Speech Recognition Techniques for a Sign Language Recognition System

Philippe Dreuw, David Rybach, Thomas Deselaers, Morteza Zahedi, and Hermann Ney Human Language Technology and Pattern Recognition, RWTH Aachen University, Aachen, Germany

Introduction

- automatic sign language recognition system
- necessary for communication between deaf and hearing people
- continuous sign language recognition, several speakers, vision-based approach, no special hardware
- large vocabulary speech recognition (LVSR) system to obtain a textual representation of the signed sentences
- evaluation of speech recognition techniques on publicly available sign language corpus

Automatic Sign Language Recognition (ASLR)

- similar to speech recognition: temporal sequences of images
- important features
 - hand-shapes, facial expressions, lip-patterns
 - orientation and mayamant of the

goal: find the model which best expresses the observation sequence

System Overview

Visual Modeling (VM)

- related to the acoustic model in ASR
- HMM based, with separate GMMs, globally pooled diag. covariance matrix
- monophone whole-word models
- pronunciation handling

Language Modeling (LM)

- according to ASR: LM should have a greater weight than the VM
- trigram LM using the SRILM toolkit, with modified Kneser-Ney discounting with interpolation

Features

- appearance-based image features: for baseline system
 - thumbnails of video sequence frames (intensity images scaled to 32x32 pixels)
 - give a global description of all (manual and non-manual) features proposed in linguiatia

Experimental Results

Features	Dim. [%WER]
frame intensity (w/o pronuncia-	1024	54.0
tions)		
frame intensity (w/ pronuncia-	1024	37.0
tions)		
frame intensity (w/ pronunciations	1024	33.7
+ tangent distance)		
PCA-frame	110	27.5
PCA-frame, hand-position	112	25.3
PCA-frame, hand-velocity	112	24.2
PCA-frame, hand-trajectory	112	23.6
model-combination	2x100	17.9

Example Results

Correct Examples IX-1P FIND SOMETHING-ONE IX-1P FIND SOMETHING-ONE JOHN FISH WONT EAT BUT JOHN FISH WONT EAT BUT LOVE JOHN WHO LOVE JOHN WHO JOHN BUY YESTERDAY WHAT ru

Incorrect Examples MARY VEGETABLE KNOW IX

RWTH-BOSTON-104 Database

Corpus **Statistics**

LOVE JOHN WHO	T	raining	Tes
LOVE JOHN WHO	sentences	161	40
JOHN BUY YESTERDAY WHA	¹ running	710	178
JOHN BUY YESTERDAY WHA	words		
In a awa at Evanous la a	frames	12422 3	3324
Incorrect Examples	vocabulary	103	65
MARY VEGETABLE KNOW IX	singletons	27	Q