Machine learning workflows

MODELING WITH TIDYMODELS IN R

David SvancerData Scientist

Decision trees segment the predictor space into rectangular regions

Recursive binary splitting

 Algorithm that segments predictor space into non-overlapping rectangular regions

Total Website Visits

Decision trees segment the predictor space into **rectangular** regions

Recursive binary splitting

- Algorithm that segments predictor space into non-overlapping rectangular regions
- Decision splits are added iteratively
 - Either horizontal or vertical cut points

Decision trees segment the predictor space into **rectangular** regions

Recursive binary splitting

- Algorithm that segments predictor space into non-overlapping rectangular regions
- Decision splits are added iteratively
 - Either horizontal or vertical cut points

Decision trees segment the predictor space into **rectangular** regions

Recursive binary splitting

- Algorithm that segments predictor space into non-overlapping rectangular regions
- Decision splits are added iteratively
 - Either horizontal or vertical cut points

Decision trees segment the predictor space into **rectangular** regions

Recursive binary splitting

- Algorithm that segments predictor space into non-overlapping rectangular regions
- Decision splits are added iteratively
 - Either horizontal or vertical cut points

Produces distinct rectangular regions

• For classification, majority class is

Time on Website vs Total Visits by Purchase Outcome

Total Time on Website

Total Website Visits

Tree diagrams

- Interior nodes
 - Decision tree splits (dark boxes)
- Terminal nodes
 - Regions which are not split further
 - Green and purple boxes

Interior nodes are dashed lines and terminal nodes are highlighted rectangular regions

Total Website Visits

Model specification

Model specification in parsnip

- decision_tree()
 - General interface to decision tree models in parsnip
 - Common engine is 'rpart'
 - Mode can be either 'classification' or 'regression'
 - For lead scoring data, we need 'classification'

```
dt_model <- decision_tree() %>%
  set_engine('rpart') %>%
  set_mode('classification')
```

Feature engineering recipe

Data transformations for lead scoring data

- Encoded in a recipe object
 - Remove multicollinearity
 - Normalize numeric predictors
 - Create dummy variables for nominal predictors

Two R objects to manage

- parsnip model and recipe specification
- Combining into one object would make life easier

leads_recipe

Combining models and recipes

The workflows package is designed for streamlining the model process

 Combines a parsnip model and recipe object into a single workflow object

Initialized with the workflow() function

- Add model object with add_model()
- Add recipe object with add_recipe()
 - Must be specification, not a trained recipe

```
leads_wkfl <- workflow() %>%
  add_model(dt_model) %>%
  add_recipe(leads_recipe)

leads_wkfl
```

Model fitting with workflows

Training a workflow object

- Pass workflow to last_fit() and provide data split object
- View model evaluation results with collect_metrics()

Behind the scenes

- Training and test datasets created
- recipe trained and applied
- Decision tree trained with training data
- Predictions and metrics on test data

```
leads_wkfl_fit <- leads_wkfl %>%
  last_fit(split = leads_split)

leads_wkfl_fit %>%
  collect_metrics()
```

Collecting predictions

A workflow trained with last_fit() can be passed to collect_predictions()

- Produces detailed results on the test data
- Like before, can be used with yardstick functions to explore performance custom metrics

```
leads_wkfl_preds <- leads_wkfl_fit %>%
  collect_predictions()
leads_wkfl_preds
```

```
# A tibble: 332 x 6
               .pred_yes .pred_no .row .pred_class purchased
                 <dbl>
 <chr>
                          <dbl>
                                  <int>
                                           <fct>
                                                       <fct>
train/test split 0.120
                           0.880
                                            no
                                                        no
train/test split 0.755
                           0.245
                                   17
                                            yes
                                                        yes
train/test split 0.120
                           0.880
                                    21
                                            no
                                                        no
train/test split 0.120
                           0.880
                                            no
                                                        no
train/test split 0.755
                           0.245
                                    24
                                            yes
                                                        yes
# ... with 327 more rows
```

Exploring custom metrics

Create a custom metric set with

```
metric_set()
```

Area under the ROC curve, sensitivity, and specificity

```
Pass predictions datasets to

Leads_metrics() to calculate metrics
```

Loan default dataset

Financial data for consumer loans at a bank

Outcome variable is loan_default

```
loans_df
```

```
# A tibble: 872 x 8
                             missed_payment_2_yr loan_amount interest_rate installment annual_income debt_to_income
loan_default loan_purpose
                 <fct>
                                                                   <dbl>
                                                                                 <dbl>
 <fct>
                                   <fct>
                                                     <int>
                                                                                                <dbl>
                                                                                                            <dbl>
           debt_consolidation
                                                    25000
                                                                   5.47
                                                                                 855.
                                                                                               62823
                                                                                                            39.4
                                    no
 no
           medical
                                                    10000
                                                                  10.2
                                                                                 364.
                                                                                               40000
                                                                                                            24.1
 yes
                                    no
           small_business
                                                    13000
                                                                   6.22
                                                                                 442.
                                                                                               65000
                                                                                                            14.0
 no
                                    no
           small_business
                                                                   5.97
                                                                                1152.
                                                                                                             8.09
                                                    36000
                                                                                              125000
                                    no
 no
           small_business
                                                                  11.8
                                                                                 308.
                                                                                               65000
                                                                                                            20.1
                                                    12000
 yes
                                    yes
      with 867 more rows
```


Let's practice building workflows!

MODELING WITH TIDYMODELS IN R

Estimating performance with cross validation

MODELING WITH TIDYMODELS IN R

David SvancerData Scientist

Training and test datasets

Creating training and test datasets is the first step in the modeling process

- Guards against overfitting
 - Training data is used for model fitting
 - Test data is used for model evaluation

Downside

Only one estimate of model performance

K-fold cross validation

Resampling technique for exploring model performance

 Provides K estimates of model performance during the model fitting process

K-fold cross validation

Resampling technique for exploring model performance

often comparing different models (e.g., logistic regression & decision tree)

- Provides K estimates of model performance during the model fitting process
- Training data is randomly partitioned into K sets of roughly equal size
- Folds are used to perform K iterations of model fitting and evaluation

Performing 5-fold cross validation

Five iterations of model training and evaluation

Performing 5-fold cross validation

- Five iterations of model training and evaluation
- Iteration 1
 - Fold 1 reserved for model evaluation and folds 2 through 5 for model training

Performing 5-fold cross validation

- Five iterations of model training and evaluation
- Iteration 1
 - Fold 1 reserved for model evaluation and folds 2 through 5 for model training
- Iteration 2
 - Fold 2 reserved for model evaluation

Performing 5-fold cross validation

- Five iterations of model training and evaluation
- Iteration 1
 - Fold 1 reserved for model evaluation and folds 2 through 5 for model training
- Iteration 2
 - Fold 2 reserved for model evaluation

Five estimates of model performance in total

Creating cross validation folds

The vfold_cv() function

- Training data
- Number of folds, v
- Stratification variable, strata
- Execute set.seed() before vfold_cv()for reproducibility
- splits
 - List column with data split objects for creating fold

Model training with cross validation

includes models and data pre-processing

The fit_resamples() function

- Train a parsnip model or workflow object
- Provide cross validation folds, resamples
- Optional custom metric function, metrics
 - Default is accuracy and ROC AUC

Each metric is estimated 10 times

- One estimate per fold
- Average value in mean column

```
# A tibble: 3 x 5
  .metric .estimator
                               n std_err
                      mean
                     <dbl> <int>
                                   <dbl>
  <chr>
          <chr>
1 roc_auc binary
                     0.823
                                  0.0147
                              10
          binary
                     0.786
                                  0.0203
2 sens
                              10
          binary
                                  0.0159
3 spec
                     0.855
```

Detailed cross validation results

The collect_metrics() function

- Passing summarize = FALSE will provide all metric estimates for every cross validation fold
- 30 total combinations (3 metrics x 10 folds)
 - .metric column identifies metric
 - estimate column gives estimated value for each fold

```
rs_metrics <- leads_rs_fit %>%
  collect_metrics(summarize = FALSE)

rs_metrics
```

```
# A tibble: 30 x 4
         .metric .estimator .estimate
  id
  <chr> <chr>
                <chr>
                              <dbl>
1 Fold01 sens binary
                              0.861
2 Fold01 spec binary
                              0.891
3 Fold01 roc_auc binary
                              0.885
4 Fold02 sens binary
                              0.778
5 Fold02 spec binary
                              0.969
6 Fold02 roc_auc binary
                              0.885
# ... with 24 more rows
```

Summarizing cross validation results

The collect_metrics() function returns a tibble

- Results can be summarized with dplyr
 - Start with rs_metrics
 - Form groups by .metric values
 - Calculate summary statistics with summarize()

```
rs_metrics %>%
  group_by(.metric) %>%
  summarize(min = min(.estimate),
        median = median(.estimate),
        max = max(.estimate),
        mean = mean(.estimate),
        sd = sd(.estimate))
```

```
# A tibble: 3 x 6
 .metric
          min median
                                        sd
                        max
                              mean
  <chr>
         <dbl> <dbl> <dbl> <dbl> <dbl>
                                       <dbl>
1 roc_auc 0.758 0.806
                                       0.0466
                       0.885
                              0.823
         0.667 0.792 0.861 0.786
                                      0.0642
2 sens
         0.810 0.843 0.969
                                       0.0502
                              0.855
3 spec
```

Cross validation methodology

Models trained with fit_resamples() are not able to provide predictions on new data sources

 predict() function does not accept resample objects

Purpose of fit_resample()

- Explore and compare the performance profile of different model types
- Select best performing model type and focus on model fitting efforts

```
predict(leads_rs_fit,
    new_data = leads_test)
```

```
Error in UseMethod("predict") :
   no applicable method for 'predict' applied to
   an object of class
   "c('resample_results',
        'tune_results',
        'tbl_df',
        'tbl', 'data.frame')"
```

Let's cross validate!

MODELING WITH TIDYMODELS IN R

Hyperparameter tuning

MODELING WITH TIDYMODELS IN R

David SvancerData Scientist

Hyperparameters

Model parameters whose values are set prior to model training and control model complexity

parsnip decision tree

- cost_complexity
 - Penalizes large number of terminal nodes
- tree_depth
 - Longest path from root to terminal node
- min_n
 - Minimum data points required in a node for further splitting

Default hyperparameter values

decision_tree() function sets default
hyperparameter values

- cost_complexity is set to 0.01
- tree_depth is set to 30
- min_n is set to 20

These may not be the best values for all datasets

Hyperparameter tuning

 Process of using cross validation to find the optimal set of hyperparameter values

```
dt_model <- decision_tree() %>%
  set_engine('rpart') %>%
  set_mode('classification')
```

Labeling hyparameters for tuning

The tune() function from the tune package

- To label hyperparameters for tuning, set them equal to tune() in parsnip model specification
- Creates model object with tuning parameters
 - Will let other functions know that they need to be optimized

```
Decision Tree Model Specification (classification)

Main Arguments:
    cost_complexity = tune()
    tree_depth = tune()
    min_n = tune()

Computational engine: rpart
```

Creating a tuning workflow

workflow objects can be easily updated

- Prior leads_wkfl
 - Feature engineering steps for lead scoring data and decision tree model with default hyperparameters
- Pass leads_wkfl to update_model() and provide new decision tree model with tuning parameters

```
leads_tune_wkfl <- leads_wkfl %>%
  update_model(dt_tune_model)
leads_tune_wkfl
```

```
== Workflow ========
Preprocessor: Recipe
Model: decision_tree()
-- Preprocessor -----
3 Recipe Steps
* step_corr()
* step_normalize()
* step_dummy()
-- Model -----
Decision Tree Model Specification (classification)
Main Arguments: cost_complexity = tune()
               tree_depth = tune()
               min_n = tune()
Computational engine: rpart
```

Grid search

Most common method for tuning hyperparameters

- Generate a grid of unique combinations of hyperparameter values
 - For each combination, use cross validation to estimate model performance
- Choose best performing combination

cost_complexity	tree_depth	min_n
0.001	20	35
0.001	20	15
0.001	35	35
0.001	35	15
0.2	20	35
•••	•••	•••

Identifying hyperparameters

The parameters() function from the dials package

- Takes a parsnip model object
- Returns a tibble with the hyperparameters
 labeled by the tune() function, if any
 - Used for generating tuning grids with the dials package

```
parameters(dt_tune_model)
```

Random grid

Generating random combinations

 This method tends to provide greater chances of finding optimal hyperparameter values

```
The grid_random() function
```

- First argument is the results of the parameters() function
- size sets the number of random combinations to generate
 - Execute set.seed() function before grid_random() for reproducibility

```
A tibble: 5 x 3
 cost_complexity tree_depth min_n
            <dbl>
                       <int> <int>
     0.0000000758
                         14
                                 39
     0.0243
                                 34
3
    0.00000443
                         11
                                  8
     0.000000600
                                  5
5
     0.00380
                                 36
```

Saving a tuning grid

First step in hyperparameter tuning

- Create and save a tuning grid
- dt_grid contains 5 random combinations of hyperparameter values

```
# A tibble: 5 x 3
 cost_complexity tree_depth min_n
           <dbl>
                       <int> <int>
    0.0000000758
                         14
                                39
                                34
    0.0243
    0.00000443
                         11
3
                                 8
    0.000000600
                                 5
    0.00380
                                36
```

Hyperparameter tuning with cross validation

The tune_grid() function performs hyperparameter tuning

Takes the following arguments:

- workflow or parsnip model
- Cross validation object, resamples
- Tuning grid, grid
- Optional metrics function

Returns tibble of results

- .metrics
 - List column with results for each fold

dt_tuning

```
# Tuning results
# 10-fold cross-validation using stratification
# A tibble: 10 x 4
  splits
                  id
                            .metrics
  <chr>
                            <tibble [15 x 7]>
<split [896/100]>
                  Fold01
<split [897/99]>
                          <tibble [15 x 7]>
                 Fold09
                         <tibble [15 x 7]> ...
<split [897/99]>
                  Fold10
```

Exploring tuning results

The collect_metrics() function provides summarized results by default

Average estimated metric values across all folds per combination

```
dt_tuning %>%
  collect_metrics()
```

```
# A tibble: 15 x 9
  cost_complexity tree_depth min_n .metric .estimator mean
                                                                n std_err .config
            <dbl>
                       <int> <int> <chr>
                                                      <dbl> <int>
                                                                    <dbl> <chr>
                                           <chr>
                                39 roc_auc binary
     0.0000000758
                          14
                                                      0.827
                                                               10 0.0147 Model1
     0.0000000758
                                           binary
                                39 sens
                                                      0.728
                                                               10 0.0277 Model1
                          14
     0.0000000758
                          14
                                39 spec
                                           binary
                                                      0.865
                                                               10 0.0156 Model1
                                34 roc_auc binary
     0.0243
                           5
                                                      0.823
                                                               10 0.0147 Model2
     0.00380
14
                           5
                                                      0.747
                                                               10 0.0209 Model5
                                36 sens
                                           binary
                                           binary
15
     0.00380
                                                      0.858
                                                               10 0.0161 Model5
                                36 spec
```

Let's get tuning! MODELING WITH TIDYMODELS IN R

Selecting the best model

MODELING WITH TIDYMODELS IN R

David SvancerData Scientist

Detailed tuning results

The collect_metrics() function provides summarized results by default

Passing summarize = FALSE will provide all hyperparameter tuning results

```
dt_tuning %>%
  collect_metrics(summarize = FALSE)
```

```
# A tibble: 150 x 8
       cost_complexity tree_depth min_n .metric ... .estimate
id
                                                               .config
            <dbl>
                         <int>
<chr>
                                 <int> <chr>
                                                      <dbl>
                                                                 <chr>
Fold01
         0.0000000758
                                                       0.75
                                                                Model1
                         14
                                  39
                                        sens
                                        spec
Fold01
         0.0000000758
                        14
                                  39
                                                       0.906
                                                                Model1
Fold01
         0.0000000758
                        14
                                  39
                                        roc_auc ... 0.888
                                                                Model1
Fold10
         0.00380
                                  36
                                                       0.789
                                                                Model5
                                        roc_auc ...
```

Exploring tuning results

```
Selecting summarise = FALSE within
collect_metrics() returns a tibble
```

- Easy to explore results with dplyr
- Exploring ROC AUC
 - Select roc_auc metric
 - Form groups by id column
 - Calculate .estimate summary statistics

```
# A tibble: 10 x 4
id
        min_roc_auc median_roc_auc
                                       max_roc_auc
           <dbl>
                           <dbl>
                                        <dbl>
<chr>
           0.830
Fold01
                           0.885
                                        0.888
Fold02
           0.857
                                        0.885
                           0.882
Fold03
           0.818
                           0.836
                                        0.836
            . . . .
                            . . . .
                                         . . . .
Fold10
           0.762
                           0.790
                                        0.813
```

Viewing the best performing models

```
The show_best() function
```

- Displays the top n performing models based on average value of metric
- Model1 is the winner

```
dt_tuning %>%
show_best(metric = 'roc_auc', n = 5)
```

```
# A tibble: 5 x 9
                             min_n .metric .estimator
cost_complexity tree_depth
                                                                        std_err
                                                                                 .config
                                                          mean
    <dbl>
                    <int>
                                                          <dbl>
                                                                  <int>
                                                                        <dbl>
                                                                                  <chr>
                             <int>
                                       <chr>
                                               <chr>
0.000000758
                     14
                              39
                                               binary
                                                          0.827
                                                                        0.0147
                                                                                 Model1
                                      roc_auc
                                                                  10
0.00380
                      5
                                                          0.825
                                                                       0.0146
                                                                                 Model5
                              36
                                      roc_auc
                                               binary
                                                                  10
0.0243
                                                          0.823
                                                                        0.0147
                                                                                 Model2
                              34
                                      roc_auc
                                               binary
                                                                  10
                                                                                 Model3
0.00000443
                                                                        0.00786
                     11
                                                          0.816
                                      roc_auc
                                               binary
                                                                  10
0.000000600
                      3
                              5
                                      roc_auc
                                               binary
                                                          0.814
                                                                  10
                                                                        0.0131
                                                                                 Model4
```

Selecting a model

The select_best() function

- Pass dt_tuning results to select_best()
- Select the metric on which to evaluate performance

```
best_dt_model <- dt_tuning %>%
   select_best(metric = 'roc_auc')
best_dt_model
```

Returns a tibble with the best performing model and hyperparameter values

Finalizing the workflow

The finalize_workflow() function will finalize a workflow that contains a model object with tuning parameters

- Pass workflow object
- A tibble with one row of final model hyperparameter values
 - Column names must match hyperparameters in model object

Returns a workflow object with set hyperparameter values

```
final_leads_wkfl <- leads_tune_wkfl %>%
  finalize_workflow(best_dt_model)
final_leads_wkfl
```

```
== Workflow ==============
Preprocessor: Recipe
Model: decision_tree()
-- Preprocessor -----
3 Recipe Steps
* step_corr()
* step_normalize()
* step_dummy()
Decision Tree Model Specification (classification)
Main Arguments:
 cost_complexity = 0.0000000758
 tree_depth = 14
 min_n = 39
Computational engine: rpart
```

Model fitting

Finalized workflow object can be trained with last_fit() and original data split object, leads_split

```
leads_final_fit <- final_leads_wkfl %>%
  last_fit(split = leads_split)

leads_final_fit %>%
  collect_metrics()
```

Behind the scenes

- Training and test datasets created
- recipe trained and applied
- Tuned decision tree trained with entire training dataset
- Predictions and metrics on test data

Let's practice!

MODELING WITH TIDYMODELS IN R

Congratulations!

MODELING WITH TIDYMODELS IN R

David SvancerData Scientist

The tidymodels ecosystem

→ ,

Feature engineering

Regression modeling

Specifying models with parsnip

Training and evaluating linear regression models

Classification modeling

Logistic regression with logistic_reg()

Predict
Yes

Purchased Product
Yes

Predict
No

Total Website Visits

Evaluating classification performance with confusion matrices and ROC curves

Feature engineering

Fine tuning models with cross validation

Model performance profiles with cross validation and fit_resamples()

- Hyperparameter tuning with grid search
- Finalizing model workflows

cost_complexity	tree_depth	min_n
0.001	20	35
0.001	20	15
0.001	35	35
0.001	35	15
0.2	20	35
•••	•••	•••

Thank you!

MODELING WITH TIDYMODELS IN R

