

Analyze & Improving of Satellite Data Transmission, Based on DVB-RCS

Ali Taatian

Supervisor:
Dr. B. V. Vahdat

January 2005

A quick overview!

- First, I introduce DVB technology and its technical aspects.
- **Second**, I describe interactive DVB systems with focus on IP over DVB.
- **Third**, I introduce DVB-RCS, as one of DVB standards on interactive systems
- At last, I introduce a system design for an IP client-server network based on DVB technology as downlink format.

DVB project

- DVB project started at Sep 10,1993 with 84 European authorities to make a standard on DTV
- Three main activities:
 - Promotion of technical DTV standards
 - Introduction of new services
 - Make the research ,development and standards, closer
- ITU
- ISO/IEC
- CENELEC
- EBU
- **■** JTC
- DAVIC (Digital Audio-Video Council)

The World of Digital Television

Source coding: mpeg2

- We have three main kind of stream for broadcast: Video, Audio, Data
- Video and audio need to be compressed
- Then all of them will be multiplexed in order to transmit
- We use stuffing bits or NULL packets to have constant bit rate

```
< 0.384 Mbps
                                     (MPEG-4)
               Video conference
                                     (MPEG-1)
  <1.5 Mbps
               Video in a window
               VHS quality full screen (MPEG-2)
   1-2 Mbps
   2-3 Mbps
               Broadcast NTSC
                                     (MPEG-2)
                                     (MPEG-2)
   4-6 Mbps
               Broadcast PAL
  8-10 Mbps
               Professional PAL
                                     (MPEG-2)
 12-20 Mbps
               Broadcast HDTV
                                     (MPEG-2)
                                    (MPEG-2 Transport)
27.5-40 Mbps
               DVB satellite multiplex
 32-40 Mbps
               Professional HDTV
                                     (MPEG-2):
 34-50 Mbps
               Contribution TV
                                     (MPEG-2-I)
   140 Mbps
               Contribution HDTV
                                     (MPEG-2-I)
   168 Mbps
               Raw NTSC
                                     (uncompressed)
   216 Mbps
               Raw PAL
                                     (uncompressed)
   270 Mbps
               Raw contribution PAL
                                     (uncompressed)
  1-1.5 Gbbs
               Raw HDTY
                                     (uncompressed)
```

Mpeg2 stream

- There exists two kinds of streams:
 - Program stream : a variable length stream which is suitable for storage media
 - Transport stream: a fixed length (188 bytes) stream which is suitable for broadcast

TS packet:

	188 bytes							
pac	nsport cket heade	er pay	load	header	payload	header	payload	
sync byte	transport error indicator	payload unit start indicator	transport priority	PID	transport scrambling control	adaptation field control	continuity counter	adaptation field
8	1	1	1	13	2			

Multiplex

Packetizing of Video & Audio: PES packets

Section format (private section)

PSI & SI & Descriptors

- PSI (Program Specific Information) carries parameters of the stream for decoder
 - Defined by MPEG2 standard
 - They are called tables which are inserted in TS packets as "section "
 - Like: PAT,PMT,CAT,NIT, Private sections (user defined)
- SI (Service Information) carries parameters of the streams and the whole network
 - Defined by DVB standard
 - All in Private section format
- Descriptors are data structures which come in Tables to present the parameters

PSI frame format

PAT

DVB transmission

- DVB satellite
- DVB cable
- DVB terrestrial
- A matter of physical layer!
- Modulation , channel (de)coding , ...

DVB-S encoding system

Code rate control

DVB-S

- Bandwidth
- Carrier frequency (for television)

Frequency range (GHz)	Restriction
2.52-2.655	С
11.7-12.2	1,3
12.2-12.5	1,2
12.5-12.7	2,3
12.7-12.75	3 c
21.4-22	1,3
40.5-42.5	
84-86	

Notes:

C=community reception only

1=Europe, Africa, former USSR, Mongolia

2=North and South America and Greenland

3=Asia(except Mongolia and former USSR), Australia and Southwest Pacific.

Interactive Services

- Using in pay-per-view, teletext, video on demand, Internet,...
- Out-of-Band & In-Band models
- Return channel via:
 - Cable (CATV)
 - PSTN/ISDN
 - Satellite (DVB-RCS)

Interactive system architecture

Data Broadcasting/DVB Protocols

DVB MPE Protocol Mapping

MPE

MPE has MAC address

A typical DVB downlink system

DVB-RCS (Return Channel via Satellite)

- ETSI EN 301 790 was published in Dec. 2000
- Downlink is an extension of DVB-S
- Uplink is RCS
- Now it is a turn-key solution for Internet access
- Alcatel's 9780 DVB-RCS product is a good example!

Reference model

Downlink & Uplink

Downlink:

- like DVB-S, data is in MPEG2 TS
- FLS (Forward Link Signaling): MPEG2 PSI + DVB SI + RCS specific Tables & descriptors + TS packets containing NCR

Uplink:

- It is Burst format: TRF, SYNC, ACQ, CSC
- The access method is MF-TDMA
- Turbo code ,QPSK

Uplink Burst

- TRF: for data
 - ATM or MPEG2

SYNC: for synchronization & sending control information

ACQ: for synchronization prior to connect to network

Namego packets

188 bytes MPEG2-TS ... 188 bytes MPEG2-TS

188 bytes MPEG2-TS ... 188 bytes MPEG2-TS

Rand. MPEG2-TS ... Rand. MPEG2-TS

Preamble Channel coding ... Channel coding

CSC:identifying RCST duringlogon

Capacity Request

- 🏿 2 way:
 - Using SAC (Satellite Access Control) field
 - In SYNK burst
 - As prefix of ATM TRF
 - Using DULM (Data Unit Labeling Method)
 - In ATM TRF or MPEG2 TRF in IEs (Information Element)

Return link resources

MF-TDMA: Static or Dynamic

- Resources:
 - Super frame
 - Frame
 - Timeslot

f	requency		Superfra	me_counter 237
	F_nb 5	F_nb F_nb	F_nb 7	
	F_nb	F_nb 3	F_nb 4	
	0	F_nb 1	F_nb 2	time

IP transmission

- Type A supports IP transmission
- Addressing: MAC address, logical address (group-ID, logon-ID)

protocol stack of signaling

protocol stack of IP

FLS

- General SI tables (for RCS):
 - **SCT**: gives super frame resources parameters
 - **FCT**: gives frame resources parameters
 - **TCT**: gives timeslot resources parameters
 - SPT: gives satellites position
 - CMT: as a feedback to RCSTs for physical parameters
 - **TBTP**: assigns timeslots to RCSTs
 - **TIM:** configure an RCST or entire network
- RMT: links RCSTs to appropriate FLS
- TS packets containing **NCR** (Network Clock Reference)
- RCS descriptors

RLS (Return Link Signaling)

RCST synchronization and Identification messages:

Forward: Message/DSM-CC and SI Section/MPEG2-TS/DVB-S

Return: Special bursts/Air Interface

Messages used: TIM (forward) - [DSM-CC] or TBTP [SI]

CMT (forward) - [SI]

CSC (return)

ACQ (return)

SYNC (return)

Configuration parameters between RCST and NCC (optional) :

Forward: SNMP/UDP/IP/DSM-CC/MPEG2-TS/DVB-S

Return: SNMP/UDP/IP/Traffic bursts/Air Interface

Messages: get-request [MIB variable] (forward)

get-next-request [MIB variable] (forward)

get-response [MIB variable, value] (return)

set-request [acknowledgement flag] (forward)

RLS (Return Link Signaling)

messages for network management (optional):

Forward: SNMP/UDP/IP/DSM-CC/MPEG2-TS/DVB-S

Return: SNMP/UDP/IP/Traffic bursts/Air Interface

Messages: get-request [MIB variable] (forward)

get-next-request [MIB variable] (forward)

get-response [MIB variable] (return)

set-request [MIB variable, value] (forward)

trap [MIB variable value, value] (return)

Burst time plan exchange:

Forward: Message/SI Table/MPEG2-TS/DVB-S

Return: Capacity requests (CR)/Air Interface

Messages: TBTP (forward)

CR (return)

Network Entry Signaling Flow

An innovative system

This is an internet access client-server (star) system with DVB as

Forward Channel

System Architecture

Client-side Design

- Microsoft BDA (Broadcast Driver Architecture), solves all the problems!
 - It has a "filter based" architecture.

- System is "return channel"-independent.
- IP/MAC resolve may be Static or Dynamic.
- We will use commercial DVB PCI receivers.
- We write BDA filters on PCI card

IP processing in BDA

Server-side design: it is more important!

- We decided to implement on Windows.
- Three main part in server:
 - Proxy
 - Packet redirector
 - IP encapsulator
- Proxy:
 - Any efficient is enough!
 - I used AnalogX for test:

Packet Redirector

- This part should redirect the IP traffic (from server to clients) to DVB transmitter.
- We should capture specific IP packets and send them to "IP encapsulator"
- Packet capture in Windows:
 - Packet Filtering API
 - It works in layer 3
 - But we can not dump all the packet content.
 - Packet dump is in layer 2: WinPcap API

Copy packets with WinPcap

- We used Microsoft DDK 2000, NDIS driver model to sniff IP packets.
- It is an MFC project using installed NDIS driver.
- So ,we copied all the specific packets and fill them in a buffer

Packet Drop

- We can not drop packets in WinPcap!
- So we should drop them in another computer! There ,we used Hook Filter model. It can be a kind of firewall.

IP Encapsulator What others have done?

- Only some drafts from University of Aberdeen (U.K.)
- Some commercial black-box as IP encapsulator

IP Encapsulator

- It is a C++ program, which takes data (IP packets) and produces TS packets.
- We make MPE sections and PAT, PMT, NIT & SDT tables & multiplex them & send them in TS packets
- The result is tested by Manzanita analyzers.
- We wrote the Demultiplexor for that and tested it with a sample from Norsat Co.

Initializing & IP/MAC resolution

- OOB model or IB model?
- Static or Dynamic resolve?

Other's works

SpecNET(Basamad Negar Co.)

suggestions

- Enhanced TCP/IP
- ULE (Ultra Lightweight Encapsulation)
- Stuffing bytes in TS makes bandwidth waste
- The IPEncapsulator code is in C++. So It can be run on other platforms.

Thanks for your consideration!

A&D

a_taatian@yahoo.com