1 Notation

Let $d \geq 2$.

The zero vector of \mathbb{R}^d is denoted by $\vec{0}$.

The unit sphere $\{x \in \mathbb{R}^d \mid ||x|| = 1\}$ is denoted by S^{d-1} .

The closed ball $\{x \in \mathbb{R}^d \mid ||x|| \le R\}$ is denoted by $B(\vec{0}, R)$.

Given a finite set of indices \mathcal{K} , $|\mathcal{K}|$ denotes the cardinality of \mathcal{K} .

2 Polyhedrals and polytopes

Let us start with some definitions. Our reference is [1].

Definition 2.1 (Affine subspace). An affine subspace of \mathbb{R}^d is either the empty set or a translate of a linear subspace, that is, a subset x + L where $x \in \mathbb{R}^d$ and L is a linear subspace of \mathbb{R}^d .

Definition 2.2 (*Dimension of a* affine subspace). The dimension of a non-empty affine subspace A is the dimension of the linear subspace L such that A = x + L. In other words,

$$\dim A := \dim L$$
.

Definition 2.3 (Affine hull). For any subset M of \mathbb{R}^d , there is a smallest affine subspace containing M, namely, the intersection of all affine subspaces containing M. This affine subspace is called the affine hull of M, and it is denoted by

$$aff M$$
.

Definition 2.4 (Dimension of a convex set). Let C be a convex set of \mathbb{R}^d . The dimension of C is defined as the dimension of the affine hull of C, that is

$$\dim C := \dim (\operatorname{aff} C)$$
.

Definition 2.5 (Convex hull). For any subset M of \mathbb{R}^d , there is a smallest convex set containing M, namely, the intersection of all convex sets containing M. This convex set is called the *convex hull* of M, and it is denoted by

$$\operatorname{conv} M$$
.

Definition 2.6 (Supporting hyperplane). Let C be a non-empty closed convex set in \mathbb{R}^d . By a *supporting hyperplane* of C we mean a hyperplane

$$\left\{x \in \mathbb{R}^d \mid x \cdot n = a\right\}, \quad n \in \mathbb{R}^d \backslash \left\{\vec{0}\right\}$$

uch that such that $C \subset \{x \in \mathbb{R}^d \mid x \cdot n \leq a\}$ and

$$\{x \in \mathbb{R}^d \mid x \cdot n = a\} \cap C \neq \emptyset.$$

Definition 2.7 (Face). Let C be a non-empty closed convex set in \mathbb{R}^d . A convex subset $F \neq C$ or \emptyset) of C is called a k-face of C if for any distinct points $y, z \in C$ such that $\{x \in \mathbb{R}^d \mid \lambda x + (1 - \lambda)z, \lambda \in (0, 1)\} \cap F \neq \emptyset$, we actually have

$$\left\{x \in \mathbb{R}^d \mid \lambda x + (1 - \lambda) z, \lambda \in [0, 1]\right\} \subset F.$$

A face F of C is called k-face if $\dim F = k$. Every face is closed.

Definition 2.8 (Extreme point). Let C be a non-empty closed convex set of \mathbb{R}^d . A point $x \in C$ is called an *extreme point* of C if $\{x\}$ is a face. The set of extreme points of C is denoted by ext C.

Definition 2.9 (Exposed face). Let C be a non-empty closed convex set of \mathbb{R}^d . A face F of C of the form

$$F = \left\{ x \in \mathbb{R}^d \mid x \cdot n = a \right\} \cap C,$$

where $\{x \in \mathbb{R}^d \mid x \cdot n = a\}$ is a supporting hyperplane of C, is called *exposed* face.

Here an important result.

Theorem 2.10 (Minkowski's Theorem [1, Thm. 5.10]). Let C be a non-empty compact convex set in \mathbb{R}^d . Then

$$C = \operatorname{conv} (\operatorname{ext} C)$$
.

Next the definition and properties of a polyhedral set.

Definition 2.11 (Polyhedral set). A subset P of \mathbb{R}^d is called *polyhedral set* if Q is the intersection of a finite number of closed half-spaces or $P = \mathbb{R}^d$. Every polyhedral set is closed and convex. A polyhedral set $P \neq \mathbb{R}^d$ has the form

$$P = \bigcap_{k \in \mathcal{K}} \left\{ x \in \mathbb{R}^d \mid x \cdot n_k \le a_k \right\},\tag{1}$$

where \mathcal{K} is a finite set of indices, $n_k \in \mathbb{R}^d \setminus \left\{ \vec{0} \right\}$ and $a_k \in \mathbb{R}$. In (1), it is implicitly assumed that no two closed half-spaces are identical.

Definition 2.12. The representation (1) of P is called *irreducible* if $|\mathcal{K}| = 1$, or $|\mathcal{K}| > 1$ and

$$P \subsetneq \bigcap_{k \in \mathcal{K} \setminus \{j\}} \left\{ x \in \mathbb{R}^d \mid x \cdot n_k \le a_k \right\} \quad \forall \ j \in \mathcal{K}.$$

A representation which is not irreducible is called *reducible*.

Theorem 2.13 ([1, Thm. 8.1]). Let P be a polyhedral set in \mathbb{R}^d with dim P = d and $P \neq \mathbb{R}^d$. Suppose that $|\mathcal{K}| > 1$ in the representation (1) of P. Then (1) is irreducible if and only if

$$\left\{ x \in \mathbb{R}^d \mid x \cdot n_j = a_j \right\} \cap \bigcap_{k \in \mathcal{K} \setminus \{j\}} \left\{ x \in \mathbb{R}^d \mid x \cdot n_k < a_k \right\} \neq \emptyset \quad \forall \ j \in \mathcal{K}.$$

Theorem 2.14 ([1, Thm. 8.2]). Let P be a polyhedral set in \mathbb{R}^d with dim P = d and $P \neq \mathbb{R}^d$. Then

$$\partial P = \bigcup_{k \in \mathcal{K}} \left\{ x \in \mathbb{R}^d \mid x \cdot n_k = a_k \right\} \cap P,$$

each (d-1)-face of P has the form

$$\left\{x \in \mathbb{R}^d \,|\, x \cdot n_j = a_j\right\} \cap P$$

(this implies that the number of (d-1)-faces of P is finite), and each set

$$\{x \in \mathbb{R}^d \mid x \cdot n_i = a_i\} \cap P$$

is a (d-1)-face if and only if the representation (1) of P is irreducible.

Theorem 2.15 ([1, Thm. 8.3]). Let P be a polyhedral set in \mathbb{R}^d and let F be a face of P. Then there is a (d-1)-face of P containing F.

Next the definition and properties of a **polytope**.

Definition 2.16 (Polytope). A polytope is the convex hull of a non-empty finite set of \mathbb{R}^d . Every polytope is compact.

Theorem 2.17 ([1, Thm. 7.1]). Let P be a non-empty subset in \mathbb{R}^d . P is a polytope if and only if P is a compact convex set with a finite number of extreme points.

Theorem 2.18. Let P be a polytope in \mathbb{R}^d . Then

- $P = \operatorname{conv}(\operatorname{ext} P)$;
- every face F of P is also a polytope, and $\operatorname{ext} F = F \cap \operatorname{ext} P$;
- the number of faces of P is finite;
- every face of P is an exposed face.

Theorem 2.19 ([1, Thm. 10.5]). Let P be a polytope in \mathbb{R}^d such that dim P = d and let x be a extreme point of P. Then there are at least d 1-faces of P containing x.

Definition 2.20 (Simple polytope). Let P be a polytope in \mathbb{R}^d such that $\dim P = d$. P is called a simple if for $k = 0, \ldots, d-1$ the number of (d-1)-faces of P containing any k-face of P is equal to d-k.

Theorem 2.21 ([1, Thm. 12.11]). Let P be a polytope in \mathbb{R}^d such that dim P = d. P is simple if and only if each extreme point of P is contained in precisely d (d-1)-faces.

Theorem 2.22 ([1, Thm. 12.12]). Let P be a polytope in \mathbb{R}^d such that $\dim P = d$. P is simple if and only if each extreme point of P is a extreme point of precisely d 1-faces.

Theorem 2.23 ([1, Thm. 12.14]). Let P be a polytope in \mathbb{R}^d such that dim P = d. Suppose that P is simple. Let F_1, \ldots, F_{d-k} be d-k (d-1)-faces of P, where $0 \le k \le d-1$. Let

$$F = \bigcap_{i=1}^{d-k} F_i$$

and assume that $F \neq \emptyset$. Then F is a k-face of P, and F_1, \ldots, F_{d-k} are the only facets of P containg F.

Here the result that connects polyhedral sets and polytopes.

Theorem 2.24 ([1, Thm. 9.2]). Let P be a non-empty subset of \mathbb{R}^d . P is a polytope if and only if P is a bounded polyhedral set.

Notation. Let C be a non-empty closed convex set in \mathbb{R}^d . From now on, the 0-faces, 1-faces, and (d-1)-faces are called vertices, edges, and facets of C, respectively.

3 Barycentric coordinates

Let P be a non-empty bounded polyehedral set, or equivalently a polytope, of dimension d. Assume that P is simple. Let \mathcal{V} be the set of vertices P. From [5]§[6]§, there exist a set of smooth functions $b_v : P \to \mathbb{R}$, with $v \in \mathcal{V}$, called barycentric coordinates with respect to P, satisfying

$$b_v(x) \ge 0 \quad \forall x \in P \text{ and } \forall v \in \mathcal{V},$$
 (2)

$$\sum_{v \in \mathcal{V}} b_v(x) = 1 \quad \forall x \in P, \tag{3}$$

$$\sum_{v \in \mathcal{V}} b_v(x) v = x \quad \forall x \in P. \tag{4}$$

Some properties of these functions are the following.

- 1. Let l be an affine function. Then $l(x) = \sum_{v \in \mathcal{V}} b_v(x) l(v)$ for all $x \in P$.
- 2. Let $v \in \mathcal{V}$ be a vertex of P. Then $b_v(v) = 1$ and $b_v(w) = 0 \ \forall w \in \mathcal{V} \setminus \{v\}$. Moreover, $\forall x \in P \setminus \{v\} \exists w \in \mathcal{V} \setminus \{v\}$ such that $b_w(x) > 0$.

Proof. Let $l: \mathbb{R}^3 \to \mathbb{R}$ be affine function such that l(v) = 0 and l(w) < 0 for all $w \in \mathcal{V} \setminus \{v\}$. Thus, $l^{-1}(\{0\})$ defines a plane that touches P only at v. We have

$$0 = l(v) = \sum_{w \in \mathcal{V}} b_w(v) l(w) = \sum_{w \in \mathcal{V} \setminus \{v\}} b_w(v) l(w)$$

because $v \in l^{-1}(\{0\})$. Now each $b_w(v) \geq 0$ and l(w) < 0. Therfore $b_w(v) = 0$ for all $w \in \mathcal{V} \setminus \{v\}$. Since the coordinate functions sum 1, $b_v(v) = 1$. Let $x \in P \setminus \{v\}$. Then

$$0 > l(x) = \sum_{w \in \mathcal{V} \setminus \{v\}} b_w(x) l(w).$$

If $b_w(x) = 0$ for all $w \in \mathcal{V} \setminus \{v\}$, then l(x) = 0.

3. Let e be a edge of P and v, w be its vertices $(\overline{e} = e \cup \{v, w\})$. Then $b_v(x) + b_w(x) = 1$ and $b_u(x) = 0$ for all $u \in \mathcal{V} \setminus \{v, w\}$, for all $x \in e$. Moreover, for all $x \in P \setminus \overline{e}$ there exists at least one vertex $u \in \mathcal{V} \setminus \{v, w\}$ such that $b_u(x) > 0$. Also

$$b_v(x) = \frac{\langle x - w, v - w \rangle}{|\overline{e}|^2}, \quad b_w(x) = \frac{\langle x - v, w - v \rangle}{|\overline{e}|^2}.$$

Therefore, $b_v(x), b_w(x) > 0$ for all $x \in e$.

Proof. Let $l: \mathbb{R}^3 \to \mathbb{R}$ be affine function such that $l(\overline{e}) = 0$ and l(u) < 0 for all $u \in \mathcal{V} \setminus \{v, w\}$. Thus, $l^{-1}(\{0\})$ defines a plane that touches P only at \overline{e} . We have

$$0 = l(x) = \sum_{u \in \mathcal{V}} b_u(x) l(u) = \sum_{u \in \mathcal{V} \setminus \{v, w\}} b_w(x) l(u) \quad \forall x \in e$$

because $\{v, w\} \subset \overline{e} \subset l^{-1}(\{0\})$. Now each $b_u(x) \geq 0$ and l(u) < 0. Therfore $b_u(x) = 0$ for all $u \in \mathcal{V} \setminus \{v, w\}$. Since the coordinate functions sum $1, b_v(x) + b_w(x) = 1$. Let $x \in P \setminus \overline{e}$. Then

$$0 > l(x) = \sum_{u \in \mathcal{V} \setminus \{v, w\}} b_u(x) l(u).$$

If $b_u(x) = 0$ for all $u \in \mathcal{V} \setminus \{v, w\}$, then l(x) = 0. Note that

$$x - v = \frac{\|x - v\|}{|\overline{e}|} (w - v), \quad x - w = \frac{\|x - w\|}{|\overline{e}|} (v - w) \quad \forall x \in e.$$

Since $x = b_v(x) v + b_w(x) w$ for all $x \in e$,

$$x = b_v(x) v + (1 - b_v(x)) w, \quad x = (1 - b_w(x)) v + b_w(x) w$$

and then

$$\frac{\|x-w\|}{|\overline{e}|}(v-w) = b_v(x)(v-w), \quad \frac{\|x-v\|}{|\overline{e}|}(w-v) = b_w(x)(w-v).$$

From this we deduce that

$$b_{v}\left(x\right) = \frac{\left\|x - w\right\|}{\left|\overline{e}\right|} = \frac{\left\|x - w\right\| \left\|v - w\right\|}{\left|\overline{e}\right|^{2}} = \frac{\left|\left\langle x - w, v - w\right\rangle\right|}{\left|\overline{e}\right|^{2}} = \frac{\left\langle x - w, v - w\right\rangle}{\left|\overline{e}\right|^{2}}$$

and

$$b_{w}\left(x\right) = \frac{\left\|x - v\right\|}{\left|\overline{e}\right|} = \frac{\left\|x - v\right\| \left\|w - v\right\|}{\left|\overline{e}\right|^{2}} = \frac{\left|\langle x - v, w - v\rangle\right|}{\left|\overline{e}\right|^{2}} = \frac{\langle x - v, w - v\rangle}{\left|\overline{e}\right|^{2}}.$$

4. Let f be a face of P and W be the set of its vertices $(\overline{f} = f \cup W \cup \{\text{edges}\})$. Then $\sum_{w \in W} b_w(x) = 1$ and $b_v(x) = 0$ for all $v \in V \setminus W$, for all $x \in f$. Moreover, for all $x \in P \setminus \overline{f}$ there exists at least one vertex $v \in V \setminus W$ such that $b_v(x) > 0$.

Proof. Let $l: \mathbb{R}^3 \to \mathbb{R}$ be affine function such that $l(\overline{f}) = 0$ and l(v) < 0 for all $v \in \mathcal{V} \setminus \mathcal{W}$. Thus, $l^{-1}(\{0\})$ defines a plane that touches P only at \overline{f} . We have

$$0 = l(x) = \sum_{v \in \mathcal{V}} b_v(x) l(v) = \sum_{v \in \mathcal{V} \setminus \mathcal{W}} b_v(x) l(v) \quad \forall x \in f$$

because $W \subset \overline{f} \subset l^{-1}(\{0\})$. Now each $b_v(x) \geq 0$ and l(v) < 0. Therfore $b_v(x) = 0$ for all $v \in \mathcal{V} \setminus \mathcal{W}$. Since the coordinate functions sum $1, \sum_{w \in \mathcal{W}} b_w(x) = 1$. Let $x \in P \setminus \overline{f}$. Then

$$0 > l(x) = \sum_{v \in \mathcal{V} \setminus \mathcal{W}} b_v(x) l(v).$$

If $b_v(x) = 0$ for all $v \in \mathcal{V} \setminus \mathcal{W}$, then l(x) = 0.

5. The coordinate functions $\{b_v\}_{v\in\mathcal{V}}$ are linearly independent.

Proof. Let $\{\alpha_v\}_{v\in\mathcal{V}}$ be real numbers such that

$$\sum_{v \in \mathcal{V}} \alpha_v b_v(x) = 0 \quad \forall x \in P.$$

Setting $x = w \in \mathcal{V}$ it follows that $\alpha_w = \alpha_w b_w(w) = 0$ (see property 1.).

4 Polyhedral domain and deformation function

Let K be a finite set of indices.

Definition 4.1. For each $k \in \mathcal{K}$, let $\widehat{\phi}_k : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$ be the function defined by

$$\widehat{\phi}_k(x,t) := x \cdot n_k(t) - a_k(t),$$

where $n_k : \mathbb{R} \to S^{d-1}$ and $a_k : \mathbb{R} \to \mathbb{R}$ are C^{∞} functions. Denote $n_k := n_k(0)$, $a_k := a_k(0)$ and $\hat{\phi}_k(\cdot) := \hat{\phi}_k(\cdot, 0)$.

Definition 4.2. For each $k \in \mathcal{K}$ and $t \in \mathbb{R}$, let $\omega_k(t)$ be the affine set defined by

$$\omega_k(t) := \{x \in \mathbb{R}^d \mid \widehat{\phi}_k(x,t) < 0\}.$$

Denote $\omega_k := \omega_k(0)$. Observe that $\omega_k(t)$ is one of the two open half-spaces determined by the hyperplane

$$\left\{x \in \mathbb{R}^d \mid x \cdot n_k(t) = a_k(t)\right\}.$$

Definition 4.3. For each $t \in \mathbb{R}$, let Ω_t be the convex set of \mathbb{R}^d defined by

$$\Omega_{t} \coloneqq \bigcap_{k \in \mathcal{K}} \omega_{k} \left(t \right).$$

The set Ω_t is open because it is the finite intersection of open half-spaces. Denote

$$\Omega := \Omega_0 = \bigcap_{k \in \mathcal{K}} \omega_k. \tag{5}$$

As

$$\overline{\Omega} = \bigcap_{k \in \mathcal{K}} \overline{\omega_k} = \bigcap_{k \in \mathcal{K}} \left\{ x \in \mathbb{R}^d \mid x \cdot n_k \le a_k \right\}$$

is a finite intersection of closed half-spaces, $\overline{\Omega}$ is a polyhedral set by definition (see Definition 2.11).

Consider the following four assumptions:

A1. $a_k > 0$ for all $k \in \mathcal{K}$. This assumption implies the following:

(a) $\vec{0} \in \Omega$. Indeed $\hat{\phi}_k(\vec{0},0) = -a_k < 0$ and hence

$$\vec{0} \in \omega_k = \left\{ x \in \mathbb{R}^d \mid \widehat{\phi}_k \left(x, 0 \right) < 0 \right\} \quad \forall \ k \in \mathcal{K}.$$

Thus $\overline{\Omega}$ is not-empty.

(b) $\dim \overline{\Omega} = d$. Indeed, since $\vec{0}$ is a interior point of $\overline{\Omega}$, there exists a point $y \in \overline{\Omega} \setminus \{\vec{0}\}$ in the line segment joining $\vec{0}$ and any point $x \in \mathbb{R}^d$. Thus $x \in \text{aff}\{\vec{0},y\}$, and hence $x \in \text{aff}\overline{\Omega}$ (because $\text{aff}\{\vec{0},y\} \subset \text{aff}\overline{\Omega}$). Therefore $\mathbb{R}^d \subset \text{aff}\overline{\Omega}$. It follows that $\text{aff}\overline{\Omega} = \mathbb{R}^d$ and $\dim (\text{aff}\overline{\Omega}) = \dim \mathbb{R}^d = d$.

- **A2**. There exists a constant R > 0 such that $\overline{\Omega} \subset B(\vec{0}, R)$. This assumption implies the following:
 - (a) $\overline{\Omega}$ is a polytope. Indeed, as $\overline{\Omega}$ is not-empty polyhedral set, if $\overline{\Omega}$ is bounded, then $\overline{\Omega}$ is a polytope (see Theorem 2.17). Hence, there exists a finite set $\mathcal V$ of vertices (0-faces) of $\overline{\Omega}$ and

$$\overline{\Omega}=\operatorname{conv}\mathcal{V}$$

(see Theorems 2.17 and 2.18).

- (b) $\partial \Omega = \bigcup_{k \in \mathcal{K}} \partial \omega_k \cap \overline{\Omega}$ (see Theorem 2.14).
- (c) Moreover, if $\overline{\Omega}$ is bounded, $|\mathcal{K}|$ must be greater than 1. In fact, since $\overline{\Omega}$ is a polytope and dim $\overline{\Omega}=d$, $\overline{\Omega}$ has at least d+1 (d-1)-faces (Corollary 9.4.).
- A3. Assume that

$$\left\{x \in \mathbb{R}^{d} \mid \widehat{\phi}_{j}\left(x,0\right) = 0, \, \widehat{\phi}_{k}\left(x,0\right) < 0 \,\,\forall \,\, k \in \mathcal{K} \backslash \left\{j\right\}\right\} \neq \emptyset \quad \forall \,\, j \in \mathcal{K}.$$

This assumption implies the following:

- (a) As $\overline{\Omega}$ is bounded $(\overline{\Omega} \neq \mathbb{R}^d)$, $|\mathcal{K}| > 1$, dim $\overline{\Omega} = d$, this assumption implies that the representation (5) of $\overline{\Omega}$ is irreducible (see Theorem 2.13).
- (b) The (d-1)-faces of $\overline{\Omega}$ are the sets $\partial \omega_k \cap \overline{\Omega}$, $k \in \mathcal{K}$ (see Theorem 2.14).

Note that

$$\left\{x \in \mathbb{R}^{d} \mid \widehat{\phi}_{j}\left(x,0\right) = 0, \ \widehat{\phi}_{k}\left(x,0\right) < 0 \ \forall \ k \in \mathcal{K} \setminus \left\{j\right\}\right\} = \partial \omega_{j} \cap \bigcap_{k \in \mathcal{K} \setminus \left\{j\right\}} \omega_{k}.$$

- **A4**. Each vertex of $\overline{\Omega}$ is contained in precisely d (d-1)-faces.
 - (a) First, recall that for all $v \in \mathcal{V}$ there is $k \in \mathcal{K}$ such that $v \in \partial \omega_k$ (see Theorem 2.15), so, this is a precisely an assumption.
 - (b) Given $v \in \mathcal{V}$, denote by \mathcal{K}_v the subset of \mathcal{K} such that $\{\partial \omega_k \cap \overline{\Omega} \mid k \in \mathcal{K}_v\}$ are the d (d-1)-faces containing v. This assumption imposes that $|\mathcal{K}_v| = d$. Thus

$$v \in \bigcap_{k \in \mathcal{K}_v} \partial \omega_k \cap \overline{\Omega}$$

and

$$v \notin \partial \omega_k \quad \forall \ k \in \mathcal{K} \backslash \mathcal{K}_v.$$

(c) Furthermore, as $\overline{\Omega}$ is a polytope and $\dim \overline{\Omega} = d$, this assumption implies that $\overline{\Omega}$ is simple (see Theorem 2.21), and hence $\bigcap_{k \in \mathcal{K}_v} \partial \omega_k \cap \overline{\Omega}$ is a single point (see Theorem 2.23). As $v \in \bigcap_{k \in \mathcal{K}_v} \partial \omega_k \cap \overline{\Omega}$ by assumption, it follows that

$$\{v\} = \bigcap_{k \in \mathcal{K}_v} \partial \omega_k \cap \overline{\Omega}. \tag{6}$$

The non-degeneracy of vertices is a consequence of Assumption A4.

Proposition 4.4. rank $(n_k^\top)_{k \in \mathcal{K}_v} = d$ for all $v \in \mathcal{V}$.

Proof. Let $v \in \mathcal{V}$. Suppose that there exists $w \in \mathbb{R}^d$ such that $w \neq \vec{0}$ and $n_k \cdot w = 0$ for all $k \in \mathcal{K}_v$. Inmediately, we have $n_k \cdot (v + \lambda w) = a_k$ for all $k \in \mathcal{K}_v$ and all $\lambda \in \mathbb{R}$. That is,

$$v + \lambda w \in \partial \omega_k \quad \forall \ k \in \mathcal{K}_v, \ \lambda \in \mathbb{R}.$$

Since $n_k v < a_k$ for all $k \in \mathcal{K} \setminus \mathcal{K}_v$ ($v \notin \partial \omega_k$ for all $k \in \mathcal{K} \setminus \mathcal{K}_v$ but $v \in \overline{\Omega}$), there exists λ such that

$$\lambda < \frac{a_k - n_k v}{|n_k \cdot w|}$$

for all $k \in \mathcal{K} \setminus \mathcal{K}_v$ such that $n_k \cdot w \neq 0$. It follows that

$$\lambda n_k \cdot w \le \lambda |n_k \cdot w| < a_k - n_k v$$

and then

$$n_k \cdot (v + \lambda w) < a_k$$

for all $k \in \mathcal{K} \setminus \mathcal{K}_v$. That is,

$$v + \lambda w \in \omega_k \quad \mathcal{K} \backslash \mathcal{K}_v.$$

Hence $v + \lambda w \in \overline{\Omega}$ and $v + \lambda w \in \partial \omega_k$ for all $k \in \mathcal{K}_v$. This contradicts (6). Therefore $n_k \cdot w = 0$ for all $k \in \mathcal{K}_v$ implies that $w = \vec{0}$.

Proposition 4.5. $\exists \ \tau > 0 \ such \ that \ \forall \ v \in \mathcal{V} \ \exists ! \ z_v : (-\tau, \tau) \to \mathbb{R}^d \ satisfying \ z_v (0) = v \ and$

$$\partial \omega_{i}(t) \cap \partial \omega_{j}(t) \cap \partial \omega_{k}(t) = \{z_{v}(t)\} \quad \forall t \in (-\tau, \tau),$$

where $\mathcal{I}_v = \{i, j, k\}$. Moreover, each z_v is C^{∞} on $(-\tau, \tau)$ and

$$z'_{v}(0) = (n_{i}, n_{j}, n_{k})^{-\top} \left(\left(a'_{i}(0), a'_{j}(0), a'_{k}(0) \right)^{\top} - \left(n'_{i}(0), n'_{j}(0), n'_{k}(0) \right)^{\top} v \right).$$

Proof. $F: \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}$

$$F(x,t) = \begin{pmatrix} \widehat{\phi}_{i}(x,t) \\ \widehat{\phi}_{j}(x,t) \\ \widehat{\phi}_{k}(x,t) \end{pmatrix}$$

$$F(v,0) = 0$$

$$D_{x}F(x,t) = \begin{pmatrix} \nabla_{x}\widehat{\phi}_{i}(x,t)^{\top} \\ \nabla_{x}\widehat{\phi}_{j}(x,t)^{\top} \\ \nabla_{x}\widehat{\phi}_{k}(x,t)^{\top} \end{pmatrix} = \begin{pmatrix} n_{i}(t)^{\top} \\ n_{j}(t)^{\top} \\ n_{k}(t)^{\top} \end{pmatrix}$$

$$D_{x}F(v,0) = \begin{pmatrix} n_{i}^{\top} \\ n_{j}^{\top} \\ n_{k}^{\top} \end{pmatrix} = (n_{k})_{k\in\mathcal{I}_{v}}^{\top}$$

$$\partial_{t}F(x,t) = \begin{pmatrix} \partial_{t}\widehat{\phi}_{i}(x,t) \\ \partial_{t}\widehat{\phi}_{j}(x,t) \\ \partial_{t}\widehat{\phi}_{k}(x,t) \end{pmatrix} = \begin{pmatrix} x \cdot n'_{i}(t) - a'_{i}(t) \\ x \cdot n'_{j}(t) - a'_{j}(t) \\ x \cdot n'_{k}(t) - a'_{k}(t) \end{pmatrix}$$

$$\partial_{t}F(v,0) = \begin{pmatrix} v \cdot n'_{i}(0) - a'_{i}(0) \\ v \cdot n'_{j}(0) - a'_{j}(0) \\ v \cdot n'_{k}(0) - a'_{k}(0) \end{pmatrix} = \begin{pmatrix} n'_{i}(0)^{\top} \\ n'_{j}(0)^{\top} \\ n'_{k}(0)^{\top} \end{pmatrix} v - \begin{pmatrix} a'_{i}(0) \\ a'_{j}(0) \\ a'_{k}(0) \end{pmatrix}$$

(non-degeneracy of edges) If n_i, n_j are the normal vectors of the faces of $\overline{\Omega}$ containing an edge, then rank $(n_i, n_j)^{\top} = 2$ (non-degeneracy of edges). Moreover, given $k \in \mathcal{K}$, $v \cdot n_k < a_k$ for all $v \in \mathcal{V} \setminus \mathcal{W}$, where \mathcal{W} is the subset of vertices contained in $\{x \in \mathbb{R}^3 \mid x \cdot n_k - a_k = 0\}$.

Proposition 4.6. $\overline{\Omega_t}$ is simple convex polyhedral for small t.

Proof. Since $a_k(t)$ is smooth, there exists $\tau_0 > 0$ such that $a_k(t) > 0$ for all $t \in (-\tau_0, \tau_0)$. Let n_i, n_j, n_k be the normal vectors of the faces of $\overline{\Omega}$ containing a vertex v. As rank $(n_i, n_j, n_k)^{\top} = 3$, we can suppose that

$$\det(n_i(0), n_j(0), n_k(0))^{\top} > 0.$$

Since the determinant is a continuous functions, there exists $\tau_v > 0$ such that

$$\det\left(n_{i}\left(t\right),n_{j}\left(t\right),n_{k}\left(t\right)\right)^{\top}>0\quad\forall\ t\in\left(-\tau_{v},\tau_{v}\right),$$

and then rank $(n_i(t), n_j(t), n_k(t))^{\top} = 3$ for all $t \in (-\tau_v, \tau_v)$. Let n_i, n_j be the normal vectors of the faces of $\overline{\Omega}$ containing an edge e. As rank $(n_i, n_j)^{\top} = 2$ if and only if $-1 < n_i \cdot n_j < 1$, we have

$$1 - |n_i(0) \cdot n_j(0)| > 0.$$

Since the function $\lambda \mapsto 1 - |\lambda|$ is continuous, there exists $\tau_e > 0$ such that

$$1 - |n_i(t) \cdot n_j(t)| > 0 \quad \forall \ t \in (-\tau_e, \tau_e),$$

and then rank $(n_i(t), n_j(t))^{\top} = 2$ for all $t \in (-\tau_e, \tau_e)$. Let $\tau \leq \tau_0$, $\min_v \tau_v$, $\min_e \tau_e$. Thus, the domain $\overline{\Omega_t}$ is the intersection of halfspaces $\overline{\omega_k(t)}$ containing to the origen which form non-degenerate vertices and edges for all $t \in (-\tau, \tau)$. Therefore $\overline{\Omega_t}$ is a simple convex polyhedral for all $t \in (-\tau, \tau)$.

Remark 4.7. The polyhedral Ω_t in Theorem has the same number of vertices, edges and faces that Ω .

In particular,

$$\int_{\partial\Omega} \frac{\left|\partial_{n}u\right|^{2}}{2} \theta_{n} = \sum_{k \in \mathcal{K}} \dot{a}_{k}\left(0\right) \int_{\partial\omega_{k} \cap \overline{\Omega}} \frac{\left|\partial_{n}u\right|^{2}}{2} - \int_{\partial\omega_{k} \cap \overline{\Omega}} \frac{\left|\partial_{n}u\right|^{2}}{2} x \cdot \dot{n}_{k}\left(0\right)$$

Case 2D:

$$n_{k}(t) = \begin{pmatrix} \cos(\alpha_{k} + t\delta\alpha_{k}) \\ \sin(\alpha_{k} + t\delta\alpha_{k}) \end{pmatrix},$$

$$a_{k}(t) = (\lambda_{k} + t\delta\lambda_{k}) n_{k}(t) \cdot n_{k}(0).$$

$$\dot{n}_{k}(0) = \delta\alpha_{k} \begin{pmatrix} -\sin(\alpha_{k}) \\ \cos(\alpha_{k}) \end{pmatrix}$$

$$\dot{a}_{k}(0) = \delta\lambda_{k}$$

$$\int_{\partial\Omega} \frac{|\partial_{n}u|^{2}}{2} \theta_{n} = \sum_{k \in \mathcal{K}} \delta\lambda_{k} \int_{f_{k}} \frac{|\partial_{n}u|^{2}}{2} - \delta\alpha_{k} \int_{f_{k}} \frac{|\partial_{n}u|^{2}}{2} x \cdot \begin{pmatrix} -\sin(\alpha_{k}) \\ \cos(\alpha_{k}) \end{pmatrix}$$

Caso 3D:

$$n_{k}(t) = \begin{pmatrix} \cos(\alpha_{k} + t\delta\alpha_{k})\sin(\beta_{k} + t\delta\beta_{k}) \\ \sin(\alpha_{k} + t\delta\alpha_{k})\sin(\beta_{k} + t\delta\beta_{k}) \end{pmatrix},$$

$$a_{k}(t) = (\lambda_{k} + t\delta\lambda_{k})\sin(\beta_{k} + t\delta\beta_{k}) \\ a_{k}(t) = (\lambda_{k} + t\delta\lambda_{k})n_{k}(t) \cdot n_{k}(0).$$

$$\dot{n}_{k}(0) = \delta\alpha_{k} \begin{pmatrix} -\sin(\alpha_{k}) \\ \cos(\alpha_{k}) \end{pmatrix}$$

$$\dot{n}_{k}(0) = \delta\alpha_{k} \begin{pmatrix} -\sin(\alpha_{k}) \\ \cos(\alpha_{k}) \sin(\beta_{k}) \\ 0 \end{pmatrix} + \delta\beta_{k} \begin{pmatrix} \cos(\alpha_{k})\cos(\beta_{k}) \\ \sin(\alpha_{k})\cos(\beta_{k}) \\ -\sin(\beta_{k}) \end{pmatrix}$$

$$\dot{a}_{k}(0) = \delta\lambda_{k}$$

$$\int_{\partial\Omega} \frac{|\partial_{n}u|^{2}}{2} \theta_{n} = \sum_{k \in \mathcal{K}} \delta\lambda_{k} \int_{f_{k}} \frac{|\partial_{n}u|^{2}}{2} - \delta\alpha_{k} \int_{f_{k}} \frac{|\partial_{n}u|^{2}}{2} x \cdot \mathbf{i}_{k} - \delta\beta_{k} \int_{f_{k}} \frac{|\partial_{n}u|^{2}}{2} x \cdot \mathbf{j}_{k}$$

$$\delta\lambda_{k} = -\int_{f_{k}} \frac{|\partial_{n}u|^{2}}{2} x \cdot \mathbf{i}_{k}$$

$$\delta\beta_{k} = \int_{f_{k}} \frac{|\partial_{n}u|^{2}}{2} x \cdot \mathbf{j}_{k}$$

 $\int_{\partial \Omega} \frac{\left|\partial_n u\right|^2}{2} \theta_n < 0$

$$\lambda_k^1 = \lambda_k^0 - \tilde{t} \int_{f_k} \frac{|\partial_n u|^2}{2}$$

$$\alpha_k^1 = \alpha_k^0 + \tilde{t} \int_{f_k} \frac{|\partial_n u|^2}{2} x \cdot \mathbf{i}_k$$

$$\beta_k^1 = \beta_k^0 + \tilde{t} \int_{f_k} \frac{|\partial_n u|^2}{2} x \cdot \mathbf{j}_k$$

Assumptions.

• Given $k \in \mathcal{K}$, $\overline{\Omega} \backslash \partial \omega_k \subset \omega_k$.

Let $v \in \mathcal{V}$ and n_i, n_j, n_k be the normal vectors of the faces of $\overline{\Omega}$ containing v. Then $\widehat{\phi}_i(v,0) = \widehat{\phi}_j(v,0) = \widehat{\phi}_k(v,0) = 0$. Since rank $(n_i, n_j, n_k)^{\top} = 3$, there exist a τ_v and a unique function $z_v : (-\tau_v, \tau_v) \to \mathbb{R}^3$ such that $z_v(0) = v$ and

$$\widehat{\phi}_{i}\left(z_{v}\left(t\right),t\right)=\widehat{\phi}_{j}\left(z_{v}\left(t\right),t\right)=\widehat{\phi}_{k}\left(z_{v}\left(t\right),t\right)=0\quad\forall\ t\in\left(-\tau_{v},\tau_{v}\right).$$

$$e_{i,j}(t) := \left\{ x \in \mathbb{R}^3 \,\middle|\, \widehat{\phi}_i(x,t) = \widehat{\phi}_j(x,t) = 0, \,\, \widehat{\phi}_k(x,t) < 0 \,\,\forall \, k \in \mathcal{K} \setminus \{i,j\} \right\},$$
$$= \partial \omega_i(t) \cap \partial \omega_j(t) \cap \left(\bigcap_{k \in \mathcal{K} \setminus \{i,j\}} \omega_k(t) \right)$$

$$f_{k}(t) := \left\{ x \in \mathbb{R}^{3} \middle| \widehat{\phi}_{k}(x,t) = 0, \ \widehat{\phi}_{j}(x,t) < 0 \ \forall j \in \mathcal{K} \setminus \{k\} \right\}.$$
$$= \partial \omega_{k}(t) \cap \left(\bigcap_{j \in \mathcal{K} \setminus \{k\}} \omega_{j}(t) \right)$$

Denote $\omega_k := \omega_k(0)$, $e_{k,k'} := e_{k,k'}(0)$, $f_k := f_k(0)$ and $\Omega := \Omega_0$.

Definition 4.8. D

Theorem 4.9. There exist $\tau > 0$ and a mapping $T : \overline{\Omega} \times (-\tau, \tau) \to \mathbb{R}^d$ satisfying $T(\Omega, t) = \Omega_t$, $T(\partial \Omega, t) = \partial \Omega_t$ and such that $T(\cdot, t) : \overline{\Omega} \to \overline{\Omega_t}$ is bi-Lipschitz for all $t \in (-\tau, \tau)$. Furthermore, we have

$$\theta(x) \cdot \nu(x) = \dot{a}_k(0) - x \cdot \dot{n}_k(0) \quad \forall \ x \in \text{int } \partial \omega_k \cap \overline{\Omega}, \tag{7}$$

where $\theta := \partial_t T(\cdot, 0)$ and ν is the outward unit normal vector to Ω .

Proof. Let $T: \overline{\Omega} \times (-\tau, \tau) \to \mathbb{R}^3$ be the vector-valued function defined by

$$T(x,t) := \sum_{v \in \mathcal{V}} b_v(x) z_v(t).$$

Let $v \in \mathcal{V}$. We have

$$T(v,t) = \sum_{w \in \mathcal{V}} b_w(v) z_w(t) = \sum_{w \in \mathcal{V}} \delta_{wv} z_w(t) = z_v(t).$$

Let $e_{i,j}$ be an edge and v, w be its vertices. Let $x \in e_{i,j}$. We have

$$T(x,t) = \sum_{u \in \mathcal{V}} b_u(x) z_u(t) = b_v(x) z_v(t) + b_w(x) z_w(t)$$

with $b_v(x)$, $b_w(x) > 0$. Thus, given $k \in \mathcal{K}$ it follows that

$$\hat{\phi}_k\left(T\left(x,t\right),t\right) = b_v\left(x\right)z_v\left(t\right) \cdot n_k\left(t\right) + b_w\left(x\right)z_w\left(t\right) \cdot n_k\left(t\right) - a_k\left(t\right).$$

If $k \in \{i, j\}$, then

$$\hat{\phi}_k(T(x,t),t) = (b_v(x) + b_w(x)) a_k(t) - a_k(t) = 0$$

because $z_v(t)$, $z_w(t) \in \partial \omega_k(t)$. Hence $T(e_{i,j},t) \subset \partial \omega_i(t) \cap \partial \omega_j(t)$. If $k \in \mathcal{K} \setminus \{i,j\}$ we have three cases: $\partial \omega_k(t)$ is the third plane containing to $z_v(t)$, $\partial \omega_k(t)$ is the third plane containing to $z_w(t)$ and $\partial \omega_k(t)$ is a plane that does not contain neither $z_v(t)$ and $z_v(t)$. In the first case

$$\hat{\phi}_{k} (T (x, t), t) = b_{v} (x) a_{k} (t) + b_{w} (x) z_{w} (t) \cdot n_{k} (t) - a_{k} (t)$$

$$< b_{v} (x) a_{k} (t) + b_{w} (x) a_{k} (t) - a_{k} (t)$$

$$= (b_{v} (x) + b_{w} (x)) a_{k} (t) - a_{k} (t) = 0.$$

In the second case

$$\hat{\phi}_{k}(T(x,t),t) = b_{v}(x) z_{v}(t) \cdot n_{k}(t) + b_{w}(x) a_{k}(t) - a_{k}(t)$$

$$< b_{v}(x) a_{k}(t) + b_{w}(x) a_{k}(t) - a_{k}(t)$$

$$= (b_{v}(x) + b_{w}(x)) a_{k}(t) - a_{k}(t) = 0.$$

Finally, in the third case,

$$\hat{\phi}_{k} (T (x, t), t) = b_{v} (x) z_{v} (t) \cdot n_{k} (t) + b_{w} (x) z_{w} (t) \cdot n_{k} (t) - a_{k} (t)$$

$$< b_{v} (x) a_{k} (t) + b_{w} (x) a_{k} (t) - a_{k} (t)$$

$$= (b_{v} (x) + b_{w} (x)) a_{k} (t) - a_{k} (t) = 0.$$

Hence $T(e_{i,j},t) \subset (\bigcap_{k \in \mathcal{K} \setminus \{i,j\}} \omega_k(t))$. We conclude that $T(e_{i,j},t) \subset e_{i,j}(t)$. Let $y \in e_{i,j}(t)$. Then $y = \lambda z_v(t) + (1-\lambda) z_w(t)$ for some $0 < \lambda < 1$. Let $x = w + \lambda (v - w)$. We have

$$\begin{split} T\left(x,t\right) &= b_{v}\left(x\right)z_{v}\left(t\right) + b_{w}\left(x\right)z_{w}\left(t\right) \\ &= \frac{\left\langle x - w, v - w\right\rangle}{\left|\overline{e_{i,j}}\right|^{2}}z_{v}\left(t\right) + \frac{\left\langle x - v, w - v\right\rangle}{\left|\overline{e_{i,j}}\right|^{2}}z_{w}\left(t\right) \\ &= \frac{\left\langle \lambda\left(v - w\right), v - w\right\rangle}{\left|\overline{e_{i,j}}\right|^{2}}z_{v}\left(t\right) + \frac{\left\langle \left(1 - \lambda\right)\left(w - v\right), w - v\right\rangle}{\left|\overline{e_{i,j}}\right|^{2}}z_{w}\left(t\right) \\ &= \lambda \frac{\left\langle v - w, v - w\right\rangle}{\left|\overline{e_{i,j}}\right|^{2}}z_{v}\left(t\right) + \left(1 - \lambda\right)\frac{\left\langle w - v, w - v\right\rangle}{\left|\overline{e_{i,j}}\right|^{2}}z_{w}\left(t\right) \\ &= y. \end{split}$$

Therefore, $T(e_{i,j},t) = e_{i,j}(t)$. Moreover, if $T(x_1,t) = T(x_2,t)$ for $x_1, x_2 \in e_{i,j}$,

$$b_{v}(x_{1}) z_{v}(t) + (1 - b_{v}(x_{1})) z_{w}(t) = b_{v}(x_{2}) z_{v}(t) + (1 - b_{v}(x_{2})) z_{w}(t)$$

$$b_{v}(x_{1}) (z_{v}(t) - z_{w}(t)) + z_{w}(t) = b_{v}(x_{2}) (z_{v}(t) - z_{w}(t)) + z_{w}(t)$$

$$b_{v}(x_{1}) (z_{v}(t) - z_{w}(t)) = b_{v}(x_{2}) (z_{v}(t) - z_{w}(t))$$

It follows that $b_v(x_1) = b_v(x_2)$, that is

$$\frac{\langle x_1 - w, v - w \rangle}{|\overline{e_{i,j}}|^2} = \frac{\langle x_2 - w, v - w \rangle}{|\overline{e_{i,j}}|^2}$$
$$\langle x_1 - w, v - w \rangle = \langle x_2 - w, v - w \rangle$$

and $\langle x_1 - x_2, v - w \rangle = 0$. Since $x_1 - x_2$ is parallel to v - w, $x_1 = x_2$. Therefore T is bijective on $e_{i,j}$. Let f_k be a face and \mathcal{W} be the set of its vertices. Let $x \in f_k$. We have

$$T(x,t) = \sum_{w \in \mathcal{V}} b_w(x) z_w(t) = \sum_{w \in \mathcal{W}} b_w(x) z_w(t)$$

and

$$\hat{\phi}_{k}\left(T\left(x,t\right),t\right) = \sum_{w \in \mathcal{W}} b_{w}\left(x\right) z_{w}\left(t\right) \cdot n_{k}\left(t\right) - a_{k}\left(t\right)$$
$$= \left(\sum_{w \in \mathcal{W}} b_{w}\left(x\right)\right) a_{k}\left(t\right) - a_{k}\left(t\right) = 0.$$

Hence $T(f_k, t) \subset \partial \omega_k(t)$. Let $j \in \mathcal{K} \setminus \{k\}$. There are two cases: $\partial \omega_j(t)$ is a plane touching f_k on the edge with vertices u, v and otherwise. In the first case, there are at least one vertex $w \in \mathcal{W}$ such that $w \in \omega_j(t)$ (it is because a face has least one vertex out the plane $\partial \omega_j(t)$). Then

$$\begin{split} \hat{\phi}_{j}\left(T\left(x,t\right),t\right) &= \sum_{w \in \mathcal{W}} b_{w}\left(x\right) z_{w}\left(t\right) \cdot n_{j}\left(t\right) - a_{j}\left(t\right) \\ &= \sum_{w \in \mathcal{W} \backslash \{u,v\}} b_{w}\left(x\right) z_{w}\left(t\right) \cdot n_{j}\left(t\right) + \left(b_{u}\left(x\right) + b_{v}\left(x\right)\right) a_{j}\left(t\right) - a_{j}\left(t\right) \\ &= \sum_{w \in \mathcal{W} \backslash \{u,v\}} b_{w}\left(x\right) \left(z_{w}\left(t\right) \cdot n_{j}\left(t\right) - a_{j}\left(t\right)\right) + a_{j}\left(t\right) - a_{j}\left(t\right) \\ &= \sum_{w \in \mathcal{W} \backslash \{u,v\}} b_{w}\left(x\right) \left(z_{w}\left(t\right) \cdot n_{j}\left(t\right) - a_{j}\left(t\right)\right) \end{split}$$

since $u \cdot n_j(t) = v \cdot n_j(t) = a_j(t)$. We know that $z_w(t) \cdot n_j(t) - a_j(t) < 0$ for all $w \in \mathcal{W} \setminus \{u, v\}$. Is there some $w \in \mathcal{W}$ such that $b_w(x) > 0$? Yes! Indeed, since x is not in the edge of vertices u, v, there exists some $w \in \mathcal{V} \setminus \{u, v\}$ such that $b_w(x) > 0$. But, since x is in the face f_k , $b_w(x) = 0$ for all $w \in \mathcal{V} \setminus \mathcal{W}$. Then there is some $w \in \mathcal{W} \setminus \{u, v\}$ such that $b_w(x) > 0$. Thus

$$\hat{\phi}_{j}\left(T\left(x,t\right),t\right)=\sum_{w\in\mathcal{W}\setminus\left\{ u,v\right\} }b_{w}\left(x\right)\left(z_{w}\left(t\right)\cdot n_{j}\left(t\right)-a_{j}\left(t\right)\right)<0.$$

In the second case,

$$\hat{\phi}_{j}\left(T\left(x,t\right),t\right) = \sum_{w \in \mathcal{W}} b_{w}\left(x\right) z_{w}\left(t\right) \cdot n_{j}\left(t\right) - a_{j}\left(t\right)$$

$$= \sum_{w \in \mathcal{W}} b_{w}\left(x\right) \left(z_{w}\left(t\right) \cdot n_{j}\left(t\right) - a_{j}\left(t\right)\right)$$

We know that $z_w(t) \cdot n_j(t) - a_j(t) < 0$. If all $b_w(x) = 0$ for all $w \in \mathcal{W}$ then $x = 0 \in \partial \omega_k(t)$. Comtradiction!

$$\hat{\phi}_{j}\left(T\left(x,t\right),t\right)<0$$

We conclude that $T(x,t) \in \partial \omega_k(t) \cap (\cap_{j \in \mathcal{K} \setminus \{k\}} \omega_j(t))$, that is, $T(f_k,t) \subset f_k(t)$. Therefore

$$T\left(\overline{f_k},t\right) \subset \overline{f_k\left(t\right)}, T\left(\partial f_{k\partial},t\right) = \partial f_k\left(t\right)$$

and T is injective on $\partial f_{k\partial}$.

Let $x \in \cap_{k \in \mathcal{K}} \omega_k$. Let $k \in \mathcal{K}$ and \mathcal{W} be the set of vertices of the face f_k . We have

$$\begin{split} \hat{\phi}_{k}\left(T\left(x,t\right),t\right) &= \sum_{v \in \mathcal{V}} b_{v}\left(x\right) z_{v}\left(t\right) \cdot n_{k}\left(t\right) - a_{k}\left(t\right) \\ &= \left(\sum_{w \in \mathcal{W}} b_{w}\left(x\right) - 1\right) a_{k}\left(t\right) + \sum_{v \in \mathcal{V} \setminus \mathcal{W}} b_{v}\left(x\right) z_{v}\left(t\right) \cdot n_{k}\left(t\right) \\ &= -\sum_{v \in \mathcal{V} \setminus \mathcal{W}} b_{v}\left(x\right) a_{k}\left(t\right) + \sum_{v \in \mathcal{V} \setminus \mathcal{W}} b_{v}\left(x\right) z_{v}\left(t\right) \cdot n_{k}\left(t\right) \\ &= \sum_{v \in \mathcal{V} \setminus \mathcal{W}} b_{v}\left(x\right) \left(z_{v}\left(t\right) \cdot n_{k}\left(t\right) - a_{k}\left(t\right)\right) \\ &= \sum_{v \in \mathcal{V} \setminus \mathcal{W}} b_{v}\left(x\right) \hat{\phi}_{k}\left(z_{v}\left(t\right),t\right) \end{split}$$

We know that there exists $w \in \mathcal{V} \setminus \mathcal{W}$ such that $b_w(x) > 0$. Since $b_v(x) > 0$ for all v and $\hat{\phi}_k(z_v(t), t) < 0$ for all $v \in \mathcal{V} \setminus \mathcal{W}$ (it must be hip.), $\hat{\phi}_k(T(x,t),t) < 0$. Hence $T(x,t) \in \cap_{k \in \mathcal{K}} \omega_k(t)$.

5 Injectivity

$$T(x,t) = x + \sum_{v \in \mathcal{V}} b_v(x) (z_v(t) - v)$$
$$T(x,t) - T(y,t) = x - y + \sum_{v \in \mathcal{V}} (b_v(x) - b_v(y)) (z_v(t) - v)$$

It holds that

$$||x - y|| - \left|\left|\sum_{v \in \mathcal{V}} (b_v(x) - b_v(y)) (z_v(t) - v)\right|\right| \le ||T(x, t) - T(y, t)|| \le ||x - y|| + \left|\left|\sum_{v \in \mathcal{V}} (b_v(x) - b_v(y)) (z_v(t) - v)\right|\right|$$

if

$$|b_v(x) - b_v(y)| \le \|\nabla b_v(z(x, y, v))\| \|x - y\|$$

Then

$$||x - y|| \left(1 - \sum_{v \in \mathcal{V}} ||\nabla b_v(z(x, y, v))|| ||z_v(t) - v||\right) \le ||T(x, t) - T(y, t)|| \le ||x - y|| \left(1 + \sum_{v \in \mathcal{V}} ||\nabla b_v(z(x, y, v))|| + ||z_v(t) - v||\right) \le ||T(x, t) - T(y, t)|| \le ||x - y|| \left(1 + \sum_{v \in \mathcal{V}} ||\nabla b_v(z(x, y, v))|| + ||z_v(t) - v||\right) \le ||T(x, t) - T(y, t)|| \le ||x - y|| \left(1 + \sum_{v \in \mathcal{V}} ||\nabla b_v(z(x, y, v))|| + ||z_v(t) - v||\right) \le ||T(x, t) - T(y, t)|| \le ||x - y|| \left(1 + \sum_{v \in \mathcal{V}} ||\nabla b_v(z(x, y, v))|| + ||z_v(t) - v||\right) \le ||T(x, t) - T(y, t)|| \le ||x - y|| \left(1 + \sum_{v \in \mathcal{V}} ||\nabla b_v(z(x, y, v))|| + ||z_v(t) - v||\right) \le ||T(x, t) - T(y, t)|| \le ||x - y|| \left(1 + \sum_{v \in \mathcal{V}} ||\nabla b_v(z(x, y, v))|| + ||z_v(t) - v||\right) \le ||T(x, t) - T(y, t)|| \le ||x - y|| \left(1 + \sum_{v \in \mathcal{V}} ||\nabla b_v(z(x, y, v))|| + ||z_v(t) - v||\right) \le ||T(x, t) - T(y, t)|| \le ||x - y||$$

Assume that

$$\|\nabla b_v\left(z\left(x,y,v\right)\right)\| \le C$$

for all v and all $x, y \in \overline{\Omega}$. Then

$$||x - y|| \left(1 - C \sum_{v \in \mathcal{V}} ||z_v(t) - v||\right) \le ||T(x, t) - T(y, t)|| \le ||x - y|| \left(1 + C \sum_{v \in \mathcal{V}} ||z_v(t) - v||\right)$$

and if

$$\sum_{v \in \mathcal{V}} \|z_v(t) - v\| < \frac{1}{C}$$

From this we deduce that T is bi

Rewriteen T as

$$T(x,t) = x + \sum_{v \in \mathcal{V}} b_v(x) (z_v(t) - v)$$

it is easy to calculate its Jacobian matrix

$$D_{x}T\left(x,t\right) = I + \sum_{v \in \mathcal{V}} \left(z_{v}\left(t\right) - v\right) \otimes \nabla b_{v}\left(x\right).$$

Let $d: \overline{\Omega} \times \mapsto \mathbb{R}$ be the function defined by

$$d(x,t) := \det \left(I + \sum_{v \in \mathcal{V}} (z_v(t) - v) \otimes \nabla b_v(x) \right).$$

Fix an arbitrary $x \in \overline{\Omega}$. Since $d(x, \cdot)$ is a continuous function and

$$d(x,0) = \det \left(I + \sum_{v \in \mathcal{V}} (z_v(0) - v) \otimes \nabla b_v(x) \right) = \det I = 1 > 0,$$

it follows that $\det D_x T(x,t) = d(x,t) > 0$ for small t. Therefore, one can conclude that $T(\cdot,t)$ is locally injective for small t.

This idea was taken from [4]§. Recall that non zero determinant of $D_xT(x,t)$ implies local injectivity. To obtain global injectivity consider [2]§ [3]§.

6 Surjectivity

h1: $U, V \subset \mathbb{R}^n$ are closed, bounded and convex

h2: $f: U \to V$ is continuous

h2: $f(\text{int}U) \subset \text{int}V$

h3: $f: \partial U \to \partial V$ is an homeomorphism

Then f is surjective.

Proof.

Let $p \in \text{int}U$.

Let $H: I \times \partial V \to V$ defined by

 $H(t,y) = f((1-t) f^{-1}(y) + tp)$, which is well-defined, continuous, H(0,y) = y and H(1,y) = f(p). The homotopy H continuously contracts the boundary ∂V to a f(p). Then, for all $z \in V$, is there some x such that H(t,y) = z?

References

- [1] A. Brøndsted. An Introduction to Convex Polytopes. Springer, 1983.
- [2] M. Floater and J. Kosinka. On the injectivity of wachspress and mean value mappings between convex polygons. *Adv. Comput. Math.*, 32:163–174, 2010.
- [3] H. Kestelman. Mappings with non-vanishing jacobian. The American Mathematical Monthly, 78(6):662–663, 1971.
- [4] T. Schneider. Bijective composite mean value mappings. Eurographics Symposium on Geometry Processing, 32(5), 2013.
- [5] J. Warren. Barycentric coordinates for convex polytopes. Adv. Comput. Math., 6:97–108, 1996.
- [6] J. Warren, S. Schaefer, A. Hirani, and M. Desbrun. Barycentric coordinates for convex sets. *Adv. Comput. Math.*, 27:319–338, 2007.