Álgebra Lineal I Tarea 05

Rubén Pérez Palacios Profesor: Rafael Herrera Guzmán

02 Marzo 2020

Problemas

1. Sea $P_n(R)$ el espacio vectorial de los polinomios de grado a lo más n. Defínase

$$T: P_2(\mathbb{R}) + P_3(\mathbb{R})$$

como T(p(x)) = xp(x) + p'(x). Demuestra que es transformación lineal, calcula N(T), R(T) y las dimensiones de dichos subespacios.

Demostraci'on. Sean p(x), q(x) polinimios en $P_2(\mathbb{R})$, y c un número real. Al ser la derivada lineal se cumple lo siguiente

$$T(cp(x) + q(x)) = x(cp(x) + q(x)) + (cp(x) + q(x))'$$

$$= c(xp(x)) + xq(x) + cp'(x) + q'(x)$$

$$= c(xp(x) + p'(x)) + xq(x) + q'(x)$$

$$= cT(p(x)) + T(q(x))$$

Por lo tanto concluimos que T es una función lineal.

Sea p(x) en $P_2(\mathbb{R})$, por lo que p(x) es de la forma

$$p(x) = ax^2 + bx + c, \quad a, b, c \in \mathbb{R},$$

por lo tanto

$$T(p(x)) = (ax^3 + bx^2 + cx) + (2ax + b) = ax^3 + bx^2 + (2a + c)x + b.$$

Veamos como es N(T), por definición

$$N(T) = \{ p(x) \in P_2(x) : T(p(x)) = 0 \},\$$

susitituyendo T(p(x)) obtenemos

$$N(T) = \{ p(x) \in P_2(x) : ax^3 + bx^2 + (2a+c)x + b = 0 \},\$$

esto es si y sólo

$$N(T) = \{ p(x) \in P_2(x) : a = b = c = 0 \},$$

por lo tanto

$$N(T) = \{0\}.$$

Por definición la dimensión de N(T) es 0.

Es turno de fijarnos en R(T), para ello veamos que si q(x) en $P_3(x)$ entonces

$$q(x) = rx^3 + sx^2 + tx + u, \quad r, s, t, u \in \mathbb{R},$$

por definición tenemos que

$$R(T) = \{ T(p(x)) : p(x) \in P_2(x) \}.$$

Como T(p(x)) esta en $P_3(x)$ entonces

$$T(p(x)) = rx^3 + sx^2 + tx + u,$$

pero por lo visto anteriormente tenemos que

$$ax^{3} + bx^{2} + (2a + c)x + b = rx^{3} + sx^{2} + tx + u,$$

por lo tanto

$$R(T) = \{T(p(x)) : s = u.$$

Podemos ver que $\{ax^3, bx^2 + b, cx\}$ es base de R(T), por lo tanto su dimension es 3.

2. Defínase

$$tr: M_{n\times n}(\mathbb{R}) \longrightarrow \mathbb{R}$$

como tomar la traza. Demuestra que es una transformación lineal, calcula N(T), R(T) y las dimensiones de dichos subespacios. Da una base de N(T).

Demostración. Sean A, B polinimios en $M_{n,n}(\mathbb{R})$, y c un número real. Definamos $a_{i,j}$ a la entrada de la matriz A en el renglón i columna j, entonces la $tr(A) = \sum_{i=1}^{n} a_{i,i}$. Notemos que la entrada $d_{i,j}$ de la matriz D = cA + B es igual a $ca_{i,j} + b_{i,j}$ por definición de suma y producto escalar de matrices.

Ahora veamos lo siguiente

$$tr(cA + B) = \sum_{i=1}^{n} ca_{i,i} + b_{i,i}$$

$$= \sum_{i=1}^{n} ca_{i,i} + \sum_{i=1}^{n} b_{i,i}$$

$$= c \sum_{i=1}^{n} a_{i,i} + \sum_{i=1}^{n} b_{i,i}$$

$$= c(tr(A)) + tr(B)$$

Por lo tanto concluimos que tr es una función lineal.

Sea $A_{i,j}$ en $M_{n,n}(\mathbb{R})$ tal que $a_{i,j} = 1$ y $a_{ii,jj} = 0$ para todo $ii \neq i, jj \neq j$.

Por definición $N(tr) = \{A \in M_{n,n}(\mathbb{R}) : tr(A) = 0\}$, por la tarea anterior sabemos que una base de N(tr) es $\{A_{i,j} : i \neq j\} \cup \{B_{i,i} = A_{i,i} - A_{i+1,i+1} : \forall i < n\}$, por tanto su dimensión es $N^2 - 1$.

Podemos ver que $R(tr) = \mathbb{R}$, por lo que la dimensión de este es 1.

3. Defínase

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

 $(x, y, z) \longmapsto (x - 2y + z, 2x - 3y + z)$

Demuestra que T es una transformación lineal, calcula N(T), R(T) y las dimensiones de dichos subespacios. Da una base de N(T).

Demostración. Sean $v_1=(x_1,y_1,z_1), v_2=(x_2,y_2,z_2)$ en \mathbb{R}^3 , y c un número real. Ahora veamos lo siguiente

$$T(cv_1 + v_2) = T((cx_1 + x_2, cy_1 + y_2, cz_1 + z_2))$$

$$= ((cx_1 + x_2) - 2(cy_1 + y_2) + (cz_1 + z_2),$$

$$2(cx_1 + x_2) - 3(cy_1 + y_2) + (cz_1 + z_2))$$

$$= c(x_1 - 2y_1 + z_1, 2x_2 - 3y_2 + z_2)$$

$$= cT(A) + T(B)$$

Por lo tanto concluimos que tr es una función lineal.

Por definición $N(T)=\{v\in\mathbb{R}^3: T(v)=(x-2y+z,2x-3y+z)=0\}$, por la tarea anterior sabemos que una base de N(T) es $\{(1,1,1)\}$, por tanto su dimensión es 1.

Podemos ver que $R(T) = \mathbb{R}^2$, por lo que la dimensión de este es 2.

- 4. Sea $T:\mathbb{R}^n\longmapsto\mathbb{R}^m$ una transformación lineal. Demuestra que
 - (a) Si n < m, entonces T no puede ser sobreyectiva. Como Nity(T) + rank(T) = n entonces

$$rank(T) \le n < m,$$

al ser $R(T) \subset \mathbb{R}^m$ concluimos que T no es sobreyectiva.

(b) Si n > m, entonces T no puede ser inyectiva.

$$Nity(T) = n - rank(T) \ge n - m > 0,$$

por lo que concluimos que T no es inyectiva.

5. Sea $T: \mathbb{R}^3 \longmapsto \mathbb{R}$ una transformación lineal. Demostrar que existen escalares a, b y c tales que T(x,y,z) = ax + by + cz para toda $(x,y,z) \in R^3$. ¿Se puede generalizar este resultado para $T: \mathbb{R}^n \longmapsto \mathbb{R}$? Enunciar y demostrar un resultado semejante para $T: \mathbb{R}^n \longmapsto \mathbb{R}^m$.