MAT1120

Robin A. T. Pedersen

November 3, 2016

Contents

1	For	ord	3
4	Kpt	s.4 - Vektorrom	3
	4.1^{-1}	Vektor rom og underrom	3
		4.1.1 Definisjon - vektorrom	3
		4.1.2 Definisjon - underrom	3
		4.1.3 Teorem 1	4
	4.2	Nullrom, kolonnerom og lineærtransformasjoner	4
		4.2.1 Definisjon - Nullrom	4
		4.2.2 Teorem 2	4
		4.2.3 Definisjon - Kolonnerom	4
		4.2.4 Teorem 3	4
		4.2.5 Definisjon - Lineærtransformasjon	4
		4.2.6 Begrep - kjerne (kernel)	4
	4.3	Lineært uavhengige mengder: basiser	5
	1.0	4.3.1	5
	4.4	Koordinatsystemer	5
	1.1	4.4.1	5
	4.5	Dimensjon av vektorrom	5
	1.0	4.5.1	5
	4.6	Rang	5
	4.0	4.6.1	5
	4.7	Basisskifte	5
	4.1	4.7.1	5
	4.8	Ikke eksamensrelevant	5
	4.9		5
	4.9	Anvendelser til Markovkjeder	5
		4.9.1	9
5	Kpt	5.5 - Egenverdier og Egenvektorer	5
	5.1	Egenvektor og egenverdier	5
	-	5.1.1	5
	5.2	Den karakteristisk ligningen	6
		5.2.1	6

	5.3	Diagonalisering
	F 1	5.3.1
	5.4	Egenvektorer og lineærtransformasjoner
	5.5	Komplekse egenverdier
	0.0	5.5.1
	5.6	Diskrete dynamiske systemer
	0.0	5.6.1
	5.7	Anvendelser til differensialligninger 6
		5.7.1
	5.8	Iterative estimater for egenverdier? TODO 6
		5.8.1
_	 .	
6		.6 - Ortogonalitet og Minstekvadrater 6
	6.1	Indre produkt, lengde og ortogonalitet
	6.0	6.1.1
	6.2	Ortogonale mengder
	6.3	Ortogonal projeksjon
	0.5	6.3.1
	6.4	Gram-Schmidt prosessen
	0.1	6.4.1
	6.5	Minstekvadraters problem
		6.5.1
	6.6	Anvendelser til lineære modeller
		6.6.1
	6.7	Indreproduktrom? TODO
		6.7.1
	6.8	Anvendelser til indreproduktrom
		6.8.1 7
7	Kpt	.7 - Symmetriske Matriser og Kvadratisk Form 7
	7.1	Diagonalisering av symmetriske matriser
		7.1.1 7
	7.2	Kvadratisk form
		7.2.1
	7.3	Begrenset optimalisering? TODO
		7.3.1 8
	7.4	Singulærverdidekomposisjon
		7.4.1
	7.5	Ikke pensum? TODO
8	Not	at 1 8
J	1406	8.0.1 8
		0.0.2

9	Notat 2																	8
	9.0.2																	8

1 Forord

Dette er en oversikt over alle definisjoner, teoremer og lignende fra læreboka i MAT1120.

NB! Noensteder har jeg skrevet $c \in \mathbb{R}$, men det kan hende at \mathbb{C} hadde fungert like fint. Lignende "feil" kan finnes andre steder.

4 Kpt.4 - Vektorrom

4.1 Vektor rom og underrom

4.1.1 Definisjon - vektorrom

Et vektorrom er en ikketom mengde V. Den består av såkalte *vektorer*. Disse vektorene må være beskrevet av 2 operasjoner: Addisjon og skalarmultiplikasjon.

De to operasjonene defineres av følgende aksiomer: La $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$

- 1. $u + v \in V$
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. (u + v) + w = u + (v + w)
- 4. $\exists \mathbf{0} \in Vs.a.\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. $\forall \mathbf{u} \in V, \ \exists -\mathbf{u} \in V s.a.\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 6. $c\mathbf{u} \in V, c \in \mathbb{R}$
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. 1**u**=**u**

4.1.2 Definisjon - underrom

Et underrom H er en delmengde av V. H er et underrom av V. To egenskaper må være oppfylt:

- 1. H er lukket under addisjon. $\mathbf{u} + \mathbf{v} \in H$, $\forall \mathbf{u}, \mathbf{v} \in H$
- 2. H er lukket under skalarmultiplikasjon. $c\mathbf{u} \in H, \ \forall c \in \mathbb{R}$

4.1.3 Teorem 1

Hvis $\mathbf{v}_1,...,\mathbf{v}_p$ er i et vektorrom V, så er $\mathrm{Span}\{\mathbf{v}_1,...,\mathbf{v}_p\}$ et underrom av V.

4.2 Nullrom, kolonnerom og lineærtransformasjoner

4.2.1 Definisjon - Nullrom

Nullromet til en $m \times n$ matrise A, er mengden av alle løsninger av $A\mathbf{x} = \mathbf{0}$.

$$Nul(A) = \{ \mathbf{x} : \mathbf{x} \in \mathbb{R}^n, A\mathbf{x} = \mathbf{0} \}$$

4.2.2 Teorem 2

Nullrommet til A $m \times n$, er et underrom av \mathbb{R}^n .

Med andre ord: $A\mathbf{x} = \mathbf{0}$ har m homogene lineære ligninger, med n ukjente. Mengden av løsninger er et underrom av \mathbb{R}^n .

4.2.3 Definisjon - Kolonnerom

Kolonnerommet til $m \times n$ matrisen A, er mengden av alle lineærkombinasjoner av kolonnene i A.

$$A = [\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n]$$

$$Col(A) = Span\{\mathbf{a}_1, ..., \mathbf{a}_n\}$$

4.2.4 Teorem 3

Kolonnerommet til A $m \times n$, er et underrom av \mathbb{R}^m .

Med andre ord: Kolonnene i A har m elementer i hver vektor. Kolonnerommet er alle lineærkombinasjoner av disse, og har derfor m elementer i hver vektor.

4.2.5 Definisjon - Lineærtransformasjon

En lineærtransformasjon T fra et vektorrom V til et annet vektorrom W, er en regel som gir hver \mathbf{x} i V en unik vektor $T(\mathbf{x})$ i W.

To egenskaper må oppfylles

1.
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), \ \forall \ \mathbf{u}, \mathbf{v} \in V$$

2.
$$T(c\mathbf{u}) = cT(\mathbf{u}), \ \forall \ c \in \mathbb{R}^n$$

4.2.6 Begrep - kjerne (kernel)

Praktisk talt synonymt med nullrom.

TODO
4.4 Koordinatsystemer
4.4.1
TODO
4.5 Dimensjon av vektorrom
4.5.1
TODO
4.6 Rang
4.6.1
TODO
4.7 Basisskifte
4.7.1
TODO
4.8 Ikke eksamensrelevant
Ikke eksamensrelevant.
4.9 Anvendelser til Markovkjeder
4.9.1
TODO
5 Kpt.5 - Egenverdier og Egenvektorer
5.1 Egenvektor og egenverdier
5.1.1
TODO

4.3 Lineært uavhengige mengder: basiser

4.3.1

5.2.1
TODO
5.3 Diagonalisering5.3.1TODO
5.4 Egenvektorer og lineærtransformasjoner5.4.1TODO
5.5 Komplekse egenverdier5.5.1TODO
5.6 Diskrete dynamiske systemer5.6.1TODO
5.7 Anvendelser til differensialligninger5.7.1TODO
5.8 Iterative estimater for egenverdier? TODO5.8.1TODO
6 Kpt.6 - Ortogonalitet og Minstekvadrater
6.1 Indre produkt, lengde og ortogonalitet6.1.1TODO

5.2 Den karakteristisk ligningen

TODO
6.3 Ortogonal projeksjon6.3.1TODO
6.4 Gram-Schmidt prosessen6.4.1TODO
6.5 Minstekvadraters problem6.5.1TODO
6.6 Anvendelser til lineære modeller6.6.1TODO
6.7 Indreproduktrom? TODO 6.7.1 TODO
6.8 Anvendelser til indreproduktrom 6.8.1 TODO
7 Kpt.7 - Symmetriske Matriser og Kvadratisk Form
 7.1 Diagonalisering av symmetriske matriser 7.1.1 TODO

6.2 Ortogonale mengder

6.2.1

7.2 Kvadratisk form

7.2.1

TODO

7.3 Begrenset optimalisering? TODO

7.3.1

TODO

7.4 Singulærverdidekomposisjon

7.4.1

TODO

7.5 Ikke pensum? TODO

Ikke pensun? TODO

8 Notat 1

8.0.1

TODO

9 Notat 2

9.0.2

TODO