1 Diseño de la Cimentación

1.1 Diseño de Zapata Aislada

1.1.1 Datos para el diseño de una zapata aislada con carga y momentos

Dimensiones de la columna : $C_1 = m$ $C_2 = m$ Profundidad de cimentación : $D_f = 1.70 m$ Altura de piso terminado : $h_p = 0.10 m$ Resistencia a compresión del concreto : $f'_c = 210 \text{ kg/cm}^2$ Resistencia a la fluencia del acero : $f_y = 4200 \text{ kg/cm}^2$ Peso específico del relleno : $\gamma_m = 2.1 \text{ ton/m}^3$ Peso específico del concreto : $\gamma_c = 2.4 \text{ ton/m}^3$ Sobrecarga de piso : $S/C_{piso} = 500 \text{ kg/m}^2$ Capacidad portante del terreno : $\sigma_t = 3 \text{ kg/cm}^2$

Cargas:

1.1.2 Capacidad portante neta del terreno

El concepto de capacidad portante neta que es la capacidad del terreno reducida por efecto de la sobrecarga, el peso del suelo y el peso de la zapata. La capacidad portante neta es igual a:

$$\sigma_{sn} = \sigma_t - \gamma_c \cdot h_z - \gamma_m \cdot h_s - \gamma_c \cdot h_p - S/C_{piso} \tag{1}$$

$$\sigma_{sn} = 1.20 - 2400.00 \cdot 10.00 - 1400.00 \cdot 100.00 - 2400.00 \cdot 40.00 - 100.00 \tag{2}$$

$$\sigma_{sn} = 0.93 \tag{3}$$

Donde:

 $\sigma_{sn} = \text{Capacidad portante neta.}$ $\sigma_t = \text{Carga admisible del terreno.}$ $\gamma_c = \text{Peso específico del concreto}$ $h_s = \text{Altura del suelo sobre la zapata.}$