Logikai függvények egyszerűsítése

Term

A logikában azon szimbólumokat, melyeket állandókból, változókból, vagy függvényekből állítunk elő, termeknek nevezzük.

Minterm

Azon logikai függvények, szabályos alakjának független változóit hívjuk így, amelyek között ÉS kapcsolat áll fenn. Pl.: A•B•C

Maxterm

Azon logikai függvények, szabályos alakjának független változóit hívjuk így, amelyek között logikai VAGY kapcsolat van. Pl.: A+B+C

Ponált

Állítás: A

Negált

Tagadás: **A**

Diszjunktív normál (kanonikus) forma (alak)

Az "ÉS" kapcsolatok "VAGY" kapcsolatai: A•B+A•C+ B•C

Konjuktív normál (kanonikus) forma (alak)

A "VAGY" kapcsolatok "ÉS" kapcsolatai: (A+B)•(C+D)

Karnaugh-tábla

A Karnaugh-tábla az igazságtáblázat "célszerűen átalakított", mintermes változata. A változókat a tábla szélein tüntetjük fel, és a hozzájuk tartozó 0 illetve 1 értékek a mellettük lévő sorokra, ill. oszlopokra vonatkoznak. Így minden változó kombinációnak egy-egy elemi négyzetet feleltetünk meg.

A "0" a tagadást, az "1" az állítást jelenti, a sorrend kötött (00, 01, 11, 10)!

Kétváltozós Karnaugh-tábla (4 rekesz)

Háromváltozós Karnaugh-tábla (8 rekesz)

B	C 00	01	11	10
0	ĀBĒ	ĀĒC	ĀBC	ĀBĒ
1	ABC	ABC	ABC	ABĒ
				8

Négyváltozós Karnaugh-tábla (16 rekesz)

Veitch-tábla (mintermes)

Sokban hasonlít a Karnaugh-táblához, azokban a sorokban és oszlopokban, ahol vonalka jelölés (súlyozás) van, a független változó "l"értékű. A cellákban a decimális számokat úgy kapjuk, hogy a Karnaug-tábla éleinél lévő bináris értékeket átváltjuk. Pl.: a jobb alsó cella ABCD sorrendben 1010, ami decimálisan 10.

(Alkalmaznak maxtermes Veitch-táblát is, ott máshol vannak a súlyozások!)

Igazságtáblázatból Karnaugh-tábla

Igazságtáblázatból Karnaugh-táblát úgy készítünk, hogy ahol az igazságtáblázatban a kimeneti érték "Y=1", azt a cellát kikeressük a táblán, és oda "1" írunk.

Diszjunktív normál formájú egyenletből Karnaugh-tábla

Első lépésként, ha az egyenlet nem teljes, azt ki kell egészíteni! Ha valamely változó nem szerepel valamelyik mintermben, kiegészítjük a ponált és a negált változatával is külön-külön termben.

$$F^4 = \overline{A}B\overline{C}D + \overline{A}BCD + \overline{A}BCD + \overline{A}B\overline{C}D + \overline{A}B\overline{C} + \overline{A}BD + BCD + \overline{A}\overline{C}D$$

A fenti egyenletben az utolsó három term csak három változós, így azokat kiegészítjük:

$$\overline{A}B\overline{C}D + \overline{A}BCD + \overline{A}BCD + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D$$

Ebből már elkészíthető a tábla, kikeressük a mintermek celláit a Karnaugh-táblán, és oda "1"írunk.

AB CI	000	01	11	10
00	1			1
01	1	1	1	1
11	1	1	1	1
10		1	1	

Karnaugh-táblás egyszerűsítés

Az egyszerűsítés lényege, hogy szimmetrikus párokat, négyeseket, nyolcasokat keresünk, ezeket hurkokkal összejelöljük. Ha egy ilyen hurokban valamely változó "1" és "0" értéke is szerepel, az kiesik, a maradékot leírjuk. Egy "1"-es több csoportban is szerepelhet.

Az egyszerűsített megoldás: $F^4 = AD + \overline{A}\overline{D} + B$

Példák egyszerűsítésekre

Feladatok

Ábrázoljuk a következő függvényeket Karnaugh-táblán, majd egyszerűsítsük!

$$Q = A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}\overline{B}C + AB\overline{C} \quad Q = A\overline{B}C + \overline{A}\overline{B}C + \overline{A}\overline{B}C + A\overline{B}C$$

$$Q = A\overline{B} + \overline{A}\overline{B}\overline{C} + AB \quad Q = \overline{A}C + BC + A\overline{B}C \qquad Q = A\overline{B} + \overline{A}\overline{C} + A\overline{B}\overline{C}$$

$$Q = \overline{A}B\overline{C} \qquad Q = A\overline{B} + BD + \overline{A}C \qquad Q = ABCD + \overline{A}B + C\overline{D}$$

TIPP! Androidos okostelefonra ingyenesen letölthető a "**BOOLE**" alkalmazás, ami átváltja a mintermes alakot maxtermesre, és vissza, leegyszerűsít, igazságtáblázatot, Karnaugh-táblát készít.