第二讲 导数的应用

2.3 函数的单调性凹凸性

一、单调性的判别法

定理 设函数 y = f(x)在[a,b]上连续,在(a,b)内可导.(1) 如果在(a,b)内f'(x) > 0,那末函数 y = f(x) 在[a,b]上单调增加; (2) 如果在(a,b)内f'(x) < 0,那末函数 y = f(x)在[a,b]上单调减少.

当x > 0时,试证 $x > \ln(1+x)$ 成立. 当x > 0时, $f(x) = x - \ln(1+x) > 0 = f(0)$ f(x)在[0,+∞)上单调增加 f'(x) > 0

当
$$x > 0$$
时,试证 $x > \ln(1+x)$ 成立.
证 设 $f(x) = x - \ln(1+x)$,
则 $f'(x) = \frac{x}{1+x} > 0$,
∴ 在 $[0,+\infty)$ 上单调增加; $f(0) = 0$,
∴ 当 $x > 0$ 时, $x - \ln(1+x) > 0$,
即 $x > \ln(1+x)$.

当x > 0时,试证 $x > \ln(1+x)$ 成立.

设
$$f(x) = x - \sin x$$
, $f'(x) = 1 - \cos x \ge 0$, $f(x) > f(0) = 0$, $x > \sin x$ 设 $g(x) = \sin x - x + \frac{x^3}{3!}$, $g'(x) = \cos x - 1 + \frac{x^2}{2}$, $g''(x) = -\sin x + x > 0$ $\therefore g'(x) > g'(0) = 0$ 从而, $g(x) > g(0) = 0$, $\therefore \sin x > x - \frac{x^3}{3!}$

函数的极值及其求法 y = f(x) $0 \mid x_2$ x_6 b a_{x_1} x x_3 x_5 x_4 $\boldsymbol{x_0}$ $\boldsymbol{x_0}$ 0 0 x x

函数极值的求法

定理1(必要条件) 设f(x)在点 x_0 处具有导数,且 在 x_0 处取得极值,那末必定 $f'(x_0) = 0$.

定义 使导数为零的点(即方程 f'(x) = 0 的实根)叫 做函数 f(x) 的驻点.

注意:可导函数 f(x) 的极值点必定是它的驻点, 但函数的驻点却不一定是极值点.

例如, $y = x^3$, $y'|_{x=0} = 0$, 但x = 0不是极值点.

定理2(第一充分条件) 设 x_0 是函数f(x)的临界点, (1) 如果 $x \in (x_0 - \delta, x_0)$,有f'(x) > 0;而 $x \in (x_0, x_0 + \delta)$, 有f'(x) < 0,则f(x)在。处取得极大值. (2) 如果 $x \in (x_0 - \delta, x_0)$,有f'(x) < 0;而 $x \in (x_0, x_0 + \delta)$ 有f'(x) > 0,则f(x)在 x_0 处取得极小值. (3) 如果当 $x \in (x_0 - \delta, x_0)$ 及 $x \in (x_0, x_0 + \delta)$ 时,f'(x)符号相同,则f(x)在x。处无极值. (是极值点情形)

求极值的步骤:

- (1) 求导数 f'(x);
- (2) 求临界点即驻点和不可导点;
- (3) 检查 f'(x) 在临界点左右的正负号,判断极值点;
- (4) 求极值.

x	(-2, -1)	-1	(-1,-1/4)	-1/4	(-1/4,2)
f'(x)	<u></u>	∞	+	0	
f(x)	1	极小	1	极大	\

极大值 $f(-1/4) = (9/4)^2 \sqrt[3]{9/16}$, 极小值f(-1) = 0.

求出函数 $f(x) = x^3 - 3x^2 - 9x + 5$ 的极值.

 $\text{f}'(x) = 3x^2 - 6x - 9 = 3(x+1)(x-3)$ 令 f'(x) = 0, 得驻点 $x_1 = -1, x_2 = 3$. 列表讨论

x	$(-\infty,-1)$	-1	(-1,3)	3	(3,+∞)
f'(x)	+	0	-	0	+
f(x)	↑	极大	1	极小	1

极大值 f(-1) = 10, 极小值 f(3) = -22.

$$f(x) = x^3 - 3x^2 - 9x + 5$$

图形如下

三、曲线凹凸的定义

问题:如何研究曲线的弯曲方向?

图形上任意弧段位 于所张弦的下方

图形上任意弧段位

于所张弦的上方

定义

设f(x)在区间 I上连续,如果对 I上任意两

点 x_1, x_2 ,恒有 $f(\frac{x_1 + x_2}{2}) < \frac{f(x_1) + f(x_2)}{2}$,那末称 f(x)在I上的图形是(向上)凹的(或凹弧); 如果恒有 $f(\frac{x_1 + x_2}{2}) > \frac{f(x_1) + f(x_2)}{2}$,那末称f(x)在I上的图形是(向上)凸的(或凸弧).

下页

返回

曲线凹凸的判定

定理1 如果 f(x) 在 [a,b] 上连续,在 (a,b) 内具有一阶和二阶导数,若在 (a,b) 内 (1) f''(x) > 0,则 f(x) 在 [a,b] 上的图形是凹的;

(2) f''(x) < 0,则 f(x) 在 [a,b] 上的图形是凸的.

定义

设 $f(x) \in c[a,b]$, 在(a,b)内可微,若y = f(x)位于每一点切线的上方,则称 f(x)在[a,b]上是向下凸的(凹的);若y = f(x)位于每一点切线的下方,称f(x)在[a,b]上是向上凹的(凸的)。

四、曲线的拐点及其求法

1、定义

连续曲线上凹凸的分界点称为曲线的拐点.

注意:拐点处的切线必在拐点处穿过曲线.

2、拐点的求法

定理 2 如果 f(x)在 $(x_0 - \delta, x_0 + \delta)$ 内存在二阶导数,则点 $(x_0, f(x_0))$ 是拐点的必要条件是 $f''(x_0) = 0$.

方法1: 设函数f(x)在 x_0 的邻域内二阶可导,且 $f'(x_0)=0$ (1) x_0 两近旁f''(x)变号,点 $(x_0,f(x_0))$ 即为拐点;

(2) x_0 两近旁f''(x)不变号,点 $(x_0, f(x_0))$ 不是拐点.

例 求曲线 $y = 3x^4 - 4x^3 + 1$ 的拐点及凹、凸区间.

解 $D:(-\infty,+\infty)$ $y'=12x^3-12x^2$, $y''=36x(x-\frac{2}{3})$.

 $\Rightarrow y'' = 0, \quad \text{\nota$} \ x_1 = 0, \ x_2 = \frac{2}{3}.$

HHHHHHHHHH

x	$(-\infty,0)$	0	$(0,\frac{2}{3})$	2/3	$(\frac{2}{3},+\infty)$
f''(x)	+	0	-	0	+
f(x)	凹的	拐点 (0,1)	凸的	拐点 (2/3,11/2)	凹的

凹凸区间为
$$(-\infty,0]$$
, $[0,\frac{2}{3}]$, $[\frac{2}{3},+\infty)$.

例 求 $f(x) = (x-1)\sqrt[3]{x}$ 的凹凸区间及其拐点。 解: $f(x) = (x-1)\sqrt[3]{x}$, $x \in (-\infty, +\infty)$, $f'(x) = \sqrt[3]{x} + \frac{1}{3}(x-1)\frac{1}{\sqrt[3]{x^2}}$, $f''(x) = \frac{2(2x+1)}{9\sqrt[3]{x^5}}$, f''(x) = 0, $x = -\frac{1}{2}$, $\exists x = 0$ 时, f'(x)不存在。

00 拐点 拐点 凸的 凹的

 $(-\frac{1}{2}, \frac{3}{4}\sqrt[3]{4})$

f(x)

凹的

