NLP Recent History

Text Features

• Natural Language Processing = Machine Learning with Text

- Step 1 Identify text-based features
- Step 2 Label data for a task
- Step 3 Train a classifier

Text Features — Old School

- Lexical Features
 - Part-of-speech tags (Verb/Noun/Adj)
 - Stems / Lemmas
 - Word Frequency
 - Psycholinguistic Features
 - Terminologies
 - Morphology (affixes)

Text Features — Old School

- Sentential Features
 - Sentence Structure
 - Parse Tree Features
 - Sentence Dependencies
 - POS ratios
 - Punctuation frequency
 - Averages of lexical features

Text Features — Old School

- Document Features
 - Bag-of-words
 - TF-IDF Vectors

Represent each word as a vector of numbers

Represent each word as a vector of numbers

Represent each word as a vector of numbers

```
0.23
0.12
0.65
...
```

Represent each word as a vector of numbers

```
the cat

0.23
0.12
0.65
0.79
...
...
```

Represent each word as a vector of numbers

the	cat	sat	on	the	mat	
0.23	0.38	0.31	0.43	0.72	0.44	
0.12	0.12	0.02	0.82	0.91	0.10	
0.65	0.79	0.63	0.61	0.23	0.31	
			•••	•••		

The cat sat on the mat

- The dog chased the stick
- Dogs and cats are animals
- Dogs like bones

	cat	sat	mat	dog	chase	stick	animal	bone	milk
cat									
sat									
mat									
dog									
chase									
stick									
animal									
bone									
milk									

The cat sat on the mat

- The dog chased the stick
- Dogs and cats are animals
- Dogs like bones

		cat	sat	mat	dog	chase	stick	animal	bone	milk
	cat	3	1	1	1	0	0	1	0	1
	sat	1	1	1	0	0	0	0	0	0
ı	mat	1	1	1	0	0	0	0	0	0
	dog	1	0	0	3	1	1	1	1	0
cl	hase	0	0	0	1	1	1	0	0	0
S	stick	0	0	0	1	1	1	0	0	0
ar	nimal	1	0	0	1	0	0	1	0	0
b	one	0	0	0	1	0	0	0	1	0
ľ	milk	1	0	0	1	0	0	0	0	1

The cat sat on the mat

- The dog chased the stick
- Dogs and cats are animals
- Dogs like bones

cat	sat	mat	dog	chase	stick	animal	bone	milk
3	1	1	1	0	0	1	0	1
1	1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	0	0	3	1	1	1	1	0
0	0	0	1	1	1	0	0	0
0	0	0	1	1	1	0	0	0
1	0	0	1	0	0	1	0	0
0	0	0	1	0	0	0	1	0
1	0	0	1	0	0	0	0	1

The cat sat on the mat

- The dog chased the stick
- Dogs and cats are animals
- Dogs like bones

- Issue
 - Dimensionality = vocab size
- Reduce with PCA...

cat	sat	mat	dog	chase	stick	animal	bone	milk
3	1	1	1	0	0	1	0	1
1	1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	0	0	3	1	1	1	1	0
0	0	0	1	1	1	0	0	0
0	0	0	1	1	1	0	0	0
1	0	0	1	0	0	1	0	0
0	0	0	1	0	0	0	1	0
1	0	0	1	0	0	0	0	1

Which animal likes milk?

animal		milk		cat
1		1		3
0		0		1
0		0		1
1	+	0	~	1
0	ı	0		0
0		0		0
1		0		1
0		0		0
0		1		1

 Learn a set of word vectors that can be used to predict surrounding words

 Initialise random vectors and train neural network, updating vector weights with network

 End result is a set of vectors that perform like count-based, but without counting

CBOW

Example Tasks

- Classification
 - Sentiment Analysis
 - Readability
 - Categorisation
- Text Generation
 - Machine Translation
 - Summarisation
 - Data-to-text
- Natural Language Understanding
 - Inference / Reasoning
 - Chatbots / Intelligent Tutoring

http://nlpprogress.com/

Sequence classification

Sequence classification

suis étudiant </s> https://arxiv.org/pdf/1409.0473.pdf attention vector • LSTMs + Attention context vector attention .; weights A STATE OF THE PARTY OF THE PAR student <s> suis étudiant am

- Encoder-Decoder architecture
 - Feature space acts as an interlingua
- Encoder
 - Inputs (words) are encoded using embeddings
 - Transforms input embeddings to feature space
 - 6 stacked layers attention and feed-forward
- Decoder transform feature space to outputs
 - Converts output of last encoder layer into a set of probabilities which predict the next word

Output

Encoder Layer

- Creates context vector for input sequence
- N=6 stacked layers

Output Probabilities

Encoder – multi-headed self attention

- Self-attention
 - All inputs available to encoder
 - Attention selects relevant parts of input
 - Key, Value, Query (read paper for details)
- Multi-headed
 - Ran in parallel N=8 times
 - Output of each 'head' is concatenated

Encoder - Add and normalize

 Note that the input from before each step is carried through to the next step

Normalisation prevents exploding gradient

Output Probabilities

Decoder – Replicates encoder

- Multi-head self attention and feed forward network are carried over
 - Applied to the attention weights from encoder
 - Also applied to the last output from decoder

Output Probabilities

Softmax

Decoder – Masked Multi-head attention

 Masking prevents information from future becoming available at decode time

• Otherwise, self-attention the same as before

Output Probabilities

 Encoder-Decoder – Sinusoidal Positional Encoding

- Encodes whereabout in the sentence the word is likely to have occurred
 - Applies sin/cos function to alternate dimensions of the embedding
 - This is summed with the word embeddings
 - So embedding contains info on meaning + position in sentence

Output Probabilities

Output

- Linear layer
 - Fully connected NN
 - Converts k-dim vector to size of output vocab
- Softmax layer
 - Normalises probabilities in 0-1 range.

Output

The Transformer - Visualisation

Decoding time step: 1 2 3 4 5 6 OUTPUT

Pre-trained Models

- NLP would be very expensive if we had to retrain models every time
- Fortunately, pre-trained models are available that we can use

Fine-tuning

• Pre-trained models can be adapted to a specific task

Sentence Similarity

Fill-Mask