Scale-Out backups with Bareos and Gluster

Niels de Vos Gluster co-maintainer Red Hat Storage Developer ndevos@redhat.com

Agenda

- Gluster integration in Bareos
- Introduction into GlusterFS
- Quick Start
- Example configuration and demo
- Future plans

Gluster integration in Bareos

- Store backup archives on Gluster Volumes
- Gluster native backend for Storage Daemon
 - Userspace only (libgfapi), no local mountpoints
- Benefits from all Gluster capabilities:
 - Scale-out and scale-up
 - Multiple copies of data, local site and remote

Coming Soon: backup Gluster Volumes with Bareos

What is Gluster?

- Scalable, general-purpose storage platform
 - POSIX-y Distributed File System
 - Object storage (swift)
 - Distributed block storage (qemu)
 - Flexible storage (libgfapi)
- No Metadata Server
- Heterogeneous Commodity Hardware
- Flexible and Agile Scaling
 - Capacity Petabytes and beyond
 - Performance Thousands of Clients

Data Access Overview

- GlusterFS Native Client
 - Filesystem in Userspace (FUSE)
- NFS
 - Built-in Service, NFS-Ganesha with libgfapi
- SMB/CIFS
 - Samba server required (libgfapi based module)
- Gluster For OpenStack (Swift-on-file)
- libgfapi flexible abstracted storage
 - Integrated with QEMU, Bareos and others

Terminology

- Brick
 - Fundamentally, a filesystem mountpoint
 - A unit of storage used as a capacity building block
- Translator
 - Logic between the file bits and the Global Namespace
 - Layered to provide GlusterFS functionality

Terminology

- Volume
 - Bricks combined and passed through translators
 - Ultimately, what's presented to the end user
- Peer / Node
 - Server hosting the brick filesystems
 - Runs the Gluster daemons and participates in volumes
- Trusted Storage Pool
 - A group of peers, like a "Gluster cluster"

Distributed Volume

- Files "evenly" spread across bricks
- Similar to file-level RAID 0
- Server/Disk failure could be catastrophic

29 - 30 September 2015 | Cologne

Replicated Volume

- Copies files to multiple bricks
- Similar to file-level RAID 1

Distributes Replicated Volume

• Distributes files across replicated bricks

29 - 30 September 2015 | Cologne

Other Volume Types

- Disperse
 - Erasure coding, similar to RAID-6 over the network
 - JBOD (no hardware RAID), cost effective
- Sharding
 - Splitting big files in pieces, distribute the pieces
- Tiering
 - Hot (fast) bricks and cold (slow) bricks
 - Configurable rules to migrate contents between tiers

Geo-Replication

- Continuous asynchronous replication for volumes
- Incremental updates, changelog for modifications
- Intelligent rsync over SSH
- Site to site, over LAN, WAN and internet
- Mixing of private and public clouds is possible
- One master site, one or more slave sites

Quick Start

- Available in Fedora, Debian, NetBSD and others
- Community packages in multiple versions for different distributions on http://download.gluster.org/
- CentOS Storage SIG packages and add-ons
- Quick Start guides on http://gluster.org and CentOS wiki
- Bareos packages from http://download.bareos.org

- 1.Install the packages (on all storage servers)
- 2.Start the GlusterD service (on all storage servers)
- 3. Peer probe other storage servers
- 4.Create and mount a filesystem to host a brick
- 5.Create a volume
- 6.Start the new volume
- 7. Mount the volume

On all storage servers:

```
# yum install glusterfs-server
```

- # systemctl enable glusterd
- # systemctl start glusterd

For all other storage servers:

gluster peer probe \$OTHER_HOSTNAME

For each brick:

```
# lvcreate -L 512G -n backups vg_bricks
# mkfs -t xfs /dev/vg_bricks/backups
# mkdir -p /bricks/backups
# mount /dev/vg_data/backups /brick/backups
# tail -n1 /proc/mounts >> /etc/fstab
```


For each volume:

```
# gluster volume create $VOLUME \
    $HOSTNAME:/bricks/backups/data \
    $OTHER_HOSTNAME:/bricks/backups/data \
    ...
# gluster volume start $VOLUME
```


- 1.Install Bareos packages (inc. bareos-storage-glusterfs)
- 2. Enable access as non-root to Gluster
- 3. Create directory structure used by Bareos
- 4. Create a config for the Bareos Storage Daemon
- 5.Add the Storage to the Bareos Director configuration
- 6. Start the Bareos services


```
On the Bareos Director (also runs Storage Daemon):
# yum install bareos-storage-glusterfs
# cd /etc/bareos
# vi bareos-sd.d/device-gluster.conf
     (set correct Archive Device URL)
# vi bareos-sd.conf
     (include the device-gluster.conf with @)
# vi bareos-dir.conf
     (add Storage Daemon)
                                       Open Source Backup
```

On the storage servers:

```
# vi /etc/glusterfs/glusterd.vol
          (add option rpc-auth-allow-insecure on)
```

systemctl restart glusterd

On one storage server, per volume:

```
# gluster volume set $VOLUME \
    server.server.allow-insecure on
```

gluster volume stop \$VOLUME

gluster volume start \$VOLUME

On one storage server, per volume:

```
# mount -t glusterfs $SERVER:/$VOLUME /mnt
# mkdir /mnt/bareos
# chown bareos:bareos /mnt/bareos
# chmod ug=rwx /mnt/bareos
# umount /mnt
```


Quick Start – Bareos Job execution

On the Bareos Director:

```
# systemctl start bareos-sd
```

systemctl start bareos-dir

On the Bareos Director:

- # bconsole
- * run job=BackupCatalog

Integration in other projects

- oVirt for easier installation, management and monitoring
- Nagios for improved monitoring and alerting
- OpenStack Manila (filesystem as a service)
- Hadoop plugin offers an alternative for HDFS
- Bareos Gluster File Daemon plugin
- ... and many others

Resources

Mailing lists:

gluster-users@gluster.org gluster-devel@gluster.org

IRC:

#gluster and #gluster-dev on Freenode

Links:

http://gluster.org/ & http://bareos.org/

http://gluster.readthedocs.org/

http://doc.bareos.org/

Thank you!

Niels de Vos ndevos@redhat.com ndevos on IRC

Open Source Backup
Conference

29 - 30 September 2015 | Cologne

Software versions used for this demo

CentOS 7.1 with updates until 29 september 2015 glusterfs-3.7.4 from download.gluster.org bareos-14.2.2 from download.bareos.org

Diagrams on the first slides come from the Administrators Guide for Red Hat Gluster Storage available through https://access.redhat.com/

