Training Large Language Models

How to reduce memory and compute

Learning goals

- Learn about different techniques to reduce compute and memory
- Learn about distributed training with data/tensor parallelism
- Learn about FlashAttention

DISTRIBUTED TRAINING

- Training LLMs faster on many GPUs
- Avoiding OOM issues
- Data parallelism: split the data on different model replicas
- Tensor parallellism: split model parameters accross GPUs

DATA PARALLELISM (1) (ANIMATED GIF!)

Source: Nvidia

DATA PARALLELISM (2)

Data Splitting:

- The dataset is divided into smaller chunks, and each chunk is assigned to a different processing unit (e.g., GPU or CPU) on different nodes
- Each node processes a different subset of the data in parallel, reducing the overall training time

• Model Replication:

- Each processing unit has a replica of the neural network model
- These replicas are trained independently on their respective data subsets

Gradient Aggregation:

 After each forward and backward pass, gradients are computed locally on each node

DATA PARALLELISM (2)

 The gradients are then averaged (or summed) across all nodes to ensure that each model replica receives the same gradient update

Parameter Synchronization:

- The model parameters (weights and biases) are updated synchronously across all nodes
- This ensures that all model replicas remain consistent with each other after each update step

TENSOR PARALLELISM (1) (ANIMATED GIF!)

Tensor Parallelism (Intra-Layer)

Source: Nvidia

TENSOR PARALLELISM (2)

• Model Partitioning:

- The model's layers or tensors are split across multiple devices
- Different parts of the model are assigned to different devices, enabling them to work on separate portions of the computations simultaneously

Forward and Backward Passes:

- During the forward pass, each device processes its portion of the tensors with intermediate results passed between devices
- In the backward pass, gradients are computed in the reverse order, again with necessary data transfers between devices

Parameter Updates:

- Parameter updates can be performed independently on each device for the parameters they own
- After each update step, the devices synchronize to ensure consistency across the distributed model

FlashAttention

Fast and Memory-Efficient Exact Attention with IO-Awareness

- Fast
 - 15% faster than BERT
 - 3x faster than GPT-2
 - 2.4x faster than Megatron-LM
- Memory-efficient
 - Reducing from $O(n^2)$ to O(n)
- Exact
 - Same as "vanilla attention", not an approximation
- IO aware
 - Reducing memory load/store operations

GPU MEMORY HIERARCHY

Source: Dao et al. (2022)

COMPUTING CONSIDERATIONS

- GPU compute has been growing faster than memory bandwidth
 - GPU has to wait for data
- Transformer operations are memory-bound
 - Elementwise operations with high memory access
- IO aware means reducing memory load/store operations
- FlashAttention implements the following:
 - Operation fusion to reduce memory access
 - Tiling or chunking the softmax matrix into blocks
 - Recomputation for better memory utilization

OPERATION FUSION

Source: https://horace.io/brrr_intro.html

LIMITATIONS AND PROSPECTS

- FlashAttention requires writing attention to CUDA language
 - A new CUDA kernel for each new attention implementation
 - CUDA is lower-level than PyTorch
 - Implementation may not be transferable accross GPUs
- Towards IO-Aware Deep Learning
 - Extending beyonde attention
- Multi-GPU IO-Aware Methods
 - FlashAttention computation may be parallelizable accross multiple GPUs