Foundation of Cryptography (0368-4162-01), Lecture 1 One-Way Functions One-Way Functions

Iftach Haitner, Tel Aviv University

Tel Aviv University.

February 26 – March 12, 2013

Section 1

Notation

Notation I

- For $t \in \mathbb{N}$, let $[t] := \{1, ..., t\}$.
- Given a string $x \in \{0,1\}^*$ and $0 \le i < j \le |x|$, let $x_{i,...,j}$ stands for the substring induced by taking the i, ..., j bit of x (i.e., x[i]..., x[j]).
- Given a function f defined over a set \mathcal{U} , and a set $\mathcal{S} \subseteq \mathcal{U}$, let $f(\mathcal{S}) := \{f(x) : x \in \mathcal{S}\}$, and for $y \in f(\mathcal{U})$ let $f^{-1}(y) := \{x \in \mathcal{U} : f(x) = y\}$.
- poly stands for the set of all polynomials.
- The worst-case running-time of a *polynomial-time algorithm* on input x, is bounded by p(|x|) for some $p \in poly$.
- A function is polynomial-time computable, if there exists a polynomial-time algorithm to compute it.
- PPT stands for probabilistic polynomial-time algorithms.
- A function $\mu \colon \mathbb{N} \mapsto [0,1]$ is negligible, denoted $\mu(n) = \text{neg}(n)$, if for any $p \in \text{poly there exists } n' \in \mathbb{N}$ with $\mu(n) \le 1/p(n)$ for any n > n'.

Distribution and random variables I

- The support of a distribution P over a finite set \mathcal{U} , denoted Supp(P), is defined as $\{u \in \mathcal{U} : P(u) > 0\}$.
- Given a distribution P and en event E with $\Pr_P[E] > 0$, we let $(P \mid E)$ denote the conditional distribution P given E (i.e., $(P \mid E)(x) = \frac{D(x) \land E}{\Pr_P[E]}$).
- For $t \in \mathbb{N}$, let let U_t denote a random variable uniformly distributed over $\{0, 1\}^t$.
- Given a random variable X, we let $x \leftarrow X$ denote that x is distributed according to X (e.g., $\Pr_{x \leftarrow X}[x = 7]$).
- Given a final set S, we let $x \leftarrow S$ denote that x is uniformly distributed in S.
- We use the convention that when a random variable appears twice in the same expression, it refers to a *single* instance of this random variable. For instance, Pr[X = X] = 1 (regardless of the definition of X).

Distribution and random variables II

- Given distribution P over \mathcal{U} and $t \in \mathbb{N}$, we let P^t over \mathcal{U}^t be defined by $D^t(x_1, \dots, x_t) = \prod_{i \in [t]} D(x_i)$.
- Similarly, given a random variable X, we let X^t denote the random variable induced by t independent samples from X.

Section 2

One Way Functions

One-Way Functions

Definition 1 (One-Way Functions (OWFs))

A polynomial-time computable function $f: \{0,1\}^* \mapsto f: \{0,1\}^*$ is one-way, if

$$\Pr_{x \leftarrow \{0,1\}^n} \left[A(1^n, f(x)) \in f^{-1}(f(x)) \right] = \text{neg}(n)$$

for any PPT A.

polynomial-time computable: there exists a polynomial-time algorithm F, such that F(x) = f(x) for every $x \in \{0, 1\}^*$

PPT: probabilistic polynomial-time algorithm

neg: a function $\mu \colon \mathbb{N} \mapsto [0, 1]$ is a *negligible* function of n, denoted $\mu(n) = \text{neg}(n)$, if for any $p \in \text{poly there exists}$ $n' \in \mathbb{N}$ such that g(n) < 1/p(n) for all n > n'

^{*} We will typically omit 1" from the parameter list of A

- Is this the right definition?
 - Asymptotic

- Is this the right definition?
 - Asymptotic
 - ► Efficiently computable

- Is this the right definition?
 - Asymptotic
 - Efficiently computable
 - ▶ On the average

- Is this the right definition?
 - Asymptotic
 - ► Efficiently computable
 - On the average
 - Only against PPT's

- Is this the right definition?
 - Asymptotic
 - Efficiently computable
 - On the average
 - ▶ Only against PPT's
- **2** OWF $\Longrightarrow \mathcal{P} \neq \mathcal{NP}$?

- Is this the right definition?
 - Asymptotic
 - Efficiently computable
 - On the average
 - Only against PPT's
- (most) Crypto implies OWFs

- Is this the right definition?
 - Asymptotic
 - Efficiently computable
 - On the average
 - Only against PPT's
- (most) Crypto implies OWFs
- O Do OWFs imply Crypto?

- Is this the right definition?
 - Asymptotic
 - Efficiently computable
 - On the average
 - Only against PPT's
- (most) Crypto implies OWFs
- O Do OWFs imply Crypto?
- Where do we find them?

- Is this the right definition?
 - Asymptotic
 - Efficiently computable
 - On the average
 - Only against PPT's
- (most) Crypto implies OWFs
- O Do OWFs imply Crypto?
- Where do we find them?
- Non uniform OWFs

- Is this the right definition?
 - Asymptotic
 - Efficiently computable
 - On the average
 - Only against PPT's
- **2** OWF $\Longrightarrow \mathcal{P} \neq \mathcal{NP}$?
- (most) Crypto implies OWFs
- Do OWFs imply Crypto?
- Where do we find them?
- Non uniform OWFs

Definition 2 (Non-uniform OWF))

A polynomial-time computable function $f: \{0, 1\}^* \mapsto \{0, 1\}^*$ is non-uniformly one-way, if

$$\Pr_{x \leftarrow \{0,1\}^n} \left[C_n(f(x)) \in f^{-1}(f(x)) \right] = \mathsf{neg}(n)$$

for any polynomial-size family of circuits $\{C_n\}_{n\in\mathbb{N}}$.

Length preserving functions

Definition 3 (length preserving functions)

A function $f: \{0,1\}^* \mapsto f: \{0,1\}^*$ is length preserving, if |f(x)| = |x| for every $x \in \{0,1\}^*$

Length preserving functions

Definition 3 (length preserving functions)

A function $f: \{0,1\}^* \mapsto f: \{0,1\}^*$ is length preserving, if |f(x)| = |x| for every $x \in \{0,1\}^*$

Theorem 4

Assume that OWFs exit, then there exist length-preserving OWFs

Length preserving functions

Definition 3 (length preserving functions)

A function $f: \{0,1\}^* \mapsto f: \{0,1\}^*$ is length preserving, if |f(x)| = |x| for every $x \in \{0,1\}^*$

Theorem 4

Assume that OWFs exit, then there exist length-preserving OWFs

Proof idea: use the assumed OWF to create a length preserving one

Partial domain functions

Definition 5 (Partial domain functions)

For $m, \ell \colon \mathbb{N} \to \mathbb{N}$, let $h \colon \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}$ denote a function defined over input lengths in $\{m(n)\}_{n \in \mathbb{N}}$, and maps strings of length m(n) to strings of length $\ell(n)$.

Partial domain functions

Definition 5 (Partial domain functions)

For $m, \ell \colon \mathbb{N} \to \mathbb{N}$, let $h \colon \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}$ denote a function defined over input lengths in $\{m(n)\}_{n \in \mathbb{N}}$, and maps strings of length m(n) to strings of length $\ell(n)$.

The definition of one-wayness naturally extends to such functions.

Let $f: \{0,1\}^* \mapsto \{0,1\}^*$ be a OWF, let $p \in \text{poly}$ be a bound on its computing-time and assume wlg. that p is monotony increasing (can we?).

Let $f: \{0,1\}^* \mapsto \{0,1\}^*$ be a OWF, let $p \in \text{poly}$ be a bound on its computing-time and assume wlg. that p is monotony increasing (can we?).

Construction 6 (the length preserving function)

Define
$$g: \{0,1\}^{p(n)} \mapsto \{0,1\}^{p(n)}$$
 as

$$g(x) = f(x_{1,...,n}), 0^{p(n)-|f(x_{1,...,n})|}$$

Let $f: \{0,1\}^* \mapsto \{0,1\}^*$ be a OWF, let $p \in \text{poly}$ be a bound on its computing-time and assume wlg. that p is monotony increasing (can we?).

Construction 6 (the length preserving function)

Define $g: \{0,1\}^{p(n)} \mapsto \{0,1\}^{p(n)}$ as

$$g(x) = f(x_{1,...,n}), 0^{p(n)-|f(x_{1,...,n})|}$$

Note that g is well defined, length preserving and efficient (why?).

Let $f: \{0,1\}^* \mapsto \{0,1\}^*$ be a OWF, let $p \in \text{poly}$ be a bound on its computing-time and assume wlg. that p is monotony increasing (can we?).

Construction 6 (the length preserving function)

Define $g: \{0,1\}^{p(n)} \mapsto \{0,1\}^{p(n)}$ as

$$g(x) = f(x_{1,...,n}), 0^{p(n)-|f(x_{1,...,n})|}$$

Note that g is well defined, length preserving and efficient (why?).

Claim 7

g is one-way.

Let $f: \{0,1\}^* \mapsto \{0,1\}^*$ be a OWF, let $p \in \text{poly}$ be a bound on its computing-time and assume wlg. that p is monotony increasing (can we?).

Construction 6 (the length preserving function)

Define $g: \{0,1\}^{p(n)} \mapsto \{0,1\}^{p(n)}$ as

$$g(x) = f(x_{1,...,n}), 0^{p(n)-|f(x_{1,...,n})|}$$

Note that g is well defined, length preserving and efficient (why?).

Claim 7

g is one-way.

How can we prove that g is one-way?

Let $f: \{0,1\}^* \mapsto \{0,1\}^*$ be a OWF, let $p \in \text{poly}$ be a bound on its computing-time and assume wlg. that p is monotony increasing (can we?).

Construction 6 (the length preserving function)

Define $g: \{0,1\}^{p(n)} \mapsto \{0,1\}^{p(n)}$ as

$$g(x) = f(x_{1,...,n}), 0^{p(n)-|f(x_{1,...,n})|}$$

Note that g is well defined, length preserving and efficient (why?).

Claim 7

g is one-way.

How can we prove that g is one-way?

Answer: using reduction.

Proving that g is one-way

Proof:

Assume that g is not one-way. Namely, there exists PPT A, $q \in \text{poly}$ and infinite set $\mathcal{I} \subseteq \{p(n) : n \in \mathbb{N}\}$, with

$$\Pr_{x \leftarrow \{0,1\}^n} \left[A(y) \in g^{-1}(g(x)) \right] > 1/q(n)$$
 (1)

for every $n \in \mathcal{I}$.

Proving that g is one-way

Proof:

Assume that g is not one-way. Namely, there exists PPT A, $q \in \text{poly}$ and infinite set $\mathcal{I} \subseteq \{p(n) \colon n \in \mathbb{N}\}$, with

$$\Pr_{x \leftarrow \{0,1\}^n} \left[A(y) \in g^{-1}(g(x)) \right] > 1/q(n)$$
 (1)

for every $n \in \mathcal{I}$.

We show how to use A for inverting f.

Input: 1^n and $y \in \{0, 1\}^*$

- Let $x = A(1^{p(n)}, y, 0^{p(n)-|y|})$
- 2 Return $x_{1,...,n}$

Input: 1^n and $y \in \{0, 1\}^*$

- Let $x = A(1^{p(n)}, y, 0^{p(n)-|y|})$
- 2 Return $x_{1,...,n}$

Claim 9

Let $\mathcal{I}' := \{ n \in \mathbb{N} : p(n) \in \mathcal{I} \}$. Then

- \mathbf{O} \mathcal{I}' is infinite
- 2 $\Pr_{x \leftarrow \{0,1\}^n}[B(1^n, f(x)) \in f^{-1}(f(x))] > 1/q(p(n))$ for every $n \in \mathcal{I}'$

Input: 1^n and $y \in \{0, 1\}^*$

- Let $x = A(1^{p(n)}, y, 0^{p(n)-|y|})$
- 2 Return $x_{1,...,n}$

Claim 9

Let $\mathcal{I}' := \{ n \in \mathbb{N} : p(n) \in \mathcal{I} \}$. Then

- $\mathbf{0}$ \mathbf{I}' is infinite
- 2 $\Pr_{x \leftarrow \{0,1\}^n}[B(1^n, f(x)) \in f^{-1}(f(x))] > 1/q(p(n))$ for every $n \in \mathcal{I}'$

This contradict the assumed one-wayness of f. \square

Input: 1^n and $y \in \{0, 1\}^*$

- Let $x = A(1^{p(n)}, y, 0^{p(n)-|y|})$
- 2 Return $x_{1,...,n}$

Claim 9

Let $\mathcal{I}' := \{ n \in \mathbb{N} : p(n) \in \mathcal{I} \}$. Then

- \bigcirc \mathcal{I}' is infinite
- 2 $\Pr_{x \leftarrow \{0,1\}^n}[\mathsf{B}(1^n, f(x)) \in f^{-1}(f(x))] > 1/q(p(n))$ for every $n \in \mathcal{I}'$

This contradict the assumed one-wayness of f. \square

Proof: (1) is clear

Input: 1^n and $y \in \{0, 1\}^*$

- Let $x = A(1^{p(n)}, y, 0^{p(n)-|y|})$
- 2 Return $x_{1,...,n}$

Claim 9

Let $\mathcal{I}' := \{ n \in \mathbb{N} : p(n) \in \mathcal{I} \}$. Then

- \bigcirc \mathcal{I}' is infinite
- 2 $\Pr_{x \leftarrow \{0,1\}^n}[\mathsf{B}(1^n, f(x)) \in f^{-1}(f(x))] > 1/q(p(n))$ for every $n \in \mathcal{I}'$

This contradict the assumed one-wayness of f. \square

Proof: (1) is clear, (2)

Algorithm 8 (The inverter B)

Input: 1^n and $y \in \{0, 1\}^*$

- Let $x = A(1^{p(n)}, y, 0^{p(n)-|y|})$
- 2 Return $x_{1,...,n}$

Claim 9

Let $\mathcal{I}' := \{ n \in \mathbb{N} : p(n) \in \mathcal{I} \}$. Then

- \bigcirc \mathcal{I}' is infinite
- **2** $\Pr_{x \leftarrow \{0,1\}^n}[\mathsf{B}(1^n, f(x)) \in f^{-1}(f(x))] > 1/q(p(n))$ for every $n \in \mathcal{I}'$

This contradict the assumed one-wayness of f. \square

Proof: (1) is clear, (2)

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathsf{B}(1^n, f(x)) \in f^{-1}(f(x))]$$

$$= \Pr_{x \leftarrow \{0,1\}^n} [\mathsf{A}(1^{p(n)}, f(x), 0^{p(n)-n})_{1,\dots,n} \in f^{-1}(f(x))]$$

Algorithm 8 (The inverter B)

Input: 1^n and $y \in \{0, 1\}^*$

- Let $x = A(1^{p(n)}, y, 0^{p(n)-|y|})$
- 2 Return $x_{1,...,n}$

Claim 9

Let $\mathcal{I}' := \{ n \in \mathbb{N} : p(n) \in \mathcal{I} \}$. Then

- \bigcirc \mathcal{I}' is infinite
- **2** $\Pr_{x \leftarrow \{0,1\}^n}[\mathsf{B}(1^n, f(x)) \in f^{-1}(f(x))] > 1/q(p(n))$ for every $n \in \mathcal{I}'$

This contradict the assumed one-wayness of f. \square

Proof: (1) is clear, (2)

$$\Pr_{x \leftarrow \{0,1\}^n} [B(1^n, f(x)) \in f^{-1}(f(x))]
= \Pr_{x \leftarrow \{0,1\}^n} [A(1^{p(n)}, f(x), 0^{p(n)-n})_{1,...,n} \in f^{-1}(f(x))]
\ge \Pr_{x' \leftarrow \{0,1\}^{p(n)}} [A(1^{p(n)}, g(x)) \in g^{-1}(g(x))]$$

Algorithm 8 (The inverter B)

Input: 1^n and $y \in \{0, 1\}^*$

- Let $x = A(1^{p(n)}, y, 0^{p(n)-|y|})$
- 2 Return $x_{1,...,n}$

Claim 9

Let $\mathcal{I}' := \{ n \in \mathbb{N} : p(n) \in \mathcal{I} \}$. Then

- \bigcirc \mathcal{I}' is infinite
- 2 $\Pr_{x \leftarrow \{0,1\}^n}[\mathsf{B}(1^n, f(x)) \in f^{-1}(f(x))] > 1/q(p(n))$ for every $n \in \mathcal{I}'$

This contradict the assumed one-wayness of f. \square

Proof: (1) is clear, (2)

$$\Pr_{x \leftarrow \{0,1\}^n} [B(1^n, f(x)) \in f^{-1}(f(x))]
= \Pr_{x \leftarrow \{0,1\}^n} [A(1^{p(n)}, f(x), 0^{p(n)-n})_{1,\dots,n} \in f^{-1}(f(x))]
\ge \Pr_{x' \leftarrow \{0,1\}^{p(n)}} [A(1^{p(n)}, g(x)) \in g^{-1}(g(x))] \ge 1/q(p(n))$$

Conclusion

Remark 10

- We directly related the hardness of f to that of g
- The reduction is not "security preserving"

Construction 11

Given a function $f: \{0,1\}^{\ell(n)} \mapsto \{0,1\}^{\ell(n)}$, define $f_{\text{all}}: \{0,1\}^* \mapsto \{0,1\}^*$ as

$$f_{\text{all}}(x) = f(x_{1,...,k}), 0^{n-k}$$

where n = |x| and $k := \max\{\ell(n') \le n \colon n' \in [n]\}.$

Construction 11

Given a function $f: \{0,1\}^{\ell(n)} \mapsto \{0,1\}^{\ell(n)}$, define $f_{\text{all}}: \{0,1\}^* \mapsto \{0,1\}^*$ as

$$f_{\text{all}}(x) = f(x_{1,...,k}), 0^{n-k}$$

where n = |x| and $k := \max\{\ell(n') \le n \colon n' \in [n]\}.$

Clearly, f_{all} is length preserving defined for every input length, and efficient (i.e., poly-time computable) in case f and ℓ are.

Construction 11

Given a function $f: \{0,1\}^{\ell(n)} \mapsto \{0,1\}^{\ell(n)}$, define $f_{\text{all}}: \{0,1\}^* \mapsto \{0,1\}^*$ as

$$f_{\text{all}}(x) = f(x_{1,...,k}), 0^{n-k}$$

where n = |x| and $k := \max\{\ell(n') \le n \colon n' \in [n]\}.$

Clearly, f_{all} is length preserving defined for every input length, and efficient (i.e., poly-time computable) in case f and ℓ are.

Claim 12

Assume f and ℓ are efficiently computable, f is one-way, and ℓ satisfies $1 \leq \frac{\ell(n+1)}{\ell(n)} \leq p(n)$ for some $p \in \text{poly}$, then f_{all} is one-way function.

Construction 11

Given a function $f: \{0,1\}^{\ell(n)} \mapsto \{0,1\}^{\ell(n)}$, define $f_{\text{all}}: \{0,1\}^* \mapsto \{0,1\}^*$ as

$$f_{\text{all}}(x) = f(x_{1,...,k}), 0^{n-k}$$

where n = |x| and $k := \max\{\ell(n') \le n \colon n' \in [n]\}.$

Clearly, f_{all} is length preserving defined for every input length, and efficient (i.e., poly-time computable) in case f and ℓ are.

Claim 12

Assume f and ℓ are efficiently computable, f is one-way, and ℓ satisfies $1 \leq \frac{\ell(n+1)}{\ell(n)} \leq p(n)$ for some $p \in \text{poly}$, then f_{all} is one-way function.

Proof: ?

Weak One Way Functions

Definition 13 (weak one-way functions)

A poly-time computable function $f: \{0,1\}^* \mapsto f: \{0,1\}^*$ is α -one-way, if

$$\Pr_{\mathbf{x} \leftarrow \{0,1\}^n} \left[\mathsf{A}(1^n, f(\mathbf{x})) \in f^{-1}(f(\mathbf{x})) \right] \le \alpha(n)$$

for any PPT A and large enough $n \in \mathbb{N}$.

Weak One Way Functions

Definition 13 (weak one-way functions)

A poly-time computable function $f: \{0,1\}^* \mapsto f: \{0,1\}^*$ is α -one-way, if

$$\Pr_{\mathbf{x} \leftarrow \{0,1\}^n} \left[\mathsf{A}(1^n, f(\mathbf{x})) \in f^{-1}(f(\mathbf{x})) \right] \le \alpha(n)$$

for any PPT A and large enough $n \in \mathbb{N}$.

(strong) OWF according to Definition 1, are neg(n)-one-way according to the above definition

Weak One Way Functions

Definition 13 (weak one-way functions)

A poly-time computable function $f: \{0,1\}^* \mapsto f: \{0,1\}^*$ is α -one-way, if

$$\Pr_{\mathbf{x} \leftarrow \{0,1\}^n} \left[\mathsf{A}(1^n, f(\mathbf{x})) \in f^{-1}(f(\mathbf{x})) \right] \le \alpha(n)$$

for any PPT A and large enough $n \in \mathbb{N}$.

- (strong) OWF according to Definition 1, are neg(n)-one-way according to the above definition
- Oan we "amplify" weak OWF to strong ones?

Strong to weak OWFs

Claim 14

Assume there exists OWFs, then there exist functions that are $\frac{2}{3}$ -one-way, but not (strong) one-way

Strong to weak OWFs

Claim 14

Assume there exists OWFs, then there exist functions that are $\frac{2}{3}$ -one-way, but not (strong) one-way

Proof: For a OWF f, let

$$g(x) = \begin{cases} (1, f(x)), & x_1 = 1; \\ 0, & \text{otherwise.} \end{cases}$$

Theorem 15

Assume there exists $(1 - \alpha)$ -weak OWFs with $\alpha(n) > 1/p(n)$ for some $p \in \text{poly}$, then there exists (strong) one-way functions.

Theorem 15

Assume there exists $(1 - \alpha)$ -weak OWFs with $\alpha(n) > 1/p(n)$ for some $p \in \text{poly}$, then there exists (strong) one-way functions.

Proof: we assume wlg that *f* is length preserving (why can we do so?)

Theorem 15

Assume there exists $(1 - \alpha)$ -weak OWFs with $\alpha(n) > 1/p(n)$ for some $p \in \text{poly}$, then there exists (strong) one-way functions.

Proof: we assume wlg that f is length preserving (why can we do so?)

Construction 16 (g – the strong one-way function)

Let $t: \mathbb{N} \to \mathbb{N}$ be a poly-time computable function satisfying $t(n) \in \omega(\log n/\alpha(n))$. Define $g: (\{0,1\}^n)^{t(n)} \mapsto (\{0,1\}^n)^{t(n)}$ as

$$g(x_1,\ldots,x_t)=f(x_1),\ldots,f(x_t)$$

Theorem 15

Assume there exists $(1 - \alpha)$ -weak OWFs with $\alpha(n) > 1/p(n)$ for some $p \in \text{poly}$, then there exists (strong) one-way functions.

Proof: we assume wlg that f is length preserving (why can we do so?)

Construction 16 (g – the strong one-way function)

Let $t: \mathbb{N} \to \mathbb{N}$ be a poly-time computable function satisfying $t(n) \in \omega(\log n/\alpha(n))$. Define $g: (\{0,1\}^n)^{t(n)} \mapsto (\{0,1\}^n)^{t(n)}$ as

$$g(x_1,\ldots,x_t)=f(x_1),\ldots,f(x_t)$$

Claim 17

g is one-way.

Let A be a potential inverter for g, and assume that A tries to attacks each of the t outputs of g independently. Then

$$\Pr_{x \leftarrow \{0,1\}^{t(n) \cdot n}}[\mathsf{A}(g(x)) \in g^{-1}(g(x))] \le (1 - \alpha(n))^{t(n)} \le e^{-\omega(\log n)} = \mathsf{neg}(n)$$

Let A be a potential inverter for g, and assume that A tries to attacks each of the t outputs of g independently. Then

$$\Pr_{x \leftarrow \{0,1\}^{t(n) \cdot n}}[\mathsf{A}(g(x)) \in g^{-1}(g(x))] \le (1 - \alpha(n))^{t(n)} \le e^{-\omega(\log n)} = \mathsf{neg}(n)$$

A less naive approach would be to assume that A goes over output sequentially.

Let A be a potential inverter for g, and assume that A tries to attacks each of the t outputs of g independently. Then

$$\Pr_{x \leftarrow \{0,1\}^{t(n) \cdot n}}[\mathsf{A}(g(x)) \in g^{-1}(g(x))] \le (1 - \alpha(n))^{t(n)} \le e^{-\omega(\log n)} = \mathsf{neg}(n)$$

A less naive approach would be to assume that A goes over output sequentially.

Unfortunately, we can assume none of the above.

Let A be a potential inverter for g, and assume that A tries to attacks each of the t outputs of g independently. Then

$$\Pr_{x \leftarrow \{0,1\}^{t(n) \cdot n}}[\mathsf{A}(g(x)) \in g^{-1}(g(x))] \le (1 - \alpha(n))^{t(n)} \le e^{-\omega(\log n)} = \mathsf{neg}(n)$$

A less naive approach would be to assume that A goes over output sequentially.

Unfortunately, we can assume none of the above.

Any idea?

Definition 18 (failing set)

A function $f: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ has a (δ,ε) -failing set for algorithm A, if for large enough n, exists set $\mathcal{S} = \mathcal{S}(n) \subseteq \{0,1\}^{\ell(n)}$ with

- $lackbox{1} \operatorname{Pr}_{x \leftarrow \{0,1\}^n} \left[f(x) \in \mathcal{S} \right] \geq \delta(n), \text{ and }$
- **2** $\Pr[A(y) \in f^{-1}(y)] < \varepsilon(n)$, for every $y \in S$

Definition 18 (failing set)

A function $f: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ has a (δ,ε) -failing set for algorithm A, if for large enough n, exists set $\mathcal{S} = \mathcal{S}(n) \subseteq \{0,1\}^{\ell(n)}$ with

- $lackbox{1} \operatorname{Pr}_{x \leftarrow \{0,1\}^n} \left[f(x) \in \mathcal{S} \right] \geq \delta(n), \text{ and }$
- **2** $\Pr[A(y) \in f^{-1}(y)] < \varepsilon(n)$, for every $y \in S$

Claim 19

Let f be a $(1 - \alpha)$ -OWF. Then f has $(\alpha/2, 1/p)$ -failing set for any PPT A and $p \in \text{poly}$.

Definition 18 (failing set)

A function $f: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ has a (δ,ε) -failing set for algorithm A, if for large enough n, exists set $\mathcal{S} = \mathcal{S}(n) \subseteq \{0,1\}^{\ell(n)}$ with

- $lackbox{1} \operatorname{Pr}_{x \leftarrow \{0,1\}^n} \left[f(x) \in \mathcal{S} \right] \geq \delta(n), \text{ and }$
- **2** $\Pr[A(y) \in f^{-1}(y)] < \varepsilon(n)$, for every $y \in S$

Claim 19

Let f be a $(1 - \alpha)$ -OWF. Then f has $(\alpha/2, 1/p)$ -failing set for any PPT A and $p \in \text{poly}$.

Proof: Assume \exists PPT A, $p \in$ poly and an infinite set $\mathcal{I} \subseteq \mathbb{N}$ such that for every $n \in \mathcal{I}$, $\exists \mathcal{L} \subseteq \{0,1\}^n$ with

- **1** $\Pr_{x \leftarrow \{0,1\}^n} [f(x) \in \mathcal{L}] \ge 1 \alpha(n)/2$, and
- 2 $\Pr[A(y) \in f^{-1}(y)] \ge 1/p(n)$, for every $y \in \mathcal{L}$

Definition 18 (failing set)

A function $f: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ has a (δ,ε) -failing set for algorithm A, if for large enough n, exists set $\mathcal{S} = \mathcal{S}(n) \subseteq \{0,1\}^{\ell(n)}$ with

- $lackbox{1} \operatorname{Pr}_{x \leftarrow \{0,1\}^n} \left[f(x) \in \mathcal{S} \right] \geq \delta(n), \text{ and }$
- **2** $\Pr[A(y) \in f^{-1}(y)] < \varepsilon(n)$, for every $y \in S$

Claim 19

Let f be a $(1 - \alpha)$ -OWF. Then f has $(\alpha/2, 1/p)$ -failing set for any PPT A and $p \in \text{poly}$.

Proof: Assume \exists PPT A, $p \in$ poly and an infinite set $\mathcal{I} \subseteq \mathbb{N}$ such that for every $n \in \mathcal{I}$, $\exists \mathcal{L} \subseteq \{0,1\}^n$ with

- **1** $\Pr_{x \leftarrow \{0,1\}^n} [f(x) \in \mathcal{L}] \ge 1 \alpha(n)/2$, and
- $Pr[A(y) \in f^{-1}(y)] \ge 1/p(n), \text{ for every } y \in \mathcal{L}$

We'll use A to contradict the hardness of f.

Algorithm 20 (The inverter B)

Input: $y \in \{0, 1\}^n$.

Do (with fresh randomness) for $n \cdot p(n)$ times:

If $x = A(y) \in f^{-1}(y)$, return x

Algorithm 20 (The inverter B)

Input: $y \in \{0, 1\}^n$.

Do (with fresh randomness) for $n \cdot p(n)$ times:

If $x = A(y) \in f^{-1}(y)$, return x

Clearly, B is a PPT

Algorithm 20 (The inverter B)

Input: $y \in \{0, 1\}^n$.

Do (with fresh randomness) for $n \cdot p(n)$ times:

If $x = A(y) \in f^{-1}(y)$, return x

Clearly, B is a PPT

Claim 21

For every large enough $n \in \mathcal{I}$, it holds that

$$\Pr_{x \leftarrow \{0,1\}^n} \left[\mathsf{B}(f(x)) \in f^{-1}(f(x)) \right] > 1 - \alpha(n)$$

Algorithm 20 (The inverter B)

Input: $y \in \{0, 1\}^n$.

Do (with fresh randomness) for $n \cdot p(n)$ times:

If $x = A(y) \in f^{-1}(y)$, return x

Clearly, B is a PPT

Claim 21

For every large enough $n \in \mathcal{I}$, it holds that

$$\Pr_{x \leftarrow \{0,1\}^n} \left[\mathsf{B}(f(x)) \in f^{-1}(f(x)) \right] > 1 - \alpha(n)$$

Hence, f is not $(1 - \alpha)$ -one-way

All probabilities below are also over $y \leftarrow f(x)$; $x \leftarrow \{0,1\}^n$:

All probabilities below are also over $y \leftarrow f(x)$; $x \leftarrow \{0,1\}^n$:

$$Pr[B(y) \in f^{-1}(y)]$$

All probabilities below are also over $y \leftarrow f(x)$; $x \leftarrow \{0, 1\}^n$:

$$\Pr[\mathsf{B}(y) \in f^{-1}(y)] \\ \ge \Pr[\mathsf{B}(y) \in f^{-1}(y) \land y \in \mathcal{L}(n)]$$

All probabilities below are also over $y \leftarrow f(x)$; $x \leftarrow \{0, 1\}^n$:

$$\begin{aligned} & \mathsf{Pr}[\mathsf{B}(y) \in f^{-1}(y)] \\ & \geq & \mathsf{Pr}[\mathsf{B}(y) \in f^{-1}(y) \land y \in \mathcal{L}(n)] \\ & = & \mathsf{Pr}[y \in \mathcal{L}(n)] \cdot \mathsf{Pr}[\mathsf{B}(y) \in f^{-1}(y) \mid y \in \mathcal{L}(n)] \end{aligned}$$

All probabilities below are also over $y \leftarrow f(x)$; $x \leftarrow \{0, 1\}^n$:

$$\Pr[B(y) \in f^{-1}(y)] \\
\geq \Pr[B(y) \in f^{-1}(y) \land y \in \mathcal{L}(n)] \\
= \Pr[y \in \mathcal{L}(n)] \cdot \Pr[B(y) \in f^{-1}(y) \mid y \in \mathcal{L}(n)] \\
\geq (1 - \alpha(n)/2) \cdot (1 - (1 - 1/p(n))^{np(n)})$$

Proof: [of Claim 21]

All probabilities below are also over $y \leftarrow f(x)$; $x \leftarrow \{0, 1\}^n$:

$$\Pr[\mathsf{B}(y) \in f^{-1}(y)] \\
\geq \Pr[\mathsf{B}(y) \in f^{-1}(y) \land y \in \mathcal{L}(n)] \\
= \Pr[y \in \mathcal{L}(n)] \cdot \Pr[\mathsf{B}(y) \in f^{-1}(y) \mid y \in \mathcal{L}(n)] \\
\geq (1 - \alpha(n)/2) \cdot (1 - (1 - 1/p(n))^{np(n)}) \\
\geq (1 - \alpha(n)/2) \cdot (1 - 2^{-n}) > 1 - \alpha(n),$$

for large enough n. 🐥

We show that if g is not OWF, then f has no flailing-set of the "right" type.

We show that if g is not OWF, then f has no flailing-set of the "right" type.

Claim 22

Assume \exists PPT A, $p \in$ poly and an infinite set $\mathcal{I} \subseteq \mathbb{N}$ s.t.

$$\Pr_{w \leftarrow \{0,1\}^{t(n) \cdot n}}[A(g(x)) \in g^{-1}(g(w))] \ge 1/p(n) \tag{2}$$

for every $n \in \mathcal{I}$.

We show that if g is not OWF, then f has no flailing-set of the "right" type.

Claim 22

Assume \exists PPT A, $p \in$ poly and an infinite set $\mathcal{I} \subseteq \mathbb{N}$ s.t.

$$\Pr_{w \leftarrow \{0,1\}^{t(n) \cdot n}}[A(g(x)) \in g^{-1}(g(w))] \ge 1/p(n)$$
 (2)

for every $n \in \mathcal{I}$. Then \exists PPT B and $q \in poly s.t.$

$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}(y) \in f^{-1}(y)] \ge 1/q(n) \tag{3}$$

for every $n \in \mathcal{I}$ and $S \subseteq \{0,1\}^n$ with $\Pr_{x \leftarrow \{0,1\}^n} [f(x) \in S] \ge \alpha(n)/2$.

We show that if g is not OWF, then f has no flailing-set of the "right" type.

Claim 22

Assume $\exists \ \mathsf{PPT} \ \mathsf{A}, \ p \in \mathsf{poly} \ \mathsf{and} \ \mathsf{an} \ \mathsf{infinite} \ \mathsf{set} \ \mathcal{I} \subseteq \mathbb{N} \ \mathsf{s.t.}$

$$\Pr_{w \leftarrow \{0,1\}^{t(n) \cdot n}}[A(g(x)) \in g^{-1}(g(w))] \ge 1/p(n)$$
 (2)

for every $n \in \mathcal{I}$. Then \exists PPT B and $q \in poly s.t.$

$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}(y) \in f^{-1}(y)] \ge 1/q(n) \tag{3}$$

for every $n \in \mathcal{I}$ and $\mathcal{S} \subseteq \{0,1\}^n$ with $\Pr_{x \leftarrow \{0,1\}^n} [f(x) \in \mathcal{S}] \ge \alpha(n)/2$.

Namely, f does not have a $(\alpha/2, 1/q)$ -failing set.

Algorithm 23 (No failing-set algorithm B)

Input: $y \in \{0, 1\}^n$.

- Choose $w \leftarrow \{0,1\}^{t(n) \cdot n}$, $z = (z_1, \dots, z_t) = g(w)$ and $i \leftarrow [t]$
- 2 Set $z' = (z_1, \ldots, z_{i-1}, y, z_{i+1}, \ldots, z_t)$
- 3 Return $A(z')_i$

Algorithm 23 (No failing-set algorithm B)

Input: $y \in \{0, 1\}^n$.

- Choose $w \leftarrow \{0,1\}^{t(n) \cdot n}$, $z = (z_1, \dots, z_t) = g(w)$ and $i \leftarrow [t]$
- 2 Set $z' = (z_1, \ldots, z_{i-1}, y, z_{i+1}, \ldots, z_t)$
- 3 Return $A(z')_i$

Fix $n \in \mathcal{I}$ and a set $\mathcal{S} \subseteq \{0,1\}^n$ with $\Pr_{x \leftarrow \{0,1\}^n}[f(x) \in \mathcal{S}] \ge \alpha(n)/2$. We analyze B's success probability with respect to \mathcal{S} , using the following (inefficient) algorithm B*:

Definition 24 (Bad)

For $z = (z_1, ..., z_t) \in Im(g)$ (the image of g), we set Bad(z) = 1 iff $\nexists i \in [t]$ with $z_i \in S$.

Definition 24 (Bad)

For $z = (z_1, ..., z_t) \in Im(g)$ (the image of g), we set Bad(z) = 1 iff $\nexists i \in [t]$ with $z_i \in S$.

B* differ from B in the way it chooses z': in case Bad(z) = 1, it sets z' = z. Otherwise, it sets i to the first index $j \in [t]$ with $z_j \in \mathcal{S}$, and sets z' as B does with respect to this i.

Definition 24 (Bad)

For $z = (z_1, ..., z_t) \in Im(g)$ (the image of g), we set Bad(z) = 1 iff $\nexists i \in [t]$ with $z_i \in S$.

B* differ from B in the way it chooses z': in case Bad(z) = 1, it sets z' = z. Otherwise, it sets i to the first index $j \in [t]$ with $z_j \in \mathcal{S}$, and sets z' as B does with respect to this i.

$$\mathsf{Pr}_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \geq \frac{1}{p(n)} - \mathsf{neg}(n),$$

Definition 24 (Bad)

For $z = (z_1, ..., z_t) \in Im(g)$ (the image of g), we set Bad(z) = 1 iff $\nexists i \in [t]$ with $z_i \in S$.

B* differ from B in the way it chooses z': in case Bad(z) = 1, it sets z' = z. Otherwise, it sets i to the first index $j \in [t]$ with $z_j \in \mathcal{S}$, and sets z' as B does with respect to this i.

$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \ge \frac{1}{p(n)} - \mathsf{neg}(n),$$

Therefore,
$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}(y) \in f^{-1}(y)] \ge \frac{1}{f(n)p(n)} - \mathsf{neg}(n).\square$$

$$\Pr_{w \leftarrow \{0,1\}^{t(n) \cdot n}}[\mathsf{Bad}(g(w))] = \mathsf{neg}(n)$$

Claim 26

$$\Pr_{w \leftarrow \{0,1\}^{t(n) \cdot n}}[\mathsf{Bad}(g(w))] = \mathsf{neg}(n)$$

Claim 27

• Let Z = g(W) for $W \leftarrow \{0, 1\}^{t(n) \cdot n}$

Claim 26

$$\Pr_{w \leftarrow \{0,1\}^{t(n) \cdot n}}[\mathsf{Bad}(g(w))] = \mathsf{neg}(n)$$

- Let Z = g(W) for $W \leftarrow \{0, 1\}^{t(n) \cdot n}$
- Let Z' be the value of z' induced by a random execution of $B^*(f(X))$, for $X \leftarrow \{0,1\}^n \mid f(X) \in S$.

Claim 26

$$\Pr_{w \leftarrow \{0,1\}^{t(n) \cdot n}}[\mathsf{Bad}(g(w))] = \mathsf{neg}(n)$$

- Let Z = g(W) for $W \leftarrow \{0, 1\}^{t(n) \cdot n}$
- Let Z' be the value of z' induced by a random execution of $B^*(f(X))$, for $X \leftarrow \{0,1\}^n \mid f(X) \in S$.

Claim 26

$$Pr_{w \leftarrow \{0,1\}^{t(n) \cdot n}}[Bad(g(w))] = neg(n)$$

Claim 27

- Let Z = g(W) for $W \leftarrow \{0, 1\}^{t(n) \cdot n}$
- Let Z' be the value of z' induced by a random execution of $B^*(f(X))$, for $X \leftarrow \{0,1\}^n \mid f(X) \in S$.

Then Z and Z' are identically distributed.

$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \ge \Pr_{w \leftarrow \{0,1\}^{t(n) \cdot n}; z = g(w)} \left[\mathsf{A}(z) \in g^{-1}(z) \land \neg \, \mathsf{Bad}(z) \right] \tag{4}$$

$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \ge \Pr_{w \leftarrow \{0,1\}^{t(n) \cdot n}; z = g(w)} \left[\mathsf{A}(z) \in g^{-1}(z) \land \neg \, \mathsf{Bad}(z) \right] \tag{4}$$

$$\Pr_{w \leftarrow \{0,1\}^{t(n) \cdot n}; z = g(w)} \left[\mathsf{A}(z) \in g^{-1}(z) \right]$$

$$\leq \mathsf{Pr}[\mathsf{A}(z) \in g^{-1}(z) \land \neg \mathsf{Bad}(z)] + \mathsf{Pr}[\mathsf{Bad}(z)]$$
(5)

$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \ge \Pr_{w \leftarrow \{0,1\}^{t(n) \cdot n}; z = g(w)} \left[\mathsf{A}(z) \in g^{-1}(z) \land \neg \, \mathsf{Bad}(z) \right] \tag{4}$$

$$\Pr_{\boldsymbol{w} \leftarrow \{0,1\}^{t(n) \cdot n}; \boldsymbol{z} = g(\boldsymbol{w})} \left[\mathsf{A}(\boldsymbol{z}) \in g^{-1}(\boldsymbol{z}) \right]$$

$$\leq \Pr[\mathsf{A}(\boldsymbol{z}) \in g^{-1}(\boldsymbol{z}) \land \neg \mathsf{Bad}(\boldsymbol{z})] + \Pr[\mathsf{Bad}(\boldsymbol{z})]$$
(5)

It follows that

$$\begin{split} \Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] &\geq \Pr_{w \leftarrow \{0,1\}^{l(n) \cdot n}; z = g(w)}[\mathsf{A}(z) \in g^{-1}(z)] - \mathsf{neg}(n) \\ &\geq \frac{1}{p(n)} - \mathsf{neg}(n). \Box \end{split}$$

Proof of Claim 27: Let $\beta = \Pr_{x \leftarrow \{0,1\}^n}[f(x) \in \mathcal{S}]$ and consider the following awkward method to sample according to Z

Proof of Claim 27: Let $\beta = \Pr_{x \leftarrow \{0,1\}^n}[f(x) \in \mathcal{S}]$ and consider the following awkward method to sample according to Z

Algorithm 28 (P)

- **1** Sample $\ell_1, \ldots, \ell_{t(n)}$, each taking the value 1 with β .
- Output $z_1, \ldots, z_{t(n)}$, where z_i is sampled according to

$$\begin{cases} f(x) \mid x \leftarrow \{0,1\}^n, f(x) \in \mathcal{S}, & \ell_i = 1; \\ f(x) \mid x \leftarrow \{0,1\}^n, f(x) \notin \mathcal{S}, & \text{otherwise.} \end{cases}$$

Proof of Claim 27: Let $\beta = \Pr_{x \leftarrow \{0,1\}^n}[f(x) \in \mathcal{S}]$ and consider the following awkward method to sample according to Z

Algorithm 28 (P)

- **1** Sample $\ell_1, \ldots, \ell_{t(n)}$, each taking the value 1 with β .
- Output $z_1, \ldots, z_{t(n)}$, where z_i is sampled according to

$$\begin{cases} f(x) \mid x \leftarrow \{0,1\}^n, f(x) \in \mathcal{S}, & \ell_i = 1; \\ f(x) \mid x \leftarrow \{0,1\}^n, f(x) \notin \mathcal{S}, & \text{otherwise.} \end{cases}$$

The process for sampling Z' can be described as follows:

- Choose $\ell_1, \ldots, \ell_{t(n)}$ and $z_1, \ldots, z_{t(n)}$ according to P
- **2** Resample z_i for some i with $\ell_i = 1$ (if such exists)

Proof of Claim 27: Let $\beta = \Pr_{x \leftarrow \{0,1\}^n}[f(x) \in \mathcal{S}]$ and consider the following awkward method to sample according to Z

Algorithm 28 (P)

- **1** Sample $\ell_1, \ldots, \ell_{t(n)}$, each taking the value 1 with β .
- Output $z_1, \ldots, z_{t(n)}$, where z_i is sampled according to

$$\begin{cases} f(x) \mid x \leftarrow \{0,1\}^n, f(x) \in \mathcal{S}, & \ell_i = 1; \\ f(x) \mid x \leftarrow \{0,1\}^n, f(x) \notin \mathcal{S}, & \text{otherwise.} \end{cases}$$

The process for sampling Z' can be described as follows:

- Choose $\ell_1, \ldots, \ell_{t(n)}$ and $z_1, \ldots, z_{t(n)}$ according to P
- **2** Resample z_i for some i with $\ell_i = 1$ (if such exists)

Hence, Z' has the same distribution as of P, and hence as of Z. \square

Conclusion

Remark 29 (hardness amplification via parallel repetition)

• Can we give a more efficient (secure) reduction?

Conclusion

Remark 29 (hardness amplification via parallel repetition)

- Can we give a more efficient (secure) reduction?
- Similar theorems for other cryptographic primitives (e.g., Captchas, general protocols)?

Conclusion

Remark 29 (hardness amplification via parallel repetition)

- Can we give a more efficient (secure) reduction?
- Similar theorems for other cryptographic primitives (e.g., Captchas, general protocols)?
 What properties of the weak OWF have we used in the proof?