Summery x 2 fx + Gu assume system is "controllable" y = Hx + Ju 10, C=[GFGPG...Fh-16] Open loop system has pokes given als = x (s) = det { sI- f} = 0

open-hop donateliste polynomial

of cs) = sh + a₁ sh - 1 + a₂ sh - 2 + ... + a_n

open-hop donasteliste equation Openhoop system is not satisfactory
for precision control because of,
for example, * no feedback to ensure tracking errors = 0

* open-frop system dynamics are
not satisfactory (e.g. too slow?
unstable etc) Taking the approach of state-feedback, $l = -k_1 x_1 - k_2 x_2 - \dots - k_n x_n$ $k=[k_1 k_2 \dots k_n]$ $= -k_1 \times -k_1 \times -k_1 \times -k_2 \times -k_2 \times -k_1 \times -k_2 \times$ With state-feedback, system how kn becomes: x=fx+Gm x = fx + q \ - kx \ ° = SF-GK x y = Hx + Ju

Transformathour between realizations
$$p = Tx$$

$$x = f(x + G, u)$$

$$p = f(x + G, u)$$

Selection of tole Locathons i.e. how to choose x_(s) = s^n + x_1 s^{n-1} + x_2 s^{n-2} + ... t x_n Approach # 1 = Prototype Response eg. ITAE tables JITAE = | t | y-r dt 2) Approach # 2 = Symmotric Root
Locus (SRLI) X = T x + Gu ; y = Hx Define a signal important to you ---

... called z where $\Xi = H \times$ SEL method gives choice of d(s) Which infinises

JSRL = (p \geq + w) dt

Where (p > 0) Will need to brow the Symmetric Root 1 + p G₀(-s) G₀(s) = 0 p>0 where Z(s) = Z(s) = H SI-FSGRecall EE 2016 rook looms $|+KG(s)=|+k\frac{b(s)}{a(s)}=0$

Approach #3 = Full optimization
Linear Anchotic Regulation approach x = fx t Gn This approach books at minimishy JLOR = \[\left\{ \text{x}^T Q \times + \text{r} u^2 \right\} \] Q= a poortine-destrite matrix r: 2 postitue number For example, 47th Q= \ 0 0 93 9, 2, 2, 2, > 0; n=3

for next Wednesday's class,
we will beap-frog to
page 102 of the Lecture
Notes, on topic

"Introduction of Reference
Signal (Methods)"

And then, we will all be ready for Experiment I --!