

Vorlesung 6 - Relationen und Funktionen

Diskrete Strukturen (WS 2023-24)

Łukasz Grabowski

Mathematisches Institut

Diskrete Strukturen

1. Wiederholung

- 4. Injektivität, Surjektivität, Bijektivität
- 5. Komposition von Funktionen

• Seien M und N zwei Mengen

• Seien M und N zwei Mengen (möglicherweise mit M=N).

• Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist

• Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R \subseteq M \times N$.

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R \subseteq M \times N$.
- Ist M=N, so heißt R auch Relation auf M.

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R\subseteq M\times N$.
- Ist M=N, so heißt R auch Relation auf M.
- Statt $(m,n) \in R$

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R\subseteq M\times N$.
- Ist M=N, so heißt R auch Relation auf M.
- Statt $(m,n) \in R$ schreiben wir auch

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R \subseteq M \times N$.
- Ist M=N, so heißt R auch Relation auf M.
- Statt $(m, n) \in R$ schreiben wir auch m R n

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R \subseteq M \times N$.
- Ist M=N, so heißt R auch Relation auf M.
- Statt $(m,n) \in R$ schreiben wir auch m R n oder R(m,n)

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R \subseteq M \times N$.
- Ist M=N, so heißt R auch Relation auf M.
- ·
- Statt $(m,n) \in R$ schreiben wir auch m R n oder R(m,n) oder $m \sim_R n$.

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R\subseteq M\times N$.
- Ist M=N, so heißt R auch Relation auf M.
- Statt $(m,n) \in R$ schreiben wir auch $m \ R \ n$ oder R(m,n) oder $m \sim_R n$. Analog $m \not \! R \ n$.

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R \subseteq M \times N$.
- Ist M=N, so heißt R auch Relation auf M.
- Statt $(m,n) \in R$ schreiben wir auch $m \ R \ n$ oder R(m,n) oder $m \sim_R n$. Analog $m \not R n$.
- Beispiel: die Menge

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R \subseteq M \times N$.
- Ist M=N, so heißt R auch Relation auf M.
- Statt $(m,n) \in R$ schreiben wir auch m R n oder R(m,n) oder $m \sim_R n$. Analog $m \not R n$.
- Beispiel: die Menge $\{(n,n')\in\mathbb{N}\times\mathbb{N}\mid n\leq n'\}$

Diskrete Strukturen | Wiederholung

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R \subseteq M \times N$.
- Ist M=N, so heißt R auch Relation auf M.
- Statt $(m,n) \in R$ schreiben wir auch m R n oder R(m,n) oder $m \sim_R n$. Analog $m \not R n$.
- Beispiel: die Menge $\{(n, n') \in \mathbb{N} \times \mathbb{N} \mid n \leq n'\}$ ist eine Relation auf \mathbb{N} .

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R \subseteq M \times N$.
- Ist M=N, so heißt R auch Relation auf M.
- Statt $(m,n) \in R$ schreiben wir auch m R n oder R(m,n) oder $m \sim_R n$. Analog $m \not R n$.
- Beispiel: die Menge $\{(n,n')\in\mathbb{N}\times\mathbb{N}\mid n\leq n'\}$ ist eine Relation auf \mathbb{N} .
- Beispiel: die Freund-Relation auf der Menge ${\cal F}$ der Facebook-Nutzer
- Despire de l'edite de de l'edite de l'edite

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R \subseteq M \times N$.
- Ist M=N, so heißt R auch Relation auf M.
- Statt $(m,n) \in R$ schreiben wir auch m R n oder R(m,n) oder $m \sim_R n$. Analog m R n.
- Beispiel: die Menge $\{(n, n') \in \mathbb{N} \times \mathbb{N} \mid n \leq n'\}$ ist eine Relation auf \mathbb{N} .
- Beispiel: die Freund-Relation auf der Menge F der Facebook-Nutzer

 - $\{(x,y) \in F \times F \mid x \text{ ist Facebook-Freund von } y\}$

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R \subseteq M \times N$.
- Ist M=N, so heißt R auch Relation auf M.
- Statt $(m,n) \in R$ schreiben wir auch m R n oder R(m,n) oder $m \sim_R n$. Analog m R n.
- Beispiel: die Menge $\{(n, n') \in \mathbb{N} \times \mathbb{N} \mid n \leq n'\}$ ist eine Relation auf \mathbb{N} .
- Beispiel: die Freund-Relation auf der Menge F der Facebook-Nutzer
 - $\{(x,y) \in F \times F \mid x \text{ ist Facebook-Freund von } y\}$
- ist eine Relation.

Relation von M nach N

Relation von M nach N

Relation auf $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Relation auf $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Reflexivität: Alle Elemente haben Schleifen.

Symmetrie: Jeder Pfeil ist beidseitig.

Transitivität: Für jeden Weg existiert auch der direkte Weg.

Operation: Inversion R^{-1} von einer Relation R.

Operation: Inversion R^{-1} von einer Relation R.

Operation: Inversion R^{-1} von einer Relation R.

Operation:

Operation: Komposition von ${\cal R}$

Diskrete Strukturen

Operation: Komposition von R gefolgt von R^\prime ,

Diskrete Strukturen

Operation: Komposition von R gefolgt von R', wobei $R \subseteq M \times N$

Operation: Komposition von R gefolgt von R', wobei $R \subseteq M \times N$ und

Diskrete Strukturen | Wiederholung

Operation: Komposition von R gefolgt von R', wobei $R\subseteq M\times N$ und $R'\subseteq N\times P$.

Operation: Komposition von R gefolgt von R', wobei $R \subseteq M \times N$ und $R' \subseteq N \times P$.

Diskrete Strukturen

Diskrete Strukturen

- 1. Wiederholung
- 2. Äquivalenzrelationen und Zerlegungen
- 3. Funktionen Definition
- 4. Injektivität, Surjektivität, Bijektivität
- 5. Komposition von Funktionen
- 6. Invertierung von Funktionen

• Eine Relation \equiv auf M

• Eine Relation \equiv auf M ist eine Äquivalenzrelation,

• Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie

• Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv,

• Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und

• Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist.

- Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist.
- Für $m \in M$, die Äguivalenzklasse von m

- Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist.
- Für $m \in M$, die Äquivalenzklasse von m ist die Menge:

 $[m]_{\equiv} :=$

- Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist.
- Für $m \in M$, die Äquivalenzklasse von m ist die Menge:

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

• Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist.

• Für $m \in M$, die Äquivalenzklasse von m ist die Menge:

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

- Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist.
- Für $m \in M$, die Äquivalenzklasse von m ist die Menge:

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

$$(M/\equiv) :=$$

- Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist.
- Für $m \in M$, die Äquivalenzklasse von m ist die Menge:

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

$$(M/\equiv) := \{ [m]_{\equiv} \mid m \in M \}$$

- Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist.
- Für $m \in M$, die Äquivalenzklasse von m ist die Menge:

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

$$(M/\equiv) := \{[m]_{\equiv} \mid m \in M\}$$

"Ouotient von M durch \equiv ".

- Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist.
- Für $m \in M$, die Äquivalenzklasse von m ist die Menge:

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

$$(M/\equiv):=\{[m]_{\equiv}\mid m\in M\}$$

- "Quotient von M durch \equiv ".
- Beispiel:

- Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist.
- Für $m \in M$, die Äquivalenzklasse von m ist die Menge:

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

$$(M/\equiv) := \{ [m]_{\equiv} \mid m \in M \}$$

- "Ouotient von M durch \equiv ".

• Beispiel: $(\mathbb{N}/R_2) =$

- Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist.
- Für $m \in M$, die Äquivalenzklasse von m ist die Menge:

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

$$(M/\equiv) := \{ [m]_{\equiv} \mid m \in M \}$$

- "Quotient von M durch \equiv ".
- Beispiel: $(\mathbb{N}/R_2) = \{\{0, 2, 4, 6, \ldots\}, \{1, 3, 5, 7, \ldots\}\}$

• In der letzter Vorlesung

Theorem

Theorem

Sei M eine nicht leere Menge

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M.

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M. Dann ist (M/\equiv) eine Zerlegung von M.

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M. Dann ist (M/\equiv) eine Zerlegung von M.

· Jetzt werden wir sehen,

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M. Dann ist (M/\equiv) eine Zerlegung von M.

Jetzt werden wir sehen, dass für jede Zerlegung

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M. Dann ist (M/\equiv) eine Zerlegung von M.

• Jetzt werden wir sehen, dass für jede Zerlegung kann man eine Äquivalenzrelation definieren,

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M. Dann ist (M/\equiv) eine Zerlegung von M.

• Jetzt werden wir sehen, dass für jede Zerlegung kann man eine Äquivalenzrelation definieren, deren Äquivalenzklassen geben uns

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M. Dann ist (M/\equiv) eine Zerlegung von M.

• Jetzt werden wir sehen, dass für jede Zerlegung kann man eine Äquivalenzrelation definieren, deren Äquivalenzklassen geben uns die ursprüngliche Zerlegung.

Theorem

Sei M eine nicht leere Menge,

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M. Dann ist (M/\equiv) eine Zerlegung von M.

• Jetzt werden wir sehen, dass für jede Zerlegung kann man eine Äquivalenzrelation definieren, deren Äquivalenzklassen geben uns die ursprüngliche Zerlegung.

Theorem

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M.

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M. Dann ist (M/\equiv) eine Zerlegung von M.

• Jetzt werden wir sehen, dass für jede Zerlegung kann man eine Äquivalenzrelation definieren, deren Äquivalenzklassen geben uns die ursprüngliche Zerlegung.

Theorem

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M. Dann ist (M/\equiv) eine Zerlegung von M.

• Jetzt werden wir sehen, dass für jede Zerlegung kann man eine Äquivalenzrelation definieren, deren Äquivalenzklassen geben uns die ursprüngliche Zerlegung.

Theorem

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M. Dann ist (M/\equiv) eine Zerlegung von M.

• Jetzt werden wir sehen, dass für jede Zerlegung kann man eine Äquivalenzrelation definieren, deren Äquivalenzklassen geben uns die ursprüngliche Zerlegung.

Theorem

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M. Dann ist (M/\equiv) eine Zerlegung von M.

• Jetzt werden wir sehen, dass für jede Zerlegung kann man eine Äquivalenzrelation definieren, deren Äquivalenzklassen geben uns die ursprüngliche Zerlegung.

Theorem

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

Anders geschrieben:

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M. Dann ist (M/\equiv) eine Zerlegung von M.

• Jetzt werden wir sehen, dass für jede Zerlegung kann man eine Äquivalenzrelation definieren, deren Äquivalenzklassen geben uns die ursprüngliche Zerlegung.

Theorem

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M: $x\equiv y\iff \exists N\in\mathcal K\colon x,y\in N$

Anders aeschrieben:

$$\equiv := \{(x,y) \in M \times M \colon \exists N \in \mathcal{K} \mathsf{mit} \ x,y \in N \}$$

Sei M eine nicht leere Menge,

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M.

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

Beweis.

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

Beweis. Offensichtlich ist \equiv eine Relation auf M.

Reflexivität:

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

Beweis. Offensichtlich ist \equiv eine Relation auf M.

• Reflexivität: Sei $x \in M$.

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

Beweis. Offensichtlich ist \equiv eine Relation auf M.

• Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

Beweis. Offensichtlich ist \equiv eine Relation auf M.

• Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$

Sei M eine nicht leere Menge, und sei K eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

Beweis. Offensichtlich ist \equiv eine Relation auf M.

• Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$.

Sei M eine nicht leere Menge, und sei K eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

Beweis. Offensichtlich ist \equiv eine Relation auf M.

• Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.

Sei M eine nicht leere Menge, und sei K eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie:

Sei M eine nicht leere Menge, und sei K eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x \equiv u$.

Sei M eine nicht leere Menge, und sei K eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x \equiv y$. Dann existiert $N \in \mathcal{K}$

Sei M eine nicht leere Menge, und sei K eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x \equiv y$. Dann existiert $N \in \mathcal{K}$ mit $\{x, y\} \subseteq N$.

Sei M eine nicht leere Menge, und sei K eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x \equiv y$. Dann existiert $N \in \mathcal{K}$ mit $\{x, y\} \subseteq N$. Folglich auch $y \equiv x$.

Sei M eine nicht leere Menge, und sei K eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x\equiv y$. Dann existiert $N\in\mathcal{K}$ mit $\{x,\,y\}\subseteq N$. Folglich auch $y\equiv x$.
- Transitivität:

Sei M eine nicht leere Menge, und sei K eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x \equiv y$. Dann existiert $N \in \mathcal{K}$ mit $\{x, y\} \subseteq N$. Folglich auch $y \equiv x$.
- Transitivität: Seien $x \equiv y$ und $y \equiv z$.

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x \equiv y$. Dann existiert $N \in \mathcal{K}$ mit $\{x, y\} \subseteq N$. Folglich auch $y \equiv x$.
- Transitivität: Seien $x \equiv y$ und $y \equiv z$. Also existieren $N, N' \in \mathcal{K}$ mit $\{x, y\} \subseteq N$ und $\{y, z\} \subseteq N'$.

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x \equiv y$. Dann existiert $N \in \mathcal{K}$ mit $\{x, y\} \subseteq N$. Folglich auch $y \equiv x$.
- Transitivität: Seien $x\equiv y$ und $y\equiv z$. Also existieren $N,N'\in\mathcal{K}$ mit $\{x,\,y\}\subseteq N$ und $\{y,\,z\}\subseteq N'$. Da $y\in N\cap N'$,

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x \equiv y$. Dann existiert $N \in \mathcal{K}$ mit $\{x, y\} \subseteq N$. Folglich auch $y \equiv x$.
- Transitivität: Seien $x\equiv y$ und $y\equiv z$. Also existieren $N,N'\in\mathcal{K}$ mit $\{x,\,y\}\subseteq N$ und $\{y,\,z\}\subseteq N'$. Da $y\in N\cap N'$, sind N und N' nicht disjunkt,

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x \equiv y$. Dann existiert $N \in \mathcal{K}$ mit $\{x, y\} \subseteq N$. Folglich auch $y \equiv x$.
- Transitivität: Seien $x \equiv y$ und $y \equiv z$. Also existieren $N, N' \in \mathcal{K}$ mit $\{x, y\} \subseteq N$ und $\{y, z\} \subseteq N'$. Da $y \in N \cap N'$, sind N und N' nicht disjunkt, und so gilt N = N'.

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x \equiv y$. Dann existiert $N \in \mathcal{K}$ mit $\{x, y\} \subseteq N$. Folglich auch $y \equiv x$.
- Transitivität: Seien $x \equiv y$ und $y \equiv z$. Also existieren $N, N' \in \mathcal{K}$ mit $\{x, y\} \subseteq N$ und $\{y, z\} \subseteq N'$. Da $y \in N \cap N'$, sind N und N' nicht disjunkt, und so gilt N = N'. Folglich $\{x, z\} \subseteq N$ und damit

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x \equiv y$. Dann existiert $N \in \mathcal{K}$ mit $\{x, y\} \subseteq N$. Folglich auch $y \equiv x$.
- Transitivität: Seien $x \equiv y$ und $y \equiv z$. Also existieren $N, N' \in \mathcal{K}$ mit $\{x, y\} \subseteq N$ und $\{y, z\} \subseteq N'$. Da $y \in N \cap N'$, sind N und N' nicht disjunkt, und so gilt N = N'. Folglich $\{x, z\} \subseteq N$ und damit $x \equiv z$.

Sei M eine nicht leere Menge, und sei K eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x \equiv y$. Dann existiert $N \in \mathcal{K}$ mit $\{x, y\} \subseteq N$. Folglich auch $y \equiv x$.
- Transitivität: Seien $x \equiv y$ und $y \equiv z$. Also existieren $N, N' \in \mathcal{K}$ mit $\{x, y\} \subseteq N$ und $\{y, z\} \subseteq N'$. Da $y \in N \cap N'$, sind N und N' nicht disjunkt, und so gilt N = N'.
- Folglich $\{x,\,z\}\subseteq N$ und damit $\,x\equiv z.$

Diskrete Strukturen 1. Wiederholung 3. Funktionen - Definition 4. Injektivität, Surjektivität, Bijektivität 5. Komposition von Funktionen

6. Invertierung von Funktionen

• Seien M und N Mengen.

• Seien M und N Mengen. Eine Funktion

• Seien M und N Mengen. Eine Funktion (oder eine Abbildung)

• Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass

• Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$

• Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R\subseteq M\times N$ mit der Eigenschaft dass für jedes $m\in M$ genau ein $n\in N$ existiert,

• Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R\subseteq M\times N$ mit der Eigenschaft dass für jedes $m\in M$ genau ein $n\in N$ existiert, so dass $(m,n)\in R$.
- · Anders gesagt:

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R\subseteq M\times N$ mit der Eigenschaft dass für jedes $m\in M$ genau ein $n\in N$ existiert, so dass $(m,n)\in R$.
- Anders gesagt: Für jedes $m \in M$

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m, n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität)

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit m R n

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m, n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit m R n (Eindeutigkeit)

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit m R n (Eindeutigkeit)
 - ► Totalität:

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit m R n (Eindeutigkeit)
 - ► Totalität:

 $\forall m \in M$

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit $m \ R \ n$ (Eindeutigkeit)
 - ► Totalität:

$$\forall m \in M \, \exists n \in N$$

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit $m \ R \ n$ (Eindeutigkeit)
 - ► Totalität:

$$\forall m \in M \,\exists n \in N \, R(m,n)$$

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit $m \ R \ n$ (Eindeutigkeit)
 - ► Totalität:

$$\forall m \in M \, \exists n \in N \, R(m, n)$$

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit $m \ R \ n$ (Eindeutigkeit)
 - ► Totalität:

$$\forall m \in M \, \exists n \in N \, R(m, n)$$

$$\forall m \in M$$
,

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit $m \ R \ n$ (Eindeutigkeit)
 - ► Totalität:

$$\forall m \in M \, \exists n \in N \, R(m, n)$$

$$\forall m \in M, x, y \in N$$
:

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit $m \ R \ n$ (Eindeutigkeit)
 - ► Totalität:

$$\forall m \in M \, \exists n \in N \, R(m, n)$$

$$\forall m \in M, x, y \in N \colon R(m, x)$$

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit $m \ R \ n$ (Eindeutigkeit)
 - ► Totalität:

$$\forall m \in M \, \exists n \in N \, R(m, n)$$

$$\forall m \in M, x, y \in N \colon R(m, x) \land$$

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit $m \ R \ n$ (Eindeutigkeit)
 - ► Totalität:

$$\forall m \in M \, \exists n \in N \, R(m, n)$$

$$\forall m \in M, x, y \in N \colon R(m, x) \land R(m, y)$$

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit $m \ R \ n$ (Eindeutigkeit)
 - ► Totalität:

$$\forall m \in M \, \exists n \in N \, R(m, n)$$

$$\forall m \in M, x, y \in N \colon R(m, x) \land R(m, y) \rightarrow$$

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit $m \ R \ n$ (Eindeutigkeit)
 - ► Totalität:

$$\forall m \in M \, \exists n \in N \, R(m, n)$$

$$\forall m \in M, x, y \in N \colon R(m, x) \land R(m, y) \rightarrow x = y$$

Beispiele.

ullet Sei B die Menge der Bundesbürger.

Beispiele.

Beispiele.

ullet Sei B die Menge der Bundesbürger. Wir haben die Relation

Beispiele.

ullet Sei B die Menge der Bundesbürger. Wir haben die Relation

 $\{(p,n) \in B \times \mathbb{N} \mid p \text{ hat Identifikationsnummer } n\}$

 $\{(p,n)\in B imes \mathbb{N}\mid p \text{ hat Identifikationsnummer } n\}$

von B nach \mathbb{N} .

Beispiele.

Diskrete Strukturen | Funktionen - Definition

Beispiele.

• Sei B die Menge der Bundesbürger. Wir haben die Relation

 $\{(p,n) \in B \times \mathbb{N} \mid p \text{ hat Identifikationsnummer } n\}$

von B nach \mathbb{N} . Das ist eine Funktion.

$$\{(p,n)\in B imes\mathbb{N}\mid p \text{ hat Identifikations number }n\}$$

von B nach \mathbb{N} . Das ist eine Funktion.

Keine Funktion:

Beispiele.

$$\big\{(p,n)\in B\times \mathbb{N}\mid p \text{ hat Identifikations nummer } n\big\}$$

von B nach \mathbb{N} . Das ist eine Funktion.

· Keine Funktion: die Freund-Relation

$$\big\{(x,y)\in F\times F\mid x \text{ ist Facebook-Freund von }y\big\}$$

$$\big\{(p,n)\in B\times \mathbb{N}\mid p \text{ hat Identifikations nummer } n\big\}$$

von B nach \mathbb{N} . Das ist eine Funktion.

· Keine Funktion: die Freund-Relation

Beispiele.

$$\big\{(x,y)\in F\times F\mid x \text{ ist Facebook-Freund von }y\big\}$$

auf der Menge der Facebook-Nutzer ${\cal F}$.

$$\big\{(p,n)\in B\times\mathbb{N}\mid p \text{ hat Identifikations nummer }n\big\}$$

von B nach \mathbb{N} . Das ist eine Funktion.

· Keine Funktion: die Freund-Relation

$$\big\{(x,y)\in F\times F\mid x \text{ ist Facebook-Freund von }y\big\}$$

auf der Menge der Facebook-Nutzer F. Es wäre eine Funktion nur wenn jeder Facebook-Benutzer genau einen Freund hätte.

$$\big\{(p,n)\in B\times \mathbb{N}\mid p \text{ hat Identifikations nummer } n\big\}$$

von B nach \mathbb{N} . Das ist eine Funktion.

· Keine Funktion: die Freund-Relation

$$\big\{(x,y)\in F\times F\mid x \text{ ist Facebook-Freund von }y\big\}$$

auf der Menge der Facebook-Nutzer ${\cal F}$. Es wäre eine Funktion nur wenn jeder Facebook-Benutzer genau einen Freund hätte.

Die Relation

$$\big\{(p,n)\in B\times \mathbb{N}\mid p \text{ hat Identifikations nummer } n\big\}$$

von B nach \mathbb{N} . Das ist eine Funktion.

· Keine Funktion: die Freund-Relation

$$\big\{(x,y)\in F\times F\mid x \text{ ist Facebook-Freund von }y\big\}$$

auf der Menge der Facebook-Nutzer ${\cal F}$. Es wäre eine Funktion nur wenn jeder Facebook-Benutzer genau einen Freund hätte.

• Die Relation $R = \{(n, n') \mid n \in \mathbb{N}, n' = 2n\}$

$$\big\{(p,n)\in B\times \mathbb{N}\mid p \text{ hat Identifikations nummer } n\big\}$$

von B nach \mathbb{N} . Das ist eine Funktion.

• Keine Funktion: die Freund-Relation

$$ig\{(x,y)\in F imes F\mid x ext{ ist Facebook-Freund von }yig\}$$

auf der Menge der Facebook-Nutzer ${\cal F}$. Es wäre eine Funktion nur wenn jeder Facebook-Benutzer genau einen Freund hätte.

• Die Relation $R = \{(n,n') \mid n \in \mathbb{N}, \, n' = 2n\}$ ist eine Funktion.

Beispiele.
Sei B die Menge der Bundesbürger. Wir haben die Relation

$$\big\{(p,n)\in B\times \mathbb{N}\mid p \text{ hat Identifikations nummer } n\big\}$$

von B nach \mathbb{N} . Das ist eine Funktion.

· Keine Funktion: die Freund-Relation

$$\big\{(x,y)\in F imes F\mid x \text{ ist Facebook-Freund von }y\big\}$$

auf der Menge der Facebook-Nutzer ${\cal F}$. Es wäre eine Funktion nur wenn jeder Facebook-Benutzer genau einen Freund hätte.

• Die Relation $R = \{(n, n') \mid n \in \mathbb{N}, n' = 2n\}$ ist eine Funktion. f(x) = 2x.

- Sei ${\cal B}$ die Menge der Bundesbürger. Wir haben die Relation

$$\big\{(p,n)\in B\times \mathbb{N}\mid p \text{ hat Identifikationsnummer } n\big\}$$

von B nach \mathbb{N} . Das ist eine Funktion.

• Keine Funktion: die Freund-Relation

Beispiele.

$$\big\{(x,y)\in F imes F\mid x \text{ ist Facebook-Freund von }y\big\}$$

auf der Menge der Facebook-Nutzer ${\cal F}$. Es wäre eine Funktion nur wenn jeder Facebook-Benutzer genau einen Freund hätte.

- Die Relation $R = \{(n, n') \mid n \in \mathbb{N}, n' = 2n\}$ ist eine Funktion. f(x) = 2x.
- Die Identität id_M ist eine Funktion.

• $f \subseteq M \times N$ eine Funktion,

• $f \subseteq M \times N$ eine Funktion, dann schreiben wir $f \colon M \to N$.

- $f \subseteq M \times N$ eine Funktion, dann schreiben wir $f: M \to N$.
- Für $(m,n) \in f$ schreiben wir entweder n = f(m)

- $f \subseteq M \times N$ eine Funktion, dann schreiben wir $f: M \to N$.
- Für $(m,n) \in f$ schreiben wir entweder n = f(m) oder $m \stackrel{f}{\mapsto} n$.

- $f \subseteq M \times N$ eine Funktion, dann schreiben wir $f : M \to N$.
- Für $(m,n) \in f$ schreiben wir entweder n = f(m) oder $m \stackrel{f}{\mapsto} n$.
 - ightharpoonup n ist dann das Bild von m

- $f \subseteq M \times N$ eine Funktion, dann schreiben wir $f : M \to N$.
- Für $(m,n) \in f$ schreiben wir entweder n = f(m) oder $m \stackrel{f}{\mapsto} n$.
 - n ist dann das Bild von m
 - ightharpoonup m ist ein Urbild von n.

- $f \subseteq M \times N$ eine Funktion, dann schreiben wir $f : M \to N$.
- Für $(m,n) \in f$ schreiben wir entweder n = f(m) oder $m \stackrel{f}{\mapsto} n$.
 - ightharpoonup n ist dann das Bild von m
 - ightharpoonup m ist ein Urbild von n.
- Die Menge M heißt Definitionsbereich

- $f \subseteq M \times N$ eine Funktion, dann schreiben wir $f: M \to N$.
- Für $(m,n) \in f$ schreiben wir entweder n = f(m) oder $m \stackrel{f}{\mapsto} n$.
 - ightharpoonup n ist dann das Bild von m
 - ightharpoonup m ist ein Urbild von n.
- Die Menge M heißt Definitionsbereich und die Menge N Bildbereich oder Wertebereich von f.

• Für eine Teilmenge

• Für eine Teilmenge $M' \subset M$

$$f(M') := \{ f(m) \mid m \in M' \}.$$

$$f(M') := \{ f(m) \mid m \in M' \}.$$

Das ist die Menge

$$f(M') := \{ f(m) \mid m \in M' \}.$$

Das ist die Menge aller Bilder

$$f(M') := \{ f(m) \mid m \in M' \}.$$

Das ist die Menge $\$ aller $\$ Bilder $\$ von $\$ Elementen aus $\ M'$,

$$f(M') := \{ f(m) \mid m \in M' \}.$$

Das ist die Menge aller Bilder von Elementen aus M', Bild von M' unter f.

$$f(M') := \{ f(m) \mid m \in M' \}.$$

Das ist die Menge aller Bilder von Elementen aus M', Bild von M' unter f.

• Für eine Teilmenge

$$f(M') := \{ f(m) \mid m \in M' \}.$$

Das ist die Menge aller Bilder von Elementen aus M', Bild von M' unter f.

• Für eine Teilmenge $N' \subset N$

$$f(M') := \{ f(m) \mid m \in M' \}.$$

Das ist die Menge aller Bilder von Elementen aus M', Bild von M' unter f.

• Für eine Teilmenge $N' \subset N$ definieren wir

$$f(M') := \{ f(m) \mid m \in M' \}.$$

Das ist die Menge aller Bilder von Elementen aus M', Bild von M' unter f.

• Für eine Teilmenge $N' \subset N$ definieren wir

$$f^{-1}(N') := \{ m \in M \mid f(m) \in N' \}$$

$$f(M') := \{ f(m) \mid m \in M' \}.$$

Das ist die Menge aller Bilder von Elementen aus M', Bild von M' unter f.

• Für eine Teilmenge $N' \subset N$ definieren wir

$$f^{-1}(N') := \{ m \in M \mid f(m) \in N' \}$$

die Menge aller Urbilder

$$f(M') := \{ f(m) \mid m \in M' \}.$$

Das ist die Menge aller Bilder von Elementen aus M', Bild von M' unter f.

• Für eine Teilmenge $N' \subset N$ definieren wir

$$f^{-1}(N') := \{ m \in M \mid f(m) \in N' \}$$

die Menge aller Urbilder von Elementen aus N',

$$f(M') := \{ f(m) \mid m \in M' \}.$$

Das ist die Menge aller Bilder von Elementen aus M', Bild von M' unter f.

• Für eine Teilmenge $N' \subset N$ definieren wir

$$f^{-1}(N') := \{ m \in M \mid f(m) \in N' \}$$

die Menge aller Urbilder von Elementen aus N', Urbild von N' unter f.

• Betrachten wir $id_M \colon M \to M$.

• Betrachten wir $id_M : M \to M$. Diese Funktion könnte man auch so definieren:

• Betrachten wir $id_M : M \to M$. Diese Funktion könnte man auch so definieren:

$$id_M(m) := m.$$

• Betrachten wir $id_M : M \to M$. Diese Funktion könnte man auch so definieren:

 $id_M(m) := m.$

Für alle $M' \subseteq M$ gilt

• Betrachten wir $id_M : M \to M$. Diese Funktion könnte man auch so definieren:

$$id_M(m) := m.$$

Für alle $M' \subseteq M$ gilt $id_M(M') = M'$ und

• Betrachten wir $id_M : M \to M$. Diese Funktion könnte man auch so definieren:

$$id_M(m) := m.$$

Für alle
$$M' \subseteq M$$
 gilt $id_M(M') = M'$ und $id_M^{-1}(M') = M'$

• Betrachten wir $id_M: M \to M$. Diese Funktion könnte man auch so definieren:

$$id_M(m) := m.$$

Für alle
$$M' \subseteq M$$
 gilt $id_M(M') = M'$ und $id_M^{-1}(M') = M'$

• Sei verdoppeln: $\mathbb{N} \to \mathbb{N}$ die Funktion

• Betrachten wir $id_M : M \to M$. Diese Funktion könnte man auch so definieren:

$$id_M(m) := m.$$

Für alle
$$M' \subseteq M$$
 gilt $id_M(M') = M'$ und $id_M^{-1}(M') = M'$

• Sei verdoppeln: $\mathbb{N} \to \mathbb{N}$ die Funktion

$$verdoppeln(n) := 2n$$

für alle $n \in \mathbb{N}$.

• Betrachten wir $id_M : M \to M$. Diese Funktion könnte man auch so definieren:

$$id_M(m) := m.$$

Für alle
$$M' \subseteq M$$
 gilt $\operatorname{id}_M(M') = M'$ und $\operatorname{id}_M^{-1}(M') = M'$

• Sei verdoppeln: $\mathbb{N} \to \mathbb{N}$ die Funktion

$$verdoppeln(n) := 2n$$

für alle $n \in \mathbb{N}$. Es gilt verdoppeln $(\mathbb{N}) =$

• Betrachten wir $id_M : M \to M$. Diese Funktion könnte man auch so definieren:

$$id_M(m) := m.$$

Für alle
$$M' \subseteq M$$
 gilt $id_M(M') = M'$ und $id_M^{-1}(M') = M'$

• Sei verdoppeln: $\mathbb{N} \to \mathbb{N}$ die Funktion

$$verdoppeln(n) := 2n$$

für alle $n \in \mathbb{N}$. Es gilt verdoppeln $(\mathbb{N}) = \{2x \mid x \in \mathbb{N}\}$

• Betrachten wir $id_M : M \to M$. Diese Funktion könnte man auch so definieren:

$$id_M(m) := m.$$

Für alle
$$M' \subseteq M$$
 gilt $id_M(M') = M'$ und $id_M^{-1}(M') = M'$

• Sei verdoppeln: $\mathbb{N} \to \mathbb{N}$ die Funktion

$$verdoppeln(n) := 2n$$

für alle $n \in \mathbb{N}$. Es gilt verdoppeln $(\mathbb{N}) = \{2x \mid x \in \mathbb{N}\}$ und verdoppeln $^{-1}(\{2k+1 \mid k \in \mathbb{N}\}) =$

• Betrachten wir $id_M : M \to M$. Diese Funktion könnte man auch so definieren:

$$id_M(m) := m.$$

Für alle
$$M' \subseteq M$$
 gilt $\operatorname{id}_M(M') = M'$ und $\operatorname{id}_M^{-1}(M') = M'$

• Sei verdoppeln: $\mathbb{N} \to \mathbb{N}$ die Funktion

$$verdoppeln(n) := 2n$$

für alle $n \in \mathbb{N}$. Es gilt verdoppeln $(\mathbb{N}) = \{2x \mid x \in \mathbb{N}\}$ und verdoppeln $^{-1}(\{2k+1 \mid k \in \mathbb{N}\}) = \emptyset$.

• Sei $M:=\{1,\,2,\,3,\,4,\,5,\,6\}$. Wir definieren $f\colon M\to M$ durch

Es gilt f(M) =

Es gilt $f(M) = \{1, 2, 3\}$

Es gilt
$$f(M) = \{1, 2, 3\}$$
 $f(\{1, 2\}) =$

Es gilt $f(M) = \{1, 2, 3\}$ $f(\{1, 2\}) = \{1, 2\}$,

Es gilt
$$f(M) = \{1, 2, 3\}$$
 $f(\{1, 2\}) = \{1, 2\}$, $f^{-1}(2) = f^{-1}(\{2\}) = f^{-1}(\{2\})$

Es gilt $f(M) = \{1, 2, 3\}$ $f(\{1, 2\}) = \{1, 2\}$, $f^{-1}(2) = f^{-1}(\{2\}) = \{2, 3, 4\}$,

Diskrete Strukturen 1 Wiederhol

- 1. Wiederholung
- 2. Äquivalenzrelationen und Zerlegunge
- 3. Funktionen Definition
- 4. Injektivität, Surjektivität, Bijektivität
- 5. Komposition von Funktionen
- 6. Invertierung von Funktionen

• $f: M \to N$ heißt injektiv

Diskrete Strukturen

• $f: M \to N$ heißt injektiv gdw.

• $f: M \to N$ heißt injektiv gdw. alle verschiedenen Elemente von M

 $\forall x, y \in M : \ x \neq y \to f(x) \neq f(y)$

$$\forall x, y \in M \colon \ x \neq y \to f(x) \neq f(y)$$

Manchmal schreibt man $f: M \hookrightarrow N$.

$$\forall x, y \in M : x \neq y \to f(x) \neq f(y)$$

Manchmal schreibt man $f: M \hookrightarrow N$.

f heißt surjektiv

$$\forall x, y \in M : \ x \neq y \to f(x) \neq f(y)$$

Manchmal schreibt man $f: M \hookrightarrow N$.

• f heißt surjektiv gdw. f(M) = N.

$$\forall x, y \in M : x \neq y \rightarrow f(x) \neq f(y)$$

Manchmal schreibt man $f: M \hookrightarrow N$.

• f heißt surjektiv gdw. f(M) = N. (Jedes Element von N ist ein Bild eines Elements von M).

$$\forall x, y \in M \colon \ x \neq y \to f(x) \neq f(y)$$

Manchmal schreibt man $f: M \hookrightarrow N$.

• f heißt surjektiv gdw. f(M) = N. (Jedes Element von N ist ein Bild eines Elements von M).

$$\forall n \in N \exists m \in M : f(m) = 1$$

$$\forall n \in N \exists m \in M : f(m) = n$$

$$\forall x, y \in M \colon x \neq y \to f(x) \neq f(y)$$

Manchmal schreibt man $f: M \hookrightarrow N$.

• f heißt surjektiv gdw. f(M) = N. (Jedes Element von N ist ein Bild eines Elements von M).

$$\forall n \in N \exists m \in M : f(m) = n$$

Manchman schreibt man $f: M \rightarrow N$.

• Sind beide Eigenschaften erfüllt,

• Sind beide Eigenschaften erfüllt, so heißt f bijektiv.

- Sind beide Eigenschaften erfüllt, so heißt f bijektiv.
- Man sagt auch dass f eine

- Sind beide Eigenschaften erfüllt, so heißt f bijektiv.
- Man sagt auch dass f eine Injektion,

- Sind beide Eigenschaften erfüllt, so heißt f bijektiv.
- Man sagt auch dass f eine Injektion, Surjektion,

- Sind beide Eigenschaften erfüllt, so heißt f bijektiv.
- Man sagt auch dass f eine Injektion, Surjektion, oder Bijektion ist.

- Sind beide Eigenschaften erfüllt, so heißt f bijektiv.
- Man sagt auch dass f eine Injektion, Surjektion, oder Bijektion ist. Eine Bijektion auf einer Menge M

- Sind beide Eigenschaften erfüllt, so heißt f bijektiv.
- Man sagt auch dass f eine Injektion, Surjektion, oder Bijektion ist. Eine Bijektion auf einer Menge M wird auch Permutation von M genannt.

- Sind beide Eigenschaften erfüllt, so heißt f bijektiv.
- Man sagt auch dass f eine Injektion, Surjektion, oder Bijektion ist. Eine Bijektion auf einer Menge M wird auch Permutation von M genannt.
- Beispiele:

- Sind beide Eigenschaften erfüllt, so heißt f bijektiv.
- Man sagt auch dass f eine Injektion, Surjektion, oder Bijektion ist. Eine Bijektion auf einer Menge M wird auch Permutation von M genannt.
- Beispiele:
 - ightharpoonup $\operatorname{id}_M \colon M \to M$ ist eine Bijektion.

- Sind beide Eigenschaften erfüllt, so heißt f bijektiv.
- Man sagt auch dass f eine Injektion, Surjektion, oder Bijektion ist. Eine Bijektion auf einer Menge M wird auch Permutation von M genannt.
- Beispiele:
 - ▶ $id_M : M \to M$ ist eine Bijektion.
 - ▶ Die Funktion verdoppeln: $\mathbb{N} \to \mathbb{N}$ ist injektiv, aber nicht surjektiv.

- Sind beide Eigenschaften erfüllt, so heißt f bijektiv.
- Man sagt auch dass f eine Injektion, Surjektion, oder Bijektion ist. Eine Bijektion auf einer Menge M wird auch Permutation von M genannt.
- Beispiele:
 - ▶ $id_M : M \to M$ ist eine Bijektion.
 - ▶ Die Funktion verdoppeln: $\mathbb{N} \to \mathbb{N}$ ist injektiv, aber nicht surjektiv.
 - ▶ Die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit $f(n) = \lceil \sqrt{n} \rceil$ ist surjektiv, aber nicht injektiv,

- Sind beide Eigenschaften erfüllt, so heißt f bijektiv.
- Man sagt auch dass f eine Injektion, Surjektion, oder Bijektion ist. Eine Bijektion auf einer Menge M wird auch Permutation von M genannt.
- Beispiele:
 - $ightharpoonup \mathrm{id}_M \colon M \to M \text{ ist eine Bijektion.}$
 - lacktriangle Die Funktion verdoppeln: $\mathbb{N} o \mathbb{N}$ ist injektiv, aber nicht surjektiv.
 - ▶ Die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit $f(n) = \lceil \sqrt{n} \rceil$ ist surjektiv, aber nicht injektiv, denn es gilt f(2) = f(3).

- Sind beide Eigenschaften erfüllt, so heißt f bijektiv.
- Man sagt auch dass f eine Injektion, Surjektion, oder Bijektion ist. Eine Bijektion auf einer Menge M wird auch Permutation von M genannt.
- Beispiele:
 - ightharpoonup $\operatorname{id}_M \colon M \to M$ ist eine Bijektion.
 - lacktriangle Die Funktion verdoppeln: $\mathbb{N} \to \mathbb{N}$ ist injektiv, aber nicht surjektiv.
 - ▶ Die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit $f(n) = \lceil \sqrt{n} \rceil$ ist surjektiv, aber nicht injektiv, denn es gilt f(2) = f(3).
 - $lackbox{ }$ Die Funktion $q\colon\mathbb{R}\to\mathbb{R}$, mit $q(x):=x^2$ definiert, ist weder injektiv noch surjektiv.

Diskrete Strukturen

- 1. Wiederholung

- 4. Injektivität, Surjektivität, Bijektivität
- 5. Komposition von Funktionen

Funktionen sind Relationen,

26 / 32

Theorem

Die Komposition zweier Funktionen ist wieder eine Funktion.

Theorem

Die Komposition zweier Funktionen ist wieder eine Funktion.

Beweis. Seien $f: M \to N$ und $g: N \to P$.

Theorem

Die Komposition zweier Funktionen ist wieder eine Funktion.

Beweis. Seien $f: M \to N$ und $g: N \to P$.

· Eindeutigkeit.

Theorem

Die Komposition zweier Funktionen ist wieder eine Funktion.

Beweis. Seien $f: M \to N$ und $g: N \to P$.

• Eindeutigkeit. Falls $(a,b) \in f; g$ und $(a,c) \in f; g$ dann $\exists x,y \in N$ mit $(a,x) \in f$, $(x,b) \in g$, $(a,y) \in f$, $(y,c) \in g$. Da f ist eindeutig, haben wir x=y. Aber da g ist auch eindeutig, haben wir b=c.

Theorem

Die Komposition zweier Funktionen ist wieder eine Funktion.

Beweis. Seien $f: M \to N$ und $g: N \to P$.

- Eindeutigkeit. Falls $(a,b) \in f$; g und $(a,c) \in f$; g dann $\exists x,y \in N$ mit $(a,x) \in f$, $(x,b) \in g$, $(a,y) \in f$, $(y,c) \in g$. Da f ist eindeutig, haben wir x=y. Aber da g ist auch eindeutig, haben wir b=c.
- · Totalität.

Theorem

Die Komposition zweier Funktionen ist wieder eine Funktion.

Beweis. Seien $f: M \to N$ und $g: N \to P$.

- Eindeutigkeit. Falls $(a,b) \in f$; g und $(a,c) \in f$; g dann $\exists x,y \in N$ mit $(a,x) \in f$, $(x,b) \in g$, $(a,y) \in f$, $(y,c) \in g$. Da f ist eindeutig, haben wir x=y. Aber da g ist auch eindeutig, haben wir b=c.
- Totalität. Sei $a \in M$. Da f ist total, existiert $b \in N$ mit $(a,b) \in f$. Da g ist total, existiert $c \in P$ mit $(b,c) \in g$. Es folgt dass $(a,c) \in f$; g.

Komposition ist assoziativ

Theorem

Für Abbildungen $f \colon M \to N$,

Theorem

Für Abbildungen $f \colon M \to N$, $g \colon N \to P$

Theorem

Für Abbildungen $f \colon M \to N$, $g \colon N \to P$ und $h \colon P \to Q$ gilt

Theorem

Für Abbildungen $f \colon M \to N$, $g \colon N \to P$ und $h \colon P \to Q$ gilt

$$(f;g);h=$$

Theorem

Für Abbildungen $f \colon M \to N$, $g \colon N \to P$ und $h \colon P \to Q$ gilt

$$(f;g); h = f; (g;h)$$

Theorem

Für Abbildungen $f \colon M \to N$, $g \colon N \to P$ und $h \colon P \to Q$ gilt

$$(f;g); h = f; (g;h)$$

Beweis.

- Sei y:=(f;g); h(x). Zu zeigen ist dass y=f;(g;h)(x).

Theorem

Für Abbildungen $f \colon M \to N$, $g \colon N \to P$ und $h \colon P \to Q$ gilt

$$(f;g); h = f; (g;h)$$

- Sei y := (f;g); h(x). Zu zeigen ist dass y = f; (g;h)(x).
- Dann existiert a mit $(a,y) \in h$, $(x,a) \in f$; g. Deswegen existiert auch b mit $(x,b) \in f$ und $(b,a) \in g$.

Theorem

Für Abbildungen $f \colon M \to N$, $g \colon N \to P$ und $h \colon P \to Q$ gilt

$$(f;g); h = f; (g;h)$$

- Sei y := (f;g); h(x). Zu zeigen ist dass y = f; (g;h)(x).
- Dann existiert a mit $(a,y) \in h$, $(x,a) \in f$; g. Deswegen existiert auch b mit $(x,b) \in f$ und $(b,a) \in g$.
- Es folgf $(b,y) \in g; h$, und deswegen auch $(x,y) \in f; (g;h)$.

Theorem

Für Abbildungen $f: M \to N$, $q: N \to P$ und $h: P \to Q$ gilt

$$(f;g); h = f; (g;h)$$

- Sei y := (f; q); h(x). Zu zeigen ist dass y = f; (q; h)(x).
- Dann existiert a mit $(a, y) \in h$, $(x, a) \in f$; a. Deswegen existiert auch b mit $(x, b) \in f$ und $(b,a) \in q$.
- Es folgf $(b, y) \in q$; h, und deswegen auch $(x, y) \in f$; (q; h).

Seien $f: M \to N$ und $g: N \to P$.

ullet Wenn f und g injektiv sind,

Seien $f: M \to N$ und $g: N \to P$.

 $\bullet \ \ \textit{Wenn} \ f \ \textit{und} \ g \ \textit{injektiv} \ \textit{sind,} \ \textit{dann} \ \textit{ist} \ f \ ; g \ \textit{injektiv}.$

- Wenn f und g injektiv sind, dann ist f; g injektiv.
- ullet Wenn f und g surjektiv sind,

- Wenn f und g injektiv sind, dann ist f; g injektiv.
- $\bullet \ \ \textit{Wenn} \ f \ \textit{und} \ g \ \textit{surjektiv}. \ \textit{sind, dann ist} \ f \ ; g \ \textit{surjektiv}.$

- Wenn f und g injektiv sind, dann ist f; g injektiv.
- Wenn f und g surjektiv sind, dann ist f; g surjektiv.
- ullet Wenn f und g bijektiv sind,

Seien $f: M \to N$ und $g: N \to P$.

- Wenn f und g injektiv sind, dann ist f; g injektiv.
- Wenn f und g surjektiv sind, dann ist f; g surjektiv.
- Wenn f und g bijektiv sind, dann ist f; g bijektiv.

Seien $f: M \to N$ und $g: N \to P$.

- Wenn f und g injektiv sind, dann ist f; g injektiv.
- Wenn f und g surjektiv sind, dann ist f; g surjektiv.
- Wenn f und g bijektiv sind, dann ist f; g bijektiv.

Beweis.

• Seien $m, m' \in M$ mit $m \neq m'$.

Seien $f: M \to N$ und $g: N \to P$.

- Wenn f und g injektiv sind, dann ist f; g injektiv.
- Wenn f und g surjektiv sind, dann ist f; g surjektiv.
- Wenn f und g bijektiv sind, dann ist f; g bijektiv.

Beweis.

• Seien $m, m' \in M$ mit $m \neq m'$. Da f injektiv ist,

Seien $f: M \to N$ und $g: N \to P$.

- Wenn f und g injektiv sind, dann ist f; g injektiv.
- Wenn f und g surjektiv sind, dann ist f; g surjektiv.
- Wenn f und g bijektiv sind, dann ist f; g bijektiv.

Beweis.

• Seien $m, m' \in M$ mit $m \neq m'$. Da f injektiv ist, gilt $f(m) \neq f(m')$.

Seien $f: M \to N$ und $g: N \to P$.

- Wenn f und g injektiv sind, dann ist f; g injektiv.
- Wenn f und g surjektiv sind, dann ist f; g surjektiv.
- Wenn f und g bijektiv sind, dann ist f; g bijektiv.

Beweis.

• Seien $m, m' \in M$ mit $m \neq m'$. Da f injektiv ist, gilt $f(m) \neq f(m')$. Da auch g injektiv ist.

Theorem

Seien $f: M \to N$ und $g: N \to P$.

- Wenn f und g injektiv sind, dann ist f; g injektiv.
- Wenn f und g surjektiv sind, dann ist f; g surjektiv.
- Wenn f und g bijektiv sind, dann ist f; g bijektiv.

Beweis.

• Seien $m, m' \in M$ mit $m \neq m'$. Da f injektiv ist, gilt $f(m) \neq f(m')$. Da auch g injektiv ist, gilt weiterhin

Theorem

Seien $f: M \to N$ und $g: N \to P$.

- Wenn f und g injektiv sind, dann ist f; g injektiv.
- Wenn f und g surjektiv sind, dann ist f; g surjektiv.
- Wenn f und g bijektiv sind, dann ist f; g bijektiv.

Beweis.

• Seien $m, m' \in M$ mit $m \neq m'$. Da f injektiv ist, gilt $f(m) \neq f(m')$. Da auch g injektiv ist, gilt weiterhin $g(f(m)) \neq g(f(m'))$. Also ist f; g injektiv.

(Surjektivität)

Diskrete Strukturen

• (Surjektivität) Sei $p \in P$ beliebig.

• (Surjektivität) Sei $p \in P$ beliebig. Da g surjektiv ist,

• (Surjektivität) Sei $p \in P$ beliebig. Da g surjektiv ist, existiert $n \in N$,

• (Surjektivität) Sei $p \in P$ beliebig. Da g surjektiv ist, existiert $n \in N$, so dass g(n) = p.

• (Surjektivität) Sei $p \in P$ beliebig. Da g surjektiv ist, existiert $n \in N$, so dass g(n) = p. Weiterhin ist auch f surjektiv.

(f;q)(m)

$$(f;q)(m) = q(f(m))$$

29 / 32

$$(f;q)(m) = q(f(m)) = q(n)$$

$$(f;q)(m) = q(f(m)) = q(n) = p.$$

29 / 32

$$(f;q)(m) = q(f(m)) = q(n) = p.$$

Also ist f: a auch surjektiv.

$$(f;q)(m) = q(f(m)) = q(n) = p.$$

Also ist f: a auch surjektiv.

(Bijektivität)

$$(f;q)(m) = q(f(m)) = q(n) = p.$$

Also ist f: a auch surjektiv.

• (Bijektivität) Das ist eine Folgerung aus den zwei ersten Punkte.

$$(f;g)(m) = g(f(m)) = g(n) = p.$$

Also ist f: a auch surjektiv.

• (Bijektivität) Das ist eine Folgerung aus den zwei ersten Punkte.

Diskrete Strukturen 1. Wiederholung 4. Injektivität, Surjektivität, Bijektivität 5. Komposition von Funktionen

6. Invertierung von Funktionen

• Manchmal möchte man eine Funktionsanwendung rückgängig machen können,

- · Manchmal möchte man eine Funktionsanwendung rückgängig machen können, zum Beispiel bei der Verschlüsselung und Kompression von Daten.
- Eine Funktion $f: M \to N$ ist

- Manchmal möchte man eine Funktionsanwendung rückgängig machen können, zum Beispiel bei der Verschlüsselung und Kompression von Daten.
- Eine Funktion $f: M \to N$ ist invertierbar

- · Manchmal möchte man eine Funktionsanwendung rückgängig machen können, zum Beispiel bei der Verschlüsselung und Kompression von Daten.
- Eine Funktion $f: M \to N$ ist invertierbar gdw.

- Manchmal möchte man eine Funktionsanwendung rückgängig machen können, zum Beispiel bei der Verschlüsselung und Kompression von Daten.
- Eine Funktion $f: M \to N$ ist invertier gdw. eine Funktion $g: N \to M$ existiert.

- Manchmal möchte man eine Funktionsanwendung rückgängig machen können, zum Beispiel bei der Verschlüsselung und Kompression von Daten.
- Eine Funktion $f: M \to N$ ist invertierbar gdw. eine Funktion $g: N \to M$ existiert, so dass

f; g

• Eine Funktion $f: M \to N$ ist invertierbar gdw. eine Funktion $g: N \to M$ existiert, so dass

$$f; g = \mathrm{id}_M$$

und

• Eine Funktion $f: M \to N$ ist invertierbar gdw. eine Funktion $g: N \to M$ existiert, so dass

$$f;g=\mathrm{id}_M$$

und

$$g; f = \mathrm{id}_N.$$

• Eine Funktion $f\colon M\to N$ ist invertierbar gdw. eine Funktion $g\colon N\to M$ existiert, so dass

$$f;g=\mathrm{id}_M$$

und

$$g; f = \mathrm{id}_N.$$

Äquivalent gesagt:

• Eine Funktion $f\colon M\to N$ ist invertierbar gdw. eine Funktion $g\colon N\to M$ existiert, so dass

$$f; g = \mathrm{id}_M$$

und

$$g; f = \mathrm{id}_N.$$

- Äquivalent gesagt: für alle $m \in M$ gilt

• Eine Funktion $f\colon M\to N$ ist invertierbar gdw. eine Funktion $g\colon N\to M$ existiert, so dass

$$f; g = \mathrm{id}_M$$

und

$$g; f = \mathrm{id}_N.$$

• Äquivalent gesagt: für alle $m \in M$ gilt g(f(m)) = m

• Eine Funktion $f: M \to N$ ist invertierbar gdw. eine Funktion $g: N \to M$ existiert, so dass

$$f;g=\mathrm{id}_M$$

und

$$g; f = \mathrm{id}_N.$$

• Äquivalent gesagt: für alle $m \in M$ gilt q(f(m)) = m und für alle $n \in N$ gilt

• Eine Funktion $f: M \to N$ ist invertierbar gdw. eine Funktion $g: N \to M$ existiert, so dass

$$f; g = \mathrm{id}_M$$

und

$$g; f = \mathrm{id}_N.$$

• Äquivalent gesagt: für alle $m \in M$ gilt q(f(m)) = m und für alle $n \in N$ gilt f(q(n)) = n.

• Die Identität id_M ist offensichtlich invertierbar.

• Die Identität id_M ist offensichtlich invertierbar. $\mathrm{id}_M;\mathrm{id}_M=\mathrm{id}_M$.

32 / 32

- Die Identität id_M ist offensichtlich invertierbar. id_M ; $id_M = id_M$.
- Die Funktion verdoppeln ist nicht invertierbar.

- Die Identität id_M ist offensichtlich invertierbar. $\mathrm{id}_M;\mathrm{id}_M=\mathrm{id}_M.$
- Die Funktion verdoppeln ist nicht invertierbar. Welchen Wert

- Die Identität id_M ist offensichtlich invertierbar. id_M ; $id_M = id_M$.
- Die Funktion verdoppeln ist nicht invertierbar. Welchen Wert soll die inverse Funktion

- Die Identität id_M ist offensichtlich invertierbar. id_M ; $id_M = id_M$.
- Die Funktion verdoppeln ist nicht invertierbar. Welchen Wert soll die inverse Funktion der Zahl 3 zuweisen?

- Die Identität id_M ist offensichtlich invertierbar. id_M ; $id_M = id_M$.
- Die Funktion verdoppeln ist nicht invertierbar. Welchen Wert soll die inverse Funktion der Zahl 3 zuweisen?
- Die Funktion f mit $f(n) = \lceil \sqrt{n} \rceil$ ist nicht invertierbar.

- Die Identität id_M ist offensichtlich invertierbar. id_M ; $id_M = id_M$.
- Die Funktion verdoppeln ist nicht invertierbar. Welchen Wert soll die inverse Funktion der Zahl 3 zuweisen?
- Die Funktion f mit $f(n) = \lceil \sqrt{n} \rceil$ ist nicht invertierbar. Welchen Wert

- Die Identität id_M ist offensichtlich invertierbar. id_M ; $id_M = id_M$.
- Die Funktion verdoppeln ist nicht invertierbar. Welchen Wert soll die inverse Funktion der Zahl 3 zuweisen?
- Die Funktion f mit $f(n) = \lceil \sqrt{n} \rceil$ ist nicht invertierbar. Welchen Wert soll die inverse Funktion

- Die Identität id_M ist offensichtlich invertierbar. id_M ; $id_M = id_M$.
- Die Funktion verdoppeln ist nicht invertierbar. Welchen Wert soll die inverse Funktion der Zahl 3 zuweisen?
- Die Funktion f mit $f(n) = \lceil \sqrt{n} \rceil$ ist nicht invertierbar. Welchen Wert soll die inverse Funktion, der Zahl 2 zuweisen?

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de