Математический анализ

Бабин Руслан, Пономарев Николай Курс Широкова Н. А.

осень 2021 г.

Оглавление

O	глав.	ление	i
1	Ber	цественные числа	1
	1.1	Обозначения и нотация	1
	1.2	Операции над множествами	2
	1.3	Определение вещественных чисел по Р.Дедекинду	3
	1.4	Упорядочивание по возрастанию и арифметические дей-	
		ствия над Rчислами	4

глава 1

Вещественные числа

1.1. Обозначения и нотация

В дальнейшем множество будем понимать как совокупность объектов, называемых его элементами. Приведенное высказывание не является определением, однако в дальнейшем при операциях с конкретными множествами, математический контекст рассматриваемые множества определяет.

Если a, b – некие элементы, A – множество, то запись $a \in A$ означает, что a принадлежит множеству A; запись $b \notin A$ означает, что элемент b не принадлежит множеству A.

Символ \forall означает высказывание «для всякого», далее всегда будет следовать текст конкретизирующий это высказывание.

Символ \exists означает высказывание «существует» и также будет задан математическим контекстом.

Запись $A\Rightarrow B$ или $B\Leftarrow A$ означает «из A следует B»; запись $A\Leftrightarrow B$ означает «A эквивалентно B».

Множества A и B называются совпадающими, что записывают формулой A=B, если $(\forall a\in A)\Rightarrow (a\in B)$ и $(\forall b\in B)\Rightarrow (b\in A)$; приведенная формальная запись означает, что A=B в том и только в том случае, когда они состоят из одних и тех же элементов.

Если множества A и B не совпадают, то пишут $A \neq B$.

Определяют также пустое множество, в котором нет элементов, которое будем обозначать символом \varnothing .

Запись $A \subset B$ читается «A содержится в B» и означает, что ($\forall a \in A$) $\Rightarrow (a \in B)$. Полагаем, что $\emptyset \subset A$ для любого множества A. Понятно,

ОТР

$$A = B \Leftrightarrow (A \subset B)$$
 и $(B \subset A)$.

В дальнейшем при рассмотрении сразу нескольких множеств в качестве синонима слова «множество» будем использовать слова «семейство», «класс», «совокупность».

1.2. Операции над множествами

Объединением $A \cup B$ множеств A и B будем называть множество:

$$(a \in A \cup B) \Leftrightarrow (a \in A)$$
 или $(a \in B)$.

Если множество A задается каким-то условием, обозначим его «условие», то для задания множества A будем использовать обозначение

$$A = \{a : «условие» на $a\}$$$

Пример.

$$A_1 \cup A_2 = \{a: a \in A_1$$
или $a \in A_2\}$

Если имеется произвольное непустое множество I и $\forall \alpha \in I$ имеется множество $A_{\alpha},$ то

$$\bigcup_{a\in I}A_{\alpha}=\{a:\exists\alpha\in I \text{ такое, что } a\in A_{\alpha}\}$$

Пересечением $A \cap B$ назовем множество

$$A \cap B = \{a: (a \in A) \text{ и } (a \in B)\}.$$

Если элементов a, принадлежащих A и B, не существует, пишем

$$A \cap B = \emptyset$$

и называем A и B дизъюнктивными. Если есть непустое множество I, то, предполагая, что $\forall \alpha \in I \exists A_{\alpha}$, Полагаем

$$\bigcap_{\alpha \in I} A_{\alpha} = \{ a : \forall \alpha \in I \quad a \in A_{\alpha} \}$$

B, называется множество

$$AB = \{a : a \in A, a \notin B\}$$

Теорема 1. Предположим, что имеется непустое множество I и для любого $\alpha \in I$ имеется множество A_{α} . Справедливы следующие формулы:

$$B \cap \left(\bigcup_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} (B \cap A_{\alpha}) \tag{1.1}$$

$$B \cup \left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcap_{\alpha \in I} (B \cup A_{\alpha}) \tag{1.2}$$

$$B \setminus \left(\bigcup_{\alpha \in I} A_{\alpha}\right) = \bigcap_{\alpha \in I} (B \setminus A_{\alpha}) \tag{1.3}$$

$$B \setminus \left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} (B \cup A_{\alpha}) \tag{1.4}$$

Доказательство. Докажем (1.1), остальные соотношения доказываются аналогично. Обозначим левую часть (1.1) через C, а правую через D. Если $a \in C$, то $a \in B$ и $a \in \bigcup_{\alpha \in I} A_{\alpha}$, т.е. $\exists \alpha_0 \in I$, такое что $a \in A_{\alpha}$, тогда $a \in B \cap A_{\alpha_0}$, $a \in \bigcup_{\alpha \in I} (B \cap A_{\alpha})$, $a \in D$, то есть $C \subset D$. Если $b \in D$, то $\exists \alpha_1 \in I$ такое что $b \in B \cap A_{\alpha_1}$, то есть $b \in B$ и $b \in A_{\alpha_1}$, тогда $b \in \bigcup_{\alpha \in I} A_{\alpha}$, $b \in B \cap \bigcup_{\alpha \in I} A_{\alpha}$, т.е. $b \in C$ и $D \subset C$, т.е. C = D, что и требовалось доказать.

1.3. Определение вещественных чисел по Р.Дедекинду

Далее будем считать известными натуральные числа, множество которых всегда обозначается через \mathbb{N} , множество целых чисел \mathbb{Z} , множество рациональных чисел \mathbb{Q} . Считаем, что свойства арифметических действий с числами из \mathbb{Q} и свойства, связанные с упорядочиванием рациональных чисел по возрастанию, известны.

Определение 1. Пусть α - непустое множество, состоящее из рациональных чисел. Будем называть множество α сечением, если выполняются следующие условия:

- 1. $\alpha \neq \mathbb{Q}$
- 2. Если $p \in \alpha, q \in \alpha, q < p$, то $q \in \alpha$

3. В α нет наибольшего числа, т.е. не существует $p_0 \in \alpha$, такого что $\forall p \in \alpha$ выполнено $p \leq p_0$

Утверждение 1. Пусть α – сечение. Если $q \in \mathbb{Q}, p \in \alpha, q \notin \alpha$, то p < q.

Доказательство. Из условия следует, что $p \neq q$. Если бы выполнялось q < p, то по п.2 определения сечения $q \in \alpha$, чего нет. Следовательно p > q, чтд.

Термин 1. Пусть α – сечение. Числа из \mathbb{Q} , принадлежащие α , называются нижними числами сечения α , а числа из \mathbb{Q} , не принадлежащие α , называются верхними числами сечения α .

Сопоставим теперь $\forall z \in \mathbb{Q}$ сечение, которое будем обозначать z^* . Далее запись $A \stackrel{def}{=} B$ означает, что объект A определяется через объект B. Полагаем:

$$z^* = \{ p \in \mathbb{Q} : p < z \} \tag{1.5}$$

Запись (1.5) является сокращением формальной записи (1.6)

$$z^* = \{ p : p \in \mathbb{Q} \land p < z \} \tag{1.6}$$

Проверим, что z^* – сечение. z-1 < z, т.е. $z-1 \in z^*$, множество z^* непустое. $z+1>z, z+1 \notin z^*, z^* \neq \mathbb{Q}$. Если $p \in z^* \wedge q \in \mathbb{Q}, q < p$, то $q . Если <math>p_1 \in z^*$, то $p_1 < z$; пусть $p_2 = \frac{p_1 + z}{2}$, тогда $p_1 < p_2 < z, p_2 \in z^*$, т.е. в z^* нет наибольшего числа.

Определение 2. Множество всех сечений будет называться множеством вещественных чисел, а любое конкретное сечение будем называть вещественным числом. Обозначаем множество вещественных чисел \mathbb{R} .

Приведенный подход к определению вещественных чисел принадлежит немецкому математику Р. Дедекинду, поэтому сечения называются сечениями множества рациональных чисел по Дедекинду.

Определение 3. Пишем $\alpha < \beta$, говорим, что α меньше β , если $\exists p \in \mathbb{Q}$, т.ч. $p \in \beta \land p \notin \alpha$. Пишем $\alpha \leq \beta$, говорим, что α не превосходит β , если $\alpha < \beta \lor \alpha = \beta$.

Теорема 2. Пусть α , β – сечения. Тогда либо $\alpha < \beta$, либо $\alpha = \beta$, либо $\alpha > \beta$.

Доказательство. Если $\alpha=\beta$, то определение влечёт, что не может быть при этом $\alpha<\beta$ или $\alpha>\beta$. Пусть $\alpha\neq\beta$. Докажем, что выполнено только одно соотношение $\alpha<\beta$ или $\alpha>\beta$. Предположим, что выполнены оба, т.е. $\alpha<\beta$ и $\beta<\alpha$. Тогда $(\alpha<\beta)\Rightarrow (\exists p\in\mathbb{Q}|p\in\beta,p\notin\alpha);$ $(\beta<\alpha)\Rightarrow (\exists q\in\mathbb{Q}|q\in\alpha,q\notin\beta)$. По утверждению из предыдущей лекции $(p\in\beta,q\notin\beta)\Rightarrow p< q; (q\in\alpha,p\notin\alpha)\Rightarrow q< p$ — получили противоречие.

Таким образом, $\alpha < \beta$ и $\beta < \alpha$ вместе не могут выполняться. Но, если $\alpha \neq \beta$, то в каком-то из этих множеств, например в β имеется элемент $r \in \mathbb{Q}$, не принадлежащий α , тогда по определению имеем $\alpha < \beta$. Аналогично для $\beta < \alpha$. Следовательно, в случае $\alpha \neq \beta$ обязательно выполнится только одно условие $\alpha < \beta$ или $\beta < \alpha$. Теорема доказана.

Теорема 3. Теорема о трех сечениях. Пусть α, β, γ – сечения. Если $\alpha < \beta \land \beta < \gamma$, то $\alpha < \gamma$.

Доказательство. $(\alpha < \beta) \Rightarrow (\exists p \in \mathbb{Q} | p \in \beta, p \notin \alpha); (\beta < \gamma) \Rightarrow (\exists q \in \mathbb{Q} | q \in \gamma, q \notin \beta)$. Далее, $(p \in \beta, q \notin \beta) \Rightarrow$ по утверждению из прошлой лекции p < q. Поскольку $p \notin \alpha$, то тогда и $q \notin \alpha$, в противоположном случае по свойству 2 в определении сечения было бы и $p \in \alpha$. Таким образом, $q \in \gamma, q \notin \alpha$, т.е. $\alpha < \gamma$. Теорема доказана.

Определение 4. Сумма вещественных чисел = сумма сечений.

Теорема 4. Пусть α и β – сечения, γ – множество рациональных чисел r, m.ч. r=p+q, где $p\in \alpha$ - произвольное число, $q\in \beta$ - произвольное число. Тогда γ – сечение.

Доказательство. Поскольку $\alpha \neq \emptyset$, $\beta \neq \emptyset$, то $\gamma \neq \emptyset$. Поскольку $\alpha \neq \mathbb{Q}, \beta \neq \mathbb{Q}$, то $\exists s \in \mathbb{Q}, s \notin \alpha$ и $\exists t \in \mathbb{Q}, t \notin \beta$. Пусть $p \in \alpha, q \in \beta$. По удтверждению из прошлой лекции $(p \in \alpha, s \notin \alpha) \Rightarrow (p < s); (q \in \beta, t \notin \beta) \Rightarrow (q < t)$. Отсюда следует, что $p + q < s + t \ \forall p \in \alpha \land \forall q \in \beta$, т.ч. $\forall r \in \gamma$ выполнено r < s + t, т.е. $s + t \notin \gamma$, т.е. $\gamma \neq \mathbb{Q}$ – проверен п.1 в определении сечения.

Пусть $r \in \gamma$, s < r. Тогда $r = p + q, p \in \alpha, q \in \beta$. Пусть t = s - q, тогда t < r - q = (p + q) - q = p, из $p \in \alpha$ и $t < \alpha$ следует $t \in \alpha$, т.е. $s = t + q, t \in \alpha, q \in \beta$, т.е. $s \in \gamma$ – проверен п.2 в определении сечения.

Пусть $r \in \gamma, r = p+q, p \in \alpha, q \in \beta$. По п.3 определения сечения $\exists p_1 \in \alpha, p_1 > p$, тогда $r_1 = p_1 + q > p + q = r$, в γ нет наибольшего элемента, проверен п.3 определения сечения.

Теорема доказана.

Определение 5. Сечение γ , построенное в предыдущей теореме, называется суммой сечений α и β .

Поскольку вещественные числа определены как сечения, то вещественное число γ называют суммой вещественных чисед α и β , пишут $\gamma = \alpha + \beta$.

Свойства сложения

Теорема 5. Пусть α, β, γ – вещественные числа. Тогда:

1.
$$\alpha + \beta = \beta + \alpha$$

2.
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

3.
$$\alpha + 0^* = \alpha$$

Доказательство. Пункты 1 и 2 следуют из определения сложения и свойств сложения рациональных чисел. Докажем п.3.

Пусть $r \in \alpha + 0^*$, тогда r = p + q, $p \in \alpha, q \in 0^*$, т.е. q < 0, поэтому r = p + q < p, тогда $r \in \alpha$ по условию 2 определения сечений, т.ч. $\alpha + 0^* \subset \alpha$, если мы делаем акцент на том, что $\alpha + 0^*$ и α – множества. Пусть теперь $t \in \alpha$. Выберем s > t, но $s \in \alpha$, что возможно по п.3 определения сечений. Полагаем $q_0 = t - s$, тогда $t - s < 0 \Rightarrow t - s \in 0^*, t = s + (t - s) \in \alpha + 0^*$, т.е. $\alpha \subset \alpha + 0^*$, тогда $\alpha = \alpha + 0^*$. Теорема доказана.

Теорема 6. Теорема о разности верхних и нижних чисел сечения. Пусть α – сечение, и пусть $r \in \mathbb{Q}, r > 0$. Тогда $\exists p \in \mathbb{Q}, \exists q \in \mathbb{Q},$ такие что $p \in \alpha, q \notin \alpha, q$ не является наименьшим из верхних чисел α и q-p=r.

Доказательство. Возьмем $s \in \alpha$, и пусть $s_n = s + nr, s_0 = s, n = 0, 1, ...$. Найдется m_0 , т.ч. $s_{m_0} \notin \alpha$: если бы $s_n \in \alpha \forall n \in \mathbb{N}$, то возьмем $\forall t \in \mathbb{Q}, t > s$. По свойствам рациональных чисел $\exists n_0$ т.ч. $s = n_0 r > t$, и тогда $s_{n_0} \in \alpha \Rightarrow t \in \alpha$, т.е. $\alpha = \mathbb{Q}$ в силу произвольности t, что противоречит условию 1.

Таким образом, $\exists m_0 \in \mathbb{N}$, т.ч. $s_{m_0} \notin \alpha$. Поскольку $s_0 \in \alpha$, то имеется максимальное $m \in \mathbb{N}$, т.ч. $s_m \in \alpha, m < m_0$, тогда $s_{m+1} \notin \alpha$. Если

 s_{m+1} не является минимальным из верхних чисел сечения, то полагаем $p=s_m, q=s_{m+1}$, тогда $q-p=s_{m+1}-s_m=(s+(m+1)r)-(s+mr)=r$. Если же s_{m+1} является наименьшим из верхних чисел сечения, то пусть $p=s_m+\frac{r}{2}, q=s_{m+1}+\frac{r}{2}, q-p=r, q>s_{m+1}\Rightarrow q\notin\alpha, s_{m+1}$ – наименьшее из верхних чисел α и $p=s_m+\frac{r}{2}=s+mr+\frac{r}{2}< s+(m+1)r$, поэтому $p\in\alpha$. Теорема доказана.

Существование противоположного числа

Теорема 7. Пусть α - вещественное число. Тогда существует единственное число β такое, что $\alpha + \beta = 0^*$

Доказательство. Вначале докажем единственность β . Предположим, что $\exists \beta_0$ т.ч. $\alpha + \beta_0 = 0^*$. Тогда, по теореме о свойствах сложения имеем

$$\beta_0 = 0^* + \beta_0 = (\alpha + \beta) + \beta_0 = (\beta + \alpha) + \beta_0 = \beta + (\alpha + \beta_0) = \beta + 0^* = \beta$$
 т.е. β - единственный, если существует.

Найдем теперь какое-то β , т.ч. $\alpha+\beta=0^*$. Пусть β — множество всех рациональных чисел таких, что -p является верхним числом α , но не наименьшим из верхним чисел.

Проверим, что β — сечение (= вещественное число). Взяв любое верхнее не наименьшее число t сечения α , полагая p=-t, имеем $p\in\beta$, т.е. $\beta\neq\varnothing$. Взяв любое $s\in\alpha$, получаем, что $-s\notin\beta$, т.к. $-(-s)=s\in\alpha$, s - нижнее число α , т.е. $\beta\neq\mathbb{Q}$ — проверено условие 1.

Если $p \in \beta, \ q \in \mathbb{Q}$ и q < p, то $-q > -p, \ -p$ — верхнее число $\alpha \Rightarrow -q$ — верхнее число α и -q — не наименьшее верхнее в α , т.е. $q \in \beta$ — проверено условие 2.

Если $p \in \beta$, то -p – врехнее число α и \exists верхнее число α , обозначим его -q, т.ч. -q < -p; пусть $-z = ^{def} - \frac{q+p}{2}$, тогда -z > -q, т.е. -z – верхнее число в α и не наименьшее, поэтому $z \in \beta$. Поскольку -z < -p, то z > p, в β нет наибольшего – проверено условие 3. Таким образом β – сечение.

Проверка свойства $\alpha+\beta=0^*$ Пусть $p\in\alpha+\beta$, тогда $p=q+z, q\in\alpha, z\in\beta; z\in\beta\Rightarrow-z\notin\alpha,$ тогда $q\in\alpha\Rightarrow q<-z, q+z<0, p<0, p\in0^*,$ т.е. $\alpha+\beta\subset0^*,$ если трактовать $\alpha,\beta,0^*$ как множества.

Пусть $p \in 0^*$, тогда p < 0. По теореме о разности верхних и нижних чисел сечения $\exists q \in \alpha, s \notin \alpha, s$ не является наименьшим верхним числом α , т.ч. s-q=-p. Поскольку $-s \in \beta$, то тогда $p=q-s=q+(-s) \in \alpha+\beta$, т.е. $0^* \subset \alpha+\beta$; в итоге $0^*=\alpha+\beta$, теорема доказана.

Определение 6. Вещественное число β , построенное в предыдущей теореме обозначается $-\alpha$, и называется числом, противоположным α .

Утверждение 2. О сохранении неравенства. Пусть $\beta < \gamma$, тогда $\alpha + \beta < \alpha + \gamma$. В частности, если $0^* < \gamma, 0^* < \alpha$, то $(\alpha = 0^* + \alpha < \alpha + \gamma, 0^* < \alpha) \Rightarrow 0^* < \alpha + \gamma$.

Доказательство. Из определения сложения вещественных чисел следует, что $\alpha + \beta \leq \alpha + \gamma$. Если было бы $\alpha + \beta = \alpha + \gamma$, то тогда

$$\beta = 0^* + \beta = ((-\alpha) + \alpha) + \gamma = 0^* + \gamma = \gamma$$

, что противоречит условию. Утверждение доказано.

Определение разности вещественных чисел

Теорема 8. Пусть α, β – вещественные числа. тогда существует единственное вещественное число $\gamma | \alpha + \beta = \gamma$.

Доказательство. Полагаем $\gamma=\beta+(-\alpha)$. Тогда $\alpha+\gamma=\alpha+(\beta+(-\alpha))=\alpha+((-\alpha)+\beta)=(\alpha+(-\alpha))+\beta=0^*+\beta=\beta$.

Если бы существовало $\gamma_1|\alpha+\gamma_1=\beta$, то если бы $\gamma\neq\gamma_1$, то тогда либо $\gamma<\gamma_1$, либо $\gamma_1<\gamma$. Не уменьшая общности, считаем $\gamma<\gamma_1$. Тогда по удтверждению о сохранении неравенства мы получаем $\alpha+\gamma<\alpha+\gamma_1$, но $\alpha+\gamma=\beta, \alpha+\gamma_1=\beta$, противоречие.

Итак, вещественное число γ одно. Оно называется разностью β и $\alpha,\,\gamma=\beta-\alpha.$

Определение 7. $|\alpha|$. Полагаем

$$|\alpha| = \begin{cases} \alpha, & \alpha \ge 0^* \\ -\alpha, & \alpha < 0^* \end{cases}$$

Утверждение 3. $|\alpha| \geq 0^* \forall \alpha \in \mathbb{R}$

Доказательство. Если $\alpha \geq 0^*$, это следует из определения $|\alpha|$. Пусть $\alpha < 0^*$, тогда $\alpha \neq 0^*$ и, если неверно, что $\alpha > 0^*$. то $-\alpha < 0^*$. По удтверждению о сохранении неравенства тогда бы выполнялось $\alpha + (-\alpha) < \alpha + 0^* = \alpha$, но $\alpha < 0^*$, тогда $\alpha + (-\alpha) < 0^*, 0^* < 0^*$, что невозможно. Итак $|\alpha| \geq 0^*$. Из определения видно, что $|\alpha| = 0^* \Leftrightarrow \alpha = 0^*$. Удтверждение доказано.

Теорема 9. $p^* < \alpha, p \in \mathbb{Q}.p^* < \alpha \Leftrightarrow p \in \alpha, p \in \mathbb{Q}$

Доказательство. Пусть $p \in \alpha; p \notin p^* \Rightarrow p^* < \alpha$. Пусть теперь $p^* < \alpha$, тогада $\exists q \in \mathbb{Q} | q \notin p^*$, т.е. $q \geq p$, и $q \in \alpha$. Тогда $p \in \alpha$. Теорема доказана.