SK6. Atak na sieć (II)

Raport wstępny do projektu w ramach kursu "Grafy i Sieci" (GIS)

Patryk Kocielnik, Jan Kumor, 5.04.2018r.

Opiekun projektu

dr inż. Sebastian Kozłowski

Opis zadania

Dane są dwie sieci: euklidesowa i losowa (ER) o mniej więcej takiej samej liczbie wierzchołków i krawędzi. Porównać prawdopodobieństwa powodzenia ataku na losowe krawędzie tych sieci (udany atak to taki, który prowadzi do rozspójnienia sieci).

Planowane wykorzystanie narzędzi w projekcie

- Środowisko rozwiązania: stacja robocza pod kontrolą systemu GNU/Linux,
- Język implementacji rozwiązania: Python,
- Narzędzia do analizy i wizualizacji grafów:
 - igraph bilbioteka języka C [1],
 - python-igraph interfejs programistyczny biblioteki igraph dla języka
 Python [2],

Składniki rozwiązania

- 1. Moduł generacji sieci: euklidesowych oraz losowych, o zadanej liczbie wierzchołków:
 - Sposób wywołania: graph = generate_graph(graph_type, vertex_probability),
 - Rezultat wywołania: graph jako dwuwymiarowa macierz sąsiedztwa (int * int) opisująca wygenerowany graf,
 - Podstawą komponentu będą moduły generowania sieci z pakietu igraph - funkcje Erdos_Renyi (dla grafów losowych) oraz GRG (dla grafów euklidesowych).
- 2. Filtr usuwający z grafu losowo wybraną krawędź:

- Sposób wywołania: new_graph = break(graph).
- Rezultat wywołania: new_graph jako graf pozbawiony losowo wybranej krawędzi.
- 3. Analizator spójności sieci:
 - Sposób wywołania: is_connected(graph)
 - Rezultat wywołania: c (bool) flaga przyjmująca wartość True jeśli graf jest spójny, przeciwnie False.
- 4. Moduł analizy ataku na zadany graf:
 - Sposób wywołania: analyse_attack(graph),
 - Rezultat wywołania: p (float) jako prawdopodobieństwo powodzenia ataku na losowo wybraną krawędź zadanego grafu wejściowego,
 - Moduł przeprowadza próby ataku na każdą z krawędzi grafu i na podstawie ich wyników oblicza prawdopodobieństwo powodzenia.

Interfejs aplikacji

Interfejsem aplikacji będzie konsola tekstowa. Motywacją tego podejścia jest łatwość łączenia aplikacji z interfejsem tekstowym w filtry, które później wykorzystać można do analizy bardziej złożonych struktur.

Przebieg eksperymentu

Liczbę iteracji k ustal na wartość z przedziału od 1 do 25. Liczbę wierzchołków v ustal na należącą do zbioru V_num : 10, 100, 1000, 10000, 100000, Liczbę krawędzi ustal na należącą do zbioru E_num : 10, 100, 1000, 10000, 100000.

- 1. Powtórz dla k przypadków:
- 2. Wygeneruj graf o zadanym typie, liczbie wierzchołków v i liczbie krawędzi ${\sf e},$
- 3. Usuń z grafu losowo wybraną krawędź,
- 4. Sprawdź, czy nastąpiło rozspójnienie grafu.
- 5. Oblicz iloczyn: rozspójnień/ataków

Generowanie grafów losowych

Generowanie grafu losowego będzie podzielone na dwa etapy.

Pierwszym etapem będzie przyjęcie zadanej liczby wierzchołków oraz zadanej gęstości grafu i obliczenie z nich docelowej liczby krawędzi q_target dla grafu wyjściowego. Drugi etap polegał będzie na wygenerowaniu grafu o n wierzchołkach połączonych losowo q_{target} krawędziami.

Algorytm ten przyjmuje dwa argumenty: liczbę wierzchołków n oraz współczynnik prawdopodobieństwa wystąpienia krawędzi n.

Grafy losowe ER (model Erdősa–Rényi) zostaną wygenerowane z użyciem funkcji Erdos_Renyi klasy Grah pakietu *igraph*. Metoda ta przyjmuje jako parametry:

- \bullet liczbę wierzchołków grafu n
- prawdopodobieństwo wystąpienia danej krawędzi p lub zadaną liczbę krawędzi m.

Zgodnie z dokumentacją pakietu igraph algorytm wykorzystywany w metodzie Erdos_Renyi ma złożoność obliczeniową równą O(|V| + |E|)

Grafy euklidesowe zostaną wygenerowane z wykorzystaniem funkcji GRG klasy Graph z pakietu igraph. Metoda ta przyjmuje jako parametry liczbę wierzchołków grafu n oraz promień r. Algorytm generacji grafu euklidesowego o n wierzchołkach:

- 1. Rozmieść n wierzchołków w kwadracie jednostkowym,
- 2. Połącz krawędziami te wierzchołki, które znajdują się od siebie w odległości mniejszej niż zadany promień r.

Zgodnie z dokumentacją pakietu igraph algorytm wykorzystywany w metodzie GRG ma złożoność obliczeniową nie większą niż $O(|V|^2 + |E|)$.

W celu uzyskania grafu o zadanej przybliżonej liczbie krawędzi m zostanie wykorzystane następujące podejście iteracyjne:

- 1. Dla wybranej wartości promienia r wygeneruj graf euklidesowy o n wierzchołkach z użyciem funkcji $\mathtt{GRG},$
- 2. Jeśli liczba krawędzi wygenerowanego grafu jest:
 - znacząco mniejsza od zadanej liczby krawędzi, zwiększ wartość promienia r,
 - znacząco większa od zadanej liczby krawędzi, zmniejsz wartość promienia r,
 - w przyliżeniu równa zadanej liczbie krawędzi, zwróć wygenerowany graf i zakończ algorytm,
- 3. Wróc do punktu 1.

Liczba krawędzi jest w przybliżeniu równa zadanej liczbie krawędzi gdy: $\frac{|m_{zad}-m|}{m_{zad}}<\varepsilon$. Gdzie ε jest parametrem kontrolującym dokładność przybliżenia.

Weryfikacja spójności grafu

Do weryfikacji spójności grafów zostanie wykorzystana metoda is_connected klasy GraphBase z pakietu python-igraph. Opiera się ona na algorytmie przeszukiwania grafu wgłąb (ang. depth-first search, DFS). Pseudokod algorytmu DFS [2], przedstawiony został poniżej:

- 1. Utwóż tablicę visited o n elementach,
- 2. Tablice visited wypełnij wartościami false,
- 3. Utwórz pusty stos S,

- 4. Inicjuj licznik odwiedzonych wierzchołków,
- 5. Rozpocznij przejście DFS od wierzchołka 0,
- 6. Wierzchołek oznacz jako odwiedzony,
- Przechodź przez graf dopóki stos S nie jest pusty, wykonując następujące kroki:
 - Pobierz wierzchołek ze stosu,
 - Pobrany wierzchołek usuń ze stosu,
 - Zwiększ licznik odwiedzonych wierzchołków,
 - Przejrzyj kolejnych sąsiadów,
 - Szukaj do sąsiadów jeszcze nie odwiedzonych,
 - Odznacz sąsiada jeśli jeszcze nie odwiedzony,
 - Umieść sąsiada na stosie. Jeśli wszystkie wierzchołki zostały odwiedzone, graf jest spójny. W przeciwnym wypadku, graf jest niespójny.

Złożoność czasowa algorytmu wynosi O(E+V).

Schemat testów

Testy zostaną przeprowadzone w następujący sposób:

- 1. Z wcześniej zdefiniowanej listy zostanie przyjęty zestaw parametrów testu,
- 2. Wygenerowany zostanie zestaw k grafów testowych o przyjętych wcześniej parametrach,
- 3. Dla każdego z grafów:
 - 1. Dla każdej z krawędzi badanego grafu:
 - 1. Krawędź ta zostanie usunięta z grafu (zostanie przeprowadzony atak na tę krawędź),
 - 2. Sprawdzona zostanie spójność grafu po przeprowadzeniu ataku,
 - 3. Jeśli graf nie jest spójny atak zakończył się powodzeniem,
 - 2. Obliczone zostanie prawdopodobieństwo powodzenia ataku na losowo wybraną krawędź z badanego grafu, zgodnie ze wzorem: $p_i=\frac{n_{sukces}}{m}$
- 4. Zgodnie ze wzorem: $p_{sr} = \frac{\sum_{i=0}^{k} p_i}{k}$, zostanie obliczone średnie prawdopodobieństwo powodzenia ataku dla zestawu k grafów testowych o przyjętych parametrach.
- 5. Jeśli pozostały nieprzetestowane zestawy parametrów, nastąpi powrót do punktu 1.

Model danych

Projektowane narzędzie wykorzystywać będzie implementacje grafów nieskierowanych z biblioteki *igraph*.

Graf we wspomnianej implementacji jest reprezentowany jako wielozbiór krawędzi oraz metadane. Najważniejszymi polami zawartymi w metadanych są:

- liczba wierzchołków grafu,
- określenie czy graf jest skierowany czy nie.

Każda z krawędzi grafu nieskierowanego jest modelowana jako nieuporządkowana para (dwuelementowy zbiór) etykiet oznaczających wierzchołki grafu. Krawędzie są etykietowane, a etykiety przyjmują wartości od 0 do |E|-1. Etykiety wierzchołków przyjmują wartości od 0 do |V|-1.

Przykładową, uproszczoną (pominięto etykiety krawędzi) strukturę grafu nieskierowanego przedstawiono poniżej:

```
( wierzchołki: 6,
    skierowany: nie,
    krawędzie:
    {
        {0,2},
        {2},
        {2,3},
        {3,4},
        {3,4},
        {4,1}
        }
)
```

Należy nadmienić, iż implementacja ta dopuszcza istnienie w grafie pętli. Jednak w projektowanym narzędziu grafy takie nie będą rozpatrywane.

Testy poprawności rozwiązania

Poprawność zaproponowanego rozwiązania zostanie sprawdzona na prostych grafach o niewielkiej liczbie wierzchołków i krawędzi, a następnie na grafach o liczbie wierzchołków sięgającej 200, 1000, 2000 oraz 4000. Dla niewielkich grafów łatwo można dokonać dokładnej analizy i obliczyć dla nich prawdopodobieństwa powodzenia ataku na losowo wybraną krawędź. Wielkoskalowe grafy dają nadzieję na większą stabilność wyników.

Proponowane małe grafy testowe wraz z oczekiwanymi wynikami to:

- 2 wierzchołki, 1 krawędź oczekiwane prawdopodobieństwo powodzenia ataku 1.0,
- 3 wierzchołki, 2 krawędzie oczekiwane prawdopodobieństwo powodzenia ataku 1.0.
- 3 wierzchołki, 3 krawędzie oczekiwane prawdopodobieństwo powodzenia ataku 0.0,

- 4 wierzchołki, 3 krawędzie oczekiwane prawdopodobieństwo powodzenia ataku 0.8,
- 4 wierzchołki, 4 krawędzie oczekiwane prawdopodobieństwo powodzenia ataku 0.2,
- 4 wierzchołki, 5 krawędzi oczekiwane prawdopodobieństwo powodzenia ataku $0.0.\,$