Machine Learning project Oil price prediction

Bogdana Kolic, Clemence Mottez, Matheo Le Masson

Motivations

- Crucial for industries and decision-makers
 - Impact on the global economy, investment and trading strategies, supply and demand dynamics, risk management, energy policy formulation, and market forecasting
- Usual data: year and price
 - More comprehensive approach with 23 features
- Feature selection
 - determine what contribute to oil prices
 - deepen our understanding of the complex dynamics driving oil prices
 - provides us with enhanced predictive capabilities

Data

- How did we create our data set
 - Decided by ourselves what we thought could influence the price, asked domain experts
 - Sources: macrotrends.net, unctadstat.unctad.org, datasource.kapsarc.org, data.worldbank.org, tradingeconomics.com
 - Handle missing values
 - Normalization

$$x = \frac{x - x_{min}}{x_{max} - x_{min}}$$

- Our dataset
 - 23 parameters, total of 24 columns
 - Monthly data from 1970 to 2022, total of 624 rows

Data visualization

- data analysis
- each variable distribution
- correlations

Models

- Which models did we study
- Hyperparameters
- Which one did we choose for feature selection (xgbRegressor + random forest ?)

Feature selection

Why?

- Data 624x24!!!
 - Reduce computational cost
- Noise, redundant, irrelevant information have negative impact
 - Improve the performance of the model
- Capture essential dynamics of the oil market
 - Facilitate interpretation
 - What really predicts the price of oil?

PCA as an answer to: How many features should we keep?

5 features explain 90% of variance

Components after the 5th explain less than 2.5% of variation

Filter models

- Computationally efficient
- Involve statistical measures such as correlation

- Measures the linear relationship between each feature and the

target variable

Embedded models

- Incorporates feature selection within the model training process
 - Optimizes both the model's performance and feature selection simultaneously
- Select relevant features based on their contribution to the model's accuracy

SHAP

- Interpretability tool
- Gain insights into feature importance and guide the feature selection process.
- Show global contribution
 - Computed for each feature and used to rank the importance of features
- Show local feature contribution
 - for each instance

Embedded models

XGboost + SHAP

- Iteratively select and evaluate different subsets of features to find the subset that yields the best performance.
- Computationally expensive but accurate results
- Used Random Forest and XGB models

Sequential Forward Selection

- Starts with an empty set of features
- Iteratively adds features based on the best-performing subset

Recursive Feature Elimination (RFE)

- Starts with all features
- iteratively eliminates the least important feature

Boruta

- A feature is important if it can do better than the best randomized feature
- Used eBoruta (extension of Boruta that already uses the SHAP importance)

Feature	Importance	
Year	20.353813	
Inflation	2.827759	
Cononut oil (\$/mt)	2.487869	
World imports	1.869873	
Sugar (\$/kg)	1.062382	

Selection

- Year
- World imports
- World exports
- Inflation
- Price of Gold
- War
- OPEC cuts on production

Correlation

- Small selection so we don't want too correlated variables
- Threshold at 0.95

Result:

World export and world imports

Final selection

- Year
- World imports
- World exports <- too correlated
- Inflation
- Price of Gold
- War
- OPEC cuts on production <- only 5 features selected

MSE

Data / Model	XGB Regressor	Decision Tree	Random Forest
Raw Data	621	643	680
Data with PCA	253	390	318
Selected Data	372	474	555

Conclusion

- 5 key features to predicting oil price
 - Year
 - World Imports
 - Inflation
 - Price of Gold
 - War
- Model with lowest MSE: XGB regressor
- Dimension-reduction reduces MSE

Limits - What could do after?

Limits:

 don't know if causation or correlation for example price of gold certainly a correlation

- After:

- Network model
- Future analysis and predictions
 make predictions for future oil prices
 Incorporate new data as it becomes available
- Optimize algorithm we used (for example SHAP is computationally very expensive)
- New model: RNNs with LSTM to avoid Vanishing Gradient problem

Network model

- Much better accuracy
 - MSE = 220 (compared to XGB = 620)
- Relatively simple:
 - 3 Hidden Dense layers with Relu activation
 - Dropout regularization to avoid overfitting

Other info for questions

- slides to explain the different models we used
- slides with term explanations, ...

SHAP values

