

ATIVIDADE 4 - ESOFT - ALGORITMOS E LÓGICA DE PROGRAMAÇÃO I - 52/2022

Período:20/06/2022 08:00 a 08/07/2022 23:59 (Horário de Brasília)

Status: ABERTO Nota máxima: 1,00

Gabarito: Gabarito será liberado no dia 09/07/2022 00:00 (Horário de Brasília)

Nota obtida:

1ª QUESTÃO

1ª QUESTAO			
Analise o algoritmo a seguir:			
Algoritmo Vetor			
Var			
v : vetor			
v . vetoi			
	15		
de inteiro			
Início			
V			
	1		
	1		
<- 5			
V			
	•		
	2		
<- 10			
v			
•			
	3		
. 15			
<- 15			
v			
	4		
<- 20			
V			
	5		
	· ·		
<- 25			
Escreva(v			
	1		
	1		
, "+", v			
	5		
)			
Fim			
1 1111			
Assinale a alternativa que irá represer	ntar a saída do algoritmo:		
Assinale a alternativa que irá representar a saída do algoritmo:			

ALTERNATIVAS

5
6
30
1+5
5+25

2ª QUESTÃO

Sobre sub-rotinas, procedimentos e funções analise as seguintes afirmações:

- 1. Um procedimento pode conter um retorno de múltiplos valores.
- 2. Sub-rotinas realizam tarefas específicas e podem ser chamadas pelo programa principal quanto por uma própria sub-rotina.
- 3. Função obrigatoriamente retornará uma variável.
- 4. Um procedimento aceita no máximo 10 parâmetros de entrada.
- 5. As sub-rotinas podem possuir variáveis locais, que são criadas e processadas apenas dentro da sub-rotina.

Assinale a alternativa que representa V (Verdadeiro) e F (Falso) para as afirmações.

ALTERNATIVAS

3ª QUESTÃO

Sobre as estruturas de dados heterogêneas, analise as afirmações.

- I Os registros é acessado apenas no programa principal, e não pode se utilizar em sub-rotinas.
- II Um algoritmo poderá conter apenas um registro por algoritmo.
- III Registros podem agregar informações de diferentes tipos.
- IV Um registro pode conter vários vetores e inclusive de diferentes tipos em sua estrutura.

Assinale a alternativa correta.

ALTERNATIVAS

	Apenas I e IV estão corretas.
	Apenas II e III estão corretas.
	Apenas III e IV estão corretas.
	Apenas I, II e IV estão corretas.
0	Apenas II, III e IV estão corretas.

4ª QUESTÃO

```
Algoritmo Recursividade
Início
   Escreva(testar(120,30))
Fim
Função testar(a: real, b: real): real
   ma, me, resultado: real
Início
  ma <- a
  Se (ma < b) então
     ma <- b
  FimSe
  me <- b
  Se (me > b) então
    me <- b
  FimSe
  resultado <- ma MOD me
  Se (resultado = 0) então
     retorne me
   Senão
     testar(me, ma)
  FimSe
FimFunção
Assinale a alternativa que representa o que será escrito na tela
```

ALTERNATIVAS

	0					
	30					
	60					
	90					
	120					

5ª QUESTÃO

Uma matriz computacional nada mais é que um vetor bidimensional que armazena valores em colunas e linhas. Como exemplo, pode ser utilizada em casos onde se deseja armazenar valores de produtos para comparação de preços como na tabela abaixo:

Supermercado	Angeloni	Pão de Açúcar	Nacional	Walmart
Café 1Kg	16,52	14,30	15,20	17,02
Feijão 1Kg	9,19	8,50	7,99	9,10
Arroz 1Kg	4,50	5,59	6,60	3,40
Água 1L	1,99	1,70	1,82	1,40

Sabendo que a matriz é do tamanho 4x4 indique os índices para encontrar os seguintes preços:

- Preço da Café no Walmart
- Preço do Feijão no Nacional
- Preço do Arroz no Nacional
- Preço do Café no Angeloni
- Preço Água no Pão de Açúcar

ALTERNATIVAS

		М	
			1,4
		, M	
			2, 3
		, M	
(3, 3
		, M	
			1, 1
		, M	
			4, 2
		M	
			4, 1
		, M	
			3, 2
		, M	
			3, 3
		, M	
			1, 1
		, M	4, 2
		M	7, 2
			4, 1
		, M	
			2, 3
		, M	
			3, 3
		, M	
			1, 1
		, M	
			4, 2
		M	
			1, 4
		, M	
			4, 3
		, M	
	-		3, 3
		, M	2, 2
		, M	<u> </u>
			2, 4
			•

М	
	1,4
, M	
	2, 3
, M	3,3
, M	3, 3
,	1, 1
, M	
	2,4