ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.2.3 **Резонанс токов**

Аннотация

Цель работы: Изучение параллельной цепи переменного тока, наблюдение резонанса токов **В работе используются:** лабораторный автотрансформатор (ЛАТР), разделительный понижающий трансформатор, ёмкость, дроссель с переменной индуктивностью, три амперметра, вольтметр, реостат, электронный осциллограф, омметр, мост переменного тока.

Теоретическая часть

В работе изучается параллельный контур, одна из ветвей которого содержит индуктивность L, другая — ёмкость C (см. рис. 1). Через r_l обозначено активное сопротивление катушки, которое включает в себя как чисто омическое сопротивление витков катушки, так и сопротивление, связанное с потерями энергии при перемагничивании сердечника катушки. Активным сопротивлением емкостной ветви контура можно пренебречь, т. к. используемый в работе конденсатор обладает малыми потерями.

Экспериментальная установка

Схема экспериментальной установки приведена на рис. 1. Напряжение от сети (220 В, 50 Γ ц) с помощью ЛАТРа через понижающий трансформатор Tp подаётся на параллельный контур, содержащий конденсатор ($C=120~\rm kk\Phi$) и катушку, индуктивность которой зависит от глубины погружения сердечника. Полный ток в цепи измеряется с помощью многопредельного амперметра A1; для измерения токов в L- и C-ветвях используются два одинаковых амперметра A2 и A3; напряжение на контуре контролируется электронным вольтметром V. Последовательно с контуром включён резистор r — реостат с полным сопротивлением $100~\rm Om$.

Рис. 1: Схема для исследования резонанса токов

Для наблюдения за сдвигом фаз между полным током и напряжением на контуре используется осциллограф. Сигнал, пропорциональный току, снимается с резистора г и подаётся на вход Y осциллографа. На вход X подаётся напряжение непосредственно с контура. При наличии сдвига фаз между этими напряжениями на экране виден эллипс, а при нулевом сдвиге фаз эллипс вырождается в прямую линию

Результаты измерений

Измерим зависимость I_1 , I_2 , I_3 ,(где I_1 , I_2 , I_3 - показания соответствующих амперметров) от положения сердечника х. δI_1 , $\delta I_2 = 10mA$, $\delta I = 5mA$, $\delta x = 1mm$

x, mm	I_1 , A	I_2 , A	I_3 , A
120	0.43	0.86	0.44
115	0.36	0.77	0.43
110	0.29	0.71	0.43
105	0.24	0.61	0.43
100	0.19	0.63	0.43
95	0.14	0.56	0.43
90	0.11	0.54	0.44
85	0.04	0.5	0.45
65	0.025	0.55	0.43
60	0.11	0.32	0.43
55	0.13	0.28	0.43
50	0.15	0.27	0.41
45	0.17	0.25	0.42
40	0.19	0.23	0.42
35	0.205	0.21	0.42
30	0.22	0.2	0.42
25	0.25	0.15	0.43

Зависимость I, I_c , I_L от x $I_1(x)$ $I_2(x)$ 8.0 $I_3(x)$ Кресты 0.6 **⋖** ~ 0.4 0.2 0.0 20 40 60 100 80 120 *x*, mm

Рис. 2: График зависимости показаний амперметров от положения сердечника

Измерим резонансные значения трёх токов и напряжение и убедимся с помощью осциллографа, что в резонансе полное сопротивление цепи чисто активное.

$$I_{1res} = (0.0625 \pm 0.0025)A \tag{1}$$

$$I_{2res} = (0.63 \pm 0.01)A \tag{2}$$

$$I_{2res} = (0.63 \pm 0.01)A \tag{3}$$

Измерим сопротивление катушки с помощью омметра:

$$r = (1,30 \pm 0,01)Om \tag{4}$$

Также при помощи RLC-метра измерим индуктивность катушки L и ее активное сопротивление r_a :

$$L = (75,55 \pm 0,001)mH \tag{5}$$

$$r_a = (1.87 \pm 0.01)Om \tag{6}$$

Оценим добротность через токи:

$$Q = \frac{I_{2res}}{I_{1res}} = 10,08 \pm 0,6 \tag{7}$$

$$\delta Q = Q * \sqrt{\left(\frac{\delta I_{2res}}{I_{2res}}\right)^2 + \left(\frac{\delta I_{1res}}{I_{1res}}\right)^2}$$
 (8)

Рассчитаем резонансное сопротивние r_{res} , учитывая что U=15B:

$$r_{res} = \frac{U}{I_{res}} = (240 \pm 14)Om$$
 (9)

$$\delta r_{res} = r_{res} * \sqrt{\left(\frac{\delta U}{U}\right)^2 + \left(\frac{\delta I_{res}}{I_{res}}\right)^2}$$
 (10)

2. Рассчитаем L_{res} через емкость C и частоту $\omega_0(\nu_0=50\Gamma {\rm H}),~{\rm a}~r_l$ - через емкость и добротность.

$$L_{res} = \frac{1}{\omega_0^2 C} = 84.5 mH \tag{11}$$

$$r_l = \frac{1}{\omega_0 CQ} = (2.65 \pm 0.14)Om \tag{12}$$

$$\delta r_l = r_l * \frac{\delta Q}{Q} \tag{13}$$

3. Рассчитаем индуктивность L_{res} через U и I_{lres} :

$$L_{res} = \frac{U}{\omega_0 I_{res}} = (75.8 \pm 1.2) mH \tag{14}$$

$$\delta L_{res} = L_{res} * \sqrt{\left(\frac{\delta U}{U}\right)^2 + \left(\frac{\delta I_{res}}{I_{res}}\right)^2}$$
(15)

4. Построим векторную диаграмму токов и напряжений Из диаграммы найдем:

$$r_L = \frac{U_{Lact}}{I_2} = 1.98Om \tag{16}$$

$$L_{res} = \frac{U_L react}{I_2} = 65.7mH \tag{17}$$

Выводы

Различными способами были измерены значения r_l , L. Была исследована зависимось общего тока, токов через катушку и конденсатор от положения сердечника, наблюдалось явление резонанса токов. Полученные сопротивления отличаются, что связано с тем, что активное сопротивление катушки включает в себя сопротивление, связанное с перемагничиванием сердечника катушки, а не только оммическое сопротивление витков катушки.

	Омметр	RLC-метр	f(Q)	$f(U_{res}, I_{lres})$	diagram
r_l , Om	1,3	1,87	2,65	-	1.98
L, mH	-	75,55	84,5	75,8	65.7