Конспекты лекций по алгебре-геометрии

Ведёт: Акопян Ольга Владимировна перенесено в электронный формат Ширкуновым А.

2024-2025 учебный год, первый семестр

1 Множества

1.1 Множества действительных чисел

Прим.: опущу часть с определением множеств, функций и операций над ними, т.к эта тема пересекается с первыми лекциями по алгему.

1.2 Ограниченность множеств

Множество E ограничено сверху, если $\exists b \in \mathbb{R} : \forall x \in E \ x \leq b$. В таком случае b называют мажорантой множества E. Если $b \in E$, то b обозначают как $\max(e)$, читается как 'максимальный элемент множества E'.

Наименьшая мажоранта множества E называется **супремумом** этого множества или его верхней границей. Записывается через $M = \sup(E)$.

Множество E ограничено снизу, если $\exists b \in \mathbb{R} : \forall x \in E \ x \geq b$. В таком случае b называют минорантой множества E. Если $b \in E$, то b обозначают как $\min(e)$, читается как 'минимальный элемент множества E'.

Наибольшая миноранта множества E называется **инфинумом** этого множества или его нижней границей. Записывается через $m = \inf(E)$.

$$M = \sup(E) \Leftrightarrow (\forall x \in E \ x \le M \ \text{and} \ \forall \epsilon > 0 \ \exists x_{\epsilon} : M - \epsilon < x_{\epsilon})$$

 $m = \inf(E) \Leftrightarrow (\forall x \in E \ x > M \ \text{and} \ \forall \epsilon > 0 \ \exists x_{\epsilon} : M + \epsilon > x_{\epsilon})$

Свойства супремума и инфинума множеств:

- $\sup(X+Y) = \sup(X) + \sup(Y)$
- $\inf(X + Y) = \inf(X) + \inf(Y)$
- $\sup(X Y) = \sup(X) \inf(Y)$
- $\inf(X Y) = \inf(X) \sup(Y)$

•
$$\sup(\lambda X) = \begin{cases} \lambda \cdot \sup(X), \lambda > 0 \\ \lambda \cdot \inf(X), \lambda < 0 \end{cases}$$

•
$$\inf(\lambda X) = \begin{cases} \lambda \cdot \inf(X), \lambda > 0\\ \lambda \cdot \sup(X), \lambda < 0 \end{cases}$$

Если множество не обладает свойством ограниченности сверху или снизу, его называют **неограниченным**: $\forall b \in \mathbb{R} \ \exists x \in E : x > b$ – пример для неограниченности сверху для множества E.

Принцип Архимеда гласит: если существуют a, b: a < b, то $\exists n: na > b$ (в классе рассмотрели доказательство от противного).

Мажоранта функции — функция, значения которой не меньше соответствующих значений данной функции.

2 Числовые последовательности

2.1 Ограниченность числовой последовательности

Числовая последовательность действительных чисел — функция, определяемая следующим образом: $f: N \to R, \ N = \{x \mid x \in \mathbb{N}\}, R = \{x \mid x \in \mathbb{R}\}.$ Чаще рассматривается как пронумерованное множество действительных чисел.

Последовательность $\{x_n\}$ считается ограниченной, если $\exists k, K : \forall n \in \mathbb{N} \ k \le x_n \le K$, где k – миноранта x_n , а K – мажоранта $\{x_n\}$.

Супремумом числовой последовательности называют наименьшую из её мажорант, а **инфинумом** – наибольшую из минорант.

Последовательность $\{x_n\}$ считается неограниченной, если $\forall c>0 \ \exists k\in\mathbb{N}: x_k\geq c.$

2.2 Предел числовой последовательности

Числовая последовательность $\{x_n\}$ называется **сходящейся** в случае, если: $\forall \epsilon > 0 \ \exists N : \forall n > N \ |x_n - A| < \epsilon$, где число A – **предел** этой последовательности. Другими словами, последовательность сходится тогда и только тогда, когда существует некоторый предел равный A.

Данное утверждение понимается следующим образом: каким бы ни было число ϵ , все члены последовательности, начиная с некоторого N, попадают в ϵ -окрестности точки A. Вне ϵ -окрестности лежит лишь конечное число членов $\{x_n\}$.

Значение предела числовой последовательности записывается следующим образом:

$$\lim_{n \to \infty} x_n = A$$

2.3 Свойства сходящихся последовательностей

Если последовательность сходится, то она ограничена.

Док-во: пусть последовательность $\{x_n\}$ сходится $\Rightarrow \exists a \in \mathbb{R} : \forall \epsilon > 0 \ \exists N = N(\epsilon) : \forall n \geq N \ |x_n - a| < \epsilon$. Берём $\epsilon = 1, N_1 = N(1), n \geq N_1$. Тогда $|x_n - a| < 1$. В силу произвольности выбора $n, \ \forall n \geq N_1 \ a - 1 < x_n < a + 1$, что и требовалось доказать.

Единственность предела сходящейся последовательности: сходящаяся последовательность имеет единственный предел.

 \mathcal{A} ок-во: предположим, у последовательности $\{x_n\}$ существует больше одного предела: $a = \lim_{n \to \infty} x_n \Rightarrow \forall \epsilon > 0 \ \exists N_1 = N(\epsilon) : \forall n \geq N_1 \ | x_n - a | < \epsilon, \ b = \lim_{n \to \infty} x_n \Rightarrow \forall \epsilon > 0 \ \exists N_2 = N(\epsilon) : \forall n \geq N_2 \ | x_n - b | < \epsilon, \ a \neq b$. Берём $\epsilon = \frac{b-a}{2} > 0$, тогда $\exists N_1, N_2 : \forall n \geq N_1 \ | x_n - a | < \frac{b-a}{2}, \ \forall n \geq N_2 \ | x_n - b | < \frac{b-a}{2}$. Пусть $N = \max(N_1, N_2) \Rightarrow \forall n \geq N \ | x_n - a | < \frac{b-a}{2}$ и $| x_n - b | < \frac{b-a}{2}$. Берём $n \geq N$, тогда $a - \frac{b-a}{2} < x_n < a + \frac{b-a}{2}$, и $b - \frac{b-a}{2} < x_n < b + \frac{b-a}{2}$. Получим: $\frac{3a-b}{2} < x_n < \frac{a+b}{2}, \ \frac{b+a}{2} < x_n < \frac{3b-a}{2}$. Противоречие.

Если $\exists N : \forall n > N \ x_n \leq y_n$, а $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = b$, то выполняется неравенство $a \leq b$ (предельный переход в неравенстве).

 \mathcal{A} ок-во: по определению предела имеем: $\forall \epsilon > 0 \ \exists N_1 = N_1(\epsilon) : \forall n \geq N_1 | x_n - a| < \epsilon$, и $\forall \epsilon > 0 \ \exists N_2 = N_2(\epsilon) : \forall n \geq N_2 | y_n - b| < \epsilon$. $a - \epsilon < x_n < a + \epsilon$, и $b - \epsilon < y_n < b + \epsilon$. Берём $\epsilon \geq 0, n \geq \max(N_1, N_2)$. Тогда $a - \epsilon < x_n \leq y_n < b + \epsilon \Rightarrow a - \epsilon < b + \epsilon \Rightarrow a < b$.

Если $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = a$ и при этом $x_n \le z_n \le y_n$, то $\lim_{n\to\infty} z_n = a$ (теорема о двух милиционерах).

Док-во: бла-бла-бла, $a - \epsilon < x_n \le y_n \le z_n < a + e \Rightarrow a - \epsilon < y_n < a + \epsilon$.

Если $\lim_{n\to\infty} x_n = a, \ a\neq 0$, то $\exists \overline{n}: \forall n\geq \overline{n} \ |x_n|>|a|/2$ (отделимость от нуля).

 \mathcal{A} ок-во: по определению предела имеем: $\forall \epsilon > 0 \; \exists N = N(\epsilon) : \forall n \geq N \; |x_n - a| < \epsilon$. Возьмём $\epsilon = \frac{|a|}{2} > 0, \; \overline{n} = N(\frac{|a|}{2}), n \geq \overline{n}$. Тогда $|x_n - a| < \frac{|a|}{2}$. $|a| - |x_n| \leq |a - x_n| < \frac{|a|}{2} \Rightarrow |a| - |x_n| < \frac{|a|}{2} \Rightarrow \frac{|a|}{2} < |x_n|$.

Если $\lim_{n\to\infty} x_n = a$, то $\lim_{n\to\infty} |x_n| = |a|$.

Док-во: пусть $\lim_{n\to\infty} x_n = a, \ a\in\mathbb{R} \Rightarrow \forall \epsilon > 0 \ \exists N=N(\epsilon): \forall n>N \ ||x_n|-|a|| \leq |x_n-a| < \epsilon \Rightarrow ||x_n|-|a|| < \epsilon \Rightarrow |a| = \lim_{n\to\infty} |x_n|.$

2.4 Арифметические операции над числовыми последовательностями

Если $\lim_{n\to\infty}(x_n)=a, \lim_{n\to\infty}(y_n)=b, \ a,b\in\mathbb{R}$, то выполняется:

• $\lim_{n\to\infty}(x_n+y_n)=a+b$

- $\lim_{n\to\infty}(x_n\cdot y_n)=a\cdot b$
- $\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{a}{b}$
- $\lim_{n\to\infty}(x_n+y_n)=a+b$

2.5 Свойства подпоследовательностей сходящихся последовательностей

Если последовательность имеет предел, то любая её подпоследовательность имеет тот же предел.

Теорема **Больцано-Веерштрасса**: из любой ограниченной последовательности можно выделить сходяющуюся подпоследовательность.

Если последовательность неограничена сверху (снизу), то из неё можно выделить подпоследовательность, сходяющуюся к $+\infty(-\infty)$.

Предел подпоследовательности пос-ти $\{x_n\}$ называют **частичным пределом** относительно $\{x_n\}$.

Верхним пределом послед-ти называют точную верхнюю грань множества всех частичных пределов этой последовательности.

Нижним пределом послед-ти называют точную нижнюю грань множества всех частичных пределов этой последовательности.