Artem Ryzhikov

Autoencoders

2021

Principal component analysis (PCA)

Principal component analysis (PCA)

Goal: fit transformation X' = AX, where $X \in \mathbb{R}^n, X' \in \mathbb{R}^k$, n is original dimension, $k \le n$ is a number of principal components, $A \in \mathbb{R}^{k \times n}$ is linear transformation matrix to basis of principal components

original data space

PCA. Pros and cons.

Advantages:

- Optimal low-rank approximation in terms of squared loss
- New features (principal components) are uncorrelated
- Importance (eigenvalues) of that new features is automatically obtained
- Only the most principal ones can be taken to reduce dimensionality without significant losses

Disadvantages:

- PCA corresponds to linear transformation only
- ▶ Computationally expensive and non-scalable. Time complexity is $O(nm^2)$ for matrix $X \in \mathbb{R}^{m \times n}$ where $m \le n$

Artem Ryzhikov Autoencoders 4 / 23

Autoencoder

Autoencoder. Idea

Artem Ryzhikov Autoencoders 6 / 23

Autoencoder vs. PCA

Linear vs nonlinear dimensionality reduction

PCA:

 $X' = AX|A \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{n}, X' \in \mathbb{R}^{k}$ Autoencoder:

 $X' = \text{Encoder}(X|\theta)|X \in \mathbb{R}^n, X' \in \mathbb{R}^k$ $\hat{X} = \text{Decoder}(X'|\phi)|\hat{X} \in \mathbb{R}^n, X' \in \mathbb{R}^k$ \hat{X} - reconstructed object, θ and ϕ are Encoder and Decoder parameters respectively.

Autoencoder (AE)

Train: minimize reconstruction loss between original and reconstructed objects: $\min_{\theta,\phi} \mathcal{L}(X,\hat{X})$, where X is original object, \hat{X} is reconstructed ("uncompressed") object, $\mathcal{L}(\cdot,\cdot)$ is reconstruction loss, θ and ϕ are Encoder and Decoder parameters respectively

Figure: https://arnoldkokoroko.com/projects/imagecompress/

Autoencoder. Example (MNIST)

Autoencoder. Physics example

M. Farina et al., "Searching for New Physics with Deep Autoencoders"

Figure 3: Each panel represents the average of 100k jet images. Pixel intensity corresponds to the total p_T in each pixel. Upper row: original sample. Middle row: after reconstruction. Lower row: pixel-wise squared error. Left column: QCD jets. Middle column: top jets. Right column: \tilde{g} jets.

Sparse autoencoders

Sparse autoencoder

Problem Usually compressed data from autoencoder is still redundant. We need to force autoencoder to use sparsified hidden representation of data

Figure: https://www.jeremyjordan.me/autoencoders/

Sparse autoencoder. Regularization

- Autoencoder: $\min_{\theta,\phi} \mathcal{L}(X,\hat{X})$
- Sparse autoencoder:

$$\min_{\theta,\phi}[\mathcal{L}(\mathsf{X},\hat{\mathsf{X}}) + \mathsf{regularization}(\theta)]$$

Two kinds of regularization in Sparse Autoencoder:

▶ L1-regularization:
$$\mathcal{L}\left(X,\hat{X}\right) + \lambda \sum_{i} \left|a_{i}^{(h)}\right|$$

▶ KL divergence with Bernoulli distribution:

$$\mathcal{L}\left(\mathsf{X},\hat{\mathsf{X}}\right) + \sum_{\mathsf{j}} \mathsf{KL}\left(
ho||\hat{
ho}_{\mathsf{j}}\right)$$

Denoising autoencoder

Denoising autoencoder (DAE)

Problem Usually compressed data from autoencoder is still redundant (which leads to overfitting). We need to force AE to use sparsified hidden representation of data

Idea: corrupt input to prevent autoencoder from overfitting

Artem Ryzhikov Autoencoders 15 / 23

Variational Autoencoder

Variational Autoencoder (recap). Motivation

Figure: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Artem Ryzhikov Autoencoders 17 / 23

Variational Autoencoder (recap). Idea

- Autoencoder: $\hat{X} = Decoder(Encoder(X|\theta)|\phi)$
- ▶ Variational autoencoder: $\hat{X} = Decoder(Z|\phi)$, where $Z \sim q(Z|X,\theta) = Encoder(X|\theta)$

Problem: how to fit θ and ϕ ?

$$\begin{split} \log[\Pr(\mathbf{X}|\boldsymbol{\phi})] &= \log[\int \Pr(\mathbf{X},\mathbf{Z}|\boldsymbol{\phi}) d\mathbf{Z}] = \log[\int q(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}) \frac{\Pr(\mathbf{X},\mathbf{Z}|\boldsymbol{\phi})}{q(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})} d\mathbf{Z}] \geq \\ &\geq \int q(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}) \log[\frac{\Pr(\mathbf{X},\mathbf{Z}|\boldsymbol{\phi})}{q(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})}] d\mathbf{Z} = \mathsf{ELBO}(\boldsymbol{\theta},\boldsymbol{\phi}) \end{split}$$

$$\max_{\phi} \log[\mathsf{Pr}(\mathbf{X}|\boldsymbol{\phi})] \to \max_{\theta,\phi} \mathsf{ELBO}(\theta,\phi)$$

ELBO

Figure: https://www.borealisai.com/en/blog/tutorial-5-variational-auto-encoders/

Artem Ryzhikov Autoencoders 19 / 23

ELBO

Figure: https://www.borealisai.com/en/blog/tutorial-5-variational-auto-encoders/

Conditional VAE

CVAE

Figure 1: VAE. Label is not used

Figure 2: Conditional VAE. Label as extra condition is used

Artem Ryzhikov Autoencoders 22 / 23

Thank you for your attention!

Artem Ryzhikov aryzhikov@hse.ru