Survey of GNN on 3D Point Cloud Semantic Segmentation

Presenters: Jiayue Sun, Hengda Shi, Benlin Liu

Why point Cloud? Why GNN?

- Point Cloud contains depth information!
- Captured using 3D scanner, like RGB-D camera
- Geometric information
 - Also color information
- Survey Scope: GNN methods to encode point cloud for semantic segmentation (part segmentation and scene segmentation)

Data & Evaluation Metrics

Data:

- ShapeNet, ModelNet40
- S3DIS (area 5, 6-fold)
- o KITTI

Metrics:

- Class-wise mean of intersection over union (mloU)
- Class-wise mean of accuracy (mAcc)
- Point-wise overall accuracy (OA)

Learning on Point Cloud

- Multi View
 - Loss of structure info
- Voxel
 - Sparse
- Can we directly learn on the point cloud data?

Some Properties of Point Cloud

- Unordered
 - Permutation shouldn't change the result
- Interaction among points
 - Capture the local structure
- Invariant under certain transformation
 - Like rotation and translation

PointNet

- Unordered
 - Using Maxpool as symmetry function
- Interaction among points
 - Concatenating the global feature and local feature
- Invariant under certain transformation
 - Align input to a canonical space

PointNet++

Drawbacks of PointNet:

- MLP cannot well capture the local structure!
 - Like convolution neural network
- Solution:
 - Hierarchical point feature learning based on PointNet

PointNet++

Drawbacks of PointNet:

- Sampling
 - Farthest point sampling
- Grouping
 - Ball query
- Aggregation
 - PointNet

EdgeConv (Dynamic GCNN)

- Dynamic graph setting
 - Reconstruct the graph by connecting central vertex with k-nearest neighbors.
- A generalization of the PointNet architecture, the output of EdgeConv at the i-th vertex is given by: $\mathbf{x}_i' = \prod_{j:(i,j) \in \mathcal{E}} h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j).$
 - \mathbf{x}_{i}' : output for each vertex \mathbf{x}_{i}
 - x_j : neighboring vertices
- $h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j)$: mapping function between central vertex and neighboring vertex
 - $\square_{j:(i,j)\in\mathcal{E}}$: aggregation function (e.g. max, avg)

EdgeConv (Dynamic GCNN)

PointNet can be seen as a special case (ignores neighboring points).

$$h_{\mathbf{\Theta}}(\mathbf{x}_i, \mathbf{x}_j) = h_{\mathbf{\Theta}}(\mathbf{x}_i)$$

DGCNN uses the following aggregation function and mapping function:

$$h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j) = \bar{h}_{\Theta}(\mathbf{x}_i, \mathbf{x}_j - \mathbf{x}_i)$$

- Takes both central vertex information and relative information from neighboring points.
- Other improvements:
 - Skip connection
 - Transformation matrix (same as PointNet) to ensure transformation invariance.

Linked Dynamic GCNN

- It has the following difference from DGCNN.
 - a. Different skip connection (see below figures).
 - b. The pose normalization step is removed.
 - c. At a certain point, the EdgeConv layers will be freezed and later MLPs will be retrained.

LDGCNN

DGCNN

DeepGCNs

- extensively studies the different skip connection setups
- The PlainGCN is the setup for DGCNN, and DenseGCN is the setup for LDGCNN.
- ResGCN closely follows the skip connection setup for ResNet.
- They constructs the graph by **dilated k-nearest neighbor** to enlarge the receptive field.
- i.e. If the true 4-nearest neighbor is [1, 2, 3, 4], then dilated 4-nearest neighbor is [2, 4, 6, 8].
- Based on the experiment, ResGCN-28 which stacks 28 GCNs with ResNet-like skip connection seems to balance well between the model size and performance.

Regularized GCNN

- RGCNN also adopts the dynamic graph update at each layer.
- However, they connect every vertex with all other vertices on the graph, and assign weight based on the distance metric:

$$a_{i,j} = \exp(-\beta \|\mathbf{p}_i - \mathbf{p}_j\|_2^2)$$

• RGCNN further generalizes the DGCNN EdgeConv to aggregate all points up to k-th hop from the central point (same setup as ChebNet). K-1

$$\mathbf{y} = g_{\theta}(\mathcal{L})\mathbf{x} = \sum_{k=0}^{K-1} \theta_k T_k(\mathcal{L})\mathbf{x}$$

- When **K=1**, it's the setup of **PointNet** where no neighbor information is aggregated.
- When **K=2**, it's the setup of **classic GCN**, **DGCNN** and **LDGCNN** where only the first hop neighbors are aggregated.
- What's more, they proposed to add a smoothness prior to the adjacency matrix to enforces the features of adjacent vertices to be more similar:

$$\sum_{i \sim j} a_{i,j} (y_i - y_j)^2 < \epsilon, \ \forall i, j,$$

GAC-Net

- GAC-Net instead incorporates the attention mechanism to assign different weights to neighbor nodes.
- The attention is formulated as $\alpha(\Delta p_{ij}, \Delta h_{ij}) = M_{\alpha}([\Delta p_{ij} || \Delta h_{ij}])$.

 $\Delta p_{ij} = p_i - p_j$: distance between two points (p_i : point coordinate).

 $\Delta h_{ij} = M_q(h_i) - M_q(h_j)$: difference between two transformed feature vectors. (h_i : feature vector).

 M_{α}, M_q are MLP layers, and || is concatenation.

In addition to the attention mechanism, GAC-Net models the network structure similar to the PointNet++
 (encoder-decoder architecture), and use k-NN and FPS sampling to alternatively reconstruct or subsample at each layer.

Pros and Cons

DGCNN, LDGCNN, and ResGCN:

- Pros: Dynamic graph update helps the model to learn a larger receptive field.
- Cons: Each layer's kNN recomputation is always computationally expensive.

RGCNN:

- Pros: The graph construction computation at each layer takes less time.
- o Cons: The adjacency matrix is always dense and hence is memory inefficient.

GAC-Net:

- Pros: Leverages the attention mechanism to assign different weights on neighbor nodes.
- o Cons: No dynamic graph update at each layer, and hence the receptive field is limited.

HPEIN: Hierarchical Point-Edge Interaction Network

- Edge branch: progressively integrate point features in different layers.
- Loss function: final edge features are supervised by semantic-consistency prediction of each edge. (whether the two end-points are in the same category or not)

$$L \ = \ \lambda_1 L_{point} + \lambda_2 L_{edge} \hspace{1cm} l^e_{i,j} = egin{cases} 1, & ext{if } l^p_i = l^p_j \ 0, & ext{if } l^p_i
eq l^p_j \end{cases}$$

Edge Module

Point features F and edge features H

$$\mathbb{H}_{E_L} = M_{encoder}ig(\mathbb{F}_{V_L}, M_{ ext{upsample}}ig(\mathbb{H}_{\mathbb{E}_{\mathbb{L}-1}}ig)ig)$$

 Encode edge with upsampled edge feature from prev layer and point features as input.

$$egin{aligned} H_{i,j}^L &= f_{ext}^{(1)}\Big(\Big[f_{ext}^{(2)}\Big(f_{edge}\Big(F_i^L,F_j^L\Big)\Big),H_{i,j}^{L-1 o L}\Big]\Big) \ f_{edge}\Big(F_i^L,F_j^L\Big) &= \Big[(p_i-p_j),F_i^L,F_j^L\Big] \end{aligned}$$

 The edge features are aggregated by max-pooli and are used to update point feature

$$egin{aligned} \mathbb{H}_{E_L(p_i)} &= \left\{ H_{i,j}^L \mid (p_i \,,\, p_j) \in E_L(p_i)
ight\} \ \left(F_i^L
ight)_{new} &= \left[F_i^L, \operatorname{MaxPool}ig(\mathbb{H}_{E_L(p_i)}ig)
ight] \end{aligned}$$

Hierarchical Graph Construction

- Graph G at layer L:
 - finding the KNN points for each point in input vertices.
 - Add edges between two KNN neighbor points in the coarser(prev) layer if they are connected.

Edge Upsampling:

Propagate edge features from previous layer to current layer by interpolating **KNN edge features** from prev layer:

$$H_{i,j}^{L-1 o L} = f_{interp}^e \Big(\Big\{ H_{i',j'}^{L-1 o L} \mid (p_{i'},p_{j'}) \in E_{ne}^{L-1}(e_{i,j}) \cap E_{L-1} \Big\} \Big)$$

The **interpolation weights** are based on the normalized **inverse distance** of the two pairs of end points.

$$w_{i',j'} = \frac{1}{(\|p_i - p_{i'}\|^t + \epsilon) \cdot (\|p_j - p_{j'}\|^t + \epsilon)}$$

$$H(\longleftarrow) = f_{interp}^{e}(\{H(\longleftarrow)\})$$

$$G_{L-1} = (V_{L-1}, E_{L-1})$$

- Points in Layer L-1
- Two points selected from Layer L
- \leftarrow Edge $e_{i,j}$ in Layer L

- $\leftarrow E_{ne}^{L-1}(e_{i,i})$
- Indicating the kNN of p_i , p_i in layer L-1 (k=3)
- \leftarrow Edges in Layer L-1 for interpolating feature of $e_{i,j}$ $: E_{ne}^{L-1}(e_{i,i}) \cap E_{L-1}$

HDGCN: Hierarchical Depthwise Graph CNN

Find KNN neighbor points: $\left\{p_{j_{i_1}}, \cdots, p_{j_{i_k}}
ight\}$

Spatial Graph Convolution:

$$x_i' = \sum_{m=1}^{\kappa} MLP(L(i,j_{i_m}); heta) x_{j_{i_m}} \quad L(i,j_{i_m}) = p_{j_{i_m}} - p_i$$

Mem: $n \times k \times O \times I$

Depthwise Graph Convolution:

 Use graph convolution to aggregate local features channel-wisely (depthwise graph convolution)

$$x_{i,depthwise}' = \sum_{m=1}^{k} MLP(L(i,j_{i_m}); heta) \odot x_{j_{i_m}}$$

 Pointwise convolution (MLP) to project local depthwise feature to output channel size R^O

Mem: $n \times k \times I \times 2 + I \times O$

Use much less memory if O is large.

HDGCN: Hierarchical Depthwise Graph CNN

- → Scalability issue of previous methods:
 - Point-sampling are computationally expensive or memory inefficient (Farthest Point Sampling)
- Expensive **local feature learner**: kernelization or graph construction
- Existing local feature learners are incapable of capturing complex structures due to their limited size of receptive fields.

- → Random Sampling (RS): downsampling in each neural layer
 - Computationally efficient: agnostic to the number of input points. √
 - Computation does not require extra memory. √
 - Can discard important information, especially for objects with sparse points X

Local Spatial Encoding (LocSE)

- Find KNN points with point-wise euclidean distances
- ullet Encode **relative point position** for each neighbor $\mathbf{r}_i^k = MLPig(p_i \oplus p_i^k \oplus ig(p_i p_i^kig) \oplus \|p_i p_i^k\|ig)$
- Point feature augmentation: $\hat{\mathbf{f}}_i^k = \mathbf{f}_i^k \oplus \mathbf{r}_i^k$ concatenate **relative** point position \mathbf{r}_i^k and point **feature** \mathbf{f}_i^k

$$\hat{\mathbf{F}}_i = \left\{\hat{\mathbf{f}}_i^{\hat{1}} \cdots \hat{\mathbf{f}}_i^k \cdots \hat{\mathbf{f}}_i^K
ight\}$$

Attentive Pooling

- Aggregate the set of neighbor point features $\hat{\mathbf{F}}_i = \left\{\hat{\mathbf{f}}_i^1 \cdots \hat{\mathbf{f}}_i^k \cdots \hat{\mathbf{f}}_i^K\right\}$
- Compute attention scores: function **g** is a shared MLP followed by softmax
- Weighted summation features by their attention scores:

$$egin{aligned} ilde{\mathbf{f}}_i^k &= \sum_{k=1}^K \, \hat{\mathbf{f}}_i^k \odot \mathbf{s}_i^k & \mathbf{s}_i^k = g\Big(\hat{\mathbf{f}}_i^k, \mathbf{W}\Big) \end{aligned}$$

Dilated Residual Block

- LocSE+Attentive Pooling operation:
 Dilate the receptive field and expand the effective neighborhood through feature propagation.
- Stack two sets of LocSE and Attentive the Pooling in the block to achieve a balance between efficiency and effectiveness.

Contributions

- HPEIN (main changes in decoding stage)
 - New edge branch that hierarchically encodes edge features and interacts with the point branch
 - Hierarchical graph construction when upsampling and upsampled edge features

HDGCN

- Memory-efficient graph convolution
- DGConv block that uses PointNet to extract point features

RandLA-Net

- Lightweight model that only consists of MLP to effectively process large-scale point clouds
- Random sampling that is computationally and memory efficient.
- Dilated residual block aggregate effectively increase

	Total time (seconds)	Parameters (millions)	Maximum inference points (millions)			
PointNet (Vanilla)	192	0.8	0.49			
PointNet++ (SSG)	9831	0.97	0.98			
PointCNN	8142	11	0.05			
SPG	43584	0.25	19			
KPConv	717	14.9	0.54			
RandLA-Net (Ours)	185	1.24	1.03			

Results

	ShapeNet		ModelNet40		S3DIS (6-fold)		S3DIS (area-5)			ScanNet			
	OA	mloU	OA	mAcc	OA	mAcc	mloU	OA	mAcc	mloU	OA	mAcc	mloU
PointNet		83.7	89.2	86.0	78.5	66.2	47.6	-	48.98	41.09			
PointNet++		85.1	90.7		81.0	67.1	54.5	-	-	-			33.9
DGCNN	-	85.2	93.5	90.7	84.1	-	56.1	-	-	-	-	-	-
LDGCNN	-	<u>85.1</u>	92.9	90.3	-	-	-	-	-	-	-	-	-
ResGCN-28	-	-	-	-	85.9	-	60.0	-	-	52.49	-	-	-
RGCNN	-	84.3	90.5	87.3	-	-	-	-	-	-	-	-	-
GAC-Net	-	-	-	-	-	-	-	87.79	-	62.85	-	-	-
HPEIN	-	-	-	-	88.2	76.26	67.83	87.18	68.3	61.85	-	-	61.8
HDGCN					-	76.11	66.85	-	65.81	59.33			
RandLA-Net					88.0	82.0	70.0						

Summary

- Dynamic graph update does not provide significant improvement compared to the hierarchical encoder-decoder structure of PointNet++, when applying to large scene segmentation datasets.
- Hierarchical structure enables larger receptive field, which enables the model to perform better on more complex scene understanding task.
- Sampling cost in hierarchical encoder-decoder structure can be a huge bottleneck in terms of both time and memory.
 - Farthest point sampling (FPS) is very expensive