## Modelo predictivo del crecimiento poblacional Equipo #2

Estimación de la capacidad de carga

September 12, 2024

### **Integrantes:**

Guillermo Cepero García Luis Ernesto Serras Rimada Miguel Vadim Vilariño Pedraza



September 12, 2024

## Modelo de crecimiento poblacional

El análisis del crecimiento poblacional reviste gran importancia debido a su relevancia en diversos campos como la economía, demografía, epidemiología y la ecología. Resulta útil en múltiples ámbitos, incluyendo estudios demográficos, planificación urbana y análisis de recursos naturales.

## **Objetivos**

### Objetivos principales:

- Estimar el numero maximo de personas que pueden ser sostenidamente alojadas en un area geografica determinada y evaluar el equilibrio entre la poblacion existente y la capacidad de carga ambiental
- Contribuir al diseno de estrategias de planifi- cacion urbana y rural que equilibren el crecimiento economico con la proteccion del medio ambiente y los servicios basicos.
- Permitir evaluar el impacto potencial del cambio climatico y otros factores externos en la capacidad de carga poblacional a largo plazo.
- Contribuir al diseno de programas de educacion ambiental y concientizacion sobre las implica- ciones del crecimiento poblacional.
- Ayudar a establecer limites razonables para el crecimiento demografico, evitando excederse en la explotacion de recursos naturales y servicios puublicos.

## Modelo logístico

Se plantea trabajar el asunto con un modelo matemático que nos pueda conducir a dicha prediccion, y se considera el **modelo del crecimiento logístico**, que es solución de la ecuación diferencial que describe cómo la tasa de crecimiento de la población (dP/dt) cambia con el tamaño de la población (P(t))

$$\frac{dP}{dt} = r \cdot P(t)(1 - \frac{P(t)}{K})$$

### donde se tiene que:

- (P(t)) es la población en función del tiempo (t).
- (r) es la tasa de crecimiento intrínseca de la población.
- (K) es la capacidad de carga o tamaño máximo sostenible de la población.

#### Parámetros a Estimar:

- (r): Tasa de crecimiento intrínseca de la población.
- (K): Capacidad de carga de la población.

## Modelo del crecimiento logístico

La ecuación del modelo logístico del crecimiento poblacional tiene la forma:

$$P(t) = \frac{K}{1 + Ae^{-rt}}$$

La ecuación para encontrar (A) es:

$$P(0) = \frac{K}{1 + Ae^0}$$

(A) es una constante que depende de las condiciones iniciales de la población. Esta función muestra claramente el punto de inflexión, donde la tasa de crecimiento cambia de positiva a negativa, indicando que la población ha alcanzado su capacidad de carga y está comenzando a estabilizarse.



### curvefit

Se utilizaron los datos históricos de densidad poblacional desde 1980 hasta 2020 publicados en las series estadisticas del sitio web de la ONEI. Y se desean ajustar los parámetros de la capacidad de carga(K) y la tasa (r). Para ello se decide utilizar la aproximación por mínimos cuadrados por medio de la función curvefit del módulo scipy.optimize en Python, cuya función matemáticamente se puede representar como:

Modelo predictivo del crecimiento poblacional

Minimizar:  $\sum_{i=1}^{N} (y_i - f(x_i, \theta))^2$ 

### curve-fit

#### Toma los parámetros:

- f: es la función modelo para la optimización.
- xdata: son los valores independientes (el tiempo  $(t \text{ como } x_i)$ ).
- ydata: son los valores dependientes (los valores de densidad poblacional en función del tiempo (P como y<sub>i</sub>)).
- p0: Estimación inicial.

### Y procede de la forma:

$$min[\sum_{i=1}^{N}(P-(\frac{K}{(P(0)-1)}e^{-rt}))^{2}]^{\frac{1}{2}}$$

La función curvefit intentará minimizar la suma de los cuadrados de los residuales para encontrar los valores óptimos de K y r que minimizan esta expresión.

### Preview de los datos utilizados

|  |    | Años | Total    | 16 | 1996 | 10983326 | 33 | 2013 | 11210064 |
|--|----|------|----------|----|------|----------|----|------|----------|
|  |    | 1980 | 9693907  | 17 | 1997 | 11033993 | 34 | 2014 | 11238317 |
|  |    | 1981 | 9753243  | 18 | 1998 | 11076817 | 35 | 2015 | 11239004 |
|  | 2  | 1982 | 9844836  | 19 | 1999 | 11113128 | 36 | 2016 | 11239224 |
|  | 3  | 1983 | 9938760  | 20 | 2000 | 11146203 | 37 | 2017 | 11221060 |
|  | 4  | 1984 | 10032721 | 21 | 2001 | 11168526 | 38 | 2018 | 11209628 |
|  |    | 1985 | 10138642 | 22 | 2002 | 11200388 | 39 | 2019 | 11193470 |
|  | 6  | 1986 | 10228330 | 23 | 2003 | 11215388 | 40 | 2020 | 11181595 |
|  | 7  | 1987 | 10334993 | 24 | 2004 | 11217590 |    |      |          |
|  | 8  | 1988 | 10443789 | 25 | 2005 | 11218623 |    |      |          |
|  | 9  | 1989 | 10548347 | 26 | 2006 | 11202632 |    |      |          |
|  | 10 | 1990 | 10662148 | 27 | 2007 | 11188028 |    |      |          |
|  | 11 | 1991 | 10756829 | 28 | 2008 | 11173996 |    |      |          |
|  | 12 | 1992 | 10829320 | 29 | 2009 | 11174952 |    |      |          |
|  | 13 | 1993 | 10895987 | 30 | 2010 | 11167934 |    |      |          |
|  | 14 | 1994 | 10912924 | 31 | 2011 | 11175423 |    |      |          |
|  | 15 | 1995 | 10947119 | 32 | 2012 | 11173151 |    |      |          |



### Modelo sin intervalos



### Predicción del modelo sin intervalos



## DataFrame para intervalos de 5 años





## Predicción para intervalos de 5 años



### DataFrame para intervalos de 8 años





## Predicción para intervalos de 8 años



### DataFrame para intervalos de 10 años



## Predicción para intervalos de 10 años



### Recomendaciones

- Mejorar el Modelo Matemático
- Ampliar la Base de Datos:
- Validar y Refinar el Modelo
- Investigar Factores Externos
- Divulgar los Resultados

Estas recomendaciones buscan fortalecer el modelo actual, ampliar su alcance y utilidad, y contribuir al conocimiento demográfico de Cuba, teniendo en cuenta las particularidades observadas en el análisis inicial.



# Muchas gracias:)

