Sequential Latent Variable Models for Prognostics and Health Management

Final Presentation - 08.11.2019

Student: Simon Klotz

Advisors: Maximilian Sölch & Dr. Justin Bayer

Supervisor: PD Dr. Georg Groh

Agenda

- 1. Introduction
- 2. Datasets
- 3. Sequential Latent Variable Models
- 4. Anomaly Detection
- 5. Prognostics
- 6. Conclusion & Future Work

1. Introduction

Prognostics and Health Management

- Includes several sub fields such as anomaly detection, prognostics and fault diagnostics
- Its objective is to increase system reliability, availability, and safety to reduce maintenance costs
- Each subfield has its own methods (which are similar in several cases)
- ⇒ No method has been applied to multiple fields

1. Introduction

Contributions

- Build upon work of Max using STORN for anomaly detection
- Extend method to other sequential latent variable model (DVBF)
- Introduce novel anomaly detection method relying on latent space representations
- Adapt method to prognostics

Datasets

2. Datasets

Paderborn Dataset

- Vibration data of bearings collected using accelerometer
- Data consists of 6 normal and 26 anomalous trajectories
 - 4 operating conditions
 - 12 artificially damaged trajectories
 - 14 trajectories with real damage
 - 3 fault locations (inner race, outer race, and both)
 - Several different fault types, different severity
 - ~31.4million normal and ~125.5million anomalous data points
- Faults are introduced using EDM, drilling, and pitting

Real Damages [9]

Artificial Damages [9]

2. Datasets

CMAPSS Dataset

- Several sensor readings of simulated turbofan engines
- One timestep = Snapshot during one particular flight
- Multiple independent datasets available:

Dataset	FD001	FD002	FD003	FD004
# Full Traject. (Train)	100	260	100	249
# Cropped Traject. (Test)	100	259	100	248
# Conditions	1	6	1	6
# Fault Types	1	1	2	2

- **RUL > 130 -> Normal**
- RUI < 50 -> Anomalous

Turbofan Engine [10]

2. Datasets

Dataset Split

Dataset needs to be split into different parts:

Sequential Latent Variable Models

3. Sequential Latent Variable Models

Encoder-Decoder Model (EncDec) [1]

3. Sequential Latent Variable Models

Stochastic Recurrent Network (STORN) [2]

3. Sequential Latent Variable Models

Deep Variational Bayes Filter (DVBF) [3]

Overview

General

- Detection of previously unseen patterns that do not match expected behavior
- Applicable to detect anomalies such as credit card fraud or mechanical faults
- Can prevent total system failures by early detection

Difficulties

- Definition of normality often not straightforward
- Boundary between normal and anomalous behavior often not precisely defined
- Anomalous data hard to obtain
- Noise in data might be mistaken as anomaly

Train SLV Model Train Valid 1 Models

- EncDec Model
- STORN
- DVBF

Train SLV Model Train Valid 1 Valid 2 Valid 2 Valid 2

EncDec Model

Models

- STORN
- DVBF

Reconstruction-based methods

Anomaly Scores

- ELBO-based methods
- Latent space methods

Methods

- EncDec Model
- STORN
- DVBF

- Reconstruction-based methods
- ELBO-based methods
- Latent space methods

- F1 Score
- Recall, Precision
- ROC-AUC

Methods - Reconstruction-based methods

Rely on difference between observation and emission

Global One-Step Prediction Error Threshold [4]

• Compute reconstruction error:

$$a_t = ||x_t - \hat{x}_t||^2$$

 Take 0.995 percentile across time for final anomaly score

Methods - Reconstruction-based methods

Rely on difference between observation and emission

Global One-Step Prediction Error Threshold [4]

Compute reconstruction error:

$$a_t = ||x_t - \hat{x}_t||^2$$

• Take 0.995 percentile across time for final anomaly score

Global Prediction Error Threshold

 Use sum instead of percentile to compute anomaly score:

$$\delta = \sum_{t=0}^{T} ||x_t - \hat{x}_t||^2$$

Methods - ELBO-based methods

Rely on lower bound as it is an approximation of true data likelihood

Global Stepwise Lower Bound Threshold [4]

- Similar to Global One-Step Prediction Error Threshold
- Take 0.005 percentile of stepwise lower bound values

Methods - ELBO-based methods

Rely on lower bound as it is an approximation of true data likelihood

Global Stepwise Lower Bound Threshold [4]

- Similar to Global One-Step Prediction Error Threshold
- Take 0.005 percentile of stepwise lower bound values

Lower Bound [4]

- Similar to Global Prediction Error Threshold
- Sum stepwise lower bounds instead of taking percentile

Methods - Latent space methods

Rely on latent space representation for anomaly detection

Data Distribution

Latent Space Distribution

Methods - Latent space methods

Rely on latent space representation for anomaly detection

Data Distribution

Latent Space Distribution

Methods - Latent space methods

Rely on latent space representation for anomaly detection

One-Class Classifier

- Only trained on normal data
- Draw boundary around normal samples
- Output of decision function used as anomaly score
- Local Outlier Factor, One-Class SVM, ...

Two-Class Classifier

- Trained on normal and anomalous data
- Discriminate between normal and anomalous samples
- Output of decision function used as anomaly score
- KNN, Decision Trees, SVM, ...

Results Paderborn

Results - Paderborn

EncDec Model

STORN

DVBF

Results - Paderborn

EncDec Model

STORN

DVBF

Results - Paderborn

Latent space of different models:

Results - Paderborn

EncDec Model

STORN

DVBF

Results - Paderborn

Global One-Step Prediction Error Threshold using STORN:

Anomalous Sample

20

Observation Emission

80

100

60

Index

 \sim

-5

Anomaly Score

Results - Paderborn

EncDec Model

STORN

DVBF

Results CMAPSS

Results - CMAPSS FD001

33

Results - CMAPSS FD001

EncDec Model

STORN

DVBF

Results - CMAPSS FD001

Latent Space of different models:

Results - CMAPSS FD001

36

4. Anomaly Detection

Results - CMAPSS FD001

Difference between observation and emission using DVBF:

4. Anomaly Detection

Results - CMAPSS FD001

38

Methods - Model selection

Do model selection directly based on anomaly detection performance:

4. Anomaly Detection

Results - CMAPSS FD001

Anomaly detection performance using Global One-Step Prediction Error Threshold ROC-AUC during model selection:

Global One-Step Prediction Error Threshold:

Global Prediction Error Threshold:

40

4. Anomaly Detection

Summary

- Latent space approaches achieved best result on both datasets
- ELBO-based methods consistently outperform reconstruction-based methods
- Global approaches better than stepwise approaches
- Performance of methods varies across different models

Overview

General

- Estimation of remaining useful life (RUL)
- Applicable for example to medical equipment, bearings, engines
- Can prevent total system failures by early detection

Difficulties

- Full run-to-failure time series hard to obtain
- Data often noisy aggravating accurate RUL estimation

STORN

DVBF

Timeliness Score

Timeliness Score

- Penalizes late predictions more
- Score grows exponentially with difference

$$E^{(i)} = \begin{cases} e^{-\frac{d^{(i)}}{13}} - 1 & \text{for } d^{(i)} < 0 \\ e^{\frac{d^{(i)}}{10}} - 1 & \text{for } d^{(i)} \ge 0, \end{cases}$$

$$d^{(i)} = \hat{RUL}^{(i)} - RUL^{(i)}$$

Methods - Latent space methods

Rely on latent space representation for prognostics

Regression Model

- Trained on latent space of full run-to-failure trajectories
- Outputs RUL estimate for sequence
- Linear Regression, Random Forests

Results CMAPSS

Results - CMAPSS FD001

RUL prediction using DVBF:

Linear Regression

Random Forest

Results - CMAPSS FD001

Results using ELBO for model selection during HPS:

Model	Method	RMSE	Timeliness Score	
EncDec	Linear Regression	18.32	1202.13	
	Random Forest	20.51	1537.29	
STORN	Linear Regression	18.21	997.11	
	Random Forest	18.16	1252.72	
DVBF	Linear Regression	18.51	858.84	
	Random Forest	20.34	1242.52	

49

Results - CMAPSS FD001

Results using RMSE for Linear Regression for model selection during HPS:

Model	Method	RMSE	Timeliness Score
EncDec	Linear Regression	19.89	1684.91
STORN	Linear Regression	17.10	635.47
DVBF	Linear Regression	17.77	879.08

Results - CMAPSS FD001-FD004

RMSE results on all CMAPSS datasets using RMSE for Linear Regression during model selection:

Model	FD001	FD002	FD003	FD004
EncDec + Linear Regression	19.89	30.05	20.35	32.60
STORN + Linear Regression	17.10	31.06	17.56	31.67
DVBF + Linear Regression	17.77	34.44	31.81	30.54

Results - CMAPSS FD001-FD004

Latent space using STORN:

Results - CMAPSS FD001-FD004

RMSE on all CMAPSS datasets:

Model	FD001	FD002	FD003	FD004
EncDec + Linear Regression	19.89	30.05	20.35	32.60
STORN + Linear Regression	17.10	31.06	17.56	31.67
DVBF + Linear Regression	17.77	34.44	31.81	30.54
CNN [5]	18.45	30.29	19.82	29.16
DLSTM [6]	18.33	-	19.78	-
RBM + LSTM [7]	12.56	22.73	12.10	22.66

Summary

- Linear Regression generally outperforms Random Forests
- Performance varies significantly depending on number of operating conditions/faults
- Performance can be improved using RMSE for model selection
- Methods outperformed several supervised CNN/LSTM-based approaches
- There is still a gap between our methods and the state-of-the-art results

Conclusion & Future Work

6. Conclusion & Future Work

Conclusion

- Novel method applicable to both prognostics and anomaly detection
- Extended anomaly detection with STORN to DVBF
- STORN and DVBF outperformed the EncDec model
- Introduced latent space anomaly detection which achieved best results on Paderborn and CMAPSS FD001 dataset
- Introduced Global Prediction Error Threshold which consistently outperforms the Global One-Step Prediction Error Threshold

6. Conclusion & Future Work

Future Work

- Use other sequential latent variable models (SRNN, VRNN, DKF)
- Apply methods to fault diagnostics (also part of PHM framework)
- Novel prognostics methods using reconstruction-based and ELBO-based approaches
- Instead of direct mapping to RUL, use health index and similarity matching

Questions

References

- [1] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection. 2016. arXiv: 1607.00148 [cs.Al].
- [2] Justin Bayer and Christian Osendorfer. "Learning stochastic recurrent networks." In: arXiv preprint arXiv:1411.7610 (2014).
- [3] Maximilian Karl, Maximilian Soelch, Philip Becker-Ehmck, Djalel Benbouzid, Patrick van der Smagt, and Justin Bayer. Unsupervised Real-Time Control through Variational Empowerment. 2017. arXiv: 1710.05101 [stat.ML].
- [4] Maximilian Soelch, Justin Bayer, Marvin Ludersdorfer, and Patrick van der Smagt. "Variational inference for on-line anomaly detection in high-dimensional time series." In: arXiv preprint arXiv:1602.07109 (2016).
- [5] Giduthuri Sateesh Babu, Peilin Zhao, and Xiao-Li Li. "Deep convolutional neural network based regression approach for estimation of remaining useful life." In: International conference on database systems for advanced applications. Springer. 2016, pp. 214–228.
- [6] Jun Wu, Kui Hu, Yiwei Cheng, Haiping Zhu, Xinyu Shao, and Yuanhang Wang. "Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network." In: ISA transactions (2019).
- [7] André Listou Ellefsen, Emil Bjørlykhaug, Vilmar Æsøy, Sergey Ushakov, and Houxiang Zhang. "Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture." In: Reliability Engineering & System Safety 183 (2019), pp. 240–251.
- [8] Narendhar Gugulothu, Vishnu TV, Pankaj Malhotra, Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. "Predicting remaining useful life using time series embeddings based on recurrent neural networks." In: arXiv preprint arXiv:1709.01073 (2017).
- [9] Christian Lessmeier, James Kuria Kimotho, Detmar Zimmer, and Walter Sextro. "Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification." In: Proceedings of the European conference of the prognostics and health management society. 2016, pp. 05–08.
- [10] A Saxena and K Goebel. "Phm08 challenge data set." In: NASA Ames Prognostics Data Repository. NASA Ames Research Center 2008.