KRP Spring 2023

Homework 2

Instructor: YiZheng Zhao Name: 张运吉, StudentId: 211300063

Question 1. Closure under Disjoint Union

Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ be a \mathcal{ALC} knowledge base, $(\mathcal{I}_v)_{v \in \Omega}$ a family of models of \mathcal{K} .

The extend the notion of disjoint union to individual names is as follow:

- $\Delta^{\mathcal{I}} = \{(d, v) | v \in \Omega \text{ and } d \in \Delta^{\mathcal{I}_v} \}$
- $A^{\mathcal{I}} = \{(d, v) | v \in \Omega \text{ and } d \in A^{\mathcal{I}_v} \} \text{ for all } A \in \mathbf{C}$
- $r^{\mathcal{I}} = \{((d, v), (e, v)) | v \in \Omega \text{ and } (d, e) \in r^{\mathcal{I}_v}\} \text{ for all } r \in \mathbf{R}$
- $a^{\mathcal{I}} = (a^{\mathcal{I}_v}, v)$

Now we prove that : for any family $(\mathcal{I}_v)_{v\in\Omega}$ of models of an ALC-knowledge base \mathcal{K} , the disjoint union $\mathcal{J} = \biguplus_{v\in\Omega}$ is also a model of \mathcal{K} . Use proof by contradiction:

If \mathcal{J} is not a model of \mathcal{T} , then there exists a GCI: $C \sqsubseteq D$, such that $C^{\mathcal{J}} \not\subseteq D^{\mathcal{J}}$, which means there exists a element (d, v) in $C^{\mathcal{J}}$, but not in $D^{\mathcal{J}}$, so there exist a \mathcal{I}_v such that $d \in C^{\mathcal{I}_v}, d \not\in D^{\mathcal{I}_v}$. And what is contradictory to \mathcal{I}_v is a model of \mathcal{T} . So \mathcal{J} is a model of \mathcal{T} .

If \mathcal{J} is not a model of \mathcal{K}

case 1: there exists a Assertion: a:A, such that $a^{\mathcal{J}} \not\in A^{\mathcal{J}}$, which means there exist a \mathcal{I}_v such that $a^{\mathcal{I}_v} \not\in A^{\mathcal{I}_v}$. And what is contradictory to \mathcal{I}_v is a model of \mathcal{K} .

case 2: there exists a Assertion: (a,b): r, such that $((a^{\mathcal{J}},v),(b^{\mathcal{J}},v)) \notin r^{\mathcal{J}}$, which means there exist a \mathcal{I}_v such that $(a^{\mathcal{I}_v},a^{\mathcal{I}_v}) \notin r^{\mathcal{I}_v}$. And what is contradictory to \mathcal{I}_v is a model of \mathcal{K} .

So \mathcal{J} is a model of \mathcal{K} .

To sum up, $\mathcal{J} = \biguplus_{v \in \Omega}$ is also a model of \mathcal{K} .

Question 2. Closure under Disjoint Union

$$C \sqsubseteq_{\mathcal{T}} D \Longrightarrow C \sqsubseteq_{\mathcal{K}} D$$
:

If $C \sqsubseteq_{\mathcal{T}} D$, then $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ hold for all models \mathcal{I} of \mathcal{T} . For any model \mathcal{J} of \mathcal{K} , it must a modle of \mathcal{T} , so we know $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for all model \mathcal{I} of \mathcal{K} , so $C \sqsubseteq_{\mathcal{K}} D$

$$C \sqsubseteq_{\mathcal{K}} D \Longrightarrow C \sqsubseteq_{\mathcal{T}} D$$
:

If $C \not\sqsubseteq_{\mathcal{T}} D$, then there exists a model \mathcal{I}_0 of \mathcal{T} , but $C^{\mathcal{I}_0} \not\subseteq D^{\mathcal{I}_0}$, because \mathcal{K} is consistent, we can extend \mathcal{I}_0 such that \mathcal{I}_0 became a model of $\mathcal{K} = <\mathcal{T}, \mathcal{A} >$.

Then we construct a disjoint union $\mathcal{J} = \mathcal{I}_0 \cup \mathcal{I}_1$. (\mathcal{I}_1 is model of \mathcal{K} and $C^{\mathcal{I}_1} \subseteq D^{\mathcal{I}_1}$). According to the conclusion of Q1, \mathcal{J} is also a model of \mathcal{K} , but $C^{\mathcal{I}} \not\subseteq D^{\mathcal{I}}$. And what is contradictory to $C \sqsubseteq_{\mathcal{K}} D$. So we get $C \sqsubseteq_{\mathcal{T}} D$.

Question 3. Finite Model Property (fmp)

(1) True.

According to Finite Model Property, C has a finite model, which means there exists model \mathcal{I} of \mathcal{T} s.t. $|C^{\mathcal{I}}| \geq 1$.

Let
$$\mathcal{I}_m = \biguplus_{v \in \{1, \dots, m\}} \mathcal{I}$$
, so $|C^{\mathcal{I}_m}| \geq m$.

(2) False.

61

Here's a counter-example: Let $C = \top$, $\mathcal{T} = \{A \sqsubseteq \exists r. \neg A, \neg A \sqsubseteq \exists r. A\}$ and m = 1.

If the conclusion holds, then there exists only one element in $\Delta^{\mathcal{I}}$, because: $\Delta^{\mathcal{I}} = A^{\mathcal{I}} \cup \neg A^{\mathcal{I}}$.

case 1: $A^{\mathcal{I}} = \emptyset$, so $\exists r.A = \emptyset$, according to the second GCI in \mathcal{T} , $\neg A = \emptyset$, and then $\Delta^{\mathcal{I}} = A^{\mathcal{I}} \cup \neg A^{\mathcal{I}} = \emptyset$. And what is contradictory.

case 2: $\neg A^{\mathcal{I}} = \emptyset$, so $\exists r. \neg A = \emptyset$, according to the first GCI in \mathcal{T} , $A = \emptyset$, and then $\Delta^{\mathcal{I}} = A^{\mathcal{I}} \cup \neg A^{\mathcal{I}} = \emptyset$. And what is contradictory.

So: $A^{\mathcal{I}} \neq \emptyset$ and $\neg A^{\mathcal{I}} \neq \emptyset$, which means $|\Delta^{\mathcal{I}} = A^{\mathcal{I}} \cup \neg A^{\mathcal{I}}| \geq 2$.

It doesn't hold if the condition $|C^{\mathcal{I}_m}| \geq m$ is replaced by $|C^{\mathcal{I}_m}| = m$.

Question 4. Bisimulation over Filtration

False.

Let
$$C = A$$
 and $\mathcal{T} = \{\exists r. \top \sqsubseteq \top\}$, so $S = \text{sub}(C) \cup \text{sub}(\mathcal{T}) = \{\top, A, \exists r. \top\}$.

Fig. 3.4. An interpretation \mathcal{I} and its S-filtration \mathcal{J} for $S = \{\top, A, \exists r. \top\}$.

$$[d_1]_S = \{d_1, d'_1\}, [d_2]_S = \{d_2\}, [d'_2]_S = \{d'_2\}$$

we can see that the relation $\rho = \{(d, [d]) | d \in \Delta^{\mathcal{I}}\}$ is not a bisimmulation between \mathcal{I} and \mathcal{J} .

Question 5. Bisimulation within the Same Interpretation

(1) • $d_1 \approx_{\mathcal{I}} d_2$ implies there is a bisimulation ρ on \mathcal{I} such that $d\rho e$, which means

$$d_1 \in A^{\mathcal{I}} \text{ iff } d_2 \in A^{\mathcal{I}} \tag{1}$$

for all $d_1 \in \Delta^{\mathcal{I}}$, $d_2 \in \Delta^{\mathcal{I}}$ and $A \in C$.

• $d_1 \approx_{\mathcal{I}} d_2$ implies there is a bisimulation $d_1 \rho d_2$, due to the bisimulation, $(d_1, d'_1) \in r^{\mathcal{I}}$ implies there exists $d'_2 \in \Delta^{\mathcal{I}}$ such that

$$d_1' \rho d_2' \text{ and } (d_2, d_2') \in r^{\mathcal{I}}$$
 (2)

for all $d_1, d_1', d_2 \in \Delta^{\mathcal{I}}$ and $r \in \mathbf{R}$.

• $d_1 \approx_{\mathcal{I}} d_2$ implies there is a bisimulation $d_1 \rho d_2$, due to the bisimulation, $(d_2, d_2') \in r^{\mathcal{I}}$ implies there exists $d_1' \in \Delta^{\mathcal{I}}$ such that

$$d_1' \rho d_2' \text{ and } (d_1, d_1') \in r^{\mathcal{I}}$$
 (3)

for all $d_1, d'_2, d_2 \in \Delta^{\mathcal{I}}$ and $r \in \mathbf{R}$.

So $\approx_{\mathcal{I}}$ is a bisimulation on \mathcal{I} .

(2) • $d \rho [d]_{\approx_{\mathcal{I}}}$ implies $d \in A^{\mathcal{I}}$ iff $[d]_{\approx_{\mathcal{I}}} \in A^{\mathcal{I}}$ by the definition of filtration. On the contrary, if $[d]_{\approx_{\mathcal{I}}} \in A^{\mathcal{I}}$, according to the definition, there exists $d' \in [d]_{\approx_{\mathcal{I}}}$ such that $d \approx_{\mathcal{I}} d'$ and $d' \in A^{\mathcal{I}}$, because $\approx_{\mathcal{I}}$ is a bisimulation on \mathcal{I} , so $d \in A^{\mathcal{I}}$. Therefore, $d \in A^{\mathcal{I}}$ iff $[d]_{\approx_{\mathcal{I}}} \in A^{\mathcal{I}}$.

- $d \rho [d]_{\approx_{\mathcal{I}}}$ and $(d, d') \in r^{\mathcal{I}}$ implies there exists $[d']_{\approx_{\mathcal{I}}} \in \Delta^{\mathcal{I}}$, $d' \rho [d']_{\approx_{\mathcal{I}}}$ and $([d]_{\approx_{\mathcal{I}}}, [d']_{\approx_{\mathcal{I}}}) \in r^{\mathcal{I}}$.
 - If $(d, d') \in r^{\mathcal{I}}$, there must be $[d']_{\approx_{\mathcal{I}}} \in \Delta^{\mathcal{I}}$. Because of the third property of the definition of a filtration, there is $([d]_{\approx_{\mathcal{I}}}, [d']_{\approx_{\mathcal{I}}}) \in r^{\mathcal{I}}, \ d \in [d]_{\approx_{\mathcal{I}}}, \ d' \in [d']_{\approx_{\mathcal{I}}} \ (d, d') \in r^{\mathcal{I}}$.
- $(d, [d]_{\approx_{\mathcal{I}}}) \in \rho$ and $([d]_{\approx_{\mathcal{I}}}, [e]_{\approx_{\mathcal{I}}}) \in r^{\mathcal{I}}$ implies there is $d' \in [d]_{\approx_{\mathcal{I}}}, e' \in [e]_{\approx_{\mathcal{I}}}$ with $(d', e') \in r^{\mathcal{I}}$.

Because $d \in [d]_{\approx_{\mathcal{I}}}$, we can know $d \approx_{\mathcal{I}} d'$. And $\approx_{\mathcal{I}}$ is a bisimulation on \mathcal{I} , which implies the existence of $e \in \Delta^{\mathcal{I}}$ such that $e \approx_{\mathcal{I}} e'$ and $(d, e) \in r^{\mathcal{I}}$ So we can know $(e, [e]_{\approx_{\mathcal{I}}}) \in \rho$ and $(d, e) \in r^{\mathcal{I}}$ for all $d \in \Delta^{\mathcal{I}}$, $[d]_{\approx_{\mathcal{I}}}, [e]_{\approx_{\mathcal{I}}} \in \Delta^{\mathcal{I}}$, and $r \in \mathbf{R}$.

So we show that $\rho = \{(d, [d]_{\approx_{\mathcal{I}}}) | d \in \Delta^{\mathcal{I}} \}$ is a bisimulation between \mathcal{I} and \mathcal{J} .

(3) If \mathcal{I} is a model of an \mathcal{ALC} -concept C w.r.t an \mathcal{ALC} -TBox \mathcal{T} , then $C^{\mathcal{I}} \neq \emptyset$. If $d \in C^{\mathcal{I}}$, because there is a bisimulation between \mathcal{I} and \mathcal{J} , so $[d]_{\approx_{\mathcal{I}}} \in C^{\mathcal{I}}$ according to bisimulation invariance of \mathcal{ALC} .

It is easy to see that \mathcal{J} is a model of \mathcal{T} . Let $D \sqsubseteq E$ be a GCI in \mathcal{T} and $[d]_{\approx_{\mathcal{I}}} \in D^{\mathcal{I}}$. By bisimulation invariance, $d \in D^{\mathcal{I}}$ and $d \in E^{\mathcal{I}}$ because \mathcal{I} is a model of \mathcal{T} . Therefore $[d]_{\approx_{\mathcal{I}}} \in E^{\mathcal{I}}$.

So \mathcal{J} is a model of an \mathcal{ALC} -concept C w.r.t an \mathcal{ALC} -TBox \mathcal{T} .

(4) Because we can't get the bound of the $|\Delta^{\mathcal{I}}|$.

For example, $\mathcal{T} = \{ A \sqsubseteq \exists r.B, B \sqsubseteq \exists r.A, A \sqcup B \sqsubseteq \exists s. \top \}.$

According the graph, we can find a Interpretation \mathcal{J} , but it appearently is not finite.

Question 6. Unravelling

See the following figure:

Question 7. Tree Model Property (tmp)

False.

For example, if $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ and $\mathcal{T} = \emptyset, \mathcal{A} = \{a : A, b : B, (a, b) : r, (b, a) : r\}$. For every model \mathcal{I} of \mathcal{K} , $a^{\mathcal{I}}$ and $b^{\mathcal{I}}$ are two distinguish elements,

and $(a^{\mathcal{I}}, b^{\mathcal{I}}), (b^{\mathcal{I}}, a^{\mathcal{I}}) \in r^{\mathcal{I}}$. Therefore, the model always have a cycle $a \to b \to a$, which means it is not a tree model.

Question 8. Tableau Algorithm

$$\mathcal{A}_0 = \{(b, a) : r, (a, b) : r, (a, c) : s, (c, b) : s, a : \exists s.A, b : \forall r.((\forall s. \neg A) \sqcup (\exists r.B)), c : \forall s.(B \sqcap (\forall s. \bot))\}$$

for $a : \exists s.A$, apply the \exists -rule:

$$A_1 = A_0 \cup \{(a,d) : s,d : A\}$$

for $b: \forall r.((\forall s. \neg A) \sqcup (\exists r. B))$, apply the \forall -rule:

$$\mathcal{A}_2 = \mathcal{A}_1 \cup \{a : (\forall s. \neg A) \sqcup (\exists r. B)\}$$

for $c: \forall s.(B \sqcap (\forall s.\bot))$, apply the \forall -rule:

$$\mathcal{A}_3 = \mathcal{A}_2 \cup \{b : B \sqcap (\forall s.\bot)\}$$

for $b: B \sqcap (\forall s. \bot)$, apply the \cup -rule:

$$\mathcal{A}_4 = \mathcal{A}_3 \cup \{b : B, b : \forall s. \bot\}$$

for $a: (\forall s. \neg A) \sqcup (\exists r. B)$, apply \sqcup -rule:

case 1:

$$\mathcal{A}_5 = \mathcal{A}_4 \cup \{a : \forall s. \neg A\}$$

for $a : \forall s. \neg A$, apply the \forall -rule:

$$\mathcal{A}_{51} = \mathcal{A}_5 \cup \{c : \neg A, d : \neg A\}$$

because A_{51} contains a clash d:A and $d:\neg A$, so fail.

case 2:

$$\mathcal{A}_5 = \mathcal{A}_4 \cup \{a : \exists r.B\}$$

there is no rule is applicable and A_5 does not contains clash. So, we have done. A is consistent.

Question 9. Extension of Tableau Algorithm

Define the NNF of \rightarrow -constructer: $\neg(C \to D) \equiv C \sqcap \neg D$, they are semantically equivalent because $(C \to D)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | x \in \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \text{ or } x \in D^{\mathcal{I}}\} = (\neg C \sqcup D)^{\mathcal{I}}$.

(1) The deterministic \rightarrow -rule:

Termination:

The property termination still holds.

Let
$$m = |\operatorname{sub}(\mathcal{A})|$$
.

a. After applying application, it will add a new assertion of the form a:C and $C \in \text{sub}(A)$. So for any individual name a, there can be at most m rule

applications adding a concept assertion of the form a: C and $con_{\mathcal{A}}(a) \leq m$.

b. A new individual name is added to A only when the \exists -rule is applied to an assertion of the form a:C with C an existential restriction (a concept of the form $\exists r.D$), and for any individual name each such assertion can trigger the addition of at most one new individual name. As there can be no more than m different existential restrictions in A, a given individual name can cause the addition of at most m new individual names, and the outdegree of each tree in the forest-shaped ABox is thus bounded by m.

c. With the same original proof, the depth of each tree in the forest-shaped ABox is bounded by m.

There properties ensure that there is a bound on the size of the ABox that can be constructed via rule applications, and thus a bound on the number of recursive applications of expand.

Soundness:

The property soundness does not holds.

For example, $\mathcal{A} = \{a : (C \sqcup D) \to E, a : C, a : \neg E\}$, because $a : C \sqcup D \notin \mathcal{A}$, we could not use the deterministic rule, so there is no rule could be applicated to it and there is no clash, therefore the algorithm would return \mathcal{A} is consistent. But actually the ABox is conflicting semantically.

Completeness:

The property completeness still holds.

Let \mathcal{A} be consistent, and consider a model $\mathcal{I} = \langle \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}} \rangle$ of A. Since \mathcal{A} is consistent, it cannot contain a clash. If \mathcal{A} is complete - since it does not contain a clash - expand simply returns \mathcal{A} and consistent returns "consistent". If \mathcal{A} is not complete, then expand calls itself recursively until \mathcal{A} is complete; each call selects a rule and applies it. We will show that rule application

preserves consistency by a case analysis according to the type of rule:

- The \sqcup -rule: If $a: C \sqcup D \in \mathcal{A}$, then $a^{\mathcal{I}} \in (C \sqcup D)^{\mathcal{I}}$ and Definition 2.2 implies that either $a^{\mathcal{I}} \in C^{\mathcal{I}}$ or $a^{\mathcal{I}} \in D^{\mathcal{I}}$. Therefore, at least one of the ABoxes $\mathcal{A}' \in \exp(\mathcal{A}, \sqcup \text{-rule}, a: C \sqcup D)$ is consistent. Thus, one of the calls of expand is applied to a consistent ABox.
- The \sqcap -rule: If $a: C \sqcap D \in \mathcal{A}$, then $a^{\mathcal{I}} \in (C \sqcap D)^{\mathcal{I}}$ and Definition 2.2 implies that both $a^{\mathcal{I}} \in C^{\mathcal{I}}$ and $a^{\mathcal{I}} \in D^{\mathcal{I}}$. Therefore, \mathcal{I} is still a model of $\mathcal{A} \cup \{a: C, a: D\}$, so \mathcal{A} is still consistent after the rule is applied.
- The \exists -rule: If $a: \exists r.C \in \mathcal{A}$, then $a^{\mathcal{I}} \in (\exists r.C)^{\mathcal{I}}$ and Definition 2.2 implies that there is some $x \in \Delta^{\mathcal{I}}$ such that $(a^{\mathcal{I}}, x) \in r^{\mathcal{I}}$ and $x \in C^{\mathcal{I}}$. Therefore, there is a model \mathcal{I}' of \mathcal{A} such that, for some new individual name d, $d^{\mathcal{I}'} = x$, and that is otherwise identical to \mathcal{I} . This model \mathcal{I}' is still a model of $\mathcal{A} \cup \{(a, d): r, d: C\}$, so \mathcal{A} is still consistent after the rule is applied.
- The \forall -rule: If $\{a: \forall r.C, (a,b): r\} \subseteq \mathcal{A}$, then $a^{\mathcal{I}} \in (\forall r.C)^{\mathcal{I}}, (a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$, and Definition 2.2 implies that $b^{\mathcal{I}} \in C^{\mathcal{I}}$. Therefore, \mathcal{I} is still a model of $\mathcal{A} \cup \{b:C\}$, so \mathcal{A} is still consistent after the rule is applied.

We also need to prove \rightarrow -rule: If $a: C \to D \in \mathcal{A}$ and $a: C \in \mathcal{A}$, then $a^{\mathcal{I}} \in (C \to D)^{\mathcal{I}}$. So there is $a^{\mathcal{I}} \in \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$ or $a^{\mathcal{I}} \in D^{\mathcal{I}}$ according to the semantics of \to . Because we have $a^{\mathcal{I}} \in C^{\mathcal{I}}$, so there is $a^{\mathcal{I}} \in D^{\mathcal{I}}$. Therefore, \mathcal{I} is still a model of $\mathcal{A} \cup \{a: D\}$, so \mathcal{A} is still consistent after applying the rule.

(2) The nondeterministic \rightarrow -rule:

Termination:

The property termination still holds. The proof is as the same as deterministic case.

Soundness:

The property soundness still holds.

The construction of \mathcal{I} means that it trivially satisfies all role assertions in \mathcal{A}' . we will show the following property by induction of the structure of concept: if $a: C \in \mathcal{A}'$, then $a^{\mathcal{I}} \in C^{\mathcal{I}}$ *Proof.* Let \mathcal{A}' be the set returned by $\mathsf{expand}(\mathcal{A})$. Since the algorithm returns "consistent", \mathcal{A}' is a complete and clash-free ABox.

The proof then follows rather easily from the very close correspondence between \mathcal{A}' and an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ that is a model of \mathcal{A}' , i.e., that satisfies each assertion in \mathcal{A}' . Given that the expansion rules never delete assertions, we have that $\mathcal{A} \subseteq \mathcal{A}'$, so \mathcal{I} is also a model of \mathcal{A} , and is a witness to the consistency of \mathcal{A} . We use \mathcal{A}' to construct a suitable interpretation \mathcal{I} as follows:

$$\Delta^{\mathcal{I}} = \{a \mid a : C \in \mathcal{A}'\},$$

$$a^{\mathcal{I}} = a \text{ for each individual name } a \text{ occurring in } \mathcal{A}',$$

$$A^{\mathcal{I}} = \{a \mid A \in \mathsf{con}_{\mathcal{A}'}(a)\} \text{ for each concept name } A \text{ in } \mathsf{sub}(\mathcal{A}'),$$

$$r^{\mathcal{I}} = \{(a,b) \mid (a,b) : r \in \mathcal{A}'\} \text{ for each role } r \text{ occurring in } \mathcal{A}'.$$

we also need to prove the case when $C = D \to E$: if $a : D \to E \in \mathcal{A}'$, then completeness of \mathcal{A}' implies that $\{a : E\} \subseteq \mathcal{A}'$ or $\{a : \neg D\} \subseteq \mathcal{A}'$ (otherwise the nondeterministic \to -rule would be applicable). Thus $a^{\mathcal{I}} \in E^{\mathcal{I}}$ or $a^{\mathcal{I}} \in \Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}$ by induction, and hence $a^{\mathcal{I}} \in (\Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}) \cup E^{\mathcal{I}} = (\neg D \sqcup E)^{\mathcal{I}} = (D \to E)^{\mathcal{I}}$ by the semantics of \to .

As a consequence, \mathcal{I} satisfies all concept assertions in \mathcal{A}' and thus in \mathcal{A} , and it satisfies all role assertions in \mathcal{A}' and thus in \mathcal{A} by definition. Hence \mathcal{A} has a model and thus is consistent.

Completeness:

The property completeness still holds.

The body of the proof is the same as above, we just need to modify it a bit. The nondeterministic \rightarrow -rule: If $a: C \to D \in \mathcal{A}$, then $a^{\mathcal{I}} \in (C \to D)^{\mathcal{I}}$. Thus

 $a^{\mathcal{I}} \in \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$ or $a^{\mathcal{I}} \in D^{\mathcal{I}}$ by the semantics of \to . Therefore, at least one of the ABoxes $\mathcal{A}' \in \exp(\mathcal{A}, \text{nondeterministic} \to -\text{rule}, a: C \to D)$ is consistent.

Thus, one of the calls of expand is applied to a consistent ABox.

Induction Basis C is a concept name: by definition of \mathcal{I} , if $a: C \in \mathcal{A}'$, then $a^{\mathcal{I}} \in C^{\mathcal{I}}$ as required.

Induction Steps

- $C = \neg D$: since \mathcal{A}' is clash-free, $a : \neg D \in \mathcal{A}'$ implies that $a : D \notin \mathcal{A}'$. Since all concepts in \mathcal{A} are in NNF, D is a concept name. By definition of \mathcal{I} , $a^{\mathcal{I}} \notin D^{\mathcal{I}}$, which implies $a^{\mathcal{I}} \in \Delta^{\mathcal{I}} \setminus D^{\mathcal{I}} = C^{\mathcal{I}}$ as required.
- $C = D \sqcup E$: if $a: D \sqcup E \in \mathcal{A}'$, then completeness of \mathcal{A}' implies that $\{a: D, a: E\} \cap \mathcal{A}' \neq \emptyset$ (otherwise the \sqcup -rule would be applicable). Thus $a^{\mathcal{I}} \in D^{\mathcal{I}}$ or $a^{\mathcal{I}} \in E^{\mathcal{I}}$ by induction, and hence $a^{\mathcal{I}} \in D^{\mathcal{I}} \cup E^{\mathcal{I}} = (D \sqcup E)^{\mathcal{I}}$ by the semantics of \sqcup .
- $C = D \sqcap E$: this case is analogous to but easier than the previous one and is left to the reader as a useful exercise.
- $C = \forall r.D$: let $a : \forall r.D \in \mathcal{A}'$ and consider b with $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$. For $a^{\mathcal{I}}$ to be in $(\forall r.D)^{\mathcal{I}}$, we need to ensure that $b^{\mathcal{I}} \in D^{\mathcal{I}}$. By definition of \mathcal{I} , $(a,b): r \in \mathcal{A}'$. Since \mathcal{A}' is complete and $a: \forall r.D \in \mathcal{A}'$, we have that $b: D \in \mathcal{A}'$ (otherwise the \forall -rule would be applicable). By induction, $b^{\mathcal{I}} \in D^{\mathcal{I}}$, and since the above holds for all b with $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$, we have that $a^{\mathcal{I}} \in (\forall r.D)^{\mathcal{I}}$ by the semantics of \forall .
- $C = \exists r.D$: again, this case is analogous to and easier than the previous one and is left to the reader as a useful exercise.

Question 10. Modification of Tableau Algorithm

We firstly extend the definition of a clash: for some individual name a, and for some concept C, $\{a:C,a:\neg C\}\subseteq \mathcal{A}$, or for some individual names a and b, and for some role names r and s, $\{(a,b):r,(a,b):s\}\subseteq \mathcal{A}$ and $\{\text{disjoint}(r,s)\}\subseteq \mathcal{T}$.

Define \sqsubseteq -rule:

- Condition: $(a,b): r \in \mathcal{A}, r \sqsubseteq s \in \mathcal{T} \text{ and } (a,b): s \notin \mathcal{A}.$
- Action: $A \to A \cup \{(a,b) : s\}$.

Now, we show that the algorithm remains terminating, sound, and complete. For the sake of simplicity, we will follow the proof in Question 9 and modify it if necessary.

• Termination.

Because the number of individual names is bounded, so the number of new role assertions added by \sqsubseteq -rule is bounded.

• Soundness.

Let \mathcal{A}' be the set return by expand(\mathcal{A}). Since the algorithm returns "consistent", \mathcal{A}' is a complete and clash-free ABox.

If disjoint $(r, s) \in \mathcal{T}$, $r^{\mathcal{I}} \cap s^{\mathcal{I}} \neq \emptyset$, which means there exists $(a, b) \in r^{\mathcal{I}}$ and $(a, b) \in s^{\mathcal{I}}$. And then we can conclude $(a, b) : r, (a, b) : s \in \mathcal{A}'$ which is a clash, therefore $r^{\mathcal{I}} \cap s^{\mathcal{I}} = \emptyset$.

If $r \sqsubseteq s \in \mathcal{T}$ but there is $(a,b) \in r^{\mathcal{I}}$, $(a,b) \not\in s^{\mathcal{I}}$. Then by the definition of \mathcal{I} , $(a,b): r \in \mathcal{A}'$ but $(a,b): s \not\in \mathcal{A}'$, which means \mathcal{A}' is not a complete ABox.

Therefore, if the consistent $(\mathcal{T}, \mathcal{A})$ returns "consistent", then $(\mathcal{T}, \mathcal{A})$ is consistent.

• Completeness.

Let \mathcal{I} be a model of $(\mathcal{T}, \mathcal{A})$. if $(a, b) : r \in \mathcal{A}$, $r \sqsubseteq s \in \mathcal{T}$ and $(a, b) \in r^{\mathcal{I}}$. Because \mathcal{I} is a model of $(\mathcal{T}, \mathcal{A})$, so there must be $(a, b) \in s^{\mathcal{I}}$. Therefore, \mathcal{I} is also a model of $(\mathcal{T}, \mathcal{A} \cup \{(a, b) : s\})$, so \mathcal{A} is still consistent after the rule is applied.