Abelian Varieties

"如果是勇者辛美尔,他一定会这么做的!"

Contents

1	$Th\epsilon$	e First Properties of Abelian Varieties	1
	1.1	Definition and examples of Abelian Varieties	1
	1.2	Complex abelian varieties	2
2	Picard Groups of Abelian Varieties		
	2.1	Pullback along group operations	2
	2.2	Positivity	4
	2.3	Isogenies and finite subgroups	4
	2.4	Dual abelian varieties	4

1 The First Properties of Abelian Varieties

1.1 Definition and examples of Abelian Varieties

Theorem 1.1 (Rigidity Lemma). Let $\pi_i: X \to Y_i$ be proper morphisms of varieties over a field k for i = 1, 2. Suppose that π_1 is a fibration and π_2 contracts $\pi_1^{-1}(y_0)$. Then there exists a rational map $\varphi: Y_1 \dashrightarrow Y_2$ such that $\pi_2 \circ \varphi = \pi_1$ and φ is well-defined near $Y_1 \setminus \{y_0\}$.

Definition 1.2. Let S be a scheme. An *abelian scheme over* S is a group object in the category \mathbf{Sch}_S such that the structure morphism is proper, smooth and a fibration. If $S = \operatorname{Spec} \mathbf{k}$ for some field \mathbf{k} , then it is called an *abelian variety over* \mathbf{k} .

Example 1.3.

Example 1.4.

Example 1.5.

In the following, we will always assume that A is an abelian variety over a field k of dimension d. Temporarily, we will use the notation e_A , m_A , i_A to denote the identity section, multiplication morphism and inversion morphism of an abelian variety A.

Proposition 1.6. Let A be an abelian variety. Then A is smooth.

Proof. Note that there is an open subset $U \subset A$ which is smooth. Then apply the left translation morphism l_a .

Proposition 1.7. Let A be an abelian variety. Then the cotangent bundle Ω_A is trivial, i.e., $\Omega_A \cong \mathcal{O}_A^{\oplus d}$ where $d = \dim A$.

Date: July 21, 2025, Author: Tianle Yang, My Website

Proof. Yang: To be completed.

Lemma 1.8. Let $p: X \times Y \to Z$ be a proper morphism of varieties over k such that p contracts $\{x_0\} \times Y$ for some point $x_0 \in X$. Then there exists a unique morphism $f: Y \to Z$ such that $p = f \circ p_Y$.

Proof. Yang: To be completed.

Theorem 1.9. Let A and B be abelian varieties. Then any morphism $f: A \to B$ with $f(e_A) = e_B$ is a group homomorphism.

Proof. Yang: To be completed.

Proposition 1.10. Let A be an abelian variety. Then A is an abelian group.

Proof. Note that a group is abelian if and only if the inversion map is a homomorphism of groups. Then the conclusion follows from Theorem 1.9.

From now on, we will use the notation $0, +, [-1]_A, t_a$ to denote the identity section, addition morphism, inversion morphism and translation by a of an abelian variety A. For every $n \in \mathbb{N}^*$, the homomorphism of multiplication by n is defined as

$$[n]_A: A \xrightarrow{\Delta} A \times A \xrightarrow{[n-1]_A \times \mathrm{id}_A} A \times A \xrightarrow{+} A,$$

where Δ is the diagonal morphism.

Proposition 1.11. Let A be an abelian variety over \mathbf{k} and n a positive integer. Then the multiplication by n morphism $[n]_A : A \to A$ is finite surjective and étale.

Proof. Yang: To be completed.

1.2 Complex abelian varieties

Theorem 1.12. Let A be a complex abelian variety. Then A is a complex torus, i.e., there exists a lattice $\Lambda \subset \mathbb{C}^d$ such that $A \cong \mathbb{C}^d/\Lambda$. Conversely, let $A = \mathbb{C}^n/\Lambda$ be a complex torus for some lattice Λ . Then A is a complex abelian variety if and only if Λ Yang: To be completed.

2 Picard Groups of Abelian Varieties

2.1 Pullback along group operations

Theorem 2.1 (Seesaw Theorem). Let A be an abelian variety over \mathbf{k} .

Theorem 2.2 (Theorem of the cube). Let X, Y, Z be completed varieties over \mathbf{k} and \mathcal{L} a line bundle on $X \times Y \times Z$. Suppose that there exist $x \in X(\mathbf{k}), y \in Y(\mathbf{k}), z \in Z(\mathbf{k})$ such that the restriction $\mathcal{L}|_{\{x\} \times Y \times Z}, \mathcal{L}|_{X \times \{y\} \times Z}$ and $\mathcal{L}|_{X \times Y \times \{z\}}$ are trivial. Then \mathcal{L} is trivial.

2

Abelian Varieties

3

Proof. Yang: To be completed.

Remark 2.3. If we assume the existence of the Picard scheme, then the theorem of the cube can be deduced from the Rigidity Lemma. Yang: To be completed.

Proposition 2.4. Let A be an abelian variety over \mathbf{k} , $f, g, h : X \to A$ morphisms from a variety X to A and \mathcal{L} a line bundle on A. Then

$$(f+g+h)^*\mathcal{L} \cong (f+g)^*\mathcal{L} \otimes (f+h)^*\mathcal{L} \otimes (g+h)^*\mathcal{L} \otimes f^*\mathcal{L}^{-1} \otimes g^*\mathcal{L}^{-1} \otimes h^*\mathcal{L}^{-1}.$$

Proof. Yang: To be completed.

Proposition 2.5. Let A be an abelian variety over \mathbf{k} , $n \in \mathbb{Z}$ and \mathcal{L} a line bundle on A. Then we have

$$[n]_A^* \mathcal{L} \cong \mathcal{L}^{\otimes \frac{1}{2}(n^2+n)} \otimes [-1]_A^* \mathcal{L}^{\otimes \frac{1}{2}(n^2-n)}$$

Proof. Yang: To be completed.

Theorem 2.6 (Theorem of the square). Let A be an abelian variety over \mathbf{k} , $x, y \in A(\mathbf{k})$ two points and \mathcal{L} a line bundle on A. Then

$$t_{x+y}^* \mathcal{L} \otimes \mathcal{L} \cong t_x^* \mathcal{L} \otimes t_y^* \mathcal{L}.$$

Remark 2.7. We can define a map

$$\Phi_{\mathcal{L}}: A(\mathbf{k}) \to \operatorname{Pic}(A), \quad x \mapsto t_x^* \mathcal{L} \otimes \mathcal{L}^{-1}.$$

Then theorem of the square implies that $\Phi_{\mathcal{L}}$ is a homomorphism of groups. When we vary \mathcal{L} , the map

$$\Phi_{\square}: \operatorname{Pic}(A) \to \operatorname{Hom}_{\mathbf{Grp}}(A(\mathbf{k}), \operatorname{Pic}(A)), \quad \mathcal{L} \mapsto \Phi_{\mathcal{L}}$$

is a group homomorphism. For any $x \in A(\mathbf{k})$, we have

$$\Phi_{t_x^*\mathcal{L}} = \Phi_{\mathcal{L}}.$$

In the other words,

$$\Phi_{\mathcal{L}}(x) \in \operatorname{Ker} \Phi_{\square}, \quad \forall \mathcal{L} \in \operatorname{Pic}(A), x \in A(\mathbf{k}).$$

Yang: To be completed.

If we assume the scheme structure on $\operatorname{Pic}(A)$, then $\Phi_{\mathcal{L}}$ is a morphism of scheme and factors through $\operatorname{Pic}^0(A)$. Let $K(\mathcal{L}) := \operatorname{Ker} \Phi_{\mathcal{L}}$, then $K(\mathcal{L})$ is a subgroup scheme of A. We give another description of $K(\mathcal{L})$. From this point, we can recover the dual abelian variety $A^{\vee} = \operatorname{Pic}^0(A)$ as the quotient $A/K(\mathcal{L})$. Yang: To be completed.

2.2 Positivity

Theorem 2.8. Let A be an abelian variety over k. Then A is projective.

Proof. Yang: To be completed.

2.3 Isogenies and finite subgroups

Theorem 2.9. Let A be an abelian variety of dimension d over \mathbf{k} . Then the subgroup A[n] of n torsion points is finite and we have

- (a) if n is coprime to char(k), then $A[n] \cong (\mathbb{Z}/n\mathbb{Z})^{2d}$;
- (b) if $n = p^k$ for p = char(k) > 0

Proof. Yang: To be completed.

2.4 Dual abelian varieties

Theorem 2.10. Let A be an abelian variety over k. Then $Pic^0(A)$ has a natural structure of an abelian variety, called the *dual abelian variety* of A, denoted by A^{\vee} .

Proposition 2.11.

4