INTEGRAL HIRUKOITZA

1. Izan bedi hurrengo [D] domeinua:

$$D = \{(x, y) \in \mathbb{R}^3 / x \ge 0 \land y \ge 0 \land z \ge 0 \land x + y + z \le 1\}$$

Kalkulatu $\iiint_D z \, dx \, dy \, dz$ integral hirukoitzaren balioa

E:
$$\frac{1}{24}$$

2. Izan bedi XY planoari eta $z = x^2 + y^2$ eta $1 - x^2 - y^2 = 0$ gainazalen ekuazio kartesiarrei dagokien [D] domeinu komuna:

a) Kalkulatu [D]

E:
$$\frac{\pi}{2}$$

b) Kalkulatu $\iiint_D (x+y+z) dx dy dz$ integral hirukoitzaren balioa

E:
$$\frac{\pi}{6}$$

3. Integral hirukoitzaren kontzeptua erabiliz, kalkulatu $x^2 + y^2 + z^2 = 1$ eta $z^2 = x^2 + y^2$ ($z \ge 0$ izanik) gainazalen ekuazio kartesiarrei dagokien eskualde komunaren bolumena.

$$E: \frac{2\pi}{3} \left(1 - \frac{1}{\sqrt{2}} \right)$$

4. Kalkulatu hurrengo [D] domeinuaren bolumena:

$$D = \left\{ (x, y) \in \mathbb{R}^3 / x^2 + y^2 \le (z - 3)^2 \wedge x^2 + y^2 \le 4z \wedge z \le 3 \right\}$$

E: $\frac{14\pi}{3}$

5. Integral hirukoitza erabiliz, kalkulatu $4x^2 + y^2 = 4$, $4x^2 + z^2 = 4$ zilindroek mugatzen duten [V] domeinuaren bolumena.

E:
$$\frac{64}{3}$$

6. Aldagai aldaketa egokia erabiliz, kalkulatu hurrengo zilindro parabolikoek mugatzen duten [C] gorputzaren bolumena:

$$y-z^2=0$$
; $2y-z^2=0$; $z-x^2=0$; $2z-x^2=0$; $x-y^2=0$; $2x-y^2=0$

E: $\frac{1}{7}$

7. Determinatu lehen oktantean dagoen dentsitate konstanteko gorputz baten masa zentroa, baldin gorputza hurrengo gainazalek mugatzen badute

$$x^{2} + y^{2} = z$$
, $x^{2} + y^{2} = 2z$, $xy = 1$, $xy = 4$, $y = x$, $y = 3x$.

E:
$$x_m = \frac{62(13\sqrt{13} - 9)}{675}$$
, $y_m = \frac{62(\sqrt{3} + 1)}{75}$, $z_m = \frac{7(90 + 9\ln 3)}{40}$

8. Kalkulatu honako gainazal hauek mugatzen duten [C] gorputz homogeneoaren bolumena:

$$x^2 + z - 2 = 0$$
, $y + z = 5$, $y = 0$, $z = 0$

E:
$$\frac{56\sqrt{2}}{5}$$

9. [C] gorputz homogeneoa honako gainazal hauek mugatzen dute:

$$x^{2} + y^{2} + z - 4 = 0$$
 $(z \ge 0)$, $h^{2}(x^{2} + y^{2}) - 4(z + h)^{2} = 0$ $(z \ge -h)$

Kalkulatu h parametro positiboa, [C]-ren grabitate zentro geometrikoa jatorrian kokatuta egon dadin.

E:
$$h = 4\sqrt{2}$$

10. [C] gorputz homogeneo bat oktante positiboan honako gainazal hauek mugatzen dute:

$$x+y+z-8=0$$
, $x+4y-8=0$, $x+2y-8=0$

Kalkulatu [C]-ren grabitate zentro geometrikoaren z_c koordenatua.

E:
$$z_c = \frac{19}{10}$$

11. Izan bedi honako gainazal hauek mugatzen duten [V] gorputz homogeneoa:

$$x^{2} + y^{2} + = 9$$
, $x + z - 6 = 0$, $x + 3z - 6 = 0$

Marraztu [V]-ren grafiko hurbildua eta frogatu bere bolumena V= 36π dela eta bere grabitate zentro geometrikoa (-3/8, 0, 17/4) posizioan dagoela.

12. [C] gorputz homogeneoa honako gainazalek mugatzen dute:

$$z = 4 - \sqrt{x^2 + y^2}$$
 $(z \le 4)$, $x^2 + y^2 - 2z = 0$

Frogatu bere masa zentroa (0, 0, 9/5) puntuan kokatuta dagoela.

13. Kalkulatu lehenengo oktantean 6x+3y+2z=6 planoak mugatzen duen tetraedroaren grabitate zentroa:

E:
$$x_c = \frac{1}{4}$$
, $y_c = \frac{1}{2}$, $z_c = \frac{3}{4}$