Workshop on GWAS

Exploratory data analysis (EDA) and the concept of regression

Prof. Lei Sun

Department of Statistical Sciences, FAS

Division of Biostatistics, DLSPH

University of Toronto

21 June, 2021

At the end of this lecture

- ► Get to know GWAS-workshop-sample-dataset-ERAP2.txt
- Types of data and descriptive statistics
- Exploratory data analysis (EDA)
- Towards statistical inference (and learning), regression

The (small but real) dataset used throughout the lectures

extracted from a cleaned genotype dataset of the 1000 Genomes Project data, and the gene expression of *ERAP2* of the International Genome Sample Resource

FID	IID	PID	MID	SEX	PHENO	POP	SNP1-56	18704	SNP1-57	815437	SNP1-64	302980	SNP1-10	4336159	SNP1-15	1435036	SNP1-15	8018135
	3714419	rs27825		SNP2-23		SNP2-603		rs101929		SNP2-11:		rs99989		SNP2-21		SNP3-19		SNP3-
611623		SNP3-64		SNP3-71		SNP3-125		SNP3-12		SNP3-15		SNP3-17		SNP3-18		rs15188		SNP4-
4853742	537429 SNP4-67185059		SNP4-76791598		SNP4-121158599		SNP4-129152543		rs10007083		SNP4-162915830						SNP5-	
338374	33837406 rs10054860		860	rs1056893		rs4360063		rs10044354		SNP5-106184146		rs40588 SNP6-24		967500 SNP6-37		032449 rs274630		04
SNP6-69359962		SNP6-94678620		SNP6-108159912		rs1006932		SNP7-6655522		SNP7-8339546		SNP7-52236127		rs10282724		SNP7-126907925		SNP8-
97403295		SNP9-12237310		SNP9-27159704		rs7864801		SNP9-109943261		SNP10-15114789		rs7912144						
rs9415825		SNP10-80281274				SNP11-89516883		SNP11-95415516		SNP12-23576923		SNP12-47113506				rs9582475		
rs7339421		SNP13-104488021		rs4772700		SNP14-27762092		rs2737721		SNP14-41252775		rs1813500		SNP14-5	513718	SNP14-8	9810169	
rs11845053		SNP15-91733944		SNP16-8669923		SNP16-20312407		SNP16-57425543		SNP16-77578033		SNP17-60824552				rs73338	3	
rs11870893		SNP18-549352		SNP18-46491800		SNP18-66700491		SNP19-2446724		SNP19-6387304		rs427366		SNP20-4494424		rs22713	4	
rs4134	rs4134385 SNP22-473535		7353519	SNP23-99734210														
1328	NA06984	0	0	1	11.4981	CEU	AA	AA	CC	cc	CC	TT	TT	cc	TT	CC	GG	cc
AA	TT	TT	TC	TT	TT	GG	AA	TT	CT	AA	CC	CC	AA	CC	CC	AA	GG	TT
CC	AA	CC	TT	CT	GA	TC	TA	GG	CC	AA	TT	TT	CC	CG	AG	GG	TT	TT
AA	TT	CC	AA	AA	GG	AA	TT	CA	CC	CC	TT	AG	GG	AA	TT	AA	GG	cc
GA	TT	GG	GG	TT	TT	AG	AA	CC	CC	GG	AA	CC	GG	TT	TT	TT	AG	GG
CC	TT	GG	AA	GG	TC	CC	GG	AA	GA	AA	GG							
1328	NA06989	0	0	2	10.6796	CEU	AA	AA	CC	CC	CC	TT	CT	AC	TT	CC	GG	CC
GA	TT	TT	TC	TT	TT	GG	GA	TT	TT	GG	TC	CT	GA	CC	CC	AA	GG	TT
CC	AT	CC	TT	CT	GA	TC	TA	GA	CC	AA	TC	TT	TC	GG	GG	GG	TT	cc
AA	TT	CC	CC	AA	AG	GA	TT	AA	CC	CC	TT	AA	GG	AA	TT	AA	GG	CC
GA	TT	GG	GG	TT	CT	GG	AA	cc	CC	GG	AA	CC	GG	TT	TT	TT	GG	GG
CC	TT	GG	AA	AG	TC	TC	GG	GG	AA	AA	AG							
1330	NA12340	0	0	1	10.5453	CEU	AA	AA	TT	CC	CC	TT	TT	AC	TT	CC	GG	CC
AA	TT	CT	TT	TT	TT	GG	AA	TT	CT	AA	TT	CT	GA	CC	CC	AA	AA	TT
CC	AT	CC	GT	CT	GA	TC	TA	GA	CC	AA	TC	TT	CC	CG	AG	GG	TT	TT
AA	TT	CC	cc	AA	GG	AA	TT	AA	AC	cc	TT	GG	GG	AA	CT	AA	GG	CT
GA	CT	GG	AG	CC	TT	AA	AA	CC	CC	GG	AA	TC	GG	TT	TT	TT	GG	TG
CC	TT	GG	AA	GG	TC	TC	GG	GA	AA	GA	GG							
1330	NA12341	0	0	2	11.4555	CEU	AA	AA	TC	CC	CC	TT	CT	CC	TT	CC	GG	cc
AA	CT	TT	TT	TT	TT	AG	GA	TT	TT	GG	CC	CT	AA	CC	CC	AA	AA	TT
cc	AT	CC	GG	cc	GA	TC	TA	GA	TC	AA	TC	TT	TC	CG	GG	GG	TT	CT
AA	TT	CC	CA	AA	GG	AA	TT	AA	CC	cc	TT	AG	GG	AA	CT	GA	TG	TT
GA	TT	GG	AG	CT	CT	GG	AA	CC	CC	GG	AA	CC	GG	TT	TT	TT	GG	TG
cc	TT	GG	AA	GG	TC	CC	GG	AA	AA	AA	GG							
1330	NA12342		0	1	7.98708	CEU	AA	AA	CC	CC	CC	TT	TT	CC	TT	TC	GG	CC
AA	CT	TT	TC	TT	TT	AA	GA	TT	CT	AG	CC	TT	AA	CC	AC	AA	GG	TT
CC	AT	CC	GG	TT	AA	CC	TA	AA	cc	AA	TC	TT	TC	CG	AG	GG	TT	CT
AA	TT	CC	CA	AA	GG	AA	TT	CC	CC	cc	TT	GG	GG	AA	TT	GA	GG	CC
AA	TT	GG	AG	TT	TT	AA	AA	CC	CC	GG	AA	TC	GG	TT	TT	TT	GG	TG
TC	TT	GG	AA	GG	CC	TC	GG	GA	GA	AA	GG							
1330	NA12343	0	0	2	11.2674		AA	AA	CC	CC	CC	TT	CT	CC	TT	CC	GG	CC
AA	CT	TT	TC	TT	TT	GG	AA	TT	CT	GG	CC	CC	GA	CC	CC	AA	GG	TT
CC	TT	CC	TT	CT	GA	TC	AA	GA	CC	AA	CC	TT	TC	CG	AG	GG	TT	CC
AA	TT	CC	AA	AA	AG	AA	TT	AA	CC	CC	TT	GG	GG	AA	TT	AA	GG	CC
AA	TT	GG	AG	TT	CT	GG	AA	CC	CC	GG	AA	TC	GG	TT	GT	TT	AG	GG

.

Getting the data, GWAS-workshop-sample-dataset-ERAP2.txt

```
# mydata.ERAP2=data.table::fread("http://www.utstat.toronto.edu/sun/data/GWAS-workshop-sample-dataset-ERAP?
# Locally if you have already downloaded the data to your working directory
mydata.ERAP2=read.table("GWAS-workshop-sample-dataset-ERAP2.txt",header=T)

# a sneak peak at the data; male=1 and female=2 by convention
# CEU: Utah residents with Northern and Western European ancestry from the CEPH collection
# YRI: Yoruba in Ibadan, Nigeria
mydata.ERAP2[c(1:3,103:105,193:195),1:9]
```

```
FID
                                PHENO POP SNP1.5618704 SNP1.57815437
##
               IID PID MID SEX
      1328 NA06984
                           1 11.49810 CEU
## 1
                                                               AA
## 2
     1328 NA06989 0
                           2 10.67960 CEU
                                                  AA
                                                               AA
## 3
     1330 NA12340 0
                        0 1 10.54530 CEU
                                                               AA
                                                  AA
## 103 13291 NA07435 0 0 1 11.55000 CEU
                                                  AA
                                                               AA
## 104 13292 NA07051 0 0 1 10.68810 CEU
                                                  AA
                                                               AA
## 105 Y001 NA18486 0 0 1 10.65360 YRI
                                                  CA
                                                               GA
## 193 Y116 NA19236 0 0 1 10.84090 YRI
                                                  CA
                                                               GG
## 194 Y120 NA19247 0 0 2 8.57924 YRI
                                                  AA
                                                               AA
## 195 Y120 NA19248 0 0 1 11.95420 YRI
                                                  CC
                                                               AA
```

```
# Our data matrix is 195 by 107 in dimension; the last 100 columns are genotypes of 100 SNPs
c(length(mydata.ERAP2[,1]),length(mydata.ERAP2[1,]))
```

```
## [1] 195 107
```

Types of data

Data can take many forms, such as free-form text, images, audio recordings, and networks of relationships.

a conventional form of data: we have a collection of cases (observations), and we measure multiple characteristics of each case. The characteristics may also be called attributes, or variables.

Such data may be said to have a rectangular form. By convention, the rows of the rectangle correspond to the cases [individuals] and the columns correspond to the variables.

```
mvdata.ERAP2[c(1:3,103:105,193:195),1:9]
##
         FID
                 TID PID MID SEX
                                     PHENO POP SNP1 5618704 SNP1 57815437
        1328 NA06984
                                1 11 49810 CEU
                                                                        AA
        1328 NA06989
                                2 10.67960 CEU
                                                          AA
                                                                        AA
        1330 NA12340
                                1 10 54530 CEU
                                                                        AA
                                                          ΑΑ
## 103 13291 NA07435
                                1 11 55000 CEU
                                                          ΑΑ
                                                                        AA
                                1 10.68810 CEU
## 104 13292 NA07051
                                                          AA
                                                                        AA
## 105
       Y001 NA18486
                                1 10.65360 YRT
                                                          CA
                                                                        GA
## 193
       V116 NA19236
                          0 1 10 84090 YRT
                                                          CA
                                                                        GG
       Y120 NA19247
## 194
                                2 8.57924 YRT
                                                          AA
                                                                        AA
## 195
       Y120 NA19248
                                1 11.95420 YRT
                                                          CC
                                                                        AA
```

Types of data cont'd

mydata.ERAP2[c(1:3,103:105,193:195),1:9]

```
FID
                                    PHENO POP SNP1.5618704 SNP1.57815437
                 TID PID MID SEX
       1328 NA06984
                               1 11.49810 CEU
                                                                       AA
        1328 NA06989
                               2 10 67960 CEII
                                                         ΑΑ
                                                                       AA
        1330 NA12340
                               1 10 54530 CEII
                                                                       AA
## 103 13291 NA07435
                               1 11.55000 CEU
                                                         AA
                                                                       AA
## 104 13292 NA07051
                              1 10 68810 CEU
                                                         ΑΑ
                                                                       ΑΑ
      Y001 NA18486
                              1 10.65360 YRI
                                                        CA
                                                                       GA
## 105
       Y116 NA19236
                      0 0 1 10.84090 YRT
## 193
                                                        CA
                                                                       GG
## 194
      Y120 NA19247
                       0 0 2 8.57924 YRT
                                                                       AA
## 195 Y120 NA19248
                           0 1 11 95420 YRT
                                                                       AA
```

Can you identify

- A nominal variable is an unordered set of labels.
- An ordinal variable is an ordered set of labels, with no implication that we can attribute meaning to the size of "gaps" between the labels.
- ▶ A quantitative [discrete or continuous] variable measures something in numeric terms to high precision, often capturing an amount or the change in an amount.

Unrelated vs. related individuals, and pedigree drawing

Question: How to code the data/graphs? (Much harder: how do you translate the codes to graphs?)

FID	IID	PID	MID	SEX
1	1	0	0	1
2	1	0	0	2
3	1	0	0	1
4	1	0	0	2
5	1	0	0	1
5	2	0	0	2
5	3	1	2	1
5	4	1	2	2
6	1	0	0	1
6	2	0	0	2
6	3	1	2	1
6	4	1	2	2
6	5	0	0	2
6	6	0	0	1
6	7	3	5	1

4 6 4 6

6 2

6 8

6 9

6 10 0 0

11 10 9

Some descriptive statistics

[1.]

53 51 ## [2,] 46 45

```
mydata.ERAP2[c(1,2,194,195),1:9]
       FID
               TID PID MID SEX
                                  PHENO POP SNP1.5618704 SNP1.57815437
       1328 NA06984
                             1 11 49810 CEII
                                                      ΔΔ
       1328 NA06989 0 0 2 10.67960 CEU
                                                      AA
                                                                    AA
## 194 Y120 NA19247 0 0 2 8.57924 YRI
                                                      AA
                                                                    AA
## 195 Y120 NA19248 0 0 1 11 95420 YRT
                                                      CC
                                                                    ΑΑ
summary(mydata.ERAP2$POP) # number of individuals in each population
## CEU YRT
## 104 91
summary(mydata, ERAP2$SEX) # Why not summary(mydata, ERAP2$SEX)?
     Min. 1st Qu. Median
                           Mean 3rd Qu.
                                             Max
    1.000 1.000 1.000 1.492
                                    2.000
                                            2.000
c(sum(mydata, ERAP2$SEX==1), sum(mydata, ERAP2$SEX==2)) # Instead: male=1 and female=2 by convention
## [1] 99 96
# Sex by Population; male=1 and female=2 by convention
matrix(c(sum(mydata.ERAP2$POP=='CEU'&mydata.ERAP2$SEX==1),sum(mydata.ERAP2$POP=='CEU'&mydata.ERAP2$SEX==2
         sum(mydata, ERAP2$P0P=='YRI'&mydata, ERAP2$SEX==1), sum(mydata, ERAP2$P0P=='YRI'&mydata, ERAP2$SEX==2
       [,1] [,2]
```

Question: Are there any siblings or genetically related individuals in the data?

The nominal genetic data, genotype

mydata.ERAP2\$SNP1.5618704

Transform the nomimal genotype data to quantitative discrete data using the additive genotype coding scheme

The quantitative (continous) phenotype/trait/outcome (Y) of interest

```
round(mydata.ERAP2$PHEN0,1)[1:50]
   [1] 11.5 10.7 10.5 11.5 8.0 11.3 12.1 11.8 12.7 9.6 11.9 12.8
  [16] 10.7 12.6 8.6 12.3 11.4 12.0 11.5 11.2 12.3 9.3 8.9 12.2
  [31] 8.4 10.6 10.6 12.2 11.0 12.3 11.4 8.7 11.8 11.9 8.3 8.9 8.0
## [46] 11.6 11.7 11.4 12.0 12.0
summary(mydata.ERAP2$PHENO)
     Min. 1st Qu.
                   Median
                             Mean 3rd Qu.
                                             Max.
    7.914
            8 843
                   11.295
                          10.625 11.827
                                           13.208
hist(mydata.ERAP2$PHENO)
```

Histogram of mydata.ERAP2\$PHENO

Towards statistical inference (and learning)

Are the patterns/distributions of males and females (Y)? similar between the CEU and YRI populations (X)?

(Yes, what is Y and what is X depend your scientific question!)

```
# Sex by Population; male=1 and female=2 by convention
matrix(c(sum(mydata.ERAP2$POP=='CEU'&mydata.ERAP2$SEX==1),sum(mydata.ERAP2$POP=='CEU'&mydata.ERAP2$SEX==2
sum(mydata.ERAP2$POP=='YRI'&mydata.ERAP2$SEX==1),sum(mydata.ERAP2$POP=='YRI'&mydata.ERAP2$SEX==2

## [,1] [,2]
## [1,] 53 51
```

- ## [2,] 46 45
 - ▶ Proprotion of males in CEU: $\frac{53}{53+51} = 50.96\%$
 - Proprotion of males in YRI: $\frac{46}{46+45} = 50.55\%$
 - ▶ No need for statistical inference in this case.

How about this one?

Are the distributions of PHENO (Y) similar between CEU and YRI (X)?

```
par(mfrow=c(1,2))
hist(mydata.ERAP2$PHENO[mydata.ERAP2$POP=='CEU'],main="X, POP=CEU",xlab="Y, Phenotype")
hist(mydata.ERAP2$PHENO[mydata.ERAP2$POP=='YRI'],main="X, POP=YRI",xlab="Y, Phenotype")
```



```
summary(mydata.ERAP2$PHEN0[mydata.ERAP2$POP=='CEU'])
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.935 9.239 11.384 10.722 11.831 13.208
summary(mydata.ERAP2$PHENO[mydata.ERAP2$POP=='YRI'])
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.914 8.728 11.256 10.515 11.827 12.650
```

Yet another one

PHENO (Y) similar between males and females (X)?

```
par(mfrow=c(1,2))
hist(mydata.ERAP2$PHENO[mydata.ERAP2$SEX==1],main="X, Sex=Male",xlab="Y, Phenotype")
hist(mydata.ERAP2$PHENO[mydata.ERAP2$SEX==2],main="X, Sex=Female",xlab="Y, Phenotype")
```


summary(mydata.ERAP2\$PHENO[mydata.ERAP2\$SEX==1]);

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.935 9.010 11.387 10.740 11.897 13.208
summary(mydata.ERAP2$PHEN0[mydata.ERAP2$SEX==2])
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.914 8.668 11.275 10.507 11.785 12.779
```

Finally, the phenotype-genotype association analysis

mydata.ERAP2\$SNP1.5618704[mydata.ERAP2\$POP=='YRI']

Simple Linear Regression, Expected or average value of $Y = \beta_0 + \beta X$

An important scientific question: Does the genotype of SNP1.5618704 (X) influence the gene expression of ERAP2 (Y)? Does Y depend on X?

To be answered statistically: Is the regression line flat, i.e. the slope $\beta = 0$?

Ordinary least squares

Use one X or a set of predictors, X_1, \ldots, X_p , to predict an outcome Y:

Expected value of Y, phenotype = $\beta_0 + \beta_1 X_1$ (e.g. genotype of a SNP)+ $\beta_2 X_2$ (e.g. sex)

Find $\beta = (\beta_0, \beta_1, \dots \beta_p)$ that minimizes the sum of the squares of the differences between the observed y_i values and the predicted \hat{y}_i values, predicted based on the set of predictors, x_1, \dots, x_p .

$$\hat{\beta} = \underset{\beta}{\arg\min} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \underset{\beta}{\arg\min} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} \beta_j x_{ij})^2.$$

Visualize Least Squares (LS) estimation

GPA vs. ACT scores for 15 students

Regression coefficient and p-value, a 'black-boxed' approach

The slope (the regression coefficient) is -0.4545. The slope is not statistically different from zero: the p-value of testing the slope = 0 is 0.0594, not statistically significant.

```
summary(lm(y~x))
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
       Min
                10 Median
                                30
                                       Max
##
   -2.7969 -1.7987 0.5538 1.3051 2.5135
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
++ (Tn+oncon+) 10 0E44 0 044E 44 400 < 20-16 +++
```

How about YRI (left) vs. CEU (right)?

Live Quiz 1: Which slope (statistically) departs more from zero? A: YRI (left)

B: CEU (right)

C: Cannot determine; need more data

The 'solution'

[1] "CEU"

```
## [1] "YRI"
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.8544007 0.2444552 44.402418 1.624690e-62
## x
                     -0.4544541 0.2380040 -1.909438 5.942701e-02
                                      YRI
                                                                       CEU
                        2
                                                         2
                     ene expression of ERAP2
                                                      expression of ERAP2
                        9
                            genotype of SNP1.5618704 coded additively
                                                             genotype of SNP1.5618704 coded additively
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.7996640 0.1511875 71.43227 6.364624e-89
## x -0.8963905 0.4648749 -1.92824 5.660573e-02
```

'Large' *n* is important!

Continue the study of association between X=SNP1.5618704 and Y=trait (gene expression of ERAP2) in the YRI sample:

Looking ahead (i.e. if you take university level statistics courses): how to determine your n is large enough (i.e. sample size calculation)?

Why not use both YRI and CEU samples to increase n?

Recall the (potential) confounding issue!

```
## [1] "YRI"

## [,1] [,2] [,3]

## [1,] "AA" "CT" "CC"

## [2,] "37" "40" "14"
```



```
## [1] "CEU"

## [,1] [,2] [,3]

## [1,] "AA" "CT" "CC

## [2,] "96" "7" "1"
```

Other questions can be asked

```
## [1] "YRI"

## [,1] [,2] [,3]

## [1,] "AA" "CT" "CC"

## [2,] "37" "40" "14"

## [1] "CEU"

## [,1] [,2] [,3]

## [1,] "AA" "CT" "CC"

## [2,] "96" "7" "1"
```

- Are the genotype patterns similar between the YRI and CEU samples?
- How do you estimate genotype frequencies of AA, CA and CC?
- ► How do you estimate allele frequencies of A and C?
- What is a good estimate? What is a estimate anyway?!
- Do genotype frequencies (or allele frequencies) differ between the YRI and CEU populations?
- Statistical inference is needed again!

Introduction to p-values, first using simulation of flipping a coin then regression

'homework'

Use the gene expression of *LCT* dataset

GWAS-workshop-sample-dataset-LCT.txt to repeat some of the analyses and graphing shown so far, e.g. start with

```
# Don't forget to first downloaded the data to your WORKING directory
mydata.LCT=read.table("GWAS-workshop-sample-dataset-LCT.txt",header=T)
mydata.LCT[c(1:3,103:105,193:195),1:9]
```

```
##
         FID
                  TID PID MID SEX
                                    PHENO POP SNP1 5618704 SNP1 57815437
## 1
        1328 NA06984
                                1 7 44421 CEU
                                                         ΔΔ
                                                                        ΔΔ
        1328 NA06989
                                2 7.27992 CEU
                                                         AA
                                                                        AA
## 3
        1330 NA12340
                                1 6 85208 CEII
                                                         ΔΔ
                                                                        ΔΔ
## 103 13291 NA07435
                                1 8 39611 CEU
                                                                        ΔΔ
                                                         ΔΑ
## 104 13292 NA07051
                                1 6.98187 CEU
                                                         AA
                                                                        AA
       Y001 NA18486
                                1 6.87917 YRT
                                                         CA
## 105
                                                                        GA
## 193 Y116 NA19236
                               1 7.25701 YRI
                                                         CA
                                                                        GG
## 194 Y120 NA19247
                            0
                                2 7.50315 YRT
                                                         AA
                                                                        AA
## 195 Y120 NA19248
                                1 7.09252 YRT
                                                         CC
                                                                        AA
```