<110> Sales Michael

SEQ.ST25.txt SEQUENCE LISTING

<tt0></tt0>		mi chae i
	Parmenti	er, Marc
	Vassart,	Gilbert
<120>	HTV Dia	anostic

<120> HIV Diagnostic Methods

<130> 9409/2023E

<140> 10/612,791

<141> 2003-07-02

<150> 09/938,703

<151> 2001-08-24

<150> 09/626,939

<151> 2000-07-27

<150> 08/833,752

<151> 1997-04-09

<150> 08/810,028 <151> 1997-03-03

(131/ 1331-03-03

<150> EP 96870021.1 <151> 1996-03-01

(1)1> 1990-03-01

<150> EP 96870102.9

<151> 1996-08-06

<160> 18

<170> PatentIn version 3.1

<210> 1

<211> 792

<212> DNA

<213> Homo sapiens

<400> 1

gaattccccc aacagagcca agctctccat ctagtggaca gggaagctag cagcaaacct 60 tcccttcact acaaaacttc attgcttggc caaaaagaga gttaattcaa tgtagacatc 120 tatgtaggca attaaaaacc tattgatgta taaaacagtt tgcattcatg gagggcaact 180 aaatacatto taggacttta taaaagatca ctttttattt atgcacaggg tggaacaaga 240 tggattatca agtgtcaagt ccaatctatg acatcaatta ttatacatcg gagccctgcc 300 aaaaaatcaa tgtgaagcaa atcgcagccc gcctcctgcc tccgctctac tcactggtgt 360 tcatctttgg ttttgtgggc aacatgctgg tcatcctcat cctgataaac tgcaaaaggc 420 tgaagagcat gactgacatc tacctgctca acctggccat ctctgacctg tttttccttc 480 ttactgtccc cttctgggct cactatgctg ccgcccagtg ggactttgga aatacaatgt 540 gtcaactctt gacagggctc tattttatag gcttcttctc tggaatcttc ttcatcatcc 600 tcctgacaat cgataggtac ctggctgtcg tccatgctgt gtttgcttta aaagccagga 660

cggtcacctt	tggggtggtg	acaagtgtga	SEQ. S12: tcacttgggt		tttgcgtctc	720
tcccaggaat	catctttacc	agatctcaaa	aagaaggtct	tcattacacc	tgcagctctc	780
attttccata						792
<210> 2 <211> 1477						
<212> DNA <213> Homo	sapiens					
<220>	,					
	_feature 7)(1377)					
	nucleotide					
<220>						
<221> misc	_feature 4)(1385)					
	nucleotide					
<400> 2						
gaattcccc	aacagagcca	agctctccat	ctagtggaca	gggaagctag	cagcaaacct	60
tcccttcact	acaaaacttc	attgcttggc	caaaaagaga	gttaattcaa	tgtagacatc	120
tatgtaggca	attaaaaacc	tattgatgta	taaaacagtt	tgcattcatg	gagggcaact	180
aaatacattc	taggacttta	taaaagatca	ctttttattt	atgcacaggg	tggaacaaga	240
tggattatca	agtgtcaagt	ccaatctatg	acatcaatta	ttatacatcg	gagccctgcc	300
aaaaaatcaa	tgtgaagcaa	atcgcagccc	gcctcctgcc	tccgctctac	tcactggtgt	360
tcatctttgg	ttttgtgggc	aacatgctgg	tcatcctcat	cctgataaac	tgcaaaaggc	420
tgaagagcat	gactgacatc	tacctgctca	acctggccat	ctctgacctg	ttttccttc	480
ttactgtccc	cttctgggct	cactatgctg	ccgcccagtg	ggactttgga	aatacaatgt	540
gtcaactctt	gacagggctc	tattttatag	gcttcttctc	tggaatcttc	ttcatcatcc	600
tcctgacaat	cgataggtac	ctggctgtcg	tccatgctgt	gtttgcttta	aaagccagga	660
cggtcacctt	tggggtggtg	acaagtgtga	tcacttgggt	ggtggctgtg	tttgcgtctc	720
tcccaggaat	catctttacc	agatctcaaa	aagaaggtct	tcattacacc	tgcagctctc	780
attttccata	cagtcagtat	caattctgga	agaatttcca	gacattaaag	atagtcatct	840
tggggctggt	cctgccgctg	cttgtcatgg	tcatctgcta	ctcgggaatc	ctaaaaactc	900
tgcttcggtg	tcgaaatgag	aagaagaggc	acagggctgt	gaggcttatc	ttcaccatca	960
tgattgttta	ttttctcttc	tgggctccct	acaacattgt	ccttctcctg	aacaccttcc	1020
aggaattctt	tggcctgaat	aattgcagta	gctctaacag	gttggaccaa	gctatgcagg	1080
tgacagagac	tcttgggatg	acgcactgct	gcatcaaccc	catcatctat	gcctttgtcg	1140

SEQ.ST25.txt 1200 gggagaagtt cagaaactac ctcttagtct tcttccaaaa gcacattgcc aaacgcttct gcaaatgctg ttctattttc cagcaagagg ctcccgagcg agcaagctca gtttacaccc 1260 gatccactgg ggagcaggaa atatctgtgg gcttgtgaca cggactcaag tgggctggtg 1320 acccagtcag agttgtgcac atggcttagt tttcatacac agcctgggct gggggtnggt 1380 tggnngaggt cttttttaaa aggaagttac tgttatagag ggtctaagat tcatccattt 1440 atttggcatc tgtttaaagt agattagatc cgaattc 1477 <210> 1442 <211> DNA Homo sapiens <400> gaattccccc aacagagcca agctctccat ctagtggaca gggaagctag cagcaaacct 60 tcccttcact acaaaacttc attgcttggc caaaaagaga gttaattcaa tgtagacatc 120 tatgtaggca attaaaaacc tattgatgta taaaacagtt tgcattcatg gagggcaact 180 aaatacattc taggacttta taaaagatca ctttttattt atgcacaggg tggaacaaga 240 tggattatca agtgtcaagt ccaatctatg acatcaatta ttatacatcg gagccctgcc 300 aaaaaatcaa tgtgaagcaa atcgcagccc gcctcctgcc tccgctctac tcactggtgt 360 tcatctttgg ttttgtgggc aacatgctgg tcatcctcat cctgataaac tgcaaaaggc 420 tgaagagcat gactgacatc tacctgctca acctggccat ctctgacctg tttttccttc 480 ttactgtccc cttctgggct cactatgctg ccgcccagtg ggactttgga aatacaatgt 540 gtcaactctt gacagggctc tattttatag gcttcttctc tggaatcttc ttcatcatcc 600 tcctgacaat cgataggtac ctggctgtcg tccatgctgt gtttgcttta aaagccagga 660 cggtcacctt tggggtggtg acaagtgtga tcacttgggt ggtggctgtg tttgcgtctc 720 tcccaggaat catctttacc agatctcaaa aagaaggtct tcattacacc tgcagctctc 780 840 attttccata cattaaagat agtcatcttg gggctggtcc tgccgctgct tgtcatggtc atctgctact cgggaatcct aaaaactctg cttcggtgtc gaaatgagaa gaagaggcac 900 agggctgtga ggcttatctt caccatcatg attgtttatt ttctcttctg ggctccctac 960 aacattgtcc ttctcctgaa caccttccag gaattctttg gcctgaataa ttgcagtagc 1020 tctaacaggt tggaccaagc tatgcaggtg acagagactc ttgggatgac gcactgctgc 1080 atcaacccca tcatctatgc ctttgtcggg gagaagttca gaaactacct cttagtcttc 1140 ttccaaaagc acattgccaa acgcttctgc aaatgctgtt ctattttcca gcaagaggct 1200 cccgagcgag caagctcagt ttacacccga tccactgggg agcaggaaat atctgtgggc 1260

1320

ttgtgacacg gactcaagtg ggctggtgac ccagtcagag ttgtgcacat ggcttagttt

tcatacacag cctgggctgg gggtggttgg gaggtctttt ttaaaaggaa gttactgtta 1380 tagagggtct aagattcatc catttatttg gcatctgttt aaagtagatt agatccgaat 1440 tc 1442

<210> 4

<211> 184

<212> PRT

<213> Homo sapiens

<400> 4

Met Asp Tyr Gln Val Ser Ser Pro Ile Tyr Asp Ile Asn Tyr Tyr Thr 1 5 10 15

Ser Glu Pro Cys Gln Lys Ile Asn Val Lys Gln Ile Ala Ala Arg Leu 20 25 30

Leu Pro Pro Leu Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn 35 40 45

Met Leu Val Ile Leu Ile Leu Ile Asn Cys Lys Arg Leu Lys Ser Met 50 55 60

Thr Asp Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Phe Phe Leu 65 70 75 80

Leu Thr Val Pro Phe Trp Ala His Tyr Ala Ala Ala Gln Trp Asp Phe 85 90 95

Gly Asn Thr Met Cys Gln Leu Leu Thr Gly Leu Tyr Phe Ile Gly Phe 100 105 110

Phe Ser Gly Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu 115 120 125

Ala Val Val His Ala Val Phe Ala Leu Lys Ala Arg Thr Val Thr Phe 130 140

Gly Val Val Thr Ser Val Ile Thr Trp Val Val Ala Val Phe Ala Ser 145 150 155 160

Leu Pro Gly Ile Ile Phe Thr Arg Ser Gln Lys Glu Gly Leu His Tyr 165 170 175

Thr Cys Ser Ser His Phe Pro Tyr 180

<210> 5

<211> 352

<212> PRT

<213> Homo sapiens

<400> 5

Met Asp Tyr Gln Val Ser Ser Pro Ile Tyr Asp Ile Asn Tyr Tyr Thr 1 5 10 15

Ser Glu Pro Cys Gln Lys Ile Asn Val Lys Gln Ile Ala Ala Arg Leu 20 25 30

Leu Pro Pro Leu Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn 35 40 45

Met Leu Val Ile Leu Ile Leu Ile Asn Cys Lys Arg Leu Lys Ser Met 50 55 60

Thr Asp Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Phe Phe Leu 65 70 75 80

Leu Thr Val Pro Phe Trp Ala His Tyr Ala Ala Ala Gln Trp Asp Phe 85 90 95

Gly Asn Thr Met Cys Gln Leu Leu Thr Gly Leu Tyr Phe Ile Gly Phe 100 105 110

Phe Ser Gly Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu 115 120 125

Ala Val Val His Ala Val Phe Ala Leu Lys Ala Arg Thr Val Thr Phe 130 135 140

Gly Val Val Thr Ser Val Ile Thr Trp Val Val Ala Val Phe Ala Ser 145 150 155 160

Leu Pro Gly Ile Ile Phe Thr Arg Ser Gln Lys Glu Gly Leu His Tyr 165 170 175

Thr Cys Ser Ser His Phe Pro Tyr Ser Gln Tyr Gln Phe Trp Lys Asn 180 185 190

Phe Gln Thr Leu Lys Ile Val Ile Leu Gly Leu Val Leu Pro Leu Leu 195 200 205

Val Met Val Ile Cys Tyr Ser Gly Ile Leu Lys Thr Leu Leu Arg Cys 210 220

Arg Asn Glu Lys Lys Arg His Arg Ala Val Arg Leu Ile Phe Thr Ile Page 5 Met Ile Val Tyr Phe Leu Phe Trp Ala Pro Tyr Asn Ile Val Leu Leu 245 250 255

Leu Asn Thr Phe Gln Glu Phe Phe Gly Leu Asn Asn Cys Ser Ser Ser 260 265 270

230

Asn Arg Leu Asp Gln Ala Met Gln Val Thr Glu Thr Leu Gly Met Thr 275 280 285

His Cys Cys Ile Asn Pro Ile Ile Tyr Ala Phe Val Gly Glu Lys Phe 290 295 300

Arg Asn Tyr Leu Leu Val Phe Phe Gln Lys His Ile Ala Lys Arg Phe 305 310 315 320

Cys Lys Cys Cys Ser Ile Phe Gln Gln Glu Ala Pro Glu Arg Ala Ser 325 330 335

Ser Val Tyr Thr Arg Ser Thr Gly Glu Gln Glu Ile Ser Val Gly Leu 340 345 350

<210> 6

<211> 215

<212> PRT

<213> Homo sapiens

<400> 6

Met Asp Tyr Gln Val Ser Ser Pro Ile Tyr Asp Ile Asn Tyr Tyr Thr 1 10 15

Ser Glu Pro Cys Gln Lys Ile Asn Val Lys Gln Ile Ala Ala Arg Leu 20 25 30

Leu Pro Pro Leu Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn 35 40 45

Met Leu Val Ile Leu Ile Leu Ile Asn Cys Lys Arg Leu Lys Ser Met 50 55 60

Thr Asp Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Phe Phe Leu 65 70 75 80

Leu Thr Val Pro Phe Trp Ala His Tyr Ala Ala Ala Gln Trp Asp Phe 85 90 95

Gly Asn Thr Met Cys Gln Leu Leu Thr Gly Leu Tyr Phe Ile Gly Phe
Page 6

Phe Ser Gly Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu 115 120 125

Ala Val Val His Ala Val Phe Ala Leu Lys Ala Arg Thr Val Thr Phe 130 140

Gly Val Val Thr Ser Val Ile Thr Trp Val Val Ala Val Phe Ala Ser 145 150 155 160

Leu Pro Gly Ile Ile Phe Thr Arg Ser Gln Lys Glu Gly Leu His Tyr 165 170 175

Thr Cys Ser Ser His Phe Pro Tyr Ile Lys Asp Ser His Leu Gly Ala 180 185 190

Gly Pro Ala Ala Ala Cys His Gly His Leu Leu Gly Asn Pro Lys 195 200 205

Asn Ser Ala Ser Val Ser Lys 210 215

<210> 7

<211> 360

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (325)..(327)

<223> Xaa = any amino acid

<400> 7

Met Leu Ser Thr Ser Arg Ser Arg Phe Ile Arg Asn Thr Asn Glu Ser 10 15

Gly Glu Glu Val Thr Thr Phe Phe Asp Tyr Asp Tyr Gly Ala Pro Cys
20 25 30

His Lys Phe Asp Val Lys Gln Ile Gly Ala Gln Leu Leu Pro Pro Leu 35 40 45

Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn Met Leu Val Val 50 55 60

Leu Ile Leu Ile Asn Cys Lys Lys Leu Lys Cys Leu Thr Asp Ile Tyr 65 70 75 80

Leu Leu Asn Leu Ala Ile Ser Asp Leu Leu Phe Ile Ile Thr Leu Pro Leu Trp Ala His Ser Ala Ala Asn Glu Trp Val Phe Gly Asn Ala Met Cys Lys Leu Phe Thr Gly Leu Tyr His Ile Gly Tyr Phe Gly Gly Ile 115 120 125 Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Leu Lys Ala Arg Thr Val Thr Phe Gly Val Val Thr 145 150 155 160 Ser Val Ile Thr Trp Leu Val Ala Val Phe Ala Ser Val Pro Gly Ile 165 170 175 Ile Phe Thr Lys Cys Gln Lys Glu Asp Ser Val Tyr Val Cys Gly Pro 180 185 190 Tyr Phe Pro Arg Gly Trp Asn Asn Phe His Thr Ile Met Arg Asn Ile 195 200 205 Leu Gly Leu Val Leu Pro Leu Leu Ile Met Val Ile Cys Tyr Ser Gly Ile Leu Lys Thr Leu Leu Arg Cys Arg Asn Glu Lys Lys Arg His Arg 225 230 235 240 Ala Val Arg Val Ile Phe Thr Ile Met Ile Val Tyr Phe Leu Phe Trp 245 250 255 Thr Pro Tyr Asn Ile Val Ile Leu Leu Asn Thr Phe Gln Glu Phe Phe Gly Leu Ser Asn Cys Glu Ser Thr Ser Gln Leu Asp Gln Ala Ile Gln 275 280 285 Val Thr Glu Thr Leu Gly Met Thr His Cys Cys Ile Asn Pro Ile Ile 290 Tyr Ala Phe Val Gly Glu Lys Phe Arg Arg Tyr Ile Ser Val Phe Phe 305 310 315 320 Arg Lys His Ile Xaa Xaa Xaa Phe Cys Lys Gln Cys Pro Val Phe Tyr 325 330 335 Page 8

Glu Gln Glu Val Ser Ala Gly Leu 355 <210> 355 <211> <212> PRT <213> Homo sapiens <220> MISC_FEATURE (231)..(233) <221> <222> <223> Xaa = amy amino acid <220> <221> MISC_FEATURE <222> (333)..(335) <223> Xaa = amy amino acid <400> 8 Met Thr Thr Ser Ile Asp Thr Val Glu Thr Phe Gly Thr Thr Ser Tyr Tyr Asp Asp Val Gly Leu Leu Cys Glu Lys Ala Asp Thr Arg Ala Leu 20 25 30 Met Ala Gln Phe Val Pro Pro Leu Tyr Ser Leu Val Phe Thr Val Gly Leu Ile Gly Asn Val Val Val Met Ile Leu Ile Lys Tyr Arg Arg 50 55 60 Ile Arg Ile Met Thr Asn Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Leu Phe Ile Val Thr Leu Pro Phe Trp Thr His Tyr Val Arg Gly 85 90 His Asn Trp Val Phe Gly His Gly Met Cys Asn Leu Ile Ser Gly Phe 100 Tyr His Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr 115 Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Ile Arg Ala Page 9

Arg Glu Thr Val Asp Gly Val Thr Ser Thr Asn Thr Pro Ser Thr Gly

Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Val Thr Trp Gly Ile 145 150 155 160

Ala Val Ile Ala Ala Leu Pro Glu Phe Ile Phe Tyr Glu Thr Glu Glu 165 170 175

Leu Phe Glu Glu Thr Ile Cys Ser Ala Leu Tyr Pro Glu Asp Thr Val 180 185 190

Tyr Ser Trp Arg His Phe His Thr Ile Arg Met Thr Ile Phe Cys Leu 195 200 205

Val Leu Pro Leu Leu Val Met Ala Ile Cys Tyr Thr Gly Ile Ile Lys 210 220

Thr Leu Leu Arg Cys Pro Xaa Xaa Xaa Lys Tyr Lys Ala Ile Arg Leu 230 235 240

Ile Phe Val Ile Met Ala Val Phe Phe Ile Glu Trp Thr Pro Tyr Asn 245 250 255

Val Ala Ile Leu Ile Ser Ser Tyr Gln Ser Leu Leu Phe Gly Asn Asn 260 265 270

Cys Glu Arg Ser Lys His Leu Asp Leu Val Met Ile Val Thr Glu Val 275 280 285

Ile Ala Tyr Ser His Cys Cys Met Asn Glu Val Ile Tyr Ala Phe Val 290 295 300

Gly Glu Arg Phe Arg Lys Tyr Ile Arg His Phe Phe His Arg His Leu 305 310 315

Leu Met His Leu Gly Arg Tyr Ile Pro Phe Leu Pro Xaa Xaa Xaa Ile 325 330 335

Glu Arg Ile Ser Ser Val Ser Pro Ser Thr Ala Glu Pro Glu Ile Ser · 340 345 350

Ile Val Phe 355

<210> 9

<211> 355

<212> PRT

<213> Homo sapiens

Met Glu Thr Pro Asn Thr Thr Glu Asp Tyr Asp Thr Thr Thr Glu Phe 1 5 10 15

Asp Tyr Gly Asp Ala Thr Pro Cys Gln Lys Val Asn Glu Arg Ala Phe 20 25 30

Gly Ala Gln Leu Leu Pro Pro Leu Tyr Ser Leu Val Phe Val Ile Gly 35 40 45

Leu Val Gly Asn Ile Leu Val Val Leu Val Leu Val Gln Tyr Lys Arg 50 55 60

Leu Lys Asn Met Thr Ser Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp 65 70 75 80

Leu Leu Phe Ile Phe Thr Leu Pro Phe Trp Ile Asp Tyr Lys Leu Lys 85 90 95

Asp Asp Trp Val Phe Gly Asp Ala Met Cys Lys Ile Ile Ser Gly Phe 100 105 110

Tyr Tyr Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr 115 120 125

Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Ile Arg Ala 130 135 140

Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Ile Ile Trp Ala Ile 145 150 155 160

Ala Ile Ile Ala Ser Met Pro Gly Leu Tyr Phe Ser Lys Thr Gln Trp 165 170 175

Glu Phe Thr His His Thr Cys Ser Leu His Phe Pro His Glu Ser Leu 180 185 190

Arg Glu Trp Lys Leu Phe Gln Ala Leu Lys Leu Asn Leu Phe Gly Leu 195 200 205

Val Leu Pro Leu Leu Val Met Ile Ile Cys Tyr Ile Gly Ile Ile Lys 210 215 220

Ile Leu Leu Arg Arg Pro Asn Glu Lys Lys Ser Lys Ala Val Arg Leu 225 230 235 240

Ile Phe Val Ile Met Ile Ile Phe Phe Leu Phe Trp Ile Pro Tyr Asn Page 11

Leu Thr Ile Ile Ser Val Phe Gln Asp Phe Leu Phe Thr His Glu 260 265 270

Cys Glu Gln Ser Arg His Leu Asp Leu Ala Val Gln Val Thr Glu Val 275 280 285

Ile Ala Tyr Thr His Cys Cys Val Asn Glu Val Ile Tyr Ala Phe Val 290 295 300

Gly Glu Arg Phe Arg Lys Tyr Ile Arg Gln Leu Glu His Arg Arg Val 305 310 315 320

Ala Val His Leu Val Lys Trp Leu Pro Phe Leu Ser Val Asp Arg Ile 325 330 335

Glu Arg Val Ser Ser Thr Ser Pro Ser Thr Gly Glu His Glu Ile Ser 340 345 350

Ala Gly Phe 355

<210> 10

<211> 360

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (145)..(147)

<223> Xaa = any amino acid

<220>

<221> MISC_FEATURE

<222> (321)..(323)

<223> Xaa = any amino acid

<400> 10

Met Asn Pro Thr Asp Ile Ala Asp Thr Thr Leu Asp Glu Ser Ile Tyr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Asn Tyr Tyr Leu Tyr Glu Ser Ile Pro Lys Pro Cys Thr Lys Glu 20 25 30

Gly Ile Lys Ala Phe Gly Glu Leu Phe Leu Pro Pro Leu Tyr Ser Leu 35 40 45

Val Glu Val Phe Gly Leu Ile Gly Asn Ser Val Val Leu Val Leu Page 12 Phe Lys Tyr Lys Arg Ile Arg Ser Met Thr Asp Val Tyr Leu Leu Asn 65 70 75 80

55

Leu Ala Ile Ser Asp Leu Leu Phe Val Phe Ser Leu Pro Phe Trp Gly 85 90 95

Tyr Tyr Ala Ala Asp Gln Trp Val Phe Gly Leu Gly Ile Cys Lys Met $100 \hspace{1cm} 105 \hspace{1cm} 110$

Ile Ser Trp Met Tyr Leu Val Gly Phe Tyr Ser Gly Ile Phe Phe Val 115 120 125

Met Ile Met Ser Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Glu 130 135 140

Xaa Xaa Xaa Ala Arg Thr Ile Ile Tyr Gly Val Ile Thr Ser Leu Ala 145 150 155 160

Thr Trp Ser Val Ala Val Phe Ala Ser Leu Pro Gly Phe Ile Phe Ser 165 170 175

Thr Cys Tyr Thr Glu Arg Asn His Thr Tyr Cys Lys Thr Lys Tyr Ser 180 185 190

Leu Asn Ser Thr Thr Trp Lys Val Leu Ser Ser Leu Glu Ile Asn Ile 195 200 205

Leu Gly Leu Val Ile Pro Leu Gly Ile Met Leu Phe Cys Tyr Ser Met 210 220

Ile Ile Arg Thr Leu Gln His Cys Lys Asn Glu Lys Lys Asn Lys Ala 225 230 235 240

Val Lys Met Ile Phe Ala Val Val Leu Phe Leu Gly Phe Trp Thr 245 250 255

Pro Tyr Asn Ile Val Leu Phe Leu Glu Thr Leu Val Glu Leu Glu Val 260 265 270

Ile Gln Asp Cys Thr Phe Glu Arg Tyr Leu Asp Tyr Ala Ile Gln Ala 275 280 285

Thr Glu Thr Leu Ala Phe Val His Cys Cys Leu Asn Pro Ile Ile Tyr 290 295 300

```
SEQ.ST25.txt
Phe Phe Leu Gly Glu Lys Phe Arg Lys Tyr Ile Ile Gln Leu Phe Lys
Xaa Xaa Xaa Gly Leu Phe Val Ile Cys Gln Tyr Cys Gly Leu Leu Gln
Ile Tyr Ser Ala Asp Thr Pro Ser Ser Ser Tyr Thr Gln Ser Thr Met
                                  345
Asp His Asp Leu His Asp Ala Leu
        355
<210>
       11
<211>
       49
<212>
       PRT
<213>
       Homo sapiens
<400> 11
Phe Pro Tyr Ser Gln Tyr Gln Phe Trp Lys Asn Phe Gln Thr Leu Lys
1 10 15
Ile Val Ile Leu Gly Leu Val Leu Pro Leu Leu Val Met Val Ile Cys
Tyr Ser Gly Ile Leu Lys Thr Leu Leu Arg Cys Arg Asn Glu Lys Lys 35 40 45
Arg
<210>
       12
<211>
       147
<212>
       DNA
<213>
       Homo sapiens
<400> 12
tttccataca gtcagtatca attctggaag aatttccaga cattaaagat agtcatcttg
                                                                          60
gggctggtcc tgccgctgct tgtcatggtc atctgctact cgggaatcct aaaaactctg
                                                                         120
cttcggtgtc gaaatgagaa gaagagg
                                                                         147
<210>
       13
<211>
       34
<212>
       PRT
<213>
       Homo sapiens
<400>
       13
Phe Pro Tyr Ile Lys Asp Ser His Leu Gly Ala Gly Pro Ala Ala Ala 1 5 10 15
```

```
SEQ.ST25.txt
Cys His Gly His Leu Leu Gly Asn Pro Lys Asn Ser Ala Ser Val
Ser Lys
<210>
<210> 14
<211> 27
<212>
       DNA
<213>
       ARTIFICAL SEQUENCE
<220>
<221>
       primer_bind
(1)..(27)
<222>
<223>
       Primer used to amplify the full size coding region of the CCR5 ge
<400> 14
tcgaggatcc aagatggatt atcaagt
                                                                           27
<210>
       15
27
<211>
<212>
       DNA
<213> ARTIFICAL SEQUENCE
<220>
<221>
       primer_bind
<222>
       (1)..(27)
<223>
       Primer to amplify the full size coding region of the CCR5 gene
<400> 15
ctgatctaga gccatgtgca caactct
                                                                           27
<210>
       16
<211>
       20
<212>
      DNA
<213>
       ARTIFICAL SEQUENCE
<220>
<221>
       primer_bind
(1)..(20)
<222>
<223>
       Primer used to amplify CCR5 from genomic DNA samples
<400> 16
cctggctgtc gtccatgctg
                                                                           20
<210>
       17
       27
<211>
<212>
       DNA
<213>
       ARTIFICAL SEQUENCE
<220>
<221>
       primer_bind
```

primer used to amplify CCR5 from genomic DNA samples

Page 15

<222>

(1)..(27)

<400> 17 ctgatctaga gccatgtgca caactct

<210> 18

<211> 215

<212> PRT

<213> Homo sapiens

<400> 18

Met Asp Tyr Gln Val Ser Ser Pro Ile Tyr Asp Ile Asn Tyr Tyr Thr 1 5 10 15

Ser Glu Pro Cys Gln Lys Ile Asn Val Lys Gln Ile Ala Ala Arg Leu 20 25 30

Leu Pro Pro Leu Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn 35 40 45

Met Leu Val Ile Leu Ile Leu Ile Asn Cys Lys Arg Leu Lys Ser Met 50 60

Thr Asp Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Phe Phe Leu 65 70 75 80

Leu Thr Val Pro Phe Trp Ala His Tyr Ala Ala Ala Gln Trp Asp Phe 85 90 95

Gly Asn Thr Met Cys Gln Leu Leu Thr Gly Leu Tyr Phe Ile Gly Phe $100 \hspace{1cm} 105 \hspace{1cm} 110$

Phe Ser Gly Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu 115 120 125

Ala Val Val His Ala Val Phe Ala Leu Lys Ala Arg Thr Val Thr Phe 130 135 140

Gly Val Val Thr Ser Val Ile Thr Trp Val Val Ala Val Phe Ala Ser 145 150 155 160

Leu Pro Gly Ile Ile Phe Thr Arg Ser Gln Lys Glu Gly Leu His Tyr 165 170 175

Thr Cys Ser Ser His Phe Pro Tyr Ile Lys Asp Ser His Leu Gly Ala 180 185 190

Gly Pro Ala Ala Ala Cys His Gly His Leu Leu Gly Asn Pro Lys 195 200 205 Page 16

Asn Ser Ala Ser Val Ser Lys 210 215