

Fast Methods

Donald R. Wilton Vikram Jandhyala

Precorrected FFT

Why Are Fast Methods Needed for Large MoM Problems?

Approximate Computation Times for Large Problems

Main Features of Fast Methods

- We assume solution uses an iterative, not a direct method
- Use redundant information in Mom matrix and/or Green's function to reduce storage requirements ("compress" the matrix) and speed up the solution process

Iterative Methods

Instead of directly solving

$$Ax = b$$

by, e.g. Gaussian elimination, we iterate on an equation of the form

$$\mathbf{X}_{n} = \mathbf{B}_{n} \mathbf{X}_{n-1} + \mathbf{C}_{n}, \quad n = 1, 2, \dots, \quad \mathbf{B}_{n} = \mathbf{B}_{n} (\mathbf{A}, \mathbf{X}_{n-1}, \mathbf{X}_{n-2}, \dots, \mathbf{r}_{n-1})$$

where x₀ is an initial guess, until we achieve

convergence, say
$$\|\mathbf{x}_n - \mathbf{x}_{n-1}\| < \varepsilon_1$$
, and/or $\|\mathbf{A}\mathbf{x}_n - \mathbf{b}\| < \varepsilon_2$.

 The process must usually be sped up by preconditioning the system, i.e., premultiplying by a matrix P and solving the modified system

$$PAx = Pb$$

Iterating the Preconditioned System

- The preconditioner should in some sense approximate the inverse of the system matrix, $P \approx A^{-1}$, or equivalently $PA \sim I$
- When this is the case, we may view the term (I-PA) in the identity

$$\mathbf{X} = (\mathbf{I} \cdot \mathbf{PA}) \mathbf{X} + (\mathbf{Pb}) \qquad \Longleftrightarrow \mathbf{A}^{-1} \mathbf{b} \qquad \Longleftrightarrow \mathbf{A} = \mathbf{I} \mathbf{x}$$
add:
$$\mathbf{x} = \mathbf{I} \mathbf{x}$$

as a "small" correction to the RHS, leading to the simple iterative procedure

$$\mathbf{x}_n = (\mathbf{I} - \mathbf{P} \mathbf{A}) \mathbf{x}_{n-1} + \mathbf{P} \mathbf{b} \Leftrightarrow \mathbf{x}_n = \mathbf{B}_n \mathbf{x}_{n-1} + \mathbf{c}_n, \quad n = 1, 2, \dots$$

Iterative Convergence of the Preconditioned System

• Beginning with $x_0 \equiv 0$, successive iterations of the simple iterative procedure yield

$$\mathbf{x}_{0} = \mathbf{0}$$

$$\mathbf{x}_{1} = \mathbf{Pb}$$

$$\mathbf{x}_{2} = (\mathbf{I} - \mathbf{PA}) \mathbf{Pb} + \mathbf{Pb}$$

$$\mathbf{x}_{3} = (\mathbf{I} - \mathbf{PA})^{2} \mathbf{Pb} + (\mathbf{I} - \mathbf{PA}) \mathbf{Pb} + \mathbf{Pb}$$

$$\vdots$$

$$\mathbf{x}_{n+1} = \left[\sum_{i=0}^{n} (\mathbf{I} - \mathbf{PA})^{i}\right] \mathbf{Pb}$$

• Identifying (I - PA) = R in the identity, and noting

$$\sum_{i=0}^{\infty} \mathbf{R}^{i} = \left(\mathbf{I} - \mathbf{R}\right)^{-1}, \ \|\mathbf{R}\| < 1 \qquad \left(\Rightarrow \sum_{i=0}^{\infty} \left(\mathbf{I} - \mathbf{PA}\right)^{i} = \left(\mathbf{PA}\right)^{-1}\right)$$

we see that the solution converges to

$$x = (PA)^{-1}Pb = A^{-1}P^{-1}Pb = A^{-1}b$$
 if $||I-PA|| < 1$.

Observations on the Iterative Procedure

- Our simple procedure may not converge at all (i.e., if | I-PA| > 1) though in principle, that is not the case with more sophisticated iterative algorithms. Commonly used algorithms include BiCGSTAB, GMRES, QMR, etc.
- Convergence speeds up the closer P is to A⁻¹.
- The main computational bottleneck is then the repeated calculation of the matrix/vector ("matvec") products (I-PA) x_{n-1} . All so-called "fast methods" attempt to speed up the matrix/vector product ("matvec") computation.
- Modern iterative solvers require that the *user* implement the matvec computations like PAx_{n-1} to allow use of the most appropriate speedup method.

8

Matrix/Vector Products

The inner product between two vectors generates a scalar given by

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^t \mathbf{v} = \begin{bmatrix} u_1, u_2, \dots, u_N \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{bmatrix} = u_1 v_1 + u_2 v_2 + \dots + u_N v_N$$

The product requires approximately N operations.

The outer product between two vectors generates a matrix given by

$$\mathbf{u}\mathbf{v}^{t} = \begin{bmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{M} \end{bmatrix} \begin{bmatrix} v_{1}, v_{2}, \cdots, v_{N} \end{bmatrix} = \begin{bmatrix} u_{1}v_{1} & u_{1}v_{2} & \cdots & u_{1}v_{N} \\ u_{2}v_{1} & u_{2}v_{2} & \cdots & u_{2}v_{N} \\ \vdots & \ddots & \vdots \\ u_{M}v_{1} & u_{M}v_{2} & \cdots & u_{M}v_{N} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{Matrix\ rank = number\ of\ rows\ (columns)\ of\ largest\ submatrix\ with\ non-vanishing\ determinant} \\ \mathbf{u}_{M}v_{1} & u_{M}v_{2} & \cdots & u_{M}v_{N} \end{bmatrix}$$

Since all rows and columns are proportional, the matrix is only rank 1. Forming the product on the RHS requires approximately MN operations.

• But storage of u, v requires only M + N memory locations and uv x can be evaluated in only M + N multiplications! 9

Matrix/Vector Products with Low Rank Matrices

The sum of r outer products of independent vectors,

he sum of
$$r$$
 outer products of independent vectors,
$$\sum_{p=1}^{r} \mathbf{u}_{p} \mathbf{v}_{p}^{t} \equiv \mathbf{U} \mathbf{V}^{t} \text{ where } \mathbf{U} \equiv \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{r} \end{bmatrix}, \mathbf{V}^{t} \equiv \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{r} \end{bmatrix}^{t} \equiv \begin{bmatrix} \mathbf{v}_{1}^{t} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{r} \end{bmatrix}^{t}$$
is a matrix of rank r ; conversely, such matrices can be so factorized.

is a matrix of rank r; conversely, such matrices can be so factorized.

• The matrix / vector product $Ab(=A_{M\times N}b_{N\times 1})$ generally requires

MN multiplies, but the product

$$\left(\sum_{p=1}^{r} \mathbf{u}_{p} \mathbf{v}_{p}^{t}\right) \mathbf{b} = \sum_{p=1}^{r} \mathbf{u}_{p} \left(\mathbf{v}_{p}^{t} \mathbf{b}\right) = \mathbf{U} \left(\mathbf{V}^{t} \mathbf{b}\right)$$

Storage of A: MN

Storage of $\mathbf{u}_p, \mathbf{v}_p : r(M+N)$

requires only about r(N+M) multiplies when performed using the RHS grouping. If $r \ll \min(M, N)$, \Rightarrow significant speedup!

• But $r < M, N \implies \left(\sum_{p=1}^{r} \mathbf{u}_{p} \mathbf{v}_{p}^{t} \right)$ is singular; hence it must be that only subblocks of A, not the entire system matrix, can be represented in this form. Such matrices are said to be rank deficient. 10

Obtaining Low Rank Matrices

- Fast methods approximate off-diagonal blocks of the system matrix as low rank matrices that can be represented in product form, UV^t. Such blocks typically represent far interactions between closely grouped observation and source element clusters.
- There are two approaches to obtaining reduced rank blocks:
 - 1) Represent the Green's function in *separable* or *degenerate* form over the block's observer and source domains.
 - 2) Use matrix algebraic methods to directly find reduced-rank block representations

Matrix-Vector Product for Sums of Separable Matrices

Separable kernels lead to separable matrix blocks:

E.g., for simple integral eq.
$$\int_{\mathcal{D}} G(\mathbf{r}, \mathbf{r}') \, x(\mathbf{r}') d\mathcal{D} = f(\mathbf{r}), \ \mathbf{r} \in \mathcal{D}$$
 with kernel expansion
$$G(\mathbf{r}, \mathbf{r}') \approx \sum_{p=1}^r u_p(\mathbf{r}) v_p(\mathbf{r}'), \quad \mathbf{r}, \mathbf{r}' \in \textit{subregion of } \mathcal{D}$$
 and basis representation
$$x(\mathbf{r}) \approx \sum_{p=1}^r x_p b_p(\mathbf{r}) = \left[b_p(\mathbf{r})\right]^t \left[x_p\right],$$
 contributions to a block of the Galerkin system matrix are

UV^tx.

where

$$\mathbf{U} = \begin{bmatrix} \end{bmatrix}_{M \times r}$$

$$\mathbf{V} = \begin{bmatrix} \end{bmatrix}_{N \times r}$$

$$\mathbf{X} = \begin{bmatrix} x_n \end{bmatrix}_{N \times 1}$$

Matrix-Vector Product for Separable Matrix:

$$\mathbf{U}\mathbf{V}^{t}\mathbf{x} \equiv \left[\sum_{p=1}^{r} \mathbf{u}_{p} \mathbf{v}_{p}^{t}\right] \mathbf{x} = \left[\mathbf{u}_{1} \mathbf{u}_{2} \cdots \mathbf{u}_{r}\right] \left[\mathbf{v}_{1} \mathbf{v}_{2} \cdots \mathbf{v}_{r}\right]^{t} \mathbf{x}$$

- r(M+N) operations if performed right to left
- MN (r+1) operations if performed left-to-right

Approach Generalizes to More Complex Operators

A block of an EFIE matrix becomes

$$\begin{split} \mathbf{Z}_{M\times N} &= j\omega\mu\sum_{p=1}^{r}[<\boldsymbol{\Lambda}_{m},\boldsymbol{u}_{p}>]_{M\times r}\cdot[<\boldsymbol{\Lambda}_{n},\boldsymbol{v}_{p}>]_{N\times r}^{t} \\ &+\frac{1}{j\omega\varepsilon}\sum_{p=1}^{r}[<\boldsymbol{\nabla}\cdot\boldsymbol{\Lambda}_{m},\boldsymbol{u}_{p}>]_{M\times r}[<\boldsymbol{\nabla}\cdot\boldsymbol{\Lambda}_{n},\boldsymbol{v}_{p}>]_{N\times r}^{t} \\ &= j\omega\mu\mathbf{U}\cdot\mathbf{V}^{t}+\frac{1}{j\omega\varepsilon}\mathbf{U}'\mathbf{V}'^{t} \end{split}$$

where

$$\mathbf{U} = [\langle \mathbf{\Lambda}_m, u_p \rangle]_{M \times r}, \qquad \mathbf{V} = [\langle \mathbf{\Lambda}_n, v_p \rangle]_{N \times r}$$

$$\mathbf{U}' = [\langle \mathbf{\nabla} \cdot \mathbf{\Lambda}_m, u_p \rangle]_{M \times r} \quad \mathbf{V}' = [\langle \mathbf{\nabla} \cdot \mathbf{\Lambda}_n, v_p \rangle]_{N \times r}$$

Fast Methods Often Combine Separable Matrix Approximation with Hierarchical Methods

- Separable matrices reduce both storage and matrix vector multiplication counts from MN to r(M+N)
- Unfortunately it is not possible to approximate the *entire* system matrix by a separable matrix---it will be *rank* deficient and hence have no inverse (i.e., no solution)
- Nevertheless, nearly all fast methods in computational electromagnetics are based on approximating blocks of the system matrix by separable matrices
- For additional speed, some hierarchical scheme generally must be used to transfer information at one discretization level to another

The End