Fiber Bundles

What is a fiber bundle? Generally speaking, it is similar to a fibration - we require the homotopy lifting property to hold, although it is not necessary that path lifting is unique.

However, it also satisfies more conditions - in particular, the condition of *local triviality*. This requires that the total space looks like a product locally, although there may some type of global monodromy. Thus with some mild conditions^[1], fiber bundles will be instances of fibrations (or alternatively, fibrations are a generalization of fiber bundles, whichever you prefer!)

As with fibrations, we can interpret a fiber bundle as "a family of Bs indexed/parameterized by Fs", and the general shape data of a fiber bundle is similarly given by

where B is the base space, E is the total space, $\pi:E\to B$ is the projection map, and F is "the" fiber (in this case, unique up to homeomorphism). Fiber bundles are often described in shorthand by the data $E\overset{\pi}{\to} B$, or occasionally by tuples such as (E,π,B) .

The local triviality condition is a requirement that the projection π locally factors through the product; that is, for each open set $U \in B$, there is a homeomorphism φ making this diagram commute:

Fiber bundles may admit right-inverses to the projection map $s:B\to E$ satisfying $\pi\circ s=\mathrm{id}_B$, denoted *sections*. Equivalently, for each $b\in B$, a section is a choice of an element e in the preimage $\pi^{-1}(b)\simeq F$ (i.e. the fiber over e). Sections are sometimes referred to as *cross-sections* in older literature, due to the fact that a choice of section yields might be schematically represented as such:

Here, we imagine each fiber as a cross-section or "level set" of the total space, giving rise to a "foliation" of E by the fibers. $\cite{[2]}$

For a given bundle, it is generally possible to choose sections locally, but there may or may not exist globally defined sections. Thus one key question is **when does a fiber bunde admit a global section?**

A bundle is said to be *trivial* if $E = F \times B$, and so another important question is **when is a fiber bundle trivial?**

Definition: A fiber bundle in which F is a k-vector space for some field k is referred to as a rank n vector bundle. When $k = \mathbb{R}, \mathbb{C}$, they are denoted real/complex vector bundles respectively. A vector bundle of rank 1 is often referred to as a line bundle.

Example: There are in fact non-trivial fiber bundles. Consider the space E that can appear as the total space in a line bundle over the circle

$$\mathbb{R}^1 o E o S^1$$

That is, the total spaces that occur when a one-dimensional real vector space (i.e. a real line) is chosen at each point of S^1 . One possibility is the trivial bundle $E \cong S^1 \times \mathbb{R} \cong S^1 \times I^\circ \in \mathrm{DiffTop}$, which is an "open cylinder":

But another possibility is $E\cong M^\circ\in \mathrm{DiffTop}$, an open Mobius band:

Here we can take the base space B to be the circle through the center of the band; then every open neighborhood U of a point $b \in B$ contains an arc of the center circle crossed with a vertical line segment that misses ∂M . Thus the local picture looks like $S^1 \times I^\circ$, while globally $M \ncong S^1 \times I^\circ \in \operatorname{Top}$.[3]

So in terms of fiber bundles, we have the following situation

and thus ${\cal M}$ is associated to a nontrivial line bundle over the circle.

Remark: In fact, these are the only two line bundles over S^1 . This leads us to a natural question, similar to the group extension question: given a base B and fiber F, what are the isomorphism classes of fiber bundles over B with fiber F? In general, we will find that these classes manifest themselves in homology or homotopy. As an example, we have the following result:

Notation: Let I(F,B) denote isomorphism classes of fiber bundles of the form $F \to \cdot \to B$.

Proposition:

The set of isomorphism classes of smooth line bundles over a space B satisfies the following isomorphism of abelian groups:

$$I(\mathbb{R}^1,B)\cong H^1(B;\mathbb{Z}_2)\in \mathrm{Ab}$$

in which the RHS is generated by the first Stiefel-Whitney class $w_1(B)$.

Proof:

Lemma: The structure group of a vector bundle is a general linear group. (Or orthogonal group, by Gram-Schmidt)

Lemma: The classifying space of $\mathrm{GL}(n,\mathbb{R})$ is $\mathrm{Gr}(n,\mathbb{R}^\infty)$

Lemma: $\operatorname{Gr}(n,\mathbb{R}^{\infty})=\mathbb{RP}^{\infty}\simeq K(\mathbb{Z}_2,1)$

Lemma: For G an abelian group and X a CW complex, $[X,K(G,n)]\cong H^n(X;G)$

The structure group of a vector bundle can be taken to be either the general linear group or the orthogonal group, and the classifying space of both groups are homotopy-equivalent to an infinite real Grassmanian.

$$egin{aligned} I(\mathbb{R}^1,B) &= [B,B((\operatorname{Sym}\,\mathbb{R})|_{\operatorname{Vect}})] \ &= [B,B(\operatorname{GL}(1,\mathbb{R}))] \ &= [B,\operatorname{Gr}(1,\mathbb{R}^\infty)] \ &= [B,\mathbb{RP}^\infty] \ &= [B,K(\mathbb{Z}_2,1)] \ &= H^1(B;\mathbb{Z}_2) \end{aligned}$$

This is the general sort of pattern we will find - isomorphism classes of bundles will be represented by homotopy classes of maps into classifying spaces, and for nice enough classifying spaces, these will represent elements in cohomology.

Corollary: There are two isomorphism classes of line bundles over S^1 , generated by the Mobius strip, since $H^1(S^1, \mathbb{Z}_2) = \mathbb{Z}_2$ (Note: this computation follows from the fact that $H_1(S^1) = \mathbb{Z}$ and an application of both universal coefficient theorems.)

Note: The Stiefel-Whitney class is only a complete invariant of *line* bundles over a space. It is generally an incomplete invariant; for higher dimensions or different types of fibers, other invariants (so-called *characteristic classes*) will be necessary.

Another important piece of data corresponding to a fiber bundle is the *structure group*, which is a subgroup of $\mathrm{Sym}(F) \in \mathrm{Set}$ and arises from imposing conditions on the structure of the transition functions between local trivial patches. A fiber bundle with structure group G is referred to as a G-bundle.

Vector Bundles

Definition: A *rank* n *vector bundle* is a fiber bundle in which the fibers F have the structure of a vector space k^n for some field k; the structure group of such a bundle is a subset of GL(n, k).

Note that a vector bundle always has one global section: namely, since every fiber is a vector space, you can canonically choose the 0 element to obtain a global zero section.

Proposition: A rank n vector bundle is trivial iff it admits k linearly independent global sections.

Example: The tangent bundle of a manifold is an \mathbb{R} -vector bundle. Let M^n be an n- dimensional manifold. For any point $x \in M$, the tangent space T_xM exists, and so we can define

$$TM = \coprod_{x \in M} T_x M = \{(x,t) \mid x \in M, t \in T_x M\}$$

Then TM is a manifold of dimension 2n and there is a corresponding fiber bundle

$$\mathbb{R}^n o TM \overset{\pi}{ o} M$$

given by a natural projection $\pi:(x,t)\mapsto x$

Example A circle bundle is a fiber bundle in which the fiber is isomorphic to S^1 as a topological group. Consider circle bundles over a circle, which are of the form

$$S^1 \to E \overset{\pi}{\to} S^1$$

There is a trivial bundle, when $E=S^1 imes S^1=T^2$, the torus:

There is also a nontrivial bundle, $E={\cal K}$, the Klein bottle:

As in the earlier example involving the Mobius strip, since K is nonorientable, $T^2 \ncong K$ and there are thus at least two distinct bundles of this type.

 ${\it Remark}$: A section of the tangent bundle TM is equivalent to a ${\it vector field}$ on M .

Definition: If the tangent bundle of a manifold is trivial, the manifold is said to be *parallelizable*.

Proposition: The circle S^1 is parallelizable.

 $\operatorname{\it Proof}\operatorname{Let} M=S^1$, then there is a rank 1 vector bundle

$$\mathbb{R} \to TM \to M$$

and since $TM=S^1 imes\mathbb{R}$ (why?), we find that S^1 is parallelizable.

Proposition: The sphere S^2 is not parallelizable.

Proof: Let $M=S^2$, which is associated to the rank 2 vector bundle

$$\mathbb{R}^2 o TM o M$$

Then TM is trivial iff there are 2 independent global sections. Since there is a zero section, a second independent section must be everywhere-nonzero - however, this would be a nowhere vanishing vector field on S^2 , which by the Hairy Ball theorem does not exist.

Alternate proof: such a vector field would allow a homotopy between the identity and the antipodal map on S^2 , contradiction by basic homotopy theory.

Classifying Spaces

Definition: A *principal G- bundle* is a fiber bundle $F \to E \to B$ in which for each fiber $\pi^{-1}(b) \coloneqq F_b$, satisfying the condition that G acts freely and transitively on F_b . In other words, there is a continuous group action $c \colon E \times G \to E$ such that for every $f \in F_b$ and $g \in G$, we have $g \curvearrowright f \in F_b$ and $g \curvearrowright f \neq f$.

Example: A covering space $\hat{X} \overset{p}{\to} X$ yields a principal $\pi_1(X)$ - bundle.

Remark: A consequence of this is that each $F_b\cong G\in \operatorname{TopGrp}$ (which may also be taken as the definition). Furthermore, each F_b is then a homogeneous space, i.e. a space with a transitive group action $G\curvearrowright F_b$ making $F_b\cong G/G_x$.

Remark: Although each fiber F_b is isomorphic to G, there is no preferred identity element in F_b . Locally, one can form a local section by choosing some $e \in F_b$ to serve as the identity, but the fibers can only be given a global group structure iff the bundle is trivial. This property is expressed by saying F_b is a G-torsor.

Remark: Every fiber bundle $F \to E \to B$ is a principal $\operatorname{Aut}(F)$ - fiber bundle. Also, in local trivializations, the transition functions are elements of G.

Proposition: A principal bundle is trivial iff it admits a global section. Thus all principal vector bundles are trivial, since the zero section always exists.

Definition: A principal bundle $F \to E \overset{\pi}{\to} B$ is *universal* iff E is weakly contractible, i.e. if E has the homotopy type of a point.

Definition: Given a topological group G, a *classifying space*, denoted BG, is the base space of a universal principal G- bundle

$$G o EG \overset{\pi}{ o} BG$$

making BG a quotient of the contractible space EG by a G- action. We shall refer to this as *the classifying bundle*.

Classifying spaces satisfy the property that any other principal G- bundle over a space X is isomorphic to a pullback of the classifying bundle along a map $X \to BG$.

Let I(G,X) denote the set of isomorphism classes of principal G- bundles over a base space X, then

$$I(G,X) \cong [X,BG]_{hoTop}$$

So in other words, isomorphism classes of principal G- bundles over a base X are equivalent to homotopy classes of maps from X into the classifying space of G.

Proposition: Grassmanians are classifying spaces for vector bundles. That is, there is a bijective correspondence:

 $[X,\operatorname{Gr}(n,\mathbb{R})]\cong\{ ext{isomorphism classes of rank }n\ \mathbb{R} ext{-vector bundles over }X\}$

It is also the case that every such vector bundle is a pullback of the principal bundle

$$\mathrm{GL}(n,\mathbb{R}) o V_n(\mathbb{R}^\infty) o \mathrm{Gr}(n,\mathbb{R})$$

1. A fiber bundle E o B is a fibration when B is paracompact. extstyle o

\

- 2. When E is in fact a product F imes B, this actually is a foliation in the technical sense. ightharpoonup
- 3. Due to the fact that, for example, M is nonorientable and orientability distinguishes topological spaces up to homeomorphism. \hookleftarrow