سلسلة الأعمال رقم: 04

 $a\Delta b=a+b-2$ et $a\odot b=ab-2a-2b+6$ التمرين الاول: $\mathbb R$ مزود بالقانونين الداخليين:

- 1- اثبات أن (\mathbb{R}, Δ) زمرة تبديلية : ((\mathbb{R}, Δ) زمرة تبديلية) \Leftrightarrow ((Δ) قانون تركيب داخلي, تجميعي , يقبل عنصر حيادي و لكل عنصر من \mathbb{R} نظير في \mathbb{R} و أيضا (Δ) تبديلي).
 - فانون تركيب داخلي من المعطيات. (Δ)
 - $(\forall (a,b,c) \in \mathbb{R}^3 : (a\Delta b)\Delta c = a\Delta(b\Delta c)) \Leftrightarrow ((\Delta b)) (b)$

 $(a\Delta b)\Delta c = (a+b-2)\Delta c = (a+b-2)+c-2 = a+(b+c-2)-2 = a\Delta(b\Delta c)$ لدينا:

(لأن (+) تجميعي و تبديلي على \mathbb{R}) و منه (Δ) تجميعي.

 $(\forall (a,b) \in \mathbb{R}^2 : a\Delta b = b\Delta a) \Leftrightarrow (قبديلي) (e)$

لدينا: $a\Delta b=a+b-2=b+a-2=b\Delta a$ لأن (+) تبديلي) و منه (Δ) تبديلي (+)

 $(\exists e \in \mathbb{R}, \forall a \in \mathbb{R}: a\Delta e = e\Delta a = a) \Leftrightarrow (عالم عنصر حيادي) (c)$

بما أن $\Delta e=a$ تبديلي يكفي أن نحل المعادلة: $\Delta e=a$ لدينا

e=-1 و منه (Δ) يقبل عنصر حيادي $a\Delta e=a\Leftrightarrow a+e-2=a\Leftrightarrow e=2$

 $(\forall a \in \mathbb{R}, \exists a' \in \mathbb{R}: a\Delta a' = a'\Delta a = e) \Leftrightarrow (\mathbb{R}$ لکل عنصر من \mathbb{R} نظیر فی (d

لدينا $a\Delta a'=e$ المعادلة: $\Delta a'=e$ لدينا المعادلة:

و منه لكل عنصر $a\in\mathbb{R}$ و منه لكل عنصر $a\Delta a'=e\Leftrightarrow a+a'-2=2\Leftrightarrow a'=-a+4\in\mathbb{R}$

 $.a' = -a + 4 \in \mathbb{R}$

د. إثبات أن $(\mathbb{R}, \Delta, \odot)$ حلقة تبديلية واحدية:

زمرة تبديلية
$$(\mathbb{R}, \Delta) - I$$
 زمرة تبديلية $(\odot) - II$ $(\odot) = III$ $(\odot) = III$ $(\odot) = III$ (Δ) حلقة تبديلية واحدية (Δ) (Δ) (Δ) تبديلي (Δ) $($

- $0_{\mathbb{R}}=0$ زمرة تبديلية مما سبق حيث (\mathbb{R},Δ) نامرة تبديلية مما سبق .
 - ١١- (⊙) قانون تركيب داخلي من المعطيات.

 $(\forall (a,b,c) \in \mathbb{R}^3: (a \odot b) \odot c = a \odot (b \odot c)) \Leftrightarrow ((\odot))$ -III

 $(a\odot b)\odot c=(ab-2a-2b+6)\odot c$: لدينا من جهة

= (ab - 2a - 2b + 6)c - 2(ab - 2a - 2b + 6) - 2c + 6

 $= abc - 2ac - 2bc - 2ab + 4a + 4b + 4c - 6 \dots (1)$

 $a\odot(b\odot c)=a\odot(bc-2b-2c+6)$: من جهة أخرى

a(bc-2b-2c+6)-2a-2(bc-2b-2c+6)+6

رمرة تبديلية واحدية: $(\mathbb{R}^2, \oplus, \otimes)$ حلقة تبديلية واحدية: (\mathbb{R}^2, \oplus) زمرة تبديلية?

انون تركيب داخلي من المعطيات. (\oplus)

 $(\forall (x,y)(x',y') \in \mathbb{R}^2: (x,y) \otimes (x',y') = (x',y') \otimes (x,y)) \Leftrightarrow ((\otimes))$

في ۩) و منه (⊗) تبدیلی.

لانن(×) تبدیلی $(x,y)\otimes(x',y')=(x.x',y.y')=(x'.x,y'.y)=(x',y')\otimes(x,y)$

 $(\forall (x,y), (x',y'), (x'',y'') \in \mathbb{R}^2$: $(\otimes \text{ توزيعي على } \oplus) \Leftrightarrow ($ $\int (x,y) \otimes [(x',y') \oplus (x'',y'')] = [(x,y) \otimes (x',y')] \oplus [(x,y) \otimes (x'',y'')]$ $\{[(x',y')\oplus(x'',y'')]\otimes(x,y)=[(x',y')\otimes(x,y)]\oplus[(x'',y'')\otimes(x,y)]$ بما أن (⊗) تبديلي يكفي إثبات المساوراة الأولى. لدينا $(x,y)\otimes[(x',y')\oplus(x'',y'')] = (x,y)\otimes(x'+x'',y'+y'') = (x(x'+x''),y(y'+y''))$ $= (xx' + xx'', yy' + yy'') = (xx', yy') \oplus (xx'', yy'')$ $= [(x,y)\otimes(x',y')] \oplus [(x,y)\otimes(x'',y'')]$ ومنه ⊗ توزیعی علی ⊕. $) \Leftrightarrow ((\otimes)$ يقبل عنصر حيادي) -VI $(\exists (e_1, e_2) \in \mathbb{R}^2, \forall (x, y) \in \mathbb{R}^2$: $(x,y)\otimes(e_1,e_2) = (e_1,e_2)\otimes(x,y) = (x,y)$ بما أن (\otimes) تبديلي يكفي أن نحل المعادلة: $(x,y)\otimes(e_1,e_2)=(x,y)$ لدينا $(x,y)\otimes(e_1,e_2)=(x,y)\Leftrightarrow (x.e_1,y.e_2)=(x,y)\Leftrightarrow \begin{cases} x.e_1=x\\ \land\\ v.e_2=y \end{cases}$ $1_{\mathbb{R}^2} = (e_1, e_2) = (1,1)$ و منه (\otimes) يقبل عنصر حيادي مما سبق نجد أن $(\otimes, \oplus, \otimes)$ حلقة تبديلية واحدية. كن $(0,1) \neq 0_{\mathbb{R}^2} = (1,0) \neq 0_{\mathbb{R}^2} = (0,0)$ حلقة ليست تامة لأن لها قواسم الصفر مثلا $(0,1) \neq 0_{\mathbb{R}^2} \neq (1,0)$ حلقة ليست تامة لأن لها قواسم الصفر مثلا $(1,0)\otimes(0,1)=(0,0)=0_{\mathbb{R}^2}.$ $U(\mathbb{R}^2) \neq \mathbb{R}^2 - \{(0,0) = 0_{\mathbb{R}^2}$ ومنه $\mathbb{R}^2 + \mathbb{R}^2 - \{(0,0) = 0_{\mathbb{R}^2}\}$ ليست حقل لأن قواسم الصفر غير قابلة للقلب ومنه $\mathbb{R}^2 + \mathbb{R}^2 - \{(0,0) = 0_{\mathbb{R}^2}\}$ $B = \left\{ \frac{m}{2^n}; m \in \mathbb{Z}, n \in \mathbb{N} \right\}$ التمرين الثالث: $(B \subset \mathbb{Q}$ أن B حلقة جزئية من $(\mathbb{Q},+,\times)$ واضح أن B -1 $0_{\mathbb{O}} \in B \neq \emptyset$ (1 $\forall (x,y) \in B^2 : x + y \in B$ (2 $\forall x \in B : -x \in B$ (3 $\forall (x,y) \in R^2 : x \times y \in R$ (4 \Leftrightarrow ((\mathbb{Q},+,\times) - $\forall (x,y) \in B^2 : x \times y \in B \ (4$ $1)\left(0_{\mathbb{Q}} = \frac{0}{2^{0}}; 0 \in \mathbb{Z}, \ 0 \in \mathbb{N}\right) \Longrightarrow 0_{\mathbb{Q}} \in B \neq \emptyset.$ $2)\begin{cases} x \in B \\ \wedge \\ y \in B \end{cases} \Rightarrow \begin{cases} x = \frac{m}{2^n}; m \in \mathbb{Z}, \ n \in \mathbb{N} \\ \wedge \\ y = \frac{m'}{2^{n'}}; m' \in \mathbb{Z}, \ n' \in \mathbb{N} \end{cases} \Rightarrow x + y = \frac{m}{2^n} + \frac{m'}{2^{n'}} = \frac{m \cdot 2^{n'} + m' \cdot 2^n}{2^{n+n'}}.$ $\implies x + y = \frac{m''}{2^{n''}}$; $m'' = m \cdot 2^{n'} + m' \cdot 2^n \in \mathbb{Z}$, $n'' = n + n' \in \mathbb{N}$. $\implies x + y \in B$. 3) $x \in B \implies x = \frac{m}{2^n}$; $m \in \mathbb{Z}$, $n \in \mathbb{N} \implies -x = \frac{-m}{2^n}$; $-m \in \mathbb{Z}$, $n \in \mathbb{N}$ $\Rightarrow -x \in B$.

$$4) \begin{cases} x \in B \\ \wedge \\ y \in B \end{cases} \Rightarrow \begin{cases} x = \frac{m}{2^n}; m \in \mathbb{Z}, \ n \in \mathbb{N} \\ \wedge \\ y = \frac{m'}{2^{n'}}; m' \in \mathbb{Z}, \ n' \in \mathbb{N} \end{cases} \Rightarrow x \times y = \frac{m}{2^n} \times \frac{m'}{2^{n'}} = \frac{m \cdot m'}{2^{n+n'}}.$$
$$\Rightarrow x \times y = \frac{m''}{2^{n''}}; m'' = m \cdot m' \in \mathbb{Z}, \ n'' = n + n' \in \mathbb{N} .$$
$$\Rightarrow x \times y \in B.$$

و منه B حلقة جزئية من $(\mathbb{Q},+,\times)$. $U(B)=\{\pm 2^k, k\in \mathbb{Z}\}$ هي $U(B)=\{\pm 2^k, k\in \mathbb{Z}\}$ $m.m'=2^{n+n'}$ ليكن $x=rac{m'}{m}=rac{m'}{2^{n'}}$ أي $x^{-1}\in B$ معناه x قابل للقلب في x معناه x معناه xحيث m و m' عددين صحيحين أي أن 2 هو العدد الأولي الوحيد في تفكيك m و m الى جداء عوامل اولية

> . $k=l-n\in\mathbb{Z}$ حيث $x=rac{\pm 2^l}{2^n}=\pm 2^k$ و منه $m=\pm 2^l, l\in\mathbb{N}$ لأن $(\mathbb{Q}, +, \times)$ لأن حقل جزئي من B -3

$$0_{\mathbb{Q}}, 1_{\mathbb{Q}} \in B \neq \emptyset$$
 (1 $\forall (x,y) \in B^2 : x + y \in B$ (2 $x \in B : -x \in B$ (3 $y(x,y) \in B^2 : x \times y \in B$ (4 $y(x,y) \in B^2 : x \times y \in B$ (4 $y(x,y) \in B^2 : x \times y \in B$ (5) \Leftrightarrow (($\mathbb{Q}, +, \times$) \Leftrightarrow ($x \in B = \{0_{\mathbb{Q}}\} : x^{-1} \in B$ (5)

و الشرط 5) غير محقق من الجزء 2 السابق

.∃
$$\frac{3}{2} \in B - \{0_{\mathbb{Q}}\}$$
 : $\frac{2}{3} \notin B$