Probability Theory

Aamod Varma

MATH - 3235, Fall 2025

Contents

1	Introduction	2
	1.1 Probability Theory	2

Chapter 1

Introduction

Example. What is the probability that two people among N people have the same birthday. **Example.** What is the probability that all people have different birthday We have,

$$q_{1} = 1$$

$$q_{2} = \left(1 - \frac{1}{365}\right)$$

$$q_{3} = q_{3}\left(1 - \frac{2}{365}\right)$$

$$\vdots$$

$$q_{n} = \prod_{i=1}^{n-1}\left(1 - \frac{i}{365}\right)$$

We get $q_n = 0.14$ which gives us 0.86 for the previous example.

Note. We assume certain assumptions like the following to make this work,

- 1. Uniformity
- 2. Independence

Here we have a probability model and deduced the probability of an event,

Example. Say there is a test for a disease,

- 1. $P(positive \mid sick) = 1$
- 2. $P(positive \mid not sick) = 0.01$

Need to find $P(\text{sick} \mid \text{positive})$ which would be $P(\text{positive} \mid \text{sick})$ P(sick) / P(positive)

We test everybody, we have Assume 100 S and 100 NS,

100 P from the S, 99 P from the NS

So we have 199 P of which only 100 S which gives around .5 $\,$

1.1 Probability Theory

Experiment whose outcome is not determined. We define the following,

1. Ω : Sample space, set of possible outcomes

2

Example. (a) Throw a die,

$$\Omega = \{1,2,3,4,5,6\} \rightarrow \text{finite}$$

(b) Flip a coin till heads,

$$\Omega = \{1, 2, 3, \dots\} = \mathbb{N} \to \text{countably infinite}$$

(c) Time to wait till next bus arrival,

$$\Omega = \mathbb{R}^+ \to \text{uncountabely infinite}$$

 \Diamond

2. F: Family of events, A, B, \ldots

Something that may or may not happen

Example. (a) For a die we can ask,

- Is the outcome even?
- Is the outcome ≤ 3 ?

Here an event $A \subseteq \Omega$ and $|\Omega| = 6$ so $|2^{\Omega}| = 64$

We have
$$F = \text{family of events} = 2^{\Omega}$$

(b) Here we have,

$$\Omega=\mathbb{N}$$
 so $F=2^{\mathbb{N}}$

(c) In this case our sample space is $R^+ = (0, \infty)$. But we cannot take $2^{\mathbb{R}}$. So we axiomatically define F as noted below. Under this definition F is the smallest family that contains all open intervals of R

 \Diamond

3. P: How likely an event is

Definition 1.1 (Axiomatic definition of F). So here we define F to be a family of events of Ω if,

- 1. not empty
- 2. if $A \in F \Rightarrow A^c \in F \ (A^c = \Omega \setminus A)$
- 3. for any two $A, B \in F$ then $A \cup B \in F$
- 4. If A_i for $i = 1, ..., \infty$ are events, then $\bigcup_{i=1}^{\infty} A_i$ is an event

Note. Here, countable closure \Rightarrow finite closure (proof just involves adding infinite ϕ to our finite sets A_1, \ldots, A_n)

Note. Using this definition we have,

1. $A \in F \Rightarrow A^c \in F, \Rightarrow A \cup A^c = \Omega \in F \text{ and } \phi = \Omega^c \in F$

So every event space has Ω, ϕ

2. $(A \cup B)^c = A^c \cap B^c \in F$ so,

If A_i , i = 1, 2, ... are events then we have,

$$(\bigcap_{i=1}^{\infty} A_i)^c \in F = \bigcup_{i=1}^{\infty} A_i^c \in F$$