

Computer Programming

Dr. Deepak B Phatak
Dr. Supratik Chakraborty
Department of Computer Science and Engineering
IIT Bombay

Session: More on Two's Complement Representation

Quick Recap of Relevant Topics

- Representation of integers in a computer
 - **Unsigned integers**
 - Signed integers

Overview of This Lecture

- A closer look at two's complement representation
- Magnitude of negative integers in two's complement representation

Representing Signed Integers

- Treat MSB as sign bit: negative if MSB is 1, positive if MSB is 0
 - Sign-magnitude representation
 - Consider integers represented using 3 bits

How Else Could We Represent?

• Using MSB to represent sign is convenient

What negative number should 100 represent?

How about 101, 111, ...?

Can we think of the circle as a wrapped-around number line?

How Else Could We Represent?

Where do we break the circle?

How Else Could We Represent?

Where do we break the circle?

Two's Complement Representation

8 numbers represented: -4 through +3

Only one representation of 0

Magnitudes of Negative Integers

Need a way to map binary representation to magnitudes of negative integers

Magnitudes of Negative Integers

Desired map: $11 \rightarrow 1$, $10 \rightarrow 2$, $01 \rightarrow 3$, $00 \rightarrow 4$

Observation: 11 (represents unsigned 3) \rightarrow 2² – 3 = 1

10 (represents unsigned 2) \rightarrow 2² – 2 = 2

01 (represents unsigned 1) \rightarrow 2² – 1 = 3

00 (represents unsigned 0) \rightarrow 2² – 0 = 4

Magnitudes of Negative Integers

Desired map: $11 \rightarrow 1$, $10 \rightarrow 2$, $01 \rightarrow 3$, $00 \rightarrow 4$

Observation: 11 (represents unsigned 3) \rightarrow 00 (= 0) + 1 = 1

10 (represents unsigned 2) \rightarrow 01 (= 1) + 1 = 2

01 (represents unsigned 1) \rightarrow 10 (= 2) + 1 = 3

00 (represents unsigned 0) \rightarrow 11 (= 3) + 1 = 4

Magnitude of Negative Integers

- Is there an easy way to figure out the magnitude of what 10111 represents in 2's complement?
 - 10111 has MSB 1: Negative integer
 - To get absolute value of 10111
 - Ignore MSB: 10111
 - Flip every bit in 0111: 1000 (decimal 8)
 - Add 1: decimal 9
 - Absolute value is 9
 - Answer: -9

Two's Complement Representation

- Is there an easy way to figure out the magnitude of what 10111 represents in 2's complement?
 - 10111 has MSB 1: Negative integer
 - To get absolute value of 10111
 - Ignore MSB: 10111 (decimal 7)
 - Magnitude: $2^4 7 = 16 7 = 9$
 - Answer: -9

No. of bits in magnitude = No. of bits - 1

Summary

- Rationale behind two's complement representation
- Simple ways of getting magnitude of negative integers from two's complement representation