EHB222E QUESTIONS 4th week

A p-n diode is modeled with the exponential model. The diode currents are measured 1.36 mA and 7.20 mA when 0.7 V and 0.75 V applied, respectively. Determine the saturation current I_s and the emission factor n (from nV_T). Suppose that V_T = 25 mV.

Find the values of I and V for the circuits shown. Use ideal diode model (V_d =0) for diodes.

Ans. (a) 5 mA, OV; (b) 0 mA, 5V; (c) 5 mA, OV; (d) 0.5 mA, OV;

Use a modified ideal model for the Zener diode in Figure 1. The model has 0.7 V forward bias and 2 V Zener ($V_Z=2 \text{ V}$) voltage. An input signal, shown in Figure 2, is applied. Sketch V_o , i_{D1} and i_{D2} in time domain. Justify your answer.

Figure 1

Figure 2

$$\frac{o_1+v}{1k} < \frac{-o_1+v}{1k}$$

$$\frac{0-v_0}{1k} = \frac{v_0 - (v_{j+1}v)}{1k}$$

$$\sqrt{V_0 = \frac{V_1 + 2V}{2}} = \frac{V_1^2}{2} + V$$

$$\frac{V_{i+1}V}{2} > -0.9V$$

$$V_{i} > -3.4V$$

a)
$$V_{D2} > -2V$$
 $I_{D2} = 0$ $V_0 < 2V$

$$\frac{V_1 - o_1 + v = 2 \cdot v_0}{2} = v_0$$

In figure, assume modified diode model (V_D =0.7V) for the diodes.

- a) Calculate I_{D1} and V_O for R_1 =10 k Ω , R_2 =5 k Ω .
- b) Calculate I_{D1} and V_O for $R_1=5$ k Ω , $R_2=10$ k Ω .

D1 ON, D2 OFF

(b) $V_{D2} = V_{D1} - V_{EE} = 10.7 \text{V (not valid)}$

D1 OFF, D2 OFF

(b) $V_{D2} = V_{CC} - V_{EE} = 20V$ (not valid)

D1 OFF, D2 ON

(b)
$$V_{CC}$$
- $(R_1 + R_2) I_{D2} - V_{D2} = V_{EE}$ $I_{D2} = (V_{CC} - V_{EE} - V_{D2}) / (R_1 + R_2) = (10 - (-10) - 0.7) / 15k = 12.9 \text{mA} \text{ (valid)}$ $V_x = V_{D1} = -10 \text{V} + 5 \text{k} \ 12.9 \text{mA} + 0.7 = -2.86 \text{V} \text{ (valid)}$

In figure, assume ideal diode model ($V_D=0V$) for the diodes. Calculate all possible output voltages. Input voltage (a,b) values are 15V or 0V.

Α	В	C	D
0 V	0 V	7,5 V	0 V
0 V	15 V	10 V	5 V
15 V	0 V	15 V	0 V
15 V	15 V	15 V	7,5 V

In figure, assume modified ideal diode model (V_D =0.7V) for the diodes. Calculate output voltage.

D1 ON, D2 OFF

(b) $V_{D2} = 10 \text{V-(-V}_{D1}) = 10.7 \text{V (not valid)}$

D1 OFF, D2 OFF

(b) V_{D2} = 10-(-10) = 20V (not valid)

D1 OFF, D2 ON

(b) 10V - 15k $I_{D2} - V_{D2} = -10V$, $I_{D2} = 1.28mA$ (valid) $V_B = -V_{D1} = -10V + 10k$ 1.28mA=2.8V (valid)

All PN diodes shown below have a voltage drop of 0.6V when they are "ON". Calculate output voltage with the given values (V_a =4V, V_b =3V).

$$\frac{L-3.6}{5k} = 0.08 \text{ MA}$$
 $\frac{3v-(-2v)}{5k} = \frac{5v}{5k} = 1.004$

$$V_{X} = 4 - St.0, S4 = 1,3V$$
 $V_{D18} = 1,3V - 3V = -1,7V$
(Valid)