Lecture 6 - Vector Spaces

COMP1046- Maths for Computer Scientists

Dr. Ferrante Neri / Dr. Tony Bellotti

Learning outcomes

By the end of this lecture we will have learned:

- O Vector Spaces
- O Linear Dependence
- O Linear Span

Based on Sections 8.1 to 8.4 of text book (Neri 2018).

1

Vector Spaces

Vector Space

Definition

- ⊚ Let *E* to be a non-null set $(E \neq \emptyset)$ and \mathbb{K} to be a *scalar set* (typically $\mathbb{K}=\mathbb{R}$).
- ⊚ Let us name *vectors* the elements of the set *E*.
- ⊚ Let "+" be an internal composition law, $E \times E \rightarrow E$.
- ⊚ Let "·" be an external composition law, $\mathbb{K} \times E \rightarrow E$.

The triple $(E, +, \cdot)$ is said *vector space* of the vector set E over the *scalar field* $(\mathbb{K}, +, \cdot)$ if and only if the ten *vector space axioms* are verified.

continued...

Vector space axioms (1 to 5)

Definition

- ⊚ *E* is closed with respect to the internal composition law: $\forall \mathbf{u}, \mathbf{v} \in E : \mathbf{u} + \mathbf{v} \in E$
- ⊚ *E* is closed with respect to the external composition law: $\forall \mathbf{u} \in E \text{ and } \forall \lambda \in \mathbb{K} : \lambda \mathbf{u} \in E$
- ⊚ commutativity for the internal composition law: $\forall \mathbf{u}, \mathbf{v} \in E : \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- ⊚ associativity for the internal composition law: $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in E \times E : \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- ⊚ neutral element for the internal composition law: \forall **u** ∈ E : \exists !**o** ∈ E|**u** + **o** = **u**

where **o** is the null vector.

Vector space axioms (6 to 10)

Definition

- ⊚ opposite element for the internal composition law: $\forall \mathbf{u} \in E : \exists ! -\mathbf{u} \in E | \mathbf{u} + -\mathbf{u} = \mathbf{o}$
- ⊚ associativity for the external composition law: $\forall \mathbf{u} \in E$ and $\forall \lambda, \mu \in \mathbb{K} : \lambda (\mu \mathbf{u}) = (\lambda \mu) \mathbf{u} = \lambda \mu \mathbf{u}$
- ⊚ distributivity 1: $\forall \mathbf{u}, \mathbf{v} \in E$ and $\forall \lambda \in \mathbb{K} : \lambda (\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v}$
- ⊚ distributivity 2: \forall **u** ∈ *E* and \forall λ , μ ∈ \mathbb{K} : $(\lambda + \mu)$ **u** = λ **u** + μ **u**
- ⊚ neutral elements for the external composition law: $\forall \mathbf{u} \in E : \exists ! 1 \in \mathbb{K} | 1\mathbf{u} = \mathbf{u}$

where **o** is the null vector.

Vector Spaces

Example

The set of numeric vectors $E = \mathbb{R}^3$ with scalar set $E = \mathbb{R}$, vector sum and scalar product form a vector space.

- © Example of commutativity: (2,3,1) + (0,-1,2) = (0,-1,2) + (2,3,1) = (2,2,3).
- © Example of distributivity 1:

$$2 \times ((1.5, 3, -1.4) + (0, -1.5, 2)) =$$

 $2 \times (1.5, 3, -1.4) + 2 \times (0, -1.5, 2) = (3, 3, 3.2).$

Example

The set of matrices $\mathbb{R}_{m,n}$, the sum between matrices and the product of a scalar by a matrix, $(\mathbb{R}_{m,n}, +,)$.

6

Definition

Let $(E, +, \cdot)$ be a vector space, $U \subset E$, and $U \neq \emptyset$.

The triple $(U, +, \cdot)$ is a *vector subspace* of $(E, +, \cdot)$ if $(U, +, \cdot)$ is a vector space over the same field \mathbb{K} with respect to both the composition laws.

7

Proposition

Let $(E, +, \cdot)$ be a vector space, $U \subset E$, and $U \neq \emptyset$.

The triple $(U, +, \cdot)$ is a vector subspace of $(E, +, \cdot)$ if and only if U is closed with respect to both the composition laws + and \cdot , i.e.

- $\odot \forall \mathbf{u}, \mathbf{v} \in U : \mathbf{u} + \mathbf{v} \in U$
- $\odot \ \forall \lambda \in \mathbb{K} \ and \ \forall \mathbf{u} \in U : \lambda \mathbf{u} \in U.$

This proposition shows that we do not need to prove all 10 axioms to show $(U, +, \cdot)$ is a vector subspace of another. We just need to prove closure of the two composition laws.

Need to prove "if and only if" both ways:

Proof.

Since the elements of U are also elements of E, they are vectors that satisfy the eight axioms regarding internal and external composition laws. If U is also closed with respect to the composition laws then $(U, +, \cdot)$ is a vector space and since $U \subset E$, U is vector subspace of $(E, +, \cdot)$.

If $(U, +, \cdot)$ is a vector subspace of $(E, +, \cdot)$, then it is a vector space. Thus, the ten axioms, including the closure with respect of the composition laws, are valid.

Example

Let us consider the vector space $(\mathbb{R}^3, +, \cdot)$ and its subset $U \subset \mathbb{R}^3$:

$$U = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + 4y - 5z = 0\}$$

and let us prove that $(U, +, \cdot)$ is a vector subspace of $(\mathbb{R}^3, +, \cdot)$.

We have to prove the closure with respect to the two composition laws.

continued...

Example

1. Let us consider two arbitrary vectors belonging to U, $\mathbf{u_1} = (x_1, y_1, z_1)$ and $\mathbf{u_2} = (x_2, y_2, z_2)$. These two vectors are such that

$$3x_1 + 4y_1 - 5z_1 = 0$$
 and $3x_2 + 4y_2 - 5z_2 = 0$.

Let us calculate $\mathbf{u_1} + \mathbf{u_2} = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$. In correspondence to the vector $\mathbf{u_1} + \mathbf{u_2}$,

$$3(x_1 + x_2) + 4(y_1 + y_2) - 5(z_1 + z_2) =$$

$$= 3x_1 + 4y_1 - 5z_1 + 3x_2 + 4y_2 - 5z_2 = 0 + 0 = 0.$$

This means that $\forall \mathbf{u_1}, \mathbf{u_2} \in U : \mathbf{u_1} + \mathbf{u_2} \in U$.

continued...

Example

2. Let us consider an arbitrary vector $\mathbf{u} = (x, y, z) \in U$ and an arbitrary scalar $\lambda \in \mathbb{R}$. We know that 3x + 4y - 5z = 0. Let us calculate $\lambda \mathbf{u} = (\lambda x, \lambda y, \lambda z)$. In correspondence to the vector $\lambda \mathbf{u}$,

$$3\lambda x + 4\lambda y - 5\lambda z =$$

$$= \lambda (3x + 4y - 5z) = \lambda 0 = 0.$$

This means that $\forall \lambda \in \mathbf{K}$ and $\forall \mathbf{u} \in U : \lambda \mathbf{u} \in U$.

Thus, we proved that $(U, +, \cdot)$ is a vector subspace $(\mathbb{R}^3, +, \cdot)$.

Exercise 1

Consider the vector space $(\mathbb{R}^2, +, \cdot)$ and its subsets $V \subset \mathbb{R}^2$ and $W \subset \mathbb{R}^2$:

$$V = \{(x, y) \in \mathbb{R}^2 \mid x + 2y > 1\}$$
$$W = \{(x, y) \in \mathbb{R}^2 \mid 2x = y\}.$$

Show whether or not $(V, +, \cdot)$ and $(W, +, \cdot)$ are vector subspaces of $(\mathbb{R}^2, +, \cdot)$.

Exercise 1: Solution

Due to Proposition on slide 8, we only need to prove closure for "+" and ".".

- ⊚ For V, take scalar $\lambda = -1$ and $\mathbf{v} = (x, y) \in V$. Then $\lambda \mathbf{v} = (-x, -y)$. Since $x + 2y > 1 \Rightarrow (-x) + 2(-y) < -1$, hence $\lambda \mathbf{v} \notin V$. So this counter-example shows that $(V, +, \cdot)$ is **not** a vector subspace.
- ⊚ For W, take $\mathbf{w}_1 = (x_1, y_1) \in W$ and $\mathbf{w}_2 = (x_2, y_2) \in W$. Hence $2x_1 = y_1$ and $2x_2 = y_2$ ⇒ $2(x_1 + x_2) = y_1 + y_2$ ⇒ $\mathbf{w}_1 + \mathbf{w}_2 \in W$. This proves the case for "+". Then, for any $\lambda \in \mathbb{R}$, $2\lambda x_1 = \lambda y_1$ proves the case for ".". Hence $(W, +, \cdot)$ is a vector subspace.

Linear Dependence

Definition

Let $(E, +, \cdot)$ be a vector space. Let the vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n} \in E$ and the scalars $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$.

The *linear combination* of the *n* vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ by means of *n* scalars $\lambda_1, \lambda_2, \dots, \lambda_n$ is the vector $\lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2} + \dots + \lambda_n \mathbf{v_n}$.

Definition

Let $(E, +, \cdot)$ be a vector space. Let the vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n} \in E$. These vectors are said to be *linearly dependent* if the null vector \mathbf{o} can be expressed as linear combination by means of the scalars $\lambda_1, \lambda_2, \dots, \lambda_n \neq 0, 0, \dots, 0$.

Note: this means at least one $\lambda_i \neq 0$ (not necessarily all).

Definition

Let $(E, +, \cdot)$ be a vector space. Let the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in E$.

These vectors are said to be *linearly independent* if the null vector \mathbf{o} can be expressed as linear combination only by means of the scalars $0, 0, \dots, 0$.

Example

Let us consider the following vectors $\in \mathbb{R}^3$

$$\mathbf{v_1} = (4, 2, 0)$$

 $\mathbf{v_2} = (1, 1, 1)$
 $\mathbf{v_3} = (6, 4, 2)$.

These vectors are linearly dependent since

$$(0,0,0) = (4,2,0) + 2(1,1,1) - (6,4,2);$$

that is, v_3 as a linear combination of v_1 and v_2

$$(6,4,2) = (4,2,0) + 2(1,1,1).$$

Theorem

Let $(E, +, \cdot)$ be a vector space. Let the vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n} \in E$.

If the n vectors are linearly dependent while n-1 are linearly independent, there is a unique way to express one vector as linear combination of the others:

$$\forall \mathbf{v_k} \in E, \exists! \lambda_1, \lambda_2, \dots, \lambda_{k-1}, \lambda_{k+1}, \dots, \lambda_n \neq 0, 0, \dots, 0 \text{ such that}$$

$$\mathbf{v_k} = \lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2} + \dots + \lambda_{k-1} \mathbf{v_{k-1}} + \lambda_{k+1} \mathbf{v_{k+1}} + \dots + \lambda_n \mathbf{v_n}$$

Proof.

Let us assume by contradiction that the linear combination is not unique:

$$\odot$$
 $\exists \lambda_1, \lambda_2, \dots, \lambda_{k-1}, \lambda_{k+1}, \dots, \lambda_n \neq 0, 0, \dots, 0$ such that
$$\mathbf{v_k} = \lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2} \dots + \lambda_{k-1} \mathbf{v_{k-1}} + \lambda_{k+1} \mathbf{v_{k+1}} + \dots + \lambda_n \mathbf{v_n}$$

$$\bigcirc \exists \mu_1, \mu_2, \dots, \mu_{k-1}, \mu_{k+1}, \dots, \mu_n \neq 0, 0, \dots, 0 \text{ such that}$$

$$\mathbf{v_k} = \mu_1 \mathbf{v_1} + \mu_2 \mathbf{v_2} \dots + \mu_{k-1} \mathbf{v_{k-1}} + \mu_{k+1} \mathbf{v_{k+1}} + \dots + \mu_n \mathbf{v_n}$$

where
$$\lambda_1, \lambda_2, ..., \lambda_{k-1}, \lambda_{k+1}, ..., \lambda_n \neq \mu_1, \mu_2, ..., \mu_{k-1}, \mu_{k+1}, ..., \mu_n \neq 0, 0, ..., 0.$$
 continued...

Proof.

Under this hypothesis, we can write that

$$\mathbf{o} = (\lambda_{1} - \mu_{1}) \mathbf{v}_{1} + (\lambda_{2} - \mu_{2}) \mathbf{v}_{2} + \dots + (\lambda_{k-1} - \mu_{k-1}) \mathbf{v}_{k-1} + (\lambda_{k+1} - \mu_{k-1}) \mathbf{v}_{k+1} + \dots + (\lambda_{n} - \mu_{n}) \mathbf{v}_{n}$$

continued...

Proof.

Since the n-1 vectors are linearly independent

$$\begin{cases} \lambda_1 - \mu_1 = 0 \\ \lambda_2 - \mu_2 = 0 \\ \dots \\ \lambda_{k-1} - \mu_{k-1} = 0 \\ \lambda_{k+1} - \mu_{k+1} = 0 \\ \dots \\ \lambda_n - \mu_n = 0 \end{cases} \Rightarrow \begin{cases} \lambda_1 = \mu_1 \\ \lambda_2 = \mu_2 \\ \dots \\ \lambda_{k-1} = \mu_{k-1} \\ \lambda_{k+1} = \mu_{k+1} \\ \dots \\ \lambda_n = \mu_n. \end{cases}$$

Thus, the linear combination is unique.

Proposition

Let $(E, +, \cdot)$ be a vector space and $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ be its n vectors. If one of these vectors is equal to the null vector \mathbf{o} , these vectors are linearly dependent.

Proof.

Let us assume that $\mathbf{v_n} = \mathbf{o}$ and let us pose

$$\mathbf{o} = \lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2} + \ldots + \lambda_{n-1} \mathbf{v_{n-1}} + \lambda_n \mathbf{o}.$$

Even if $\lambda_1, \lambda_2, \dots, \lambda_{n-1} = 0, 0, \dots, 0$, the equality is verified for any scalar $\lambda_n \in \mathbb{K}$. Thus, the vectors are linearly dependent.

Exercise 2

- 1. Consider the vector space $(\mathbb{R}^3, +, \cdot)$ and the vectors (1,0,2), (2,-1,1), (3,x,0) from this vector space. What value(s) of x will make these three vectors linearly dependent?
- 2. Consider the vector space $(\mathbb{R}^2, +, \cdot)$ and the vectors (1,0), (0,2) from this vector space. Write down a third vector \mathbf{v} such that (1,0), (0,2), \mathbf{v} are linearly independent. Otherwise, if it is not possible, explain why.

Exercise 2: Solution

1. We need to find scalars λ_1 , λ_2 , λ_3 on these three vectors, such that their linear combination with these scalars is (0,0,0) and at least one scalar is non-zero.

Let us suppose $\lambda_1 = 1^{-1}$.

- ⊚ From the third component of the vectors, $\lambda_1 \times 2 + \lambda_2 \times 1 + \lambda_3 \times 0 = 0 \Rightarrow \lambda_2 = -2$.
- ⊚ From the first component, $\lambda_1 \times 1 + \lambda_2 \times 2 + \lambda_3 \times 3 = 0$ ⇒ $\lambda_3 = 1$.
- ⊚ From the second component, $\lambda_1 \times 0 + \lambda_2 \times -1 + \lambda_3 x = 0$ ⇒ x = -2.

¹This is fine since λ_2 and λ_3 can be rescaled to match this. The only other possibility is that $\lambda_1 = 0$ but we will deal with that if we need to.

Exercise 2: Solution

2. Suppose $\mathbf{v} = (x, y)$ for some values of x and y.

Then we can choose non-zero scalars $\lambda_1 = x$, $\lambda_2 = \frac{y}{2}$, $\lambda_3 = -1$ such that

$$\lambda_1(1,0) + \lambda_2(0,2) + \lambda_3 \mathbf{v} = (0,0).$$

Hence, it is not possible to find any (x, y) such that all three vectors are linearly independent.

Definition

Let $(E, +, \cdot)$ be a vector space. The set containing the totality of all the possibly linear combinations of the vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n} \in E$ by means of n scalars is named *linear span* (or simply span) and is indicated with $L(\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}) \subset E$ or synthetically with L:

$$L(\mathbf{v_1},\mathbf{v_2},\ldots,\mathbf{v_n}) = \{\lambda_1\mathbf{v_1} + \lambda_2\mathbf{v_2} + \ldots + \lambda_n\mathbf{v_n} | \lambda_1,\lambda_2,\ldots,\lambda_n \in \mathbb{K}\}.$$

In the case $L(\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}) = E$, the vectors are said to span the set E or, equivalently, are said to span the vector space $(E, +, \cdot)$.

Example

The vectors $\mathbf{v_1} = (1,0)$, $\mathbf{v_2} = (0,2)$, $\mathbf{v_3} = (1,1)$ span the entire \mathbb{R}^2 since any point $(x,y) \in \mathbb{R}^2$ can be generated from

$$\lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2} + \lambda_3 \mathbf{v_3}$$

with

$$\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$$
.

We think of the vectors forming the span as building blocks for the vector space.

Theorem

The span $L(\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n})$ with the composition laws is a vector subspace of $(E, +, \cdot)$.

Proof.

In order to prove that $(L, +, \cdot)$ is a vector subspace, using Proposition on Slide 8, it is enough to prove the closure of L with respect to the composition laws. *continued...*

Proof.

1. Let **u** and **w** be two arbitrary distinct vectors \in *L*. Thus,

$$\mathbf{u} = \lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2} + \ldots + \lambda_n \mathbf{v_n}$$

$$\mathbf{w} = \mu_1 \mathbf{v_1} + \mu_2 \mathbf{v_2} + \ldots + \mu_n \mathbf{v_n}.$$

Let us compute $\mathbf{u} + \mathbf{w}$,

$$\mathbf{u} + \mathbf{w} = \lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2} + \dots + \lambda_n \mathbf{v_n} + \mu_1 \mathbf{v_1} + \mu_2 \mathbf{v_2} + \dots + \mu_n \mathbf{v_n} = (\lambda_1 + \mu_1) \mathbf{v_1} + (\lambda_2 + \mu_2) \mathbf{v_2} + \dots + (\lambda_n + \mu_n) \mathbf{v_n}.$$

Hence $\mathbf{u} + \mathbf{w} \in L$.

continued...

Proof.

1. Let **u** be an arbitrary vector \in *L* and μ an arbitrary scalar \in \mathbb{K} . Thus,

$$\mathbf{u} = \lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2} + \ldots + \lambda_n \mathbf{v_n}.$$

Let us compute $\mu \mathbf{u}$:

$$\mu \mathbf{u} = \mu (\lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2} + \dots + \lambda_n \mathbf{v_n}) =$$

= $\mu \lambda_1 \mathbf{v_1} + \mu \lambda_2 \mathbf{v_2} + \dots + \mu \lambda_n \mathbf{v_n}.$

Hence, $\mu \mathbf{u} \in L$.

32

Exercise 3

Consider the vector space $(\mathbb{R}^3, +, \cdot)$ and its subset $U \subset \mathbb{R}^3$:

$$U = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + 4y - 5z = 0\}$$

from slide 10.

Show that $(1, 0, \frac{3}{5})$, $(0, 1, \frac{4}{5})$ span *U*.

Exercise 3: Solution

Take any $\mathbf{u} = (x, y, z) \in U$.

Therefore 5z = 3x + 4y, so write as $\mathbf{u} = (x, y, \frac{3x+4y}{5})$.

Take scalars $\lambda_1 = x$, $\lambda_2 = y$.

Then
$$\lambda_1 \left(1, 0, \frac{3}{5} \right) + \lambda_2 \left(0, 1, \frac{4}{5} \right) = \left(x, y, \frac{3x + 4y}{5} \right) = \mathbf{u}.$$

We have shown that any element from U is a linear combination of the two vectors, hence they span U.

Summary and next lecture

Summary

- O Vector Spaces
- O Linear Dependence
- O Linear Span

The next lecture

We will learn about the Basis and Dimension of a Vector Space.