Agrégation d'estimateurs affines pour la régression

Joseph Salmon (en collaboration avec Arnak Dalalyan)

Séminaire de probabilités et statistiques
Angers
Janvier 2011

Plan

Introduction et motivations

L'agrégation d'estimateurs et les poids exponentiels (EWA)

Modèle de regression

L'agrégation d'estimateurs

L'agrégation à poids exponentiels (EWA)

Résultats

Inégalité oracle principale

Corollaires

Expériences numériques

Conclusion

Introduction

Motivations

- ► Théorique : inégalités d'oracles (grande dimension, sparsité), adaptation
- ► Applications variées : **traitement d'images**, génétique, problèmes inverses (estimation de dérivée, déconvolution avec un noyau connu, tomographie, etc.)

Heuristique sous-jacente

► L'agrégation/mélange d'estimateurs est plus stable que la sélection d'un seul estimateur

Motivation principale : débruitage d'images

Modèle du bruit additif

Image observée

Motivation principale : débruitage d'images

Modèle du bruit additif

Image observée

Image idéale

Motivation principale : débruitage d'images

Modèle du bruit additif

Image observée

Image idéale

Bruit

Notation :
$$Y = f + \varepsilon$$

Méthodes à patchs et redondance

Introduction aux Non-Local Means (NLM)

Introduction des patchs pour le débruitage Buades Coll et Morel (2005)

État de l'art : Dabov et al. (2007), Mairal et al. (2009)

- ▶ Patch à débruiter
- Patchs similaires : poids importants
- Patchs peu similaires : poids faibles
- Patchs très différents : poids quasi nuls

Méthodes à patchs et redondance

Introduction aux Non-Local Means (NLM)

Introduction des patchs pour le débruitage Buades Coll et Morel (2005)

État de l'art : Dabov et al. (2007), Mairal et al. (2009)

- ▶ Patch à débruiter
- Patchs similaires : poids importants
- Patchs peu similaires : poids faibles
- Patchs très différents : poids quasi nuls

Mélanger lissage classique et NL-Means

- ➤ Y est le vecteur contenant les intensité des pixels d'un patch bruité.
- ightharpoonup L'approche par filtrage estime le vrai patch f par AY, A est une matrice de convolution.
 - ▶ Inégalité oracle exacte pour l'agrégation d'estimateur AY pour des matrices de projections Leung et Barron (2006)
- ▶ L'approche NL-Means estime f en combinant des patchs voisins b qui sont essentiellement indépendant de Y.
 - ► Inégalité oracle exacte pour l'agrégation d'estimateur construit sur un échantillon indépendant Dalalyan et Tsybakov (2007,2008)
- ▶ On veut étendre ces résultats à l'agrégation d'éléments de la forme AY + b avec A et b indépendants de Y

Notations et modèle

Modèle hétéroscédastique gaussien

$$\begin{split} Y_i &= f_i + \sigma_i \varepsilon_i, \quad i = 1, \cdots, n \\ \varepsilon_i \quad \text{i.i.d} \quad \mathcal{N}(0,1) \quad \text{et} \quad \Sigma &= \operatorname{diag}(\sigma_1^2, \cdots, \sigma_n^2) \left(\Sigma \text{ connue} \right) \end{split}$$

- ▶ Rem 1 : grille d'observation fixe (pixels) $f_i = f(x_i), (x_i)_{i=1,\dots,n}$
- ▶ Rem 2 : $\Sigma = \sigma^2 Id$, modèle homoscédastique

But : estimer f par \hat{f} , avec un faible risque

$$r = \mathbb{E}\left(\left\|f - \hat{f}_n\right\|_n^2\right) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n (f_i - \hat{f}_i)^2\right)$$

Lien problème inverse/hétéroscédasticité

T : opérateur \emph{connu} sur un Hilbert $(\mathcal{H}, \langle \cdot | \cdot \rangle_{\mathcal{H}})$

Y : processus aléatoire , pour un $h \in \mathcal{H}$

$$Y = Th + \varepsilon \xi \iff Y(g) = \langle Th|g \rangle_{\mathcal{H}} + \varepsilon \xi(g), \quad \forall g \in \mathcal{H},$$

 T^* : l'adjoint de T ; si T^* T est compact, par SVD

$$T\phi_k = b_k \psi_k, \quad T^* \psi_k = b_k \phi_k, \qquad k \in \mathbb{N},$$

 b_k : valeurs singulières, $\{\phi_k\}$: base orthonormale de \mathcal{H} , $\{\psi_k\}$: base orthonormale de $\mathrm{Im}(T)\subset\mathcal{H}$. Le modèle se ré-écrit

$$Y(\psi_k) = \langle h | \phi_k \rangle_{\mathcal{H}} b_k + \varepsilon \xi(\psi_k), \qquad k \in \mathbb{N}.$$

Si $b_k \neq 0$ le modèle est équivalent à (*), avec $f_i = \langle h | \phi_i \rangle_{\mathcal{H}}$ et $\sigma_i = \varepsilon b_i^{-1}$

Cadre de l'agrégation et inégalité d'oracle

On dispose d'une famille de « pré-estimateur » :

$$\mathcal{F}_{\Lambda} = \{\hat{f}_{\lambda} \in \mathbb{R}^n, \lambda \in \Lambda\} \text{ avec } \Lambda \subset \mathbb{R}^M$$

But : fournir un inégalité d'oracle pour un estimateur \hat{f}_{agr}

Inégalité d'oracle Nermirovski (2000)

$$\mathbb{E}\|\hat{f}_{agr} - f\|_n^2 \le C_n \inf_{\lambda \in \Lambda} \mathbb{E}\|\hat{f}_{\lambda} - f\|_n^2 + R_{n,\Lambda}$$

- ▶ l'**oracle** est l'élément \hat{f}^{λ^*} qui minimise $\mathbb{E}\|\hat{f}_{\lambda} f\|_n^2$ sur \mathcal{F}_{λ}
- $ightharpoonup C_n \geq 1$. Si $C_n = 1$: on parle d'inégalité d'oracle **exacte**
- ▶ $R_{n,\Lambda} \stackrel{n \to \infty}{\longrightarrow} 0$: prix à payer car on ne connait pas l'oracle, dépend de la complexité de Λ , du bruit, ...

Rem 1 : on n'a pas besoin d'évaluer le terme d'approximation Rem 2 : optimalité (borne inférieure) pour certain Λ

Estimation Non-Paramétrique contre Agrégation

	Disponible	Non Disponible	Cible
Estimation NP	Y	f	trouver le meilleur esti-
			mateur
Agrégation	$oldsymbol{Y}, \mathcal{F}_{\Lambda}$	f	trouver un estimateur
			(presque) aussi bon que
			le meilleur d'une cer-
			taine famille

Avantage : pas besoin d'évaluer le terme d'erreur d'approximation

Méthode par pénalisation

Famille de « pré-estimateurs » : $\mathcal{F}_{\Lambda}=(\hat{f}_{\lambda})_{\lambda\in\Lambda}\in\mathbb{R}^n$ avec $\Lambda\subset\mathbb{R}^M$. \hat{r}_{λ} : estimateur sans biais du risque, $\mathbb{E}(\hat{r}_{\lambda})=\mathbb{E}(\|f-\hat{f}_{\lambda}\|_n^2)=r_{\lambda}$ On suppose que $\hat{f}_{\lambda}=f_{\lambda}=\sum_{j=1}^M\lambda_j\varphi_j$

Méthode par pénalisation

$$\hat{f}^{\mathrm{Pen}} = f_{\hat{\lambda}}, \quad \text{où} \quad \hat{\lambda} = \operatorname*{arg\,min}_{\lambda \in \Lambda} \Big(\underbrace{\hat{r}_{\lambda}}_{\text{adéquation}} + \underbrace{\underbrace{\mathrm{Pen}(\lambda)}}_{\text{régularisation}} \Big)$$

- $\operatorname{Pen}(\lambda) = \beta \|\lambda\|_2^2$: Ridge Tikhonov [43]
- $\operatorname{Pen}(\lambda) = \beta \|\lambda\|_0$: AIC,BIC Akaike [74], Schwarz [78]
- $Pen(\lambda) = \beta ||\lambda||_1$: LASSO Tibshirani [96]

Rem 1 : pour les deux derniers des inégalités d'oracles existent Rem 2 : β paramètre de lissage

Versions par blocs possibles...

Agrégation à poids exponentiels (EWA)

- ► Extension : élargir l'espace de recherche, changer de pénalité
- ► Espace de recherche :

$$\mathcal{P}_{\Lambda} = \{p : \text{probabilit\'e sur } \Lambda \text{ tel que } \mathbb{E} \int_{\Lambda} \|\hat{f}_{\lambda}\|_n^2 p(d\lambda) < \infty \}$$

• Pénalisation étendue : $\hat{f}^{\text{Pen}} = \int_{\Lambda} \hat{f}_{\lambda} \hat{\pi}^{\text{Pen}}(d\lambda)$ avec

$$\hat{\pi}^{\text{Pen}} = \arg\min_{p \in \mathcal{P}_{\Lambda}} \left(\int_{\Lambda} \hat{r}_{\lambda} p(d\lambda) + \int_{\Lambda} \text{Pen}(\lambda) p(d\lambda) \right)$$

▶ Pénalisation KL : π a priori sur Λ , l'EWA est

$$\hat{ au}^{\text{EWA}} = rg \min_{p \in \mathcal{P}_{\Lambda}} \left(\int_{\Lambda} \hat{r}_{\lambda} p(d\lambda) + rac{eta}{n} \mathcal{K}(p, \pi) \right)$$

$$\hat{f}^{\text{EWA}} = \int_{\Lambda} \hat{f}_{\lambda} \hat{\pi}^{\text{EWA}}(d\lambda)$$

avec $\mathcal{K}(p,\pi)$ la divergence de Kullback-Leibler entre deux mesures de probabilité $p,\pi\in\mathcal{P}_\Lambda$.

$$\mathcal{K}(p,\pi) = \left\{ \begin{array}{ll} \int_{\Lambda} \log \left(\frac{dp}{d\pi}(\lambda)\right) p(\,d\lambda) & \text{si } p \ll \pi, \\ +\infty & \text{sinon}. \end{array} \right.$$

Agrégation à poids exponentiels (EWA)

- ► Extension : élargir l'espace de recherche, changer de pénalité
- ► Espace de recherche :

$$\mathcal{P}_{\Lambda}=\{p: ext{probabilit\'e sur } \Lambda ext{ tel que } \mathbb{E} \int_{\Lambda} \|\hat{f}_{\lambda}\|_n^2 p(d\lambda) < \infty \}$$

ullet Pénalisation étendue : $\hat{f}^{
m Pen}=\int_{\Lambda}\hat{f}_{\lambda}\hat{\pi}^{
m Pen}(d\lambda)$ avec

$$\hat{\pi}^{\text{Pen}} = \underset{p \in \mathcal{P}_{\Lambda}}{\arg\min} \left(\int_{\Lambda} \hat{r}_{\lambda} p(d\lambda) + \int_{\Lambda} \text{Pen}(\lambda) p(d\lambda) \right)$$

▶ Pénalisation KL : π a priori sur Λ , l'EWA est

$$\begin{split} \hat{\pi}^{\text{EWA}} &= \operatorname*{arg\,min}_{p \in \mathcal{P}_{\Lambda}} \left(\int_{\Lambda} \hat{r}_{\lambda} p(d\lambda) + \frac{\beta}{n} \mathcal{K}(p, \pi) \right) \\ \hat{f}^{\text{EWA}} &= \int_{\Lambda} \hat{f}_{\lambda} \hat{\pi}^{\text{EWA}}(d\lambda) \end{split}$$

avec $\mathcal{K}(p,\pi)$ la divergence de Kullback-Leibler entre deux mesures de probabilité $p,\pi\in\mathcal{P}_{\Lambda}$.

$$\mathcal{K}(p,\pi) = \left\{ \begin{array}{ll} \int_{\Lambda} \log \left(\frac{dp}{d\pi}(\lambda)\right) p(d\lambda) & \text{si } p \ll \pi, \\ +\infty & \text{sinon.} \end{array} \right.$$

Agrégation à poids exponentiels (EWA)

On choisit un a priori $\pi \in \mathcal{P}_{\Lambda}$ (mesure de probabilité sur Λ)

L'agrégat à poids exponentiels (EWA)

Mesure de Gibbs : mesure a posteriori sur Λ

$$\hat{\pi}^{\text{EWA}}(d\lambda) \propto \exp(-n\hat{r}_{\lambda}/\beta)\pi(d\lambda)$$

- \triangleright β : un paramètre de lissage (température)
- \hat{r}_{λ} : estimateur sans biais du risque $\mathbb{E}\|\hat{f}_{\lambda}-f\|_n^2$

L'agrégat à poids exponentiel est l'espérance a posteriori :

$$\left|\hat{f}^{\mathsf{EWA}} = \int_{\Lambda} \hat{f}_{\lambda} \hat{\pi}^{\mathsf{EWA}}(d\lambda)
ight|$$

$$\begin{array}{c} \mathrm{Rem} : \mathrm{Si} \; \beta \to 0, \, \hat{f}^{\mathrm{EWA}} \to \hat{f}_{\lambda^*} \; \mathrm{avec} \; \lambda^* = \arg \min_{\lambda} \hat{r}_{\lambda} \\ \mathrm{Si} \; \beta \to \infty, \, \hat{f}^{\mathrm{EWA}} \to \int_{\Lambda} \hat{f}_{\lambda} \pi(d\lambda) \end{array}$$

Agrégation d'estimateurs affines

Cadre de l'agrégation

- ▶ Point de départ : famille de « pré-estimateurs » : $\mathcal{F}_{\Lambda} = (\hat{f}_{\lambda})_{\lambda \in \Lambda} \in \mathbb{R}^n$ avec $\Lambda \subset \mathbb{R}^M$
- ▶ Objectif : approcher f aussi bien que le ferait le meilleur élément de cette famille.

Rem : les pré-estimateurs doivent dépendre des données (!)

Pré-estimateurs affines

$$\hat{f}_{\lambda} = A_{\lambda} \, \mathbf{Y} + b_{\lambda}$$

- $ightharpoonup A_{\lambda}$ est une matrice déterministe $n \times n$
- \blacktriangleright b_{λ} est un vecteur déterministe de \mathbb{R}^n
- $ightharpoonup A_{\lambda}$ et b_{λ} sont indépendants de Y

Agrégation d'estimateurs affines

Cadre de l'agrégation

- ▶ Point de départ : famille de « pré-estimateurs » : $\mathcal{F}_{\Lambda} = (\hat{f}_{\lambda})_{\lambda \in \Lambda} \in \mathbb{R}^n$ avec $\Lambda \subset \mathbb{R}^M$
- ▶ Objectif : approcher f aussi bien que le ferait le meilleur élément de cette famille.

Rem : les pré-estimateurs doivent dépendre des données (!)

Pré-estimateurs affines

$$\hat{f}_{\lambda} = A_{\lambda} \, \boldsymbol{Y} + b_{\lambda}$$

- A_{λ} est une matrice déterministe $n \times n$
- $ightharpoonup b_{\lambda}$ est un vecteur déterministe de \mathbb{R}^n
- A_{λ} et b_{λ} sont indépendants de Y

Cas constant : $A_{\lambda} = 0$

Pré-estimateurs déterministes : $\hat{f}_{\lambda} = f_{\lambda} (=b_{\lambda})$

Exemples de familles de pré-estimateurs

- $\mathcal{F}_{\Lambda} = \{\varphi_1, \cdots, \varphi_M\}$ est un « dictionnaire » fixé et fini
- ▶ $\mathcal{F}_{\Lambda} = \operatorname{conv}(\varphi_1, \cdots, \varphi_M)$ combinaisons convexes d'éléments d'un « dictionnaire » : $f_{\lambda} = \sum_{j=1}^{M} \lambda_j \varphi_j$, où les φ_j sont fixées
- $\mathcal{F}_{\Lambda} = \mathrm{vect}(\varphi_1, \cdots, \varphi_M)$ combinaisons linéaires d'éléments d'un « dictionnaire » : $f_{\lambda} = \sum_{j=1}^M \lambda_j \varphi_j$, où les φ_j sont fixées
- $\mathcal{F}_{\Lambda} = \mathrm{vect}_S(\varphi_1, \cdots, \varphi_M)$ combinaisons "creuses" (sparse) d'éléments d'un « dictionnaire » :
 - $f_{\lambda} = \sum_{j=1}^{M} \lambda_{j} \varphi_{j}$, avec au plus S coefficients λ_{j} non nuls

Bornes inférieures disponibles : Tsybakov (2003), Bunea Tsybakov Wegkamp (2007)

Cas linéaire :
$$\hat{f}_{\lambda} = A_{\lambda} \mathbf{Y} \quad (b_{\lambda} = 0)$$

Moindres carrés ordinaires

 $\{\mathcal{S}_{\lambda}:\lambda\in\Lambda\}$ ensemble de sous-espaces de \mathbb{R}^n

 A_{λ} : projecteurs orthogonaux sur \mathcal{S}_{λ} Leung et Barron [06], Alquier et Lounici [à paraître], Rigollet et Tsybakov [à paraître]

Cas des matrices diagonales

$$A_{\lambda} = \operatorname{diag}(a_1, \ldots, a_n)$$

- Projections ordonnées : $a_k = \mathbb{1}_{(k \le \lambda)}$ pour λ entier, ie. $\Lambda = \{1, \dots, n\}$
- ▶ Filtre de Pinsker : $a_k=\left(1-\frac{k^\alpha}{w}\right)_+$, où $x_+=\max(x,0)$ et $w,\alpha>0$, i.e., $\Lambda=(\mathbb{R}_+^*)^2$

Autres cas possibles : Kernel ridge regression, traitement par blocs, etc.

Cas linéaire :
$$\hat{f}_{\lambda} = A_{\lambda} \mathbf{Y} \quad (b_{\lambda} = 0)$$

Moindres carrés ordinaires

 $\{\mathcal{S}_{\lambda}:\lambda\in\Lambda\}$ ensemble de sous-espaces de \mathbb{R}^n

 A_{λ} : projecteurs orthogonaux sur \mathcal{S}_{λ} Leung et Barron [06], Alquier et Lounici [à paraître], Rigollet et Tsybakov [à paraître]

Cas des matrices diagonales

$$A_{\lambda} = \operatorname{diag}(a_1, \ldots, a_n)$$

- ▶ Projections ordonnées : $a_k = \mathbb{1}_{(k \le \lambda)}$ pour λ entier, ie. $\Lambda = \{1, \dots, n\}$
- ▶ Filtre de Pinsker : $a_k=\left(1-\frac{k^\alpha}{w}\right)_+$, où $x_+=\max(x,0)$ et $w,\alpha>0$, i.e., $\Lambda=(\mathbb{R}_+^*)^2$

Autres cas possibles : Kernel ridge regression, traitement par blocs, etc.

Pré-estimateurs affines et estimation du risque

Formule de Stein [81]

Si \hat{f} est un estimateur différentiable presque partout en Y et que $\partial_{Y_i}\hat{f}_i$ est intégrable alors

$$\hat{r} = \|\mathbf{Y} - \hat{f}\|_n^2 + \frac{2}{n} \sum_{i=1}^n \partial_{Y_i} \hat{f}_i \sigma_i^2 - \frac{1}{n} \sum_{i=1}^n \sigma_i^2$$

est un estimateur sans biais du risque $\mathbb{E}(\hat{r}_n) = r$

Cas affine :
$$\hat{f}_{\lambda} = A_{\lambda} \mathbf{Y} + b_{\lambda}$$

Conclusion :
$$\hat{r}_{\lambda} = \| \mathbf{Y} - \hat{f}_{\lambda} \|_{n}^{2} + \frac{2}{n} \operatorname{Tr}(\Sigma A_{\lambda}) - \frac{1}{n} \operatorname{Tr}(\Sigma)$$

est un estimateur sans biais du risque r_{λ}

Conditions du théorème principal

Condition C₁

- ▶ Matrices A_{λ} : projections orthogonales $(A_{\lambda}^2 = A_{\lambda}^{\top} = A_{\lambda})$
- Vecteurs $b_{\lambda}: A_{\lambda}b_{\lambda} = 0$

Exemple : A_{λ} projections sur des sous espaces de \mathbb{R}^n Leung et Barron [06]

Condition \mathbb{C}_2

- ▶ Matrices A_{λ} : symétriques, semi-définies positives
- $A_{\lambda}A_{\lambda'} = A_{\lambda'}A_{\lambda}, \forall \lambda, \lambda' \in \Lambda$
- ▶ Vecteurs $b_{\lambda}: A_{\lambda'}b_{\lambda} = 0, \forall \lambda, \lambda' \in \Lambda$

Exemple : les A_{λ} sont des estimateurs par seuillage de type James-Stein en deux blocs Leung [04]

Conditions du théorème principal

Condition C_1

- ▶ Matrices A_{λ} : projections orthogonales $(A_{\lambda}^2 = A_{\lambda}^{\top} = A_{\lambda})$
- Vecteurs $b_{\lambda}: A_{\lambda}b_{\lambda} = 0$

Exemple : A_{λ} projections sur des sous espaces de \mathbb{R}^n Leung et Barron [06]

Condition C_2

- ▶ Matrices A_{λ} : symétriques, semi-définies positives
- $A_{\lambda}A_{\lambda'} = A_{\lambda'}A_{\lambda}, \forall \lambda, \lambda' \in \Lambda$
- ▶ Vecteurs $b_{\lambda}: A_{\lambda'}b_{\lambda} = 0, \forall \lambda, \lambda' \in \Lambda$

Exemple : les A_{λ} sont des estimateurs par seuillage de type James-Stein en deux blocs Leung [04]

Énoncé du théorème principal

Borne PAC-bayésienne Dalalyan et S. [Soumis]

Si ${f C}_1$ ou ${f C}_2$ est vérifiée, alors $\hat f^{\sf EWA}$ vérifie pour tout a priori π :

$$\mathbb{E}(\|\hat{f}^{\text{\tiny EWA}} - f\|_n^2) \leq \inf_{p \in \mathcal{P}_{\Lambda}} \left(\int_{\Lambda} \mathbb{E} \|\hat{f}_{\lambda} - f\|_n^2 \, p(d\lambda) + \frac{\beta}{n} \, \mathcal{K}(p, \pi) \right)$$

où $\mathcal{K}(p,\pi)$ est la divergence de Kullback-Leibler entre p et π , et $\beta \geq 4\max_{i=1,\dots,n} \sigma_i^2$ sous \mathbf{C}_1 et $\beta \geq 8\max_{i=1,\dots,n} \sigma_i^2$ sous \mathbf{C}_2 , avec $\mathcal{K}(p,\pi)$ la divergence de Kullback-Leibler entre deux mesures de probabilité $p,\pi \in \mathcal{P}_{\Lambda}$.

$$\mathcal{K}(p,\pi) = \begin{cases} \int_{\Lambda} \log\left(\frac{dp}{d\pi}(\lambda)\right) p(d\lambda) & \text{si } p \ll \pi, \\ +\infty & \text{sinon.} \end{cases}$$

Corollaire: cas discret

Inégalité Oracle : $\Lambda = [1, M]$, π uniforme

Si ${f C}_1$ ou ${f C}_2$ est vérifiée, et si π est uniforme sur $[\![1,M]\!]$, alors

$$\mathbb{E}(\|\hat{f}^{\text{EWA}} - f\|_n^2) \le \inf_{\lambda \in [\![1,M]\!]} \left(\mathbb{E}\|\hat{f}_{\lambda} - f\|_n^2 + \frac{\beta \log(M)}{n} \right)$$

pour $\beta \geq \alpha \max_{i=1,\dots,n} \sigma_i^2$. $\alpha = 4$ sous C_1 et $\alpha = 8$ sous C_2 .

- ▶ Pour $b_{\lambda} = 0$, résultat de Leung et Barron (2006)
- Pour $A_{\lambda}=0$, et si pour tout $i,\,\sigma_i=\sigma$: l'inégalité est optimale Tsybakov (2003)

Inégalité Oracle Sparse

Scénario sparse : il existe un vecteur sparse $\lambda^* \in \Lambda = \mathbb{R}^M$ tel que $\hat{f}_{\lambda^*} \approx f$. Choix d'un *a priori* favorisant la sparsité

$$\pi(d\lambda) \propto \prod_{i=1}^M rac{1}{(1+|\lambda_j/ au|^2)^2} \, 1\!\!1_{\Lambda}(\lambda),$$

au>0 : paramètre de concentration.

Inégalité Oracle

Prenons π définit ci-dessus, supposons que $\lambda \mapsto r_{\lambda}$ est \mathcal{C}^1 , et qu'il existe une matrice \mathcal{M} de taille $M \times M$ telle que :

$$r_{\lambda} - r_{\lambda'} - \nabla r_{\lambda'}^{\top} (\lambda - \lambda') \le (\lambda - \lambda')^{\top} \mathcal{M}(\lambda - \lambda'), \quad \forall \lambda, \lambda' \in \Lambda.$$

Si ${f C}_1$ ou ${f C}_2$ est vérifiée

$$\mathbb{E}(\|\hat{f}^{\text{EWA}} - f\|_n^2) \leq \inf_{\lambda \in \mathbb{R}^M} \left\{ \mathbb{E}\|\hat{f}_{\lambda} - f\|_n^2 + \frac{4\beta}{n} \sum_{j=1}^M \log\left(1 + \frac{|\lambda_j|}{\tau}\right) \right\} + \text{Tr}(\mathcal{M})\tau^2$$

pour $\beta \geq \alpha \max_{i=1,\ldots,n} \sigma_i^2$. $\alpha = 4$ sous C_1 et $\alpha = 8$ sous C_2 .

Point de vue minimax : cas homoscédastique, $\Sigma = \sigma^2 Id$

 $\theta_k(f)=\langle f|\varphi_k\rangle_n$: coefficients de la transformée (orthogonale) de Fourier discrète de f, notée $\mathcal{D}f$

Ellipsoïde de Sobolev : $\mathcal{F}(\alpha,R)=\{f\in\mathbb{R}^n:\sum_{k=1}^nk^{2\alpha}\theta_k(f)^2\leq R\}$

Théorème de Pinsker

$$\inf_{\hat{f}} \sup_{f \in \mathcal{F}(\alpha, R)} \mathbb{E}(\|\hat{f} - f\|_n^2) \sim \inf_{A} \sup_{f \in \mathcal{F}(\alpha, R)} \mathbb{E}(\|A\mathbf{Y} - f\|_n^2)$$
$$\sim \inf_{w > 0} \sup_{f \in \mathcal{F}(\alpha, R)} \mathbb{E}(\|A_{\alpha, w}\mathbf{Y} - f\|_n^2)$$

inf est sur tous les estimateurs \hat{f} possibles et $A_{\alpha,w} = \mathcal{D}^{\top} \mathrm{diag} \left((1 - k^{\alpha}/w)_{+}; k = 1, \ldots, n \right) \mathcal{D}$: Filtre de Pinsker

Morale : Estimateurs linéaires minimax sur les ellipsoïdes

EWA, adaptation et simulations

EWA sur des filtres de Pinsker : $\hat{f}_{\alpha,w} = \mathcal{D}^{\top} A_{\alpha,w} \mathcal{D} Y (\mathcal{D} : \mathsf{DCT})$, avec $A_{\alpha,w} = \mathrm{diag}((1 - \frac{k^{\alpha}}{w})_{+}, k = 1, \cdots, n)$ Choix a priori π :

- lacktriangle Tirer lpha selon une lois exponentielle de paramètre 1
- ► Sachant α , tirer w selon $\frac{2n_{\sigma}^{-\alpha/(2\alpha+1)}}{\left(1+n_{\sigma}^{-\alpha/(2\alpha+1)}w\right)^3}$ avec $n_{\sigma}=n/\sigma^2$

Performance

- ► Théorique : adaptatif au sens minimax exacte sur les ellipsoïdes $\{\mathcal{F}(\alpha,R): \alpha>0, R>0\}$
- ▶ Pratique : performances au moins aussi bonnes que celle d'autres estimateurs adaptatifs classiques (Sure-Shrink Donoho et Johnstone [95] , James-Stein par blocs Cai [99] , minimiseur du risque empirique Cavalier et al. [02])

Application à des signaux 1D

0.8

Application à des signaux 1D

Application à des signaux 1D

Conclusion

Contributions

- ► Inégalité d'oracle exacte pour certains estimateurs affines
- Résultat sur l'adaptation en fonction de la régularité des signaux

Ouvertures possibles et travaux en cours

- ► Liens avec les travaux sur l'apprentissage pour le traitement par patchs
- Autres modèles de bruits : modèle de Poisson notamment

http://people.math.jussieu.fr/ ~ salmon/

Conclusion

Contributions

- ► Inégalité d'oracle exacte pour certains estimateurs affines
- Résultat sur l'adaptation en fonction de la régularité des signaux

Ouvertures possibles et travaux en cours

- ► Liens avec les travaux sur l'apprentissage pour le traitement par patchs
- ▶ Autres modèles de bruits : modèle de Poisson notamment

http://people.math.jussieu.fr/ ∼ salmon/

Références I

H. Akaike.

A new look at the statistical model identification.

IEEE Trans. Automatic Control, AC-19:716–723, 1974. System identification and time-series analysis.

► P. Alquier and K. Lounici.

Pac-bayesian bounds for sparse regression estimation with exponential weights.

hal-00465801, submitted, 2010.

A. Buades, B. Coll, and J-M. Morel.

A review of image denoising algorithms, with a new one.

Multiscale Model. Simul., 4(2):490-530, 2005.

► F. Bunea, A. B. Tsybakov, and M. H. Wegkamp.

Aggregation for Gaussian regression.

Ann. Statist., 35(4):1674-1697, 2007.

Références II

► T. T. Cai.

Adaptive wavelet estimation : a block thresholding and oracle inequality approach.

Ann. Statist., 27(3):898-924, 1999.

L. Cavalier, G. K. Golubev, D. Picard, and A. B. Tsybakov. Oracle inequalities for inverse problems. Ann. Statist., 30(3):843–874, 2002.

- K. Dabov, A. Foi, V. Katkovnik, and K. O. Egiazarian. Image denoising by sparse 3-D transform-domain collaborative filtering. *IEEE Trans. Image Process.*, 16(8):2080–2095, 2007.
- D. L. Donoho and I. M. Johnstone.
 Adapting to unknown smoothness via wavelet shrinkage.
 J. Amer. Statist. Assoc., 90(432):1200–1224, 1995.
- A. S. Dalalyan and A. B. Tsybakov.
 Aggregation by exponential weighting, sharp oracle inequalities and sparsity.
 In COLT, pages 97–111, 2007.

Références III

► A. S. Dalalyan and A. B. Tsybakov.

Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity.

Mach. Learn., 72(1-2):39-61, 2008.

- A. S. Dalalyan and A. B. Tsybakov.
 Sparse regression learning by aggregation and Langevin Monte-Carlo. In COLT, 2009.
- ► G. Leung and A. R. Barron. Information theory and mixing least-squares regressions. IEEE Trans. Inf. Theory, 52(8):3396–3410, 2006.
- ► G. Leung.

 Information Theory and Mixing Least Squares Regression.

 PhD thesis, Yale University, 2004.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. ICCV, 2009.

Références IV

A. S. Nemirovski.

Topics in non-parametric statistics, volume 1738 of Lecture Notes in Math. Springer, Berlin, 2000.

▶ Ph. Rigollet and A. B. Tsybakov.

Exponential screening and optimal rates of sparse estimation.

arXiv :1003.2654, submitted, 2010.

► G. Schwarz.

Estimating the dimension of a model.

Ann. Statist., 6(2):461-464, 1978.

C. M. Stein.

Estimation of the mean of a multivariate normal distribution.

Ann. Statist., 9(6):1135-1151, 1981.

R. Tibshirani.

Regression shrinkage and selection via the lasso.

J. Roy. Statist. Soc. Ser. B, 58(1):267-288, 1996.

Références V

A. N. Tikhonov.

On the stability of inverse problems.

C. R. (Doklady) Acad. Sci. URSS (N.S.), 39:176-179, 1943.

► A. B. Tsybakov.

Optimal rates of aggregation.

In COLT, pages 303-313, 2003.