Questions (all shortest paths, Floyd-Warshall method): Consider the following graph:

The numbers next to the edges denote the length of the edge. Determine the shortest paths between all pairs of nodes.

Solution: the matrix of direct distances is

	n_1	n_2	n_3	n_4	n_5	n_6
n_1	0	8	∞	∞	7	3
n_2	8	0	2	6	∞	∞
n_3	∞	2	0	3	∞	1
n_4	∞	6	3	0	8	5
n_5	7	∞	∞	8	0	2
n_6	3	∞	1	5	2	0

Applying the Floyd-Warshall method results in the following matrices (where the first matrix is a repetition of the direct distances shown above).

0	8	8	8	7	3
8	0	2	6	∞	8
∞	2	0	3	∞	1
∞	6	3	0	8	5
7	∞	∞	8	0	2
3	∞	1	5	2	0

0	8	10*	14*	7	3
8	0	2	6	15	11
10*	2	0	3	17*	1
14*	6	3	0	8	5
7	15	17*	8	0	2
3	11	1	5	2	0

0	8	8	∞	7	3
8	0	2	6	15*	11*
∞	2	0	3	∞	1
∞	6	3	0	8	5
7	15*	∞	8	0	2
3	11*	1	5	2	0

0	8	10	13*	7	3
8	0	2	5*	15	3*
10	2	0	3	17	1
13*	5*	3	0	8	4*
7	15	17	8	0	2
3	3*	1	4*	2	0

0	8	10	13	7	3
8	0	2	5	13*	3
10	2	0	3	11*	1
13	5	3	0	8	4
7	13*	11*	8	0	2
3	3	1	4	2	0

0	8	10	13	7	3
8	0	2	5	13	3
10	2	0	3	11	1
13	5	3	0	8	4
7	13	11	8	0	2
3	3	1	4	2	0

0	6*	4*	7*	5*	3
6*	0	2	5	5*	3
4*	2	0	3	3*	1
7*	5	3	0	6*	4
5*	5*	3*	6*	0	2
3	3	1	4	2	0

This is the matrix of shortest paths.