Příklady z první části vyřešte a odpovědi včetně postupu napište do připravených mezer.

1. (6 b) Do koule o jednotkovém poloměru vepište pravidelný čtyřboký hrapol o stranách a, a, h tak, aby měl co největší povrch

bez podstav.

AC1 = [N2 + [as2)2 = Nn2 1 as 2 = h

Aby Marol byl vepseury, Ac' mà byt dismerrem. Ac'=2R=2

max {4ah | h>0, a>0, \lambda h^2 + 2a^2 = 2}
max {4ah | h>0, a>0, h^2 + 2a^2 = 4}

2=1 h= 12 Sep = 4 12

2. (4 b) Prokládáme data $(x_1, y_1), \ldots, (x_{100}, y_{100}) \in \mathbb{R}^2$ regresní funkcí $f(x) = a + bx + c \sin x$ s neznámými parametry $a, b, c \in \mathbb{R}$ tak aby, kritérium $\max_{i=1}^{100} |y_i - f(x_i)|$ bylo minimalizováno. Napište účelovou funkci v maticové podobě a formulujte tuto úlohu jako lineární program.

min 2 max 100 ld: - f(x:)) &

min

1 X1 SiNX1 [8] 2 [81] 1 X100 SINX100 [C] 2 [8100]

Vase odpovedi na kvizove otazky: a, b, a, b, e

spatne: 3, 5

dobre: 4, 6, 7

chybi:

Celkem bodu za kviz: 3

Zadani vaseho kvizu naleznete na nasledujici strane.

V každém z následujících kvízových příkladů je právě jedna odpověď správně. Odpovědi vyznačte do tabulky křížky. Nechcete-li na nějaký příklad odpovědět, sloupec v tabulce ponechte prázdný. Pokud již vyznačený křížek chcete odstranit, políčko s křížkem zcela vyplňte barvou.

ODPOVĚDI NEVYZNAČENÉ V TABULCE NEBUDOU ZAPOČÍTÁNY.

(Za každou správnou odpověď je 1 bod.)

- 3. Víme, že afinní funkce $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} + d$ nabývá minima v bodě \mathbf{x}^* při omezení $\mathbf{A}\mathbf{x} \geq \mathbf{b}$. Co z toho plyne?
- V(a) Bod x^* je vrcholem konvexního polyedru, který je definován nerovnicemi $Ax \ge b$.
- X(b) Bod x* je konvexní kombinací dvou různých vrcholů množiny přípůstných řešení.
- X (c) Platí $Ax^* = b$.
- X (d) Nic z uvedeného.
- χ (e) Platí $f(x) \ge f(x^*)$ pro všechna x splňující $Ax \ge b$. Lnůbokk whim)
- 4. Lineární program min $\{c_1x_1+c_2x_2|x_1\geq 0, x_2\geq 0, x_1+2x_2\geq 1\}$ má optimum v bodě $(0,\frac{1}{2})$, pokud platí:
- X (a) Nic z uvedeného.

$$\checkmark$$
 (b) $c_1 = 1$ a $c_2 = 1$.

$$X$$
 (a) Nic z uvedeneho.
 Y (b) $c_1 = 1$ a $c_2 = 1$.
 X (c) $c_2 > 0$. If $C_4 \ge 0$ $X_4 = 1 - 0$ $X_2 \ge 0$ $X_4 = 0$ $X_4 \ge 0$

$$\chi$$
 (e) $c_1 = 0$ a $c_2 = 1$. $\chi \to 1... \infty \times_2 = 0$

- 5. V \mathbb{R}^3 je dána množina $X = \{(t, 2t+1, t^2) \mid 0 \le t \le 2\}$ a bod $\mathbf{x} = (1, 3, 1)$.
- \vee (a) Bod x je vnitřní bod množiny X.
- X (b) Neplatí žádné z uvedených tvrzení.
- χ (c) Bod x nepatří do množiny X.
- χ (d) Bod x je vnitřní bod množiny $\mathbb{R}^3 \setminus X$.
- χ (e) Bod x je hraniční bod množiny X.
- 6. Které body z uzavřeného intervalu [-1,1] jsou regulárními body zobrazení $g(x)=x^2-1$?
- (a) Všechny.
- V(b) Body -1 a 1.
 - (c) Bod 0.
 - (d) Bod 0 a 1.
 - (e) Žádné.
- 7. Pro funkci $f(\mathbf{x}) = x_1^2 + 2x_1x_2 + (x_2 1)^2 + (x_3 + 1)^2$ v bodě $\mathbf{x} = (1, 2, 3)$ je směr $\mathbf{v} = (1, 1, -2)$:
 - (a) Tečný k vrstevnici.
- X (b) Nelze rozhodnout.
 - (c) Rostoucí.
- (d) Nic z uvedeného.
 - (e) Klesající.

8(-1)=0 8(0)=-1

$$\nabla + (x)^{-1} (2x_1 + 2x_2, 2x_2 + 2x_1 - 2, 2x_3 + 2)$$

 $\nabla + (x) | (1,2,3)^{-1} (6, 4, 8) (2,0,-2)$