## Methods 3: Multilevel Statistical Modeling and Machine Learning

Week 05: *Explanation and Prediction* October 2, 2024

## The course plan

Week 1: Introduction

Instructor sessions: Setting up R and Python and recollection of the general linear model

Week 2: Multilevel linear regression

Instructor sessions: Modelling subject level effects – and how do they differ from group level effects?

Week 3: Link functions and fitting generalised linear multilevel models Instructor sessions: What to do when the response variable is not continuous?

Week 4: Evaluating Generalised linear mixed models

Instructor sessions: How do we assess how models compare to one another?

Week 5: Explanation and Prediction

Instructor sessions: Code review

Week 6: Mid-way evaluation and Machine Learning Intro

Instructor sessions: Getting Python Running

Week 7: Linear regression revisited (machine learning)

Instructor sessions: How to constrain our models to make them more predictive

Week 8: Logistic regression revisited (machine learning)

Instructor sessions: Categorizing responses based on informed guesses

Week 9: Dimensionality Reduction, Principled Component Analysis (PCA)

Instructor sessions: What to do with very rich data?

Week 10: Outlook, unsupervised classification and neural networks

Instructor sessions: Data with no labels and networks

Week 11: Organising and preprocessing messy data

Instructor sessions: Code review

Week 12: Final evaluation and wrap-up of course

Instructor sessions: Ask anything!

## Recap

- Our ways of evaluating models using an explanatory framework are limited when
  - we have no good way of estimating effective parameters
  - we have high degrees of collinearity
  - we have small sample sizes
    - the latter two can lead to unstable models
- Regularisation can improve the stability of a model
  - which comes at the cost of adding bias to the model

### Learning goals and outline

Explanation and prediction

- 1) Understanding how error can be decomposed into bias and variance
- Understanding when penalised regression may be helpful
- Understanding how models can be evaluated by out-of-sample testing



**Fig. 2.** An estimator's predictions can deviate from the desired outcome (or true scores) in two ways. First, the predictions may display a systematic tendency (or *bias*) to deviate from the central tendency of the true scores (compare right panels with left panels). Second, the predictions may show a high degree of *variance*, or imprecision (compare bottom panels with top panels).



FIGURE 3.7. Accuracy versus precision. A schematic illustration of the differences between accuracy and precision of source localization. After left median-nerve stimulation, activations is expected in the right-hemisphere hand region of the primary somatosensory cortex. The foot area is shown at the top of the head. See text for further explanation.

Yarkoni T, Westfall J (2017) Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspect Psychol Sci 12:1100–1122. https://doi.org/10.1177/1745691617693393



**Fig. 3.** Schematic illustration of the bias-variance decomposition. (Left) Under the classical error model, prediction error is defined as the sum of squared differences between true scores and observed scores (black lines). (Right) The bias-variance decomposition partitions the total sum of squared errors into two separate components: a bias term that captures a model's systematic tendency to deviate from the true scores in a predictable way (black line) and a variance term that represents the deviations of the individual observations from the model's expected prediction (gray lines).

## Bias-variance decomposition

$$MSE = E[(f(x) - \hat{f}(x)^2)] = bias(\hat{f}(x))^2 + var(\hat{f}(x)) + \sigma^2$$

$$bias(\hat{f}(x)) = E[\hat{f}(x)] - f(x)$$

**MSE**: mean squared error

*E*[] : expected value (often the mean)

f(x): true underlying function

 $\hat{f}(x)$ : estimated underlying function

$$MSE = E[(f(x) - \hat{f}(x)^2)] = bias(\hat{f}(x))^2 + var(\hat{f}(x)) + \sigma^2$$

```
bias(\hat{f}(x)) = E[\hat{f}(x)] - f(x)
```

```
simulate.bias.and.var <- function(formula, fx, x0, x,range, n,sims, sigma)
    n.obs <- length(x.range)</pre>
    predictions <- matrix(data=NA, nrow=n.obs, ncol=n.sims)</pre>
    for(n.sim in 1:n.sims)
        fx.noise <- fx(x.range) + rnorm(n=n.obs, sd=sigma)</pre>
        data <- data.frame(x=x.range, y=fx.noise)</pre>
        model <- lm(formula, data=data)</pre>
        fx.hat <- fitted(model)</pre>
        predictions[, n.sim] <- fx.hat</pre>
    x.index <- which(x.range == x0)
    eps <- rnorm(n.sims, sd=sigma)
    MSE.estimated <- mean((predictions[x.index, ] - fx(x.range)[x.index] +
                                 eps)^2)
    bias <- mean(predictions[x.index, ]) - fx(x.range)[x.index]</pre>
    variance <- var(predictions[x.index, ])</pre>
    irreducible.error <- var(eps)</pre>
    MSF.theoretical <- bias^2 + variance + irreducible.error
    plot(y ~ x, data=data, main='Simulated data (Final draw)')
    lines(x.range, predict(model, newdata=data.frame(x=x.range)))
    print('Difference between estimated and theoretical MSE')
    print(abs(MSE.estimated - MSE.theoretical))
    return(c(bias^2, variance, irreducible.error))
```

```
formulas <- c(
                V ~ X,
                y \sim I(x^2) + x
                y \sim I(x^3) + I(x^2) + x
                v \sim I(x^4) + I(x^3) + I(x^2) + x
                y \sim I(x^5) + I(x^4) + I(x^3) + I(x^2) + x
for(formula in formulas)
    error <- simulate.bias.and.var(formula=formula, fx=function(x) x^2, x0=3,
                                    x.range=seg(0, 6, 0.1),
                                     n.sims=1000, sigma=5)
    errors <- rbind(errors, error)
```

### y ~ x



## $y \sim \chi^2 + \chi$



## $y \sim \chi^3 + \chi^2 + \chi$



## $y \sim x^4 + x^3 + x^2 + x$



## $y \sim x^5 + x^4 + x^3 + x^2 + x$



$$x_0 = 3$$

```
## bias.squared variance irreducible.error y \sim \chi ## 1 9.708566e+00 0.4044735 24.52602 y \sim \chi^2 ... ## 2 3.096235e-05 0.9119171 25.09829 y \sim \chi^3 ... ## 3 1.852917e-03 0.9680085 23.02820 y \sim \chi^4 ... ## 4 3.756766e-03 1.3596791 25.08635 y \sim \chi^5 ... ## 5 1.799701e-04 1.5190037 25.56529
```

#### Models evaluated at x0=3



#### Models evaluated at x0= 3



Discussion points: What happens to variance when  $x_0$  is increased? (say to 6) What happens to variance when  $x_0$  is decreased? (say to 1)

#### Models evaluated at x0= 6



#### Models evaluated at x0=1



$$x_0 = 1$$

$$x_0 = 3$$

$$x_0 = 6$$

|   | bias.squared | variance  | bias.squared | variance  | bias.squared | variance  |
|---|--------------|-----------|--------------|-----------|--------------|-----------|
| 1 | 0.7620209937 | 0.8835371 | 9.708566e+00 | 0.4044735 | 34.821206760 | 1.565046  |
| 2 | 0.0017383448 | 0.9885182 | 3.096235e-05 | 0.9119171 | 0.012470904  | 3.474977  |
| 3 | 0.0001546774 | 1.2368800 | 1.852917e-03 | 0.9680085 | 0.018714117  | 6.082202  |
| 4 | 0.0007538773 | 1.8933452 | 3.756766e-03 | 1.3596791 | 0.002293859  | 8.414034  |
| 5 | 0.0078616986 | 2.2698603 | 1.799701e-04 | 1.5190037 | 0.019602168  | 10.724150 |
|   |              |           |              |           |              |           |

# Simulations for polynomials of degree 1, 2 and 5 at $x_0 = 3$





# OUT OF SAMPLE TESTING as a way of evaluating models

# Using mean squared error as a measure of predictive power

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

```
predict.out.of.sample <- function(x, fx, formula, sigma, n.sims)</pre>
    n.obs <- length(x)
    MSE.trains <- numeric(n.sims)</pre>
    MSE.tests <- numeric(n.sims)</pre>
    for(n.sim in 1:n.sims)
        fx.train <- fx(x) + rnorm(n.obs, sd=sigma)
        fx.test <- fx(x) + rnorm(n.obs, sd=sigma)
        data.train <- data.frame(x=x, y=fx.train)</pre>
        model <- lm(formula, data=data.train)</pre>
        fx.hat.train <- fitted(model)</pre>
        MSE.trains[n.sim] <- 1/n.obs * sum((fx.train - fx.hat.train)^2)
        MSE.tests[n.sim] <- 1/n.obs * sum((fx.test - fx.hat.train)^2)
    print(formula)
    print(paste('MSE train:', round(mean(MSE.trains), 2)))
    print(paste('MSE test:', round(mean(MSE.tests), 2)))
    return(c(mean(MSE.trains), mean(MSE.tests)))
```

```
formulas <- c(
                 V \sim X
                 y \sim I(x^2) + x
                 y \sim I(x^3) + I(x^2) + x
                 v \sim I(x^4) + I(x^3) + I(x^2) + x
                 y \sim I(x^5) + I(x^4) + I(x^3) + I(x^2) + x
n.formulas <- length(formulas)</pre>
MSEs <- matrix(data=NA, nrow=2, ncol=n.formulas)
for(formula.index in 1:n.formulas)
    formula <- formulas[[formula.index]]</pre>
    MSEs[, formula.index] <- predict.out.of.sample(x=seq(0, 6, 1),
                                                       fx=function(x) x^2.
                                  formula=formula, sigma=2, n.sims=100)
```

#### Out of sample testing

$$\sigma$$
=2 n.obs=7



$$MSE = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

$$\sigma$$
=5 n.obs=61

x^2

Out of sample testing

x^3

1:n.formulas

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

x^1

2

0

MSE.train

MSE.test

x^5

x^4

#### Out of sample testing

$$\sigma$$
=20 n.obs=61



$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

## Interim summary

So if greater variance is detrimental to prediction, we may be able improve prediction by introducing bias (and thereby reducing variance)

## Penalised regression

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 (minimise to obtain least squares solution)$$

lasso regression: RSS+
$$\lambda \sum_{j=1}^{p} |\beta_j|$$
 (minimise this sum)

## ridge regression: RSS+ $\lambda \sum_{j=1}^{p} (\beta_j^2)$ (minimise this sum)

*n*:number of observations

*p*:number of predictor variables

 $\lambda$ : a constant

#### **Group discussion**

In each case: what happens when?

- 1.  $\lambda$  increases?
- 2.  $\lambda$  decreases?
- 3.  $\lambda$  is 0?
- 4.  $\lambda$  goes towards infinity?

## Least squares

$$J(w) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$



p. 113; Raschka S (2015) Python Machine Learning. Packt Publishing Ltd

L2 regularization, ridge

Why is the *budget* round?

Compare with a circle centred at (0,0)

$$x^{2}+y^{2}=r^{2}$$
 $w_{1}^{2}+w_{2}^{2}=r^{2}$ 

 $||w||_2 = \sqrt{(w_1^2 + w_2^2)}$ 

(p. 114: Raschka, 2015)

$$\begin{array}{c} \textbf{Budget} \\ \lambda ||\mathbf{w}||_2^2 \\ \\ \textbf{Minimize cost} \\ \\ \textbf{Minimize cost} + \textbf{penalty} \\ \end{array}$$

$$J(w)_{Ridge} = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2} + \lambda \| w \|_{2}^{2}$$

L1 regularization, lasso

Why is the *budget* square?

$$||w||_1 = |w_1| + |w_2|$$
  
if  $w_1 = max(w_1)$  then  $w_2 = 0$   
if  $w_2 = max(w_2)$  then  $w_1 = 0$ 

(p. 115: Raschka, 2015)

Budget
$$\lambda ||\mathbf{w}||_1$$

$$\mathbf{Minimize cost + penalty}$$

$$(\mathbf{w}_1 = 0)$$

$$J(w)_{LASSO} = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2} + \lambda \|w\|_{1}$$

## Out-of-sample as validity check



mtcars.1 <- mtcars[1:10, ]



## Out-of-sample as validity check

```
Call:
lm(formula = hp \sim mpg + wt + drat + qsec, data = mtcars.1)
Coefficients:
(Intercept)
                                                 drat
                                     wt
                                                                qsec
                      mpg
    414.541
                  -13.638
                                 12.753
                                               11.263
                                                             -5.042
Call:
 lm(formula = hp \sim mpq + wt + drat + qsec, data = mtcars)
Coefficients:
                                                  drat
 (Intercept)
                                      wt
                       mpg
                                                                gsec
     473.779
                    -2.877
                                  26.037
                                                 4.819
                                                             -20.751
```

## Collinearity

#### Covariance matrix (standardised)



## Suddenly, someone shows up with



# Let's check our model

mtcars.2 <- mtcars[11:32, ]</pre>

```
rm(list =ls())
library(glmnet)
y.train <- as.matrix(mtcars[1:10, 4]) ## hp</pre>
x.train \leftarrow as.matrix(mtcars[1:10, c(1, 6, 5, 7)]) \# mpg, wt, drat, qsec
v.test <- as.matrix(mtcars[11:32, 4]) ## hp</pre>
x.test \leftarrow as.matrix(mtcars[11:32, c(1, 6, 5, 7)]) \# mpg, wt, drat, qsec
lasso <- glmnet(x=x.train, v=v.train, alpha=1) ## get RSS and penalty in
n.models <- lasso$dim[2]
MSE.train <- numeric(n.models)</pre>
penalty.train <- numeric(n.models)</pre>
MSE.test <- numeric(n.models)</pre>
for(model.index in 1:n.models)
    betas <- c(lasso$a0[model.index], lasso$beta[, model.index])</pre>
    X.train <- cbind(1, x.train)</pre>
    X.test <- cbind(1, x.test)</pre>
    y.hat.train <- X.train %*% betas
    v.hat.test <- X.test %*% betas
    MSE.train[model.index] <- 1 / length(y.train) * sum((y.train - y.hat.train)^2)</pre>
    penalty.train[model.index] <- sum(abs(lasso$beta[, model.index]))</pre>
    MSE.test[model.index] <- 1/length(y.test) * sum((y.test - y.hat.test)^2)
plot(lasso$lambda, MSE.test)
```

#### Adding bias helps prediction



| _                     |                          |                              |                         |
|-----------------------|--------------------------|------------------------------|-------------------------|
| lambda<br><dbl></dbl> | MSE.train<br><dbl></dbl> | penalty.train<br><dbl></dbl> | MSE.test<br><dbl></dbl> |
| 43.6220702            | 2382.3600                | 0.000000                     | 6371.040                |
| 39.7468057            | 2059.2836                | 1.405142                     | 5321.815                |
| 36.2158090            | 1791.0598                | 2.685456                     | 4530.285                |
| 32.9984963            | 1568.3758                | 3.852030                     | 3945.631                |
| 30.0670009            | 1383.4995                | 4.914968                     | 3526.290                |
| 27.3959314            | 1230.0121                | 5.883478                     | 3238.326                |
| 24.9621524            | 1102.5840                | 6.765949                     | 3054.088                |
| 22.7445835            | 996.7911                 | 7.570023                     | 2951.093                |
| 20.7240174            | 908.9599                 | 8.302665                     | 2911.110                |
| 18.8829528            | 836.0409                 | 8.970222                     | 2919.395                |

```
glmnet(x = x.train, y = y.train, alpha = 1)
                                     drat
       s8
                 mpg
                             wt
                                                qsec
291.925294 -8.302665 0.000000
                                 0.000000
                                            0.000000
Call:
lm(formula = hp \sim mpg + wt + drat + qsec + 1, data = mtcars[1:10, ])
Coefficients:
(Intercept)
                                            drat
                                 wt
                                                         qsec
                    mpg
                              12.753
                                                       -5.042
   414.541
                -13.638
                                          11.263
```

```
## ridge
rm(list =ls())
library(glmnet)
v.train <- as.matrix(mtcars[1:10, 4]) ## hp
x.train \leftarrow as.matrix(mtcars[1:10, c(1, 6, 5, 7)]) # mpg, wt, drat, qsec
v.test <- as.matrix(mtcars[11:32, 4]) ## hp</pre>
x.test <- as.matrix(mtcars[11:32, c(1, 6, 5, 7)]) # mpg, wt, drat, qsec
ridge <- glmnet(x=x.train, y=y.train, alpha=0, lambda=0:200)
n.models <- ridge$dim[2]</pre>
MSE.train <- numeric(n.models)</pre>
penalty.train <- numeric(n.models)</pre>
MSE.test <- numeric(n.models)</pre>
for(model.index in 1:n.models)
    betas <- c(ridge$a0[model.index], ridge$beta[, model.index])</pre>
    X.train <- cbind(1, x.train)</pre>
    X.test <- cbind(1, x.test)</pre>
    y.hat.train <- X.train %*% betas
    y.hat.test <- X.test %*% betas
    MSE.train[model.index] <- 1 / length(y.train) * sum((y.train - y.hat.train)^2)</pre>
    penalty.train[model.index] <- sum(ridge$beta[, model.index]^2)</pre>
    MSE.test[model.index] <- 1/length(v.test) * sum((v.test - v.hat.test)^2)
plot(ridge$lambda, MSE.test, main='Adding bias helps prediction')
```

#### Adding bias helps prediction



| lambda<br><dbl></dbl> | MSE.train<br><dbl></dbl> | penalty.train<br><dbl></dbl> | MSE.test<br><dbl></dbl> |
|-----------------------|--------------------------|------------------------------|-------------------------|
| 50                    | 711.7847                 | 409.7758                     | 2280.286                |
| 49                    | 705.3788                 | 413.2714                     | 2279.970                |
| 48                    | 698.9470                 | 416.7924                     | 2280.049                |
| 47                    | 692.4899                 | 420.3382                     | 2280.541                |
| 46                    | 686.0082                 | 423.9078                     | 2281.469                |
| 45                    | 679.5026                 | 427.5003                     | 2282.853                |
| 44                    | 672.9740                 | 431.1146                     | 2284.718                |
| 43                    | 666.4231                 | 434.7496                     | 2287.087                |
| 42                    | 659.8510                 | 438.4039                     | 2289.987                |
| 41                    | 653.2585                 | 442.0760                     | 2293.446                |

```
glmnet(x = x.train, y = y.train, alpha = 0, lambda = 0:200)
                                     drat
     s151
                            wt
                 mpg
                                               qsec
312.148253 -5.788459 17.325500 -7.093469 -5.410624
Call:
lm(formula = hp \sim mpg + wt + drat + qsec + 1, data =
mtcars[1:10, ])
Coefficients:
(Intercept)
                                           drat
                                 wt
                                                        qsec
                   mpg
   414.541 -13.638
                             12.753
                                         11.263
                                                      -5.042
```

Adding bias to a model can increase stability of the model and can in turn increase prediction capability

## Remember in linear regression MSE is a metric for prediction error

#### Least squares

$$J(w) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$



#### L2 regularization, ridge

Why is the *budget* round?

Compare with a circle centred at (0,0)

$$x^2 + y^2 = r^2$$

$$w_1^2 + w_2^2 = r^2$$

$$||w||_2 = \sqrt{(w_1^2 + w_2^2)}$$



(p. 114: Raschka, 2015)

$$J(w)_{Ridge} = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2} + \lambda \| w \|_{2}^{2}$$

L1 regularization, lasso

Why is the *budget* square?

$$||w||_1 = |w_1| + |w_2|$$
  
if  $w_1 = max(w_1)$  then  $w_2 = 0$   
if  $w_2 = max(w_2)$  then  $w_1 = 0$ 

(p. 115: Raschka, 2015)

Budget
$$\lambda ||\mathbf{w}||_1$$

$$\mathbf{Minimize cost + penalty}$$

$$(\mathbf{w}_1 = 0)$$

$$J(w)_{LASSO} = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2} + \lambda \|w\|_{1}$$

#### We can combine L1 and L2

JUST FOR COMPLETION

$$J(w)_{ElasticNet} = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2} + \lambda_{1} \sum_{j=1}^{m} w_{j}^{2} + \lambda_{2} \sum_{j=1}^{m} |w_{j}|$$

## Summary

- Bias can be added in ways that improve prediction
  - it does this by removing collinearity
  - thereby making the model stable
  - and more generalisable
- This is one backbone of machine learning

#### Learning goals and outline

Explanation and prediction

- 1) Understanding how error can be decomposed into bias and variance
- Understanding when penalised regression may be helpful
- Understanding how models can be evaluated by out-of-sample testing

### The course plan

Week 1: Introduction

Instructor sessions: Setting up R and Python and recollection of the general linear model

Week 2: Multilevel linear regression

Instructor sessions: Modelling subject level effects – and how do they differ from group level effects?

Week 3: Link functions and fitting generalised linear multilevel models Instructor sessions: What to do when the response variable is not continuous?

Week 4: Evaluating Generalised linear mixed models

Instructor sessions: How do we assess how models compare to one another?

Week 5: Explanation and Prediction

Instructor sessions: Code review

Week 6: Mid-way evaluation and Machine Learning Intro

Instructor sessions: Getting Python Running

Week 7: Linear regression revisited (machine learning)

Instructor sessions: How to constrain our models to make them more predictive

Week 8: Logistic regression revisited (machine learning)

Instructor sessions: Categorizing responses based on informed guesses

Week 9: Dimensionality Reduction, Principled Component Analysis (PCA)

Instructor sessions: What to do with very rich data?

Week 10: Outlook, unsupervised classification and neural networks

Instructor sessions: Data with no labels and networks

Week 11: Organising and preprocessing messy data

Instructor sessions: Code review

Week 12: Final evaluation and wrap-up of course

Instructor sessions: Ask anything!

#### Next time

- Introduction to classification
  - The Perceptron
  - ADAline
- Linear regression in machine learning
  - Looking at big(ger) scale data

## Reading questions

#### Chapter 1

- What are the differences between supervised, unsupervised and reinforcement learning?
- What is the difference between classification and regression?
- What is dimensionality reduction?
  - Is it similar to regularisation?

#### Chapter 2

- How does the w vector and x matrix relation to what we know as X and  $\beta$ ?
- What is the difference between a training data set and a test data set?
- What is gradient descent?
- What is a quantizer?