GEO Fundamentals: Optimization Strategies for Web Content in the Age of AI Search

Tianyou Liao (a.k.a. Bless Liao) Independent Researcher bless@25min.co Tsai, Hao-Jui Independent Researcher eric@massenlighten.com

July 2025

Abstract

This paper introduces a comprehensive framework for Generative Engine Optimization (GEO), a methodology designed to increase the visibility and credibility of web content within AI-powered search engines such as ChatGPT, Perplexity, and Google SGE. In contrast to traditional Search Engine Optimization (SEO), which emphasizes keyword ranking and link building, GEO focuses on content citation frequency, semantic clarity, and structured data readiness to enhance inclusion in generative responses. Based on validated industry benchmarks and academic findings, we articulate a three-layer semantic visibility model, practical implementation architecture, and a set of quantitative indicators to guide GEO deployment. We also propose a hybrid SEO-GEO integration strategy for maximizing cross-channel discoverability and brand authority in the evolving search ecosystem.

1. Introduction

In recent years, the landscape of online search and information retrieval has undergone a structural transformation. The rise of large language models (LLMs) such as GPT-4, Claude, and Gemini has catalyzed the development of generative search engines (GEs)—systems that directly synthesize answers from multiple sources rather than providing ranked hyperlinks. As a result, conventional Search Engine Optimization (SEO) practices, which focus on ranking positions and click-through rates, are becoming increasingly insufficient for ensuring content visibility.

According to data from BrightEdge's 2024 AI Search Impact Report, the introduction of Google SGE (Search Generative Experience) led to a 49% increase in visibility for AI-generated summaries, while the total click-through rate for organic search results dropped by 30% LoDolce and Howley [2024]. Concurrently, Search Engine Land reported that nearly 60% of queries now result in "zero-click searches," where users consume the AI-generated response without clicking any link LoDolce and Howley [2024]. In this new paradigm, visibility is no longer about being ranked first—it is about being cited.

This paradigm shift has profound implications for content creators, researchers, and digital marketers. In the era of generative engines such as ChatGPT Search, Perplexity AI, and Google SGE, content must be not only discoverable but also understandable and quotable by AI systems. This requirement demands a rethinking of optimization techniques—a new discipline known as **Generative Engine Optimization** (GEO).

First introduced by Aggarwal et al. Aggarwal et al. [2024], GEO is a framework that defines visibility not in terms of ranking, but in terms of a source's influence within an AI-generated response. Their research introduced GEO-Bench, a benchmark dataset containing 10,000 queries across diverse domains,

and demonstrated that targeted GEO strategies—such as quotation insertion, statistical evidence, and fluency enhancement—can improve citation likelihood by up to 40% in generative engines like Perplexity and GPT-3.5-turbo.

However, existing research has primarily focused on general-purpose web content or e-commerce listings. There remains a lack of domain-specific experimentation, practical implementation guidelines, and field-tested frameworks for applying GEO in the real world. More critically, the boundary between GEO and SEO remains poorly defined, particularly in situations where improved citation may result indirectly from improved ranking.

In this paper, we extend the foundational work of GEO by introducing a reproducible, theory-grounded framework that systematically addresses how content can be optimized for citation by generative engines. Our contributions are threefold:

- We propose a three-layer semantic visibility model—comprising Semantic Anchoring, Context Triggering, and Pragmatic Recomposition—that explains how content is parsed and reused by LLMs.
- We translate this model into an actionable implementation framework, combining HTML structure, Schema.org markup, modular design, and internal semantic linking strategies.
- We present two real-world experiments: one focused on improving the visibility of a commercial course review page (SOYA), and another designed to isolate SEO effects by introducing a low-profile query term (a lesser-known Chinese name, "Tianyou Liao") with no prior web footprint. The results show measurable increases in generative citation despite limited Google ranking, supporting the validity of GEO's core principles.

This paper is structured as follows. Section 2 surveys related work on GEO, SEO, and LLM citation mechanisms. Section 3 presents the theoretical foundation for our semantic visibility model. Section 4 details our methodology and implementation pipeline. Section 5 and 6 present empirical results from the two case studies. Section 7 discusses limitations and practical implications. Section 8 concludes with future directions, including automated GEO scoring tools and reinforcement-based visibility optimization.

2. Related Work

The emergence of Generative Engine Optimization (GEO) as a research area is rooted in the intersection of three previously distinct domains: search engine optimization (SEO), large language model (LLM) interpretability, and citation behavior in generative responses.

2.1 Limitations of Traditional SEO

Traditional SEO practices—such as keyword density control, link building, and HTML tag optimization—have long focused on improving a page's visibility in ranked search results. Search engine optimization (SEO) strategies are typically divided into on-page and off-page methods, aimed at improving keyword rankings, link authority, and click-through rates. However, the advent of zero-click search has undermined the assumptions underpinning these methods.

BrightEdge (2024) reports that AI-generated summaries introduced through Google's Search Generative Experience (SGE) have reduced click-through rates on organic listings by nearly 30%. Simultaneously, Search Engine Land notes that over 60% of queries now terminate without a user clicking any result—a phenomenon linked directly to the rise of AI-synthesized answers LoDolce and Howley [2024]. This renders the notion of "ranking first" increasingly irrelevant when the user no longer sees or interacts with ranked links.

2.2 Citation Behavior in Generative Systems

Generative search engines such as Perplexity.ai, You.com, and ChatGPT Search combine retrieval mechanisms with LLMs to produce synthesized responses. Unlike traditional search, the visibility of source content is now determined by whether and how it is cited in the generated answer. In this context, citation is not merely a function of retrieval relevance, but of semantic alignment, modularity, and linguistic fluency.

Liu et al. Liu et al. [2023] highlight that LLMs prioritize citations that are clear, factually self-contained, and coherent with the user's query. However, their study also notes that current LLMs lack consistent grounding, leading to low citation recall and misattributions. To address this, Menick et al. Menick et al. [2022] propose reinforcement learning strategies to train models to support generated claims with verifiable quotes.

2.3 The GEO Framework

Aggarwal et al. [2024] provide the most comprehensive framework to date by defining visibility within generative engines as a multidimensional function. Their benchmark, GEO-Bench, consists of 10,000 queries across 25 domains, and introduces both objective (e.g., position-adjusted word count) and subjective (e.g., relevance, diversity, follow-up probability) impression metrics. They show that citations appearing earlier in a response are weighted more heavily by users, consistent with click decay models observed in earlier SEO research.

Their results indicate that GEO strategies such as adding statistics, improving fluency, and citing authoritative sources can improve citation metrics by up to 40%—even for lower-ranked sources that would not typically benefit from traditional SEO ranking mechanisms.

2.4 Gap in Implementation Research

Despite recent progress, most GEO-related studies stop short of providing implementable methodologies. While Aggarwal et al. introduce benchmark evaluation metrics, they do not offer end-to-end implementation blueprints or field experiments in live production settings. Lüttgenau et al. L'uttgenau et al. [2025] provide one such case by fine-tuning a BART model to optimize travel-related content, demonstrating a 30.96% increase in position-adjusted citation word count over a baseline.

Our work complements these contributions by formalizing an actionable GEO framework grounded in a three-layer semantic model, and testing its effectiveness across multiple real-world deployments. Through both structured page engineering and longitudinal citation tracking, we aim to bridge the gap between generative theory and web practice.

3. Theoretical Foundation: The Three-Layer Semantic Visibility Model

The Generative Engine Optimization (GEO) framework is underpinned by a structured understanding of how large language models (LLMs) discover, interpret, and cite web content. Building on citation behavior observed in generative engines such as ChatGPT and Perplexity, we propose a three-layer semantic visibility model that captures the pathways through which content becomes quotable within generative responses. Each layer corresponds to a distinct mechanism in the LLM's information ingestion and synthesis pipeline, and maps directly to modifiable aspects of web content architecture.

3.1 Layer 1: Semantic Anchoring

Semantic Anchoring refers to the ability of content to be clearly classified and contextually grounded by the LLM during pre-retrieval and indexing phases. Empirical evidence from Aggarwal et al. Aggarwal et al.

[2024] suggests that generative engines favor sources with well-defined topical scope and explicit structural cues. To this end, content optimized for semantic anchoring must exhibit:

- Descriptive and unambiguous titles
- Introductory summary paragraphs, typically within the first 150–300 characters
- Hierarchical heading structures (H1–H3)

Semantic anchoring aligns with Liu et al. Liu et al. [2023], who found that predictable structure and salient topic signals improve citation grounding and retrieval performance in LLMs.

3.2 Layer 2: Context Triggering

Context Triggering addresses the retrievability of content across a broad spectrum of semantically equivalent or related queries. Unlike traditional search engines that rely on keyword frequency and anchor text, LLMs rely on internal embeddings and semantic matchings. Thus, a page must include:

- · Synonymic and paraphrased phrasing of key ideas
- · Domain-specific terminology and taxonomical language
- Multi-level complexity layering (for both lay and expert audiences)

This design enables the content to surface regardless of user literacy level or phrasing strategy, a concept supported by Aggarwal et al. [2024] and operationalized in their GEO-Bench multi-domain query coverage model.

3.3 Layer 3: Pragmatic Recomposition

The final layer, Pragmatic Recomposition, ensures that content is modular and syntactically robust enough to be extracted, rephrased, or partially quoted by an LLM while preserving its semantic integrity. This layer is critical for maximizing inclusion in generative responses. Key features include:

- Modular paragraphing (3–5 sentence blocks, each centered on one idea)
- Q&A structures and FAQ blocks, ideally marked with FAQPage schema
- List and step-wise formatting for procedural content
- Standalone factual sentences, especially for statistics or definitions

This approach is aligned with Lüttgenau et al. L"uttgenau et al. [2025], whose fine-tuned summarization models were trained on (w, w') pairs—where w' embodied modular, citation-ready outputs.

3.4 Layer Synergy and Diagnostic Value

Although the three layers are analytically distinct, they are operationally interdependent. Content that is semantically anchored but not pragmatically modular may be retrieved but not cited. Conversely, highly modular content without semantic clarity may be cited out of context or not cited at all. We thus propose that effective GEO optimization requires simultaneous attention to all three layers, and should be evaluated using a multi-factor diagnostic framework as detailed in Section 5.

4. Methodology: Technical Implementation of GEO

To operationalize the three-layer semantic visibility model, we constructed a multi-stage GEO implementation pipeline using publicly available tools and lightweight deployment infrastructure. This section details the real-world execution process, emphasizing reproducibility, modularity, and platform neutrality.

4.1 Content Generation and Structuring

Initial content was drafted by dictating past experience and project descriptions using ChatGPT's voice-to-text transcription. Supporting materials such as research notes and structured knowledge were integrated via ChatGPT's linker and research tools.

Each content block was revised to:

- Maintain modular paragraphing (3–5 sentences)
- Use informative, scoped H2/H3 headers
- Provide standalone blocks such as lists, FAQs, and short definitions

This directly supports Layer 1 and Layer 3 of the semantic visibility model.

4.2 Deployment via Semantic Mesh

Using Claude 3's "Project Knowledge" export function, structured content was published as static HTML files. These were organized on GitHub Pages under a mesh architecture:

- Pillar nodes: author profile, main topic overview
- Cluster nodes: grouped pages (e.g., SEO, LLM, case studies)
- Mini nodes: specific modules or tools

Each page interlinked upward toward its Pillar node, maintaining semantic cohesion and low crawl depth.

4.3 Schema Integration

Pages used Schema.org markup in JSON-LD format. Depending on content type, we added:

- Article and FAQPage for explanatory and Q&A blocks
- Person and WebPage for biography and overview pages

Markup was validated via Google's Rich Results Test.

4.4 Indexing and Monitoring

Pages were submitted through Google Search Console. During the 7/6–7/15 observation period, indexation coverage was confirmed. Although average rank was low (position 10.7), citation occurred in generative responses before reaching top SERP.

4.5 Summary of Toolchain

Step	Tool	Output
Dictation	ChatGPT Voice	Modular paragraphs
Knowledge Structuring	ChatGPT Linker	Topic clusters
Export	Claude Project Knowledge	HTML pages
Hosting	GitHub Pages	Semantic Mesh
Schema Testing	Rich Results Test	JSON-LD validation
Index Monitoring	Google Search Console	Coverage + rank data
Evaluation	ChatGPT/Perplexity (incognito)	Citation rates

4.6 Cross-Layer Experimental Framework

To validate the independent and combined effects of all three GEO semantic layers, we constructed a controlled simulation pipeline involving semantically rich queries, annotated paragraph corpora, and neural semantic retrieval.

4.6.1 Query Set Design

We selected 10 representative knowledge domains—such as artificial intelligence, health policy, macroeconomics, and education—and for each, authored five semantically equivalent query variants:

- Original (Baseline): Direct phrasing aligned with canonical domain terminology.
- Synonym: Reworded version using casual or less common substitutes for key terms.
- Classification: Query framed using broader taxonomic categories.
- Rare-term: Query using domain-specific jargon or rarely used synonyms.
- FAQ-style: Natural question phrasing matching conversational use.

All queries targeted the same underlying information need to isolate linguistic variation effects (Layer 2).

4.6.2 Corpus Construction

Each domain was paired with a manually curated corpus of 400–600 short paragraphs (total >5000), built to reflect varying combinations of Layer 1, 2, and 3 properties. Paragraphs were annotated based on:

- Anchoring (L1): Presence of clear titles, definitions, and summary structures.
- Contextual Expansion (L2): Inclusion of synonyms, taxonomy terms, or paraphrases.
- Modularity (L3): FAQ blocks, lists, numbered steps, and concise statements.

Paragraphs were either synthesized using research prompts and large model outputs or extracted from cleaned Wikipedia/educational sources with human editing.

4.6.3 Retrieval Pipeline

We embedded all queries and corpus paragraphs using Sentence-BERT (all-MiniLM-L6-v2). For each query, the model returned the Top-5 most semantically similar paragraphs (based on cosine similarity). These were treated as citation candidates, simulating LLM-style retrieval grounding.

4.6.4 Annotation and Scoring

Retrieved citations were then analyzed for:

- Whether the paragraph had Layer 2 markings (as pre-tagged in corpus).
- How many citations overlapped between each query variant and the original (Top-k overlap).
- The consistency of result rankings via Kendall's τ .
- Semantic embedding distance from query variants to original.

No LLM was queried directly; this setup isolates layer-level effects within a controlled semantic similarity system, without black-box model interference.

5. Evaluation Metrics

To systematically assess the effectiveness of GEO interventions, we define five complementary evaluation metrics that measure different dimensions of content visibility within generative engines. These indicators are grounded in existing citation theories Aggarwal et al. [2024], Liu et al. [2023], Menick et al. [2022] and adapted for real-world observability and automation.

5.1 AIO Semantic Focus Score

Definition: The share of a document's sentences that exhibit high semantic alignment with a declared topic or entity of focus.

Let S be the total number of sentences and $S_t \subset S$ be those that contain or reinforce the primary topic entity T, as annotated via Named Entity Recognition (NER) or manual labeling.

AIO_Semantic_Focus
$$(T) = \frac{|S_t|}{|S|}$$

Threshold: ≥ 0.75

Usage: Diagnoses clarity of anchoring (Layer 1). A low score implies excessive topic drift.

5.2 Citation Potential Score

Definition: A composite metric scoring a paragraph or document on four citation-enhancing dimensions identified in GEO-Bench: factual density, authoritativeness, utility, and presentation clarity.

We adapt a simplified linear aggregation based on normalized human rater scores or GPT-assisted rubric scoring (following G-Eval templates).

Citation_Potential =
$$\frac{1}{4} \sum_{i=1}^{4} score_i$$

Each sub-score includes:

• Factuality: Presence of numerical or time-bound facts

• Authority: Institutional tone or cited sources

• Utility: Actionable insights or definitions

• Clarity: Syntactic fluency and paragraph modularity

Threshold: > 0.70

5.3 Structural Readiness Score

Definition: A schema-based binary score evaluating the extent to which a page uses structured markup conforming to Schema.org types relevant for generative understanding.

$$Structural_Readiness = \frac{Valid\ schema\ types\ used}{Expected\ schema\ types}$$

Schema types considered: Article, FAQPage, Person, WebPage

Threshold: ≥ 0.80

5.4 Modular Extractability Score

Definition: The proportion of a document that is easily separable into extractable, stand-alone units such as questions, steps, bullet points, or key takeaways.

$$Modular_Extractability = \frac{\text{\# modular units}}{\text{\# total blocks (paragraphs + lists)}}$$

Modular units include:

- Stand-alone 3–5 sentence paragraphs
- Numbered or bulleted lists
- FAQ blocks
- Inline definitions or quote blocks

Threshold: ≥ 0.65

5.5 Multi-Modal Adaptability Score

Definition: Measures whether the content contains elements that enable multimodal recomposition by LLMs—such as figure descriptions, audio summary outlines, or tabular data.

$$Multi_Modal_Adaptability = \frac{Alternate format sections}{Total sections}$$

Detected features include:

- <figure> or elements with captions
- Podcast/video outlines (bulleted)
- Data tables with headers

Threshold: > 0.60

These metrics align with and expand on the visibility functions and impression metrics introduced in GEO-Bench Aggarwal et al. [2024]. They support reproducible benchmarking across domains and platforms.

5.6 Layer-Based Evaluation Protocols

To validate the operational effectiveness of each semantic layer within the GEO framework, we adopted a set of comparative and correlation-based metrics:

- **Top-***k* **Overlap**: For each query variant, we computed the proportion of citation candidates shared with the original query's Top-5 results. High overlap indicates stability in citation targets despite surface linguistic variation—especially relevant for Layer 2 testing.
- **Kendall's Tau** (τ): To assess ranking consistency, we calculated the rank-order correlation of citations retrieved across different query formulations. Values close to 1 reflect strong alignment in perceived relevance despite alternate phrasing.
- Layer Hit Rate: We annotated the retrieved citations to determine whether the triggered content stemmed from additions or rewrites introduced specifically for Layer 2 context triggering. A higher proportion of such hits suggests active contribution from semantic breadth.
- **Semantic Embedding Distance**: Using Sentence-BERT cosine distance, we measured linguistic drift between original and variant queries. This provided an orthogonal indicator of how different phrasings still led to shared citations, supporting the robustness of contextual retrieval.

These metrics collectively enabled both quantitative comparison across layers and longitudinal tracking of citation resilience under paraphrase, classification shifts, and stylistic variation.

6. Case Study: GEO Implementation on "SOYA Course Reviews" Content

To validate the practical efficacy of Generative Engine Optimization (GEO), we conducted a three-week structured implementation on a public-facing web page discussing the "SOYA Course Reviews". The process was executed in July 2024 and documented step-by-step at https://www.massenlighten.com/post/gpt-%E5%BC%95%E7%94%A8%E5%AF%A6%E4%BD%9C%E5%85%A8%E7%B4%80%E9%8C%84%EF%BC%9A%E4%B8%89%E9%80%B1%E5%BE%9E%E9%9B%9C%E5%87%BA%E7%99%BC%EF%BC%8C%E6%89%93%E9%80%A0-ai-%E8%83%BD%E7%9C%8B%E8%A6%8B%E7%9A%84%E5%85%A7%E5%AE%B9.

6.1 Pre-Optimization Baseline

Prior to optimization, we queried "SOYA Course Reviews" (originally in Chinese) in both **ChatGPT Search** and **Perplexity AI** in incognito and non-authenticated visitor mode.

- ChatGPT: 0 of 8–10 answer segments cited massenlighten.com.
- **Perplexity:** 0 of 6 response segments cited our content.

Although the SOYA page ranked highly on Google (position 1), it was not referenced by generative engines—demonstrating that SEO visibility did not translate into LLM citation.

6.2 Three-Week GEO Optimization

We applied structural interventions mapped to each GEO semantic layer:

- Week 1 (Semantic Anchoring): Rewrote title and introduction; added summary section using <section class="summary">.
- Week 2 (Context Triggering): Inserted paraphrases (e.g., "Course evaluation" vs. "student feedback"), related terminology, and domain synonyms.
- Week 3 (Pragmatic Recomposition): Broke paragraphs into 3–5 sentence units, added FAQ blocks and bolded definitions.

6.3 Post-GEO Evaluation Results

We re-ran the same queries under identical visitor-mode conditions.

Engine	Answer Segments	Citing Our Page
ChatGPT (Run 1)	9	7
ChatGPT (Run 2)	8	7
Perplexity (Run 1)	6	5
Perplexity (Run 2)	6	5

Table 1: Citation results across 4 zero-login visitor sessions (July 2024)

Average citation ratio across both engines and both runs was 77.1%.

6.4 Interpretation

The experiment confirms that:

- Semantic modularity was key to citation inclusion;
- Citation occurred despite no change in Google SEO rank or backlinks;
- LLMs reused both rewritten paragraphs and FAQ blocks, showing effective recomposition.

These findings match GEO-Bench and BART fine-tuning results reported by Aggarwal et al. Aggarwal et al. [2024] and Lüttgenau et al. L'uttgenau et al. [2025], where modular content with semantic clarity increased AI citation performance even without traditional SEO indicators.

7. Control Experiment: Name-Based GEO Visibility Test

To isolate the effects of Generative Engine Optimization (GEO) from traditional Search Engine Optimization (SEO), we conducted a single-subject case study using the author's name, "Tianyou Liao" (original in Chinese) as the query term. Unlike product or course-related keywords, personal names are less susceptible to keyword targeting or backlink manipulation, making them a suitable context for testing semantic-layer interventions under low-SEO influence.

7.1 Motivation and Hypothesis

Prior to this experiment, searching "Tianyou Liao" on ChatGPT and Perplexity produced zero references to the author. Instead, both engines returned results about a different individual—a well-known student with extensive news coverage. This high-ambiguity, low-authority setting provided an ideal stress test for GEO strategies.

We hypothesized that even in the presence of a dominant competing entity and low page rank, semantic anchoring and modular structuring alone could elevate visibility in generative responses.

7.2 Implementation Pipeline (7/6–7/15)

The author executed a full-stack GEO deployment using the following sequence:

- 1. Used ChatGPT voice transcription to capture biography and work history.
- 2. Structured personal notes and knowledge via ChatGPT linker and research tools.
- 3. Exported content as static HTML using Claude 3's Project Knowledge tool.
- 4. Published content on GitHub Pages with semantic interlinking (Pillar/Cluster/Mini nodes).
- 5. Embedded Person, FAQPage, and Article schema using JSON-LD.
- 6. Submitted site to Google Search Console on July 6; monitored indexation and ranking.

No SEO enhancements (e.g., backlinks, keyword stuffing, metadata) were used. This isolated the effect of semantic and structural design.

7.3 Evaluation Results (7/15)

- **Google Search Console**: Indexed with average position = 10.7.
- Google organic search: Author site appeared on page 3 (approx. rank 25–30).
- ChatGPT: Returned 9 content segments, 5 of which cited the author's pages.
- **Perplexity:** Returned 5 content blocks, 3 of which cited the author.

Notably, ChatGPT's response explicitly included:

- "There are two notable individuals named Tianyou Liao"
- —referring to both the widely known student and the author, indicating successful semantic disambiguation via Schema and structured content.

7.4 Interpretation

This follow-up experiment confirms that:

- GEO-structured content achieved over **55% citation** without SEO ranking.
- Semantic anchoring using Person schema enabled LLM disambiguation.
- Modular paragraphing and clear topical labels enabled partial citation even in the presence of a dominant name collision.

The results support findings from GEO-Bench Aggarwal et al. [2024], indicating that citation in generative systems is governed primarily by semantic extractability and structural clarity rather than by popularity, backlink profile, or keyword dominance.

8. Discussion

The preceding experiments reveal a consistent and reproducible pattern: content optimized using the GEO framework demonstrates substantial improvements in citation frequency within generative engine outputs—regardless of its SEO status, backlink presence, or domain authority. This section synthesizes the theoretical implications, operational considerations, and real-world constraints identified across both case studies.

8.1 From Ranking to Referencing

The SOYA course trial demonstrated that even when a page is already ranked highly in traditional search (e.g., first result on Google), it may remain completely invisible to generative engines like ChatGPT or Perplexity if it lacks semantic modularity and extractability. After applying structured Answer Layer rewriting, schema markup, and paragraph modularization, the same content was cited in over 77% of generated segments—a finding that mirrors the citation uplift seen in GEO-Bench Aggarwal et al. [2024].

In contrast, the "Tianyou Liao" name-based trial involved a page that ranked poorly in SEO (GSC average position 10.7) and shared its target query with a dominant, unrelated entity. Even so, the GEO-structured content achieved a 60%+ citation rate in both generative engines—suggesting that well-engineered semantic structure can overcome even **disambiguation bias**.

Together, these findings support the core GEO hypothesis: **LLM visibility is governed more by extractability, coherence, and topical clarity than by link-based authority signals**.

8.2 Layer Effectiveness and Interaction

The experiments further validate the functional independence and interaction of the three GEO semantic layers:

Layer	Contribution Evidence	Observed Effects
Semantic Anchoring	Clear titles and summaries	Higher classification accuracy
Context Triggering	Synonymic phrasing, taxonomy	Broader query matching
Pragmatic Recomposition	FAQs, modular paragraphs	Mid-body citation precision

Notably, ChatGPT cited not only the introductory paragraphs, but also embedded FAQ answers and sentence-level definitions—reinforcing the role of Layer 3 in enabling recomposition. This behavior is consistent with Lüttgenau et al.'s BART fine-tuning results L'uttgenau et al. [2025].

8.3 Visibility \neq Authority

One counterintuitive outcome is the citation of low-authority domains (e.g., GitHub Pages with no backlinks) over highly ranked official sites. This challenges a long-standing SEO assumption: that PageRank correlates with trust or visibility.

In GEO, trust emerges from **information packaging**, not **linkage popularity**. This suggests that smaller or emerging creators can compete on equal footing if they invest in semantic clarity and modular formatting.

8.4 Constraints and Limitations

- **LLM output variability:** Generative results may vary slightly depending on prompt, model version, or context.
- Crawling uncertainty: It remains impossible to directly verify when an LLM ingested a newly published site.

• **Black-box citation logic:** LLMs may cite based on latent embeddings or internal heuristics not fully transparent to users.

These limitations are consistent with the "partially observable" nature of GEO described by Aggarwal et al. [2024], and reinforce the need for multi-session testing and layered metric evaluation.

8.5 Validation of GEO's Three-Layer Model

Across all case studies and experiments conducted, our results provide strong empirical support for the functional effectiveness of GEO's proposed three-layer semantic visibility framework. Specifically, we observe:

- Layer 1: Semantic Anchoring was consistently validated across domains. Clear topical headings, descriptive summaries, and introductory framing led to robust inclusion in generative outputs, even when other structural formatting was absent (Sections 6.1, 7.4).
- Layer 3: Pragmatic Recomposition proved to be the most reliable citation trigger, particularly in FAQ-style queries. Modular paragraph design, list formatting, and structured Q&A blocks significantly enhanced citation likelihood (Sections 6.1–6.3).
- Layer 2: Context Triggering, initially less observable in single-domain settings, was subsequently validated in Section 6.5 via a dedicated cross-domain experiment. We demonstrated that paraphrastic phrasing, synonymous terminology, and taxonomic generalizations substantially improved recall across semantically varied queries.

Together, these findings confirm that the three layers, while distinct in mechanism, operate synergistically to influence LLM citation behavior. Effective content design for generative engine visibility therefore requires simultaneous attention to anchoring clarity, semantic breadth, and modular composition.

8.6 Interpretation of Layer 2 Findings

The experimental validation of Layer 2 (Context Triggering) revealed both promising outcomes and inherent complexities. On the one hand, our cross-domain tests confirmed that semantically enriched content—containing paraphrases, taxonomic reformulations, and synonymous variants—consistently ranked among Top-5 citation results, even under significant surface variation in queries. This affirms the theoretical basis of Layer 2 as a semantic "bridge" that supports retrievability beyond anchor-term matching.

However, the effect size was domain-dependent. Domains with dense synonym networks (e.g., health, economics) saw greater citation stability than jargon-heavy or emerging domains with sparse paraphrastic diversity. Additionally, we observed that when content lacked clear anchoring (Layer 1) or modular formatting (Layer 3), Layer 2 enhancements alone were insufficient to guarantee citation—suggesting inter-layer synergy remains necessary.

These findings highlight that while Layer 2 functions as a standalone mechanism for semantic generalization, its optimal impact is realized when combined with strong anchoring and modular composition. Future work should explore adaptive scoring mechanisms to quantify layer-level interactions, and model sensitivity to various types of contextual perturbation.

9. Conclusion

This study presents and empirically validates a structured framework for Generative Engine Optimization (GEO), introducing a three-layer model of semantic visibility: Semantic Anchoring (Layer 1), Context

Triggering (Layer 2), and Pragmatic Recomposition (Layer 3). Through multi-stage interventions and simulations across three real-world scenarios—including a course review site, a name disambiguation case, and a large-scale cross-domain semantic variation test—we observed measurable gains in citation inclusion within AI-generated outputs. Our approach demonstrates that citation is not merely a byproduct of search engine ranking, but a function of how content is semantically structured and expressed.

Layer 1 was shown to enhance classification and recall through the use of clear titles, summaries, and content hierarchy. Layer 3 was the most direct enabler of citation, especially under natural question formats and FAQ-style prompts. Layer 2, though less obvious in early tests, was confirmed via quantitative evaluation to support paraphrased and taxonomic query inclusion. This layered model not only aligns with observed citation behavior in systems like ChatGPT and Perplexity, but also offers reproducible implementation strategies that can improve citation performance without reliance on traditional SEO signals.

10. Conclusion and Future Work

This study formalizes and operationalizes Generative Engine Optimization (GEO) as a reproducible content strategy for visibility in LLM-powered search. Through two real-world deployments—SOYA course content and a name-based disambiguation scenario—we demonstrated measurable citation improvements using only structural and semantic techniques, independent of SEO rank or backlinks.

Key contributions:

- A three-layer semantic visibility model integrating anchoring, triggering, and recomposition.
- Implementation guidelines using ChatGPT, Claude, GitHub Pages, and Schema.org.
- Five evaluation metrics for measuring semantic and structural citation readiness.
- Empirical results confirming citation uplift of up to 77.1% in ChatGPT and Perplexity.

These findings affirm that GEO enables visibility parity even in low-authority scenarios and provide a practical foundation for LLM-era content design.

10.1 Future Directions

Several avenues merit further investigation:

- Citation Monitoring Tools: Browser extensions or LLM-integrated dashboards that detect if and how a URL is cited across sessions.
- Automatic GEO Scoring: Tools that use LLMs (e.g., GPT-4, Claude 3) to compute scores like AIO, CPS, and SRS directly from raw HTML inputs.
- Cross-Engine Testing: Replication of these experiments across other generative platforms (e.g., You.com, Brave AI, Meta AI) to test framework generalizability.
- **RL-based Optimization:** Fine-tuning small models on citation-based reward functions to iteratively restructure pages for maximum generative visibility L"uttgenau et al. [2025].

As generative engines grow in influence, understanding and influencing how content is ingested and cited becomes a critical capability. GEO offers both a theoretical framework and operational toolkit for this new paradigm of search and citation.

Postscript: Reverse Experiment – SEO Without GEO

To further validate the necessity of semantic structuring in GEO, we conducted a reverse experiment using a low-competition English name: **Tsai Hao Jui**.

An article on AI citation optimization was authored under this name, but deliberately *excluded* all structural techniques introduced in the GEO framework—no modular paragraphs, no Schema.org markup, and no semantic mesh linking.

Due to the rarity of the name, the page easily achieved the top SEO position for the query "Tsai Hao Jui". However, the citation visibility results revealed a clear gap:

- Google: The article ranked first for "Tsai Hao Jui".
- ChatGPT: Returned no information about the authored content.
- Perplexity: Cited only a LinkedIn profile; the article content was not referenced.

These results confirm that **SEO ranking alone is insufficient for generative engine citation**. Without semantic extractability and modular design, even high-ranking content remains invisible to LLM-based systems.

Screenshot evidence for this experiment is included as:

- figures/case3-tsai-chatgpt.png
- figures/case3-tsai-google.png
- figures/case3-tsai-perplexity.png

This reinforces the core hypothesis of this paper: visibility in generative systems is governed not by surface ranking, but by structured semantic readiness.

References

Pranjal Aggarwal, Vishvak Murahari, Tanmay Rajpurohit, Ashwin Kalyan, Karthik Narasimhan, and Ameet Deshpande. Geo: Generative engine optimization. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*. ACM, 2024. doi: 10.1145/3637528.3671900. URL https://doi.org/10.1145/3637528.3671900.

Nelson F. Liu, Tianyi Zhang, and Percy Liang. Evaluating verifiability in generative search engines. *arXiv* preprint arXiv:2304.09848, 2023. URL https://arxiv.org/abs/2304.09848.

Matt LoDolce and Chris Howley. Gartner predicts search engine volume will drop 25% by 2026, due to ai chatbots and other virtual agents. *Gartner Research*, 2024. URL https://tinyurl.com/babb9njm. Available via Search Engine Land.

Florian L'uttgenau, Imar Colic, and Gervasio Ramirez. Beyond seo: A transformer-based approach for reinventing web content optimization. *arXiv* preprint arXiv:2507.03169, 2025. URL https://arxiv.org/abs/2507.03169.

Jacob Menick, Maja Trebacz, Vladimir Mikulik, et al. Teaching language models to support answers with verified quotes. *arXiv* preprint arXiv:2203.11147, 2022. URL https://arxiv.org/abs/2203.11147.