Classmate Date Page Merge Sort Example of Divide and Conquer, and its worst case complexity is O(Mogn). The key idea of sorting the elements very Merge sort je: · Given a sequence of m elements/keys in ali J, ali J, -- · · , ali J. · General idea is to split elements in inter not less than a [7], ---, a [n].

Each part is individually sorted, and

The resulting sorted sequences are merge to produce a single sorted sequences.

Sequence at n elements. Therefore Merge Sort de scribe s the above process using recursion and function verge in merge stud sosted sets. Example An array of 10 elements at1:10]
= (310, 285, 179, 652, 351, 423, 861, 254, 450, 520) Merge sort begins by split elements into two equal parts ato a[1:5] & a [6:10]. Frother (a): Es bis (2310, 286, 179, 652, 351 423, 861, 254, 450, 520 apparts, a[1:3] & a[1:5]

apparts, a[1:3] & a[1:5]

310, 285, 179, 652, 351 423, 861, 254, 450, 520 Firther at 1037 despittiffed into two as

at 1:27 9 at 37

310, 285, 179 652, 351/115, 861, 254, \$50,520 310/285/179/6521351/425,861,284,450,520 Further be in ali], alz]

Calle merge clements a [] attende 20) 285,310 | 179 | 652, 351 | 423,861,284, 450,520 Then a [3] is merged with a [1:2] and 179,286,310/652,351/123,811,287,150,520 in produced. Heat, all I and all Jane merged of the same 173,205,310 351,652 / +23,861,254,450,520 and then a [1:3] and a [1:5]: 173, 285, 310, 351, 152 | 423, 881, 184, 150, 520 At this point, the algorithm returns to Merge sort for second half sist process. Rejeas the second half recover calls 179, 285, 370, 351, 452 | 423 | 861, 250, 450, 520 1019[6] galt] are morged. Then als] 18 soon + 24,110 menzed with attity 179,285,310,351,652 25+,423,861 +58,520 Next, at & Reget to a [3] & at 10) are merged; and them at 6:87 and at 5:10 179, 285, 310, 351, 652/257, 123, 450, 520, 861 At this point there are two sarted subarrays and finally merge produces the fully softed result 179,254, 285, 310, 351, 423, 450, 520, 652, 81

Algorithm (Merge Sort) Date Page Mesge Scot (low, high) if (low < high) mid = Stowthigh # [Whigh)/2] Me He Sort (low, mid); Merge Sort (midH, high); Merge (low, mid, nigh); Algorithm merge Merge (low, mid, high) h = low, i= low, j= midts while ((h < mid) & (j < nigh)) do if (ath] & atvil) then btoil = a[h]; h=h+1; B= 33,66, 70 1 b[i] = a[i]; i= iH; 1 = i+1; if (h7 mid) they for k= i to high do q b[i] = a[k]; i = i+1; for K=h to mid do bTIJ=a[KJ; = i+1; for K = low to high do aTK] = bTK];

classmate 1,10 ok, 1 100 X O 16,10 4-15 9,10 6,8 8,8 [3,9] [190] 5,5/6,7 6.6 7.7 of Merge Sort (1,10) Calls Isce of 6:6:7 Trops [1,1,2 low, mid, high) 9,9,10 4415 1,2,3 16,8,16 Tree of Cells of Merge 18-14 11+1: J(n) to m(g(n)) (lg(n)) 4 FIRE LOID TO HOS de CICK I CHILL

2 (C n/c n/s) syste Analysis The time for merging operation is propotional sort is described by recurrence relation $T(n) = \begin{cases} q & \text{in = 1, a a constant} \\ 2T(M_2) + cn & \text{in > 1, e a constant} \end{cases}$ when m is a power of 2, n = 2K, we can solve this eqn. by successive substitution T(n) = 2(27(1)) + c 1/2) + c 1 = 4 T(n/4) + 2 cm = 47 2T (N/8) + CM) + 2CM for of post-time. = 2 / (1) + KCM ant contagn

= n(ait c togn)

= n (nlogn)

9 + 1s easy to see that it

2 k in 5 2 kH then T(n) ± T(2 kH)

Rough 2K = 1 log 2) = log 7 T(n) = 2 = 2T(n/2) + en = 2·(2T(M/4)+cm)+cm)+cm [x = 192] = 4-T(-7/+)+2cy Mighest order is = +(2+(m/8)+ch)+2cm = 2K +(1) + KCT intgil