28th Australasian Conference on Information Security and Privacy (ACISP 2023)

A Tightly Secure ID-Based Signature Scheme under DL Assumption in AGM

Jia-Chng Loh, Fuchun Guo, Willy Susilo

IC², SCIT, University of Wollongong, Australia

Guomin Yang

Singapore Management University, Singapore

Outline

- Introduction
- Challenge and Our Contribution
- The proposed BLS-IBS Scheme
- Security Proof in AGM (High-level)
- Conclusion

Introduction

Identity-based Signatures

Digital Signatures

- Integrity, authentication, and non-repudiation
- Can be provably secure (forging is computationally hard)

However, there is a need of public key infrastructure

To certify users' public keys

Identity (ID)-based Signatures (IBS)

- Users' identity ID serves as the public key
- E.g. email address and ID number

Definition of IBS

An IBS scheme is defined with four main algorithms:

- Setup: On input security parameters, it generates master public and secret key pair
- Extraction: On input master secret key and user ID, it generates a user private key
- **Signing**: On input user private key and message, it generates a signature
- Verification: On input ID, signature, and message, it returns its validity

Security Model

Existential unforgeability against chosen identity-and-message attacks (EUF-CMA)

Security Model

Existential unforgeability against chosen identity-and-message attacks (EUF-CMA)

- 1. Setup: \mathcal{C} prepares parameters and returns mpk to \mathcal{A}
- 2. Query: \mathcal{A} requests user private key $d_{ID_i} \leftarrow \mathcal{O}_E(ID_i)$ and signatures $\sigma_{ID_j,m_j} \leftarrow \mathcal{O}_S(ID_j,m_j)$
- 3. Forgery: \mathcal{A} returns valid forgery $(ID^*, m^*, \sigma_{ID^*, m^*})$ and wins if ID^* and (ID^*, m^*) have **not** been queried to $\mathcal{O}_E(\cdot)$, $\mathcal{O}_S(\cdot, \cdot)$ respectively

Security Reduction

To prove the security of the scheme

Security Reduction

To prove the security of the scheme

"Ideal security" in cyclic group setting

- Hardest problem: Discrete logarithm (DL)
- Standard EUF-CMA security model

Tight reduction: Loss factor is O(1) Better theoretical result

More efficient implementation

It is hard to achieve ideal security!
We may resort to the "idealized models"

Algebraic Group Model (AGM)

Idealizing the adversary's computations as algebraic [FKL18] at Crypto'18

Suppose $g \in \mathbb{G}$ is a cyclic group generator and $x_1, x_2 \in \mathbb{Z}_p^*$ are any prime number. Let $X_1 = g^{x_1}, X_2 = g^{x_2}$

Algebraic Group Model (AGM)

Idealizing the adversary's computations as algebraic [FKL18] at Crypto'18

Suppose $g\in\mathbb{G}$ is a cyclic group generator and $x_1,x_2\in\mathbb{Z}_p^*$ are any prime number. Let $X_1=g^{x_1},X_2=g^{x_2}$

Signature schemes with ideal security in AGM: BLS and Schnorr signatures

Algebraic Group Model (AGM)

Idealizing the adversary's computations as algebraic [FKL18] at Crypto'18

Suppose $g \in \mathbb{G}$ is a cyclic group generator and $x_1, x_2 \in \mathbb{Z}_p^*$ are any prime number. Let $X_1 = g^{x_1}, X_2 = g^{x_2}$

Signature schemes with ideal security in AGM: BLS and Schnorr signatures

However, IBS scheme with ideal security in AGM has not been discovered

Challenge and Our Contribution

Difficulty of Tight Reduction in IBS

To achieve tightly EUF-CMA secure IBS scheme, a reduction must capture the following two points

- Respond any user private key query
- Reduce problem solutions based on any forgery

Difficulty of Tight Reduction in IBS

To achieve tightly EUF-CMA secure IBS scheme, a reduction must capture the

following two points

Respond any user private key query

Reduce problem solutions based on any forgery

Conflicting: In most reductions, if user private key is simulated, the corresponding forgery may not be reducible

Existing Techniques

Existing techniques

- Choose a target $ID' \in [ID_1, ..., ID_q]$ with a non-simulatable key
- If forgery matches target one, i.e. $ID^* = ID'$, it can be reducible

However, this results loose reduction due to random target ID'

Our Contribution

We **present a new IBS scheme**, namely BLS-IBS, which is extended based on BLS signatures [BLS04]

The security of BLS-IBS achieve ideal security in AGM:

Approach 1: The reduction can simulate any user private key

Approach 2: The reduction can reduce any forgery

- In AGM, the adversary's forgery and representations can be classified into several cases
- The reduction contains two simulations
- The reduction solves for DL solution in either simulations

Our Contribution

We **present a new IBS scheme**, namely BLS-IBS, which is extended based on BLS signatures [BLS04]

The security of BLS-IBS achieve ideal security in AGM:

Approach 1: The reduction can simulate any user private key

DL problem instance is always embedded

Approach 2: The reduction can reduce any forgery

- In AGM, the adversary's forgery and representations can be classified into several cases
- The reduction contains two simulations
- The reduction solves for DL solution in either simulations

The BLS-IBS Scheme

The Scheme

Extended based on BLS signatures: public key $pk = g^x$ and signature $\sigma_m = H(m)^x$

The Security Proof

AGM (High-level)

Approach 1: How to simulate

User private key: $d_{ID} = (H_1(ID))^x$

Signature $\sigma_{ID,m}$: $\sigma_{ID,m}^{(1)} = d_{ID} \cdot (H_2(m))^r$,

 $\sigma_{ID,m}^{(2)} = g^r$

Given a DL problem instance tuple (g, g^a) , we design two simulations as follows:

 \mathcal{R}_1 : Embeds g^a into master public key X and signature randomness $\sigma^{(2)}_{ID,m}$

 \mathcal{R}_2 : Embeds g^a into hash values $H_1(\cdot) \to H_{ID}$, $H_2(\cdot) \to H_m$

Approach 1: How to simulate

User private key: $d_{ID} = (H_1(ID))^x$ Signature $\sigma_{ID,m}$: $\sigma_{ID,m}^{(1)} = d_{ID} \cdot (H_2(m))^r$,

 $\sigma_{ID.m}^{(2)} = g^r$

Given a DL problem instance tuple (g, g^a) , we design two simulations as follows:

 \mathcal{R}_1 : Embeds g^a into master public key X and signature randomness $\sigma_{ID,m}^{(2)}$

 \mathcal{R}_2 : Embeds g^a into hash values $H_1(\cdot) \to H_{ID}$, $H_2(\cdot) \to H_m$

Approach 1: How to simulate

User private key: $d_{ID} = (H_1(ID))^x$ Signature $\sigma_{ID,m}$: $\sigma_{ID,m}^{(1)} = d_{ID} \cdot (H_2(m))^r$,

$$\sigma_{ID,m}^{(1)} = d_{ID} \cdot \left(H_2(m)\right)^r,$$

$$\sigma_{ID,m}^{(2)} = g^r$$

Given a DL problem instance tuple (g, g^a) , we design two simulations as follows:

 \mathcal{R}_1 : Embeds g^a into master public key X and signature randomness $\sigma_{ID,m}^{(2)}$

 \mathcal{R}_2 : Embeds g^a into hash values $H_1(\cdot) \to H_{ID}$, $H_2(\cdot) \to H_m$

Elements	Simulation \mathcal{R}_1	Simulation \mathcal{R}_2
X	g^a	g^x
H_{ID_i}	$g^{h_{ID}}{}_i$	$g^{au_{1,i}+v_{1,i}}$
H_{m_i}	$g^{h_{m_i}}$	$g^{au_{2,i}+v_{2,i}}$
$d_{ID_{\dot{i}}}$	$g^{ah_{ID_i}}$	$g^{au_{1,i}x+v_{1,i}x}$
$\sigma^{(1)}_{ID_i,m_i}$	$g^{a(h_{ID_i}+h_{m_i}s_i)+h_{m_i}t_i}$	$g^{a(u_{1,i}x+u_{2,i}r_i)+v_{1,i}x+v_{2,i}r_i}$
$\sigma^{(2)}_{ID_i,m_i}$	$g^{as_i+t_i}$	g^{r_i}

During the query phase,

Every d_{ID} is simulatable.

Both simulations will not abort!

Approach 2: How to reduce

The simulator obtains forgery σ_{ID^*,m^*}

$$\sigma^{(1)}_{ID^*,m^*} = d_{ID^*} \cdot (H_2(m^*))^{r^*} = g^{xh_{ID^*}+r^*h_{m^*}}$$
 $\sigma^{(2)}_{ID^*,m^*} = g^{r^*}$

Approach 2: How to reduce

The simulator obtains forgery $\sigma_{ID^*.m^*}$

Therefore, the simulator can derive a general modular equation

1
$$xh_{ID^*} + r^*h_{m^*} = x\theta + \hat{\theta} + \sum_{i=1}^{q_s} r_i \omega_{\alpha_i}$$
2
$$r^* = x\delta + \hat{\delta} + \sum_{i=1}^{q_s} r_i \omega_{\beta_i}$$

General equation:

$$x(h_{ID^*} + h_{m^*}\delta - \theta) + \sum_{i=1}^{q_s} r_i (h_{m^*}\omega_{\beta_i} - \omega_{\alpha_i}) = \hat{\theta} - h_{m^*}\hat{\delta}$$

Next, we classify this into several cases (in full proof). For high-level, we compress them into two.

In this presentation, we compress into two (at high-level)

The simulator obtains:

In this presentation, we compress into two (at high-level)

The simulator obtains:

Recall that by our simulations:

 \mathcal{R}_1 : Embeds g^a into master public key $X=g^x$ and signature randomness $\sigma^{(2)}_{ID,m_i}=g^{r_i}$

 \mathcal{R}_2 : Embeds g^a into hash values $H_{ID}=g^{h_{ID}}$, $H_m=g^{h_m}$

In this presentation, we compress into two (at high-level)

The simulator obtains:

Recall that by our simulations:

$$\mathcal{R}_1$$
: Embeds g^a into master public key $X=g^x$ and signature randomness $\sigma_{ID,m_i}^{(2)}=g^{r_i}$

$$\mathcal{R}_2$$
: Embeds g^a into hash values $H_{ID}=g^{h_{ID}},\;H_m=g^{h_m}$

In this presentation, we compress into two (at high-level)

The simulator obtains:

Recall that by our simulations:

 \mathcal{R}_1 : Embeds g^a into master public key $X=g^x$ and signature randomness $\sigma_{ID,m_i}^{(2)}=g^{r_i}$

 \mathcal{R}_2 : Embeds g^a into hash values $H_{ID}=g^{h_{ID}},\;H_m=g^{h_m}$

Therefore, the simulator solves for DL solution a in either simulation depending on adversary's behavior.

$$\Pr[Success] = \frac{1}{2} \cdot \Pr[\mathcal{R}_1] + \frac{1}{2} \cdot \Pr[\mathcal{R}_2] = \frac{1}{2}$$

Conclusion

Conclusion

The proposed BLS-IBS achieves ideal security in AGM

A valuable insight on how to achieve ideal security for IBS in AGM

Future work: Pairing-free IBS with ideal security

 Schnorr-like IBS [GG09]: A similar approach cannot work here as the simulator cannot simulate any user private key

Thank you