1. PROBLEM DEFINITION

Binary classification on Predicting Flight Cancellation

a. Client:

(1) Travelers:

Flight cancellations have a huge impact on whoever will have a flight trip, so travelers definitely can care cancellations.

(2) Travel Planners:

Some organization companies like tourism agency make plan for their organizations. For instance, they sell cultural/historical or holiday travel package. If their flight cancelled, then they may have encounter big problems. In this context, they also care about flight cancellation prediction.

(3) Online Booking Companies:

The companies like Booking.com, Kayak.com and Skyscanner.com are the top online flight ticket selling companies. Cancelled flights will definitely affect their business negatively. If they know in advance/ predict cancellations, they can inform their customers to take precaution against the problem which may stem from flight cancellation.

(4) Airline Companies:

Airline companies may suffer from cancellation very much. If they have relatively higher cancellation rates they may have a customer churn problem. In order to avoid this problem, they also care it.

(5) Hotels:

Even hotels, especially located nearby airports (destination) may be affected by cancelled flights. They may show interest on predicting cancelled flights.

b. Data Set:

- (1) The data has been obtained from the "Bureau of Transportation Statistics" (https://www.transtats.bts.gov/DL SelectFields.asp?Table ID=236&DB Short Name=On-Time.)
 - (2) Data includes 110 features and 2798209 data points/observations.
 - (3) The data seems raw. Has too many missing values, outliers.
 - (4) This data includes observations from first half of 2017.

Target feature is ['Cancelled'] which takes binary value, 0 for (5)Non-cancelled flights and 1 for Cancelled flights.

2. **DATA WRANGLING**

Features names and their explanations presented below

Year Year

Quarter Quarter (1-4)

Month Month

AirlineID

Carrier

DayofMonth Day of Month **DayOfWeek** Day of Week

FlightDate Flight Date (yyyymmdd)

Unique Carrier Code. When the same code has been used by

multiple carriers, a numeric suffix is used for earlier users, for **UniqueCarrier** example, PA, PA(1), PA(2). Use this field for analysis across a range

of years.

An identification number assigned by US DOT to identify a unique airline (carrier). A unique airline (carrier) is defined as one holding

and reporting under the same DOT certificate regardless of its Code,

Name, or holding company/corporation.

Code assigned by IATA and commonly used to identify a carrier. As the same code may have been assigned to different carriers over

time, the code is not always unique. For analysis, use the Unique

Carrier Code.

TailNum Tail Number **FlightNum** Flight Number

Origin Airport, Airport ID. An identification number assigned by US

DOT to identify a unique airport. Use this field for airport analysis **OriginAirportID** across a range of years because an airport can change its airport

code and airport codes can be reused.

Origin Airport, Airport Sequence ID. An identification number

assigned by US DOT to identify a unique airport at a given point of OriginAirportSeqID time. Airport attributes, such as airport name or coordinates, may

change over time.

Origin Airport, City Market ID. City Market ID is an identification number assigned by US DOT to identify a city market. Use this field

to consolidate airports serving the same city market.

Origin Origin Airport

OriginCityMarketID

OriginCityName Origin Airport, City Name **OriginState** Origin Airport, State Code **OriginStateFips** Origin Airport, State Fips **OriginStateName** Origin Airport, State Name

Origin Wac Origin Airport, World Area Code

Destination Airport, Airport ID. An identification number assigned

DestAirportID by US DOT to identify a unique airport. Use this field for airport

analysis across a range of years because an airport can change its

airport code and airport codes can be reused.

Destination Airport, Airport Sequence ID. An identification number

assigned by US DOT to identify a unique airport at a given point of

time. Airport attributes, such as airport name or coordinates, may

change over time.

Destination Airport, City Market ID. City Market ID is an

DestCityMarketID identification number assigned by US DOT to identify a city market.

Use this field to consolidate airports serving the same city market.

Dest Destination Airport

DestAirportSeqID

DestCityNameDestination Airport, City NameDestStateDestination Airport, State CodeDestStateFipsDestination Airport, State FipsDestStateNameDestination Airport, State Name

DestWacDestination Airport, World Area Code**CRSDepTime**CRS Departure Time (local time: hhmm)**DepTime**Actual Departure Time (local time: hhmm)

DepDelayDifference in minutes between scheduled and actual departure

time. Early departures show negative numbers.

DepDelayMinutesDifference in minutes between scheduled and actual departure

time. Early departures set to 0.

DepDel15 Departure Delay Indicator, 15 Minutes or More (1=Yes)

Departure Delay Groups Departure Delay intervals, every (15 minutes from <-15 to >180)

DepTimeBlk CRS Departure Time Block, Hourly Intervals

TaxiOut Taxi Out Time, in Minutes

Wheels Off Time (local time: hhmm)
Wheels On Time (local time: hhmm)

TaxiIn Taxi In Time, in Minutes

CRS Arrival Time (local time: hhmm) **ArrTime** Actual Arrival Time (local time: hhmm)

Actual Arrival Time (local time, mining)

ArrDelay Difference in minutes between scheduled and actual arrival time.

Early arrivals show negative numbers.

ArrDelayMinutes Difference in minutes between scheduled and actual arrival time.

Early arrivals set to 0.

ArrDel15 Arrival Delay Indicator, 15 Minutes or More (1=Yes)

ArrivalDelayGroups Arrival Delay intervals, every (15-minutes from <-15 to >180)

ArrTimeBlk CRS Arrival Time Block, Hourly Intervals

Cancelled Cancelled Flight Indicator (1=Yes)

CancellationCode Specifies The Reason For Cancellation

Diverted Diverted Flight Indicator (1=Yes)

CRS Elapsed Time CRS Elapsed Time of Flight, in Minutes

ActualElapsedTime Elapsed Time of Flight, in Minutes

AirTime Flight Time, in Minutes

Flights Number of Flights

Distance Distance between airports (miles)

DistanceGroup Distance Intervals, every 250 Miles, for Flight Segment

Carrier Delay, in Minutes
Weather Delay
Weather Delay, in Minutes

NASDelay National Air System Delay, in Minutes

Security Delay Security Delay, in Minutes

Late Aircraft Delay Late Aircraft Delay, in Minutes

First DepTime First Gate Departure Time at Origin Airport

Total AddGTimeTotal Ground Time Away from Gate for Gate Return or Cancelled

Flight

LongestAddGTime Longest Time Away from Gate for Gate Return or Cancelled Flight

DivAirportLandings Number of Diverted Airport Landings

DivReachedDest Diverted Flight Reaching Scheduled Destination Indicator (1=Yes)

Elapsed Time of Diverted Flight Reaching Scheduled Destination, in

DivActualElapsedTime Minutes. The ActualElapsedTime column remains NULL for all

diverted flights.

Difference in minutes between scheduled and actual arrival time for

DivArrDelay a diverted flight reaching scheduled destination. The ArrDelay

column remains NULL for all diverted flights.

Distance between scheduled destination and final diverted airport

DivDistance (miles). Value will be 0 for diverted flight reaching scheduled

destination.

Div1Airport Diverted Airport Code1

Div1AirportID Airport ID of Diverted Airport 1. Airport ID is a Unique Key for an

Airport

Div1AirportSeqIDAirport Sequence ID of Diverted Airport 1. Unique Key for Time

Specific Information for an Airport

Div1WheelsOnWheels On Time (local time: hhmm) at Diverted Airport Code1Div1TotalGTimeTotal Ground Time Away from Gate at Diverted Airport Code1Div1LongestGTimeLongest Ground Time Away from Gate at Diverted Airport Code1Div1WheelsOffWheels Off Time (local time: hhmm) at Diverted Airport Code1

Div1TailNum Aircraft Tail Number for Diverted Airport Code1

Div2Airport Diverted Airport Code2

Div2AirportID Airport ID of Diverted Airport 2. Airport ID is a Unique Key for an

Airport

Div2AirportSeqIDAirport Sequence ID of Diverted Airport 2. Unique Key for Time

Specific Information for an Airport

Div2WheelsOnWheels On Time (local time: hhmm) at Diverted Airport Code2Div2TotalGTimeTotal Ground Time Away from Gate at Diverted Airport Code2Div2LongestGTimeLongest Ground Time Away from Gate at Diverted Airport Code2Div2WheelsOffWheels Off Time (local time: hhmm) at Diverted Airport Code2

Div2TailNum Aircraft Tail Number for Diverted Airport Code2

Div3Airport Diverted Airport Code3

Div3AirportID Airport ID of Diverted Airport 3. Airport ID is a Unique Key for an

Airport

Div3AirportSeqIDAirport Sequence ID of Diverted Airport 3. Unique Key for Time

Specific Information for an Airport

Div3WheelsOnWheels On Time (local time: hhmm) at Diverted Airport Code3Div3TotalGTimeTotal Ground Time Away from Gate at Diverted Airport Code3Div3LongestGTimeLongest Ground Time Away from Gate at Diverted Airport Code3Div3WheelsOffWheels Off Time (local time: hhmm) at Diverted Airport Code3

Div3TailNum Aircraft Tail Number for Diverted Airport Code3

Div4Airport Diverted Airport Code4

Div4AirportID Airport ID of Diverted Airport 4. Airport ID is a Unique Key for an

Airport

Div4AirportSeqIDAirport Sequence ID of Diverted Airport 4. Unique Key for Time

Specific Information for an Airport

Div4WheelsOnWheels On Time (local time: hhmm) at Diverted Airport Code4Div4TotalGTimeTotal Ground Time Away from Gate at Diverted Airport Code4Div4LongestGTimeLongest Ground Time Away from Gate at Diverted Airport Code4Div4WheelsOffWheels Off Time (local time: hhmm) at Diverted Airport Code4

Div4TailNum Aircraft Tail Number for Diverted Airport Code4

Div5Airport Diverted Airport Code5

Div5AirportIDAirport ID of Diverted Airport 5. Airport ID is a Unique Key for an

Airport

Div5AirportSeqIDAirport Sequence ID of Diverted Airport 5. Unique Key for Time

Specific Information for an Airport

Div5WheelsOnWheels On Time (local time: hhmm) at Diverted Airport Code5Div5TotalGTimeTotal Ground Time Away from Gate at Diverted Airport Code5Div5LongestGTimeLongest Ground Time Away from Gate at Diverted Airport Code5Div5WheelsOffWheels Off Time (local time: hhmm) at Diverted Airport Code5

Div5TailNum Aircraft Tail Number for Diverted Airport Code5

Year	Quarter	Month	DayofMo	onth Day	yOfWeek	FlightDate	· UniqueC	arrier Ai	rlinelD	Carrier	TailNum	FlightNum	OriginAirportID	OriginAi	irportSeqli	D Origi	inCityMark	etID Origin
0 2017	1	1		17	2	2017-01-		AA	19805	AA	N583AA	494	11057	,	110570	3	31	057 CLT
1 2017	1	1		18	3	2017-01-		AA	19805	AA	N544AA	494	11057	•	110570	3	31	057 CLT
2 2017	1	1		19	4	2017-01- 19		AA	19805	AA	N553AA	494	11057	,	110570	3	31	057 CLT
3 2017	1	1		20	5	2017-01- 20		AA	19805	AA	N191AA	494	11057	•	110570	3	31	057 CLT
4 2017	1	1		21	6	2017-01- 21		AA	19805	AA	N170AA	494	11057	,	110570	3	31	057 CLT
OriginCit	tyName	Origin	State C	OriginSta	teFips (OriginStat	eName	OriginWa	ic De	estAirpor	tID De	stAirportSec	ID DestCity	MarketID	Dest	DestCi	tyName	DestState
Charlo	otte, NC		NC		37	North (Carolina	3	6	14:	107	14107	02	30466	PHX	Pho	enix, AZ	AZ
Charlo	otte, NC		NC		37	North (Carolina	3	6	14:	107	14107	702	30466	PHX	Pho	enix, AZ	AZ
Charlo	otte, NC		NC		37	North (Carolina	3	6	14:	107	14107	02	30466	PHX	Pho	enix, AZ	AZ
Charlo	otte, NC		NC		37	North (Carolina	3	6	14:	107	14107	7 02	30466	PHX	Pho	enix, AZ	AZ
Charlo	otte, NC		NC		37	North (Carolina	3	6	14:	107	14107	'02	30466	PHX	Pho	enix, AZ	AZ
DestStateF	Fips D	estStateN	lame D	DestWac	CRSDep	Time D	epTime	DepDelay	De	pDelayM	inutes [DepDel15	DepartureDela	yGroups	DepTim	eBlk 1	TaxiOut	WheelsOff
	4	Ari	izona	81		1619	1616.0	-3.0)		0.0	0.0		-1.0	1600-1	L659	17.0	1633.0
	4	Ari	izona	81		1619	1614.0	-5.0)		0.0	0.0		-1.0	1600-1	L659	13.0	1627.0
	4	Ari	izona	81		1619	1611.0	-8.0)		0.0	0.0		-1.0	1600-1	l659	17.0	1628.0
	4	Ari	izona	81		1619	1656.0	37.0)		37.0	1.0		2.0	1600-1	L659	18.0	1714.0
	4	Ari	izona	81		1619	1632.0	13.0)		13.0	0.0		0.0	1600-1	L659	17.0	1649.0
DestStateF	Fips D	estStateN	lame D	DestWac	CRSDei	oTime D	epTime	DepDelay	, De	pDelavM	inutes [DepDel15	DepartureDela	vGroups	DepTim	eBlk 1	TaxiOut 1	WheelsOff
	4		izona	81			1616.0	-3.0			0.0	0.0		-1.0	1600-1		17.0	1633.0
	4		izona	81			1614.0	-5.0			0.0	0.0		-1.0	1600-1		13.0	1627.0
	4		izona	81			1611.0	-8.0			0.0	0.0		-1.0	1600-1		17.0	1628.0
	4		izona	81		1619	1656.0	37.0			37.0	1.0		2.0	1600-1		18.0	1714.0
	4		izona	81			1632.0	13.0			13.0	0.0		0.0	1600-1		17.0	1649.0
WheelsO	On Taxi	In CRSA	ArrTime	ArrTime	e ArrDela	y ArrDe	layMinute	s ArrDe	115 A	ArrivalDel	ayGroups	ArrTimeBl	k Cancelled	Cancellati	ionCode	Diverte	ed CRSEI	apsedTime
1837.	.0 5	.0	1856	1842.0	-14.	.0	0.0)	0.0		-1.0	1800-185	9 0.0		NaN	0	0.0	277.0
1815.	.0 6	.0	1856	1821.0	-35.	.0	0.0)	0.0		-2.0	1800-185	9 0.0		NaN	0	0.0	277.0
1824.	.0 2	.0	1856	1826.0	-30.	.0	0.0)	0.0		-2.0	1800-185	9 0.0		NaN	0	0.0	277.0
1926.	.0 3	1.0	1856	1929.0	33.	.0	33.0)	1.0		2.0	1800-185	9 0.0		NaN	0	0.0	277.0

1854.0 4.0

1856 1858.0

2.0

0.0

0.0 1800-1859

0.0

0.0

277.0

ActualElapsedTi	me Ai	irTime F	lights	Distance	DistanceGroup	CarrierDelay	Weather	Delay N	ASDelay	SecurityDe	elay LateAiro	raftDelay	FirstDepT	ime TotalAdd	GTime L	.ongestA	ddGTime
26	6.0	244.0	1.0	1773.0	8	NaN		NaN	NaN	١	laN	NaN	ı	NaN	NaN		NaN
24	7.0	228.0	1.0	1773.0	8	NaN		NaN	NaN	١	laN	NaN	ı	NaN	NaN		NaN
25	5.0	236.0	1.0	1773.0	8	NaN		NaN	NaN	١	laN	NaN	ı	NaN	NaN		NaN
27	3.0	252.0	1.0	1773.0	8	33.0		0.0	0.0		0.0	0.0	ı	NaN	NaN		NaN
26	6.0	245.0	1.0	1773.0	8	NaN		NaN	NaN	١	laN	NaN	ı	NaN	NaN		NaN
DivAirportLandings	DivRea	achedDest	DivAct	:ualElapsedTir	ne DivArrDelay	DivDistance I	Div1Airport	Div1Airpo	rtID Div1A	AirportSeqID	Div1WheelsO	n Div1Tota	alGTime Di	v1LongestGTime	Div1Whe	elsOff D	iv1TailNum
0.0		NaN		Na	ıN NaN	NaN	NaN	1	NaN	NaN	Na	٧	NaN	NaN		NaN	NaN
0.0		NaN		Na	ıN NaN	NaN	NaN	1	NaN	NaN	Na	٧	NaN	NaN		NaN	NaN
0.0		NaN		Na	ıN NaN	NaN	NaN	1	NaN	NaN	Na	N	NaN	NaN		NaN	NaN
0.0		NaN		Na	iN NaN	NaN	NaN	1	NaN	NaN	Na	N	NaN	NaN		NaN	NaN
0.0		NaN		Na	iN NaN	NaN	NaN	1	NaN	NaN	Na	N	NaN	NaN		NaN	NaN
DivAirportLandings 0.0		NaN	DivAct	:ualElapsedTir		NaN	NaN		NaN	NaN	Div1WheelsO Na		NaN	v1LongestGTime NaN	Div1Whe	NaN	NaN
0.0		NaN		Na		NaN	NaN		NaN	NaN	Na		NaN	NaN		NaN	NaN
0.0		NaN		Na	ıN NaN	NaN	NaN	1	NaN	NaN	Na	N	NaN	NaN		NaN	NaN
0.0		NaN		Na	nN NaN	NaN	NaN	1	NaN	NaN	Na	N	NaN	NaN		NaN	NaN
0.0		NaN		Na	nN NaN	NaN	NaN	1	NaN	NaN	Na	٧	NaN	NaN		NaN	NaN
Div2Airport D	iv2Airp	portID [Div2Air	portSeqID	Div2Wheels	On Div2Tota	IGTime	Div2Long	estGTime	Div2Wh	eelsOff Div	2TailNum	Div3Air _I	oort Div3Airp	ortID D	Div3Airp	ortSeqID
NaN		NaN		NaN	N	aN	NaN		NaN		NaN	NaN	١	NaN	NaN		NaN
NaN		NaN		NaN	N	aN	NaN		NaN		NaN	NaN	١	NaN	NaN		NaN
NaN		NaN		NaN	N	aN	NaN		NaN		NaN	NaN	١	NaN	NaN		NaN
NaN		NaN		NaN	N	aN	NaN		NaN		NaN	NaN	١	NaN	NaN		NaN
NaN		NaN		NaN	N	aN	NaN		NaN		NaN	NaN	١	NaN	NaN		NaN
Div3WheelsO	n Div	/3TotalG	Time	Div3Long	estGTime D	iv3WheelsC	off Div31	TailNum	Div4Air	port Div	/4AirportID	Div4Air	portSeql[Div4Whee	elsOn [Div4Tota	alGTime
Nat	N		NaN		NaN	Na	N	NaN		NaN	NaN		Nal	N	NaN		NaN
Nah	V		NaN		NaN	Na	N	NaN		NaN	NaN		Nal	N	NaN		NaN
Nah	1		NaN		NaN	Na	IN	NaN		NaN	NaN		Nah	'	NaN		NaN
Nah	N		NaN		NaN	Na	N	NaN		NaN	NaN		Nah	N	NaN		NaN
Naf	٧		NaN		NaN	Na	N	NaN		NaN	NaN		NaN	N	NaN		NaN

Div4WheelsOff	Div4TailNum	Div5Airport	Div5AirportID	Div5AirportSeqID	Div5WheelsOn	Div5TotalGTime	Div5LongestGTime	Div5WheelsOff	Div5TailNum
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

a. Dropping Irrelevant Columns at Once:

['UniqueCarrier','TailNum','FlightNum','OriginAirportID','OriginAirportSeqID','OriginCityMarketID'O riginStateFips','OriginStateName','OriginWac','DestAirportID','DestAirportSeqID','
DestCityMarketID','DestStateFips','DestStateNameDestWac','Flights','DistanceGroup','Diverted',
'DivAirportLandings','DivReachedDest','DivActualElapsedTime','DivArrDelay','DivDistance',
'Div1Airport','Div1AirportID','Div1AirportSeqID','Div1WheelsOn','Div1TotalGTime'
'Div1LongestGTime','Div1WheelsOff','Div1TailNum','Div2Airport','Div2AirportID',
'Div2AirportSeqID','Div2WheelsOn,'Div2TotalGTime','Div2LongestGTime','Div2WheelsOff',
'Div2TailNum','Div3Airport','Div3AirportID','Div3AirportSeqID,'Div3WheelsOn','Div3TotalGTime','Div3LongestGTime','Div4AirportID',
'Div4AirportSeqID','Div4WheelsOn','Div4TotalGTime','Div4LongestGTime','Div4WheelsOff',
'Div4TailNum','Div5Airport','Div5AirportID','Div5AirportSeqID','Div5WheelsOn','Div5TotalGTime','Div5LongestGTime','Div5WheelsOff','Div5TailNum']

Some of those columns have redundant information such as *OriginCityMarketID* or *StateName* of Origin Airport columns and rest of them are linked with diverted flights which is not in our scope of this study. So, we decided to drop above features at the beginning of our analysis.

b. Dropping Other Columns after Analysis:

- (1) 'LongestAddGTime',
- (1) 'TotalAddGTime',
- (2) 'FirstDepTime',
- (3) 'CancellationCode',
- (4) 'LateAircraftDelay',
- (5) 'SecurityDelay',
- (6) 'NASDelay',
- (7) 'WeatherDelay',
- (8) 'CarrierDelay',
- (9) 'DepDel15',
- (10) 'DepartureDelayGroups',
- (11) 'DepDelay',
- (12) 'ActualElapsedTime',
- (13) 'AirTime',

- (14) 'WheelsOff',
- (15) 'WheelsOn',
- (16) 'TaxiIn',
- (17) 'ArrTime',
- (18) 'ArrDelayMinutes',
- (19) 'ArrDel15',
- (20) 'ArrivalDelayGroups',
- (21) 'CRSDepTime',
- (22) 'CRSArrTime',
- (23) 'Year',
- (24) 'OriginCityName',
- (25) 'OriginState',
- (26) 'DestCityName',
- (27) 'DestState',
- (28) 'DepTimeBlk',
- (29) 'ArrTimeBlk',
- (30) 'DepDelay',
- (31) 'DepTime',
- (32) 'ArrDelay',
- (33) 'FlightDate',
- (34) 'FlightDate_Dest',
- (35) 'Distance',
- (36) 'Quarter',
- (37) 'Month',
- (38) 'DayofMonth',
- (39) 'DayOfWeek',
- (40) 'Flight_Hour',
- (41) 'Company',
- (42) 'FlightDateTime Origin',
- (43) 'FlightDateTime_Dest',
- (44) 'MonthName',
- (45) 'DayOfWeekName'

Those columns were dropped after analysis and after using in EDA. Those columns are also unnecessary for our analysis.

c. Fixing DateTime Format

We have FlightDate and CRSDepTime (Scheduled Departure Time), CRSArrTime (Scheduled Arrival Time) columns with date and time information in our dataframe. First, we will convert FlightDate to datetime object and then we will create FlightDate_Dest because date may change when the airplane lands on the destination due to time zone difference and flight duration. Then we will create a flight DATETIME at origin (FlightDateTime_Origin) and destination (FlightDateTime_Dest)

d. Changing Data Type:

Float type of Cancelled column converted into integer.

e. Cleansing Outliers

There were some observations required unrealistic airliner speed (for instance 1000 miles/hour) to fulfill that flight. It is impossible to be real, so those observations considered as an outlier and dropped.

f. Getting Rid of Null/Missing Values

(1) Threshold to Drop:

50% missing values in a column was defined as a threshold to remove from the dataset because it does not give us information. So the features with 50% or above missing values were deleted. In this context, some features [LongestAddGTime, TotalAddGTime, FirsDepTime, CancellationCode, LateAircraftDelay, SecurityDelay, NASDelay, WeatherDelay, CarrierDelay] were dropped.

(2) Mean to Fill:

I had a difficult time to fill missing values and could not figure out how to handle. But later I evaluated that the feature of [DepDelayMinutes] and [TaxiOut] may give us good information reading predicting the cancellation of flights. Those columns had 1.5% missing values. I figure out that almost only some of the cancelled flights had those missing values but non-cancelled. In this context, mean of cancelled flights was used to impute the missing values.

3. EXPLORATORY DATA ANALYSIS (EDA)-DATA VISUALIZATION

a. Target Feature Distribution:

In the graphic, 1 represents Cancelled flights and 0 Non-cancelled. As seen fron graphic, the Cancellation rate is fairly unbalanced.

b. Flight Over Months:

The graphic shows flight numbers for each month.

The flights are almost fairly distributed among the months. As we would expect, due to be the shortest month February has the least flight number.

c. Flight Volumes by Companies:

The graphic shows the flight numbers for each Airline Company.

Delta Airline has the maximum flight operation while ExpressJest has the minimum.

d. Cancellations Rates by Companies:

The graphic shows **cancellations rates** for each Airline Company. **Express Airline** has the maximum cancellation rate while **Frontier Airline** has the minimum. Big companies such as American Airlines, Delta Air or United Airlines' cancellation rates are less than 1%.

e. Cancellation by Companies over Months:

The graphic shows cancellation numbers of Airline companies over months. Most of the cancellations happened in March and April, especially Delta Airlines has many cancellations in April.

f. Cancellation Rates over Day of Week:

The graphic shows cancellation numbers for each day of week. As seen on the graphic, Weekdays have more cancellations than weekends. We added *[PartOfWeek]* new feature to our data set. We categorized the flights as weekday and weekend flights.

g. Cancellation Rates over Day of Month:

The graphic shows cancellation numbers for each day of month. First half of months have more cancellations than latter one. We added *[PartOfMonth]* new feature to our data set. We categorized the flights as first half and second half flights of month.

h. Cancellation Rates over Depart Hour:

The graphic shows cancellation numbers for each hour. We noticed that most of the cancellations occurred between 6am -9 pm (21). We added *[PartOfDay]* new feature to our data set. We categorized the flights as 6am-9pm, 10pm-12 am and 1 am-5 am flights.

i. Average Speed of Airline Companies

The graphic shows average speed for each Airline Companies. **Alaska Airline** is the fastest company on the other hand **ExpressJet** is the slowest one. We added **[AverageSpeed]** new feature to our data set. We calculated average speed of companies.

j. Cancelled Flights over Origin Airports

The graphic shows total cancelled flight numbers for each Origin Airport. **California** (Los Angeles and San Francisco) has the most cancellations

ATL	Atlanta, GA
BOS	Boston, MA
BWI	Baltimore, MD
CLT	Charlotte, NC
DEN	Denver, CO
DFW	Dallas/Fort Worth, TX
DTW	Detroit, MI
EWR	Newark, NJ
IAH	Houston, TX
JFK	New York, NY
LAS	Las Vegas, NV
LAX	Los Angeles, CA
LGA	New York, NY
MCO	Orlando, FL
MSP	Minneapolis, MN
ORD	Chicago, IL
PHX	Phoenix, AZ
SEA	Seattle, WA
SFO	San Francisco, CA
SLC	Salt Lake City, UT

4. MACHINE LEARNING MODELS

This is a supervised binary classification problem. We are trying to predict the flights would be cancelled or not. We used Python's scikit learn libraries to solve our problem. In this context, we implemented Logistic Regression, k-Nearest Neighbors, Random Forest, Adaboost, and Gradient Boost algorithms.

We split our data set into training set (80%) and test set (20%). We converted our categorical data into numeric through label encoding and we used StandardScaler() to scale our data.

Additionally, we used 5 fold cross validation technique to get rid of overfitting problem. As a evaluation metric we used Area Under ROC Curve.

a. Logistic Regression:

Area Under Curve ROC: 0.9614

Logistic Regression is not working very well. It misclassified more than 10 thousand non-cancelled flights as cancelled. Namely, the False Positive Rate is incredibly high.

b. K-Nearest Neighbors:

Area Under Curve ROC: 0.9704

K-NN is working better than Logistic Regression. But it still misclassified almost 1/3 cancelled flights as non-cancelled, so Recall(sensitivity) rate (77%) is just moderate.

c. Random Forest:

Area Under Curve ROC: 0.9987

Random Forest Algorithm is working pretty well. better than Logistic Regression. It misclassified almost 1/3 cancelled flights classified as non-cancelled, so Recall(sensitivity) rate is just moderate.

d. Adaboost:

Area Under Curve ROC: 0.999

Adaboost is really performing almost perfectly. It did not misclassify any non-cancelled namely False Positive Rate is 0 which is a very good result. On the hand it only missed 3 out of 1778 cancelled flights

e. Gradient Boost:

Area Under Curve ROC: 0.983

Gradient Boost is also working very well, and pretty close to Adaboost. It only misclassified 3 cancelled flights as non-cancelled and 3 non-cancelled flights as cancelled. Its sensitivity and precision are also very good. This is the second-best algorithm for this classification problem.

f. Model comparison:

Model	AUC	Sensitivity (Recall)	Precision	Log Loss
Linear Regression	0.961	0.98	0.14	0.32
K-Nearest Neighbor	0.970	0.77	0.76	0.05
Random Forest	0.998	0.99	1.0	0.002
Adaboost	0.999	1.0	1.0	0.61
Gradient Boost	0.998	1.0	1.0	0.02

Adaboost algorithm is the best algorithm while logistic regression algorithm is the worst one for our problem.

5. **CONCLUSION:**

In our study, we have used all necessary features (all the one left after dropped features) in our models. According to our models, Adaboost classifier produces the outstanding scores so it is the best algorithm for our study. Gradient Boost also showed a very good performance and its evaluation metrics are very close to Adaboost so it is the second best one. On the other hand, Logistic Regression output the poorest performance with many misclassifications. We can say Random Forest is also working well. Its results are satisfactory. As for K-NN, it is better than Logistic Regression but the slowest algorithm (in terms of computation time) due to its nature.

6. FUTURE STUDY:

In this study, we have not focus on feature selection and model optimization. As a future study, we will concentrate on the model optimization by feature selection and hyperparameter tuning.