Topology – Homework 1

Thimoteus May 29, 2015

1) Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subseteq A$. Show that A is open in X.

Proof: It suffices to show that *A* is the union of open sets. To that end, let

$$\mathcal{U} := \{ U \in \mathcal{T} \mid \exists x \in A : x \in U \subseteq A \}$$

This is a collection of open sets. Now consider $\bigcup \mathcal{U}$, a candidate for A. To show this, let $x \in A$. Then there is an open U for which $x \in U$, hence, $A \subseteq \bigcup \mathcal{U}$. For the other direction, note that by definition, each U is a subset of A. Hence $\bigcup \mathcal{U} \subseteq A$.

3) Show that the collection $\mathcal{T}_c := \{U \subseteq X | X \setminus U \hookrightarrow \mathbb{N} \lor X \setminus U = X\}$ is a topology on the set X. Is the collection $\mathcal{T}_{\infty} := \{U \mid X \setminus U \text{ is infinite or empty or all of } X\}$ a topology on X?

Proof: We check the three parts of the definition.

- 1) Let U = X. Then $X \setminus U = \emptyset$ which is countable, so $X \in \mathcal{T}_c$. Now let $U = \emptyset$. Then $X \setminus U = X$, so $\emptyset \in \mathcal{T}_c$.
- 2) Let $\mathcal{U}_{j\in J}$ be a subset of \mathcal{T}_c . We wish to show that $\bigcup \mathcal{U}_{j\in J} \in \mathcal{T}_c$. For each \mathcal{U}_j there are two possibilities: either $X \setminus \mathcal{U}_j$ is countable or X itself. If any $\mathcal{U}_j = X$ then the whole union is as well. On the other hand, if no \mathcal{U}_j is the whole set, each one satisfies " $X \setminus \mathcal{U}_j$ is countable". By De Morgan, $X \setminus \bigcup \mathcal{U}_{j\in J} = \bigcap (X \setminus \mathcal{U}_{j\in J})$ which is also countable.
- 3) If suffices to show $\mathcal{U}_j \cap \mathcal{U}_k$ is open for any $j,k \in J$. If they are disjoint then their intersection is empty, so open. If they are not disjoint, they have a nonempty intersection (in particular, each one is nonempty). Thus the complement of each in X is countable. Then we apply De Morgan to the complement (in X) of the intersection: $X \setminus (\mathcal{U}_j \cap \mathcal{U}_k) = (X \setminus \mathcal{U}_j) \cup (X \setminus \mathcal{U}_k)$, which is also countable since it is the union of two countable sets.

Then \mathcal{T}_c is a topology on X.

But \mathcal{T}_{∞} is not a topology: Let $X = \mathbb{N}$, $U_1 = \{n \in X \mid \text{Composite}(n)\}$, $U_2 = \{n \in X \mid \text{Odd}(n)\}$. Then by De Morgan, $X \setminus (U_1 \cup U_2) = (X \setminus U_1) \cap (X \setminus U_2) = \{2\}$, which is not an "open" set.

5) Show that if \mathscr{A} is a basis for a topology on X, then the topology \mathscr{T} generated by \mathscr{A} equals the intersection of all topologies on X that contain \mathscr{A} . Prove the same if \mathscr{A} is a subbasis.

Proof (basis):

- (⊆) Take $U \in \mathcal{T}$. Then $U = \bigcup_{j \in J} B_j$ for some collection of basis elements. Note that each B_j is also in any topology that contains \mathscr{A} .
- (\supseteq) Let U be in the intersection of all topologies that contain \mathscr{A} . Note that \mathscr{T} contains \mathscr{A} , so U is open in \mathscr{T} .

Proof (subbasis):

- (⊆) Take $U \in \mathcal{T}$. Then $U = \bigcup \{B_j \mid B_j = \bigcap_{<\omega} B_i\}$ for a collection of subbasis elements B_i . Since any topology that contains \mathscr{A} contains each B_i , it also contains each B_j (since B_j is a finite intersection of open sets). Then it also contains U, because U is a union of open sets.
- (\supseteq) Same as in the basis case: If U is in each topology that contains \mathscr{A} , it is also in \mathscr{T} since it, too, contains \mathscr{A} .
- 7) Consider the following topologies on \mathbb{R} :

 \mathcal{T}_1 = the standard topology

 $\mathcal{T}_2 = \mathbb{R}_K$

 \mathcal{T}_3 = the finite complement topology

 \mathcal{T}_4 = the upper limit topology, having all sets (a, b] as basis

 \mathcal{T}_5 = the topology having all sets $(-\infty, a)$ as basis

Determine, for each of these, which of the others it contains.

Standard topology:

- 1. Does not refine \mathcal{T}_2 by the argument presented in lemma 13.4.
- 2. Does refine \mathcal{T}_3 : Let U be a nontrivial open set of \mathcal{T}_3 . Then it's missing only finitely many real numbers. Let x_0 be the least such real number. Then we can construct an open set U' = U of \mathcal{T}_1 as follows: The leftmost part, U'_l is defined to be the union of all intervals of the form

$$(j-1,j), j \in \{r \mid r < x_0\}$$

If x_1 is the least missing element not equal to x_0 , then we merely take the interval (x_0, x_1) . We follow this construction until all missing elements x_i have been taken care of, and finally we define the rightmost part U_r' similarly as above. Then $U' = U_l' \cup U_r' \cup \bigcup (x_i, x_{i+1})$. Then by construction U' has every real number except the x_i , so is equal to U.

- 3. Does not refine \mathcal{T}_4 for the same reason it doesn't refine the lower limit topology: given $x \in (a, b]$ there is no open interval that contains x and is in (a, x].
- 4. Does refine \mathcal{T}_5 : Let $B_1 = (-\infty, a)$ be a basis element of \mathcal{T}_5 and $x \in B_1$. Then the open interval (x-1, a) contains x and is a subset of B_1 , therefore the standard topology refines \mathcal{T}_5 by lemma 13.3.

"Harmonic" topology

- 1. Refines \mathcal{T}_1 by lemma 13.4.
- 2. Refines \mathcal{T}_3 since fineness is transitive and \mathcal{T}_1 refines \mathcal{T}_3 .
- 3. Does not refine \mathcal{T}_4 , argument is the same as why \mathcal{T}_1 does not refine \mathcal{T}_4 .
- 4. Refines \mathcal{T}_5 by transitivity.

Finite complement topology:

- 1. Does not refine \mathcal{T}_1 : let $x \in \mathbb{R}$ and consider the interval (x-1,x+1). If U is an open set of the finite complement topology, U will necessarily contain (uncountably many) reals y > x+1, so U is not a subset of (x-1,x+1).
- 2. Does not refine \mathcal{T}_2 for the same reason.
- 3. Does not refine \mathcal{T}_4 for the same reason.
- 4. Does not refine \mathcal{T}_5 for the same reason.

Upper limit topology

- 1. Refines \mathcal{T}_1 by a similar argument in lemma 13.4.
- 2. Refines \mathcal{T}_2 : Suppose $0 \neq x \in \mathbb{R}$. We're only interested in basis elements B that aren't in \mathcal{T}_1 , so those that have at least one element of the form $\frac{1}{n}$, $n \in \mathbb{N}$. Let p be the greatest such number smaller than x. By stipulation, the closed interval [p, x] is a subset of B. Thus the \mathcal{T}_4 basis element (p, x] is a subset of B. On the other hand, if x = 0 then B is of the form $(a, b) \setminus K$ for some a < 0, b > 0. Then we take the basis element (a, 0]. So by lemma 13.3, the upper limit topology refines \mathbb{R}_k .
- 3. Refines \mathcal{T}_3 by transitivity.
- 4. Refines \mathcal{T}_5 by transitivity.

Infinite left topology First, note that only two open sets of the topology are not basis elements: \mathbb{R} and \emptyset . This is because $\bigcap_n (-\infty, a_i) = (-\infty, \min\{a_i \mid i \leq n\})$ and $\bigcup_I (-\infty, a_i) = (-\infty, \limsup a_i)$, so the basis is closed under finite intersections and arbitrary unions.

- 1. Does not refine \mathcal{T}_1 : Let $x \in (a, b)$. Then all open sets of \mathcal{T}_5 have every y < a as an element, so by lemma 13.3 it can't refine \mathcal{T}_1 .
- 2. Does not refine \mathcal{T}_2 for the same reason.
- 3. Does not refine \mathcal{T}_3 : Let U be an open set in \mathcal{T}_3 , then $U = \mathbb{R} \setminus F$ for some finite subset $F \subseteq \mathbb{R}$. Suppose F has at least one element in it. Let x be the least element in F. For any y > x with $y \in U$, the only way for y to be included in an open set U' of \mathcal{T}_5 is for U' to include x as well. Thus open sets of \mathcal{T}_3 are not in general open sets of \mathcal{T}_5 .
- 4. Does not refine \mathcal{T}_4 : If (a, b] is a basis element of \mathcal{T}_4 then any basis element of \mathcal{T}_5 that includes b will include a as well.
- 8a) Apply lemma 13.2 to show the countable collection

$$\mathcal{B} = \{(a, b) \mid a < b\}$$
 $a, b \in \mathbb{Q}$

is a basis that generates the standard topology on \mathbb{R} .

Proof: Let *U* be an open set in the standard topology and *x* a real such that $x \in U$. Then we can write *U* as the union of open intervals of reals (a_i, b_i) . For at least one such interval is $x \in (a_i, b_i)$. Now choose a rational *p* with $a_i and a rational$ *q* $with <math>x < q < b_i$. Then $x \in (p, q) \subseteq (a_i, b_i)$, so by lemma 13.2 \mathcal{B} is a basis for the standard topology.

8b) Show that the collection

$$\mathscr{C} = \{ [a, b) \mid a < b \} \qquad a, b \in \mathbb{Q}$$

is a basis that generates a topology different from the lower limit topology on \mathbb{R} .

Proof: Let $x \in \mathbb{R} \setminus \mathbb{Q}$. For no rational a, b is the interval [a, b) a subset of [x, b) that also includes x. Therefore by lemma 13.2 \mathscr{C} does not generate the same topology.