Keynote Lecture Immunotherapy: A Step Forward in Treatment of Advanced Non-Small Cell Lung Cancer

Solange Peters, MD, PhD
Multidisciplinary Oncology Center Lausanne
Lausanne, Switzerland

natureoutlook

"In any trial you get the odd patient who does very well, but this is an order of magnitude above that."

Mick Peake, Glenfield Hospital

- Melanomas and lung tumors display many more mutations than average, with ~200 nonsynonymous mutations per tumor.
- These larger numbers reflect the involvement of potent mutagens. Accordingly, lung cancers from smokers have 10 times as many somatic mutations as those from nonsmokers.

Vogelstein B, et al. *Science*. 2013;339(6127):1546-1558. Lawrence MS, et al. *Nature*. 2013;499(7457):214-218.

Rationale for Immune Therapy in NSCLC

Liu H et al. Cancer Immunol Immunother. 2012;61(10):1849-1856

TIL, tumor infiltrating lymphocytes; Tregs, regulatory T cells cells

- 1. Shimizu K, et al. J Thorac Oncol. 2010;5(5):585-590. 2. Horne ZD, et al. J Surg Res. 2011;171(1):1-5.
- 3. Mu CY, et al. *Med Oncol.* 2011;28(3):682-688.

Rationale for Immune Therapy in NSCLC

TIL, tumor infiltrating lymphocytes; Tregs, regulatory T cells cells

- 1. Shimizu K, et al. J Thorac Oncol. 2010;5(5):585-590. 2. Horne ZD, et al. J Surg Res. 2011;171(1):1-5.
- 3. Mu CY, et al. Med Oncol. 2011;28(3):682-688.

Lung Cancer Immunotherapy Landscape

Cancer immunotherapy: Any interaction with the immune system to treat cancer

Active: Priming of the immune system

Passive: Delivery of compounds that may use immune system

Antigen-specific

Non-antigen-specific

Monoclonal antibodies

Adoptive cell transfer

→ AG-specific antibodies & cytotoxic T cells

- → Enhancement of immune system•Cytokines
- Cytokines
- Checkpoint inhibitors

- Cetuximab
- Trastuzumab
- T cells engineering
- CARs
- Dendritic cells

Cancer vaccination therapy

Cancer immunomodulation therapy

Targeted antibodies immunotherapy

Cellular immunotherapy

Therapeutic Intervention at Cancer Hallmarks

Hanahan D, et al. Cell. 2011;144(5):646-674.

Mellman I, et al. Nature. 2011;480(7378):480-489.

Immune Checkpoint Receptor: CTLA-4 & PD-1

Patterns of Response to Immunotherapy

Response Criteria for Immunotherapy

RECIST 1.1 ¹							
CR	PR	SD	PD				
Disappearance of all target lesions, reduction in short-axis diameter of pathology LN to <10 mm	≥30% decrease in sum of longest diameters of target lesions	Neither PR nor PD	≥20% increase (≥5 mm absolute increase) in sum of longest diameters, in comparison with smallest sum of longest diameters recorded during treatment				
Immune-related response criteria ²							
irCR	irPR	irSD	irPD				
Disappearance of all lesions on 2 consecutive observations ≥4 weeks apart	≥50% decrease in tumor burden compared with baseline in 2 observations ≥4 weeks apart	50% decrease in tumor burden compared with baseline not established, nor 25% increase vs nadir	≥25% increase in tumor burden compared with nadir (at any single timepoint) in 2 consecutive observations at least 4 weeks apart				

Pseudo-Progression

After 1 year of therapy with anti-PDL1 MPDL3280A

Baseline (5-21-12)

Post-Tx (8-05-13)

Pseudo-Progression (6-28-13)

- Sustained response of target lesions with new/growing solitary FDG-avid nTL
- Excision of FDG-avid nTL revealed reactive lymph node without evidence of malignant involvement

Gettinger SN, et al. Presented at: 15th World Conference on Lung Cancer; October 27-31, 2013; Sydney, Australia. Abstract MO19.09.

Pseudo-Progression

After 1 year of therapy with anti-PDL1 MPDL3280A

Baseline (5-21-12)

Post-Tx (8-05-13)

Pseudo-Progression (6-28-13)

- Sustained response of target lesions with new/growing solitary FDG-avid nTL
- Excision of FDG-avid nTL revealed reactive lymph node without evidence of malignant involvement

Gettinger SN, et al. Presented at: 15th World Conference on Lung Cancer; October 27-31, 2013; Sydney, Australia. Abstract MO19.09.

Guidelines Helped Managing Specific Toxicities

IMMUNE-MEDIATED ADVERSE REACTIONS

Follow color code to appropriate management guide section.

GASTROINTESTINAL GO TO PAGE 6

Signs and symptoms such as

- Diarrhea
- Abdominal pain
- · Blood or mucus in stool
- Bowel perforation
- Peritoneal signs
- Ileus

LIVER GO TO PAGE 8

Signs such as

 Abnormal liver function tests (eg, AST, ALT) or total bilirubin

SKIN GO TO PAGE 10

Symptoms such as

- Pruritus
- Rash

NEUROLOGIC 60 TO PAGE 12

Symptoms such as

- Unilateral or bilateral weakness
- Sensory alterations
- Paresthesia

ENDOCRINE 60 TO PAGE 14

Signs and symptoms such as

- Fatigue
- Headache
- Mental status changes
- Abdominal pain
- Unusual bowel habits
- Hypotension
- Abnormal thyroid function tests and/or serum chemistries

OTHER ADVERSE REACTIONS, including ocular manifestations 60 TO PAGE 16

Please see each organ system section for related guidance.

See checklist on the next page.

General Principles of Immune-Related Toxicity Management

Generally based on severity of symptoms:

- Grade 1: Supportive care; +/- withhold drug
- Grade 2: Withhold drug, consider redose if toxicity resolves to ≤ grade 1. Low-dose corticosteroids (prednisone 0.5 mg/kg/day or equivalent) if symptoms do not resolve within a week
- Grade 3-4: Discontinue drug; high-dose corticosteroids (prednisone 1-2 mg/kg/day or equivalent) tapered over ≥ 1 month once toxicity resolves to ≤ grade 1
- Presence of irAEs may be a biomarker for response

Anti-CTLA 4 Ipilimumab NSCLC Phase II, Combination With Chemotherapy

Ipilimimab Phase II CA184-041: Study Schema

IPI, Ipilimumab; C, carboplatin, P, paclitaxel Lynch TJ, et al. *J Clin Oncol.* 2012;30(17):2046-2054.

Lung Cancer Immunomodulation Ipilimumab

irPFS, immune-related response criteria

Lynch TJ, et al. J Clin Oncol. 2012;30(17):2046-2054.

Ipilimumab: NSCLC Phase III Trial

Squamous cell NSCLC, stage IV; primary end point: OS

N = 920, accrual completed

US National Institutes of Health. Available at: http://clinicaltrials.gov/ct2/show/NCT01285609. Accessed 12 December 2014.

Clinical Development of Inhibitors of PD-1 and PD-L1 Immune Checkpoint

PD-1	Nivolumab- BMS-936558	Fully human IgG4 mAb	Bristol-Myers Squibb	Phase III
	Pidilizumab CT-011	Humanized IgG1 mAb	CureTech	Phase II
	Pembrolizumab MK-3475	Humanized IgG4 mAb	Merck	Phase III
	AMP-224	Recombinant PD-L2- Fc fusion protein	GlaxoSmithKline	Phase I
PD-L1	BMS-936559	Fully human IgG4 mAb	Bristol-Myers Squibb	Phase I
	MEDI4736	Engineered human IgG1 mAb	MedImmune	Phase III
	MPDL3280A	Engineered human IgG1 mAb	Genentech	Phase III
	MSB0010718C	Engineered human IgG1 mAb	EMD Serono	Phase II

Anti-PD1/Anti PD-L1: What Do We Know at the End of 2014?

- 1. Monotherapy treatment with various drugs across histologies and molecular subtypes
 - a. In ≥ second line of NSCLC treatment (including, maintenance)
 - **b.** In first-line NSCLC treatment
- 2. The challenge of the biomarker

Anti-PD1 Nivolumab ≥ Second Line, Phase I Data

OS by Dose (Data Lock Sep 2014)

- Patients were heavily pretreated; 54% had 3-5 prior therapies
- Responses were ongoing in 41% of patients (9/22) at the time of analysis
- 3 treatment related deaths due to pneumonitis

Characteristics of Responses

 5% unconventional "immune-related" responses, with persistent reduction in target lesions in the presence of new lesions or regression following initial progression

Gettinger S, et al. Presented at: Chicago Multidisciplinary Symposium in Thoracic Oncology; October 30-November 1, 2014; Chicago, Illinois. Abstract 170.

Best Change in Target Lesion Tumor Burden by Tumor PD-L1 Expression

There was no clear association between PD-L1 expression and RR, PFS or OS (archival samples)

Gettinger S, et al. Presented at: Chicago Multidisciplinary Symposium in Thoracic Oncology; October 30-November 1, 2014; Chicago, Illinois. Abstract 170.

Exploratory Analysis of Responseby Smoking Exposure

Variable	ORR	, % (n/N) [95% CI] ^a
Smoking exposure			
>5 pack-years	30	(20/66)	[20, 43]
≤5 pack-years ^b	0	(0/14)	[0, 23]
Time since quitting (NO CORRELATION)			
>15 yrs prior	26	(6/23)	[10, 48]
6-15 yrs prior	17	(2/12)	[2, 48]
1-5 yrs prior	46	(6/13)	[19, 75]
Current smoker	27	(6/22)	[11, 50]
0/never smoker	0	(0/10)	[0, 31]

Gettinger S, et al. Presented at: Chicago Multidisciplinary Symposium in Thoracic Oncology; October 30-November 1, 2014; Chicago, Illinois. Abstract 170.

Nivolumab First Line, Phase I Data Monotherapy & Combinations

PFS and OS With Nivolumab Monotherapy Front Line

Number of Fts at Kisk										
All treated pts	52	48	42	30	15	14	12	9	7	0
Sq	13	13	11	11	6	6	4	1	0	0
Non-sq	39	35	31	19	9	8	8	8	7	0

Rizvi NA, et al. Presented at: Chicago Multidisciplinary Symposium in Thoracic Oncology; October 30-November 1, 2014; Chicago, Illinois. Abstract 165.

Percent Changes in Target Lesion Tumor Burden by PD-L1 in First Line

A. Percent change in target lesions from baseline

B. Best percent change in target lesion tumor burden from baseline

Rizvi NA, et al. Presented at: Chicago Multidisciplinary Symposium in Thoracic Oncology; October 30-November 1, 2014; Chicago, Illinois. Abstract 165.

PFS and OS in NSCLC Patients Treated With Nivolumab Plus Ipilimumab

Antonia SJ, et al. Presented at: Chicago Multidisciplinary Symposium in Thoracic Oncology; October 30-November 1, 2014; Chicago, Illinois. Abstract 168.

Safety: Nivolumab Plus Ipilimumab in NSCLC

- Treatment-related AEs led to discontinuation of any study drug in 37%, and included pneumonitis, increased ALT or AST, colitis or diarrhea, and allergic nephritis, ulcerative colitis, impaired gastric emptying, Miller Fisher syndrome, and pulmonary hemorrhage
- Most treatment-related AEs leading to discontinuation occurred during induction (15 pts, 31%)

Patients

ORR for nivolumab plus chemotherapy in first-line treatment are similar to those previously reported for chemotherapy alone

Antonia SJ, et al. Presented at: Chicago Multidisciplinary Symposium in Thoracic Oncology; October 30-November 1, 2014; Chicago, Illinois. Abstract 3.

PFS and OS in EGFR + NSCLC Treated With Nivolumab Plus Erlotinib

20 refractory after TKI failure, 1 naïve EGFR M+ patients

Gettinger S, et al. Presented at: Chicago Multidisciplinary Symposium in Thoracic Oncology; October 30-November 1, 2014; Chicago, Illinois. Abstract 171.

Nivolumab Squamous ≥ Second Line, Phase II Monotherapy Data

Response to Nivolumab in Squamous NSCLC Brain Metastasis

Pre-treatment

Week 14

Week 68

- 73 year-old male, stage IIIB, former smoker
- Prior radiotherapy (mediastinal), 3 prior systemic regimens (cisplatin/gemcitabine, docetaxel, vinorelbine)
- No prior CNS-directed radiotherapy

Ramalingam S, et al. Presented at: Chicago Multidisciplinary Symposium in Thoracic Oncology; October 30-November 1, 2014; Chicago, Illinois. Abstract LBA2.

Overall Survival: All Treated Patients

Median follow-up for survival: 8 months (range, 0-17 months)

Ramalingam S, et al. Presented at: Chicago Multidisciplinary Symposium in Thoracic Oncology; October 30-November 1, 2014; Chicago, Illinois. Abstract LBA2.

Select Adverse Events (≥1%) Under Anti-PD1: The Example of nivolumab

- Demonstrates a safety profile managed by protocol algorithms
- No new safety signals emerging; all patients >1 year of follow-up

	Patients, n (%) [N = 129]		
	Any grade	Grade 3-4	
Any treatment-related select adverse event*	41 (53)	5 (6)	
Skin	16 (20)	0	
Gastrointestinal	12 (15)	1 (1)	
Pneumonitis	8 (6)	3 (2)†	
Pulmonary	7 (9)	2 (3)	
Endocrinopathies	6 (8)	0	
Hepatic	5 (6)	1 (1)	
Infusion reaction	4 (5)	1 (1)	
Renal	3 (4)	0	

^{*}Defined as an event with potential immunological aetiologies that require more frequent monitoring and/or unique intervention

Brahmer JR, et al. *J Clin Oncol.* 2014;32 (Suppl): Abstract 8112.

^{†2/3} cases were fatal

Anti-PD1 Pembrozilumab NSCLC Pooled Analysis First and Subsequent Lines, Monotherapy (Phase Ib)

Maximum Percent Change From Baseline in Tumor Size (RECIST v1.1, Central Review)

Time to and Durability of Response (RECIST v1.1, Central Review)

Kaplan-Meier Estimates of Survival

Treatment naive

- Median PFS: 27 weeks (95% CI, 14-45)
- 24-weeks PFS: 51%

Previously treated

- Median PFS: 10 weeks (9.1-15.3)
- 24-week PFS: 26%

Treatment naive

- Median OS: NR (95% CI, NE-NE)
- 6-month OS: 86%

Previously treated

- Median OS: 8.2 months (7.3-NR)
- 6-month OS: 59%

Kaplan-Meier Estimates of Survival

- •Immunosuppressive properties of previous cytotoxic agents through lymphocytes depletion?
- •Impact of steroids as antiemetic co-medication on the immune system?
- •Progressive T cell exhaustion during tumor progression? Increase in expression of PD-L1 in the course of the disease?

Treatment naive

- Median PFS: 27 weeks (95% CI, 14-45)
- 24-weeks PFS: 51%

Previously treated

- Median PFS: 10 weeks (9.1-15.3)
- 24-week PFS: 26%

Treatment naive

- Median OS: NR (95% CI, NE-NE)
- 6-month OS: 86%

Previously treated

- Median OS: 8.2 months (7.3-NR)
- 6-month OS: 59%

Kaplan-Meier Estimates of Survival

- PFS was longer in patients with PD-L1 strong-positive vs PD-L1 weak-positive / negative tumors (HR, 0.52; 95% CI, 0.33-0.80)
- OS was longer in patients with PD-L1 strong-positive vs PD-L1 weakpositive / negative tumors (HR, 0.59; 95% CI, 0.35-0.99)

Anti-PD-L1 MPLD3280A ≥ Second Line, Phase I Data

MPDL3280A Phase Ia: Best Response by PD-L1 IHC Status, Histology and Duration of Treatment and Response – NSCLC

Diagnostic Population ^a (n = 53)	ORR ^b % (n/n)	PD Rate % (n/n)			
IHC 3	83% (5/6)	17% (1/6)			
IHC 2 and 3	46% (6/13)	23% (3/13)			
IHC 1/2/3	31% (8/26)	38% (10/26)			
All patients	23% (12/53)	40% (21/53)			

NS, nonsquamous; S, squamous

Overall response rate: 21% (n = 175)

^aORR includes investigator-assessed unconfirmed and confirmed PR per RECIST 1.1 ^bPatient experiencing ongoing benefit per investigator

Horn L, et al. Presented at: 15th World Conference on Lung Cancer; October 27-31, 2013; Sydney, Australia. Abstract M018.01. Soria JC, et al. *Eur J Cancer*. 2013;49(Suppl 3): Abstract 3408.

MPDL3290A: Specific Predictors

Horn L, et al. Presented at: 15th World Conference on Lung Cancer; October 27-31, 2013; Sydney Australia. Abstract M018.01.

CA209-003: phase 1 follow-up study, up to 5 prior lines of therapy, NSCLC cohort

Subgroup ORR, % (n/N) [95% CI] EGFR status Mutant 17 (2/12) [2.1–48.4] Wild-type 20 (11/56) [10.2–32.4] Unknown 15 (9/61) [7.0–26.2] EGFR Status (NSCLC; n = 53) EGFR WT 13% Unknown FGFR Mutant

Horn L, et al. Presented at: 15th World Conference on Lung Cancer; October 27-31, 2013; Sydney Australia. Abstract M018.01.

Histology Is Not Predictive Through All Available Data

	Squamous carcinoma	Non- squamous
Nivolumab (PD-1)	17%	18%
	(9/54)	(13/74)
MPDL3280A (PD-L1)	27%	21%
	(3/11)	(9/42)
Pembrolizumab (irRECIST)	25%	23%
	(66/262)	(60/262)

Soria JC, et al. *Eur J Cancer*. 2013;49(Suppl 3): Abstract 3408. Garon EB, et al. *Ann Oncol*. 2014;25(Suppl 4): Abstract LBA43. Gettinger S, et al. Presented at: Chicago Multidisciplinary Symposium in Thoracic Oncology; October 30-November 1, 2014; Chicago, Illinois. Abstract 171.

PD-L1 as a Predictive Biomarker/Inclusion Criteria The Challenge of the Biomarker

Intricate Role of PD-1 Signaling With Different Cell Types

Intricate Role of PD-1 Signaling With Different Cell Types

PD-L1 Analysis: Differences in Evaluation and Interpretation

Agent	nt Assay		Definition of positivity	PD-L1 expression		
Nivolumab (anti-PD-1)	Dako automated IHC assay (28-8 rabbit Ab) Analytically validated	Archival FFPE	• 1% and 5% cut-off among >100 evaluable tumor cells	• 56%: 1% cut-off • 49%: 5% cut-off		
Pembrolizumab (anti-PD-1)	Dako automated IHC assay (22C3 mouse Ab)	Archival FFPE	 Tumor dependent: Melanoma > 1% NSCLC PD-L1 (+): Strong (≥50%) and weak staining (1%-49%) PD-L1 (-): no staining 	 ~25%: ≥50% staining ~45-70%: ≥1% staining 		
MPDL3280A (anti-PD-L1)	Ventana automated clinical research IHC assay	Archival FFPE	• PD-L1 (+): IHC 3 (≥10%), IHC 2,3 (≥5%), IHC 1,2,3 (≥1%) • PD-L1 (–): IHC 1, 0 or unknown	• 11%: IHC 3 • 75%: IHC 1, 0		
MEDI-4736 (anti-PD-L1)	First-generation or Ventana IHC Automated Assay (in dev.)	Archival FFPE	Not reported	Not reported		

PD-L1 as a Biomarker in NSCLC

Drug/ sponsor	Nivolumab BMS			Pembrolizumab MSD (Merck)			MPDL3280A Genentech			MEDI4736 MedImmune
Assay		28-8		22C3					SP263	
Cells scored	Tumor cell membrane		Tumor cell (and stroma)			Infiltrating immune cells				
Tissue	Archival			Recent			Arch./Recent			Arch./Recent
Setting	1 st line	2L	.++	1 st line	2L +	+	2L ++		2L ++	
Cut-point	5%	1%	5%	1%	1%	50%	1%	5%	10%	
ORR in PD-L1 +	50% N=10	13% N=38	15% N=33	26-47% N=45	19-23% N=177	37% N=41	31% N=26	46% N=13	83% N=6	39% N=13
ORR in PD-L1 -	0% N=7	17% N=30	14% N=35	???	9-13% N=40	11% N=88	20% N=20	18% N=33	18% N=40	5% N=19

PD-L1 as a Biomarker in NSCLC

Drug/ sponsor Nivolumab BMS Pembrolizumab MSD (Merck)

MPDL3280A Genentech MEDI4736 MedImmune

- PD-L1 expression is dynamic
- PD-L1 is heterogeneous within tissue
- PD-L1 "threshold" is to be defined (tumor material, mAB, technique, sampling, criteria)
- Importance of co-localization with TILs

PD-L1 +	N=10	N=38	N=33	N=45	N=177	N=41	N=26	N=13	N=6	N=13
ORR in PD-L1 -	0% N=7	17% N=30		???			20% N=20	18% N=33	18% N=40	5% N=19

Tumor Infiltrating Lymphocytes as a Biomarker? The HNSCC Example

Diffuse infiltration with CD8+ TILs in HNSCC

Absence of TILs in HNSCC

Seiwert TY, et al. J Clin Oncol. 2014;32(Suppl): Abstract 6011.

Conclusions

Clear evidence of anti PD1/PD-L1 activity

- Optimal dose?
- Treatment sequence?
- Combination strategy
 - Chemotherapy
 - Other checkpoint inhibitor
 - Targeted therapy (TKI)
- Selection by PD-L1 expression likely enhances response rate but activity seen in PD-L1 neg
- Pharmacodynamic biomarkers of activity? (circulating CD8+Ki-67+ T cells and/or plasma proteins [eg, IL-18])

Thanks for Your Attention

