Assignment 1

Claim 1. textitIf b > 2, then a solution to (1) exists.

Proof. Let b > 2 and x = 1. Then

$$|x+1| + 2|x-1| = 1 + 2(0) = 1 < 2 < b$$

Therefore for all b > 2, then x = 1 is a solution to (1).

Claim 2. If $b \le 2$, then a solution to (1) does not exist.

Proof. Let $b \leq 2$ and $x \in \mathbb{R}$.

Case 1: Let $x \leq -1$. Then

$$|x+1| \ge 0 \qquad \text{and} \qquad |x-1| \ge 2$$

SO

$$|x+1| + 2|x-1| \ge 0 + 2(2) = 4 > 2 \ge b$$

Case 2: Let $-1 \le x < 1$. Then

$$|x+1| = x+1$$
 and $|x-1| = 1-x$

so

$$|x+1|+2|x-1| = x+1+2-2x = 3-x \ge 2 \ge b$$

Case 3: Let $x \ge 1$. Then

$$|x+1| \ge 2 \qquad \text{and} \qquad |x-1| \ge 0$$

SO

$$|x+1| + 2|x-1| = 2 + 2(0) = 2 \ge b$$

Therefore (1) is not true for all $b \leq 2$ for all $x \in \mathbb{R}$, meaning that (1) is false if and only if $b \leq 2$. \square