An Empirical Analysis of Feature Engineering for Four Regression Models

Jeff Heaton

Nova Southeastern University - Ft. Lauderdale, FL USA Reinsurance Group of America (RGA) - St. Louis, MO USA

April 1, 2016

http://www.jeffheaton.com/

What this Talk About?

- **Feature** An observation, or single column of data, that is part of the input to a model.
- Feature Vector A fixed-length collection of features.
- Model An algorithm that accepts a feature vector and provides an outcome/prediction. Models covered in this talk: neural networks (deep and otherwise), support vector machines (SVMs), random forests and gradient boosted forests/machines (GBMs).
- **Feature Engineering** Creating additional calculated features that help a predictive model achieve a more accurate outcome.

Simple Example of Engineered Features

A simple toy neural network.

- Toy neural network to recommend a maximum face amount for an insurance applicant.
- Bias values are used by neural networks to provide a y-intercept.
- Regular features are: age, income, weight, HDL, LDL, and TGL.
- Two engineered features: BMI and cholesterol ratio.

Outline

- Simple Example of Engineered Features
- Research Objective
- Related Work
- Research Methodology
 - Models Considered
 - Datasets Generated
- Results
 - Neural Network Results
 - Support Vector Machine Results
 - Random Forest Results
 - Gradient Boosted Forest/Machines Results
 - Summary of Results
- 6 Future Work

Motivation and Problem Statement

Does the choice of model (neural network, support vector machine, etc.) also dictate the types of engineered features that should be investigated?

- Are certain types of engineered feature unnecessary for certain model types?
- Do other types of engineered feature have more potential for other model types?
- If certain engineered feature types are unnecessary for some model types, then their inclusion simply adds complexity to the preprocessing pipeline.

Related Work

An important part of predictive modeling since the beginning.

Feature Engineering

- Linear regression with non-normally distributed features (Freeman and Tukey, 1950).
- Feature engineering benefits deep learning for speech recognition, computer vision, & signal processing. (Bengio, 2013).

Automatic Feature Engineering

- Box-Cox Transformations (Box & Cox, 1964).
- Alternating Conditional Expectation (ACE) (Breiman & Friedman, 1985).

Application of Feature Engineering

- Kaggle Algorithmic Trading Challenge (Ildefons & Sugiyama, 2013).
- ACM KDD Cup 2010 (Yu, et al., 2011).
- Others given in the conference paper...

Evaluating effectiveness of engineered features for models.

- How can the effectiveness for a type of engineered feature be evaluated for a type of model?
 - Not all datasets benefit from engineered features.
 - Models will often figure out an engineered feature for themselves.
- Evaluation method used in this research:
 - Generate 10 datasets where the outcome is the result of the engineered feature.
 - Fit 4 regression models to each of these 10 datasets and evaluate root mean square error (RMSE).
 - A low RMSE indicates that the model is capable of synthesizing the feature on its own, independent of any engineering efforts. A high RMSE indicates a more valuable type of engineered feature.
 - Keep expected outcome (Y) values in similar ranges so dataset RMSE values are approximately comparable.

Models considered.

Deep Artificial Neural Network (DANN)

- 5 hidden layers (Input \rightarrow 400 \rightarrow 200 \rightarrow 100 \rightarrow 50 \rightarrow 25 \rightarrow 1 output).
- Stochastic Gradient Descent (SGD) (learning rate: 1×10^{-5} , momentum: 0.9).
- Rectified Linear Unit (ReLU) based transfer function.

Support Vector Machine (SVM)

- Grid search of C values of 0.001, 1, and 100 in combination with γ values of 0.1, 1, and 10.
- Gaussian kernel.

Random Forest

- Estimators (trees): 100
- Maximum tree depth: 10

Gradient Boosted Machine (GBM, XGBoost)

- Learning Rate: 0.1
- Estimators (trees): 100
- Maximum tree depth: 10

Datasets generated.

- Counts: Count of 50 features above a threshold.
- Differences: $y = x_1 x_2$
- Logarithms: $y = ln(x_1)$
- **Polynomials:** $y = 1 + 5x + 8x^2$
- Powers: $y = x^2$
- Ratios: $y = \frac{x_1}{x_2}$
- Rational Differences: $y = \frac{x_1 x_2}{x_3 x_4}$
- Rational Polynomials: $y = \frac{1}{5x + 8x^2}$
- Root Distance: $y = \left| \frac{-b + \sqrt{b^2 4ac}}{2a} \frac{-b \sqrt{b^2 4ac}}{2a} \right|$
- Square Roots: $y = \sqrt{x}$

Example dataset.

- Rational Differences: $y = \frac{x_1 x_2}{x_3 x_4}$
- Can the model learn the above equation, given the data below?

Table: Rational Difference Transformation

x_1	<i>x</i> ₂	<i>X</i> ₃	<i>x</i> ₄	<i>y</i> ₁
6.30651	2.23126	6.95826	9.88415	-1.39282
9.07714	6.21059	1.58401	1.97679	-7.29794
5.02777	4.04626	3.90232	9.15452	-0.18688
1.90746	7.76275	8.44665	7.09478	-4.33127

Neural Networks.

- The neural network had difficulty with ratios and difference ratios.
- Neural network calculation: $f(x, w, b) = \phi \left(\sum_{n} (w_i x_i) + b \right)$
- Neural networks are function approximators that can sum and multiply effectively.

Support Vector Machines (Regression) (SVR).

- The support vector regression (SVR) had difficulty with root difference (quadratic), ratios, and difference ratios.
- SVR decision function (calculation):

$$y = \sum_{i=1}^{n} (\alpha_i - \alpha_i^*) K(x_i, x) + \rho$$

 Like neural networks, SVR's are function approximators that can sum and multiply effectively.

Random Forests.

- The regression random forest had difficulty with counts and difference ratios.
- Random forests are calculated using trees of essentially local linear regressions and voting among the trees.
- Complex interactions among all features (such as a count) are difficult without great tree depth.

Gradient Boosted Forests/Machines (GBM).

- The GBM had difficulty with counts and difference ratios.
- GBM's are calculated similar to random forests, but voting structure is decided with gradient descent.
- Like random forests, complex interactions among all features (such as a count) are difficult without great tree depth.

Summary of Results

- No model (with provided hyper-parameters) was effective at the difference ratio feature. This implies that this feature type might be useful for these models (if supported by the dataset).
- All models evaluated did well with the simple (single feature) transformations. This implies that these feature types might not be as useful for these model types.
- Dot product based models (neural networks & SVR) have difficulty with similar engineered features.
- Tree-based models (random forest & GBM) have difficulty with similar engineered features.
- Because of their different approaches dot product and tree-based models are often used together in ensembles.

Future Work

- Model RMSE results might improve with additional tuning (better hyper-parameters).
- Further explanation of why certain models perform better with particular equations.
- Try additional features and model types.
- Explore classification results of the four model types.
- Experiment with the effects of noise.
- Other engineered features: sum, mean, standard deviation, max and min.
- More than one engineered feature at a time.
- Automatic selection of engineered features.