WEB PHISHING DETECTION PROJECT REPORT

<u>team id</u>	PNT2022TMID21631		
team members	<u>R.Hari Ganesh</u>		
	<u>S.Failur Rahuman</u>		
	A.Ghoushick		
	E.Eber Sheckel		
<u>Department</u>	CSE		

Project Report

1. INTRODUCTION

- a. Project Overview
- b. Purpose

2. LITERATURE SURVEY

- a. Existing problem
- b. References
- c. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- a. Empathy Map Canvas
- b. Ideation & Brainstorming
- c. Proposed Solution
- d. Problem Solution fit

4. REQUIREMENT ANALYSIS

- a. Functional requirement
- b. Non-Functional requirements

5. PROJECT DESIGN

- a. Data Flow Diagrams
- b. Solution & Technical Architecture
- c. User Stories

6. PROJECT PLANNING & SCHEDULING

- a. Sprint Planning & Estimation
- b. Sprint Delivery Schedule
- c. Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- **a**. Feature 1
- b. Feature 2
- c. Database Schema (if Applicable)
- 8. TESTING
 - a. Test Cases
 - b. User Acceptance Testing
- 9. **RESULTS**
 - a. Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code

GitHub & Project Demo Link

1.Introduction

1.1 Project Overview

This project deals with the detection of web phishing which helps a lot of web users to find out the illegitimate websites which has main goal of stealing the users privacy for their own good. This project that we implement helps the user to easily detect the malicious website through the ML algorithm that has been used in this system. The efficiency of this system's performance and scalability is high due to the concept of data mining that has been implemented in this system. When a user tends to login in to a website, this system provides a pop message of warning if this type of website matches with the pattern that has been generated here to find the difference between malicious and legitimate user. This system is able to analyze various kinds of malicious websites using classification technique used in data mining and also tends to produce the accurate final output for web phishing detection.

1.2 Purpose

There are various kinds of users who will be doing some activity of file uploading, file downloading, searching data as well as doing transaction of various documents and money transactions in various kinds of websites so if the websites that the user has been using tends to be malicious then these kinds of websites able to steal their privacy details like their login credentials, as well as their bank account details. The websites that causes these kinds of illegal activities are called as web Phishing, To avoid this above scenarios, This project has been implemented with the main purpose to detect these malicious websites by analyzing as well giving necessary warning to the users about the websites that they have been using which helps the user to safeguard their important and privacy details.

2. Liteerature Survey

2.1 Existing Problem

Nowadays Web Phishing is trending among public because of the huge growth in the number of various malicious websites which has the main goal of stealing their users's important details like account information, login credentials etc. This problem not only affects the particular user it also affects the people who are contacted to that user as well thus Web phishing tends to affect the whole community by gathering all the details of the users and the person who are responsible for this kind of activity use this gathered information to generate money for their own good. According to the huge development of technology, the web Phishing tends to occur in more faster rate and the people who are working in the cyber security team finds it difficult to detect these kinds of malicious websites. The system that tends to detect these in a fast and efficient manner has not been introduced to the world yet.

2.2 References

- [1] Higashino, M., et al. An Anti-phishing Training System for Security Awareness and Education Considering Prevention of Information Leakage. in 2019 5th International Conference on Information Management (ICIM). 2019.
- [2] H. Bleau, Global Fraud and Cybercrime Forecast, 2017.
- [3] Michel Lange, V., et al., Planning and production of grammatical and lexical verbs in multi-word messages. PloS one, 2017. 12(11): p. e0186685-e018668

2.3 Problem Statement Definition

Phishing is a fraudulent technique that uses social and technological tricks to steal customer identification and financial credentials. Social media systems use spoofed e-mails from legitimate companies and agencies to enable users to use fake websites to divulge financial details like usernames and passwords. Hackers install malicious software on computers to steal credentials, often using systems to intercept username and passwords of consumers' online accounts. Phishers use multiple methods, including email, Uniform Resource Locators (URL), instant messages, forum postings, telephone calls, and text messages to steal user information. The structure of phishing content is similar to the original content and trick users to access the content in order to obtain their sensitive data. The primary objective of phishing is to gain certain personal information for financial gain or use of identity theft. Phishing attacks are causing severe economic damage around the world. Moreover, Most phishing attacks target financial/payment institutions and webmail, according to the Anti-Phishing Working Group (APWG) latest Phishing pattern studies.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to	Web phishing tends to steal a
	be	lots of information
	solved)	from the user during online
		transaction like
		username, password, important
		documents that
		has been attached to that
		websites. There are
		Multiple Types of Attacks
		happens here every
		day, but there is no auto
		detection Process
		through Machine Learning is
		achieved
2.	Idea / Solution description	Through ML and data mining
		techniques like
		classification algorithm user
		can able to attain a
		warning signal to notify these
		phishing websites
		which helps the user to
		safeguard their identities
		and their login credentials etc.
		python is the
		language that helps to enable

		these techniques for the online users
3.	Novelty / Uniqueness	This project not only able to identify the malicious websites it also has the ability to automatically block these kind of websites completely in the future when it has been identified and also blocks some various mails /ads from these malicious websites
4.	Social Impact / Customer Satisfaction	This web phishing detection project attains the customer satisfaction by discarding various kinds of malicious websites to protect their privacy. This project is not only capable of using by an single individual, a large social community and a organisation can use this web phishing detection to protect their privacy. This project helps to block various malicious websites simultaneously.

5.	Business Model (Revenue	This developed model can be
	Model)	used as an
		enterprise applications by
		organisations which
		handles sensitive information
		and also can be
		sold to government agencies to
		prevent the loss
		of potential important data.
6.	Scalability of the Solution	This project's performance rate
		will be high and
		it also provide many
		capabilities to the user
		without reducing its efficieny
		to detect the
		malicious websites. thus
		scalability of this
		project will be high .

3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

FR NO.	Functional	Sub Requirement (Story / Sub-	
	Requirement (Epic)	Task)	
FR-1	User Input	User inputs an URL in required field to	
		check its validation.	
FR-2	Website Comparison	Model compares the websites using	
		Blacklist and Whitelist approach.	
FR-3	Feature extraction	After comparing, if none found on	
		comparison then it extracts feature using	
		heuristic and visual similarity approach.	
FR-4	Prediction	Model predicts the URL using Machine	
		Learning algorithms such as Logistic	
		Regression, KNN	
FR-5	Classifier	Model sends all output to classifier and	
		produces final result.	
FR-6	Announcement	Model then displays whether website is a	
		legal site or a phishing site.	
FR-7	Events	This model needs the capability of	
		retrieving and displaying accurate result for a	
		website	

5. PROJECT DESIGN

Solution Architecture:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

Solution Architecture Diagram:

5.3 User Stories

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional	User Story	User Story	Acceptance	Priority	Release
		Number	/ Task	criteria		
	Requireme					
	nt					
	(Epic)					
Customer (Mobile user)	Sign Up	USN-1	As a user I am able to sign up the application by providing my username, password and G-mail	I can access my account / dashboard	High	Sprint-1
			account and Facebook account.			
USN-2	As a user,when I have completed my registration for the application I am capable of receiving a confirmation mail from that application	I can receive confirmation email & click confirm	High	Sprint-1		

USN-3	As a Facebook user I am capable of registering the application from this platform	I can register and access the dashboard with Facebook Login	Low	Sprint-2		
USN-4	As a G-mail user I am capable of registering the application from this platform as well	I can register and access the dashboard with G-Mail account	High	Sprint-1		
Sign in	USN-5	As a user, I can sign into the application by entering same username/ema il & password which I have been used for the sign in purpose	I can successfully able to login to the application	High	Sprint-1	
Dashboard						
Customer (Web user)	Input from User	USN-1	As a web user, I am capable of using the website URL, Domain entity for evaluation purpose to find out whether the currently using website is a phishing one or not	I can provide the URL and Domain entity for the evaluating the website	High	Sprint-1

Customer Care Executive	Extraction process	USN-1	When the website URL and domain entity has been provided, it will go under the process of extracting the information of that website for phishing detection	I can view the completion of the extraction process stage	High	Sprint-1
Administrat or	Detection	USN-1	After the extraction purpose the model will be able to categorize it from other safe website through data mining classification technique through ML	In this scenario I can distinguish the phishing website from other secure websites	High	Sprint-1
Producing final result	USN-2	The model is able to produce a final result to the user after the completion of detection process	In this scenario I can view the final output given to me by the administrator	Medium	Sprint-2	

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	User input	USN-1	User inputs an URL in the required field to check its validation.	1	Medium	Hari Ganesh R
Sprint-1	Website Comparison	USN-2	Model compares the websites using Blacklist and Whitelist approach.	1	High	Eber Sheckel E
Sprint-2	Feature Extraction	USN-3	After comparison, if none found on comparison then it extract feature using heuristic and visual similarity.	2	High	Ghoushick A
Sprint-2	Prediction	USN-4	Model predicts the URL using Machine learning algorithms such as logistic Regression, KNN.	1	Medium	Failur Rahuman S
Sprint-3	Classifier	USN-5	Model sends all the output to the classifier and produces the final result.	ı	Medium	Ghoushick A
Sprint-4	Announcement	USN-6	Model then displays whether the website is legal site or a phishing site.	1	High	Hari Ganesh R
Sprint-4	Events	USN-7	This model needs the capability of retrieving and displaying accurate result for a website.	1	High	Failur rahuman S

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022		29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

		•		
Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite
LoginPage_TC_001	Functional	Home Page	Verify user is able to see the home page, when user enter the link in URL	 Internet connection Web browser such as Googl User know the link http://127.0.0.1.5000 Mobile ,Laptop, or System
LoginPage_TC_OO2	UI	Home Page	Verify the UI elements in home page	 Internet connection Web browser such as Googl User know the link http://127.0.0.1.5000 Mobile ,Laptop, or System
LoginPage_TC_003	Functional	Home page	Verify user is redirected to the about page, when the user click the "About "	 Internet connection Web browser such as Googl User know the link http://127.0.0.1.5000

			button	4.Mobile ,Laptop, or System
LoginPage_TC_004	Functional		Verify user is redirected to phishing website detection page when user click the "Get started" button in the home page.	 Internet connection Web browser such as Googl User know the link http://127.0.0.1.5000 Mobile ,Laptop, or System
LoginPage_TC_005	Functional	About page	Verify user is redirected to phishing website detection page when user click the "check your website" button in the about page.	 Internet connection Web browser such as Googl User know the link http://127.0.0.1.5000 Mobile ,Laptop, or System
	Functional	Phishing website detection page	the URL entered by the	https://portal.naanmudhalvar gin

LoginPage_TC_OO6				
LoginPage_TC_007	Functional	website detection	Verify it shows whether the URL entered by the user is safe or unsafe.	https://www.searchonlineinfo

LoginPage_TC_008	Functional	website detection	Verify it shows whether the URL entered by the user is safe or unsafe.	www.searchonlineinfo.com/
LoginPage_TC_009	Functional	website detection	Verify it shows whether the URL entered by the user is safe or unsafe.	portal.naanmudhalvan.tn.gov.i

8.2 USER ACCEPTANCE TESTING

8.2.1 DEFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal	
By Design	11	4	2	3	20	
Duplicate	3	0	3	0	4	
External	3	3	0	1	6	
Fixed	12	2	4	18	39	
Not Reproduced	0	0	1	0	1	
Skipped	0	0	1	3	4	
Won't Fix	0	5	2	2	6	
Totals	29	14	13	26	77	

8.2.2 TEST CASE ANALYSIS

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	9	0	0	9
Client Application	48	0	0	48
Security	4	0	0	4
Outsource Shipping	1	0	0	1
Exception Reporting	3	0	0	3
Final Report Output	4	0	0	4
Version Control	5	0	0	5

9.Results

9.1 Performance Metrics:

```
y_pred1=lr.predict(x_test)
from sklearn.metrics import accuracy_score
log_reg=accuracy_score(y_test,y_pred1)
log_reg
```

0.9167797376752601

10. Advantages & Disadvanatages

Advantages

- This project tends to produce the result in a more structured, organized as well as in efficient manner.
- This project has high scalability and performance since it uses MI technology for implementation.
- This project is able to find various kinds of malicious websites by using the concept of Classification algorithm in Data mining.
- This project tends to help the user to safeguard their privacy details like login credentials, account details etc.

Disadvantages

- This project finds difficult to detect any malicious activity in the website if the user opens many websites at the same time.
- This project may not able to find an malicious activity in other areas like spam emails, links other than websites.

11.Conclusion

This paper aims to enhance detection method to detect phishing website using machine learning technology. Also, classifiers generated by machine learning algorithms identify legitimate phishing websites. The proposed technique can detect new temporary phishing sites and reduce the damage caused by phishing attacks. The performance of the proposed technique based on machine learning is more effective that previous phishing detection technologies. In the future, it will be useful to investigate the impact of feature selection using various algorithms. This project is able to get implemented in lot of fields like medical, finance, education and military etc.

12.Future Scope

This project can be enhanced to detect in many areas other than websites like emails, various links etc. An enhancement in the technique of classification can be made in this project which helps to detect any malicious websites in a faster rate. The dataset which was generated for this project will gets improvement to store large amount of data as well as the train the model according to the pattern that has been given to acquire the expected output and generate the most preferable result as well. In future it may gets implemented together with Big data by using the tool Hadoop to process the informations that has been fed to it in very short period of time.

13.APPENDIX

app.py

import numpy as np

from flask import Flask,request,jsonify,render_template

import pickle

#importing the inputScript file used to analyze the URL

import inputScript

```
#load model
app = Flask(__name__)
model=pickle.load(open('phishing _websites.pkl','rb'))
#fetches the URL given by the URL and passes to inputScript
@app.route('/_predict',methods=['POST'])
def y_predict():
  url = request.form['URL']
  checkprediction = inputScript.main(url)
  prediction =model.predict(checkprediction)
  print(prediction)
  output=prediction[0]
  if(output==1):
    pred="Your are safe!! This is a Legitimate Website."
  else:
```

```
pred="Your are on the wrong site. Be cautious!"
  return render_template('final.html', prediction_text='{}'.formate(pred),url=url)
#Takes the input parameters fetched from the URL by inputsScript and returns the
@app.route('/predict_api',methods=['POST'])
def predict_api():
  ...
  For direct API calls trought request
  ***
  data = request.get_json(force=True)
  prediction =model.y_predict([np.array(list(data.values()))])
  output =prediction[0]
  return jsonify(output)
```

```
if __name__ =='__main__':
  app.run( debug=True)
inputscript.py
import regex
from tldextract import extract
import ssl
import socket
from bs4 import BeautifulSoup
import urllib.request
import whois
import datetime
def url_having_ip(url):
#using regular function
```

```
 \begin{tabular}{ll} # & symbol = regex.findall(r'(http((s)?)://)((((\d)+).)*)(((\w)+)(/((\w)+))?',url) \\ \end{tabular} 
# if(len(symbol)!=0):
      having_ip = 1 #phishing
 #
  # else:
  # having_ip = -1 #legitimate
  #return(having_ip)
  return 0
def url_length(url):
  length=len(url)
  if(length<54):
     return -1
  elif(54<=length<=75):
     return 0
  else:
     return 1
def url_short(url):
```

```
#ongoing
  return 0
def having_at_symbol(url):
  symbol=regex.findall(r'@',url)
  if(len(symbol)==0):
    return -1
  else:
    return 1
def doubleSlash(url):
  #ongoing
  return 0
def prefix_suffix(url):
  subDomain, domain, suffix = extract(url)
  if(domain.count('-')):
    return 1
  else:
```

```
def sub_domain(url):
  subDomain, domain, suffix = extract(url)
  if(subDomain.count('.')==0):
    return -1
  elif(subDomain.count('.')==1):
    return 0
  else:
    return 1
def SSLfinal_State(url):
  try:
#check wheather contains https
    if(regex.search('^https',url)):
      usehttps = 1
```

```
usehttps = 0
#getting the certificate issuer to later compare with trusted issuer
    #getting host name
    subDomain, domain, suffix = extract(url)
    host_name = domain + "." + suffix
    context = ssl.create_default_context()
    sct = context.wrap_socket(socket.socket(), server_hostname = host_name)
    sct.connect((host_name, 443))
    certificate = sct.getpeercert()
    issuer = dict(x[0] for x in certificate['issuer'])
    certificate_Auth = str(issuer['commonName'])
    certificate_Auth = certificate_Auth.split()
    if(certificate_Auth[0] == "Network" or certificate_Auth == "Deutsche"):
      certificate_Auth = certificate_Auth[0] + " " + certificate_Auth[1]
    else:
```

else:

```
certificate_Auth = certificate_Auth[0]
    trusted_Auth =
['Comodo','Symantec','GoDaddy','GlobalSign','DigiCert','StartCom','Entrust','Verizon','Trustwav
e','Unizeto','Buypass','QuoVadis','Deutsche Telekom','Network
Solutions', 'SwissSign', 'IdenTrust', 'Secom', 'TWCA', 'GeoTrust', 'Thawte', 'Doster', 'VeriSign']
#getting age of certificate
    startingDate = str(certificate['notBefore'])
    endingDate = str(certificate['notAfter'])
    startingYear = int(startingDate.split()[3])
    endingYear = int(endingDate.split()[3])
    Age_of_certificate = endingYear-startingYear
#checking final conditions
    if((usehttps==1) and (certificate_Auth in trusted_Auth) and (Age_of_certificate>=1)):
       return -1 #legitimate
    elif((usehttps==1) and (certificate_Auth not in trusted_Auth)):
       return 0 #suspicious
```

```
else:
      return 1 #phishing
  except Exception as e:
    return 1
def domain_registration(url):
  try:
    w = whois.whois(url)
    updated = w.updated_date
    exp = w.expiration_date
    length = (exp[0]-updated[0]).days
    if(length<=365):
      return 1
    else:
      return -1
  except:
```

```
return 0
def favicon(url):
  #ongoing
  return 0
def port(url):
  #ongoing
  return 0
def https_token(url):
  subDomain, domain, suffix = extract(url)
  host =subDomain +'.' + domain + '.' + suffix
  if(host.count('https')): #attacker can trick by putting https in domain part
    return 1
  else:
    return -1
def request_url(url):
  try:
```

```
subDomain, domain, suffix = extract(url)
websiteDomain = domain
opener = urllib.request.urlopen(url).read()
soup = BeautifulSoup(opener, 'lxml')
imgs = soup.findAll('img', src=True)
total = len(imgs)
linked_to_same = 0
avg = 0
for image in imgs:
  subDomain, domain, suffix = extract(image['src'])
  imageDomain = domain
  if(websiteDomain==imageDomain or imageDomain==''):
    linked_to_same = linked_to_same + 1
vids = soup.findAll('video', src=True)
total = total + len(vids)
```

```
subDomain, domain, suffix = extract(video['src'])
  vidDomain = domain
  if(websiteDomain==vidDomain or vidDomain==''):
    linked_to_same = linked_to_same + 1
linked_outside = total-linked_to_same
if(total!=0):
  avg = linked_outside/total
if(avg<0.22):
  return -1
elif(0.22<=avg<=0.61):
  return 0
else:
  return 1
```

for video in vids:

```
except:
    return 0
def url_of_anchor(url):
  try:
    subDomain, domain, suffix = extract(url)
    websiteDomain = domain
    opener = urllib.request.urlopen(url).read()
    soup = BeautifulSoup(opener, 'lxml')
    anchors = soup.findAll('a', href=True)
    total = len(anchors)
    linked_to_same = 0
    avg = 0
    for anchor in anchors:
      subDomain, domain, suffix = extract(anchor['href'])
```

```
anchorDomain = domain
    if(websiteDomain==anchorDomain or anchorDomain==''):
      linked_to_same = linked_to_same + 1
  linked_outside = total-linked_to_same
  if(total!=0):
    avg = linked_outside/total
  if(avg<0.31):
    return -1
  elif(0.31<=avg<=0.67):
    return 0
  else:
    return 1
except:
  return 0
```

```
def Links_in_tags(url):
  try:
    opener = urllib.request.urlopen(url).read()
    soup = BeautifulSoup(opener, 'lxml')
    no_of_meta =0
    no_of_link = 0
    no_of_script =0
    anchors=0
    avg = 0
    for meta in soup.find_all('meta'):
       no_of_meta = no_of_meta+1
    for link in soup.find_all('link'):
      no_of_link = no_of_link +1
    for script in soup.find_all('script'):
      no_of_script = no_of_script+1
```

```
for anchor in soup.find_all('a'):
    anchors = anchors+1
  total = no_of_meta + no_of_link + no_of_script+anchors
  tags = no_of_meta + no_of_link + no_of_script
  if(total!=0):
    avg = tags/total
  if(avg<0.25):
    return -1
  elif(0.25<=avg<=0.81):
    return 0
  else:
    return 1
except:
  return 0
```

```
def sfh(url):
  #ongoing
  return 0
def email_submit(url):
  try:
    opener = urllib.request.urlopen(url).read()
    soup = BeautifulSoup(opener, 'lxml')
    if(soup.find('mailto:')):
       return 1
    else:
       return -1
  except:
    return 0
def abnormal_url(url):
```

```
#ongoing
  return 0
def redirect(url):
  #ongoing
  return 0
def on_mouseover(url):
  #ongoing
  return 0
def rightClick(url):
  #ongoing
  return 0
def popup(url):
```

```
#ongoing
  return 0
def iframe(url):
  #ongoing
  return 0
def age_of_domain(url):
  try:
    w = whois.whois(url)
    start_date = w.creation_date
    current_date = datetime.datetime.now()
    age =(current_date-start_date[0]).days
    if(age>=180):
      return -1
    else:
```

```
return 1
  except Exception as e:
    print(e)
    return 0
def dns(url):
  #ongoing
  return 0
def web_traffic(url):
  #ongoing
  return 0
def page_rank(url):
  #ongoing
```

return 0

def google_index(url):
#ongoing
return 0
def links_pointing(url):
#ongoing
return 0
def statistical(url):
#ongoing
return 0
def main(url):
check = [[url_having_ip(url),url_length(url),url_short(url),having_at_symbol(url),

```
doubleSlash(url),prefix_suffix(url),sub_domain(url),SSLfinal_State(url),

domain_registration(url),favicon(url),port(url),https_token(url),request_url(url),

url_of_anchor(url),Links_in_tags(url),sfh(url),email_submit(url),abnormal_url(url),

redirect(url),on_mouseover(url),rightClick(url),popup(url),iframe(url),

age_of_domain(url),dns(url),web_traffic(url),page_rank(url),google_index(url),

links_pointing(url),statistical(url)]]

print(check)
```

Github

github URL:https://github.com/IBM-EPBL/IBM-Project-11961-1659362684.git

Demo Video URL: https://github.com/IBM-EPBL/IBM-Project-11961-

1659362684/blob/main/Final%20Deliverables/Demo_Video_PNT2022TMID21631.mp4