Софийски университет "Св. Климент Охридски", Факултет по математика и информатика

Курсов проект

по Разпределени софтуерни архитектури

Задача 13: "Пресмятане на Pi – Chudonovsky"

Изготвил:

Симеон Станимиров Александров, 61916, Софтуерно инженерство, курс 3, група 5

Научен ръководител:

ас. Христо Христов

Дата: 23.06.2018 г. Подпис:.....

Съдържание

- 1. Цел на проекта
- 2. Описание на алгоритъма
- 3. Реализация
- 4. Стартиране на програмата
- 5. Резултати
- 6. Източници

Цел на проекта

Целта на проекта е пресмятането на числото Рі чрез паралелен алгоритъм. Използвайки сходящи редове, е възможно да се пресметне стойността на числото Рі с произволно висока точност. Този проект представлява имплементация на реда на братята Chudonovsky за изчисление на числото Рі, цитиран по-долу:

(3) Chudonovsky, 1987
$$\frac{1}{\pi} = 12 \sum_{n=0}^{\infty} \frac{(-1)^n (6n)! 13591409 + 545140134n}{(3n)! (n!)^3} \frac{(640320^3)^{n+\frac{1}{2}}}{(640320^3)^{n+\frac{1}{2}}}$$

Изискванията към програмата са следните:

- Програмата трябва да използва паралелни процеси (нишки), за да разпредели работата по пресмятането на реда на повече от един процесор;
- Стойностите, които са необходими за изчисление на реда, могат да бъдат подадени като командни параметри и програмата трябва да може да ги разпознава и използва;
- Броят на членовете на реда като команден параметър трябва да има вида "-р 2500";
- Заявка за максималния брой нишки трябва да изглежда по този начин: "-t 32", ако отсъства, процесът по подразбиране е един;
- Програмата трябва да извежда подходящи съобщения на различните етапи от работата си;

- Резултатът от работата си (стойността на π) програмата трябва да записва в изходен файл, който може да е зададен като команден параметър "-o pi.txt", ако липсва, по подразбиране името му е result.txt;
- Програмата трябва да осигури възможност за "тих" режим на работа, при който се извежда само времето, отделено за изчисление на π, отново чрез подходящо избран команден параметър "-q".

Описание и реализация на алгоритъма

Реализацията на алгоритъма и използването на паралелизъм при пресмятането на числото Рі е постигната на езика Python. Следната диаграма представя абстрактен поглед върху изпълнението на програмата:

След обработката на аргументите, списъкът със задачи се разделя в зависимост от броя на нишките по принципа на Дирихле, за да бъдат нишките оптимално натоварени(тоест да не свършва една нишка с изпълнението си много преди друга). Разделянето е илюстрирано по следния начин:

```
>>> l = [1,2,3,4,5,6,7,8,9,10]
>>> threads=3
>>> print [ l[i::threads] for i in xrange(threads) ]
[[1, 4, 7, 10], [2, 5, 8], [3, 6, 9]]
>>> ■
```

По-долу е представена най-важната част от проекта. Инициализира се обект от класа Queue, който ще служи за споделен между нишките контейнер. След това последователно се създават нишките, като всяка от тях приема функция и

аргументи към нея. Всяка една нишка прави изчисленията за част от реда и в края на изпълнението си записва резултатът си в опашката *q*.

```
q = Queue(int(args.t)) # Max size is the number of threads

for i in xrange(1,int(args.t) + 1):
    thread = Process(target=calculate_subset, args=(q, i, divided[i - 1], args.q, ))
    thread.start()
    threads.append(thread)

for thread in threads:
    thread.join()
```

Методите calculate_subsetl(n) и calculate_all(q, thread_id, list_to_calc, quiet_mode пресмятат съответно един елемент от реда и всички елементи от списъка, с който е стартирана нишката.

След приключване на всички нишки, стойностите от опашката *q* се сумират и се достига до стойността на числото Pi. На конзолата се извежда времето за изпълнение, а стойността на числото Pi се запазва в тесктов файл.

Всички библиотеки, които програмата използва са вградени в езика Python и не предполагат предварително инсталиране:

- Argparse за обработка на аргументи подадени от командния ред
- Datetime библиотека за представяне на време в различни формати
- Класа Decimal от decimal модулът представяне на числа с плаваща запетая
- Класовете Process, Queue от multiprocessing модулът предоставят

възможност за паралелизъм

Резултати

Ще покажем резултати от изпълнението на програмата при стойност на броя членове на реда 2000 (-p 2000). Програмата е тествана машината t5600.rmi.yaht.net, която разполага с 32 ядра. Таблицата и графиките по-долу представят визуално сравнение между резултатите на изпълнението на една и съща програма с единствената разлика в подадените параметри - броя на нишките.

За смятането на изчислението и ускорението са използвани следните формулите:

$$S(p) = T(1)/T(p) -$$
за ускорение $E(p) = S(p)/p -$ за ефективност

Получените резултати са представени в табличен и графичен вид.

n threads	T(p) in ms	S(p)	E(p)
	1 1173	62 1	. 1
	2 590	81 1.986459268	0.9932296339
	3 394	59 2.974277098	0.9914256992
	4 296	33 3.960516991	0.9901292478
	5 237	16 4.948642267	0.9897284534
	6 198	5.92408258	0.9873470967
	7 190	52 6.16008818	0.8800125971
	8 179	24 6.547757197	0.8184696496
	9 161	49 7.267446901	0.8074941001
1	0 150	61 7.792444061	0.7792444061
1	1 134	35 8.735541496	0.794140136
1	2 125	98 9.315923162	0.7763269302
1	3 111	26 10.54844508	0.8114188526
1	4 85	68 13.69771242	0.9784080299
1	5 82	01 14.31069382	0.9540462545
1	6 75	34 15.577648	0.9736029997
1	7 76	32 15.37762055	0.9045659144
1	8 76	91 15.25965414	0.8477585634
1	9 75	69 15.50561501	0.8160850005
2	0 72	44 16.20127002	0.8100635008
2	1 71	71 16.36619718	0.779342723
2	2 70	98 16.53451677	0.7515689439
2	3 70	33 16.68733115	0.7255361371
2	4 67	77 17.31769219	0.7215705081
2	5 67	89 17.28708204	0.6914832818
2	6 67	17.3049248	0.6655740308
2	7 64	68 18.14502165	0.6720378387
2	8 64	33 18.2437432	0.6515622571
2	9 63	74 18.41261374	0.6349177153
3	0 61	13 19.19875675	0.6399585583
3	1 57	93 20.25927844	0.653525111
3	2 56	90 20.62601054	0.6445628295

Време за пресмятане на π с 2000 члена

Ускорение при пресмятане на π с 2000 члена

Източници

https://docs.python.org/2/library/multiprocessing.html
https://www.encyclopediaofmath.org/index.php/Dirichlet_box_principle
https://timber.io/blog/multiprocessing-vs-multithreading-in-python-what-you-need-to-know/