

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES

PATENTAMT

(12) Offenlegungsschrift

(10) DE 197 51 391 A 1

(5) Int. Cl. 6:

C 02 F 1/50

C 02 F 1/72

A 23 L 3/3508

A 23 B 7/10

A 23 B 4/12

(21) Aktenzeichen: 197 51 391.3

(22) Anmeldetag: 20. 11. 97

(23) Offenlegungstag: 23. 7. 98

(30) Unionspriorität:

784976 17. 01. 97 US

(71) Anmelder:

Ecolab Inc., St. Paul, Minn., US

(71) Vertreter:

Hafner und Kollegen, 90482 Nürnberg

(72) Erfinder:

Hei, Robert D.P., Oakdale, Minn., US; Gutzmann, Timothy A., Eagan, Minn., US; Lokkesmoe, Keith D., Savage, Minn., US; Bennett, Scott P., Stillwater, Minn., US; Hei, Kimberely Y.L. Person, Oakdale, Minn., US

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Automatisiertes Verfahren zur Hemmung von mikrobiellem Wachstum in wässrigen Lebensmitteltransport- oder Verarbeitungsströmen

(57) Gegenstand der Erfindung ist ein Verfahren zur Verhinderung von mikrobiellem Wachstum in wässrigen Strömen durch Zufuhr einer C₂-C₁₂-Percarbonsäure oder eines Gemisches aus derartigen Säuren zum wässrigen Strom sowie ein automatisiertes Dosiersystem für die Percarbonsäuren, das auf einem Zusammenhang zwischen dem Oxidations-Reduktions-Potential und den antimikrobiellen Niveaus des wässrigen Stroms basiert. Das erfindungsgemäße Verfahren ist im allgemeinen auf wässrige Ströme anwendbar, die bei beliebigen Anwendungen eingesetzt werden, wie z. B. die Anwendung von Strömen zum Transport von Lebensmittelprodukten, z. B. Früchten oder Gemüsen, in die Verarbeitungsumgebung und durch die verschiedenen Verarbeitungsschritte.

DE 197 51 391 A 1

DE 197 51 391 A 1

Beschreibung

Gebiet der Erfindung

5 Die Erfindung betrifft die Bekämpfung von mikrobiellem Wachstum in wäßrigen Strömen. Insbesondere betrifft die Erfindung die Bekämpfung von mikrobiellem Wachstum in zum Transport oder zur Verarbeitung von Lebensmittelprodukten in Verarbeitungsgebungen, wie z. B. Früchten, Gemüsen und anderen Lebensmittelprodukten, beispielsweise Pilzen, Geflügel, Tomaten und dergleichen, verwendeten wäßrigen Strömen.

10 Hintergrund der Erfindung

Das Aufkommen der Lebensmittelverarbeitung hat schon vor langer Zeit sowohl die Verfügbarkeit von Lebensmitteln als auch die kundenseitige Erwartung einer großen Vielfalt von hochwertigen Lebensmittelprodukten revolutioniert. Bei der Lebensmittelverarbeitung bediente man sich anfangs Methoden wie Ländosen und später Kühlen, Einfrieren, Gefrieren trocknen sowie Vakuumverpacken. Die Anwendung von verschiedenen Konservierungssystemen auf Bestandteil- und Verarbeitungsbasis führte zu einer breiteren Verfügbarkeit von hochwertigen Lebensmitteln.

15 Die Preisgestaltung und die Verfügbarkeit von Lebensmitteln unterliegt wiederum normalerweise verschiedenen Beschränkungen einschließlich Umweltgefahren sowie natürlichen Witterungszyklen, Auswahl- und Verarbeitungsgesichtspunkten und gesamtirtschaftlichen und Vermarktungsbeschränkungen. Wegen der großen Lebensmittelmenge, die jährlich ausgewählt und verarbeitet wird, sowie der relativen Unkontrollierbarkeit von Faktoren wie Umwelt und Markt strebt man danach, die Auswahl und Verarbeitung von Lebensmitteln ökonomischer zu gestalten. Eine Möglichkeit zur Verarbeitung einer großen Menge von Lebensmitteln, beispielsweise Früchten und Gemüsen, besteht darin, daß man diese verschiedenen Lebensmittel nach der Auswahl mit Hilfe eines wäßrigen Mediums transportiert und sie so durch verschiedene Verarbeitungsschritte und Umgebungen führt.

20 25 Beispielsweise können bei bestimmten Anwendungen frische Früchte und Gemüse mittels Lebensmittelhandhabungseinrichtungen, die in der Verarbeitungsanlage eingesetzt werden, durch Wasserströme geführt werden. Nach der Ernte werden Früchte und Gemüse einem Schwimmensystem zugeschafft, wobei das Wasser als Transport- und als Reinigungsmedium dient. Wasser kann auch zum Tragen oder Transportieren der Früchte und Gemüse von einer Abladestelle zu einem Endlager-, Verpackungs- oder Verarbeitungsort verwendet werden. Wasser kann beim Transport ein Lebensmittelstück von einem Anfangsort durch eine Reihe von ein wenig getrennten Stufen zu einer Endstation tragen, an der das Produkt aus dem Wasser genommen und verpackt wird. Das Wasser kann in jeder Stufe eine varierende organische Beladung in Form einer beliebigen Zahl von Ablagerungen und löslichen Materialien aufweisen. Dieses Wasser wird im allgemeinen recycelt.

30 35 Wasser kann auch bei einigen Verarbeitungsstufen zur weiteren Reinigung, zum Kühlen, Erwärmen, Kochen oder zur anderweitigen Modifizierung des Lebensmittels auf irgendeine Art und Weise vor dem Verpacken eingesetzt werden. Das wie oben definierte Prozeßwasser wird manchmal nur einmal verwendet und dann verworfen. Oftmals wird jedoch ein großer Teil dieses Prozeßwassers wiederverwendet und unterliegt daher organischer und mikrobieller Kontamination. Bei einigen Stufen wird das Prozeßwasser auch zum Transport der Lebensmittel verwendet. Bei anderen Stufen kann es sich bei dem Prozeßwasser um einen separaten Strom handeln, der getrennt vom Transportwasser recycelt wird. 40 In jedem Fall wird das Prozeßwasser mit organischen Stoffen aus den Lebensmitteln verunreinigt, die im Wasser Nährstoffe für mikrobielles Wachstum liefern. Als Beispiele für verschiedene Arten von Prozeßwasser seien Gemüsewaschflüssigkeiten, Gießsekülleräder, Geflügelmühlflüssigkeiten und Fleischwaschflüssigkeiten genannt.

45 50 Angesichts der Beschaffenheit der Lebensmittel sowie der Gegenwart von Ablagerungen und löslichen Materialien können das Wasser, die Schwimmianlage und andere Transport- oder Verarbeitungseinrichtungen dem Wachstum unerwünschter Mikroorganismen ausgesetzt sein. Diese Mikroorganismen sind im allgemeinen bei den Lebensmitteln, dem Wasser und der Schwimmianlage unerwünscht und können auf allen mit Wasser in Berührung stehenden Flächen zum Aufbau von Schleim oder Biofilm führen, welcher durch häufiges Reinigen entfernt werden muß. Da das Transportwasser, das Prozeßwasser und die Einrichtungen mit Lebensmittelprodukten in Berührung stehen, wirkt die Bekämpfung von unerwünschten Mikroorganismen außerdem bestimmte Probleme auf, die von einer Mikroorganismen enthaltenden, mit Lebensmitteln in Berührung stehenden Umgebung verursacht werden.

55 60 In der vorliegenden Diskussion wurde angenommen, daß das Transport- oder Prozeßwasser vor dem Verpacken mit den Lebensmitteln in Berührung gekommen ist. Es gibt aber auch wäßrige Ströme, die zur Verarbeitung von bestimmten Lebensmitteltypen nach dem Verpacken verwendet werden. Einige Lebensmittel werden oftmals erwärmt, gekühlt oder anderweitig verarbeitet, nachdem sie in Verpackungen aus Metall, Glas oder Kunststoffbehälter, beispielsweise Flaschenbier-Pasteurisierapparate, Dosenkochapparate oder Dosenküller, eingebracht worden sind. In allen Fällen tritt eine Verunreinigung der wäßrigen Ströme durch Lebensmittel auf, die auf das Austreten aus defekten Packungen oder Verschütten auf der Außenseite der Packung während des Verpackungsvorgangs zurückzuführen ist. Diese Prozeßströme verpackter Lebensmittel sind daher ähnlich wie das vor der Verpackung eingesetzte Prozeß- und Transportwasser ebenfalls unerwünschtem mikrobiellem Wachstum und hohen Konzentrationen organischer Stoffe ausgesetzt.

65 70 Ein antimikrobielles Mittel oder eine antimikrobielle Verbindung, das bzw. die in einem derartigen System eingesetzt wird, besitzt im Idealfall neben seiner antimikrobiellen Wirksamkeit noch einige andere wichtige Eigenschaften. Die Verbindung bzw. das Mittel sollte auf das Lebensmittel keine antimikrobielle Restwirkung ausüben. Restwirkung impliziert die Gegenwart eines Films aus antimikrobiellem Material, das eine fortgesetzte antimikrobielle Wirkung ausübt, die möglicherweise ein weiteres Spülen des Lebensmittelprodukts erforderlich macht. Das antimikrobielle Mittel sollte vorzugsweise auch geruchsfrei sein, damit keine unerwünschten Gerüche auf die Lebensmittel übertragen werden. Bei direkter Berührung mit dem Lebensmittel sollte das antimikrobielle Mittel auch aus Lebensmitteladditivzusammensetzungen zusammengesetzt sein, die weder bei Kontamination auf das Lebensmittel noch bei unbeabsichtigtem Verschlucken auf Menschen wirken. Darüber hinaus sollte das antimikrobielle Mittel vorzugsweise aus natürlich vorkommenden oder

DE 197 51 391 A 1

harmlosen Bestandteilen zusammengesetzt sein, die mit der Umgebung chemisch kompatibel sind und keinen Grund zur Besorgnis hinsichtlich toxischer Rückstände im Wasser darstellen.

Früher wurden Transport- und Prozeßwassergeräte im allgemeinen mit Natriumhypochlorit und Chlordioxid behandelt. Diese Substanzen verhindern im allgemeinen das unerwünschte Wachstum von Mikroorganismen. Man muß jedoch große Mengen dieser auf Chlor basierenden antimikrobiellen Mittel einsetzen, da sie im allgemeinen von der hohen organischen Beladung sowohl in den Früchten oder Gemüsen als auch im Schmutz schnell verbraucht werden. Beim Verbrauch zersetzen sich Verbindungen wie Chlordioxid ferner unter Bildung von Nebenprodukten, wie z. B. Chloriten und Chloraten, wohingegen Hypochlorit Trichlormethane produziert, die schon in sehr geringen Konzentrationen toxisch sein können. Schließlich ist Chlordioxid ein toxisches Gas mit einer zulässigen Luftkonzentration von 0,1 ppm. Da ClO_2 -Exposition oft zu Kopfschmerzen, Übelkeit und Atmenproblemen führt, sind beim Einsatz von ClO_2 teure und komplizierte Sicherheitsvorrichtungen und -geräte erforderlich.

Für verschiedene antimikrobielle Anwendungen wurden auch schon Iodophore als antimikrobielle Mittel eingesetzt. Iodophorverbindungen neigen jedoch zur Zersetzung oder können bei Verwendung in einem wäßrigen Medium durch Verdampfung verlorengehen. Somit ist für eine langfristige Wirkung eine hohe Iodophorkonzentration erforderlich.

Im allgemeinen wird im Stand der Technik von der Verwendung von Percarbonsäuren als antimikrobielle Mittel in wäßrigen Strömen abgeraten, da man hinsichtlich der Stabilität der Verbindungen in Gegenwart hoher Konzentrationen organischer Stoffe Bedenken hatte.

Infolgedessen besteht in der lebensmittelverarbeitenden Industrie Bedarf an einem Mittel zum Transport und zur Verarbeitung von Lebensmitteln, das auch die Schmutz- und die mikrobielle Beladung im wäßrigen Strom steuert, ohne daß man dabei hohe Konzentrationen von antimikrobiellen Mitteln, wie z. B. chlorierten Verbindungen und anderen halogenierten Bestandteilen, einsetzen muß.

Kurze Darstellung der Erfindung

Gegenstand der Erfindung ist ein Verfahren zur Verhinderung von mikrobiellem Wachstum in wäßrigen Strömen, bei dem man den wäßrigen Strom eine Percarbonsäure oder ein Gemisch aus derartigen Säuren zuführt. Bei der Zufuhr von Percarbonsäuren kommt ein automatisiertes Dosier- und Steuersystem zum Einsatz.

Bei dem Verfahren werden zur Steuerung der Konzentration der Percarbonsäure in einem Produkt- oder Verpackungsschwimmensystem eine Oxidations-Reduktions-Potential-Sonde (ORP-Sonde) und ein ORP-Steuergerät, das mit einer Percarbonsäure-Dosierpumpe und Zeitgliedern gekoppelt ist, verwendet. Bei dem Verfahren steuert man nach einer Anfangszufuhr die Percarbonsäure in einem Schwimmensystem mit einem ORP-Steuergerät mit einer niedrigen und einer hohen Alarmkontakt-Einstellung. Die Erfindung beruht auf einem Zusammenhang zwischen einem "antimikrobiell wirksamen" Niveau an restlicher Percarbonsäure in einem Schwimmensystem und dem ORP dieses Systems.

Gegenstand der Erfindung ist demgemäß ein automatisiertes Verfahren zur Bekämpfung von mikrobiellem Wachstum in einem zum Transport oder zur Verarbeitung von Lebensmittelprodukten und verpackten Lebensmitteln verwendeten wäßrigen Strom, bei dem man den wäßrigen Strom mit einer antimikrobiell wirksamen Menge einer Percarbonsäure behandelte wobei diese Menge gesteuert wird, indem man den wäßrigen Strom bei einem Oxidations-Reduktions-Potential (ORP) zwischen etwa 280 und etwa 460 mV bezüglich einer Ag/AgCl-Referenzelektrode oder verzugsweise zwischen etwa 310 und 440 mV hält.

Gegenstand der Erfindung ist genauer gesagt ein automatisiertes Verfahren zur Bekämpfung von mikrobiellem Wachstum in einem zum Transport oder zur Verarbeitung von Lebensmittelprodukten und verpackten Lebensmitteln verwendeten wäßrigen Strom, bei dem man:

- dem wäßrigen Strom zunächst eine Percarbonsäure zusetzt, bis ein Oxidations-Reduktions-Potential (ORP) von mindestens 280 mV bezüglich einer Ag/AgCl-Referenzelektrode erreicht ist, und
- dem wäßrigen Strom kontinuierlich Percarbonsäure zusetzt, wobei der Zusatz durch ein ORP-Steuergerät gesteuert wird, das auf etwa 280 bis 460 mV bezüglich einer Ag/AgCl-Referenzelektrode eingestellt ist.

Das erfindungsgemäße Verfahren ist unerwarteterweise bei der Verhinderung des Wachstums von unerwünschten Mikroorganismen in Lebensmitteltransport- und -verarbeitungsgeräten wirksam. Der Peressigsäure-Verbrauch ist angehoben der organischen Beladung von Früchten oder Gemüsen als auch mikrobiellem Schmutz im Wasser unerwartet gering.

Das erfindungsgemäße Verfahren stellt ein antimikrobielles Mittel bereit, das sich zur Verwendung in Wasser für den Transport oder die Verarbeitung von Lebensmittelprodukten eignet, eine hohe antimikrobielle Wirksamkeit aufweist, bei Einnahme für den Menschen unbedenklich und außerdem umweltverträglich ist.

Wichtige Gesichtspunkte für das Verständnis der Bedeutung von antimikrobiellen Mitteln und Zusammensetzungen sind die Differenzierung zwischen mikrobizider und mikrobistatischer Wirkung, die die Wirksamkeit beschreibenden Definitionen und die offiziellen Laborvorschriften zur Bestimmung dieser Wirksamkeit. Antimikrobielle Zusammensetzungen können zwei Arten von mikrobiellen Zellschäden hervorrufen. Bei der ersten handelt es sich um eine wahrlich lerale, irreversible Wirkung, die zu einer völligen Zerstörung oder Funktionsunfähigkeit mikrobieller Zellen führt. Die zweite Art von Zellschäden ist insoffern reversibel, als der Organismus sich nach Entfernung des Mittels wieder vermehren kann. Die erstgenannte Art wird als bakterizid und die letztgenannte Art als bakteriostatisch bezeichnet. Desinfektionsmittel sind definitionsgemäß Mittel mit antibakterieller oder bakterizider Wirkung. Im Gegensatz dazu wird ein Konservierungsmittel im allgemeinen als Inhibitor oder bakteriostatische Zusammensetzung beschrieben.

Kurze Beschreibung der Zeichnungen

Fig. 1 zeigt eine graphische Darstellung der Ergebnisse des Ausführungsbeispiels 3.

Fig. 2 und 3 sind graphische Darstellungen der Ergebnisse des Ausführungsbeispiels 4.

Fig. 4 zeigt eine schematische Darstellung eines in Verbindung mit Ausführungsbeispiel 5 verwendeten Schwimmensys-

stems.

Fig. 5 zeigt eine graphische Darstellung bestimmter Ergebnisse des Ausführungsbeispiels 5.
Fig. 6 zeigt eine schematische Darstellung des automatisierten Dosier- und Steuersystems.
Fig. 7 zeigt ein Schaltbild der Komponenten des Steuerpults gemäß Fig. 6.

Nähere Beschreibung der Erfindung

Im folgenden wird das automatisierte Dosierverfahren, durch das eine antimikrobiell wirksame Konzentration einer Percarbonsäurezusammensetzung zur Verhinderung von mikrobiellem Wachstum in wässrigen Strömen zugeführt wird, näher beschrieben.

Carbonsäure

Neben anderen Bestandteilen enthält die Percarbonsäurezusammensetzung eine Carbonsäure. Carbonsäuren haben allgemein die Formel R-COOH, worin R für beliebige verschiedene Gruppen stehen kann, u. a. aliphatische Gruppen, alicyclische Gruppen, aromatische Gruppen, heterocyclische Gruppen, die alle gesättigt oder ungesättigt sowie gegebenenfalls substituiert sein können. Es gibt auch Carbonsäuren mit einer, zwei, drei oder mehr Carboxylgruppen.

Carbonsäuren machen wässrige Zusammensetzungen, in denen sie enthalten sind, im allgemeinen sauer, da das Wasserstoffatom der Carboxylgruppe aktiv ist und als Kation auftreten kann. Der in der in Rede stehenden Zusammensetzung vorliegende Carbonsäure-Bestandteil fungiert infolge der Gegenwart des aktiven Wasserstoffatoms bei Kombination mit wässrigem Wasserstoffperoxid im allgemeinen als antimikrobielles Mittel. Außerdem hält der Carbonsäure-Bestandteil bei der Erfindung die Zusammensetzung bei einem sauren pH-Wert.

Für den Einsatz, bei dem erfindungsgemäßen Verfahren eignen sich generell diejenigen Carbonsäuren, die Percarbonsäuren enthalten. Percarbonsäuren haben allgemein die Formel R(CO₂H)_n, worin R für eine Alkyl-, Arylalkyl-, Cycloalkyl-, aromatische oder heterocyclische Gruppe und n für eins, zwei oder drei steht. Man bezeichnet sie, indem man der Stammcarbonsäure das Präfix Peroxy voranstellt.

Die Herstellung von Percarbonsäuren kann durch direkte, säurenkatalysierte Gleichgewichtseinstellung von 30 98gew.-%igem Wasserstoffperoxid mit der entsprechenden Carbonsäure, durch Autoxidation von Aldehyden oder aus Säurechloriden oder Carbonsäureanhydrienen mit Wasserstoff- oder Natriumperoxid erfolgen.

Als Percarbonsäuren, die sich zur Verwendung bei der verliegenden Erfindung eignen, kommen u. a. C₂-C₁₂-Percarbonsäuren in Betracht, wie z. B. Peressigsäure, Perpropionsäure, Perbuttersäure, Peroctansäure, Perglykolsäure, Perglutaräure, Perbernsteinsäure, Pernilchsäure, Perzitronensäure, Perdecansäure oder deren Gemische. Es wurde gefunden, daß diese Percarbonsäuren in wässrigen Strömen gute antimikrobielle Wirkung mit guter Stabilität liefern.

Bei dem erfindungsgemäßen Verfahren wird auch eine Kombination von Peressigsäure mit anderen Percarbonsäuren, vorzugsweise den obengenannten und insbesondere Peroctansäure, verwendet. Es wurde gefunden, daß diese Percarbonsäuren-Kombination in Gegenwart von hohen organischen Beladungen bevorzugte antimikrobielle Wirksamkeit und Stabilität liefert. Im Desinfektionsmittel kann die Konzentration von beispielsweise Peroctansäure im allgemeinen im Bereich von etwa 10 Gew.-% bis 90 Gew.-% und bevorzugt von etwa 10 Gew.-% bis 20 Gew.-% liegen. Die Peressigsäurekonzentration kann im Bereich von etwa 10 Gew.-% bis 90 Gew.-% und bevorzugt von etwa 80 Gew.-% bis 90 Gew.-% liegen.

Nach der ganz besonders bevorzugten Ausführungsform setzt man bei dem erfindungsgemäßen Verfahren Peressigsäure ein. Peressigsäure kann nach beliebigen, dem Fachmann bekannten Verfahren hergestellt werden, u. a. aus Acetaldehyd und Sauerstoff in Gegenwart von Cobaltacetat. Durch Vereinigen von Essigsäureanhydrid, Wasserstoffperoxid und Schwefelsäure ist eine 50%ige Peressigsäure-Lösung erhältlich. Weitere Verfahren zur Formulierung von Peressigsäure werden u. a. in der US-PN 2,833,813 beschrieben, auf die hiermit ausdrücklich Bezug genommen wird.

Wasserstoffperoxid

Die erfindungsgemäße antimikrobielle Zusammensetzung kann zusätzlich auch noch einen Wasserstoffperoxid-Bestandteil enthalten. Wasserstoffperoxid liefert in Verbindung mit der Percarbonsäure trotz der Gegenwart hoher Beladungen von organischen Ablagerungen eine überraschend starke antimikrobielle Wirkung gegen Mikroorganismen. Daneben kann Wasserstoffperoxid eine Sprudelwirkung liefern, durch die man es aufbringt, berieselst werden können. Wasserstoffperoxid übt nach dem Aufbringen eine mechanische Spülwirkung aus, durch die die Applikationsoberfläche weiter gereinigt wird. Ein weiterer Vorteil von Wasserstoffperoxid besteht darin, daß diese Zusammensetzung bei Verwendung und Zersetzung lebensmittelverträglich ist. Beispielsweise zersetzen sich Kombinationen von Peressigsäure und Wasserstoffperoxid zu Essigsäure, Wasser und Sauerstoff, Produkten, die allesamt lebensmittelverträglich sind.

Es kommen zwar viele Oxidationsmittel in Betracht, jedoch ist im allgemeinen Wasserstoffperoxid aus einer Reihe von Gründen bevorzugt. Nach dem Aufbringen des Germizids aus H₂O₂ und Peressigsäure bleiben nur Wasser und ein saurer Bestandteil zurück. Durch die Zersetzung dieser Produkte auf der Applikationsoberfläche, wie z. B. einer Schweißanlage, werden weder das Verfahren noch die dabei transportierten Lebensmittelprodukte beeinträchtigt.

Die Wasserstoffperoxid-Konzentration in der bei dem erfindungsgemäßen Verfahren verwendeten Zusammensetzung liegt in allgemeinen im Bereich von etwa 1 Gewichtsprozent bis etwa 50 Gewichtsprozent, bevorzugt von etwa 3 Gewichtsprozent bis etwa 40 Gewichtsprozent und ganz besonders bevorzugt von etwa 5 Gewichtsprozent bis etwa 30 Gewichtsprozent. Diese Wasserstoffperoxid-Konzentration ist ganz besonders bevorzugt, da sie eine optimale antimikrobielle Wirkung liefert.

Diese Wasserstoffperoxid-Konzentrationen können erhöht oder erniedrigt werden, ohne dabei den Schutzbereich der Erfindung zu verlassen.

DE 197 51 391 A 1

Hilfsmittel

Die erfindungsgemäße antimikrobielle Zusammensetzung kann zusätzlich auch noch beliebige Hilfsmittel enthalten. In einzelnen kann die erfindungsgemäße Zusammensetzung neben beliebigen Bestandteilen, die der Zusammensetzung zugesetzt werden können, Stabilisatoren, Netzmittel sowie Pigmente oder Farbstoffe enthalten.

Der erfindungsgemäßen Zusammensetzung kann man zur Stabilisierung der Persäure und des Wasserstoffperoxids und zur Verhinderung der vorzeitigen Oxidation dieses Bestandteils in der erfindungsgemäßen Zusammensetzung Stabilisatoren zusetzen. Als Stabilisatoren für die Erfindung eignen sich im allgemeinen Chelatbildner oder Maskierungsmittel, u. a. Chelatbildner vom Alkyldiamin-Polyessigsäure-Typ, wie z. B. EDTA (Ethylenediamintetraacetat-tetranatriumsalz), Stabilisatoren vom Acryl- und Polyacrylsäure-Typ, Phosphonsäure und Chelatbildner vom Phosphonat-Typ. Bevorzugt Maskierungsmittel sind u. a. Phosphonsäuren und Phosphonatsalze einschließlich 1-Hydroxyethyliden-1,1-diphosphonsäure ($\text{CH}_3\text{C}(\text{PO}_3\text{H}_2)_2\text{OH}$), Amino[tri(methylenphosphonsäure)] $[(\text{CH}_2\text{PO}_3\text{H}_2)_2]$, (Ethylenediamintetramethylenphosphonsäure)], 2-Phosphobutan-1,2,4-tricarbonsäure sowie die Alkylmetallsalze, Ammoniumsalze oder Alkyloxyammoniumsalze, wie z. B. Mono-, Di- oder Tetraethanolaminsalze. Man setzt den Stabilisator in einer Konzentration im Bereich von etwa 0 Gewichtsprozent bis etwa 20 Gewichtsprozent, bezogen auf die Zusammensetzung, bevorzugt von etwa 0,1 Gewichtsprozent bis etwa 10 Gewichtsprozent, bezogen auf die Zusammensetzung, und ganz besonders bevorzugt von etwa 0,2 Gewichtsprozent bis 5 Gewichtsprozent, bezogen auf die Zusammensetzung, ein.

Die bei dem erfindungsgemäßen Verfahren verwendete Zusammensetzung kann nötigenfalls zusätzlich auch noch weitere Bestandteile enthalten, wie sie zur Unterstützung der Entschäumung notwendig sind.

Beispiele für erfindungsgemäß zu verwendende Entschäumer sind generell Siliciumoxid und Silikone; aliphatische Säuren oder Ester; Alkohole; Sulfate oder Sulfonate; Amine oder Amide; halogenierte Verbindungen, wie z. B. Fluor-chlorkohlenwasserstoffe; pflanzliche Öle, Wachse, Mineralöle sowie deren sulfatierte Derivate; Fettsäureseifen, wie z. B. Alkali- und Erdalkalimetallseifen; Phosphate und Phosphatester, wie z. B. u. a. Alkyl- und alkalische Diphosphate und Tributylphosphate sowie deren Gemische.

Besonders bevorzugt sind im Hinblick auf die Anwendung des erfindungsgemäßen Verfahrens Entschäumer von Lebensmittelqualität. Bei einem der wirksameren Entschäumer hierfür handelt es sich um Silikone. Für Entschäumungsanwendungen kann man Silikone wie Dimethylsilikon, Glykolpolysiloxan, Methylphenolpolysiloxan, Trialkyl- oder Tetralkylsilane, Entschäumer aus hydrophobem Siliciumoxid und deren Gemische einsetzen. Als handelsübliche Entschäumer sind u. a. Silikone, wie z. B. Ardefoam® von Armour Industrial Chemical Company, bei dem es sich um ein in einer organischen Emulsion gebundenes Silikon handelt; Foam Kill® oder Kressco® von Krusabie Chemical Company, bei denen es sich um Entschäumer vom Silikon- und Nichtsilikon-Typ sowie Silikonester handelt; sowie Anti-Foam A® und DC-200™ von Dow Corning Corporation, bei denen es sich um Silikone mit Lebensmittelqualität handelt, allgemein erhältlich. Diese Entschäumer liegen im allgemeinen in einer Konzentration im Bereich von etwa 0 Gew.-% bis 5 Gew.-%, bevorzugt von etwa 0 Gew.-% bis 2 Gew.-% und ganz besonders bevorzugt von etwa 0 Gew.-% bis etwa 1 Gew.-%, vor.

Die Erfindung kann je nach Anwendung zusätzlich auch noch beliebige andere Bestandteile enthalten, die dem Fachmann bekannt sind und die Wirkung der vorliegenden Erfindung erleichtern können.

Die bei der Erfindung verwendete Zusammensetzung kann enthalten:

Zusammensetzung (Gew.-%)

	<u>Geeignet</u>	<u>Ausführ.</u>	<u>Bevorzugt</u>
Percarbon-säure	2-25	2-20	4-20
H_2O_2	1-45	5-35	7-30
Carbonsäure	1-70	3-55	5-45
Wasser	Rest	Rest	Rest

Anfangskonzentration im Transportwasser

<u>Bestandteil</u>	<u>Geeignet</u>	<u>Ausführ.</u>	<u>Bevorzugt</u>
Percarbon-säure	5-100 ppm	5-60 ppm	10-50 ppm
H_2O_2	5-500 ppm	5-300 ppm	5-250 ppm

Nach der Zufuhr des erfindungsgemäßen antimikrobiellen Mittels zu einem beliebigen, gegebenen Transport- oder

DE 19751391 A1

Prozeßstrom wird ein Bedarf an dem antimikrobiellen Mittel bestehen, der sich aus im Strom anwesenden Mikroben sowie anderem im Strom vorliegenden organischen oder anorganischen Material ergibt. Als allgemeine, die Erfindung nicht einschränkende Richtlinie findet man nach dem Bedarf beispielsweise die folgenden Konzentrationen.

	Restkonzentration (ppm) nach Bedarf			
	<u>Bestandteil</u>	<u>Geeignet</u>	<u>Ausführ.</u>	<u>Bevorzugt</u>
10	Percarbon- säure	1-85	1-45	5-30
15	H ₂ O ₂	1-490	1-290	1-240

Zwar kann die Konzentration des antimikrobiellen Mittels durch den Bedarf auf Null reduziert werden, jedoch sind im allgemeinen mindestens etwa 5 ppm Peressigsäure (POAA) zur Lieferung der gewünschten Wirksamkeit bevorzugt.

20 Erzeugung von Peroxysäuren

Man kann das erfindungsgenübe Verfahren auch unter Verwendung von Peroxsäure-Konzentraten in Gang setzen. In diesem Fall kann man die Percarbonatsäure entweder natürlich oder durch Kombination eines Wasserstoffperoxid-Konzentrats mit einem Carbonsäure-Konzentrat am Einsatzort erzeugen, wie z. B. bei dem Verfahren von Lokkesmoe et al. gemäß der am 16. Juni 1992 erteilten US-PS 5.122.538, auf die hiermit ausdrücklich Bezug genommen wird. In diesen Fall kann man die Zusammensetzung aus einem Wasserstoffperoxid-Konzentrat, das verschiedene Wasserstoffperoxid-Niveaus enthält, und Stabilisator gemäß der nachfolgenden Tabelle herstellen.

Konzentration (Gew.-%)

<u>Bestandteil</u>	<u>Geeignet</u>	<u>Ausführ.</u>	<u>Bevorzugt</u>
Wasserstoff- peroxid	5-70	15-70	25-60
Stabilisator	0-10	0-5	0,1-3
H ₂ O	20-95	25-85	37-75

Die beiden Konzentrate ergeben bei Kombination mit einer Carbonsäure eine Peroxycarbonsäure. Das Carbon-Säure-Konzentrat enthält im allgemeinen eine Carbonsäure in Wasser gemäß der nachfolgenden Tabelle.

45 Konzentration (Gew.-%):

<u>Bestandteil</u>	<u>Geeignet</u>	<u>Ausführ.</u>	<u>Bevorzugt</u>
Carbonsäure	50-100	65-100	80-100
Wasser	0-50	0-35	0-20

Automatisiertes Dosier- und Steuersystem

Bei dem erfundungsgemäßen automatisierten Verfahren verwendet man zur Regulierung um den wirksamen Bereich ein ORP-Steuergerät, Zeitglieder und Pumpsequenzen (siehe Fig. 6). Gezeigt ist ein grundlegender Aufbau zum Dosieren von Produkt in eine Produktverarbeitungsschwenmanlage. Steuerpult 1 enthält die Zufuhr-Zeitglieder, Relais, das ORP-Steuergerät und die Luftnagnetventile. Eine luftgetriebene Doppelmembranpumpe 2 dient zur Dosierung von Produkt aus der Produkttronne 3 in den Produktbehälter 4. Bei dem Behälter 4 kann es sich um eine Schwenmanlage, einen Tank oder einen Produktbehälter handeln. In Behälter 4 ist eine ORP-Sonde 5 entweder seitlich befestigt oder unten im Behälter angebracht.

Fig. 7 zeigt ein Schaltbild der im Steuerkasten enthaltenen Komponenten. Bei Betätigung eines Vorfüllschalters (siehe Betriebsschalterplan 20) liefern das Vorfüll-Zeitglied 21, das die Pumpenhubzahl bestimmt, das Vorfüll-Laufzeitglied 22, das die Gesamtvorfüllzeit festlegt und das Vorfüllzyklus-Zeitglied 23, das die Frequenz der Einspeisung reguliert, ei-

DE 197 51 391 A 1

nen vorbestimmten Zeitraum zur Zufuhr von so viel Produkt in einen Behälter, daß eine Ausgangskonzentration geliefert wird. Das Steuerpult 1 in Fig. 6 enthält ein ORP-Steuergerät 24, das in Fig. 7 gezeigt ist. Das Pult kann mit oder ohne ORP-Steuerung für hohe und niedrige Konzentration arbeiten. Soll das System mit ORP-Steuerung laufen, so werden die ORP-Einstellungspunkte für hohe Einstellung 25 und niedrige Einstellung 26 auf 460 mV bzw. 280 mV voreingestellt. Das ORP-Steuergerät kann sowohl die Anfangseinspeisung als auch die anschließende Ergänzungszufuhr einer Percarbonatsäure in einem Schwemmsystem steuern. Bei einem Versuch des Systems, bei einem ORP-Wert unter dem niedrigen Einstellpunkt 26 eine Zufuhr länger vorzunehmen als das voreingestellte Alarmzeitglied 27, so tritt ein Alarmzustand ein. Der Alarm hat einen normalerweise offenen (N.O.)-Kontakt 28 und einen normalerweise geschlossenen (N.C.)-Kontakt 29. Der normalerweise geschlossene Kontakt ist bei Nichtalarmzuständen geschlossen.

Die Zufuhr der Percarbonatsäure erfolgt mit einer Doppelmembranpumpe 2 (Fig. 6), die auf Einzel- oder T-Hub-Steuerung eingestellt ist. Der Lufteintritt zum Neben der Pumpe wird durch ein Luftmagnetventil 30 zugeführt, welches von einem primären An/Aus-Zykluszeitglied 23 ein Signal erhält. Das Zykluszeitglied wird entweder mit einem Signal von einem zur Zeitmessung der Zufuhr der Percarbonatsäure verwendeten Laufzeitglied 31 oder von den N.O.-Kontakten für Alarm bei niedrigen Niveaus eingeschaltet. Der für den Betrieb des Laufzeitglieds 31 erforderliche Strom wird durch die N.C.-Kontakte für den hohen Alarm zugeführt.

Während der anfänglichen Einspeisungsphase, bei der der Hintergrund-ORP-Wert der Schwemmanlage in der Regel 180-300 mV beträgt, schließen sich die N.O.-Kontakte für niedrigen Alarm direkt und versorgen das Primärzykluszeitglied 23 mit Strom, welcher die Doppelmembranpumpe 2 (Fig. 6) hebt, bis dem Alarm für niedriges Niveau entsprochen wird (z. B. 280 mV); zu diesem Zeitpunkt öffnen sich die N.O.-Kontakte, und die Stromzufuhr wird vom Laufzeitglied 31 gesteuert. Die Zusatzrate dieser anfänglichen Einspeisung ist verhältnismäßig schnell, z. B. etwa 25 bis 1500 ml pro Minute, da es zum Vorrüllen des gesamten Schwemmsystems verwendet wird, bei dem es sich um 2000 Gallonen oder mehr Gesamtprozeßbaustrag mit Percarbonatsäure handeln kann; d. h. 0 ppm bis ~10 ppm Restpercarbonatsäure. Gegebenenfalls kann ein Audio- oder visueller Alarm (nicht gezeigt) neben dieses primäre Zeitglied eingebaut werden, um falsche Einspeisung anzuzeigen. Dadurch könnte das gesamte System abgeschaltet werden und eine Überprüfung im Leerzustand oder eine erneute Einspeisung erforderlich gemacht werden.

In ähnlicher Weise speist das Laufzeitglied 31 mit einer Rate, die an die Schwemmanlagenfrischwasser-Ergänzungsrate angepaßt ist und daher in der Regel mit einer Zufuhrrate arbeitet, die etwa 5-50mal langsamer ist als die Anfangseinspeisung (z. B. in der Regel 2 bis etwa 150 ml pro Minute). Nach dem Erreichen des anfänglichen niedrigen Alarms läuft das Pumpensystem also über das Laufzeitglied 31 und führt dem Schwemmsystem kontinuierlich Percarbonatsäure zu, um einen Restwert der Percarbonatsäurekonzentration aufrechtzuerhalten. Bei diesem als Ergebnis erhaltenen stationären Zustand handelt es sich um den gewünschten Zustand. Wenn das ORP aufgrund von zu hoher Schmutz- und mikrobieller Beladung oder Wasserverdünnung zu irgendeinem Zeitpunkt während der Laufzeitglied-Zufuhr unter den eingesetzten niedrigen Alarmpunkt fällt, würde dieser Zustand das schnellere Vorrüllzeitglied 21 über einen eingestellten Zeitraum betätigen, um das Schwemmanlagen-Percarbonatsäureniveau anzuhoben. Dieser Nachfüllversuch des Systems dauert so lange, bis es über den unteren Grenzwert steigt oder die Alarmbedingung das System abschaltet, wenn es durch das Alarmzeitglied 27 definiert ist, d. h. wenn der niedrige Alarm des ORP-Steuergeräts aktiviert wird, wird auch das Alarmzeitglied 27 aktiviert, und das ORP muß innerhalb der eingestellten Zeit über das niedrige Alarmniveau steigen; ansonsten schaltet das System ab und aktiviert einen externen Alarm (nicht gezeigt).

Erreicht das Percarbonatsäure-Niveau das hohe Alarmniveau (z. B. 460 mV), öffnen sich die N.C.-Kontakte und unterbrechen so die Stromzufuhr zum Laufzeitglied und verhindern die Zufuhr der Percarbonatsäure. Sinkt das Percarbonatsäure-Niveau wieder unter den hohen Alarmeinstellungspunkt, so schließen sich die N.C.-Kontakte wieder, und das sekundäre Zykluszeitglied steuert die Percarbonatsäure-Zufuhrrate. Dadurch kann man den Peressigsäure-Restgehalt um den oberen eingestellten Punkt pendeln lassen.

Dieses Szenario gestattet die automatisierte Erhaltung eines zur Bekämpfung von mikrobiellen Populationen in Schwemmanlagens- und Verpackungswässern "wirksamen" Percarbonatsäure-Niveaus.

Ausführungsbeispiele

Die Erfindung wird nun anhand der folgenden Beispielen näher erläutert. Diese Beispiele sind nur zur Veranschaulichung verschiedener Formulierungen, Stabilitäten und Anwendungen der Erfindung gedacht und sollen diese in keiner Weise einschränken.

Ausführungsbeispiel 1

Zur Herstellung einer Vorratslösung von konzentrierter Peressigsäure (bzw. "POAA") zur Verwendung bei den Schwemmanlageversuchen wurden die folgenden Komponenten vereinigt.

Komponente	Gew.-%
Eissigsäure	43,85
Wasserstoffperoxid 35% ig	50,85
Dequest 2010 (60% aktiv) 1-Hydroxyethyliden-1,1-diphosphonsäure	1,5
H ₂ O	3,8

DE 197 51 391 A 1

Daraus ergab sich eine Zusammensetzung mit folgender Zusammensetzung.

	Gew.-%
Eissigsäure	32,0
H ₂ O ₂	11,1
Dequest 2010	0,90
H ₂ O	41,0
Peressigsäure	15,0

10

Ausführungsbeispiel 2

In diesem zweiten Ausführungsbeispiel wird der POAA-Soforthandlungsbedarf von 1- und 3%iger Tomatenlösung bestimmt. POAA in reinem Wasser (Kontrolle) wurde mit ähnlichen Verdünnungen in 1- und 3%iger Tomatenlösung verglichen. 15 Die Tomatenlösungen wurden durch Zerkleinern von frischen Tomaten in einer Küchenmaschine und Zusatz von 1 bzw. 3 Gew.-% des Breis zu dem Wasser hergestellt.

20

Tabelle 1

	<u>Kontrolle</u>	<u>1% To-</u>	<u>3% To-</u>
	<u>(ohne Tomaten)</u>	<u>maten</u>	<u>maten</u>
25 Mittl. POAA-Konz. (ppm)	111,8	112,25	111,0
30 Mittl. H ₂ O ₂ -Konz. (ppm)	65,2	65,3	64,7
Versuchszahl	3	2	1
35 Std.-Abw. (POAA)	0,61	0,21	--
Std.-Abw. (H ₂ O ₂)	0,10	0,14	--
40 Aktives Chlor (ppm) ¹	98,0	34,4	49,8

45

¹Hergestellt aus abgemessenen Mengen NaOCl-Konzentrat, die destilliertem Wasser zugesetzt wurden, um eine Zielkonzentration von 100 ppm [Cl] zu erreichen.

50

Es wurde keine anfängliche Abnahme der POAA-Konzentration festgestellt. Dieses Ergebnis war unerwartet, da POAA laut Literaturberichten in beträchtlichem Ausmaß mit erhöhten Niveaus organischer Stoffe reagieren soll. So berichteten beispielsweise Poffé et al. ("Disinfection of Effluents from Municipal Sewage Treatment Plants with Peroxy Acids", Z. 61, Bakt., Hyg., I. Abt., Orig. B167, 337-46 (1978)), daß sich niedrige POAA-Niveaus sofort nach Kontakt mit Lösungen mit einem biologischen Sauerstoffbedarf (Biological Oxygen Demand, BOD) von 170 mg O₂/Liter vollständig zersetzen. Eine 1%ige Tomatenlösung in Wasser hat einen BOD von etwa 300 mg/l, eine 3%ige Tomatenlösung dagegen einen BOD von etwa 900 mg/l. Tabelle 1 zeigt auch den bei Prüfung einer Natriumhypochlorit-Lösung auftretenden großen Verlust an aktivem Chlor.

60

Ausführungsbeispiel 3

65

Im folgenden findet sich eine Reihe von Stabilitätsversuchen, die auf Erbsen, Bohnen und Mais erweitert wurden. Die Stabilität einer Formel, die zum größten Teil aus Peressigsäure besteht (mit etwa 10 Gew.-% Peroctansäure, bezogen auf den Gesamtgehalt an Peressigsäure und Peroctansäure), in analog den Tomatenlösungen genauso Beispiel 2 hergestellten 1%igen Lösungen dieser Gemüse ist in den Tabellen 2-9 dargestellt. Die Anfangskonzentrationen betragen 70%, 100% und 90% der Kontroll-Lösungen (ohne Gemüse) für Mais, Bohnen bzw. Erbsen. Nach 3 Tagen waren bei diesen Gemüsen noch 31%, 47% bzw. 32% der Anfangskonzentration an Persäuren, wie z. B. POAA, übrig. Die Persäuren zeigten in Lösungen mit einer hohen Konzentration an organischem Material eine überraschende Stabilität.

DE 197 51 391 A 1

Tabelle 2

(Kontrolle)

Gesamtversäuren

5

(als POAA)

<u>TAG</u>	<u>PPM</u>	<u>%REST</u>	
0	18,85	100%	
1	19,76	100%	
2	18,77	100%	
3	16,80	89%	

Tabelle 3

(1% Mais)

25

Gesamtversäuren

30

(als POAA)

<u>TAG</u>	<u>PPM</u>	<u>%REST</u>	
0	13,15	100%	
1	8,51	65%	
2	6,16	47%	
3	4,03	31%	

ANFANGSPROZENTSATZ DER KONTROLLE = 70%

45

Tabelle 4

(1% Bohnen)

50

Gesamtversäuren

(als POAA)

55

<u>TAG</u>	<u>PPM</u>	<u>%REST</u>	
0	21,36	100%	
1	17,48	82%	
2	14,36	67%	
3	9,96	47%	

ANFANGSPROZENTSATZ DER KONTROLLE = 113%

65

DE 197 51 391 A 1

Tabelle 5

(1% Erbsen)

Gesamtperlsäuren

(als POAA)

	<u>TAG</u>	<u>PPM</u>	<u>%REST</u>
	0	18,09	100%
15	1	12,46	69%
	2	10,41	58%
20	3	5,70	32%

ANFANGSPROZENTSATZ DER KONTROLLE = 96%

Tabelle 6

(Kontrolle)

	<u>TAG</u>	<u>H₂O₂ PPM</u>	<u>%REST</u>
	0	10,30	100%
	1	10,98	107%
35	2	10,91	106%
	3	10,85	105%

Tabelle 7

(1% Mais)

	<u>TAG</u>	<u>H₂O₂ PPM</u>	<u>%REST</u>
	0	15,67	100%
50	1	7,21	46%
	2	5,71	36%
55	3	1,70	11%

ANFANGSPROZENTSATZ DER KONTROLLE = 152%

60

65

DE 197 51 391 A 1

Tabelle 8

(1% Bohnen)

<u>TAG</u>	<u>H₂O₂ PPM</u>	<u>%REST</u>
0	8,84	100%
1	3,09	35%
2	1,63	18%
3	1,09	12%

ANFANGSPROZENTSATZ DER KONTROLLE = 86%

Tabelle 9

(1% Erbsen)

<u>TAG</u>	<u>H₂O₂ PPM</u>	<u>%REST</u>
0	8,57	100%
1	4,83	56%
2	3,37	39%
3	0,78	9%

ANFANGSPROZENTSATZ DER KONTROLLE = 83%

Ausführungsbeispiel 4

Versuche zur Prüfung der Wirksamkeit von POAA gegenüber Schimmel und Bakterien zeigten bei Konzentrationen von 5, 10 und 20 ppm POAA in 1%iger Erbsenlösung kein mikrobielles Wachstum. Wie aus Fig. 1 ersichtlich ist, zeigen spätere Versuche eine gute Bekämpfung von Schimmel mit 10-30 ppm POAA in 1%iger Erbsenlösung und einer fortgesetzten Abtötungsrat über einen Zeitraum von 3 Tagen.

Ausführungsbeispiel 5

Danach wurde eine Analyse der Erfindung in einem richtigen Schwemmanlagen-Lieferungssystem angestellt. Wie Fig. 4 zu entnehmen ist, wurde ein Schwemmanagementsystem mit einem Ergänzungstank 10, einer Leitung 11, einem Schwemmtank 12, einem Überlauftank 14 mit Austragsrohr oder Abfluss 13, Pumpenleitung 15, Pumpe 16 und Rückführleitung 18 zusammengebaut, um die Bedingungen in Lebensmitteltransportschwemmanlagen, die in Lebensmittelverarbeitungsbetrieben eingesetzt werden, nachzuhahmen. Das Ergänzungswasser enthielt 16 Grain/Gal. CaCO₃ und wurde mit einer Rate von 34,3 ml/Min. in die Schwemmanlage eingespeist. In den Ergänzungstank 10 wurde eine Erbsenlösung mit 10% zerkleinerten Erbsen in hartem Wasser geleitet. Die Erbsenlösung wurde in der Schwemmanlage durch eine Strömungsrate von 42,5 ml/Min. auf 1% verdünnt. Daneben wurde dem Ergänzungswasser auch noch eine Schmutzlösung mit 3,6% Mutterboden zugesetzt, die in der Schwemmanlage durch eine Strömungsrate von 35 ml/Min. auf 0,3% verdünnt wurde. Schließlich wurde der Schwemmanordnung ein Desinfektionsmittel zugesetzt und durch eine Strömungsrate von 42 ml/Min. um den Faktor 100 verdünnt. Die Anfangskonzentration und die Formulierung für die untersuchten Desinfektionsmittel sind der nachstehenden Tabelle 10 zu entnehmen.

DE 197 51 391 A 1

Tabelle 10

	<u>Ausführungsbsp.</u>	<u>Aktiv/Konzentration</u>	<u>Bedingung</u>
	5A	30 ppm POAA	Sterile Erbsen
10	Kontrolle 1	--	Sterile Erbsen
	5B	NaOCl/110 ppm Cl	--
15	5C	NaOCl/30 ppm Cl	--
	5D	30 ppm POAA	Absatzweise Zu-fuhr
20	5E	40 ppm POAA	Kontinuierliche Zufuhr
25	5F	3 ppm POOA*/ 27 ppm POAA	--
30	Kontrolle 2	--	--
	5G	20 ppm ClO ₂	Strömungsrate 3,7 ml/Min.
35	5H	1,5 ppm POOA*/ 13,5 POAA	--

*POOA steht für Peroctansäure

40 Die Gesamtströmungsrate in der Schwinmanlage betrug 425 ml/Min. bei einer von Pumpe 16 erzeugten Rückführungsströmungsrate von 3 Gallonen/Min. Das Gesamtvolumen der Schwinmanlage betrug 2,25 Gallonen, wobei der Überlauf aus dem Überlauftank 14 in den Austragsammelbehälter 13 ausgetragen wurde. Die Analyse des aus der Schwinmanlage austretenden Wassers aus einem vorhergehenden Versuch auf Metalle ergab Durchschnittswerte von 13,4 ppm Eisen (Fe), 0,28 ppm Kupfer (Cu) und 0,52 ppm Mangan (Mn).

45 Die Ergebnisse der Analyse sind der Tabelle 11 und der Fig. 5 zu entnehmen. Der mittlere Rest (Sp. 2) ist die gemessene Konzentration an antimikrobiellen Mittel, die täglich einige Male bestimmt und über den gesamten Zeitraum von 72 Stunden gemittelt wurde. Der mittlere Bedarf (Sp. 3) ist die Differenz zwischen der eindosierten (Tabelle 10, Sp. 2) und der gemittelten Restkonzentration. Der pH-Wert (Sp. 4) wurde alle 24 Stunden bestimmt und ebenfalls über den Zeitraum von 72 Stunden gemittelt.

50 Die mittleren Schwinmanlagen-Keimzahlen, Sp. 5, wurden aus Proben von Schwinnwasser, die über den gesamten Zeitraum von 72 Stunden alle 12 Stunden entnommen würden, berechnet und sind in Einheiten von KBE (koloniebildende Einheiten)/ml für eine Standard-Keimzählung (Gesamtkeimzählung) angegeben. Die mittlere logarithmische Ver-ringerung gegenüber der Kontrolle (Sp. 6) wird berechnet, indem man den Logarithmus (Basis 10) der Schwinnwasser-55 Keimzahlen berechnet und diesen Wert vom Logarithmus der Schwinnwasser-Keimzahlen für den Kontrollversuch subtrahiert. Beispiel 5A wird mit Kontrolle 1 verglichen, da in beiden Versuchen sterilisierte Erbsen eingesetzt wurden. Der Rest der Beispiele wird mit Kontrolle 2 verglichen. Die letzte Spalte, mittlere Erbsen-Keimzahlen, gibt die mikro-bielle Beladung (KBE/ml) der 10%igen Erbsenlösung im Ergänzungstank 10 an, die anhand von alle 12 Stunden ent-nommenen Proben bestimmt wurde. Dadurch gewinnt man neben dem in der Schwinmanlage auftretenden Wachstum 60 eine Vorstellung von der der Schwinmanlage zugeführten mikrobiellen Beladung.

Tabelle 11

<u>Ausfüh-</u>	<u>Mittel.</u>	<u>Mittel. Be-</u>	<u>Mittel.</u>	<u>Mittel.</u>	<u>Mittel. log. Verr.</u>	<u>Mittel. Erb-</u>
<u>zungsbsp.</u>	<u>Rest (ppm)</u>	<u>darf (ppm)</u>	<u>pH</u>	<u>Schw.-Keimz.</u>	<u>gg. Kontrolle</u>	<u>sen-Keimz.</u>
5A	14,9	15,1	7,5	1,7E+03	2,8	5,0E+04
Kontrolle 1	--	--	NE	1,0E+06		3,9E+04
5B	41	69	8,4	2,2E+04	2,0	1,2E+06
5C	19	11	8,2	4,9E+04	1,7	1,2E+06
5D	15,7	14,3	7,53	9,5E+03	2,4	2,0E+06
5E	24,1	15,9	7,4	1,5E+04	2,2	7,1E+04
5F	20	10	6,3	9,5E+03	2,4	2,3E+04
Kontrolle 2	--	--	NE	2,2E+06	--	1,4E+05
5G	0	17,5	NE	1,4E+04	2,2	1,7E+05
5H	5	10	7,2	4,0E+04	1,7	5,0E+05

Ausführungsbeispiel 6

Nach dem Schlachten, Ausnehmen und Reinigen von Geflügel werden die Vögel mindestens 30 Minuten vor dem Verpacken in einen gekühlten wäßrigen Strom (Kühlflüssigkeit) eingebracht. Zur vergleichenden Prüfung von Dosierungen von Peressigsäure, einer Kombination von Peressigsäure und Peroctansäure, Natriumhypochlorit und Chlordioxid wurden von einer Geflügelverarbeitungsfabrik Kühlwasserproben bezogen. Die Ergebnisse sind in Tabelle 12 aufgeführt.

DE 197 51 391 A 1

Die Peressigsäure-Probe wurde aus einer Verdünnung der in Ausführungsbeispiel 1 beschriebenen Formel hergestellt. Die Peressigsäure-Peroctansäure-Kombination enthielt 27 ppm Peressigsäure und etwa 3 ppm Peroctansäure. Das aktive Chlor wurde aus Natriumhypochlorit erhalten. Die Behandlung des Kühlwassers mit Peressigsäure oder Peressigsäure-Peroctansäure-Kombination ergab in Bezug auf Bakterienabtötung viel bessere Ergebnisse als die Behandlung mit Hypochlorit oder Chlordioxid.

Tabelle 12

	<u>Probenkonzentration</u>	<u>(KBE/ml)</u>	<u>Log. Verr.</u>
10	Unbehandelt (Kontrolle)	$1,0 \times 10^2$	--
15	30 ppm POAA	<1	2,0
	30 ppm POAA/POOA	<1	2,0
20	30 ppm [Cl]	$1,4 \times 10^1$	0,85
	20 ppm ClO ₂	3	1,5

Ausführungsbeispiel 7

1. Acht verschiedene Persäuren wurden durch Mischen der folgenden Mengen der Stammäsäre, einer 35%igen H₂O₂-Lösung und entionisiertem Wasser hergestellt, wobei die Lösung zur Gleichgewichtseinstellung 8 Tage stehen gelassen und dann mit Hilfe einer Cer(IV)-sulfat/Natriumbiosulfat-Titrationsmethode auf Persäure und Wasserstoffperoxid analysiert wurde.
(Anmerkung: Alle Konzentrationen an aktiver Persäure sind in Prozent Peressigsäure (POAA) angegeben, um eine äquivalente Vergleichsbasis zu liefern und Unklarheiten bezüglich der Verteilung von Persäure-Funktionalitäten bei den Di- und Trisäuren zu vermeiden).

35

40

45

50

55

60

65

DE 197 51 391 A 1

Tabelle 13

Persäure	Stammsäure		H ₂ O, 35%ig g	DI H ₂ O g	Persäure als POAA, Gew.-%	H ₂ O ₂ , Gew.-%
	Name, % aktiv	g				
Peressigs.	Essigs., 100%	55,3	44,7	0,0	12,8	9,8
Perpropions.	Propions., 100%	60,4	39,6	0,0	9,8	10,1
Perbutters.	Butters., 99%	60,4	35,3	0,0	5,8	10,1
Perbernsteins.	Bernstein-, 99%	5,0	2,0	93,0	0,3	0,9
Pergluttars.	Glutars., 99%	40,0	14,6	45,4	2,7	4,4
Perglykols.	Glykols., 99%	50,0	31,6	18,4	1,9	2,2
Permilchs.	Milchs., 88%	67,8	32,2	0,0	1,4	10,5
Perzitronens.	Zitronen-, 100%	15,0	3,8	81,2	0,8	1,5

2. Eine Lösung von 1% Tomaten in Wasser wurde wie oben beschrieben durch Zerkleinern von ganzen Tomaten in einer Küchenmaschine und Zusatz von 1 Gew.-% der zerkleinerten Tomaten zu Wasser hergestellt.
 3. Diese Lösung wurde bei Raumtemperatur 4 Tage stehen gelassen, damit die Bakterien bis zu den für Gemüsefabrik-Prozeß- oder Transportwasser typischen Niveaus wachsen könnten.
 4. Abgemessene Mengen der in Schritt eins hergestellten 8 verschiedenen Persäuren wurden derart in separate Glasflaschen mit 500 ml der in Schritt 2 hergestellten 1%igen Tomatenlösung gegeben, daß sich für jede Persäure Zusatzierungsniveaus im Bereich von 12 bis 5 ppm ergaben. Jede Prüfung wurde zweimal durchgeführt.
 5. Zwei Glasflaschen, denen keine Persäure zugesetzt wurde, dienten als unbehandelte Kontrollen.

Die Ergebnisse der beiden Läufe jedes Versuchs wurden gemittelt und sind in Tabelle 14 aufgeführt:

Versuch	Persäure	Zudosierte Konz., ppm	Restkonz., ppm	1 Stunde		24 Stunden		48 Stunden	
				Mittl. Mikro., KBE/ml	Log. Varr. KBE/ml	Mittl. Mikro., KBE/ml	Log. Varr. KBE/ml	Mittl. Mikro., KBE/ml	Log. Varr. KBE/ml
1	Unbehandelt	0	0	8,60E+06	ne	2,76E+07	ne	3,47E+07	ne
2	Persigb.	48	41	<10	5,9	<10	6,4	<10	6,5
3	Perpropions.	48	40	<10	5,9	<10	6,4	<10	6,5
4	Perbutters.	44	36	<10	5,9	<10	6,4	<10	6,5
5	Perbernsteins.	12	3	9,60E+06	0,0	1,95E+07	0,2	1,36E+07	0,4
6	Perglutaric.	35	35	3,50E+02	4,4	1,07E+03	4,4	5,20E+04	2,8
7	Perglykols.	36	36	5,30E+02	4,2	<10	6,4	<10	6,5
8	Permilchs.	32	32	1,90E+02	4,7	1,80E+02	5,2	3,50E+02	5,0
9	Perzitronens.	50	26	7,00E+01	5,1	<10	6,4	ne	ne

Die zudosierte Konzentration (Sp. 3) ist die Konzentration jeder Persäure (Gew./Gew.) nach Zusatz zur Tomatenlösung. Die Restkonzentration (Sp. 4) ist die gemessene Persäuremenge 3 Minuten nach vollständiger Zudosierung. Das Maßverfahren basierte wiederum auf einer Cer(IV)-sulfat-Natriumthiosulfat-Titration.

Die Bestimmung der Keimzahlen erfolgte nach Kontakt der Persäure mit den Tomatenlösungen bei 70-75°C über einen Zeitraum von 1, 24 und 48 Stunden. Die Persäuren wurden nach jedem Zeitraum mit einer Thiosulfat-Pepton-Kata-

DE 197 51 391 A 1

Iase-Lösung neutralisiert. Die erhaltene Lösung wurde nach Durchführung einer Verdünnungsreihe in phosphatgepuffertem Verdünnungswasser auf Trypton-Glucose-Extrakt-Agar 48 Stunden bei 35°C inkubiert. Dann wurden die gesamten koloniebildenden Einheiten pro ml Lösung (KBE/ml) gezählt. Sie sind in den Spalten 5, 7 und 9 der obigen Tabelle aufgeführt. Dann wurden die logarithmischen Verringerungen berechnet, indem man die logarithmischen Zahlen jeder mit Persäure behandelten Lösung (Versuche 2-9) für den entsprechenden Zeitraum (Spalten 6, 8 und 10) vom Logarithmus (Basis 10) der Keinzahlen ohne Behandlung (Versuch 1) subtrahierte. Da jede Prüfung zweimal durchgeführt wurde, handelt es sich bei den angegebenen Ergebnissen um die arithmetischen Mittelwerte für jede Behandlung.

Die Ergebnisse (Tabelle 14) zeigen, daß fast alle Persäuren in dieser Studie nach Kontakt mit der 1%igen Lomatenlösung eine hohe Restaktivität behielten (mit Ausnahme von Versuch 5, Perbernsteinsäure, die in einer niedrigen Anfangskonzentration zudosiert wurde). Dieses Verhalten ähnelt dem von Peressigsäure und zeigt wiederum die überraschende Stabilität dieser Persäuren in Gegenwart von hohen Konzentrationen organischer Stoffe.

Die Ergebnisse zeigen auch (Tabelle 14), daß Perpropionsäure, Perbuttersäure, Perglutaräure, Perglykolsäure, Permilchsäure und Perzitronensäure bei Keinzählungen nach 1 Stunde Kontaktzeit mit der 1%igen Lomatenlösung alle logarithmische Verringerungen über 4 ergaben. Des weiteren wurde das Niveau der Mikrobenabtötung für die obengenannten Persäuren über 24 Stunden (und in den meisten Fällen über 48 Stunden) aufrechterhalten oder erhöht, was darauf schließen läßt, daß die restliche antimikrobielle Wirkung der Persäuren auch über diesen Zeitraum erhalten blieb.

Perpropionsäure und Perbuttersäure ergaben genau so gute Ergebnisse wie Peressigsäure, wohingegen Perglykolsäure, Permilchsäure und Perzitronensäure fast genau so gut abschnitten. Die einzige geprüfte Persäure, die unter den Bedingungen dieser Prüfung keine große antimikrobielle Wirkung zeigte, war Perbernsteinsäure, die jedoch auch nur mit 12 ppm zudosiert wurde. Höhere Perbernsteinsäure-Dosierungen sollten viel bessere Ergebnisse liefern.

Ausführungsbeispiel 8

Mikrobenabtötung und Rest-POAA

Die Tabellen 15 und 16 zeigen, daß man in Prozeßwässern eine Konzentration von ~ 2-5 ppm Rest-POAA aufrechterhalten muß, um ständig eine wesentliche ($\geq 1,0$ logarithmische Verringerung) Mikroben- und Schleimbekämpfung zu erzielen und aufrechtzuerhalten. Unter diesem Minimalniveau von Rest-POAA treten nur geringfügige Verringerungen der Mikrobenzahl auf, wohingegen für Rest-POAA-Gehalte von 5-10 ppm oder darüber weitgehende Abtötung festgestellt wird. Über einem Rest von ~ 30 ppm POAA wird das Behandlungsverfahren unwirtschaftlich, so daß ein höheres Niveau ausgeschlossen werden muß. Die Tabellen 15 und 16, die aus kommerziellen Schweißsystems erhalten wurden, zeigen, daß ein Rest von $\sim \geq 2$ ppm POAA in einer Gemüseverarbeitungs-Schweinianlage 5 Minuten nach der Zugabe eine wesentliche Verringerung der Mikrobenzahl liefern.

5

10

15

20

25

30

35

40

45

50

55

60

65

Tabelle 15

Schwemmanlagen-Strömungs-Versuche

		Nach 5 Min. ver- bl. Rest-	Log. Verringerung der Mikrobenzahl ^b		
	<u>Test- gemüse</u>	<u>Zudosier- tes POAA^a</u>	<u>POAA</u>	<u>APC</u>	<u>Coliform</u>
	Mais	63 ppm	42 ppm ¹	3,5 ¹	3,6 ¹
	Mais	63 ppm	48 ppm ¹	4,5 ¹	3,5 ¹
	Mais	26 ppm	15 ppm ²	2,1 ²	NE
	Mais	13 ppm	7 ppm ³	2,2 ³	NE
	Kartoffel	33 ppm	<1 ppm ⁴	0,7 ⁴	NE
	Kartoffel	67 ppm	<1 ppm ²	0,4 ²	NE
	Kartoffel	90 ppm	10 ppm ³	1,0 ³	NE
	Kartoffel	109 ppm	30 ppm ³	3,1 ³	NE

A) POAA = Peressigsäure.

b) Gegenüber einer Kontrollprobe ohne POAA-Zusatz.

1) Mittelwert aus 6 Versuchsläufen.

40 2) Mittelwert aus 3 Versuchsläufen.

3) Mittelwert aus 2 Versuchsläufen.

4) Mittelwert aus 4 Versuchsläufen.

45 NE = Nicht erhältlich

50

55

60

65

DE 197 51 391 A 1

Tabelle 16

Schwemmanlagen-Chargen-Versuche

<u>Test- gemüse</u>	<u>Testschwemm- anl.</u>	<u>Zudosier- tes POAA</u>	Nach 5 Min. ver- bl. Rest-	Nach 5 Log. Verringe- rung der Mi- krobenzahl	<u>Coliform</u>	
			ppm	ppm		
Zwiebel	Kühler	0 ppm	0 ppm	0,0	0,0	15
Zwiebel	Kühler	15 ppm	2 ppm	1,1	0,9	
Zwiebel	Kühler	30 ppm	11 ppm	2,6	2,0	
Tomate	Halde	0 ppm	0 ppm	0,0	NE	20
Tomate	Halde	22 ppm	13 ppm	1,7	NE	
Tomate	sekundär	0 ppm	0 ppm	0,0	NE	
Tomate	sekundär	22 ppm	17 ppm	3,1	NE	
Kartoffel	Cutter	0 ppm	0 ppm	0,0	NE	25
Kartoffel	Cutter	27 ppm	19 ppm	5,0	NE	
Kartoffel	Cutter	53 ppm	45 ppm	5,0	NE	
Kartoffel	Zyklon	0 ppm	0 ppm	0,0	0,0	
Kartoffel	Zyklon	53 ppm	2 ppm	3,4	4,1	
Kartoffel	Zyklon	80 ppm	10 ppm	4,3	4,1	30
Kartoffel	Trimmmauraum	0 ppm	0 ppm	0,0	0,0	
Kartoffel	Trimmmauraum	53 ppm	50 ppm	2,8	4,1	
Kartoffel	ADR-Schw.	0 ppm	0 ppm	0,0	NE	
Kartoffel	ADR-Schw.	15 ppm	0 ppm	0,1	NE	
Kartoffel	ADR-Schw.	30 ppm	27 ppm	4,4	NE	35
Kartoffel	ADR-Schw.	60 ppm	2 ppm	1,6	NE	
Kartoffel	Sap-Coater 2	0 ppm	0 ppm	0,0	NE	
Kartoffel	Sap-Coater 2	15 ppm	6 ppm	3,4	NE	
Kartoffel	Sap-Coater 2	30 ppm	27 ppm	4,4	NE	
Kartoffel	Nachblanchie- rer	0 ppm	0 ppm	0,0	NE	40
Kartoffel	Nachblanchie- rer	15 ppm	<1 ppm	2,4	NE	

			Nach 5 Min. ver- bl. Rest-	Log. Verringe- rung der Mi- krobenzahl	
	<u>Test- gemüse</u>	<u>Testschwem- mankl.</u>	<u>Zudosier- tes POAA</u>	<u>APC</u>	<u>Coliform</u>
10	Kartoffel	Nachblanchie- rer	30 ppm	8 ppm	3,4
15	Kartoffel	Nachblanchie- rer	60 ppm	42 ppm	4,6
20	Kartoffel	Vorblanchie- rer	0 ppm	0 ppm	0,0
25	Kartoffel	Vorblanchie- rer 1	60 ppm	0 ppm	0,0
	Kartoffel	Vorblanchie- rer 1	90 ppm	0 ppm	0,0

Beispiel 9

ORP gegenüber Rest-POAA

Ohne POAA liegt das Hintergrund-ORP je nach pH-Wert und Temperatur des Schwimmensystems im allgemeinen im Bereich von ~ 200 bis +300 mV. Niedrigere Wassertemperaturen verschieben den relativ aktiven Bereich zu einem niedrigeren Millivolt-Ausgangswert; man kann jedoch die Grenzwerte des ORP-Steuergeräts so einstellen, daß sie dem neuen niedrigen Sollwertbereich entsprechen.

Nur bei Erhalt eines POAA-Restgehalts (> 2 ppm) steigt das ORP über einen unteren Anzeigegrenzwert auf einen zur Mikrobenabtötung wirksamen ORP-Bereich von ~ 280-460 mV; d. h., diese POAA-Mindestmengen-Anforderungen (~ 2-5 ppm) entsprechen ~ 280-460 mV ORP-Einheiten bezüglich einer Ag/AgCl-Referenzelektrode in Wasser von Umgebungstemperatur bei pH-Werten von ~ 5-8 (Tabelle 17). Die unerwarteten Ergebnisse zeigen den Zusammenhang zwischen ORP, Rest-POAA und Mikrobenabtötung.

Mit steigenden POAA-Restgehalten erhält man höhere ORP-Werte, jedoch wird das überschüssige POAA über einem Mittelwert von ~ 30 ppm POAA (~ 370-460 mV) nur vergrößert, da der größte Teil der Verringerung der Mikrobenzahl innerhalb der ersten 30 ppm Rest-POAA erfolgt; d. h., für die Steuerung des POAA-Restgehalts und zur Minderung der Mikrobenzahlen gibt es einen wirksamen und wirtschaftlichen ORP-Bereich von ~ 280-460 mV.

50

55

60

65

DE 197 51 391 A 1

Tabelle 17

ORP gegenüber Rest-POAA gegenüber Verringerung der Mikrobenzahl

<u>Testge- müse</u>	<u>Schwem- anl.</u>	<u>Schwem- temp. (°F)</u>	<u>Zudos- ertes POAA</u>	<u>Rest- POAA</u>	<u>ORP</u>	<u>Log. Ver- ringerung der Mi- krobenzahl</u>
Tomate	sekundär	60 F	0 ppm	0 ppm	240-310 mV	0,0 ²
Tomate	sekundär	60 F	26 ppm	8 ppm	410 mV	2,2
Tomate	sekundär	60 F	30 ppm	7 ppm	420 mV	2,0
Tomate	sekundär	60 F	45 ppm	11 ppm	430 mV	2,8
Tomate	sekundär	60 F	60 ppm	41 ppm	430 mV	2,8
Tomate	sekundär	60 F	90 ppm	61 ppm	490 mV	NK
Tomate	sekundär	60 F	120 ppm	102 ppm	510 mV	NK
Tomate	sekundär	60 F	150 ppm	129 ppm	520 mV	NK
Kartoffel	Erhitzer	145 F	0 ppm	0 ppm	-190 mV	0,0 ³
Kartoffel	Erhitzer	145 F	15 ppm	0 ppm	260 mV	0,4
Kartoffel	Sortierer	93 F	0 ppm	0 ppm	220 mV	0,0
Kartoffel	Sortierer	93 F	60 ppm	8 ppm	370 mV	3,2
Kartoffel	Sortierer	93 F	60 ppm	11 ppm	380 mV	3,8
Zwiebel	Kühler	37 F	0 ppm	0 ppm	20 mV	0,0 ⁴
Zwiebel	Kühler	37 F	15 ppm	3 ppm	310 mV	1,1
Zwiebel	Kühler	37 F	30 ppm	14 ppm	360 mV	2,6
Zwiebel	Kühler	37 F	0 ppm	0 ppm	50 mV	NK
Zwiebel	Kühler	37 F	15 ppm	3 ppm	300 mV	NK
Zwiebel	Kühler	37 F	30 ppm	12 ppm	320 mV	NK
Zwiebel	Kühler	37 F	45 ppm	22 ppm	360 mV	NK
Zwiebel	Kühler	37 F	60 ppm	38 ppm	450 mV	-

1) Ergebnisse aus kontinuierlichem, kommerziellem Schwemmanlagen-
betrieb, SPC = Standard-Keimzahl.2) Mittlere Basislinien-Keimzahl von $3,2 \times 10^6/\text{ml}$.3) Mittlere Basislinien-Keimzahl von $1,4 \times 10^6/\text{ml}$.4) Mittlere Basislinien-Keimzahl von $2,3 \times 10^6/\text{ml}$.

NK = Nicht erhältlich

Ausführungsbeispiel 10

Tabelle 18 zeigt ein Beispiel, in dem unter Verwendung einer Chargenprobe von Gemüseschwemmanlagen-Austrag

DE 197 51 391 A 1

und Aufstocken mit Percarbonsäure das ORP und der Percarbonsäure-Restgehalt zunächst ansteigen und dann mit der Zeit wieder abfallen, was eine Simulation der Vorgänge darstellt, die in einem automatisierten Percarbonsäure-Dosiersystem ablaufen würden. In der Praxis würde man jedoch das End-ORP bzw. den PO_{AA}-Restgehalt nicht wieder auf das Hintergrund-Niveau abfallen lassen, sondern das Laufzeitglied neu starten, sobald das ORP das eingestellte untere Niveau des ORP-Steuengeräts erreicht hat.

10

15

20

25

30

35

40

45

50

55

60

65

DE 197 51 391 A 1

Tabelle 18

Abfallen von ORP und Rest-POAA

	Testgemüse	Charge zu- dosierte	Verweilzeit	ORP der Probe	Rest-POAA
		POAA			
Test I.	Tomaten- schw. 1	0 ppm	0 (Hinter- grund)	240 mV	0 ppm
	Tomate	22 ppm	0,1 Min.	480 mV	22 ppm
	Tomate	"	10 Min.	460 mV	16 ppm
	Tomate	"	20 Min.	450 mV	15 ppm
	Tomate	"	90 Min.	440 mV	5 ppm
	Tomate	"	140 Min.	260 mV	0 ppm
Test II	Tomaten- schw. 2	0 ppm	0 (Hinter- grund)	290 mV	0 ppm
	Tomate	22 ppm	0,1 Min.	430 mV	14 ppm
	Tomate	"	5 Min.	430 mV	13 ppm
	Tomate	"	10 Min.	420 mV	12 ppm
	Tomate	"	30 Min.	290 mV	0 ppm
Test III	Tomaten- schw. 2	0 ppm	0 (Hinter- grund)	290 mV	0 ppm
	Tomate	7 ppm	0,1 Min.	400 mV	6 ppm
	Tomate	"	5 Min.	370 mV	3 ppm
	Tomate	"	10 Min.	360 mV	2 ppm
	Tomate	"	20 Min.	310 mV	0 ppm
Test IV	Kartoffel- schw. 1	0 ppm	0 (Hinter- grund)	180 mV	0 ppm
	Kartoffel	30 ppm	0,1 Min.	390 mV	6 ppm
	Kartoffel	"	1 Min.	370 mV	4 ppm
	Kartoffel	"	3 Min.	330 mV	1 ppm
	Kartoffel	"	5 Min.	220 mV	0 ppm

	Testgemüse	Charge zu- dosierte POAA	Verweilzeit	ORP der Probe	Rest-POAA
Test V	Kartoffel- schw. 1	0 ppm	0 (Hinter- grund)	160 mV	0 ppm
	Kartoffel	60 ppm	0,1 Min.	400 mV	38 ppm
	Kartoffel	"	1 Min.	380 mV	22 ppm
	Kartoffel	"	5 Min.	370 mV	6 ppm
	Kartoffel	"	10 Min.	240 mV	0 ppm
Test VI	Zwiebel- schw. 1	0 ppm	0 (Hinter- grund)	300 mV	0 ppm
	Zwiebel	60 ppm	0,1 Min.	460 mV	28 ppm
	Zwiebel	"	5 Min.	380 mV	15 ppm
	Zwiebel	"	10 Min.	310 mV	5 ppm

Ausführungsbeispiel II

38 Tabelle 19 zeigt die bei einem echten Feldtest in einer Kartoffelproduktionsanlage über eine Reihe von Testzeiträumen mit dem erfindungsgemäßen ORP-Dosiersystem erhaltenen Werte. Das System wurde über die angegebenen Behandlungszeiträume kontinuierlich betrieben, wobei täglich an 4 bis 8 Proben eine mikrobielle Prüfung durchgeführt wurde. Die Werte zeigen, daß die mikrobiellen Populationen in den Schwenzwanlagenwässern gegenüber dem Kontrolltest kontinuierlich wesentlich verringert werden können. Die Tests bestätigen auch, daß das ORP-Dosiergerät unter echten Feldbedingungen, bei denen Millionen Pfund von Erzeugnissen abgesetzt werden, funktioniert.

四

51

55

64

Tabelle 19

Feldversuch des ORP-Systems

VERS. NR.	Behand- lungszeit & -tempe- ratur (Std. & °F)	Behand- lungs- tests	Ungefährre Menge be- handeltes Erzeugnis (lb/Ver- such)	Peressigsäure- Niveaus (ppm)		Mikrobielles Niveau des Prozeßwassers (log. Verrin- gerung ¹)	
				Zudo- siert	Rest	APC ²	Coliform
1	55 h, 90°F	keine (Kon- tr.) ³	2,4 MM lb Pommes fri- tes	0 _(Vergl.) ^{3,4}	0 _(Vergl.) ^{3,4}	0 ⁴	0 ⁴
2	2 h, 90°F	POAA	1,6 MM lb Pommes fri- tes	11,5 ml/Min.	12 ppm	4,5	4,4
3	24 h, 90°F	POAA	1,6 MM lb Pommes fri- tes	NE ml/Min.	30 ppm	4,0	3,9
4	12 h, 90°F	POAA	1,6 MM lb Schalen	20,0 ml/Min.	60 ppm	6,0	5,2
5	31 h, 90°F	POAA	1,6 MM lb Pommes fri- tes	10,0 ml/Min.	4 ppm	0,9	0,2

1) Mittelwert über die Versuchslaufzeit mit täglicher Entnahme von 4-8 mikrobiellen Proben

2) APC = Aerobe Keimzahl

3) Kontrollversuch ohne Additive

4) Die Hintergrund-Keimzahlen (Kontroll-Keimzahlen) betrugen für SPC 9.9×10^7 und für Coliform 1.5×10^5 .

NE = Nicht erhältlich.

Patentansprüche

1. Automatisiertes Verfahren zur Bekämpfung von mikrobiellem Wachstum in einem zum Transport oder zur Verarbeitung von Lebensmittelprodukten und verpackten Lebensmitteln verwendeten wäßrigen Strom, bei dem man den wäßrigen Strom mit einer antimikrobiell wirksamen Menge Percarbonsäure behandelt, wobei diese Menge gesteuert wird, indem man den wäßrigen Strom bei einem Oxidations-Reduktions-Potential (ORP) zwischen etwa 280 und etwa 460 mV bezüglich einer Ag/AgCl-Referenzelektrode hält.
2. Verfahren nach Anspruch 1, bei dem man die Percarbonsäure im wäßrigen Strom bei einer Restkonzentration von mindestens etwa 2 ppm hält.
3. Verfahren nach Anspruch 1, bei dem man als Percarbonsäure eine C₂-C₁₂-Percarbonsäure einsetzt.
4. Verfahren nach Anspruch 1, bei dem man als Carbonsäure Peressigsäure einsetzt.
5. Verfahren nach Anspruch 1, bei dem man zusätzlich auch noch Wasserstoffperoxid einsetzt.
6. Verfahren nach Anspruch 5, bei dem man im wäßrigen Strom das Wasserstoffperoxid in einer Anfangskonzentration im Bereich von etwa 5 ppm bis 50 ppm und die Percarbonsäure in einer Anfangskonzentration im Bereich von etwa 2 ppm bis 100 ppm einsetzt.
7. Verfahren nach Anspruch 1, bei dem man: dem wäßrigen Strom zunächst eine Percarbonsäure zusetzt, bis ein Oxidations-Reduktions-Potential (ORP) von

DE 197 51 391 A 1

mindestens 280 mV bezüglich einer Ag/AgCl-Referenzelektrode erreicht ist, und dem wäßrigen Strom kontinuierlich Percarbonatsäure zusetzt, wobei der Zusatz durch ein ORP-Steuengerät gesteuert wird, das auf etwa 280 bis 460 mV bezüglich einer Ag/AgCl-Referenzelektrode eingestellt ist.

5

Hierzu 7 Seite(n) Zeichnungen

10

15

20

25

30

35

40

45

50

55

60

65

- Leerseite -

FIG. 1

FIG. 2

FIG. 4

FIG. 5

