HW Ochrana OS

Privilegovaný a uživatelský režim

Činnost CPU – režimy

- CPU schopnost rozeznávat režimy:
 - Již při výrobě veškerá pravidla a rozdělení instrukcí:
 - do skupin
 - aby nedošlo k narušení vyšší úrovně z nižší úrovně (tzv. ringu)

Činnost CPU – privilegovaný režim

- Privilegované instrukce patří například:
 - řízení CPU
 - zákaz přerušení
 - práce se speciálními registry
 - práce s vstupními a výstupními zařízeními
 - nastavení mapování paměti

Činnost CPU

- Režimy procesoru:
 - omezení činnosti podle typu a úrovně operací
 - procesy běží v různých režimech CPU
 - umožňuje operačnímu systému běžet s většími oprávněními než běžný aplikační software
- Privilegovaný a neprivilegovaný režim

Činnost CPU – privilegovaný režim

■ Jádro OS:

- Obsahuje důvěryhodný kód
- Běží v plně privilegovaném režimu nejvyšší úrovně:
- **■**Tzv. **ring 0**:
 - dovoleno vše bez omezení (všechny instrukce)
- Ostatní procesy běží v režimech ring > 0
 - HW omezení
- Ring security (zabezpečení ve vrstvách).

Privilegovaný režim

- Systém zabezpečení OS privilegovaný režim
- **■** Ring 0:
 - Kernel JOS (jádro operačního systému)
- Ring > 0:
 - Ovladače, HAL API
 - Správa procesů
 - Správa vnitřní / vnější paměti
 - Správa I/O zařízení
 - Správa souborů
 - Správa komunikací (s periferiemi / procesy: myš.... LAN....)

Činnost CPU – neprivilegovaný režim

- Uživatelský SW
- Pokus o provedení privilegované instrukce:
 - aktivaci operačního systému:
 - může zodpovědný proces ukončit
 - nebo po kontrole operaci provést

Struktura zabezpečení OS

Uživatelský režim

GUI – Grafické uživatelské rozhraní (Metro, Aero, KDE...)

Interpret příkazů (shell, bash, cmd...)

Systémové programy, aplikace

HAL - API

1.Správa procesů

2.Správa primární paměti

3.Správa sekundární paměti

4.Správa I/O zařízení

5.Správa souborů

6.Komunikační systém

Ovladače hardware

Kernel JOS

Systém zabezpečení

Privilegovaný režim – systém ring

Ring 0