CS 7545: Machine Learning Theory

Fall 2018

Lecture 18: Contextual Bandits

Lecturer: Jacob Abernethy Scribes: Vishvak S Murahari

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

18.1 Introduction

In the stochastic bandit setting, the algorithm picks an arm based on previous rewards. The contextual bandit is a more specific version of this setting, where the algorithm receives a context c_t on every round. The setting is formally defined below,

Setting

- In rounds $t = 1, \ldots, k$
 - Nature reveals context c_t .
 - Algorithm plays action a_t .
 - Nature reveals reward X_t , the reward for playing action a_t

Some scenarios where this framework might be useful:

Movie Recommendations In this scenario, the context could be features and the actions could be the set of all movies.

Path Recommendation In this scenario, the context could be a starting and ending point and the actions could be the set of all paths.

18.2 Notion of Regret

$$\operatorname{Regret}_T = \mathbb{E}\left[\sum_{c \in C} \max_{k \in K} \sum_{t \in [T]; c_t = c} (x_{tk} - x_t)\right],$$

We recall that the regret for EXP3 algorithm for T rounds and K arms is:

$$\operatorname{Regret}_{T}^{EXP} = \sqrt{TKlogK}$$

Therefore, if we assume a fixed context we can use the EXP3 bound to upper bound the regret,

$$Regret_{T.c} = \mathbb{E}[\max_{k \in K} \sum_{t \in [T]; c_t = c} (x_{tk} - x_t)],$$

$$\leq \sqrt{KlogK\sum_{t\in T}1[c_t=c]}\leq \sqrt{KlogKT}$$

If we assume that all the contexts are equiprobable, we get the following bound:

$$\operatorname{Regret}_{T.c} \leq \sqrt{\frac{TKlogK}{|C|}}$$

$$\operatorname{Regret}_T = \sum_{c \in C} \operatorname{Regret}_{T,c} \leq \sqrt{TK|C|logK}$$

18.3 Algorithms

We will construct an algorithm by using expert predictions. We will define M experts, $\phi_1, \phi_2 \dots \phi_M$, where $\phi_i : C \to \Delta(K)$. Therefore,

$$\operatorname{Regret}_{T} = \mathbb{E}[(\max_{m \in M} \sum_{t=1}^{T} E_{m}^{t}.x_{t}) - \sum_{t=1}^{T} X_{t}],$$

Where,

 E^t : Prediction of all experts

 $E_{m,k}^t$: Probability that expert m suggests to use action k on round t

 x^t : Reward vector of size K

 X^t : Scalar reward received by playing action a_t

We will now present a new algorithm, EXP4 (Exponential Weighting for Exploration and Exploitation with Experts) and we will show that this algorithm achieves a tighter upper bound on the Regret.

Algorithm 1: EXP4

Input: T,K,M,N
$$Q_1 = \left(\frac{1}{M}, \frac{1}{M}, \frac{1}{M} \dots, \frac{1}{M}\right)$$
for $t = 1, \dots, T$ do
$$\begin{vmatrix}
Receive advice E^t \\
p^t = Q_t E^t \\
A^t \sim p^t \\
Play A^t \\
\widehat{x_{ti}} = 1 - \frac{1[A_t = i](1 - X_t)}{p_{ti}} \\
\widetilde{x_t} = E^t . \widehat{x_t} \\
Q_{t+1,i} = \frac{exp(\eta. \widetilde{X_{ti}}).Q_{ti}}{\sum_{j=1}^{M} exp(\eta \widetilde{X_{tj}}).Q_{tj}}
\end{vmatrix}$$

18.4 Analysis

We will prove that the Regret for the EXP4 algorithm has the following bound:

$$\operatorname{Regret}_T \leq \sqrt{2TKlog(M)},$$

We assume the following result for any $m^* \in M$:

$$\sum_{t=1}^{T} \tilde{x_{tm^*}} - \sum_{t=1}^{T} \sum_{m=1}^{M} Q_{tm} \tilde{x_{tm}} \le \frac{\log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{m=1}^{M} Q_{tm} (1 - \tilde{x_{tm}})^2$$

Let,

$$m^* = \operatorname{argmax}_{m \in M} \sum_{t=1}^{T} E_m^t . x_t$$

$$\mathbb{E}[\hat{x}_t] = x_t$$

$$\mathbb{E}[\tilde{x}_t] = \mathbb{E}[E^t \hat{x}_t] = E^t \mathbb{E}[\hat{x}_t] = E^t.x_t$$

$$\sum_{t=1}^T x_{tm^*} - \sum_{t=1}^T \sum_{m=1}^M Q_{tm} \widetilde{x_{tm}} \le \frac{\log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^T \sum_{m=1}^M Q_{tm} (1 - x_{tm}^*)^2$$

Therefore,

$$R_T \leq \frac{log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{m=1}^{M} \mathbb{E}[Q_{tm}(1 - \tilde{x_{tm}})^2]$$

We also assume the following result:

$$\mathbb{E}[(1 - \tilde{x_{tm}})^2] \le \sum_{i=1}^K \frac{E_{mi}^t}{p_{ti}}$$

Therefore,

$$\begin{split} R_T &\leq \frac{\log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \mathbb{E} [\sum_{m=1}^{M} Q_{tm} \sum_{i=1}^{K} \frac{E_{mi}^{t}}{p_{ti}}] \\ &= \frac{\log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \mathbb{E} [\sum_{i=1}^{K} \sum_{m=1}^{M} Q_{tm} \frac{E_{mi}^{t}}{p_{ti}}] \\ &= \frac{\log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \mathbb{E} [\sum_{i=1}^{K} \frac{1}{p_{ti}} \sum_{m=1}^{M} Q_{tm} E_{mi}^{t}] \\ &= \frac{\log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \mathbb{E} [\sum_{i=1}^{K} \frac{1}{p_{ti}} p_{ti}] \end{split}$$

Therefore,

$$R_T \le \frac{log(M)}{\eta} + \frac{\eta}{2}KT$$

Setting $\eta = \sqrt{\frac{2logM}{TK}}$, we can get the following bound

$$R_T \le \sqrt{2TKlogM}$$