Job No.:
 665758-1
 Address:
 121 Haruru Falls Road, Haruru, New Zealand
 Date:
 26/06/2024

 Latitude:
 -35.27226
 Longitude:
 174.047374
 Elevation:
 46.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	2.2 m
Wind Region	NZ1	Terrain Category	2.78	Design Wind Speed	43.08 m/s
Wind Pressure	1.11 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Free

For roof Cp, i = -0.3

For roof CP,e from 0 m To 1.04 m Cpe = -1.0523 pe = -1.05 KPa pnet = -1.05 KPa

For roof CP,e from 1.04 m To 2.07 m Cpe = -0.8239 pe = -0.83 KPa pnet = -0.83 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 3 m Cpe = 0.7 pe = 0.70 KPa pnet = 1.03 KPa

For side wall CP,e from 0 m To 2.07 m Cpe = pe = -0.65 KPa pnet = -0.65 KPa

Maximum Upward pressure used in roof member Design = 1.05 KPa

Maximum Downward pressure used in roof member Design = 0.43 KPa

Maximum Wall pressure used in Design = 1.03 KPa

Maximum Racking pressure used in Design = 0.6 KPa

Design Summary

Rafter Design External

External Rafter Load Width = 2220 mm

External Rafter Span = 2811 mm

Try Rafter 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

 $K1 \; Short \; term = 1 \qquad K1 \; Medium \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Short \; term = 1 \qquad K1 \; Medium \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.8 \qquad K1 \; Long \; term = 0.8 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.8 \qquad K2 = 1 \qquad K3 \; Long \; term = 0.8 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.8 \qquad K2 = 1 \qquad K3 \; Long \; term = 0.8 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.8 \qquad K2 = 1 \qquad K3 \; Long \; term = 0.8 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.8 \qquad K2 = 1 \qquad K3 \; Long \; term = 0.8 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.8 \qquad K2 = 1 \qquad K3 \; Long \; term = 0.8 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.8 \qquad K1 \; Long \; term =$

K8 Upward =0.98 S1 Downward =12.23 S1 Upward =12.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.74 Kn-m	Capacity	1.79 Kn-m	Passing Percentage	241.89 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.60 Kn-m	Capacity	2.38 Kn-m	Passing Percentage	148.75 %
$M_{0.9D\text{-W}n\text{Up}}$	-1.81 Kn-m	Capacity	-2.98 Kn-m	Passing Percentage	164.64 %
V _{1.35D}	1.05 Kn	Capacity	8.25 Kn	Passing Percentage	785.71 %

Second page

 $V_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 2.28 Kn Capacity 11.00 Kn Passing Percentage 482.46 % $V_{0.9D-WnUp}$ -2.57 Kn Capacity -13.75 Kn Passing Percentage 535.02 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 5.06 mm Deflection under Dead and Service Wind = 6.03 mm Limit by Woolcock et al, 1999 Span/240= 12.50 mm Limit by Woolcock et al, 1999 Span/100 = 30.00 mm

Reactions

Maximum downward = 2.28 kn Maximum upward = -2.57 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -12.28 \text{ kn} > -2.57 \text{ Kn}$

Single Shear Capacity under short term loads = -9.75 Kn > -2.57 Kn

Girt Design Front and Back

Girt's Spacing = 0 mm Girt's Span = 2220 mm Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm Sag during installation = NaN mm Limit by Woolcock et al, 1999 Span/100 = 22.20 mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 0 mm

Girt's Span = 1500 mm

Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	NaN Kn-m	Passing Percentage	NaN %
$V_{0.9D\text{-W}nUp}$	0.00 Kn	Capacity	0.00 Kn	Passing Percentage	NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm

Limit by Woolcock et al. 1999 Span/100 = 15.00 mm

Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

End Pole Design

Geometry For End Bay Pole

Geometry

150 UNI H5	Dry Use	Height	2000 mm
Area	17663 mm2	As	13246.875 mm2
Ix	24837891 mm4	Zx	331172 mm3
Iy	24837891 mm4	Zx	331172 mm3
	,		

Lateral Restraint mm c/c

Loads

Total Area over Pole = 6.66 m^2

Dead	1.67 Kn	Live	1.67 Kn
Wind Down	2.86 Kn	Snow	0.00 Kn
Moment Wind	1.21 Kn-m		
Phi	0.8	K8	0.96
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Shaving	Steaming	Normal	Dry Use
fb =	34.325 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	20.75 MPa	E =	8793 MPa

Capacities

PhiNex Wind	242.97 Kn	PhiMnx Wind	8.69 Kn-m	PhiVnx Wind	31.37 Kn
PhiNcx Dead	145.78 Kn	PhiMnx Dead	5.21 Kn-m	PhiVnx Dead	18.82 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.16 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.04 < 1 OK$

Deflection at top under service lateral loads = 3.75 mm < 21.95 mm

Ds = 0.6 mm Pile Diameter

L= 1300 mm Pile embedment length

f1 = 1650 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 6.66 m^2

Moment Wind = 1.21 Kn-m Shear Wind = 0.73 Kn

Pile Properties

Safety Factory 0.55

Hu = 6.64 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 6.93 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.17 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1300 mm Pile embedment length

f1 = 1650 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

5/6

Loads

Pile Properties

Safety Factory 0.55

Hu = 6.64 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 6.93 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.17 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1300) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1300)

Skin Friction = 13.65 Kn

Weight of Pile + Pile Skin Friction = 17.91 Kn

Uplift on one Pile = 5.49 Kn

Uplift is ok