Relational Database Design Functional Dependencies

Functional Dependencies (FD) - Definition

Let R be a relation scheme and X, Y be sets of attributes in R.

A functional dependency from X to Y exists if and only if:

 For every instance of |R| of R, if two tuples in |R| agree on the values of the attributes in X, then they agree on the values of the attributes in Y

We write $X \rightarrow Y$ and say that X determines Y

Example on Student (<u>sid</u>, name, supervisor_id, specialization):

- {supervisor_id} → {specialization} means
 - If two student records have the same supervisor (e.g., Dimitris), then their specialization (e.g., Databases) must be the same
 - On the other hand, if the supervisors of 2 students are different, we do not care about their specializations (they may be the same or different).

Sometimes, I omit the brackets for simplicity:

supervisor_id → specialization

Trivial FDs

A functional dependency $X \rightarrow Y$ is trivial if Y is a subset of X

- {name, supervisor_id} → {name}
 - If two records have the same values on both the name and supervisor_id attributes, then they obviously have the same name.
 - Trivial dependencies hold for all relation instances

A functional dependency $X \to Y$ is non-trivial if $Y \cap X = \emptyset$

- {supervisor_id} → {specialization}
 - Non-trivial FDs are given implicitly in the form of constraints when designing a database.
 - For instance, the specialization of a students must be the same as that of the supervisor.
 - They constrain the set of legal relation instances. For instance, if I try to insert two students under the same supervisor with different specializations, the insertion will be rejected by the DBMS

Functional Dependencies and Keys

A FD is a generalization of the notion of a *key*.

For Student (<u>sid</u>, name, supervisor_id, specialization), we write:

 $\{sid\} \rightarrow \{name, supervisor_id, specialization\}$

- The sid determines all attributes (i.e., the entire record)
- If two tuples in the relation student have the same sid, then they must have the same values on all attributes.
- In other words they must be the same tuple (since the relational model does not allow duplicate records)

Superkeys and Candidate Keys

A set of attributes that determine the entire tuple is a superkey

- {sid, name} is a superkey for the student table.
- Also {sid, name, supervisor_id} etc.

A minimal set of attributes that determines the entire tuple is a **candidate key**

- {sid, name} is not a candidate key because I can remove the name.
- sid is a candidate key so is HKID (provided that it is stored in the table).

If there are multiple candidate keys, the DB designer chooses designates one as the **primary key.**

Reasoning about Functional Dependencies

It is sometimes possible to infer new functional dependencies from a set of given functional dependencies

independently from any particular instance of the relation scheme or of any additional knowledge

```
Example: From \{sid\} \rightarrow \{first\_name\} and \{sid\} \rightarrow \{last\_name\}
We can infer \{sid\} \rightarrow \{first\_name, last\_name\}
```

Armstrong's Axioms

Be X, Y, Z be subset of the relation scheme of a relation R

Reflexivity:

If $Y\subseteq X$, then $X\rightarrow Y$ (trivial FDs)

• {name, supervisor_id}→{name}

Augmentation:

If $X \rightarrow Y$, then $X \cup Z \rightarrow Y \cup Z$

- if {supervisor_id} →{spesialization},
- then {supervisor_id, name}→{spesialization, name}

Transitivity:

If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

• if $\{\text{supervisor_id}\} \rightarrow \{\text{spesialization}\}\$ and $\{\text{spesialization}\} \rightarrow \{\text{lab}\}\$ $\{\text{supervisor_id}\} \rightarrow \{\text{lab}\}\$

Properties of Armstrong's Axioms

Armstrong's axioms are sound (i.e., correct) and complete (i.e., they can produce all possible FDs)

Example: Transitivity
Let X, Y, Z be subsets of the relation R

If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Additional Rules based on Armstrong's axioms

Armstrong's axioms can be used to produce additional rules that are not basic, but useful:

Weak Augmentation rule: Let X, Y, Z be subsets of the relation R

If
$$X \rightarrow Y$$
, then $X \cup Z \rightarrow Y$

Proof of soundness for Weak Augmentation

If
$$X \rightarrow Y$$

- (1) Then by Augmentation $X \cup Z \rightarrow Y \cup Z$
- (2) And by Reflexivity $Y \cup Z \rightarrow Y$ because $Y \subset Y \cup Z$
- (3) Then by Transitivity of (1) and (2) we have $X \cup Z \rightarrow Y$

Other useful rules:

If
$$X \to Y$$
 and $X \to Z$, then $X \to Y \cup Z$ (union)

If
$$X \to Y \cup Z$$
, then $X \to Y$ and $X \to Z$ (decomposition)

If
$$X \to Y$$
 and $ZY \to W$, then $ZX \to W$ (pseudotransitivity)

Closure of a Set of Functional Dependencies

For a set F of functional dependencies, we call the closure of F, noted F+, the set of all the functional dependencies that can be derived from F (by the application of Armstrong's axioms).

 Intuitively, F+ is equivalent to F, but it contains some additional FDs that are only implicit in F.

Consider the relation scheme R(A,B,C,D) with

$$F = \{\{A\} \rightarrow \{B\}, \{B,C\} \rightarrow \{D\}\}\}$$

$$F+=\{\{A\} \rightarrow \{A\}, \{B\} \rightarrow \{B\}, \{C\} \rightarrow \{C\}, \{D\} \rightarrow \{D\}, \{A,B\} \rightarrow \{A,B\}, [...], \{A\} \rightarrow \{B\}, \{A,B\} \rightarrow \{B\}, \{A,D\} \rightarrow \{B,D\}, \{A,C\} \rightarrow \{B,C\}, \{A,C,D\} \rightarrow \{B,C,D\}, \{A\} \rightarrow \{A,B\}, \{A,D\} \rightarrow \{A,B,D\}, \{A,C\} \rightarrow \{A,B,C\}, \{A,C,D\} \rightarrow \{A,B,C,D\}, \{A,C\} \rightarrow \{D\}, [...]\}$$

Finding Keys

Example: Consider the relation scheme R(A,B,C,D) with functional dependencies $\{A\} \rightarrow \{C\}$ and $\{B\} \rightarrow \{D\}$.

Is {A,B} a candidate key?

For {A,B} to be a candidate key, it must

- determine all attributes (i.e., be a superkey)
- be minimal

{A,B} is a superkey because:

- $\{A\} \rightarrow \{C\} \Rightarrow \{A,B\} \rightarrow \{A,B,C\}$ (augmentation by AB)
- $\{B\} \rightarrow \{D\} \Rightarrow \{A,B,C\} \rightarrow \{A,B,C,D\}$ (augmentation by A,B,C)
- We obtain $\{A,B\}\rightarrow \{A,B,C,D\}$ (transitivity)

Closure of a Set of Attributes

For a set X of attributes, we call the **closure** of X (with respect to a set of functional dependencies F), noted X+, the maximum set of attributes such that $X \rightarrow X+$ (as a consequence of F)

Consider the relation scheme R(A,B,C,D) with functional dependencies $\{A\} \rightarrow \{C\}$ and $\{B\} \rightarrow \{D\}$.

- $\{A\}+=\{A,C\}$
- $\{B\}+=\{B,D\}$
- $\{C\} + = \{C\}$
- $\{D\} + = \{D\}$
- $\{A,B\}+=\{A,B,C,D\}$

Redundancy of FDs

Sets of functional dependencies may have redundant dependencies that can be inferred from the others

• $\{A\} \rightarrow \{C\}$ is redundant in: $\{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}, \{A\} \rightarrow \{C\}\}\}$

Parts of a functional dependency may be redundant

Example of extraneous/redundant attribute on RHS:

$$\{\{A\}\rightarrow \{B\}, \{B\}\rightarrow \{C\}, \{A\}\rightarrow \{C,D\}\}\}\$$
 can be simplified to $\{\{A\}\rightarrow \{B\}, \{B\}\rightarrow \{C\}, \{A\}\rightarrow \{D\}\}\}$ (because $\{A\}\rightarrow \{C\}$ is inferred from $\{A\}\rightarrow \{B\}, \{B\}\rightarrow \{C\}\}$)

Example of extraneous/redundant attribute on LHS:

$$\{\{A\}\rightarrow \{B\}, \{B\}\rightarrow \{C\}, \{A,C\}\rightarrow \{D\}\}\}$$
 can be simplified to $\{\{A\}\rightarrow \{B\}, \{B\}\rightarrow \{C\}, \{A\}\rightarrow \{D\}\}\}$ (because of $\{A\}\rightarrow \{C\}$)

Canonical Cover

A *canonical cover* for F is a set of dependencies F_c such that

- F and F_{c} are equivalent
- F_c contains no redundancy
- Each left side of functional dependency in F_c is unique.
 - For instance, if we have two FD X \rightarrow Y, X \rightarrow Z, we convert them to X \rightarrow Y \cup Z.

Algorithm for canonical cover of *F*:

repeat

Use the union rule to replace any dependencies in *F*

$$X_1 \rightarrow Y_1$$
 and $X_1 \rightarrow Y_2$ with $X_1 \rightarrow Y_1 Y_2$

Find a functional dependency $X \to Y$ with an

extraneous attribute either in X or in Y

If an extraneous attribute is found, delete it from $X \rightarrow Y$

until *F* does not change

Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Example of Computing a Canonical Cover

$$R = (A, B, C)$$

 $F = \{A \rightarrow BC$
 $B \rightarrow C$
 $A \rightarrow B$
 $AB \rightarrow C\}$

Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$

• Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$

A is extraneous in $AB \rightarrow C$ because of $B \rightarrow C$.

• Set is now $\{A \rightarrow BC, B \rightarrow C\}$

C is extraneous in $A \rightarrow BC$ because of $A \rightarrow B$ and $B \rightarrow C$.

The canonical cover is:

$$A \rightarrow B$$

 $B \rightarrow C$

Pitfalls in Relational Database Design

Functional dependencies can be used to refine ER diagrams or independently (i.e., by performing repetitive decompositions on a "universal" relation that contains all attributes).

Relational database design requires that we find a "good" collection of relation schemas. A bad design may lead to

- Repetition of Information.
- Inability to represent certain information.

Design Goals:

- Avoid redundant data
- Ensure that relationships among attributes are represented
- Facilitate the checking of updates for violation of database integrity constraints.

Example of Bad Design

Consider the relation schema: *Lending-schema* = (*branch-name*, *branch-city*, *assets*, *customer-name*, *loan-number*, *amount*) where:

{branch-name}→{branch-city, assets}

branch-name	branch-city	assets	customer- name	loan- number	amount
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

Bad Design

- Wastes space. Data for branch-name, branch-city, assets are repeated for each loan that a branch makes
- Complicates updating, introducing possibility of inconsistency of assets value
- Difficult to store information about a branch if no loans exist. Can use null values, but they are difficult to handle.

Usefulness of FDs

Use functional dependencies to decide whether a particular relation R is in "**good**" form. In the case that a relation R is not in "good" form, decompose it into a set of relations $\{R_1, R_2, ..., R_n\}$ such that

- each relation is in good form
- the decomposition is a lossless-join decomposition
- if possible, preserve dependencies

In our example the problem occurs because there FDs ({branch-name}→{branch-city, assets}) where the LHS is not a key

Solution: decompose the relation schema *Lending-schema* into:

- Branch-schema = (branch-name, branch-city,assets)
- Loan-info-schema = (customer-name, loan-number, branch-name, amount)

Contoh

$$R = (A,B,C,G,H,I)$$

$$F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$$

Contoh

$$R = (A,B,C,G,H,I)$$

$$F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$$

Beberapa anggota F+:

- A → H
 - Dengan menerapkan rule transitivity dari A → B dan B → H
- $AG \rightarrow I$
 - Dengan menerapkan rule augmentation pada A → C berupa penambahan G, sehingga didapat AG → CG, kemudian menerapkan transitivity dengan CG → I
- CG → HI
 - Didapat dari CG → H dan CG → I (union rule). Union rule diperoleh dari
 - Definisi functional dependency
 - Augmentation pada CG \to I untuk mendapat CG \to CGI, augmentation CG \to H untuk mendapat CGI \to HI, dan kemudian dilakukan transitivity