Problem

Say that a CFG is *minimal* if none of its rules can be removed without changing the language generated. Let MIN_{CFG} =

$\{\langle G \rangle | G \text{ is a minimal CFG} \}.$

- $\mathbf{a.}$ Show that $\mathit{MIN}_{\text{CFG}}$ is T-recognizable.
- **b.** Show that MIN_{CFG} is undecidable.

Step-by-step solution	
Step 1 of 6	
a)	
A minimal context-free grammar $^{MIN_{CFG}}$ is one in which no rule can be modified without changing the language generated. If $^{MIN_{CFG}}$ is T-recognizable.	Now, it can Proved that
$ullet$ The grammar $^{MIN_{CFG}}$ can be converted to an equivalent grammar in Chomsky normal form.	
$ullet$ The generated CFG can be simulated by a Turing machine because for a string of length k there will be a finite number of ${f c}$	lerivations with $2k-1$ steps.
ullet This Turing machine U will accept the strings that are in the language.	
Comment	
Step 2 of 6	
The Turing machine is:	
U = "On input $\langle G, w \rangle$, where G is a minimal CFG and w is a string:	
1. Create an equivalent grammar H in Chomsky normal form from G	
2. Let $n = w $.	
3. If $n=0$, then check all the derivations with one step in H , else check all the derivations with $2n-1$ steps.	
4. Accept if any of the derivations accept w , else reject.	
Comments (1)	
Step 3 of 6	
Therefore, a minimal context-free grammar is T-recognizable.	
Comment	
Step 4 of 6	

Consider the $^{MIN_{CFG}}$. Now, it can be shown that $^{MIN_{CFG}}$ is un-decidable. It can be proved by contradiction, that is, by taking an assumption that

 $M\!I\!N_{\mathit{CFG}}$ is decidable. Assume the opposite, which is the grammar $M\!I\!N_{\mathit{CFG}}$ is decidable.

Comment

Step 5 of 6

- Construction of G takes place by adding to G a new terminal, together with productions: $G : S \to A, A \to \varepsilon$, and $A \to aA$ for each $a \in \Sigma$
- \cdot Output $\langle G',A \rangle$

Comment

Step 6 of 6

The construction of the grammar G is takes place by f in such a way that it always show $L(G') = \Sigma^*$. Thus, if $L(G) = \Sigma^*$ then it is not necessary that A is for G'.

• The reason behind it is that every string $l = \sum_{i=1}^{\infty}$ can already be derived from G, which shows a contradiction.

Hence, from the above explanation it can be said that," $MIN_{\it CFG}$ is undecidable".

Comment