Proof for LP strong duality: Here, consider min cix, s.t Ax=b, x=0, x=12n, A EIRmxn, beIRm i.e. we Only Ounsider the standard form LP since any kind of LP can be transformed to it. (Assume C. D SIR"). Cenna 1: (Seperation thm): For two closed and convex set, denoted by C and D, if one is bounded, then we have: I dto GIRM and r GIR, s.t dic < r < die for the C, d & D. if C \ D = \text{D}. lemma's pf: W.L.O.a assume C is bounded. H's easy to verify that: I CEC, diED, s.t d(C.D) = ||CI-dill. Here, d(c,D) = inf ||c-d||_z = inf p(c,D) (Can be down by choosing: d(cn. Un) I d(C(1)) within in respectively Or just leverage p(c1)) is cts and C is cpt. D is cls.) Then let d = G - di, $r = \frac{C^2 - di^2}{2}$ Since $\{d_1 = argmin \frac{1}{2} || C - d_1|^2, \text{ we get } \{(C_1 - d_1)^T (U_1 - U) \neq 0, \text{any } U \in I\}$ $C_1 = argmin \frac{1}{2} || C - d_1||^2 + (C_1 - d_1)^T (C_1 - C_1) \neq 0, \text{ any } C \in C$ Hence, (Ci-di)di > (Ci-di)d, any del) 1 (Ci-di)C > (Ci-di)Ci, any coc.

Its easily to verify that: $(C_1-d_1)^T C_1 > (C_1-d_1)^T \frac{C_1+d_1}{2} > (C_1-d_1)^T d_1$.

Hence, (a-di) c> (ci-di) c> (ci-di) di> (ci-di) d, any cide ci).

In IPn. () In IPn
In IP. (34) [34] implies without bold, even if $d(C_1) > 0$, we can't get the strict result). Corollary: For any closed convex set C_1 any point $d \notin C_2$, we have: $I = 0$, s.t $e^{T}d > e^{T}c$ for any $c \notin C_2$.
· Corollary: For any cux set (+1) SIRM, zebulry (C), =1 afoer. s.t atz = atx, txe (.
(Just using $cl(C)$ is closed $cv \times set$. Since $z \in bdy(C)$, $z \not= c(cl(C))$ with $ a _{2} = 1$, $s \in a^{7}z$; $> a^{7}x$, $\forall x \in cl(C)$ and $z := z$. $z \neq a_{1k} = converging$ to a , then we get:
$\alpha_{z}, \alpha_{x}, k \in \mathbb{C}$.
· Corollay: For any two cux set C, D, if CND=4, then I a +0, s.t a c & aid, 4c+c. 4d=D.
(Considering C-D, $0 \notin C$ -D. consider $\{0 \notin cl(C-D)\}$)
Nou, ne con propose:
lemna 2: (Farkus Strong Alternative). { 0 { x Ax = b, x > 0}. , exactly one of 0, b is empty { 2 { y A ⁱ y < 0, b ⁱ y > 0} , exactly one of 0, b is empty
Proof: If O is nonempty, @ must be empty.

If 0 is empty, Let $A=(a_1,...,a_n)$, then b t cone $(a_1,...,a_n)$ which is closed. then, $\exists y \neq 0$, sity $\exists y \neq 0$, cone $(a_1,...,a_n)$.

Sinc JE cone (a., -., an), yTb>0. And y a: Ev. izInn. (Otherwise yic - os for some come (a, , Un)) =) yTA so ... lenna 3: OJX, Ax & b 2 247015.t y A=0, y b<0. } exactly one of them holds Proof: If Oholds, then @ can't holds. If O doesn't hold. Rewrite it in standard form' $\{(X^{+}, X^{-}, S) \mid (A, A, I) \begin{pmatrix} X^{+} \\ Y^{-} \\ S \end{pmatrix} = b, X^{+}, X^{-}, S \gg 0 \} \text{ is empty.}$ Aiy 20 Hence, $\exists y \neq b \in |R^h, s.t. \begin{pmatrix} A^T \\ -A^T \end{pmatrix} y > 0$, $b \exists y < 0 \Rightarrow A^T y \ge 0$. Nou, me begin our prove (P) min cTx (D) max bth s.t Ax=6, X70 s.t c みんで入 Proof: If (P) isn't bold, i.e. P#=-00, then. U*=-00 as well. If P* is finite, we just need to prove { C >/ATA is fewible, i.e. $\begin{pmatrix} A^{\tau} \\ -b^{\tau} \end{pmatrix} \lambda \leq \begin{pmatrix} C \\ -p^{+} \end{pmatrix}$ is feasible. 2(4,42) 20, s.t Ayı- 5420, 47c- 4p* <0

If not.

DIF Y2=0, then. Ay=0, YIC<0, Y170 > Contradiction.		
3 If $y_2 + v$, then $A(\frac{y_1}{y_2}) = b$, $C^T \frac{y_1}{y_2} < p^* = 2$ Contradiction.	لل	

. -

