

Course code	Course Name	L-T-P -Credits	Year of Introduction
CS204	Operating Systems	3-1-0-4	2016

Pre-requisite: CS205 Data structures

Course Objectives

- 1. To impart fundamental understanding of the purpose, structure, functions of operating system.
- 2. To impart the key design issues of an operating system

Syllabus

Basic concepts of Operating System, its structure, Process management, inter-process communication, process synchronization, CPU Scheduling, deadlocks, Memory Management, swapping, segmentation, paging, Storage Management - disk scheduling, RAID, File System Interface-implementation. Protection.

Expected outcome

Students will be able to:

- 1. identify the significance of operating system in computing devices.
- 2. exemplify the communication between application programs and hardware devices through system calls.
- 3. compare and illustrate various process scheduling algorithms.
- 4. apply appropriate memory and file management schemes.
- 5. illustrate various disk scheduling algorithms.
- 6. appreciate the need of access control and protection in an operating system.

Text Book:

1. Abraham Silberschatz, Peter B Galvin, Greg Gagne, Operating System Concepts, 9/e, Wiley India, 2015.

References:

- 1. Garry Nutt, Operating Systems: 3/e, Pearson Education, 2004
- 2. Bhatt P. C. P., An Introduction to Operating Systems: Concepts and Practice, 3/e, Prentice Hall of India, 2010.
- 3. William Stallings, Operating Systems: Internals and Design Principles, Pearson, Global Edition, 2015.
- 4. Andrew S Tanenbaum, Herbert Bos, Modern Operating Systems, Pearson, 4/e, 2015.
- 5. Madnick S. and J. Donovan, Operating Systems, McGraw Hill, 2001.
- 6. Hanson P. B., Operating System Principle, Prentice Hall of India, 2001.
- 7. Deitel H. M., An Introduction to Operating System Principles, Addison-Wesley, 1990.

	Course Plan		
Module	Contents	Hours	Sem. Exam marks
		(52)	

I	Introduction : Functions of an operating system.		15%			
	Single processor, multiprocessor and clustered					
	systems – overview. Kernel Data Structures –					
	Operating Systems used in different computing environments.					
	environments.	7				
	Operating System Interfaces and					
	implementation - User Interfaces, System Calls -	+ 1				
	examples. Operating System implementation - approaches. Operating System Structure –	ΙΔ	M			
	Monolithic, Layered, Micro-kernel, Modular.		1 V 1			
	System Boot process.	(/				
II	Process Management: Process Concept –	9	15%			
	Processes-States – Process Control Block –	Y				
	Threads. Scheduling – Queues – Schedulers – Context Switching. Process Creation and					
	Termination.					
	Inter Process Communication: Shared Memory,					
	Message Passing, Pipes. FIRST INTERNAL EXAMINATION) NT				
TTT)N	150/			
III	Process Synchronization : Critical Section- Peterson's solution. Synchronization – Locks,	9	15%			
	Semaphores, Monitors, Classical Problems –					
	Producer Consumer, Dining Philosophers and					
	Readers-Writers Problems					
IV	CPU Scheduling - Scheduling Criteria -	8	15%			
	Scheduling Algorithms.					
	Deadlocks – Conditions, Modeling using graphs.					
	Handling – Prevention – Avoidance – Detection-		1			
	Recovery.					
	SECOND INTERNAL EXAMINATION	ION				
V	Memory Management: Main Memory – Swapping	0	20%			
	 Contiguous Memory allocation – Segmentation – Paging – Demand paging 	9				
VI	Storage Management: Overview of mass storage	10	20%			
	structure- disks and tapes. Disk structure -					
	accessing disks. Disk scheduling and management.					
	Swap Space.					
	File System Interface: File Concents Attributes					
	File System Interface : File Concepts – Attributes – operations – types – structure – access methods.					
	File system mounting. Protection. File system					
	implementation. Directory implementation –					
	allocation methods. Free space Management.					
	Protection— Goals, Principles, Domain. Access					
	Matrix. END SEMESTER EXAM					
	END SEMESTER EARIM					

Question Paper Pattern:

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks: 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering module I and II; All <u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks: 18
 - b. <u>Three</u> questions each having <u>9</u> marks, uniformly covering module I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts
- 4. Part C
 - a. Total marks: 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering module III and IV; All *four* questions have to be answered.
- 5. Part D
 - a. Total marks: 18
 - b. <u>Three</u> questions each having <u>9</u> marks, uniformly covering module III and IV; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical/design questions.

2014