Non-linear Regression

If your model function is *not* linear in its parameters, there is no general analytic solution to solve for the MLE parameters and their covariance matrix. We can still maximize the likelihood (or minimize the χ^2), but we must resort to other methods to find the MLE. One of the more commonly used routine is <code>scipy.optimize.curve_fit</code>.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

Here is an example of how to use it.

```
In [1]: import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
```

Define function with a non-linear parameter (b):

$$y = ae^{-bx} + c$$

```
In [2]: def func(x, a, b, c):
    return a * np.exp(-b * x) + c
```

Generate simulated dataset using the above function.

```
In [4]: plt.errorbar(xdata, ydata, yerror, fmt='o')
```

Out[4]: <ErrorbarContainer object of 3 artists>

You can call curve_fit with the following arguments - 1) model function (func in this case), the x data, y data, and optionally error in y. The last keyword tells curve_fit that yerror is an absolute uncertainty. The output popt and pcov are the means and covariance matrix.

```
In [5]: ahat, covmat = curve_fit(func, xdata, ydata,
                                  sigma=yerror, absolute_sigma=True)
In [6]: print("[a,b,c] = ", ahat)
                                     # best-fit values
        [a,b,c] = [2.73144648 1.38015943 0.43816933]
In [7]: print(covmat)
                        # and the covariance matrix
        [[ 0.0146974
                        0.00609427 - 0.00066339
         [ 0.00609427
                                    0.00456777]
                        0.01667886
         [-0.00066339
                        0.00456777
                                    0.0024871911
In [8]: # diagonal terms
        print("a = \%7.3f +/- \%7.3f (true a = 2.5)" % (ahat[0], np.sqrt(covmat[0,0])))
        print("b = \%7.3f +/- \%7.3f (true b = 1.3)" % (ahat[1], np.sqrt(covmat[1,1])))
        print("c = \%7.3f +/- \%7.3f (true c = 0.5)" % (ahat[2], np.sqrt(covmat[2,2])))
                                  (true a = 2.5)
        a =
              2.731 +/-
                           0.121
        b =
              1.380 +/-
                           0.129
                                  (true b = 1.3)
              0.438 + / -
                           0.050
                                  (true c = 0.5)
        Let's overplot the data and the best-fit model.
In [9]: plt.errorbar(xdata, ydata, yerror, fmt='o')
        xgrid = np.linspace(0.0, 4.0, 100)
```

plt.plot(xgrid, func(xgrid, *ahat))

Out[9]: [<matplotlib.lines.Line2D at 0x10db86fe0>]

Next, a slightly more complicated model

$$y=a+be^{-rac{1}{2}\left(rac{x-c}{d}
ight)^2}$$

A constant plus a gaussian function.

```
In [10]: def func2(x, a, b, c, d):
    return a + b * np.exp(-0.5*((x-c)/d)**2)

In [11]: np.random.seed(1729)
    xdata = np.linspace(0, 10, 40)
    y = func2(xdata, 2.0, 5.0, 5.0, 0.7) # a=2.0, b=5.0, c=5.0, d=0.7
    ysig = 0.2
    ydata = np.random.normal(y, ysig)
    yerror = np.full_like(ydata, ysig)

In [12]: plt.errorbar(xdata, ydata, yerror, fmt='ro')
```

Out[12]: <ErrorbarContainer object of 3 artists>


```
In [14]: print(ahat)
   print(covmat)
```

Best-fit values are a=3.2, b=-1.5, c=1.4, d=-1.7, which is not close to what we put in. What is going on? Whatever starting point <code>curve_fit</code> is using for the initial guess is bad, and fails to find the global mininum. This is very common problem with essentially all non-linear fitting routines; it is not easy to automatically find the global χ^2 mininum.

curve_fit can take bounds, which helps guide the fit.

```
In [16]: print(ahat) print(covmat)

[1.98239261 5.13116883 4.98366601 0.66570498]

[[ 1.52702045e-03 -1.07976650e-03 -5.38782124e-13 -2.80172408e-04] [-1.07976650e-03 1.38020781e-02 1.29563474e-10 -9.29615596e-04] [-5.38782124e-13 1.29563474e-10 2.92617059e-04 -1.67308106e-11] [-2.80172408e-04 -9.29615596e-04 -1.67308106e-11 3.44022118e-04]]
```

```
print("a = \%7.3f +/- \%7.3f (true a = 2.0)" % (ahat[0], np.sqrt(covmat[0,0])))
In [17]:
         print("b = \%7.3f +/- \%7.3f (true b = 5.0)" % (ahat[1], np.sqrt(covmat[1,1])))
         print("c = \%7.3f +/- \%7.3f (true c = 5.0)" % (ahat[2], np.sqrt(covmat[2,2])))
         print("d = %7.3f +/- %7.3f (true c = 0.7)" % (ahat[3], np.sqrt(covmat[3,3])))
               1.982 +/-
                           0.039 (true a = 2.0)
         b =
               5.131 +/-
                           0.117 (true b = 5.0)
               4.984 +/-
                           0.017
                                  (true c = 5.0)
         c =
               0.666 +/-
                           0.019
                                  (true c = 0.7)
         d =
```

These are consistent with the true values.

```
In []:
```

Another popular, but much more complicated (and also very flexible), non-linear curve fitter used by natural scientists is lmfit:

https://lmfit.github.io/lmfit-py/

statsmodel is also popular amongst the social scientists:

https://www.statsmodels.org/stable/index.html

Both are massive modules with extensive documentation.

Runtime comparisons

Using matrix algebra to solve for the parameters (assuming that your model is linear!) is almost always faster than using non-linear fitting modules. This is especially true when there are many fitting parameters.

```
In [18]: def func3(x, a, b):
             return a + b*x
In [19]: np.random.seed(123)
                                              # define random seed for repeatability
         xdata = np.linspace(0, 10, 50)
                                              # 50 points from x=[0,10]
         y = func3(xdata, 2.5, 1.3)
                                              # a=2.5, b=1.3, c=0.5
         ysig = 1.5
                                              # common y uncertainty of ysig=0.2
         ydata = np.random.normal(y, ysig)
                                              # normal distribution N(y,ysig)
         yerror = np.full like(ydata, ysig)
                                              # fill out yerror vector with ysig=0.2
In [20]: plt.errorbar(xdata, ydata, yerror, fmt='o')
Out[20]: <ErrorbarContainer object of 3 artists>
```



```
In [21]: def matrix_fit(xdata, D, yerror):
    G1 = np.ones_like(xdata)
    G2 = xdata
    G = np.vstack([G1, G2]).T
    E = np.diag(yerror*yerror)
    Einv = np.linalg.inv(E)
    covmat = np.linalg.inv(np.dot(G.T, np.dot(Einv, G)))
    ahat = np.dot(covmat, np.dot(G.T, np.dot(Einv, D)))
    return ahat, covmat
```

In [22]: **%timeit** ahat, covmat = curve_fit(func3, xdata, ydata, sigma=yerror, absolute_s: 209 μs ± 1.23 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

In [23]: %timeit ahat, covmat = matrix_fit(xdata, ydata, yerror)

97.6 µs ± 3.18 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

Let's experiment with a model with more parameters, but still linear:

```
In [24]: def func4(x, a, b, c, d, e):
    return a + b*x + c*x*x + d*x*x*x + e*x*x*x*x
```

```
In [25]: np.random.seed(123)  # define random seed for repeatability xdata = np.linspace(0, 10, 50)  # 50 points from x=[0,10] y = func4(xdata, 2.5, 1.3, 0.2, 0.01, 0.002)  # a=2.5, b=1.3, c=0.5 ysig = 1.5  # common y uncertainty of ysig=0.2 ydata = np.random.normal(y, ysig)  # normal distribution N(y,ysig) yerror = np.full_like(ydata, ysig)  # fill out yerror vector with ysig=0.2
```

In [26]: plt.errorbar(xdata, ydata, yerror, fmt='o')

Out[26]: <ErrorbarContainer object of 3 artists>


```
In [27]: def matrix_fit(xdata, D, yerror):
    G1 = np.ones_like(xdata)
    G2 = xdata
    G = np.vstack([G1, G2]).T
    E = np.diag(yerror*yerror)
    Einv = np.linalg.inv(E)
    covmat = np.linalg.inv(np.dot(G.T, np.dot(Einv, G)))
    ahat = np.dot(covmat, np.dot(G.T, np.dot(Einv, D)))
    return ahat, covmat

In [28]: %timeit ahat, covmat = curve_fit(func4, xdata, ydata, sigma=yerror, absolute_s:
    340 μs ± 4.77 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

In [29]: %timeit ahat, covmat = matrix_fit(xdata, ydata, yerror)
    98.2 μs ± 3.08 μs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

In []:
```