## Lab 10 (Team Project) เตรียมพร้อมการสอบ Verilog จงออกแบบวงจรและเขียน Verilog เพื่อตรวจสอบการทำงาน

| ชื่อ-นามสกุล. | ข์รู้ใ | ริก ส้นว ค.พ.ค.<br>ว 0 6 10 1 ร 1 |  |        |      |      |
|---------------|--------|-----------------------------------|--|--------|------|------|
| นักศึกษา      | 63061  | 0751                              |  | ตอนที่ | 002  |      |
| ชื่อ-นามสกุล. |        |                                   |  |        |      | รหัส |
| นักศึกษา      | 630    |                                   |  | ตอนที่ | 007  |      |
| ชื่อ-นามสกุล. |        |                                   |  |        |      | รหัส |
| นักศึกษา      | 630    |                                   |  | ตอนที่ | 00 L |      |
| ชื่อ-นามสกุล. |        |                                   |  |        |      | รหัส |
| นักศึกษา      |        |                                   |  | ตอนที่ |      |      |

1) ออกแบบ 1-bit ALU ( Arithmetic Logic Unit) ที่รับอินพุต a และ b และเลือก ปฏิบัติการตามสัญญาณควบคุม  $c_1$  และ  $c_0$ 



## โดยมีตารางการปฏิบัติการดังนี้

| C <sub>1</sub> | C <sub>0</sub> | у                 | z           |
|----------------|----------------|-------------------|-------------|
| 0              | 0              | sum of (a, b, ci) | Carry out   |
| 0              | 1              | a AND b           | 0           |
| 1              | 0              | NOT a             | 0           |
| 1              | 1              | 0                 | "0" if a=b  |
|                |                |                   | "1" if a!=b |

- ออกแบบ โครงสร้างของ Verilog
- เขียน Code ด้วย Verilog ทั้งส่วน Design และ ส่วน Stimulus





## - แสดงผลการทำงานที่ได้ และอธิบายว่า 1-bit ALU ที่ได้ทำงานถูกต้องอย่างไร

- 2) จากโมดูล 1-bit ALU (Arithmetic Logic Unit) ที่ได้ให้นำมาพัฒนาต่อเป็น 4-bit ALU โดยรับอินพุต a0-a3 และ b0-b3 โดยผลลัพธ์จะมี y0-y3 และ z ซึ่งเป็นผลการปฏิบัติการของ อินพุต ซึ่งถูกเลือกปฏิบัติการตามสัญญาณควบคุม  $c_1$  และ  $c_0$ 
  - ออกแบบ โครงสร้างของ Verilog
  - เขียน Code ด้วย Verilog ทั้งส่วน Design และ ส่วน Stimulus
  - แสดงผลการทำงานที่ได้ และอธิบายว่า 4-bit ALU ที่ได้ทำงานถูกต้องอย่างไร



• select 11 กรเน็นว่าเราได้ z เป็น 1 ก็ต่อเมื่อ msb voj a b ไม่ครมกัน

184 0111/1101 : 1 , 0000/0000 : 0 HAS Y : 0 MAGA



\* select 01 สะเน็นว่าเราไล้ y เป็นเลง 4-bit ที่ a,b พบกัน เช่น 0100/0100 = 0100 , 1010/0010 = 0010 และ 2 + 0 พลงค

3) พัฒนาวงจรนับขึ้น,นับลง 2 บิต (00,01,10,11) โดยให้มีสัญญาณอินพุต (X) เป็นตัวควบคุม การนับขึ้นหรือนับลง โดยสัญญาณจะนับขึ้นก็ต่อเมื่อ X=0 และจะนับลงเมื่อ X=1 ออกแบบ โดยใช้ Module D Flipflop

```
module D_FF(q,d,clk,reset);

output q;

input d,clk,reset;

reg q;

always @ (posedge reset or negedge clk)

if(reset)

q <= 1'b0;

else

q <= d;

endmodule
```

- ออกแบบ โครงสร้างของ Verilog
- เขียน Code ด้วย Verilog ทั้งส่วน Design และ ส่วน Stimulus
- แสดงผลการทำงานที่ได้ และอธิบายว่าวงจรนับที่ได้ทำงานถูกต้องอย่างไร





## Tomathouse Verilog



- 4) จากวงจรนับขึ้น,นับลง 2 บิต ที่ได้ในข้อ 3 ให้เ<u>พิ่มสัญญาณเอาต์พุต</u>โดยให้สัญญาณเอาต์พุต เป็น 1 ก็ต่อเมื่ออยู่ที่สถานะ 01 และค่าอินพุต(x) เป็น 1 เท่านั้นในกรณีอื่นสัญญาณเอาต์พุตนี้ จะเป็น 0
  - ออกแบบ โครงสร้างของ Verilog
  - เขียน Code ด้วย Verilog ทั้งส่วน Design และ ส่วน Stimulus
  - แสดงผลการทำงานที่ได้ และอธิบายว่าวงจรนับที่ได้ทำงานถูกต้องอย่างไร





