CSC 411 Fall 2018 Machine Learning and Data Mining

Homework 4

Family name: Bhatia

Given name: Pooja

Solution 1

(9)

Input:

WXHXC

Kernal Size K Output Maps M

Units = pixels x output units = WH XM = WHM

Weights = Size of each piece x No of Filhers

= K2C x M

= K2CM

Connections = Values processed x output units

by a kernal

= K^2C X W HM

= K^2C WHM.

Layer 1. $M = 96 \text{ Kernals} \rightarrow 11 \times 11 \times 3 \text{ each}$ Stride = 4 $Input = 224 \times 224 \times 3$ New Iput : W = H = 55 C = 3 $Units = 55 \times 55 \times 96 = 1290,400$ $Weight = K^2 cM = 11^2 \times 3 \times 96 = 134,848$ $Connections = K^2 c M W H = 11^2 \times 3 \times 96 \times 55 \times 55$ = [105,415,200]

Layer 2. M = 256 Size $\rightarrow 5 \times 5 \times 48 = K^2C$ $W = H = 55/2 = 27 \quad (max pooling)$ Units = WHM = $27^2 \times 256 = [186, 624]$ weight = $K^2CM = 5^2 \times 48 \times 256 = [307, 200]$ Connections = K^2C WHM = $5^2 \times 48 \times 27^2 \times 256$ = [223, 948, 800]

Layer 3 M = 384 $K^2C = 3\times3\times256$ $W = H = 27/2 = 13 \quad (\text{max pooling})$ $Units = WnM = 13^2 \times 384 = 64,896$ $Weights = K^2CM = 3\times3\times256\times384$ = 84,736 $Connections = K^2CWnM = 3^2\times256\times13^2\times384$ = 149,520,384

Layer 4 M = 384 $K^2C = 3 \times 3 \times 192$ $units = 13^2 \times 384 = [64,896]$ $ueight = 3^2 \times 192 \times 384 = [663,552]$ $connection = 3^2 \times 192 \times 192$

layers M = 256 $K^2C = 3 \times 3 \times 192$ $vni + s = 13^2 \times 256 = [43,264]$ $weight = 3^2 \times 192 \times 256 = [442,368]$ $Connection = 3^2 \times 192 \times 13^2 \times 256$ $= 3^2 \times 192 \times 13^2 \times 256$ = 174,760,192

layer 6

units = 4096weight = $6^2 \times 256 \times 4096 = (37, 748, 736)$ Connection = $6^2 \times 256 \times 4096 = (37, 748, 736)$

layer 7

Unik = 4096

weight = 4096 × 4096 = [16,777,216]

Connection = 4096 = [16,777,216]

layer 8

Units = [1000]

weight = 4096 × 1000 = [4,096,000]

Connection = 4096 × 1000 = [4,096 × 000]

layer	#Units	#weights	#Connections
convolution Lay		34,848	105, 415, 200
convolution layer 2	186,624	307,200	223,948,800
convolution layer3	64,896	88 4, 736	149, 520, 384
convolution layer4	64,896	663,552	112,140,288
Convolution layer	5 43,264	442,368	74,760,192
Fully connected lager 1	4096	37,748, 736	37, 748, 736
Fully connected layers	4096	16,777,216	16,777,216
Dutput Layer	1000	4,096,000	4,096,000

Solution 1.

(i)

fully connected layers contribute to the most number of palametrs i.e. the weights.

weights = K²CM,

(hence reducing K and M would help)

Also, Alexnet works with same

accuracy even if its parametus

are reduced certain times.

(b) convolution Layers contributes (ii) to most number of connections connection = K2CMWH

hence, suggestion: Reduce the No. of Kernals; or reduce Size of Kernals. would both help.

30/n Q2.) Granssian Maire Bayes (a) (x 18 (x1...xd) le décame x. X = (X1, X2 · - · · · Xd), where each Xi is a continous random variable. Y & (1,2....K) but to start and for simplicity let's first Assume that
Y 18 Boolean and has parameter
Say $\pi = P(Y=1)$ Given, that for each Xi, P(Xi/Y=XK)
13 a Gassian Distribution of the form N (Mik, oi) For all i and j ti, Xi and Xj are conditionally independent given Y. or varies from attribute to attribute but doesn't depend on Y.

NOW,

P(Y=1 | X) = P(Y=1) P(X1 Y=1) P(Y=1) P(X|Y=1) + P(Y=0) P(X|Y=0)

Divide both numerator and denominator by numerator.

$$p(Y=1|X) = \frac{1}{1 + p(Y=0)p(X|Y=0)}$$

$$p(Y=1)p(X|Y=1)$$

or equivalently,

$$P(Y=1|X) = \frac{1}{1+e^{x}P(\ln(\frac{P(Y=0)P(X|Y=0)}{P(Y=1)P(X|Y=1)})}$$

As taken conditional independence assumption, we can say

$$P(Y=1|X) = \frac{1}{1 + \exp(\ln \frac{p(Y=0)}{p(Y=1)} + Z_{i} \ln \frac{p(x_{i}|Y=0)}{p(x_{i}|Y=1)})}$$

$$= \frac{1}{1 + \exp\left(\ln\frac{1-\pi}{\pi} + \sum_{i} \ln\frac{P(Xi|Y=0)}{P(Xi|Y=1)}\right)}$$

gince it is given that P(Xi/Y=XK) Is Gaussian, hence

$$\frac{\sum_{i} \ln \frac{P(Xi|Y=0)}{P(Xi|Y=1)} = \sum_{i} \ln \frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \exp\left(-\frac{(Xi-U_{i0})^{2}}{2\sigma_{i}^{2}}\right)}{2\sigma_{i}^{2}}$$

$$= \frac{7}{i} \left(\frac{(x_i - u_{i1})^2 - (x_i - u_{i0})^2}{2 \sigma_i^2} \right)$$

$$= \frac{2}{i} \left(\frac{\left(xi^2 - 2xi Hi \right) + Hi^2}{20i^2} \right) - \left(xi^2 - 2xi Hi o^2 + Hi o^2 \right)$$

$$= \sum_{i} \left(\frac{2 \times i \left(\text{lio} - \text{li1} \right) + \text{li1}^2 - \text{lio}^2}{2 \sigma i^2} \right)$$

L>(2)

Now, thus expression is a linear weighted sum of Xi's. Substituting expression (2) in (1), we get

 $P(Y=1|X) = \frac{1}{1 + explicity} + \sum_{i} \frac{|U_{i0}-U_{i1}|}{|\sigma_{i}|^{2} |U_{i0}|^{2}} + \frac{|U_{i0}-U_{i0}|^{2}}{|2\sigma_{i}|^{2}}$

 $= P(Y=1|X) = \frac{1}{1 + e \times p(Wo + \sum_{i=1}^{d} w_i X_i)}$

Wi - - ... Wod one given by

Wt = Mio-Mil

wo = $\ln \frac{1-\pi}{\pi} + \sum_{i} \frac{Ui1^2 - Ui0^2}{20i^2}$

NOW for P(Y=0|X) = 1 - P(Y=1|X)

P(Y=0|X)=1-P(Y=1|X)= exp(wo+ & wixi) 1 + exp(wo + Z wixi) we considered only cases where I was a boolean for able but NOW IF Y can take any of discrete class layber values 1.e y G (1-... 15) that is Y can take values (Y1 --Then P(Y=XXIX) for Y=X, Y=X Y= 2K-1 18: P(Y=dx|X) = exp(wxo+ & wxi Xi) 1+ \(\frac{x}{2}\) \(\exp\)\(\wg\) \(\frac{x}{2}\)\(\wg\)\(\omega\)

P(Y=K|X,U, o)= exp (WKO+ EdwKiXi) 1+ &- 'exp (Wjo+ & WjiXi) Ans

Ans (2)

 $L(O;D) = -\log P(y^{(1)}, x^{(1)}, y^{(2)}, x^{(2)})$ $\dots \dots y^{(N)} \times (N) = -\log P(y^{(1)}, x^{(1)}, y^{(2)})$

Assuming date are 1.1.d $e(0;D) = -\log|T| P(y^{(i)}, x^{(i)}|0)$

we can take ∑ as 1.1. d date

z - Zlog PC y (i), x (i)(0)

2- = N log P (x (i), y (i) (0))

Since we can write e P(x,y|0) = log P(y|10) + log P(x|y,0)

putting it in equation (i) $l(0;D) = -\sum_{N} log P(x^{(i)}, y^{(i)}|0)$ $\overline{l(0;D)} = -\sum_{N} (log P(y^{(i)}|0) + log P(x^{(i)}|y^{(i)},0))$

192 Using the Multivarate Gassian
Distribution Equation Since
in the question it mentions shared
variance (02).

 $N(X|\mathcal{U}, \Sigma) = \frac{1}{(2\pi)^{\frac{9}{2}} |\Sigma|^{\frac{1}{2}}} \exp \frac{1}{2} \frac{\exp \frac{1}{2}(x-u)^T \Sigma^{-1}(x-u)}{2}$

where

x is D-dimensional vector

ju is D dimensional mean vector

I is pxp covariance makix with determinant III

E(covorionce motrix) 18 a motrix whose (i,j) entry 18 covarionce 1.e

 $\sum_{ij} = cov(xi,xj)$ $= E[(xi-\mu i)(xj-\mu j)]$

= E[(XiXj)] - Millj

Diagonal entries are voriance at

each elements, hence using equation () in the question.

$$Z = \sqrt{2\pi}^{p} |\Sigma| = (2\pi)^{p/2} |\Sigma|^{1/2}$$

$$p(x|y) = \frac{1}{Z} exp(-\frac{1}{2}(x-\omega)^{T} \Sigma^{-1}(x-\omega))$$

Since we are aiming at maximum like lihood that 18 alg maxo Log 210)

this can happen when

Taking desirative w.r.'t ll

$$\frac{\partial \log L}{\partial \mathcal{U}_{K}} = -\sum_{i=0}^{N} (y^{(i)} = K) \Sigma^{-1} (x^{(i)} - \mathcal{U}_{K}) = 0$$

$$\frac{1}{\sum_{i=1}^{N} (y^{(i)} = K) \times^{(i)}}$$

$$\frac{1}{\sum_{i=1}^{N} (y^{(i)} = K)}$$

$$\frac{1}{\sum_{i=1}^{N} (y^{(i)} = K)}$$

Ans

Now take derivative of equality () wirt Z'

$$\frac{\partial Log L}{\partial \Sigma_{K}} = -\frac{\sum_{i=0}^{N} 1 (y^{ii})}{i^{2}} = K \int_{i=0}^{N} \left[-\frac{\partial log ZK}{\partial \Sigma_{K}^{-1}} - \frac{1}{2} (x^{ii}) u_{K} \right]$$

$$Z = (2\pi)^{\frac{p}{2}} |\Sigma_K|^{\frac{1}{2}}$$

$$= (2\pi)^{-1/2} |\Sigma_{k}|^{-1/2} (2\pi)^{1/2} \partial (|\Sigma_{k}|)^{-1/2}$$

$$= (2\pi)^{-1/2} |\Sigma_{k}|^{-1/2} (2\pi)^{1/2} \partial (|\Sigma_{k}|)^{-1/2}$$

(many property)

E=ET)

Now substituting this back in equation a we get

$$\frac{\partial Log L}{\partial \Sigma_{R}^{-1}} = -\frac{N}{2} \mathbb{I} \left(y^{(i)} = K \right) \left[\frac{1}{2} \Sigma_{R} - \frac{1}{2} (x^{(i)} - UK) (x^{(i)} - WK) \right]$$

$$= 0$$

Ang

 $\left[\begin{array}{c} Q(2) \\ (d) \end{array}\right]$

As suggested in the question using Lagrange multiplied

 $\frac{\partial L(0)}{\partial \alpha K} + \lambda \partial \Sigma_{K} \times K = 0$

we need to meximize we are adding the lern.

 $\lambda = -\frac{2}{c-1} \mathbf{1} \left(y^{(i)} = k \right) \frac{1}{-1 - \alpha_k}$

2K = - \(\frac{2}{2} \) \(\frac{1}{2} \) \(\f

Since again we are wenting to maximize the likehood of maximize the likehood of our that is possible when $2x \times x = 1 \Rightarrow \lambda = -N$

) < x = 1 = 1 (y (i) = K)