EE147: Neural Networks and Deep Learning

Professor Kao

Thilan Tran

Winter 2021

Contents

EE147: Neural Networks and Deep Learning	2
History	2
Basics of Machine Learning	5
Supervised Learning Example	6
Maximimum Likelihood Optimization	8
Generalizing the Model	9
Appendix	11
Python Libraries	11
NumPy	11
MatPlotLib	11
Linear Algebra Review	11
Vectors	11
Matrices	12
Decomposition	15
Mathematical Tools	17
Probability	17
Derivatives	19
Chain Rule	22
Tensors	23
Discussion Problems	23

EE147: Neural Networks and Deep Learning

- deep learning has many modern applications:
 - Google search
 - Youtube video recommendations
 - Yelp restuarant best foods
 - Instagram feeds
 - very smart image recognition:
 - * what makes a car a car?
 - * cannot classify purely based on physical attributes such as size or number of wheels
 - * image may be obscured or obfuscated
 - fraud detection
 - cancer treatment
 - self driving car:
 - * many concerns eg. traffic cones, school buses, pedestrian signals, police cars
 - * much expressive capacity is required
 - AlphaGo, Deepmind's AI that plays Go:
 - * there are more Go board configurations than atoms in the unvierse
 - * cannot do something as simple as a tree search
 - * although AlphaGo was trained off of "big data" of Go experts:
 - · its successor AlphaGo Zero uses deep reinforcement learning, without using any human data
 - \cdot algorithm rather than data based
 - brain-machine interfaces

History

- the concept of neural networks have been around for a long time, since Mc-Culloch and Pitts in 1943:
 - but has only become relevant as of recently
 - this early model was inspired by the nervous system activity (and did not have the capacity to learn):
 - 1. all or none: a brain neuron either fires or not, ie. 1 or 0
 - 2. synpases can sum together to trigger a neuron
- in 1958, Rosenblatt propsed the first NN (neural network) that could learn:
 - called the perceptron, it had a learning rule to train it to perform clas-

sifications

- had m neurons or inputs, , m weights, a bias b, and a value v
 - * where $v = w_1 x_1 + \ldots + w_m x_m + b$
- this early perceptron had a **hard-limiter** function φ st. the output $y=\varphi(v)$ and $\varphi(x)$ outputs 1 if x>0 and otherwise 0
 - * inspired by observation (1)
- the perceptron could act as a linear classifier with one layer
 - * but failed for nonlinear classifications, such as the XOR problem, with only one layer
- thus, there was a lot of pessimism towards researching multilayer neural networks around this time
- researchers would continue to use biological inspiration for developing neural networks:
 - in 1962, Hubel and Wiesel published research on the cat V1 visual neural system
 - Fukushima's neocognitron from 1982 used the insights from these visual system in a new neural network architecture
- in 1986, Rumelhart used **backpropagation** to finally train multilayer neural networks:
 - a new way to train multilayer perceptrons by essentially using the chain rule to pass partial derivatives
- in 1989, LeCun and researchers at Bell Labs used neural networks to recognize handwritten zipcodes from the MNIST dataset
- in 1998, LeCun introduced LeNet, the modern CNN (convolutional neural network), similarly inspired by visual cortex experiments:
 - took inspiration from spatial independence and simple linear composition of neurons in the V1 system
 - but still just a loose inspiration, eg. neurons in brains have probabilistic rather than static weights
- why didn't CNNs and backpropagation develop widespread use then?
 - backpropagation was still only good for shallow neural networks
 - * as networks are deeper, the propagated derivative becomes more inaccurate
 - in addition, neural networks are data hungry
- modern era of deep learning:
 - the famous large ImageNet dataset with over 1000 classes of images held a yearly competition

- * within a decade, deep learning teams improved drastically in the ImageNet competition, from a 25% error rate to less than 5%
- driven by the massive amount of data we have access to and computation power to process it
 - * GPU hardware have accelerated the training of NNs
- trend of more and more layers used in neural networks

Basics of Machine Learning

- machine learning uses statistical tools to estimate ie. *learn* functions, some of which may be fairly complex:
 - classification produces a discrete output representing the category given an input vector $x \in \mathbb{R}^n$:
 - * ie. which of k categories x belongs to
 - * eg. classifying whether an image is a cat or dog = class focuses on this type of function
 - regression produces an analog output predicting the value given an input
 - * eg. predicting housing prices from square footage, controlling position and velocity of a cursor through brain signals
 - synthesis and sampling generate new examples that resemble a training data
 - * eg. used in generative adversarial networks (GANs)
 - data imputation fills in missing values of a vector
 - * eg. Netflix predicting if you will like a show or movie
 - denoising takes a corrupt data sample and outputs a cleaner sample
 - * eg. used in variational autoencoders
 - other types
- in **supervised learning**, input vectors x and their target vectors y are known:
 - the goal is to learn function y = f(x) that predicts y given x
 - eg. takes in a dataset D of n tuples of data
- in **unsupervised learning**, goal is to discover structure in input vectors, absent of knowledge of target vectors
 - eg. finding similar input vecotrs in clustering, distributions of the inputs, visualization, etc.
- in reinforcement learning, goal is to find suitable actions in certain scenarios to maximize a given reward ${\cal R}$
 - discovers policies through trial and error
- in this class, we will focus on supervised learning:
 - using the CIFAR-10 dataset for an image classification problem:
 - * 10 possible image categories
 - * 32 by 32 pixel images, represented as 32 by 32 by 3 data values (RGB colors)
 - * ie. input vector $x \in \mathbb{R}^{3072}$
 - want to find a function f(x) that outputs one of the 10 categories

Supervised Learning Example

- for a problem of renting a home in Westwood, we want to know if we were getting a good deal:
 - given the square footage of a house, output how much monthly rent we should expect to reasonably pay based on the training data we have
- first, we should determine how we model data:
 - 1. determine inputs and outputs
 - input x is the square footage, and the output y is the rent
 - 2. what model should we use?
 - try a linear model y = ax + b
 - * a, b are the **parameters** that must be found in this chosen model
 - a different model could have been chosen eg. a nonlinear, higher order polynomial
 - * many more parameters to tune with
 - 3. how do we assess how good our model is?
 - we need a **loss function** that *scores* how good the model is
 - for a prediction $\hat{y}_i = f(x_i)$ and actual sample output y_i , we can use a least squares loss function:

$$\mathit{loss} = \mathit{cost} = \sum_i (y_i - \hat{y}_i)^2$$

- * note that using least squares rather than absolute value puts higher weight on outlilers
- transforming with vectors:
 - writing the model using vectors where $\theta = \begin{bmatrix} a \\ b \end{bmatrix}$ and $\hat{x} = \begin{bmatrix} x \\ 1 \end{bmatrix}$:

$$\hat{y} = ax + b$$
$$= \theta^T \hat{x}$$

- writing the cost function using vectors where k is a normalization constant:

$$\begin{split} L(\theta) &= k \sum_i (y_i - \hat{y}_i)^2 \\ &= k \sum_i (y_i - \theta^T \hat{x}_i)^2 \end{split}$$

- we want to make loss $L(\theta)$ as *small* as possible, since θ represents the parameters we can control:
 - in this case, $L(\theta)$ will look like a parabola since it is squared
 - * can solve for its minimum using optimization

- 1. calculate $\frac{dL}{d\theta}$
 - tells us the slope of the line with respect to θ
- 2. solve for θ such that $\frac{\partial L}{\partial \theta} = 0$
- however, θ is a vector, so how do we take derivatives with respect to it?
 - * these derivatives are typically called **gradients** eg. $\frac{\partial y}{\partial x}$ or $\nabla_x y$
 - * can be done with respect to vectors or matrices
 - * see entry in appendix
- rewriting the cost function:

$$\begin{split} L &= \frac{1}{2} \sum_{i=1}^{N} (y_i - \theta^T \hat{x}_i)^2 \\ &= \frac{1}{2} \sum_{i=1}^{N} (y_i - \theta^T \hat{x}_i)^T (y_i - \theta^T \hat{x}_i) \\ &= \frac{1}{2} \sum_{i=1}^{N} (y_i - \hat{x}_i^T \theta)^T (y_i - \hat{x}_i^T \theta) \\ &= \frac{1}{2} (\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} - \begin{bmatrix} \hat{x}_1^T \\ \vdots \\ \hat{x}_N^T \end{bmatrix} \theta)^T (\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} - \begin{bmatrix} \hat{x}_1^T \\ \vdots \\ \hat{x}_N^T \end{bmatrix} \theta) \\ &= \frac{1}{2} (Y - X\theta)^T (Y - X\theta) \\ &= \frac{1}{2} (Y^T - \theta^T X^T) (Y - X\theta) \\ &= \frac{1}{2} [Y^T Y - Y^T X\theta - \theta^T X^T Y + \theta^T X^T X\theta] \\ &= \frac{1}{2} [Y^T Y - 2Y^T X\theta + \theta^T X^T X\theta] \end{split}$$

- where $Y \in \mathbb{R}^{N \times 1}$ and $X \in \mathbb{R}^{N \times 2}$
 - * note that $\theta^T \hat{x}_i = \hat{x}_i^T \theta$ and $Y^T X \theta = \theta^T X^T Y$ since they are all scalars and inner product is commutative
- we used vectorization to move from summation to a sum expressed as an equivalent inner product of vectors
- now we can take derivatives to optimize the cost function:

$$\begin{split} \frac{\partial L}{\partial \theta} &= \frac{1}{2}[0 - 2X^TY + [X^TX + X^TX] \;\; \theta] \\ &= -X^TY + X^TX\theta \;\; [=] \;\; 0 \\ X^TY &= X^TX\theta \\ \theta &= (X^TX)^{-1}X^TY \\ &\triangleq X^\dagger Y \end{split}$$

– recall that $\frac{\partial z^T\theta}{\partial\theta}=z$ and $\frac{\partial\theta^TA\theta}{\partial\theta}=(A+A^T)\theta$

- * Y^TX can be considered as a vector z
- this solution $\theta = X^{\dagger}Y$ is called the **least-squares solution**
 - * gives us the best parameters θ to minimize the least-squares cost
- does our current least-squares formula allow for learning nonlinear polynomial fits of the form:

$$y = b + a_1 x_1 + a_2 x^2 + \dots + a_n x^n$$

- yes, we just have to redefine the input vectors:

$$\hat{x} = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^n \end{bmatrix}, \quad \theta = \begin{bmatrix} b \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

- a higher degree polynomial will *always* fit the training data *no worse* than a lower degree polynomial
 - * encapsulates lower degree polynomials and can implement them by just setting the necessary coefficients to 0
- but do we always want the highest possible degree polynomial?
 - * eg. for housing price example, the linear model performs best for new inputs
 - * the fundamental problem is that more complex models may not *generalize* as well if the data came from a different model
 - · ie. relying on fitting the training data instead of generalizing

Maximimum Likelihood Optimization

- note that there are alternative types of optimization rather than minimizing a mean-square error:
 - may want to instead *maximize* the probability of having *observed* the data
- ex. given a weighted coin and a sequence of flips, want to find the coins weight θ :
 - consider the example training data of HTHHTTHT
 - 1. if $\theta = 1$, the probability of observing the data is 0
 - 2. if $\theta=0.75$, the probability of observing the data is $0.75^40.25^4=0.00124$
 - 3. if $\theta = 0.5$, the probability of observing the data is $0.5^40.5^4 = 0.0039$
 - thus we would want to choose model (3) since it maximizes the likelihood of seeing the data
- ex. given paired data $\{x_i,y_i\}$ where the coordinate $x_i\in\mathbb{R}^2$ belongs to one of three classes y_i , want to be able to estimate the class of a new coordinate

Generalizing the Model

- dangers of overfitting / underfitting:
 - training data is data that is used to learn the parameters of the model
 - validation data is the data used to optimize the hyperparameters of the model:
 - * **hyperparameters** are the design choices of the model, eg. the order of the fitted polynomial
 - * avoids the potential of overfitting to nuances in the testing dataset
 - testing data is data that is excluded in training and used to score the model
 - * a "pristine" dataset used to score the final model with set parameters and hyperparameters
 - all datasets should follow the same distributions
 - a model with very low training error but high testing error is called overfit:
 - * beyond a certain point, model begins to overfit the data
 - addressing overfitting:
 - more data helps ameliorate the issue of overitting
 - may be appropriate to use more complex models when given much more data
 - regularization is another useful technique
- picking a best model:
 - 1. assess its generalization ie. validation error
 - 2. pick a setting of the parameters that results in minimal value
 - there are some scenarios where the database size is so limited that it is better to utilize model selection techniques
 - * ie. penalizes the model for being overly complex
- evaluating generalization error:
 - in a common scenario, we are given a training and testing dataset
 - to train a model while validating hyperparameters, one common approach is k-fold **cross validation**:
 - * split training data into k equal sets called **folds**, each with $\frac{N}{k}$ examples
 - *~k-1 folds are training datasets, while the remaining fold is a validation dataset
 - * for each hyperparameter eg. polynomial order we are trying to validate
 - · run k validation tests using each of the folds as a validation set, take the average as an overall validation error
 - * note that class balance should be maintained across folds eg. using a stratified k-fold

 after using cross validation to finalize hyperparameters, we can train a single model based on the entire training data

Appendix

Python Libraries

NumPy

- random.uniform(low, high, size) draws size samples from a uniform distribution between low and high
- random.normal(loc, scale, size) draws size samples from a normal distribution with mean loc and standard deviation scale

MatPlotLib

- plt.figure creates a new figure
- Figure.gca gets the current axes of a figure
- Axes.plot(x, y, fmt) plots a figure with points or line nodes given by x, y
 - fmt is a format string eg. 'ro' for red circles, '.' for dots, 'x' for crosses
- Axes.set_xlabel(lbl) and Axes.set_ylabel(lbl) sets the labels for the axes

Linear Algebra Review

Vectors

•
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is a **column vector** with n elements

- $z = [z_1 z_2 \dots z_n]$ is a row vector with n elements
- the **transpose** of a column vector is a row vector, and vice versa

- eg.
$$x = [x_1 x_2 \dots x_n]^T$$

• the **dot product** of two column vectors is given by:

$$x^T y = \sum_{i=1}^n x_i y_i$$

- the dot product of two vectors is commutative
- the **norm** of a vector measures its length
- the **p-norm** of a vector is given by the following, where $p \ge 1$:

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$$

• the Euclidian norm is the 2-norm, and can also be writen as:

$$||x|| = ||x||_2 = \sqrt{x^T x}$$

- the 2-norm is often more convenient to work with
- a unit vector is a vector with $||x||_2 = 1$
- the dot product can also be written as the following, where θ is the angle between the vectors:

$$x^T y = ||x||||y||cos\theta$$

- x and y are **orthogonal** if $x^Ty = 0$:
 - if both vectors have nonzero norm, than they are at a 90 degree angle to each other
 - in \mathbb{R}^n at most n vectors may be mutually orthogonal with nonzero norm
 - if the vectors are orthogonal and also have unit norm, they are orthonormal
- a **linear combination** of vectors is a summation of those vectors scaled by a constant:

$$\sum_{i} c_{i} v_{i}$$

 the span of a set of vectors is the set of all points obtainable by linear combinations of the vectors

Matrices

•
$$A = \begin{bmatrix} a_{11} \dots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \dots a_{mn} \end{bmatrix}$$
 is an $m \times n$ matrix

• the product operation of two matrices C=AB is defined by:

$$C_{ij} = \sum_{k} A_{ik} B_{kj}$$

- matrix multiplication is distributive and associative
- however, it is *not* commutative
- matrix multiplication is usually used to write down a system of linear equations, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, x \in \mathbb{R}^n$:

$$Ax = b$$

$$A_1x = b_1$$

$$A_2x = b_2$$

$$\dots$$

$$A_mx = b_m$$

– this system can be solved using matrix inversion where $A^{-1}A=I_n$ and I_n is the $n\times n$ identity matrix:

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$I_nx = A^{-1}b$$

$$x = A^{-1}b$$

- however, Ax = b may not always have a solution:
 - $\star\,$ the **column space** is the span of the columns of A
 - * to have a solution for all values of $b \in \mathbb{R}^m$, the column space of A must be all of \mathbb{R}^m
 - * thus A should have at least m columns or m > n:
 - however, some of the columns may be redundant ie. linearly dependent as well
 - in addition, we need each equation to have at *most* one solution for each value of b, so A can also have at most m columns
 - * therefore, the system will have a solution if it is square and all the columns are **linearly independent** ie. no vector in the columns is a linear combination of the other vectors
 - · a square matrix with linearly dependent columns is **singular**
 - * the rank of a matrix is the number of linearly independent columns it has
- the **determinant** of a square matrix det(A) is a function that maps matrices to real scalars:

- the determinant is equal to the product of all eigenvalues of a matrix
- thus, since eigenvalues measure the scaling of eigenvectors, the absolute value of the determinant is a measure of how much the matrix expands or contracts space
- if the determinant is 0, then space is contracted *completely* along at least one dimension, losing all its volume
- the **transpose** of a matrix satisfies:

$$A_{ij} = (A^T)_{ji}$$

- a matrix is symmetric if $A = A^T$
- if the matrix is square ie. m = n with rank n, then the **inverse** of a matrix satisfies the following, where I is the $n \times n$ identity matrix:

$$A^{-1}A = AA^{-1} = I$$

• the **trace** of a matrix is the sum of its diagonal elements:

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

- the trace operator is invariant to transposition:

$$tr(A) = tr(A^T)$$

- the trace operator is invariant to cyclic permutations of its input (even if the resulting product has different shapes):

$$tr(ABC) = tr(CAB) = tr(BCA)$$

- the trace operator is linear:

$$tr(\mathit{a}X+\mathit{b}Y)=\mathit{a}tr(X)+\mathit{b}tr(Y)$$

• the Frobenius norm of matrix $A \in \mathbb{R}^{m \times n}$ is:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{tr(AA^T)}$$

- a diagonal matrix consists of only nonzero entries along the main diagonal:
 - ie. $D_{ij} = 0 \ \forall \ i \neq j$
 - eg. the identity matrix
 - useful properties of diagonal matrices:

- * multiplying by a diagonal matrix is computationally efficient \cdot to find Dx, we just need to scale each element x_i by D_{ii}
- * to compute the inverse of a square diagonal matrix where each element on the diagonal is nonzero, just take the reciprocal $\frac{1}{D_{ii}}$ on the diagonal
- * nonsquare diagonal matrices do not have inverses, but can still be multiplied cheaply
- a symmetric matrix is one that is equal to its own transpose ${\cal A}={\cal A}^T$
- given a symmetric matrix *A*:
 - A is called **positive definite** if $x^T A x > 0 \ \forall \ x$
 - if $x^T A x \ge 0$, A is positive semidefinite
 - similarly for negative definite and negative semidefinite matrices
- an **orthogonal matrix** is a square matrix whose rows are mutually orthonormal and whose columns are mutually orthonormal:

$$A^T A = A A^T = I$$

$$A^-1 = A^T$$

- thus the inverse of these matrices are easily computed

Decomposition

• an eigenvector u_i and its corresponding eigenvalue λ_i of a square matrix $A \in \mathbb{R}^{n \times n}$ satisfy:

$$Au_i = \lambda_i u_i$$

- the eigenvalues can be found by solving:

$$det(A - \lambda I) = 0$$

• collecting all of A's eigenvectors and eigenvalues into the following matrices gives the following **eigendecomposition** of A:

$$U = \begin{bmatrix} u_1u_2\dots u_n \end{bmatrix} \quad \Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

$$A = U\Lambda U^{-1}$$

 this decomposes square matrices in a *unique*, guaranteed way that show us information about their fundamental functional properties

- tells us that these transformations *scale* space by eigenvalue λ_i in the direction of eigenvector v_i
- in addition, makes the calculation of A^p easier, since $A^p = U \Lambda^p U^{-1}$
- specifically, if U's columns are an orthonormal set of the eigenvectors:

$$A = U\Lambda U^T$$

• the eigendecomposition can be derived as follows from the definition of an eigenvector:

$$Au_1 = \lambda_2 u_1$$

$$Au_2 = \lambda_2 u_2$$

$$A \begin{bmatrix} u_1 u_2 \end{bmatrix} = \begin{bmatrix} u_1 u_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$AU = U\Lambda$$

$$A = U\Lambda U^{-1}$$

• if A is **normal**, then its eigenvectors are **orthonormal**:

$$u_i^T u_j = 0 \ \forall \ i \neq j, \quad u_i^T u_i = 1$$

• the singular value decomposition (SVD) of a matrix $A \in \mathbb{R}^{m \times n}$ is:

$$A = U\Sigma V^T$$

- where U is an $m \times m$ matrix with orthonormal columns and V is an $n \times n$ matrix with orthonormal columns
 - * the columns of U are the **left singular vectors** of A and are the orthonormal eigenvectors of AA^T
 - * the columns of V are the **right singular vectors** of A and are the orthonormal eigenvectors of A^TA
- Σ is a diagonal $m \times n$ matrix with σ_i as its ith diagonal element
 - * σ_i is called the *i*th **singular value** of A and can be calculated as:

$$\sigma_i = \lambda_i^{\frac{1}{2}}(A^T A) = \lambda_i^{\frac{1}{2}}(AA^T)$$

- essentially factorizing a matrix into singular vectors and singular values by performing an eigendecomposition for A^TA
- unlike an eigendecomposition, SVD is applicable to nonsquare matrices as well eg. can solve Ax = b for nonsquare and perform **principal** component analysis (PCA)

Mathematical Tools

- useful properties of common functions:
 - 1. the logistic sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- commonly used to produce the probability parameter of a Bernoulli distribution
- its range is (0,1), and saturates when its argument is very positive or negative
- 2. the **softplus function**:

$$\zeta(x) = \log(1 + e^x)$$

- useful for producing the $\sigma=\frac{1}{\beta}$ parameter of a normal distribution
- its range is $(0, \infty)$

Probability

- notation note:
 - Pr(E) is the probability of the event E
 - Pr(X=x) or equivalent shorthand p(x) is the probability of random variable X taking on the value x
- manipulating probabilities revolves around two main rules:
 - 1. the **law of total probability** ie. sum rule:

$$p(x) = \sum_{y} p(x, y), \quad x, y \text{ discrete}$$

$$p(x) = \int_{y} p(x, y) dy$$
, x, y continuous

– more particularly, if A_1, \dots, A_n forms a partition of the sample space S, then the probability of an event B is:

$$Pr(B) = \sum_{i=1}^{n} Pr(B \cap A_i)$$

- alternatively, using the conditional probability definition:

$$Pr(B) = \sum_{i=1}^n Pr(B|A_i) Pr(A_i)$$

2. the **probability chain rule** ie. product rule:

$$\begin{split} Pr(E_1, E_2) &= Pr(E_1) Pr(E_2 | E_1) \\ &= Pr(E_2) Pr(E_1 | E_2) \end{split}$$

- used to break up a joint probability into a product probability
- can be further decomposed as follows:

$$p(w, x, y, z) = p(w, x)p(y, z|w, x)$$

$$= p(x)p(w|x)p(y, z|w, x)$$

$$= p(x)p(w|x)p(z|w, x)p(y|z, w, x)$$

- * any event that has been in front of the conditioning bar must be bind the conditioning bar for all other probability expressions
- * ie. assuming a random variable *has* taken on a value, and evaluating the remaining events
- can also represent conditional independencies in graphical models
- generalized for a joint probability over many variables:

$$p(x_1, \dots, x_n) = p(x_1) \prod_{i=2}^n p(x_i | x_1, \dots, x_{i-1})$$

- * could be proved through induction
- Bayes' rule gives the following relationship:

$$p(x|y) = \frac{p(y|x)p(x)}{\sum_{x} p(y|x)p(x)}$$

- an intuition on **Bayesian inference**, which appears frequently in machine learning:
 - let x represent model parameters we wish to infer denoted θ and y correspond to data we have observed D:

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{\sum_{x} p(D|\theta)p(\theta)}$$

- $p(\theta|D)$ is the **posterior distribution**, ie. the probability distribution of model parameters given the data
- $p(D|\theta)$ is the **likelihood** of the data, ie. the probability of having seen the data given a chosen set of model parameters
- $p(\theta)$ are **prior parameters**, ie. the probabilities of the model parameters *absent* of any data

- * we can consider that the prior is *updated* by the likelihood to arrie at the posterior distribution on the parameters
- in Bayesian inference, we calculate $p(\theta|D)$, giving a distribution over the model parameters given the data we observed
 - * concretely gives us all the parameters of our model
- in Frequentist inference or maximum-likelihood estimation, we calculate $p(D|\theta)$, wanting to infering the θ that makes the data most likely to have been observed
 - * ie. we choose the parameters that maximize the likelihood of the data

Derivatives

- in machine learning, we want to find the *best* model according to some performance metric:
 - this requires **optimization**, in which derivatives are crucial
 - in simple cases, we can find minima and maxima by simply setting the derivative equal to $\mathbf{0}$
 - however, in more complex cases, there is no closed-form solution, but the derivative is still useful in telling us how a change in the model parameters will affect the performance
- the definition of a **derivative** of a function $f: \mathbb{R} \to \mathbb{R}$ at a point $x \in \mathbb{R}$ is:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- gives how much a small change in x affects f:

$$f(x+\varepsilon) \approx f(x) + \varepsilon f'(x)$$

- given y = f(x), we denote the derivative of y with respect to x as $\frac{dy}{dx}$, such that:

$$\Delta y \approx \frac{dy}{dx} \Delta x$$

• the scalar chain rule states that if y = f(x) and z = g(y):

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

- ie. a small change in x will cause a small change in y that will in turn cause a small change in z as follows:

$$\Delta y \approx \frac{dy}{dx} \Delta x$$
$$\Delta z \approx \frac{dz}{dy} \Delta y$$
$$= \frac{dz}{dy} \frac{dy}{dx} \Delta x$$

- the **gradient** generalizes the scalar derivative to multiple dimensions:
 - if $f:\mathbb{R}^n \to \mathbb{R}$ transforms a vector to a scalar and y=f(x), the gradient is:

$$\nabla_x y = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{bmatrix}$$

- the gradient is a vector that is the same size as x
- each dimension of $\nabla_x y$ tells us how small changes in x in that dimension affect y
- ie. after changing the ith dimension of x by a small amount affects y as follows:

$$\Delta y \approx \frac{\partial y}{\partial x_i} \Delta x_i$$

- * equivalently, $\frac{\partial y}{\partial x_i} = (\nabla_x y)_i$
- similarly, after changing multiple dimensions of x, y is changed as follows in a dot product:

$$\Delta y = \sum_{i} \frac{\partial y}{\partial x_{i}} \Delta x_{i}$$
$$= (\nabla_{x} y)^{T} \Delta x$$

- ex. if $f(x) = \theta^T x$, find $\nabla_x f(x)$ where $\theta, x \in \mathbb{R}^n, y \in \mathbb{R}$:
 - by rules of the gradient, $\nabla_x y \in \mathbb{R}^n$
 - 1. expand the dot product in f(x):

$$f(x) = \theta_1 x_1 + \dots + \theta_n x_n$$

2. write out the gradient:

$$\nabla_x y = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} = \theta$$

- dimensions match up
- ex. if $f(x) = x^T A x$, find $\nabla_x f(x)$ where $A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n, y \in \mathbb{R}$:
 - by rules of the gradient, $\nabla_x y \in \mathbb{R}^n$
 - 1. expand f(x):

$$f(x) = \sum_{i} \sum_{j} a_{ij} x_i x_j$$

2. write out the gradient:

$$\begin{split} \frac{\partial y}{\partial x_1} &= \frac{\partial (a_{11}x_1^2)}{\partial x_1} + a_{12}x_2 + \ldots + a_{1n}x_n + a_{21}x_2 + \ldots + a_{n1}x_n \\ &= 2a_{11}x_1 + \sum_{j=2}^n a_{1j}x_j + \sum_{i=2}^n a_{1i}x_i \\ &= \sum_{j=1}^n a_{1j}x_j + \sum_{i=1}^n a_{i1}x_i \\ &= (Ax)_1 + (A^Tx)_1 \\ \frac{\partial y}{\partial x_i} &= (Ax)_i + (A^Tx)_i \\ \frac{\partial y}{\partial x} &= \nabla_x f(x) = Ax + A^Tx \end{split}$$

- an intuition check is to consider the problem in a single dimension:
 - * ie. when n=1, $f(x)=xax=ax^2$ and $\frac{\partial f(x)}{\partial x}=2ax$
 - * when A is symmetric, the gradient is analogously just 2Ax
- derivative of a scalar with respect to a matrix:
 - given a scalar y and a matrix $A \in \mathbb{R}^{m \times n}$, the derivative is given by:

$$\nabla_A y = \begin{bmatrix} \frac{\partial y}{\partial a_{11}} \cdots \frac{\partial y}{\partial a_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial a_{m1}} \cdots \frac{\partial y}{\partial a_{mn}} \end{bmatrix}$$

- like the gradient, the i,jth element of $\nabla_A y$ tells us how small changes in a_{ij} affect y
- this layout is called **denominator layout** notation, in which the dimensions of $\nabla_A y$ and A are the same
 - \star in **numerator layout**, the dimensions are transposed
- derivative of a vector with respect to a vector:
 - given $y \in \mathbb{R}^n$ as a function of $x \in \mathbb{R}^m$, the derivative of y with respect to x would be used as follows:

$$\Delta y_i = \nabla_x y_i \cdot \Delta x$$

- thus, the derivative J should be an $n \times m$ matrix as follows:

$$J = \begin{bmatrix} (\nabla_x y_1)^T \\ \vdots \\ (\nabla_x y_n)^T \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\partial y_1}{\partial x_1} \cdots \frac{\partial y_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_n}{\partial x_1} \cdots \frac{\partial y_n}{\partial x_m} \end{bmatrix}$$

- like the gradient, we can see how small changes in x affect y as follows:

$$\Delta y \approx J \Delta x$$

- *~J is called the **Jacobian** matrix
- since in the denominator layout, the denominator vector changes along rows (instead of along columns, as in the Jacobian):

$$J = (\nabla_x y)^T$$

$$= (\frac{\partial y}{\partial x})^T$$

• the **Hessian** matrix of a function f(x) is a square matrix of second-order partial derivatives of f as follows:

$$H = \begin{bmatrix} \frac{\partial f}{\partial x_1^2} & \frac{\partial f}{\partial x_1 \partial x_2} & \dots & \frac{\partial f}{\partial x_1 \partial x_n} \\ \frac{\partial f}{\partial x_2 \partial x_1} & \frac{\partial f}{\partial x_2^2} & \dots & \frac{\partial f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial x_m \partial x_1} & \frac{\partial f}{\partial x_m \partial x_2} & \dots & \frac{\partial f}{\partial x_m^2} \end{bmatrix}$$

– the Hessian is denoted as $\nabla_x(\nabla_x f(x))$ or equivalently $\nabla_x^2 f(x)$

Chain Rule

- the **chain rule** for vector valued functions:
 - in the denominator layout, the chain rule runs from right to left
 - if $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, $z \in \mathbb{R}^p$ and y = f(x) for $f : \mathbb{R}^m \to \mathbb{R}^n$ and z = g(y) for $g : \mathbb{R}^n \to \mathbb{R}^p$, then:

$$egin{aligned}
abla_x z &=
abla_x y
abla_y z \ rac{\partial z}{\partial x} &= rac{\partial y}{\partial x} rac{\partial z}{\partial y} \end{aligned}$$

* $\nabla_x z$ should have dimensionality $\mathbb{R}^{m \times p}$

Discussion Problems APPENDIX

- * since $\nabla_x y \in \mathbb{R}^{m \times n}$ and $\nabla_y z \in \mathbb{R}^{n \times p}$, the operations are dimensionally correct
- composing the chain rule:
 - intuitively, a small change Δx affects Δz through the Jacobian $(\nabla_x z)^T$:

$$\Delta z \approx (\nabla_x z)^T \Delta x$$

- then, through composition:

$$\begin{split} \Delta y &\approx (\nabla_x y)^T \Delta x \\ \Delta z &\approx (\nabla_y z)^T \Delta y \\ \Delta z &\approx (\nabla_y z)^T (\nabla_x y)^T \Delta x \end{split}$$

- thus reduces to the right to left chain rule:

$$\begin{split} (\nabla_x z)^T &= (\nabla_y z)^T (\nabla_x y)^T \\ \nabla_x z &= \nabla_x y \nabla_y z \end{split}$$

Tensors

- we may need to take a derivative that is more than 2-dimensional:
 - eg. the derivative of a vector with respect to a matrix would be a 3dimensional tensor
 - * a tensor is an array with more than two axes
 - if $z\in\mathbb{R}^p$ and $W\in\mathbb{R}^{m\times n}$ then $\nabla_W z$ is a 3-dimensional tensor with shape $\mathbb{R}^{m\times n\times p}$
 - * each $m \times n$ slice is the matrix derivative $\nabla_W z_i$

Discussion Problems

- ex. show the following properties for matrices:
 - 1. if $b^T A b > 0 \ \forall \ b \in \mathbb{R}^n$, then all eigenvalues of A are positive:

$$\begin{aligned} Av_i &= \lambda_i v_i \\ v_i^T A v_i &= \lambda_i v_i^T v_i \\ v_i^T A v_i &= \lambda_i ||v_i||_2^2 > 0 \\ & \therefore \ ||v_i||_2^2 > 0, \lambda_i > 0 \end{aligned}$$

- this is a positive definite matrix

Discussion Problems APPENDIX

2. if $A \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then all eigenvalues of A have norm 1:

$$\begin{split} Av_i &= \lambda_i v_i \\ A^T Av_i &= \lambda_i A^T v_i \\ v_i &= \lambda_i A^T v_i \\ ||v_i||_2^2 &= |\lambda_i|^2 ||A^T v_i||_2^2 \\ &= |\lambda_i|^2 (A^T v_i)^T (A^T v_i) \\ &= |\lambda_i|^2 v_i^T A A^T v_i \\ &= |\lambda_i|^2 ||v_i||_2^2 \\ & \div |\lambda_i| = 1 \end{split}$$

3. If $A \in \mathbb{R}^{m \times n}$ is a matrix with rank r, then $\sigma_i(A) = \lambda_i^{\frac{1}{2}}(AA^T)$:

$$\Sigma \Sigma^T = diag(\sigma_1^2, \dots, \sigma_n^2)$$

$$\begin{split} A &= U \Sigma V^T \\ AA^T &= (U \Sigma V^T)(U \Sigma V^T)^T \\ &= U \Sigma V^T V \Sigma^T U^T \\ &= U \Sigma \Sigma^T U^T \\ &= U diag(\sigma_1^2, \dots, \sigma_n^2) U^T \\ & \therefore \ \sigma_i(A) = \lambda_i^{\frac{1}{2}}(AA^T) \end{split}$$

– producing an eigendecomposition of ${\cal A}{\cal A}^T$