In-Class Problems Week 12, Mon.

Problem 1.

Find the coefficients of

- (a) x^5 in $(1+x)^{11}$
- **(b)** x^8y^9 in $(3x + 2y)^{17}$
- (c) a^6b^6 in $(a^2+b^3)^5$

Problem 2.

According to the Multinomial theorem, $(w + x + y + z)^n$ can be expressed as a sum of terms of the form

$$\binom{n}{r_1, r_2, r_3, r_4} w^{r_1} x^{r_2} y^{r_3} z^{r_4}.$$

- (a) How many terms are there in the sum?
- (b) The sum of these multinomial coefficients has an easily expressed value. What is it?

$$\sum_{\substack{r_1+r_2+r_3+r_4=n,\\r_i\in\mathbb{N}}} \binom{n}{r_1, r_2, r_3, r_4} = ? \tag{1}$$

Hint: How many terms are there when $(w + x + y + z)^n$ is expressed as a sum of monomials in w, x, y, z before terms with like powers of these variables are collected together under a single coefficient?

Problem 3. (a) Use the Multinomial Theorem ?? to prove that

$$(x_1 + x_2 + \dots + x_n)^p \equiv x_1^p + x_2^p + \dots + x_n^p \pmod{p}$$
 (2)

for all primes p. (Do not prove it using Fermat's "little" Theorem. The point of this problem is to offer an independent proof of Fermat's theorem.)

Hint: Explain why $\binom{p}{k_1,k_2,...,k_n}$ is divisible by p if all the k_i 's are positive integers less than p.

(b) Explain how (2) immediately proves Fermat's Little Theorem ??: $n^{p-1} \equiv 1 \pmod{p}$ when n is not a multiple of p.

Problem 4.

You want to choose a team of m people for your startup company from a pool of n applicants, and from

these m people you want to choose k to be the team managers. You took a Math for Computer Science subject, so you know you can do this in

$$\binom{n}{m}\binom{m}{k}$$

ways. But your CFO, who went to Harvard Business School, comes up with the formula

$$\binom{n}{k} \binom{n-k}{m-k}$$
.

Before doing the reasonable thing—dump on your CFO or Harvard Business School—you decide to check his answer against yours.

- (a) Give a *combinatorial proof* that your CFO's formula agrees with yours.
- (b) Verify this combinatorial proof by giving an *algebraic* proof of this same fact.

Problem 5.

(a) Give a combinatorial proof of the following identity by letting S be the set of all length-n sequences of letters a, b and a single c and counting |S| is two different ways.

$$n2^{n-1} = \sum_{k=1}^{n} k \binom{n}{k} \tag{3}$$

(b) Now prove (3) algebraically by applying the Binomial Theorem to $(1+x)^n$ and taking derivatives.

Problem 6.

What do the following expressions equal? Give both algebraic and combinatorial proofs for your answers.

$$\sum_{i=0}^{n} \binom{n}{i}$$

$$\sum_{i=0}^{n} \binom{n}{i} (-1)^{i}$$

Hint: Consider the bit strings with an even number of ones and an odd number of ones.