Teoremi, definizioni e proposizioni per l'esame di Algebra Lineare, nel corso di Fisica dell'università di Bologna

Alessandro Cerati

4 gennaio 2022

Indice

1	Legenda	3			
2	Prodotto scalare euclideo e prodotto vettoriale 2.1 Prodotto scalare euclideo	3 3			
3	Numeri complessi	4			
4	Spazi vettoriali				
	4.1 Proprietà	4			
	4.2 Sottospazi vettoriali	5			
	4.3 Combinazioni lineari e basi				
	4.4 Somme, somme dirette, prodotti cartesiani				
	4.5 Applicazioni lineari				
5	Matrici e sistemi lineari				
	5.1 Matrici	9			
	5.2 Sistemi lineari	10			
6	Il Teoremone 1				
7	Determinante e matrice inversa				
	7.1 Determinante	11			
	7.2 Matrice inversa				
8	Cambi di base	14			
9	Autovettori e autovalori				
	9.1 Autovalori, autovettori e diagonalizzabilità	14			

	9.2	Forme di Jordan	15
10	Pro	dotti scalari ed hermitiani	16
	10.1	Forme bilineari	16
	10.2	Prodotti scalari	17
	10.3	Prodotti hermitiani	18
11	Teo	rema spettrale	18
	11.1	Matrici ortogonali e simmetriche	18
		Matrici unitarie ed hermitiane	
		Teorema spettrale	
		Teorema di Sylvester	
12	Form	me quadratiche	22
13	Spa	zi duali	22
14	Tens	sori	23
	14.1	Spazi vettoriali liberi	23
		Tensori e forme multilineari	
15	Gru	ppi	25

1 Legenda

Abbreviazione	Significato
SV	Spazio vettoriale
SSV	Sottospazio vettoriale
CL	Combinazione lineare
LI	Linearmente indipendenti
LD	Linearmente dipendenti
FG	Finitamente generato
AL	Applicazione lineare
SL	Sistema lineare
FB	Forma bilineare
PS	Prodotto scalare
DP	Definito positivo
AB	Applicazione bilineare
AM	Applicazione multilineare

2 Prodotto scalare euclideo e prodotto vettoriale

2.1 Prodotto scalare euclideo

Def 2.1.1. Il prodotto scalare (euclideo) di due vettori $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ è il numero $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$.

Prop 2.1.2. Proprietà del prodotto scalare euclideo:

- 1. $Commutativit\grave{a}$: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 2. Distributività: $(\mathbf{u} + \mathbf{u}') \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{v} + \mathbf{u}' \cdot \mathbf{v}$
- 3. $\mathbf{u} \cdot \lambda \mathbf{v} = \lambda (\mathbf{u} \cdot \mathbf{v})$

Prop 2.1.3. Disuguaglianza triangolare: $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$

- **Prop 2.1.4.** $\mathbf{u} \cdot \mathbf{v} = 0 \Leftrightarrow \cos \theta = 0$
- **Prop 2.1.5.** Coefficiente di Fourier $c = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||^2}$

Prop 2.1.6. $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \ ||\mathbf{v}|| \cos \theta$

2.2 Prodotto vettoriale

Def 2.2.1. Il prodotto vettoriale di due vettori $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ è il vettore $\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$

Prop 2.2.2. Proprietà del prodotto vettoriale:

- 1. Distributività destra: $(\mathbf{u} + \mathbf{u}') \times \mathbf{v} = \mathbf{u} \times \mathbf{v} + \mathbf{u}' \times \mathbf{v}$
- 2. Distributività sinistra: $\mathbf{u} \times (\mathbf{v} + \mathbf{v}') = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{v}'$

3. Anticommutatività: $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$

Prop 2.2.3. $\mathbf{u} \times \mathbf{v} \perp \mathbf{u}, \mathbf{v}$

Prop 2.2.4. $\mathbf{u} \times \mathbf{v} = 0 \Leftrightarrow \sin \theta = 0 \Leftrightarrow \mathbf{u} = k\mathbf{v}$

3 Numeri complessi

Prop 3.0.1. Valgono in \mathbb{C} tutte le proprietà di addizione e moltiplicazione in \mathbb{R} . In particolare, esistono sempre inverso additivo e moltiplicativo.

Prop 3.0.2.
$$(a+bi)^{-1} = \frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}i$$

Prop 3.0.3.
$$\alpha \bar{\alpha} = (a + bi)(a - bi) = |\alpha|^2$$

4 Spazi vettoriali

4.1 Proprietà

Def 4.1.1. Sia \mathbb{K} un campo. Un insieme V munito di due operazioni $+: V \times V \to V$ e $\cdot: \mathbb{K} \times V \to V$ si dice *spazio vettoriale* su \mathbb{K} se valgono le seguenti proprietà $\forall \mathbf{u}, \mathbf{v} \in V, \ \lambda, \mu \in \mathbb{K}$:

- 1. Commutatività della somma: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 2. Associatività della somma: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{v} + (\mathbf{u} + \mathbf{w})$
- 3. Esiste un elemento neutro della somma, detto vettore nullo $\mathbf{0}_V$.
- 4. Ogni elemento ha un opposto $-\mathbf{u}$.
- 5. $1\mathbf{u} = \mathbf{u}$
- 6. Associatività del prodotto: $(\lambda \mu)\mathbf{u} = \lambda(\mu \mathbf{u})$
- 7. Distributività del prodotto (rispetto agli scalari): $\lambda(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v}$
- 8. Distributività del prodotto (rispetto ai vettori): $(\lambda + \mu)\mathbf{u} = \lambda \mathbf{u} + \mu \mathbf{u}$

Gli elementi di V si dicono *vettori* e gli elementi di \mathbb{K} si dicono *scalari*.

Prop 4.1.2. Inoltre, si dimostra che:

- 1. Il vettore nullo è unico.
- 2. $-\mathbf{u}$ è unico $\forall \mathbf{u}$.
- 3. $\lambda \mathbf{0}_{V} = \mathbf{0}_{V}$
- 4. $0\mathbf{u} = \mathbf{0}_V$
- 5. $\lambda \mathbf{u} = \mathbf{0}_V \Leftrightarrow \lambda = 0 \lor \mathbf{u} = \mathbf{0}_V$

6.
$$(-\lambda)\mathbf{u} = \lambda(-\mathbf{u}) = -\lambda\mathbf{u}$$

Prop 4.1.3. Uno spazio vettoriale non può essere vuoto, e se non è lo *spazio* vettoriale banale $V = \{\mathbf{0}_V\}$ allora contiene infiniti elementi.

4.2 Sottospazi vettoriali

Def 4.2.1. Sia V uno SV e $W \subset V$. Si dice che W è sottospazio vettoriale di V se

- 1. $\mathbf{0} \in W$ o, equivalentemente, $W \neq \emptyset$.
- 2. Chiusura rispetto alla somma: $\mathbf{w}_1 + \mathbf{w}_2 \in W \ \forall \mathbf{w}_1, \mathbf{w}_2 \in W$.
- 3. Chiusura rispetto al prodotto: $\lambda \mathbf{w} \in W \ \forall \mathbf{w} \in W, \ \lambda \in \mathbb{K}$.

Prop 4.2.2. Un SSV è uno SV.

Prop 4.2.3. Se V è SV contenente \mathbf{u} , allora $\{\mathbf{0}_V\}$, V e $\{\lambda \mathbf{u} \mid \lambda \in \mathbb{K}\}$ sono suoi SSV.

Prop 4.2.4. Siano W_1, W_2 SSV di uno SV W. Allora $W_1 \cap W_2$ è SSV di V, ma $W_1 \cup W_2$ è SSV di V se e solo se $W_1 \subseteq W_2$ o $W_2 \subseteq W_1$.

4.3 Combinazioni lineari e basi

Def 4.3.1. Sia V uno SV su un campo \mathbb{K} e siano $v_1,...,v_n \in V, \ \lambda_1,...,\lambda_n \in \mathbb{K}$. Il vettore $\mathbf{w} = \lambda_1 \mathbf{v}_1 + ... + \lambda_n \mathbf{v}_n$ si dice *combinazione lineare* di $\mathbf{v}_1,...,\mathbf{v}_n$ con $\lambda_1,...,\lambda_n$.

Def 4.3.2. Sia V uno SV su un campo \mathbb{K} e siano $v_1,...,v_n \in V$. L'insieme delle combinazioni lineari di $\mathbf{v}_1,...,\mathbf{v}_n$ è detto span di $v_1,...,v_n$ e si indica con $\langle \mathbf{v}_1,...,\mathbf{v}_n \rangle$ o con span $\{\mathbf{v}_1,...,\mathbf{v}_n\}$. Sia $W = \langle \mathbf{v}_1,...,\mathbf{v}_n \rangle$, si dice che $\mathbf{v}_1,...,\mathbf{v}_n$ $generano\ W$.

Prop 4.3.3. $\mathbf{v}_1,...,\mathbf{v}_n \in V \Rightarrow \langle \mathbf{v}_1,...,\mathbf{v}_n \rangle$ è SSV di V ed è sottoinsieme di ogni SSV di V che contiene almeno $\mathbf{v}_1,...,\mathbf{v}_n$.

Prop 4.3.4. Sia V SV su \mathbb{K} , $\mathbf{v}_1, ..., \mathbf{v}_n \in V$. Allora $\langle \mathbf{v}_1, ..., \mathbf{v}_n \rangle = \langle \mathbf{v}_1, ..., \mathbf{v}_n, \mathbf{w} \rangle$ $\Leftrightarrow \mathbf{w} = \lambda_1 \mathbf{v}_1 + ... + \lambda_n \mathbf{v}_n$.

Def 4.3.5. Sia V uno SV su un campo \mathbb{K} . $v_1, ..., v_n \in V$ si dicono linearmente indipendenti se, siano $\lambda_1, ..., \lambda_n \in \mathbb{K}$, si ha che

$$\lambda_1 \mathbf{v}_1 + \dots + \lambda_n \mathbf{v}_n = \mathbf{0} \Rightarrow \lambda_1 = \dots = \lambda_n = 0.$$

Altrimenti, i vettori si dicono linearmentte dipendenti.

Prop 4.3.6. Un insieme di vettori che contiene 0 è sempre LD.

Prop 4.3.7. $\mathbf{v}_1..\mathbf{v}_n$ LI \Leftrightarrow nessuno è CL degli altri. (Nota: questo vale solo se lo SV è definito su un campo, non per esempio su \mathbb{N}).

Prop 4.3.8. Due vettori sono LI \Leftrightarrow non sono uno multiplo dell'altro.

Prop 4.3.9. Un sottoinsieme non vuoto di un insieme di vettori LI è ancora LI

Def 4.3.10. Sia V SV su \mathbb{K} , $\mathbf{v}_1,...,\mathbf{v}_n \in V$. $\mathcal{B} = {\mathbf{v}_1,...,\mathbf{v}_n}$ si dice base di V se $\mathbf{v}_1,...,\mathbf{v}_n$ sono LI e generano V.

Prop 4.3.11. Se V è uno SV non banale, esiste una sua base.

Prop 4.3.12. $\{\mathbf{v}_1,...,\mathbf{v}_n\}$ è base di $V \Leftrightarrow$ è un suo insieme minimale di generatori \Leftrightarrow è un insieme massimale di vettori LI in esso. (Nota: ciò non implica che ogni base di V abbia lo stesso numero di elementi; ciò è vero ma segue dal teorema del completamento.)

Teo 1 (Teorema del completamento). Sia V uno SV FG su \mathbb{K} e $\mathcal{B} = \{\mathbf{v}_1,...,\mathbf{v}_n\}$ una sua base, allora sia $W = \{\mathbf{w}_1,...,\mathbf{w}_m\} \subset V$ un insieme LI:

- 1. $m \leq n$
- 2. Si può completare W a base di V aggiungendo n-m vettori di \mathcal{B} .

Dimostrazione. Dato che \mathcal{B} genera V, si ha $\mathbf{w}_1 = \alpha_1 \mathbf{v}_1 + ... + \alpha_n \mathbf{v}_n$. A meno di un riordino, $\alpha_1 \neq 0$, quindi per il Lemma di sostituzione $\{\mathbf{w}_1, ..., \mathbf{v}_n\}$ è base di V. È possibile ripetere il ragionamento considerando v_2 e la base $\{\mathbf{w}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ e così via, dato che ad ogni passo si può supporre che almeno uno dei coefficienti dei \mathbf{v}_i non sia nullo poiché i \mathbf{w}_j sono tutti LI. Se m > n dopo n iterazioni si ottiene che $\{\mathbf{w}_1, ..., \mathbf{w}_n\}$ è base di V, dunque $\mathbf{w}_{n+1} \in \langle \mathbf{w}_1, ..., \mathbf{w}_n \rangle$ e quindi W non è LI, il che è assurdo. Quindi deve essere $m \leq n$, nel qual caso dopo n - m iterazioni si ottiene che $\{vw_1, ..., \mathbf{w}_m, \mathbf{v}_{m+1}, ..., \mathbf{v}_n\}$ è base di V. QED

Prop 4.3.13. Tutte le basi di uno SV FG hanno lo stesso numero di elementi.

Prop 4.3.14. Il numero di elementi delle basi di uno SV V è chiamato dimensione di V e si indica con dim V.

Prop 4.3.15 (Lemma di sostituzione). Sia $\mathcal{B} = \{\mathbf{w}_1, ..., \mathbf{w}_n\}$ una base di V e sia $\mathbf{v} = \lambda_1 \mathbf{w}_1 + ... + \lambda_n \mathbf{w}_n$ con $\lambda_1 \neq 0$. Allora $\{\mathbf{v}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ è base di V.

Dimostrazione. Si ha che $\mathbf{w}_2,...,\mathbf{w}_n \in \langle \mathbf{v}_1,\mathbf{w}_2,...,\mathbf{w}_n \rangle$. Inoltre, dato che $\lambda_1 \neq 0$,

$$\mathbf{w}_1 = -\frac{1}{\lambda_1} \mathbf{v}_1 - \frac{\lambda_2}{\lambda_1} \mathbf{w}_2 - \dots - \frac{\lambda_n}{\lambda_1} \mathbf{w}_n \in \langle \mathbf{v}_1, \mathbf{w}_2, \dots, \mathbf{w}_n \rangle.$$

Dunque $\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n \in \langle \mathbf{v}_1, \mathbf{w}_2, ..., \mathbf{w}_n \rangle$. Dato che lo span di un insieme di vettori è SSV di ogni SV che li contiene e \mathcal{B} è base di $V, V = \langle \mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n \rangle \subseteq \langle \mathbf{v}_1, \mathbf{w}_2, ..., \mathbf{w}_n \rangle$. Per lo stesso motivo $\langle \mathbf{v}_1, \mathbf{w}_2, ..., \mathbf{w}_n \rangle \subseteq V$. Quindi $\mathbf{v}_1, \mathbf{w}_2, ..., \mathbf{w}_n$ generano V.

Inoltre, siano $\beta_1, ..., \beta_n \in \mathbb{K}$ tali che $\beta_1 \mathbf{v}_1 + ... + \beta_n \mathbf{w}_n = \mathbf{0}$. Sostituendo \mathbf{v} e riordinando si ottiene che

$$\beta_1 \mathbf{w}_1 + \dots + (\beta_n + \beta_1 \lambda_n) \mathbf{w}_n = \mathbf{0}.$$

Dato che i \mathbf{w}_i sono base di \mathcal{B} , deve essere $\beta_1 = (\beta_i + \beta_1 \lambda_i) = 0$ quindi $\beta_i = 0 \ \forall i$. Dunque $\mathbf{v}_1, \mathbf{w}_2, ..., \mathbf{w}_n$ sono anche LI. QED

Prop 4.3.16. Sia V uno SV FG e sia W SSV di V. Allora dim $W \leq \dim V$, con dim $W = \dim V \Leftrightarrow W = V$.

Prop 4.3.17. Siano n vettori $\mathbf{v}_1,...,\mathbf{v}_n \in V$, e sia $n = \dim V$. Allora le seguenti tre affermazioni sono equivalenti:

- $\mathbf{v}_1, ..., \mathbf{v}_n$ sono LI.
- $\mathbf{v}_1, ..., \mathbf{v}_n$ generano V,
- $\mathbf{v}_1, ..., \mathbf{v}_n$ formano una base di V.

Prop 4.3.18. Le righe non nulle di una matrice a scala sono vettori LI.

Prop 4.3.19. Sia V uno SV e $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ una sua base, allora $\forall \mathbf{v} \in V \mathbf{v} = \lambda_1 \mathbf{v}_1 + ... + \lambda_n \mathbf{v}_n$ in modo unico e i λ_i si dicono *coordinate* di v rispetto a \mathcal{B} . (Ciò permette di identificare ogni SV con \mathbb{K}^n una volta fissata una base).

Prop 4.3.20. La dimensione dello SV banale è 0 perché la sua unica "base" è \emptyset .

4.4 Somme, somme dirette, prodotti cartesiani

Def 4.4.1. Siano U, W SSV di V SV su \mathbb{K} . Si dice che V è somma di U e W e si scrive V = U + W se $V = \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in U, \mathbf{w} \in W\}$.

Def 4.4.2. Sia V = U + W. Allora si dice che V è somma diretta di U e W e si scrive $V = U \oplus W$ se $\mathbf{v} = \mathbf{u} + \mathbf{w}$ in modo unico $\forall \mathbf{v} \in V$.

Prop 4.4.3. Sia V = U + W. Allora $V = U \oplus W \Leftrightarrow U \cap W = \{\mathbf{0}_V\}$.

Prop 4.4.4. Sia V SV su \mathbb{K} , U SSV di V. Allora $\exists W$ SSV di $V \mid V = U \oplus W$. (Nota: W non è unico).

Prop 4.4.5 (Formula di Grassmann). $\dim(U+W) = \dim U + \dim W - \dim(U\cap W)$.

Prop 4.4.6. Siano U, W SV su \mathbb{K} , il loro prodotto cartesiano $U \times W = \{(\mathbf{u}, \mathbf{w}) \mid \mathbf{u} \in U, \mathbf{w} \in W\}$ con operazioni definite componente per componente è uno SV.

Prop 4.4.7. $\dim(U \times W) = \dim U + \dim W$.

Prop 4.4.8. $U \times W \cong U \oplus W$. (Un isomorfismo è $F : (\mathbf{u}, \mathbf{w}) \mapsto \mathbf{u} + \mathbf{w}$).

4.5 Applicazioni lineari

Def 4.5.1. Siano V,W due SV su \mathbb{K} . La funzione $F:V\to W$ si dice applicazione lineare se

- 1. $F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v}) \ \forall \mathbf{u}, \mathbf{v} \in V$
- 2. $F(\lambda \mathbf{u}) = \lambda F(\mathbf{u}) \ \forall \mathbf{u} \in V, \lambda \in \mathbb{K}$.

Prop 4.5.2. Siano V, W SV FG su \mathbb{K} e $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ una base di V. Siano $\mathbf{w}_1, ..., \mathbf{w}_n \in W, \exists ! \text{ AL } f : V \to W \mid f(\mathbf{v}_i) = \mathbf{w}_i \ \forall i.$

Prop 4.5.3. Siano V, W SV su \mathbb{K} e $T, S : V \to W$ AL. Se coincidono su una base di V, allora coincidono su tutto V.

Prop 4.5.4. Siano V, W SV su \mathbb{K} e $F: V \to W$ un'AL. Allora $F(\mathbf{0}_V) = \mathbf{0}_W$.

Prop 4.5.5. Siano V, W SV FG su \mathbb{K} con dim V = n e dim W = m. Fissata una base in V ed una in W, c'è corrispondenza biunivoca fra le AL $f: V \to W$ e le matrici di $M_{m,n}(\mathbb{K})$.

Prop 4.5.6. Siano V, W SV su \mathbb{K} con una base fissata in ciascuno di essi e $L_A, L_B : V \to W$ AL associate rispettivamente alle matrici A e B. Allora $L_A \circ L_B \in L_B \circ L_A$ sono AL associate rispettivamente alle matrici AB e BA.

Def 4.5.7. Siano V, W SV su \mathbb{K} e sia $L: V \to W$ un'AL. Si dice *immagine* di L l'insieme

Im
$$L = \{ \mathbf{w} \in W \mid \mathbf{w} = L(\mathbf{v}) \text{ per qualche } \mathbf{v} \in V \}.$$

Si dice preimmagine di $\mathbf{w} \in W$ l'insieme

$$L^{-1}(\mathbf{w}) = \{ \mathbf{v} \in V \mid \mathbf{w} = L(\mathbf{v}) \}.$$

Si dice nucleo di L l'insieme

$$\ker L = \{ \mathbf{v} \in V \mid \mathbf{0}_W = L(\mathbf{v}) \}.$$

Prop 4.5.8. Siano V, W SV su \mathbb{K} e sia $L: V \to W$ un'AL, ker F è SSV di V (ed è l'unica preimmagine ad esserlo) e Im F è SSV di W.

Prop 4.5.9. Sia $\{\mathbf{v}_1,...,\mathbf{v}_n\}$ una base di V, allora $\mathrm{Im}F = \langle F(\mathbf{v}_1),...,F(\mathbf{v}_n)\rangle$.

Prop 4.5.10. Sia $F: V \to W$ un'AL, allora:

- F iniettiva $\Leftrightarrow \ker F = \{\mathbf{0}_V\}$
- F suriettiva \Leftrightarrow dim Im $F = \dim W$

Teo 2 (Teorema della dimensione). Sia $F:V\to W$ con V,W SV FG un'AL, allora

$$\dim V = \dim \ker F + \dim \operatorname{Im} F.$$

Dimostrazione. Sia $\{\mathbf{u}_1, ..., \mathbf{u}_r\}$ una base di ker L. Per il Teorema del completamento si può completare ad una base $\mathcal{B} = \{\mathbf{u}_1, ..., \mathbf{u}_r, \mathbf{w}_{r+1}..., \mathbf{w}_n\}$ di V. Sia $\mathcal{B}_1 = \{F(\mathbf{w}_{r+1}, ..., F(\mathbf{w}_n))\}$. Si ha che

Im
$$F = \langle F(\mathbf{u}_1), ..., F(\mathbf{u}_r), F(\mathbf{w}_{r+1}), ..., F(\mathbf{w}_n) \rangle = \langle \mathbf{0}, ..., \mathbf{0}, F(\mathbf{w}_{r+1}), ..., F(\mathbf{w}_n) \rangle$$

= $\langle F(\mathbf{w}_{r+1}), ..., F(\mathbf{w}_n) \rangle$.

Ora, siano $\alpha_1, ..., \alpha_n \in \mathbb{K}$ tali che $\alpha_{r+1}F(\mathbf{w}_{r+1}) + ... + \alpha_nF(\mathbf{w}_n) = \mathbf{0}$. Per la linearità di F, si ha che $F(\mathbf{w}) := F(\alpha_{r+1}\mathbf{w}_{r+1} + ... + \alpha_n\mathbf{w}_n) = \mathbf{0}$, e dunque $\mathbf{w} \in \ker F$, quindi $\mathbf{w} = \alpha_1\mathbf{u}_1 + ... + \alpha_r\mathbf{u}_r$. Dunque $\alpha_{r+1}\mathbf{w}_{r+1} + ... + \alpha_n\mathbf{w}_n = \alpha_1\mathbf{u}_1 + ... + \alpha_r\mathbf{u}_r$, il che implica che

$$\alpha_1 \mathbf{u}_1 + \dots + \alpha_r \mathbf{u}_r - (\alpha_{r+1} \mathbf{w}_{r+1} + \dots + \alpha_n \mathbf{w}_n) = \mathbf{0}.$$

Ma \mathcal{B} è una base di V, quindi è un insieme LI e $\alpha_1 = ... = \alpha_n = 0$. Dunque \mathcal{B}_1 è anche un insieme LI. QED

Prop 4.5.11. Sia $F: V \to W$, allora $\dim V > \dim W \Rightarrow F$ non è iniettiva, e $\dim V < \dim W \Rightarrow F$ non è suriettiva.

Prop 4.5.12. Sia $F: V \to W$ un'AL iniettiva, allora $\mathbf{v}_1, ..., \mathbf{v}_n$ LI $\Rightarrow F(\mathbf{v}_1), ..., F(\mathbf{v}_n)$ LI.

Prop 4.5.13. Sia $F:V\to W$ un isomorfismo (AL biiettiva), allora F^{-1} è lineare (e dunque un isomorfismo).

Prop 4.5.14. Sia $F:V\to W$ un'AL tale che l'insieme delle immagini dei vettori di una base di V sia base di W. Allora F è un isomorfismo.

Prop 4.5.15. Siano V, W SV di dimensione finita, $V \cong W \Leftrightarrow \dim V = \dim W$.

5 Matrici e sistemi lineari

5.1 Matrici

Prop 5.1.1. Sia $A \in M_{m,n}(\mathbb{K})$, il rango colonne re Adi A è il numero di righe LI di A. Analogamente si definisce il rango righe di A.

Prop 5.1.2. Per ogni matrice A, rr $A = \operatorname{rc} A := \operatorname{rk} A$.

Prop 5.1.3. Sia F l'AL associata alla matrice $m \times n$ A, dim ker F = n - rkA.

Prop 5.1.4. Sia F l'AL associata alla matrice A e sia G l'AL associata alla matrice B, la funzione $F \circ G$ è l'AL associata alla matrice AB. In particolare, se F è un'isomorfismo e G è la sua applicazione inversa, allora $F \circ G = i_V$, associata alla matrice identità I. Dunque $B \equiv A^{-1}$.

Prop 5.1.5. Il prodotto fra matrici, sotto opportune condizioni di definizione, è distributivo ed associativo.

5.2 Sistemi lineari

Def 5.2.1. Ogni SL si può scrivere $A\mathbf{x} = \mathbf{b}$. La matrice completa del sistema è $(A|\mathbf{b})$. \mathbf{b} è detto termine noto del sistema.

Prop 5.2.2. Sia $A \in M_{m,n}(\mathbb{K})$, l'insieme delle soluzioni di un SL omogeneo $A\mathbf{x} = \mathbf{0}$ è uno SV di dimensione $n - \operatorname{rk} A$.

Prop 5.2.3. Ogni SL omogeneo ammette almeno la soluzione banale $\{(0,...,0)\}$.

Teo 3 (Teorema di struttura). Dato un SL A**x** = **b**, sia **x** $_P$ una soluzione particolare del sistema, e sia L_A l'AL associata ad A (nella base canonica). Allora tutte le soluzioni del sistema sono della forma **x** $_P$ +**z** $_$, con **z** $_$ \in ker L_A , e tutti gli oggetti di questa forma sono soluzioni del sistema.

Dimostrazione. L'insieme delle soluzioni del sistema coincide con $L_A^{-1}(\mathbf{b})$. Per ipotesi \mathbf{x}_P è soluzione del sistema, dunque $\mathbf{x}_P \in L_A^{-1}(\mathbf{b})$. Consideriamo una generica soluzione $\mathbf{x} \in L_A^{-1}(\mathbf{b})$. Allora $L_A(\mathbf{x}) = \mathbf{b} = (\mathbf{x}_P)$ e dunque, per linearità di L_A , si ha che $L_A(\mathbf{x} - \mathbf{x}_P) = \mathbf{0}$, quindi $\mathbf{x} - \mathbf{x}_P = \mathbf{z} \in \ker L_A$. Riorganizzando i membri, si ottiene $\mathbf{x} = \mathbf{x}_P + \mathbf{z}$.

D'altra parte, se $\mathbf{z} \in \ker L_A$, si ha che $L_A(\mathbf{x}_P + \mathbf{z}) = L_A(\mathbf{x}_P) + L_A(\mathbf{z}) = \mathbf{b} + \mathbf{0} = \mathbf{b}$. e dunque $\mathbf{x} = \mathbf{x}_P + \mathbf{z}$ è soluzione del sistema. QED

Prop 5.2.4. Le seguenti manovre sulle righe R_i , dette *operazioni elementari*, non cambiano l'insieme delle soluzioni di un SL né lo span dei suoi vettori riga:

- $R_i \mapsto \lambda R_i$
- $R_i \mapsto R_i + R_j$
- $R_i \leftrightarrow R_j$
- Eliminare una riga nulla.

Prop 5.2.5. Se una matrice è a scala per righe, i suoi vettori riga non nulli sono LI.

Teo 4 (Teorema di Rouché-Capelli). Dato un SL $A\mathbf{x} = \mathbf{b}$, esso ammette soluzioni se e solo se $\mathrm{rk} A = \mathrm{rk}(A|\mathbf{b})$. Queste soluzioni dipendono da $n - \mathrm{rk} A$ parametri, dove n è il numero di colonne di A. In particolare, se $n = \mathrm{rk} A$ la soluzione è unica, altrimenti il sistema ammette infinite soluzioni.

Dimostrazione. Si consideri l'AL $L_A: \mathbb{R}^n \to \mathbb{R}^m$ associata ad A nelle basi canoniche. L'insieme delle soluzioni del sistema coincide con $L_A^{-1}(\mathbf{b})$, che per definizione è non vuoto se e solo se $\mathbf{b} \in \text{Im } L_A$. Ciò equivale a dire che il sistema ha soluzione se e solo se $\mathbf{b} \in \langle \text{colonne di } A \rangle$, ma questo è vero se e solo se $\langle \text{colonne di } A \rangle = \langle \text{colonne di } A \rangle$, ossia se e solo se rk $A = \text{rk } A | \mathbf{b}$.

Se il sistema ammette soluzioni, allora per il Teorema di struttura queste sono della forma $\mathbf{x} = \mathbf{x}_P + \mathbf{z}$, dove \mathbf{x}_P è una soluzione particolare del sistema e $\mathbf{z} \in \ker L_A$. Allora si possono verificare due casi:

- 1. dim ker $L_A = 0$, cioè ker $L_A = \mathbf{0}$, quindi l'unica soluzione del sistema è $\mathbf{x}_P + \mathbf{0} = \mathbf{x}_P$.
- 2. dim ker $L_A > 0$ e quindi ker L_A contiene infiniti elementi, essendo SV non banale. Per il teorema della dimensione, si ha dim ker $L_A = n \dim \operatorname{Im} L_A = n \operatorname{rk} A$. Le soluzioni dipendono quindi da $n \operatorname{rk} A$ parametri.

QED

6 Il Teoremone

Sia $F:\mathbb{K}^n\to\mathbb{K}^n$ un'AL con matrice associata A in una coppia di basi fissata. Allora le seguenti 10 affermazioni sono equivalenti:

- \bullet F è un isomorfismo.
- F è iniettiva.
- F è suriettiva.
- $\operatorname{rk} A = n$.
- ullet Le colonne di A sono LI.
- Le righe di A sono LI.
- $A\mathbf{x} = \mathbf{0}$ ha come unica soluzione $\mathbf{x} = \mathbf{0}$.
- $A\mathbf{x} = \mathbf{b}$ ha un'unica soluzione.
- A è invertibile.
- $\det A \neq 0$.

7 Determinante e matrice inversa

7.1 Determinante

Prop 7.1.1 (Assiomi per colonne). Esiste ed è unica una funzione det : $M_n(\mathbb{K}) \to \mathbb{K}$ per cui valgono le seguenti proprietà:

- 1. $\det(\mathbf{c}_1, ..., \mathbf{v} + \mathbf{w}, ..., \mathbf{c}_n) = \det(\mathbf{c}_1, ..., \mathbf{v}, ..., \mathbf{c}_n) + \det(\mathbf{c}_1, ..., \mathbf{w}, ..., \mathbf{c}_n)$
- 2. $\det(\mathbf{c}_1,...,\lambda\mathbf{c}_i,...,\mathbf{c}_n) = \lambda \det(\mathbf{c}_1,...,\mathbf{c}_i,...,\mathbf{c}_n)$
- 3. $\det(\mathbf{c}_1, ..., \mathbf{v}, ..., \mathbf{v}, ..., \mathbf{c}_n) = 0$
- 4. $\det I_n = 1$

Lo stesso è vero se si scrivono le matrici in termini di vettori riga invece che di vettori colonna.

Def 7.1.2. Sia $S=\{1,2,...,n\},$ si definisce permutazione una funzione biunivoca $\sigma:S\to S$ e si denota con

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Def 7.1.3. Si definisce trasposizione una permutazione

$$\begin{pmatrix} 1 & \dots & i & j & \dots & n \\ 1 & \dots & j & i & \dots & n \end{pmatrix}$$

Def 7.1.4. Si definisce ciclo una permutazione denotata $(i_1, ..., i_s)$ (dove $\{i_1, ..., i_s\} \subset \{1, ..., n\}$), che manda i_j in $i_{j+1} \ \forall 1 \leq j < s, i_s$ in i_1 ed ogni altro intero in se stesso. Più cicli si dicono disgiunti se ogni elemento viene fissato da tutti tranne al massimo uno di essi.

Prop 7.1.5. Ogni permutazione è la composizione di trasposizioni.

Def 7.1.6. Si definisce parità di una permutazione σ il numero $\Phi(\sigma) = (-1)^s$, dove s è il numero di trasposizioni che compongono σ , o equivalentemente il numero di inversioni, cioè di coppie i < j t.c. $\sigma(i) > \sigma(j)$.

Prop 7.1.7. Il numero $\Phi(\sigma)$ è univoco per ogni permutazione.

Prop 7.1.8. Siano σ_1, σ_2 permutazioni, si ha che $\Phi(\sigma_1 \circ \sigma_2) = \Phi(\sigma_1)\Phi(\sigma_2)$.

Prop 7.1.9. Ogni permutazione si scrive in modo unico come composizione di cicli disgiunti.

Prop 7.1.10. Sia S_n l'insieme delle permutazioni dei primi n naturali, la funzione definita al punto 1 è

$$\det A = \sum_{\sigma \in S_n} \Phi(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} ... a_{n\sigma(n)}$$

Def 7.1.11. Sia $A \in M_n(\mathbb{K})$, $A_{ij} \in M_{n-1}(\mathbb{K})$ la matrice ottenuta rimuovendo la *i*-esima riga e la *j*-esima colonna da $A \in \Gamma_{ij} = (-1)^{i+j} \det A_{ij}$, lo *sviluppo di Laplace* di det A secondo la *i*-esima riga è

$$\det A = a_{i1}\Gamma_{i1} + a_{i2}\Gamma_{i2} + \dots a_{in}\Gamma_{in}$$

e quello secondo la j-esima colonna è

$$\det A = a_{1j}\Gamma_{1j} + a_{2j}\Gamma_{2j} + ... a_{nj}\Gamma_{nj}.$$

Prop 7.1.12. det $A = \det A^t$

Prop 7.1.13. Dagli assiomi per righe si ricava che

1.
$$\det \begin{pmatrix} \mathbf{R}_1 \\ \dots \\ \mathbf{R}_i \\ \dots \\ \mathbf{R}_j \\ \dots \\ \mathbf{R}_n \end{pmatrix} = -\det \begin{pmatrix} \mathbf{R}_1 \\ \dots \\ \mathbf{R}_j \\ \dots \\ \mathbf{R}_i \\ \dots \\ \mathbf{R}_n \end{pmatrix}$$

2.
$$\det \begin{pmatrix} \mathbf{R}_1 \\ \dots \\ \mathbf{R}_i \\ \dots \\ \mathbf{R}_n \end{pmatrix} = \det \begin{pmatrix} \mathbf{R}_1 \\ \dots \\ \mathbf{R}_i + \sum_{j \neq i} \lambda_j \mathbf{R}_j \\ \dots \\ \mathbf{R}_n \end{pmatrix}$$

e lo stesso vale per le colonne.

Prop 7.1.14. Inoltre, det $A = 0 \Leftrightarrow A$ ha una riga o una colonna che è CL delle altre. In particolare, det A = 0 se A ha una riga o una colonna nulla.

Prop 7.1.15. Si ha che

$$\det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix} = \det \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} = a_{11}a_{12}...a_{nn}$$

Prop 7.1.16. Sia $A \in M_n(\mathbb{K})$ e A' una matrice a scala ad essa associata. Allora det $A = \rho \det A'$, dove $\rho \neq 0$ è il prodotto degli scalari per cui sono state moltiplicate le righe di A durante l'algoritmo di Gauss (escludendo durante le combinazioni lineari) moltiplicato per 1 se sono state scambiate righe un numero pari di volte, per -1 se se sono state scambiate righe un numero dispari di volte.

7.2 Matrice inversa

Def 7.2.1. Si dice che $A \in M_n(\mathbb{K})$ è invertibile se $\exists A^{-1} \mid AA^{-1} = A^{-1}A = I$. A^{-1} è detta matrice inversa di A.

Prop 7.2.2.
$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} \Gamma_{11} & \Gamma_{21} & \dots & \Gamma_{n1} \\ \Gamma_{12} & \Gamma_{22} & \dots & \Gamma_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \Gamma_{1n} & \Gamma_{2n} & \dots & \Gamma_{nn} \end{pmatrix}$$

Prop 7.2.3. $A \in M_n(\mathbb{K})$ è invertibile $\Leftrightarrow \det A \neq 0$.

Prop 7.2.4. Tramite l'algoritmo di Gauss completo, si può passare dalla matrice (A|I) alla matrice $(I|A^{-1})$.

Prop 7.2.5 (Teorema di Binet.). $\det AB = \det A \det B$

8 Cambi di base

Def 8.0.1. Sia $L: V \to V'$ un'AL, la matrice $A_{\mathcal{BB}'}$ ad essa *associata* nella base $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ in $V \in \mathcal{B}' = \{\mathbf{b}_1', ..., \mathbf{b}_m'\}$ in V' è

$$A_{\mathcal{B}\mathcal{B}'} = (L(\mathbf{b}_1)_{\mathcal{B}'}...L(\mathbf{b}_n)_{\mathcal{B}'}) \in M_{m,n}(\mathbb{K})$$

Prop 8.0.2. Siano V, V' SV su \mathbb{K} con basi rispettivamente $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ e $\mathcal{B}' = \{\mathbf{b}'_1, ..., \mathbf{b}'_n\}$. Sia $F: V \to V'$, $\mathbf{b}_i \mapsto \mathbf{b}'_i$. Allora la matrice associata ad F nelle basi scelte è $A_{\mathcal{BB}'} = I_n$.

Prop 8.0.3. Sia $I_{\mathcal{BB}'}$ la matrice associata all'applicazione identità nella base \mathcal{B} nel dominio e \mathcal{B}' nel codominio, si ha che $I_{\mathcal{BB}'} = I_{\mathcal{B}'\mathcal{B}}^{-1}$.

Prop 8.0.4. Sia $L: V \to W$ un'AL, con dim V = n e dim W = m,

$$A_{\mathcal{B}\mathcal{B}'} = I_{\mathcal{B}'\mathcal{C}_m}^{-1} A_{\mathcal{C}_n\mathcal{C}_m} I_{\mathcal{B}\mathcal{C}_n}$$

9 Autovettori e autovalori

9.1 Autovalori, autovettori e diagonalizzabilità

Def 9.1.1. Sia $F: V \to V$ un'AL, con V SV su \mathbb{K} (anche ∞ -dimensionale). Siano $\lambda \in \mathbb{K}, \mathbf{v} \neq \mathbf{0}_V$. Si dice che \mathbf{v} è *autovettore* di F con *autovalore* λ se $F(\mathbf{v}) = \lambda \mathbf{v}$. Sia A una matrice, gli autovettori e gli autovalori di A sono quelli dell'AL associata ad A nella base canonica.

Def 9.1.2. Sia $F: V \to V$ un'AL, con V SV FG su \mathbb{K} . F si dice diagonalizzabile se esiste una base in cui la matrice associata ad F è diagonale.

Prop 9.1.3. Sia $F: V \to V$ un'AL, con V SV FG su \mathbb{K} . F è diagonalizzabile \Leftrightarrow esiste una base di autovettori di F.

Def 9.1.4. Una matrice $A \in M_n(\mathbb{K})$ si dice diagonalizzabile se $\exists P \in M_n(\mathbb{K})$ invertibile t.c. $P^{-1}AP$ sia diagonale.

Prop 9.1.5. Sia $F: V \to V$ un'AL ed $A \in M_n(\mathbb{K})$ la matrice associata ad essa in una qualunque base, F è diagonalizzabile $\Leftrightarrow A$ è diagonalizzabile. Inoltre, la base che diagonalizza F è composta dai vettori colonna della matrice che diagonalizza A.

Def 9.1.6. Data $A \in M_n(\mathbb{K})$, il polinomio caratteristico di $A \in p_A(x) = det(A - xI)$.

Prop 9.1.7. λ è autovalore di $A \Leftrightarrow p_A(\lambda) = 0$.

Def 9.1.8. $A, B \in M_n(\mathbb{K})$ si dicono *simili* se $\exists Q \in M_n(\mathbb{K})$ invertibile t.c. $Q^{-1}AQ = B$. In simboli, $A \sim B$.

Prop 9.1.9. $A \sim B \Leftrightarrow B \sim A$.

Prop 9.1.10. $A \sim B \Rightarrow p_A(x) = p_B(x)$. (NB: il contrario non è vero).

Def 9.1.11. Sia $F:V\to V$ un'AL, l'autospazio di F su λ è

$$V_{\lambda} = \{ \mathbf{v} \in V \mid F(\mathbf{v}) = \lambda \mathbf{v} \}.$$

(NB: $\mathbf{0} \in V_{\lambda}$, ma per definizione non è un autovettore).

Prop 9.1.12. $V_{\lambda} = \ker(A - \lambda I)$.

Prop 9.1.13. Siano $\mathbf{v}_1, ..., \mathbf{v}_n$ autovettori di autovalori $\lambda_1, ..., \lambda_n$. Se $\lambda_1 \neq ... \neq \lambda_n$, allora $\mathbf{v}_1, ..., \mathbf{v}_n$ sono LI.

Prop 9.1.14. Sia $A \in M_n(\mathbb{K})$ con n autovalori distinti, allora A è diagonalizzabile.

Def 9.1.15. Sia $A \in M_n(\mathbb{K})$ e λ un suo autovalore. Si definisce molteplicità algebrica di λ il numero $m_a(\lambda) \mid p(x) = (x - \lambda)^{m_a(\lambda)} q(x)$ con $q(\lambda) \neq 0$ (in pratica la più alta potenza di $(x - \lambda)$ che divide p(x)). Si definisce molteplicità geometrica di λ il numero $m_q(\lambda) = \dim V_{\lambda}$.

Prop 9.1.16. $1 \leq m_g(\lambda) \leq m_a(\lambda)$ (se λ è autovalore).

Prop 9.1.17. $A \in M_n(\mathbb{K})$ è diagonalizzabile con autovalori $\lambda_1, ..., \lambda_n \Leftrightarrow m_g(\lambda_1) + ... + m_g(\lambda_n) = n$, il che è equivalente a dire che $m_a(\lambda_i) = m_g(\lambda_i) \ \forall i$.

Prop 9.1.18. Se un'AL $F: V \to V$ ha un autovalore $\lambda = 0$, non è iniettiva.

Prop 9.1.19. Siano $L_A, L_B : V \to V$ AL diagonalizzabili associate in una base rispettivamente alle matrici A e B, e sia AB = BA. Allora se \mathbf{v} è autovettore di A lo è anche $B\mathbf{v}$, e vice versa. Si dice che B mantiene stabile l'autospazio di A.

9.2 Forme di Jordan

Def 9.2.1. Si dice blocco di Jordan di ordine r ed autovalore λ la matrice

$$J_{\lambda}^{r} = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{pmatrix} \in M_{n}(\mathbb{K}).$$

Def 9.2.2. Si dice matrice di Jordan la matrice

$$J = \begin{pmatrix} J_{\lambda_1}^{r_1} & 0 & \dots & 0 \\ 0 & J_{\lambda_2}^{r_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{\lambda_k}^{r_k} \end{pmatrix} \in M_{r_1 + \dots + r_k}(\mathbb{K}).$$

Teo 5 (Teorema di Jordan). Sia $A \in M_n(\mathbb{C})$. Allora:

- 1. $\exists P \in M_n(\mathbb{C})$ invertibile tale che $P^{-1}AP = J$, dove J è una matrice di Jordan con gli autovalori di A sulla diagonale.
- 2. Sia $B \in M_n(\mathbb{C})$, $B \sim A \Leftrightarrow$ hanno la stessa forma di Jordan (a meno di un riordino dei blocchi di Jordan).

Prop 9.2.3. Equivalentemente, data un'AL $T: \mathbb{C} \to \mathbb{C}$ con associata la matrice A rispetto a \mathcal{C} , esiste una base \mathcal{B} rispetto alla quale la matrice associata a T è in forma di Jordan. La matrice P dell'enunciato precedente è la matrice di cambio di base tra \mathcal{B} e \mathcal{C} .

10 Prodotti scalari ed hermitiani

10.1 Forme bilineari

Def 10.1.1. Sia V uno SV su \mathbb{R} . Una funzione $g: V \times V \to \mathbb{R}$ si dice forma bilineare se $\forall \mathbf{v}, \mathbf{v}', \mathbf{u}, \mathbf{u}' \in V, \ \lambda \in \mathbb{R}$ si ha

1.
$$g(\mathbf{u} + \mathbf{u}', \mathbf{v}) = g(\mathbf{u}, \mathbf{v}) + g(\mathbf{u}', \mathbf{v})$$

2.
$$g(\mathbf{u}, \mathbf{v} + \mathbf{v}') = g(\mathbf{u}, \mathbf{v}) + g(\mathbf{u}, \mathbf{v}')$$

3.
$$g(\lambda \mathbf{u}, \mathbf{v}) = \lambda g(\mathbf{u}, \mathbf{v})$$

4.
$$q(\mathbf{u}, \lambda \mathbf{v}) = \lambda q(\mathbf{u}, \mathbf{v}).$$

Se inoltre $g(\mathbf{u}, \mathbf{v}) = g(\mathbf{v}, \mathbf{u})$, g si dice forma bilineare simmetrica o prodotto scalare (alcuni, inclusa Wikipedia, definiscono prodotti scalari solo le FB simmetriche definite positive).

Prop 10.1.2. Siano V SV FG con dim $V=n, \mathcal{B}=\{\mathbf{v}_1,...,\mathbf{v}_n\}$ base di V e c_{ij} con $i,j\in\{1,...,n\}$ scalari. Allora $\exists !$ una FB $g:V\times V\to\mathbb{R}\mid g(\mathbf{v}_i,\mathbf{v}_j)=c_{ij}\;\forall\;i,j.$

Prop 10.1.3. Sia V SV FG con dim V = n. Fissata una base $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$, esiste una corrispondenza biunivoca tra $\{g : V \times V \to \mathbb{R} \text{ FB}\}$ e $M_n(\mathbb{R})$, data da

$$g \to C = \begin{pmatrix} g(\mathbf{v}_1, \mathbf{v}_1) & \dots & g(\mathbf{v}_1, \mathbf{v}_n) \\ \vdots & \ddots & \vdots \\ g(\mathbf{v}_n, \mathbf{v}_1) & \dots & g(\mathbf{v}_n, \mathbf{v}_n) \end{pmatrix}$$
$$C \to g(\mathbf{v}, \mathbf{w}) = (\mathbf{v})_{\mathcal{B}}^t C(\mathbf{w})_{\mathcal{B}}.$$

Prop 10.1.4. FB simmetriche corrispondono a matrici simmetriche.

Prop 10.1.5. Sia g una FB con matrice associata C nella base \mathcal{B} . La matrice associata a q nella base \mathcal{B}' è

$$C' = I_{\mathcal{B}'\mathcal{B}}^t C I_{\mathcal{B}'\mathcal{B}}.$$

Def 10.1.6. Due matrici $A, B \in M_n(\mathbb{K})$ si dicono congruenti se $\exists P \in M_n(\mathbb{R})$ invertibile $\mid P^tAP = B$. In simboli $A \cong B$.

10.2 Prodotti scalari

Def 10.2.1. Sia V uno SV su un campo \mathbb{K} . Un PS si dice non degenere se $\langle \mathbf{u}, \mathbf{v} \rangle = 0 \ \forall \mathbf{v} \in V \Rightarrow \mathbf{u} = \mathbf{0}$, e si dice definito positivo se $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0 \ \forall \mathbf{v} \in V$ e $\langle \mathbf{v}, \mathbf{v} \rangle = 0 \Rightarrow \mathbf{v} = \mathbf{0}$.

Def 10.2.2. Sia \langle , \rangle un PS DP. La *norma* del vettore \mathbf{v} è definita come

$$||\mathbf{v}|| = \sqrt{\langle v, v \rangle}.$$

Prop 10.2.3. Sia V SV su \mathbb{R} con \langle , \rangle PS DP. Si dice che \mathbf{u} e \mathbf{v} sono *ortogonali* (o perpendicolari) tra loro rispetto a \langle , \rangle se $\langle \mathbf{u}, \mathbf{v} \rangle = 0$. Si scrive $\mathbf{u} \perp \mathbf{v}$.

Prop 10.2.4. Se \langle , \rangle è un PS DP, allora $\nexists \mathbf{v}$ ortogonale a se stesso. Al contrario, se \langle , \rangle è degenere, allora $\exists \mathbf{v}$ ortogonale a se stesso.

Prop 10.2.5. Il prodotto di Minkowski è il prodotto scalare \langle , \rangle_M tale che

$$\left\langle \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right\rangle_M = x_1 y_1 + \dots + x_{n-1} y_{n-1} - x_n y_n.$$

Esso non è né DP né degenere.

Prop 10.2.6. Sia W uno SSV di V su $\mathbb R$ con un PS \langle, \rangle . Si definisce sottospazio ortogonale a W

$$W^{\perp} = \{ \mathbf{v} \in V \mid \langle \mathbf{v}, \mathbf{u} \rangle = 0 \}.$$

Prop 10.2.7. W^{\perp} è SSV di V.

Prop 10.2.8. Se \langle , \rangle è il PS euclideo, allora dim $W + \dim W^{\perp} = \dim V$.

Def 10.2.9. Sia V SV su \mathbb{R} con \langle , \rangle PS DP. Una base $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ di V è ortogonale se

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle \begin{cases} \neq 0 \text{ se } i = j \\ = 0 \text{ se } i \neq j \end{cases}$$

e ortonormale se

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \delta_{ij} \begin{cases} = 1 \text{ se } i = j \\ = 0 \text{ se } i \neq j \end{cases}$$

Prop 10.2.10. V SV su $\mathbb R$ con \langle,\rangle PS DP e siano $\mathbf v,\mathbf w\in V,$ il coefficiente di Fourier di $\mathbf v$ rispetto a $\mathbf w$ è

$$c(\mathbf{v}, \mathbf{w}) = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle}.$$

Prop 10.2.11. Sia V SV su \mathbb{R} con dim V = n, con \langle , \rangle PS DP, e sia W SSV di V con base ortogonale $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_m\}$. Allora $\exists \mathbf{b}_{m+1}, ..., \mathbf{b}_n \in V | \{\mathbf{b}_1, ..., \mathbf{b}_m, ..., \mathbf{b}_n\}$ è base ortogonale di V rispetto a \langle , \rangle . Ciò è possibile grazie all'algoritmo di Gram-Schmidt.

Prop 10.2.12. V SV FG su \mathbb{R} con \langle , \rangle PS DP. Allora esiste una base di V ortonormale rispetto a \langle , \rangle .

Prop 10.2.13. Sia Sia V SV su \mathbb{R} con dim V = n, con \langle , \rangle PS DP, e sia \mathcal{B} una base ortonormale rispetto a \langle , \rangle . Allora la matrice associata a \langle , \rangle in \mathcal{B} è I_n .

10.3 Prodotti hermitiani

Def 10.3.1. Sia V uno SV su \mathbb{K} . Una funzione $g: V \times V \to \mathbb{K}$ si dice *prodotto hermitiano* se \forall $\mathbf{v}, \mathbf{v}', \mathbf{u}, \mathbf{u}' \in V$, $\lambda \in \mathbb{K}$ si ha

1.
$$g(\mathbf{u} + \mathbf{u}', \mathbf{v}) = g(\mathbf{u}, \mathbf{v}) + g(\mathbf{u}', \mathbf{v})$$

2.
$$g(\mathbf{u}, \mathbf{v} + \mathbf{v}') = g(\mathbf{u}, \mathbf{v}) + g(\mathbf{u}, \mathbf{v}')$$

3.
$$g(\lambda \mathbf{u}, \mathbf{v}) = \lambda g(\mathbf{u}, \mathbf{v})$$

4.
$$g(\mathbf{u}, \lambda \mathbf{v}) = \overline{\lambda} g(\mathbf{u}, \mathbf{v}).$$

5.
$$g(\mathbf{u}, \mathbf{v}) = \overline{g(\mathbf{v}, \mathbf{u})}$$

Prop 10.3.2. Se \langle , \rangle è un prodotto hermitiano, $\langle \mathbf{v}, \mathbf{v} \rangle \in \mathbb{R}$. Le nozioni di *definito* positivo e non degenere si estendono ai prodotti hermitiani.

Def 10.3.3. Il prodotto hermitiano standard è \langle , \rangle_h con

$$\left\langle \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right\rangle_h = x_1 \overline{y_1} + \dots + x_n \overline{y_n}$$

11 Teorema spettrale

11.1 Matrici ortogonali e simmetriche

Def 11.1.1. Sia V SV FG su \mathbb{R} , con \langle,\rangle PS DP. Un'AL $U:V\to V$ si dice ortogonale rispetto a \langle,\rangle se

$$\langle U(\mathbf{v}), U(\mathbf{w}) \rangle = \langle \mathbf{v}, \mathbf{w} \rangle \ \forall \ \mathbf{v}, \mathbf{w} \in V.$$

Prop 11.1.2. Sia V SV su \mathbb{R} con dim V=n, con \langle,\rangle PS DP e $U:V\to V$ un'AL. Le seguenti affermazioni sono equivalenti:

- 1. U è ortogonale.
- 2. $\langle U(\mathbf{v}), U(\mathbf{v}) \rangle = \langle \mathbf{v}, \mathbf{v} \rangle \ \forall \ \mathbf{v}, \mathbf{w} \in V \ (U \text{ conserva la norma dei vettori}).$

3. $\{\mathbf{b}_1,...,\mathbf{b}_n\}$ è base ortonormale di V rispetto a $\langle,\rangle \Rightarrow \{U(\mathbf{b}_1),...,U(\mathbf{b}_n)\}$ è base ortonormale di V rispetto a \langle,\rangle .

Def 11.1.3. $A \in M_n(\mathbb{R})$ si dice ortogonale se

$$\langle A\mathbf{v}, A\mathbf{w} \rangle_e = \langle \mathbf{v}, \mathbf{w} \rangle_e \ \forall \ \mathbf{v}, \mathbf{w} \in V.$$

Prop 11.1.4. Sia $A \in M_n(\mathbb{R})$ le seguenti affermazioni sono equivalenti:

- 1. A è ortogonale.
- 2. $A^t = A^{-1}$.
- 3. I vettori riga di A formano una base ortonormale di \mathbb{R}^n rispetto a \langle,\rangle_e e lo stesso vale per le colonne.

Prop 11.1.5. Sia V SV FG su \mathbb{R} , con \langle , \rangle PS DP e $U:V \to V$ un'AL con matrice associata A in una base \mathcal{B} ortonormale rispetto a \langle , \rangle . Allora U è ortogonale $\Leftrightarrow A$ è ortogonale.

Prop 11.1.6. Se $A \in M_n(\mathbb{R})$ è ortogonale, gode delle seguenti proprietà:

- 1. $\det A = \pm 1$
- 2. $A^{-1} = A^t$ è ortogonale.
- 3. Se $B \in M_n(\mathbb{R})$ è ortogonale, AB e BA sono ortogonali.

Def 11.1.7. Sia V SV FG su \mathbb{R} , con \langle , \rangle PS DP. Un'AL $T:V\to V$ si dice *simmetrica* rispetto a \langle , \rangle se

$$\langle T(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, T(\mathbf{w}) \rangle$$
.

Prop 11.1.8. Sia V SV FG su \mathbb{R} , con \langle , \rangle PS DP e $T:V\to V$ un'AL con matrice associata A in una base \mathcal{B} ortonormale rispetto a \langle , \rangle . Allora U è simmetrica \Leftrightarrow A è simmetrica.

11.2 Matrici unitarie ed hermitiane

Def 11.2.1. Sia V SV FG su \mathbbm{K} con \langle,\rangle_h PH DP. Un'AL $U:V\to V$ si dice unitaria se

$$\left\langle U(\mathbf{v}), U(\mathbf{w}) \right\rangle_h = \left\langle \mathbf{v}, \mathbf{w} \right\rangle_h \ \forall \ \mathbf{v}, \mathbf{w} \in V.$$

Def 11.2.2. $A \in M_n(\mathbb{K} \text{ si dice } unitaria \text{ se})$

$$A^{-1} = \overline{A^t}$$

Prop 11.2.3. Fissata una base, ad AL unitarie corrispondono matrici unitarie.

Def 11.2.4. Sia V SV FG su $\mathbb K$ con \langle,\rangle_h PH DP. Un'AL $T:V\to V$ si dice hermitiana se

$$\langle T(\mathbf{v}), \mathbf{w} \rangle_h = \langle \mathbf{v}, T(\mathbf{w}) \rangle_h \ \forall \ \mathbf{v}, \mathbf{w} \in V.$$

Def 11.2.5. $A \in M_n(\mathbb{K})$ si dice hermitiana se

$$A = \overline{A^t}$$
.

Prop 11.2.6. $A \in M_n(\mathbb{K})$ è hermitiana $\Leftrightarrow \langle A\mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, A\mathbf{w} \rangle_h$, dove \langle , \rangle_h è il PH standard in \mathbb{K}^n .

Prop 11.2.7. Fissata una base ortonormale rispetto a un PH DP, ad AL hermitiane corrispondono matrici hermitiane e ad AL unitarie corrispondono matrici unitarie.

11.3 Teorema spettrale

Prop 11.3.1. Sia $A \in M_n(\mathbb{R})$ una matrice simmetrica. Allora tutti gli autovalori di A sono reali. Lo stesso vale per le matrici hermitiane.

Prop 11.3.2. Sia $A \in M_n(\mathbb{R})$ una matrice simmetrica e siano $\lambda \in \mathbb{R}$ un suo autovalore, $\mathbf{v} \in V_{\lambda}$, $\mathbf{w} \perp \mathbf{v}$ rispetto a \langle , \rangle_e . Allora $A\mathbf{w} \perp \mathbf{v}$. Lo stesso vale per matrici hermitiane e vettori ortogonali rispetto a \langle , \rangle_h .

Prop 11.3.3. Sia $A \in M_n(\mathbb{R})$ una matrice simmetrica e siano $\lambda \neq \mu \in \mathbb{R}$ due suoi autovalori. Allora, rispetto a \langle , \rangle_e , $\mathbf{v} \perp \mathbf{w} \ \forall \ \mathbf{v} \in V_\lambda, \mathbf{w} \in V_\mu$. Si scrive $V_\lambda \perp V_\mu$ rispetto a \langle , \rangle_e . Lo stesso vale per matrici hermitiane e \langle , \rangle_h .

Teo 6 (Teorema spettrale, caso reale). Sia V SV su \mathbb{R} con dim V=n, e sia \langle , \rangle un PS DP. Sia $T:V\to V$ un'AL simmetrica associata alla matrice $A\in M_n(\mathbb{R})$ in una base \mathcal{B} ortonormale rispetto a \langle , \rangle . Allora

- 1. T è diagonalizzabile ed esiste una base \mathcal{N} ortonormale rispetto a \langle, \rangle costituita da autovettori di T.
- 2. A è diagonalizzabile tramite una matrice P ortogonale, ossia $\exists P \in M_n(\mathbb{R}) | P^tAP = P^{-1}AP$ è una matrice diagonale.

Teo 7 (Teorema spettrale, caso complesso). Sia V SV su \mathbb{K} con $\dim V = n$, e sia \langle , \rangle_h un PH DP. Sia $T: V \to V$ un'AL hermitiana associata alla matrice $A \in M_n(\mathbb{K})$ in una base \mathcal{B} ortonormale rispetto a \langle , \rangle_h . Allora

- 1. T è diagonalizzabile ed esiste una base $\mathcal N$ ortonormale rispetto a \langle,\rangle_h costituita da autovettori di T.
- 2. A è diagonalizzabile ad una matrice reale tramite una matrice P unitaria, ossia $\exists P \in M_n(\mathbb{R}) | \overline{P^t}AP = P^{-1}AP \in M_n(\mathbb{R})$ è una matrice diagonale reale.

Dimostrazione. Sia λ_1 un autovalore reale di T (che esiste per quanto detto sopra) e sia $\mathbf{u}_1 \in V$ un autovettore di norma 1 relativo a λ_1 . Sia $W_1 = \langle \mathbf{u}_1 \rangle^{\perp}$.

Allora si ha che dim $W_1 = n - 1$. Consideriamo ora $T_1 = T|_{W_1} : W_1 \to V$. Dato che $\forall \mathbf{w} \in W_1 \ \mathbf{u}_1 \perp T_1(\mathbf{w})$, si ha che Im $T_1 \subseteq W_1$, quindi $T_1 : W_1 \to W_1$.

Si può ripetere tutto il ragionamento considerando un autovalore di T_1 $\lambda_2 \in \mathbb{R}$ ed un relativo autovettore di norma 1 $\mathbf{u}_2 \in W_1$. Chiaramente, dato che T_1 è una restrizione di T, λ_2 e \mathbf{u}_2 sono autovalore e autovettore di T. Inoltre, definendo $W_2 = \langle \mathbf{u}_2 \rangle^{\perp}$, ogni suo vettore è ortogonale a u_1 dato che $W_2 \subseteq W_1$. Si restringe T_1 a W_2 in modo del tutto analogo a sopra, e così via.

Dopo n passi si saranno ottenuti n autovettori LI ortogonali e di norma 1 $\mathbf{u}_1,...,\mathbf{u}_n$, che costituiscono la base ortonormale di autovettori \mathcal{N} . Dunque T è diagonalizzabile, e A è diagonalizzabile alla matrice con autovettori reali $\lambda_1,...,\lambda_n$ sulla diagonale, tramite la matrice unitaria di cambio di base da \mathcal{B} a \mathcal{N} .

Se $\mathbb{K} \subseteq \mathbb{R}$ il caso complesso si riduce a quello reale.

QED

Prop 11.3.4. Una formulazione equivalente del Teorema spettrale è la seguente: sia V SV su \mathbb{R} con dim V=n, e sia \langle,\rangle un PS DP. Sia \langle,\rangle' un PS (non necessariamente DP). Allora esiste una base \mathcal{N} ortonormale rispetto a \langle,\rangle ed ortogonale rispetto a \langle,\rangle' .

Prop 11.3.5. Sia V SV su \mathbb{R} con dim V = n, e sia \langle , \rangle un PS DP associato ad una matrice diagonale D rispetto ad una base \mathcal{N} . Allora

- 1. \langle , \rangle è non degenere \Leftrightarrow tutti gli elementi sulla diagonale di D sono $\neq 0$.
- 2. \langle , \rangle è DP \Leftrightarrow tutti gli elementi sulla diagonale di D sono > 0.

Prop 11.3.6. Siano $A, B, P \in M_n(\mathbb{R})$ con P invertibile e $B = P^t A P$. $A \in B$ hanno gli stessi autovalori $\Leftrightarrow P^t = P^{-1}$.

11.4 Teorema di Sylvester

Prop 11.4.1. Sia V SV su \mathbb{K} con dim V=n, sia \langle , \rangle un PS DP con matrice associata C in una base \mathcal{B} qualsiasi e siano $\lambda_1,...,\lambda_n$ i suoi autovalori. Definiti $p=\sum_{\lambda_i>0}m_a(\lambda_i),\,q=\sum_{\lambda_i>0}m_a(\lambda_i)$ e $r=m_a(0)$, si definisce segnatura di \langle , \rangle (p,q) oppure (p,q,r).

Teo 8 (Teorema di Sylvester). Sia \langle , \rangle un PS sullo SV V sul campo \mathbb{K} con dim V=n, la sua segnatura (p,q,r) non dipende dalla base scelta. Inoltre esiste una base in cui la matrice associata a \langle , \rangle è la sua forma standard

 $D = \begin{pmatrix} I_p & 0 & 0 \\ 0 & -I_q & 0 \\ 0 & 0 & 0_r \end{pmatrix} \in M_n(\mathbb{R}).$

Prop 11.4.2. Un PS \langle , \rangle con segnatura (p,q,r) è definito positivo se q=r=0 ed è non degenere se q=0.

12 Forme quadratiche

Def 12.0.1. Sia V uno SV su \mathbb{R} e sia \langle , \rangle un PS. Allora la funzione

$$q: V \to \mathbb{R}, \ q: \mathbf{v} \mapsto \langle \mathbf{v}, \mathbf{v} \rangle$$

si dice forma quadratica associata a \langle , \rangle .

Prop 12.0.2. Data una FQ q, ad essa è univocamente associato il PS dato da

$$\langle \mathbf{u}, \mathbf{v} \rangle = \frac{q(\mathbf{u} + \mathbf{v}) - [q(\mathbf{u}) + q(\mathbf{v})]}{2}.$$

Prop 12.0.3. Sia V uno SV su \mathbb{R} e sia \langle , \rangle un PS con matrice associata C nella base \mathcal{B} . Allora la FQ q associata a \langle , \rangle è data da $q(\mathbf{v}) = (\mathbf{v})_{\mathcal{B}}^t C(\mathbf{v})_{\mathcal{B}}$.

Prop 12.0.4. Sia V uno SV su \mathbb{R} con dim V = n e base \mathcal{B} fissata, e sia q una FQ con $q(x_1,...,x_n) = a_{11}x_1^2 + a_{12}x_1x_2 + ... + a_{nn}x_n^2$, q è associata alla matrice

$$C = \begin{pmatrix} a_{11} & \frac{a_{12}}{2} & \dots & \frac{a_{1n}}{2} \\ \frac{a_{12}}{2} & a_{12} & \dots & \frac{a_{2n}}{2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{a_{1n}}{2} & \frac{a_{2n}}{2} & \dots & a_{nn} \end{pmatrix}$$

Prop 12.0.5 (Teorema degli assi principali). Sia $q: \mathbb{R}^n \to \mathbb{R}$ una FQ associata in \mathcal{C} alla matrice C. Allora esiste una base ortonormale \mathcal{N} costituita da autovettori di C rispetto a cui la matrice associata a q è diagonale e dunque $q(x_1,...,x_n) = \lambda_1 x_1 + ... + \lambda_n x_n$, dove gli x_i sono le coordinate di un vettore rispetto a \mathcal{N} e i λ_i sono autovalori di C.

Prop 12.0.6. Nel piano, cosiderando l'equazione q(x,y)=c>0, se la segnatura di q è:

- (0,2,0) la conica associata non esiste.
- (1,1,0) la conica associata è un'iperbole.
- (2,0,0) la conica associata è un'ellisse.
- (1,0,1) la conica associata è una parabola.

13 Spazi duali

Def 13.0.1. Sia V uno SV su \mathbb{K} . Si dice spazio duale di V l'insieme

$$V^* = \{ f : V \to \mathbb{K} \mid f \text{ applicatione lineare} \}$$

Prop 13.0.2. Uno spazio duale è uno SV.

Prop 13.0.3. Sia V uno SV su \mathbb{K} con dim V=n e $\mathcal{B}=\{\mathbf{v}_1,...,\mathbf{v}_n\}$ una sua base. Si definiscono in V^* le funzioni

$$v_i^*: V \to \mathbb{K}, \ v_i \mapsto \delta_{ii}$$

Def 13.0.4. Sia V uno SV su \mathbb{K} con dim V = n e \mathbb{C} una sua base. Allora $\mathcal{B}^* = \{\mathbf{v}_1^*, ..., \mathbf{v}_n^*\}$ è base di V^* ed è detta base duale.

Prop 13.0.5. Sia V uno SV FG su \mathbb{K} con una base fissata $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$. Allora per l'associazione AL-matrici $V^* \cong M_{1,n}(\mathbb{K})$. Inoltre $V \cong V^*$ tramite l'isomorfismo $\phi: V \to V^*$, $\mathbf{v}_i \mapsto \mathbf{v}_i^*$.

Prop 13.0.6. Sia V uno SV su \mathbb{K} con dim V=n, e sia \langle,\rangle un PS non degenere. Sia $\mathbf{v} \in V$, si consideri $L_{\mathbf{v}}: V \to \mathbb{K}, \ \mathbf{w} \mapsto \langle \mathbf{v}, \mathbf{w} \rangle$. Allora la funzione $\Phi: V \to V^*, \ \mathbf{v} \mapsto L_{\mathbf{v}}$ è un isomorfismo tra V e V^* .

Prop 13.0.7. Sia V uno SV su \mathbb{K} e sia W SSV di V. Si definisce

$$W^{\checkmark} = \{ f \in V^* \mid f(\mathbf{w}) = 0 \ \forall \ \mathbf{w} \in W \}.$$

Prop 13.0.8. Sia V uno SV FG su \mathbb{K} e sia W SSV di V. Allora $\dim W^{\checkmark}=\dim V-\dim W.$

Prop 13.0.9. Sia V uno SV su \mathbb{K} con dim V=n, e sia \langle , \rangle un PS non degenere. Sia $\mathbf{v} \in V$, si consideri $L_{\mathbf{v}}: V \to \mathbb{K}, \ \mathbf{w} \mapsto \langle \mathbf{v}, \mathbf{w} \rangle$. Allora $W^{\perp} \cong W^{\checkmark}$ tramite la funzione $\Phi: V \to V^*, \ \mathbf{v} \mapsto L_{\mathbf{v}}$.

Prop 13.0.10. Sia V uno SV FG su \mathbb{K} e sia \langle,\rangle un PS non degenere. Allora $\dim W^{\perp} = \dim V - \dim W$.

Prop 13.0.11. Sia V uno SV su \mathbb{K} . Sia $\mathbf{v} \in V$, si consideri la funzione $\psi \in V^{**}$ con $\psi_{\mathbf{v}}: V^* \to \mathbb{K}, \ \varphi \mapsto \varphi(\mathbf{v})$. Allora la funzione $\Phi: V \to V^{**}, \ \mathbf{v} \mapsto \psi_{\mathbf{v}}$ realizza un isomorfismo canonico tra V e V^{**} . I due spazi si possono quindi identificare, identificando \mathbf{v} con $\psi_{\mathbf{v}}$.

Prop 13.0.12. Di conseguenza si può pensare che, siano V SV su \mathbb{K} , $\mathbf{v} \in V$, $\varphi \in V^*$, $\mathbf{v}(\varphi) = \varphi(\mathbf{v})$.

14 Tensori

14.1 Spazi vettoriali liberi

Def 14.1.1. Sia $S = \{s_1, ..., s_n\}$ un insieme finito, lo *spazio vettoriale libero* di S è

$$V_S = \{ f : S \to \mathbb{K} \}.$$

Prop 14.1.2. Definendo le operazioni $+ e \cdot nel modo consueto per le funzioni, <math>V_S$ è uno SV.

Prop 14.1.3. Si definiscono in V_S le funzioni

$$s_i^*: S \to \mathbb{K}, \ s_i \mapsto \delta_{ii}.$$

Prop 14.1.4. Sia $S = \{s_1, ..., s_n\}$ un insieme finito di n elementi, $\{s_1^*, ..., s_n^*\}$ è base di V_S .

Prop 14.1.5. Spesso si identificano s_i ed s_i^* . V_S è quindi detto l'insieme delle combinazioni lineari formali degli elementi di S.

14.2 Tensori e forme multilineari

Def 14.2.1. Siano $V_1, ..., V_k, W$ SV FG su \mathbb{K} . Un'applicazione $F: V_1 \times ... \times V_k \to W$ si dice *multilineare* se

$$F(\mathbf{v}_1, ..., \alpha \mathbf{v}_i + \beta \mathbf{u}_i, ..., \mathbf{v}_k) = \alpha F(\mathbf{v}_1, ..., \mathbf{v}_i, ..., \mathbf{v}_k) + \beta F(\mathbf{v}_1, ..., \mathbf{u}_i, ..., \mathbf{v}_k)$$

$$\forall \mathbf{v}_i, \mathbf{u}_i \in V_i, \ \alpha, \beta \in \mathbb{R}, \ i \in \{1, ..., k\}.$$

Def 14.2.2. Siano V, W SV FG su \mathbb{K} con basi fissate rispettivamente $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ e $\mathcal{B}' = \{\mathbf{w}_1, ..., \mathbf{w}_m\}$. Sia $S = \{\mathbf{v}_i \otimes \mathbf{v}_j' \mid 1 \leq i \leq n, \ 1 \leq j \leq m\}$ l'insieme degli mn simboli senza significato $\mathbf{v}_i \otimes \mathbf{v}_j'$. Si dice prodotto tensoriale di V e W l'insieme

$$V \otimes W = V_S = \left\{ \sum_{i,j} a_{ij} \mathbf{v}_i \otimes \mathbf{v}'_j \mid a_{ij} \in \mathbb{K} \right\}.$$

Un elemento T di $V\otimes W$ si dice tensore. Il prodotto tensoriale di due vettori $\mathbf{v}\in V,\ \mathbf{w}\in W$ è definito come

$$\mathbf{v}\otimes\mathbf{w}=\sum_{i,j}v_iw_j\mathbf{v}_i\otimes\mathbf{v}_j'.$$

dove le v_i e w_j sono le coordinate dei vettori rispetto alle basi scelte. Se $\exists \mathbf{v} \in V$, $\mathbf{w} \in W \mid T = \mathbf{v} \otimes \mathbf{w}$, T è detto decomponibile o riducibile. Non tutti i tensori di $V \otimes W$ sono decomponibili.

Prop 14.2.3. Siano V, W, U SV FG su \mathbb{K} . Allora esiste un'applicazione bilineare $\phi: V \times W \to V \otimes W$ che soddisfa la seguente proprietà, detta *proprietà* universale:

$$\forall g: V \times W \to U \text{ AB} \quad \exists g_*: V \otimes W \to U \text{ AL} \mid g = g_* \circ \phi.$$

Prop 14.2.4. $\dim(V \otimes W) = \dim V \dim W$

Prop 14.2.5. Sia V SV FG su \mathbb{K} , sia $\mathcal{L}(V,V)$ l'insieme delle AL $L:V\to V$, siano $\mathbf{v},\mathbf{w}\in V,\ \varphi\in V^*$ e sia

$$L_{\varphi \otimes \mathbf{v}} : V \to V, \ \mathbf{w} \mapsto \varphi(\mathbf{w})\mathbf{v}.$$

Allora la funzione $g_*: V^* \otimes V \to \mathcal{L}(V, V), \ \varphi \otimes \mathbf{v} \mapsto L_{\varphi \otimes \mathbf{v}}$ realizza un isomorfismo tra $V^* \otimes V \in \mathcal{L}(V, V)$.

Prop 14.2.6. Sia V SV FG su \mathbb{K} , sia $\mathcal{P}(V)$ l'insieme dei PS $\langle,\rangle:V\times V\to\mathbb{K}$, siano $\varphi,\psi\in V^*$ e sia

$$\langle , \rangle_{\varphi \otimes \psi} : V \times V \to \mathbb{K}, \ (\mathbf{v}, \mathbf{w}) \mapsto \varphi(\mathbf{v}) \psi(\mathbf{w}).$$

Allora la funzione $g_*: V^* \otimes V^* \to \mathcal{P}(V), \ \varphi \otimes \psi \mapsto \langle, \rangle_{\varphi \otimes \psi}$ realizza un isomorfismo tra $V^* \otimes V^*$ e $\mathcal{P}(V)$.

Prop 14.2.7. I ragionamenti fatti per i prodotti tensoriali di due SV si possono generalizzare ad un qualsiasi numero k di SV, sostituendo alle applicazioni bilineari applicazioni k-lineari.

Def 14.2.8. Sia V SV FG su \mathbb{K} con base $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$. Si dice tensore covariante un tensore

$$T = \sum T_{i_1...i_r} \mathbf{v}^{*i_1} \otimes ... \otimes \mathbf{v}^{*i_r} \in \tau^r = V^* \otimes ... \otimes V^* \ r \text{ volte.}$$

Si dice tensore *controvariante* un tensore

$$T = \sum T^{i_1...i_s} \mathbf{v}_{i_1} \otimes ... \otimes \mathbf{v}_{i_s} \in \tau_s = V \otimes ... \otimes V \ s \ \text{volte}.$$

Si dice tensore *misto* un tensore

$$T = \sum T_{i_1...i_r}^{j_1...j_s} \mathbf{v}^{*i_1} \otimes ... \otimes \mathbf{v}^{*i_r} \otimes \mathbf{v}_{j_1} \otimes ... \otimes \mathbf{v}_{j_s} \in \tau_s^r = V^* \otimes ... \otimes V^* \otimes V \otimes ... \otimes V.$$

Prop 14.2.9. In generale, l'insieme $\tau_s^r = V^* \otimes ... \otimes V^* \otimes V \otimes ... \otimes V$ è canonicamente isomorfo all'insieme delle AM $F: (V)^r \times (V^*)^s \to \mathbb{K}$ e a quello delle AM $F: (V)^s \to (V)^r$.

15 Gruppi

Def 15.0.1. Sia G un insieme e $\varphi:G\times G\to G$ una funzione, si dice che (G,φ) è un gruppo se

- 1. $\varphi (\varphi(x,y),z) = \varphi (x,\varphi(y,z)) \ \forall x,y,z \in G$
- 2. $\exists ! \ e \in G \mid \varphi(e, x) = \varphi(x, e) = x \ \forall x \in G$
- 3. $\forall x \in G \ \exists x^{-1} \in G \ | \ \varphi(x,x^{-1})=\varphi(x^{-1},x)=e. \ y$ è detto l'inverso (o meno spesso l'opposto) di x.

Se $\varphi(x,y) = \varphi(y,x) \ \forall x,y, \in G$ il gruppo è detto abeliano.

Def 15.0.2. Sia (G, φ) un gruppo con un'operazione $\varphi(x, y) := xy$. $H \subset G$ si dice un suo *sottogruppo* se

- 1. $e \in H$
- 2. $\forall x, y \in H \ xy \in H$

 $^{^1\}mathrm{Source}(\mathbf{s}) \colon \operatorname{dude} \, \operatorname{trust} \, \operatorname{me}$

- 3. $\forall x \in H \ x^{-1} \in H$.
- **Def 15.0.3.** Siano (G,\cdot) e (G',*) due gruppi. La funzione $\phi: G \to G'$ è detta omomorfismo se $\phi(x \cdot y) = \phi(x) * \phi(y) \ \forall x,y \in G$.

Prop 15.0.4. Se $\phi: G \to G'$ è un omomorfismo, allora

- 1. $\phi(e_G) = e_{G'}$
- 2. $\phi(x^{-1}) = (\phi(x))^{-1}$
- 3. Im ϕ è sottogruppo di G'.

Def 15.0.5. Siano $G \in G'$ due gruppi e ϕ un omomorfismo tra loro. ϕ è detto isomorfismo se $\exists \psi : G' \to G \mid \phi \circ \psi = \mathrm{id}_{G'}, \ \psi \circ \phi = \mathrm{id}_{G}$.

Prop 15.0.6. Un omomorfismo $\phi:G\to G'$ è un isomorfismo se è iniettivo e suriettivo.

Def 15.0.7. Un isomorfismo $\phi: G \to G$ è detto automorfismo.

Prop 15.0.8. Sia $\phi: G \to G'$ un omomorfismo. Allora ϕ è iniettiva $\Leftrightarrow \ker \phi = e_G$.

Prop 15.0.9. Alcuni gruppi di matrici (l'operazione è sempre il prodotto tra matrici) usati in fisica sono:

- $GL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \text{ invertibili} \}.$
- $SL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det A = 1 \}$ (sottogruppo di $GL_n(\mathbb{R})$).
- Gruppo ortogonale $O(n) = \{A \in GL_n(\mathbb{R}) \mid A^{-1} = A^t\}.$
- Gruppo ortogonale speciale $SO(n) = \{A \in O(n) \mid \det A = 1\}$ (sottogruppo di O(n)).
- Gruppo unitario $U(n) = \{A \in GL_n(\mathbb{C}) \mid A^{-1} = \overline{A}^t\}.$
- Gruppo unitario speciale $SO(n) = \{A \in U(n) \mid \det A = 1\}$ (sottogruppo di U(n)).