Programación Declarativa, 2023-2 Nota Adicional sobre Formas Normales en Lógica de Primer Orden*

Manuel Soto Romero

2 de febrero de 2023 Facultad de Ciencias UNAM

- El objetivo es llegar a una forma clausular que permita definir el método de resolución binaria en la Lógica de Primer Orden. El proceso general a seguir es el siguiente:
 - 1. Rectificación de fórmulas
 - 2. Forma Normal Negativa
 - 3. Forma Normal Prenex
 - 4. Forma Normal de Skolem
 - 5. Forma Clausular

Resultando una fórmula de la forma:

$$\forall x_1 ... \forall x_n (\mathcal{C}_1 \wedge ... \wedge \mathcal{C}_k)$$

donde $(C_1 \wedge ... \wedge C_k)$ son cláusulas y puesto que todos los cuantificadores son universales, no es necesario escribirlos.

 La <u>rectificación</u> asegura que cada cuantificador tenga nombres de variables distintos y que las variables ligadas no aparezcan libres. Además de eliminar cuentificadores vácuos o repetidos.

Definición 0.1. Una fórmula φ está rectificada si y sólo sí se cumplen las siguientes condiciones:

- φ no tiene presencias libres y ligadas de una misma variables, es decir $FV(\varphi) \cap BV(\varphi) = \emptyset$.
- \bullet φ no tiene cuantificadores de la misma variable con alcances ajenos.
- φ no tiene cuantificadores múltiples de la misma variable, es decir, subfórmulas de la forma $\forall x \forall x \psi$, $\exists x \exists x \psi$, $\forall x \exists x \psi$.
- φ no tiene cuantificadores vacíos, es decir, cuantificadores de la forma $\forall x\psi$ o $\exists x\psi$ donde $x \notin FV(\psi)$.

Algunas equivalencias útiles:

^{*}Basado en las Notas de Clase de Lógica Computacional de Favio Miranda, A. Liliana Reyes, et. al.

$$\forall x \forall x \varphi \equiv \forall x \varphi \qquad \forall x \exists x \varphi \equiv \exists x \varphi \qquad \forall x \varphi \equiv \varphi \ x \notin FV \ (\varphi)$$

$$\exists x \exists x \varphi \equiv \exists x \varphi \qquad \forall x \varphi \equiv \forall y \ (\varphi[x := y]) \ y \notin FV \ (\varphi)$$

$$\exists x \forall x \varphi \equiv \forall x \varphi \qquad \exists x \varphi \equiv \exists y \ (\varphi[x := y]) \ y \notin FV \ (\varphi) \qquad \exists x \varphi \equiv \varphi \ x \notin FV \ (\varphi)$$

Representamos a la rectificación de una fórmula φ como $rec(\varphi)$.

Ejercicio 0.1. Sea $\varphi = \forall x \exists y \neg \forall w \exists z (P(x,y) \lor \neg Q(x) \to \exists w \neg T(a,w))$, encontrar su rectificación.

Solución:

$$\equiv \forall x \exists y \neg \left(P\left(x,y \right) \lor \neg Q\left(x \right) \to \exists w \neg T\left(a,w \right) \right)$$

■ La <u>Forma Normal Negativa</u> se encarga de introducir las negaciones hacia las fórmulas atómicas, ademas de quitar implifaciones y equivalencias.

Definición 0.2. Una fórmula φ está en Forma Normal Negativa si y sólo si se cumplen las siguientes condiciones:

- ullet φ no contiene símbolos de equivalencia ni implicaciones
- ullet Las negaciones que figuren en φ sólo afectan a fórmulas atómicas

Algunas equivalencias útiles:

$$\neg\neg\varphi \equiv \varphi \qquad \qquad \neg(\varphi \leftrightarrow \psi) \equiv \neg\varphi \leftrightarrow \psi \equiv \varphi \leftrightarrow \neg\psi$$

$$\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi \qquad \qquad \neg\forall x\varphi \equiv \exists x\neg\varphi$$

$$\neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi \qquad \qquad \neg\exists x\varphi \equiv \forall x\neg\varphi$$

Representamos a la Forma Normal Negativa de una fórmula φ como fnn (φ) .

Ejercicio 0.2. Sea φ la fórmula definida en el Ejercicio 1, encontrar fnn (rec (φ)).

Solución:

$$\equiv \forall x \exists y \neg (P(x,y) \lor \neg Q(x) \to \exists w \neg T(a,w))$$

$$\equiv \forall x \exists y (P(x,y) \lor \neg Q(x) \land \neg (\exists w \neg T(a,w)))$$

$$\equiv \forall x \exists y (P(x,y) \lor \neg Q(x) \land (\forall w \neg \neg T(a,w)))$$

$$\equiv \forall x \exists y (P(x,y) \lor \neg Q(x) \land (\forall w T(a,w)))$$

• La <u>Forma Normal Prenex</u> se encarga de *factorizar* los cuantificadores en una fórmula. Es decir, transforma a una fórmula dada en una fórmula equivalente que tenga la forma

$$Q_1x_1Q_2x_2...Q_nx_n\varphi$$

donde Q_i es un cuantificador \forall o \exists y la fórmula φ no tiene ningún cuantificador.

Definición 0.3. Una fórmula φ está en Forma Normal Prenex sí y sólo si φ es de la forma $Q_1x_1...Q_n, x_n\psi$ donde ψ es una fórmula sin cuantificadores y $Q_i \in \{\forall, \exists\}$ para toda $1 \leq i \leq n$. En tal caso, la cadena de cuantificadores $Q_1x_1...Q_n, x_n$ se conoce como el prefijo de φ y ψ es la matriz de φ .

Algunas equivalencias útiles:

Si
$$x \notin FV(\varphi)$$
 y $\star \in \{\land, \lor, \rightarrow\}$:

$$\varphi \star \forall x \psi \equiv \forall x \, (\varphi \star \psi) \qquad \forall x \varphi \to \psi \equiv \exists x \, (\varphi \to \psi)$$
$$\varphi \star \exists x \psi \equiv \exists x \, (\varphi \star \psi) \qquad \exists x \varphi \to \psi \equiv \forall x \, (\varphi \to \psi)$$

Representamos a la Forma Normal Prenex de una fórmula φ como fnp (φ) .

Ejercicio 0.3. Sea φ la fórmula obtenida en el Ejercicio 2, encontrar fnp (φ) .

Solución:

$$\equiv \forall x \exists y \left(\left(P\left(x, y \right) \vee \neg Q\left(x \right) \right) \wedge \left(\forall w T\left(a, w \right) \right) \right)$$
$$\equiv \forall x \exists y \forall w \left(P\left(x, y \right) \vee \neg Q\left(x \right) \wedge T\left(a, w \right) \right)$$

■ La <u>Forma Normal de Skolem</u> se encarga de eliminar los cuantificadores existenciales usando una técnica llamada *skolemnización*. Esta técnica consiste en sustituir las fórmulas existenciales por *testigos* nuevos de los cuantificadores existenciales, de la siguiente forma:

$$\exists x \varphi \quad \text{se sustituye por} \quad \varphi[x := c] \\ \forall x_1... \forall x_n \exists y \varphi \quad \text{se sustituye por} \quad \forall x_1... \forall x_n \varphi[y := g\left(x_1,...,x_n\right)]$$

c es un símbolo de constante nuevo, llamado constante de Skolem y g es un símbolo de función nuevo llamado función de Skolem. El proceso de sokolemnización se denota $Sko(\varphi)$.

Definición 0.4. Un enunciado de la forma $\forall x_1...\forall x_n\varphi$ donde φ no tiene cuantificadores y además φ está en forma normal conjuntiva es una fórmula en forma normal de Skolem.

Representamos a la Forma Normal de Skolem de una fórmula φ como fns (φ) .

Ejercicio 0.4. Sea φ la fórmula obtenida en el Ejercicio 3, encontrar fns (φ) .

Solución:

$$\equiv \forall x (\exists y (\forall w (P(x, y) \lor \neg Q(x) \land T(a, w))))$$

$$\equiv \forall x \forall w \left(\left(P\left(x,f\left(x\right) \right) \vee \neg Q\left(x\right) \right) \wedge T\left(a,w\right) \right)$$

 La <u>Forma Clausular</u> se obtiene de forma idéntica a la lógica proposicional a partir de la matriz de la Forma Normal de Skolem.

Definición 0.5. Sean φ una fórmula y fns $(\varphi) = \forall x_1... \forall x_n \psi$ la forma normal de Skolem de φ . Si ψ es $\mathcal{C}_1 \wedge ... \wedge \mathcal{C}_n$ entonces la forma clausular de φ , denotada $Cl(\varphi)$ es la secuencia de cláusulas

$$Cl(\varphi) = \mathcal{C}_1, ..., \mathcal{C}_n$$

donde sin perder generalidad, las variables en cualquier de las cláusulas son distintas. Es decir, cualesquiera dos cláusulas tienen variables ajenas.

Ejercicio 0.5. Sea φ la fórmula obtenida en el Ejemplo 4, encontrar $Cl(\varphi)$.

Solución:

$$\equiv \forall x \forall w \left(\left(P\left(x, f\left(x \right) \right) \lor \neg Q\left(x \right) \right) \land T\left(a, w \right) \right)$$

$$Cl(\varphi) = P(x, f(x)) \vee \neg Q(x), T(a, w)$$

Ejercicio 0.6. Sea $\varphi = \forall z (\exists x (R(x,z) \land R(z,x)) \rightarrow \neg \exists w (\forall x R(x,w) \rightarrow R(z,w)))$ encontrar su forma clausular.

Solución:

- 1. Rectificación $rec(\varphi)$
 - Observamos que existen dos cuentificadores de la misma variable con alcances ajenos.

$$\varphi = \forall z \left(\boxed{\exists x} \left(R\left(x,z \right) \land R\left(z,x \right) \right) \rightarrow \neg \exists w \left(\boxed{\forall x} R\left(x,w \right) \rightarrow R\left(z,w \right) \right) \right)$$

■ Como $y \notin FV(\varphi)$ podemos aplicar la equivalencia $\exists x \varphi \equiv \exists y (\varphi[x := y])$ para que tengan nombres de variables distintos.

$$\varphi = \forall z \left(\boxed{\exists y} \left(R \left(\boxed{y}, z \right) \land R \left(z, \boxed{y} \right) \right) \rightarrow \neg \exists w \left(\forall x R \left(x, w \right) \rightarrow R \left(z, w \right) \right) \right)$$

$$\therefore \varphi_{1} = \mathtt{rec}(\varphi) = \forall z \left(\exists y \left(R\left(y,z\right) \land R\left(z,y\right) \right) \rightarrow \neg \exists w \left(\forall x R\left(x,w\right) \rightarrow R\left(z,w\right) \right) \right)$$

- 2. Forma Normal Negativa fnn (φ_1)
 - Observamos que la operación principal es una implicación.

$$\forall z (\exists y (R(y,z) \land R(z,y)) [\rightarrow] \neg \exists w (\forall x R(x,w) \rightarrow R(z,w)))$$

- Eliminamos la implif
cación usando la equivalencia $\varphi \to \psi \equiv \neg \varphi \lor \psi$.

$$\forall z (\neg \exists y (R(y,z) \land R(z,y)) \lor \neg \exists w (\forall x R(x,w) \rightarrow R(z,w)))$$

Observamos otra implificación en el lado derecho.

$$\forall z \left(\neg \exists y \left(R\left(y,z\right) \land R\left(z,y\right) \right) \lor \neg \exists w \left(\forall x R\left(x,w\right) \longrightarrow R\left(z,w\right) \right) \right)$$

- Eliminamos la implif
cación usando la equivalencia $\varphi \to \psi \equiv \neg \varphi \lor \psi$.

$$\forall z \left(\neg \exists y \left(R\left(y, z \right) \land R\left(z, y \right) \right) \lor \neg \exists w \left(\neg \forall x R\left(x, w \right) \lor R\left(z, w \right) \right) \right)$$

Observamos tres negaciones que afectan a cuantificadores.

$$\forall z \left(\boxed{\neg} \exists y \left(R\left(y,z\right) \land R\left(z,y\right) \right) \lor \boxed{\neg} \exists w \left(\boxed{\neg} \forall x R\left(x,w\right) \lor R\left(z,w\right) \right) \right)$$

■ Aplicamos las equivalencias $\neg \forall x \varphi \equiv \exists x \neg \varphi \ y \ \neg \exists x \varphi \equiv \forall x \neg \varphi$.

$$\forall z \left(\forall y \neg \left(R\left(y,z \right) \land R\left(z,y \right) \right) \lor \forall w \neg \left(\exists x \neg R\left(x,w \right) \lor R\left(z,w \right) \right) \right)$$

Observamos dos negaciones que se pueden introducir.

$$\forall z \left(\forall y \boxed{} \left(R\left(y,z \right) \wedge R\left(z,y \right) \right) \vee \forall w \boxed{} \left(\exists x \neg R\left(x,w \right) \vee R\left(z,w \right) \right) \right)$$

■ Aplicamos las equivalencias ¬ $(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$ y ¬ $(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$.

$$\forall z \left(\forall y \left(\neg R\left(y,z\right) \lor \neg R\left(z,y\right) \right) \lor \forall w \left(\neg \exists x \neg R\left(x,w\right) \land \neg R\left(z,w\right) \right) \right)$$

Volvemos a tener una negación que afecta a un cuantificador.

$$\forall z \left(\forall y \left(\neg R\left(y,z\right) \lor \neg R\left(z,y\right) \right) \lor \forall w \left(\boxed{\neg} \exists x \neg R\left(x,w\right) \land \neg R\left(z,w\right) \right) \right)$$

• Aplicamos la equivalencia $\neg \exists x \varphi \equiv \forall x \neg \varphi$.

$$\forall z (\forall y (\neg R(y, z) \lor \neg R(z, y)) \lor \forall w (\forall x \neg \neg R(x, w) \land \neg R(z, w)))$$

• Observamos una doble negación.

$$\forall z \left(\forall y \left(\neg R\left(y,z\right) \lor \neg R\left(z,y\right) \right) \lor \forall w \left(\forall x \boxed{\neg \neg} R\left(x,w\right) \land \neg R\left(z,w\right) \right) \right)$$

• Aplicamos la equivalencia $\neg \neg \varphi \equiv \varphi$.

$$\forall z (\forall y (\neg R(y, z) \lor \neg R(z, y)) \lor \forall w (\forall x R(x, w) \land \neg R(z, w)))$$

$$\therefore \varphi_{2} = \operatorname{fnn}\left(\varphi_{1}\right) = \forall z \left(\forall y \left(\neg R\left(y,z\right) \lor \neg R\left(z,y\right)\right) \lor \forall w \left(\forall x R\left(x,w\right) \land \neg R\left(z,w\right)\right)\right)$$

- 3. Forma Normal Prenex fnp (φ_2)
 - Observamos todos los cuantificadores internos

$$\forall z \left(\left[\forall y \right] (\neg R(y, z) \lor \neg R(z, y)) \lor \left[\forall w \right] \left(\left[\forall x \right] R(x, w) \land \neg R(z, w) \right) \right)$$

■ Aplicamos la equivalencia $\varphi \star \forall x \equiv \forall x \, (\varphi \star \psi)$ repetidas veces, hasta obtener la forma factorizada.

$$\forall z \left(\forall y \left(\neg R \left(y, z \right) \lor \neg R \left(z, y \right) \right) \lor \forall w \overline{\forall x} \left(R \left(x, w \right) \land \neg R \left(z, w \right) \right) \right)$$

$$\forall z \overline{\forall y} \left(\left(\neg R \left(y, z \right) \lor \neg R \left(z, y \right) \right) \lor \forall w \forall x \left(R \left(x, w \right) \land \neg R \left(z, w \right) \right) \right)$$

$$\forall z \overline{\forall y} \overline{\forall w} \left(\left(\neg R \left(y, z \right) \lor \neg R \left(z, y \right) \right) \lor \forall x \left(R \left(x, w \right) \land \neg R \left(z, w \right) \right) \right)$$

$$\forall z \overline{\forall y} \overline{\forall w} \overline{\forall x} \left(\left(\neg R \left(y, z \right) \lor \neg R \left(z, y \right) \right) \lor \left(R \left(x, w \right) \land \neg R \left(z, w \right) \right) \right)$$

$$\therefore \varphi_{3} = \operatorname{fnp}\left(\varphi_{2}\right) = \forall z \forall y \forall w \forall x \left(\left(\neg R\left(y,z\right) \lor \neg R\left(z,y\right)\right) \lor \left(R\left(x,w\right) \land \neg R\left(z,w\right)\right)\right)$$

- 4. Forma Normal de Skolem $fns(\varphi 3)$
 - Al no haber cuantificadores, únicamente debemos obtener la forma normal conjuntiva de la matriz. En este caso, podemos aplicar distribuitibidad.

$$((\neg R\left(y,z\right) \vee \neg R\left(z,y\right)) \vee (R\left(x,w\right) \wedge \neg R\left(z,w\right)))$$

$$((\neg R\left(y,z\right) \vee \neg R\left(z,y\right)) \vee R\left(x,w\right)) \wedge ((\neg R\left(y,z\right) \vee \neg R\left(z,y\right)) \vee \neg R\left(z,w\right))$$

$$\therefore \varphi_{4} = \operatorname{fns}\left(\varphi_{3}\right) = \forall z \forall y \forall w \forall x ((\neg R\left(y,z\right) \vee \neg R\left(z,y\right)) \vee R\left(x,w\right)) \wedge ((\neg R\left(y,z\right) \vee \neg R\left(z,y\right)) \vee \neg R\left(z,w\right))$$

- 5. Forma Clausular $Cl(\varphi_4)$
 - Separamos la matriz en cláusulas

$$Cl(\varphi_4) = ((\neg R(y,z) \lor \neg R(z,y)) \lor R(x,w)), ((\neg R(y,z) \lor \neg R(z,y)) \lor \neg R(z,w))$$

Renombramos las variables de forma que cada cláusula tenga variables distintas

$$Cl(\varphi_4) = ((\neg R(y,z) \lor \neg R(z,y)) \lor R(x,w)), ((\neg R(u,v) \lor \neg R(v,u)) \lor \neg R(v,s))$$