**Document:** cPCI-EVG-2x0.doc

**Date:** 06 May 2008

Issue: 2 **Page:** 1 of 37

**Author:** Jukka Pietarinen

# **Event Generator** cPCI-EVG-220, cPCI-EVG-230

# (and preliminary VME-EVG-230)

# **Technical Reference**

### **Firmware Version 0001**

### **Contents**

| Introduction                                                     | 3  |
|------------------------------------------------------------------|----|
| Event Stream Details                                             | 3  |
| Event Codes                                                      | 3  |
| Distributed Bus and Data Transmission                            | 4  |
| Event Sources                                                    | 4  |
| Trigger Events                                                   | 4  |
| Upstream Events                                                  | 5  |
| Event Sequencer                                                  | 6  |
| Distributed Bus                                                  | 7  |
| Timestamping Inputs                                              | 8  |
| Multiplexed Counters                                             | 8  |
| Configurable Size Data Buffer                                    | 9  |
| Programmable Front Panel Connections                             | 11 |
| AC Line Synchronisation                                          | 11 |
| Event Clock                                                      | 11 |
| RF Clock and Event Clock                                         | 12 |
| Fractional Synthesiser                                           | 13 |
| Connections                                                      | 13 |
| Front Panel Connections                                          | 13 |
| Programming Details                                              | 14 |
| Register Map                                                     |    |
| Application Programming Interface (API)                          | 28 |
| Function Reference                                               | 28 |
| int EvgOpen(struct MrfEgRegs **pEg, char *device_name);          | 28 |
| int EvgClose(int fd);                                            | 28 |
| int EvgEnable(volatile struct MrfEgRegs *pEg, int state);        | 28 |
| int EvgGetEnable(volatile struct MrfEgRegs *pEg);                | 29 |
| int EvgRxEnable(volatile struct MrfEgRegs *pEg, int state);      | 29 |
| int EvgRxGetEnable(volatile struct MrfEgRegs *pEg);              |    |
| int EvgGetViolation(volatile struct MrfEgRegs *pEg, int clear);  |    |
| int EvgSWEventEnable(volatile struct MrfEgRegs *pEg, int state); | 29 |

**Document:** cPCI-EVG-2x0.doc

**Date:** 06 May 2008

Issue: 2 **Page:** 2 of 37

Author: Jukka Pietarinen

| int EvgGetSWEventEnable(volatile struct MrfEgRegs *pEg);                                     | 0 |
|----------------------------------------------------------------------------------------------|---|
| int EvgSendSWEvent(volatile struct MrfEgRegs *pEg, int code);                                |   |
| int EvgEvanEnable(volatile struct MrfEgRegs *pEg, int state);                                |   |
| int EvgEvanGetEnable(volatile struct MrfEgRegs *pEg);                                        | 0 |
| void EvgEvanReset(volatile struct MrfEgRegs *pEg);                                           | 0 |
| void EvgEvanResetCount(volatile struct MrfEgRegs *pEg);                                      |   |
| int EvgEvanGetEvent(volatile struct MrfEgRegs *pEg, struct EvanStruct *evan);                | 1 |
| int EvgSetMXCPrescaler(volatile struct MrfEgRegs *pEg, int mxc, unsigned int presc); 3       |   |
| int EvgSetMxcTrigMap(volatile struct MrfEgRegs *pEg, int mxc, int map);                      | 1 |
| void EvgSyncMxc(volatile struct MrfEgRegs *pEg);                                             | 1 |
| void EvgMXCDump(volatile struct MrfEgRegs *pEg);                                             |   |
| int EvgSetDBusMap(volatile struct MrfEgRegs *pEg, int dbus, int map);                        | 2 |
| void EvgDBusDump(volatile struct MrfEgRegs *pEg);                                            |   |
| int EvgSetACInput(volatile struct MrfEgRegs *pEg, int bypass, int sync, int div, int delay); |   |
| 3                                                                                            |   |
| int EvgSetACMap(volatile struct MrfEgRegs *pEg, int map);                                    | 3 |
| void EvgACDump(volatile struct MrfEgRegs *pEg);                                              | 3 |
| int EvgSetRFInput(volatile struct MrfEgRegs *pEg, int useRF, int div);                       | 3 |
| int EvgSetFracDiv(volatile struct MrfEgRegs *pEg, int fracdiv);                              |   |
| int EvgSetSeqRamEvent(volatile struct MrfEgRegs *pEg, int ram, int pos, unsigned int         |   |
| timestamp, int code); 3                                                                      | 3 |
| void EvgSeqRamDump(volatile struct MrfEgRegs *pEg, int ram);                                 | 4 |
| int EvgSeqRamControl(volatile struct MrfEgRegs *pEg, int ram, int enable, int single, int    |   |
| recycle, int reset, int trigsel);                                                            | 4 |
| int EvgSeqRamSWTrig(volatile struct MrfEgRegs *pEg, int trig);                               | 4 |
| void EvgSeqRamStatus(volatile struct MrfEgRegs *pEg, int ram);                               |   |
| int EvgSetUnivinMap(volatile struct MrfEgRegs *pEg, int univ, int trig, int dbus); 3         | 5 |
| void EvgUnivinDump(volatile struct MrfEgRegs *pEg);                                          | 5 |
| int EvgSetTriggerEvent(volatile struct MrfEgRegs *pEg, int trigger, int code, int enable); 3 | 5 |
| void EvgTriggerEventDump(volatile struct MrfEgRegs *pEg);                                    | 5 |
| int EvgSetUnivOutMap(volatile struct MrfEgRegs *pEg, int output, int map);                   | 6 |
| int EvgSetDBufMode(volatile struct MrfEgRegs *pEg, int enable);                              |   |
| int EvgGetDBufStatus(volatile struct MrfEgRegs *pEg);                                        |   |
| int EvgSendDBuf(volatile struct MrfEgRegs *pEg, char *dbuf, int size);                       | 6 |

**Document:** cPCI-EVG-2x0.doc

**Page:** 3 of 37

### Introduction

The Event Generator is responsible of creating and sending out timing events to an array of Event Receivers. High configurability makes it feasible to build a whole timing system with a single Event Generator without external counters etc.

Events are sent out by the event generator as event frames (words) which consist of an eight bit event code and an eight bit distributed bus data byte. The event transfer rate is derived from an external RF clock or optionally an on-board clock generator. The optical event stream transmitted by the Event Generator is phase locked to the clock reference.

There are several sources of events: trigger events, sequence events, software events and events received from an upstream Event Generator. Events from different sources have different priority which is resolved in a priority encoder.

In addition to events the Event Generator enables the distribution of eight simultaneous signals sampled with the event clock rate, the distributed bus. Distributed bus signals may be provided externally or generated on-board by programmable multiplexed counters.

#### **Event Stream Details**

The structure of the event stream is described to help understand the functioning of the event system. The event stream should be considered as a continuous flow of event frames which consist of two bytes, the event code and distributed bus data byte.



Figure 1: Event Frame

#### **Event Codes**

There are 256 event codes from which a few have special functions. The special function event codes are listed below. Only one event code may be transferred at a time. If there is no event code to be transferred, the null event code (0x00) is transmitted. Every now and then a special 8B10B

**Document:** cPCI-EVG-2x0.doc

**Page:** 4 of 37

character K28.5 is transmitted instead of the null event code. The K28.5 comma character is transmitted to allow the event receivers to synchronise on the correct word boundary is the serial bit stream.

| <b>Event Code</b> | Code Name               | <b>EVG Function</b> | EVR Function            |
|-------------------|-------------------------|---------------------|-------------------------|
| 0x00              | Null Event Code         | -                   | -                       |
| 0x01 - 0x6F       | -                       | User Defined        | User Defined            |
| 0x70              | Seconds '0'             | -                   | Shift in '0' to LSB of  |
|                   |                         |                     | Seconds Shift Register  |
| 0x71              | Seconds '1'             | -                   | Shift in '1' to LSB of  |
|                   |                         |                     | Seconds Shift Register  |
| 0x72 - 0x79       | -                       | User Defined        | User Defined            |
| 0x7A              | Heartbeat               | -                   | Reset Heartbeat Monitor |
| 0x7B              | Synchronise Prescalers  | -                   | Synchronise Prescaler   |
|                   |                         |                     | Outputs                 |
| 0x7C              | Timestamp Counter       | -                   | Increment Timestamp     |
|                   | Increment               |                     | Counter                 |
| 0x7D              | Timestamp Counter Reset | -                   | Reset Timestamp Counter |
| 0x7F              | End of Sequence         | Stop Sequence       | -                       |
| 0x80-FF           | -                       | User Defined        | User Defined            |

#### **Distributed Bus and Data Transmission**

The distributed bus allows transmission of eight simultaneous signals with the event clock rate time resolution (10 ns at 100 MHz event clock rate). The source for distributed bus signals may come from an external source or the signals may be generated with programmable multiplexed counters (MXC) inside the event generator. The distributed bus signals may be programmed to be available as hardware outputs on the event receiver.

In latest firmware versions the distributed bus bandwidth may be shared by transmission of a configurable size data buffer to up to 2 kbytes. When data transmission is enabled the distributed bus bandwidth is halved. The remaining bandwidth is reserved for transmitting data with a speed up to 50 Mbytes/s (event clock rate divided by two).

#### **Event Sources**

### **Trigger Events**

There are eight trigger event sources that send out an event code on a stimulus. Each trigger event has its own programmable event code register and various enable bits. The event code transmitted is determined by contents of the corresponding event code register. The stimulus may be a detected rising edge on an external signal or a rising edge of a multiplexed counter output.

**Document:** cPCI-EVG-2x0.doc

**Page:** 5 of 37



Figure 2: Trigger Events

Trigger Event 0 has also the option of being triggered by a rising edge of the AC mains voltage synchronization logic output signal.

The external input accepts TTL level signals. The input logic is edge sensitive and the signals are synchronized internally to the event clock.

### **Upstream Events**

Event Generators may be cascaded. The event generator receiver includes a first-in-first-out (FIFO) memory to synchronize incoming events which may be synchronized to a clock unrelated to the event clock. Usually there are no events in the FIFO. An event code from an upstream EVG is transmitted as soon as there is no other event code to be transmitted.

**Document:** cPCI-EVG-2x0.doc **Page:** 6 of 37



Figure 3: Upstream Event FIFO

#### **Event Sequencer**

Event sequencers provide a method of transmitting or playing back sequences of events stored in random access memory with defined timing. In the event generator there are two event sequencers. The 8-bit event codes are stored in a RAM table each attached with a 32-bit timestamp relative to the start of sequence. Both sequencers can hold up to 2048 event code – timestamp pairs.



**Figure 4: Sequencer RAM Structure** 

The contents of a sequencer RAM may be altered at any time, however, it is recommended only to modify RAM contents when the RAM is disabled. The sequencer runs at the event clock rate to up to 100 MHz.

The Sequencers may be triggered from several sources including software triggering, triggering on a multiplexed counter output or AC mains voltage synchronization logic output.

The sequencers are enabled by writing a '1' bit to SQxEN in the Sequence RAM control Register. The RAMs may be disabled any time by writing a '1' to SQxDIS bit. Disabling sequence RAMs does not reset the RAM address and timestamp registers. By writing a '1' to the bit SOxRES in the Control Register the sequencer is both disabled and the RAM address and timestamp register is reset.

When the sequencer is triggered the internal event address counters starts counting. The counter value is compared to the event address of the next event in the RAM table. When the counter value matches the timestamp in the RAM table, the attached event code is transmitted. The time

**Document:** cPCI-EVG-2x0.doc

**Page:** 7 of 37

offset between two consecutive events in the RAM is allowed to be 1 to  $2^{32}$  sequence clock cycles i.e. the internal event address counter rolls over when to 0 when 0xffffffff is reached.

There are two special event codes which are not transmitted, the null event code 0x00 and end sequence code 0x7f. The null event code may be used if the time between two consecutive events should exceed  $2^{32}$  event clock cycles. The end sequence code resets the sequencer RAM table address and timestamp register and depending on configuration bits, disables the sequencer (single sequence, SQxSNG=1) or restarts the sequence either immediately (recycle sequence, SQxREC=1) or waits for a new trigger (SQxREC=0).



**Figure 5: Sequencer Control** 

#### **Distributed Bus**

The bits of the distributed bus are sampled at the event rate from external signals; alternatively the distributed bus signals may be generated by multiplexed counter outputs. If there is an upstream EVG, the state of all distributed bus bits may be forwarded by the EVG.



Figure 6: Distributed Bus

**Document:** cPCI-EVG-2x0.doc

**Page:** 8 of 37

### **Timestamping Inputs**

Staring from firmware version E306 a few distributed bus input signals have dual function: transition board input DBUS5-7 can be used to generate special event codes controlling the timestamping in Event Receivers.



**Figure 7: Timestamping Inputs** 

The two clocks, timestamp clock and timestamp reset clock, are assumed to be rising edge aligned. In the EVG the timestamp reset clock is sampled with the falling edge of the timestamp clock. This is to prevent a race condition between the reset and clock signals. In the EVR the reset is synchronised with the timestamp clock.

The two seconds counter events are used to shift in a 32-bit seconds value between consecutive timestamp reset events. In the EVR the value of the seconds shift register is transferred to the seconds counter at the same time the higher running part of the timestamp counter is reset.

The distributed bus event inputs can be enabled independently through the distributed bus event enable register. The events generated through these distributed bus input ports are given lowest priority.

## **Multiplexed Counters**

Eight 32-bit multiplexed counters generate clock signals with programmable frequencies from event clock/2<sup>32</sup>-1 to event clock/2. Even divisors create 50% duty cycle signals. The counter outputs may be programmed to trigger events, drive distributed bus signals and trigger sequence RAMs. The output of multiplexed counter 7 is hard-wired to the mains voltage synchronization logic.

**Document:** cPCI-EVG-2x0.doc **Page:** 9 of 37



**Figure 8: Multiplexed Counter** 

Each multiplexed counter consists of a 32-bit prescaler register and a 31-bit count-down counter which runs at the event clock rate. When count reaches zero, the output of a toggle flip-flop changes and the counter is reloaded from the prescaler register. If the least significant bit of the prescaler register is one, all odd cycles are extended by one clock cycle to support odd dividers.

| Prescaler value  | Duty Cycle    | Frequency at 125 MHz Event |  |
|------------------|---------------|----------------------------|--|
|                  |               | Clock                      |  |
| 0, 1 not allowed | undefined     | undefined                  |  |
| 2                | 50/50         | 62.5 MHz                   |  |
| 3                | 33/66         | 41.7 MHz                   |  |
| 4                | 50/50         | 31.25 MHz                  |  |
| 5                | 40/60         | 25 MHz                     |  |
|                  |               |                            |  |
| $2^{32}-1$       | approx. 50/50 | 0.029 Hz                   |  |

The multiplexed counters may be reset by software or hardware input. The reset state is defined by the multiplexed counter polarity register.

## Configurable Size Data Buffer

Starting from firmware version E305 transmission of a configurable size data buffer over the event system link is possible. The buffer size can be programmed in four byte increments (long words) from 4 bytes to 2048 bytes.

**Document:** cPCI-EVG-2x0.doc

**Page:** 10 of 37



Figure 9: Configurable size transmit data buffer

When the EVG is configured for data transmission (mode = 1 in data buffer control register) the bandwidth of the distributed bus is shared with data transmission: half of the bandwidth remains for the distributed bus and the other half is reserved for data transmission.

The data to be transmitted is stored in a 2 kbyte dual-ported memory starting from the lowest address 0. This memory is directly accessible from VME. The transfer size is determined by *bufsize* register bits in four byte increments. The transmission is trigger by software. Two flags *tx\_running* and *tx\_complete* represent the status of transmission.

Transmission utilises two K-characters to mark the start and end of the data transfer payload, the protocol looks following:

| 8B10B-character | Description                             |
|-----------------|-----------------------------------------|
| K28.0           | Start of data transfer                  |
| Dxx.x           | 1 <sup>st</sup> data byte (address 0)   |
| Dxx.x           | 2 <sup>nd</sup> data byte (address 1)   |
| Dxx.x           | 3 <sup>rd</sup> data byte (address 2)   |
| Dxx.x           | 4 <sup>th</sup> data byte (address 3)   |
| •••             |                                         |
| Dxx.x           | n <sup>th</sup> data byte (address n-1) |
| K28.1           | End of data                             |
| Dxx.x           | Checksum (LSB)                          |

Dxx.x

Checksum(MSB)

**Table 1: Data Transmission Protocol** 

**Document:** cPCI-EVG-2x0.doc

**Page:** 11 of 37

### **Programmable Front Panel Connections**

The front panel outputs are programmable: multiplexed counters and distributed bus bits can be mapped to any output. The mapping is shown in table below.

Table 2: Signal mapping IDs

| Mapping ID | Signal                        |  |
|------------|-------------------------------|--|
| 0 to 31    | (Reserved)                    |  |
| 32         | Distributed bus bit 0 (DBUS0) |  |
|            |                               |  |
| 39         | Distributed bus bit 7 (DBUS7) |  |
| 40 to 61   | (Reserved)                    |  |
| 62         | Force output high (logic 1)   |  |
| 63         | Force output low (logic 0)    |  |

### AC Line Synchronisation

The Event Generator provides synchronization to the mains voltage frequency or another external clock. The mains voltage frequency can be divided by an eight bit programmable divider. The output of the divider may be delayed by 0 to 25.5 ms by a phase shifter in 0.1 ms steps to be able to adjust the triggering position relative to mains voltage phase. After this the signal synchronized to the event clock or the output of multiplexed counter 7.



Figure 10: AC Input

The phase shifter operates with a clock of 1 MHz which introduces jitter. If the prescaler and phase shifter are not required this circuit may be bypassed. This also reduces jitter because the external trigger input is sampled directly with the event clock.

#### Event Clock

All operations on the event generator are synchronised to the event clock which is derived from an externally provided RF clock. For laboratory testing purposes an on-board fractional synthesiser may be used to deliver the event clock. The serial link bit rate is 20 times the event clock rate. The acceptable range for the event clock and bit rate is shown in the following table.

**Document:** cPCI-EVG-2x0.doc

**Page:** 12 of 37

|         | Event Clock | Bit Rate |
|---------|-------------|----------|
| Minimum | 50 MHz      | 1.0 Gb/s |
| Maximum | 125 MHz     | 2.5 Gb/s |

Note: maximum event clock for cPCI-EVG-220 is 100 MHz with 2.0 Gb/s bit rate

During operation the reference frequency should not be changed more than  $\pm 100$  ppm.

### RF Clock and Event Clock

The event clock may be derived from an external RF clock signal. The front panel RF input is 50 ohm terminated and AC coupled to a LVPECL logic input, so either an ECL level clock signal or sine-wave signal with a level of maximum +10 dBm can be used.

| Divider | RF Input Frequency    | Event Clock      | Bit Rate                |
|---------|-----------------------|------------------|-------------------------|
| ÷ 1     | 50 MHz – 125 MHz      | 50 MHz – 125 MHz | 1.0  Gb/s - 2.5  Gb/s   |
| ÷ 2     | 100 MHz – 250 MHz     | 50 MHz – 125 MHz | 1.0  Gb/s - 2.5  Gb/s   |
| ÷ 3     | 150 MHz – 375 MHz     | 50 MHz – 125 MHz | 1.0  Gb/s - 2.5  Gb/s   |
| ÷ 4     | 200 MHz – 500 MHz     | 50 MHz – 125 MHz | 1.0  Gb/s - 2.5  Gb/s   |
| ÷ 5     | 250 MHz – 625 MHz     | 50 MHz – 125 MHz | 1.0  Gb/s - 2.5  Gb/s   |
| ÷ 6     | 300 MHz – 750 MHz     | 50 MHz – 125 MHz | 1.0  Gb/s - 2.5  Gb/s   |
| ÷ 7     | 350 MHz – 875 MHz     | 50 MHz – 125 MHz | 1.0  Gb/s - 2.5  Gb/s   |
| ÷ 8     | 400 MHz – 1.0 GHz     | 50 MHz – 125 MHz | 1.0 Gb/s – 2.5 Gb/s     |
| ÷ 9     | 450 MHz – 1.125 MHz   | 50 MHz – 125 MHz | 1.0 Gb/s – 2.5 Gb/s     |
| ÷ 10    | 500 MHz – 1.25 GHz    | 50 MHz – 125 MHz | 1.0 Gb/s – 2.5 Gb/s     |
| ÷ 11    | 550 MHz – 1.375 GHz   | 50 MHz – 125 MHz | 1.0  Gb/s - 2.5  Gb/s   |
| ÷ 12    | 600 MHz – 1.5 GHz     | 50 MHz – 125 MHz | 1.0 Gb/s – 2.5 Gb/s     |
| ÷ 14    | 700 MHz – 1.6 GHz *)  | 50 MHz – 114 MHz | 1.0 Gb/s – 2.286 Gb/s   |
| ÷ 15    | 750 MHz – 1.6 GHz *)  | 50 MHz – 107 MHz | 1.0 Gb/s – 2.133 Gb/s   |
| ÷ 16    | 800 MHz – 1.6 GHz *)  | 50 MHz – 100 MHz | 1.0  Gb/s - 2.0  Gb/s   |
| ÷ 17    | 850 MHz – 1.6 GHz *)  | 50 MHz – 94 MHz  | 1.0  Gb/s - 1.882  Gb/s |
| ÷ 18    | 900 MHz – 1.6 GHz *)  | 50 MHz – 88 MHz  | 1.0  Gb/s - 1.777  Gb/s |
| ÷ 19    | 950 MHz – 1.6 GHz *)  | 50 MHz – 84 MHz  | 1.0 Gb/s – 1.684 Gb/s   |
| ÷ 20    | 1.0 GHz – 1.6 GHz *)  | 50 MHz – 80 MHz  | 1.0  Gb/s - 1.600  Gb/s |
| ÷ 21    | 1.05 GHz – 1.6 GHz *) | 50 MHz – 76 MHz  | 1.0 Gb/s – 1.523 Gb/s   |
| ÷ 22    | 1.1 GHz – 1.6 GHz *)  | 50 MHz – 72 MHz  | 1.0 Gb/s – 1.454 Gb/s   |
| ÷ 23    | 1.15 GHz – 1.6 GHz *) | 50 MHz – 69 MHz  | 1.0 Gb/s – 1.391 Gb/s   |
| ÷ 24    | 1.2 GHz – 1.6 GHz *)  | 50 MHz – 66 MHz  | 1.0  Gb/s - 1.333  Gb/s |
| ÷ 25    | 1.25 GHz – 1.6 GHz *) | 50 MHz – 64 MHz  | 1.0  Gb/s - 1.280  Gb/s |
| ÷ 26    | 1.3 GHz – 1.6 GHz *)  | 50 MHz – 61 MHz  | 1.0  Gb/s - 1.230  Gb/s |
| ÷ 27    | 1.35 GHz – 1.6 GHz *) | 50 MHz – 59 MHz  | 1.0  Gb/s - 1.185  Gb/s |
| ÷ 28    | 1.4 GHz – 1.6 GHz *)  | 50 MHz – 57 MHz  | 1.0 Gb/s – 1.142 Gb/s   |
| ÷ 29    | 1.45 GHz – 1.6 GHz *) | 50 MHz – 55 MHz  | 1.0 Gb/s – 1.103 Gb/s   |
| ÷ 30    | 1.5 GHz – 1.6 GHz *)  | 50 MHz – 53 MHz  | 1.0 Gb/s – 1.066 Gb/s   |
| ÷ 31    | 1.55 GHz – 1.6 GHz *) | 50 MHz – 51 MHz  | 1.0 Gb/s – 1.032 Gb/s   |
| ÷ 32    | 1.6 GHz *)            | 50 MHz           | 1.0 Gb/s                |

\*) Range limited by AD9515 maximum input frequency of 1.6 GHz

Note: maximum event clock for cPCI-EVG-220 is 100 MHz with 2.0 Gb/s bit rate

**Document:** cPCI-EVG-2x0.doc

**Page:** 13 of 37

### **Fractional Synthesiser**

For laboratory testing purposes the event clock may be generated on-board the event generator using a fractional synthesiser. A Micrel (<a href="http://www.micrel.com">http://www.micrel.com</a>) SY87739L Protocol Transparent Fractional-N Synthesiser with a reference clock of 24 MHz is used. The following table lists programming bit patterns for a few frequencies.

| Event Rate      | Configuration Bit | Reference Output | Precision     |
|-----------------|-------------------|------------------|---------------|
|                 | Pattern           | •                | (theoretical) |
| 499.8 MHz/4     | 0x00FE816D        | 124.95 MHz       | 0             |
| = 124.95  MHz   |                   |                  |               |
| 499.654 MHz/4   | 0x0C928166        | 124.907 MHz      | -52 ppm       |
| = 124.9135 MHz  |                   |                  |               |
| 476 MHz/4       | 0x018741AD        | 119 MHz          | 0             |
| = 119 MHz       |                   |                  |               |
| 106.25 MHz      | 0x049E81AD        | 106.25 MHz       | 0             |
| (fibre channel) |                   |                  |               |
| 499.8 MHz/5     | 0x025B41ED        | 99.956 MHz       | -40 ppm       |
| = 99.96 MHz     |                   |                  |               |
| 50 MHz          | 0x009743AD        | 50.0 MHz         | 0             |
| 499.8 MHz/10    | 0x025B43AD        | 49.978 MHz       | -40 ppm       |
| = 49.98  MHz    |                   |                  |               |
| 499.654 MHz/4   | 0x0C928166        | 124.907 MHz      | -52 ppm       |
| = 124.9135 MHz  |                   |                  |               |
| 50 MHz          | 0x009743AD        | 50.0 MHz         | 0             |

# **Connections**

#### Front Panel Connections

The front panel of the Event Generator and its optional side-by-side module is shown in Figure 11 and Figure 12.



Figure 12: Optional Side-by-side Module Front Panel

**Document:** cPCI-EVG-2x0.doc

**Page:** 14 of 37

The front panel of the Event Generator includes the following connections and status leds:

| Connector / Led | Style                              | Level                            | Description                        |
|-----------------|------------------------------------|----------------------------------|------------------------------------|
| LNK             | Red/Green                          |                                  | Red: receiver violation detected   |
|                 | Led                                |                                  | Green: RX link OK, violation flag  |
|                 |                                    |                                  | cleared                            |
| EVT             | Red/Green                          |                                  | Green: link OK, flashes when event |
|                 | Led                                |                                  | code received                      |
|                 |                                    |                                  | Red: Flashes on led event          |
| TX              | LC                                 | optical                          | Transmit Optical Output (TX)       |
| RX              | LC optical                         |                                  | Receiver Optical Input (RX)        |
| RF              | LEMO-EPY                           | LEMO-EPY RF RF/event clock input |                                    |
| TRIG            | LEMO-EPY                           | LEMO-EPY TTL AC Trigger input    |                                    |
| UNIV0/1         | Universal slot Universal Input     |                                  | Universal Input 0/1                |
| UNIV2/3         | Universal slot Universal           |                                  | Universal Input 2/3                |
| UNIV4/5         | Universal slot Universal Input 4/5 |                                  | Universal Input 4/5                |
| UNIV6/5         | Universal slot Universal Input 6/7 |                                  | Universal Input 6/7                |
| UNIV8/9         | Universal slot                     | •                                |                                    |

# **Programming Details**

# **Register Map**

| Address | Register       | Type   | Description                                |
|---------|----------------|--------|--------------------------------------------|
| 0x000   | Status         | UINT32 | Status Register                            |
| 0x004   | Control        | UINT32 | Control Register                           |
| 0x008   | IrqFlag        | UINT32 | Interrupt Flag Register                    |
| 0x00C   | IrqEnable      | UINT32 | Interrupt Enable Register                  |
| 0x010   | ACControl      | UINT32 | AC divider control                         |
| 0x014   | ACMap          | UINT32 | AC trigger event mapping                   |
| 0x018   | SWEvent        | UINT32 | Software event register                    |
| 0x020   | DataBufControl | UINT32 | Data Buffer Control Register               |
| 0x024   | DBusMap        | UINT32 | Distributed Bus Mapping Register           |
| 0x02C   | FWVersion      | UINT32 | Firmware Version Register                  |
| 0x04C   | UsecDivider    | UINT32 | Divider to get from Event Clock to 1 MHz   |
| 0x050   | ClockControl   | UINT32 | Event Clock Control Register               |
| 0x060   | EvanControl    | UINT32 | Event Analyser Control Register            |
| 0x064   | EvanCode       | UINT32 | Event Analyser Distributed Bus and Event   |
|         |                |        | Code Register                              |
| 0x068   | EvanTimeHigh   | UINT32 | Event Analyser Time Counter (bits 63 – 32) |
| 0x06C   | EvanTimeLow    | UINT32 | Event Analyser Time Counter (bits 31 – 0)  |
| 0x070   | SeqRamCtrl0    | UINT32 | Sequence RAM 0 Control Register            |
| 0x074   | SeqRamCtrl1    | UINT32 | Sequence RAM 1 Control Register            |
| 0x080   | FracDiv        | UINT32 | Micrel SY87739L Fractional Divider         |
|         |                |        | Configuration Word                         |

**Document:** cPCI-EVG-2x0.doc **Page:** 15 of 37

| 0x100          | EvTrig0             | UINT32 | Event Trigger 0 Register                           |
|----------------|---------------------|--------|----------------------------------------------------|
| 0x100          | EvTrig1             | UINT32 | Event Trigger 1 Register                           |
| 0x104<br>0x108 | EvTrig2             | UINT32 | Event Trigger 2 Register                           |
| 0x108          | EvTrig3             | UINT32 | Event Trigger 3 Register  Event Trigger 3 Register |
| 0x10C          | EvTrig4             | UINT32 | Event Trigger 4 Register                           |
| 0x110 $0x114$  |                     | UINT32 |                                                    |
| 0x114<br>0x118 | EvTrig5             |        | Event Trigger 5 Register                           |
| 0x118<br>0x11C | EvTrig6             | UINT32 | Event Trigger 6 Register                           |
|                | EvTrig7<br>MXCCtrl0 | UINT32 | Event Trigger 7 Register                           |
| 0x180          |                     | UINT32 | Multiplexed Counter 0 Control Register             |
| 0x184          | MXCPresc0           | UINT32 | Multiplexed Counter 0 Prescaler Register           |
| 0x188          | MXCCtrl1            | UINT32 | Multiplexed Counter 1 Control Register             |
| 0x18C          | MXCPresc1           | UINT32 | Multiplexed Counter 1 Prescaler Register           |
| 0x190          | MXCCtrl2            | UINT32 | Multiplexed Counter 2 Control Register             |
| 0x194          | MXCPresc2           | UINT32 | Multiplexed Counter 2 Prescaler Register           |
| 0x198          | MXCCtrl3            | UINT32 | Multiplexed Counter 3 Control Register             |
| 0x19C          | MXCPresc3           | UINT32 | Multiplexed Counter 3 Prescaler Register           |
| 0x1A0          | MXCCtrl4            | UINT32 | Multiplexed Counter 4 Control Register             |
| 0x1A4          | MXCPresc4           | UINT32 | Multiplexed Counter 4 Prescaler Register           |
| 0x1A8          | MXCCtrl5            | UINT32 | Multiplexed Counter 5 Control Register             |
| 0x1AC          | MXCPresc5           | UINT32 | Multiplexed Counter 5 Prescaler Register           |
| 0x1B0          | MXCCtrl6            | UINT32 | Multiplexed Counter 6 Control Register             |
| 0x1B4          | MXCPresc6           | UINT32 | Multiplexed Counter 6 Prescaler Register           |
| 0x1B8          | MXCCtrl7            | UINT32 | Multiplexed Counter 7 Control Register             |
| 0x1BC          | MXCPresc7           | UINT32 | Multiplexed Counter 7 Prescaler Register           |
| 0x400          | FPOutMap0           | UINT16 | Front Panel Output 0 Mapping Register              |
| 0x402          | FPOutMap1           | UINT16 | Front Panel Output 1 Mapping Register              |
| 0x404          | FPOutMap2           | UINT16 | Front Panel Output 2 Mapping Register              |
| 0x406          | FPOutMap3           | UINT16 | Front Panel Output 3 Mapping Register              |
| 0x440          | UnivOutMap0         | UINT16 | Universal Output 0 Mapping Register                |
| 0x442          | UnivOutMap1         | UINT16 | Universal Output 1 Mapping Register                |
| 0x444          | UnivOutMap2         | UINT16 | Universal Output 2 Mapping Register                |
| 0x446          | UnivOutMap3         | UINT16 | Universal Output 3 Mapping Register                |
| 0x448          | UnivOutMap4         | UINT16 | Universal Output 4 Mapping Register                |
| 0x44A          | UnivOutMap5         | UINT16 | Universal Output 5 Mapping Register                |
| 0x44C          | UnivOutMap6         | UINT16 | Universal Output 6 Mapping Register                |
| 0x44E          | UnivOutMap7         | UINT16 | Universal Output 7 Mapping Register                |
| 0x450          | UnivOutMap8         | UINT16 | Universal Output 8 Mapping Register                |
| 0x452          | UnivOutMap9         | UINT16 | Universal Output 9 Mapping Register                |
| 0x500          | FPInMap0            | UINT32 | Front Panel Input 0 Mapping Register               |
| 0x504          | FPInMap1            | UINT32 | Front Panel Input 1 Mapping Register               |
| 0x540          | UnivInMap0          | UINT32 | Front Panel Universal Input 0 Map Register         |
| 0x544          | UnivInMap1          | UINT32 | Front Panel Universal Input 1 Map Register         |
| 0x548          | UnivInMap2          | UINT32 | Front Panel Universal Input 2 Map Register         |
| 1              | <u> </u>            | 1      | 1 1 0                                              |

**Document:** cPCI-EVG-2x0.doc

**Page:** 16 of 37

| 0x550    | UnivInMap4 | UINT32 | Front Panel Universal Input 4 Map Register |
|----------|------------|--------|--------------------------------------------|
| 0x554    | UnivInMap5 | UINT32 | Front Panel Universal Input 5 Map Register |
| 0x558    | UnivInMap6 | UINT32 | Front Panel Universal Input 6 Map Register |
| 0x55C    | UnivInMap7 | UINT32 | Front Panel Universal Input 7 Map Register |
| 0x560    | UnivInMap8 | UINT32 | Front Panel Universal Input 8 Map Register |
| 0x564    | UnivInMap9 | UINT32 | Front Panel Universal Input 9 Map Register |
| 0x600    | TBInMap0   | UINT32 | Transition Board Input 0 Mapping Register  |
| 0x604    | TBInMap1   | UINT32 | Transition Board Input 1 Mapping Register  |
| 0x608    | TBInMap2   | UINT32 | Transition Board Input 2 Mapping Register  |
| 0x60C    | TBInMap3   | UINT32 | Transition Board Input 3 Mapping Register  |
| 0x610    | TBInMap4   | UINT32 | Transition Board Input 4 Mapping Register  |
| 0x614    | TBInMap5   | UINT32 | Transition Board Input 5 Mapping Register  |
| 0x618    | TBInMap6   | UINT32 | Transition Board Input 6 Mapping Register  |
| 0x61C    | TBInMap7   | UINT32 | Transition Board Input 7 Mapping Register  |
| 0x620    | TBInMap8   | UINT32 | Transition Board Input 8 Mapping Register  |
| 0x624    | TBInMap9   | UINT32 | Transition Board Input 9 Mapping Register  |
| 0x628    | TBInMap10  | UINT32 | Transition Board Input 10 Mapping Register |
| 0x62C    | TBInMap11  | UINT32 | Transition Board Input 11 Mapping Register |
| 0x630    | TBInMap12  | UINT32 | Transition Board Input 12 Mapping Register |
| 0x634    | TBInMap13  | UINT32 | Transition Board Input 13 Mapping Register |
| 0x638    | TBInMap14  | UINT32 | Transition Board Input 14 Mapping Register |
| 0x63C    | TBInMap15  | UINT32 | Transition Board Input 15 Mapping Register |
| 0x800 -  | DataBuf    |        | Data Buffer Transmit Memory                |
| 0xFFF    |            |        |                                            |
| 0x8000 - | SeqRam0    |        | Sequence RAM 0                             |
| 0xBFFF   |            |        |                                            |
| 0xC000 - | SeqRam1    |        | Sequence RAM 1                             |
| 0xFFFF   |            |        |                                            |

# **Status Register**

| address | <b>bit 31</b> | bit 30        | bit 29        | <b>Bit 28</b> | bit 27 | <b>bit 26</b> | bit 25 | <b>bit 24</b> |
|---------|---------------|---------------|---------------|---------------|--------|---------------|--------|---------------|
| 0x000   | RDB7          | RDB6          | RDB5          | RDB4          | RDB3   | RDB2          | RDB1   | RDB0          |
| •       |               |               |               |               |        |               |        |               |
| address | bit 23        | <b>bit 22</b> | <b>bit 21</b> | <b>bit 20</b> | bit 19 | <b>bit 18</b> | bit 17 | <b>bit 16</b> |
| 0x001   | TDB7          | TDB6          | TDB5          | TDB4          | TDB3   | TDB2          | TDB1   | TDB0          |

| Bit  | Function                                                     |
|------|--------------------------------------------------------------|
| RDB7 | Status of received distributed bus bit 7 (from upstream EVG) |
| RDB6 | Status of received distributed bus bit 6 (from upstream EVG) |
| RDB5 | Status of received distributed bus bit 5 (from upstream EVG) |
| RDB4 | Status of received distributed bus bit 4 (from upstream EVG) |
| RDB3 | Status of received distributed bus bit 3 (from upstream EVG) |
| RDB2 | Status of received distributed bus bit 2 (from upstream EVG) |
| RDB1 | Status of received distributed bus bit 1 (from upstream EVG) |
| RDB0 | Status of received distributed bus bit 0 (from upstream EVG) |

Välitalontie 83 C, FI-00660 Helsinki, Finland

**Document:** cPCI-EVG-2x0.doc

**Page:** 17 of 37

| TDB7 | Status of transmitted distributed bus bit 7 |
|------|---------------------------------------------|
| TDB6 | Status of transmitted distributed bus bit 6 |
| TDB5 | Status of transmitted distributed bus bit 5 |
| TDB4 | Status of transmitted distributed bus bit 4 |
| TDB3 | Status of transmitted distributed bus bit 3 |
| TDB2 | Status of transmitted distributed bus bit 2 |
| TDB1 | Status of transmitted distributed bus bit 1 |
| TDB0 | Status of transmitted distributed bus bit 0 |

## **Control Register**

| address | bit 31 | bit 30        | bit 29        | <b>bit 28</b> | bit 27 | <b>bit 26</b> | <b>bit 25</b> | <b>bit 24</b> |
|---------|--------|---------------|---------------|---------------|--------|---------------|---------------|---------------|
| 0x004   | EVGEN  | RXDIS         | RXPWD         |               |        |               |               | MXCRES        |
|         |        |               |               |               |        |               |               | _             |
| address | bit 23 | <b>bit 22</b> | <b>bit 21</b> | bit 20        | bit 19 | bit 18        | bit 17        | <b>bit 16</b> |
| 0x005   |        |               |               |               |        |               |               | SRALT         |

**Bit** Function

EVGEN Event Generator Master enable

RXDIS Disable event reception RXPWD Receiver Power down

MXCRES Write 1 to reset multiplexed counters

SRALT (reserved)

## **Interrupt Flag Register**

| address | bit 31 | bit 30 | bit 29 | <b>bit 28</b> | bit 27 | bit 26 | bit 25 | bit 24 |
|---------|--------|--------|--------|---------------|--------|--------|--------|--------|
| 0x008   |        |        |        |               |        |        |        |        |
|         |        |        |        |               |        |        |        |        |
| address | Bit 7  | bit 6  | bit 5  | Bit 4         | bit 3  | bit 2  | bit 1  | bit 0  |
|         |        |        |        |               |        |        |        |        |

**Bit** Function
IFDBUF Data buffer flag

IFFF RX Event FIFO full flag IFVIO Receiver violation flag

# **Interrupt Enable Register**

| address | bit 31 | <b>bit 30</b> | bit 29 | <b>bit 28</b> | bit 27 | bit 26 | bit 25 | bit 24 |
|---------|--------|---------------|--------|---------------|--------|--------|--------|--------|
| 0x00c   | IRQEN  |               |        |               |        |        |        |        |
|         |        |               |        |               |        |        |        |        |
| address | Bit 7  | bit 6         | bit 5  | Bit 4         | bit 3  | bit 2  | bit 1  | bit 0  |
| 0x00f   |        |               | IEDBUF |               |        |        | IEFF   | IEVIO  |

**Bit** Function

IRQEN Master interrupt enableIEDBUF Data buffer interrupt enableIEFF Event FIFO full interrupt enable

Välitalontie 83 C, FI-00660 Helsinki, Finland

**Document:** cPCI-EVG-2x0.doc

**Page:** 18 of 37

IEVIO Receiver violation interrupt enable

### **AC Trigger Control Register**

| address | bit 23             | bit 22        | bit 21        | bit 20        | bit 19     | bit 18 | bit 17 | bit 16 |  |  |
|---------|--------------------|---------------|---------------|---------------|------------|--------|--------|--------|--|--|
| 0x011   |                    |               |               |               |            |        | ACBYP  | ACSYNC |  |  |
|         |                    |               |               |               |            |        |        |        |  |  |
| address | bit 15             | <b>Bit 14</b> | <b>bit 13</b> | <b>bit 12</b> | bit 11     | bit 10 | bit 9  | bit 8  |  |  |
| 0x012   | AC Trigger Divider |               |               |               |            |        |        |        |  |  |
|         |                    |               |               |               |            |        |        |        |  |  |
| address | Bit 7              | bit 6         | bit 5         | Bit 4         | bit 3      | bit 2  | bit 1  | bit 0  |  |  |
| 0x013   |                    |               |               | AC Trigge     | r Phase Sh | ift    |        |        |  |  |

**Bit** Function

ACBYP AC divider and phase shifter bypass (0 = divider/phase shifter enabled, 1

= divider/phase shifter bypassed)

ACSYNC Synchronization select (0 = event clock, 1 = multiplexed counter 7

output)

### **AC Trigger Mapping Register**

| address | Bit 7 | bit 6 | bit 5 | Bit 4 | bit 3 | bit 2 | bit 1 | bit 0 | _ |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|---|
| 0x017   | ACM7  | ACM6  | ACM5  | ACM4  | ACM3  | ACM2  | ACM1  | ACM0  |   |

| Bit  | Function                                   |
|------|--------------------------------------------|
| ACM7 | If set AC circuit triggers Event Trigger 7 |
| ACM6 | If set AC circuit triggers Event Trigger 6 |
| ACM5 | If set AC circuit triggers Event Trigger 5 |
| ACM4 | If set AC circuit triggers Event Trigger 4 |
| ACM3 | If set AC circuit triggers Event Trigger 3 |
| ACM2 | If set AC circuit triggers Event Trigger 2 |
| ACM1 | If set AC circuit triggers Event Trigger 1 |
| ACM0 | If set AC circuit triggers Event Trigger 0 |
|      |                                            |

#### **Software Event Register**

| adaress   | DIT 15                    | DIT 14 | DIT 13 | DIT 12 | DIT 11 | DIT 10 | DIT 9  | D11 8       |  |  |
|-----------|---------------------------|--------|--------|--------|--------|--------|--------|-------------|--|--|
| 0x01A     |                           |        |        |        |        |        | SWPEND | SWENA       |  |  |
| 0/10/11/1 |                           |        |        |        |        |        | BIII   | S // EI /II |  |  |
|           |                           |        |        |        |        |        |        |             |  |  |
| address   | Bit 7                     | bit 6  | bit 5  | Bit 4  | bit 3  | bit 2  | bit 1  | bit 0       |  |  |
| 0x01B     | Event Code to be sent out |        |        |        |        |        |        |             |  |  |
|           | Event Code to be sent out |        |        |        |        |        |        |             |  |  |

**Bit** Function

SWPEND Event code waiting to be sent out (read-only). A new event code may be

written to the event code register when this bit reads '0'.

SWENA Enable software event

### **Data Buffer Control Register**

| address | bit 23 | <b>bit 22</b> | <b>bit 21</b> | <b>bit 20</b> | bit 19 | <b>bit 18</b> | bit 17 | <b>bit 16</b> |  |
|---------|--------|---------------|---------------|---------------|--------|---------------|--------|---------------|--|
| 0x021   |        |               |               | TXCPT         | TXRUN  | TRIG          | ENA    | MODE          |  |

**Document:** cPCI-EVG-2x0.doc

**Page:** 19 of 37

| address | bit 15 | <b>Bit 14</b> | bit 13 | <b>bit 12</b> | bit 11 | bit 10 | bit 9      | bit 8 |
|---------|--------|---------------|--------|---------------|--------|--------|------------|-------|
| 0x022   |        |               |        |               |        | ]      | DTSZ(10:8) | )     |
|         |        |               |        |               |        |        |            |       |
| address | Bit 7  | bit 6         | bit 5  | Bit 4         | bit 3  | bit 2  | bit 1      | bit 0 |
| 0x023   |        |               | DTSZ   | Z(7:2)        |        |        | 0          | 0     |

| Bits       | Function                                                       |
|------------|----------------------------------------------------------------|
| TXCPT      | Data Buffer Transmission Complete                              |
| TXRUN      | Data Buffer Transmission Running – set when data               |
|            | transmission has been triggered and has not been completed yet |
| TRIG       | Data Buffer Trigger Transmission                               |
|            | Write '1' to start transmission of data in buffer              |
| ENA        | Data Buffer Transmission enable                                |
|            | '0' – data transmission engine disabled                        |
|            | '1' – data transmission engine enabled                         |
| MODE       | Distributed bus sharing mode                                   |
|            | '0' – distributed bus not shared with data transmission        |
|            | '1' – distributed bus shared with data transmission            |
| DTSZ(10:8) | Data Transfer size 4 bytes to 2k in four byte increments       |

# **Distributed Bus Mapping Register**

| address | <b>bit 31</b> | bit 30        | bit 29        | <b>bit 28</b> | bit 27      | <b>bit 26</b> | bit 25  | bit 24        |  |
|---------|---------------|---------------|---------------|---------------|-------------|---------------|---------|---------------|--|
| 0x024   |               | DBMA          | P7(3:0)       |               | DBMAP6(3:0) |               |         |               |  |
|         |               |               |               |               |             |               |         |               |  |
| address | <b>bit 23</b> | bit 22        | <b>bit 21</b> | <b>bit 20</b> | bit 19      | <b>bit 18</b> | bit 17  | <b>bit 16</b> |  |
| 0x025   | DBMAP5(3:0)   |               |               |               | DBMAP4(3:0) |               |         |               |  |
| •       |               |               |               |               |             |               |         | _             |  |
| address | bit 15        | <b>Bit 14</b> | bit 13        | <b>bit 12</b> | bit 11      | bit 10        | bit 9   | bit 8         |  |
| 0x026   | DBMAP3(3:0)   |               |               |               | DBMAP2(3:0) |               |         |               |  |
| •       |               |               |               |               |             |               |         | _             |  |
| address | Bit 7         | bit 6         | bit 5         | Bit 4         | bit 3       | bit 2         | bit 1   | bit 0         |  |
| 0x027   |               | DBMA          | P1(3:0)       |               |             | DBMA          | P0(3:0) |               |  |

| Bits        | Function                                                     |  |  |  |  |  |
|-------------|--------------------------------------------------------------|--|--|--|--|--|
| DBMAP7(3:0) | Distributed Bus Bit 7 Mapping:                               |  |  |  |  |  |
|             | 0 – Off, output logic '0'                                    |  |  |  |  |  |
|             | 1 – take bus bit from external input                         |  |  |  |  |  |
|             | 2 – Multiplexed counter output mapped to distributed bus bit |  |  |  |  |  |
|             | 3 – Distributed bus bit forwarded from upstream EVG          |  |  |  |  |  |
| DBMAP6(3:0) | Distributed Bus Bit 7 Mapping (see above for mappings)       |  |  |  |  |  |
| DBMAP5(3:0) | Distributed Bus Bit 7 Mapping (see above for mappings)       |  |  |  |  |  |
| DBMAP4(3:0) | Distributed Bus Bit 7 Mapping (see above for mappings)       |  |  |  |  |  |
| DBMAP3(3:0) | Distributed Bus Bit 7 Mapping (see above for mappings)       |  |  |  |  |  |
| DBMAP2(3:0) | Distributed Bus Bit 7 Mapping (see above for mappings)       |  |  |  |  |  |

Välitalontie 83 C, FI-00660 Helsinki, Finland

**Document:** cPCI-EVG-2x0.doc

**Page:** 20 of 37

DBMAP1(3:0) Distributed Bus Bit 7 Mapping (see above for mappings) DBMAP0(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)

### **FPGA Firmware Version Register**

| address | bit 31        |           | bit 27 | <b>bit 26</b> |             | bit 24 |
|---------|---------------|-----------|--------|---------------|-------------|--------|
| 0x02C   |               | EVG = 0x2 |        |               | Form Factor |        |
| •       |               |           |        |               |             |        |
| address | <b>bit 23</b> |           |        |               |             | bit 8  |
| 0x02D   |               |           | Rese   | rved          |             |        |
| •       |               |           |        |               |             |        |
| address | bit 7         |           |        |               |             | bit 0  |
| 0x02F   |               |           | Versi  | on ID         |             |        |
|         |               |           |        |               |             | •      |

**Bits** Function

Form Factor 0 – CompactPCI 3U

1 – PMC 2 – VME64x

### **Microsecond Divider Register**

| address | bit 15                                      | bit 0 |
|---------|---------------------------------------------|-------|
| 0x04e   | Rounded integer value of 1 µs * event clock |       |

For 100 MHz event clock this register should read 100, for 50 MHz event clock this register should read 50. This value is used e.g. for the heartbeat timeout.

### **Clock Control Register**

|         |              | $\boldsymbol{\mathcal{G}}$ |                |               |        |               |               |               |
|---------|--------------|----------------------------|----------------|---------------|--------|---------------|---------------|---------------|
| address | bit 31       | <b>bit 30</b>              | bit 29         | <b>bit 28</b> | bit 27 | <b>bit 26</b> | <b>bit 25</b> | <b>bit 24</b> |
| 0x050   |              |                            |                |               |        |               |               | EXTRF         |
|         |              |                            |                |               |        |               |               |               |
| address | bit 23       | bit 22                     | <b>bit 21</b>  | <b>bit 20</b> | bit 19 | <b>bit 18</b> | bit 17        | bit 16        |
| 0x051   |              |                            | RFDIV5         | RFDIV4        | RFDIV3 | RFDIV2        | RFDIV1        | RFDIV0        |
|         |              |                            |                |               |        |               |               |               |
| address | bit 15       | <b>bit 14</b>              | bit 13         | <b>bit 12</b> | bit 11 | bit 10        | bit 9         | bit 8         |
| 0x052   | RECDCM       | RECDCM                     | RECDCM         | EVDCM         | EVDCM  | EVDCM         | CGLOCK        | RECDCM        |
| 0.1002  | RUN          | INITDONE                   | PSDONE         | STOPPED       | LOCKED | PSDONE        |               | PSDEC         |
|         |              |                            |                |               |        |               |               |               |
|         |              |                            | - 4            | 1 1 4         | 1 14 2 | 1.24.0        | 1 4 1         | 1.40          |
| address | bit 7        | bit 6                      | bit 5          | bit 4         | bit 3  | bit 2         | bit 1         | bit 0         |
| 0x053   | bit 7 RECDCM | bit 6 RECDCM               | bit 5<br>EVDCM | EVDCM         | EVDCM  | EVDCM         | EVDCM         | RXCLKSEL      |

| Bit | <b>Function</b> |
|-----|-----------------|
|     |                 |

RFSEL5-0 External RF divider select:

000000 - RF/1 000001 - RF/2 000010 - RF/3 000011 - RF/4 000100 - RF/5 000101 - RF/6

**Document:** cPCI-EVG-2x0.doc

**Page:** 21 of 37

| 000110 - RF/7                                       |
|-----------------------------------------------------|
| 000111 - RF/8                                       |
| 001000 - RF/9                                       |
| 001001 - RF/10                                      |
| 001010 - RF/11                                      |
| 001011 - RF/12                                      |
| 001100 – OFF                                        |
| 001101 - RF/14                                      |
| 001110 - RF/15                                      |
| 001111 - RF/16                                      |
| 010000 - RF/17                                      |
| 010001 - RF/18                                      |
| 010010 - RF/19                                      |
| 010011 - RF/20                                      |
| 010100 - RF/21                                      |
| 010101 - RF/22                                      |
| 010110 - RF/23                                      |
| 010111 - RF/24                                      |
| 011000 - RF/25                                      |
| 011001 - RF/26                                      |
| 011010 - RF/27                                      |
| 011011 - RF/28                                      |
| 011100 - RF/29                                      |
| 011101 - RF/30                                      |
| 011110 - RF/31                                      |
| 011111 – RF/32                                      |
| RF reference select:                                |
| 0 – Use internal reference (fractional synthesizer) |

# **Event Analyser Control Register**

**EXTRF** 

CGLOCK

| address | bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |   |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|---|
| 0x063   |       |       |       | EVANE | EVARS | EVAOF | EVAEN | EVACR | ĺ |

| Bits         | Function                            |
|--------------|-------------------------------------|
| <b>EVANE</b> | Event Analyser FIFO not empty flag: |
|              | 0 – FIFO empty                      |
|              | 1 – FIFO not empty, events in FIFO  |
| <b>EVARS</b> | Event Analyser Reset                |
|              | 0 – not in reset                    |
|              | 1 – reset                           |
| <b>EVAOF</b> | Event Analyser FIFO overflow flag:  |
|              | 0 – no overflow                     |
|              | 1 – FIFO overflow                   |

1 – Use external RF reference Micrel SY87739L locked (read-only)

Välitalontie 83 C, FI-00660 Helsinki, Finland

**Document:** cPCI-EVG-2x0.doc

**Page:** 22 of 37

EVAEN Event Analyser enable

0 – Event Analyser disabled1 – Event Analyser enabled

EVACR Event Analyser 64 bit counter reset

0 – Counter running

1 – Counter reset to zero.

### **Event Analyser Data Register**

| address | bit 15     | bit 8 | bit 7 |            | bit 0 |
|---------|------------|-------|-------|------------|-------|
| 0x066   | (reserved) |       |       | Event Code |       |
|         |            |       |       |            |       |

# **Event Analyser Counter Registers**

| address | bit 31 |                                                  | bit 0 |
|---------|--------|--------------------------------------------------|-------|
| 0x068   |        | Event Analyser Counter Register (bits 63 – 32)   |       |
|         |        |                                                  |       |
| address | bit 31 |                                                  | bit 0 |
| 0x06C   |        | Event Analyser Counter Register (bits $31 - 0$ ) |       |

### **Sequence RAM Control Registers**

| Bequein |               |               | 1 11051500    |               |        |               |        |        |
|---------|---------------|---------------|---------------|---------------|--------|---------------|--------|--------|
| address | bit 31        | bit 30        | bit 29        | bit 28        | bit 27 | <b>bit 26</b> | bit 25 | bit 24 |
| 0x070   |               |               |               |               |        |               | SQ0RUN | SQ0ENA |
|         |               |               |               |               |        |               |        |        |
| address | <b>bit 23</b> | <b>bit 22</b> | <b>bit 21</b> | bit 20        | bit 19 | <b>bit 18</b> | bit 17 | bit 16 |
| 0x071   |               |               | SQ0SWT        | SQ0SNG        | SQ0REC | SQ0RES        | SQ0DIS | SQ0EN  |
| •       |               |               |               |               |        |               |        |        |
| address | <b>bit 15</b> | <b>bit 14</b> | bit 13        | <b>bit 12</b> | bit 11 | <b>bit 10</b> | bit 9  | bit 8  |
| 0x072   |               |               |               |               |        |               |        |        |
| •       |               |               |               |               |        |               |        |        |
| address | bit 7         | bit 6         | bit 5         | bit 4         | bit 3  | bit 2         | bit 1  | bit 0  |
| 0x073   |               |               |               | SQ0           | TSEL   |               |        |        |
|         |               |               |               |               |        |               |        |        |
| address | bit 31        | bit 30        | bit 29        | bit 28        | bit 27 | bit 26        | bit 25 | bit 24 |
| 0x074   |               |               |               |               |        |               | SQ1RUN | SQ1ENA |
|         |               |               |               |               |        |               |        |        |
| address | bit 23        | bit 22        | bit 21        | bit 20        | bit 19 | bit 18        | bit 17 | bit 16 |
| 0x075   |               |               | SQ1SWT        | SQ1SNG        | SQ1REC | SQ1RES        | SQ1DIS | SQ1EN  |
|         |               |               |               |               |        |               |        |        |
| Address | bit 15        | bit 14        | bit 13        | bit 12        | bit 11 | bit 10        | bit 9  | bit 8  |
| 0x076   |               |               |               |               |        |               |        |        |
|         |               |               |               |               |        |               |        |        |
| Address | bit 7         | bit 6         | bit 5         | bit 4         | bit 3  | bit 2         | bit 1  | bit 0  |
| 0x077   |               |               |               | SQ1           | TSEL   |               |        |        |

Bit Function

SQxRUN Sequence RAM running flag (read-only)
SQxENA Sequence RAM enabled flag (read\_only)

Välitalontie 83 C, FI-00660 Helsinki, Finland

**Document:** cPCI-EVG-2x0.doc

**Page:** 23 of 37

| SQxSWT | Sequence RAM | software trigger, write | '1' to trigger |
|--------|--------------|-------------------------|----------------|
|        |              |                         |                |

SQxSNG Sequence RAM single mode SQxREC Sequence RAM recycle mode

SQxRES Sequence RAM reset, write '1' to reset
SQxDIS Sequence RAM disable, write '1' to disable
SQxEN Sequence RAM enable, write '1' to enable/arm

SQxTSEL Sequence RAM trigger select:

0 - trigger from MXC0

1 - trigger from MXC1

2 – trigger from MXC2

3 – trigger from MXC3

4 – trigger from MXC4 5 – trigger from MXC5

6 – trigger from MXC6

7 – trigger from MXC7

16 - trigger from AC synchronization logic

17 – trigger from sequence RAM 0 software trigger

18 - trigger from sequence RAM 1 software trigger

### SY87739L Fractional Divider Configuration Word

| address | bit 31                                         | bit 0 |
|---------|------------------------------------------------|-------|
| 0x080   | SY87739L Fractional Divider Configuration Word |       |

#### Configuration Word Frequency with 24 MHz reference oscillator

 0x0C928166
 124.907 MHz

 0x0C9282A6
 62.454 MHz

 0x009743AD
 50 MHz

 0xC25B43AD
 49.978 MHz

 0x0176C36D
 49.965 MHz

### **Event Trigger Registers**

| Address | bit 15        | bit 14        | bit 13        | bit 12        | bit 11  | bit 10        | bit 9 | bit 8 |  |
|---------|---------------|---------------|---------------|---------------|---------|---------------|-------|-------|--|
| 0x102   |               |               |               |               |         |               |       | EVEN0 |  |
|         |               |               |               |               |         |               |       |       |  |
| Address | bit 7         | bit 6         | bit 5         | bit 4         | bit 3   | bit 2         | bit 1 | bit 0 |  |
| 0x103   | EVCD0(7:0)    |               |               |               |         |               |       |       |  |
|         |               |               |               |               |         |               |       | _     |  |
| Address | <b>bit 15</b> | <b>bit 14</b> | <b>bit 13</b> | <b>bit 12</b> | bit 11  | <b>bit 10</b> | bit 9 | bit 8 |  |
| 0x106   |               |               |               |               |         |               |       | EVEN1 |  |
| •       |               |               |               |               |         |               |       | _     |  |
| Address | bit 7         | bit 6         | bit 5         | bit 4         | bit 3   | bit 2         | bit 1 | bit 0 |  |
| 0x107   |               |               |               | EVCI          | D1(7:0) |               |       |       |  |
| •       |               |               |               |               |         |               |       |       |  |
| Address | bit 15        | <b>bit 14</b> | bit 13        | <b>bit 12</b> | bit 11  | <b>bit 10</b> | bit 9 | bit 8 |  |
| 0x10A   |               |               |               |               |         |               |       | EVEN2 |  |

**Document:** cPCI-EVG-2x0.doc

**Page:** 24 of 37

| Address          | bit 7          | bit 6   | bit 5  | bit 4  | bit 3   | bit 2         | bit 1 | bit 0       |
|------------------|----------------|---------|--------|--------|---------|---------------|-------|-------------|
| 0x10B            |                |         |        | EVCI   | D2(7:0) |               |       |             |
| Address          | bit 15         | bit 14  | bit 13 | bit 12 | bit 11  | bit 10        | bit 9 | bit 8       |
| 0x10E            |                |         |        |        |         |               |       | EVEN3       |
|                  |                |         |        |        |         |               |       |             |
| Address          | bit 7          | bit 6   | bit 5  | bit 4  | bit 3   | bit 2         | bit 1 | bit 0       |
| 0x10F            |                |         |        | EVCI   | D3(7:0) |               |       |             |
| Address          | bit 15         | bit 14  | bit 13 | bit 12 | bit 11  | <b>bit 10</b> | bit 9 | bit 8       |
| 0x102            |                |         |        |        |         |               |       | EVEN4       |
|                  |                |         |        |        |         |               |       |             |
| Address          | bit 7          | bit 6   | bit 5  | bit 4  | bit 3   | bit 2         | bit 1 | bit 0       |
| 0x103            |                |         |        | EVCI   | D4(7:0) |               |       |             |
| Address          | bit 15         | bit 14  | bit 13 | bit 12 | bit 11  | <b>bit 10</b> | bit 9 | bit 8       |
| 0x106            | DIL 13         | DIL 14  | DIC 13 | DIL 12 | DIL 11  | DIL IV        | DIC   | EVEN5       |
|                  |                | l       |        |        |         |               |       |             |
| Address          | bit 7          | bit 6   | bit 5  | bit 4  | bit 3   | bit 2         | bit 1 | bit 0       |
| 0x107            |                |         |        | EVCI   | O5(7:0) |               |       |             |
| Address          | bit 15         | bit 14  | bit 13 | bit 12 | bit 11  | bit 10        | bit 9 | bit 8       |
| 0x10A            | DIL 13         | DILIT   |        | DIL 12 |         | DIL TO        | DIC   | EVEN6       |
| L                |                |         | l      |        | l       |               |       |             |
| Address          | bit 7          | bit 6   | bit 5  | bit 4  | bit 3   | bit 2         | bit 1 | bit 0       |
| 0x10B            |                |         |        | EVCI   | D6(7:0) |               |       |             |
| A d d moora      | L:4 1 <i>5</i> | L:4 1 / | L:4 12 | L:4 10 | L!4 11  | L:4 10        | L:4 O | L:4 0       |
| Address<br>0x10E | bit 15         | bit 14  | bit 13 | bit 12 | bit 11  | bit 10        | bit 9 | bit 8 EVEN7 |
| OVIOR            |                |         |        |        |         |               |       | E VEIN/     |
| Address          | bit 7          | bit 6   | bit 5  | bit 4  | bit 3   | bit 2         | bit 1 | bit 0       |
| 0x10F            |                |         |        | EVCI   | D7(7:0) |               |       |             |
|                  |                |         |        |        |         |               |       |             |

**Function** Bit

Enable Event Trigger x **EVEN**x

Event Trigger Code for Event trigger x **EVCD**x

## **Multiplexed Counter Registers**

|         |        |                                 | 0      |        |        |        |        |               |  |
|---------|--------|---------------------------------|--------|--------|--------|--------|--------|---------------|--|
| address | bit 31 | bit 30                          | bit 29 | bit 28 | bit 27 | bit 26 | bit 25 | <b>bit 24</b> |  |
| 0x180   | MXC0   | MXP0                            |        |        |        |        |        |               |  |
|         |        |                                 |        |        |        |        |        |               |  |
| address | Bit 7  | bit 6                           | bit 5  | Bit 4  | Bit 3  | bit 2  | bit 1  | bit 0         |  |
| 0x183   | MX0EV7 | MX0EV6                          | MX0EV5 | MX0EV4 | MX0EV3 | MX0EV2 | MX0EV1 | MX0EV0        |  |
| •       |        |                                 |        |        | •      | •      | •      |               |  |
| address | bit 31 |                                 |        |        |        |        |        | bit 0         |  |
| 0x184   |        | Multiplexed Counter 0 prescaler |        |        |        |        |        |               |  |

**Document:** cPCI-EVG-2x0.doc **Page:** 25 of 37

| address                                                     | bit 31                              | bit 30              | bit 29                              | bit 28                            | bit 27                                      | <b>bit 26</b>                    | bit 25          | bit 24                       |
|-------------------------------------------------------------|-------------------------------------|---------------------|-------------------------------------|-----------------------------------|---------------------------------------------|----------------------------------|-----------------|------------------------------|
| 0x188                                                       | MXC1                                | MXP1                |                                     |                                   |                                             |                                  |                 |                              |
|                                                             | D:4 7                               | 1.4.6               | 1.24 F                              | D:4 4                             | D:4 2                                       | L:4 2                            | 1.24 1          | 1:40                         |
| address<br>0x18B                                            | Bit 7 MX1EV7                        | <b>bit 6</b> MX1EV6 | bit 5 MX1EV5                        | Bit 4<br>MX1EV4                   | Bit 3 MX1EV3                                | bit 2                            | bit 1 MX1EV1    | bit 0<br>MX1EV0              |
| UXIOD                                                       | WIZTLY                              | WIXILVO             | WIXILVS                             | WINTLY                            | WIXILVS                                     | WIXILVZ                          | WIXILVI         | WIZTLYO                      |
| address                                                     | bit 31                              |                     |                                     |                                   |                                             |                                  |                 | bit 0                        |
| 0x18C                                                       |                                     |                     | Multi                               | plexed Cou                        | ınter 1 pres                                | caler                            |                 |                              |
|                                                             | 14.04                               | 14.20               | 14.00                               | 14.00                             | 14.05                                       | 14.06                            | 1.4.05          | 1.4.04                       |
| Address<br>0x190                                            | bit 31<br>MXC2                      | bit 30<br>MXP2      | bit 29                              | bit 28                            | bit 27                                      | bit 26                           | bit 25          | bit 24                       |
| 0.8190                                                      | MAC2                                | WIAFZ               |                                     |                                   |                                             |                                  |                 |                              |
| Address                                                     | Bit 7                               | bit 6               | bit 5                               | Bit 4                             | Bit 3                                       | bit 2                            | bit 1           | bit 0                        |
| 0x193                                                       | MX2EV7                              | MX2EV6              | MX2EV5                              | MX2EV4                            | MX2EV3                                      | MX2EV2                           | MX2EV1          | MX2EV0                       |
|                                                             |                                     |                     |                                     |                                   |                                             |                                  |                 |                              |
| address                                                     | bit 31                              |                     | M14:                                | alawad Car                        |                                             | 1                                |                 | bit 0                        |
| 0x194                                                       |                                     |                     | Multi                               | piexed Cou                        | inter 2 pres                                | caier                            |                 |                              |
| Address                                                     | bit 31                              | bit 30              | bit 29                              | bit 28                            | bit 27                                      | bit 26                           | bit 25          | bit 24                       |
| 0x198                                                       | MXC3                                | MXP3                |                                     |                                   |                                             |                                  |                 |                              |
|                                                             |                                     |                     |                                     |                                   |                                             |                                  |                 |                              |
| Address                                                     | Bit 7                               | bit 6               | bit 5                               | Bit 4                             | Bit 3                                       | bit 2                            | bit 1           | bit 0                        |
| 0x19B                                                       | MX3EV7                              | MX3EV6              | MX3EV5                              | MX3EV4                            | MX3EV3                                      | MX3EV2                           | MX3EV1          | MX3EV0                       |
| address                                                     | bit 31                              |                     |                                     |                                   |                                             |                                  |                 | bit 0                        |
| 0x19C                                                       |                                     |                     | Multi                               | plexed Cou                        | ınter 3 pres                                | caler                            |                 |                              |
|                                                             |                                     |                     |                                     |                                   |                                             |                                  |                 |                              |
| Address                                                     | bit 31                              | bit 30              | bit 29                              | bit 28                            | bit 27                                      | bit 26                           | bit 25          | bit 24                       |
| 0x1A0                                                       | MXC4                                | MXP4                |                                     |                                   |                                             |                                  |                 |                              |
| Address                                                     | D'4 =                               |                     |                                     |                                   |                                             |                                  |                 |                              |
| A REAL PORTS                                                | Bit 7                               | bit 6               | bit 5                               | Bit 4                             | Bit 3                                       | bit 2                            | bit 1           | bit 0                        |
| 0x1A3                                                       | Bit 7<br>MX4EV7                     | bit 6<br>MX4EV6     | bit 5<br>MX4EV5                     | Bit 4<br>MX4EV4                   | Bit 3<br>MX4EV3                             | bit 2<br>MX4EV2                  | bit 1<br>MX4EV1 | bit 0                        |
|                                                             |                                     |                     |                                     |                                   |                                             |                                  |                 | MX4EV0                       |
| 0x1A3 address                                               |                                     |                     | MX4EV5                              | MX4EV4                            | MX4EV3                                      | MX4EV2                           |                 |                              |
| 0x1A3                                                       | MX4EV7                              |                     | MX4EV5                              | MX4EV4                            |                                             | MX4EV2                           |                 | MX4EV0                       |
| 0x1A3<br>address<br>0x1A4                                   | bit 31                              | MX4EV6              | MX4EV5  Multi                       | MX4EV4                            | MX4EV3                                      | MX4EV2                           | MX4EV1          | Bit 0                        |
| 0x1A3 address                                               | MX4EV7                              |                     | MX4EV5                              | MX4EV4                            | MX4EV3                                      | MX4EV2                           |                 | MX4EV0                       |
| 0x1A3  address 0x1A4  Address 0x1A8                         | bit 31                              | MX4EV6              | MX4EV5  Multi bit 29                | MX4EV4                            | MX4EV3                                      | MX4EV2                           | MX4EV1          | Bit 0 Bit 24                 |
| 0x1A3  address 0x1A4  Address 0x1A8  Address                | bit 31 bit 31 MXC5 Bit 7            | bit 30 MXP5 bit 6   | MX4EV5  Multi bit 29  bit 5         | mX4EV4  plexed Cou  bit 28  Bit 4 | MX4EV3 unter 4 pres bit 27 Bit 3            | MX4EV2 caler bit 26 bit 2        | bit 25          | Bit 0  Bit 24  bit 0         |
| 0x1A3  address 0x1A4  Address 0x1A8                         | bit 31 bit 31 MXC5                  | bit 30 MXP5         | MX4EV5  Multi bit 29                | mX4EV4  plexed Cou                | MX4EV3 unter 4 pres bit 27                  | MX4EV2 caler bit 26              | bit 25          | Bit 0 Bit 24                 |
| 0x1A3  address 0x1A4  Address 0x1A8  Address 0x1AB          | bit 31  bit 31  MXC5  Bit 7  MX5EV7 | bit 30 MXP5 bit 6   | MX4EV5  Multi bit 29  bit 5         | mX4EV4  plexed Cou  bit 28  Bit 4 | MX4EV3 unter 4 pres bit 27 Bit 3            | MX4EV2 caler bit 26 bit 2        | bit 25          | Bit 0  Bit 24  bit 0  MX5EV0 |
| 0x1A3  address 0x1A4  Address 0x1A8  Address 0x1AB  address | bit 31 bit 31 MXC5 Bit 7            | bit 30 MXP5 bit 6   | MX4EV5  Multi bit 29  bit 5  MX5EV5 | plexed Coubit 28  Bit 4  MX5EV4   | MX4EV3 unter 4 pres bit 27 Bit 3            | mX4EV2 caler bit 26 bit 2 MX5EV2 | bit 25          | Bit 0  Bit 24  bit 0         |
| 0x1A3  address 0x1A4  Address 0x1A8  Address 0x1AB          | bit 31  bit 31  MXC5  Bit 7  MX5EV7 | bit 30 MXP5 bit 6   | MX4EV5  Multi bit 29  bit 5  MX5EV5 | plexed Coubit 28  Bit 4  MX5EV4   | MX4EV3  unter 4 pres  bit 27  Bit 3  MX5EV3 | mX4EV2 caler bit 26 bit 2 MX5EV2 | bit 25          | Bit 0  Bit 24  bit 0  MX5EV0 |
| 0x1A3  address 0x1A4  Address 0x1A8  Address 0x1AB  address | bit 31  bit 31  MXC5  Bit 7  MX5EV7 | bit 30 MXP5 bit 6   | MX4EV5  Multi bit 29  bit 5  MX5EV5 | plexed Coubit 28  Bit 4  MX5EV4   | MX4EV3  unter 4 pres  bit 27  Bit 3  MX5EV3 | mX4EV2 caler bit 26 bit 2 MX5EV2 | bit 25          | Bit 0  Bit 24  bit 0  MX5EV0 |

**Document:** cPCI-EVG-2x0.doc

**Page:** 26 of 37

| Address | Bit 7         | bit 6  | bit 5  | Bit 4      | Bit 3        | bit 2  | bit 1  | bit 0  |
|---------|---------------|--------|--------|------------|--------------|--------|--------|--------|
| 0x1B3   | MX6EV7        | MX6EV6 | MX6EV5 | MX6EV4     | MX6EV3       | MX6EV2 | MX6EV1 | MX6EV0 |
|         |               |        |        |            | •            |        |        |        |
| address | <b>bit 31</b> |        |        |            |              |        |        | bit 0  |
| 0x1B4   |               |        | Multi  | plexed Cou | ınter 6 pres | scaler |        |        |
|         |               |        |        |            |              |        |        |        |
| address | bit 31        | bit 30 | bit 29 | bit 28     | bit 27       | bit 26 | bit 25 | bit 24 |
| 0x1B8   | MXC7          | MXP7   |        |            |              |        |        |        |
|         |               |        |        |            |              |        |        |        |
| address | Bit 7         | bit 6  | bit 5  | Bit 4      | Bit 3        | bit 2  | bit 1  | bit 0  |
| 0x1BB   | MX7EV7        | MX7EV6 | MX7EV5 | MX7EV4     | MX7EV3       | MX7EV2 | MX7EV1 | MX7EV0 |
|         |               |        |        | •          |              |        |        |        |
| address | bit 31        |        |        |            |              |        |        | Bit 0  |
| 0x1BC   |               |        | Multi  | plexed Cou | inter 7 pres | scaler |        |        |
|         |               |        |        | •          | •            |        |        |        |

| Bit    | Function                                                             |
|--------|----------------------------------------------------------------------|
| MXCx   | Multiplexed counter output status (read-only)                        |
| MXPx   | Multiplexed counter output polarity                                  |
| MXxEV7 | Map rising edge of multiplexed counter x to send out event trigger 7 |
| MXxEV6 | Map rising edge of multiplexed counter x to send out event trigger 6 |
| MXxEV5 | Map rising edge of multiplexed counter x to send out event trigger 5 |
| MXxEV4 | Map rising edge of multiplexed counter x to send out event trigger 4 |
| MXxEV3 | Map rising edge of multiplexed counter x to send out event trigger 3 |
| MXxEV2 | Map rising edge of multiplexed counter x to send out event trigger 2 |
| MXxEV1 | Map rising edge of multiplexed counter x to send out event trigger 1 |
| MXxEV0 | Map rising edge of multiplexed counter x to send out event trigger 0 |

# **Front Panel Output Mapping Registers**

| address | Bit 7 | bit 6     | bit 5      | Bit 4       | bit 3      | bit 2      | bit 1     | bit 0 |
|---------|-------|-----------|------------|-------------|------------|------------|-----------|-------|
| 0x401   |       | Front par | nel OUT0 M | lapping ID  | (see Table | 2 for mapp | oing IDs) |       |
| 0x403   |       |           | Front      | t panel OU7 | 1 Mappin   | g ID       |           |       |
| 0x405   |       |           | Front      | t panel OU7 | 72 Mappin  | g ID       |           |       |
| 0x407   |       |           | Front      | t panel OU7 | 3 Mappin   | g ID       |           |       |
| Notes:  |       |           |            | •           |            |            |           |       |

cPCI-EVG does not have any Front panel outputs.
VME-EVG-230 has four Front panel outputs OUT0 to OUT3.

# **Universal Output Mapping Registers**

| address | Bit 7 | bit 6     | bit 5      | Bit 4       | bit 3      | bit 2       | bit 1     | bit 0 |
|---------|-------|-----------|------------|-------------|------------|-------------|-----------|-------|
| 0x441   |       | Universal | I/O OUT0 I | Mapping II  | (see Table | e 2 for map | ping IDs) |       |
| 0x443   |       |           | Unive      | rsal I/O OU | JT1 Mappii | ng ID       |           |       |
| 0x445   |       |           | Unive      | rsal I/O OU | JT2 Mappii | ng ID       |           |       |
| 0x447   |       |           | Unive      | rsal I/O OU | JT3 Mappii | ng ID       |           |       |
| 0x449   |       |           | Unive      | rsal I/O OU | JT4 Mappii | ng ID       |           |       |
| 0x44B   |       |           | Unive      | rsal I/O OU | JT5 Mappii | ng ID       |           |       |
| 0x44D   |       |           | Unive      | rsal I/O OU | T6 Mappii  | ng ID       |           |       |
| 0x44F   |       |           | Unive      | rsal I/O OU | JT7 Mappii | ng ID       |           |       |
| 0x451   |       |           | Unive      | rsal I/O OU | JT8 Mappii | ng ID       |           |       |
| 0x453   |       |           | Unive      | rsal I/O OU | JT9 Mappii | ng ID       |           |       |
|         |       |           |            |             |            |             |           |       |

**Document:** cPCI-EVG-2x0.doc

**Page:** 27 of 37

#### Notes:

cPCI-EVG has a maximum of four Universal I/O outputs and six additional outputs are provided by the optional side-by-side module. VME-EVG-230 has a maximum four Universal I/O outputs.

## **Front Panel Input Mapping Registers**

| address | bit 23        | <b>bit 22</b> | <b>bit 21</b> | bit 20        | bit 19 | <b>bit 18</b> | bit 17 | bit 16        |
|---------|---------------|---------------|---------------|---------------|--------|---------------|--------|---------------|
| 0x501   | FP0DB7        | FP0DB6        | FP0DB5        | FP0DB4        | FP0DB3 | FP0DB2        | FP0DB1 | FP0DB0        |
| ·       |               |               |               |               |        |               |        |               |
| Address | bit 7         | bit 6         | bit 5         | bit 4         | bit 3  | bit 2         | bit 1  | bit 0         |
| 0x503   | FP0EV7        | FP0EV6        | FP0EV5        | FP0EV4        | FP0EV3 | FP0EV2        | FP0EV1 | FP0EV0        |
| ·       |               |               |               |               |        |               |        | _             |
| address | <b>bit 23</b> | <b>bit 22</b> | <b>bit 21</b> | <b>bit 20</b> | bit 19 | <b>bit 18</b> | bit 17 | <b>bit 16</b> |
| 0x505   | FP1DB7        | FP1DB6        | FP1DB5        | FP1DB4        | FP1DB3 | FP1DB2        | FP1DB1 | FP1DB0        |
| ·       |               |               |               |               |        |               |        | _             |
| Address | bit 7         | bit 6         | bit 5         | bit 4         | bit 3  | bit 2         | bit 1  | bit 0         |
| 0x507   | FP1EV7        | FP1EV6        | FP1EV5        | FP1EV4        | FP1EV3 | FP1EV2        | FP1EV1 | FP1EV0        |

| Bit    | Function                                         |
|--------|--------------------------------------------------|
| FPxDB7 | Map Front panel Input x to Distributed Bus bit 7 |
| FPxDB6 | Map Front panel Input x to Distributed Bus bit 6 |
| FPxDB5 | Map Front panel Input x to Distributed Bus bit 5 |
| FPxDB4 | Map Front panel Input x to Distributed Bus bit 4 |
| FPxDB3 | Map Front panel Input x to Distributed Bus bit 3 |
| FPxDB2 | Map Front panel Input x to Distributed Bus bit 2 |
| FPxDB1 | Map Front panel Input x to Distributed Bus bit 1 |
| FPxDB0 | Map Front panel Input x to Distributed Bus bit 0 |
| FPxEV7 | Map Front panel Input x to Event Trigger 7       |
| FPxEV6 | Map Front panel Input x to Event Trigger 6       |
| FPxEV5 | Map Front panel Input x to Event Trigger 5       |
| FPxEV4 | Map Front panel Input x to Event Trigger 4       |
| FPxEV3 | Map Front panel Input x to Event Trigger 3       |
| FPxEV2 | Map Front panel Input x to Event Trigger 2       |
| FPxEV1 | Map Front panel Input x to Event Trigger 1       |
| FPxEV0 | Map Front panel Input x to Event Trigger 0       |
|        |                                                  |

## **Universal Input Mapping Registers**

| address | <b>bit 23</b> | <b>bit 22</b> | bit 21 | <b>bit 20</b> | bit 19 | <b>bit 18</b> | bit 17 | bit 16 |
|---------|---------------|---------------|--------|---------------|--------|---------------|--------|--------|
| 0x541   | UI0DB7        | UI0DB6        | UI0DB5 | UI0DB4        | UI0DB3 | UI0DB2        | UI0DB1 | UI0DB0 |

| Address | bit 7  | bit 6  | bit 5  | bit 4  | bit 3  | bit 2  | bit 1  | bit 0  |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0x543   | UI0EV7 | UI0EV6 | UI0EV5 | UI0EV4 | UI0EV3 | UI0EV2 | UI0EV1 | UI0EV0 |

| Bit    | Function                                       |
|--------|------------------------------------------------|
| UIxDB7 | Map Universal Input x to Distributed Bus bit 7 |
| UIxDB6 | Map Universal Input x to Distributed Bus bit 6 |
| UIxDB5 | Map Universal Input x to Distributed Bus bit 5 |
| UIxDB4 | Map Universal Input x to Distributed Bus bit 4 |
| UIxDB3 | Map Universal Input x to Distributed Bus bit 3 |

Välitalontie 83 C, FI-00660 Helsinki, Finland

**Document:** cPCI-EVG-2x0.doc

**Page:** 28 of 37

| UIxDB2 | Map Universal Input x to Distributed Bus bit 2 |
|--------|------------------------------------------------|
| UIxDB1 | Map Universal Input x to Distributed Bus bit 1 |
| UIxDB0 | Map Universal Input x to Distributed Bus bit 0 |
| UIxEV7 | Map Universal Input x to Event Trigger 7       |
| UIxEV6 | Map Universal Input x to Event Trigger 6       |
| UIxEV5 | Map Universal Input x to Event Trigger 5       |
| UIxEV4 | Map Universal Input x to Event Trigger 4       |
| UIxEV3 | Map Universal Input x to Event Trigger 3       |
| UIxEV2 | Map Universal Input x to Event Trigger 2       |
| UIxEV1 | Map Universal Input x to Event Trigger 1       |
| UIxEV0 | Map Universal Input x to Event Trigger 0       |

Note: all enabled input signals are OR'ed together. So if e.g. distributed bus bit 0 has two sources from universal input 0 and 1, if either of the inputs is active high also the distributed bus is active high.

# **Application Programming Interface (API)**

A Linux device driver and application interface is provided to setup up the Event Generator.

#### Function Reference

### int EvgOpen(struct MrfEgRegs \*\*pEg, char \*device\_name);

**Description** Opens the EVG device for access. Simultaneous

accesses are allowed.

**Parameters** struct MrfEgRegs \*\*pEg EvgOpen returns pointer to EVG registers by

memory mapping the I/O registers into user

space.

char \*device name Holds the device name of the EVG, e.g.

/dev/ega3. The device names are set up by the

module\_load script of the device driver.

**Return value** Return file descriptor on success.

Returns -1 on error.

#### int EvgClose(int fd);

**Description** Closes the EVG device after opening by

EvgOpen.

**Parameters** int fd File descriptor returned by EvgOpen

**Return value**Returns zero on success.
Returns -1 on error.

### int EvgEnable(volatile struct MrfEgRegs \*pEg, int state);

**Description** Enables the EVG and allows sending event

codes.

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

Välitalontie 83 C, FI-00660 Helsinki, Finland

**Document:** cPCI-EVG-2x0.doc

**Page:** 29 of 37

int state 0: disable

1: enable

**Return value** Returns zero when EVG disabled

Returns non-zero when EVG enabled

#### int EvgGetEnable(volatile struct MrfEgRegs \*pEg);

**Description** Retrieves state of the EVG.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

**Return value** Returns zero when EVG disabled

Returns non-zero when EVG enabled

### int EvgRxEnable(volatile struct MrfEgRegs \*pEg, int state);

**Description** Enables/disables the EVG receiver.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int state 0: disable

1: enable

**Return value** Returns zero when RX disabled

Returns non-zero when RX enabled

### int EvgRxGetEnable(volatile struct MrfEgRegs \*pEg);

**Description** Retrieves state of the EVG receiver.

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

**Return value** Returns zero when RX disabled

Returns non-zero when RX enabled

# int EvgGetViolation(volatile struct MrfEgRegs \*pEg, int clear);

**Description** Get/clear EVG RX link violation status.

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int clear 0: don't clear

1: clear status

**Return value** Returns 0 when no violation detected.

Return non-zero when violation detected.

### int EvgSWEventEnable(volatile struct MrfEgRegs \*pEg, int state);

**Description** Enable sending of software event codes.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int state 0: disable

1: enable

**Return value** Returns zero when EVG SW events disabled

Välitalontie 83 C. FI-00660 Helsinki, Finland

**Document:** cPCI-EVG-2x0.doc

**Page:** 30 of 37

Returns non-zero when EVG SW events

enabled

### int EvgGetSWEventEnable(volatile struct MrfEgRegs \*pEg);

**Description** Retrieve state of software event codes.

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

**Return value** Returns zero when EVG SW events disabled

Returns non-zero when EVG SW events

enabled

### int EvgSendSWEvent(volatile struct MrfEgRegs \*pEg, int code);

**Description** Send software event code.

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int code Event code to be sent out

**Return value** Returns code sent out.

### int EvgEvanEnable(volatile struct MrfEgRegs \*pEg, int state);

**Description** Enable/disable EVG event analyzer.

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int state 0: disable

1: enable

**Return value** Returns zero when EVG event analyzer

disabled

Returns non-zero when EVG SW event

analyzer enabled

## int EvgEvanGetEnable(volatile struct MrfEgRegs \*pEg);

**Description** Get EVG event analyzer state.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

**Return value** Returns zero when EVG event analyzer

disabled

Returns non-zero when EVG SW event

analyzer enabled

## void EvgEvanReset(volatile struct MrfEgRegs \*pEg);

**Description** Reset EVG event analyzer state.

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

Return value none



**Document:** cPCI-EVG-2x0.doc

**Page:** 31 of 37

### void EvgEvanResetCount(volatile struct MrfEgRegs \*pEg);

**Description** Reset EVG event analyzer time counter

value.

Pointer to memory mapped EVG register **Parameters** volatile struct MrfEgRegs \*pEg

base.

Return value None

### int EvgEvanGetEvent(volatile struct MrfEgRegs \*pEg, struct EvanStruct \*evan);

Description Retrieve one event from event analyzer.

volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register **Parameters** 

base.

struct EvanStruct \*evan Pointer to event analyzer structure to store

one event. (see egapi.h for structure details).

Return value Returns zero on success.

Returns -1 if no events available in event

analyzer.

### int EvgSetMXCPrescaler(volatile struct MrfEgRegs \*pEg, int mxc, unsigned int presc);

Description Set multiplexed counter prescaler.

volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register **Parameters** 

base.

int mxc Multiplexed counter number 0-7.

unsigned int presc 32-bit prescaler value.

Return value Returns zero on success.

Returns -1 on error.

### int EvgSetMxcTrigMap(volatile struct MrfEgRegs \*pEg, int mxc, int map);

**Description** Set multiplexed counter to event trigger

mapping.

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

int mxc Multiplexed counter number 0-7. Number of event trigger to map to. int map

Return value Returns zero on success.

Returns -1 on error.

## void EvgSyncMxc(volatile struct MrfEgRegs \*pEg);

Description Synchronize multiplexed counters.

Välitalontie 83 C. FI-00660 Helsinki. Finland

**Document:** cPCI-EVG-2x0.doc

**Page:** 32 of 37

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

Return value None

### void EvgMXCDump(volatile struct MrfEgRegs \*pEg);

**Description** Dump multiplexed counter registers.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

Return value None

# int EvgSetDBusMap(volatile struct MrfEgRegs \*pEg, int dbus, int map);

**Description** Set distributed bus bit mappings.

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int dbus Distributed bus bit number 0-7. int map Distributed bus bit source:

C\_EVG\_DBUS\_SEL\_OFF: bit tied to zero C\_EVG\_DBUS\_SEL\_EXT: external input C\_EVG\_DBUS\_SEL\_MXC: multiplexed

counter

C\_EVG\_DBUS\_SEL\_FORWARD: from

upstream EVG

**Return value** Returns zero on success.

Returns -1 on error.

### void EvgDBusDump(volatile struct MrfEgRegs \*pEg);

**Description** Dump distributed bus registers.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

Return value None

# int EvgSetACInput(volatile struct MrfEgRegs \*pEg, int bypass, int sync, int div, int delay);

**Description** Set AC input parameters.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int bypass 0: use AC sync logic

1: bypass phase shifter and divider

int sync 0: don't synchronize to MXC7

1: synchronize to MXC7

int div Divider 1 - 255

int delay Phase shift in approx. 0.1 ms steps

**Return value** Returns zero on success.

**Document:** cPCI-EVG-2x0.doc

**Page:** 33 of 37

Returns -1 on error.

### int EvgSetACMap(volatile struct MrfEgRegs \*pEg, int map);

**Description** Set AC input event trigger mapping.

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int map Number of event trigger to map to.

**Return value** Returns zero on success.

Returns -1 on error.

### void EvgACDump(volatile struct MrfEgRegs \*pEg);

**Description** Dump AC input registers.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

Return value None

int div

### int EvgSetRFInput(volatile struct MrfEgRegs \*pEg, int useRF, int div);

**Description** Set up event clock RF input.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int useRF 0: use internal reference (fractional

synthesizer)

1: use external RF input C EVG RFDIV 1,

C\_EVG\_RFDIV\_2, etc. see egapi.h for

details.

**Return value** Returns zero on success.

Returns -1 on error.

## int EvgSetFracDiv(volatile struct MrfEgRegs \*pEg, int fracdiv);

**Description** Set fractional divider control word which

provides reference frequency for receiver.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int fracdiv Fractional divider control word

**Return value** Returns control word written

# int EvgSetSeqRamEvent(volatile struct MrfEgRegs \*pEg, int ram, int pos, unsigned int timestamp, int code);

**Description** Write one event into Sequence RAM.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int ram Number of Sequence RAM

Välitalontie 83 C. FI-00660 Helsinki. Finland

**Document:** cPCI-EVG-2x0.doc

**Page:** 34 of 37

0: RAM0 1: RAM1

Event position in memory: 0 - 2047int pos

unsigned int timestamp Timestamp of event (32-bit)

int code Event code (8-bit)

Return value Returns zero on success.

Returns -1 on error.

### void EvgSeqRamDump(volatile struct MrfEgRegs \*pEg, int ram);

Dump Sequence RAM registers. **Description** 

volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register **Parameters** 

base.

Return value None

### int EvgSegRamControl(volatile struct MrfEgRegs \*pEg, int ram, int enable, int single, int recycle, int reset, int trigsel);

**Description** Setup Sequence RAM

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int ram Number of Sequence RAM

> 0: RAM0 1: RAM1

int enable 0: disable RAM

1: enable RAM

int single 0: multi-sequence

1: single sequence

int recycle 0: trigger mode

1: recycle mode (loop)

1: reset RAM int reset See egapi.h int trigsel

Return value Returns zero on success.

Returns -1 on error.

### int EvgSegRamSWTrig(volatile struct MrfEgRegs \*pEg, int trig);

**Description** Software trigger Sequence RAM.

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

0: software trigger 0 int trig

1: software trigger 1

Return value Returns 0 on success.

Returns -1 on error.

## void EvgSeqRamStatus(volatile struct MrfEgRegs \*pEg, int ram);

Description Dump Sequence RAM status.

Välitalontie 83 C. FI-00660 Helsinki. Finland

**Document:** cPCI-EVG-2x0.doc

**Page:** 35 of 37

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

Return value None

# int EvgSetUnivinMap(volatile struct MrfEgRegs \*pEg, int univ, int trig, int dbus);

**Description** Set up universal input mappings.

**Parameters** volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int univ Number of universal input (0-3 for EVG, 4-9

for side-by-side module)

int trig Number of event trigger to map to.

int dbus Number of external distributed bus input to

map to.

**Return value** Returns 0 on success.

Returns -1 on error.

### void EvgUnivinDump(volatile struct MrfEgRegs \*pEg);

**Description** Dump Universal input mappings.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

Return value None

# int EvgSetTriggerEvent(volatile struct MrfEgRegs \*pEg, int trigger, int code, int enable);

**Description** Set up trigger events.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int trigger Number of trigger event

int code Event code int enable 0: disable 1: enable

**Return value** Returns 0 on success.

Returns -1 on error.

## void EvgTriggerEventDump(volatile struct MrfEgRegs \*pEg);

**Description** Dump Event trigger settings.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

Return value None

Välitalontie 83 C, FI-00660 Helsinki, Finland

Return value

**Document:** cPCI-EVG-2x0.doc

**Page:** 36 of 37

# int EvgSetUnivOutMap(volatile struct MrfEgRegs \*pEg, int output, int map);

**Description** Set up universal output mappings.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int output Universal Output number

int map Signal mapping (see egapi.h for details)

**Return value** Returns 0 on success, -1 on error

### int EvgSetDBufMode(volatile struct MrfEgRegs \*pEg, int enable);

**Description** Enable/disable transmitter data buffer mode.

When data buffer mode is enabled every other distributed bus byte is reserved for data

transmission thus the distributed bus

bandwidth is halved.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

int enable 0 – disable transmitter data buffer mode 1 – enable transmitter data buffer mode

Transmit data buffer status (see **Error! Reference source not found.** on page

Error! Bookmark not defined. for bit

definitions).

### int EvgGetDBufStatus(volatile struct MrfEgRegs \*pEg);

**Description** Get transmit data buffer status. When data

buffer mode is enabled every other distributed bus byte is reserved for data transmission thus the distributed bus

bandwidth is halved.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

**Return value** Transmit data buffer status (see **Error!** 

**Reference source not found.** on page **Error! Bookmark not defined.** for bit

definitions).

### int EvgSendDBuf(volatile struct MrfEgRegs \*pEg, char \*dbuf, int size);

**Description** Get transmit data buffer status. When data

buffer mode is enabled every other distributed bus byte is reserved for data transmission thus the distributed bus

bandwidth is halved.

Parameters volatile struct MrfEgRegs \*pEg Pointer to memory mapped EVG register

base.

char \*dbuf int size

**Return value** 

**Document:** cPCI-EVG-2x0.doc

**Page:** 37 of 37

Pointer to local data buffer Size of data in bytes to be transmitted: 4, 8, 12, ..., 2048. Size of buffer being sent. -1 on error.