CSE 417 Autumn 2025

Lecture 4: Gale-Shapley analysis

Glenn Sun

Announcements

HW1 due Friday @ 11:59pm!

HW1 LaTeX template fix: Check Ed!

Continue to get those Concept Checks in on time, please $\stackrel{ \ \cup \ }{}$

Review of Gale-Shapley

Gale-Shapley algorithm

- 1. while there is a free proposer $p \in P$ do
- 2. Let r be the top remaining person on p's preference list.
- 3. if *r* is also free then
- 4. Have r accept p.
- 5. else if r is paired but prefers the new proposer p then
- 6. Have r accept p and reject their current match p'.
- 7. else (if r is paired and prefers their current match)
- 8. Have r reject p.
- 9. return all matches

Proposer optimality

Proposer optimality theorem: The Gale–Shapley algorithm always finds the unique stable matching that is both best for proposers and worst for receivers.

"best": Every proposer is happier in this matching than any other stable matching (or equally as happy).

"worst": Similar.

Proofs with while loops

Proofs with while loops (1/4)

Input: A positive integer *n*

Goal: An integer k such that $(k-1)^2 < n \le k^2$

- 1. Let k = 1.
- 2. while $k^2 < n \, do$
- 3. Update k = k + 1.
- 4. return *k*

Proofs with while loops (2/4)

"Loops terminate": For a while loop, we give an upper bound on the number of iterations.

Scratch work (working backwards):

- We need $k^2 \ge n$ for termination.
- This happens when $k = \lceil \sqrt{n} \rceil$.
- At the end of the *i*th iteration, k = i + 1. (Loop invariant!)
- Thus, we should be good after $\lceil \sqrt{n} \rceil 1$ iterations.

Proofs with while loops (3/4)

"Loops terminate": For a while loop, we give an upper bound on the number of iterations.

Claim. The loop terminates within $\lceil \sqrt{n} \rceil - 1$ iterations.

Proof. It is a loop invariant that after i iterations, we have k = i + 1.

After $\lceil \sqrt{n} \rceil - 1$ iterations, $k = \lceil \sqrt{n} \rceil$. Thus $k^2 = \lceil \sqrt{n} \rceil^2 \ge n$, so the while loop exits.

Proofs with while loops (4/4)

To prove "meets specification" with a while loop, it's usually not enough to use loop invariants. Must use

loop invariant + while exit condition

Example:

- loop invariant: $(k-1)^2 < n$
- while exit condition: $k^2 \ge n$

Recall final goal: an integer k such that $(k-1)^2 < n \le k^2$

Proving Gale-Shapley correct

Three requirements for correctness

"No exceptions": In line 2 when p picks the next top person on their preference list, p has not yet exhausted the entire list.

"Loops terminate": Every proposer gets eventually matched.

"Meets specification": The final set of matches is a perfect matching with no unstable pairs.

Proving no exceptions (1/7)

Claim. In line 2 when p picks the next top person on their preference list, p has not yet exhausted the entire list.

Proof. Suppose for contradiction *p* has exhausted the entire list.

In other words, they have proposed to everyone and also got rejected by everyone.

 \mathbb{Q} : What must be true if p was rejected by everyone?

Proving no exceptions (2/7)

- 1. while there is a free proposer $p \in P$ do
- 2. Let r be the top remaining person on p's preference list.
- 3. if *r* is also free then
- 4. Have r accept p.
- 5. else if r is paired but prefers the new proposer p then
- 6. Have r accept p and reject their current match p'.
- 7. else (if r is paired and prefers their current match)
- 8. Have r reject p.
- 9. return all matches

A: Every *r* was already paired when they rejected *p*!

Proving no exceptions (3/7)

We know: Every r was already paired when they rejected p.

Loop invariant 1: At the end of every iteration, if r was ever paired to someone in any previous iteration, it is still paired to someone.

• Essentially because we only unpaired r in this iteration if we immediately paired them with someone else.

Conclusion: Every r is still paired.

Proving no exceptions (4/7)

We know: Every *r* is still paired.

Proving no exceptions (5/7)

Loop invariant 2: After every iteration, each person is matched to at most one other person.

Proving no exceptions (6/7)

But |P| = |R| = n (equal number of proposers and receivers).

Proving no exceptions (7/7)

Every proposer must be paired, contradiction with *p* being free.

Proving loops terminate

Claim. Every proposer gets matched within n^2 iterations.

Proof. There are n^2 possible proposals (each $p \in P$ to each $r \in R$).

Because line 2 always picks a new proposal and never throws an error, the while loop must end within n^2 iterations.

Proving perfect matching (1/5)

Remember, when there is a while loop, correctness should use both a loop invariant and the while exit condition.

Claim. The output is a perfect matching.

Proof. Very similar to before — in following slides.

Proving perfect matching (2/5)

While exit condition: Every p is paired.

Proving perfect matching (3/5)

Loop invariant 2: After every iteration, each person is matched to at most one other person.

Proving perfect matching (4/5)

But |P| = |R| = n (equal number of proposers and receivers).

Proving perfect matching (5/5)

Thus, everyone is paired with exactly one other, so this is a perfect matching.

Proving no unstable pairs (1/5)

Claim. The output has no unstable pairs.

Proof. Let (p, r) be any proposer-receiver pair.

Case 1: (p, r) is in the output matching.

Then (p, r) is not unstable.

Proving no unstable pairs (2/5)

Claim. The output has no unstable pairs.

Proof. Let (p, r) be any proposer-receiver pair.

Case 2: (p, r) is not in the output matching.

Why would a pair not be matched? Two possibilities:

- Case 2a: p stopped proposing before getting to r.
- Case 2b: p proposed to r, but got rejected or later unpaired.

Proving no unstable pairs (3/5)

Case 2a: p stopped proposing before getting to r.

Because we output a perfect matching, p is matched to someone.

Because p proposes in order of preference, p must be matched to someone they prefer over r.

Then (p, r) is not unstable.

Proving no unstable pairs (4/5)

Case 2b: p proposed to r, but got rejected or later unpaired.

```
5. else if r is paired but prefers the new proposer p then
6. Have r accept p and reject their current match p'.
7. else (if r is paired and prefers their current match)
8. Have r reject p.
```

Conclusion: At the time of rejection, r must have been matched to someone that they rank higher than p.

Proving no unstable pairs (5/5)

Case 2b: p proposed to r, but got rejected or later unpaired.

Loop invariant 3 ("trading up"): At the end of every iteration, if r is paired, it prefers its current match over all previous matches.

Because we output a perfect matching, r is matched to someone.

Because of "trading up", r is still matched to someone that they rank higher than p.

So (p, r) is not unstable.

What's next?

We proved correctness. What other questions can we ask?

- How fast is the algorithm? —wait for Friday!
- What about many-to-one matchings? —on your HW2!
- Which stable matching does it produce? —our next topic
- Can people gain advantage by lying on their preferences lists?
 What about "stable roommates" (matching within one group)?
 etc. —if we have time

Proposer optimality/receiver pessimality

Proposer optimality theorem

Proposer optimality theorem: The Gale-Shapley algorithm always finds the unique stable matching that is both best for proposers and worst for receivers.

Say that a pair (p, r) are called valid partners if there is *some* stable matching where they are matched together.

Proof of proposer optimality (1/3)

By contradiction. Suppose the output is not proposer-optimal.

This means that for some p, the output matches (p, r), but r' is also a valid partner and p prefers r' > r.

Proof of proposer optimality (1/3)

By contradiction. Suppose the output is not proposer-optimal.

This means that for some p, the output matches (p, r), but r' is also a valid partner and p prefers r' > r.

Let p' be the reason that r' rejected p.

$$p: ... > r' > ... > r > ...$$
 $p': ... > m' > ... > ...$
 $r': ... > p' > ... > p > ...$

Proof of proposer optimality (2/3)

Since (p, r') are valid partners, consider that matching.

 \mathbb{Q} : Where is p''s partner?

$$p: ... > r' > ... > r > ...$$
 $p': ... > (...) > r' > (...) > ...$
 $r': ... > p' > ... > p > ...$

Proof of proposer optimality (2/3)

Since (p, r') are valid partners, consider that matching.

 \mathbb{Q} : Where is p''s partner?

If p''s partner is worse than r', then (p', r') is unstable, contradiction.

$$p: ... > r' > ... > r > ...$$
 $p': ... > (r') > ... > ...$
 $r': ... > (p') > ... > p > ...$

Proof of proposer optimality (3/3)

What if p''s partner is better than r'?

$$p: ... > r' > ... > r > ...$$
 $p': ... > m' > ... > m' > ...$
 $r': ... > p' > ... > p > ...$

Proof of proposer optimality (3/3)

What if p''s partner is better than r'?

Common technique: Upgrade the original assumption so that the situation was the *first* time a valid partner was rejected.

Then p''s match in the new matching cannot be better than r'!

$$p: ... > r' > ... > r > ...$$
 $p': ... > (...) > r' > ... > ...$
 $r': ... > (p') > ... > p > ...$

Proof of receiver pessimality (1/2)

By contradiction. Suppose the output is not receiver-pessimal.

This means that for some r, the output matches (p, r), but p' is also a valid partner and r prefers p > p'.

Proof of receiver pessimality (2/2)

Since (p', r) are valid partners, consider that matching.

$$r: ... > p > ... > p' > ...$$
 $p: ... > (...) > r > (...) > ...$

Proof of receiver pessimality (2/2)

Since (p', r) are valid partners, consider that matching.

By proposer optimality, r is the best possible match for p.

$$r: ... > p > ... > p' > ...$$
 $p: ... > r > ... > ...$

Proof of receiver pessimality (2/2)

Since (p', r) are valid partners, consider that matching.

By proposer optimality, r is the best possible match for p.

So (p, r) is an unstable pair, contradiction.

$$r: ... > (p) > ... > (p') > ...$$
 $p: ... > (r) > ... > ...$

Miscellaneous notes (just for fun)

Lying can help receivers (1/2)

Proposers Receivers' true prefs

```
1: A > B > C A: 2 > 1 > 3
2: B > A > C B: 1 > 2 > 3
3: A > B > C C: 1 > 2 > 3
```

With true preferences, A gets their second choice.

Lying can help receivers (2/2)

Proposers					Rece	Receivers' true prefs						With A lying					
1:	A >	В	>	C	A:	2	>	1	>	3	A:	2	>	3	>	1	
2:	B >	A	>	C	B:	1	>	2	>	3	B:	1	>	2	>	3	
3:	A >	В	>	C	C:	1	>	2	>	3	C:	1	>	2	>	3	

With true preferences, A gets their second choice.

When A lies about second/third choices, A gets their top choice!

(Lying does not help proposers because of proposer optimality.)

Stable roommates problem (1/2)

One group of 2n people and preferences over all 2n - 1 others.

Stable roommates problem (2/2)

Stable solution may not always exist.

Irving's algorithm (1985) extends Gale-Shapley to determine if a stable solution exists, and if so, find it!

Characterizing all stable matchings (1/2)

The set of all stable matchings forms an interesting structure called a lattice:

- Draw an arrow between from matching M_1 to M_2 if every proposer is happier in M_2 over M_1 (or equally happy).
- Then, every pair of matchings has a latest common ancestor and earliest common descendant.
- Gives alternate proof that a proposer-optimal matching exists!

Characterizing all stable matchings (2/2)

Final reminders

HW1 due Friday @ 11:59pm.

I have OH now-12:30pm:

- Meet at front of classroom, we'll walk over together
- CSE (Allen) 214 if you're coming later

Nathan has online OH 12–1pm:

- Link on Canvas/course website
- https://washington.zoom.us/my/nathanbrunelle