Encoder-Decoder Networks for Semantic Segmentation

Sachin Mehta

Outline

- > Overview of Semantic Segmentation
- > Encoder-Decoder Networks
- > Results

What is Semantic Segmentation?

Input: RGB Image

Output: A segmentation Mask

Encoder-Decoder Networks

Encoder

- Takes an input image and generates a high-dimensional feature vector
- Aggregate features at multiple levels

Decoder

- Takes a highdimensional feature vector and generates a semantic segmentation mask
- Decode features aggregated by encoder at multiple levels

Building Blocks of CNNs

- > Convolution
- > Down-Sampling
- > Up-Sampling

Convolution

Down-Sampling

- > Max-pooling
- > Average Pooling
- > Strided Convolution

Up-Sampling

- > Un-pooling
- > Deconvolution

Encoder-Decoder Networks

Different Encoding Block Types

Performance on the ImageNet 2012 Validation Dataset

Encoder-Decoder Networks

Encoder-Decoder Networks

Classification vs Segmentation

Source: Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." TPAMI. 2016.

Our Work on Segmenting GigaPixel Breast Biopsy Images

Challenges with the dataset

- > Limited computational resources
- > Sliding window approach is promising but
 - Size of patch determines the context
 - Some biological structures may cover several patches

Challenges with the dataset

- > Some biological structures are rare
 - Necrosis and Secretion have less than 1% of all the pixels

Diagnosis	#ROIs	#ROIs	#ROIs	Avg. ROI
Category	(total)	(train)	(test)	size
Benign	9	4	5	$9K \times 9K$
Atypia	22	11	11	$6K \times 7K$
DCIS	22	12	10	$8K \times 10K$
Invasive	5	3	2	$38K \times 44K$
total	58	30	28	$10K \times 12K$

Training details

- > Training Set: 30 ROIs
 - 25,992 patches of size 256x256 with augmentation
 - Split into training and validation set using 90:10 ratio
- > Test Set: 28 ROIs
- > Stochastic Gradient Descent for optimization
- > Implemented in Torch
 - http://torch.ch/

RGB Image

Ground Truth Label

Encoder-Decoder Network with skip connection

RGB Image

Prediction

Multi-Resolution Encoder-Decoder Network

RGB Image

Prediction

Ground Truth

F1-Score

Why Segmentation?

Results on Diagnosis

- > Segmented whole dataset (428 ROIs) with the model trained on 30 ROIs
- Extracted histograms from segmentation masks and then trained different classifiers
- > Weak classifiers are as good as strong classifiers

classification task	Multilayer Perceptron	SVM with RBF kernel	Logistic Regression	Random Forest
Invasive vs others	.72	.78	.75	.80
Benign vs others	.65	.54	.60	.62
Atypia vs DCIS	.75	.73	.77	.75

Thank You!!

References

- 1. Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." *TPAMI*. 2016. (**FCN-8s**)
- 2. Noh, Hyeonwoo, Seunghoon Hong, and Bohyung Han. "Learning deconvolution network for semantic segmentation." *ICCV*. 2015. (**DeConvNet**)
- 3. V. Badrinarayanan; A. Kendall; R. Cipolla, "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Scene Segmentation," TPAMI, 2017 (**SegNet**)
- 4. Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions.", ICLR, 2016 (**Dilation**)
- 5. Chen, Liang-Chieh, et al. "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs." *arXiv preprint arXiv:1606.00915* (2016). (DeepLab)
- 6. Zheng, Shuai, et al. "Conditional random fields as recurrent neural networks." *ICCV*. 2015. (CRFasRNN)
- 7. Hariharan, Bharath, et al. "Hypercolumns for object segmentation and fine-grained localization." *CVPR*. 2015. (**HyperColumn**)

Two 3x3 filters are same as one 5x5 filter

Source: Rethinking the Inception Architecture for Computer Vision by Szegedy et al.