Statistics for genomics

Jeff Leek

@jtleek

www.jtleek.com

An example

OPEN & ACCESS Freely available online

PLOS MEDICINE

An Erythroid Differentiation Signature Predicts Response to Lenalidomide in Myelodysplastic Syndrome

Benjamin L. Ebert^{1,2,3®}, Naomi Galili^{4®}, Pablo Tamayo¹, Jocelyn Bosco^{1,2}, Raymond Mak^{1,2}, Jennifer Pretz^{1,2}, Shyam Tanguturi¹, Christine Ladd-Acosta¹, Richard Stone^{2,3}, Todd R. Golub^{1,2,5,6}, Azra Raza^{4*}

1 Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 2 Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Brigham and Women's Hospital, Department of Medicine, Boston, Massachusetts, United States of America, 4 St. Vincent's Comprehensive Cancer Center, New York, New York, United States of America, 5 Childrens's Hospital, Boston, Massachusetts, United States of America, 6 Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America

1. Normalization

Key Concepts: Borrowing information

2. Differential Expression

Key Concepts: Permutation, multiple comparisons

3. Gene Set Enrichment

Key Concepts: Finding biological patterns

Normalization ensures that differences in intensities are not just due to technology, e.g. reagent, sequencing, imaging, batch effects, quality control artifacts

Raw data				Order values within each sample (or column)				Average across rows and substitute value with average				Re-order averaged values in original order			
2	4	4	5	2	4	3	5	3.5	3.5	3.5	3.5	3.5	3.5	5.0	5.0
5	14	4	7	3	8	4	5	5.0	5.0	5.0	5.0	8.5	8.5	5.5	5.5
4	8	6	9	3	8	4	7	5.5	5.5	5.5	5.5	6.5	5.0	8.5	8.5
3	8	5	8	4	9	5	8	6.5	6.5	6.5	6.5	5.0	5.5	6.5	6.5
3	9	3	5	5	14	6	9	8.5	8.5	8.5	8.5	5.5	6.5	3.5	3.5
	- 1														

After normalization/summarization

Re	esponse	R	R	•••	NR	NR	
		Patient 1	Patient 2	•••	Patient n- 1	Patient n	
(Gene 1	-1.64	-0.42	•••	-1.39	-0.38	
(Gene 2	-3.12	-3.60	•••	-3.80	-2.82	
	:	:	:	•••	:	:	
	:	:	•		:	:	
	:	:	:	•••	:	:	
	:	:	:		:	:	
_				•••			

Association analysis (differential expression analysis) is the search for features, like genes. that show "significant" differences between groups of patients or across phenotypes.

Form a statistic

$$S = \frac{\mu_R - \mu_{NR}}{\sigma_R + \sigma_{NR}}$$

- μ_R average responder expression
- μ_{NR} average non-responder expression
- σ_R standard deviation of responders
- σ_{NR} standard deviation of non-responders

Multiple comparisons

Family wise error rate:

$$Pr(\# False Positives \ge 1)$$

False discovery rate:

$$E\left[\frac{\text{#False Positives}}{\text{# Of Discoveries}}\right]$$