1.	Questions	1-2 are	about	noisy	targets.
----	-----------	---------	-------	-------	----------

10 points

Consider the bin model for a hypothesis h that makes an error with probability μ in approximating a deterministic target function f (both h and f outputs $\{-1,+1\}$). If we use the same h to approximate a noisy version of f given by

$$P(\mathbf{x}, y) = P(\mathbf{x})P(y|\mathbf{x})$$

$$P(y|\mathbf{x}) = \begin{cases} \lambda & y = f(\mathbf{x}) \\ 1 - \lambda & \text{otherwise} \end{cases}$$

What is the probability of error that h makes in approximating the noisy target y?

- $\bigcap 1-\lambda$
- $\bigcirc u$
- $\lambda(1-\mu) + (1-\lambda)\mu$
- $\lambda \mu + (1 \lambda)(1 \mu)$
- none of the other choices
- 2. Following Question 1, with what value of λ will the performance of h be independent of μ ?

10 points

- 0
- \bigcirc 1
- 0 or 1
- 0.5
- none of the other choices
- 3. Questions 3-5 are about generalization error, and getting the feel of the bounds numerically. Please use the simple upper bound $N^{d_{\mathrm{vc}}}$ on the growth function $m_{\mathcal{H}}(N)$, assuming that $N \geq 2$ and $d_{vc} \geq 2$.

10 points

For an ${\cal H}$ with $d_{\rm vc}=10$, if you want 95% confidence that your generalization error is at most 0.05, what is the closest numerical approximation of the sample size that the VC generalization bound predicts?

	420,000	
	440,000	
	O 460,000	
	480,000	
	500,000	
4.	There are a number of bounds on the generalization error ϵ , all holding with probability at least $1-\delta$. Fix $d_{\rm vc}=50$ and $\delta=0.05$ and plot these bounds as a function of N . Which bound is the tightest (smallest) for very large N , say $N=10,000$?	10 points
	Note that Devroye and Parrondo & Van den Broek are implicit bounds in $\epsilon.$	
	Original VC bound: $\epsilon \leq \sqrt{\frac{8}{N} \ln \frac{4m_{\mathcal{H}}(2N)}{\delta}}$	
	Rademacher Penalty Bound: $\epsilon \leq \sqrt{\frac{2 \ln(2Nm_{\mathcal{H}}(N))}{N}} + \sqrt{\frac{2}{N} \ln \frac{1}{\delta}} + \frac{1}{N}$	
	O Parrondo and Van den Broek: $\epsilon \leq \sqrt{\frac{1}{N} \left(2\epsilon + \ln \frac{6m_{\mathcal{H}}(2N)}{\delta}\right)}$	
	Devroye: $\epsilon \leq \sqrt{\frac{1}{2N} \left(4\epsilon(1+\epsilon) + \ln \frac{4m_{\mathcal{H}}(N^2)}{\delta}\right)}$	
	O Variant VC bound: $\epsilon \leq \sqrt{\frac{16}{N} \ln \frac{2m_{\mathcal{H}}(N)}{\sqrt{\delta}}}$	
5.	Continuing from Question 4, for small N , say $N=5$, which bound is the tightest (smallest)?	10 points
	Original VC bound	
	Rademacher Penalty Bound	
	Parrondo and Van den Broek	
	O Devroye	
	Variant VC bound	

6. In Questions 6-11, you are asked to play with the growth function or VC-dimension of some hypothesis sets.

10 points

What is the growth function $m_{\mathcal{H}}(N)$ of "positive-and-negative intervals on \mathbb{R} "? The hypothesis set \mathcal{H} of "positive-and-negative intervals" contains the functions which are +1 within an interval $[\ell,r]$ and -1 elsewhere, as well as the functions which are -1 within an interval $[\ell,r]$ and +1 elsewhere.

For instance, the hypothesis $h_1(x)=\mathrm{sign}(x(x-4))$ is a negative interval with -1 within [0,4] and +1 elsewhere, and hence belongs to \mathcal{H} . The hypothesis $h_2(x)=\mathrm{sign}((x+1)(x)(x-1))$ contains two positive intervals in [-1,0] and $[1,\infty)$ and hence does not belong to \mathcal{H} .

- $N^2 N + 2$
- $\bigcap N^2$
- $N^2 + 1$
- none of the other choices.
- $N^2 + N + 2$
- 7. Continuing from the previous problem, what is the VC-dimension of the hypothesis set of "positive-and-negative intervals on \mathbb{R} "?

10 points

- \bigcirc 3
- () 4
- \bigcirc 5
- \bigcirc \propto
- \bigcirc 2
- 8. What is the growth function $m_{\mathcal{H}}(N)$ of "positive donuts in \mathbb{R}^2 "?

10 points

The hypothesis set $\mathcal H$ of "positive donuts" contains hypotheses formed by two concentric circles centered at the origin. In particular, each hypothesis is +1 within a "donut" region of $a^2 \leq x_1^2 + x_2^2 \leq b^2$ and -1 elsewhere. Without loss of generality, we assume $0 < a < b < \infty$.

- $\bigcirc N+1$
- $\binom{N+1}{2} + 1$
- $\binom{N+1}{3} + 1$
- none of the other choices.
- $\binom{N}{2} + 1$

9. Consider the "polynomial discriminant" hypothesis set of degree D on $\mathbb R$, which is given by

10 points

$$\mathcal{H} = \left\{ h_{\mathbf{c}} \middle| h_{\mathbf{c}}(x) = \operatorname{sign} \left(\sum_{i=0}^{D} c_{i} x^{i} \right) \right\}$$

What is the VC-dimension of such an \mathcal{H} ?

- $\bigcirc D$
- $\bigcirc D+1$
- \bigcirc ∞
- none of the other choices.
- $\bigcirc D+2$
- 10. Consider the "simplified decision trees" hypothesis set on \mathbb{R}^d , which is given by

10 points

$$\mathcal{H} = \{h_{\mathbf{t},\mathbf{S}} \mid h_{\mathbf{t},\mathbf{S}}(\mathbf{x}) = 2[[\mathbf{v} \in S]] - 1, \text{ where } v_i = [[x_i > t_i]],$$

S a collection of vectors in $\{0,1\}^d, \mathbf{t} \in \mathbb{R}^d$

That is, each hypothesis makes a prediction by first using the d thresholds t_i to locate \mathbf{x} to be within one of the 2^d hyper-rectangular regions, and looking up \mathbf{S} to decide whether the region should be +1 or -1.

What is the VC-dimension of the "simplified decision trees" hypothesis set?

- \bigcirc 2^d
- $2^{d+1}-3$
- ∞
- one of the other choices.
- \bigcirc 2^{d+1}
- 11. Consider the "triangle waves" hypothesis set on \mathbb{R} , which is given by

10 points

$$\mathcal{H} = \{ h_{\alpha} \mid h_{\alpha}(x) = \operatorname{sign}(|(\alpha x) \bmod 4 - 2| - 1), \alpha \in \mathbb{R} \}$$

Here $(z \mod 4)$ is a number z-4k for some integer k such that $z-4k \in [0,4)$. For instance, $(11.26 \mod 4)$ is 3.26, and $(-11.26 \mod 4)$ is 0.74. What is the VC-dimension of such an \mathcal{H} ?

	\bigcirc 1	
	O 2	
	\bigcirc ∞	
	one of the other choices.	
12.	In Questions 12-15, you are asked to verify some properties or bounds on the growth function and VC-dimension.	10 points
	Which of the following is an upper bounds of the growth function $m_{\mathcal{H}}(N)$ for $N \geq d_{vc} \geq 2$?	
	$\bigcap m_{\mathcal{H}}\left(\lfloor \frac{N}{2} \rfloor\right)$	
	$\bigcirc \ 2^{d_{vc}}$	
	$\bigcap_{1 \le i \le N-1} 2^i m_{\mathcal{H}}(N-i)$	
	$igcup \sqrt{N^{d_{vc}}}$	
	one of the other choices	
13.	Which of the following is not a possible growth functions $m_{\mathcal{H}}(N)$ for some hypothesis set?	10 points
	$\bigcirc 2^N$	
	$\bigcirc \ 2^{\lfloor \sqrt{N} floor}$	
	O 1	
	$ N^2 - N + 2 $	
	one of the other choices	
14.	For hypothesis sets $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_K$ with finite, positive VC-dimensions $d_{vc}(\mathcal{H}_k)$, some of the following bounds are correct and some are not.	10 points
	Which among the correct ones is the tightest bound on $d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k)$, the VC-dimension of the intersection of the sets?	
	(The VC-dimension of an empty set or a singleton set is taken as zero.)	

$$\bigcirc 0 \le d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k) \le \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

$$\bigcirc 0 \le d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k) \le \min\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K$$

$$\bigcirc 0 \le d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k) \le \max\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K$$

$$\bigcap \min\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \le d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k) \le \max\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K$$

$$\bigcirc \min\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \leq d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k) \leq \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

15. For hypothesis sets $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_K$ with finite, positive VC-dimensions $d_{vc}(\mathcal{H}_k)$, some of the following bounds are correct and some are not.

10 points

Which among the correct ones is the tightest bound on $d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k)$, the VC-dimension of the union of the sets?

$$\bigcirc 0 \le d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k) \le K - 1 + \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

$$\bigcirc \min\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \leq d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k) \leq \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

$$\bigcap \max\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \leq d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k) \leq \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

$$\bigcap \max\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \le d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k) \le K - 1 + \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

$$\bigcirc 0 \le d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k) \le \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

16. For Questions 16-20, you will play with the decision stump algorithm.

10 points

In class, we taught about the learning model of "positive and negative rays" (which is simply one-dimensional perceptron) for one-dimensional data. The model contains hypotheses of the form:

$$h_{s,\theta}(x) = s \cdot \operatorname{sign}(x - \theta).$$

The model is frequently named the "decision stump" model and is one of the simplest learning models. As shown in class, for one-dimensional data, the VC dimension of the decision stump model is 2.

In fact, the decision stump model is one of the few models that we could easily minimize E_{in} efficiently by enumerating all possible thresholds. In particular, for N examples, there are at most 2N dichotomies (see page 22 of lecture 5 slides), and thus at most 2N different E_{in} values. We can then easily choose the dichotomy that leads to the lowest E_{in} , where ties an be broken by randomly choosing among

the lowest E_{in} ones. The chosen dichotomy stands for a combination of some "spot" (range of θ) and s, and commonly the median of the range is chosen as the θ that realizes the dichotomy.

In this problem, you are asked to implement such and algorithm and run your program on an artificial data set. First of all, start by generating a one-dimensional data by the procedure below:

- (a) Generate x by a uniform distribution in [-1, 1].
- (b) Generate y by $f(x)=\widetilde{s}(x)$ + noise where $\widetilde{s}(x)=\mathrm{sign}(x)$ and the noise flips the result with 20% probability.

For any decision stump $h_{s,\theta}$ with $\theta \in [-1,1]$, express $E_{out}(h_{s,\theta})$ as a function of θ and s.

- $0.3 + 0.5s(|\theta| 1)$
- $0.3 + 0.5s(1 |\theta|)$
- $0.5 + 0.3s(|\theta| 1)$
- $0.5 + 0.3s(1 |\theta|)$
- none of the other choices
- 17. Generate a data set of size 20 by the procedure above and run the one-dimensional decision stump algorithm on the data set. Record E_{in} and compute E_{out} with the formula above. Repeat the experiment (including data generation, running the decision stump algorithm, and computing E_{in} and E_{out}) 5,000 times. What is the average E_{in} ? Please choose the closest option.

10 points

- 0.05
- 0.15
- 0.25
- 0.35
- 0.45
- 18. Continuing from the previous question, what is the average $E_{\it out}$? Please choose the closest option.

10 points

- 0.05
- 0.15

	0.25	
	0.35	
	0.45	
19.	Decision stumps can also work for multi-dimensional data. In particular, each	10 points
	decision stump now deals with a specific dimension \emph{i} , as shown below.	
	$h_{s,i,\theta}(\mathbf{x}) = s \cdot \operatorname{sign}(x_i - \theta).$	
	Implement the following decision stump algorithm for multi-dimensional data:	
	a) for each dimension $i=1,2,\cdots,d$, find the best decision stump $h_{s,i,\theta}$ using the one-dimensional decision stump algorithm that you have just implemented.	
	b) return the "best of best" decision stump in terms of $E_{\it in}$. If there is a tie , please randomly choose among the lowest- $E_{\it in}$ ones	
	The training data \mathcal{D}_{train} is available at:	
	https://www.csie.ntu.edu.tw/~htlin/mooc/datasets/mlfound_math/hw2_train.dat	
	The testing data \mathcal{D}_{test} is available at:	
	https://www.csie.ntu.edu.tw/~htlin/mooc/datasets/mlfound_math/hw2_test.dat	
	Run the algorithm on the \mathcal{D}_{train} . Report the $E_{\rm in}$ of the optimal decision stump returned by your program. Choose the closest option.	
	0.05	
	0.15	
	0.25	

0.35

0.45

Report an estimate of $E_{ m out}$ by $E_{ m test}.$ Please choose the closest option.
0.05
0.15
0.25
0.35
0.45