

X3-Class HiPerFET™ **Power MOSFET**

IXFA130N15X3

150V 130A $9m\Omega$

N-Channel Enhancement Mode Avalanche Rated

TO-263 (IXFA)	G S	O (Tab)
G = Gate	D	= Drain

G = Gate	D	= Drai	n
S = Source	Tab	= Drai	n

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{J} = 25^{\circ}C \text{ to } 150^{\circ}C$	150	V	
V _{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{gs} = 1M\Omega$	150	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _C = 25°C (Chip Capability)	130	Α	
L(RMS)	External Lead Current Limit	120	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	230	Α	
I _A	$T_{c} = 25^{\circ}C$	65	А	
E _{as}	$T_{c} = 25^{\circ}C$	1.2	J	
dv/dt	$I_{_{\mathrm{S}}} \le I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \le V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \le 150^{\circ}\mathrm{C}$	50	V/ns	
P _D	$T_c = 25^{\circ}C$	390	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	g 300	°C	
dT/dt	Heating / Cooling rate, 175°C - 210°C	50	°C/min	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
F _c	Mounting Force	1065 / 2.214.6	N/lb	
Weight		2.5	g	

Features

- International Standard Package
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		cteristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	150			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 1.5 \text{mA}$	2.5		4.5	V
l _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
DSS	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			5 300	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Notes 1 & 2$			9	mΩ

Symbol Test Conditions C		Chai	aracteristic Values		
$(T_{J} = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max	
g _{fs}	V _{DS} = 10V, I _D = 60A, Note 1	50	82	S	
R_{Gi}	Gate Input Resistance		1.8	Ω	
C _{iss}			5230	pF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		920	pF	
C _{rss}			14	pF	
	Effective Output Capacitance				
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		585	pF	
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1350	pF	
t _{d(on)}	Resistive Switching Times		21	ns	
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		25	ns	
t _{d(off)}	$R_{\rm G} = 10V$, $V_{\rm DS} = 0.3 \cdot V_{\rm DSS}$, $I_{\rm D} = 0.3 \cdot I_{\rm D25}$ $R_{\rm G} = 5\Omega$ (External)		62	ns	
t,	$H_{G} = 552$ (External)		12	ns	
$Q_{g(on)}$			80	nC	
Q _{gs}	$V_{gs} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		27	nC	
\mathbf{Q}_{gd}			25	nC	
R _{thJC}				0.32 °C/W	

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C, U)$	Inless Otherwise Specified)	Min.	Тур.	Max	
l _s	$V_{GS} = 0V$			130	Α
I _{SM}	Repetitive, Pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			520	A
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{c} oldsymbol{t}_{rr} & \ oldsymbol{Q}_{RM} \ oldsymbol{I}_{RM} \end{array} ight. ight.$	$I_F = 65A$, -di/dt = 100A/ μ s $V_R = 100V$		80 230 5.7		ns nC A

Notes: 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

2. On through-hole packages, $R_{\rm DS(on)}$ Kelvin test contact location must be 5mm or less from the package body.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 65A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 65A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.