	Random = uncertain = non-
Date 10/10/24.	determinis
PROBABILTY: - (NOTES	F)
How to determine if a	high corelation
b/w two variables is	statistically significant?
	Is is it geniue
17 Probability can help ansu	ver this question. Frandom
Ly in it we perform	experiments variation.
	to from which we note
	the frequency of our
	outcomes
Probability provides	mathematical tools/models bout incortainity/randonness.
to reason -a	bout incortainity/randonness.
Examples given in slides	,
Sample Space: - All possible ou	teames from a certain experime
(Event:) the description of	an outcome.
E Conion outcome is	possible & which is not?)
This the regult A - 1-111	
In the result of a probability	a subset of a sample space.
Anguest can have the [11 is	20 -12
An event can have the following zero outcome	19 ouscription: -
1 outcome.	depends upon the definition of event.
Several Outcome	définition de event.
All outcome.	
E, UE2 => Either/all event	1 & ourset 2 acces
En Ez =7 common brom a	pont 1 C Emplo
En Ez =7 common from en E,' =7 All except event 1	· GLVENIZ.
EI-EZ => All of EI excep	TE2.

Date				
USING	CO-RELATION	COEFF	TO PREDICT.	
	Predictor.			
(Ý?)P	= $axi + b$.	'a' and	'b' are unknown.	

The error is calculated as
$$0i = y_i^2 - (y_i)^2$$
. Usually we want mean $\{(0)\} = 0$. — (a)

= mean(
$$9y-ax)^2$$
) ->(?)

$$=$$
 mean $({}^{2}(y)^{2} - 2(a)(x^{2}(y)) + a^{2}(x^{2})^{2}$

PROCEDURE OF PREDICTING VALUES USING CORRELATION.

$$x_i = x_i - mean(9xi)$$
, $y_i = y_i - mean(y_i)$
 $step D$ $std(y_i)$ $step D$ $std(y_i)$

correlation coeff =>
$$\frac{N}{1-1}$$
 $(xi)(yi) = x$

ROBABILITY (Self-NOTES)
Calculation of Probability:- outcomes are atomic
Discrite Countablefinite Event. Simplified.)
(ii) Discrete Countable infinite Event!
(iii) Continuous Event
√ Canbe categorized
tossing the coin antil
head.
Tossing con twice.
Sample space = {HH, HT, TH, TT} =74.
E17 Same outcomes arrive =72 No. of outcomes of this event.
P(Ei) = 2 Ansl.
QUESTION
$\binom{12}{2}$ \rightarrow Poholailih, $O \cap A = 1$
14) =7 Probability of Selecting HODs not including from Cs.
(8) morinationing from CS.
. (124)
1 - (18) => Probability of Selecting
19)
8

P(A|B) = P(AnB) P(BnA) = P(BnA) P(B) P(BnA) = P(BnA) P(A).

P(B|A) = P(BnA) P(A) = P(BnA) P(A) = P(BnA).

Theory of total Probability:

A method of calculating probability of an event based on particing the event sample space into disjoint subsets.

p(meat) = p(meat nsoup) + soup > fist p(meathjuice) p(meathjuice) juice

Now By joint Probability formula. Fish

P (meat | soup) x P (soup) + P (meat | soup) x P (juice).