DASHBOARD / I MIEI CORSI / CALCOLO NUMERICO / SEZIONI / ESAME 14 GENNAIO 2022 / QUIZ ESAME 14 GENNAIO

Iniziato venerdì, 14 gennaio 2022, 09:38

Stato Completato

Terminato venerdì, 14 gennaio 2022, 09:58

Tempo impiegato 20 min.

Valutazione 6,00 su un massimo di 15,00 (40%)

Domanda 1

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Usando la fattorizzazione LR con pivoting (PA=LR) il sistema Ax=b si puo' risolvere risolvendo:

Scegli un'alternativa:

- $\ \bigcirc$ a. i due sistemi $\left\{ \begin{aligned} Ly &= P^{-1}b \\ Rx &= y \end{aligned} \right.$
- $\begin{tabular}{ll} \hline & \end{tabular} \begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} Ly=b \\ Rx=y \end{tabular} \begin{tabular}{ll} \begin{tabular}{ll}$
- igcup c. il sistema Ax=LRb

La risposta corretta è: i due sistemi $\left\{ egin{align*} Ly = P^{-1}b \ Rx = y \end{array}
ight.$

Domanda **2**Risposta corretta
Punteggio ottenuto 1,00 su 1,00

La decomposizione in valori singolari della matrice A esiste se e solo se:

Scegli un'alternativa:

- a. Ha rango massimo.
- b. Sono entrambe errate.
- o. è una matrice quadrata.

La risposta corretta è: Sono entrambe errate.

Domanda 3

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

La decomposizione in valori singolari della matrice \boldsymbol{A} esiste :

Scegli un'alternativa:

- a. Solo se la matrice ha rango massimo.
- Ob. Solo se la matrice è quadrata.
- oc. Sempre.

La risposta corretta è: Sempre.

Domanda 4

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se A è una matrice quadrata $n \times n$, allora:

Scegli un'alternativa:

- \bigcirc a. $||A||_2 = \max_i \sum_{j=1}^n |a_{ij}|$.
- lacksquare b. $||A||_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|$.
- oc. Sono entrambe esatte.

La risposta corretta è: $||A||_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|$.

Domanda 5	
Risposta errata	
Punteggio ottenuto 0,00 su 1,00	

Il sistema Floating Point $\mathcal{F}(2,3,-2,1)$ contiene:

Scegli un'alternativa:

- a. 17 numeri.
- Ob. 33 numeri.
- o c. Nessuna delle precedenti.

×

La risposta corretta è: 33 numeri.

Domanda **6** Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Il costo computazionale della fattorizzazione di Cholesky di una matrice n imes n è:

Scegli un'alternativa:

- igcup a. Maggiore rispetto a quello della fattorizzazione LR.
- lacksquare b. Minore rispetto a quello della fattorizzazione LR.

~

igcup c. Uguale a quello della fattorizzazione LR.

La risposta corretta è: Minore rispetto a quello della fattorizzazione $\it LR$.

Domanda **7**

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Sia $F(x)=x^2-2$ con $x_0=0.5$. Applicando il Metodo di Newton per risolvere F(x)=0 si ha

Scegli un'alternativa:

- \odot a. $x_1=-1.25$
- \odot b. $x_1=1.375$
- \odot c. $x_1=2.25$

La risposta corretta è: $x_1=2.25$

Domanda 8

Risposta non data

Punteggio max.: 1,00

Sia $F(x)=3x^2+2x$ con $x_0=-0.5$. Applicando il Metodo di Newton per risolvere F(x)=0 si ha

Scegli un'alternativa:

- \bigcirc a. $x_1=-0.75$
- igcup b. $x_1=0.25$
- \odot c. $x_1=-0.255$

La risposta corretta è: $x_1 = -0.75$

×

Domanda 9

Risposta non data

Punteggio max.: 1,00

La matrice $A \in \mathbb{R}^{n \times n}$ è ortogonale se:

Scegli un'alternativa:

- \bigcirc a. $A=A^T$.
- \bigcirc b. $A^TA = I = AA^T$.
- \circ c. $A^{-1}A = I = AA^{-1}$.

La risposta corretta è: $A^TA = I = AA^T$.

Domanda 10

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia
$$A \in \mathbb{R}^{m imes n}$$
 , $m > n$, con $r = rg(A)$, allora:

Scegli un'alternativa:

- a. Nessuna delle precedenti.
- ullet b. è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma\in\mathbb{R}^{m\times n}$ è diagonale, $U\in\mathbb{R}^{m\times m}$, $V\in\mathbb{R}^{n\times n}$ sono ortogonali.
- igcirc c. è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma\in\mathbb{R}^{m imes r}$ è diagonale, $U\in\mathbb{R}^{m imes r}$, $V\in\mathbb{R}^{n imes r}$ sono ortogonali.

La risposta corretta è: è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma\in\mathbb{R}^{m\times n}$ è diagonale, $U\in\mathbb{R}^{m\times n}$, $V\in\mathbb{R}^{n\times n}$ sono ortogonali.

Domanda **11**Risposta errata

Punteggio ottenuto 0,00 su 1,00

Sia A una matrice $n \times n$ simmetrica, allora:

Scegli un'alternativa:

- $\ \odot$ a. $A=A^{-1}$
- igcup b. $A=A^T$
- $\quad \ \ \, \bigcirc \ \, {\rm c.} \quad I=AA^{-1}$

La risposta corretta è: $A=A^T$

Domanda 12

Risposta non data

Punteggio max.: 1,00

Sia $f:\mathbb{R}^2 o\mathbb{R}$ definita come $f(x_1,x_2)=e^{x_1}+x_2^2$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(0,0)^T$ e $\alpha=1$, allora:

Scegli un'alternativa:

- \bigcirc a. $x^{(1)} = (-1,2)^T$.
- $oldsymbol{0}$ b. $x^{(1)} = (-1,0)^T$.
- \bigcirc c. $x^{(1)} = (0,0)^T$.

La risposta corretta è: $x^{(1)} = (-1, 0)^T$.

■ lab 5 files

Vai a...

Domanda 13
Risposta non data
Punteggio max.: 1,00

Se il vettore $v=(10^6,0)^T$ è approssimato dal vettore $\tilde{v}=(999996,1)^T$, allora in $||\cdot||_1$ l'errore relativo tra v e \tilde{v} è:

Scegli un'alternativa:

- \circ a. $4 \cdot 10^{-6}$.
- Ob. Nessuna delle precedenti.
- \circ c. $5 \cdot 10^{-6}$.

La risposta corretta è: $5 \cdot 10^{-6}$.

Domanda 14

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Un sistema lineare Ax = b, con A $n \times n$ non singolare, ammette **sempre**:

Scegli un'alternativa:

- a. una e una sola soluzione.
- b. nessuna soluzione.
- c. infinite soluzioni.

La risposta corretta è: una e una sola soluzione.

Domanda **15**Risposta non data
Punteggio max.: 1,00

Se il vettore $v=(10^6,1)^T$ è approssimato dal vettore $\tilde{v}=(999996,1)^T$, allora in $||\cdot||_\infty$ l'errore relativo tra v e \tilde{v} è:

Scegli un'alternativa:

- oa. Nessuna delle precedenti.
- \bigcirc b. $4\cdot 10^{-6}.$
- O c. 4.

La risposta corretta è: $4 \cdot 10^{-6}$.