46 Satz: $F: U_1 \times U_2 \in \mathbb{R}^k \times \mathbb{R} \to \mathbb{R}$ stetig differenzierbar. $F(a,b) = 0, \frac{\partial F}{\partial y}(a,b) \neq 0 \Longrightarrow \exists ! g: V_1 \in U_1 \to V_2 \in U_2. \ \forall (x,y) \in V_1 \times V_2:$

$$F(x,y) = 0 \iff y = g(x)$$

47 Satz: Seien $U_1 \in \mathbb{R}^k, U_2 \in \mathbb{R}^m$ offen, $a \in U_1, b \in U_2$ und $F = (F_1, \dots, F_m) : U_1 \times U_2 \to \mathbb{R}^m$ differenzierbar mit

$$F(x,y) = \begin{pmatrix} F_1(x,y) \\ \vdots \\ F_m(x,y) \end{pmatrix}$$

eine Abbildung mit $F(a,b) = 0 \in \mathbb{R}^m$ und sie $\det\left(\frac{\partial F}{\partial y}(a,b)\right) \neq 0$ und sei $g = (g_1, \dots, g_m)$: $U_1 \to U_2$ eine Abbildung d.h $g(U_1) = U_2$ mit g(a) = b und $f(x,g(x)) = 0 \ \forall x \in U_1$ wie in (B) differenzierbar. Dann gilt:

$$\mathrm{Dg}(a) = -\left(\frac{\partial F}{\partial y}(a,b)\right)^{-1} \cdot \left(\frac{\partial F}{\partial x}(a,b)\right)$$

48 Satz: Sei F wie in Satz 47 definiert und differenzierbar in (a, b) mit $U_1 = B(a, \tau_1) \subseteq \mathbb{R}^k$, $U_2 = B(a, \tau_2) \subseteq \mathbb{R}^m$ und det $\left(\frac{\partial F}{\partial y}(a, b)\right) \neq 0$. Sei g wie in Satz 47 stetig. Dann ist g differenzierbar in a mit

$$Dg(a) = -\left(\frac{\partial F}{\partial y}(a,b)\right)^{-1} \cdot \left(\frac{\partial F}{\partial x}(a,b)\right)$$

49 Satz über implizite Abbildungen: Sei F wie in Satz 47 stetig differenzierbar mit $U_1 = B(a, \tau_1) \subseteq \mathbb{R}^k, U_2 = B(a, \tau_2) \subseteq \mathbb{R}^m$ und det $\left(\frac{\partial F}{\partial y}(a, b)\right) \neq 0$ Dann gibt es offene Umgebungen $V_1 \subseteq U_1$ von $a, V_2 \subseteq U_2$ von b und $g: V_1 \to V_2$ stetige Abbildung, sodass: $\forall (x, y) \in V_1 \times V_2$

$$F(x,y) = 0 \iff y = g(x)$$

50 Umkehrsatz: Seien $U_1, U_2 \subset \mathbb{R}^n$ offen und $f: U_1 \to U_2$, stetig differenzierbar $a \in U_1$ mit $\det Df(a) \neq 0, \ b:= f(a) \in U_2$ Dann gibt es offene Umgebungen $W_1 \subset U_1$ von $a, W_2 \subseteq U_2$ von b und eine stetig differenzierbar Abbildung $g: W_2 \to W_1$ mit $g \circ (f|_{W_1}) = \mathrm{id}_{W_1} (f|_{W_2}) \circ g = \mathrm{id}_{W_2}$

§11 Methode der Langrange'schen Multiplikatoren

Parametergebiet: Ein beschränktes Gebiet $P \subseteq \mathbb{R}^n$ heißt Parametergebiet, wenn $\partial P = \partial(\overline{P})$

Parametrisiertes Flächenstück: Sei $P \subseteq \mathbb{R}^p$ ein Parametergebiet. Ein parametrisiertes Flächenstück über P ist eine stetig differenzierbar Abbildung $\varphi : P \to \mathbb{R}^n$, sodass:

- φ injektiv
- rang $D\varphi(x) = p \ \forall x \in P$
- Ist $x_0 \in P$ und $(x_y)_y$ s.d. $\lim_{y\to 0} \varphi_y = \varphi(x_0)$, so ist $\lim_{y\to\infty x_y=x_0} \varphi_y = \varphi(x_0)$

Die Zahl p heißt die Dimension des Flächenstücks. Für p=1 heißt φ auch glatter Weg

Glatte Fläche, Untermannigfaltigkeit: Eine Menge $M \subset \mathbb{R}^n$ heißt p-dimensionale glatte Fläche (Untermannigfaltigkeit), falls es zu jedem $x_0 \in M$ eine Umgebung $U = U(x_0) \subseteq \mathbb{R}^n$ und ein glattes parametrisiertes Flächenstück $\varphi P \to \mathbb{R}^n$ mit $\varphi(\zeta) = x_0$ für ein ζ_0 und $\varphi(P) = U \cap M$ φ heißt dann lokale Parametrisierung von M in x_0 . Für p = n - 1 nennen wir M eine Hyperfläche.

51 Satz: Sei $C \subseteq \mathbb{R}^n$ offen, $M \subseteq B, 0 \le q \le n$. Es gebe stetige differenzierbar Funktion $f_1, \dots, f_q : B \to \mathbb{R}$, sodass

- 1. $M = \{x \in B | f_1(x) = \dots = f_q(x) = 0\}$
- 2. Die Vektoren grad $(f_1(x)), \dots, \text{ grad } (f_q(x)) \text{ sind } \forall x \in M$ linear unabhängig.

Dann ist M eine p-dimensionale Untermannigfaltigkeit mit p = n - q

Definition: Sei M eine U-dimensionale Untermannigfaltigkeit in \mathbb{R}^n . Eine Funktion $h: M \to \mathbb{R}$ heißt differenzierbar, falls für jede Parametrisierung $\varphi: P \to \mathbb{R}^n$ von M $h \circ \varphi: P \to \mathbb{R}$ differenzierbar ist

Definition: Sei $B \subseteq \mathbb{R}^n$ offen, $g = (g_1, \dots, g_m) B$: \mathbb{R}^m stetig differenzierbar mit rang $(Dg(x)) \ \forall x \in B$. Weiter sei $H \{x \in B | g(x) = 0\}$, $a \in MU = U(a) \subseteq S$ offene Umgebung, $f: U \to \mathbb{R}$ stetig differenzierbar. f hat eine relatives Maximum (bzw. Minimum) in a unter der Nebenbedingungen $g_1(x) = \dots = g_m(x) = 0$, falls $f(x) \leq f(a) \ \forall x \in M \cap U(bzw. f(x) \geq f(a) \ \forall x \in U \cap M)$

52 Methode der Langrange'schen Multiplikatoren: Hat f in a ein relatives Extremum unter den Nebenbedingungen $g_1(x) = \cdots = g_m(x) = 0$, so gibt es $\lambda_1, \cdots, \lambda_m \in \mathbb{R}$ sodass

$$\operatorname{grad} f(a) = \lambda_1 \operatorname{grad}(g_1(a)) + \dots + \lambda_m \operatorname{grad}(g_m(a))$$
 (*)

Die Zahlen $\lambda_1, \dots, \lambda_m$