

Computer Networks

(RCS-601)

Routing - III

Link State Routing

Key Features:

- □ The routers share the knowledge only about their neighbors compared to all the routers in the autonomous system.
- □ Sharing of information takes place only with all the routers in the network, by sending small updates using flooding compared to sending larger updates to their neighbors
- □ Sharing of information takes place only when there is a change, which leads to lesser internet traffic compared to distance vector routing.

Overview of algorithm:

Each router must:

- 1) Discover its **neighbours** and **learn** their network addresses
- 2) Measure the delay or **cost** to each of its neighbours
- 3) Construct a link state packet with these distances
- 4) Send this packet to all other routers
- 5) Compute the **shortest path** to every other router

1) Learning about neighbours:

- Upon boot of router
 - Send HELLO packet on each point-to-point line
 - Routers are supposed to send reply with a globally unique name
- o LAN model

2) Measuring Line Cost

□ The link state routing algorithm requires each router to know, or at least have a reasonable estimate of, the delay to each of its neighbors. The most direct way to determine this delay is to send over the line a special ECHO packet that the other side is required to send back immediately. By measuring the round-trip time and dividing it by two, the sending router can get a reasonable estimate of the delay. For even better results, the test can be conducted several times, and the average used.

3) Building link state packets

- o Packet containing:
 - Identity of sender
 - Sequence number + age
 - For each neighbour: name + distance

- When to build?
 - periodically
 - when significant events occur

B 2 C	
4 3	
A 6)
5 7	
Ë 8 F	
(a)	

199		20 -	Lir	ηk		State			Packets							
1	4		В			С			D			E			F	=
Se	eq.		Seq.			Seq.			Seq.			Seq.			Seq.	
Αģ	Age		Αç	ge		Age			Age			Age			Age	
В	4		Α	4		В	2		С	3		Α	5		В	6
E	5		O	2		D	3		F	7		С	1		О	7
23		8	F	6		Е	1					Щ	8		Е	8
	(b)															

4) Distributing link state packets

- Trickiest part of algorithm
 - Arrival time for packets different
 - How to keep consistent routing tables

Basic algorithm

- Flooding + Sequence number (in each packet) to limit duplicates
- Manageable problems
 - Wrap around of sequence numbers:
 - Wrong sequence number used:
 - lost in case of crash
 - Corruption

o Refinements

- Link state packets are not forwarded immediately
- During holding time:
 - duplicates are discarded
 - Old packets are thrown out

Packet buffer for router B

o ACK flag: ACK to send

o Send flag: packet to forward

Seq.

Age

В

E

8

			Send flags			ACK flags			
Source	Seq.	Age	Á	С	È	Á	С	È	Data
А	21	60	0	1	1	1	0	0	
F	21	60	4	1	0	0	0	1	
E	21	59	0	1	0	1	0	1	
С	20	60	1	0	1	0	1	0	
D	21	59	1	0	0	0	1	1	

The packet buffer for router B

5) Computing new routes:

- With a full set of link state packets, a router can:
 - Construct the entire subnet graph
 - Run Dijkstra's algorithm to compute the shortest path to each destination
- Problems for large subnets
 - Memory to store data
 - Compute time

Thank You