

MATHEMATICS P1

MEMORANDUM

COMMON TEST

JUNE 2014

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 125

TIME: 2½ hours

This memorandum consists of 8 pages.

1.1.1	(x+6)(x-1)=0	✓ factors	
	x = -6 or $x = 1$		(2)
1.1.2	1 1 12 4	✓✓ Answers	(3)
1.1.2	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
		Zambatitatian into madatia formula	
	$=\frac{-(4)\pm\sqrt{(4)^2-4(-3)(2)}}{2(-3)}$	✓ substitution into quadratic formula	
	=-0.39 or 1.72	✓✓ answers	(3)
1.1.3	$x^2 \ge 0$ for all $x \in R$	$\checkmark x^2 \ge 0 \text{for all } x \in R$	
	$\therefore x + 2 < 0$	$\checkmark x+2<0$	(3)
	$\Rightarrow x < -2$	✓ answer	(3)
1.1.4	$\Rightarrow x < -2$ $2^{x}(2^{3} - 3.2^{-1}) = 104$	✓ removal of common factor	
	$2^{x} \left(8 - \frac{3}{2} \right) = 104$	✓ simplifying bracket	
	$2^x = 16$	√ 16	
	$2^x = 2^4$	✓ writing 16 as base 2	(5)
	$\therefore x = 4$	✓ answer	(5)
1.2	$\therefore x = 4$ $\sqrt{36 \times 2}x - \sqrt{49 \times 2}x + 2\sqrt{144 \times 2}x$	✓ perfect squares	
	$6\sqrt{2}x - 7\sqrt{2}x + 24\sqrt{2}x$	✓ for writing all as mixed surds	
	$=23\sqrt{2}x$	✓ answers	(3)
1.3	y = 2x - 2	✓ for y as subject	
	2x - 2 = (x - 2)(x - 1)	✓ substitution of y	
	$2x - 2 = x^2 - 3x + 2$	substitution of y	
	$x^2 - 5x + 4 = 0$		
	(x-1)(x-4)=0	✓ form of equation ✓ factors	
	x = 1 or $x = 4$	$\checkmark x$ values	
	y = 0 or $y = 6$	✓y values	(6)
	OR		
	$x-1=\frac{y}{2}$	✓ for y as subject	
	$y = \left(\frac{y}{2} - 1\right)\left(\frac{y}{2}\right)$	✓ substitution of y	
	$y = \frac{y^2}{4} - \frac{y}{2}$		
	$4y = y^2 - 2y$		
	$y^2 - 6y = 0$	✓ form of equation	
	y(y-6)=0	✓factors	
	y = 0 or $y = 6$	✓y values	
	x=1 or $x=4$	$\checkmark x$ values	(6)
			[23]

2.1.1	11; 14	✓ answer (both terms)	(1)
2.1.2	$T_n = 3n - 1$	✓✓ for nth term	
	Now if $3n-1=n^2$ or	✓ for equating nth term to	
	$n^2 - 3n + 1 = 0$	n^2	
	$n = \frac{3 \pm \sqrt{5}}{2}$ $b^2 - 4ac = (-3)^2 - 4(1)(1)$ $= 5$	/ for volve of a	
	l / l	✓ for value of n	
	$\Rightarrow n \text{ is irrational} \qquad \Delta \neq a \text{ perfect square}$	✓ for concluding <i>n</i> is irrational and for	
	But <i>n</i> must be natural	deducing <i>n</i> is natural	(5)
	∴ No term is a perfect square $(b^2 - 4ac \neq a \text{ perfect square})$	C	(5)
2.2.1	$T_n = 2n - 1$ for the first difference sequence	✓ 6 th term of 1 st difference	
	$T_6 = 2(6) - 1 = 11$	seq.	
	$\therefore T_6$ of original seq. = $35-11=24$	\checkmark 6 th term of quadratic seq.	
	$T_5 = 2(5) - 1 = 9$	✓ 5 th term of 1 st difference	
	$\therefore T_5$ of original seq. = $24 - 9 = 15$	seq. ✓ 5 th term of quadratic	(4)
2.2.2	$36a + 6b + c = 24 \rightarrow (1)$	sequence	
2.2.2	$25a + 5b + c = 15 \rightarrow (2)$		
	$ \begin{array}{ccc} 23a + 3b + c - 13 & \rightarrow & (2) \\ 49a + 7b + c = 35 & \rightarrow & (3) \end{array} $		
	(1) - (2):		
	$ \begin{array}{ccc} (1) - (2) \\ 11a + b = 9 & \rightarrow & (4) \end{array} $	✓ 11 <i>a</i> + <i>b</i> =9	
	(3) - (1)		
	$\begin{vmatrix} (3) & (1) \\ 13a + b = 11 & \rightarrow (5) \end{vmatrix}$	✓ 13 <i>a</i> + <i>b</i> =11	
	(5) – (4)	7 134 10-11	
	2a = 2		
	$\therefore a = 1$	$\checkmark a$ value	
	b = -2	$\checkmark b$ value	
	$T_n = n^2 - 2n$	✓ answer	(5)
	OR		
	2a = 2		
	$\therefore a = 1$	$\checkmark a$ value	
	c = 0	$\checkmark c$ value	
	$T_n = an^2 + bn + c$		
	$35 = 1(7)^2 + b(7) + 0$	$\checkmark T_7 = 35$	
	-14 = 7b		
	b = -2	(11	
	$T_n = n^2 - 2n$	✓ b value	
	,	✓ answer	(5)

			[24]
	$n = \log_3 531441$ $n = 12$	✓ writing in log form ✓ answer	(5)
	$3^n = 531441$	✓ for 3 ⁿ as subject	
	$531440 = \frac{2(3^n - 1)}{3 - 1}$	✓✓ substitution	
2.4	$S_n = \frac{a(r^n - 1)}{r - 1}$		
	, 1		
	$\therefore S_n = \frac{a(r^n - 1)}{r - 1}$	✓ factorising	(4)
	$S(r-1)=q(r^n-1)$	RHS	
	$rS_n - S_n = ar^n - a$	✓ subtraction on LHS and	
	(2) – (1):		
	$rS_n = ar + ar^2 + \dots + ar^n \qquad \to \qquad (2)$	✓ for equation (2)	
2.3	$S_n = a + ar + ar^2 + + ar^{n-1} \rightarrow (1)$	✓ for equation (1)	

4.1	p = -3	✓ p value	
	p = -3 $q = 4$	✓ q value	
	$y = \frac{a}{x-3} + 4$ Now subst. $A(4;6)$:		
	$6 = \frac{a}{4-3} + 4$	✓ subst. p, q and point A	
	$\therefore a = 2$	✓a value	(4)
4.2	$y \in R; y \neq 2$	✓ ✓ answer	(2)
4.3	4=3+c	✓✓ subst. of point A	
	$\therefore c = 1$	✓ answer	(3)
	OR		
	y = (x+p) + q		
	y = (x+p)+q $y = (x-3)+4$	✓ substitution of p and q values	
	y = x + 1	✓ equation of line of symmetry	
	∴ c = 1	✓answer	(3)
			[9]

5.1	$y = 5^x$	✓ ✓ answer	(2)
5.2.1	$y = \pm \sqrt{x}$	✓ ✓ answer	(2)
5.2.2	h is a many-to-one-function OR	✓ ✓ answer	(2)
	For each <i>x</i> -value, there is more than 1 <i>y</i> -value OR	✓ ✓ answer	(2)
	If you draw a vertical line parallel to the <i>y</i> -axis, it will cut <i>h</i> twice.	✓✓ answer	(2)
5.2.3	$x \le 0$	✓ answer	
	$x \ge 0$	✓ answer	(2)
5.2.4	y x	✓ shape ✓ intercept	
		✓ shape ✓ intercept	(4)

5.2.5	$\sqrt{x} \le 2$		
	So consider		
	$\sqrt{x}=2$		
	$x = 4$ $\therefore 0 \le x \le 4$	✓✓ answer[end points + inequality]	(2)
			[14]

6.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ formula	
	$=\lim_{h\to 0}\frac{(x+h)^3-(x)^3}{h}$	✓ substitution	
	$= \lim_{h \to 0} \frac{\left(x^3 + 3x^2h + 3xh^2 + h^3\right) - x^3}{h}$	✓ simplifying	
	$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$	✓ factorising	
	$=3x^2$	✓ answer	
	OR		(5)
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ formula	(3)
	$=\lim_{h\to 0}\frac{\left(x+h\right)^3-\left(x\right)^3}{h}$	✓ substitution	
	$= \lim_{h \to \infty} \frac{(x+h-x)(x^2+2xh+h^2+xh+x^2+x^2)}{h^2}$	✓ factorising	
	$= \lim_{h \to 0} \left(3x^2 + 3xh + h^2 \right)$	✓ simplifying	
	$= 3x^2$ $y = x^2 - x$	✓ answer	(5)
6.2.1	$y = x^2 - x$	✓✓ for simplifying	
	$\frac{dy}{dx} = 2x - 1$	✓✓ both answers	(4)
6.2.2	$h(x) = x^{\frac{1}{6}} - 3x^{\frac{1}{2}}$ $h'(x) = \frac{1}{6}x^{\frac{-5}{6}} - \frac{3}{2}x^{-\frac{1}{2}}$	✓✓rewriting both terms in exponential form ✓✓ both answers	
			(4) [13]
			[13]

7.1	A(2;0)	$\checkmark \checkmark$ for x and y coordinates	(2)
7.2	$y = a(x - x_1)(x - x_2)(x - x_3)$		
	-2 = a(0+1)(0+1)(0-2)	✓ substituting x intercepts and y	
	-2 = -2a	intercept into formula \checkmark for $-2 = -2a$	
	$\therefore a=1$	101 - 224	
	y = (x+1)(x+1)(x-2)		
	$=(x^2+2x+1)(x-2)$	✓ simplifying any two brackets	
	$= x^3 - 3x - 2$	✓ cubic function	
	$\begin{array}{c} -x & 3x & 2 \\ \therefore c = 3 \end{array}$		(5)
	OR		
	$f'(x) = 3ax^2 - c$	✓ for derivative	
	$f'(-1) = 3a(-1)^2 - c = 0$	✓ subst. $x = -1$ into derivative	
	$3a - c = 0 \rightarrow (1)$		
	Also		
	$f(-1) = a(-1)^3 - c(-1) - 2$	✓ for subst. $x = -1$ into original	
	-a+c-2=0	equation f	
	$-a+c=2 \longrightarrow (2)$		
	(1)+(2):		
	2a = 2	\checkmark for $2a = 2$	
	∴ <i>a</i> = 1		
	subst.in(2):		
	c=3	✓ c value	
	OR		
	$f(x) = a(x+1)^2(x-2)$		(5)
	$= a(x-2)(x^2+2x+1)$	✓ for subst. <i>x</i> -intercepts into equation	
	$= a(x^3 + 2x^2 + x - 2x^2 - 4x - 2)$	✓ for squaring binomial	
	$=a(x^3-3x-2)$		
	$\therefore a = 1 \text{ and } c = 3$	✓ for expanding	
		✓ for collecting like terms ✓ for answers	(5)
7.3	dy	- 101 dilsweis	
	$\frac{dy}{dx} = 3x^2 - 3$ Also		
	$3x^2 - 3 = 0$ consider second	dominating and agree 1 to 0	
	3(x+1)(x-1) = 0 second derivative	✓ derivative and equal to 0	
	$\therefore x = -1 or x = 1 \qquad \text{method}$	$\checkmark x$ – values	
	$\Rightarrow y = 0$ or $y = -4$		
	B(1;-4)	✓ y – values ✓ coordinates of B	(4)
7.4	x = 0	✓ answer	(2)
7.5	k > 0 or $k < -4$	✓✓✓ answers and accuracy mark for	
7.	1	the word OR	(3)
7.6	-1 < x < 1	✓✓ end points and inequality	(2) [18]
			[18]

7

8.1	$V = l \times b \times h$,	
	$1 = 2x \times x \times h$	✓ substituting into volume formula	
	$h = \frac{1}{2x^2}$	✓h value in terms of x	
			(2)
8.2	$C = 2x^2 \times R200 + 6xh \times R120$	✓ cost of base ✓ cost of sides	
	$=400x^2 + 720x\left(\frac{1}{2x^2}\right)$	✓ substitution of h value	
	$=400x^2+360x^{-1}$		(3)
8.3	$C'(x) = 800x - 360x^{-2}$	✓ derivative = 0	
	$800x = \frac{360}{x^2}$		
	$x^3 = \frac{360}{800}$	✓ for making x^3 the subject	
	x = 0.77 m	$\checkmark x$ value	
	Minimum Cost		
	$=400(0,77)^2+360(0,77)^{-1}$	✓substitution	
	= R704,69 or R704,68	✓answer	(5)
			[10]

TOTAL MARKS: 125