Data Science III with python (Class notes)

STAT 303-3

Arvind Krishna, Emre Besler, and Lizhen Shi

2023 - 03 - 24

Table of contents

Pr	eface	e	8								
ı	М	oving towards non-linearity	9								
1	Introduction to scikit-learn										
	1.1	Splitting data into train and test	11								
		1.1.1 Stratified splitting	12								
	1.2	Scaling data	13								
	1.3	Fitting a model	14								
	1.4	Computing performance metrics	15								
		1.4.1 Accuracy	15								
		1.4.2 ROC-AUC	16								
		1.4.3 Confusion matrix & precision-recall	16								
	1.5	Tuning the model hyperparameters	19								
		1.5.1 Tuning decision threshold probability	21								
		1.5.2 Tuning the regularization parameter	24								
		1.5.3 Tuning the decision threshold probability and the regularization parameter simultaneously	27								
2	Reg	gression splines	30								
	2.1										
		2.1.1 Model of degree 1	31								
		2.1.2 Model of degree 2	34								
		2.1.3 Model of degree 3	35								
	2.2	Regression splines with knots at uniform quantiles of data	36								
	2.3	Natural cubic splines	37								
	2.4	Generalized additive model (GAM)	38								
	2.5	MARS (Multivariate Adaptive Regression Splines)	40								
		2.5.1 MARS of degree 1	40								
		2.5.2 MARS of degree 2	42								
		2.5.3 MARS including categorical variables	44								
3	Reg	gression trees	50								
	3.1	Building a regression tree	51								

	3.2	1 01	54
			54
		8	54
		9	66
	3.3		58
		1 1	31
		3.3.2 Train and test accuracies (R-squared) vs alpha	32
4	Clas	ssification trees 6	4
	4.1	Building a classification tree	35
	4.2	9	37
	4.3		39
			39
			74
	4.4	•	78
		cost compression prusing	Ŭ
5	Bag	ging 8	80
	5.1	Bagging regression trees	31
		5.1.1 Model accuracy vs number of trees	31
			35
	5.2		36
		66 6	38
		· · · · · · · · · · · · · · · · · · ·)2
		1 0 00 0 11 1	93
6	Ran	dom Forest	9
_	6.1	Random Forest for regression	
		6.1.1 Model accuracy vs number of trees	
		6.1.2 Tuning random forest	
	6.2	Random forest for classification	
		6.2.1 Model accuracy vs number of trees	
		6.2.2 Tuning random forest	
	6.3	Random forest vs Bagging	
		ing random forest	
7	Λda	ptive Boosting 12) (
•	7.1	Hyperparameters	
	7.1	AdaBoost for regression	
	1.4	7.2.1 Number of trees vs cross validation error	
		7.2.1 Number of trees vs cross validation error	
		· · · · · · · · · · · · · · · · · · ·	
		7.2.3 Learning rate vs cross validation error	
		1.2.4 Tuning Adaboost for regression	۱ د

	7.3	AdaBoost for classification	29
		7.3.1 Number of trees vs cross validation accuracy	29
		7.3.2 Depth of each tree vs cross validation accuracy $\dots \dots \dots$	31
		7.3.3 Learning rate vs cross validation accuracy	33
		7.3.4 Tuning AdaBoost Classifier hyperparameters	35
		7.3.5 Tuning the decision threshold probability	36
8	Grad	ent Boosting 1	40
	8.1	Hyperparameters	40
	8.2	Gradient boosting for regression	41
		8.2.1 Number of trees vs cross validation error	41
		B.2.2 Depth of tree vs cross validation error $\dots \dots \dots$	43
		8.2.3 Learning rate vs cross validation error	45
		8.2.4 Subsampling vs cross validation error	47
		3.2.5 Tuning Gradient boosting for regression	49
		8.2.6 Ensemble modeling (for regression models)	51
	8.3	Gradient boosting for classification	51
		8.3.1 Number of trees vs cross validation accuracy	52
		8.3.2 Depth of each tree vs cross validation accuracy	54
		8.3.3 Learning rate vs cross validation accuracy	56
		3.3.4 Tuning Gradient boosting Classifier	58
9	XGE	post 1	63
	9.1	Hyperparameters	63
	9.2	XGBoost for regression	64
		9.2.1 Number of trees vs cross validation error	64
		9.2.2 Depth of tree vs cross validation error	66
		9.2.3 Learning rate vs cross validation error	68
		9.2.4 Regularization (reg_lambda) vs cross validation error	70
		9.2.5 Regularization (gamma) vs cross validation error	73
		9.2.6 Tuning XGboost regressor	75
		9.2.7 Early stopping with XGBoost	76
	9.3	XGBoost for classification	78
		9.3.1 Precision & recall vs scale_pos_weight	83
_			
ΑĮ	open	ices 1	86
Α			86
	Insti		86
	A.1		86
	A.2	0	90
		Data	90

		A.2.1	Train-test split
		A.2.2	Scaling predictors
		A.2.3	Tuning the degree
		A.2.4	Test accuracy with optimal degree
			Tuning C
			Test accuracy with optimal degree and C
			Tuning decision threshold probability
			Test accuracy for optimal degree, C, and threshold probability 192
			Simultaneous optimization of multiple parameters
			Test accuracy with optimal parameters obtained simultaneously 192
			Optimizing parameters for multiple performance metrics 192
			Performance metrics computation
_		_	D 104
В		gnment	
	B.1	0	s of freedom
			Quadratic spline
			Natural cubic splines
	D 0		Generalized additive model
	B.2		r of knots
			Cubic splines
			Natural cubic splines
	D 0		Degree 4 spline
	B.3	_	ion problem
			Data preparation
			Optimal MARS degree
			Fitting MARS model
			Interpreting MARS basis functions
			Feature importance
			Prediction
			vial train data
			Prediction with non-trivial train data
			Reducing model variance
			Generalized additive model (GAM)
			Prediction with GAM
			Reducing GAM prediction variance
			Natural cubic splines
	_		Fitting the natural cubic splines model
	B.4	GAM fo	or classification
С	Assi	gnment	C 202
		_	

	C.1	Regression Problem - Miami housing
		C.1.1 Data preparation
		C.1.2 Decision tree
		C.1.3 Tuning decision tree
		C.1.4 Bagging decision trees
		C.1.5 Bagging without bootstrapping
		C.1.6 Tuning bagged tree model
		C.1.7 Bagging feature importance
		C.1.8 Random forest
	C.2	Classification - Term deposit
		C.2.1 Data preparation
		C.2.2 Decision tree
		C.2.3 Random forest
	C.3	Predictor transformations in trees
_		
D		gnment D
		ructions
	D.1	Conceptual
		D.1.1 AdaBoost vs Random Forest
	D 0	D.1.2 Loss functions
	D.2	Regression Problem - Miami housing
		* *
		D.2.2 AdaBoost hyperparameter tuning
		•
		D.2.4 Huber loss 211 D.2.5 RandomizedSearchCV vs GridSearchCV 211
		D.2.6 Gradient boosting (Huber loss) hyperparameter tuning
		D.2.7 Gradient boosting (fluber loss) hyperparameter tuning
		D.2.8 Bias-variance
		D.2.9 XGBoost objective function
		D.2.10 XGBoost hyperparameter tuning
		D.2.11 XGBoost Feature importance
	D.3	Classification - Term deposit
	D.0	D.3.1 Data preparation
		D.3.2 Boosting
Ε	Stra	tified splitting (classification problem) 217
	E.1	Stratified splitting with respect to response
	E.2	Stratified splitting with respect to response and categorical predictors 218
	E.3	Example 1
	E.4	Example 2: Simulation results
		Distribution of train and test accuracies
		E.4.1 Stratified splitting only with respect to the response

	E.4.2	Stratified splitting with respect to the response and categorical predic	ctors223
F	Datasets, a	assignment and project files	225
Re	eferences		226

Preface

These are class notes for the course STAT303-3. This is not the course text-book. You are required to read the relevant sections of the book as mentioned on the course website.

The course notes are currently being written, and will continue to being developed as the course progresses (just like the class notes last quarter). Please report any typos / mistakes / inconsistencies / issues with the class notes / class presentations in your comments here. Thank you!

Part I Moving towards non-linearity

1 Introduction to scikit-learn

In this chapter, we'll learn some functions from the library sklearn that will be useful in:

- 1. Splitting the data into train and test
- 2. Scaling data
- 3. Fitting a model
- 4. Computing model performance metrics
- 5. Tuning model hyperparameters* to optimize the desired performance metric

We'll use a classification problem to illustrate the functions. However, similar functions can be used for regression problems, i.e., prediction problems with a continuous response.

```
# Importing necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(font_scale=1.35)
```

Let us import the sklearn modules useful in developing statistical models.

```
# sklearn has 100s of models - grouped in sublibraries, such as linear_model
from sklearn.linear_model import LogisticRegression, LinearRegression

# sklearn has many tools for cleaning/processing data, also grouped in sublibraries
# splitting one dataset into train and test, computing cross validation score, cross valid
from sklearn.model_selection import train_test_split, cross_val_predict, cross_val_score
```

^{*}In machine learning, a model hyperparameter is a parameter that cannot be learned from training data and must be set before training the model. Hyperparameters control aspects of the model's behavior and can greatly impact its performance. For example, the regularization parameter λ , in linear regression is a hyperparameter. You need to specify it before fitting the model. On the other hand, the beta coefficients in linear regression are parameters, as you learn them while training the model, and don't need to specify their values beforehand.

```
#sklearn module for scaling data
from sklearn.preprocessing import StandardScaler

#sklearn modules for computing the performance metrics
from sklearn.metrics import accuracy_score, mean_absolute_error, mean_squared_error, r2_sc
roc_curve, auc, precision_score, recall_score, confusion_matrix

#Reading data
data = pd.read_csv('./Datasets/diabetes.csv')
```

Scikit-learn doesn't support the formula-like syntax of specifying the response and the predictors as in the statsmodels library. We need to create separate objects for predictors and response, which should be *array-like*. A Pandas DataFrame / Series or a Numpy array are *array-like* objects.

Let us reference our predictors as object X, and the response as object y.

```
# Separating the predictors and response - THIS IS HOW ALL SKLEARN OBJECTS ACCEPT DATA (di y = \text{data.Outcome} X = data.drop("Outcome", axis = 1)
```

1.1 Splitting data into train and test

Let us create train and test datasets for developing a model to predict if a person has diabetes.

```
# Creating training and test data
# 80-20 split, which is usual - 70-30 split is also fine, 90-10 is fine if the dataset
# random_state to set a random seed for the splitting - reproducible results
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state =
```

Let us find the proportion of classes ('having diabetes' (y = 1) or 'not having diabetes' (y = 0)) in the complete dataset.

```
#Proportion of Os and 1s in the complete data
y.value_counts()/y.shape

0     0.651042
1     0.348958
Name: Outcome, dtype: float64
```

Let us find the proportion of classes ('having diabetes' (y = 1) or 'not having diabetes' (y = 0)) in the train dataset.

```
#Proportion of Os and 1s in train data
y_train.value_counts()/y_train.shape

0     0.644951
1     0.355049
Name: Outcome, dtype: float64

#Proportion of Os and 1s in test data
y_test.value_counts()/y_test.shape

0     0.675325
1     0.324675
Name: Outcome, dtype: float64
```

We observe that the proportion of 0s and 1s in the train and test dataset are slightly different from that in the complete data. In order for these datasets to be more representative of the population, they should have a proportion of 0s and 1s similar to that in the complete dataset. This is especially critical in case of imbalanced datasets, where one class is represented by a significantly smaller number of instances than the other(s).

When training a classification model on an imbalanced dataset, the model might not learn enough about the minority class, which can lead to poor generalization performance on new data. This happens because the model is biased towards the majority class, and it might even predict all instances as belonging to the majority class.

1.1.1 Stratified splitting

We will use the argument stratify to obtain a proportion of 0s and 1s in the train and test datasets that is similar to the proportion in the complete 'data.

```
#Stratified train-test split
X_train_stratified, X_test_stratified, y_train_stratified,\
y_test_stratified = train_test_split(X, y, test_size = 0.2, random_state = 45, stratify=y)
#Proportion of 0s and 1s in train data with stratified split
y_train_stratified.value_counts()/y_train.shape
```

```
0  0.651466
1  0.348534
Name: Outcome, dtype: float64

#Proportion of Os and 1s in test data with stratified split y_test_stratified.value_counts()/y_test.shape

0  0.649351
1  0.350649
Name: Outcome, dtype: float64
```

The proportion of the classes in the stratified split mimics the proportion in the complete dataset more closely.

By using stratified splitting, we ensure that both the train and test data sets have the same proportion of instances from each class, which means that the model will see enough instances from the minority class during training. This, in turn, helps the model learn to distinguish between the classes better, leading to better performance on new data.

Thus, stratified splitting helps to ensure that the model sees enough instances from each class during training, which can improve the model's ability to generalize to new data, particularly in cases where one class is underrepresented in the dataset.

Let us develop a logistic regression model for predicting if a person has diabetes.

1.2 Scaling data

In certain models, it may be important to scale data for various reasons. In a logistic regression model, scaling can help with model convergence. Scikit-learn uses a method known as gradient-descent (not in scope of the syllabus of this course) to obtain a solution. In case the predictors have different orders of magnitude, the algorithm may fail to converge. In such cases, it is useful to standardize the predictors so that all of them are at the same scale.

```
# With linear/logistic regression in scikit-learn, especially when the predictors have dif
# of magn., scaling is necessary. This is to enable the training algo. which we did not co
scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test) # Do NOT refit the scaler with the test data, just
```

1.3 Fitting a model

Let us fit a logistic regression model for predicting if a person has diabetes. Let us try fitting a model with the un-scaled data.

```
# Create a model object - not trained yet
logreg = LogisticRegression()

# Train the model
logreg.fit(X_train, y_train)
```

C:\Users\akl0407\Anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:763: Converge: STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

```
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    n_iter_i = _check_optimize_result(
```

LogisticRegression()

Note that the model with the un-scaled predictors fails to converge. Check out the data X_train to see that this may be probably due to the predictors have different orders of magnitude. For example, the predictor DiabetesPedigreeFunction has values in [0.078, 2.42], while the predictor Insulin has values in [0, 800].

Let us fit the model to the scaled data.

```
# Create a model - not trained yet
logreg = LogisticRegression()

# Train the model
logreg.fit(X_train_scaled, y_train)
```

LogisticRegression()

The model converges to a solution with the scaled data!

The coefficients of the model can be returned with the coef_attribute of the LogisticRegression() object. However, the output is not as well formatted as in the case of the statsmodels library since sklearn is developed primarily for the purpose of prediction, and not inference.

```
# Use coef_ to return the coefficients - only log reg inference you can do with sklearn print(logreg.coef_)

[[ 0.32572891  1.20110566 -0.32046591  0.06849882 -0.21727131  0.72619528
```

1.4 Computing performance metrics

0.40088897 0.29698818]]

1.4.1 Accuracy

Let us test the model prediction accuracy on the test data. We'll demonstrate two different functions that can be used to compute model accuracy - accuracy_score(), and score().

The accuracy_score() function from the metrics module of the sklearn library is general, and can be used for any classification model. We'll use it along with the predict() method of the LogisticRegression() object, which returns the predicted class based on a threshold probability of 0.5.

```
# Get the predicted classes first
y_pred = logreg.predict(X_test_scaled)

# Use the predicted and true classes for accuracy
print(accuracy_score(y_pred, y_test)*100)
```

73.37662337662337

The score() method of the LogisticRegression() object can be used to compute the accuracy only for a logistic regression model. Note that for a LinearRegression() object, the score() method will return the model R-squared.

```
# Use .score with test predictors and response to get the accuracy
# Implements the same thing under the hood
print(logreg.score(X_test_scaled, y_test)*100)
```

73.37662337662337

1.4.2 ROC-AUC

The roc_curve() and auc() functions from the metrics module of the sklearn library can be used to compute the ROC-AUC, or the area under the ROC curve. Note that for computing ROC-AUC, we need the predicted probability, instead of the predicted class. Thus, we'll use the predict_proba() method of the LogisticRegression() object, which returns the predicted probability for the observation to belong to each of the classes, instead of using the predict() method, which returns the predicted class based on threshold probability of 0.5.

```
#Computing the predicted probability for the observation to belong to the positive class (
#The 2nd column in the output of predict_proba() consists of the probability of the observ
#belong to the positive class (y=1)
y_pred_prob = logreg.predict_proba(X_test_scaled)[:,1]

#Using the predicted probability computed above to find ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(y_test, y_pred_prob)
print(auc(fpr, tpr))# AUC of ROC
```

0.7923076923076922

1.4.3 Confusion matrix & precision-recall

The confusion_matrix(), precision_score(), and recall_score() functions from the metrics module of the sklearn library can be used to compute the confusion matrix, precision, and recall respectively.


```
print("Precision: ", precision_score(y_test, y_pred))
print("Recall: ", recall_score(y_test, y_pred))
```

Precision: 0.6046511627906976

Recall: 0.52

Let us compute the performance metrics if we develop the model using stratified splitting.

```
# Developing the model with stratified splitting

#Scaling data
scaler = StandardScaler().fit(X_train_stratified)
X_train_stratified_scaled = scaler.transform(X_train_stratified)
X_test_stratified_scaled = scaler.transform(X_test_stratified)

# Training the model
logreg.fit(X_train_stratified_scaled, y_train_stratified)
```

```
#Computing the accuracy
y_pred_stratified = logreg.predict(X_test_stratified_scaled)
print("Accuracy: ",accuracy_score(y_pred_stratified, y_test_stratified)*100)

#Computing the ROC-AUC
y_pred_stratified_prob = logreg.predict_proba(X_test_stratified_scaled)[:,1]
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC

#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_stratified))
print("Recall: ", recall_score(y_test_stratified, y_pred_stratified))

#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_stratified), columns=['Prediction index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 78.57142857142857 ROC-AUC: 0.85055555555556 Precision: 0.7692307692307693 Recall: 0.55555555555556

The model with the stratified train-test split has a better performance as compared to the other model on all the performance metrics!

1.5 Tuning the model hyperparameters

A hyperparameter (among others) that can be trained in a logistic regression model is the regularization parameter.

We may also wish to tune the decision threshold probability. Note that the decision threshold probability is not considered a hyperparameter of the model. Hyperparameters are model parameters that are set prior to training and cannot be directly adjusted by the model during training. Examples of hyperparameters in a logistic regression model include the regularization parameter, and the type of shrinkage penalty - lasso / ridge. These hyperparameters are typically optimized through a separate tuning process, such as cross-validation or grid search, before training the final model.

The performance metrics can be computed using a desired value of the threshold probability. Let us compute the performance metrics for a desired threshold probability of 0.3.

```
# Performance metrics computation for a desired threshold probability of 0.3
desired_threshold = 0.3
\# Classifying observations in the positive class (y = 1) if the predicted probability is g
# than the desired decision threshold probability
y_pred_desired_threshold = y_pred_stratified_prob > desired_threshold
y_pred_desired_threshold = y_pred_desired_threshold.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred_desired_threshold, y_test_stratified)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_desired_threshold))
print("Recall: ", recall_score(y_test_stratified, y_pred_desired_threshold))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_desired_threshold),
                  columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1']
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 75.32467532467533
ROC-AUC: 0.85055555555556
Precision: 0.6111111111111112
Recall: 0.8148148148148148

1.5.1 Tuning decision threshold probability

Suppose we wish to find the optimal decision threshold probability to maximize accuracy. Note that we cannot use the test dataset to optimize model hyperparameters, as that may lead to overfitting on the test data. We'll use K-fold cross validation on train data to find the optimal decision threshold probability.

We'll use the $cross_val_predict()$ function from the model_selection module of sklearn to compute the K-fold cross validated predicted probabilities. Note that this function simplifies the task of manually creating the K-folds, training the model K-times, and computing the predicted probabilities on each of the K-folds. Thereafter, the predicted probabilities will be used to find the optimal threshold probability that maximizes the classification accuracy.

```
for threshold_prob in hyperparam_vals:
    predicted_class = predicted_probability[:,1] > threshold_prob
    predicted_class = predicted_class.astype(int)

#Computing the accuracy
    accuracy = accuracy_score(predicted_class, y_train_stratified)*100
    accuracy_iter.append(accuracy)
```

Let us visualize the accuracy with change in decision threshold probability.

```
# Accuracy vs decision threshold probability
sns.scatterplot(x = hyperparam_vals, y = accuracy_iter)
plt.xlabel('Decision threshold probability')
plt.ylabel('Average 5-fold CV accuracy');
```


The optimal decision threshold probability is the one that maximizes the K-fold cross validation accuracy.

```
# Optimal decision threshold probability
hyperparam_vals[accuracy_iter.index(max(accuracy_iter))]
```

0.46

```
# Performance metrics computation for the optimum decision threshold probability
desired_threshold = 0.46
\# Classifying observations in the positive class (y = 1) if the predicted probability is g
# than the desired decision threshold probability
y_pred_desired_threshold = y_pred_stratified_prob > desired_threshold
y_pred_desired_threshold = y_pred_desired_threshold.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred_desired_threshold, y_test_stratified)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_desired_threshold))
print("Recall: ", recall_score(y_test_stratified, y_pred_desired_threshold))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_desired_threshold),
                  columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1']
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 79.87012987012987
ROC-AUC: 0.85055555555556
Precision: 0.7804878048780488
Recall: 0.5925925925925926

Model performance on test data has improved with the optimal decision threshold probability.

1.5.2 Tuning the regularization parameter

The LogisticRegression() method has a default L2 regularization penalty, which means ridge regression. C is $1/\lambda$, where λ is the hyperparameter that is multiplied with the ridge penalty. C is 1 by default.

```
accuracy_iter = []
hyperparam_vals = 10**np.linspace(-3.5, 1)

for c_val in hyperparam_vals: # For each possible C value in your grid
    logreg_model = LogisticRegression(C=c_val) # Create a model with the C value
    accuracy_iter.append(cross_val_score(logreg_model, X_train_stratified_scaled, y_train_scoring='accuracy', cv=5)) # Find the cv results
```

```
plt.plot(hyperparam_vals, np.mean(np.array(accuracy_iter), axis=1))
plt.xlabel('C')
plt.ylabel('Average 5-fold CV accuracy')
plt.xscale('log')
plt.show()
```



```
# Optimal value of the regularization parameter 'C'
optimal_C = hyperparam_vals[np.argmax(np.array(accuracy_iter).mean(axis=1))]
optimal_C
```

0.11787686347935879

```
# Developing the model with stratified splitting and optimal 'C'

#Scaling data
scaler = StandardScaler().fit(X_train_stratified)
X_train_stratified_scaled = scaler.transform(X_train_stratified)
X_test_stratified_scaled = scaler.transform(X_test_stratified)
```

```
# Training the model
logreg = LogisticRegression(C = optimal_C)
logreg.fit(X_train_stratified_scaled, y_train_stratified)
#Computing the accuracy
y_pred_stratified = logreg.predict(X_test_stratified_scaled)
print("Accuracy: ",accuracy_score(y_pred_stratified, y_test_stratified)*100)
#Computing the ROC-AUC
y_pred_stratified_prob = logreg.predict_proba(X_test_stratified_scaled)[:,1]
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_stratified))
print("Recall: ", recall_score(y_test_stratified, y_pred_stratified))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_stratified), columns=['Prediction of the columns of the column of t
                                       index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```


1.5.3 Tuning the decision threshold probability and the regularization parameter simultaneously

```
iter_number = iter_number + 1
  # Parameters for highest accuracy
  optimal_C = accuracy_iter.sort_values(by = 'accuracy', ascending = False).iloc[0,:]['C']
  optimal_threshold = accuracy_iter.sort_values(by = 'accuracy', ascending = False).iloc[0,
  #Optimal decision threshold probability
  print("Optimal decision threshold = ", optimal_threshold)
  #Optimal C
  print("Optimal C = ", optimal_C)
Optimal decision threshold = 0.46
Optimal C = 4.291934260128778
  # Developing the model with stratified splitting, optimal decision threshold probability,
  #Scaling data
  scaler = StandardScaler().fit(X_train_stratified)
  X_train_stratified_scaled = scaler.transform(X_train_stratified)
  X_test_stratified_scaled = scaler.transform(X_test_stratified)
  # Training the model
  logreg = LogisticRegression(C = optimal_C)
  logreg.fit(X_train_stratified_scaled, y_train_stratified)
  # Performance metrics computation for the optimal threshold probability
  y_pred_stratified_prob = logreg.predict_proba(X_test_stratified_scaled)[:,1]
  # Classifying observations in the positive class (y = 1) if the predicted probability is g
  # than the desired decision threshold probability
  y_pred_desired_threshold = y_pred_stratified_prob > optimal_threshold
  y_pred_desired_threshold = y_pred_desired_threshold.astype(int)
  #Computing the accuracy
  print("Accuracy: ",accuracy_score(y_pred_desired_threshold, y_test_stratified)*100)
  #Computing the ROC-AUC
  fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
  print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
```

Accuracy: 79.87012987012987 ROC-AUC: 0.8509259259259259 Precision: 0.7804878048780488 Recall: 0.5925925925925926

Later in the course, we'll see the sklearn function GridSearchCV, which is used to optimize several model hyperparameters simultaneously with K-fold cross validation, while avoiding for loops.

2 Regression splines

Read sections 7.1-7.4 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

```
import pandas as pd
import numpy as np
import statsmodels.formula.api as smf
import statsmodels.api as sm
import seaborn as sns
import matplotlib.pyplot as plt
from patsy import dmatrix
from sklearn.metrics import mean_squared_error
# install the py-earth library first: https://anaconda.org/conda-forge/sklearn-contrib-py-
from pyearth import Earth
from sklearn.linear_model import LinearRegression
#Using the same datasets as used for linear regression in STAT303-2,
#so that we can compare the non-linear models with linear regression
trainf = pd.read_csv('./Datasets/Car_features_train.csv')
trainp = pd.read_csv('./Datasets/Car_prices_train.csv')
testf = pd.read_csv('./Datasets/Car_features_test.csv')
testp = pd.read_csv('./Datasets/Car_prices_test.csv')
train = pd.merge(trainf,trainp)
test = pd.merge(testf,testp)
train.head()
```

	carID	brand	model	year	transmission	mileage	fuelType	tax	mpg	engineSize	price
0	18473	bmw	6 Series	2020	Semi-Auto	11	Diesel	145	53.3282	3.0	37980
1	15064	bmw	6 Series	2019	Semi-Auto	10813	Diesel	145	53.0430	3.0	33980
2	18268	bmw	6 Series	2020	Semi-Auto	6	Diesel	145	53.4379	3.0	36850
3	18480	bmw	6 Series	2017	Semi-Auto	18895	Diesel	145	51.5140	3.0	25998
4	18492	bmw	6 Series	2015	Automatic	62953	Diesel	160	51.4903	3.0	18990

2.1 Polynomial regression vs Regression splines

2.1.1 Model of degree 1

```
X = pd.DataFrame(train['mileage'])
X_test = pd.DataFrame(test['mileage'])
y = train['price']
lr_model = LinearRegression()
lr_model.fit(X, y);

#Regression spline of degree 1

#Creating basis functions for splines of degree 1
transformed_x = dmatrix("bs(mileage , knots=(33000,66000,100000), degree = 1, include_integrated data = trainf,return_type = 'dataframe')

transformed_x.head()
```

	Intercept	$bs(mileage,\ knots=(33000,\ 66000,\ 100000),\ degree=1,\ include_intercept=False)[0]$	bs(mileage,
0	1.0	0.000303	0.000000
1	1.0	0.327646	0.000000
2	1.0	0.000152	0.000000
3	1.0	0.572563	0.000000
4	1.0	0.092333	0.907667

Note that the truncated power basis in the class presentation is conceptually simple to understand, it may run into numerical issues as powers of large numbers can lead to severe rounding errors. The bs() function generates the B-spline basis, which allows for efficient computation, especially in case of a large number of knots. All the basis function values are normalized to be in [0, 1] in the B-spline basis. Although we'll use the B-spline basis functions to fit splines, details regarding the B-spline basis functions are not included in the syllabus.

We actually don't need to separately generate basis functions, and then fit the model. We can do it in the same line of code using the statsmodels OLS method.

```
#Visualizing polynomial model and the regression spline model of degree 1
knots = [33000,66000,100000] #Knots for the spline
d=1 #Degree of predictor in the model
#Writing a function to visualize polynomial model and the regression spline model of degre
def viz_models():
    fig, axes = plt.subplots(1,2,figsize = (15,5))
    plt.subplots_adjust(wspace=0.2)
    #Visualizing the linear regression model
    pred_price = lr_model.predict(X)
    sns.scatterplot(ax = axes[0],x = 'mileage', y = 'price', data = train, color = 'orange
    sns.lineplot(ax = axes[0],x = train.mileage, y = pred_price, color = 'blue')
    axes[0].set_title('Polynomial regression model of degree '+str(d))
    #Visualizing the regression splines model of degree 'd'
    axes[1].set_title('Regression splines model of degree '+ str(d))
    sns.scatterplot(ax=axes[1],x = 'mileage', y = 'price', data = train, color = 'orange')
    sns.lineplot(ax=axes[1],x = train.mileage, y = reg_spline_model.predict(), color = 'bl
    for i in range(3):
        plt.axvline(knots[i], 0,100,color='red')
viz_models()
```


We observe the regression splines model better fits the data as compared to the polynomial regression model. This is because regression splines of degree 1 fit piecewise polynomials, or linear models on sub-sections of the predictor, which helps better capture the trend. However, this added flexibility may also lead to overfitting. Hence, one must be careful to check for overfitting when using splines. Overfitting may be checked by k-fold cross validation or comparing

test and train errors.

The red lines in the plot on the right denote the position of knots. Knots separate distinct splines.

Although, we can separately generate the basis functions for test data, it may lead to incaccurate results if the distribution of the predictor values in test data is different from that in the train data. This is because the B-spline basis functions of train data are generated after normalizing the predictor values. If the basis functions of test data are generated independently, their values may be inaccurate, as they will depend on the domain space spanned by the test data.

```
# Basis functions for test data - avoid generating basis functions separately for test dat
# as the test data normalization may be different from the train data normalization
test_x = dmatrix("bs(mileage , knots=(33000,66000,100000), degree = 1, include_intercept =
#Function to compute RMSE (root mean squared error on train and test datasets)
def rmse():
    #Error on train data for the linear regression model
    print("RMSE on train data:")
   print("Linear regression:", np.sqrt(mean_squared_error(lr_model.predict(X),train.price
    #Error on train data for the regression spline model
    print("Regression splines:", np.sqrt(mean_squared_error(reg_spline_model.predict(X),tr
    #Error on test data for the linear regression model
    print("\nRMSE on test data:")
    print("Linear regression:",np.sqrt(mean_squared_error(lr_model.predict(X_test),test.pr
    #Error on test data for the regression spline model
    print("Regression splines:",np.sqrt(mean_squared_error(reg_spline_model.predict(X_test
rmse()
```

RMSE on train data:

Linear regression: 14403.250083261853 Regression splines: 13859.640716531134

RMSE on test data:

Linear regression: 14370.94086395544 Regression splines: 13770.118474361932

2.1.2 Model of degree 2

A higher degree model will lead to additional flexibility for both polynomial and regression splines models.

Unlike polynomial regression, splines functions avoid imposing a global structure on the non-linear function of X. This provides a better local fit to the data.

```
rmse()
```

RMSE on train data:

Linear regression: 14009.819556665143 Regression splines: 13818.572654146721

RMSE on test data:

Linear regression: 13944.20691909441 Regression splines: 13660.777953039395

2.1.3 Model of degree 3

Unlike polynomial regression, splines functions avoid imposing a global structure on the non-linear function of X. This provides a better local fit to the data.

rmse()

RMSE on train data:

Linear regression: 13891.962447594644 Regression splines: 13822.70511947823

RMSE on test data:

Linear regression: 13789.708418357186 Regression splines: 13683.776494331632

2.2 Regression splines with knots at uniform quantiles of data

If degrees of freedom are provided instead of knots, the knots are by default chosen at uniform quantiles of data. For example if there are 7 degrees of freedom (including the intercept), then there will be 7-4=3 knots. These knots will be chosen at the 25th, 50th and 75th quantiles of the data.

```
#Regression spline of degree 3
#Regression spline of degree 3 with knots at uniform quantiles of data
reg_spline_model = smf.ols('price~bs(mileage, df = 6, degree = 3, include_intercept = Fals
                                 data = train).fit()
d=3
unif_knots = pd.qcut(train.mileage,4,retbins=True)[1][1:4]
knots=unif_knots
viz_models()
           Polynomial regression model of degree 3
                                                           Regression splines model of degree 3
150000
                                               140000
125000
                                              120000
100000
                                              100000
75000
50000
                                               60000
```

40000 20000

100000

150000

mileage

50000

200000

250000

Splines can be unstable at the outer range of predictors. Note that splines are themselves piecewise polynomials with no constraints at the 2 extreme ends of the predictor space. Thus, they may become unstable at those 2 ends. In the right scatter plot, we can see that price has a decreasing trend with mileage. However on the extreme left of the plot, we see the trend reversing with regard to the model, which suggests potential overfitting. Also, from the domain knowledge about cars we know that there is no reason why price will reduce if the car is relatively new. Thus, there may be overfitting with cubic splines at / near the extreme points of the domain space. In the figure (on the right), the left-most spline may be overfitting.

200000

250000

25000

-25000

50000

100000

150000

mileage

This motivates us to introduce natural cubic splines (below), which help with the stability at extreme points by enforcing the spline to be linear at those points. We may also think about

it as another kind of a "knot" being put at the two ends to make the spline stable at these points.

```
rmse()

RMSE on train data:
Linear regression: 13891.962447594644
Regression splines: 13781.79102252679

RMSE on test data:
Linear regression: 13789.708418357186
Regression splines: 13605.726076704668
```

2.3 Natural cubic splines

Page 298: "A natural spline is a regression spline with additional boundary constraints: the function is required to be linear at the boundary (in the region where X is smaller than the smallest knot, or larger than the largest knot). This additional constraint means that natural splines generally produce more stable estimates at the boundaries."

Note that the natural cubic spline is more stable than a cubic splines with knots at uniformly distributed quantiles.

rmse()

RMSE on train data:

Linear regression: 13891.962447594644 Regression splines: 13826.125469174143

RMSE on test data:

Linear regression: 13789.708418357186 Regression splines: 13660.35327661836

2.4 Generalized additive model (GAM)

GAM allows for flexible nonlinearities in several variables, but retain the additive structure of linear models. In a GAM, non-linear basis functions of predictors can be used as predictors of a linear regression model. For example,

$$y = f_1(X_1) + f_2(X_2) + \epsilon$$

is a GAM, where $f_1(.)$ may be a cubic spline based on the predictor X_1 , and $f_2(.)$ may be a step function based on the predictor X_2 .

#GAM
#GAM includes cubic splines for mileage. Other predictors are year, engineSize, mpg, milea
model_gam = smf.ols('price~bs(mileage,df=6,degree = 3)+year*engineSize*mpg*mileage', data

```
preds = model_gam.predict(test)
np.sqrt(mean_squared_error(preds,test.price))
```

8393.773177637542

```
#GAM
#GAM includes cubic splines for mileage, year, engineSize, mpg, and interactions of all pr
model_gam = smf.ols('price~bs(mileage,df=6,degree = 3)+bs(mpg,df=6,degree = 3)+\
bs(engineSize,df=6,degree = 3)+year*engineSize*mpg*mileage', data = train).fit()

preds = model_gam.predict(test)
np.sqrt(mean_squared_error(preds,test.price))
```

7981.100853841914

```
ols_object = smf.ols(formula = 'price~(year+engineSize+mileage+mpg)**2+I(mileage**2)+I(mileage**2)+I(mileage**2)+I(mileage**2)
model = ols_object.fit()
model.summary()
```

Table 2.3: OLS Regression Results

Dep. Variable:	price	R-squared:	0.704
Model:	OLS	Adj. R-squared:	0.703
Method:	Least Squares	F-statistic:	1308.
Date:	Sun, 09 Apr 2023	Prob (F-statistic):	0.00
Time:	20:48:35	Log-Likelihood:	-52157.
No. Observations:	4960	AIC:	1.043e + 05
Df Residuals:	4950	BIC:	1.044e + 05
Df Model:	9		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025]	0.975]
Intercept	-0.0009	0.000	-2.752	0.006	-0.002	-0.000
year	-1.1470	0.664	-1.728	0.084	-2.448	0.154
engineSize	0.0052	0.000	17.419	0.000	0.005	0.006
mileage	-31.4751	2.621	-12.010	0.000	-36.613	-26.337
mpg	-0.0201	0.002	-13.019	0.000	-0.023	-0.017
year:engineSize	9.5957	0.254	37.790	0.000	9.098	10.094

year:mileage	0.0154	0.001	11.816	0.000	0.013	0.018
year:mpg	0.0572	0.013	4.348	0.000	0.031	0.083
engineSize:mileage	-0.1453	0.008	-18.070	0.000	-0.161	-0.130
engineSize:mpg	-98.9062	11.832	-8.359	0.000	-122.102	-75.710
mileage:mpg	0.0011	0.000	2.432	0.015	0.000	0.002
I(mileage ** 2)	7.713e-06	3.75e-07	20.586	0.000	6.98e-06	8.45 e-06
I(mileage ** 3)	-1.867e-11	1.43e-12	-13.077	0.000	-2.15e-11	-1.59e-11

Omnibus:	1830.457	Durbin-Watson:	0.634
Prob(Omnibus):	0.000	Jarque-Bera (JB):	34927.811
Skew:	1.276	Prob(JB):	0.00
Kurtosis:	15.747	Cond. No.	$2.50e{+18}$

```
np.sqrt(mean_squared_error(model.predict(test),test.price))
```

9026.775740000594

Note the RMSE with GAM that includes regression splines for mileage is lesser than that of the linear regression model, indicating a better fit.

2.5 MARS (Multivariate Adaptive Regression Splines)

```
from pyearth import Earth
X=pd.DataFrame(train['mileage'])
y=pd.DataFrame(train['price'])
```

2.5.1 MARS of degree 1

```
model = Earth(max_terms=500, max_degree=1) # note, terms in brackets are the hyperparamete
model.fit(X,y)
```

C:\Users\akl0407\Anaconda3\lib\site-packages\pyearth\earth.py:813: FutureWarning: `rcond` pac
To use the future default and silence this warning we advise to pass `rcond=None`, to keep use
pruning_passer.run()

C:\Users\akl0407\Anaconda3\lib\site-packages\pyearth\earth.py:1066: FutureWarning: `rcond` pour to use the future default and silence this warning we advise to pass `rcond=None`, to keep use coef, resid = np.linalg.lstsq(B, weighted_y[:, i])[0:2]

Earth(max_degree=1, max_terms=500)

```
print(model.summary())
```

Earth Model

Basis Function	Pruned	Coefficient
(Intercept)	No	-553155
h(x0-22141)	Yes	None
h(22141-x0)	Yes	None
h(x0-3354)	No	-6.23571
h(3354-x0)	Yes	None
h(x0-15413)	No	-36.9613
h(15413-x0)	No	38.167
h(x0-106800)	Yes	None
h(106800-x0)	No	0.221844
h(x0-500)	No	170.039
h(500-x0)	Yes	None
h(x0-741)	Yes	None
h(741-x0)	No	-54.5265
h(x0-375)	No	-126.804
h(375-x0)	Yes	None
h(x0-2456)	Yes	None
h(2456-x0)	No	7.04609

MSE: 188429705.7549, GCV: 190035470.5664, RSQ: 0.2998, GRSQ: 0.2942

Model equation:

```
-553155 - 6.23(h(x0 - 3354)) - 36.96(h(x0 - 15413) + \dots - 7.04(h(2456 - x0)))
```

```
pred = model.predict(test.mileage)
np.sqrt(mean_squared_error(pred,test.price))
```

13650.2113154515

```
sns.scatterplot(x = 'mileage', y = 'price', data = train, color = 'orange')
sns.lineplot(x = train.mileage, y = model.predict(train.mileage), color = 'blue')
```

<AxesSubplot:xlabel='mileage', ylabel='price'>

2.5.2 MARS of degree 2

```
model = Earth(max_terms=500, max_degree=2) # note, terms in brackets are the hyperparamete
model.fit(X,y)
print(model.summary())
```

Earth Model

Basis Function	Pruned	Coefficient
(Intercept)	No	19369.7
h(x0-22141)	Yes	None
h(22141-x0)	Yes	None

```
h(x0-7531)*h(22141-x0) No 3.74934e-05
                           -6.74252e-05
h(7531-x0)*h(22141-x0) No
x0*h(x0-22141)
                    No
                            -8.0703e-06
h(x0-15012)
                     Yes
                           None
h(15012-x0)
                    No
                           1.79813
                            8.85097e-06
h(x0-26311)*h(x0-22141) No
h(26311-x0)*h(x0-22141) Yes
MSE: 189264421.5682, GCV: 190298913.1652, RSQ: 0.2967, GRSQ: 0.2932
C:\Users\akl0407\Anaconda3\lib\site-packages\pyearth\earth.py:813: FutureWarning: `rcond` packages\pyearth.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep us
 pruning_passer.run()
To use the future default and silence this warning we advise to pass `rcond=None`, to keep us
 coef, resid = np.linalg.lstsq(B, weighted_y[:, i])[0:2]
  pred = model.predict(test.mileage)
  np.sqrt(mean_squared_error(pred,test.price))
13590.995419204985
```

sns.scatterplot(x = 'mileage', y = 'price', data = train, color = 'orange')

<AxesSubplot:xlabel='mileage', ylabel='price'>

sns.lineplot(x = train.mileage, y = model.predict(train.mileage), color = 'blue')

MARS provides a better fit than the splines that we used above. This is because MARS tunes the positions of the knots and considers interactions (also with tuned knots) to improve the model fit. Tuning of knots may improve the fit of splines as well.

2.5.3 MARS including categorical variables

```
#A categorical variable can be turned to dummy variables to use the Earth package for fitt
train_cat = pd.get_dummies(train)
test_cat = pd.get_dummies(test)
```

train_cat.head()

	carID	year	mileage	tax	mpg	engineSize	price	brand_audi	brand_bmw	brand_ford	
0	18473	2020	11	145	53.3282	3.0	37980	0	1	0	
1	15064	2019	10813	145	53.0430	3.0	33980	0	1	0	
2	18268	2020	6	145	53.4379	3.0	36850	0	1	0	
3	18480	2017	18895	145	51.5140	3.0	25998	0	1	0	
4	18492	2015	62953	160	51.4903	3.0	18990	0	1	0	

C:\Users\akl0407\Anaconda3\lib\site-packages\pyearth\earth.py:813: FutureWarning: `rcond` parto use the future default and silence this warning we advise to pass `rcond=None`, to keep use pruning_passer.run()

Earth Model

Basis Function	Pruned	Coefficient
(Intercept)	No	2.17604e+06
h(engineSize-5.5)	No	9.80752e+06
h(5.5-engineSize)	No	1.92817e+06
h(mileage-21050)	No	18.687
h(21050-mileage)	No	-177.871
h(mileage-21050)*h(5.5-engineSize)	Yes	None
h(21050-mileage)*h(5.5-engineSize)	No	-0.224909
year	No	4126.41
h(mpg-53.3495)	No	344595
h(53.3495-mpg)	Yes	None
<pre>fuelType_Hybrid*h(5.5-engineSize)</pre>	No	6124.34
h(mileage-21050)*year	No	-0.00930239
h(21050-mileage)*year	No	0.0886455
h(engineSize-5.5)*year	No	-4864.84
h(5.5-engineSize)*year	No	-952.92
h(mileage-1422)*h(53.3495-mpg)	No	-16.62
h(1422-mileage)*h(53.3495-mpg)	No	16.4306
fuelType_Hybrid	No	-89090.6
h(mpg-21.1063)*h(53.3495-mpg)	Yes	None
h(21.1063-mpg)*h(53.3495-mpg)	No	-8815.99
h(mpg-23.4808)*h(5.5-engineSize)	No	-3649.97
h(23.4808-mpg)*h(5.5-engineSize)	Yes	None
h(mpg-20.5188)*year	No	31.7341
h(20.5188-mpg)*year	Yes	None

```
h(mpg-22.2566)*h(53.3495-mpg)
                                     No
                                              -52.2531
h(22.2566-mpg)*h(53.3495-mpg)
                                     No
                                              7916.19
h(mpg-22.6767)
                                              7.56432e+06
                                     No
h(22.6767-mpg)
                                     Yes
                                              None
h(mpg-23.9595)*h(mpg-22.6767)
                                     Yes
                                              None
h(23.9595-mpg)*h(mpg-22.6767)
                                     No
                                              -63225.4
h(mpg-21.4904)*h(22.6767-mpg)
                                     No
                                              -149055
h(21.4904-mpg)*h(22.6767-mpg)
                                     Yes
                                              None
                                              -887098
h(mpg-21.1063)
                                     No
h(21.1063-mpg)
                                     Yes
                                              None
h(mpg-29.5303)*h(mpg-22.6767)
                                              -3028.87
                                     No
h(29.5303-mpg)*h(mpg-22.6767)
                                     Yes
                                              None
h(mpg-28.0681)*h(5.5-engineSize)
                                              3572.89
                                     No
h(28.0681-mpg)*h(5.5-engineSize)
                                     Yes
                                              None
engineSize*h(5.5-engineSize)
                                     No
                                              -2952.65
h(mpg-25.3175)*h(mpg-21.1063)
                                     No
                                              -332551
h(25.3175-mpg)*h(mpg-21.1063)
                                     No
                                              324298
fuelType_Petrol*year
                                     No
                                              -1.37031
h(mpg-68.9279)*fuelType_Hybrid
                                     No
                                              -4087.9
h(68.9279-mpg)*fuelType_Hybrid
                                     Yes
                                              None
h(mpg-31.5043)*h(5.5-engineSize)
                                     Yes
                                              None
h(31.5043-mpg)*h(5.5-engineSize)
                                     No
                                              3691.82
h(mpg-32.7011)*h(5.5-engineSize)
                                     Yes
                                              None
h(32.7011-mpg)*h(5.5-engineSize)
                                     No
                                              -2262.78
h(mpg-44.9122)*h(mpg-22.6767)
                                     No
                                              335577
h(44.9122-mpg)*h(mpg-22.6767)
                                     No
                                              -335623
h(engineSize-5.5)*h(mpg-21.1063)
                                     No
                                              27815
h(5.5-engineSize)*h(mpg-21.1063)
                                     Yes
                                              None
h(mpg-78.1907)*fuelType_Hybrid
                                     Yes
                                              None
h(78.1907-mpg)*fuelType_Hybrid
                                     No
                                              2221.49
h(mpg-63.1632)*h(mpg-22.6767)
                                     Yes
                                              None
h(63.1632-mpg)*h(mpg-22.6767)
                                     No
                                              21.0093
fuelType_Hybrid*h(mpg-53.3495)
                                     No
                                              4121.91
h(mileage-22058)*h(53.3495-mpg)
                                     No
                                              16.6177
h(22058-mileage)*h(53.3495-mpg)
                                     No
                                              -16.6044
h(mpg-21.8985)
                                     Yes
                                              None
h(21.8985-mpg)
                                              371659
```

MSE: 45859836.5623, GCV: 47884649.3622, RSQ: 0.8296, GRSQ: 0.8221

C:\Users\akl0407\Anaconda3\lib\site-packages\pyearth\earth.py:1066: FutureWarning: `rcond` policy to use the future default and silence this warning we advise to pass `rcond=None`, to keep use coef, resid = np.linalg.lstsq(B, weighted_y[:, i])[0:2]

```
pred = model.predict(Xtest)
np.sqrt(mean_squared_error(pred,test.price))
```

7499.709075454322

Let us compare the RMSE of a MARS model with *mileage*, *mpg*, *engineSize* and *year* with a linear regression model having the same predictors.

```
X = train[['mileage','mpg','engineSize','year']]
model = Earth(max_terms=500, max_degree=2) # note, terms in brackets are the hyperparameter
model.fit(X,y)
print(model.summary())
```

C:\Users\akl0407\Anaconda3\lib\site-packages\pyearth\earth.py:813: FutureWarning: `rcond` parto use the future default and silence this warning we advise to pass `rcond=None`, to keep use pruning_passer.run()

Earth Model

Basis Function	Pruned	Coefficient
(Intercept)	No	-8.13682e+06
h(engineSize-5.5)	No	9.53908e+06
h(5.5-engineSize)	Yes	None
h(mileage-21050)	No	23.4448
h(21050-mileage)	No	-215.861
h(mileage-21050)*h(5.5-engineSize)	Yes	None
h(21050-mileage)*h(5.5-engineSize)	No	-0.278562
year	No	4125.85
h(mpg-53.3495)	Yes	None
h(53.3495-mpg)	Yes	None
h(mileage-21050)*year	No	-0.0116601
h(21050-mileage)*year	No	0.107624
h(mpg-53.2957)*h(5.5-engineSize)	No	-59801.3
h(53.2957-mpg)*h(5.5-engineSize)	No	59950.5
h(engineSize-5.5)*year	No	-4713.74
h(5.5-engineSize)*year	No	-755.742
h(mileage-1766)*h(53.3495-mpg)	No	-0.00337072
h(1766-mileage)*h(53.3495-mpg)	No	-0.144905

```
No
h(mpg-19.1277)*h(53.3495-mpg)
                                              161.153
h(19.1277-mpg)*h(53.3495-mpg)
                                     Yes
                                              None
h(mpg-23.4808)*h(5.5-engineSize)
                                     Yes
                                              None
h(23.4808-mpg)*h(5.5-engineSize)
                                     Yes
                                              None
h(mpg-21.4971)*h(5.5-engineSize)
                                     Yes
                                              None
h(21.4971-mpg)*h(5.5-engineSize)
                                     Yes
                                              None
h(mpg-40.224)*h(5.5-engineSize)
                                     Yes
                                              None
h(40.224-mpg)*h(5.5-engineSize)
                                     No
                                              298.139
engineSize*h(5.5-engineSize)
                                     No
                                              -2553.17
h(mpg-22.2566)
                                     Yes
                                              None
h(22.2566-mpg)
                                     No
                                              29257.3
h(mpg-20.7712)*h(22.2566-mpg)
                                     No
                                              143796
h(20.7712-mpg)*h(22.2566-mpg)
                                     No
                                              -1249.17
h(mpg-21.4971)*h(22.2566-mpg)
                                     No
                                              -315486
h(21.4971-mpg)*h(22.2566-mpg)
                                     Yes
                                              None
h(mpg-27.0995)*h(mpg-22.2566)
                                              3855.71
                                     No
h(27.0995-mpg)*h(mpg-22.2566)
                                     Yes
                                              None
h(mpg-29.3902)*year
                                     No
                                              6.05449
h(29.3902-mpg)*year
                                     No
                                              -20.176
h(mpg-28.0681)*h(5.5-engineSize)
                                     No
                                              59901.6
h(28.0681-mpg)*h(5.5-engineSize)
                                     No
                                              -55502.2
h(mpg-23.2962)*h(mpg-22.2566)
                                     No
                                              -56126
h(23.2962-mpg)*h(mpg-22.2566)
                                     No
                                              73153.9
h(mpg-69.0719)*h(mpg-53.3495)
                                     Yes
                                              None
h(69.0719-mpg)*h(mpg-53.3495)
                                     No
                                              -124.847
h(engineSize-5.5)*h(22.2566-mpg)
                                     No
                                              -20955.8
h(5.5-engineSize)*h(22.2566-mpg)
                                     No
                                              -8336.23
h(mpg-23.9595)*h(mpg-22.2566)
                                     No
                                              -62983
h(23.9595-mpg)*h(mpg-22.2566)
                                     Yes
                                              None
h(mpg-23.6406)*h(mpg-22.2566)
                                     No
                                              115253
h(23.6406-mpg)*h(mpg-22.2566)
                                     Yes
                                              None
h(mpg-56.1908)
                                     Yes
                                              None
h(56.1908-mpg)
                                     No
                                              -2239.85
h(mpg-29.7993)*h(53.3495-mpg)
                                     No
                                              -139.61
h(29.7993-mpg)*h(53.3495-mpg)
                                     No
                                              788.756
```

MSE: 49704412.0771, GCV: 51526765.3943, RSQ: 0.8153, GRSQ: 0.8086

C:\Users\akl0407\Anaconda3\lib\site-packages\pyearth\earth.py:1066: FutureWarning: `rcond` por To use the future default and silence this warning we advise to pass `rcond=None`, to keep use coef, resid = np.linalg.lstsq(B, weighted_y[:, i])[0:2]

```
Xtest = test[['mileage','mpg','engineSize','year']]
pred = model.predict(Xtest)
np.sqrt(mean_squared_error(pred,test.price))
```

7614.158359050244

```
ols_object = smf.ols(formula = 'price~(year+engineSize+mileage+mpg)**2', data = train)
model = ols_object.fit()
pred = model.predict(test)
np.sqrt(mean_squared_error(pred,test.price))
```

8729.912066822455

The RMSE for the MARS model is lesser than that of the linear regression model, as expected.

3 Regression trees

Read section 8.1.1 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score,train_test_split
from sklearn.metrics import mean_squared_error,r2_score
from sklearn.model_selection import KFold
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import GridSearchCV, ParameterGrid
#Libraries for visualizing trees
from sklearn.tree import export_graphviz
from six import StringIO
from IPython.display import Image
import pydotplus
import time as tm
#Using the same datasets as used for linear regression in STAT303-2,
#so that we can compare the non-linear models with linear regression
trainf = pd.read_csv('./Datasets/Car_features_train.csv')
trainp = pd.read_csv('./Datasets/Car_prices_train.csv')
testf = pd.read_csv('./Datasets/Car_features_test.csv')
testp = pd.read_csv('./Datasets/Car_prices_test.csv')
train = pd.merge(trainf,trainp)
test = pd.merge(testf,testp)
train.head()
```

	carID	brand	model	year	transmission	$_{ m mileage}$	${\it fuel Type}$	tax	mpg	engine Size	price
0	18473	bmw	6 Series	2020	Semi-Auto	11	Diesel	145	53.3282	3.0	37980
1	15064	bmw	6 Series	2019	Semi-Auto	10813	Diesel	145	53.0430	3.0	33980
2	18268	bmw	6 Series	2020	Semi-Auto	6	Diesel	145	53.4379	3.0	36850
3	18480	bmw	6 Series	2017	Semi-Auto	18895	Diesel	145	51.5140	3.0	25998
4	18492	bmw	6 Series	2015	Automatic	62953	Diesel	160	51.4903	3.0	18990

3.1 Building a regression tree

Develop a regression tree to predict car price based on mileage

```
X = train['mileage']
y = train['price']

#Defining the object to build a regression tree
model = DecisionTreeRegressor(random_state=1, max_depth=3)

#Fitting the regression tree to the data
model.fit(X.values.reshape(-1,1), y)
```

DecisionTreeRegressor(max_depth=3, random_state=1)


```
#prediction on test data
pred=model.predict(test[['mileage']])

#RMSE on test data
np.sqrt(mean_squared_error(test.price, pred))
```

13764.798425410803

```
#Visualizing the model fit
Xtest = np.linspace(min(X), max(X), 100)
pred_test = model.predict(Xtest.reshape(-1,1))
sns.scatterplot(x = 'mileage', y = 'price', data = train, color = 'orange')
sns.lineplot(x = Xtest, y = pred_test, color = 'blue')
```

<AxesSubplot:xlabel='mileage', ylabel='price'>

All cars falling within the same terminal node have the same predicted price, which is seen as flat line segments in the above model curve.

Develop a regression tree to predict car price based on mileage, mpg, engineSize and year

3.2 Optimizing parameters to improve the regression tree

Let us find the optimal depth of the tree and the number of terminal nodes (leaves) by cross validation.

3.2.1 Range of hyperparameter values

First, we'll find the minimum and maximum possible values of the depth and leaves, and then find the optimal value in that range.

```
model = DecisionTreeRegressor(random_state=1)
model.fit(X, y)

print("Maximum tree depth =", model.get_depth())

print("Maximum leaves =", model.get_n_leaves())
```

Maximum tree depth = 29
Maximum leaves = 4845

3.2.2 Cross validation: Coarse grid

We'll use the sklearn function GridSearchCV to find the optimal hyperparameter values over a grid of possible values. By default, GridSearchCV returns the optimal hyperparameter values based on the coefficient of determination \mathbb{R}^2 . However, the scoring argument of the function can be used to find the optimal parameters based on several different criteria as mentioned in the scoring-parameter documentation.

```
#Finding cross-validation error for trees
parameters = {'max_depth':range(2,30, 3),'max_leaf_nodes':range(2,4900, 100)}
cv = KFold(n_splits = 5,shuffle=True,random_state=1)
model = GridSearchCV(DecisionTreeRegressor(random_state=1), parameters, n_jobs=-1,verbose=
model.fit(X, y)
print (model.best_score_, model.best_params_)
```

```
Fitting 5 folds for each of 490 candidates, totalling 2450 fits 0.8433100904754441 {'max_depth': 11, 'max_leaf_nodes': 302}
```

Let us find the optimal hyperparameters based on the mean squared error, instead of \mathbb{R}^2 . Let us compute \mathbb{R}^2 as well during cross validation, as we can compute multiple performance metrics using the **scoring** argument. However, when computing multiple performance metrics, we will need to specify the performance metric used to find the optimal hyperparameters with the **refit** argument.

```
Fitting 5 folds for each of 490 candidates, totalling 2450 fits -42064467.15261547 {'max_depth': 11, 'max_leaf_nodes': 302}
```

Note that as the <code>GridSearchCV</code> function maximizes the performance metric to find the optimal hyperparameters, we are maximizing the negative mean squared error (neg_mean_squared_error), and the function returns the optimal negative mean squared error.

Let us visualize the mean squared error based on the hyperparameter values. We'll use the cross validation results stored in the cv_results_ attribute of the GridSearchCV fit() object.

```
#Detailed results of k-fold cross validation
cv_results = pd.DataFrame(model.cv_results_)
cv_results.head()
```

```
fig, axes = plt.subplots(1,2,figsize=(14,5))
plt.subplots_adjust(wspace=0.2)
axes[0].plot(cv_results.param_max_depth, np.sqrt(-cv_results.mean_test_neg_mean_squared_er
axes[0].set_ylim([6200, 7500])
axes[0].set_xlabel('Depth')
axes[0].set_ylabel('K-fold RMSE')
axes[1].plot(cv_results.param_max_leaf_nodes, np.sqrt(-cv_results.mean_test_neg_mean_squar
axes[1].set_ylim([6200, 7500])
axes[1].set_xlabel('Leaves')
axes[1].set_ylabel('K-fold RMSE');
```


We observe that for a depth of around 8-14, and number of leaves within 1000, we get the lowest K-fold RMSE. So, we should do a finer search in that region to obtain more precise hyperparameter values.

3.2.3 Cross validation: Finer grid

```
#Finding cross-validation error for trees
start_time = tm.time()
parameters = {'max_depth':range(8,15),'max_leaf_nodes':range(2,1000)}
cv = KFold(n_splits = 5,shuffle=True,random_state=1)
model = GridSearchCV(DecisionTreeRegressor(random_state=1), parameters, n_jobs=-1,verbose=
model.fit(X, y)
print (model.best_score_, model.best_params_)
print("Time taken =", round((tm.time() - start_time)/60), "minutes")
```

```
Fitting 5 folds for each of 6986 candidates, totalling 34930 fits 0.8465176078797111 {'max_depth': 10, 'max_leaf_nodes': 262}
Time taken = 1 minutes
```

From the above cross-validation, the optimal hyperparameter values are max_depth = 10 and max_leaf_nodes = 262.

```
#Developing the tree based on optimal hyperparameters found by cross-validation
model = DecisionTreeRegressor(random_state=1, max_depth=10,max_leaf_nodes=262)
model.fit(X, y)
```

DecisionTreeRegressor(max_depth=10, max_leaf_nodes=262, random_state=1)

```
#RMSE on test data
Xtest = test[['mileage','mpg','year','engineSize']]
np.sqrt(mean_squared_error(test.price, model.predict(Xtest)))
```

6921.0404660552895

The RMSE for the decision tree is lower than that of linear regression models and spline regression models (including MARS), with these four predictors. This may be probably due to car price having a highly non-linear association with the predictors.

Predictor importance: The importance of a predictor is computed as the (normalized) total reduction of the criterion (SSE in case of regression trees) brought by that predictor.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique values) Source: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegres

Why?

Because high cardinality predictors will tend to overfit. When the predictors have high cardinality, it means they form little groups (in the leaf nodes) and then the model "learns" the individuals, instead of "learning" the general trend. The higher the cardinality of the predictor, the more prone is the model to overfitting.

```
model.feature_importances_
array([0.04490344, 0.15882336, 0.29739951, 0.49887369])
```

Engine size is the most important predictor, followed by year, which is followed by mpg, and mileage is the least important predictor.

3.3 Cost complexity pruning

While optimizing parameters above, we optimized them within a range that we thought was reasonable. While doing so, we restricted ourselves to considering only a subset of the unpruned tree. Thus, we could have missed out on finding the optimal tree (or the best model).

With cost complexity pruning, we first develop an unpruned tree without any restrictions. Then, using cross validation, we find the optimal value of the tuning parameter α . All the non-terminal nodes for which α_{eff} is smaller that the optimal α will be pruned. You will need to check out the link below to understand this better.

Check out a detailed explanation of how cost complexity pruning is implemented in sklearn at: https://scikit-learn.org/stable/modules/tree.html#minimal-cost-complexity-pruning

Here are some informative visualizations that will help you understand what is happening in cost complexity pruning: https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html#sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py

```
model = DecisionTreeRegressor(random_state = 1)#model without any restrictions
path= model.cost_complexity_pruning_path(X,y)# Compute the pruning path during Minimal Cos
alphas=path['ccp_alphas']
len(alphas)
```

4126

```
Fitting 5 folds for each of 4126 candidates, totalling 20630 fits -44150619.209031895 {'ccp_alpha': 143722.94076639024} Time taken = 2 minutes
```

The code took 2 minutes to run on a dataset of about 5000 observations and 4 predictors.

```
model = DecisionTreeRegressor(ccp_alpha=143722.94076639024,random_state=1)
model.fit(X, y)
pred = model.predict(Xtest)
np.sqrt(mean_squared_error(test.price, pred))
```

7306.592294294368

The RMSE for the decision tree with cost complexity pruning is lower than that of linear regression models and spline regression models (including MARS), with these four predictors. However, it is higher than the one obtained with tuning tree parameters using grid search (shown previously). Cost complexity pruning considers a completely unpruned tree unlike the 'grid search' method of searching over a grid of hyperparameters such as max_depth and max_leaf_nodes, and thus may seem to be more comprehensive than the 'grid search' approach. However, both the approaches may consider trees that are not considered by the other approach, and thus either one may provide a more accurate model. Depending on the grid of parameters chosen for cross validation, the grid search method may be more or less comprehensive than cost complexity pruning.

```
gridcv_results = pd.DataFrame(tree.cv_results_)
cv_error = -gridcv_results['mean_test_score']

#Visualizing the 5-fold cross validation error vs alpha
plt.plot(alphas,cv_error)
plt.xscale('log')
plt.xlabel('alpha')
plt.ylabel('K-fold MSE');
```



```
#Zooming in the above visualization to see the alpha where the 5-fold cross validation err
plt.plot(alphas[0:4093],cv_error[0:4093])
plt.xlabel('alpha')
plt.ylabel('K-fold MSE');
```


3.3.1 Depth vs alpha; Node counts vs alpha

```
stime = time.time()
trees=[]
for i in alphas:
    tree = DecisionTreeRegressor(ccp_alpha=i,random_state=1)
    tree.fit(X, train['price'])
    trees.append(tree)
print(time.time()-stime)
```

268.10325384140015

This code takes 4.5 minutes to run

```
node_counts = [clf.tree_.node_count for clf in trees]
depth = [clf.tree_.max_depth for clf in trees]
```

```
fig, ax = plt.subplots(1, 2,figsize=(10,6))
ax[0].plot(alphas[0:4093], node_counts[0:4093], marker="o", drawstyle="steps-post")#Plotti
ax[0].set_xlabel("alpha")
ax[0].set_ylabel("number of nodes")
ax[0].set_title("Number of nodes vs alpha")
ax[1].plot(alphas[0:4093], depth[0:4093], marker="o", drawstyle="steps-post")#Plotting the
ax[1].set_xlabel("alpha")
ax[1].set_ylabel("depth of tree")
ax[1].set_title("Depth vs alpha")
#fig.tight_layout()
```

Text(0.5, 1.0, 'Depth vs alpha')

3.3.2 Train and test accuracies (R-squared) vs alpha

```
train_scores = [clf.score(X, y) for clf in trees]
test_scores = [clf.score(Xtest, test.price) for clf in trees]
```

```
fig, ax = plt.subplots()
ax.set_xlabel("alpha")
ax.set_ylabel("accuracy")
ax.set_title("Accuracy vs alpha for training and testing sets")
ax.plot(alphas[0:4093], train_scores[0:4093], marker="o", label="train", drawstyle="steps-ax.plot(alphas[0:4093], test_scores[0:4093], marker="o", label="test", drawstyle="steps-potax.legend()
plt.show()
```


4 Classification trees

Read section 8.1.2 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score,train_test_split, cross_val_predict
from sklearn.metrics import roc_curve, precision_recall_curve, auc, make_scorer, recall_sc
from sklearn.model_selection import StratifiedKFold, KFold
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
#Libraries for visualizing trees
from sklearn.tree import export_graphviz
from six import StringIO
from IPython.display import Image
import pydotplus
import time as time
train = pd.read_csv('./Datasets/diabetes_train.csv')
test = pd.read_csv('./Datasets/diabetes_test.csv')
test.head()
```

	Pregnancies	Glucose	${\bf BloodPressure}$	SkinThickness	Insulin	BMI	${\bf Diabetes Pedigree Function}$	Age
0	6	148	72	35	0	33.6	0.627	50
1	2	197	70	45	543	30.5	0.158	53

	Pregnancies	Glucose	${\bf BloodPressure}$	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age
$\overline{2}$	1	115	70	30	96	34.6	0.529	32
3	8	99	84	0	0	35.4	0.388	50
4	7	147	76	0	0	39.4	0.257	43

4.1 Building a classification tree

Develop a classification tree to predict if a person has diabetes.

```
X = train.drop(columns = 'Outcome')
Xtest = test.drop(columns = 'Outcome')
y = train['Outcome']
ytest = test['Outcome']

#Defining the object to build a classification tree
model = DecisionTreeClassifier(random_state=1, max_depth=3)

#Fitting the regression tree to the data
model.fit(X, y)
```

DecisionTreeClassifier(max_depth=3, random_state=1)

Accuracy: 73.37662337662337 ROC-AUC: 0.8349197955226512 Precision: 0.77777777777778 Recall: 0.45901639344262296

4.2 Optimizing hyperparameters to optimize performance

In case of diabetes, it is important to reduce FNR (False negative rate) or maximize recall. This is because if a person has diabetes, the consequences of predicting that they don't have diabetes can be much worse than the other way round.

Let us find the optimal depth of the tree and the number of terminal nods (leaves) that minimizes the FNR or maximizes recall.

Find the maximum values of depth and number of leaves.

```
#Defining the object to build a regression tree
model = DecisionTreeClassifier(random_state=1)

#Fitting the regression tree to the data
model.fit(X, y)
```

DecisionTreeClassifier(random_state=1)

```
# Maximum number of leaves
model.get_n_leaves()
```

```
# Maximum depth
  model.get_depth()
14
  #Defining parameters and the range of values over which to optimize
  param_grid = {
      'max_depth': range(2,14),
      'max_leaf_nodes': range(2,118),
      'max_features': range(1, 9)
  }
  #Grid search to optimize parameter values
  start_time = time.time()
  skf = StratifiedKFold(n_splits=5) #The folds are made by preserving the percentage of sampl
  #Minimizing FNR is equivalent to maximizing recall
  grid_search = GridSearchCV(DecisionTreeClassifier(random_state=1), param_grid, scoring=['p
                             refit="recall", cv=skf, n_jobs=-1, verbose = True)
  grid_search.fit(X, y)
  # make the predictions
  y_pred = grid_search.predict(Xtest)
  print('Train accuracy : %.3f'%grid_search.best_estimator_.score(X, y))
  print('Test accuracy : %.3f'%grid_search.best_estimator_.score(Xtest, ytest))
  print('Best recall Through Grid Search : %.3f'%grid_search.best_score_)
  print('Best params for recall')
  print(grid_search.best_params_)
  print("Time taken =", round((time.time() - start_time)), "seconds")
Fitting 5 folds for each of 11136 candidates, totalling 55680 fits
Train accuracy: 0.785
Test accuracy: 0.675
Best recall Through Grid Search: 0.658
```

```
Best params for recall
{'max_depth': 4, 'max_features': 2, 'max_leaf_nodes': 8}
Time taken = 70 seconds
```

4.3 Optimizing the decision threshold probability

Note that decision threshold probability is not tuned with GridSearchCV because GridSearchCV is a technique used for hyperparameter tuning in machine learning models, and the decision threshold probability is not a hyperparameter of the model.

The decision threshold is set to 0.5 by default during hyperparameter tuning with GridSearchCV.

GridSearchCV is used to tune hyperparameters that control the internal settings of a machine learning model, such as learning rate, regularization strength, and maximum tree depth, among others. These hyperparameters affect the model's internal behavior and performance. On the other hand, the decision threshold is an external parameter that is used to interpret the model's output and make predictions based on the predicted probabilities.

To tune the decision threshold, one typically needs to manually adjust it after the model has been trained and evaluated using a specific set of hyperparameter values. This can be done using methods, which involve evaluating the model's performance at different decision threshold values and selecting the one that best meets the desired trade-off between false positives and false negatives based on the specific problem requirements.

As the recall will always be 100% for a decision threshold probability of zero, we'll find a decision threshold probability that balances recall with another performance metric such as precision, false positive rate, accuracy, etc. Below are a couple of examples that show we can balance recall with (1) precision or (2) false positive rate.

4.3.1 Balancing recall with precision

We can find a threshold probability that balances recall with precision.

```
p, r, thresholds = precision_recall_curve(y, cross_val_ypred[:,1])
def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
    plt.figure(figsize=(8, 8))
    plt.title("Precision and Recall Scores as a function of the decision threshold")
    plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
    plt.plot(thresholds, recalls[:-1], "g-", label="Recall")
    plt.plot(thresholds, precisions[:-1], "o", color = 'blue')
    plt.plot(thresholds, recalls[:-1], "o", color = 'green')
    plt.ylabel("Score")
    plt.xlabel("Decision Threshold")
    plt.legend(loc='best')
    plt.legend()
plot_precision_recall_vs_threshold(p, r, thresholds)
```

Precision and Recall Scores as a function of the decision threshold

[0.0964467, 0.39293139, 0.91304348],

```
[0.1
           , 0.42105263, 0.88888889],
[0.10810811, 0.42298851, 0.88888889],
[0.10869565, 0.42857143, 0.88405797],
[0.12820513, 0.48378378, 0.8647343],
[0.14285714, 0.48219178, 0.85024155],
[0.18518519, 0.48618785, 0.85024155],
           , 0.48611111, 0.84541063],
[0.20512821, 0.48876404, 0.84057971],
[0.20833333, 0.49418605, 0.82125604],
[0.21276596, 0.49411765, 0.8115942],
[0.22916667, 0.50151976, 0.79710145],
[0.23684211, 0.51582278, 0.78743961],
[0.27777778, 0.52786885, 0.77777778],
[0.3015873, 0.54794521, 0.77294686],
           , 0.56554307, 0.7294686 ],
[0.36
[0.3697479, 0.56692913, 0.69565217],
[0.37931034, 0.58974359, 0.66666667],
[0.54954955, 0.59130435, 0.65700483],
[0.55172414, 0.59798995, 0.57487923],
[0.55882353, 0.59893048, 0.5410628],
[0.58823529, 0.6091954, 0.51207729],
[0.61904762, 0.6
                       , 0.47826087],
[0.62337662, 0.60431655, 0.4057971],
[0.63461538, 0.59130435, 0.32850242],
[0.69354839, 0.59803922, 0.29468599],
[0.69642857, 0.59493671, 0.22705314],
[0.70149254, 0.56338028, 0.19323671],
[0.71153846, 0.61403509, 0.16908213],
[0.75609756, 0.5952381, 0.12077295],
[0.76363636, 0.55555556, 0.09661836],
[0.76470588, 0.59090909, 0.06280193],
          , 0.66666667, 0.03864734],
[0.94117647, 0.66666667, 0.02898551],
[1.
                       , 0.01449275]])
           , 0.6
```

Suppose, we wish to have at least 80% recall, with the highest possible precision. Then, based on the precision-recall curve (or the table above), we should have a decision threshold probability of 0.21.

Let's assess the model's performance on test data with a threshold probability of 0.21.

```
# Performance metrics computation for the optimum decision threshold probability
desired_threshold = 0.21
y_pred_prob = model.predict_proba(Xtest)[:,1]
\# Classifying observations in the positive class (y = 1) if the predicted probability is g
# than the desired decision threshold probability
y_pred = y_pred_prob > desired_threshold
y_pred = y_pred.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred, ytest)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(ytest, y_pred_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(ytest, y_pred))
print("Recall: ", recall_score(ytest, y_pred))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(ytest, y_pred),
                  columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1']
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 72.727272727273 ROC-AUC: 0.7544509078089194 Precision: 0.611764705882353 Recall: 0.8524590163934426

4.3.2 Balancing recall with false positive rate

Suppose we wish to balance recall with false positive rate. We can optimize the model to maximize ROC-AUC, and then choose a point on the ROC-curve that balances recall with the false positive rate.

```
# Defining parameters and the range of values over which to optimize
param_grid = {
    'max_depth': range(2,14),
    'max_leaf_nodes': range(2,118),
    'max_features': range(1, 9)
}

#Grid search to optimize parameter values

start_time = time.time()
skf = StratifiedKFold(n_splits=5)#The folds are made by preserving the percentage of sampl

#Minimizing FNR is equivalent to maximizing recall
grid_search = GridSearchCV(DecisionTreeClassifier(random_state=1), param_grid, scoring=['proc_auc'], refit="roc_auc', cv=skf, n_jobs=-1, verbose = True
```

```
grid_search.fit(X, y)
  # make the predictions
  y_pred = grid_search.predict(Xtest)
  print('Best params for recall')
  print(grid_search.best_params_)
  print("Time taken =", round((time.time() - start time)), "seconds")
Fitting 5 folds for each of 11136 candidates, totalling 55680 fits
Best params for recall
{'max_depth': 6, 'max_features': 2, 'max_leaf_nodes': 9}
Time taken = 72 seconds
  model = DecisionTreeClassifier(random_state=1, max_depth = 6, max_leaf_nodes=9, max_featur
  cross_val_ypred = cross_val_predict(DecisionTreeClassifier(random_state=1, max_depth = 6,
                                                              max_leaf_nodes=9, max_features=
                                                 y, cv = 5, method = 'predict_proba')
  fpr, tpr, auc_thresholds = roc_curve(y, cross_val_ypred[:,1])
  print(auc(fpr, tpr))# AUC of ROC
  def plot_roc_curve(fpr, tpr, label=None):
      plt.figure(figsize=(8,8))
      plt.title('ROC Curve')
      plt.plot(fpr, tpr, linewidth=2, label=label)
      plt.plot(fpr, tpr, 'o', color = 'blue')
      plt.plot([0, 1], [0, 1], 'k--')
      plt.axis([-0.005, 1, 0, 1.005])
      plt.xticks(np.arange(0,1, 0.05), rotation=90)
      plt.xlabel("False Positive Rate")
      plt.ylabel("True Positive Rate (Recall)")
  fpr, tpr, auc_thresholds = roc_curve(y, cross_val_ypred[:,1])
  plot_roc_curve(fpr, tpr)
```

0.7605075431162388


```
# Thresholds with TPR and FPR
all_thresholds = np.concatenate([auc_thresholds.reshape(-1,1), tpr.reshape(-1,1), fpr.resh
recall_more_than_80 = all_thresholds[all_thresholds[:,1]>0.8,:]
# As the values in 'recall_more_than_80' are arranged in increasing order of recall and de
# the first value will provide the maximum threshold probability for the recall to be more
# We wish to find the maximum threshold probability to obtain the minimum possible FPR
recall_more_than_80[0]
```

```
array([0.21276596, 0.80676329, 0.39066339])
```

Suppose, we wish to have at least 80% recall, with the lowest possible precision. Then, based on the ROC-AUC curve, we should have a decision threshold probability of 0.21.

Let's assess the model's performance on test data with a threshold probability of 0.21.

```
# Performance metrics computation for the optimum decision threshold probability
desired_threshold = 0.21
y_pred_prob = model.predict_proba(Xtest)[:,1]
\# Classifying observations in the positive class (y = 1) if the predicted probability is g
# than the desired decision threshold probability
y_pred = y_pred_prob > desired_threshold
y_pred = y_pred.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred, ytest)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(ytest, y_pred_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(ytest, y_pred))
print("Recall: ", recall_score(ytest, y_pred))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(ytest, y_pred),
                  columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1']
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 71.42857142857143 ROC-AUC: 0.7618543980257358 Precision: 0.6075949367088608 Recall: 0.7868852459016393

4.4 Cost complexity pruning

Just as we did cost complexity pruning in a regression tree, we can do it to optimize the model for a classification tree.

```
model = DecisionTreeClassifier(random_state = 1)#model without any restrictions
path= model.cost_complexity_pruning_path(X,y)# Compute the pruning path during Minimal Cos
alphas=path['ccp_alphas']
len(alphas)
```

58

```
#Grid search to optimize parameter values

skf = StratifiedKFold(n_splits=5)
grid_search = GridSearchCV(DecisionTreeClassifier(random_state = 1), param_grid = {'ccp_al_scoring=['precision', 'recall', 'accuracy' refit="recall", cv=skf, n_jobs=-1, verbogrid_search.fit(X, y)
```

```
# make the predictions
y_pred = grid_search.predict(Xtest)

print('Best params for recall')
print(grid_search.best_params_)

Fitting 5 folds for each of 58 candidates, totalling 290 fits
Best params for recall
{'ccp_alpha': 0.010561291712538737}

# Model with the optimal value of 'ccp_alpha'
model = DecisionTreeClassifier(ccp_alpha=0.01435396,random_state=1)
model.fit(X, y)
```

DecisionTreeClassifier(ccp_alpha=0.01435396, random_state=1)

Now we can tune the decision threshold probability to balance recall with another performance metrics as shown earlier in Section 4.3.

5 Bagging

Read section 8.2.1 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score,train_test_split
from sklearn.model_selection import KFold
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV, ParameterGrid
from sklearn.ensemble import BaggingRegressor, BaggingClassifier
from sklearn.linear_model import LinearRegression,LogisticRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import roc_curve, precision_recall_curve, auc, make_scorer, recall_sc
accuracy_score, precision_score, confusion_matrix, mean_squared_error, r2_score
#Libraries for visualizing trees
from sklearn.tree import export_graphviz
from six import StringIO
from IPython.display import Image
import pydotplus
import time as time
#Using the same datasets as in linear regression in STAT303-2,
#so that we can compare the non-linear models with linear regression
trainf = pd.read_csv('./Datasets/Car_features_train.csv')
trainp = pd.read_csv('./Datasets/Car_prices_train.csv')
testf = pd.read_csv('./Datasets/Car_features_test.csv')
testp = pd.read_csv('./Datasets/Car_prices_test.csv')
```

```
train = pd.merge(trainf,trainp)
test = pd.merge(testf,testp)
train.head()
```

	carID	brand	model	year	transmission	mileage	fuelType	tax	mpg	engineSize	price
0	18473	bmw	6 Series	2020	Semi-Auto	11	Diesel	145	53.3282	3.0	37980
1	15064	bmw	6 Series	2019	Semi-Auto	10813	Diesel	145	53.0430	3.0	33980
2	18268	bmw	6 Series	2020	Semi-Auto	6	Diesel	145	53.4379	3.0	36850
3	18480	bmw	6 Series	2017	Semi-Auto	18895	Diesel	145	51.5140	3.0	25998
4	18492	bmw	6 Series	2015	Automatic	62953	Diesel	160	51.4903	3.0	18990

```
X = train[['mileage','mpg','year','engineSize']]
Xtest = test[['mileage','mpg','year','engineSize']]
y = train['price']
ytest = test['price']
```

5.1 Bagging regression trees

Bag regression trees to develop a model to predict car price using the predictors mileage,mpg,year,and engineSize.

5752.0779571060875

The RMSE has reduced a lot by averaging the predictions of 10 trees. The RMSE for a single tree model with optimized parameters was around 7000.

5.1.1 Model accuracy vs number of trees

How does the model accuracy vary with the number of trees?

As we increase the number of trees, it will tend to reduce the variance of individual trees leading to a more accurate prediction.

- C:\Users\ak10407\Anaconda3\lib\site-packages\sklearn\ensemble_bagging.py:1069: UserWarning:
 warn("Some inputs do not have OOB scores."
- C:\Users\ak10407\Anaconda3\lib\site-packages\sklearn\ensemble_bagging.py:1069: UserWarning: warn("Some inputs do not have OOB scores."

As we are bagging only 10 trees in the first iteration, some of the observations are selected in every bootstrapped sample, and thus they don't have an out-of-bag error, which is producing the warning. For every observation to have an out-of-bag error, the number of trees must be sufficiently large.

Let us visualize the out-of-bag (OOB) R-squared and R-squared on test data vs the number of trees.

```
plt.rcParams.update({'font.size': 15})
plt.figure(figsize=(8, 6), dpi=80)
plt.plot(oob_rsquared.keys(),oob_rsquared.values(),label = 'Out of bag R-squared')
plt.plot(oob_rsquared.keys(),oob_rsquared.values(),'o',color = 'blue')
plt.plot(test_rsquared.keys(),test_rsquared.values(), label = 'Test data R-squared')
plt.xlabel('Number of trees')
plt.ylabel('Rsquared')
plt.legend()
```

<matplotlib.legend.Legend at 0x26f886f1610>

The out-of-bag R-squared initially increases, and then stabilizes after a certain number of trees (around 150 in this case). Note that increasing the number of trees further will not lead to overfitting. However, increasing the number of trees will increase the computations. Thus, we don't need to develop more trees once the R-squared stabilizes.

```
#Visualizing out-of-bag RMSE and test data RMSE
plt.rcParams.update({'font.size': 15})
plt.figure(figsize=(8, 6), dpi=80)
plt.plot(oob_rmse.keys(),oob_rmse.values(),label = 'Out of bag RMSE')
plt.plot(oob_rmse.keys(),oob_rmse.values(),'o',color = 'blue')
plt.plot(test_rmse.keys(),test_rmse.values(), label = 'Test data RMSE')
plt.xlabel('Number of trees')
plt.ylabel('RMSE')
plt.legend()
```

<matplotlib.legend.Legend at 0x13712485df0>

A similar trend can be seen by plotting out-of-bag RMSE and test RMSE. Note that RMSE is proportional to R-squared. We only need to visualize one of RMSE or R-squared to find the optimal number of trees.

0.897561533100511

```
#RMSE on test data
pred = model.predict(Xtest)
np.sqrt(mean_squared_error(test.price, pred))
```

5.1.2 Optimizing bagging hyperparameters using grid search

More parameters of a bagged regression tree model can be optimized using the typical approach of k-fold cross validation over a grid of parameter values.

```
n_samples = train.shape[0]
  n_features = train.shape[1]
  params = {'base_estimator': [DecisionTreeRegressor(random_state = 1),LinearRegression()],#
             'n_estimators': [150,200,250],
             'max_samples': [0.5,1.0],
             'max_features': [0.5,1.0],
             'bootstrap': [True, False],
             'bootstrap_features': [True, False]}
  cv = KFold(n_splits=5,shuffle=True,random_state=1)
  bagging_regressor_grid = GridSearchCV(BaggingRegressor(random_state=1, n_jobs=-1),
                                        param_grid =params, cv=cv, n_jobs=-1, verbose=1)
  bagging_regressor_grid.fit(X, y)
  print('Train R^2 Score : %.3f'%bagging_regressor_grid.best_estimator_.score(X, y))
  print('Test R^2 Score : %.3f'%bagging_regressor_grid.best_estimator_.score(Xtest, ytest))
  print('Best R^2 Score Through Grid Search : %.3f'%bagging_regressor_grid.best_score_)
  print('Best Parameters : ',bagging_regressor_grid.best_params_)
Fitting 5 folds for each of 96 candidates, totalling 480 fits
Train R<sup>2</sup> Score: 0.986
Test R^2 Score: 0.885
Best R^2 Score Through Grid Search : 0.893
Best Parameters: {'base_estimator': DecisionTreeRegressor(random_state=1), 'bootstrap': Tr
  #Model with optimal parameters
  model = BaggingRegressor(base_estimator=DecisionTreeRegressor(), n_estimators=200, random_
                           oob_score=True,n_jobs=-1,bootstrap_features=False,bootstrap=True,
                           max_features=1.0, max_samples=1.0).fit(X, y)
  #RMSE on test data
  np.sqrt(mean_squared_error(test.price, model.predict(Xtest)))
```

You may also use the object bagging_regressor_grid to directly make the prediction.

```
np.sqrt(mean_squared_error(test.price, bagging_regressor_grid.predict(Xtest)))
```

5638.330995970236

5.2 Bagging for classification

Bag classification tree models to predict if a person has diabetes.

```
train = pd.read_csv('./Datasets/diabetes_train.csv')
test = pd.read_csv('./Datasets/diabetes_test.csv')
X = train.drop(columns = 'Outcome')
Xtest = test.drop(columns = 'Outcome')
y = train['Outcome']
ytest = test['Outcome']
#Bagging the results of 10 decision trees to predict car price
model = BaggingClassifier(base_estimator=DecisionTreeClassifier(), n_estimators=150, rando
                        n_{jobs=-1}).fit(X, y)
# Performance metrics computation for the optimum decision threshold probability
desired_threshold = 0.23
y_pred_prob = model.predict_proba(Xtest)[:,1]
\# Classifying observations in the positive class (y = 1) if the predicted probability is g
# than the desired decision threshold probability
y_pred = y_pred_prob > desired_threshold
y_pred = y_pred.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred, ytest)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(ytest, y_pred_prob)
```

Accuracy: 76.62337662337663 ROC-AUC: 0.8766084963863917 Precision: 0.6404494382022472 Recall: 0.9344262295081968

As a result of bagging, we obtain a model (with a threshold probabilty cutoff of 0.23) that has a better performance on test data in terms of almost all the metrics - accuracy, precision (comparable performance), recall, and ROC-AUC, as compared the single tree classification model (with a threshold probability cutoff of 0.23). Note that we have not yet tuned the model using GridSearchCv here, which is shown towards the end of this chapter.

5.2.1 Model accuracy vs number of trees

```
#Finding model accuracy vs number of trees
  oob_accuracy={};test_accuracy={};oob_rmse={};test_rmse = {}
  for i in np.linspace(10,400,40,dtype=int):
      model = BaggingClassifier(base_estimator=DecisionTreeClassifier(), n_estimators=i, ran
                          n_jobs=-1,oob_score=True).fit(X, y)
      oob_accuracy[i]=model.oob_score_ #Returns the out-of_bag R-squared of the model
      test_accuracy[i]=model.score(Xtest,ytest) #Returns the test R-squared of the model
C:\Users\ak10407\Anaconda3\lib\site-packages\sklearn\ensemble\_bagging.py:640: UserWarning:
 warn("Some inputs do not have OOB scores. "
C:\Users\ak10407\Anaconda3\lib\site-packages\sklearn\ensemble\_bagging.py:644: RuntimeWarnin
 oob_decision_function = (predictions /
  plt.rcParams.update({'font.size': 15})
  plt.figure(figsize=(8, 6), dpi=80)
  plt.plot(oob_accuracy.keys(),oob_accuracy.values(),label = 'Out of bag accuracy')
  plt.plot(oob_accuracy.keys(),oob_accuracy.values(),'o',color = 'blue')
  plt.plot(test_accuracy.keys(),test_accuracy.values(), label = 'Test data accuracy')
  plt.xlabel('Number of trees')
  plt.ylabel('Rsquared')
  plt.legend()
```

<matplotlib.legend.Legend at 0x223302e62e0>


```
#ROC curve on training data
ypred = model.predict_proba(X)[:, 1]
fpr, tpr, auc_thresholds = roc_curve(y, ypred)
print(auc(fpr, tpr))# AUC of ROC
def plot_roc_curve(fpr, tpr, label=None):

plt.figure(figsize=(8,8))
plt.title('ROC Curve')
plt.plot(fpr, tpr, linewidth=2, label=label)
plt.plot([0, 1], [0, 1], 'k--')
plt.axis([-0.005, 1, 0, 1.005])
plt.xticks(np.arange(0,1, 0.05), rotation=90)
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate (Recall)")
fpr, tpr, auc_thresholds = roc_curve(y, ypred)
```

```
plot_roc_curve(fpr, tpr)
```

1.0

Note that there is perfect separation in train data as ROC-AUC = 1. This shows that the model is probably overfitting. However, this also shows that, despite the reduced variance (as

compared to a single tree), the bagged tree model is flexibly enough to perfectly separate the classes.

```
#ROC curve on test data
ypred = model.predict_proba(Xtest)[:, 1]
fpr, tpr, auc_thresholds = roc_curve(ytest, ypred)
print("ROC-AUC = ",auc(fpr, tpr))# AUC of ROC
def plot_roc_curve(fpr, tpr, label=None):

plt.figure(figsize=(8,8))
plt.title('ROC Curve')
plt.plot(fpr, tpr, linewidth=2, label=label)
plt.plot([0, 1], [0, 1], 'k--')
plt.axis([-0.005, 1, 0, 1.005])
plt.xticks(np.arange(0,1, 0.05), rotation=90)
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate (Recall)")

fpr, tpr, auc_thresholds = roc_curve(ytest, ypred)
plot_roc_curve(fpr, tpr)
```

ROC-AUC = 0.8781949585757096

5.2.2 Optimizing bagging hyperparameters using grid search

More parameters of a bagged classification tree model can be optimized using the typical approach of k-fold cross validation over a grid of parameter values.

```
n_samples = train.shape[0]
  n_features = train.shape[1]
  params = {'base_estimator': [DecisionTreeClassifier(random_state = 1), LogisticRegression()
             'n_estimators': [150,200,250],
             'max_samples': [0.5,1.0],
             'max_features': [0.5,1.0],
             'bootstrap': [True, False],
             'bootstrap_features': [True, False]}
  cv = KFold(n_splits=5,shuffle=True,random_state=1)
  bagging_classifier_grid = GridSearchCV(BaggingClassifier(random_state=1, n_jobs=-1),
                                         param_grid =params, cv=cv, n_jobs=-1, verbose=1,
                                         scoring = ['precision', 'recall'], refit='recall')
  bagging_classifier_grid.fit(X, y)
  print('Train accuracy : %.3f'%bagging_classifier_grid.best_estimator_.score(X, y))
  print('Test accuracy : %.3f'%bagging_classifier_grid.best_estimator_.score(Xtest, ytest))
  print('Best accuracy Through Grid Search : %.3f'%bagging_classifier_grid.best_score_)
  print('Best Parameters : ',bagging_classifier_grid.best_params_)
Fitting 5 folds for each of 96 candidates, totalling 480 fits
Train accuracy: 1.000
Test accuracy: 0.786
```

5.2.3 Tuning the decision threshold probability

Best accuracy Through Grid Search: 0.573

We'll find a decision threshold probability that balances recall with precision.

Best Parameters : {'base_estimator': DecisionTreeClassifier(random_state=1), 'bootstrap': Too

As the model is overfitting on the train data, it will not be a good idea to tune the decision threshold probability based on the precision-recall curve on train data, as shown in the figure below.

```
ypred = model.predict_proba(X)[:,1]
p, r, thresholds = precision_recall_curve(y, ypred)
def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
    plt.figure(figsize=(8, 8))
    plt.title("Precision and Recall Scores as a function of the decision threshold")
    plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
    plt.plot(thresholds, recalls[:-1], "g-", label="Recall")
    plt.plot(thresholds, precisions[:-1], "o", color = 'blue')
    plt.plot(thresholds, recalls[:-1], "o", color = 'green')
    plt.ylabel("Score")
    plt.xlabel("Decision Threshold")
    plt.legend(loc='best')
    plt.legend()
plot_precision_recall_vs_threshold(p, r, thresholds)
```

Precision and Recall Scores as a function of the decision threshold

Instead, we should make the precision-recall curve using the out-of-bag predictions, as shown below. The method oob_decision_function_ provides the predicted probability.

```
ypred = model.oob_decision_function_[:,1]
p, r, thresholds = precision_recall_curve(y, ypred)
def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
    plt.figure(figsize=(8, 8))
    plt.title("Precision and Recall Scores as a function of the decision threshold")
    plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
    plt.plot(thresholds, recalls[:-1], "g-", label="Recall")
    plt.plot(thresholds, precisions[:-1], "o", color = 'blue')
    plt.plot(thresholds, recalls[:-1], "o", color = 'green')
    plt.ylabel("Score")
```

```
plt.xlabel("Decision Threshold")
  plt.legend(loc='best')
  plt.legend()
plot_precision_recall_vs_threshold(p, r, thresholds)
```

Precision and Recall Scores as a function of the decision threshold


```
# Thresholds with precision and recall
all_thresholds = np.concatenate([thresholds.reshape(-1,1), p[:-1].reshape(-1,1), r[:-1].re
recall_more_than_80 = all_thresholds[all_thresholds[:,2]>0.8,:]
# As the values in 'recall_more_than_80' are arranged in decreasing order of recall and in
# the last value will provide the maximum threshold probability for the recall to be more
# We wish to find the maximum threshold probability to obtain the maximum possible precisi
recall_more_than_80[recall_more_than_80.shape[0]-1]
```

```
array([0.2804878 , 0.53205128, 0.80193237])
```

Suppose, we wish to have at least 80% recall, with the highest possible precision. Then, based on the precision-recall curve, we should have a decision threshold probability of 0.28.

```
# Performance metrics computation for the optimum decision threshold probability
desired_threshold = 0.28
y_pred_prob = model.predict_proba(Xtest)[:,1]
\# Classifying observations in the positive class (y = 1) if the predicted probability is g
# than the desired decision threshold probability
y_pred = y_pred_prob > desired_threshold
y_pred = y_pred.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred, ytest)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(ytest, y_pred_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(ytest, y_pred))
print("Recall: ", recall_score(ytest, y_pred))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(ytest, y_pred),
                  columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1']
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 79.22077922077922 ROC-AUC: 0.8802221047065044 Precision: 0.6705882352941176 Recall: 0.9344262295081968

Note that this model has a better performance than the untuned bagged model earlier, and the single tree classification model, as expected.

6 Random Forest

Read section 8.2.2 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score,train_test_split
from sklearn.model_selection import KFold
from sklearn.tree import DecisionTreeRegressor,DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV, ParameterGrid
from sklearn.ensemble import BaggingRegressor, BaggingClassifier, RandomForestRegressor, RandomForestRegressor
from sklearn.linear_model import LinearRegression,LogisticRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import roc_curve, precision_recall_curve, auc, make_scorer, recall_sc
accuracy_score, precision_score, confusion_matrix, mean_squared_error, r2_score
import itertools as it
#Libraries for visualizing trees
from sklearn.tree import export_graphviz
from six import StringIO
from IPython.display import Image
import pydotplus
import time as time
#Using the same datasets as used for linear regression in STAT303-2,
#so that we can compare the non-linear models with linear regression
trainf = pd.read_csv('./Datasets/Car_features_train.csv')
trainp = pd.read_csv('./Datasets/Car_prices_train.csv')
```

```
testf = pd.read_csv('./Datasets/Car_features_test.csv')
testp = pd.read_csv('./Datasets/Car_prices_test.csv')
train = pd.merge(trainf,trainp)
test = pd.merge(testf,testp)
train.head()
```

	carID	brand	model	year	transmission	mileage	fuelType	tax	mpg	engineSize	price
0	18473	bmw	6 Series	2020	Semi-Auto	11	Diesel	145	53.3282	3.0	37980
1	15064	bmw	6 Series	2019	Semi-Auto	10813	Diesel	145	53.0430	3.0	33980
2	18268	bmw	6 Series	2020	Semi-Auto	6	Diesel	145	53.4379	3.0	36850
3	18480	bmw	6 Series	2017	Semi-Auto	18895	Diesel	145	51.5140	3.0	25998
4	18492	bmw	6 Series	2015	Automatic	62953	Diesel	160	51.4903	3.0	18990

```
X = train[['mileage','mpg','year','engineSize']]
Xtest = test[['mileage','mpg','year','engineSize']]
y = train['price']
ytest = test['price']
```

Let us make a bunch of small trees with bagging, so that we can visualize and see if they are being dominated by a particular predictor or predictor(s).

Each of the 10 bagged trees seems to be dominated by the engineSize predictor, thereby making the trees highly correlated. Average of highly correlated random variables has a higher variance than the average of lesser correlated random variables. Thus, highly correlated trees will tend to have a relatively high prediction variance despite averaging their predictions.

```
#Feature importance can be found by averaging the feature importance in individual trees
feature_importances = np.mean([
          tree.feature_importances_ for tree in model.estimators_
], axis=0)
feature_importances
```

```
array([0.13058631, 0.03965966, 0.22866077, 0.60109325])
```

We can see that engineSize has the highest importance among predictors, supporting the visualization that it dominates the trees.

6.1 Random Forest for regression

Now, let us visualize small trees with the random forest algorithm to see if a predictor dominates all the trees.

As two of the four predictors are randomly selected for splitting each node, engineSize no longer seems to dominate the trees. This will tend to reduce correlation among trees, thereby reducing the prediction variance, which in turn will tend to improve prediction accuracy.

array([0.16370584, 0.35425511, 0.18552673, 0.29651232])

Note that the feature importance of engineSize is reduced in random forests (as compared to bagged trees), and it no longer dominates the trees.

```
np.sqrt(mean_squared_error(test.price, model.predict(Xtest)))
```

5856.022395768459

The RMSE is similar to that obtained by bagging. We will discuss the comparison later.

6.1.1 Model accuracy vs number of trees

How does the model accuracy vary with the number of trees?

As we increase the number of trees, it will tend to reduce the variance of individual trees leading to a more accurate prediction.

- C:\Users\akl0407\Anaconda3\lib\site-packages\sklearn\ensemble_forest.py:833: UserWarning: Swarn("Some inputs do not have OOB scores."
- C:\Users\ak10407\Anaconda3\lib\site-packages\sklearn\ensemble_forest.py:833: UserWarning: Swarn("Some inputs do not have OOB scores."

As we are ensemble only 10 trees in the first iteration, some of the observations are selected in every bootstrapped sample, and thus they don't have an out-of-bag error, which is producing the warning. For every observation to have an out-of-bag error, the number of trees must be sufficiently large.

Let us visualize the out-of-bag (OOB) R-squared and R-squared on test data vs the number of trees.

```
plt.rcParams.update({'font.size': 15})
plt.figure(figsize=(8, 6), dpi=80)
plt.plot(oob_rsquared.keys(),oob_rsquared.values(),label = 'Out of bag R-squared')
plt.plot(oob_rsquared.keys(),oob_rsquared.values(),'o',color = 'blue')
plt.plot(test_rsquared.keys(),test_rsquared.values(), label = 'Test data R-squared')
plt.xlabel('Number of trees')
plt.ylabel('Rsquared')
plt.legend()
```

<matplotlib.legend.Legend at 0x17677ce6580>

The out-of-bag R-squared initially increases, and then stabilizes after a certain number of trees (around 200 in this case). Note that increasing the number of trees further will not lead to overfitting. However, increasing the number of trees will increase the computations. Thus, the number of trees developed should be the number beyond which the R-squared stabilizes.

```
#Visualizing out-of-bag RMSE and test data RMSE
plt.rcParams.update({'font.size': 15})
plt.figure(figsize=(8, 6), dpi=80)
plt.plot(oob_rmse.keys(),oob_rmse.values(),label = 'Out of bag RMSE')
plt.plot(oob_rmse.keys(),oob_rmse.values(),'o',color = 'blue')
plt.plot(test_rmse.keys(),test_rmse.values(), label = 'Test data RMSE')
plt.xlabel('Number of trees')
plt.ylabel('RMSE')
plt.legend()
```

<matplotlib.legend.Legend at 0x1767fff7460>

A similar trend can be seen by plotting out-of-bag RMSE and test RMSE. Note that RMSE is proportional to R-squared. You only need to visualize one of RMSE or R-squared to find the optimal number of trees.

0.8998265006519903

```
#RMSE on test data
pred = model.predict(Xtest)
np.sqrt(mean_squared_error(test.price, pred))
```

6.1.2 Tuning random forest

The Random forest object has options to set parameters such as depth, leaves, minimum number of observations in a leaf etc., for individual trees. These parameters are useful to prune a decision tree model consisting of a single tree, in order to avoid overfitting due to high variance of an unpruned tree.

Pruning individual trees in random forests is not likely to add much value, since averaging a sufficient number of unpruned trees reduces the variance of the trees, which enhances prediction accuracy. Pruning individual trees is unlikely to further reduce the prediction variance.

Here is a comment from page 596 of the The Elements of Statistical Learning that supports the above statement: Segal (2004) demonstrates small gains in performance by controlling the depths of the individual trees grown in random forests. Our experience is that using full-grown trees seldom costs much, and results in one less tuning parameter.

Below we attempt to optimize parameters that prune individual trees. However, as expected, it does not result in a substantial increase in prediction accuracy.

Also, note that we don't need to tune the number of trees in random forest with GridSearchCV. As we know the prediction accuracy will keep increasing with number of trees, we can tune the other hyperparameters with a constant value for the number of trees.

There is a very small increase in OOB R-squared after pruning the individual trees.

5654.435430858449

Optimizing depth and leaves of individual trees didn't improve the prediction accuracy of the model. Important parameters to optimize in random forests will be the number of trees (n_estimators), and number of predictors considered at each split (max_features). However, we'll see in the assignment that sometimes individual pruning of trees may be useful.

```
oob_score = [0]*len(param_list)
  i=0
  for pr in param_list:
      model = RandomForestRegressor(random_state=1,oob_score=True,verbose=False,n_estimators
                                   max_features=pr[1], n_jobs=-1).fit(X,y)
      oob_score[i] = model.oob_score_
      i=i+1
  end_time = time.time()
  print("time taken = ", (end_time-start_time)/60, " minutes")
  print("Best params = ", param_list[np.argmax(oob_score)])
  print("Best score (R-squared) = ", np.max(oob_score))
time taken = 0.04980873266855876 minutes
Best params = (300, 2)
Best score (R-squared) = 0.9005106776136418
  #Model with optimal parameters
  model = RandomForestRegressor(n_estimators=300, random_state=1,
                          n_jobs=-1, max_features=2).fit(X, y)
  np.sqrt(mean_squared_error(test.price, model.predict(Xtest)))
```

5642.45839697972

6.2 Random forest for classification

Random forest model to predict if a person has diabetes.

```
train = pd.read_csv('./Datasets/diabetes_train.csv')
test = pd.read_csv('./Datasets/diabetes_test.csv')

X = train.drop(columns = 'Outcome')
Xtest = test.drop(columns = 'Outcome')
y = train['Outcome']
ytest = test['Outcome']

#Ensembling the results of 10 decision trees
model = RandomForestClassifier(n_estimators=200, random_state=1,max_features="sqrt",n_jobs")
```

```
#Feature importance for Random forest
  np.mean([tree.feature_importances_ for tree in model.estimators_],axis=0)
array([0.08380406, 0.25403736, 0.09000104, 0.07151063, 0.07733353,
      0.16976023, 0.12289303, 0.13066012])
  # Performance metrics computation for the optimum decision threshold probability
  desired threshold = 0.23
  y_pred_prob = model.predict_proba(Xtest)[:,1]
  \# Classifying observations in the positive class (y = 1) if the predicted probability is g
  # than the desired decision threshold probability
  y_pred = y_pred_prob > desired_threshold
  y_pred = y_pred.astype(int)
  #Computing the accuracy
  print("Accuracy: ",accuracy_score(y_pred, ytest)*100)
  #Computing the ROC-AUC
  fpr, tpr, auc_thresholds = roc_curve(ytest, y_pred_prob)
  print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
  #Computing the precision and recall
  print("Precision: ", precision_score(ytest, y_pred))
  print("Recall: ", recall_score(ytest, y_pred))
  #Confusion matrix
  cm = pd.DataFrame(confusion_matrix(ytest, y_pred),
                    columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1']
  sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 72.727272727273 ROC-AUC: 0.8744050766790058 Precision: 0.6021505376344086 Recall: 0.9180327868852459

The model obtained above is similar to the one obtained by bagging. We'll discuss the comparison later.

6.2.1 Model accuracy vs number of trees

```
#Finding model accuracy vs number of trees
oob_accuracy={};test_accuracy={};oob_precision={}; test_precision = {}
for i in np.linspace(50,500,45,dtype=int):
    model = RandomForestClassifier(n_estimators=i, random_state=1,max_features="sqrt",n_jc
    oob_accuracy[i]=model.oob_score_ #Returns the out-of_bag R-squared of the model
    test_accuracy[i]=model.score(Xtest,ytest) #Returns the test R-squared of the model
    oob_pred = (model.oob_decision_function_[:,1]>=0.5).astype(int)
    oob_precision[i] = precision_score(y, oob_pred)
    test_pred = model.predict(Xtest)
    test_precision[i] = precision_score(ytest, test_pred)

plt.rcParams.update({'font.size': 15})
plt.figure(figsize=(8, 6), dpi=80)
plt.plot(oob_accuracy.keys(),oob_accuracy.values(),label = 'Out of bag accuracy')
plt.plot(oob_accuracy.keys(),oob_accuracy.values(),'o',color = 'blue')
```

```
plt.plot(test_accuracy.keys(),test_accuracy.values(), label = 'Test data accuracy')
plt.xlabel('Number of trees')
plt.ylabel('Classification accuracy')
plt.legend();
```


We can also plot other metrics of interest such as out-of-bag precision vs number of trees.

```
#Precision vs number of trees
plt.rcParams.update({'font.size': 15})
plt.figure(figsize=(8, 6), dpi=80)
plt.plot(oob_precision.keys(),oob_precision.values(),label = 'Out of bag precision')
plt.plot(oob_precision.keys(),oob_precision.values(),'o',color = 'blue')
plt.plot(test_precision.keys(),test_precision.values(), label = 'Test data precision')
plt.xlabel('Number of trees')
```

```
plt.ylabel('Precision')
plt.legend();
```


6.2.2 Tuning random forest

Here we tune the number of predictors to be considered at each node for the split to maximize recall.

```
oob_recall = [0]*len(param_list)
  i=0
  for pr in param_list:
      model = RandomForestClassifier(random_state=1,oob_score=True,verbose=False,n_estimator
                                     max_features=pr[1], n_jobs=-1).fit(X,y)
      oob_pred = (model.oob_decision_function_[:,1]>=0.5).astype(int)
      oob_recall[i] = recall_score(y, oob_pred)
      i=i+1
  end_time = time.time()
  print("time taken = ", (end_time-start_time)/60, " minutes")
  print("max recall = ", np.max(oob_recall))
  print("params= ", param_list[np.argmax(oob_recall)])
time taken = 0.08032723267873128 minutes
\max \text{ recall} = 0.5990338164251208
params= (500, 8)
  model = RandomForestClassifier(random_state=1,n_jobs=-1,max_features=8,n_estimators=500).f
  # Performance metrics computation for the optimum decision threshold probability
  desired_threshold = 0.23
  y_pred_prob = model.predict_proba(Xtest)[:,1]
  \# Classifying observations in the positive class (y = 1) if the predicted probability is g
  # than the desired decision threshold probability
  y_pred = y_pred_prob > desired_threshold
  y_pred = y_pred.astype(int)
  #Computing the accuracy
  print("Accuracy: ",accuracy_score(y_pred, ytest)*100)
  #Computing the ROC-AUC
  fpr, tpr, auc_thresholds = roc_curve(ytest, y_pred_prob)
  print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
  #Computing the precision and recall
```

Accuracy: 76.62337662337663 ROC-AUC: 0.8787237793054822 Precision: 0.6404494382022472 Recall: 0.9344262295081968

model.feature_importances_

```
array([0.069273 , 0.31211579, 0.08492953, 0.05225877, 0.06179047, 0.17732674, 0.12342981, 0.1188759])
```

6.3 Random forest vs Bagging

We saw in the above examples that the performance of random forest was similar to that of bagged trees. This may happen in some cases including but not limited to:

- 1. All the predictors are more or less equally important, and the bagged trees are not highly correlated.
- 2. One of the predictors dominates the trees, resulting in highly correlated trees. However, each of the highly correlated trees have high prediction accuracy, leading to overall high prediction accuracy of the bagged trees despite the high correlation.

When can random forests perform poorly: When the number of variables is large, but the fraction of relevant variables small, random forests are likely to perform poorly with small m (fraction of predictors considered for each split). At each split the chance can be small that the relevant variables will be selected. - *Elements of Statistical Learning*, page 596.

However, in general, random forests are expected to decorrelate and improve the bagged trees.

Let us consider a classification example.

```
data = pd.read_csv('Heart.csv')
data.dropna(inplace = True)
data.head()
```

	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca
0	63	1	typical	145	233	1	2	150	0	2.3	3	0.0
1	67	1	asymptomatic	160	286	0	2	108	1	1.5	2	3.0
2	67	1	asymptomatic	120	229	0	2	129	1	2.6	2	2.0
3	37	1	nonanginal	130	250	0	0	187	0	3.5	3	0.0
4	41	0	nontypical	130	204	0	2	172	0	1.4	1	0.0

In the above dataset, we wish to predict if a person has acquired heart disease (AHD = 'Yes'), based on their symptoms.

```
#Response variable
y = pd.get_dummies(data['AHD'])['Yes']

#Creating a dataframe for predictors with dummy variables replacing the categorical variable
X = data.drop(columns = ['AHD','ChestPain','Thal'])
X = pd.concat([X,pd.get_dummies(data['ChestPain']),pd.get_dummies(data['Thal'])],axis=1)
X.head()
```

	Age	Sex	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	asymptomatic
0	63	1	145	233	1	2	150	0	2.3	3	0.0	0
1	67	1	160	286	0	2	108	1	1.5	2	3.0	1
2	67	1	120	229	0	2	129	1	2.6	2	2.0	1
3	37	1	130	250	0	0	187	0	3.5	3	0.0	0
4	41	0	130	204	0	2	172	0	1.4	1	0.0	0

```
X.shape

(297, 18)

#Creating train and test datasets
   Xtrain, Xtest, ytrain, ytest = train_test_split(X,y,train_size = 0.5,random_state=1)
```

Tuning random forest

```
#Tuning the random forest parameters
  start_time = time.time()
  oob_score = {}
  i=0
  for pr in range(1,19):
      model = RandomForestClassifier(random_state=1,oob_score=True,verbose=False,n_estimator
                                    max_features=pr, n_jobs=-1).fit(X,y)
      oob_score[i] = model.oob_score_
      i=i+1
  end_time = time.time()
  print("time taken = ", (end_time-start_time)/60, " minutes")
  print("max accuracy = ", np.max(list(oob_score.values())))
  print("Best value of max_features= ", np.argmax(list(oob_score.values()))+1)
time taken = 0.21557459433873494 minutes
max accuracy = 0.8249158249158249
Best value of max_features= 3
```

```
sns.scatterplot(x = oob_score.keys(),y = oob_score.values())
plt.xlabel('Max features')
plt.ylabel('Classification accuracy')
```

Text(0, 0.5, 'Classification accuracy')

Note that as the value of max_features is increasing, the accuracy is decreasing. This is probably due to the trees getting correlated as we consider more predictors for each split.

Note that no predictor is too important to consider. That's why a small value of three for max_features is likely to decorrelate trees without compromising the quality of predictions.

```
plt.rcParams.update({'font.size': 15})
plt.figure(figsize=(8, 6), dpi=80)
plt.plot(oob_accuracy.keys(),oob_accuracy.values(),label = 'Bagging OOB')
plt.plot(oob_accuracy.keys(),oob_accuracy.values(),'o',color = 'blue')
plt.plot(test_accuracy.keys(),test_accuracy.values(), label = 'Bagging test accuracy')

plt.plot(oob_accuracy2.keys(),oob_accuracy2.values(),label = 'RF OOB')
plt.plot(oob_accuracy2.keys(),oob_accuracy2.values(),'o',color = 'green')
plt.plot(test_accuacy2.keys(),test_accuacy2.values(), label = 'RF test accuracy')

plt.vlabel('Number of trees')
plt.ylabel('Classification accuracy')
plt.legend(bbox_to_anchor=(0, -0.15, 1, 0), loc=2, ncol=2, mode="expand", borderaxespad=0)
```

<matplotlib.legend.Legend at 0x187bd2a2640>

In the above example we observe that random forest does improve over bagged trees in terms of classification accuracy. Unlike the previous two examples, the optimal value of max_features for random forests is much smaller than the total number of available predictors, thereby making the random forest model much different than the bagged tree model.

7 Adaptive Boosting

Read section 8.2.3 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

7.1 Hyperparameters

There are 3 important parameters to tune in AdaBoost:

- 1. Number of trees
- 2. Depth of each tree
- 3. Learning rate

Let us visualize the accuracy of AdaBoost when we independently tweak each of the above parameters.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score,train_test_split, KFold, cross_val_pre
from sklearn.metrics import mean_squared_error,r2_score,roc_curve,auc,precision_recall_cur
recall_score, precision_score, confusion_matrix
from sklearn.tree import DecisionTreeRegressor,DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV, ParameterGrid, StratifiedKFold
from sklearn.ensemble import BaggingRegressor,BaggingClassifier,AdaBoostRegressor,AdaBoost
from sklearn.linear_model import LinearRegression,LogisticRegression
from sklearn.neighbors import KNeighborsRegressor
import itertools as it
import time as time
```

```
#Using the same datasets as used for linear regression in STAT303-2,
#so that we can compare the non-linear models with linear regression
trainf = pd.read_csv('Car_features_train.csv')
trainp = pd.read_csv('Car_prices_train.csv')
testf = pd.read_csv('Car_features_test.csv')
testp = pd.read_csv('Car_prices_test.csv')
train = pd.merge(trainf,trainp)
test = pd.merge(testf,testp)
train.head()
```

	carID	brand	model	year	transmission	mileage	fuelType	tax	mpg	engineSize	price
0	18473	bmw	6 Series	2020	Semi-Auto	11	Diesel	145	53.3282	3.0	37980
1	15064	bmw	6 Series	2019	Semi-Auto	10813	Diesel	145	53.0430	3.0	33980
2	18268	bmw	6 Series	2020	Semi-Auto	6	Diesel	145	53.4379	3.0	36850
3	18480	bmw	6 Series	2017	Semi-Auto	18895	Diesel	145	51.5140	3.0	25998
4	18492	bmw	6 Series	2015	Automatic	62953	Diesel	160	51.4903	3.0	18990

```
X = train[['mileage','mpg','year','engineSize']]
Xtest = test[['mileage','mpg','year','engineSize']]
y = train['price']
ytest = test['price']
```

7.2 AdaBoost for regression

7.2.1 Number of trees vs cross validation error

As the number of trees increases, the prediction bias will decrease, and the prediction variance will increase. Thus, there will be an optimal number of trees that minimizes the prediction error.

```
def get_models():
    models = dict()
    # define number of trees to consider
    n_trees = [2, 5, 10, 50, 100, 500, 1000]
    for n in n_trees:
        models[str(n)] = AdaBoostRegressor(n_estimators=n,random_state=1)
    return models
```

```
# evaluate a given model using cross-validation
  def evaluate_model(model, X, y):
      # define the evaluation procedure
      cv = KFold(n_splits=5, shuffle=True, random_state=1)
      # evaluate the model and collect the results
      scores = np.sqrt(-cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=cv
      return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.3f (%.3f)' % (name, np.mean(scores), np.std(scores)))
  # plot model performance for comparison
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Cross validation error',fontsize=15)
  plt.xlabel('Number of trees',fontsize=15)
>2 9190.253 (757.408)
>5 8583.629 (341.406)
>10 8814.328 (248.891)
>50 10763.138 (465.677)
>100 11217.783 (602.642)
>500 11336.088 (763.288)
>1000 11390.043 (752.446)
Text(0.5, 0, 'Number of trees')
```


7.2.2 Depth of tree vs cross validation error

As the depth of each weak learner (decision tree) increases, the complexity of the weak learner will increase. As the complexity increases, the prediction bias will decrease, while the prediction variance will increase. Thus, there will be an optimal depth for each weak learner that minimizes the prediction error.

```
# get a list of models to evaluate
def get_models():
    models = dict()
    # explore depths from 1 to 10
    for i in range(1,21):
        # define base model
        base = DecisionTreeRegressor(max_depth=i)
        # define ensemble model
        models[str(i)] = AdaBoostRegressor(base_estimator=base,n_estimators=50)
    return models

# evaluate a given model using cross-validation
def evaluate_model(model, X, y):
```

```
# define the evaluation procedure
      cv = KFold(n_splits=10, shuffle=True, random_state=1)
      # evaluate the model and collect the results
      scores = np.sqrt(-cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=cv
      return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.3f (%.3f)' % (name, np.mean(scores), np.std(scores)))
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Cross validation error',fontsize=15)
  plt.xlabel('Depth of each tree',fontsize=15)
>1 12704.191 (661.913)
>2 10675.975 (382.400)
>3 10523.960 (557.974)
>4 9303.664 (500.022)
>5 7257.473 (385.578)
>6 6120.387 (371.625)
>7 5802.894 (428.146)
>8 5656.343 (521.073)
>9 5449.504 (471.809)
>10 5379.424 (452.370)
>11 5330.506 (428.361)
>12 5416.617 (580.948)
>13 5371.431 (495.273)
>14 5368.026 (417.437)
>15 5477.644 (538.878)
>16 5477.425 (468.785)
>17 5495.560 (520.657)
>18 5489.784 (462.329)
>19 5577.452 (564.083)
>20 5563.340 (479.502)
```


7.2.3 Learning rate vs cross validation error

The optimal learning rate will depend on the number of trees, and vice-versa. If the learning rate is too low, it will take several trees to "learn" the response. If the learning rate is high, the response will be "learned" quickly (with fewer) trees. Learning too quickly will be prone to overfitting, while learning too slowly will be computationally expensive. Thus, there will be an optimal learning rate to minimize the prediction error.

```
def get_models():
    models = dict()
    # explore learning rates from 0.1 to 2 in 0.1 increments
    for i in np.arange(0.1, 2.1, 0.1):
        key = '%.1f' % i
        models[key] = AdaBoostRegressor(learning_rate=i)
    return models

# evaluate a given model using cross-validation
def evaluate_model(model, X, y):
```

```
# define the evaluation procedure
      cv = KFold(n_splits=10, shuffle=True, random_state=1)
      # evaluate the model and collect the results
      scores = np.sqrt(-cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=cv
      return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.1f (%.1f)' % (name, np.mean(scores), np.std(scores)))
  # plot model performance for comparison
  plt.figure(figsize=(7, 7))
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Cross validation error',fontsize=15)
  plt.xlabel('Learning rate',fontsize=15)
>0.1 8347.3 (460.1)
>0.2 8478.3 (487.2)
>0.3 8717.4 (500.1)
>0.4 9091.3 (481.2)
>0.5 9374.3 (400.4)
>0.6 9712.9 (548.1)
>0.7 9866.8 (359.5)
>0.8 10443.6 (436.4)
>0.9 10526.6 (503.4)
>1.0 10821.8 (594.8)
>1.1 10688.5 (437.6)
>1.2 10840.2 (426.6)
>1.3 10892.1 (543.8)
>1.4 10932.6 (388.1)
>1.5 11316.6 (656.2)
>1.6 11098.3 (596.2)
>1.7 11037.3 (560.1)
>1.8 11236.2 (650.7)
```

```
>1.9 11770.4 (749.1)
>2.0 11404.9 (681.6)
```

Text(0.5, 0, 'Learning rate')

7.2.4 Tuning AdaBoost for regression

As the optimal value of the parameters depend on each other, we need to optimize them simultaneously.

```
model = AdaBoostRegressor(random_state=1)
  grid = dict()
  grid['n_estimators'] = [10, 50, 100,200]
  grid['learning_rate'] = [0.0001, 0.001, 0.01,0.1, 1.0]
  grid['base_estimator'] = [DecisionTreeRegressor(max_depth=3), DecisionTreeRegressor(max_depth=3)
                             DecisionTreeRegressor(max_depth=10),DecisionTreeRegressor(max_de
  # define the evaluation procedure
  cv = KFold(n_splits=5, shuffle=True, random_state=1)
  # define the grid search procedure
  grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, scoring='ne
  # execute the grid search
  grid_result = grid_search.fit(X, y)
  # summarize the best score and configuration
  print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
  # summarize all scores that were evaluated
  means = grid_result.cv_results_['mean_test_score']
  stds = grid_result.cv_results_['std_test_score']
  params = grid_result.cv_results_['params']
  #for mean, stdev, param in zip(means, stds, params):
       print("%f (%f) with: %r" % (mean, stdev, param)
Best: -28598146.516266 using {'base_estimator': DecisionTreeRegressor(max_depth=10), 'learni:
  #Model based on the optimal parameters
  model = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=10),n_estimators=
                           random_state=1).fit(X,y)
  #RMSE of the optimized model on test data
  pred1=model.predict(Xtest)
  print("AdaBoost model RMSE = ", np.sqrt(mean_squared_error(model.predict(Xtest),ytest)))
AdaBoost model RMSE = 5693.165811600585
  model2 = RandomForestRegressor(n_estimators=300, random_state=1,
                          n_jobs=-1, max_features=2).fit(X, y)
  pred2 = model2.predict(Xtest)
  print("Random Forest model RMSE = ", np.sqrt(mean_squared_error(model2.predict(Xtest),ytes
Random Forest model RMSE = 5642.45839697972
```

```
#Ensemble modeling
pred = 0.5*pred1+0.5*pred2
print("Ensemble model RMSE = ", np.sqrt(mean_squared_error(pred,ytest)))
```

Ensemble model RMSE = 5528.699297204213

Combined, the random forest model and the Adaboost model do better than each of the individual models.

7.3 AdaBoost for classification

Below is the AdaBoost implementation on a classification problem. The takeaways are the same as that of the regression problem above.

```
train = pd.read_csv('./Datasets/diabetes_train.csv')
test = pd.read_csv('./Datasets/diabetes_test.csv')

X = train.drop(columns = 'Outcome')
Xtest = test.drop(columns = 'Outcome')
y = train['Outcome']
ytest = test['Outcome']
```

7.3.1 Number of trees vs cross validation accuracy

```
def get_models():
    models = dict()
    # define number of trees to consider
    n_trees = [10, 50, 100, 500, 1000, 5000]
    for n in n_trees:
        models[str(n)] = AdaBoostClassifier(n_estimators=n,random_state=1)
    return models

# evaluate a given model using cross-validation
def evaluate_model(model, X, y):
    # define the evaluation procedure
    cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=1)
    # evaluate the model and collect the results
    scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
```

```
return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.3f (%.3f)' % (name, np.mean(scores), np.std(scores)))
  # plot model performance for comparison
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Cross validation error',fontsize=15)
  plt.xlabel('Number of trees',fontsize=15)
>10 0.718 (0.060)
>50 0.751 (0.051)
>100 0.748 (0.053)
>500 0.690 (0.045)
>1000 0.694 (0.048)
>5000 0.691 (0.044)
Text(0.5, 0, 'Number of trees')
```


7.3.2 Depth of each tree vs cross validation accuracy

```
# get a list of models to evaluate
def get_models():
   models = dict()
    # explore depths from 1 to 10
    for i in range(1,21):
        # define base model
        base = DecisionTreeClassifier(max_depth=i)
        # define ensemble model
        models[str(i)] = AdaBoostClassifier(base_estimator=base)
    return models
# evaluate a given model using cross-validation
def evaluate_model(model, X, y):
    # define the evaluation procedure
    cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=1)
    # evaluate the model and collect the results
    scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
    return scores
```

```
# get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.3f (%.3f)' % (name, np.mean(scores), np.std(scores)))
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Accuracy',fontsize=15)
  plt.xlabel('Depth of each tree',fontsize=15)
>1 0.751 (0.051)
>2 0.699 (0.063)
>3 0.696 (0.062)
>4 0.707 (0.055)
>5 0.713 (0.021)
>6 0.710 (0.061)
>7 0.733 (0.057)
>8 0.738 (0.044)
>9 0.727 (0.053)
>10 0.738 (0.065)
>11 0.748 (0.048)
>12 0.699 (0.044)
>13 0.738 (0.047)
>14 0.697 (0.041)
>15 0.697 (0.052)
>16 0.692 (0.052)
>17 0.702 (0.056)
>18 0.702 (0.045)
>19 0.700 (0.040)
>20 0.696 (0.042)
Text(0.5, 0, 'Depth of each tree')
```


7.3.3 Learning rate vs cross validation accuracy

```
def get_models():
    models = dict()
    # explore learning rates from 0.1 to 2 in 0.1 increments
    for i in np.arange(0.1, 2.1, 0.1):
        key = '%.1f' % i
        models[key] = AdaBoostClassifier(learning_rate=i)
    return models
# evaluate a given model using cross-validation
def evaluate_model(model, X, y):
    # define the evaluation procedure
    cv = KFold(n_splits=10, shuffle=True, random_state=1)
    # evaluate the model and collect the results
    scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
    return scores
# get the models to evaluate
models = get_models()
```

```
# evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.3f (%.3f)' % (name, np.mean(scores), np.std(scores)))
  # plot model performance for comparison
  plt.figure(figsize=(7, 7))
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Accuracy',fontsize=15)
  plt.xlabel('Learning rate',fontsize=15)
>0.1 0.749 (0.052)
>0.2 0.743 (0.050)
>0.3 0.731 (0.057)
>0.4 0.736 (0.053)
>0.5 0.733 (0.062)
>0.6 0.738 (0.058)
>0.7 0.741 (0.056)
>0.8 0.741 (0.049)
>0.9 0.736 (0.048)
>1.0 0.741 (0.035)
>1.1 0.734 (0.037)
>1.2 0.736 (0.038)
>1.3 0.731 (0.057)
>1.4 0.728 (0.041)
>1.5 0.730 (0.036)
>1.6 0.720 (0.038)
>1.7 0.707 (0.045)
>1.8 0.730 (0.024)
>1.9 0.712 (0.033)
>2.0 0.454 (0.191)
```

Text(0.5, 0, 'Learning rate')

7.3.4 Tuning AdaBoost Classifier hyperparameters

```
model = AdaBoostClassifier(random_state=1)
grid = dict()
grid['n_estimators'] = [10, 50, 100,200,500]
grid['learning_rate'] = [0.0001, 0.001, 0.01,0.1, 1.0]
grid['base_estimator'] = [DecisionTreeClassifier(max_depth=1), DecisionTreeClassifier(max_depth=3),DecisionTreeClassifier(max_depth=3)
```

Fitting 5 folds for each of 100 candidates, totalling 500 fits

Best: 0.763934 using {'base_estimator': DecisionTreeClassifier(max_depth=3), 'learning_rate'

7.3.5 Tuning the decision threshold probability

We'll find a decision threshold probability that balances recall with precision.

```
plt.plot(thresholds, recalls[:-1], "o", color = 'green')
  plt.ylabel("Score")
  plt.xlabel("Decision Threshold")
  plt.legend(loc='best')
  plt.legend()
plot_precision_recall_vs_threshold(p, r, thresholds)
```

Precision and Recall Scores as a function of the decision threshold


```
# Thresholds with precision and recall
         all_thresholds = np.concatenate([thresholds.reshape(-1,1), p[:-1].reshape(-1,1), r[:-1].reshape(-1,1), r[:-1
        recall_more_than_80 = all_thresholds[all_thresholds[:,2]>0.8,:]
         # As the values in 'recall_more_than_80' are arranged in decreasing order of recall and in
         # the last value will provide the maximum threshold probability for the recall to be more
         # We wish to find the maximum threshold probability to obtain the maximum possible precisi
        recall_more_than_80[recall_more_than_80.shape[0]-1]
array([0.33488762, 0.50920245, 0.80193237])
         #Optimal decision threshold probability
         thres = recall more than 80[recall more than 80.shape[0]-1][0]
         thres
0.3348876199649718
```

```
# Performance metrics computation for the optimum decision threshold probability
desired_threshold = thres
y_pred_prob = model.predict_proba(Xtest)[:,1]
\# Classifying observations in the positive class (y = 1) if the predicted probability is g
# than the desired decision threshold probability
y_pred = y_pred_prob > desired_threshold
y_pred = y_pred.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred, ytest)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(ytest, y_pred_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(ytest, y_pred))
print("Recall: ", recall_score(ytest, y_pred))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(ytest, y_pred),
                  columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1']
```

```
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 79.87012987012987 ROC-AUC: 0.8884188260179798

Precision: 0.6875

Recall: 0.9016393442622951

The above model is similar to the one obtained with bagging / random forest. However, adaptive boosting may lead to better classification performance as compared to bagging / random forest.

8 Gradient Boosting

Check the gradient boosting algorithm in section 10.10.2 of the book, Elements of Statistical Learning before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

8.1 Hyperparameters

There are 4 important parameters to tune in Gradient boosting:

- 1. Number of trees
- 2. Depth of each tree
- 3. Learning rate
- 4. Subsample fraction

Let us visualize the accuracy of Gradient boosting when we independently tweak each of the above parameters.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score,train_test_split, KFold, cross_val_pre
from sklearn.metrics import mean_squared_error,r2_score,roc_curve,auc,precision_recall_cur
recall_score, precision_score, confusion_matrix
from sklearn.tree import DecisionTreeRegressor,DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV, ParameterGrid, StratifiedKFold
from sklearn.ensemble import GradientBoostingRegressor,GradientBoostingClassifier, Bagging
from sklearn.linear_model import LinearRegression,LogisticRegression
from sklearn.neighbors import KNeighborsRegressor
import itertools as it
```

```
#Using the same datasets as used for linear regression in STAT303-2,
#so that we can compare the non-linear models with linear regression
trainf = pd.read_csv('./Datasets/Car_features_train.csv')
trainp = pd.read_csv('./Datasets/Car_prices_train.csv')
testf = pd.read_csv('./Datasets/Car_features_test.csv')
testp = pd.read_csv('./Datasets/Car_prices_test.csv')
train = pd.merge(trainf,trainp)
test = pd.merge(testf,testp)
train.head()
```

	carID	brand	model	year	transmission	mileage	fuelType	tax	mpg	engineSize	price
0	18473	bmw	6 Series	2020	Semi-Auto	11	Diesel	145	53.3282	3.0	37980
1	15064	bmw	6 Series	2019	Semi-Auto	10813	Diesel	145	53.0430	3.0	33980
2	18268	bmw	6 Series	2020	Semi-Auto	6	Diesel	145	53.4379	3.0	36850
3	18480	bmw	6 Series	2017	Semi-Auto	18895	Diesel	145	51.5140	3.0	25998
4	18492	bmw	6 Series	2015	Automatic	62953	Diesel	160	51.4903	3.0	18990

```
X = train[['mileage','mpg','year','engineSize']]
Xtest = test[['mileage','mpg','year','engineSize']]
y = train['price']
ytest = test['price']
```

8.2 Gradient boosting for regression

8.2.1 Number of trees vs cross validation error

As the number of trees increase, the prediction bias will decrease, and the prediction variance will increase. Thus, there will be an optimal number of trees that minimize the prediction error.

```
def get_models():
    models = dict()
    # define number of trees to consider
    n_trees = [2, 5, 10, 50, 100, 500, 1000, 2000, 5000]
    for n in n_trees:
        models[str(n)] = GradientBoostingRegressor(n_estimators=n,random_state=1,loss='hub
```

```
return models
  # evaluate a given model using cross-validation
  def evaluate_model(model, X, y):
      # define the evaluation procedure
      cv = KFold(n_splits=5, shuffle=True, random_state=1)
      # evaluate the model and collect the results
      scores = np.sqrt(-cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=cv
      return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.3f (%.3f)' % (name, np.mean(scores), np.std(scores)))
  # plot model performance for comparison
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Cross validation error',fontsize=15)
  plt.xlabel('Number of trees',fontsize=15)
>2 14927.566 (179.475)
>5 12743.148 (189.408)
>10 10704.199 (226.234)
>50 6869.066 (278.885)
>100 6354.656 (270.097)
>500 5515.622 (424.516)
>1000 5515.251 (427.767)
>2000 5600.041 (389.687)
>5000 5854.168 (362.223)
Text(0.5, 0, 'Number of trees')
```


8.2.2 Depth of tree vs cross validation error

As the depth of each weak learner (decision tree) increases, the complexity of the weak learner will increase. As the complexity increases, the prediction bias will decrease, while the prediction variance will increase. Thus, there will be an optimal depth of each weak learner that minimizes the prediction error.

```
# get a list of models to evaluate
def get_models():
    models = dict()
    # explore depths from 1 to 10
    for i in range(1,21):
        # define ensemble model
            models[str(i)] = GradientBoostingRegressor(n_estimators=50,random_state=1,max_dept return models

# evaluate a given model using cross-validation
def evaluate_model(model, X, y):
    # define the evaluation procedure
    cv = KFold(n_splits=10, shuffle=True, random_state=1)
```

```
# evaluate the model and collect the results
      scores = np.sqrt(-cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=cv
      return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.3f (%.3f)' % (name, np.mean(scores), np.std(scores)))
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Cross validation error',fontsize=15)
  plt.xlabel('Depth of each tree',fontsize=15)
>1 9693.731 (810.090)
>2 7682.569 (489.841)
>3 6844.225 (536.792)
>4 5972.203 (538.693)
>5 5664.563 (497.882)
>6 5329.130 (404.330)
>7 5210.934 (461.038)
>8 5197.204 (494.957)
>9 5227.975 (478.789)
>10 5299.782 (446.509)
>11 5433.822 (451.673)
>12 5617.946 (509.797)
>13 5876.424 (542.981)
>14 6030.507 (560.447)
>15 6125.914 (643.852)
>16 6294.784 (672.646)
>17 6342.327 (677.050)
>18 6372.418 (791.068)
>19 6456.471 (741.693)
>20 6503.622 (759.193)
Text(0.5, 0, 'Depth of each tree')
```


8.2.3 Learning rate vs cross validation error

The optimal learning rate will depend on the number of trees, and vice-versa. If the learning rate is too low, it will take several trees to "learn" the response. If the learning rate is high, the response will be "learned" quickly (with fewer) trees. Learning too quickly will be prone to overfitting, while learning too slowly will be computationally expensive. Thus, there will be an optimal learning rate to minimize the prediction error.

```
def get_models():
    models = dict()
    # explore learning rates from 0.1 to 2 in 0.1 increments
    for i in np.arange(0.1, 2.1, 0.1):
        key = '%.1f' % i
        models[key] = GradientBoostingRegressor(learning_rate=i,random_state=1,loss='huber return models

# evaluate a given model using cross-validation
def evaluate_model(model, X, y):
    # define the evaluation procedure
    cv = KFold(n_splits=10, shuffle=True, random_state=1)
```

```
# evaluate the model and collect the results
      scores = np.sqrt(-cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=cv
      return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.1f (%.1f)' % (name, np.mean(scores), np.std(scores)))
  # plot model performance for comparison
  plt.figure(figsize=(7, 7))
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Cross validation error',fontsize=15)
  plt.xlabel('Learning rate',fontsize=15)
>0.1 6329.8 (450.7)
>0.2 5942.9 (454.8)
>0.3 5618.4 (490.8)
>0.4 5665.9 (577.3)
>0.5 5783.5 (561.7)
>0.6 5773.8 (500.3)
>0.7 5875.5 (565.7)
>0.8 5878.5 (540.5)
>0.9 6214.4 (594.3)
>1.0 5986.1 (601.5)
>1.1 6216.5 (395.3)
>1.2 6667.5 (657.2)
>1.3 6717.4 (594.4)
>1.4 7048.4 (531.7)
>1.5 7265.0 (742.0)
>1.6 7404.4 (868.2)
>1.7 7425.8 (606.3)
>1.8 8283.0 (1345.3)
>1.9 8872.2 (1137.9)
>2.0 17713.3 (865.3)
```

Text(0.5, 0, 'Learning rate')

8.2.4 Subsampling vs cross validation error

```
def get_models():
   models = dict()
   # explore learning rates from 0.1 to 2 in 0.1 increments
   for s in np.arange(0.25, 1.1, 0.25):
        key = '%.2f' % s
```

```
models[key] = GradientBoostingRegressor(random_state=1,subsample=s,loss='huber')
      return models
  # evaluate a given model using cross-validation
  def evaluate_model(model, X, y):
      # define the evaluation procedure
      cv = KFold(n_splits=10, shuffle=True, random_state=1)
      # evaluate the model and collect the results
      scores = np.sqrt(-cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=cv
      return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.2f (%.2f)' % (name, np.mean(scores), np.std(scores)))
  # plot model performance for comparison
  plt.figure(figsize=(7, 7))
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Cross validation error',fontsize=15)
  plt.xlabel('Subsample',fontsize=15)
>0.25 6219.59 (569.97)
>0.50 6178.28 (501.87)
>0.75 6141.96 (432.66)
>1.00 6329.79 (450.72)
Text(0.5, 0, 'Subsample')
```


8.2.5 Tuning Gradient boosting for regression

As the optimal value of the parameters depend on each other, we need to optimize them simultaneously.

```
start_time = time.time()
model = GradientBoostingRegressor(random_state=1,loss='huber')
grid = dict()
grid['n_estimators'] = [10, 50, 100,200,500]
```

```
grid['learning_rate'] = [0.0001, 0.001, 0.01,0.1, 1.0]
  grid['max_depth'] = [3,5,8,10,12,15]
  # define the evaluation procedure
  cv = KFold(n_splits=5, shuffle=True, random_state=1)
  # define the grid search procedure
  grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, scoring='ne
                             verbose = True)
  # execute the grid search
  grid_result = grid_search.fit(X, y)
  # summarize the best score and configuration
  print("Best: %f using %s" % (np.sqrt(-grid_result.best_score_), grid_result.best_params_))
  # summarize all scores that were evaluated
  means = grid_result.cv_results_['mean_test_score']
  stds = grid_result.cv_results_['std_test_score']
  params = grid_result.cv_results_['params']
  #for mean, stdev, param in zip(means, stds, params):
       print("%f (%f) with: %r" % (mean, stdev, param)
  print("Time taken = ",(time.time()-start_time)/60," minutes")
Best: 5190.765919 using {'learning_rate': 0.1, 'max_depth': 8, 'n_estimators': 100}
Time taken = 46.925597019990285 minutes
Note that the code takes 46 minutes to run. In case of a lot of hyperparameters,
RandomizedSearchCV may be preferred to trade-off between optimality of the solution and
computational cost.
  #Model based on the optimal parameters
  model = GradientBoostingRegressor(max_depth=8,n_estimators=100,learning_rate=0.1,
                            random_state=1,loss='huber').fit(X,y)
  #RMSE of the optimized model on test data
  print("Gradient boost RMSE = ",np.sqrt(mean_squared_error(model.predict(Xtest),ytest)))
Gradient boost RMSE = 5405.787029062213
  #Let us combine the Gradient boost model with other models
  model2 = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=10),n_estimators
                            random_state=1).fit(X,y)
```

Ensemble model RMSE = 5364.478227748279

8.2.6 Ensemble modeling (for regression models)

```
#Ensemble model
pred1=model.predict(Xtest)#Gradient boost
pred2=model2.predict(Xtest)#Adaboost
pred3=model3.predict(Xtest)#Random forest
pred = 0.6*pred1+0.2*pred2+0.2*pred3 #Higher weight to the better model
print("Ensemble model RMSE = ", np.sqrt(mean_squared_error(pred,ytest)))
```

Ensemble model RMSE = 5323.119083375402

Combined, the random forest model, gradient boost and the Adaboost model do better than each of the individual models.

Note that ideally we should do K-fold cross validation to figure out the optimal weights. We'll learn about ensembling techniques later in the course.

8.3 Gradient boosting for classification

Below is the Gradient boost implementation on a classification problem. The takeaways are the same as that of the regression problem above.

```
train = pd.read_csv('./Datasets/diabetes_train.csv')
test = pd.read_csv('./Datasets/diabetes_test.csv')

X = train.drop(columns = 'Outcome')
Xtest = test.drop(columns = 'Outcome')
y = train['Outcome']
ytest = test['Outcome']
```

8.3.1 Number of trees vs cross validation accuracy

```
def get_models():
    models = dict()
    # define number of trees to consider
    n_trees = [10, 50, 100, 500, 1000, 5000]
    for n in n_trees:
        models[str(n)] = GradientBoostingClassifier(n_estimators=n,random_state=1)
    return models
# evaluate a given model using cross-validation
def evaluate_model(model, X, y):
    # define the evaluation procedure
    cv = StratifiedKFold(n splits=10, shuffle=True, random state=1)
    # evaluate the model and collect the results
    scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
    return scores
# get the models to evaluate
models = get_models()
# evaluate the models and store results
results, names = list(), list()
for name, model in models.items():
    # evaluate the model
    scores = evaluate_model(model, X, y)
    # store the results
    results.append(scores)
    names.append(name)
    # summarize the performance along the way
    print('>%s %.3f (%.3f)' % (name, np.mean(scores), np.std(scores)))
# plot model performance for comparison
```

```
plt.boxplot(results, labels=names, showmeans=True)
plt.ylabel('Cross validation error',fontsize=15)
plt.xlabel('Number of trees',fontsize=15)
```

```
>10 0.738 (0.031)
>50 0.748 (0.054)
>100 0.722 (0.075)
>500 0.707 (0.066)
>1000 0.712 (0.075)
>5000 0.697 (0.061)
```

Text(0.5, 0, 'Number of trees')

8.3.2 Depth of each tree vs cross validation accuracy

```
# get a list of models to evaluate
  def get_models():
      models = dict()
      # explore depths from 1 to 10
      for i in range(1,21):
          # define ensemble model
          models[str(i)] = GradientBoostingClassifier(random_state=1, max_depth=i)
      return models
  # evaluate a given model using cross-validation
  def evaluate_model(model, X, y):
      # define the evaluation procedure
      cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=1)
      # evaluate the model and collect the results
      scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
      return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.3f (%.3f)' % (name, np.mean(scores), np.std(scores)))
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Accuracy',fontsize=15)
  plt.xlabel('Depth of each tree',fontsize=15)
>1 0.746 (0.040)
>2 0.744 (0.046)
>3 0.722 (0.075)
>4 0.743 (0.049)
>5 0.738 (0.046)
>6 0.741 (0.047)
```

>7 0.735 (0.057)
>8 0.736 (0.051)
>9 0.728 (0.055)
>10 0.710 (0.050)
>11 0.697 (0.061)
>12 0.681 (0.056)
>13 0.709 (0.047)
>14 0.702 (0.048)
>15 0.705 (0.048)
>16 0.700 (0.042)
>17 0.699 (0.048)
>18 0.697 (0.050)
>19 0.696 (0.048)

Text(0.5, 0, 'Depth of each tree')

8.3.3 Learning rate vs cross validation accuracy

```
def get_models():
      models = dict()
      # explore learning rates from 0.1 to 2 in 0.1 increments
      for i in np.arange(0.1, 2.1, 0.1):
          key = '%.1f' % i
          models[key] = GradientBoostingClassifier(learning_rate=i,random_state=1)
      return models
  # evaluate a given model using cross-validation
  def evaluate_model(model, X, y):
      # define the evaluation procedure
      cv = KFold(n_splits=10, shuffle=True, random_state=1)
      # evaluate the model and collect the results
      scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
      return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.3f (%.3f)' % (name, np.mean(scores), np.std(scores)))
  # plot model performance for comparison
  plt.figure(figsize=(7, 7))
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Accuracy',fontsize=15)
  plt.xlabel('Learning rate',fontsize=15)
>0.1 0.747 (0.044)
>0.2 0.736 (0.028)
>0.3 0.726 (0.039)
>0.4 0.730 (0.034)
>0.5 0.726 (0.041)
```

```
>0.6 0.722 (0.043)
>0.7 0.717 (0.050)
>0.8 0.713 (0.033)
>0.9 0.694 (0.045)
>1.0 0.695 (0.032)
>1.1 0.718 (0.034)
>1.2 0.692 (0.045)
>1.3 0.708 (0.042)
>1.4 0.704 (0.050)
>1.5 0.702 (0.028)
>1.6 0.700 (0.050)
```

>1.7 0.694 (0.044) >1.8 0.650 (0.075) >1.9 0.551 (0.163) >2.0 0.484 (0.123)

Text(0.5, 0, 'Learning rate')

8.3.4 Tuning Gradient boosting Classifier

```
start_time = time.time()
model = GradientBoostingClassifier(random_state=1)
grid = dict()
grid['n_estimators'] = [10, 50, 100,200,500]
grid['learning_rate'] = [0.0001, 0.001, 0.01,0.1, 1.0]
grid['max_depth'] = [1,2,3,4,5]
```

```
grid['subsample'] = [0.5,1.0]
  # define the evaluation procedure
  cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=1)
  # define the grid search procedure
  grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, verbose = T
  # execute the grid search
  grid_result = grid_search.fit(X, y)
  # summarize the best score and configuration
  print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
  print("Time taken = ", time.time() - start_time, "seconds")
Fitting 5 folds for each of 250 candidates, totalling 1250 fits
Best: 0.701045 using {'learning_rate': 1.0, 'max depth': 3, 'n_estimators': 200, 'subsample'
Time taken = 32.46394085884094
  #Model based on the optimal parameters
  model = GradientBoostingClassifier(random_state=1, max_depth=3, learning_rate=0.1, subsample=
                            n_estimators=200).fit(X,y)
  # Note that we are using the cross-validated predicted probabilities, instead of directly
  # predicted probabilities on train data, as the model may be overfitting on the train data
  # may lead to misleading results
  cross_val_ypred = cross_val_predict(GradientBoostingClassifier(random_state=1, max_depth=3,
                                                                  learning_rate=0.1, subsample
                            n_estimators=200), X, y, cv = 5, method = 'predict_proba')
  p, r, thresholds = precision_recall_curve(y, cross_val_ypred[:,1])
  def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
      plt.figure(figsize=(8, 8))
      plt.title("Precision and Recall Scores as a function of the decision threshold")
      plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
      plt.plot(thresholds, recalls[:-1], "g-", label="Recall")
      plt.plot(thresholds, precisions[:-1], "o", color = 'blue')
      plt.plot(thresholds, recalls[:-1], "o", color = 'green')
      plt.ylabel("Score")
      plt.xlabel("Decision Threshold")
      plt.legend(loc='best')
      plt.legend()
  plot_precision_recall_vs_threshold(p, r, thresholds)
```

Precision and Recall Scores as a function of the decision threshold


```
# Thresholds with precision and recall
all_thresholds = np.concatenate([thresholds.reshape(-1,1), p[:-1].reshape(-1,1), r[:-1].re
recall_more_than_80 = all_thresholds[all_thresholds[:,2]>0.8,:]
# As the values in 'recall_more_than_80' are arranged in decreasing order of recall and in
# the last value will provide the maximum threshold probability for the recall to be more
# We wish to find the maximum threshold probability to obtain the maximum possible precisi
recall_more_than_80[recall_more_than_80.shape[0]-1]
```

```
array([0.18497144, 0.53205128, 0.80193237])
```

```
#Optimal decision threshold probability
thres = recall_more_than_80[recall_more_than_80.shape[0]-1][0]
thres
```

0.18497143500912738

```
# Performance metrics computation for the optimum decision threshold probability
desired_threshold = thres
y_pred_prob = model.predict_proba(Xtest)[:,1]
\# Classifying observations in the positive class (y = 1) if the predicted probability is g
# than the desired decision threshold probability
y_pred = y_pred_prob > desired_threshold
y_pred = y_pred.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred, ytest)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(ytest, y_pred_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(ytest, y_pred))
print("Recall: ", recall_score(ytest, y_pred))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(ytest, y_pred),
                  columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1']
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 77.92207792207793
ROC-AUC: 0.8704389212057112
Precision: 0.6626506024096386
Recall: 0.9016393442622951

The model seems to be similar to the Adaboost model. However, gradient boosting algorithms with robust loss functions can perform better than Adaboost in the presence of outliers $(in\ terms\ of\ response)$ in the data.

9 XGBoost

XGBoost is a very recently developed algorithm (2016). Thus, it's not yet there in standard textbooks. Here are some resources for it.

Documentation

Slides

Reference paper

9.1 Hyperparameters

The following are some of the important hyperparameters to tune in XGBoost:

- 1. Number of trees (n_estimators)
- 2. Depth of each tree (max_depth)
- 3. Learning rate (learning_rate)
- 4. Sampling observations / predictors (subsample for observations, colsample_bytree for predictors)
- 5. Regularization parameters (reg_lambda & gamma)

However, there are other hyperparameters that can be tuned as well. Check out the list of all hyperparameters in the XGBoost documentation.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score,train_test_split, KFold, cross_val_pre
from sklearn.metrics import mean_squared_error,r2_score,roc_curve,auc,precision_recall_cur
recall_score, precision_score, confusion_matrix
from sklearn.tree import DecisionTreeRegressor,DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV, ParameterGrid, StratifiedKFold, Randomiz
```

```
from sklearn.ensemble import VotingRegressor, VotingClassifier, StackingRegressor, Stacking
from sklearn.linear_model import LinearRegression,LogisticRegression, LassoCV, RidgeCV, El
from sklearn.neighbors import KNeighborsRegressor
import itertools as it
import time as time
import xgboost as xgb
from pyearth import Earth
#Using the same datasets as used for linear regression in STAT303-2,
#so that we can compare the non-linear models with linear regression
trainf = pd.read_csv('./Datasets/Car_features_train.csv')
trainp = pd.read_csv('./Datasets/Car_prices_train.csv')
testf = pd.read_csv('./Datasets/Car_features_test.csv')
testp = pd.read_csv('./Datasets/Car_prices_test.csv')
train = pd.merge(trainf,trainp)
test = pd.merge(testf,testp)
train.head()
```

	carID	brand	model	year	transmission	mileage	fuelType	tax	mpg	engineSize	price
0	18473	bmw	6 Series	2020	Semi-Auto	11	Diesel	145	53.3282	3.0	37980
1	15064	bmw	6 Series	2019	Semi-Auto	10813	Diesel	145	53.0430	3.0	33980
2	18268	bmw	6 Series	2020	Semi-Auto	6	Diesel	145	53.4379	3.0	36850
3	18480	bmw	6 Series	2017	Semi-Auto	18895	Diesel	145	51.5140	3.0	25998
4	18492	bmw	6 Series	2015	Automatic	62953	Diesel	160	51.4903	3.0	18990

```
X = train[['mileage','mpg','year','engineSize']]
Xtest = test[['mileage','mpg','year','engineSize']]
y = train['price']
ytest = test['price']
```

9.2 XGBoost for regression

9.2.1 Number of trees vs cross validation error

As the number of trees increase, the prediction bias will decrease, and the prediction variance will increase. Thus, there will be an optimal number of trees that minimize the prediction error.

```
def get_models():
      models = dict()
      # define number of trees to consider
      n_trees = [5, 10, 50, 100, 500, 1000, 2000, 5000]
      for n in n_trees:
          models[str(n)] = xgb.XGBRegressor(n_estimators=n,random_state=1)
      return models
  # evaluate a given model using cross-validation
  def evaluate_model(model, X, y):
      # define the evaluation procedure
      cv = KFold(n_splits=5, shuffle=True, random_state=1)
      # evaluate the model and collect the results
      scores = np.sqrt(-cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=cv
      return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.3f (%.3f)' % (name, np.mean(scores), np.std(scores)))
  # plot model performance for comparison
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Cross validation error',fontsize=15)
  plt.xlabel('Number of trees',fontsize=15)
>5 7961.485 (192.906)
>10 5837.134 (217.986)
>50 5424.788 (263.890)
>100 5465.396 (237.938)
>500 5608.350 (235.903)
>1000 5635.159 (236.664)
>2000 5642.669 (236.192)
```

>5000 5643.411 (236.074)

9.2.2 Depth of tree vs cross validation error

As the depth of each weak learner (decision tree) increases, the complexity of the weak learner will increase. As the complexity increases, the prediction bias will decrease, while the prediction variance will increase. Thus, there will be an optimal depth of each weak learner that minimizes the prediction error.

```
# get a list of models to evaluate
def get_models():
    models = dict()
    # explore depths from 1 to 10
    for i in range(1,21):
        # define ensemble model
        models[str(i)] = xgb.XGBRegressor(random_state=1,max_depth=i)
    return models

# evaluate a given model using cross-validation
def evaluate_model(model, X, y):
```

```
# define the evaluation procedure
      cv = KFold(n_splits=10, shuffle=True, random_state=1)
      # evaluate the model and collect the results
      scores = np.sqrt(-cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=cv
      return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.3f (%.3f)' % (name, np.mean(scores), np.std(scores)))
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Cross validation error',fontsize=15)
  plt.xlabel('Depth of each tree',fontsize=15)
>1 7541.827 (545.951)
>2 6129.425 (393.357)
>3 5647.783 (454.318)
>4 5438.481 (453.726)
>5 5358.074 (379.431)
>6 5281.675 (383.848)
>7 5495.163 (459.356)
>8 5399.145 (380.437)
>9 5469.563 (384.004)
>10 5461.549 (416.630)
>11 5443.210 (432.863)
>12 5546.447 (412.097)
>13 5532.414 (369.131)
>14 5556.761 (362.746)
>15 5540.366 (452.612)
>16 5586.004 (451.199)
>17 5563.137 (464.344)
>18 5594.919 (480.221)
>19 5641.226 (451.713)
>20 5616.462 (417.405)
```


9.2.3 Learning rate vs cross validation error

The optimal learning rate will depend on the number of trees, and vice-versa. If the learning rate is too low, it will take several trees to "learn" the response. If the learning rate is high, the response will be "learned" quickly (with fewer) trees. Learning too quickly will be prone to overfitting, while learning too slowly will be computationally expensive. Thus, there will be an optimal learning rate to minimize the prediction error.

```
def get_models():
    models = dict()
    # explore learning rates from 0.1 to 2 in 0.1 increments
    for i in [0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.8,1.0]:
        key = '%.4f' % i
        models[key] = xgb.XGBRegressor(learning_rate=i,random_state=1)
    return models

# evaluate a given model using cross-validation
def evaluate_model(model, X, y):
```

```
# define the evaluation procedure
      cv = KFold(n_splits=10, shuffle=True, random_state=1)
      # evaluate the model and collect the results
      scores = np.sqrt(-cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=cv
      return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.1f (%.1f)' % (name, np.mean(scores), np.std(scores)))
  # plot model performance for comparison
  plt.figure(figsize=(7, 7))
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Cross validation error',fontsize=15)
  plt.xlabel('Learning rate',fontsize=15)
>0.0100 12223.8 (636.7)
>0.0500 5298.5 (383.5)
>0.1000 5236.3 (397.5)
>0.2000 5221.5 (347.5)
>0.3000 5281.7 (383.8)
>0.4000 5434.1 (364.6)
>0.5000 5537.0 (471.9)
>0.6000 5767.4 (478.5)
>0.8000 6132.7 (472.5)
>1.0000 6593.6 (408.9)
Text(0.5, 0, 'Learning rate')
```


9.2.4 Regularization (reg_lambda) vs cross validation error

The parameter reg_lambda penalizes the L2 norm of the leaf scores. For example, in case of classification, it will penalize the summation of the square of log odds of the predicted probability. This penalization will tend to reduce the log odds, thereby reducing the tendency to overfit. "Reducing the log odds" in layman terms will mean not being overly sure about the prediction.

Without regularization, the algorithm will be closer to the gradient boosting algorithm. Regularization may provide some additional boost to prediction accuracy by reducing over-fitting.

In the example below, regularization with $reg_lambda=1$ turns out to be better than no regularization (reg_lambda=0)*. Of course, too much regularization may increase bias so much such that it leads to a decrease in prediction accuracy.

```
def get_models():
      models = dict()
      # explore learning rates from 0.1 to 2 in 0.1 increments
      for i in [0,0.5,1.0,1.5,2,10,100]:
          key = '\%.4f'\% i
          models[key] = xgb.XGBRegressor(reg_lambda=i,random_state=1)
      return models
  # evaluate a given model using cross-validation
  def evaluate_model(model, X, y):
      # define the evaluation procedure
      cv = KFold(n_splits=10, shuffle=True, random_state=1)
      # evaluate the model and collect the results
      scores = np.sqrt(-cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=cv
      return scores
  # get the models to evaluate
  models = get_models()
  # evaluate the models and store results
  results, names = list(), list()
  for name, model in models.items():
      # evaluate the model
      scores = evaluate_model(model, X, y)
      # store the results
      results.append(scores)
      names.append(name)
      # summarize the performance along the way
      print('>%s %.1f (%.1f)' % (name, np.mean(scores), np.std(scores)))
  # plot model performance for comparison
  plt.figure(figsize=(7, 7))
  plt.boxplot(results, labels=names, showmeans=True)
  plt.ylabel('Cross validation error',fontsize=15)
  plt.xlabel('reg_lambda',fontsize=15)
>0.0000 5359.2 (317.0)
>0.5000 5382.7 (363.1)
>1.0000 5281.7 (383.8)
```

>1.5000 5348.0 (383.9)

>2.0000 5336.4 (426.6) >10.0000 5410.9 (521.9) >100.0000 5801.1 (563.7)

Text(0.5, 0, 'reg_lambda')

9.2.5 Regularization (gamma) vs cross validation error

The parameter gamma penalizes the tree based on the number of leaves. This is similar to the parameter alpha of cost complexity pruning. As gamma increases, more leaves will be pruned. Note that the previous parameter reg_lambda penalizes the leaf score, but does not prune the tree.

Without regularization, the algorithm will be closer to the gradient boosting algorithm. Regularization may provide some additional boost to prediction accuracy by reducing over-fitting. However, in the example below, no regularization (in terms of gamma=0) turns out to be better than a non-zero regularization. (reg_lambda=0).

```
def get_models():
    models = dict()
    # explore learning rates from 0.1 to 2 in 0.1 increments
    for i in [0,10,1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9]:
        key = '\%.4f'\% i
        models[key] = xgb.XGBRegressor(gamma=i,random state=1)
    return models
# evaluate a given model using cross-validation
def evaluate_model(model, X, y):
    # define the evaluation procedure
    cv = KFold(n_splits=10, shuffle=True, random_state=1)
    # evaluate the model and collect the results
    scores = np.sqrt(-cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=cv
    return scores
# get the models to evaluate
models = get_models()
# evaluate the models and store results
results, names = list(), list()
for name, model in models.items():
    # evaluate the model
    scores = evaluate_model(model, X, y)
    # store the results
    results.append(scores)
    names.append(name)
    # summarize the performance along the way
    print('>%s %.1f (%.1f)' % (name, np.mean(scores), np.std(scores)))
# plot model performance for comparison
plt.figure(figsize=(7, 7))
```

```
plt.boxplot(results, labels=names, showmeans=True)
plt.ylabel('Cross validation error',fontsize=15)
plt.xlabel('gamma',fontsize=15)

>0.0000 5281.7 (383.8)
>10.0000 5281.7 (383.8)
>100.0000 5281.7 (383.8)
>1000.0000 5291.8 (381.8)
>10000.0000 5295.7 (370.2)
>100000.0000 5293.0 (402.5)
>1000000.0000 5273.7 (409.8)
>10000000.0000 5362.1 (407.8)
>100000000.0000 5932.3 (397.6)
```


9.2.6 Tuning XGboost regressor

Along with max_depth , $learning_rate$, and $n_estimators$, here we tune reg_lambda - the regularization parameter for penalizing the tree predictions.

```
'gamma': [0, 10, 100],
                  'subsample': [0.5, 0.75, 1.0],
                  'colsample_bytree': [0.5, 0.75, 1.0]}
  cv = KFold(n_splits=5,shuffle=True,random_state=1)
  optimal_params = RandomizedSearchCV(estimator=xgb.XGBRegressor(random_state=1),
                               param_distributions = param_grid, n_iter = 200,
                               verbose = 1,
                               n_{jobs=-1},
                               cv = cv)
  optimal_params.fit(X,y)
  print("Optimal parameter values =", optimal_params.best_params_)
  print("Optimal cross validation R-squared = ",optimal_params.best_score_)
  print("Time taken = ", round((time.time()-start_time)/60), " minutes")
Fitting 5 folds for each of 200 candidates, totalling 1000 fits
Optimal parameter values = {'subsample': 0.75, 'reg_lambda': 1, 'n_estimators': 1000, 'max_de
Optimal cross validation R-squared = 0.9002580404500382
Time taken = 4 minutes
  #RMSE based on the optimal parameter values
  np.sqrt(mean_squared_error(optimal_params.best_estimator_.predict(Xtest),ytest))
```

5497.553788113875

9.2.7 Early stopping with XGBoost

If we have a test dataset (or we can further split the train data into a smaller train and test data), we can use it with the early_stopping_rounds argument of XGBoost, where it will stop growing trees once the model accuracy fails to increase for a certain number of consecutive iterations, given as early_stopping_rounds.

The results of the code are truncated to save space. A snapshot of the beginning and end of the results is below. The algorithm keeps adding trees to the model until the RMSE ceases to decrease for 10 consecutive iterations.

```
<IPython.core.display.Image object>
```

```
print("XGBoost RMSE = ",np.sqrt(mean_squared_error(model.predict(Xtest),ytest)))
```

XGBoost RMSE = 5508.787454011525

Let us further reduce the learning rate to 0.001 and see if the accuracy increases further on the test data. We'll use the early_stopping_rounds argument to stop growing trees once the accuracy fails to increase for 250 consecutive iterations.

<IPython.core.display.Image object>

```
print("XGBoost RMSE = ",np.sqrt(mean_squared_error(model.predict(Xtest),ytest)))
```

XGBoost RMSE = 5483.518711988693

Note that the accuracy on this test data has further increased with a lower learning rate.

#Let us combine the XGBoost model with other tuned models from earlier chapters.

```
AdaBoost RMSE = 5693.165811600585
Random Forest RMSE = 5642.45839697972
Gradient boost RMSE = 5405.787029062213
```

```
#Ensemble model
pred_xgb = model.predict(Xtest)  #XGBoost
pred_ada = model_ada.predict(Xtest)#AdaBoost
pred_rf = model_rf.predict(Xtest)  #Random Forest
pred_gb = model_gb.predict(Xtest)  #Gradient boost
pred = 0.25*pred_xgb + 0.25*pred_ada + 0.25*pred_rf + 0.25*pred_gb #Option 1 - All models
#pred = 0.15*pred1+0.15*pred2+0.15*pred3+0.55*pred4 #Option 2 - Higher weight to the bette
print("Ensemble model RMSE = ", np.sqrt(mean_squared_error(pred,ytest)))
```

Ensemble model RMSE = 5352.145010078119

Combined, the random forest model, gradient boost, XGBoost and the Adaboost model do better than each of the individual models.

9.3 XGBoost for classification

```
data = pd.read_csv('./Datasets/Heart.csv')
data.dropna(inplace = True)
data.head()
```

	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca
0	63	1	typical	145	233	1	2	150	0	2.3	3	0.0
1	67	1	asymptomatic	160	286	0	2	108	1	1.5	2	3.0
2	67	1	asymptomatic	120	229	0	2	129	1	2.6	2	2.0
3	37	1	nonanginal	130	250	0	0	187	0	3.5	3	0.0
4	41	0	nontypical	130	204	0	2	172	0	1.4	1	0.0

```
#Response variable
y = pd.get_dummies(data['AHD'])['Yes']

#Creating a dataframe for predictors with dummy varibles replacing the categorical variabl
X = data.drop(columns = ['AHD','ChestPain','Thal'])
X = pd.concat([X,pd.get_dummies(data['ChestPain']),pd.get_dummies(data['Thal'])],axis=1)
X.head()
```

	Age	Sex	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	asymptomatic
0	63	1	145	233	1	2	150	0	2.3	3	0.0	0
1	67	1	160	286	0	2	108	1	1.5	2	3.0	1
2	67	1	120	229	0	2	129	1	2.6	2	2.0	1
3	37	1	130	250	0	0	187	0	3.5	3	0.0	0
4	41	0	130	204	0	2	172	0	1.4	1	0.0	0

```
#Creating train and test datasets
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size = 0.5, random_state=1)
```

XGBoost has an additional parameter for classification: scale_pos_weight

Gradients are used as the basis for fitting subsequent trees added to boost or correct errors made by the existing state of the ensemble of decision trees.

The scale_pos_weight value is used to scale the gradient for the positive class.

This has the effect of scaling errors made by the model during training on the positive class and encourages the model to over-correct them. In turn, this can help the model achieve better performance when making predictions on the positive class. Pushed too far, it may result in the model overfitting the positive class at the cost of worse performance on the negative class or both classes.

As such, the scale_pos_weight can be used to train a class-weighted or cost-sensitive version of XGBoost for imbalanced classification.

A sensible default value to set for the scale_pos_weight hyperparameter is the inverse of the class distribution. For example, for a dataset with a 1 to 100 ratio for examples in the minority to majority classes, the scale_pos_weight can be set to 100. This will give classification errors made by the model on the minority class (positive class) 100 times more impact, and in turn, 100 times more correction than errors made on the majority class.

 $Ref: https://machinelearning mastery.com/xgboost-for-imbalanced-classification/\#: \sim: text = The\%20 scale_pos_width= text =$

```
start_time = time.time()
  param_grid = {'n_estimators':[25,100,500],
                  'max_depth': [6,7,8],
                'learning_rate': [0.01,0.1,0.2],
                 'gamma': [0.1,0.25,0.5],
                 'reg_lambda':[0,0.01,0.001],
                  'scale_pos_weight':[1.25,1.5,1.75] #Control the balance of positive and neg
  cv = StratifiedKFold(n_splits=5,shuffle=True,random_state=1)
  optimal_params = GridSearchCV(estimator=xgb.XGBClassifier(objective = 'binary:logistic',ra
                                                            use_label_encoder=False),
                               param_grid = param_grid,
                                scoring = 'accuracy',
                               verbose = 1,
                               n_{jobs=-1},
                                cv = cv)
  optimal_params.fit(Xtrain,ytrain)
  print(optimal_params.best_params_,optimal_params.best_score_)
  print("Time taken = ", (time.time()-start_time)/60, " minutes")
Fitting 5 folds for each of 729 candidates, totalling 3645 fits
[22:00:02] WARNING: D:\bld\xgboost-split_1645118015404\work\src\learner.cc:1115: Starting in
{'gamma': 0.25, 'learning_rate': 0.2, 'max_depth': 6, 'n_estimators': 25, 'reg_lambda': 0.01
  cv_results=pd.DataFrame(optimal_params.cv_results_)
  cv_results.sort_values(by = 'mean_test_score',ascending=False)[0:5]
```

	$mean_fit_time$	std_fit_time	mean_score_time	std_score_time	param_gamma	param_learnir
409	0.111135	0.017064	0.005629	0.000737	0.25	0.2
226	0.215781	0.007873	0.005534	0.001615	0.1	0.2
290	1.391273	0.107808	0.007723	0.006286	0.25	0.01
266	1.247463	0.053597	0.006830	0.002728	0.25	0.01
269	1.394361	0.087307	0.005530	0.001718	0.25	0.01

```
#Function to compute confusion matrix and prediction accuracy on test/train data
def confusion_matrix_data(data,actual_values,model,cutoff=0.5):
#Predict the values using the Logit model
    pred_values = model.predict_proba(data)[:,1]
```

```
# Specify the bins
    bins=np.array([0,cutoff,1])
#Confusion matrix
    cm = np.histogram2d(actual_values, pred_values, bins=bins)[0]
    cm_df = pd.DataFrame(cm)
    cm_df.columns = ['Predicted 0','Predicted 1']
    cm_df = cm_df.rename(index={0: 'Actual 0',1:'Actual 1'})
# Calculate the accuracy
    accuracy = 100*(cm[0,0]+cm[1,1])/cm.sum()
    fnr = 100*(cm[1,0])/(cm[1,0]+cm[1,1])
    precision = 100*(cm[1,1])/(cm[0,1]+cm[1,1])
    fpr = 100*(cm[0,1])/(cm[0,0]+cm[0,1])
    tpr = 100*(cm[1,1])/(cm[1,0]+cm[1,1])
    print("Accuracy = ", accuracy)
    print("Precision = ", precision)
    print("FNR = ", fnr)
    print("FPR = ", fpr)
    print("TPR or Recall = ", tpr)
    print("Confusion matrix = \n", cm_df)
    return (" ")
model4 = xgb.XGBClassifier(objective = 'binary:logistic',random_state=1,gamma=0.25,learning
                              n_estimators = 500,reg_lambda = 0.01,scale_pos_weight=1.75)
model4.fit(Xtrain,ytrain)
model4.score(Xtest,ytest)
```

0.7718120805369127

```
#Computing the accuracy
y_pred = model4.predict(Xtest)
print("Accuracy: ",accuracy_score(y_pred, ytest)*100)

#Computing the ROC-AUC
y_pred_prob = model4.predict_proba(Xtest)[:,1]
fpr, tpr, auc_thresholds = roc_curve(ytest, y_pred_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC

#Computing the precision and recall
print("Precision: ", precision_score(ytest, y_pred))
print("Recall: ", recall_score(ytest, y_pred))
```

Accuracy: 77.18120805369128 ROC-AUC: 0.8815070986530761 Precision: 0.726027397260274 Recall: 0.7910447761194029

If we increase the value of scale_pos_weight, the model will focus on classifying positives more correctly. This will increase the recall (true positive rate) since the focus is on identifying all positives. However, this will lead to identifying positives aggressively, and observations 'similar' to observations of the positive class will also be predicted as positive resulting in an increase in false positives and a decrease in precision. See the trend below as we increase the value of scale_pos_weight.

9.3.1 Precision & recall vs scale_pos_weight

```
def get_models():
    models = dict()
    # explore learning rates from 0.1 to 2 in 0.1 increments
    for i in [0,1,10,1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9]:
        key = '\%.0f' \% i
        models[key] = xgb.XGBClassifier(objective = 'binary:logistic',scale_pos_weight=i,r
    return models
# evaluate a given model using cross-validation
def evaluate_model(model, X, y):
    # define the evaluation procedure
    cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=1)
    # evaluate the model and collect the results
    scores_recall = cross_val_score(model, X, y, scoring='recall', cv=cv, n_jobs=-1)
    scores_precision = cross_val_score(model, X, y, scoring='precision', cv=cv, n_jobs=-1)
    return list([scores_recall,scores_precision])
# get the models to evaluate
models = get_models()
# evaluate the models and store results
results_recall, results_precision, names = list(), list(), list()
for name, model in models.items():
    # evaluate the model
    scores = evaluate_model(model, X, y)
    scores_recall = scores[0]
    scores_precision = scores[1]
    # store the results
    results_recall.append(scores_recall)
    results_precision.append(scores_precision)
    names.append(name)
    # summarize the performance along the way
    print('>%s %.2f (%.2f)' % (name, np.mean(scores_recall), np.std(scores_recall)))
# plot model performance for comparison
plt.figure(figsize=(7, 7))
sns.set(font_scale = 1.5)
pdata = pd.DataFrame(results_precision)
pdata.columns = list(['p1','p2','p3','p4','p5'])
pdata['metric'] = 'precision'
rdata = pd.DataFrame(results_recall)
```

```
rdata.columns = list(['p1','p2','p3','p4','p5'])
  rdata['metric'] = 'recall'
  pr_data = pd.concat([pdata,rdata])
  pr_data.reset_index(drop=False,inplace= True)
  #sns.boxplot(x="day", y="total_bill", hue="time",pr_data=tips, linewidth=2.5)
  pr_data_melt=pr_data.melt(id_vars = ['index','metric'])
  pr data melt['index']=pr data melt['index']-1
  pr_data_melt['index'] = pr_data_melt['index'].astype('str')
  pr_data_melt.replace(to_replace='-1',value = '-inf',inplace=True)
  sns.boxplot(x='index', y="value", hue="metric", data=pr_data_melt, linewidth=2.5)
  plt.xlabel('$log_{10}$(scale_pos_weight)',fontsize=15)
  plt.ylabel('Precision / Recall ',fontsize=15)
  plt.legend(loc="lower right", frameon=True, fontsize=15)
>0 0.00 (0.00)
>1 0.77 (0.13)
>10 0.81 (0.09)
>100 0.85 (0.11)
>1000 0.85 (0.10)
>10000 0.90 (0.06)
>100000 0.90 (0.08)
>1000000 0.90 (0.06)
>10000000 0.91 (0.10)
>100000000 0.96 (0.03)
>1000000000 1.00 (0.00)
```


A Assignment A

Instructions

- 1. You may talk to a friend, discuss the questions and potential directions for solving them. However, you need to write your own solutions and code separately, and not as a group activity.
- 2. Do not write your name on the assignment.
- 3. Write your code in the *Code* cells and your answer in the *Markdown* cells of the Jupyter notebook. Ensure that the solution is written neatly enough to understand and grade.
- 4. Use Quarto to print the *.ipynb* file as HTML. You will need to open the command prompt, navigate to the directory containing the file, and use the command: quarto render filename.ipynb --to html. Submit the HTML file.
- 5. The assignment is worth 100 points, and is due on Thursday, 13th April 2023 at 11:59 pm.
- 6. Four points are properly formatting the assignment. The breakdown is as follows:
- Must be an HTML file rendered using Quarto (1 pt). If you have a Quarto issue, you must mention the issue & quote the error you get when rendering using Quarto in the comments section of Canvas, and submit the ipynb file. If your issue doesn't seem genuine, you will lose points.
- There aren't excessively long outputs of extraneous information (e.g. no printouts of entire data frames without good reason, there aren't long printouts of which iteration a loop is on, there aren't long sections of commented-out code, etc.) (1 pt)
- Final answers of each question are written in Markdown cells (1 pt).
- There is no piece of unnecessary / redundant code, and no unnecessary / redundant text (1 pt)

A.1 Bias-variance trade-off

Throughout the course, the conceptual clarity about bias and variance will help you tune the models for optimal performance and enable you to compare different models in terms of bias and variance. In this question, you will perform simulations to understand and visualize bias-variance trade-off as in Fig. 2.12 of the book (page 36).

Assume that the response y is a function of the predictors x_1 and x_2 and includes a random error ϵ , as follows:

$$y = f(x_1, x_2) + \epsilon, \tag{A.1}$$

where the function f(.) is the Bukin function, $x_1 \sim U[-15,-5], x_2 \sim U[-3,3]$, and $\epsilon \sim N(0,\sigma^2); \sigma=10$. Here U refers to Uniform distribution, and N refers to normal distribution. Use NumPy to simulate values from these distributions.

You will code an algorithm (described below) to compute the expected squared bias, expected variance, $var(\epsilon)$ and expected test MSE of the following 7 linear regression models having the predictors as:

- 1. x_1 and x_2
- 2. All the predictors in the above model, and all polynomial combinations of x_1 , and x_2 of degree 2, which will be x_1^2, x_2^2 , and x_1x_2
- 3. All the predictors in the above model, and all polynomial combinations of x_1 , and x_2 of degree 3, which will be $x_1^3, x_2^3, x_1^2x_2$, and $x_1x_2^2$
- 4. All the predictors in the above model, and all polynomial combinations of x_1 , and x_2 of degree 4
- 5. All the predictors in the above model, and all polynomial combinations of x_1 , and x_2 of degree 5
- 6. All the predictors in the above model, and all polynomial combinations of x_1 , and x_2 of degree 6
- 7. All the predictors in the above model, and all polynomial combinations of x_1 , and x_2 of degree 7

As you can see the models are arranged in increasing order of flexibility / complexity. This corresponds to the horizontal axis of Fig. 2.12 in the book.

Use the following **algorithm** to compute the expected squared bias, expected variance, $var(\epsilon)$ and expected test MSE of the 7 linear regression models above:

I. Define the Bukin function that accepts x_1 and x_2 as parameters and returns the Bukin function value $(f(x_1, x_2))$.

(2 points)

II. Repeat steps III - VII for all degrees d in $\{1, 2, ..., 7\}$

(2 points)

III. Considering a model of **degree** d, simulate the following test and train datasets.

A. Simulate test data

- 1. Set a seed of 100. Use the code: np.random.seed(100), where np refers to the numpy library
- 2. Simulate 100 values of x_1 from U[-15, -5].
- 3. Simulate 100 values of x_2 from U[-3,3].
- 4. Compute the Bukin function value $f(x_1, x_2)$ for the simulated values of x_1 and x_2 .
- 5. Use the function PolynomialFeatures from the preprocessing module of the sklearn library to create all polynomial combinations of x_1 , and x_2 up to degree d.

(4 points)

- B. Simulate 100 train data sets, where each train data is simulated as follows:
 - 1. Set a seed of *i* for simulating the *ith* train data. Use the code: np.random.seed(i), where np refers to the numpy library.
 - 2. Simulate 100 values of x_1 from U[-15, -5]
 - 3. Simulate 100 values of x_2 from U[-3, 3]
 - 4. Compute the Bukin function value $f(x_1, x_2)$ for the simulated values of x_1 and x_2
 - 5. Simulate the response y using the above set of simulated values with Equation A.1
 - 6. Use the function PolynomialFeatures from the preprocessing module of the sklearn library to create all polynomial combinations of x_1 , and x_2 up to degree d.

(6 points)

IV. For each train data in III(B), develop a linear regression model using the LinearRegression() function from the linear_model module of the sklearn library.

(2 points)

V. Note that the squared bias at a test point $x_{1 \ test}, x_{2 \ test}$ is:

$$[Bias(\hat{f}(x_{1\ test},x_{2\ test}))]^2 = [E(\hat{f}(x_{1\ test},x_{2\ test})) - f(x_{1\ test},x_{2\ test})]^2, \tag{A.2}$$

where $E(\hat{f}(x_{1_test}, x_{2_test}))$ is the mean prediction of the 100 trained models at x_{1_test}, x_{2_test} .

Compute the overall expected squared bias as the average squared bias at all the test data points, as in the equation below:

$$[Bias(\hat{f}(.))]^2 = \frac{1}{100} \Sigma_{i=1}^{100} [Bias(\hat{f}(x_{1i_test}, x_{2i_test}))]^2, \tag{A.3}$$

(8 points)

VI. Note that the variance at a test point x_{1_test}, x_{2_test} is $Var(\hat{f}(x_{1_test}, x_{2_test}))$. Compute the overall expected variance as the average variance at all the test data points, as in the equation below:

$$Var(\hat{f}(.)) = \frac{1}{100} \sum_{i=1}^{100} Var(\hat{f}(x_{1i_test}, x_{2i_test}))$$
(A.4)

(6 points)

VII. Compute the overall expected test mean squared error as the sum of the expected squared bias (Equation A.3), expected variance (Equation A.4), and error variance (σ^2):

$$MSE = [Bias(\hat{f}(.))]^2 + Var(\hat{f}(.)) + \sigma^2, \tag{A.5}$$

(4 points)

VIII. Plot the overall expected squared bias, overall expected variance, and overall expected test MSE (as obtained from Equation A.3, Equation A.4, and Equation A.5 respectively) against the degree d (or flexibility / complexity) of the model. Your plot should look like one of the plots in Fig. 2.12 of the book.

(3 points)

IX. What is the degree of the optimal model, i.e., the degree that provides the best biasvariance trade-off?

(2 points)

Note: While coding the algorithm, comment it well so that it is easy to give partial credit in case of mistakes. Include the numerals of the algorithm (such as II(B), V, VI, etc.) in your comments so that it is easy to check your algorithm for completeness.

A.2 Tuning a classification model with sklearn

Data

Read the data classification_data.csv. The description of the columns is as follows:

- 1. hi_int_prncp_pd: Indicates if a high percentage of the repayments made went to interest rather than principal. Target variable.
- 2. out_prncp_inv: Remaining outstanding principal for portion of total amount funded by investors
- 3. loan_amnt: The listed amount of the loan applied for by the borrower. If at some point in time, the credit department reduces the loan amount, then it will be reflected in this value.
- 4. int_rate: Interest rate on the loan
- 5. term: The number of payments on the loan. Values are in months and can be either 36 or 60.

You will develop and tune a logistic regression model to predict hi_int_prncp_pd based on the rest of the columns (predictors) as per the instructions below.

A.2.1 Train-test split

Use the function train_test_split from the model_selection module of the sklearn library to split the data into 75% train and 25% test. Stratify the split based on the response. Use random_state as 45. Print the proportion of 0s and 1s in both the train and test datasets.

(4 points)

A.2.2 Scaling predictors

Scale the predictors to avoid convergence errors when fitting the logistic regression model.

Note that last quarter, we were focusing on inference (along with prediction), so we avoided scaling. It is a bit inconvenient to interpret odds with scaled predictors. However, avoiding scaling may lead to convergence errors as some of you saw in your course projects. So, it is a good practice to scale, especially when your focus is prediction.

(3 points)

A.2.3 Tuning the degree

Use the functions:

- 1. cross_val_score from the model_selection module of the sklearn library to tune the degree of the logistic regression model for maximizing the stratified 5-fold prediction accuracy. Consider degrees from 1 to 6.
- 2. PolynomialFeatures from the preprocessing module of the sklearn library to create all polynomial combinations of the predictors up to degree d.

What is the optimal degree?

(4 points)

Notes:

- A model of degree d will consist of polynomial transformations and interactions of predictors up to degree d. For example, a model of degree 2 will consist of the square of each predictor and all 2-factor interactions of the predictors.
- You may use the newton-cg solver to avoid convergence issues.
- Use the default C value at this point, you will tune it later.

A.2.4 Test accuracy with optimal degree

For the optimal degree identified in the previous question, compute the test accuracy.

(4 points)

A.2.5 Tuning C

With the optimal degree identified in the previous question, find the optimal regularization parameter C. Again use the cross_val_score function.

(3 points)

A.2.6 Test accuracy with optimal degree and C

For the optimal degree and optimal C identified in the previous questions, compute the test accuracy.

(3 points)

A.2.7 Tuning decision threshold probability

With the optimal degree and optimal C identified in the previous questions, find the optimal decision threshold probability to maximize accuracy. Use the cross_val_predict function.

(4 points)

A.2.8 Test accuracy for optimal degree, C, and threshold probability

For the optimal degree, optimal C, and optimal decision threshold probabilities identified in the previous questions, compute the test accuracy.

(4 points)

A.2.9 Simultaneous optimization of multiple parameters

In the above tuning approach we optimized the hyperparameters and the decision threshold probability sequentially. This is a greedy approach, which doesn't consider all combinations of hyperparameters and decision threshold probabilities, and thus may fail to find the optimal combination of values that maximize accuracy. Thus, tune both the model hyperparameters degree and C, and the decision threshold probability simultaneously considering all value combinations. This will take more time, but is likely to provide more accurate optimal parameter values.

(6 points)

A.2.10 Test accuracy with optimal parameters obtained simultaneously

For the optimal degree, optimal C, and optimal decision threshold probabilities identified in the previous question, compute the test accuracy.

(4 points)

A.2.11 Optimizing parameters for multiple performance metrics

Find the optimal C and degree to maximize recall while having a precision of more than 75%. Use the function cross_validate from the model_selection module of the sklearn library.

Note: cross_validate function is very similar to cross_val_score, the only difference is you can use multiple metrics with the scoring input, as you need in this question.

(8 points)

A.2.12 Performance metrics computation

For the optimal degree and C identified in the previous question, compute the following performance metrics on test data. Use sklearn functions, manual computation is not allowed.

- 1. Precision
- 2. Recall
- 3. Accuracy
- 4. ROC-AUC
- 5. Show the confusion matrix

(10 points)

B Assignment B

Instructions

- 1. You may talk to a friend, discuss the questions and potential directions for solving them. However, you need to write your own solutions and code separately, and not as a group activity.
- 2. Do not write your name on the assignment.
- 3. Write your code in the *Code* cells and your answer in the *Markdown* cells of the Jupyter notebook. Ensure that the solution is written neatly enough to understand and grade.
- 4. Use Quarto to print the *.ipynb* file as HTML. You will need to open the command prompt, navigate to the directory containing the file, and use the command: quarto render filename.ipynb --to html. Submit the HTML file.
- 5. The assignment is worth 100 points, and is due on Sunday, 23rd April 2023 at 11:59 pm.
- 6. Five points are properly formatting the assignment. The breakdown is as follows:
- Must be an HTML file rendered using Quarto (2 pts). If you have a Quarto issue, you must mention the issue & quote the error you get when rendering using Quarto in the comments section of Canvas, and submit the ipynb file. If your issue doesn't seem genuine, you will lose points.
- There aren't excessively long outputs of extraneous information (e.g. no printouts of entire data frames without good reason, there aren't long printouts of which iteration a loop is on, there aren't long sections of commented-out code, etc.) (1 pt)
- Final answers of each question are written in Markdown cells (1 pt).
- There is no piece of unnecessary / redundant code, and no unnecessary / redundant text (1 pt)
- 7. For all questions on cross-validation, you must use sklearn functions.

B.1 Degrees of freedom

Find the number of degrees of freedom of the following models. Exclude the intercept when counting the degrees of freedom. You may either show your calculation, or explain briefly how you are computing the degrees of freedom.

B.1.1 Quadratic spline

A model with one predictor, where the predictor is transformed into a quadratic spline with 5 knots

(2 points)

B.1.2 Natural cubic splines

A model with one predictor, where the predictor is transformed into a natural cubic spline with 4 knots

(2 points)

B.1.3 Generalized additive model

A model with four predictors, where the transformations of the respective predictors are (i) cubic spline transformation with 3 knots, (ii) log transformation, (iii) linear spline transformation with 2 knots, (iv) polynomial transformation of degree 4.

(4 points)

B.2 Number of knots

Find the number of knots in the following spline transformations, if each of the transformations corresponds to 7 degrees of freedom (excluding the intercept).

B.2.1 Cubic splines

Cubic spline transformation

(1 point)

B.2.2 Natural cubic splines

Natural cubic spline transformation (1 point)

B.2.3 Degree 4 spline

Spline transformation of degree 4
(1 point)

B.3 Regression problem

Read the file <code>investment_clean_data.csv</code>. This data is a cleaned version of the file <code>train.csv</code> in last quarter's regression <code>prediction problem</code>. Refer to the link for description of variables. It required some effort to get a RMSE of less than 650 with linear regression. In this question, we'll use MARS / natural cubic splines to get a RMSE of less than 350 with relatively less effort. Use mean squared error as the performance metric in cross validation.

B.3.1 Data preparation

Prepare the data for modeling as follows:

- 1. Use the Pandas function get_dummies() to convert all the categorical predictors to dummy variables.
- 2. Using the sklearn function train_test_split, split the data into 20% test and 80% train. Use random_state = 45.

Note:

- A. The function get_dummies() can be used over the entire DataFrame. Don't convert the categorical variables individually.
- B. The MARS model does not accept categorical predictors, which is why the conversion is done
- C. The response is money_made_inv
 (2 points)

B.3.2 Optimal MARS degree

Use 5-fold cross validation to find the optimal degree of the MARS model to predict money_made_inv based on all the predictors in the dataset.

Hint: Start from degree 1, and keep going until it doesn't benefit.

(4 points)

B.3.3 Fitting MARS model

With the optimal degree identified in the previous question, fit a MARS model. Print the model summary. What is the degree of freedom of the model (excluding the intercept)?

(1 + 1 + 2 points)

B.3.4 Interpreting MARS basis functions

Based on the model summary in the previous question, answer the following question. Holding all other predictors constant, what will be the mean increase in money_made_inv for a unit increase in out_prncp_inv, given that out_prncp_inv is in [500, 600], term = 36 (months), loan_amnt = 1000, and int_rate = 0.1?

First, write the basis functions being used to answer the question, and then substitute the values.

Also, which basis function is non-zero for the smallest domain space of out_prncp_inv? Also, specify the domain space in which it is non-zero.

(3 + 2 points)

B.3.5 Feature importance

Find the relative importance of each predictor in the MARS model developed in B.3.3. You may choose any criterion for finding feature importance based on the MARS documentation. Print a DataFrame with 2 columns - one column consisting of predictors arranged in descending order of relative importance, and the second column quantifying their relative importance. Exclude predictors rejected by the model developed in B.3.3.

Note the forward pass and backward passes of the algorithm perform feature selection without manual intervention.

(4 points)

B.3.6 Prediction

Using the model developed in B.3.3, compute the RMSE on test data.

(2 points)

Non-trivial train data

Let us call the part of the dataset where out_prncp_inv = 0 as a trivial subset of data. For this subset, we can directly predict the response without developing a model (recall the EDA last quarter). For all the questions below, fit / tune the model only on the non-trivial part of the train data. However, when making predictions, and computing RMSE, consider the entire test data. Combine the predictions of the model on the non-trivial subset of test data with the predictions on the trivial subset of test data to make predictions on the entire test data.

B.3.7 Prediction with non-trivial train data

Find the optimal degree of the MARS model based on the non-trivial train data, fit the model, and re-compute the RMSE on test data.

Note: You should get a lesser RMSE as compared to what you got in B.3.6. (4 points)

B.3.8 Reducing model variance

The MARS model is highly flexible, which makes it a low bias-high variance model. However, high prediction variance increases the expected mean squared error on test data (see equation 2.7 on page 34 of the book). How can you reduce the prediction variance of the model without increasing the bias? Check slide 12 of the bias-variance presentation. The MARS model, in general, corresponds to case B. You can see that by averaging the predictions of multiple models, you will reduce prediction variance without increasing the bias.

Take 10 samples of train data of the same size as the train data, with replacement. For each sample, fit a MARS model with the optimal degree identified earlier. Use the i^{th} model, say \hat{f}_i to make prediction $\hat{f}_i(\mathbf{x}_{test})$ on each test data point \mathbf{x}_{test} (Note that predictions will be made using the model on the non-trivial test data, and without the model on the trivial test data). Compute the average prediction on each test data point based on the 10 models as follows:

$$\hat{f}(\mathbf{x}_{test}) = \frac{1}{10} \Sigma_{1=1}^{10} \hat{f}_i(\mathbf{x}_{test})$$

Consider $\hat{f}(\mathbf{x}_{test})$ as the prediction at the test data point \mathbf{x}_{test} . Compute the RMSE based on this model, which is the average prediction of 10 models. You should get a lesser RMSE as compared to the previous question (B.3.7).

Note: For ease in grading, use the Pandas DataFrame method sample to take samples with replacement, and put random_state for the ith sample as i, where i goes from 0 to 9.

(6 points)

B.3.9 Generalized additive model (GAM)

Develop a Generalized linear model $\hat{f}_{GLM}(.)$ to predict money_made_inv as follows:

$$\hat{f}_{GLM}(\mathbf{x}) = \hat{\beta}_0 + \sum_{i=1}^4 \hat{\beta}_i f_i(\mathbf{x}),$$

where $f_i(\mathbf{x})$ is a MARS model of degree i.

Print the estimated beta coefficients $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3, \hat{\beta}_4)$ of the developed model.

Note: The model is developed on the non-trivial train data (8 points)

B.3.10 Prediction with GAM

Use the GAM developed in the previous question to compute RMSE on test data.

Note: Predictions will be made using the model on the non-trivial test data, and without the model on the trivial test data

(5 points)

B.3.11 Reducing GAM prediction variance

As we reduced the variance of the MARS model in B.3.8, follow the same approach to reduce the variance of the GAM developed in B.3.9, and compute the RMSE on test data.

Note: You should get a lesser RMSE as compared to what you got in B.3.10. (8 points)

B.3.12 Natural cubic splines

Even though MARS is efficient and highly flexible, natural cubic splines work very well too, if tuned properly.

Consider the predictors identified in the model summary of the MARS model printed in B.3.3. For each predictor, create natural cubic splines basis functions with d degrees of freedom. Include all-order interactions (i.e., 2-factor, 3-factor, 4-factor interactions, and so on) of all the basis functions. Use the sklearn function cross_val_score() to find and report the optimal degrees of freedom for the natural cubic spline of each predictor.

Consider degrees of freedom from 3 to 6 for the natural cubic spline transformation of each predictor.

(8 points)

B.3.13 Fitting the natural cubic splines model

With the optimal degrees of freedom identified in the previous question, fit a model to predict money_made_inv, where the basis functions correspond to the natural cubic splines of each predictor, and all-factor interactions of the basis functions. Compute the RMSE on test data.

Note: Predictions will be made using the model on the non-trivial test data, and without the model on the trivial test data

(4 points)

B.4 GAM for classification

The data for this question is related with direct marketing campaigns of a Portuguese banking institution. The marketing campaigns were based on phone calls, where bank clients were called to subscribe for a term deposit.

There is one train data - train.csv, which you will use to develop a model. There are two test datasets - test1.csv and test2.csv, which you will use to test your model. Each dataset has the following attributes about the clients called in the marketing campaign:

1. age: Age of the client

2. education: Education level of the client

3. day: Day of the month the call is made

4. month: Month of the call

5. y: did the client subscribe to a term deposit?

6. duration: Call duration, in seconds. This attribute highly affects the output target (e.g., if duration=0 then y='no'). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for inference purposes and should be discarded if the intention is to have a realistic predictive model.

(Raw data source: Source. Do not use the raw data source for this assignment. It is just for reference.)

Develop a **generalized additive model (GAM)** to predict the probability of a client subscribing to a term deposit based on *age*, *education*, *day* and *month*. The model must have:

- (a) Minimum overall classification accuracy of 75% among the classification accuracies on train.csv, test1.csv and test2.csv.
- (b) Minimum recall of 55% among the recall on train.csv, test1.csv and test2.csv.

Print the accuracy and recall for all the three datasets - train.csv, test1.csv and test2.csv.

Note that:

- i. You cannot use duration as a predictor. The predictor is not useful for prediction because its value is determined after the marketing call ends. However, after the call ends, we already know whether the client responded positively or negatively.
- ii. One way to develop the model satisfying constrains (a) and (b) is to use **spline trans**formations for *age* and *day*, and interacting *month* with all the predictors
 (including the spline transformations)
- iii. You may assume that the distribution of the predictors is the same in all the three datasets. Thus, you may create B-spline basis functions independently for the train and test datasets.
- iv. Use cross-validation on train data to optimize the model hyperparameters, and the decision threshold probability. Then, use the optimal hyperparameters to fit the model on train data. Then, evaluate its accuracy and recall on all the three datasets. Note that the test datasets must only be used to evaluate performance metrics, and not optimize any hyperparameters or decision threshold probability.

(20 points: 10 points for cross validation, 5 points for obtaining and showing the optimal values of the hyperparameters and decision threshold probability, 2 points for fitting the model with the optimal hyperparameters, and 3 points for printing the accuracy & recall on each of the three datasets)

C Assignment C

Instructions

- 1. You may talk to a friend, discuss the questions and potential directions for solving them. However, you need to write your own solutions and code separately, and not as a group activity.
- 2. Write your code in the *Code* cells and your answer in the *Markdown* cells of the Jupyter notebook. Ensure that the solution is written neatly enough to understand and grade.
- 3. Use Quarto to print the *.ipynb* file as HTML. You will need to open the command prompt, navigate to the directory containing the file, and use the command: quarto render filename.ipynb --to html. Submit the HTML file.
- 4. The assignment is worth 100 points, and is due on Sunday, 7th May 2023 at 11:59 pm.
- 5. Five points are properly formatting the assignment. The breakdown is as follows:
- Must be an HTML file rendered using Quarto (2 pts). If you have a Quarto issue, you must mention the issue & quote the error you get when rendering using Quarto in the comments section of Canvas, and submit the ipynb file. If your issue doesn't seem genuine, you will lose points.
- There aren't excessively long outputs of extraneous information (e.g. no printouts of entire data frames without good reason, there aren't long printouts of which iteration a loop is on, there aren't long sections of commented-out code, etc.) (1 pt)
- Final answers of each question are written in Markdown cells (1 pt).
- There is no piece of unnecessary / redundant code, and no unnecessary / redundant text (1 pt)

C.1 Regression Problem - Miami housing

C.1.1 Data preparation

Read the data *miami-housing.csv*. Check the description of the variables here. Split the data into 60% train and 40% test. Use random_state = 45. The response is SALE_PRC, and the rest

of the columns are predictors, except PARCELNO. Print the shape of the predictors dataframe of the train data.

(2 points)

C.1.2 Decision tree

Develop a decision tree model to predict SALE_PRC based on all the predictors. Use random_state = 45. Use the default hyperparameter values. What is the MAE (mean absolute error) on test data?

(3 points)

C.1.3 Tuning decision tree

Tune the hyperparameters of the decision tree model developed in the previous question, and compute the MAE on test data. You must tune the hyperparameters in the following manner:

- 1. Use GridSearchCV to minimize the 5-fold mean absolute error (MAE).
- 2. Use must do a coarse grid search first to get an idea of the domain space where the optimal hyperparameter values lie.
- 3. You must follow it up with a finer grid search to get more precise optimal hyperparameter values.
- 4. You may decide yourself which hyperparameters you wish to tune. Common sense should help. There is no single correct answer.

The MAE must be less than \$66,000. You must show the optimal values of the hyperparameters obtained, and the test MAE.

(3 points for coarse grid search, 3 points for finer grid search, 4 points for reaching the required MAE)

C.1.4 Bagging decision trees

Bag decision trees, and compute the MAE on test data. Use enough number of trees, such that the MAE stabilizes. Other than n_estimators, use default values of hyperparameters.

The test MAE must be less than \$50,000.

(4 points)

C.1.5 Bagging without bootstrapping

Bag decision trees without bootstrapping, i.e., put bootstrap = False while bagging the trees, and compute the MAE on test data. Why is the MAE obtained much higher than that in the previous question, but lower than that obtained in C.1.2?

(1 point for code, (3 + 3) points for reasoning)

C.1.6 Tuning bagged tree model

C.1.6.1 Approaches

There are two approaches for tuning a bagged tree model:

- 1. Out of bag prediction
- 2. K-fold cross validation using GridSearchCV.

What is the advantage of each approach over the other, i.e., what is the advantage of the out-of-bag approach over K-fold cross validation, and what is the advantage of K-fold cross validation over the out-of-bag approach?

(3 + 3 points)

C.1.6.2 Tuning the hyperparameters

Tune the hyperparameters of the bagged tree model developed in C.1.4. You may use either of the approaches mentioned in the previous question. Show the optimal values of the hyperparameters obtained. Compute the MAE on test data with the tuned model. Your MAE on test data must be less than \$46,000. However, you cannot use the test data to tune the hyperparameters.

It is up to you to pick the hyperparameters and their values in the grid.

(10 points)

C.1.7 Bagging feature importance

Arrange and print the predictors in decreasing order of importance.

(4 points)

C.1.8 Random forest

C.1.8.1 Tuning random forest

Tune a random forest model to predict SALE_PRC, and compute the MAE on test data. The MAE must be less than \$46,000.

It is up to you to pick the hyperparameters and their values in the grid.

(10 points)

C.1.8.2 Feature importance

Arrange and print the predictors in decreasing order of importance.

(4 points)

C.1.8.3 Random forest vs bagging: max_features

Note that the max_features hyperparameter is there both in the RandomForestRegressor() function and the BaggingRegressor() function. Does it have the same meaning in both the functions? If not, then what is the difference?

Hint: Check scikit-learn documentation

(1 + 3 points)

C.2 Classification - Term deposit

The data for this question is related with direct marketing campaigns of a Portuguese banking institution. The marketing campaigns were based on phone calls, where bank clients were called to subscribe for a term deposit.

There is a train data - *train.csv*, which you will use to develop a model. There is a test data - *test.csv*, which you will use to test your model. Each dataset has the following attributes about the clients called in the marketing campaign:

1. age: Age of the client

2. education: Education level of the client

3. day: Day of the month the call is made

4. month: Month of the call

- 5. y: did the client subscribe to a term deposit?
- 6. duration: Call duration, in seconds. This attribute highly affects the output target (e.g., if duration=0 then y='no'). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for inference purposes and should be discarded if the intention is to have a realistic predictive model.

(Raw data source: Source. Do not use the raw data source for this assignment. It is just for reference.)

C.2.1 Data preparation

Convert all the categorical predictors in the data to dummy variables. Note that month and education are categorical variables.

(2 points)

C.2.2 Decision tree

Develop and tune a **decision tree model** to predict the probability of a client subscribing to a term deposit based on age, education, day and month. The model must have:

- (a) **Minimum overall classification accuracy of 70%** among the classification accuracies on *train.csv*, and *test.csv*.
- (b) Minimum recall of 60% among the recall on train.csv, and test.csv.

Print the accuracy and recall for both the datasets - train.csv, and test.csv.

Note that:

- i. You cannot use duration as a predictor. The predictor is not useful for prediction because its value is determined after the marketing call ends. However, after the call ends, we already know whether the client responded positively or negatively.
- ii. You are free to choose any value of threshold probability for classifying observations. However, you must use the same threshold on both the datasets.
- iii. Use cross-validation on train data to optimize the model hyperparameters.
- iv. Using the optimal model hyperparameters obtained in (iii), develop the decision tree model. Plot the 5-fold cross-validated accuracy and recall against decision threshold probability. Tune the decision threshold probability based on the plot, or the data underlying the plot to achieve the required trade-off between recall and accuracy.

v. Evaluate the accuracy and recall of the developed model with the tuned decision threshold probability on both the datasets. Note that the test dataset must only be used to evaluate performance metrics, and not optimize any hyperparameters or decision threshold probability.

(14 points - 4 points for tuning the hyperparameters, 4 points for making the plot, 4 points for tuning the decision threshold probability based on the plot, and 2 points for printing the accuracy & recall on both the datasets)

Hint: Restrict the search for max_depth to a maximum of 25, and max_leaf_nodes to a maximum of 50. Without this restriction, you may get a better recall for threshold probability = 0.5, but are likely to get a worse trade-off between recall and accuracy.

It is up to you to pick the hyperparameters and their values in the grid.

C.2.3 Random forest

Develop and tune a **random forest model** to predict the probability of a client subscribing to a term deposit based on age, education, day and month. The model must have:

- (a) Minimum overall classification accuracy of 75% among the classification accuracies on train.csv, and test.csv.
- (b) Minimum recall of 60% among the recall on train.csv, and test.csv.

Print the accuracy and recall for both the datasets - train.csv, and test.csv.

Note that:

- i. You cannot use duration as a predictor. The predictor is not useful for prediction because its value is determined after the marketing call ends. However, after the call ends, we already know whether the client responded positively or negatively.
- ii. You are free to choose any value of threshold probability for classifying observations. However, you must use the same threshold on both the datasets.
- iii. Use cross-validation on train data to optimize the model hyperparameters.
- iv. Using the optimal model hyperparameters obtained in (iii), develop the decision tree model. Plot the cross-validated accuracy and recall against decision threshold probability. Tune the decision threshold probability based on the plot, or the data underlying the plot to achieve the required trade-off between recall and accuracy.
- v. Evaluate the accuracy and recall of the developed model with the tuned decision threshold probability on both the datasets. Note that the test dataset must only be used to evaluate performance metrics, and not optimize any hyperparameters or decision threshold probability.

(12 points - 4 points for tuning the hyperparameters, 3 points for making the plot, 3 points for tuning the decision threshold probability based on the plot, and 2 points for printing the accuracy & recall on both the datasets)

Hint: Restrict the search for max_depth to a maximum of 25, and max_leaf_nodes to a maximum of 45. Without this restriction, you may get a better recall for threshold probability = 0.5, but are likely to get a worse trade-off between recall and accuracy.

It is up to you to pick the hyperparameters and their values in the grid.

C.3 Predictor transformations in trees

Can a non-linear monotonic transformation of predictors (such as log(), sqrt() etc.) be useful in improving the accuracy of decision tree models?

(3 points for answer)

D Assignment D

Instructions

- 1. You may talk to a friend, discuss the questions and potential directions for solving them. However, you need to write your own solutions and code separately, and not as a group activity.
- 2. Write your code in the *Code* cells and your answer in the *Markdown* cells of the Jupyter notebook. Ensure that the solution is written neatly enough to understand and grade.
- 3. Use Quarto to print the *.ipynb* file as HTML. You will need to open the command prompt, navigate to the directory containing the file, and use the command: quarto render filename.ipynb --to html. Submit the HTML file.
- 4. The assignment is worth 100 points, and is due on Friday, 19th May 2023 at 11:59 pm.
- 5. Five points are properly formatting the assignment. The breakdown is as follows:
- Must be an HTML file rendered using Quarto (2 pts).
- There aren't excessively long outputs of extraneous information (e.g. no printouts of entire data frames without good reason, there aren't long printouts of which iteration a loop is on, there aren't long sections of commented-out code, etc.) (1 pt)
- Final answers of each question are written in Markdown cells (1 pt).
- There is no piece of unnecessary / redundant code, and no unnecessary / redundant text (1 pt)

D.1 Conceptual

D.1.1 AdaBoost vs Random Forest

Among AdaBoost and Random Forest, which model is more sensitive to outliers in response and why? Consider both regression and classification.

(1 + 3 points)

D.1.2 Loss functions

Which loss functions should you use in boosting algorithms to reduce sensitivity to outliers in response, as compared to the squared error loss function, for regression problems. Name any 2 loss functions, and explain how they reduce the sensitivity towards outliers.

(2 + 2 points)

D.2 Regression Problem - Miami housing

D.2.1 Data preparation

Read the data miami-housing.csv. Check the description of the variables here. Split the data into 60% train and 40% test. Use random_state = 45. The response is SALE_PRC, and the rest of the columns are predictors, except PARCELNO. Print the shape of the predictors dataframe of the train data.

(2 points)

D.2.2 AdaBoost hyperparameter tuning

Develop and tune an AdaBoost model to predict SALE_PRC based on all the predictors. Compute the MAE on test data.

You must tune in the following manner:

- 1. Use GridSearchCV to minimize the 5-fold mean absolute error (MAE).
- 2. You are advised to do a coarse grid search first to get an idea of the domain space where the optimal hyperparameter values lie.
- 3. If you reach the goal with the coarse grid search, you can stop. Otherwise, you may follow it up with a finer grid search to get more precise optimal hyperparameter values.
- 4. You may decide yourself which hyperparameters you wish to tune. Tuning max_depth, n_estimators, and learning_rate should suffice.

The test MAE must be less than \$46,000. You must show the optimal values of the hyperparameters obtained, and the test MAE.

Note: Hyperparameter tuning must be done on train data. Test data is only to assess model performance. Test data must remain untouched until the model is finalized, and must only be used to compute the test MAE.

Hint: Below is one way to solve the problem. Note that there may be several completely different and better ways to solve the problem.

- 1. Consider tree depths of 3, 5, and 10, number of trees as 10, 50, 100, and 200, and learning rates as 0.0001, 0.001, 0.01, 0.1, and 1.0. GridSearchCV takes 2 minutes to execute on a 6-core laptop for these values.
- 2. With the above search, you will probably fail to achieve the objective. However, when you visualize the 5-fold MAE with each of the hyperparameter values considered, you will realize that there is a particular hyperparameter for which you should consider higher / lower values. You will also realize that you need not consider some of the values of the remaining hyperparameters.
- 3. Do another 2-minute grid search based on what you realized in (2), and you should achieve the objective.

(10 points)

D.2.3 AdaBoost feature importance

Arrange and print the predictors in decreasing order of importance.

(2 points)

D.2.4 Huber loss

What is the advantage of the Huber loss function (page 349 of Elements of Statistical Learning) over the squared error and absolute error loss functions?

(4 points)

D.2.5 RandomizedSearchCV vs GridSearchCV

What's the advantage of GridSearchCV over RandomizedSearchCV and vice-versa? When will GridSearchCV be preferred over RandomizedSearchCV and vice-versa?

(4 points)

D.2.6 Gradient boosting (Huber loss) hyperparameter tuning

Develop and tune a Gradient boosting model with Huber loss to predict SALE_PRC based on all the predictors. Compute the MAE on test data.

You must tune in the following manner:

- 1. Use may use GridSearchCV or RandomizedSearchCV to minimize the K-fold mean absolute error (MAE). You may choose any K.
- 2. You may decide yourself which hyperparameters you wish to tune. Tuning max_depth, n_estimators, learning_rate, and subsample should suffice.

The MAE must be less than \$43,000. You must show the optimal values of the hyperparameters obtained, and the test MAE.

Note: Hyperparameter tuning must be done on train data. Test data is only to assess model performance. Test data must remain untouched until the model is finalized, and must only be used to compute the test MAE.

Hint: Below is one way to solve the problem. Note that there may be several completely different and better ways to solve the problem.

- 1. Use 2-fold cross-validation to make the execution speed higher. Here, we are compromising adding bias to the CV error to get a lesser execution time.
- 2. In gradient boosting, the suggested depth of trees is in [4, 8] (see page 363 in Elements of Statistical Learning). So, consider depths of 4, 6, and 8. Consider 3 values of number of trees in [100, 1000], 3 values of learning rates in [0.01, 0.5], and 3 subsample values in [0.5, 1]. It takes 8 minutes on a 6-core laptop to do an exhaustive search on these values.
- 3. With the above search, you will probably fail to achieve the objective. However, when you compare the optimal hyperparameter values obtained with the hyperparameter values considered, you will realize that there are some hyperparameters for which you should consider higher / lower values.
- 4. Do another 10-minute grid search based on what you realized in (3), and you should achieve the objective.
- 5. Further fine-tuning may reduce your RMSE to up to \$42,400. However, you can stop once it is below \\$43,000 in (4).

(14 points)

D.2.7 Gradient boosting feature importance

Arrange and print the predictors in decreasing order of importance.

(2 points)

D.2.8 Bias-variance

For each of the following hyperparameters tuned in the previous question, explain how do they effect the bias / variance of a gradient boosting model, when their values are increased.

D.2.8.1 max_depth

D.2.8.2 n_estimators

D.2.8.3 learning_rate

D.2.8.4 subsample

(8 points)

D.2.9 XGBoost objective function

How is XGboost different from gradient boosting performed with the GradientBoostingRegressor() function in the previous question with regard to the optimization objective? How does it benefit prediction accuracy with XGBoost?

(4 points)

D.2.10 XGBoost hyperparameter tuning

Develop and tune an XGBoost model to predict SALE_PRC based on all the predictors. Compute the MAE on test data.

You must tune in the following manner:

- 1. Use may use GridSearchCV or RandomizedSearchCV to minimize the K-fold mean absolute error (MAE). You may choose any K.
- 2. You may decide yourself which hyperparameters you wish to tune. Tuning max_depth, n_estimators, learning_rate, reg_lambda, gamma and subsample should suffice.

The test MAE must be less than \$42,000. You must show the optimal values of the hyperparameters obtained, and the test MAE.

Note: Hyperparameter tuning must be done on train data. Test data is only to assess model performance. Test data must remain untouched until the model is finalized, and must only be used to compute the test MAE.

Hint: Below is one way to solve the problem. Note that there may be several completely different and better ways to solve the problem.

- 1. Inspired by the optimal hyperparameter values obtained in D.2.6, do a search with 2-fold cross validation. Even though the default loss function in XGBoost is squarederror, hyperparameter values similar to the optimal hyperparameter values obtained in D.2.6 seem to work well. The regularization parameters gamma and reg_lambda help reduce RMSE further.
- 2. It took 10 minutes on a 6-core laptop to tune the model with (1), with the values of gamma considered as 0 and 10, and values of reg_lambda considered as 0, 1, and 10.

(14 points)

D.2.11 XGBoost Feature importance

Arrange and print the predictors in decreasing order of importance.

(2 points)

D.3 Classification - Term deposit

The data for this question is related with direct marketing campaigns of a Portuguese banking institution. The marketing campaigns were based on phone calls, where bank clients were called to subscribe for a term deposit.

There is a train data - train.csv, which you will use to develop a model. There is a test data - test1.csv and test2.csv, which you will use to test your model. Each dataset has the following attributes about the clients called in the marketing campaign:

- 1. age: Age of the client
- 2. education: Education level of the client
- 3. day: Day of the month the call is made
- 4. month: Month of the call
- 5. y: did the client subscribe to a term deposit?

6. duration: Call duration, in seconds. This attribute highly affects the output target (e.g., if duration=0 then y='no'). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for inference purposes and should be discarded if the intention is to have a realistic predictive model.

(Raw data source: Source. Do not use the raw data source for this assignment. It is just for reference.)

D.3.1 Data preparation

Convert all the categorical predictors in the data to dummy variables. Note that month and education are categorical variables.

(1 point)

D.3.2 Boosting

Develop and tune any boosting model to predict the probability of a client subscribing to a term deposit based on age, education, day and month. The model must have:

- (a) **Minimum overall classification accuracy of 70%** among the classification accuracies on *train.csv*, and *test.csv*.
- (b) Minimum recall of 65% among the recall on train.csv, and test.csv.

Print the accuracy and recall for both the datasets - train.csv, and test.csv.

Note that:

- i. You cannot use duration as a predictor. The predictor is not useful for prediction because its value is determined after the marketing call ends. However, after the call ends, we already know whether the client responded positively or negatively.
- ii. You are free to choose any value of threshold probability for classifying observations. However, you must use the same threshold on both the datasets.
- iii. Use cross-validation on train data to optimize the model hyperparameters.
- iv. Using the optimal model hyperparameters obtained in (iii), develop the decision tree model. Plot the cross-validated accuracy and recall against decision threshold probability. Tune the decision threshold probability based on the plot, or the data underlying the plot to achieve the required trade-off between recall and accuracy.

v. Evaluate the accuracy and recall of the developed model with the tuned decision threshold probability on both the datasets. Note that the test dataset must only be used to evaluate performance metrics, and not optimize any hyperparameters or decision threshold probability.

(20 points - 10 points for tuning the hyperparameters, 4 points for making the plot, 4 points for tuning the decision threshold probability based on the plot, and 2 points for printing the accuracy & recall on both the datasets)

It is up to you to pick the hyperparameters and their values in the grid.

Hint: Below is one way to solve the problem. Note that there may be several completely different and better ways to solve the problem.

XGBoost may help with tuning of n_estimators, max_depth, learning_rate, gamma, reg_lambda, and subsample. You may take the recommended value of scale_pos_weight. Use RandomizedSearchCV. Evaluation of 200 models with 5-fold cross validation, i.e., 1000 fits, takes 45 minutes on a 6-core laptop. You may try a 2-fold cross validation to reduce time.

E Stratified splitting (classification problem)

E.1 Stratified splitting with respect to response

Q: When splitting data into train and test for developing and assessing a classification model, it is recommended to stratify the split with respect to the response. Why?

A: The main advantage of stratified splitting is that it can help ensure that the training and testing sets have similar distributions of the target variable, which can lead to more accurate and reliable model performance estimates.

In many real-world datasets, the target variable may be imbalanced, meaning that one class is more prevalent than the other(s). For example, in a medical dataset, the majority of patients may not have a particular disease, while only a small fraction may have the disease. If a random split is used to divide the dataset into training and testing sets, there is a risk that the testing set may not have enough samples from the minority class, which can lead to biased model performance estimates.

Stratified splitting addresses this issue by ensuring that both the training and testing sets have similar proportions of the target variable. This can lead to more accurate model performance estimates, especially for imbalanced datasets, by ensuring that the testing set contains enough samples from each class to make reliable predictions.

Another advantage of stratified splitting is that it can help ensure that the model is not overfitting to a particular class. If a random split is used and one class is overrepresented in the training set, the model may learn to predict that class well but perform poorly on the other class(es). Stratified splitting can help ensure that the model is exposed to a representative sample of all classes during training, which can improve its generalization performance on new, unseen data.

In summary, the advantages of stratified splitting are that it can lead to more accurate and reliable model performance estimates, especially for imbalanced datasets, and can help prevent overfitting to a particular class.

E.2 Stratified splitting with respect to response and categorical predictors

Q: Will it be better to stratify the split with respect to the response as well as categorical predictors, instead of only the response? In that case, the train and test datasets will be even more representative of the complete data.

A: It is not recommended to stratify with respect to both the response and categorical predictors simultaneously, while splitting a dataset into train and test, because doing so may result in the test data being very similar to train data, thereby defeating the purpose of assessing the model on unseen data. This kind of a stratified splitting will tend to make the relationships between the response and predictors in train data also appear in test data, which will result in the performance on test data being very similar to that in train data. Thus, in this case, the ability of the model to generalize to new, unseen data won't be assessed by test data.

Therefore, it is generally recommended to only stratify the response variable when splitting the data for model training, and to use random sampling for the predictor variables. This helps to ensure that the model is able to capture the underlying relationships between the predictor variables and the response variable, while still being able to generalize well to new, unseen data.

In the extreme scenario, when there are no continuous predictors, and there are enough observations for stratification with respect to the response and the categorical predictors, the train and test datasets may turn out to be exactly the same. Example 1 below illustrates this scenario.

E.3 Example 1

The example below shows that the train and test data can be exactly the same if we stratify the split with respect to response and the categorical predictors.

```
# Importing necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_predict, cross_val_score
from sklearn.metrics import accuracy_score
from itertools import product
sns.set(font_scale=1.35)
```

Let us simulate a dataset with 8 observations, two categorical predictors x1 and x2 and the the binary response y.

```
#Setting a seed for reproducible results
np.random.seed(9)
# 8 observations
n = 8
#Simulating the categorical predictors
x1 = pd.Series(np.random.randint(0,2,n), name = 'x1')
x2 = pd.Series(np.random.randint(0,2,n), name = 'x2')
#Simulating the response
pr = (x1==1)*0.7+(x2==0)*0.3# + (x3*0.1>0.1)*0.1
y = pd.Series(1*(np.random.uniform(size = n) < pr), name = 'y')
#Defining the predictor object 'X'
X = pd.concat([x1, x2], axis = 1)
#Stratified splitting with respect to the response and predictors to create 50% train and
X_train_stratified, X_test_stratified, y_train_stratified,\
y_test_stratified = train_test_split(X, y, test_size = 0.5, random_state = 45, stratify=da
#Train and test data resulting from the above stratified splitting
data_train = pd.concat([X_train_stratified, y_train_stratified], axis = 1)
data_test = pd.concat([X_test_stratified, y_test_stratified], axis = 1)
```

Let us check the train and test datasets created with stratified splitting with respect to both the predictors and the response.

data_train

	x1	x2	У
2	0	0	1
7	0	1	0
3	1	0	1
1	0	1	0

data_test

	x1	x2	у
4	0	1	0
6	1	0	1
0	0	1	0
5	0	0	1

Note that the train and test datasets are exactly the same! Stratified splitting tends to have the same proportion of observations corresponding to each strata in both the train and test datasets, where each strata is a unique combination of values of x1, x2, and y. This will tend to make the train and test datasets quite similar!

E.4 Example 2: Simulation results

The example below shows that train and test set performance will tend to be quite similar if we stratify the datasets with respect to the predictors and the response.

We'll simulate a dataset consisting of 1000 observations, 2 categorical predictors x1 and x2, a continuous predictor x3, and a binary response y.

```
#Setting a seed for reproducible results
np.random.seed(99)

# 1000 Observations
n = 1000

#Simulating categorical predictors x1 and x2
x1 = pd.Series(np.random.randint(0,2,n), name = 'x1')
x2 = pd.Series(np.random.randint(0,2,n), name = 'x2')

#Simulating continuous predictor x3
x3 = pd.Series(np.random.normal(0,1,n), name = 'x3')

#Simulating the response
pr = (x1==1)*0.7+(x2==0)*0.3 + (x3*0.1>0.1)*0.1
y = pd.Series(1*(np.random.uniform(size = n) < pr), name = 'y')

#Defining the predictor object 'X'
X = pd.concat([x1, x2, x3], axis = 1)</pre>
```

We'll comparing model performance metrics when the data is split into train and test by performing stratified splitting

- 1. Only with respect to the response
- 2. With respect to the response and categorical predictors

We'll perform 1000 simulations, where the data is split using a different seed in each simulation.

```
#Creating an empty dataframe to store simulation results of 1000 simulations
accuracy_iter = pd.DataFrame(columns = {'train_y_stratified','test_y_stratified',
                                       'train_y_CatPredictors_stratified', 'test_y_CatPred
# Comparing model performance metrics when the data is split into train and test by perfor
# (1) only with respect to the response
# (2) with respect to the response and categorical predictors
# Stratified splitting is performed 1000 times and the results are compared
for i in np.arange(1,1000):
   #-----#
   # Stratified splitting with respect to response only to create train and test data
   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_stat
   model = LogisticRegression()
   model.fit(X_train, y_train)
   # Model accuracy on train and test data, with stratification only on response while sp
   # the complete data into train and test
   accuracy_iter.loc[(i-1), 'train_y_stratified'] = model.score(X_train, y_train)
   accuracy_iter.loc[(i-1), 'test_y_stratified'] = model.score(X_test, y_test)
   #-----#
   # Stratified splitting with respect to response and categorical predictors to create t
   # and test data
   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_stat
                                                      stratify=pd.concat([x1, x2, y], ax
   model.fit(X_train, y_train)
   # Model accuracy on train and test data, with stratification on response and predictor
   # splitting the complete data into train and test
   accuracy_iter.loc[(i-1), 'train_y_CatPredictors_stratified'] = model.score(X_train, y_
   accuracy_iter.loc[(i-1), 'test_y_CatPredictors_stratified'] = model.score(X_test, y_te
# Converting accuracy to numeric
```

```
accuracy_iter = accuracy_iter.apply(lambda x:x.astype(float), axis = 1)
```

Distribution of train and test accuracies

The table below shows the distribution of train and test accuracies when the data is split into train and test by performing stratified splitting:

- 1. Only with respect to the response (see train_y_stratified and test_y_stratified)
- 2. With respect to the response and categorical predictors (see train_y_CatPredictors_stratified and test_y_CatPredictors_stratified)

```
accuracy_iter.describe()
```

	$train_y_stratified$	$test_y_stratified$	$train_y_CatPredictors_stratified$	$test_y_CatPredictors_st$
count	999.000000	999.000000	9.990000e+02	9.990000e+02
mean	0.834962	0.835150	8.350000e-01	8.350000e-01
std	0.005833	0.023333	8.552999e-15	8.552999e-15
\min	0.812500	0.755000	8.350000e-01	8.350000e-01
25%	0.831250	0.820000	8.350000e-01	8.350000e-01
50%	0.835000	0.835000	8.350000e-01	8.350000e-01
75%	0.838750	0.850000	8.350000e-01	8.350000e-01
max	0.855000	0.925000	8.350000e-01	8.350000e-01

Let us visualize the distribution of these accuracies.

E.4.1 Stratified splitting only with respect to the response

```
sns.histplot(data=accuracy_iter, x="train_y_stratified", color="red", label="Train accuracy
sns.histplot(data=accuracy_iter, x="test_y_stratified", color="skyblue", label="Test accur
plt.legend()
plt.xlabel('Accuracy')
```

Text(0.5, 0, 'Accuracy')

Note the variability in train and test accuracies when the data is stratified only with respect to the response. The train accuracy varies between 81.2% and 85.5%, while the test accuracy varies between 75.5% and 92.5%.

E.4.2 Stratified splitting with respect to the response and categorical predictors

```
sns.histplot(data=accuracy_iter, x="train_y_CatPredictors_stratified", color="red", label=
sns.histplot(data=accuracy_iter, x="test_y_CatPredictors_stratified", color="skyblue", lab
plt.legend()
plt.xlabel('Accuracy')
```

Text(0.5, 0, 'Accuracy')

The train and test accuracies are between 85% and 85.5% for all the simulations. As a results of stratifying the splitting with respect to both the response and the categorical predictors, the train and test datasets are almost the same because the datasets are engineered to be quite similar, thereby making the test dataset inappropriate for assessing accuracy on unseen data. Thus, it is recommended to stratify the splitting only with respect to the response.

F Datasets, assignment and project files

Datasets used in the book, assignment files, project files, and prediction problems report tempate can be found here

References