Vorlesung 16.4

1 Kapitel 1.3

Satz 1.3.2, mit Beweis von (v) . Informelle Erläuterung warum man von "Stetigkeit" spricht: $f: \mathbb{R} \to \mathbb{R}$ ist stetig in $x \in \mathbb{R}$, wenn für jede Folge $(x_n, n \ge 1)$ mit $\lim_{n \to \infty} x_n = x$ gilt $f(x) = \lim_{n \to \infty} f(x_n)$. Das erinnert an die Aussagen von (v),(vi), wobei in (v) der Limes von "unten", in (vi) der von "oben" genommen wird.

2 Kapitel 1.4: Erzeugte σ - Algebren

Sei $\Omega = [0, 1]$. Es soll modelliert werden, zufällig eine Zahl aus Ω zu ziehen, und jede Zahl soll dieselbe Wahrscheinlichkeit p haben, gezogen zu werden. Sei \mathcal{E} eine σ -Algebra auf Ω derart, dass $\{\omega\} \in \mathcal{E}$ für alle $\omega \in \Omega$. Wir suchen also ein Wahrscheinlichkeitsmaß \mathbb{P} auf \mathcal{E} mit $\mathbb{P}(\{\omega\}) = p$ für alle $\omega \in \Omega$. Sei $A = \mathbb{Q} \cap \Omega$. Dann ist $\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\}) = \lim_{n \to \infty} n * p$, und dieser Limes ist 0 für p = 0, ansonsten $+\infty$. Da aber $\mathbb{P}(A) \leq 1$ gelten muss, muss also p = 0 sein: Jeder einzelne Punkt - und jede höchstens abzählbar unendliche Menge - muss also Wahrscheinlichkeit 0 haben.

Als Ausweg kann man statt $\mathbb{P}(\{\omega\}) = p$ verlangen, dass für $[a,b] \subseteq [0,1]$ nun $\mathbb{P}([a,b]) = b-a$ gelten soll. Die Frage ist nun, wie wir die σ – Algebra \mathcal{E} wählen können: Natürlich möchten wir $\mathcal{E} = \mathcal{P}(\Omega)$ haben, d.h. wir wollen einfach jeder Teilmenge von Ω eine Wahrscheinlichkeit zuordnen. Das geht aber leider - beweisbar - nicht! Dies ist der Inhalt des folgenden Satzes, genauere Hintergründe erfahren Sie in Kapitel 1.7 im Lehrbuch.

Satz 1. Es gibt **kein** Wahrscheinlichkeitsmaß \mathbb{P} auf der Potenzmenge von [0,1], derart, dass $\mathbb{P}([a,b]) = b-a$ für alle $[a,b] \subseteq [0,1]$ gilt.

Daher müssen wir uns mit einer kleineren σ – Algebra begnügen. Dies ist die σ – Algebra der Borelmengen. Diese sind ein Beispiel einer erzeugten σ – Algebra. Anschließend wurde Satz 1.4.1 erläutert, man wählt \mathcal{A} als Schnitt über alle σ – Algebra, die \mathcal{M} enthalten, es wurde nicht bewiesen, dass das eine σ – Algebra gibt. Beispiel 2 auf Seite 17 wurde behandelt.

3 Kapitel 1.5 Borelmengen

Definition der Borelmengen, Satz 1.5.2 ohne Beweis. Beweis \mathbb{Q} ist eine Borelmenge: Für jedes $x \in \mathbb{R}$ ist $\{x\}$ eine Borelmenge, da

$$\{x\} = \bigcap_{n=1}^{\infty} [x - 1/n, x + 1/n]$$

(abzählbar unendliche Durchschnitte führen nicht aus einer σ – Algebra heraus). Damit ist dann aber auch $\mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{q\}$ als abzählbare Vereinigung von Borelmengen eine Borelmenge.