week 4

Page 1

\$5,4. Enler Equations and Regular Singular Points.

Problem 1. (distinct real roots). $y = x^r$ Find the general solution of the Euler equation $\chi^2 y'' - 4\chi y' + 4y = 0$. $(\chi > 0)$.

Solution. The indicial equation is r(r-1) - 4r + 4 = 0. $\Rightarrow r^2 - 5r + 4 = 0$, (r-1)(r-4) = 0.

So V,=4, V2=1.

Then $y_1 = \chi^{4}$ and $y_2 = \chi$.

The general solution is y = C1x4+ C2X.

Problem 2. (repeated real roots).

Find the general solution of the Euler equation: $\chi^2 y'' - 5 \chi y' + 9 y = 0$. $(\chi > 0)$.

Solution. The indicial equation is $\Gamma(v-1) - 5v + 9 = 0$. $\Rightarrow V^2 - 6v + 9 = 0$, $(v-3)^2 = 0$.

50 V,=V2=3.

Then $y_1 = \chi^3$ and $y_2 = \chi^3 \ln(\chi)$.

The general solution is $y = C_1 x^3 + C_2 x^3 \ln(x)$.

hwd: 3.6 #3,5,7 5.1 #5,7,15,18,28 5.2 #1,2,10

5.346

Problem 3. (complex roots).

Find the general solution of the Euler equation: $2x^2y'' - 4xy' + 6y = 0$. (x>0)

Solution. The indicial equation is 2r(r-1) - 4r + 6 = 0.

 $= > \cdot \qquad \Upsilon^{2} - 3\Upsilon + 3 = 0.$ $\Upsilon_{1/2} = \frac{3 \pm \sqrt{3^{2} - 4 \cdot 3}}{2} = \frac{3}{2} \pm \frac{\sqrt{3}}{2} \bar{\imath}.$

i.e. $\lambda = \frac{3}{2}$ and $\mu = \frac{\sqrt{3}}{2}$.

Then $y_1 = \chi^{\frac{3}{2}} \cos(\frac{1}{2} \ln(x))$, $y_2 = \chi^{\frac{3}{2}} \sin(\frac{1}{2} \ln(x))$.

The general solution is $y = c_1 \chi^{\frac{3}{2}} \log \left(\frac{13}{2} \ln(x_1) + c_2 \chi^{\frac{3}{2}} \sin \left(\frac{13}{2} \ln(x_1) \right) \right)$

Problem 4. (singular points).

Find all singular points and determine which one is regular. $(\chi+2)^2(\chi-1) \ y'' + 3(\chi-1)y' - 2(\chi+2)y = 0.$

Solution. $P(x)=(x+2)^2(x-1)$, Q(x)=3(x-1), P(x)=-2(x+2). Polynomials. Only check P(x)=0. $\Rightarrow x=1$, -2. So $x_0=1$, $x_0=-2$ are singular points.

At X = 1:

 $(x-x_0) \frac{R(x)}{R(x)} = (x-1)\frac{3(x+1)}{(x+2)^2(x-1)} = \frac{3(x-1)}{(x+3)^2}$ analytic at $x_0 \ge 1$ $(x-x_0)^2 \frac{R(x)}{P(x_0)} = (x-1)^2, \frac{-2(x+2)}{(x+2)^2(x-1)} = \frac{-2(x-1)}{(x+2)}$ analytic ad $x_0 \ge 1$. So $x_0 = 1$ is a regular songular point.

At $x_0 = -2$: $(x-x_0)\frac{Q(x)}{P(x)} = (x+2)\cdot\frac{3(x-1)}{(x+2)^2(x-1)} = \frac{3}{x+2}$, not analytic $x_0 = -2$. So $x_0 = -2$ is triegular.

- · Def: A point X. is an ordinary point if P(x.) =0
- · Def: A point xo is a singular point if P(xo)=0
- · Euler equation: x2y"+dxy'+By=0 (x>0)
 - · X.=0 is only singular pt
 - · let y=x' be a sol. Then,

$$\chi^{2}(\Gamma(\Gamma-1)\chi^{-2}) + \lambda \chi(\Gamma\chi^{-1}) + \beta \chi^{2} = 0$$

$$\Rightarrow \chi^{\Gamma} \left[\Gamma(r-1) + \alpha r + \beta \right] = 0$$

$$\Rightarrow \Gamma^2 + (\alpha - 1)\Gamma + \beta = 0$$
 € indicial equation

- · Casel: r. +r, real => y=c, x"+c, x"
- · cased: r= r, real > y= c, x, + c, (hx) x,
- · Case 3: $\Gamma = \chi \pm i\mu \rightarrow \gamma = C_1 \chi^2 \cos(\mu h x) + C_2 \chi^2 \sin(\mu h x)$
- · Def: A singular pt Xo of a DE is called a <u>regular singular</u>

 point if

1)
$$\lim_{x \to x_0} (x-x_0) \frac{Q(x)}{P(x)} \angle \infty$$
 or $(x-x_0) \frac{Q(x)}{P(x)}$ is analytic at $x=x_0$

a)
$$\lim_{x \to x_0} (x - x_0)^2 \frac{R(x)}{P(x)} \le \infty$$
 or $(x - x_0)^2 \frac{R(x)}{P(x)}$ is analytic

for polynomials

in general

a) Let
$$y = \sum_{n=0}^{\infty} a_n x^n$$

Then,
$$y' = \sum_{n=1}^{\infty} n q_n x^{n-1}$$
, $y'' = \sum_{n=2}^{\infty} n(n-1) q_n x^{n-2}$

So,
$$y''-y=\sum_{n=0}^{\infty}n(n-1)\alpha_{n}x^{n-2}-\sum_{n=0}^{\infty}\alpha_{n}x^{n}=0$$

$$\Rightarrow \sum_{n=0}^{\infty} (n+3)(n+1)a_{n+3}x^{n} - \sum_{n=0}^{\infty} a_{n}x^{n} = 0$$

$$\Rightarrow$$
 $\left| Q_{n+2} = \frac{Q_n}{(n+2)(n+1)} \right| \in recurrence relation$

Rewriting this by shifting Indices:
$$Q_n = \frac{Q_{n-2}}{n(n-1)}$$

we can see that the even terms will rely on the previous even term and the odd terms will rely on the previous odd terms. Thus, we will look at each case separately.

$$Q_{2K} = \frac{Q_{2K-2}}{(3\kappa)(3\kappa-1)} = \frac{Q_{2K-4}}{(3\kappa)(3\kappa-1)(3\kappa-3)($$

$$= \cdots = \frac{\alpha_0}{(a\kappa)!} \text{ using } (A)$$

$$Q_{2K+1} = \frac{Q_{2K-1}}{(2K+1)(2K)} = \frac{Q_{2K-3}}{(2K+1)(2K-1)(2K-2)} = \dots = \frac{Q_1}{(2K+1)!}$$

Thus,
$$Q_n = \begin{cases} \frac{Q_0}{n!}, & n = 2k \\ \frac{Q_1}{n!}, & n = 2k+1 \end{cases}$$

$$\frac{1}{\sqrt{3}(x)} = 1 + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \cdots$$

$$\frac{1}{\sqrt{3}(x)} = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \frac{x^{7}}{7!} + \cdots$$

C).
$$W(Y_1,Y_2)(0) = 100$$
 | $0 = 1 \neq 0$ so Linearly independent

d)
$$y_1(x) = 1 + \frac{x^2}{3!} + \dots = \frac{20}{500} \frac{x^{2n}}{(2n)!}$$
 which is the Taylor series of cosh(x)

$$y_2(x) = x + \frac{x^3}{3!} + \dots = \frac{3!}{3!} + \dots = \frac{3!}{n=0} \frac{x^{n+1}}{(2n+1)!}$$
 which is the Taylor Series of Sinh(x)

a) Let
$$y = \frac{3}{5}a_n x^n$$
, $y' = \frac{3}{5}na_n x^{n-1}$, $y'' = \frac{3}{5}n(n-1)a_n x^{n-2}$

$$y'' - xy' - y = \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2} - x \sum_{n=0}^{\infty} n a_n x^{n-1} - \sum_{n=0}^{\infty} a_n x^n = 0$$

$$\Rightarrow \underbrace{\underbrace{\underbrace{\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+3} \times^{n}}_{n=0} - \underbrace{\underbrace{\sum_{n=0}^{\infty} (n+1)a_{n+1} \times^{n+1}}_{n=0} - \underbrace{\underbrace{\sum_{n=0}^{\infty} a_n \times^{n}}_{n=0} = 0}$$

$$\Rightarrow (2)(1)Q_{2} + \sum_{n=1}^{\infty} (n+2)(n+1)Q_{n+2} + \sum_{n=1}^{\infty} -nQ_{n} + \sum_{n=1}^{\infty} -Q_{n} +$$

$$\Rightarrow$$
 $Q_0 = \frac{1}{2}Q_0$ and $(n+2)(n+1)Q_{n+2} - (n+1)Q_n = 0$

Skips by 2 so look at evens and odds:

$$Q^{3\kappa} = \frac{g\kappa}{g^{3\kappa-3}} = \frac{g\kappa/(g\kappa-9)}{g^{3\kappa-4}} = \frac{(g\kappa)(g\kappa-9)(g\kappa-9)(g\kappa-4)}{g^{3\kappa-9}(g\kappa-9)(g$$

$$Q_{2K+1} = \frac{Q_{2K-1}}{(2K+1)(2K-1$$

$$Q_{n} = \begin{cases} \frac{Q_{0}}{2.4.6...n}, & n = 2k \\ \frac{Q_{1}}{3.5.7...n}, & n = 2k+1 \end{cases}$$

b)
$$Y = \sum_{n=0}^{\infty} (a_n x^n) = 0$$
, $+ a_1 x + \frac{a_2}{3} x^3 + \frac{a_3}{3 \cdot 5} x^4 + \frac{a_1}{3 \cdot 5} x^5 + \cdots$

$$= 0$$
, $(1 + \frac{x^3}{3} + \frac{x^4}{3 \cdot 5} + \frac{x^4}{3 \cdot 5} + \frac{x^5}{3 \cdot 5} + \frac{x^7}{3 \cdot 5} + \cdots)$

$$y.(x) = 1 + \frac{x^2}{2} + \frac{x^4}{2.4} + \frac{x^6}{2.4.6} + \cdots$$

$$\gamma_{a}(x) = x + \frac{x^{3}}{3} + \frac{x^{5}}{3.5} + \frac{x^{7}}{3.5.7} + \cdots$$

C)
$$W(\gamma_1, \gamma_2)(0) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \neq 0$$
 so linearly independent

d)
$$\gamma_{\cdot}(x) = 1 + \frac{x^{2}}{3} + \frac{x^{4}}{3 \cdot 4} + \frac{x^{6}}{3 \cdot 4 \cdot 6} + \dots = x^{6} + \frac{x^{2}}{3 \cdot (1)} + \frac{x^{4}}{3 \cdot (1) \cdot 3(3)} + \frac{x^{6}}{3 \cdot (1) \cdot 3(3)} + \dots$$

$$= \times^{\circ} + \frac{3(1)}{2} + \frac{3(1-3)}{2} + \frac{3(1-3)}{2} + \cdots = \frac{3(1)}{2} + \frac{3(1)}{2}$$

$$= \chi + \frac{\partial(1)\chi^{3}}{3!} + \frac{4(\partial \cdot 1)\chi^{5}}{5!} + \frac{8(3 \cdot \partial \cdot 1)\chi^{7}}{7!} + \dots = \frac{8}{5!} \frac{\partial^{2} n! \cdot \chi^{2n+1}}{(2n+1)!}$$