Gaussian Integral using the Functional Renormalization Group

Masaru Okada

October 20, 2025

Abstract

A note presenting an introductory computational example of the fRG: using the functional renormalization group (fRG) to solve a Gaussian integral, for which an exact solution is known. The purpose of this note is to demonstrate how the fRG sequentially integrates out fluctuations from high to low energies, using a Gaussian integral as an exactly solvable example.

Contents

5		Conclusion	4
	4.2	Integration of the Flow	3
	4.1	Substitution into the Wetterich Equation	
4		Wetterich Equation	3
	3.3	The Regulator R_k	3
	3.2	Assumption for the Effective Action	2
	3.1	Gaussian Integral	2
3		Specifying the Regulator \mathcal{R}_k and the Flow Equation	2
2		Wetterch Equation	2
1		Flow of this note	1

1 Flow of this note

- 1. Problem Setup: We want to calculate $Z = \int dx e^{-S(x)}$ (where $S(x) = \frac{1}{2}m^2x^2$).
- 2. Introduction of fRG: Introduce a regulator R_k and 'flow' the effective action Γ_k from a high energy scale Λ down to k=0.
- 3. Wetterich Equation: This flow is described by the Wetterich Equation.
- 4. Calculation: Solve the equation to find the effective action at k=0, $\Gamma_{k=0}$.
- 5. Conclusion: Calculating $Z=e^{-\Gamma_{k=0}(\phi=0)}$ from $\Gamma_{k=0}$ yields the correct answer for the Gaussian integral, $\frac{\sqrt{2\pi}}{m}$.

2 Wetterch Equation

$$\partial_k \Gamma_k = \frac{1}{2} \operatorname{STr} \left[(\Gamma_k^{(2)} + R_k)^{-1} (\partial_k R_k) \right]$$

Here, STr denotes the supertrace.

This is the flow equation that lies at the heart of the fRG.

 Γ_k represents the effective average action at scale k. This is an action in which fluctuations from high energy scales above k have been integrated out, while fluctuations below k have not yet been included.

 R_k is a function called the regulator, which acts as a 'cap' to suppress fluctuations with energies lower than k. Changing k from Λ down to 0 corresponds to the operation of gradually removing this cap and incorporating the fluctuations.

 $\Gamma_k^{(2)} = \frac{\partial^2 \Gamma_k}{\partial \phi^2}$ is the quantity corresponding to the Hessian, the second derivative with respect to the field $\phi = \langle x \rangle$.

3 Specifying the Regulator R_k and the Flow Equation

3.1 Gaussian Integral

The following Gaussian integral can be obtained elementarily.

$$Z = \int_{-\infty}^{\infty} dx e^{-\frac{1}{2}m^2x^2} = \frac{\sqrt{2\pi}}{m}$$

The objective of this note is to reproduce this integral's result using the fRG framework.

The relationship between the partition function and the action is as follows:

$$Z = e^{-\Gamma_{k=0}(\phi=0)}$$

We will find the partition function by first deriving the functional form of $\Gamma_k(\phi)$ using the fRG framework, and then evaluating it at $\Gamma_{k=0}(\phi=0)$.

3.2 Assumption for the Effective Action

Since this problem is a non-interacting theory, we assume that the part of Γ_k dependent on the field ϕ does not depend on k and retains the same form as the classical action $S(\phi) = \frac{1}{2}m^2\phi^2$. Therefore, we set

$$\Gamma_k(\phi) = \frac{1}{2}m^2\phi^2 + C_k$$

Here, C_k is a constant term independent of ϕ . All contributions from field fluctuations are accumulated here.

From this assumption, it follows that

$$\Gamma_k^{(2)} = \frac{\partial^2 \Gamma_k}{\partial \phi^2} = m^2 = \text{const.}$$

3.3 The Regulator R_k

We choose the following for the regulator R_k :

$$R_k = k^2$$
$$\partial_k R_k = 2k$$

$$Z_k = \int_{-\infty}^{\infty} dx e^{-\frac{1}{2}m^2x^2 - \frac{1}{2}R_kx^2}$$

In the limit of large R_k , the system becomes classical.

Conversely, in the limit $R_k \to 0$, we recover the desired partition function $Z_{k=0}$.

4 Wetterich Equation

4.1 Substitution into the Wetterich Equation

Since this problem is 0-dimensional, the STr in the Wetterich Equation is unnecessary, and it becomes a simple scalar equation.

$$\partial_k \Gamma_k = \frac{1}{2} (\Gamma_k^{(2)} + R_k)^{-1} (\partial_k R_k) = \frac{1}{2} (m^2 + k^2)^{-1} (2k) = \frac{k}{m^2 + k^2}$$

This equation shows that only the ϕ -independent constant term C_k within Γ_k 'flows' with k.

4.2 Integration of the Flow

Now that $\partial_k \Gamma_k$ has been found, we can integrate it to find the action Γ_k .

$$\Gamma_{k}(\phi) = \Gamma_{\Lambda}(\phi) - \int_{k}^{\Lambda} dk' \partial_{k'} \Gamma_{k'}(\phi)$$
$$= \Gamma_{\Lambda}(\phi) - \frac{1}{2} \ln \left(\frac{m^{2} + \Lambda^{2}}{m^{2} + k^{2}} \right)$$

Here, Λ is a very large value (the UV cutoff).

4.2.1 Initial Condition: $k = \Lambda$

At $k = \Lambda$, fluctuations are suppressed by the regulator $R_{\Lambda} = \Lambda^2$.

 $\Gamma_{\Lambda}(\phi)$ is in the classical limit.

The partition function at this scale, Z_{Λ} , can be calculated as follows:

$$Z_{\Lambda} = \int_{-\infty}^{\infty} dx e^{-\frac{1}{2}m^2x^2 - \frac{1}{2}R_{\Lambda}x^2} = \int_{-\infty}^{\infty} dx e^{-\frac{1}{2}(m^2 + \Lambda^2)x^2} = \sqrt{\frac{2\pi}{m^2 + \Lambda^2}}$$

 Γ_{Λ} is determined from this Z_{Λ} and $S(\phi)$.

$$\Gamma_{\Lambda}(\phi) = S(\phi) - \ln Z_{\Lambda} = \frac{1}{2}m^2\phi^2 - \ln\left(\sqrt{\frac{2\pi}{m^2 + \Lambda^2}}\right)$$

$$\Gamma_{\Lambda}(\phi) = \frac{1}{2}m^2\phi^2 + \frac{1}{2}\ln\left(\frac{m^2 + \Lambda^2}{2\pi}\right)$$

4.2.2 Functional Form of the Action $\Gamma_k(\phi)$

We substitute this $\Gamma_{\Lambda}(\phi)$ into the integral result.

$$\Gamma_k(\phi) = \left[\frac{1}{2}m^2\phi^2 + \frac{1}{2}\ln\left(\frac{m^2 + \Lambda^2}{2\pi}\right)\right] - \frac{1}{2}\ln\left(\frac{m^2 + \Lambda^2}{m^2 + k^2}\right)$$

The ln terms cancel out, leaving:

$$\Gamma_k(\phi) = \frac{1}{2}m^2\phi^2 + \frac{1}{2}\ln\left(\frac{m^2 + k^2}{2\pi}\right)$$

4.2.3 Functional Form of the Desired Action at k=0, $\Gamma_0(\phi)$

At k = 0, the regulator becomes $R_0 = 0$, and we obtain the true effective action $\Gamma_{k=0}$ of the original theory, which incorporates all fluctuations.

$$\Gamma_{k=0}(\phi) = \frac{1}{2}m^2\phi^2 + \frac{1}{2}\ln\left(\frac{m^2}{2\pi}\right)$$

4.2.4 Value of the Gaussian Integral

The desired Z is given by $Z = e^{-\Gamma_{k=0}(\phi=0)}$.

$$\Gamma_{k=0}(0) = \frac{1}{2} \ln \left(\frac{m^2}{2\pi} \right)$$

$$Z = e^{-\Gamma_{k=0}(0)} = \exp \left[-\frac{1}{2} \ln \left(\frac{m^2}{2\pi} \right) \right] = \exp \left[\ln \left(\left(\frac{m^2}{2\pi} \right)^{-1/2} \right) \right] = \left(\frac{m^2}{2\pi} \right)^{-1/2} = \sqrt{\frac{2\pi}{m^2}} = \frac{\sqrt{2\pi}}{m}$$

5 Conclusion

In this note, the advanced theoretical method of the functional renormalization group (fRG) was applied to a simple Gaussian integral (a non-interacting theory).

It has been shown how, through the fRG flow, the effect of fluctuations (in this case, the ϕ -independent constant term, i.e., the partition function itself) is rigorously and systematically incorporated.