Practica Dirigida N°2

Semana 2

ECUACIONES EN DIFERENCIAS

Ecuaciones En Diferencias de primer y segundo orden

1. Demostrar la solución general de una ecuación en diferencia y simular valores en Python de la siguiente expresión:

$$x_t = ax_{t-1} + b$$

Monótona y Divergente : a=7 , b=16 , $x_0=5$

Monótona y Convergente : $a = \frac{1}{3}$, b = 6 , $x_0 = 1$

Oscilante y Divergente: a = -2 , b = 1 , $x_0 = 1$

Oscilante y Convergente : $a = -\frac{1}{4}$, b = 5 , $x_0 = 2$

2. Diagrama de fases para Ecuaciones En Diferencia

Resolver las siguientes ecuaciones en diferencia de primer orden

Resolver las siguientes ecuaciones en diferencia de primer orden, describiendo el procedimiento y simular los resultados en Python

a)
$$y_t = \frac{y_{t-1}}{2} + 5$$

d)
$$y_t = y_{t-1}^3$$

b)
$$y_t = 5y_{t-1}$$

e)
$$y_t = y_{t-1}^{-0.25}$$

c)
$$y_t = y_{t-1}^{0,5}$$

f)
$$y_t = y_{t-1}^{-1,5}$$

Reto: Ver el esquema de telaraña con la pregunta 1

3. Resolver las siguientes ecuaciones en diferencias de segundo orden

a)
$$y_{t+2} - 11_{t+1} + 10y_t = 27$$
 $y_{(0)} = 2$ $y_{(1)} = 53$

b)
$$y_t - 10_{t-1} + 25y_{t-2} = 8$$
 $y_{(0)} = 1$ $y_{(1)} = 5$

- 4. Aplicaciones Económicas
 - a) Modelo de determinación de ingresos retrasados

$$C_t = 90 + 0.8Y_{t-1}$$
 $T_t = 50$ $Y_0 = 1200$

b) Modelo de la telaraña

$$Q_{dt} = 180 - 0.75P_t$$
 $Q_{st} = -30 + 0.3P_{t-1}$ $P_0 = 200$

c) Modelo de crecimiento de Harrod

$$I_t = 2,66(Y_t - Y_{t-1})$$
 $S_t = 0,16Y_t$ $Y_0 = 9000$