

eep Learning

with

François Chollet with J. J. Allaire

SAMPLE CHAPTER

Deep Learning with R

by François Chollet with J.J. Allair

Chapter 2

brief contents

PART 1	FUNDAMENTALS OF DEEP LEARNING
	 What is deep learning? 3 Before we begin: the mathematical building blocks of neural networks 24 Getting started with neural networks 50 Fundamentals of machine learning 84
PART 2	DEEP LEARNING IN PRACTICE
	 Deep learning for computer vision 111 Deep learning for text and sequences 164 Advanced deep-learning best practices 218 Generative deep learning 250 Conclusions 293

Before we begin: the mathematical building blocks of neural networks

This chapter covers

- A first example of a neural network
- Tensors and tensor operations
- How neural networks learn via backpropagation and gradient descent

Understanding deep learning requires familiarity with many simple mathematical concepts: tensors, tensor operations, differentiation, gradient descent, and so on. Our goal in this chapter will be to build your intuition about these notions without getting overly technical. In particular, we'll steer away from mathematical notation, which can be off-putting for those without any mathematics background and isn't strictly necessary to explain things well.

To add some context for tensors and gradient descent, we'll begin the chapter with a practical example of a neural network. Then we'll go over every new

concept that's been introduced, point by point. Keep in mind that these concepts will be essential for you to understand the practical examples that will come in the following chapters!

After reading this chapter, you'll have an intuitive understanding of how neural networks work, and you'll be able to move on to practical applications—which will start with chapter 3.

2.1 A first look at a neural network

Let's look at a concrete example of a neural network that uses the Keras R package to learn to classify handwritten digits. Unless you already have experience with Keras or similar libraries, you won't understand everything about this first example right away. You probably haven't even installed Keras yet; that's fine. In the next chapter, we'll review each element in the example and explain them in detail. So don't worry if some steps seem arbitrary or look like magic to you! We've got to start somewhere.

The problem we're trying to solve here is to classify grayscale images of handwritten digits (28 × 28 pixels) into their 10 categories (0 through 9). We'll use the MNIST dataset, a classic in the machine-learning community, which has been around almost as long as the field itself and has been intensively studied. It's a set of 60,000 training images, plus 10,000 test images, assembled by the National Institute of Standards and Technology (the NIST in MNIST) in the 1980s. You can think of "solving" MNIST as the "hello world" of deep learning—it's what you do to verify that your algorithms are working as expected. As you become a machine-learning practitioner, you'll see MNIST come up over and over again in scientific papers, blog posts, and so on. You can see some MNIST samples in figure 2.1.

Classes and labels

In machine learning, a category in a classification problem is called a class. Data points are called samples. The class associated with a specific sample is called a label.

You don't need to try to reproduce this example on your machine just now. If you wish to, you'll first need to set up Keras, which is covered in section 3.3.

The MNIST dataset comes preloaded in Keras, in the form of train and test lists, each of which includes a set of images (x) and associated labels (y).

Listing 2.1 Loading the MNIST dataset in Keras

```
library(keras)
mnist <- dataset_mnist()
train_images <- mnist$train$x
train_labels <- mnist$train$y
test_images <- mnist$test$x
test_labels <- mnist$test$y</pre>
```

train_images and train_labels form the *training set*: the data from which the model will learn. The model will then be tested on the *test set*: test_images and test_labels. The images are encoded as 3D arrays, and the labels are a 1D array of digits, ranging from 0 to 9. The images and labels have a one-to-one correspondence.

The R str() function is a convenient way to get a quick glimpse at the structure of an array. Let's use it to look at the training data:

```
> str(train_images)
  int [1:60000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0 0 ...
> str(train_labels)
  int [1:60000(1d)] 5 0 4 1 9 2 1 3 1 4 ...
And here's the test data:
> str(test_images)
  int [1:10000, 1:28, 1:28] 0 0 0 0 0 0 0 0 0 0 ...
> str(test_labels)
  int [1:10000(1d)] 7 2 1 0 4 1 4 9 5 9 ...
```

The workflow will be as follows: First, we'll feed the neural network the training data, train_images and train_labels. The network will then learn to associate images and labels. Finally, we'll ask the network to produce predictions for test_images, and we'll verify whether these predictions match the labels from test_labels.

Let's build the network—again, remember that you aren't expected to understand everything about this example yet.

Listing 2.2 The network architecture

```
network <- keras_model_sequential() %>%
  layer_dense(units = 512, activation = "relu", input_shape = c(28 * 28)) %>%
  layer_dense(units = 10, activation = "softmax")
```

If you aren't familiar with the pipe operator (%>%) used to invoke methods on the network object, fear not: we'll cover this when we review this example again at the end of this chapter. For now, read it in your head as "then": start with a model, then add a layer, then add another layer, and so on.

The core building block of neural networks is the *layer*, a data-processing module that you can think of as a filter for data. Some data goes in, and it comes out in a more useful form. Specifically, layers extract *representations* out of the data fed into them—hopefully, representations that are more meaningful for the problem at hand. Most of

deep learning consists of chaining together simple layers that will implement a form of progressive *data distillation*. A deep-learning model is like a sieve for data processing, made of a succession of increasingly refined data filters—the layers.

Here, our network consists of a sequence of two layers, which are densely connected (also called *fully connected*) neural layers. The second (and last) layer is a 10-way *softmax* layer, which means it will return an array of 10 probability scores (summing to 1). Each score will be the probability that the current digit image belongs to one of our 10 digit classes.

To make the network ready for training, we need to pick three more things, as part of the *compilation* step:

- *A loss function*—How the network will be able to measure its performance on the training data, and thus how it will be able to steer itself in the right direction.
- *An optimizer*—The mechanism through which the network will update itself based on the data it sees and its loss function.
- Metrics to monitor during training and testing—Here, we'll only care about accuracy (the fraction of the images that were correctly classified).

The exact purpose of the loss function and the optimizer will be made clear throughout the next two chapters.

Listing 2.3 The compilation step

```
network %>% compile(
  optimizer = "rmsprop",
  loss = "categorical_crossentropy",
  metrics = c("accuracy")
)
```

You'll notice that the compile() function modifies the network in place (rather than returning a new network object, as is more conventional in R). We'll explain why when we revisit the example later in the chapter.

Before training, we'll preprocess the data by reshaping it into the shape the network expects and scaling it so that all values are in the [0, 1] interval. Previously, our training images, for instance, were stored in an array of shape (60000, 28, 28) of type integer with values in the [0, 255] interval. We transform it into a double array of shape (60000, 28 * 28) with values between 0 and 1.

Listing 2.4 Preparing the image data

```
train_images <- array_reshape(train_images, c(60000, 28 * 28))
train_images <- train_images / 255
test_images <- array_reshape(test_images, c(10000, 28 * 28))
test_images <- test_images / 255</pre>
```

Note that we use the array_reshape() function rather than the dim<-() function to reshape the array. We'll explain why later, when we talk about tensor reshaping.

We also need to categorically encode the labels, a step that's explained in chapter 3.

Listing 2.5 Preparing the labels

```
train_labels <- to_categorical(train_labels)
test_labels <- to_categorical(test_labels)</pre>
```

We're now ready to train the network, which in Keras is done via a call to the network's fit method—we *fit* the model to its training data:

```
> network %>% fit(train_images, train_labels, epochs = 5, batch_size = 128)
Epoch 1/5
60000/60000 [==============] - 9s - loss: 0.2575 -
    acc: 0.9255
Epoch 2/5
60000/60000 [============== ] - 10s - loss: 0.1038 -
    acc: 0.9687
Epoch 3/5
60000/60000 [============ ] - 10s - loss: 0.0688 -
    acc: 0.9793
Epoch 4/5
60000/60000 [============== ] - 9s - loss: 0.0496 -
    acc: 0.9855
Epoch 5/5
60000/60000 [============== ] - 9s - loss: 0.0372 -
    acc: 0.9883
```

Two quantities are displayed during training: the loss of the network over the training data, and the accuracy of the network over the training data.

We quickly reach an accuracy of 0.989 (98.9%) on the training data. Now let's check that the model performs well on the test set, too:

```
> metrics <- network %>% evaluate(test_images, test_labels)
> metrics
$loss
[1] 0.07519608
$acc
[1] 0.9785
```

The test-set accuracy turns out to be 97.8%—that's quite a bit lower than the training set accuracy. This gap between training accuracy and test accuracy is an example of *overfitting*: the fact that machine-learning models tend to perform worse on new data than on their training data. Overfitting is a central topic in chapter 3.

Let's generate predictions for the first 10 samples of the test set:

```
> network %>% predict_classes(test_images[1:10,])
[1] 7 2 1 0 4 1 4 9 5 9
```

This concludes our first example—you just saw how you can build and train a neural network to classify handwritten digits in fewer than 20 lines of R code. In the next chapter, we'll go into detail about every moving piece we just previewed and clarify what's going on behind the scenes. You'll learn about tensors, the data-storing objects going into the network; tensor operations, which layers are made of; and gradient descent, which allows your network to learn from its training examples.

2.2 Data representations for neural networks

In the previous example, we started from data stored in multidimensional arrays, also called *tensors*. In general, all current machine-learning systems use tensors as their basic data structure. Tensors are fundamental to the field—so fundamental that Google's TensorFlow was named after them. So what's a tensor?

Tensors are a generalization of vectors and matrices to an arbitrary number of dimensions (note that in the context of tensors, a *dimension* is often called an *axis*). In R, vectors are used to create and manipulate 1D tensors, and matrices are used for 2D tensors. For higher-level dimensions, array objects (which support any number of dimensions) are used.

2.2.1 Scalars (OD tensors)

A tensor that contains only one number is called a *scalar* (or *scalar tensor*, or *zero-dimensional tensor*, or *OD tensor*). R doesn't have a data type to represent scalars (all numeric objects are vectors, matrices, or arrays), but an R vector that's always length 1 is conceptually similar to a scalar.

2.2.2 Vectors (1D tensors)

A one-dimensional array of numbers is called a *vector*, or *1D tensor*. A 1D tensor is said to have exactly one axis. We can convert the R vector to an array object to inspect its dimensions:

```
> x <- c(12, 3, 6, 14, 10)
> str(x)
  num [1:5] 12 3 6 14 10
> dim(as.array(x))
[1] 5
```

This vector has five entries and so is called a *five-dimensional vector*. Don't confuse a 5D vector with a 5D tensor! A 5D vector has only one axis and has five dimensions along its axis, whereas a 5D tensor has five axes (and may have any number of dimensions along each axis). *Dimensionality* can denote either the number of entries along a specific axis (as in the case of our 5D vector) or the number of axes in a tensor (such as a 5D tensor), which can be confusing at times. In the latter case, it's technically more correct to talk about *a tensor of rank 5* (the rank of a tensor being the number of axes), but the ambiguous notation *5D tensor* is common regardless.

2.2.3 Matrices (2D tensors)

A two-dimensional array of numbers is a *matrix*, or *2D tensor*. A matrix has two axes (often referred to as *rows* and *columns*). You can visually interpret a matrix as a rectangular grid of numbers:

2.2.4 3D tensors and higher-dimensional tensors

If you pack such matrices in a new array, you obtain a 3D tensor, which you can visually interpret as a cube of numbers:

```
> x <- array(rep(0, 2*3*2), dim = c(2,3,2))
> str(x)
num [1:2, 1:3, 1:2] 0 0 0 0 0 0 0 0
> dim(x)
[1] 2 3 2
```

By packing 3D tensors in an array, you can create a 4D tensor, and so on. In deep learning, you'll generally manipulate tensors that are 0D to 4D, although you may go up to 5D if you process video data.

2.2.5 Key attributes

A tensor is defined by three key attributes:

- Number of axes (rank)—For instance, a 3D tensor has three axes, and a matrix has two axes.
- Shape—This is an integer vector that describes how many dimensions the tensor has along each axis. For instance, the previous matrix example has shape (3, 5), and the 3D tensor example has shape (2, 3, 2). A vector has a shape with a single element, such as (5). You can access the dimensions of any array using the dim() function.
- *Data type*—This is the type of the data contained in the tensor; for instance, a tensor's type could be integer or double. On rare occasions, you may see a character tensor. But because tensors live in preallocated contiguous memory segments, and strings, being variable-length, would preclude the use of this implementation, they're rarely used.

To make this more concrete, let's look back at the data we processed in the MNIST example. First, we load the MNIST dataset:

```
library(keras)
mnist <- dataset_mnist()
train_images <- mnist$train$x
train_labels <- mnist$train$y
test_images <- mnist$test$x
test_labels <- mnist$test$y</pre>
```

Next, we display the number of axes of the tensor train_images:

```
> length(dim(train_images))
[1] 3
```

Here's its shape:

```
> dim(train_images)
[1] 60000 28 28
```

And this is its data type:

```
> typeof(train_images)
[1] "integer"
```

So what we have here is a 3D tensor of integers. More precisely, it's an array of 60,000 matrices of 28×28 integers. Each such matrix is a grayscale image, with coefficients between 0 and 255.

Let's plot the fifth digit in this 3D tensor (see figure 2.2):

```
9
```

Figure 2.2 The fifth sample in our dataset

```
digit <- train_images[5,,]
plot(as.raster(digit, max = 255))</pre>
```

2.2.6 Manipulating tensors in R

In the previous example, we *selected* a specific digit alongside the first axis using the syntax train_images[i,,]. Selecting specific elements in a tensor is called *tensor slicing*. Let's look at the tensor-slicing operations you can do on R arrays.

The following example selects digits #10 to #99 and puts them in an array of shape (90, 28, 28):

```
> my_slice <- train_images[10:99,,]
> dim(my_slice)
[1] 90 28 28
```

It's equivalent to this more detailed notation, which specifies a start index and a stop index for the slice along each tensor axis:

```
> my_slice <- train_images[10:99,1:28,1:28]
> dim(my_slice)
[1] 90 28 28
```

In general, you may select between any two indices along each tensor axis. For instance, in order to select 14×14 pixels in the bottom-right corner of all images, you do this:

```
my_slice <- train_images[, 15:28, 15:28]</pre>
```

2.2.7 The notion of data batches

In general, the first axis in all data tensors you'll come across in deep learning will be the *samples axis* (sometimes called the *samples dimension*). In the MNIST example, samples are images of digits.

In addition, deep-learning models don't process an entire dataset at once; rather, they break the data into small batches. Concretely, here's one batch of our MNIST digits, with batch size of 128:

```
batch <- train_images[1:128,,]</pre>
```

And here's the next batch:

```
batch <- train_images[129:256,,]</pre>
```

When considering such a batch tensor, the first axis is called the *batch axis* or *batch dimension*. This is a term you'll frequently encounter when using Keras and other deep-learning libraries.

2.2.8 Real-world examples of data tensors

Let's make data tensors more concrete with a few examples similar to what you'll encounter later. The data you'll manipulate will almost always fall into one of the following categories:

- Vector data—2D tensors of shape (samples, features)
- Timeseries data or sequence data—3D tensors of shape (samples, timesteps, features)
- Images—4D tensors of shape (samples, height, width, channels) or (samples, channels, height, width)
- Video—5D tensors of shape (samples, frames, height, width, channels) or (samples, frames, channels, height, width)

2.2.9 Vector data

This is the most common case. In such a dataset, each single data point can be encoded as a vector, and thus a batch of data will be encoded as a 2D tensor (that is, an array of vectors), where the first axis is the *samples axis* and the second axis is the *features axis*.

Let's take a look at two examples:

 An actuarial dataset of people, where we consider each person's age, ZIP code, and income. Each person can be characterized as a vector of 3 values, and thus

- an entire dataset of 100,000 people can be stored in a 2D tensor of shape (100000, 3).
- A dataset of text documents, where we represent each document by the counts of how many times each word appears in it (out of a dictionary of 20,000 common words). Each document can be encoded as a vector of 20,000 values (one count per word in the dictionary), and thus an entire dataset of 500 documents can be stored in a tensor of shape (500, 20000).

2.2.10 Timeseries data or sequence data

Whenever time matters in your data (or the notion of sequence order), it makes sense to store it in a 3D tensor with an explicit time axis. Each sample can be encoded as a sequence of vectors (a 2D tensor), and thus a batch of data will be encoded as a 3D tensor (see figure 2.3).

Figure 2.3 A 3D timeseries data tensor

The time axis is always the second axis, by convention. Let's look at a few examples:

- A dataset of stock prices. Every minute, we store the current price of the stock, the highest price in the past minute, and the lowest price in the past minute. Thus, every minute is encoded as a 3D vector, an entire day of trading is encoded as a 2D tensor of shape (390, 3) (there are 390 minutes in a trading day), and 250 days' worth of data can be stored in a 3D tensor of shape (250, 390, 3). Here, each sample would be one day's worth of data.
- A dataset of tweets, where we encode each tweet as a sequence of 140 characters out of an alphabet of 128 unique characters. In this setting, each character can be encoded as a binary vector of size 128 (an all-zeros vector except for a 1 entry at the index corresponding to the character). Then each tweet can be encoded as a 2D tensor of shape (140, 128), and a dataset of 1 million tweets can be stored in a tensor of shape (1000000, 140, 128).

2.2.11 Image data

Images typically have three dimensions: height, width, and color depth. Although grayscale images (like our MNIST digits) have only a single color channel and could thus be stored in 2D tensors, by convention image tensors are always 3D, with a one-dimensional color channel for grayscale images. A batch of 128 grayscale images of size 256×256 could thus be stored in a tensor of shape (128, 256, 256, 1), and a batch of 128 color images could be stored in a tensor of shape (128, 256, 256, 3) (see figure 2.4).

Figure 2.4 A 4D image data tensor (channels-first convention)

There are two conventions for shapes of images tensors: the *channels-last* convention (used by TensorFlow) and the *channels-first* convention (used by Theano). The TensorFlow machine-learning framework, from Google, places the color-depth axis at the end: (samples, height, width, color_depth). Meanwhile, Theano places the color depth axis right after the batch axis: (samples, color_depth, height, width). With the Theano convention, the previous examples would become (128, 1, 256, 256) and (128, 3, 256, 256). The Keras framework provides support for both formats.

2.2.12 Video data

Video data is one of the few types of real-world data for which you'll need 5D tensors. A video can be understood as a sequence of frames, each frame being a color image. Because each frame can be stored in a 3D tensor (height, width, color_depth), a sequence of frames can be stored in a 4D tensor (frames, height, width, color_depth), and thus a batch of different videos can be stored in a 5D tensor of shape (samples, frames, height, width, color_depth).

For instance, a 60-second, 144 × 256 YouTube video clip sampled at 4 frames per second would have 240 frames. A batch of four such video clips would be stored in a tensor of shape (4, 240, 144, 256, 3). That's a total of 106,168,320 values! If the data type of the tensor is double, then each value is stored in 64 bits, so the tensor would represent 810 MB. Heavy! Videos you encounter in real life are much lighter, because they aren't stored as double and they're typically compressed by a large factor (such as in the MPEG format).

2.3 The gears of neural networks: tensor operations

Much as any computer program can be ultimately reduced to a small set of binary operations on binary inputs (AND, OR, NOR, and so on), all transformations learned by deep neural networks can be reduced to a handful of *tensor operations* applied to tensors of numeric data. For instance, it's possible to add tensors, multiply tensors, and so on.

In our initial example, we were building our network by stacking dense layers on top of each other. A layer instance looks like this:

```
layer dense(units = 512, activation = "relu")
```

This layer can be interpreted as a function, which takes as input a 2D tensor and returns another 2D tensor—a new representation for the input tensor. Specifically, the function is as follows (where W is a 2D tensor and b is a vector, both attributes of the layer):

```
output = relu(dot(W, input) + b)
```

Let's unpack this. We have three tensor operations here: a dot product (dot) between the input tensor and a tensor named W; an addition (+) between the resulting 2D tensor and a vector b; and, finally, a relu operation. relu(x) is max(x, 0).

NOTE Although this section deals entirely with linear algebra expressions, you won't find any mathematical notation here. We've found that mathematical concepts can be more readily mastered by readers with no mathematical background if they're expressed as short code snippets instead of mathematical equations. So, we'll use R code throughout.

2.3.1 Element-wise operations

The relu operation and addition are *element-wise* operations: operations that are applied independently to each entry in the tensors being considered. This means these operations are highly amenable to massively parallel implementations (*vectorized* implementations, a term that comes from the *vector processor* supercomputer architecture from the 1970–1990 period). If you want to write a naive R implementation of an element-wise operation, you use a for loop, as in this naive implementation of an element-wise relu operation:

```
naive_relu <- function(x) {
  for (i in nrow(x))
  for (j in ncol(x))
     x[i, j] <- max(x[i, j], 0)
  x
}</pre>
x is a 2D tensor
(R matrix).
```

You do the same for addition:

```
naive_add <- function(x, y) {
    for (i in nrow(x))
        for (j in ncol(x))
            x[i, j] = x[i, j] + y[i, j]
        x
}</pre>
x and y are 2D
tensors (matrices).
```

On the same principle, you can do element-wise multiplication, subtraction, and so on.

In practice, when dealing with R arrays, these operations are available as well-optimized built-in R functions, which themselves delegate the heavy lifting to a BLAS implementation (Basic Linear Algebra Subprograms) if you have one installed (which you should). BLAS are low-level, highly parallel, efficient tensor-manipulation routines typically implemented in Fortran or C.

So in R you can do the following native element-wise operations, and they will be blazing fast:

```
z \leftarrow x + y \leftarrow Element-wise addition z \leftarrow pmax(z, 0) \leftarrow Element-wise relu
```

2.3.2 Operations involving tensors of different dimensions

Our earlier naive implementation of naive_add only supports the addition of 2D tensors with identical shapes. But in the dense layer introduced earlier, we added a 2D tensor with a vector. What happens with addition when the shapes of the two tensors being added differ?

The R sweep() function enables you to perform operations between higher-dimension tensors and lower-dimension tensors. With sweep(), we could perform the matrix plus vector addition described earlier as follows:

```
sweep(x, 2, y, +)
```

The second argument (here, 2) specifies the dimensions of x over which to sweep y. The last argument (here, +) is the operation to perform during the sweep, which should be a function of two arguments: x and an array of the same dimensions generated from y by aperm().

You can apply a sweep in any number of dimensions and can apply any function that implements a vectorized operation over two arrays. The following example sweeps a 2D tensor over the last two dimensions of a 4D tensor using the pmax() function:

```
x is a tensor of random values with shape (64, 3, 32, 10).

x <- array(round(runif(1000, 0, 9)), dim = c(64, 3, 32, 10))

y <- array(5, dim = c(32, 10))

z <- sweep(x, c(3, 4), y, pmax)

The output z has shape (64, 3, 32, 10), like x.
```

2.3.3 Tensor dot

The dot operation, also called a *tensor product* (not to be confused with an element-wise product) is the most common, most useful tensor operation. Contrary to element-wise operations, it combines entries in the input tensors.

An element-wise product is done with the * operator in R, whereas dot products use the %*% operator:

```
z <- x %*% v
```

In mathematical notation, you'd note the operation with a dot (.):

```
z = x \cdot y
```

Mathematically, what does the dot operation do? Let's start with the dot product of two vectors x and y. It's computed as follows:

```
naive_vector_dot <- function(x, y) {
    z <- 0
    for (i in 1:length(x))
     z <- z + x[[i]] * y[[i]]
    z
}</pre>
x and y are 1D tensors
(vectors).
```

You'll have noticed that the dot product between two vectors is a scalar and that only vectors with the same number of elements are compatible for a dot product.

You can also take the dot product between a matrix x and a vector y, which returns a vector whose elements are the dot products between y and the rows of x. You implement it as follows:

You could also reuse the code we wrote previously, which highlights the relationship between a matrix-vector product and a vector product:

```
naive_matrix_vector_dot <- function(x, y) {
  z <- rep(0, nrow(x))
  for (i in 1:nrow(x))
    z[[i]] <- naive_vector_dot(x[i,], y)
  z
}</pre>
```

Note that as soon as one of the two tensors has more than one dimension, %*% is no longer symmetric, which is to say that x %*% y isn't the same as y %*% x.

Of course, a dot product generalizes to tensors with an arbitrary number of axes. The most common applications may be the dot product between two matrices. You can take the dot product of two matrices x and y (x %*% y) if and only if ncol(x) = nrow(y). The result is a matrix with shape (nrow(x), ncol(y)), where the coefficients are the vector products between the rows of x and the columns of y. Here's the naive implementation:

```
row_x <- x[i,]
    column_y <- y[,j]
    z[i, j] <- naive_vector_dot(row_x, column_y)
}
z
}</pre>
```

To understand dot-product shape compatibility, it helps to visualize the input and output tensors by aligning them as shown in figure 2.5.

Figure 2.5 Matrix dot-product box diagram

x, y, and z are pictured as rectangles (literal boxes of coefficients). Because the rows and x and the columns of y must have the same size, it follows that the width of x must match the height of y. If you go on to develop new machine-learning algorithms, you'll likely be drawing such diagrams often.

More generally, you can take the dot product between higher-dimensional tensors, following the same rules for shape compatibility as outlined earlier for the 2D case:

```
(a, b, c, d) . (d) -> (a, b, c)
(a, b, c, d) . (d, e) -> (a, b, c, e)
```

And so on.

2.3.4 Tensor reshaping

A third type of tensor operation that's essential to understand is *tensor reshaping*. Although it wasn't used in the dense layers in our first neural network example, we used it when we preprocessed the digits data before feeding it into our network:

```
train_images <- array_reshape(train_images, c(60000, 28 * 28))</pre>
```

Note that we use the array_reshape() function rather than the dim<-() function to reshape the array. This is so that the data is reinterpreted using row-major semantics

(as opposed to R's default column-major semantics), which is in turn compatible with the way the numerical libraries called by Keras (NumPy, TensorFlow, and so on) interpret array dimensions. You should always use the array_reshape() function when reshaping R arrays that will be passed to Keras.

Reshaping a tensor means rearranging its rows and columns to match a target shape. Naturally, the reshaped tensor has the same total number of coefficients as the initial tensor. Reshaping is best understood via simple examples:

```
> x <- matrix(c(0, 1,
             2, 3,
             4, 5),
            nrow = 3, ncol = 2, byrow = TRUE)
> x
   [,1] [,2]
[1,] 0 1
[2,] 2 3
    4
[3,]
> x <- array_reshape(x, dim = c(6, 1))
   [,1]
[1,] 0
[2,] 1
[3,]
[4,] 3
[5,] 4
[6,]
> x <- array_reshape(x, dim = c(2, 3))
    [,1] [,2] [,3]
[1,] 0 1 2
[2,] 3
```

A special case of reshaping that's commonly encountered is *transposition*. *Transposing* a matrix means exchanging its rows and its columns, so that x[i, j] becomes x[i, j]. The t(i) function can be used to transpose a matrix:

```
> x <- matrix(0, nrow = 300, ncol = 20)
> dim(x)
[1] 300 20
> x <- t(x)
> dim(x)
[1] 20 300
```

2.3.5 Geometric interpretation of tensor operations

Because the contents of the tensors manipulated by tensor operations can be interpreted as coordinates of points in some geometric space, all tensor operations have a geometric interpretation. For instance, let's consider addition. We'll start with the following vector:

```
A = [0.5, 1.0]
```

It's a point in a 2D space (see figure 2.6). It's common to picture a vector as an arrow linking the origin to the point, as shown in figure 2.7.

Figure 2.6 A point in a 2D space

Figure 2.7 A point in a 2D space pictured as an arrow

Let's consider a new point, B = [1, 0.25], which we'll add to the previous one. This is done geometrically by chaining together the vector arrows, with the resulting location being the vector representing the sum of the previous two vectors (see figure 2.8).

Figure 2.8 Geometric interpretation of the sum of two vectors

In general, elementary geometric operations such as affine transformations, rotations, scaling, and so on can be expressed as tensor operations. For instance, a rotation of a 2D vector by an angle theta can be achieved via a dot product with a 2×2 matrix R = [u, v], where u and v are both vectors of the plane: $u = [\cos(\text{theta}), \sin(\text{theta})]$ and $v = [-\sin(\text{theta}), \cos(\text{theta})]$.

2.3.6 A geometric interpretation of deep learning

You just learned that neural networks consist entirely of chains of tensor operations and that all of these tensor operations are just geometric transformations of the input data. It follows that you can interpret a neural network as a very complex geometric transformation in a high-dimensional space, implemented via a long series of simple steps.

In 3D, the following mental image may prove useful. Imagine two sheets of colored paper: one red and one blue. Put one on top of the other. Now crumple them together into a small ball. That crumpled paper ball is your input data, and each sheet of paper

is a class of data in a classification problem. What a neural network (or any other machine-learning model) is meant to do is figure out a transformation of the paper ball that would uncrumple it, so as to make the two classes cleanly separable again. With deep learning, this would be implemented as a series of simple transformations of the 3D space, such as those you could apply on the paper ball with your fingers, one movement at a time.

Figure 2.9 Uncrumpling a complicated manifold of data

Uncrumpling paper balls is what machine learning is about: finding neat representations for complex, highly folded data manifolds. At this point, you should have a pretty good intuition as to why deep learning excels at this: it takes the approach of incrementally decomposing a complicated geometric transformation into a long chain of elementary ones, which is pretty much the strategy a human would follow to uncrumple a paper ball. Each layer in a deep network applies a transformation that disentangles the data a little—and a deep stack of layers makes tractable an extremely complicated disentanglement process.

2.4 The engine of neural networks: gradient-based optimization

As you saw in the previous section, each neural layer from our first network example transforms its input data as follows:

```
output = relu(dot(W, input) + b)
```

In this expression, W and b are tensors that are attributes of the layer. They're called the *weights* or *trainable parameters* of the layer (the kernel and bias attributes, respectively). These weights contain the information learned by the network from exposure to training data.

Initially, these weight matrices are filled with small random values (a step called $random\ initialization$). Of course, there's no reason to expect that relu(dot(W, input) + b), when W and b are random, will yield any useful representations. The resulting representations are meaningless—but they're a starting point. What comes next is to gradually adjust these weights, based on a feedback signal. This gradual adjustment, also called training, is basically the learning that machine learning is all about.

This happens within what's called a *training loop*, which works as follows. Repeat these steps in a loop, as long as necessary:

- Draw a batch of training samples x and corresponding targets y.
- 2 Run the network on x (a step called the *forward pass*) to obtain predictions y_pred.

- 3 Compute the loss of the network on the batch, a measure of the mismatch between y_pred and y.
- 4 Update all weights of the network in a way that slightly reduces the loss on this batch.

You'll eventually end up with a network that has a very low loss on its training data: a low mismatch between predictions y_pred and expected targets y. The network has "learned" to map its inputs to correct targets. From afar, it may look like magic, but when you reduce it to elementary steps, it turns out to be simple.

Step 1 sounds easy enough—just I/O code. Steps 2 and 3 are merely the application of a handful of tensor operations, so you could implement these steps purely from what you learned in the previous section. The difficult part is step 4: updating the network's weights. Given an individual weight coefficient in the network, how can you compute whether the coefficient should be increased or decreased, and by how much?

One naive solution would be to freeze all weights in the network except the one scalar coefficient being considered, and try different values for this coefficient. Let's say the initial value of the coefficient is 0.3. After the forward pass on a batch of data, the loss of the network on the batch is 0.5. If you change the coefficient's value to 0.35 and rerun the forward pass, the loss increases to 0.6. But if you lower the coefficient to 0.25, the loss falls to 0.4. In this case, it seems that updating the coefficient by -0.05 would contribute to minimizing the loss. This would have to be repeated for all coefficients in the network.

But such an approach would be horribly inefficient, because you'd need to compute two forward passes (which are expensive) for every individual coefficient (of which there are many, usually thousands and sometimes up to millions). A much better approach is to take advantage of the fact that all operations used in the network are *differentiable*, and compute the *gradient* of the loss with regard to the network's coefficients. You can then move the coefficients in the opposite direction from the gradient, thus decreasing the loss.

If you already know what *differentiable* means and what a *gradient* is, you can skip to section 2.4.3. Otherwise, the following two sections will help you understand these concepts.

2.4.1 What's a derivative?

Consider a continuous, smooth function f(x) = y, mapping a real number x to a new real number y. Because the function is *continuous*, a small change in x can only result in a small change in y—that's the intuition behind continuity. Let's say you increase x by a small factor epsilon_x: this results in a small epsilon_y change to y:

```
f(x + epsilon_x) = y + epsilon_y
```

In addition, because the function is *smooth* (its curve doesn't have any abrupt angles), when <code>epsilon_x</code> is small enough, around a certain point p, it's possible to approximate f as a linear function of slope a, so that <code>epsilon_y</code> becomes a * <code>epsilon_x</code>:

```
f(x + epsilon_x) = y + a * epsilon_x
```

Obviously, this linear approximation is valid only when x is close enough to p.

The slope a is called the *derivative* of f in p. If a is negative, it means a small change of x around p will result in a decrease of f(x) (as shown in figure 2.10); and if a is positive, a small change in x will result in an increase of f(x). Further, the absolute value of a (the *magnitude* of the derivative) tells you how quickly this increase or decrease will happen.

Figure 2.10 Derivative of f in p

For every differentiable function f(x) (differentiable means "can be differentiated": for example, smooth, continuous functions can be differentiated), there exists a derivative function f'(x) that maps values of x to the slope of the local linear approximation of f in those points. For instance, the derivative of

cos(x) is -sin(x), the derivative of f(x) = a * x is f'(x) = a, and so on.

If you're trying to update x by a factor <code>epsilon_x</code> in order to minimize f(x), and you know the derivative of f, then your job is done: the derivative completely describes how f(x) evolves as you change x. If you want to reduce the value of f(x), you just need to move x a little in the opposite direction from the derivative.

2.4.2 Derivative of a tensor operation: the gradient

A *gradient* is the derivative of a tensor operation. It's the generalization of the concept of derivatives to functions of multidimensional inputs: that is, to functions that take tensors as inputs.

Consider an input vector x, a matrix W, a target y, and a loss function loss. You can use W to compute a target candidate y_pred, and compute the loss, or mismatch, between the target candidate y_pred and the target y:

```
y_pred = dot(W, x)
loss_value = loss(y_pred, y)
```

If the data inputs x and y are frozen, then this can be interpreted as a function mapping values of W to loss values:

```
loss_value = f(W)
```

Let's say the current value of W is W0. Then the derivative of f in the point W0 is a tensor gradient(f) (W0) with the same shape as W, where each coefficient gradient(f) (W0) [i, j] indicates the direction and magnitude of the change in loss_value you'd observe when modifying W0[i, j]. That tensor gradient(f) (W0) is the gradient of the function $f(W) = loss_value$ in W0.

You saw earlier that the derivative of a function f(x) of a single coefficient can be interpreted as the slope of the curve of f. Likewise, gradient(f)(W0) can be interpreted as the tensor describing the *curvature* of f(W) around W0.

For this reason, in much the same way that, for a function f(x), you can reduce the value of f(x) by moving x a little in the opposite direction from the derivative,

with a function f(W) of a tensor, you can reduce f(W) by moving W in the opposite direction from the gradient: for example, W1 = W0 - step * gradient(f)(W0) (where step is a small scaling factor). That means going against the curvature, which intuitively should put you lower on the curve. Note that the scaling factor step is needed because gradient(f)(W0) only approximates the curvature when you're close to W0, so you don't want to get too far from W0.

2.4.3 Stochastic gradient descent

Given a differentiable function, it's theoretically possible to find its minimum analytically: it's known that a function's minimum is a point where the derivative is 0, so all you have to do is find all the points where the derivative goes to 0 and check for which of these points the function has the lowest value.

Applied to a neural network, that means finding analytically the combination of weight values that yields the smallest possible loss function. This can be done by solving the equation gradient (f) (W) = 0 for W. This is a polynomial equation of N variables, where N is the number of coefficients in the network. Although it would be possible to solve such an equation for N = 2 or N = 3, doing so is intractable for real neural networks, where the number of parameters is never less than a few thousand and can often be several tens of millions.

Instead, you can use the four-step algorithm outlined at the beginning of this section: modify the parameters little by little based on the current loss value on a random batch of data. Because you're dealing with a differentiable function, you can compute its gradient, which gives you an efficient way to implement step 4. If you update the weights in the opposite direction from the gradient, the loss will be a little less every time:

- 1 Draw a batch of training samples x and corresponding targets y.
- 2 Run the network on x to obtain predictions y_pred.
- **3** Compute the loss of the network on the batch, a measure of the mismatch between y_pred and y.
- 4 Compute the gradient of the loss with regard to the network's parameters (a *backward pass*).
- Move the parameters a little in the opposite direction from the gradient—for example, W = W - (step * gradient)—thus reducing the loss on the batch a bit.

Easy enough! What we just described is called *mini-batch stochastic gradient descent* (mini-batch SGD). The term *stochastic* refers to the fact that each batch of data is drawn at random (*stochastic* is a scientific synonym of *random*). Figure 2.11 illustrates what happens in 1D, when the network has only one parameter and you have only one training sample.

Figure 2.11 SGD down a 1D loss curve (one learnable parameter)

As you can see, intuitively it's important to pick a reasonable value for the step factor. If it's too small, the descent down the curve will take many iterations, and it could get stuck in a local minimum. If step is too large, your updates may end up taking you to completely random locations on the curve.

Note that a variant of the mini-batch SGD algorithm would be to draw a single sample and target at each iteration, rather than drawing a batch of data. This would be *true* SGD (as opposed to *mini-batch* SGD). Alternatively, going to the opposite extreme, you could run every step on *all* data available, which is called *batch SGD*. Each update would then be more accurate, but far more expensive. The efficient compromise between these two extremes is to use mini-batches of reasonable size.

Although figure 2.11 illustrates gradient descent in a 1D parameter space, in practice you'll use gradient descent in highly dimensional spaces: every weight coefficient in a neural network is a free dimension in the space, and there may be tens of thousands or even millions of them. To help you build intuition about loss surfaces, you can also visualize gradient descent along a 2D loss surface, as shown in figure 2.12. But you can't possibly visualize what the actual process of training a neural network looks like—you can't represent a 1,000,000-dimensional space in a way that makes sense to humans. As such, it's good to keep in mind that the intuitions you develop through these low-dimensional representations may not always be accurate in practice. This has historically been a source of issues in the world of deep-learning research.

Figure 2.12 Gradient descent down a 2D loss surface (two learnable parameters)

Additionally, there exist multiple variants of SGD that differ by taking into account previous weight updates when computing the next weight update, rather than just looking at the current value of the gradients. There is, for instance, SGD with momentum, as well as Adagrad, RMSProp, and several others. Such variants are known as *optimization methods* or *optimizers*. In particular, the concept of *momentum*, which is used in many of these variants, deserves your attention. Momentum addresses two issues with SGD: convergence speed and local minima. Consider figure 2.13, which shows the curve of a loss as a function of a network parameter.

Figure 2.13 A local minimum and a global minimum

As you can see, around a certain parameter value, there is a *local minimum*: around that point, moving left would result in the loss increasing, but so would moving right. If the parameter under consideration were being optimized via SGD with a small learning rate, then the optimization process would get stuck at the local minimum instead of making its way to the global minimum.

You can avoid such issues by using momentum, which draws inspiration from physics. A useful mental image here is to think of the optimization process as a small ball rolling down the loss curve. If it has enough momentum, the ball won't get stuck in a ravine and will end up at the global minimum. Momentum is implemented by moving the ball at each step based not only on the current slope value (current acceleration) but also on the current velocity (resulting from past acceleration). In practice, this means updating the parameter w based not only on the current gradient value but also on the previous parameter update, such as in this naive implementation:

```
past_velocity <- 0
momentum <- 0.1
while (loss > 0.01) {
   params <- get_current_parameters()
   w <- params$w
   loss <- params$loss
   gradient <- params$gradient
   velocity <- past_velocity * momentum + learning_rate * gradient
   w <- w + momentum * velocity - learning_rate * gradient
   past_velocity <- velocity
   update_parameter(w)
}</pre>
```

2.4.4 Chaining derivatives: the Backpropagation algorithm

In the previous algorithm, we casually assumed that because a function is differentiable, we can explicitly compute its derivative. In practice, a neural network function consists of many tensor operations chained together, each of which has a simple, known derivative. For instance, this is a network f composed of three tensor operations a, b, and c, with weight matrices W1, W2, and W3:

```
f(W1, W2, W3) = a(W1, b(W2, c(W3)))
```

Calculus tells us that such a chain of functions can be differentiated using the following identity, called the *chain rule*: f(g(x)) = f'(g(x)) * g'(x). Applying the chain rule to the computation of the gradient values of a neural network gives rise to an algorithm called *Backpropagation* (also sometimes called *reverse-mode differentiation*). Backpropagation starts with the final loss value and works backward from the top layers to the bottom layers, applying the chain rule to compute the contribution that each parameter had in the loss value.

Nowadays and for years to come, people will implement networks in modern frameworks that are capable of *symbolic differentiation*, such as TensorFlow. This means that, given a chain of operations with a known derivative, they can compute a gradient *function* for the chain (by applying the chain rule) that maps network parameter values to gradient values. When you have access to such a function, the backward pass is reduced to a call to this gradient function. Thanks to symbolic differentiation, you'll never have to implement the Backpropagation algorithm by hand. For this reason, we won't waste your time and your focus on deriving the exact formulation of the Backpropagation algorithm in these pages. All you need is a good understanding of how gradient-based optimization works.

2.5 Looking back at our first example

You've reached the end of this chapter, and you should now have a general understanding of what's going on behind the scenes in a neural network. Let's go back to the first example and review each piece of it in the light of what you've learned in the previous three sections.

This was the input data:

```
library(keras)
mnist <- dataset_mnist()

train_images <- mnist$train$x
train_images <- array_reshape(train_images, c(60000, 28 * 28))
train_images <- train_images / 255

test_images <- mnist$test$x
test_images <- array_reshape(test_images, c(10000, 28 * 28))
test_images <- test_images / 255</pre>
```

Now you understand that the input images are stored in tensors of shape (60000, 784) (training data) and (10000, 784) (test data), respectively.

This was our network:

```
network <- keras_model_sequential() %>%
  layer_dense(units = 512, activation = "relu", input_shape = c(28*28)) %>%
  layer_dense(units = 10, activation = "softmax")
```

Now you understand that this network consists of a chain of two dense layers, that each layer applies a few simple tensor operations to the input data, and that these

operations involve weight tensors. Weight tensors, which are attributes of the layers, are where the *knowledge* of the network persists.

Using the pipe operator

You use the pipe (%>%) operator to add layers to a network. This operator comes from the magrittr package; it's shorthand for passing the value on its left as the first argument to the function on its right. We could have written the network code as follows:

Using $\$\!>\!\$$ results in code that's more readable and compact, so we'll use this form throughout the book.

If you're using RStudio, you can insert %>% using the Ctrl-Shift-M keyboard shortcut. To learn more about the pipe operator, see http://r4ds.had.co.nz/ pipes.html.

This was the network-compilation step:

```
network %>% compile(
  optimizer = "rmsprop",
  loss = "categorical_crossentropy",
  metrics = c("accuracy")
)
```

Now you understand that categorical_crossentropy is the loss function that's used as a feedback signal for learning the weight tensors, and which the training phase will attempt to minimize. You also know that this reduction of the loss happens via minibatch stochastic gradient descent. The exact rules governing a specific use of gradient descent are defined by the rmsprop optimizer passed as the first argument.

In-place modification of models

We're using the \$>\$ operator to call <code>compile()</code>. We could have written the network compilation step as follows:

```
compile(
  network,
  optimizer = "rmsprop",
  loss = "categorical_crossentropy",
  metrics = c("accuracy")
```

Using %>% for compile is less about compactness and more about providing a syntactic reminder of an important characteristic of Keras models: unlike most objects

Summary 49

you work with in R, Keras models are modified in place. This is because Keras models are directed acyclic graphs of layers whose state is updated during training.

You don't operate on network and then return a new network object. Rather, you do something to the network object. Placing network to the left of %>% and not saving the results to a new variable signals to the reader that you're modifying in place.

Finally, this was the training loop:

```
network %>% fit(train_images, train_labels, epochs = 5, batch_size = 128)
```

Now you understand what happens when you call fit: the network will start to iterate on the training data in mini-batches of 128 samples, 5 times over (each iteration over all the training data is called an *epoch*). At each iteration, the network will compute the gradients of the weights with regard to the loss on the batch, and update the weights accordingly. After these 5 epochs, the network will have performed 2,345 gradient updates (469 per epoch), and the loss of the network will be sufficiently low that the network will be capable of classifying handwritten digits with high accuracy.

At this point, you already know most of what there is to know about neural networks.

2.6 Summary

- Learning means finding a combination of model parameters that minimizes a loss function for a given set of training data samples and their corresponding targets.
- Learning happens by drawing random batches of data samples and their targets, and computing the gradient of the network parameters with respect to the loss on the batch. The network parameters are then moved a bit (the magnitude of the move is defined by the learning rate) in the opposite direction from the gradient.
- The entire learning process is made possible by the fact that neural networks are chains of differentiable tensor operations, and thus it's possible to apply the chain rule of derivation to find the gradient function mapping the current parameters and current batch of data to a gradient value.
- Two key concepts you'll see frequently in future chapters are loss and optimizers. These are the two things you need to define before you begin feeding data into a network:
 - The *loss* is the quantity you'll attempt to minimize during training, so it should represent a measure of success for the task you're trying to solve.
 - The *optimizer* specifies the exact way in which the gradient of the loss will be used to update parameters: for instance, it could be the RMSProp optimizer, SGD with momentum, and so on.

Deep Learning with **R**

François Chollet with J. J. Allaire

achine learning has made remarkable progress in recent years. Deep-learning systems now enable previously impossible smart applications, revolutionizing image recognition and natural-language processing, and identifying complex patterns in data. The Keras deep-learning library provides data scientists and developers working in R a state-of-the-art toolset for tackling deep-learning tasks.

Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. Initially written for Python as *Deep Learning with Python* by Keras creator and Google AI researcher François Chollet and adapted for R by RStudio founder J. J. Allaire, this book builds your understanding of deep learning through intuitive explanations and practical examples. You'll practice your new skills with R-based applications in computer vision, naturallanguage processing, and generative models.

What's Inside

- Deep learning from first principles
- Setting up your own deep-learning environment
- Image classification and generation
- Deep learning for text and sequences

You'll need intermediate R programming skills. No previous experience with machine learning or deep learning is assumed.

François Chollet is a deep-learning researcher at Google and the author of the Keras library. J. J. Allaire is the founder of RStudio and the author of the R interfaces to TensorFlow and Keras.

To download their free eBook in PDF, ePub, and Kindle formats, owners of this book should visit www.manning.com/books/deep-learning-with-r

The clearest explanation of deep learning I have come across ... it was a joy to read."

—Richard Tobias, Cephasonics

66 An excellent hands-on introductory title, with great depth and breadth."

—David Blumenthal-Barby, Babbel

GBridges the gap between the hype and a functioning deep-learning system."

—Peter Rabinovitch, Akamai

"All major topics and concepts of deep learning are covered and well explained, using code examples and diagrams instead of mathematical formulas. 33

> —Srdjan Santic Springboard.com

