XIO on the Single-chip Cloud Computer (SCC)

Keith Chapman, Ahmed Hussein, Antony Hosking

P54C 256KB unified 16KB L1-D\$ -L2\$ 16KB L1-I\$ Message **Passing** Mesh To Buffer Router I/F 16 KB L1 D\$ + I\$ 16 KB P54C 256KB 16KB L1-D\$ unified 16KB L1-I\$ L2\$

P54C

256KB

16KB L1-D\$ unified L2\$ 16KB L1-I\$ Message **Passing** Mesh 16 KB message Buffer I/F 16 KB passing buffer P54C 256KB 16KB L1-D\$ unified 16KB L1-I\$ L2\$

To

Router

Message Passing Buffer

- Shared on-chip SRAM
- Mapped by all cores
- Cached in L1
- Tagged for fast invalidate
- 8 KB per core
- 384 KB total accessible

RCCE native messaging

- Fast, thin layer over MPB
- One-sided put/get API
- RCCE flags allocatable in each MPB for coordination (one T&S register per core)
- Two-sided send/recv built on one-sided API using RCCE Flags

XIO (C++) on the SCC

- Relatively straightforward
 - cross-compile using SCC tool chain
 - MPI or sockets over MPB out of the box
- What about RCCE?

XIORT API

- Used by X10 runtime to communicate between places
- Send serialized object graphs
- Registered receiver callbacks for different types of message
- Probe occasionally for incoming messages
- Don't block waiting for messages to arrive

XIORT + MPI + SCC

- XIORT with MPI binding
- SCC MPI library with alternative channels
 - mpi-mpb: direct MPB
 - mpi-sock: sockets via mesh TCP/IP driver
 - mpi-shm: shared memory

mpi-mpb MPB management

XIORT+"RCCE"+SCC

- RCCE send/recv are blocking
- RCCE non-blocking recv_test requires knowing sender to test
- RCCE does not support X10RT tags

XIORT+"RCCE"+SCC

- Re-implement as RCCE-X10
 - one-sided non-blocking send
 - non-blocking probe

RCCE-XIO MPB Management

Experiments

- One place per SCC core
- One worker thread per place
- Results in paper without GC
- 322 MB private memory per core
- 2 benchmarks: ANUChem-HF and BC
- XI0 post-2.1.1 trunk dated January 13th

Benchmarks

- ANUChem Hartree-Fock (HF) quantum chemistry benchmark
 - Benzene STO-3G workload (in paper)
 - Benzene 3-21G with GC
- Betweenness Centrality (BC) social network actor centrality benchmark
 - Dijkstra's shortest path algorithm
 - small, medium, large workloads

BC large workload

BC varying workload

BC with RCCE-XI0

(not in paper)

HF static balancing

HF dynamic balancing

HF dynamic vs static

(RCCE-XI0)

HF with GC

(not in paper)

BC with MPI on 3x8x2 Opteron cluster

Conclusions

- SCC memory constraints are limiting:
 - tradeoff work vs memory to get scaling
 - running with GC allows larger workloads (and better performance!)
- But, XI0 + SCC is a nice match
- XIO benchmarks (can) show good scaling
 - order of magnitude slower than cluster

