NONSTANDARD SOLUTIONS OF THE YANG-BAXTER EQUATION

ANTHONY GIAQUINTO AND TIMOTHY J. HODGES

ABSTRACT. Explicit solutions of the quantum Yang-Baxter equation are given corresponding to the non-unitary solutions of the classical Yang-Baxter equation for $\mathfrak{sl}(5)$.

1. Introduction

Etingof and Kazhdan recently proved that any finite dimensional Lie bialgebra $\mathfrak g$ may be quantized [3]. That is, there exists a topological Hopf algebra structure on $U(\mathfrak g)[[h]]$ such that the Lie bialgebra structure on $\mathfrak g$ is the one induced on $\mathfrak g$ by passing to the "semi-classical limit". From this they deduced a general procedure for quantizing solutions of the classical Yang-Baxter equation (CYBE). Thus, at least in theory, one can construct solutions of the quantum Yang-Baxter equation from given solutions of the classical Yang-Baxter equation. Unfortunately, their procedure is not easy to implement explicitly, even in small dimensional situations.

In this note we exhibit an explicit answer to this problem for a particularly interesting family of Lie bialgebra structures on $\mathfrak{sl}(5)$. These are the bialgebra structures associated to non-unitary solutions of the CYBE (or equivalently of the modified classical Yang-Baxter equation (MCYBE)) as classified by Belavin and Drinfeld [1]. For each such solution of the CYBE we construct an R-matrix using the Gerstenhaber-Giaquinto-Schack (GGS) conjecture [4]. The YBE was verified in each case using Mathematica.

The GGS conjecture concerns the form of the quantization of such solutions of the CYBE in the case of $\mathfrak{sl}(n)$. The case of $\mathfrak{sl}(5)$ is to some extent the first interesting case. For $\mathfrak{sl}(2)$ there are no solutions of the MCYBE except the standard one. For $\mathfrak{sl}(3)$ the only non-standard solution is that associated to the well-known Cremmer-Gervais quantization and for $\mathfrak{sl}(4)$ the nonstandard solutions are essentially of three types, the Cremmer-Gervais solution and two other fairly simple examples. The corresponding R-matrices for the latter two types can be constructed using other techniques [6]. On the other hand for $\mathfrak{sl}(5)$ there are 13 different types of solutions to the MCYBE and for many of these the corresponding R-matrix was hitherto unknown. The validity of the GGS conjecture for $\mathfrak{sl}(5)$ gives strong evidence that the conjecture should be true for all n.

Date: November 17, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 81R50, 17B37; Secondary 16W30.

Key words and phrases. Quantum group, R-matrix.

The first author was supported in part by a grant from the National Security Agency.

The second author was supported in part by a grant from the National Science Foundation.

2

2. Solutions to the CYBE and quantization

2.1. The Belavin-Drinfeld description of solutions to the CYBE. Let g be a complex simple Lie algebra and let \mathfrak{h} be a Cartan subalgebra. Let Δ be the associated root system and Γ a set of simple roots. A classical r-matrix over \mathfrak{g} is a an element $r \in \mathfrak{g} \otimes \mathfrak{g}$ satisfying the classical Yang-Baxter equation

$$[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0$$

Take an invariant bilinear from on form on \mathfrak{g} and let $t \in \mathfrak{g} \otimes \mathfrak{g}$ be the associated Casimir element. In [1] Belavin and Drinfeld gave the following description of solutions of the CYBE which satisfy $r_{12} + r_{21} = t$. These are the "non-unitary"

Let Γ_1 , Γ_2 be two subsets of Γ and let $\tau:\Gamma_1\to\Gamma_2$ be a bijection satisfying

- 1. $(\tau \alpha, \tau \beta) = (\alpha, \beta)$ for all $\alpha, \beta \in \Gamma$;
- 2. For every $\alpha \in \Gamma_1$, there is a $k \geq 0$ with $\tau^k \alpha \in \Gamma_1$ but $\tau^{k+1} \alpha \notin \Gamma_1$.

The data $(\tau, \Gamma_1, \Gamma_2)$ (or more concisely just τ) is often called a Belavin-Drinfeld triple. Given such a triple τ , an element $r^0 \in \mathfrak{h} \otimes \mathfrak{h}$ is called τ -admissible if

- 1. $r_{12}^0 + r_{21}^0 = t^0$ 2. $(\tau \alpha \otimes 1)r^0 + (1 \otimes \alpha)r^0 = t^0$

where t^0 is the component of t in $\mathfrak{h} \otimes \mathfrak{h}$. A τ -admissible r^0 is necessarily of the form $t^0/2 + \tilde{r}^0$ where $\tilde{r}^0 \in \mathfrak{h} \wedge \mathfrak{h}$. The set of all \tilde{r}^0 forms a linear subvariety of $\mathfrak{h} \wedge \mathfrak{h}$ of dimension $\binom{d}{2}$ where $d = \#(\Gamma - \Gamma_1)$.

Now τ can be extended to an isomorphism of Lie subalgebras $\tau:\mathfrak{g}_1\to\mathfrak{g}_2$ where \mathfrak{g}_i is the Lie subalgebra of \mathfrak{g} associated to Γ_i . Choose $e_{\alpha} \in \mathfrak{g}_{\alpha}$ such that $(e_{\alpha}, e_{-\alpha}) = 1$ and $\tau(e_{\alpha}) = e_{\tau\alpha}$ and define an ordering on Δ by $\alpha \prec \beta$ if $\tau^k \alpha = \beta$ for some positive integer k. View $\mathfrak{g} \wedge \mathfrak{g}$ as a subset of $\mathfrak{g} \otimes \mathfrak{g}$ via the identification $x \wedge y = 1/2(x \otimes y - y \otimes x)$. Then Belavin and Drinfeld showed [1] that

$$r = r^{0} + \sum_{\alpha > 0} e_{-\alpha} \otimes e_{\alpha} + \sum_{\substack{\alpha, \beta > 0 \\ \alpha \prec \beta}} e_{-\alpha} \wedge e_{\beta}$$

is a solution of the Yang-Baxter equation satisfying $r_{12} + r_{21} = t$ and that every such solution is of this form for some choice of \mathfrak{h} , Γ , τ and r^0 .

For any \mathfrak{g} there is the "trivial" triple which has $\Gamma_1 = \Gamma_2 = \emptyset$ and $\tilde{r}^0 \in \mathfrak{h} \wedge \mathfrak{h}$ arbitrary. A particularly interesting triple for $\mathfrak{sl}(n)$ is the "Cremmer-Gervais" triple which has $\Gamma_1 = \{\alpha_2, \alpha_3, \dots, \alpha_{n-1}\}, \quad \Gamma_2 = \{\alpha_1, \alpha_2, \dots, \alpha_{n-2}\}, \text{ and } \tau(\alpha_i) = \alpha_{i-1}.$ In contrast to the trivial triple, there is a unique admissible r^0 for the Cremmer-Gervais triple.

2.2. The Gerstenhaber-Giaquinto-Schack conjecture. The Gerstenhaber-Giaquinto-Schack conjecture is a conjectured form for the quantization of the above classical r-matrices in the case where $\mathfrak{g} = \mathfrak{sl}(n)$, considered as a subset of $M_n(\mathbb{C})$. In this setting, a quantization of a classical r-matrix is an $R \in M_n(\mathbb{C}) \otimes M_n(\mathbb{C})$ which has semi-classical limit r and satisfies the quantum Yang-Baxter equation $R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}.$

Take the form to be the trace form (x,y) = Tr(xy) and let \mathfrak{h} be the Cartan subalgebra consisting of diagonal matrices of trace zero. The standard Cartan-Weyl basis is then $e_{\alpha_i} = e_{i,i+1}$, $e_{-\alpha_i} = e_{i+1,i}$ and $h_{\alpha_i} = [e_{\alpha_i}, e_{-\alpha_i}] = e_{ii} - e_{i+1,i+1}$. Let

au be a Belavin-Drinfeld triple as described above and let $r^0 \in \mathfrak{h} \otimes \mathfrak{h}$ be au-admissible. Set

$$a = \sum_{\substack{\alpha, \beta > 0 \\ \alpha \prec \beta}} e_{-\alpha} \wedge e_{\beta}$$

and

$$c_{+} = \sum_{\alpha > 0} e_{-\alpha} \otimes e_{\alpha}, \quad c = \sum_{\alpha > 0} e_{-\alpha} \wedge e_{\alpha}.$$

Set $\epsilon = -(ac + ca + a^2)$. Now define \tilde{a} by

$$\tilde{a} = \sum a_{jl}^{ik} q^{a_{jl}^{ik} \epsilon_{jl}^{ik}} e_{ij} \otimes e_{kl}$$

where $a = \sum a_{jl}^{ik} e_{ij} \otimes e_{kl}$ and similarly for ϵ . Set $\hat{q} = q - q^{-1}$. The standard R-matrix is then

$$R_s = q^{t^0 + 1/n} + \hat{q}c_+ = q \sum_i e_{ii} \otimes e_{ii} + \sum_{i \neq j} e_{ii} \otimes e_{jj} + \hat{q} \sum_{i > j} e_{ij} \otimes e_{ji}.$$

It is easy to check that R_s satisfies the quantum Yang-Baxter equation and that PR_s satisfies the Hecke relation $(PR_s - q)(PR_s + q^{-1}) = 0$ where P is the permutation matrix.

Gerstenhaber-Giaquinto-Schack Conjecture. Let τ be a Belavin-Drinfeld triple for $\mathfrak{sl}(n)$ and suppose $r^0 = t^0/2 + \tilde{r}^0$ is τ -admissible. Then the matrix

$$R = q^{\tilde{r}^0} (R_s + \hat{q}\,\tilde{a})\,q^{\tilde{r}^0}$$

satisfies the quantum Yang-Baxter equation and PR satisfies the Hecke relation.

Taking τ to be the trivial triple yields the standard R-matrix when $r^0=t^0/2$ and the standard multiparameter R-matrices when r^0 is arbitrary. For use later, let $R(r^0)=q^{\tilde{r}^0}(R_s)q^{\tilde{r}^0}$ denote the standard multiparameter R-matrix. As is well known, if $r^0=t^0/2+\sum_{i< j}c_{ij}\,e_{ii}\wedge e_{jj}$ then

$$R(r^{0}) = q \sum_{i} e_{ii} \otimes e_{ii} + \sum_{i < j} (q^{c_{ij}} e_{ii} \otimes e_{jj} + q^{-c_{ij}} e_{jj} \otimes e_{ii}) + \hat{q} \sum_{i > j} e_{ij} \otimes e_{ji}.$$

For the Cremmer-Gervais triples described above the formula gives the Cremmer-Gervais R-matrices [2].

2.3. The GGS conjecture for $\mathfrak{sl}(5)$. We now consider the explicit form of the R-matrices associated to the Belavin-Drinfeld triples on $\mathfrak{sl}(5)$. According to the GGS Conjecture, each R is of the form $R(r^0) + \hat{q} \, q^{\tilde{r}^0} \tilde{a} q^{\tilde{r}^0}$ for an admissible r^0 . The specific form of $R(r^0)$ has already been exhibited. The other summand, $q^{\tilde{r}^0} \tilde{a} q^{\tilde{r}^0}$, is always a sum of "quantized" wedge products. Specifically, for positive roots α and β and any constant c, set $e_{-\alpha} \wedge_c e_{\beta} = q^{-c} e_{-\alpha} \otimes e_{\beta} - q^c e_{\beta} \otimes e_{-\alpha}$. For all triples, the term $q^{\tilde{r}^0} \tilde{a} q^{\tilde{r}^0}$ is always of the form $\sum_{\alpha,\beta>0} e_{-\alpha} \wedge_{c(\alpha,\beta)} e_{\beta}$ where the constants $c(\alpha,\beta)$ are determined by \tilde{r}^0 and ϵ .

Denote by \mathcal{T} the set of triples on $\mathfrak{sl}(5)$. Notice that if $(\tau, \Gamma_1, \Gamma_2)$ is a triple, then $(\tau^{-1}, \Gamma_2, \Gamma_1)$ is also a triple. Also the graph automorphism of A_4 induces a bijection on the set of triples. Since these two involutions of \mathcal{T} commute, this gives an action of the group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ on \mathcal{T} .

Proposition 2.1. The Gerstenhaber-Giaquinto-Schack conjecture is true for n = 5. The triples below comprise a complete set of representatives from the 13 orbits under the action of $C_2 \times C_2$ on T. For each triple the generic admissible r^0 and the Hecke R-matrix produced by the GGS conjecture are also explicitly given.

1.
$$|\Gamma_1| = 3$$

(a) The "Cremmer-Gervais" triple:
$$\Gamma_1 = \{\alpha_2, \alpha_3, \alpha_4\}, \quad \Gamma_2 = \{\alpha_1, \alpha_2, \alpha_3\}, \quad \tau(\alpha_i) = \alpha_{i-1}.$$

$$r^{0} = t^{0}/2 + \frac{1}{5}(-3h_{\alpha_{1}} \wedge h_{\alpha_{2}} - 4h_{\alpha_{1}} \wedge h_{\alpha_{3}} - 3h_{\alpha_{1}} \wedge h_{\alpha_{4}} - 4h_{\alpha_{2}} \wedge h_{\alpha_{3}} - 4h_{\alpha_{2}} \wedge h_{\alpha_{4}} - 3h_{\alpha_{3}} \wedge h_{\alpha_{4}})$$

$$R = R(r^{0}) + \hat{q} (e_{54} \wedge_{2/5} e_{34} + e_{54} \wedge_{4/5} e_{23} + e_{54} \wedge_{6/5} e_{12} + e_{43} \wedge_{2/5} e_{23}$$

$$+ e_{43} \wedge_{4/5} e_{12} + e_{32} \wedge_{2/5} e_{12} + e_{53} \wedge_{2/5} e_{24} + e_{53} \wedge_{4/5} e_{13}$$

$$+ e_{42} \wedge_{2/5} e_{13} + e_{52} \wedge_{2/5} e_{14})$$

(b) The "generalized Cremmer-Gervais" triple: $\Gamma_1 = \{\alpha_1, \alpha_3, \alpha_4\}, \Gamma_2 = \{\alpha_1, \alpha_2, \alpha_4\}, \quad \tau(\alpha_i) = \alpha_j, \text{ where } j \equiv i+3 \pmod{5}.$

$$r^{0} = t^{0}/2 + \frac{1}{5}(h_{\alpha_{1}} \wedge h_{\alpha_{2}} - 2h_{\alpha_{1}} \wedge h_{\alpha_{3}} + h_{\alpha_{1}} \wedge h_{\alpha_{4}} - 2h_{\alpha_{2}} \wedge h_{\alpha_{3}} - 2h_{\alpha_{2}} \wedge h_{\alpha_{4}} + h_{\alpha_{3}} \wedge h_{\alpha_{4}})$$

$$R = R(r^{0}) + \hat{q} \left(e_{54} \wedge_{2/5} e_{23} + e_{21} \wedge_{4/5} e_{23} + e_{43} \wedge_{6/5} e_{23} + e_{21} \wedge_{2/5} e_{45} + e_{43} \wedge_{4/5} e_{45} + e_{43} \wedge_{2/5} e_{12} + e_{53} \wedge_{2/5} e_{13} \right)$$

2.
$$|\Gamma_1| = 2$$

(a)
$$\Gamma_1 = {\alpha_3, \alpha_4}, \quad \Gamma_2 = {\alpha_1, \alpha_2}, \quad \tau(\alpha_i) = \alpha_{i-2}$$

$$r^0 = t^0/2 + c h_{\alpha_1} \wedge h_{\alpha_2} + ((c-1)/2) h_{\alpha_1} \wedge h_{\alpha_3} + c h_{\alpha_1} \wedge h_{\alpha_4} - ((1+3c)/4) h_{\alpha_2} \wedge h_{\alpha_3} + ((c-1)/2) h_{\alpha_2} \wedge h_{\alpha_4} + c h_{\alpha_3} \wedge h_{\alpha_4}$$

$$R = R(r^{0}) + \hat{q} \left(e_{43} \wedge_{(3+c)/8} e_{12} + e_{54} \wedge_{(3+c)/8} e_{23} + e_{53} \wedge_{(1-c)/2} e_{13} \right)$$

(b)
$$\Gamma_1 = \{\alpha_3, \alpha_4\}, \quad \Gamma_2 = \{\alpha_1, \alpha_2\}, \quad \tau(\alpha_i) = \alpha_{5-i}$$

$$r^0 = t^0/2 + \frac{1}{5}(-c h_{\alpha_1} \wedge h_{\alpha_2} - (1+c) h_{\alpha_1} \wedge h_{\alpha_3} - 3 h_{\alpha_1} \wedge h_{\alpha_4} - 2 h_{\alpha_2} \wedge h_{\alpha_3} + (c-1) h_{\alpha_2} \wedge h_{\alpha_4} + c h_{\alpha_3} \wedge h_{\alpha_4})$$

$$R = R(r^0) + \hat{q} \left(e_{54} \wedge_{3/5} e_{12} + e_{43} \wedge_{4/5} e_{23} + e_{53} \wedge_{-9/5} (-e_{13}) \right)$$

(c)
$$\Gamma_1 = \{\alpha_2, \alpha_4\}, \quad \Gamma_2 = \{\alpha_1, \alpha_3\}, \quad \tau(\alpha_i) = \alpha_{i-1}$$

$$r^0 = t^0/2 + c h_{\alpha_1} \wedge h_{\alpha_2} + (1+3c) h_{\alpha_1} \wedge h_{\alpha_3} + (8c/3+1) h_{\alpha_1} \wedge h_{\alpha_4}$$

$$(1+3c) h_{\alpha_2} \wedge h_{\alpha_3} + (1+3c) h_{\alpha_2} \wedge h_{\alpha_4} + c h_{\alpha_3} \wedge h_{\alpha_4}$$

$$R = R(r^0) + \hat{q} (e_{32} \wedge_{1+c} e_{12} + e_{54} \wedge_{1+c} e_{34})$$

(d)
$$\Gamma_1 = \{\alpha_2, \alpha_4\}, \quad \Gamma_2 = \{\alpha_1, \alpha_3\}, \quad \tau(\alpha_4) = \alpha_1, \quad \tau(\alpha_2) = \alpha_3$$

$$r^0 = t^0/2 + \frac{1}{5}((2-c)h_{\alpha_1} \wedge h_{\alpha_2} + (1-c)h_{\alpha_1} \wedge h_{\alpha_3} - 3h_{\alpha_1} \wedge h_{\alpha_4} + 2h_{\alpha_2} \wedge h_{\alpha_3} + (c-1)h_{\alpha_2} \wedge h_{\alpha_4} + ch_{\alpha_3} \wedge h_{\alpha_4})$$

$$R = R(r^0) + \hat{q}(e_{54} \wedge_{2/5} e_{12} + e_{32} \wedge_{2/5} e_{34})$$

(e)
$$\Gamma_1 = \{\alpha_1, \alpha_3\}, \quad \Gamma_2 = \{\alpha_1, \alpha_4\}, \quad \tau(\alpha_i) = \alpha_j, \text{ where } j \equiv i+3 \pmod{5}.$$

$$r^0 = t^0/2 + ((1-3c)/2) h_{\alpha_1} \wedge h_{\alpha_2} + ((c-1)/2) h_{\alpha_1} \wedge h_{\alpha_3} + c h_{\alpha_1} \wedge h_{\alpha_4} + (3c-1) h_{\alpha_2} \wedge h_{\alpha_3} + (3c-1) h_{\alpha_2} \wedge h_{\alpha_4} + c h_{\alpha_3} \wedge h_{\alpha_4}$$

$$R = R(r^0) + \hat{q} (e_{43} \wedge_{(1+3c)/4} e_{12} + e_{21} \wedge_{(1+3c)/4} e_{45} + e_{43} \wedge_{1-c} e_{45})$$

(f)
$$\Gamma_1 = \{\alpha_3, \alpha_4\}, \quad \Gamma_2 = \{\alpha_1, \alpha_2\}, \quad \tau(\alpha_i) = \alpha_{i-1}$$

$$r^0 = t^0/2 + ((c-3)/6) h_{\alpha_1} \wedge h_{\alpha_2} + ((c-1)/2) h_{\alpha_1} \wedge h_{\alpha_3} + c h_{\alpha_1} \wedge h_{\alpha_4} + ((c-1)/2) h_{\alpha_2} \wedge h_{\alpha_3} + (4c/3) h_{\alpha_2} \wedge h_{\alpha_4} + c h_{\alpha_3} \wedge h_{\alpha_4}$$

$$R = R(r^0) + \hat{q} (e_{32} \wedge_{1/2+c/6} e_{12} + e_{43} \wedge_{1/2+c/6} e_{23} + e_{43} \wedge_{1+c/3} e_{12})$$

3.
$$|\Gamma_1| = 1$$

(a)
$$\Gamma_1 = {\alpha_1}, \quad \Gamma_2 = {\alpha_2}, \quad \tau(\alpha_1) = \alpha_2$$

$$r^0 = t^0/2 + ((1+y)/3) h_{\alpha_1} \wedge h_{\alpha_2} + y h_{\alpha_1} \wedge h_{\alpha_3} + ((3z-x)/3) h_{\alpha_1} \wedge h_{\alpha_4} + y h_{\alpha_2} \wedge h_{\alpha_3} + z h_{\alpha_2} \wedge h_{\alpha_4} + x h_{\alpha_3} \wedge h_{\alpha_4}$$

$$R = R(r^0) + \hat{q} \left(e_{21} \wedge_{(2-y)/3} e_{23} \right)$$

(b)
$$\Gamma_1 = {\alpha_1}, \quad \Gamma_2 = {\alpha_3}, \quad \tau(\alpha_1) = \alpha_3$$

$$r^{0} = t^{0}/2 + ((z - 2y)/2) h_{\alpha_{1}} \wedge h_{\alpha_{2}} + ((1 + x)/2) h_{\alpha_{1}} \wedge h_{\alpha_{3}} + x h_{\alpha_{1}} \wedge h_{\alpha_{4}} + y h_{\alpha_{2}} \wedge h_{\alpha_{3}} + z h_{\alpha_{2}} \wedge h_{\alpha_{4}} + x h_{\alpha_{3}} \wedge h_{\alpha_{4}}$$

$$R = R(r^0) + \hat{q} (e_{21} \wedge_{(z-2)/4} e_{34})$$

(c)
$$\Gamma_1 = {\alpha_1}, \quad \Gamma_2 = {\alpha_4}, \quad \tau(\alpha_1) = \alpha_4$$

$$r^{0} = t^{0}/2 + ((y-2z)/2) h_{\alpha_{1}} \wedge h_{\alpha_{2}} + ((y-2x)/2) h_{\alpha_{1}} \wedge h_{\alpha_{3}} + ((1-x+z)/2) h_{\alpha_{1}} \wedge h_{\alpha_{4}} + y h_{\alpha_{2}} \wedge h_{\alpha_{3}} + z h_{\alpha_{2}} \wedge h_{\alpha_{4}} + x h_{\alpha_{3}} \wedge h_{\alpha_{4}}$$

$$R = R(r^0) + \hat{q} \left(e_{21} \wedge_{(y+2)/4} e_{45} \right)$$

(d)
$$\Gamma_1 = {\{\alpha_2\}}, \quad \Gamma_2 = {\{\alpha_3\}}, \quad \tau(\alpha_2) = \alpha_3$$

$$r^{0} = t^{0}/2 + (-1 + 3y - z) h_{\alpha_{1}} \wedge h_{\alpha_{2}} + (-1 - x + 3y) h_{\alpha_{1}} \wedge h_{\alpha_{3}} + 3(z - x) h_{\alpha_{1}} \wedge h_{\alpha_{4}} + y h_{\alpha_{2}} \wedge h_{\alpha_{3}} + z h_{\alpha_{2}} \wedge h_{\alpha_{4}} + x h_{\alpha_{3}} \wedge h_{\alpha_{4}}$$

$$R = R(r^0) + \hat{q} (e_{32} \wedge_{1-x-y+z} e_{34})$$

4.
$$|\Gamma_1| = 0$$
 The "trivial triple:" $\Gamma_1 = \Gamma_2 = \emptyset$

$$r^0 = t^0/2 + \tilde{r}^0$$
 with $\tilde{r}^0 \in \mathfrak{h} \wedge \mathfrak{h}$ arbitrary.

 $R = R(r^0)$ is the standard multiparameter R-matrix.

Perhaps the most interesting new R-matrix is that associated to type 1(b), the generalized Cremmer-Gervais triple. Like the Cremmer-Gervais triple, its Γ_1 , which must omit at least one root, omits precisely one and thus its r^0 is uniquely determined. Setting $\hat{p} = -\hat{q}$, the matrix form of the generalized Cremmer-Gervais R-matrix is

 $\hat{p}q^{\frac{6}{5}}$ q \hat{q} \hat{q} $\frac{2}{5}$

3. Conclusion

We have constructed here quantizations of each type of non-unitary solution of the classical Yang-Baxter equation for $\mathfrak{sl}(5)$. In so doing we verified in this case the conjecture of Gerstenhaber, Giaquinto and Schack. This gives further evidence that the GGS conjecture should be true for all Belavin-Drinfeld triples on $\mathfrak{sl}(n)$.

One can proceed in the usual way to construct for each of these R, a quantization of $\mathbb{C}[SL(5)]$, the algebra of algebraic functions on $SL_{\mathbb{C}}(5)$. First one constructs the associated bialgebra A(R). Using a case-by-case analysis one can see that the Poincare series of the associated quantum space and exterior algebra are the same as in the commutative case. Thus A(R) contains a group-like q-determinant element D which turns out to be central. Hence one may define a Hopf algebra structure on $\mathbb{C}_R[SL(5)] = A(R)/(D-1)$. Since R is a Hecke symmetry in the sense of Gurevich, it is possible to exploit some Hecke algebra techniques to show that the category of comodules over these Hopf algebras is equivalent as a rigid monoidal category to the category of comodules over $\mathbb{C}_q[SL(5)]$ [5, 7, 8]. Hence these R-matrices do produce genuine nonstandard quantizations of $\mathbb{C}[SL(5)]$.

References

- A. A. Belavin and V. G. Drinfeld, Triangle equations and simple Lie algebras, Mathematical Physics reviews (S. P. Novikov, ed.), Harwood, New York 1984, 93–166.
- [2] E. Cremmer and J.-L. Gervais, The quantum group structure associated with non-linearly extended Virasoro algebras, *Comm. Math. Phys.*, 134 (1990), 619-632.
- [3] P. Etingof and D. Kazhdan, Quantization of Lie bialgebras I, Selecta Math. (N.S.), 2 (1996), 1-41.

- [4] M. Gerstenhaber, A. Giaquinto, and S. D. Schack, Construction of quantum groups from Belavin-Drinfeld infinitesimals, in *Quantum Deformations of Algebras and their Represen*tations, A. Joseph and S. Shnider, eds., Israel Math. Conf. Series 7, Bar-Ilan Univ., Ramat Gan, 1993, 45-64.
- [5] D. I. Gurevich, Algebraic aspects of the quantum Yang-Baxter equation Leningrad Math. J., 2 (1991), 801-828.
- [6] T. J. Hodges, Nonstandard quantum groups associated to certain Belavin-Drinfeld triples, Contemp. Math., to appear.
- [7] Phung Ho Hai, On matrix quantum groups of type A_n , preprint q-alg 9708007.
- [8] D. Kazhdan and H. Wenzl, Reconstructing a monoidal category, Adv. Soviet Math., 16 (1993), 111-136.

Department of Mathematics, Texas A & M University, College Station, TX 77843-3368

 $E ext{-}mail\ address: tonyg@math.tamu.edu}$

University of Cincinnati, Cincinnati, OH 45221-0025, U.S.A.

 $E ext{-}mail\ address: timothy.hodges@uc.edu}$