Fundamentals of fMRI data analysis

Karolina Finc

Centre for Modern Interdisciplinary

Technologies Nicolaus Copernicus University
in Toruń

PART #6: Functional connectivity

Study plan

Functional connectivity

AFTER

fMRI data preprocessing

General Linear Model

Machine Learning on fMRI data

BEFORE

fMRI data manipulation in python

Goals of task-based fMRI

- Induce in a study participant to do actions or experience cognitive states you're interested in.
- You want to detect brain signals that are related to this cognitive states or actions.

Task designs

Block design similar events are grouped

Event-related design events are mixed

Fixatio Events parameters inter-stimulus duration interval (ISI) +/jitter **Condition A Condition B** inter-trial stimul onset +/interval (ITI) jitter

Analysis steps

1-level analysis

(within-subject; individual)

2-level analysis

(across-subject; group)

1-level analysis

Study plan

Open science & neuroimaging

Functional connectivity

AFTER

fMRI data preprocessing

Machine Learning on fMRI data

BEFORE

Study plan

Functional connectivity

AFTER

Open science & neuroimaging

fMRI data preprocessing

General Linear Model

Machine Learning on fMRI data

BEFORE

Structural connectivity

Diffusion MRI
image contrast is determined by
the random microscopic motion
of water protons

Structural connectivity

Diffusion MRI
image contrast is determined by
the random microscopic motion
of water protons

Tractography
is a modeling technique used to
visually represent nerve tracts using
data collected by diffusion MRI.

Structural connectivity

Diffusion MRI
image contrast is determined by
the random microscopic motion
of water protons

Tractography
is a modeling technique used to
visually represent nerve tracts using
data collected by diffusion MRI.

Biswal et al. (1995)

Motor task Resting state

Biswal et al. (1995)

Seed-based approach

Hart et al. (2016)

Motor task Resting state

Biswal et al. (1995)

Resting-state functional connectivity measures temporal correlation of spontaneous BOLD signal among spatially distributed brain regions, with the assumption that regions with correlated activity form functional networks

Seed-based approach

Hart et al. (2016)

Motor task Resting state

Biswal et al. (1995)

Resting-state functional connectivity measures temporal correlation of spontaneous BOLD signal among spatially distributed brain regions, with the assumption that regions with correlated activity form functional networks

Resting-state networks

Hart et al. (2016)

Anticorrelated networks

Task-positive networks - networks that are active during cognitively demanding tasks (e.g. frontoparietal network, dorsal attention network).

Fox et al. (2005)

Anticorrelated networks

Task-positive networks - networks that are active during cognitively demanding tasks (e.g. frontoparietal network, dorsal attention network).

Task-negative networks that are inactive during cognitively demanding tasks (e.g. default mode network).

Fox et al. (2005)

Anticorrelated networks

Fox et al. (2005)

Task-positive networks - networks that are active during cognitively demanding tasks (e.g. frontoparietal network, dorsal attention network).

Task-negative networks that are inactive during cognitively demanding tasks (e.g. default mode network).

Task-positive and **task-negative** networks are *often* **anticorrelated** during task and rest.

Functional connectivity vs structural connectivity

Greicius et al. (2009)

Baum et al. (2019)

Functional connectivity: methods

Seed - predefined region of the brain.

Seed-to-voxel - calculating correlations between seed and all voxels in the brain.

Seed-to-seed - calculating correlations between seed regions.

Brain parcellations

Brain parcellations

Correlation

Correlation is a statistic that measures the degree to which two variables are related to each other.

Correlation matrix

Each *ij* element of a matrix represent the **correlation coefficient** (functional connectivity strength) between two regions.

Hutchison & Morton, 2015

Correlation matrix

Each *ij* element of a matrix represent the **correlation coefficient** (functional connectivity strength) between two regions.

Clusters on a correlation matrix represents brain subnetworks (also known called **modules** or **large-scale systems**).

Hutchison & Morton, 2015

Spurious correlations

Signal of non-neuronal origin (motion, physiological effects) can pump the correlation values between BOLD time-series.

ICA (Step 14)

Signals identified via ICA-based data

ICA-based denoising can effectively remove

local motion artifact but is less effective at emoving widespread motion artifact^{24,48}

decomposition and then identified as artifactual by either a trained

classifier21 or a heuristic20

Fissue compartments (Step 17A)

The mean signal computed across tissue compartments susceptible to noise, typically WM and CSF

Superficial WM and CSF signals correlate with the global and GM signals 13. To limit partial volume effects along the GM interface, mask erosion is recommended

Spikes (censoring) (Step 8)

A set of delta functions that remove all variance from frames that exceed a noise threshold 11,17,53

Considerations:

To minimize the influence of noisy frames, censoring should be incorporated iteratively 18. Censoring also alters the autocorrelation structure of the data and leads to variable loss of temporal degrees of freedom across subjects

Physiological nuisance (Step 18)

Signals computed from records of physiological processes such as pulse and respiration

Considerations:

Physiological recordings are not often available. Prior work has shown that much physiological noise is captured by the global signal¹³

CompCor (Step 17B)

A set of orthogonal time series computed via PCA over WM and CSF (anatomical CompCor) or over brain regions with high temporal variance (temporal CompCor)^{16,19}

Considerations:

In our experience, aCompCor has outperformed tCompCor. but aCompCor may not perform as well in high-motion

Spurious correlations

Signal of **non-neuronal origin** (motion, physiological effects) can pump the correlation values between BOLD time-series.

Denoising procedure -

regressing out confounding signals might minimise the level of spurious correlations in studies focused on functional connectivity.

Realignment parameters (Step 3)

The frame-to-frame estimates of the rotation and translation of the head about three cardinal axes

Considerations:

Interpolation procedures, such as despiking and slice-time correction, can result in underestimation of the total frame-to-frame movement

Global signal (Step 15)

The mean signal computed across the entire brain 26

Considerations:

Historically controversial because it exposed (or introduced) negative connections and because it largely recapitulated the mean signal from gray matter?" 45–45. GSR is singular in its ability to remove widespread artifact

Expansions (Step 19)

Expansions of other nuisance time series obtained by shifting the originals forward or backward in time, by computing their temporal derivatives or by calculating quadratic or higher-order terms ¹⁵

CA (Step 14)

Signals identified via ICA-based data decomposition and then identified as artifactual by either a trained classifier²¹ or a heuristic²⁰

Consideration

ICA-based denoising can effectively remove local motion artifact but is less effective at removing widespread motion artifact.^{24,48}

Fissue compartments (Step 17A)

The mean signal computed across tissue compartments susceptible to noise, typically WM and CSF

'onciderations'

Superficial WM and CSF signals correlate with the global and GM signals ¹³. To limit partial volume effects along the GM interface, mask erosion is recommended

Spikes (censoring) (Step 8)

A set of delta functions that remove all variance from frames that exceed a noise threshold 11,17,53

Considerations:

To minimize the influence of noisy frames, censoring should be incorporated iteratively.¹⁸. Censoring also alters the autocorrelation structure of the data and leads to variable loss of temporal degrees of freedom across subies.

Physiological nuisance (Step 18)

Signals computed from records of physiological processes such as pulse and respiration

Considerations:

Physiological recordings are not often available. Prior work has shown that much physiological noise is captured by the global signal¹³

CompCor (Step 17B)

A set of orthogonal time series computed via PCA over WM and CSF (anatomical CompCor) or over brain regions with high temporal variance (temporal CompCor) ^{16,19}

Considerations

In our experience, aCompCor has outperformed tCompCor, but aCompCor may not perform as well in high-motion samples⁶³

Network neuroscience

The goal of the **network neuroscience** is to understand
properties of brain network
reorganization using **network science** tools.

Morgan et al., 2018

Network neuroscience

The goal of the **network neuroscience** is to understand
properties of brain network
reorganization using **network science** tools.

Network science - field which studies complex networks, considering distinct elements represented by **nodes** (or vertices) and the **edges** (or connections) between them.

Morgan et al., 2018

Network neuroscience

The goal of the **network neuroscience** is to understand properties of brain network reorganization using **network science** tools.

Network science - field which studies complex networks, considering distinct elements represented by **nodes** (or vertices) and the **edges** (or connections) between them.

fMRI data

Definition of brain regions

Denoising

Definition of brain regions

Time-series extraction

Masking data: from 4D to 2D

Homework

1. GitHub Classroom

Functional connectivity

Next

Machine learning