PUCP

FACULTAD DE CIENCIAS E INGENIERÍA

INVESTIGACIÓN DE OPERACIONES

PRÁCTICA DIRIGIDA 1

PROFESOR: JORGE R. CHÁVEZ

JEFE DE PRÁCTICA: MARCELO GALLARDO

SEMESTRE 2024-1

FECHA 22-03-2024

I. Espacios vectoriales y producto interno.

- 1. Demuestre que en un espacio vectorial \mathcal{U} , el vector nulo (elemento neutro) $\mathbf{0}$ es único.
- 2. Pruebe que si $\mathbf{x} \neq \mathbf{0}$ e \mathbf{y} es un vector en la misma dirección del vector \mathbf{x} , entonces $\Pr_{\mathbf{x}} \mathbf{y} = \|\mathbf{y}\| \mathbf{u}, \text{ donde } \mathbf{u} \text{ es un vector unitario en la dirección del vector } \mathbf{x}.$
- 3. Dados $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$, analice si $|x_1y_1| \cdot |x_2y_2|$ define un producto interno. Sugerencia: considere $(x_1, x_2) = (1, 0)$.
- 4. Dados $\mathbf{x}, \mathbf{y} \in \mathcal{U}$, pruebe que si $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, entonces $||\mathbf{x}|| \leq ||\mathbf{x} + a\mathbf{y}||$ para todo $a \in \mathbb{R}$. Sugerencia: recuerde que $||\mathbf{x}||^2 = \mathbf{x} \cdot \mathbf{x}$.
- 5. Pruebe que

$$16 \le (x_1 + x_2 + x_3 + x_4) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} \right), \ x_i > 0.$$

Sugerencia: use la desigualdad media-aritmética o Cauchy-Schwarz.

- 6. Demuestre que, dados $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$, $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| \cdot ||\mathbf{y}||$, donde $||\mathbf{x}|| = \sqrt{x_1^2 + x_2^2}$. Esto se conoce como la desigualdad de Cauchy-Schwarz. <u>Sugerencia</u>: use $(x+y)^2 = x^2 + 2xy + y^2 \geq 0$ o considere el polinomio $p(t) = ||\mathbf{x} - t\mathbf{y}||$.
- 7. Asuma que la desigualdad anterior se cumple en \mathbb{R}^n (esto se deduce de hecho de una de las posibles demostraciones del ítem anterior de manera directa). Demuestre que

$$(x_1 + \dots + x_n)^2 \le n(x_1^2 + \dots + x_n^2).$$

Sugerencia: considere el vector **1** y $(x_1, ..., x_n)$.

8. Use la desigualdad de Cauchy-Schwarz para probar la desigualdad triangular: $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ (para \mathbb{R}^n es la misma prueba)

$$||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||.$$

Sugerencia: use Cauchy-Schwarz.

- II. Subespacios vectoriales. Bases y dimensión.
 - 1. Analice si $S = \{ \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 : x_1 x_2 \ge 0 \}$ es un subespacio vectorial de \mathbb{R}^2 y de serlo, encuentre su dimensión.
 - 2. Analice si $S = \{A \in \mathcal{M}_{n \times n} : A \text{ es simétrica}\}$ es un subespacio vectorial de \mathbb{R}^2 y de serlo, encuentre su dimensión.
 - 3. Si el concepto de combinación lineal se extendiera a una suma infinita, ¿cuál seria una combinación lineal que generaría la función $f(x) = e^x$? ¿Y para $g(x) = \cos x$?
 - 4. Determine todos los subespacios de \mathbb{R}^2 .
 - 5. Demuestre que el conjunto de todas las funciones continuas $f:[a,b]\to\mathbb{R}$ es un subespacio vectorial del espacio vectoriales de funciones $F:[a,b]\to\mathbb{R}$.
 - 6. Si $\mathbf{x}_1, ..., \mathbf{x}_4$ genera \mathcal{U} , analice si

$$\{\mathbf{x}_1 - \mathbf{x}_2, \mathbf{x}_2 - \mathbf{x}_3, \mathbf{x}_3 - \mathbf{x}_4, \mathbf{x}_4\}$$

generan el espacio.

- 7. Analice la siguiente afirmación: si $\{\mathbf{x}_1,...,\mathbf{x}_m\}$ y $\{\mathbf{y}_1,...,\mathbf{y}_m\}$ son listas de vectores li, entonces $\{\mathbf{x}_i+\mathbf{y}_i\}_{i=1,...,m}$ es una lista de vectores li.
- III. Transformaciones lineales.
 - 1. Sea A un matriz cuadrada de orden $n \times n$. Pruebe que si $A\mathbf{x} = \mathbf{0}$ para todo $\mathbf{x} \in \mathbb{R}^n$, entonces A = 0.

- 2. Pruebe que las aplicaciones T que se dan a continuación son transformación lineales.
 - a) $T(x_1, x_2, x_3) = (x_1 + 2x_2, 3x_1).$
 - b) $T(x_1, x_2, x_3) = (2x_2, x_1 + 3x_1).$
 - c) $T(x_1, x_2, x_3) = 3x_1 + x_2 x_3$.
- 3. Sea T una transformación lineal. Pruebe que si $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ son ld, entonces $T\mathbf{x}_1, T\mathbf{x}_2, \dots, T\mathbf{x}_n$ también son ld.
- 4. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ una transformación lineal, tal que T(1,0) = (1,3) y T(0,1) = (1,1). Obtenga T(2,5). En general, ¿cómo es $T(x_1,x_2)$?

IV. Producción.

1. Considere la función

$$F(K,L) = A(aK^{\rho} + (1-a)L^{\rho})^{1/\rho}, \ A > 0, \ a \in (0,1), \ \rho \neq 0.$$

Verifique que esta función no cumple la propiedad de linealidad sobre su dominio pero que $F(\lambda K, \lambda L) = \lambda F(K, L)$ para todo $\lambda > 0$. Interprete esta propiedad (conocida como rendimientos de escala constantes).

2. (Adaptado de Acemoglu 2024). Considere ahora F(K, L) una función de producción con rendimientos a escala constantes, clase C^2 sobre \mathbb{R}^2_{++} y tal que $F_{KK} < 0$. Suponga que $w = F_L(K, L)$. Definiendo f(k) = F(K, L)/L, demuestre que

$$w = f(k) - kf_k(k)$$
$$dw/dK > 0.$$

Interprete la segunda desigualdad.

Solución (1): simplemente, reemplazando:

$$F(\lambda K, \lambda L) = A(a(\lambda K)^{\rho} + (1 - a)(\lambda L)^{\rho})^{1/\rho} = \lambda A(aK^{\rho} + (1 - a)L^{\rho})^{1/\rho}.$$

La función presenta entonces rendimientos a escala constante. Note que no se trata de una aplicación lineal y que la homogeneidad de grado 1 funciona sobre \mathbb{R}_+ . Finalmente,

poseer rendimientos a escala constantes (esto se discutirá más adelante), implica que un incremento por un factor λ en los insumos genera un incremento por un factor λ en la producción.

Solución (2): simplemente aplicando regla de la cadena y regla del producto (recordando que F(aK, aL) = aF(K, L) para a > 0)

$$w = \frac{\partial F}{\partial L} = \frac{\partial}{\partial L} \left[LF\left(\frac{K}{L}, 1\right) \right] = f(k) - \frac{LK}{L^2} F'(K/L, 1) = f(k) - kf'(k).$$

Finalmente,

$$\frac{dw}{dK} = \frac{\partial^2 F}{\partial K \partial L}$$

$$= \frac{\partial}{\partial K} \left[f(k) - \frac{LK}{L^2} F'(K/L, 1) \right]$$

$$= \frac{\partial}{\partial K} \left[F\left(\frac{K}{L}, 1\right) - \frac{K}{L} F'(K/L, 1) \right]$$

$$= \frac{1}{L} f(k) - \frac{1}{L} f'(k) - k f''(k)$$

$$= -k f''(k) < 0.$$

Esto puede interpretarse como una evidencia de complementariedad entre el capital y el trabajo: el aumento de uno hace más productivo el uso del otro, llevando a un incremento en la cantidad producida.

V. Modelo IS-LM-DA-OA.

- 1. Plantee el modelo IS-LM-DA-OA, es decir, obtenga las ecuaciones de las rectas en el plano (Y, r) y (Y, P).
- 2. Analice qué sucede con la recta IS y el equilibrio si aumenta (i) el gasto del gobierno, (ii) el consumo autónomo, (iii) la propensión marginal al consumo. Proceda gráficamente e interprete.
- 3. Analice qué sucede con la recta LM y el equilibrio si aumenta la oferta monetaria exógena M^S . Interprete.

Véase material complementario.