第9讲基本运算电路

一、加减法、微分、积分电路

二、积分时间常数

基本运算电路

- →内容加法器、减法器、微分器和积分器
- 目标西出这些运算电路,并推导出它们的输出电压表达式。

加法器与减法器 (1/3)

●设计一个加法器

$$v_{i} = \frac{R_{2}}{R_{1} + R_{2}} v_{1} + \frac{R_{1}}{R_{1} + R_{2}} v_{2} = \alpha v_{1} + \beta v_{2}$$

$$\dot{v} = 0 \rightarrow \frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_0}{R_3} \approx 0$$

加法器与减法器 (2/3)

 $v_{\rm O} \approx -\frac{R_2}{R_1} v_{\rm IN}$

●设计一个减法电路

$$v^+ \approx v_{\rm IN} \frac{R_2}{R_1 + R_2} \longrightarrow v_{\rm OUT} \approx \frac{R_2}{R_1} v_{\rm IN}$$

$$v_{
m OUT} pprox rac{R_2}{R_1} v_{
m IN}$$

加法器与减法器 (3/3)

●减法器电路分析

$$v^{+} \approx v_{1} \frac{R_{2}}{R_{1} + R_{2}}$$

$$\approx v^{-}$$

$$i = \frac{v_{2} - v^{-}}{R_{1}}$$

$$v_{\text{OUT}} = v^{-} - iR_{2} = v^{-} - \frac{v_{2} - v^{-}}{R_{1}} R_{2}$$

$$= v^{-} \left[1 + \frac{R_{2}}{R_{1}} \right] - v_{2} \frac{R_{2}}{R_{1}} \stackrel{\longleftarrow}{\rightleftharpoons}$$

微分器与积分器 (1/3)

●设计一个微分电路

$$v_{\rm I} = v_{\rm C}$$

$$i = C \frac{dv_{\rm C}}{dt} = C \frac{dv_{\rm I}}{dt}$$

$$i = C \frac{dv_I}{dt}$$
 把 i 变成输出
电压 v_O 的形式

$$v_{\rm O} = -RC \frac{dv_{\rm I}}{dt}$$

微分器与积分器 (2/3)

●设计一个积分电路

$$v_o = \frac{1}{C} \int_{-\infty}^{t} i dt$$

微分器与积分器 (3/3)

积分时间常数 (1/2)

- RC充电电路及其时间常数
 - ●设电容上初始电压为0,则

$$v_{\rm O} = v_{\rm I} \ (1 - e^{-\frac{t}{RC}})$$

- 乘积RC被称之为时间常数T
- \bullet 电阻单位为 Ω 、电容单位为F时, τ 的单位为S(秒)

当
$$t = 1RC$$
时, $v_{o} = 0.63v_{I}$;
当 $t = 2RC$ 时, $v_{o} = 0.86v_{I}$;
当 $t = 3RC$ 时, $v_{o} = 0.95v_{I}$;
当 $t = 4RC$ 时, $v_{o} = 0.98v_{I}$;
当 $t = 5RC$ 时, $v_{o} = 0.99v_{I}$ 。

积分时间常数 (2/2)

- 当充放电时问超过3T或5T时,认为充放电已经完成
- T越大,电压做线性变化的肘间越长
- T大的充放电电路适合用来作为积分器

$$-\frac{v_I - v_o}{R} + C\frac{dv_o}{dt} = 0,$$

$$RC\frac{dv_o}{dt} + v_o = v_I$$
 英加廉东的 (I+A) 传

$$\frac{v_I - v^-}{R} + C \frac{d(v_o - v^-)}{dt} = 0, v_o = A(v^+ - v^+) = -Av^-$$

$$\frac{v_I}{R} + \frac{v_o}{AR} + C\frac{d(v_o)}{dt} + \frac{C}{A}\frac{dv_o}{dt} = 0$$

$$v_o = -AV(1 - e^{-\frac{\iota}{(1+A)RC}})$$

$$(1+A)RC\frac{dv_o}{dt}+v_o=-Av_I$$
 所问常数增加了A倍

小结

- ●基本运算电路
 - 加法:由输入网络决定"权值"
 - 减法:由同相输入和反相输入共同决定
 - 积分:将输入电压变换为恒流后对电容充电
 - 微分:将对电容的充电电流变换成电压
- ●RC电路时间常数T
 - 含运放的积分与微分电路将T放大了A倍