Divisibilité et congruences dans $\mathbb Z$

4.1 Divisibilité dans \mathbb{Z}

4.1.1 Quelques notations

- $\star \mathbb{N}$ est l'ensemble des entiers naturels : $\mathbb{N} = \{0; 1; 2; 3...\}$.
- $\star \mathbb{Z}$ est l'ensemble des entiers relatifs : $\mathbb{Z} = \{\ldots; -3; -2; -1; 0; 1; \ldots\}$.
- $\star \implies$ est la notation mathématique de l'implication.
- $\star \iff$ est la notation mathématique de l'équivalence.
- $\star~\forall$ est le symbole mathématique de « pour tout ».
- $\star [1; n] = \{1; 2; 3; 4...; n\}.$

4.1.2 Diviseurs, multiples

Définition 1.4.

Soient a et b deux entiers relatifs avec $b \neq 0$.

Dire que b divise a (ou que a est un multiple de b) signifie qu'il existe un entier relatif k tel que :

$$a =$$

Remarque.

0 est un multiple de **tout** entier car $0 = n \times 0$ pour tout entier n. En revanche, 0 n'est un diviseur d'aucun nombre!

Exemple 1.4.

21 est un multiple de -7: en effet, $21 = -7 \times (-3)$.

Application 2.4.

- 1. Soit p et q deux entiers relatifs. Montrer que $18p^2 9q$ est divisible par 9.
- 2. Déterminer les entiers naturels n tels que 5 divise n + 11.
- 3. Montrer que, quelque soit l'entier relatif n, 6n+7 n'est jamais divisible par 3.

Propriété 1.4.

Soient a et b deux entiers relatifs avec $b \neq 0$. On a les implications suivantes :

- \bullet Si b divise a alors les multiples de a sont des multiples de b.
- Si b divise a alors les diviseurs de b sont des diviseurs de a.

▶ Note 1.4.

L'ensemble des multiples d'un entier relatif b dans $\mathbb Z$ est noté $b\mathbb Z$ et l'ensemble des diviseurs de b est noté $\mathcal D(b)$

Exemple 2.4.

Les multiples de 6 sont aussi des multiples de 3 donc $6\mathbb{Z} \subset 3\mathbb{Z}$.

ightharpoonup Application 3.4. Déterminer, dans \mathbb{Z} , la liste des diviseurs de 7 et en déduire les entiers relatifs n tels que 4n+1 divise 7.

Propriété 2.4.

Soient a et b deux entiers relatifs avec $b \neq 0$.

$$b|a \iff -b|a \iff b|-a \iff -b|-a.$$

Conséquence : a et -a ont les mêmes diviseurs dans \mathbb{Z} . Les diviseurs de -a étant les opposés des diviseurs positifs de a, on restreindra souvent l'étude à la divisibilité dans \mathbb{N} .

$D\'{e}monstration.$			

Propriété 3.4.

Tout entier n non nul a pour **diviseurs** 1, -1, n et -n et a un nombre fini de diviseurs tous compris entre n et -n.

Remarque.

Un entier non nul a une infinité de multiples.

4.1.3 Divisibilité et transitivité

Propriété 4.4.

Soient a, b et c des entiers relatifs tels que $b \neq 0$ et $c \neq 0$.

Si c divise b et b divise a, alors c divise a.

 $\begin{array}{ll} \textit{D\'{e}monstration}. \text{ Par hypoth\`ese, } c \text{ divise } b \text{ donc il existe un entier relatif } k \text{ tel que } b = \\ \text{De m\'{e}me, } b \text{ divise } a \text{, il existe donc un entier relatif } k' \text{ tel que } a = \\ \text{Ainsi } a = \\ \text{où } kk' \text{ est un entier relatif.} \end{array}$

Donc a est un multiple de c, avec c non nul, autrement dit c divise a.

4.1.4 Divisibilité et combinaison linéaire

Propriété 5.4.

Soient a, b et c des entiers relatifs tels que $c \neq 0$.

Si c est un diviseur commun à a et b, alors c divise ua + vb pour tous entiers relatifs u et v.

Démonstration. Si c est un diviseur commun de a et b alors il existe deux entiers relatifs a' et b' tels que a = a'c et b = b'c.

Par conséquent, pour u et v entiers relatifs quelconques,

$$ua + vb =$$
 $=$
 $=$

οù

est un entier.

Donc ua + vb est multiple de c avec c non nul, par conséquent c divise ua + vb.

Déterminer les entiers relatifs n tels que n+3 divise 2n+8.

4.2 Division euclidienne

Théorème.

Soient a et b deux entiers naturels avec $b \neq 0$.

Il existe un unique couple (q, r) d'entiers naturels tels que :

$$a = bq + r$$
 avec $0 \le r < b$.

On dit que a est le **dividende**, b **le diviseur**, q **le quotient** et r **le reste** de la division euclidienne de a par b.

dividende diviseur quotient reste

Il y a de multiples écritures de a sous la forme bq + r. Prenons par exemple a = 103 et b = 13. On a $103 = 13 \times 7 + 12$ ou $103 = 13 \times 6 + 25$ ou encore $103 = 13 \times 5 + 38$, etc. Mais seule la 1^{re} égalité, où $0 \le r < b$, est la relation de la division euclidienne de a par b.

Propriété 6.4.

Dans la division euclidienne de a par b, il y a b restes possibles :

$$0, 1, 2 \dots, b-1$$
.

Propriété 7.4.

Soient a un entier naturel et b un entier naturel non nul.

b divise a si et seulement si le reste dans la division euclidienne de a par b est nul.

Propriété 8.4.

Soit b un entier naturel supérieur ou égal à 2.

Tout entier relatif s'écrit sous l'une des formes suivantes : bq, bq + 1, bq + 2, \cdots , bq + (b - 1) où q est un entier relatif.

Exemple 3.4.

Tout entier a pour reste 0, 1, 2 ou 3 dans la division euclidienne par 4, donc s'écrit sous la forme 4k, 4k + 1, 4k + 2 ou 4k + 3 avec k entier.

\stackrel{*}{\longrightarrow} Application 6.4. En utilisant la méthode de disjonction des cas, démontrer que $n^2 + 1$, $n \in \mathbb{Z}$, n'est jamais divisible par 3.

4.3 Congruences dans \mathbb{Z}

4.3.1 Propriété et définition

Propriété 9.4.

Soit n un entier naturel non nul.

Deux entiers relatifs a et b ont même reste dans la division euclidienne par n si et seulement si a-b est multiple de n.

 $D\acute{e}monstration$. On écrit les relations de division euclidienne par n:

$$a = nq + r, \ 0 \le r < n \text{ et } b = nq' + r', \ 0 \le r' < n \ .$$

On en déduit que a - b = n(q - q') + r - r' et que -n < r - r' < n.

- Supposons que r = r' alors a b = n(q q') avec q q' entier, donc a b multiple de n.
- Réciproquement, si a-b multiple de n, alors n|a-b et comme n|n(q-q') alors n|a-b-n(q-q') c'est-à-dire n|r-r'. Or -n < r-r' < n, il faut avoir r-r'=0 c'est-à-dire r=r'.

Définition 2.4.

Soit n un entier naturel non nul.

Si a et b ont $m\hat{e}me$ reste dans la division euclidienne par n, on dit que a et b sont congrus modulo n et on écrit : $a \equiv b \pmod{n}$ ou $a \equiv b \pmod{n}$ ou encore $a \equiv b \pmod{n}$, notation qu'on privilégiera.

Exemple 4.4.

Sur la droite numérique, on a repéré en bleu des multiples de 4 et en rouge des nombres ayant tous pour reste 1 dans la division par 4; ils sont tous congrus entre eux.

$$5 \equiv 1 \ [4], \ -7 \equiv 1 \ [4], \ -3 \equiv 5 \ [4].$$

Illustration:

▶ Note 2.4.

 $a \equiv b \ [n] \iff b \equiv a \ [n].$

On dit aussi que a et b sont congrus modulo n.

Propriété 10.4.

Soient a et b deux entiers relatifs et n un entier naturel non nul.

- $a \equiv 0$ [n] si et seulement si a est divisible par n.
- $a \equiv a [n]$.
- r est le reste de la division euclidienne de a par n si et seulement si $a \equiv r$ [n] et $0 \leqslant r < n$.

4.3.2 Congruence et transitivité

Propriété 11.4.

Soient a, b, c des entiers relatifs et n un entier naturel non nul.

Si $a \equiv b \ [n]$ et $b \equiv c \ [n]$ alors $a \equiv c \ [n]$.

Démonstration. Par hypothèse, il existe k et k' entiers relatifs tels que a = b + kn et b = c + k'n...

4.3.3 Compatibilité avec les opérations algébriques

Propriété 12.4.

Soient a, b, c et d quatre entiers relatifs et n un entier naturel non nul.

Si $a \equiv b$ [n] et $c \equiv d$ [n] alors:

- $a + c \equiv b + d [n]$
- $a c \equiv b d [n]$
- $ac \equiv bd [n]$
- $a^p \equiv b^p [n]$ pour tout entier naturel p.

En particulier, si $a \equiv b$ [n], pour tout entier relatif m, on a : $ma \equiv mb$ [n].

La réciproque est fausse! On ne peut pas simplifier une congruence comme une égalité. Par exemple, on a $22 \equiv 18$ (4) mais 11 et 9 ne sont pas congrus modulo 4.

Application 7.4.

- 1. Résoudre dans \mathbb{Z} l'équation $3x \equiv 2$ [5].
- 2. Montrer que pour tout entier naturel n non nul, $2^{6n} 1$ est multiple de 7.
- 3. Déterminer le reste dans la division euclidienne de 11^{2023} par 3.