(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-168281

(43)公開日 平成8年(1996)6月25日

(51) Int.Cl.6		識別記号	庁内整理番号	FI	技術表示箇所
H02P	5/00	P			
		X			
G 0 5 B	11/36	501 C	7531-3H		

審査請求 未請求 請求項の数6 OL (全 19 頁)

(21)出願番号	特願平6-307760	(71)出願人 000006622
		株式会社安川電機
(22)出顧日	平成6年(1994)12月12日	福岡県北九州市八幡西区黒崎城石2番1号
		(72)発明者 柴田 尚武
		福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内
		(72)発明者 浜田 兼幸
		福岡県北九州市八幡西区黒崎城石 2 番 1 号 株式会社安川電機内
		(72)発明者 浜本 浩明
		福岡県北九州市八幡西区黒崎城石 2 番 1 号 株式会社安川電機内
		(74)代理人 弁理士 小堀 益

(54) 【発明の名称】 電動機ねじり振動抑制制御方法

(57) 【要約】

【目的】 より高い共振周波数においても良好にねじり 振動を抑制する方法を提供する。

【構成】 ねじりパネ系を有する駆動軸を介して電動機の駆動トルクを負荷へ伝達する機構を持つ電動機速度制御系において、速度制御器11の出力信号Trankと電動機の検出速度信号から底章した電動機負荷トルク推定信号Trankを新たなトルク指令として電動機のトルクを引き消して表す。電動機の負荷トルクを打ち消して援荷トルク推定信号Trankとくなるのを防ぐとともに、前記電動機負債が大きくなるのを防ぐとともに、前記電動機負債を報が大きくなるのを防ぐとともに、前記電動機負債を電動機速度指令信号より被した信号を新たな速度指令信号として電動機速度を制御することによってねじり振動系にダンピング要素を生成する。

【効果】 加減速中や負荷急変時に発生する駆動軸のね じり振動が抑制され、負荷応答特性を改善することがで きる。

【特許請求の範囲】

【請求項1】 電動機の負荷側に設けた低ねじり剛性の 駆動軸を介して、電動機から負荷へ駆動トルクを伝達す A機構と 速度指令信号Nage に対して速度検出器によ り検出した電動機速度検出信号について一定周期毎の平 均値の浦算により得られた電動機平均速度Nmave又は前 記電動機速度検出信号を1次遅れ要素を持つフィルタを 介して平均化した電動機平均速度Nmavgを帰還して偏差 信号を演算し、比例ゲインと積分器又は比例ゲインのみ たトルク指令信号TRFA に従って電動機のトルクを制御 するように構成された電動機速度制御系において、

次の(1)によって推定した駆動軸トルクを補償トルク として前記電動機トルク指令信号TRFA に加えて電動機 負荷外乱トルクを打ち消すことによって振動振幅の増大 化を防ぐとともに、更に (2) によって、駆動軸のねじ り振動系にダンピング要素を生成してねじり振動を抑制 することを特徴とする電動機ねじり振動抑制制御方法。

(1) 前記速度制御器により出力された前記トルク指令 信号TRPA に対し、前記電動機平均速度信号NMAVGを微*20

*分した信号に電動機の機械的時定数 TM を乗じた信号を 電動機加速トルク信号TMAFBとして帰還し、その偏差信 号を電動機負荷トルク補償器の比例ゲイン積分演算器に より増幅することによって得られた電動機負荷トルク推 定信号TRFL を前記速度制御器より出力されるトルク指 会信号Tura に加えた信号Trem を最終的なトルク指令 として電動機のトルクを制御することにより、電動機負 荷外ガトルクを打ち消す。

(2) 前記(1) の電動機負荷トルク推定信号TRPL を を持つ速度制御器により前記偏差信号を増幅して得られ 10 ハイパスフィルタHPF (s) とローパスフィルタLP F (s) を介することによって前記(1)の方法によっ て推定した電動機負荷トルク推定信号Twee に含まれる 定常信号成分と高周波信号成分を除去して得られた駆動 軸トルクの振動成分推定信号と、前記電動機機械的時定 数 τ μ と、負荷の機械的定数 τ ι と、駆動軸のねじり時 定数:vと、前記速度制御器の比例ゲインAと、予め設 定したダンビング係数δと、前記電動機負荷トルク補償 器の比例ゲインG及び積分時定数でよったより次式

【数1】

$$\begin{split} N_{\text{DF}} &= (\frac{2 \, \delta}{\omega \, \tau_{\text{L}}}) \, \left[\sqrt{1 + \frac{\tau_{\text{L}}}{\tau_{\text{M}}}} \right] \\ &\times \left[1 + \left[\frac{1 + G}{G} + \frac{\omega \, \left(\frac{\tau_{\text{M}}}{A} \right)}{2 \, \delta \, G \, \sqrt{1 + \frac{\tau_{\text{L}}}{\tau_{\text{M}}}}} \right] \, \tau_{\text{L1}} \, s \right] \\ &\times \left[1 + \left[\frac{1 + G}{G} + \frac{\omega \, \left(\frac{\tau_{\text{M}}}{A} \right)}{1 + \tau_{\text{L1}} \, s} \right] \, \tau_{\text{L1}} \, s \right] \\ &\times \left(1 + \frac{\tau_{\text{M}} \, s}{\Delta} \right) \, \text{HPF (s)} \cdot \text{LPF (s)} \cdot \tau_{\text{RFL}} \end{split}$$

但し、sはラプラス演算子であり、ωはねじり振動系の 固有共振周波数であり次式で表される。

【数2】

$$\omega = \sqrt{\frac{\tau_{M} + \tau_{L}}{\tau_{M} \tau_{L} \tau_{V}}}$$

によりねじり振動ダンピング制御信号Norを演算し、 前記速度指令信号NREP より前記ねじり振動ダンピング 制御信号Nppを減じることにより得られる速度指令信号※ ※に対し前記電動機平均速度Nmavgを帰還して電動機の速 度を制御することによりねじり振動系にダンピング要素 を生成する。

【請求項2】 前記請求項1において、ねじり振動ダン ピング制御信号Noeの演算式 [数1] の代わりに次の [数3] を用いて制御することによりねじり振動系にダ ンピング要素を生成してねじり振動を抑制することを特 徴とする電動機ねじり振動抑制制御方法。

$$N_{\text{pp}} = \left(\begin{array}{c} \frac{2 \delta}{\omega \tau_{\text{L}}} \right) \left[\sqrt{1 + \frac{\tau_{\text{L}}}{\tau_{\text{M}}}} \right] \left[\begin{array}{c} 1 + \left(\begin{array}{c} \frac{1 + G}{G} \end{array} \right) \tau_{\text{L}} s \\ 1 + \tau_{\text{L}} s \end{array} \right]$$

$$\times$$
 (1 + $\frac{\tau_{M} s}{A}$) HPF (s) · LPF (s) · τ_{RPL}

【請求項3】 前記請求項1において、ねじり振動ダン ピング制御信号Nooの演算式〔数1〕の代わりに次の 「数4〕を用いて制御することによりねじり振動系にダ ンピング要素を生成してねじり振動を抑制することを特 徴とする電動機ねじり振動抑制制御方法。

【数4】

$$N_{\text{DP}} = \left(\begin{array}{c} 2 \delta \\ \omega \tau_{\text{L}} \end{array} \right) \left[\sqrt{1 + \frac{\tau_{\text{L}}}{\tau_{\text{M}}}} \right] \left(1 + \frac{\tau_{\text{M}} s}{A} \right)$$

×HPF(s)·LPF(s)·TRPL

【請求項4】 電動機の負荷側に設けた低ねじり剛性の 駆動軸を介して、電動機から負荷へ駆動トルクを伝達す る機構と、速度指令信号NREF に対して速度検出器によ り検出した電動機速度検出信号について一定周期毎の平 10 均値の演算により得られた電動機平均速度Nmavg又は前 記電動機速度検出信号を1次遅れ要素を持つフィルタを 介して平均化した電動機平均速度Nmavgを帰還して偏差 信号を演算し、比例ゲインと積分器又は比例ゲインのみ を持つ速度制御器により前記偏差信号を増幅して得られ たトルク指令信号TRFA に従って電動機のトルクを制御 するように構成された電動機速度制御系において、 次の (1) の工程によって推定した駆動軸トルクを補償 トルクとして前記電動機トルク指令信号TRPA に加えて の増大化を防ぐとともに、更に (2) の工程によって、 駆動軸のねじり振動系にダンピング要素を生成してねじ り振動を抑制することを特徴とする電動機ねじり振動抑 制制御方法。

(1) 前記速度制御器により出力された前記トルク指令 信号TRPA に対し、前記電動機平均速度信号NMAVGを微* *分した信号に電動機の機械的時定数 TM を乗じた信号を 電動機加速トルク信号TMAPBとして帰還し、その偏差信 号を電動機負荷トルク補償器の比例ゲイン積分演算器に より増幅することによって得られた電動機負荷トルク推 定信号TRPL を前記速度制御器より出力されるトルク指 令信号TRPA に加えた信号TRPM を最終的なトルク指令 として霊動機のトルクを制御することにより、電動機負 荷外乱トルクを打ち消す。

(2) 前記(1)の工程の電動機負荷トルク推定信号T RFL をハイパスフィルタHPF(s)とローパスフィル タLPF (s) を介することによって前記(1)の工程 によって推定した電動機負荷トルク推定信号TRFL に含 まれる定常信号成分と高周波信号成分を除去して得られ 電動機負荷外乱トルクを打ち消すことによって振動振幅 20 た駆動軸トルクの振動成分推定信号と、前記電動機機械 的時定数 τ м と、負荷の機械的定数 τ ι と、駆動軸のね じり時定数τvと、前記速度制御器の比例ゲインAと、 予め設定したダンビング係数δと、前記電動機負荷トル ク補償器の比例ゲインG及び積分時定数でよれにより次式 【数5】

に、前記電動機平均速度信号
$$N_{MAVO}$$
を微*
$$T_{DP} = \left(\frac{2 \delta A}{\omega \tau_L}\right) \left[\sqrt{1 + \frac{\tau_L}{\tau_H}}\right] \times \left[1 + \left(\frac{1 + G}{G} + \frac{\omega \left(\frac{\tau_M}{A}\right)}{2 \delta G \sqrt{1 + \frac{\tau_L}{\tau_M}}}\right] \tau_{LI} S\right] \times \left(1 + \frac{\tau_M S}{A}\right) HPF(s) \cdot LPF(s) \cdot T_{RFL}$$

但し、sはラプラス演算子であり、ωはねじり振動系の 固有共振周波数であり次式で表される。

【数6】

$$\omega = \sqrt{\frac{\tau_{M} + \tau_{L}}{\tau_{M} \tau_{L} \tau_{V}}}$$

によりねじり振動ダンピング制御信号Tppを演算し. 前記速度制御器より出力されるトルク指令TRFA より前 記ねじり振動ダンピング制御信号Toeを減じることによ り得られるトルク指令信号に従って電動機のトルクを制 御することによりねじり振動系にダンピング要素を生成 する

【請求項5】 請求項4において、ねじり振動ダンピン 40 グ制御信号Tppの演算式〔数5〕の代わりに次の〔数 71 を用いて制御することにより、ねじり振動系にダン ピング原表を生成してねじり振動を抑制することを特徴 とする電動機ねじり振動抑制制御方法。

【数7】

$$T_{\text{DP}} = \left(\begin{array}{c} \frac{2 \delta A}{\omega \tau_{\text{L}}} \end{array} \right) \left[\sqrt{1 + \frac{\tau_{\text{L}}}{\tau_{\text{M}}}} \right] \left[\begin{array}{c} 1 + \left(\begin{array}{c} \frac{1 + G}{G} \end{array} \right) & \tau_{\text{LI}} s \\ \hline & 1 + \tau_{\text{LI}} s \end{array} \right]$$

$$\times (1 + \frac{\tau_M s}{\Delta}) HPF (s) \cdot LPF (s) \cdot T_{RFL}$$

前記請求項4において、ねじり振動ダン 【請求項6】 ピング制御信号Tppの演算式〔数5〕の代わりに次の [数8] を用いて制御することによりねじり振動系にダ* *ンピング要素を生成してねじり振動を抑制することを特 徴とする電動機ねじり振動抑制制御方法。

$$T_{\text{DF}} = \left(\begin{array}{c} \frac{2 \delta A}{\omega \tau_L} \right) \left[\sqrt{1 + \frac{\tau_L}{\tau_M}} \right] \left(1 + \frac{\tau_M s}{A} \right)$$

×HPF(s)·LPF(s)·TRFL

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ねじりバネ系を有する 駆動軸を介して電動機から負荷へ駆動トルクが伝達され る機構を備えた機械設備において、電動機の回転速度を 20 制御する駆動制御装置のねじり振動抑制方法に関する。

[0002]

【従来の技術】図5は、一般的な可変速駆動装置の機械 図を示すもので、機械5には、電動機2によりねじり剛 性率K〔kgm/rad 〕の駆動軸4を介して回転トルクが伝 達されている。

【0003】可変速制御装置1は、電動機2に取り付け られた速度検出器3により検出した信号を速度帰還信号 として電動機2の速度を制御している。

【0004】図6は公知のねじり振動系を含む速度制御 30 ブロックダイアグラムを示す。同図において、速度制御 器11は比例ゲインAおよび時定数で1の積分器を持 ち、10で示す速度指令NREFと速度帰還信号NMFBと の偏差を増幅し、トルク指令信号TREF を出力する。そ のトルク指令信号TREF が電動機トルク制御器17に入 力されると電動機トルク制御器17は1次遅れ時定数: にて電動機のトルクを制御する。なお、速度帰還信号 NMFB は、電動機の回転速度Nm を一次遅れ要素16 ※

※ (ru は速度輸出フィルタ遅れ時定数)を介して生成し

【0005】前記のトルク指令信号Trep に従って電動 機トルクTmが制御される。

【0006】12は電動機の機械的時定数 t м を表すブ ロック、13はねじり時定数τν を表すブロック、14 は負荷の機械的時定数τ」を表すブロックである。

【0007】また15は機械5に掛かる負荷トルク T_{L2}、N_L は負荷の速度である。

【0008】図6のブロックダイアグラムにおいて、入 カにランプ状(直線加速状)の速度指令NREF を与え、 電動機速度Nm と負荷速度NL が立ち上がるときに、駆 動軸4にねじれが生じると、電動機と機械と負荷を合わ せた機械的な共振周波数にて速度制御系の過渡的なゲイ ンが異常に上昇することから、図7に示すように機械設 備に有害となる周期的な負荷軸トルク変動が発生する。 【0009】この問題の解決手段として、従来技術で は、機械系の共振点の過渡的なゲインを低減するため に 図8に示すように速度制御器11の出力側にねじり 振動抑制フィルタ18を挿入していた。このねじり振動 抑制フィルタ18の伝達関数は次式で表される。

[0010]

【数9】

$$\frac{1}{(\frac{s}{\omega_F})^2 + 2 \delta_F(\frac{s}{\omega_F}) + 1}$$

但しw F はフィルタによる過渡ゲイン低減開始角周波 数、δρはフィルタ特性定数である。

【0011】従来においては、前式に示すフィルタの角 周波数ωε とフィルタ特性定数δεと速度制御器11の 比例ゲインAを設備毎に調整してねじり振動の影響が小 さくなるフィルタ定数を選んでいた。

【0012】ところが、従来技術ではフィルタ定数 ων とる。を貯備毎に選んで調整するだけでは、フィルタを 50

入れることによって速度制御系の速度指令と速度帰還信 長との位相遅れ角が更に大きくなってしまうことから、 速度制御系が不安定となる。このため速度制御器の比例 ゲインAを大幅に下げなければならない場合が多く、こ れでは速度制御系の応答性を大幅に低下させて使用する ことになり、設備上必要とする速度制御応答特性が得ら れないという問題がある。

【0013】そこで、本出願人は先に、これらの問題を

解決するためのねじり振動抑制方法について提案した (国際公開92/14296号)。

【0014】その先の提案の第1実施例の構成を図9に 示す。本例では、平均速度演算器19によって電動機駆 動軸に取付けた速度検出器3の信号について一定周期 t - 間の平均値を演算する。

【0015】この一定周期毎の平均速度の演算の方法 は、例えば、速度検出器がパルス信号発生器であれば、 速度検出器3より出力されるパルス信号の周期 t = 間の 計数値を t。で割ることによって t。間のパルスの平均 10 ねじり振動が抑制される。 周波数として、t。間の平均速度を求めることができ る。アナログ式の速度検出発電機の場合は、一定周期 t 。間で速度検出器の信号をn回読み、これらの信号の合 計値の1/nをt。間の平均速度とすることができる。*

$$T_{L1} = T_M - T_{MA}$$

$$T_{RFL} = T_{RFM} - T_{RFA}$$

電動機トルク制御器17によるトルク制御遅れは小さい ので無視すれば、TM≒TRPM となる。電動機負荷トル ク補償器21はTRFA - TMAが0となるようにTRFL を※

$$T_{RFL} = T_M - T_{MA}$$

(3)式に(1)式のT_M - T_{MA}を代入するとT_{RFL} = TL1となり、負荷外乱トルクがTRFL により打ち消され ることになる。

[0020]

【発明が解決しようとする課題】しかしながら、前記先 の提案による図9に記載された方法においては、電動機 のトルク制御器の遅れが大きく、トルク応答が低い駆動 制御装置に前記提案の発明を適用すると、機械系の共振 周波数が高い場合は、軸振動の抑制が不十分となるとい う問題があった。

【0021】そこで本発明は、より高い共振周波数にお いても良好にねじり振動を抑制する方法を提供すること を目的とする。

[0022]

【課題を解決するための手段】この目的を達成するた め、本願の第1~3の発明は、電動機の負荷側に設けた 低ねじり剛性の駆動軸を介して、電動機から負荷へ駆動 トルクを伝達する機構と、速度指令信号NREP に対して 速度検出器により検出した電動機速度検出信号について 一定周期毎の平均値の演算により得られた電動機平均速 40 度Nmavg又は前記電動機速度検出信号を1次遅れ要素を 持つフィルタを介して平均化した電動機平均速度Nmava を帰還して偏差信号を演算し、比例ゲインと積分器又は 比例ゲインのみを持つ速度制御器により前記偏差信号を 増幅して得られたトルク指令信号TRPA に従って電動機 のトルクを制御するように構成された電動機速度系にお いて、次の(1)の工程によって推定した駆動軸トルク を補償トルクとして前記電動機トルク指令信号TRFA に 加えて鑑動機負荷外乱トルクを打ち消すことによって振

*【0016】速度制御器11の出力のトルク指令信号T RFA と電動機加速トルク制御器25の出力信号TRFL を 加えた信号をトルク指令TRPM として電動機のトルク制 御を行うことにより電動機の加速トルクの外乱となって いる負荷トルクT」に対しては、電動機負荷トルク補償 器21の出力のトルク指令補償信号TRFL によって打ち 消す方向に制御される結果、前記の電動機トルク指令信 号が、加速中や負荷急変時の駆動軸のねじれによって発 生する電動機の外乱トルクを打ち消す方向に作用して、

【0017】これを更に説明すれば、図9においてT RPA、 TRFL、 TRPM、 TM、 TMA、 TL1は単位法 (P. U) で表されており、次の関係が成立する。

[0018] (1)

※演算し出力する。(2)式にT_{RPM} = T_M、T_{RPA} = T MAを代入するとTRFL は次のようになる。

[0019]

動振幅の増大化を防ぐとともに、更に (2) の工程によ って、駆動軸のねじり振動系にダンピング要素を生成し てねじり振動を抑制することを特徴とする電動機ねじり 振動抑制制御方法である。

【0023】(1)前記速度制御器により出力された前 記トルク指令信号TRFA に対し、前記電動機平均速度信 号NMAVGを微分した信号に電動機の機械的時定数 TM を 乗じた信号を電動機加速トルク信号TMAFBとして帰還 し、その偏差信号を電動機負荷トルク補償器等の比例ゲ イン積分演算器により増幅することによって得られた電 動機負荷トルク推定信号TRPL を前記速度制御器より出 力されるトルク指令信号TRFA に加えた信号TRFM を最 終的なトルク指令として電動機のトルクを制御すること により、電動機負荷外乱トルクを打ち消す。

【0024】(2)前記(1)の工程の電動機負荷トル ク推定信号TRFL をハイパスフィルタとローパスフィル タを介することによって前記(1)の工程によって推定 した電動機負荷トルク推定信号TRPL に含まれる定常信 号成分と高周波信号成分を除去して得られた駆動軸トル クの振動成分推定信号と、前記電動機機械的時定数 тм と、負荷の機械的定数 τ しと、駆動軸のねじり時定数 τ v と、前記速度制御器の比例ゲインAと、予め設定した ダンピング係数δと、前記電動機負荷トルク補償器の比 例ゲインG及び積分時定数::コより、次の(4)式、 (5) 式。(6) 式の3種類のいずれか一つの式を用い てねじり振動ダンピング制御信号Norを演算する。

[0025]

【数10】

$$\begin{split} N_{\text{np}} &= (\frac{2 \delta}{\omega \tau_{\text{L}}}) \left[\sqrt{1 + \frac{\tau_{\text{L}}}{\tau_{\text{M}}}} \right] \\ &\times \left\{ \frac{1 + \left[\frac{1 + G}{G} + \frac{\omega \left(\frac{\tau_{\text{M}}}{A} \right)}{2 \delta G \sqrt{1 + \frac{\tau_{\text{L}}}{\tau_{\text{M}}}}} \right] \tau_{\text{L1S}}}{1 + \tau_{\text{L1S}}} \right] \\ &\times (1 + \frac{\tau_{\text{M}} s}{A}) \text{ HPF (s)} \cdot \text{LPF (s)} \cdot T_{\text{RFL}} \end{split}$$

【数11】

$$N_{\text{DP}} = \left(\frac{2 \delta}{\omega \tau_{\text{L}}} \right) \left[\sqrt{1 + \frac{\tau_{\text{L}}}{\tau_{\text{M}}}} \right] \left(\frac{1 + \left(\frac{1 + G}{G} \right) \tau_{\text{L}_{1}} s}{1 + \tau_{\text{L}_{1}} s} \right]$$

$$\times \left(1 + \frac{\tau_{\text{M}} s}{A} \right) \text{HPF (s)} \cdot \text{LPF (s)} \cdot T_{\text{RFL}}$$

$$\cdot \cdot \cdot \cdot \cdot \cdot (5)$$

【数12】

$$N_{pp} = \left(\frac{2 \delta}{\omega \tau_L} \right) \left[\sqrt{1 + \frac{\tau_L}{\tau_M}} \right] \left(1 + \frac{\tau_M s}{A} \right)$$

×HPF(s) · LPF(s) · TRPL

但し、 s はラプラス演算子であり、ωはねじり振動系の 固有共振周波数であり次式で表される。 **

$$\omega = \sqrt{\frac{\tau_{M} + \tau_{L}}{\tau_{M} \tau_{L} \tau_{V}}}$$

前記速度指令信号N_{BEP}より前記ねじり振動ゲンピング 制御信号N_{DP}を減じることにより得られる速度指令信号 N_{BEP}に対し前記電動機平均速度N_{MAVO}を帰還して電動 機の速度を制御することによりねじり振動系にゲンピン グ郵素を生成する。

【0027】また、本願の第4~6の発明は、前記第1 ~3の発明の(2)の工程に代えて、次の(3)の工程 によるグンピング要素を生成するようにしたものであ

【0028】(3)前記(1)の工程の電動機負荷トルク推定信号T_{NFL}をハイパスフィルタとローパスフィルタを介することによって前記(1)の工程によって推定した電動機負荷トルク推定信号T_{NFL}に含まれる定常信号成分と高周波信号成分を除去して得られた駆動軸トル

・・・・ (7)
クの振動成分推定信号と、前記電動機機械的時定数 тм

∨ と、前紀速度制御器の比例がインAと、予め設定した ダンピング係数ると、前記電動機会所上の補償器の比 例がインG及び積分時定数: Liより次の(8)式、 (9)式、(10)式の3種類のいずれか一つの数式を 用いてねじり振動ダンピング制御信号Tarを演算し、前 40 記速度制御器より出力されるトルク指令Taraより前記 ねじり振動ダンピング制御信号Tareを載じることにより 得られるトルク指令信号に従って電動機のトルクを制御 得られるトルク指令信号に従って電動機のトルクを制御

することによりねじり振動系にダンピング要素を生成す

と、負荷の機械的定数 τ L と、駆動軸のねじり時定数 τ

【0029】

* [0026]

【数13】

$$T_{\text{DP}} = \left(\frac{2 \delta A}{\omega \tau_{\text{L}}}\right) \left[\sqrt{1 + \frac{\tau_{\text{L}}}{\tau_{\text{M}}}}\right] \times \left[1 + \left(\frac{1 + G}{G} + \frac{\omega \left(\frac{\tau_{\text{M}}}{A}\right)}{2 \delta G \sqrt{1 + \frac{\tau_{\text{L}}}{\tau_{\text{M}}}}}\right] \tau_{\text{LIS}}\right] \times \left(1 + \frac{\tau_{\text{M}} s}{A}\right) HPF(s) \cdot LPF(s) \cdot T_{\text{RPL}}$$

【数15】

$$T_{\text{n},\text{=}} \left(\frac{2 \delta A}{\omega \tau_{\text{L}}} \right) \left[\sqrt{1 + \frac{\tau_{\text{L}}}{\tau_{\text{M}}}} \right] \left[\frac{1 + \left(\frac{1 + G}{G} \right) \tau_{\text{L},\text{S}}}{1 + \tau_{\text{L},\text{S}}} \right] \times \left(1 + \frac{\tau_{\text{M}} s}{A} \right) \text{HPF (s)} \cdot \text{LPF (s)} \cdot T_{\text{MFL}}$$

$$\dots (9)$$

【数16】

$$T_{\text{DP}} = \left(\frac{2 \delta A}{\omega \tau_{\text{L}}} \right) \left(\sqrt{1 + \frac{\tau_{\text{L}}}{\tau_{\text{M}}}} \right) \left(1 + \frac{\tau_{\text{M}} s}{A} \right)$$

×HPF(s)·LPF(s)·TRFL

.... (10)

[0030]

【作用】第1~3の発明に対応する実施例を示す制御ブ ロック図1における動作について説明する。図1の制御 ブロックを簡単に説明する。

【0031】11は速度制御器の比例積分器を示すプロ ック、12は電動機の機械的時定数を示すブロック、1 3は電動機負荷軸のねじり時定数を示すブロック、14 は負荷の機械的時定数を示すプロック、15は負荷トル クT12を示すブロック、17は電動機トルク制御器を示 すプロック、19は一定周期毎の電動機平均速度を演算 する機能を示すブロック、20は電動機速度から電動機 加速トルクを演算する機能を示すブロック、21は電動 機の負荷トルクの推定値TRPL を演算する比例積分演算 器を示すブロック、22は電動機の負荷トルクの推定値 40 Tuel の定常トルク信号分を除去するハイパスフィルタ*

 $T_{RPA} - \tau_M N_M s = T_{L1} - T_{RFL}$ 電動機負荷トルク推定値T_{RPL} と電動機平均速度N_{MAVG}

[数17] の間には次式が成り立つ。 $T_{\text{RFL}} = (T_{\text{RFA}} - \tau_{\text{N}} \text{ N}_{\text{M}} \text{ s}) G \left(\frac{1 + \tau_{\text{LIS}}}{\tau_{\text{LIS}}} \right) \cdots (12)$

(12) 式に (11) 式の (TRFA - TM NMAVG) を代 入し、Trfl を求める。

*を示す制御プロック、23は高周波トルク信号成分を除 去するハイパスフィルタを示す制御ブロック、24は電 動機負荷軸の振動にダンピング要素を生成させるための 30 制御信号Nppを演算するブロックである。

【0032】説明をわかりやすくするために、一定周期 毎の電動機の平均速度を演算するブロック19及び電動 機のトルクを制御するブロック17はいずれも信号の遅 れが小さいので無視する。また、ブロック11の速度制 御器を比例ゲインのみとする。

【0033】まず、電動機の負荷外乱トルクを打ち消す 動作について説明する。前記速度制御器より出力される トルク指令TRFAと、前記電動機負荷トルク推定値T REL と、電動機負荷トルクTi1と、電動機速度Nm には 次式が成り立つ。

...(11)**% [0035]**

$$\frac{\tau_{L1}S}{\tau_{L1}S}) \cdots (12)$$

【数18】

[0034]

$$T_{RFL} = \left[\frac{1 + \tau_{L1} s}{1 + (\frac{1 + G}{G}) \tau_{L1} s} \right]$$

て説明する。

【0037】図1のブロック21が演算した電動機負荷 求められる。 軸トルク推定値TRFL によって電動機負荷軸トルクTL1

を打ち消すように制御するとき、電動機負荷軸トルクT*10 【数19】

次にねじり振動にダンピング要素を生成する作用につい *₁の打ち消し誤差△T₁は、電動機の負荷軸トルクと (13) 式の電動機負荷軸トルク推定値TRFL の差より

$$\Delta T_{\nu_1} = T_{\nu_1} - T_{RFL} = \left[\frac{(\frac{\tau_{\nu_1}}{G}) s}{1 + (\frac{1 + G}{G}) \tau_{\nu_1} s} \right] T_{\nu_1} \cdot \cdot \cdot (14)$$

第1の発明の制御ブロック図1を(13)式と(14)

式の関係を用いて変換すると図2となる。

【0039】図2より電動機速度指令NREF 及び負荷ト ルクT L2の変化に対する電動機負荷トルクT L1K 応答特※

※性式を誘導した式を次に示す。

[0040]

【数20】

$$T_{\text{LI}} s^2 + \left\{ \left[\frac{1 + \tau_{\text{LI}} s}{1 + \left(\frac{1 + G}{G} \right) \tau_{\text{LI}} s} \right] \left[\frac{\tau_{\text{L}}}{1 + \frac{\tau_{\text{M}} s}{A}} \right] \right\}$$

 \times H P F(s) • L P F(s) • D, (s)

$$-\left[\frac{\left(\frac{T_{L1}}{G}\right)s}{1+\left(\frac{T+G}{G}\right)T_{L1}s}\right]\left(\frac{T_{N}}{A}\right)\right]\omega_{1}^{2}T_{L1}s+\omega_{1}^{2}T_{L1}$$

$$=\left[\frac{T_{L1}s}{1+\frac{T_{N}s}{A}}\right]\omega_{1}^{2}N_{RF}+\omega_{1}^{2}T_{L2} \qquad \cdots (15)$$

但し、
$$\omega_1 = 1 / \sqrt{\tau_1 \tau_V}$$

ルクT_{L1}, 負荷トルクT_{L2}の過渡信号成分をそれぞれN ルクLPF(s) を信号の減衰がほとんどなく通過するの RP11, T_{L11}, T_{L21} とすると、電動機負荷軸トルクの で次式が成り立つ。 過渡信号成分Tニュュ は、図1の22のブロックのハイパ★ 【0041】

電動機速度指令Nxxx、電動機速度Nxx、電動機負荷軸ト ★スフィルタHPF(s) と23のブロックのローパスフィ

 $T_{L1} \cdot HPF(s) \cdot LPF(s) \cdot D_1(s) = T_{L11} D_1(s) \cdot \cdot \cdot (17)$

【数21】

この (17) 式を用いると、(15) 式の過渡信号成分 40 【0042】

に関する特性式は次のようになる。

$$T_{L11}S^{2} + \left\{ \begin{bmatrix} 1 + \tau_{L1}S \\ 1 + (\frac{1+G}{G}) \tau_{L1}S \end{bmatrix} \begin{bmatrix} \tau_{L} \\ 1 + \frac{\tau_{M}S}{A} \end{bmatrix} D_{1} (s) \right.$$

$$- \left[\frac{(\frac{\tau_{L1}}{G}) S}{1 + (\frac{1+G}{G}) \tau_{L1}S} \right] (\frac{\tau_{M}}{A}) \right\} \omega_{1}^{2}T_{L11}S + \omega_{1}^{2}T_{L11}$$

$$= \left[\frac{\tau_{L1}S}{1 + \frac{\tau_{M}S}{A}} \right] \omega_{1}^{2}N_{RF11} + \omega_{1}^{2}T_{L21} \cdots (18)$$

あらかじめ設定したダンピング係数をδとし、駆動軸共 *【0043】 振角周波数ωを次式として、図1の24のブロックの第 【数22】

1 の発明の場合の
$$D_1(s)$$
の関数を示す。
$$\omega = \sqrt{(\tau_M + \tau_L) / (\tau_M \tau_L \tau_V)} \qquad \cdots (19)$$

【数23】

$$D_{1}(s) = \left(\frac{2 \delta}{\omega r_{L}}\right) \left(\sqrt{1 + \frac{r_{L}}{r_{M}}}\right)$$

$$\times \left\{ 1 + \left[\frac{1 + G}{G} + \frac{\omega \left(\frac{r_{M}}{A}\right)}{2 \delta G \sqrt{1 + \frac{r_{L}}{r_{M}}}}\right] r_{L1} s \right\}$$

$$\frac{1 + r_{L1} s}{1 + r_{L1} s}$$

$$\times (1 + \frac{\tau_{MS}}{A}) \qquad (20)$$

(20) 式のD₁(s)を(15) 式のω₁ を用いて表す。 ※【数24】

[0044]

$$D_{1}(s) = \left(\frac{2 \delta}{\omega_{1} \tau_{1}}\right)$$

$$\times \left\{\frac{1 + \left(\frac{1 + G}{G} + \left(\frac{\omega_{1}}{2 \delta G}\right) \left(\frac{\tau_{M}}{A}\right)\right) \tau_{L,1} s}{1 + \tau_{L,1} s}\right\}$$

$$\times \left(1 + \frac{\tau_{M} s}{A}\right) \qquad \cdots \qquad (21)$$

(21) 式を (18) 式に代入し、電動機負荷軸トルク ★【0045】

の渦渡信号成分Tuiを求める。

$$T_{L11} = \left(\frac{\omega_{1}^{2}}{s^{2} + 2 \delta \omega_{1} s + \omega_{1}^{2}} \right) \left(\frac{\tau_{L} s}{1 + \frac{\tau_{M} s}{A}} \right) N_{RP1}$$

+
$$\left(\frac{\omega_1^2}{s^2 + 2\delta\omega_1 s + \omega_1^2}\right) T_{\iota_{21}} \cdot \cdot \cdot (22$$

(22) 式の右辺第1項は、電動機速度指令の過渡信号 成分NRP11に対する電動機負荷軸トルクの過渡信号成分

TL11 の応答を示し、右辺第2項は負荷トルクの過渡信 号成分Tust に対する電動機負荷軸トルクの過渡信号成 50 と、(22) 式の右辺の第1項、第2項はいずれも安定

分Tuzz に対する電動機負荷軸トルクの過渡信号成分T LII の応答を示している。

【0046】ダンピング係数 δ を例えば 0.8に選ぶ

な2次系の応答となるため、電動機速度指令や負荷トル * (s) を近似する。 [0048] クの急変に対しても安定な応答特性となる。

【0047】次に(20)式において次の条件にてD *

$$\frac{1+G}{G} \gg \left(\frac{\omega}{2 \delta G \sqrt{1+\frac{\tau_{H}}{\tau_{H}}}} \right) \left(\frac{\tau_{H}}{A} \right) \cdots (23)$$

【数27】

$$D_{1}(s) = \left(\frac{2 \delta}{\omega \tau_{L}}\right) \left[\sqrt{1 + \frac{\tau_{L}}{\tau_{M}}}\right] \left[\frac{1 + \left(\frac{1 + G}{G}\right) \tau_{L1} s}{1 + \tau_{L1} s}\right] \times \left(1 + \frac{\tau_{M} s}{A}\right) \qquad \cdots (24)$$

(24) 式は、図1の24のブロックの第2の発明の場 合のD₁(s)の関数であり、(23)式の条件が成立する ときは、(24) 式のD1(s)を(18) 式に代入すると (22) 式が得られ、安定な応答特性となる。

17

G>>1 又は tir<<1

※【0049】 (21) 式において次の条件にてD₁(s)を 近似する。 [0050] (25)

18

【数28】

$$D_1(s) = \left(\frac{2\delta}{6T_1}\right) \left[\sqrt{1 + \frac{\tau_1}{\tau_n}}\right] 1 + \frac{\tau_n s}{A} + \cdots + (26)$$

(26) 式は、図1の24のブロックの第3の発明の場 合のD₁(s)の関数であり、(25)式の条件が成立する ときは、(26)式のD₁(s)を(18)式に代入すると (22) 式が得られ、安定な応答特性となる。

【0051】以上、電動機の負荷外乱トルクTいを打ち 消す手段と電動機駆動軸トルクの変化の運動にダンピン グ要素を生成する手段を併せて用いることにより、駆動 軸トルクTLIの振動が十分に抑制された安定な駆動制御 特性を実現する制御の動作を示した。

【0052】次に第4~6の発明の作用について説明す 5.

【0053】第4~6の発明は、ダンピング制御信号を ブロック11の速度制御器の出力側に入力するために、 第1~3の発明のプロック24にて行うダンピング制御 信号の演算式にブロック11の速度制御器の比例ゲイン Aを乗じたものであり、振動抑制の作用については、第 1~3の発明と同様である。

[0054]

【実施例】以下、第1~3の発明の具体的な実施例を図 40 1に基づいて説明する。

【0055】なお、従来例を示す図9と同じ構成要素に ついては同じ符号を用いて説明を省略する。

【0056】本実施例では、平均速度演算器19によっ て電動機駆動軸に取付けた速度検出器3 (図5参照)の 信号について一定周期t。間の平均値を演算する。

【0057】この一定周期毎の平均速度の演算の方法 は、例えば、速度検出器がパルス信号発生器であれば、 速度検出器3より出力されるパルス信号の周期t。間の 計数値を t。で割ることによって t。間のパルスの平均 50 負荷トルク補償器21に入力すると、その電動機加速ト

周波数として、t。間の平均速度を求めることができ る。アナログ式の速度検出発電機の場合は、一定周期 t 。間で速度検出器の信号をn回読み、これらの信号の合 計値の1/nをt。間の平均速度とするか又は1次遅れ 要素を持つフィルタを介して平均化した平均速度とする ことができる。

【0058】この電動機平均速度をNmavgとし、まず速 度制御器11の動作について説明する。

【0059】速度指令NREF と電動機平均速度NMAVGと その偏差を速度制御器11に入力すると、その速度偏差 信号に比例ゲインAを乗じた信号と、更にその信号を時 定数で、にて積分した信号とを加えた信号をトルク指令 信号TRFA として出力する。速度制御器11が比例ゲイ ンAのみを持つ場合は、その速度偏差信号にAを乗じた 信号をTRFAとして出力する。

【0060】次に、電動機加速トルク演算器20の動作 について説明する。

【OO61】電動機平均速度Nmavcが電動機加速トルク 演算器20に入力されると、前記電動機平均速度Nmave を微分1 た値に電動機の機械的時定数 TM を乗じた値の 信号TMAFBを出力する。この信号TMAFBは電動機の加速 トルク演算信号となる。

【0062】次に電動機負荷トルク補償器21の動作に ついて説明する。

【0063】速度制御器11のトルク指令信号TRFAを 電動機の加速トルク指令とし、その指令に対し電動機加 凍トルク油算器20の出力信号TMPBを電動機の加速ト ルク信号として帰還し、その2つの信号の偏差を電動機 ルク制御器21は、その2つの信号偏差の信号に比例ゲ インGを乗じた信号TRPLPとその信号を時定数でLIにて 積分して得られた信号TRFLIを加えた信号TRFL を出力 し、電動機加速トルク信号TMAPBが、速度制御器11の 出力のトルク指令信号TRFA に一致するように制御す

る。 【0064】速度制御器11の出力のトルク指令信号T RFA と電動機加速トルク制御器21の出力信号TRFL を 加えた信号をトルク指令TRFM として電動機のトルク制 御を行うことにより電動機の加速トルクの外乱となって 10 加減速中や急激な負荷変動時の負荷、駆動軸のねじれに いる駆動軸トルクT」に対しては、電動機負荷トルク補 償器21の出力の電動機負荷トルク推定値信号T_{RFL}に よって打ち消す方向に制御される結果、加速中や負荷急 変時の駆動軸のねじれによって発生する電動機の負荷外 乱トルクの変化の影響を受けにくく、ねじり振動の振幅 が大きくなるのを抑制する。

【0065】次にダンピング制御器24の動作について 説明する。

【0066】前記電動機負荷トルク補償器21によって 演算した電動機負荷トルク推定値信号TRPL をハイパス 20 すブロックダイアグラムである。 フィルタ22に入力すること、前記電動機負荷トルク推 定値信号TRFL の定常成分信号が除去された信号が出力 され、ローパスフィルタ23に入力される。

【0067】ローパスフィルタ23はその信号から高周 波成分信号を除去する。その結果、制御器24には定常 成分と高周波成分が除去された駆動軸の振動周波数成分 の信号が出力される。

【0068】ダンピング制御器24は、駆動軸の振動周 波数成分の信号に特性関数D₁(s)を乗じてダンピング制 御信号NpPを演算出力する。

【0069】速度指令NREF より前記ダンピング制御信 号Nneを減じた信号を新たな速度指令信号とし、その信 号に対し前記の電動機平均速度Nmavgを帰還信号として 雷動機の速度を制御することにより、電動機負荷駆動軸 トルクの振動にダンピング要素を生成することができ

【0070】図4は、第1~3の発明の制御方法を適用 することよって、加速中や負荷急変時における電動機負 荷軸振動が抑制された安定な可変速特性例を示してい

20

【0071】図3に示す第4~6の発明は、ダンピング 制御信号をブロック11の速度制御器の出力側に入力す るために、第1の発明のブロック24にて行うダンピン グ制御信号の演算式にブロック11の速度制御器の比例 ゲインAを乗じたものであり、第1の発明の動作と同じ

[0072]

【発明の効果】以上に述べたように、本発明によれば、 よって発生する電動機の外乱トルクを打ち消すように電 動機のトルクが抑制され、ねじり振動が抑制されると同 時に負荷広答特性も改善される。

【図面の簡単な説明】

【図1】 本願の第1~3の発明の具体的な実施例を示 すブロックダイアグラムである。

【図2】 第1~3の発明の作用を説明するために図1 を簡略したブロックダイアグラムである。

【図3】 本願の第4~6の発明の具体的な実施例を示 *

【図4】 本発明の効果を示す速度制御装置の加速特性

と負荷応答特性図である。 【図5】 公知のねじり振動系を含む可変速制御装置構 成図である。

【図6】 公知のねじり振動系を含む速度制御ブロック ダイアグラムである。

【図7】 ねじり振動の影響を強く受けた場合の速度制 御装置の加速特性と負荷応答特性図である。

【図8】 従来技術のねじり振動抑制フィルタを備えた 30 速度制御系のブロックダイアグラムである。 【図9】 先の提案の第1実施例の構成を示すブロック

ダイアグラムである。 【符号の説明】

1 可変速制御装置、2 電動機、3 速度検出器、4 ねじり剛性要素、5機械、10 速度指令、11 速 度制御器、17 電動機トルク制御器、19平均速度演 算器、20 電動機加速トルク演算器、21 電動機負 荷トルク補償器、22 ハイパスフィルタ、23 ロー パスフィルタ、24 ダンピング制御器

[図1]

[図2]

(図4)

[図5]

[図7]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:				
□ BLACK BORDERS				
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES				
☐ FADED TEXT OR DRAWING				
\square blurred or illegible text or drawing				
☐ SKEWED/SLANTED IMAGES				
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS				
☐ GRAY SCALE DOCUMENTS				
\square Lines or marks on original document				
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY				
OTHER:				

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.