

Regresión Lineal Múltiple

Sesión Nº 8

13 octubre 2021

Análisis de datos estadísticos en R

Profesora Valentina Andrade de la Horra **Ayudantes** Dafne Jaime y Nicolás Godoy

Contenidos Sesión 8

Construcción modelo regresión lineal con lm

Modelamiento con srvyr y glm

Predictores categóricos

Transformaciones funcionales

Contenidos Sesión 8

Creación exploratoria

Extraer información

Representación gráfica

Tablas

Gráficos

Modelo de regresión lineal

Modelo de regresión lineal

- Herramienta de análisis poderosa en ciencias sociales
- Permite generalizar relaciones entre variables

Y	X
Explicada	Explicativa
Dependiente	Independiente
Respuesta	Control
Predicha	Predictora

Modelo de regresión lineal

Algunas propiedades básicas y clave

- 1. Y de carácter continuo
- 2. X_i relación lineal con Y (Supuesto N°2 Teorema Gauss Markow)
- 3. Muestreo aleatorio para recolección de datos
- Otros: colinealidad imperfecta, homocedasticidad, esperanza condicional de residuos cero, i.i.d.

RLM en R con lm()

• lm() es del paquete base

```
lm(formula = ,
data = ,
weights = )
```

• Por lo general, crearemos objetos para luego manipularlos

```
modelo1 <- lm(formula = ,
    data = ,
    weights = )</pre>
```

RLM en R con lm()

Modelo sin predictores

```
modelo1 <- lm(y ~ 1,
  data = datos,
  weights = ponderador)</pre>
```

Modelo simple

```
modelo1 <- lm(y ~ x1,
    data = datos,
    weights = ponderador)</pre>
```

RLM en R con lm()

Paso a paso

- 1. Un buen procesamiento de datos
- 2. Identificar variable dependiente e independientes
- 3. Seguir la formula *y* ~ *x*1 + *x*2 + ...*xk*
- 4. No olvidar otros objetos *básicos* para construir modelo: base y pesos muestrales (veremos los problemas asociados a no considerarlos)
- 5. Crear objeto

Modelamiento con glm y svyglm

¿ Y no bastaba con eso?

No, y ya entenderás la razón

RLM en R con glm()

- Muchas veces encontrarás tutoriales donde no se incorporan los pesos muestrales en los modelos
- Como sabemos, eso trae errores de estimación y se pasa por alto uno de los supuestos de Gauss Markow y de la FRP (función de regresión poblacional)

glm() para regresiones lineales

- Un punto antes de revisar la construcción con survey es que podemos construir un modelo lineal (lm()) con un modelo lineal generalizado (glm())
- glm() nos permite construir distintos tipos de modelos según la distribución que siguen las variables aleatorias
- Un ejemplo son las que siguen distribuciones normalesgaussianas (como las lineales que se estiman por OLS) o las binomiales (como las logísticas que se estiman por MV).

glm() para regresiones lineales

• Si luego comparamos con modelo normal lm() notaremos que llegaremos al mismo resultado

¿Y qué tiene que ver todo esto con survey?

¡Ahora verás!

regresiones lineales con

- El paquete survey contiene una función llamada syglmque permite incorporar el diseño de muestreo.
- Los pasos adicionales solo implican:
- 1. Crear objeto de diseño de muestra con as_survey_design
- 2. Crear objeto de modelo incorporando el diseño de la muestra. ¡La función svyglm() es muy parecida a las que ya vimos

regresiones lineales con

¡Notarás que dará el mismo resultado! (en este caso...)

Pero si todos dan el mismo resultado... ¿por qué no solo ocupar lm()?

Transformaciones funcionales

1. Predictores categóricos

- En R los predictores categóricos pueden estar en clase character
 O factor
- Para que la regresión reconozca a estos como predictores categóricos y conserve tanto etiquetas como niveles ocuparemos forcats::as_factor() (es y será un muy buen amigo)

1. Predictores categóricos

- Gracias a este podremos notificar bien *cuál es la categoría de referencia*. De manera adicional con rlvl() podremos re-definir esta categoría.
- Este procedimiento debe ir si o si en su código de procesamiento

2. Modelos log y cuadráticos

- Si queremos transformar una variable a logaritmo, al cuadrado, re-escalarla, hacerla interactuar etc. lo ideal es que creemos esa nueva variable en el procesamiento.
- Ahora bien, en la realidad, vamos a querer ir testeando/explorando
- Una forma "sencilla" es introducir esa transformación al argumento de la formula de lm()

2. Modelos log y cuadráticos


```
# Modelo log-lineal
modelo_log <- lm(log(y) ~ x1 + x2,
              data = datos, weights = fact_cal_esi)
#Modelo log-cuadratico
modelo_log_cuadratico <- lm(log(y) \sim x1 + (x1)^2 + x2,
                  data = datos, weights = fact_cal_esi)
#Modelo log interaccion
modelo_log_interaccion <- lm(log(y) ~ x1 + x2 + x1 * x2,
                             data = datos, weights = fact_cal_
```

Modelamiento exploratorio

- Sabemos que en análisis de datos existen los análisis confirmatorios y exploratorios
- En regresiones también existe esta clase de *approch* que se aplica a partir de método **stepwise** (paso a paso) con dirección "backward" y "forward"
- Los pasos en *R* son sencillos. Primero, construyo una fórmula general y luego defino la dirección del *stepwise*

Modelamiento exploratorio

Obteniendo información sobre mi modelo

Un breve resumen

Función	Objetivo
summary(modelo)	Resumen general
modelo\$coefficients	Extraer elemento del objeto (coeficiente en este caso)
modelo5\$coefficients[2]	Extraer coeficiente N°2 de objeto
modelo5\$coefficients["x1"]	Extraer coeficiente "x1" del modelo
str(summary(modelo1))	Estructura del resultado del modelo
summary(modelo5)\$fstatistic	Estadístico F (podría ser R cuadrado también)

Con sjPlot

broom::augment(modelo) #puedo guardar como objeto

Representación gráfica

Tablas

 Hoy aprenderemos a crear tablas en tab_model (de sjPlot). Ahora bien, el paquete más versátil para presentación de tablas de modelos es texreg (próxima semana)

Gráficos

Forest plot

Gráficos

Marginal effects

```
plot_model(modelo,
           type = "pred")
plot_model(modelo,
           type = "pred",
           terms = "grupo1")
plot_model(modelo5_log,
           type = "pred",
           terms = c("grupo1", "grupo2"))
```

Recursos de la práctica

- Este práctico fue trabajado con datos de Encuesta Suplementaria de Ingresos.
- Manual Metodológico ESI

En sintesis

Construcción modelo regresión lineal con lm

Modelamiento con srvyr y glm

Predictores categóricos

Transformaciones funcionales

Creación exploratoria

Extraer información

Representación gráfica: Tablas y gráficos

¡Y a no olvidar el fluje para el análisis!

Nos permite hacernos amigas/os más rápido del programa

¿Y eso era?

¡Ahora si que si! Nos vemos el próximo lunes

Regresión Lineal Múltiple

Sesión Nº 8

13 octubre 2021

Análisis de datos estadísticos en R

Profesora Valentina Andrade de la Horra **Ayudantes** Dafne Jaime y Nicolás Godoy