- Cayley-Hamilton Thm: $\chi_T(T) = 0$ for all linear operator T.
- $T^k = -\frac{1}{c_k} \sum_{i=0}^{k-1} c_i T^i$.
- $T^{-1} = T^{-1} \circ \mathrm{id}_V = T^{-1} \circ \left(-\frac{1}{c_0} \sum_{i=1}^k c_i T^i \right)$.
- Rotation matrix:

$$\begin{bmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -i & -i \end{bmatrix} \begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -i & -i \end{bmatrix}^{-1}.$$

- Euclidean operators:
 - 1. a series of stretching and/or crushing transformations if it has n distinct real eigenvalues;
 - 2. a series of rotations followed by a series of stretching and/or crushing transformations if it has n distinct eigenvalues not all real;
 - 3. a series of shearing transformations followed by a series of stretching and/or crushing transformations if it has less than n distinct real eigenvalues;
 - 4. a series of shearing transformations, followed by a series of rotations, and then followed by another series of stretching and/or crushing transformations if it has less than n distinct eigenvalues not all real.
- Bilinear forms: $b = \sum_{i=1}^{n} \sum_{j=1}^{n} b(\mathbf{z}_i, \mathbf{z}_j) \zeta^i \otimes \zeta^j$.
- For every bilinear form b on V, there is $b^{\#}: V \to \widehat{V}$ such that $b^{\#}(\boldsymbol{v})(\boldsymbol{u}) = b(\boldsymbol{u}, \boldsymbol{v})$.
- i-th component of $b^{\#}(v)$: $b^{\#}(v)(z_i) = b(z_i, v) = \sum_{j=1}^n b_{ij}v_j$.
- Change-of-basis:
 - 1. In general, P is the matrix for $z^{-1} \circ y$, and $M_y(T) = P^{-1}M_z(T)P$.
 - 2. Bilinear form: $M_u(b) = \mathbf{P}^{\mathrm{T}} M_z(b) \mathbf{P}$.
 - 3. Change between orthonormal bases: $P^{T}P = I$. Bilinear form has I under orthonormal basis.
 - 4. Sesquilinear form: $M_u(b) = \mathbf{P}^{\mathrm{T}} M_z(b) \overline{\mathbf{P}}$.
 - 5. Unitary matrix: $\overline{P^{T}}P = I$. Any unitary matrix forms an orthonormal basis!
- Orthogonal decomposition: $u=rac{g(u,v)}{|v|^2}v+u-rac{g(u,v)}{|v|^2}v.$

- Cauchy-Schwarz Inequality: $g(u, v) \le |u| |v|$.
- Angle: $\cos \theta = \frac{g(\boldsymbol{u}, \boldsymbol{v})}{|\boldsymbol{u}| |\boldsymbol{v}|}$.
- Orthonormal basis: $g(\boldsymbol{u}, \boldsymbol{v}) = z^{-1}(\boldsymbol{u}) \cdot z^{-1}(\boldsymbol{v})$.
- Gram-Schmidt:

$$oldsymbol{z}_1^+ = oldsymbol{z}_1, \qquad oldsymbol{z}_k^+ \coloneqq rac{oldsymbol{z}_k - \sum_{i=1}^{k-1} g\left(oldsymbol{z}_k, oldsymbol{z}_i^+
ight) oldsymbol{z}_i^+}{\left|oldsymbol{z}_k - \sum_{i=1}^{k-1} g\left(oldsymbol{z}_k, oldsymbol{z}_i^+
ight) oldsymbol{z}_i^+
ight|}.$$

Matrix representation is upper-triangular.

• Riesz-Representation: For any inner product space (V, g), let the mapping $\Gamma \colon V \to \widehat{V}$ be such that

$$\Gamma(\boldsymbol{u})(\boldsymbol{v}) = g(\boldsymbol{v}, \boldsymbol{u}),$$

then for every $\alpha \in \widehat{V}$, there is a unique $\mathbf{u}_{\alpha} \in V$ such that $\alpha = \Gamma(\mathbf{u}_{\alpha})$.

- $\zeta^i = \Gamma(\mathbf{z}P_i)$, *i*-th component of \mathbf{v} is $\Gamma(\mathbf{z}_i)(\mathbf{v})$, *i*-th component of $\Gamma(\mathbf{v})$ is $\Gamma(\mathbf{v})(\mathbf{z}_i) = \sum_{j=1}^n g_{ij}v_j$.
- $\Gamma(\boldsymbol{v}) = \sum_{i=1}^n \sum_{j=1}^n g_{ij} v_j \zeta^i$.
- If T is an operator over V, then $b_T := \Gamma \circ T$ is a bilinear form over V, $M_z(b_T) = M_z(g)M_z(T)$. If b is a bilinear form over V, then $\Gamma^{-1} \circ b$ is an operator over V.
- Riesz-equivalent: $b(\boldsymbol{u}, \boldsymbol{v}) = (\Gamma \circ T)(\boldsymbol{v})(\boldsymbol{u})$ or $b(\boldsymbol{u}, \boldsymbol{v}) = g(\boldsymbol{u}, T(\boldsymbol{v}))$, have the (conjugate-)same matrix representation under orthonormal basis.
- Riesz-equivalent operator and sesquilinear form: $M_z(s_T) = M_z(g) \overline{M_z(T)}$.
- Schur's Triangularisation Thm: let T be a complex operator with basis y, then there is an orthonormal basis z such that $M_z(T)$ is upper-triangular, where $M_z(T) = \mathbf{G}^{-1}\mathbf{M}^{-1}\mathbf{G}^{-1}M_y(T)\mathbf{G}\mathbf{M}\mathbf{G}$. \mathbf{G} is the Gram-Schmidt upper-triangular matrix and \mathbf{M} changes to an upper-triangular matrix. Here, $\mathbf{M}\mathbf{G}$ changes between orthonormal bases and so is unitary.
- Hermitian: $s(\boldsymbol{u}, \boldsymbol{v}) = \overline{s(\boldsymbol{v}, \boldsymbol{u})}$.
- If τ is a Riesz-equivalent sesquilinear form to T, then τ is Hermitian iff $g(\boldsymbol{u}, T(\boldsymbol{v})) = g(T(\boldsymbol{u}), \boldsymbol{v})$.
- **Spectral Thm:** Every Hermitian sesquilinear form over a complex inner product space has a real diagonal matrix representation under some orthonormal basis.

- Let T be a Riesz-equivalent operator to a Hermitian sesquilinear form s, then all eigenvalues of T are real.
- Every symmetric bilinear form b over a real inner product space V has a real diagonal matrix representation under some orthonormal basis such that there is a real eigenvector associated to each eigenvalue.
- Wedge product: $\alpha \wedge \beta := \alpha \otimes \beta \beta \otimes \alpha$ is a two-form.
- Dimension of m-form space in n-dimensional space: $\binom{n}{m}$.
- *n*-form space: $\{\lambda \bigwedge_{i=1}^n \zeta^i : \lambda \in \mathbb{F}\}.$
- **Determinant:** For any *n*-form Ω , $\widehat{T}(\Omega) = \Delta(T)\Omega$. Hermitian operators have real determinant. Non-zero determinant iff bijective.
- Volume: $\Theta \colon V^n \to \mathbb{F}$ such that
 - 1. $\Theta(u_1, u_2, \cdots, u_n) \geq 0;$
 - 2. $\Theta(\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n) \neq 0$ if and only if $\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n$ are linearly independent;
 - 3. $\Theta(\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, c\boldsymbol{u}_i, \cdots \boldsymbol{u}_n) = c\Theta(\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, \boldsymbol{u}_n)$ for any $c \in \mathbb{F}$;
 - 4. $\Theta(u_1, u_2 \cdots, u_i, \cdots, u_j + cu_i, \cdots u_n) = \Theta(u_1, u_2, \cdots, u_n)$ for any $c \in \mathbb{F}$;
 - 5. $\Theta(\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n) = 1$ whenever $\{\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n\}$ is an orthonormal basis.
- Volume form: Let V be an n-dimensional inner product space over a well-ordered field \mathbb{F} . Take any orthonormal basis $\{z_1, z_2, \cdots, z_n\}$ with dual basis $\{\zeta^1, \zeta^2, \cdots, \zeta^n\}$.

$$\Theta \coloneqq |\omega_z| = \left| \bigwedge_{i=1}^n \zeta^i \right|.$$

 ω_z is called the **Orientation**.

- $\Theta(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) = |\boldsymbol{u} \cdot \boldsymbol{v} \times \boldsymbol{w}|$
- For general basis: $\Theta = \sqrt{\Delta(g)} | \bigwedge_{i=1}^n \eta^i |$.