

中国研究生创新实践系列大赛 "华为杯"第二十一届中国研究生 数学建模竞赛

学 校		学校名称填写
参赛队号		20230900001
	1.	成员 A
队员姓名	2.	成员 B
	3.	成员 C

中国研究生创新实践系列大赛 "华为杯"第二十一届中国研究生 数学建模竞赛

题	目:	全国研究生数学建模竞赛论文标题
---	----	-----------------

摘 要:

本模板是为全国研究生数学建模竞赛编写的 LATEX 模板,旨在让大家专注于论文的内容写作,而不用花费过多精力在格式的定制和调整上.本手册是相应的参考,其中提供了一些环境和命令可以让模板的使用更为方便.同时需要注意,使用者需要有一定的 LATEX 的使用经验,至少要会使用 ctex 宏包的一些功能,比如调节字距或修改字体大小等等.

2024 年格式变化说明

今年的格式变化如下:

- 1. 论文第一页为标识替换;
- 2. 合并 https://github.com/andy123t/GMCMthesis 更新. 修复首页页码;
- 3. 调整摘要、标题、关键词和浮动体标题等字体。

这是研究生报名官方网站,点击 这里 进入。

欢迎大家到 QQ 群里沟通交流: 91940767/478023327/640633524。我们也开通了问答 区交流 LATEX 技术: https://ask.latexstudio.net, 欢迎大家前来交流。

关键词: 折叠桌 曲线拟合 非线性优化模型 受力分析

目录

1	在约	线使用 .							•								•					3
2	问是	0重述 .									•				•	 	•		 	•		3
3	问是	页分析 .									•					 			 			3
	3.1	问题 1	的分	析												 			 			3
	3.2	问题 2	的分	析												 			 			3
4	模型	型假设.																				4
5	定义	く与符号	号说明]																		4
6	符号	号说明 .																				4
7	模型	型的建式	ኔ																			5
	7.1	问题一	一分析													 			 			5
	7.2	算法元	·例 .						•						•	 			 		•	5
8	表林	各和图册	纟													 			 			5
	8.1	表格.														 			 			5
	8.2	图形.												 •	•						•	8
	8.3	问题三	三分析	• •					•							 			 			10
9	模型	型评价 .							•		•											10
参	考文献	就																				10
附	录 A	MAT	LAB	源和	呈序	آ .										 			 			11
	A.1	第1百	可程序											 •	•					•	•	11
附	录 B	Pytho	on 源	程序	Ę.											 			 			12
	B.1	第 2 问	可程序													 			 			12

1 在线使用

如果你想要在 Overleaf 使用, 那么需要设置下字体

\documentclass[bwprint, fontset=fandol] {gmcmthesis}

由于线上平台没有隶书,只能用楷体替代了,大家根据自己的情况来使用。 欢迎关注我们的微信公众号:

2 问题重述

在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接 复制,对所提出的问题部分基本原样复制。篇幅建议不要超过一页。

3 问题分析

主要是表达对题目的理解,特别是对附件的数据进行必要分析、描述(一般都有数据附件),这是需要提到分析数据的方法、理由。如果有多个小问题,可以对每个小问题进行分别分析。(假设有 2 个问题)

3.1 问题 1 的分析

对问题 1 研究的意义的分析。

问题 1 属于。。。。。数学问题,对于解决此类问题一般数学方法的分析。

对附件中所给数据特点的分析。

对问题 1 所要求的结果进行分析。

由于以上原因,我们可以将首先建立一个。。。。。。的数学模型 I, 然后将建立一个。。。。。。 的模型 II,。。。。。。。对结果分别进行预测,并将结果进行比较.

3.2 问题 2 的分析

对问题 2 研究的意义的分析。

4 模型假设

- 1. 假设题目所给的数据真实可靠;
- 2.
- 3.

注意:假设对整篇文章具有指导性,有时决定问题的难易。一定要注意假设的某种角度上的合理性,不能乱编,完全偏离事实或与题目要求相抵触。注意罗列要工整。

5 定义与符号说明

(对文章中所用到的主要数学符号进行解释)

尽可能借鉴参考书上通常采用的符号,不宜自己乱定义符号,对于改进的一些模型,符号可以适当自己修正(下标、上标、参数等可以变,主符号最好与经典模型符号靠近)。对文章自己创新的名词需要特别解释。其他符号要进行说明,注意罗列要工整。注意格式统一,不要出现零乱或前后不一致现象,关键是容易看懂。

6 符号说明

符号	意义
a	符号1的意义
b	符号2的意义
c	符号3的意义符号3的意义
d	符号 4 的意义
e	符号 5 的意义
f	符号6的意义符号6的意义
g	符号7的意义
h	符号8的意义
i	符号9的意义符号9的意义
k	符号 10 的意义

7 模型的建立

7.1 问题一分析

题目要求建立模型描述折叠桌的动态变化图,由于在折叠时用力大小的不同,我们不能描述在某一时刻折叠桌的具体形态,但我们可以用每根木条的角度变化来描述折叠桌的动态变化。首先,我们知道折叠桌前后左右对称,我们可以运用几何知识求出四分之一木条的角度变化。最后,根据初始时刻和最终形态两种状态求出桌腿木条开槽的长度

7.2 算法示例

数学建模求解算法示例:

算法1算法的名字

输入: input parameters A, B, C

输出: output result

1: some description 算法介绍

2: for condition do

3: ..

4: **if** condition **then**

5: ...

6: **else**

7: ..

8: while condition do

9: ...

10: **return** result

8 表格和图形

8.1 表格

三线表

模型建立的思路想好之后,采取了怎样的算法对模型进行了实现。前面建了几个模型,这里就有几个模型的求解。(如利用 Matlab 编程求解、用 spss 软件求解,利用拉普拉斯变换求解,用蒙特卡罗模拟求解等。特别是求解有难度的模型要介绍求解方法。)获得什么样的结果,可围绕题目要求综合给出关键结论,建议不要将问题所需结果全部给出,否则摘要显得太长。

模型建立的思路想好之后,采取了怎样的算法对模型进行了实现。前面建了几个模型,

表 8.1 某校学生升高体重样本

序号	年龄	身高	体重
1	14	156	42
2	16	158	45
3	14	162	48
4	15	163	50
平均	15	159.75	46.25

这里就有几个模型的求解。(如利用 Matlab 编程求解、用 spss 软件求解,利用拉普拉斯变换求解,用蒙特卡罗模拟求解等。特别是求解有难度的模型要介绍求解方法。)获得什么样的结果,可围绕题目要求综合给出关键结论,建议不要将问题所需结果全部给出,否则摘要显得太长。

模型建立的思路想好之后,采取了怎样的算法对模型进行了实现。前面建了几个模型,这里就有几个模型的求解。(如利用 Matlab 编程求解、用 spss 软件求解,利用拉普拉斯变换求解,用蒙特卡罗模拟求解等。特别是求解有难度的模型要介绍求解方法。)获得什么样的结果,可围绕题目要求综合给出关键结论,建议不要将问题所需结果全部给出,否则摘要显得太长。

某行业产量与生产费用的数据

表 8.2 某行业产量与生产费用的数据

企业编号	产量(台)	生产费用 (万元)	企业编号	产量(台)	生产费用 (万元)
1	40	130	7	84	165
2	42	150	8	100	170
3	50	155	9	116	167
4	55	140	10	125	180
5	65	150	11	130	175
6	78	154	12	140	185

研究生数学建模 2019 年 F 题结果示例

表 8.3 问题 1 结果 1 (左) 与问题 2 结果 (右)

数据集1	数据集1	数据集2
A 问题 1	A 问题 1	A 问题 1
503	503	163
294	200	114
91	80	8
607	237	309
540	170	305
250	278	123
340	369	45
277	214	160
В	397	92
	В	93
		61
		292
		В
104861	103518	109342

数据集1	数据集1	数据集 2			
A 问题 2	A 问题 2	A 问题 2			
503	503	163			
294	200	114			
91	80	8			
607	237	309			
540	170	305			
250	278	123			
340	369	45			
277	214	160			
В	397	92			
	В	93			
		61			
		292			
		В			
104917	103563	109427			

表 8.4 问题 3 结果

数据集1	数据集1	数据集2(无问题点)	数据集 2 (有问题点)				
A 问题 3	A 问题 3	Α̈́Ę	题 3	Α̈́Ę	题 3			
503	503	169	73	169	73			
69	69	322	249	322	249			
506	506	270	274	270	274			
371	371	89	12	89	12			
183	183	236	216	236	216			
194	194	132	16	132	16			
450	450	53	282	53	282			
286	113	112	84	112	141			
485	485	268	287	268	291			
B (9D)	248	250	99	250	161			
	B (10D)		B (21D)	243	B (21D)			
104861m	103518m		168924m		161650m			

8.2 图形

图形并列

这是一个算法流程图

图 8.3 算法流程图

多图并排

图 8.4 多图示例

8.3 问题三分析

题目要求制作软件的意思就是客户给定折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,将这些信息输入程序就得到客户想要的桌子。我们在求解最优设计加工参数时,自行给定桌面边缘线形状(椭圆、相交圆等),桌脚边缘线形状,折叠桌高度,应用第二问的非线性规划模型,用 MATLAB 软件绘制折叠桌截面图,得到自己设计的创意平板折叠桌。

9 模型评价

这里是模型评价 [1, 2, 3, 4, 5]

参考文献

- [1] Mittelbach F, Goossens M, Braams J, et al., The LaTeX Companion, 2nd ed., Reading, MA, USA: Addison-Wesley, 107-109, 2004.
- [2] Wright J, LATEX3 programming: External perspective, TUGboat, 30(1):107-109, 2009.
- [3] Beeton B, Freytag A, Sargent III M, Unicode support for mathematics, http://www.unicode.org/reports/tr25/, 2018-07-21.
- [4] Vieth U, Experiences typesetting mathematical physics, Proceedings of EuroTeX, 13, 2009.
- [5] TeXer W, 图EX 工作室, https://www.latexstudio.net/.

附录 A MATLAB 源程序

A.1 第1问程序

code.m

```
clear all
kk=2;
[mdd, ndd] = size(dd);
while ~isempty(V)
   [tmpd,j]=min(W(i,V));
   tmpj=V(j);
   for k=2:ndd
      [tmp1,jj] = min(dd(1,k)+W(dd(2,k),V));
      tmp2=V(jj);
      tt(k-1,:) = [tmp1, tmp2, jj];
   tmp=[tmpd,tmpj,j;tt];
   [tmp3, tmp4] = min(tmp(:,1));
   if tmp3==tmpd,
      ss(1:2,kk) = [i;tmp(tmp4,2)];
   else
      tmp5=find(ss(:,tmp4)\sim=0);
      tmp6=length(tmp5);
      if dd(2, tmp4) == ss(tmp6, tmp4)
         ss(1:tmp6+1,kk) = [ss(tmp5,tmp4);tmp(tmp4,2)];
      else, ss(1:3,kk) = [i;dd(2,tmp4);tmp(tmp4,2)];
      end
   dd=[dd,[tmp3;tmp(tmp4,2)]];
   V(tmp(tmp4,3)) = [];
   [mdd, ndd] = size (dd); kk = kk + 1;
end;
S=ss; D=dd(1,:);
```

附录 B Python 源程序

B.1 第 2 问程序

mip1.py

```
# This example formulates and solves the following MIP model:
# maximize
* x + y + 2 z
# subject to
      x + 2 y + 3 z <= 4
      x + y >= 1
     x, y, z binary
# import gurobipy as gp
from gurobipy import * #GRB
try:
  # Create a new model
  m = Model("mip1")
  # Create variables
  x = m.addVar(vtype=GRB.BINARY, name="x")
  y = m.addVar(vtype=GRB.BINARY, name="y")
  z = m.addVar(vtype=GRB.BINARY, name="z")
  # Set objective
  m.setObjective(x + y + 2 * z, GRB.MAXIMIZE)
  \# Add constraint: x + 2 y + 3 z \le 4
  m.addConstr(x + 2 * y + 3 * z <= 4, "c0")
  # Add constraint: x + y >= 1
  m.addConstr(x + y >= 1, "c1")
  # Optimize model
  m.optimize()
  for v in m.getVars():
     print('%s %g' % (v.varName, v.x))
  print('Obj: %g' % m.objVal)
except GurobiError as e:
  print('Error code ' + str(e.errno) + ': ' + str(e))
except AttributeError:
  print('Encountered an attribute error')
```