Annotating the Pandemic: NER and NEN of LitCovid

Entity recognition and normalization on COVID-19 literature using a CRAFT-trained BioBERT model for its precision and our dictionary-based tool for its recall.

All the data can be found online at pub.cl.uzh.ch/projects/COVID19/

vocabulary	PM abstracts	PMC articles	
CoVoc	165668	261287	Annotations per entity type
UBERON	79899	204355	
NCBITaxon	67278	147524	
GO_BP	34510	84604	
CHEBI	30720	99673	
PR	12319	48471	for PubMed
GO_CC	7656	28738	(abstracts) and PubMed Central (full articles)
CL	7332	28849	
SO	6801	25017	
MOP	449	2559	
GO_MF	73	260	
total	412 705	931 337	

Pipeline output is uploaded to PubAnnotation, for example, where it is visualized via TextAE. We're also uploading our results to EuroPMC, our own webserver using BRAT, and allowing downloads in JSON and CONLL TSV for downstream tasks.

LitCovid is a dataset of 20 000 PubMed articles related to COVID-19. We are using our pipeline, which performed with F1-score of 0.74 and 0.92 on the CRAFT corpus, depending on entity type (chemical, disease...). Output of models (BioBERT and OGER, our dictionary-based tool) was merged according to different strategies determined most effective in previous work depending on the entity type. The BioBert models produce either ID or span annotations. In the latter case, the ID of the entity was supplied by OGER. This approach helps to optimize both recall and precision. Then, another run of OGER with a hand-crafted dictionary for terms specific to COVID-19, allowing us to make quick changes without retraining models.

