全国信息学奥林匹克联赛(NOIP2017)复赛模拟

提高组第二试

2017年11月5日8:30-12:00

(请选手务必仔细阅读本页内容)

题目名称	质数	密室	士兵训练
题目类型	传统	传统	传统
目录	prime	room	soldier
可执行文件名	prime	room	soldier
输入文件名	prime.in	room.in	soldier.in
输出文件名	prime.out	room.out	soldier.out
每个测试点时限	1秒	1秒	1秒
内存限制	512M	512M	512M
测试点数目	20	20	20
每个测试点分值	5	5	5

提交源程序文件名

对于 C++语言	prime.cpp	room.cpp	soldier.cpp
对于 C 语言	prime.c	room.c	soldier.c
对于 pascal 语言	prime.pas	room.pas	soldier.pas

编译选项

对于 C++语言	-lm	-lm	-lm
对于 C 语言	-lm	-lm	-lm
对于 pascal 语言			

注意事项

- 1.文件名(程序名和输入输出文件名)必须使用英文小写。
- 2.除非特殊说明,结果比较方式均为忽略行末空格及文末回车的全文比较。
- 3.C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 4.全国统一评测时采用的机器配置为: CPU 2.8GHz, 内存 4G, 上述时限以此配置为准。
- 5.只提供 Linux 格式附加样例文件。
- 6.评测在 NOI Linux 下进行。
- 7.编译时不打开任何优化选项。
- 8.最终测试时, 打开-O2 优化

1. 质数

(prime)

【问题描述】

小 X 是一位热爱数学的男孩子,在茫茫的数字中,他对质数更有一种独特的情感。小 X 认为,质数是一切自然数起源的地方。

在小 X 的认知里, 质数是除了本身和 1 以外, 没有其他因数的数字。

但由于小 X 对质数的热爱超乎寻常,所以小 X 同样喜欢那些虽然不是质数,但却是由两个质数相乘得来的数。

于是,我们定义,一个数是小 X 喜欢的数,当且仅当其是一个质数,或是两个质数的乘积。

而现在,小 X 想要知道,在 L 到 R 之间,有多少数是他喜欢的数呢?

【输入格式】

第一行输入一个正整数 Q, 表示询问的组数。

接下来 Q 行。包含两个正整数 L 和 R。保证 L≤R。

【输出格式】

输出 Q 行,每行一个整数,表示小 X 喜欢的数的个数。

【输入输出样例1】

prime.in	prime.out
1	5
1 6	

【样例1解释】

6以内的质数有 2,3,5,而 4=2*2,6=2*3。因此2,3,4,5,6都是小 X 喜欢的数,而 1 不是。

【输入输出样例2】

prime.in	prime.out
10	97
282 491	78
31 178	92
645 856	65
227 367	102
267 487	98
474 697	114
219 468	90
582 792	133
315 612	29
249 307	

【输入输出样例3】

prime.in	prime.out
10	24413
20513 96703	23001
15236 86198	17784
23185 78205	2669
40687 48854	16785

42390 95450	3833
63915 76000	17712
36793 92543	6028
35347 53901	10442
44188 76922	2734
82177 90900	

【数据规模与约定】

测试点编号	L	R	Q
1			*
2	<1000	<1000	
3	≤1000	≤1000	
4			
5			=1
6	≤100000	≤100000	_1
7			
8	_	_	
9	$\leq 10^7$	$\leq 10^7$	
10			
11	≤1000	≤1000	
12	_1000	_1000	
13	≤100000	≤100000	≤100
14			
15	$\leq 10^{7}$	$\leq 10^{7}$	
16			
17	≤100000	≤100000	
18	_	_	$\leq 10^{5}$
19	$\leq 10^7$	$\leq 10^{7}$	_
20		_	

2. 密室

(room)

【问题描述】

小 X 正困在一个密室里,他希望尽快逃出密室。

密室中有 N 个房间,初始时,小 X 在 1 号房间,而出口在 N 号房间。 密室的每一个房间中可能有着一些钥匙和一些传送门,一个传送门会**单向地** 创造一条从房间 X 到房间 Y 的通道。另外,想要通过某个传送门,就必须具 备一些种类的钥匙(**每种钥匙都要有才能通过**)。幸运的是,钥匙在打开传送门 的封印后,并不会消失。

然而,通过密室的传送门需要耗费大量的时间,因此,小 X 希望通过尽可能少的传送门到达出口,你能告诉小 X 这个数值吗?

另外,小 X 有可能不能逃出这个密室,如果是这样,请输出 "No Solution"。

【输入格式】

第一行三个整数 N,M,K,分别表示房间的数量、传送门的数量以及钥匙的种类数。

接下来 N 行,每行 K 个 0 或 1,若第 i 个数为 1,则表示该房间内有第 i 种钥匙,若第 i 个数为 0,则表示该房间内没有第 i 种钥匙。

接下来 M 行,每行先读入两个整数 X,Y,表示该传送门是建立在 X 号房间,通向 Y 号房间的,再读入 K 个 0 或 1,若第 i 个数为 1,则表示通过该传送门需要 i 种钥匙,若第 i 个数为 0,则表示通过该传送门不需要第 i 种钥匙。

【输出】

输出一行一个 "No Solution",或一个整数,表示最少通过的传送门数。

【输入输出样例1】

room.in	room.out
3 3 2	2
1 0	
0 1	
0 0	
1 3 1 1	
1 2 1 0	
2 3 1 1	

【输入输出样例2】

见附加文件 sample 下的 room2.in 与 room2.ans

【输入输出样例3】

见附加文件 sample 下的 room3.in 与 room3.ans

【输入输出样例 4】

见附加文件 sample 下的 room4.in 与 room4.ans

【数据规模和约定】

▲ 秋1/6/201天/14/51/12 』			
测试点编号	N	M	K
1			
2	≤ 5	≤10	
3			
4			
5	≤100	≤500	=0
6			_0
7			
8	≤1000	≤5000	
9	<u> </u>	_5000	
10			
11	≤5	≤10	
12		≥10	=1
13	≤1000	≤5000	_1
14	<u>></u> 1000	<u>></u> 3000	
15	≤5	≤10	≤4
16	≤1000	≤5000	<u>`</u> 4

17			
18	≤5	≤10	
19	≤1000	≤5000	≤10
20	≤5000	≤6000	

3. 士兵训练

(soldier)

【问题描述】

在 C 国中有 n 位士兵,除士兵 1 外,每位士兵 i 均有且仅有一位士兵 j (j<i) 作为他的直属教官。士兵 i 被他的直属教官 j 以及所有能管辖 j 的士兵所管辖。每位士兵也看做能管辖自己。

每位士兵均有两个属性值:战斗力b,与领导力l,。

现在 C 国要举行 q 次阅兵,每次阅兵会指定一位士兵 s 做总指挥,士兵 s 需要训练自己所管辖的所有士兵,并以最好的精神面貌迎接阅兵式。

士兵 s 每次阅兵训练时有一次机会(只能使用一次或不使用),可以邀请一位不受他管辖的士兵 i 来指导一位他所管辖的士兵 j,并会使得士兵 j 的战斗力由 b_i 提升为 b_i + l_i ,这次提升仅对当次阅兵有效。

士兵 s 训练出的士兵队伍所能展现出的精神力 P 为:

现在 C 国主席想知道,每次阅兵的队伍所能展现出的精神力 P 最大能是多少?请你帮助他。

【输入格式】

第一行两个数 n, q表示士兵数以及阅兵次数。

接下来一行 n-1 个整数, 第 i 个整数表示士兵 i+1 的直属教官。

接下来n行每行两个整数b,l,描述一位士兵的属性。

接下来q行每行一个整数s,表示这次阅兵的总指挥。

【输出格式】

对于每次阅兵输出一行一个整数,表示阅兵队伍能展现出的最大精神力 P。

【样例输入输出1】

soldier.in	soldier.out
5 2	3
1 1 2 2	3
2 1	
1 5	
4 2	
2 3	
3 1	
1	

2

【样例1解释】

第一次阅兵时无法进行指导

第二次阅兵时令士兵3指导士兵4

【样例输入输出1】

soldier.in	soldier.out
7 3	4
1 1 2 2 3 3	3
3 0	5
1 3	
5 2	
2 0	
4 1	
3 1	
2 2	
1	
2	
3	

【样例输入输出3】

见附加文件 sample 下的 soldier3.in 与 soldier3.ans

【数据规模与约定】

30%的数据: n,q≤30

另有 10%的数据: 所有 S_i 均为 1

另有 20%的数据: q≤50

另有 20%的数据: 士兵 i 的直属教官为 i-1

100%的数据: $1 \le n, q \le 2*10^5, 0 \le b_i, l_i \le 10^9, b_i \ge 1, 1 \le s_i \le n$