Санкт-Петербургский Государственный Университет Saint-Petersburg State University

ЛАБОРАТОРИЯ ПРОЧНОСТИ МАТЕРИАЛОВ

ОТЧЕТ

По лабораторной работе 4

«Определение модуля сдвига G»

По дисциплине «Лабораторный практикум, лабораторная работа»

Выполнили:

Баталов С. А. Хайретдинова Д. Д.

 $ext{Санкт-} \Pi ext{етербург} \\ 2021$

1 Экспериментальная установка

Установка для определения модуля сдвига G (рис. 1) состоит из стойки 1, на верхнем конце которой закреплена горизонтальная планка с зажимом для испытуемого стержня 2 радиусом r. На нижнем конце стержня укреплен диск 3 с проточкой по окружности. Две подвески с грузами 4 предназначены для создания крутящего момента $M_{\rm kp}$. При нагружении нижний конец стержня поворачивается на угол φ . Значение его можно определить при помощи светового зайчика от зеркала, укрепленного под диском 3. Схема установки зрительной трубы, зеркала и шкалы показана на рис. 1.

Рис. 1: Схема лабораторной установки.

2 Теоретические исследования

Рис. 2: Определение модуля сдвига.

Модуль G можно расчитать для состояния чистого сдвига при кручении стержня. Требуется определить по начальным данным угол поворота, для малых величин значение этого угла φ (рис. 2) определяют по следующей формуле:

$$\varphi = \frac{\Delta}{2L},\tag{1}$$

где Δ — смещение зайчика на шкале, L — расстояние от шкалы до зеркала. Величину L выбирают в пределах от 100 см до 150 см.

Значение модуля сдвига G можно получить из закона Γ ука:

$$G = \frac{\tau}{\gamma},\tag{2}$$

где τ – касательное напряжение, γ – деформация сдвига.

Из решения задачи о кручении круглого стержня известно, что касательное напряжение на поверхности стержня равняется:

$$\tau = \frac{M_{\rm KP}r}{J_p},\tag{3}$$

где r – радиус стержня, $M_{\rm kp}=R(P_1+P_2)$ – крутящий момент (рис. 2), $J_p=\int_F \rho^2 dF$ – полярный момент инерции стержня, вычисляем по формуле:

$$J_p = \frac{\pi}{2}r^4. (4)$$

Деформация сдвига связана с углом поворота нижнего сечения φ соотношением:

$$\gamma l_0 = r\varphi, \tag{5}$$

где l_0 – длина стержня (на нашей установке $l_0 = 129$ см).

Из соотношений (1) – (5) имеем окончательное выражение для модуля сдвига:

$$G = \frac{M_{\rm KP}l_0}{J_n\varphi} = \frac{8PRl_0L}{\pi\Delta r^4}.$$
 (6)

3 Эксперимент

В данной работе при плоском напряженном состоянии проводится определение модуля сдвига G. Важно отметить, что все вычисления и построения производились с помощью пакета Matlab, с исходным кодом программы можно ознакомиться отдельно. Данные установки представлены в таблице 1.

Величина	Значение	Размерность		
R	55.2	MAG		
r	3.05	$_{ m MM}$		
L	107	an i		
l_0	129	CM		

Таблица 1: Начальные данные.

Результаты измерений представлены в таблице 2. Замер производился дважды, причем каждый раз производилось плавное нагружение и плавное разгружение.

№	Р	Δ					
	1	Замер №1	Замер №2				
	КГ	CM					
1	0	12.2	12.3				
2	0.05	13.6	13.6				
3	0.1	15	15				
4	0.15	16.3	16.4				
5	0.2	17.7	17.9				
6	0.25	19.1	19.2				
7	0.3	20.6	20.6				
8	0.35	21.9	22				
9	0.3	20.9	20.8				
10	0.25	19.4	19.4				
11	0.2	18.1	18				
12	0.15	16.6	16.6				
13	0.1	15.2	15.1				
14	0.05	13.7	13.7				
15	0	12.3	12.3				

Таблица 2: Результаты измерений.

Далее представлены графики в координатах $M_{\rm kp}$ – φ и τ – γ . На них изображены кривые соответствующие как нагружению стержня, так и его разгружению.

Рис. 3: Графики в координатах $M_{\rm kp}$ – φ и τ – γ .

Видно, что зависимости являются линейными,при этом прямая нагружения сохраняет параллельность прямой разгружения в обоих случаях. При построении графиков использовались не все значения выборки. Были отброшены крайние точки, в которых отсутствовал нагружающий момент.

ω	%	30	19	13	15	13	14	13	15	14	18	16	27	28
ΔG	ГПа	24.5	14.9	10.6	11.6	10.5	10.9	10.4	11.8	10.8	13.3	11.8	20.4	21.5
5		81.5	80.0	80.5	79.3	7.67	79.0	79.4	7.97	6.92	75.8	75.8	75.8	75.8
~	$\cdot 10^{-5}\mathrm{pag}$	1.49	3.04	4.53	6.13	7.62	9.23	10.72	9.50	7.90	6.41	4.81	3.20	1.60
٢	МПа	1.22	2.43	3.65	4.86	80.9	7.29	8.51	7.29	80.9	4.86	3.65	2.43	1.22
$M_{ m Kp}$	$\mathrm{H}\cdot\mathrm{M}$	0.054	0.108	0.162	0.217	0.271	0.325	0.379	0.325	0.271	0.217	0.162	0.108	0.054
9	рад	900.0	0.013	0.019	0.026	0.032	0.039	0.045	0.040	0.033	0.027	0.020	0.014	0.007
\Box	M	0.014	0.027	0.041	0.055	0.069	0.084	0.097	0.086	0.071	0.058	0.044	0.029	0.014
Р	Н	0.491	0.981	1.472	1.962	2.453	2.943	3.434	2.943	2.453	1.962	1.472	0.981	0.491
Ş		—	2	3	4	2	9	2	~	6	10	111	12	13

Таблица 3: Результаты измерений и расчеты.

4 Выводы

В данной работе был экспериментально найден модуль сдвига стали, был проведен эксперимент со стержнем из этого металла, в процессе которого последний был подвержен действию крутящего момента, что в свою очередь, породило в стержне напряженное состояние. Далее были измерены параметры этого напряженного состояния с помощью оптической регистрирующей системы, результаты были обработаны инструментами пакета Matlab. В ходе работы вычислялись погрешности систематические, статистические и погрешности косвенных измерений.

В результате проделанной работы был получен модуль сдвига G для стали, его значение в среднем по всей выборке составило:

$$G = 80 \pm 13 \,\Gamma\Pi a,\tag{7}$$

данный результат хорошо согласуется с действительным значения модуля сдвига для этого металла. В заключении, поставленная задача была решена, основные цели работы были достигнуты, и полученный модуль сдвига хорошо согласуется с действительным значением.