Konvergenz und Vollständigkeit

Def Eine *Teilfolge* einer Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Folge der Gestalt $(a_{n_k})_{k\in\mathbb{N}}=(a_{n_1},a_{n_2},a_{n_3},...)$, wobei $n_1< n_2< n_3< ...$ natürliche Zahlen sind.

Satz 2.8 Jede Teilfolge einer konvergenten Folge $(a_n)_{n\in\mathbb{N}}$ ist wieder eine konvergente Folge mit dem Grenzwert $\lim_{n\to\infty} a_n$.

Def Eine Zahl a heißt $H\ddot{a}ufungspunkt$ (oder auch $H\ddot{a}ufungswert$) einer Folge $(a_n)_{n\in\mathbb{N}}$ reeller oder komplexer Zahlen, falls es eine Teilfolge von $(a_n)_{n\in\mathbb{N}}$ gibt, die gegen a konvergiert.

Satz 2.9 (Satz von Bolzano-Weierstraß)

Jede beschränkte Folge enthält eine konvergente Teilfolge.

Def Sei $(a_n)_{n\in\mathbb{N}}$ eine beschränkte Folge in \mathbb{R} . Man definiere:

 $\limsup_{n\to\infty} a_n := \operatorname{der} \operatorname{größte} \operatorname{Häufungspunkt} \operatorname{von} (a_n)_{n\in\mathbb{N}}$

 $\liminf_{n\to\infty} a_n := \text{der kleinste Häufungspunkt von } (a_n)_{n\in\mathbb{N}}$

Def Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller oder komplexer Zahlen heißt Cauchy-Folge (oder Fundamental-Folge), falls es zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$ gibt, so dass für alle $n, m \geq N$ die Ungleichung $|a_n - a_m| < \varepsilon$ gilt.

Satz 2.10 (Cauchy-Kriterium für Folgen)

Eine Folge reeller oder komplexer Zahlen konvergiert genau dann, wenn sie eine Cauchy-Folge ist.