Линейные отображения на плоскости

На этом уроке мы разберём примеры линейных отображений из \mathbb{R}^2 в \mathbb{R}^2 . То есть из плоскости \mathbb{R}^2 в себя.

Отображения из \mathbb{R}^2 в себя

Давайте рассмотрим случай n=m.

То есть f бьёт из \mathbb{R}^n в \mathbb{R}^n . Априори, удобнее думать, что эти два \mathbb{R}^n – два разных векторных пространства. Но иногда удобнее и естественнее считать, что это одно и то же пространство. Можно думать про f так: оно берёт вектор из пространства \mathbb{R}^n и возвращает вектор из того же пространства \mathbb{R}^n . Отображение f как бы преобразует первый вектор во второй.

Для наглядности мы будем смотреть на отображения из \mathbb{R}^2 в \mathbb{R}^2 , то есть возьмём n=2.

Зачем? Мы рассмотрим несколько отображений из \mathbb{R}^2 в \mathbb{R}^2 , чтобы развить больше интуиции относительно линейных преобразований. Например, мы узнаем, что проекция, поворот, зеркальная и осевая симметрия – линейные преобразования. А сдвиг – нет.

Пример 1

Пусть $f(\vec{x})=3\vec{x}$, то есть f растягивает все векторы в 3 раза. Тогда f задаётся матрицей $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$. Действительно,

$$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 \\ 3x_2 \end{pmatrix} = 3 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Пример 2

Пусть мы хотим построить линейное отображение f, которое проецирует все векторы на ось OX:

Красным цветом мы выделяем вектор, к которому применяем f. А синим – вектор, в который f его переводит.

Давайте подумаем, какой матрицей задаётся это линейное отображение.

Решение через строки. Как видно, первая координата у векторов \vec{x} и $f(\vec{x})$ совпадает, значит, первая строка матрицы это (1,0). Вторая координата у $f(\vec{x})$ должна быть равна 0 независимо от \vec{x} , поэтому вторая строка матрицы это (0,0).

Значит, отображение f задаётся матрицей $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Решение через столбцы. Вектор \vec{e}_1 направлен вдоль оси OX, поэтому $f(\vec{e}_1)=\vec{e}_1=\begin{pmatrix}1\\0\end{pmatrix}$. Значит, первый столбец матрицы это $\begin{pmatrix}1\\0\end{pmatrix}$. Вектор \vec{e}_2 направлен перпендикулярно оси OX, поэтому f отправляет его в $\vec{0}$, то есть $f(\vec{e}_2)=\begin{pmatrix}0\\0\end{pmatrix}$. Значит, второй столбец матрицы это $\begin{pmatrix}0\\0\end{pmatrix}$.

Значит, отображение f задаётся матрицей $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

В виде формулы f можно задать так: $f(x_1,x_2)=(x_1,0)$.

Отображение f проецирует все векторы на ось OY. Выпишите матрицу отображения f и формулу для отображения f.

На картинке показаны примеры проекции: два вектора \vec{x} и \vec{y} (красные стрелки) и векторы $f(\vec{x})$ и $f(\vec{y})$, куда соответственно отображаются \vec{x} и \vec{y} . Эти векторы нарисованы синим

Для решения этой и следующих задач будет полезно использовать клетчатую бумагу. Нарисуйте на ней координатные оси и несколько векторов, например, \vec{e}_1 , \vec{e}_2 , (2,3), (-1,5). Посмотрите, как f действует на эти векторы.

Комментарий. В этой и следующих задачах мы специально не определили строго проекцию, зеркальную и центральную симметрии, ограничившись картинками. Действительно, строгое определение потребовало бы либо формулу f, либо матрицу отображения f. А их-то мы и просим вас выписать. По сути, мы просим вас перевести концепты с наглядно-геометрического языка (картинки) на формальный алгебраический язык (формулы).

Проверка. Ответ запишите в виде ((1, 2), (3, 4)), где (1, 2) и (3, 4)— первая и вторая строки вашей матрицы соответственно. Число пробелов роли не играет.

Напишите текст

Отображение f переводит все векторы в вектор $\vec{0}$. Выпишите матрицу отображения f и формулу для отображения f.

Проверка. Ответ запишите в виде ((1, 2), (3, 4)), где (1, 2) и (3, 4)— первая и вторая строки вашей матрицы соответственно. Число пробелов роли не играет.

Напишите текст

Отображение f переводит все векторы в *зеркально* симметричные относительно оси OX. Выпишите матрицу отображения f и формулу для отображения f.

Проверка. Ответ запишите в виде ((1, 2), (3, 4)), где (1, 2) и (3, 4)— первая и вторая строки вашей матрицы соответственно. Число пробелов роли не играет.

Напишите текст

Пусть f – центральная симметрия с центром в точке (0,0). Выпишите матрицу отображения f и формулу для отображения f.

Проверка. Ответ запишите в виде ((1, 2), (3, 4)), где (1, 2) и (3, 4)— первая и вторая строки вашей матрицы соответственно. Число пробелов роли не играет.

Напишите текст

Отображение f растягивает первую координату вектора в два раза и сохраняет вторую координату. То есть $f(x_1,x_2)=(2x_1,x_2)$. Выпишите соответствующую матрицу и нарисуйте картинку.

В этой задаче тоже полезно нарисовать происходящее на клетчатой бумаге.

Проверка. Ответ запишите в виде ((1, 2), (3, 4)), где (1, 2) и (3, 4)— первая и вторая строки вашей матрицы соответственно. Число пробелов роли не играет.

Напишите текст

Можно ли задать матрицей отображение, которое сдвигает все векторы на вектор $ec{e}_1$? То есть $f(x_1,x_2)=(x_1+1,x_2)$.

Выберите один вариант из списка

Нет, нельзя.

Да, можно.

Отображение f поворачивает все векторы на 90 градусов против часовой стрелки. Выпишите матрицу отображения f и формулу для отображения f.

Проверка. Ответ запишите в виде ((1, 2), (3, 4)), где (1, 2) и (3, 4)— первая и вторая строки вашей матрицы соответственно. Число пробелов роли не играет.

Напишите текст

Что мы прошли на этом уроке

- Мы научились находить матрицы линейных отображений, заданных формулами.
- Мы поняли, что столбцы матрицы это векторы, в которые отображение переводит единичные векторы, направленные вдоль осей координат.
- Мы показали, что матрицы и линейные отображения можно считать синонимами.
- ullet Мы разобрали примеры линейных отображений \mathbb{R}^2 в себя: растяжение, проекцию, симметрию.

Что нас ждёт на следующем уроке

На следующем уроке мы

- узнаем формулу для умножения матриц и поймём, откуда она берётся
- разберём свойства произведения матриц