Enosmerni magnetni krog

Okoli železnega jedra imamo navitje, ki deluje kot tuljava, ki generira magnetno polje in fluks (magnetno polje krat površina (za homogene razmere)). To navitje je napajano s strani enosmernega generatorja, ki vzbudi tok I_v in napetost U po navitju. Ker je vir enosmeren se lahko izračuna tok preko ohmovega zakona $I_v = \frac{U}{R_{nav}}$, kjer je R_{nav} upornost navitja.

Povezava z električnimi vezji

Z pomočjo <u>amerovega zakona</u> bomo računali stanje v magnetnih krogih. Ker je enčaba, ki jo podaja amperov zakon zapletena bomo predpostavili določene poenastavitve:

- Homogeno magnetno polje \vec{B} v feromagnetnem jedru,
- linearna karakteristika BH krivulje
- ullet magnetno polje je vzporedno normali površine prereza: $ec{B} \parallel dec{A}$

Tako se l evi del enačbe poenostavi:

$$\oint_{\mathcal{L}}ec{H}dec{l}=H\cdot l_{sr}$$

$$\oint_{\mathcal{L}} ec{H} dec{l} = \int_{A} ec{J} dec{A}$$

kjer je l_{sr} srednja zanka skozi železno jedro, ki jo lahko sestavimo iz l_{fe} in l_{zr} . Tako dobimo poenostavljeno enačbo za naš zgornji primer:

$$H_{fe} \cdot l_{fe} + H_{zr} \cdot l_{zr} = N \cdot I_v$$

kjer pomeni oznaka fe veličine vezane na železo, in zr veličine v zraku. N je število ovojev ki seka površino, ki jo lahko napnemo na zanko l_{sr} . Z drugimi besedami, število ovojev okoli železnega jedra.

 $N \cdot I_v$ lahko interpretiramo kot magnetno vzbujanje ali magnetno napetost, medtem ko $\sum H_i l_i$ kot padce napetosti. Tako smo formulirali magnetno vezje, ki ga lahko razumemo z pomočjo <u>ohmovih</u> in <u>kirchhoffovih zakonov</u>.

$$U = I \cdot R \Rightarrow \Theta = \Phi \cdot R_m$$
 $\Phi R_{mfe} + \Phi R_{mzr} = \Theta_{mv} = I_v \cdot N$

Vezje zgornjega primera bi tako izgledalo:

IN
$$\frac{1}{2}$$
 Reserve $\frac{1}{2}$ Reserve $\frac{1}{2}$

 μ_{fe} nam pove relacijo med magnetnim polje B in gostoto magnetnega pretoka H. Mi smo predpostavili, da je ta relacija linearna (μ_{fe} je konstanten), vendar v resnici ni. Za več si oglej BH krivulja.

Ker je μ_{fe} v rangu nekaj tisoč lahko rečemo, da je magnetna upornost železa zanemarljivo v primerjavi z upornostjo zračne reže.

$$rac{rac{1}{\mu_0\mu_{fe}}}{rac{1}{\mu_0}}=rac{R_{mfe}}{R_{mzr}}\Rightarrowrac{1}{\mu_{fe}}=rac{R_{mfe}}{R_{mzr}}$$

Tako lahko izračunamo magnetni pretok, kjer prevladuje zračna reža:

$$oxed{\Phi = rac{I \cdot N}{R_{mfe} + R_{mzr}} = rac{I \cdot N}{R_{mzr}} = rac{U_{el}}{R_{el}} N rac{\mu_0 A_{zr}}{l_{zr}}}$$

Pozor U in R sta električni veličini.

Magnetno polje v zračni reži

Iz zgornjih enačb lahko zapišemo:

$$\Phi_{zr} = \Phi_{fe} \Rightarrow B_{zr} A_{zr} = B_{fe} A_{fe}$$

vendar ker magnetna polja B nista enaka, pomeni da tudi površini železa in zraka nista enaki. Ker je B_{zr} manjši, mora biti A_{zr} večji, da dobimo enakost.

Izmenični magnetni krog

Ker imamo izmenični vir napetosti imamo tudi izmenični tok, ki teče po navitju, posledično je magnetno polje znotraj jedra tudi izmenično. Prva polovica periode kaže magnetno polje v eno smer, drugo polovico pa kaze v nasprotno.

$$rac{d\psi}{dt} = rac{d(N\Phi)}{dt} pprox Nrac{d\Phi}{dt}$$

N lahko premaknemo izven odvoda takrat, ko zanemarimo stresano magnetno polje. Stresano magnetno polje se razlikuje od magnetnega polja v zračni reži, saj stresano magnetno polje je tisto, ki ne teče znotraj železnega jedra, ki je obkrožen z navitjem.

Prej smo izrazili magnetni fluks kot $\Phi = \frac{I_m N}{R_{mfe} + R_{zr}}$, sedaj imamo pa izmenični tok, ki ga zapišemo kot $i_m = \hat{I}_m \cdot \sin(\omega t)$, kjer je \hat{I}_m amplituda toka. Tako lahko sestavimo enačbo $\Phi(t) = \frac{\hat{I}_m N}{R_{mfe} + R_{zr}} \cdot \sin(\omega t)$.

Kadar obravnavamo izmenično magnetno polje, se pojavi inducirana napetost, ki se izračuna kot^[1]:

$$e_i = rac{d\Psi}{dt} = rac{d\Phi N}{dt} = Nrac{d\left(\int_A ec{B}dec{A}
ight)}{dt} \mathop{\approx}\limits_{ec{B}\parallel dec{A}} Nrac{d(B\cdot A)}{dt} = NArac{dB}{dt}$$
 $B(t) = rac{\Phi(t)}{A} = \underbrace{rac{\hat{I}_m N}{(R_{mfe} + R_{mzr})A}}_{ ilde{B}} \sin(\omega t)$
 $e_i(t) = NArac{d(\hat{B}\sin(\omega t))}{dt} = \underbrace{NA\hat{B}\,\omega}_{cost(\omega t)} \cos(\omega t)$

Kjer je $\psi = N \cdot \phi$ magnetni sklep in nam pove kolikokrat objamemo jedro z tuljavo.

Od sedaj naprej bodo magnetne količine vedno podane kot amplitudna vrednost, medtem ko električne pa kot efektivne vrednosti. Ko računamo efektivno vrednosti sinusnega signala dobimo $\overline{X}=\frac{\hat{X}}{\sqrt{2}}.$

Magična formula

Zgornjo enačbo lahko dopolnimo s $\omega=2\pi f$ in z relacijo, da je efektivna vrednost enaka $\frac{1}{\sqrt{2}}$. Tako dobimo:

$$E_i = rac{2\pi}{\sqrt{2}}fNAB = 4.44\;NfBA$$

Ta enačba velja za homogene razmere v jedru, vse 3 prej omenjene poenostavitve, linearne razmere, in sinusno spreminjajoče veličine.

Naša neznanka je $\Phi=BA$:

$$\Phi = rac{E_i}{4.44Nf}$$

inducirana napetost je skoraj enaka vzbujani napetosti $E_i=U$:

$$\Phi = \frac{U}{4.44Nf}$$

 $\check{\mathsf{C}}\mathsf{e}$ ho $\check{\mathsf{c}}\mathsf{e}\mathsf{mo}$ pove $\check{\mathsf{c}}\mathsf{a}\mathsf{ti}$ magnetno polje znotraj $\check{\mathsf{z}}\mathsf{e}\mathsf{le}\mathsf{za}$ moramo pove $\check{\mathsf{c}}\mathsf{a}\mathsf{ti}$ napajanje U, lahko pa tudi zmanj $\check{\mathsf{s}}\mathsf{a}\mathsf{mo}$ frekvenco.

Zgradba strojev

1. <u>Elektromagnetna indukcija - Wikipedija, prosta enciklopedija</u> ↔