Dijkstra's algorithm COMS20010 2020, Video 4-4

John Lapinskas, University of Bristol

Distances in real networks are weighted!

We often model road networks as graphs: junctions and destinations are vertices, roads are edges, one-way roads are directed edges.

But when we want to find a "shortest path" in this graph, we don't care about the number of edges, we care about the **physical distance**.

(We may also want to weight by e.g. elevation changes or current traffic.)

Weighted graphs

A weighted graph is a pair (G, w), where G is a graph and $w : E(G) \to \mathbb{R}$ is a weight function. This could represent distances, costs, times, etc.

The **length** of a path/walk $P = x_1 \dots x_t$ is the total weight of P's edges:

$$\operatorname{length}(P) = \sum_{i=1}^{t-1} w(x_i, x_{i+1}).$$

The distance from x to y is the shortest length of any path/walk from x to y, or ∞ if they are in different components. E.g. $d(v_1, v_3) = 1.5$.

Negative-weight edges

For some applications, it can make sense to allow edges to have **negative weight**. (E.g. costs versus profits...) This can be counterintuitive!

Here, $d(v_1, v_3) = \mathbf{0}$, since $v_1 v_2 v_3$ has cost $w(v_1, v_2) + w(v_2, v_3) = 0$.

Here, "distance" doesn't even make sense — there are walks from v_1 to v_5 with **arbitrarily low** length. E.g. $\operatorname{length}(v_1v_2v_3v_4v_2v_3v_4v_2v_3v_4v_5) = 2...$

This lecture, we ignore negative weights. (This is also faster!)

Think of breadth-first search as water flooding a set of pipes, starting from x... and now allow the pipes to have **different lengths**.

When the water first reaches a vertex v, you know d(x, v) and a shortest path from x to v.

Think of breadth-first search as water flooding a set of pipes, starting from x... and now allow the pipes to have **different lengths**.

When the water first reaches a vertex v, you know d(x, v) and a shortest path from x to v.

At each stage, pick an edge (u, v) with d(x, u) known and d(x, v) unknown that minimises d(x, u) + length(u, v). (Break ties arbitrarily.)

Then set d(x, v) = d(x, u) + length(u, v).

Think of breadth-first search as water flooding a set of pipes, starting from x... and now allow the pipes to have **different lengths**.

When the water first reaches a vertex v, you know d(x, v) and a shortest path from x to v.

At each stage, pick an edge (u, v) with d(x, u) known and d(x, v) unknown that minimises d(x, u) + length(u, v). (Break ties arbitrarily.)

Then set d(x, v) = d(x, u) + length(u, v).

Think of breadth-first search as water flooding a set of pipes, starting from x... and now allow the pipes to have **different lengths**.

When the water first reaches a vertex v, you know d(x, v) and a shortest path from x to v.

At each stage, pick an edge (u,v) with d(x,u) known and d(x,v) unknown that minimises $d(x,u) + \operatorname{length}(u,v)$. (Break ties arbitrarily.)

Then set d(x, v) = d(x, u) + length(u, v).

Dijkstra's algorithm: Correctness

For input graph G, vertex x: At each stage, pick an edge (u, v) with d(x, u) known and d(x, v) unknown that minimises d(x, u) + length(u, v). Then set d(x, v) = d(x, u) + length(u, v).

Claim: Dijkstra's algorithm calculates distances correctly.

Proof: By induction on the number of vertices u with d(x, u) set.

Base case: We have d(x,x) = 0.

✓

Inductive step: Suppose we know d(x, u) for all $u \in X$, for some set X. Say Dijkstra's algorithm picks an edge (u, v) with $u \in X$.

We can append (u, v) to any path from x to u, so we have $d(x, v) \leq d(x, u) + \operatorname{length}(u, v).$

Dijkstra's algorithm: Correctness

For input graph G, vertex x: At each stage, pick an edge (u, v) with d(x, u) known and d(x, v) unknown that minimises $d(x, u) + \operatorname{length}(u, v)$. Then set $d(x, v) = d(x, u) + \operatorname{length}(u, v)$.

Claim: Dijkstra's algorithm calculates distances correctly.

Proof: By induction on the number of vertices u with d(x, u) set.

Base case: We have d(x,x) = 0.

 \checkmark

Inductive step: Suppose we know d(x, u) for all $u \in X$, for some set X. Say Dijkstra's algorithm picks an edge (u, v) with $u \in X$.

Also, any path P from x to v has to leave X on some edge (y,z). Hence P has length at least $d(x,y) + \operatorname{length}(y,z)$. So from the way we picked (u,v), we have $d(x,v) \geq d(x,u) + \operatorname{length}(u,v)$.

Priority queues

We need a **priority queue** (see COMS10007) to implement this efficiently.

Not like a normal queue: each element has a **priority**, and the "first" element is the one with the **lowest** priority (breaking ties **arbitrarily**).

Relevant operations:

- StartQueue(n) returns a new priority queue of maximum length n.
- Insert(x, p) inserts a new element x with priority p.
- Extract() removes and returns the lowest-priority element.
- ChangeKey(x, p) updates the priority of x to p.

StartQueue takes O(n) time, all other operations take $O(\log n)$ time.

StartQueue(5); Insert(v_1 , 0); Insert(v_2 , 4);

Priority queues

We need a **priority queue** (see COMS10007) to implement this efficiently.

Not like a normal queue: each element has a **priority**, and the "first" element is the one with the **lowest** priority (breaking ties **arbitrarily**).

Relevant operations:

- StartQueue(n) returns a new priority queue of maximum length n.
- Insert(x, p) inserts a new element x with priority p.
- Extract() removes and returns the lowest-priority element.
- ChangeKey(x, p) updates the priority of x to p.

StartQueue takes O(n) time, all other operations take $O(\log n)$ time.

Priority queues

We need a **priority queue** (see COMS10007) to implement this efficiently.

Not like a normal queue: each element has a **priority**, and the "first" element is the one with the **lowest** priority (breaking ties **arbitrarily**).

Relevant operations:

- StartQueue(n) returns a new priority queue of maximum length n.
- Insert(x, p) inserts a new element x with priority p.
- Extract() removes and returns the lowest-priority element.
- ChangeKey(x, p) updates the priority of x to p.

StartQueue takes O(n) time, all other operations take $O(\log n)$ time.

 $Insert(v_4, 20)$; $ChangeKey(v_4, 1)$; Extract();

Algorithm: DIJKSTRA

```
Input
               : Weighted graph G = ((V, E), w), v \in V.
   Output : d(v, y) for all y \in V.
1 Number the vertices of G as v = v_1, \ldots, v_n.
2 queue \leftarrow StartQueue(n).
3 foreach i = 1 to n do
        dist[i] \leftarrow \infty and call queue.Insert(v_i, \infty).
5 Call queue.ChangeKey(v_1, 0).
   do
         v_i \leftarrow \text{queue.Extract()}.
        foreach (v_i, v_i) \in E do
              dist[j] \leftarrow min\{dist[j], dist[i] + w(i, j)\}.
              Call queue.ChangeKey(v_i, dist[j]),
11 while queue is not empty
```


10

12 Return dist.

Algorithm: DIJKSTRA

```
Input
               : Weighted graph G = ((V, E), w), v \in V.
   Output : d(v, y) for all y \in V.
1 Number the vertices of G as v = v_1, \ldots, v_n.
2 queue \leftarrow StartQueue(n).
3 foreach i = 1 to n do
        dist[i] \leftarrow \infty and call queue.Insert(v_i, \infty).
5 Call queue.ChangeKey(v_1, 0).
   do
         v_i \leftarrow \text{queue.Extract()}.
        foreach (v_i, v_i) \in E do
              dist[j] \leftarrow min\{dist[j], dist[i] + w(i, j)\}.
              Call queue.ChangeKey(v_i, dist[j]),
11 while queue is not empty
```


10

12 Return dist.

Algorithm: DIJKSTRA

10

12 Return dist.

```
Input
               : Weighted graph G = ((V, E), w), v \in V.
   Output : d(v, y) for all y \in V.
1 Number the vertices of G as v = v_1, \ldots, v_n.
2 queue \leftarrow StartQueue(n).
3 foreach i = 1 to n do
        dist[i] \leftarrow \infty and call queue.Insert(v_i, \infty).
5 Call queue.ChangeKey(v_1, 0).
   do
         v_i \leftarrow \text{queue.Extract()}.
        foreach (v_i, v_i) \in E do
              dist[j] \leftarrow min\{dist[j], dist[i] + w(i, j)\}.
              Call queue.ChangeKey(v_i, dist[j]),
11 while queue is not empty
```


26

8/9

Algorithm: DIJKSTRA

```
Input
               : Weighted graph G = ((V, E), w), v \in V.
   Output : d(v, y) for all y \in V.
1 Number the vertices of G as v = v_1, \ldots, v_n.
2 queue \leftarrow StartQueue(n).
3 foreach i = 1 to n do
        dist[i] \leftarrow \infty and call queue.Insert(v_i, \infty).
5 Call queue.ChangeKey(v_1, 0).
   do
         v_i \leftarrow \text{queue.Extract()}.
        foreach (v_i, v_i) \in E do
              dist[i] \leftarrow min\{dist[i], dist[i] + w(i, i)\}.
              Call queue.ChangeKey(v_i, dist[j]),
10
11 while queue is not empty
```


12 Return dist.

Algorithm: DIJKSTRA

```
Input
             : Weighted graph G = ((V, E), w), v \in V.
  Output : d(v, y) for all y \in V.
1 Number the vertices of G as v = v_1, \dots, v_n.
2 queue \leftarrow StartQueue(n).
3 foreach i = 1 to n do
        dist[i] \leftarrow \infty and call queue.Insert(v_i, \infty).
5 Call queue.ChangeKey(v<sub>1</sub>, 0).
  dο
        v_i \leftarrow \text{queue.Extract()}.
        foreach (v_i, v_i) \in E do
             dist[j] \leftarrow min\{dist[j], dist[i] + w(i, j)\}.
             Call queue.ChangeKey(v_i, dist[j]),
```

11 while queue is not empty 12 Return dist.

10

Invariant: dist[i] is the minimum value of $d(v_1, v_i) + w(v_i, v_i)$ over all v_i 's whose distances are finalised, as in mathematical version.

We can recover shortest paths by storing and returning the dotted red edges.


```
Algorithm: DIJKSTRA
  Input
              : Weighted graph G = ((V, E), w), v \in V.
  Output : d(v, y) for all y \in V.
1 Number the vertices of G as v = v_1, \dots, v_n.
2 queue \leftarrow StartQueue(n).
3 foreach i = 1 to n do
        dist[i] \leftarrow \infty and call queue.Insert(v_i, \infty).
5 Call queue.ChangeKey(v_1, 0).
6 do
        vert \leftarrow queue.Extract(), say vert = v_i.
        foreach (v_i, v_i) \in E do
             dist[j] \leftarrow min\{dist[j], dist[i] + w(i, j)\}.
            Call queue.ChangeKey(v_i, dist[j]),
11 while queue is not empty
```

10

12 Return dist.

We perform O(|V|) Insert operations and Extract operations, and O(|E|) ChangeKey operations, for a total of $O((|V| + |E|) \log |V|)$ time when G is given in adjacency list form.

We could drop this to $O(|V| \log |V| + |E|)$ time by using a Fibonacci heap as a priority queue... But Fibonacci heaps have awful constants, and generally $\log |V| \lesssim 50$, so let's not!