Sindhuja Yerramalla Syrrmlla @memphis.edu U00839259. Problem 1:

aj

P	2	P -> 2	718	7P->2	(P 139) V (7P139)		
·£	E	* STA	t	F	T		
FT	T	F	F	T	T		
T	τ	τ	F	F	V-3 T		

b) $((P \rightarrow 2) \rightarrow \gamma) \rightarrow S$

PT	2	n	5	(P→2)	(P-2)-	7 (100	·2)-3×)->5	100
F	F	F	FTF	T	FFT		7	1.10	A
FF	F	FFTT	6.1	ててて	With T		FTTT	7	1 20
F	T	7 7	FT	T	T F F	3 100	1 1 2 1 1	Ä	100
F	7	7	TFTFT		T		チ て	g G	
F	T	T	F	TF	T AMILE		F	70 100 10	Country ex
TT	F	F	T	F	T	s.A.S		500	
TT	F	T	FT	F	T	and the	, T	N Service	3
ナナナナモ	T	F	T	1	F			T	
T	T	T	F			T		=	

Problem 2: a) [(P->2) N(2->r)] -> (P->r) = X. [xet] X = 7 [(7PV2) 1 (72 VY)] V (7PVY) = 7(7PV9)V7(79VY)V17PVV9 demorganslav = (77P N79) N (772 NY) V 7PV8 demorgans low = TPV (TIP n T2) V (TIQ nT1) NY Commutatave. = ((7PV77P) N (7PV-9)) V ((774V7) N (7VV7)) = (T N (-1PV-19)) V ((-172 UY) AT) 三 (アレノマ) い(コマレア) = -1PV(-12V-1-9) Vr 三 つアンナン8 三丁/ ·· [(P→9) n (2→r)]→ (P→8) = 15 a. tautology, Problem 3 The given statement Proposition states that for all values of x and y in the R set other than x=0, there exists some value 2 that belongs to real numbers satisfying the equation y=x2. and this is true because. for any value of x and y [x,y (R) exept for x=0 there be at 7 = (rational number) but when x 200 2 2

Problem 4:given ((z) =) x is a comedian. & F(z) => x is funny Edomain - all people) a) A (((x) -> F(x)) or) If a person is a comedian then he is funny -> If every person is a comedian then every person is frong B) +x ((COX) N = (X)) All persons are comedians and funny I Every person is a comedean and funny c) =x (ccx) -> F(x)) some people -> Among all persons there exists and such that if the person is comedian then he is funny d) The (cost the day) Ix (ccx) n F(x)) - Among all the people there exists some persons who is a comedian and funny.

Problem 5

a) $\forall n(n+1>n) \rightarrow true$ b) $\exists n(2n=3n) \rightarrow true$ c) $\exists n(n=-n) \rightarrow true$ e) $\exists n(n=-n) \rightarrow true$ d) $\forall n(3n \in Un) \rightarrow talse$