## 12.1 Sine formula for the area of a triangle

HSG.SRT.D.9

- 1. Right triangle  $\triangle ABC$  is shown with side lengths marked. Identify the sides.
  - (a) Which length is the hypotenuse?



- (b) Which length is opposite angle A?
- (c) Which length is *adjacent* to angle A?

2.  $\triangle ABC$  is shown with  $m \angle C = 90^{\circ}$ . The lengths of the triangle's sides are a, b, and c. Express each trigonometric ratio as a fraction of two variables.



- (a)  $\sin A =$
- (b)  $\cos A =$
- (c)  $\tan A =$

3. Use the sine function to find the height h of the right  $\triangle ABC$  shown below.



Find the area of  $\triangle ABC$  using the formula  $A = \frac{1}{2}bh$ 

- 4. Given  $\triangle ABC$  with AC=9 centimeters, altitude h=7 cm, and the base  $BC=13\frac{1}{2}$  cm. diagram not to scale
  - (a) Write down  $\sin C$  as a fraction.

 $\sin C =$ 

(b) Find the area of  $\triangle ABC$ .



- 5. Two sides of  $\triangle ABC$  are given AC=10 and BC=12, with the included angle  $\text{m} \angle C=37^{\circ}$ .
  - (a) Find altitude h using  $\sin 37^{\circ} = \frac{h}{10}$ .



(b) Find the area of  $\triangle ABC$ .

Sine formula for the area of a triangle  $A = \frac{1}{2}ab\sin C$ 

6. Find the area of the given triangle.

