Základy složitosti a vyčíslitelnosti NTIN090

Petr Kučera

2022/23 (12. přednáška)

Zjemnělá složitost

Složitost uvnitř P

- NP-úplnost je příliš hrubá pro studium složitosti problémů uvnitř třídy P
- Rozdíl mezi O(n) a O(n⁵)
- Někdy je i kvadratický čas příliš
 - velká data (big data)
- Zajímají nás dolní odhady složitosti problémů řešitelných v polynomiálním čase
- Netriviální nepodmíněné dolní odhady je velmi těžké dokázat
 - je-li to vůbec možné

Zjemnělá složitost

Podmíněné dolní odhady

- Dolní odhad složitosti je založen na široce přijímané hypotéze
- Používáme zjemnělou převoditelnost

Výpočetní model

RAM s logaritmickou cenou operací

Klíčové hypotézy

k-splnitelnost

k-KNF klauzule obsahují nejvýš *k* literálů

k-SAT

Instance: Formule φ v k-KNF na n proměnných.

Otázka: Je φ splnitelná?

Lze vyřešit v čase O(2ⁿn^k)

Silná hypotéza o exponenciálním čase

Pro každé $\delta>0$ existuje $k\geq 3$, pro něž platí, že k-SAT nelze vyřešit algoritmem se složitostí $O(2^{(1-\delta)n})$.

Strong Exponential Time Hypothesis (SETH)

Ortogonální vektory

ORTOGONÁLNÍ VEKTORY (OV)

Instance: Množiny A a B obsahující po n vektorech z $\{0,1\}^d$.

Otázka: Existují navzájem ortogonální vektory $a \in A$ a $b \in B$ (tj. $a[i] \cdot b[i] = 0$ pro všechna i = 1, ..., d)?

 Lze vyřešit v čase O(n²d) vypočtením skalárních součinů všech dvojic vektorů

Hypotéza o ortogonálních vektorech (OV)

OV nelze vyřešit v čase $O(n^{2-\delta}d^c)$ pro žádné δ , c > 0.

Nejkratší cesty mezi všemi dvojicemi vrcholů

Nejkratší cesty mezi všemi dvojicemi vrcholů (APSP)

Instance: Orientovaný graf *G* s *n* vrcholy a kladnými délkami hran.

Cíl: Pro každou dvojici vrcholů určit délku nejkratší cesty, která je spojuje.

Lze vyřešit v čase O(n³) Floydovým-Warshallovým algoritmem

Hypotéza o nejkratších cestách mezi všemi dvojicemi vrcholů

APSP nelze vyřešit v čase $O(n^{3-\delta})$ pro žádné $\delta > 0$.

3SUM

3SUM

Instance: Množina X s n celými čísly

Otázka: Platí a + b + c = 0 pro nějakou trojici $a, b, c \in X$?

Lze vyřešit v čase O(n²)

Hypotéza o 3SUM

3SUM nelze vyřešit v čase $O(n^{2-\delta})$ pro žádné $\delta > 0$.

Zjemnělá převoditelnost

Zjemnělá převoditelnost

Pro jednoduchost uvažujeme jen many-one převoditelnost.

Definice

Uvažme rozhodovací problémy A a B a funkce časové složitosti t_A a t_B . Zjemnělým převodem (A, t_A) na (B, t_B) míníme funkci $f: \Sigma^* \to \Sigma^*$ splňující následující vlastnosti:

- 1 Pro každý řetězec $x \in \Sigma^*$ platí $x \in A \iff f(x) \in B$
- 2 Pro každé $\varepsilon > 0$ existuje $\delta > 0$, pro něž platí

$$t_B(|f(x)|)^{1-\varepsilon} = O(t_A(|x|)^{1-\delta})$$

f(x) je vyčíslitelná v čase $O(t_A(|x|)^{1-\gamma})$ pro nějaké $\gamma > 0$

Použití zjemnělé převoditelnosti

- Mějme zjemnělý převod z (A, t_A) do (B, t_B)
- Předpokládejme algoritmus rozhodující B v čase $O(t_B(n)^{1-\varepsilon})$ pro nějaké $\varepsilon>0$
- Pak otázku, zda $x \in A$, umíme rozhodnout v čase

$$O(t_A(|x|)^{1-\gamma} + t_B(|f(x)|)^{1-\varepsilon})$$
= $O(t_A(|x|)^{1-\gamma} + t_A(|x|)^{1-\delta})$
= $O(t_A(|x|)^{1-\delta'})$

for some $\delta' > 0$

Zlepšení složitosti pro B implikuje zlepšení složitosti pro A.

SETH implikuje OV

SETH implikuje OV

Věta

Silná hypotéza o exponenciálním čase implikuje hypotézu o ortogonálních vektorech.

 Popíšeme zjemnělý převod k-SAT na problém Ortogonálních vektorů

Shoda s regulárním výrazem

Regulární výrazy

- Omezíme se na velmi jednoduché regulární výrazy
- Regulární výraz R reprezentuje množinu řetězců L(R)

Definice

Předpokládejme abecedu Σ .

- 1 Pro každý znak $c \in \Sigma$ je R = c regulární výraz s $L(R) = \{c\}$
- 2 Jsou-li R_1, R_2 regulární výrazy, pak
 - 1 $R = R_1 | R_2$ je regulární výraz s

$$L(R) = L(R_1) \cup L(R_2)$$

2 $R = R_1 \cdot R_2$ je regulární výraz s

$$L(R) = L(R_1) \cdot L(R_2) = \{uv \mid u \in L(R_1) \land v \in L(R_2)\}$$

Shoda podřetězce s regulárním výrazem

Shoda podřetězce s regulárním výrazem

Instance: Regulární výraz R a text $T \in \Sigma^*$.

Otázka: Obsahuje T podřetězec $t \in L(R)$?

Lze vyřešit v čase O(nm), kde n = |T| a m = |R|

Věta

Problém shody podřetězce s regulárním výrazem nelze vyřešit v čase $O((n+m)^{2-\varepsilon})$ pro žádné $\varepsilon>0$, pokud platí hypotéza o ortogonálních vektorech.

Vyčíslitelnost (NTIN064, doc. Antonín Kučera)

- Základy vyčíslitelnosti
 - Algoritmicky vyčíslitelné funkce, numerace, s-m-n věta
 - Základní vlastnosti rekurzivních a rekurzivně spočetných množin shrnutí
 - Věty o rekurzi a jejich aplikace
 - Produktivní a kreativní množiny a jejich vlastnosti
 - Efektivně neoddělitelné dvojice množin, Gödelovy věty o neúplnosti
- Relativní vyčíslitelnost
 - Relativní vyčíslitelnost, částečně rekurzivní funkcionály, Turingovská převeditelnost
 - Stupně nerozhodnutelnosti, operace skoku, relativizovaný halting problém
 - Limitní vyčíslitelnost
 - Aritmetická hierarchie, věta o hierarchii
 - Aplikace teorie vyčíslitelnosti

Složitost (NTIN063, doc. Ondřej Čepek)

- Turingovy stroje s orákulem
- Polynomiální hierarchie (definice pomocí orákulí a pomocí alternujicích kvantifikátorů, důkaz ekvivalence)
- Kvantifikované booleovské formule QBF a jejich úplnost pro PSPACE a Σ_i
- Nedeterministická hierarchie
- Log-space převoditelnost, P-úplnost a její důsledky
- Věta Szelepcsenyi-Immermana a NL = co-NL
- Neuniformní výpočetní modely radící funkce, booleovské obvody, třídy NC a P/poly, funkce s maximální velikostí obvodu.
- Pravděpodobnostní algoritmy třídy RP, co-RP, ZPP a BPP
- Redukce chyby pro BPP, BPP je v P/poly, BPP je v Σ₂
- NP-úplnost UNIQUE-SAT (pravděpodobnostní redukce)
- PCP věta (bez důkazu) a její využití pro neaproximovatelnost.

Rozhodovací procedury a SAT/SMT řešiče (NAIL094)

Rozhodovací procedury a SAT/SMT řešiče (NAIL094)

Pokud vás zajímá, jak řešit SAT prakticky ...