Fort 1: Sum of two implement rand	an veriables / camplifica
Theorem:	
	variables with good durities $f_1(x)$, $f_2(x)$
=> X1 + X2 has prob. density g(x) =	$\int_{\infty}^{\infty} f_1(y) f_2(x-y) dy$
-	\$ fn(x-y) fr (y) dy
Fort 2: Bayesian Matistics	
a llamed no. Daysian natistics	
atenine p	crameter 9/0
based on done	vations $x = (x_1,, x_n)$
llamical Antistics	Dayesian Hatistics
· × is a reclisation of a	· × in a recliration of a
random varioble X	random variable X
· ve is an unknown but	· v is a realisation of a
deterministic parameter	random vaicbee 0
· Mathematical model:	· Makematical model:
Fre (x) likelihood	f(&1x) & f(x10) f(0)
	a posseriai likeihood a priori durity of the durity of the
	proportional mills const
	(5 f(x 10) F(0) do) 2 continuous sos
	$(\Sigma f(x \theta)f(\theta))^{-1}$ discrete cose
· Toint etimotas:	· Bant estimators:
- Maximum likelihood of fro(x)	- Mode
	- Media of f(O1x)
	- Mean
	-

Idvanced Statistics - Jutarial 05/08/2021

· Interval estimations:

v ∈ [a(x), 5(x)] nim confidence level 1-d $\theta \in [a(x), b(x)]$ with probability $1-\infty$ $P \mid \theta \in [a(x), b(x)] \mid X=x) \ge 1-\infty$

· Interval estimations:

Pro $(a(X) \leq 4 \leq b(X)) \geq 1 - a$ random variable for all a

2 Ceample 1: AIDS Aust

Floor 1 AIDS) = 0.898 (occurring of the sex)

F(per | 7AIDS) = 0.05 (false pointine rate)

f (AIDS) = O. COO35 (prior / prevence of AIDS)

 $=) f(AIDS|pes) = \frac{f(pes|AIDS)f(AIDS)}{f(pes|AIDS)f(AIDS)} \approx 0.06S$

3 Seample 2: Joss a com n imes and extimate probability of of head

dikelihood: Bimanise (n, d) distribution

=> f(k|2) = (x) 2k (1-2) n-k for k 6 (0,1,..., n)

Tion: depends on our beliefs, e.g. Beta (a, b) distribution

 $= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} e^{a-1} (1-e^{b-1} \propto e^{a-1} (1-e^{b-1})$ $= \frac{1}{B(a,b)} Bete function$

Josteria:

> f (2) k) ∝ f(12/4) f(8)

x 2k (1-2) 1-k 20-1 (1-2) 5-1

= rek+0-1 (1-12)n-k+5-1

Deta (k+a, n-k+5) distribution

3) Prior and gosterior distribution are from the same class of distributions ("conjugate prior")