Bayesian Statistics |

Lecture 3 - Multi-parameter models

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Lecture overview

- Multiparameter models
- Marginalization
- Normal model with unknown variance
- Multinomial data
- Dirichlet distribution

Marginalization

- Models with multiple parameters θ_1 , θ_2 ,
- **Examples:** $x_i \stackrel{iid}{\sim} N(\theta, \sigma^2)$; multiple regression ...
- Joint posterior distribution

$$p(\theta_1, \theta_2, ..., \theta_p|y) \propto p(y|\theta_1, \theta_2, ..., \theta_p)p(\theta_1, \theta_2, ..., \theta_p).$$

In vector form

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$
.

Marginalize out parameters. Marginal posterior of θ_1 :

$$p(\theta_1|y) = \int p(\theta_1, \theta_2|y) d\theta_2 = \int p(\theta_1|\theta_2, y) p(\theta_2|y) d\theta_2.$$

Mattias Villani

Normal model with unknown variance

Model

$$x_1, ..., x_n \stackrel{iid}{\sim} N(\theta, \sigma^2)$$

Prior

$$p(\theta,\sigma^2)\propto (\sigma^2)^{-1}$$

Posterior

$$\theta | \sigma^2, x \sim N\left(\bar{x}, \frac{\sigma^2}{n}\right)$$

 $\sigma^2 | x \sim \text{Inv} - \chi^2(n-1, s^2),$

where

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

is the usual sample variance.

Normal model - normal prior

Model

$$y_1, ..., y_n | \theta, \sigma^2 \stackrel{iid}{\sim} N(\theta, \sigma^2)$$

Conjugate prior

$$heta | \sigma^2 \sim N\left(\mu_0, rac{\sigma^2}{\kappa_0}
ight) \ \sigma^2 \sim \textit{Inv-}\chi^2(\nu_0, \sigma_0^2)$$

Normal model with normal prior

Posterior

$$\theta | \mathbf{y}, \sigma^2 \sim N\left(\mu_n, \frac{\sigma^2}{\kappa_n}\right)$$

 $\sigma^2 | \mathbf{y} \sim Inv - \chi^2(\nu_n, \sigma_n^2).$

where

$$\mu_{n} = \frac{\kappa_{0}}{\kappa_{0} + n} \mu_{0} + \frac{n}{\kappa_{0} + n} \bar{y}$$

$$\kappa_{n} = \kappa_{0} + n$$

$$\nu_{n} = \nu_{0} + n$$

$$\nu_{n}\sigma_{n}^{2} = \nu_{0}\sigma_{0}^{2} + (n - 1)s^{2} + \frac{\kappa_{0}n}{\kappa_{0} + n} (\bar{y} - \mu_{0})^{2}.$$

Normal model with normal prior

Posterior

$$\theta | \mathbf{y}, \sigma^2 \sim N\left(\mu_n, \frac{\sigma^2}{\kappa_n}\right)$$

 $\sigma^2 | \mathbf{y} \sim Inv - \chi^2(\nu_n, \sigma_n^2).$

where

$$\mu_{n} = \frac{\kappa_{0}}{\kappa_{0} + n} \mu_{0} + \frac{n}{\kappa_{0} + n} \bar{y}$$

$$\kappa_{n} = \kappa_{0} + n$$

$$\nu_{n} = \nu_{0} + n$$

$$\nu_{n}\sigma_{n}^{2} = \nu_{0}\sigma_{0}^{2} + (n - 1)s^{2} + \frac{\kappa_{0}n}{\kappa_{0} + n} (\bar{y} - \mu_{0})^{2}.$$

Marginal posterior

$$\theta | \mathbf{y} \sim t_{\nu_n} \left(\mu_n, \sigma_n^2 / \kappa_n \right)$$

Simulating from posterior

Posterior simulation - iid Gaussian with conjugate prior.

```
Input: data \mathbf{x} = (x_1, \dots, x_n) number of posterior draws m. compute \mu_n, \sigma_n^2, \kappa_n and \nu_n using Figure 50. for i in i:m do \sigma^2 \leftarrow \text{RINVCHI2}(\nu_n, \sigma_n^2) \theta \leftarrow \text{RNORMAL}(\mu_n, \sigma^2/\kappa_n) end Output: m draws for \theta and \sigma^2 from joint posterior.
```

Output: m draws for θ and θ^{-} from joint pos

```
Function RINVCHI2(\nu,\tau^2)

x = \text{RCHI2}(\nu)

y = \nu \tau^2 / x

return y
```

Internet speed data - joint and marginal posteriors

Prior:

$$\theta | \sigma^2 \sim \textit{N}\left(20, \frac{\sigma^2}{1}\right) \text{ and } \sigma^2 \sim \text{Inv-}\chi^2\left(\nu_0 = 5, \sigma_0^2 = 5^2\right)$$

Monte Carlo simulation

Monte Carlo simulation

Law of large numbers for consistency:

$$ar{ heta}_{1:m} \equiv rac{1}{m} \sum_{i=1}^m heta^{(i)} \stackrel{ ext{a.s.}}{ o} \mathbb{E}(heta|\mathsf{x}) ext{ as } m o \infty$$

Central limit theorem for the accuracy:

$$ar{ heta}_{1:m} \sim N\left(\mathbb{E}(heta|\mathbf{x}), rac{\mathbb{V}(heta|\mathbf{x})}{m}
ight)$$

Multinomial model with Dirichlet prior

- **Categorical counts**: $y = (y_1, ... y_C)$, where $\sum_{c=1}^C y_c = n$.
- y_c = number of observations in cth category. Brand choices.
- Multinomial model:

$$\rho(\mathbf{y}|\boldsymbol{\theta}) \propto \prod_{c=1}^C \theta_c^{y_c}, \text{ where } \sum_{c=1}^C \theta_c = 1.$$

■ Dirichlet prior: $\theta \sim \text{Dirichlet}(\alpha_1, ..., \alpha_C)$

$$p(\boldsymbol{\theta}) \propto \prod_{c=1}^{C} \theta_c^{\alpha_c - 1}.$$

Marginal distributions

$$\theta_c \sim \text{Beta}\left(\alpha_c, \alpha_+ - \alpha_c\right)$$
.

Dirichlet prior

$$(\theta_1, \dots, \theta_C) \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_C)$$

$$\mathbb{E}(\theta_c) = \frac{\alpha_c}{\sum_{j=1}^C \alpha_j}$$

$$\mathbb{V}(\theta_c) = \frac{\mathbb{E}(\theta_c)(1 - \mathbb{E}(\theta_c))}{1 + \sum_{j=1}^C \alpha_j}$$

Non-informative': $\alpha_1 = ... = \alpha_K = 1$ (uniform and proper).

Multinomial model with Dirichlet prior

Simulation from a Dirichlet(α) with $\alpha = (\alpha_1, \dots, \alpha_C)$:

```
Function RDIRICHLET(\alpha)

for c in 1:C do

y[c] \leftarrow \text{RGAMMA}(\alpha[c], 1)

end

return y/\text{Sum}(y)
```

Prior-to-Posterior:

Multinomial data with Dirichlet prior

Model: $\mathbf{n}|\boldsymbol{\theta} \sim \text{Multinomial}(\boldsymbol{\theta})$, where

 $\mathbf{n} = (n_1, \dots, n_C)$ are counts in C categories

 $\theta = (\theta_1, \dots, \theta_C)$ are category probabilities.

Prior: $\theta \sim \text{Dirichlet}(\alpha)$, for $\alpha = (\alpha_1, \dots, \alpha_C)$

Posterior: $\theta \sim \text{Dirichlet}(\alpha + n)$

Example: smartphone market shares

- Survey among 513 smartphones owners:
 - ▶ 180 used mainly an iPhone
 - 230 used mainly an Android phone
 - ▶ 62 used mainly a Windows phone
 - ▶ 41 used mainly some other mobile phone.
- Old survey: iPhone 30%, Android 30%, Windows 20%, Other 20%.
- Pr(Android has largest share | Data)
- Prior: $\alpha_1 = 15$, $\alpha_2 = 15$, $\alpha_3 = 10$ and $\alpha_4 = 10$ (prior info is equivalent to a survey with only 50 respondents)
- Posterior: $(\theta_1, \theta_2, \theta_3, \theta_4)|y \sim Dirichlet(195, 245, 72, 51)$.
- R Notebook: Multinomial Rmd
- Julia Pluto Notebook: multinom.jl

Posterior simulation output

draw	θ_1	θ_2	θ_3	$ heta_4$	I
1	0.33	0.47	0.10	0.09	1
2	0.34	0.44	0.11	0.09	1
3	0.36	0.41	0.13	0.08	1
:	:	:	:	:	:
10,000	0.35	0.43	0.14	0.08	1
Mean	0.34	0.43	0.13	0.09	0.99

Example: smartphone market shares

Pr(Android has largest share | Data) = 0.991