AI Charting for Music Game Cytoid

•••

Final presentation Yuchen Song

Content

- 1. Introduction
- 2. Related work
- 3. Proposed methodology
- 4. Performance Evaluation
- 5. Conclusion and Future Work

Cytoid Game Logo^[1]

Introduction

Cytoid

Open-source music rhythm game^[1]

Active community for player

Nice charts for all difficulties

Challenges:

Complex and Time consuming for players to create new charts.

[1] Cytoid. https://cytoid.io. [Accessed: Nov. 6, 2024]

Appear time

Key types

Place position on scanning line

Problem Statement

With the input of any song audio and desired difficulty level, the model will output a cytoid-compatible chart that can be played.

Related Work

Dance Dance Convolution $(2017)^{[3]}$:

- Step placement & step selection
- CNN & LSTM

TaikoNation (2021)^[4]:

- human-like chart pattern
- BiLSTM

Genelive (2023)^[5]:

- Beat information
- Multi-scale convolutional network LSTM

Mug Diffusion (2023)^[6]

- Diffusion model

^[3] D. Donahue, K. Simonyan, A. Zisserman, and G. Vondrick, "Dance Dance Convolution: Learning Generative Models for Dance," Proc. IEEE Int. Conf. on Computer Vision, 2017, pp. 1-9.

^[4] S. Siami-Namini, N. Tavakoli, and A. S. Namin, "The performance of LSTM and BiLSTM in forecasting time series," in Proc. 2019 IEEE Int. Conf. on Big Data (Big Data), pp. 3285–3292, 2019

^[5] A. Takada, D. Yamazaki, Y. Yoshida, N. Ganbat, T. Shimotomai, N.Hamada, L. Liu, T. Yamamoto, and D. Sakurai, "Gen'elive! Generating Rhythm actions in Love Live!," in Proc. AAAI Conf. on Artificial Intelligence, vol. 37, no. 4, pp. 5266–5275, 2023.

^[6] C. MX, "Mug-Diffusion: High-quality and controllable charting AI for rhythm games," GitHub repository, 2024. [Online]. Available: https://github.com/Keytoyze/Mug-Diffusion. [Accessed: Dec. 8, 2024].

Proposed Methodology

Preprocessing for Original Model

Preprocessing:

- Segmentation
- Short Time Fourier Transform
- One-hot encoding for key types
- (no key is also a type)

Follow structure of Genelive^[5] (2023)

[5] A. Takada, D. Yamazaki, Y. Yoshida, N. Ganbat, T. Shimotomai, N.Hamada, L. Liu, T. Yamamoto, and D. Sakurai, "Gen'elive! Generating Rhythm actions in Love Live!," in Proc. AAAI Conf. on Artificial Intelligence, vol. 37, no. 4, pp. 5266–5275, 2023.

Original BiLSTM Model

Note Presence Prediction:

- Bidirectional LSTM model
- Apply threshold based on difficulty

Note Type Prediction:

- Separate LSTM model
- Type 0 indicates no note

Threshold Selection for Difficulty levels

(1) Average threshold based:

Calculate average threshold for each difficulty level. (follow DDC^[3])

(2) Note Number based:

Selecting the top 'n' notes based on predicted probabilities.

'n' being the average notes number for the difficulty level.

^[3] D. Donahue, K. Simonyan, A. Zisserman, and G. Vondrick, "Dance Dance Convolution: Learning Generative Models for Dance," Proc. IEEE Int. Conf. on Computer Vision, 2017, pp. 1-9.

Model Details

CNN Presence Prediction:

- Feature Extraction: 81 frames of mel band per frame
- Model: Three-layer CNN with sigmoid activation function

CNN Type Prediction:

- Note Type Prediction: Only frames with notes as input (Excludes empty frames)
- Softmax activation function
- Use Focal Loss^[7] (Weighted version of BCE) to solve Type Imbalance

Random Note position:

- Apply uniform distribution within measures with random disturbance

Performance Evaluation

BiLSTM Model: Note Presence Prediction

- Threshold selection impacts chart quality.
- Initial improvements showed potential
- Poor Prediction result

BiLSTM Model: Note Type Prediction

Type 0 (no note) dominates (~90%)

Model struggled to learn effectively

Threshold Selection Result

(1) Average threshold:

Inconsistent across songs

(2) Top 'n' Selection:

Fluctuating predictions

Difficulty 16: Bo	est Threshold = 0.12, F1 Score = 0.3470
Difficulty 15: Be	est Threshold = 0.16, F1 Score = 0.3738
Difficulty 13: Bo	est Threshold = 0.18, F1 Score = 0.3231
Difficulty 11: Bo	est Threshold = 0.10, F1 Score = 0.0899
Difficulty 10: Bo	est Threshold = 0.10, F1 Score = 0.1464
Difficulty 9: Bes	st Threshold = 0.14, F1 Score = 0.2978

Difficulty	Threshold	Pred. Count	Target Count	
16	0.27	1536	153	3.60
15	0.26	1150	1145.58	
Difficulty	Accuracy	Precision	Recall	F1
16	0.8036	0.1739	0.0694	0.0992
15	0.8271	0.1616	0.0376	0.0610

CNN Model: Presence Prediction

Higher F1 score

Wider prediction range (0-1)

CNN Model: Type Prediction

Class imbalance issues:

- Majority classified as type 0
- Appear good but misleading

	Accuracy	Precision	Recall	F1
Note Presence	0.9039	0.8628	0.5166	0.6463
Note Type	0.9219	0.8613	0.9219	0.8906

Compared with Baseline

Baseline in DDC^[3]

Our Model

Table 2. Results for step placement experiments					
Model	Dataset	PPL	AUC	$\mathbf{F}\text{-}\mathbf{score}^c$	$\mathbf{F}\text{-}\mathbf{score}^m$
LogReg	Fraxtil	1.205	0.601	0.609	0.667
MLP	Fraxtil	1.097	0.659	0.665	0.726
CNN	Fraxtil	1.082	0.671	0.678	0.750
C-LSTM	Fraxtil	1.070	0.682	0.681	0.756
LogReg	ITG	1.123	0.599	0.634	0.652
MLP	ITG	1.090	0.637	0.671	0.704
CNN	ITG	1.083	0.677	0.689	0.719
C-LSTM	ITG	1.072	0.680	0.697	0.721

	Accuracy	Precision	Recall	F1
Note Presence	0.9039	0.8628	0.5166	0.6463
Note Type	0.9219	0.8613	0.9219	0.8906

^[3] D. Donahue, K. Simonyan, A. Zisserman, and G. Vondrick, "Dance Dance Convolution: Learning Generative Models for Dance," Proc. IEEE Int. Conf. on Computer Vision, 2017, pp. 1-9.

Conclusion and Future Work

Conclusion

Current Status: CNN model for presence and type task shows promising results.

A Conjecture why CNN performs better:

- Relatively Small dataset.
- Since it is community based, the charts are diverse and the pattern is less obvious. (A holistic view seems conservative but effective here)

Key Takeaways:

- Extensive trial and error process
- Gained insights into ML and rhythm games

Future Work

- 1. Collect a dataset with better chart quality.
- 2. Develop a model to predict the note position that the trajectory are more made human-like.
- 3. Improve the Note Type prediction quality by applying certain constraints.

Q & A

Reference

- [1] Cytoid. https://cytoid.io. [Accessed: Nov. 6, 2024]
- [2] Cytoid Community, "Cytoid Gameplay," Google Sites. [Online]. Available: https://sites.google.com/site/cytoidcommunity/gameplay/cytoid-gameplay?authuser=0. [Accessed: Dec. 9, 2024].
- [3] D. Donahue, K. Simonyan, A. Zisserman, and G. Vondrick, "Dance Dance Convolution: Learning Generative Models for Dance," Proc. IEEE Int. Conf. on Computer Vision, 2017, pp. 1-9.
- [4] S. Siami-Namini, N. Tavakoli, and A. S. Namin, "The performance of LSTM and BiLSTM in forecasting time series," in Proc. 2019 IEEE Int. Conf. on Big Data (Big Data), pp. 3285–3292, 2019
- [5] A. Takada, D. Yamazaki, Y. Yoshida, N. Ganbat, T. Shimotomai, N.Hamada, L. Liu, T. Yamamoto, and D. Sakurai, "Gen'elive! Generating Rhythm actions in Love Live!," in Proc. AAAI Conf. on Artificial Intelligence, vol. 37, no. 4, pp. 5266–5275, 2023.
- [6] C. MX, "Mug-Diffusion: High-quality and controllable charting AI for rhythm games," GitHub repository, 2024. [Online]. Available: https://github.com/Keytoyze/Mug-Diffusion. [Accessed: Dec. 8, 2024].
- [7] Lin, T. "Focal Loss for Dense Object Detection." arXiv preprint arXiv:1708.02002 (2017).