OLIN COLLEGE OF ENGINEERING LINEARITY 1, 2016

STUDIO 2 PROBLEMS

Due Wednesday, February 1, at the end of class (10:40 am)

Lessons developed in or extrapolated from Studio 1

- Vectors are geometric objects: they have a magnitude, there is an angle between two vectors and you can project one vector onto another vector.
- Matrix multiplication can be defined in two equivalent ways: linear combinations of the columns or projection onto the rows.
- Systems of linear equations can be written as $A\mathbf{x} = \mathbf{b}$.
- Redundant equations (i.e. **linearly dependent rows**) can be removed from the matrix A without changing the solutions.
- The system of linear equations $A\mathbf{x} = \mathbf{b}$ either
 - has exactly one solution for every **b** or,
 - depending on the choice of **b** has either
 - * zero solutions or
 - * infinitely many solutions.

In mathematical circles this is called the **Fredholm Alternative**.

(1) Particular and homogeneous

A system of equations of the form $A\mathbf{x} = \mathbf{b}$ with $\mathbf{b} \neq \mathbf{0}$ is called **inhomogeneous**. A system of equations of the form $A\mathbf{x} = \mathbf{0}$ is called **homogeneous**. The equations $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$ are closely related as you will see.

In this exercise we will use the matrices

$$B = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 1 \\ 3 & 0 & 2 \end{bmatrix} \text{ and } E = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}.$$

(a) Last week you solved the equation $B\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$ (Studio 1, #3b) as well as several other systems of equations involving the matrices B, C and D (the matrix E is new on this studio).

If you solved for x in terms of y you got $\begin{bmatrix} 3 \\ 0 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ with y any real number. If you solved for y in terms of x you got $\begin{bmatrix} 0 \\ 3 \end{bmatrix} + x \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ with x any real number.

Make sense of this statement:

In both cases, the general solution can be written as the sum of a **particular** solution to the inhomogeneous equation and the general solution to the **homogeneous** equation.

1

- (b) Solve the homogeneous equation $C\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ and relate its solutions to the solutions of the inhomogeneous equation $C\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ you found in studio 1.
- (c) Solve the homogeneous equation $D\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ and relate its solutions to the solutions of the inhomogeneous equation $D\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$ that you found in studio 1.
- (d) Solve the homogeneous equation $E\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{0}$ and the inhomogeneous equation $E\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{b}$ for general \mathbf{b} .
- (e) Make sense of the following statement, referring to the network flow exploration as appropriate:

The solution to a homogeneous network flow problem is spanned by its closed loops.

(2) Matrices Are Transformations, Part I: Geometry in the plane The first part of this section is about the matrices

$$R = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \text{ and } L = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

- (a) Play with the matrix R and describe what it is doing geometrically. In this context the directive: "play with R" means "choose any vector \mathbf{v} in \mathbb{R}^2 , plot \mathbf{v} and $\mathbf{R}\mathbf{v}$ on the same set of coordinate axes and compare them, then repeat with a new \mathbf{v} and loop until you can explain what R does geometrically."
- (b) Play with the matrix L and describe what it is doing geometrically.
- (c) Check that your answers above include the words in this footnote¹
- (d) The expression \mathbb{R}^2 means "do \mathbb{R} twice." Describe what each of the following matrices is doing geometrically:

(i)
$$\mathbb{R}^2$$
, (ii) \mathbb{R}^3 , (iii) \mathbb{R}^4 , (iv) \mathbb{L}^2 , (v) $\mathbb{L}\mathbb{R}\mathbb{L}$, (vi) $\mathbb{R}\mathbb{L}\mathbb{R}$

- (e) The expression $R^{1/2}$ means "do this twice and you'll get R." Not every matrix has a square root.
 - i. Does R have zero, one or two square roots?
 - ii. Describe what each of them does geometrically.
 - iii. Write down $\mathbb{R}^{1/2}$ as a matrix (if you can!)
 - iv. Repeat (i)-(iii) above for L.

¹ rotation, reflection

(f) Define
$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

- i. What does R_{θ} do geometrically?
- ii. Do the matrix multiplication for R_{θ}^2 . Where have you seen the entries in this matrix before?
- iii. What is $R_{\theta}R_{-\theta}$?
- iv. True or False (if false, salvage; if true, why?): $R_{\theta}\mathbf{v} \cdot R_{\theta}\mathbf{w} = \mathbf{v} \cdot \mathbf{w}$ for any vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^2 .
- v. True or False (if false, salvage; if true, why?): $R_{\theta}\mathbf{v} \cdot \mathbf{w} = \mathbf{v} \cdot R_{\theta}\mathbf{w}$
- vi. Solve $R_{\theta}\mathbf{x} = \mathbf{b}$ for an unknown \mathbf{x} given a known \mathbf{b} .
- (g) Describe how the matrix $D=\left[\begin{array}{cc} 2 & 0 \\ 0 & \frac{1}{2} \end{array}\right]$ acts geometrically.
- (h) Describe how the matrix $S = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ acts geometrically.

(3) Matrices Are Changes of Coordinates

Use the matrices L, R_{θ}, D and S defined above. Give a geometric description of each of the following matrix products:

(a)
$$LR_{\theta}L$$
, (b) $R_{-\theta}DR_{\theta}$, (c) $R_{\theta}SR_{-\theta}$ (c) D^{5} , (d) $(R_{-\theta}DR_{\theta})^{5}$, (e) $R_{\theta}SDR_{-\theta}$, (f) $(R_{\theta}SDR_{-\theta})^{5}$

(4) Change of Coordinates

(a) We will use the vectors

$$\mathbf{u} = \begin{bmatrix} 1 \\ 1.5 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

that you used to learn the definitions of magnitude, angle and projection.

i. Last week you wrote \mathbf{v} as a linear combination of \mathbf{u} and \mathbf{w} . Given an arbitrary vector $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ find coefficients c_1 and c_2 (depending on α and β of course) so that

$$\left[\begin{array}{c} \alpha \\ \beta \end{array}\right] = c_1 \mathbf{u} + c_2 \mathbf{w}.$$

You can do this by solving a system of linear equations, but it gives more geometric intuition if you use projection.

- ii. Write down a matrix Q so that $Q \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$. Interpret the columns of Q.
- iii. Write down a matrix P so that $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$. Interpret the rows of P.

3

- iv. The matrices P and Q are called **change of basis** or **change of coordinates** matrices. Why?
- v. What is the matrix product PQ? Why?

(b) In this problem you will think about a coordinate system in \mathbb{R}^3 . We will use the vectors

$$\mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} \text{ and } \mathbf{d} = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}$$

- i. Find scalars k_a , k_b and k_c so that $\mathbf{d} = k_a \mathbf{a} + k_b \mathbf{b} + k_c \mathbf{c}$.
- ii. Fact or fiction: $|\mathbf{d}|^2 = k_a^2 |\mathbf{a}|^2 + k_b^2 |\mathbf{b}|^2 + k_c^2 |\mathbf{c}|^2$. Why?
- iii. Find a 3×3 matrix Q that maps a vector of coefficients $\begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix}$ to the corresponding linear combination $k_1\mathbf{a} + k_2\mathbf{b} + k_3\mathbf{c}$.
- iv. Find a 3×3 matrix P that maps a vector \mathbf{u} to the vector of coefficients $\begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix}$ needed to represent it as a linear combination $\mathbf{u} = k_1 \mathbf{a} + k_2 \mathbf{b} + k_3 \mathbf{c}$.