Anomaly Detection in Temporal Multilayer Networks using GLMs and Tensor Decomposition

Mahya Qorbani, Kamran Paynabar

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

INFORMS Annual Meeting Phoenix

October 17, 2023

- Overview and Problem Definition
- Literature review
- Proposed Method
 - Tensor-based State Space Model
 - Extended Kalman Filter
- Experiments and Results
- Summary and Future Works

- Overview and Problem Definition
- Literature review
- Proposed Method
 - Tensor-based State Space Model
 - Extended Kalman Filter
- Experiments and Results
- Summary and Future Works

Overview and Problem Definition

- Different Types of multilayer networks
- Temporal Multilayer Network

- Overview and Problem Definition
- Literature review
- Proposed Method
 - Tensor-based State Space Model
 - Extended Kalman Filter
- Experiments and Results
- Summary and Future Works

Literature Review

Paper	Year	Method	
Change Detection in a Dynamic Stream of Attributed Networks Mostafa Reisi Gahrooei, Kamran Paynabar	2017	They combined state space model, and Kalman filter to detect change points in one-layer networks. They consider nodes' attributes.	
Modeling and Change Detection for Count-Weighted Multilayer Networks Hang Dong, Nan Chen & Kaibo Wang	2019	They use SBM models to detect changes in community behavioral patterns. The community memberships cannot be different across all layers. they do not consider nodes' features!	
Latent Evolution Model for Change Point Detection in Time- varying Networks Yongshun Gong, Xue Dong, Jian Zhang, Meng Chen	2022	They treat a network as a graph and used Graph-based change point detection algorithms. They work on one-layer networks.	
Multi-view change point detection in dynamic networks Yingjie Xie, Wenjun Wang, Minglai Shao, Tianpeng Li, YandoNg Yu	2023	They detect changes between and within communities. And they do not work with attributed networks.	

Problem Definition

Objective

Detect anomalies in temporal attributed multilayer networks

Challenges

High dimensional data

Attributes

Dynamics of networks

Proposed Method

Anomaly detection method using tensor based Generalized linear models and Extended Kalman filter.

- Overview and Problem Definition
- Literature review
- Proposed Method
 - Tensor-based State Space Model
 - Extended Kalman Filter
- Experiments and Results
- Summary and Future Works

Tensor-based State Space Model

l: number of layers

m: number of features

n: number of nodes in each layer

 W_t : Adjacency tensor at time t, dimension: (l * l * n * n)

 x_i : features of node i, dimension: (1*m)

X: Tensor of features, dimension: (n * n * m)

 β_t : Coefficient of features, dimension at time t: (l*l*m)

 θ_t : Parameters of function $f(\theta_t)$, dimension at time t: (l * l * n * n)

$$W_t = f(\theta_t)$$
 $W_t \sim Bernoulli\ (\theta_t), f \ produces a realization of Bernoulli $\theta_t = g(X\beta_t)$ $g(.)$ is the logit inverse function$

- We observe the network (W_t) and need to estimate β_t .
- To reduce dimensions, we use tensor tucker decomposition.

β Estimation

$$W_t = f(\theta_t)$$
 $W_t \sim Bernoulli\ (\theta_t), f \text{ produces a realization of Bernoulli}$ $g(.)$ is the logit inverse function

To deal with high-dimensionality, β_t is decomposed via Tucker decomposition

$$eta: m*l*l \ C: \widetilde{m}*\widetilde{l}*\widetilde{l} \ C: \widetilde{m}*\widetilde{l}*\widetilde{l} \ V_1: l*\widetilde{l} \ V_2: l*\widetilde{l} \ V_3: l*\widetilde{l}$$

Hence, the log likelihood function can be optimized by block coordinate descent

$$L = \sum_{i=1}^{n} \left(-w_i \log \left(1 + e^{-x_i (C \times_1 U_1 \times_2 V_1 \times_3 V_2)} \right) + (w_i - 1) \log \left(1 + e^{x_i (C \times_1 U_1 \times_2 V_1 \times_3 V_2)} \right) \right)$$

β Estimation

Log likelihood function

$$L = \sum_{i=1}^{n} \left(-w_i \log \left(1 + e^{-x_i (C \times_1 U_1 \times_2 V_1 \times_3 V_2)} \right) + (w_i - 1) \log \left(1 + e^{x_i (C \times_1 U_1 \times_2 V_1 \times_3 V_2)} \right) \right)$$

• We use tucker decomposition of W to estimate V_1 and V_2 . (1)

$$\bar{W} = Q \times_1 V_1 \times_2 V_2$$

■ Block coordinate descent to estimate C and U_1 .

nodes	layers	features	error
20	5	6	0.07
50	5	6	0.07
100	5	6	0.06
100	5	12	0.09
100	6	12	0.10

- Overview and Problem Definition
- Literature review
- Proposed Method
 - Tensor-based State Space Model
 - Extended Kalman Filter
- Experiments and Results
- Summary and Future Works

Extended Kalman Filter (EKF)

- To include the dynamic of the system in our estimation, we use EKF.
- Recursive mathematical algorithm used for estimating the state of a system from a series of noisy measurements.
- The relationships between the state,
 measurements, and process noise are not linear.

 $\beta_{t|t}$: estimation of β at time t $\beta_{t|t-1}$: prediction of β at time t

 $\hat{\beta}_t$: observation of β at time t

 K_t : kalman gain at time t

 P_t : covariance matrix of β at time t

 $_{14}R_t$: covariance matrix of $\hat{\beta}$ at time t

Proposed Monitoring Method

- Overview and Problem Definition
- Literature review
- Proposed Method
 - Tensor-based State Space Model
 - Extended Kalman Filter
- Experiments and Results
- Summary and Future Works

Experiments and Results

- Synthetic data
- Time: 45 timesteps (In control data: first 20 timesteps)
- Time of change = 20
- Numbers of layers = 5
- Numbers of nodes = 35
- Numbers of features = 4

Experiments and Results

- Real data: Enron dataset
- Time: 64 weeks (In control data: first 49 weeks)
- Numbers of layers = 2
- Numbers of nodes = 28
- Numbers of features = 7

- Overview and Problem Definition
- Literature review
- Proposed Method
 - Tensor-based State Space Model
 - Extended Kalman Filter
- Experiments and Results
- Summary and Future Works

Summary

- We introduced a new method for change detection in temporal multilayer networks.
- We utilized tensor tucker decomposition along GLMs to estimate the parameters.
- We used extended Kalman filter for recursive estimation and prediction of adjacency tensors.
- We used EWMA control charts to detect anomalies.
- Our method is scalable and can be used for directional networks as well.

Future Directions

ARL analysis

We want to do ARL analysis to find the average run length on synthetic data to find the best point to add shift to the data.

Benchmarks

Find other methods which are applicable in this concept and compare their performance with the proposed method.

New datasets

Apply the proposed method on different real dataset and see how it performs.

Thank you

contact info: mqorbani3@gatech.edu

LinkedIn:

