Déclaration de Travail d'Architecture

Gosme Anthony

Version 1.0

Table des matières

1	INFO	DRMATION SUR LE DOCUMENT4
	1.1	Object de ce document
_	5/1	
2	Deci	laration de travail d'architecture
	2.1	contexte
	2.2	Description du projet
	2.3	Vue d'ensemble (vision)
	2.4	Alignement stratégique
3	Ohio	ectifs et périmètre
3	Obje	ecuis et perinieu e
	3.1	Objectifs
	3.2	PréocCupation des parties prenantes
	3.3	Approche managériale
	3.4	Procédure de changement de périmètre
4	Rôle	es et responsabilités
	4.1	Structure de gouvernance
	4.2	Processus du projet
	4.3	Rôles et responsabilités — RACI
5	Δnnı	roche architecturale
5	ДРРІ	
	5.1	PROCESSUS DE l'architecture
6	Mét	hodologies pertinentes et normes de l'industrie
	6.1	Normes 1

	6.2	Principe d'architecture business	
	6.2.1		
	6.2.2	Orientation service	18
	6.3	Principes des données	19
	6.3.1	Les données sont accessibles	19
	6.4	Principes d'application	20
	6.4.1	Indépendance technologique	20
	6.5	Principes technologiqueS	20
	6.5.1	Maîtriser la Diversité Technique	20
	6.5.2	Interopérabilité	21
7	Dlan	de travail	22
′			
	7.1	Conception d'une nouvelle ARCHITECTURE MICROSERVICE	22
	7.2	Conception d'une usine logiciel CI/CD	22
	7.3	Sécurisation des SI	22
	7.4	Conception d'un environnement de RD & production Cloud	22
	7.5	Conception de test unitaire, fonctionnel et technique (performance, charge, stress)	22
	7.6	Conception de briques applicatives standardisées	22
8	Plan	de communication	23
9	Road	lmap	24
10	Risqu	ue d'architecture	25
			_
11	Indic	ateur clef de succès des travaux d'architecture	26
12	Appr	obations	27

1 INFORMATION SUR LE DOCUMENT

Nom du projet	Nouvelle architecture de commerce en ligne V2
Préparé par	Anthony Gosme, Architecte solution
Version	1.0
Titre	Déclaration de travail d'architecture
Courriel	anthonygosme@ocr.com
Actions	Approbation, Révision, Information, Classement, Action requise, Participation à une
	réunion, autre (à spécifier)

1.1 OBJECT DE CE DOCUMENT

Ce document est une Déclaration de travail d'architecture pour le projet de nouvelle architecture de commerce en ligne V2

La Déclaration de travail d'architecture définit le périmètre et l'approche qui serons utilisés pour mener à bien un projet d'architecture. La Déclaration de travail d'architecture constitue habituellement le document qui permet de mesurer la réussite de l'exécution du projet d'architecture et peut former la base de l'accord contractuel entre le fournisseur et le consommateur de services d'architecture. Les informations de ce document doivent se situer à un haut niveau.

2 Déclaration de travail d'architecture

2.1 CONTEXTE

Foosus est une start-up avec comme objectifs de soutenir l'alimentation, de mettre les consommateurs en contact les producteurs locaux. Le système en place a accumulé une dette technique importante ce qui impacte la qualité de service et la mise en place des stratégies de croissance de l'entreprise Foosus a besoin d'une nouvelle plate-forme e-commerce géociblée permettant l'innovation rapide et le passage à l'échelle.

2.2 DESCRIPTION DU PROJET

Foosus souhaite avoir une nouvelle version de plate-forme de paiement géolocalisé pour soutenir ses objectifs de croissance. La nouvelle plate-forme se basera sur une nouvelle architecture et permettra d'améliorer :

- La capacité d'innovation R&D
- Les performances du système
- Les fonctionnalités (nouveau service de recherche)
- La qualité de service

Technologies

3 Objectifs et périmètre

3.1 OBJECTIFS

3.2 PRÉOCCUPATION DES PARTIES PRENANTES

Nom	Rôle	Préoccupation	Vision
Anthony Gosme	Architecte solution	Qualité architecture	• Toutes
		 Alignement stratégique 	
		 Réponse au besoin 	
Natasha Jarson	CIO	Innovation technologique	Pile applicative
		 Qualité technologique 	 Pile technique
Ash Callum	CEO	Expansion du marché	 Déclinaison stratégique
Daniel Anthony	СРО	Qualité et couverture	Vue projet
		fonctionnelle	Exigences
Christina Orgega	СМО	Tau d'engagement	 Vision business haut
			niveau
Jo Kumar	CFO	• ROI	• Délais
		 Coût de la solution 	• Prix
Jack Harkner	Dir. opération	• SLA	•

Utilisation de méthodologie agile Scrum avec une approche d'architecture Lean

Risques

En cas de changement les risques sont réévalués par chaque responsable de domaine et mis à jour dans la base git de risque et qualité avec ISO 27k

Besoins

Le backlog produit est évalué en continu par le CPO (besoin fonctionnel) et l'Architecte (besoin non fonctionnel)

4 Rôles et responsabilités

4.1 STRUCTURE DE GOUVERNANCE

4.2 PROCESSUS DU PROJET

• Copil : bimensuel

• Scrum planning + review + architecture review : hebdomadaire

Répertoire

Pilotage

• 1 git Développements

• 1 git DevOps

• 1 git document d'architecture

• 1 git production

• 1 git test et qualité

Qualité

• Qualité ISO 25k

• Risque ISO 27k

• Tests fonctionnels et performance

• Expérience utilisateur

4.3 RÔLES ET RESPONSABILITÉS – RACI

	DevOps	UX	QA	Scrum	Architecte	СРО	CIO	CEO	CFO	СМО	RI	RO
Business, stratégie					R		R	А				
Management produit						RA						
Implémentation R&D	R	R	R	R	R						А	
Validation fonctionnelle	R	R	R	R		А						
Qualité solution					R	А						
Validation technique &	R		R	R	AR							
architecturale												
Gestion projet				R							Α	
Risques projet					R	R	RA		R	R	R	R
Environnements	R				А							
Dev/QA/Prod.												
Recette env. cible			R									AR

(R) esponsable, (A) pprobateur, (C) on sulté, (I) nformé

5 Approche architecturale

5.1 PROCESSUS DE L'ARCHITECTURE

La méthode de développement d'architecture TOGAF (ou ADM pour «Architecture Development Method») décrit une méthodologie des meilleures pratiques pour le développement architectural. Néanmoins, toutes les phases ne sont pas également pertinentes pour chaque projet. Le tableau ci-dessous décrit l'utilisation de l'ADM pour ce projet spécifique.

Le tableau ci-dessous décrit l'utilisation de l'ADM pour ce projet spécifique.

Phase	Objectifs / Sorties					
Préliminaire	Capacité d'architecture souhaitée par l'organisation :					
	Capacité de l'architecture					
A — Vision de l'architecture	Vision haut niveau architecture					
	Approbation de la déclaration du travail d'architecture					
B — Architecture business	Composant de feuille de route d'architecture candidate					
	Développement de l'architecture métier cible					
C — Architecture des systèmes d'information	Architecture du SI cible					
	Composants candidats de la feuille de route					
D — Architecture technologique	Architecture technique cible					
	Composants candidats de la feuille de route					
E — Opportunités et solutions	Version complète initiale de la feuille de route d'architecture					
	Architectures de transition					
	Blocs de construction de la solution globale					
F — Planning de migration	Feuille de route de l'architecture et plan de mise en œuvre et de migration correspondant					
	Plan de mise en œuvre et de migration					
	Valeur et coût des modules de travail et architectures de transition compris les parties prenantes					
G — Gouvernance de l'implémentation	Conformité à l'architecture cible par les projets d'implémentation					
	Fonctions de gouvernance de la solution et de l'architecture Demandes de changement					

H — Management du changement d'architecture	S'assurer que le cycle de vie de l'architecture est maintenu
	Veiller à ce que le cadre de gouvernance de l'architecture soit exécuté
	S'assurer que la capacité d'architecture d'entreprise répond aux exigences actuelles
Management des conditions requises	Veiller à ce que le processus de gestion des exigences soit maintenu
	Gérer les exigences d'architecture identifiées lors de toute exécution du cycle ADM ou d'une phase

6 Méthodologies pertinentes et normes de l'industrie

6.1 NORMES

Méthodologie et norme	Définition
Scrum	Cadre de travail holistique itératif qui se concentre sur les buts communs en livrant de manière productive et créative des produits de la plus grande valeur possible.
Lean UX	Approche de conception produit rapide, collaborative et itérative qui permet de se concentrer sur ce qui compte vraiment.
Architecture Lean	Processus continu de repenser et d'améliorer la méthodologie architecturale.
Green IT	L'informatique durable, l'informatique verte, le numérique responsable, ou encore le green IT est un ensemble de techniques visant à réduire l'empreinte sociale, économique et environnementale du numérique.
ISO 27k	Norme internationale de sécurité des systèmes d'information de l'ISO et la CEI.
ISO 25K	Exigences de qualité des systèmes et du logiciel et évaluation.
DevOps	Mouvement en ingénierie informatique et une pratique technique visant à l'unification du développement logiciel et de l'administration des infrastructures informatiques.
Architecture Microservice	Une architecture de microservices - une variante du style structurel de l'architecture orientée services (SOA) - organise une application comme une collection de services faiblement couplés.
Cloud computing	Le <i>cloud computing</i> en français l'informatique en nuage correspond à l'accès à des services informatiques (serveurs, stockage, mise en réseau, logiciels) via Internet (le « cloud » ou « nuage ») à partir d'un fournisseur

6.2 PRINCIPE D'ARCHITECTURE BUSINESS

6.2.1 APPLICATIONS À USAGE COMMUN

Déclaration:

Le développement d'applications utilisées dans toute l'entreprise est préférable au développement d'applications similaires ou en double qui ne sont fournies qu'à une organisation particulière.

Raisonnement:

La capacité de duplication est coûteuse et prolifère des données contradictoires.

Conséquences:

- Les organisations qui dépendent d'une capacité qui ne sert pas l'ensemble de l'entreprise doivent passer à la capacité de remplacement à l'échelle de l'entreprise ; cela nécessitera l'établissement et le respect d'une politique
- Les organisations ne seront pas autorisées à développer des capacités pour leur propre usage qui sont similaires/dupliquées des capacités à l'échelle de l'entreprise ; de cette manière, les dépenses de ressources rares pour développer essentiellement la même capacité de manière légèrement différente seront réduites
- Les données et les informations utilisées pour soutenir la prise de décision de l'entreprise seront normalisées dans une bien plus grande mesure qu'auparavant

En effet, les capacités organisationnelles plus petites qui produisaient des données différentes (qui n'étaient pas partagées entre d'autres organisations) seront remplacées par des capacités à l'échelle de l'entreprise. L'impulsion pour ajouter à l'ensemble des capacités à l'échelle de l'entreprise peut bien provenir d'une organisation qui démontre de manière convaincante la valeur des données/informations précédemment produites par sa capacité organisationnelle, mais la capacité résultante fera partie du système à l'échelle de l'entreprise. , et les données qu'il produit seront partagées dans toute l'entreprise.

6.2.2 ORIENTATION SERVICE

Déclaration:

L'architecture est basée sur une conception de services qui reflètent les activités commerciales réelles comprenant les processus commerciaux de l'entreprise (ou interentreprises).

Raisonnement:

L'orientation service offre l'agilité de l'entreprise et un flux d'informations sans frontières.

Conséquences :

- La représentation de service utilise des descriptions métier pour fournir un contexte (c'est-à-dire, processus métier, objectif, règle, politique, interface de service et composant de service) et implémente des services à l'aide de l'orchestration de service
- L'orientation des services impose des exigences uniques à l'infrastructure, et les implémentations doivent utiliser des normes ouvertes pour réaliser l'interopérabilité et la transparence de l'emplacement
- Les implémentations sont spécifiques à l'environnement ; ils sont limités ou activés par le contexte et doivent être décrits dans ce contexte
- Une gouvernance solide de la représentation et de la mise en œuvre des services est requise
- Un "test décisif", qui détermine un "bon service", est requis

6.3 PRINCIPES DES DONNÉES

6.3.1 LES DONNÉES SONT ACCESSIBLES

Déclaration:

Les données sont accessibles aux utilisateurs pour exécuter leurs fonctions.

Raisonnement:

Un large accès aux données conduit à l'efficience et à l'efficacité de la prise de décision et permet une réponse rapide aux demandes d'informations et à la prestation de services. L'utilisation des informations doit être considérée du point de vue de l'entreprise pour permettre l'accès à une grande variété d'utilisateurs. Le temps du personnel est économisé et la cohérence des données est améliorée.

Conséquences:

• Il s'agit de l'un des trois principes étroitement liés concernant les données : les données sont un atout ; les données sont partagées ; et les données sont facilement accessibles

L'implication est qu'il existe une tâche d'éducation pour s'assurer que toutes les organisations au sein de l'entreprise comprennent la relation entre la valeur des données, le partage des données et l'accessibilité aux données.

- L'accessibilité implique la facilité avec laquelle les utilisateurs obtiennent des informations
- La manière dont les informations sont accessibles et affichées doit être suffisamment adaptable pour répondre à un large éventail d'utilisateurs d'entreprise et leurs méthodes d'accès correspondantes
- L'accès aux données ne constitue pas une compréhension des données le personnel doit veiller à ne pas mal interpréter les informations
- L'accès aux données n'accorde pas nécessairement à l'utilisateur des droits d'accès pour modifier ou divulguer les données

Cela nécessitera un processus d'éducation et un changement dans la culture organisationnelle, qui soutient actuellement une croyance en la « propriété » des données par les unités fonctionnelles.

6.4 PRINCIPES D'APPLICATION

6.4.1 INDÉPENDANCE TECHNOLOGIQUE

Déclaration:

Les applications sont indépendantes des choix technologiques spécifiques et peuvent donc fonctionner sur une variété de plates-formes technologiques.

Raisonnement:

L'indépendance des applications par rapport à la technologie sous-jacente permet aux applications d'être développées, mises à niveau et exploitées de la manière la plus rentable et la plus opportune. Sinon, la technologie, qui est sujette à une obsolescence continue et à la dépendance vis-à-vis des fournisseurs, devient le moteur plutôt que les besoins des utilisateurs eux-mêmes.

Sachant que chaque décision prise en matière d'informatique nous rend dépendants de cette technologie, l'intention de ce principe est de garantir que le logiciel d'application ne dépend pas de matériel et de logiciels de systèmes d'exploitation spécifiques.

Conséquences:

- Ce principe nécessitera des normes qui prennent en charge la portabilité
- Pour les applications commerciales sur étagère (COTS) et gouvernementales sur étagère (GOTS), les choix actuels peuvent être limités, car bon nombre de ces applications dépendent de la technologie et de la plate-forme.
- Des interfaces de sous-système devront être développées pour permettre aux applications héritées d'interagir avec les applications et les environnements d'exploitation développés dans le cadre de l'architecture d'entreprise
- Le middleware doit être utilisé pour découpler les applications de solutions logicielles spécifiques
- À titre d'exemple, ce principe pourrait conduire à l'utilisation de Java et de futurs protocoles de type Java, qui accordent une grande priorité à l'indépendance de la plate-forme.

6.5 PRINCIPES TECHNOLOGIQUES

6.5.1 MAÎTRISER LA DIVERSITÉ TECHNIQUE

Déclaration:

La diversité technologique est contrôlée pour minimiser le coût non négligeable du maintien de l'expertise et de la connectivité entre plusieurs environnements de traitement.

Raisonnement:

Il existe un coût réel et non négligeable de l'infrastructure requise pour prendre en charge les technologies alternatives pour les environnements de traitement. D'autres coûts d'infrastructure sont encourus pour maintenir l'interconnexion et la maintenance de plusieurs constructions de processeurs.

Limiter le nombre de composants pris en charge simplifiera la maintenabilité et réduira les coûts.

Les avantages commerciaux d'une diversité technique minimale comprennent : un conditionnement standard des composants ; impact prévisible de la mise en œuvre ; des évaluations et des rendements prévisibles ; tests redéfinis ; statut d'utilité ; et une flexibilité accrue pour s'adapter aux progrès technologiques. La technologie commune à l'ensemble de l'entreprise apporte les avantages des économies d'échelle à l'entreprise. Les coûts d'administration technique et de support sont mieux maîtrisés lorsque des ressources limitées peuvent se concentrer sur cet ensemble de technologies partagées.

Conséquences:

- Les politiques, les normes et les procédures qui régissent l'acquisition de la technologie doivent être directement liées à ce principe
- Les choix technologiques seront limités par les choix disponibles dans le plan technologique

Des procédures visant à augmenter l'ensemble de technologies acceptables pour répondre aux exigences en constante évolution devront être élaborées et mises en place.

La base technologique n'est pas gelée

Les avancées technologiques sont les bienvenues et modifieront le modèle technologique lorsque la compatibilité avec l'infrastructure actuelle, l'amélioration de l'efficacité opérationnelle ou une capacité requise aura été démontrée.

6.5.2 INTEROPÉRABILITÉ

Déclaration:

Les logiciels et le matériel doivent être conformes aux normes définies qui favorisent l'interopérabilité des données, des applications et de la technologie.

Raisonnement:

Les normes aident à assurer la cohérence, améliorant ainsi la capacité à gérer les systèmes et à améliorer la satisfaction des utilisateurs, et à protéger les investissements informatiques existants, maximisant ainsi le retour sur investissement et réduisant les coûts. Les normes d'interopérabilité aident en outre à assurer le support de plusieurs fournisseurs pour leurs produits et facilitent l'intégration de la chaîne d'approvisionnement.

Conséquences :

- Les normes d'interopérabilité et les normes de l'industrie seront suivies à moins qu'il n'y ait une raison commerciale impérieuse de mettre en œuvre une solution non standard
- Un processus pour établir des normes, les examiner et les réviser périodiquement et accorder des exceptions doit être établi
- Les plates-formes informatiques existantes doivent être identifiées et documentées

7 Plan de travail

7.1 CONCEPTION D'UNE NOUVELLE ARCHITECTURE MICROSERVICE

Définition des contrats d'interface des API REST

7.2 CONCEPTION D'UNE USINE LOGICIEL CI/CD

- Définition les stacks technologiques
- Définition des architectures des usines : R&D, TEST, qualification, production

7.3 SÉCURISATION DES SI

- Définition des composants de sécurité
- Définition des procédures de contrôle de sécurité
- Audit de sécurité

7.4 CONCEPTION D'UN ENVIRONNEMENT DE RD & PRODUCTION CLOUD

- Définir les architectures solution cloud
- Haute disponibilité (auto scaling, load balancer, health check)

7.5 CONCEPTION DE TEST UNITAIRE, FONCTIONNEL ET TECHNIQUE (PERFORMANCE, CHARGE, STRESS)

• Définir les rôles et livrables des acteurs de test

7.6 CONCEPTION DE BRIQUES APPLICATIVES STANDARDISÉES

Définition des stacks technologiques communes

8 Plan de communication

Évènements	Fréquence	Participants	Responsables	Contenue
Daily Scrum	Quotidien	Développeur, QA, UX, DevOps	Scrum Master	Suivit avancement/blocage
Sprint Planning	Bimensuel	Développeur, QA, UX, DevOps	Scrum Master & CPO & architecte	Planification des lots de livrable
Sprint review	Bimensuel	Développeur, QA, UX, DevOps	Scrum Master & CPO & architecte	Validation fonctionnelle
Sprint review architecture	Bimensuel	Développeur, QA, UX, DevOps	Scrum Master & architecte	Validation non fonctionnelle
Sprint rétro	Bimensuel	Développeur, QA, UX, DevOps	Scrum Master	Amélioration processus
Copil - comité pilotage	Bimensuel	CIO, CPO, Resp. ing., Resp. prod., architecte	CIO	Suivit planification & ressource
Coop - comité	Bimensuel	CEO, CIO, CFO, CPO, Resp ing., Resp prod.,	CEO	Suivit indicateurs qualité, projets,
opérationnel		architecte		sécurité.
				Stratégie et arbitrage

Document d'architecture 2 mois

Prototype 2 mois

10 Risque d'architecture

Catégorie	Prévention	Détection	Réponse	Proba.	Impact	indéter.	Criticité
			CPO &				
Changement périmètre	Meeting	meeting	Archi	3	2	2	12
Planning	Analyse Risque & Meeting	KPI	CIO	2	<u>2</u>	3	12
Gouvernance	Analyse Risque & Meeting	meeting	CEO	2	3	3	18
Complexité	Prototype	review	Archi	3	2	2	12
Innovation	Prototype	review	Archi	3	2	2	12
Qualité archi							
applicative	Plans Archi	iso 25k	Archi	2	2	2	8
Qualité archi donnée	Plans Archi	iso 25k	Archi	2	2	2	8
Qualité usage	Plans Archi	iso 25k	Archi	2	2	2	8
	Discussion Budget &						
Budget	Scope	Négo scope & coût	CFO	2	2	2	8

11 Indicateur clef de succès des travaux d'architecture

- Nombre de documents d'architecture initié
- Nombre de documents d'architecture finalisé
- Score qualité architectural ISO 25k
- Nombre d'exigences non fonctionnelles couvert par le prototype
- Nombre de processus définis
- Nombre de blocs architecturaux définis

12 Approbations

Nom	Poste	Date	Signature
Ash CALLUM	Chief Executive Officer		
Natasha JARON	Chief Information Officer		
Daniel ANTHONY	Chief Product Officer		
Christina ORGEGA	Chief Marketing Officer		
Jo KUMAR	Chief Financial Officer		
Anthony Gosme	Architecte Logiciel		