Analyzing scale and scheme dependence in NN operators with the SRG

Anthony Tropiano¹, Dick Furnstahl¹, Scott Bogner²

¹Ohio State University, ²Michigan State University

NUCLEI Meeting

June 9, 2020

Motivation

- Explosion of new NN interactions from chiral effective field theory (χ^{EFT}) in the last few years
 - Various schemes!
- Previous SRG studies of operators were limited to phenomenological models or one χ^{EFT} interaction

Motivation

- Explosion of new NN interactions from chiral effective field theory (χ^{EFT}) in the last few years
 - Various schemes!
- Previous SRG studies of operators were limited to phenomenological models or one χ^{EFT} interaction
- Universality: different NN interactions are the same at low resolution where the scale is tuned with SRG transformations
 - Revisit this with new chiral interactions

Motivation

- Explosion of new NN interactions from chiral effective field theory (χ^{EFT}) in the last few years
 - Various schemes!
- Previous SRG studies of operators were limited to phenomenological models or one $\chi^{\rm EFT}$ interaction
- Universality: different NN interactions are the same at low resolution where the scale is tuned with SRG transformations
 - Revisit this with new chiral interactions
- Use SRG to analyze high-energy reactions at low resolution by consistently evolving wave function and corresponding operators

 SRG transformations decouple low- and high-momenta in Hamiltonian

$$H(s) = U(s)H(0)U^{\dagger}(s)$$

where $s = 0 \rightarrow \infty$ and U(s) is unitary

• In practice, solve differential flow equation

$$\frac{dH(s)}{ds} = [\eta(s), H(s)]$$

with SRG generator
$$\eta(s) \equiv \frac{dU(s)}{ds} U^{\dagger}(s) = [G, H(s)]$$

 SRG transformations decouple low- and high-momenta in Hamiltonian

$$H(s) = U(s)H(0)U^{\dagger}(s)$$

where $s = 0 \rightarrow \infty$ and U(s) is unitary

• In practice, solve differential flow equation

$$\frac{dH(s)}{ds} = [\eta(s), H(s)]$$

with SRG generator
$$\eta(s) \equiv \frac{dU(s)}{ds}U^{\dagger}(s) = [G, H(s)]$$

• G gives the scheme and s gives the scale

• $G = H_D(s)$ for banddiagonal decoupling and $G = H_{BD}(s)$ for block-diagonal decoupling scheme

Fig. 1: SRG evolution of $V_{\lambda}(k, k')$ for several values of λ and Λ in the $^{1}P_{1}$ channel. Potentials from P. Reinert et al., Eur. Phys. J. A **54**, 86 (2018) which will be referred to as the RKE potentials.

- $G = H_D(s)$ for banddiagonal decoupling and $G = H_{BD}(s)$ for block-diagonal decoupling scheme
- Parameters $\lambda = s^{-1/4}$ and Λ describe the decoupling scale of the evolved Hamiltonian

0.4

0.3

0.2

0.1

0.0

--0.1

-0.2

-0.3

Fig. 1: SRG evolution of $V_{\lambda}(k, k')$ for several values of λ and Λ in the $^{1}P_{1}$ channel. Potentials from P. Reinert et al., Eur. Phys. J. A **54**, 86 (2018) which will be referred to as the RKE potentials.

SRG evolution of modern chiral potentials

• Variety of NN interactions with different schemes: non-local EMN¹ (500 MeV), semi-local RKE² (450 MeV), and local Gezerlis et al.³ (1 fm) potentials as examples

¹D.R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C **96**, 024004 (2017)

²P. Reinert, H. Krebs, and E. Epelbaum, Eur. Phys. J. A **54**, 86 (2018)

³A. Gezerlis, et al., Phys. Rev. C **90**, 054323 (2014)

Fig. 2: SRG evolution of $V_{\lambda}(k, k')$ for several chiral potentials in the ${}^{3}S_{1}$ channel.

[fm]

1.00

-0.75

-0.50

-0.25

0.00

-0.25

-0.50

SRG evolution of modern chiral potentials

- Change the scale to lower resolution
- Different potentials are approximately the same at low resolution!

[fm]

1.00

0.75

-0.50

0.25

0.00

-0.25

-0.50

Fig. 2: SRG evolution of $V_{\lambda}(k, k')$ for several chiral potentials in the ${}^{3}S_{1}$ channel.

Universality: NN potentials

• Equivalent low-energy phase shifts \Rightarrow equivalent low-momentum matrix elements $V_{\lambda}(k, k')^{1}$

[fm]

1.00

0.75

-0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

¹B. Dainton et al., Phys. Rev. C **89**, 014001 (2014)

- What happens to the wave functions from different NN interactions?
- Look at deuteron wave function in coordinate space as example

Fig. 3: SRG evolution of deuteron wave function in coordinate space for several interactions.

 Natural consequence: the lowenergy states between drastically different potentials also exhibit universality

Fig. 3: SRG evolution of deuteron wave function in coordinate space for several interactions.

- Natural consequence: the lowenergy states between drastically different potentials also exhibit universality
- SRC physics in AV18 is gone (scheme dependence) at low resolution

Fig. 3: SRG evolution of deuteron wave function in coordinate space for several interactions.

- Natural consequence: the lowenergy states between drastically different potentials also exhibit universality
- SRC physics in AV18 is gone (scheme dependence) at low resolution
- All deuteron wave functions become soft and D-state probability goes down
- Observables such as asymptotic
 D-S ratio the same

Fig. 3: SRG evolution of deuteron wave function in coordinate space for several interactions.

Connection to experiments

- In analyzing scattering observables, there is scale and scheme dependence in factorization of structure and reaction
- Analogous problem in any general expectation value $\langle \psi | O | \psi \rangle$

Connection to experiments

- In analyzing scattering observables, there is scale and scheme dependence in factorization of structure and reaction
- Analogous problem: consider a general expectation value $\langle \psi | O | \psi \rangle$
- Tune the scale (e.g. λ) with SRG transformations making a potential with SRC physics like AV18 much softer like a high-order chiral potential

Connection to experiments

- In analyzing scattering observables, there is scale and scheme dependence in factorization of structure and reaction
- Analogous problem: consider a general expectation value $\langle \psi | O | \psi \rangle$
- Tune the scale (e.g. λ) with SRG transformations making a potential with SRC physics like AV18 much softer like a high-order chiral potential
- Can use low-energy structure ψ_{λ} to calculate high-energy reactions by consistently evolving the operator O_{λ}

$$\langle \psi(0)|O(0)|\psi(0)\rangle = \langle \psi(s)|O(s)|\psi(s)\rangle$$

Mismatch of scales leads to incorrect observable

Where does the short-distance physics go?

• Use simple operator $a_q^{\dagger}a_q$ where q is the relative momentum

$$a_q^{\dagger} a_q \sim \delta(k-q) \delta(k'-q)$$

Scheme

[fm⁶]

0.0100

-0.0075

0.0050

0.0025

0.0000

-0.0025

-0.0050

-0.0075

Fig. 4: SRG evolution of $a_q^{\dagger}a_q$ for q=3 fm⁻¹. Transformations done with RKE N⁴LO 450 MeV.

Where does the short-distance physics go?

• Use simple operator $a_q^{\dagger}a_q$ where q is the relative momentum

$$a_q^{\dagger} a_q \sim \delta(k-q)\delta(k'-q)$$

 Induced low-momentum contributions reflecting UV physics of the NN potential

[fm⁶]

0.0100

0.0075

0.0050

0.0025

0.0000

-0.0025

-0.0050

-0.0075

Scheme dependence in evolved $a_q^{\dagger}a_q$

 SRG induced terms in the operator reflects difference in UV physics (scheme dependence from NN interaction)

Fig. 5: Ratios of $a_q^{\dagger}a_q(k,k')$ isolating the diagonal and far off-diagonal matrix elements. Dotted lines indicate the ratio of wave functions $|\psi(q)|^2$.

Scheme dependence in evolved $a_q^{\dagger}a_q$

- SRG induced terms in the operator reflects difference in UV physics (scheme dependence from NN interaction)
- At low-k ratio of $a_q^{\dagger}a_q$ approximately match the ratio of wave functions at high-momentum q

Fig. 5: Ratios of $a_q^{\dagger}a_q(k,k')$ isolating the diagonal and far off-diagonal matrix elements. Dotted lines indicate the ratio of wave functions $|\psi(q)|^2$.

Where does the short-distance physics go?

Consistently evolve the wave functions!

Fig. 6: SRG evolution of $\psi_d^2(k)$.

Fig. 4: SRG evolution of $a_q^{\dagger}a_q$ for q=3 fm⁻¹. Transformations done with RKE N⁴LO 450 MeV.

Where does the short-distance physics go?

Consistently evolve the wave functions!

Fig. 6: SRG evolution of $\psi_d^2(k)$.

[fm⁶]

0.0100

-0.0075

0.0050

0.0025

-0.0000

-0.0025

-0.0050

-0.0075

Fig. 4: SRG evolution of $a_q^{\dagger}a_q$ for q=3 fm⁻¹. Transformations done with RKE N⁴LO 450 MeV.

High-momentum operator at low resolution

- Expectation value $\langle \psi_d | a_q^\dagger a_q | \psi_d \rangle$ is driven to low-momentum
- Note, each panel gives the correct result from unitarity of transformation!

· 10⁻³

-10⁻⁴

- 10⁻⁵

10-6

10-7

10-8

Summary and outlook

- Universality holds in drastically different chiral potentials
 - At low resolution, different interactions are the same
- Universality shows in low-energy states
- Evolved (non-Hamiltonian) operators reflect scheme dependence from different potentials
- Results suggest one can analyze high-energy nuclear reactions with low-energy structure
 - Must match the scale and scheme in reaction and structure components!

Back up slides

Fig. 8: SRG evolution of deuteron wave function in coordinate space for AV18 and two LO chiral models at high momentum-space cutoffs Λ .