C.C 2 d'Analyse 1 - Durée 2h

CPI1

(Documents et calculatrice non autorisés)

Exercice 1:

Calculer les limites des suites ci-dessous :

$$u_n = \frac{n - (-1)^n}{n + (-1)^n}$$

$$v_n = \frac{n - \sqrt{n^2 + 1}}{n + \sqrt{n^2 - 1}}$$

$$w_n = \frac{\sin(n)}{n + (-1)^{n+1}}$$

Exercice 2:

a) Montrer que la fonction $x \to \sqrt{x}$ n'est pas dérivable en 0.

b) Etudier la dérivabilité de $f(x) = \begin{cases} x. \ln(x), & x > 0 \\ 0, & x = 0 \end{cases}$

c) Etudier la dérivabilité et calculer la dérivée de $g(x) = \arctan(x) + \arctan(\frac{1}{x})$.

d) Etudier la dérivabilité et calculer la dérivée de $h(x) = |x| \cdot \sqrt{x^2 - x^3}$.

Exercice 3:

Montrer que $\forall x > -1$, $\frac{x}{1+x} \le \ln(1+x) \le x$

Exercice 4:

1. Soient a, b > 0. Montrer que $\sqrt{ab} \le \frac{a+b}{2}$.

2. Soient $b \ge a > 0$. Montrer les inégalités suivantes :

$$a \le \frac{a+b}{2} \le b$$
 et $a \le \sqrt{ab} \le b$

3. Soient u_0 et v_0 des réels strictement positifs avec $u_0 < v_0$. On définit deux suites (u_n) et (v_n) de la façon suivante :

$$u_{n+1} = \sqrt{u_n \cdot v_n}$$
 et $v_{n+1} = \frac{u_n + v_n}{2}$

a) Montrer que $\forall n \in \mathbb{N}, |u_n \leq v_n|$.

b) Montrer que (u_n) est croissante et (v_n) est décroissante.

4. On pose $\forall n \in \mathbb{N}$, $w_n = v_n - u_n$.

a) Montrer que $\forall n \geq 0, \ 0 \leq w_{n+1} \leq \frac{w_n}{2}$.

b) En déduire que $\forall n \geq 0, \ 0 \leq w_n \leq \frac{w_0}{2^n}$.

c) Calculer $\lim_{n\to+\infty} w_n$.

5. Montrer que (u_n) et (v_n) convergent, et qu'elles ont la même limite.

