer

$$F_N = 0$$

$$F_{OY} := -B_{Y1} = -0.626 \ kN$$

 $M_{BZ}(x) \coloneqq B_{V1} \cdot s_2$

$$M_{BZmax}(x) \coloneqq B_{Y1} \cdot s_{2max} = 16.596 \ \textit{N} \cdot \textit{m}$$

 $M_{BZmin}(x) := B_{Y1} \cdot s_{2min} = 0 \ \textbf{N} \cdot \textbf{m}$

Berechnung für XZ-Ebene:

positives Schnittufer

$$F_{QZ} := A_{Z1} = 0.664 \ kN$$

$$M_{BY}(x) \coloneqq A_{Z1} \cdot s_1$$
 $M_{BYmin}(x) \coloneqq A_{Z1} \cdot s_{1min} = 0 \ \textbf{N} \cdot \textbf{m}$ $M_{BYmax}(x) \coloneqq A_{Z1} \cdot s_{1max} = 21.922 \ \textbf{N} \cdot \textbf{m}$

negatives Schnittufer

$$F_{QZ} = -B_{Z1} = -0.827 \text{ kN}$$

$$M_{BY}(x) \coloneqq B_{Z1} \cdot s_1$$
 $M_{BYmin}(x) \coloneqq B_{Z1} \cdot s_{2min} = 0 \ \textbf{N} \cdot \textbf{m}$ $M_{BYmax}(x) \coloneqq B_{Z1} \cdot s_{2max} = 21.922 \ \textbf{N} \cdot \textbf{m}$

$$M_{Bmax1} := \sqrt[2]{(M_{BYmax})^2 + (M_{BZmax})^2} = 27.496 \ N \cdot m$$

$$\label{eq:mit_max} \text{mit} \quad M_{BYmax} \!=\! 21.922 \; \textbf{\textit{N}} \cdot \textbf{\textit{m}} \quad \text{ und } \quad M_{BZmax} \!=\! 16.596 \; \textbf{\textit{N}} \cdot \textbf{\textit{m}}$$

Der Maximalwert wurde hier entsprechend der Schwachstelle der Welle (mit einem pinken "X" in der Isometrie-Ansicht markiert) für die folgende Festigkeitsberechnung ermittelt

Lagerkräfte Vorgelegewelle

Freischnitt Vorgelegewelle

Wirkabstände

$$X_3 := 36.5 \ mm$$
 $X_4 := 33 \ mm$ $X_5 := 49 \ mm$

$$X_{4} \coloneqq 33 \; \mathbf{mn}$$

$$X_5 \coloneqq 49 \ mm$$

$$A_{Y2} := -F_{R2} - B_{Y2} - F_{R3} = 1.394$$
 kN

$$B_{Z2} := \frac{F_{t2} \cdot X_3 - F_{t3} \cdot (X_4 + X_5)}{X_4} = -9.628 \text{ kN}$$

$$A_{Z2} \coloneqq -F_{t2} - B_{Z2} - F_{t3} \equiv 3.598 \text{ kN}$$

$$A_{R2} := \sqrt[2]{{A_{Y2}}^2 + {A_{Z2}}^2} = 3.858 \text{ kN}$$

$$B_{R2} := \sqrt[2]{B_{Y2}^2 + B_{Z2}^2} = 10.325 \text{ kN}$$

 $A_{R2} < B_{R2}$

A ist das Festlager aufgrund der kleineren radialen Belastung

$$A_{X2} := F_{a3} - F_{a2} = 1.109 \text{ kN}$$
 $B_{X2} := 0 \text{ kN}$

$$B_{\mathbf{x}_2} = 0 \ \mathbf{k} \mathbf{N}$$

Schnittgrößenverläufe Vorgelegewelle

$$s_{3max} \coloneqq X_3 = 36.5 \ \textit{mm}$$
 $s_{3min} \coloneqq 0 \cdot \textit{mm}$

$$s_{3min} \coloneqq 0 \cdot mm$$

$$s_{4max} \coloneqq X_4 = 33 \ mm$$
 $s_{4min} \coloneqq 0 \ mm$

$$s_{4min} \coloneqq 0$$
 mm

$$s_{5max} \coloneqq X_5 = 49 \ mm$$

$$s_{5min} \coloneqq 0$$
 mm

Berechnung für XZ-Ebene:

1. positives Schnittufer

$$F_N := F_{a2} = 0.543 \ kN$$

$$F_{QY} = -F_{R2} = -0.578 \ kN$$

$$M_{BZ}(x) \coloneqq -F_{R2} \cdot s_3 - F_{a2} \cdot \frac{d_{T2}}{2}$$

$$M_{BZmin}(x) \coloneqq -F_{R2} \cdot s_{3min} - F_{a2} \cdot \frac{d_{T2}}{2} = -61.528 \ N \cdot m$$

$$\begin{split} M_{BZmin}(x) &\coloneqq -F_{R2} \cdot s_{3min} - F_{a2} \cdot \frac{d_{T2}}{2} = -61.528 \ \textbf{\textit{N}} \cdot \textbf{\textit{m}} \\ M_{BZmax}(x) &\coloneqq -F_{R2} \cdot s_{3max} - F_{a2} \cdot \frac{d_{T2}}{2} = -82.615 \ \textbf{\textit{N}} \cdot \textbf{\textit{m}} \end{split}$$

2. positives Schnittufer

$$F_N := F_{a2} - A_{X2} = -0.566 \ kN$$

$$F_{QY} \coloneqq -F_{R2} - A_{Y2} = -1.971 \text{ kN}$$

$$M_{BZ}(x) := F_{R2} \cdot (s_3 + s_4) - A_{Y2} \cdot s_3 - F_{a2} \cdot \frac{d_{T2}}{2}$$

$$\begin{split} M_{BZmin}(x) &\coloneqq F_{R2} \cdot \left(s_{3max} + s_{4min}\right) - A_{Y2} \cdot s_{3max} - F_{a2} \cdot \frac{d_{T2}}{2} = -91.306 \ \textit{N} \cdot \textit{m} \\ M_{BZmax}(x) &\coloneqq F_{R2} \cdot \left(s_{3max} + s_{4max}\right) - A_{Y2} \cdot s_{3max} - F_{a2} \cdot \frac{d_{T2}}{2} = -72.241 \ \textit{N} \cdot \textit{m} \end{split}$$

1. negatives Schnittufer

$$F_N := F_{a3} = 1.652 \ kN$$

$$F_{OY} := F_{R3} = 1.758 \ kN$$

$$M_{BZ}(x) := -F_{R3} \cdot s_5 - F_{a3} \cdot \frac{d_{T3}}{2} = -61.528 \ \textit{N} \cdot \textit{m}$$

$$M_{BZmin}(x) := -F_{R3} \cdot s_{5min} - F_{a3} \cdot \frac{d_{T3}}{2} = -61.528 \ N \cdot m$$

$$M_{BZmax}(x) := -F_{R3} \cdot s_{5max} - F_{a3} \cdot \frac{d_{T3}}{2} = -147.668 \ N \cdot m$$

Berechnung der XZ-Ebene:

1. positives Schnittufer

$$F_{QZ} = -F_{t2} = -1.492 \text{ kN}$$

$$M_{BY}(x) \coloneqq -F_{t2} \cdot s_3$$

$$M_{BVmin}(x) \coloneqq -F_{t2} \cdot s_{3min} = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$

$$M_{BYmax}(x) := -F_{t2} \cdot s_{3max} = -54.443 \ N \cdot m$$

2. positives Schnittufer

$$F_{OZ} := A_{Z2} - F_{t2} = 2.106 \text{ kN}$$

$$M_{BY}(x)\!\coloneqq\!-F_{t2}\!\cdot\!\left(s_3\!+\!s_4\right)\!+\!A_{Z2}\!\cdot\!s_4$$

$$M_{BYmin}(x) := -F_{t2} \cdot (s_{3max} + s_{4min}) + A_{Z2} \cdot s_{4min} = -54.443 \ \textbf{N} \cdot \textbf{m}$$

$$M_{BYmax}(x) := -F_{t2} \cdot (s_{3max} + s_{4max}) + A_{Z2} \cdot s_{4max} = 15.065 \ \textit{N} \cdot \textit{m}$$

1. negatives Schnittufer

$$F_{QZ} = -F_{t3} = -4.539 \text{ kN}$$

$$M_{BY}(x) \coloneqq -F_{t3} \cdot s_5$$

$$M_{BYmin}(x) := -F_{t3} \cdot s_{5min} = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$

$$M_{BYmin}(x) := -F_{t3} \cdot s_{5max} = -222.394 \ N \cdot m$$

$$M_{Bmax2} := \sqrt[2]{(M_{BYmax})^2 + (M_{BZmax})^2} = 266.955 \ N \cdot m$$

mit
$$M_{BYmax} = -222.394 \, \textbf{N} \cdot \textbf{m}$$
 und

$$M_{BZmax} = -147.668 \, \boldsymbol{N \cdot m}$$

Der Maximalwert wurde hier entsprechend der Schwachstelle der Welle (mit einem pinken "X" in der Isometrie-Ansicht markiert) für die folgende Festigkeitsberechnung ermittelt

Schnittgrößenverläufe Abtriebswelle

Berechnung der XY-Ebene:

$$s_{6max} = X_6 = 41.5 \ mm$$

$$s_{6min} = 0$$
 mm $s_{7max} = X_7 = 52$ mm

$$s_{7min} \coloneqq 0 \ \boldsymbol{mm}$$

positives Schnittufer:

$$F_N = 0$$

$$F_{OY} := A_{Y3} = 2.928 \text{ kN}$$

$$M_{BZ}(x) \coloneqq A_{Y3} \cdot s_6$$

$$M_{BZmin}(x) \coloneqq A_{Y3} \cdot s_{6min} = 0 \ \textbf{N} \cdot \textbf{m}$$

 $M_{BZmax}(x) \coloneqq A_{Y3} \cdot s_{6max} = 121.527 \ \textbf{N} \cdot \textbf{m}$

negatives Schnittufer:

$$F_N := B_{X3} - F_B = 1.652 \ kN$$

$$F_{OY} := -B_{Y3} = 1.17 \text{ kN}$$

$$M_{BZ}(x)\!\coloneqq\!B_{Y3}\!\cdot\!s_7$$

$$\begin{split} &M_{BZmin}(x) \coloneqq &B_{Y3} \bullet s_{7min} = 0 \ \textbf{N} \bullet \textbf{m} \\ &M_{BZmax}(x) \coloneqq &B_{Y3} \bullet s_{7max} = -60.861 \ \textbf{N} \bullet \textbf{m} \end{split}$$

Berechnung der XZ-Ebene:

positives Schnittufer

$$F_{OZ} := A_{Z3} = 2.524 \ kN$$

$$M_{BY}(x) \coloneqq A_{Z3} \cdot s_6$$

$$M_{BYmin}(x) \coloneqq A_{Z3} \cdot s_{6min} = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$

 $M_{BYmax}(x) \coloneqq A_{Z3} \cdot s_{6max} = 104.753 \ \boldsymbol{N} \cdot \boldsymbol{m}$

negatives Schnittufer

$$F_{QZ} = -B_{Z3} = -2.014 \ kN$$

$$M_{BY}(x) \coloneqq B_{Z3} \cdot s_7$$

$$M_{BYmin}(x) \coloneqq B_{Z3} \cdot s_{7min} = 0 \ \textbf{N} \cdot \textbf{m}$$

 $M_{BYmax}(x) \coloneqq B_{Z3} \cdot s_{7max} = 104.753 \ \textbf{N} \cdot \textbf{m}$

$$M_{Bmax3} := \sqrt[2]{(M_{BYmax})^2 + (M_{BZmax})^2} = 121.15 \ N \cdot m$$

Der Maximalwert wurde hier entsprechend der Schwachstelle der Welle (mit einem pinken "X" in der Isometrie-Ansicht markiert) für die folgende Festigkeitsberechnung ermittelt

Jade Hochschule Wilhelmshaven

 $\nu_1 = 3$ aufgrund von Rillenkugellager

Antriebswelle
$$n_1 = 2000 \cdot \frac{1}{min}$$
 $d_{W1} = 30 \ mm$

$$P_{1L} := |B_{R1}| = 1.038 \text{ kN}$$
 $P_{1F} := 1.5 \text{ kN}$

$$c_{erf} \coloneqq P_{1L} \sqrt[\nu_1]{\frac{n_1 \cdot 10000 \cdot hr}{10^6}} = 11.026 \ \textbf{kN} \qquad c_{erf} \coloneqq P_{1F} \sqrt[\nu_1]{\frac{n_1 \cdot 10000 \cdot hr}{10^6}} = 15.94 \ \textbf{kN}$$

Berechnung Lagerlebensdauer Antriebswelle

$$c_{6006}\coloneqq 13.8$$
 kN $c_{0.6206}\coloneqq 20.3$ kN $c_{0.6206}\coloneqq 11.2$ kN

$$l_{10h;6006} \coloneqq \frac{10^6}{n_1} \cdot \left(\frac{c_{6006}}{P_{1L}}\right)^{\nu_1} = 19606 \ \textit{hr} \qquad \qquad \frac{\left|A_{X1}\right|}{A_{R1}} = 0.815 \qquad \frac{\left|A_{X1}\right|}{c_{0.6206}} = 0.048$$

$$0.794 > e$$
 d.h. $X_{1F} = 0.56$

$$Y_{1F} = 1.8$$

$$P_{6206} := X_{1F} \cdot A_{R1} + Y_{1F} \cdot |A_{X1}| = 1.35 \ \textit{kN}$$

$$l_{10h;6206}\!\coloneqq\!rac{10^6}{n_1}\!\cdot\!\left(\!rac{c_{6206}}{P_{6206}}\!
ight)^{\!
u_1}\!\!=\!28321$$
 hr

gewählt: NU 308 gewählt: NUP 308		20	00.		
Loslager Festlager $P_{2L} \coloneqq 11.269 \; kN$ $P_{2F} \coloneqq 10 \; kN$ $P_{2F} \coloneqq 10 \; kN$ $P_{2F} \coloneqq 10 \; kN$ $P_{2F} \coloneqq P_{2E} = 10 \; kN$ $P_{2F} \coloneqq P_{2F} = 10 \; kN$ $P_{2F} \equiv P_{2F} \equiv P_{2F} = 10 \; kN$ $P_{2F} \equiv P_{2F} \equiv P_{2F} = 10 \; kN$ $P_{2F} \equiv P_{2F} \equiv P_{2F} = 10 \; kN$ $P_{2F} \equiv P_{2F} \equiv P_$	Vorgologowalla	20	$\frac{1}{min}$	1	d - 40
Loslager Festlager $P_{2L} \coloneqq 11.269 \; kN$ $P_{2F} \coloneqq 10 \; kN$ $P_{2F} \equiv 10 \; kN$ $P_{2F} $	<u>vorgelegewelle</u>	n_2 :=—	$\phantom{00000000000000000000000000000000000$	\overline{min}	$a_{W2} = 40 \ mm$
$P_{2L} \coloneqq 11.269 \ \textbf{kN}$ $P_{2F} \coloneqq 10 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2E} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$ $P_{2F} \coloneqq P_{2F} \bigvee_{i=1}^{\nu_{i}} \sqrt{\frac{n_{2} \cdot 10000 \cdot hr}{10^{6}}} = 70.802 \ \textbf{kN}$			12		
$c_{erf} \coloneqq P_{2L} \bigvee_{v_1} \frac{n_2 \cdot 10000 \cdot hr}{10^6} = 79.787 \text{ kN} \qquad c_{erf} \coloneqq P_{2F} \bigvee_{v_1} \frac{n_2 \cdot 10000 \cdot hr}{10^6} = 70.802 \text{ kN}$ gewählt: NU 308 gewählt: NUP 308 $ \text{Berechnung Lagerlebensdauer Vorgelegewelle} $ $v_2 \coloneqq \frac{10}{3} \text{aufgrund von Rollenlager} $ $c_{NU308} \coloneqq 93 \text{ kN} \qquad c_{NUP308} \coloneqq 93 \text{ kN} $ $d_{10h;NU308} \coloneqq \frac{10^6}{n_2} \cdot \left(\frac{c_{NU308}}{P_{2L}}\right)^{v_2} = 32002 \text{ hr} \qquad \frac{A_{X2}}{A_{R2}} = 0.287 $ GG. 14.5a $ \text{nach TB 14-3A} $ $ 0.079 < e \text{d.h.} \qquad X_{NUP308} \coloneqq 1 $ $ Y_{NUP308} \coloneqq 0 $ $ P_{NUP308} \coloneqq X_{NUP308} \cdot A_{R2} + Y_{NUP308} \cdot A_{X2} = 3 $	Loslager			Festlager	
Berechnung Lagerlebensdauer Vorgelegewelle $\nu_2 \coloneqq \frac{10}{3} \text{aufgrund von Rollenlager}$ $c_{NU308} \coloneqq 93 \text{ kN}$ $c_{NUP308} \coloneqq 93 \text{ kN}$ $l_{10h;NU308} \coloneqq \frac{10^6}{n_2} \cdot \left(\frac{c_{NU308}}{P_{2L}}\right)^{\nu_2} = 32002 \text{ hr}$ $\frac{A_{X2}}{A_{R2}} = 0.287$ Gl. 14.5a nach TB 14-3A $0.079 < e \text{d.h.} X_{NUP308} \coloneqq 1$ $Y_{NUP308} \coloneqq 0$ $P_{NUP308} \coloneqq X_{NUP308} \cdot A_{R2} + Y_{NUP308} \cdot A_{X2} = 3.$	$P_{2L} \coloneqq 11.269 \ \mathbf{kN}$			$P_{2F} = 10 \text{ kN}$	r
gewählt: NU 308 gewählt: NUP 308	$ u_1 \setminus n_2 \cdot 1$	10000 • <i>hr</i>		$ u_1 $	$n_2 \cdot 10000 \cdot hr$
Berechnung Lagerlebensdauer Vorgelegewelle $\nu_2\coloneqq\frac{10}{3}\text{aufgrund von Rollenlager}$ $c_{NU308}\coloneqq93\text{ kN}$ $c_{NUP308}\coloneqq93\text{ kN}$ $l_{10h;NU308}\coloneqq\frac{10^6}{n_2}\cdot\left(\frac{c_{NU308}}{P_{2L}}\right)^{\nu_2}=32002\text{ hr}$ $\frac{A_{X2}}{A_{R2}}=0.287$ Gl. 14.5a nach TB 14-3A $0.079\lessdot e\text{d.h.}$ $X_{NUP308}\coloneqq1$ $Y_{NUP308}\coloneqq0$ $P_{NUP308}\coloneqq X_{NUP308}\cdot A_{R2}+Y_{NUP308}\cdot A_{X2}=3.$	c_{erf} := P_{2L} $\sqrt{-\frac{2}{m}}$	10 ⁶	=79.787 kN	$c_{erf} = P_{2F}$	$\sqrt{\frac{2}{10^6}} = 70.802 \ kN$
Berechnung Lagerlebensdauer Vorgelegewelle $\nu_2\coloneqq\frac{10}{3}\text{aufgrund von Rollenlager}$ $c_{NU308}\coloneqq93\text{ kN}$ $c_{NUP308}\coloneqq93\text{ kN}$ $l_{10h;NU308}\coloneqq\frac{10^6}{n_2}\cdot\left(\frac{c_{NU308}}{P_{2L}}\right)^{\nu_2}=32002\text{ hr}$ $\frac{A_{X2}}{A_{R2}}=0.287$ Gl. 14.5a nach TB 14-3A $0.079\lessdot e\text{d.h.}$ $X_{NUP308}\coloneqq1$ $Y_{NUP308}\coloneqq0$ $P_{NUP308}\coloneqq X_{NUP308}\cdot A_{R2}+Y_{NUP308}\cdot A_{X2}=3.$	gewählt: NU 308			gewählt: NU	IP 308
$c_{NU308} \coloneqq 93 \; extbf{kN}$ $c_{NUP308} \coloneqq 93 \; extbf{kN}$ $l_{10h;NU308} \coloneqq \frac{10^6}{n_2} \cdot \left(\frac{c_{NU308}}{P_{2L}}\right)^{\nu_2} = 32002 \; extbf{hr}$ $\frac{A_{X2}}{A_{R2}} = 0.287$ GI. 14.5a nach TB 14-3A $0.079 < e \; ext{d.h.}$ $X_{NUP308} \coloneqq 1$ $Y_{NUP308} \coloneqq 0$ $P_{NUP308} \coloneqq X_{NUP308} \cdot A_{R2} + Y_{NUP308} \cdot A_{X2} = 3.$	Berechnung Lag	jerlebens	dauer Vorgelegev	welle	
$c_{NU308} \coloneqq 93 \; extbf{kN}$ $c_{NUP308} \coloneqq 93 \; extbf{kN}$ $l_{10h;NU308} \coloneqq \frac{10^6}{n_2} \cdot \left(\frac{c_{NU308}}{P_{2L}}\right)^{\nu_2} = 32002 \; extbf{hr}$ $\frac{A_{X2}}{A_{R2}} = 0.287$ GI. 14.5a nach TB 14-3A $0.079 < e \; ext{d.h.}$ $X_{NUP308} \coloneqq 1$ $Y_{NUP308} \coloneqq 0$ $P_{NUP308} \coloneqq X_{NUP308} \cdot A_{R2} + Y_{NUP308} \cdot A_{X2} = 3.$	10 aufari	ınd von Po	llonlagor		
$l_{10h;NU308} \coloneqq \frac{10^6}{n_2} \cdot \left(\frac{c_{NU308}}{P_{2L}}\right)^{\nu_2} = 32002 \; hr \qquad \qquad \frac{A_{X2}}{A_{R2}} = 0.287$ GI. 14.5a $ \qquad \qquad \text{nach TB 14-3A} $ $ \qquad \qquad 0.079 < e \text{d.h.} \qquad X_{NUP308} \coloneqq 1 $ $ \qquad \qquad Y_{NUP308} \coloneqq 0 $ $ \qquad \qquad P_{NUP308} \coloneqq X_{NUP308} \cdot A_{R2} + Y_{NUP308} \cdot A_{X2} = 3. $	$\nu_2 = {3}$ autyru	ind von Ko	mernager		
Gl. 14.5a	$c_{NU308}\!\coloneqq\!93$ kN			$c_{NUP308} \coloneqq 93$	kN
Gl. 14.5a	10^{6}	$\langle c_{NU308} angle^{ u_2}$	_ 22002 hm	A_{X2} $-$ 0 207	
nach TB 14-3A $0.079 < e \text{d.h.} \qquad X_{NUP308} \coloneqq 1$ $Y_{NUP308} \coloneqq 0$ $P_{NUP308} \coloneqq X_{NUP308} \cdot A_{R2} + Y_{NUP308} \cdot A_{X2} = 3.$		$\overline{\left P_{2L} ight }$	= 32002 //	$\overline{A_{R2}}$ =0.281	
$Y_{NUP308}\!\coloneqq\! 0$ $P_{NUP308}\!\coloneqq\! X_{NUP308}\!\cdot\! A_{R2}\!+\!Y_{NUP308}\!\cdot\! A_{X2}\!=\!3.$	Gl. 14.5a			nach TB 14-	3A
$Y_{NUP308}\!\coloneqq\! 0$ $P_{NUP308}\!\coloneqq\! X_{NUP308}\!\cdot\! A_{R2}\!+\!Y_{NUP308}\!\cdot\! A_{X2}\!=\!3.$				0.079 < e	d.h. $X_{NUP308} \coloneqq 1$
$P_{NUP308} \coloneqq X_{NUP308} \cdot A_{R2} + Y_{NUP308} \cdot A_{X2} = 3.$					
					- NUP308 V
l_{10h1F} := $\dfrac{10^6}{n_1} \cdot \left(\dfrac{c_{6206}}{P_{6206}}\right)^{ u_2}$ = $69899~hr$				$P_{NUP308} \coloneqq X_1$	$A_{NUP308} \cdot A_{R2} + Y_{NUP308} \cdot A_{X2} = 3$
$l_{10h1F}\coloneqq\overline{n_1}\cdot\left \overline{P_{6206}} ight =69899$ hr				106	$\left(\left.c_{6206}^{} ight)^{ u_{2}}$
				$t_{10h1F} \coloneqq {n_1}$	$\left \frac{1}{P_{6206}} \right = 69899 \ \textit{nr}$

Vorauswahl Lager	groben Al	oti iebsweii		
<u>Abtriebswelle</u>	2000•		4	
<u>Abtriebswelle</u>	n_3 :=	= 199.	.559	d_{W3} = 55 $m{mm}$
	i_{g}	es	min	,,,,
Loslager			Festlager	
$P_{3L} := A_{R3} = 3.866 kL$	V		$P_{3F} \coloneqq 10$	kN
$c_{erf} \coloneqq P_{3L} \sqrt[\nu_1]{rac{n_3 \cdot 100}{100}}$	$\frac{000 \cdot hr}{0.6} = 1$	9.055 kN	$c_{erf} \!\coloneqq\! P_{3F}$	$\sqrt[\nu_1]{rac{n_3 \cdot 10000 \cdot hr}{10^6}} = 49.288 \ kN$
gewählt: 6011			gewählt:	
Berechnung Lagei	lebensdaı	uer Abtrieb	swelle	
$c_{6011} \coloneqq 29.6 \ kN$			$c_{6311} = 74$.1 kN $c_{0;6311}\!\coloneqq\!45$ kN
$l_{10h;6011}\!\coloneqq\!rac{10^6}{n_3}\!\cdot\!\left(\!rac{c_{601}}{P_{3i}}\! ight)$	$\left(\frac{1}{L}\right)^{\nu_1} = 3748$	3 <i>hr</i>	$\frac{B_{X3}}{B_{R3}} = 1.9$	$\frac{B_{X3}}{c_{0;6311}} = 0.103$
Gl. 14.5a			nach TB 1	L4-3A
			1.879 > e	d.h. $X_{6311} = 0.56$
				$Y_{6311} = 1.4$
			$P_{6311} \coloneqq X_6$	$_{6311} \cdot B_{R3} + Y_{6311} \cdot B_{X3} = 7.817$ kl
			$l_{10h1F} \coloneqq \frac{1}{r}$	$\frac{0^6}{n_3} \cdot \left(\frac{c_{6311}}{P_{6311}}\right)^{\nu_1} = 71129 \ hr$
Übersicht der gew	rählten La	ger		
Welle			er Festlager	Lebens dauer
		(hr)		(hr)
Antriebs welle	6006	19606	6206	28321
Vorgelegewelle	NU308	32002	NUP308	69899
Vorgetegeweite	1,0000			

Festigkeitsnachweise

Material der Wellen: 42CrMo4

$$R_m \coloneqq 1100 \ \frac{N}{mm^2}$$
 $R_{p0.2} \coloneqq 900 \ \frac{N}{mm^2}$ $R_z \coloneqq 6 \ \mu m$

$$R_{p0.2} = 900 \frac{N}{mm}$$

$$R_z = 6 \ \mu m$$

$$\sigma_{bWN} = 550 \; rac{N}{mm^2} \qquad au_{tWN} = 330 \; rac{N}{mm^2}$$

$$\tau_{tWN} = 330 \frac{N}{mm^2}$$

Einflussfaktoren (gelten für alle drei Wellen gleich):

Oberflächenverfestigung

$$K_V = 1.2$$

$$K_{O\sigma} \coloneqq 1 - 0.22 \log \left(\frac{R_z}{1 \ \mu m}\right) \cdot \left(\log \left(\frac{R_m}{20 \ \frac{N}{mm^2}}\right) - 1\right) = 0.873$$

$$K_{O\tau} := 0.575 \cdot K_{O\sigma} + 0.425 = 0.927$$

Antriebswelle

$$d_{W1} = 30 \ mm$$

 $t_{1:W1} \coloneqq 4 \ \boldsymbol{mm}$

Aufgrund der Passfederverbindung wird der Querschnitt der Antriebswelle aufgrund der Kerbwirkung geschwächt

$$d_1 := d_{W1} - t_{1;W1} = 26 \ mm$$

Schwachstelle der Antriebswelle befindet sich beim Zahnrad_1 (mit "Pinker"-Farbe in der Isometrie-Darstellung markiert)

Statischer Festigkeitsnach	chweis	nach Bild 3.30	
vorhandene Spannunge	n:		
$W_{B1} = 0.012 \cdot \left(d_{W1} + d_1\right)$	$^{3} = (2.107 \cdot 10^{3}) \ mm^{3}$	$W_{T1} = 0.2 \cdot d_1^{3} = (3.518)$	$5 \cdot 10^3$) mm^3
$M_{Bmax1} = 27.496 \ \textit{N} \cdot \textit{m}$		$M_{tmax1} \coloneqq 50 \; extbf{ extit{N}} ullet extbf{ extit{m}}$	
$\sigma_{bmax1} \coloneqq \frac{M_{Bmax1}}{W_{B1}} = 13.0$	$47 \frac{N}{mm^2}$	$\tau_{tmax1} \coloneqq \frac{M_{tmax1}}{W_{T1}} = 14.2$	$24 \frac{N}{mm^2}$
Technologischer Größen	einflussfaktor $K_{t1} \coloneqq 1$ –	$0.26 \log \left(\frac{d_1}{16 \ \textit{mm}} \right) = 0.94$.5
Bauteilfestigkeit		ТВ	3-11a
$\sigma_{bF1} \coloneqq 1.2 \cdot R_{p0.2} \cdot K_{t1} = 1$	$020.792 \frac{N}{mm^2}$		
$ au_{TF1}\!\coloneqq\!1.2\!ullet\!R_{p0.2}\!ullet\!rac{K_{t1}}{^2\!\sqrt{3}}\!=\!$	$589.355 \frac{N}{mm^2}$		
Gesamtsicherheit:	$S_{F1} \coloneqq \frac{1}{\sqrt[2]{\left(\frac{\sigma_{bmax1}}{\sigma_{bF1}}\right)^2 + \left(\frac{\sigma_{bmax1}}{\sigma_{bF1}}\right)^2}}$	${\tau_{tmax1}}\right)^{2} = 36.616$	
	$S_{F1} {>} S_{Fmin}$ Die Ar	ntriebswelle ist statisch fes	st
	$mit S_{Fmin} \coloneqq 2 nach^{ -}$	ГВЗ-14b	

vorhandene Spannunge	n:			
$K_A \cdot M_{Bmax1}$	N	K	$_{A}$ $\cdot M_{tmax1}$	N
$\sigma_{ba1} \coloneqq \frac{K_A \cdot M_{Bmax1}}{W_{B1}} = 26$	mm^2	$ au_{ta1}$:=	$\frac{A \cdot M_{tmax1}}{W_{T1}} = 28$	$.448 \phantom{00000000000000000000000000000000000$
$\sigma_{bm1} \coloneqq 0 \; rac{N}{mm^2}$		$ au_{tm1}\!\coloneqq\!0$		
716116			116116	
		vereinfa	chte Berechnui	ng siehe S.73
-influentalstavan				
Einflussfaktoren			/ 1	
Technologischer Größ	Beneinflussfaktor	$K_{T1} = 1 - 0.26 \text{ lo}$	$g\left(\frac{a_1}{16 \ mm}\right) = 0$	0.945
Kerbwirkungszahl		$eta_{\mathit{KB1}} \coloneqq 2.5$	TB 3-09l)
		$eta_{KT1} \coloneqq 2.3$		
Geometrische Größer	neinflussfaktor		/ 4 \	
		log	$5\left[\frac{a_1}{7.5 \text{ mm}}\right]$	
		$K_{G1} \coloneqq 1 - 0.2 \stackrel{\log}{\longrightarrow}$	$\frac{(7.8 \text{ mint})}{\log(20)} = 0$	0.917
			` '	3-11c
Gesamteinflussfaktor Konstruktionsfaktor	/			
$\beta_{KT1} + 1$	1 -2 156	$\kappa \leftarrow \beta_{KB1}$	1 1 1	- 2 303
$K_{DT1} \coloneqq \left(\frac{\beta_{KT1}}{K_{G1}} + \frac{1}{K_{O\tau}} - 1\right)$	$K_V = 2.130$	$K_{DB1} = \left(\overline{K_{G1}} + \overline{K_{G1}}\right)$	$K_{O\sigma}$ K_V	- 2.393
			01	
			Gl.	3.16
Gestaltwechselfestigkeit				
σ_{bWN}	N N	$ au_{tW}$	N 144 004	N
$\sigma_{bGW1} := K_{T1} \cdot \frac{\sigma_{bWN}}{K_{DB1}} = 21$	$\frac{17.251}{mm^2}$	$ au_{tGW1} \coloneqq K_{T1} \cdot \overline{K_{D1}}$	$-=144.694 - $ r_1	m^2
		4		
Gesamtsicherheit:	$S_{D1} := {\sqrt[2]{\left(\frac{1}{\sigma}\right)}}$	$\left(\frac{\sigma_{ba1}}{\sigma_{bGW1}}\right)^2 + \left(\frac{\tau_{ta1}}{\tau_{tGW1}}\right)^2$	=4.34	
S_Z := 1.2 S_{Dmin} :	, ,	,		
		S_{D_erf} Die Antr		

Jade Hochschule Wilhelmshaven

Vorgelegewelle

$$d_{W2} \coloneqq 40 \ \boldsymbol{mm}$$

$$t_{1:W2} = 2.5 \ \boldsymbol{mm}$$

$$d_2 = d_{W2} - t_{1:W2} = 37.5 \ mm$$

Schwachstelle der Vorgelegewelle befindet sich beim Loslager (mit "Pinker"-Farbe in der Isometrie-Darstellung markiert)

Statischer Festigkeitsnachweis

nach Bild 3.30

vorhandene Spannungen:

$$W_{B2} := \frac{\pi}{32} \cdot d_{W2}^3 = (6.283 \cdot 10^3) \ \textit{mm}^3$$

$$W_{T2} := \frac{\pi}{16} \cdot d_{W2}^3 = (1.257 \cdot 10^4) \ mm^3$$

$$M_{Bmax2} = 266.955 \ \textit{N} \cdot \textit{m}$$

$$M_{tmax2} = 50 \ \textit{N} \cdot \textit{m} \cdot i_{12} = 169.048 \ \textit{N} \cdot \textit{m}$$

$$\sigma_{bmax2} \coloneqq \frac{M_{Bmax2}}{W_{B2}} = 42.487 \; \frac{\textit{N}}{\textit{mm}^2}$$

$$\tau_{tmax2} \coloneqq \frac{M_{tmax2}}{W_{T2}} = 13.452 \frac{N}{mm^2}$$

Technologischer Größeneinflussfaktor
$$K_{t2} \coloneqq 1 - 0.26 \, \log \left(\frac{d_2}{16 \, \textit{mm}} \right) = 0.904$$

TB 3-11a

Bauteilfestigkeit

$$\sigma_{bF2} \coloneqq 1.2 \cdot R_{p0.2} \cdot K_{t2} = 976.129 \frac{N}{mm^2}$$

$$au_{TF2} \coloneqq 1.2 \cdot R_{p0.2} \cdot \frac{K_{t2}}{\sqrt[2]{3}} = 563.568 \cdot \frac{N}{mm^2}$$

$$S_{F2} \coloneqq \frac{1}{\sqrt[2]{\left(\frac{\sigma_{bmax2}}{\sigma_{bF2}}\right)^2 + \left(\frac{\tau_{tmax2}}{\tau_{TF2}}\right)^2}} = 20.144$$

$$S_{F2}{>}S_{Fmin}$$

Die Antriebswelle ist statisch fest

$$\mathsf{mit} \quad S_{Fmin} \coloneqq 2 \quad \mathsf{nach} \; \mathsf{TB3-14b}$$

orhandene Spannunge	n:			
$K_{A} {m \cdot} M_{Bmax2}$	N	K	$I_A {ullet} M_{tmax2}$	N N
$\sigma_{ba2} \coloneqq \frac{K_A \cdot M_{Bmax2}}{W_{B2}} = 84$	$\frac{1.974}{mm^2}$	$ au_{ta2}$:=-	$\overline{W_{T2}}$	$=26.905 \frac{N}{mm^2}$
N			N	
$\sigma_{bm2} \coloneqq 0 \; rac{N}{mm^2}$		$ au_{tm2}\coloneqq 0$	$rac{m{N}}{m{m}m{m}^2}$	
		vereinfa	chte Berech	nnung siehe S.73
Einflussfaktoren				
			/ d	
Technologischer Grö	Beneinflussfaktor	$K_{T2} = 1 - 0.26 \text{ lo}$	$\log \left(rac{a_2}{16 \ m{mm}} ight)$	=0.904
Kerbwirkungszahl		eta_{KB2} := 2.9		
ixer bwill tall gozarii		$eta_{KT2} \coloneqq 1.9$		
		$\rho_{KT2} = 1.9$		
				TB 3-09b
0 1:10:0	. a . c			
Geometrische Größe	neinflussfaktor	log	d_2	
		$K_{G2} \coloneqq 1 - 0.2$ \longrightarrow	$(7.5 \mathbf{mm})$	=0.893
Gesamteinflussfaktor	-/		10g (20)	TB 3-11c
Konstruktionsfaktor	7			15 3 116
$_{K}$ $_{-}(\beta_{KT2}-1)$	1 1 -1 920	$_{K}$ (eta_{KB2})	1 1	1 _2 220
$K_{DT2} \coloneqq \left(\frac{\beta_{KT2}}{K_{G2}} + \frac{1}{K_{O\tau}}\right)$	$K_V = 1.839$	$K_{DB2} = \frac{1}{K_{G2}}$	$\overline{K_{O\sigma}}^{-1}$	$K_V = 2.829$
				Gl. 3.16
Gestaltwechselfestigkeit				
$\sigma_{bGW2} \coloneqq K_{T2} \cdot \frac{\sigma_{bWN}}{K_{DB2}} = 1$	75.745 N	$ au_{tGW2} \coloneqq K_{T2} oldsymbol{\cdot} rac{ au_{tW}}{K}$	$\frac{VN}{} = 162.14$	7 <u>N</u>
$oldsymbol{K}_{DB2}$	$m{mm}^z$	K_D	T2	mm²
		1		
Gesamtsicherheit:	$S_{D2} := {2 \left(\sigma \right)}$	$\left(\frac{\tau_{ba2}}{\sigma_{W2}}\right)^2 + \left(\frac{\tau_{ta2}}{\tau_{tGW2}}\right)^2$	=1.956	
	$\sqrt{\sigma_b}$	$\left \frac{1}{\sigma_{W2}} \right ^{-1} + \left \frac{1}{\sigma_{tGW2}} \right ^{-1}$		
$S_Z = 1.4$ S_{Dmin}	$\coloneqq 1.5$ S_{D_erf} :	$=S_{Dmin}ullet S_Z = 2.1$		
	$S_{D2} > S$, Die Vers	rologowallo	ist dauerfest

Jade Hochschule Wilhelmshaven

Abtriebswelle

 $d_{W3} = 55 \ mm$

Aufgrund der Passfederverbindung wird der Querschnitt der Antriebswelle aufgrund der

 $t_{1:W3} = 6 \ \boldsymbol{mm}$

Kerbwirkung geschwächt

$$d_3 = d_{W3} - t_{1:W3} = 49 \ mm$$

Schwachstelle der Abtriebswelle befindet sich beim Zahnrad_4 (mit "Pinker"-Farbe in der Isometrie-Darstellung markiert)

Statischer Festigkeitsnachweis

nach Bild 3.30

vorhandene Spannungen:

$$W_{B3} = 0.012 \cdot \left(d_{W3} + d_3\right)^3 = \left(1.35 \cdot 10^4\right) \ m{mm}^3$$

$$W_{T3} = 0.2 \cdot d_3^3 = (2.353 \cdot 10^4) \ mm^3$$

$$M_{Bmax3} = 121.15 \ N \cdot m$$

$$M_{tmax3} = 50 \, N \cdot m \cdot i_{ges} = 501.105 \, N \cdot m$$

$$\sigma_{bmax3} \coloneqq \frac{M_{Bmax3}}{W_{B3}} = 8.975 \; \frac{N}{\textit{mm}^2}$$

$$\boldsymbol{\tau_{tmax3}} \coloneqq \frac{\boldsymbol{M_{tmax3}}}{\boldsymbol{W_{T3}}} = 21.297 \ \frac{\boldsymbol{N}}{\boldsymbol{mm}^2}$$

Technologischer Größeneinflussfaktor $K_{t3} = 1 - 0.26 \log \left(\frac{d_3}{16 \ mm}\right) = 0.874$

TB 3-11a

Bauteilfestigkeit

$$\sigma_{bF3} := 1.2 \cdot R_{p0.2} \cdot K_{t3} = 943.51 \frac{N}{mm^2}$$

$$au_{TF3} \coloneqq 1.2 \cdot R_{p0.2} \cdot \frac{K_{t3}}{\sqrt[2]{3}} = 544.736 \frac{N}{mm^2}$$

$$S_{F3} \coloneqq \frac{1}{\sqrt[2]{\left(\frac{\sigma_{bmax3}}{\sigma_{bF3}}\right)^2 + \left(\frac{\tau_{tmax3}}{\tau_{TF3}}\right)^2}} = 24.853$$

$$S_{F3} > S_{Fmin}$$

Die Antriebswelle ist statisch fest

$$mit S_{Fmin} = 2$$
 nach TB3-14b

orhandene Spannungen	1:			
$\sigma_{ba3} \coloneqq \frac{K_A \cdot M_{Bmax3}}{W_{B3}} = 17.$	95 N	$ au_{to2}$:=	$\frac{K_A \cdot M_{tmax3}}{}$ =	$=42.593 \frac{N}{mm^2}$
W_{B3}	mm^2	tas	W_{T3}	$m{mm}^2$
_ N			. N	
$\sigma_{bm3} \coloneqq 0 \; \frac{N}{mm^2}$		$ au_{tm3}$:=	$=0$ $\frac{N}{mm^2}$	
		vereir	nfachte Berech	nung siehe S.73
Einflussfaktoren				
			(d_2)	
Technologischer Größ	eneinflussfaktor	$K_{T3} = 1 - 0.26$	$\log \left \frac{16}{16} \right $	=0.874
Kerbwirkungszahl		$eta_{KB3}\!\coloneqq\!2.5$	TB 3-	-09b
		0 00		
		$\beta_{KT3} \coloneqq 2.3$		
Geometrische Größen	einflussfaktor		d_3	
		$K_{G3} \coloneqq 1 - 0.2$ -	$\log \left(\frac{3}{7.5 mm} \right)$	0.077
		$K_{G3} := 1 - 0.2$	$\log(20)$	-=0.875
				TB 3-11c
Gesamteinflussfaktor/ Konstruktionsfaktor				
eta_{KT3} 1	1 225	β_{KB3}	. 1 .)	1 2.500
$K_{DT3} := \left(\frac{\beta_{KT3}}{K_{G3}} + \frac{1}{K_{O\tau}} - 1\right)$	$\cdot {K_V} = 2.257$	$K_{DB3} \coloneqq \left(\overline{K_{G3}} \right)$	$+\frac{1}{K_{O\sigma}}$	=2.503
				Gl. 3.16
Gestaltwechselfestigkeit				
	7.7			27
$\sigma_{bGW3} \coloneqq K_{T3} \cdot \frac{\sigma_{bWN}}{K_{DB3}} = 19$	1.986	$ au_{tGW3} \coloneqq K_{T3} \cdot rac{1}{4}$	= 127.74	82
κ_{DB3}	mm	1	LDT3	mm
Gesamtsicherheit:	$S_{D2} \coloneqq$	1	==2.888	
	2	$\left(\frac{1}{\tau_{ba3}}\right)^2 + \left(\frac{\tau_{ta3}}{\tau_{tGW3}}\right)^2$	2	
	$\bigvee \overline{\sigma}$	$\left(au_{tGW3} ight) - \left(au_{tGW3} ight)$		
$S_Z \coloneqq 1.4$ $S_{Dmin} \coloneqq$	= 1.5 S_{D_erf}	$\coloneqq S_{Dmin} \! \cdot \! S_Z \! = \! 2.1$		
	S	S_{D_erf} Die Al	htriehswelle is	t dauerfest
	D_{D3}	D _{D_erf}	Strandsvelle 13	t adder rest

Fliehkraftkupplung	
Anzahl der Fliehkörper	N_{FK} := 2
Schaltdrehzahl	$n_S \coloneqq 1400 \cdot \frac{1}{min}$
Fliehkörpermasse	$m_{FK}\!\coloneqq\!0.5$ $oldsymbol{kg}$
Reibdurchmesser	D_R := 140 $m{mm}$
Haftreibwert	$\mu_{0;FK}$:= 0.9
Fliehkörperschwerpunktradius	r_{FK} := 50 mm
Gesamtfederkraft	$F_F \coloneqq 25~m{N}$
Winkelgeschwindigkeit: $\omega_{FK}\coloneqq 2\ \pi \bullet n_S = 146.608\ \frac{1}{s}$ Fliehkraft: $F_{Flieh}\coloneqq m_{FK}\bullet r_{FK}\bullet \omega_{FK}^{\ \ 2} = 537.345\ \text{N}$	v
Kontaktkraft: $F_{N;FK}\!\coloneqq\!F_{Flieh}\!-\!F_F\!=\!512.345~\textbf{\textit{N}}$	
Reibkraft an einem Fliehkörper: $F_{R;FK}\!\coloneqq\!\mu_{0;FK}\!\cdot\!F_{N;FK}\!=\!461.111~\textbf{\textit{N}}$	
Reibmoment: $M_{R;FK}\!:=\!N_{FK}\! \cdot \!F_{R;FK}\! \cdot \! rac{D_R}{2}\! =\! 64.555 M$	V · m

Schmierstoffberechnung

Ölstand soll nur bis zur unternen Zahnradstufe (Zahnräder 3 & 4) reichen

$$k_s = 3 \cdot F_{t3} \cdot 2 \cdot 964 = (2.625 \cdot 10^7) N$$

$$v \coloneqq b_3 \cdot d_3 \cdot 2 \cdot 964 \cdot \pi \cdot d_3 \cdot \frac{2000}{10.022 \cdot 60} \cdot 10^{-3} = (2.66 \cdot 10^3) \ m \cdot mm^2$$

$$\ddot{\ddot{a}\ddot{\ddot{a}}} := \frac{k_s}{v} = \left(9.868 \cdot 10^9\right) \frac{\mathbf{kg}}{\mathbf{m}^2 \cdot \mathbf{s}^2}$$