القوة الكهربائية (Fe)

هي القوة التي تُؤثر بها الشحنات الكهربائية على بعضها البعض.

أنواعها: 1) تجاذب. (بين الشحنات المختلفة نوعاً)

2) نتافر . (بين الشحنات المتشابه)

خصائصها: 1) مجالية . (تؤثر عن بُعد دون تماس)

2) متبادلة . (كل من الشحنتين تؤثر على الأخرى)

3) تجاذب وتتافر .

** تحسب من قانون كولوم:

$$F_e=k_crac{\leftert q_1
ightert \leftert q_2
ightert}{r^2}$$
يُعطى في الامتحان

r: البعد بين الشحنتين (بالمنر).

 $k_{e} = 8.99 \times 10^{9} Nm^{2} / C^{2}$ أن كولوم حيث أن k_{c}

. مقدار الشحنة الأولى الشحنة الثانية . $|q_2|$

نص قانون كولوم:

مقدار القوة المتبادلة بين شحنتين نقطيتين يتناسب طردياً مع ناتج ضرب الشحنتين وعكسياً مع مربع البعد بينهما التجاهها:

ينطبق على الخط الواصل بين الشحنتين أو امتداده كما في الشكل.

 q_2 F_{12} F_{21} q_1

F_{12} q_2 q_1 q_2 q_3 q_4 q_5 q_5

العوامل التي تعتمد عليها القوة الكهربائية:

- [القوة تتناسب طردياً مع حاصل ضرب الشحنتين] ($F \propto q_1 \, q_2$) . مقدار كل من الشحنتين
- [القوة تتناسب عكسياً مع مربع البعد بين الشحنتين] ($F \propto \frac{1}{r^2}$) . البعد بين الشحنتين
 - 3) نوع الوسط الفاصل بين الشحنتين.

ملاحظات:

- 1) قانون كولوم ينطبق على الشحنات النقطية والكروية فقط.
- [قوة الأولى على الثانية تساوي وتعاكس قوة الثانية على الأولى حسب نيوتن الثالث قانون الفعل ورد الفعل $\vec{F}_{12} = -\vec{F}_{21}$ (2
 - : على على (k_c) ثابت كولوم (3
 - أ) الوسط الفاصل بين الشحنتين.
 - ب) وحدات القياس المستخدمة .

 $q_2 \hspace{1cm} q_1$

عن على رضى الله عنه قال: رأيت رسول

الله صلى الله عليه وسلم أخذ حريرا, فجعله في يمينه, وذهبا فجعله في شماله, ثم قال

: (إن هذين حرام على ذكور أمتى) رواه

أبو داوود بإسناد حسن .

- س1) معتمداً على البيانات في الشكل المجاور, أجب عما يلى:
 - 1) ما نوع القوة بين الشحنتين .
 - 2) إذا كانت الشحنة اليمنى موجبة ما نوع الشحنة اليسرى .
- 3) ما مقدار وإتجاه القوة الكهربائية المؤثرة على الشحنة اليسرى ولماذا ؟
 - الحل:
 - 1) نتافر .
 - 2) موجبة .
- د) الأن لكل فعل رد فعل مساوٍ له في المقدار معاكس له في الاتجاه (نيوتن الثالث) . 2N
 - س2) أجب عما يلي:
 - 1) ما هي العوامل التي يعتمد عليها ثابت كولوم.
 - 2) قارن بين القوة الكهربائية وقوة الجاذبية بذكر بعض أوجه الشبه وبعض أوجه الاختلاف.
 - 3) أرسم العلاقة البيانية بين القوة الكهربائية والبعد بين الشحنتين .
- 4) ما المقصود بعبارة " أثبت كولوم قانون التربيع العكسي للقوة المتبادلة بين الشحنات الكهربائية" .
 - الحل:

(2

(3

ب) وحدات القياس المستخدمة.

2N

1) أ) الوسط الفاصل بين الشحنتين.

قوة الجاذبية	القوة الكهربائية	
مجالية	مجالية	
صغيرة جداً	كبيرة	
تجاذب فقط	تجاذب وتنافر	

عن حذيفة رضي الله عنه قال: نهانا النبي
أن نشرب في آنية الذهب والفضة, وان
نأكل فيها, وعن لبس الحرير والديباج,
وأن نجلس عليه . رواه البخاري .

2q

4) تعني أن القوة الكهربائية المتبادلة بين شحنتين تتناسب عكسياً مع مربع البعد بينهما .

س3) موصلان كرويان ومتماثلان وضعا في الهواء بحيث كانت المسافة بين مركزيهما (0.3m) شحن أحدهما بشحنة $(12\times10^{-9}C)$:

- 1) احسب مقدار القوة الكهربائية التي يُؤثر بها أحد الموصلين على الموصل الآخر وحدد نوعها .
 - $(7.77 \times 10^{-6} N)$ على أي بعد بين الموصلين تصبح القوة الكهربائية بين الموصلين $(7.77 \times 10^{-6} N)$

الحل:

$$F_e = k_c \frac{q_1 q_2}{r^2} = 8.99 \times 10^9 \times \frac{12 \times 10^{-9} \times 18 \times 10^{-9}}{0.3^2} = 2.16 \times 10^{-5} N$$
 قوة تجاذب (1

$$r = \sqrt{\frac{k_c q_1 q_2}{F_e}} = \sqrt{8.99 \times 10^9 \times \frac{12 \times 10^{-9} \times 18 \times 10^{-9}}{7.77 \times 10^{-6}}} = 0.5 m \text{ (2}$$

(0.03m) شحنتان نقطيتان لهما نفس المقدار ونفس النوع وضعتا في الهواء على بعد (0.03m) من بعضهما فكانت القوة الكهربائية المتبادلة بينهما (40N):

- 1) ما نوع القوة بين الشحنتين .
- 2) قارن بين قوة الشحنة الأولى على الثانية وقوة الثانية على الأولى ؟ فسر إجابتك .
 - 3) احسب مقدار كل من الشحنتين .

الحل:

1) قوة تنافر .

عن أبى هريرة -رضى الله عنه- أن رسول الله قال: "إذا قام أحدكم من مجلس، ثم رجع إليه، فهو أحق به" رواه مسلم

- ر المساويتان مقداراً ومتعاكستان اتجاهاً حسب قانون نيوتن الثالث (لكل فعل رد فعل مساوٍ له في المقدار ومعاكس له في الاتجاه)
 - $F_e = k_c \frac{q_1 q_2}{r^2} = k_c \frac{q^2}{r^2} \Rightarrow q = \sqrt{\frac{r^2 F_e}{k_c}} = \sqrt{\frac{0.03^2 \times 40}{8.99 \times 10^9}} = 2 \times 10^{-6} C$ (3)

حساب محصلة قوتين F_R (مبدأ التراكب)

- . نحسب أولاً (F_2) و (F_2) أم نحدد اتجاههما على الشكل -
- - (انجام F_R بنفس اتجام) القوتان متعاكستان ($F_R=F_1-F_2$) الأكبر ($F_R=F_1-F_2$) الأكبر
- $\left(\theta= an^{-1}(rac{F_y}{F_y})\right)$ حيث (x) حيث (x) مع محور (x) يصنع زاوية (x) يصنع زاوية $(F_R=\sqrt{F_1^2+F_2^2})$

س5) وضعت ثلاث شحنات نقطية في الهواء على المحور (x) كما في الشكل احسب القوة الكهربائية التي تؤثر في الشحنة (q_3) ؟

الحل:

الحل:

$$q_1 = 2\mu C \qquad q_2 = -3\mu C \qquad q_3 = 6\mu C$$

$$0.1m \longrightarrow 0.1m \longrightarrow x$$

$$F_{13} = 8.99 \times 10^9 \times \frac{6 \times 10^{-6} \times 2 \times 10^{-6}}{0.2^2} = 2.7N$$
 (+x)

 $F_{23} = 8.99 \times 10^9 \times \frac{6 \times 10^{-6} \times 3 \times 10^{-6}}{0.1^2} = 16.2 N$ (-x)

 $F_R = 16.2 - 2.7 = 13.5 N$ (-x)

(x=5cm) و (x=-3cm) و (x=0) عند المواضع (x) عند المحور (x) تقع على المحور (q_1,q_2,q_1) تقط على الترتيب احسب القوة الكهربائية التي تؤثر في الشحنة الموضوعة عند نقطة الأصل $(q_1=6\mu C)$ علماً بإن $(q_1=6\mu C)$ علماً و $(q_1=6\mu C)$ علماً الترتيب احسب القوة الكهربائية التي تؤثر في الشحنة الموضوعة عند نقطة الأصل $(q_1=6\mu C)$ علماً بإن $(q_1=6\mu C)$ علماً الترتيب احسب القوة الكهربائية التي تؤثر في الشحنة الموضوعة عند نقطة الأصل $(q_1=6\mu C)$ علماً الترتيب احسب القوة الكهربائية التي تؤثر في الشحنة الموضوعة عند نقطة الأصل $(q_1=6\mu C)$ علماً الترتيب احسب القوة الكهربائية التي تؤثر في الشحنة الموضوعة عند نقطة الأصل ($q_1=6\mu C)$ علماً الترتيب احسب القوة الكهربائية التي تؤثر في الشحنة الموضوعة عند نقطة الأصل ($q_1=6\mu C)$

 $(q_3 = -2\mu C)$ $(q_2 = 1.5\mu C)$

$$\Rightarrow x F_{21} = 8.99 \times 10^9 \times \frac{6 \times 10^{-6} \times 1.5 \times 10^{-6}}{0.03^2} = 90 N$$
 (+x)

$$F_{31} = 8.99 \times 10^9 \times \frac{6 \times 10^{-6} \times 2 \times 10^{-6}}{0.05^2} = 43.2 N$$
 (+x)

$$\stackrel{q_2}{+} \stackrel{q_1}{+} \stackrel{F_{31}}{+} \stackrel{F_{21}}{+} \stackrel{q}{=}$$

$$F_{p} = 90 + 43.2 = 133.2 \, N \qquad (+x)$$

س7) وضعت ثلاث شحنات نقطية على المحور (y) كما في الشكل إذا كانت محصلة القوة الكهربائية على +y الشحنة (q_3) وحدد نوعها (-y) باتجاه (-y) باتجاه (-y) احسب مقدار الشحنة (q_3) وحدد نوعها (q_3) المحل :

0.06m

 q_3

$$F_{21} = 8.99 \times 10^9 \times \frac{2 \times 10^{-6} \times 3 \times 10^{-6}}{0.1^2}$$
$$= 5.4 \ N \quad (-y)$$

. (F_{31}) وينفس اتجاهها فهذا يعني أن (F_{21}) أكبر وتعاكس (F_{21})

$$F_{R} = F_{21} - F_{31}$$

$$4.2 = 5.4 - F_{31}$$

$$F_{31} = 1.2 N (+y)$$

$$F_{31} = K_{c} \times \frac{|q_{3}||q_{1}|}{r^{2}}$$

$$1.2 = 8.99 \times 10^{9} \times \frac{2 \times 10^{-6} \times q_{3}}{0.3^{2}}$$

$$q_{3} = 6 \times 10^{-6} C$$

عن حذيفة رضى الله عنه قال: كان النبي إذا أخذ مضجعه من الليل وضع يده تحت خده، ثم يقول: "اللهم باسمك أموت وأحيا" وإذا استيقظ قال: "الحمد لله الذي أحيانا بعد ما أماتنا وإليه النشور". رواه البخاري

 $(q_1 = +5 \, nC)$ وضعت ثلاث شحنات نقطیة عند رؤوس مثلث کما یظهر فی الشکل إذا کانت $(q_3 = +8 \, nC)$ و $(q_2 = +2 \, nC)$ و $(q_3 = +8 \, nC)$ و $(q_3 = +8 \, nC)$

عدد اتجاه حركة الشحنة (q_2) بالنسبة لمحور (x) إذا سُمح لها بالحركة (2)

الحل:

$$F_{12} = 8.99 \times 10^9 \times \frac{2 \times 10^{-9} \times 5 \times 10^{-9}}{0.05^2} = 3.6 \times 10^{-5} N$$
 (-x) (1

$$F_{32} = 8.99 \times 10^9 \times \frac{2 \times 10^{-9} \times 8 \times 10^{-9}}{0.06^2} = 4 \times 10^{-5} N$$
 (+y)

$$F_R = \sqrt{(3.6 \times 10^{-5})^2 + (4 \times 10^{-5})^2} = 5.4 \times 10^{-5} N$$

$$\theta = \tan^{-1}(\frac{F_{23}}{F_{21}})$$

$$= \tan^{-1}(\frac{4 \times 10^{-5}}{3.6 \times 10^{-5}})$$

$$\theta = 48^{\circ}$$
(2)

. (x) مع محور (132°) أي أن الشحنة تتحرك باتجاه يصنع زاوية

الشحنة المتزنة:

: أن في السؤال إحدى الشحنات متزنة (q_1) مثلاً فهذا يعنى أن

- \cdot ($F_R=0$) محصلة القوة عليها تساوي صفراً *
 - . ومتعاكستان في الاتجاه $(F_{21} = F_{31})$

س9) معتمداً على البيانات في الشكل المجاور احسب مقدار الشحنة (q_2) وحدد نوعها إذا علمت أن (q_2) معتمداً على البيانات في الشكل المجاور احسب مقدار الشحنة (q_2)

الشحنة (q_1) متزنة

الحل:

: بما أن (q_1) متزنة فإن

$$F_{21} = F_{31}$$

$$R_{c} \frac{q_{2}q_{1}}{r_{12}^{2}} = R_{c} \frac{q_{3}q_{1}}{r_{13}^{2}}$$

$$\frac{q_{2}}{r_{21}^{2}} = \frac{q_{3}}{r_{31}^{2}}$$

$$\frac{q_{2}}{0.1^{2}} = \frac{9 \times 10^{-6}}{0.3^{2}} \Rightarrow q_{2} = 1 \times 10^{-6} C$$

. حتى تكون (F_{21}) عكس (F_{31}) كما في الشكل (2

س 10) كرتان صغيرتان من نخاع البيلسان وزن كل منهما $(0.05\,N)$ عُلقت كل من الكرتين بخيط خفيف طوله (0.6m) ثم ثبت طرفا الخيطين الحرين إلى النقطة نفسها وعند شحن الكرتين بشحنتين متماثلتين تنافرتا بحيث صارت الزاوية بين الخيطين (30°) لحسب مقدار الشحنة على كل من الكرتين .

الحل:

 $\begin{array}{c}
0.6 \, m \\
F_T & F_T \sin 75^\circ \\
F_T \cos 75^\circ & F_g
\end{array}$

.
$$(F_{_T})$$
 والكهربائية $(F_{_e})$ وشد الخيط $(F_{_T})$

نحلل أولاً قوة الشد (F_T) إلى مركبتين متعامدتين كما في الشكل

$$(\sum \vec{F}_{y}=0)$$
 : بما أن الكرة متزنه فإن $F_{T}\sin 75^{o}=F_{g}$

$$F_T = \frac{0.05}{\sin 75^o} = 0.052 \, N$$

$$(\sum \vec{F}_x = 0)$$

$$F_e = F_T \cos 75^\circ$$

$$= 0.052 \cos 75^\circ = 0.013N$$

$$F_e = k_c \frac{q^2}{r^2}$$

$$0.013 = \frac{8.99 \times 10^9 \times q^2}{0.3^2}$$

$$q = 3.6 \times 10^{-7} C$$

حساب البعد بين الشحنتين $\sin 15^o = \frac{d}{0.6} \Rightarrow d = 0.15m$ $r = 2d = 2 \times 0.15 = 0.3 m$

س11) اختر الإجابة الصحيحة فيما يلي:

1) إذا تضاعف مقدار إحدى الشحنتين مرتين فإن مقدار القوة الكهربائية بينهما:

 $F_2 \propto q_1 = 2F_1$ بيضاعف مرتين ب) يتضاعف أربع مرات ج) يقل للنصف د) يقل للربع د) يقل للربع

kasabra70@hotmail.com يحيى الكسابرة	(2014/2013) لا تتسونا من الدعاء	ف 1/القوى والمجالات الكهربائية (6)		
2) إذا تضاعف مقدار كل من الشحنتين بعامل (2) فبأي عامل تتغير القوة الكهربائية:				
E 2.2.4E	$\frac{1}{4}$ (ب	4 (أ		
$F_2 \propto q_1 \ q_2 = 2 \times 2 = 4F_1$	$\frac{1}{2}$ (2	2 (ح		
$F_2 \propto \frac{1}{r^2} = \frac{1}{(2)^2} = \frac{1}{4}F_1$	ب) يتضاعف أربع مرات	أ) يتضاعف		
$r_2 \propto \frac{r_2}{r^2} - \frac{1}{(2)^2} - \frac{1}{4}r_1$	د) يقل للربع	ج) يقل للنصف		
4) شحنتان نقطيتان موجبتان القوة الكهربائية المتبادلة بينهما (1.6N) إذا أنقص البعد بينهما إلى النصف				
1 1	صبح:	فإن مقدار القوة المتبادلة بينهما تد		
$F_2 \propto \frac{1}{r^2} = \frac{1}{(\frac{1}{2})^2} = 4F_1 = 4 \times 1.6 = 6.4 N$	3.2 <i>N</i> (ب	0.4N (
	6.4N (2	0.8N (z		
5) شحنتان نقطيتان القوة الكهربائية المتبادلة بينهما (20N) عندما كان البعد بينهما (3cm) , إذا أصبح				
:	وة الكهربائية المتبادلة بينهما تصبح			
$\frac{F_2}{F_1} = (\frac{r_1}{r_2})^2 \Rightarrow \frac{F_2}{20} = (\frac{3}{6})^2 \Rightarrow F_2 = 5N$	40N ($10N$ (†		
. 2	د) $80N$ (د) $3cm$ إلى $3cm$) بأي عامل تتغير الق	ج) 5N (ج) قراعت شرونتان من مسافة (س		
وه المهربانية بينهما .	۱۲) إلى (3cm) باي عامل تنظير الع با	,		
العامل $= \frac{F_2}{F_1} = (\frac{r_1}{r_2})^2 = (\frac{1}{3})^2 = \frac{1}{9}$	3 1	3 (1		
<u> </u>	$\frac{1}{9} \left(3 \right)$	ج) 9 7. شاهد و تا العداد من العداد		
7) شحنتان نقطيتان متجاورتان المسافة بينهما (r) والقوة الكهربائية المتبادلة بينهما (10N) إذا أصبحت				
	نوة الكهربائية المتبادلة بينهما تصبح	4		
	40 N (ب	20 N (1		
1	160 N (2	5) N (8)		
F_e بین مقطیتین : F_e	ة فيما يخص القوة الكهربائية بين شحا $F_e igwedge$	اي الرسوم البيانية الثالية صحيح $F_{\epsilon} \wedge$		
(2)	(E	أ) ب		
r	r	$r \longrightarrow r$		
نتين نقطيتين : جم جم جم التين نقطيتين :	ة فيما يخص القوة الكهربائية بين شحا F_{e}	و) أي الرسوم البيانية التالية صحيد $F_{e} \wedge$		
(2 *)	(z	اً) ب (أ		
\downarrow $\frac{1}{v^2}$	$\rightarrow \frac{1}{2}$	$\frac{1}{2}$ $\Rightarrow \frac{1}{2}$		
7) د 8) ج 9) أ	ر 2 (6 ج (5 ع (4	رد (3 الحل : 1) أ (2 على الحل : 1) أ		
	- , ,	, ,		

س12) الشكل المجاور يمثل العلاقة البيانية بين القوة الكهربائية بين شحنتين نقطيتين متساويتين ومقلوب مربع البعد بينهما , معتمداً على الشكل أجب عما يلي :

- 1) احسب ميل الخط البياني .
 - 2) ماذا يمثل ميل الخط.
- 3) احسب مقدار كل من الشحنتين .
- 4) احسب مقدار القوة الكهربائية المتبادلة بين الشحنتين عندما يكون

(0.5m) البعد بينهما

الحل: ال

الميل =
$$\frac{(2.7-1.8)}{(75-50)}$$
 = 0.036 (1

(اإذا كانث الشحنتان غير متساويتين فإن $K_c q_1 q_2$ الميل الشحنتان غير متساويتين فإن الميل الميل

الطاعن أبي سعيد الخدرى رضى الله عنه أن جبريل أنى النبى ، فقال : يا محمد اشتكيت ؟ قال : " نعم " قال : بسم الله ارقيك ، من كل شيء يؤذيك، ومن شر كل نفس أو عين حاسد، الله يشفيك، بسم الله أرقيك" ((رواه مسلم)

$$K_c q^2 = 0.036$$
 (3
 $q^2 = \frac{0.036}{8.99 \times 10^9} = 4 \times 10^{-12}$
 $q = 2 \times 10^{-6} C$
 $F_e = K_c q^2 \times \frac{1}{r^2}$: j

$$0.9 = 8.99 \times 10^{9} \times q^{2} \times 25$$
$$q^{2} = 4 \times 10^{-12}$$
$$q = 2 \times 10^{-6} C$$

$$F_e = \frac{K_c q^2}{r^2}$$

$$8.99 \times 10^9 \times (2 \times 10^{-6})^2$$

 $= \frac{8.99 \times 10^9 \times (2 \times 10^{-6})^2}{0.5^2} = 0.144 \, N$

واڊ ب

وضعت ثلاث شحنات نقطية عند رؤوس مثلث قائم الزاوية كما في الشكل إذا كانت القوة التي تؤثر بها الشحنة ((q_2) على الشحنة ((q_2) تساوي $(1.35\times10^{-4}\,N)$ وكانت محصلة القوة على الشحنة ((q_2) تساوي $((q_3)$ تساوي الشحنة باتجاه شمال غرب :

- (q_1) و (q_2) عدد نوع کل من الشحنتين (1
 - (q_1) احسب مقدار الشحنة (2

الإجابة:

$$q_1 = 2 \times 10^{-9} C$$
 (2)