SUPPLEMENTARY MATERIAL

CHAPTER 7

7.6.3
$$\int (px+q)\sqrt{ax^2+bx+c} \ dx$$
.

We choose constants A and B such that

$$px + q = A \left[\frac{d}{dx} (ax^2 + bx + c) \right] + B$$
$$= A(2ax + b) + B$$

Comparing the coefficients of x and the constant terms on both sides, we get

$$2aA = p \text{ and } Ab + B = q$$

Solving these equations, the values of A and B are obtained. Thus, the integral reduces to

$$A \int (2ax + b)\sqrt{ax^2 + bx + c} dx + B \int \sqrt{ax^2 + bx + c} dx$$

$$= AI_1 + BI_2$$
where
$$I_1 = \int (2ax + b)\sqrt{ax^2 + bx + c} dx$$

Put $ax^2 + bx + c = t$, then (2ax + b)dx = dt

So
$$I_1 = \frac{2}{3}(ax^2 + bx + c)^{\frac{3}{2}} + C_1$$

Similarly,
$$I_2 = \int \sqrt{ax^2 + bx + c} \, dx$$

is found, using the integral formulae discussed in [7.6.2, Page 328 of the textbook].

Thus $\int (px+q)\sqrt{ax^2+bx+c} dx$ is finally workedout.

Example 25 Find
$$\int x\sqrt{1+x-x^2} dx$$

Solution Following the procedure as indicated above, we write

$$x = A \left[\frac{d}{dx} (1 + x - x^2) \right] + B$$
$$= A (1 6 2x) + B$$

Equating the coefficients of x and constant terms on both sides,

We get ó 2A = 1 and A + B = 0

Solving these equations, we get $A=-\frac{1}{2}$ and $B=\frac{1}{2}$. Thus the integral reduces to

$$\int x\sqrt{1+x-x^2}dx = -\frac{1}{2}\int (1-2x)\sqrt{1+x-x^2}dx + \frac{1}{2}\int \sqrt{1+x-x^2}dx$$

$$= -\frac{1}{2}\mathbf{I}_1 + \frac{1}{2}\mathbf{I}_2 \tag{1}$$

Consider

$$I_{1} = \int (1 - 2x) \sqrt{1 + x - x^{2}} dx$$

Put $1 + x \'o x^2 = t$, then (1 'o 2x)dx = dt

Thus
$$I_1 = \int (1-2x)\sqrt{1+x-x^2} dx = \int t^{\frac{1}{2}} dt = \frac{2}{3}t^{\frac{3}{2}} + C_1$$

= $\frac{2}{3}(1+x-x^2)^{\frac{3}{2}} + C_1$, where C_1 is some constant.

$$I_2 = \int \sqrt{1+x-x^2} \, dx = \int \sqrt{\frac{5}{4}-x-\frac{1}{2}} \, dx$$

Put
$$x - \frac{1}{2} = t$$
. Then $dx = dt$

$$I_{2} = \int \sqrt{\left(\frac{\sqrt{5}}{2}\right)^{2} - t^{2} dt}$$

$$= \frac{1}{2} t \sqrt{\frac{5}{4} - t^{2}} + \frac{1}{2} \cdot \frac{5}{4} \sin^{-1} \frac{2t}{\sqrt{5}} + C_{2}$$

$$= \frac{1}{2} \frac{(2x-1)}{2} \sqrt{\frac{5}{4} - (x - \frac{1}{2})^{2}} + \frac{5}{8} \sin^{-1} \left(\frac{2x-1}{\sqrt{5}}\right) + C_{2}$$

$$= \frac{1}{4} (2x-1) \sqrt{1 + x - x^{2}} + \frac{5}{8} \sin^{-1} \left(\frac{2x-1}{\sqrt{5}}\right) + C_{2},$$

where C_2 is some constant.

Putting values of I_1 and I_2 in (1), we get

$$\int x\sqrt{1+x} - x^2 dx = -\frac{1}{3}(1+x-x^2)^{\frac{3}{2}} + \frac{1}{8}(2x-1)\sqrt{1+x-x^2} + \frac{5}{16}\sin^{-1}\left(\frac{2x-1}{\sqrt{5}}\right) + C,$$

where

$$C = -\frac{C_1 + C_2}{2}$$
 is another arbitrary constant.

Insert the following exercises at the end of EXERCISE 7.7 as follows:

12.
$$x\sqrt{x+x^2}$$
 13. $(x+1)\sqrt{2x^2+3}$ 14. $(x+3)\sqrt{3-4x-x^2}$

Answers

12.
$$\frac{1}{3}(x^2+x)^{\frac{3}{2}} - \frac{(2x+1)\sqrt{x^2+x}}{8} + \frac{1}{16}\log|x+\frac{1}{2}|^2\sqrt{x+x}| + C$$

13.
$$\frac{1}{6}(2x^2+3)^{\frac{3}{2}} + \frac{x}{2}\sqrt{2x^2+3} + \frac{3\sqrt{2}}{4}\log\left|x + \sqrt{x^2+\frac{3}{2}}\right| + C$$

14.
$$-\frac{1}{3}(3-4x-x^2)^{\frac{3}{2}} + \frac{7}{2}\sin^{-1}\left(\frac{x+2}{\sqrt{7}}\right) + \frac{(x+2)\sqrt{3-4x-x^2}}{2} + C$$

CHAPTER 10

10.7 Scalar Triple Product

Let \vec{a} , \vec{b} and \vec{c} be any three vectors. The scalar product of \vec{a} and $(\vec{b} \times \vec{c})$, i.e., $\vec{a} \cdot (\vec{b} \times \vec{c})$ is called the scalar triple product of \vec{a} , \vec{b} and \vec{c} in this order and is denoted by $[\vec{a}, \vec{b}, \vec{c}]$ (or $[\vec{a} \vec{b} \vec{c}]$). We thus have

$$[\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c})$$

Observations

- 1. Since $(\vec{b} \times \vec{c})$ is a vector, $\vec{a} \cdot (\vec{b} \times \vec{c})$ is a scalar quantity, i.e. $[\vec{a}, \vec{b}, \vec{c}]$ is a scalar quantity.
- 2. Geometrically, the magnitude of the scalar triple product is the volume of a parallelopiped formed by adjacent sides given by the three

vectors \vec{a} , \vec{b} and \vec{c} (Fig. 10.28). Indeed, the area of the parallelogram forming the base of the parallelopiped is $|\vec{b} \times \vec{c}|$. The height is the projection of \vec{a} along the normal to the plane containing \vec{b} and \vec{c} which is the magnitude of the component of \vec{a} in the direction of $|\vec{b} \times \vec{c}|$ i.e., $|\vec{a} \cdot (\vec{b} \times \vec{c})|$. So the required

volume of the parallelopiped is $\frac{\left|\vec{a}.(\vec{b}\times\vec{c})\right|}{\left|(\vec{b}\times\vec{c})\right|} |\vec{b}\times\vec{c}| = \left|\vec{a}.(\vec{b}\times\vec{c})\right|,$

3. If $\vec{a} = a_1 \ddot{i} + a_2 \ddot{j} + a_3 \ddot{k}$, $\vec{b} = b_1 \ddot{i} + b_2 \ddot{j} + b_3 \ddot{k}$ and $\vec{c} = c_1 \ddot{i} + c_2 \ddot{j} + c_3 \ddot{k}$, then

$$\vec{b} \times \vec{c} = \begin{vmatrix} \ddot{i} & \ddot{j} & \ddot{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= (b_2c_3 \circ b_3c_2) \ "i + (b_3c_1 \circ b_1c_3) \ "j + (b_1c_2 \circ b_2c_1) \ "k"$$

and so

$$\vec{a}.(\vec{b}\times\vec{c}\,) = a_1(b_2c_3 \circ b_3c_2) + a_2(b_3c_1 \circ b_1c_3) + a_3(b_1c_2 \circ b_2c_1)$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

4. If \vec{a} , \vec{b} and \vec{c} be anythree vectors, then

$$[\vec{a}, \vec{b}, \vec{c}] = [\vec{b}, \vec{c}, \vec{a}] = [\vec{c}, \vec{a}, \vec{b}]$$

(cyclic permutation of three vectors does not change the value of the scalar triple product).

Let
$$\vec{a} = a_1 \ddot{i} + a_2 \ddot{j} + a_3 \ddot{k}, \ \vec{b} = b_1 \ddot{i} + b_2 \ddot{j} + b_3 \ddot{k}$$
 and $\vec{c} = c_1 \ddot{i} + c_2 \ddot{j}_3 \ddot{k}$.

Then, just by observation above, we have

$$[\vec{a}, \vec{b}, \vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= a_1 (b_2 c_3 \circ b_3 c_2) + a_2 (b_3 c_1 \circ b_1 c_3) + a_3 (b_1 c_2 \circ b_2 c_1)$$

$$= b_{1} (a_{3}c_{2} \circ a_{2}c_{3}) + b_{2} (a_{1}c_{3} \circ a_{3}c_{1}) + b_{3} (a_{2}c_{1} \circ a_{1}c_{2})$$

$$= \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \end{vmatrix}$$

$$=$$
[\vec{b} , \vec{c} , \vec{a}]

Similarly, the reader may verify that

$$= [\vec{a}, \vec{b}, \vec{c}] = [\vec{c}, \vec{a}, \vec{b}]$$

Hence
$$[\vec{a}, \vec{b}, \vec{c}] = [\vec{b}, \vec{c}, \vec{a}] = [\vec{c}, \vec{a}, \vec{b}]$$

5. In scalar triple product $\vec{a}.(\vec{b}\times\vec{c})$, the dot and cross can be interchanged. Indeed,

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = [\vec{a}, \vec{b}, \vec{c}] = [\vec{b}, \vec{c}, \vec{a}] = [\vec{c}, \vec{a}, \vec{b}] = \vec{c} \cdot (\vec{a} \times \vec{b}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

6. =
$$[\vec{a}, \vec{b}, \vec{c}] = 6 [\vec{a}, \vec{c}, \vec{b}]$$
. Indeed

$$= [\vec{a}, \vec{b}, \vec{c}] = \vec{a}.(\vec{b} \times \vec{c})$$

$$= \vec{a} \cdot (\vec{o} \vec{c} \times \vec{b})$$

$$= \circ (\vec{a}.(\vec{c} \times \vec{b}))$$

$$=$$
 $6 \left[\vec{a}, \vec{c}, \vec{b} \right]$

7.
$$[\vec{a}, \vec{a}, \vec{b}] = 0$$
. Indeed
$$[\vec{a}, \vec{a}, \vec{b}] = [\vec{a}, \vec{b}, \vec{a},]$$

$$= [\vec{b}, \vec{a}, \vec{a}]$$

$$= \vec{b} \cdot (\vec{a} \times \vec{a})$$

$$= \vec{b} \cdot \vec{0} = 0.$$
 (as $\vec{a} \times \vec{a} = \vec{0}$)

Note: The result in 7 above is true irrespective of the position of two equal vectors.

10.7.1 Coplanarity of Three Vectors

Theorem 1 Three vectors \vec{a} , \vec{b} and \vec{c} are coplanar if and only if $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$. **Proof** Suppose first that the vectors \vec{a} , \vec{b} and \vec{c} are coplanar.

If \vec{b} and \vec{c} are parallel vectors, then, $\vec{b} \times \vec{c} = \vec{0}$ and so $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$.

If \vec{b} and \vec{c} are not parallel then, since \vec{a} , \vec{b} and \vec{c} are coplanar, $\vec{b} \times \vec{c}$ is perpendicular to \vec{a} .

So
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$$
.

Conversely, suppose that $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$. If \vec{a} and $\vec{b} \times \vec{c}$ are both non-zero, then we conclude that \vec{a} and $\vec{b} \times \vec{c}$ are perpendicular vectors. But $\vec{b} \times \vec{c}$ is perpendicular to both \vec{b} and \vec{c} . Therefore, \vec{a} and \vec{b} and \vec{c} must lie in the plane, i.e. they are coplanar. If $\vec{a} = 0$, then \vec{a} is coplanar with any two vectors, in particular with \vec{b} and \vec{c} . If $(\vec{b} \times \vec{c}) = 0$, then \vec{b} and \vec{c} are parallel vectors and so, \vec{a} , \vec{b} and \vec{c} are coplanar since any two vectors always lie in a plane determined by them and a vector which is parallel to any one of it also lies in that plane.

Note: Coplanarity of four points can be discussed using coplanarity of three vectors. Indeed, the four points A, B, C and D are coplanar if the vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} are coplanar.

Example 26 Find $\vec{a} \cdot (\vec{b} \times \vec{c})$, if $\vec{a} = 2\vec{i} + \vec{j} + 3\vec{k}$, $\vec{b} = 6\vec{i} + 2j + k$ and $\vec{c} = 3\vec{i} + \vec{j} + 2\vec{k}$.

Solution We have $\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 2 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 2 \end{vmatrix} = 610.$

Example 27 Showthat the vectors

 $\vec{a} = i' - 2j' + 3k', \ \vec{b} = 62i' + 3j - 4k'$ and $\vec{c} = i' - 3j' + 5k'$ are coplanar.

Solution We have $\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix} = 0.$

Hence, in view of Theorem 1, \vec{a} , \vec{b} and \vec{c} are coplanar vectors.

Example 28 Find 1 if the vectors

 $\vec{a} = i' + 3j' + k'', \vec{b} = 2i' - j' - k''$ and $\vec{c} = \lambda i' + 7j' + 3k''$ are coplanar.

Solution Since \vec{a} , \vec{b} and \vec{c} are coplanar vectors, we have $[\vec{a}, \vec{b}, \vec{c}] = 0$, i.e.,

$$\begin{vmatrix} 1 & 3 & 1 \\ 2 & -1 & -1 \\ \lambda & 7 & 3 \end{vmatrix} = 0.$$

$$\Rightarrow 1 (6 3 + 7) 6 3 (6 + 1) + 1 (14 + 1) = 0$$

\Rightarrow 1 = 0.

Example 29 Show that the four points A, B, C and D with position vectors $4\ddot{i} + 5\ddot{j} + \ddot{k}, -(\ddot{j} + \ddot{k}), 3\ddot{i} + 9\ddot{j} + 4\ddot{k}$ and $4(6\ddot{i} + \ddot{j} + \ddot{k})$, respectively are coplanar.

Solution We know that the four points A, B, C and D are coplanar if the three vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} are coplanar, i.e., if

$$\left[\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}\right] = 0$$

Now
$$\overrightarrow{AB} = 6 (\ddot{j} + \ddot{k}) 6 (4\ddot{i} + 5\ddot{j} + \ddot{k}) = 6 4\ddot{i} - 6\ddot{j} - 2\ddot{k})$$

$$\overrightarrow{AC} = (3\ddot{i} + 9\ddot{j} + 4\ddot{k}) 6 (4\ddot{i} + 5\ddot{j} + \ddot{k}) = 6 \ddot{i} + 4\ddot{j} + 3\ddot{k}$$
and $\overrightarrow{AD} = 4(-\ddot{i} + \ddot{j} + \ddot{k}) 6 (4\ddot{i} + 5\ddot{j} + \ddot{k}) = 6 8\ddot{i} - \ddot{j} + 3\ddot{k}$

Thus
$$[\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}] = \begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix} = 0.$$

Hence A, B, C and D are coplanar.

Example 30 Prove that $\left[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}\right] = 2\left[\vec{a}, \vec{b}, \vec{c}\right]$.

Solution We have

$$\begin{bmatrix} \vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a} \end{bmatrix} = (\vec{a} + \vec{b}) \cdot ((\vec{b} + \vec{c}) \times (\vec{c} + \vec{a}))$$

$$= (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a})$$

$$= (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a}) \qquad (\text{as } \vec{c} \times \vec{c} = \vec{0})$$

$$= \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{a} \cdot (\vec{c} \times \vec{a}) + \vec{b} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{a}) + \vec{b} \cdot (\vec{c} \times \vec{a})$$

$$= \begin{bmatrix} \vec{a}, \vec{b}, \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{a}, \vec{b}, \vec{a} \end{bmatrix} + \begin{bmatrix} \vec{a}, \vec{c}, \vec{a} \end{bmatrix} + \begin{bmatrix} \vec{b}, \vec{b}, \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{b}, \vec{b}, \vec{a} \end{bmatrix} + \begin{bmatrix} \vec{b}, \vec{c}, \vec{a} \end{bmatrix}$$

$$= 2 \begin{bmatrix} \vec{a}, \vec{b}, \vec{c} \end{bmatrix} \qquad (\text{Why ?})$$

Example 31 Prove that $\left[\vec{a}, \vec{b}, \vec{c} + \vec{d}\right] = \left[\vec{a}, \vec{b}, \vec{c}\right] + \left[\vec{a}, \vec{b}, \vec{d}\right]$ **Solution** We have

$$\begin{split} \left[\vec{a}, \vec{b}, \vec{c} + \vec{d} \right] &= \vec{a} \cdot (\vec{b} \times (\vec{c} + \vec{d})) \\ &= \vec{a} \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{d}) \\ &= \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{d}) \\ &= \left[\vec{a}, \vec{b}, \vec{c} \right] + \left[\vec{a}, \vec{b}, \vec{d} \right]. \end{split}$$

Exercise 10.5

- 1. Find $\left[\vec{a} \ \vec{b} \ \vec{c}\right]$ if $\vec{a} = \ddot{i} \circ 2\ddot{j} + 3\ddot{k}, \vec{b} = 2\ddot{i} \circ 3\ddot{j} + \ddot{k}$ and $c = 3i + j \circ 2\ddot{k}$ (Ans. 24)
- 2. Show that the vectors $\vec{a} = \vec{i} 2\vec{j} + 3\vec{k}$, $\vec{b} = -2\vec{i} + 3\vec{j} 4\vec{k}$ and $\vec{c} = \vec{i} 3\vec{j} + 5\vec{k}$ are coplanar.
- 3. Find λ if the vectors $\ddot{i} \ddot{j} + \ddot{k}$, $3\ddot{i} + \ddot{j} + 2\ddot{k}$ and $\ddot{i} + \lambda \ddot{j} 3\ddot{k}$ are coplanar. (Ans. $\lambda = 15$)
- 4. Let $\vec{a} = i' + j' + k', \vec{b} = i'$ and $\vec{c} = c_1 i' + c_2 j' + c_3 k'$ Then
 - (a) If $c_1 = 1$ and $c_2 = 2$, find c_3 which makes \vec{a}, \vec{b} and \vec{c} coplanar (Ans. $c_3 = 2$)
 - (b) If $c_2 = 61$ and $c_3 = 1$, show that no value of c_1 can make \vec{a}, \vec{b} and \vec{c} coplanar.
- 5. Show that the four points with position vectors $4\ddot{i} + 8\ddot{j} + 12\ddot{k}$, $2\ddot{i} + 4\ddot{j} + 6\ddot{k}$, $3\ddot{i} + 5\ddot{j} + 4\ddot{k}$ and $5\ddot{i} + 8\ddot{j} + 5\ddot{k}$ are coplanar.
- 6. Find x such that the four points A (3, 2, 1) B (4, x, 5), C (4, 2, 62) and D (6, 5, 61) are coplanar. (Ans. x = 5)
- 7. Showthat the vectors \vec{a} , \vec{b} and \vec{c} coplanar if $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are coplanar.