É o shadow cara UFRJ

1 Identidades

1.1 Series

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4} = \left(\sum_{i=1}^{n} i\right)^{2}$$

$$g_{k}(n) = \sum_{i=1}^{n} i^{k} = \frac{1}{k+1} \left(n^{k+1} + \sum_{j=1}^{k} \binom{k+1}{j+1}(-1)^{j+1} g_{k-j}(n)\right)$$

$$\sum_{i=0}^{n} i c^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, \quad c \neq 1$$

$$\sum_{i=0}^{\infty} i c^{i} = \frac{c}{(1-c)^{2}}, \quad |c| < 1$$

1.2 Binomial Identities

$$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1} \qquad \binom{n-1}{k} - \binom{n-1}{k-1} = \frac{n-2k}{k} \binom{n}{k}$$

$$\binom{n}{k} \binom{n-h}{k} = \binom{n}{k} \binom{n-k}{h} \qquad \binom{n}{k} = \frac{n+1-k}{k} \binom{n}{k-1}$$

$$\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1} \qquad \sum_{k=0}^{n} k^2 \binom{n}{k} = (n+n^2)2^{n-2}$$

$$\sum_{j=0}^{k} \binom{m}{j} \binom{n-m}{k-j} = \binom{n}{k} \qquad \sum_{j=0}^{m} \binom{m}{j}^2 = \binom{2m}{m}$$

$$\sum_{m=0}^{n} \binom{m}{j} \binom{n-m}{k-j} = \binom{n+1}{k+1} \qquad \sum_{m=k}^{n} \binom{m}{k} = \binom{n+1}{k+1}$$

$$\sum_{r=0}^{m} \binom{n+r}{r} = \binom{n+m+1}{m} \qquad \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n-k}{k} = \text{Fib}(n+1)$$

$$(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \qquad (1+x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k$$

$$2\sum_{i=1}^{n} \binom{n}{k} - \binom{n}{k} - \binom{n}{k} = \sum_{i=1}^{n} \binom{n+1}{k}$$

2 Number Theory

2.1 Identities

$$\sum_{d|n} \varphi(d) = n$$

$$\sum_{\substack{i < n \\ \gcd(i,n) = 1}} i = n \cdot \frac{\varphi(n)}{2}$$

$$|\{(x,y) : 1 \le x, y \le n, \gcd(x,y) = 1\}| = \sum_{d=1}^{n} \mu(d) \left\lfloor \frac{n}{d} \right\rfloor^{2}$$

$$\sum_{x=1}^{n} \sum_{y=1}^{n} \gcd(x,y) = \sum_{k=1}^{n} k \sum_{k|l}^{n} \left\lfloor \frac{n}{l} \right\rfloor^{2} \mu\left(\frac{l}{k}\right)$$

$$\sum_{x=1}^{n} \sum_{y=x}^{n} \gcd(x,y) = \sum_{g=1}^{n} \sum_{g|d}^{n} g \cdot \varphi\left(\frac{d}{g}\right)$$

$$\sum_{x=1}^{n} \sum_{y=1}^{n} \operatorname{lcm}(x,y) = \sum_{d=1}^{n} d \mu(d) \sum_{d|l}^{n} l \left(\left\lfloor \frac{n}{l} \right\rfloor + 1\right)^{2}$$

$$\sum_{x=1}^{n} \sum_{y=x+1}^{n} \operatorname{lcm}(x,y) = \sum_{g=1}^{n} \sum_{g|d}^{n} d \cdot \varphi\left(\frac{d}{g}\right) \cdot \frac{d}{g} \cdot \frac{1}{2}$$

$$\sum_{x \in A} \sum_{y \in A} \operatorname{gcd}(x,y) = \sum_{t=1}^{n} \left(\sum_{l|t} \frac{t}{l} \mu(l)\right) \left(\sum_{t|a} \operatorname{freq}[a]\right)^{2}$$

$$\sum_{x \in A} \sum_{y \in A} \operatorname{lcm}(x,y) = \sum_{t=1}^{n} \left(\sum_{l|t} \frac{l}{t} \mu(l)\right) \left(\sum_{a \in A, t|a}^{n} a\right)^{2}$$

2.2 Large Prime Gaps

For numbers until 10^9 the largest gap is 400. For numbers until 10^{18} the largest gap is 1500.

2.3 Prime counting function - $\pi(x)$

The prime counting function is asymptotic to $\frac{x}{\log x}$, by the prime number theorem.

X	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
$\pi(x)$	4	25	168	1229	9592	78498	664579	5761455

2.4 Some Primes

999999937	1000000007	1000000009	1000000021	1000000033
$10^{18} - 11$	$10^{18} + 3$	230584300921	$3693951 = 2^{61} -$	- 1

2.5 Number of Divisors

n	6	60	360	5040	55440	720720	432	24320	21621600)
d(n)	4	12	24	60	120	240	33	384	576	
n		367567200		6983776800		13967553600		321253732800		
$\frac{d(n)}{d(n)}$	d(n) = 1159		2304		2688		5376			

 $18401055938125660800 \approx 2e18$ is highly composite with 184320 divisors. For numbers up to 10^{88} , $d(n) < 3.6\sqrt[3]{n}$.

2.6 Lucas's Theorem

$$\binom{n}{m} \equiv \prod_{i=0}^{k} \binom{n_i}{m_i} \pmod{p}$$

For p prime. n_i and m_i are the coefficients of the representations of n and m in base p. In particular, $\binom{n}{m}$ is odd if and only if n is a submask of m.

2.7 Fermat's Theorems

Let p be a prime number and a an integer, then:

$$a^p \equiv a \pmod{p}$$

$$a^{p-1} \equiv 1 \pmod{p}$$

Lemma: Let p be a prime number and a and b integers, then:

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

Lemma: Let p be a prime number and a an integer. The inverse of a modulo p is a^{p-2} :

$$a^{-1} \equiv a^{p-2} \pmod{p}$$

2.8 Taking modulo at the exponent

If a and m are coprime, then

$$a^n \equiv a^{n \bmod \varphi(m)} \pmod{m}$$

Generally, if $n \ge \log_2 m$, then

$$a^n \equiv a^{\varphi(m) + [n \bmod \varphi(m)]} \pmod{m}$$

2.9 Mobius invertion

If $g(n) = \sum_{d|n} f(d)$, then $f(n) = \sum_{d|n} g(d)\mu(\frac{n}{d})$. A more useful definition is: $\sum_{d|n} \mu(d) = [n = 1]$ Example, sum of LCM:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{lcm}(i,j) = \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} [\gcd(i,j) = k] \frac{ij}{k}$$

$$= \sum_{k=1}^{n} \sum_{a=1}^{\lfloor \frac{n}{k} \rfloor} \sum_{b=1}^{\lfloor \frac{n}{k} \rfloor} [\gcd(a,b) = 1] abk$$

$$= \sum_{k=1}^{n} k \sum_{a=1}^{\lfloor \frac{n}{k} \rfloor} a \sum_{b=1}^{\lfloor \frac{n}{k} \rfloor} b \sum_{d=1}^{\lfloor \frac{n}{k} \rfloor} [d|a] [d|b] \mu(d)$$

$$= \sum_{k=1}^{n} k \sum_{d=1}^{\lfloor \frac{n}{k} \rfloor} \mu(d) \left(\sum_{a=1}^{\lfloor \frac{n}{k} \rfloor} [d|a] a \right) \left(\sum_{b=1}^{\lfloor \frac{n}{k} \rfloor} [d|b] b \right)$$

$$= \sum_{k=1}^{n} k \sum_{d=1}^{\lfloor \frac{n}{k} \rfloor} \mu(d) \left(\sum_{p=1}^{\lfloor \frac{n}{k} \rfloor} p \right) \left(\sum_{q=1}^{\lfloor \frac{n}{k} \rfloor} q \right)$$

2.10 Chicken McNugget Theorem

Given two **coprime** numbers n, m, the largest number that cannot be written as a linear combination of them is nm - n - m.

• There are $\frac{(n-1)(m-1)}{2}$ non-negative integers that cannot be written as a linear combination of n and m;

• For each pair (k, nm - n - m - k), for $k \ge 0$, exactly one can be written.

3 Geometry

3.1 Pythagorean Triples

For all natural a, b, c satisfying $a^2 + b^2 = c^2$ there exist $m, n \in \mathbb{N}$ and m > n such that (reverse is also true):

$$a = m^2 - n^2$$
 $b = 2mn$ $c = m^2 + n^2$

3.2 Heron's Formula

The area of a triangle can be written as $A = \sqrt{s(s-a)(s-b)(s-c)}$, where a, b, c are the lengths of its sides and $s = \frac{a+b+c}{2}$.

This can be generalized to compute the area A of a quadrilateral with sides a, b, c, d, with $s = \frac{a+b+c+d}{2}$ and α, γ any two opposite angles:

$$A = \sqrt{(s-a)(s-b)(s-c)(s-d) - abcd\left(\cos^2\left(\frac{\alpha+\gamma}{2}\right)\right)}$$

3.3 Pick's Theorem

The area of a simple polygon whose vertices have integer coordinates is:

$$A = I + \frac{B}{2} - 1$$

where I is the number of interior integer points, and B is the number of integer points in the border of the polygon.

3.4 Colinear Points

Three points are colinear on \mathbb{R}^2 iff:

$$\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = 0$$

The absolute value of this determinant is twice the area of the triangle ABC.

3.5 Coplanar Points

Four points are coplanar in \mathbb{R}^3 iff:

$$\begin{vmatrix} x_A & y_A & z_A & 1 \\ x_B & y_B & z_B & 1 \\ x_C & y_C & z_C & 1 \\ x_D & y_D & z_D & 1 \end{vmatrix} = 0$$

3.6 Trigonometry

3.6.1 Angle Sum

$$\sin(a \pm b) = \sin a \cos b \pm \cos \sin b$$
$$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$
$$\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$$

3.6.2 Sum-to-Product Transformation

$$\sin a \pm \sin b = 2\sin \frac{a \pm b}{2}\cos \frac{a \mp b}{2}$$

$$\cos a + \cos b = 2\cos \frac{a + b}{2}\cos \frac{a - b}{2}$$

$$\cos a - \cos b = -2\sin \frac{a + b}{2}\sin \frac{a - b}{2}$$

$$\tan a \pm \tan b = \frac{\sin(a \pm b)}{\cos a \cos b}$$

3.7 Centroid of a polygon

The coordites of the centroid of a non-self-intersecting closed polygon is:

$$\frac{1}{3A} \left(\sum_{i=0}^{n-1} (x_i + x_{i+1})(x_i y_{i+1} - x_{i+1} y_i), \sum_{i=0}^{n-1} (y_i + y_{i+1})(x_i y_{i+1} - x_{i+1} y_i) \right),$$

where A is twice the signed area of the polygon.

3.8 Two Ears Theorem

Every simple polygon with more than 3 vertices has at least two non-overlapping ears (a ear is a vertex whose diagonal induced by its neighbors which lies strictly inside the polygon). Equivalently, every simple polygon can be triangulated. Example of a simple polygon with exactly two ears:

img/two_ears.png

4 Other

4.0.1 String Matching with Wildcards

Consider a text T and a pattern P. P and T may have wildcards that will match any character. The problem is to get the positions where P occur in T. If we define the value of the characters such that the wildcard is zero and the other characters are positive, there is a matching at position i iff $\sum_{j=0}^{|P|-1} P[j]T[i+j](P[j]-T[i+j])^2 = 0$. Then, one can evaluate each term of

$$\sum_{j=0}^{|P|-1} (P[j]^3 T[i+j] - 2P[j]^2 T[i+j]^2 + P[j] T[i+j]^3)$$

using three convolutions.