

USB Hacking

mongii@grayhash

Summary

- About USB protocol
- USB Packet Analysing
- USB Stack Fuzzing
- File System Fuzzing
- Multi-media File Fuzzing

USB(Universal Serial Bus) 기초

USB(Universal Serial Bus) 소개

- Host-Device architecture
- Host driven communication
- Half-Duplex (1.1, 2.0 기준)
- Speeds
 - Low Speed: 1.5Mbits/s
 - Full Speed: 12Mbits/s
 - High Speed: 480Mbits/s
- Differential signaling (D+, D-)

- Up to 127 devices can be connected
- Power: 5V

USB 시스템의 구조

Host

- USB 통신의 중심
- USB 네트워크에 오직 한 개의 호스트만 가짐
- 루트 허브를 포함

Device

- USB Host에 연결되는 장치
- USB Hub 혹은 Function

USB bus topology

USB Packet 분석

USB Packet 분석

Beagle USB 480

- USB Packet Analyzer
- 가격: 약 \$1,400
- Software: Total Phase Data Center USBpcap과의 차이점
 - Low Level의 USB 패킷들을 볼 수 있음

• 대상 USB 장치 연결 (ex> USB 키보드)

USB Packet 요약

- Get Device Descriptor
- Set Address
- Get Device Descriptor
- Get Configuration Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Device Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Set Configuration
- Get String Descriptor
- Get String Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor

Device Descriptor
Configuration Descriptor
String Descriptor
Report Descriptor

Get String Descriptor

- Get Device Descriptor
- Set Address
- Get Device Descriptor
- Get Configuration Descriptor
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get Device Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Set Configuration
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get Configuration Descriptor
- Get Configuration Descriptor
- Get String Descriptor: Get Header
- Get String Descriptor: "USB Keyboard"
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get Report Descriptor

-총 여섯 번 반복

-필요할 때 마다 재요청하기 때문 (USB스택&드라이버의 구현마다 다름, 한 번 요청 후 정보를 저장해놓는 경우도 있음)

-헤더를 먼저 요청 후 길이, 인코딩 정보 를 파악 => 전체 정보 요청

Get String Descriptor

- Get Device Descriptor
- Set Address
- Get Device Descriptor
- Get Configuration Descriptor
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get Device Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Set Configuration
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get Configuration Descriptor
- Get Configuration Descriptor
- Get String Descriptor: Get Header
- Get String Descriptor: "USB Keyboard"
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get Report Descriptor

Length: 0x1A(26)

Type: 0x03 (string descriptor)

Offset	Field	Size	Value	Description
0	bLength	1	N+2	Size of this descriptor in bytes
1	bDescriptorType	1	Constant	STRING Descriptor Type
2	wLANGID[0]	2	Number	LANGID code zero 혹은 문자열 데이
***	***	***	***	•••
N	wLANGID[x]	2	Number	LANGID code x

Descriptor Type

- 0x01: DEVICE
- 0x02 : CONFIGURATION
- 0x03 : STRING
- 0x04: INTERFACE
- 0x05 : ENDPONT

- Get Device Descriptor
- Set Address
- Get Device Descriptor
- Get Configuration Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Device Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Set Configuration
- Get String Descriptor
- Get String Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor

- -셋 모두 동일(string과 같은 이유)
- -장치에 대한 기본적인 정보들 제공
- -Vendor, Product ID 정보 제공
- -Configuration의 개수 정보 제공

- Get Device Descriptor
- Set Address
- Get Device Descriptor
- Get Configuration Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Device Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Set Configuration
- Get String Descriptor
- Get String Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor

Details																		ēΧ
Offset	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	ASCII	
0x0000	12	01	10	01	00	00	00	80	2C	1A	2A	0B	10	01	01	02	, .*	
0x0010	00	01																
Data																		

웁셋	₽⊑	크기	괎	បាន
0	bLength	1	숫자	Descriptor의 크기
1	bDescriptorType	1	상수	디바이스 Descriptor 형태
2	bcdUSB	2	BCD	BCD형태로 이루어진 발표 번호
4	bDeviceClass	1	클래스	클래스 코드
5	bDeviceSubClass	1	서브클래스	서브클래스 코드
6	bDeviceProtocol	1	프로토콜	프로토콜 코드
7	bMaxPacketSized()	1	숫자	Endpoint 0를 위한 최대 패킷의 크기
8	idVendor	2	ID	Vendor ID
10	idProduct	2	ID	Product ID
12	bcdDevice	2	BCD	BCD으로 나타낸 디바이스 릴리즈 번호
14	iManufacturer	1	인덱스	제조자를 나타내는 스트링 Descriptor의 인 덱스
15	iProduct	1	인덱스	생산자를 나타내는 스트링 Descriptor의 인 덱스
16	iSerialNumber	1	인덱스	디바이스의 시리얼 번호를 나타내는 스트링 Descriptor의 인덱스
17	bNumConfigurations	1	숫자	가능한 설정의 번호

옵셋	U E	크기	괎	ив
0	bLength	1	숫자	Descriptor의 크기
1	bDescriptorType	1	상수	디바이스 Descriptor 형태
2	bcdUSB	2	BCD	BCD형태로 이루어진 발표 번호
4	bDeviceClass	1	클래스	클래스 코드
5	bDeviceSubClass	1	서브클래스	서브클래스 코드
6	bDeviceProtocol	1	프로토콜	프로토콜 코드
7	bMaxPacketSized()	1	숫자	Endpoint 0를 위한 최대 패킷의 크기
8	idVendor	2	1D	Vendor ID
10	idProduct	2	ID	Product ID
12	bcdDevice	2	BCD	BCD으로 나타낸 디바이스 릴리즈 번호
14	iManufacturer	1	인덱스	제조자를 나타내는 스트링 Descriptor의 인 덱스
15	iProduct	1	인덱스	생산자를 나타내는 스트링 Descriptor의 인 덱스
16	iSerialNumber	1	인덱스	디바이스의 시리얼 번호를 나타내는 스트링 Descriptor의 인덱스
17	bNumConfigurations	1	숫자	가능한 설정의 번호

Size	12
Туре	01
Release num	10 01
Class Code	00
Sus-Class //	00
Protocol //	00
Packet Size	08
Vendor ID	2C 1A
Product ID	2A 0B
Release ver	10 01
String index	01
String index	02
String index	00
Config num	01

Vendor ID & Product ID

```
1a1d Veho
0407 Mimi WiFi speakers
1a25 Amphenol East Asia Ltd.
1a2a Seagate Branded Solutions
1a2c China Resource Semico Co., Ltd
0021 Keyboard
0024 Multimedia Keyboard
1a32 Quanta Microsystems, Inc.
0304 802.11n Wireless LAN Card
1a34 ACRLX
0802 Gamepad
1a36 Biwin Technology Ltd
```

이 값이 무엇이냐에 따라 OS에 인식되는 장치명과 사용되는 Device Driver가 달라짐

http://www.linux-usb.org/usb.ids

buy a VID?

You can buy the right to use a single VID from the usb.org. They charge \$2000 for this, but this is a one-time fee. This gives you 65536 PID numbers, more than enough for the rest of your life. Check Getting a Vendor ID on the usb.org website for this option.

Vendor ID & Product ID

טו פכט	Databa	136						
Search for	USB device	s with Vendor ID, Product ID and/or Name:						
Vendor ID:	Ox	0x1A2C						
Product ID	: Pro	oduct						
Name:	Na	me						
	۵	Search						
Search Res	nulto:							
Searchikes	sulls.							
VID	Product ID	Name	Comment					
vendor ID		Obine December Commission On 1144	2					
0x1A2C		China Resource Semico Co., Ltd						
	0x0021	China Resource Semico Co., Ltd Keyboard						
0x1A2C	0x0021 0x0024							

http://www.the-sz.com/products/usbid/index.php?v=0x1A2C

Navigator									
Description		Txns	Bytes						
▶ Unconfigured Device	e (0) (BusIdx:0)	7	34						
■ USB Keyboard (17) (145	81:						
Z Default End	lpoint (EP 0)	143	799						
△ 🕸 Cfg 1, Bus	Powered, 98mA	2	16						
▷ IF 0 (al	t 0), HID, Boot Interface, Keyboard	2	16						
	t 0), HID, None, None	0	(
Statistics Enumeration									
■ Device Descriptor	Ra	adix: auto ▼							
bLength	18 (0x12)								
bDescriptorType	DEVICE (0x01)								
bcdUSB	1.1 (0x0110)								
bDeviceClass	Defined in Interface (0x00)								
bDeviceSubClass	0x00								
bDeviceProtocol	0x00	0x00							
bMaxPacketSize0	8 (0x08)								
idVendor	6700 (0x1a2c)								
idProduct	2858 (0x0b2a)								
bcdDevice	1.1 (0x0110)								
iManufacturer	1 (0x01)								
iProduct	USB Keyboard (0x02)								
iSerialNumber	(0x00)								
bNumConfigurations	1 (0x01)		1						

Configuration Descriptor

- Get Device Descriptor
- Set Address
- Get Device Descriptor
- Get Configuration Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Device Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Set Configuration
- Get String Descriptor
- Get String Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor

-다섯 모두 동일(string과 같은 이유)

- -인터페이스의 개수 정보 제공
- -파워 공급 방법을 기술함

Configuration Descriptor

- Get Device Descriptor
- Set Address
- Get Device Descriptor
- Get Configuration Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Device Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Set Configuration
- Get String Descriptor
- Get String Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor

Details																		5	X
Offset	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	ASCII		
0x0000	09	02	3B	00	02	01	00	A0	31	09	04	00	00	01	03	01	··; ·····1·····		
0x0010	01	00	09	21	10	01	00	01	22	36	00	07	05	81	03	80	· · · · i · · · · 6 · · · · · · ·		
0x0020	00	0A	09	04	01	00	01	03	00	00	00	09	21	10	01	00	· · · · · · · · · · · · i · · · ·		
0x0030	01	22	32	00	07	05	82	03	08	00	0A						-"2		

옵셋	# =	וכב	값	ив
0	bLength	1	숫자	Descriptor의 크기
1	bDescriptorType	1	상수	설정 Descriptor 형태
2	wTotalLength	2	숫자	이 설정에서의 반환되는 데이터의 전체크기
4	bNumberInterfaces	1	숫자	이 설정에서 지원되는 인터페이스의 수
5	bConfigurationValue	1	숫자	SetConfiguration() 요청에 대해 인자로서 사용되는 값
6	iConfiguration	1	인덱스	이 설정을 나타내는 스트링 Descriptor의 인덱스
7	bmAttribute	1	비트맵	설정 특성
8	MaxPower	1	mA	이 설정에서의 버스로부터의 USB 디바이스의 최 대 파워 소비량

Configuration Descriptor

그렇다면 뒤 쪽의 데이터 들은?

Interface Descriptor

- Class & SubClass 정보 제공
 - 해당 장치가 어떤 역할을 하는지 나타냄
- 한 장치 안에 여러 개의 Interface 존재 가능
 - 스마트폰:이동식 저장장치, adb 디버깅, 설치 CD 등

읍셋	# E	크기	괎	us
0	bLength	1	숫자	바이트로 나타낸 Descriptor의 크기
1	bDescriptorType	1	상수	인터페이스 Descriptor 형태
2	bInterfaceNumber	1	숫자	인터페이스의 수
3	bAlternateSetting	1	숫자	이전 필드에서 인터페이스 확인을 위해서 다른 셋팅을 선택하기 위해서 사용한 값
4	bNumEndpoints	1	숫자	이 인터페이스에 의해서 사용되는 Endpoint 수
5	bInterfaceClass	1	클래스	클래스 코드
6	bInterfaceSubClass	1	서브클래스	서브클래스 코드
7	bInterfaceProtocol	1	프로토콜	프로토콜 코드
8	iInterface	1	인덱스	이 인터페이스를 나타내는 스트링 Descriptor의 인덱스

Class & SubClass

Interface(0) Descriptor: 09 04 00 00 01 03 01 01 00

	I	T
Base	Descriptor	Description
Class	Usage	
00h	Device	Use class information in the Interface Descriptors
01h	Interface	Audio
02h	Both	Communications and CDC Control
03h	Interface	HID (Human Interface Device)
05h	Interface	<u>Physical</u>
06h	Interface	<u>Image</u>
07h	Interface	<u>Printer</u>
08h	Interface	Mass Storage
09h	Device	Hub
0Ah	Interface	CDC-Data
0Bh	Interface	Smart Card
0Dh	Interface	Content Security
0Eh	Interface	<u>Video</u>
0Fh	Interface	Personal Healthcare
10h	Interface	Audio/Video Devices
11h	Device	Billboard Device Class
12h	Interface	USB Type-C Bridge Class
DCh	Both	<u>Diagnostic Device</u>
E0h	Interface	Wireless Controller
EFh	Both	Miscellaneous
FEh	Interface	Application Specific
FFh	Both	Vendor Specific

Subclass Codes

Subclass Code	Description
0	No Subclass
1	Boot Interface Subclass
2 - 255	Reserved

http://www.rennes.supelec.fr/ren/fi/elec/docs/usb/hid1_11.pdf

0x03: HID

0x01: Boot Interface

Interface Descriptor

■ Interface Descriptor		Radix:	auto 🔻
bLength	9 (0x09)		
bDescriptorType	INTERFACE (0x04)		
bInterfaceNumber	0x00		
bAlternateSetting	0x00		
bNumEndpoints	1 (0x01)		
bInterfaceClass	Human Interface Device (0x03)		
bInterfaceSubClass	Boot Interface (0x01)		
bInterfaceProtocol	Keyboard (0x01)		
iInterface	(0x00)		

Interface(0) Descriptor

■ Interface Descriptor		Radix:	auto 🔻
bLength	9 (0x09)		
bDescriptorType	INTERFACE (0x04)		
bInterfaceNumber	1 (0x01)		
bAlternateSetting	0x00		
bNumEndpoints	1 (0x01)		
bInterfaceClass	Human Interface Device (0x03)		
bInterfaceSubClass	None (0x00)		
bInterfaceProtocol	None (0x00)		
iInterface	(0x00)		

Interface(1) Descriptor

Endpoint Descriptor

- 실질적인 데이터가 오가는 통로
- Endpoint Descriptor 역시 여러 개가 될 수 있음
- Transfer Type 정보 제공
 - Control, Interrupt, Bulk, Isochronous
- 파이프라고 부르기도 함

옵셋	필드	크기	값	us i
0	bLength	1	숫자	Descriptor의 크기
1	bDescriptorType	1	상수	Endpoint Descriptor의 형태
2	bEndpointAddress	1	Endpoint	Endpoint의 주소
3	bmAttribute	1	비트맵	Endpoint의 특성
4	wMaxPacketSize	2	숫자	설정이 선택될 때 송수신 최대 패킷 크기
6	bInterval	1	숫자	데이터 전송을 위한 폴링 Endpoint를 위한 간격

Transfer Type

Interrupt

- Function에서 Host에 주기적으로 소량의 데이터를 입력하는 경우에 적합
- 키보드/마우스 등

Contol

- 디바이스가 설정 정보 등을 호스트에 전송할 때 사용
- 혹은 호스트가 디바이스로 새로운 설정 정보 전송

Bulk

- 대량의 데이터 고속 전송
- 신뢰성이 요구되는 경우에 적합
- EX> USB 이동식 저장장치

Transfer Type

Isochronous

- 등시성 전송
- _ 일정 주기에 일정량의 데이터를 전송하고자 할 때 적합
- 다른 전송모드에 비해 높은 우선 순위
- 데이터 전송 폭과 전송 시간을 보장
- 실시간 어플리케이션에 적합
 - 예> CCTV 영상, 오디오 스트리밍
- 데이터 오류 보장은 X → 오류 시 재전송 요청 불가

Interface & Endpoint Descriptor

■ Endpoint Descriptor	Radix: auto ▼
bLength	7 (0x07)
bDescriptorType	ENDPOINT (0x05)
bEndpointAddress	1 IN (0x81)
bmAttributes.TransferType	Interrupt (0x3)
bmAttributes.Reserved0	0x00
wMaxPacketSize	8 bytes (1 transaction per microframe if HS) (0x0008)
bInterval	LS/FS:10ms HS:64ms (0x0a)

Endpoint(1) Descriptor

■ Endpoint Descriptor	Radix: auto ▼	
bLength	7 (0x07)	
bDescriptorType	ENDPOINT (0x05)	
bEndpointAddress	2 IN (0x82)	
bmAttributes.TransferType	Interrupt (0x3)	
bmAttributes.Reserved0	0x00	
wMaxPacketSize	8 bytes (1 transaction per microframe if HS) (0x0008)	
binterval	LS/FS:10ms HS:64ms (0x0a)	

Endpoint(2) Descriptor

* Endpoint(0)은 기본으로 존재하는 Endpoint로서, Control packet들을 처리하는 역할을 함

USB Descriptor Hierarchy

USB Descriptor Hierarchy

USB Stack Fuzzing

USB Fuzzing 위한 준비물

- Fuzzing 대상
 - USB Host stack (OS kernel)
 - File system parser (OS kernel)
- Hardware requirement: USB OTG port
- Software requirement : Customizable USB Device source code

Hardware: OrangePi series

Hardware: OrangePi series

- Support USB Host & Device port (OTG)
- Support UART port for debug console
- Support Linux and Android software
- Support WIFI
- ETC...

Software: Linux USB Gadget

- USB Device function들을 구현해 놓은 커널 모듈들
- Supports USB Serial, USB Ethernet, USB Printer, USB Mass-storage and etc...
- Kernel/drivers/usb/gadget/*

```
root@orangepi:~# ls -al /lib/modules/3.4.103/kernel/drivers/usb/gadget
total 5108
drwxr-xr-x 2 root root
                         4096 Mar 11
                                      2016 .
drwxr-xr-x 8 root root
                         4096 Mar 11
                                      2016 ...
-rw-r--r-- 1 root root 410739 Mar 11
                                      2016 g acm ms.ko
                                      2016 g audio.ko
-rw-r--r-- 1 root root 247163 Mar 11
                                      2016 g cdc.ko
-rw-r--r-- 1 root root 382175 Mar 11
                                      2016 g dbgp.ko
-rw-r--r-- 1 root root 183304 Mar 11
-rw-r--r-- 1 root root 406915 Mar 11
                                      2016 g ether.ko
-rw-r--r-- 1 root root 488028 Mar 11
                                      2016 g ffs.ko
-rw-r--r-- 1 root root 213017 Mar 11
                                      2016 g fuzz.ko
                                      2016 g hid.ko
-rw-r--r-- 1 root root 224254 Mar 11
-rw-r--r-- 1 root root 331832 Mar 11
                                      2016 g mass storage.ko
-rw-r--r-- 1 root root 206815 Mar 11
                                      2016 g midi.ko
                                      2016 g multi.ko
-rw-r--r-- 1 root root 604670 Mar 11
-rw-r--r-- 1 root root 331664 Mar 11
                                      2016 g ncm.ko
                                      2016 g printer.ko
-rw-r--r-- 1 root root 188169 Mar 11
-rw-r--r-- 1 root root 291227 Mar 11
                                      2016 g serial.ko
-rw-r--r-- 1 root root 280383 Mar 11
                                      2016 g webcam.ko
                                      2016 g zero.ko
-rw-r--r-- 1 root root 200463 Mar 11
-rw-r--r-- 1 root root 194569 Mar 11
                                      2016 gadgetfs.ko
root@orangepi:~#
```

Fuzzing Target

- 디바이스가 호스트로 전송하는 정보들
- USB Descriptors Fuzzing
 - Device descriptors
 - Configuration descriptors
 - Interface descriptors
 - Endpoint descriptors
 - Etc...
- File System Fuzzing
 - Using Mass-storage gadget
 - Mutation variety file-system image

Descriptor Fuzzer 구현 방법

- Build kernel for orange-pi mini
- Modify Kernel-Level USB gadget source code for fuzzing
- Implement User-Level Fuzzer using python
 - Make mutated image or descriptors for fuzzing
 - Load Gadget module using 'modprobe' command
 - Wait for enumeration done
 - Unload gadget module using 'modprobe -r' command
 - Repeat these
- Mutation methods
 - Evil payloads DB for fuzzing
 - Using radamsa (mutation tool by google, need to cross-compile)

USB Fuzzer의 구성

- USB descriptor Fuzzing
 - descfuzz.py
 - g_fuzz.ko
 - usbfuzz.c
- File System Fuzzing
 - fsfuzz_radamsa.py
 - fsfuzz_fuzzdb.py
 - g_mass_storage.ko


```
#!/usr/bin/python
import sys
import os
import time

def main(argv):
    while True:
        # create descriptors
        os.system('./usbfuzz')
        descFile = '/tmp/fuzz.desc'
        strDescFile = '/tmp/strFuzz.desc'

        os.system('modprobe g_fuzz descFile=' + descFile + ' strDescFile=' + strDescFile)
        time.sleep(5)
        os.system('modprobe -r g_fuzz')

if __name__ == "__main__":
        main(sys.argv)
```

descfuzz.py

- g_fuzz,ko
 - USB descriptor Fuzzing을 위한 특수 gadget
 - User level의 descriptor 파일을 Parsing하여 usb gadget의 descriptor 데이터를 생성
 - Usage:
 modprobe g_fuzz.ko descFile=<descriptor
 binary file> strDescFile=<string descriptor
 binary file>

g_fuzz.ko - user defined descriptor parsing

```
1489 DescriptorParsingAndSetting(char *buffer, int size)
        int len, functionIndex, configIndex, interfaceIndex, endpointIndex, offset = 0;
        int functionSize = 0, num;
        memcpy(&device_desc, &buffer[*], sizeof(device_desc));
        offset += sizeof(struct usb device descriptor);
        if (device desc.bNumConfigurations == **)
            descFile = NULL;
        num = device_desc.bNumConfigurations + 1;
        config desc = vzalloc(sizeof(struct usb config descriptor)*num);
        intf_desc = vzalloc(sizeof(struct usb_interface_descriptor*)*num);
        fs_ep_desc = vzalloc(sizeof(struct usb_endpoint_descriptor**)*num);
        hs_ep_desc = vzalloc(sizeof(struct usb_endpoint_descriptor**)*num);
        fs fuzzer function = vzalloc(sizeof(struct usb descriptor header**)*num);
        hs_fuzzer_function = vzalloc(sizeof(struct usb_descriptor_header**)*num);
        for (configIndex = 0; configIndex < device desc.bNumConfigurations; configIndex++)</pre>
            memcpy(&config_desc[configIndex], &buffer[offset], sizeof(struct usb_config_desc
   riptor));
            offset += sizeof(struct usb_config_descriptor);
            if (config desc[configIndex].bNumInterfaces == 0) continue;
            num = config_desc[configIndex].bNumInterfaces + 1;
            intf_desc[configIndex] = vzalloc(sizeof(struct usb_interface_descriptor)*num);
            fs ep desc[configIndex] = vzalloc(sizeof(struct usb endpoint descriptor*)*num);
```

```
hs_ep_desc[configIndex] = vzalloc(sizeof(struct usb_endpoint_descriptor*)*num);
             functionSize = config desc[configIndex].bNumInterfaces;
             for (interfaceIndex = 0; interfaceIndex < config_desc[configIndex].bNumInterface</pre>
    s; interfaceIndex++)
1541
1542
                 memcpy(&intf desc[configIndex][interfaceIndex], &buffer[offset], sizeof(stru
       usb interface descriptor));
                 offset += sizeof(struct usb_interface_descriptor);
                 if (intf_desc[configIndex][interfaceIndex].bNumEndpoints == **D) continue;
                 num = intf_desc[configIndex][interfaceIndex].bNumEndpoints + 1;
                 fs_ep_desc[configIndex][interfaceIndex] = vzalloc(sizeof(struct usb_endpoint)
     descriptor)*num);
                 hs_ep_desc[configIndex][interfaceIndex] = vzalloc(sizeof(struct usb_endpoint
     descriptor)*num);
                 functionSize += intf_desc[configIndex][interfaceIndex].bNumEndpoints;
                 for (endpointIndex = #; endpointIndex < intf_desc[configIndex][interfaceInde]</pre>
     x].bNumEndpoints; endpointIndex++)
                     memcpy(&fs_ep_desc[configIndex][interfaceIndex][endpointIndex], &buffer[
    offset], sizeof(struct usb_endpoint_descriptor));
                     memcpy(&hs_ep_desc[configIndex][interfaceIndex][endpointIndex], &buffer[
    offset], sizeof(struct usb endpoint descriptor));
                     offset += sizeof(struct usb_endpoint_descriptor);
             functionIndex = 0;
             functionSize += 2;
```

g_fuzz.ko - Load String Descriptors

```
1602 static void
1603 StringDescriptorLoading(char *buffer, int size)
1604 {
1605
         int offset, len, idx;
         char *pbuf;
1606
1607
         pbuf = buffer;
1608
         for (idx = 0; (idx < 255) && ((int)pbuf < (int)buffer + size); idx++)
1609
1610
1611
             strings[idx].id = pbuf[@];
1612
             len = strlen(pbuf+1);
1613
             strings[idx].s = vzalloc(len+1);
1614
             strcpy(strings[idx].s, pbuf+1);
1615
             pbuf += len+2;
1616
1617
         strings[idx].id = 0;
         strings[idx].s = NULL;
1618
1619 }
```

- usbfuzz.c
 - Make abnormal usb descriptors
 - Storing random values to descriptor fields

File System Fuzzing

Implement: fsfuzz_radamsa.py

```
#!/usr/bin/python
import sys
import os
import time
def main(argv):
    if len(sys.argv) != 2 :
        print argv[0], ' <image file>\n'
        sys.exit(1)
    if os.path.isfile(argv[1]) == False :
        print argv[1], ' file is not exist!\n'
        sys.exit(2)
   while True:
        # file mutation
        os.system('cat ' + argv[1] + '| radamsa > ' + argv[1] + '.fuzz')
        filefullpath = os.path.abspath(argv[1] + '.fuzz')
        os.system('modprobe g mass storage file=' + filefullpath + ' stall=0')
        time.sleep(3)
        os.system('modprobe -r g mass storage')
        #time.sleep(1)
        os.system('cp ' + filefullpath + ' fsbackup.fuzz')
if name == " main ":
   main(sys.argv)
```

Implement: fsfuzz_fuzzdb.py

```
#!/usr/bin/python
import sys
import os
import time
import fuzz db
def main(argv):
    index = 0
    if len(sys.argv) != 2 :
       print argv[0], ' <image file>\n'
        sys.exit(1)
    if os.path.isfile(argv[1]) == False :
        print argv[1], ' file is not exist!\n'
        sys.exit(2)
    payload = fuzz_db.get_payload()
    while True:
        # file mutation
        #os.system('cat ' + argv[1] + '| radamsa > ' + argv[1] + '.fuzz')
       os.system('cp ' + argv[1] + ' ' + argv[1] + '.fuzz')
        for fuzzstr in payload :
            file = open(argv[1], 'rb')
            content = file.read()
            file.close()
            file = open(argv[1] + '.fuzz', 'wb')
            content = content[:index] + fuzzstr + content[index+4:]
            file.write(content)
            file.close()
            filefullpath = os.path.abspath(argv[1] + '.fuzz')
            os.system('modprobe g mass storage file=' + filefullpath + ' stall=0')
            time.sleep(3)
            os.system('modprobe -r g mass storage')
            #time.sleep(1)
            os.system('cp ' + filefullpath + ' fsbackup.fuzz')
        index = index + 4
if name == " main ":
    main(sys.argv)
```

USB Fuzzer 실행 방법

- USB descriptor Fuzzer
 - just run "python descfuzz.py"
 - g_fuzz.ko : auto loading by descfuzz.py
 - usbfuzz: auto running by descfuzz.py

- File System Fuzzer
 - Radamsa ver : python fsfuzz_radamsa.py
 - Fuzz DB ver : python fsfuzz_fuzzdb.py

Crash Detection

- Host로부터의 응답이 살아 있는지를 체크
 - 오류 발생 시 Kernel Panic이 발생하기 때문
- 방법1: USB packet 응답을 체크
 - Kernel level에서 구현

- 방법2: Host OS에 간단한 echo TCP
 Server를 가동한 후, 응답이 오는지를 체크
 - User level에서 구현

Fuzzer 실행 화면

Multi-Media File Fuzzing

Fuzzing 방법

- Radamsa
 - Mutation tool by google
 - https://github.com/aoh/radamsa
- Dumb Fuzzing
 - 무작위 변조
 - Insert, Delete, Edit(Overwriting)
- Fuzz Payloads
 - Format String Bug
 - Buffer Overflow
 - Command Injection
 - ETC

Fuzzing 주요 코드

- Fuzzing 과정
 - 샘플 파일 선택
 - 샘플 파일 mutation
 - Radamsa
 - Dumb Fuzzing
 - Fuzz Payloads
 - 파일 재생
 - 재생 커멘드 이용
 - Crash 발생 확인
 - Crash 발생 파일 보관
 - Logging

```
def fuzz(output_folder, prefix, cases):
    cnt = 1
    len_chk = ""
    fileList = os.listdir("./sample")
    n = len(fileList)
   print "[+] Sample List : " + str(fileList)
   while cnt \leftarrow int(cases):
        samplefile = fileList[random.randrange(n)]
        fname, ext = os.path.splitext(samplefile)
        print "["+str(cnt)+"] Fuzzing Format : " + ext
       print "[+] Choose Sample File : " + samplefile
        case = Case(sampleTile, output_Tolder, preTix)
        cmd getPid = "pgrep kodi.bin"
       old pid = subprocess open(cmd getPid)
           print "[+] Mutate Sample File (Custom Mutate)
           filename = case.generateCaseAndWriteFile(cnt)
           print "[+] Play Media File "
           os.system('kodi-send --action="PlayMedia('pwd'/' + filename + ')"'
           time.sleep(4)
           print "[-] Mutate Error. Retry!!!! "
        new_pid = subprocess_open(cmd_getPid)
          rint "[+] pid : " + old_pid + "->" + new_pid
        if old_pid != new_pid :
           print "[+] Crash!!!! : " + filename
            old pid = new pid
            print "[-] Move Crash file \"./crash/\" Directory "
           os.system("mv " + filename + " ./crash/")
           time.sleep(8)
        else :
            print "[-] Remove File : " + filename
            os.system("rm " + filename )
```

Fuzzing 주요 코드

Dumb Fuzzing

```
def _mod_editBytes(self, offset=None, to_bytes=None):
    if offset = None: offset = self.__randOffset()
    if to_bytes == None:
        to_bytes = [self.random.randint(0,255) for _ in range( self.random.randint(0,255) )]
   for i in range(len(to_bytes)):
       self.modified[(offset+i) % self.lengthOfMod()] = to_bytes[i]
def _mod_deleteBytes(self, offset=None, length=None):
    if offset == None: offset = self.__randOffset()
   if length == None: length = self.random.randint(0,255)
if length + offset > self.lengthOfMod():
        length = (- offset) + self.lengthOfMod()
    for i in range(length):
        self.modified.pop(offset)
def _mod_insertBytes(self, offset=None, new_bytes=None):
    if offset == None: offset = self.__randOffset()
   if new_bytes == None:
    new_bytes = ''.join(chr(self.random.randint(0,255))) for _ in range(
            self.random.randint(0,255) ))
    for b in new_bytes[::-1]:
        self.modified.insert(offset,b)
```

```
def _mod_increaseBytes(self, offset=None, length=None, decint=None):
    if offset = None: offset = self._randOffset()
    if length = None: length = self.random.randint(0,255)
     if decint == None: decint = self.random.randint(-255,255)
    if (offset + length) > self.lengthOfMod():
         length = self.lengthOfMod() - offset
    for i in range(length):
         self.modified[offset+i] = (self.modified[offset+i] + decint + 256 ) % 256
def _mod_mutate(self, to_offset=None, from_offset=None, size=None):
     if to_offset == None: to_offset = self.__randOffset()
     if from_offset == None: from_offset = self.__randOffset()
     if size == None: size = self.random.randint(0,255)
    if to offset > from offset:
         to_offset - from_offset
     tmp = self.modified[from_offset:from_offset+size]
     for i in range(size):
         self.modified.pop(from_offset)
     for b in tmp[::-1]:
         self.modified.insert(to_offset,b)
```

Fuzz Payloads

```
def _mod_useFuzzPayloads(self, offset=None, payload=None):
    print "[-] Use Fuzz Payloads "
    if offset == None:
        offset = self.__randOffset()
    if payload == None:
        payload_file = os.listdir("./FuzzPayloads/")
        fp = open("./FuzzPayloads/" + payload_file[ self.random.randint(0, len(payload_file)-1) ], "rb")
        fuzzpayloads = fp.readlines()
        fp.close()
        payload = fuzzpayloads[ self.random.randint( 0, len(fuzzpayloads)-1) ]

for b in payload[::-1]:
        self.modified.insert(offset, b)

return True
```

Fuzzer 실행

python MediaFuzzRadamsa.py 1000

```
osmc@osmc06:~/MediaFuzz$ python MediaFuzzRadamsa.py 1000
[+] Total count: 1000
[+] Sample List: ['sample.amr', 'sample.ogg', 'sample.au', 'Enrique-Iglesias-Bailando-feat-Sean-Paul
', 'sample.m4a', 'sample.mka', 'Southern All Stars - I AM YOUR SINGER.m4a', 'SampleAudio 0.5mb.mp3',
mp3', 'sample.wma', 'sample.aiff']
[1] Fuzzing Format : .m4a
[+] Choose Sample File : sample.m4a
[+] Mutate Sample File (use Radamsa)
[+] Play Media File
Sending action: PlayMedia(/home/osmc/MediaFuzz/payloads/Radamsa-00000001.m4a)
[+] pid : 723
        ->723
[-] Remove File: Radamsa-00000001.m4a
[2] Fuzzing Format : .m4a
[+] Choose Sample File : sample.m4a
[+] Mutate Sample File (use Radamsa)
[+] Play Media File
Sending action: PlayMedia(/home/osmc/MediaFuzz/payloads/Radamsa-00000002.m4a)
[+] pid : 723
        ->723
```

Crash 확인 방법

Crash 발생

• 재생 전후 플레이어의 pid 확인

```
00:00:00 sudo -u osmc /usr/lib/kodi/kodi.bin --standalone -fs --lircdev /var/run/lirc/lircd
root
               292 0 17:13 ?
         18090 18089 60 17:13 ?
                                        00:00:15 /usr/lib/kodi/kodi.bin --standalone -fs --lircdev /var/run/lirc/lircd
osmc
[7] Fuzzing Format : .m4a
[+] Choose Sample File : sample.m4a
[-] Read sample.m4a
[-] OK. ext m4a, out payloads
[+] Mutate Sample File (Custom Mutate)
[-] Generated payloads/Custom_00000007.m4a.
[+] Play Media File
Sending action: PlayMedia(/home/osmc/MediaFuzz/payloads/Custom_00000007.m4a)
[+] pid : 18090
       ->18260
[+] Crash!!!! : payloads/Custom_00000007.m4a
[-] Move Crash file "./crash/" Directory
```

Fuzzing 결과

- Target Formats
 - aac, ac3, aiff, amr, au, flac, m4a, mid, mka, mp3, ogg, ra, voc, wav, wma

- Crash 발생 Formats
 - flac, m4a, mka, ra, wma

osmc@osmc03:~/MediaFuzz/crash\$ ls										
Custom_00000015.ra	Radamsa-00001335.m4a	Radamsa-00003051.m4a	Radamsa-00005600.m4a	Radamsa-00008380.m4a	Radamsa-00011745.m4a					
Custom_00000157.ra	Radamsa-00001358.m4a	Radamsa-00003095.wma	Radamsa-00005903.m4a	Radamsa-00008563.m4a	Radamsa-00011996.m4a					
Custom_00000315.wma	Radamsa-00001437.m4a	Radamsa-00004034.m4a	Radamsa-00005963.m4a	Radamsa-00008872.m4a	Radamsa-00012289.m4a					
Custom_00000360.mka	Radamsa-00001448.flac	Radamsa-00004508.m4a	Radamsa-00006502.wma	Radamsa-00008994.m4a	Radamsa-00012516.wma					
Radamsa-00000078.m4a	Radamsa-00001468.wma	Radamsa-00004529.m4a	Radamsa-00007035.m4a	Radamsa-00009432.m4a	Radamsa-00012626.mka					
Radamsa-00000291.m4a	Radamsa-00002209.m4a	Radamsa-00004733.m4a	Radamsa-00007058.m4a	Radamsa-00010071.wma						
Radamsa-00000322.m4a	Radamsa-00002374.m4a	Radamsa-00004994.m4a	Radamsa-00007259.m4a	Radamsa-00010251.m4a						
Radamsa-00000428.m4a	Radamsa-00002383.m4a	Radamsa-00005232.m4a	Radamsa-00007547.m4a	Radamsa-00010851.m4a						
Radamsa-00000590.m4a	Radamsa-00002677.m4a	Radamsa-00005524.m4a	Radamsa-00007621.m4a	Radamsa-00011444.m4a						
Radamsa-00001197.m4a	Radamsa-00003011.m4a	Radamsa-00005590.m4a	Radamsa-00008005.m4a	Radamsa-00011606.m4a						

결론

• USB 포트를 이용하여 대상 장비를 장악하는 것이 가능함

• USB를 공격하기 위한 방법은 USB Stack, File System, Multi-media file 등 다양함

• Fuzzing을 통해 USB 공격을 자동화할 수 있음

QNA

감사합니다!

기타 참고자료

```
btsnoop_hci.log
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

∨ Bluetooth HCI H4

    [Direction: Sent (0x00)]
   HCI Packet Type: ACL Data (0x02)
    .... 0000 0000 1011 = Connection Handle: 0x00b
    ...10 .... = PB Flag: First Automatically Flushable Packet (2)
    00.. .... .... = BC Flag: Point-To-Point (0)
   Data Total Length: 21
   [Connect in frame: 1732]
   [Source BD_ADDR: 00:00:00 00:00:00 (00:00:00:00:00:00)]
    [Source Device Name: Galaxy Note5]
   [Source Role: Master (1)]
    [Destination BD ADDR: 20:17:01:03:46:89 (20:17:01:03:46:89)]
    [Destination Device Name: GOOHONG]
    [Destination Role: Slave (2)]
    [Last Role Change in Frame: 1730]
    [Current Mode: Active Mode (0)]
   [Last Mode Change in Frame: 1959]
Bluetooth L2CAP Protocol
   Length: 17
   CID: Dynamically Allocated Channel (0x0041)
   [Connect in frame: 1771]
                             HCI Packet Type
    [Disconnect in frame: 2044]
    [PSM: RFCOMM (0x0003)]
                                 - HCI Command: 0x01 - 명령 전송 (from host)
Bluetooth RFCOMM Protocol
  > Address: E/A flag: 1, C/R fla
                                 - HCI Event : 0x04 - 결과, 상태값 전송 (to host)
  > Control: Frame type: Unnumber
   Payload length: 12
                                 - ACL Data : 0x02 - 데이터 전송 (both)
   Credits: 4
   Frame Check Sequence: 0x86
✔ Bluetooth SPP Packet
   Data: 2a6161616161616161616 * HCI: Host-Controller Interface
0010 61 61 61 61 61 61 61 86
                                                 aaaaaaaa a.
```

Control (btrfcomm,control), 1 byte

```
btsnoop_hci.log
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
🚄 🔳 🙆 🎯 📘 🖺 🛣 🙆 | 🤇 👄 \Rightarrow 鑒 쟑 👲 🕎 📗 | Q, Q, Q, 🏗
Apply a display filter ··· <Ctrl-/>

→ Bluetooth HCI H4

    [Direction: Sent (0x00)]
    HCI Packet Type: ACL Data (0x02)
✓ Bluetooth HCI ACL Packet
     .... 0000 0000 1011 = Connection Handle: 0x00b
    ...10 .... = PB Flag: First Automatically Flushable Packet (2)
    00.. .... BC Flag: Point-To-Point (0)
    Data Total Length: 21
    [Connect in frame: 1732]
    [Source BD_ADDR: 00:00:00 00:00:00 (00:00:00:00:00:00)]
    [Source Device Name: Galaxy Note5]
    [Source Role: Master (1)]
    [Destination BD_ADDR: 20:17:01:03:46:89 (20:17:01:03:46:89)]
    [Destination Device Name: GOOHONG]
    [Destination Role: Slave (2)]
    [Last Role Change in Frame: 1730]
    [Current Mode: Active Mode (0)]
    [Last Mode Change in Frame: 1959]

▼ Bluetooth L2CAP Protocol

    Length: 17
    CID: Dynamically Allocated Channel (0x0041)
    [Connect in frame: 1771]
    [Disconnect in frame: 2044]
    [PSM: RFCOMM (0x0003)]
Bluetooth RFCOMM Protocol
  > Address: E/A flag: 1, C/R flag: 1, Direction: 0, Channel: 1
  > Control: Frame type: Unnumbered Information with Header check (UIH) (0xef), P/F flag: 1
    Payload length: 12
    Credits: 4
    Frame Check Sequence: 0x86
 Pluetooth SPP Packet
    Pata: 2a61616161616161616161
0000 02 0b 20 15 00 11 00 41 00 0b ff 19 04 2a 61 61 .....A ....*aa
0010 61 61 61 61 61 61 61 86
                                                          aaaaaaaa a.

    Control (btrfcomm,control), 1 byte
```

```
btsnoop_hci.log
<u>File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help</u>
🧣 🔳 🔏 🔞 📜 🖺 🛣 🚳 | 약 🦛 \Rightarrow َ 🍜 🛧 💂 📗 | 약 약 약 약 약
Apply a display filter ··· < Ctrl-/>
Bluetooth HCI H4
    [Direction: Sent (0x00)]
    HCI Packet Type: ACL Data (0x02)
Bluetooth HCI ACL Packet
     .... 0000 0000 1011 = Connection Handle: 0x00b
    ...10 .... = PB Flag: First Automatically Flushable Packet (2)
     00.. .... - BC Flag: Point-To-Point (0)
    Data Total Length: 21
    [Connect in frame: 1732]
    [Source BD ADDR: 00:00:00 00:00:00 (00:00:00:00:00:00)]
    [Source Device Name: Galaxy Note5]
    [Source Role: Master (1)]
     [Destination BD ADDR: 20:17:01:03:46:89 (20:17:01:03:46:89)]
     [Destination Device Name: GOOHONG]
     [Destination Role: Slave (2)]
    [Last Role Change in Frame: 1730]
    [Current Mode: Active Mode (0)]
    [Last Mode Change in Frame: 1959]
Bluetooth L2CAP Protocol
    Length: 17
    CID: Dynamically Allocated Channel (0x0041
    [Connect in frame: 1771]
    [Disconnect in frame: 2044]
     [PSM: RFCOMM (0x0003)]
Bluetooth RFCOMM Protocol
  > Address: E/A flag: 1, C/R flag: 1, Direction: 0, Channel: 1
  > Control: Frame type: Unnumbered Information with Header check (UIH) (0xef), P/F flag: 1
    Payload length: 12
    Credits: 4
    Frame Check Sequence: 0x86
 Bluetooth SPP Packet
    Data: 206161616161616161616161
0000 02 0b 20 15 00 11 00 41 00 0b ff 19 04 2a 61 61 ......A ....*aa
0010 61 61 61 61 61 <del>61 61 61 61</del> 86
                                                           aaaaaaaa a.
     Control (btrfcomm,control), 1 byte
```

```
btsnoop_hci.log
<u>File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help</u>
Apply a display filter ··· < Ctrl-/>
Bluetooth HCI H4
    [Direction: Sent (0x00)]
    HCI Packet Type: ACL Data (0x02)

▼ Bluetooth HCI ACL Packet

    .... 0000 0000 1011 = Connection Handle: 0x00b
    ...10 .... = PB Flag: First Automatically Flushable Packet (2)
    00.. .... - BC Flag: Point-To-Point (0)
    Data Total Length: 21
    [Connect in frame: 1732]
    [Source BD ADDR: 00:00:00 00:00:00 (00:00:00:00:00:00)]
    [Source Device Name: Galaxy Note5]
    [Source Role: Master (1)]
    [Destination BD ADDR: 20:17:01:03:46:89 (20:17:01:03:46:89)]
    [Destination Device Name: GOOHONG]
    [Destination Role: Slave (2)]
    [Last Role Change in Frame: 1730]
    [Current Mode: Active Mode (0)]
    [Last Mode Change in Frame: 1959]
Bluetooth L2CAP Protocol
    Length: 17
    CID: Dynamically Allocated Channel (0x0041)
    [Connect in frame: 1771]
    [Disconnect in frame: 2044]
    [PSM: RECOMM (0x0003)]

▼ Bluetooth RFCOMM Protocol

  > Address: E/A flag: 1, C/R flag: 1, Direction: 0, Channel: 1
  > Control: Frame type: Unnumbered Information with Header check (UIH) (0xef), P/F flag: 1
    Payload length: 12
    Credits: 4
    Frame Check Sequence:

▼ Bluetooth SPP Packet

-- Data: 2a6161616161616161616161
0000 02 0b 20 15 0<del>0</del> 11 00 41 00 0b fff 19 04 2a 61 61 .....A ....*aa
0010 61 61 61 61 61 61 61 61 86
                                                         aaaaaaaa a.
     Control (btrfcomm.control), 1 byte
```

```
btsnoop_hci.log
<u>File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help</u>
🧣 🔳 🔏 🔞 📜 🖺 🛣 🚳 | 약 🦛 \Rightarrow َ 🍜 🛧 💂 📗 | 약 약 약 약 약
Apply a display filter ··· < Ctrl-/>
Bluetooth HCI H4
     [Direction: Sent (0x00)]
    HCI Packet Type: ACL Data (0x02)

▼ Bluetooth HCI ACL Packet

     .... 0000 0000 1011 = Connection Handle: 0x00b
     ...10 .... = PB Flag: First Automatically Flushable Packet (2)
     00.. .... = BC Flag: Point-To-Point (0)
    Data Total Length: 21
    [Connect in frame: 1732]
     [Source BD ADDR: 00:00:00 00:00:00 (00:00:00:00:00:00)]
     [Source Device Name: Galaxy Note5]
     [Source Role: Master (1)]
     [Destination BD ADDR: 20:17:01:03:46:89 (20:17:01:03:46:89)]
     [Destination Device Name: GOOHONG]
     [Destination Role: Slave (2)]
     [Last Role Change in Frame: 1730]
     [Current Mode: Active Mode (0)]
    [Last Mode Change in Frame: 1959]
Bluetooth L2CAP Protocol
    Length: 17
    CID: Dynamically Allocated Channel (0x0041)
    [Connect in frame: 1771]
     [Disconnect in frame: 2044]
     [PSM: RFCOMM (0x0003)]

▼ Bluetooth RFCOMM Protocol

  > Address: E/A flag: 1, C/R flag: 1, Direction: 0, Channel: 1
  > Control: Frame type: Unnumbered Information with Header check (UIH) (0xef), P/F flag: 1
     Payload length: 12
    Credits: 4
    Frame Check Sequence: 0x86

▼ Bluetooth SPP Packet

     Data: 2a61616161616161616161
0000 <u>02 0b 20 15 00 11 00 41 00</u> 0b ff 19 04 2a 61 61
                                                            .. ....A ..<mark>.</mark>..*aa
     61 61 61 61 61 61 61 61 86
                                                            aaaaaaaa a.

    Control (btrfcomm.control), 1 byte
```

- Bluetooth Radio
 - 무선 주파수 통신 구간
- LC (Link Control)
 - 흐름 제어, 확인 응답(ACK), 재전송 요청
- LMP (Link Manager Protocol)
 - 장치간 링크 생성 및 해제
 - 인증, 암호화
 - 전원 관리

- HCI: Host Controller Interface
 - CPU와 Bluetooth IC 사이를 연결
 - host stack (CPU, OS)
 - the controller (Bluetooth 모듈)
 - UART, USB 및 PCMCIA로 연결

- L2CAP
 - 논리적인 연결 생성
 - Multiplexing (다중화)
 - 데이터의 용도 구분
 - Segmentation and reassembly
 - 패킷 조각화/복구
 - QoS management
 - TCP 레이어의 역할

- RFCOMM
 - 시리얼 프로토콜 에뮬레이팅
 - Data stream 전달

- SDP
 - Service discovery protocol
 - 장치에서 제공하는 기능(프로파일)들에 대한 정보 제공

- OBEX
 - Object Exchange
 - Data Object 교환
 - 블루투스 프로파일 중 하나

SDP Packet

```
btsnoop_hci (3).log
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
🚄 🔳 🙆 🔞 📜 🖺 🔀 🌠 🔍 👄 📦 警 죩 👲 🕎
Apply a display filter ··· < Ctrl-/>
         Time
                       Source
                                             Destination
                                                                  Protocol Length Info
                       controller
                                                                              8 Rcvd Number of Completed Packets
      71 5,116957
                                             host
                                                                  HCI EVT
      72 5.154534
                       20:17:01:03:46:89 (... localhost ()
                                                                  L2CAP
                                                                             19 Rcvd Configure Response - Success (SCID: 0x004f)
                       20:17:01:03:46:89 (... localhost ()
      73 5.174329
                                                                  L2CAP
                                                                             21 Rcvd Configure Request (DCID: 0x004f)
                       localhost ()
                                            20:17:01:03:46:89
      74 5.176741
      75 5.176983
                       localhost ()
                                            20:17:01:03:46:89 (... SDP
                                                                             29 Sent Service Search Attribute Request : L2CAP: Attribute Range (0x0000 - 0xffff)
      76 5.180748
                       controller
                                            host
                                                                  HCI EVT
                                                                              8 Rcvd Number of Completed Packets
                                                                             57 Rcvd Service Search Attribute Response (fragment)
      77 5.217241
                       20:17:01:03:46:89 (... localhost ()
      78 5,219803
                       localhost ()
                                            20:17:01:03:46:89
                                                               (... SDP
                                                                             31 Sent Service Search Attribute Request: L2CAP: Attribute Range (0x0000 - 0xffff)
      79 5.273926
                       20:17:01:03:46:89 (... localhost ()
                                                                             42 Rcvd Service Search Attribute Response
      80 5.274941
                       localhost ()
                                            20:17:01:03:46:89
      81 5.293432
                       controller
                                            host
                                                                  HCI EVT
                                                                              8 Rcvd Number of Completed Packets
      82 5.330836
                       20:17:01:03:46:89 (... localhost ()
                                                                  L2CAP
                                                                             17 Rcvd Disconnection Response (SCID: 0x004f, DCID: 0x0043, PSM: 0x0001, Service: SDP)
                                            controller
      83 9.333077
                       host
                                                                  HCI CMD
                                                                              7 Sent Disconnect
      84 9.336034
                       controller
                                            host
                                                                  HCI EVT
                                                                              7 Rcvd Command Status (Disconnect)
      85 9.418455
                       controller
                                                                  HCI EVT
                                                                              7 Rcvd Disconnect Complete
                                            host

→ Data Element: Unsigned Integer 4 bytes

                              0000 1... = Data Element Type: Unsigned Integer (1)
                              .... .010 = Data Element Size: 4 bytes (2)
                           ∨ Data Value
                                Service Record Handle: 0x00010000
                    ✓ Service Attribute: Service Class ID List (0x1), value = Serial Port
                       > Attribute ID: Service Class ID List
                      v Value
                         ∨ Data Element: Sequence uint8 3 bytes
                              0011 0... = Data Element Type: Sequence (6)
                              .... .101 = Data Element Size: uint8 (5)
                              Data Element Var Size: 3

→ Data Value

      36 00 3c 36 00 39 09 00 00 0a 00 01 00 00 09 00
                                                          6.<6.9.. ......
      01 35 03 19 11 01 09 00 04 35 0c 35 03 19 01 00
                                                           .5...... .5.5....
                                                                                       Frame 79: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)
      35 05 19 00 03 08 01 09 00 06 35 09 09 65 6e 09
                                                          5...... ..5..en.
                                                                                       Bluetooth
0030 00 6a 09 01 00 09 01 00 25 05 44 65 76 20 42
                                                           .j..... %.Dev B
                                                                                       Bluetooth HCI H4
                                                                                       Bluetooth HCI ACL Packet
Frame (42 bytes)
               Reassembled SDP (63 bytes)
O Z Service Attribute (btsdp,service_attribute), 8 bytes
                                                                                       Bluetooth L2CAP Protocol
                                                                                       Bluetooth SDP Protocol
```

Get String Descriptor

- Get Device Descriptor
- Set Address
- Get Device Descriptor
- Get Configuration Descriptor
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get Device Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Set Configuration
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get Configuration Descriptor
- Get Configuration Descriptor
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor : Get Header
- Get String Descriptor: "USB Keyboard"
- Get Report Descriptor

The First "Get String Descriptor" Packet

Identifier	Language
0x1404	Chinese (Macau SAR)
0x041a	Croatian
0x0405	Czech
0x0406	Danish
0x0413	Dutch (Netherlands)
0x0813	Dutch (Belgium)
0x0409	English (United States)
0x0809	English (United Kingdom)
0x0c09	English (Australian)

http://www.usb.org/developers/docs/USB_LANGIDs.pdf

기타: Report Descriptor

- Get Device Descriptor
- Set Address
- Get Device Descriptor
- Get Configuration Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Device Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Set Configuration
- Get String Descriptor
- Get String Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Configuration Descriptor
- Get Configuration Descriptor
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor
- Set Output Report
- Input Report
- Get String Descriptor
- Get String Descriptor
- Get Report Descriptor

HID 관련 정보 제공 자세한 정보: http://www.rennes.supelec.fr/ren /fi/elec/docs/usb/hid1_11.pdf

Details																	₽×
Offset	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	ASCII
0x0000	05	0C	09	01	A1	01	85	01	19	00	2A	3C	02	15	00	26	*<&
0x0010	3C	02	95	01	75	10	81	00	C0	05	01	09	80	A1	01	85	<u< th=""></u<>
0x0020	02	19	81	29	83	25	01	75	01	95	03	81	02	95	05	81	···) -% -u ·····
0x0030	01	C0															