第七章

数字带通传输系统

主要内容

- 二进制数字调制/解调原理
- 二进制数字调制系统的抗噪性能
- 多进制数字调制原理及抗噪性能

- ■要解决的问题
 - ■调制解调方法
 - 抗噪性能分析

7.1 引言

■ 数字传输系统

■ 数字调制系统

■ 数字调制

数字基带信号调制到正弦载波上,使载波的某个参量(振幅、频率、相位)载有基带信号的信息

7.2 二进制数字调制原理

- 二进制振幅键控2ASK (OOK - 通断键控)
- 二进制移频键控2FSK
- 二进制移相键控2PSK
- 二进制差分移相键控2DPSK

二进

二进制振幅键控(2ASK)

■假设

■ {a_n}表示一个二元码的随机序列

$$a_n = \begin{cases} 1 & p \\ 0 & 1-p \end{cases}$$

- g(t)为基带信号波形,是一个持续时间为 T_s 的矩形脉冲,幅度为A
- 由此构成一个单极性不归零的随机脉冲序列,作为数字基带信号,记作:

$$s(t) = \sum_{n=-\infty}^{\infty} a_n g(t - nT_s)$$

■调制原理

- 2ASK是利用载波振幅的有无表示1和0
- 数字基带信号 $s(t) = \sum_{n} a_{n}g(t nT_{s})$
- 载波 cos $\omega_c t$
- 2ASK信号:

$$e_o(t) = s(t) \cos \omega_c t$$

$$= \begin{cases} A\cos\omega_c t & p \text{ ("1")} \\ 0 & 1-p \text{ ("0")} \end{cases}$$

 $0 \le t \le T_s$

2ASK码元速率 = 基带信号码元速率

画图时可假设载波初始相位为0相

■2ASK信号产生

■ 模拟调制法

■数字键控法

2ASK也称OOK, 即通断键控

■ 2ASK解调

■ 非相干解调 (包络检波)

■相干解调(同步检测)

· 2ASK信号功率谱

 $cos\omega_c t$

 $e_o(t) = s(t) \cos \omega_c t$

$$P_{E}(f) = \frac{1}{4} [P_{S}(f + f_{c}) + P_{S}(f - f_{c})]$$

• 当基带信号s(t)为单极性不归零码序列,0、1等概时,s(t)的功率谱

$$P_{s}(f) = \frac{1}{4}T_{S}S_{a}^{2}(\pi f T_{S}) + \frac{1}{4}\delta(f)$$

 $\mathbf{e}_{o}(t)$ 的功率谱

$$P_{E}(f) = \frac{T_{S}}{16} \left\{ Sa^{2} \left[\pi (f + f_{c})T_{S} \right] + Sa^{2} \left[\pi (f - f_{c})T_{S} \right] \right\} + \frac{1}{16} \left[\delta (f + f_{c}) + \delta (f - f_{c}) \right]$$

$$\begin{array}{c} P_{s}(f) \\ \downarrow \\ \downarrow \\ \downarrow \\ B_{b} \\ \downarrow \\ \end{array}$$

结论

- ■2ASK功率谱做线性搬移,形成双边带谱
- ullet 2ASK信号带宽为基带信号带宽的2倍 s(t) 取谱零点带宽为 B_b =1/ au, B_{2ASK} = $2B_b$
- ■有较大载频分量,调制效率低
- ■2ASK码元速率 = 基带信号码元速率
- ■频带利用率取决于基带信号波形

二进制移频键控(2FSK)

- 利用载波的不同频率表示0和1
- 2FSK信号产生
 - 基带信号s(t)为单极性不归零码序列
 - 模拟调频法

■ 键控法

$$e_{o}(t) = \begin{cases} A\cos(\omega_{1}t + \varphi_{1}) & \text{ 发送 "1"} \\ A\cos(\omega_{2}t + \varphi_{2}) & \text{ 发送 "0"} \end{cases}$$

■ 2FSK信号的相位在相邻码元之间不一定连续

■ 2FSK信号可以看作是两个2ASK信号的叠加

■功率谱

- 2FSK信号可以看作是两个2ASK信号的叠加
- ■设载波初始相位均为0,载频分别为f₁和f₂

$$e_o(t) = \sum_n a_n g(t - nT_S) \cos \omega_1 t + \sum_n \overline{a}_n g(t - nT_S) \cos \omega_2 t$$

$$a_n = \begin{cases} 1 & p \\ 0 & 1-p \end{cases}$$

$$\bar{a}_n = \begin{cases} 0 & p \\ 1 & 1-p \end{cases} \quad \bar{a}_n \mathbb{E} a_n$$
的反码

4

■ 2FSK信号功率谱

$$P_{E}(f) = \frac{1}{4} \left[P_{S1}(f + f_{1}) + P_{S1}(f - f_{1}) \right] + \frac{1}{4} \left[P_{S2}(f + f_{2}) + P_{S2}(f - f_{2}) \right]$$

■基带信号为0、1等概单极性不归零码时

$$\begin{split} P_{E}(f) &= \frac{T_{S}}{16} \Big\{ Sa^{2} \Big[\pi(f+f_{1})T_{S} \Big] + Sa^{2} \Big[\pi(f-f_{1})T_{S} \Big] \\ &+ Sa^{2} \Big[\pi(f+f_{2})T_{S} \Big] + Sa^{2} \Big[\pi(f-f_{2})T_{S} \Big] \Big\} \\ &+ \frac{1}{16} \Big[\delta(f+f_{1}) + \delta(f-f_{1}) + \delta(f+f_{2}) + \delta(f-f_{2}) \Big] \end{split}$$

结论

- 2FSK信号的功率谱由连续谱和离散谱组成,
 连续谱由两个中心位于f₁和f₂处的双边谱叠加,
 离散谱位于两个载频f₁和f₂处
- 连续谱的形状随着两个载频之差的大小而变: $|f_2-f_1| \geq 2B_b$, 连续谱无交叠 $|f_2-f_1| < 2B_b$, 连续谱有交叠
- 2FSK信号带宽: $B_{2FSK} = |f_2 f_1| + 2B_b$

(3)
$$B_{6} < |f_{2} - f_{1}| < 2B_{6}$$

$$|f_2 - f_i| = B_b$$

■ 2FSK解调

- ■相干解调法
- 非相干解调法
 - 包络检波法
 - ■过零检测法
 - ■*差分检测法
 - ■*模拟鉴频法

抽样判决时不设置门限值, 比较两路信号抽样值大小

相干解调

判决规则: $V_1 \ge V_2 \Longrightarrow "1"$

$$V_1 < V_2 \Longrightarrow "0"$$

龙一宁配之周期内, SA LOS W, T "1" 上了路 ZASK

(x): $A cos w_i t \cdot cos w_i t = A cos w_i t = \frac{A}{2} (H cos w_i t)$

LPF: A

判决时上下出的证形这替:

$$S_{1}(t)$$

$$S_{2}(t)$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{7}$$

$$V_{7}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{1}$$

$$V_{2}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{9}$$

$$V_{1}$$

$$V_{2}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{9}$$

$$V_{1}$$

$$V_{2}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{9}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{9}$$

$$V_{1}$$

$$V_{2}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{9}$$

$$V_{1}$$

$$V_{2}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{8}$$

判状をD):
{Vi>Vi>Vi> Vi> Vi > "1"

抽样判决时不设置门限值, 比较两路信号抽样值大小

■包络检波

判决规则: $V_1 \ge V_2 \Rightarrow$ "1" $V_1 < V_2 \Rightarrow$ "0"

$$\cos(\omega_c t + \varphi_n)$$

利用载波的不同相位表示0和1,2PSK也称绝对移相键控

■ 调制原理

$$\varphi_n = \begin{cases} 0 & \text{发送 "1"} \\ \pi & \text{发送 "0"} \end{cases}$$

* 每个码元周期必须包含整数个载波周期,即: 每个码元的起始相位与其结束相位相同

■ 设基带信号s(t)为双极性不归零码序列

- 载波 $\cos \omega_c t$, 设初始相位为0
- 2PSK信号 $e_{o}(t) = s(t) \cos \omega_{c} t$

$$= \begin{cases} A\cos\omega_c t & \text{发 "1"} \\ A\cos(\omega_c t + \pi) & \text{发 "0"} \end{cases}$$
$$= -A\cos\omega_c t$$

Sct)

$$2psk$$
 $3 \rightarrow "0"$
 $2psk$
 $3 \rightarrow "0"$
 $3 \rightarrow "0"$

4

■ 2PSK信号产生

■ 模拟调制法

• 键控法

■功率谱

$$P_{E}(f) = \frac{1}{4} [P_{s}(f + f_{c}) + P_{s}(f - f_{c})]$$

- s(t)为双极性不归零矩形脉冲序列,0、1等概时,s(t)的功率谱 $P_s(f) = T_s S_a^2(\pi f T_s)$
- 2PSK的功率谱

$$P_{E}(f) = \frac{T_{S}}{4} \left\{ Sa^{2} \left[\pi (f + f_{c})T_{S} \right] + Sa^{2} \left[\pi (f - f_{c})T_{S} \right] \right\}$$

- 结论
 - 2PSK可看作是双极性不归零的基带信号进 行双边带抑制载波调制
 - 带宽为基带信号的2倍,即: $B_{2PSK}=2B_b$

$$e_o(t) = \begin{cases} A\cos\omega_c t & \text{"1"} \\ -A\cos\omega_c t & \text{"0"} \end{cases} \Rightarrow \begin{cases} A\cos\omega_c t \cdot \cos\omega_c t = \frac{A}{2}(1 + \cos 2\omega_c t) \\ -A\cos\omega_c t \cdot \cos\omega_c t = -\frac{A}{2}(1 + \cos 2\omega_c t) \end{cases} \Rightarrow \pm \frac{A}{2}$$

■ 2PSK解调

■相干解调法

判决门限为0

■存在相位模糊问题

$$g_n = \begin{cases} 0 & \text{"i"} \\ \pi & \text{"o"} \end{cases}$$

$$\Delta \varphi = \varphi_n - \varphi_{n-1}$$

- 利用前后码元相位的相对变化表示0和1, 与载波的初始相位无关,也称相对移相 键控
- ■调制原理

$$\Delta \varphi = \begin{cases} 0 & \mbox{发送 "0", 同相} \\ \pi & \mbox{发送 "1", 倒相} \end{cases}$$

■用前后码元的相位差表示0和1,以前一码元的末相位作为参考相位

参考相位:对于2PSK指载波相位:

对于2DPSK指前一码元相位

■ 2DPSK信号矢量图

B方式

■设参考相位(前一码元)均为0

A方式:

$$\Delta \varphi = \begin{cases} 0 & \text{发 "0" 同相} \\ \pi & \text{发 "1" 倒相} \end{cases}$$

B方式:

$$\Delta \varphi = \begin{cases} 0 & \text{发 "0" 同相} \\ \pi & \text{发 "1" 倒相} \end{cases} \Delta \varphi = \begin{cases} -\pi/2 & \text{发 "0" 后移} \\ \pi/2 & \text{发 "1" 前移} \end{cases}$$

- 2DPSK信号产生
 - ■码变换+2PSK移相键控

$$\{a_n\}$$
 码变换 $\{b_n\}$ $2PSK$ $\stackrel{e_o(t)}{\longrightarrow}$

- ■功率谱
 - 与2PSK完全相同, $B_{2DPSK} = 2B_b$

■ 2DPSK解调

- ■相干解调法
 - 2PSK相干解调十码反变换
 - ■码反变换: 微分器→全波整流→脉冲展宽

判决门限为0

■相位比较法

■ 差分相干解调

■ 判决: $+ \rightarrow 0$, $- \rightarrow 1$ 判决门限为0

7.3 二进制数字调制系统抗噪性能

- ■指标: 误码率
 - 误码率与信噪比的关系
 - ■系统信噪比越高, 误码率越低
 - •对同一系统,相干解调比包络检波误码率略低,抗噪性稍好 发"1"码的信噪比

$$\frac{S_i}{N_i} = \frac{a^2}{2\sigma_n^2} = r$$

■ 从带宽和频带利用率上来看, 2ASK、2PSK、2DPSK的有效性相同, 2FSK最低

图 6-18 三种数字调制系统的 Pe-r

7.5 多进制数字调制系统

- 目的: 提高频带利用率
 - 若以 $\eta_b = R_b/B$ 表示频带利用率, $R_b = R_B \log_2 M$ 当 R_B 不变,带宽B相同时,通过增加进制数 M,可以增大 R_b ,从而在相同带宽内传输多个比特的信息,因而 η_b 高
 - = 当 R_b 相同时,通过增加进制数M,可以降低 R_B ,从而减小信号带宽,节约频带资源
 - 代价:相同信噪比时,多进制调制系统抗噪性低于二进制系统;要保持与二进制系统相同的抗噪性能,需要更大的发射信号功率

(1)
$$f\eta_b = \frac{R_b}{B} = \frac{R_b \cdot l_{y_z} M f}{B}$$

一. 带罗坂次于移之战型 ⊙11 TS 不爱 Ra和同,M个,16个

M进制Ts 贵美, VRB=京, B在缩, Ra相同时, 16增大

一. 多电平调制MASK

■原理

•设M电平信号的码元宽度为 T_S ,基带波形为g(t),则MASK信号可以表示为

矩形脉冲 不归零波

$$g(t)$$
,则 $MASK$ 信号可以表示为
$$e_o(t) = \left[\sum_n b_n g(t - nTs)\right] \cos \omega_c t$$

$$b_{n} = \begin{cases} d_{1} & P_{1} \\ d_{2} & P_{2} \\ \vdots & & \sum_{i=1}^{M} P_{i} = 1 \\ d_{M} & P_{M} \end{cases}$$

含直流分量, 调制后有载频

4ASK信号

基带四电平双极性不归零信号

抑制载波4ASK信号

(调制效率高,不能用包络检波解调,只能用相干解调)

频域特性

■ MASK可以看成是时间上 不重叠的M个不同幅度的 2ASK信号叠加

■基带信号S(t)为M进制不归零矩形波

$$e_{MASK}(t) = s(t) \cos \omega_c t$$

$$P_{MASK}(f) = \frac{1}{4} [P_s(f + f_c) + P_s(f - f_c)]$$

$$B_{MASK} = B_{2ASK} = 2B_b$$
 码元速率相同时

MASK抗噪性能

■ 误码率 P_e 与进制数 M 和信噪比 r 的关系

结论

- ■优点: MASK信号的 带宽为M进制基带信号 T_s 带宽的2倍,与和2ASK信号的带宽相同,则频带利用率(bps)高
- ■缺点:判决门限多,抗噪性能差
- MASK系统牺牲可靠性换取有效性

二. 多相调制MPSK/MDPSK

• 设M 进制信号码元宽度为 T_s , M 种码元用M 种相位值 ρ_k 表示,则在一个码元持续期间 T_s 内,多相调制信号可表示为:

$$e_o(t) = \cos(\omega_c t + \varphi_k) \qquad k = 1 \cdots M$$
$$= \cos \varphi_k \cos \omega_c t - \sin \varphi_k \sin \omega_c t$$
$$= I_k \cos \omega_c t - Q_k \sin \omega_c t$$

■ MPSK可看作是2个MASK信号之和,其带宽 应与MASK相同,是多电平基带信号的2倍

1. 四相绝对移相键控4PSK (QPSK)

■ 用载波的4种不同相位表示四进制码元,每 一种相位可表示 2bit 信息

QPSK两种编码方式及矢量图

双比特	双比特码元		相位差 φ_k			
a	b	A方	式	B方	式	
0	0	00	0	225°	$-3\pi/4$	
1	0	90°	$\pi/2$	315°	$-\pi/4$	
1	1	180°	π	45°	$\pi/4$	
0	1	270°	$-\pi/2$	135°	$3\pi/4$	

■ 以载波相位为参考相位

QPSK信号波形(A方式)

- QPSK信号产生(B方式)
 - ■调相法(QPSK正交调制)

- QPSK可看作两个正交的2PSK调制合成
- QPSK带宽为四电平基带信号带宽的2倍

■电平变换

- ■二进制码元"1"→双极性不归零脉冲"+1"
- ■二进制码元"0"→双极性不归零脉冲"-1"

$$e_o(t) = I_k \cos \omega_c t - Q_k \sin \omega_c t$$
$$= \sqrt{I_k^2 + Q_k^2} \cos(\omega_c t + \varphi_k)$$

■此正交载波实现B方式调相

■ 正交调制合成矢量

a	b	$oxed{I_k}$	Q_k	$ ertarphi_k $
0	0	-1	-1	$-3\pi/4$
1	0	+1	-1	$-\pi/4$
1	1	+1	+1	$\pi/4$
0	1	-1	+1	$3\pi/4$

正交调制 **卷丰厚理:

① 4PSK依号龙-丁松之持俊时的下内。 (双知松之)

$$e_0(t) = I_k cos w - D_k sinuat$$

$$= \sqrt{I_k^2 + Q_k^2} cos(w + Q_k)$$

② 中度模

00 -1 -1	ab	IR OK
	0 0	-1 -1
10 +1 -1	10	+1 -1
1 1 + (+)	1 1	+(+1
01 -1 +1	0	-1 +1

利用公司 Sinut=
$$Cos(wt-\frac{2}{2})$$

$$-sinut= cos(wt+\frac{2}{2})$$

$$-\sin wt = \cos(wt + \frac{2}{2})$$

=
$$cos_{w}t + cos_{w}t + \frac{\lambda}{2}$$
)

$$\dot{P}_k = \frac{7}{4}$$

eat)=]kusvd-aksinud

ab	Ikak	Pk 1
00	-1 -1	-32
10	+1 -1	-7
11	+1 +/	7
01	-1+1	是不

当近教治为bosvot和一simut时,实现B分前调相。 (os(w+2)

亚湖制波利 Got)= Ik wos wit - Oksinwit 1 1; 1 0; 0 1; 0 0; Sabi 制并支换 多一は路走了 新期 (6 二郎老学仪号 € Ts> 邮瓷换 备-3路=邮 老带的是做孑然 涸割

2. 四相相对移相键控 4DPSK (QDPSK)

- 解决QPSK的相位模糊
- ■利用前后码元相位差表示码元的值
- QDPSK两种编码方式

双比特码元		相位差 $\triangle \varphi_n$			
a	b	A方式		B方式	
0	0	00	0	225°	$-3\pi/4$
1	0	90°	$\pi/2$	315°	$-\pi/4$
1	1	180°	π	45°	$\pi/4$
0	1	270°	$-\pi/2$	135°	$3\pi/4$

■ 以前一码元相位为参考相位

QDPSK 信号波形(A方式)

4

3. 多相调制抗噪性能

MDPSK

•例:设信息码为01011000110100,设信息速率等于载波频率,画A方式的QPSK 和QDPSK信号波形,参考相位为0°

双比特码元		φ_k 或 $\Delta \varphi_k$	
a	b	A方式	
0	1	0°	
0	0	90°	
1	0	180°	
1	1	270°	

好: 2年0 Rb=fc (知性上), -: Tb=Tc

·· Ts=276=27c 即:一丁双时持己处内有2丁程被周期.

本章小结

- 数字调制系统的模型,及主要解决的问题
- 二进制调制系统的调制和解调原理、已调信号 频域特性
- 二进制调制系统抗噪声性能结论
- 多进制调制的基本概念
- MASK调制基本概念
- QPSK正交调制原理, QPSK/QDPSK波形
- 多进制调制的抗噪性能结论

作业

- 结合PPT,阅读教材第七章内容
- ■第七章习题
 - **1**, 2, 3, 13