Line Coding Schemes

Line coding is the process of converting binary data, a sequence of bits to a digital signal.

Definitions of the components/Keywords:

Binary data can be transmitted using a number of different types of pulses. The choice of a particular pair of pulses to represent the symbols 1 and 0 is called Line Coding.

Master Layout

Step 1: unipolar NRZ (Non Return to Zero)

Representation of 0	Representation of 1

Instruction for the animator	Text to be displayed in the working area (DT)
 The first fig should appear then the second fig should appear. In parallel to the figures the text should be displayed. 	 Bit 0 is mapped to amplitude close to zero Bit 1 is mapped to a positive amplitude A DC component is present

Step 2: Polar NRZ (Non Return to Zero)

Representation of 0	Representation of 1
	· i

Instruction for the animator	Text to be displayed in the working area (DT)
 The first fig should appear then the second fig should appear. 	 Bit 0 is mapped to a negative amplitude Bit 1 is mapped to a positive amplitude
 In parallel to the figures the text should be displayed. 	A DC component is present

Step 3: Polar RZ (Return to Zero)

Representation of 0	Representation of 1

Instruction for the animator	Text to be displayed in the working area (DT)
 The first fig should appear then the second fig should appear. 	•A bit 0 is mapped to a negative amplitude —A for the first half of the symbol duration followed by a zero amplitude for the second half of the symbol duration.
 In parallel to the figures the text should be displayed. 	
	A bit 1 is mapped to a positive amplitude +A for the first half of the bit duration followed by a zero amplitude for the second half of the bit duration.

Step 4: NRZI (Non Return to Zero Inverted)

Representation of 0		Representation of 1	
Fig. A	Fig. B	Fig. C	Fig. D

Instruction for the animator	Text to be displayed in the working area (DT)
 The first fig should appear then the second fig should appear. 	 Bit 0 mapped to no signal level transition Bit 1 is mapped to signal level transition at the beginning of the bit interval Assumption:
 In parallel to the figures the text should be displayed. 	
	• The signal level to the left of the bit is high- Fig. A and Fig. C
	• The signal level to the left of the bit is low – Fig. B and Fig. D

Step 5: Manchester coding

Representation of ()
---------------------	---

Representation of 1

Instruction for the animator	Text to be displayed in the working area (DT)
 The first fig should appear then the second fig should appear. 	Bit 0 is sent by having a mid-bit transition from high to low.
In parallel to the figures the text should be displayed.	•Bit 1 is sent by having a mid-bit transition from low to high.

Step 6: Differential Manchester coding

Instruction for the animator	Text to be displayed in the working area (DT)
 The first fig should appear then the second fig should appear. 	Bit 0 is mapped to signal level transition at the beginning of the bit interval.
 In parallel to the figures the text should be displayed. 	Bit 1 is mapped to absence of signal level transition at the beginning of the bit interval.
	Assumption:
	• The signal level to the left of the bit is high – Fig. A and Fig. C
	The signal level to the left of the bit is low – Fig. B and Fig. D

The corresponding waveforms should be shown in the demo part when a particular line code is selected.

Illustration of different line coding schemes

Assumption: The signal level to the left of the bit is high

Line coding Scheme	Representation of 0	Representation of 1
Unipolar NRZ		
Polar NRZ		
Polar RZ		

Line coding Scheme	Representation of 0	Representation of 1
NRZI		
Manchester		
Differential Manchester		

Slide 1	Slide 3		Slide 14,15	Slide 17	Slide 16
Introduction	Definitions	Analogy	Test your understandin (questionnaire)	Lets Sum up (summar	Want to know more (Further Reading)
Input Data					it yourself
Digital Signal				 Uni pol Polar N Polar R NRZI Manche Differer 	RZ Z

Answers:

Questionnaire

1. What is the Differential Manchester waveform corresponding to the bit string 1101101

Note: The signal level before the first bit is assumed to be high

b)

Questionnaire

2. What is the Differential Manchester waveform for the bit string 11100

Note: The signal level to the left of the first bit in the string is low

Answers:

a)

b)

Links for further reading

Reference websites:

Books: "Communication Systems" by Simon Haykin, fourth Edition "Data and Computer Communications" by William Stallings, eighth Edition

Research papers:

Summary

- Binary data can be transmitted using a number of different types of pulses. The choice of a particular pair of pulses to represent the symbols 1 and 0 is called Line Coding.
- Line coding is the process of converting binary data, a sequence of bits to a digital signal.