

Universidade do MinhoEscola de Engenharia

Identification of *Mycobacterium tuberculosis*Genetic Determinants of Disease Severity

Rita Nóbrega Amaral Martins

PG46733

Work supervised by Dr. Nuno Ósório and Dr. Tiago Beites

Project Presentation

Master's in Bioinformatics, University of Minho

29th May 2024

Mycobacterium tuberculosis (Mtb)

Mtb is a pathogenic bacteria

Mtb is the etiological agent of **Tuberculosis (TB)**

• Spectrum of clinical manifestations

Influenced by pathogen, host and environment

Therapeutical Strategies

Pathogen's fast adaptation

Resistant strains

Side effects

Co-infections
Co-morbidities

Potential novel strategy: Antivirulence drugs

Target pathogens' ability to cause disease without directly affecting viability

Chandra et al., 2022 Young et al., 2020 Dartois et al., 2022

Genetic variants of *Mtb*

Potential targets for antivirulence drugs

Is there an **association** between **genetic diversity** within *Mtb* and **TB severity?**

How can we find these genetic variations?

Pre-processing of sequence reads

Alignment/Mapping to Reference Genome

Variant Detection and Filtering

Variant and lineage annotation

Variant Calling for *Mtb*

Examples of existing pipelines for Mtb: MAGMA, MTB-VCF, MycoVarP and TBProfiler

Tools' **lack** of flexibility and robustness

Tools' **limited** configurability

Mtb's complexicity

Mtb's repetitive regions

Removal of important regions

Missing or **misidentified** genetic variants

Discrepancy between phenotypic differences among *Mtb* isolates and the **absence of corresponding genetic differences**

Sousa et al., 2020

Scientific question and Aims

Is there an association between genetic variations in *Mtb* and TB severity?

1. Identify genetic variations of *Mtb* overlooked by existing pipelines

Development of an **optimized pipeline** for the **identification of genetic variants in** *Mtb*

2. Correlate the genetic variants with disease severity

Study the **correlation** between the **genetic variations** identified and **TB clinical outcome** through **statistical** and machine learning approaches

Task 1 Development of the pipeline

- Jupyter notebook with Bash language
- A cell/function for each step of the pipeline
- Input: Text file with SRA numbers
- Output: List of variants identified

FASTQ extraction

Input: List of 149 isolates of *Mtb*

- Folder per sample
- Downloads SRA data
- Converts SRA data into FastQ files

Output: 2 FastQ files per sample

```
extract_SRA_files () {
    echo "Extracting FastQ files"
   local sample="$1"
    local sra_diretoria="$HOME/Projeto_Mtb/Sample_reads"
   while IFS= read -r sample; do
        echo -e "\nSample: $sample"
       mkdir -p "$sra_diretoria/$sample"
        cd "$sra diretoria/$sample" || exit 1
        prefetch "$sample"
        fasterq-dump "$sample"
        rm $HOME/Projeto_Mtb/SRA_files/sra/"$sample".sra
   done < "$sample"
```

Pre-processing of reads

Quality Control

Input: List of isolates

Uses: 2 FASTQ files

Output: 2 FASTQC files – Quality Reports

```
quality_control () {
  echo 'Quality control'
 local sra diretoria="$HOME/Projeto Mtb/Sample reads"
 local sample_file="$1"
 sed -i 's/\r$//' "$sample file"
 if [ ! -f "$sample file" ]; then
     echo "Arquivo de amostra '$sample file' não encontrado."
     return 1
  fi
 parallel -j "$(nproc)" "
     sample={};
     if [ -f \"$sra_diretoria/\$sample/\${sample}_1.fastq\" ] \
     && [ -f \"$sra diretoria/\$sample/\${sample} 2.fastq\" ]; then
          fastqc \"$sra diretoria/\$sample/\${sample} 1.fastq\" \
          \"$sra diretoria/\$sample/\${sample} 2.fastq\";
     else
          echo \"Arquivo fastq não encontrado para a amostra '\$sample'.\";
      fi
      < "$sample file"
```

Trimming with BBDuk

 Trimming FastQ file to remove adapters and low-quality reads

Output: 2 trimmed FastQ files

```
trimming bbduk () {
 echo 'Read trimming with BBDuk'
 local sample_file="$1"
 sed -i 's/\r$//' "$sample_file"
 cat "$sample_file" | xargs -I {} -P "$(nproc)" bash -c '
   sample={};
   echo "Sample: $sample";
     if [ -f "$HOME/Projeto Mtb/Sample reads/$sample/${sample} 1.fastq" ] \
     && [ -f "$HOME/Projeto Mtb/Sample reads/$sample/${sample} 2.fastq" ]; then
       bbduk.sh \
         in1="$HOME/Projeto Mtb/Sample reads/$sample/${sample} 1.fastq" \
         in2="$HOME/Projeto_Mtb/Sample_reads/$sample/${sample}_2.fastq" \
         out="$HOME/Projeto_Mtb/Sample_reads/$sample/${sample}_R1_bbduk.fastq" \
         out2="$HOME/Projeto Mtb/Sample reads/$sample/${sample} R2 bbduk.fastq" \
         overwrite=t \
         ref=~/Projeto Mtb/NGS helper files/adapters combined 256 unique.fasta \
         ftm=5 ktrim=r k=19 mink=8 editdistance=1 editdistance2=1 \
         trimpairsevenly=f removeifeitherbad=t \
         qtrim=r trimq=20 trimpolygright=10 \
         minavgquality=20 minlength=20 ottm=t \
         rename=t ziplevel=1 showspeed=t ;
       rm "$HOME/Projeto_Mtb/Sample_reads/$sample/${sample}"_[1-2].fastq ;
       echo "Trimming for $sample completed"
     else
       echo "Arquivo fastq não encontrado para a amostra $sample.";
```

Mapping

Input: List of isolates

- Mapping using 'bwa mem'
 - Trimmed FastQ files
 - FASTA of a reference genome: Mtb H37Rv
- Sorts and compresses BAM files using 'samtools'

Output: BAM file

```
map bwa() {
  echo "Mapping genomes to MTB_anc with bwa mem + sorting BAM by read name"
 local sample file="$1"
 local genome_reference="$HOME/Projeto_Mtb/NGS_helper_files/MTB_anc.fasta"
 local sra diretoria="$HOME/Projeto Mtb/Sample reads"
 while IFS= read -r sample; do
    echo -e "\nMapping Sample: $sample"
    bwa threads=$(nproc)
    bwa mem -t "$bwa threads" "$genome reference" \
    "$sra diretoria/$sample/${sample} R1 bbduk.fastg" \
    "$sra diretoria/$sample/${sample} R2 bbduk.fastq" \
     samtools sort -n -l 1 -@ 1 -o "$sra diretoria/$sample/$sample.bam"
    samtools view -@ 1 -b "$sra diretoria/$sample/$sample.bam" \
     samtools sort -@ 1 -o "$sra diretoria/$sample/${sample} sorted.bam"
    samtools index -@ 1 "$sra diretoria/$sample/${sample} sorted.bam"
    echo "Mapping for $sample completed."
 done < "$sample file"</pre>
```

Post-Processing

Duplicates Marking with Samtools

Input: List of isolates

 Marks duplicates and indexes BAM files per sample with 'samtools markup'

```
mark_duplicates() {
    echo "Marking duplicates with samtools markdup and indexing BAM files"
    local sample_file="$1"
    local sra_diretoria="$HOME/Projeto_Mtb/Sample_reads"
    local threads=$(nproc)

while IFS= read -r sample || [[ -n $sample ]]; do
    samtools fixmate -m -@ 2 "$sra_diretoria/$sample/$sample.bam" -u - \
    | samtools sort -u -@ 2 - \
    | samtools markdup --include-fails -S --mode s -@ 2 - -0 bam,level=1 \
    "$sra_diretoria/$sample/${sample}_markdup.bam" \
    && samtools index -@ 2 "$sra_diretoria/$sample/${sample}_markdup.bam" \
    && rm "$sra_diretoria/$sample/$sample.bam"

done < "$sample_file"

echo "Duplicate marking and indexing finished"
}</pre>
```

BAM Coverage with mosdepth

Input: List of isolates

 Calculates coverage using 'mosdepth' per base and per region

```
calculate bam coverage()
 local sample file="$1"
 local sra_diretoria="$HOME/Projeto_Mtb/Sample_reads"
 local threads=$(nproc)
 local mosdepth_bin="$CONDA_PREFIX/bin/mosdepth"
 echo "Calculating bam coverage with mosdepth in parallel"
 while IFS= read -r sample || [[ -n $sample ]]; do
   if [ -z "$sample" ]; then
     continue
   fi
   pushd "$sra diretoria/$sample" > /dev/null || continue
   echo "Calculating coverage for ${sample} markdup.bam"
   echo "$bam_file" | parallel -j0 --colsep="\t" \
   "${mosdepth_bin}" --flag 3844 --mapq 20 --use-median --threads "$threads" \
    "${sample} markdup.bam"
   echo "BAM coverage calculated for $sample"
   popd > /dev/null || continue
 done < "$sample file"</pre>
 echo "Coverage calculation completed"
```

Variant Calling

Variant Calling with bcftools

Input: List of isolates

- Variant Calling using 'bcftools'
 - FASTA of a reference genome: Mtb H37Rv
 - BAM file per sample

Output: VCF file per sample

> Variant Calling with Filters and Annotations

Simple Variant Calling

bcftools mpileup -Ou -f ~/Projeto_Mtb/NGS_helper_files/MTB_anc.fasta ~/Projeto_Mtb/Sample_reads/DRR130093/DRR130093_markdup.bam \
| bcftools call -Ov -vc > ~/Projeto_Mtb/Sample_reads/DRR130093/DRR130093.raw.vcf

Variant Calling with Filters and Annotations

- 1. Creation of Intervals in the reference genome
 - Using 'bedtools'
 - Output: BED file with the intervals

```
create_intervals() {
    local threads=24
    local output_file="$HOME/Projeto_Mtb/NGS_helper_files/intervals_${threads}threads.bed"

    echo "Creating equally-sized intervals file for the reference genome"
    bedtools makewindows -g ~/Projeto_Mtb/NGS_helper_files/MTB_anc.fasta.fai -n "$threads" -i winnum \
    | awk '{print $1"\t"$2+1"\t"$3}' > "$output_file"
    cat -n "$output_file"
}
```

2. Variant Calling using bcftools (mlineup, call, norm and annotate)

- Only reads with a quality of alignment and mapping superior to 20
- Normalization of the variants' representation
- Add important informations (e.g. Mapability, lineage, excluded regions)

```
run variant calling() {
    local sample="$1"
    local sra diretoria="$HOME/Projeto Mtb/Sample reads"
    local output dir="$sra diretoria/$sample"
    local output prefix="${sample} bcftools varsonly"
    local ref file="$HOME/Projeto Mtb/NGS helper files/MTB anc.fasta"
    local threads=$(nproc)
   local intervals file="$HOME/Projeto Mtb/NGS helper files/intervals 24threads.bed"
   echo "Running variant calling for sample: $sample"
   bcftools mpileup -f "$ref file" "$sra diretoria/$sample/${sample} markdup.bam" \
    --count-orphans \
    --no-BAQ --min-MQ 20 --min-BQ 20 \
    --regions-file "$intervals file" \
    --annotate AD, ADF, ADR, DP, SP, SCR, INFO/AD, INFO/ADF, INFO/ADR, INFO/SCR \
    --threads "$threads" --output-type u \
    | bcftools call --ploidy 1 \
    --keep-alts --keep-masked-ref \
    --multiallelic-caller \
    --variants-only \
    --threads "$threads" --output-type u \
    | bcftools norm --fasta-ref "$ref file" \
    --multiallelics - --keep-sum AD \
    --threads "$threads" --output-type v \
    | bcftools annotate \
    --annotations ~/Projeto Mtb/NGS helper files/excludedloci RLC2021 annot.tab.gz \
    --header-lines ~/Projeto_Mtb/NGS_helper_files/excludedloci_RLC2021_annot.header \
    --columns CHROM, FROM, TO, RLC_tag \
    --threads "$threads" --output-type u \
    | bcftools annotate \
    --annotations ~/Projeto_Mtb/NGS_helper_files/blindspots_mappability_marin2021_annot.tab.gz \
    --header-lines ~/Projeto Mtb/NGS helper files/blindspots mappability marin2021 annot.header \
    --columns CHROM, FROM, TO, Mappability \
    --threads "$threads" --output-type u \
    | bcftools annotate \
    --annotations ~/Projeto_Mtb/NGS_helper_files/lineagesnps_annot.tab.gz \
    --header-lines ~/Projeto_Mtb/NGS_helper_files/lineagesnps_annot.header \
    --columns CHROM,POS,REF,ALT,Lineage_tag \
    --threads "$threads" --output-type u \
    | bcftools annotate \
    --annotations ~/Projeto_Mtb/NGS_helper_files/iedbepitopes_annot.tab.gz \
    --header-lines ~/Projeto_Mtb/NGS_helper_files/iedbepitopes_annot.header \
    --columns CHROM,POS,REF,ALT,IEDB_tag \
    --merge-logic IEDB_tag:unique \
    --threads "$threads" --output-type v \
     bcftools annotate --set-id +'%CHROM:%POS' \
     bgzip > "$output_dir/${output_prefix}_annotated.vcf.gz"
    tabix -p vcf "$output dir/${output prefix} annotated.vcf.gz"
```

Variant Calling – First Results

Simple Variant Calling

Total number of variants listed: 1571

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	DRR130093.bam
MTB_anc	39158	•	С	G	225.007		DP=103;VDB=0.0672406;SGB=- 0.693147;MQSB=1;MQ0F=0;AF1=1;AC 1=1;DP4=0,0,55,26;MQ=60;FQ=-999	GT:PL	05:15,0

Version with filter and annotations

Total number of variants listed: 1645

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	DRR130093.bam
MTB_anc	39158	MTB_anc: 39158	С	G	225	·	DP=105;ADF=0,56;ADR=0,29;AD=0,85; SCR=19;VDB=0.0479958;SGB=- 0.693147;MQSB=1;MQ0F=0;AC=1;AN=1 ;DP4=0,0,56,29;MQ=60; Mappability=1; Lineage_tag=!lineage,2,tbprofiler		1:255,0:85:0:0,56:0, 29:0, 85:19

Future work

Pipeline Optimization

Additional **filtering** in pre-processing

Test other parameters in variant calling

Integrate variant calls from **different tools** to increase coverage

Filtering and selection of variants

Task 2: Correlation between the variants and the disease severity

Random Forests

Logistic Regression

Universidade do Minho Escola de Engenharia

Identification of *Mycobacterium tuberculosis*Genetic Determinants of Disease Severity

Rita Nóbrega Amaral Martins

PG46733

Work supervised by Dr. Nuno Ósório and Dr. Tiago Beites

Project Presentation

Master's in Bioinformatics, University of Minho

29th May 2024