University of Waterloo

PMATH 348 FIELDS AND GALOIS THEORY

Prof. Yu-Ru Liu • Winter 2018

Contents

1	Introduction			
	1.1	Polynomial Equations]	
	1.2	Cubic Equations]	
	1.3	Quartic Equations	-	
		Quintic Equations		
2	FIE	LD EXTENSIONS	SIONS	
	2.1	Degree of Extensions	•	
		Algebraic and Transcendental Extensions		
	2.3	Eisenstein's Criterion	-	

1 Introduction

1.1 Polynomial Equations

Consider the quadratic equation. Let $ax^2 + bx + c = 0$ with the leading coefficient $a \neq 0$, then we have that,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

We notice immediately that there are a couple of operations that are involved in this equation.

Definition 1.1.1. An expression involving only addition, subtraction, multiplication, division and radicals is called a <u>radical</u>. These operations are denoted by $+, -, \times, \div$ and $\sqrt[n]{\cdot}$

The natural question that is raised is the extension to higher dimensions.

1.2 Cubic Equations

All cubic equations can be reduced to the following equation,

$$x^3 + px = q$$

for some $p, q \in \mathbb{C}$. A solution to the above equation is of the form

$$x = \sqrt[3]{\frac{q}{2} + \sqrt{\frac{p^3}{27} + \frac{q^2}{4}}} + \sqrt[3]{\frac{q}{2} - \sqrt{\frac{p^3}{27} + \frac{q^2}{4}}}$$
 (Cardano's Formula)

1.3 Quartic Equations

A radical solution can be obtained by reducing a quartic to a cubic equation.

1.4 Quintic Equations

- General radical solutions were attempted by Euler, Bézout and Lagrange without success
- In 1799, Ruffini gave a 516 page proof about the insolvability of quintic equations. His Proof was "almost right"
- In 1824, Abel filled the gap in Ruffini's proof.

We can now ask ourselves, given a quintic equation, is it solvable by radicals? This question seems to be too hard, so we ask, suppose that a radical solution exists. How does its associated quintic equation look like?

Two main steps in Galois Theory

1. Link a root of a quintic equation, say α to $\mathbb{Q}(\alpha)$, the smallest field containing \mathbb{Q} and α . $\mathbb{Q}(\alpha)$ is a field. So it has more structures to be played with than α ; however, our knowledge of $\mathbb{Q}(\alpha)$ is still too little to answer the question. For example, we do not know how many intermediate fields, E between \mathbb{Q} and $\mathbb{Q}(\alpha)$. What we mean is how many fields E satisfy

$$\mathbb{Q} \subseteq E \subseteq \mathbb{Q}(\alpha)$$
.

2. Link the field $\mathbb{Q}(\alpha)$ to a group. More precisely, we associate $\mathbb{Q}(\alpha)/\mathbb{Q}$ to the group

$$\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha)) = \left\{ \Psi : \mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha) \text{ an isomorphism and } \Psi|_{\mathbb{Q}} = 1_{\mathbb{Q}} \right\}$$

It can be shown that if α is "good", say algebraic, $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha))$ is finite. If α is "very good", say constructable, the order of $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha))$ is in certain forms. Moreover, there is a one-to-one correspondence between the intermediate fields between $\mathbb{Q}(\alpha)$ and \mathbb{Q} and the subgroups of $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha))$.

It follows that given some "good" α , we have that the intermediate fields of $\mathbb{Q}(\alpha)$ and \mathbb{Q} are indeed finitely many. This introduces Galois Theory; the interplay between fields and groups.

2 Field Extensions

2.1 Degree of Extensions

Definition 2.1.1. If E is a field containing another field F, we say E is a field extension of F, denoted by $E/_F$.

If E_{F} if a field extension, we can view E as a vector space over F.

- 1. Addition: For $e_1, e_2 \in E$, $e_1 + e_2 := e_1 + e_2$ (addition in E)
- 2. Scalar Multiplication: For $c \in F, e \in E, c \cdot e := ce$ (multiplication in E)

Definition 2.1.2. The dimension of E over F (viewed as a vector space) called the <u>degree</u> of E over F, denoted by [E:F]. If $[E:F] < \infty$, we say E/F is a <u>finite extension</u>. Otherwise, E/F is an infinite extension

Example 2.1.3. $[\mathbb{C}:\mathbb{R}]=2$ is a finite extension since $\mathbb{C}\cong\mathbb{R}+\mathbb{R}i$, with $i^2=-1$.

Example 2.1.4. Let F be a field. Then [F(x):F] is ∞ since $\{1,x,x^2,\dots\}$ are linearly independent over F.

Remark. $F[x] = \{f(x) = a_0 + a_1x + \dots + a_nx^n : a_i \in F, n \in \mathbb{N} \cup \{0\}\}$, the polynomial ring of F. Remark. $F(x) = \{\frac{f(x)}{g(x)} : f(x), g(x) \in F[x]\}$, the fraction field of the polynomial ring of F.

Theorem 1. If E/K and K/F are finite field extensions, then E/F is a finite field extension and

$$[E:F] = [E:K][K:F]$$

In particular, K is an intermediate field of an field extension E_F , then $[K:F] \mid [E:F]$.

Proof. Suppose [E:K]=m and [K:F]=n. Let $\{a_i,\ldots,a_m\}$ be a basis of E/K and $\{b_1,\ldots,b_n\}$ be a basis of K/F. It suffices to show $\{a_ib_j:1\leq i\leq m,1\leq j\leq n\}$ is a basis of [E/F].

Claim. Every element of E is a linear combination of $\{a_ib_j\}$ over F.

For $e \in E$, we have

$$e = \sum_{i=1}^{m} k_i a_i$$

with $k_i \in K$. Also, for each $k_i \in K$, we have

$$k_i = \sum_{j=1}^{n} c_{ij} b_j$$

with $c_{ij} \in F$. Thus,

$$e = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} b_j a_i.$$

3

Claim. The set $\{a_ib_j: 1 \leq i \leq m, 1 \leq j \leq n\}$ is linearly independent over F.

Suppose that

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} b_j a_i = 0$$

with $c_{ij} \in F$. Since $\sum_{j=1}^{n} c_{ij}b_j \in K$ and $\{a_1, \ldots, a_m\}$ are independent over K. We have

$$\sum_{j=1}^{n} c_{ij}b_j = 0.$$

Since $\{b_1, \ldots, b_n\}$ are independent over F, we have $c_{ij} = 0$.

Combining both claims, we see that $\{a_ib_j, 1 \leq i \leq m, 1 \leq j \leq n\}$ is a basis of E_F and we have [E:F]=[E:K][K:F].

2.2 Algebraic and Transcendental Extensions

Definition 2.2.1. Let E_F be a field extension and $\alpha \in E$. We say α is <u>algebraic over F</u> if there exists $f(x) \in F[x] \setminus \{0\}$ with $f(\alpha) = 0$. Otherwise, α is <u>transcendental over F</u>.

Example 2.2.2. $\frac{c}{d} \in \mathbb{Q}$, $\sqrt{2} \sqrt[3]{7} + 2i$ are algebraic over \mathbb{Q} (see Assignment 1) but e (Hermite, 1873) and π (Lindemann, 1882) are transcendental over \mathbb{Q} .

Let E_F be a field extension and $\alpha \in E$. Let $F[\alpha]$ denote the smallest subfield of E containing F and α . For $\alpha, \beta \in E$, we define $F[\alpha, \beta]$ and $F(\alpha, \beta)$ similarly.

Definition 2.2.3. If $F = F(\alpha)$ for some $\alpha \in E$, we say E is a <u>simple extension</u> of F.

Definition 2.2.4. Let R_1 and R_2 be two rings which contain a field F. A ring homomorphism $\Psi: R_1 \to R_2$ is said to be a F-homomorphism if $\Psi|_F = 1_F$.

Theorem 2. Let E_{F} be a field extension and $\alpha \in E$. If α is transcendental over F, then

$$F[\alpha] \cong F[x]$$
 and $F(\alpha) \cong F(x)$

In particular, $F[\alpha] \neq F(\alpha)$.

Remark. In fact, if α is algebraic, indeed $F[\alpha] = F(\alpha)$.

Proof. Let $\Psi: F(x) \to F(\alpha)$ be the unique F-homomorphism defined by $\Psi(x) = \alpha$. Thus, for $f(x), g(x) \in F[x], g(x) \neq 0$,

$$\Psi\left(\frac{f(x)}{g(x)}\right) = \frac{f(\alpha)}{g(\alpha)} \in F(\alpha).$$

Notice that this is indeed a well-defined map as $g(x) \neq 0$ implies $g(\alpha) \neq 0$ since α is transcendental. Since F(x) is a field and $\ker(\Psi)$ is an ideal of F(x), we have $\ker(\Psi) = F(x)$ or trivial. This $\Psi = 0$ or Ψ is injective. Since $\Psi(x) = \alpha \neq 0$, Ψ must be injective. Also, since F(x) is a field, im Ψ contains a field generated by F and α , in other words, $F(\alpha) \subseteq \operatorname{im} \Psi$. Thus, $\operatorname{im} \Psi = F(\alpha)$ and Ψ is surjective. It follows that Ψ is an isomorphism and we have

$$F[\alpha] \cong F[x]$$
 and $F(\alpha) \cong F(x)$.

Theorem 3. Let $E_{/F}$ be a field extension and $\alpha \in E$. If α is algebraic over F, there exists a unique monic irreducible polynomial $p(x) \in F[x]$ such that there exists a F-homomorphism

$$\Psi: F[x]/\langle p(x)\rangle \to F[\alpha] \quad with \ \Psi(x) = \alpha$$

from which we conclude $F[\alpha] \cong F(\alpha)$.

Proof. Consider the unique F-homomorphism $\Psi: F[x] \to F[\alpha]$ defined by $\Psi(x) = \alpha$. Thus, for $f(x) \in F[x]$, we have $\Psi(f) = f(\alpha)$. Since F[x] is a ring, im Ψ contains a ring generated by F and α , in other words, $F[\alpha] \subseteq \operatorname{im} \Psi$. Thus, $\operatorname{im} \Psi = F[\alpha]$.

$$I = \ker \Psi = \{ f(x) \in F[x] : f(\alpha) = 0 \}.$$

Since α is algebraic, $I \neq \{0\}$. We have $F[x]/I \cong \operatorname{im} \Psi = F[\alpha] \subseteq F(\alpha)$, a subring of a field $F(\alpha)$. Thus, F[x]/I is an integral domain so I is a prime ideal. It follows that $I = \langle p(x) \rangle$, where p(x) is irreducible. If we assume p(x) is monic, then it is unique. It follows that

$$F[x]/\langle p(x)\rangle \cong F[\alpha].$$

Since p(x) is irreducible, $F[x]/\langle p(x)\rangle$ is a field. So $F[\alpha]$ is a field. It follows that $F[\alpha] = F(\alpha)$.

Definition 2.2.5. If α is algebraic over a field F, the unique monic polynomial irreducible polynomial p(x) in Theorem 3 is called the minimal polynomial of α over F.

Remark. From the proof of Theorem 3, if $f(x) \in F[x]$ with $f(\alpha) = 0$, then p(x)|f(x).

Theorem 4. Let $E_{/F}$ be a field extension and $\alpha \in E$.

- 1. α is transcendental over F if and only if $[F(\alpha):F]$ is ∞ .
- 2. α is algebraic over F if and only if $[F(\alpha):F] < \infty$.

Moreover, if p(x) is the minimal polynomial of α over F, we have $[F[\alpha]: F] = \deg(p)$ and $\{1, \alpha, \alpha^2, \dots, \alpha^{\deg(p)-1}\}$ is a basis of $F(\alpha)/F$.

Proof. It suffices to prove the forward direction for each statement as the inverse direction implies the other statement.

- (1) **Forwards**: From Theorem 2, if α is transcendental over F, then $F(x) \cong F(\alpha)$. In F(x), the elements $\{1, x, x^2, \dots\}$ are linearly independent over F. Thus, $[F(\alpha) : F]$ is ∞ .
- (2) **Forwards**: From Theorem 3, if α is algebraic over F, $F[x]/\langle p(x)\rangle \cong F(x)$ with the map $x \mapsto \alpha$. Note that,

$$F[x]/\langle p(x)\rangle \cong \{r(x) \in F[x] : \deg(r) < \deg(p)\} \tag{$\deg(0) = -\infty$}$$

Thus, $\{1, x, x^2, \dots, x^{\deg(p)-1}\}$ forms a basis for $F[x]/\langle p(x)\rangle$. It follows that $[F(\alpha): F] = \deg(p)$ and $\{1, \alpha, \alpha^2, \dots, \alpha^{\deg(p)-1}\}$ is a basis of $F(\alpha)/F$.

Theorem 5. Let $E_{/F}$ be a field extension. If $[E:F] < \infty$, then there exists $\alpha_1, \ldots, \alpha_n \in E$ such that

$$F \subsetneq F(\alpha_1) \subsetneq \cdots \subsetneq F(\alpha_1, \dots, \alpha_n) = E.$$

Proof. We proceed with induction on [E:F]. If [E:F]=1, E=F. Suppose that [E:F]>1 and the statement holds for any field extension $\widetilde{E}_{\widetilde{F}}$ with $[\widetilde{E}:\widetilde{F}]<[E:F]$. Let $\alpha_1\in E_{\widetilde{F}}$. By Theorem 1,

$$[E:F] = [E:F(\alpha_1)][F(\alpha_1):F].$$

Since $[F(\alpha):F]>1$, we have $[E:F]>[E:F(\alpha_1)]$. By induction hypothesis, there exists α_2,\ldots,α_n such that

$$F(\alpha_1) \subsetneq \cdots \subsetneq F(\alpha_1, \dots, \alpha_n) = E.$$

Thus, we have

$$F \subsetneq F(\alpha_1) \subsetneq \cdots \subsetneq F(\alpha_1, \dots, \alpha_n) = E.$$

as desired.

Definition 2.2.6. A field extension E_F is <u>algebraic</u> if every $\alpha \in E$ is algebraic over F. Otherwise, it is transcendental.

Theorem 6. Let $E_{/F}$ be a field extension. If $[E:F] < \infty$, then $E_{/F}$ is algebraic.

Proof. Suppose [E:F]=n. For $\alpha \in E$, the elements $\{1,\alpha,\ldots,\alpha^n\}$ are not linearly independent over F. Thus, there exists $c_i \in F$ for all $i=0,\ldots,n$, not all 0, such that

$$\sum_{i=0}^{n} c_i \alpha^i = 0$$

Thus, α is a root of the polynomial $\sum_{i=0}^{n} c_i \alpha^i \in F[x]$ so it is algebraic over F.

Theorem 7. Let $E_{/F}$ be a field extension. Define,

$$L \coloneqq \{\alpha \in E : [F(\alpha) : F] < \infty\}.$$

Then L is an intermediate field of $E_{/F}$.

Proof. If $\alpha, \beta \in L$ with $\beta \neq 0$, we need to show that $\alpha \pm \beta, \alpha\beta, \frac{\alpha}{\beta} \in L$. By definition of L, we have $[F(\alpha)] < \infty$ and $[F(\beta) : F] < \infty$. Consider the field $F(\alpha, \beta)$. Since the minimal polynomial of α over $F(\beta)$ divides the minimal polynomial of α over F (the minimal polynomial α over F, say $p(x) \in F[x]$, is also a polynomial over $F(\beta)$. In otherwords, $p(x) \in F(\beta)[x]$ such that $p(\alpha) = 0$), we have

$$[F(\alpha,\beta):F(\beta)] \leq [F(\alpha):F].$$

Combining this with Theorem 1, we have

$$[F(\alpha.\beta):F] = [F(\alpha,\beta):F(\beta)][F(\beta):F]$$

$$\leq [F(\alpha):F][F(\beta):F]$$

Since $\alpha + \beta \in F(\alpha, \beta)$, it follows that

$$[F(\alpha + \beta) : F(\beta)] \le [F(\alpha, \beta) : F] < \infty,$$

so $a+b\in L$. We can follow a similar line to show $\alpha-\beta,\alpha\beta,\frac{\alpha}{\beta}\in L$. So L is a field.

Definition 2.2.7. Let $E_{/F}$ be a field extension. The set,

$$L := \{ \alpha \in E : [F(\alpha) : F] < \infty \}$$

is called the algebraic closure of F in E.

Definition 2.2.8. A field F is <u>algebraically closed</u> if for any algebraic extension E_{F} , we have E = F.

Example 2.2.9. By the Fundamental Theorem of Algebra, \mathbb{C} is algebraically closed.

2.3 Eisenstein's Criterion

Definition 2.3.1. Let $f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$. We say f(x) is <u>primitive</u> if $a_n > 0$ and $gcd(a_0, \dots, a_n) = 1$.

Lemma 8. Every non-zero polynomial $f(x) \in \mathbb{Q}[x]$ can be written uniquely as a product $F(x) = cf_0(x)$ where $c \in \mathbb{Q}$ and $f_0(x)$ is a primitive polynomial on $\mathbb{Z}[x]$. Moreover, $f(x) \in \mathbb{Z}[x]$ if and only if $c \in \mathbb{Z}$. If so, then |c| is the greatest common divisor of the coefficients of f(x) and the sign of c is the sign of the leading coefficient of f(x).

Theorem 9 (Gauss' Lemma for $\mathbb{Z}[x]$). Let $f(x) \in \mathbb{Z}[x]$ be non-constant. If f(x) is irreducible in $\mathbb{Z}[x]$, then it is irreducible in $\mathbb{Q}[x]$.

Example 2.3.2. The converse of Theorem 9 is not true. Consider the polynomial 2x + 8 is irreducible in $\mathbb{Q}[x]$, but 2x + 8 = 2(x + 4) is reducible in $\mathbb{Z}[x]$.

Remark. $f(x) \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Z}[x]$ if and only if either

- 1. f(x) is a prime integer
- 2. f(x) is a primitive polynomial which is irreducible in $\mathbb{Q}[x]$

Theorem 10 (Eisenstein's Criterion for $\mathbb{Z}[x]$). Let $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$ and let p be a prime integer. Suppose that $p \nmid a_n$, $p \mid a_i$ for all $0 \le i \le (n-1)$ and $p^2 \nmid a_0$, then f(x) is irreducible in $\mathbb{Q}[x]$. In particular, if f(x) is primitive, then it is irreducible in $\mathbb{Z}[x]$.

Proof. Consider the map $f: \mathbb{Z}[x] \to \mathbb{Z}_p[x]$ defined by

$$f(x) \mapsto \overline{f}(x) = \overline{a}_n x^n + \dots + \overline{a}_1 x + \overline{a}_0$$

where $\bar{a}_i = a_i \pmod{p} \in \mathbb{Z}_p$. Since $p \nmid a_n$ and $p \mid a_i$ for all $0 \leq i(n-1)$, we have $\bar{f}(x) = \bar{a}_n x^n$ with $\bar{a}_n \neq 0$. If f(x) is reducible in $\mathbb{Q}[x]$, then it can be factored in $\mathbb{Z}[x]$ into polynomials of positive degree, say f(x) = g(x)h(x) with $g(x), h(x) \in \mathbb{Z}[x]$ and $\deg(g), \deg(h) \geq 1$. It follows that $\bar{a}_n x^n = \bar{g}(x)\bar{h}(x)$ from which we see that $\bar{g}(x)$ and $\bar{h}(x)$ have no constant terms in $\mathbb{Z}_p[x]$, as $\mathbb{Z}_p[x]$ is a UFD. Since the constants of both g(x) and h(x) are divisible by p, this implies that the constant of f(x) is divisible by p^2 , which leads to a contradiction. So, f(x) is irreducible in $\mathbb{Q}[x]$

Example 2.3.3. The polynomial $2x^7 + 3x^4 + 6x^2 + 12$ is irreducible in $\mathbb{Q}[x]$ by applying Eisenstein's Criterion with p = 3.

Example 2.3.4. Consider the n^{th} cyclotomic polynomial defined by

$$\Phi_n(x) = \sum_{\substack{1 \le k \le n \\ \gcd(k,n)=1}} \left(x - e^{2i\pi \frac{k}{n}} \right).$$

If n=p where p is a prime number, then $\xi_p=e^{\frac{2i\pi}{p}}=\cos\frac{2\pi}{p}+i\sin\frac{2\pi}{p}$ is a root of the p^{th} cyclotomic polynomial. Notice here, since p is co-prime with all $1\leq k\leq p$, we have

$$\Phi_p(x) = x^{p-i} + x^{p-2} + \dots + x + 1 = \frac{x^p - 1}{x - 1}$$

Eisenstein's Criterion does not imply the irreducibility of $\Phi_p(x)$ immediately; however, consider

$$\Phi_p(x+1) = \frac{(x+1)^p - 1}{x} = x^{p-1} + \binom{p}{1}x^{p-2} + \dots + \binom{p}{p-2}x + \binom{p}{p-1} \in \mathbb{Z}[x]$$

with the Binomial Theorem. Since p is prime, $p \nmid 1$, $p \mid \binom{p}{i}, \forall i \in \{1, \dots, p-1\}$ and $p^2 \nmid \binom{p}{p-1}$. Here, Eisenstein's Criterion gives that $\Phi_p(x+1)$ is irreducible in $\mathbb{Q}[x]$, but if $\Phi_p(x) = g(x)f(x)$, then $\Phi_p(x+1) = g(x+1)h(x+1)$ gives a factorization for $\Phi_p(x+1)$, so $\Phi_p(x)$ must be irreducible in $\mathbb{Q}[x]$ as well. Furthermore, since $\Phi_p(x)$ is primitive, $\Phi_p(x)$ is also irreducible in $\mathbb{Z}[x]$.