CF - Révisions - Corrigé

Exercice 1:

Partie 1:

1. On pose $X = x + \lambda$, avec $\lambda \in \mathbb{R}$.

Alors
$$X^3 + pX + q = (x + \lambda)^3 + p(x + \lambda) + q = x^3 + 3x^2\lambda + 3x\lambda^2 + \lambda^3 + px + p\lambda + q$$

= $x^3 + 3x^2\lambda + x(3\lambda^2 + p) + (\lambda^3 + p\lambda + q)$

Or $a \neq 0$, donc $X^3 + pX + q = 0 \Leftrightarrow a(X^3 + pX + q) = 0$

Donc
$$a(x^3 + 3x^2\lambda + x(3\lambda^2 + p) + (\lambda^3 + p\lambda + q)) = 0$$

Ainsi sous forme de système, on obtient :

$$\begin{cases} 3a\lambda = b \\ (3\lambda^2 + p)a = c \\ a(\lambda^3 + p\lambda + q) = d \end{cases}$$

De la première on déduit bien $\lambda = \frac{b}{3a}$, et cela concorde bien avec les valeurs de p et q données.

2. On a $\lim_{X\to +\infty} P(X) = +\infty$ et $\lim_{X\to -\infty} P(X) = -\infty$, et $x\mapsto x^3+px+q$ est continue sur $\mathbb R$. Ainsi par le théorème des valeurs intermédiaires, il existe $\alpha \in \mathbb{R}$ tel que $P(\alpha) = 0$.

Partie 2:

1. Soient $(u, v) \in \mathbb{R}^2$, on a

$$u^{3} + v^{3} + (3uv + p)(u + v) + q = u^{3} + v^{3} + 3u^{2}v + 3uv^{2} + pu + pv + q$$
$$= (u + v)^{3} + p(u + v) + q$$

2. On pose $3uv+p=0 \Leftrightarrow uv=-\frac{p}{3} \Rightarrow u^3v^3=-\frac{p^3}{27}$ De plus, si c'est le cas, on a $X^3+pX+q=0 \Leftrightarrow u^3+v^3+(3uv+p)(u+v)+q=0$

$$\Leftrightarrow u^3 + v^3 + q = 0$$
$$\Leftrightarrow u^3 + v^3 = -q$$

3. Si l'on note x_1, x_2 les racines d'un polynôme du second degré Q unitaire, on a :

$$Q(X) = (X - x_1)(X - x_2) = X^2 - (x_1 + x_2)X + x_1x_2$$

Ainsi U et V sont racines du polynôme $Q(X) = X^2 - (U + V) + UV$

$$=X^{2}+qX-\frac{p^{3}}{2}$$

Le discriminant Δ vaut $\Delta = (-q)^2 - 4\left(-\frac{p^3}{27}\right) = q^2 + \frac{4p^3}{27}$

Ainsi on déduit :

$$\begin{cases} U = \frac{-q + \sqrt{\Delta}}{2} \\ V = \frac{-q - \sqrt{\Delta}}{2} \end{cases}$$

4. On a
$$U = \frac{-q + \sqrt{\Delta}}{2} = -\frac{q}{2} + \frac{\sqrt{q^2 + \frac{4p^3}{27}}}{2} = -\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$$

De même, on obtient $V=-\frac{q}{2}-\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}$

Ainsi
$$X = u + v = \sqrt[3]{U} + \sqrt[3]{V} = \sqrt[3]{-q + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-q - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}.$$

Exercice 2:

Considérons g l'application $[a,b] \to \mathbb{R}$ définie par $g(x) = e^{-x} (f(x) + f'(x))$. g est bien définie, car f est définie et dérivable sur [a,b]. De plus, $g \in C^1([a,b],\mathbb{R})$ car $f \in C^2([a,b],\mathbb{R})$ (et donc f' est dérivable de dérivée continue).

Ainsi
$$g(a) = e^{-a}(f(a) + f'(a)) = 0$$
 et $g(b) = e^{-b}(f(b) + f'(b)) = 0$

Donc on peut appliquer le théorème de Rolle à g:

Il existe donc $c \in]a, b[$, tel que g'(c) = 0

Or
$$g'(x) = e^{-x} (f'(x) + f''(x)) - e^{-x} (f(x) + f'(x)) = e^{-x} (f''(x) - f(x))$$

Donc
$$g'(c) = 0 \Leftrightarrow e^{-c}(f''(c) - f(c)) = 0 \Leftrightarrow f''(c) = f(c)$$

Exercice 3:

Soit H_n la série harmonique.

1) $\forall n \geq 1$.

$$H_{2n} - H_n = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=n+1}^{2n} \frac{1}{k} \ge \sum_{k=n+1}^{2n} \frac{1}{2n} = (2n - (n+1) + 1) \frac{1}{2n} = \frac{1}{2}$$

- 2) On peut prouver que H_n est une suite croissante. Ainsi, en $+\infty$, elle ne peut se comporter que de deux manières :
 - Elle diverge vers +∞
 - Elle converge vers $l \in \mathbb{R}$

Supposons la seconde proposition : $\exists l \in \mathbb{R}, H_n \xrightarrow[n \to +\infty]{} l$

Alors $H_{2n} \xrightarrow[n \to +\infty]{} l$ et donc $H_{2n} - H_n \xrightarrow[n \to +\infty]{} 0 < \frac{1}{2}$. C'est absurde.

Exercice 4:

- 1) On utilise le fait que $\mathbb Q$ est dense dans $\mathbb R$. Soit $x \in \mathbb R$, il existe $(u_n)_n$ une suite de rationnels tels que $u_n \xrightarrow[n \to \infty]{} x$. Alors $\forall n \in \mathbb N$, $f(u_n) < g(u_n)$, et donc quand $n \to +\infty$, on obtient bien $f(x) \le g(x)$.
 - Pour contredire l'inégalité stricte, on peut prendre $f:x\in\mathbb{R}\mapsto 0$, et $g:x\in\mathbb{R}\mapsto |x-\pi|$ Alors si on prend $x=\pi\in\mathbb{R}$, on a f(x)=0 et g(x)=0, donc f(x)=g(x), alors que pourtant pour tout $g\in\mathbb{Q}$, on a bien f(q)< g(q).
- 2) Soit $a < b \in \mathbb{Q}$. Par densité de \mathbb{Q} dans \mathbb{R} , on peut supposer $x \le a < b \le y$. Aussi, il existe (x_n) et (y_n) deux suites de rationnels qui convergent respectivement vers x et y. Alors $\forall n \in \mathbb{N}, f(x_n) \le f(a) < f(b) \le f(y_n)$

On passe à la limite pour trouver f(x) < f(y).

Exercice 5:

On va procéder par analyse-synthèse.

Analyse: (= si j'ai une telle fonction, que cela implique-t-il sur cette fonction?)

Soit $f: \mathbb{R} \to \mathbb{R}$, telle qu'il existe $i: \mathbb{R} \to \mathbb{R}$ une fonction impaire et $p: \mathbb{R} \to \mathbb{R}$ une fonction paire telles que :

$$\forall x \in \mathbb{R}, f(x) = p(x) + i(x)$$

Alors nécessairement :

$$\forall x \in \mathbb{R}, f(-x) = p(-x) + i(-x) = p(x) - i(x)$$

Ainsi on obtient le système suivant : $\forall x \in \mathbb{R}$,

$$\begin{cases} f(x) = p(x) + i(x) \\ f(-x) = p(x) - i(x) \end{cases}$$

$$\Leftrightarrow \forall x \in \mathbb{R}, \begin{cases} p(x) = \frac{f(x) + f(-x)}{2} \\ i(x) = \frac{f(x) - f(-x)}{2} \end{cases}$$

Synthèse (= les fonctions auxquelles on arrive respectent-elles vraiment les conditions de l'énoncé)

Vérifions que les fonctions trouvées sont bien respectivement paires et impaires.

$$\forall x \in \mathbb{R}, p(-x) = \frac{f(-x) + f\left(-(x)\right)}{2} = p(x)$$

$$\forall x \in \mathbb{R}, i(-x) = \frac{f(-x) - f\left(-(-x)\right)}{2} = \frac{f(-x) - f(x)}{2} = -i(x)$$

Ainsi les fonctions trouvées satisfont les conditions de l'énoncé, et quelque soit f, on peut bien trouver une décomposition de celle-ci en deux fonctions, l'une paire et l'autre impaire.

Exercice 6:

- 1. $j^3 = 1, j^2 + j + 1 = 0$ par calcul direct ou par résolution de l'équation $x^2 + x + 1 = 0$.
- 2. 0 et -1 sont racines évidentes de P.
- 3. On peut remarquer que $j^4 = j$, $j^5 = j^2$, etc... donc P(j) = 0 et P'(j) = 0, et j est au moins racine double de P.
- 4. On a $P(X) = X^7 + 7X^6 + \cdots X^7 1 = 7X^6 + \cdots$, donc P est de degré 6.
- 5. j est racine de multiplicité au moins 2, donc son conjugé \bar{j} l'est aussi. Un calcul simple donne $j^2 = \bar{j}$, donc les racines de P dans \mathbb{C} sont $0, -1, j, j, j^2, j^2$, et donc

$$P(X) = 7X(X+1)(X-j)^{2}(X-j^{2})^{2}$$

Dans $\mathbb{R}[X]$, on peut utiliser le fait que $(X-j)(X-j^2)=X^2+X+1$, et donc

$$P(X) = 7X(X+1)(X^2 + X + 1)^2$$