Announcements for Monday, 02DEC2024

- Wednesday's lecture will be a review
- Exam III is Wednesday, 04DEC2024, 7:45-9:05 PM (EST)
 - Coverage: Chapters 7.1-10.9; exam consists of 19 multiple-choice questions and open-ended questions; see "Other Resources" on Canvas for periodic table and formula sheet to be used on the exam
 - Exam 3 Locations are posted on Canvas
- Practice Exam 3 on Canvas
 - located under "General Course information," "Practice Exams"
- Exam III Calculator Policy
 - Scientific calculators and *most* graphing calculators are allowed
 - TI-Nspire CX series & other calculators with QWERTY keyboards are NOT allowed

ANY GENERAL QUESTIONS? Feel free to see me after class!

Try These On Your Own

• To what temperature (°C) would Xe atoms (131.3 g/mol) have to be brought to so that they have the same average velocity as He atoms (4.00 g/mol) at −10 °C? 8360 °C

• Under a certain set of conditions it takes 25.0 s for an amount of $CO_2(g)$ to escape from a container. How long would it take for the same amount of $N_2O_4(g)$ to escape from the same container under the same conditions? **36.1** s

• 2.0 g He atoms occupy a rigid container at a pressure of 2.00 atm. The root mean square velocity of the atoms is 1580 m/s. What is the volume of the container? 8.2 L

Stoichiometry So Far

entities

volume of solution

Gas Stoichiometry

- same stoichiometry procedures as before
- remember that when a reaction is run under STP, 22.4 L/mol can be used as a conversion factor for the gases
- for gaseous reactions, establish which gas properties are constant and try to use relationships within PV = nRT to simplify calculations

nitrogen gas reacts with hydrogen gas to ammonia gas.

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

A 5.00-L vessel initially at 300 K contains nitrogen gas and hydrogen gas at partial pressures of 350 torr and 1025 torr, respectively. Determine the partial pressure of ammonia formed. Assume 100% yield. 683 torr $NH_3(g)$

Gas Stoichiometry

nitrogen gas reacts with hydrogen gas to ammonia gas

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

A 5.00-L vessel initially at 300 K contains nitrogen gas and hydrogen gas at partial pressures of 350 torr and 1025 torr, respectively. Determine the partial pressure of ammonia formed. Assume 100% yield. 683 torr NH₂(g)

Approach #1: the LONG approach (convert pressures into moles and then back into pressure)

N₂: 350 torr ×
$$\frac{1 \text{ atm}}{760 \text{ torr}} = 0.4605 \text{ atm}, n = \frac{(0.4605 \text{ atm})(5.00 \text{ L})}{(0.08206)(300 \text{ K})} = 0.0935 \text{ mol N}_2 \times \frac{2 \text{ mol NH}_3}{1 \text{ mol N}_2} = 0.187 \text{ mol NH}_3$$

$$H_2$$
: 1025 torr $\times \frac{1 \text{ atm}}{760 \text{ torr}} = 1.349 \text{ atm}, n = \frac{(1.349 \text{ atm})(5.00 \text{ L})}{(0.08206)(300 \text{ K})} = 0.274 \text{ mol } H_2 \times \frac{2 \text{ mol NH}_3}{3 \text{ mol H}_2} = 0.183 \text{ mol NH}_3$

NH₃: 0.183 mol,
$$P = \frac{(0.183 \text{ mol})(0.08206)(300 \text{ K})}{(5.00 \text{ L})} = 0.899 \text{ atm NH}_3 \times \frac{760 \text{ torr}}{1 \text{ atm}} = 683 \text{ torr NH}_3$$

Approach #2: use pressures directly without converting into moles (MUST be at constant volume and temperature) at constant T and V, $\mathbf{P} \propto \mathbf{n}$ so use torr like moles:

$$N_2$$
: 350 torr $\times \frac{2 \text{ torr NH}_3}{1 \text{ torr N}_2} = 700 \text{ torr NH}_3 \text{ vs } H_2$: 1025 torr $\times \frac{2 \text{ torr NH}_3}{3 \text{ torr H}_2} = 683 \text{ torr NH}_3$

from balanced reaction coefficients from balanced reaction coefficients

Try This

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

2.0 L each of $N_2(g)$ and $H_2(g)$ are mixed at STP and allowed to react to form $NH_3(g)$. What volume of $NH_3(g)$ is produced in this reaction? Assume 100% yield and ideal behavior. 1.3 L

at constant P and T, $\mathbf{V} \propto \mathbf{n}$ so use Liters like moles:

$$2.0 \text{ L N}_2 \times \frac{2 \text{ L NH}_3}{1 \text{ L N}_2} = 4.0 \text{ L NH}_3$$

$$2.0 \text{ L H}_2 \times \frac{2 \text{ L NH}_3}{3 \text{ L H}_2} = 1.3 \text{ L NH}_3$$
limiting reactant theoretical yield

Real Gas Behavior

1 mole of an ideal gas at STP has a volume of 22.4 L

• 1 mole of an ideal gas at 273 K and 1.0 L exerts 22.4 atm of pressure

gases in the real world do not always behave ideally

certain assumptions of the ideal gas law break down under extreme

conditions

high pressure/low volume

low temperature

 the liquefaction of gases at high pressures and low temperatures demonstrates non-ideal gas behavior at these extreme conditions

liquid nitrogen © 2018 Pearson Education, Inc.

Deviations from Ideality the effect of particle volume

- ideal gases: the size of gas particles are negligibly small
- real gases: not true at very high pressures/low volumes
- at extremely high pressures (i.e., extremely low volumes), gases exhibit LARGER volumes than predicted by PV = nRT
 - example: 1 mol Ar(g) at 500 K
- at high pressure, PV > nRT and gases show a positive deviation from ideality

Deviations from Ideality the effect of intermolecular forces

- ideal gases: gas particles do not interact with each other
- real gases: not true at very low temperatures
- at very low temperatures, gases exhibit LOWER
 pressures than predicted by
 PV = nRT
 - example: 1 mol Xe(g) at 1.0 L
- at low temperature, PV < nRT and gases show a negative deviation from ideality

- at lower temperature, particles move slow enough for weak intermolecular forces to become significant
- collisions with container are less frequent and less forceful

Deviations from Ideality the effect of intermolecular forces (continued)

- at moderate temperatures and pressures, some gases exhibit LOWER molar volumes than predicted by PV = nRT
- PV < nRT and gases show a negative deviation from ideality

Molar Volume

- intermolecular forces between gas particles cause attractions between them
- particles are prevented from spreading out as much and occupying larger volumes

the van der Waals equation

corrects the ideal gas law for the finite volume and intermolecular

forces of gas particles

van der Waals equation

$$[P + a(\frac{n}{V})^2] \times [V - nb] = nRT$$
Correction for intermolecular forces

Correction for particle volume

© 2018 Pearson Education, Inc.

 a and b are correction factors that depend on the specific gas

TABLE 10.4 Van der Waals Constants for Common Gases © 2018 Pearson Education, Inc.

Gas	$a(\mathbf{L}^2 \cdot \mathbf{atm/mol}^2)$	b (L/mol)
He	0.0342	0.02370
Ne	0.211	0.0171
Ar	1.35	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0511
H ₂	0.244	0.0266
N ₂	1.39	0.0391
O ₂	1.36	0.0318
Cl ₂	6.49	0.0562
H ₂ O	5.46	0.0305
CH ₄	2.25	0.0428
CO ₂	3.59	0.0427
CCI ₄	20.4	0.1383

Try This On Your Own

A sealed, rigid container contains 6.60 mol Cl_2 and 9.90 mol F_2 . The gases react to form $ClF_3(g)$ according to the reaction $Cl_2(g) + 3 F_2(g) \rightarrow 2 ClF_3(g)$. If the total pressure within the container was 10. atm **before** the reaction took place, what was the total pressure *after* the reaction finished? Assume 100% yield and constant T.

Try These On Your Own

• What volume of $CO_2(g)$ is formed by the complete combustion of 2.25 mol $C_2H_6(g)$ in excess oxygen at 0 °C and 1 atm ?

• Consider the reaction $CO_3^{2-}(aq) + 2 H^+(aq) \rightarrow CO_2(g) + H_2O(\ell)$. What volume (mL) of 0.250 M $HClO_4(aq)$ needs to be added to excess $Na_2CO_3(s)$ to generate 844 mL $CO_2(g)$ at 35 °C and 776 torr?

• 10.00 mL of water at 20 °C is poured into a 100. L container and sealed at 20 °C. What volume of $H_2O(\ell)$ will evaporate under these conditions? At 20 °C the vapor pressure of water is 17.55 mmHg and the density of liquid water is 0.9982 g/mL.