Itô integral

July 24, 2021

Outline

- Textbook: Section 4.2, 4.3 Shreve II
- Content
 - Construction Itô integral
 - Itô integral for elementary Intergal
 - Itô integral for general Intergal
 - Simulation
 - Properties: continuity, adaptness, Martingale, Isometry, quadratic variation
 - Distribution of Itô integral with deterministic integrand

Table of Contents

Introduction

Ordinary Differential Equations (ODEs) Introduction to Stochastic Integral

Itô integral

Simulation

Properties of Itô integral

Example of ODE

When we model some situations, we don't know a priori which function to use, since we only know the local behavior of our system.

- $lackbox{ } f(t)$ represents a commodity price at time t
- Write

$$f(t + \Delta t) - f(t) = \mu \Delta t f(t)$$

in order to mean that the variation of $f(t+\Delta t)-f(t)$ of the commodity price over a time period is is proportional to the length Δt of the time period considered as well as the commodity price f(t) at the start of the period, i.e. $\mu \Delta t f(t)$, μ being a constant.

ightharpoonup Divide both side by Δt

$$\frac{f(t+\Delta t)-f(t)}{\Delta t}=\mu f(t)$$

 \blacktriangleright Let $\Delta t \rightarrow 0$

$$\frac{df}{dt} = \mu f(t)$$

or

$$df(t) = \mu f(t)dt$$

It means that the derivative of the function is proportional to the function itself • General solution $f(t) = ce^{\mu t}$

- General solution $f(t) = ce^{\mu t}$
- ightharpoonup Initial condition commodity price f_0

- General solution $f(t) = ce^{\mu t}$
- lacktriangle Initial condition commodity price f_0
- $ightharpoonup c = f_0$
- ► Commodity price at time t is

$$f = f_0 e^{\mu t}$$

- ▶ $(S_t)_{t\geq 0}$: evolution of a risky asset price
- ▶ We don't know, in general, the law that governs such a process, but we may have an idea of its local behavior.

ightharpoonup over a short time interval of length Δt , a price tends to vary proportionally to the period length and the asset price at the beginning of the period

$$S_{t+\Delta t} - S_t = \mu \Delta t S_t$$

ightharpoonup over a short time interval of length Δt , a price tends to vary proportionally to the period length and the asset price at the beginning of the period

$$S_{t+\Delta t} - S_t = \mu \Delta t S_t$$

we are not certain that the price varies proportionally to the period length and the asset price

ightharpoonup over a short time interval of length Δt , a price tends to vary proportionally to the period length and the asset price at the beginning of the period

$$S_{t+\Delta t} - S_t = \mu \Delta t S_t$$

- we are not certain that the price varies proportionally to the period length and the asset price
- an unpredictable error needs to be incorporated into our equation.

ightharpoonup over a short time interval of length Δt , a price tends to vary proportionally to the period length and the asset price at the beginning of the period

$$S_{t+\Delta t} - S_t = \mu \Delta t S_t$$

- we are not certain that the price varies proportionally to the period length and the asset price
- an unpredictable error needs to be incorporated into our equation.
- We can however control the magnitude of such a random error.

Error term

- the higher the price, the more the risky asset price can diverge from the trend.
- ▶ the random error must also depend on the length of the time interval considered: the longer the interval, the greater the chance that the price diverges from the trend.

- Error term
 - the higher the price, the more the risky asset price can diverge from the trend.
 - the random error must also depend on the length of the time interval considered: the longer the interval, the greater the chance that the price diverges from the trend.
 - Add a stochastic term to the initial equation.

$$S_{t+\Delta t} - S_t = \mu \Delta t S_t + \sigma S_t \sqrt{\Delta t} \epsilon_t$$

where

- $\sigma > 0$
- $ightharpoonup \epsilon_t \hookrightarrow N(0,1)$ is indepedent of $(S_u)_{u < t}$

The latter condition is important, since we must not be able to predict the error ϵ_t from observing the behavior of the risky asset price prior to date t.

- lacktriangle A candidate for error terms: Brownian motion B_t
- ▶ $B_{t+\Delta_t} B_t \hookrightarrow N(0, \Delta t)$ and independent of $(B_u)_{u \le t}$

$$S_{t+\Delta t} - S_t = \mu \Delta t S_t + \sigma S_t (B_{t+\Delta_t} - B_t)$$

▶ When length of time $\Delta t \rightarrow 0$, it leads to

$$dS_t = \mu S_t dt + \sigma S_t dB_t$$

which is called a stochastic differential equation

Questions

- 1. the term $\sigma S_t dB_t$ is not well defined, particularly we proved that the Brownian motion paths are nowhere differentiable!
- 2. does a solution to that equation exist?
- 3. if that solution exists, is it unique and how can it be found?

Table of Contents

Introduction

Itô integral

Simulation

Properties of Itô integral

Riemann integral

$$\int_0^t g(s)ds = \lim_{\|\Pi\| \to 0} \sum_{i=1}^n g(s_i) (\underbrace{s_{i+1} - s_i}_{\Delta s_i})$$

Lebesgue - Stieltjes integral

$$\int_{0}^{t} g(s)df(s) = \lim_{\|\Pi\| \to 0} \sum_{i=1}^{n} g(s_{i}) (\underbrace{f(s_{i+1}) - f(s_{i})}_{\Delta f(s_{i})})$$

where $\Pi : 0 = s_0 < s_1 < \cdots < s_n = t$ is a partition of [0, t]

Riemann integral

$$\int_0^t g(s)ds = \lim_{\|\Pi\| \to 0} \sum_{i=1}^n g(s_i) (\underbrace{s_{i+1} - s_i}_{\Delta s_i})$$

Lebesgue - Stieltjes integral

$$\int_{0}^{t} g(s)df(s) = \lim_{\|\Pi\| \to 0} \sum_{i=1}^{n} g(s_{i}) \underbrace{(f(s_{i+1}) - f(s_{i}))}_{\Delta f(s_{i})}$$

where $\Pi: 0 = s_0 < s_1 < \dots < s_n = t$ is a partition of [0,t] Example: Left-end point rule $s_i = \frac{it}{n}$, $i = 0, 1, \dots, n$

Itô integral

Itô integral

$$I_t = \int_0^t \delta_s dB_s$$

where

- ▶ **Integrator** $(B_t)_{t\geq 0}$ is a Brownian motion associated with filtration $(\mathcal{F}_t)_{t\geq 0}$
- ▶ **Integrand** $(\delta_t)_{t\geq 0}$ is \mathcal{F}_t adapted and square integrable

$$E \int_0^T \delta_s^2 ds < \infty, \ \forall T$$

Elementary Integrand

- ▶ $0 = t_0 < t_1 < ... < t_n = T$ is a partition of [0, T]
- ▶ δ_t is a constant on each subinterval $[t_k, t_{k+1}]$ then $(\delta_t)_{t \geq 0}$ is called an **elementary process**

Construction of Itô integral of an Elementary Integrand

$$I_{t} = \sum_{i=0}^{k-1} \delta_{t_{i}} (B_{t_{i+1}} - B_{t_{i}}) + \delta_{t_{k}} (B_{t} - B_{t_{k}})$$

for $t_k < t < t_{k+1}$

A sample path of Itô integral of an Elementary Integrand

One interpretation

- B_t as the price per unit share of an asset at time t.
- ▶ $t_0, t_1, ..., t_n$ as the trading dates for the asset.
- $lackbox{}{\delta_k}$ as the number of shares of the asset acquired at trading date t_k and held until trading date t_{k+1} .
- ightharpoonup the (accumulated) gain from trading at time t

$$I_{t} = \begin{cases} \delta_{t_{0}}(B_{t} - B_{t_{0}}), & t_{0} \leq t \leq t_{1} \\ \delta_{t_{0}}(B_{t_{1}} - B_{t_{0}}) + \delta_{t_{1}}(B_{t} - B_{t_{1}}), & t_{1} \leq t \leq t_{2} \\ \dots & \end{cases}$$

In general, if $t_k \leq t \leq t_{k+1}$

$$I_{t} = \sum_{i=0}^{k-1} \delta_{t_{i}} (B_{t_{i+1}} - B_{t_{i}}) + \delta_{t_{k}} (B_{t} - B_{t_{k}})$$

Example - non random elementary integrand

 $ightharpoonup \delta_t = 1$ for all t then

$$I_t = B_t - B_0 = B_t \sim \mathcal{N}(0, t)$$

Example - non random elementary integrand

 $ightharpoonup \delta_t = 1$ for all t then

$$I_t = B_t - B_0 = B_t \sim \mathcal{N}(0, t)$$

$$\delta_t = \begin{cases} -1 & \text{if } 0 \le t \le 1\\ 1 & \text{if } 1 < t \le 2\\ 2 & \text{if } 2 < t \le 3 \end{cases}$$

then

$$I_3 = -1(B_1-B_0) + 1(B_2-B_1) + 2(B_3-B_2) = 2B_3 - B_2 - 2B_1$$
 with distribution $I_3 \sim \mathcal{N}(0,6)$

Example - non random elementary integrand

 $ightharpoonup \delta_t = 1$ for all t then

$$I_t = B_t - B_0 = B_t \sim \mathcal{N}(0, t)$$

$$\delta_t = \begin{cases} -1 & \text{if } 0 \le t \le 1\\ 1 & \text{if } 1 < t \le 2\\ 2 & \text{if } 2 < t \le 3 \end{cases}$$

then

$$I_3 = -1(B_1 - B_0) + 1(B_2 - B_1) + 2(B_3 - B_2) = 2B_3 - B_2 - 2B_1$$

with distribution $I_3 \sim \mathcal{N}(0,6)$

$$I_{2.5} = ?$$

Approximating a general process by an elementary process

Let (δ_t) be an integral then there exists a sequence of elementary processes $(\delta_t^{(n)})_{n=1}^\infty$ such that

$$\lim_{n \to \infty} E \int_0^T |\delta_s^{(n)} - \delta_s|^2 ds = 0$$

Construction of Itô's integrals for general integrands

$$I_t = \int_0^t \delta_s dB_s = \lim_{n \to \infty} \int_0^t \delta_s^{(n)} dB_s$$

In order to compute

$$I_1 = \int_0^1 \underbrace{s}_{\delta_s} dB_s$$

ightharpoonup Partition for [0,1]

$$\Pi = \{s_0 = 0, s_1 = \frac{1}{n}, s_2 = \frac{2}{n}, \dots, s_n = \frac{n}{n} = 1\}$$

$$(s_i = \frac{i}{n})$$

lacktriangle Approximate general process δ_s by elementary process

$$\delta_s^{(n)} = \begin{cases} 0 & \text{if } 0 \le s < \frac{1}{n} \\ \frac{1}{n} & \text{if } \frac{1}{n} \le s < \frac{2}{n} \\ \dots & \\ \frac{n-1}{n} & \text{if } \frac{n-1}{n} \le s < \frac{n}{n} \end{cases}$$

Compute Itô integral for elementary process

$$I_1^{(n)} = \int_0^1 \delta_s^{(n)} dB_s$$

$$= 0(B_{\frac{1}{n}} - B_0) + \frac{1}{n} (B_{\frac{2}{n}} - B_{\frac{1}{n}}) + \dots + \frac{n-1}{n} (B_{\frac{n}{n}} - B_{\frac{n-1}{n}})$$

$$= \sum_{i=0}^{n-1} \frac{i}{n} (B_{\frac{i+1}{n}} - B_{\frac{i}{n}})$$

Let $n \to \infty$ to obtain the Itô integral

$$I_1 = \lim_{n \to \infty} I_1^{(n)} = \lim_{n \to \infty} \sum_{i=0}^{n-1} \frac{i}{n} (B_{\frac{i+1}{n}} - B_{\frac{i}{n}})$$

Compute Itô integral for elementary process

$$I_1^{(n)} = \int_0^1 \delta_s^{(n)} dB_s$$

$$= 0(B_{\frac{1}{n}} - B_0) + \frac{1}{n} (B_{\frac{2}{n}} - B_{\frac{1}{n}}) + \dots + \frac{n-1}{n} (B_{\frac{n}{n}} - B_{\frac{n-1}{n}})$$

$$= \sum_{i=0}^{n-1} \frac{i}{n} (B_{\frac{i+1}{n}} - B_{\frac{i}{n}})$$

Let $n \to \infty$ to obtain the Itô integral

$$I_1 = \lim_{n \to \infty} I_1^{(n)} = \lim_{n \to \infty} \sum_{i=0}^{n-1} \frac{i}{n} (B_{\frac{i+1}{n}} - B_{\frac{i}{n}})$$

▶ Distribution of I_1 ?

Compute the Itô integral

$$I_T = \int_0^T B_s dB_s$$

Compute the Itô integral

$$I_T = \int_0^T B_s dB_s$$

Solution

Approximate integrand B_s by the simple process

$$\delta_u^{(n)} = \begin{cases} B_0 = 0 \text{ if } 0 \le s < T/n \\ B_{T/n} \text{ if } T/n \le s < 2T/n \\ B_{2T/n} \text{ if } 2T/n \le s < 3T/n \\ \dots \\ B_{(n-1T)/n} \text{ if } (n-1)T/n \le s < T \end{cases}$$

Then

$$I_T = \lim_{n \to \infty} \sum_{k=0}^{n-1} B_{kT/n} (B_{(k+1)T/n} - B_{kT/n})$$

Prove that

$$\sum_{k=0}^{n-1} B_{kT/n} (B_{(k+1)T/n} - B_{kT/n}) = \frac{1}{2} B_T^2 - \frac{1}{2} \sum_{k=0}^{n-1} (B_{(k+1)T/n} - B_{kT/n})^2$$

ightharpoonup let $n \to \infty$, we have

$$I_T = \frac{1}{2}B_T^2 - \frac{1}{2}\langle B \rangle(T) = \frac{1}{2}B_T^2 - \frac{1}{2}T$$

Practice

Write the following limits in form of Itô integral

1.

$$\lim_{n\to\infty}\sum_{i=0}^{n-1}\sin\left(\frac{i}{n}\right)\left(B_{\frac{i+1}{n}}-B_{\frac{i}{n}}\right)$$

2.

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} e^{\left(\frac{i}{n}\right)} \left(B_{\frac{i+1}{n}} - B_{\frac{i}{n}}\right)$$

Practice

Write the following Itô integrals in form of limits by definition

- 1. $\int_0^1 s^2 dB_s$
- 2. $\int_0^1 B_s^2 dB_s$

Table of Contents

Introduction

Itô integral

Simulation

Properties of Itô integral

Example - deterministic integrand

Consider Itô integral

$$I_1 = \int_0^t s B_s$$

Let's try to find some possible value of I_t by simulation first

Example - deterministic integrand

Consider Itô integral

$$I_1 = \int_0^t s B_s$$

Let's try to find some possible value of I_t by simulation first

- ▶ Choose step size $h = 10^{-5}$ (close to 0)
- Simulate a sequence value of standard Brownian motion at time $0, h, \ldots, nh = 1$

$$B = \begin{pmatrix} B_0 & B_h & B_{2h} & \dots & B_{nh} \end{pmatrix}$$

▶ Compute the value of integrand $\delta_s = s$ at the left - end point of each subinterval

$$\delta_0 = 0, \qquad [0, h)$$

$$\delta_h = h, \qquad [h, 2h)$$

. . .

$$\delta_{(n-1)h} = (n-1)h,$$
 $[(n-1)h, nh)$

Stock values of integrand in a vector

$$\delta = \begin{pmatrix} \delta_0 & \delta_h & \delta_{2h} & \dots & \delta_{(n-1)h} \end{pmatrix}$$

Evaluate change of Brownian motion in each subinterval

$$dB = (B_h - B_0 \quad B_{2h} - B_h \quad \dots \quad B_{nh} - B_{(n-1)h})$$

Compute

$$I_1 = \delta_0(B_h - B_0) + \delta_h(B_{2h} - B_h) + \delta_{2h}(B_{3h} - B_{2h}) + \dots + \delta_{(n-1)h}(B_{nh} - B_{(n-1)h})$$

Example - random integrand

Simulate a value of Itô integral

$$I_1 = \int_0^1 B_s^2 dB_s$$

- ▶ Choose step size $h = 10^{-5}$ (close to 0)
- Simulate a sequence value of standard Brownian motion at time $0, h, \ldots, nh = 1$

$$B = \begin{pmatrix} B_0 & B_h & B_{2h} & \dots & B_{nh} \end{pmatrix}$$

▶ Compute the value of integrand $\delta_s = s$ at the left - end point of each subinterval

$$\delta_0 = B_0^2, \qquad [0, h)$$

$$\delta_h = B_h^2, \qquad [h, 2h)$$

. . .

$$\delta_{(n-1)h} = B_{(n-1)h}^2, \qquad [(n-1)h, nh)$$

Stock values of integrand in a vector

$$\delta = \begin{pmatrix} \delta_0 & \delta_h & \delta_{2h} & \dots & \delta_{(n-1)h} \end{pmatrix}$$

▶ Evaluate change of Brownian motion in each subinterval

$$dB = (B_h - B_0 \quad B_{2h} - B_h \quad \dots \quad B_{nh} - B_{(n-1)h})$$

Compute

$$I_{1} = \overbrace{\delta_{0}(B_{h} - B_{0})}^{I_{2h}} + \delta_{h}(B_{2h} - B_{h}) + \delta_{2h}(B_{3h} - B_{2h}) + \cdots + \delta_{(n-1)h}(B_{nh} - B_{(n-1)h})$$

Stock values of integrand in a vector

$$\delta = \begin{pmatrix} \delta_0 & \delta_h & \delta_{2h} & \dots & \delta_{(n-1)h} \end{pmatrix}$$

▶ Evaluate change of Brownian motion in each subinterval

$$dB = \begin{pmatrix} B_h - B_0 & B_{2h} - B_h & \dots & B_{nh} - B_{(n-1)h} \end{pmatrix}$$

Compute

$$I_{1} = \overbrace{\delta_{0}(B_{h} - B_{0})}^{I_{2h}} + \delta_{h}(B_{2h} - B_{h}) + \delta_{2h}(B_{3h} - B_{2h}) + \cdots + \delta_{(n-1)h}(B_{nh} - B_{(n-1)h})$$

 $(I_t)_{t\geq 0}$ is a random (stochastic) process

Table of Contents

Introduction

Itô integral

Simulation

Properties of Itô integral

Properties of general Itô integral

$$I_t = \int_0^t \delta_s dB_s \qquad \qquad I_t = \int_0^t \gamma_s dB_s$$

- **Continuity** I_t is a continuous function of the upper limit of integration
- **Adaptness** For each t, I_t is \mathcal{F}_t measurable
- Linearity

$$I_t \pm J_t = \int_0^t (\delta_s \pm \gamma_u) dB_s$$
 $cI_t = \int_0^t c\delta_s dB_s$

- ▶ Martingale (I_t) is a (\mathcal{F}_t) martingale
- Isometry

$$EI_t^2 = E \int_0^t \delta_s^2 ds$$

Quadratic variation

$$\langle I,I\rangle(t)=\int_0^t \delta_s^2 ds$$

Proof

- Provide detail proof for elementary integrand
- ► Taking limit to get the corresponding result for general integrand

Proof for Martingale property

Case 1 $t_k \le s < t \le t_{k+1}$

$$\begin{split} E(I_t|\mathcal{F}_s) &= E\left(\sum_{i=0}^{k-1} \underbrace{\delta_{t_i}}_{\mathcal{F}_s-\text{measurable}} \underbrace{(B_{t_{i+1}} - B_{t_i})}_{\mathcal{F}_s-\text{measurable}}) + \delta_{t_k}(B_t - B_{t_k})|\mathcal{F}_s\right) \\ &= \sum_{i=0}^{k-1} \delta_{t_i}(B_{t_{i+1}} - B_{t_i}) + E(\underbrace{\delta_{t_k}}_{\mathcal{F}_s-\text{measurable}} (B_t - B_{t_k})|\mathcal{F}_s) \\ &= \sum_{i=0}^{k-1} \delta_{t_i}(B_{t_{i+1}} - B_{t_i}) + \underbrace{\delta_{t_k}}_{\text{take out of what is known}} E(B_t - B_{t_k}|\mathcal{F}_s) \\ &= \sum_{i=0}^{k-1} \delta_{t_i}(B_{t_{i+1}} - B_{t_i}) + \delta_{t_k}(\underbrace{E(B_t|\mathcal{F}_s) - E(\underbrace{B_t - B_{t_k}}_{\mathcal{F}_s-\text{measurable}}}_{\text{linear property}}) \\ &= \sum_{i=0}^{k-1} \delta_{t_i}(B_{t_{i+1}} - B_{t_i}) + \delta_{t_k}(\underbrace{B_s - B_{t_k}}_{\text{bis a martingale}}) = \underbrace{\delta_{t_k}}_{\text{take out of what is known}}) = \underbrace{\delta_{t_k}}_{\text{take out of what is known}} \\ &= \underbrace{\delta_{t_k}}_{\text{take out of what is known}}_{\text{take out of what is known}} \\ &= \underbrace{\delta_{t_k}}_{\text{take out of what is known}}_{\text{take out of what is known}} \\ &= \underbrace{\delta_{t_k}}_{\text{take out of what is known}}_{\text{take out of what is known}} \\ &= \underbrace{\delta_{t_k}}_{\text{take out of what is known}}_{\text{take out of what is known}} \\ &= \underbrace{\delta_{t_k}}_{\text{take out of what is known}}_{\text{take out of what is known}} \\ &= \underbrace{\delta_{t_k}}_{\text{take out of what is known}}_{\text{take out of what is known}}_{\text{take out of what is known}} \\ &= \underbrace{\delta_{t_k}}_{\text{take out of what is known}}_{\text{take out of what is known}}_{\text{take out of what is known}}_{\text{take out of what is known}} \\ &= \underbrace{\delta_{t_k}}_{\text{take out of what is known}}_{\text{take out of what$$

Case 2 $t_l \le s \le t_{l+1} \le t_k \le t \le t_{k+1}$

We have

$$I_{t} = \sum_{i=0}^{k-1} \delta_{t_{i}} (B_{t_{i+1}} - B_{t_{i}}) + \delta_{t_{k}} (B_{t} - B_{t_{k}})$$

$$= \sum_{i=0}^{l} \delta_{t_{i}} (B_{t_{i+1}} - B_{t_{i}}) + \sum_{i=l}^{k-1} \delta_{t_{i}} (B_{t_{i+1}} - B_{t_{i}}) + \delta_{t_{k}} (B_{t} - B_{t_{k}})$$

$$= I_{t_{l+1}} + \sum_{i=l}^{k-1} \delta_{t_{i}} (B_{t_{i+1}} - B_{t_{i}}) + \delta_{t_{k}} (B_{t} - B_{t_{k}})$$

So

$$E(I_t|\mathcal{F}_s) = \underbrace{E(I_{t_{l+1}}|\mathcal{F}_s)}_{\mathbf{I}} + \underbrace{\sum_{i=l}^{k-1} E(\delta_{t_i}(B_{t_{i+1}} - B_{t_i})|\mathcal{F}_s)}_{\mathbf{I}\mathbf{I}} + \underbrace{E(\delta_{t_k}(B_t - B_{t_k})|\mathcal{F}_s)}_{\mathbf{I}\mathbf{I}}$$

- $I = E(I_{t_{t+1}} | \mathcal{F}_s) = I_s \text{ (case 1)}$
- $\blacktriangleright \ \ \text{Need to prove} \ E(II|\mathcal{F}_s) = 0 \ \ \text{and} \ E(III|\mathcal{F}_s) = 0$

► Each terms in II is equal to 0 For l < i < k - 1, we have

$$II_i = E(\delta_{t_i}(B_{t_{i+1}} - B_{t_i})|\mathcal{F}_s) = \underbrace{E(E(\delta_{t_i}(B_{t_{i+1}} - B_{t_i})|\mathcal{F}_{t_i})|\mathcal{F}_s))}_{\text{iteration }\mathcal{F}_s \subset \mathcal{F}_{t_i} \text{ since } s \leq t_i}$$

Compute the inner part

$$\begin{split} E(& \underbrace{\delta_{t_i}}_{\mathcal{F}_{t_i}-measurable} & (B_{t_{i+1}}-B_{t_i})|\mathcal{F}_{t_i}) = \underbrace{\delta_{t_i}}_{\text{take out of what is known}} E(B_{t_{i+1}}-B_{t_i}|\mathcal{F}_{t_i}) \\ = & \underbrace{\delta_{t_i}}_{\text{finear property}} & \underbrace{E(B_{t_{i+1}}|\mathcal{F}_{t_i})}_{\text{linear property}} - E(\underbrace{B_{t_i}}_{\text{linear property}} |\mathcal{F}_{t_i}) \\ = & \underbrace{\delta_{t_i}}_{\text{linear property}} & \underbrace{B_{t_i}}_{\text{linear property}} & \underbrace{|\mathcal{F}_{t_i}|}_{\text{linear property}} \end{split}$$

Hence

$$II_i = E(0|\mathcal{F}_s) = 0$$

ightharpoonup Prove that III=0

$$III = E(\delta_{t_k}(B_t - B_{t_k})|\mathcal{F}_s) = \underbrace{E(E(\delta_{t_k}(B_t - B_{t_k})|\mathcal{F}_{t_k})|\mathcal{F}_s))}_{\text{iteration } \mathcal{F}_s \subset \mathcal{F}_{t_k} \text{ since } t_k \geq s}$$

Compute the inner part

$$E(\underbrace{\delta_{t_k}}_{\mathcal{F}_{t_k}-measurable} (B_t - B_{t_k})|\mathcal{F}_{t_k}) = \underbrace{\delta_{t_k}}_{\text{take out of what is known}} E(B_t - B_{t_k}|\mathcal{F}_{t_k})$$

$$= \delta_{t_k} \underbrace{\begin{bmatrix} B_{t_k} \text{ since } B \text{ is a martingale} & \mathcal{F}_{t_k}-measurable} \\ E(B_t|\mathcal{F}_{t_k}) & -E(\underbrace{B_{t_k}}_{\text{linear property}}) \end{bmatrix}$$

$$= \delta_{t_k} \left(B_{t_k} - B_{t_k}\right) = 0$$

Hence

$$III = E(0|\mathcal{F}_s) = 0$$

Proof for Isometry property $EI_t^2 = E \int_0^t \delta_s^2 ds$

▶ To simplification, assume $t = t_k$ then

$$I_t = \sum_{i=0}^{k-1} \delta_{t_i} D_i$$

where $D_i = B_{t_{i+1}} - B_{t_i} \sim \mathcal{N}(0, t_{i_1} - t_i)$ are independent

$$I_t^2 = \left(\sum_{i=0}^{k-1} \delta_{t_i} D_i\right)^2 = \underbrace{\sum_{i=0}^{k-1} \delta_{t_i}^2 D_i^2}_{I} + 2 \underbrace{\sum_{i < j} \delta_{t_i} D_i \delta_{t_j} D_j}_{II}$$

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

$$E(\underbrace{\delta_{t_i}D_i\delta_{t_j}}_{\mathcal{F}_{t_j}-measurable \text{ independent of }\mathcal{F}_{t_j}})\overset{iteration}{=} E(E(\underbrace{\delta_{t_i}\delta_{t_j}D_i}_{\mathcal{F}_{t_j}-measurable}D_j|\mathcal{F}_{t_j}))$$

The inner conditional expectation is

$$\begin{split} E(\underbrace{\underbrace{\delta_{t_i}\delta_{t_j}D_i}_{\mathcal{F}_{t_j}-measurable}} D_j|\mathcal{F}_{t_j}) &= \delta_{t_i}\delta_{t_j}D_iE(\underbrace{D_j}_{\text{independent of }\mathcal{F}_{t_j}}|\mathcal{F}_{t_j}) \\ &= \delta_{t_i}\delta_{t_j}D_i\underbrace{E(D_j)}_{0} = 0 \end{split}$$

Expectation of each term in IFor $0 \le i \le k-1$

$$I_i = E\left(\underbrace{\delta_{t_i}^2}_{\mathcal{F}_{t_i} - measurable \text{ independent of } \mathcal{F}_{t_i}}^{D_i^2}\right) = E\left(E\left(\delta_{t_i}^2 D_i^2 | \mathcal{F}_{t_i}\right)\right)$$

Compute the inner conditional expectation

$$\begin{split} E\left(\delta_{t_i}^2 D_i^2 | \mathcal{F}_{t_i}\right) &= \underbrace{\delta_{t_i}^2}_{\text{take out of what is known}} E\left(D_i^2 | \mathcal{F}_{t_i}\right) \\ &= \delta_{t_i}^2 \underbrace{E\left(D_i^2\right)}_{Var(D_i) + (E(D_i))^2 = t_{i+1}} = \delta_{t_i}^2(t_{i+1} - t_i) \end{split}$$

So

$$E(I_t^2) = E(I) = \sum_{i=0}^{k-1} I_i = \sum_{i=0}^{k-1} (t_{i+1} - t_i) E(\delta_{t_i}^2) = E\left(\underbrace{\sum_{i=0}^{k-1} (t_{i+1} - t_i) \delta_{t_i}^2}_{\int_0^t \delta_s ds}\right)$$

Proof for Quadratic variation $\langle I,I\rangle(t)=\int_0^t \delta_s^2 ds$

Let $\Pi=\{t_0,t_1,...,t_n\}$ be the partition for δ , i.e $\delta_t=\delta_{t_k}$ for $t_k\leq t< t_{k+1}$. To simplify notation, we assume that $t=t_n$. So

$$\langle I, I \rangle(t) = \sum_{k=1}^{n-1} \langle I \rangle(t_{k+1}) - \langle I \rangle(t_k)$$

Compute $\langle I \rangle (t_{k+1}) - \langle I \rangle (t_k)$ Let $\Xi = \{s_0, s_1, \ldots, s_m\}$ be a partition of $[t_k, t_{k+1}]$ then

$$I_{s_{j+1}} - I_{s_j} = \int_{s_j}^{s_{j+1}} \delta_{t_k} dB_u = \delta_{t_k} (B_{s_{j+1}} - B_{s_j})$$

So

$$\langle I, I \rangle (t_{k+1}) - \langle I, I \rangle (t_k) = \lim_{\|\Xi\| \to 0} \sum_{j=1}^{m-1} (I_{s_{j+1}} - I_{s_j})^2$$

$$= \lim_{\|\Xi\| \to 0} \sum_{j=1}^{m-1} \delta_{t_k}^2 (B_{s_{j+1}} - B_{s_j})^2 = \sum_{j=1}^{m-1} \delta_{t_k}^2 (s_{j+1} - s_j) = \delta_{t_k}^2 (t_{k+1} - t_k)$$

$$\langle I, I \rangle (t) = \delta_{t_k}^2 (t_{k+1} - t_k) = \sum_{k=1}^{n-1} \int_{t_k}^{t_{k+1}} \delta_u^2 du = \int_0^t \delta_u^2 du$$

Integral by parts theorem for deterministic integrand

Suppose the f(s) is a continuous function on [0,t] with bounded variation then

$$\underbrace{\int_{0}^{t} f(s)dB_{s}}_{\text{It\^o integral}} = f(t)B_{t} - \underbrace{\int_{0}^{t} B_{s}df(s)}_{\text{Stieltjes integral}}$$

Example

$$\int_0^t s dB_s = tB_t - \int_0^t B_s ds$$

Analyze the LHS

- ► Choose $s_k = \frac{kt}{n}$, $k = 0, 1, \dots, n$
- ▶ Left end point rule gives an approximation for the LHS

$$\underbrace{f(0)\underbrace{\left(B_{\frac{t}{n}}-B_{0}\right)}_{\mathcal{N}(0,t/n)}+\overbrace{f(\frac{t}{n})\underbrace{\left(B_{\frac{2t}{n}}-B_{\frac{t}{n}}\right)}_{\mathcal{N}(0,t/n)}+\dots\underbrace{f(\frac{(n-1)t}{n})\frac{t}{n})}^{\mathcal{N}(0,f^{2}(\frac{(n-1)t}{n})\frac{t}{n})}}_{\mathcal{N}(0,t/n)}$$

independent

$$\sim \mathcal{N}\left(0, \underbrace{f^2(0)\frac{t}{n} + f^2(\frac{t}{n})\frac{t}{n} + \dots + f^2(\frac{(n-1)t}{n})\frac{t}{n}}_{\rightarrow \int_0^t f^2(s)ds}\right)$$

Distribution of Itô integral with deterministic integrand

Suppose the f(s) is a nonrandom function on [0,t] then

$$I_t = \int_0^t f(s)dB_s$$

is normally distributed with

mean

$$EI_t \underbrace{=}_{Martingale} EI_0 = \int_0^0 f(s)dB_s = 0$$

variance

$$Var(I_t) \underbrace{=}_{E(I_t=0)} E(I_t^2) \underbrace{=}_{isometry} E\left(\int_0^t f^2(s)ds\right) = \int_0^t f^2(s)ds$$

Example

Find the distribution of

$$I_t = \int_0^t s dB_s$$

Solution

- ▶ The integrand $\delta_s = s$ is a deterministic function (only depends on time s)
- $ightharpoonup I_t$ is normally distributed
- ► Mean 0
- Variance

$$Var(I_t) = EI_t^2 = \int_0^t u^2 du = \frac{t^3}{3}$$

 $I_t \sim \mathcal{N}(0, \frac{t^3}{3})$

Practice

Find the distribution of

$$I_t = \int_0^t \sin(s) dB_s$$

Exercise

1. Show that

$$\int_0^t (t-s)dB_s = \int_0^t B_s ds$$

2. Find the distribution of

$$I_t = \int_0^t (t - s) dB_s$$