Spatially continuous identification of beta diversity hotspots using species distribution models

Gabriel Dansereau^{1,2,3} Timothée Poisot^{1,2,3,4} Pierre Legendre^{1,3}

¹Département de sciences biologiques, Université de Montréal

²BIOS²

³Quebec Center for Biodiversity Science

⁴Groupe de recherche interuniversitaire en limnologie et environnement aquatique

10th Annual QCBS Symposium December 19, 2019

bios²

QUEBEC CENTRE FOR BIODIVERSITY SCIENCE

Suggestion

Bring together 2 elements:

- 1. Identification of beta diversity hotspots \rightarrow LCBD calculation
- 2. Species distribution modelling on continuous scales \rightarrow SDMs

Definitions, 'cause why not?

Beta diversity

Community composition, not turnover

"Variation in species composition among sites within a geographical region of interest" (Legendre et al. 2005)

Local contribution to beta diversity (LCBD) coefficients

▶ Highlights exceptional species compositions

"Comparative indicators of the ecological uniqueness of sites in terms of community composition" (Legendre & De Caceres, 2013)

Why continuous scales?

Figure 1: Example of discontinuous LCBD calculation along a river stream (Legendre & De Caceres, 2013)

Why continuous scales?

Figure 2: Example of discontinuous LCBD calculation on an extended scale (Poisot et al., 2017)

Why continuous scales?

- ▶ Online data on extended scales is increasingly accessible
- ▶ Potential for novel ecological insights

Figure 3: Example of Yellow Warbler occurrence data from eBird (left) and annual mean temperature data from WorldClim 2 (right)

Objective

Relevance

Novel ecological insights

- Tool for poorly sampled regions, or with sparse sampling
- ▶ Identification of conservation targets

Combination with IPCC climate change scenarios

- Model beta diversity changes
- Identify sites with significant changes

⇒ Insight-oriented approach, exploratory analyses for now

Data - Why eBird & Warblers

According to Johnston et al. (2019):

- 1. Complete checklists to infer absences
- 2. Sampling effort metadata to reduce biases

Table 1: Structure of the Warblers (*Parulidae*) occurrence data for North America in the eBird complete checklists

Country	Observations	Checklists	Species	Species per checklist (mean)	Species per checklist (median)	Species per checklist (max)
US	19 206 453	7 840 526	56	2.450	2.0	34
CA	3 360 650	1 115 625	45	3.012	2.0	31
MX	407 227	147 599	61	2.759	2.0	21
Total	22 974 330	9 103 750	63	2.523	2.0	34

Data - Why WorldClim 2

- ► Interpolated climate data
- ► Global range
- ► Resolutions from 10 arc-minutes to 30 arc-seconds
- 2 types of variables: temperature, precipitation
- High cross-validation coefficients

Variable	Description			
1	Annual Mean Temperature			
2	Mean Diurnal Range			
3	Isothermality			
4	Temperature Seasonality			
5	Max Temperature of Warmest Month			
6	Min Temperature of Coldest Month			
7	Temperature Annual Range			
8	Mean Temperature of Wettest Quarter			
9	Mean Temperature of Driest Quarter			
10	Mean Temperature of Warmest Quarter			
11	Mean Temperature of Coldest Quarter			
12	Annual Precipitation			
13	Precipitation of Wettest Month			
14	Precipitation of Driest Month			
15	Precipitation Seasonality			
16	Precipitation of Wettest Quarter			
17	Precipitation of Driest Quarter			
18	Precipitation of Warmest Quarter			
19	Precipitation of Coldest Quarter			

Methods - BIOCLIM

Figure 4: Representation of the climate envelope in the BIOCLIM method¹

Preliminary Results

Single species example - Raw data

Figure 5: Distribution of the Yellow Warbler based on the raw occurrence data after transformation into presence-absence per site

Single species example - SDM with threshold

Figure 6: Distribution of the Yellow Warbler based on the SDM predictions with a threshold of 5%

Single species example - SDM without threshold

Figure 7: Distribution of the Yellow Warbler based on the SDM predictions without a threshold

Species richness - Raw data

Figure 8: Species richness based on the raw occurrence data, defined as the number of species present per site

Species richness - SDM without threshold

Figure 9: Species richness based on the SDM predictions without threshold, and defined as the number of species present per site

LCBD - Raw data (with Hellinger transformation)

Figure 10: LCBD values relative to maximum value based on the raw data after Hellinger transformation

LCBD - SDM without threshold (no transformation)

Figure 11: LCBD values relation to maximum value based on the SDM predictions without threshold or transformation

LCBD-richness relationship

Figure 12: Relationship between the relative LCBD values and species richness, defined as the number of species (α) divided by the total number of species (γ)

LCBD-richness relationship

Figure 13: Relationship between the relative LCBD values and species richness, defined as the number of species (α) divided by the total number of species (γ)

Obvious things to improve

Result validation

SDM underfitting

Land cover variables

Other drivers of species distribution

eBird sampling biases

Yet... Promising potential!

Questions?

References

Johnston, A., W. M. Hochachka, M. E. Strimas-Mackey, V. Ruiz Gutierrez, O. J. Robinson, E. T. Miller, T. Auer, S. T. Kelling, and D. Fink. 2019. "Best Practices for Making Reliable Inferences from Citizen Science Data: Case Study Using eBird to Estimate Species Distributions." bioRxiv, March, 574392. https://doi.org/10.1101/574392.

Legendre, Pierre, and Miquel De Cáceres. 2013. "Beta Diversity as the Variance of Community Data: Dissimilarity Coefficients and Partitioning." Ecology Letters 16 (8): 951–63. https://doi.org/10.1111/ele.12141.

Poisot, Timothée, Cynthia Guéveneux-Julien, Marie-Josée Fortin, Dominique Gravel, and Pierre Legendre. 2017. "Hosts, Parasites and Their Interactions Respond to Different Climatic Variables." Global Ecology and Biogeography 26 (8): 942–51. https://doi.org/10.1111/geb.12602.