From 2way transducers to regular function expressions

N. Baudru and P.A. Reynier

Aix-Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

ANR DeLTA, Bordeaux, Dec. 2018

Kleene theorem for functional transductions

Theorem

Unambiguous 2NFTs and Reg-Expressions are equivalent.

 $iteratedMirror: reverses\#the\#words \mapsto sesrever\#eht\#sdrow$

A 2way transducer (2NFT) for iteratedMirror

A regular function expression (Reg-expr) for iteratedMirror

$$\mathsf{iteratedMirror} = \left(\left(\mathsf{id}_{\{a,b\}} \right)^{\overset{\leftarrow}{+}} \bullet \left\{ \# \right\} / \# \right)^{*} \bullet \left(\mathsf{id}_{\{a,b\}} \right)^{\overset{\leftarrow}{+}}$$

Our contribution

Our contribution

An extension of the state eliminiation algorithm (Brzozowski & McCluskey) to two way transducers.

Remark: a recent work [DGK, LICS'18] also provides a transformation from det 2NFT to Reg-expr, but based on Simon factorization forest theorem.

Brzozowski and McCluskey algorithm (BMC) for languages

Input : a FA viewed as a generalized automaton ${\cal A}$

Output: a generalized automaton with a unique transition: the RE labelling the transition is equivalent to \mathcal{A} .

How: For all states $q \neq \{\text{init}, \text{final}\}$, do

• for all $q_1, q_2 \neq q$:

remove q

Outline

- Introduction
- 2 2NFTs and Reg-expressions
- Generalized automata for transducers
- 4 A state elimination algorithm for transducers
- Conclusion

Outline

- Introduction
- 2 2NFTs and Reg-expressions
- Generalized automata for transducers
- 4 A state elimination algorithm for transducers
- Conclusion

Regular function expressions (Reg-expressions) [AFR, LICS'14]

Specify word-to-word partial functions

$$Reg \ni f, g ::= R/v \mid f \oplus g \mid f \otimes g \mid f \bullet g \mid f^* \mid f \stackrel{\leftarrow}{\bullet} g \mid \langle f, R \rangle^{\circledast} \mid \langle f, R \rangle^{\stackrel{\leftarrow}{\circledast}}$$

Sum: If dom(f) and dom(g) are disjoint, $f \oplus g(u) = \begin{cases} f(u) & \text{if } u \in dom(f) \\ g(u) & \text{if } u \in dom(g) \end{cases}$

Hadamard Product: If $u \in dom(f) \cap dom(g)$, then $f \otimes g(u) = f(u)g(u)$

Cauchy Product: If u splits into $u_1 \in dom(f)$ and $u_2 \in dom(g)$,

$$f \bullet g(u) = f(u_1)g(u_2)$$

Chained star: If $R^2 \subseteq \text{dom}(f)$ and u splits into $u_1u_2 \dots u_n$ with $u_i \in R$,

$$\langle f,R\rangle^{\circledast}(u)=f(u_1u_2)f(u_2u_3)\dots f(u_{n-1}u_n)$$

$$0 \xrightarrow{\epsilon} 1 \xrightarrow{\epsilon} 1$$

$$\downarrow \quad a \qquad \downarrow \quad b \qquad \qquad b \qquad$$

$$0 \xrightarrow{\epsilon} 1 \xrightarrow{\epsilon} 1 \xrightarrow{\epsilon} 1$$

$$\downarrow \quad a \quad b \quad \downarrow \quad b \quad a \quad \downarrow$$

$$0 \xrightarrow{\epsilon} 1 \xrightarrow{\epsilon}$$

An accepting run on the input word $\vdash ab\#bba \dashv$ with output ba#abb:

Unambiguous 2NFTs define word-to-word partial functions.

Monoid of (word) flows [Shepherdson'59]

Concatenation of size compatible flows:

Outline

- Introduction
- 2 2NFTs and Reg-expressions
- Generalized automata for transducers
- 4 A state elimination algorithm for transducers
- Conclusion

Function expression flows (FEF) and labels

FEF on domain D: flow labelled by Reg-expressions on domain D.

An FEF G defines a function from the words u of D to word flows.

Label: finite set of FEFs of same size with pairwise disjoint domains

A label L defines a function from $\biguplus_{G \in L} \text{dom}(G)$ to word flows:

$$L(u) = G(u)$$
 for the unique $G \in L$ s.t. $u \in dom(G)$

Function expression flow automata (FFA)

FA \mathcal{A} over labels with a structural property

Example: $A(\vdash ab\#bba \dashv) =$

$$L1(\critch{}^{\downarrow})$$
 $L2$ (a) $L2$ (b) $L2$ (b) $L2$ (b) $L2$ (c) $L3$ ($\critch{}^{\downarrow}$)

Function expression flow automata (FFA)

FA \mathcal{A} over labels with a structural property

Using the crossing sequences construction [Sheph. 1959], we have:

Proposition

For all unambiguous 2NFT, we can build an equivalent unambiguous FFA.

From now on, we consider unambiguous FFA.

- Introduction
- 2 2NFTs and Reg-expressions
- Generalized automata for transducers
- 4 A state elimination algorithm for transducers
- Conclusion

Input: An unambiguous FFA ${\cal A}$

Output: An FFA with a unique transition:

• The label L of the transition is equivalent to A.

Input: An unambiguous FFA $A \leftarrow 2NFT B$ (Sheph.'s construction)

Output: An FFA with a unique transition:

- The label L of the transition is equivalent to A.
- $L = \{F\}$ of size (1,1). The unique reg-expression is equivalent to \mathcal{B} .

Input: An unambiguous FFA $A \leftarrow 2NFT B$ (Sheph.'s construction)

Output: An FFA with a unique transition:

- The label L of the transition is equivalent to A.
- $L = \{F\}$ of size (1,1). The unique reg-expression is equivalent to \mathcal{B} .

Input: An unambiguous FFA $A \leftarrow 2NFT \mathcal{B}$ (Sheph.'s construction)

Output: An FFA with a unique transition:

- The label L of the transition is equivalent to A.
- $L = \{F\}$ of size (1,1). The unique reg-expression is equivalent to \mathcal{B} .

Proposition

We can effectively build labels $L \oplus L'$, $L \bullet L'$ and $L^{\geq 2}$ such that

$$L \oplus L' \equiv \begin{array}{c|c} L \\ \hline L' \end{array} \qquad \begin{array}{c|c} L \\ \hline L' \end{array} \qquad \begin{array}{c|c} L \\ \hline L' \end{array} \qquad \begin{array}{c|c} L \\ \hline L \end{array} \qquad$$

Construction of $L^{\geq 2}$ - overview

If L satisfies the left-absorbing property (key case):

for all
$$F, F' \in L$$
, flow $(F) \circ \text{flow}(F') = \text{flow}(F)$.

The construction $L^{\geq 2}$ follows from

- ullet an analysis of the sequences of flows induced by $\mathcal{A}_{\geq 2}$:
- the use of the chained star combinator.

Construction of $L^{\geq 2}$ - overview

If L satisfies the left-absorbing property (key case):

for all
$$F, F' \in L$$
, flow $(F) \circ \text{flow}(F') = \text{flow}(F)$.

The construction $L^{\geq 2}$ follows from

- an analysis of the sequences of flows induced by $\mathcal{A}_{\geq 2}$:
- the use of the chained star combinator.

Otherwise:

- lacktriangledown use a finite unfolding of $\mathcal{A}_{\geq 2}$
- 2 apply again our BMC algorithm with a state elimination strategy
- \implies reduction to the previous case

Construction of $L^{\geq 2}$ when L has the left-absorbing property: main ideas...

Decompose F: For all $u \in \text{dom}(F)$, $F(u) = F'(u) \circ F''(u)$.

$$L = \{F\}$$

$$L \to L$$

$$A \to 2(u_1 u_2 u_3)$$

$$E(u_1) \to F(u_2) \to F(u_3)$$

$$E(u_1) \to F(u_2) \to F(u_3)$$

$$E(u_1) \to F(u_2) \to F(u_3)$$

$$E(u_1) \to F(u_2) \to F(u_3) \to F(u_3)$$

$$E(u_1) \to F(u_2) \to F(u_3) \to F(u_3)$$

Combine F'' and F': For all $u, v \in dom(F)$, $G(uv) = F''(u) \circ F'(v)$.

Chaine the G's: $h_1(u_1u_2u_3) = \langle g_1, \text{dom}(L) \rangle^{\circledast}(u_1u_2u_3) = g_1(u_1u_2)g_1(u_2u_3)$

- Introduction
- 2 2NFTs and Reg-expressions
- Generalized automata for transducers
- 4 A state elimination algorithm for transducers
- Conclusion

Conclusion and future works

In this talk: we extended BMC algorithm to unambiguous 2NFT.

Not presented: sweeping transducer.

Future works:

- Complexity analysis
- Simon's Theorem vs our construction
- Expressiveness of non functional FFA
- Infinite words

Thank you for your attention