Лабораторная работа №7

Анализ выборки. Критерий согласия Пирсона.

К.С. Пилипенко 🖸

2023

Критерий согласия Пирсона (Хи-квадрат) был придуман для проверки значимости расхождения эмпирических (наблюдаемых) и теоретических (ожидаемых) частот. Выражается следующей формулой:

$$\chi^2 = \sum_{i}^{n} \frac{(O_i - E_i)^2}{E_i},\tag{1}$$

где O_i — наблюдаемые частоты (Observed), E_i — ожидаемые частоты (Expected).

Полученное значение χ^2 сравнивают с теоретически рассчитанным критическим значением $\chi^2_{\rm kp.}$, которое зависит от значения доверительной вероятности (как правило принимается равным 95%) и числа степеней свободы k, которое на один меньше количества уникальных значений в выборке (k=N-1).

Для расчета критического значения критерия $\chi^2_{\rm kp.}$ можно воспользоваться специальной таблицей, но лучше и проще всего воспользоваться функцией XM2 . OBP . ПХ

Для получения нормального распределения используется функция НОРМ. РАСП (x; \bar{x} ; σ ; интегральная), где

x — значение, для которого строится распределение.

 \bar{x} — среднее арифметическое распределения.

 σ — стандартное отклонение распределения.

интегральная — логическое значение, определяющее форму функции. Если ИСТИНА функция возвращает значение функции распределения f(x), если ЛОЖЬ то, возвращается значение функции плотности вероятности $\omega(x)$.

Последний аргумент является необязательным и по умолчанию стоит как ЛОЖЬ. Более подробно о синтаксисе этой функции можно узнать здесь.

Ход работы

Задание №1. Генерация выборки

- Создайте файл с расширением .xlsm. По умолчанию вкладка Разработчик спрятана, поэтому надо её включить. Заходим по пути Файл—Параметры—Настроить ленту и ставим галочку на вкладке Разработчик;
- В разделе Разработчик нажмите на макросы, дайте любое название макроса и создайте его. Далее в открывшемся окне введите код из листинга 1;

```
1 Sub NormDistGen()
2 'Сюда надо поместить код из листинга
3 End Sub
```

• При запуске кода в первом столбце таблицы появится сгенерированная выборка объёмом 500 элементов;

Задание №2. Получение наблюдаемых и ожидаемых частот

- Найдём максимальный и минимальный элементы выборки с помощью функций МАКС и МИН соответственно.
- Создайте столбец из целых чисел, значения которого будут использованы в качестве границ интервалов (N). Первое и последнее числа столбца должны быть больше минимального и максимального значения выборки соответственно.

Пример. Если $x_{min} = -0.961$ и $x_{max} = 25.983$ то получится столбец от 0 до 26 с шагом 1;

- Следующий шаг получить частоты попадания элементов выборки в эти интервалы. Для этого необходимо воспользоваться функцией ЧАСТОТА (массив данных; массив верхних границ диапазонов). Перед тем как задавать функцию нужно выделить диапазон ячеек, размер которого соответствует размеру массива границ. После нажатия комбинации CTRL+SHIFT+ENTER сформируется массив частот O(N);
- Постройте график зависимости массива частот O от массива границ N;
- Теперь нужно получить столбец E(N). Перед этим нужно посчитать столбец вероятностей (P_i) для каждого N (значения из массива границ) с помощью функции НОРМ. РАСП с пустым последним параметром. Оста- ётся открытым вопрос, откуда брать среднее (\bar{N}) и σ ? Эти параметры можно подобрать вручную построив два графика в одних координатах E(N) и O(N), и добившись их наилучшего соответствия;
- Чтобы найти ожидаемые (теоретические) частоты E_i нужно умножить соответствующие вероятности (P_i) на объём выборки, то есть на 500. Ож. частоты E_i должны быть целыми ненулевыми числами, поэтому стоит использовать функцию ОКРУГЛВВЕРХ;

Задание №3. Оценка критерия Пирсона

- Используя формулу 1 посчитать критерий Пирсона;
- Используя функцию XИ2 . РАСП постройте график плотности распределения $\omega_{\chi^2_{\rm kp.}}(N)$ (последний параметр должен быть ЛОЖЬ);
- В отдельном столбце посчитать критическое значение пользуясь функцией XM2. ОБР. ПХ. Указать это значение на графике $\omega(\chi^2_{\rm kp.})$. Сравнить полученное значение с экспериментальным;
- Получить p-value используя функцию XИ2 . РАСП . ПХ для посчитанного χ^2
- Чтобы убедится в правильности полученного результата сравните p-value со значением функции XИ2. ТЕСТ, которая принимает на вход массивы наблюдаемых и ожидаемых частот.

Контрольные вопросы

- 1. Сформулируйте нулевую гипотезу H_0 . Назовите условие, при котором можно отклонить нулевую гипотезу.
- 2. Можно ли в программе Excel сгенерировать выборку имеющую нормальное распределение? Если можно, то как это реализовать?
- 3. Что такое p-value (p-значение)? Чему численно равно это значение?
- 4. В каких случаях используется функция XИ2.ОБР? Что она позволяет оценить

Приложение

Листинг 1: Код генератора выборки с нормальным распределением

```
1
       Randomize
       Dim i As Long
2
3
       Dim mean As Integer
       Dim sigma As Integer
4
       Dim random As Double
5
6
7
       mean = 10 * Rnd + 6
8
       sigma = 3 * Rnd + 2
9
       i = 501
10
       Range ("A1"). Select
11
       For i = 2 To i
            random = WorksheetFunction. NormInv(Rnd, mean,
12
              sigma)
13
            ActiveCell. Value = random
14
            ActiveCell. Offset (1, 0). Select
15
       Next i
```