只限教師參閱 FOR TEACHERS' USE ONLY

香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九九八年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1998

附加數學 試卷一 ADDITIONAL MATHEMATICS PAPER I

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。
After the examinations, marking schemes will be available for reference at the Teachers'
Centres.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1998

98-CE-A MATHS I-1

只限教師參閱 FOR TEACHERS' USE ONLY

只限教師參閱 FOR TEACHERS' USE ONLY

GENERAL INSTRUCTIONS TO MARKERS

1.	many o Marke	ery important that all markers should adhere as closely as possible to the marking scheme. In cases, however, candidates would use alternative methods not specified in the marking scheme. It is should be patient in marking these alternative solutions. In general, a correct alternative in merits all the marks allocated to that part, unless a particular method is specified in the on.		
2.	In the	marking scheme, marks are classified as follows:		
	'M' m	arks – awarded for knowing a correct method of solution and attempting to apply it;		
	'A' ma	arks - awarded for the accuracy of the answer;		
	Marks	without 'M' or 'A' - awarded for correctly completing a proof or arriving at an answer given in the question.		
3.	In mar	king candidates' work, the benefit of doubt should be given in the candidates' favour.		
4.		rmbol (pp-1) should be used to denote marks deducted for poor presentation (p.p.). Note the ing points:		
	(a)	At most deduct 1 mark for p.p. in each question, up to a maximum of 3 marks for the whole paper.		
	(b)	For similar p.p., deduct only 1 mark for the first time that it occurs, i.e. do not penalise candidates twice in the whole paper for the same p.p.		
	(c)	In any case, do not deduct any marks for p.p. in those steps where candidates could not score any marks.		
	(d)	Some cases in which marks should be deducted for p.p. are specified in the marking scheme. However, the lists are by no means exhaustive. Markers should exercise their professional judgement to give p.p.s in other situations.		
5.		mbol $(u-1)$ should be used to denote marks deducted for wrong/no units in the final answers (if able). Note the following points:		
	(a)	At most deduct 1 mark for wrong/no units for the whole paper.		
	(b)	Do not deduct any marks for wrong/no units in case candidate's answer was already wrong.		
6.	Marks entered in the Page Total Box should be the net total score on that page.			
7.	In the Marking Scheme, steps which can be omitted are enclosed by dotted rectangles			
	whereas alternative answers are enclosed by solid rectangles			
8.	Unless accept	otherwise specified in the question, numerical answers not given in exact values should not be ed.		
9.		otherwise specified in the question, use of notations different from those in the marking scheme not be penalised.		
10.		the form of answer is specified in the question, alternative simplified forms of answers different		

1988 HKCE Add. Math 大東氏子X 日中 参 見 FON Solution	Marks	Remarks
$\frac{\mathrm{d}}{\mathrm{d}x}(\sqrt{x}) = \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x}$	1A	Withhold this mark if $\Delta x \rightarrow 0$ is omitted
$= \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x} \left(\frac{\sqrt{x + \Delta x} + \sqrt{x}}{\sqrt{x + \Delta x} + \sqrt{x}} \right)$	1A	For simplification only
$= \frac{\lim_{\Delta x \to 0} \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}}}$	1A	
$=\frac{1}{2\sqrt{x}}$	_1A	
	4	
$\begin{cases} \alpha + \beta = 2 \\ \alpha \beta = 7 \end{cases}$	1A	
Let the equation be $x^2 - Sx + P = 0$, where $S = (\alpha + 2) + (\beta + 2)$ and $P = (\alpha + 2)(\beta + 2)$.	1M	
$S = (\alpha + 2) + (\beta + 2)$ $= (\alpha + \beta) + 4$ $= 6$	1M	
$P = (\alpha + 2)(\beta + 2)$ = $\alpha\beta + 2(\alpha + \beta) + 4$ = $7 + 2(2) + 4$ = 15		
$\therefore \text{ The equation is } x^2 - 6x + 15 = 0.$	1A	
Alternative solution (1) $x^{2}-2x+7=0$ $x = \frac{2 \pm \sqrt{4-4(7)}}{2}$ $= 1 \pm \sqrt{6}i$	1A	
The roots of the required equation are $1 + \sqrt{6}i + 2 = 3 + \sqrt{6}i$ and $1 - \sqrt{6}i + 2 = 3 - \sqrt{6}i$.	}1М	
$\therefore \text{ The equation is} \\ [x-(3+\sqrt{6}i)][x-(3-\sqrt{6}i)] = 0$	1M	
$[(x-3) - \sqrt{6}i][(x-3) + \sqrt{6}i] = 0$ $(x-3)^2 - (\sqrt{6}i)^2 = 0$ $x^2 - 6x + 9 + 6 = 0$		
$x^2 - 6x + 15 = 0.$ Alternative solution (2)	1A	
Put $y = x + 2$.	1A	(can be omitted)
The equation is $(y-2)^2 - 2(y-2) + 7 = 0$ $(y^2 - 4y + 4) - 2y + 4 + 7 = 0$	2M	
$y^2 - 6y + 15 = 0$	1A	
	4	

Solution	Marks	Remarks
$\alpha^2 - 6\alpha + 2k = 0 (1)$		
$\alpha^2 - 5\alpha + k = 0 \qquad(2)$		
$(2) - (1) \alpha - k = 0$	l 1M	
$\alpha = k$.	1	
Alternative solution for 1st part		77
Let α , β_1 be the roots of $x^2 - 6x + 2k = 0$		
$\alpha + \beta_1 = 6 (3)$		
$\alpha \beta_1 = 2k (4)$ Let α , β_2 be the roots of $x^2 - 5x + k = 0$		
Let α , β_2 be the roots of $x - 3x + k = 0$ $\alpha + \beta_2 = 5(5)$		
$\alpha \beta_2 = k \qquad (6)$		
$(3) - (5): \beta_1 + \beta_2 = 1$ (7)	1M	For attempt to find α
$(4) - (6): \alpha (\beta_1 - \beta_2) = k (8)$		
Substitute (7) into (8), $\alpha = k$.	1	4-1
Substitute $\alpha = k$ into (1).		OR substitute into (2)
$k^2 - 6k + 2k = 0$	1M	
$k^2 - 4k = 0$		-
k=0 or 4.	1A	
Alternative solution for 2nd part		
Substitute Linto (4)		
Substitute $\alpha = k$ into (4). $k\beta_1 = 2k$	1M	11
$k = 0 \text{or} \beta_1 = 2$		
From (3), $k+2=6$		
k = 4		
$\therefore k = 0 \text{or} 4.$	1A	11
Alamain Ling Con		T
Alternative solution for Q.3 $\alpha^2 - 6\alpha + 2k = 0 (1)$		
$\begin{vmatrix} \alpha - 5\alpha + 2k = 0 & \\ \alpha^2 - 5\alpha + k = 0 & (2) \end{vmatrix}$		
		1
From (1): $\frac{6\alpha - \alpha^2}{2} = k$	١,	1 1
From (2): $5\alpha - \alpha^2 = k$	} 1M	(can be omitted)
$\therefore \frac{6\alpha - \alpha^2}{2} = 5\alpha - \alpha^2$		
$\therefore \frac{}{2} = 5\alpha - \alpha^2$	1M	
$\alpha^2 - 4\alpha = 0$		
$\alpha = 0$ or 4		
When $\alpha = 0$, $k = 0$.		
When $\alpha = 4$, $k = 4$.		
In both cases, $\alpha = k$.	1A	11
k=0 or 4.	1A	₩
	4	- -

		Solution	Marks	Remarks
	(a)	$r = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2} = 1$ $\tan \theta = \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}}$ $\theta = \frac{\pi}{6}$ $\therefore \frac{\sqrt{3}}{2} + \frac{1}{2}i = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} (OR \cos 30^\circ + i \sin 30^\circ)$	}1M	(can be omitted)
	(b)	$\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^n = 1$ $\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^n = 1$ $\cos\frac{n\pi}{6} + i\sin\frac{n\pi}{6} = 1$ $\cos\frac{n\pi}{6} + i\sin\frac{n\pi}{6} = \cos 2k\pi + i\sin 2k\pi$	1M	For De Moivre's Theorem
		$\frac{n\pi}{6} = 2k\pi$	1M	(can be omitted)
		n = 12k, where k is a positive integer. (OR $n = 12, 24, 36,$)	1A 	k not defined – no marks Include 0 – no marks
	(a)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$	1A	Awarded if either one was correct
		$= (4\vec{i} + 4\vec{j}) - (\vec{i} - \vec{j})$ $= 3\vec{i} + 5\vec{j}$ $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$	1A	,
		$= -2\vec{i} + 7\vec{j} - (\vec{i} - \vec{j})$ $= -3\vec{i} + 8\vec{j}$	1A	
	(b)	$\overrightarrow{AB} \cdot \overrightarrow{AC} = (3\overrightarrow{i} + 5\overrightarrow{j}) \cdot (-3\overrightarrow{i} + 8\overrightarrow{j})$ $= 3(-3) + 5(8)$ $= 31$ $\cos \angle BAC = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{ \overrightarrow{AB} \overrightarrow{AC} }$	1M	
		$= \frac{31}{\sqrt{3^2 + 5^2} \sqrt{(-3)^2 + 8^2}}$ $\angle BAC = 52^{\circ} \text{ (correct to the nearest degree)}$	1M _1A _6	Omit vector sign or dot sign in most cases (pp-1)
B-CE	-A MA	THS I-5		

		Solution FUR TOR I	Marks	Remarks
		2		
5 .	(a)	$\begin{cases} x^2 - 6x - 16 > 0 \\ (x+2)(x-8) > 0 \end{cases}$		
		(x+2)(x-6)>0; x>8 or $x<-2$	1A	(can be omitted)
		x > 0 01 x < -2	1A	No mark for using 'and' or ','
	(b)	$(y+1)^2-6 y+1 -16>0$		
		$ y+1 ^2 - 6 y+1 - 16 > 0$	lM	no mark if absolute sign was omitted
		Put $x = y+1 $ in (a).		(can be omitted)
		y+1 > 8 or $ y+1 < -2$ (no solution)	1M+1A	1A for $ y+1 < -2$ has no solution
		y+1>8 or $y+1<-8$		omit $ y+1 < -2$ (pp-1)
		y > 7 or $y < -9$	lA	is a transfer of
		Alternative solution (1)		\Box
		Consider the following cases: (i) $y + 1 \ge 0$; (ii) $y + 1 < 0$	1M	Accept omitting equality sign
		Case 1: $y \ge -1$		
		$(y+1)^2 - 6(y+1) - 16 > 0$	1 A	
		$y^2 - 4y - 21 > 0$		-
		(y+3)(y-7)>0 y>7 or y<-3		
		Since $y \ge -1$, $y > 7$.		
		Case 2: $y < -1$		
		$(y+1)^2 + 6(y+1) - 16 > 0$	1A	
		$y^2 + 8y - 9 > 0$		
		(y-1)(y+9) > 0		
		y > 1 or $y < -9$		
		Since $y < -1$, $y < -9$.		
		$\therefore y > 7$ or $y < -9$	1A	
		Alternative solution (2)		
		$(y+1)^2-6 y+1 -16>0$		
		$ 6 y+1 < (y+1)^2 - 16$		
		$6(y+1) < (y+1)^2 - 16$ and $6(y+1) > -[(y+1)^2 - 16]$	1 M	
		$y^2 - 4y - 21 > 0$ and $y^2 + 8y - 9 > 0$ (y+3)(y-7) > 0 and $(y-1)(y+9) > 0$	1A+1A	
		(y+3)(y-7) > 0 and $(y-1)(y+9) > 0$		
		(y > 7 or y < -3) and $(y > 1 or y < -9)$		
		Combining the 2 solutions, $y > 7$ or $y < -9$.	1A	

	Let $z = a + bi$. $ 1 + z = 3 - z $ $\sqrt{(1 + a)^2 + b^2} = \sqrt{(3 - a)^2 + (-b)^2}$ $a^2 + 2a + 1 + b^2 = a^2 - 6a + 9 + b^2$ $a = 1$ $z\overline{z} = 4$ $(a + bi)(a - bi) = 4$ $(a + bi)(a - bi)(a - bi) = 4$ $(a + bi)(a - bi)(a $	P8 HKCE Add. Math只服教師參閱 FOR I		KS USE UNLT
$ 1+z = 3-z $ $\sqrt{(1+a)^2+b^2} = \sqrt{(3-a)^2+(-b)^2}$ $a^2+2a+1+b^2=a^2-6a+9+b^2$ $a=1$ $z\overline{z}=4$ $(a+bi)(a-bi)=4$ $b=\pm\sqrt{3}$ $z=1+\sqrt{3}i \text{ or } 1-\sqrt{3}i.$ $ A $	$ 1+z = 3-z $ $\sqrt{(1+a)^2+b^2} = \sqrt{(3-a)^2+(-b)^2}$ $a^2+2a+1+b^2=a^2-6a+9+b^2$ $a=1$ $z\overline{z}=4$ $(a+bi)(a-bi)=4$ $b=\pm\sqrt{3}$ $x=1+\sqrt{3}i \text{ or } 1-\sqrt{3}i.$ $ A $ Alternative solution Let $z=a+bi$ be the complex number satisfying both equations. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 2 equations are shown below. The locus of the 3 expands are shown below. The locus of the 4 in the locu	Solution	Marks	Remarks
$a^{2} + 2a + 1 + b^{2} = a^{2} - 6a + 9 + b^{2}$ $a = 1$ $z\overline{z} = 4$ $(a + bi)(a - bi) = 4$ $a^{2} + b^{2} = 4$ Substitute $a = 1, 1^{2} + b^{2} = 4$ $b = \pm \sqrt{3}$ $z = 1 + \sqrt{3}i \text{ or } 1 - \sqrt{3}i.$ Alternative solution Let $z = a + bi$ be the complex number satisfying both equations. The locus of the 2 equations are shown below. $T = \frac{a}{2} + a + a + a + bi$ IM IN	$a^{2}+2a+1+b^{2}=a^{2}-6a+9+b^{2}$ $a=1$ $x\overline{z}=4$ $(a+bi)(a-bi)=4$ $a^{2}+b^{2}=4$ Substitute $a=1,1^{2}+b^{2}=4$ $b=\pm\sqrt{3}$ $\therefore z=1+\sqrt{3}i \text{ or } 1-\sqrt{3}i.$ Alternative solution Let $z=a+bi$ be the complex number satisfying both equations. The locus of the 2 equations are shown below. $Tmag_{\tau,n}xy$ From the Figure, $a=1$. $b^{2}=4-a^{2}=3$ $b=\pm\sqrt{3}$ $\therefore z=1+\sqrt{3}i \text{ or } 1-\sqrt{3}i.$ IA+1A a For drawing a straight line for drawing a circle Awarded if both were correct (pp-1) for not labelling the axion of the correct of t			
$a = 1$ $z\overline{z} = 4$ $(a + bi)(a - bi) = 4$ $a^2 + b^2 = 4$ Substitute $a = 1, 1^2 + b^2 = 4$ $b = \pm \sqrt{3}$ $z = 1 + \sqrt{3}i \text{ or } 1 - \sqrt{3}i.$ $Alternative solution$ Let $z = a + bi$ be the complex number satisfying both equations. The locus of the 2 equations are shown below. $Tmag_{Jnary}$ IM IM IM IM IM IM IM IM	$a = 1$ $z\overline{z} = 4$ $(a + b1)(a - bi) = 4$ $a^2 + b^2 = 4$ Substitute $a = 1, 1^2 + b^2 = 4$ $b = \pm \sqrt{3}$ $\therefore z = 1 + \sqrt{3}i \text{ or } 1 - \sqrt{3}i.$ Alternative solution Let $z = a + bi$ be the complex number satisfying both equations. The locus of the 2 equations are shown below. $x = \frac{1}{2z^2 + 4}$ From the Figure, $a = 1$. $b^2 = 4 - a^2 = 3$ $b = \pm \sqrt{3}$ $\therefore z = 1 + \sqrt{3}i \text{ or } 1 - \sqrt{3}i.$ IA+1A $a = \frac{1}{4}$ For drawing a straight line For drawing a circle Awarded if both were correct (pp-1) for not labelling the axion of the complex numbers at the complex number satisfying both equations. IM IM IA For drawing a straight line For drawing a circle Awarded if both were correct (pp-1) for not labelling the axion of the complex numbers at the complex number satisfying both equations. IA+1A IA for $\frac{d}{dx}$ (a) $\frac{d^2 - xy + 3y^2 = 12}{2x - (y + x \frac{dy}{dx}) + 6y \frac{dy}{dx}} = 0$ IA+1A IA for $\frac{d}{dx}$ (xy), IA for other terms Substitute $x = 0$, $y = 2$. $0 - (2 + 0) + 6(2) \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{1}{6}$ III (b) Slope of the normal $y = 0$ Equation of normal is	• • • • • • • • • • • • • • • • • • • •	1M	For the modulus
Substitute $a=1$, $1^2+b^2=4$ $b=\pm\sqrt{3}$ $\therefore z=1+\sqrt{3}i \text{ or } 1-\sqrt{3}i.$ Alternative solution Let $z=a+bi$ be the complex number satisfying both equations. The locus of the 2 equations are shown below. Imaginary IM IM IM IN IN For drawing a straight line For drawing a circle Awarded if both were corre $z=1$	$a^{2}+b^{2}=4$ Substitute $a=1, 1^{2}+b^{2}=4$ $b=\pm\sqrt{3}$ $\therefore z=1+\sqrt{3}i \text{ or } 1-\sqrt{3}i.$ Alternative solution Let $z=a+bi$ be the complex number satisfying both equations. The locus of the 2 equations are shown below. $Tmag_{f,n}axy$ $Tmag_{f,n}axy$ $1M$ $1M$ $1M$ $1A$ $1A$ $1A$ $1A$ $1A$ $1A$ $1A$ $1A$	a=1	1A	·
Substitute $a=1, 1^2+b^2=4$ $b=\pm\sqrt{3}$ $\therefore z=1+\sqrt{3}i \text{ or } 1-\sqrt{3}i.$ Alternative solution Let $z=a+bi$ be the complex number satisfying both equations. The locus of the 2 equations are shown below. $\frac{z_{maginary}}{z_{maginary}}$ From the Figure, $a=1$. $b^2=4-a^2=3$ $b=\pm\sqrt{3}$ $\therefore z=1+\sqrt{3}i \text{ or } 1-\sqrt{3}i.$ $1A+1A$ IA 1A	Substitute $a=1, 1^2+b^2=4$ $b=\pm\sqrt{3}$ $\therefore z=1+\sqrt{3}i$ or $1-\sqrt{3}i$. Alternative solution Let $z=a+bi$ be the complex number satisfying both equations. The locus of the 2 equations are shown below. Imaginary			(can be omitted)
Alternative solution Let $z = a + bi$ be the complex number satisfying both equations. The locus of the 2 equations are shown below. For drawing a straight line For drawing a circle Awarded if both were corre (pp-1) for not labelling the $b^2 = 4 - a^2 = 3$ $b = \pm \sqrt{3}$ $\therefore z = 1 + \sqrt{3}i$ or $1 - \sqrt{3}i$.	Alternative solution Let $z = a + bi$ be the complex number satisfying both equations. The locus of the 2 equations are shown below. Imaginary Imaginar	Substitute $a = 1, 1^2 + b^2 = 4$	IA.	
Let $z = a + bi$ be the complex number satisfying both equations. The locus of the 2 equations are shown below. Imaginary Imagin	Let $z = a + bi$ be the complex number satisfying both equations. The locus of the 2 equations are shown below. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	1A + 1A	
From the Figure, $a = 1$. $b^2 = 4 - a^2 = 3$ $b = \pm \sqrt{3}$ $\therefore z = 1 + \sqrt{3}i \text{ or } 1 - \sqrt{3}i$ For drawing a straight line For drawing a circle Awarded if both were corrected as $1A$. $1A$ For drawing a straight line For drawing a circle Awarded if both were corrected as $1A$.	From the Figure, $a = 1$. $b^2 = 4 - a^2 = 3$ $b = \pm \sqrt{3}$ $\therefore z = 1 + \sqrt{3}i \text{ or } 1 - \sqrt{3}i$ IA IA IA IA IA IA IA IA	Let $z = a + bi$ be the complex number satisfying both equations.		
From the Figure, $a = 1$. $b^{2} = 4 - a^{2} = 3$ $b = \pm \sqrt{3}$ $\therefore z = 1 + \sqrt{3}i \text{ or } 1 - \sqrt{3}i$.	From the Figure, $a = 1$. $b^2 = 4 - a^2 = 3$ $b = \pm \sqrt{3}$ $\therefore z = 1 + \sqrt{3}i$ or $1 - \sqrt{3}i$. 1A+1A (a) $x^2 - xy + 3y^2 = 12$ $2x - (y + x \frac{dy}{dx}) + 6y \frac{dy}{dx} = 0$ $\begin{vmatrix} \frac{dy}{dx} = \frac{y - 2x}{6y - x} \\ 0 - (2 + 0) + 6(2) \frac{dy}{dx} = 0 \\ \frac{dy}{dx} = \frac{1}{6} \end{vmatrix}$ 1A for other terms	_	1M	For drawing a circle
From the Figure, $a = 1$. $b^{2} = 4 - a^{2} = 3$ $b = \pm \sqrt{3}$ $\therefore z = 1 + \sqrt{3}i \text{ or } 1 - \sqrt{3}i$.	From the Figure, $a = 1$. $b^{2} = 4 - a^{2} = 3$ $b = \pm \sqrt{3}$ $\therefore z = 1 + \sqrt{3}i \text{ or } 1 - \sqrt{3}i.$ [A) $a = \sqrt{3} + \sqrt{3}i \text{ or } 1 - \sqrt{3}i.$ [A) $a = \sqrt{3} + \sqrt{3}i \text{ or } 1 - \sqrt{3}i.$ [A) $a = \sqrt{3}i + \sqrt{3}i + \sqrt{3}i \text{ or } 1 - \sqrt{3}i.$ [A) $a = \sqrt{3}i + 3$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		(pp-1) for not labelling the axes
$\therefore z = 1 + \sqrt{3}i \text{or} 1 - \sqrt{3}i . $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	From the Figure, $a = 1$. $b^2 = 4 - a^2 = 3$	1A	
6	(a) $x^2 - xy + 3y^2 = 12$ $2x - (y + x\frac{dy}{dx}) + 6y\frac{dy}{dx} = 0$ $\left[\frac{dy}{dx} = \frac{y - 2x}{6y - x}\right]$ Substitute $x = 0, y = 2$. $0 - (2 + 0) + 6(2)\frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{1}{6}$ (b) Slope of the normal $= -6$ Equation of normal is		1A+1A	
	$2x - (y + x\frac{dy}{dx}) + 6y\frac{dy}{dx} = 0$ $\begin{bmatrix} \frac{dy}{dx} = \frac{y - 2x}{6y - x} \\ 0 - (2 + 0) + 6(2)\frac{dy}{dx} = 0 \\ \frac{dy}{dx} = \frac{1}{6} \end{bmatrix}$ (b) Slope of the normal = -6 Equation of normal is		6	
	Substitute $x = 0$, $y = 2$. $0 - (2 + 0) + 6(2) \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{1}{6}$ (b) Slope of the normal $= -6$ Equation of normal is $1A \text{ for other terms}$ $1M$ $1A$ $1A$ $1A$ $1A$	• •		
1A for other terms	Substitute $x = 0$, $y = 2$. $0 - (2+0) + 6(2) \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{1}{6}$ (b) Slope of the normal $= -6$ Equation of normal is	1	IA+1A	
i	$ \begin{vmatrix} 0 - (2+0) + 6(2) \frac{dy}{dx} = 0 \\ \frac{dy}{dx} = \frac{1}{6} \end{vmatrix} $ (b) Slope of the normal = -6 Equation of normal is	Li		·
$0 - (2 + 0) + 6(2) \frac{dy}{dx} = 0$	$\frac{dy}{dx} = \frac{1}{6}$ (b) Slope of the normal = -6 Equation of normal is		1M	can be awarded in part (b)
	Equation of normal is	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{6}$	1A	J
	,, , ,		1M	
Equation of normal is	" ·	Equation of normal is		
Equation of normal is $\frac{y-2}{x-0} = -6$ 1M	6x + y - 2 = 0	Equation of normal is $\frac{y-2}{x-0} = -6$	1M	

998 HKCE Add. Math只恨教師參閱		FOR TEACHERS USE ONLY		
	Solution		Marks	Remarks
9. (a)	(i) $\vec{a} \cdot \vec{b} = \vec{a} \vec{b} \cos 60^{\circ}$ = 2(3) cos 60° = 3		1M 1A	Omit vector sign or dot sign in most cases (pp-1)
			I IA	
	(ii) $\overrightarrow{OC} = t\overrightarrow{OB} + (1-t)\overrightarrow{OA}$			
	$= (1-t)\vec{a} + t\vec{b}$		1A	,
	(iii) $\vec{a} \cdot \overrightarrow{OC} = \vec{a} \cdot [(1-t) \vec{a} + t\vec{b}]$			
	$= (1-t) \vec{a} \cdot \vec{a} + t \vec{a} \cdot \vec{b}$		1M	For distribution
	=(1-t)(4)+t(3)	· 	1A.	For either $\vec{a}.\vec{a} = 4$ or $\vec{b}.\vec{b} = 9$
	=4-t	`	1A	·
	$\vec{b} \cdot \overrightarrow{OC} = \vec{b} \cdot [(1-t) \ \vec{a} + t\vec{b}]$			
	$= (1-t) \vec{a} \cdot \vec{b} + t \vec{b} \cdot \vec{b}$			2
	= (1-t)(3)+t(9) = 3+6t	· ←	,,	
	-3+01			
(b)	(i) $\vec{a} \cdot \overrightarrow{OD} = \vec{a} \cdot (\overrightarrow{OC} + \overrightarrow{CD})$		}	
(0)	$= \vec{a} \cdot \overrightarrow{OC} + \vec{a} \cdot \overrightarrow{CD}$			
	,			
	=4-t+0		1A	For either $\vec{a} \cdot \overrightarrow{CD} = 0$ or $\vec{b} \cdot \overrightarrow{CE} = 0$
	=4-t		1	
	Alternative solution			
	$\vec{a} \cdot \overrightarrow{OC} = \vec{a} \overrightarrow{OC} \cos \angle AOC$			
	$= \vec{a} \overrightarrow{OD} $			
	$=\vec{a}\cdot\overrightarrow{OD}$		1A	
	$\vec{a} \cdot \overrightarrow{OD} = 4 - t$		1	
	7 OF 7 OG OF			+
	$\vec{b}.\overrightarrow{OE} = \vec{b}.(\overrightarrow{OC} + \overrightarrow{CE})$			
	$= \vec{b} \cdot \overrightarrow{OC} + \vec{b} \cdot \overrightarrow{CE}$,
	$= \vec{b} \cdot \overrightarrow{OC} + 0$ $= 3 + 6t$			
			. 1	
	Alternative solution			
	$\vec{b} \cdot \overrightarrow{OC} = \vec{b} \overrightarrow{OC} \cos \angle BOC$			
	$= \vec{b} \overrightarrow{OE} $			
•	$=\vec{b}\cdot\overrightarrow{OE}$;	_	
	$\therefore \vec{b} \cdot \overrightarrow{OE} = 3 + 6t$		1	
	(ii) $\overrightarrow{OD} = k\vec{a}$			
	$\vec{a} \cdot (k\vec{a}) = 4 - t$		1M	,
	4k = 4 - t			
	$\therefore k = \frac{4-t}{4}$		1A	
	·			

98-CE-A MATHS I-8

Solution	Marks	Remarks
$\overrightarrow{OE} = s \overrightarrow{b}$ $\overrightarrow{b} \cdot (s \overrightarrow{b}) = 3 + 6t$ $9s = 3 + 6t$ $1 + 2t$		
$\therefore s = \frac{1+2t}{3}$	1A	
Alternative solution $\vec{a} \cdot \overrightarrow{OD} = 4 - t$ $ \vec{a} \overrightarrow{OD} = 4 - t$		
$ \vec{a} \cdot OD = 4 - t$ $ \vec{a} \overrightarrow{OD} = 4 - t$ $ \overrightarrow{OD} = \frac{4 - t}{2}$ $\overrightarrow{OD} = (\frac{4 - t}{2})(\frac{1}{2}\vec{a})$ $\therefore k = \frac{4 - t}{4}$ $\vec{b} \cdot \overrightarrow{OE} = 3 + 6t$ $ \vec{b} \overrightarrow{OE} = 3 + 6t$ $ \overrightarrow{OE} = \frac{3 + 6t}{3} = 1 + 2t$ $\overrightarrow{OE} = (1 + 2t)(\frac{1}{3}\vec{b})$ $\therefore s = \frac{1 + 2t}{3}$	} IM	
$OD = (\frac{4-t}{2})(\frac{1}{2}\vec{a})$ $\therefore k = \frac{4-t}{2}$	1A	
$\vec{b} \cdot \vec{OE} = 3 + 6t$		
$ \overrightarrow{OE} = \frac{3+6t}{3} = 1+2t$		
$\overrightarrow{OE} = (1+2t)\left(\frac{1}{3}\overrightarrow{b}\right)$ $1+2t$		
$\therefore s = \frac{1}{3}$	1A	
(c) $\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$	_6	
$\overrightarrow{DE} = \overrightarrow{OE} - \overrightarrow{OD}$ $= \frac{1+2t}{3}\overrightarrow{b} - \frac{4-t}{4}\overrightarrow{a}$	} 1M	For finding \overrightarrow{AB} and \overrightarrow{DE}
If $\overrightarrow{DE}//\overrightarrow{AB}$, $\frac{1+2t}{3} = \frac{4-t}{4}$	1М	
$t = \frac{8}{11}$	_1A	
		·

	•	E Add. Maths. 引起,致制参阅。FORT	Marks	Remarks
0.	(a)	(i) f(n) = 2 cos 2 n / Asin n 2		
J.	(a)	(i) $f(x) = 2\cos 2x + 4\sin x - 3$	1 ,,	(m. 1) for sining (0, 1)
		$\mathbf{f}(0) = -1 \therefore \text{ The } y\text{-intercept is } -1.$	1A	(pp-1) for giving (0, -1)
		Put $f(x) = 0$. $2\cos 2x + 4\sin x - 3 = 0$		
		$2(1-2\sin^2 x) + 4\sin x - 3 = 0$	1M	For $\cos 2x = 1 - 2\sin^2 x$
		$4\sin^2 x - 4\sin x + 1 = 0$		
		$\sin x = \frac{1}{2}$	1A	
				·
		$x = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}$		
		-		σ
		\therefore The x-intercepts are $\frac{\pi}{6}$ and $\frac{5\pi}{6}$.	1A	(pp-1) for giving $(\frac{n}{6},0)$ etc.
		0 0		No marks for degrees
		(ii) $f'(x) = -4 \sin 2x + 4 \cos x$		_
		$f'(x) = 0 \qquad -4\sin 2x + 4\cos x = 0$	1M	
		$4\cos x(1-2\sin x)=0$		
		$\cos x = 0$ or $\sin x = \frac{1}{2}$	1A+1A	·
		Z		
		$x = \frac{\pi}{2}$ or $-\frac{\pi}{2}$ or $x = \frac{\pi}{6}$ or $\frac{5\pi}{6}$		
		$f''(x) = -8\cos 2x - 4\sin x$		
		$f'(\frac{\pi}{2}) = 4 > 0 : (\frac{\pi}{2}, -1)$ is a minimum point.	1,	
		2 1 2, 1) is a minimum point.		1M for checking
		$f''(\frac{-\pi}{2})$ = 12 > 0 : $(-\frac{\pi}{2}, -9)$ is a minimum point	1M +	All correct – 2A 2-3 points correct – 1A
		2	}	≤ 1 point correct – 0A
		$f'(\frac{\pi}{6})$ = -6 < 0 : $(\frac{\pi}{6},0)$ is a maximum point.		no marks if checking was omitted
		$f'(\frac{5\pi}{6}) = -6 \le 0 : (\frac{5\pi}{6}, 0) \text{ is a maximum point.}$	١	
		Alternative solution for checking		<u> </u>
		$f'(x) = 4\cos x(1 - 2\sin x)$		
		$x \mid x < -\frac{\pi}{2} \mid -\frac{\pi}{2} \mid -\frac{\pi}{2} < x < \frac{\pi}{6} \mid \frac{\pi}{6} \mid \frac{\pi}{6} < x < \frac{\pi}{2} \mid \frac{\pi}{2}$		
			_	
		$ \mathbf{f}'(x) $ -ve $ 0 $ +ve $ 0 $ -ve $ 0 $		
		π 5π 5π 5π	1M	For checking
		$\left \frac{\pi}{2} < x < \frac{5\pi}{6} \right \frac{5\pi}{6} x > \frac{5\pi}{6}$		
		tve 0 ve		
		1 10 101 10		
		So $(\frac{\pi}{2}, -1)$ and $(-\frac{\pi}{2}, -9)$ are minimum points,		
		and $(\frac{\pi}{6}, 0)$ and $(\frac{5\pi}{6}, 0)$ are maximum points.	2A	All correct – 2A
		6 6 6		2-3 points correct – 1A
				≤ 1 point correct – 0A no marks if checking was omitted
			-10	no marks it checking was omitted

(b) $y = 2\cos 2x + 4\sin x - 3$ $(-\pi, -1)$ $(-\pi, -1)$ $(\pi, -1)$	IA IA	(Awarded even if checking was omitted in (a) (ii)) For shape For intercepts and turning points
	1A	For end points
The greatest value of $ 2\cos 2x + 4\sin x $ is 6. The least value of $ 2\cos 2x + 4\sin x $ is 0.	1M+1A 1A 6	1M for finding the greatest value of $ f(x)+3 $ from the graph.

	Solution	Marks	Remarks
(a)	$f(x) = x^2 - kx$		
	$= (x^2 - kx + \frac{k^2}{4}) - \frac{k^2}{4}$	IM	For completing square
	$=(x-\frac{k}{2})^2-\frac{k^2}{4}$		
	$\therefore \text{ Least value of } f(x) = -\frac{k^2}{4},$	1	
	which occurs at $x = \frac{k}{2}$.	1A ·	
	Alternative solution $f'(x) \stackrel{d}{=} 2x - k$		
	$f'(x) = 0 \text{ at } x = \frac{k}{2}.$. 1A	
	f''(x) = 2 > 0	1M	For checking
	$\therefore f(x) \text{ is a minimum at } x = \frac{k}{2}.$		
	As f(x) has only one turning points,	1	
	$\therefore \text{ least value of } f(x) = \left(\frac{k}{2}\right)^2 - k\left(\frac{k}{2}\right) = -\frac{k^2}{4}$		
		3	
(b)	$\begin{cases} y = x^2 - kx \\ y = -x \end{cases}$		
	$x^2 - kx = -x$	1M	For solving the 2 equations
	$x^2 - (k-1)x = 0$		
	x = 0 or $x = k - 1y = 0$ $y = 1 - k$		
	 ∴ The coordinates of the intersecting points are (0, 0) and (k-1, 1-k). 	1 <u>A</u> +1A	
(c)	(i) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	IA	For the line $y = g(x)$
(-)	(i) y=g(x) / y=f(x)	IA	For the curve $y = f(x)$
	3 ×	1A	For labelling the intercepts and turning point of $y = f(x)$
	(2,-2)	IA	For labelling the intersecting point
	$(\frac{3}{2}, \frac{-4}{4})$		(pp-1) for not labelling the axes
	(ii) From the figure, the range of values of x such that $f(x) \le g(x)$ is $0 \le x \le 2$. Alternative solution	IA	<u> </u>
	$f(x) \le g(x)$		
	$\begin{cases} x^2 - 3x \le -x \\ x(x-2) \le 0 \end{cases}$		
	$0 \le x \le 2.$	1A	
	From the graph in (i), the least value of $f(x) = -\frac{9}{4}$.	_IA	
		6	.1

8 HKCE Add. Mathe: 以民教師参阅 FUR Solution	Marks	Remarks
$(d) k = \frac{3}{2}$		
$y = g(x)$ $(\frac{1}{2}, -\frac{1}{2})$ $(\frac{3}{4}, -\frac{9}{16})$	IA IM	For the curve $y = f(x)$ For turning point of $f(x)$ lying outside the range $0 \le x \le \frac{1}{2}$. For labelling the intersecting points
From the graph, the least value of $f(x)$ is $-\frac{1}{2}$.	1A	
Alternative solution $f(x) \le g(x)$ $x^2 - \frac{3}{2}x \le -x$ $2x^2 - x \le 0$ $0 \le x \le \frac{1}{2}$ $f(x) \text{ is strictly decreasing in this range.}$ So the least value of $f(x)$ occurs at $x = \frac{1}{2}$. \therefore Least value of $f(x) = -\frac{1}{2}$.	1A 1 1A	Withhold these 2 marks if explanation was not given
	4	

 	Solution	Marks	Remarks
(a)	$z^6 = 64$ $\frac{1}{2} \qquad 2n\pi \qquad 2n\pi$		
	$z = 64^{\frac{1}{6}} \left(\cos \frac{2n\pi}{6} + i \sin \frac{2n\pi}{6}\right) $ (<i>n</i> is an integer) $z = 2\left(\cos \frac{n\pi}{3} + i \sin \frac{n\pi}{3}\right)$	IM	For De Moivre's Theorem
	$z_0 = 2(\cos 0 + i \sin 0) = 2$]	
	$z_1 = 2\cos(\frac{\pi}{3} + i\sin\frac{\pi}{3}) = 1 + \sqrt{3}i$	1A 1A+1A	For z_0 and z_3 1 A for two other correct answe
	$z_2 = 2\cos(\frac{2\pi}{3} + i\sin\frac{2\pi}{3}) = -1 + \sqrt{3}i$ $z_3 = 2(\cos\pi + i\sin\pi) = -2$		
	$z_4 = 2(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}) = -1 - \sqrt{3}i$		$\underline{OR} \ z_4 = \overline{z}_2 = -1 - \sqrt{3}i$
	$z_5 = 2(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}) = 1 - \sqrt{3}i$		$\underline{OR} \ z_5 = \overline{z}_1 = 1 - \sqrt{3} i$
(b)	(i) Imaginary		·
	Real	IA+1A	IA for the line $Re(z) = 1$ IA for shading the region
	Re (2) ≥ 1		(pp-1) for not labelling the axes
	(ii) Imaginary		
	Real	1M+1A+1A	1M for 2 lines through O 1A for 2 correct lines 1A for shading the region
	$-\frac{\pi}{3} \operatorname{sarg}_{z} \leq \frac{\pi}{3}$		(pp-1) for not labelling the axes
(c)	(i) $w = 3z_1$ = $3(1 + \sqrt{3}i)$	1M	
	$=3+3\sqrt{3}i$	1A	
	(ii) $w-z_2 = 3+3\sqrt{3} i - (-1+\sqrt{3} i)$ = $4+2\sqrt{3} i$		
	$\tan \arg(w-z_2) = \frac{2\sqrt{3}}{4}$	1M	
	$arg(w-z_2) = 0.714 \text{ (correct to 3 sig. figures)}$	1A	OR 40.9°
	$arg(w-z_2)$ = Angle between <i>CP</i> and the real axis $\angle OPC = arg z_1 - arg(w-z_2)$	1M IM	(can be omitted)
	$= \frac{\pi}{3} - 0.714$		
	= 0.333 (correct to 3 significant figures)	_IA	QR 19.1°

998 HKC	E Add. Math 只吸致的参阅	FUR	EACHE	KS USE UNLT
	Solution		Marks	Remarks
. (a)	By Sine Law, $\frac{1}{y} = \frac{x}{x}$		1M	For sine law
	$\frac{1}{\sin\frac{\pi}{6}} = \frac{y}{\sin\theta} = \frac{x}{\sin(\pi - \frac{\pi}{6} - \theta)}$			roi sine iaw
	$\therefore y = 2\sin\theta$	1	1A	
	$x = 2\sin(\frac{5\pi}{6} - \theta)$ $QR \cos\theta + \sqrt{3}\sin\theta,$ $2\sin(\frac{\pi}{6} + \theta)$		_1A	Accept degrees
	6 6			·
(b)	$S = \frac{1}{2}x(1)\sin\theta \qquad \boxed{\underline{OR} = \frac{1}{2}xy\sin\frac{\pi}{6}}$., .,	•
	$=\sin\theta\sin(\frac{5\pi}{6}-\theta)$		1A	$\underline{OR} = \frac{1}{2}\sin\theta\cos\theta + \frac{\sqrt{3}}{2}\sin^2\theta$
	$\frac{\mathrm{d}S}{\mathrm{d}\theta} = \cos\theta\sin(\frac{5\pi}{6} - \theta) - \sin\theta\cos(\frac{5\pi}{6} - \theta)$		1M	For product rule
	$=\sin(\frac{5\pi}{6}-\theta-\theta)$		-	
	$=\sin(\frac{5\pi}{6}-2\theta)$		1	
	Alternative solution]
	$S = \sin \theta \sin \left(\frac{5\pi}{6} - \theta \right)$	•	1A	:
	$=\frac{1}{2}\left[\cos(\frac{5\pi}{6}-2\theta)-\cos\frac{5\pi}{6}\right]$			
	$\frac{\mathrm{d}S}{\mathrm{d}\theta} = -\frac{1}{2}\sin(\frac{5\pi}{6} - 2\theta)(-2)$		1M	
	$=\sin(\frac{5\pi}{6}-2\theta)$		1	
	$\frac{\mathrm{d}S}{\mathrm{d}\theta} = 0 \qquad \sin(\frac{5\pi}{6} - 2\theta) = 0$		1M	-
	$\frac{5\pi}{6} = 2\theta$			
	$\theta = \frac{5\pi}{12}$		1A	No mark for degrees
	$\frac{\mathrm{d}^2 S}{\mathrm{d}\theta^2} = -2\cos(\frac{5\pi}{6} - 2\theta)$			
	At $\theta = \frac{5\pi}{12}$, $\frac{d^2S}{d\theta^2} \begin{bmatrix} \\ -2 \end{bmatrix} < 0$.		1	For checking
	$\therefore S \text{ is a maximum at } \theta = \frac{5\pi}{12}.$			
	Alternative solution for checking			
	$\frac{\mathrm{d}S}{\mathrm{d}\theta} = \sin(\frac{5\pi}{6} - 2\theta)$			
	$\left \frac{\mathrm{d}S}{\mathrm{d}\theta} > 0 \text{ when } 0 \le \theta < \frac{5\pi}{12} \right $		1	For checking
	$\frac{\mathrm{d}S}{\mathrm{d}\theta} < 0 \text{ when } \theta > \frac{5\pi}{12}$			
	$\therefore S \text{ is a maximum at } \theta = \frac{5\pi}{12}.$			
			6	
an . :				
CT A SA	ACCIDE I 15		1	•

	Solution	Marks	Remarks
(c)	Differentiate x and y with respect to t, $\frac{dx}{dt} = -2\cos(\frac{5\pi}{6} - \theta)\frac{d\theta}{dt} (1)$ $\frac{dy}{dt} = 2\cos\theta\frac{d\theta}{dt} (2)$ Eliminating $\frac{d\theta}{dt}$,	} IM+IA	1M for differentiating w.r.t. t.
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -2\cos(\frac{5\pi}{6} - \theta)(\frac{1}{2\cos\theta} \frac{\mathrm{d}y}{\mathrm{d}t})$	1M	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{\cos(\frac{5\pi}{6} - \theta)}{\cos\theta} \frac{\mathrm{d}y}{\mathrm{d}t}$	1	
	Alternative solution $\frac{dx}{d\theta} = -2\cos(\frac{5\pi}{6} - \theta)$ $\frac{dy}{d\theta} = 2\cos\theta$ $\frac{dx}{dy} = \frac{dx}{d\theta} / \frac{dy}{d\theta}$	} 1A 1M	
	$= -\frac{\cos(\frac{5\pi}{6} - \theta)}{\cos \theta}$ $\frac{dx}{dt} = \frac{dx}{dy} \frac{dy}{dt}$ $\therefore \frac{dx}{dt} = -\frac{\cos(\frac{5\pi}{6} - \theta)}{6} \frac{dy}{dt}$	1M 1	
(d)	As the rod moves from its initial position to O , $\frac{dy}{dt} < 0$.	 	For $\frac{dy}{dx} < 0$
	$\cos(\frac{5\pi}{6} - \theta) > 0$ when $\frac{\pi}{3} < \theta < \frac{4\pi}{9}$, and < 0 when $0 < \theta < \frac{\pi}{3}$.	}1	No need to specify the ranges of values of θ
	OR $\cos(\frac{5\pi}{6} - \theta)$ is first positive and later becomes negative.	1	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{-\cos(\frac{5\pi}{6} - \theta)}{\cos\theta} \frac{\mathrm{d}y}{\mathrm{d}t} > 0 \text{ for } \frac{\pi}{3} < \theta < \frac{4\pi}{9} \text{, and}$ $< 0 \text{ for } 0 < \theta < \frac{\pi}{3}.$		OR is first positive and later become negative
	Hence end A first moves away from O (as $\frac{dx}{dt} > 0$) and then moves towards O (as $\frac{dx}{dt} < 0$). So the student is correct.		'Yes' without explanation – no marks