

Examples For Use of This Tabulated Data:

Wall Bracing Against Wind and Seismic Forces

Braced Wall Against Wind Loading:

Example: Use rakers to support a wall that is 12' high. The maximum anticipated wind speed is 50 mph. There is debris against the wall that requires the bottom "Sole Strut" to be at a height of 6' from ground surface.

Predicted Late	Predicted Lateral Force-Wind			
Wind	Force			
Speed (mph)	PSF			
40	11.0			
50	17.2			
60	24.7			
70	33.6			
80	43.9			
90	55.6			

d	Н		degrees Max	Max Wall
(in)	(ft)	(ft)	Spacing	Pressure (psf)
18	7.5	13	4	25.3
24	8	14	4	21.6
30	8.5	14.75	4	18.3
36	9	15.5	4	16.5
42	9.5	16.5	4	14.8
48	10	17,25	4	13.4
54	10.5	18.25	4	12.5
60	11	19	4	11.2

	45 degrees							
d	Н	L	Max	Max Wall				
(in)	(ft)	(ft)	Spacing	Pressure (psf)				
18	7.5	7.5	5	30.3				
24	8	8	5	25.1				
30	8.5	8.5	5	21.8				
36	9	9	5	18.8				
42	9.5	9.5	5	17.1				
48	10	10	5	16.1				
54	10,5	10.5	5	14.8				
60	11	11	5	13.8				

* Allowable Values Are Bold

		60	degrees	
d	Н	L	Max	Max Wall
(in)	(ft)	(ft)	Spacing	Pressure (psf)
18	7.5	4.25	6	31.1
24	8	4.5	6	25.6
30	8.5	5	6	21.8
36	9	5.25	6	19.5
42	9.5	5.5	6	17.4
48	10	5,75	6	16.0
54	10.5	8	6	14.6
60	11	6.5	6	13.8

Table 1

Braced Concrete Wall Against Seismic Loading:

Example: Use rakers to support a wall that is 12' high. The maximum thickness of the concrete wall to be supported is 8". There is debris against the wall that requires the bottom "Sole Strut" to be at a height of 6' from ground surface.

Seismic Force = 0.3 x Weight			
Concrete Wall Thickness (in)	Force PSF		
6	22.5		
8	30.0		
12	45.0		

Table 2

		45	degrees	
d	Н	L	Max	Max Wall
(in)	(ft)	(ft)	Spacing	Pressure (psf)
18	7.5	7.5	5	30.3
24	8	8	5	25.1
30	8.5	8.5	5	21.8
36	9	9	5	18.8
42	9.5	9.5	5	17.1
48	10	10	5	16.1
54	10.5	10.5	5	14.6
60	11	11	5	13.8

* Allowable Values Are Bold

60 degrees						
d (in)	H (ft)	L (ft)	Max Spacing	Max Wall Pressure (psf)		
18	7.5	4.25	6	31.1		
24	8	4.5	6	25.6		
30	8.5	5	6	21.8		
36	9	5.25	6	19.5		
42	9.5	5.5	6	17.4		
48	10	5.75	6	16.0		
54	10.5	6	6	14.6		
60	11	6.5	6	13.8		

AIRSHORE FLYING RAKER RAIL ASSEMBLY

J.M. TURNER ENGINEERING, INC.

CONSULTING ENGINEERS

1325 COLLEGE AVE., SANTA ROSA, CA. 95404 (707) 528-4503 FAX (707) 528-4505

DATE: 10/18/2010 REV DATE: 3/13/2012

711 North Post Rd Shelby, NC 28150 704-487-6961 800-537-2659 Tabulated Data for Use Page 1 of 7

Notes:

- 1) Rakers should be connected to the piece being shored or they should be cross braced using a minimum of 2x6 cross bracing.
- 2) Raker brace shall be configured so that the angle between the raker brace and the ground does not fall below 30 degrees or exceed 60 degrees.
- 3) Light Duty or Heavy Duty Rails shall be used.
- 4) Use 1" diameter x 36" long steel pins to anchor base plates to the ground.
- 5) After braces are firmly in place they should be locked into place using locking mechanism.
- 6) The Raker Brace System is intended for use in emergency situations. Caution should be used during installation and the installation should be checked by an engineer if they are left in place for any length of

AIRSHORE FLYING RAKER RAIL ASSEMBLY

TURNER ENGINEERING, INC.

CONSULTING ENGINEERS

1325 COLLEGE AVE., SANTA ROSA, CA. 95404

(707) 528–4503 FAX (707) 528–4505

DATE: REV DATE: JOB N

DATE: REV DATE 10/18/2010 3/13/2012

Tabulated Data for Use Page 2 of 7

Maximum Wall Height = 12 ft

Seismic Force = 0.3 x Weight				
Concrete Wall	Force			
Thickness (in)	PSF			
6	22.5			
8	30.0			
40				

Table 2

711 North Post Rd Shelby, NC 28150 704-487-6961 800-537-2659

Predicted I	Predicted Lateral Force-Wind				
Wind	Force				
Speed (mph)	PSF				
40	11.0				
50	17.2				
60	24.7				
70	33.6				
80	43.9				
90	55.6				

Table 1

Maximum Wall Height = 12' Horizontal Strut Location = 5' From Ground Surface

		30 (degrees	
d	Н	L	Max	Max Wall
(in)	(ft)	(ft)	Spacing	Pressure (psf)
18	6.5	11.25	4	32.2
24	7	12	4	27.3
30	7.5	13	4	23.7
36	8	14	4	20.6
42	8.5	14.75	4	18.5
48	9	15.5	4	16.5
54	9.5	16.5	4	15.4
60	10	17.25	4	14.3

	45 degrees					
d	Н	L	Max	Max Wall		
(in)	(ft)	(ft)	Spacing	Pressure (psf)		
18	6.5	6.5	5	37.6		
24	7	7	5	30.9		
30	7.5	7.5	5	26.6		
36	8	8	5	23.4		
42	8.5	8.5	5	21.3		
48	9	9	5	19.3		
54	9.5	9.5	5	18.0		
60	10	10	5	16.9		

60 degrees						
d	Н	L	Max	Max Wall		
(in)	(ft)	(ft)	Spacing	Pressure (psf)		
18	6.5	3.75	6	37.0		
24	7	4	6	30.0		
30	7.5	4.25	6	26.1		
36	8	4.5	6	23.1		
42	8.5	5	6	20.5		
48	9	5.25	6	19.2		
54	9.5	5.5	6	18.0		
60	10	5.75	6	16.9		

Instructions For Use of Tabulted Data:

For Applications to Resist Wind Loads:

- 1) Determine the maximum anticipated wind speed. The corresponding wind force can be found in Table 1.
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than the max wall pressure specified for the chosen strut

For Applications to

Resist Other Lateral Loads:

- 1) Determine the maximum lateral pressure that will be exerted on the wall to be supported.
- Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than the max wall pressure specified for the chosen strut orientation.

For Applications to Resist

Seismic Loads on Concrete Walls:

- Determine the maximum wall thickness.
 The corresponding seismic force can be found in Table 2.
- Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than the max wall pressure specified for the chosen strut orientation.

AIRSHORE FLYING RAKER RAIL ASSEMBLY

J.M. TURNER ENGINEERING, INC.

CONSULTING ENGINEERS

1325 COLLEGE AVE., SANTA ROSA, CA. 95404 (707) 528–4503 FAX (707) 528–4505

DATE: 10/18/2010 REV DATE: 3/13/2012

Tabulated Data for Use Page 3 of 7

711 North Post Rd Shelby, NC 28150 704-487-6961 800-537-2659

Predicted Later	Predicted Lateral Force-Wind		
Wind	Force		
Speed (mph)	PSF		
40	11.0		
50	17.2		
60	24.7		
70	33.6		
80	43.9		
90	55.6		

Table 1

Maximum	Wall	Height =	13	ft	

Seismic Force = 0.3 x Weight		
Concrete Wall Force		
Thickness (in)	PSF	
6	22.5	
8	30.0	
12	45.0	

Table 2

Maximum Wall Height = 13' Horizontal Strut Location = 6' From Ground Surface

	30 degrees					
d	Н	L	Max	Max Wall		
(in)	(ft)	(ft)	Spacing	Pressure (psf)		
18	7.5	13	4	25.3		
24	8	14	4	21.6		
30	8.5	14.75	4	18.3		
36	9	15.5	4	16.5		
42	9.5	16.5	4	14.8		
48	10	17.25	4	13.4		
54	10.5	18.25	4	12.5		
60	11	19	4	11.2		

	45 degrees				
d	Н	L	Max	Max Wall	
(in)	(ft)	(ft)	Spacing	Pressure (psf)	
18	7.5	7.5	5	30.3	
24	8	8	5	25.1	
30	8.5	8.5	5	21.8	
36	9	9	5	18.8	
42	9.5	9.5	5	17.1	
48	10	10	5	16.1	
54	10.5	10.5	5	14.6	
60	11	11	5	13.8	

	60 degrees					
d	Н	L	Max	Max Wall		
(in)	(ft)	(ft)	Spacing	Pressure (psf)		
18	7.5	4.25	6	31.1		
24	8	4.5	6	25.6		
30	8.5	5	6	21.8		
36	9	5.25	6	19.5		
42	9.5	5.5	6	17.4		
48	10	5.75	6	16.0		
54	10.5	6	6	14.6		
60	11	6.5	6	13.8		

Instructions For Use of Tabulted Data:

For Applications to Resist Wind Loads:

- 1) Determine the maximum anticipated wind speed. The corresponding wind force can be found in Table 1.
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than the max wall pressure specified for the chosen strut **Frientstimations** to

Resist Other Lateral Loads:

- 1) Determine the maximum lateral pressure that will be exerted on the wall to be supported.
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than the max wall pressure specified for the chosen strut

For Applications to Resist

Seismic Loads on Concrete Walls:

- 1) Determine the maximum wall thickness. The corresponding seismic force can be found
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than the max wall pressure specified for the chosen strut orientation.

AIRSHORE FLYING RAKER RAIL ASSEMBLY

J.M. TURNER ENGINEERING. INC. CONSULTING ENGINEERS

> 1325 COLLEGE AVE., SANTA ROSA, CA. 95404 (707) 528-4503 FAX (707) 528-4505

DATE: 10/18/2010

Load

REV DATE: 3/13/2012

Tabulated Data for Use Page 4 of 7

711 North Post Rd Shelby, NC 28150 704-487-6961 800-537-2659

Predicted Lateral Force-Wind		
Wind	Force	
Speed (mph)	PSF	
30	6.2	
40	11.0	
50	17.2	
60	24.7	
70	33.6	
80	43.9	

Table 1

Maximum Wall Height = 14 ft

Seismic Force = 0.3 x Weight		
Concrete Wall	Force	
Thickness (in)	PSF	
6	22.5	
8	30.0	
12	45.0	

Table 2

Maximum Wall Height = 14' Horizontal Strut Location = 7' From Ground Surface

	30 degrees				
d	Н	L	Max	Max Wall	
(in)	(ft)	(ft)	Spacing	Pressure (psf)	
18	8.5	14.75	4	19.8	
24	9	15.5	4	17.0	
30	9.5	16.5	4	14.9	
36	10	17.25	4	13.0	
42	10.5	18.25	4	11.8	
48	11	19	4	11.0	
54	11.5	20	4	9.9	
60	12	20.75	4	9.3	

	45 degrees					
d	Н	L	Max	Max Wall		
(in)	(ft)	(ft)	Spacing	Pressure (psf)		
18	8.5	8.5	5	25.1		
24	9	9	5	20.9		
30	9.5	9.5	5	18.2		
36	10	10	5	16.3		
42	10.5	10.5	5	14.5		
48	11	11	5	13.3		
54	11.5	11.5	5	12.1		
60	12	12	5	11.4		

60 degrees					
d	Н	L	Max	Max Wall	
(in)	(ft)	(ft)	Spacing	Pressure (psf)	
18	8.5	5	6	26.8	
24	9	5.25	6	21.8	
30	9.5	5.5	6	18.7	
36	10	5.75	6	16.4	
42	10.5	6	6	14.7	
48	11	6.5	6	13.6	
54	11.5	6.5	6	12.5	
60	12	7	6	11.8	

Instructions For Use of Tabulted Data:

For Applications to Resist Wind Loads:

- 1) Determine the maximum anticipated wind speed. The corresponding wind force can be found in Table 1.
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than the wall pressure from Table 1 must be less than

For Applications to

Resist Other Lateral Loads:

- 1) Determine the maximum lateral pressure that will be exerted on the wall to be supported.
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than the max wall pressure specified for the chosen strut

For Applications to Resist

Seismic Loads on Concrete Walls:

- 1) Determine the maximum wall thickness. The corresponding seismic force can be found Lateral in Table 2.
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required max wall pressure specified for the chosen strut the max wall pressure specified for the chosen strut orientation.

AIRSHORE FLYING RAKER RAIL ASSEMBLY

J.M. TURNER ENGINEERING. INC. CONSULTING ENGINEERS 1325 COLLEGE AVE., SANTA ROSA, CA. 95404

(707) 528-4503 FAX (707) 528-4505

DATE: 10/18/2010

REV DATE: JOB NO: 3/13/2012 13088-1

orientation.

Tabulated Data for Use Page 5 of 7

711 North Post Rd Shelby, NC 28150 704-487-6961 800-537-2659

Predicted Lateral Force-Wind		
Wind	Force	
Speed (mph)	PSF	
20	2.7	
30	6.2	
40	11.0	
50	17.2	
60	24.7	
70	33.6	

Table 1

Seismic Force = 0.3 x Weight			
Concrete Wall	Force		
Thickness (in)	PSF		
6	22.5		
8	30.0		
12	45.0		

Maximum Wall Height = 16 ft

Table 2

Maximum Wall Height = 16' Horizontal Strut Location = 8' From Ground Surface

30 degrees				
d	Н	L	Max	Max Wall
(in)	(ft)	(ft)	Spacing	Pressure (psf)
18	9.5	16.50	4	14.9
24	10	17.25	4	12.8
30	10.5	18.25	4	11.2
36	11	19.00	4	10.2
42	11.5	20.00	4	9.2
48	12	20.75	4	8.4
54	12.5	21.75	4	7.8
60	13	22.50	4	7.4
	•			

	45 degrees				
d	Н	L	Max	Max Wall	
(in)	(ft)	(ft)	Spacing	Pressure (psf)	
18	9.5	9.5	5	19.9	
24	10	10	5	16.7	
30	10.5	10.5	5	14.2	
36	11	11	5	12.7	
42	11.5	11.5	5	11.7	
48	12	12	5	10.4	
54	12.5	12.5	5	9.9	
60	13	13	5	9.0	

	60 degrees				
d	Н	L	Max	Max Wall	
(in)	(ft)	(ft)	Spacing	Pressure (psf)	
18	9.5	5.50	6	21.7	
24	10	5.75	6	17.7	
30	10.5	6.00	6	15.3	
36	11	6.50	6	13.5	
42	11.5	6.50	6	12.2	
48	12	7.00	6	11.0	
54	12.5	7.25	6	10.1	
60	13	7.50	6	9.6	

Instructions For Use of Tabulted Data:

For Applications to Resist Wind Loads:

- 1) Determine the maximum anticipated wind speed. The corresponding wind force can be found in Table 1.
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to debris and/or other items. be used from the tables labeled "30 degrees", 3) Choose the strut orientation and spacing "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than thedegrees", "45 degrees", and "60 degrees". The max wall pressure specified for the chosen strut orientation.

For Applications to

Resist Other Lateral Loads:

- 1) Determine the maximum lateral pressure that will be exerted on the wall to be supported.
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than the max wall pressure specified for the chosen strut

For Applications to Resist

Seismic Loads on Concrete Walls:

- 1) Determine the maximum wall thickness. The corresponding seismic force can be found Lateral in Table 2.
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for
- to be used from the tables labeled "30 required wall pressure from Table 1 must be less than the max wall pressure specified for the chosen strut orientation.

AIRSHORE FLYING RAKER RAIL ASSEMBLY

J.M. TURNER ENGINEERING, INC. CONSULTING ENGINEERS

> 1325 COLLEGE AVE., SANTA ROSA, CA. 95404 (707) 528-4503 FAX (707) 528-4505

DATE: 10/18/2010 REV DATE: JOB NO: 3/13/2012 13088-1

Tabulated Data for Use Page 6 of 7

711 North Post Rd Shelby, NC 28150 704-487-6961 800-537-2659

Predicted Lateral Force-Wind		
Wind	Force	
Speed (mph)	PSF	
20	2.7	
30	6.2	
40	11.0	
50	17.2	
60	24.7	
70	33.6	

Table 1

Seismic Force = 0.3 x Weight			
Concrete Wall	Force		
Thickness (in)	PSF		
6	22.5		
8	30.0		
40	45.0		

Maximum Wall Height = 18 ft

Table 2

Maximum Wall Height = 18' Horizontal Strut Location = 9' From Ground Surface

30 degrees				
d	Н	L	Max	Max Wall
(in)	(ft)	(ft)	Spacing	Pressure (psf)
18	10.5	18.25	4	11.5
24	11	19.00	4	9.9
30	11.5	20.00	4	9.0
36	12	20.75	4	7.9
42	12.5	21.75	4	7.2
48	13	22.50	4	6.8
54	13.5	23.50	4	6.1
60	14	24.25	4	5.7

	45 degrees				
d	Н	L	Max	Max Wall	
(in)	(ft)	(ft)	Spacing	Pressure (psf)	
18	10.5	10.5	5	15.9	
24	11	11	5	13.4	
30	11.5	11.5	5	11.7	
36	12	12	5	10.5	
42	12.5	12.5	5	9.5	
48	13	13	5	8.7	
54	13.5	13.5	5	8.0	
60	14	14	5	7.3	

60 degrees				
d	Н	L	Max	Max Wall
(in)	(ft)	(ft)	Spacing	Pressure (psf)
18	10.5	6.00	6	18.0
24	11	6.50	6	14.8
30	11.5	6.50	6	12.6
36	12	7.00	6	11.2
42	12.5	7.25	6	. 10.1
48	13	7.50	6	9.1
54	13.5	7.75	6	8.4
60	14	8.00	6	8.0

Instructions For Use of Tabulted Data:

For Applications to Resist Wind Loads:

- 1) Determine the maximum anticipated wind speed. The corresponding wind force can be found in Table 1.
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than the degrees", "45 degrees", and "60 degrees". max wall pressure specified for the chosen strutThe required wall pressure from Table 1 FOR Applications to

Resist Other Lateral Loads:

- 1) Determine the maximum lateral pressure that will be exerted on the wall to be supported.
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than the max wall pressure specified for the chosen strut orientation.

For Applications to Resist

Seismic Loads on Concrete Walls:

- 1) Determine the maximum wall thickness. The corresponding seismic force can be found in Table 2.
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 must be less than the max wall pressure specified for the chosen strut orientation.

AIRSHORE FLYING RAKER RAIL ASSEMBLY

J.M. TURNER ENGINEERING, INC. CONSULTING ENGINEERS

> 1325 COLLEGE AVE., SANTA ROSA, CA. 95404 (707) 528-4503 FAX (707) 528-4505

DATE: 10/18/2010 REV DATE: 3/13/2012

Tabulated Data for Use Page 7 of 7

711 North Post Rd Shelby, NC 28150 704-487-6961 800-537-2659

Predicted Lateral Force-Wind		
Wind	Force	
Speed (mph)	PSF	
20	2.7	
30	6.2	
40	11.0	
50	17.2	
60	24.7	
70	33.6	

Table 1

Maximum	Wall	Height =	20	ft	

Seismic Force = 0.3 x Weight		
Concrete Wall Force		
Thickness (in)	PSF	
6	22.5	
8	30.0	
12	45.0	

Table 2

Maximum Wall Height = 20' Horizontal Strut Location = 10' From Ground Surface

30 degrees							
d	Н	L	Max	Max Wall			
(in)	(ft)	(ft)	Spacing	Pressure (psf)			
18	11.5	20.00	4	9.1			
24	12	20.75	4	7.8			
30	12.5	21.75	4	7.1			
36	13	22.50	4	6.5			
42	13.5	23.50	4	5.9			
48	14	24.25	4	5.4			
54	14.5	25.00	4	5.0			
60	15	26.00	4	4.7			

45 degrees						
d	Н	L	Max	Max Wall		
(in)	(ft)	(ft)	Spacing	Pressure (psf)		
18	11.5	11.5	5	13.0		
24	12	12	5	10.9		
30	12.5	12.5	5	9.6		
36	13	13	5	8.7		
42	13.5	13.5	5	7.8		
48	14	14	5	7.2		
54	14.5	14.5	5	6.6		
60	15	15	5	6.1		

60 degrees							
d	Н	L	Max	Max Wall			
(in)	(ft)	(ft)	Spacing	Pressure (psf)			
18	11.5	6.50	6	15.0			
24	12	7.00	6	12.4			
30	12.5	7.25	6	10.8			
36	13	7.50	6	9.4			
42	13.5	7.75	6	8.5			
48	14	8.00	6	7.7			
54	14.5	8.50	6	7.2			
60	15	8.75	6	6.6			

Instructions For Use of Tabulted Data:

For Applications to Resist Wind Loads:

- 1) Determine the maximum anticipated wind speed. The corresponding wind force can be found in Table 1.
- 2) Determine the required clearance from groundfound in Table 2. surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to bedebris and/or other items. used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than the max degrees", "45 degrees", and "60 degrees". wall pressure specified for the chosen strut

orientations to

Resist Other Lateral Loads:

- 1) Determine the maximum lateral pressure that will be exerted on the wall to be supported.
- 2) Determine the required clearance from ground surface to the bottom "Sole Strut" for debris and/or other items.
- 3) Choose the strut orientation and spacing to be used from the tables labeled "30 degrees", "45 degrees", and "60 degrees". The required wall pressure from Table 1 must be less than the max wall pressure specified for the chosen strut orientation.

For Applications to Resist

Seismic Loads on Concrete Walls:

1) Determine the maximum wall thickness. The corresponding seismic force can be

2) Determine the required clearance from Load ground surface to the bottom "Sole Strut" for

3) Choose the strut orientation and spacing to be used from the tables labeled "30 The required wall pressure from Table 1 must be less than the max wall pressure specified for the chosen strut orientation.

AIRSHORE FLYING RAKER RAIL ASSEMBLY

J.M. TURNER ENGINEERING, INC. CONSULTING ENGINEERS

> 1325 COLLEGE AVE., SANTA ROSA, CA. 95404 (707) 528-4503 FAX (707) 528-4505

DATE: 10/18/2010 REV DATE: 3/13/2012