Travail écrit 1: Système Numérique I

2017/2018

Filière: Télécommunication

Classe: T-2a, T-2d

Date: 10 novembre 2017, 13:00 à 14h35

Professeur: Fabio Cunha

Nom et prénom : Zambon Yanick

Points: $\frac{23}{725}$ Note: 5.9

Problème 1: Machine d'état

Soit le diagramme temporel (chronogramme) d'un générateur d'horloges ci-dessous :

a) Dessinez la machine d'état pour réaliser ce générateur d'horloge, description de chaque état ainsi que les conditions de transition entre les états.

5/ 5 pts

b) Ecrivez le code VHDL de cette machine. La description VHDL de ce système séquentiel doit être décomposée en trois parties, selon le modèle vu en cours.

5/5 pts

Problème 2: Universal Shift Register

Soit, l'Universal Shift Register suivant :

Avec la table de vérité suivante :

RESET	CTRL	D	CLK	Q3+ Q2+ Q1+ Q0+	Remarque
1	Х	Х	Х	0000	Zėro
0	00	Х	1	Q3 Q2 Q1 Q0	Maintien
0	01	Х	1	Q2 Q1 Q0 Q3	Décalage à droite
0	10	Х	1	Q0 Q3 Q2 Q1	Décalage à gauche
0	11	D3 D2 D1 D0	1	D3 D2 D1 D0	Chargé valeur

Vous devez:

a) Dessiner à l'aide de flip-flop, portes logiques (AND, OR...) et de fonctions combinatoires standards (Mux, Demux, Shift, Concaténation...) un schéma électronique de ce composant

5/ 5 pts

b) Écrire le code VHDL du composant Universal Shift Register

3.5/5 pts

Fabio Cunha 2/6 TE1.docx

Problème 3: Signal périodique

Soit le signal périodique suivant à générer :

Si Enable_i = '0', alors la sortie D_o se bloque sur sa dernière valeur.

a) Écrivez le code VHDL du composant Signal_Generator

TE1.docx

	1 18
	0

Zambon Yawich T2a

dt10, dt29

Roblène 1

Seo évérenoto (chargement d'état) ont lieu our le flore descendant de l'horlège (c/K20n-1)

Etal 1: Séquence où Mal hoots CKLo vout 0 et CK2-0 vout 1.

& Séquence de 10 cyclo dons note agotine.

Etat2: Etak de Konsition arte l'Etat1 de l'Etat2, dure un cycle i Ck1_0 = ck2_0 = 'D' V

Etat3: Séparce de 10 cycles invensée por copport à l'Etat1: CK1_0=1 de ck2_0='0' ~

b) library IEEE;

use IEEF, at d-logic_ 1164. all,

entity clock-generator is

port (alle 200-1, the is! in std-layer, recet non spécific (mois plus joli! ok1-0, ck20-0; out otd-logie);

end alock generator!

anditecture Behower of dock-generator 15

Type state is (Etat1, Etat2, Etat3); Signal etat-present stat-futur ; state !

regione: process (de 20n-1, +st) (is)

if rst = '4' then

etat-present <= Etaty;

-- possion our le nom excect it pour le plane descendant! elsif falling-edge (alk 20 n = 1) then etal-present <= etal-fatin; V Très bien

and if;

end process,

