SummaryMachine learning is the science of getting computers to learn, without being explicitly programmed.

Supervised		
learning	Ston 1 Hymothesis	
Linear regression	Step 1. Hypothesis: $h_{\theta}(x)$	× × × × × × × × × × × × × × × × × × ×
regression	Step 2. Cost	x Pric
	$oldsymbol{m}$ $oldsymbol{m}$	×
	$J(\theta) = \frac{1}{2m} \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_i^2$	Size Size Size Size Size $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_2 x^2 + \theta_2 x^2 + \theta_2 x^2 + \theta_2 x^2$
	$\lim_{i=1}^{2m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{$	High bais (underfit) High bais (underfit) High variance (overfit)
	Step 3: Gradients	(overnit)
	$\begin{cases} \theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)} \\ \theta_j \coloneqq \theta_j \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}, j = 1, 2, 3,, n \end{cases}$	
Logistic regression	Step 1. Hypothesis: $\begin{cases} h_{\theta}(z) = g(\theta^{T}x) \\ z = \theta^{T}x \\ g(z) = \frac{1}{1 + e^{-z}} \end{cases}$	
	TE	$\begin{bmatrix} \hat{x}\hat{x} & \hat{x}\hat{x} \\ \hat{x}\hat{x} & \hat{x}\hat{x} \end{bmatrix} = \begin{bmatrix} \hat{x}\hat{x} & \hat{x}\hat{x} \\ \hat{x}\hat{x} & \hat{x}\hat{x} \end{bmatrix}$
	Step 2. Cost	Under-fitting Appropirate-fitting Over-fitting
	$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$	(too simple to (forcefittingtoo explain the variance) good to be true)
	$+\frac{\lambda}{2m}\sum_{i=1}^{m}\theta_{i}^{2}$	
	Step 3. Gradients:	
	$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$	
	$\theta_{j} \coloneqq \theta_{j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)}, j = 1, 2, 3, \dots, n$	
Support	Cost	
vector machines	$J(\theta) = C \sum_{i=1}^{m} \left[y^{(i)} \cot_1(\theta^T x^{(i)}) + (1 - y^{(i)}) \cot_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{j=1}^{m} \theta_j^2$	$y=1$ (want $\Theta^T x \circ 0$) $y=1$ (want $\Theta^T x \circ 0$)
(SVM)	$\int_{i=1}^{\infty} \left[y - \cos t_1(v - x - y) + (1 - y - y) \cos t_0(v - x - y) \right] + \frac{1}{2} \sum_{i=1}^{\infty} u_i$	
(~)	$(i) (1, \theta^T x^{(i)} \ge 1)$	
	$y^{(i)} = \begin{cases} 1, \ \theta^T x^{(i)} \ge 1 \\ 0, \ \theta^T x^{(i)} \le -1 \end{cases}$	
	·	
		logistic cost fn logistic cost fn
		SVM cost fn
		-2 -1 0 1 2 -2 -1 0 1 2

SVM with Gaussian Kernel	Cost $J(\theta) = C \sum_{i=1}^{m} \left[y^{(i)} \cot_{1}(\theta^{T} f_{i}) + (1 - y^{(i)}) \cot_{0}(\theta^{T} f_{i}) \right] + \frac{1}{2} \sum_{j=1}^{m} \theta_{j}^{2}$ $f_{i} = similarity(x, l^{(i)}) = \exp\left(-\frac{\left\ x - l^{(i)}\right\ ^{2}}{2\sigma^{2}}\right), or = \left(-\frac{\left\ x_{1} - x_{2}\right\ ^{2}}{2\sigma^{2}}\right)$ $Predict "y = 1" if \ \theta^{T} f_{i} \ge 0$	0.9
--------------------------------	---	-----

Unsupervised learning		
ns	Centroids $c^{(i)} = index \ of \ min x^{(i)} - \mu_j ^2$	K=3
	$c^{(i)} \in \mathbb{R}^K$, $i = 1, 2,, m$ denotes the index of cluster centroids closet to $x^{(i)}$ Means	5 - 000 000 0000
	$\mu_k = \frac{\sum_{i=1, \{c^{(i)}=k\}}^m x^{(i)}}{\sum_{i=1, \{c^{(i)}=k\}}^m 1}$	3 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	$\mu_k \in \mathbb{R}^K$, $k = 1, 2,, K$ denotes the average(mean) of points assigned to cluster k cost	
	$J_{(c,\mu)} = \sum_{i}^{m} x^{(i)} - \mu_{c^{(i)}} ^{2}$	0 2 4 6 8
Principal	Feature scaling (Mean normalization)	$2D \rightarrow 1D$
Component Analysis	Mean: $\overline{X} = \mu_j = \frac{1}{m} \sum_{i=1}^m x^{(i)}$	3 -
(PCA)	Standard deviation: $s = \sigma = \sqrt{\frac{1}{m-1} \sum_{i=1}^{m} (x^{(i)} - \mu)^2}$	2
	Mean normalize: $x^{(i)} = \frac{x^{(i)} - \mu}{\sigma}$ Calculate U, S, V.	
Dimensionality	Calculate U, S, V.	
Reduction	$sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)}) (x^{(i)})^{T} = \frac{1}{m} X^{T} X$	0
Data compression	$U, S, V = numpy.linalg.svd(sigma)$ $U = \begin{pmatrix} & & & & & & & & & $	-1 -2
	Ureduce = U[:, 0:K].T	-3
	$Z = Ureduce*X = X_norm*U[:, 0:K]$ $X = Ureduce*X = X_norm*U[:, 0:K]$ $X = Ureduce*X = X_norm*U[:, 0:K]$	-3 -2 -1 0 1 2 3
	Pick the smallest value of k,	-5 -2 -1 0 1 2 5
	$\frac{\frac{1}{m}\sum_{i=1}^{m} \left\ x^{(i)} - x_{approx}^{(i)} \right\ ^2}{\frac{1}{m}\sum_{i=1}^{m} \ x^{(i)}\ ^2} \le 0.01?$	
	$S = \begin{pmatrix} \frac{1}{m} \sum_{i=1}^{m} \ x^{(i)}\ ^2 & \cdots & 0 \\ S_{11} & \cdots & 0 \\ \vdots & \vdots & S_{33} & \vdots & \vdots \\ 0 & \cdots & \ddots & S \end{pmatrix}$	
	$egin{pmatrix} 0 & & \ddots \\ 0 & \cdots & S_{nn} \end{pmatrix}$	

	$1 - \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i}^{n} S_{ii}} \le 0.01 \rightarrow \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i}^{n} S_{ii}} \ge 0.99$			
	$\sum_{i=1}^{n} S_{ii} \qquad \sum_{i=1}^{n} S_{ii}$ 99% of variance retained			
Anomaly	Gaussian (Normal) distribution			
detection	$X \sim N(\mu, \sigma^2)$			
	Mean: $\mu_i = \frac{1}{m} \sum_{i=1}^{m} x_i^{(i)}$	68.27% Atjir bed		
		95,45%		
	Variance: $\sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2$	iq eq . 95.45%		
	Probability: $p(x, \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}$	99.73%		
	$\sqrt{2\pi\sigma}$			
	Original model	μ-3σ μ-2σ μ-σ μ μ+σ μ+2σ μ+3σ		
	Density estimation: $x_i \sim N(\mu_i, \sigma_i^2)$			
	Training set: $\{x^{(1)}, \dots, x^{(m)}\}$	25 5		
	Each example is: $x \in \mathbb{R}^n$			
	Probability:	20-		
	$\frac{n}{1}$ $\frac{1}{1}$ $\left(-\frac{(x_j-\mu_j)^2}{1}\right)$			
	$p(x) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} e^{\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right)}$ $y = \begin{cases} 1, & \text{if } p(x) < \epsilon (anomaly) \\ 0, & \text{if } p(x) \ge \epsilon (normal) \end{cases}$	15 - (((, , , , , , ,))))		
	$ \begin{array}{ccc} 1 & 1 \\ j=1 \end{array} $			
	$y = \begin{cases} 1, & \text{if } p(x) < \epsilon(anomaly) \\ 2, & \text{otherwise} \end{cases}$	10		
	$(0, if p(x) \ge \epsilon(normal)$			
		5-		
	Multivariate Gaussian	0 5 10 15 20 25		
	Mean: $\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$	Multivariate Gaussian (Normal) examples		
	Variance: $\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu) (x^{(i)} - \mu)^T$	$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$		
	(F)			
	$\begin{pmatrix} -1 & \Sigma_2 & \dots & 0 \end{pmatrix}$			
	Diagonal Sigma: $\Sigma = \begin{bmatrix} \vdots & \vdots & \Sigma_3 & \vdots & \vdots \end{bmatrix}$			
	Diagonal Sigma: $\Sigma = \begin{pmatrix} \Sigma_1 & \cdots & 0 \\ & \Sigma_2 & \cdots & 0 \\ \vdots & \vdots & \Sigma_3 & \vdots & \vdots \\ & 0 & \cdots & \ddots \\ & & & \ddots & \ddots \end{pmatrix}$	x_2 x_1 x_2 x_1 x_2 x_1		
	$0 \cdots \Sigma_n$ Probability:			
	1 $\left(1_{(1,1)}T_{n-1},\ldots\right)$	x_2 x_2 x_3 x_4		
	$p(x_j; \mu_j, \Sigma) = \frac{1}{\sqrt{2\pi} \Sigma ^{\frac{1}{2}}} e^{\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-u)\right)}$			
	$\sqrt{2\pi} \Sigma ^{\overline{2}}$	\dot{x}_1 \dot{x}_1		
	$y = \begin{cases} 1, & \text{if } p(x) < \epsilon(anomaly) \\ 0, & \text{if } p(x) \ge \epsilon(normal) \end{cases}$			
	$(0, if p(x) \ge \epsilon(normal)$			

1 Supervised learning

Already know what our correct output should look like, having the idea that there is a relationship between the input and the output

1.1 Linear regression

Regression, continuous, individual

1) Data & Hypothesis

Input data: X (m, n); dataset: $x^{(i)}$, i = 1,2,...,m; features: x_j , j = 1,2,...,n; parameters: $\theta(n,1)$; actual output: y(m,1).

$$X_{(m \times n)} = \begin{pmatrix} x_1^{(1)} & & x_j^{(1)} & \dots & x_n^{(1)} \\ \vdots & \dots & \vdots & & & \vdots \\ x_1^{(i)} & \dots & x_j^{(i)} & \dots & x_n^{(i)} \\ \vdots & \dots & \vdots & \dots & \vdots \\ x_1^{(m)} & & x_j^{(m)} & & x_n^{(m)} \end{pmatrix}, \qquad \theta^T_{(n \times 1)} = \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_j \\ \vdots \\ \theta_n \end{pmatrix}, \qquad Y^T_{(m \times 1)} = \begin{pmatrix} y^{(1)} \\ \vdots \\ y^{(i)} \\ \vdots \\ y^{(m)} \end{pmatrix}$$

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^{0,1,2} x_2^{0,1,2} + \dots + \theta_n \prod_{j=1}^n x_j^{0,1,2,\dots,n}$$

2) Cost function:

We can measure the accuracy of our hypothesis function by using a **cost function**. This takes an average difference (actually a fancier version of an average) of all the results of the hypothesis with inputs from x's and the actual output y's.

Minimize cost:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{i=1}^{m} \theta_{i}^{2}$$

3) Gradients

When specifically applied to the case of linear regression, a new form of the gradient descent equation can be derived. We can substitute our actual cost function and our actual hypothesis function and modify the equation to: Rate: α , regulation: λ

$$G(\theta) = \frac{\partial J(\theta)}{\partial \theta}$$

Repeat until convergence: {

$$\begin{aligned} \theta_0 &\coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta} (x^{(i)}) - y^{(i)} \right) x_0^{(i)} \\ \theta_j &\coloneqq \theta_j \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta} (x^{(i)}) - y^{(i)} \right) x_j^{(i)}, \ j = 1, 2, 3, ..., n \end{aligned}$$

 $\alpha \frac{\lambda}{m}$ will always be less than 1. Intuitively you can see it as reducing the value of θ_j by some amount on every update.

Figure 1 Example of batch gradient descent

1.2 Logistic regression

Classification, Discrete, collective

1) Sigmoid function

$$h_{\theta}(z) = g(\theta^{T}x)$$

$$z = \theta^{T}x$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

In order to get our discrete 0 or 1 classification, we can translate the output of the hypothesis function as follows:

$$\begin{cases} h_{\theta}(x) \ge 0.5 \Longrightarrow y = 1 \\ h_{\theta}(x) < 0.5 \Longrightarrow y = 0 \end{cases}$$

The way our logistic function g behaves is that when its input is greater than or equal to zero, its output is greater than or equal to 0.5:

$$g(z) \ge 0.5$$
, when $z \ge 0$

The following image shows us what the sigmoid function g(z) looks like:

So if our input to g is $\theta^T X$, then that means:

$$\begin{cases} h_{\theta}(z) = g(\theta^T x) \ge 0.5, \theta^T x \ge 0 \\ h_{\theta}(z) = g(\theta^T x) < 0.5, \theta^T x < 0 \end{cases}$$

From these statements we can now say:

$$\begin{cases} \theta^T x \ge 0 \Longrightarrow y = 1 \\ \theta^T x < 0 \Longrightarrow y = 0 \end{cases}$$

2) Cost function:

Minimize cost:

$$\min J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{i=1}^{m} \theta_{i}^{2}$$

3) Gradients descent:

when computing the equation, we should continuously update the two following equations:

$$\theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{j} := \theta_{j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}, \qquad j = 1, 2, 3, ..., n$$

1.3 Support vector machine (SVM)

SVM gives a cleaner, and more powerful way of learning complex non-linear functions.

Non-linear separability — Use of a kernel mapping ϕ — Decision boundary in the original space $Figure\ 2\ SVM\ Kernel\ mapping$

1.3.1 No kernel ("linear kernel")

Predict "y = 1" if $\theta^T x > 0$

1) Hypothesis:

$$h_{\theta}(x) = \begin{cases} 1, & \theta^T x > 0 \\ 0, & otherwise \end{cases}$$

2) Cost function:

Large C: Lower bias, high variance. Small C: Higher bias, low variance.

1.3.2 SVM with kernels, also called gaussian kernel

1) Hypothesis

Given x, compute features $f \in \mathbb{R}^{m+1}$, parameters $\theta \in \mathbb{R}^{m+1}$ Predict "y=1" if $\theta^T f \geq 0$, $\theta_0 f_0 + \theta_1 f_1 + \dots + \theta_m f_m \geq 0$

2) Training

$$\begin{aligned} \min J(\theta) &= C \sum_{i=1}^{m} \left[y^{(i)} \cot_{1}(\theta^{T} f_{i}) + (1 - y^{(i)}) \cot_{0}(\theta^{T} f_{i}) \right] + \frac{1}{2} \sum_{j=1}^{m} \theta_{j}^{2} \\ f_{i} &= similarity(x, l^{(i)}) = \exp\left(-\frac{\left\| x - l^{(i)} \right\|^{2}}{2\sigma^{2}}\right), or = \left(-\frac{\left\| x_{1} - x_{2} \right\|^{2}}{2\sigma^{2}}\right) \\ &Predict "y &= 1" if \ \theta^{T} f_{i} \geq 0 \end{aligned}$$

Large σ^2 : Features f_i vary more smoothly. Higher bias, lower variance.

Small σ^2 : Features f_i vary less smoothly. Lower bias, higher variance.

3) Multiclass classification

Many SVM packages already have built-in multiclass classification functionality. Otherwise, use one-vs.-all method. (Train K SVMs, one to distinguish y=i from the rest, for i=1,2,...,K), get $\theta^{(1)},\theta^{(2)},...,\theta^{(K)}$ Pick class i with largest

Logistic regression vs. SVMs

 $\underline{n}=$ number of features ($x\in\mathbb{R}^{n+1}$), m= number of training examples

 \rightarrow If n is large (relative to m): (6-g. $n \ge m$, n = 10.000, m = 10.000)

Use logistic regression, or SVM without a kernel ("linear kernel")

If n is small, m is intermediate: (n = 1 - 1000), m = 10 - 10,000)

→ Use SVM with Gaussian kernel

If n is small, m is large: $(n=1-1000, \underline{m}=5000+)$

Create/add more features, then use logistic regression or SVM without a kernel

Neural network likely to work well for most of these settings, but may be slower to train.

1.4 Neural Network

Non-linear Classification

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

 $L = total \ no. \ of \ layers \ in \ network$

 $S_l = \text{no. of units (not counting bias unit) in layer } l$

Binary classification

Multi-class classification (K classes)

$$y = 0 \text{ or } 1$$

1 output unit

$$h_{\Theta} \in \mathbb{R}$$

$$S_L = 1 \ (K = 1)$$

$$y \in \mathbb{R}^{K} \qquad \text{E.g.} \qquad \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \qquad , \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$

$$pedestrian \ car \ motor \ truck$$

$$K \ \text{output units}$$

$$h_{\Theta} \in \mathbb{R}^{K}$$

$$S_{L} = K \ (K \geq 3)$$

$$h_{\Theta} \in \mathbb{R}^{K}$$

$$S_{L} = K \ (K \ge 3)$$

Training a neural network (e.g. L=4)

Pick a network architecture (connectivity pattern between neurons)

No. of input units: Dimension of features

No. output units: Number of classes

Reasonable default: 1 hidden layer, or if >1 hidden layer, have same no. of hidden units in every layer (usually the more the better)

1) Randomly initialize weights

Initialize parameters $\Theta^{(1)}$, $\Theta^{(2)}$, ..., $\Theta^{(L-1)}$

Initialize each $\Theta_{ji}^{(l)}$ to a random value in $[-\epsilon,\epsilon]$ (i.e. $-\epsilon \leq \Theta_{ji}^{(l)} \leq \epsilon$)

epsilon = 0.12

theta = np.random.rand(input layer, output layer) * 2*epsilon - epsilon

2) Implement forward propagation to get $h_{\Theta}(x^{(i)})$ for any $x^{(i)}$

$$h_{\Theta}(x^{(i)}) \in \mathbb{R}^{K} (h_{\Theta}(X))_{i} = i^{th} output$$

Layer 1

Layer 2

Layer 3 Hidden layers

Layer 4 Output layer

 $a^{(1)} = x$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$
$$a^{(2)} = g(z^{(2)})$$

$$z^{(3)} = \Theta^{(2)}a^{(2)}$$
$$a^{(3)} = a(z^{(3)})$$

Hidden layers

$$z^{(2)} = \Theta^{(1)}a^{(1)} \qquad z^{(3)} = \Theta^{(2)}a^{(2)} \qquad z^{(4)} = \Theta^{(3)}a^{(3)}$$

$$a^{(2)} = g(z^{(2)}) \qquad a^{(3)} = g(z^{(3)}) \qquad a^{(4)} = h_{\Theta}(x) = g(z^{(4)})$$

$$(add\ a_0^{(2)}) \qquad (add\ a_0^{(3)})$$

3) Implement code to compute cost function $J(\Theta)$

$$J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[y_k^{(i)} \log \left(h_{\Theta}(x^{(i)}) \right)_k + \left(1 - y_k^{(i)} \right) \log \left(1 - \left(h_{\Theta}(x^{(i)}) \right)_k \right) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{S_l} \sum_{j=1}^{S_{l+1}} \left(\Theta_{ji}^{(l)} \right)^2$$

4) Implement backpropagation to compute partial derivatives $\frac{\partial}{\partial \Theta_{i,j}^{(1)}} J(\Theta)$

 $\delta_i^{(l)}$ = "error" of node j in layer l.

Ter 1 Layer 2 Layer 3 Layer 4 Output layer
$$\delta^{(2)} = (\Theta^{(2)})^T \delta^{(3)} * g'(z^{(2)}) \quad \delta^{(3)} = (\Theta^{(3)})^T \delta^{(4)} * g'(z^{(3)}) \quad \delta^{(4)} = a^{(4)} - y$$
$$g'(z^{(2)}) = a^{(2)} * (1 - a^{(2)}) \quad g'(z^{(3)}) = a^{(3)} * (1 - a^{(3)})$$

Perform forward propagation and backpropagation using example $(x^{(i)}, y^{(i)})$ (Get activations $a^{(l)}$ and delta terms $\delta^{(l)}$ for l=2,...,L).

Set
$$\Delta_{ij}^{(l)} = 0$$
 (from all, l, i, j).
Set $a^{(1)} = x$

$$Set a^{(1)} = x$$

Perform forward propagation to compute $a^{(l)}$ for l = 2, 3, ..., L

Using y, compute $\delta^{(L)} = a^{(L)} - y$

Compute $\delta^{(L-1)}$, $\delta^{(L-2)}$, ..., $\delta^{(2)}$

$$\Delta^{(l)} \coloneqq \Delta^{(l)} + \delta^{(l+1)} (a^{(l)})^T$$

$$D_{ij}^{(l)} := \frac{1}{m} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)}, if j \neq 0$$

$$D_{ij}^{(l)} := \frac{1}{m} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)}, if j \neq 0$$

$$D_{ij}^{(l)} := \frac{1}{m} \Delta_{ij}^{(l)} \qquad , if j = 0$$

$$D_{ij}^{(l)} := \frac{1}{m} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)}, if j \neq 0$$

$$D_{ij}^{(l)} := \frac{1}{m} \Delta_{ij}^{(l)}, if j = 0$$

$$D_{ij}^{(l)} := \frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = \frac{\partial J(\Theta)}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial \Theta}$$

- 5) Use gradient checking to compare $\frac{\partial}{\partial \Theta_{i,j}^{(j)}} J(\Theta)$ computed using backpropagation vs. using numerical estimate of gradient of $J(\Theta)$.
 - Implement backpropagation to compute DELTA VECTOR (unrolled $D^{(1)}$, $D^{(2)}$, ...). I.
 - II. Implement numerical gradient check to compute gradient approximation.
 - Make sure they give similar values.

diff = slin.norm(numgrad-grad)/slin.norm(numgrad+grad)

print('If your backpropagation implementation is correct, then \n\

the relative difference will be small (less than 1e-9). \n\

\nRelative Difference: ', diff)

- Turn off gradient checking. Using backprop code for learning. IV.
 - **Important:** Be sure to disable your gradient checking code before training your classifier. If you run numerical gradient computation on every iteration of gradient descent (or in the inner loop of cost function your code will be very slow).
- Use gradient descent or advanced optimization method with backpropagation to try to minimize $I(\Theta)$ as a function of parameters Θ .

result = minimize(cost func, initial nn params, method='CG', jac=grad func,

nn params = result.x

Jcost = result.fun

2 **Unsupervised learning**

Fund hidden pattern in unlabeled data with little or no idea what our results should look like. don't necessarily know the effect of the variables

2.1 K-means

1) Choose the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

2) Initialize centroids

Random initialize K clustering centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$ For i = 1 to 100 {

> Randomly pick examples from given points as K (K < m) different centroids initial_centroids = random.sample(X.tolist(), K) cost function

$$J_{(c,\mu)} = \sum_{i}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^{2}$$

Return centroids of the smallest J.

3) Iteration

Set Iterate times, max iters For iters = 1 to max iters $\{$

$$c^{(i)} = index \ of \ min ||x^{(i)} - \mu_i||^2$$

 $c^{(i)} \in \mathbb{R}^K, i = 1, 2, ..., \text{m denotes the index of cluster centroids closet to } x^{(i)}.$ $\mu_k = \frac{\sum_{i=1, \ \{c^{(i)}=k\}}^m x^{(i)}}{\sum_{i=1, \ \{c^{(i)}=k\}}^m 1}$

$$\mu_k = \frac{\sum_{i=1, \{c^{(i)}=k\}}^m x^{(i)}}{\sum_{i=1, \{c^{(i)}=k\}}^m 1}$$

 $\mu_k \in \mathbb{R}^K$, k = 1, 2, ..., K denotes the average(mean) of points assigned to cluster k.

2.2 Principal component analysis (PCA)

Dimensionality Reduction

Motivation:

Figure 4 2 dimensions to 1 dimension

1) Data processing

Training set: $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}, x^{(i)} \in \mathbb{R}^n$

Processing: feature scaling (mean normalization) to ensure every feature has zero mean.

i. Mean value:

$$\overline{X} = \mu_j = \frac{1}{m} \sum_{i=1}^m x^{(i)}$$

ii. Standard deviation

$$s = \sigma = \sqrt{\frac{1}{m-1} \sum_{i=1}^{m} (x^{(i)} - \mu)^2}$$

iii. Replace each $x^{(i)}$

$$x^{(i)} = \frac{x^{(i)} - \mu}{\sigma}$$

2) PCA algorithm.

Reduce data from n-dimensions to k-dimensions

$$sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)}) (x^{(i)})^{T} = \frac{1}{m} X^{T} X \qquad U = \begin{pmatrix} | & | & | & | & | & | \\ u^{(1)} & u^{(2)} & \cdots & u^{(k)} & \cdots & u^{(n)} \\ | & | & | & | & | & | \end{pmatrix}$$

Principal Component Analysis (PCA) algorithm:

U, S, V = numpy.linalg.svd(sigma)

Dimension matrix:

Ureduce =
$$U[:, 0:K].T$$

Reduced K-dimensions data:

$$Z = Ureduce * X = X norm * U[:, 0:K]$$

Recover data to n-dimentions:

$$X_{approximate} = X_{recovered} = Z * U[:, 0:K].T$$

3) Choosing K (number of principal components):

Pick the smallest value of K.

$$S = \begin{pmatrix} S_{11} & \cdots & & 0 \\ & S_{22} & \cdots & 0 \\ \vdots & \vdots & S_{33} & \vdots & \vdots \\ & 0 & \cdots & \ddots & \\ 0 & \cdots & & S_{nn} \end{pmatrix}$$

Check if

$$\frac{\frac{1}{m}\sum_{i=1}^{m}\left\|x^{(i)}-x_{approx}^{(i)}\right\|^{2}}{\frac{1}{m}\sum_{i=1}^{m}\left\|x^{(i)}\right\|^{2}} \leq 0.01? \qquad 1-\frac{\sum_{i=1}^{k}S_{ii}}{\sum_{i=1}^{n}S_{ii}} \leq 0.01 \implies \frac{\sum_{i=1}^{k}S_{ii}}{\sum_{i=1}^{n}S_{ii}} \geq 0.99$$

PCA is sometimes used where it shouldn't be

- → How about doing the whole thing without using PCA?
- → Before implementing PCA, first try running whatever you want to do with the original/raw data $x^{(i)}$ Only if that doesn't do what you want, then implement PCA and consider using $z^{(i)}$

2.3 **Anomaly detection**

2.3.1 Original model

1) Choose feature:

Training set:
$$\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}, x^{(i)} \in \mathbb{R}^n$$

Density estimation:
$$x_i \sim N(\mu_i, \sigma_i^2), j = 1, 2, ..., n$$

Choose features x_i that might be indicative of anomalous examples.

2) Fit parameters:

$$\mu_{j} = \frac{1}{m} \sum_{i=1}^{m} x_{j}^{(i)}$$

$$\sigma_{j}^{2} = \frac{1}{m} \sum_{i=1}^{m} (x_{j}^{(i)} - \mu_{j})^{2}$$

3) Given new example x, compute p(x)

$$p(x) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} e^{\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right)}$$

Flag an anomaly if $p(x) < \epsilon$

$$y = \begin{cases} 1, & \text{if } p(x) < \epsilon(anomaly) \\ 0, & \text{if } p(x) \ge \epsilon(normal) \end{cases}$$

2.3.2 **Multivariate Gaussian**

Don't model $p(x_1)$, $p(x_2)$, ..., etc. separately. Model all p(x) in one go.

1) Choose feature

Training set: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}, x^{(i)} \in \mathbb{R}^n$

Density estimation: $x_i \sim N(\mu_i, \sigma_i^2), j = 1, 2, ..., n$

2) Fit parameters

Parameters: $\mu \in \mathbb{R}^n$, $\Sigma \in \mathbb{R}^{n \times n}$ (covariance matrix)

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

3) Given new example x, compute p(x)

$$p(x_j; \mu_j, \Sigma) = \frac{1}{\sqrt{2\pi}|\Sigma|^{\frac{1}{2}}} e^{\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-u)\right)}$$

$$\Sigma = \begin{pmatrix} \Sigma_1 & \cdots & 0 \\ \Sigma_2 & \cdots & 0 \\ \vdots & \vdots & \Sigma_3 & \vdots & \vdots \\ 0 & \cdots & \ddots & \\ 0 & \cdots & \Sigma_n \end{pmatrix}$$

Flag an anomaly if $p(x) < \epsilon$

$$y = \begin{cases} 1, & \text{if } p(x) < \epsilon(anomaly) \\ 0, & \text{if } p(x) \ge \epsilon(normal) \end{cases}$$

- The importance of real-number evaluation
- I. When developing a learning algorithm (choosing features, etc.), making decisions is much easier if we have a way of evaluating our learning algorithm.

Assume we have some labeled data, of anomalous and non-anomalous examples. (y = 0 if normal, y = 1if anomalous).

Training set 60%: $x^{(1)}$, $x^{(2)}$, ..., $x^{(m)}$ (assume normal examples/not anomalous)

Cross validation set 20%: $(x_{cv}^{(1)}, y_{cv}^{(1)}), ..., (x_{cv}^{(m_{cv})}, y_{cv}^{(m_{cv})})$ Test set 20%: $(x_{test}^{(1)}, y_{test}^{(1)}), ..., (x_{test}^{(m_{cv})}, y_{test}^{(m_{cv})})$

II. Algorithm evaluation

Possible evaluation metrics

Precision

$$Precision(P) = \frac{TP}{TP + FP}$$

Recall

$$Recall(R) = \frac{TP}{TP + FN}$$

$$F_1Score = 2\frac{PR}{P + R}$$

Comparison between these two models

Original model

$$p(x_1; \mu_1, \sigma_1^2) \times \cdots \times p(x_n; \mu_n, \sigma_n^2)$$

Manually create features to capture anomalies where x_1, x_2 take unusual combinations of values. $x_1 = \frac{x_1}{x_2} = \frac{ceu}{mean}$

Computationally cheaper (alternatively, scales better to large n=10,000, h=100,000)
OK even if m (training set size) is

vs. 🤝 Multivariate Gaussian

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{7} \Sigma^{-1} x - \mu\right)$$

 Automatically captures correlations between features

Computationally more expensive

2.3.3 Collaborative filtering

Recommender system

small

1) Problem formulation

r(i, j) = 1 if user j has rated movie (0 otherwise)

 $y^{(i,j)}$ = rating by user j on movie i (if defined)

 $\theta^{(j)}$ = parameter vector for user j

 $x^{(i)}$ feature vector for movie i

For user *j*, movie *i*, predicted rating: $(\theta^{(j)})^T x^{(i)}$

 $m^{(j)}$ = no. of movies rated by user j

2) Initialization

Initialize $\{x^{(1)}, ..., x^{(n_m)}\}$ and $\{\theta^{(1)}, ..., \theta^{(n_u)}\}$ to small random values.

3) Cost function

i. Minimize $\{x^{(1)}, ..., x^{(n_m)}\}$ and $\{\theta^{(1)}, ..., \theta^{(n_u)}\}$ Min $I(x^{(1)}, ..., x^{(n_m)}, \theta^{(1)}, ..., \theta^{(n_u)})$

$$= \frac{1}{2} \sum_{(i,j):r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n \left(x_k^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n \left(\theta_k^{(j)} \right)^2$$

ii. using gradient descent (or an advanced optimization algorithm). E.g. for every $j=1,2,\ldots,n_u$; $i=1,2,\ldots,n_m$:

Gradients

$$\begin{cases} x_k^{(i)} \coloneqq x_k^{(i)} - \alpha \left(\sum_{j: r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right) \theta_k^{(j)} + \lambda x_k^{(i)} \right) \\ \theta_k^{(j)} \coloneqq \theta_k^{(j)} - \alpha \left(\sum_{i: r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \end{cases}$$

4) Prediction.

For a user with parameters $\theta^{(j)}$ and a movie with (learned) features $x^{(i)}$, predict a star rating of

$$(\theta^{(j)})^T x^{(i)} + \mu_i$$

 μ_i is the mean of rated users for movie $x^{(i)}$.

$$\mu_i = mean(\sum_{j:r(i,j)=1}^n x_j^{(i)})$$

3 Tips

3.1 Model Selection and Train/Validation/Test Sets

One way to break down our dataset into the three sets is:

- i. Training set: 60%
- ii. Cross validation set: 20%
- iii. Test set: 20%

We can now calculate three separate error values for the three different sets using the following method:

- i. Optimize the parameters in Θ using the training set for each polynomial degree.
- ii. Find the polynomial degree d with the least error using the cross-validation set.
- iii. Estimate the generalization error using the test set with $Jtest(\Theta(d))$, (d = theta from polynomial with lower error);

This way, the degree of the polynomial d has not been trained using the test set.

3.2 Gaussian (Normal) distribution

$$X \sim N(\mu, \sigma^{2})$$

$$\mu_{j} = \frac{1}{m} \sum_{i=1}^{m} x_{j}^{(i)}$$

$$\sigma_{j}^{2} = \frac{1}{m} \sum_{i=1}^{m} (x_{j}^{(i)} - \mu_{j})^{2}$$

$$p(x, \mu, \sigma^{2}) = \frac{1}{\sqrt{2\pi}\sigma} e^{\left(\frac{(x-\mu)^{2}}{2\sigma^{2}}\right)}$$

Figure 5 68% of the data is within 1 standard deviation, 95% is within 2 standard deviation, 99.7% is within 3 standard deviations

3.3 F₁-score

Precision

$$Precision(P) = \frac{TP}{\#Predicted\ P} = \frac{TP}{TP + FP}$$

Recall

$$Recall(R) = \frac{TP}{\#Actual\ P} = \frac{TP}{TP + FN}$$

F₁-score

$$F_1Score = 2\frac{PR}{P+R}$$

Anomaly detection

- > Very small number of positive examples (y = 1). (0-20 is common).
- > Large number of negative $(\underline{y} = 0)$ examples.
- Many different "types" of anomalies. Hard for any algorithm to learn from positive examples what the anomalies look like;
- future anomalies may look nothing like any of the anomalous examples we've seen so far.

vs. Supervised learning

Large number of positive and negative examples.

Enough positive examples for algorithm to get a sense of what positive examples are like, future positive examples likely to be similar to ones in training set.

KDD Process: A Typical View from ML and Statistics

This is a view from typical machine learning and statistics communities

Knowledge Discovery (KDD) Process


```
Plot matrix plt.imshow(Y, aspect='equal', origin='upper', extent=(0, Y.shape[1], 0, Y.shape[0]/2.0))
```