Magnetic Sensor Characterization and Signal Conditioning for Position and Speed Estimation of BLDC Motors

Bearbeiter: Julien Aziz

Betr. Mitarbeiter: Jana Mayer, Ajit Basarur

Referent: Uwe D. Hanebeck

Intelligent Sensor-Actuator-Systems Laboratory (ISAS),
Institute for Anthropomatics and Robotics,
Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

http://isas.uka.de

Gliederung

- 1. Motivation
- 2. Sensor Charakterisierung
- 3. Signal Rekonstruktion
- 4. Auswertung
- 5. Ausblick

Motivation

 Ziel: Präzise Bestimmung der Rotorposition von BLDC-Motoren anhand des Magnetfelds in Echtzeit

Rotor Position und Geschwindigkeit

Motivation – Vorherige Arbeiten

Motivation – Messung

- Messdaten des Magnetsensors:
 - Abtastzeit: 0.0022 Sekunden
 - Bsp.: 1000 RPM

- Magnetstärke/ Rotorwinkel
 - Winkel von Referenzsensor
 - Komplexität der Messgleichung davon abhängig

Motivation - Problemstellung

Erwartung:

Winkelspezifische Magnetstärke für jede Geschwindigkeit gleich

Ist:

Geschwindigkeitsabhängige Phasenverschiebung

Vermutung:

Unbekannte Faltungsoperation des verbauten Sensors

Motivation - Problemstellung

Erwartung:

Abbildung: Winkel -> Magnetstärke ist eine glatte Sinuskurve

Ist:

Verformungen an mehreren Punkten

Ursache:

!

Motivation - Problemstellung

Steigert die Komplexität der Messgleichung und folglich die Rechenzeit

Sensor Charakterisierung - Problemstellung

 Vermutung: Verschiebung der Phase wird durch ein Filterverhalten des Sensors verursacht

- Ziel:
 - Verhalten des Sensors charakterisieren
 - System modellieren welches das Eingangssignal aus y(t) rekonstruiert
 - System Identifikation
- Problem:
 - u(t) nicht messbar
 - Erfolg von System Identifikation hängt maßgeblich von "Qualität" verfügbarer Ein- und Ausgaben statt
 - u(t) und y(t) in gleichen Motorzuständen benötigt

Sensor Charakterisierung - Problemstellung

- Annahme: Das Originalsignal verhält sich ähnlich der Messungen bei niedrigen Geschwindigkeiten
- Magnetsignale $u_{\theta_n}(t)$, $y_{\theta_m}(t)$ bei denen der Motorzustand Ideal: zu jedem Zeitpunkt t, gleich ist : $\theta_n = \theta_m$

Idee: Übertragung des Verhaltens bei 50 RPM auf jede gemessene Geschwindigkeit

Sensor Charakterisierung - Datenvorbereitung

Jede Geschwindigkeit besitzt eine Abbildung:

$$f_{rpm}$$
: Winkel \rightarrow Magnetstärke $\Theta \rightarrow B$

- Interpolation von f_{rpm} für jede gemessene Geschwindigkeit
- Generierung von Winkelreihen anhand von Geschwindigkeit und Abtastzeit
 - \triangleright Eingesetzt in f_{rpm} können gewünschte Daten generiert werden

Sensor Charakterisierung - Datenvorbereitung

Sensor Charakterisierung - Datenvorbereitung

Sensor Charakterisierung - Frequenzanalyse

- Nun Ein/Ausgabe für jede gemessene Geschwindigkeit
- Berechnung der Amplituden und Phasenveränderung
- Sensor faltet das Signal mit einem Tiefpassfilter

Signal Rekonstruktion

• Sensorfaltung h(t) mit: (u * h)(t) = y(t)

$$u(t) \longrightarrow h \longrightarrow y(t)$$

• Ziel: ein g(t) finden um das Ursprungssignal u(t) möglichst präzise zu schätzen: $(y * g)(t) = \hat{u}(t)$

- System Identifikation mithilfe der Interpolierten Ein/Ausgaben
- Ansätze:
 - 1. Korrelationsanalyse
 - 2. Instrumentvariablen-Schätzung
 - 3. State-Space

Signal Rekonstruktion – 1. Korrelationsanalyse

• Lineares Zeit-Invariantes System kann mit Impulsantwort g(k) beschrieben werden:

$$u(t) = \sum_{k=0}^{\infty} g(k) y(t-k)$$

- Ansatz: Mithilfe der Kreuzkorrelation von Ein- und Ausgabe die Gewichtsfunktion g(k) bestimmen
- Annahme: Eingabe y(t) ist unkorreliert mit Störsignalen, Mittelwertfrei und idealer weise Weißes-Rauschen
- Dann gilt:

$$R_{uy}(\tau) = \sum_{k=0}^{\infty} g(k) R_{yy}(\tau - k)$$

Im fall von Weißem-Rauschen vereinfacht sich die Gleichung zu

$$R_{uy}(\tau) = g(k)R_{yy}(0)$$

Signal Rekonstruktion – 1. Korrelationsanalyse

Für eine endliche Anzahl an Eingaben N gilt dann:

•
$$R'_{yu}(\tau) = \frac{1}{N} \sum_{t=1}^{N-\tau} u(t+\tau) y(t)$$
, $\tau = 0, 1, 2, ... N-1$

•
$$R'_{yy}(\tau) = \frac{1}{N} \sum_{t=1}^{N-\tau} y(t+\tau) y(t), \qquad \tau = 0, 1, 2, ... N-1$$

Mit folgendem Gleichungssystem:

$$\begin{pmatrix} R'_{yu}(0) \\ \vdots \\ R'_{yu}(N-1) \end{pmatrix} = \begin{pmatrix} R'_{uu}(0) & \cdots & R'_{uu}(N-1) \\ \vdots & \ddots & \vdots \\ R'_{uu}(N-1) & \cdots & R'_{uu}(0) \end{pmatrix} \begin{pmatrix} g(0) \\ \vdots \\ g(N-1) \end{pmatrix}$$

lässt sich ein g(t), N-ter Ordnung ermitteln

- Verwendete Punkte müssen das Verhalten des Systems darstellen
- Hohe Ordnung und damit hohe Komplexität benötigt

Signal Rekonstruktion – 2. SRIVC Method

- Annahme: Lineares, zeit-invariantes SISO System
- System beschreibbar als Differentialgleichung

$$u^{(n)}(t) + a_1 u^{(n-1)}(t) + \dots + a_n u^{(0)} = b_0 y^{(m)}(t) + b_1 u^{(m-1)}(t) + \dots + b_m u^{(0)}$$

Sei s der Differentialoperator so lässt sich das System schreiben als :

$$u(t) = \frac{B(s)}{A(s)} y(t)$$
mit $A(s) = s^n + a_1 s^{n-1} + \dots + a_n$

$$B(s) = b_0 s^m + b_1 s^{m-1} + \dots + b_m$$

- Fehlerfunktion: $\varepsilon(t) = u(t) \frac{B(s)}{A(s)} y(t)$
- Umgeformt: $\varepsilon(t) = \frac{1}{A(s)} [A(s)u(t) B(s)y(t)]$
- Idee: $F(s) = \frac{1}{A(s)}$ als Filter initialisieren und iterativ das Modell trainieren

Signal Rekonstruktion – 2. SRIVC Method

- Fehlerfunktion: $\varepsilon(t) = F[A(s)u(t) B(s)y(t)]$
- Da Linear: $\varepsilon(t) = A(s) u_f(t) B(s) y_f(t)$
- Parameterbestimmung durch Least-Mean-Squared-Error

- -A(s) muss bekannt sein bzw. geschätzt werden
- Pre-Whiting Filter muss auf Eingangsignal angewandt werden
- Kann zu Konvergenzproblemen führen

Signal Rekonstruktion – 3. State Space

- N4SID "Numerical Algorithm for State Space Subspace System Identification"
- System im Zustandsraum:
 - $x_{k+1} = A x_k + B y_k$
 - $u_k = C x_k + D y_k$
- Idee: Ordnung n und Parametrisierung des Systems aus Unterräumen von Ein/Ausgabe schätzen
- Sei:
 - $X_p = (x_{0, \dots, x_{j-1}}) \in \mathbb{R}^{n \times j}$ Zustandssequenz der Vergangenheit
 - $X_f = (x_i, ..., x_{i+j-1}) \in \mathbb{R}^{n \times j}$ Zustandssequenz der der Zukunft

•
$$Y_p = \begin{pmatrix} y_0 & \cdots & y_{j-1} \\ \vdots & \ddots & \vdots \\ y_{i-1} & \cdots & y_{i+j-2} \end{pmatrix}$$
 die Hankel-Matrix der vergangenen Eingaben

•
$$Y_f = \begin{pmatrix} y_0 & \cdots & y_{j-1} \\ \vdots & \ddots & \vdots \\ y_{i-1} & \cdots & y_{i+j-2} \end{pmatrix}$$
 die Hankel-Matrix der zukünftigen Eingaben

• Für Eingaben U_p , U_f analog

Signal Rekonstruktion – 3. State Space

Erweiterte Beobachtungsmatrix:

$$\Gamma_i = \left(C \ CA \ CA^2 \dots CA^{i-1}\right)^T$$

- $O_i = U_{f/Y_f} \left(Y_p \ U_p \right)^T$
 - Schiefe Projektion der Zukunfts-Ausgabe U_f entlang des Zeilenraums der Zukunftseingabe Y_f in den Zeilenraum der vergangenen Ein/Ausgaben Y_p , U_p
 - Wobei gilt: $O_i = \Gamma_i X_f$
- Aus Singulärwertzerlegung von O_i kann nun:
 - Systemordnung n bestimmt werden
 - Die erweiterte Beobachtungsmatrix Γ_i bestimmt werden
- Mit bekannten Γ_i , O_i können nun X_f sowie A und C bestimmt werden
- B, C durch lineares Regressionsverfahren

Auswertung

Auswertung - Korrelationsmodell

Auswertung - SRIVC

Auswertung – N4SD

Auswertung

Ansatz	Transfer Funktion	NRMSE
Korrelationsanalyse	$G(z^{-1}) = -3,063 + 2,91 z^{-1} \dots - 751,25 z^{-16}$	0.7421
SRIVC	$G(s) = \frac{1,2564 s^3 + \dots + 2817700}{s^3 + \dots + 2822900}$	0.9898
N4SID	$G(s) = \frac{1,1911s^3 + \dots + 9469800}{s^3 + \dots + 9485700}$	0,9901

Ausblick

- Sensorposition verändern
- Systeme Identifizieren die im Idealfall sowohl Phasenverschiebung als auch Deformierung aufheben
- Implementierung identifizierter Systeme in das Schätzmodell

Thank you for your attention

Sensor-Actuator-Systems

