

Vektorová reprezentace slov

Word embeddings

Petr Červa, František Kynych 13. 10. 2022 MVD

Část I.: Úvod do problematiky

Význam slova a jeho zakódování

- Význam slova odpovídá jeho informačnímu obsahu
- Jak význam zakódovat užitečně pro počítač?
 - Klasické řešení: pomocí taxonomie (sítě) popisující vztahy a podobnost mezi slovy
 - WordNet
 - Celá řada problémů
 - Subjektivní
 - Vyžaduje velké množství ruční práce
 - Jak udržovat aktuální?

=> většina přístupů nakonec pracovala se slovy pouze jako s diskrétními objekty

Diskrétní reprezentace slov

- Každé slovo reprezentováno samostatně
- Pro daný slovník zakódováno jako vektor nul s jednou jedničkou
 - "One-hot encoding":

```
Petr = [0 \ 0 \dots 0 \ 1 \ 0 \dots 0 \ 0]
Pavel = [0 \ 1 \ 0 \dots 0 \dots 0]
```

- Celá řada problémů
 - Prostor má obří dimenzi |V|
 - Poloha vektorů a vzdálenosti mezi nimi nijak nesouvisí s významem slova
 - Podobná slova neleží ve stejné oblasti prostoru

Reprezentace přes podobnostní rozložení

- Cílem je vytvořit matematický model reprezentující podobnostní rozložení slov -> najít prostor, v němž jsou slova rozložena podle významu
- Každé slovo bude v tomto prostoru reprezentováno vektorem, který bude ležet blízko vektorů slov s podobným významem

Jak podobnostní rozložení získat?

- Distribuční hypotéza
 - Klíčem je myšlenka, že význam slova je dán okolím slova
 - Slova se stejným významem mají podobné okolí

"You shall know the word by the company it keeps" (Firth, J. R. 1957:11)

 Prostor hledáme tak, že daný model maximalizuje pro všechna slova pravděpodobnost výskytu jejich okolí

P(kontext|wt)

Metody hledání podobnostního rozložení

- Historicky více přístupů:
 - Learning representations by back-propagating errors (David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams, 1986)
 - A neural probabilistic language model (Bengio at al., 2003)
 - •
 - Word2Vec

(Mikolov at al., 2013)

GloVe

(Pennington at al., 2014)

Word2Vec

- Využívá neuronovou síť s jednou skrytou vrstvou
- Dva možné algoritmy
 - Skip-gram
 - Založen na predikce slov v okolí daného slova
 - Continuous bag of words (CBOW)
 - Založen na predikci daného slova pomocí okolních slov
- Několi trénovacích metod
 - Softmax
 - Hierarchical Softmax
 - Negative sampling

Část II.: Opakování z předmětu USU

Co je to umělá neuronová síť?

- Matematický model tvořený sériovým a paralelním spojením umělých neuronů
- Podle typů spojení a uspořádání neuronů existuje celá řada typů umělých neuronových sítí
 - Následující výklad bude omezen na architekturu označovanou jako Multi-Layer Perceptron (MLP), kde jsou
 - Neurony uspořádány vedle sebe do vrstev a vrstvy jsou spojeny sériově za sebou
 - 2. Výstup z každého neuronu vrstvy *i* je přiveden na vstup všech neuronů vrstvy *i* + 1
- Inspirací je mozek a biologické neuronové sítě

Mozek	Umělá neuronová síť typu MLP
Skládá se z asi 10 ¹¹ buněk - neuronů	Skládá se z několika až několika desítek tisíc umělých neuronů
Neurony jsou různě nepravidelně pospojovány do sítě	Umělé neurony jsou pospojovány paralelně do vrstev, a vrstvy jsou pak spojeny mezi sebou sériově = pravidelná struktura
Proces učení spočívá v aktivování a zesilování/zeslabování synapsí (vazeb) mezi r	Proces učení spočívá v nastavení a následném neustálém přepočítávání váhových koeficientů w na každém vstupu do každého neuronu

Neurony	Umělé neurony
Spoje mezi neurony tvoří axony	Spoje jsou dány logickou strukturou sítě, kdy výstup z jedné vrstvy/vstupní data je naveden na vstupy do další/první vrstvy
Spoj je tvořen synapsí = parametr učení	Parametrem učení je vektor vah w
Samotný vstup do buňky tvoří dendrity	Dendrit lze chápat jako hodnotu součinu $w_i x_i$
Podněty jsou v těle neuronu akumulovány	Vstupní signály jsou v modelu sčítány
Po překročení určitého prahu je podnět poslán dál	Po překročení prahové hodnoty je výstupní signál změněn podle typu použité aktivační funkce

Síť typu vícevrstvý perceptron - architektura

- Obecně obsahuje vícevrstvý perceptron
 - Vstupní vrstvu: nemá neurony, reprezentuje vektor vstupních hodnot
 - Jednu nebo více skrytých vrstev s aktivační funkcí
 - Výstupní vrstvu
- Výstupní vrstva a skryté vrstvy mají vždy vlastní matice váhových koeficientů W

Funkce SOFTMAX

- Funkce SOFTMAX má C vstupů a C výstupů
- Platí, že výstup

$$\hat{y}_c = SOFTMAX(\mathbf{u}) = \frac{e^{u_c}}{\sum_{d=1}^{C} e^{u_d}}$$

- Všechny výstupy jsou kladná čísla
- Součet všech výstupů dohromady je roven číslu 1

Část III.: Word2Vec

Přístup: CBOW vs Skip-gram

Skip-gram princip

- Maximalizujme pravděpodobnost výskytu okolních slov
- Příklad
 - Petr dnes šel do kina
 - Při šířce okolí 2 maximalizujeme pro slovo šel pravděpodobnost
 P(Petr | šel,W)+P(dnes | šel,W)+P(do | šel,W)+P(kina | šel,W)
- Model přitom odpovídá neuronové síti s parametry W
 - Parametry W jsou matice vah skryté a výstupní vrstvy (W₁ a W₂)
 - Matice W_1 pak představuje matici embeddingů pro všechna slova ze slovníku
 - Její rozměry (počet neuronů skryté vrstvy) určují dimenzi nalezeného prostoru
 - Nalezený prostor má požadované vlastnosti

Příklad trénování

- Slova ze slovníku zakódujeme pomocí "one-hot" kódování
- Požadovaný vektor (zde pro slovo "šel") přivedeme na vstup
- Na výstupu chceme získat postupně vektory odpovídající slovům "Petr", "dnes", "do" a "kina"
- Například pro dvojici "šel" a "Petr" je
 - Vstupní vektor x = [0 0 1 0 0] a požadovaný výstupní vektory y = [1 0 0 0 0]
- Výstup ze sítě (funkce softmax) ovšem neodpovídá vždy přesně požadovanému
 - Může být například [0.7 0.1 0.1 0.05 0.05]
- Vznikne chyba, která se poté posčítá za všechna okolní slova
 - Na základě celkové chyby se přepočítají parametry modelu
 - Jde o algoritmus zpětné propagace (viz předmět USU)
 - Během trénování minimalizujeme cross-entropii mezi skutečným výstupem ze sítě a požadovanými hodnotami

Word2vec – schéma modelu

- Jde o model odpovídající NS s jednou skrytou vrstvou
- Parametry modelu jsou matice W_1 a W_2
- Na výstupu je softmax => krit. funkce má význam křížové entropie

https://towardsdatascience.com/word2vec-made-easy-139a31a4b8ae

Word2vec – schéma #2

- x
 - vektor reprez. vstupní slovo
 - dimenze [1, V]
 - obsahuje pouze jednu jedničkux

- W1
 - matice vah skryté vrstvy o dimenzi [V, N]
 - reprezentuje word embedings
 - na řádku v je embedding pro v-té slovo ze slovníku
 - vektor x obsahuje pouze jednu jedničku
 - Součinem $x^T W_1$ proto vybereme vždy jeden příslušný řádek této matice

Word2vec – schéma #3

- $h=x^T W_1$
 - vektor odpovídající embeddingu slova
 - skrytá vrstva má lineární aktivační funkci,
 - tento embedding není nijak modifikován

- W₂
 - "matice vah výstupní vrstvy dimenzi [N,V]"
 - odpovídá kontextové matici
- $y = softmax(h^T W_2)$
 - výstupní vektor, ideálně přesně odpovídá "one hot" zakódování požadovaného výstupní slova
 - reálně se liší a podle odchylky se při trénování upraví všechny váhy

SKIP-GRAM vs CBOW

- U skip-gramu se sečte chyba na výstupu pro všechna predikovaná slova z okolí cílového slova
- U varianty CBOW se maximalizuje pravděpodobnost cílového slova na základě okolních slov
 - Chyba za jednotlivá okolní slova se na výstupu sítě průměruje
- Pro obě metody obvykle platí, že čím větší N tím lepší výsledky
- Okolí se volí cca 10 pro skip-gram a 5 pro CBOW

Vlastnosti Word2Vec

- Vektory reprezentující významově podobná slova tvoří shluky
 - Jsou blízko sebe
- Přičítáním a odčítáním vektorů je možné posouvat nebo přenášet význam:

$$v(king) - [v(man) - v(woman)] = v(queen)$$

Naučené vztahy mezi slovy

http://www.samyzaf.com/ML/nlp/nlp.html

Naučené vztahy mezi slovy

Country-Capital

Male-Female

Verb tense walking – swimming + swam = walked

walked – walking = swam - swimming

https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/

Nevýhody popsaného způsobu trénování

- Výše popsané trénování má nevýhody
 - 1. Výpočet softmaxu pro velké slovníku je náročný (exponenciála)
 - Pro dané cílové slovo se významně mění hodnoty pouze omezeného počtu vah, ostatní váhy se přesto aktualizují nadbytečně o zanedbatelně malé hodnoty
- Příklad
 - Předtrénovaný Google model má 3 miliony slov
 - Při trénování je pouze 1 slovo ze 3M cílové
 - Většinu času aktualizujeme váhy, které nesouvisí s cílovým slovem o malé hodnoty (viz 2.)
- Řešení ve výběru trénovací metody
 - Hierarchical softmax
 - Složitější na implementaci
 - Negative sampling
 - Dosahuje lepších výsledků

Negative Sampling #1

- Umožňuje pro každý vzorek modifikovat pouze malou část vah
- Problém se reformuluje
 - Místo predikce slova "šel" na základě okolních slov se trénuje model predikující, zda je nebo není slovo "šel" sousední se slovy "Petr", "do" …
 - Klasifikaci 1 z V převedeme na V binárních klasifikací
 - 2. Trénování binárního klasifikátoru pro dané cílové slovo se dále zjednoduší tak, že se kromě slova v okolí cílového slova vybere i několik (typicky 5) náhodně vybraných slov, negativních případů, která v daném okolí zrovna nejsou
 - Dvojici (šel;Petr) doplníme např. o dvojice (šel;dům), (šel;včera)
 - Pro slovo v okolí chceme na výstupu NS hodnotu 1
 - Pro negativní vzorky hodnotu 0

Negative Sampling #2

- Chyba se pak propaguje zpět pouze pro použitá slova a zároveň se nevyčísluje softmax pro V slov
 - ⇒ zrychlení výpočtu
- Slova se jako negativní vzorky vybírají náhodně s pravděpodobností $P=u(w)^{3/4}$, kde u(w) je unigram daného slova
 - Četnější slova budou vybrána častěji než méně četná
 - Mocnina ¾ zvýhodňuje méně četná slova oproti samotnému unigramovému rozložení

Skip-gram nebo CBOW (a Negative sampling)?

- Skip-gram je pomalejší + lepší pro málo četná slova
- CBOW je rychlejší + lepší pro četná slova
- Softmax je pomalejší + lepší pro málo četná slova
- Negative sampling je rychlejší + lepší pro četná slova a málo dimenzionální vektory

Využití

- Překlad z jazyka do jazyka
- Analýza sentimentu
- Klasifikace textu
- Automatická sumarizace
- Identifikace jazyka z textu
- •

Další metody vektorizace textu

- Klasické starší přístupy
 - Latentní Sémantická Analýza (LSA)
 - Historicky před Word2Vec
 - Pracuje s celým dokumentem a maticí výskytu jednotlivých slov v dokumentu
- Novější
 - GloVe
 - Kombinuje výhody LSA a Word2Vec

- Global Vectors for Word Representation
- Intuice
 - Word2Vec nepřímo modeluje společný výskyt slov
 - Společný výskyt slov můžeme spočítat přímo v prvním kroku
- 2 možnosti počítání slov
 - Okénko
 - Vybereme n slov okolo slova a v tomto okénku počítáme společný výskyt
 - Zachycuje syntaktickou i sémantickou informaci
 - Dokument
 - Místo počítání v okénku počítáme v celém dokumentu (LSA)

- Příklad počítání s okénkem
- Text:
 - I like NLP.
 - I like deep learning.
- Okénko: 1 slovo (v okolí)

		like	NLP	deep	learning
1	0	2	0	0	0
like	2	0	1	1	0
NLP	0	1	0	0	0
deep	0	1	0	0	1
learning	0	0	0	1	0

- Problémy takového počítání
 - Matice se zvětšuje s velikostí slovníku
 - V matici se vyskytuje velké množství nul
 - Často vyskytující se slova budou mít velký počet společného výskytu
- Vylepšení
 - Použití Singular Value Decomposition (SVD) pro redukci dimenze
 - Velkou četnost společného výskytu omezíme maximální hodnotou
 - Např. min(100, count)
 - Použití vzdálenosti při počítání v okénku
 - "I like NLP ..."
 - X(I, like) += 1
 - X(I, NLP) += $\frac{1}{2}$
 - $X(I, ...) + = \frac{1}{3}$

- Posledním vylepšením je získat každý počet v rozsahu 0-1
 - Lepší pro učení NN

$$f(X_{ij}) = \left(\frac{X_{ij}}{x_{max}}\right)^{\alpha}$$
 if x < xmax, else 1

$$\alpha = 0.75$$
; $x_{max} = 100$

X_{ii} – hodnota z matice počtů společného výskytu

- SVD se složitěji optimalizuje
 - Problém s časovou náročností pro větší matice
- Výsledné řešení
 - Dvě matice vah u a v (dimenze [V, N]) a 2× bias vektor
 - Podobně jako u Word2Vec
 - Učí se pomocí váženého MSE

$$J = \frac{1}{2} \sum_{i,j=1}^{V} f(X_{ij}) \left(u_i^T v_j + bi + bj - \log X_{ij} \right)^2$$

 Funguje dobře na menším množství dat i s menší velikostí embeddingu

Užitečné odkazy

- Word2Vec na TowardsDataScience
- Stanford University, kurz cs 224n
 - http://web.stanford.edu/class/cs224n/
 - Youtube
- Word2Vec článek
- GloVe článek

