Previous Year Questions 2024

Q1: In flight of 2800 km, an aircraft was slowed down due to bad weather. Its average speed is reduced by 100km/h and by doing so, the time of flight is increased by 30 minutes. Find the original duration of the flight. (CBSE 2024)

Ans:

ATQ

Let the speed of aircraft be x km/hr.

Time taken to cover 2800 km by speed of x km/hr = 2800/x hr:

New speed is (x - 100) km/hr

so time taken to cover 2800 km at the speed of

$$(x - 100) \text{ km/hr} = \frac{2800}{x - 100} \text{ hrs}$$
ATQ $\frac{2800}{x - 100} - \frac{2800}{x} = \frac{1}{2}$

$$\Rightarrow 2800 \left(\frac{x - x + 100}{x(x - 100)} \right) = \frac{1}{2}$$

$$\Rightarrow \frac{100}{x^2 - 100x} = \frac{1}{2 \times 2800}$$
$$\Rightarrow 560000 = x^2 - 100x$$

$$\Rightarrow$$
 560000 = $x^2 - 100x$

$$\Rightarrow x^2 - 100x - 560000 = 0$$

$$\Rightarrow x^2 - 800x + 700x - 560000 = 0$$

$$\Rightarrow x(x - 800) + 700(x - 800) = 0$$

$$\Rightarrow$$
 (x - 800) (x + 700) = 0

$$\Rightarrow$$
 x = 800, - 700 (Neglect)

$$\Rightarrow x = 800$$

Speed = 800 km/hr

= 3 hr 30 min.

Q2: The denominator of a fraction is one more than twice the numerator. If the sum of the fraction and its reciprocal is $2\frac{16}{21}$, find the fraction. (CBSE 2024)

Ans: Let the numerator be x.

Denominator = 2x + 1

Fraction =
$$\frac{x}{2x+1}$$

ATQ, $\frac{x}{2x+1} + \frac{2x+1}{2x+1} = 2\frac{16}{2x}$

Let,
$$y = \frac{x}{2x+1}$$

Then, the equation will be.

$$y + \frac{1}{y} = \frac{36}{21}$$

$$\Rightarrow \frac{y^2 + 1}{y} = \frac{58}{21}$$

$$\Rightarrow 21y^2 + 21 = 58y$$

$$\Rightarrow 21y^2 - 58y + 21 = 0$$

by Er.Monit Nariyan

$$\Rightarrow$$
 21 y^2 - 49 y - 9 y + 21 = 0

$$\Rightarrow$$
 7y(3y - 7) - 3(3y - 7) = 0

$$\Rightarrow$$
 (3y - 7) (7y - 3) = 0

$$y=\frac{7}{3},\frac{3}{7}$$

 \therefore Required fraction will be 7/3 and 3/7.

Previous Year Questions 2023

Q3: Find the sum and product of the roots of the quadratic equation $2x^2 - 9x + 4 = 0$ (CBSE 2023)

Ans: Let α and β be the roots of given quadratic equation $2x^2 - 9x + 4 = 0$.

Sum of roots =
$$\alpha + \beta = -b/a = (-9)/2 = 9/2$$

and Product of roots,
$$\alpha\beta = c/a = 4/2 = 2$$

Q4: Find the value of p, for which one root of the quadratic equation $px^2 - 14x + 8 = 0$ is 6 times the other. (CBSE 2023)

Ans: Let the first root be α , then the second root will be 6a

Sum of roots
$$= -b/a$$

$$\Rightarrow$$
 a = $2/p$

Product of roots = c/a

$$\Rightarrow$$
 6a² = 8/p

$$\Rightarrow 6\left(rac{2}{-}
ight)^2 = rac{8}{-}$$

$$\Rightarrow 6 \times \frac{4}{2} = \frac{8}{3}$$

$$\Rightarrow$$
 p = 6 x 4/8

$$\Rightarrow$$
 p = 3

Hence, the value of p is 3.

Q5: The least positive value of k for which the quadratic equation $2x^2 + kx + 4 = 0$ has rational roots, is (2023)

$$(c) \pm 2$$

Ans: (c)

Sol: Put k = 2,

$$\Rightarrow 2x^2 + 2x - 4 = 0$$

$$\Rightarrow 2x^2 + 4x - 2x - 4 = 0$$

$$\Rightarrow$$
 2x (x + 2) - 2(x + 2) = 0

$$\Rightarrow$$
 x = 1, -2

Put k = -2,

$$\Rightarrow 2x^2 - 2x - 4 = 0$$

$$\Rightarrow 2x^2 - 4x + 2x - 4 = 0$$

$$\Rightarrow$$
 2x (x - 2) + 2 (x - 2) = 0

$$\Rightarrow$$
 x = -1, 2

Hence, to get the rational values of x, that is, to get rational roots, k must be ± 2 .

Q6: Find the discriminant of the quadratic equation $4x^2 - 5 = 0$ and hence comment on the nature of roots of the equation. (CBSE 2023)

Ans: Given quadratic equation is $4x^2 - 5 = 0$

Discriminant, D =
$$b^2$$
 - 4ac = 0^2 - 4(4)(-5) = 80 > 0

Hence, the roots of the given quadratic equation are real and distinct.

Q7: Find the value of 'p' for which the quadratic equation px(x-2) + 6 = 0 has two equal real roots. (2023)

Ans: The given quadratic equation is px(x - 2) + 6 = 0

$$\Rightarrow px^2 - 2xp + 6 = 0$$

On comparing with $ax^2 + bx + c = 0$, we get

$$a = p, b = -2p \text{ and } c = 6$$

Since, the quadratic equations has two equal real roots.

$$\Rightarrow$$
 b² - 4ac = 0

$$\Rightarrow (-2p)^2 - 4 \times p \times 6 = 0$$

$$\Rightarrow 4p^2 - 24p = 0$$

$$\Rightarrow p^2 - 6p = 0$$

$$\Rightarrow$$
 p(p - 6) = 0

$$\Rightarrow$$
 p = 0 or p = 6

But $p \neq 0$ as it does not satisfy equation

Hence, the value of p is 6.

Q8: Case Study: While designing the school year book, a teacher asked the student that the length and width of a particular photo is increased by n units each to double the area of the photo. The original photo is 18 cm long and 12 cm wide.

Based on the above information. answer the following Questions:

- (i) Write an algebraic equation depicting the above information.
- (ii) Write the corresponding quadratic equation in standard form.
- (iii) What should be the new dimensions of the enlarged photo?

OR

Can any rational value of x make the new area equal to 220 cm^2 ?

Ans: Area = $18 \times 12 \text{ cm} = 216 \text{ cm}^2$

Length (I) is increased by x cm

So, new length = (18 + x) cm

New width = (12 + x) cm

(i) Area of photo after increasing the length and width

$$= (18 + x)(12 + x) = 2 \times 18 \times 12$$

i.e., (18 + x)(12 + x) = 432 is the required algebraic equation.

(ii) From part (i) we get, (18 + x)(12 + x) = 432

$$\Rightarrow$$
 216 + 18x + 12x + x^2 = 432

$$\Rightarrow x^2 + 30x - 216 = 0$$

(iii)
$$x^2 + 30x - 216 = 0$$

$$\Rightarrow x^2 + 36x - 6x - 216 = 0$$

$$\Rightarrow x(x+36)-6(x+36)=0 \Rightarrow x=6,-36$$

-36 is not possible.

So, new length =
$$(18 + 6)$$
 cm = 24 cm

New width =
$$(12 + 6)$$
 cm = 18 cm

So. new dimension = 24cm x 18 cm

OR

According to question (18 + x)(12 + x) = 220

$$\Rightarrow$$
 216 + 30x + x^2 = 220

$$\Rightarrow x^2 + 30x + 216 - 220 = 0$$

$$\Rightarrow x^2 + 30x - 4 = 0$$

For rational value of x. discriminant (D) must be perfect square.

So,
$$D = b^2 - 4ac$$

$$=(30)^2-4(1)(-4)=900+16=916$$

∴ 916 is not a perfect square.

So, no rational value of x is possible.

Q9: The roots of the equation $x^2 + 3x - 10 = 0$ are:

To find the roots of the quadratic equation $x^2 + 3x$ 10 = 0, we can use the quadratic formula:

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

For the equation $x^2 + 3x - 10 = 0$:

$$b = 3$$

$$c = -1$$

Substitute these values into the formula:

$$x = \frac{-3 \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot (-10)}}{2 \cdot 1}$$

$$x = \frac{-3 \pm \sqrt{9 + 40}}{2}$$

$$x = \frac{-3 \pm \sqrt{49}}{2}$$

$$x = \frac{-3 \pm 7}{2}$$

Now, calculate the two roots:

(i) For
$$x = 3 + 7/2 = 4/2 = 2$$

(ii) For
$$x = -3 - 7/2 = -10/2 = -5$$

The roots of the equation are 2 and -5.

So, the correct answer is: (a) 2,-5

Previous Year Questions 2022

Q10: If the sum of the roots of the quadratic equation $ky^2 - 11y + (k - 23) = 0$ is 13/21 more than the product of the roots, then find the value of k. (2022)

Ans: Given, quadratic equation is $ky^2 - 11y + (k - 23) = 0$

Let the roots of the above quadratic equation be α and β .

Now, Sum of roots, $\alpha + \beta = -(-11)/k = 11/k ...(i)$

and Product of roots, $\alpha\beta = k-23/k$...(ii)

According to the question,

$$\alpha + \beta = \alpha\beta + 13/21$$

$$\therefore rac{11}{k} = rac{k-23}{k} + rac{13}{21} \,$$
 ...[From equations (i) and (ii)]

$$\Rightarrow \frac{11}{k} - \frac{(k-23)}{k} = \frac{13}{21}$$

$$\Rightarrow \frac{11-k+23}{k} = \frac{13}{21}$$

$$\Rightarrow$$
 21(34 - k) = 13k

$$\Rightarrow$$
 714 = 13k + 21k

$$\Rightarrow$$
 34k = 714

$$\Rightarrow$$
 k = 714/34

$$\Rightarrow$$
 k = 21

Q11: Solve the following quadratic equation for x: $x^2 - 2ax - (4b^2 - a^2) = 0$

Ans:
$$x^2 - 2ax - (4b^2 - a^2) = 0$$

$$\Rightarrow x^2 + (2b - a)x - (2b + a)x - (4b^2 - a^2) = 0$$

$$\Rightarrow$$
 x(x + 2b - a) - (2b + a)(x + 2b - a) = 0

$$\Rightarrow$$
 (x + 2b - a)(x - 2b - a) = 0

$$\Rightarrow$$
 (x + 2b - a) = 0, (x - 2b - a) = 0

$$\therefore x = a - 2b, a + 2b$$

Q12: In the picture given below, one can see a rectangular in-ground swimming pool installed by a family In their backyard. There is a concrete sidewalk around the pool of width x m. The outside edges of the sidewalk measure 7 m and 12 m. The area of the pool is 36 sq. m.

Based on the information given above, form a quadratic equation in terms of x Find the width of the sidewalk around the pool. (2022)

Ans: Given, width of the sidewalk = x m.

Area of the pool = 36 sq.m

- : Inner length of the pool
- = (12 2x)m

Inner width of the pool = (7 - 2x)m

- \therefore Area of the pool. A = I x b
- \Rightarrow 36 = (12 2x) x (7 2x)
- \Rightarrow 36 = 84 24x 14x + 4x²
- $\Rightarrow 4x^2 38x + 48 = 0$
- \Rightarrow 2x² 19x + 24 = 0, is the required quadratic equation.

Area of the pool given by quadratic equation is 2x

- $\Rightarrow 2x^2 16x 3x + 24 = 0$
- \Rightarrow 2x(x 8) 3(x 8) = 0
- \Rightarrow (x 8)(2x 3) = 0
- \Rightarrow x = 8 (not possible) or x = 3/2 = 1.

Width of the sidewalk = 1.5m

Q13: The sum of two numbers is 34. If 3 is subtracted from one number and 2 is added to another. the product of these two numbers becomes 260. Find the numbers. (2022)

Ans: Let one number be x and another number be y.

Since,
$$x + y = 34 \Rightarrow y = 34 - x$$
 (i)

Now. according to the question. (x - 3) (y + 2) = 260(ii)

Putting the value or y from (i) in (ii), we get

$$\Rightarrow$$
 (x - 3)(34 - x + 2) = 260

$$\Rightarrow$$
 (x - 3)(36 - x) = 260

$$\Rightarrow$$
 36x -x² - 108 + 3x = 260

$$\Rightarrow x^2 - 39x + 368 = 0$$

$$\Rightarrow 4x^2 - 23x - 16x + 368 = 0$$

$$\Rightarrow$$
 x(x - 23) - 16(x - 23) = 0

y Li.womit Mariyan

$$\Rightarrow$$
 x(x - 23) - 16(x - 23) = 0

$$\Rightarrow$$
 (x - 23)(x - 16) =0

$$\Rightarrow$$
 x = 23 or 16

Hence; when x = 23 from (i), y = 3 + -23 = 11

When x = 16. then y = 34 - 16 = 18

Hence the required numbers are 23 and 11 or 16 and 18.

Q14: The hypotenuse (in cm) of a right angled triangle is 6 cm more than twice the length of the shortest side. If the length of third side is 6 cm less than thrice the length of shortest side, then find the dimensions of the triangle. (2022)

Ans:

Let $\triangle ABC$ be the right angle triangle, right angled at B, as shown in the figure.

Also, let AB = c cm, BC = a cm and AC = b cm

Then, according to the given information, we have

$$b = 6 + 2a$$
(i) (Let a be the shortest side)

and
$$c = 3a - 6$$
 ...(ii)

We know that,
$$b^2 = c^2 + a^2$$

$$\Rightarrow$$
 $(6 + 2a)^2 = (3a - 6)^2 + a^2$...[Using (i) and (ii)]

$$\Rightarrow$$
 36 + 4a² + 24a = 9a² + 36 - 36a + a²

$$\Rightarrow$$
 60a = 6a²

Now, from equation (i),

$$b = 6 + 2 \times 10 = 26$$

and from equation (ii),

$$c = 3 \times 10 - 6 = 24$$

Thus, the dimensions of the triangle are 10 cm, 24 cm and 26 cm.

Q15: Solve the quadratic equation: $x^2 - 2ax + (a^2 - b^2) = 0$ for x. (2022)

Ans: We have, $x^2 - 2ax + (a^2 - b^2) = 0$

$$\Rightarrow x^2 - ((a + b) + (a - b))x + (a^2 - b^2) = 0$$

$$\Rightarrow x^2 - (a + b)x - (a - b)x + (a + b)(a - b) = 0 \dots [\because a^2 - b^2 = (a + b)(a - b)]$$

$$\Rightarrow x(x - (a + b)) - (a - b)(x - (a + b)) = 0$$

$$\Rightarrow$$
 (x - (a + b))(x - (a - b) = 0

Q16: Find the value of m for which the quadratic equation (m - 1) x^2 + 2 (m - 1) x + 1 = 0 has two real and equal roots. (2022)

Ans: We have

$$(m-1)x^2 + 2(m-1)x + 1 = 0 ----(i)$$

On comparing the given equation with $ax^2 + bx + c = 0$,

we have a = (m - 1), b = 2 (m - 1), c = 1

Discriminant, D = 0

$$\Rightarrow$$
 b² - 4ac = 0 \Rightarrow 4m² + 4 - 8m - 4m + 4 = 0

$$\Rightarrow 4m^2 - 12m + 8 = 0$$

$$\rightarrow m^2 - 3m + 2 = 0 \Rightarrow m^2 - 2m - m + 2 = 0$$

$$\Rightarrow$$
 m(m - 2) - 1 (m - 2) = 0

$$\Rightarrow$$
 (m - 1)(m - 2) = 0 \Rightarrow m = 1, 2

Q17: The quadratic equation $(1 + a^2)x^2 + 2abx + (b^2)x^2 + 2a^2x^2 + 2a^2x$ What is the value of $c^2(1 + a^2)$? (2022)

Ans: $(1 + a^2)x^2 + 2abx + (b^2 - c^2) = 0$

Comparing on $Ax^2 + Bx + C = 0$

$$A = 1 + a^2$$
, $B = 2ab & C = (b^2 - c^2)$

Now. $B^2 - 4AC = 0$

$$\Rightarrow$$
 $(2ab)^2 - 4 \times (1 + a^2) \times (b^2 - c^2) = 0$

$$\Rightarrow 4a^{2}b^{2} - 4(b^{2} - c^{2} + a^{2}b^{2} - a^{2}c^{2}) = 0$$
$$\Rightarrow 4a^{2}b^{2} - 4b^{2} + 4c^{2} - 4a^{2}b^{2} + 4a^{2}c^{2}$$

$$\Rightarrow$$
 4a²b² - 4b² + 4c² - 4a²b² + 4a²c² = 0

$$\Rightarrow$$
 - $b^2 + c^2 + a^2c^2 = 0$

$$\Rightarrow c^2 + a^2c^2 = b^2$$

$$\therefore c^2 (1 + a^2) = b^2$$

Previous Year Questions 2021

Q18: Write the quadratic equation in x whose roots are 2 and-5. (2021)

Ans: Roots of quadratic equation are given as 2 and - 5.

Sum of roots =
$$2 + (-5) = -3$$

Product of roots =
$$2(-5) = -10$$

Quadratic equation can he written as

$$x^2$$
 - (sum of roots)x + Product of roots = 0

$$\Rightarrow x^2 + 3x - 10 = 0$$

Previous Year Questions 2020

Q19: Sum of the areas of two squares is $544 \,\mathrm{m}^2$. If the difference of their perimeters is 32 m, find the sides of the two squares. (2020)

Ans: Let the sides of the two squares be x m and y m, where; x > y.

Then, their areas are x^2 and y^2 and their perimeters are 4x and 4y respectively.

By the given condition, $x^2 + y^2 = 544$ -----(i)

and 4x - 4y = 32

$$\Rightarrow$$
 x - y = 8

$$\Rightarrow x = y + 8 - - - (ii)$$

Substituting the value of x from (ii) in (i) we get

$$\Rightarrow$$
 (y + 8)² + y² = 544

$$\Rightarrow$$
 y² + 64 + 16y + y² = 544

$$\Rightarrow 2y^2 + 16y - 480 = 0$$

$$\Rightarrow$$
 y² + 8y - 240 = 0

$$\Rightarrow$$
 y² + 20y - 12y - 240 = 0

$$\Rightarrow$$
 y(y + 20) - 12(y + 20) = 0

$$\Rightarrow$$
 (y - 12) (y + 20) = 0

$$\Rightarrow$$
 y = 12 (: y \neq 20 as length cannot be negative)

From (ii), x = 12 + 8 = 20 Thus, the sides of the two squares are 20 m and 12 m.

Q20: A motorboat whose speed is 18 km/h in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream. (2020)

Ans:

Speed of boat = 18 km/hr

Distance = 24 km

Let x be the speed of the stream.

Let t_1 and t_2 be the time for upstream and downstream.

As we know that,

$$Speed = \frac{Distance}{Time} \implies Time = \frac{Distance}{Speed}$$

For upstream:

Speed =
$$(18 - x) \text{ km/hrDistance} = 24 \text{ kmTime} = t_1$$

$$t_1 = \frac{24}{18 - x}$$

For downstream:

Speed =
$$(18 + x) \text{ km/hrDistance} = 24 \text{ kmTime} = t_2$$

$$t_2 = \frac{24}{18+x}$$

Now according to the question:

$$t_1 = t_2 + 1$$

Substitute the values:

$$\frac{24}{18-x} = \frac{24}{18+x} + 1$$

Simplify:

$$\frac{1}{18-x} - \frac{1}{18+x} = \frac{1}{24}$$

Combine the fractions:

$$\frac{(18+x)-(18-x)}{(18-x)(18+x)} = \frac{1}{24}$$

$$\frac{2x}{(18-x)(18+x)} = \frac{1}{24}$$

Cross-multiply:

$$48x = (18 - x)(18 + x)$$

Expand:

$$48x = 324 + 18x - 18x - x^{2}$$
$$x^{2} + 48x - 324 = 0$$

Rearrange:

$$x^{2} + 54x - 6x - 324 = 0$$
$$x(x + 54) - 6(x + 54) = 0$$
$$(x + 54)(x - 6) = 0$$

Solve for x:

$$x = -54$$
 or $x = 6$

Since speed cannot be negative:

$$x = 6$$

Q21: The value(s) of k for which the quadratic equation $2x^2 + kx + 2 = 0$ has equal roots, is

$$(b) \pm 4$$

$$(c) - 4$$

by Er.Monit Nariyan

+91 8827431647

Ans: (b)

Given Quadratic equation is $2x^2 + kx + 2 = 0$

Since, the equation has equal roots.

$$\Rightarrow$$
 k²-4x2x2=0

$$\Rightarrow k^2 - 16 = 0$$

$$\Rightarrow k^2 = 16$$

$$\Rightarrow K = 16$$

$$\Rightarrow k = \pm 4$$

Q22: Solve for $x: \frac{1}{x+4} - \frac{1}{x-7} = \frac{11}{30}, x \neq -4, 7$. (CBSE 2020)

Ans: Given,
$$\frac{1}{x+4} - \frac{1}{x-7} = \frac{11}{30}$$

$$\Rightarrow \frac{x-7-x-4}{(x+4)(x-7)} = \frac{11}{30}$$

$$\Rightarrow \frac{-11}{(x+4)(x-7)} = \frac{11}{30}$$

$$\Rightarrow \frac{-1}{(x+4)(x-7)} = \frac{1}{30}$$

$$\Rightarrow$$
 (x + 4)(x - 7) = -30

$$\Rightarrow$$
 (x + 4) (x - 7) + 30 = 0

$$\Rightarrow x^2 + 4x - 7x - 28 + 30 = 0$$

$$\Rightarrow x^2 - 3x - 28 + 30 = 0$$

$$\Rightarrow x^2 - 3x + 2 = 0$$

$$\Rightarrow x^2 - 2x - x + 2 = 0$$

$$\Rightarrow x(x-2) - 1(x-2) = 0$$

$$\Rightarrow$$
 (x - 2) (x - 1) = 0

$$\Rightarrow$$
 x = 1 or 2

Q23: A train covers a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, it would have taken 3 hours more to cover the same distance. Find the original speed of the train. (CBSE 2020)

Ans: Let the original speed of the train be x km/h. Then, time taken to cover the journey of 480 km = 480 / x hours

Time taken to cover the journey of 480 km with speed of (x - 8) km/h = 480 / x - 8 hours

Now, according to question,

$$\frac{480}{x - 8} - \frac{480}{x} = 3$$

$$\Rightarrow 480 \left[\frac{x - x + 8}{x(x - 8)} \right] = 3$$

$$\Rightarrow 3x(x - 8) = 3840$$

SUNRISE EDUCATION CENTRE

.01.0007404647

$$\Rightarrow$$
 3x(x - 8) = 3840

$$\Rightarrow x(x - 8) = 1280$$

$$\Rightarrow x^2 - 8x - 1280 = 0$$

$$\Rightarrow x^2 - 40x + 32x - 1280 = 0$$

$$\Rightarrow$$
 x(x - 40) + 32(x - 40) = 0

$$\Rightarrow$$
 (x + 32) (x - 40) = 0

$$\Rightarrow$$
 x + 32 = 0 or x - 40 = 0 Q

 \therefore x = -32 (not possible)

 \therefore x = 40 Thus, the original speed of the train is 40 km/h.

SUNRISE EDUCATION CENTRE

by Er.Mohit Nariyani

+91 8827431647

Previous Year Questions 2019

Q24: Find the value of k for which x = 2 is a solution of the equation $kx^2 + 2x - 3 = 0$. (CBSE 2019)

Ans: Since x = 2 is a solution of $kx^2 + 2x - 3 = 0$

$$k(2)^2 + 2(2) - 3 = 0$$

$$\Rightarrow$$
 k = -1/4

Q25: Sum of the areas of two squares is $157\,\mathrm{m}^2$. If the sum of their perimeters is $68\,\mathrm{m}$, find the sides of the two squares. (CBSE 2020)

Ans: Let the length of the side of one square be x m and the length of the side of another square be y m.

Given,
$$x^2 + y^2 = 157$$
 (i)

$$x + y = 17$$

On putting the value of y in (i), we get

$$x^2 + (17 - x)^2 = 157$$

$$\Rightarrow x^2 + 289 + x^2 - 34x = 157$$

$$=> 2x^2 - 34x + 132 = 0$$

$$\Rightarrow x^2 - 17x + 66 = 0$$

$$\Rightarrow x^2 - 11x - 6x + 66 = 0$$

$$\Rightarrow$$
 x(x - 11)-6(x - 11) = 0

$$\Rightarrow$$
 (x - 11) (x - 6) = 0

$$\Rightarrow$$
 x = 6 or x = 11