Science with Models

EES 4760/5760
Agent-Based & Individual-Based Computational Modeling
Jonathan Gilligan

Class #22: Tuesday, Apr. 4 2017

Schedule

Schedule

- Drop-in model consultation (optional)
 - Wednesday, 5:00–6:00 at my office (SC 5735)
 - Thursday, 5:30–6:30 in this classroom
 - Optional time to drop in and ask questions about your model project
 - Come for as much or as little as you want
 - Bring your computer or leave your model in your Box folder
- Friday: Drop the current working copy of your NetLogo model in your Box folder before midnight
 - The goal is that your model code is mostly working
 - Then, over the next two weeks:
 - Use this model to perform and analyse behaviorspace experiments
 - In-class presentations and written research report

Ways to use models

Ways to use models

- 1. Detailed predictions
- 2. Theory-building
- 3. What-if analysis

Detailed Predictions

- Develop model:
 - Theory-driven
 - Use existing theory
 - Data-driven
 - Need *lots* of observations/data
 - Look for patterns in data
 - Describe patterns mathematically
- Calibrate model
 - Mathematical theory has parameters
 - Adjust parameters to make model agree with past observations
- Validate & Verify

Validation & Verification

- Cross-validation (for comparing theories):
 - Divide data into k parts: 1...k
 - Each part has a turn as ``test set'':
 - Fit model parameters to the other parts
 - Compare predictions to test set.
 - Choose model that performs best over the k comparisons.
- Hold-out testing (for estimating predictive accuracy):
 - Divide data into hold-out and training data:
 - Divide training data into k parts
 - Use cross-validation to choose best model
 - Calibrate best model on full training set
 - Test predictions against *hold-out* set to estimate predictive power

Theory-Building

- Similar to detailed prediction
 - Detailed prediction often uses very complicated models to capture all the relevant details of the real world
 - Theory-building often uses simplified models to capture just the most important aspects of what makes the real-world system tick.

What-if analysis

- Does not necessarily need data
- Start with simple theory or hypothesis
- Explore implications

Robust Policy Analysis

- How to make policy under extreme uncertainty:
 - R. Lempert: Making policy for the next 100 years
 - oplanning for climate change, technological revolutions, etc.
 - You can't predict what will happen
 - Division: policy variables (things you can control), external variables (things you can't control).
 - Use *lots* of model runs (BehaviorSpace goes nuts)
 - Which sets of policy variables avoid catastrophic outcomes across the widest range of external variables?

Realistic Expectations

Realistic Expectations

- Most ABM work does not aspire to make detailed predictions
- Much focuses on either theory-building or what-if analysis

Let's talk about your modeling projects

- What are you hoping to do with your model?
- What difficulties are you having?