# The non-commutative calculus of fields and forms through dg-resolutions

Pedro Tamaroff Trinity College Dublin

May 2020

#### Motivation and origins: the Cartan calculus

For a smooth manifold M, the spaces  $\Omega(M)$  of forms on M and  $\Theta(M)$  of polyvector fields on M are endowed with a Cartan calculus

Similarly, for a smooth commutative algebra *A*, we know from the HKR theorem that we have identifications

$$\mathrm{HH}_*(A) = \Lambda_A^* \Omega_A^1, \quad \mathrm{HH}^*(A) = \Lambda_A^* \mathrm{Der}(A).$$

which give us a "Cartan calculus" for A: a wedge product on fields, a contraction of forms with fields, a de Rham differential on forms, and a Lie bracket on fields.

#### The non-commutative analogue

We can produce an analogous picture when A is an arbitrary associative algebra (Daletski–Gelfand–Tsygan '90), the *Tamarkin–Tsygan calculus of* A, and write it

$$Calc(A) = (HH^*(A), HH_*(A)).$$

This is a pair of the form (V, M) where V is a Gerstenhaber algebra and M is a V-module along with a differential d relating the Lie module and the module structure of M through "Cartan's magic formula":

$$[i,d] = L.$$

**Theorem.** (Armenta–Keller '18) The Tamarkin–Tsygan calculus of an algebra is derived invariant.

#### An definition intrinsic to dg resolutions

The above produces an assignment (not a functor) from associative algebras to Tamarkin–Tsygan calculi.

From the work of Jim Stasheff ('93), we know the bracket is "intrinsic" to the homotopy category of dg algebras: we can compute it as the Lie bracket on derivations of any good dg resolution of our algebra.

**Question.** What about the whole Tamarkin–Tsygan calculus? Can we produce from the homotopy type of *A* a datum that gives this calculus and from which it can be effectively computed?

From now on, let us fix a dg replacement  $(TV, \partial) = B \longrightarrow A$ .

#### Standard resolution

If TV = B is a free algebra, there is a "standard" resolution in  $_B Mod_B$ 

$$\operatorname{St}_*(B): 0 \longrightarrow B \otimes V \otimes B \longrightarrow B \otimes B \longrightarrow B \longrightarrow 0$$

where, in addition, we have internal differentials coming from  $\partial$ .

If  $\mathsf{Bar}_*(B)$  is the double-sided bar resolution, there is a retraction of resolutions

$$\pi: \mathsf{Bar}_*(B) \longrightarrow \mathsf{St}_*(B), \quad i: \mathsf{St}_*(B) \longrightarrow \mathsf{Bar}_*(B).$$

where i is the inclusion and  $\pi$  is very simple.

**Conclusion:** we can compute the underlying (co)homology groups of Calc(A) through the standard resolution  $St_*(B)$ .

#### Non-commutative fields and forms

Note that the complexes  $St_*(B)_B$  and  $St_*(B)^B$  are in fact naturally isomorphic to

$$V(B) = (ad : B \longrightarrow hom(V, B)), \quad \Omega(B) = (co : B \otimes V \longrightarrow B)$$

respectively, which we call the complexes of non-commutative fields and non-commutative forms on  ${\cal B}$ .

**Problem:** we can compute the calculus of A through  $Bar_*(B)$ , but can we do this with these smaller complexes?

**Answer:** this depends on how well we understand how calculi behave under retractions!

## A structure on Hochschild (co)chains

**Deligne's question**: can one lift the Gerstenhaber algebra structure on  $\mathrm{HH}^*(A)$  to the chain level? Yes, the solution involves formality of the little disks operad.

It is reasonable to consider the same problem for the Tamarkin–Tsygan calculus structure on Calc(A).

**Theorem** (Kontsevich-Soibelman) There is a formal geometric operad C that solves Deligne's conjecture for Calc(A): there is an action of C on the pair  $(C^*(A), C_*(A))$  so that taking homology we get the usual calculus.

#### Homotopy calculi

- Classical structures (commutative, Lie, associative, Gerstenhaber) have "homotopy coherent" versions.
- One can do the same for calculi if one finds a dg replacement of the operad Calc controlling calculi.
- Note this operad admits a quadratic-cubic presentation, owing to the Cartan magic formula.

**Theorem** (T.) The operad Calc is inhomogeneous Koszul.

It follows that one can consider a reasonable notion of homotopy coherent calculi, and this notion behaves just as good as the classical ones.

#### Homotopy transfer

To solve our problem above, we put together

- the result of Kontsevich-Soibelman and
- the dg replacement  $Calc_{\infty}$  of Calc.

**Corollary** (Daletskii–Tamarkin–Tsygan) For every algebra A, the pair of Hochschild cochains  $(C^*(A), C_*(A))$  admits a homotopy coherent calculus structure.

**Corollary** (T.) The pair  $(\mathcal{V}(B), \Omega(B))$  admits a homotopy coherent calculus structure that is equivalent to the homotopy coherent calculus on  $(C^*(A), C_*(A))$ .

#### A small quiver

Let us consider the following quiver Q with relations  $R = \{xy^2, y^2z\}$ . We will compute its minimal dg resolution and with part of its calculus.



The dg replacement B is given by the free algebra over  $\Bbbk Q_0$  with set of homogeneous generators  $\{x,y,z,\alpha,\beta,\Gamma,\Lambda\}$  such that

$$\begin{aligned} \partial x &= \partial y = \partial z = 0, \\ \partial \alpha &= xy^2, \quad \partial \beta = y^2 z, \\ \partial \Gamma &= \alpha z - x\beta, \quad \partial \Lambda = xy\beta - \alpha yz. \end{aligned}$$

#### Quiver of the dg resolution

The (dg) quiver of B looks as follows



and we now consider the complex of nc fields  $\mathcal{V}(B) = (B \longrightarrow \text{Der}(B))$  on B to compute  $\text{HH}^*(A)$  (one can compute all the calculus with it!).

## Computation of $HH^1(A)$

We can compute the 0-cycles directly:

$$\begin{split} E_{s}(x) &= 0, & E_{s}(y) = y^{s+1}, & E_{s}(z) = 0, & E_{s}(\alpha) = 2\alpha y^{s}, \\ E_{s}(\beta) &= 2y^{s}\beta & E_{s}(\Lambda) = 3\alpha y^{s-1}\beta, & E_{s}(\Gamma) = -2\alpha y^{s-2}\beta, \\ F_{s}(x) &= xy^{s}, & F_{s}(y) = 0, & F_{s}(z) = 0, & F_{s}(\alpha) = \alpha y^{s}, \\ F_{s}(\beta) &= 0 & F_{s}(\Lambda) = \alpha y^{s-1}\beta, & F_{s}(\Gamma) = -\alpha y^{s-2}\beta, & G_{s}(x) = 0, & G_{s}(y) = 0, & G_{s}(z) = y^{s}z, & G_{s}(\alpha) = 0, \\ G_{s}(\beta) &= y^{s}\beta, & G_{s}(\Lambda) = \alpha y^{s-1}\beta, & G_{s}(\Gamma) = -\alpha y^{s-2}\beta. & G_{s}(\alpha) = 0, & G_{s}(\beta) = y^{s}\beta, & G_{s}(\alpha) = 0, & G_{s}(\beta) = -\alpha y^{s-2}\beta. & G_{s}(\alpha) = 0, & G_{s}(\beta) = -\alpha y^{s-2}\beta. & G_{s}(\alpha) = 0, & G_{s}(\beta) = -\alpha y^{s-2}\beta. & G_{s}(\beta) =$$

 $\mathrm{HH}^1(A)$  is infinite dimensional with basis the classes of the elements in  $\{F_0,G_0,E_s:n\in\mathbb{N}_0\}$ . For each  $s,t\in\mathbb{N}_0$ ,

$$[E_s, E_t] = (s-t)E_{s+t}, \quad [F_0, -] = [G_0, -] = 0.$$

We get abelian algebra  $\mathbb{k}^2$  acting trivially on the Witt algebra.

# Computation of $HH^2(A)$

The following derivations form a basis of the 1-cycles in Der(B), where unspecified values are zero,  $s \in \mathbb{N}_0$ , and we agree that  $y^{-1} = y^{-2} = 0$ :

$$\begin{split} & \Phi_s(\alpha) = xy^s, \qquad \Phi_s(\beta) = y^sz, \qquad \Phi_s(\Lambda) = \alpha y^{s-1}z, \qquad \Phi_s(\Gamma) = -\alpha y^{s-2}z, \\ & \Phi_s'(\alpha) = 0, \qquad \Phi_s'(\beta) = y^{s+2}z, \qquad \Phi_s'(\Lambda) = -\alpha y^{s+1}z, \qquad \Phi_s'(\Gamma) = \alpha y^sz, \\ & \Pi_s(\alpha) = 0, \qquad \Pi_s(\beta) = y^{s+2}, \qquad \Pi_s(\Lambda) = \alpha y^{s+1}, \qquad \Pi_s(\Gamma) = \alpha y^s, \\ & \Pi_s'(\alpha) = xy^sz, \qquad \Pi_s'(\beta) = 0, \qquad \Pi_s'(\Lambda) = 0, \qquad \Pi_s'(\Gamma) = 0, \\ & \Psi_s(\alpha) = 0, \qquad \Psi_s(\beta) = y^{s+2}z, \qquad \Psi_s(\Lambda) = -\alpha y^{s+1}z, \qquad \Psi_s(\Gamma) = xy^s\beta, \\ & \Theta_s(\alpha) = 0, \qquad \Theta_s(\beta) = 0, \qquad \Theta_s(\Lambda) = \alpha y^sz - xy^s\beta, \qquad \Theta_s(\Gamma) = 0, \\ & \Xi_s(\alpha) = 0, \qquad \Xi_s(\beta) = 0, \qquad \Xi_s(\Lambda) = 0, \qquad \Xi_s(\Gamma) = \Theta_s(\Lambda). \end{split}$$

It turns out a basis of  $H^1(Der(B))$  is given by the classes of the derivations  $\Phi_0$ ,  $\Phi_1$  so that  $HH^2(A)$  is two dimensional.

## Computation of $\mathrm{HH}^3(A)$ and the bracket

A basis for the 2-cycles is given by the following family of derivations, where  $s \in \mathbb{N}_0$  and  $t \in \{0,1\}$ :

$$\Omega_s^t(\Lambda) = 0, \quad \Omega_s^t(\Gamma) = xy^sz^t, \quad \Upsilon_s^t(\Lambda) = xy^sz^t, \quad \Upsilon_s^t(\Gamma) = 0.$$

It is straightforward to check that all of these are boundaries except for  $\Upsilon^1_0$  and  $\Upsilon^0_0$ . The bracket is as follows:

$$\begin{split} [E_{s+2}, \Phi_t] &= 3\Xi_{s+t+1} - 2\Theta_{s+t}, & [F_{s+2}, \Phi_t] &= \Theta_{t+s+1} - \Xi_{t+s}, \\ [G_{s+2}, \Phi_t] &= \Theta_{t+s+2} - \Xi_{t+s+2}, & [F_1, \Phi_t] &= [G_1, \Phi_t] &= \Theta_t, \\ [E_s, \Upsilon_t'] &= (t - 3\delta_{s,0})\Upsilon_{s+t}', & [E_s, \Omega_t'] &= (t + 2\delta_{s,0})\Omega_{s+t}', \\ [F_0, -] &= [G_0, -] &= 2 & \text{on } \langle \Omega_s^t, \Omega_s'^t : s \in \mathbb{N}_0 \rangle, \\ [F_0, -] &= [G_0, -] &= [E_0, -] &= 0 & \text{on } \langle \Upsilon_s^t, \Upsilon_s'^t, \Phi_s : s \in \mathbb{N}_0 \rangle, \\ [E_1, \Phi_t] &= 3\Xi_t. \end{split}$$

## Thank you!

Preprint: 1907.08888 or upon request for the updated version!