S&DS 173 Ydata: Analysis of Baseball Data

Ethan Meyers

Overview

Lab 0 discussion

Discussion of preface and prologue to Astroball

Watch an inning of the 2014 All-star game

Review of structured data and classic baseball statistics

Python!

Lab 0: questions?

How did it go?

Was everyone able to complete it?

Astroball discussion of Preface and prologue

Interesting quotes from the preface and prologue?

Preface and prologue of Astroball?

Season	League	Division	Finish[2]	Wins[2]	Losses[2]	Win% ^[2]	GB ^[2]
2010	NL	Central	4th	76	86	0.469	15
<u>2011</u>	NL	Central	6th	56	106	0.346	37½
<u>2012</u>	NL	Central	6th	55	107	0.34	42
<u>2013</u>	AL	<u>West</u>	5th	51	111	0.315	45
2014	AL	West	4th	70	92	0.432	28
<u>2015</u>	AL	West	2nd ¤	86	76	0.531	2

Preface and prologue of Astroball?

Astrodome

To learn the basics of baseball let's watch and keep score for the 2014 all-star game

The lineup

	National		American				
Order	Player	Position	Order	Player	Position		
1	Andrew McCutchen	<u>CF</u>	1	<u>Derek Jeter</u>	<u>SS</u>		
2	Yasiel Puig	<u>RF</u>	2	Mike Trout	<u>LF</u>		
3	Troy Tulowitzki	<u>SS</u>	3	Robinson Canó	<u>2B</u>		
4	Paul Goldschmidt	<u>1B</u>	4	Miguel Cabrera	<u>1B</u>		
5	Giancarlo Stanton	<u>DH</u>	5	José Bautista	<u>RF</u>		
6	Aramis Ramírez	<u>3B</u>	6	Nelson Cruz	<u>DH</u>		
7	Chase Utley	<u>2B</u>	7	Adam Jones	<u>CF</u>		
8	Jonathan Lucroy	<u>C</u>	8	Josh Donaldson	<u>3B</u>		
9	<u>Carlos Gómez</u>	<u>LF</u>	9	<u>Salvador Pérez</u>	<u>C</u>		
	Adam Wainwright	<u>P</u>		<u>Félix Hernández</u>	<u>P</u>		

Score card

#	Player	Pos	1	2
	Henry		18	
	Clarke		2	B 000
	Navi		***	uP"
	Terra		000	- "Floring
	Gabe		000 K	
	Jake		000	90 BE

2014 All-star game

	National			American	
Order	Player	Position	Order	Player	Position
1	Andrew McCutchen	<u>CF</u>	1	<u>Derek Jeter</u>	<u>SS</u>
2	Yasiel Puig	<u>RF</u>	2	Mike Trout	<u>LF</u>
3	<u>Troy Tulowitzki</u>	<u>SS</u>	3	Robinson Canó	<u>2B</u>
4	Paul Goldschmidt	<u>1B</u>	4	Miguel Cabrera	<u>1B</u>
5	Giancarlo Stanton	DH	5	José Bautista	<u>RF</u>
6	Aramis Ramírez	<u>3B</u>	6	Nelson Cruz	<u>DH</u>
7	Chase Utley	<u>2B</u>	7	<u>Adam Jones</u>	<u>CF</u>
8	Jonathan Lucroy	<u>C</u>	8	Josh Donaldson	<u>3B</u>
9	<u>Carlos Gómez</u>	<u>LF</u>	9	Salvador Pérez	<u>C</u>
	Adam Wainwright	<u>P</u>		<u>Félix Hernández</u>	<u>P</u>

Retrosheet play-by-play data

Let's take a quick dive into the retrosheet play-by-play data in Python

Please download Lab 1

We will take a quick look at the retrosheet data and you will do some exercises on it for homework

Retrosheet play-by-play data

INN_CT	BAT_HOME_ID	OUTS_CT	RESP_BAT_ID	PITCH_SEQ_TX	EVENT_TX
1	0	0	mccua001	BX	S6/G+
1	0	0	puigy001	BB	WP.1-2
1	0	0	puigy001	BB.SFS	K
1	0	1	tulot001	C*BS>S	K+SB3
1	0	2	goldp001	BCX	53/G
1	1	0	jeted001	BX	D9/L+
1	1	0	troum001	FBBS*BX	T8/L+.2 - H
1	1	0	canor001	SFBS	K
1	1	1	cabrm001	FX	HR/7/L.3-H

Interpreting each pitch event: PITCH_SEQ_TX and EVENT_TX

https://www.retrosheet.org/eventfile.htm#5

Common baseball statistics

Let's look at some baseball cards!

Let's look at some baseball cards!

First Name	Last Name	First Name	Last Name
Austin	O'Toole	Al	Newman
Ben	Scher	Curt	Wilkerson
Gaby	Branin	Dion	James
Harry	Hegeman	Gary	Gaetti
Hassan	Siddiq	Jim	Presley
Jack	Klinger	John	Russell
Jonathan	Boulaphinh	Kirt	Manwaring
Krish	Maypole	Oddibe	McDowell
Matt	Leone	Rick	Cerone
Max	Krupnick	Sid	Bream
Raphael	Berz	Steve	Lyons
Rohan	Handa	Terry	Kennedy
Sorenie	Gudissa	Tim	Jones
Teddy	Hague	Tim	Teufel

http://bit.ly/baseball cards

https://github.com/emeyers/SDS173/tree/main/images/baseball_cards

statistics and structured data

statistics: a numerical summary of data (technically a summary of a data sample)

Statistics: is the mathematics of collecting, organizing and interpreting data

Describing and summarizing data

statistics that are used to summarize a data set (sample of data) are called **descriptive statistics**

Examples:

- Maximum value in the data set
- Minimum value in the data set
- Mean value of the data set

Common baseball descriptive statistics

G = games

Number of games a player participated in (out of 162 games in a season)

AB = at bats

 Number of times a batter was hitting and either got a hit or got out (does not include walks or reaching base on an error)

R = runs

Number of runs the player scored

H = hit

 Number of times a player hit the ball on got on base or hit a home run (sum of 1B, 2B, 3B, HR)

Common baseball statistics

BB = base on balls (walks)

Number of times a player got on base do to the pitcher throwing 4 balls

RBI = Runs batted in

How many runs scored as a result of a player getting a hit

SB = stolen bases

Number of times a runner advanced by 'stealing a base'

Common derived baseball statistics

AVG= batting average

• Hits/(At bats) = H/AB = (1B + 2B + 3B + HR)/AB

SLG = slugging percentage

• (1 * 1B + 2 * 2B + 3 * 3B + 4 * 4B) /AB

Lahman Database – Individual player yearly batting statistics

As we saw in Lab 0, the Batting.csv file in the Lahman database contains batting information about all baseball players for each season from 1871 to 2018.

You will extract information the particular baseball player on your card from this dataset

But first let's talk about some general terms for structured data

Structured data

Variables

Data taken from the Lahman Batting dataset

Structured data

Variables

Structured data

Variables

Categorical and Quantitative Variables

Categorical Variable

Quantitative Variable

Cases

	playerID	yearID	stint	teamID	lgID	G	G_batting	AB	R	Н
1	aardsda01	2004	1	SFN	NL	11	11	0	0	0
2	aardsda01	2006	1	CHN	NL	45	43	2	0	0
3	aardsda01	2007	1	CHA	AL	25	2	0	0	0
4	aardsda01	2008	1	BOS	AL	47	5	1	0	0
5	aardsda01	2009	1	SEA	AL	73	3	0	0	0
6	aardsda01	2010	1	SEA	AL	53	4	0	0	0
7	aardsda01	2012	1	NYA	AL	1	NA	NA	NA	NA
8	aaronha01	1954	1	ML1	NL	122	122	468	58	13

Explanatory and Response Variables

Sometimes we use one variable (the explanatory variable) to understand/predict another variable (the response variable)

		\bigcap							,	
	playerID	yearID	stint	teamID	IgID	G	G_batting	AB	R	Н
1	aardsda01	2004	1	SFN	NL	11	11	0	0	0
2	aardsda01	2006	1	CHN	NL	45	43	2	0	0
3	aardsda01	2007	1	CHA	AL	25	2	0	0	0
4	aardsda0:	2008	1	BOS	AL	47	5	1	0	0
5	aardsda01	2009	1	SEA	AL	73	3	0	0	0
6	aardsda01	2010	1	SEA	AL	53	4	0	0	0
7	aardsda01	2012	1	NYA	AL	1	NA	NA	NA	NA
8	aaronha01	1954	1	ML1	NL	122	122	468	58	131

Another Dataset – 2014 Team statistics

Variables

Tm X.Bat BatAge R.G G PA AB R Н 1 ARI 52 27.6 3.80 6089 5552 615 1379 162 3.54 ATL. 26.8 162 6064 5468 573 1316 4.35 6130 5596 BAL. 28.3 162 705 1434 39 4 BOS 50 29.2 3.91 162 6226 5551 634 1355 5 CHC 48 26.8 3.79 162 6102 5508 614 1315 CHW 27.7 4.07 5543 36 162 6077 660 1400 CIN 28.9 3.67 5978 5395 45 162 595 1282 CLE 43 28.5 4.13 162 6222 5575 669 1411

Finding data on the player on our card

To find information on the player on our card we need to:

- 1. Find our player's playerID using the Player.csv dataset
- 2. Use our player's playerID to filter out only the rows in the Batting.csv file that contain information about our player

You will do these steps in the second problem of lab 1

What are "good" statistics?

How could we determine what a "good" value for a statistic is?

• i.e., how many home runs would need to be hit to determine if a player is "good at hitting home runs"?

One method to determine what a "good" statistic is, would be a value that is say greater than 90% of baseball players

Percentiles

The p^{th} percentile is the value of a quantitative variable which is greater than p percent of the data

Percentiles/quantiles

https://emeyers.shinyapps.io/baseball_stat_percentiles/

What is a good statistic for...?

What are "good" values are for the following statistics:

• (I used the years from 1971 to 2014, min PA = 500)

Home runs (HR)?

• [see lab 1]

On base percentage (OBP)?

• .394

Batting average (BA)

• .313

Strikeouts (SO)

- 47
- Bad is 129 (90th percentile)

Five Number Summary

Five Number Summary = $(min, Q_1, median, Q_3, max)$

 $Q_1 = 25^{th}$ percentile (also called 1st quartile)

 $Q_3 = 75^{th}$ percentile (also called 3^{rd} quartile)

Roughly divides the data into fourths

Range and Interquartile Range

Range = maximum – minimum

Interquartile range (IQR) = $Q_3 - Q_1$

Detecting of outliers

As a rule of thumb, we call a data value an **outlier** if it is:

Smaller than: $Q_1 - 1.5 * IQR$

Larger than: $Q_3 + 1.5 * IQR$

Are there any outlier years in David Ortiz home run numbers?

- 1. Five Number Summary: (23, 28.5, 32, 36, 54)
- 2. Range: 31
- 3. Interquartile range (IQR) = 7.5

Boxplots

A **boxplot** is a graphical display of the 5 number summary and consists of:

- 1. Drawing a box from Q₁ to Q₃
- 2. Dividing the box with a line drawn at the median
- 3. Draw a line from each quartile to the most extreme data value that is not and outlier
 - 4. Draw a dot/asterisk for each outlier data point.

Box plot of David Ortiz home runs

Box plot quiz

What is:

- Q1?
- Q3?
- The median?
- Most extreme values that are not outliers
- Outliers

Who is better?

Miguel Cabrera: HR in 2014 = 25

David Ortiz: HR in 2014 = 35

Comparing players with side-by-side box plots

How would you describe the differences between these two players in terms of HRs? Who is better?

Visualizing the 'shape' of how data is distributed

Boxplots can give us a sense of some key statistics about our data

There are other methods that can give us a better picture of the shape of how all the data is distributed

Stemplot for team HR in 2014

Let's look at the 2014 team data

	Tm ‡	X.Bat ‡	BatAge [‡]	R.G [‡]	G ‡	PA [‡]	AB [‡]	R ‡	H ‡	X2B [‡]	X3B [‡]	HR ‡
1	ARI	52	27.6	3.80	162	6089	5552	615	1379	259	47	118
2	ATL	39	26.8	3.54	162	6064	5468	573	1316	240	22	123
3	BAL	39	28.3	4.35	162	6130	5596	705	1434	264	16	211
4	BOS	50	29.2	3.91	162	6226	5551	634	1355	282	20	123
5	CHC	48	26.8	3.79	162	6102	5508	614	1315	270	31	157
6	CHW	36	27.7	4.07	162	6077	5543	660	1400	279	32	155
												\ /

Sorted number of home runs hit by a team:

95 105 109 111 117 118 122 123 123 125 125 128 131 132 134 136 142 146 147 150 152 155 155 155 156 157 163 177 186 211

Stemplot for team HR in 2014

One way to get a sense of the shape of a distribution is to use a stem plot

```
The decimal point is 1 digit(s) to the right of the
     5
10
     59
11
     178
     233558
13
     1246
     267
14
15
    0255567
16
     3
    7
17
18
19
20
21
```

Histograms

Another related way to get a sense of the shape of a distribution is to use a **histogram**

Histogram of team HR totals

Histogram of HRs for 2013 players with over 300 PA

Observations about the distribution?

Common shapes for Distributions

Try it in Python

Lab 1: section 4!

Reminder: Lab 1 is due on Monday February 15th at 11:30pm

Please turn a pdf in to Gradescope

Data manipulation code

From last class: datascience package

For a full list of Table functions see: http://data8.org/datascience/tables.html

Read in data into a table

tb = Table.read_table('data.csv')

Table methods from last class:

- tb.show(5) # shows the first 5 rows of a Table
- tb.select() # select a subset of columns from a Table
- tb.take() # get a subset of rows from a Table
- tb.sum() # sums the values in a column
- tb.sort() # arrange the rows in a table based on the values in a column

Table object in the datascience package

Additional Table properties

```
tb.num_rows # number of rows in a Table
```

tb.num_columns # number of columns in a Table

Additional Table method to 'filter' data

gets a subset of rows that meet a particular criteria

tb.where('col_name', value)

Arrays

The datascience package has wrapper for numpy

make_array(4, 3, 5) # creates a NumPy array

This is the same as:

- import numpy as np
- my_array2 = np.array([1, 2, 3])

These NumPy arrays have the same values but are not referring to the same object

- np.array_equal(my_array, my_array2) # arrays have the same values
- my_array2 is my_array # they do not refer to the same piece of memory

Comparing the datascience package with Pandas

Creating and viewing Tables/DataFrames

Description	datascience package	Pandas
Read in a csv file	tb = Table.read_table("data.csv")	df = pd.read_csv("data.csv")
Create Table/DataFrame	tb = Table().with_column("name", vals)	pd.DataFame(dict)
Get number of rows	th num rous	df.ch.ano[0]
Get number of rows	tb.num_rows	df.shape[0]
Get number of columns	tb.num_columns	df.shape[1]
		df.head(5)
Show first 5 rows	tb.show(5)	

Selecting and filtering

Description	datascience package	Pandas
Select a single colum	tb.select("col1")	df.col1 also df["col1"]
Select multiple columns	tb.select("col1", "col2")	df[["col1", "col2"]]
Select 20th row	tb.take(20)	df.iloc[[20]]
Filtering rows equal to cond	tb.where("col", cond)	df[df.col == cond]
Sort descending by column	tb.sort("col", descending = True)	df.sort_values("col", ascending = False)

Statistics and visualization

Description	datascience package	Pandas
Get 90th percentile	tb.select("col").percentile(90)	df.col.quantile(.9)
Get min value	np.min(tb.select("col")).values[0][0]	np.min(df.col)
Create boxplot	tb.select("col").boxplot()	plt.boxplot(df.col)
Create histogram	tb.select("col").histogram	plt.hist(df.col, density = False)