

KONKURS CHEMICZNY

DLA UCZNIÓW GIMNAZJÓW

II ETAP REJONOWY

16 listopada 2012

Ważne informacje:

- 1. Masz 90 minut na rozwiązanie wszystkich zadań.
- 2. W każdym zadaniu zaznacz kółkiem wybraną odpowiedź A, B, C lub D.
- 3. Pisz długopisem lub piórem, nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz inną odpowiedź.
- 4. Na końcu arkusza jest zamieszczony układ okresowy pierwiastków i tabela rozpuszczalności.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	100%
Uzyskana liczba punktów	%
Podpis osoby sprawdzającej	

UCZESTNIKU!

Przed Tobą test wielokrotnego wyboru stanowiący 20 zadań zamkniętych oraz 3 zadania otwarte. Uważnie czytaj każde zadanie zamknięte i zdecyduj, która z podanych odpowiedzi jest według Ciebie poprawna. Pamiętaj, że tylko jedna jest prawdziwa.

Podczas pracy korzystaj z układu okresowego pierwiastków chemicznych oraz tablicy rozpuszczalności soli i wodorotlenków, zastosuj również liczbę Avogadra $N_{\rm A}=6.02\cdot 10^{23}$, oraz objętość molową gazów w warunkach normalnych V=22.4 mol/dm³.

Powodzenia!

• Informacja do zadań 1 i 2

Przeprowadzono doświadczenie według opisu: do kolby z wrzącą wodą wprowadzono nad powierzchnię cieczy łyżeczkę z palącym się magnezem, a wydzielający się gaz zbierano do balonika założonego na tubus kolby.

1. Wybierz równanie poprawnie opisujące reakcję zachodzącą podczas doświadczenia.

A.
$$Mg(OH)_2 \rightarrow H_2O_{(gaz)} + MgO$$

C.
$$2Mg + 2H_2O_{(ciecz)} \rightarrow 2MgH_2 + O_2$$

B.
$$Mg + H_2O_{(gaz)} \rightarrow MgO + H_2$$

D.
$$Mg + 2H_2O_{(ciecz)} \rightarrow MgO_2 + 2H_2$$

2. Wskaż substancje pełniące rolę utleniacza i reduktora w reakcji przeprowadzonej w tym doświadczeniu.

	Utleniacz	Reduktor
A.	para wodna	magnez
B.	wodór	magnez
C.	tlenek magnezu	wodór
D.	magnez	para wodna

3. Wskaż liczbę atomów wodoru w jednej cząsteczce wodoru.

A. 2

B.
$$12.04 \cdot 10^{23}$$

C.
$$6.02 \cdot 10^{23}$$

D.
$$3,01 \cdot 10^{23}$$

• Informacja do zadań 4 i 5

Uczeń przeprowadził elektrolizę z użyciem elektrod platynowych jednego roztworu wodnego wybranego spośród roztworów: chlorku sodu, chlorku miedzi(II), siarczanu(VI) sodu i siarczanu(VI) miedzi(II).

Zapisał obserwacje: katoda pokryła się warstwą czerwonej metalicznej substancji, przy anodzie wydzielał się żółtozielony gaz.

4. Wskaż roztwór, który uczeń poddał elektrolizie.

A. NaCl_(aq)

C. Na₂SO_{4 (aq)}

B. CuCl_{2 (aq)}

D. CuSO_{4 (aq)}

5. Wybierz równania elektrodowe poprawnie opisujące przeprowadzoną przez ucznia elektrolizę.

	Równanie reakcji katodowej	Równanie reakcji anodowej
A.	$Cu \rightarrow Cu^{2+} + 2e$	$Cl_2 + 2e \rightarrow 2Cl^-$
B.	$Na^+ + e \rightarrow Na$	$2H_2O \rightarrow O_2 + 4e + 4H^+$
C.	$Cu^{2+} + 2e \rightarrow Cu$	$2Cl^- \rightarrow Cl_2 + 2e$
D.	$2H_2O + 2e \rightarrow H_2 + 2OH^-$	$2H_2O \rightarrow O_2 + 4e + 4H^+$

6. Wybierz najskuteczniejszą metodę rozdzielenia mieszaniny piasku i wody.

A. chromatografia

B. desaturacja

C. filtracja

D. krystalizacja

7. Określ, ile i jakich wiązań znajduje się w jonie NH₄⁺.

	Wiązania kowalencyjne spolaryzowane					
	łącznie	w tym koordynacyjne				
A.	4 1					
B.	3	0				
C.	2 2					
D.	3 1					

8. Wybierz równanie tej reakcji, która nie jest reakcją utleniania-redukcji.

A.
$$2F_2 + 2H_2O \rightarrow 4HF + O_2$$

B.
$$Zn + Pb(NO_3)_2 \rightarrow Zn(NO_3)_2 + Pb$$

C.
$$FeCl_3 + 3NaOH \rightarrow Fe(OH)_3 + 3NaCl$$

D.
$$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$$

• Informacja do zadań 9 i 10

W magazynie odczynników znajdują się następujące substancje stałe: wodorotlenek sodu, wodorotlenek żelaza(II), chlorek miedzi(II), chlorek sodu.

9. Wybierz z magazynu te substancje, które całkowicie rozpuszczą się w wodzie i po zmieszaniu powstałych roztworów spowodują wyraźnie widoczne wytrącenie się osadu.

A. NaOH i NaCl

C. Fe(OH)₂ i NaOH

B. NaOH i CuCl₂

D. Fe(OH)₂ i CuCl₂

10. Wybierz z magazynu tę substancję, której wodny roztwór poddany elektrolizie na elektrodach platynowych pozwoli na praktyczne otrzymanie tlenu i wodoru.

A. NaOH

B. $Fe(OH)_2$

C. NaCl

D. CuCl₂

11. Wybierz poprawne wartości masy i objętości (w warunkach normalnych) próbki tlenu zawierającej 12,04 · 10²³ czasteczek tlenu.

	Masa próbki	Objętość próbki
A.	64 g	44.8dm^3
B.	32 g	$22,4 \text{ dm}^3$
C.	128 g	$44.8 \mathrm{dm}^3$
D.	64 g	$22,4 \text{ dm}^3$

12. Oblicz stopnie utlenienia manganu w związkach chemicznych o podanych w tabeli wzorach.

	KMnO ₄	K ₂ MnO ₄	MnSO ₄
A.	VII	VII	II
B.	– VII	– VI	- II
C.	III	II	III
D.	VII	VI	II

13. Wskaż parę izotopów.

A.
$${}^{37}_{17}$$
E i ${}^{37}_{15}$ E

B.
$${}_{16}^{36}$$
E i ${}_{17}^{37}$ E

C.
$${}_{16}^{36}$$
E i ${}_{16}^{33}$ E

C.
$${}^{36}_{16}$$
E i ${}^{33}_{16}$ E D. ${}^{40}_{18}$ E i ${}^{38}_{19}$ E

14. Określ położenie pierwiastka GERMAN w układzie okresowym pierwiastków chemicznych.

A. numer grupy 4, numer okresu 4

C. numer grupy 4, numer okresu 14

B. numer grupy 14, numer okresu 4

D. numer grupy 14, numer okresu 3

Informacja do zadań 15 i 16

Temperatura, K	ıra, K 273 293 313				353	
	Ro	Rozpuszczalność, g/100 g wody				
Chlorek rtęci(II)	8	7	10	15	25	
Chloran(V) potasu	5	7	15	25	35	

15. Korzystając z informacji o rozpuszczalności HgCl₂ i KClO₃ w wodzie w zależności od temperatury, zaznacz zdania prawdziwe.

1.	W celu sporządzenia roztworów nasyconych obu soli w T=293 K należy
	odważyć jednakowe masy obu soli i rozpuścić każdą w 100 g wody.
2.	Po ochłodzeniu do <i>T</i> =273 K roztworów obu soli nasyconych w <i>T</i> =293 K,
	wodny roztwór KClO ₃ nadal pozostanie nasyconym roztworem, a wodny
	roztwór HgCl ₂ stanie się roztworem nienasyconym.
3.	Wprowadzenie 15 g każdej z soli do 100 g wody pozwoli na przygotowanie
	nasyconych roztworów obu soli w <i>T</i> =313 K.
4.	W zakresie temperatur 313 – 353 K lepiej rozpuszczalną solą jest KClO ₃ .

A. wszystkie zdania

C. zdanie 1 i 4

B. zdanie 1, 2, 4

D. zdanie 1, 3, 4

16. Korzystając z podanej informacji, oblicz stężenie procentowe nasyconego roztworu chloranu(V) potasu w *T*=333 K.

A. 25%

B. 20%

C. 13%

D. 15%

• Informacja do zadań 17 i 18

W celu usunięcia tlenku azotu(II) z gazów spalinowych można stosować katalityczną redukcję tlenku azotu(II) tlenkiem węgla(II), zachodzącą według równania:

$$2NO + 2CO \xrightarrow{katalizato} N_2 + 2CO_2$$

17. Przyporządkuj literom X, Y, Z obliczone wartości liczby moli substratu i produktów.

	NO	CO	N_2	CO_2
Liczba moli	X	1	Y	Z

A. X=1; Y=1; Z=1

C. X=1; Y=0,5; Z=1

B. X=2; Y=1; Z=2

D. X=2; Y=2; Z=4

18. Przyporządkuj literom P, R, S obliczone wartości masy substratu i produktów.

	NO	СО	N_2	CO_2
Masa, g	30	P	R	S

A. P=28; R=14; S=44

C. P=14; R=14; S=22

B. P=28; R=28; S=44

D. P=14; R=7; S=21

19. Poniżej przedstawiono schemat przemian promieniotwórczych. Literami X, Y i Z oznaczono cząstki emitowane podczas kolejnych przemian. Podaj symbole tych cząstek.

218
Po \xrightarrow{X} 218 At \xrightarrow{Y} 214 Bi \xrightarrow{Z} 214 Po

A.
$$X = {}^4_2\alpha; \ Y = {}^0_{-1}\beta; \ Z = {}^0_{-1}\beta$$
 C. $X = {}^4_2\alpha; \ Y = {}^4_2\alpha; \ Z = {}^0_{-1}\beta$ B. $X = {}^0_{-1}\beta; \ Y = {}^0_{-1}\beta; \ Z = {}^4_2\alpha$ D. $X = {}^0_{-1}\beta; \ Y = {}^4_2\alpha; \ Z = {}^0_{-1}\beta$

C.
$$X = {}^{4}_{2}\alpha$$
; $Y = {}^{4}_{2}\alpha$; $Z = {}^{0}_{-1}\beta$

B.
$$X = {}^{0}_{-1}\beta; Y = {}^{0}_{-1}\beta; Z = {}^{4}_{2}\omega$$

D.
$$X = {}^{0}_{-1}\beta$$
; $Y = {}^{4}_{2}\alpha$; $Z = {}^{0}_{-1}\beta$

20. Uzupełnij schemat ilustrujący doświadczenie, którego celem było otrzymanie chlorowodoru w wyniku reakcji soli kuchennej z kwasem siarkowym(VI).

	substancja X	substancja Y	substancja Z
A.	H_2SO_4	NaCl	Na_2SO_4
B.	H_2SO_4	HCl	NaCl
C.	H_2SO_3	NaCl	HCl
D.	H_2SO_4	NaCl	HCl

Przed Tobą 3 zadania otwarte. Rozwiąż je, stosując zasady matematyki i właściwe prawa chemiczne. Masy molowe pierwiastków i związków chemicznych wyrażaj z dokładnością do liczb całkowitych. Nie używaj korektora ani ołówka, błędne zapisy przekreśl. Każde rozwiązanie zadania powinno znaleźć na odpowiednich stronach w karcie odpowiedzi (również obliczenia pomocnicze).

Powodzenia!

21.	Uzupełnij	równanie	reakcji,	dobierając	współczynniki	metodą	bilansu	elektronowego
	(3 pkt).							

Utlenianie:		
Ctioniumic	 	

Równanie reakcji:

$$\dots$$
NaNO₂ + \dots FeSO₄ + \dots H₂SO₄ \rightarrow \dots Na₂SO₄ + \dots Fe₂(SO₄)₃ + \dots NO↑ + \dots H₂O

22. W laboratorium chemicznym Ania i Kasia przeprowadziły doświadczenie według poniższego schematu (4 pkt).

Napisz w formie cząsteczkowej równanie reakcji, która zaszła podczas tego doświadczenia. Wykonaj niezbędne obliczenia i podaj objętość gazu (w warunkach normalnych) otrzymanego przez każdą dziewczynkę, a następnie odpowiedz na pytanie: która z dziewcząt otrzymała większą <u>objętość</u> gazu w baloniku?

Równanie reakc	;ji:

\mathbf{O}	blio	276	nia	•															_
	UII		11114																

Odpowiedź:	 	 	
•			

23. Do roztworu wodorotlenku sodu dodano 5,0 g stałego NaOH, otrzymując 500,0 g roztworu o stężeniu 1,25 mol/dm³ i gęstości $d \approx 1$ g/cm³. Oblicz stężenie procentowe wyjściowego roztworu. Wynik podaj z dokładnością do dwóch miejsc po przecinku (3 pkt).

Odp	owi	ied	ź: .																	 		 			 	 	 											.
	• • • •		•••	• • •	• • •	••	• • •	••	• • •	••	••	• •	• • •	•••	••	••	• •	• •	• • •	 ••	• •	 •••	• •	•••	 ••	 • •	 ••	• • •	•••	• • •	• • •	• •	• • •	•••	• • •	•••	• •	• • •
												٠								 		 			 	 	 											

ROZPUSZCZALNOŚĆ SOLI I WODOROTLENKÓW W WODZIE (TEMP. 291-298K)

	Na ⁺	K ⁺	NH ₄ ⁺	Mg^{2+}	Ca ²⁺	Sr ²⁺	Ba ²⁺	Ag ⁺	Cu ²⁺	Zn ²⁺	Al ³⁺	Mn ²⁺	Cr ³⁺	Fe ²⁺	Fe ³⁺	Pb ²⁺	Sn ²⁺	Sn ⁴⁺
ОН	r	r	r	S	S	S	r	n	n	n	n	n	n	n	n	S	n	n
F-	S	r	r	S	S	S	S	r	0	S	S	S	S	S	S	S	r	r
Cl ⁻	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
Br	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
I.	r	r	r	r	r	r	r	n	0	r	О	0	О	S	0	S	S	r
S^{2-}	r	r	r	0	0	0	О	n	n	n	О	n	О	n	n	n	n	n
SO ₃ ² -	r	r	r	S	S	S	S	S	S	S	О	S	О	S	0	S	0	О
SO ₄ ² -	r	r	r	r	S	S	n	S	r	r	r	r	r	r	0	n	r	r
NO_3	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	0	r
ClO ₃	r	r	r	r	r	r	r	r	r	X	X	X	X	X	X	r	X	X
PO ₄ 3-	r	r	r	S	n	n	n	n	S	S	S	S	S	S	S	n	0	r
CO_3^{2}	r	r	r	S	n	n	n	n	S	S	О	S	О	S	0	n	0	О
HCO ₃	S	r	r	S	S	S	О	0	0	0	О	S	О	S	0	0	X	X
SiO ₃ ² -	r	r	0	n	n	0	n	n	n	n	n	n	n	n	n	n	0	О
CrO ₄ ²	r	r	r	r	S	S	n	n	S	S	0	S	0	О	S	n	0	0

- r substancja dobrze rozpuszczalna
- s substancja słabo rozpuszczalna (osad wytrąca się ze stężonego roztworu)
- n substancja praktycznie nierozpuszczalna
- o substancja w roztworze wodnym nie istnieje
- x związek nie istnieje

BRUDNOPIS