Lösungen und zusätzliche Bemerkungen

zu Übungsblatt 2

Jendrik Stelzner

13. Mai 2017

Aufgabe 1

(a)

Lemma 1. Es sei R ein Ring.

- 1. Für alle $x \in R$ gilt $0 \cdot x = 0 = x \cdot 0$.
- 2. Für alle $x, y \in R$ gilt (-x)y = -(xy) = x(-y).

Beweis. 1. Es gilt

$$0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x,$$

und durch Subtraktion von $0 \cdot x$ ergibt sich, dass $0 = 0 \cdot x$. Analog ergibt sich, dass $x \cdot 0 = 0$.

2. Es gilt

$$xy + (-x)y = (x + (-x))y = 0 \cdot y = 0,$$

we
shalb
$$(-x)y = -(xy)$$
. Analog ergibt sich, dass $x(-y) = -(xy)$.

Es gilt $0 \in \mathbf{Z}(R)$ da $0 \cdot y = 0 = y \cdot 0$ für alle $y \in R$. Für $x_1, x_2 \in \mathbf{Z}(R)$ gilt

$$(x_1 + x_2)y = x_1y + x_2y = yx_1 + yx_2 = y(x_1 + x_2)$$
 für alle $y \in R$,

und somit auch $x_1 + x_2 \in Z(R)$. Für jedes $x \in R$ gilt

$$(-x)y = -(xy) = -(yx) = y(-x)$$
 für alle $y \in R$,

und somit auch $-x \in \mathbf{Z}(R)$. Insgesamt zeigt dies, dass $\mathbf{Z}(R)$ eine Untergruppe der additiven Gruppe von R ist.

Es gilt $1 \in \mathbf{Z}(R)$ da $1 \cdot y = y = y \cdot 1$ für alle $y \in R$. Für alle $x_1, x_2 \in \mathbf{Z}(R)$ gilt

$$(x_1x_2)y = x_1x_2y = x_1yx_2 = yx_1x_2 = y(x_1x_2)$$
 für alle $y \in R$,

und somit auch $x_1, x_2 \in Z(R)$. Insgesamt zeigt dies, dass Z(R) ein Unterring von R ist.

Zusätzlich bemerken wir noch, dass für jedes $x\in {\rm Z}(R)$ mit $x\in R^{\times}$ auch $x^{-1}\in {\rm Z}(R)$ gilt, denn

$$x^{-1}y = x^{-1}yxx^{-1} = x^{-1}xyx^{-1} = yx^{-1}$$
 für alle $y \in R$.

(b)

Es sei K ein Körper. Wir zeigen, dass

$$Z(M_n(K)) = K \cdot I = \{\lambda \cdot I \mid \lambda \in K\}$$

gilt, wobei $I \in M_n(K)$ die Einheitsmatrix bezeichnet. Dass $K \cdot I \subseteq Z(M_n(K))$ ergibt sich direkt daraus, dass

$$(\lambda I)A = \lambda A = A \cdot (\lambda I) \qquad \text{ für alle } \lambda \in K, \, A \in \mathrm{M}_n(K).$$

Andererseits sei $C\in \mathrm{Z}(\mathrm{M}_n(K))$. Für alle $i,j=1,\ldots,n$ sei $E_{ij}\in \mathrm{M}_n(\mathbb{R})$ die Matrix deren (i,j)-ter Eintrag 1 ist, und deren andere Einträge alle 0 sind, d.h. es gilt

$$(E_{ij})_{kl} = \begin{cases} 1 & \text{falls } (k,l) = (i,j), \\ 0 & \text{sonst,} \end{cases}$$
 für alle $k,l = 1, \ldots, n$.

Wir zeigen nun in zwei Schritten, dass $C = \lambda \cdot I$ für ein $\lambda \in K$ gilt: In einem ersten Schritt zeigen wir, dass C eine Diagonalmatrix ist, und in dem darauffolgenden zweiten Schritt zeigen wir, dass alle Diagonaleinträge von C gleich sind.

Wir geben die Rechnungen zunächst einer kompakte Form an. Anschließend geben wir die Argumentation noch einmal in einer längeren, dafür aber anschaulicheren Form an.

Kompakte Version

• Wir zeigen, dass C eine Diagonalmatrix ist: Für jede Matrix $A \in M_n(K)$ gilt CA = AC. In Koeffizienten bedeutet dies, dass

$$\sum_{k=0}^{n} C_{ik} A_{kj} = (CA)_{ij} = (AC)_{ij} = \sum_{k=0}^{n} A_{ik} C_{kj}$$
 (1)

für alle $A \in M_n(K)$ und $i, j = 1, \dots n$ gilt. Indem wir die Matrix $A = E_{ii}$ betrachten, erhalten wir dabei zum einen, dass

$$\sum_{k=0}^{n} C_{ik}(E_{ii})_{kj} = \sum_{k=0}^{n} C_{ik} \delta_{ik} \delta_{ij} = \delta_{ij} C_{ii} \quad \text{für alle } i, j = 1, \dots, n,$$

und zum anderen, dass

$$\sum_{k=0}^{n} (E_{ii})_{ik} C_{kj} = \sum_{k=0}^{n} \delta_{ik} C_{kj} = C_{ij} \quad \text{für alle } i, j = 0, \dots, n.$$

Für alle $1 \le i \ne j \le n$ erhalten wir somit aus (1), dass $0 = \delta_{ij}C_{ii} = C_{ij}$ gilt. (Für i = j erhalten wir nur die triviale Aussage, dass $C_{ii} = \delta_{ij}C_{ii} = C_{ij} = C_{ii}$ gilt.) Das zeigt, dass C eine Diagonalmatrix ist.

• Es seien nun $\lambda_1, \ldots, \lambda_n \in K$ die Diagonaleinträge von C, d.h. es gelte $C_{ii} = \lambda_i$ für alle $i = 1, \ldots, n$. Dann gilt $C_{ik} = \delta_{ik}\lambda_i$ für alle $i, k = 1, \ldots, n$, bzw. äquivalent $C_{kj} = \delta_{jk}\lambda_j$ für alle $j, k = 1, \ldots, n$. Die beiden Seiten von Gleichung (1) vereinfacht sich somit zu

$$\sum_{k=0}^{n} C_{ik} A_{kj} = \sum_{k=0}^{n} \delta_{ik} \lambda_i A_{kj} = \lambda_i A_{ij} \quad \text{und} \quad \sum_{k=0}^{n} A_{ik} C_{kj} = \sum_{k=0}^{n} A_{ik} \delta_{jk} \lambda_j = \lambda_j A_{ij},$$

und Gleichung (1) selbst vereinfacht sich somit zu

$$\lambda_i A_{ij} = \lambda_j A_{ij}$$
 für alle $A \in M_n(K)$ und $i, j = 1, \dots, n$.

Indem wir die Matrix $A=E_{ij}$ mit $A_{ij}=1$ betrachten, erhalten wir somit, dass $\lambda_i=\lambda_j$ für alle $i,j=1,\ldots,n$ gilt. Also gilt $\lambda_1=\cdots=\lambda_j=:\lambda$ und somit $C=\lambda I$.

Anschauliche Version

Wir wollen zunächst eine Anschauung dafür entwickeln, wie Multiplikation mit Diagonalmatrizen funktioniert:

Beobachtung 2. Sind $D_1 \in M_m(K)$ und $D_2 \in M_n(K)$ zwei Diagonalmatrizen

$$D_1 = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_m \end{pmatrix} \quad \text{und} \quad D_2 = \begin{pmatrix} \mu_1 & & & \\ & \ddots & & \\ & & \mu_n \end{pmatrix},$$

so lassen sich für eine beliebige Matrix $A \in M(m \times n, K)$ die Produkte D_1A und AD_2 als

$$D_1 A = \begin{pmatrix} \lambda_1 A_{11} & \cdots & \lambda_1 A_{1n} \\ \vdots & \ddots & \vdots \\ \lambda_m A_{m1} & \cdots & \lambda_m A_{mn} \end{pmatrix} \quad \text{und} \quad A D_2 = \begin{pmatrix} \mu_1 A_{11} & \cdots & \mu_n A_{1n} \\ \vdots & \ddots & \vdots \\ \mu_1 A_{m1} & \cdots & \mu_n A_{mn} \end{pmatrix}$$

berechnen. Durch Multiplikation mit D_1 von links wird also die i-te Zeile von A mit λ_i multipliziert, und durch Multiplikation mit D_2 von rechts wird die j-te Spalte von A mit μ_j multipliziert. Dies lässt sich schematisch als

$$\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_m \end{pmatrix} \cdot \begin{pmatrix} & z_1 & \\ & \vdots & \\ & & z_m \end{pmatrix} = \begin{pmatrix} & \lambda_1 z_1 & \\ & \vdots & \\ & & \lambda_m z_m \end{pmatrix},$$

und

$$\begin{pmatrix} s_1 & \cdots & s_n \end{pmatrix} \cdot \begin{pmatrix} \mu_1 & & \\ & \ddots & \\ & & \mu_n \end{pmatrix} = \begin{pmatrix} \mu_1 s_1 & \cdots & \mu_n s_n \end{pmatrix}$$

darstellen.

Wir zeigen nun in den angekündigten zwei Schritten, dass $C = \lambda \cdot I$ für ein $\lambda \in K$:

• Wir zeigen zunächst, dass C eine Diagonalmatrix ist: Hierfür sei $1 \leq i \leq n$. Dann ist E_{ii} eine Diagonalmatrix, deren i-tere Diagonaleintrag 1 ist, und deren Diagonaleinträge sonst alle verschwinden. Da $C \in \mathrm{Z}(\mathrm{M}_n(K))$ gilt, erhalten wir, dass $CE_{ii} = E_{ii}C$. Nach Beobachtunng 2 entsteht dabei die Matrix CE_{ii} aus C, indem die i-te Spalte unverändert bleibt, aber alle anderen Spalten durch die Nullspalte ersetzt werden. Analog entsteht $E_{ii}C$ aus C, indem die i-te Zeilen unverändert bleibt, aber alle anderen Zeilen durch die Nullzeile ersetzt werden. Anschaulich gesehen gilt also, dass

$$CE_{ii} = \begin{pmatrix} 0 & \cdots & 0 & C_{1i} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & C_{ii} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & C_{ni} & 0 & \cdots & 0 \end{pmatrix}$$

und

$$E_{ii}C = \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \\ C_{i1} & \cdots & C_{ii} & \cdots & C_{in} \\ 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}.$$

Da nach Annahme $CE_{ii}=E_{ii}C$ gilt, erhalte wir, dass in der i-ten Zeile und i-ten Spalte von C bis auf den gemeinsamen Eintrag C_{ii} alle anderen Einträge verschwinden müssen, d.h. für alle $j=0,\ldots,\hat{i},\ldots,n$ gilt $C_{ij}=0$ und $C_{ji}=0$. Da dies für alle $i=1,\ldots,n$ gilt, erhalten wir, dass in jeder Spalte (und in jeder Zeile) von C alle nicht-Diagonaleinträge verschwinden. Also ist C eine Diagonalmatrix.

- Für alle $i=1,\ldots,n$ sei $\lambda_i\in K$ der i-te Diagonaleintrag von C, d.h. es gelte

$$C = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}.$$

Wir zeigen, dass alle Diagonale
inträge von C bereits gleich sind: Es seien $1 \le i \ne j \le n$. Der einzige nicht-verschwinde
nde Eintrag von E_{ij} befindet sich in der i-ten Zeile und j-ten Spalte von E_{ij} . Aus Beobachtung 2 folgt nun, dass $CE_{ij} = \lambda_i E_{ij}$ und $E_{ij}C = \lambda_j E_{ij}$. Anschaulich lässt sich die Anwendung von Beobachtung 2 als

und

notieren. Da $E_{ij} \neq 0$ gilt, folgt aus $\lambda_i E_{ij} = \lambda_j E_{ij}$, dass $\lambda_i = \lambda_j$. Das dies für alle $1 \leq i \neq j \leq n$ gilt, muss bereits $\lambda_1 = \dots = \lambda_n =: \lambda$, und somit $C = \lambda I$.

(c)

Wir zeigen, dass

$$\mathsf{Z}(R[t]) = \left\{ \sum_{i=0}^{\infty} a_i \in R[t] \,\middle|\, a_i \in \mathsf{Z}(R) \text{ für alle } i \right\} = \mathsf{Z}(R)[t]$$

gilt. Die zweite Gleichheit gilt, weil es sich hierbei (quasi) um die Definition von $\mathbf{Z}(R)[t]$ handelt.