2022 데이터 크리에이터 캠프

Data Creator Camp

4회차 비포

Contents

Mission 1

탐색적 자료 분석(EDA)

학습 영상에 대한 분포, 특성 확인 데이터 분포 관련 문제 해결

Mission 2

AI 기반 영상 제거 학습데이터에 포함된 사진 영상 제거

Mission 3

신경망 네트워크 모델링 데이터 전처리, 영상처리, 파라미터 설계, 성능 최적화, F1 score

EDA - 클래스 (라벨) 별 분포 및 특성 확인

	name	label	width	height	pixel	
0	ycrqupsfbtdmppsedlxl.jpg	L2_10	700	700	175.475408	
1	oqfadnuqsmolzmxwfycm.jpg	L2_10	300	300	187.451700	
2	edkxyljaevluzpccthfb.jpg	L2_10	700	700	204.499047	
3	qfcrkaiksvpsezumhlvi.jpg	L2_10	300	300	191.282344	
4	rtfhhjiiawrrdtcxjxyz.jpg	L2_10	700	700	195.024749	
25498	fbkloojqdqzzvyzjhrfv.jpg	L2_52	3508	2480	228.673894	
25499	bzzgdseklzecfcoujbaf.png	L2_52	700	700	240.611075	
25500	cpexnivtruoevtlazloq.jpg	L2_52	3508	2480	204.656396	
25501	dtxfpcggpnrgqolnmdoy.png	L2_52	700	700	234.191987	
25502	yifaakzphsggoou ohtan.jpg	L2_52	300	300	229.895689	
25503 rows × 5 columns						

이미지에서 특성값 width(가로), height(세로), pixel(픽셀) 추출

+

이미지 채널을 BGR에서 RGB로 변경

+

각 이미지마다 픽셀 평균값 계산

 \downarrow

Metadata 데이터 프레임 생성

EDA - 클래스 (라벨) 별 분포 및 특성 확인

클래스 L2_25, L2_33의 데이터 개수가 각각 6189, 6206개로 다른 클래스에 비해 **학습 데이터의 양이 과도하게 많고, L2_40** 의 데이터 수는 180개로 매우 적음

"학습 데이터의 **분포 불균형** 문제가 있다고 판단"

EDA - 데이터 불균형 분포 해결

클래스 L2_25, L2_33이 다른 클래스에 비해 데이터 개수가 많음. 나머지 클래스 정보 손실을 막기 위해 두 클래스만 undersamlping 진행. 두 클래스를 제외한 나머지 클래스의 평균 값을 구해 undersamlping

EDA - 클래스 (라벨) 별 분포 및 특성 확인

클래스별 픽셀 평균값 분포

클래스 L2_12, L2_24, L2_3, L2_41, L2_50은 다른 클래스들에 비해 상대적으로 평균값이 낮음.

EDA - 일러스트 이미지 vs 실제 사진 이미지

일러스트 이미지

np.mean(np.array(illust))
220.18781276437267

실제 사진 이미지

np.mean(np.array(real))

41.11399822222222

일러스트 이미지의 경우, 흰 배경(255)값이 대부분이라 픽셀 평균값이 높음. 반면, 실제 사진(오염된 이미지는)는 픽셀 평균값이 낮게 나옴

클래스 L2_12, L2_24, L2_3, L2_41,
L2_50은 다른 클래스들에 비해 pixel
평균값이 낮은 것으로 보아 해당 클래스에
오염된 데이터들이 들어가 있을 가능성이
있다고 판단

Mission 2.

AI 기반 영상 제거 – k-means++

임의 차원 축소 + k-

(1905, 224, 224, 3) (1364, 224, 224, 3)

PCA 차원 축소 + k-

(2942, 224, 224, 3)

AE 차원 축소+ k-

NIA 한국지능정보사회진흥원

Mission 2.

AI 기반 영상 제거 - 평가(실루엣 계수, DBI)

임의 차원 축소 + k-

means++

Silhouette Coefficient: 0.3829 Davies Bouldin Index: 1.0540

PCA 차원 축소 + k-

means++

Silhouette Coefficient: 0.0048 Davies Bouldin Index: 14.7660

AE 차원 축소+ k-

means++

Silhouette Coefficient: 0.3829 Davies Bouldin Index: 1.0540

과학기술정보통신부 NIA 한국지능정보사회진흥원

Mission 2.

AI 기반 영상 제거 - 모델 선정 및 실사 이미지 제거

실루엣 계수가 상대적으로 높고, DBI가 상대적으로 낮은 1,3번 우수하다 판단

실사 이미지가 잘 분류된 것을 확인할 수 있음

클러스터 0으로 분류된 이미지 제거!

모델링 – Train/Test data set split 설정

```
#train과 test데이터 8:2의 비율로 분리
X_train, X_test, y_train, y_test = train_test_split(df, df['label'].values, test_size=0.2)
print("Number of posters for training: ", len(X_train))
print("Number of posters for validation: ", len(X_test))

Number of posters for training: 12745
Number of posters for validation: 3187
```

Train과 Test 데이터셋을 8:2의 비율로 분리한 결과, Train Dataset은 12745개, Test Dataset은 3187개로 분리

모델링 – Data Augmentation, validation data set split 설정

```
DATAGEN_TRAIN = ImageDataGenerator(
    rescale=1./255,
    rotation_range=10,
    width_shift_range=0.1,
    height_shift_range=0.1,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    vertical_flip=True,
    data_format="channels_last",
    validation_split=0.3)
```

rescale: 1/255로 스케일링하여 0~1범위로 변환

rotation_range: [-10, 10] 각도 회전

width_shirt_range: width의 0.1픽셀 내외로 좌우 이동

height_shirt_range: height의 0.1픽셀 내외로 상하 이동

shear_range : [-0.1,0.1] 굴절

zoom_range: [0.8, 1.2] 확대 축소

horizontal_flip : 좌우 반전

vertical_flip: 상하 반전

train: validation = 7:3 비율로 나눔

모델링 – CNN 구조

1 x 1 Conv. 50 Batch-norm ReLU	1 x 1 Conv. 80 Batch-norm ReLU	1 x 1 Conv. 120 Batch-norm ReLU			
3 x 3 Conv. 50 Batch-norm ReLU	3 x 3 Conv. 80 Batch-norm ReLU	3 x 3 Conv. 120 Batch-norm ReLU	Flatten Dense(50) ReLU	Dense(20) Softmax	
3 x 3 Conv. 50 Batch-norm ReLU	3 x 3 Conv. 80 Batch-norm ReLU	3 x 3 Conv. 120 Batch-norm ReLU	ReLU		
2 x 2 MaxPool	2 x 2 MaxPool	2 x 2 MaxPool			

모델링 – 하이퍼파라미터, 이미지 크기 설정

```
batch_size = 128
# Training 수
epochs =10
# Weight 조절 parameter
LearningRate = 1e-3 # 0.001
Decay = 1e-6
img_width = 224
img_height = 224
```

batch_size: 128

epoch: 10

초기 learning rate: 1e-3

learning rate 변동폭 : 1e-6

img_width: 224

img_height: 224

모델 학습

Validation set의 accuracy가 가장 높을 때를 최적의 모형으로 저장

모델 평가 - F1 score

평균 F1-score는 0.135

Label	F1 Score						
L2_3	0.05	L2_21	0.00	L2_33	0.00	L2_44	0.00
L2_10	0.21	L2_24	0.02	L2_34	0.00	L2_45	0.00
L2_12	0.00	L2_25	0.00	L2_39	0.00	L2_46	0.22
L2_15	0.14	L2_27	0.00	L2_40	0.00	L2_50	0.02
L2_20	0.00	L2_30	0.00	L2_41	0.00	L2_52	0.00

감사합니다

2022 DATA CREATOR CAMP