EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

59140340

PUBLICATION DATE

11-08-84

APPLICATION DATE

29-01-83

APPLICATION NUMBER

58013172

APPLICANT:

FURUKAWA ELECTRIC CO LTD:THE;

INVENTOR:

SHINOZAKI SHIGEO;

INT.CL.

C22C 9/00

TITLE

COPPER ALLOY FOR LEAD FRAME

ABSTRACT :

PURPOSE: To provide a titled copper alloy having excellent electrical (thermal) conductivity, heat resistance, bendability, plating adhesion, solderability and strength by consiting the same of specifically composed Mo, Ni, P and Cu.

CONSTITUTION: A copper alloy contains 0.03–0.40wt% Mo, 0.03–0.40% Ni and 0.005–0.03% P and consists of the balance Cu and is suitable as a lead frame material for semiconductor apparatus. Said copper alloy is formed by using Cu as an essential material, adding Mo, Ni and P thereto, and precipitating an intermetallic compd. such as MoNi, MoP, Ni_xP_y or the like as well as Mo and Ni in the Cu base as microprecipitate. The excellent strength, heat resistance, conductivity, plating adhesion, solderability, etc. are provided by said precipitation plus the deoxidizing effect of P and the coefft. of thermal expansion of said alloy exhibits the value roughly similar to the value of a conventional copper alloy. The copper alloy suitable as a lead frame material for apparatus such as IC using a semiconductor as an element is thus obtd.

COPYRIGHT: (C)1984,JPO&Japio

⑲ 日本国特許庁 (JP)

⑩特許出願公開

⑩公開特許公報(A)

昭59-140340

⑤Int. Cl.³C 22 C 9/00

識別記号 CCA 庁内整理番号 6411-4K ❸公開 昭和59年(1984)8月11日

発明の数 1 審査請求 未請求

(全 3 頁)

匈リードフレーム用銅合金

②特

顧昭58-13172

22出

願 昭58(1983)1月29日

⑩発 明 者 岩井博久

日光市清滝町500古河電気工業 株式会社日光電気精銅所内 ⑫発 明 者 篠崎重雄

日光市清滝町500古河電気工業 株式会社日光電気精銅所内

⑪出 願 人 古河電気工業株式会社

東京都千代田区丸の内2丁目6番1号

明 加 雪

- 1. 発明の名称 リードフレーム用銅合金
- 2 特許請求の範囲

Mo 0.03~0.40 wt%、Ni 0.03~0.40 wt%、P 0.005~0.03 wt%を含み残部がCuよりなることを特徴とするリードフレーム用銅合金。

3. 発明の詳細な説明

本発明は半導体を要案とするIC、LSI等の機器のリードフレーム用銅合金特に電気(熱)伝導性、耐熱性、曲げ加工性及びメンキ密発性に優れた銅合金に関するものである。

一般に半導体を要素とするIC、LSI等の機器は何れも半導体ペレット、リード、ポンデイングワイヤにより構成されたものをハーメチックシール、セラミンクシール或いはプラスチックシール技術により對止したものであり、種々の製式のものが使用されている。

而して従来これら機器のリートフレーム材と しては鉄系材料としてコパール(Fc-29wl系 Ni-17wlあCo合金)、Fe-42Ni合金、Fc、コ

ルに金を被覆したクランド材、 Fc - Ni合金 にABを被覆したクラッド材、銅合金としてリン 脊銅、アロイ194(Cu-Fe-Zn-P 合金)、ア ロ イ 1 9 5(Cu - Fe - Co - Sn - P 合金)、Cu - Sn - P合金等が用いられている。しかしながら上 記鉄系材料は耐熱性、強度は優れているがコス トが高いとともに導電性が悪く加工性も悪いた め近時コストが安くかつ加工性、メッキ密着性 及び半田付け性が良好な銅系合金が主流を占め つつある。しかしながら上記の如き剱合金は耐 熱性及び曲げ加工性が劣るためリードフレーム 材として充分な特性を発揮することができない ものであつた。特に最近のように高密度、高集 稜度が強く要求されるところから高い準電率、 強度、曲げ加工性及び耐熱性を有しメッキ加工 され易い表面品質を有する材料が必要となつて

メッキ加工され易い袋面品質とは、半輝体ペレットとリードフレーム並びにポンディングワイヤとリードフレームの接続性を向上し、リー

特開昭59-140340 (2)

ドフレームの耐酸化性、耐腐食性、半田付け性 等を向上維持するために行なう銀、金、ニッケル、スズ等のメッキ被覆性が優れていることで、 このようなメッキ加工はリードフレームの加工 コスト中大きな比重を占め品質信頼性に大きく 影響する。

コバール、Fe-42Ni合金等の鉄系材料は、 導電性、熱伝導性が劣るばかりかメッキ加工が 困難で特別の工夫を必要とする。例えばこれ等 基材の表面にエッケル層とSn-Ni合金層とを順 次被着した後、該Sn-Ni合金層上に銀層を被着 するか、或いは基材の表面に銀及び銅を含むシ アンアルカリ性メッキを行なつている。一般にリード の表面にメッキを行なつている。項目を満足す る材料が強く要望されている。

- (1) 電気及び熱の伝導性が良いこと
- (2) 耐熱性が良いこと
- (3) 曲げ加工性が良いこと
- (4) 強度が大きいこと

しかして本発明合金において Mo 0.0 3~0.4 0 %、Ni 0.0 3~0.4 0 %、P 0.0 0 5~0.0 3 %と限定した理由は Mo 0.0 3 %、Ni 0.0 3 %、P 0.0 0 5 % 未満では必要とする強度、耐熱性が得られず、 Mo 0.4 0 %、Ni 0.4 0 %、P 0.0 3 % を越えると強度、耐熱性において優れた性能が得られるが電気及び熱伝導性が低下し、曲げ加工性、メンキ密着性及び半田付け性も劣化するからである。

以下本発明合金を実施例について説明する。 無鉛るつぼを使用してCuを溶解し、その湯面を木炭粉末にて摂い十分溶解した後、Mo-50 あNi 母合金、Pの順に添加しこれを鋳造し第1 表に示す組成の幅150m、長さ200m、厚さ25mの鋳塊を得た。

次にこの鶴塊の表面を一面あたり 2.5 mm 面削した後、熱間圧延を行ない幅」 5.0 mm、 厚さ 8 mm の板とし、しかる後この板に冷間圧延と焼鈍を繰り返し加え最終圧延率 4.0 %にて厚さ0.45 mm の冷間圧延上がり材を得た。

これらの板について曲げ加工性、 導電率、引

(5) メッキ密着性が良いこと

- (6) 半田付け性が良いこと
- (7) 熱膨張係数がモールド材の熱膨張係数に近

即ち本発明合金はCuを基材としこれに Mo、Ni、Pを添加するものであり、 MoNi、MoNi、MoNi、MoNi、MoNi、MoP、MoP、MopP、NixPy の金属間化合物及びMoNi を Cu 基中に微小析出物として析出させ、またPによる脱酸効果とにより飼合金としての従来の常識を越える強度、耐熱性及び導電性を有し、良好なメッキ密着性、半田付け性を有するものである。

張り強さ、耐熱性、メッキ密着性、半田付け性 及び熱膨張係数を測定した。これらの結果を第 1表に示す。なお比較のために第1表に示す従 来のリードフレーム用網合金についても同様な 測定を行ない、その結果を第1表に併記した。

曲げ加工性は板材より幅 5 mm、 長さ 5 0 mm の 短冊型試験片を切り出しその中央部で 1 8 0 ° 密着曲げを行ない、該曲げ部の表面状態を観察 し割れ、しわの発生がなく平滑なものを曲げ加 工性が良いということで〇印、割れが明らかに 発生しているものを曲げ加工性不良ということ で×印、その中間で割れ、しわがわずかに発生 していることを△印で表わした。

導電率及び引張り強さの測定はJIS-H0505及びJIS-22241 に基づいて行なつた。

メッキ密暦性は上記板の鈍し材についてリードフレームのメッキ工程と同様アルカリ脱脂(1分間)-20分硝酸エッチング(30秒)-水洗-シアン化ストライクメッキ(10人dm')

により厚さ7μの銀メッキを行ない、これを大 気中で加熱して銀メッキ層に発生する膨れを観察し、その結果 5 5 0 ℃、5 分間加熱で全く膨れの見られないものを〇印、4 5 0 ℃、5 分間加熱では膨れが見られないが、5 5 0 ℃、5 分間加熱で膨れが発生するものを△印、4 5 0 ℃、5 分間ですでに膨れが発生したものを×印で示した。

半田付け性は垂直式浸潤法により、230℃の Sn-40 年Pb 共晶半田谷に10 秒間浸漉したものの表面を観察し、その結果表面が滑らかなものを〇印、表面に少し凹凸が見えるものを△印、表面に凹凸が生じ半田が福れていない部分を生じているものを×印で示した。

また耐熱性は前記圧延材よりJIS-Z22201 に規定する引張り試験片を切り出し、これをアルコン雰囲気中で350℃、5分間加熱焼鈍した後、引張り試験を行ない、その引張り強さを焼鈍前と比較し強さの低下率が30岁以下のものを耐熱性良好として○印、30岁を越えるも

のを耐熱性不良として×印で表わした。

第1表から明らかな如く本発明合金は導電率 90~93多1ACS、引張り強さ41~44㎏ /III の特性を示し良好な曲げ加工性と耐熱性を 有しており CuーFeー 2nーP 合金に匹敵する引張 り強度とはるかに優れた耐熱性、電気伝導性 (熱伝導性)を有していることがわかる。さら にメッキ密着性、半田付け性も CuーFeー 2nーP 合金に比べ十分優れているのがわかる。尚熱膨 張係数は従来品の CuーFeー 2nーP 合金、 CuーSn ー P 合金とほぼ同様な値を示し問題はない。

これに対しMo、Ni、Pの含有量が本発明合金の組成範囲より少ない比較合金Ma、Ragではいずれも耐熱性が改磐されず、Mo、Ni 含有低が本発明合金の組成範囲より多い比較合金Mala。Mo、Ni、Pの含有最が本発明合金の組成範囲より多い比較合金Malaと可能があるが連確率の低下が著しく、耐燃性は十分であるが連確率の低下が著しく、曲げ加工性、メッキ密治性、半田付け性が劣ることがわかる。

	戦の発	光 文 文 文 文 で の の の の の の の の の の の の の	17	*	*	*		"					*	*	*	5	91	18	
	#田年		C	Ó	0	0	0	.0	0	0	0	٥	Ø	◁	◁	×	◁	0	
		祝衛在	0	0	0	0	0	0	0	0	0	◁	٥	◁	٥	×	◁	0	
	耐熱性		0	0	0	0	.0	0	⊲	×	◁	0	0	0	0	0	×	×	
	引張り 路 さ (な/ヸ)		4.2	43	4 4	43	÷	4 4	33	3.5	33	4	46	4.5	46	5.8	45	3.5	
	英國 密	(IACS#)	16	0.6	06	9.2	93	06	94	94	9.2	80	63	6.5	63	4	6.0	0.6	
	田、子	加工性	0	0	0	0	0	0	0	0	0	٥	×	×	×	0	◁	4	
	化华欧分 名	ů	既	*	•	*	•	*	•	*	*	•	*		*		金金		
		۵	0.012	0.00	0.020	0.006	0.008	0.023	0.003	0.004	0.005	0.003	0.039	0.033	0.049	4	Zn-P	P合金	
		ž	90.0	0.22	0.34	0.18	0.19	0.32	0.01	0.02	0.01	0.46	0.56	29.0	0.54	۱ ۲	F.	Sn-	
		Мо	0.01	0.19	0.36	0.16	0.21	0.33	0.02	0.01	0.02	0.48	0.62	0.56	0.64	n	Cur	- I	
	Æ		-	2	m	₹.	מו	9	۲~	∞	٥.	2	Ξ.	1 2	=	1.4	1.5	9	
L	·		本発明合金						比较合金							従朱品			

以上詳述したように本発明合金は優れた強度、耐熱性と十分な導電性を併せ持ち、かつ曲げ加工性、メッキ密着性、半田付け性も良好な銅合金であり、熱膨張係数も従来の銅合金とほぼ同様な値を示し、半導体機器のリードフレーム材として顕著な効果を変するものである。

特許出願人 代理人 若 林 広

