Multiple-valued Function

Multiple-valued Function

A multiple-valued function

$$f: P => \{0,1,2\} \text{ where } P = X p_i$$

 $i = 1$

Each p_i is a set of integers $\{1,2,...,p_i\}$ that the ith variable can assume

Ex:
$$n = 3$$
, $(p_1 p_2 p_3) = (3 5 2)$
 $V = (2 4 1)$ is a minterm
 $V = (4 4 1)$ is illegal

Multiple-valued Function

• To represent multiple valued variable using two-valued variables : one hot encoding

For a variable which can take pi values, we associate pi Boolean variables

Ex:

$$(p_1 p_2 p_3) = (3 5 2)$$

$$(_ _ _) (_ _ _ _) (_ _)$$

Ex:

$$n = 3$$
 $(p_1 p_2 p_3) = (3 5 2)$
 $V = (2 4 1)$ will be represented
 $(0 1 0)(0 0 0 1 0)(1 0)$
This should be thought of as a
"minterm"

Product Term

- A general product term $C = (1\ 1\ 0)(0\ 1\ 1\ 0\ 1)(1\ 0)$ means $(V_1 = 1\ or\ 2)$ and $(V_2 = 2\ ,\ 3,\ or\ 5)$ and $(V_3 = 1)$
- The problem of multi-valued logic minimization is to find an above form of minimized number of product term

Three questions to answer:

- 1. When to use a multiple-valued logic?
- 2. How to use a two-valued logic minimizer to minimize multiple valued logic?
- 3. How to realize a multiple-valued logic?

- 1. When to use a multiple-valued logic?
 - State assignment to find adjacency relations
 - Allowing bit pairing to minimize logic

2. How to use a two-valued logic minimizer to minimize multiple valued logic?

Ex:

$$(1\ 0\ 0)(1\ 0\ 1\ 0)(1\ 0)$$

$$+ (0\ 1\ 0)(1\ 0\ 1\ 0)(1\ 0)$$

$$=> (1\ 1\ 0)(1\ 0\ 1\ 0)(1\ 0)$$

A product term involves both "AND" and "OR". But in two-valued logic, a product term involves "AND" only.

 How to change "OR" relations to "AND" relations?

Solution => *don't care*

Ex:

Consider the second 4-valued variable

$$V_2 = (1 \ 0 \ 10)$$

- means $V_2 = 1$ or $V_2 = 3$
- use "AND" to represent the meaning "V₂ not 2 AND not 4"

Two valued logic:

$$V_2 = (2\ 0\ 2\ 0\)$$

=> $(0\ 0\ 0\ 0)$ don't care
 $(0\ 0\ 1\ 0)$
 $(1\ 0\ 0\ 0)$
 $(1\ 0\ 1\ 0)$ don't care

• The *don't care* set?

care set =
$$1 \ 0 \ 0$$

0 1 0
0 0 1
don't care: $x_1 \ x_2 \ x_3$
1 1 2
1 2 1
2 1 1
0 0 0

No pair of two x_i are both on and x_i are never all off.

- Use two-valued logic minimizer to minimize a multi-valued logic:
 - step (1) Create Σ Pi Boolean variables
 - step (2) For each multi-valued variable, we associate the Don't care set
 - step(3) Espresso
 - step(4) Convert the result back to multiple-valued function

Example: Input File

8-valued 4-valued
10000001000 10000000
001000001000 10000000
•••••
01000001000 000
000010001000 000
•••••
00100000100 10000000
00000100100 10000000
•••••
01000000100 000
•••••
00100000001 101
00000100001 101
Multi-valued Input Version of PLA
DK17(Don't-cares not shown)

- 1. Adding don't care for each variable
- 2. Call Espresso to minimize the two-valued logic

Example: Output of Espresso

```
0. 00. .0. __1 | - -1 - - - - -1
                                          2 2 1 2
            0000..0...1 | - -1 - - - - 1-
                                           0010
            . 0. 00000. .1. | - 1- - - - - -
                                           0 0 1 1
            . . 00. 000. 1.. | - - - 1- - - - -
                                           0 1 1 0
                                           0111
                                           1010
            _00_0000 . .1| - - - -1- - - - 1
                                           1011
            00. 000. 0. 1. .| 1----1-
20020000
                                           1 1 1 0
            . . . . . 1 . . . 1 . . | - - - - - - 1 - -
0000000
                                           1 1 1 1
00010000
10000000
            10010000
```

Multi-valued Input Minimization of DK17

Example: Converting Back to Multi-valued Logic

01001101 <u>0010</u> 1 1 -
000011010001 1 1
10100000010 - 1 1
110010000100 1
•••••
10010000001 1 1 -
001000100100 1 1 - 1
000001000100 1
•••••
000000101000 1 1 -
000001001000 1
01000000001 1

MINI Representation of Minimized DK17

- 1. When to use a multiple-valued logic?
 - State assignment to find adjacency relations
 - Allowing bit pairing to minimize logic

$$\begin{array}{c}
 x_1 x_2 \\
 + x_3 x_4 \\
 \hline
 f_0 f_1 f_2
 \end{array}$$

Two-Bit ADDER(ADR2)

X_1	x ₂	x ₃	x ₄	f_0 f_1 f_2
0	0	0	0	0 0 0
0	0	0	1	0 0 1
0	0	1	0	0 1 0
0	0	1	1	0 1 1
0	1	0	0	0 0 1
0	1	0	1	0 1 0
0	1	1	0	0 1 1
0	1	1	1	1 0 0
1	0	0	0	0 1 0
1	0	0	1	0 1 1
1	0	1	0	1 0 0
1	0	1	1	1 0 1
1	1	0	0	0 1 1
1	1	0	1	1 0 0
1	1	1	0	1 0 1
1	1	1	1	1 1 0

11 products

Example: One-hot Encoding

	X_1	X_2	$f_0f_1f_2$
/	1000(0100	-0 0 1 <
	10000	0010	-0 1 0
	10000	0001	-0 1 1
	0100	1000	-0 0 1
	01000	0100	-0 1 0
	01000	0010	-0 1 1
	01000	0001	-1 0 0
	0010	1000	-0 1 0
	00100	0100	-0 1 1
	0010	0100	-1 0 0
	00100	0001	-1 0 1
	0001	1000	-0 1 1
	00010	0100	-1 0 0
	00010	0010	-1 0 1
\	00010	0001	-110 -

Example: After Optimization

9 products < 11 products

- 3. How to realize a multiple-valued logic?
 - Using decoder to generate multiple value logic

Ex: Using a two-bit decoder to generate 4-value logic

Implement f:

- Use minterms $f = x_0 x_1' = \sum (m_2)$
- Use maxterms

$$f' = (x_0'x_1') + (x_0'x_1) + (x_0x_1)$$

$$f = (x_0 + x_1) \quad (x_0 + x_1') \quad (x_0' + x_1')$$

$$= M_0 \quad M_1 \quad M_3$$

$$= \Pi (M_0, M_1, M_3)$$

Ex : multiple output function $f = (p_1 p_2 p_3) = (1110)(0011)(0111)$ $p_1 p_2 p_3 \in \{1,2,3,4\}$

PLA for ADR2(input variable assignment ₂₄ nonoptimized).