第2章 逻辑代数与硬件描述语言基础

- 2.1 逻辑代数的基本公式和常用公式
- 2.2 逻辑代数的基本定理
- 2.3 逻辑函数的两种标准形式
- 2.4 逻辑函数的公式化简法
- 2.5 逻辑函数的卡诺图化简法
- 2.6 具有无关项的逻辑函数及化简

2. 1逻辑代数的基本公式和常用公式

基本公式

序号	公式	序号	公式	运算规律
		1 0	1=0; 0=1	
1	0•A=0	1 1	1+A=1	
2	1•A=A	1 2	0+A=A	
3	A•A=A	1 3	A+A=A	重叠律
4	A•Ā=0	1 4	A+ Ā=1	互补律
5	A•B=B•A	1 5	A+B=B+A	交換律
6	A •(B •C) =(A •B) •C	1 6	A+(B+C)=(A+B)+C	结合律
7	A• (B+C)=A •B+A •C	1 7	A+B •C=(A+B) •(A+C)	分配律
8	A • B=Ā +B	1 8	Ā+B= Ā • B	反演律
9		还原律		

若干常用公式

序号	公式
19	A + A • B = A
20	$A + \overline{A} \cdot B = A + B$
21	$A \cdot B + A \cdot \overline{B} = A$
22	A • (A+B)=A
23	$A \cdot B + \overline{A} \cdot C + B \cdot C = A \cdot B + \overline{A} \cdot C$ $A \cdot B + \overline{A} \cdot C + BCD = A \cdot B + \overline{A} \cdot C$
24	$A \cdot \overline{A \cdot B} = A \cdot \overline{B} ; \overline{A \cdot A \cdot B} = \overline{A}$

例:试化简下列逻辑函数 $L=(A+B)(\overline{A}+B)$

$$L = A\overline{A} + AB + B\overline{A} + BB$$
(分配律)
 $= 0 + AB + B\overline{A} + B$ $(A \cdot \overline{A} = 0, A \cdot A = A)$
 $= AB + B\overline{A} + B$ $(A + 0 = A)$
 $= B(A + \overline{A} + 1)$ $[AB + AC = A(B + C)]$
 $= B \cdot 1 = B$ $(A + 1 = A, A \cdot 1 = A)$

2. 2逻辑代数的基本定理

2.2.1代入定理

在任何一个包含变量A的逻辑等式中,若以另外一个逻辑式代入式中所有A的位置,则等式仍然成立。

[例2.1] 用代入定理证明德·摩根定理也适用于多变量的情况.解:已知二变量的德·摩根定理为:

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
 $\overline{A \cdot B} = \overline{A} + \overline{B}$

(B+C) 代替B, (B-C) 代替B

$$\overline{A + (B + C)} = \overline{A} \cdot \overline{(B + C)} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$

$$\overline{A \cdot (B \cdot C)} = \overline{A} + \overline{(B \cdot C)} = \overline{A} + \overline{B} + \overline{C}$$

2.2.2反演定理

对于任何一个逻辑式Y, 若将其中的 "·"换 "+", "+"换 "·";

0换1, 1换0; 原变量换反变量,反变量换原变量,得到的结果就是 \overline{Y}

规则:遵守"先括号、然后乘、最后加"的运算优先次序。不属于单个变量上的反号应保留不变。

[例2.2] 已知
$$Y = A(B+C)+CD$$
求 Y

解:根据反演定理可写出

$$Y = (A + BC)(C + D)$$

$$= \overline{AC} + \overline{BC} + \overline{AD} + \overline{BCD}$$

$$= \overline{AC} + \overline{BC} + \overline{AD}$$

2.2.3 对偶定理

对于任何一个逻辑式Y, "-"换 "+", "+"换 "-"; 0换1, 1换0; 可得Y的对偶式 Y'

对偶规则的基本内容是:如果两个逻辑函数表达式相等,那么它们的对偶式也一定相等。

用途:为了证明两个逻辑式相等,可以通过证明它们的对偶式相等来完成,因为有些情况下证明它们的对偶式相等更加容易。

证明: A+BC=(A+B)(A+C)

2. 3逻辑函数的两种标准形式

- 一、最小项和最大项
- 1.最小项:在n个变量的逻辑函数中,若m为包括全部n个变量的乘积项,而且每个变量必须而且只能以原变量或反变量的形式在m中出现一次,则称m为该组变量的最小项。

例如,A、B、C三个变量的最小项: 输入变量的每一组取值都使一个对应的最小项的值等于1.

3个变量有 2³个最小项 n个变量有 2ⁿ个最小项

最小项性质:

- ① 在输入变量的任何取值下必有一个最小项,而且仅有一个最小项的值为1
- ② 全体最小项之和为1
- ③ 任意两个最小项的乘积为0
- ④ 具有相邻性的两个最小项之和可以合并成一项并消去一 对因子

相邻性: 若两个最小项只有一个因子不同,则称这两个最小项具有相邻性。

例如: A、B、C三个变量的最小项编号表

表 1.5.4 三变量最小项的编号表

Et 1 -oc	使最小	项为1的	变量取值	对应的十进制数	编号	
最小项	A	В	C		AS DELICITION DAY	- Jan
$\overline{A} \overline{B} \overline{C}$	0	0	0		0	m_0
\overline{A} \overline{B} C	0	0	1		1	m_1
\overline{A} B \overline{C}	0	1	0		2	m_2
\overline{A} B C	0	1	1		3	m_3
$A \overline{B} \overline{C}$	1	0	0		4	m_4
$A \overline{B} C$	1	. 0	1		5	m_5
$A B \overline{C}$. 1	1	0	Ī	6	m_6
A B C	1	1	1		7	m_7

三个变量的所有最小项的真值表

A	В	C	$\overline{A}\overline{B}\overline{C}$	$\overline{A}\overline{B}C$	$\overline{A}B\overline{C}$	$\overline{A}BC$	$A\overline{B}\overline{C}$	$A\overline{B}C$	$AB\overline{C}$	ABC
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

2.最大项: n个变量的逻辑函数中,若M为n个变量之和,而且这n个变量均以原变量或反变量的形式在M中出现一次,则M为该组变量的最大项

3个变量有 2³个最大项 n个变量有 2ⁿ个最大项

最大项性质:

- ① 在输入变量的任何取值下必有一个最大项,而且仅有一个最大项的值为0
- ② 全体最大项之积为0
- ③ 任意两个最大项之和为1
- ④ 只有一个变量不同的两个最大项的乘积等于各相同变量 之和

例如: A、B、C三个变量的最大项编号表

最大项	使最大	项为0的变	量取值		/
取入坝	A	В	C	对应的十进制数	编号
(A+B+C)	0	0	0	0	M_{0}
$(A+B+\overline{C})$	0	0	1		M_{1}
$(A+\overline{B}+C)$	0	1	0	2	M_2
$(A+\overline{B}+\overline{C})$	0	1	1	3	M_3
$(\overline{A} + B + C)$	1	0	0	4	M_4
$(\overline{A} + B + \overline{C})$	1	0	1	5	M_{5}
$(\overline{A} + \overline{B} + C)$	1	1	0	6	M_{6}
$(\overline{A} + \overline{B} + \overline{C})$	1	1	1	7	M_{7}

二、逻辑函数的最小项之和的形式

利用基本公式 A+A=1 可以把任何一个逻辑函数化为最小项之和的标准形式。

例 将
$$L(A,B,C) = AB + \overline{A}C$$
 化成最小项表达式
$$L(A,B,C) = AB(C + \overline{C}) + \overline{A}(B + \overline{B})C$$
$$= ABC + AB\overline{C} + \overline{A}BC + \overline{A}BC$$
$$= m_7 + m_6 + m_3 + m_1$$
$$= \sum m_7 + m_6 + m_3 + m_1$$

 $=\sum (3,7,9,10,11,14,15)$

[例1.5.5]将逻辑函数Y = ABCD + ACD + AC写成标准与或表达式 解: Y = ABCD + ACD(B+B) + AC(B+B)(D+D)= ABCD + ABCD + ABCD + (ABC + ABC)(D + D)= ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD $= m_9 + m_7 + m_3 + m_{15} + m_{14} + m_{11} + m_{10}$ $= \sum_{i} m_{i}(3,7,9,10,11,14,15)$ $= \sum m(3,7,9,10,11,14,15)$

例 将
$$L(A,B,C) = \overline{(AB + \overline{AB} + \overline{C})\overline{AB}}$$
 化成最小项表达式

a. 去掉非号
$$L(A, B, C) = \overline{(AB + \overline{A}\overline{B} + \overline{C})} + AB$$

 $= (\overline{AB} \cdot \overline{\overline{AB}} \cdot C) + AB$
 $= (\overline{A} + \overline{B})(A + B)C + AB$
b. 去括号 $= \overline{ABC} + A\overline{BC} + AB$
 $= \overline{ABC} + A\overline{BC} + AB(C + \overline{C})$
 $= \overline{ABC} + A\overline{BC} + ABC + AB\overline{C}$
 $= m_3 + m_5 + m_7 + m_6 = \sum m(3, 5, 6, 7)$

三、逻辑函数的最大项之积形式

相同编号的最小项和最大项存在互反关系 即:

$$\mathbf{m_i} = \overline{\mathbf{M}_i}$$
 $\mathbf{M_i} = \overline{\mathbf{m}_i}$

若干个最小项之和表示的表达式F,其反函数F可用等同个与这些最小项相对应的最大项之积表示。

例:
$$F = m_1 + m_3 + m_5 + m_7$$

 $\overline{F} = \overline{m_1 + m_3 + m_5 + m_7}$
 $= \overline{m_1} \bullet \overline{m_3} \bullet \overline{m_5} \bullet \overline{m_7}$
 $= M_1 \bullet M_3 \bullet M_5 \bullet M_7$

推论:以m个最小项之和表示的n个变量的函数Y,改用最大项之积表示时,其最大项的编号必定都不是最小项的编号,而最大项与最小项的个数之和为2ⁿ。

因
$$Y = m_2 + m_3 + m_4 + m_7$$

则必有: $\overline{Y} = m_0 + m_1 + m_5 + m_6$,

那么
$$Y = \overline{m_0 + m_1 + m_5 + m_6} = \overline{m_0 \cdot m_1 \cdot m_5} \cdot \overline{m_6} = M_0 M_1 M_5 M_6$$

三、逻辑函数的最大项之积形式

[例1.5.5]将逻辑函数Y = $AB\overline{C} + BC$ 写成标准或与表达式解: $Y = AB\overline{C} + BC = AB\overline{C} + (A + \overline{A})BC$ = $AB\overline{C} + ABC + \overline{ABC} = m_3 + m_6 + m_7$ = $M_0M_1M_2M_4M_5$ = $(A + B + C)(A + B + \overline{C})(A + \overline{B} + C)(\overline{A} + B + \overline{C})$

[例1.5.6]将逻辑函数Y = $(A+B)(\overline{A}+B+C)$ 写成标准或与表达式解: Y = $(A+B)(\overline{A}+B+C) = (A+B+C\overline{C})(\overline{A}+B+C)$ = $(A+B+C)(A+B+\overline{C})(\overline{A}+B+C)$ 例:逻辑电路的真值表如右,写出最小项和最大项表达式。

最小项表达式:

将L=1的各个最小项相加

$$L(A, B, C) = m_3 + m_5 + m_6$$

$$= \sum m(3, 5, 6)$$

$$= \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C}$$

最大项表达式:

将L=0的各个最大项相乘

$$L(A, B, C) = M_0 \cdot M_1 \cdot M_2 \cdot M_4 \cdot M_7$$
$$= \prod M(0, 1, 2, 4, 7)$$

$$= (A+B+C)\cdot (A+B+C)\cdot (A+B+C)\cdot (A+B+C)\cdot (A+B+C)$$

A	В	\boldsymbol{C}	L
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	$1 \rightarrow m_3$
1	0	0	0
1	0	1	$1 \rightarrow m_5$
1	1	0	$1 \rightarrow m_6$
1	1	1	0