MSBD 5004 Due: 30th Sep
Assignment #1 Solution
Instructor: Jianfeng CAI Name: StudentName ID: 1
Problem 1.
(a) A norm should have:
$\mathbb{O} _{\infty} = \max_{k \in \mathbb{R}} \chi_i > 0$
if $\max_{1 \le i \le n} \chi_i = 0$, $\iff \chi_i = 0$
3) $ x+y _{\infty} = \max_{k \in \mathbb{N}} x_i+y_i \leq \max_{k \in \mathbb{N}} (x_i + y_i)$
$\leq \max_{1 \leq i \leq n} \chi_i + \max_{1 \leq i \leq n} y_j = \chi _{\infty} + y _{\infty}$ $\leq \max_{1 \leq i \leq n} \chi_i + \max_{1 \leq i \leq n} y_j = \chi _{\infty} + y _{\infty}$
(b) proof: $ \chi _{p} = \left(\sum_{i=1}^{n} \chi_{i} ^{p}\right)^{\frac{1}{p}} = \left(\chi_{i} ^{p} + \chi_{2} ^{p} + \dots + \chi_{n} ^{p}\right)^{\frac{1}{p}}$
denote $ \chi_k = \max_{1 \le i \le n} \chi_i ^p \le \sum_{k=1}^n \chi_k ^p \le \sum_{k=1}^n \chi_k ^p$
denote $ \chi_k = \max_{ x_i < n} \chi_i $, $ \chi_k ^p \leq \sum_{i=1}^n \chi_i ^p \leq n \chi_k ^p$ $\lim_{p \to \infty} (\chi_k ^p)^{\frac{1}{p}} \leq \lim_{p \to \infty} (\sum_{i=1}^n \chi_i ^p)^{\frac{1}{p}} \leq \lim_{p \to \infty} (n \chi_k ^p)^{\frac{1}{p}}$
$ \chi_{k} \leq \chi _{p} \leq \chi_{k} $
$ \chi _{p} = \chi_{k} = \max_{1 \le i \le n} \chi_{i} .$

(c)
$$\|X\|_{\infty} = \max_{1 \le i \le N} \|X_i\|_{1} = \sum_{i \le j = 1}^{N} \|X_i\|_{1} = \sum_{i \le j = 1}^{N} \|X_i\|_{1} = \sum_{j \le i \le N} \|X_j\|_{2} = \|X_j\|_{\infty}$$

denote $\|X_k\|_{1} = \max_{j \le i \le N} \|X_j\|_{2} = \|X_j\|_{\infty}$
 $\|X\|_{1} = \frac{n}{N} \|X_j\|_{2} = \|X_k\|_{2} + \sum_{i \ge 1}^{N} \|X_i\|_{2} = \|X_k\|_{2} = \|X_$

According to OBB, 11.1/2 is a norm on 1R mxn

```
(b) proof:
             0 \times 0 : ||Ax||_2 = 0 \le ||A||_2 ||x||_2 = 0
             \emptyset x \neq 0: Let x_0 = \frac{x}{\|x\|_2}, which means each now of x_0 \in (0,1)
                                                      thus ||A \propto 0||_2 \leq ||A||_2, because A \propto 0 is part of A.
                                                              ||AX||_{2} = ||AX_{0}||X||_{2}||_{2} = ||X||_{2}||AX_{0}||_{2} \leq ||X||_{2}||A||_{2}
             ||AB||_{2} = \max_{\substack{||X||_{2}=1\\ X \in ||R|^{p}}} ||ABX||_{2} \leq \max_{\substack{||X||_{2}=1\\ X \in ||R|^{p}}} ||ABX||_{2} \leq \max_{\substack{||X||_{2}=1\\ X \in ||R|^{p}}} ||ABX||_{2} = ||A||_{2} \max_{\substack{||X||_{2}=1\\ X \in ||R|^{p}}} ||A||_{2} = ||A||_{2
                                    = ||A||_{2} ||B||_{2}
proof: denote C1, C1, ..., Cm as a sorted list of {ai} i=1,
                                                           where C_1 \leq C_2 \leq ... \leq C_m, then:
                            \sum_{i=1}^{m} |a_i - b| = \sum_{i=1}^{m} |C_i - b|
                                                                                                                                                                                              or b < C1,
                                             0 if 6> Cm
                                                                                                                                                                                      \sum_{i=1}^{m} |c_i - b| = \sum_{i=1}^{m} |c_i - m \cdot b|
                                                      \sum_{i=1}^{m} |C_i - b| = m \cdot b - \sum_{i=1}^{m} C_i
                                              it's obvious that \sum_{i=1}^{\infty} |a_i-b| can't be smallest.
                                      @ if b [ [ C 1, Cm]
                                              \sum_{i=1}^{m} |c_i - b| = |b - c_i| + |b - c_2| + \dots + |c_{m-1} - b| + |c_m - b|
                                                                                =(|b-C_1|+|C_m-b|)+(|b-C_2|+|C_{m-1}-b|)+\cdots
                                                     |C_{m}-C_{1}| \geq |C_{m-1}-C_{2}|
\Rightarrow |C_{1}| \leq b \leq C_{m} \Rightarrow |C_{2}| \leq b \leq C_{m-1}
if m \% 2 = 0 : C_{\frac{m}{2}} \leq b \leq C_{\frac{m}{2}+1} \Rightarrow b is the median of \{a_{i}\}_{i=1}^{m}
```

(a)
$$|x-y|^2$$

$$\Rightarrow z_j = \frac{1}{|G_j|} \sum_{i \in G_j} |x_i - z_j|^2$$

then
$$| ^{\mathsf{T}} Z_j = \frac{1}{|G_j|} \sum_{i \in G_j} | ^{\mathsf{T}} \chi_i = \frac{1}{|G_j|} \sum_{i \in G_j} | = \frac{|G_j|}{|G_j|} = |$$
.

(c) $(Z_j)_i = \frac{1}{|G_j|} \sum_{k \in G_j} \chi_{ki}$
 $(Z_j)_i = | ^{\mathsf{T}} \chi_{ki} | ^{\mathsf{T}} \chi_{ki} = | ^{\mathsf{T}} \chi_{ki} | ^{\mathsf{T}} \chi_{ki} = | ^{\mathsf{T}} \chi_{ki$

②
$$(Z_j)_i = 0$$
, which represents all $X_k i = 0$: all i -th entries of $X_k = 0$ equal to 0 .

3
$$(Z_j)_i \in (0,1)$$
, which represents some $x_{ki} = 0$ and others = 1
some of the i-th entries of x_k equal to 0, others equal to 1.

The Closer $(2j)_i$ is to 1, the more $x_{ki} = 1$.

Problem 5 Proof: denote $Z_j' = \overline{|G_j'|} \sum_{i \in G_j} X_i, Z_i, Z_k$ is random representative 1) 2,,..., 2k is fixed, find best Gi,..., GK: Let $C^* = \underset{j \in \{1,2,...,k\}}{\operatorname{argmin}} ||\chi_i - \xi_j||_2^2$, C is any partition, $\frac{\int (C, Z_1, ..., Z_k)}{\int_{z=1}^{z} \frac{1}{1} \operatorname{id} C} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{k} ||X_i - Z_j||_{2}^{2}}{\int_{z=1}^{z} \operatorname{id} C} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{k} ||X_i - Z_j||_{2}^{2}}{\int_{z=1}^{z} \operatorname{id} C}$ = L(C*, Z,, , 2r) @ Gi, ..., Gj is fixed, find best Zi, ..., Zk: lot $Z_k^* = \frac{1}{|G_j|} \sum_{i \in G_j} \chi_i$, Z_k is any representitive, L(C, Z, , ..., Zx) = [|Xi - Zx||2 $||\chi_i - \chi_i||_2^2 = ||\chi_i - \chi_i + \chi_i - \chi_i||_2^2 = ||\chi_i - \chi_i||_2^2 + ||\chi_i - \chi_i||_2^2 + 2\langle \chi_i - \chi_i -$ フリス:-森川2+2<X;-森,楽-み>

 $\sum_{i \in G_{j}} ||\chi_{i} - z_{k}^{*}||_{2}^{2} + 2 < \sum_{i \in G_{j}} ||\chi_{i} - z_{k}^{*}||_{2}^{2} + 2 < \sum_{i \in G_{j}} ||\chi_{i} - z_{k}^{*}||_{2}^{2} = \sum_{i \in G_{j}} ||\chi_{i} - z_{k}^{*}||_{2}^{2} = L(C, z_{k}^{*}, ..., z_{k}^{*})$ $\frac{L(C, z_{i}, ..., z_{k}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{k}^{*})$ $\frac{L(C, z_{i}, ..., z_{k}^{*}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{k}^{*})$ $\frac{L(C, z_{i}, ..., z_{k}^{*}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{k}^{*})$ $\frac{L(C, z_{i}, ..., z_{k}^{*}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{k}^{*})$ $\frac{L(C, z_{i}, ..., z_{k}^{*}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{k}^{*})$ $\frac{L(C, z_{i}, ..., z_{k}^{*}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{k}^{*})$ $\frac{L(C, z_{i}, ..., z_{k}^{*}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{k}^{*})$ $\frac{L(C, z_{i}, ..., z_{k}^{*}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{k}^{*})$ $\frac{L(C, z_{i}, ..., z_{k}^{*}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{k}^{*})$ $\frac{L(C, z_{i}, ..., z_{k}^{*}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{k}^{*})$ $\frac{L(C, z_{i}, ..., z_{k}^{*}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{k}^{*})$ $\frac{L(C, z_{i}, ..., z_{i}^{*}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{k}^{*})$ $\frac{L(C, z_{i}, ..., z_{i}^{*}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{i}^{*})$ $\frac{L(C, z_{i}, ..., z_{i}^{*}) > L(C, z_{i}^{*}, ..., z_{k}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{i}^{*})$ $\frac{L(C, z_{i}, ..., z_{i}^{*}) > L(C, z_{i}^{*}, ..., z_{i}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{i}^{*})$ $\frac{L(C, z_{i}, ..., z_{i}^{*}) > L(C, z_{i}^{*}, ..., z_{i}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{i}^{*})$ $\frac{L(C, z_{i}, ..., z_{i}^{*}) > L(C, z_{i}^{*}, ..., z_{i}^{*})}{2} = L(C, z_{i}^{*}, ..., z_{i}^{*})$ $\frac{L(C, z_{i}, ...$

20%