Лекція 10

Взаємне розташування прямих і площин

10.1. Взаємне розташування площин

Нехай дано дві площини, що задані в прямокутній системі координат своїми загальними рівняннями:

$$\pi_1:A_1x+B_1y+C_1z+D_1=0,\quad \pi_2:A_2x+B_2y+C_2z+D_2=0.$$
 Один з двох кутів між цими площинами (позначимо його через $\mathcal P$) дорівнює куту між їх нормальними векторами $\vec n_1=\left(A_1;B_1;C_1\right)$ і $\vec n_2=\left(A_2;B_2;C_2\right)$ (рис. 10.1), а інший кут дорівнює $\pi-\phi$.

Рис 10.1. Кут між площинами

Тому, згідно з визначенням скалярного добутку,

$$\cos \varphi = \frac{(\vec{n}_1, \vec{n}_2)}{|\vec{n}_1||\vec{n}_2|} = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}.$$

Якщо дві дані площини перпендикулярні, то це еквівалентно тому, що їх нормальні вектори ортогональні. Критерієм ортогональності двох векторів

є рівність нулю їх скалярного добутку. Оскільки скалярний добуток двох векторів, заданих в координатах, обчислюється як сума добутків їх однойменних координат, критерієм перпендикулярності площин π_1 і π_2 є виконання рівності $A_1A_2+B_1B_2+C_1C_2=0$.

Аналогічно дві площини паралельні, якщо їх нормальні вектори колінеарні. Критерієм колінеарності двох векторів є рівність відношень їх координат. Тому умова паралельності двох площин записується у вигляді

подвійного рівності
$$\frac{A_{\rm l}}{A_{\rm 2}} = \frac{B_{\rm l}}{B_{\rm 2}} = \frac{C_{\rm l}}{C_{\rm 2}}.$$

Зауваження. Ця подвійна рівність має сенс і в тому випадку, коли в знаменнику одного з дробів стоїть нуль. Це означає, що і в чисельнику дроба стоїть нуль.

Паралельні площини можуть збігатися або бути різними. Ліві частини загальних рівнянь співпадаючих площин відрізняються на ненульовий числовий множник, і це можна записати як рівність відношень відповідних

коефіцієнтів їх рівнянь:
$$\frac{A_{\!\scriptscriptstyle 1}}{A_{\!\scriptscriptstyle 2}} = \frac{B_{\!\scriptscriptstyle 1}}{B_{\!\scriptscriptstyle 2}} = \frac{C_{\!\scriptscriptstyle 1}}{C_{\!\scriptscriptstyle 2}} = \frac{D_{\!\scriptscriptstyle 1}}{D_{\!\scriptscriptstyle 2}}.$$

Випадок
$$\dfrac{A_{\!_{1}}}{A_{\!_{2}}}=\dfrac{B_{\!_{1}}}{B_{\!_{2}}}=\dfrac{C_{\!_{1}}}{C_{\!_{2}}}
eq \dfrac{D_{\!_{1}}}{D_{\!_{2}}}$$
 відповідає тому, що площини

паралельні, але не збігаються.

10.2. Кут між прямими

Кут між двома прямими можна знайти, використовуючи напрямні вектори прямих. Гострий кут між прямими дорівнює куту між їх напрямними

векторами (рис. 10.2) або ϵ доповнюючим до нього, якщо кут між напрямними векторами тупий. Таким чином, якщо для прямих L_1 і L_2 відомі їхні напрямні вектори \vec{s}_1 і \vec{s}_2 , то гострий кут φ між цими прямими

визначається через скалярний добуток: $cos \phi = \frac{\left| (\vec{s}_1, \vec{s}_2) \right|}{\left| \vec{s}_1 \right| \left| \vec{s}_2 \right|}.$

Рис. 10.2. Кут між прямими

Використовуючи формули для обчислення довжини вектора і скалярного добутку векторів в координатах, отримаємо:

$$\cos\phi = \frac{\left|l_1l_2 + m_1m_2 + n_1n_2\right|}{\sqrt{l_1^2 + m_1^2 + n_1^2}\sqrt{l_2^2 + m_2^2 + n_2^2}}\,,$$
 де $\vec{s}_1 = \left(l_1, m_1, n_1\right)$ і $\vec{s}_2 = \left(l_2, m_2, n_2\right)$.

10.3. Взаємне розташування прямих

Для двох прямих у просторі можливі чотири випадки:

- прямі збігаються;
- прямі паралельні (але не збігаються);
- прямі перетинаються;
- прямі ϵ мимобіжними, тобто не мають спільних точок і непаралельні.

Нехай прямі L_1 і L_2 задані канонічними рівняннями:

$$L_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}, \ L_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}.$$

Для кожної прямої з її канонічних рівнянь відразу визначаємо точку на ній $M_1(x_1;y_1;z_1)\in L_1,\ M_2(x_2;y_2;z_2)\in L_2$ і координати напрямних векторів $\vec{s}_1=(l_1,m_1,n_1)$ для L_1 , і $\vec{s}_2=(l_2,m_2,n_2)$ для L_2 .

Якщо прямі збігаються або паралельні, то їх напрямні вектори \vec{s}_1 і \vec{s}_2 колінеарні, що рівносильно рівності відношень координат цих векторів:

$$\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}.$$

Якщо прямі співпадають, то напрямним векторам колінеарен і вектор

$$\overrightarrow{M_1} \overrightarrow{M_2}$$
: $\frac{x_2 - x_1}{l_1} = \frac{y_2 - y_1}{m_1} = \frac{z_2 - z_1}{n_1}$.

Ця подвійна рівність також означає, що точка M_2 належить прямій L_1 . Отже, умовою співпадіння прямих є виконання останніх двох рівностей одночасно.

Якщо прямі перетинаються або ϵ мимобіжними, то їх напрямні вектори

неколінеарні, тобто умова
$$\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$$
 порушується. Прямі, що

перетинаються належать одній площині і, отже, вектори \vec{s}_1 , \vec{s}_2 і $\overline{M_1M_2}$ є компланарними. Умову компланарності цих векторів можна записати через змішаний добуток, як рівність нулю визначника третього порядку, складеного з їх координат:

$$\Delta = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0.$$

Ця умова виконується в трьох випадках з чотирьох, оскільки при $\Delta \neq 0$ прямі не належать одній площині і тому є мимобіжними.

Якщо дві прямі задані загальними рівняннями:

$$L_{1}: \begin{cases} A_{1}x + B_{1}y + C_{1}z + D_{1} = 0 \\ A_{2}x + B_{2}y + C_{2}z + D_{2} = 0 \end{cases} i L_{2}: \begin{cases} A_{3}x + B_{3}y + C_{3}z + D_{3} = 0 \\ A_{4}x + B_{4}y + C_{4}z + D_{4} = 0 \end{cases}$$

то ми можемо розглянути систему рівнянь:

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \\ A_3 x + B_3 y + C_3 z + D_3 = 0 \\ A_4 x + B_4 y + C_4 z + D_4 = 0 \end{cases}$$

Взаємне розташування прямих характеризується кількістю розв'язків цієї системи. Якщо прямі співпадають, то система має нескінченну кількість розв'язків. Якщо прямі перетинаються, то ця система має єдиний розв'язок. У разі паралельних або мимобіжних прямих розв'язків немає. Останні два випадки можна розділити, якщо знайти напрямні вектори прямих. Для цього достатньо обчислити два векторних добутки $\vec{n}_1 \times \vec{n}_2$ і $\vec{n}_3 \times \vec{n}_4$, де $\vec{n}_i = (A_i; B_i; C_i), \ i = \overline{1 \div 4}$. Якщо отримані вектори колінеарні, то задані прямі паралельні.

◄Приклад 10.1. Дослідити взаємне розташування прямих

$$L_1: \frac{x-1}{1} = \frac{y-2}{3} = \frac{z+1}{-2}$$
 ta $L_2: \begin{cases} x-y-z+1=0\\ x+y+2z-2=0 \end{cases}$

Розв'язання. Напрямний вектор \vec{s}_1 прямої L_1 знаходимо за канонічним рівнянням цієї прямої: $\vec{s}_1 = (1;3;-2)$. Напрямний вектор \vec{s}_2 прямої L_2 обчислюємо за допомогою векторного добутку нормальних векторів

площин, перетином яких вона
$$\epsilon$$
: $\vec{s}_2 = \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & -1 \\ 1 & 1 & 2 \end{vmatrix} = -i - 3j + 2k$.

Оскільки $\vec{S}_1 = -\vec{S}_2$, то прямі паралельні або збігаються. З'ясуємо, яка з цих ситуацій реалізується для даних прямих. Для цього підставимо координати точки $M_0(1;2;-1)\in L_1$ в загальні рівняння прямої L_2 . Для першого з них отримуємо 1=0. Отже, точка не належить прямій L_2 і прямі, що розглядаються, є паралельними.

10.4. Розташування прямої і площини

Взаємне розташування прямої та площини у просторі допускає три випадки. Пряма і площина можуть перетинатися в одній точці. Вони можуть бути паралельними. Нарешті, пряма може належати площині. З'ясування конкретної ситуації для прямої і площини залежить від способу їх задання. Припустимо, що площина π задана загальним рівнянням $\pi: Ax + By + Cz + D = 0$ а пряма L - канонічним рівнянням

$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}.$$

Рівняння прямої дають координати точки $M_0(x_0;y_0;z_0)$ на прямій і координати напрямного вектора $\vec{s}=(l,m,n)$ цієї прямої, а рівняння площини — координати її нормального вектора $\vec{n}=(A,B,C)$.

Якщо пряма L і площина π перетинаються, то напрямний вектор \vec{s} прямої не паралельний площині π . Значить, нормальний вектор \vec{n} площини не ортогональний вектору \vec{s} , тобто їх скалярний добуток не дорівнює нулю. Через коефіцієнти рівнянь прямої і площини ця умова записується у вигляді нерівності: $Al + Bm + Cn \neq 0$.

Якщо пряма і площина паралельні або пряма належить площині, то виконується умова $\vec{s} \perp \vec{n}$, яке в координатах зводиться до рівності Al + Bm + Cn = 0.

Щоб розділити випадки "паралельні" і "пряма належить площині", потрібно перевірити, чи належить точка прямої даній площині. Таким чином, всі три випадки взаємного розташування прямої і площини розділяються шляхом перевірки відповідних умов:

$$L$$
 належить $\pi \iff egin{cases} Ax_0 + Dy_0 + Cz_0 + D = 0, \\ Al + Bm + Cn = 0; \end{cases}$

$$L$$
 паралельна $\pi \iff egin{cases} Ax_0 + Dy_0 + Cz_0 + D
eq 0, \\ Al + Bm + Cn = 0; \end{cases}$

L перетинається з $\pi \iff Al + Bm + Cn \neq 0$.

Якщо пряма L задана своїм загальним рівнянням:

$$L: egin{cases} A_1x + D_1y + C_1z + D_1 = 0 \ A_2x + D_2y + C_2z + D_2 = 0 \end{cases}$$
 , то проаналізувати взаємне

розташування прямої і площини π можна наступним чином. Із загальних рівнянь прямої та загального рівняння площини складемо систему трьох лінійних рівнянь з трьома невідомими:

$$\begin{cases} A_1 x + D_1 y + C_1 z + D_1 = 0 \\ A_2 x + D_2 y + C_2 z + D_2 = 0 \\ A x + D y + C z + D = 0 \end{cases}$$

Якщо ця система не має розв'язків, то пряма паралельна площині. Якщо вона має єдиний розв'язок, то пряма і площина перетинаються в єдиній точці. Останнє рівнозначно тому, що визначник системи відмінний від

нуля:
$$\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A & B & C \end{vmatrix} \neq 0$$
.

Нарешті, якщо система має нескінченну кількість розв'язків, то пряма належить площині.

10.5. Кут між прямою і площиною

Кут
$$\phi$$
 між прямою L : $\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$ і площиною π : $Ax + By + Cz + D = 0$ знаходиться в межах від 0° (в разі паралельності) до 90° (в разі перпендикулярності прямої і площини). Синус цього кута дорівнює $\left|\cos\psi\right|$, де - ψ - кут між напрямним вектором прямої і нормальним вектором площині (рис. 10.2):

$$\sin \varphi = |\cos \psi| = \frac{|Al + Bm + Cn|}{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}}.$$

Звідси

$$\varphi = \arcsin\left(\frac{\left|Al + Bm + Cn\right|}{\sqrt{A^2 + B^2 + C^2}\sqrt{l^2 + m^2 + n^2}}\right).$$

Рис 10.2. Кут між прямою і площиною

Умова перпендикулярності прямої і площини еквівалентна тому, що нормальний вектор площини і напрямний вектор прямої колінеарні. Через координати векторів ця умова записується у вигляді подвійного рівності:

$$\frac{A}{l} = \frac{B}{m} = \frac{C}{n}$$
.

10.6. Відстань до площини і до прямої

10.6.1. Відстань від точки до площини

Розглянемо в просторі деяку площину π і довільну точку M_0 . Виберемо для площини одиничний нормальний вектор \vec{n} з початком в деякій точці

 $M_1\in\pi$, і нехай $d(M_0,\pi)$ - відстань від точки M_0 до площини π . Тоді $d(M_0,\pi)=\left|np_{\vec{n}}\overrightarrow{M_1M_0}\right|=\left|n\overrightarrow{M_1M_0}\right|$, (рис. 10.3), оскільки $|\vec{n}|=1$.

Рис. 10.3. Відстань від точки до площини

Якщо площина π задана в прямокутній системі координат своїм загальним рівнянням $\pi:Ax+By+Cz+D=0$, то її нормальним вектором є вектор з координатами (A;B;C) і за одиничний нормальний вектор можна вибрати $\vec{n}=\frac{\left(A;B;C\right)}{\sqrt{A^2+B^2+C^2}}$ Нехай ($x_0;y_0;z_0$) і ($x_1;y_1;z_1$) - координати

точок \boldsymbol{M}_0 і \boldsymbol{M}_1 . Тоді виконується рівність:

$$Ax_1 + By_1 + Cz_1 + D = 0$$
,

оскільки точка M_1 належить площині, і можна знайти координати вектора $\overrightarrow{M_1M_0}: \ \overrightarrow{M_1M_0} = \big(x_0-x_1;y_0-y_1;z_0-z_1\big).$

Запишемо скалярний добуток $(\vec{n}, \overline{M_1 M_0})$ в координатній формі і зробимо перетворення:

$$d(M,\pi) = \frac{|A(x_0 - x_1) + B(y_0 - y_1) + C(z_0 - z_1)|}{\sqrt{A^2 + B^2 + C^2}} = \frac{|Ax_0 + By_0 + Cz_0 - (Ax_1 + By_1 + Cz_1)|}{\sqrt{A^2 + B^2 + C^2}} = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}},$$

оскільки $Ax_1+By_1+Cz_1=-D$. Отже, щоб обчислити відстань від точки до площини потрібно підставити координати точки в загальне рівняння площини, а потім результат за абсолютною величиною розділити на нормуючий множник, що дорівнює довжині відповідного нормального вектора.

10.6.2. Відстань від точки до прямої

Відстань від точки $M_1(x_1,y_1,z_1)$ до прямої L, заданої канонічним рівнянням: $L: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$ може бути обчислено за допомогою векторного добутку. Дійсно, канонічні рівняння прямої дають нам точку $M_0(x_0;y_0;z_0)$ на прямій і напрямний вектор $\vec{s}=(l,m,n)$ цієї прямої. Побудуємо паралелограм на векторах \vec{s} і $\overline{M_1M_0}$. Тоді відстань від точки M_1 до прямої L дорівнюватиме висоті h паралелограма (рис. 10.4). Отже, потрібна відстань може бути обчислена за формулою:

$$d(M_1, L) = \frac{\left| \overrightarrow{M_1 M_0} \times \overrightarrow{s} \right|}{\left| \overrightarrow{s} \right|},$$

де чисельник ϵ площею цього паралелограма. Використовуючи формули обчислення довжини вектора і векторного добутки векторів через їх координати, отримуємо

$$d(M_1, L) = \frac{\sqrt{\begin{vmatrix} y_1 - y_0 z_1 - z_0 \end{vmatrix}^2 + \begin{vmatrix} x_1 - x_0 z_1 - z_0 \end{vmatrix}^2 + \begin{vmatrix} x_1 - x_0 y_1 - y_0 \end{vmatrix}^2}}{\sqrt{l^2 + m^2 + n^2}}.$$

Рис. 10.4. Відстань від точки до прямої

10.6.3. Відстань між прямими

Про відстань між прямими має сенс говорити, якщо вони паралельні або ϵ мимобіжними.

Щоб знайти відстань між паралельними прямими, достатньо обчислити відстань від довільної точки, наприклад, другий прямий до першої прямої.

Таким чином, якщо дві паралельні прямі задані канонічними рівняннями

$$L_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}, \quad L_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}.$$

то відстань між ними обчислюється за формулою:

$$d(L_{1},L_{2}) = \frac{\sqrt{\begin{vmatrix} y_{2}-y_{1} & z_{2}-z_{1} \end{vmatrix}^{2} + \begin{vmatrix} x_{2}-x_{1} & z_{2}-z_{1} \end{vmatrix}^{2} + \begin{vmatrix} x_{2}-x_{1} & y_{2}-y_{1} \end{vmatrix}^{2}}}{\sqrt{l_{1}^{2}+m_{1}^{2}+n_{1}^{2}}}.$$

Відстань між мимобіжними прямими можна знаходити, використовуючи змішаний добуток. Нехай, як і вище, прямі L_1 і L_2 задані канонічними рівняннями. Оскільки вони мимобіжні, їх напрямні вектори \vec{S}_1 , \vec{S}_2 і вектор $\overline{M_1M_2}$, що з'єднує точки на прямих, некомпланарні. Тому на них можна побудувати паралелепіпед (рис. 10.5). Тоді відстань між прямими дорівнює висоті h цього паралелепіпеда. У свою чергу, висоту паралелепіпеда можна обчислити як відношення об'єму паралелепіпеда до площі його основи. Об'єм паралелепіпеда дорівнює модулю змішаного добутку трьох зазначених векторів, а площа паралелограма в основі паралелепіпеда дорівнює модулю векторного добутку напрямних векторів прямих. В результаті отримуємо формулу для відстані $d(L_1, L_2)$ між

прямими:
$$d(L_1, L_2) = \frac{\left| \vec{s}_1 \cdot \vec{s}_2 \cdot \overline{M_1 M_2} \right|}{\left| \vec{s}_1 \times \vec{s}_2 \right|}$$
.

Рис. 10.5. Відстань між мимобіжними прямими

Запишемо змішаний і векторний добуток в координатах:

$$d(L_1, L_2) = \frac{\begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \end{vmatrix}}{\sqrt{\begin{vmatrix} m_1 & n_1 \\ m_2 & n_2 \end{vmatrix}^2 + \begin{vmatrix} l_1 & n_1 \\ l_2 & n_2 \end{vmatrix}^2 + \begin{vmatrix} l_1 & m_1 \\ l_2 & m_2 \end{vmatrix}^2}}.$$

10.6.4. Відстань між прямою і площиною

Якщо пряма L і площина π перетинаються, то відстань між ними дорівнює нулю. Якщо ж вони паралельні, то відстанню від прямої до площини є відстань від будь-якої точки прямої до площини. Нехай площина задана загальним рівнянням $\pi: Ax + By + Cz + D = 0$, а пряма — канонічним

рівнянням
$$L: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}.$$

Канонічне рівняння прямої дозволяє відразу знайти координати однієї точки на цій прямій: $M_0(x_0,y_0,z_0)$. Тому відстань $d(L,\pi)$ між прямою L і площиною π , якій вона паралельна, дорівнює:

$$d(L,\pi) = d(M_0,\pi) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

10.7. Пучки і зв'язки

10.7.1. Пучок площин

Пучком площин в просторі називають сукупність всіх площин, що містять фіксовану пряму. Пучок однозначно визначається будь-якою парою своїх різних площин. Будь-які дві непаралельних площини однозначно визначають певний пучок площин.

Розглянемо питання про те, як, знаючи рівняння двох різних площин пучка, знайти рівняння інших площин пучка.

Теорема 10.1. Для того, щоб площина належала пучку площин, що заданий парою непаралельних площин

$$\pi_1:A_1x+B_1y+C_1z+D_1=0, \quad \pi_2:A_2x+B_2y+C_2z+D_2=0,$$
 необхідно і достатньо, щоб її загальне рівняння можна було записати у вигляді

$$\alpha(A_1x + B_1y + C_1z + D_1) + \beta(A_2x + B_2y + C_2z + D_2) = 0, \quad \alpha^2 + \beta^2 \neq 0.$$

Доведення. Достатність. Покажемо, що при будь-яких значеннях параметрів α і β , таких, що одночасно не дорівнюють нулю, рівняння $\alpha(A_1x+B_1y+C_1z+D_1)+\beta(A_2x+B_2y+C_2z+D_2)=0 \ \ \text{задає площину}$

 π , що містить загальну пряму площин π_1 і π_2 . Відзначимо, що після приведення подібних доданків отримаємо рівняння

$$(\alpha A_1 + \beta A_2)x + (\alpha B_1 + \beta B_2)y + (\alpha C_1 + \beta C_2)z + (\alpha D_1 + \beta D_2) = 0,$$

що ϵ рівнянням першого порядку, оскільки в ньому хоча б один коефіцієнт при змінних відмінний від нуля. Це рівняння площини.

Залишається перевірити, що ця площина проходить через пряму перетину площин π_1 і π_2 . Але, якщо точка $M_0(x_0;y_0;z_0)$ належить одночасно площинах π_1 і π_2 , то одночасно виконуються співвідношення

$$\begin{cases} A_1 x_0 + B_1 y_0 + C_1 z_0 + D_1 = 0 \\ A_2 x_0 + B_2 y_0 + C_2 z_0 + D_2 = 0 \end{cases}$$

Отже, для координат точки M_0 виконується і це співвідношення , тобто точка M_0 лежить в площині π . Тим самим ми показали, що точки перетину площин π_1 і π_2 лежать на площині π .

Необхідність. Нехай площина $\pi_3: A_3x+B_3y+C_3z+D_3=0$ містить загальну пряму площин π_1 і π_2 . Доведемо, що її рівняння можна записати у вигляді ($\alpha A_1+\beta A_2$) $x+(\alpha B_1+\beta B_2$) $y+(\alpha C_1+\beta C_2)z+(\alpha D_1+\beta D_2)=0$ при деяких значеннях параметрів α і β . Зауважимо, що нормальні вектори $\vec{n}_1, \vec{n}_2, \vec{n}_3$ трьох площин π_1, π_2, π_3 , що мають спільну пряму, лежать в одній площині π_n , що перпендикулярна цій загальній прямій (рис. 10.6). Вектори \vec{n}_1 і \vec{n}_2 неколінеарні, оскільки відповідні їм площини непаралельні. Тому ці два вектори утворюють базис в просторі V_n векторів, паралельних π_n . Це означає, що вектор \vec{n}_3 є лінійною комбінацією векторів \vec{n}_1 і \vec{n}_2 , тобто при деяких значеннях α і β , $\vec{n}_3=\alpha \vec{n}_1+\beta \vec{n}_2$.

Рис. 10.6. Пучок площин

На прямій, що є спільною для трьох площин, зафіксуємо точку $M_0(x_0;y_0;z_0)$ і розглянемо довільну точку M(x;y;z) і вектор $\overrightarrow{M_0M}=\overrightarrow{OM}-\overrightarrow{OM_0}$.

Координати точки \boldsymbol{M}_0 задовольняють рівностям

$$\begin{cases} A_1x_0+B_1y_0+C_1z_0+D_1=0\\ A_2x_0+B_2y_0+C_2z_0+D_2=0 \end{cases}.$$
 За допомогою цих рівностей можна

виразити вільні члени D_1 і D_2 в рівняннях площин через координати точки \boldsymbol{M}_0 і записати векторні рівняння цих площин:

$$\pi_1 : (\vec{n}_1, (\overrightarrow{OM} - \overrightarrow{OM}_0)) = 0, \quad \pi_2 : (\vec{n}_2, (\overrightarrow{OM} - \overrightarrow{OM}_0)) = 0.$$

Але тоді векторне рівняння $n_3(\overrightarrow{OM}-\overrightarrow{OM_0})=0$ площини π_3 перетвориться до співвідношення $(\alpha \vec{n}_1+\beta \vec{n}_2)(\overrightarrow{OM}-\overrightarrow{OM_0})=0$, або $\alpha \Big(\vec{n}_1,(\overrightarrow{OM}-\overrightarrow{OM_0})\Big)+\beta \Big(\vec{n}_2,(\overrightarrow{OM}-\overrightarrow{OM_0})\Big)=0 \ .$

Перетворюючи векторні рівняння площин π_1 і π_2 до їх загальних рівнянь, отримуємо рівняння виду

$$(\alpha A_1 + \beta A_2)x + (\alpha B_1 + \beta B_2)y + (\alpha C_1 + \beta C_2)z + (\alpha D_1 + \beta D_2) = 0,$$
 тобто площина π_3 пучка описується цим рівнянням. •

10.7.2. Пучок прямих на площині

Аналогічно пучку площин в просторі розглядають пучок прямих на площині. **Пучком прямих** на площині називають сукупність всіх прямих, що проходять через фіксовану точку площині. Пучок однозначно визначається будь-якою парою своїх прямих. Для пучка прямих на площині справедливий наступний аналог теореми 9.1.

Теорема 10.2. Для того щоб пряма входила в пучок прямих, який визначається парою непаралельних прямих

$$L_1: a_1x + b_1y + c_1 = 0$$
, $L_2: a_2x + b_2y + c_2 = 0$,

необхідно і достатньо, щоб її загальне рівняння можна було записати у вигляді $\alpha(a_1x+b_1y+c_1)+\beta(a_2x+b_2y+c_2)=0$, $\alpha^2+\beta^2\neq 0$.

10.7.3. Зв'язка площин

Зв'язкою площин називають сукупність всіх площин в просторі з однією спільною точкою. Зв'язка площин однозначно визначається будь-якою трійкою своїх площин, що не належать одному пучку площин. Дійсно, дві різні площини зв'язки перетинаються по прямій і визначають тим самим пучок площин.

Якщо третя площина зв'язки не належить цьому пучку, то у таких трьох площин ϵ єдина спільна точка, яка визначає зв'язку площин.

Три різні площини можуть не мати спільних точок (рис. 10.7, а), мати їх нескінченно багато (рис. 10.7, б) або мати єдину спільну точку. В перших двох випадках нормальні вектори площин компланарні. Якщо ж нормальні вектори трьох площин некомпланарні, то про такі площини кажуть, що вони знаходяться в загальному положенні. Три площини, що знаходяться в загальному положенні, перетинаються в єдиній точці і однозначно визначають зв'язку площин. Це випливає з того, що умова некомпланарних

нормальних векторів площин $\pi_i: A_i x + B_i y + C_i z + D_i = 0$, i = 1, 2, 3, в

координатному записі означає, що визначник
$$egin{array}{c|c} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \\ \end{array}
eq 0$$

і це призводить до існування єдиного розв'язку системи трьох лінійних

рівнянь з трьома невідомими
$$\begin{cases} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0\\ A_3x+B_3y+C_3z+D_3=0 \end{cases}.$$

Рис 10.7. Зв'язка площин

Теорема 10.3. Для того щоб площина входила в зв'язку площин, яка визначається трійкою площин $\pi_i:A_ix+B_iy+C_iz+D_i=0,\ i=1,2,3$, загального положення, необхідно і достатньо, щоб її загальне рівняння можна було записати у вигляді

$$\alpha(A_1x+B_1y+C_1z+D_1)+\beta(A_2x+B_2y+C_2z+D_2)+\gamma(A_3x+B_3y+C_3z+D_3)=0,$$
 де $\alpha^2+\beta^2+\gamma^2\sqrt{a^2+b^2}\neq 0$.

Доведення аналогічне доведенню теореми 10.1. Різниця полягає лише в тому, що в разі пучка площин нормальні вектори двох непаралельних

площин утворюють базис в V_2 , а нормальні вектори трьох площин загального положення утворюють базис в V_3 . ullet

Якщо дана точка $M_0(x_0,y_0,z_0)$, то зв'язку площин, що проходять через цю точку, легко визначити, розглянувши три площини, паралельні координатним, тобто $x=x_0,\ y=y_0,\ z=z_0$. За теоремою 10.3 отримаємо рівняння зв'язки: $\alpha(x-x_0)+\beta(y-y_0)+\gamma(z-z_0)=0$.

Коефіцієнти α , β і γ , (координати нормального вектора площини в базисі з трьох нормальних векторів обраних площин), в даному випадку є його координатами в прямокутній системі координат.

Додаток. Пряма і площина у просторі. Розв'язання задач.

Задача 1. Знайти рівняння площини, що ділить двогранний кут між площинами 2x + y - z - 4 = 0 *і* x - 2y + z + 1 = 0 навпіл.

Розв'язання. Шукана площина — це геометричне місце точок, що рівновіддалені від двох заданих площин. Нехай точка (x,y,z) належить шуканій площині, тоді відстані від цієї точки до двох заданих площин

рівні, отже:
$$\frac{\left|2x+y-z-4\right|}{\sqrt{6}} = \frac{\left|x-2y+z+1\right|}{\sqrt{6}}$$
.

$$\begin{bmatrix} 2x + y - z - 4 = x - 2y + z + 1 \\ 2x + y - z - 4 = -x + 2y - z - 1 \end{cases} \Leftrightarrow \begin{bmatrix} x + 3y - 2z - 5 = 0 \\ 3x - y - 3 = 0 \end{bmatrix}$$
. Отримані

рівняння є рівняннями двох біссекторних взаємоперпендикулярних плошин.

Відповідь: x + 3y - 2z - 5 = 0 *i* 3x - y - 3 = 0.

Задача 2. Написати рівняння площини, що рівновіддалена від двох заданих площин x-2y+4z+1=0 i 4x-8y+16z+57=0.

Розв'язання. Шукана площина — це геометричне місце точок, що рівновіддалені від двох заданих паралельних площин. Нехай точка (x,y,z) належить шуканій площині, тоді відстані від цієї точки до двох заданих

площин рівні, отже:
$$\frac{\left|x-2y+4z+1\right|}{\sqrt{21}} = \frac{\left|4x-8y+16z+57\right|}{4\sqrt{21}}.$$

$$\begin{bmatrix} 4x - 8y + 16z + 4 = 4x - 8y + 16z + 57 \\ 4x - 8y + 16z + 4 = -4x + 8y - 16z - 57 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \emptyset \\ 8x - 16y + 32z + 61 = 0 \end{bmatrix}.$$

Отримане рівняння ϵ рівнянням площини, що паралельна двом заданим і ділить відстань між ними навпіл.

Відповідь: 8x - 16y + 32z + 61 = 0.

Задача 3. Записати рівняння площини, що проходить через точку (2,1,-1) і відтинає від координатного кута піраміду з об'ємом 12 од. куб. Відрізки, що відтинаються на осях Oy і Oz однакові.

Розв'язання. Будемо шукати рівняння площини, як рівняння площини у

відрізках: $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. Але, за умовою, b = c. Підставивши координати

точки отримаємо рівняння: $\frac{2}{a} + \frac{1}{b} - \frac{1}{b} = 1 \Rightarrow a = 2$. За формулою об'єму

піраміди:
$$12 = \frac{1}{6} \cdot b^2 \cdot a \Rightarrow \begin{bmatrix} b = 3 \\ b = -3 \end{bmatrix}$$
. Шукані рівняння: $\frac{x}{2} + \frac{y}{3} + \frac{z}{3} = 1$ і

$$\frac{x}{2} - \frac{y}{3} - \frac{z}{3} = 1$$

Відповідь:
$$\frac{x}{2} + \frac{y}{3} + \frac{z}{3} = 1$$
 або $\frac{x}{2} - \frac{y}{3} - \frac{z}{3} = 1$.

Задача 4. Знайти рівняння площини, що рівновіддалена від двох заданих точок M(0,-1,4) і N(2,2,-2) і проходить через точку A(3,0,-4) .

Розв'язання. Будемо шукати рівняння площини в загальному вигляді: Ax + By + Cz + D = 0. Вектор $\overrightarrow{MN} = (2,3,-6)$ буде вектором нормалі до

шуканої площини. Тоді 2x + 3y - 6z + D = 0. Підставивши координати точки A, знайдемо D: $2 \cdot 3 + 3 \cdot 0 - 6 \cdot (-4) + D = 0 \Rightarrow D = -30$.

Відповідь: 2x + 3y - 6z - 30 = 0.

Задача 5. Записати рівняння площини, що проходить через задані пряму $\frac{x}{-3} = \frac{y-2}{1} = \frac{z+1}{2}$ і точку (0,1,5).

Розв'язання. Вектором нормалі шуканої площини буде вектор векторного добутку напрямного вектора прямої і вектора \overrightarrow{MN} , де M(0,2,-1) — точка, що належить прямій, а N(0,1,5) — задана точка. $\overrightarrow{MN} = (0,-1,6)$.

$$\vec{n} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -3 & 1 & 2 \\ 0 & -1 & 6 \end{vmatrix} = 8\vec{i} + 18\vec{j} + 3\vec{k} = (8,18,3)$$
 Рівняння площини набуде

вигляду: 8x + 18y + 3z + D = 0. Підставивши координати точки N(0,1,5), знайдемо D=-33.

Відповідь: 8x + 18y + 3z - 33 = 0.

Задача 6. Записати рівняння площини, що проходить через прямі

$$\frac{x}{2} = \frac{y+2}{-3} = \frac{z-1}{0}$$
 i $\frac{x+1}{1} = \frac{y-1}{-2} = \frac{z+3}{2}$.

Розв'язання. Перевіримо, чи можна провести через ці прямі площину:

напрямні вектори площин і вектор $\overrightarrow{M_1M_2}$, (де $M_1(0,-2,1)$ і $M_2(-1,1,-3)$

- точки, що належать прямим) повинні бути компланарними. Умова

компланарності векторів:
$$\begin{vmatrix} 2 & -3 & 0 \\ 1 & -2 & 2 \\ -1 & 3 & -4 \end{vmatrix} = -2 \neq 0.$$

Отже, прямі мимобіжні і площину провести неможливо.

Відповідь: такої площини не існує.

Задача 7. Записати рівняння площини, що проходить через початок

координат ортогонально прямій
$$\begin{cases} y-3z=0\\ x+2y+z=0 \end{cases}.$$

Розв'язання. Запишемо канонічне рівняння прямої:

$$\begin{cases} \frac{y}{3} = z \\ \frac{x}{-5} = z \end{cases} \Leftrightarrow \frac{x}{-5} = \frac{y}{3} = \frac{z}{1}. \text{ Отже, пряма проходить через початок}$$

координат, а її напрямний вектор - це вектор нормалі шуканої площини. -5x + 3y + z = 0.

Відповідь: -5x + 3y + z = 0.

Задача 8. Знайти рівняння прямої, що проходить через точку M(3,-2,-4) паралельно площині 3x-2y-3z-7=0 і такої, що перетинає пряму

$$\frac{x-2}{3} = \frac{y+4}{-2} = \frac{z-1}{2}.$$

Розв'язання. Рівняння прямої будемо шукати в канонічному вигляді:

$$\frac{x-3}{m} = \frac{y+2}{n} = \frac{z+4}{p}$$
. Напрямний вектор шуканої прямої і вектор нормалі

площини ортогональні за умовою: 3m - 2n - 3p = 0. Умова перетину

прямих:
$$\begin{vmatrix} 1 & 2 & -5 \\ 3 & -2 & 2 \\ m & n & p \end{vmatrix} = -6m - 17n - 8p = 0.$$

Маємо систему:
$$\begin{cases} 3m - 2n - 3p = 0 \\ 6m + 17n + 8p = 0 \end{cases} \Leftrightarrow m = \frac{5}{9}p; \ n = -\frac{6}{9}p.$$

$$\frac{x-3}{\frac{5}{9}p} = \frac{y+2}{-\frac{6}{9}p} = \frac{z+4}{p} \Leftrightarrow \frac{x-3}{5} = \frac{y+2}{-6} = \frac{z+4}{9}.$$

Відповідь:
$$\frac{x-3}{5} = \frac{y+2}{-6} = \frac{z+4}{9}$$
.