Cele próby klinicznej

- Cele próby
- Kryteria oceny skuteczności leczenia
- Miary skuteczności leczenia
- Wnioskowanie statystyczne (testowanie hipotez)
- Próby nadrzędności i równoważności
- Wielokrotne testowanie
- Istotność statystyczna a kliniczna

Cele próby klinicznej

- Koncentrujemy się na próbach III fazy
- Próba powinna udzielić jednoznacznej odpowiedzi na jedno podstawowe pytanie
 - Czy nowa metoda leczenia E jest skuteczniejsza, biorąc pod uwagę kryterium oceny skuteczności K, od kontrolnej metody C dla pacjentów z chorobą X?
- Dodatkowe pytania
 - prawie zawsze są dołączane (np. analiza podgrup)
 - wymagają ostrożności w interpretacji

Rodzaje prób ze względu na cel

- Nadrzędność (superiority)
 - Skuteczność E jest większa niż C
 - C może być placebo lub aktywnym leczeniem kotrolnym
- Nie-podrzędność (non-inferiority)
 - Z pewną tolerancją, skuteczność E nie jest gorsza niż C.
- Równoważność (equivalence)
 - Z pewną tolerancją, skuteczność E jest taka sama jak C.

Oceny efektu leczenia

- Zwykle używane jest jedno <u>pierwszoplanowe</u> kryterium (primary endpoint), najlepiej odpowiadające celowi próby z punktu widzenia oceny skuteczności leczenia
- Bezpośrednio związane ze stanem zdrowia chorego
- Powinno być wiarygodne, mierzalne bez obciążeń
- Wrażliwe na zmiany stanu zdrowia
 - krótkoterminowe
 - długoterminowe

Przykład: choroby śmiertelne

- W tym przypadku interesuje nas na ogół efekt leczenia na <u>śmiertelność</u>
- Możliwe kryteria oceny skuteczności leczenia
 - zgon w ustalonym okresie (np., w ciągu 1 roku)
 - czas przeżycia
 - czas do zgonu wynikającego z choroby (time to disease-related death)

Pomiary kliniczne

- Dane pozwalające na ocenę efektu leczenia mogą być uzyskiwane w różny sposób dla różnych chorób
 - badania laboratoryjne (np., parametry krwi)
 - badania obrazowe (X-ray, CT, NMR,...)
 - skale oceny objawów (psychiatria)
 - kwestionariusze wypełniane przez chorego (jakość życia)
 - obserwacja zdarzeń klinicznych i/lub objawów
 - ocena przez lekarza

Dodatkowe kryteria oceny efektu leczenia

- Drugoplanowe kryteria oceny skuteczności (secondary endpoints)
 - wspomagające interpretację pierwszoplanowego, lub
 - związane z drugoplanowymi celami próby
- Kryteria ekonomiczne
 - dane dotyczące używania pomocy medycznej przez pacjentów, w powiązaniu z informacją o kosztach
 - Pozwalają na analizę efektywności ekonomicznej leczenia (cost-effectiveness analyses)

Dane dotyczące stosowania się do wymogów leczenia

- Niestosowanie się do wymogów leczenia (noncompliance) oznacza odstępstwo od sposobu leczenia przewidzianego w protokole
- Może mieć duży wpływ na ocenę skuteczności leczenia
- Często trudne do oceny
 - Jak sprawdzić, czy chory wziął tabletkę w domu?

Dane dotyczące toksyczności

- Monitorowanie toksyczności leczenia i efektów niepożądanych jest obligatoryjne
- Najczęściej występujące rodzaje toksyczności powinny być określone w próbach fazy I i II, ale rzadsze mogą ujawniać się w próbach fazy III
- Ocena wymaga użycia jednorodnych kryteriów i terminów (MedDRA, NCI-CTC)
- Ważne jest obserwacja krótko- i długoterminowa

Rodzaje kryteriów oceny skuteczności leczenia

- Binarne (odpowiedź na leczenie, wyleczenie, ...)
- Kategoryzowane (odpowiedź guza na leczenie: pełna, częściowa, stabilizacja, progresja)
- Ciągłe (parametry krwi, waga, ...)
- Czas do wstąpienia zdarzenia (czas przeżycia)
- Pomiary powtarzane (repeated measurements)
- Wielowymiarowe/wielokrotne (jakość życia, kryteria złożone)

Miary efektu leczenia

 Miara efektu leczenia, tzn. numeryczne ujęcie różnicy w kryterium oceny skuteczności leczenia między randomizowanymi grupami, zależy od typu kryterium.

 Ogólnie, efekt leczenia może być mierzony na skali względnej lub bezwzględnej

Binarne kryteria oceny skuteczności: różnica ryzyka

- π_C = Prob(response | control)
- π_E = Prob(response | experimental)

- Różnica ryzyka (risk difference): $RD = \pi_E \pi_C$
- Problem: porównanie efektów ubocznych 2 leków
 - a) 0.410 vs. 0.401
 - b) 0.010 vs. 0.001
 - RD=0.009, ale dla b) ryzyko dla jednego z leków jest 10 razy wyższe niż dla drugiego!

Binarne kryteria oceny skuteczności: ryzyko względne

 RR jest ilorazem dwóch wartości ryzyka (prawdopodobieństwa):

$$RR = \frac{\text{Risk for E}}{\text{Risk for C}} = \frac{\pi_E}{\pi_C}$$

 Dla przykładu z efektami ubocznmi, RR wynosi 0.401/0.400=1.0025 and 0.01/0.001=10

Jeśli RR=1, mamy RD=0, tzn. brak różnicy.

Binarne kryteria oceny skuteczności: iloraz szans

Iloraz szans (odds ratio) :

$$OR = \frac{\text{Odds of response for E}}{\text{Odds of response for C}}$$

Odds of response for C
$$= \frac{\frac{\pi_E}{1 - \pi_E}}{\frac{\pi_C}{1 - \pi_C}} = \frac{\pi_E (1 - \pi_C)}{\pi_C (1 - \pi_E)}$$

$$= \frac{1 - \pi_C}{1 - \pi_C}$$

Iloraz szans, ryzyko względne

Zakres OR i RR to (0,+∞)

• OR = 1 lub $RR = 1 \Rightarrow$ brak różnicy (związku)

OR ≈ RR dla rzadkich zdarzeń

 OR i RR przyjmują wartości w tym samym kierunku (>1 lub <1), ale OR jest zawsze dalej od 1!

Miary efektu leczenia

- Bezwzględna redukcja ryzyka (Absolute Risk Reduction, ARR)
 ARR = RD
- Względna redukcja ryzyka (Relative Risk Reduction, RRR)
 RRR = 1 - RR
- Względna redukcja szans (Relative Odds Reduction, ORR)
 ORR = 1 – OR

Kryteria kategoryzowane

- Kłopot z uzyskaniem sumarycznej miary efektu
- OR oparte na modelu
 - model "proporcjonalnych szans" (proportional odds) dla danych porządkowych (ordinal data)

$$OR = OR_{j} = \frac{\frac{\sum_{k=1}^{j} \pi_{k}^{E}}{1 - \sum_{k=1}^{j} \pi_{k}^{C}}}{\frac{\sum_{k=1}^{j} \pi_{k}^{C}}{1 - \sum_{k=1}^{j} \pi_{k}^{C}}} \quad \forall j$$

Czas do wystąpienia zdarzenia

• S(t) = prawdopodobieństwo przeżycia czasu t

- Funkcja hazardu: "chwilowa intensywność zdarzeń"
 - $\lambda(t)$, liczba zdarzeń na jednostkę czasu
 - "Prędkość" występowania zdarzeń
 - $\lambda(t)\Delta t = P(\text{ event in } (t, t + \Delta t), \text{ given no event until time } t)$

$$S(t) = e^{-\int_{0}^{t} \lambda(u) du}$$

Czas do wystąpienia zdarzenia

• Iloraz hazardu (hazard ratio):

$$HR(t) = \frac{\lambda_{\rm E}(t)}{\lambda_{\rm C}(t)}$$

- Często zakłada się HR(t) = HR = const.
- Czyli model proporcjonalnych hazardów

Pomiary powtarzane

- Miara efektu leczenia na podstawie modelu
 - $E(Y_{ij}|C) = \mu + \phi \times t_{ij}$
 - $E(Y_{ij}|E) = \mu + \phi \times t_{ij} + \Theta$

lub

•
$$E(Y_{ij}|E) = \mu + \phi \times t_{ij} + \theta + \psi \times t_{ij}$$

Kryteria wielowymiarowe/wielokrotne

 Na ogół kłopot ze zdefiniowaniem sumarycznej miary efektu leczenia.

Poszczególne wymiary często analizowane osobno.

- Poprawka na wielokrotne testowanie
 - Bonferroni
 - Sumaryczny test

Testowanie hipotez

- Próby fazy III są porównawcze
- Wnioskowanie na ogół na podstawie testów istotności statystycznej

- Dwie hipotezy:
 - zerowa (np. "brak różnicy w skuteczności leczenia")
 - alternatywna (np. "różnica w skuteczności leczenia")

- p-value = P(Test statistic > observed | H₀) < α
 - $\alpha = 0.05$

Przykład testowania hipotez

- Ciągłe kryterium oceny skuteczności: zmiana DBP
- Rozkład zmian DBP zgodny z normalnym
 - rozkład różnic średnich również
- Hipoteza zerowa: brak różnicy dla E i C
- Obliczenia
 - Dla E: średnia różnica = -13.4 mmHg (SEM = 2.0)
 - Dla C: średnia różnica = -9.4 mmHg (SEM = 2.0)
 - Statystyka testowa $Z = \{(-13.4) (-9.4)\}/2.0 = 2.0$
 - p-value = P(|N(0,1)| > 2.0) = 0.034 < 0.05
 - Wniosek : E jest statystycznie istotnie skuteczniejsze w redukcji DBP niż C

Przedziały ufności

- Oprócz (lub wręcz <u>zamiast</u>) poziomu krytycznego testu p, konieczne jest podanie przedziału ufności dla miary efektu leczenia.
- (1-α)100% CI (często) odpowiada testowi istotności dla poziomu istotności α ...
- … ale podaje dodatkową informację
 - oszacowanie punktowe wielkości efektu leczenia
 - precyzję oszacowania

Różnica/korzyść

Różnica (difference): wyniki dla E i C się różnią

•
$$H_0$$
: $\mu_E - \mu_C = 0$ H_A : $\mu_E - \mu_C \neq 0$ (brak różnicy) (różnica)

Korzyść (benefit): wyniki dla E są lepsze niż dla C

•
$$H_0$$
: $\mu_E - \mu_C \le 0$ H_A : $\mu_E - \mu_C > 0$ (E gorsze) (E lepsze)

Nadrzędność

Równoważność/Nie-podrzędność

- Equivalence: wyniki dla E i C różnią się, ale wielkością nieistotną klinicznie
 - $H_0: |\mu_E \mu_C| \ge \delta$ $H_A: |\mu_E \mu_C| < \delta$ (nie równoważne) (<u>równoważne</u>)
- Non-inferiority: wyniki dla E nie są klinicznie isototnie gorsze niż dla C
 - H_0 : $\mu_E \mu_C \le -\delta$ H_A : $\mu_E \mu_C > -\delta$ (E gorsze) (E nie gorsze)
- δ ujmuje klinicznie istotną róznicę
 - ō zwykle mniejsza niż różnica w próbie nadrzędności

Równoważność

BETTER

BETTER

Równoważność założona Różnica zaobserwowana!

95% CI for E-C effect

CONTROL BETTER

TREATMENT DIFFERENCE

NEW AGENT BETTER

Nie-podrzędność

Po co próby nie-podrzędności?

- Coraz trudniej wykazać nadrzędność w próbach klinicznych dla pewnych chorób
 - np., istnieją bardzo skuteczne antybiotyki

- Nie-podrzędność może być interesująca, jeśli nowa metoda leczenia oferuje dodatkowe korzyści (np. jest bezpieczniejsza, łatwiejsza do zastosowania, tańsza)
 - np. chemioterapia z porównywalną skutecznością lecz mniej toksyczna, lub w formie doustnej (capecitabine) zamiast dożylnej (5-fluorouracil)

Błędy wnioskowania

	Truth (unknown)	
Test result (known)	Null hypothesis	Alternative
Significant ($p < \alpha$) (reject the null)	TYPE I ERROR (α)	ΟK (1-β)
Non-significant $(p > \alpha)$ (accept the null)	ΟK (1-α)	TYPE II ERROR (β)

- ♦ Wynik testu może zawsze być błędny !
- Możemy tylko kotrolować p-stwo błędu

Konsekwencje błędów

- Błąd I rodzaju: błędne odrzucenie hipotezy zerowej
 - Błędne uznanie nadrzędności/równoważności
 - Problem w próbach nadrzędności, jeśli E wiąże się z wyższą toksycznością
 - Lek może być wycofany np. po próbach fazy IV

- Błąd II rodzaju: błędne przyjęcie hipotezy zerowej
 - Błędne przyjęcie braku efektu lub nierównoważności
 - Superiority trial: skuteczne leczenie może zostać porzucone
 - Equivalence trial: mniej toksyczny lek może zostać porzucony
 - Konsekwencje finansowe

Kontrola prawdopodobieństwa błędu I rodzaju

- Poprzez przyjęcie (i kontrolę) odpowiedniego poziomu istotności testu α
 - Problem: wielokrotne testowanie

Kontrola prawdopodobieństwa błędu II rodzaju

- Prawdopodobieństwo (β) zależy od
 - poziomu istotności (α);
 - założonej różnicy w skuteczności leczenia ∆;
 - zmienność oszcowania miary efektu leczenia;
 - <u>liczebności próbki</u>.
- 1- β = moc
 - P-stwo odrzucenia hipotezy zerowej jeśli jest fałszywa =
 P-stwo "wykrycia" hipotezy alternatywnej

Próby nie-podrzędności: problemy

- Wybór marginesu tolerancji klinicznej (noninferiority margin, δ)
- Brak "wewnętrznego" dowodu na wrażliwość próby (assay sensitivity)
- Brak konerwatywnej strategii analizy wyników
- "Zaślepianie" nie oferuje pełnej ochrony przed obciążeniem

Wybór marginesu tolerancji klinicznej – ICH E9

 Wiele metod wyboru! (w efekcie, trudności w uzyskaniu zgody co do wartości δ)

 "...largest difference that is judged to be clinically acceptable, and should be smaller than differences observed in superiority trials of the active comparator..."

(np. $\delta = \frac{1}{2}$ różnicy uważanej za sensowną klinicznie dla prób nadrzędności)

Wybór marginesu tolerancji klinicznej – EMA

- Najlepszy układ doświadczalny z trzema grupami: leczoną (test), odniesienia (reference), i kontrolną. Celem jest wykazanie:
 - Nadrzędności dla testowej vs. kontrolnej
 - Nie-podrzędności dla testowej i odniesienia
- Może nie być możliwy jeśli użycie grupy kontrolnej (np. placebo) jest nieetyczne; wówczas próba porównuje grupę testową z odniesienia, a porównanie odniesienia z kontorlną wnioskowane na podstawie danych historycznych.

Wybór marginesu tolerancji klinicznej – EMA

R = historical effect of Reference

T = indirect effect of Test

Wybór marginesu tolerancji klinicznej – FDA

- Przyjmijmy, że dla grupy odniesienia (R)
 wykazano, że HR = 0.76 (95% C.I. 0.66 0.89)
- M1 jest najmniejszym efektem R w przeciwnym kierunku. W przykładzie: M1 = 1/0.89 = 1.12
- M2 jest częścią (np. 50%) oszacowania efektu R w przeciwnym kierunku. To tzw. "zachowana część efektu ("percentage of effect retained"). W przykładzie

```
log HR = log (0.76) = -.274

½ log HR = -.137

M2 = exp(.137) = 1.15
```

Wrażliwość próby?

- Assay Sensitivity (AS): zdolność do wykrycia różnicy, jeśli ta istnieje.
- Jeśli próba wykazuje nadrzędność, to dowód na AS.
- Jeśli próba wykazuje nie-podrzędność, nie mamy dowodu na AS:
 - próba była OK, nie-podrzędność jest rzeczywista, lub
 - nie wykazaliśmy różnicy, bo próba była źle wykonana
- AS musi być wywiedziona z innych informacji:
 - historycznych (podobne próby wykazywały różnice)
 - jakośći wykonania i grupy kontrolnej

"Zaślepianie"

- W próbach nadrzędności, "zaślepienie" uniemożliwia lekarzowi faworyzowanie w systematyczny sposób jednej z metod leczenia.
 - Musiałby znać metodę przydzieloną choremu.

- W próbach nie-podrzędności, "zaślepiony"
 lekarz mógłby oceniać wyniki leczenia tak samo dla wszystkich chorych.
 - Niwelując różnicę w wynikach leczenia.

Protokół próby nie-podrzędności

Musi zawierać

- uzasadnienie wyboru i dawek dla grupy kontrolnej
- margines tolerancji klinicznej
- uzasadnienie wrażliwości próby (AS)
- opis metody analizy statystycznej nie-podrzędności w oparciu o przedziały ufności
- opis populacji użytej do analizy: użycie intencji leczenia nie jest konserwatywną strategią (ICH E9)

Wykazanie nadrzędności - równoważności – nie-podrzędności

- Superiority: przedział ufności (np. 95%) dla różnicy
 E-C wyklucza 0 lub różnice na korzyść C
- Equivalence: przedział ufności leży całkowicie w obszarze równoważności klinicznej
- Non-inferiority: dolna granica przedziału ufności jest większa od marginesu tolerancji klinicznej
- Możliwe jest wykazanie nadrzędności/równoważności w tej samej próbie
 - δ musi być ustalona a priori, wykonanie i liczebność próby muszą być OK.

Ryzyko i koszt prób równoważności/nie-podrzędności

- Próby te często wymagają większej liczebności niż próby nadrzędności
- Wybór marginesu tolerancji klinicznej δ nie jest łatwy
- Problemy z wykazaniem wrażliwości próby (AS)
- "Przełączenie" z nadrzędności na nie-podrzędność niemożliwe, jeśli nie zaplanowane a priori

Wielokrotne testowanie

- "Idealna" próba kliniczna ma tylko jeden cel i, w efekcie, testuje tylko jedną hipotezę.
- P-stwo błędu I rodzaju dla całej próby rośniw błyskawicznie ze wzrostem liczby testów dla wielu kryteriów oceny skuteczności mierzonych w wielu punktach czasowych, i/lub wielu metod leczenia, i/lub analizy wielu podgrup chorych.
- Podstawową ideą jest kontrola p-stwa błędu I rodzaju na poziomie α = 0.05, niezależnie od liczby testów.

Wzrost p-stwa błędu I rodzaju

 P-stwo błędu dla całego doświadczenia (experiment-wise Type I error) to p-stwo błędnego odrzucenia przynajmniej jednej hipotezy zerowej

Experiment-wise Type I error rate = 1 - (1 - α)^K
 α = comparison-wise significance level,
 K = number of comparisons performed

Experiment-wise Type I Error

Experimentwise
Type I Error
0.05
0.0975
0.1426
0.2262
0.4013
0.5123

Wiele kryteriów oceny skuteczności leczenia

- Jedno pierwszoplanowe (primary) kryterium
- K pierwszoplanowych (co-primary) kryteriów
 - Bonferroni
 - K=2: 0.05 experiment-wise Type I error could take 0.025 for the two endpoints or 0.04 for the 1st endpoint + 0.01 for the 2nd endpoint
 - Multiple Comparison Strategies
 - Sequentially rejective procedure, hierarchical testing, ...
 - Overall Test Statistic
 - E.g., weighted averages (O'Brien 1984, Pocock et al. 1987, ...)
 - Summary Measures

Drugoplanowe kryteria oceny skuteczności leczenia

- Rekomendacje FDA: kryteria drugoplanowe brane pod uwagę tylko jeśli
 - dla pierwszoplanowego uzyskano wynik statystycznie istotny oraz
 - ... p-stwo błędu I rodzaju dla kryteriów drugoplanowych jest kontrolowane na tym samym poziomie istotności co kryterium pierwszoplanowe.

Istotność statystyczna a kliniczna

- Dla odpowiednio dużej liczebności próbki, nawet mała różnica może dać statystycznie istotny wynik.
- To nie oznacza, że różnica ta jest klinicznie znacząca
 - A. redukcja ryzyka zgonu z 60% do 40% (RR=33%)
 - B. redukcja ryzyka zgonu z 6% do 4% (RR=33%)
 - Jeśli choroba jest rzadka, B nie jest interesujące z punktu widzenia zdrowia publicznego (choć na pewno dla pojedyńczego chorego).
 - Ale jeśli choroba jest powszechna, B będzie interesujące zarówno z punktu widzenia zdrowia publicznego, jak i pojedyńczych chorych.