OBJECTIFS 3

- Connaître les lignes trigonométriques dans le triangle rectangle : cosinus, sinus, tangente.
- Mener des raisonnements et s'initier à la démonstration en utilisant les propriétés des figures, des configurations et des transformations.

Les fonctions trigonométriques

1. Définitions

INFORMATION |

On peut retenir ces définitions à l'aide du mnémotechnique « CAH-SOH-TOA » :

$$cos(angle) = \frac{adjacent}{hypoténuse}$$
 $sin(angle) = \frac{opposé}{hypoténuse}$ $tan(angle) = \frac{opposé}{adjacent}$

EXERCICE 1

On considère le triangle DEF ci-contre. Effectuer les calculs suivants.

1.
$$cos(\widehat{EFD}) = \dots$$

$$2. \sin(\widehat{EFD}) = \dots$$

3.
$$tan(\widehat{EFD}) = \dots$$

2. Propriétés

EXERCICE 2

L'objectif de cet exercice est de prouver la dernière propriété. Soit ABC un triangle rectangle en A.

1. Que vaut $sin(\widehat{ABC})$?

$$\sin(\widehat{ABC}) = \dots$$

2. Que vaut $\cos(\widehat{ABC})$?

$$\cos(\widehat{ABC}) = \dots$$

3. Simplifier le quotient $\frac{\sin(\widehat{ABC})}{\cos(\widehat{ABC})}$.

$$\frac{\sin(\widehat{ABC})}{\cos(\widehat{ABC})} = \dots$$

4. Conclure.

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/trigonometrie/#correction-2.

Ш

Utilisation dans un triangle rectangle

1. Calculer la longueur d'un côté

EXEMPLE •

Le triangle GHI ci-contre est rectangle en H. Calculons IG.

$$\cos(\widehat{IGH}) = \frac{GH}{IG}$$

$$\cos(60^\circ) = \frac{1.5}{IG}$$

$$IG = \frac{1.5}{\cos(60^\circ)} = 3$$

EXERCICE 3 On considère KL.

On considère le triangle JKL ci-contre. Calculer une valeur approchée de KL

Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/trigonometrie/#correction-3.

2. Calculer la mesure d'un angle

EXEMPLE \$

Le triangle MNO ci-contre est rectangle en M. Calculons une valeur approchée de \widehat{MNO} .

$$\tan(\widehat{MNO}) = \frac{OM}{MN}$$

$$\tan(\widehat{MNO}) = \frac{5}{12}$$

$$\widehat{MNO} = \arctan\left(\frac{5}{12}\right) \approx 23^{\circ}$$

INFORMATION |

Remarque

Les fonctions arccos, arcsin et arctan permettent d'inverser respectivement cos, sin et tan. Ainsi, si α désigne la mesure d'un angle aigu :

$$\arccos(\cos(\alpha)) = \alpha$$
 $\arcsin(\sin(\alpha)) = \alpha$ $\arctan(\tan(\alpha)) = \alpha$

◆Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/trigonometrie/#correction-4.