

Figure 1

= SOLID SUPPORT

R = TERMINAL PROTECTING GROUP
FOR EXAMPLE:
DIMETHOXYSITYL (DMT)

- $\text{\scriptsize (1)}\text{\normalsize } \sim\!\!\sim$ = CLEAVABLE LINKER
(FOR EXAMPLE: NUCLEOTIDE SUCCINATE OR
INVERTED DEOXYABASIC SUCCINATE)
- $\text{\scriptsize (2)}\text{\normalsize } \sim\!\!\sim$ = CLEAVABLE LINKER
(FOR EXAMPLE: NUCLEOTIDE SUCCINATE OR
INVERTED DEOXYABASIC SUCCINATE)

INVERTED DEOXYABASIC SUCCINATE
LINKAGE

GLYCERYL SUCCINATE LINKAGE

2/25

Figure 2

Figure 3

Figure 4

POSITIONS (NN) CAN COMprise ANY NUCLEOTIDE, SUCH AS DEOXYNUCLEOTIDES
(eg. THYMIDINE) OR UNIVERSAL BASES

B = ABASIC, INVERTED ABASIC, INVERTED NUCLEOTIDE OR OTHER TERMINAL CAP THAT IS OPTIONAL LY PRESENT

I = GLYCERYL OR B THAT IS OPTIONALLY PRESENT

L = GLYCERYL OF B THAT IS OPTIONAL PRESENT,
S = PHOSPHOROTHIOATE OR PHOSPHORDITHIOATE THAT IS OPTIONAL PRESENT

Figure 5

lower case = 2'-O-Methyl or 2'-deoxy-2'-fluoro

italic lower case = 2'-deoxy-2'-fluoro

underline = 2'-O-methyl

ITALIC UPPER CASE = DEOXY

B = ABASIC, INVERTED ABASIC, INVERTED NUCLEOTIDE OR OTHER TERMINAL CAP THAT IS OPTIONALLY PRESENT

S = PHOSPHOROTHIOATE OR PHOSPHORODITHIOATE OPTIONALY PRESENT

Figure 6

Figure 7.

Figure 8

Figure 9: Target site Selection using siRNA

Figure 10

$\text{R} = \text{O}, \text{S}, \text{N}$, alkyl, substituted alkyl, O-alkyl, S-alkyl, alkaryl, or aralkyl
 $\text{B} = \text{Independently any nucleotide base, either naturally occurring or chemically modified, or optionally H (abasic).}$

Figure 11: Modification Strategy

Figure 12: Phosphorylated siNA constructs

Figure 13: 5'-phosphate modifications

**Figure 14A: Duplex forming oligonucleotide constructs that utilize
Palindrome or repeat sequences**

Figure 14B: Example of a duplex forming oligonucleotide sequence that utilizes a palindrome or repeat sequence

Figure 14C: Example of a duplex forming oligonucleotide sequence that utilizes a palindrome or repeat sequence, self assembly

Figure 14D: Example of a duplex forming oligonucleotide sequence that utilizes a palindrome or repeat sequence, self assembly and inhibition of Target Sequence Expression

Figure 15: Duplex forming oligonucleotide constructs that utilize artificial palindrome or repeat sequences

Figure 16: Examples of double stranded multifunctional siNA constructs with distinct complementary regions

Figure 17: Examples of hairpin multifunctional siRNA constructs with distinct complementary regions

Figure 18: Examples of double stranded multifunctional siNA constructs with distinct complementary regions and a self complementary/palindrome region

Figure 19: Examples of hairpin multifunctional siRNA constructs with distinct complementary regions and a self complementary/palindrome region

Figure 20: Example of multifunctional siRNA targeting two Separate Target nucleic acid sequences

Figure 21: Example of multifunctional siNA targeting two regions within the same target nucleic acid sequence

FIGURE 22