DESIGN & ANALYSIS OF ALGORITHM

PCC-CS501

DESIGN & ANALYSIS OF ALGORITHM SCHEDULE ----TOPIC WISE

	Topic	Sub Topic
1	INTRODUCTION	DESIGN OF ALGORITHM, ANALYSIS OF ALGORITHM,
		ALGORITHM PROPERTIES
2	FRAMEWORK FOR ALGORITHM	HOW TO COUNT EXECUTION TIME OF ALGORITHM, INPUT INSTANCES
	ANALYSIS	
3	ASYMPTOTIC NOTATION	BEST CASE, AVERAGE CASE, WORST CASE
4	SOLVING RECURRENCE RELATION	SUBSTITUTION METHOD, MASTER THEOREM
5	ALGORITHM DESIGN TECHNIQUES	DIVIDE & CONQUER, GREEDY, DYNAMIC PROGRAMMING,
		BACKTRACKING,
6	DISJOINT SET MANIPULATION	UNION FIND
7	NETWORK FLOW PROBLEM	FORD FULKERSON ALGORITHM
8	NP COMPLETENESS	NP,NP HARDALGORITHM
9	APPROXIMATION ALGORITHM	COMPLEXITY ANALYSIS OF NP COMPETE PROBLEM

QUESTION DOES GREEDY ENSURE OPTIMALITY?

GREEDY APPROACH

DISADVANTAGE

GREEDY DOES NOT ENSURE OPTIMAL SOLUTION.

- Considers All possible solution, then consider the optimal solution.
- Time consuming Method.
- Follows Principle of Optimality: Problem must be solved in sequence of decision.
- Overlapping Sub-problem.
- Memorization
- Tabulation

FIBONACCI SERIES

```
For n>=2, f_n = f_{n-1} + f_{n-2}

For n=0, f_n = 0

For n=1, f_n = 1
```

Int fibo(int n)

```
if(n<=1)
  return n
  return fibo(n-1)+fibo(n-2)
}</pre>
```


MEMORIZATION

TOP-DOWN

T(n)=2T(n-1)+1

FIBONACCI SERIES

 $O(2^n)$

MEMORIZATION

FIBONACCI SERIES

The memoized version of the recursive Fibonacci algorithm looks like this:

- If *n* is 0 or 1, return *n*
- Otherwise, if n is in the memo, return the memo's value for n
- Otherwise,
 - Calculate fibonacci(n-1) + fibonacci(n-2)
 - Store result in memo
 - Return result

n	Original	Memoized
5	15	9
6	25	11
7	41	13
8	67	15
9	109	17
10	177	19

TABULATION METHOD

BOTTOM-UP

FIBONACCI SERIES

```
Int fibo(n)
{
    if(n<=1)
    return n
    F[0]=0 F[1]=1
    for(i=2;i<n;i++)
    F[i]=F[i-1]+F[i-2]
}</pre>
```

FLOYD WARSHALL'S ALGORITHM

All Pair Shortest Path Problem.

FLOYD WARSHALL'S ALGORITHM

min(dist[i][k]+dist[k][j],dist[i][j]).

FLOYD WARSHALL'S ALGORITHM

min(dist[i][k]+dist[k][j],dist[i][j])

FLOYD WARSHALL'S ALGORITHM

FLOYD WARSHALL'S ALGORITHM

```
• for (k = 0; k < V; k++)
        for (i = 0; i < V; i++)
           for (j = 0; j < V; j++)
              if (dist[i][k] + dist[k][j] < dist[i][j])
                  dist[i][j] = dist[i][k] + dist[k][j];
```

NEXT CLASS

KNAPSACK USING DYNAMIC PROGRAMMING