FELADATKIÍRÁS

A feladatkiírást a **tanszék saját előírása szerint** vagy a tanszéki adminisztrációban lehet átvenni, és a tanszéki pecséttel ellátott, a tanszékvezető által aláirt lapot kell belefűzni a leadott munkába, vagy a tanszékvezető által elektronikusan jóváhagyott feladatkiírást kell a Diplomaterv Portálról letölteni és a leadott munkába belefűzni (ezen oldal HELYETT, ez az oldal csak útmutatás). Az elektronikusan feltöltött dolgozatban már nem kell megismételni a feladatkiírást.

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Villamos Energetika Tanszék

Rácz Benedek György

FREKVENCIAVÁLTÓS ASZINKRON MOTOROS HAJTÁSOK VIZSGÁLATA

KONZULENS

Dr. Számel László

BUDAPEST, 2016

Tartalomjegyzék

Összefoglaló	5
Abstract	6
1 Bevezetés	7
1.1 Villamos gépek osztályozás	7
1.1.1 A frekvencia feltétel	7
1.2 Az aszinkron gép más forgógépekhez viszonyítva	8
2 Az indukciós aszinkron gép	10
2.1 Fizikai felépítés	10
2.2 Működési elv	11
3 Aszinkron gép modellje	12
3.1 Motor egyenletek	12
3.2 Motor modell állandósult állapotban	18
3.3 Álltalános motor modell	18
3.4 Matlab szimuláció	21
4 Vezérlési stratégiák	23
4.1 Hálózati táplálás	23
4.2 PWM technikák	25
4.3 V/F vezérlés	25
4.4 Fluxus	25
4.5 Áram	25
4.6 Szimuláció	25
5 Összegzés	26
Irodalomjegyzék	27
Függelék	28
5 1 Väzäs koordinéts rondszorba való áttórás	20

HALLGATÓI NYILATKOZAT

Alulírott **Rácz Benedek György**, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot/ diplomatervet (nem kívánt törlendő) meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül (vagy hitelesített felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Kelt: Budapest, 2016. 12. 09.	
	Rácz Benedek György

Összefoglaló

Ide jön a ½-1 oldalas magyar nyelvű összefoglaló, melynek szövege a Diplomaterv Portálra külön is feltöltésre kerül.

Abstract

Ide jön a $\frac{1}{2}$ -1 oldalas angol nyelvű összefoglaló, amelynek szövege a Diplomaterv Portálra külön is feltöltésre kerül.

1 Bevezetés

A villamos gépek és hajtások napjainkban a robotika és az elektromos járművek elterjedésével új dimenziót nyernek. A hagyományos gépek és vezérlési módszerek már kiforrtak, de az új követelmények, és a folyamatosan fejlődő mikro- és teljesítményelektronikai ágazatok adta új lehetőségek indokolják a téma aktualitását.

A következőkben először röviden elhelyezném az aszinkron motorokat a többi villamos gép mellet. Majd rátérek ezen típus alapvető működési elvére. Ezután vázolnám a motor egyenleteit, modelljeit, és egy lehetséges szimulációját. Végül ismertetném a lehetséges vezérlési stratégiákat.

1.1 Villamos gépek osztályozás

A villamos átalakítókat alapvetően két csoportra oszthatjuk. Az egyiket a transzformátorok, a másikat az elektromechanikus villamos átalakítók más néven villamos gépek alkotják.[1] Utóbbit tovább bonthatjuk forgó- és lineáris gépekre. A továbbiakban csak elektromágneses forgó gépekkel fogok foglalkozni. Léteznek elektrosztatikus gépek is, de ezeket a kis energiasűrűségük miatt csak extrém esetekben alkalmazzák.[2]

A forgó villamos gépeket csoportosíthatjuk alapvető fizikai elvük fényében, vagy a frekvencia feltétel alapján.

1.1.1 A frekvencia feltétel

A frekvenciafeltétel a sztátor által gerjesztett mező (ω_S) , a forgórészhez képesti mágneses mező (ω_R) , és a forgórész mechanikai szögsebessége (ω_M) között teremt kapcsolatot. [1]

$$\omega_S = \omega_R + \omega_M$$

Ez alapján három géptípust különböztethetünk meg. Ha ω_S zérus, azaz a sztátor mágneses tere áll az egyenáramú gépeket írtuk le. Amennyiben ω_R nulla, azaz a rotor állónak látja a mágneses teret megkaptuk a szinkron gépekre érvényes egyenletet. Mivel az ω_M = 0 feltétel mellett nem forogna a motor, így már csak egy variáció maradt, az, amikor egyik sem nulla. Ez írja le az aszinkron gépek frekvencia egyenletét.

1.1. Ábra Villamos gépek csoportosítása

1.2 Az aszinkron gép más forgógépekhez viszonyítva

A következőkben a teljesség igénye nélkül néhány alapvető motortípussal vetném össze az aszinkron motorok tulajdonságait.

Működési elv és vezérlés szempontjából is a legegyszerűbb motorok a hagyományos egyenáramú (DC) motorok. Az ilyen gépekhez képest az aszinkronok előnye lehet, hogy nincs benne csúszó alkatrész¹, ezáltal lassabban öregednek. A DC motorok hátránya, még hogy a kommutációnál szikrázhat. Ez veszélyes lehet, másrészt igénybe veszi mind a motort, mind a vezérlőt. Kommutációs szikrák nem lépnek fel aszinkron gépekben.

Állandómágneses szinkron gépekhez viszonyítva nincs akkora energiasűrűsége, ám – pont az állandómágnesek miatt – olcsóbb náluk, és igénytelenebb. A reluktancia elven működő motorok jó alternatívái lehetnek az aszinkron gépeknek, azonban egy álltalános előnye van az utóbbiaknak az összes szinkronnal szemben. Ez pedig pont abból adódik, hogy ha a szinkron motorokat nem a forgórésszel megegyező frekvencián tápláljuk, jobb esetben nem lesz nyomatéka a motornak, rosszabb esetben rezonanciák léphetnek fel. Az aszinkronoknál, még ha semmi információnk sincs a motor állapotáról, szöghelyzetéről, akkor is tudunk biztonsággal nyomatékot produkálni. Azaz egy egyszerű hajtáshoz nem kell visszacsatolás és szenzor sem. Ugyan ezt a

¹ Vannak csúszógyűrűs aszinkron gépek is.

tulajdonságot lehet kihasználni biztonságkritikus rendszerekben is, ha elromlik például a nyomaték szabályzó kör visszacsatolása, ha hibával is, de van esély az alapjel követésére.

A fenti előnyök mellett azért is szerettem volna pont az aszinkron gépekkel foglalkozni a diplomám alatt, mert ezeknek a legbonyolultabb a gépegyenletük. Azaz, ezen gép modelljében minden olyan szerepel, ami más motoroknál előkerül.

Géptípus	DC	Szinkron		Aszinkron
Gepupus	-	Állandómágneses	Reluktancia	-
Ár			+++	+++
Teljesítménysűrűség		+++		
Igénytelenség			+++	+++
Vezérlés	+++			+-2

 $^{^2}$ Igénytelen vezérlés egyszerű, precízen szabályozott, jó hatásfokú vezérlés bonyolult.

2 Az indukciós aszinkron gép

Ebben a fejezetben először ismertetném a gép felépítését és részeit, majd egy egyszerű kézzelfogható leírással bemutatnám a gép működésének alapjait.

2.1 Fizikai felépítés

A forgó villamos gépek sztátorból (állórészből) és rotorból (forgórész) állnak. Az aszinkron motorok sztátorában helyezkednek el szimmetrikusan az állórésztekercsek. A forgórészben is tekercsek helyezkednek el, melyek kialakítása szerint két típus különböztethető meg: Kalickás forgórészű (squirrel-cage) és csúszógyűrűs (wound).[3]

A csúszógyűrűs motor rotorjában valóban tekercsek vannak, melyek kapcsai a tengelyen ki vannak vezetve csúszógyűrűkre, amint a 2.1 Ábra-n is látszik. Itt ellenállásokat lehet beiktatni a rotorkörbe, melyek a motor szabályozását teszik lehetővé. A mai teljesítmény elektronikai lehetőségek mellett nem gyakori a használatuk.

2.1 Ábra: Csúszógyűrűs motor [4]

A kalickás motor rotorjában, valójában egymenetes tekercsek helyezkednek el. Valójában egy mókuskerék alakú vezetőkeret. Innen ered az angol elnevezés is. Igy a rotortekercsek kapcsai rövidre vannak zárva, és a rotorellenállás megegyezik a vezetőkeret ellenállásával.

2.2 Ábra: Kalickás rotor [5]

2.2 Működési elv

Egy tekercs a saját tengelyével azonos irányú mágneses teret hoz létre a benne folyó árammal arányosan.³ A sztátor tekercsek tereit összeadva tetszőleges, a motor tengelyére merőleges irányú teret hozhatunk létre. Hozzunk létre egy forgó mágneses mezőt, gyorsabbat, mint amilyen gyorsan a rotor forog. Ezáltal a rotor szempontjából egy változó mágneses mező látható. Ez feszültséget indukál a rotortekercsekben, ami áramot hoz létre bennük. A sztátor és rotor áramok mechanikai erőt, forgatónyomatékot fognak eredményezni.

Már most látható, hogy a rotor szempontjából, állandósult állapotban két dolog érdekes: a forgó mágneses tér nagysága, és szögsebessége a rotorhoz képest. Minél nagyobb a sebességkülönbség annál nagyobb áramokat gerjeszt a rotortekercsekben.

 $^{^{\}rm 3}$ A vas telítését és más parazitahatásokat elhanyagolva.

3 Aszinkron gép modellje

Ebben a fejezetben a 2.2 pontban, nagyvonalakban ismertetett elvek alapján, a motor alapegyenleteitől kezdve levezetném a motor állandósult állapot béli, majd tranziensekre is érvényes modelljét. Végül ez utóbbiból készült szimulációmat mutatnám be.

3.1 Motor villamos egyenletei

Mind a sztátor mind a rotor tekercsekre felírható az alábbi összefüggés:

$$U = R \cdot i + \frac{d\psi}{dt}$$

3.1 Ábra: álltalános tekercsegyenlet

Ahol U a tekercs kapocsfeszültségét i az áramát, R a tekercs ohmos ellenállását, és ψ a tekercsfluxust jelöli. Amennyiben a tekercsek merőlegesek a motortengelyre, a mágneses térnek nem lesz azzal párhuzamos komponense, azaz egy kétdimenziós koordinátarendszerben ábrázolható. Egy ilyen példa látható a 3.2 Ábra-n. Így, ez a tekercsenkénti egy egyenletből álló egyenletrendszer redukálható összesen két rotor és két sztator egyenletre. Másként megfogalmazva: egy tekercsszámmal megegyező dimenziójú tér redukálható egy kétdimenzióssá. Ugyan így a feszültségek és áramok is ábrázolhatóak ebben a rendszerben a Park-vektorok segítségével.[6]

 ${\it 3.2~\acute{A}bra: \"{o}t~tekercs~mennyis\acute{e}g~(fluxus,\'{a}ram,fesz\"{u}lts\acute{e}g)~\ddot{o}sszege~pol\acute{a}r~koordin\acute{a}ta~rendszerben}$

Lineáris anyagokat, azaz ideális, nem telítődő vasat feltételezve egyszerű, lineáris transzformációval megtehető a redukálás. Álltalános esetben a következő mátrix érvényes:

$$\begin{bmatrix} \cos(\varphi) & \cos(2\varphi) & \cdots & \cos((n-1)\varphi) \\ \sin(\varphi) & \sin(2\varphi) & \cdots & \sin((n-1)\varphi) \\ 1/n & 1/n & \cdots & 1/n \end{bmatrix}$$

3.3 Ábra: Fázismennyiségekből a d-q rendszerbe való transzformálás mátrixa

Ahol: $\varphi = 2\pi/n$ és n a fázisok száma.

Három fázisra a következő mátrix használható:

$$M_{3ph.to.dq} = egin{bmatrix} 1 & -rac{1}{2} & -rac{1}{2} \ 0 & rac{\sqrt{3}}{2} & -rac{\sqrt{3}}{2} \ 1 & 1 & 1 \end{bmatrix}$$

3.4 Ábra: Transzformációs mátrix három fázisra

A két tengely irányát aszinkron motoroknál hagyományosan α és β betűkkel jelölik, de mára elterjedt a szinkron gépektől átvett d (direct) és q (quadrate) rendszer is. [7]

Vagyis, ha minden tekercsmennyiséget egy-egy vektorba rendezünk, és a fenti mátrixal szorozzuk, megkapjuk az egyes mennyiségeket a d-q koordinátarendszerben:

$$\vec{U}_{dq} = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} U_{coil.1} \\ U_{coil.2} \\ U_{coil.3} \end{bmatrix}$$

 $3.5~{
m \acute{A}bra}$: tekercs mennyiségek transzformálása a d-q koordináta rendszerbe

Most már felírhatjuk a 3.1 Ábra-n látható álltalános tekercsegyenleteket, a d-q koordinátarendszerben a 3.5 Ábra-nak megfelelően. [8]

$$ec{U}_s = R_s \cdot \vec{i}_s + rac{d \vec{\psi}_s}{dt}$$
 $ec{U}_r = R_r \cdot \vec{i}_r + rac{d \vec{\psi}_r}{dt}$

3.6 Ábra: sztátor és rotor egyenletek saját koordinátarendszerükben

3.7 Ábra: háromfázisú rotor és sztátor mennyiségek a saját koordináta rendszerükben.[8]

A 3.7 Ábra alapján felírhatjuk a csatolt fluxusokra a következő egyenleteket:

$$\begin{split} \vec{\psi}_s &= \vec{i}_s \cdot L_s + \vec{i}_r \cdot e^{jx} \cdot L_m \\ \\ \vec{\psi}_r &= \vec{i}_r \cdot L_r + \vec{i}_s \cdot e^{-jx} \cdot L_m \end{split}$$

3.8 Ábra: csatolt státor és rotor tekercsek fluxusegyenletei

Ahol L_m a két tekercs kölcsönös induktivitása.

Vezessünk be egy közös koordináta rendszert a 3.9 Ábra-nak megfelelően.

3.9 Ábra: sztátor és rotor koordinátarendszerek viszonya[8]

A közös koordináta rendszer forogjon ω_k a rotor pedig ω_r szögsebességgel.

Az 5.1-es függelékben található levezetés alapján felírhatók az egyenletek ebben a közös koordináta rendszerben:

$$\vec{U}_s = R_s \cdot \vec{i}_s + \frac{d\vec{\psi}_s}{dt} + j\omega_k \vec{\psi}_s$$

$$\vec{U}_r = R_r \cdot \vec{i}_r + \frac{d\vec{\psi}_r}{dt} + j(\omega_k - \omega_r)\vec{\psi}_r$$

$$\vec{\psi}_s = \vec{i}_s \cdot L_s + \vec{i}_r \cdot L_m$$

$$\vec{\psi}_r = \vec{i}_r \cdot L_r + \vec{i}_s \cdot L_m$$

3.10 Ábra: A motor differenciálegyenletrendszere a közös koordinátarendszerben

A fenti egyenletek tetszőleges, forgó koordinátarendszerre érvényesek. A különböző működési módokhoz, állapotokhoz, különböző referenciákat érdemes választani. Alapvetően három kézenfekvő választás adódik. Az első, hogy válasszunk álló koordináta rendszert, rögzítve a sztátorhoz. A második, hogy a rotor mechanikai szögsebességével forgatjuk a koordinátatengelyeket. A harmadik pedig, hogy a mágnesesfluxus vektorához kötjük a rendszert.

Vezessük be az Im-et (mágnesezési áramot)

$$\vec{i}_m = \vec{i}_r + \vec{i}_s, \quad \vec{\psi}_m = \vec{i}_m L_m$$

$$L_{ls} = L_s - L_m, \quad L_{lr} = L_r - L_m$$

$$\vec{\psi}_s = \vec{\psi}_m + \vec{i}_s L_{ls}$$

$$\vec{\psi}_r = \vec{\psi}_m + \vec{i}_r L_{lr}$$

3.11 Ábra: mágnesezési áram

Im = Is+Ir

Ps = IsLs + IrLm = IsLs + (Im-Is)Lm = Is(Ls-Lm) + ImLm = IsLls + ImLm

Ps = ImLm+IrLlr

ImLm = Pm

A 5.2 függelék alapján belátható, hogy eliminálható a rotor szórtinduktivitása⁴. Ezen módosításokat bevezetve a fluxusegyenletek az alábbi formát öltik:

$$ec{\psi_s} = ec{i_s} \cdot L_{ls}^* + ec{i_m}^* \cdot L_m^* \ ec{\psi_r^*} = ec{i_m^*} \cdot L_m^*$$

3.12 Ábra: fluxusegyenletek eliminált szórt rotorinduktivitás esetén

 $^{^4}$ A sztátor szórtinduktivitás is eliminálható hasonló módon. Egyedül az "a" skalár tényező értéke lesz más.

Ezekhez az egyenletekhez készthető egy helyettestő kapcsolás is:

3.13 Ábra: rotor szórtinduktivitás nélküli fluxusmodell[8]

A csillagozott rotoráramok és fluxusok egy skalár tényezőben különböznek a valóditól:

$$\begin{aligned} \vec{i}_m^* &= \vec{i}_s + \vec{i}_r^* \\ \vec{\psi}_r^* &= a \cdot \vec{\psi}_r \\ \vec{i}_r^* &= a \cdot \vec{i}_r \end{aligned}$$

3.14 Ábra: redukált rotor áram és fluxus

A skalártényező megegyezik a főmező- és a rotorinduktivitás hányadosával:

$$a = \frac{L_m}{L_r}$$

3.15 Ábra: redukálási tényező

Az induktivitások redukált értékei a 3.16 Ábra szerint alakulnak:

$$L_{ls}^* = \sigma L_s$$

$$L_m^* = (1 - \sigma)L_s$$

$$\sigma = 1 - \frac{L_m^2}{L_r L s}$$

3.16 Ábra: redukált induktivitások

Commented [BR1]: i/a

A további fejezetekben a fenti egyenletrendszert fogom tovább alakítani, egyszerűsíteni.

3.2 Motor modell állandósult állapotban

Állandósult állapotban a gerjesztés vektora, azaz a sztátor feszültség konstans amplitúdóval, fix fordulatszámmal forog. Ezt a szinkron szögsebességet jelöljük ω_1 -gyel.

Írjuk fel a 3.10 Ábra egyenleteit néhány egyszerűsítést bevezetve. Használjuk az eliminált rotorinduktivitással felírt fluxusegyenleteket. A közös koordinátarendszer forogjon a szinkron szögsebességgel. ω_s jelölje a slipfrekvenciát vagyis a szinkron és a rotor szögsebesség különbségét. $\omega_s = \omega_1 - \omega_r$. Ebben a szinkron koordinátarendszerben a fluxusok is konstansok lesznek állandósult állapotban, azaz, a deriváltjaik zérus lesz.

$$\begin{split} \vec{U_s} &= R_s \cdot \vec{i_s} + j\omega_1 \vec{\psi_s} \\ \vec{U_r}^* &= R_r^* \cdot \vec{i_r}^* + j\omega_s \vec{\psi_r}^* = 0 \\ \vec{\psi_s} &= \vec{i_s} \cdot L_{ls}^* + \vec{i_m}^* \cdot L_m^* \\ \vec{\psi_r}^* &= \vec{i_m}^* \cdot L_m^* \end{split}$$

3.17 Ábra: motoregyenletek állandósult állapotban

3.3 Álltalános motor modell

Írjuk fel a motoregyenleteket a 3.18 Ábra-n látható alakba.

$$\frac{d\vec{x}}{dt} = A \cdot \vec{x} + B \cdot \vec{u}$$

3.18 Ábra: Álltalános rendszer leríás A és B mátrixokkal

Legyenek az állapotváltozók és a bemenetek vektorai a 3.19 Ábra szerintiek.

$$ec{x} = egin{bmatrix} i_{sd} \ i_{rq} \ \psi_{rd} \ \psi_{rq} \end{bmatrix}, ec{u} = egin{bmatrix} u_{sd} \ u_{sq} \end{bmatrix}$$

3.19 Ábra: állapotváltozók és a bemenetek vektorai

Levezethető, hogy az A és B mátrixok a következők lesznek.[8]

$$A = \begin{bmatrix} \frac{L_m R_r}{L_r} & 0 & -\frac{R_r}{L_r} & (\omega_k - \omega_r) \\ 0 & \frac{L_m R_r}{L_r} & (-\omega_k - \omega_r) & -\frac{R_r}{L_r} \\ \frac{R''}{\sigma L_s} & \omega_k & \frac{L_m R_r}{L_r^2 \sigma L_s} & \frac{\omega_r L_m}{L_r \sigma L_s} \\ -\omega_k & \frac{R''}{\sigma L_s} & -\frac{\omega_r L_m}{L_r \sigma L_s} & \frac{L_m R_r}{L_r^2 \sigma L_s} \end{bmatrix}, B = \begin{bmatrix} \frac{1}{\sigma L_s} & 0 \\ 0 & \frac{1}{\sigma L_s} \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

3.20 Ábra: Az A és B mátrixok

Az egyes betűk jelentései a

L _m	Főmező induktivitás
Ls	Sztátor szórt induktivitás
Lr	Rotor szórt induktivitás
R _r	Rotor ellenállás
$\omega_{\rm r}$	Rotor (tengely) szögsebessége
$\omega_{\mathbf{k}}$	Koordinátarendszer szögsebessége

3.21 Ábra: Motorparaméterek és jelölésük

A maradék két változóra az alábbi összefüggés igaz.

$$R'' = \frac{L_m^2}{L_r^2} R_r + R_s$$

$$\sigma = 1 - \frac{L_m^2}{L_s L_r}$$

3.22 Ábra: R" és 6

3.4 Motor mechanikai egyenletei

A teljes elektromechanikai modellhez szűkségünk van még a motor mechanikai modelljére is ezért nézzük meg a motor mechanikai egyenleteit.

Két áramjárta vezető között fellépő erő a következő egyenlettel írható fel. [9]

$$F = l \cdot B \times i$$

3.23 Ábra: l hosszú, áramjárta vezetőre ható erő mágneses térben

Innen levezethető az alábbi összefüggés:[10][11]

$$\vec{M} = \vec{L}_m \cdot \vec{i_1} \times \vec{i_2}$$
 $\vec{M} = \vec{i_1} \times \vec{\psi_m}$

3.24 Ábra két, Lm kölcsönös induktivitású tekercs között fellépő forgatónyomaték

A vektoriális szorzat helyett használjuk a q és q irányú komponenseket, valamint vegyük figyelembe, hogy egy motorban minden póluspárra hat a 3.24 Ábra-n látható forgatónyomaték. Jelöljük a póluspárok számát p-vel. Így a motorra a következő egyenlet érvényes:

$$M = p \cdot (\psi_{sd}i_{sq} - \psi_{sq}i_{sd})$$

3.25 Ábra: A motor induktivitása

Ahol M a motor által leadott nyomaték. Ez három komponenssel tart egyensúlyt. 5

$$M = M_t + B\omega_r + J\frac{d\omega_r}{dt}$$

3.26 Ábra: A motor dinamikai egyenlete

Az első az M_t -vel jelölt terhelőnyomaték. A második tagban B-vel a fordulatszámmal arányos surlódást jelölöm. A harmadi tag a motor gyorsulását írja le, ahol J a rendszer inerciája, másnéven a tehetetlenségi nyomatéka.

⁵ Csak az elsőrendű surlódást figyelembe véve.

3.5 Matlab szimuláció

A 3.3 pontban ismertetett egyenletek alapján késztettem el egy szimulációt a Matlab® Simulink® programmal.

A szimuláció d-q, álló koordinátarendszerben számol, vagyis egy kétfázisú motornak tekinthető. Más fazisszámú motor szimulációjához a motor elé kell kötni egy transzformációs mátrixot, a 3.3 Ábra-nak megfelelően. A modell két nagyobb blokkból áll, amint ez a 3.27 Ábra-n látszik: az egyik az elektromos, a másik a mechanikai viselkedésért felelős.

3.27 Ábra: az aszinkron motor áttekintő blokkvázlata

A motor bemenetei a feszültség d, és q komponensei, kimenetei pedig a d és q áramok, valamint a rotor pozíciója, és a szögsebessége.

A "Motor Electric" blokk számolja a 3.3 pontban ismertetett modellt egy kis módostással. Az ott bemutatott modell az állapotváltozóknak csak a deriváltjait tartalmazzam, de explicit értéküket nem. Integráljuk a 3.18 Ábra-n látható egyenlet mindkét oldalát. Ha feltesszük, hogy kezdetben a rendszer gerjesztettlen volt, az állapotváltozók időfüggvényét, a 3.28 Ábra alapján kaphatjuk meg.

$$\vec{x}(t) = \int_0^t (A \cdot \vec{x}(\tau) + B \cdot \vec{u}(\tau)) d\tau$$

 $3.28~{
m \acute{A}bra}$: Gerjesztettlen rendszer állapotváltozóinak explicit egyenlete

A fenti összefüggésből látható, hogy az egyes állapotváltozók, egy-egy integrátor kimenetei lesznek, melyeket egy-egy összegző táplál. Ennek megfelelően készítettem el az elektromágneses modellt, melynek blokkvázlata a 3.29 Ábra-n látható.

3.29 Ábra: a motor elektromágneses modellje

A különböző színek az egyes állapotváltozókat jelölik. A zöld és piros rendre a sztátoráram d és q komponensét, a sötét- és világoskék pedig rendre a rotorfluxus d és q komponensét jelzik.

A modellben az erősítéseket paraméteresen adtam meg, azaz a Matlab® munkaváltozóit használják. Így ezeket megváltoztatva, tetszőleges paraméterű motor szimulálására alkalmas.

A 3.30 Ábra a motor mechanikus modelljét mutatja a 3.4 pontban bemutatottaknak megfelelően.

 $3.30~{
m \acute{A}bra}$: a motor mechanikai modellje

4 Vezérlési stratégiák

A következő pontokban néhány vezérlési lehetőséget mutatok be az aszinkron motorokhoz.

4.1 Állandó frekvenciájú hálózati táplálás

Az aszinkron motorok nagy előnye, hogy mindenféle indítómotor és vezérlés nélkül el tudnak indulni egy állandó frekvenciával működő hálózatról is. Elsőként egy ilyen táplálást szimuláltam le.

A hálózat szimulálásához – melynek 45 rad/sec-os körfrekvencia és 300V amplitúdó értékeket válaszottam – az 5.3 függelékben ismertetett blokkot használtam

4.1 Állandó paraméterű hálózati táplálás modellje

A 4.2 Ábra mutatja a bemeneti feszültség időfüggvényeket a d-q koordinátarendszerben. Látható, hogy a két függvény azonos amplitúdójú, csak időben 90 fokkal el van tolva a q komponens.

 $4.2~\mathrm{\acute{A}bra}{:}~45~\mathrm{rad/sec}~300~\mathrm{V}$ amplitúdójú táplálás a d-q koordinátarendszerben

A 4.3 Ábra mutatja a szimuláció kimenetét.

 $4.3~\mathrm{Åbra}\colon 45~\mathrm{rad/sec}\ 300~\mathrm{V}$ amplitúdójú táplálásról való indulás szimulációs kimenete

Érdemes megfigyelni a nagy kezdeti áramot, mely közelítőleg kétszerese az állandósultállapot bélinek. Látható, hogy a tranziensek lezajlása után sem éri el a rotor a hálózati frekvenciát. Ez mindaddig így van, amíg van terhelés, vagy veszteség a motorban. A slip értéke: s=-8E-3.

4.2 PWM vezérlés

Megvalósítás szempontjából az 5.3 függelékben bemutatott változtatható paraméterű táplálás nem triviális. Folytonos erősítéssel nagy veszteségeink lennének. Ezért alkalmaznak impulzusszélesség-modulációt (pulse width modulation). Lényege, hogy gyorsan váltakoztatva kapcsolják a fázisfeszültségeket a pozitív és a negatív sínre, úgy hogy átlagértékben kiadja a kívánt feszültségértéket.

4.3 V/F vezérlés

- 4.4 Fluxus
- 4.5 Áram
- 4.6 Szimuláció

5 Összegzés

Irodalomjegyzék

- [1] BME-VIK-VET: A villamos gépek alaptípusai, https://vet.bme.hu/drupal/sites/default/files/tantargyi_fajlok/VillGepekKiegV10.p df (2016. nov.)
- [2] BME-VIK-VET: Korszerű villamos gépek és hajtások,
 https://vet.bme.hu/sites/default/files/tantargyi_fajlok/sze%2C%202016/03/30%20
 -%2013%3A18/KVGH_Ch1%20ElMechElm%202016%20tavasz.pdf (2016.
 nov.)
- [3] Wikipedia: *Induction motor*, https://en.wikipedia.org/wiki/Induction_motor (2016. nov)
- [4] Kép: *Csúszógyűrűs motor*, http://2.bp.blogspot.com/_h6Rnyooa-s4/S19wgnkuZBI/AAAAAAAAAAC0/BWOsIUKu_i4/s320/B_WOU1.jpg (2016. nov.)
- [5] Quora: Kalickás rotor, https://qph.ec.quoracdn.net/main-qimg-2bd11901ce5362393e93c178b42dc083?convert_to_webp=true (2016. nov.)
- [6] BME-VIK-VET: A HÁROMFÁZISÚ VEKTOROK MÓDSZERE, https://vet.bme.hu/sites/default/files/oktatashirek/parkvektor.pdf (2016. nov.)
- [7] BME: Szinkron gépek modellezése, http://www.vgt.bme.hu/okt/mod_szim/szinkron.pdf (2016. nov.)
- [8] BME-MOGI: Chapter 7. Modelling Induction Motors, http://mogi.bme.hu/TAMOP/digitalis-szervo-hajtasok-angol/ch07.html (2016. nov.)
- [9] Georgina State University: *Magnetic Force on a Current-Carrying Wire*, http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/forwir2.html (2016. nov.)
- [10] Physicspages: Force between current loops: Newton's third law, http://www.physicspages.com/2013/04/18/force-between-current-loops-newtons-third-law/ (2016. nov.)
- [11] Wikipedia: Inductance, https://en.wikipedia.org/wiki/Inductance (2016. nov.)

[12]

[13] Levendovszky, J., Jereb, L., Elek, Zs., Vesztergombi, Gy.: *Adaptive statistical algorithms in network reliability analysis*, Performance Evaluation - Elsevier, Vol. 48, 2002, pp. 225-236

Függelék

5.1 Közös koordináta rendszerbe való áttérés

5.2 Rotor szórtinduktivitás eliminálása

5.3 Tetszőleges háromfázisú táplálás szimulációs modellje

Késztettem egy több vezérlési módhoz használható blokkot, melynek bemenetei a hálózati frekvencia (rad/sec-ban) és amplitúdója (V-ban), kimenetei pedig egy háromfázisú rendszer fázisfeszültségei.

5.1 Ábra: kimenetek és bemenetek

A modellt úgy késztettem el, hogy a bemeneti paraméterek időben folytonosan változtathatóak legyenek. A modellt mutatja a 5.2 Ábra.

5.2 Ábra: időben változtatható frekvenciájú és amplitúdójú táplálás modellje