

ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Electronics for Information Technology

(Điện tử cho Công nghệ Thông tin)

IT3420E

Đỗ Công Thuần

Department of Computer Engineering

Email: thuandc@soict.hust.edu.vn

General Information

- Course: Electronics for Information Technology
- ID Number: IT3420
- Credits: 2 (2-1-0-4)
- Lecture/Exercise: 32/16 hours (48 hours, 16 weeks)
- Evaluation:
 - Midterm examination and weekly assignment: 50%
 - Final examination: 50%
- Learning Materials:
 - Lecture slides
 - Textbooks
 - *Introductory Circuit Analysis* (2015), 10th 13th ed., Robert L. Boylestad
 - *Electronic Device and Circuit Theory* (2013), 11th ed., Robert L. Boylestad, Louis Nashelsky
 - *Microelectronics Circuit Analysis and Design* (2006), 4th ed., Donald A. Neamen
 - Digital Electronics: Principles, Devices and Applications (2007), Anil K. Maini

Contact Your Instructor

- You can reach me through office in **Room 802, B1 Building**, HUST.
 - You should make an appointment by email before coming.
 - If you have urgent things, just come and meet me!
- You can also reach me at the following **email** any time. This is the best way to reach me!
 - thuandc@soict.hust.edu.vn

Course Contents

- The Concepts of Electronics for IT
- Chapter 1: Passive Electronic Components and Applications
- Chapter 2: Semiconductor Components and Applications
- Chapter 3: Operational Amplifiers
- Chapter 4: Fundamentals of Digital Circuits
- Chapter 5: Logic Gates
- Chapter 6: Combinational Logic
- Chapter 7: Sequential Logic

Chapter 3: **Operational Amplifiers**

- Operational Amplifier
- Ideal Parameters
- Operational Amplifier Circuits
- Applications

Applications of Op-amp

- Signal and A/D Conversion
- Analog-to-Digital Conversion/Converter ADC
- Digital-to-Analog Conversion/Converter DAC

Signal and A/D Conversion

- Analog signals have continuous values, which often represent physical measurements of a time-varying quantity.
- Digital signals have a set of discrete values, which are generated by digital modulation, to represent a time-varying quantity.
- In signal processing, there are 2 important processes:
 - Analog to Digital conversion
 - Digital to Analog conversion

Analog to Digital Conversion

• Data acquisition: the process of taking analog information and converting it into a digital form.

Digital to Analog Conversion

• Signal reconstruction: the process of reconstructing an analog signal from samples that have been transmitted, processed or stored.

Applications of ADC - Thermostat

Application of ADC/DAC - Telephone

Analog-to-Digital Conversion (ADC)

- What an ADC does
- Definition of resolution, conversion time, sampling and quantization error
- How a sample-and-hold circuit and ADC work together
- Flash ADC

Analog-to-Digital Conversion (ADC)

- The process of converting the sampled values of the analog signal to a series of binary codes.
- Each binary code represents the amplitude of the analog signal at each of the sample times.
- Important characteristics of ADCs:
 - Resolution
 - Conversion time
 - Sampling frequency
 - Quantization error

Resolution

- The resolution of an ADC can be expressed as the number of bits (binary digits) used to represent each value of the analog signal.
- Example: A 3-bit ADC can represent 8 different values of an analog signal.

A/D Conversion Time

- The conversion of an analog voltage into a digital quantity is not an instantaneous event, but it is a process that takes a certain amount of time.
- The conversion time can range from microseconds (µs) for fast converters to milliseconds (ms) for slower devices.

Sampling Frequency

- At a givent point, an analog waveform is sampled, and the sampled value is then converted to a binary number.
- Since it takes a certain interval of time to accomplish the conversion, the number of samples of an analog waveform during a given period of time is limited.
- The theoretical minimum limit of the sampling rate is known as the Nyquist rate or frequency: an analog signal is sampled and converted two times per cycle.

Sampling Frequency

• Illustration of 2 sampling rates.

8 samples per cycles

16 samples per cycles

Quantization Error

- The term quantization refers to determining a value for a changing analog voltage.
- **Ideally:** Assign a number to the voltage at a given instant and convert it **immediately** to digital form → impossible
- In fact: An analog signal may change during a conversion time → the voltage at the end of the conversion time may <u>not be the same</u> as it was at the beginning.
- Quantization error is the change in voltage during the conversion time.

Quantization Error

Quantization Error

• **Solution**: Using a sample-and-hold circuit to avoid quantization error at the input to the ADC.

Sample-and-Hold

- A sample-and-hold circuit quickly samples the analog input and then holds the sampled voltage for a certain time.
- When used in conjunction with an ADC, the S&H is held constant for the duration of the conversion time.

Sample-and-Hold

- A relatively narrow control voltage pulse closes the analog switch and allows the capacitor to charge to the value of the input voltage.
- The switch opens, and the capacitor holds the voltage for a long period of time (because of the very high impedance discharge path through the op-amp input).

S&H Circuit and ADC Working Together

- Illustrating the basic function of an ADC
- The output of the S&H goes to the ADC → Minimizing quantization errors.

Flash ADC

- The flash ADC uses several comparators to compare reference voltages with the analog input from a S&H circuit.
- When the analog voltage exceeds the reference level for a given comparator, a high-level output is produced by the comparator.
- 2ⁿ-1 comparators are required for conversion to an n-bit binary code.
- Main disadvantage: large number of comparators necessary for a practical size binary code.

3-bit flash ADC

- 7 comparators for a conversion to 3 binary bits.
- The resistive voltage-divider sets the reference voltage for each comparator.

(7) =
$$\frac{7}{8}V_{\text{ref}}$$
 (3) = $\frac{3}{8}V_{\text{ref}}$

(6) =
$$\frac{6}{8}V_{\text{ref}}$$
 (2) = $\frac{2}{8}V_{\text{ref}}$

(5) =
$$\frac{5}{8}V_{\text{ref}}$$
 (1) = $\frac{1}{8}V_{\text{ref}}$

$$(4) = \frac{4}{8}V_{\text{ref}} \quad (0) = \frac{0}{8}V_{\text{ref}}$$

Digital-to-Analog Converter (DAC)

- Transforming digital signals into analog form.
- Input: digital signal
- Output: analog signal

4-bit DAC: Binary Weighted Ladder

• Assuming only 2 voltage levels for inputs: +5V and 0V.

4-bit DAC: Binary Weighted Ladder

• The output is related to the inputs as:

$$-V_o = \frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3 + \frac{R_f}{R_4}V_4$$

• By using the proper input and feedback resistor values, the DAC provides a single output that is proportional to the inputs.

Example 4.9

• For a 4-bit DAC shown in the figure, determine the analog output V_0 for binary inputs $V_1V_2V_3V_4$ from 0000 to 1111.

Example 4.9

• The analog output:

$$-V_o = \frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3 + \frac{R_f}{R_4}V_4$$
$$= V_1 + 0.5V_2 + 0.25V_3 + 0.125V_4$$

• For each digital input, we have:

$$[V_{1} V_{2} V_{3} V_{4}] = [0010] \Rightarrow -V_{o} = 0.25 \text{ V}$$

$$[V_{1} V_{2} V_{3} V_{4}] = [0011] \Rightarrow -V_{o} = 0.25 + 0.125 = 0.375 \text{ V}$$

$$[V_{1} V_{2} V_{3} V_{4}] = [0100] \Rightarrow -V_{o} = 0.5 \text{ V}$$

$$\vdots$$

$$[V_{1} V_{2} V_{3} V_{4}] = [1111] \Rightarrow -V_{o} = 1 + 0.5 + 0.25 + 0.125$$

$$= 1.875 \text{ V}$$

Example 4.9

$[V_1V_2V_3V_4]$	Decimal value	$-V_o$
0000	0	0
0001	1	0.125
0010	2	0.25
0011	3	0.375
0100	4	0.5
0101	5	0.625
0110	6	0.75
0111	7	0.875
1000	8	1.0
1001	9	1.125
1010	10	1.25
1011	11	1.375
1100	12	1.5
1101	13	1.625
1110	14	1.75
1111	15	1.875

• Assuming only 2 voltage levels for inputs: +5V and 0V.

$$V_{\text{OUT}} = -IR_{\text{F}} = -\left(\frac{5 \text{ V}}{2R}\right) 2R = -5 \text{ V}$$

$$D_3 = 0, D_2 = 1$$

 $D_1 = 0, D_0 = 0$

• Equivalent circuit:

$$D_3 = 0, D_2 = 0, D_1 = 1, D_0 = 0$$

• Equivalent circuit:

$$D_3 = 0, D_2 = 0, D_1 = 0, D_0 = 1$$

• Equivalent circuit:

