

Categorizing Classification Errors

Introduction

Misclassified examples of 0 Subtype 3 Subtype 1 Subtype 2

Why does it matter?

- Understanding and developing correct Dataset structure
- Automation of Error detection categorization
- Effect of the dataset on Classification
- Explore the reasoning behind misclassification

Project Objective

- Dissect classification error subtypes
- Finding an efficient approach to categorize similar misclassified examples
- Implementing a way to visualize error subtypes

Background

- Understanding error behavior:
 - GradCAM
 - Layer-wise Relevance Propagation
 - Saliency Maps
- Grouping techniques:
 - Clustering approaches
 - Calculating similarities of feature vectors

Method: Concept

2 Stages:

Method: Baseline approach

- Stage 1 (Identifying error subtypes):
 - Applying a simple clustering approach (e.g. K-means clustering)
- Stage 2 (Understanding the error subtype):
 - Take the average of all examples in a cluster group
- In such way
 - we can categorize the error subtypes and define why they are wrong

Method: Baseline approach

- Unfortunately such baseline approach does not work on all datasets (e.g. CIFAR10)
 - (1) Simple clustering approaches (e.g. K-means) will not easily group such images
 - (2) Averaging over all the examples in the group will result in a noisy image
- Example (MNIST):

Example (CIFAR10):

Method: Approach

- Improve the grouping approach
 - Embeddings
 - Autoencoders
- Improve how to represent the error subtype
 - Hierarchical clustering representations
 - Applying clustering again on the groups
 - Saliency maps

Plan: Time plan

Plan: Work distribution

- Stage 1:
 - Embeddings (Khalifa)
 - Autoencoders (Hatim, Mohamed)
- Stage 2:
 - Hierarchical clustering representations (Khalifa)
 - Applying clustering again on the groups (Hatim)
 - Saliency maps (Mohamed)

Thank you for your attention