

Deep Learning

13. Recurrent Neural Networks

Dr. Konda Reddy Mopuri Dept. of Al, IIT Hyderabad Jan-May 2023

Dr. Konda Reddy Mopuri $\hspace{1cm}$ dl - 13/ RNNs $\hspace{1cm}$ $\hspace{1cm}$

So far...

Perceptron, MLP, Gradient Descent (Backpropagation)

So far...

- Perceptron, MLP, Gradient Descent (Backpropagation)
- CNNs (visualizing and understanding)

So far...

- Perceptron, MLP, Gradient Descent (Backpropagation)
- CNNs (visualizing and understanding)
- (3) 'Feedforward Neural networks'

Feedforward NNs: some observations

Size of the i/p is fixed(?!)

Feedforward NNs: some observations

- Size of the i/p is fixed(?!)
- 2 Successive i/p are i.i.d.

Feedforward NNs: some observations

- Size of the i/p is fixed(?!)
- Successive i/p are i.i.d.
- 3 Processing of successive i/p is independent of each other

- Q deep
- G deep Search with Google
- (kuldeep birdar
- Q deepika padukone
- Q deepthi sunaina
- Q deepak bagga
- Q deepika pilli
- Q deepti sharma

Successive i/p are not independent

- Q deep
- G deep Search with Google
- (§ kuldeep birdar
- Q deepika padukone
- Q deepthi sunaina
- Q deepak bagga
- Q deepika pilli
- Q deepti sharma

- Successive i/p are not independent
- ② Length of the i/p is not fixed $(\rightarrow predictions also)$

- Q deep
- G deep Search with Google
- (§ kuldeep birdar
- Q deepika padukone
- Q deepthi sunaina
- Q deepak bagga
- Q deepika pilli
- Q deepti sharma

- Successive i/p are not independent
- ② Length of the i/p is not fixed (→ predictions also)
- Same underlying task at different 'time instances'

- Q deep
- G deep Search with Google
- (kuldeep birdar
- Q deepika padukone
- Q deepthi sunaina
- Q deepak bagga
- Q deepika pilli
- Q deepti sharma

- Successive i/p are not independent
- ② Length of the i/p is not fixed (→ predictions also)
- Same underlying task at different 'time instances'
- Sequence Learning Problems

Sentiment Analysis (Source)

POS-Tagging (Source: Kaggle)

Action Recognition (Source)

Image Captioning(Source)

one to one

13

NNs designed to solve sequence learning tasks

- NNs designed to solve sequence learning tasks
- ② Characteristics

- NNs designed to solve sequence learning tasks
- ② Characteristics
 - f 0 Model the dependence among the i/p
 - ② Handle variable length of i/p

- NNs designed to solve sequence learning tasks
- ② Characteristics
 - Model the dependence among the i/p
 - 2 Handle variable length of i/p
 - 3 Same function applied at all time instances

RNNs: internal state

RNNs: unfolding

 ${\color{red} \textbf{0}}$ Apply the same transformation at every time step \rightarrow 'Recurrent' NNs

- $\mathbf{2}$ i/p sequence $x_t \in \mathbb{R}^{\mathbb{D}}$

- $\textbf{ 1 Physical Apply the same transformation at every time step} \rightarrow \text{`Recurrent' NNs}$
- $\mathbf{2}$ i/p sequence $x_t \in \mathbb{R}^{\mathbb{D}}$
- $oldsymbol{3}$ Initial recurrent state $h_0 \in \mathbb{R}^{\mathbb{Q}}$

- $\mathbf{2}$ i/p sequence $x_t \in \mathbb{R}^{\mathbb{D}}$
- $oldsymbol{3}$ Initial recurrent state $h_0 \in \mathbb{R}^{\mathbb{Q}}$
- **4** RNN model computes sequence of recurrent states iteratively $h_t = \phi(x_t, h_{t-1}; w)$

Elmon RNN (1990)

Elmon RNN (1990)

- ① Start with $h_0 = 0$
- ② $h_t = tanh(W_{xh}.x_t + W_{hh}.h_{t-1} + b_h)$

Elmon RNN (1990)

- ① Start with $h_0 = 0$
- ② $h_t = tanh(W_{xh}.x_t + W_{hh}.h_{t-1} + b_h)$
- $y_t = softmax(W_{hy}.y_t + b_y)$

RNNs as computational graph

Use the same set of parameters at each time step

RNNs as computational graph

Use the same set of parameters at each time step

RNNs as computational graph

Use the same set of parameters at each time step

RNNs as computational graph

- Use the same set of parameters at each time step
- ② Flexible to realize different variants (with some tricks!)

Multi-layered RNNs

স্বলোব প্রার্থনিক নাল্যান উহতেন্তর Indian Institute of Extraology Hydrobad

① Stack multiple RNNs between i/p and o/p layers

Source

Multi-layered RNNs

24

- Stack multiple RNNs between i/p and o/p layers

Source

Consider a many-to-one variant RNN (e.g. sentiment analysis)

- Consider a many-to-one variant RNN (e.g. sentiment analysis)
- 2 Let's separate the parameters into U, V, and W

 Consider a many-to-one variant RNN (e.g. sentiment analysis)

- Consider a many-to-one variant RNN (e.g. sentiment analysis)
- Let's separate the parameters into U, V, and W

① Let's now perform SGD (assume loss L is formulated on y_p)

- ① Let's now perform SGD (assume loss L is formulated on y_p)

$$\begin{array}{ccc}
\mathbf{1} & \frac{\partial L}{\partial V} = \frac{\partial L}{\partial y_p} \frac{\partial y_p}{\partial V} = \\
& \frac{\partial L}{\partial y_p} \cdot \frac{\partial y_p}{\partial z_3} \cdot \frac{\partial z_3}{\partial V}
\end{array}$$

$$\frac{\partial L}{\partial V} = \frac{\partial L}{\partial y_p} \frac{\partial y_p}{\partial V} = \frac{\partial L}{\partial y_p} \cdot \frac{\partial y_p}{\partial z_3} \cdot \frac{\partial z_3}{\partial V}$$

② Since we know that $z_3 = V \cdot h_3 + b_y$ and h_3, b_y are independent of V, we can compute $\frac{\partial L}{\partial V}$ in a single step

① Let's now consider $\frac{\partial L}{\partial W}$

