DEVOIR À LA MAISON N°1

EXERCICE 1.

On considère une suite (x_n) de réels telle que pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} x_k^3 = \left(\sum_{k=0}^{n} x_k\right)^2$$

- **1.** Montrer que x_0 ne peut prendre que deux valeurs que l'on précisera.
- 2. Que peut valoir x_1 ? On distinguera les cas suivant les deux valeurs possibles de x_0 .
- 3. On pose $S_n = \sum_{k=0}^n x_k$ pour tout $n \in \mathbb{N}$. Quelles sont les valeurs possibles de S_0 ? S_1 ?
- **4.** Montrer que, de manière générale, pour tout $n \in \mathbb{N}$, il existe $m \in \mathbb{N}$ tel que $S_n = \frac{m(m+1)}{2}$.

EXERCICE 2.

On considère une application f de \mathbb{N} dans \mathbb{N} telle que

$$\forall (m, n) \in \mathbb{N}^2, \ f(m^2 + n^2) = f(m)^2 + f(n)^2$$

et $f(1) \neq 0$.

- **1.** Calculer f(0) et f(1).
- **2.** En déduire successivement f(2), f(4), f(5), f(8) et f(9).
- **3.** Calculer f(3), f(6) et f(10).
- **4.** Calculer f(50) et en déduire f(7).
- **5.** En décomposant 125 de deux façons comme somme de deux carrés, calculer f(11). De même, calculer f(12) en considérant 145.
- **6.** Que peut-on raisonnablement conjecturer sur la valeur de f(n) pour $n \in \mathbb{N}$ quelconque ? Prouvez votre conjecture.

On pourra remarquer que

$$(2n+1)^2 + (n-2)^2 = (2n-1)^2 + (n+2)^2$$
$$(2n+2)^2 + (n-4)^2 = (2n-2)^2 + (n+4)^2$$

EXERCICE 3.

On pose $j=e^{\frac{2i\pi}{3}}$ et on considère l'application

$$P: \left\{ \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & z^3 + \alpha z^2 + \beta z \end{array} \right.$$

1

où $(\alpha,\beta)\in\mathbb{C}^2.$

1. Que vaut $1 + j + j^2$?

http://lgarcin.github.io

- **2.** Montrer que $P(1) + P(j) + P(j^2) = 3$.
- **3.** On note A_0 , A_1 et A_2 les points du plan d'affixes respectifs 1, j et j^2 . On se donne également B_1 et B_2 deux points du plan.

Montrer qu'il existe $k \in \{0,1,2\}$ tel que $A_k B_1 \cdot A_k B_2 \geqslant 1.$

On pourra utiliser le fait que le module d'une somme de complexes est toujours inférieur ou égal à la somme des modules de ces complexes (inégalité triangulaire).