AURIX™ Application Kit TC297 TFT Getting Started

Prof. Dr.-Ing. Peter Fromm

Description

Summary of board features:

- LCD XGA Display 320 x240mini SD card slot
- Mini SD card slot
- Real-Time Clock with alarm, SRAM and unique Mac ID
- On board microUSB debug/flash connector
- Accustic beeper
- USB to UART bridge
- Ethernet PHY (if Ethernet is supported by device)
- LIN Transceiver
- High speed CAN Transceiver
- 4 Low power status LEDs
- Multi Voltage Safety Micro Processor Supply TLF35584

Description

Connectors:

- Standard power connector
- microUSB connector for ASC0 interface and debug
- RJ45 Ehernet connector (if Ethernet supported by device)
- 10-pin header for DAP (Debug Access Port)
- 16-pin header for JTAG
- 10-pin 2x5 header for LIN
- 10-pin 2x5 header for CAN0
- 2 x 40-pin connectors with I/O signals RM 2.54mm

Hardware – Upper View

Hardware – Lower View

Pinning

	X102			X103	
VC IN	1 2	V_UC (+5V)	VCC IN	1 2	V_UC (+5V)
GND	3 4	GND	GND	3 4	GND
AN21	5 6	AN20	P33.10	5 6	P33.9
AN33	7 8	AN32	P14,8	7 8	P14.7
AN3	9 10	AN2	P14,6	9 10	P10.6
AN8	11 12	ANO	P10.7	11 12	P10.4
P33.5	13 14	P33.4	P02.0	13 14	P021
P33.3	15 16	P33.2	P02.2	15 16	P023
P33.1	17 18	P33.12	P02.4	17 18	P025
P33.8	19 20	P33.6	P02.6	19 20	P027
P23.0	21 22	P23.1	P02.8	21 22	P00.0
P23.2	23 24	P23.3	P00.1	23 24	P00.2
P23.4	25 26	P33.11	P00.3	25 26	P00.4
P22_0	27 28	P22.1	P00.5	27 28	P00.6
P22.2	29 30	P223	P00.7	29 30	P00.8
P15.2	31 32	P15.3	P00.9	31 32	P00.10
P15.4	33 34	P15.5	P00.11	33 34	P00.12
P15.6	35 36	P15.7	AN45	35 36	AN44
P20,9	37 38	P20.10	AN17	37 38	AN16
P14.4	39 40	P14.5	AN25	39 40	AN24

Figure 5-2 IO Connectors TC267, TC277, TC297 - Pinout

UART Pinning – To be verified!!!!!!. Maybe wrong board

Port	ASCLIN	MCU PIN	Board Pin
uartusb	0	TX - P14.0 RX - P14.1	MicroUSB
uart1	1	TX - P20.10 RX - P15.5	TX - X102(38) RX - X102(34)
uart2	1	TX - P02.02 RX - P02.3	TX - X103(15) RX - X103(16)
uart3	1	TX - P33.12 RX - P14.8	TX - X102(18) RX - X103(07)
uart4	2	TX - P02.00 RX - P02.1	TX - X103(13) RX - X103(14)
uart5	2	TX - P33.09 RX - P33.12	TX - X103(6) RX - X102(18)
uart6	3	TX - P00.00 RX - P00.1	TX - X103(22) RX - X103(23)

Tools

You need the following tools

- HighTec Toolchain
- PLS UDE (v4.6 or later)
- DAS Driver Package

which can be installed from tools.eit.h-da.de

For the HighTec Free Entry Toolchain, please go to

http://free-entry-toolchain.hightec-rt.com/

Depending on the type of project you might need additional open source tools

- HTERM http://www.der-hammer.info/terminal/
- Python https://www.python.org/

Getting Started HighTec Toolchain

- Copy the reference project to your computer and import it into your workspace
- Clean the project and try to build it
- Typically, some file locations need to be updated
- In project properties, check the following entries
 - Include path for the C and C++ compiler (Hidden under the General Tab)
 - Linker: Library search path and linker description file
- Always build a ROM configuration!!!

Setting up a project workspace for the PLS Debugger

Several debug interfaces do exist, which require individual configurations

Setting up a project workspace for the PLS Debugger

- PLS provides different preconfigered debug scripts which contain valid settings for the target.
- The following pages show the process for a JTAG connection

Setting up a project workspace for the PLS Debugger (1a)

Make sure to select the correct BOARD and Target Interface

JTAG / DAP

JTAG

DAP

TLF Bug

- It might happen that the Board does not boot because the TLF is not turned off
- In this case, you will see that the red reset LED will flicker a couple of times before the board is dead.

Solution

- Compiler a SMALL program, e.g. the example Serial
- Create a target connection with a PLS configuration which is resetting the TLF by script (check the debug script description for this).
- As soon as the window pops up, that no connection can be established
 - Reset the board
 - Restart the connection (must be done before the TLF times out, i.e. within 1 second)
- Flash a firmware which disables the TLF upon boot.

Setting up a project workspace for the PLS Debugger

- Load your program in the debugger (File → Load Program)
- Select your previously compiled elf file
- Binary to core 0, symbols to all cores

- In the Flash Tool: Program all
- Delete all multicore run configurations (Menu Config)

Using the USB Port

- Install the DAS package
- Connect the USB port to your PC
- Open the devive Manager
- Activate the VCP function
- Reconnect the port

Eigenschaften von Infineon DAS JDS COM

Additional information

- Board User Manual: ApplicationKitManual-TC2X7-V10.pdf
- Aurix HW Manual: tc29xB_um_v1.3.pdf

<u>http://www.infineon.com/</u> → MyInfineon
You need an own Login

Port Configuration

Please add a general description here, explaining the structure and central files

UART – Pinning and Ports

Please provide a table, explaining which pins for which ASCLIN can be used

Provide a brief description of the configuration steps

CAN

GPIO

ADC

etc

