Метод построения конечных автоматов на основе муравьиного алгоритма

Чивилихин Д.С., Ульянцев В.И. Научный руководитель – к.т.н. Царев Ф.Н.

Конечный автомат

- KA шестерка <*S*, s_0 , E, A, δ , $\lambda>$;
- S множество состояний;
- s_0 начальное состояние;
- E множество входных событий;
- A множество выходных воздействий;
- $\delta: SxE \rightarrow S$ функция переходов;
- $\lambda: SxE \to A^* функция действий.$

Задача построения автоматов

- *X* множество КА с заданными параметрами:
 - N число состояний;
 - E множество входных событий;
 - А множество выходных воздействий.
- $f: X \to R$ функция приспособленности (ФП)
- \bullet b барьерное значение f
- Задача: найти автомат x из X такой, что $f(x) \ge b$

Состояние проблемы

- Эволюционные стратегии
- Генетические алгоритмы
- Метод имитации отжига

Предлагаемый метод построения автоматов

- 1. Свести задачу построения автомата к оптимизации на графе
- 2. Использовать **муравьиный алгоритм** нового типа для решения задачи

Существующие муравьиные алгоритмы не подходят для решения задачи

Решение (1): представление пространства поиска в виде графа

- Граф:
 - вершины конечные автоматы;
 - ребра мутации конечных автоматов.
- Мутация небольшое изменение структуры автомата:
 - изменение состояния, в которое ведет переход;
 - изменение действия на переходе.

Решение (2): муравьиный алгоритм

- 1. Граф = {случайный автомат}
- 2. While (true)

Построение решений муравьями Обновление значений феромона Проверка условий останова

Построение решений муравьями

- N муравьев
- Запускаются:
 - Последовательно: 1, 1, 1, 1, 2, 2, 2
 - или «параллельно»: 1, 2, 1, 2, 1, 2, 1, 2

Алгоритм работы муравья

- Муравей помещается в вершину графа
- У каждого муравья ограниченное число шагов
- Шаг муравья переход в следующую вершину

Выбор следующей вершины

10

Обновление значений феромона

- Качество решения (пути муравья) максимальное значение ФП вершины пути
- Обновление au_{uv}^{best} наибольшего значения феромона, отложенного на ребре (u, v)
- Новое значение вычисляется по формуле:

$$\tau_{uv} = \rho \tau_{uv} + \tau_{uv}^{best}$$

• $\rho \in [0,1]$ – скорость испарения феромона

Отличие от классических муравьиных алгоритмов

- Классика:
 - Вершины компоненты решений
 - Полные решения строятся муравьями
- Предложенный муравьиный алгоритм:
 - Вершины полные решения
 - Муравьи перебирают полные решения

Пример применения: задача «Умный муравей»

- Поле тор NxN
- М клеток с едой
- К ходов
- Положение еды и начальная позиция муравья фиксированы
- Цель создать муравья, который съест всю еду

Пример поля

Пример применения: задача «Умный муравей»

- Два поля:
 - Santa Fe Trail
 - John Muir Trail
- Сравнение с работами:
 - Christensen, Oppacher (2007)
 - Царев, Шалыто (2007)

Santa Fe trail

John Muir Trail (Царев и Шалыто, 2007): 200 ходов

 5×10^{7} Муравьиный алгоритм ГА - Царев, Шалыто (2007) Для Iисло вычислений ФП З автоматов с семью СОСТОЯНИЯМИ — в 30 раз быстрее 10 15 Число состояний автомата

Учет использованных переходов автомата

- При вычислении ФП пометим переходы, которые делал автомат
- Если мутация изменяет неиспользуемый переход — не будем пересчитывать ФП

Santa Fe Trail с учетом использованных переходов (600 ходов)

Результаты

- 1. Разработан метод построения автоматов на основе муравьиного алгоритма
- 2. Для задачи об «Умном муравье» метод эффективнее других алгоритмов