Сложность моделей глубокого обучения

Бахтеев Олег

мфти

02.11.2016

План

- 1 Сложность модели
- Вариационная нижняя оценка
- ③ Получение оценок для порождающих моделей
- 4 Получение оценок для разделяющих моделей

Сложность модели: зачем?

(a) Устойчивость моделей при возмущении выборки

(b) Качество классификации при удалении параметров

Принцип минимальной длины описания

$$MDL(\mathbf{f}, \mathbf{X}) = L(\mathbf{f}) + L(\mathbf{X}|\mathbf{f}),$$

где ${f f}$ — модель, ${f X}$ — выборка, ${f L}$ — длина описания в битах.

$$\mathsf{MDL}(\mathbf{f}, \mathbf{X}) \sim L(\mathbf{f}) + L(\mathbf{W}^*|\mathbf{f}) + L(\mathbf{X}|\mathbf{W}^*, \mathbf{f}),$$

 \mathbf{w}^* — оптимальные параметры модели.

$$\begin{array}{lll} f_1: \mathcal{L}(f_1) & \mathcal{L}(W_1^*|f_1) & \mathcal{L}(X|W_1^*,f_1) \\ f_2: \mathcal{L}(f_2) & \mathcal{L}(W_2^*|f_2) & \mathcal{L}(X|W_2^*,f_2) \\ f_3: \mathcal{L}(f_3) & \mathcal{L}(W_3^*|f_3) & \mathcal{L}(X|W_3^*,f_3) \end{array}$$

MDL и Колмогоровская сложность

Колмогоровская сложность — длина минимального кода для выборки на предварительно заданном языке.

Теорема об инвариантности кодов

Для двух сводимых по Тьюрингу языков колмогоровской сложность отличается не более чем на константу, не зависяющую от мощности выборки.

Отличия от MDL:

- Колмогоровская сложность невычислима.
- Длина кода может зависеть от выбранного языка. Для небольших выборок теорема об инвариантности кодов не дает адекватных результатов.

Оптимальная универсальная модель MDL

Пусть выборка ${\bf X}$ лежит в некотором конечном множестве ${\mathbb X}:{\bf X}\subset {\mathbb X}.$

$$\mathsf{MDL}(f, X) = \mathit{L}(X|W^*(X), f) + \mathsf{COMP}(f),$$

$$\textit{L}(\textbf{X}|\textbf{W}^*,\textbf{f}) = -log \textit{p}(\textbf{X}|\textbf{W}^*(\textbf{X}),\textbf{f}), \quad \text{COMP} = log \sum_{\textbf{X}' \in \mathbb{X}} \textit{P}(\textbf{X}'|\textbf{W}^*(\textbf{X}'),\textbf{f}).$$

В случае (TODO: уточнить) оценка MDL совпадает с точностью до o(1) с байесовской оценкой правдоподобия ("Evidence"):

$$p(\mathbf{X}|\mathbf{f}) = \int_{\mathbf{w}} p(\mathbf{X}|\mathbf{w})p(\mathbf{w})d\mathbf{w},$$

где $p(\mathbf{w})$ — априорное распределение специанльного вида:

$$\rho(\mathbf{w}) = \frac{\sqrt{|J(\mathbf{w})|}}{\int_{\mathbf{w}'} \sqrt{|J(\mathbf{w}')|} d\mathbf{w}'},$$

 $J(\mathbf{w})$ — информация Фишера.

Байесовый подход к сложности

Правдоподобие модели ("Evidence"):

$$p(\mathbf{X}|\mathbf{f}) = \int_{\mathbf{w}} p(\mathbf{X}|\mathbf{w})p(\mathbf{w})d\mathbf{w}.$$

(с) Схема выбора модели по правдоподобию

(d) Пример: полиномы

 Бахтеев Олег (МФТИ)
 Сложность модели
 02.11.2016
 7 / 26

Evidence vs MDL

Evidence	MDL
Регуляризация признаков на основе априорных знаний	-
Основывается на гипотезе о порождении	
выборки	Минимизирует длину описания выборки
вне зависимости от их природы	

Evidence vs Кросс-валидация

Оценка Evidece:

$$\log p(\mathbf{X}|\mathbf{f}) = \log p(\mathbf{x}_1|\mathbf{f}) + \log p(\mathbf{x}_2|\mathbf{x}_1,\mathbf{f}) + \cdots + \log p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1},\mathbf{f}).$$

Оценка leave-one-out:

$$LOU = Elog \ \rho(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1},\mathbf{f}).$$

Кросс-валидация оценивает сложность описания одной части выборки при условии другой части выборки.

Evidence оценивает полную сложность описания заданной выборки.

9 / 26

Методы получения оценок Evidence

• Аппроксимация методом Лапласа

$$\rho(\mathbf{X}|\mathbf{f}) = \int_{\mathbf{w}} \rho(\mathbf{X}|\mathbf{w}) \rho(\mathbf{w}|\mathbf{f}) = \int_{\mathbf{w}} \exp(-S(\mathbf{w})) \sim \exp S(\hat{\mathbf{w}}) \int_{\mathbf{w}} \exp(-\frac{1}{2}\Delta \mathbf{w}^{\mathsf{T}} \nabla \nabla S(\mathbf{w}) \Delta \mathbf{w}).$$

• Методы Монте-Карло

$$p(\mathbf{X}|\mathbf{f}) \sim \frac{1}{K} \sum_{\mathbf{w} \in \mathbf{W}} p(\mathbf{X}|\mathbf{w}, \mathbf{f}) p(\mathbf{w}|\mathbf{f}),$$

 \mathbf{W} — множество векторов параметров мощностью K.

02.11.2016

10 / 26

Бахтеев Олег (МФТИ) Сложность модели

Вариационная оценка

Вариационная оценка Evidence — метод нахождения приближенного значения аналитически невычислимого распределения $p(\mathbf{w}|\mathbf{X},\mathbf{f})$ распределением $q(\mathbf{w}) \in \mathbf{Q}$. Получение вариационной нижней оценки обычно сводится к задаче минимизации

$$\mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{X})) = \int_{\mathbf{w}} q(\mathbf{w})\log \frac{p(\mathbf{w}|\mathbf{X})}{q(\mathbf{w})} d\mathbf{w}.$$

(е) Аппроксимация неизвестного распределения нормальным

(f) Апроксимация Лапласа и вариационная оценка

Получение вариацонной нижней оценки

$$\begin{split} \log p(\mathbf{X}|\mathbf{f}) &= \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{X}, \mathbf{w}|\mathbf{f})}{q(\mathbf{w})} d\mathbf{w} + \mathsf{D}_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{X}, \mathbf{f})) \geq \\ &\geq \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{X}, \mathbf{w}|\mathbf{f})}{q(\mathbf{w})} d\mathbf{w} = \\ &= -\mathsf{D}_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{f})) + \int_{\mathbf{w}} q(\mathbf{w}) \log p(\mathbf{X}|\mathbf{w}, \mathbf{f}) d\mathbf{w}, \\ &\mathsf{D}_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{f})) = - \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{w}|\mathbf{f})}{q(\mathbf{w})} d\mathbf{w}. \end{split}$$

где

Бахтеев Олег (МФТИ)

D_{KL}

Максимизация вариационной нижней оценки

$$\int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{X}, \mathbf{w}|\mathbf{f})}{q(\mathbf{w})} d\mathbf{w}$$

эквивалентна минимизации дивергенции между распределением распределением $q(\mathbf{w}) \in Q$ и апостериорным распределением параметров $p(\mathbf{w}|\mathbf{X},\mathbf{f})$:

$$q = \operatorname{argmax}_{q \in \mathcal{Q}} \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{X}, \mathbf{w} | \mathbf{f})}{q(\mathbf{w})} d\mathbf{w} \Leftrightarrow q = \operatorname{argmin}_{q \in \mathcal{Q}} \mathsf{D}_{\mathsf{KL}}(q(\mathbf{w}) || p(\mathbf{w} || \mathbf{X}, \mathbf{f})),$$

T.K.

$$\log p(\mathbf{X}|\mathbf{f}) = \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{X}, \mathbf{w}|\mathbf{f})}{q(\mathbf{w})} d\mathbf{w} + D_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{X}, \mathbf{f})) = \mathsf{const.}$$

Бахтеев Олег (МФТИ)

Пример: аппроксимация мультимодального распределения

Использование вариационной нижней оценки

Для чего используют variational inference?

- получение оценок Evidence;
- получение оценок распределений моделей со скрытыми переменными (тематическое моделирование, снижение размерности).

Зачем используют variational inference?

- сводит задачу нахождения апостериорной вероятности к методам оптимизации;
- проще масштабируется, чем аппроксимация Лапласа;
- проще в использовании, чем МСМС.

Пример: автокодировщик

Автокодировщик — модель снижения размерности:

$$\mathsf{H} = \sigma(\mathsf{W}_e \mathsf{X}),$$
 $||\sigma(\mathsf{W}_d \mathsf{H}) - \mathsf{X}||_2^2 o \mathsf{min} \ .$

Вариационный автокодировщик

Пусть объекты выборки **X** порождены при условии скрытой переменной $\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$:

$$\mathbf{x} \sim p(\mathbf{x}|\mathbf{h},\mathbf{w}).$$

 $p(\mathbf{x}|\mathbf{h},\mathbf{w})$ — неизвестно.

Будем максимизировать вариационную оценку правдоподобия выборки:

$$\log p(\mathbf{x}|\mathbf{w}) \geq \mathsf{E}_{q_\phi(\mathbf{h}|\mathbf{x}} \! \log \, p(\mathbf{x}|\mathbf{h},\mathbf{w}) - D_\mathsf{KL}(q_\phi(\mathbf{h}|\mathbf{x}) || p(\mathbf{h})) o \mathsf{max} \,.$$

Распределения $q_{\phi}(\mathbf{h}|\mathbf{x})$ и $p(\mathbf{x}|\mathbf{h},\mathbf{w})$ моделируются нейросетью:

$$q_{\phi}(\mathsf{h}|\mathsf{x}) \sim \mathcal{N}(oldsymbol{\mu}_{\phi}(\mathsf{x}), oldsymbol{\sigma}_{\phi}^2(\mathsf{x})),$$

$$ho(\mathsf{x}|\mathsf{h},\mathsf{w}) \sim \mathcal{N}(oldsymbol{\mu}_{\scriptscriptstyle W}(\mathsf{h}), oldsymbol{\sigma}_{\scriptscriptstyle W}^2(\mathsf{h})),$$

где функции μ , σ — выходы нейросети.

Вариационный автокодировщик: правдоподобии модели

Оценка evidence получается двойным применением вариационной техники:

$$\log p(\mathbf{X}|\mathbf{f}) \geq \mathsf{E}_{q_{\mathbf{w}}} \mathsf{log} \hat{p}(\mathbf{x}|\mathbf{w}) + \log p(\mathbf{w}|\mathbf{f}) - \log q(\mathbf{w}),$$

где $q_{\mathbf{w}}$ — распределение, аппроксимирующее $p(\mathbf{x}|\mathbf{w},\mathbf{f})$, $\log \hat{p}(\mathbf{x}|\mathbf{w})$ — вариационная оценка правдоподобия выборки.

Для оптимизации вариационных параметов применяется следующая параметризация:

$$egin{aligned} \hat{f w} &= m{\mu}_{f w} + m{\sigma}_{f (w)} \odot m{\epsilon}_1, & \hat{f h} &= m{\mu}_{f h} + m{\sigma}_{f h}(m{h}) \odot m{\epsilon}_2, \ & m{\epsilon}_1, m{\epsilon}_2 \sim \mathcal{N}(m{0}, m{I}). \end{aligned}$$

Разделяющие модели: правдоподобие

Пусть $q \sim \mathcal{N}(\boldsymbol{\mu}_q, \mathbf{A}_q)$.

Тогда вариационная оценка имеет вид:

$$\int_{\mathbf{w}} q(\mathbf{w}) \log p(\mathbf{Y}|\mathbf{X}, \mathbf{w}, \mathbf{f}) d\mathbf{w} + D_{\mathsf{KL}} (q(\mathbf{w})||p(\mathbf{w}|\mathbf{f})) \simeq$$

$$\sum_{i=1}^{m} \log p(\mathbf{y}_{i}|\mathbf{x}_{i},\mathbf{w}_{i}) + D_{\mathsf{KL}}\big(q(\mathbf{w})||p(\mathbf{w}|\mathbf{f})\big) \to \max_{\mathbf{A}_{q},\mu_{q}},$$

В случае, если априорное распределение параметров $p(\mathbf{w}|\mathbf{f})$ является нормальным:

$$p(\mathbf{w}|\mathbf{f}) \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{A}),$$

дивергенция $D_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{f})$ вычисляется аналитически:

$$D_{\mathsf{KL}}\big(q(\mathbf{w}||p(\mathbf{w}|\mathbf{f})\big) = \frac{1}{2}\big(\mathsf{tr}(\mathbf{A}^{-1}\mathbf{A}_q) + (\mu - \mu_q)^\mathsf{T}\mathbf{A}^{-1}(\mu - \mu_q) - n + \mathsf{ln} \ |\mathbf{A}| - \mathsf{ln} \ |\mathbf{A}_q|\big).$$

Бахтеев Олег (МФТИ) Сложность модели 02.11.2016 19 / 26

Разделяющие модели: правдоподобие

Формулу вариационной оценки можно переписать с использованием энтропии:

$$\log p(\mathbf{X}|\mathbf{f}) \ge \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{X}, \mathbf{w}|\mathbf{f})}{q(\mathbf{w})} d\mathbf{w} =$$

$$\mathsf{E}_{q(\mathsf{w})}[\log p(\mathsf{X},\mathsf{w}|\mathsf{f})] - \mathsf{S}(q(\mathsf{w})),$$

где $\mathsf{S}(q(\mathbf{w}))$ — энтропия:

$$S(q(\mathbf{w})) = -\int_{\mathbf{w}} q(\mathbf{w}) \log q(\mathbf{w}) d\mathbf{w}.$$

Градиентный спуск для оценки правдоподобия

Проведем оптимизацию нейросети в режиме мультистарта из r различных начальных приближений $\mathbf{w}_1, \dots, \mathbf{w}_r$ с использованием градиентного спуска:

$$\mathbf{w}' = \mathbf{w} - \nabla \alpha \sum_{\mathbf{x} \in \mathbf{X}} \log p(\mathbf{x}, \mathbf{w} | \mathbf{f}) = \sum_{\mathbf{x} \in \mathbf{X}} \log p(\mathbf{x} | \mathbf{w}, \mathbf{f}) p(\mathbf{w} | \mathbf{f}).$$

Векторы параметров $\mathbf{w}_1, \dots, \mathbf{w}_r$ соответствуют некоторому скрытому распределению $q(\mathbf{w})$. Для получения вариационной оценки требуется оценка энтропии:

$$\mathsf{E}_{q(\mathbf{w})}[\log \, p(\mathbf{X}, \mathbf{w}|\mathbf{f})] - \mathsf{S}(q(\mathbf{w})).$$

Градиентный спуск для оценки правдоподобия

При достаточно малой длине шага оптимизации α разность энтропии на различных шагах оптимизации вычисляется как:

$$\mathsf{S}(q'(\mathbf{w})) - \mathsf{S}(q(\mathbf{w})) \simeq \frac{1}{r} \sum_{g=1}^{r} \left(-\alpha \mathsf{Tr}[\mathsf{H}(\mathbf{w}'^g)] - \alpha^2 \mathsf{Tr}[\mathsf{H}(\mathbf{w}'^g) \mathsf{H}(\mathbf{w}'^g)] \right).$$

Итоговая оценка на шаге оптимизации au:

$$\log \hat{p}(\mathbf{Y}|\mathbf{X},\mathbf{f}) \sim \frac{1}{r} \sum_{g=1}^{r} L(\mathbf{w}_{\tau}^{g}, \mathbf{X}, \mathbf{Y}) + S(q^{0}(\mathbf{w})) + \frac{1}{r} \sum_{b=1}^{\tau} \sum_{g=1}^{r} \left(-\alpha \text{Tr}[\mathbf{H}(\mathbf{w}_{b}^{g})] - \alpha^{2} \text{Tr}[\mathbf{H}(\mathbf{w}_{b}^{g})] + \alpha^{2} \text{Tr}[\mathbf{H}(\mathbf{w}_{b}^{g})] \right),$$

 \mathbf{w}_b^g — вектор параметров старта g на шаге b.

Переобучение

Градиентный спуск не минимизирует дивергенцию $\mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{X}))$. При приближении к моде распределения снижается оценка Evidence, что интерпретируется как переоубчение модели.

(g) Схождение распределения к моде

Оценка начала переобучения

Train error

Test error

400

400

500

500

Бахтеев Олег (МФТИ) 02.11.2016 23 / 26 Сложность модели

Стохастическая динамика Ланжевина

Модификация стохастического градиентного спуска:

$$\Delta \mathbf{w} = \alpha \nabla (\log p(\mathbf{w}) + \frac{m}{\hat{m}} \log p(\hat{\mathbf{X}}|\mathbf{w})) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \frac{\alpha}{2})$$

где \hat{m} — размер подвыборки, $\hat{\mathbf{X}} \subset \mathbf{X}$ — подвыборка, шаг оптимизации lpha изменяется с количеством итераций:

$$\sum_{\tau=1}^{\infty} \alpha_{\tau} = \infty, \quad \sum_{\tau=1}^{\infty} \alpha_{\tau}^{2} < \infty.$$

Утверждение [Welling, 2011]. Распределине $q^{\tau}(\mathbf{w})$ сходится к апостериорному распределению $p(\mathbf{w}|\mathbf{X},\mathbf{f})$.

Изменение энтропии с учетом добавленного шума:

$$\hat{\mathsf{S}}\big(q^{\tau}(\mathbf{w})\big) \geq \frac{1}{2}|\mathbf{w}|\mathsf{log}\big(\mathsf{exp}\big(\frac{2\mathsf{S}(q^{\tau}(\mathbf{w}))}{|\mathbf{w}|}\big) + \mathsf{exp}\big(\frac{2\mathsf{S}(\epsilon)}{|\mathbf{w}|}\big)\big).$$

Стохастическая динамика Ланжевина

Распределения параметров после 2000 итераций:

Пример: выбор константы регуляризации

Выборка MNIST, 50 нейронов на скрытом слое.

(і) Кросс-валидация

(k) Оценка Evidence