

TABLE OF CONTENTS

01PRACTICAL
MOTIVATION

02 EXPLORATORY DATA ANALYSIS

04 INSIGHTS

+

 $\mathbf{01}$

* PRACTICAL MOTIVATION

422 MILLION

Individuals has diabetes worldwide according to the World Health Organisation (2022).

The prevalence of diabetes in Singapore is costing our country over \$1 billion a year to manage. Learn more about how we intend to win the war against this lifestyle condition.

The Singapore government has issued a clarion call — it officially declared war on diabetes, calling the disease one of the biggest drains on the healthcare system, and one which costs the country over \$1 billion a year to manage.

Prevalence of Diabetes

During the 2016 Committee of Supply debates in Parliament, Health Minister Gan Kim Yong revealed that over 400,000 people have diabetes in Singapore. Of these, one in three is not aware he/she has the disease, and of the rest who do know, one in three has poor control of it. If left unchecked, nearly one million people in Singapore will have diabetes by 2050.

Fig. 2: *Diabetes in Singapore*. (James, T., n.d.)

WHAT ARE SOME OF THE IMPORTANT HEALTH METRICS IN DETERMINING RISK OF DIABETES?

THE DATASET

+

+

PREVALENCE IN THE U.S. (2019)

Estimates of diagnosed diabetes across US counties

- **> 10.1%**
- **8.5 10.0** %
- **7.4 8.4 %**
- **6.6 7.3** %
- **6.6%**

Average: 8.7%

Source: National Diabetes Statistics Report (CDC, 2020)

Percentage Estimates of Individuals with Diabetes (2021)

EXPLORATORY DATA ANALYSIS

INITIAL CLEANING OF DATA

- Dropping duplicate entries
- Dropping subjective variables:
 Mental health and physical health
- No missing values
- Dropping diabetic variable categories:
 No (with borderline diabetes) and Yes (during pregnancy) rows

VARIABLES AT A GLANCE

BMI	Sleep Time	Sex
Age Category	General Health	Race
Physical Activity	Alcohol Drinking	Smoking
Difficulty Walking	Asthma	Kidney Disease
Skin Cancer	Heart Disease	Stroke

Legend:

Numeric Categorical

BMI & DIABETES

SLEEP TIME & DIABETES

Fig. 5: Proportion of diabetic individuals against sleep time

MODIFICATIONS TO DATASET

- Polynomial Feature was used to model sleep time.
- Dropping outliers based on box plots.
- The data was transformed into a Gaussian distribution of mean = 0 and s.d. = 1.

AGE CATEGORY & DIABETES

Fig. 6: Percentage of diabetic individuals with age category

INITIAL INSIGHTS

Categorical variable	Relationship with Diabetes (response variable)	
Age Category	Proportion increases with age	
Others	Proportion changes significantly	
Sex, Asthma, Skin Cancer	Proportion remains relatively similar	

Most categorical variables show a relationship with diabetes.

CHI-SQUARED TEST OF INDEPENDENCE

Null hypothesis

Alternative hypothesis

Independence

Association

Dograps of	Chi-Square (χ^2) Distribution Area to the Right of Critical Value									
Degrees of Freedom	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1 2 3 4 5	0.010 0.072 0.207 0.412	0.020 0.115 0.297 0.554	0.001 0.051 0.216 0.484 0.831	0.004 0.103 0.352 0.711 1.145	0.016 0.211 0.584 1.064 1.610	2.706 4.605 6.251 7.779 9.236	3.841 5.991 7.815 9.488 11.071	5.024 7.378 9.348 11.143 12.833	6.635 9.210 11.345 13.277 15.086	7.879 10.597 12.838 14.860 16.750

Fig. 7: Chi-square distribution table (Seb, 2021)

Existence of Relationship

Strength

Chi-squared value (x2) ≥ critical value

 $\chi 2 \rightarrow Cramer's V$

CHI-SQUARED TEST RESULTS

Categorical variable	General Health	Age Category		
Chi-squared value	23453.4700	15657.2020		
Critical value	9.488	21.026		
Critical value ≥ chi-squared value?	Yes → Relationship exists	Yes → Relationship exists		
Cramer's V	0.2832	0.2314		

General Health and Age Category show the strongest relationship with diabetes.

+

03

+ CORE
ANALYSES
USED

VARIABLES USED

SLEEP TIME

The approximate amount of sleep the respondents had.

BMI

Body mass index. A typical measurement for an individual's physical metrics.

GENERAL HEALTH

Respondents were asked to rate their own personal health over the past 30 days.

AGE CATEGORY

Respondents' ages in discrete categories.

HANDLING DATA IMBALANCE

- Our data was moderately unbalanced.
- Downsampling & Upweighting
 - Downsampling Undersampling
 - Upweighting Relative class weight
- We decided to downsample and upweight it by a factor of 6.6.

Fig. 8: Downsample and upweight (Imbalanced Data, 2021)

Fig. 9: Count plot of diabetic individuals

MACHINE LEARNING TOOLS

Logistic Regression

Fig. 10: Logistic Regression Model (Polamuri, S., 2017)

Random Forest Classifier

Fig. 11: Random Forest Classifier (Sharma, A., 2020)

OUR INSIGHTS

PERFORMANCE OF EACH MODEL

Fig. 12: Confusion metrics for random forest classifier and logistic regression models

PERFORMANCE OF EACH MODEL

LOGISTIC REGRESSION > RANDOM FOREST CLASSIFIER

Logistic Regression was more accurate (70%) as compared to Random Forest Classifier (67%).

IMPORTANCE OF VARIABLES: SIMILARITIES

Both models considered sleep time an unimportant factor.

CONCLUSIONS

IMPORTANCE OF VARIABLES: DIFFERENCES

The two models also placed a different level of importance on each of the variables.

PREVENTION BETTER THAN CURE +

PHYSICAL ACTIVITY

Regular aerobic and resistance exercises.

HEALTHY DIET

Less sweet fruits and starchy foods. More grains and legumes.

PORTION SIZES

Smaller portions reduce calorie intake and regulate insulin fluctuations.

THANKS!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

Slide 4:

Diabetes. (2022). World Health Organization. https://www.who.int/health-topics/diabetes#tab=tab_1

Slide 5:

James, T. (n.d.). *Diabetes in Singapore*. https://acetutors.com.sg/diabetes-in-singapore

Ministry of Health, Singapore (2011, Oct). *National Health Survey 2010*. https://www.moh.gov.sg/docs/librariesprovider5/resources-statistics/reports/nhs2010---low-res.pdf

Singapore's War on Diabetes. (2021, May 26). HealthHub. https://www.healthhub.sg/live-healthy/1273/d-day-for-diabetes

Slide 7:

Pytlak, K. (2022). *Personal Key Indicators of Heart Disease*. https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease

Slide 19:

Seb. (2021, April 8). *Chi-Square Distribution Table*. Programmathically. https://programmathically.com/chi-square-distribution-table/

Slide 22

Freepik. (n.d.). Pulse on heart [Icon]. Flaticon. https://www.flaticon.com/free-icon/pulse_1240841

Freepik. (n.d.). *Hourglass* [Icon]. Flaticon. https://www.flaticon.com/free-icon/hourglass_1255391

Photo3idea_studio. (n.d.). *Bed time* [Icon]. Flaticon. https://www.flaticon.com/free-icon/bed_1257318

Smalllikeart. (n.d.). Weighing scale [Icon]. Flaticon. https://www.flaticon.com/free-icon/weight-scale_1256551

Smashicons. (n.d.). Height scale [Icon]. Flaticon. https://www.flaticon.com/free-icon/height_950746

Slide 23:

Imbalanced Data. (2021, Nov 11). Google Developers.

https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data

Slide 24:

Polamuri, S. (2017, Mar 2). *How The Logistic Regression Works*. Dataaspirant. https://dataaspirant.com/how-logistic-regression-model-works/

Sharma, A. (2020, May 12). *Decision Tree vs. Random Forest – Which Algorithm Should you Use?*. Analytics Vidhya.

https://www.analyticsvidhya.com/blog/2020/05/decision-tree-vs-random-forest-algorithm/

Slide 33:

Becris. (n.d.). Food pyramid [Icon]. Flaticon. https://www.flaticon.com/free-icon/diet_1240823

Mayo Clinic Staff. (2021, June 25). *Diabetes prevention: 5 tips for taking control*. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/type-2-diabetes/in-depth/diabetes-prevention/art-20047639

Nawicon. (n.d.). *Plate with fork and spoon* [Icon]. Flaticon. https://www.flaticon.com/free-icon/portion_7126726?term=portion&page=1&position=38&related_id=7126726&origin=search

Streit, L. (2022, Jan 28). *11 Ways to Prevent Type 2 Diabetes.* https://www.healthline.com/nutrition/prevent-diabetes

Turkkub. (n.d.). *A person stretching* [Icon]. Flaticon. https://www.flaticon.com/free-icon/running_815082?related_id=815119&origin=search

Music:

Tissot, B. (n.d.). *Cute* [Song]. https://www.bensound.com/royalty-free-music/track/cute.

