- 1) Mějme relaci student(<u>učo</u>, jmeno) a zapis(<u>pkod</u>, <u>uco</u>). Který z následujících výrazů rel. algebry vrací jmena všech studentů, kteří si zapsali PB154?
 - a) $\Pi_{jmeno}(\sigma_{pkod='PB154'}(student x zapis))$
 - b) $\Pi_{jmeno}(student) \bowtie \sigma_{pkod='PB154'}(zapis)$
 - c) Π_{imeno} (student = \bowtie zapis)
 - d) Π_{imeno} (student x zapis)
- 2) Mějme relaci zvire(<u>zvire id</u>, jmeno, id_druh, rok_narozeni, id_otec, id_matka). Co vrací následující výraz:

SELECT jmeno FROM zvire WHERE rok_narozeni = 1999 OR id_otec<>NULL

- a) Žádný záznam.
- b) Jména všech zvířat, které jsou narozené v roce 1999 a jejichž otec je známý.
- c) Jména všech zvířat, které jsou narozené v roce 1999.
- d) Jména všech zvířat, které jsou narozené v roce 1999 a jejichž otec je neznámý.

(Pozn.: Podminka obsahující aritmetickou operaci s NULL je vzdy FALSE. (Pro testování NULL hodnot se používá "IS (NOT) NULL".) Podmínku tedy můžeme vyjádřit jako "... WHERE rok_narozeni = 1999 OR FALSE", z čehož vyplývá, ze vyraz vrátí jen ty záznamy, které splňuji první podmínku. Proto (c). Pokud by v podmínce bylo AND namísto OR, podmínka by nebyla nikdy splněna, dostali bychom prázdnou relaci.)

3) Pro relace autopůjčovny:

auto(<u>SPZ</u>, značka, rok_výroby, ID_kategorie) zapůjčení(<u>ID_půjčky</u>, SPZ, ID_zákazníka, datum_od, datum_do, místo_zapůjčení, místo_vrácení) zákazník(ID, jméno, příjmení, číslo_OP)

vyberte SQL výraz, který pro každou dvojici (znacka, rok_vyrobi) přiřadí počet zapůjčení (může být nula):

(Vybrat správný příkaz.)

(Pozn.. Nejsem si jistý přesným zněním, šlo ale o něco takového.)

- 4) Mějme relaci predmet(<u>pkod</u>, nazev, kredity). Který z následujících příkazů zvýší počet kreditů o jedna vem předmětům, které mají 2 kredity?
 - a) UPDATE predmet WHERE kredity = 2
 - b) UPDATE predmet SET kredity=kredity+1
 - c) UPDATE kredity = kredity +1 WHERE kredity =2
 - d) UPDATE predmet SET kredity = 3 WHERE kredity = 2

5) Převeďte následující ER diagram do relačního modelu:

- a) zamestnanec(<u>zam_id</u>, datum_narozeni, telefon), smlouva(<u>cislo_smlouvy</u>, datum_sepsani), ma(<u>zam_id</u>, <u>cislo_smlouvy</u>)
- b) zamestnanec(<u>zam_id</u>, datum_narozeni, telefon), smlouva(<u>cislo_smlouvy</u>, datum_sepsani), ma(<u>zam_id</u>, cislo_smlouvy)
- c) zamestnanec(<u>zam_id</u>, <u>datum_narozeni</u>, <u>telefon</u>), <u>smlouva(zam_id</u>, <u>cislo_smlouvy</u>, <u>datum_sepsani</u>)
- d) zamestnanec(<u>zam_id</u>, datum_narozeni, telefon), smlouva(<u>zam_id</u>, <u>cislo_smlouvy</u>, datum_sepsani), ma(<u>zam_id</u>, <u>cislo_smlouvy</u>)

(Pozn.: Názvy entit a atributů byli asi jiné. Princip byl shodný. (Počet atributů, klíče, typy vazeb jsou stejné.))

- 6) Co platí o B+ stromu pro n=6 při minimálním zaplnění?
 - a) Vnitřní uzel má 2 potomky a list 2 hodnoty.
 - b) Vnitřní uzel má 3 potomky a list 3 hodnoty.
 - c) Vnitřní uzel má 3 potomky a list 2 hodnoty.
 - d) Vnitřní uzel má 2 potomky a list 3 hodnoty.
- 7) Zadaná relace a funkční závislosti. (Kino, čas představení, název filmu,...)

(Rozhodnout, co je správně. Byla vždy zadáno, že množina je super/kandidátním/primárním klíčem.)

- 8) Jak značíme v relační algebře úplné vnější spojení?
 - a) r⋈s
 - b) r = ⋈ s
 - c) $r \bowtie = s$
 - d) r = ⋈ = s