	Functions	Syntax	Uses
1.	Asymptotes (Asymp) 🚹	asymp(function, variable)	Determines the vertical and horizontal asymptotes of a function.
2.	Composite Function Check (ccheck)	ccheck(Outer function, inner function)	Determines if a composite exists, and if not, determines the maximal domain for which a composite exists.
3.	Discriminant (Discrim)	discrim(function, variable, 15)	Calculates the discriminant of an inputted quadratic expression.
4.	Domain and Range (Domrang) 🗥	domrang(function, variable)	Determines the domain and range of a function. Note: Due to CAS approximation bounds may not be entirely accurate.
5.	Intercepts (Intercepts)	intercepts(function,variable)	Finding the x and y intercepts of a function.
6.	Intersects (Intersects)	intersects(function1,function2,variable)	Determines the points of intersection of two functions across their maximal domains.
7.	Intersects with domain (intersectsd)	intersectsd(function1, function2, variable, lower, upper)	Determines the points of intersection between two functions in a restricted domain.
8.	Inverse Function (inverse)	inverse(function, variable, x in domain of f)	Determines the inverse of a given function.
9.	Inverse Intersections (invints) 🔼	inverse(function, number of intersections with inverse)	Determines the values of a parameter, k, required for a function and its inverse to have a specified number of intersections. Works with: logs, exponentials, sqrt, parabolas, cubics, hyperbolas.
10.	Angle between two lines (lineang)	lineang(Line 1, Line 2, Variable)	Determines the angle between two lines, and assumes your CAS is in radians mode not degrees mode.
11.	Unique, None, Infinite Solution (Linesolve)	linesolve(Equation1, Equation2)	Determines when two equations will have an unique, none or infinitely many solutions.
12.	Property Check (pcheck)	pcheck(function, variable, LHS, RHS)	Determines which function satisfies a specific property. Note: You must define the function outside of the program.
13.	Point Information (pointinfo)	pointinfo(x_1, y_1, x_2, y_2)	Determines the gradient, perpendicular gradient, line, <i>x</i> and <i>y</i> intercepts of a line, midpoint, distance.
14.	Polynomial Fit (polyfit)	$polyfit(\{x_1, y_1, \ldots\})$	Determines a polynomial equation which passes through all the inputted pairs of points.
15.	Transformations (transform)	transform(function, {transformations})	Determines the transformed function after applying certain transformations. Note: The transformations do not use real math, for example, $2y$ corresponds to a dilation by a factor of 2 from the y axis in the program.
16.	Transformation Solve (transolve) 🗥	trans_solve(Original, Image, Variable)	Determines the set of transformations which take the original function to the image.
17.	Bisection <u></u>	bisec(function, variable, lower, upper, iterations)	Applies the bisection method on the function for a specified number of iterations.

	Calculus	Syntax	Uses
1.	Average Rate of Change (avgroc)	avgroc(function, variable, lower, upper)	Determines the average rate of change of a function.
2.	Average Value (avgval)	avgval(function, variable, lower, upper)	Calculates the average value of a function.
3.	Bound Area (boundarea)	boundarea(function1, function2, variable)	Determines the area bound by two graphs (if any) across their maximal domains.
4.	Bound Area with domain (boundaread)	boundaread(function1, function2, variable, lower, upper)	Determines the bound area between two functions in a restricted domain.
5.	Integral Guess (intguess)	One integral given, find transformed integral. intguess({lower1, upper1, value1}, {transformations}, {lower2, upper2}) Two integrals given, find another integral of untransformed function. intguess({lower1, upper1, value1}, {lower2, upper2, value2}, {lower3, upper3}) Case 3: Two integrals given, then find another integral of transformed function. intguess({lower1, upper1, value1, lower2, upper2, value2}, {transformations}, {lower3, upper3})	Determines the answer for the integration multiple choice questions.
6.	Newton's Method (newtons)	$\frac{\textit{upper3}}{\textit{newtons}(function, variable, } x_0, \textit{iterations})$	Estimates the root of a function using newton's method.
7.	Number of Roots (nroot) 🚹	nroot(polynomial, variable, parameter, no. roots)	Determines the value(s) of the parameter for which a polynomial will have n roots.
8.	Number of Stationary Points (nstp)	nstp(polynomial, variable, parameter, no. stp)	Determines the value(s) of the parameter for which a polynomial will have n stationary points.
9.	Number of Points of Inflection (nstp)	npoi(polynomial, variable, parameter, no. stp)	Determines the value(s) of the parameter for which a polynomial will have n points of inflection.
10.	Points of Inflection (pois) 🗥	pois(function, variable)	Determines the points of inflection of a function.
11.	Sign Table (signtab)	signtab(function, variable)	Uses a sign table to determine the nature of the stationary points of a function.
12.	Stationary Points (stps)	stps(function, variable)	Determines the stationary points of a function.
13.	Tangent Solve (tangsolve)	tangsolve(function, variable, x_0, y_0)	Determines the equation of the tangents of the function which pass through the specified point.
14.	Trapezoid Approximation (trapapprox)	trapapprox(function, variable, lower, upper, number of trapezia)	Approximates an integral using the trapezoidal rule.

	Continuous Probability	Syntax	Uses
1.	Continuous Conditional Probability (ccondpr)	Probability Density Function: ccondpr(Probability Density Function, Lower Bound, Upper Bound)	Determines conditional probability for a continuous distribution.
		Normal Distribution: ccondpr("", Mean, Standard Deviation, Condition 1, Condition 2)	
2.	Confidence Interval (confint)	confint(Sample Size, \hat{P} , . confidence)	Determines a confidence interval as well as the z-score, margin of error and standard deviation.
3.	Confidence Interval Solve (confintsolve)	confintsolve(Lower Bound, Upper Bound, Sample Size or Sample Standard Deviation or . Confidence)	Determines the sample size, standard deviation or percentage confidence depending on the provided data. Note: This program assumes no confidence levels less than 50% will even be used.
4.	Continuous Distribution Information (continfo)	continfo(function, variable, lower, upper)	Determines the expected value, mean, variance, standard deviation of a continuous probability distribution.
5.	Inverse Normal (invnormvals)	invnormvals(mean, standard deviation, probability)	Determines the left, right and centre possibilities for probability of a distribution.
6.	Normal Solve (normsolve)	Case 1: Both lower and upper given. normsolve(Lower, Probability of Lower, Upper, Probability of Upper)	Determines the mean and standard deviation for lower and upper type questions.
		Case 2: Lower and μ given. normsolve(Lower, Probability of Lower, μ, "")	Note: If required, convert into this format using complement.
		Case 3: Lower and σ given. normsolve(<i>Lower</i> , <i>Probability of Lower</i> , "",σ)	
		Case 4: Upper and μ given. normsolve(μ, "", Upper, Probability of Upper)	
		Case 5: Upper and σ given. normsolve(" ", σ, <i>Upper</i> , <i>Probability of Upper</i>)	

	Discrete Probability	Syntax	Uses
1.	Binomial Solve	binomsolve(outcome, probability of success, threshold value)	Determines the number of trials required to achieve a certain probability.
2.	Discrete Conditional Probability	Binomial: dcondpr(number of trials, probability of success, condition 1, condition 2) Probability Table: dcondpr({List containing outcomes}, {List containing probabilities}, condition 1, condition 2) Probability Mass Function: dcondpr({List containing outcomes}, PMF, condition 1, condition 2)	Determines conditional probability for a discrete distribution.
3.	Binomial Distribution Information	binominfo(Sample Size, Probability of Success)	Determines the expected value, variance, standard deviation, sample expected value, and sample standard deviation for a binomial distribution.
4.	Hypergeometric Cumulative Probability Function	hypergeocdf(sample size, population size, number of successful items, lower bound, upper bound)	Determines the probability of selecting items without replacement, but over an interval of outcomes.
5.	Hypergeometric Probability Density Function	hypergeopdf(sample size, population size, number of successful items, outcome)	Determines the probability of selecting items without replacement, but for specific outcomes.
6.	Inverse Binomial	invbinomial(number of trials, probability of success, known probability value)	Determines the outcome required to achieve the probability. Note: Will not work if probability is too accurate. In this case just decrease accuracy by decreasing number of decimal places.
7.	Probability Table	prtable({outcomes}, {probabilities})	Determines the mean, variance, standard deviation of a probability table.
8.	Sample Distribution Binomial	samplebinom(Sample Size, Probability of Success)	Determines the distribution for the sample proportion of a binomially distributed sample.
9.	Sample Binomial Probability	samplebinompr(Sample Size, Probability of Success, Lower, Upper)	Determines the probability for the sample proportion for a binomially distributed sample.
10.	Sample Distribution Hypergeometric	samplehypergeo(Sample Size, Population Size, Number Successful)	Determines the distribution for the sample proportion of a hypergeometrically distributed sample.
11.	Sample Hypergeometric probability	samplehyppr(Sample Size, Population Size, Number Successful, Lower, Upper)	Determines the probability for the sample proportion for a hypergeometrically distributed sample.

Miscellaneous	Syntax	Uses
1. Column Augment	ca(Ans, {variables})	If there is a long list of x and y values, then this will convert it into an easy-to-read matrix form.
2. Domain Solve	dsolve(Equation, Variable, Lower Bound, Upper Bound)	Determines the solutions to an equation in a restricted domain.
3. Graph Information	Maximal Domain: graphinfo(function, variable, " ", don't_care) Restricted Domain: graphinfo(function, variable, lower, upper)	Determines axes intercepts, stationary points, points of inflection, and endpoints of a function.
4. Trigonometric Solve	trigsolve(Equation or inequality, variable, lower, upper)	Determines the exact solutions to trigonometric equations and inequalities which the CAS cannot solve properly. For example, $\sin(x) = \cos(2x)$
5. Trigonometry Information 🔨	triginfo(circular function , variable, lower, upper)	Determines the amplitude, period, middle value, endpoints, x-intercepts, y-intercepts, asymptotes, and turning points of a circular function .