ЛЕКЦИЯ 5 Глава 3. МЕТОДЫ ДЛЯ ЗАДАЧ БЕЗУСЛОВНОЙ ОПТИМИЗАЦИИ И НЕЛИНЕЙНЫХ УРАВНЕНИЙ (продолжение)

Содержание лекции

- Методы спуска (завершение)
 - Градиентные методы

Задача безусловной оптимизации

Задача

$$f(x) \to \min, \quad x \in \mathbb{R}^n,$$
 (1)

где $f:\mathbb{R}^n o \mathbb{R}$ — заданная функция.

Общая схема методов спуска

$$x^{k+1} = x^k + \alpha_k d^k, \quad d^k \in \mathcal{D}_f(x^k), \quad k = 0, 1, \dots,$$
 (2)

где параметры длины шага $lpha_k>0$ выбираются так, чтобы выполнялось по крайней мере

$$f(x^{k+1}) < f(x^k). \tag{3}$$

Градиентные методы (предполагают дифференцируемость функции f на \mathbb{R}^n)

Это методы спуска, в которых $d^k = -f'(x^k)$. Итерационная формула (2) принимает вид

$$x^{k+1} = x^k - \alpha_k f'(x^k), \quad k = 0, 1, \dots$$
 (13)

В частности, это методы первого порядка.

Градиентные методы — не ньютоновские, но:

- их изучение естественным образом приводит к мысли о необходимости лучших (ньютоновских) методов;
- идеи анализа глобальной сходимости распространяются на значительно более широкие классы методов спуска.

Алгоритм 1

Выбираем $x^0 \in \mathbb{R}^n$ и полагаем k=0. Выбираем одно из трех основных правил одномерного поиска и необходимые для реализации этого правила параметры.

- Вычисляем α_k в соответствии с выбранным правилом одномерного поиска по направлению $d^k = -f'(x^k)$.
- \odot Увеличиваем номер шага k на 1 и переходим к п. 1.

Если $f'(x^k) = 0$, то текущая точка x^k является стационарной точкой задачи (1), и на практике метод останавливают. Чтобы не выделять случай $f'(x^k) = 0$ при теоретическом анализе, удобно считать, что при этом $x^k = x^{k+1} = \dots$, что согласуется с алгоритмом 1.

При реализации алгоритм должен быть снабжен практическими правилами остановки.

Метод скорейшего спуска

Метод скорейшего спуска

Это градиентный метод с выбором параметров длины шага по правилу одномерной минимизации.

Для этого метода из (5) следует

$$\langle f'(x^{k+1}), f'(x^k) \rangle = 0,$$

т.е. направления $d^k = -f'(x^k)$ и $d^{k+1} = -f'(x^{k+1})$ ортогональны: «зигзагообразное» движение. Должно настораживать!

Неравенство Армихо (6)

$$f(x^k - \alpha f'(x^k)) \leqslant f(x^k) - \varepsilon \alpha ||f'(x^k)||^2$$
.

Равенство (8) принимает вид

$$\bar{\alpha}_k = \frac{2(1-\varepsilon)}{\ell}.$$

Поэтому, согласно лемме 3, если градиент f липшицев, то

$$\alpha_{\mathbf{k}} \geqslant \check{\alpha},$$
 (14)

где $\check{\alpha}>0$ не зависит от k.

Глобальная сходимость

Теорема 1

Пусть функция $f:\mathbb{R}^n \to \mathbb{R}$ дифференцируема на \mathbb{R}^n , и ее производная липшицева на \mathbb{R}^n с константой $\ell>0$. Пусть в случае использования в алгоритме 1 правила постоянного параметра он удовлетворяет условию $\bar{\alpha}<2/\ell$. Тогда любая предельная точка любой траектории $\{x^k\}$ алгоритма 1 является стационарной точкой задачи (1). Если предельная точка существует, или если функция f ограничена снизу на \mathbb{R}^n , то

$$\{f'(x^k)\} \to 0 \quad (k \to \infty).$$
 (15)

Глобальная сходимость

Доказательство для правила Армихо

В силу неравенства Армихо $\{f(x^k)\}$ монотонно невозрастает. Тогда если $\{x^k\}$ имеет предельную точку, то $\{f(x^k)\}$ ограничена снизу, а значит сходится (если f ограничена снизу, то это верно и без предположения о наличии у $\{x^k\}$ предельной точки).

Из неравенства Армихо и (14) имеем

$$f(x^k) - f(x^{k+1}) \ge \varepsilon \alpha_k ||f'(x^k)||^2 \ge \varepsilon \check{\alpha} ||f'(x^k)||^2.$$

В силу сходимости $\{f(x^k)\}$ величина в левой части стремится к нулю, и значит, выполнено (15).

Для правил одномерной минимизации и постоянного параметра доказательство получается сведением к правилу Армихо.

Глобальная сходимость без липшицевости градиента

При отказе от требования липшицевости градиента трудность в том, что (14) может не выполняться ни при каком $\check{\alpha}>0$: параметр длины шага может уменьшаться бесконечно.

Теорема 2

Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ непрерывно дифференцируема на \mathbb{R}^n . Пусть в алгоритме 1 используется правило одномерной минимизации или правило Армихо.

Тогда любая предельная точка любой траектории $\{x^k\}$ алгоритма 1 является стационарной точкой задачи (1). Если последовательность $\{x^k\}$ ограничена, то имеет место (15).

Глобальная сходимость

От градиентного метода нельзя ожидать большего, чем стационарность предельных точек траекторий: при попадании в неоптимальную стационарную точку метод не имеет средств, позволяющих из нее выбраться.

Предельная точка существует в случае ограниченности множества Лебега $L(x^0) = L_{f,\mathbb{R}^n}(f(x^0))$. Если в теореме 2 множество $L(x^0)$ ограничено, то

$$\operatorname{dist}(x^k, S_0(x^0)) \to 0 \quad (k \to \infty),$$

где
$$S_0(x^0) = \{x \in L(x^0) \mid f'(x) = 0\}.$$

Типичный ингредиент анализа скорости сходимости: некоторая оценка расстояния до решения или множества решений.

$\mathit{Условие}$ квадратичного роста в точке $ar{x} \in \mathbb{R}^n$

$$f(x) - f(\bar{x}) \geqslant \gamma \|x - \bar{x}\|^2 \quad \forall x \in U \tag{16}$$

для некоторых окрестности U точки \bar{x} и числа $\gamma > 0$.

Всегда имеет место при выполнении достаточного условия второго порядка оптимальности в стационарной точке \bar{x} , состоящем в том, что матрица $f''(\bar{x})$ в разложении

$$f(x) - f(\bar{x}) = \frac{1}{2} \langle f''(\bar{x})(x - \bar{x}), x - \bar{x} \rangle + o(\|x - \bar{x}\|^2)$$

положительно определена (подразумевается двукратная дифференцируемость функции f в точке \bar{x}).

Условие квадратичного роста не может выполняться в неизолированном глобальном решении задачи (1).

Задача метода наименьших квадратов

Это задача (1), в которой

$$f(x) = \frac{1}{2} ||F(x)||^2, \quad x \in \mathbb{R}^n,$$
 (17)

где $F:\mathbb{R}^n \to \mathbb{R}^I$ — заданное отображение.

Множество глобальных решений этой задачи совпадает с множеством решений (при их наличии) уравнения

$$F(x)=0.$$

Если n > I, то это множество обычно состоит из неизолированных точек.

Имея в виду возможную неизолированность решений, условие квадратичного роста (16) естественно заменить оценкой расстояния до множества *S* глобальных решений:

$$f(x) - \bar{v} \geqslant \gamma(\operatorname{dist}(x, S))^2 \quad \forall x \in U.$$
 (18)

Не подразумевает выпуклость f даже локально (вблизи \bar{x}).

Для целевой функции f из (17) метода наименьших квадратов оценка (18) имеет место при выполнении условия регулярности $\operatorname{rank} F'(\bar{x}) = I$, поскольку полная версия теоремы Люстерника при этом дает оценку

$$dist(x, S) \le c ||F(x)|| \quad \forall x \in U$$

для некоторых окрестности U точки \bar{x} и числа c>0.

Для этих методов нет нужды в чисто локальных рассмотрениях.

$\mathit{Условие}$ квадратичного роста относительно множества $S \subset \mathbb{R}^n$

Это (18), где U — окрестность множества S (а не точки \bar{x}).

Часто используют специальные окрестности множества S: при некотором $\delta>0$

- $U = U(S, \delta) = \{x \in \mathbb{R}^n \mid \operatorname{dist}(x, S) \leq \delta\};$
- $U = L_{f,\mathbb{R}^n}(\bar{v} + \delta);$
- $U = L_{\|f'(\cdot)\|, \mathbb{R}^n}(\delta)$.

Ожидаемые результаты: (глобальная) сходимость к множеству S, либо (в идеале) к точке этого множества, а также получение оценок скорости сходимости.

Естественно пытаться установить сходимость и скорость сходимости градиентных методов к множеству S_0 стационарных точек задачи (1).

Тогда условие квадратичного роста естественно заменить оценкой расстояния до этого множества:

$$||f'(x)|| \geqslant \gamma \operatorname{dist}(x, S_0) \quad \forall x \in U,$$
 (19)

где U — окрестность множества S_0 .

Если $S=S_0$, а функция f достаточно гладкая, то из условия квадратичного роста (18) при $U=U(S,\,\delta)$ следует (19) (возможно, при других U и γ).

Оценка (19) при $U=U(S_0,\,\delta)$ равносильна этой же оценке при $U=L_{\|f'(\cdot)\|,\,\mathbb{R}^n}(\delta)$ (возможно, с другим $\delta>0$). Всюду далее $U=L_{\|f'(\cdot)\|,\,\mathbb{R}^n}(\delta)$.

Тогда в предположениях теоремы 1, если $\bar{v} > -\infty$, то выполнено (15), а значит, для любой траектории алгоритма 1 все приближения, начиная с некоторого, лежат в U.

Еще одно техническое требование:

Условие отделимости критических поверхностей уровня

Существует $\chi > 0$ такое, что для любых $\bar{x}^1, \bar{x}^2 \in S_0$, для которых $f(\bar{x}^1) \neq f(\bar{x}^2)$, имеет место $\|\bar{x}^1 - \bar{x}^2\| \geqslant \chi$.

Всегда выполняется в любом из случаев:

- S_0 гладко связно (при этом $f \equiv \text{const на } S_0$);
- производная f липшицева на \mathbb{R}^n , и f принимает на S_0 лишь конечное число различных значений;
- f квадратичная функция, имеющая критическую точку (при этом также выполняется оценка расстояния (19) при $U = \mathbb{R}^n$).

Теорема 3

Пусть в дополнение к условиям теоремы 1 значение задачи (1) конечно, и выполнено (19) при $U=L_{\|f'(\cdot)\|,\mathbb{R}^n}(\delta)$ и некоторых $\delta>0$ и $\gamma>0$. Пусть, кроме того, выполнено условие отделимости критических поверхностей уровня. Пусть в алгоритме 1 используется правило Армихо или правило постоянного параметра.

Тогда любая траектория $\{x^k\}$ алгоритма 1 сходится к некоторой стационарной точке \bar{x} задачи (1).

Скорость сходимости по функции линейная, а по аргументу геометрическая.

Главный недостаток методов этого класса: неприемлемо низкая скорость сходимости в случаях, когда поверхности уровня функции f «вытянуты» (т.е. имеет место «овраг», особенно с изогнутым «дном»).

Оценка скорости к стационарной точке \bar{x} :

$$\|x^k - \bar{x}\| \le c \frac{q^{k/2}}{1 - q^{1/2}},$$
 (20)

где

• c > 0 — константа;

0

$$q = \frac{M}{1+M} \in (0, 1), \quad M = \frac{\ell \widehat{\alpha}}{2\varepsilon} \left(1 + \frac{1}{\check{\alpha}\gamma}\right)^2.$$

Если $\ell\gg\gamma$ (характеризует овраг), то $q\approx 1$.

На практике градиентные методы крайне неэффективны и должны использоваться лишь как «последнее средство», когда другие (более изощренные) методы не применимы.

Далее: гораздо более эффективные (ньютоновские) методы.