np = defectives 1 1 1 3 4 2 3 2 1 3 3 1 2 1 2 1 2 2 1 2. In a biscuit manufacturing company, 200 samples were drawn at random. The number of defectives is given below. Plot a p chart and a np chart for the biscuit manufacturing process. $np = \text{defectives } 11 \quad 1 \quad 0 \quad 11 \quad 4 \quad 8 \quad 3 \quad 9 \quad 1 \quad 10 \quad 3 \quad 7 \quad 2 \quad 6 \quad 2 \quad 5 \quad 7$ 3. A tile manufacturer inspected each operator's output and noted the number of defectives and sample size. The data is given below. Plot a p chart. No. of defectives 2 1 5 1 4 5 2 3 1 0 0 2 5 4 1 3 120 56 278 311 123 254 17 35 45 67 56 92 235 123 70 45 58 62 278 75 Sample size **4.** A glassware production gave the following defectives on sample size indicated therein. Plot a p chart. 5 1 4 5 2 3 1 0 0 2 5 No. of defectives 2 17 21 31 11 25 35 17 34 45 25 22 23 33 34 34 25 21 21 45 10 Sample size 5. A TV receiver manufacturer measured the number of defects in each TV receiver on final inspection. Plot a c chart and a u chart for the assembly line. No. of defects 12 11 7 6 5 4 3 2 1 5 4 6 7 8 9 5 7 8 6 7 6. A carpet manufacturer inspected and counted the number of defects in each carpet that was manufactured. The number of defectives and the sample size are listed below. Plot a p chart. 1 5 1 4 5 2 3 2 5 4 1 No. of defectives 2 1 - 1 1 3 Sample size 25 25 25 18 18 18 18 14 14 14 12 12 20 20 20 20 18 18 18 18 7. In a smithy the defects in axes made were counted and are indicated below along with the sample size. Plot a u chart. No. of defective 12 5 8 9 10 7 8 8 8 7 8 5 4 8 25 25 25 18 18 18 18 14 14 14 12 12 20 20 20 20 18 18 18 18 Sample size 8. The specification for the width of table was 100 cms. The actual width measured on the samples is given below. Plot a X and MR chart. 99 101 100 102 98 101 100 99 101 100 103 102 99 100 101 98 102 98 101 99 98 100 101 99 9. A company manufacturing speedometers, picked up 4 samples each 25 times in a shift. For a setting of 10 Kmph, the values indicated by the speedometer samples are given below. Plot X bar and R chart. Draw the Action and Warning lines as well as the control limits. 2 4 5 7 8 9 1 3 6 10 11 12 13 9.8 9 10.1 9.8 10 9.8 10 9.8 10 10.2 9.8 10.1 10.3 9.9 9.9 10.1 10.2 9.9 10 10.1 9.8 9.9 9.8 10 10 9.6 10 10 10 10.2 10.2 10.1 10.1 10 9.9 10 10 10 10 9.9 9.9 9.9 10.1 10.1 10 10.1 10 10 10 10 10.1 10 14 15 16 **17** 18 19 20 21 22 23 24 25 10.2 9.9 10.3 9.9 10.6 10.2 9.8 10.1 9.8 10.3 10.1 10.1 9 9.9 9.8 10 10.1 9.8 9.9 9.8 10.1 9.9 10.1 10.2 10 10 10 10 10 10 10 10 10 10 10 10 10 10.1 10 10.1 9.8 9.9 9.9 10.1 10 10.1 10.1 10

10. 4 samples each of stopwatches were picked up at random from the assembly line. 25 times the samples were picked up. The indication of the speedometer for a true value of 300 seconds were checked and noted. The values indicated by the various samples are given below. Plot *X* bar and *R* chart. Draw the Action and Warning lines as well as control limits.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
301	299	302	300	306	300	300	301	303	301	295	301	300	302	299
288	300	301	298	268	299	298	299	300	300	301	302	296	298	300
299	299	299	302	302	301	301	299	295	310	300	300	302	297	300
300	301	300	302	307	300	301	302	300	302	300	301	304	304	301
16	17	18	19	20	21	22	23	24	25					
16 303	17 299	18 306			21 301	22 303	23 301	24 302						
								302						
303	299	306	302	298	301	303	301	302	301 301					

11. In Problems 1 and 2, if the data the corresponds to the number of defects, calculate a c chart.

Table A: Proportional under the Tail of the Normal Distribution

$Z = \frac{(x - \mu)}{\sigma}$.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0216	.0211	.0206	.0201	.0197	.0192	.0187	.0183
2.1	.0179	.0174	.0170	.0165	.0161	.0157	.0153	.0150	.0146	.0142

(Contd.)