Valószínűségszámítás

Kevei Péter

2022. szeptember 12.

Tartalomjegyzék

1.	Bevezetés	1
	1.1. Alapfogalmak	1
	1.2. A valószínűségi mérték	
	1.3. Klasszikus valószínűségi mező	5
2.	Néhány klasszikus probléma	5
	2.1. A párosítási probléma	5
	2.2. Buffon-féle tűprobléma (1777)	7
	2.3. de Méré paradoxona	8
	2.4. Bertrand paradoxon (1888)	
	2.5. Az igazságos osztozkodás problémája	S
3.	Feltételes valószínűség	10
4.	Függetlenség	15
	4.1. Craps játék	17
5.	Véletlen változók	18
	5.1. Diszkrét véletlen változók	21
	5.2. Folytonos véletlen változók	
	5.3. Véletlen vektorváltozók	
	5.4. Véletlen változók függetlensége	24
	5.5. Függetlenség és geometriai valószínűség	
6.	Várható érték	26
	6.1. Várható érték tulajdonságai	27
	6.2. Szórás, kovariancia, korreláció	
	6.3. Ferdeség és lapultság	34
7.	Nevezetes eloszlások	35
	7.1. Bernoulli-eloszlás	35
	7.2. Binomiális eloszlás	
	7.3. Poisson-eloszlás	
	7.4. Geometriai eloszlás	
	7.5. Egyenletes eloszlás	
	7.6. Exponenciális eloszlás	
	7.7 Normális eloszlás	40

8.	Feltételes várható érték	42
	8.1. Diszkrét feltétel	43
	8.2. Folytonos feltétel	44
9.	Véletlen változók konvergenciája	45
	9.1. Markov és Csebisev egyenlőtlenségei	45
	9.2. Nagy számok gyenge törvénye	46
	9.3. Borel–Cantelli-lemmák	47
	9.4. Nagy számok erős törvénye	49
	9.5. Centrális határeloszlás-tétel	50
10	.Konvolúció	51
	10.1. Diszkrét eset	51
	10.2. Folytonos eset	52
11	.A valószínűségi módszer	53
	11.1. Weierstrass approximációtétele	53
	11.2. Ramsey számok	54
12	.Generátorfüggvények	55

1. Bevezetés

1.1. Alapfogalmak

Véletlen (valószínűségi) kísérlet: lényegében azonos körülmények között tetszőlegesen sokszor megismételhető megfigyelés, melynek többféle kimenetele lehet, és a figyelembe vett körülmények nem határozzák meg egyértelműen a kimenetelt.

A véletlen kísérlet lehetséges kimeneteleinek halmaza az **eseménytér**, jele Ω .

Az **esemény** olyan a kísérlettel kapcsolatban tett állítás, melynek igaz vagy hamis volta eldönthető a kísérlet lefolytatása után. Az **események** halmaza az Ω részhalmazainak egy olyan rendszere, mely σ -algebra. Az (Ω, \mathcal{A}) párt mérhetőségi térnek nevezzük.

Egy $\mathcal{A} \subset 2^{\Omega}$ halmazrendszert akkor nevezünk σ -algebrának, ha

- $\emptyset \in \mathcal{A}$:
- valahányszor $A \in \mathcal{A}$, mindannyiszor $A^c = \Omega \backslash A \in \mathcal{A}$ (azaz a halmazrendszer zárt a komplementerképzésre);
- valahányszor $A_1, A_2, \ldots \in \mathcal{A}$, mindannyiszor $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$ (azaz a halmazrendszer zárt a megszámlálható unióképzésre).

Megjegyzés. • Vegyük észre, hogy a $\{\emptyset, \Omega\}$ halmazrendszer σ-algebra. Ez a triviális σ-algebra.

• A 2^{Ω} halmazrendszer, az Ω hatványhalmaza, azaz az összes részhalmazának halmaza is σ -algebra. Abban az esetben, amikor az Ω alaphalmaz véges, akkor az események halmaza mindig a hatványhalmaz.

Események jelölése: A, B, A_1, \ldots

- $|A| = 1 \Leftrightarrow A = \{\omega\}, \ \omega \in \Omega$, elemi esemény
- Ø a lehetetlen esemény
- Ω a biztos esemény
- A^c az ellentett esemény
- $A \cap B$ mindkét esemény bekövetkezik (A és B)
- $A \cup B$ a két esemény közül legalább az egyik bekövetkezik
- $A \cap B = \emptyset$ a két esemény kizárja egymást
- A B az A bekövetkezik de B nem
- $A \subset B$ az A esemény maga után vonja B-t

1.1. Példa. Háromszor földobunk egy pénzérmét. Ekkor az eseménytér

$$\Omega = \{ (F, F, F), (F, F, I), (F, I, F), (F, I, I), (I, F, F), (I, F, I), (I, I, F), (I, I, I) \},$$

azaz $|\Omega|=2^3=8$ darab elemi esemény van, és $|2^{\Omega}|=2^8=256$ az összes esemény száma.

Legyen $A_i = \{az i \text{-edik dobás fej}\}, i = 1, 2, 3.$ Ekkor

$$A_1 = \{(F, F, F), (F, F, I), (F, I, F), (F, I, I)\}.$$

$$B = \{ \text{csak az 1. fej} \} = \{ (F, I, I) \} = A_1 \cap A_2^c \cap A_3^c$$
$$C = \{ \text{egyik sem fej} \} = \{ (I, I, I) \} = A_1^c \cap A_2^c \cap A_3^c$$

- 1.2. Példa. Véletlen sorrendben leírjuk a MATEMATIKA szó betűit.
- 1. megoldás: Az azonos betűket nem különböztetjük meg.

$$\Omega = \{AAAEIKMMTT, AAAEIKMTMT, ..., TTMMKIEAAA\}$$

$$|\Omega| = \frac{10!}{3!2!2!}$$

 $A = \{MATEMATIKA szót kapjuk \} = \{MATEMATIKA\}, azaz A elemi esemény.$

2. megoldás: Az azonos betűket megkülönböztetjük.

$$\Omega = \{A_1 A_2 A_3 EIKM_1 M_2 T_1 T_2, A_1 A_2 A_3 EIKM_1 M_2 T_2 T_1, \dots, T_2 T_1 M_2 M_1 KIEA_3 A_2 A_1 \},$$

 $|\Omega| = 10!$, és ha $A = \{MATEMATIKA szót kapjuk\}, |A| = 3!2!2!$.

1.2. A valószínűségi mérték

- **1.3. Definíció.** Egy $\mathbf{P}: \mathcal{A} \to [0,1]$ halmazfüggvény *valószínűségi mérték* az (Ω, \mathcal{A}) mérhetőségi téren, ha
 - $P(\Omega) = 1$;
 - $\bullet\,$ ha az $A_1,A_2,\ldots\in\mathcal{A}$ halmazok (páronként) diszjunktak, akkor

$$\mathbf{P}(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbf{P}(A_i),$$

azaz a halmazfüggvény σ -additív.

A fenti tulajdonságokkal rendelkező $(\Omega, \mathcal{A}, \mathbf{P})$ hármast valószínűségi mezőnek nevezzük.

- **1.4. Állítás** (A valószínűség tulajdonságai). Legyen $(\Omega, \mathcal{A}, \mathbf{P})$ egy valószínűségi mező, $A, B, A_1, A_2, \ldots \in \mathcal{A}$ események.
 - (i) Ha $A_i \cap A_j = \emptyset$, minden $i \neq j$ párra, akkor

$$\mathbf{P}(A_1 \cup \ldots \cup A_n) = \mathbf{P}(A_1) + \ldots + \mathbf{P}(A_n).$$

- (ii) $P(A^c) = 1 P(A)$.
- (iii) $A \subset B \Rightarrow \mathbf{P}(B A) = \mathbf{P}(B) \mathbf{P}(A)$, és $\mathbf{P}(A) \leq \mathbf{P}(B)$.
- (iv) $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) \mathbf{P}(A \cap B)$.
- (v) Szita formula:

$$\mathbf{P}(A_1 \cup \ldots \cup A_n) = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \ldots < i_k \le n} \mathbf{P}(A_{i_1} \cap \ldots \cap A_{i_k}).$$

- (vi) $\mathbf{P}(A \cup B) < \mathbf{P}(A) + \mathbf{P}(B)$.
- (vii) $\mathbf{P}(A_1 \cup \ldots \cup A_n) \leq \mathbf{P}(A_1) + \ldots + \mathbf{P}(A_n)$.
- (viii) Ha A_n monoton növő halmazsorozat, azaz $A_1 \subset A_2 \subset \ldots$, akkor $\lim_{n\to\infty} \mathbf{P}(A_n) = \mathbf{P}(\bigcup_{i=1}^{\infty} A_i)$.
 - (ix) Ha A_n monoton csökkenő halmazsorozat, azaz $A_1 \supset A_2 \supset \ldots$, akkor $\lim_{n\to\infty} \mathbf{P}(A_n) = \mathbf{P}(\cap_{k=1}^{\infty} A_k)$.
 - (x) $\mathbf{P}(\bigcup_{k=1}^{\infty} A_k) \leq \sum_{k=1}^{\infty} \mathbf{P}(A_k)$ (megszámlálható szubadditivitás).

Bizonyítás. (i) Legyen $A_{n+1} = A_{n+2} = \ldots = \emptyset$.

- (ii) $1 = \mathbf{P}(\Omega) = \mathbf{P}(A \cup A^c) = \mathbf{P}(A) + \mathbf{P}(A^c)$.
- (iii) $B = A \cup (B A)$,

$$\mathbf{P}(B) = \mathbf{P}(A) + \mathbf{P}(B - A) \Rightarrow \mathbf{P}(B - A) = \mathbf{P}(B) - \mathbf{P}(A) \ge 0.$$

- (iv) $\mathbf{P}(A \cup B) = \mathbf{P}(A \cup (B (A \cap B))) = \mathbf{P}(A) + \mathbf{P}(B (A \cap B)) = \mathbf{P}(A) + \mathbf{P}(B) \mathbf{P}(A \cap B).$
 - (v) Teljes indukcióval. n=1,2-re igaz. Tegyük fel, hogy n-ig igaz. A $B_i=A_i,\,i\leq n-1,\,B_n=1$

 $A_n \cup A_{n+1}$ jelöléssel

$$\begin{aligned} &\mathbf{P}(A_{1} \cup \ldots \cup A_{n} \cup A_{n+1}) = \mathbf{P}(B_{1} \cup \ldots \cup B_{n}) \\ &= \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_{1} < i_{2} < \ldots < i_{k} \leq n} \mathbf{P}(B_{i_{1}} \cap \ldots \cap B_{i_{k}}) \\ &= \sum_{k=1}^{n} (-1)^{k+1} \bigg(\sum_{i_{k} < n} \mathbf{P}(A_{i_{1}} \cap \ldots \cap A_{i_{k}}) \\ &+ \sum_{i_{k-1} \leq n-1} \mathbf{P}(A_{i_{1}} \cap \ldots \cap A_{i_{k-1}} \cap (A_{n} \cup A_{n+1})) \bigg) \\ &= \sum_{k=1}^{n} (-1)^{k+1} \bigg(\sum_{i_{k} < n} \mathbf{P}(A_{i_{1}} \cap \ldots \cap A_{i_{k}}) \\ &+ \sum_{i_{k-1} \leq n-1} \bigg[\mathbf{P}(A_{i_{1}} \cap \ldots \cap A_{i_{k-1}} \cap A_{n}) + \mathbf{P}(A_{i_{1}} \cap \ldots \cap A_{i_{k-1}} \cap A_{n+1}) \\ &- \mathbf{P}(A_{i_{1}} \cap \ldots \cap A_{i_{k-1}} \cap A_{n} \cap A_{n+1}) \bigg] \bigg) \\ &= \sum_{k=1}^{n+1} (-1)^{k+1} \sum_{1 \leq i_{1} < i_{2} < \ldots < i_{k} \leq n} \mathbf{P}(A_{i_{1}} \cap \ldots \cap A_{i_{k}}) \end{aligned}$$

- (vi) $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) \mathbf{P}(A \cap B) \le \mathbf{P}(A) + \mathbf{P}(B)$.
- (vii) Teljes indukcióval.
- (viii) Vezessük be a $B_1 = A_1$, $B_n = A_n \setminus A_{n-1}$, $n \ge 2$ jelölést. Ekkor a B_n halmazok diszjunktak, $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$, és $\bigcup_{k=1}^{n} B_k = \bigcup_{k=1}^{n} A_k = A_n$, $n \ge 1$. Így

$$\mathbf{P}(\cup_{k=1}^{\infty} A_k) = \mathbf{P}(\cup_{k=1}^{\infty} B_k) = \sum_{k=1}^{\infty} \mathbf{P}(B_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mathbf{P}(B_k)$$
$$= \lim_{n \to \infty} \mathbf{P}(\cup_{k=1}^{n} B_k) = \lim_{n \to \infty} \mathbf{P}(A_n),$$

amint állítottuk.

(ix) Mivel A_n monoton csökkenő, A_n^c monoton növekvő halmazsorozat, ezért használhatjuk az előző pont állítását. Ezért

$$\mathbf{P}(\cap_{k=1}^{\infty} A_k) = 1 - \mathbf{P}\left((\cap_{k=1}^{\infty} A_k)^c\right) = 1 - \mathbf{P}\left(\cup_{k=1}^{\infty} A_k^c\right) \\ = 1 - \lim_{n \to \infty} \mathbf{P}(A_n^c) = 1 - \lim_{n \to \infty} (1 - \mathbf{P}(A_n)) = \lim_{n \to \infty} \mathbf{P}(A_n),$$

amivel az állítást igazoltuk.

(x) Tetszőleges n természetes számra a véges szubadditivitás alapján

$$\mathbf{P}\left(\bigcup_{k=1}^{n} A_k\right) \le \sum_{k=1}^{n} \mathbf{P}(A_k) \le \sum_{k=1}^{\infty} \mathbf{P}(A_k).$$

Mivel a $B_n = \bigcup_{k=1}^n A_k$ halmazsorozat monoton növekvő, így

$$\lim_{n \to \infty} \mathbf{P}\left(\bigcup_{k=1}^{n} A_k\right) = \mathbf{P}\left(\bigcup_{k=1}^{\infty} A_k\right),\,$$

ezért az egyenlőtlenségből határátmenettel kapjuk az állítást.

Az $(\Omega, \mathcal{A}, \mathbf{P})$ hármast valószínűségi mezőnek nevezzük.

1.3. Klasszikus valószínűségi mező

Az $(\Omega, 2^{\Omega}, \mathbf{P})$ valószínűségi mező **klasszikus**, ha minden kimenetel egyformán valószínű, azaz $\mathbf{P}(\{\omega\}) = c$ minden $\omega \in \Omega$ esetén. Ekkor persze szükségképpen $c = 1/|\Omega|$. Tetszőleges A eseményre $\mathbf{P}(A) = \frac{|A|}{|\Omega|} = \frac{\text{kedvező}}{\text{összes}}$.

 $1.5.\ P\'elda.\ Sz\"ulet\'esnap probléma.\ Mekkora a valószínűsége annak, hogy <math display="inline">n$ ember között van két olyan, akiknek ugyanazon a napon van a születésnapjuk?

$$f(n) = \mathbf{P}(n \text{ ember között van 2, akiknek ugyanazon}$$
 a napon van a születésnapja)
$$= 1 - \mathbf{P}(\text{ mindenkinek különböző napon van a születésnapja})$$

$$= 1 - \frac{365 \cdot 364 \cdot \ldots \cdot (365 - n + 1)}{365^n}.$$

 $f(22) \approx 0.4757 < 1/2 < 0.5073 \approx f(23).$

2. Néhány klasszikus probléma

2.1. A párosítási probléma

Veszünk n darab kártyát 1-től n-ig megszámozva. Összekeverjük, és véletlen sorrendben lerakjuk őket egy sorba. A k-adik helyen párosítás történik, ha a k-adik helyre a k sorszámú kártya kerül. (Tehát véletlen permutációk fixpontjait tekintjük.)

Arra keressük a választ, hogy mennyi a valószínűsége, hogy nem történik párosítás. Jelölje p_n ezt a valószínűséget.

Jelölje A_k azt az eseményt, hogy a k-adik helyen párosítás történik, $k = 1, 2, \ldots, n$. Ekkor az az esemény, hogy legalább egy párosítás történik éppen

 $A_1 \cup A_2 \cup \ldots \cup A_n$. Ennek a valószínűségét a szita formulával határozhatjuk meg. Eszerint

$$\mathbf{P}(A_1 \cup \ldots \cup A_n) = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \ldots < i_k \le n} \mathbf{P}(A_{i_1} \cap \ldots A_{i_k})$$

$$= \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \ldots < i_k \le n} \frac{(n-k)!}{n!}$$

$$= \sum_{k=1}^n (-1)^{k+1} \binom{n}{k} \frac{(n-k)!}{n!}$$

$$= \sum_{k=1}^n \frac{(-1)^{k+1}}{k!}.$$

Ezek szerint

$$p_n = \mathbf{P}(\text{ nincs párosítás}) = \mathbf{P}(A_1^c \cap \dots \cap A_n^c)$$
$$= 1 - \mathbf{P}(A_1 \cup \dots \cup A_n) = 1 - \left(-\sum_{k=1}^n \frac{(-1)^k}{k!}\right)$$
$$= \sum_{k=0}^n \frac{(-1)^k}{k!}.$$

Analízisből tudjuk, hogy tetszőleges x valós számra

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots,$$

ahonnan látjuk, hogy

$$\lim_{n \to \infty} p_n = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} = e^{-1} \approx 0,368.$$

Ezek után határozzuk meg azt a valószínűséget, hogy pontosan k darab párosítás történik. Vezessük be a

 $p_{n,k} = \mathbf{P}(n \text{ kártya van, és pontosan } k \text{ párosítás történik}), k = 0, 1, \dots, n.$

Nyilván $p_n = p_{n,0}$. Jelölje $N_{n,k}$ azon kimenetelek számát, amikor pontosan k párosítás történik n kártyával. Ezekkel a jelölésekkel $p_m = N_{m,0}/m!$ minden

m természetes szám esetén. Könnyen meggondolható, hogy

$$p_{n,k} = \frac{N_{n,k}}{n!} = \frac{\binom{n}{k} N_{n-k,0}}{n!} = \frac{\binom{n}{k} (n-k)! p_{n-k}}{n!}$$
$$= \frac{p_{n-k}}{k!} = \frac{1}{k!} \sum_{j=0}^{n-k} \frac{(-1)^j}{j!}.$$

Az utóbbi alakból rögtön látjuk, hogy

$$\lim_{n \to \infty} p_{n,k} = \frac{1}{k!} \sum_{i=0}^{\infty} \frac{(-1)^k}{k!} = \frac{e^{-1}}{k!}.$$

Megjegyzés. Valójában azt bizonyítottuk be, hogy egy véletlen permutáció fixpontjainak száma nagy n esetén közelítőleg Poisson-eloszlású, pontosabban a fixpontok száma eloszlásban konvergál egy 1-paraméterű Poisson-eloszlású véletlen változóhoz. De erről majd később.

2.2. Buffon-féle tűprobléma (1777)

Akkor beszélünk geometriai valószínűségi mezőről, ha a kísérlettel kapcsolatos események egy geometriai alakzat részhalmazainak feleltethetők meg. Ekkor a lehetséges kimenetelek halmaza $\Omega=H\subset\mathbb{R}^n$, aminek a mértéke (hossza, területe, térfogata) pozitív és véges. Ekkor egy $A\subset H$ esemény valószínűsége arányos a halmaz mértékével, azaz

$$\mathbf{P}(A) = \frac{\lambda(A)}{\lambda(H)},$$

ahol λ az n-dimenziós Lebesgue-mérték (hossz, terület, térfogat).

Egy padló mintázata párhuzamos egyenesekből áll. A szomszédos egyenesek távolsága d. A padlóra ledobunk egy ℓ hosszú tűt, ahol $\ell \leq d$. Mekkora a valószínűsége, hogy a tű metszi valamelyik egyenest?

Jelölje x a tű középpontjának és a hozza legközelebbi, tőle balra levő egyenesnek a távolságát! Legyen Θ a tű függőlegessel bezárt szöge. Vegyük észre, hogy a tű akkor metszi a baloldali egyenest, ha $0 \le x \le \frac{\ell}{2} \sin \Theta$, és akkor metszi a jobboldalit, ha $0 \le d - x \le \frac{\ell}{2} \sin \Theta$. Ha x egyenletes eloszlású [0,d]-n és Θ egyenletes eloszlású $[0,\pi]$ -n, akkor a kísérlet megfeleltethető egy pont egyenletes eloszlás szerinti választásának a $[0,d] \times [0,\pi]$ téglalapból. A kedvező területrész területe

$$2\int_0^{\pi} \frac{\ell}{2} \sin \theta d\theta = 2\ell,$$

1. ábra. Kedvező terület a Buffon-féle problémánál

így a keresett valószínűség

$$\mathbf{P}(\text{ van metsz\'es}) = \frac{2\ell}{\pi d}.$$

Innen látjuk, hogy a π értékét meg lehet határozni empirikus módon.

2.3. de Méré paradoxona

1654: Pascal és Fermat levelezése de Méré lovag feladatairól, majd a "véletlen matematikájának" megalapozásáról.

de Méré lovag paradoxona: Miért nem ugyanakkora valószínűségű a következő két esemény:

- $\bullet \;\; 1$ kockával 4-szer dob
va legalább egy hatost dobunk;
- $\bullet\;\;2$ kockával 24-szer dob
va legalább egy dupla hatost dobunk.

Legyen A az az esemény, hogy 1 kockával 4-szer dobva legalább egyszer dobunk 6-ost. Ekkor $\Omega = \{(1,1,1,1),\dots(6,6,6,6)\}$, azaz $|\Omega|=6^4$. Mivel minden kimenetel egyformán valószínű, a valószínűségi mező klasszikus. A^c az az esemény, hogy nem dobunk 6-ost, így $|A^c|=5^4$. Ezért

$$\mathbf{P}(A) = 1 - \mathbf{P}(A^c) = 1 - \left(\frac{5}{6}\right)^4 \approx 0,5177.$$

Vizsgáljuk most azt a kísérletet, hogy 2 kockával dobunk 24-szer, és legyen B az az esemény, hogy dobunk dupla 6-ost. Ekkor $|\Omega|=36^{24}$, és $|B^c|=35^{24}$, ezért

$$\mathbf{P}(B) = 1 - \mathbf{P}(B^c) = 1 - \left(\frac{35}{36}\right)^{24} \approx 0,4914.$$

A rossz(!) intuíció az, hogy ha 4-szer megyünk neki egy 1/6 valószínűségű eseménynek, akkor a siker valószínűsége ugyanannyi, mint ha 24-szer megyünk neki egy 1/36-od valószínűségűnek, hiszen 4/6 = 24/36.

2.4. Bertrand paradoxon (1888)

Véletlenszerűen választunk egy húrt egy r sugarú körön. Mennyi a valószínűsége, hogy a húr hosszabb, mint a körbe írható szabályos háromszög oldala? Jelölje p ezt a valószínűséget.

1. Megoldás. A húr hosszát meghatározza a felezőpontjának (F) a kör középpontjától (O) vett távolsága. Ha |OF| > r/2, akkor a húr hosszabb, mint a szabályos háromszög oldala, különben rövidebb. Tehát a feladat megfeleltethető annak, hogy egy rögzített sugárról egyenletes eloszlás szerint választunk pontot. Ezért

$$p = \frac{r/2}{r} = \frac{1}{2}.$$

2. Megoldás. Ha az egyik végpontot rögzítjük, akkor a húr hosszát meghatározza, hogy hova esik a másik végpont. Legyen ϑ a húrnak és a rögzített ponthoz húzott érintőnek a szöge. A húr pontosan akkor hosszabb, mint a háromszög oldala, ha $\vartheta \in (\pi/3, 2\pi/3)$. Ennek a valószínűsége nyilván 1/3, tehát

$$p = \frac{1}{3}$$
.

3. Megoldás. A húr pontosan akkor lesz hosszabb a háromszög oldalánál, ha a középpontja beleesik a háromszög beírt körébe. Ennek a valószínűsége $(r/2)^2\pi/(r^2\pi)=1/4$, tehát

$$p = \frac{1}{4}.$$

A problémát természetesen az okozza, hogy a húr választását nem mondja meg a feladat. Azaz a véletlen nincs jól megadva.

2.5. Az igazságos osztozkodás problémája

Két játékos, Anna és Balázs játszanak. Mindketten 1/2 - 1/2 valószínűséggel nyernek egy-egy játékot. Az előre befizetett tétet az kapja, aki előbb nyer 10 játékot. A játék azonban 8–7 -es állásnál abbamaradt. Hogyan osszák el igazságosan a befizetett tétet?

Kicsit általánosabban a következő feladatot vizsgáljuk. Két játékos, Anna és Balázs játszanak. Annának a pont hiányzik a győzelemhez, Balázsnak pedig b. Egy-egy játékot Anna $p \in (0,1)$ valószínűséggel nyer meg, Balázs pedig 1-p valószínűséggel. Hogyan osszák el a tétet?

Már 15. században írnak a problémáról, de Méré előtt (Luca Pacioli (1494), Tartaglia (\sim 1550)). Speciális esetekben meg is tudják oldani a feladatot, azonban a teljes megoldást Pascal és Fermat adják meg. A következőkben Fermat megoldását mutatjuk be.

Vegyük észre, hogy a játéksorozat a+b-1 játékkal biztos véget ér. Anna pontosan akkor nyer, ha az a+b-1 játékból legalább a játékot nyer meg. Így Anna nyerésének valószínűségét $P_A(a,b,p)$ -vel jelölve azt kapjuk, hogy

$$\begin{split} P_A(a,b,p) &= \mathbf{P} \left(a+b-1 \text{ játékból Anna legalább } a \text{ pontot szerez} \right) \\ &= \sum_{k=a}^{a+b-1} \mathbf{P} \left(a+b-1 \text{ játékból Anna pontosan } k \text{ pontot szerez} \right) \\ &= \sum_{k=a}^{a+b-1} \binom{a+b-1}{k} p^k (1-p)^{a+b-1-k} \end{split}$$

Mivel pontosan az egyikük nyer $P_A + P_B = 1$, a binomiális tétel szerint pedig

$$\sum_{k=0}^{a+b-1} \binom{a+b-1}{k} p^k (1-p)^{a+b-1-k} = (p+(1-p))^{a+b-1} = 1,$$

ezért Balázs nyerésének valószínűsége

$$P_B(b, a, 1-p) = \sum_{k=0}^{a-1} {a+b-1 \choose k} p^k (1-p)^{a+b-1-k}.$$

A p=1/2 esetben ez a következőt adja:

$$\begin{split} P_A\left(a,b,\frac{1}{2}\right) &=& \frac{1}{2^{a+b-1}} \sum_{k=a}^{a+b-1} \binom{a+b-1}{k}, \\ P_B\left(b,a,\frac{1}{2}\right) &=& \frac{1}{2^{a+b-1}} \sum_{k=0}^{a-1} \binom{a+b-1}{k}. \end{split}$$

Ezek szerint a tétet

$$\frac{P_{A}\left(a,b,\frac{1}{2}\right)}{P_{B}\left(b,a,\frac{1}{2}\right)} = \frac{\sum_{k=a}^{a+b-1} \binom{a+b-1}{k}}{\sum_{k=0}^{a-1} \binom{a+b-1}{k}}$$

arányban kell elosztani. Ezt úgy tudjuk egyszerűen kiszámolni, hogy a Pascal-háromszög (a+b-1)-edik sorában összeadjuk az elemeket az a-adiktól az (a+b-1)-edikig, majd az eredményt elosztjuk a 0-adiktól az (a-1)-edik elemig vett összeggel.

A kiinduló példánkban Annának 2 pont Balázsnak 3 pont hiányzott a győzelemhez. Tehát a tétet

$$\frac{P_A(2,3,1/2)}{P_B(3,2,1/2)} = \frac{6+4+1}{1+4} = \frac{11}{5}$$

arányban kell elosztani.

3. Feltételes valószínűség

Két szabályos dobókockával dobunk. Az első kockával hatost dobtunk, a második kocka elgurult. Mennyi a valószínűsége, hogy dupla hatost dobtunk? Jelölje A azt az eseményt, hogy az első kockával hatost dobtunk, B pedig azt, hogy mindkét kockával ugyanazt dobtuk. Tudjuk, hogy az A esemény bekövetkezett, azaz a kísérlet kimeneteléről van egy részinformációnk. Ekkor az eseménytér azon részhalmazán dolgozunk, ahol az adott A esemény bekövetkezett, azaz A-n. Ekkor a kedvező esetek száma $|A \cap B|$ és az összes esetek száma |A|. Tehát a keresett valószínűség $\mathbf{P}(A \cap B)/\mathbf{P}(B)$. Éppen ez a feltételes valószínűség definíciója.

Legyen $(\Omega, \mathcal{A}, \mathbf{P})$ egy valószínűségi mező, és ezen A, B események, és tegyük föl, hogy $\mathbf{P}(B) > 0$. Ekkor az A eseményB eseményre vonatkozó feltételes valószínűsége

$$\mathbf{P}(A|B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}.$$

Ha annyi információnk van a véletlen kísérletről, hogy a B esemény bekövetkezett, akkor az A esemény valószínűsége $\mathbf{P}(A|B)$.

3.1. Állítás. Rögzítsünk egy tetszőleges B eseményt, melyre $\mathbf{P}(B) > 0$. Ekkor $\mathbf{P}_B(A) = \mathbf{P}(A|B)$ valószínűségi mérték A-n.

Bizonyítás. Világos, hogy tetszőleges A eseményre $\mathbf{P}_B(A) \geq 0$, és mivel $\mathbf{P}(A \cap B) \leq \mathbf{P}(B)$, így $\mathbf{P}_B(A) \leq 1$. Továbbá

$$\mathbf{P}_B(\Omega) = \frac{\mathbf{P}(\Omega \cap B)}{\mathbf{P}(B)} = \frac{\mathbf{P}(B)}{\mathbf{P}(B)} = 1.$$

Már csak az additivitás ellenőrzése maradt. Legyenek $A_1, A_2, \ldots \in \mathcal{A}$ diszjunktak. Ekkor a definíció szerint és a \mathbf{P} valószínűségi mérték additivitása alapján

$$\mathbf{P}_{B}(\cup_{i=1}^{\infty} A_{i}) = \mathbf{P}\left(\cup_{i=1}^{\infty} A_{i} | B\right) = \frac{\mathbf{P}\left((\cup_{i=1}^{\infty} A_{i}) \cap B\right)}{\mathbf{P}(B)} = \frac{\mathbf{P}\left(\cup_{i=1}^{\infty} (A_{i} \cap B)\right)}{\mathbf{P}(B)}$$

$$= \frac{\sum_{i=1}^{\infty} \mathbf{P}(A_{i} \cap B)}{\mathbf{P}(B)} = \sum_{i=1}^{\infty} \frac{\mathbf{P}(A_{i} \cap B)}{\mathbf{P}(B)} = \sum_{i=1}^{\infty} \mathbf{P}(A_{i} | B)$$

$$= \sum_{i=1}^{\infty} \mathbf{P}_{B}(A_{i}),$$

ami éppen a bizonyítandó egyenlőség.

Ebből következik, hogy \mathbf{P}_B halmazfüggvényre is teljesülnek a valószínűségi mérték tulajdonságai, melyeket a későbbiekben említés nélkül fölhasználunk.

3.2. Tétel (Szorzási szabály). Legyenek A_1, A_2, \ldots, A_n tetszőleges olyan események, melyekre $\mathbf{P}(A_1 \cap \ldots \cap A_{n-1}) > 0$. Ekkor

$$\mathbf{P}(A_1 \cap \ldots \cap A_n) = \mathbf{P}(A_1)\mathbf{P}(A_2|A_1)\mathbf{P}(A_3|A_1 \cap A_2)\ldots\mathbf{P}(A_n|A_1 \cap \ldots \cap A_{n-1}).$$

A bizonyítás előtt megjegyezzük a következőket:

- 1. A formulában szereplő összes feltétel valószínűsége pozitív, azaz minden jóldefiniált. Ez a $\mathbf{P}(A_1 \cap \ldots \cap A_{n-1}) > 0$ feltétel következménye.
- 2. Ha $\mathbf{P}(A_1 \cap \ldots \cap A_n) > 0$ is teljesül, akkor n! darab különböző ilyen szabály van.
- 3. A szabályt az n=2 esetben használjuk legtöbbször. Ekkor

$$\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B|A) = \mathbf{P}(B)\mathbf{P}(A|B),$$

amennyiben A és B is pozitív valószínűségű esemény.

Bizonyítás. A feltételes valószínűség definíciója szerint

$$\mathbf{P}(A_1)\mathbf{P}(A_2|A_1)\mathbf{P}(A_3|A_1\cap A_2)\dots\mathbf{P}(A_n|A_1\cap \dots\cap A_{n-1})$$

$$=\mathbf{P}(A_1)\frac{\mathbf{P}(A_1\cap A_2)}{\mathbf{P}(A_1)}\frac{\mathbf{P}(A_1\cap A_2\cap A_3)}{\mathbf{P}(A_1\cap A_2)}\dots\frac{\mathbf{P}(A_1\cap \dots\cap A_{n-1}\cap A_n)}{\mathbf{P}(A_1\cap \dots\cap A_{n-1})}$$

$$=\mathbf{P}(A_1\cap \dots\cap A_n),$$

amint állítottuk.

3.3. *Példa*. Egy dobozban 12 kék és 3 fehér golyó van. Visszatevés nélkül húzunk két golyót egymás után. Mi annak a valószínűsége, hogy mindkét golyó kék?

Jelölje K_i az az eseményt, hogy az i-ediknek kihúzott golyó kék. Ekkor a szorzási szabály szerint

$$\mathbf{P}(K_1 \cap K_2) = \mathbf{P}(K_1)\mathbf{P}(K_2|K_1) = \frac{12}{15} \cdot \frac{11}{14}.$$

Ugyanezt kapjuk a klasszikus valószínűségi mezőre vonatkozó kedvező/összes formulával is, mely szerint

$$\mathbf{P}(K_1 \cap K_2) = \frac{\binom{12}{2}}{\binom{15}{2}}.$$

A B_1, B_2, \ldots események teljes eseményrendszert alkotnak, ha

- minden $i \neq j$ párra $B_i \cap B_j = \emptyset$;
- $\bullet \ \cup_{n=1}^{\infty} B_n = \Omega.$
- **3.4. Tétel** (Teljes valószínűség tétele). Legyen B_1, B_2, \ldots teljes eseményrendszer, melyre $\mathbf{P}(B_n) > 0$ minden n-re. Ekkor tetszőleges $A \in \mathcal{A}$ esemény esetén

$$\mathbf{P}(A) = \sum_{n=1}^{\infty} \mathbf{P}(A|B_n)\mathbf{P}(B_n).$$

Bizonyítás. A feltételes valószínűség definíciója és a valószínűség additivitása alapján

$$\sum_{n=1}^{\infty} \mathbf{P}(A|B_n)\mathbf{P}(B_n) = \sum_{n=1}^{\infty} \frac{\mathbf{P}(A \cap B_n)}{\mathbf{P}(B_n)} \cdot \mathbf{P}(B_n) = \sum_{n=1}^{\infty} \mathbf{P}(A \cap B_n)$$
$$= \mathbf{P}\left(\bigcup_{n=1}^{\infty} (A \cap B_n)\right) = \mathbf{P}\left(A \cap \left(\bigcup_{n=1}^{\infty} B_n\right)\right)$$
$$= \mathbf{P}(A \cap \Omega) = \mathbf{P}(A).$$

3.5. Tétel (Bayes-formula). Legyenek A és B olyan események, hogy $\mathbf{P}(A) > 0$, $\mathbf{P}(B) > 0$. Ekkor

$$\mathbf{P}(B|A) = \frac{\mathbf{P}(A|B)\mathbf{P}(B)}{\mathbf{P}(A)}.$$

Bizonyítás. A definíció szerint

$$\frac{\mathbf{P}(A|B)\mathbf{P}(B)}{\mathbf{P}(A)} = \frac{\mathbf{P}(A\cap B)\mathbf{P}(B)}{\mathbf{P}(B)\mathbf{P}(A)} = \mathbf{P}(B|A).$$

3.6. Tétel (Bayes-tétel). Legyen B_1, B_2, \ldots teljes eseményrendszer, melyre $\mathbf{P}(B_n) > 0$ minden n-re. Ekkor tetszőleges pozitív valószínűségű $A \in \mathcal{A}$ esemény esetén, tetszőleges k-ra

$$\mathbf{P}(B_k|A) = \frac{\mathbf{P}(A|B_k)\mathbf{P}(B_k)}{\sum_{n=1}^{\infty} \mathbf{P}(A|B_n)\mathbf{P}(B_n)}.$$

Bizonyítás. Előbb a teljes valószínűség tételét, majd a Bayes-formulát használva

$$\frac{\mathbf{P}(A|B_k)\mathbf{P}(B_k)}{\sum_{n=1}^{\infty}\mathbf{P}(A|B_n)\mathbf{P}(B_n)} = \frac{\mathbf{P}(A|B_k)\mathbf{P}(B_k)}{\mathbf{P}(A)} = \mathbf{P}(B_k|A).$$

- 3.7. Példa. Doppingteszt. Kifejlesztenek egy új doppingtesztet, mely a doppingolók 99%-ánál pozitív eredményt ad, azonban a nem doppingoló sportolók 1%-nál is tévesen pozitív eredményt ad. Tegyük föl, hogy a sportolók 1%-a doppingol. Mennyi annak a valószínűsége, hogy egy véletlenül kiválasztott sportoló
 - (a) doppingtesztje pozitív?
 - (b) doppingolt, ha tudjuk, hogy a doppingtesztje pozitív?

Jelölje T azt az eseményt, hogy a teszt eredménye pozitív, és D azt az eseményt, hogy a sportoló doppingolt. Ekkor a feladat (a) része a $\mathbf{P}(T)$, a (b) része a $\mathbf{P}(D|T)$ valószínűséget kérdezi. A teljes valószínűség tételét alkalmazva a D, D^c eseményrendszerre kapjuk

$$\mathbf{P}(T) = \mathbf{P}(D)\mathbf{P}(T|D) + \mathbf{P}(D^c)\mathbf{P}(T|D^c)$$

= 0,01 \cdot 0,99 + 0,99 \cdot 0,01 = 0,0198.

A Bayes-formula szerint

$$\mathbf{P}(D|T) = \frac{\mathbf{P}(T|D)\mathbf{P}(D)}{\mathbf{P}(T)} = \frac{0.99 \cdot 0.01}{0.0198} = \frac{1}{2}.$$

A feladat eredménye meglepő, hiszen egy látszólag jól működő teszt esetén, annak a valószínűsége, hogy egy sportoló tényleg doppingolt, feltéve, hogy a teszt eredménye pozitív, 1/2. Világos, hogy ilyen tesztelés mellett nem vehetjük el senkitől az olimpiai aranyérmét. A hiba onnan jön, hogy ha 100 sportolóból 1 doppingol, akkor a teszt ezt az 1-et nagy valószínűséggel kimutatja, viszont a 99 becsületes sportoló közül is kb. egyet tévesen a doppingolók közé sorol. Így kb. két pozitív teszteredmény lesz, de a két sportoló közül csak az egyik doppingol.

3.8. Példa. Egy hallgató p valószínűséggel tudja a választ egy kérdésre. Ha nem tudja, akkor az n lehetséges válasz közül véletlenül választ egyet. Mennyi legyen a lehetséges válaszok n száma, hogy az oktató legalább 0,9 valószínűséggel következtethessen arra a hallgató jó válaszából, hogy a hallgató tudta a választ?

Jelölje H azt az eseményt, hogy a hallgató jól válaszol, T pedig azt az eseményt, hogy tudja a választ. Ekkor olyan n értéket keresünk, melyre teljesül a $\mathbf{P}(T|H)>0$, 9 egyenlőtlenség. Tehát a

$$\mathbf{P}(T|H) = \frac{\mathbf{P}(H|T)\mathbf{P}(T)}{\mathbf{P}(H|T)\mathbf{P}(T) + \mathbf{P}(H|T^c)\mathbf{P}(T^c)} = \frac{1 \cdot p}{1 \cdot p + \frac{1}{n} \cdot (1-p)} \ge 0, 9,$$

egyenlőtlenséget kell megoldanunk n-re. Rövid számolás után adódik, hogy $n \geq 9(1-p)/p$. Azaz p=1/2 esetén az oktatónak legalább 9 lehetséges választ, míg p=0,7 esetén legalább 4 lehetséges választ kell megadnia.

Vegyük észre, hogy ahogy p tart 0-hoz, az oktató bizonyosságához szükséges lehetséges válaszok száma tart végtelenbe. Gondoljuk meg mért természetes ez.

3.9. P'elda. Szindbádnak jogában áll N háremhölgy közül egyet kiválasztania oly módon, hogy az előtte egyenként elvonuló hölgyek valamelyikére rámutat. Tegyük fel, hogy egyértelmű szigorúan monoton szépségi sorrendet tud felállítani, és a háremhölgyek bármely elvonulási sorrendje egyformán valószínű. Szindbád k hölgyet elenged, majd kiválasztja az elsőt, aki szebb az összes előtte elvonultnál. Mennyi a valószínűsége, hogy a legszebb hölgyet választja ki? Milyen k esetén lesz ez a valószínűség a legnagyobb, ha N elég nagy?

Jelölje A_i azt az eseményt, hogy a *i*-edik lány a legszebb, i = 1, 2, ..., N, és legyen B az az esemény, hogy Szindbád a legszebb lányt választja. Ekkor a teljes valószínűség tétele szerint

$$\mathbf{P}(B) = \sum_{i=1}^{N} \mathbf{P}(A_i) \mathbf{P}(B|A_i).$$

Világos, hogy $\mathbf{P}(A_i) = N^{-1}$ minden *i*-re, és $\mathbf{P}(B|A_i) = 0$ ha $i \leq k$. Ha i > k, akkor Szindbád pontosan akkor választja ki a legszebb háremhölgyet, ha az

első i-1 lány közül a legszebb az első k-ban volt. Tehát $\mathbf{P}(B|A_i)=k/(i-1)$. Összegezve

$$\mathbf{P}(B) = \sum_{i=1}^{N} \mathbf{P}(A_i) \, \mathbf{P}(B|A_i) = \sum_{i=k+1}^{N} \frac{1}{N} \frac{k}{i-1}.$$

4. Függetlenség

Két esemény függetlensége intuitívan azt jelenti, hogy bekövetkezéseik nem befolyásolják egymást. Tekintsünk egy adott kísérlethez tartozó A és B eseményt. Ismételjük n-szer a kísérletet. Ekkor $S_n(A)/n$ az A esemény relatív gyakorisága az n kísérlet során. Most figyeljük csak azokat a kísérleteket, ahol B bekövetkezett, ezek száma $S_n(B)$. Ezek közül $S_n(A \cap B)$ azon kísérletek száma, ahol A is bekövetkezett, így a megfelelő relatív gyakoriság $S_n(A \cap B)/S_n(B)$. Az, hogy A és B nem befolyásolják egymást, azt jelenti, hogy ez a két relatív gyakoriság kb. megegyezik, azaz

$$\frac{S_n(A)}{n} = \frac{S_n(A \cap B)}{S_n(B)} = \frac{S_n(A \cap B)/n}{S_n(B)/n}.$$

A bal oldal kb. $\mathbf{P}(A)$, a jobb oldal pedig $\mathbf{P}(A \cap B)/\mathbf{P}(B)$, vagyis azt kaptuk, hogy

$$\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B).$$

Ez a függetlenség definíciója.

Másképpen, a B esemény bekövetkezése nem befolyásolja az A bekövetkezését, azaz $\mathbf{P}(A|B) = \mathbf{P}(A)$, ahonnan $\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B)$.

4.1. Definíció. Az A és B események függetlenek, ha $P(A \cap B) = P(A)P(B)$.

A definícióból világos, hogy a függetlenség szimmetrikus. Továbbá, a biztos ill. a lehetetlen eseménytől minden esemény független.

- 4.2. Példa. Francia kártyapakliból véletlenszerűen húzunk egy lapot. Jelölje D azt az eseményt, hogy dámát húzunk, K pedig azt, hogy kőrt. Ekkor $D \cap K$ az az esemény, hogy a kőr dámát húztuk ki, így $\mathbf{P}(D \cap K) = 1/52$. Ugyanakkor $\mathbf{P}(D) = 4/52 = 1/13$ és $\mathbf{P}(K) = 13/52 = 1/4$, azaz a két esemény független.
- 4.3. P'elda. Földobunk n-szer egy szabályos érmét. Legyen A az az esemény, hogy legfeljebb egy fejet dobunk, B pedig az, hogy legalább egy fejet és egy írást dobunk.

Ekkor $\mathbf{P}(A)=(n+1)/2^n$, $\mathbf{P}(B)=1-2/2^n$, és $\mathbf{P}(A\cap B)=n/2^n$. Azaz A és B pontosan akkor függetlenek, ha

$$\mathbf{P}(A) \cdot \mathbf{P}(B) = \frac{n+1}{2^n} \frac{2^n - 2}{2^n} = \frac{n}{2^n} = \mathbf{P}(A \cap B)$$

teljesül. Innen kis számolgatással kapjuk, hogy A és B függetlenek, han=3, különben pedig nem azok.

- **4.4. Definíció.** Az A, B, C események **függetlenek**, ha $\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B)$, $\mathbf{P}(A \cap C) = \mathbf{P}(A)\mathbf{P}(C)$, $\mathbf{P}(B \cap C) = \mathbf{P}(B)\mathbf{P}(C)$, és $\mathbf{P}(A \cap B \cap C) = \mathbf{P}(A)\mathbf{P}(B)\mathbf{P}(C)$ teljesül. Továbbá, az A, B, C események **páronként függetlenek**, ha bármely kettő független.
- 4.5. Példa. Válasszunk egyenletes eloszlás szerint egy pontot a $[0,1]^2$ egységnégyzetben. Legyen A az az esemény, hogy a választott pont a $[0,1] \times [0,1/2]$ téglalapba esik, B az az esemény, hogy a választott pont az $[1/2,1] \times [0,1]$ téglalapba esik, C pedig az az esemény, hogy a választott pont a $[0,1/2]^2 \cup [1/2,1]^2$ halmazba esik. Könnyen ellenőrizhető, hogy A,B,C páronként függetlenek, de nem függetlenek.
- **4.6. Definíció.** Az A_1, A_2, \ldots, A_n események **függetlenek**, ha bármely $k \in \{2, 3, \ldots, n\}$ és $1 \le i_1 < i_2 < \ldots < i_k \le n$ esetén

$$\mathbf{P}(A_{i_1}\cap\ldots\cap A_{i_k})=\mathbf{P}(A_{i_1})\ldots\mathbf{P}(A_{i_k}).$$

Végtelen sok esemény akkor független, ha közülük bármely véges sok független.

4.7. Állítás. Ha az A_1, \ldots, A_n események függetlenek, akkor tetszőleges $k \in \{1, 2, \ldots, n\}$ esetén az $\{A_1, \ldots, A_k\}$ eseményekből ill. az $\{A_{k+1}, \ldots, A_n\}$ eseményekből alkotott események függetlenek.

Ezt nem bizonyítjuk. Az állítás szerint például ha A,B,C,D független események, akkor $A \cup B$ és $C \cap D$ is függetlenek.

4.8. Allítás. Független események közül ha néhányat kicserélünk a komplementerére, akkor is független eseményeket kapunk.

Bizonyítás. Legyenek A_1, A_2, \ldots, A_n függetlenek. Nyilván elég megmutatni, hogy A_1^c, A_2, \ldots, A_n is függetlenek. Hiszen ekkor egyesével kicserélhetünk akárhány eseményt. A definíciót elég az $1 = i_1 < i_2 < \ldots < i_k \le n$ esetben ellenőrizni, hiszen ha A_1^c nincs a kiválasztott események közt, akkor a feltevés

szerint teljesül a függetlenség. Ekkor viszont, előbb a mérték tulajdonsága, majd a függetlenség miatt

$$\mathbf{P}(A_1^c \cap A_{i_2} \cap \ldots \cap A_{i_k}) = \mathbf{P}(A_{i_2} \cap \ldots \cap A_{i_k}) - \mathbf{P}(A_1 \cap A_{i_2} \cap \ldots \cap A_{i_k})$$

$$= \mathbf{P}(A_{i_2}) \dots \mathbf{P}(A_{i_k}) - \mathbf{P}(A_1)\mathbf{P}(A_{i_2}) \dots \mathbf{P}(A_{i_k})$$

$$= [1 - \mathbf{P}(A_1)]\mathbf{P}(A_{i_2}) \dots \mathbf{P}(A_{i_k})$$

$$= \mathbf{P}(A_1^c)\mathbf{P}(A_{i_2}) \dots \mathbf{P}(A_{i_k}),$$

amit igazolni kellett.

Kísérletek függetlenségéről akkor beszélünk, ha a hozzájuk tartozó események függetlenek.

4.1. Craps játék

A craps játékot és annak változatait jelenleg is játsszák kaszinókban. A játék az Egyesült Államokban népszerű, 1820 körül terjedt el New Orleansban.

A játékos két dobókockával dob. Ha az első dobásnál a dobott számok összege 7 vagy 11, akkor azonnal nyer, ha 2,3 vagy 12 akkor veszít. Különben folytatja a dobásokat, és akkor nyer, ha hamarabb dobja meg azt az összeget, amit elsőre dobott, mint a 7-et.

A következőkben meghatározzuk a nyerés valószínűségét.

Jelölje A azt az eseményt, hogy nyerünk, A_i pedig azt, hogy az első dobás eredménye i, és nyerünk. Világos, hogy $\mathbf{P}(A_2) = \mathbf{P}(A_3) = \mathbf{P}(A_{12}) = 0$, továbbá

$$\mathbf{P}(A_7) = \frac{6}{36} = \frac{1}{6}$$
, és $\mathbf{P}(A_{11}) = \frac{2}{36} = \frac{1}{18}$,

hiszen ezekben az esetekben a játék az első dobás után véget ér. Ha az első dobásnál az összeg 4,5,6,8,9 vagy 10 akkor a dolog érdekesebb. Jelölje $A_{i,n}$ azt az eseményt, hogy az első dobásnál az összeg i és pontosan az n-edik dobásnál nyerünk. Nyilván $A_i = \bigcup_{n=2}^{\infty} A_{i,n}$, és az unió diszjunkt.

Tekintsük az $A_{4,n}$ eseményt. Ekkor az első dobásnál az összeg 4, ami 3 féleképpen következhet be ((1,3),(2,2),(3,1)), és mivel nyertünk, az utolsó dobásnál is 4 az összeg. A közbülső n-2 dobás során nem dobtunk 4-et, és 7-et, hiszen ekkor véget ért volna a játék korábban. Így 3+6 esetet zártunk ki. Ezek szerint

$$\mathbf{P}(A_{4,n}) = \frac{3 \cdot (36-9)^{n-2} \cdot 3}{36^n} = \frac{9}{36^2} \left(\frac{27}{36}\right)^{n-2}.$$

Innen pedig geometria sort összegezve, kapjuk

$$\mathbf{P}(A_4) = \sum_{n=2}^{\infty} \mathbf{P}(A_{4,n}) = \frac{9}{36^2} \left(\frac{27}{36}\right)^{n-2} = \frac{1}{36}.$$

A többi eset hasonlóan megy,

$$\mathbf{P}(A_{4,n}) = \mathbf{P}(A_{10,n}) = \frac{9}{36^2} \left(\frac{27}{36}\right)^{n-2}$$

$$\mathbf{P}(A_{5,n}) = \mathbf{P}(A_{9,n}) = \frac{16}{36^2} \left(\frac{26}{36}\right)^{n-2}$$

$$\mathbf{P}(A_{6,n}) = \mathbf{P}(A_{8,n}) = \frac{25}{36^2} \left(\frac{25}{36}\right)^{n-2},$$

majd a megfelelő geometriai sorokat összegezve

$$\mathbf{P}(A_4) = \mathbf{P}(A_{10}) = \frac{1}{36},$$

$$\mathbf{P}(A_5) = \mathbf{P}(A_9) = \frac{2}{45},$$

$$\mathbf{P}(A_6) = \mathbf{P}(A_8) = \frac{25}{396}.$$

Végül azt kapjuk, hogy

$$\mathbf{P}(A) = \sum_{i=2}^{12} \mathbf{P}(A_i) = \frac{244}{495} \approx 0,493.$$

5. Véletlen változók

5.1. Definíció. Tekintsünk egy $(\Omega, \mathcal{A}, \mathbf{P})$ valószínűségi mezőt. Az

$$X:\Omega\mapsto\mathbb{R}$$

függvényeket véletlen változónak nevezzük, ha a

$$X^{-1}((-\infty, a]) = \{\omega : X(\omega) \le a\}$$

inverzkép \mathcal{A} -beli tetszőleges $a \in \mathbb{R}$ esetén.

Már sok példát láttunk véletlen változóra. Ilyen például a dobókockával dobott szám értéke, vagy ha három kockával dobunk, akkor a legkisebb dobott szám. Ilyen az ötöslottón kihúzott legnagyobb szám, vagy az egy szelvényen elért találatok száma. Véletlen változó az is, hogy a ropi hol törik el, vagy az egységnégyzetben egyenletesen választott pont milyen távol van a négyzet határától, stb.

2. ábra. Dobott szám eloszlásfüggvénye

5.2. Definíció. Az X véletlen változó eloszlásfüggvénye az

$$F(x) = \mathbf{P}(X \le x) = \mathbf{P}(\{\omega : X(\omega) \le x\}), \ x \in \mathbb{R},$$

függvény.

5.3. P'elda. Dobókockával dobunk. Jelölje X a dobott értéket. Ekkor a lehetséges kimenetelek halmaza $\Omega = \{1, 2, \dots, 6\}$, az események halmaza $\mathcal{A} = 2^{\Omega}$. Szabályos a kockánk, ezért minden értéket 1/6-od valószínűségggel dobutnk, azaz $\mathbf{P}(A) = \frac{|A|}{6}$, (klasszikus valószínűségi mező). A dobott szám $X: \Omega \to \mathbb{R}, \ \omega \mapsto \omega$, azaz az identikus leképezés. Ezért

$$\{X \le x\} = \{\omega : X(\omega) \le x\} = \begin{cases} \emptyset, & \text{ha } x < 1, \\ \{1, 2, \dots, [x]\}, & \text{ha } 1 \le x \le 6, \\ \{1, 2, \dots, 6\}, & \text{ha } x > 6. \end{cases}$$

Így az eloszlásüggvény

$$F(x) = \mathbf{P}(X \le x) = \mathbf{P}(\{\omega : X(\omega) \le x\}) = \begin{cases} 0, & x < 1, \\ \frac{[x]}{6}, & 1 \le x \le 6, \\ 1, & x \ge 6. \end{cases}$$

5.4. Példa. Egységnégyzetben választunk egyenletes eloszlás szerint egy pontot. Adjuk meg a pont a négyzet határától vett távolságának eloszlását!

Jelölje X a távolságot. Ekkor geometriai valószínűségi mezőn vagyunk, $\Omega = [0,1]^2, \ \mathcal{A} = \mathcal{B}([0,1]^2)$, és $\mathbf{P}(A) = |A|$, ahol $|\cdot|$ a terület. Könnyen

3. ábra. A jó terület és az eloszlásfüggvény

látható, hogy $X: \Omega \to \mathbb{R}, (u, v) \mapsto \min\{u, v, 1 - u, 1 - v\},$ így

$$\begin{aligned} \{X \leq x\} &= \{\omega : X(\omega) \leq x\} \\ &= \begin{cases} \emptyset, & x < 0, \\ \{(u,v) : \min\{u,v,1-u,1-v\} \leq x\}, & 0 \leq x \leq 1/2, \\ [0,1]^2, & x \geq 1/2. \end{cases}$$

Azaz

$$F(x) = \mathbf{P}(X \le x) = \mathbf{P}(\{\omega : X(\omega) \le x\})$$

$$= \begin{cases} 0, & \text{ha } x < 0, \\ 4x(1-x), & \text{ha } 0 \le x \le 1/2, \\ 1, & \text{ha } x \ge 1/2, \end{cases}$$

- **5.5. Tétel.** Legyen F(x) egy X véletlen változó eloszlásfüggvénye. Ekkor
 - (i) F monoton nemcsökkenő;
 - (ii) $\lim_{x\to\infty} F(x) = 1$ és $\lim_{x\to-\infty} F(x) = 0$;
- (iii) F jobbról folytonos.

Bizonyítás. (i) Ha $x_1 < x_2$ akkor $\{X \le x_1\} \subset \{X \le x_2\}$ és így a mérték monotonitása miatt $F(x_1) = \mathbf{P}(X \le x_1) \le \mathbf{P}(X \le x_2) = F(x_2)$.

(ii) A monotonitásból következik, hogy $\lim_{x\to\infty} F(x)$ létezik, így elég belátni, hogy $\lim_{n\to\infty} F(n) = 1$. Tekintsük az $A_n = \{X \le n\} = \{\omega : X(\omega) \le n\}$ halmazokat. Ekkor $F(n) = \mathbf{P}(A_n)$. Világos, hogy (A_n) monoton bővülő

halmazsorozat, azaz $A_n \subset A_{n+1}$. Ugyanakkor $\cup A_n = \{X < \infty\} = \Omega$, és ezért

$$\lim_{n \to \infty} \mathbf{P}(A_n) = \mathbf{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \mathbf{P}(\Omega) = 1.$$

A másik határérték igazolásához is elég részsorozaton dolgozni a monotonitás miatt. Legyen $B_n = \{X \leq -n\}$. Ekkor $F(-n) = \mathbf{P}(B_n)$, a (B_n) halmazsorozat monoton csökkenő, és $\cap B_n = \{X \leq -\infty\} = \emptyset$. Ezért (ismét a mértékek folytonossági tétele szerint)

$$\lim_{n\to\infty} \mathbf{P}(B_n) = \mathbf{P}(\cap_{n=1}^{\infty} B_n) = \mathbf{P}(\emptyset) = 0.$$

Végül, a (iii) pont belátásához is hasonlóan okoskodunk. Jelölje F(x+) az x pontban vett jobboldali határértéket. Ez megint létezik a monotonitás miatt. Tekintsük a $C_n = \{X \leq x + n^{-1}\}$ halmazokat. Ekkor (C_n) csökkenő halmazsorozat, és $\cap C_n = \{X \leq x\}$. Így ismét a folytonossági tétel szerint

$$F(x+) = \lim_{n \to \infty} F(x+n^{-1}) = \lim_{n \to \infty} \mathbf{P}(C_n) = \mathbf{P}(\cap_{n=1}^{\infty} C_n) = \mathbf{P}(X \le x) = F(x).$$

Vegyük észre, hogy F monotonitásából következik az F(x-) baloldali határérték létezése is, azonban általában az F(x) = F(x-) egyenlőség nem teljesül. Az előzőekhez hasonlóan látható, hogy $F(x-) = \mathbf{P}(X < x)$, továbbá

$$F(x) = \mathbf{P}(X < x) = \mathbf{P}(X < x) + \mathbf{P}(X = x) = F(x-) + \mathbf{P}(X = x).$$

Ez pedig éppen azt jelenti, hogy F pontosan akkor folytonos az x pontban, ha $\mathbf{P}(X=x)=0$.

A definícióból adódik, hogy a < b esetén $\mathbf{P}(a < X \le b) = F(b) - F(a)$.

5.1. Diszkrét véletlen változók

5.6. Definíció. Egy véletlen változó diszkrét, ha értékkészlete megszámlálható (azaz véges vagy megszámlálhatóan végtelen). Ha egy diszkrét véletlen változó lehetséges értékei x_1, x_2, \ldots , akkor $p_i = \mathbf{P}(X = x_i) > 0$ a változó eloszlása.

Ha (p_i) eloszlás, akkor $\sum_i p_i = 1$. Az eloszlásfüggvény $F(x) = \sum_{i:x_i \leq x} p_i$. 5.7. Példa. Legyen $X = I_A$ az A esemény indikátorváltozója. Azaz

$$I_A(\omega) = \begin{cases} 0, & \text{ha } \omega \notin A, \\ 1, & \text{ha } \omega \in A. \end{cases}$$

Ekkor X lehetséges értékei 0 és 1, és $\mathbf{P}(X=1) = \mathbf{P}(A) = p = 1 - \mathbf{P}(X=0)$. Ő a p paraméterű Bernoulli eloszlás.

- 5.8. Példa. Legyen $X = S_n$, egy kísérlet n-szeri ismétlése során az A esemény bekövetkezéseinek a száma. Ekkor X lehetséges értékei $0, 1, 2, \ldots, n$, és $\mathbf{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$, ahol $p = \mathbf{P}(A) \in (0,1)$. Ő az (n,p) paraméterű binomiális eloszlás.
- 5.9. Példa. Egy kísérletet addig ismétlünk, amíg egy adott A esemény be nem következik. Legyen X az elvégzett kísérletek száma. Ekkor X lehetséges értékei $1,2\ldots$, és $\mathbf{P}(X=k)=p(1-p)^{k-1}$. Ő a p paraméterű geometria eloszlás.

5.2. Folytonos véletlen változók

Egy véletlen változó értékkészlete nem feltétlenül megszámlálható. A ropi például bárhol eltörhet. Vagy gondolhatunk tetszőleges mérés eredményére, élettartamra, Ilyenkor a változó kontinuum sok értéket vehet fel, mindegyiket 0 valószínűséggel. Ez a mese, a definíció a következő.

5.10. Definíció. Egy X véletlen változó $folytonos\ eloszlású$, ha létezik egy nemnegatív f függvény, melyre

$$F(x) = \mathbf{P}(X \le x) = \int_{-\infty}^{x} f(y) dy, \quad x \in \mathbb{R}.$$

Az f(x) függvény az X véletlen változó sűrűségfüggvénye.

A definícióból világos, hogy $\mathbf{P}(X \in (a,b)) = \mathbf{P}(X \in (a,b]) = \int_a^b f(y) dy$, $-\infty \le a \le b \le \infty$. Speciálisan

$$\int_{-\infty}^{\infty} f(x) dx = \mathbf{P}(X \in \mathbb{R}) = 1, \text{ és } \mathbf{P}(X = x) = \int_{x}^{x} f(y) dy = 0.$$

5.11. *Példa*. A standard normális eloszlás sűrűségfüggvénye $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, $x \in \mathbb{R}$. Az eloszlásfüggvény $\Phi(x) = \int_{-\infty}^{x} \varphi(y) dy$.

5.3. Véletlen vektorváltozók

Egy kísérletnél sokszor több a kísérlet eredményét leíró adatra vagyunk kíváncsiak. Például testtömeg, testmagasság, vérnyomás, pulzus,

5.12. Definíció. Az $X = (X_1, ..., X_n) : \Omega \to \mathbb{R}^n$ függvény véletlen vektorváltozó, ha minden komponense véletlen változó. Az X eloszlásfüggvénye

$$F(x_1,\ldots,x_n)=\mathbf{P}(X_1\leq x_1,\ldots,X_n\leq x_n).$$

Az (X_1, \ldots, X_n) véletlen vektorváltozó diszkrét, ha értékkészlete megszámlálható, és folytonos, ha van olyan f nemnegatív n-változós függvény, melyre

$$F(x_1,\ldots,x_n) = \int_{-\infty}^{x_1} \ldots \int_{-\infty}^{x_n} f(y_1,\ldots,y_n) dy_n \ldots dy_1$$

teljesül minden $(x_1, \ldots, x_n) \in \mathbb{R}^n$ esetén. Ilyenkor az f függvényt az X vektorváltozó sűrűségfüggvényének nevezzük.

Az X_i , $i=1,2,\ldots,n$, változók eloszlását, peremeloszlásnak, vagy marginális eloszlásnak nevezzük.

Folytonos eseteben a definícióból világos, hogy az egyváltozós eset analógiájára

$$\frac{\partial^n}{\partial x_1 \dots \partial x_n} F(x_1, \dots, x_n) = f(x_1, \dots, x_n)$$

teljesül. Az $x_i \to \infty$, $i=1,2,\ldots,n$ határátmenettel azt is látjuk, hogy

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_1, \dots, x_n) dx_n \dots dx_1 = 1,$$

mint az egyváltozós esetben.

5.13. Állítás. Legyen $X = (X_1, \dots, X_n)$ véletlen vektorváltozó. Az X_i eloszlásfüggvénye

$$F_i(x) = \lim_{x_1 \to \infty, \dots, x_{i-1} \to \infty, x_{i+1} \to \infty, \dots, x_n \to \infty} F(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n).$$

Bizonyítás. Tekintsük az

$$A_m = \{\omega : X_i(\omega) < m, j \neq i, X_i < x\}, m > 1,$$

halmazokat. Ekkor az $({\cal A}_m)$ halmazsorozat monoton bővülő, és

$$\bigcup_{m=1}^{\infty} A_m = \{\omega : X_i \le x\}.$$

Tehát

$$\lim_{m \to \infty} F(m, \dots, m, x, m, \dots, m) = \lim_{m \to \infty} \mathbf{P}(A_m)$$
$$= \mathbf{P}(X_i < x) = F_i(x).$$

A koordinátánkénti monotonitásból az állítás következik.

5.14. Állítás. Legyen $X=(X_1,\ldots,X_n)$ folytonos véletlen vektorváltozó f sűrűségfüggvénnyel. Ekkor $X_i,\ i=1,2,\ldots,n,$ folytonos véletlen változó, melynek sűrűségfüggvénye

$$f_i(x_i) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(y_1, \dots, y_{i-1}, x_i, y_{i+1}, \dots, y_n) dy_1 \dots dy_{i-1} dy_{i+1} \dots dy_d,$$

azaz az i-edik változón kívül minden változót kiintegrálunk \mathbb{R} -en.

Bizonyítás. Legyen f_i az állításban szereplő függvény. Ekkor a szukcesszív integrálásra vonatkozó tétel szerint

$$\int_{-\infty}^{x} f_i(y) dy = \int_{-\infty}^{x} \left[\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(y_1, \dots, y_{i-1}, y, y_{i+1}, \dots, y_n) \right] dy$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \int_{-\infty}^{x} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(y_1, \dots, y_{i-1}, y, y_{i+1}, \dots, y_n) dy$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \int_{-\infty}^{x} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(y_1, \dots, y_{i-1}, y, y_{i+1}, \dots, y_n) dy$$

$$= \lim_{x_1 \to \infty, \dots, x_{i-1} \to \infty, x_{i+1} \to \infty, x_n \to \infty} F(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n)$$

$$= \mathbf{P}(X_i \le x),$$

ahol az utolsó előtti egyenlőségnél fölhasználtuk az 5.13 Állítást. Tehát

$$\int_{-\infty}^{x} f_i(y) \mathrm{d}y = \mathbf{P}(X_i \le x),$$

ami éppen a bizonyítandó állítás.

5.15. Állítás. Legyen f(u,v) az (X,Y) véletlen vektor sűrűségfüggvénye. Ekkor X és Y is folytonos véletlen változók $\int_{\mathbb{R}} f(u,v) dv$ ill. $\int_{\mathbb{R}} f(u,v) dv$ sűrűségfüggvénnyel.

Bizonyítás. A sűrűségfüggvény definíciója szerint

$$\mathbf{P}(X \le x) = \mathbf{P}(X \le x, Y < \infty) = \int_{-\infty}^{x} \left(\int_{-\infty}^{\infty} f(u, v) dv \right) du.$$

5.4. Véletlen változók függetlensége

Legyenek X_1, \ldots, X_n az $(\Omega, \mathcal{A}, \mathbf{P})$ valószínűségi mezőn értelmezett véletlen változók.

5.16. Definíció. Az X_1, \ldots, X_n függetlenek, ha minden $x_1, \ldots, x_n \in \mathbb{R}$ esetén

$$\mathbf{P}(X_1 \le x_1, \dots, X_n \le x_n) = \mathbf{P}(X_1 \le x_1) \dots \mathbf{P}(X_n \le x_n)$$

teljesül. Vagyis az együttes eloszlásfüggvény az egyes eloszlásfüggvények szorzata.

 $Megjegyz\acute{e}s.$ Megmutatható, hogy ha X_1,\ldots,X_n függetlenek, akkor tetszőleges B_1,\ldots,B_n véges vagy végtelen intervallumok esetén

$$\mathbf{P}(X_1 \in B_1, \dots, X_n \in B_n) = \mathbf{P}(X_1 \in B_1) \dots \mathbf{P}(X_n \in B_n)$$

teljesül.

A diszkrét, illetve a folytonos esetben ez a karakterizáció tovább egyszerűsíthető.

5.17. Állítás. Legyenek X_1, \ldots, X_n diszkrét véletlen változók úgy, hogy X_i lehetséges értékei $x_1^{(i)}, x_2^{(i)}, \ldots, i = 1, 2, \ldots, n$. Ekkor X_1, \ldots, X_n pontosan akkor függetlenek, ha

$$\mathbf{P}(X_1 = x_{i_1}^{(1)}, \dots, X_n = x_{i_n}^{(n)}) = \mathbf{P}(X_1 = x_{i_1}^{(1)}) \dots \mathbf{P}(X_n = x_{i_n}^{(n)})$$

 $teljes\"{u}l \ tetsz\~{o}leges \ i_i, \ldots, i_n \ indexekre.$

Legyenek X_1, \ldots, X_n együttesen folytonos véletlen változók f együttes sűrűségfüggvénnyel. Ekkor X_1, \ldots, X_n pontosan akkor függetlenek, ha

$$f(x_1,\ldots,x_n) = f_{X_1}(x_1)\ldots f_{X_n}(x_n),$$

ahol f_{X_i} az X_i sűrűségfüggvénye.

Bizonyítás. A diszkrét esetben csak ki kell írni a függetlenség definícióját.

A folytonos esetben csak n=2 esetén bizonyítunk. Az általános eset ugyanez, csak macerásabb a jelölés. Ha a sűrűségfüggvény faktorizálódik, akkor

$$\mathbf{P}(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_X(u) f_Y(v) dv du$$
$$= \int_{-\infty}^{x} f_X(u) du \int_{-\infty}^{y} f_Y(v) dv = \mathbf{P}(X \le x) \mathbf{P}(Y \le y),$$

azaz a változók függetlenek. Megfordítva, tegyük fel, hogy a változók függetlenek. Ekkor

$$\mathbf{P}(X \le x, Y \le y) = \mathbf{P}(X \le x) \, \mathbf{P}(Y \le y)$$

$$= \int_{-\infty}^{x} f_X(u) du \, \int_{-\infty}^{y} f_Y(v) dv$$

$$= \int_{-\infty}^{x} \int_{-\infty}^{y} f_X(u) f_Y(v) dv du,$$

azaz $f_X(u)f_Y(v)$ az együttes sűrűségfüggvény, amint állítottuk.

5.5. Függetlenség és geometriai valószínűség

5.18. Definíció. Legyen $T=[a_1,b_1]\times\dots[a_n,b_n]$ egy n-dimenziós tégla, ahol $-\infty < a_i < b_i < \infty,$ $i=1,2,\dots,n$. Az $X=(X_1,\dots,X_n):\Omega\to T$ egyenletes eloszlású véletlen változó T-n, ha tetszőleges $S=[c_1,d_1]\times\dots\times[c_n,d_n]$ résztéglájára T-nek

$$\mathbf{P}(X \in S) = \frac{(d_1 - c_1) \dots (d_n - c_n)}{(b_1 - a_1) \dots (b_n - a_n)}.$$

Ekkor X indukál egy geometriai valószínűségi mezőt.

5.19. Állítás. $Az \ X = (X_1, \dots, X_n)$ véletlen vektorváltozó pontosan akkor egyenletes eloszlású a $T = [a_1, b_1] \times \dots \times [a_n, b_n]$ téglán, ha minden i-re X_i egyenletes eloszlású $[a_i, b_i]$ -n, és X_1, \dots, X_n függetlenek.

Bizonyítás. \Leftarrow : Legyen $S = [c_1, d_1] \times \ldots \times [c_n, d_n]$. Ekkor

$$\mathbf{P}(X \in S) = \mathbf{P}(X_1 \in [c_1, d_1], \dots, X_n \in [c_n, d_n])$$

$$= \prod_{i=1}^{n} \mathbf{P}(X_i \in [c_i, d_i])$$

$$= \prod_{i=1}^{n} \frac{d_i - c_i}{b_i - a_i}$$

$$= \frac{\prod_{i=1}^{n} (d_i - c_i)}{\prod_{i=1}^{n} (b_i - a_i)}.$$

 \Rightarrow : Legyen $i \in \{1, \dots, n\}, \, a_i \leq c_i < d_i \leq b_i$ tetszőleges. Ekkor

$$\mathbf{P}(X_i \in [c_i, d_i]) = \mathbf{P}(X_1 \in [a_1, b_1], \dots, X_i \in [c_i, d_i], \dots, X_n \in [a_n, b_n])$$

$$= \mathbf{P}(X \in [a_1, b_1] \times \dots \times [c_i, d_i] \times \dots \times [a_n, b_n])$$

$$= \frac{(d_i - c_i) \prod_{j \neq i} (b_j - a_j)}{\prod_{j=1}^n (b_j - a_j)}$$

$$= \frac{d_i - c_i}{b_i - a_i}.$$

Hasonlóan igazolható a függetlenség az intervallumok esetén, ahonnan pedig következik általánosan. \qed

6. Várható érték

Egy kísérletet n-szer függetlenül ismétlünk és minden alkalommal megfigyeljük X értékét: X_1, X_2, \ldots, X_n . Ezen értékek átlagai egy számhoz tartanak, ez lesz $\mathbf{E}X$.

Motiváció

6.1. Definíció. Ha X diszkrét véletlen változó x_1, x_2, \ldots lehetséges értékekkel, akkor az X várható értéke

$$\mathbf{E}X = \sum_{i} x_i \mathbf{P}(X = x_i),$$

ha $\sum_{i} |x_i| \mathbf{P}(X = x_i) < \infty$.

HaXfolytonos véletlen változó f(x)sűrűségfüggvénnyel, akkor az X várható értéke

$$\mathbf{E}X = \int_{-\infty}^{\infty} y f(y) \mathrm{d}y,$$

ha $\int_{-\infty}^{\infty} |y| f(y) dy < \infty$.

Folytonos eset magyarázata h hosszúságú intervallumokkal.

6.1. Várható érték tulajdonságai

6.2. Állítás. Legyenek X, Y véletlen változók, $g : \mathbb{R} \to \mathbb{R}$, $h : \mathbb{R}^2 \to \mathbb{R}$ olyan függvények, melyekre az állításokban szereplő várható értékek léteznek. Ekkor

$$\mathbf{E}g(X) = \sum_{i=1}^{\infty} g(x_i)\mathbf{P}(X = x_i), ill. \mathbf{E}g(x) = \int_{-\infty}^{\infty} g(y)f(y)dy,$$

ahol f(x) az X sűrűségfüggvénye, és

$$\mathbf{E}h(X,Y) = \sum_{i} \sum_{j} h(x_i, y_j) \mathbf{P}(X = x_i, Y = y_j), ill.$$
$$\mathbf{E}h(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) f(x, y) dx dy,$$

ahol f(x,y) az (X,Y) folytonos véletlen vektorváltozó sűrűségfüggvénye.

Bizonyítás. Csak az első állítást igazoljuk és csak diszkrét esetben. Mivel X diszkrét, ezért g(X) is diszkrét y_1, y_2, \ldots lehetséges értékekkel. Ezért

$$\mathbf{E}g(X) = \sum_{j} y_{j} \mathbf{P}(g(X) = y_{j})$$

$$= \sum_{j} y_{j} \sum_{i:g(x_{i}) = y_{j}} \mathbf{P}(X = x_{i})$$

$$= \sum_{j} \sum_{i:g(x_{i}) = y_{j}} y_{j} \mathbf{P}(X = x_{i})$$

$$= \sum_{j} \sum_{i:g(x_{i}) = y_{j}} g(x_{i}) \mathbf{P}(X = x_{i})$$

$$= \sum_{i} g(x_{i}) \mathbf{P}(X = x_{i}).$$

- **6.3. Állítás.** A következőkben a, b valós konstansok, X, Y, X_1, \ldots, X_n véletlen változók.
 - (i) A várható érték lineáris, azaz tetszőleges $a, b \in \mathbb{R}$ állandókra

$$\mathbf{E}aX + b = a\mathbf{E}X + b.$$

- (ii) Ha $a \le X \le b$, akkor $a \le \mathbf{E}X \le b$ tetszőleges $a, b \in \mathbb{R}$ számok esetén.
- (iii) $\mathbf{E}(X+Y) = \mathbf{E}X + \mathbf{E}Y$.
- (iv) Ha X_1, X_2, \ldots, X_n véletlen változók, akkor

$$\mathbf{E}\sum_{i=1}^{n}X_{i}=\sum_{i=1}^{n}\mathbf{E}X_{i}.$$

(v) Ha X és Y függetlenek, akkor $\mathbf{E}g_1(X)g_2(Y) = \mathbf{E}g_1(X)\mathbf{E}g_2(Y)$. Speciálisan, ha X és Y függetlenek, akkor $\mathbf{E}XY = \mathbf{E}X\mathbf{E}Y$.

Bizonyítás. (i) Az előző állítást g(x) = ax + b függvénnyel felírva

$$\mathbf{E}(aX + b) = \sum_{i} (ax_i + b)\mathbf{P}(X = x_i) = a\mathbf{E}X + b.$$

Folytonosra ugyanígy.

(ii)

$$a = a \sum_{i} \mathbf{P}(X = x_i) \le \sum_{i} x_i \mathbf{P}(X = x_i) = \mathbf{E}X \le \sum_{i} b \mathbf{P}(X = x_i) = b.$$

Folytonosra ugyanígy.

(iii) A 6.2 Állítást h(x,y) = x + y függvénnyel felírva

$$\mathbf{E}(X+Y) = \sum_{i} \sum_{j} (x_i + y_j) \mathbf{P}(X = x_i, Y = y_j)$$

$$= \sum_{i} x_i \sum_{j} \mathbf{P}(X = x_i, Y = y_j) + \sum_{j} y_j \sum_{i} \mathbf{P}(X = x_i, Y = y_j) \quad \text{tvt}$$

$$= \sum_{i} x_i \mathbf{P}(X = x_i) + \sum_{j} y_j \mathbf{P}(Y = y_j)$$

$$= \mathbf{E}X + \mathbf{E}Y.$$

Csak diszkrét esetben bizonyítunk.

(iv) Következik (iii)-ból teljes indukcióval.

(v) A 6.2 Állítást $h(x,y) = g_1(x)g_2(y)$ függvénnyel felírva

$$\begin{split} \mathbf{E}(g_1(X)g_2(Y)) &= \sum_i \sum_j g_1(x_i)g_2(y_j) \mathbf{P}(X=x_i,Y=y_j) \\ &= \sum_i \sum_j g_1(x_i)g_2(y_j) \mathbf{P}(X=x_i) \mathbf{P}(Y=y_j) \\ &= \sum_i g_1(x_i) \mathbf{P}(X=x_i) \sum_j g_2(y_j) \mathbf{P}(Y=y_j) \\ &= \mathbf{E}(g_1(X)) \mathbf{E}(g_2(Y)). \end{split}$$

A folytonos esetben

$$\mathbf{E}(g_{1}(X)g_{2}(Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g_{1}(x)g_{2}(y)f(x,y)\mathrm{d}x\mathrm{d}y$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g_{1}(x)g_{2}(y)f_{1}(x)f_{2}(y)\mathrm{d}x\mathrm{d}y \quad \text{függetlenség}$$

$$= \int_{-\infty}^{\infty} g_{1}(x)f_{1}(x)\mathrm{d}x \int_{-\infty}^{\infty} g_{2}(y)f_{2}(y)\mathrm{d}y \quad \text{szukcesszív integrálás}$$

$$= \mathbf{E}(g_{1}(X))\mathbf{E}(g_{2}(Y)).$$

6.4. Példa. Csodaország munka törvénykönyve szerint egy cég minden munkása fizetett szabadságot kap azokon a napokon, amikor legalább az egyiküknek születésnapja van. Ezen napok kivételével azonban az év minden napján mindenkinek dolgoznia kell. Minden munkás 1 TV-készüléket készít egy nap alatt. Hány alkalmazottat vegyen fel a cégtulajdonos, ha azt akarja, hogy a gyártott TV-készülékek számának a várható értéke maximális legyen?

Legyen n az alkalmazottak száma. Jelölje X_n az egy évben gyártott TV-k számát, és legyen Y_i az i-edik napon gyártott TV-k száma, $i=1,2,\ldots,365$. Világos, hogy

$$X = Y_1 + Y_2 + \ldots + Y_{365}.$$

Másrészt Y_i -k azonos eloszlásúak, lehetséges értékeik n vagy 0, és

$$\mathbf{P}(Y_i = n) = \mathbf{P}(\text{nincs születésnap az } i\text{-edik napon}) = \left(\frac{364}{365}\right)^n.$$

Tehát

$$\mathbf{E}(X_n) = 365 \, n \left(\frac{364}{365}\right)^n.$$

Egyszerű számolással kapjuk, hogy

$$\frac{\mathbf{E}(X_n)}{\mathbf{E}(X_{n+1})} \le 1 \iff n \le 364,$$

azaz a maximum az n = 364 és n = 365 helyeken vétetik fel.

6.5. Definíció. Az X véletlen változó k-adik momentuma $\mathbf{E}(X^k)$, és k-adik centrális momentuma $\mathbf{E}[(X - \mathbf{E}X)^k], k = 1, 2, \dots$ A 6.2 Állítás szerint

$$\mathbf{E}(X^k) = \begin{cases} \sum_i x_i^k \mathbf{P}(X = X_i), & \text{ha } X \text{ diszkr\'et}, \\ \int_{-\infty}^{\infty} x^k f(x) \mathrm{d}x, & \text{ha } X \text{ folytonos}. \end{cases}$$

- 6.2. Szórás, kovariancia, korreláció
- **6.6. Definíció.** Az X véletlen változó szórása $\mathbf{D}(X) = \sqrt{\mathbf{E}(X \mathbf{E}(X))^2}$

A szórás annak a mérőszáma, hogy a változó mennyire tér el a várható értékétől. Mivel $\mathbf{E}(X - \mathbf{E}(X)) = 0$, $\mathbf{E}|X - \mathbf{E}(X)|$ pedig nehezen kezelhető (nem differenciálható az $|\cdot|$ függvény), ezért ez a legegyszerűbb ilyen.

- **6.7.** Állítás. Tetszőleges X véletlen változó és a,b valós számok esetén
 - (i) $\mathbf{D}^2(X) = \mathbf{E}(X^2) (\mathbf{E}(X))^2$;
 - (ii) $\mathbf{D}^2(aX+b) = a^2\mathbf{D}^2(X);$
- (iii) $\mathbf{D}(X) = 0$ akkor és csak akkor, ha $X = \mathbf{E}(X)$, azaz X konstans véletlen változó.

Bizonyítás. A definíció alkalmazása.

Véletlen változók függőségének mérőszámai a kovariancia és a korreláció.

6.8. Definíció. Az X és Y véletlen változók kovarianciája

$$\mathbf{Cov}(X,Y) = \mathbf{E}[(X - \mathbf{E}(X))(Y - \mathbf{E}(Y))],$$

korrelációja

$$\rho(X,Y) = \frac{\mathbf{Cov}(X,Y)}{\mathbf{D}(X)\mathbf{D}(Y)}.$$

A kovariancia egyszerű tulajdonságai:

- **6.9. Állítás.** Tetszőleges $X, X_1, \ldots, X_n, Y, Y_1, \ldots, Y_m$ véletlen változók és a, b valós számok esetén igazak az alábbiak.
 - (i) $Cov(X, X) = D^2(X);$

- (ii) Cov(X, Y) = Cov(Y, X);
- (iii) $\mathbf{Cov}(aX, bY) = ab\mathbf{Cov}(X, Y);$

(iv)
$$\mathbf{Cov}\left(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbf{Cov}(X_i, Y_j);$$

(v) ha X és Y függetlenek, akkor Cov(X, Y) = 0.

Bizonyítás. Egyszerű számolás.

6.10. Állítás. (i) $|\mathbf{Cov}(X,Y)| \leq \mathbf{D}(X)\mathbf{D}(Y)$ (Bunyakovszkij–Cauchy–Schwarz), ahonnan adódik, hogy $\rho(X,Y) \in [-1,1]$;

(ii) ha $\rho(X,Y)=1$, akkor

$$X = \mathbf{E}(X) + \frac{\mathbf{D}(X)}{\mathbf{D}(Y)}(Y - \mathbf{E}(Y));$$

(iii) ha $\rho(X,Y) = -1$, akkor

$$X = \mathbf{E}(X) - \frac{\mathbf{D}(X)}{\mathbf{D}(Y)}(Y - \mathbf{E}(Y)).$$

Bizonyítás. (i): Tekintsük az U+tV véletlen változót, ahol t egy valós szám. Mivel $\mathbf{E}[(U+tV)^2] \geq 0$, ezért a

$$p(t) = \mathbf{E}[(U + tV)^{2}] = t^{2}\mathbf{E}(V^{2}) + 2t\mathbf{E}(UV) + \mathbf{E}(U^{2})$$
(1)

t-ben másodfokú polinom diszkriminánsa nempozitív. Azaz

$$4[\mathbf{E}(UV)]^2 \le 4\mathbf{E}(U^2)\mathbf{E}(V^2),\tag{2}$$

amiből következik, hogy

$$|\mathbf{E}(UV)| \le \sqrt{\mathbf{E}(U^2)\mathbf{E}(V^2)}.$$

Ezt az egyenlőtlenséget az $U=X-\mathbf{E}(X)$ és $V=Y-\mathbf{E}(Y)$ változókra felírva kapjuk az állítást.

(ii) és (iii): Ha $|\rho(X,Y)|=1$, akkor a (2) egyenlőtlenség $U=X-\mathbf{E}(X)$ és $V=Y-\mathbf{E}(Y)$ változókra egyenlőség, azaz a másodfokú p polinom diszkriminánsa 0. Ezek szerint

$$t_0 = -\frac{\mathbf{E}[(X - \mathbf{E}X)(Y - \mathbf{E}Y)]}{\mathbf{E}[(Y - \mathbf{E}Y)^2]} = -\rho(X, Y)\frac{\mathbf{D}(X)}{\mathbf{D}(Y)}$$

zérushely, vagyis

$$X - \mathbf{E}(X) + t_0(Y - \mathbf{E}(Y)) = 0,$$

ami éppen a bizonyítandó.

Megjegyzés. Korreláció jelentése. Ha $\rho(X,Y)=0$, akkor X és Y korrelálatlanok. A 6.9 Állítás (v) pontja szerint a függetlenségből következik a korrelálatlanság. Fordítva ez nem igaz, könnyű ellenpéldát gyártani. Mindenesetre, minél kisebb a korreláció annál gyengébb a két változó közötti függés. A 6.10 Állításból pedig azt látjuk, hogy minél közelebb van $|\rho(X,Y)|$ értéke 1-hez, annál erősebb a változók közötti függés.

Ha a korreláció pozitív, akkor ha X nagy, akkor Y is nagy, ha pedig negatív, akkor ha X nagy, akkor Y kicsi, és fordítva. Ezek a megállapítások persze nem tehetők nagyon precízzé, ez a szemléletes jelentés.

6.11. Állítás. Legyenek X_1, X_2, \ldots, X_n páronként független véletlen változók. Ekkor

$$\mathbf{D}^2 \left(\sum_{i=1}^n X_i \right) = \sum_{i=1}^n \mathbf{D}^2(X_i).$$

Bizonyítás. Egyszerű számolás.

6.12. P'elda. Egy szabályos dobókockával n-szer dobunk. Jelölje X a hatosok, Y egyesek számát! Legyen $I_i=1$, ha az i-edik dobás hatos, különben 0, $J_i=1$, ha az i-edik dobás egyes, különben 0, $i=1,2,\ldots,n$. Nyilván

$$X = \sum_{i=1}^{n} I_i$$
 és $Y = \sum_{i=1}^{n} J_i$. (3)

Továbbá I_1, \ldots, I_n függetlenek, és J_1, \ldots, J_n is függetlenek.

Ekkor I_1, \ldots, I_n független, Bernoulli eloszlású véletlen változók 1/6 paraméterrel. A megfelelő eloszlás $\mathbf{P}(I_i=1)=1/6$, $\mathbf{P}(I_i=0)=5/6$. A J-kre hasonlóan. A hatosok száma X binomiális eloszlású véletlen változó (n,1/6) paraméterrel. Eloszlása

$$\mathbf{P}(X=k) = b_k(n, 1/6) = \binom{n}{k} \left(\frac{1}{6}\right)^k \left(\frac{5}{6}\right)^{n-k}, \quad k = 0, 1, \dots, n.$$

A várható értéket és a szórást a definíció alapján számolhatjuk. Valóban,

$$\mathbf{E}(I_1) = 1 \cdot \frac{1}{6} + 0 \cdot \frac{5}{6} = \frac{1}{6},$$

és

$$\mathbf{D}^{2}(I_{1}) = \mathbf{E}(I_{1}^{2}) - (\mathbf{E}(I_{1}))^{2} = \frac{1}{6} - \frac{1}{36} = \frac{5}{36}.$$

És persze $\mathbf{E}(I_i) = \mathbf{E}(J_i) = \frac{1}{6}$, $\mathbf{D}^2(I_i) = \mathbf{D}^2(J_i) = \frac{5}{36}$, $i = 1, \dots, n$. Az $\mathbf{E}(X)$, $\mathbf{D}^2(X)$ értékek meghatározása számolósabb:

$$\mathbf{E}(X) = \sum_{k=0}^{n} k \cdot \mathbf{P}(X = k)$$

$$= \sum_{k=0}^{n} k \cdot \binom{n}{k} \left(\frac{1}{6}\right)^{k} \left(\frac{5}{6}\right)^{n-k}$$

$$= \frac{n}{6} \sum_{k=1}^{n} \binom{n-1}{k-1} \left(\frac{1}{6}\right)^{k-1} \left(\frac{5}{6}\right)^{n-k}$$

$$= \frac{n}{6},$$

és hasonlóan

$$\mathbf{E}(X^{2}) = \sum_{k=0}^{n} k^{2} \cdot \mathbf{P}(X = k)$$

$$= \sum_{k=0}^{n} (k(k-1) + k) \frac{n!}{k!(n-k)!} \left(\frac{1}{6}\right)^{k} \left(\frac{5}{6}\right)^{n-k}$$

$$= \frac{n(n-1)}{6^{2}} \sum_{k=2}^{n} {n-2 \choose k-2} \left(\frac{1}{6}\right)^{k-2} \left(\frac{5}{6}\right)^{n-k} + \frac{n}{6}$$

$$= \frac{n(n-1)}{36} + \frac{n}{6}.$$

Ezért

$$\mathbf{D}^{2}(X) = \mathbf{E}(X^{2}) - (\mathbf{E}(X))^{2} = n\frac{5}{36}.$$

Sok számolást megspórolunk, ha felhasználjuk a (3) egyenletet és a 6.3 (iv) és 6.11 Állításokat. Valóban,

$$\mathbf{E}(X) = \sum_{i=1}^{n} \mathbf{E}(I_i) = \frac{n}{6},$$

és

$$\mathbf{D}^{2}(X) = \sum_{i=1}^{n} \mathbf{D}^{2}(I_{i}) = n \frac{5}{36}.$$

Sốt, így az X és Y kovarianciáját is könnyen meghatározhatjuk. Vegyük észre, hogy ha $i \neq j$, akkor I_i és J_j függetlenek, azaz $\mathbf{Cov}(I_i, J_j) = 0$, különben $I_i J_i = 0$, ezért $\mathbf{Cov}(I_i, J_i) = \mathbf{E}(I_i J_i) - \mathbf{E}(I_i) \mathbf{E}(J_i) = -1/36$. Tehát

$$\mathbf{Cov}(X,Y) = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{Cov}(I_i, J_j) = \sum_{j=1}^{n} -\frac{1}{36} = -n\frac{1}{36},$$

korrelációjuk pedig

$$\rho(X,Y) = \frac{\mathbf{Cov}(X,Y)}{\mathbf{D}(X)\mathbf{D}(Y)} = \frac{-n\frac{1}{36}}{n\frac{5}{36}} = -\frac{1}{5}.$$

Látjuk, hogy a korreláció negatív, azaz ha sok hatost dobunk, akkor kevés egyest, és fordítva, ami teljesen természetes.

6.3. Ferdeség és lapultság

6.13. Definíció. Az X véletlen változó ferdesége

$$S(X) = \frac{\mathbf{E}\left[(X - \mathbf{E}X)^3\right]}{\mathbf{D}^3(X)},$$

amennyiben $\mathbf{E}|X|^3 < \infty$, lapultsága (csúcsossága)

$$K(X) = \frac{\mathbf{E}\left[(X - \mathbf{E}X)^4\right]}{\mathbf{D}^4(X)} - 3.$$

A ferdeség a véletlen változó várható értékére való szimmetriáját mutatja. Egy X véletlen változó szimmetrikus (a 0-ra), ha X és -X eloszlása megegyezik, és X szimmetrikus c-re, ha X-c és c-X eloszlása megegyezik.

6.14. Állítás. Ha X szimmetrikus $\mathbf{E}X$ -re, és S(X) létezik, akkor S(X)=0.

Bizonyítás. Mivel Xszimmetrikus $\mathbf{E}X$ -re, ezért $X-\mathbf{E}X$ és $\mathbf{E}X-X$ eloszlása megegyezik. Speciálisan

$$\mathbf{E}[(X - \mathbf{E}X)^3] = \mathbf{E}[(\mathbf{E}X - X)^3],$$

ahonnan kapjuk, hogy $\mathbf{E}[(X - \mathbf{E}X)^3] = 0.$

Ha S(X) > 0, akkor ez szemléletesen azt jelenti, hogy a változó nagy pozitív értékeket vehet fel, az sűrűségfüggvénye / valószínűségeloszlása jobbra dől; ha S(X) < 0, akkor pedig balra.

6.15. Állítás. Ha a lapultság létezik, akkor $K(X) \ge -2$.

Bizonyítás. Az $Y = (X - \mathbf{E}X)^2$ jelölést bevezetve az állítás azt mondja, hogy

$$(\mathbf{E}(Y))^2 \le \mathbf{E}(Y^2).$$

Ezt már láttuk.

A lapultság a sűrűségfüggvény / valószínűségeloszlás alakját mutatja meg a várható érték körül. Ha K(X) kicsi, akkor a sűrűségfüggvény tipikusan sima, lapos, ha pedig K(X) nagy, akkor csúcsos.

6.16. Állítás. Mind a ferdeség, mind a lapultság eltolás- és skálainvariáns; azaz tetszőles a > 0 és $b \in \mathbb{R}$ esetén

$$S(aX + b) = S(X), \quad K(aX + b) = K(X),$$

amennyiben a megfelelő mennyiségek léteznek.

7. Nevezetes eloszlások

7.1. Bernoulli-eloszlás

Az X véletlen változó p paraméterű $Bernoulli-eloszlású, <math>X \sim Bernoulli(p)$, $p \in [0,1]$, ha lehetséges értékei 0,1, és $\mathbf{P}(X=1)=p=1-\mathbf{P}(X=0)$. Várható értéke $\mathbf{E}(X)=p$, szórásnégyzete $\mathbf{D}^2(X)=\mathbf{E}(X^2)-(\mathbf{E}(X))^2=p-p^2=p(1-p)$.

Tipikus példa egy A esemény I_A indikátorváltozója.

7.2. Binomiális eloszlás

Az X véletlen változó (n,p) paraméterű binomiális eloszlású, $X \sim \text{Bin}(n,p)$, $n \in \{1,2,\ldots\}, \ p \in [0,1]$, ha lehetséges értékei $0,1,\ldots,n$, és $\mathbf{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \ k=0,1,\ldots,n$.

Ez tényleg eloszlás, hiszen a binomiális tétel szerint

$$\sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} = (p+(1-p))^n = 1.$$

Várható értéke $\mathbf{E}(X)=np$, szórásnégyzete $\mathbf{D}^2(X)=np(1-p)$. Ez ugyanúgy igazolható, mint a fönti példában.

Tipikus példa: egy p valószínűségű A esemény bekövetkezéseinek a számát vizsgáljuk n független kísérlet során. Ekkor, ha

$$I_j = \begin{cases} 1, & \text{ha a j-edik kísérletnél A bekövetkezett,} \\ 0, & \text{különben,} \end{cases}$$

akkor $I_j \sim \text{Bernoulli}(p)$, és $X = \sum_{i=1}^n I_j \sim \text{Bin}(n,p)$. Ebből az előállításból gyorsan adódik a várható értékre és a szórásnégyzetre adott formula.

7.3. Poisson-eloszlás

Az X véletlen változó λ paraméterű Poisson-eloszlású, $X \sim \text{Poisson}(p)$, $\lambda \geq 0$, ha X lehetséges értékei $0, 1, 2, \ldots$, és

$$\mathbf{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

Ez valóban eloszlás, hiszen

$$\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}.$$

Várható értéke

$$\mathbf{E}(X) = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda}$$
$$= \lambda \sum_{k=0}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda}$$
$$= \lambda$$

Második momentuma hasonlóan számolható

$$\mathbf{E}(X^2) = \lambda^2 + \lambda,$$

így szórásnégyzete

$$\mathbf{D}^{2}(X) = \mathbf{E}(X^{2}) - (\mathbf{E}(X))^{2} = \lambda.$$

Poisson-eloszlás a binomiális eloszlás határeloszlásaként áll elő. Legyen $p=p_n=\lambda/n,$ valamely $\lambda>0$ számra. Ha $X_n\sim \text{Bin}(n,p_n),$ akkor némi számolás után

$$\lim_{n \to \infty} \mathbf{P}(X_n = k) = \binom{n}{k} p_n^k (1 - p_n)^{n-k}$$
$$= \frac{\lambda^k}{k!} e^{-\lambda}.$$

Ezek alapján azt látjuk, hogy akkor lép fel Poisson-eloszlás, ha egy kis valószínűségű eseményt sokszor "ismételünk":

- téves telefonhívások száma;
- autóbalesetek száma;
- nyomdahubák száma egy oldalon;

- földrengések száma;
- csillagok száma egy adott térrészben;
- mazsolák száma a pudingban.
- halálos lórugások száma egy év alatt a porosz hadseregben (Bortkiewicz (1868–1931) orosz közgazdász 20 évig figyelt 14 lovas ezredet. 1898: A kis számok törvénye)

7.4. Geometriai eloszlás

Az X véletlen változó p paraméterű geometriai eloszlású, $X \sim \text{Geo}(p)$, ha a lehetséges értékek $1,2,\ldots$ és

$$P(X = k) = (1 - p)^{k-1}p, \quad k = 1, 2, \dots$$

Ez tényleg eloszlás, hiszen

$$\sum_{k=1}^{\infty} p(1-p)^{k-1} = p \frac{1}{1 - (1-p)} = 1.$$

Mivel

$$\sum_{k=1}^{\infty} kx^{k-1} = \sum_{k=1}^{\infty} (x^k)' = \left(\sum_{k=1}^{\infty} x^k\right)'$$
$$= \left(\frac{1}{1-x} - 1\right)' = \frac{1}{(1-x)^2},$$

ezért a várható érték

$$\mathbf{E}(X) = \sum_{k=1}^{\infty} kp(1-p)^{k-1} = \frac{1}{p}.$$

A második momentum hasonlóan számolható

$$\mathbf{E}(X^2) = \frac{2-p}{p^2},$$

és így

$$\mathbf{D}^{2}(X) = \mathbf{E}(X^{2}) - (\mathbf{E}(X))^{2} = \frac{1 - p}{p^{2}}.$$

Tipikus példa: addig ismétlünk egy kísérletet, amíg a vizsgált A esemény be nem következik.

A geometriai eloszlás a diszkrét örökifjú eloszlás, hiszen ha $k, \ell \in \mathbb{N}$, akkor

$$\mathbf{P}(X > k + \ell | X > k) = \frac{\mathbf{P}(X > k + \ell)}{\mathbf{P}(X > k)}$$
$$= \frac{q^{k+\ell}}{q^k} = q^{\ell} = \mathbf{P}(X > \ell).$$

7.1. Példa. **Kupongyűjtő probléma.** Egy N különböző elemből álló sokaságból visszatevéses mintát veszünk. Jelölje S_r azt a véletlen számot, ahány elemet kellett húznunk, hogy kapjunk r különböző elemet. Határozzuk meg S_r várható értékét, szórását, majd adjunk ezekre kezelhető aszimptotikus egyenlőséget.

Vezessük be az $X_k = S_{k+1} - S_k$ változót, $S_0 = 0$. Ekkor X_k geometriai eloszlású, ahol a siker valószínűsége $p_k = (N - k)/N$.

7.5. Egyenletes eloszlás

Az X véletlen változó egyenletes eloszlású az (a,b) intervallumon, $X \sim \text{Egy}(a,b), -\infty < a < b < \infty$, ha sűrűségfüggvénye

$$f(y) = \begin{cases} \frac{1}{b-a}, & \text{ha } y \in (a,b), \\ 0, & \text{különben.} \end{cases}$$

Ez tényleg sűrűségfüggvény, hiszen $f \geq 0$, és $\int_{-\infty}^{\infty} f(y) \mathrm{d}y = 1$.

Vegyük észre, hogy ez ugyanaz a definíció, mint korábban, a geometriai valószínűségi mezőnél. Valóban, ha $(c,d) \subset (a,b)$ egy tetszőleges részintervallum, akkor

$$\mathbf{P}(X \in (c,d)) = \int_{c}^{d} f(y) dy = \frac{d-c}{b-a}.$$

Eloszlásfüggvénye

$$F(x) = \int_{-\infty}^{x} f(y) \, dy = \begin{cases} 0, & \text{ha } x \le a, \\ \frac{x-a}{b-a}, & \text{ha } x \in [a, b], \\ 1, & \text{ha } x \ge b. \end{cases}$$

Momentumai, $k \ge 1$

$$\mathbf{E}(X^k) = \int_{-\infty}^{\infty} y^k f(y) dy$$
$$= \int_a^b y^k \frac{1}{b-a} dy$$
$$= \frac{b^{k+1} - a^{k+1}}{(k+1)(b-a)}.$$

Speciálisan

$$\mathbf{E}(X) = \frac{a+b}{2}, \ \mathbf{D}^2(X) = \frac{(b-a)^2}{12}.$$

7.6. Exponenciális eloszlás

Az X véletlen változó λ -paraméterű exponenciális eloszlású, $X \sim \text{Exp}(\lambda)$, $\lambda > 0$, ha sűrűségfüggvénye

$$f(y) = \begin{cases} \lambda e^{-\lambda y}, & y \ge 0, \\ 0, & y < 0. \end{cases}$$

Ez tényleg sűrűségfüggvény. A megfelelő eloszlásfüggvény

$$F(x) = \int_{-\infty}^{x} f(y) dy$$
$$= \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x \le 0. \end{cases}$$

Momentumai

$$\mathbf{E}(X^k) = \int_{-\infty}^{\infty} y^k f(y) dy = \int_{0}^{\infty} y^k \lambda e^{-\lambda y} dy$$
$$= \lambda^{-k} \int_{0}^{\infty} z^k e^{-z} dz = \lambda^{-k} \Gamma(k+1) = \frac{k!}{\lambda^k}.$$

Itt fölhasználtuk, hogy a

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} dy, \ \alpha > 0,$$

Gamma-függvényre teljesül, hogy $\Gamma(k)=(k-1)!$, azaz a függvény a faktoriális folytonos kiterjesztése. Ez az azonosság következik a

$$\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$$

azonosságból, ami parciális integrálással könnyen adódik.

Ezek szerint

$$\mathbf{E}(X) = \frac{1}{\lambda}, \ \mathbf{D}^2(X) = \frac{1}{\lambda^2}.$$

Az exponenciális eloszlás karakterizálja az ún. örökifjú tulajdonság, vagy emlékezet nélküliség. Ez azt jelenti, hogy tetszőleges x,y>0 esetén

$$\mathbf{P}(X \ge x + y | X \ge x) = \mathbf{P}(X \ge y). \tag{4}$$

Ez valóban azt jelenti, hogy az eloszlás nem öregszik.

Ha $X \sim \text{Exp}(\lambda)$, akkor ez teljesül, hiszen

$$\mathbf{P}(X \ge x + y | X \ge x) = \frac{\mathbf{P}(X \ge x + y)}{\mathbf{P}(X \ge x)}$$
$$= e^{-\lambda y} = \mathbf{P}(X \ge y),$$

ami éppen (4). A fordított irány, logaritmust véve, a Cauchy-féle függvényegyenlet megoldásából következik.

Tipikus példák: telefonhívás hossza, várakozási idő, alkatrészek élettartama, üvegpohár élethossza.

7.7. Normális eloszlás

Az X véletlen változó normális eloszlású μ és σ^2 paraméterekkel, jelben $X \sim N(\mu, \sigma^2), \, \mu \in \mathbb{R}, \sigma^2 > 0$, ha sűrűségfüggvénye

$$f_{\mu,\sigma}(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}}.$$

A $\mu=0$ és $\sigma=1$ paraméterekhez tartozó eloszlást standard normális eloszlásnak nevezzük. A normális eloszlást nevezik Gauss-eloszlásnak is.

Könnyen látható, hogy $f_{\mu,\sigma}$ függvény μ -re szimmetrikus, azaz $f_{\mu,\sigma}(\mu+y) = f_{\mu,\sigma}(\mu-y), y \in \mathbb{R}$, μ -ben van a maximuma, és $\mu \pm \sigma$ inflexiós pontok.

Ahhoz, hogy belássuk, hogy $f_{\mu,\sigma}$ sűrűségfüggvény, először az alábbi lemmát igazoljuk.

7.1.1. Lemma. $Az \int_{-\infty}^{\infty} e^{-t^2/2} dt$ integrál létezik mint improprius Riemann-integrál és értéke $\sqrt{2\pi}$.

Bizonyítás. Legyen $I=\int_{-\infty}^{\infty}e^{-t^2/2}\,\mathrm{d}t$ és $I_n=\int_{-n}^ne^{-t/2}\,\mathrm{d}t,\ n\in\mathbb{N}$. Ekkor $I_n\to I$, amint $n\to\infty$. Jelölje $R_n=\{(x,y):|x|\le n,|y|\le n\}$ a 2n élhosszúságú négyzetet és $B_n=\{(x,y):\sqrt{x^2+y^2}\le n\}$ az n sugarú körlapot. A szukcesszív integrálás szabálya szerint

$$I_n^2 = \iint_{R_n} e^{-\frac{x^2 + y^2}{2}} \, \mathrm{d}x \, \mathrm{d}y.$$

Vezessük be a $J_n^2 = \iint_{B_n} e^{-(x^2+y^2)/2} dxdy$ jelölést. Ekkor $J_n^2 \leq I_n^2 \leq J_{2n}^2$, hiszen $B_n \subset R_n \subset B_{2n}$, ezért elegendő belátni, hogy $J_n^2 \to 2\pi$, amint $n \to \infty$. Áttérve polárkoordinátákra az $x = r \cos \theta$, $y = r \sin \theta$ helyettesítéssel a

$$J_n^2 = \int_0^n \int_0^{2\pi} e^{-r^2/2} r \, dr d\theta = 2\pi \int_0^n r e^{-r^2/2} \, dr = 2\pi \left(1 - e^{-n^2/2} \right)$$

egyenlőséget kapjuk, amiből $\lim_{n\to\infty}J_n^2=2\pi$ adódik.

Az $f_{\mu,\sigma}$ függvény nemnegatív. A $t=(y-\mu)/\sigma$ helyettesítéssel

$$\int_{-\infty}^{\infty} f_{\mu,\sigma}(y) dy = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}} dy$$
$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = 1,$$

ahol az utolsó egyenlőségnél a 7.1.1 Lemmát használtuk. Azaz $f_{\mu,\sigma}$ valóban sűrűség.

A várható érték

$$\mathbf{E}(X) = \int_{-\infty}^{\infty} y f_{\mu,\sigma}(y) dy$$

$$= \frac{\sigma}{\sqrt{2\pi}} \left(\int_{-\infty}^{\infty} \frac{y - \mu}{\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}} \frac{1}{\sigma} dy + \int_{-\infty}^{\infty} \frac{\mu}{\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}} \frac{1}{\sigma} dy \right)$$

$$= \mu,$$

a szórásnégyzet pedig

$$\mathbf{D}^{2}(X) = \mathbf{E}((X - \mu)^{2})$$

$$= \int_{-\infty}^{\infty} (y - \mu)^{2} f_{\mu,\sigma}(y) dy$$

$$= \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (y - \mu) \cdot \frac{y - \mu}{\sigma^{2}} e^{-\frac{(y - \mu)^{2}}{2\sigma^{2}}} dy$$

$$= \left[-\frac{\sigma}{\sqrt{2\pi}} (y - \mu) e^{-\frac{(y - \mu)^{2}}{2\sigma^{2}}} \right]_{-\infty}^{\infty} + \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(y - \mu)^{2}}{2\sigma^{2}}} dy$$

$$= \sigma^{2}.$$

Tehát a definícióban szereplő két paraméter az a várható érték és a szórásnégyzet.

Az X eloszlásfüggvénye a következőképpen számolható:

$$F(x) = \mathbf{P}(X \le x)$$

$$= \int_{-\infty}^{x} f_{\mu,\sigma}(y) dy$$

$$= \int_{-\infty}^{(x-\mu)/\sigma} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$

$$= \Phi((x-\mu)/\sigma),$$
(5)

ahol

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} \mathrm{d}y$$

a standard normális eloszlás eloszlásfüggvénye. Ebből a számolásból világos, hogy elég a Φ függvény értékeit ismerni, és ebből tetszőleges paraméterű normális eloszlás eloszlásfüggvénye számolható.

Ugyancsak (5) egyszerű következménye az alábbi állítás.

7.2. Állítás. Ha
$$X \sim N(\mu, \sigma^2)$$
, akkor $(X - \mu)/\sigma \sim N(0, 1)$.

Sőt, ez kicsit általánosabban is igaz: ha $X \sim N(\mu, \sigma^2)$, és a, b valós állandók, $a \neq 0$, akkor $aX + b \sim N(a\mu + b, a^2\sigma^2)$.

A normális eloszlás nagyon erősen koncentrálódik a várható értéke körül. Valóban, ha $X \sim N(\mu, \sigma^2)$ és $Z \sim N(0, 1)$, akkor

$$\mathbf{P}(|X - \mu| \le \lambda \sigma) = \mathbf{P}(|Z| \le \lambda)$$

$$= \Phi(\lambda) - \Phi(-\lambda)$$

$$= 2\Phi(\lambda) - 1$$

$$= \begin{cases} 0,6827, & \lambda = 1, \\ 0,9545, & \lambda = 2, \\ 0,9973, & \lambda = 3, \\ 0,9999, & \lambda = 4. \end{cases}$$

8. Feltételes várható érték

Legyen X véletlen változó egy $(\Omega, \mathcal{A}, \mathbf{P})$ valószínűségi mezőn, és legyen B egy pozitív valószínűségű esemény. Ekkor X B-re vonatkozó feltételes eloszlásfüggvénye

$$F_B(x) := \mathbf{P}(X \le x | B) = \mathbf{P}_B(X \le x) = \frac{\mathbf{P}(\{X \le x\} \cap B)}{\mathbf{P}(B)}.$$

A feltételes valószínűségi tulajdonságainál láttuk, hogy $\mathbf{P}_B(\cdot)$ valószínűségi mérték (Ω, \mathcal{A}) -n, tehát F_B valóban eloszlásfüggvény.

 ${\rm Ha}~X$ diszkrét, akkor (persze a B-revonatkozó feltételes eloszlása is diszkrét) feltételes várható értéke

$$\mathbf{E}(X|B) = \sum_{i} \mathbf{P}(X = x_i|B)x_i,$$

feltéve, hogy $\sum_i \mathbf{P}(X=x_i|B)|x_i|<\infty$. Ha pedig van olyan f_B sűrűségfüggvény, melyre $F_B(x)=\int_{-\infty}^x f_B(y)\mathrm{d}y$, akkor

$$\mathbf{E}(X|B) = \int_{-\infty}^{\infty} x f_B(x) \mathrm{d}x,$$

feltéve, hogy az integrál jóldefiniált, azaz $\int_{-\infty}^{\infty} |x| f_B(x) dx < \infty$.

8.1. Diszkrét feltétel

Legyenek X, Y diszkrét véletlen változók x_1, x_2, \ldots , és y_1, y_2, \ldots lehetséges értékekkel. A korábbiak szerint

$$\mathbf{P}(X = x_k | Y = y_\ell) = \frac{\mathbf{P}(X = x_k, Y = y_\ell)}{\mathbf{P}(Y = y_\ell)},$$

és

$$\mathbf{E}(X|Y=y_{\ell}) = \sum_{k} \mathbf{P}(X=x_{k}|Y=y_{\ell})x_{k}.$$

Jelölje $\mathbf{E}(X|Y)$ azt az $(\Omega, \mathcal{A}, \mathbf{P})$ valószínűségi mezőn értelmezett véletlen változót, melynek értéke az $\{Y = y_{\ell}\}$ eseményen $\mathbf{E}(X|Y = y_{\ell})$. Formálisan

$$\mathbf{E}(X|Y)(\omega) = \sum_{i} \mathbf{E}(X|Y = y_i)I(Y = y_i),$$

ahol $I(\cdot)$ az indikátorváltozót jelöli. Vegyük észre, hogy $\mathbf{E}(X|Y)$ egy olyan véletlen változó, mely függvénye Y-nak.

8.1. Tétel (Teljes valószínűség és várható érték tétele diszkrét esetben). Legyenek X,Y diszkrét véletlen változók x_1,x_2,\ldots , és y_1,y_2,\ldots lehetséges értékekkel. Ekkor

$$\mathbf{P}(X = x_k) = \sum_{i} \mathbf{P}(X = x_k | Y = y_i) \mathbf{P}(Y = y_i)$$
$$\mathbf{E}(X) = \sum_{i} \mathbf{E}(X | Y = y_i) \mathbf{P}(Y = y_i).$$

Bizonyítás. Az első egyenlőség egy teljes valószínűség tétele az $\{Y=y_i\}$ teljes eseményrendszerrel felírva. A második egyenlőség pedig az első és a definíció következménye:

$$\mathbf{E}(X) = \sum_{k} \mathbf{P}(X = x_k) x_k$$

$$= \sum_{k} \sum_{i} \mathbf{P}(X = x_k | Y = y_i) \mathbf{P}(Y = y_i) x_k$$

$$= \sum_{i} \sum_{k} \mathbf{P}(X = x_k | Y = y_i) \mathbf{P}(Y = y_i) x_k$$

$$= \sum_{i} \mathbf{E}(X | Y = y_i) \mathbf{P}(Y = y_i).$$

8.2. Folytonos feltétel

Legyenek X,Yegyüttesen folytonos véletlen változók hsűrűségfüggvénnyel. Jelölje

 $f_X(x) = \int_{-\infty}^{\infty} h(x, y) dy, \quad f_Y(y) = \int_{-\infty}^{\infty} h(x, y) dx$

Xés Ysűrűségfüggvényét. Ekkor az Xvéletlen változóY-ravonatkozó feltételes sűrűségfüggvénye

$$f_{X|Y}(x|y) = \begin{cases} \frac{h(x,y)}{f_Y(y)}, & \text{ha } f_Y(y) \neq 0, \\ 0, & \text{különben.} \end{cases}$$

Vegyük észre, hogy ha $f_Y(y)>0$, akkor $f_{X|Y}(\cdot|y)$ valóban sűrűségfüggvény. Az X véletlen változó Y-ra vonatkozó feltételes várható értéke

$$\mathbf{E}(X|Y=y) = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx,$$

amennyiben az integrál értelmes.

8.2. Tétel (Teljes valószínűség és várható érték tétele folytonos esetben). Legyenek X,Y együttesen folytonos véletlen változók h sűrűségfüggvénnyel. Ekkor

$$f_X(x) = \int_{-\infty}^{\infty} f_{X|Y}(x|y) f_Y(y) dy$$
$$\mathbf{E}(X) = \int_{-\infty}^{\infty} \mathbf{E}(X|Y=y) f_Y(y) dy.$$

Bizonyítás. Definíció alapján.

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) f_Y(y) dy = \int_{y:f_Y(y)>0} f_{X|Y}(x|y) f_Y(y) dy$$

$$= \int_{y:f_Y(y)>0} \frac{h(x,y)}{f_Y(y)} f_Y(y) dy$$

$$= \int_{y:f_Y(y)>0} h(x,y) dy$$

$$= \int_{-\infty}^{\infty} h(x,y) dy = f_X(x).$$

A teljes várható érték tétele

$$\mathbf{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$= \int_{-\infty}^{\infty} x \left(\int_{-\infty}^{\infty} f_{X|Y}(x|y) f_Y(y) dy \right) dx$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f_{X|Y}(x|y) x dx \right) f_Y(y) dy$$

$$= \int_{-\infty}^{\infty} \mathbf{E}(X|Y=y) f_Y(y) dy.$$

Innen adódik a Bayes-tétel folytonos változata.

8.3. Tétel (Bayes-tétel folytonos változata). Legyenek x, y olyanok, hogy $f_X(x) > 0$, $f_Y(y) > 0$. Ekkor

$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{\int_{-\infty}^{\infty} f_{Y|X}(y|u)f_X(u)du}.$$

Bizonyítás. Hát persze, hiszen az előzőek szerint

$$\frac{h(x,y)}{f_Y(y)} = f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{\int_{-\infty}^{\infty} f_{Y|X}(y|u)f_X(u)du} = \frac{\frac{h(x,y)}{f_X(x)}f_X(x)}{f_Y(y)}.$$

9. Véletlen változók konvergenciája

9.1. Markov és Csebisev egyenlőtlenségei

9.1. Tétel (Markov-egyenlőtlenség). Legyen X egy véletlen változó $(\Omega, \mathcal{A}, \mathbf{P})$ valószínűségi mezőn, melynek véges a várható értéke. Ekkor tetszőleges pozitív c konstansra

$$\mathbf{P}(|X| \ge c) \le \frac{\mathbf{E}(|X|)}{c}.$$

Bizonyítás. Ha X diszkrét x_1, x_2, \ldots lehetséges értékekkel, akkor

$$\mathbf{P}(|X| \ge c) = \sum_{i:|x_i| \ge c} \mathbf{P}(X = x_i) \le \sum_{i:|x_i| \ge c} \frac{|x_i|}{c} \mathbf{P}(X = x_i)$$
$$\le \sum_{i:|x_i| \ge c} \frac{|x_i|}{c} \mathbf{P}(X = x_i) = \frac{\mathbf{E}(|X|)}{c}.$$

Ha X folytonos f sűrűségfüggvénnyel, akkor

$$\mathbf{P}(|X| \ge c) = \int_{|y| \ge c} f(y) dy \le \int_{|y| \ge c} \frac{|y|}{c} f(y) dy$$
$$\le \int_{-\infty}^{\infty} \frac{|y|}{c} f(y) dy = \frac{\mathbf{E}(|X|)}{c}.$$

A Markov-egyenlőtlenség egyszerű alkalmazásával adódik a

9.2. Tétel (Csebisev-egyenlőtlenség). Legyen X egy véletlen változó $(\Omega, \mathcal{A}, \mathbf{P})$ valószínűségi mezőn, melynek véges a szórása. Ekkor tetszőleges pozitív c konstansra

$$\mathbf{P}(|X - \mathbf{E}(X)| \ge c) \le \frac{\mathbf{D}^2(X)}{c^2}.$$

Bizonyítás. A Markov-egyenlőtlenség szerint

$$\mathbf{P}(|X - \mathbf{E}(X)| \ge c) = \mathbf{P}((X - \mathbf{E}(X))^2 \ge c^2) \le \frac{\mathbf{D}^2(X)}{c^2}.$$

9.2. Nagy számok gyenge törvénye

9.3. Tétel (Csebisev-féle nagy számok gyenge törvénye). Legyenek X_1, X_2, \ldots páronként független, véges szórású véletlen változók, melyek közös várható értéke μ és szórásnégyzete σ^2 . Ekkor tetszőleges $\varepsilon > 0$ esetén

$$\lim_{n \to \infty} \mathbf{P}\left(\left| \frac{X_1 + \ldots + X_n}{n} - \mu \right| > \varepsilon \right) = 0.$$

Bizonyítás. A páronkénti függetlenség miatt

$$\mathbf{D}^2(X_1 + \ldots + X_n) = n\sigma^2.$$

A Csebisev-egyenlőtlenséget az $X = X_1 + \ldots + X_n$ változóra fölírva kapjuk, hogy

$$\mathbf{P}\left(\left|\frac{X_1 + \ldots + X_n}{n} - \mu\right| > \varepsilon\right) \le \frac{\mathbf{D}^2(X_1 + \ldots + X_n)}{n^2 \varepsilon^2}$$

$$\le \frac{\sigma^2}{n\varepsilon^2},$$

ami tart 0-hoz.

A bizonyításból látjuk, hogy a páronkénti függetlenség helyett elég korrelálatlanságot feltenni.

Speciális esetként adódik a

9.4. Tétel (Bernoulli-féle nagy számok gyenge törvénye (1713)). Jelölje S_n egy p valószínűségű A esemény bekövetkezéseinek a számát egy kísérlet n független ismétlése során. Ekkor tetszőleges $\varepsilon > 0$ esetén

$$\lim_{n \to \infty} \mathbf{P}\left(\left| \frac{S_n}{n} - p \right| > \varepsilon \right) = 0.$$

A tétel szerint a relatív gyakoriságok a fenti értelemben konvergálnak az igazi valószínűséghez. Mivel a valószínűség definícióját a relatív gyakoriságok tulajdonságai motiválták (additivitás), ezért a fenti tétel szerint a valószínűség tényleg az, amit akarunk.

A fenti tételekben szereplő konvergencia a sztochasztikus konvergencia, melynek általános definíciója a következő.

9.5. Definíció. Az $(X_n)_{n\in\mathbb{N}}$ véletlen változók sorozata sztochasztikusan konvergál X-hez, ha minden $\varepsilon > 0$ esetén

$$\lim_{n\to\infty} \mathbf{P}\left(|X_n - X| > \varepsilon\right) = 0.$$

A fenti tételekben szereplő gyenge jelző arra utal, hogy a konvergencia sztochasztikusan teljesül. Erős konvergenciáról akkor beszélünk, ha a véletlen változók majdnem biztosan konvergálnak. Pontosabban, az $(X_n)_{n\in\mathbb{N}}$ véletlen változók sorozata majdnem biztosan, vagy 1 valószínűséggel konvergál X-hez, ha

$$\mathbf{P}\left(\left\{\omega: \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = \mathbf{P}(\lim_{n \to \infty} X_n = X) = 1.$$

Itt persze már az is magyarázatra szorul, hogy az $\{\omega: \lim_{n\to\infty} X_n(\omega) = X(\omega)\}$ halmaz valóban esemény, azaz eleme a megfelelő σ -algebrának. Ez a σ -algebra tulajdonságaiból következik. Erre részletesebben nem térünk ki.

9.3. Borel-Cantelli-lemmák

Legyenek $A_1, A_2, \ldots \in \mathcal{A}$ események. Legyen $\limsup_{n \to \infty} A_n$ az az esemény, hogy az A_1, A_2, \ldots események közül végtelen sok bekövetkezik, az pontosan azon ω kimenetelek halmaza, melyre $\omega \in A_i$ végtelen sok *i*-re, azaz

$$\limsup_{n\to\infty} A_n := \{A_i \text{ végtelen sok } i\text{-re bekövetkezik}\}$$
$$= \{\omega: \ \omega \in A_i \text{ végtelen sok } i\text{-re }\} = \cap_{n=1}^{\infty} \cup_{i=n}^{\infty} A_i.$$

Az előállításból világos, hogy $\limsup_{n\to\infty}A_n$ esemény.

Hasonlóan, $\liminf_{n\to\infty}A_n$ az az esemény, melyre az A_1,A_2,\ldots események közül véges sok kivételével mind bekövetkezik, azaz

$$\liminf_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \cap_{i=n}^{\infty} A_i.$$

Nyilván $\liminf A_n \subset \limsup A_n$.

9.6. Tétel (I. Borel–Cantelli-lemma). Legyenek A_1, A_2, \ldots olyan események, melyekre

$$\sum_{i=1}^{\infty} \mathbf{P}(A_i) < \infty.$$

Ekkor 1 valószínűséggel az A_1, A_2, \ldots események közül csak véges sok következik be, azaz

$$\mathbf{P}(\limsup_{n\to\infty} A_n) = 0.$$

Bizonyítás. Legyen

$$X = \sum_{i=1}^{\infty} \mathbf{I}(A_i).$$

Ez értelmes (lehet végtelen is!), hiszen minden összeadandó nemnegatív. Nyilván $X(\omega) = \infty$ pontosan akkor teljesül, ha ω végtelen sok A_i eseménynek eleme, vagyis ω kimenetel esetén végtelen sok A_i esemény következik be. A feltétel szerint

$$\mathbf{E}(X) = \sum_{i=1}^{\infty} \mathbf{P}(A_i) < \infty,$$

amiből persze következik, hogy $X < \infty$ egy valószínűséggel.

A lemma megfordításához kell (valamennyi) függetlenség.

9.7. Tétel (II. Borel–Cantelli-lemma). Legyenek A_1, A_2, \ldots független események, melyekre

$$\sum_{i=1}^{\infty} \mathbf{P}(A_i) = \infty.$$

Ekkor 1 valószínűséggel az A_1, A_2, \ldots események közül végtelen sok bekövetkezik, azaz

$$\mathbf{P}(\limsup_{n\to\infty} A_n) = 1.$$

Bizonyítás. A valószínűség tulajdonságai szerint, tetszőleges N indexre

$$\mathbf{P}((\limsup A_n)^c) = \mathbf{P}(\bigcup_{n=1}^{\infty} \cap_{i=n}^{\infty} A_i^c) \le \mathbf{P}(\bigcap_{i=N}^{\infty} A_i^c)$$
$$= \prod_{i=N}^{\infty} [1 - \mathbf{P}(A_i)] \le \exp\left\{-\sum_{i=N}^{\infty} \mathbf{P}(A_i)\right\}$$

A feltétel szerint $N \to \infty$ esetén az exponens $-\infty$ -be konvergál, amiből az állítás következik.

9.4. Nagy számok erős törvénye

Az I. Borel–Cantelli-lemma segítségével erős törvényt is igazolhatunk.

9.8. Tétel (Nagy számok erős törvénye). Legyenek X, X_1, \ldots független, azonos eloszlású véletlen változók, véges második momentummal. Ekkor

$$\lim_{n \to \infty} \frac{S_n}{n} = \mathbf{E}(X) \quad majdnem \ biztosan.$$

Bizonyítás. Feltehető, hogy a változók nemnegatívak, hiszen az $X=X^+-X^-$ felbontásból következik az állítás általános esetben. Legyen $\varepsilon>0$ tetszőleges. A Csebisev-egyenlőtlenség szerint

$$\mathbf{P}\left(\frac{|S_{k^2} - k^2 \mathbf{E}(X)|}{k^2} > \varepsilon\right) \le \frac{k^2 \mathbf{D}^2(X)}{k^4 \varepsilon^2} = k^{-2} \frac{\mathbf{D}^2(X)}{\varepsilon^2}.$$

Az I. Borel–Cantelli-lemma szerint a $|S_{k^2} - k^2 \mathbf{E}(X)| > k^2 \varepsilon$ események közül 1 valószínűséggel véges sok következik be. Mivel $\varepsilon > 0$ tetszőleges, kapjuk, hogy

$$\frac{S_{k^2}}{k^2} \to \mathbf{E}(X)$$
 majdnem biztosan.

Legyen $k^2 \le n \le (k+1)^2$. A nemnegativitás miatt

$$\frac{S_{k^2}}{(k+1)^2} \le \frac{S_n}{n} \le \frac{S_{(k+1)^2}}{k^2},$$

ahol a bal és jobb oldal is konvergál $\mathbf{E}(X)$ -hez, amint $k \to \infty$.

A várható érték létezése elegendő, nem kell második momentum.

9.9. Tétel (Nagy számok Etemadi-féle erős törvénye (1981)). Legyenek X, X_1, X_2, \ldots páronként független, azonos eloszlású véletlen változók, véges $\mathbf{E}(X)$ várható értékkel. Ekkor

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{n} = \mathbf{E}(X) \quad majdnem \ biztosan.$$

9.5. Centrális határeloszlás-tétel

A nagy számok törvénye azt állítja, hogy független, azonos eloszlású véletlen változók átlagai közel vannak a várható értékhez. Az alábbiakban ezt a közelséget tesszük precízzé.

9.10. Tétel (Centrális határeloszlás-tétel). Legyenek X, X_1, X_2, \ldots független, azonos eloszlású véletlen változók közös $\mathbf{E}(X) = \mu$ várható értékkel, és véges $\mathbf{D}(X) = \sigma$ szórással. Ekkor tetszőleges $x \in \mathbb{R}$ esetén

$$\lim_{n \to \infty} \mathbf{P}\left(\frac{\sum_{i=1}^{n} (X_i - \mu)}{\sqrt{n}\sigma} \le x\right) = \Phi(x),$$

ahol

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} \mathrm{d}y$$

a standard normális eloszlás eloszlásfüggvénye.

A tétel bizonyítása már komolyabb eszközökkel, a karakterisztikus függvények módszerével történik.

A tétel indikátorváltókra vonatkozó speciális esete a

9.11. Tétel (de Moivre-Laplace tétel). Jelölje S_n egy p valószínűségű A esemény bekövetkezéseinek a számát egy kísérlet n független ismétlése során. Ekkor tetszőleges $x \in \mathbb{R}$ esetén

$$\lim_{n \to \infty} \mathbf{P}\left(\frac{S_n - np}{\sqrt{np(1-p)}} \le x\right) = \Phi(x).$$

Valóban, korábban láttuk, hogy a p-paraméterű Bernoulli-eloszlás várható értéke p és szórása $\sqrt{p(1-p)}$. A speciális eset bizonyítása a binomiális együtthatók pontos aszimptotikájának meghatározásával történhet.

9.12. P'elda. A kakucsretyegei polgármesterválasztáson két jelölt van: A és B. Kakucsretyege 40000 szavazója egymástól függetlenül, 1/2-1/2 valószínűséggel szavaz a két jelölt egyikére. A feszült politikai helyzet miatt a szavazatok újraszámlálását rendelik el, ha a két jelöltre leadott szavazatok száma között legfeljebb 100 a különbség. Mi a valószínűsége, hogy újraszámlálásra kerül sor?

Ekkor tehát n=40000, $p=\mathbf{P}(\text{A-ra szavaz valaki})=1/2$. Legyen S_n az A-ra szavazók száma, ekkor $n-S_n$ a B-re szavazók száma. A kérdés

 $\mathbf{P}(|S_n - (n - S_n)| \le 100)$. A CHT-ban előforduló mennyiségek np = 20000 és $\sqrt{np(1-p)} = 100$. Így a CHT szerint

$$\mathbf{P}(|S_n - (n - S_n)| \le 100) = \mathbf{P}(-100 \le 2S_n - n \le 100)$$

$$= \mathbf{P}\left(-0, 5 \le \frac{S_n - np}{\sqrt{npq}} \le 0, 5\right)$$

$$\approx \Phi(0, 5) - \Phi(-0, 5)$$

$$= 2\Phi(0, 5) - 1 \approx 0, 38.$$

Galton deszkája. Sir Francis Galton (1822–1911): polihisztor, Darwin unokatestvére. A centrális határeloszlás szemléltetése. Az első sorban 1 ék van, alatta 2, ..., az n-edik sorban n. Az n-edik éksor alatt van n+1 tartály, 0-tól n-ig sorszámozva. Egy golyót elindítunk az első éknél, és a golyót minden ék 1/2-1/2 valószínűséggel téríti el jobbra vagy balra. Annak a valószínűsége, hogy a golyó a k-adik tartályban landol = $\frac{1}{2^n}$ · azon útvonalak száma, ahol a golyó k-szor megy jobbra és (n-k)-szor balra = $\frac{1}{2^n}\binom{n}{k}$. Másként, ha S_n a golyó jobbra eltérítéseinek száma, akkor S_n binomiális eloszlású (n,1/2) paraméterekkel. Ha sok golyót engedünk le, akkor a haranggörbe rajzolódik ki a tartályokban.

10. Konvolúció

A konvolúciós formulák független véletlen változók összegének eloszlását adják meg.

10.1. Diszkrét eset

Legyenek X,Y független diszkrét véletlen változók x_1,x_2,\ldots , és y_1,y_2,\ldots lehetséges értékekkel. Ekkor Z=X+Y véletlen változó is diszkrét, lehetséges értékei $\{z_1,z_2,\ldots\}=\{x_i+y_j:i,j\in\mathbb{N}\}$. Továbbá, Z eloszlása

$$\mathbf{P}(Z=z) = \mathbf{P}(X+Y=z)$$

$$= \sum_{i} \mathbf{P}(X=x_{i}, Y=z-x_{i})$$

$$= \sum_{i} \mathbf{P}(X=x_{i}) \mathbf{P}(Y=z-x_{i}).$$

Speciálisan, ha X,Y nemnegatív egész értékűek, akkor X+Y is nemnegatív egész értékű, és

$$\mathbf{P}(X+Y=n) = \sum_{k=0}^{n} \mathbf{P}(X=k)\mathbf{P}(Y=n-k).$$

Z valószínűségeloszlás
ok konvolúciójának nevezzük.

10.1. Példa. Legyenek X és Y független Poisson eloszlású véletlen változók λ ill. μ paraméterrel. Ekkor $Z = X + Y \sim \text{Poisson}(\lambda + \mu)$. Valóban,

$$\mathbf{P}(Z=n) = \sum_{k=0}^{n} \mathbf{P}(X=k)\mathbf{P}(Y=n-k)$$

$$= \sum_{k=0}^{n} \frac{\lambda^{k}}{k!} e^{-\lambda} \frac{\mu^{n-k}}{(n-k)!} e^{-\mu}$$

$$= e^{-(\lambda+\mu)} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} \lambda^{k} \mu^{n-k}$$

$$= \frac{(\lambda+\mu)^{n}}{n!} e^{-(\lambda+\mu)}.$$

10.2. Folytonos eset

10.2. Állítás. Legyenek X és Y független, folytonos véletlen változók f és g sűrűségfüggvénnyel. Ekkor Z=X+Y folytonos véletlen változó, melynek sűrűségfüggvénye

$$h(x) = \int_{-\infty}^{\infty} f(x - y)g(y)dy = \int_{-\infty}^{\infty} f(y)g(x - y)dy.$$

A h függvény az f és g konvolúciója.

Bizonyítás. Mivel X és Y függetlenek, ezért az (X,Y) véletlen vektorváltozó sűrűségfüggvénye f(x)g(y). Legyen $A_z = \{(x,y) : x+y \le z\}$. Ekkor

$$\mathbf{P}(Z \le z) = \mathbf{P}((X, Y) \in A_z)$$

$$= \int \int_{A_z} f(x)g(y) dx dy$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{z-x} f(x)g(y) dy \right) dx$$

$$= \int_{-\infty}^{\infty} f(x) \int_{-\infty}^{z} g(u-x) du dx$$

$$= \int_{-\infty}^{z} \left(\int_{-\infty}^{\infty} f(x)g(u-x) dx \right) du.$$

A sűrűségfüggvény definíciójából következik az állítás.

10.3. Példa. Legyenek X_1,X_2,\ldots független exponenciális véletlen változók λ paraméterrel. Ekkor $X_1+X_2+\ldots+X_n,\,n\geq 1,$ sűrűségfüggvénye

$$h_n(x) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x}, \quad x \ge 0.$$

Ezt az eloszlást (n, λ) paraméterű gamma eloszlásnak nevezik.

Az állítás nyilván igaz n=1 esetén. Teljes indukcióval bizonyítunk. Tegyük fel, hogy a formula teljesül n-re. Mivel $X_1+\ldots+X_n$ és X_{n+1} függetlenek, ezért használhatjuk a konvolúciós formulát. Eszerint

$$h_{n+1}(x) = \int_{-\infty}^{\infty} h_1(x - y) h_n(y) dy$$

$$= \int_0^x \lambda e^{-\lambda(x-y)} \frac{\lambda^n}{(n-1)!} y^{n-1} e^{-\lambda y} dy$$

$$= \frac{\lambda^{n+1}}{(n-1)!} e^{-\lambda x} \int_0^x y^{n-1} dy$$

$$= \frac{\lambda^{n+1}}{n!} x^n e^{-\lambda x},$$

ami éppen a bizonyítandó formula n+1 esetén.

11. A valószínűségi módszer

11.1. Weierstrass approximációtétele

Most a Csebisev-egyenlőtlenség analízisbeli alkalmazására adunk egy szép példát. Weierstrass approximációtétele szerint a polinomok szuprémum normában sűrűn vannak a zárt intervallumon folytonos függvények terében. Az alábbiakban erre adunk egy konstruktív bizonyítást. Legyen f folytonos függvény a [0,1] intervallumon. A hozzátartozó n-edik Bernstein-polinom $B_n(f)(x) = \sum_{k=0}^n f(k/n) \binom{n}{k} x^k (1-x)^{n-k}$. Ekkor $B_n(f)$ egyenletesen konvergál az f függvényhez, azaz

$$\lim_{n \to \infty} \sup_{x \in [0,1]} |B_n(f)(x) - f(x)| = 0.$$

Ennek igazolásához vegyük észre, hogy $B_n(f)(x) = \mathbf{E}f(S_n/n)$, ahol $S_n = X_1 + \ldots + X_n$, és X_1, \ldots, X_n független azonos eloszlású Bernoulli(x) véletlen változók (azaz $\mathbf{P}(X_1 = 1) = x = 1 - \mathbf{P}(X_1 = 0)$). A Csebisev-egyenlőtlenség szerint $\mathbf{P}(|S_n/n - x| > c) \leq \mathbf{D}^2(S_n)/(n^2c^2) = x(1-x)/(nc^2)$. Legyen $\varepsilon > 0$

rögzített. Mivel folytonos függvény zárt intervallumon egyenletesen folytonos, ezért létezik olyan $\delta=\delta(\varepsilon)>0$, hogy $|u-v|\leq \delta$ esetén $|f(u)-f(v)|\leq \varepsilon$. Így

$$|f(x) - B_n(f)(x)| = |\mathbf{E} [f(x) - f(S_n/n)]| \le 2M\mathbf{P}(|S_n/n - x| > \delta) + \varepsilon$$

$$\le 2M\frac{\mathbf{D}^2(S_n)}{n^2\delta^2} + \varepsilon \le \frac{2Mx(1-x)}{n\delta^2} + \varepsilon,$$

ahol M az |f| maximuma a [0,1] intervallumon. A kapott becslés x-ben egyenletes, ezért az állítást beláttuk.

11.2. Ramsey számok

Adott $k \in \mathbb{N}$ esetén jelölje R(k) a legkisebb olyan n számot, melyre igaz, hogy egy n csúcsú teljes gráf (K_n) éleit tetszőleges módon pirossal és kékkel színezve a gráfban találhatunk egyszínű teljes k csúcsú részgráfot.

Megmutatjuk, hogy $R(k) \leq 2^{2k}$. Ehhez nem lesz szükség véletlenre. Tekintsük egy $n=2^{2k}$ csúcsú teljes gráf egy tetszőleges színezését. A következőkben megadunk egy egyszínű K_k -t. Legyen x_1 egy tetszőleges csúcs. Neki $2^{2k}-1$ szomszédja van, ezért a skatulya elv szerint van legalább 2^{2k-1} olyan szomszédja, akivel ugyanolyan színű éllel van összekötve. Jelölje A_2 ezen szomszédok halmazát. Most válasszunk egy tetszőleges $x_2 \in A_2$ csúcsot. Az A_2 halmazban neki legalább $2^{2k-1}-1$ szomszédja van, ezért skatulya elv szerint van legalább 2^{2k-2} olyan szomszédja, akivel ugyanolyan színű éllel van összekötve (ez a szín persze nem biztos, hogy ugyanolyan, mint ami a x_1x_2 él színe). Ezt folytatva, kapunk egy $\{x_1, x_2, \ldots, x_{2k}\}$ sorozatot, melyre az teljesül, hogy az x_ix_j , i < j, él színe csak i-től függ. Ismét a skatulya elv szerint van k olyan csúcs, melyekre ez a szín azonos. Találtunk egy egyszínű K_k -t.

Most belátjuk, hogy $R(k) \geq 2^{k/2}$. A bizonyítás Erdős Páltól származik 1947-ből. Vegyünk egy n csúcsú teljes gráfot és színezzük ki az éleit egymástól függetlenül 1/2-1/2 valószínűséggel pirosra vagy kékre. Azaz minden egyes élre földobunk egy érmét. Annak a valószínűsége, hogy r"ogz'itett $\{x_1,\ldots,x_k\}$ csúcsok által meghatározott gráf egyszínű K_k az $2\cdot 2^{-\binom{k}{2}}$, hiszen vagy minden él piros, vagy minden él kék, és pontosan $\binom{k}{2}$ él van. Tehát annak a valószínűsége, hogy lesz egyszínű K_k legfeljebb $\binom{n}{k} 2^{1-\binom{k}{2}}$. Némi számolással kapjuk, hogy ha $n \leq 2^{k/2}$, akkor ez az érték kisebb, mint 1. Valóban,

$$\binom{n}{k} 2^{1 - \binom{k}{2}} \le \frac{n^k}{k!} 2^{1 + \frac{k}{2} - \frac{k^2}{2}} \le \frac{2^{1 + k/2}}{k!} \ll 1.$$

Azaz, pozitív valószínűséggel nem lesz egyszínű K_k , ami éppen azt jelenti, hogy van olyan színezés, amiben nincs egyszínű K_k . Így $R(k) \geq 2^{k/2}$.

Ez a bizonyítás nem ad meg egy explicit színezést, amiben nincs monokromatikus K_k . A k=20 esetben $n=2^{10}=1024$, és annak a valószínűsége, hogy egy véletlen színezés nem tartalmaz egyszínű K_{20} -at, a fenti becslés szerint kisebb mint

$$\frac{2^{11}}{20!} \approx 8 \cdot 10^{-16}.$$

Ez azt jelenti, hogy a véletlen színezés biztos jó lesz. Összehasonlításképp, annak a valószínűsége, hogy egy szelvénnyel játszva két egymás utáni héten telitalálatunk lesz az ötöslottón

$$\frac{1}{\binom{90}{5}} \cdot \frac{1}{\binom{90}{5}} \approx 5 \cdot 10^{-16}.$$

12. Generátorfüggvények

A következőkben kizárólag nemnegatív egész értékű véletlen változókkal foglalkozunk.

 ${\bf 12.1.}$ Definíció. Az X nemnegatív egész értékű véletlen változó generátorfüggvénye

$$g(s) = \mathbf{E}(s^X) = \sum_{n=0}^{\infty} \mathbf{P}(X=n)s^n = \sum_{n=0}^{\infty} p_n s^n.$$

A generátorfüggvény egy végtelen hatványsor, melynek a konvergenciasugara legalább 1, hiszen $p_n \leq 1$. Tehát a függvény folytonos (-1,1)-en. Megjegyezzük, hogy a konvergenciasugár lehet éppen 1.

- **12.2.** Állítás. Legyenek X és Y függetlenek g_1, g_2 generátorfüggvénnyel.
 - (i) A generátorfüggvény egyértelműen meghatározza az eloszlást.
 - (ii) g folytonos [-1, 1] en, 'es g(1) = 1.
- (iii) $\mathbf{E}(X) = g'(1)$ (pontosabban $\lim_{s \to 1^-} g'(s)$).
- (iv) $\mathbf{D}^2(X) = g''(1) + g'(1) (g'(1))^2$, feltéve, hogy $\mathbf{E}(X^2) < \infty$.
- (v) Az X + Y generátorfüggvénye $\mathbf{E}(s^{X+Y}) = g_1(s)g_2(s)$.

Bizonyítás. (i) Hát persze, hiszen $p_n = \frac{g^{(n)}}{n!}$.

- (ii) Következik abból, hogy $\sum_{n=0}^{\infty} p_n = 1$.
- (iii) Hatványsor a konvergenciaintervallumán belül tagonként deriválható, ezért

$$g'(s) = \sum_{n=1}^{\infty} n p_n s^{n-1} \to \sum_{n=1}^{\infty} n p_n = \mathbf{E}(X)$$

amint $s \to 1-$. Itt lehet $\mathbf{E}(X) = \infty$.

(iv) Az előzőhöz hasonlóan

$$g''(1) = \sum_{n=1}^{\infty} n(n-1)p_n = \mathbf{E}(X^2) - \mathbf{E}(X).$$

(v) Mivel X és Y függetlenek, ezért

$$\mathbf{E}(s^{X+Y}) = \mathbf{E}(s^X s^Y) = \mathbf{E}(s^X) \mathbf{E}(s^Y).$$

12.3. Példa. 1. Legyen $I \sim \text{Bernoulli}(p)$. Ekkor

$$\mathbf{E}(s^I) = 1 - p + ps, \quad s \in \mathbb{R}.$$

2. Legyenek I_1, \ldots, I_n független Bernoulli(p) véletlen változók. Ekkor $S_n = \sum_{k=1}^n I_k \sim$ Binomiális(n,p). Így az előző állítás szerint

$$\mathbf{E}(s^{S_n}) = \prod_{k=1}^n \mathbf{E}(s^{I_k}) = (1 - p + ps)^n.$$

3. Legyen $X \sim \text{Poisson}(\lambda)$. Ekkor

$$\mathbf{E}s^X = \sum_{n=0}^{\infty} s^n \frac{\lambda^n}{n!} e^{-\lambda} = e^{-\lambda(1-s)}.$$

4. Legyen $X \sim \text{Geometriai}(p)$. Ekkor

$$\mathbf{E}s^{X} = \sum_{n=1}^{\infty} s^{n} p(1-p)^{n-1} = \frac{sp}{1 - (1-p)s}.$$

Láttuk, hogy független Poisson-eloszlású véletlen változók összege Poisson. Ezt megkaphatjuk a 12.2 Állítás következményeként. Valóban, ha X és Y független, Poisson-eloszlású véletlen változók λ és μ paraméterekkel, akkor

$$\mathbf{E}s^{X+Y} = \mathbf{E}s^X \mathbf{E}s^Y = e^{-(\lambda+\mu)(1-s)}.$$

ami éppen a $\lambda + \mu$ paraméterű Poisson-eloszlás generátorfüggvénye. Az egyértelműségi tétel szerint $X + Y \sim \text{Poisson}(\lambda + \mu)$.

A következő tétel rávilágít a generátorfüggvények igazi hasznára.

12.4. Tétel (Folytonossági tétel). Legyen (X_n) nemnegatív egészértékű véletlen változók sorozata, és legyen g_n az X_n generátorfüggvénye. Ekkor a következők ekvivalensek:

- (i) $\lim_{n\to\infty} \mathbf{P}(X_n = k) = p_k$ létezik minden $k \ge 0$ esetén.
- (ii) $\lim_{n\to\infty} g_n(s) = g(s)$ létezik minden $s \in (0,1)$ esetén. Továbbá, $g(s) = \sum_{k=0}^{\infty} p_k s^k$.

Vigyázat, (p_k) nem feltétlenül valószínűségeloszlás. Valóban, legyen például $X_n \equiv n$. Ekkor persze teljesül (i) és (ii) a $p_k \equiv 0$, $g(s) \equiv 0$, $s \in (0,1)$ határértékekkel. Vagyis a tömeg kiszaladhat a végtelenbe.

12.5. Tétel (Poisson konvergenciatétel). Legyenek $(X_{1n}, X_{2n}, \ldots, X_{nn})_n$ független véletlen változókból álló vektorok, ahol $X_{in} \sim Bernoulli(p_{in})$. Tegyük föl, hogy $\max_{1 \leq i \leq n} p_{in} \to 0$ amint $n \to \infty$, és $\sum_{i=1}^{n} p_{in} = \lambda$. Ekkor S_n határeloszlása λ paraméterű Poisson-eloszlás, azaz tetszőleges $k = 0, 1, \ldots$ esetén

$$\lim_{n \to \infty} \mathbf{P}(S_n = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Bizonyítás. A függetlenség miatt

$$\mathbf{E}s^{S_n} = \prod_{i=1}^n \mathbf{E}s^{X_{in}}$$

$$= \prod_{i=1}^n (1 - p_{in}(1 - s))$$

$$= \exp\left\{\sum_{i=1}^n \log(1 - p_{in}(1 - s))\right\}$$

$$= \exp\left\{-\sum_{i=1}^n (p_{in}(1 - s)) + o(p_{in})\right\}$$

$$= \exp\left\{-\lambda(1 - s) + o(\lambda)\right\}.$$

A folytonossági tételből következik az állítás.