Revenue	Maximi	zalion	in	Single	Parameter	Environmonts
---------	--------	--------	----	--------	-----------	--------------

· Given single parameter mechanism design envinonment

- n bidders; bidder i has private value ~Fi

- Set of feasible allocations X

We now want to design a mechanism that chooses an allocation so as to maximize revenue.

· We will restrict ourselves to only consider mechanisms

(x,p) which are DSIC (i.e., we ask agents

for bids, and it is a dominant strategy for agent i to

never bi=vi) and IR (ie, ui(vi,bi) > 0 +i,vi,bi)

Forom Mypison's Lemma, we know that.

i) We can only use X(b) such that $X_i(z,b-i)$ is

ii) We must set $P_i(z, b_i) = Z \chi_i(z) - \int \chi_i(y) dy$

Our aim is to choose $2(b) \in X$ to maximize $R = \sum_{i=1}^{n} P_i(b)$

Substituting, we get $\mathbb{E}\left[P_{i}\left(V_{i}, g_{-i}\right)\right] = \int_{0}^{\infty} Z\chi_{i}(z) f_{i}(z) dz - \int_{0}^{\infty} (1-F_{i}(z)) \chi_{i}(z) dz$ $= \int_{0}^{\infty} \left(z - \int_{0}^{\infty} F_{i}(z)\right) \chi_{i}(z) f_{i}(z) dz$

• Let $\phi_i(0) \stackrel{\triangle}{=} 0 - \frac{1 - F_i(0)}{f_i(0)}$ (virtual value) (3) Then we can rewrite the above exposion as $\mathbb{E}\left[P_i(V_i, o_i)\right] = \mathbb{E}\left[\phi_i(V_i) x_i(V_i, o_i)\right]$ and thus samming over all Ui (: Vi are independed) $E[R] = E[\sum_{i=1}^{n} \phi_i(V_i) x_i(V)]$ Note - this looks similar to welfore W= \(\sum_{i=1}^{2} \times_{i} \chi_{i}(\forall)\). This suggests that a natural algorithm to maximize revenue is to choose $x \in X$ to maximize the bounthal we face \(\sum_{i=1}^n \phi_i(\nu_i) \times_i(\nu)

• One concern however is if this allocation xule is monotone. Recall that for welfare, we know thoosing $X \in X$ to maximize $\sum_{i=1}^{n} V_i Z_i(X)$ is a monotone Sule. Now, if $\phi_i(x)$ is non-decreasing in X, we again have that this is monotone

· To summarize - for any DSIC mechanism

$$F[R] = E[\sum_{i=1}^{n} \phi_{i}(V_{i}) \times_{i} (V_{i}, V_{-i})]$$

- 2) If we know the Vi, we could choose $\chi \in \chi$ to maximize $\sum_{i=1}^{n} \phi_i(v_i) \chi_i(y_i)$
- 3) If $\phi_i(v_i)$ is non-decreasing in V_i , then the above allocation trule is monotone
- 4) We can then use the Myerson payment subs to get the a DSIC mechanism that maximizes ER]

Thus - Maximizing $R \equiv Maximizing vintual value (If <math>\phi_i$ non-decreasing) welfare $\sum_{i=1}^{\infty} \phi_i(v_i) x_i$

Note - We already know that $\phi_i(v)$ is non-decomposed if F_i is regular (in fact, that is how we defined it; see HWI).

· One thing which is unclear from the above discussion is what are the Myerson payments (and more generally, what do those optimal-revenue auctions look like). We will see this via some examples Eg 1 - Single item, single bidder with Vin Fi $\chi^* = \underset{x \in \{0,1\}}{\text{arg max}} \chi \cdot \Phi_i(v_i)$ · Optimal allocation is

 $=\begin{cases} 1; & \phi_i(v_i) > 0 \\ 0; & 0 \omega \end{cases}$

. The Myerson payment pt cornesponds to the " critical bid', i.e., the smallest value bid needed to win the item =) P; is such that $\Phi_i(P_i^*) = 0 \Rightarrow P_i^* = \Phi_i^*(0)$

. This is a posted-price mechanism with $p = \Phi'(0)$ (Note - You already saw this in HWI!)

Eg - Single item, n bidders with iid values (i.e, each bidder i has VinF)

Now, $\Phi_i(v_i) = V_i - \frac{1 - F(v_i)}{f(v_i)} = \Phi(v_i)$

(Same virtual-value function for all bidders!)

. Optimal allocation: $Z^* = \underset{i=1}{\text{arg max}} \sum_{i=1}^{n} \phi_i(V_i) x_i$ s.t. $\sum_{i=1}^{n} x_i \le 1$, $x_i \in \{0,1\}$

In words, the optimal allocation cornesponds to sorting bids, and awarding item to highest bid $V^{(1)}$ as long as $\Phi(V^{(1)}) \geqslant 0$

For winning bidder, critical bid (hence, Myerson payment) Pit is such that $\Phi(P_i) = \max\{0, \Phi(V^2)\}$ and highest

 \Rightarrow $P^* = \max \{ \Phi^{-1}(0), V^{(2)} \}$

This is a 2nd price auction with neserve price $\Phi'(0)!$

In General, cos long as all Fi are regular, 6
we have a simple recipe for the optimal

DSIC mechanism-

- 1) Ask bidder i for value, and compute virtual value $\Phi_i(V_i)$
- 2) Find $2c^* \in X$ that maximizes virtual welfare $\sum_{i=1}^{\infty} x_i^* \Phi_i(V_i)$
- Charge bidder i a price P' Such
 that $\phi_i(P_i^*)$ is the vintual Myerson price'
 lie, the price you would charge if the values
 were truly $\phi_i(v_i)$
- . This is an amazingly general result! However it has 2 big problems:
 - 1) If the Di are different, then the resulting mechanism is strange (see HW 5)
 - 2) We need to know Fi to find Di

- · For the special case of iid bidders (i.e., Vi ~ F for all bidders i), the optimal mechanism corresponds to the optimal welfare mechanism, with an additional reserve of() (as we saw for the single item auxilian)
- · Moreover, in this setting, are it turns out that the loss from not knowing Fi (and hence having incorrect reserve prices) as can be remedied by attracting additional bidders!
 - · Let Rwelfare (n) denote the revenue of the welfare maximizing audion with n bidden, and R* (n) denote the works verence of the optimal.

Thm (Bulow-Klemperer 196) - For a single-item auction with iid ag. bidden (and Fregular) $\mathbb{E}[\mathbb{R}^*(n)] \leq \mathbb{E}[\mathbb{R}^*(n+1)]$

· In words - the Bulow-Klemperer result shows (8) that nunning the second-price (the optimal welfare) auction with n+1 bidders gives higher revenue than the optimal auction with n bitter. This is great as the second-price audion does hol need F! Consider a third mechanism to on not bidders 1) Run optimal mechanism on nbidden 2) If item unsold (because highest bid is lower than \$\phi'(0)), then give it to (n+1) st bidder - Clearly $\mathbb{E}[\mathbb{R}_{M}(n+1)] = \mathbb{E}[\mathbb{R}^{*}(n)]$ - On the other hand, the we know E[R] for any mechanism obi on n+1 bidders is $\mathbb{E}\left[\hat{\Sigma}\phi(v_i)x_i\right]$ Thus, the highest revenue of a mechanism that always allocates the item is that of the second-pine mechanism (which awards item to highest bidder).