ДОКЛАДЫІ академии наук ссер

1980

TOM 253 № 3

(ОТДЕЛЬНЫЙ ОТТИСК)

Доклады Академии наук СССР 1980. Том 253, № 3

УДК 591.524.1 + 591.177

ВИЗИОЛОГИЯ

E.B. POMAHEHKO

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ КИНЕМАТИКИ ДЕЛЬФИНОВ

(Представлено академиком В.Е. Соколовым 15 І 1980)

В работе (1) предпринята попытка применить теорию академика Академии наук УССР Г.В. Логвиновича (2) к случаю плавания рыб и дельфинов "скомброидным способом, когда закон деформации их тела принят в форме

(1)
$$\eta = \eta_0 \left[k_r - 1 + \exp\left(\alpha \left(\frac{x_2 - x}{L_p}\right)^{\gamma}\right) \right] \sin \omega \left\{ t - \frac{x_2 - x}{c_r \left[1 + b\left(x_2 - x\right)\right]} \right\},$$

Здесь η_0 — амплитуда колебаний хвоста, k_{Γ} — отношение амплитуд колебаний головы и хвоста, x — текущая координата в инерциальной системе координат x, y, z, движущейся вместе с телом в неограниченной среде в направлении оси Ox, причем координаты концов тела имеют обозначения x_2 (головы) и x_1 (хвоста), $L_{\rm p} = x_2 - x_1$ — длина тела, ω — круговая частота колебаний тела, t — время, c_{Γ} — фазовая скорость распространения локомоторной волны по телу в точке x_2 , α = $\ln{(2-k_{\Gamma})}$. Коэффициенты k_{Γ} , γ и b характеризуют индивидуальные особенности кинематики различных видов рыб и дельфинов и должны быть определены в эксперименте.

В настоящей работе приведены результаты экспериментального исследования кинематики дельфина афалины с целью определения указанных выше коэффициентов.

Кинематику дельфина исследовали двумя методами: методом киносъемки и методом трех акселерометров.

Метод киносъемки состоит в том, что осуществляли киносъемку плавательных движений дельфина, проплывавшего по прямой линии мимо объектива кинокамеры, с последующей расшифровкой кинограмм и определением коэффициентов. Коэффициент $k_{\rm r}$ определялся как отношение амплитуд колебаний головы и хвоста. Для определения показателя степени у измеряли амплитуду колебаний не только головы и хвоста, но еще и спинного плавника. Затем подбирали такое значение показателя степени у, чтобы измеренные величины амплитуд колебаний в указанных трех точках тела дельфина удовлетворяли закону деформации, представленному формулой (1). Для определения коэффициента b измеряли средние значения фазовой скорости локомоторной волны, распространяющейся по телу дельфина, на участках от головы до спинного плавника и от спинного плавника до хвоста (соответственно, $c_{\text{r.cp}}$ и $c_{\text{хв.cp}}$). Вычисляли отношение второй величины к первой, затем, в предположении линейной зависимости фазовой скорости от координаты, путем геометрических построений переходили к отношению значений фазовой скорости локомоторной волны на кончике хвоста (c_{xB}) к ее значению в области головы (c_r) . Окончательно вычисляли коэффициент b по формуле

$$b = \left(\frac{c_{XB}}{c_{r}} - 1\right)/L_{p}.$$

Метод трех акселерометров состоит в том, что в трех точках тела дельфина (на голове, в области спинного плавника и на лопасти хвоста) закрепляли по ак-

Таблица 1

Параметр	Значение	Параметр	Значение
k_{Γ}	$0,22 \pm 0,02$	$c_{f r}$	
$k_{c\pi}$	$0,29 \pm 0,02$	\overline{V}	$1,05 \pm 0,05$
γ	$4,07 \pm 0,25$	ω, c ⁻¹	$14,00 \pm 0,7$
b, m ⁻¹	$0,23 \pm 0,02$	V, M ⋅ C ⁻¹	$4,3 \pm 0.07$

селерометру, которые регистрировали величины колебательных ускорений. Информация с акселерометров по экранированным проводам поступала на вход малогабаритного магнитофона, закрепленного на спинном плавнике дельфина, и записывалась.

Этот метод, в отличие от предыдущего, имеет одно существенное преимущество: он позволяет изучать кинематику дельфина непрерывно в процессе плавания, тогда как метод киносъемки позволяет это делать только в те моменты, когда дельфин находится в кадре. Определение величин $k_{\rm r}$, γ и b по результатам записей принципиально не отличается от описанного в предыдущем методе с той лишь разницей, что запись предварительно дважды интегрируется по времени для того, чтобы перейти от колебательных ускорений к амплитудам смещения точек тела, в которых находились акселерометры.

В результате измерений получены следующие значения параметров плавания дельфинов (см. табл. 1).

Необходимо еще раз подчеркнуть, что все измерения были проведены при одном и том же значении скорости плавания дельфина, указанном в таблице. Приведенные во всех случаях погрешности равны одной среднеквадратичной ошибке измерения среднего значения. Измерения проведены на одном экземпляре дельфина, вес которого около 150 кг, длина 2,24 м.

В работе (1) проведенный анализ физического механизма плавания рыб и дельфинов позволил предположить соотношение между параметрами γ и b в форме

$$\frac{V\alpha^{2}e^{2\alpha}}{L_{p}^{2}}\gamma^{2} = \frac{\omega^{2}}{V} \left[\frac{1}{1 + L_{p}b}\right] \left[1 - \frac{1}{1 + L_{p}b}\right].$$

Эту формулу удобнее записать в виде $\gamma = \omega L_{\rm p} \sqrt{L_{\rm p} b}/\alpha e^{\alpha} V (1 + L_{\rm p} b)$.

Подставляя в эту формулу значение параметра b и других необходимых параметров из приведенной выше таблицы, получим для γ значение 3,5, что вполне удовлетворительно согласуется с измеренным значением 4,07, отличаясь от него всего на 16%. Здесь необходимо подчеркнуть, что значение параметров γ и b, приведенные в таблице, получены в эксперименте совершенно независимо и разными методами.

Приведенные результаты позволяют сделать следующие заключения. 1. Обнаружена неизвестная ранее зависимость фазовой скорости локомоторной волны, распространяющейся по телу дельфина от головы к хвосту в процессе активного плавания, от координаты в системе координат, связанной с телом животного. Фазовая скорость волны в области хвоста дельфина в полтора раза превышает фазовую скорость в области головы в режиме плавания дельфина с постоянной скоростью, равной 4,3 м/с. Таким образом подтвердилось предположение, высказанное в работе (1). 2. Закон деформации тела дельфина в процессе активного плавания

существенно нелинеен и удовлетворительно аппроксимируется экспоненциальной функцией, представленной формулой $(^1)$. 3. Удовлетворительное согласие измеренных и теоретически предсказанных значений параметров γ и b свидетельствует о том, что зависимость фазовой скорости локомоторной волны от координаты, по-видимому, близка к линейной.

Институт эволюционной морфологии и экологии животных им. А.Н. Северцова Академии наук СССР, Москва

Поступило 4 IV 1980

ЛИТЕРАТУРА

 1 Е.В. Романенко, ДАН, т. 253, № 5 (1980). 2 Г.В. Логвинович, Гидродинамика течений со свободными границами, Киев, 1969.