Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_tehnologic

Test 12

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}:0,5\right)\cdot\frac{12}{13}=1$.
- **5p** 2. Arătați că $2(x_1 + x_2) x_1x_2 = 4$, unde x_1 și x_2 sunt soluțiile ecuației $x^2 7x + 10 = 0$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{5x+1} = 6$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie multiplu de 11.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(6,0) și B(0,8). Determinați lungimea înălțimii din vârful O al triunghiului AOB.
- **5p 6.** Calculați lungimea laturii *AB* a triunghiului *ABC* dreptunghic în *A*, știind că $BC = 5\sqrt{2}$ și $m(\ll B) = 45^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$, $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = 1.
- **5p b**) Arătați că $2A A \cdot A = I_2$.
- **5p** c) Determinați numerele reale x, y și z, pentru care $A \cdot \begin{pmatrix} x-2 & y \\ z+1 & 1 \end{pmatrix} I_2 = O_2$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + x^2 + y^2 1$.
- **5p** a) Arătați că $1 \circ (0 \circ 2) = 12$.
- **5p b**) Determinați numerele reale x pentru care $x \circ (-x) = 3$.
- **5p** c) Determinați perechile (m,n) de numere naturale pentru care $m \circ n = -mn$.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2 1}{x^2 + 1}$.
- **5p** a) Arătați că $f'(x) = \frac{4x}{(x^2+1)^2}, x \in \mathbb{R}$.
- **5p b)** Calculați $\lim_{x \to 1} \frac{f(x)}{x-1}$
- **5p** c) Demonstrați că funcția f este convexă pe $\left[-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right]$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + x^2 + 3x$.
- **5p** a) Arătați că $\int_{-1}^{1} (f(x) x^2 3x) dx = 0$.

5p b) Arătați că
$$\int_{0}^{1} (f(x) - x^3 - x^2) e^x dx = 3$$
.

5p c) Se consideră funcția
$$F: \mathbb{R} \to \mathbb{R}$$
, primitiva funcției f pentru care $F(0) = 1$. Demonstrați că
$$\int_{0}^{1} \frac{f(x)}{F^{2}(x)} dx = \frac{25}{37}.$$