교육단계	2단계(기본과정)					
교육과목	스마트교통 빅데이터 분석 _수정					
교육일정	1차 3/28(월)~30(수), 2차 6/20(월)~22(수), 3차 8/29(월)~31(수)					
교육기간	3일	일(18시간, 6시	간/일)	교육장소 KISTI 대전 본원		본원
교육목적	 교통 빅데이터 분석을 진행하려는 이슈에 따라 다양한 분석 계획 수립 교통 빅데이터 분석을 위한 과학기술 분야별 데이터 수집 계획 수립 주어진 상황과 교통 데이터 특성에 따른 인공지능 적용 및 스마트 교통 데이터 분석 					
교육내용	일자	시간	내용 강			강사
	1일차	9:30-12:30	• (A2) 판다스	(A1) 강의 소개 및 교통 활용 연구 소개 (A2) 판다스를 이용한 데이터 분석 소개 (A3) 데이터 분류를 위한 기계학습 알고리즘 소개		
		13:30-16:30	 (A4) 교통 예측을 위한 기계학습 알고리즘 소개 (A5-실습) SVM, 의사결정나무, SVM (A6-실습) 데이터 기반 교통 모델 평가 (정확도) 			
	2일차	9:30-12:30	• (B2) 케라스	• (B2) 케라스 소개 및 딥러닝 모델링		이홍석 박사 (KISTI)
		13:30-16:30	• (B5-실습)	(B4) 딥러닝 기반 RNN 개념 이해 및 LSTM (B5-실습) RNN 기본 개념 실습 (B6-실습) LSTM을 이용한 교통 흐름 예측		
	3일차	9:30-12:30	• (C2-실습)	(C1) CNN 소개 및 교통 이미지 데이터 (C2-실습) 초보자를 이한 CNN 실습 (C3-실습) 딥러닝 CNN 실습		
		13:30-16:30	• (C5) 객체	분석을 위한 영상(탐지와 YOLO 모델 교통 및 트랜스포드	-	
선수지식	• 인공지능 기술 및 데이터과학 이해					
사용 SW	• 파이썬, 판다스, 텐서플로우 라이브러리					
기타사항	•					