Exercise Sheet 4

Exercise 1

Let X be an inner product space (i.e. pre-Hilbert space) with the inner product $\langle \cdot, \cdot \rangle$. Prove that the formula $||x|| = \sqrt{\langle x, x \rangle}$ defines a norm in X.

Exercise 2

Check that the following are Hilbert spaces:

- (a) \mathbb{R}^N with inner product $\langle x, y \rangle = \sum_{i=1}^N x_i y_i$, where $x, y \in \mathbb{R}^N$.
- (b) $L^2(\Omega)$ with the inner product

$$\langle f, g \rangle = \int_{\Omega} f(x) \overline{g(x)} dx$$
.

for
$$f, g \in L^2(\Omega)$$
.

Exercise 3

Show that \mathbb{R}^N with $\|\cdot\|_p$ norm is not a Hilbert space unless p=2.

Exercise 4

Let $\Omega \subset \mathbb{R}^N$ be a compact set. Show that $C(\Omega)$ and $L^p(\Omega), 1 \leq p < \infty, p \neq 2$ with standard norms are not Hlibert spaces.

Exercise 5

Let X be a Hilbert space and $x, y \in X$. Prove that if $x \perp y$ then

$$||x + y||^2 = ||x||^2 + ||y||^2$$
.

Extend the above formula to m mutually orthogonal vectors in X. Prove that if X is a real Hilbert space (i.e., with scalars from \mathbb{R}) then the opposite implication is also true. Give an example that this implication may be not true if X is a complex Hilbert space.