

	SEQUENCE LISTING	
<110>	Breitling, Frank Poustka, Annemarie Moldenhauer, Gerhard	
<120>	SELECTION OF MONOCLONAL ANTIBODIES	
<130>	4121-126	
<140> <141>	us 09/889,182 2001-07-10	
<150> <151>	PCT/DE00/00079 2000-01-11	
<160>	8	
<170>	PatentIn version 3.2	
<210> <211> <212> <213>	1 5732 DNA Artificial Sequence	
<220> <223>	Synthetic sequence	
<220> <221> <222>	CDS (737)(1420)	
<400> gcgcgc	1 gttg acattgatta ttgactagtt attaatagta atcaattacg gggtcattag	60
ttcata	gccc atatatggag ttccgcgtta cataacttac ggtaaatggc ccgcctggct	120
gaccgc	ccaa cgaccccgc ccattgacgt caataatgac gtatgttccc atagtaacgc	180
caatag	ggac tttccattga cgtcaatggg tggactattt acggtaaact gcccacttgg	240
cagtac	atca agtgtatcat atgccaagta cgcccctat tgacgtcaat gacggtaaat	300
ggcccg	cctg gcattatgcc cagtacatga ccttatggga ctttcctact tggcagtaca	360
tctacg	tatt agtcatcgct attaccatgg tgatgcggtt ttggcagtac atcaatgggc	420
gtggata	agcg gtttgactca cggggatttc caagtctcca ccccattgac gtcaatggga	480
gtttgt	tttg gcaccaaaat caacgggact ttccaaaatg tcgtaacaac tccgccccat	540
tgacgca	aaat gggcggtagg cgtgtacggt gggaggtcta tataagcaga gctctctggc	600
taacta	gaga acccactgct tactggctta tcgaaattaa tacgactcac tatagggaga	660
cccaage	cttg gtaccgagct cggatccact agtaacggcc gccagtgtgc tggaattcgg	720
cttgggg	gata tccacc atg gag aca gac aca ctc ctg cta tgg gta ctg ctg Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu 1 5 10	772
ctc tgg Leu Tr	g gtt cca ggt tcc act ggt gac tat cca tat gat gtt cca gat b Val Pro Gly Ser Thr Gly Asp Tyr Pro Tyr Asp Val Pro Asp 15 20 25	820
tat gct Tyr Ala 30	ggg gcc caa aag ccc gag gtg atc gat gcc agc gag ctg acc a Gly Ala Gln Lys Pro Glu Val Ile Asp Ala Ser Glu Leu Thr 35 40	868

4121-126_third_submission.ST25 ccc gcc gtg acc acc tac aag cta gtg atc aac ggc aag acc ctg aag Pro Ala Val Thr Thr Tyr Lys Leu Val Ile Asn Gly Lys Thr Leu Lys 45 50 55 60	916
ggc gag acc acc acc gag gcc gtg gac gcc gcc acc gcg gag aag gtg Gly Glu Thr Thr Thr Glu Ala Val Asp Ala Ala Thr Ala Glu Lys Val 65 70 75	964
ttc aaa caa tac gct aat gac aac ggg gtc gac ggc gag tgg act tac Phe Lys Gln Tyr Ala Asn Asp Asn Gly Val Asp Gly Glu Trp Thr Tyr 80 85 90	1012
gac gac gcc acc aag acc ttc acc gtg acc gag aag ccc gag gtg atc Asp Asp Ala Thr Lys Thr Phe Thr Val Thr Glu Lys Pro Glu Val Ile 95 100 105	1060
gat gcc agc gag ctg acc ccc gcc gtg acc acc tac aag cta gtg atc Asp Ala Ser Glu Leu Thr Pro Ala Val Thr Thr Tyr Lys Leu Val Ile 110 115 120	1108
aac ggc aag acc ctg aag ggc gag acc acc acc gag gcc gtg gac gcc Asn Gly Lys Thr Leu Lys Gly Glu Thr Thr Thr Glu Ala Val Asp Ala 125 130 135 140	1156
gcc acc gcg gag aag gtg ttc aaa caa tac gct aat gac aac ggg gtc Ala Thr Ala Glu Lys Val Phe Lys Gln Tyr Ala Asn Asp Asn Gly Val 145 150 155	1204
gac ggc gag tgg act tac gac gac gcc acc aag acc ttc acc gtg acc Asp Gly Glu Trp Thr Tyr Asp Asp Ala Thr Lys Thr Phe Thr Val Thr 160 165 170	1252
gag gcg gcc gca gaa caa aaa ctc atc tca gaa gag gat ctg aat ggg Glu Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly 175 180 185	1300
gcc gtc gac gga caa aac gac acc agc caa acc agc ag	1348
tcc agc aac ata agc gga ggc att ttc ctt ttc ttc gtg gcc aat gcc Ser Ser Asn Ile Ser Gly Gly Ile Phe Leu Phe Phe Val Ala Asn Ala 205 210 215 220	1396
ata atc cac ctc ttc tgc ttc agt tgaggtgaca cgtctagagc tattctatag Ile Ile His Leu Phe Cys Phe Ser 225	1450
tgtcacctaa atgctagagc tcgctgatca gcctcgactg tgccttctag ttgccagcca	1510
tctgttgttt gcccctcccc cgtgccttcc ttgaccctgg aaggtgccac tcccactgtc	1570
ctttcctaat aaaatgagga aattgcatcg cattgtctga gtaggtgtca ttctattctg	1630
gggggtgggg tggggcagga cagcaagggg gaggattggg aagacaatag caggcatgct	1690
ggggatgcgg tgggctctat ggcttctgag gcggaaagaa ccagtggcgg taatacggtt	1750
atccacagaa tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc	1810
caggaaccgt aaaaaggccg cgttgctggc gtttttccat aggctccgcc cccctgacga	1870
gcatcacaaa aatcgacgct caagtcagag gtggcgaaac ccgacaggac tataaagata	1930
ccaggcgttt ccccctggaa gctccctcgt gcgctctcct gttccgaccc tgccgcttac	1990
cggatacctg tccgcctttc tcccttcggg aagcgtggcg ctttctcata gctcacgctg	2050
taggtatctc agttcggtgt aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc	2110

		4	121 126 +hi	rd_submissi	on ST25	
cgttcagccc	gaccgctgcg	ccttatccgg	taactatcgt	cttgagtcca	acccggtaag	2170
acacgactta	tcgccactgg	cagcagccac	tggtaacagg	attagcagag	cgaggtatgt	2230
aggcggtgct	acagagttct	tgaagtggtg	gcctaactac	ggctacacta	gaaggacagt	2290
atttggtatc	tgcgctctgc	tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	2350
atccggcaaa	caaaccaccg	ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	2410
gcgcagaaaa	aaaggatctc	aagaagatcc	tttgatcttt	tctacggggt	ctgacgctca	2470
gtggaacgaa	aactcacgtt	aagggatttt	ggtcatgaga	ttatcaaaaa	ggatcttcac	2530
ctagatcctt	ttaaattaaa	aatgaagttt	taaatcaatc	taaagtatat	atgagtaacc	2590
tgaggctatg	gcagggcctg	ccgccccgac	gttggctgcg	agccctgggc	cttcacccga	2650
acttgggggg	tggggtgggg	aaaaggaaga	aacgcgggcg	tattggcccc	aatggggtct	2710
cggtggggta	tcgacagagt	gccagccctg	ggaccgaacc	ccgcgtttat	gaacaaacga	2770
cccaacaccg	tgcgttttat	tctgtctttt	tattgccgtc	atagcgcggg	ttccttccgg	2830
tattgtctcc	ttccgtgttt	cagttagcct	ccccctaggg	tgggcgaaga	actccagcat	2890
gagatccccg	cgctggagga	tcatccagcc	ggcgtcccgg	aaaacgattc	cgaagcccaa	2950
cctttcatag	aaggcggcgg	tggaatcgaa	atctcgtgat	ggcaggttgg	gcgtcgcttg	3010
gtcggtcatt	tcgaacccca	gagtcccgct	cagaagaact	cgtcaagaag	gcgatagaag	3070
gcgatgcgct	gcgaatcggg	agcggcgata	ccgtaaagca	cgaggaagcg	gtcagcccat	3130
tcgccgccaa	gctcttcagc	aatatcacgg	gtagccaacg	ctatgtcctg	atagcggtcc	3190
gccacaccca	gccggccaca	gtcgatgaat	ccagaaaagc	ggccattttc	caccatgata	3250
ttcggcaagc	aggcatcgcc	atgggtcacg	acgagatcct	cgccgtcggg	catgctcgcc	3310
ttgagcctgg	cgaacagttc	ggctggcgcg	agcccctgat	gctcttgatc	atcctgatcg	3370
acaagaccgg	cttccatccg	agtacgtgct	cgctcgatgc	gatgtttcgc	ttggtggtcg	3430
aatgggcagg	tagccggatc	aagcgtatgc	agccgccgca	ttgcatcagc	catgatggat	3490
actttctcgg	caggagcaag	gtgagatgac	aggagatcct	gccccggcac	ttcgcccaat	3550
agcagccagt	cccttcccgc	ttcagtgaca	acgtcgagca	cagctgcgca	aggaacgccc	3610
gtcgtggcca	gccacgatag	ccgcgctgcc	tcgtcttgca	gttcattcag	ggcaccggac	3670
aggtcggtct	tgacaaaaag	aaccgggcgc	ccctgcgctg	acagccggaa	cacggcggca	3730
tcagagcagc	cgattgtctg	ttgtgcccag	tcatagccga	atagcctctc	cacccaagcg	3790
gccggagaac	ctgcgtgcaa	tccatcttgt	tcaatcatgc	gaaacgatcc	tcatcctgtc	3850
tcttgatcga	tctttgcaaa	agcctaggcc	tccaaaaaag	cctcctcact	acttctggaa	3910
tagctcagag	gccgaggagg	cggcctcggc	ctctgcataa	ataaaaaaaa	ttagtcagcc	3970
atggggcgga	gaatgggcgg	aactgggcgg	agttaggggc	gggatgggcg	gagttagggg	4030
cgggactatg	gttgctgact	aattgagatg	catgctttgc	atacttctgc	ctgctgggga	4090
gcctggggac	tttccacacc	tggttgctga	ctaattgaga	tgcatgcttt	gcatacttct	4150
gcctgctggg	gagcctgggg	actttccaca	ccctaactga	cacacattcc	acagctggtt	4210

```
4121-126_third_submission.ST25
                                                                     4270
ctttccgcct caggactctt cctttttcaa taaatcaatc taaagtatat atgagtaaac
                                                                     4330
ttggtctgac agttaccaat gcttaatcag tgaggcacct atctcagcga tctgtctatt
                                                                     4390
tcgttcatcc atagttgcct gactccccgt cgtgtagata actacgatac gggagggctt
                                                                     4450
accatctggc cccagtgctg caatgatacc gcgagaccca cgctcaccgg ctccagattt
                                                                     4510
atcagcaata aaccagccag ccggaagggc cgagcgcaga agtggtcctg caactttatc
cgcctccatc cagtctatta attgttgccg ggaagctaga gtaagtagtt cgccagttaa
                                                                     4570
                                                                     4630
tagtttgcgc aacgttgttg ccattgctac aggcatcgtg gtgtcacgct cgtcgtttgg
                                                                     4690
tatggcttca ttcagctccg gttcccaacg atcaaggcga gttacatgat cccccatgtt
                                                                     4750
gtgcaaaaaa gcggttagct ccttcggtcc tccgatcgtt gtcagaagta agttggccgc
                                                                     4810
agtgttatca ctcatggtta tggcagcact gcataattct cttactgtca tgccatccgt
                                                                     4870
aagatgcttt tctgtgactg gtgagtactc aaccaagtca ttctgagaat agtgtatgcg
                                                                     4930
gcgaccgagt tgctcttgcc cggcgtcaat acgggataat accgcgccac atagcagaac
tttaaaagtg ctcatcattg gaaaacgttc ttcggggcga aaactctcaa ggatcttacc
                                                                     4990
gctgttgaga tccagttcga tgtaacccac tcgtgcaccc aactgatctt cagcatcttt
                                                                     5050
                                                                     5110
tactttcacc agcgtttctg ggtgagcaaa aacaggaagg caaaatgccg caaaaaaggg
                                                                     5170
aataagggcg acacggaaat gttgaatact catactcttc ctttttcaat attattgaag
catttatcag ggttattgtc tcatgagcgg atacatattt gaatgtattt agaaaaataa
                                                                     5230
                                                                     5290
acaaataggg gttccgcgca catttccccg aaaagtgcca cctgacgcgc cctgtagcgg
cgcattaagc gcggcgggtg tggtggttac gcgcagcgtg accgctacac ttgccagcgc
                                                                     5350
                                                                     5410
cctagcgccc gctcctttcg ctttcttccc ttcctttctc gccacgttcg ccggctttcc
                                                                     5470
ccgtcaagct ctaaatcggg ggctcccttt agggttccga tttagtgctt tacggcacct
                                                                     5530
cgaccccaaa aaacttgatt agggtgatgg ttcacgtagt gggccatcgc cctgatagac
                                                                     5590
ggtttttcgc cctttgacgt tggagtccac gttctttaat agtggactct tgttccaaac
                                                                     5650
tggaacaaca ctcaacccta tctcggtcta ttcttttgat ttataaggga ttttgccgat
                                                                     5710
ttcggcctat tggttaaaaa atgagctgat ttaacaaaaa tttaacgcga attttaacaa
                                                                     5732
aatattaacg cttacaattt ac
      2
228
<210>
      PRT
       Artificial Sequence
<220>
<223> Synthetic Construct
<400> 2
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 15
```

Page 4

Gly Ser Thr Gly Asp Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Gly Ala 20 25 30

Gln Lys Pro Glu Val Ile Asp Ala Ser Glu Leu Thr Pro Ala Val Thr 35 40 45

Thr Tyr Lys Leu Val Ile Asn Gly Lys Thr Leu Lys Gly Glu Thr Thr 50 60

Thr Glu Ala Val Asp Ala Ala Thr Ala Glu Lys Val Phe Lys Gln Tyr 65 70 75 80

Ala Asn Asp Asn Gly Val Asp Gly Glu Trp Thr Tyr Asp Asp Ala Thr 85 90 95

Lys Thr Phe Thr Val Thr Glu Lys Pro Glu Val Ile Asp Ala Ser Glu 100 105 110

Leu Lys Gly Glu Thr Thr Glu Ala Val Asp Ala Ala Thr Ala Glu 130 135 140

Lys Val Phe Lys Gln Tyr Ala Asn Asp Asn Gly Val Asp Gly Glu Trp 145 150 160

Thr Tyr Asp Asp Ala Thr Lys Thr Phe Thr Val Thr Glu Ala Ala Ala 165 170 175

Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly Ala Val Asp Gly 180 185 190

Gln Asn Asp Thr Ser Gln Thr Ser Ser Pro Ser Ala Ser Ser Asn Ile 195 200 205

Ser Gly Gly Ile Phe Leu Phe Phe Val Ala Asn Ala Ile Ile His Leu 210 215 220

Phe Cys Phe Ser

<210> <211> 6094

<212> DNA

Artificial Sequence <213>

<220> <223> Synthetic Sequence

<220> <221> <222> CDS

(682)..(1782)

<400> 3 gcgcgcgttg acattgatta ttgactagtt attaatagta atcaattacg gggtcattag ttcatagccc atatatggag ttccgcgtta cataacttac ggtaaatggc ccgcctggct Page 5

120

gaccgcccaa cgac	cccgc ccatt	gacgt caataat	gac gtatgttcc	c atagtaacgc 18	80
caatagggac tttc	cattga cgtca	atggg tggacta	ttt acggtaaac	t gcccacttgg 24	40
cagtacatca agtg	tatcat atgcc	aagta cgccccc	tat tgacgtcaa	t gacggtaaat 30	00
ggcccgcctg gcat	tatgcc cagta	catga ccttatg	gga ctttcctac	t tggcagtaca 36	60
tctacgtatt agtc	atcgct attac	catgg tgatgcg	gtt ttggcagta	c atcaatgggc 42	20
gtggatagcg gttt	gactca cgggg	atttc caagtct	cca ccccattga	c gtcaatggga 48	80
gtttgttttg gcac	caaaat caacg	ggact ttccaaa	atg tcgtaacaa	c tccgccccat 54	40
tgacgcaaat gggc	ggtagg cgtgt	acggt gggaggt	cta tataagcag	a gctctctggc 60	00
taactagaga accc	actgct tactg	gctta tcgaaat	taa tacgactca	c tatagggaga 60	60
cccaagcttg gtac		gca ccc tgc Ala Pro Cys			11
gcg gcc gcc ctg Ala Ala Ala Leu	gcc ccg act Ala Pro Thr 15	cag acc cgc Gln Thr Arg 20	gcg ggg gcc c Ala Gly Ala G		59
aag acc ccc gag Lys Thr Pro Glu 30	gag ccc aag Glu Pro Lys	gag gag gtg Glu Glu Val 35	Thr Ile Lys A	cc aac ctg 80 la Asn Leu O	07
atc tac gcc gac Ile Tyr Ala Asp 45	ggc aag acc Gly Lys Thr	cag acc gcc Gln Thr Ala 50	gag ttc aag g Glu Phe Lys G 55		55
gag gag gcc acc Glu Glu Ala Thr 60	gcg gag gcc Ala Glu Ala 65	tac cgc tac Tyr Arg Tyr	gcc gac gcc c Ala Asp Ala L 70		03
gac aac ggc gag Asp Asn Gly Glu 75	tac acc gtg Tyr Thr Val 80	gac gtg gcc Asp Val Ala	gac aag ggc t Asp Lys Gly T 85		51
aac atc aag ttc Asn Ile Lys Phe	gcc ggc aag Ala Gly Lys 95	gag aag acc Glu Lys Thr 100	ccc gag gag c Pro Glu Glu P		99
gag gtg acc atc Glu Val Thr Ile 110	Lys Ala Asn	ctg atc tac Leu Ile Tyr 115	Ala Asp Gly L	ag acc cag 104 ys Thr Gln 20	17
acc gcc gag ttc Thr Ala Glu Phe 125	aag ggc acc Lys Gly Thr	ttc gag gag Phe Glu Glu 130	gcc acc gcg g Ala Thr Ala G 135	ag gcc tac 109 lu Ala Tyr	∌ 5
cgc tac gcc gac Arg Tyr Ala Asp 140	gcc ctg aag Ala Leu Lys 145	Lys Asp Asn	ggc gag tac a Gly Glu Tyr T 150	cc gtg gac 114 hr Val Asp	13
gtg gcc gac aag Val Ala Asp Lys 155	ggc tac acc Gly Tyr Thr 160	Leu Asn Ile	aag ttc gcc g Lys Phe Ala G 165	gc aag gag 119 ly Lys Glu 170	91
aag acc ccc gag Lys Thr Pro Glu	gag ccc aag Glu Pro Lys 175	gag gag gtg Glu Glu Val 180	acc atc aag g Thr Ile Lys A	cc aac ctg 123 la Asn Leu 185	39
atc tac gcc gac Ile Tyr Ala Asp 190	ggc aag acc Gly Lys Thr	cag acc gcc Gln Thr Ala 195	Glu Phe Lys G	gc acc ttc 128 ly Thr Phe 00	37

Page 6

gag gag gcc acc gcg gag gcc tac cgc tac gcc gac gcc ctg aag aag Glu Glu Ala Thr Ala Glu Ala Tyr Arg Tyr Ala Asp Ala Leu Lys Lys 205 210 215	1335
gac aac ggc gag tac acc gtg gac gtg gcc gac aag ggc tac acc ctg Asp Asn Gly Glu Tyr Thr Val Asp Val Ala Asp Lys Gly Tyr Thr Leu 220 225 230	1383
aac atc aag ttc gcc ggc aag gag acc ccc gag gag ccc aag gag Asn Ile Lys Phe Ala Gly Lys Glu Lys Thr Pro Glu Glu Pro Lys Glu 235 240 245 250	1431
gag gtg acc atc aag gcc aac ctg atc tac gcc gac ggc aag acc cag Glu Val Thr Ile Lys Ala Asn Leu Ile Tyr Ala Asp Gly Lys Thr Gln 255 260 265	1479
acc gcc gag ttc aag ggc acc ttc gag gag gcc acc gcg gag gcc tac Thr Ala Glu Phe Lys Gly Thr Phe Glu Glu Ala Thr Ala Glu Ala Tyr 270 275 280	1527
cgc tac gcc gac gcc ctg aag aag gac aac ggc gag tac acc gtg gac Arg Tyr Ala Asp Ala Leu Lys Lys Asp Asn Gly Glu Tyr Thr Val Asp 285 290 295	1575
gtg gcc gac aag ggc tac acc ctg aac atc aag ttc gcc ggc gcg gcc Val Ala Asp Lys Gly Tyr Thr Leu Asn Ile Lys Phe Ala Gly Ala Ala 300 305 310	1623
gca gaa caa aaa ctc atc tca gaa gag gat ctg aat ggg gcc gtc gac Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly Ala Val Asp 315 320 325 330	1671
gga caa aac gac acc agc caa acc agc agc	1719
ata agc gga ggc att ttc ctt ttc ttc gtg gcc aat gcc ata atc cac Ile Ser Gly Gly Ile Phe Leu Phe Phe Val Ala Asn Ala Ile Ile His 350 355 360	1767
ctc ttc tgc ttc agt tgaggtgaca cgtctagagc tattctatag tgtcacctaa Leu Phe Cys Phe Ser 365	1822
atgctagagc tcgctgatca gcctcgactg tgccttctag ttgccagcca tctgttgttt	1882
gcccctcccc cgtgccttcc ttgaccctgg aaggtgccac tcccactgtc ctttcctaat	1942
aaaatgagga aattgcatcg cattgtctga gtaggtgtca ttctattctg gggggtgggg	2002
tggggcagga cagcaagggg gaggattggg aagacaatag caggcatgct ggggatgcgg	2062
tgggctctat ggcttctgag gcggaaagaa ccagtggcgg taatacggtt atccacagaa	2122
tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt	2182
aaaaaggccg cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa	2242
aatcgacgct caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt	2302
cccctggaa gctccctcgt gcgctctcct gttccgaccc tgccgcttac cggatacctg	2362
tccgcctttc tcccttcggg aagcgtggcg ctttctcata gctcacgctg taggtatctc	2422
agttcggtgt aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc	2482
gaccgctgcg ccttatccgg taactatcgt cttgagtcca acccggtaag acacgactta	2542
tcgccactgg cagcagccac tggtaacagg attagcagag cgaggtatgt aggcggtgct Page 7	2602

acagagttct	tgaagtggtg	gcctaactac	ggctacacta	gaaggacagt	atttggtatc	2662
tgcgctctgc	tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	atccggcaaa	2722
caaaccaccg	ctggtagcgg	tggttttttt	gtttgcaagc	agcagattac	gcgcagaaaa	2782
aaaggatctc	aagaagatcc	tttgatcttt	tctacggggt	ctgacgctca	gtggaacgaa	2842
aactcacgtt	aagggatttt	ggtcatgaga	ttatcaaaaa	ggatcttcac	ctagatcctt	2902
ttaaattaaa	aatgaagttt	taaatcaatc	taaagtatat	atgagtaacc	tgaggctatg	2962
gcagggcctg	ccgccccgac	gttggctgcg	agccctgggc	cttcacccga	acttgggggg	3022
tggggtgggg	aaaaggaaga	aacgcgggcg	tattggcccc	aatggggtct	cggtggggta	3082
tcgacagagt	gccagccctg	ggaccgaacc	ccgcgtttat	gaacaaacga	cccaacaccg	3142
tgcgttttat	tctgtctttt	tattgccgtc	atagcgcggg	ttccttccgg	tattgtctcc	3202
ttccgtgttt	cagttagcct	ccccctaggg	tgggcgaaga	actccagcat	gagatccccg	3262
cgctggagga	tcatccagcc	ggcgtcccgg	aaaacgattc	cgaagcccaa	cctttcatag	3322
aaggcggcgg	tggaatcgaa	atctcgtgat	ggcaggttgg	gcgtcgcttg	gtcggtcatt	3382
tcgaacccca	gagtcccgct	cagaagaact	cgtcaagaag	gcgatagaag	gcgatgcgct	3442
gcgaatcggg	agcggcgata	ccgtaaagca	cgaggaagcg	gtcagcccat	tcgccgccaa	3502
gctcttcagc	aatatcacgg	gtagccaacg	ctatgtcctg	atagcggtcc	gccacaccca	3562
gccggccaca	gtcgatgaat	ccagaaaagc	ggccattttc	caccatgata	ttcggcaagc	3622
aggcatcgcc	atgggtcacg	acgagatcct	cgccgtcggg	catgctcgcc	ttgagcctgg	3682
cgaacagttc	ggctggcgcg	agcccctgat	gctcttgatc	atcctgatcg	acaagaccgg	3742
cttccatccg	agtacgtgct	cgctcgatgc	gatgtttcgc	ttggtggtcg	aatgggcagg	3802
tagccggatc	aagcgtatgc	agccgccgca	ttgcatcagc	catgatggat	actttctcgg	3862
caggagcaag	gtgagatgac	aggagatcct	gccccggcac	ttcgcccaat	agcagccagt	3922
cccttcccgc	ttcagtgaca	acgtcgagca	cagctgcgca	aggaacgccc	gtcgtggcca	3982
gccacgatag	ccgcgctgcc	tcgtcttgca	gttcattcag	ggcaccggac	aggtcggtct	4042
tgacaaaaag	aaccgggcgc	ccctgcgctg	acagccggaa	cacggcggca	tcagagcagc	4102
cgattgtctg	ttgtgcccag	tcatagccga	atagcctctc	cacccaagcg	gccggagaac	4162
ctgcgtgcaa	tccatcttgt	tcaatcatgc	gaaacgatcc	tcatcctgtc	tcttgatcga	4222
tctttgcaaa	agcctaggcc	tccaaaaaag	cctcctcact	acttctggaa	tagctcagag	4282
gccgaggagg	cggcctcggc	ctctgcataa	ataaaaaaaa	ttagtcagcc	atggggcgga	4342
gaatgggcgg	aactgggcgg	agttaggggc	gggatgggcg	gagttagggg	cgggactatg	4402
gttgctgact	aattgagatg	catgctttgc	atacttctgc	ctgctgggga	gcctggggac	4462
tttccacacc	tggttgctga	ctaattgaga	tgcatgcttt	gcatacttct	gcctgctggg	4522
gagcctgggg	actttccaca	ccctaactga	cacacattcc	acagctggtt	ctttccgcct	4582
caggactctt	cctttttcaa	taaatcaatc	taaagtatat	atgagtaaac	ttggtctgac	4642
agttaccaat	gcttaatcag	tgaggcacct	atctcagcga	tctgtctatt Page 8	tcgttcatcc	4702
				age o		

atagttgcct gac	tccccgt	cgtgtagata	actacgatac	gggagggctt	accatctggc	4762
cccagtgctg caa	tgatacc	gcgagaccca	cgctcaccgg	ctccagattt	atcagcaata	4822
aaccagccag ccg	gaagggc	cgagcgcaga	agtggtcctg	caactttatc	cgcctccatc	4882
cagtctatta att	gttgccg	ggaagctaga	gtaagtagtt	cgccagttaa	tagtttgcgc	4942
aacgttgttg cca	ttgctac	aggcatcgtg	gtgtcacgct	cgtcgtttgg	tatggcttca	5002
ttcagctccg gtt	cccaacg	atcaaggcga	gttacatgat	ccccatgtt	gtgcaaaaaa	5062
gcggttagct cct	tcggtcc	tccgatcgtt	gtcagaagta	agttggccgc	agtgttatca	5122
ctcatggtta tgg	cagcact	gcataattct	cttactgtca	tgccatccgt	aagatgcttt	5182
tctgtgactg gtg	agtactc	aaccaagtca	ttctgagaat	agtgtatgcg	gcgaccgagt	5242
tgctcttgcc cgg	cgtcaat	acgggataat	accgcgccac	atagcagaac	tttaaaagtg	5302
ctcatcattg gaa	aacgttc	ttcggggcga	aaactctcaa	ggatcttacc	gctgttgaga	5362
tccagttcga tgt	aacccac	tcgtgcaccc	aactgatctt	cagcatcttt	tactttcacc	5422
agcgtttctg ggt	gagcaaa	aacaggaagg	caaaatgccg	caaaaaaggg	aataagggcg	5482
acacggaaat gtt	gaatact	catactcttc	ctttttcaat	attattgaag	catttatcag	5542
ggttattgtc tca	tgagcgg	atacatattt	gaatgtattt	agaaaaataa	acaaataggg	5602
gttccgcgca cat	ttccccg	aaaagtgcca	cctgacgcgc	cctgtagcgg	cgcattaagc	5662
gcggcgggtg tgg	tggttac	gcgcagcgtg	accgctacac	ttgccagcgc	cctagcgccc	5722
gctcctttcg ctt	tcttccc	ttcctttctc	gccacgttcg	ccggctttcc	ccgtcaagct	5782
ctaaatcggg ggc	tcccttt	agggttccga	tttagtgctt	tacggcacct	cgaccccaaa	5842
aaacttgatt agg	gtgatgg	ttcacgtagt	gggccatcgc	cctgatagac	ggtttttcgc	5902
cctttgacgt tgg	agtccac	gttctttaat	agtggactct	tgttccaaac	tggaacaaca	5962
ctcaacccta tct	cggtcta	ttcttttgat	ttataaggga	ttttgccgat	ttcggcctat	6022
tggttaaaaa atg	agctgat	ttaacaaaaa	tttaacgcga	attttaacaa	aatattaacg	6082
cttacaattt ac						6094

```
<210>
```

Thr Gln Thr Arg Ala Gly Ala Gln Lys Glu Lys Thr Pro Glu Glu Pro $20 \\ 25 \\ 30$

Lys Glu Glu Val Thr Ile Lys Ala Asn Leu Ile Tyr Ala Asp Gly Lys 35 40 45 Page 9

³⁶⁷

<212> PRT <213> Artificial Sequence

<220> <223> Synthetic Construct

<400> 4

Thr Gln Thr Ala Glu Phe Lys Gly Thr Phe Glu Glu Ala Thr Ala Glu
50 60 Ala Tyr Arg Tyr Ala Asp Ala Leu Lys Lys Asp Asn Gly Glu Tyr Thr 65 70 75 Val Asp Val Ala Asp Lys Gly Tyr Thr Leu Asn Ile Lys Phe Ala Gly 85 90 95 Lys Glu Lys Thr Pro Glu Glu Pro Lys Glu Glu Val Thr Ile Lys Ala 100 105 110 Asn Leu Ile Tyr Ala Asp Gly Lys Thr Gln Thr Ala Glu Phe Lys Gly 115 120 125 Thr Phe Glu Glu Ala Thr Ala Glu Ala Tyr Arg Tyr Ala Asp Ala Leu 130 135 140 Lys Lys Asp Asn Gly Glu Tyr Thr Val Asp Val Ala Asp Lys Gly Tyr 145 150 160 Thr Leu Asn Ile Lys Phe Ala Gly Lys Glu Lys Thr Pro Glu Glu Pro 165 170 175 Lys Glu Glu Val Thr Ile Lys Ala Asn Leu Ile Tyr Ala Asp Gly Lys 180 185 190 Thr Gln Thr Ala Glu Phe Lys Gly Thr Phe Glu Glu Ala Thr Ala Glu 195 200 205 Ala Tyr Arg Tyr Ala Asp Ala Leu Lys Lys Asp Asn Gly Glu Tyr Thr 210 215 220 Val Asp Val Ala Asp Lys Gly Tyr Thr Leu Asn Ile Lys Phe Ala Gly 225 230 240 Lys Glu Lys Thr Pro Glu Glu Pro Lys Glu Glu Val Thr Ile Lys Ala 245 250 255 Asn Leu Ile Tyr Ala Asp Gly Lys Thr Gln Thr Ala Glu Phe Lys Gly 260 265 270Thr Phe Glu Glu Ala Thr Ala Glu Ala Tyr Arg Tyr Ala Asp Ala Leu 275 280 285 Lys Lys Asp Asn Gly Glu Tyr Thr Val Asp Val Ala Asp Lys Gly Tyr Thr Leu Asn Ile Lys Phe Ala Gly Ala Ala Glu Gln Lys Leu Ile 305 310 315 320 Ser Glu Glu Asp Leu Asn Gly Ala Val Asp Gly Gln Asn Asp Thr Ser 325 330 335

Leu Phe Phe Val Ala Asn Ala Ile Ile His Leu Phe Cys Phe Ser 355 360 365

	355	360		303	
<210> <211> <212> <213>	5 5729 DNA Artificial Seque	nce			
<220> <223>	Synthetic Sequen	ce			
<220> <221> <222>	CDS (682)(1431)				
<400> gcgcgc	5 gttg acattgatta t	tgactagtt at	taatagta	atcaattacg gggt	cattag 60
ttcata	gccc atatatggag t	tccgcgtta ca	taacttac	ggtaaatggc ccgc	ctggct 120
gaccgc	ccaa cgacccccgc c	cattgacgt ca	ataatgac	gtatgttccc atag	taacgc 180
caatag	ggac tttccattga c	gtcaatggg tg	gactattt	acggtaaact gccc	acttgg 240
cagtac	atca agtgtatcat a	tgccaagta cg	cccctat	tgacgtcaat gacg	gtaaat 300
ggcccg	cctg gcattatgcc c	agtacatga cc	ttatggga	ctttcctact tggc	agtaca 360
tctacg	tatt agtcatcgct a	ttaccatgg tg	atgcggtt	ttggcagtac atca	atgggc 420
gtggat	agcg gtttgactca c	ggggatttc ca	agtctcca	ccccattgac gtca	atggga 480
gtttgt	tttg gcaccaaaat c	aacgggact tt	ccaaaatg	tcgtaacaac tccg	ccccat 540
tgacgc	aaat gggcggtagg c	gtgtacggt gg	gaggtcta	tataagcaga gctc	tctggc 600
taacta	gaga acccactgct t	actggctta tc	gaaattaa	tacgactcac tata	gggaga 660
cccaag	cttg gtaccggtgc g	atg gca ccc Met Ala Pro 1	tgc atg Cys Met 5	ctg ctc ctg ctg Leu Leu Leu Leu	ttg 711 Leu 10
gcg gc Ala Al	c gcc ctg gcc ccg a Ala Leu Ala Pro 15	act cag acc Thr Gln Thr	cgc gcg Arg Ala 20	ggg gcc caa aag Gly Ala Gln Lys 25	ccc 759 Pro
gag gt Glu Va		gag ctg acc Glu Leu Thr 35	ccc gcc Pro Ala	gtg acc acc tac Val Thr Thr Tyr 40	
	g atc aac ggc aag l Ile Asn Gly Lys 45				
gtg ga Val As 60	c gcc gcc acc gcg p Ala Ala Thr Ala	gag aag gtg Glu Lys Val 65	ttc aaa Phe Lys	caa tac gct aat Gln Tyr Ala Asn 70	gac 903 Asp
aac gg Asn Gl	g gtc gac ggc gag y Val Asp Gly Glu	tgg act tac Trp Thr Tyr	Asp Asp	gcc acc aag acc Ala Thr Lys Thr Page 11	ttc 951 Phe

Page 11

75 80 4121-126_t	hird_submission.ST25 90
acc gtg acc gag aag ccc gag gtg atc gat gc Thr Val Thr Glu Lys Pro Glu Val Ile Asp Al 95	c agc gag ctg acc ccc 999 a Ser Glu Leu Thr Pro 105
gcc gtg acc acc tac aag cta gtg atc aac gg Ala Val Thr Thr Tyr Lys Leu Val Ile Asn Gl 110 115	yc aag acc ctg aag ggc 1047 y Lys Thr Leu Lys Gly 120
gag acc acc acc gag gcc gtg gac gcc gcc ac Glu Thr Thr Thr Glu Ala Val Asp Ala Ala Th 125 130	c gcg gag aag gtg ttc 1095 or Ala Glu Lys Val Phe 135
aaa caa tac gct aat gac aac ggg gtc gac gg Lys Gln Tyr Ala Asn Asp Asn Gly Val Asp Gl 140 145	gc gag tgg act tac gac 1143 y Glu Trp Thr Tyr Asp 150
gac gcc acc aag acc ttc acc gtg acc gag gc Asp Ala Thr Lys Thr Phe Thr Val Thr Glu Al 155 160 16	g gcc gca gaa caa aaa 1191 a Ala Ala Glu Gln Lys 55 170
ctc atc tca gaa gag gat ctg aat ggg gcc gt Leu Ile Ser Glu Glu Asp Leu Asn Gly Ala Va 175 180	c gac gaa caa aaa ctc 1239 il Asp Glu Gln Lys Leu 185
atc tca gaa gag gat ctg aat gct gtg ggc ca Ile Ser Glu Glu Asp Leu Asn Ala Val Gly Gl 190	ng gac acg cag gag gtc 1287 n Asp Thr Gln Glu Val 200
atc gtg gtg cca cac tcc ttg ccc ttt aag gt Ile Val Val Pro His Ser Leu Pro Phe Lys Va 205 210	g gtg gtg atc tca gcc 1335 Il val val Ile Ser Ala 215
atc ctg gcc ctg gtg gtg ctc acc atc atc tc Ile Leu Ala Leu Val Val Leu Thr Ile Ile Se 220 225	c ctt atc atc ctc atc 1383 er Leu Ile Ile Leu Ile 230
atg ctt tgg cag aag aag cca cgt tcg tcg gc Met Leu Trp Gln Lys Lys Pro Arg Ser Ser Al 235 240 24	a Asp Arg Glu Ser Ile
tagagctatt ctatagtgtc acctaaatgc tagagctcg	c tgatcagcct cgactgtgcc 1491
ttctagttgc cagccatctg ttgtttgccc ctcccccgt	g ccttccttga ccctggaagg 1551
tgccactccc actgtccttt cctaataaaa tgaggaaat	t gcatcgcatt gtctgagtag 1611
gtgtcattct attctggggg gtggggtggg gcaggacag	yc aagggggagg attgggaaga 1671
caatagcagg catgctgggg atgcggtggg ctctatggc	t tctgaggcgg aaagaaccag 1731
tggcggtaat acggttatcc acagaatcag gggataacg	yc aggaaagaac atgtgagcaa 1791
aaggccagca aaaggccagg aaccgtaaaa aggccgcgt	t gctggcgttt ttccataggc 1851
tccgcccccc tgacgagcat cacaaaaatc gacgctcaa	ng tcagaggtgg cgaaacccga 1911
caggactata aagataccag gcgtttcccc ctggaagct	c cctcgtgcgc tctcctgttc 1971
cgaccctgcc gcttaccgga tacctgtccg cctttctcc	cc ttcgggaagc gtggcgcttt 2031
ctcatagctc acgctgtagg tatctcagtt cggtgtagg	t cgttcgctcc aagctgggct 2091
gtgtgcacga acccccgtt cagcccgacc gctgcgcct	t atccggtaac tatcgtcttg 2151
agtccaaccc ggtaagacac gacttatcgc cactggcag	gc agccactggt aacaggatta 2211
gcagagcgag gtatgtaggc ggtgctacag agttcttga	aa gtggtggcct aactacggct 2271

acactagaag	gacagtattt	4 ggtatctgcg	121-126_thi ctctgctgaa	rd_submissi gccagttacc	on.ST25 ttcggaaaaa	2331
gagttggtag	ctcttgatcc	ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	2391
gcaagcagca	gattacgcgc	agaaaaaaag	gatctcaaga	agatcctttg	atcttttcta	2451
cggggtctga	cgctcagtgg	aacgaaaact	cacgttaagg	gattttggtc	atgagattat	2511
caaaaaggat	cttcacctag	atccttttaa	attaaaaatg	aagttttaaa	tcaatctaaa	2571
gtatatatga	gtaacctgag	gctatggcag	ggcctgccgc	cccgacgttg	gctgcgagcc	2631
ctgggccttc	acccgaactt	ggggggtggg	gtggggaaaa	ggaagaaacg	cgggcgtatt	2691
ggccccaatg	gggtctcggt	ggggtatcga	cagagtgcca	gccctgggac	cgaaccccgc	2751
gtttatgaac	aaacgaccca	acaccgtgcg	ttttattctg	tctttttatt	gccgtcatag	2811
cgcgggttcc	ttccggtatt	gtctccttcc	gtgtttcagt	tagcctcccc	ctagggtggg	2871
cgaagaactc	cagcatgaga	tcccgcgct	ggaggatcat	ccagccggcg	tcccggaaaa	2931
cgattccgaa	gcccaacctt	tcatagaagg	cggcggtgga	atcgaaatct	cgtgatggca	2991
ggttgggcgt	cgcttggtcg	gtcatttcga	accccagagt	cccgctcaga	agaactcgtc	3051
aagaaggcga	tagaaggcga	tgcgctgcga	atcgggagcg	gcgataccgt	aaagcacgag	3111
gaagcggtca	gcccattcgc	cgccaagctc	ttcagcaata	tcacgggtag	ccaacgctat	3171
gtcctgatag	cggtccgcca	cacccagccg	gccacagtcg	atgaatccag	aaaagcggcc	3231
attttccacc	atgatattcg	gcaagcaggc	atcgccatgg	gtcacgacga	gatcctcgcc	3291
gtcgggcatg	ctcgccttga	gcctggcgaa	cagttcggct	ggcgcgagcc	cctgatgctc	3351
ttgatcatcc	tgatcgacaa	gaccggcttc	catccgagta	cgtgctcgct	cgatgcgatg	3411
tttcgcttgg	tggtcgaatg	ggcaggtagc	cggatcaagc	gtatgcagcc	gccgcattgc	3471
atcagccatg	atggatactt	tctcggcagg	agcaaggtga	gatgacagga	gatcctgccc	3531
cggcacttcg	cccaatagca	gccagtccct	tcccgcttca	gtgacaacgt	cgagcacagc	3591
tgcgcaagga	acgcccgtcg	tggccagcca	cgatagccgc	gctgcctcgt	cttgcagttc	3651
attcagggca	ccggacaggt	cggtcttgac	aaaaagaacc	gggcgcccct	gcgctgacag	3711
ccggaacacg	gcggcatcag	agcagccgat	tgtctgttgt	gcccagtcat	agccgaatag	3771
cctctccacc	caagcggccg	gagaacctgc	gtgcaatcca	tcttgttcaa	tcatgcgaaa	3831
cgatcctcat	cctgtctctt	gatcgatctt	tgcaaaagcc	taggcctcca	aaaaagcctc	3891
ctcactactt	ctggaatagc	tcagaggccg	aggaggcggc	ctcggcctct	gcataaataa	3951
aaaaaattag	tcagccatgg	ggcggagaat	gggcggaact	gggcggagtt	aggggcggga	4011
tgggcggagt	taggggcggg	actatggttg	ctgactaatt	gagatgcatg	ctttgcatac	4071
ttctgcctgc	tggggagcct	ggggactttc	cacacctggt	tgctgactaa	ttgagatgca	4131
tgctttgcat	acttctgcct	gctggggagc	ctggggactt	tccacaccct	aactgacaca	4191
cattccacag	ctggttcttt	ccgcctcagg	actcttcctt	tttcaataaa	tcaatctaaa	4251
gtatatatga	gtaaacttgg	tctgacagtt	accaatgctt	aatcagtgag	gcacctatct	4311
cagcgatctg	tctatttcgt	tcatccatag	ttgcctgact	ccccgtcgtg	tagataacta	4371

		4	121 126 +hi	rd_submissi	on ST25	
cgatacggga	gggcttacca	tctggcccca	gtgctgcaat	gataccgcga	gacccacgct	4431
caccggctcc	agatttatca	gcaataaacc	agccagccgg	aagggccgag	cgcagaagtg	4491
gtcctgcaac	tttatccgcc	tccatccagt	ctattaattg	ttgccgggaa	gctagagtaa	4551
gtagttcgcc	agttaatagt	ttgcgcaacg	ttgttgccat	tgctacaggc	atcgtggtgt	4611
cacgctcgtc	gtttggtatg	gcttcattca	gctccggttc	ccaacgatca	aggcgagtta	4671
catgatcccc	catgttgtgc	aaaaaagcgg	ttagctcctt	cggtcctccg	atcgttgtca	4731
gaagtaagtt	ggccgcagtg	ttatcactca	tggttatggc	agcactgcat	aattctctta	4791
ctgtcatgcc	atccgtaaga	tgcttttctg	tgactggtga	gtactcaacc	aagtcattct	4851
gagaatagtg	tatgcggcga	ccgagttgct	cttgcccggc	gtcaatacgg	gataataccg	4911
cgccacatag	cagaacttta	aaagtgctca	tcattggaaa	acgttcttcg	gggcgaaaac	4971
tctcaaggat	cttaccgctg	ttgagatcca	gttcgatgta	acccactcgt	gcacccaact	5031
gatcttcagc	atcttttact	ttcaccagcg	tttctgggtg	agcaaaaaca	ggaaggcaaa	5091
atgccgcaaa	aaagggaata	agggcgacac	ggaaatgttg	aatactcata	ctcttccttt	5151
ttcaatatta	ttgaagcatt	tatcagggtt	attgtctcat	gagcggatac	atatttgaat	5211
gtatttagaa	aaataaacaa	ataggggttc	cgcgcacatt	tccccgaaaa	gtgccacctg	5271
acgcgccctg	tagcggcgca	ttaagcgcgg	cgggtgtggt	ggttacgcgc	agcgtgaccg	5331
ctacacttgc	cagcgcccta	gcgcccgctc	ctttcgcttt	cttcccttcc	tttctcgcca	5391
cgttcgccgg	ctttccccgt	caagctctaa	atcgggggct	ccctttaggg	ttccgattta	5451
gtgctttacg	gcacctcgac	cccaaaaaac	ttgattaggg	tgatggttca	cgtagtgggc	5511
catcgccctg	atagacggtt	tttcgccctt	tgacgttgga	gtccacgttc	tttaatagtg	5571
gactcttgtt	ccaaactgga	acaacactca	accctatctc	ggtctattct	tttgatttat	5631
aagggatttt	gccgatttcg	gcctattggt	taaaaaatga	gctgatttaa	caaaaattta	5691
acgcgaattt	taacaaaata	ttaacgctta	caatttac			5729

```
<210> 6
<211> 250
<212> PRT
```

<400> 6

Met Ala Pro Cys Met Leu Leu Leu Leu Leu Ala Ala Leu Ala Pro 1 5 10 15

Thr Gln Thr Arg Ala Gly Ala Gln Lys Pro Glu Val Ile Asp Ala Ser 20 25 30

Glu Leu Thr Pro Ala Val Thr Thr Tyr Lys Leu Val Ile Asn Gly Lys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Thr Leu Lys Gly Glu Thr Thr Glu Ala Val Asp Ala Ala Thr Ala Page 14

<213> Artificial Sequence

<220> <223> Synthetic Construct

Glu Lys Val Phe Lys Gln Tyr Ala Asn Asp Asn Gly Val Asp Gly Glu 65 70 75 80

Trp Thr Tyr Asp Asp Ala Thr Lys Thr Phe Thr Val Thr Glu Lys Pro 85 90 95

Glu Val Ile Asp Ala Ser Glu Leu Thr Pro Ala Val Thr Thr Tyr Lys $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Leu Val Ile Asn Gly Lys Thr Leu Lys Gly Glu Thr Thr Thr Glu Ala 115 120 125

Val Asp Ala Ala Thr Ala Glu Lys Val Phe Lys Gln Tyr Ala Asn Asp 130 135 140

Asn Gly Val Asp Gly Glu Trp Thr Tyr Asp Asp Ala Thr Lys Thr Phe 145 150 155 160

Thr Val Thr Glu Ala Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp 165 170 175

Leu Asn Gly Ala Val Asp Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu 180 185 190

Asn Ala Val Gly Gln Asp Thr Gln Glu Val Ile Val Val Pro His Ser 195 200 205

Leu Pro Phe Lys Val Val Ile Ser Ala Ile Leu Ala Leu Val Val 210 215 220

Leu Thr Ile Ile Ser Leu Ile Ile Leu Ile Met Leu Trp Gln Lys Lys 225 230 235 240

Pro Arg Ser Ser Ala Asp Arg Glu Ser Ile 245 250

<210> 7 <211> 262

<211> 202 <212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 7

Met Ile Glu Gln Asp Gly Leu His Ala Gly Ser Pro Ala Ala Trp Val 1 5 10 15

Glu Arg Leu Phe Gly Tyr Asp Trp Ala Gln Gln Thr Ile Gly Cys Ser 20 25 30

Asp Ala Ala Val Phe Arg Leu Ser Ala Gln Gly Arg Pro Val Leu Phe Page 15 Val Lys Thr Asp Leu Ser Gly Ala Leu Asn Glu Leu Gln Asp Glu Ala 50 60 Ala Arg Leu Ser Trp Leu Ala Thr Thr Gly Val Pro Cys Ala Ala Val 65 70 75 80 Leu Asp Val Val Thr Glu Ala Gly Arg Asp Trp Leu Leu Leu Gly Glu 85 90 95 Val Pro Gly Gln Asp Leu Leu Ser Ser His Leu Ala Pro Ala Glu Lys $100 \hspace{1cm} 105 \hspace{1cm} 110$ Val Ser Ile Met Ala Asp Ala Met Arg Arg Leu His Thr Leu Asp Pro 115 120 125 Ala Thr Cys Pro Phe Asp His Gln Ala Lys His Arg Ile Glu Arg Ala 130 135 140Arg Thr Arg Met Glu Ala Gly Leu Val Asp Gln Asp Asp Gln Glu His 145 150 160 Gln Gly Leu Ala Pro Ala Glu Leu Phe Ala Arg Leu Lys Ala Ser Met 165 170 175 Pro Asp Gly Glu Asp Leu Val Val Thr His Gly Asp Ala Cys Leu Pro 180 185 Asn Ile Met Val Glu Asn Gly Arg Phe Ser Gly Phe Ile Asp Cys Gly 195 200 205 Arg Leu Gly Val Ala Asp Arg Tyr Gln Asp Ile Ala Leu Ala Thr Arg 210 220 Asp Ile Ala Glu Glu Leu Gly Gly Glu Trp Ala Asp Arg Phe Leu Val 225 230 235 240 Leu Tyr Gly Ile Ala Ala Pro Asp Ser Gln Arg Ile Ala Phe Tyr Arg 245 250 255 Leu Leu Asp Glu Phe Phe 260

<210> 8

<400> 8

Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala Page 16

<211> 286 <212> PRT

<213> Artificial Sequence

<220> <223> Synthetic Construct

Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr Leu Val Lys Val Lys 20 25 30 Asp Ala Glu Asp Gln Leu Gly Ala Arg Val Gly Tyr Ile Glu Leu Asp 35 40 Leu Asn Ser Gly Lys Ile Leu Glu Ser Phe Arg Pro Glu Glu Arg Phe 50 60Pro Met Met Ser Thr Phe Lys Val Leu Leu Cys Gly Ala Val Leu Ser 65 70 75 Arg Ile Asp Ala Gly Gln Glu Gln Leu Gly Arg Arg Ile His Tyr Ser Gln Asn Asp Leu Val Glu Tyr Ser Pro Val Thr Glu Lys His Leu Thr 100 105 110 Asp Gly Met Thr Val Arg Glu Leu Cys Ser Ala Ala Ile Thr Met Ser 115 120 125 Asp Asn Thr Ala Ala Asn Leu Leu Leu Thr Thr Ile Gly Gly Pro Lys 130 140 Glu Leu Thr Ala Phe Leu His Asn Met Gly Asp His Val Thr Arg Leu 145 150 160 Asp Arg Trp Glu Pro Glu Leu Asn Glu Ala Ile Pro Asn Asp Glu Arg 165 170 175 Asp Thr Thr Met Pro Val Ala Met Ala Thr Thr Leu Arg Lys Leu Leu 180 185 190 Thr Gly Glu Leu Leu Thr Leu Ala Ser Arg Gln Gln Leu Ile Asp Trp 195 200 205 Met Glu Ala Asp Lys Val Ala Gly Pro Leu Leu Arg Ser Ala Leu Pro 210 215 220 Ala Gly Trp Phe Ile Ala Asp Lys Ser Gly Ala Gly Glu Arg Gly Ser 225 230 235 240 Arg Gly Ile Ile Ala Ala Leu Gly Pro Asp Gly Lys Pro Ser Arg Ile 245 250 255 Val Val Ile Tyr Thr Thr Gly Ser Gln Ala Thr Met Asp Glu Arg Asn 260 265 270 Arg Gln Ile Ala Glu Ile Gly Ala Ser Leu Ile Lys His Trp 285