jupyter zbMATH Links API demo

This notebooks demonstrates some of the capabilites of the zbMATH links API.

```
In [1]:
         import pandas as pd
pd.options.plotting.backend = "plotly"
        Load statics for msc distribtion.
In [2]:
         msc = pd.read_json('https://zblink.formulasearchengine.com/links_api/statistics/msc/')
         msc = msc.rename(columns={msc.columns[0]:'msc',msc.columns[1]:'count'})
         msc = msc.set_index('msc')
         msc.head()
Out[2]:
        msc
          33
               491
          65
               351
          11
               172
          34
               169
In [3]:
         fig=msc.plot(y='count',kind='bar')
```


In the same way one can derive the year distribution

fig.show()

87 rows × 1 columns

```
In [6]:
    f=y.plot(kind='bar',y='count')
    f.show()
```


Instead of the preprocessed statistics one can also access the uderling data in the scholix format. In the example below we filter for links that point to a MSC class 14.

```
import requests, json
alg_geo_json = requests.get('https://zblink.formulasearchengine.com/links_api/link/?msc%20classification%20code=14')
alg_geo_data = json.loads(alg_geo_json.text)
df = pd.json_normalize(alg_geo_data)
df
```

	LinkPublicationDate	RelationshipType	Source.ldentifier.ID	Source.ldentifier.IDScheme	Source.ldentifier.lDURL	Source.Type	Source.Title	Source.Publisher.Name	Source.Publisher.Identifier.ID	Source.Publisher.Identifier.IDScheme	Target.Type.Name	Target.Typ
	0 1900-01-01T00:00:00	none	21.7#ii.info	DLMF scheme	https://dlmf.nist.gov /21.7#ii.info	{'Name': 'DLMF bibliographic entry'}	§21.7(ii) Fay's Trisecant Identity ► §21.7 Rie	DLMF	DLMF	name of partner	book	14K25 14 14-02 33I 58
	1 1900-01-01T00:00:00	none	32.2#iv.p1	DLMF scheme	https://dlmf.nist.gov /32.2#iv.p1	{'Name': 'DLMF bibliographic entry'}	§32.2(iv) Elliptic Form • §32.2 Differential E	DLMF	DLMF	name of partner	book_article	14H52 34N 14I
	2 1900-01-01T00:00:00	none	32.7#viii.p1	DLMF scheme	https://dlmf.nist.gov /32.7#viii.p1	{'Name': 'DLMF bibliographic entry'}	§32.7(viii) Affine Weyl Groups ► §32.7 Bäcklun	DLMF	DLMF	name of partner	serial_article	37
	3 1900-01-01T00:00:00	none	about/bio /AIBobenko#p2	DLMF scheme	https://dlmf.nist.gov /about /bio/AIBobenko#p2	{'Name': 'DLMF bibliographic entry'}	Profile Alexander I. Bobenko About the Project	DLMF	DLMF	name of partner	book	35-02 350 37J35 37k 14l
	4 1900-01-01T00:00:00	none	20.7#v.info	DLMF scheme	https://dlmf.nist.gov /20.7#v.info	{'Name': 'DLMF bibliographic entry'}	§20.7(v) Watson's Identities ► §20.7 Identitie	DLMF	DLMF	name of partner	book	11-02 11(33E05 1 11F
1	11 1900-01-01T00:00:00	none	21.6#ii.info	DLMF scheme	https://dlmf.nist.gov /21.6#ii.info	{'Name': 'DLMF bibliographic entry'}	§21.6(ii) Addition Formulas ► §21.6 Products ►	DLMF	DLMF	name of partner	serial_article	58J99 350 35B99 14F 530
1	12 1900-01-01T00:00:00	none	21.9#info	DLMF scheme	https://dlmf.nist.gov /21.9#info	{'Name': 'DLMF bibliographic entry'}	§21.9 Integrable Equations ► Applications ► Ch	DLMF	DLMF	name of partner	serial_article	58J99 350 35B99 14F 530
1	13 1900-01-01T00:00:00	none	20.12#i.p1	DLMF scheme	https://dlmf.nist.gov /20.12#i.p1	{'Name': 'DLMF bibliographic entry'}	§20.12(i) Number Theory ► §20.12 Mathematical 	DLMF	DLMF	name of partner	book	11G05 14 1
1	14 1900-01-01T00:00:00	none	21.7#i.p4	DLMF scheme	https://dlmf.nist.gov /21.7#i.p4	{'Name': 'DLMF bibliographic entry'}	§21.7(i) Connection of Riemann Theta Functions	DLMF	DLMF	name of partner	serial_article	58J99 350 35B99 14H 530
1	15 1900-01-01T00:00:00	none	21.9#p2	DLMF scheme	https://dlmf.nist.gov /21.9#p2	{'Name': 'DLMF bibliographic entry'}	§21.9 Integrable Equations ► Applications ► Ch	DLMF	DLMF	name of partner	serial_article	35Q53 35i 37K10 14i

From the returned articles we select only those where the primary MSC is "14".

In [46]: alg_geo_prim=df[['Source.Identifier.ID','Target.Identifier.ID','Target.Type.Subtype']][df['Target.Type.Subtype'].str.startswith('14')] alg_geo_prim

Out[46]:		Source.ldentifier.ID	Target.ldentifier.ID	Target.Type.Subtype
	0	21.3#i.info	0509.14049	14K25 11F11 33E05 14-02 14K10 14H10 14K30
	14	21.7#i.p4	0549.14014	14K25 14K30 58J60 14-02 33E05 14H40 58J15 35Q99
	16	21.8#p1	0251.14016	14-02 14K25 32N05
	17	21#info	0251.14016	14-02 14K25 32N05
	18	21#info	0509.14049	14K25 11F11 33E05 14-02 14K10 14H10 14K30
	20	21.10#l1.i1.p1	0964.14047	14Q15 30F10 14H55 32G20 14-04
	24	21.7#iii.info	0549.14014	14K25 14K30 58J60 14-02 33E05 14H40 58J15 35Q99
	28	21.3#ii.info	0509.14049	14K25 11F11 33E05 14-02 14K10 14H10 14K30
	30	21.5#ii.info	0251.14016	14-02 14K25 32N05
	33	21.5#i.info	0509.14049	14K25 11F11 33E05 14-02 14K10 14H10 14K30
	37	21#info	0549.14014	14K25 14K30 58J60 14-02 33E05 14H40 58J15 35Q99
	38	21.6#i.info	0509.14049	14K25 11F11 33E05 14-02 14K10 14H10 14K30
	47	21.7#ii.info	0549.14014	14K25 14K30 58J60 14-02 33E05 14H40 58J15 35Q99
	52	21.6#ii.p1	0347.14023	14K25
	60	22.18#iv.p1	0615.14018	14Hxx 14-02 11-02 11R58 11F03 14H05 11G15 14K2
	61	19#info	1105.14001	14-02 33-02 14K25 33E05 11E25 14-01 33-01 14K2
	73	21.10#I1.i3.p1	1054.14079	14Q05 14H70 30-04 30F30 35B10
	74	32.2#iv.p1	0948.14025	14H52 34M55 34M15 14N35 14K20
	75	21.8#p1	0743.14033	14K20 14H05 33E05 14-01 32N05
	77	21.7#i.p4	0588.14019	14Hxx 14-02 14-03 14H20 30F10 14-01 58C15 51N1
	79	22#info	1105.14001	14-02 33-02 14K25 33E05 11E25 14-01 33-01 14K2
	83	20#info	1105.14001	14-02 33-02 14K25 33E05 11E25 14-01 33-01 14K2
	103	20.9#ii.p2	0848.14012	14H05 14H42 14-02 14K25
	107	23.20#ii.p6	0872.14041	14Q05 14H52 11Y16 68W30 14G35 14-04
	109	23#info	1105.14001	14-02 33-02 14K25 33E05 11E25 14-01 33-01 14K2

We group by target article to account for articles that are linked multiple times.

In [47]: alg_geo_prim.groupby('Target.Identifier.ID').count()

Source.ldentifier.ID Target.Type.Subtype Out[47]: Target.ldentifier.ID 0251.14016 3 0347.14023 0509.14049 0549.14014 0588.14019 0615.14018 0743.14033 0848.14012 0872.14041 0948.14025 0964.14047 1054.14079 1105.14001

In the end, we get the same number as in the statistics output.

Out[48]: Source.Identifier.ID Target.Type.Subtype dtype: int64

In [48]: _.count() 13 13