

CÁLCULO DE LA POLAR

Informe Técnico: DMA-003/16	Revisión: A
Proyecto: FadeA IA-100	
Fecha: 21/04/16	
Autor:	Carlos Sacco
Revisó:	Gustavo Scarpin

Vo. Bo.:

INSTITUTO UNIVERSITARIO AERONAUTICO INFERME TÉCNICO DMA-002 / 016

Página 1

Cálculo de la Polar

Carlos Sacco

Mediante simulaciones en CFD se calcularon estimaron los coeficientes aerodinámicos de sustentación resistencia y momento. Los análisis si realizaron para dos configuraciones. Como resultados se presentan las tablas de los valores calculados y las derivativas correspondientes.

INFERME TÉCNICO DMA-002 /	റ1 ഒ

Página 2

Índice

1. Introducción	3
2. Geometría	3
2.1 Configuración 1	3
2.2 Ccnfiguración 2	3
2.3 Mallado y condiciones de contorno	4
2.4 Condiciones del flujo	5
3. Resultados	6
3.1 Análisis de Configuración 1	6
3.2 Análisis de Configuración 2	11
3.3 Comparación de resultados	15
4. Conclusiones	21

1. Introducción

Mediante el uso de CFD se obtuvieron los coeficientes aerodinámicos de fuerza de sustentación (lift) y resistencia (Drag) y de momento de cabeceo.

Para la obtención de estas curvas se realizaron distintas corridas modificando el ángulo de ataque del avión. Por otra parte se estudiaron dos configuraciones, una inicial a la que llamaremos **Configuración 1** y un segundo caso sobre una geometría con algunas modificaciones (especialmente en la unión ala fuselaje) y con el añadido del tren de aterrizaje.

Además de los resultados se presentan aproximaciones basadas en derivativas para bajos angulos de ataque.

2. Geometrías

En una primera etapa se analizó una geometría propuesta para el avión IA-100, esta geometría inicial no incluía el tren de aterrizaje. En una segunda etapa se analizó una geometría mas detallada en la que se incluye el tren de aterrizaje y algunas modificaciones en la unión ala-fuselaje.

Debido a las condiciones de simetría existentes en la geometría y en el flujo, se simuló la mitad del avión y se impusieron condiciones de simetría en el plano medio.

2.1 Configuración 1

Inicialmente se simuló una geometría del avión IA-100 sin tener en cuenta el tren de aterrizaje.

Figura 1: Configuración inicial del IA-100.

2.2 Configuración 2

LA segunda geometría analizada tiene el tren de aterrizaje y además se realizaron algunas

INFERME TÉCNICO DMA-002 / 016

Página 4

modificaciones en la zona de la unión ala-fuselaje donde se habían detectado posibles desprendimientos de flujo aún con bajo ángulo de ataque.

Figura 2: Configuración 2 del avión.

2.3 Mallado y condiciones de contorno

En ambos casos se utilizó una malla no estructurada, aunque en el caso de la configuración 2 se añadió un refinamiento de malla en la zona de la estela del tren de aterrizaje. Como resultado de esto la malla de volumen tiene 5.3 millones de elementos y 1.2 millones de nodos la **configuración** 1 y 5.7 millones de elementos y 1.3 millones de nodos la **configuración** 2.

INFERME TÉCNICO DMA-002 / 016

Página 5

Figura 3: Malla de superficie (configuración 2).

Como condiciones de contorno se utilizaron las siguientes:

- $V = V_{inf}$ Velocidad impuesta en la entrada y las paredes laterales del dominio
- $V_n = 0$ y n. σ .n = 0 en el plano de simetría.
- Ley de pared sobre el avion.
- $P = P_{atm}$ en la salida del dominio

2.4 Condiciones del flujo

Los parámetros utilizados para la simulaciones son los siguientes

- V = 69,45 m/s (velocidad utilizada para $\alpha = 0^{\circ}$)
- V = 33,00 m/s
- Altura = SL
- $S_{ref} = 12,5 \text{ m}^2$
- $c_{ref} = 1,376 \text{ m}$
- CG = (2,8974; 0,0; 1,20) m (en coordenadas del CAD original)

INFERME TÉCNICO DMA-002 / 016

Página 6

3. Resultados

A partir de las simulaciones se obtuvieron las fuerzas actuantes sobre el modelo en las direcciones X y Z, identificadas como F_X y F_Z y el momento alrededor del eje Y, al que denominamos M_Y . Para el cálculo de los coeficientes aerodinámicos se calculan las fuerzas de Lift y Drag para las cuales se utilizan L y D respectivamente.

3.1 Análisis de configuración 1

Datos CFD			
α°	Fx/2*	Fz/2*	My/2*
0	5,72E+002	5,28E+003	5,16E+000
2,5	6,49E+001	2,19E+003	-2,04E+002
5	-4,83E+001	3,13E+003	-4,27E+002
7,5	-2,05E+002	3,98E+003	-6,50E+002
10	-4,15E+002	4,83E+003	-8,78E+002
12,5	-6,43E+002	5,46E+003	-1,08E+003
15	-8,39E+002	5,75E+003	-1,20E+003

^{*} Las fuerzas y momentos están calculados sobre la mitad de la geometría.

Cálculo de los coeficientes de sustentación $C_L\ y$ resistencia C_D

Lift		
α°	L	CL
0,0	10564,0	0,2861
2,5	4360,2	0,5230
5,0	6248,6	0,7494
7,5	7935,5	0,9518
10,0	9653,5	1,1578
12,5	10935,5	1,3116
15,0	11538,4	1,3839

	Drag	
α^{o}	D	CD
0,0	1143,2	0,0310
2,5	320,3	0,0384
5,0	449,7	0,0539
7,5	631,2	0,0757
10,0	858,8	0,1030
12,5	1107,7	0,1329
15,0	1355,3	0,1626

En la figura (4) se presenta la curva de sustentación Cl vs α , mientras que en la figura (5) se presenta la polar del avión para la configuración analizada.

Figura 4: Coeficiente de sustentación C_L en función del ángulo de ataque α .

Figura 5: Polar del avión.

Cálculo del momento de cabeceo C_m

Para el cálculo del momento se tomó el CG del avión

Momento		
α°	My	Cm
0,0	10,3	0,0002
2,5	-407,4	-0,0355
5,0	-854,4	-0,0745
7,5	-1300,0	-0,1133
10,0	-1756,0	-0,1531
12,5	-2150,0	-0,1874
15,0	-2398,0	-0,2090

Figura 6: Coeficiente de momento C_m en función del C_L .

Cálculo de la fineza del avión.

En este punto se presenta la variación de la fineza en función del ángulo de ataque, figura (7).

α°	CL/CD
0,0	9,2
2,5	13,6
5,0	13,9
7,5	12,6
10,0	11,2
12,5	9,9
15,0	8,5

Figura 7: Gráfico de la fineza en función del ángulo de ataque.

INFERME TÉCNICO DMA-002 / 016

Página 10

Derivativas longitudinales

Para el cálculo de las curvas aproximadas de C_L , C_D y C_m se utilizan los datos obtenidos para ángulos de ataque que van entre 0° y 7.5° .

Sustentación

$$C_L = 0.294 + 5.0959 \alpha [rad]$$

Momento

$$C_m = 0.0511 - 0.1704 C_L$$

Resistencia

$$C_D = 0.0350 - 0.0381 C_L + 0.085 C_L^2$$

3.2 Análisis de configuración 2

Datos CFD			
α°	Fx/2*	Fz/2*	My/2*
-2,5	140,20	198,70	229,20
0	589,20	5248,00	42,60
2,5	84,10	2159,00	-206,50
5	-28,60	3107,00	-426,60
7,5	-182,50	3955,00	-645,10
10	-376,10	4684,00	-850,90
12,5	-588,80	5261,00	-1074,00
15	-762,80	5469,00	-1311,00

^{*} Las fuerzas y momentos están calculados sobre la mitad de la geometría.

Cálculo de los coeficientes de sustentación C_L y resistencia C_D

	Lift	
$lpha^{\circ}$	L	CL
-2,5	409,3	0,0491
0	10496,0	0,2842
2,5	4306,6	0,5165
5	6195,3	0,7431
7,5	7890,0	0,9463
10	9356,3	1,1222
12,5	10527,5	1,2626
15	10960,2	1,3145

Drag		
α°	D	CD
-2,5	262,8	0,0315
0	1178,4	0,0319
2,5	356,4	0,0427
5	484,6	0,0581
7,5	670,6	0,0804
10	886,0	0,1063
12,5	1127,7	0,1353
15	1357,3	0,1628

Figura 8: Coeficiente de sustentación C_L en función del ángulo de ataque α .

En la figura (8) se presenta la curva de sustentación C_L vs α , mientras que en la figura (9) se presenta la polar del avión para la configuración analizada.

INFERME TÉCNICO DMA-002 / 016

Página 13

Figura 9: Polar del avión.

Cálculo del momento de cabeceo C_m

Para el cálculo del momento se tomó el cg del avión

Momento		
α°	My	Cm
-2,5	458,4	0,0400
0	85,2	0,0017
2,5	-413,0	-0,0360
5	-853,2	-0,0744
7,5	-1290,2	-0,1125
10	-1701,8	-0,1483
12,5	-2148,0	-0,1872
15	-2622,0	-0,2285

INFERME TÉCNICO DMA-002 / 016

Página 14

Figura 10: Coeficiente de momento C_m en función del C_L .

Cálculo de la fineza del avión.

En este punto se presenta la variación de la fineza en función del ángulo de ataque, figura (11).

α°	CL/CD
-2,5	1,56
0	8,91
2,5	12,08
5	12,78
7,5	11,77
10	10,56
12,5	9,34
15	8,07

Figura 11: Gráfico de la fineza en función del ángulo de ataque.

Derivativas longitudinales

Para el cálculo de las curvas aproximadas de C_L , C_D y C_m se utilizan los datos obtenidos para ángulos de ataque que van entre 0° y 7.5° .

Sustentación

$$C_L$$
=0,2906 + 5,071 α [rad]

Momento (CG al 25% cma)

$$C_m = 0.0517 - 0.1719 C_L$$

Resistencia

$$C_D = 0.0303 - 0.0134 C_L + 0.0698 C_L^2$$

3.3 Comparación de resultados

En las figuras (12) a (15) se presentan las curvas de ambas configuraciones comparadas.

Figura 12: Coeficiente de sustentación CL en función del ángulo de ataque α .

Se puede observar que con pequeños ángulos de ataque las curvas de sustentación y momento no presentan variaciones en ambas configuraciones, sin embargo se puede observar una disminución en el CL máximo principalmente por la presencia del tren de aterrizaje en la **configuración 2.** En lo que respecta a momento aparece un aumento notorio de momento a altos ángulos de sustentación, esto se debe a la influencia que produce la estela del tren sobre el empenaje horizontal.

Analizando la curva de resistencia se puede observar una importante influencia del tren de aterrizaje aumentando la misma para todo el rango de funcionamiento.

Figura 13: Coeficiente de momento C_m en función del C_L .

Figura 14: Polar del avión.

Figura 15: Gráfico de la fineza en función del ángulo de ataque.

4. Conclusiones

Se pudo analizar el IA-100 en lo que se refiere a características aerodinámicas longitudinales estáticas. Haciendo la comparación de los resultados se pudo obtener claramente la influencia del tren de aterrizaje.