

MATERIA: PROYECTO INTEGRADOR

PROFESOR: GONZALO VERA

ALUMNO: RIOS LIONEL

AÑO: 2024

ACTIVIDADES

- Comprender los fundamentos eléctricos básicos en circuitos.
- Aprender a diseñar y simular circuitos eléctricos.
- Familiarizarse con los componentes eléctricos y electrónicos, y su función en los circuitos.
- Analizar y comprender los resultados de las simulaciones.

¿Qué es un transformador de corriente?

Un transformador de corriente es un dispositivo eléctrico que se utiliza para convertir la corriente de alta intensidad en una corriente de baja intensidad, o viceversa, manteniendo la misma frecuencia. Es un componente esencial en muchos sistemas eléctricos, especialmente en aquellos que requieren mediciones de corriente precisas y seguras.

Su función principal es proporcionar una corriente proporcional a la corriente que fluye a través de un circuito eléctrico, pero en una escala más manejable para su medición o control. Esto es importante en aplicaciones como la protección de sobrecorriente, medición de energía, control de motores, sistemas de distribución de energía, y más.

El transformador de corriente consta de un núcleo de hierro laminado alrededor del cual se enrollan dos bobinados: el primario y el secundario. La corriente que fluye por el primario induce un campo magnético en el núcleo, lo que a su vez induce una corriente en el secundario proporcional a la corriente del primario. El ratio entre el número de vueltas del primario y el secundario determina la relación de transformación y, por lo tanto, la proporción entre las corrientes primaria y secundaria.

Función principal

La función principal de un transformador de corriente es convertir la corriente de alta intensidad en una corriente de baja intensidad, o viceversa, mientras se mantiene la misma frecuencia. Esto se logra mediante la inducción electromagnética en un núcleo de hierro alrededor del cual están enrollados dos bobinados, el primario y el secundario.

Entre sus funciones específicas se incluyen:

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

- 1. **Medición de corriente:** Los transformadores de corriente se utilizan para proporcionar señales proporcionales a la corriente en sistemas de medición y control. Por ejemplo, en aplicaciones de medición de energía eléctrica, protección de sobrecorriente, y monitoreo de carga.
- 2. **Protección de sobrecorriente:** En sistemas eléctricos, los transformadores de corriente se utilizan para detectar corrientes de falla o sobrecargas y activar dispositivos de protección, como interruptores de circuito o relés de sobrecorriente.
- 3. **Aislamiento**: Al reducir la corriente a niveles más seguros y manejables, los transformadores de corriente también proporcionan aislamiento galvánico entre el circuito de medición y el circuito de alto voltaje, lo que aumenta la seguridad del sistema.
- 4. **Reducción de ruido**: Al aislar galvánicamente el circuito de medición, los transformadores de corriente pueden reducir la interferencia electromagnética y el ruido en las mediciones, mejorando así la precisión.

Como está formado

Un transformador de corriente se forma a partir de un núcleo de hierro alrededor del cual se enrollan dos bobinados, el primario y el secundario. Aquí te explico cómo se forma paso a paso:

- 1. **Selección del núcleo**: Se elige un núcleo de hierro adecuado para el propósito del transformador. Este núcleo puede tener diferentes formas, como rectangular, circular o toroidal, y está diseñado para concentrar el flujo magnético generado por las corrientes que fluyen a través de los bobinados.
- 2. **Enrollado del bobinado primario:** Se enrolla un cable conductor aislado alrededor del núcleo. Este bobinado se denomina primario y se conecta al circuito eléctrico del cual se desea medir o controlar la corriente.
- 3. **Aislamiento entre bobinados:** Se puede agregar un material aislante entre el bobinado primario y el secundario para garantizar que no haya cortocircuitos y para proporcionar aislamiento eléctrico.
- 4. **Enrollado del bobinado secundario:** Se enrolla otro cable conductor alrededor del mismo núcleo, pero separado del bobinado primario. Este bobinado se llama secundario y está diseñado para proporcionar una señal de corriente proporcional al flujo de corriente en el bobinado primario.
- 5. **Conexión de terminales**: Se conectan terminales a los extremos de los bobinados primario y secundario para permitir la conexión del transformador a los circuitos eléctricos.

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

Una vez que se completa este proceso, el transformador de corriente está listo para su uso. Cuando fluye corriente a través del bobinado primario, se induce un campo magnético en el núcleo de hierro, lo que a su vez induce una corriente en el bobinado secundario, proporcional a la corriente en el bobinado primario según la relación de vueltas entre los bobinados. Esto permite medir o controlar la corriente de manera segura y eficiente.