MATH 345 Homework 8

T.J. Liggett

April 2021

1 Problems

1. Let $f: X \to Y$ be function between sets X and Y. Let U and V be subsets of Y. Prove that

$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V).$$

Proof. (c) Consider $x \in f^{-1}(U \cup V)$. Then $f(x) = y \in U \cup V$. Then $y \in U$ or $y \in V$. In any case, the preimage $f^{-1}(y) \subset f^{-1}(U) \cup f^{-1}(V)$. Since f(x) = y, $x \in f^{-1}(y)$ and thus $x \in f^{-1}(U) \cup f^{-1}(V)$. Hence, $f^{-1}(U \cup V) \subset f^{-1}(U) \cup f^{-1}(V)$.

Now let $x \in f^{-1}(U) \cup f^{-1}(V)$. Then $x \in f^{-1}(U)$ or $x \in f^{-1}(V)$, and $f(x) = y \in U$ or $f(x) = y \in V$, respectively. In either case, it follows that $y \in U \cup V$. Thus, the preimage $f^{-1}(y) \subset f^{-1}(U \cup V)$. Since f(x) = y and $x \in f^{-1}(y)$, $x \in f^{-1}(U \cup V)$. Hence, $f^{-1}(U \cup V) \supset f^{-1}(U) \cup f^{-1}(V)$.

Therefore, $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$.

.

4.2 Prove Theorem 4.8: Let X and Y be topological spaces. A function $f: X \to Y$ is continuous if and only if $f^{-1}(C)$ is closed in X for every closed set $C \subset Y$.

Proof. (\rightarrow) Let $f: X \to Y$ be a continuous function. Consider the closed set $C \subset Y$. Its complement Y - C is open in Y. By the definition of a continuous function (4.2), the preimage of the open set Y - C, $f^{-1}(Y - C)$, is open in X. By Theorem 0.22,

$$f^{-1}(Y-C) = f^{-1}(Y) - f^{-1}(C) = X - f^{-1}(C).$$

Since the complement $X - f^{-1}(C)$ of the preimage if C is open in X, it follows that $f^{-1}(C)$ is closed in X. Thus, if a function $f: X \to Y$ is continuous then $f^{-1}(C)$ is closed in X for every closed set $C \subset Y$. (\leftarrow) Now let $f^{-1}(C)$ be closed in X for every closed set $C \subset Y$. Consider an open set V in Y. We know that $f^{-1}(Y - V)$, the preimage of a closed set, is closed in X. Then by Theorem 0.22,

$$f^{-1}(Y-V)=f^{-1}(Y)-f^{-1}(V)=X-f^{-1}(V).$$

Since the complement of the preimage of V is closed in X, it follows that $f^{-1}(V)$ is open in X. Thus, if $f^{-1}(C)$ is closed in X for every closed set $C \subset Y$, then the function $f: X \to Y$ is continuous. Therefore, a function $f: X \to Y$ is continuous if and only if $f^{-1}(C)$ is closed in X for every closed set $C \subset Y$.

•

4.4 Prove whether or not each given function is continuous.

1. The function $f: \mathbb{R}_l \to \mathbb{R}$, defined by f(x) = 3x - 5, where \mathbb{R}_l is the real line with the lower limit topology. Consider a basis element (a,b) where a < b of \mathbb{R} . Its preimage $f^{-1}((a,b)) = (\frac{a+5}{3}, \frac{b+5}{3})$ is a union of basis elements $\bigcup_{i=1}^{\infty} \left[\frac{a+5}{3} + \frac{1}{i}, \frac{b+5}{3}\right]$ in the lower limit topology, so it is open in \mathbb{R}_l . By Theorem 4.3, since the preimage of basis elements in \mathbb{R} is open in \mathbb{R}_l , f is continuous.

- 2. The function $g: \mathbb{R}_{fc} \to \mathbb{R}$, defined by g(x) = 3x 5, where \mathbb{R}_{fc} is the real line with the finite complement topology. Consider a basis element (a,b) where a < b of \mathbb{R} . Its preimage $f^{-1}((a,b)) = (\frac{a+5}{3}, \frac{b+5}{3})$ has the complement $(-\infty, \frac{a+5}{3}] \cup [\frac{b+5}{3}, \infty)$ in $\mathbb{R}_f c$, which is not finite. Thus, this function is NOT continuous.
- **4.7** Suppose X is a space with topologies T_1 and T_2 . Let $id: X \to X$ be the identity, id(x) = x, and assume that the domain X has the topology T_1 and that the range X has topology T_2 . Show that id is continuous if and only if T_1 is finer than T_2 .

Proof. (\rightarrow) Let $id: X_{T_1} \to X_{T_2}$, id(x) = x be a continuous function. Consider and open set $U \in T_2$. Since id is continuous, $id^{-1}(U)$ is open in the domain X with T_1 . $id^{-1}(U) = U$, so U is open in the domain X with T_1 . Because any open set $U \in T_2$ is an open set $U \in T_1$, $T_2 \subset T_1$. Thus, T_1 is finer than T_2 .

(←) Let T_1 be finer than T_2 , and so $T_2 \subset T_1$. Consider an open set $U \in T_2$. Then $id^{-1}(U) = U$. Since $U \in T_2 \subset T_1$, the preimage of an open set U in X with T_2 is open in the domain X with T_1 . Thus, id is a continous function.

Therefore, id is continuous if and only if T_1 is finer than T_2 .

4.8 Let $f: X \to Y$ be a continuous function. If x is a limit point of a subset A of X, is it true that f(x) is a limit point of f(A) in Y? Prove this or find a counterexample.

Consider the continuous function $f: \mathbb{R} \to \mathbb{R}$ where fx = 2, and the set A = (0,1). The limit points $A' = \{0,1\}$, and $f(A) = \{2\}$ and f(0) = 2. However, for 2 to be a limit point of f(A), all open sets containing 2 must intersect f(A) at a point other than 2, which is impossible. This is a contradiction, and thus if x is a limit point of a subset A of X, then it is not necessarily true that f(x) is a limit point of f(A) in Y.

4.10 Let $f: X \to Y$ be a function. The graph of f is the subset of $X \times Y$ given by $G = \{(x, f(x)) | x \in X\}$. Show that, if f is continuous and Y is Hausdorff, then G is closed in $X \times Y$.

Proof. Let $(x,y) \in (X \times Y) - G$. Since $y \notin G$, $y \neq f(x)$. Because Y is a Hausdorff space, there exist disjoint neighborhoods U and V where $y \in U$, $f(x) \in V$. And because f is continuous, there exists a neighborhood W of x where $f(W) \subset V$.

From this, we can see the open set $W \times U$ in $X \times Y$, where $(x,y) \in W \times U$. Let $(z,f(z)) \in G$. Then either:

- 1. $z \notin W$, so $(z, f(z)) \notin W \times U$
- 2. $z \in W$, but then $f(z) \in V$, so $f(z) \notin U$ and thus $(z, f(z)) \notin W \times U$.

So any point in G is not in $W \times U$, and thus $(W \times U) \cap G = \emptyset$ and $(W \times U) \subset (X \times Y) - G$. Hence, for any point $(x,y) \in (X \times Y) - G$, there exists a neighborhood $W \times U$ of (x,y) contained in $(X \times Y) - G$ disjoint from G. Thus, $(X \times Y) - G$ is open, and G is closed in $(X \times Y)$.

Therefore, if f is continuous and Y is Hausdorff, then G is closed in $X \times Y$.

.

4.11 Let $f: X \to Y$ be continuous, and let A be a subspace of X. Prove that $f|A: A \to Y$, the restriction of f to A, is continuous.

Proof. Consider an open set V in Y. The preimage of this set

$$f|A^{-1}(V) = f^{-1}(V) \cap A$$
,

By the definition of the restriction of f to A. Since f is continuous, $f^{-1}(V)$ is open in X. It follows that $f^{-1}(V) \cap A$ is open in A by the definition of the subspace topology. Thus, the preimage of an open set V in Y is open in A, so f|A is continuous.

Therefore, $f|A:A\to Y$, the restriction of f to A, is continuous.

4.13a Let $f_1: X \to Y_1$ and $f_2: X \to Y_2$ be continuous functions. Show that $h: X \to Y_1 \times Y_2$, defined by $h(x) = (f_1(x), f_2(x))$, is continuous as well.

Proof. Let $U \times V$ be an arbitrary basis element in $Y_1 \times Y_2$, so U is open in Y_1 and V is open in Y_2 . Consider $x \in h^{-1}(U \times V)$. Observe that

$$x \in h^{-1}(U \times V)$$

$$\to h(x) \in U \times V$$

$$\to (f_1^{-1}(x), f_2^{-1}(x)) \in (U \times V)$$

$$\to f_1(x) \in U \text{ and } f_2(x) \in V$$

$$\to x \in f_1^{-1}(U) \text{ and } x \in f_2^{-1}(V)$$

$$\to x \in f_1^{-1}(U) \cap f_2^{-1}(V),$$

So $h^{-1}(U \times V) \subset f_1^{-1}(U) \cap f_2^{-1}(V)$. Likewise, we can see with $x \in f_1^{-1}(U) \cap f_2^{-1}(V)$ that

$$x \in f_1^{-1}(U) \cap f_2^{-1}(V)$$

$$\to x \in f_1^{-1}(U) \text{ and } x \in f_2^{-1}(V)$$

$$\to f_1(x) \in U \text{ and } f_2(x) \in V$$

$$\to (f_1^{-1}(x), f_2^{-1}(x)) \in (U \times V)$$

$$\to h(x) \in U \times V$$

$$\to x \in h^{-1}(U \times V)$$

So $h^{-1}(U \times V) \supset f_1^{-1}(U) \cap f_2^{-1}(V)$, and $h^{-1}(U \times V) = f_1^{-1}(U) \cap f_2^{-1}(V)$. Because f_1 and f_2 are continuous functions, it follows that the preimages $f_1^{-1}(U)$ and $f_2^{-1}(V)$ are open sets in X. This makes $h^{-1}(U \times V)$ a finite intersection of open sets, and it follows that preimages of basis elements in $Y_1 \times Y_2$ in h are open in X. Thus, by Theorem 4.3, h is a continuous function. Therefore, $h: X \to Y_1 \times Y_2$, defined by $h(x) = (f_1(x), f_2(x))$, is continuous.

4.14 Show that the addition function, $f: \mathbb{R}^2 \to \mathbb{R}$, given by f(x,y) = x + y, is a continuous function.

Proof. Let (a,b) with a < b be an arbitrary basis element of \mathbb{R} . Consider the preimage,

$$f^{-1}((a,b)) = A \cap B$$
, where $A = \{(x,y)|x+y>a\}$ and $\{(x,y)|x+y< b\}$.

Let (p,q) be a point in $A \cap B$. There exists a circular open set in \mathbb{R}^2 centered at (p,q) with radius δ where

 $x+y-a>\delta$ and $b-x+y>\delta$, so the open set is contained in $A\cap B$. Thus, every point in $A\cap B$ has a neighborhood contained in $A\cap B$, and so $A\cap B$ is open. Since $f^{-1}((a,b))$ is open, the preimage of an arbitrary basis element in \mathbb{R} , it follows that f is continuous by Theorem 4.3. Therefore, the addition function, $f: \mathbb{R}^2 \to \mathbb{R}$, given by f(x,y) = x + y, is a continuous function.