Examen de Data Mining - Deuxième session

Durée : 2 heures. Documents et calculatrices sont interdits.

Notations. On rappelle que le produit scalaire entre deux vecteurs de \mathbb{R}^d est $\langle x|y\rangle=x^Ty=y^Tx=\sum_{i=1}^d x_iy_i$, où x^T désigne la transposée du vecteur $x\in\mathbb{R}^d$. La norme au carré est $||x||^2=\langle x|x\rangle$.

Pour toute partie S de \mathbb{R} on rappelle que $x \mapsto \mathbb{1}_{S}(x)$ est la fonction réelle qui vaut 1 si $x \in S$, 0 sinon. On rappelle que $x \mapsto \operatorname{sgn}(x)$ est la fonction réelle qui vaut 1 si $x \geq 0$, -1 si x < 0.

Questions de cours. (3 points)

- 1. Quels sont les différents types de données qui peuvent composer une base de données ?
- 2. Qu'est-ce que l'algorithme K-means ? Dans quels cas et pour quel type de données peut-on l'utiliser ?

Exercice 1. (8 points) On considère un problème de classification binaire avec $\mathcal{Y} = \{0, 1\}$, pour lequel on cherche à construire un classifieur $f : \mathcal{X} \to \mathcal{Y}$.

Pour les questions 1 à 3, on pose $\mathcal{X} = [0, 1]$ et on se donne la base d'apprentissage

$$(X_1 = 0.1, Y_1 = 0)$$
 $(X_2 = 0.3, Y_2 = 1)$ $(X_3 = 0.6, Y_3 = 0)$ $(X_4 = 0.7, Y_4 = 1)$ $(X_5 = 0.8, Y_5 = 1)$

- 1. Expliquez comment le classifieur des k-plus proches voisins est défini.
- 2. Représentez la base d'apprentissage ci-dessus et calculez le classifieur des 3-plus proches voisins.
- 3. Que vaut le classifieur des 5-plus proches voisins?

Dans toute la suite, on pose $\mathcal{X} = [0, 5] \times [0, 5]$ et on se donne la base d'apprentissage suivante, où chaque ligne correspond à une observation $X_i \in \mathbb{R}^2$ avec $X_i = (X_i^1, X_i^2)$.

On cherchera à appliquer l'algorithme CART.

	X^1	X^2	Y
X_1	1	4	1
X_2	5	1	0
X_3	4	5	0
X_4	2	1	1
X_5	4	2	1
X_6	3	4	0

- 4. Représentez graphiquement ce jeu de données étiqueté. Combien y-a-t-il de séparations possible sur chaque coordonnée?
- 5. Proposez un critère d'impureté que peut utiliser l'algorithme CART. Evaluez chaque séparation possible pour ce critère, et en déduire la première séparation effectuée par l'algorithme.
- 6. Donnez l'arbre de décision complet retourné par l'algorithme, ce qui vous définit un classifieur.
- 7. Quelle est la valeur prédite par votre classifieur pour le nouveau point X = (3, 1)?
- 8. Pour des jeux de données plus grands, utilise-t-on l'arbre complet comme classifieur?

Exercice 2. (5 points) On considère le modèle génératif suivant sur $\mathbb{R}^2 \times \{0,1\}$, défini par

$$\mathbb{P}(Y = 1) = p$$
, et $\mathbb{P}(Y = 0) = 1 - p$

et par les lois conditionnelles de X sachant (Y = 1) et sachant (Y = 0) :

$$X|(Y=1) \sim \mathcal{N}\left(\mu_1, \sigma_1^2 \mathbf{I}_2\right)$$
 et $X|(Y=0) \sim \mathcal{N}\left(\mu_0, \sigma_0^2 \mathbf{I}_2\right)$

où $p \in]0,1[$, σ_0 et σ_1 sont des réels positifs et μ_0 et μ_1 sont deux vecteurs de \mathbb{R}^2 . I $_2$ désigne la matrice identité de taille 2×2 . On rappelle que $\mathcal{N}\left(\mu,\sigma^2I_2\right)$ admet pour densité par rapport à la mesure de Lebesgue de \mathbb{R}^2

$$f(x) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{1}{2\sigma^2}||x - \mu||^2\right).$$

- 1. Calculez le classifieur de Bayes $f^*: \mathbb{R}^2 \to \{0,1\}$ sous ce modèle génératif.
- 2. Calculez la valeur de $f^*(\mu_0)$. Le classifieur de Bayes peut-il prédire la classe 1 en $x = \mu_0$?
- 3. Quelle est la forme de la frontière de décision?
- 4. Donnez d'autres exemples de fontières de décision qui peuvent s'obtenir avec d'autres méthodes de classification supervisée que vous connaissez.

Exercice 3. (4 points) On se donne $\mathcal{D}_n = (X_i, Y_i)_{1 \le i \le n}$ et $\mathcal{D}'_m = (X'_i, Y'_i)_{1 \le i \le m}$ deux bases de données étiquetées dont les éléments $X_i, X'_i \in \mathbb{R}^d$ et $Y_i, Y'_i \in \{-1, 1\}$.

A partir de la base de données \mathcal{D}_n , on calcule le classifieur $\hat{f}_n^C(x) = \operatorname{sgn}\left(x^T\hat{\beta}_n + \hat{\beta}_0\right)$ qui dépend d'un paramètre C > 0 tel que

$$(\hat{\beta}_n, \hat{\beta}_0) \in \underset{\beta, \beta_0}{\operatorname{argmin}} \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^n \xi_i,$$

où la minimisation s'effectue sous les contraintes $\xi_i \ge 0$ et $Y_i(X_i^T \beta + \beta_0) \ge 1 - \xi_i$ pour i = 1, ..., n.

1. Comment s'appelle ce classifieur?

On calcule ce classifieur pour plusieurs valeurs de C et on l'évalue sur la base \mathcal{D}_n et sur la base \mathcal{D}'_m en calculant la fraction d'erreurs de prédiction sur chaque base de données, appelée $E(\mathcal{D}_n)$ pour la base \mathcal{D}_n et $E(\mathcal{D}'_m)$ pour la base \mathcal{D}'_m .

- 2. Parmi les graphiques des figures 1 et 2, lequel vous paraît correspondre à ce qui peut se passer? Justifiez votre réponse.
- 3. Sur le graphique choisi, pour quelles valeurs de C a-t-on un fort biais et pour quelles valeurs de C a-t-on une forte variance? Justifiez votre réponse.
- 4. Quelle est selon vous la "meilleure" valeur de C? En appelant \hat{C} cette valeur, comment évaluer la performance du classifieur $\hat{f}^{\hat{C}}$?

FIGURE 1 – Erreur sur \mathcal{D}_n (trait plein) et \mathcal{D}_m' (pointillés)

FIGURE 2 – Erreur sur \mathcal{D}_n (trait plein) et \mathcal{D}'_m (pointillés)