BFS y algoritmo de Dijkstra

Clase 25

IIC 2133 - Sección 3

Prof. Eduardo Bustos

Sumario

Introducción

BFS

Algoritmo de Dijkstra

Cierre

Consideremos el problema de planificar un viaje en auto entre dos ciudades

Podemos pensar en un grafo dirigido: caminos y puntos de intersección

- Podemos pensar en un grafo dirigido: caminos y puntos de intersección
- El auto tiene un consumo

- Podemos pensar en un grafo dirigido: caminos y puntos de intersección
- El auto tiene un consumo
- El combustible tiene un costo

- Podemos pensar en un grafo dirigido: caminos y puntos de intersección
- El auto tiene un consumo
- El combustible tiene un costo
- Cada camino tiene un largo conocido

- Podemos pensar en un grafo dirigido: caminos y puntos de intersección
- El auto tiene un consumo
- El combustible tiene un costo
- Cada camino tiene un largo conocido
- Además, cada camino puede tener un peaje

Consideremos el problema de planificar un viaje en auto entre dos ciudades

- Podemos pensar en un grafo dirigido: caminos y puntos de intersección
- El auto tiene un consumo
- El combustible tiene un costo
- Cada camino tiene un largo conocido
- Además, cada camino puede tener un peaje

El costo σ_i de usar el camino i engloba los estos diferentes costos

Consideremos el problema de planificar un viaje en auto entre dos ciudades

- Podemos pensar en un grafo dirigido: caminos y puntos de intersección
- El auto tiene un consumo
- El combustible tiene un costo
- Cada camino tiene un largo conocido
- Además, cada camino puede tener un peaje

El costo σ_i de usar el camino i engloba los estos diferentes costos

Podemos representar los σ_i en un **grafo dirigido con costos**

Notemos que en este problema, los costos son no negativos

Objetivo: ruta más barata, i.e. suma de los costos debe ser mínima

Rutas en viajes: versión 1.0

Consideremos el caso en que los costos son iguales: $\sigma_i = K$

¿A qué equivale encontrar la ruta más barata en este caso?

Rutas en viajes: versión 1.0

Consideremos el caso en que los costos son iguales: $\sigma_i = K$

Simplemente buscamos la ruta más corta (menos cantidad de aristas)

□ Comprender el recorrido BFS de un grafo

- ☐ Comprender el recorrido BFS de un grafo
- ☐ Extender BFS para definir el algoritmo de rutas más cortas

- ☐ Comprender el recorrido BFS de un grafo
- ☐ Extender BFS para definir el algoritmo de rutas más cortas
- ☐ Demostrar que Dijsktra es un algoritmo correcto

- ☐ Comprender el recorrido BFS de un grafo
- ☐ Extender BFS para definir el algoritmo de rutas más cortas
- ☐ Demostrar que Dijsktra es un algoritmo correcto
- ☐ Determinar la complejidad de Dijkstra

Sumario

Introducción

BFS

Algoritmo de Dijkstra

Cierre

El algoritmo que utilizaremos para resolver este problema simplificado se llama BFS o Búsqueda en amplitud

El algoritmo que utilizaremos para resolver este problema simplificado se llama BFS o Búsqueda en amplitud

■ Tal como DFS es un algoritmo de búsqueda

El algoritmo que utilizaremos para resolver este problema simplificado se llama BFS o Búsqueda en amplitud

- Tal como DFS es un algoritmo de búsqueda
- BFS revisa los vecinos inmediatos y luego sigue con los vecinos de estos

El algoritmo que utilizaremos para resolver este problema simplificado se llama BFS o Búsqueda en amplitud

- Tal como DFS es un algoritmo de búsqueda
- BFS revisa los vecinos inmediatos y luego sigue con los vecinos de estos
- Es decir, BFS recorre en base a distancia desde un nodo inicial

El algoritmo que utilizaremos para resolver este problema simplificado se llama BFS o Búsqueda en amplitud

- Tal como DFS es un algoritmo de búsqueda
- BFS revisa los vecinos inmediatos y luego sigue con los vecinos de estos
- Es decir, BFS recorre en base a distancia desde un nodo inicial

Para nuestro problema, δ será la distancia desde el punto de inicio hasta cada nodo

El algoritmo que utilizaremos para resolver este problema simplificado se llama BFS o Búsqueda en amplitud

- Tal como DFS es un algoritmo de búsqueda
- BFS revisa los vecinos inmediatos y luego sigue con los vecinos de estos
- Es decir, BFS recorre en base a distancia desde un nodo inicial

Para nuestro problema, δ será la distancia desde el punto de inicio hasta cada nodo

Por definición δ es la **menor distancia** de A a cualquier nodo

Iniciamos visitando los nodos a distancia δ = 0 desde A

Ahora visitamos los nodos con δ = 1 desde A

Los nodos a distancia δ = 1 son alcanzables por una arista directa desde A

Ahora visitamos los nodos con δ = 2 desde A

Notemos que hay dos caminos de largo 2 desde A hasta H

Ahora visitamos los nodos con δ = 3 desde A

Ahora visitamos los nodos con δ = 4 desde A

Notemos que D no es descubierto desde B

BFS descubre los nodos a través del menor número de aristas

BFS descubre los nodos a través del menor número de aristas

Siempre se visitan primero los nodos a distancia $\delta = k$

Búsqueda en amplitud

BFS descubre los nodos a través del menor número de aristas

- Siempre se visitan primero los nodos a distancia $\delta = k$
- Luego se llega a los que están a distancia $\delta = k + 1$

Búsqueda en amplitud

BFS descubre los nodos a través del menor número de aristas

- Siempre se visitan primero los nodos a distancia $\delta = k$
- Luego se llega a los que están a distancia $\delta = k + 1$

Debemos asegurar que los nodos son descubiertos en el orden adecuado

Búsqueda en amplitud

BFS descubre los nodos a través del menor número de aristas

- Siempre se visitan primero los nodos a distancia $\delta = k$
- Luego se llega a los que están a distancia $\delta = k + 1$

Debemos asegurar que los nodos son descubiertos en el orden adecuado

¿Cómo distinguir entre descubiertos y no descubiertos?

Podemos distinguir los nodos con colores

Podemos distinguir los nodos con colores

blanco: no descubierto

Podemos distinguir los nodos con colores

- blanco: no descubierto
- gris: descubierto con vecinos no descubiertos (pendientes)

Podemos distinguir los nodos con colores

- blanco: no descubierto
- gris: descubierto con vecinos no descubiertos (pendientes)
- negro: descubierto con vecinos descubiertos (terminado)

Podemos distinguir los nodos con colores

- blanco: no descubierto
- gris: descubierto con vecinos no descubiertos (pendientes)
- negro: descubierto con vecinos descubiertos (terminado)

Como interesa descubrir nodos **en orden**, hay que almacenar los recién descubiertos

Podemos distinguir los nodos con colores

- blanco: no descubierto
- gris: descubierto con vecinos no descubiertos (pendientes)
- negro: descubierto con vecinos descubiertos (terminado)

Como interesa descubrir nodos **en orden**, hay que almacenar los recién descubiertos

Usaremos una cola FIFO

Podemos distinguir los nodos con colores

- blanco: no descubierto
- gris: descubierto con vecinos no descubiertos (pendientes)
- negro: descubierto con vecinos descubiertos (terminado)

Como interesa descubrir nodos **en orden**, hay que almacenar los recién descubiertos

- Usaremos una cola FIFO
- Cuando descubrimos un nodo, lo agregamos al final de la cola

Podemos distinguir los nodos con colores

- blanco: no descubierto
- gris: descubierto con vecinos no descubiertos (pendientes)
- negro: descubierto con vecinos descubiertos (terminado)

Como interesa descubrir nodos **en orden**, hay que almacenar los recién descubiertos

- Usaremos una cola FIFO
- Cuando descubrimos un nodo, lo agregamos al final de la cola
- Para revisar nuevos vecinos, sacamos el nodo prioritario

Podemos distinguir los nodos con colores

- blanco: no descubierto
- gris: descubierto con vecinos no descubiertos (pendientes)
- negro: descubierto con vecinos descubiertos (terminado)

Como interesa descubrir nodos **en orden**, hay que almacenar los recién descubiertos

- Usaremos una cola FIFO
- Cuando descubrimos un nodo, lo agregamos al final de la cola
- Para revisar nuevos vecinos, sacamos el nodo prioritario

¿DFS se puede pensar con una estrategia análoga?

```
input : vértice de inicio s
BFS(s):
     for u ∈ V - \{s\}:
           u.color \leftarrow blanco; u.\delta \leftarrow \infty; \pi[u] \leftarrow \emptyset
     s.color \leftarrow gris; s.\delta \leftarrow 0; \pi[s] \leftarrow \emptyset
     Q ← cola FIFO vacía
     Insert(Q, s)
     while Q no está vacía:
           u \leftarrow \text{Extract}(Q)
          for v \in \alpha[u]:
               if v.color = blanco:
                     v.color \leftarrow gris; \ v.\delta \leftarrow u.\delta + 1
                     \pi[v] \leftarrow u
                     Insert(Q, v)
           u.color \leftarrow negro
```

```
BFS(s):
     for u ∈ V - \{s\} :
           u.color \leftarrow blanco; \ u.\delta \leftarrow \infty; \ \pi[u] \leftarrow \emptyset
      s.color \leftarrow gris; s.\delta \leftarrow 0; \pi[s] \leftarrow \emptyset
      Q ← cola FIFO vacía
      Insert(Q, s)
     while Q no está vacía:
           u \leftarrow \text{Extract}(Q)
           for v \in \alpha[u]:
                if v.color = blanco:
                      v.color \leftarrow gris; \ v.\delta \leftarrow u.\delta + 1
                      \pi[v] \leftarrow u
                      Insert(Q, v)
           u.color \leftarrow negro
```

BFS deja en π la representación de un árbol de **rutas más cortas** desde s

¿BFS funciona cuando queremos rutas más baratas con costos?

Sumario

Introducción

BFS

Algoritmo de Dijkstra

Cierre

Necesitamos extender BFS para rutas con costos acumulados

Necesitamos extender BFS para rutas con costos acumulados

■ La cola Q debe incorporar los costos

Necesitamos extender BFS para rutas con costos acumulados

- La cola Q debe incorporar los costos
- Al sacar un elemento de Q, lo hemos descubierto por la ruta más barata

Necesitamos extender BFS para rutas con costos acumulados

- La cola Q debe incorporar los costos
- Al sacar un elemento de Q, lo hemos descubierto por la ruta más barata

¿Qué partes del algoritmo BFS debemos modificar?

¿BFS funciona cuando queremos rutas más baratas con costos?

Ejercicio

Determine la ruta más barata desde el nodo 0 hasta todos los demás nodos de la siguiente red con costos no negativos

Algoritmo de Dijkstra

```
Dijkstra(s):
    for u ∈ V - \{s\} :
         u.color \leftarrow blanco; d[u] \leftarrow \infty; \pi[u] \leftarrow \emptyset
     s.color \leftarrow gris; \ d[s] \leftarrow 0; \ \pi[s] \leftarrow \emptyset
     Q \leftarrow \text{cola de prioridades} \text{ vacía (Min Heap)}
     Insert(Q,s)
    while Q no está vacía:
         u \leftarrow \text{Extract}(Q)
         for v \in \alpha[u]:
              if v.color = blanco \lor v.color = gris:
                   if d[v] > d[u] + cost(u, v):
                        d[v] \leftarrow d[u] + cost(u, v); \ \pi[v] \leftarrow u
                        DecreaseKey(Q, v, d[v])
                   if v.color = blanco:
                        v.color \leftarrow gris; Insert(Q, v)
         u.color \leftarrow negro
```

Solo cambia costo+ruta si hay arista que baja el costo

Algoritmo de Dijkstra

El algoritmo de Dijkstra encuentra las rutas más baratas desde s

Algoritmo de Dijkstra

El algoritmo de Dijkstra encuentra las rutas más baratas desde s

Solo a aquellos vértices alcanzables desde s

El algoritmo de Dijkstra encuentra las rutas más baratas desde s

- Solo a aquellos vértices alcanzables desde s
- Ojo: puede haber más de una ruta con el mismo costo

El algoritmo de Dijkstra encuentra las rutas más baratas desde s

- Solo a aquellos vértices alcanzables desde s
- Ojo: puede haber más de una ruta con el mismo costo
- Dijkstra encuentra una

El algoritmo de Dijkstra encuentra las rutas más baratas desde s

- Solo a aquellos vértices alcanzables desde s
- Ojo: puede haber más de una ruta con el mismo costo
- Dijkstra encuentra una

¿Qué estrategia algorítmica es usada por este algoritmo?

El algoritmo de Dijkstra es codicioso

El algoritmo de Dijkstra es codicioso

Además el problema de rutas más cortas tiene subestructura óptima

El algoritmo de Dijkstra es codicioso

Además el problema de rutas más cortas tiene subestructura óptima

Dada una ruta entre v_0 , v_k

El algoritmo de Dijkstra es codicioso

Además el problema de rutas más cortas tiene subestructura óptima

Dada una ruta entre v_0 , v_k

Si $p = v_0, v_1, \dots, v_k$ es una ruta de costo mínimo

El algoritmo de Dijkstra es codicioso

Además el problema de rutas más cortas tiene subestructura óptima

Dada una ruta entre v_0 , v_k

- Si $p = v_0, v_1, \dots, v_k$ es una ruta de costo mínimo
- Entonces la sub-ruta

$$p_{ij} = v_i, \ldots, v_j, \qquad 0 \le i \le j \le k$$

es una ruta más corta de v_i a v_j

El algoritmo de Dijkstra es codicioso

Además el problema de rutas más cortas tiene subestructura óptima

Dada una ruta entre v_0 , v_k

- Si $p = v_0, v_1, \dots, v_k$ es una ruta de costo mínimo
- Entonces la sub-ruta

$$p_{ij} = v_i, \ldots, v_j, \qquad 0 \le i \le j \le k$$

es una ruta más corta de v_i a v_j

Si es codicioso, ¿cómo sabemos que funciona en todas las instancias?

Demostración **Finitud**

Demostración

Finitud

Es claro que el algoritmo termina, pues no visita nodos ya descubiertos y cada arista es revisada a lo más una vez. Como el grafo es finito, el algoritmo es finito.

Demostración

Finitud

Es claro que el algoritmo termina, pues no visita nodos ya descubiertos y cada arista es revisada a lo más una vez. Como el grafo es finito, el algoritmo es finito.

Correctitud

Demostración

Finitud

Es claro que el algoritmo termina, pues no visita nodos ya descubiertos y cada arista es revisada a lo más una vez. Como el grafo es finito, el algoritmo es finito.

Correctitud

Denotamos por $\delta(s,v)$ el costo de la ruta más corta de s a v.

Demostración

Finitud

Es claro que el algoritmo termina, pues no visita nodos ya descubiertos y cada arista es revisada a lo más una vez. Como el grafo es finito, el algoritmo es finito.

Correctitud

Denotamos por $\delta(s, v)$ el costo de la ruta más corta de s a v.

Probaremos la correctitud del algoritmo demostrando la siguiente propiedad

P(n) :=al inicio de la n-ésima iteración del **while** el nodo u extraído de Q cumple $d[u] = \delta(s, u)$

Lo haremos por inducción sobre n.

Demostración

C.B. Para i = 1, tenemos que se extrae s. El óptimo es $\delta(s, s) = 0$ y corresponde con el costo almacenado d[s] = 0.

Demostración

C.B. Para i = 1, tenemos que se extrae s. El óptimo es $\delta(s, s) = 0$ y corresponde con el costo almacenado d[s] = 0.

H.I. Suponemos que al inicio de la k-ésima iteración, el nodo extraído cumple la propiedad, para k < n.

Demostración

- **C.B.** Para i = 1, tenemos que se extrae s. El óptimo es $\delta(s, s) = 0$ y corresponde con el costo almacenado d[s] = 0.
- **H.I.** Suponemos que al inicio de la k-ésima iteración, el nodo extraído cumple la propiedad, para k < n.
- **T.I.** Probaremos el resultado para la iteración n. Supongamos que esta iteración es tal que u extraído es el primer nodo tal que

$$d[u] \neq \delta(s,u)$$

Demostración

- **C.B.** Para i = 1, tenemos que se extrae s. El óptimo es $\delta(s, s) = 0$ y corresponde con el costo almacenado d[s] = 0.
- **H.I.** Suponemos que al inicio de la k-ésima iteración, el nodo extraído cumple la propiedad, para k < n.
- **T.I.** Probaremos el resultado para la iteración n. Supongamos que esta iteración es tal que u extraído es el primer nodo tal que

$$d[u] \neq \delta(s, u)$$

Llegaremos a una contradicción, que probará que no hay tal u, i.e. todos los elementos cumplen la propiedad pedida.

Demostración

Para argumentar que existe un camino de s hasta u,

Demostración

Para argumentar que existe un camino de s hasta u,

■ Si no existe tal camino, el costo ideal es $\delta(s, u) = \infty$

Demostración

Para argumentar que existe un camino de s hasta u,

- Si no existe tal camino, el costo ideal es $\delta(s, u) = \infty$
- Pero este es el valor inicial $d[u] = \infty$

Demostración

Para argumentar que existe un camino de s hasta u,

- Si no existe tal camino, el costo ideal es $\delta(s, u) = \infty$
- Pero este es el valor inicial $d[u] = \infty$
- Como solo se puede reducir el costo al encontrar caminos desde s, se contradice el supuesto de que no hay camino

Demostración

Para argumentar que existe un camino de s hasta u,

- Si no existe tal camino, el costo ideal es $\delta(s, u) = \infty$
- Pero este es el valor inicial $d[u] = \infty$
- Como solo se puede reducir el costo al encontrar caminos desde s, se contradice el supuesto de que no hay camino

Sea p un camino de s a u de la forma

$$p = s, \ldots, x, y, \ldots, u$$

tal que y es el primer nodo gris desde s en p

Demostración

Para argumentar que existe un camino de s hasta u,

- Si no existe tal camino, el costo ideal es $\delta(s, u) = \infty$
- Pero este es el valor inicial $d[u] = \infty$
- Como solo se puede reducir el costo al encontrar caminos desde s, se contradice el supuesto de que no hay camino

Sea p un camino de s a u de la forma

$$p = s, \ldots, x, y, \ldots, u$$

tal que y es el primer nodo gris desde s en p

Como y es gris, está en la cola Q y aún no ha sido extraído

Demostración

Para argumentar que existe un camino de s hasta u,

- Si no existe tal camino, el costo ideal es $\delta(s, u) = \infty$
- Pero este es el valor inicial $d[u] = \infty$
- Como solo se puede reducir el costo al encontrar caminos desde s, se contradice el supuesto de que no hay camino

Sea p un camino de s a u de la forma

$$p = s, \ldots, x, y, \ldots, u$$

tal que y es el primer nodo gris desde s en p

- Como y es gris, está en la cola Q y aún no ha sido extraído
- Como x es negro, ya fue extraído de la cola

Demostración

Por **H.I.** y el hecho de que solo se puede alterar el costo de un nodo gris o blanco, sabemos que

$$d[x] = \delta(s, x)$$

Demostración

Por **H.I.** y el hecho de que solo se puede alterar el costo de un nodo gris o blanco, sabemos que

$$d[x] = \delta(s, x)$$

Como la arista (x, y) fue visitada al haber extraído x y visitado sus vecinos,

$$d[y] = \delta(s,y)$$

Demostración

Por **H.I.** y el hecho de que solo se puede alterar el costo de un nodo gris o blanco, sabemos que

$$d[x] = \delta(s, x)$$

Como la arista (x, y) fue visitada al haber extraído x y visitado sus vecinos,

$$d[y] = \delta(s, y)$$

Esto es cierto, pues de lo contrario, p no sería óptimo.

Demostración

Por **H.I.** y el hecho de que solo se puede alterar el costo de un nodo gris o blanco, sabemos que

$$d[x] = \delta(s, x)$$

Como la arista (x, y) fue visitada al haber extraído x y visitado sus vecinos,

$$d[y] = \delta(s, y)$$

Esto es cierto, pues de lo contrario, p no sería óptimo. Ahora, como y está antes que u en p, y los costos son no negativos

$$d[y] = \delta(s, y) \le \delta(s, u) \le d[u]$$

Demostración

Por **H.I.** y el hecho de que solo se puede alterar el costo de un nodo gris o blanco, sabemos que

$$d[x] = \delta(s, x)$$

Como la arista (x, y) fue visitada al haber extraído x y visitado sus vecinos,

$$d[y] = \delta(s, y)$$

Esto es cierto, pues de lo contrario, p no sería óptimo. Ahora, como y está antes que u en p, y los costos son no negativos

$$d[y] = \delta(s, y) \le \delta(s, u) \le d[u]$$

Pero u fue extraído antes que y de Q, por lo que su costo cumple

$$d[u] \leq d[y]$$

Demostración

Por **H.I.** y el hecho de que solo se puede alterar el costo de un nodo gris o blanco, sabemos que

$$d[x] = \delta(s, x)$$

Como la arista (x, y) fue visitada al haber extraído x y visitado sus vecinos,

$$d[y] = \delta(s, y)$$

Esto es cierto, pues de lo contrario, p no sería óptimo. Ahora, como y está antes que u en p, y los costos son no negativos

$$d[y] = \delta(s, y) \le \delta(s, u) \le d[u]$$

Pero u fue extraído antes que y de Q, por lo que su costo cumple

$$d[u] \leq d[y]$$

De estas dos inecuaciones se deduce que $d[u] = \delta(s, u)$ (contradicción).

En el peor caso, el algoritmo realiza

En el peor caso, el algoritmo realiza

 $\mathcal{O}(V)$ operaciones Extract

En el peor caso, el algoritmo realiza

- $\mathcal{O}(V)$ operaciones Extract
- $\mathcal{O}(|E|)$ operaciones $d[v] \leftarrow d[u] + cost(u, v)$ (que actualizan la cola)

En el peor caso, el algoritmo realiza

- $\mathcal{O}(V)$ operaciones Extract
- $\mathcal{O}(|E|)$ operaciones $d[v] \leftarrow d[u] + cost(u, v)$ (que actualizan la cola)

Si la cola se implementa como heap binario,

En el peor caso, el algoritmo realiza

- $\mathcal{O}(V)$ operaciones Extract
- $\mathcal{O}(|E|)$ operaciones $d[v] \leftarrow d[u] + cost(u, v)$ (que actualizan la cola)

Si la cola se implementa como heap binario,

lacktriangle La operación Extract es $\mathcal{O}(\log(V))$

Complejidad de Dijkstra

En el peor caso, el algoritmo realiza

- $\mathcal{O}(V)$ operaciones Extract
- $\mathcal{O}(|E|)$ operaciones $d[v] \leftarrow d[u] + cost(u, v)$ (que actualizan la cola)

Si la cola se implementa como heap binario,

- La operación Extract es $\mathcal{O}(\log(V))$
- La actualización de costos (prioridad) en el heap es $\mathcal{O}(\log(V))$

Complejidad de Dijkstra

En el peor caso, el algoritmo realiza

- $\mathcal{O}(V)$ operaciones Extract
- $\mathcal{O}(|E|)$ operaciones $d[v] \leftarrow d[u] + cost(u, v)$ (que actualizan la cola)

Si la cola se implementa como heap binario,

- La operación Extract es $\mathcal{O}(\log(V))$
- La actualización de costos (prioridad) en el heap es $\mathcal{O}(\log(V))$

El algoritmo de Dijkstra toma tiempo $\mathcal{O}((V+E)\log(V))$

Podemos adaptar el algoritmo para resolver otros problemas comunes

Rutas más cortas en grafos acíclicos

- Rutas más cortas en grafos acíclicos
- Rutas más cortas de un vértice a otro (específico)

- Rutas más cortas en grafos acíclicos
- Rutas más cortas de un vértice a otro (específico)
- Rutas más cortas entre todos los pares de vértices

- Rutas más cortas en grafos acíclicos
- Rutas más cortas de un vértice a otro (específico)
- Rutas más cortas entre todos los pares de vértices
- Rutas más cortas en grafos Euclideanos

Sumario

Introducción

BFS

Algoritmo de Dijkstra

Cierre

☐ Comprender el recorrido BFS de un grafo

- ☐ Comprender el recorrido BFS de un grafo
- ☐ Extender BFS para definir el algoritmo de rutas más cortas

- ☐ Comprender el recorrido BFS de un grafo
- ☐ Extender BFS para definir el algoritmo de rutas más cortas
- ☐ Demostrar que Dijsktra es un algoritmo correcto

- ☐ Comprender el recorrido BFS de un grafo
- ☐ Extender BFS para definir el algoritmo de rutas más cortas
- ☐ Demostrar que Dijsktra es un algoritmo correcto
- ☐ Determinar la complejidad de Dijkstra