Idem potacy:

$$T12:$$
 $X + X + X + ... + X = X$

$$112'$$
 $X \cdot X \cdot \dots \cdot X = X$

$$T/3$$
: $(X_1 - X_2 - \dots \times X_n) =$

$$X_1$$
 + X_2 + \dots + X_n

$$T_{13}'$$
. $(x_1 + x_2 + ... + x_n)' =$

$$\chi_1' \circ \chi_2' \circ \ldots \circ \chi_n'$$

$$T14: [F(X_1, X_2, ..., X_n, +, \bullet)] = F(X_1, X_2, ..., X_n, +, \bullet)$$

Shannon's exponsion theorems:

T15:
$$F(X_1, ..., X_n) = X_1 \cdot F(X_1, ..., X_n) + X_1 \cdot F(0, X_2, ..., X_n)$$

T15':
$$F(X_1, ..., X_n) = [X_1 + F(0, X_2, ... X_n)]$$

$$[X_1' + F(1, X_2, ... X_n)]$$

Proof using knite induction:

T12:
$$X + X + \dots + X = X$$

First prove for n=2.

Then prove if theorem is true for n=int men prove that it is true for n=i+1

Duality:

Any theorem or identity in switching algebra remains true If O and I are swapped and and t are swapped throughout.

when taking the dual be careful about the precedence.

e.g.
$$X + XY = X + Y$$

$$X \cdot X + Y = X + Y$$

7	6	5	4	w	2	_	0	Row
		_		0	0	0	0	×
		0	0	_		0	0	~
_	0	_	0	•4	0		0	7
F(1,1,1)	F(1,1,0)	F(1,0,1)	F(1,0,0)	F(0,1,1)	F(0,1,0)	F(0,0,1)	F(0,0,0)	П

Table 4-4

General truth table structure for a 3-variable logic function, F(X, Y, Z).

$$X + (X \cdot Y) = X$$

 $X \cdot (X + Y) = X$

Standard Representation of Logic Functions:
Truth table:

for n-variables -> 2 nows in truth table,

(all possible input combinations

we can turn the information in a truth table into algebraic expressions.

Definitions:

Literal! variable or complement of a variable: e.g. x, x', y'

Product tem: single literal or logical product of two or more literals.
e.g. X', W.Y', X.Y.Z.W'

Sum-of-products expression: logical sum of product terms.

e.g. 2 + w'. x. y + y. w

sum tern: single literal or logical sum of two or more literals.

e.g. w, X+4+W

Product-of-sums expression: Logical product of sum terms.

e.g. $X' \cdot (W + X + Y)$

Normal term: product or sum term in which no variable appears more than once.

e.g. w. x. x. y' -> W. X.y'
hornormal

n-variable mintern: normal product term with a literals. There are 2 such product terms.

e.g. w.X.4.21.

n-variable maxtern: normal sum term with <u>n literals</u>. There are 2ⁿ such terms.

e.g. w' + x' + 4 + 2'

Correspondence between truth table and minterns/ maxterns:

mintern: product term that is I in exactly one now.

maxterm: sum term that is 0 in exactly one now.

Low	X	4	2	F	minterns	maxtens
0	Õ	٥.	Ø,	F(0,0,0)	X . y . 2	X+4+2
1	0	0	1		X'. Y'. 2	X+Y+21
2	0	1	٥	(X.0402	X+Y + Z
3	0				X'. 4.2	X+41+21
7)	٥	Ö	Ţ	X . 41. 7	X'+4+5
5		O	-		X. 41.2	X'+ Y+Z1
6	1		٠.٧	(X . 4 . E1	X'+Y'+Z
7					X - Y . Z	x'+ 4'+ t'

Cononical sum: of a logic function is

the sum of minterns corresponding

to that table nows for which

the function produces a 1 output.

Example:

Pows
$$X Y Z F$$
 minterms

 x', y', z'
 $x',$

Example:
$$|a| = |a| \cdot |$$