인공지능 기반 설계 이론 및 사례 연구 11차) Generative Adversarial Network (GAN)

2020년 11월

강남우

기계시스템학부 숙명여자대학교

Generative Adversarial Network (GAN) – How to work

VAEs define intractable density function with latent **z**:

$$p_{\theta}(x) = \int p_{\theta}(x|z)p_{\theta}(z)dz$$

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don't work with any explicit density function! Instead, take game-theoretic approach: learn to generate from training distribution through 2-player game

Training GANs: Two-player game

- Generator network: try to fool the discriminator by generating real-looking images
- **Discriminator network**: try to distinguish between real and fake images

Objective function (minimax game)

$$\min_{G} \max_{D} V(D, G) = E_{x \sim p_{\text{data}}(x)}[\log D(x)] + E_{z \sim p_{z}(z)}[\log(1 - D(G(z))]$$

2. Generator 학습

D(G(x)) = 1 일때 log 0 으로 최소화

가짜 이미지

 $\max_{G} E_{z \sim p_{z}(z)} [\log(D(G(z)))]$

GAN eventually minimizes the distance between the real data distribution and the model distribution.

$$\min_{G} \max_{D} V(D,G) =$$

Objective function of GANs

$$E_{x \sim p_{data}(x)}[\log D(x)] + E_{z \sim p_z(z)}[\log(1 - D(G(z))]$$

$$\min_{G,D} JSD(p_{data}||p_g)$$

Jenson-Shannon divergence

$$JSD(P||Q) = \frac{1}{2}KL(P||M) + \frac{1}{2}KL(Q||M)$$

Where
$$M = \frac{1}{2}(P + Q)$$

1. Discriminator 최적해 증명 (1/2)

High dimensional vector (e.g. 128x128) Low dimensional vector (e.g. 128) $\min_{G} \max_{D} V(D,G) = E_{x \sim p_{\mathrm{data}}(x)}[\log D(x)] + E_{z \sim p_{z}(z)}[\log(1 - D(G(z))] - 0)$ Objective function of GAN Real data distribution Gaussian distribution Fix G to make it a function of D $D^*(x) = arg \max_{D} V(D) = E_{x \sim p_{\mathrm{data}}(x)}[\log D(x)] + E_{z \sim p_z(z)}[\log (1 - D(G(z))] \leftarrow \\ \text{Sampling x from p}_g \\ \text{Sampling x from p}_g \\ \text{instead of sampling z} \\ \text{from p}_z \\ = E_{x \sim p_{\mathrm{data}}(x)}[\log D(x)] + E_{x \sim p_g(x)}[\log (1 - D(x))] \leftarrow \\ \text{Sampling x from p}_z \\ \text{instead of sampling z} \\ \text{from p}_z \\ \text{f$ Optimal D $= \int_{\mathcal{X}} p_{data}(x) \log D(x) \, dx + \int_{\mathcal{X}} p_g(x) \log \left(1 - D(x)\right) dx \qquad \longleftarrow \qquad E_{x \sim p_{(x)}}[f(x)] = \int_{\mathcal{X}} p(x) f(x) \, dx$ Basic property of $= \int_{x} p_{data}(x) \log D(x) + p_{g}(x) \log(1 - D(x)) dx$ integral Now we need to find D(x) which makes the function inside integral maximum.

1. Discriminator 최적해 증명 (2/2)

$$D^*(x) = arg \max_{D} V(D)$$
The function inside integral
$$= arg \max_{D} v p_{data}(x) \log D(x) + p_g(x) \log (1 - D(x))$$
Substitute $a = p_{data}(x), y = D(x), b = p_g(x)$

$$a \log y + b \log (1 - y)$$
Differentiate with respect to $D(x)$ using $\frac{d}{dx} \log f(x) = \frac{f'(x)}{f(x)}$
Note that $D(x)$ cannot affect to $p_{data}(x)$ and $p_g(x)$

$$\frac{a}{y} + \frac{-b}{1 - y} = \frac{a - (a + b)y}{y(1 - y)}$$
Find the point where the derivative value is 0
$$\frac{a - (a + b)y}{y(1 - y)} = 0$$
It has a maximum value when $y = \frac{a}{a + b}$
Substitute $a = p_{data}(x), y = D(x), b = p_g(x)$

2. Generator 최적해 증명

$$\begin{aligned} & \underset{G}{\min} \max V(D,G) = \underset{G}{\min} V(D^*,G) - \underset{G}{\min} V(D^*,G) - \underset{G}{\min} V(D^*,G) \\ & V(D^*,G) = E_{x \sim p_{\mathrm{data}}(x)} [\log D^*(x)] + E_{x \sim p_g} [\log(1-D^*(x))] - E_{x \sim p_{(x)}} [f(x)] = \int_x p(x) f(x) \, dx \\ & = \int_x p_{\mathrm{data}}(x) \log \frac{p_{\mathrm{data}}(x)}{p_{\mathrm{data}}(x) + p_g(x)} \, dx + \int_x p_g(x) \log \frac{p_g(x)}{p_{\mathrm{data}}(x) + p_g(x)} \, dx \\ & = -log4 + log4 + \int_x p_{\mathrm{data}}(x) \log \frac{p_{\mathrm{data}}(x)}{p_{\mathrm{data}}(x) + p_g(x)} \, dx + \int_x p_g(x) \log \frac{p_g(x)}{p_{\mathrm{data}}(x) + p_g(x)} \, dx \\ & = -log4 + \int_x p_{\mathrm{data}}(x) \log \frac{2 \cdot p_{\mathrm{data}}(x)}{p_{\mathrm{data}}(x) + p_g(x)} \, dx + \int_x p_g(x) \log \frac{2 \cdot p_g(x)}{p_{\mathrm{data}}(x) + p_g(x)} \, dx \\ & = -log4 + \int_x p_{\mathrm{data}}(x) \log \frac{2 \cdot p_{\mathrm{data}}(x)}{p_{\mathrm{data}}(x) + p_g(x)} \, dx + \int_x p_g(x) \log \frac{2 \cdot p_g(x)}{p_{\mathrm{data}}(x) + p_g(x)} \, dx \\ & = -log4 + KL(p_{\mathrm{data}}||\frac{p_{\mathrm{data}} + p_g}{2}) + KL(p_g||\frac{p_{\mathrm{data}} + p_g}{2}) \\ & = -log4 + 2 \cdot JSD(p_{\mathrm{data}}||p_g) \end{aligned} \qquad \text{Optimizing V(D,G) is same as minimizing } JSD(p_{\mathrm{data}}||p_g)$$

 $p_{data}(x) = p_g(x)$ $D^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} = \frac{1}{2}$

VAE vs. GAN

VAE

Blurry

Tend to remember input images

Smooth

GAN

Sharp

Generate new unseen images

Mode collapse

Unstable convergence

VAE vs. GAN

VAE: maximum likelihood approach

GAN Coding

Deep Convolutional GAN (DCGAN)

	Generator	Discriminator
Pooling Layers	Not used. But use stride convolutions instead	
Batch normalization	Use except output layer	Use except input layer
Fully connected hidden layers	Not used	
Activation function	ReLU for all layers except for the output, which uses Tanh	LeakyReLU for all layers

DCGAN: Interpretable Vector Math

DCGAN: Interpretable Vector Math

Glasses man No glasses man No glasses woman Woman with glasses Results of doing the same arithmetic in pixel

space

DCGAN Coding

Go to http://www.smartdesignlab.org/dl.html

Various GAN Structures

Conditional GAN (cGAN)

InfoGAN

MNIST digits generated using InfoGAN

Infogan는 의미있는 개념(ex. 숫자 유형,기울기 등)을 포착한다.

Row는 Latent categorical value에 따라 대응하며, Column은 Latent continuous variable에 따라 대응한다.

Boundary Equilibrium GAN (BEGAN)

Autoencoder loss:
$$\mathcal{L}(v) = |v - A(v)|^{\eta}$$
 where

$$\begin{cases} \mathbb{R}^{N_x} \to \mathbb{R}^{N_x} & \text{is an autoencoder function} \\ \eta \in \{1, 2\} & \text{is a targe norm} \\ v \in \mathbb{R}^{N_z} & \text{is a sample of dimension } N_z \end{cases}$$

Discriminator:
$$\mathcal{L}_D = \mathcal{L}(x) - k_t \mathcal{L}(G(z_D))$$
 for θ_D 진짜가 가짜가 복원이 잘되도록 복원이 안되도록

Generator:

$$\mathcal{L}_G = \mathcal{L}(G(z_G))$$
 for θ_G 가짜가 복원이 잘되도록

Discriminator와 Generator의 균형 맞추기 $\gamma \downarrow \to L(x)$ 에 집중 $\to G(z)$ 다양성 떨어짐, 퀄리티 증가 0부터 점점 $k_{t+1} = k_t + \lambda_k (\gamma \mathcal{L}(x) - \mathcal{L}(G(z_G)))$ $\gamma \rightarrow L(G(z))$ 에 집중 $\rightarrow G(z)$ 다양성 증가, 퀄리티 감소

Boundary Equilibrium GAN (BEGAN)

Convergence Measure

$$M_{global} = \mathcal{L}(x) + |\gamma(\mathcal{L}(x)) - \mathcal{L}(G(z_G))|$$

Various GANs Coding

(Mirza & Osindero, 2014)

Go to http://www.smartdesignlab.org/dl.html real fake infoGAN **BEGAN cGAN GAN** real fake real real G(z)fake Wasserstein distance fake G D_{AE} fake real G(z)G(z) χ G(z) χ G G \boldsymbol{Z}

(Chen, et al., 2016)

(Berthelot et al., 2017)

GAN ZOO

GAN
DCGAN
WGAN
CGAN
LSGAN
SGAN
ACGAN
InfoGAN
CycleGAN

2017: Explosion of GANs

Better training and generation

LSGAN, Zhu 2017.

Wasserstein GAN, Arjovsky 2017. Improved Wasserstein GAN, Gulrajani 2017.

Progressive GAN, Karras 2018

CelebA-HQ 1024 × 1024

Progressive growing

2017: Explosion of GANs

Source->Target domain transfer

CycleGAN. Zhu et al. 2017.

Text -> Image Synthesis

this small bird has a pink primaries and secondaries.

this magnificent fellow is breast and crown, and black almost all black with a red crest, and white cheek patch.

Reed et al. 2017.

Many GAN applications

Pix2pix. Isola 2017. Many examples at https://phillipi.github.io/pix2pix/

2019: BigGAN

Figure 6: Additional samples generated by our model at 512×512 resolution.

2020: StyleGAN2

What Questions Do You Have?

nwkang@sm.ac.kr

www.smartdesignlab.org

