Zihan Wu

PhD Candidate, Electrical Engineering, City University of Hong Kong

SUMMARY

PhD candidate in Electrical Engineering with a strong foundation in high-performance computing, algorithmic optimization, and low-latency system design. Experienced in building real-time trading infrastructure, reinforcement learning pipelines, and distributed engines across C++, Rust, and Python. Demonstrated independent research through self-directed quant projects and published work on distributed consensus, clustering systems, and transformer optimization. Eager to apply hybrid strengths in systems engineering and ML to quantitative research and infrastructure roles.

EDUCATION

City University of Hong Kong, Ph.D. in Electrical Engineering

Hong Kong SAR, China

2020 - 2025 (Expected)

University of Science and Technology of China, B.Sc. in Physics & Applied Mathematics

Hefei, China 2015 – 2020

EXPERIENCE

Huawei Technologies, Research Intern

Hong Kong

Developing LLM optimization techniques for enterprise AI with focus on performance efficiency

2025 - Present

PROJECTS

Rust, Python, PPO, Streamlit, Binance API

BTC Trader: Real-Time Crypto Trading System (Independent)

2023 - 2025

- Built a real-time crypto trading engine using Rust for execution and Python for RL-based signal generation and monitoring
- Integrated PPO reinforcement learning strategy; achieved 4.08% backtest return with Sharpe ratio 1.42 under risk limits
- Implemented sub-millisecond latency core, real-time dashboard (Streamlit), and modular backtest/live/train pipeline
- Dockerized deployment with CI/CD support; served as a personal quant research sandbox

C++, Distributed Systems, Performance Engineering

X-Shard: Distributed Transaction Engine

2023 - 2024

- Reduced transaction latency by 37% via cross-shard scheduling and commit path optimization
- Optimized transaction execution path in a sharded blockchain by minimizing branch mispredictions via path classification and memory-aligned data layout
- Implemented O(n) threshold signature scheme for fast consensus under network partition
- Published: IEEE Trans. on Parallel and Distributed Systems, 2024

C++, Rust (FFI), MPI, Optimization

High-Performance Co-Clustering System

2020 - Present

- Built Rust orchestrator over C++ HPC core with safe FFI and nanosecond-level latency control
- · Applied unsupervised clustering and geometry-aware pattern recognition to extract latent structures from noisy datasets
- Published in IEEE SMC 2024 and IEEE TIM

C++, PyTorch, CUDA

LMEraser: Fast Transformer Optimization

2023 - Present

- Accelerated model unlearning by 100x using adaptive prompt tuning and memory optimization
- Optimized 86M+ parameter transformer models for deployment without performance loss
- To appear at AISTATS 2025

SKILLS

Programming Languages: C++ (Advanced, Low-latency), Python (Data/ML), Rust (FFI, Systems), C, MATLAB

Systems & HPC: MPI, OpenMP, CUDA, Distributed Systems, Real-Time Processing, Linux, Docker

Quant & ML: PPO, Reinforcement Learning, Model Compression, Algorithm Design, Statistical Modeling, Co-Clustering, Signal Processing

Tools & Infra: PyTorch, TensorFlow, Streamlit, GitHub Actions, OpenCV, Prometheus, Justfile, CI/CD

AWARDS

HK PhD Fellowship (Top 5% acceptance)

2020-2024

National Encouragement Scholarship (Top 2%)

2017-2018

Patent: Physical Activity Assessment System: HK30081186

2023