

Respuestas Trabajo Práctico Nº1

- 1. La posición del móvil es $x(t) = t^3 + C$.
- 4. $f(x) = x^2 sen(x) + C$. Las primitivas difieren en una constante. La primitiva que pasa por (0, 6) es $g(x) = x^2 sen(x)$

5. 5. a.
$$\frac{x^2e^2}{2} + 3\sqrt[3]{x} + C$$

5. 5. a.
$$\frac{x^2e^2}{2} + 3\sqrt[3]{x} + C$$
 b. $-\frac{2}{3t\sqrt{t}} + te^x - \frac{x^2}{2t^2} + C$ c. $\frac{x^3}{3} - \frac{3}{5}x^{10/3} + \frac{3}{11}x^{\frac{11}{3}} + C$

c.
$$\frac{x^3}{3} - \frac{3}{5}x^{10/3} + \frac{3}{11}x^{\frac{11}{3}} + C$$

d. 2 sen(x) y + 2/5 y² +
$$\sqrt{3}$$
 e^xy + C

d. 2 sen(x) y + 2/5 y² +
$$\sqrt{3}$$
 e^xy + C e. sen(x) + 2ln|x| - 2/7 $\sqrt{x^7}$ + C f. 1/3 arctg x + 8tg(x) + C

6. i. 385.33 metros aproximadamente ii. 383.33 metros aproximadamente.

7.
$$x(t) = a \frac{t^2}{2} + v_0 t + x_0$$

8. $v(2) = 29.4 \frac{m}{s}$, La altura máxima es de 122,5 m. Permanece 10 s en el aire. La velocidad de impacto es -49 m/s-

9. a.
$$-1/12\cos(4x^3)$$
-ln $|\cos(x)| + C$

b.
$$\frac{2}{3}\sqrt{\ln^3 x} + a.e^{sen(x)} + C$$

$$c. \frac{-1}{\ln(x+1)} + C$$

d.
$$-\frac{1}{3}\sqrt{(h^2-r^2)^3}+C$$

e.
$$\frac{1}{3} arctg \left(\frac{x-1}{3} \right) + C$$

f.
$$v \frac{1}{3} arcsen \left(\frac{3h}{2} \right) + C$$

10. a.
$$\frac{g(x)^2}{2} + C$$

b.
$$-\frac{1}{h(x)} + C$$

10. a.
$$\frac{g(x)^2}{2} + C$$
 b. $-\frac{1}{h(x)} + C$ c. c. $\frac{2}{3} \sqrt{(r+f(x))^3} + C$

12.
$$v(t) = v_0 e^{-3t/m}$$
, $x(t) = -(m/3) v_0 e^{-3t/m} + x_0 + (m/3) v_0$

13. a.
$$\frac{x^4}{4} \left(\ln x - \frac{1}{4} \right) + 6$$

b.
$$. - \frac{e^{-3x}}{3} \left(x^2 + \frac{2}{3} x + \frac{2}{9} \right) + C$$

13. a.
$$\frac{x^4}{4} \left(\ln x - \frac{1}{4} \right) + C$$
 b. $-\frac{e^{-3x}}{3} \left(x^2 + \frac{2}{3}x + \frac{2}{9} \right) + C$ c. $\frac{1}{3}x^3 \operatorname{arct} g(x) - \frac{1}{3} \left[\frac{x^2}{2} - \frac{1}{2} \ln(x^2 + 1) \right] + C$

d.
$$\cos x + x (\ln x - 1 + \sin x) + C$$

f. z arccos z
$$-\sqrt{1-z^2}+C$$

d.
$$\cos x + x \left(\ln x - 1 + \sin x\right) + C$$
 f. $z \arccos z - \sqrt{1-z^2} + C$ g. $\frac{x \left(\cos(\ln x) + sen(\ln x)\right)}{2} + C$

14. a. 11
$$\ln |h-3| - 7\ln |h-2| + C$$
 b. $\frac{1}{2} (\ln |t-1| - \ln |t+1|) + \frac{1}{t} + C$

b.
$$\frac{1}{2}(\ln|t-1|-\ln|t+1|)+\frac{1}{t}+C$$

c.
$$\frac{x^3}{3} + \frac{x^2}{2} + 4x + 2\ln|x| + 5\ln|x-2| - 3\ln|x+2| + C$$

Respuestas Trabajo Práctico N°1

15. g(x) =
$$\frac{1}{4}$$
ln(3+e^{4x})-ln(3)- $\frac{\ln 4}{4}$

16. a.
$$\frac{1}{2}[(x+2y)\ln(x+2y)-(x+2y)]+C$$

b.
$$2\ln x \operatorname{sen}(\ln x) + 2\cos(\ln x) + C$$

c.
$$\frac{\ln \left| e^{x} - 1 \right| - \ln \left| e^{x} + 2 \right|}{3} + C$$

d.
$$3/4 \ln x(1 + \ln x)^{4/3} - 9/28 (1 + \ln x)^{7/3} + C$$