

Si on commence avec foraise-orange,
on a an-2 façons de complétur
le reste de la vangée.
De nême si on commence avec fraise-pomme.
traise - pomme.
Si on commence avec deux fraises, on pent prettre n'imparte quel fruit dans le veste de la rangée, clone I 3 ⁿ⁻² façons de compléter la vanjée (2)
Par le principe de la somme, an = 2 an-1 + 2 an-2 + 3 ⁿ⁻² .
$ \frac{94}{\text{Poly}} $ (Méthode 1) Poly caractivistique $X^2 - 7X + 12$ (2) $= (x - 3)(x - 4)$ racines: 3, 4.
racines: 3,4.

Done,
$$a_{n} = A3^{n} + B4^{n}$$
 pour curtaines
A et B. (2)
 $n = 0$, $a_{0} = A + B = 1$
 $n = 1$, $a_{1} = 3A + 4B = 2$
 $\Rightarrow A = 2$, $\Rightarrow B = -1$. (2)
 $\Rightarrow A = 2$, $\Rightarrow B = -1$. (2)
Méthode 2
Sost $\Rightarrow G(x) = \sum a_{1}x^{1}$
 $\Rightarrow a_{2}x^{2} + a_{2}x^{2} + a_{3}x^{2} + a_{4}x^{2} + a_{5}x^{2} + a_$

- 12x2 (a. +a,x +...) (2

$$G(x) = 1+2x + 7x (-1 + G(x)) - 12x^{2}G(x)$$

$$G(x)(1-7x+12x^{2}) = 1-5x$$

$$G(x) = (-5x)$$

$$(-3x)(1-4x)$$

$$= 2$$

$$(-3x) - 2(4x)^{7}$$

$$= 2(3x)^{7} - 2(4x)^{7}$$

$$= 2(2\cdot3^{7} - 4^{7}) \times 7$$

E)
$$A = -1$$
, $B = 1$ (2)
E) $a_n = -2^m + (-1)^n + n2^{n+1}$ (2)
Mithode 2
Soft $G(X) = \sum a_n x^n$
 $a_n + 2a_n + 3 \cdot 2^n + 3 \cdot 2^n$

$$G(x) = X + X G(x) + 2x^{2}G(x) + \frac{12x^{2}}{1-2x}$$

$$(J-X-2x^2)G(X) = X+\frac{12x^2}{1-2x}$$

$$(1-2x)(1+x)6(x)= x+10x^2$$

$$G(X) = \frac{X + 10X^{2}}{(1-2X)^{2}(1+X)}$$

$$= \frac{1}{1+X} - \frac{3}{1-2X} + \frac{2}{(1-2X)^{2}}$$

$$= \frac{2(-X)^{2} - 32(2X)^{2} + 22(n+1)(2X)^{2}}{(n+1)(2X)^{2}}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n^{2}} \left((-1)^{n} - 3 \cdot 2^{n} + 2(n+1) \cdot 2^{n} \right) \times n^{2}$$

$$= \sum_{n=0}^{\infty} \left((-1)^{n} - 3 \cdot 2^{n} + 2(n+1) \cdot 2^{n} \right) \times n^{2}$$

$$= (-1)^{n} - 3 - 2^{n} + 2 (n+1) 2^{n}$$

$$= (-1)^{n} - 3 \cdot 2^{n} + 2n2^{n} + 2 \cdot 2^{n}$$

$$= (-1)^{n} - 2^{n} + n2^{n+1}$$
(2)

Q6 (Méthode 1)
Poly caractéristique X-3 racine 3. 2
I n'est pas une racine, on a un poly
de degré 1 dans la relation de vécurence
$= 3n = A3^n + Bn+C $ (3)
pour certains A, B et C
$C1 \rightarrow R \rightarrow C \rightarrow C$
Cherola B et C: Bn+C=3(B(n-1)+C)
-2n+1(2)
(2B-2)n + 2C - 3B + 1 = 0
28-2 =0
21-3B+1=0
= 38=1, C=1. (2)
Dune, an=A37+n+1.
Chercher A: $n=0$, $q_0=A+1=3$ A=2 (2)
Donc 9n= 2.3"+n+1.

Nothable 2

Soft
$$G(x) = \sum a_{1}x^{1}$$
 $= a_{0} + a_{1}x + a_{2}x^{2} + \cdots$
 $= 3 + (3a_{0} - 2 + 1)x + (3a_{1} - 2 \cdot 2 + 1)x^{2} + (3a_{2} - 2 \cdot 3 + 1)x^{3} + \cdots$
 $= 3 + (3a_{0} \times + 3a_{1}x^{2} + 3a_{0}x^{3} + \cdots)$
 $= 3 + (3a_{0} \times + 3a_{1}x^{2} + 3a_{0}x^{3} + \cdots)$
 $= (-2x - 2 \cdot 2x^{2} - 2 \cdot 3x^{3} - \cdots)$
 $= (-2x - 2 \cdot 2x^{2} - 2 \cdot 3x^{3} - \cdots)$
 $= (x + x^{2} + x^{3} + \cdots)$
 $= (x + x^{2} + x^{2} + x^{2} + \cdots)$
 $= (x + x^{2} + x^{2} + x^{2} + \cdots)$
 $= (x + x^{2} + x^{2} + x^{2} + \cdots)$
 $= (x + x^{2} + x^{2} + x^{2} + x^{2} + \cdots)$
 $= (x + x^{2} + x^{2} + x^{2} + x^{2} + x^{2} + x^{2} + \cdots)$
 $= (x + x^{2} + x^{2} + x^{2$

$$= \sum_{n \ge 0} (n+1) x^{n} + 2 \sum_{n \ge 0} (3x)^{n}$$

$$= \sum_{n \ge 0} (n+1+2\cdot3^{n}) x^{n}$$

$$= \sum_{n \ge 0} (x^{n}) x^{n}$$

$$= \sum_{n \ge 0} (x$$

(b) $6(x) = \frac{2+x}{(-x^2)}$	
= (2+x) (1+x2+ x4+x6+	
La seule terme de X ²⁰¹⁶ dans ce produit 18t 2-X ²⁰¹⁶ Co Donc, azor = 2.	2
Alternativement	5.8
Poly caractéristique X+1, -1 est la Seule vacine.	
an= A(-1) ⁿ +B pour cortains () A et B.	2)
$B = -B + 3 \Rightarrow B = \frac{3}{2}$	P
$a_n = A(-1)^{1} + \frac{3}{2}$. $a_0 = A + \frac{3}{2} = 2$	2