TRANSLATION FROM GERMAN

(12) WORLD ORGANIZATION OF INTELLECTUAL PROPERTY INTERNATIONAL APPLICATION PUBLISHED PURSUANT TO THE PATENT COOPERATION TREATY (PCT)

(19) World Organization for Intellectual Property	
International Office	
(43) International Publication Date: PCT	(10) International Publication Number:
18 July 2002	WO 02/055693 A2
(51) International Patent Classification ⁷ : C12N 15/11	LIMMER, Stephan
(21) International Application Number: PCT/EP02/00152	[GERMANY/GERMANY];
(22) International filing date: 9 January 2002	Universitätsstrasse 30, 95447 Bayreuth (GERMANY). ROST, Sylvia
(25) Submission language German	[GERMANY/GERMANY];
(26) Publication language German (30) Priority data: 101 00 586.5 9 January 2001 GERMANY 101 55 280.7 26 October 2001 GERMANY 101 58 411.3 29 November 2001 GERMANY (74) 101 60 151.4 7 December 2001 GERMANY (71) Applicant: (for all designated states, except US): RIBOPHARMA AG [GERMANY/GERMANY]; Universitätsstrasse 30, 95447 Bayreuth (GERMANY).	Universitätsstrasse 30, 95447 Bayreuth (GERMANY). HADWIGER, Philipp [GERMANY/GERMANY; Universitätsstrasse 30, 95447 Bayreuth (GERMANY). Attorneys: GASSNER, Rolfgang; Nägelsbachstrasse 49a, 91052 Erlangen (GERMANY). (81) Designated states (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
(72) Inventor and (75) Inventor/Applicant (for US only): KREUTZER, Roland [GERMANY/GERMANY]; Universitätsstrasse 30, 95447 Bayreuth (GERMANY).	GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TRADENAME, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Regional states (regional): ARIPO Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR). OAPI Patent (BR, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without International Search Report and republished on receipt of the report

Refer to the "Guidance Notes on Codes and Abbreviations" at the beginning of each regular issue of the PCT Gazette for explanation of the two-letter codes and other abbreviations..

(54) Title: METHOD FOR INHIBITING THE EXPRESSION OF A TARGET GENE

(57) Abstract

The invention relates to a method for inhibiting the expression of a target gene in a cell, comprising the following steps: introduction of an amount of at least one dual-stranded ribonucleic acid (dsRNA I) which is sufficient to inhibit the expression of the target gene. The dsRNA I has a dual-stranded structure formed by a maximum of 49 successive nucleotide pairs. One strand (as1) or at least one section of the one strand (as1) of the dual-stranded structure is complementary to the sense strand of the target gene. The dsRNA has an overhang on the end (E1) of dsRNA I formed by 1-4 nucleotides.

Variant 1 Variant 2

METHOD FOR INHIBITING THE EXPRESSION OF A TARGET GENE

The invention concerns a method, an application and a medicament for inhibition of expression of a target gene.

Methods to inhibit expression of genes of medical or biotechnological interest by means of a double-strand ribonucleic acid (dsRNA) are known from WO 99/32619 and WO 00/44895. The known methods are highly effective. But there is also a requirement to further increase their efficiency.

The task of the present invention is to eliminate the shortcomings according to the prior art. In particular, a method, an application and a medicament are to be offered, with which even more efficient inhibition of expression of the target gene is attainable.

This task is solved by the features of Claims 1, 41 and 81. Advantageous embodiments are apparent from the features of Claims 2 to 40, 42 to 80 and 82 to 120.

With the features claimed according to the invention, a drastic increase in the effectiveness of inhibition of expression of the target gene in vitro and in vivo is surprisingly achieved. By the special design of the ends of the dsRNA, both their efficiency in mediating the inhibiting effect on expression of the target gene and their stability can be deliberately influenced. By increasing the stability, the effective concentration in the cell is increased.

Target gene according to the invention is understood to mean the DNA strand of the double-strand DNA in the cell that is complementary to a DNA strand, including all transcribed regions that serve for transcription as matrix. The target gene is therefore generally the "sense" strand. The one strand or anti-sense strand (as1) can be complementary to an RNA transcript formed during expression of the target gene or its processing product, for example, an mRNA. Insertion is understood to mean uptake in the cell. Uptake can occur by the cell itself; it also can be mediated by auxiliaries or aids. "Overhang" is understood to mean a terminal single-strand overhang that does not have paired nucleotides, according to Watson and Crick. "Double-strand

structure" is understood to mean a structure, in which the nucleotides of the individual strands are essentially paired according to Watson and Crick. A double-strand structure in the context of the present invention can also have individual mismatches.

According to a particularly advantageous embodiment, the dsRNA I has the overhang on the 3' end of one strand or the anti-sense strand as 1 and/or on the 3' end of the other end or sense strand ss 1. The dsRNA I can also be formed smoothly on one end. In this case, the smooth end is advantageously situated on the side of dsRNA I that has the 5' end of one strand (anti-sense strand; as 1). In this form, the dsRNA I, on the one hand, has very good efficiency and, on the other hand, high stability in a living organism. The overall in vivo efficiency is excellent. The overhang is expediently formed from 1 to 4 nucleotides, preferably from 1 or 2 nucleotides.

According to another embodying feature, the efficiency of the method can be further increased if at least one additional dsRNA II, formed according to the dsRNA I according to the invention, is inserted into the cell, in which the one strand or at least a section of one strand of the double-strand structure of dsRNA I is complementary to a first region of the sense strand of the target gene, and in which an additional strand or at least a section of the additional strand of the double-strand structure of the additional dsRNA II is complementary to a second region of sense strand of the target gene. Inhibition of expression of the target gene is significantly increased in this case. The first and second region can overlap in sections, abut each other, or also be spaced from each other.

It has also proven advantageous if the dsRNA I and/or the additional dsRNA II have a length of less than 25 consecutive nucleotide pairs. A length in the range between 19 and 23 nucleotide pairs has proven to be particularly effective. The efficiency can be further increased if single-strand overhangs of 1 to 4 nucleotides are present on the double strands preferably formed from 19 to 23 nucleotide pairs.

The target gene, according to an additional embodying feature, can have the sequences SQ001 to SQ140, given in the enclosed sequence protocol. It can also be chosen from the following groups: oncogene, cytokine gene, id-protein gene, prion gene, genes for expression of

angiogenesis-inducing molecules, adhesion molecules and cell surface receptors. genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules, as well as genes for expression of the EGF receptors. The target gene can be the MDR1 gene, in particular. In this context, one of the existing sequences SQ141-173 or a combined dsRNA I/II from antisense (as) and sense sequences (ss) that go together can be used.

According to an additional advantageous embodying feature, expression is inhibited according to the principle of RNA interference.

The target gene is expediently expressed in pathogenic organisms, preferably in plasmodia. It can be a component of a virus or viroid, especially a human pathogenic virus or viroid. The virus or viroid can also be an animal or plant pathogenic virus or viroid.

According to another embodying feature, it is prescribed that the unpaired nucleotides be substituted by nucleoside thiophosphates.

At least one end of the dsRNA I/II can be modified, in order to counteract degradation in the cell or dissociation in the individual strand. Advantageously, cohesion caused by the complementary nucleotide pairs of the double-strand structure is increased by at least one chemical length. The chemical length can be formed by a covalent or ionic bond, a hydrogen bridge bond, hydrophobic interactions, preferably van-der-Waals or stacking interactions, or by metal ion coordination. It has also proven expedient and to increase stability if the chemical link is formed in the vicinity of one end. Additional advantageous embodiments with respect to chemical linking can be deduced from the features of Claims 24 to 30, without requiring a further explanation for this.

The dsRNA I/II can be incorporated particularly easily in the cell if it is enclosed in micellar structures, advantageously in liposomes. It has also proven advantageous for transport of dsRNA I/II into the cell that it is bonded to at least a viral sheath protein, originating from a virus, derived from a virus or synthetically produced, associated with the sheath protein or

enclosed by it. The sheath protein can be derived from polyoma virus. The sheath protein can contain, in particular, the virus protein 1 and/or the virus protein 2 of polyoma virus. According to another embodiment, it is prescribed that, during formation of a capsid or capsid-like structure from the sheath protein, one side face the interior of the capsid or capsid-like structure. It is also advantageous that the one strand of dsRNA I/II (as1/2) is complementary to the primary or processed RNA transcript of the target gene. The cell can be a vertebrate cell or a human cell.

It has also been found that the dsRNA I/II can advantageously be administered already in an amount of, at most, 5 mg/kg of body weight per day to a mammal, preferably a human. Even in this low dose, an excellent efficiency is achieved.

It has surprisingly been found that the dsRNA I/II can be taken up in a buffer solution for administration and then administered orally or by injection or infusion intravenously, intratumorally, by inhalation or intraperitoneally.

The use of a double-strand ribonucleic acid (dsRNA I) to inhibit expression of a target gene in the cell is also proposed according to the invention, in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs, and in which one strand (antisense strand; as1) or at least a section of one strand (as1) of the double-strand structure is complementary to the sense strand of the target gene, and in which the dsRNA I has an overhang formed from 1 to 4 nucleotides on at least one end.

According to an additional stipulation of the invention, a medicament for inhibiting the expression of a target gene in a cell is proposed, containing a double-strand ribonucleic acid (dsRNA I) in an amount sufficient to inhibit expression of a target gene, in which the dsRNA I has a double-strand structure from, at most, 49 consecutive nucleotide pairs, and in which one strand (as1) or at least a section of one strand (as1) of the double-strand structure is complementary to the sense strand of target gene, and in which the dsRNA I has an overhang formed from 1 to 4 nucleotides on at least one end.

The preceding comments are referred to for the further advantageous embodiment of dsRNA I/II.

The invention is further explained on an example below, with reference to the drawings and practical examples. In the drawings:

Fig. 1a, b	schematically depicts a first and second double-strand RNA and
Fig. 2	schematically depicts a target gene,
Fig. 3	depicts relative YFP fluorescence after application of different dsRNA in NIH/3T3 cells (first experiment),
Fig. 4	shows relative YFP fluorescence after application of different dsRNA in NIH/3T3 cells (second experiment),
Fig. 5	shows relative YFP fluorescence after application of different dsRNA in NIH/3T3 cells (third experiment),
Fig. 6	shows relative YFP fluorescence after application of different dsRNA in NIH/3T3 cells (fourth experiment),
Fig. 7	shows relative YFP fluorescence after application of different dsRNA in HeLa-S3 cells (fifth experiment),
Fig. 8	shows fluorescence micrographs of NIH/3T3 cells after transfection with pcDNA-YFP and after cotransfection with pcDNA-YFP and different dsRNAs,
Fig. 9	shows fluorescence micrographs of HeLa-S3 cells after transfection with pcDNA-YFP and after cotransfection with pcDNA-YFP and different dsRNAs,
Fig. 10	shows gel electrophoretic separation of S1 after incubation in mouse serum,

Fig. 11 shows gel electrophoretic separation of S1 after incubation in human serum, Fig. 12 shows gel electrophoretic separation of S7 after incubation in mouse serum, Fig. 13 shows gel electrophoretic separation of S7 after incubation in human serum, Fig. 14 shows gel electrophoretic separation of K3 after incubation in mouse serum, Fig. 15 shows gel electrophoretic separation of PKC1/2 after incubation in mouse serum, Fig. 16 shows gel electrophoretic separation of S1A/S4B after incubation in human serum, shows gel electrophoretic separation of K2 after incubation in human serum and Fig. 17 Fig. 18 shows GFP-specific immunoperoxidase staining on kidney paraffin sections of transgenic GFP mice, Fig. 19 shows GFP-specific immunoperoxidase staining on heart paraffin sections of transgenic GFP mice, Fig. 20 shows GFP-specific immunoperoxidase staining on pancreas paraffin sections transgenic GFP mice, Fig. 21 shows Western blot analysis of GFP expression in plasma, Fig. 22 shows Western blot analysis of GFP expression in the kidneys, Fig. 23 shows Western blot analysis of GFP expression in the heart, shows Western blot analysis of EGFR expression in U-87 MG glioblastoma cells, Fig. 24

- Fig. 25a shows Northern blot analysis of the MDRI mRNA levels in colon carcinoma cell line LS174T, in which the cells were harvested after 74 hours,
- Fig. 25b shows quantification of the band according to Fig. 25a, in which the averages from two values are shown,
- Fig. 26a shows Northern blot analysis of the MDRI mRNA levels in colon carcinoma cell line LS174T, in which the cells were harvested after 48 hours,
- Fig. 26b shows quantification of the band according to Fig. 26a, in which the average values from the two values are shown,
- Fig. 27 shows a comparative depiction of a transmitted light and fluorescence photomicrograph of a transfection with 175 nM dsRNA (sequence R1 in Table 4).

The double-strand ribonucleic acids dsRNA I and dsRNA II, depicted schematically in Figures 1a and 1b, each have a first end E1 and a second end E2. The first and second ribonucleic acids dsRNA I/dsRNA II have single-strand sections formed from about 1 to 4 unpaired nucleotides on their two ends E1 and E2. Two possible variants are shown (variants 1 and 2), in which variant 2 has a smooth end (E2). The smooth ends, however, can also lie on the other end (E1) in another variant.

A target gene situated on DNA is schematically shown in Fig. 2. The target gene is made recognizable by a black bar. It has a first region B1 and a second region B2.

Each strand of the first dsRNA I (as1) and the second dsRNA II (as2) is complementary to the corresponding region B1 or B2 on the target gene.

Expression of the target gene is then inhibited with particular efficiency, if the dsRNA I/dsRNA II has single strand sections on its ends E1, E2. The single-strand sections can be formed both on

strand as 1 or as 2 and on the counterstrand (ss1 or ss2) or on strand as 1, as 2 and on the counterstrand.

The regions B1 and B2, as shown in Fig. 2, can be spaced from each other. However, they can also be adjacent to each other or overlap.

I. Inhibition of Expression of the YFP Gene in Fibroblasts:

Double-strand RNAs (dRNAs) were prepared from sequences of the yellow fluorescent protein (YFP), a variant of the GFP (green-fluorescent protein) of the alga *Aequoria victoria* and microinjected into fibroblasts, together with a YFP-coding plasmid. Fluorescence reduction was then evaluated relative to cells without dsRNA.

Experimental Protocol:

By means of an RNA synthesizer (type Expedite 8909, Applied Biosystems, Weiterstadt, Germany) and ordinary chemical methods, the RNA single strands apparent from the sequence protocols SQ148, 149 and SQ159 and the single strands complementary to them were synthesized. Purification then occurred by HPLC. Hybridization of the single strands to a double-strand occurred by heating the stoichiometric mixture of single strands in 10 mM sodium phosphate buffer, pH 6.8, 100 mM NaCl, to 90°C and subsequent cooling over 6 hours to room temperature. The dsRNAs so obtained were microinjected into the test cell.

The murine fibroblast cell line NIH/3T3, ECACC no. 930615624 (European Collection of Animal Cell Cultures) served as test system for these cell culture experiments. The plasmid pcDNA-YFP was used for microinjections, which contained an 800 bp large Bam HI/Eco RI-YFP fragment in the corresponding restriction cleavage sites of the vector pcDNA3. Expression of YFP was investigated under the influence of simultaneously cotransfected sequence-homologous dsRNA. Evaluation occurred under the fluorescence microscope, at the earliest, 3 hours after injection, with reference to green fluorescence.

Preparation of the Cell Cultures:

Cultivation of the cells occurred in DMEM with 4.5 g/L glucose, 10% fetal calf serum (FCS), 2 mM L-glutamine, penicillin/streptomycin (100 IU/100 μ g/mL, Biochrom) in an incubator under a 5% CO₂ atmosphere at 37°C. The cells underwent passage every 3 days, in order to keep them in the exponential growth phase. A day before performance of transfection, the cells were trypsinized (10 × trypsin/TEDTA, Biochrom) and inoculated with a cell density of 0.73 × 10⁵ cells into coated petri dishes (CORNING® Cell Culture Dish, 35 mM, Corning Inc., Corning, USA). The petri dishes were incubated with 0.2% gelatin (Biochrom) for at least 30 minutes at 37°C, washed once with PBS and immediately used for seeding of the cells. To permit recovery of individual cells, CELLocate coverslips from the Eppendorf company were used (square size 55 μ m).

Microinjection:

To perform microinjection, the petri dishes were removed from the incubator for about 10 minutes. About 50 cells were microinjected per dish and batch (FemtoJet; Mikromanipulator 5171, Eppendorf). Glass capillaries (FemtoTip) from the Eppendorf company with a tip inside diameter of 0.5 µm were used for microinjection. The injection time was 0.8 seconds and the pressure 30 hPa. The microinjections were conducted on an Olympus IX50 microscope with a fluorescence device. 14 mM NaCl, 3 mM KCl, 10 mM KH₂PO₄, pH 7.0, was used as injection buffer, which contains 0.01 µg/mL pcDNA-YFP. To check successful microinjection, 0.08% (w/v) Dextran-70000 coupled Texas-Red (Molecular Probes, Leiden, Netherlands) was added to the injection solution. To investigate inhibition of the YFP expression with specific dsRNA, dsRNAs were added to the injection solution: batch 1: 0.1 µM dsRNA (sequence protocol SQ148/149); batch 2: 0.1 μM dsRNA (sequence protocol SQ148/159); batch 3: without RNA. After microinjection, the cells were incubated for at least three more hours in the incubator. The intracellular YFP fluorescence was then evaluated on the microscope: simultaneously red and green-fluorescent cells: microinjection was successful, no inhibition of YFP expression by dsRNA was observed; or control cells were involved, in which no dsRNA were injected; only red fluorescent cells: microinjection was successful, the dsRNA inhibits YFP expression.

Results:

At a dsRNA concentration of 0.1 μ M, a significantly increased inhibition or expression of the YFP gene in fibroblasts could be observed during use of dsRNA with the protruding single-strand regions (sequence protocol SQ148/159) on both 3' ends by two nucleotides each, in comparison with dsRNA without protruding single-strand ends (Table 1).

The use of short dsRNA molecules, containing 19-25 base pairs with overhangs of a few, preferably 1 to 3, non-base-paired, single-strand nucleotides, therefore permits comparatively stronger inhibition of gene expression in mammal cells than the use of dsRNAs with the same number of base pairs without the corresponding single-strand overhangs at the same RNA concentration.

Batch	Name	Sequence protocol	0.1 μΜ
		number	
1	S1A/	SQ148	+
	S1B	SQ149	
2	S1A/	SQ148 (protruding	+++
	S4B	end)	
		SQ159	
3		without RNA	_

Table 1: The symbols show the relative percentage of non-fluorescent or weakly green fluorescent cells (+++>90%; ++60-90%; +30-60%; -<10%).

II. Inhibition of Gene Expression with Target Gene in Cultivated HELA-S3 Cells and Mouse Fibroblasts by dsRNA:

The efficiency of inhibition of YFP expression after transient transfection of a YFP-coding plasmid based on RNA interference with dsRNAs can be modulated by the configuration of the 3' ends in the length of the base-paired regions.

Practical Example:

To detect the efficiency of dsRNA during specific inhibition of gene expression, transiently transfected NIH/3T3 cells (fibroblasts from NIH Swiss mouse embryo, ECCAC (European Collection of Animal Cell Cultures) no. 93061524) and HELA-S3 (human cervical carcinoma cells, DSMZ (German Collection of Microorganisms and Cell Cultures) no. ACC 161) were used. The plasmid pcDNA-YFP was used for transfection, which contains an 800 bp Bam HI/Eco RI-YFP fragment in the corresponding cleavage sites of the vector pcDNA3. Double-strand RNAs derived from the sequence of the yellow fluorescent protein (YFP) were produced and transiently transfected with the plasmid pcDNA-YFP in the fibroblasts (the employed specific dsRNAs are complementary in their anti-sense strands to the corresponding sections of the gene sequences above YFP and GFP). After 48 hours, the fluorescence reduction was quantified. Cells that were transfected either only with pcDNA-YFP or with pcDNA-YFP and a controlled dsRNA (not derived from the YFP sequence) functioned as controls.

Experimental Protocol:

dsRNA Synthesis:

By means of an RNA synthesizer (type Expedite 8909, Applied Biosystems, Weiterstadt, Germany), and ordinary chemical methods, the RNA individual strands apparent from the sequence protocols and the single strands complementary to them were synthesized. Purification of the crude synthesis products then occurred by means of HPLC. The column NucleoPac PA-100, 9 × 250 mM, from the Dionex company was used; 20 mM tris, 10 mM NaClO₄, pH 6.8, 10% acetonitrile as low salt buffer and 20 mM Tris, 400 mM NaClO₄, pH 6.8, 10% acetonitrile as high salt buffer. The flow rate was 3 mL/minute. Hybridization of the single strands to a double strand occurred by heating the stoichiometric mixture of the single strands in 10 mM sodium phosphate buffer, pH 6.8, 100 mM NaCl, to 80-90°C and subsequent slow cooling over 6 hours to room temperature.

Seeding of the Cells:

All cell culture work was conducted under sterile conditions in a corresponding work bench (HS18, Hera Safe, Kendro, Heraeus). Cultivation of NIH/3T3 cells and HELA-S3 occurred in an incubator (CO_2 incubator T20, Hera cell, Kendro, Heraeus) at 37°C, 5% CO_2 and saturated atmospheric humidity in DMEM (Dulbecco's Modified Eagle Medium, Biochrom), for the mouse fibroblasts, and Ham' F12 for the HELA cells with 10% FCS (fetal calf serum, Biochrom), 2 mM L-glutamine (Biochrom) and penicillin/streptomycin (100 IU/100 μ g/mL, Biochrom). In order to keep the cells in the exponential growth phase, the cells underwent passage every 3 days. 24 hours before the forming transfection, the cells were trypsinized ($10 \times \text{trypsin/EDTA}$, Biochrom, Germany) and seeded with a cell density of 1.0×10^4 cells/recess into a 96-well plate (Multiwell dishes 96-well flat bottom, Labor Schubert & Weiss GmbH) in 150 μ L growth medium.

Performance of Transient Transfection:

Transfection was conducted with Lipofectamine PlusTM reagent (Life Technologies) according to the information of the manufacturer. $0.15~\mu g$ pcDNA-YFP plasmid was introduced per well. The total transfection volume was $60~\mu L$. 3-fold samples were used in each case. Plasmid DNA was first complexed, together with dsRNA. For this purpose, the plasmid DNA and the dsRNA were diluted in a serum-free medium and $1~\mu L$ PLUS reagent was used per $0.1~\mu g$ plasmid DNA (in a volume of $10~\mu L$) and, after mixing for 15~m minutes at room temperature, they were incubated. During incubation, $0.5~\mu L$ Lipofectamine was diluted in a total of $10~\mu L$ serum-free medium per $0.1~\mu g$ plasmid DNA, thoroughly mixed, added to the plasmid/dsRNA/PLUS mixture and incubated for another 15~m minutes. During incubation, a medium change was conducted. For this purpose, the cells were washed once with $200~\mu L$ serum-free medium and then with $40~\mu L$ serum-free medium and then incubated further in the incubator, up to addition of DNA/dsRNA/PLUS/Lipofectamine. After addition of $20~\mu L$ DNA/dsRNA/PLUS/Lipfectamine per well, the cells were incubated for 2.5~h hours in the incubator. After incubation, the cells were then washed once with $200~\mu L$ growth medium and incubated for 24~h hours until detection of the fluorescence in $200~\mu L$ growth medium in the incubator.

Detection of Fluorescence:

24 hours after the last medium change, the fluorescence of the cells was photographed on the fluorescence microscope (IX50-S8F2, fluorescence unit U-ULS100Hg, burner U-RFL-T200, Olympus) with a USH-I02D mercury lamp (USHIO Inc., Tokyo, Japan), equipped with a WIB fluorescence cube and a digital CCD camera (Orca IIIm, Hamamatsu and C4742-95 camera controller). Evaluation of the fluorescence recording occurred with the analysis software 3.1 (Soft Imaging System GmbH, Germany). In order to relate the YFP fluorescence to cell density, a cell nucleus staining was carried out (Hoechst staining). For this purpose, the cells were first fixed for 5 in 100 μL methylcarnoy (75% methanol, 25% glacial acetic acid) and then again for 10 minutes in methylcarnoy. After air drying, the fixed cells were incubated for 30 minutes in the dark with 100 μL per well of Hoechst die (75 ng/mL). After washing twice with PBS (PBS Dulbecco w/o Ca²⁺, M²⁺, Biochrom), the Hoechst-stained cells were photographed under the fluorescence microscope (Olympus, WU fluorescence cube for Hoechst).

Figures 3 to 9 show the results on inhibition of YFP expression by dsRNA in the cultivated cells:

The effects of YFP-specific dsRNAs and control dsRNAs on YFP expression in NIH/3T3 mouse fibroblasts after transient transfection are summarized in Figures 3, 4, 5 and 6. The experiments were run as described in the experimental protocol. The concentration of dsRNA refers to the concentration in the medium during the transfection reaction. The designations for the dsRNAs can be gathered from Table 2. The relative fluorescence per image section in area percent is shown. 3 different image sections were evaluated per well. The averages are obtained from the 3-fold batches.

The specific inhibition of YFP gene expression by dsRNAs in HELA-S3 cells is shown in Figures 7 and 9. The inhibiting effect of differently configured dsRNA constructs (Table 2) in different concentrations on expression of YFP in HELA cells is shown in Fig. 7. Fig. 8 shows representative fluorescence microscope recordings of NIH/3T3 mouse fibroblasts transiently transfected with YFP without dsRNA and with dsRNA specifically directed against YFP (× 100 magnification).

8A: YFP controls

8B: S1, 10 nM

8C: S4, 10 nM8D: S7, 10 nM8E: S7/S11, 1 nM

8F: S7/S12, 1 nM

Fig. 9 shows representative fluorescence microscope recordings of HELA-3S cells transiently transfected with YFP without dsRNA and with dsRNAs specifically directed against YFP (× 100 magnification).

9A: K2-controls, 10 nM

9B: S1, 10 nM

9C: S4, 10 nM

9D: S7, 10 nM

9E: S7/11, 1 nM

9F: S7/12, 1 nM

9G: S1A/S4B, 10 nM

9H: YFP controls

Results:

Fig. 3 shows that YFP expression after transient cotransfection of mouse fibroblasts with the YFP plasmid and dsRNAs specifically directed against the YFP sequence is inhibited with particular efficiency when the 3' ends of the regions containing 22 and 19 base pairs of the dsRNAs have single-strand sections of two nucleotides (nt). Whereas the dsRNA S1 with smooth 3' ends at a concentration of 1 nM (referred to the concentration in the cell culture medium during performance and transfection) exhibits no inhibiting effect on YFP expression, the dsRNAs S7 (19 nucleotide pairs) and S4 (24 nucleotide pairs), each with 2 nt overhangs on both 3' ends, inhibit the YFP expression by 50 or by 70% in comparison with the corresponding control dsRNAs K3 and K2. At a concentration of 10 nM, the dsRNA denoted S1 with smooth ends inhibits YFP expression by about 65%, whereas inhibition of YFP expression by the dsRNA S4 is about 94% (Fig. 4). The inhibiting effects of the dsRNAs denoted S4 and S7 is concentration-dependent (Figures 3 and 4, see also Fig. 7).

Fig. 4 shows that, for efficient suppression of YFP gene expression, the single-strand structure is not necessary on both 3' ends (on the sense and anti-sense strand). To achieve the most effective possible inhibition of YFP expression, only the 2 nt overhang on the 3' end is necessary on the anti-sense strand. Inhibition of YFP expression at a concentration of 1 nM in the two dsRNAs S4 (with 2 nt overhangs on both 3' ends) and S1A/S4B (with the 2 nt overhang on the 3' end of the anti-sense strand) lies at about 70%. On the other hand, if the 2 nt overhang is situated on the 3' end of the sense strand (and the 3' end of the anti-sense strand carries no single-strand region), inhibition of YFP gene expression is only 50%. Similarly, inhibition at higher concentrations is much better, if at least the 3' end of the anti-sense strand carries a 2 nt overhang.

A more distinct inhibition of YFP expression is achieved, if the base-paired region has 21 nucleotide pairs instead of 22 (S1 and S4), 20 (S13 and S13/14) or 19 (S7) (Figures 5, 6 and 7). Inhibition of YFP expression by S1 (22 base pairs with smooth ends) in a concentration of 5 nM is about 40%, whereas inhibition by S7/S12 (21 base pairs with smooth ends), also with 5 nM, lies at about 92%. If the dsRNA with 21 base pairs also has a 2 nt overhang on the anti-sense strand 3' end (S7/S11), inhibition lies at ~ 97% (compared with ~ 73% inhibition with S4 and ~ 70% inhibition with S7).

III. Investigation of Serum Stability of Double-Strand RNA (dsRNA):

The objective is to increase the effectiveness found the cell cultures of inhibition of gene expression of target genes mediated by dsRNA for use in vivo. This is achieved by improved stability of the dsRNAs in serum and by an extended residence time of the molecule in the circulation and the increased effective concentration of the functional molecules related to this, resulting from improved stability.

Practical Example:

The serum stability of dsRNAs that inhibit GFP expression was tested in vivo in murine and human serum.

Experimental Protocol:

Incubation with human or murine serum with the corresponding dsRNA occurred at 37°C. 85 μ L serum was incubated with 15 μ L 100 μ M dsRNA. After specified incubation times (30 minutes, 1 h, 2 h, 4 h, 8 h, 12 h, 24 h), the samples were frozen at -80°C. dsRNA without serum (+ 85 μ L ddH₂O) and dsRNA at time 0 were used as control.

For isolation of the dsRNA from the incubation charge, which occurred on ice, 400 µL with 0.1% SDS was added to the charges and these are subjected to phenol extraction: 500 µL phenol:chloroform:isoamyl alcohol (IAA, 25:24:1, Roti®-Phenol, Roth, Karlsruhe) was added per charge and vortexed for 30 seconds at the highest stage (Vortex Genie-2; Scientific Industries). After 10 minutes of incubation on ice, phase separation occurred by centrifuging at 12,000 × g, 4°C for 10 minutes (Sigma 3K30, Rotor 12131-H). The upper aqueous phase (about 200 µL) was taken off and subjected first to DNase I and the proteinase K digestion: addition of 20 μL 10-fold DNase I buffer (100 mM Tris, pH 7.5, 25 mM MgCl₂, 1 mM CaCl₂) and 10 U DNase I (D7291, Sigma-Aldrich), 30 minutes incubation at 37°C, addition of 6 U DNase I again and incubation for another 20 minutes at 37°C, addition of 5 µL proteinase K (20 mg/mL, 04-1075, Peglab, Germany) and 30 minutes incubation at 37°C. Phenol extraction was then conducted. For this purpose, 500 µL phenol:chloroform:IAA (25:24:1) was added, vortexed at the highest stage for 30 seconds, 10 minutes for 12000 × g, 4°C, centrifuged, the supernatant taken off and mixed in succession with 40 µL 3M Na-Ac (sodium acetate), pH 5.2, and 1 mL 100% EtOH, mixed thoroughly in the meantime and precipitated for at least 1 hour at -80°C. The precipitate was pelletized by centrifuging at 12000 x g for 30 minutes and 4°C, washed with 70% EtOH and recentrifuged (10 minutes, 12000 × g, 4°C). The air dried pellet was taken up in 30 μL RNA gel application buffer (7 M urea, 1 × TBE (0.09 M tris-borate, 0.002 M EDTA

(ethylenediaminetetraacetate), 0.02% (w/v) bromophenol blue, 0.02% (w/v) xylenecyanol) and stored at -20°C until gel application.

For characterization of the dsRNA, an analytical, denaturing polyacrylamide gel electrophoresis (analytical PAGE) was conducted. The urea gels were prepared right before the run: 7 M urea (21 g) was dissolved during agitation in 25 mL 40% aqueous acrylamide/bisacrylamide stock solution (Rotiphoresis gel, A515.1, Roth) and 5 μL 10 × TBE (100 g Tris, 55 g boric acid, 9.3 g EDTA per L distilled water) and made up to 50 µL with distilled water. Right before pouring, 50 μL TEMED (N,N,N',N'-tetramethylethylenediamine) and 500 μL 10% APS (ammonium peroxidisulfate) were added. After polymerization, the gel was introduced to a vertical electrophoresis apparatus (Merck, Darmstadt) and a prerun was conducted for 30 minutes at a constant 40 mA current intensity. As run buffer, 1 × TBE buffer was used. Before application onto the gel, the RNA samples were heated for 5 minutes at 100°C, cooled on ice and centrifuged for 20 seconds in a table-top centrifuge (Eppendorf, minispin). 15 µL was applied to the gel. The run occurred for about 2 hours at a constant current of 40 mA. After the run, the gel was stained for 30 minutes at RT (room temperature) with Stains all stain solution (20 mL Stains all stock solution dissolved in 200 mL formamide) mixed with 200 mL distilled water and 180 mL formamide) and the background staining eliminated after rinsing in distilled water for 45 minutes. The gels were photographed with the photo documentation system Image Master VDS from Pharmacia.

Figures 10 to 17 show the serum stability of dsRNA after incubation with human and murine serum and subsequent electrophoretic separation in 20% 7 M urea gel.

Fig. 10: Incubation of S2 (0-22-0) in mouse serum

- 1. at time 0 (without serum)
- 2. at time 0
- 3. for 30 minutes
- 4. for 1 hour
- 5. for 2hours
- 6. for 4 hours

- 7. for 12 hours
- 8. 2 μ L 100 μ M S1 without incubation
- S1A) Sense strand S1 (10 μ L 20 μ m S1A)
- S1B) Anti-sense strand S1 (10 μ L 20 μ M S1B)

Fig. 11: Incubation of S1 (0-22-0) in human serum

- 1. 2 µL 100 µM S1 untreated (without incubation)
- 2. for 30 minutes
- 3. for 2 hours
- 4. for 4 hours
- 5. for 6 hours
- 6. for 8 hours
- 7. for 12 hours
- 8. for 24 hours
- S1A) Sense strand S1 (10 µL 20 µm S1A)
- S1B) Anti-sense strand S1 (10 µL 20 µM S1B)

Fig. 12: Incubation at S7 (2-19-20) in mouse serum

- 1. at time 0 (without serum)
- 2. for 30 minutes
- 3. for 4hours
- 4. for 12 hours

Fig. 13: Incubation of S7 (2-19-2) in human serum

- 1. Sense strand S7 (10 μ L 20 μ M S7A)
- 2. Anti-sense strand S7 (10 µL 20 µM S7B)
- 3. for 30 minutes
- 4. for 1 hour
- 5. for 2 hours
- 6. for 4 hours
- 7. for 6 hours

- 8. for 12 hours
- 9. for 24 hours
- 10. at time 0 (without serum)

Fig. 14: Incubation of K3 (2-19-20) in mouse serum

- 1. Sense strand K3 (10 μL 20 μM K3A)
- 2. Anti-sense strand K3 (10 L 20 µM K3B)
- 3. at time 0 (without serum)
- 4. at time 0 (with serum)
- 5. for 30 minutes
- 6. for 1 hour
- 7. for 2 hours
- 8. for 4 hours
- 9. for 12 hours

Fig. 15: Incubation of PKC1/2 (0-22-2) in mouse serum

- 1. for 30 minutes
- 2. for 1 hour
- 3. for 2 hours
- 4. for 4 hours
- 5. for 12 hours
- 6. 2 μ L 100 μ M PKC1/2 (untreated)

Fig. 16: Incubation of S1A/S4B (0-22-2) in human serum

- 1. at time 0 (without serum)
- 2. for 24 hours
- 3. for 12 hours
- 4. for 8 hours
- 5. for 6 hours
- 6. for 4 hours
- 7. for 2 hours

- 8. for 30 minutes
- 9. Sense strand S1A (10 μ L 20 μ M S1A)
- 10. Anti-sense strand S4B (10 μL 20 μM S4B)

Fig. 17: Incubation of K2 (2-22-2) in human serum

- 1. Sense strand K2 (10 μ L 20 μ M K2A)
- 2. Anti-sense strand K2 (10 µL 20 µM K2B)
- 3. at point 0 (without serum)
- 4. for 30 minutes
- 5. for 2 hours
- 6. for 4 hours
- 7. for 6 hours
- 8. for 8 hours
- 9. for 12 hours
- 10. for 24 hours

Results:

dsRNAs without single-strand regions on the 3' ends are much more stable in both human and murine serum than dsRNAs with single-strand 2nt overhangs on the 3' ends (Figures 10 to 14 and 17). After 12 and 24 hours incubation at S1 in murine or human serum, bands in the original size are almost fully retained. On the other hand, in dsRNAs with 2nt overhangs on both 3' ends, the stability in human and murine serum diminishes significantly. After only 4 hours of incubation of S7 (Figures 12 and 13) or K3 (Fig. 14), no bands can be detected in the original size.

In order to increase the stability of dsRNA in serum, it is sufficient if the dsRNA has a smooth end. In mouse serum after 4 hours incubation (Fig. 15, track 4), the bands in the original size are scarcely broken down in comparison with S7 (after 4 hours complete degradation; Fig. 12, track 3).

As an optimal compromise with respect to biological efficacy of dsRNA, the use of dsRNA with a smooth end and a single-strand region of 2 nucleotides can be considered, in which the single-strand overhang should be situated on the 3' end of the anti-sense strand.

The sequences used here are apparent from the following Table 2 and the sequence protocols SQ148-151 and 153-167.

Name	Sequenz- proto- koll-Nr.	dsRNA-Sequenz	
S1	SQ148 SQ149	(A) 5'- CCACAUGAAGCAGCACGACUUC -3' (B) 3'- GGUGUACUUCGUCGUGCUGAAG -5'	0-22-0
S 7	SQ150 SQ151	(A) 5'- CCACAUGAAGCAGCACUU -3' (B) 3'- CUGGUGUACUUCGUCGUGCUG -5'	2-19-2
K1	SQ153 SQ154	(A) 5'- ACAGGAUGAGGAUCGUUUCGCA -3' (B) 3'- UGUCCUACUCCUAGCAAAGCGU -5'	0-22-0
К3	SQ155 SQ156	(A) 5'-GAUGAGGAUCGUUUCGCAUGA-3' (B) 3'-UCCUACUCCUAGCAAAGCGUA-5'	2-19-2
K2	SQ157 SQ158	(A) 5'- ACAGGAUGAGGAUCGUUUCGCAUG -3' (B) 3'- UCUGUCCUACUCCUAGCAAAGCGU -5'	2-22-2
S1A/ S4B	SQ148 SQ159	(A) 5'- CCACAUGAAGCAGCACGACUUC -3' (B) 3'- CUGGUGUACUUCGUCGUGCUGAAG -5'	0-22-2

PKC 1/2	SQ160	(A)	5'- CUUCUCCGCCUCACACCGCUGCAA -3'	
	SQ161	(B)	3'- GAAGAGGCGGAGUGUGGCGACG -5'	2-22-0
S7/S12				
	SQ150	(A)	5'- CCACAUGAAGCAGCACGACUU -3'	0-21-0
	SQ162	(B)	3'- GGUGUACUUCGUCGUGCUGAA -5'	1
S7/S11	SQ150	(A)	5'- CCACAUGAAGCAGCACGACUU -3'	<u> </u>
	SQ150	(B)	3'- CUGGUGUACUUCGUCGUGCUGAA -5'	0 02 0
	20102	((<i>B)</i>	3 - COGGOGOACOUCGOCGOGCOGAA -5	0-21-2
S13	SQ164	(A)	5'- CCACAUGAAGCAGCACGACU -3'	
[SQ165	(B)	3'- CUGGUGUACUUCGUCGUGCUGA -5'	0-20-2
		<u> </u>		
S13/14	SQ164	(A)	5'- CCACAUGAAGCAGCACGACU -3'	
	SQ166	[(B)	3 ~ GGUGUACUUCGUCGUGCUGA -5 ~	0-20-0
		! 		
S4	SQ167	(A)	5'- CCACAUGAAGCAGCACGACUUCUU -3'	
	SQ159	(B)	3'- CUGGUGUACUUCGUCGUGCUGAAG -5'	2-22-2
		 i		
KlA/	SQ153	(A)	5 - ACAGGAUGAGGAUCGUUUCGCA ~3 ~	0-22-2
K2B	SQ158	(B)	3'- UCUGUCCUACUCCUAGCAAAGCGU -5'	
K1B/	SQ154	(A)	5 - ACAGGAUGAGGAUCGUUUCGCAUG -3 -	
K2A	SQ157	(B)	3 - UGUCCUACUCCUAGCAAAGCGU -5 -	2-22-0
S1B/	SQ149	(A)	5'- CCACAUGAAGCAGCACGACUUCUU -3'	
S4A	SQ167	(B)	3'- GGUGUACUUCGUCGUGCUGAAG -5'	2-22-0
		L		

Key to figure: (Headings)

Name

Sequence protocol no.

dsRNA sequence

Table 2

IV. In Vivo Study:

Double-strand RNA (dsRNA) that was derived from the GFP sequence where unspecific dsRNA was injected intravenously into the caudal vein of "GFP laboratory mice" that express the green fluorescent protein (GFP) in all cells that conduct protein biosynthesis. At the end of the experiment, the animals were killed and the GFP expression analyzed in tissue sections and in plasma.

Experimental Protocol:

Synthesis of dsRNA:

By means of an RNA synthesizer (type Expedite 8909, Applied Biosystems, Weiterstadt, Germany), and ordinary chemical methods, the RNA single strands apparent from the sequence protocols and the single strand complementary to them were synthesized. Purification of the crude synthesis products then occurred with HPLC. As columns, NucleoPac PA-100, 9 × 250 mm from the Dionex company were used; 20 mM Tris, 10 mM NaClO₄, pH 6.8, 10% acetonitrile was used as low salt buffer and 20 mM Tris, 400 mM NaClO₄, pH 6.8, 10% acetonitrile as high salt buffer. The flow rate was 3 mL/minute. Hybridization of the single strands to a double strand occurred by heating of the stoichiometric mixture of the single strands in 10 mM sodium phosphate buffer, pH 6.8, 100 mM NaCl, to 80-90°C and subsequent slow cooling over 6 hours to room temperature.

Experimental Animal Keeping and Performance of the Experiment

The transgenic laboratory mouse strain TgN (GFPU) 5Nagy (Jackson Laboratory, Bar Harbor, Maine, USA) was used, which expresses GFP (with a beta-actin promoter and a CMV intermediate early enhancer) in all previously investigated cells (Hadjantonakis AK et al. 1993, Mech. Dev. 76: 79-90; Hadjantonakis AK et al., 1998 Nature Genetics 19: 220-222). GFP-transgenic mice can be clearly distinguished from the corresponding wild types (WT) by means of fluorescence (with a UV hand lamp). For breeding, the corresponding WT was paired with a heterozygous GFP type.

The experiment was performed according to the German Animal Protection Regulations. The animals were kept under controlled environmental conditions in groups of 3-5 animals in type III Makrolon cages from the Ehret company, Emmendingen, at a constant temperature of 22°C and a light-dark rhythm of 12 h. Softwood granulate 8/15 from the Altromin company, Lage, was used as sawdust litter. The animals received tap water and standard feed Altromin 1324 pelletized (Altromin) ad libitum.

To perform the experiment, the heterozygous GFP animals were kept in groups of 3 animals each in cages, as described above. Injections of the dsRNA solution occurred intravenously (IV) into the caudal vein in 12-hour cycles (between 5:30 and 7:00 a.m. and between 5:30 and 7:00 p.m.) over 5 days. The injection volumes were 60 μ L for per 10 g of body weight and the dose was 2.5 mg dsRNA and 50 μ g per kg of body weight. Division into groups was as follows:

Group A: PBS (phosphate buffered saline) 60 µL per 10 kg of body weight,

Group B: 2.5 mg per kg of body weight of a nonspecific control dsRNA (K1 control with smooth ends and a double-strand region of 22 nucleotide pairs),

Group C: 2.5 mg per kg of body weight of another unspecific control dsRNA (K3 control with 2nt overhangs on both 3' ends and a double-strand region of 19 nucleotide pairs),

Group D: 2.5 mg per kg of body weight dsRNA (specific against GFP, subsequently referred to as S1, with smooth ends and a double-strand region of 22 nucleotide pairs),

Group E: 2.5 mg dsRNA per kg of body weight (specific against GFP, subsequently referred to as S7, with 2nt overhangs on the 3' ends of both strands and a double-strand region of 19 nucleotide pairs)

Group F: 50 µg S1-dsRNA per kg of body weight (i.e., 1/50 of the dose of group D).

After the last injection of a total of 10 injections, the animals were killed after 14-20 h and the organs and blood taken as described.

Organ Removal:

Immediately after killing the animals by CO₂ inhalation, blood and different organs were taken (thymus, lungs, heart, spleen, stomach, intestines, pancreas, brain, kidneys and liver). The organs were rinsed briefly in cold sterile PBS and divided with a sterile scalpel. One part was fixed for immunohistochemical staining in methylcarnoys (MC, 60% methanol, 30% chloroform, 10% glacial acetic acid) for 24 hours, one part was shock frozen for frozen sections and for protein isolation immediately in liquid nitrogen and stored at -80°C, and another smaller part was frozen for RNA isolation in RNAeasy-Protect (Qiagen) at -80°C. The blood was immediately held for 30 minutes on ice after sampling, mixed, centrifuged for 5 minutes at 2000 rpm (Mini spin, Eppendorf), the supernatant removed and stored at -80°C (here referred to as plasma).

Processing of the Biopsies:

After 24 h of fixation of the tissue in MC, the tissue pieces were dehydrated in an increasing alcohol series at RT (room temperature): every 40 minutes 70% methanol, 80% methanol, $2 \times 96\%$ methanol and $3 \times 100\%$ isopropanol. The tissue was then heated in 100% isopropanol to 60° C in an incubator, then incubated for 1 hour in an isopropanol/paraffin mixture at 60° C and $3 \times 100\%$ for 2 hours in paraffin and then imbedded in paraffin. For immunoperoxidase staining, tissue sections with 3 μ m section thickness were prepared with a rotary microtome (Leica), mounted on slides (Superfrost, Vogel) and incubated for 30 minutes at 60° C in an incubator.

Immunoperoxidase Staining versus GFP:

The sections were deparaffinized 3×5 minutes in xylene, rehydrated in an increasing alcohol series (3×3 min 100% ethanol, 2×2 min 95% ethanol) and then incubated for 20 minutes in 3% H_2O_2 /methanol to block endogenous peroxidases. All incubation steps were conducted subsequently in a moist chamber. After 3×3 minutes of washing with PBS, they were incubated

with the first antibody (goat anti-GFP, sc-5384, Santa Cruz, Biotechnology) 1:500 in 1% BSA/PBS overnight at 4°C. Incubation with the biotinylated secondary antibody (donkey antigoat; Santa Cruz Biotechnology; 1:2000 dilution) occurred for 30 minutes at RT, whereupon they were incubated for 30 minutes with Avidin D Peroxidase (1:2000 dilution, Vector Laboratories). After each antibody incubation, the sections were washed 3 × 3 min in PBS and the buffer residues removed from the sections with wadding. All antibodies were diluted in 1% bovine serum albumin (BSA)/PBS. Staining with 3,3'-diaminobenzidine (DAB) was conducted with the DAB substrate kit (Vector Laboratories) according to the manufacturer's data. As nuclear counterstain, hematoxylin III according to Gill (Merck) was used. After dehydration in a rising alcohol series at 3 × 5 minutes xylene, the sections were covered with Entellan (Merck). Microscopic evaluation of staining occurred with the IX50 microscope from Olympus, equipped with a CCD camera (Hamamatsu).

Protein Isolation from Tissue Pieces:

800 μ L isolation buffer (50 mM HEPES, pH 7.5, 150 mM NaCl; 1 mM EDTA; 2.5 mM EGTA; 10% glycerol; 0.1% Tween; 1 mM DTT, 10 mM β -glycerol phosphate; 1 mM NaF; 0.1 mM Na₃VO₄ with a protease inhibitor tablet "Complete" from Roche) were added to the still frozen tissue pieces and homogenized 2 × 30 seconds with an Ultraturrax (DIAX 900, dispersal die 6 G, Heidolph), and cooled in between on ice. After 30 minutes of incubation on ice, they were mixed and centrifuged for 20 minutes at $1000 \times g$, 4°C (3K30, Sigma). The supernatant was incubated for another 10 minutes on ice, mixed and centrifuged for 20 minutes to 15000 × g, 4°C. A protein determination according to Bradford, 1976, modified after Zor & Selinger, 1996, was conducted with the supernatant with the Roti-Nanoquant system of Roth according to the data of the manufacturer. BSA (bovine serum albumin) in concentrations from 10 to 100 μ g/mL was used for the protein calibration line.

SDS Gel Electrophoresis:

Electrophoretic separation of the proteins occurred in a multigel long electrophoresis chamber from Biometra with a denaturing, discontinuous 15% SDS-PAGE (polyacrylamide gel electrophoresis) according to Lämmli (Nature 277: 680-685, 1970). For this purpose, a

separation gel 1.5 mM thick was initially poured: 7.5 mL acrylamide/bisacrylamide (30%, 0.9%), 3.8 mL 1.5 M tris/HCl, pH 8.4, 150 μL 10% SDS, 3.3 mL doubly distilled water, 250 μL ammonium persulfate (10%), 9 μL TEMED (N,N,N',N'-tetramethylenediamine) and coated up to polymerization with 0.1% SDS. The collected gel was then poured: 0.83 μL acrylamide/bisacrylamide (30%/0.9%), 630 μL 1 M Tris/HCl, pH 6.8, 3.4 mL doubly distilled water, 50 μL 10% SDS, 50 μL 10% ammonium persulfate, 5 μL TEMED.

Before application of the gel, the proteins were mixed with a corresponding amount of 4-fold sample buffer (200 mM tris, pH 6.8, 4% SDS, 100 mM DTT (dithiotreithol), 0.02% bromophenol blue, 20% glycerol), denatured for 5 minutes in a heating unit at 100°C, briefly centrifuged after cooling on ice and applied to the gel. The same plasma or protein amounts were used per track (3 µL plasma and 25 µg total protein each). Electrophoresis occurred water-cooled at RT and a constant 50 V. The protein gel marker from Bio-Rad (kaleidoscope prestained standard) was used as length standard.

Western Blot and Immune Detection:

Transfer of the proteins from SDS-PAGE to a PVDF (polyvinyl difluoride) membrane (Hybond-P, Amersham) occurred in the semi-dry method according to Kyhse-Anderson (J. Biochem. Biophys. Methods 10: 203-210, 1984) at RT and a constant current intensity of 0.8 mA/cm² for 1.5 h. A Tris/glycine buffer was used as transfer buffer (39 mM glycine, 465 mM Tris, 0.1% SDS and 20% methanol). To check the electrophoretic transfer, both the gels after blotting and the blot membranes after immune detection were stained with Coomassie (0.1% Coomassie G250, 45% methanol, 10% glacial acetic acid). For saturation of nonspecific bonds, the blot membrane after transfer was incubated in 1% skim milk powder/PBS for 1 h at RT. It was then washed three times for 3 minutes with 0.1% Tween-20/PBS. All subsequent antibody incubations and washing steps occurred in 0.1% Tween-20/PBS. Incubation with the primary antibody (goat anti-GFP, sc 5384, Santa Cruz Biotechnology) occurred in a dilution of 1:1000 for 1 h at RT. It was then washed 3 × 5 min and incubated for 1 hour at RT with a secondary antibody (donkey anti-goat IgG horseradish peroxidase labeled, Santa Cruz Biotechnology) in a dilution of 1:1000. Detection occurred with the ECL system from Amersham according to the data of the manufacturer.

Figures 18 to 20 show inhibition of GFP expression after intravenous injection of dsRNA specifically directed against GFP with immunoperoxidase staining relative to GFP on 3 μm paraffin sections. During the experiment, dsRNA directed against GFP with a double-strand region of 22 nucleotide (nt) pairs without overhangs on the 3' ends (D) and the corresponding unspecific control dsRNA (B), as well as dsRNA directed specifically against GFP with a double-strand region containing 19 nucleotide pairs with 2 nt overhangs on the 3' ends (E) and the corresponding nonspecific control dsRNA (C) were applied in 12-hour cycles over 5 days. (F) received 1/50 of the dose of group D. Animals without dsRNA administration (A) and WT animals were investigated as additional controls. Fig. 18 shows inhibition of GFP expression in kidney sections, Fig. 19 in heart tissue and Fig. 20 in pancreas tissue. Figures 21 to 23 show Western blot analyses of GFP expression in plasma and tissues. Inhibition of GFP expression in plasma is shown in Fig. 21, in the kidneys in Fig. 22 and in the heart in Fig. 23. Total protein isolates from different animals are shown in Fig. 23. The same total protein amounts per track were applied. In the animals, to which unspecific control dsRNA was administered (animals of groups B and C), the GFP expression relative to animals that received no dsRNA is not reduced. Animals that received dsRNA specifically directed against GFP with 2 nt overhangs on the 3' ends of both strands and a double-strand region containing 19 nucleotide pairs exhibited a significantly inhibited GFP expression in the investigated tissues (heart, kidneys, pancreas and blood), compared with the untreated animals (Figures 18 to 23). In the animals of groups D and F, in which dsRNA directed specifically against GFP with smooth ends and double-strand region containing 22 nucleotide pairs was administered, only those animals that received dsRNA in a dose of 50 µg/kg of body weight per day exhibited a specific inhibition of GFP expression, which, however, was much less pronounced than that of the animals in group E. The summarizing evaluation of GFP inhibition in the tissue sections and in Western blot shows that inhibition of GFP expression in blood and the kidneys is strongest (Figures 18, 21 and 22).

V. Inhibition of Gene Expression of EGF Receptor with dsRNA as a Therapeutic Approach in Forms of Cancer with EGFR Overexpression or EGFR-induced Proliferation:

The epidermal growth factor (EGF) receptor (EGFR) belongs to the receptor tyrosine kinases, transmembrane proteins with an intrinsic tyrosine kinase activity, which participate in the control

of a series of cellular processes, like cell growth, cell differentiation, migratory processes or cell vitality (review in: Van der Geer et al. 1994). The EGFR family consists of 4 members, EGFR (ErbB1), HER2 (ErbB2, HER3 (ErbB3) and HER4 (ErbB4) with a transmembrane domain, a cysteine-rich extracellular domain and an intracellular catalytic domain. The sequence of EGFR, a 170 kDa protein, has been known since 1984 (Ullrich et al., 1984).

EGFR is activated by peptide growth factors, like EGF, TGFα (transforming growth factor), amphiregulin, beta-cellulin, HB-EGF (heparin-binding EGF-like growth factor) and neureguline. Ligand bonding induces formation of homo- or heterodimers with subsequent autophosphorylation of cytoplasmic tyrosine (Ullrich & Schlessinger, 1990; Alroy & Yarden, 1997). The phosphorylated amino acids form the bonding sites for a number of proteins that participate in the proximal steps of signal conduction in a complex network. EGFR participates in a wide variety of tumor diseases and is therefore a suitable target for therapeutic approaches (Huang & Harari, 1999). The mechanisms that lead to an aberrant EGFR activation can be due to overexpression, amplification, constituted activation of mutant receptor forms or autocrine loops (Voldborg et al., 1997). An overexpression of EGFR was described for a number of tumors, like breast cancer (Walker & Dearing, 1999), non-small lung carcinoma (Fontanini et al., 1998), pancreatic carcinomas, colon carcinoma (Salomon et al., 1995) and glioblastomas (Rieske et al., 1998). No efficient and specific therapeutic agents have thus far been available for malignant glioblastomas, in particular.

Practical Example:

To demonstrate the efficacy of dsRNA during specific inhibition of EGFR gene expression, U-87 MG cells (human glioblastoma cells), ECCAC (European Collection of Animal Cell Cultures) no. 89081402 were used, which were transfected with dsRNA directed specifically against the EGF receptor (sequence protocol SQ 51). After about 72 hours' incubation, the cells were harvested, the protein isolated and the EGFR expression investigated in the Western blot method.

Experimental Protocol:

dsRNA Synthesis:

By means of an RNA synthesizer (type Expedite 8909, Applied Biosystems, Weiterstadt, Germany) and an ordinary chemical method, the RNA single strands apparent from the sequence protocols and the single strands complementary to them were synthesized. Purification of the crude synthesis products then occurred with HPLC. The column NucleoPac PA-100, 9 × 250 mm, from the Dionex company was used; 20 mM Tris, 10 mM NaClO₄, pH 6.8, 10% acetonitrile was used as low salt buffer and 20 mM Tris, 400 mM NaClO₄, pH 6.8, 10% acetonitrile as high salt buffer. The flow rate was 3 mL/minute. Hybridization of the single strands to a double-strand occurred by heating of the stoichiometric mixture of the single strands in 10 mM sodium phosphate buffer, pH 6.8, 100 mM NaCl, to 80-90°C and subsequent slow cooling over 6 hours to room temperature.

Seeding of the Cells:

All cell culture work was conducted under sterile conditions and an appropriate work bench (HS18, Her safe, Kendro, Heraeus). Cultivation of U-87 MG cells occurred in an incubator (CO₂ incubator T20, Hera cell, Kendro, Heraeus) at 37°C, 5% CO₂ and saturated atmospheric humidity in DMEM (Dulbecco's modified eagle medium, Biochrom) with 10% FCS (fetal calf serum, Biochrom), 2 mM L-glutamine (Biochrom), 1 mM sodium pyruvate (Biochrom), 1 × NEAA (nonessential amino acids, Biochrom) and penicillin/streptomycin (100 IU/100 μg/mL, Biochrom). In order to keep the cells in the exponential growth phase, the cells were subjected to passage every 3 days. 24 hours before application of dsRNA by transfection, the cells were trypsinized (10 × trypsin/EDTA, Biochrom, Germany) and seeded with a cell density of 5 × 10⁵ cells/well in a 6-well plate (6-well plates, Labor Schubert & Weiss GmbH) in 1.5 mL growth medium.

Application of dsRNA in Cultivated U-87 MG Cells:

Application of dsRNA occurred by transfection with OLIGOFECTAMINETM reagent (Life Technologies) according to the information of the manufacturer. The total transfection volume was 1 mL. The dsRNA was first diluted in serum-free medium: for this purpose, 0.5 μ L of a 20

μm stock solution of dsRNA specifically directed against EGFR and 9.5 μL of a 20 μm stock solution of unspecific dsRNA (K1A/K2B) with 175 μL serum-free medium were diluted per well (200 nM dsRNA in transfection charge and 10 nM specific EGFR-dsRNA). The OLIGOFECTAMINETM reagent was also diluted in serum-free mediums: 3 μL with 12 μL medium per well and then incubated for 10 minutes at room temperature. The diluted OLIGOFECTAMINETM reagent was then added to the dsRNAs diluted in medium, mixed and incubated for another 20 minutes at RT. During incubation, a medium change was performed. The cells were washed for this purpose once with 1 mL serum-free medium and incubated further in the incubator with 800 μL serum-free medium, up to addition of dsRNA/OLIGOFECTAMINETM reagent. After addition of 200 μL dsRNA/OLIGOFECTAMINETM reagent per well, the cells were further incubated in the incubator to protein isolation.

Protein Isolation:

About 72 hours after transfection, the cells were harvested and protein isolation carried out. For this purpose, the medium was removed and the cell monolayer washed once with PBS. After addition of 200 µL protein isolation buffer (1 × protease inhibitor "Complete", Roche, 50 mM HEPES, pH 7.5, 1509 mM NaCl, 1 mM EDTA, 2.5 mM EGTA, 10% glycerol, 0.1% Tween-20, 1 mM DTT, 10 mM β-glycerol phosphate, 1 mM NaF, 0.1 mM Na₃VO₄), the cells were separated by means of a cell scraper, incubated for 10 minutes on ice, transferred to an Eppendorf reaction vessel and stored at -80°C for at least 30 minutes. After thawing, the lysate was homogenized on stage 3 for 10 seconds with a disperser (DIAX 900, dispersing die 6G, Heidolph Instruments GmbH & Co KG, Schwabach), incubated on ice for 10 minutes and centrifuged for 15 minutes at 14000 × g, 4°C (3K30, Sigma). A protein determination was conducted with the supernatant according to Bradford with the Roti® Nanoquant system from Roth (Roth GmbH & Co., Karlsruhe) according to the information of the manufacturer. For this purpose, 200 μL protein solution in appropriate dilution was mixed with 800 μL 1 × working solution and the extinction measured in semi-microcells at 450 and 590 nm versus distilled water in a Beckman spectrophotometer (DU 250). The corresponding BSA dilutions were used for the calibration line (beaded BSA, Sigma).

SDS Gel Electrophoresis:

Electrophoretic separation of the proteins occurred in a multi-gel long electrophoresis chamber from Biometra with a denaturing, discontinuous 7.5% SDS-PAGE (polyacrylamide gel electrophoresis) according to Lämmli (Nature 277: 680-685, 197). For this purpose, a separation gel was initially poured with 1.5 mM thickness: 3.7 mL acrylamide/bisacrylamide (30%, 0.9%), 3.8 mL 1 M Tris/HCl, pH 8.4, 150 μL 10% SDS, 7.15 mL doubly distilled water, 150 μL ammonium persulfate (10%), 9 μL TEMED (N,N,N',N'-tetramethylenediamine) and coated with 0.1% SDS to polymerization. The collection gel was then poured: 0.83 mL acrylamide/bisacrylamide (30%/0.9%), 630 μL 1 M Tris/HCl, pH 6.8, 3.4 mL doubly distilled water, 50 μL 10% SDS, 50 μL 10% ammonium persulfate, 5 μL TEMED.

For application to the gel, the protein samples were mixed 1:3 with 4 × sample buffer (200 mM tris, pH 6.8, 4% SDS, 100 mM DTT (dithiotreithol), 0.02% bromophenol blue, 20% glycerol), denatured for 5 minutes at 100°C, briefly centrifuged after cooling on ice and applied to the gel. 35 µg total protein was applied per track. The run occurred water cooled at RT and a constant 50 V. The kaleidoscope protein gel marker (BioRad) was used as length standard.

Western Blot and Immunodetection:

Transfer of the proteins from SDS-PAGE to a PVDF (polyvinyl difluoride) membrane (Hybond-P, Amersham) occurred in the semi-dry method according to Kyhse-Anderson (J. Biochem. Biophys. Methods 10: 203-210, 1984) at RT and a constant current intensity of 0.5 mA/cm² for 1.5 h. The following were used as transfer buffer: cathode buffer (30 mM Tris, 40 mM glycine, 10% methanol, 0.01% SDS; pH 9.4), anode buffer I (300 mM Tris, pH 10.4, 10% methanol) and anode buffer II (30 mM Tris, pH 10.4, 10% methanol). Before combining the blot stack with 3 mm Whatman paper (Schleicher & Schüll), the gel was incubated in the cathode buffer and the PVDF membrane (30 seconds beforehand in 100% methanol) in anode buffer II (5 min): 2 layers 3 mm paper (anode buffer I), 1 layer 3 mm paper (anode buffer II), PVDF membrane, gel, 3 layers 3 mm paper (cathode buffer). To check electrophoretic transfer, both the gels after blotting and the blot membranes after immunodetection were stained with Coomassie (0.1% Coomassie G250, 45% methanol, 10% glacial acetic acid).

The blot membrane was incubated after transfer in 1% skim milk powder/ PBS/0.1% Tween-20 for 1 h at RT. It was then washed three times for 3 minutes with 0.1% Tween-20/PBS. All subsequent antibody incubations and washing steps occurred in 0.1% Tween-20/PBS. Incubation with the primary antibody (human EGFR extracellular domain, specific goat IgG, catalog no. AF231, R&D Systems) occurred on a rocking device for 2 h at RT and a concentration of 1.5 μg/mL. It was then washed 3 × for 6 minutes and incubated for 1 hour at RT with the secondary antibody (donkey anti-goat IgG horseradish peroxidase label, Santa Cruz Biotechnology) (diluted 1:10000). After washing (3 × 3 min in PBS/0.1% Tween-20), detection occurred immediately with ECL reaction (enhanced chemiluminescence): 200 μL solution A (250 mM luminol, Roth, dissolved in DMSO), 89 μL solution B (90 mM p-coumaric acid, Sigma, dissolved in DMSO) and 2 mL 30% H₂O₂ solution were pipetted into 18 mL distilled water. Depending on the membrane size, 4-6 mL was pipetted directly onto the membrane, incubated for 1 minute at RT and then an x-ray film (Biomax MS, Kodak) applied immediately.

The sequences used here are shown in the following Table 3 and in the sequence protocols S!153, 157, 158, 168-173.

ES-7	SQ168 SQ169	(A) (B)	5'- AACACCGCAGCAUGUCAAGAU -3' 3'- UUUUGUGGCGUCGUACAGUUC -5'	2-19-2
ES-8	SQ170 SQ171	(A) (B)	5'- AAGUUAAAAUUCCCGUCGCUAU -3' 3'- CAAUUUUAAGGGCAGCGAUAGU -5'	2 ⁵ -19-2 ⁵
ES2A/ ES5B	SQ172 SQ173	(A) (B)	5'- AGUGUGAUCCAAGCUGUCCCAA -3' 3'- UUUCACACUAGGUUCGACAGGGUU -5'	0-22-2
K2	SQ157 SQ158	(A) (B)	5'- ACAGGAUGAGGAUCGUUUCGCAUG -3' 3'- UCUGUCCUACUCCUAGCAAAGCGU -5'	2-22-2

K1A/ K2B	SQ153 SQ158	(A)	5'- ACAGGAUGAGGAUCGUJUCGCA 3'- UCUGUCCUACUCCUAGCAAAGCGU	-3´ -5´	0-22-2
-------------	----------------	-----	--	------------	--------

Table 3

Inhibition of EGFR Expression in U-87 MG Glioblastoma Cells:

24 hours after seeding of the cells, they were transfected with 10 nM dsRNA as stated (oligofectamine). After 72 hours, the cells were harvested and the protein isolated. Separation of the proteins occurred in 7.5% SDS-PAGE. 35 μg total protein was applied per track. Fig. 4 shows the corresponding Western blot analysis, from which it follows that the EGFR expression after transfection in U-87 MG cells can be significantly inhibited relative to the corresponding controls with the dsRNA specifically directed against the EGFR gene with a 2 nt overhang on the 3' end of the anti-sense strand. This inhibition of expression of an endogenous gene by specific dsRNA therefore confirms the results stated in the practical example II concerning inhibition of expression of an artificial gene introduced to the cell after transient transfection. The inhibition of EGFR expression mediated by ES-7 and ES-8 is much lower. The dsRNAs used in Fig. 24 can be gathered from Table 3.

VI. Inhibition of Expression of the Multidrug Resistance Gene 1 (MDR1):

Experimental Protocol:

In vitro detection for blocking of MDR1 expression was conducted in the colon carcinoma cell line LS174T (ATCC – American Type Culture Collection, Tom et al., 1976). It is known of this cell line that expression of MDR1 can be induced by addition of rifampoin to the culture medium (Geick et al., 2001). Transfections were conducted with different commercial transfection kits (Lipofectamine, Oligofectamine, both Invitrogen; TransMessenger, Qiagen), in which the TransMessenger transfection kit also proved to be best suited for this cell line.

To run the RNA interference experiments, 4 short double-strand ribonucleic acids R1-R4 were used, whose sequences are shown in Table 4. The ribonucleic acids are homologous with sections of the coding sequence of MDR1 (sequence protocol SQ 30). Sequences R1-R3 consists of a 22-mer sense and a 24-mer anti-sense strand, in which the forming double-strand has a two nucleotide overhang on the 3' end of the anti-sense strand (0-22-2). The sequence R4 corresponds to R1, but consists of a 19-mer double strand with 2 nucleotide overhangs on each 3' end (2-19-2).

<u>Name</u>	Sequenz- proto- koll-Nr.	Sequenz	Position in Daten- bank-# AF016535
Seq	SQ141	5'- CCA UCU CGA AAA GAA GUU AAG A-3'	1320-1342
Rl	SQ142	3'-UG GGU AGA GCU UUU CUU CAA UUC U-5'	1335-1318
Seq	SQ143	5'- UAU AGG UUC CAG GCU UGC UGU A-3'	2599-2621
R2	SQ152	3'-CG AUA UCC AAG GUC CGA ACG ACA U-5'	2621-2597
Seq	SQ144	5'- CCA GAG AAG GCC GCA CCU GCA U-3'	3778-3799
:R3	SQ145	3'-UC GGU CUC UUC CGG CGU GGA CGU A-5'	3799-3776
Seq	SQ146	5'- CCA UCU CGA AAA GAA GUU AAG-3'	1320-1341
R4	SQ147	3'-UG GGU AGA GCU UUU CUU CAA U -5'	1339-1318

<u> </u>	•										1
<u> </u>		! !									Position in
'	!										Daten-
											bank-#
											AF402779
K1A/	SQ153	5'-	ACA	GGA	UGA	GGA	UCG	บบบ	CGC	A-3'	2829-2808
K2B	SQ158	3'-UC	UGU	CCU	ACU	CCU	AGC	AAA	GCG	U-5'	2808-2831

Key to figure: (Headings)

Name

Sequence Protocol no.

Sequence

Table 4

The sequences shown in Table 4 are shown again in the sequence protocol as sequences SO 141-147, 152, 153, 158. The dsRNAs were transfected in a concentration of 175 nM as double charges into the cells, which were seeded the day before in 12-well plates at 3.8×10^5 cells/well. For this purpose, 93.3 µL EC-R buffer (TransMessenger kit, Qiagen, Hilden) was mixed with 3.2 μL Enhancer-R per transfection charged, thoroughly mixed and incubated for 5 minutes at room temperature. After addition of 6 µL TransMessenger transfection reagent, the transfection charges were vigorously mixed for 10 seconds and incubated for 10 minutes at room temperature. In the meantime, the medium was withdrawn from the cells by suction, washed once with PBS (phosphate buffered saline) and 200 µL fresh medium without FCS per well was added to the cells. After 10 minutes of incubation, 100 µL FCS-free medium was pipetted into the transfection charged, mixed and the mixture pipetted dropwise into the cells (the dsRNA concentration of 175 µm refers to 400 µL of medium total volume). The dsRNA/TransMessenger complexes were incubated for 4 hours at 37°C with the cells in FCSfree medium. A medium change was then conducted, in which the fresh medium contained 10 μm Rifampicin and 10% FCS. As control, and unspecific dsRNA sequence, having no homology with the MDR1 gene sequence, was used (K) and a MOCK transfection carried out, which contained all reagents, except dsRNA.

The cells were harvested after 24, 48 and 72 hours and a total RNA extracted with the RNeasy-Mini-Kit from Qiagen. 10 μ g total RNA of each sample was separated on a 1% agarose formaldehyde gel electrophoretically, blotted onto a nylon membrane and specific probes, random marked with 5'- α ³²-P-dCTP, were hybridized exposed first relative to MDR1 and, after stripping of the blot, relative to GAPDH as internal control and exposed on x-ray film.

The x-ray films were digitized (Image Master, VDS Pharmacia) and quantified with the Image-Quant software. Balancing of the MDR1-specific bands with the corresponding GAPDH bands was then carried out.

Results:

Figures 25 and 26 show Northern blots (Figures 25a, 26a) with quantitative evaluation of the MDR1-specific bands after balancing with the corresponding GADPH values (Figures 25b, 26b). A reduction of MDR1-mRNA by up to 55% could be observed in comparison with MOCK transfection and by up to 45% in comparison with unspecific control transfection. After 48 h, a significant reduction of MDR1-mRNA levels was achieved with the dsRNA constructs designated R1, R2, R3 (Table 4). After 48 hours, no significant reduction relative to the controls was observed with the R4 dsRNA constructs (Figures 26a, 26b). After 72 hours, a much stronger reduction of MDR1-mRNA levels was observed with R1, R2 and R2 relative to the controls, in comparison with the 48-hour values (Figures 25a and 25b).

With R4 at this point a significant reduction of MDR1-mRNA levels could also be achieved. The constructs with a 2 nt overhang on the 3' end of the anti-sense strand and a double-strand region of 22 nucleotide pairs therefore reduced the MDR1-mRNA more efficiently than the constructs of the 2 nt overhangs on the 3' ends of both strands (anti-sense and sense strand) and a double-strand region of 19 nucleotide pairs relatively independently of the sequence region homologous to the MDR1 gene (after 48 hours; Fig. 26b). The results therefore confirm the inhibition of EGFR gene expression described in practical example 4 by specific dsRNAs after transfection in U-87 MG cells.

The transfection efficiency was determined in a separate experiment by means of a Texas-Red-labeled DNA oligonucleotide (TexRed-A (GATC)₅T; also 175 nM transfected) (Figures 27a, 27b; 400-fold magnification, 48 hours after transfection). The amount is about 50% based on the red fluorescent cells, in comparison with the total cell count. If one considers the transfection rate of the cells at about 50%, the observed reduction of MDR1-mRNA level lies at about 45-55% (compared with the controls), with the conclusion that in all cells that could be transfected

successfully with specific dsRNA, the MDR1-mRNA was almost fully broken down and specifically.

Literature:

Alroy I & Yarden Y (1997): The Erb signalling network in embryogenesis and oncogenesis: signal deversification through combinatorial ligand-receptor interactions. FEBS Letters 410: 83-86.

Bass, B.L., 2000. Double-stranded RNA as a template for gene silencing. Cell 101, 235-238.

Bosher, J.M. and Labouesse, M., 2000. RNA interference: genetic wand and genetic watchdog. Nature Cell Biology 2, E31-E36.

Bradford MM (1976): Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.

Caplen, N.J., Fleenor, J., Fire, A., and Morgan, R.A., 2000. dsRNA-mediated gene silencing in cultured *Drosophila* cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95-105.

Clemens, J.C., Worby, C.A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B.A., and Dixon, J.E., 2000. Use of double-stranded RNA interference in *Drosophila* cell lines to dissect signal transduction pathways. *Proc.Natl.Acad.Sci.USA* 97, 6499-6503.

Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton V, Shak S, Liebermann G & Slamon DJ (1999): Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that

has progressed after chemotherapy for metastatic disease. Journal of Clinical Oncology 17: 2639-2648.

Ding, S.W., 2000. RNA silencing. Curr. Opin. Biotechnol. 11, 152-156.

Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. Nature 391, 806-811.

Fire, A., 1999. RNA-triggered gene silencing. Trends Genet. 15, 358-363.

Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T., and Turner, D.H., 1986. Improved free-energy parameters for prediction of RNA duplex stability. Proc. Natl. Acad. Sci. USA 83, 9373-9377.

Geick, A., Eichelbaum, M., Burk, O. (2001). Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J. Biol. Chem. 276 (18), 14581-14587.

Fontanini G, De Laurentiis M, Vignati S, Chine S, Lucchi M, Silvestri V, Mussi A, De Placido S, Tortora G, Bianco AR, Gullick W, Angeletti CA, Bevilaqua G & Ciardiello F (1998): Evaluation of epidermal growth factor-related growth factors and receptors and of neoangiogenesis in completely resected stage I-IIIA non-small-cell lung cancer: amphiregulin and microvessel count are independent prognostic factors of survival. Clinical Cancer Research 4: 241-249.

Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J., 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells. Nature 404, 293-296.

Higgins, C.F. (1995). The ABC of channel regulation. Cell, 82, 693-696.

Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M & Nagy A (1993): Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev. 76: 79-90.

Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M & Nagy A (1998): Non-invasive sexing of preimplantation mammalian embryos. Nature Genetics 19: 220-222.

Kyhse-Anderson J (1984): Electroblotting of multiple gels: A simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J. Biochem. Biophys. Methods 10: 203-210.

Lämmli UK (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277: 680-685.

Loc, T.W., and Clarke, D.M. (1999) Biochem. Cell Biol. 77, 11-23.

Huang SM & Harari PM (1999): Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. Investigational New Drugs 17: 259-269.

Limmer, S., Hofmann, H.-P., Ott, G., and Sprinzl, M., 1993. The 3'-terminal end (NCCA) of tRNA determines the structure and

stability of the aminoacyl acceptor stem. Proc. Natl. Acad. Sci. USA 90 , 6199-6202.

Montgomery, M.K. and Fire, A., 1998. Double-stranded RNA as a mediator in sequence-specific genetic silencing and cosuppression. Trends Genet. 14, 255-258.

Montgomery, M.K., Xu, S., and Fire, A., 1998. RNA as a target of double-stranded RNA-mediated genetic interference in *Caeno-rhabditis elegans*. Proc. Natl. Acad. Sci. USA 95, 15502-15507.

Rieske P, Kordek R, Bartkowiak J, Debiec-Rychter M, Bienhat W & Liberski PP (1998): A comparative study of epidermal growth factor (EGFR) and mdm2 gene amplification and protein immunoreactivity in human glioblastomas. Polish Journal of Pathology 49: 145-149.

Robert, J. (1999). Multidrug resistance in oncology: diagnostic and therapeutic approaches. Europ J Clin Invest 29, 536-545.

Stavrovskaya, A.A. (2000) Biochemistry (Moscow) 65 (1), 95-106.

Salomon DS, Brandt R, Ciardiello F & Normanno N (1995): Epidermal growth factor related peptides and their receptors in human malignancies: Critical Reviews in Oncology and Haematology 19: 183-232.

Tom, B.H., Rutzky, L.P., Jakstys, M.M., Oyasu, R., Kaye, C.I., Kahan, B.D. (1976), In vitro, 12, 180-191.

Tsuruo, T., Iida, H., Tsukagoshi, S., Sakurai, Y. (1981). Cvercoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res, 41, 1967-72.

Ui-Tei, K., Zenno, S., Miyata, Y., and Saigo, K., 2000. Sensitive assay of RNA interference in *Drosophila* and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett. 479, 79-82.

Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Liebermann TA, Schlessinger J et al. (1984): Human epidermal growth factor receptor cDNA sequences and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309: 418-425.

Ullrich A & Schlessinger J (1990): Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203-212.

Van der Geer P, Hunter T & Linberg RA (1994): Receptor protein-tyrosine kinases and their signal transduction pathways. Annual review in Cell Biology 10: 251-337.

Voldborg BR, Damstrup L, Spang-Thopmsen M & Poulser HS (1997): Epidermal growth factor Receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Annuals of Oncology 8: 1197-1206.

Walker RA & Dearing SJ (1999): Expression of epidermal growth factor receptor mRNA and protein in primary breast carcinomas. Breast Cancer Research Treatment 53: 167-176.

Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P., 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33.

Zor T & Selinger Z (1996): Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal. Biochem. 236: 302-308.

Claims

1. Method for inhibition of expression of a target gene in a cell, comprising the following steps:

introduction of at least one double-strand ribonucleic acid (dsRNA I) in an amount sufficient to inhibit expression of the target gene,

in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs, and in which one strand (as1) or at least a section of one strand (as1) of the double-strand structure is complementary to the target gene,

and in which the dsRNA has an overhang formed from 1 to 4 nucleotides at least on one end (E1, E2) of dsRNA I.

- 2. Method according to Claim 1, in which the dsRNA has the overhang on a 3' end of one strand (as1) and/or on the 3' end of the other strand (ss1).
- 3. Method according to Claim 1 or 2, in which the dsRNA I is formed smooth on one end (E1, E2).
- 4. Method according to Claim 3, in which the smooth end (E1, E2) contains the 5' end of one strand (as1).
- 5. Method according to one of the preceding claims, in which the overhang is formed from 1 to 4 nucleotides, preferably 1 or 2 nucleotides.
- 6. Method according to one of the preceding claims, in which at least one additional double-strand ribonucleic acid (dsRNA II), formed according to the dsRNA I according to one of the preceding claims, is introduced to the cell, in which one strand (as1) or at least a section of one strand (as1) of dsRNA I is complementary to a first region (B1) of the target gene, and in which

an additional strand (as2) or at least a section of the additional strand (as2) of dsRNA II is complementary to a second region (B2) of the target gene.

- 7. Method according to one of the preceding claims, in which the dsRNA I and/or dsRNA II have a length of less than 25, preferably 19 to 23, consecutive nucleotide pairs.
- 8. Method according to one of the preceding claims, in which the first region (B1) and the second region (B2) overlap or abut each other in sections.
- 9. Method according to one of the preceding claims, in which the first region (B1) and the second region (B2) are spaced from each other.
- 10. Method according to one of the preceding claims, in which the target gene has one of the sequences SQ001 to SQ140.
- 11. Method according to one of the preceding claims, in which the target gene is chosen from the following group: oncogene, cytokine gene, id-protein gene, prion gene, genes of angiogenesis-inducing molecules, of adhesion molecules and of cell surface receptors, genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules.
- 12. Method according to one of the preceding claims, in which the target gene is the MDR1 gene.
- 13. Method according to one of the preceding claims, in which one of the sequences SQ141-173 is used as dsRNA I/II and a combined dsRNA construct of the sequences SQ141-173 from two related anti-sense (as1/2) and sense sequences (ss1/2) is used.
- 14. Method according to one of the preceding claims, in which expression is inhibited according to the principle of RNA interference.

- 15. Method according to one of the preceding claims, in which the target gene is expressed in pathogenic organisms, preferably in plasmodia.
- 16. Method according to one of the preceding claims, in which the target gene is a component of a virus or a viroid.
- 17. Method according to Claim 16, in which the virus is a human pathogenic virus or viroid.
- 18. Method according to one of the Claims 16, in which the virus or viroid is an animal or plant pathogenic virus or viroid.
- 19. Method according to one of the preceding claims, in which unpaired nucleotides are substituted by nucleoside thiophosphate.
- 20. Method according to one of the preceding claims, in which at least one end (E1, E2) of dsRNA I/II is modified, in order to counteract degradation in the cell or dissociation into single strands.
- 21. Method according to one of the preceding claims, in which the cohesion of the doublestrand structure caused by the complementary nucleotide pairs is increased by at least one chemical link.
- 22. Method according to one of the preceding claims, in which the chemical link is formed by a covalent or ionic bond, hydrogen bridge bond, hydrophobic interactions, preferably van der Waals or stacking interactions, or by metal-ion coordination.
- 23. Method according to one of the preceding claims, in which the chemical link is formed in the vicinity of one end (E1, E2).

- 24. Method according to one of the preceding claims, in which the chemical link is formed by means of one or more compound groups, in which the compound groups are preferably poly-(oxyphosphinicooxy-1,3-propanediol) and/or oligoethylene glycol chains.
- 25. Method according to one of the preceding claims, in which the chemical link is formed by branched nucleotide analogs instead of nucleotides.
- 26. Method according to one of the preceding claims, in which the chemical link is formed by purine analogs.
- 27. Method according to one of the preceding claims, in which the chemical link is formed by azabenzene units.
- 28. Method according to one of the preceding claims, in which, to produce the chemical link, at least one of the following groups is used: methylene blue; bifunctional groups, preferably bis-(2-chloroethyl)-amine; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamine; 4-thiouracil, psoralene.
- 29. Method according to one of the preceding claims, in which the chemical link is formed by thiophosphoryl groups applied in the vicinity of the ends (E1, E2) of the double-strand region.
- 30. Method according to one of the preceding claims, in which the chemical link is produced by triple helix bonds situated in the vicinity of the ends (E1, E2).
- 31. Method according to one of the preceding claims, in which the dsRNA I/II is enclosed in micellar structures, advantageously in liposomes.
- 32. Method according to one of the preceding claims, in which the dsRNA I/II is bonded to at least one viral sheath protein originating from the virus, derived from it or synthetically produced, associated with it or enclosed by it.

- 33. Method according to one of the preceding claims, in which the sheath protein is derived from polyoma virus.
- 34. Method according to one of the preceding claims, in which the sheath protein contains the virus protein 1 (VP1) and/or the virus protein 2 (VP2) of polyoma virus.
- 35. Method according to one of the preceding claims, in which, during formation of a capsid or capsid-like structure from the sheath protein, one side faces the interior of the capsid or capsid-like structure.
- 36. Method according to one of the preceding claims, in which one strand (as1/as2) of dsRNA I/II is complementary to the primary or processed RNA transcript of the target gene.
- 37. Method according to one of the preceding claims, in which the cell is a vertebrate cell or a human cell.
- 38. Method according to one of the preceding claims, in which the dsRNA I/II is administered in an amount of, at most, 5 mg per kilogram of body weight per day to a mammal, preferably a human.
- 39. Method according to one of the preceding claims, in which the dsRNA I/II is taken up in a buffer solution for application.
- 40. Method according to one of the preceding claims, in which the dsRNA I/II is administered orally or by means of injection or infusion, intravenously, intratumorally, by inhalation, intraperitoneally.
- 41. Use of a double-strand ribonucleic acid (dsRNA I) to inhibit expression of a target gene in a cell,

in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs, and in which one strand (as1) or at least a section of one strand (as1) of the double-strand structure is complementary to the target gene,

and in which the dsRNA I has an overhang formed from 1 to 4 nucleotides at least on one end (E1, E2).

- 42. Use according to Claim 41, in which the dsRNA I has the overhang on the 3' end of one strand (as1) and/or on the 3' end of the other strand (ss1).
- 43. Use according to Claim 41 or 42, in which the dsRNA I is formed smooth on one end (E1, E2).
- 44. Use according to Claim 43, in which the smooth end (E1, E2) contains the 5' end of one strand (as1).
- 45. Use according to one of the Claims 41 to 44, in which the overhang is formed from 1 to 4 nucleotides, preferably one or two nucleotides.
- 46. Use according to one of the Claims 41 to 45, in which one additional double-strand ribonucleic acid (dsRNA II), formed according to the dsRNA I according to one of the Claims 41 to 45, is introduced to the cell, in which the one strand (as1) or at least a section of the one strand (as1) of dsRNA I is complementary to a first region (B1) of the sense strand of the target gene, and in which the other strand (as2) or at least a section of the other strand (as2) of dsRNA II is complementary to a second region (B2) of the target gene.
- 47. Use according to one of the Claims 41 to 46, in which the dsRNA I and/or the dsRNA II have a length of less than 25, preferably 19 to 23, consecutive nucleotide pairs.
- 48. Use according to one of the Claims 41 to 47, in which the first (B1) and the second region (B2) overlap or abut each other in sections.

- 49. Use according to one of the Claims 41 to 48, in which the first (B1) and the second region (B2) are spaced from each other.
- 50. Use according to one of the Claims 41 to 49, in which the target gene has the sequences S1001 to SQ140.
- 51. Use according to one of the Claims 41 to 50, in which the target gene is chosen from the following group: oncogene, cytokine gene, id-protein gene, prion gene, genes of angiogenesis-inducing molecules, of adhesion molecules and of cell-surface receptors, genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules.
- 52. Use according to one of the Claims 41 to 51, in which the target gene is the MDR1 gene.
- 53. Use according to one of the Claims 41 to 52, in which one of the sequences SQ141-173 is used as dsRNA I/II and a dsRNA construct of sequences SQ141-173 combined from two related anti-sense (as1/2) and sense sequences (ss1/2) is used.
- 54. Use according to one of the Claims 41 to 53, in which expression is inhibited according to the principle of RNA interference.
- 55. Use according to one of the Claims 41 to 54, in which the target gene is expressed in pathogenic organisms, preferably in plasmodia.
- 56. Use according to one of the Claims 41 to 55, in which the target gene is a component of a virus or viroid.
- 57. Use according to Claim 56, in which the virus is a human pathogenic virus or viroid.

- 58. Use according to Claim 56, in which the virus or viroid is an animal or plant pathogenic virus or viroid.
- 59. Use according to one of the Claims 41 to 58, in which unpaired nucleotides are substituted by nucleoside thiophosphates.
- 60. Use according to one of the Claims 41 to 59, in which at least one end (E1, E2) of dsRNA is modified, in order to counteract degradation in the cell or dissociation into single strands.
- 61. Use according to one of the Claims 41 to 60, in which cohesion of the double-strand structure caused by the complementary nucleotide pairs is increased by at least one chemical link.
- 62. Use according to one of the Claims 41 to 61, in which the chemical link is formed by a covalent or ionic bond, a hydrogen bridge bond, a hydrophobic interaction, preferably van der Waals or stacking interactions, or by metal ion coordination.
- 63. Use according to one of the Claims 41 to 62, in which the chemical link is formed in the vicinity of one end (E1, E2).
- 64. Use according to one of the Claims 41 to 63, in which the chemical link is formed by means of one or more compound groups, in which the compound groups are preferably poly-(oxyphosphinicooxy-1,3-propanediol) and/or oligoethylene glycol chains.
- 65. Use according to one of the Claims 41 to 64, in which the chemical link is formed by branched nucleotide analogs used instead of nucleotides.
- 66. Use according to one of the Claims 41 to 65, in which the chemical link is formed by purine analogs.

- 67. Use according to one of the Claims 41 to 66, in which the chemical link is formed by azabenzene units.
- 68. Use according to one of the Claims 41 to 67, in which at least one of the following groups is used to produce the chemical link: methylene blue; bifunctional groups, preferably (bis-(2-chloroethyl)-amine; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamine; 4-thiouracil; psoralene.
- 69. Use according to one of the Claims 41 to 68, in which the chemical link is formed by thiophosphoryl groups applied in the vicinity of the ends (E1, E2) of the double-strand region.
- 70. Use according to one of the Claims 41 to 69, in which the chemical link is produced by triple helix bonds situated in the vicinity of ends (E1, E2).
- 71. Use according to one of the Claims 41 to 70, in which the dsRNA I/II is enclosed in micellar structures, advantageously in liposomes.
- 72. Use according to one of the Claims 41 to 71, in which the dsRNA I/II is bonded to at least one viral sheath protein originating from a virus, derived from it or a synthetically produced viral sheath protein, associated with it or enclosed by it.
- 73. Use according to one of the Claims 41 to 72, in which the sheath protein is derived from polyoma virus.
- 74. Use according to one of the Claims 41 to 73, in which the sheath protein contains the virus protein 1 (VP1) and/or the virus protein 2 (VP2) of polyoma virus.
- 75. Use according to one of the Claims 41 to 74, in which, during formation of a capsid or capsid-like structure from the sheath protein, one side faces the interior of the capsid or capsid-like structure.

- 76. Use according to one of the Claims 41 to 75, in which one strand (as1, as2) of dsRNA I/II is complementary to the primary or processed RNA transcript of the target gene.
- 77. Use according to one of the Claims 41 to 76, in which the cell is a vertebrate cell or a human cell.
- 78. Use according to one of the Claims 41 to 77, in which the dsRNA I/II is administered in an amount of, at most, 5 mg per kilogram of body weight per day to a mammal, preferably a human.
- 79. Use according to one of the Claims 41 to 78, in which the dsRNA I/II is taken up in a buffer solution for application.
- 80. Use according to one of the Claims 41 to 79, in which the dsRNA I/II is administered orally or by injection or infusion intravenously, intraturmorally, by inhalation, intraperitoneally.
- 81. Medicament to inhibit expression of a target gene in a cell, containing a double-strand ribonucleic (dsRNA I) in an amount sufficient to inhibit expression of a target gene,

in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs,

and in which one strand (as1) or at least one section of one strand (as1) of the double-strand structure is complementary to the target gene,

and in which the dsRNA I has an overhang formed on at least one end (E1, E2) from 1 to 4 nucleotides.

82. Medicament according to Claim 81, in which the dsRNA I has the overhang on the 3' end of one strand (as1) and/or on the 3' end of the other strand (ss1).

- 83. Medicament according to Claim 81 or 82, in which the dsRNA I is formed smooth on one end (E1, E2).
- 84. Medicament according to one of the Claims 83, in which the smooth end (E1, E2) contains the 5' end of one strand (as1).
- 85. Medicament according to one of the Claims 81 to 84, in which the overhang is formed from 1 to 4 nucleotides, preferably 1 or 2 nucleotides.
- 86. Use according to one of the Claims 81 to 85, containing at least one additional double-strand ribonucleic acid (dsRNA II), formed according to the dsRNA I according to one of the Claims 81 to 85, in which the one strand (as1) or at least a section of the one strand (as1) of dsRNA I is complementary to a first region (B1) of the target gene, and in which the additional strand (as2) or at least a section of the additional strand (as2) of dsRNA II is complementary to a second region (B2) of the target gene.
- 87. Use according to one of the Claims 81 to 86, in which the dsRNA I and/or the dsRNA II have a length of less than 25, preferably 19 to 23, consecutive nucleotide pairs.
- 88. Use according to one of the Claims 81 to 87, in which the first (B1) and the second region (B2) overlap or abut each other in sections.
- 89. Use according to one of the Claims 81 to 88, in which the target gene has one of the sequences S1001 to SQ140.
- 90. Use according to one of the Claims 81 to 89, in which the target gene is chosen from the following group: oncogene, cytokine gene, id-protein gene, prion gene, genes of angiogenesis-inducing molecules, of adhesion molecules and of cell-surface receptors, genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules.

- 91. Use according to one of the Claims 81 to 90, in which the target gene is the MDR1 gene.
- 92. Use according to one of the Claims 81 to 91, in which one of the sequences SQ141-173 is used as dsRNA I/II and a dsRNA construct of sequences SQ141-173 combined from two related anti-sense (as1/2) and sense sequences (ss1/2) is used.
- 93. Use according to one of the Claims 81 to 92, in which expression is inhibited according to the principle of RNA interference.
- 94. Use according to one of the Claims 81 to 93, in which the target gene is expressed in pathogenic organisms, preferably in plasmodia.
- 95. Use according to one of the Claims 81 to 94, in which the target gene is a component of a virus or viroid.
- 96. Use according to Claim 95, in which the virus is a human pathogenic virus or viroid.
- 97. Use according to Claim 95, in which the virus or viroid is an animal or plant pathogenic virus or viroid.
- 98. Use according to one of the Claims 81 to 97, in which unpaired nucleotides are substituted by nucleoside thiophosphates.
- 99. Use according to one of the Claims 81 to 98, in which at least one end (E1, E2) of dsRNA is modified, in order to counteract degradation in the cell or dissociation into single strands.
- 100. Use according to one of the Claims 81 to 99, in which cohesion of the double-strand structure caused by the complementary nucleotide pairs is increased by at least one chemical link.

- 101. Use according to one of the Claims 81 to 100, in which the chemical link is formed by a covalent or ionic bond, a hydrogen bridge bond, a hydrophobic interaction, preferably van der Waals or stacking interactions, or by metal ion coordination.
- 102. Use according to one of the Claims 81 to 101, in which the chemical link is formed in the vicinity of one end (E1, E2).
- 103. Use according to one of the Claims 81 to 102, in which the chemical link is formed by means of one or more compound groups, in which the compound groups are preferably poly-(oxyphosphinicooxy-1,3-propanediol) and/or oligoethylene glycol chains.
- 104. Use according to one of the Claims 81 to 103, in which the chemical link is formed by branched nucleotide analogs used instead of nucleotides.
- 105. Use according to one of the Claims 81 to 104, in which the chemical link is formed by purine analogs.
- 106. Use according to one of the Claims 81 to 105, in which the chemical link is formed by azabenzene units.
- 107. Use according to one of the Claims 81 to 106, in which at least one of the following groups is used to produce the chemical link: methylene blue; bifunctional groups, preferably (bis-(2-chloroethyl)-amine; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamine; 4-thiouracil; psoralene.
- 108. Use according to one of the Claims 81 to 107, in which the chemical link is formed by thiophosphoryl groups applied in the vicinity of the ends (E1, E2) of the double-strand region.
- 109. Use according to one of the Claims 81 to 108, in which the chemical link is produced by triple helix bonds situated in the vicinity of ends (E1, E2).

- 110. Use according to one of the Claims 81 to 109, in which the dsRNA I/II is enclosed in micellar structures, advantageously in liposomes.
- 111. Use according to one of the Claims 81 to 110, in which the dsRNA I/II is bonded to at least one viral sheath protein originating from a virus, derived from it or a synthetically produced viral sheath protein, associated with it or enclosed by it.
- 112. Use according to one of the Claims 81 to 111, in which the sheath protein is derived from polyoma virus.
- 113. Use according to one of the Claims 81 to 112, in which the sheath protein contains the virus protein 1 (VP1) and/or the virus protein 2 (VP2) of polyoma virus.
- 114. Use according to one of the Claims 81 to 113, in which, during formation of a capsid or capsid-like structure from the sheath protein, one side faces the interior of the capsid or capsid-like structure.
- 115. Use according to one of the Claims 81 to 114, in which one strand (as1, as2) of dsRNA I/II is complementary to the primary or processed RNA transcript of the target gene.
- 116. Use according to one of the Claims 81 to 114, in which the cell is a vertebrate cell or a human cell.
- 117. Use according to one of the Claims 81 to 116, in which the first (B1) and second region (B2) are spaced from each other.
- 118. Use according to one of the Claims 81 to 117, in which the dsRNA I/II is contained in an amount of, at most, 5 mg per administration unit.
- 119. Use according to one of the Claims 81 to 118, in which the dsRNA I/II is taken up in a buffer solution.

- 120. Use according to one of the Claims 81 to 119, in which the dsRNA I/II is administered orally or by injection or infusion intravenously, intraturmorally, by inhalation, intraperitoneally.
- 121. Method for inhibition of expression of a target gene in a cell, comprising the following steps:

introduction of at least one double-strand ribonucleic acid (dsRNA I) in an amount sufficient to inhibit expression of the target gene,

in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs, and in which one strand (as1) or at least a section of one strand (as1) of the double-strand structure is complementary to the target gene,

and in which the dsRNA has an overhang formed from 1 to 4 nucleotides on at least one end (E1, E2) of dsRNA I.

- 122. Method according to Claim 1, in which the dsRNA has the overhang on a 3' end of one strand (as1) and/or on the 3' end of the other strand (ss1).
- 123. Method according to Claim 1 or 2, in which the dsRNA I is formed smooth on one end (E1, E2).
- 124. Method according to Claim 3, in which the smooth end (E1, E2) contains the 5' end of one strand (as1).
- 125. Method according to one of the preceding claims, in which the overhang is formed from 1 to 4 nucleotides, preferably 1 or 2 nucleotides.
- 126. Method according to one of the preceding claims, in which at least an additional double-strand ribonucleic acid (dsRNA II), formed according to the dsRNA I according to one of the

preceding claims, is introduced to the cell, in which one strand (as1) or at least a section of one strand (as1) of dsRNA I is complementary to a first region (B1) of the target gene, and which an additional strand (as2) or at least a section of the additional strand (as2) of dsRNA II is complementary to a second region (B2) of the target gene.

- 127. Method according to one of the preceding claims, in which the dsRNA I and/or dsRNA II have a length of less than 25, preferably 19 to 23, consecutive nucleotide pairs.
- 128. Method according to one of the preceding claims, in which the first (B1) and the second region (B2) overlap or abut each other in sections.
- 129. Method according to one of the preceding claims, in which the first (B1) and the second region (B2) are spaced from each other.
- 130. Method according to one of the preceding claims, in which the target gene has one of the sequences SQ001 to SQ140.
- 131. Method according to one of the preceding claims, in which the target gene is chosen from the following group: oncogene, cytokine gene, id-protein gene, prion gene, genes of angiogenesis-inducing molecules, of adhesion molecules and of cell surface receptors, genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules.
- 132. Method according to one of the preceding claims, in which the target gene is the MDR1 gene.
- 133. Method according to one of the preceding claims, in which one of the sequences SQ141-173 is used as dsRNA I/II and a dsRNA construct of the sequences SQ141-173 combined from two related anti-sense (as1/2) and sense sequences (ss1/2) is used.

- 134. Method according to one of the preceding claims, in which expression is inhibited according to the principle of RNA interference.
- 135. Method according to one of the preceding claims, in which the target gene is expressed in pathogenic organisms, preferably in plasmodia.
- 136. Method according to one of the preceding claims, in which the target gene is a component of a virus or a viroid.
- 137. Method according to Claim 16, in which the virus is a human pathogenic virus or viroid.
- 138. Method according to one of the Claims 16, in which the virus or viroid is an animal or plant pathogenic virus or viroid.
- 139. Method according to one of the preceding claims, in which unpaired nucleotides are substituted by nucleoside thiophosphate.
- 140. Method according to one of the preceding claims, in which at least one end (E1, E2) of dsRNA I/II is modified, in order to counteract degradation in the cell or dissociation into single strands.
- 141. Method according to one of the preceding claims, in which the cohesion of the double-strand structure caused by the complementary nucleotide pairs is increased by at least one chemical link.
- 142. Method according to one of the preceding claims, in which the chemical link is formed by a covalent or ionic bond, hydrogen bridge bond, hydrophobic interactions, preferably van der Waals or stacking interactions, or by metal-ion coordination.
- 143. Method according to one of the preceding claims, in which the chemical link is formed in the vicinity of one end (E1, E2).

- 144. Method according to one of the preceding claims, in which the chemical link is formed by means of one or more compound groups, in which the compound groups are preferably poly-(oxyphosphinicooxy-1,3-propanediol) and/or oligoethylene glycol chains.
- 145. Method according to one of the preceding claims, in which the chemical link is formed by branched nucleotide analogs used instead of nucleotides.
- 146. Method according to one of the preceding claims, in which the chemical link is formed by purine analogs.
- 147. Method according to one of the preceding claims, in which the chemical link is formed by azabenzene units.
- 148. Method according to one of the preceding claims, in which, to produce the chemical link, at least one of the following groups is used: methylene blue; bifunctional groups, preferably bis-(2-chloroethyl)-amine; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamine; 4-thiouracil, psoralene.
- 149. Method according to one of the preceding claims, in which the chemical link is formed by thiophosphoryl groups applied in the vicinity of the ends (E1, E2) of the double-strand region.
- 150. Method according to one of the preceding claims, in which the chemical link is produced by triple helix bonds situated in the vicinity of the ends (E1, E2).
- 151. Method according to one of the preceding claims, in which the dsRNA I/II is enclosed in micellar structures, advantageously in liposomes.
- 152. Method according to one of the preceding claims, in which the dsRNA I/II is bonded to at least one sheath protein originating from the virus, derived from it or synthetically produced, associated with it or enclosed by it.

- 153. Method according to one of the preceding claims, in which the sheath protein is derived from polyoma virus.
- 154. Method according to one of the preceding claims, in which the sheath protein contains the virus protein 1 (VP1) and/or the virus protein 2 (VP2) of polyoma virus.
- 155. Method according to one of the preceding claims, in which, during formation of a capsid or capsid-like structure from the sheath protein, one side faces the interior of the capsid or capsid-like structure.
- 156. Method according to one of the preceding claims, in which one strand (as1/as2) of dsRNA I/II is complementary to the primary or processed RNA transcript of the target gene.
- 157. Method according to one of the preceding claims, in which the cell is a vertebrate cell or a human cell.
- 158. Method according to one of the preceding claims, in which the dsRNA I/II is administered in an amount of, at most, 5 mg per kilogram of body weight per day to a mammal, preferably a human.
- 159. Method according to one of the preceding claims, in which the dsRNA I/II is taken up in a buffer solution for application.
- 160. Method according to one of the preceding claims, in which the dsRNA I/II is administered orally or by means of injection or infusion, intravenously, intratumorally, by inhalation, intraperitoneally.
- 161. Use of one of double-strand ribonucleic acid (dsRNA I) to inhibit expression of a target gene in a cell,

in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs, and in which one strand (as1) or at least a section of one strand (as1) of the double-strand structure is complementary to the target gene,

and in which the dsRNA I has an overhang formed from 1 to 4 nucleotides at least on one end (E1, E2).

- 162. Use according to Claim 41, in which the dsRNA I has the overhang on the 3' end of one strand (as1) and/or on the 3' end of the other strand (ss1).
- 163. Use according to Claim 41 or 42, in which the dsRNA I is formed smooth on one end (E1, E2).
- 164. Use according to Claim 43, in which the smooth end (E1, E2) contains the 5' end of one strand (as1).
- 165. Use according to one of the Claims 41 to 44, in which the overhang is formed from 1 to 4 nucleotides, preferably one or two nucleotides.
- 166. Use according to one of the Claims 41 to 45, in which one additional double-strand ribonucleic acid (dsRNA II), formed according to the dsRNA I according to one of the Claims 41 to 45, is introduced to the cell, in which the one strand (as1) or at least a section of the one strand (as1) of dsRNA I is complementary to a first region (B1) of the sense strand of the target gene, and in which the other strand (as2) or at least a section of the other strand (as2) of dsRNA II is complementary to a second region (B2) of the target gene.
- 167. Use according to one of the Claims 41 to 47, in which the dsRNA I and/or the dsRNA II have a length of less than 25, preferably 19 to 23, consecutive nucleotide pairs.
- 168. Use according to one of the Claims 41 to 47, in which the first (B1) and the second region (B2) overlap or abut each other in sections.

- 169. Use according to one of the Claims 41 to 48, in which the first (B1) and the second region (B2) are spaced from each other.
- 170. Use according to one of the Claims 41 to 49, in which the target gene has the sequences \$1001 to \$Q140.
- 171. Use according to one of the Claims 41 to 50, in which the target gene is chosen from the following group: oncogene, cytokine gene, id-protein gene, prion gene, genes of angiogenesis-inducing molecules, of adhesion molecules and of cell-surface receptors, genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules.
- 172. Use according to one of the Claims 41 to 51, in which the target gene is the MDR1 gene.
- 173. Use according to one of the Claims 41 to 52, in which one of the sequences SQ141-173 is used as dsRNA I/II and a dsRNA construct of sequences SQ141-173 combined from two related anti-sense (as1/2) and sense sequences (ss1/2) is used.
- 174. Use according to one of the Claims 41 to 53, in which expression is inhibited according to the principle of RNA interference.
- 175. Use according to one of the Claims 41 to 54, in which the target gene is expressed in pathogenic organisms, preferably in plasmodia.
- 176. Use according to one of the Claims 41 to 55, in which the target gene is a component of a virus or viroid.
- 177. Use according to Claim 56, in which the virus is a human pathogenic virus or viroid.

- 178. Use according to Claim 56, in which the virus or viroid is an animal or plant pathogenic virus or viroid.
- 179. Use according to one of the Claims 41 to 58, in which unpaired nucleotides are substituted by nucleoside thiophosphates.
- 180. Use according to one of the Claims 41 to 59, in which at least one end (E1, E2) of dsRNA is modified, in order to counteract degradation in the cell or dissociation into single strands.
- 181. Use according to one of the Claims 41 to 60, in which cohesion of the double-strand structure caused by the complementary nucleotide pairs is increased by at least one chemical link.
- 182. Use according to one of the Claims 41 to 61, in which the chemical link is formed by a covalent or ionic bond, a hydrogen bridge bond, a hydrophobic interaction, preferably van-der-Waals or stacking interactions, or by metal ion coordination.
- 183. Use according to one of the Claims 41 to 62, in which the chemical link is formed in the vicinity of one end (E1, E2).
- 184. Use according to one of the Claims 41 to 63, in which the chemical link is formed by means of one or more compound groups, in which the compound groups are preferably poly-(oxyphosphinicooxy-1,3-propanediol) and/or oligoethylene glycol chains.
- 185. Use according to one of the Claims 41 to 64, in which the chemical link is formed by branched nucleotide analogs used instead of nucleotides.
- 186. Use according to one of the Claims 41 to 65, in which the chemical link is formed by purine analogs.

- 187. Use according to one of the Claims 41 to 66, in which the chemical link is formed by azabenzene units.
- 188. Use according to one of the Claims 41 to 67, in which at least one of the following groups is used to produce the chemical link: methylene blue; bifunctional groups, preferably (bis-(2-chloroethyl)-amine; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamine; 4-thiouracil; psoralene.
- 189. Use according to one of the Claims 41 to 68, in which the chemical link is formed by thiophosphoryl groups applied in the vicinity of the ends (E1, E2) of the double-strand region.
- 190. Use according to one of the Claims 41 to 69, in which the chemical link is produced by triple helix bonds situated in the vicinity of ends (E1, E2).
- 191. Use according to one of the Claims 41 to 70, in which the dsRNA I/II is enclosed in micellar structures, advantageously in liposomes.
- 192. Use according to one of the Claims 41 to 71, in which the dsRNA I/II is bonded to at least one sheath protein originating from a virus, derived from it or a synthetically produced viral sheath protein, associated with it or enclosed by it.
- 193. Use according to one of the Claims 41 to 72, in which the sheath protein is derived from polyoma virus.
- 194. Use according to one of the Claims 41 to 73, in which the sheath protein contains the virus protein 1 (VP1) and/or the virus protein 2 (VP2) of polyoma virus.
- 195. Use according to one of the Claims 41 to 74, in which, during formation of a capsid or capsid-like structure from the sheath protein, one side faces the interior of the capsid or capsid-like structure.

- 196. Use according to one of the Claims 41 to 75, in which one strand (as1, as2) of dsRNA I/II is complementary to the primary or processed RNA transcript of the target gene.
- 197. Use according to one of the Claims 41 to 76, in which the cell is a vertebrate cell or a human cell.
- 198. Use according to one of the Claims 41 to 77, in which the dsRNA I/II is administered in an amount of, at most, 5 mg per kilogram of body weight per day to a mammal, preferably a human.
- 199. Use according to one of the Claims 41 to 78, in which the dsRNA I/II is taken up in a buffer solution for application.
- 200. Use according to one of the Claims 41 to 79, in which the dsRNA I/II is administered orally or by injection or infusion intravenously, intraturmorally, by inhalation, intraperitoneally.
- 201. Medicament to inhibit expression of a target gene in a cell, containing a double-strand ribonucleic (dsRNA I) in an amount sufficient to inhibit expression of a target gene,

in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs,

and in which one strand (as1) or at least one section of one strand (as1) of the double-strand structure is complementary to the target gene,

and in which the dsRNA I has an overhang formed on at least one end (E1, E2) from 1 to 4 nucleotides.

202. Medicament according to Claim 81, in which the dsRNA I has the overhang on the 3' end of one strand (as1) and/or on the 3' end of the other strand (ss1).

70

- 203. Medicament according to Claim 81 or 82, in which the dsRNA I is formed smooth on one end (E1, E2).
- 204. Medicament according to one of the Claims 83, in which the smooth end (E1, E2) contains the 5' end of one strand (as1).
- 205. Medicament according to one of the Claims 81 to 84, in which the overhang is formed from 1 to 4 nucleotides, preferably 1 or 2 nucleotides.
- 206. Use according to one of the Claims 81 to 85, containing at least one additional double-strand ribonucleic acid (dsRNA II), formed according to the dsRNA I according to one of the Claims 81 to 85, in which the one strand (as1) or at least a section of the one strand (as1) of dsRNA I is complementary to a first region (B1) of the target gene, and in which the additional strand (as2) or at least a section of the additional strand (as2) of dsRNA II is complementary to a second region (B2) of the target gene.
- 207. Use according to one of the Claims 81 to 86, in which the dsRNA I and/or the dsRNA II have a length of less than 25, preferably 19 to 23, consecutive nucleotide pairs.
- 208. Use according to one of the Claims 81 to 87, in which the first (B1) and the second region (B2) overlap or abut each other in sections.
- 209. Use according to one of the Claims 81 to 88, in which the target gene has one of the sequences \$1001 to \$Q140.
- 210. Use according to one of the Claims 81 to 89, in which the target gene is chosen from the following group: oncogene, cytokine gene, id-protein gene, prion gene, genes of angiogenesis-inducing molecules, of adhesion molecules and of cell-surface receptors, genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules.

- 211. Use according to one of the Claims 81 to 90, in which the target gene is the MDR1 gene.
- 212. Use according to one of the Claims 81 to 90, in which one of the sequences SQ141-173 is used as dsRNA I/II and a dsRNA construct of sequences SQ141-173 combined from two related anti-sense (as1/2) and sense sequences (ss1/2) is used.
- 213. Use according to one of the Claims 81 to 92, in which expression is inhibited according to the principle of RNA interference.
- 214. Use according to one of the Claims 81 to 93, in which the target gene is expressed in pathogenic organisms, preferably in plasmodia.
- 215. Use according to one of the Claims 81 to 94, in which the target gene is a component of a virus or viroid.
- 216. Use according to Claim 95, in which the virus is a human pathogenic virus or viroid.
- 217. Use according to Claim 95, in which the virus or viroid is an animal or plant pathogenic virus or viroid.
- 218. Use according to one of the Claims 81 to 97, in which unpaired nucleotides are substituted by nucleoside thiophosphates.
- 219. Use according to one of the Claims 81 to 98, in which at least one end (E1, E2) of dsRNA is modified, in order to counteract degradation in the cell or dissociation into single strands.
- 220. Medicament according to one of the Claims 81 to 99, in which cohesion of the doublestrand structure caused by the complementary nucleotide pairs is increased by at least one chemical link.

- 221. Medicament according to one of the Claims 81 to 100, in which the chemical link is formed by a covalent or ionic bond, a hydrogen bridge bond, a hydrophobic interaction, preferably van der Waals or stacking interactions, or by metal ion coordination.
- 222. Medicament according to one of the Claims 81 to 101, in which the chemical link is formed in the vicinity of one end (E1, E2).
- 223. Medicament according to one of the Claims 81 to 102, in which the chemical link is formed by means of one or more compound groups, in which the compound groups are preferably poly-(oxyphosphinicooxy-1,3-propanediol) and/or oligoethylene glycol chains.
- 224. Medicament according to one of the Claims 81 to 103, in which the chemical link is formed by branched nucleotide analogs used instead of nucleotides.
- 225. Medicament according to one of the Claims 81 to 104, in which the chemical link is formed by purine analogs.
- 226. Medicament according to one of the Claims 81 to 105, in which the chemical link is formed by azabenzene units.
- 227. Medicament according to one of the Claims 81 to 106, in which at least one of the following groups is used to produce the chemical link: methylene blue; bifunctional groups, preferably (bis-(2-chloroethyl)-amine; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamine; 4-thiouracil; psoralene.
- 228. Medicament according to one of the Claims 81 to 107, in which the chemical link is formed by thiophosphoryl groups applied in the vicinity of the ends (E1, E2) of the double-strand region.
- 229. Medicament according to one of the Claims 81 to 108, in which the chemical link is produced by triple helix bonds situated in the vicinity of ends (E1, E2).

- 230. Medicament according to one of the Claims 81 to 109, in which the dsRNA I/II is enclosed in micellar structures, advantageously in liposomes.
- 231. Medicament according to one of the Claims 81 to 110, in which the dsRNA I/II is bonded to at least one viral sheath protein originating from a virus, derived from it or a synthetically produced viral sheath protein, associated with it or enclosed by it.
- 232. Medicament according to one of the Claims 81 to 111, in which the sheath protein is derived from polyoma virus.
- 233. Medicament according to one of the Claims 81 to 112, in which the sheath protein contains the virus protein 1 (VP1) and/or the virus protein 2 (VP2) of polyoma virus.
- 234. Medicament according to one of the Claims 81 to 113, in which, during formation of a capsid or capsid-like structure from the sheath protein, one side faces the interior of the capsid or capsid-like structure.
- 235. Medicament according to one of the Claims 81 to 114, in which one strand (as1, as2) of dsRNA I/II is complementary to the primary or processed RNA transcript of the target gene.
- 236. Medicament according to one of the Claims 81 to 114, in which the cell is a vertebrate cell or a human cell.
- 237. Medicament according to one of the Claims 81 to 116, in which the first (B1) and second region (B2) are spaced from each other.
- 238. Medicament according to one of the Claims 81 to 117, in which the dsRNA I/II is contained in an amount of, at most, 5 mg per administration unit.

- 239. Medicament according to one of the Claims 81 to 118, in which the dsRNA I/II is taken up in a buffer solution.
- 240. Medicament according to one of the Claims 81 to 119, in which the dsRNA I/II is administered orally or by injection or infusion intravenously, intraturmorally, by inhalation, intraperitoneally.

75

//Key to Figures//

Relative Fluoreszenz = Relative fluorescence

Maus = mouse

Mensch = human

MOCK Transfection = MOCK transfection

Hellfeld = bright field

Variante = variant

Zielgen = target gene

SEQUENZPROTOCKOLL = SEQUENCE PROTOCOL

<120> Method for Inhibition of Expression of a Target Gene

<213> Artificial sequence

<223> Description of artificial sequence sense strand (R1A) of a dsRNA that is homologous to the MDR1 sequence

<213> Artificial sequence

<223> Description of artificial sequence anti-sense strand (R1B) of a dsRNA strand, complementary to the MDR1 sequence

<213> Artificial sequence

<223> Description of artificial sequence sense strand (R2A) of a dsRNA that is homologous to the MDR1 sequence

<213> Artificial sequence

<223> Description of artificial sequence sense strand (R3A) of a dsRNA that is homologous to the MDR1 gene

<213> Artificial sequence

<223> Description of artificial sequence anti-sense strand (R3B) of a dsRNA, complementary to the MDR1 sequence

<213> Artificial sequence

<223> Description of artificial sequence sense strand (R4A) of a dsRNA that is homologous to the MDR1 sequence

<213> Artificial sequence

- <223> Description of artificial sequence anti-sense strand (R4B) of a dsRNA, complementary to the MDR1 sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (S1A) of a dsRNA that is homologous to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S1B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S7A) of a dsRNA that is homologous to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (S7B) of a dsRNA that is homologous to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (R2B) of a dsRNA, complementary to the MDR1 sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (K1A) of a dsRNA that is homologous to the 5' UTR of the neomycin sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (K1B) of a dsRNA, complementary to the 5' UTR of the neomycin sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (K3A) of a dsRNA that is homologous to the 5' UTR of the neomycin sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (K3B) of a dsRNA, complementary to the 5' UTR of the neomycin sequence
- <213> Artificial sequence

- <223> Description of artificial sequence sense strand (K2A) of a dsRNA that is homologous to the 5' UTR of the neomycin sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (K2B) of a dsRNA, complementary to the 5' UTR of the neomycin sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S4B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (PKC1 A) of a dsRNA that is homologous to the protein kinease C sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (PKC2 B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S12B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S11B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (S13A) of a dsRNA that is homologous to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S13B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S14B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence

- <223> Description of artificial sequence sense strand (S13A) of a dsRNA that is homologous to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (ES-7A) of a dsRNA that is homologous to the human EGFR sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (ES-7B) of a dsRNA, complementary to the human EGFR sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (ES-8A) of a dsRNA that is homologous to the human EGFR sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (ES-8B) of a dsRNA, complementary to the human EGFR sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (ES-2A) of a dsRNA that is homologous to the human EGFR sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (ES-5B) of a dsRNA, complementary to the human EGFR sequence

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

HERE BELLEVI KULUN KUND KAN KUNDAN BELLEVIK KUNDAN KUNDAN KUNDAN KUNDAN KUNDAN KUNDAN KUNDAN KUNDAN KUNDAN KUN

(43) Internationales Veröffentlichungsdatum 18. Juli 2002 (18.07.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/055693 A2

(51) Internationale Patentklassifikation⁷: C12N 15/11

(21) Internationales Aktenzeichen: PCT/EP02/00152

(22) Internationales Anmeldedatum:

9. Januar 2002 (09.01.2002)

(25) Einreichungssprache:

Deutsch

Deutsch

(26) Veröffentlichungssprache:

(30) Angaben zur Priorität:

101 00 586.5 9. Januar 2001 (09.01.2001) DE 101 55 280.7 26. Oktober 2001 (26.10.2001) DE 101 58 411.3 29. November 2001 (29.11.2001) DE 101 60 151.4 7. Dezember 2001 (07.12.2001) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): RIBOPHARMA AG [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): KREUTZER, Roland [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE).

LIMMER, Stephan [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE). ROST, Sylvia [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE). HADWIGER, Philipp [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE).

- (74) Anwalt: GASSNER, Wolfgang; Nägelsbachstrasse 49a, 91052 Erlangen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR INHIBITING THE EXPRESSION OF A TARGET GENE
- (54) Bezeichnung: VERFAHREN ZUR HEMMUNG DER EXPRESSION EINE ZIELGENS

(57) Abstract: The invention relates to a method for inhibiting the expression of a target gene in a cell, comprising the following steps: introduction of an amount of at least one dual-stranded ribonucleic acid (dsRNA I) which is sufficient to inhibit the expression of the target gene. The dsRNA I has a dual-stranded structure formed by a maximum of 49 successive nucleotide pairs. One strand (as1) or at least one section of the one strand (as1) of the dual-stranded structure is complementary to the sense strand of the target gene. The dsRNA has an overhang on the end (E1) of dsRNA I formed by 1 - 4 nucleotides.

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte: Einführen mindestens einer doppelstängigen Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge, wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Sinn-Strang des Zielgens ist, und wobei die dsRNA am einen Ende (E1) der dsRNA I einen aus 1 bis 4 Nukeotiden gebildeten überhang aufweist.

WO 02/055693 A2

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen. WO 02/055693 PCT/EP02/00152

Verfahren zur Hemmung der Expression eines Zielgens

Die Erfindung betrifft ein Verfahren, eine Verwendung und ein Medikament zur Hemmung der Expression eines Zielgens.

5

25

30

35

Aus der WQ 99/32619 sowie der WO 00/44895 sind Verfahren zur Hemmung der Expression von medizinisch oder biotechnologisch interessanten Genen mit Hilfe einer doppelsträngigen Ribonukleinsäure (dsRNA) bekannt. Die bekannten Verfahren sind zwar hoch effektiv. Es besteht gleichwohl das Bedürfnis, deren Effizienz weiter zu steigern.

Aufgabe der vorliegenden Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es sollen insbesondere ein Verfahren, eine Verwendung und ein Medikament angegeben werden, mit denen eine noch effizientere Hemmung der Expression eines Zielgens erreichbar ist.

Diese Aufgabe wird durch die Merkmale der Ansprüche 1, 41 und 20 81 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 40, 42 bis 80 und 82 bis 120.

Mit den erfindungsgemäß beanspruchten Merkmalen wird überraschenderweise eine drastische Erhöhung der Effektivität der Hemmung der Expression eines Zielgens in vitro und in vivo erreicht. Durch die besondere Ausbildung der Enden der dsRNA kann sowohl deren Effizienz bei der Vermittlung der hemmenden Wirkung auf die Expression eines Zielgens als auch deren Stabilität gezielt beeinflusst werden. Durch die Vergößerung der Stabilität wird die wirksame Konzentration in der Zelle erhöht.

Unter einem "Zielgen" im Sinne der Erfindung wird der DNA-Strang der doppelsträngigen DNA in der Zelle verstanden, welcher koplementär zu einem bei der Transkription als Matritze dienenden DNA-Strang einschließlich aller transkibierten Be-

TRANSLATION FROM GERMAN

(12) WORLD ORGANIZATION OF INTELLECTUAL PROPERTY INTERNATIONAL APPLICATION PUBLISHED PURSUANT TO THE PATENT COOPERATION TREATY (PCT)

(19) World Organization for Intellectual Property			
International Office			
(43) International Publication Date: PCT	(10) International Publication Number:		
18 July 2002	WO 02/055693 A2		
(51) International Patent Classification ⁷ : C12N 15/11	LIMMER, Stephan		
(21) International Application Number: PCT/EP02/00152	[GERMANY/GERMANY];		
(22) International filing date: 9 January 2002	Universitätsstrasse 30, 95447 Bayreuth (GERMANY). ROST, Sylvia		
(25) Submission language German	[GERMANY/GERMANY];		
(26) Publication language German (30) Priority data:	Universitätsstrasse 30, 95447 Bayreuth (GERMANY). HADWIGER, Philipp		
101 00 586.5 9 January 2001 GERMANY 101 55 280.7 26 October 2001 GERMANY 101 58 411.3 29 November 2001 GERMANY 101 60 151.4 7 December 2001 GERMANY (71) Applicant: (for all designated states, except US): RIBOPHARMA AG [GERMANY/GERMANY]; Universitätsstrasse 30, 95447 Bayreuth (GERMANY).	[GERMANY/GERMANY; Universitätsstrasse 30, 95447 Bayreuth (GERMANY). Attorneys: GASSNER, Rolfgang; Nägelsbachstrasse 49a, 91052 Erlangen (GERMANY). (81) Designated states (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,		
(72) Inventor and (75) Inventor/Applicant (for US only): KREUTZER, Roland [GERMANY/GERMANY]; Universitätsstrasse 30, 95447 Bayreuth (GERMANY).	DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TRADENAME, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.		

(84) Regional states (regional): ARIPO Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR). OAPI Patent (BR, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without International Search Report and republished on receipt of the report

Refer to the "Guidance Notes on Codes and Abbreviations" at the beginning of each regular issue of the PCT Gazette for explanation of the two-letter codes and other abbreviations..

(54) Title: METHOD FOR INHIBITING THE EXPRESSION OF A TARGET GENE

(57) Abstract

The invention relates to a method for inhibiting the expression of a target gene in a cell, comprising the following steps: introduction of an amount of at least one dual-stranded ribonucleic acid (dsRNA I) which is sufficient to inhibit the expression of the target gene. The dsRNA I has a dual-stranded structure formed by a maximum of 49 successive nucleotide pairs. One strand (as1) or at least one section of the one strand (as1) of the dual-stranded structure is complementary to the sense strand of the target gene. The dsRNA has an overhang on the end (E1) of dsRNA I formed by 1-4 nucleotides.

Variant 1

Variant 2

METHOD FOR INHIBITING THE EXPRESSION OF A TARGET GENE

The invention concerns a method, an application and a medicament for inhibition of expression of a target gene.

Methods to inhibit expression of genes of medical or biotechnological interest by means of a double-strand ribonucleic acid (dsRNA) are known from WO 99/32619 and WO 00/44895. The known methods are highly effective. But there is also a requirement to further increase their efficiency.

The task of the present invention is to eliminate the shortcomings according to the prior art. In particular, a method, an application and a medicament are to be offered, with which even more efficient inhibition of expression of the target gene is attainable.

This task is solved by the features of Claims 1, 41 and 81. Advantageous embodiments are apparent from the features of Claims 2 to 40, 42 to 80 and 82 to 120.

With the features claimed according to the invention, a drastic increase in the effectiveness of inhibition of expression of the target gene in vitro and in vivo is surprisingly achieved. By the special design of the ends of the dsRNA, both their efficiency in mediating the inhibiting effect on expression of the target gene and their stability can be deliberately influenced. By increasing the stability, the effective concentration in the cell is increased.

Target gene according to the invention is understood to mean the DNA strand of the double-strand DNA in the cell that is complementary to a DNA strand, including all transcribed regions that serve for transcription as matrix. The target gene is therefore generally the "sense" strand. The one strand or anti-sense strand (as1) can be complementary to an RNA transcript formed during expression of the target gene or its processing product, for example, an mRNA. Insertion is understood to mean uptake in the cell. Uptake can occur by the cell itself; it also can be mediated by auxiliaries or aids. "Overhang" is understood to mean a terminal single-strand overhang that does not have paired nucleotides, according to Watson and Crick. "Double-strand

structure" is understood to mean a structure, in which the nucleotides of the individual strands are essentially paired according to Watson and Crick. A double-strand structure in the context of the present invention can also have individual mismatches.

According to a particularly advantageous embodiment, the dsRNA I has the overhang on the 3' end of one strand or the anti-sense strand as 1 and/or on the 3' end of the other end or sense strand ss 1. The dsRNA I can also be formed smoothly on one end. In this case, the smooth end is advantageously situated on the side of dsRNA I that has the 5' end of one strand (anti-sense strand; as 1). In this form, the dsRNA I, on the one hand, has very good efficiency and, on the other hand, high stability in a living organism. The overall in vivo efficiency is excellent. The overhang is expediently formed from 1 to 4 nucleotides, preferably from 1 or 2 nucleotides.

According to another embodying feature, the efficiency of the method can be further increased if at least one additional dsRNA II, formed according to the dsRNA I according to the invention, is inserted into the cell, in which the one strand or at least a section of one strand of the double-strand structure of dsRNA I is complementary to a first region of the sense strand of the target gene, and in which an additional strand or at least a section of the additional strand of the double-strand structure of the additional dsRNA II is complementary to a second region of sense strand of the target gene. Inhibition of expression of the target gene is significantly increased in this case. The first and second region can overlap in sections, abut each other, or also be spaced from each other.

It has also proven advantageous if the dsRNA I and/or the additional dsRNA II have a length of less than 25 consecutive nucleotide pairs. A length in the range between 19 and 23 nucleotide pairs has proven to be particularly effective. The efficiency can be further increased if single-strand overhangs of 1 to 4 nucleotides are present on the double strands preferably formed from 19 to 23 nucleotide pairs.

The target gene, according to an additional embodying feature, can have the sequences SQ001 to SQ140, given in the enclosed sequence protocol. It can also be chosen from the following groups: oncogene, cytokine gene, id-protein gene, prion gene, genes for expression of

angiogenesis-inducing molecules, adhesion molecules and cell surface receptors. genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules, as well as genes for expression of the EGF receptors. The target gene can be the MDR1 gene, in particular. In this context, one of the existing sequences SQ141-173 or a combined dsRNA I/II from antisense (as) and sense sequences (ss) that go together can be used.

According to an additional advantageous embodying feature, expression is inhibited according to the principle of RNA interference.

The target gene is expediently expressed in pathogenic organisms, preferably in plasmodia. It can be a component of a virus or viroid, especially a human pathogenic virus or viroid. The virus or viroid can also be an animal or plant pathogenic virus or viroid.

According to another embodying feature, it is prescribed that the unpaired nucleotides be substituted by nucleoside thiophosphates.

At least one end of the dsRNA I/II can be modified, in order to counteract degradation in the cell or dissociation in the individual strand. Advantageously, cohesion caused by the complementary nucleotide pairs of the double-strand structure is increased by at least one chemical length. The chemical length can be formed by a covalent or ionic bond, a hydrogen bridge bond, hydrophobic interactions, preferably van-der-Waals or stacking interactions, or by metal ion coordination. It has also proven expedient and to increase stability if the chemical link is formed in the vicinity of one end. Additional advantageous embodiments with respect to chemical linking can be deduced from the features of Claims 24 to 30, without requiring a further explanation for this.

The dsRNA I/II can be incorporated particularly easily in the cell if it is enclosed in micellar structures, advantageously in liposomes. It has also proven advantageous for transport of dsRNA I/II into the cell that it is bonded to at least a viral sheath protein, originating from a virus, derived from a virus or synthetically produced, associated with the sheath protein or

enclosed by it. The sheath protein can be derived from polyoma virus. The sheath protein can contain, in particular, the virus protein 1 and/or the virus protein 2 of polyoma virus. According to another embodiment, it is prescribed that, during formation of a capsid or capsid-like structure from the sheath protein, one side face the interior of the capsid or capsid-like structure. It is also advantageous that the one strand of dsRNA I/II (as1/2) is complementary to the primary or processed RNA transcript of the target gene. The cell can be a vertebrate cell or a human cell.

It has also been found that the dsRNA I/II can advantageously be administered already in an amount of, at most, 5 mg/kg of body weight per day to a mammal, preferably a human. Even in this low dose, an excellent efficiency is achieved.

It has surprisingly been found that the dsRNA I/II can be taken up in a buffer solution for administration and then administered orally or by injection or infusion intravenously, intratumorally, by inhalation or intraperitoneally.

The use of a double-strand ribonucleic acid (dsRNA I) to inhibit expression of a target gene in the cell is also proposed according to the invention, in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs, and in which one strand (antisense strand; as1) or at least a section of one strand (as1) of the double-strand structure is complementary to the sense strand of the target gene, and in which the dsRNA I has an overhang formed from 1 to 4 nucleotides on at least one end.

According to an additional stipulation of the invention, a medicament for inhibiting the expression of a target gene in a cell is proposed, containing a double-strand ribonucleic acid (dsRNA I) in an amount sufficient to inhibit expression of a target gene, in which the dsRNA I has a double-strand structure from, at most, 49 consecutive nucleotide pairs, and in which one strand (as1) or at least a section of one strand (as1) of the double-strand structure is complementary to the sense strand of target gene, and in which the dsRNA I has an overhang formed from 1 to 4 nucleotides on at least one end.

The preceding comments are referred to for the further advantageous embodiment of dsRNA I/II.

The invention is further explained on an example below, with reference to the drawings and practical examples. In the drawings:

Fig. 1a, b	schematically depicts a first and second double-strand RNA and		
Fig. 2	schematically depicts a target gene,		
Fig. 3	depicts relative YFP fluorescence after application of different dsRNA in NIH/3T3 cells (first experiment),		
Fig. 4	shows relative YFP fluorescence after application of different dsRNA in NIH/3T3 cells (second experiment),		
Fig. 5	shows relative YFP fluorescence after application of different dsRNA in NIH/3T3 cells (third experiment),		
Fig. 6	shows relative YFP fluorescence after application of different dsRNA in NIH/3T3 cells (fourth experiment),		
Fig. 7	shows relative YFP fluorescence after application of different dsRNA in HeLa-S3 cells (fifth experiment),		
Fig. 8	shows fluorescence micrographs of NIH/3T3 cells after transfection with pcDNA-YFP and after cotransfection with pcDNA-YFP and different dsRNAs,		
Fig. 9	shows fluorescence micrographs of HeLa-S3 cells after transfection with pcDNA-YFP and after cotransfection with pcDNA-YFP and different dsRNAs,		
Fig. 10	shows gel electrophoretic separation of S1 after incubation in mouse serum,		

Fig. 11	shows gel electrophoretic separation of S1 after incubation in human serum,
Fig. 12	shows gel electrophoretic separation of S7 after incubation in mouse serum,
Fig. 13	shows gel electrophoretic separation of S7 after incubation in human serum,
Fig. 14	shows gel electrophoretic separation of K3 after incubation in mouse serum,
Fig. 15	shows gel electrophoretic separation of PKC1/2 after incubation in mouse serum,
Fig. 16	shows gel electrophoretic separation of S1A/S4B after incubation in human serum,
Fig. 17	shows gel electrophoretic separation of K2 after incubation in human serum and
Fig. 18	shows GFP-specific immunoperoxidase staining on kidney paraffin sections of transgenic GFP mice,
Fig. 19	shows GFP-specific immunoperoxidase staining on heart paraffin sections of transgenic GFP mice,
Fig. 20	shows GFP-specific immunoperoxidase staining on pancreas paraffin sections transgenic GFP mice,
Fig. 21	shows Western blot analysis of GFP expression in plasma,
Fig. 22	shows Western blot analysis of GFP expression in the kidneys,
Fig. 23	shows Western blot analysis of GFP expression in the heart,
Fig. 24	shows Western blot analysis of EGFR expression in U-87 MG glioblastoma cells,

- Fig. 25a shows Northern blot analysis of the MDRI mRNA levels in colon carcinoma cell line LS174T, in which the cells were harvested after 74 hours,
- Fig. 25b shows quantification of the band according to Fig. 25a, in which the averages from two values are shown,
- Fig. 26a shows Northern blot analysis of the MDRI mRNA levels in colon carcinoma cell line LS174T, in which the cells were harvested after 48 hours,
- Fig. 26b shows quantification of the band according to Fig. 26a, in which the average values from the two values are shown,
- Fig. 27 shows a comparative depiction of a transmitted light and fluorescence photomicrograph of a transfection with 175 nM dsRNA (sequence R1 in Table 4).

The double-strand ribonucleic acids dsRNA I and dsRNA II, depicted schematically in Figures 1a and 1b, each have a first end E1 and a second end E2. The first and second ribonucleic acids dsRNA I/dsRNA II have single-strand sections formed from about 1 to 4 unpaired nucleotides on their two ends E1 and E2. Two possible variants are shown (variants 1 and 2), in which variant 2 has a smooth end (E2). The smooth ends, however, can also lie on the other end (E1) in another variant.

A target gene situated on DNA is schematically shown in Fig. 2. The target gene is made recognizable by a black bar. It has a first region B1 and a second region B2.

Each strand of the first dsRNA I (as1) and the second dsRNA II (as2) is complementary to the corresponding region B1 or B2 on the target gene.

Expression of the target gene is then inhibited with particular efficiency, if the dsRNA I/dsRNA II has single strand sections on its ends E1, E2. The single-strand sections can be formed both on

strand as 1 or as 2 and on the counterstrand (ss 1 or ss 2) or on strand as 1, as 2 and on the counterstrand.

The regions B1 and B2, as shown in Fig. 2, can be spaced from each other. However, they can also be adjacent to each other or overlap.

I. Inhibition of Expression of the YFP Gene in Fibroblasts:

Double-strand RNAs (dRNAs) were prepared from sequences of the yellow fluorescent protein (YFP), a variant of the GFP (green-fluorescent protein) of the alga *Aequoria victoria* and microinjected into fibroblasts, together with a YFP-coding plasmid. Fluorescence reduction was then evaluated relative to cells without dsRNA.

Experimental Protocol:

By means of an RNA synthesizer (type Expedite 8909, Applied Biosystems, Weiterstadt, Germany) and ordinary chemical methods, the RNA single strands apparent from the sequence protocols SQ148, 149 and SQ159 and the single strands complementary to them were synthesized. Purification then occurred by HPLC. Hybridization of the single strands to a double-strand occurred by heating the stoichiometric mixture of single strands in 10 mM sodium phosphate buffer, pH 6.8, 100 mM NaCl, to 90°C and subsequent cooling over 6 hours to room temperature. The dsRNAs so obtained were microinjected into the test cell.

The murine fibroblast cell line NIH/3T3, ECACC no. 930615624 (European Collection of Animal Cell Cultures) served as test system for these cell culture experiments. The plasmid pcDNA-YFP was used for microinjections, which contained an 800 bp large Bam HI/Eco RI-YFP fragment in the corresponding restriction cleavage sites of the vector pcDNA3. Expression of YFP was investigated under the influence of simultaneously cotransfected sequence-homologous dsRNA. Evaluation occurred under the fluorescence microscope, at the earliest, 3 hours after injection, with reference to green fluorescence.

Preparation of the Cell Cultures:

Cultivation of the cells occurred in DMEM with 4.5 g/L glucose, 10% fetal calf serum (FCS), 2 mM L-glutamine, penicillin/streptomycin (100 IU/100 μg/mL, Biochrom) in an incubator under a 5% CO₂ atmosphere at 37°C. The cells underwent passage every 3 days, in order to keep them in the exponential growth phase. A day before performance of transfection, the cells were trypsinized (10 × trypsin/TEDTA, Biochrom) and inoculated with a cell density of 0.73 × 10⁵ cells into coated petri dishes (CORNING[®] Cell Culture Dish, 35 mM, Corning Inc., Corning, USA). The petri dishes were incubated with 0.2% gelatin (Biochrom) for at least 30 minutes at 37°C, washed once with PBS and immediately used for seeding of the cells. To permit recovery of individual cells, CELLocate coverslips from the Eppendorf company were used (square size 55 μm).

Microinjection:

To perform microiniection, the petri dishes were removed from the incubator for about 10 minutes. About 50 cells were microinjected per dish and batch (FemtoJet; Mikromanipulator 5171, Eppendorf). Glass capillaries (FemtoTip) from the Eppendorf company with a tip inside diameter of 0.5 µm were used for microinjection. The injection time was 0.8 seconds and the pressure 30 hPa. The microinjections were conducted on an Olympus IX50 microscope with a fluorescence device. 14 mM NaCl, 3 mM KCl, 10 mM KH₂PO₄, pH 7.0, was used as injection buffer, which contains 0.01 µg/mL pcDNA-YFP. To check successful microinjection, 0.08% (w/v) Dextran-70000 coupled Texas-Red (Molecular Probes, Leiden, Netherlands) was added to the injection solution. To investigate inhibition of the YFP expression with specific dsRNA, dsRNAs were added to the injection solution: batch 1: 0.1 µM dsRNA (sequence protocol SQ148/149); batch 2: 0.1 µM dsRNA (sequence protocol SQ148/159); batch 3: without RNA. After microinjection, the cells were incubated for at least three more hours in the incubator. The intracellular YFP fluorescence was then evaluated on the microscope: simultaneously red and green-fluorescent cells: microinjection was successful, no inhibition of YFP expression by dsRNA was observed; or control cells were involved, in which no dsRNA were injected; only red fluorescent cells: microinjection was successful, the dsRNA inhibits YFP expression.

Results:

At a dsRNA concentration of 0.1 μ M, a significantly increased inhibition or expression of the YFP gene in fibroblasts could be observed during use of dsRNA with the protruding single-strand regions (sequence protocol SQ148/159) on both 3' ends by two nucleotides each, in comparison with dsRNA without protruding single-strand ends (Table 1).

The use of short dsRNA molecules, containing 19-25 base pairs with overhangs of a few, preferably 1 to 3, non-base-paired, single-strand nucleotides, therefore permits comparatively stronger inhibition of gene expression in mammal cells than the use of dsRNAs with the same number of base pairs without the corresponding single-strand overhangs at the same RNA concentration.

Batch	Name	Sequence protocol	0.1 μΜ
		number	
1	S1A/	SQ148	+
	S1B	SQ149	
2	S1A/	SQ148 (protruding	+++
	S4B	end)	
		SQ159	
3		without RNA	_

Table 1: The symbols show the relative percentage of non-fluorescent or weakly green fluorescent cells (+++ > 90%; ++ 60-90%; + 30-60%; - < 10%).

II. Inhibition of Gene Expression with Target Gene in Cultivated HELA-S3 Cells and Mouse Fibroblasts by dsRNA:

The efficiency of inhibition of YFP expression after transient transfection of a YFP-coding plasmid based on RNA interference with dsRNAs can be modulated by the configuration of the 3' ends in the length of the base-paired regions.

Practical Example:

To detect the efficiency of dsRNA during specific inhibition of gene expression, transiently transfected NIH/3T3 cells (fibroblasts from NIH Swiss mouse embryo, ECCAC (European Collection of Animal Cell Cultures) no. 93061524) and HELA-S3 (human cervical carcinoma cells, DSMZ (German Collection of Microorganisms and Cell Cultures) no. ACC 161) were used. The plasmid pcDNA-YFP was used for transfection, which contains an 800 bp Bam HI/Eco RI-YFP fragment in the corresponding cleavage sites of the vector pcDNA3. Double-strand RNAs derived from the sequence of the yellow fluorescent protein (YFP) were produced and transiently transfected with the plasmid pcDNA-YFP in the fibroblasts (the employed specific dsRNAs are complementary in their anti-sense strands to the corresponding sections of the gene sequences above YFP and GFP). After 48 hours, the fluorescence reduction was quantified. Cells that were transfected either only with pcDNA-YFP or with pcDNA-YFP and a controlled dsRNA (not derived from the YFP sequence) functioned as controls.

Experimental Protocol:

dsRNA Synthesis:

By means of an RNA synthesizer (type Expedite 8909, Applied Biosystems, Weiterstadt, Germany), and ordinary chemical methods, the RNA individual strands apparent from the sequence protocols and the single strands complementary to them were synthesized. Purification of the crude synthesis products then occurred by means of HPLC. The column NucleoPac PA-100, 9 × 250 mM, from the Dionex company was used; 20 mM tris, 10 mM NaClO₄, pH 6.8, 10% acetonitrile as low salt buffer and 20 mM Tris, 400 mM NaClO₄, pH 6.8, 10% acetonitrile as high salt buffer. The flow rate was 3 mL/minute. Hybridization of the single strands to a double strand occurred by heating the stoichiometric mixture of the single strands in 10 mM sodium phosphate buffer, pH 6.8, 100 mM NaCl, to 80-90°C and subsequent slow cooling over 6 hours to room temperature.

Seeding of the Cells:

All cell culture work was conducted under sterile conditions in a corresponding work bench (HS18, Hera Safe, Kendro, Heraeus). Cultivation of NIH/3T3 cells and HELA-S3 occurred in an incubator (CO₂ incubatorT20, Hera cell, Kendro, Heraeus) at 37°C, 5% CO₂ and saturated atmospheric humidity in DMEM (Dulbecco's Modified Eagle Medium, Biochrom), for the mouse fibroblasts, and Ham' F12 for the HELA cells with 10% FCS (fetal calf serum, Biochrom), 2 mM L-glutamine (Biochrom) and penicillin/streptomycin (100 IU/100 μ g/mL, Biochrom). In order to keep the cells in the exponential growth phase, the cells underwent passage every 3 days. 24 hours before the forming transfection, the cells were trypsinized (10 × trypsin/EDTA, Biochrom, Germany) and seeded with a cell density of 1.0 × 10⁴ cells/recess into a 96-well plate (Multiwell dishes 96-well flat bottom, Labor Schubert & Weiss GmbH) in 150 μ L growth medium.

Performance of Transient Transfection:

Transfection was conducted with Lipofectamine PlusTM reagent (Life Technologies) according to the information of the manufacturer. 0.15 μg pcDNA-YFP plasmid was introduced per well. The total transfection volume was 60 μL. 3-fold samples were used in each case. Plasmid DNA was first complexed, together with dsRNA. For this purpose, the plasmid DNA and the dsRNA were diluted in a serum-free medium and 1 μL PLUS reagent was used per 0.1 μg plasmid DNA (in a volume of 10 μL) and, after mixing for 15 minutes at room temperature, they were incubated. During incubation, 0.5 μL Lipofectamine was diluted in a total of 10 μL serum-free medium per 0.1 μg plasmid DNA, thoroughly mixed, added to the plasmid/dsRNA/PLUS mixture and incubated for another 15 minutes. During incubation, a medium change was conducted. For this purpose, the cells were washed once with 200 μL serum-free medium and then with 40 μL serum-free medium and then incubated further in the incubator, up to addition of DNA/dsRNA/PLUS/Lipofectamine. After addition of 20 μL DNA/dsRNA/PLUS/Lipfectamine per well, the cells were incubated for 2.5 hours in the incubator. After incubation, the cells were then washed once with 200 μL growth medium and incubated for 24 hours until detection of the fluorescence in 200 μL growth medium in the incubator.

Detection of Fluorescence:

24 hours after the last medium change, the fluorescence of the cells was photographed on the fluorescence microscope (IX50-S8F2, fluorescence unit U-ULS100Hg, burner U-RFL-T200, Olympus) with a USH-I02D mercury lamp (USHIO Inc., Tokyo, Japan), equipped with a WIB fluorescence cube and a digital CCD camera (Orca IIIm, Hamamatsu and C4742-95 camera controller). Evaluation of the fluorescence recording occurred with the analysis software 3.1 (Soft Imaging System GmbH, Germany). In order to relate the YFP fluorescence to cell density, a cell nucleus staining was carried out (Hoechst staining). For this purpose, the cells were first fixed for 5 in 100 μL methylcarnoy (75% methanol, 25% glacial acetic acid) and then again for 10 minutes in methylcarnoy. After air drying, the fixed cells were incubated for 30 minutes in the dark with 100 μL per well of Hoechst die (75 ng/mL). After washing twice with PBS (PBS Dulbecco w/o Ca²⁺, M²⁺, Biochrom), the Hoechst-stained cells were photographed under the fluorescence microscope (Olympus, WU fluorescence cube for Hoechst).

Figures 3 to 9 show the results on inhibition of YFP expression by dsRNA in the cultivated cells:

The effects of YFP-specific dsRNAs and control dsRNAs on YFP expression in NIH/3T3 mouse fibroblasts after transient transfection are summarized in Figures 3, 4, 5 and 6. The experiments were run as described in the experimental protocol. The concentration of dsRNA refers to the concentration in the medium during the transfection reaction. The designations for the dsRNAs can be gathered from Table 2. The relative fluorescence per image section in area percent is shown. 3 different image sections were evaluated per well. The averages are obtained from the 3-fold batches.

The specific inhibition of YFP gene expression by dsRNAs in HELA-S3 cells is shown in Figures 7 and 9. The inhibiting effect of differently configured dsRNA constructs (Table 2) in different concentrations on expression of YFP in HELA cells is shown in Fig. 7. Fig. 8 shows representative fluorescence microscope recordings of NIH/3T3 mouse fibroblasts transiently transfected with YFP without dsRNA and with dsRNA specifically directed against YFP (× 100 magnification).

8A: YFP controls

8B: S1, 10 nM

8C: S4, 10 nM

8D: S7, 10 nM

8E: \$7/\$11, 1 nM

8F: S7/S12, 1 nM

Fig. 9 shows representative fluorescence microscope recordings of HELA-3S cells transiently transfected with YFP without dsRNA and with dsRNAs specifically directed against YFP (× 100 magnification).

9A: K2-controls, 10 nM

9B: S1, 10 nM

9C: S4, 10 nM

9D: S7, 10 nM

9E: S7/11, 1 nM

9F: S7/12, 1 nM

9G: S1A/S4B, 10 nM

9H: YFP controls

Results:

Fig. 3 shows that YFP expression after transient cotransfection of mouse fibroblasts with the YFP plasmid and dsRNAs specifically directed against the YFP sequence is inhibited with particular efficiency when the 3' ends of the regions containing 22 and 19 base pairs of the dsRNAs have single-strand sections of two nucleotides (nt). Whereas the dsRNA S1 with smooth 3' ends at a concentration of 1 nM (referred to the concentration in the cell culture medium during performance and transfection) exhibits no inhibiting effect on YFP expression, the dsRNAs S7 (19 nucleotide pairs) and S4 (24 nucleotide pairs), each with 2 nt overhangs on both 3' ends, inhibit the YFP expression by 50 or by 70% in comparison with the corresponding control dsRNAs K3 and K2. At a concentration of 10 nM, the dsRNA denoted S1 with smooth ends inhibits YFP expression by about 65%, whereas inhibition of YFP expression by the dsRNA S4 is about 94% (Fig. 4). The inhibiting effects of the dsRNAs denoted S4 and S7 is concentration-dependent (Figures 3 and 4, see also Fig. 7).

Fig. 4 shows that, for efficient suppression of YFP gene expression, the single-strand structure is not necessary on both 3' ends (on the sense and anti-sense strand). To achieve the most effective possible inhibition of YFP expression, only the 2 nt overhang on the 3' end is necessary on the anti-sense strand. Inhibition of YFP expression at a concentration of 1 nM in the two dsRNAs S4 (with 2 nt overhangs on both 3' ends) and S1A/S4B (with the 2 nt overhang on the 3' end of the anti-sense strand) lies at about 70%. On the other hand, if the 2 nt overhang is situated on the 3' end of the sense strand (and the 3' end of the anti-sense strand carries no single-strand region), inhibition of YFP gene expression is only 50%. Similarly, inhibition at higher concentrations is much better, if at least the 3' end of the anti-sense strand carries a 2 nt overhang.

A more distinct inhibition of YFP expression is achieved, if the base-paired region has 21 nucleotide pairs instead of 22 (S1 and S4), 20 (S13 and S13/14) or 19 (S7) (Figures 5, 6 and 7). Inhibition of YFP expression by S1 (22 base pairs with smooth ends) in a concentration of 5 nM is about 40%, whereas inhibition by S7/S12 (21 base pairs with smooth ends), also with 5 nM, lies at about 92%. If the dsRNA with 21 base pairs also has a 2 nt overhang on the anti-sense strand 3' end (S7/S11), inhibition lies at \sim 97% (compared with \sim 73% inhibition with S4 and \sim 70% inhibition with S7).

III. Investigation of Serum Stability of Double-Strand RNA (dsRNA):

The objective is to increase the effectiveness found the cell cultures of inhibition of gene expression of target genes mediated by dsRNA for use in vivo. This is achieved by improved stability of the dsRNAs in serum and by an extended residence time of the molecule in the circulation and the increased effective concentration of the functional molecules related to this, resulting from improved stability.

Practical Example:

The serum stability of dsRNAs that inhibit GFP expression was tested in vivo in murine and human serum.

Experimental Protocol:

Incubation with human or murine serum with the corresponding dsRNA occurred at 37°C. 85 μ L serum was incubated with 15 μ L 100 μ M dsRNA. After specified incubation times (30 minutes, 1 h, 2 h, 4 h, 8 h, 12 h, 24 h), the samples were frozen at -80°C. dsRNA without serum (+ 85 μ L ddH₂O) and dsRNA at time 0 were used as control.

For isolation of the dsRNA from the incubation charge, which occurred on ice, 400 µL with 0.1% SDS was added to the charges and these are subjected to phenol extraction: 500 µL phenol:chloroform:isoamyl alcohol (IAA, 25:24:1, Roti®-Phenol, Roth, Karlsruhe) was added per charge and vortexed for 30 seconds at the highest stage (Vortex Genie-2; Scientific Industries). After 10 minutes of incubation on ice, phase separation occurred by centrifuging at 12,000 × g, 4°C for 10 minutes (Sigma 3K30, Rotor 12131-H). The upper aqueous phase (about 200 µL) was taken off and subjected first to DNase I and the proteinase K digestion: addition of 20 µL 10-fold DNase I buffer (100 mM Tris, pH 7.5, 25 mM MgCl₂, 1 mM CaCl₂) and 10 U DNase I (D7291, Sigma-Aldrich), 30 minutes incubation at 37°C, addition of 6 U DNase I again and incubation for another 20 minutes at 37°C, addition of 5 µL proteinase K (20 mg/mL, 04-1075, Peglab, Germany) and 30 minutes incubation at 37°C. Phenol extraction was then conducted. For this purpose, 500 µL phenol:chloroform:IAA (25:24:1) was added, vortexed at the highest stage for 30 seconds, 10 minutes for 12000 × g, 4°C, centrifuged, the supernatant taken off and mixed in succession with 40 µL 3M Na-Ac (sodium acetate), pH 5.2, and 1 mL 100% EtOH, mixed thoroughly in the meantime and precipitated for at least 1 hour at -80°C. The precipitate was pelletized by centrifuging at 12000 x g for 30 minutes and 4°C, washed with 70% EtOH and recentrifuged (10 minutes, 12000 × g, 4°C). The air dried pellet was taken up in 30 µL RNA gel application buffer (7 M urea, 1 × TBE (0.09 M tris-borate, 0.002 M EDTA

(ethylenediaminetetraacetate), 0.02% (w/v) bromophenol blue, 0.02% (w/v) xylenecyanol) and stored at -20°C until gel application.

For characterization of the dsRNA, an analytical, denaturing polyacrylamide gel electrophoresis (analytical PAGE) was conducted. The urea gels were prepared right before the run: 7 M urea (21 g) was dissolved during agitation in 25 mL 40% aqueous acrylamide/bisacrylamide stock solution (Rotiphoresis gel, A515.1, Roth) and 5 μL 10 × TBE (100 g Tris, 55 g boric acid, 9.3 g EDTA per L distilled water) and made up to 50 µL with distilled water. Right before pouring, 50 μL TEMED (N,N,N',N'-tetramethylethylenediamine) and 500 μL 10% APS (ammonium peroxidisulfate) were added. After polymerization, the gel was introduced to a vertical electrophoresis apparatus (Merck, Darmstadt) and a prerun was conducted for 30 minutes at a constant 40 mA current intensity. As run buffer, 1 × TBE buffer was used. Before application onto the gel, the RNA samples were heated for 5 minutes at 100°C, cooled on ice and centrifuged for 20 seconds in a table-top centrifuge (Eppendorf, minispin). 15 µL was applied to the gel. The run occurred for about 2 hours at a constant current of 40 mA. After the run, the gel was stained for 30 minutes at RT (room temperature) with Stains all stain solution (20 mL Stains all stock solution dissolved in 200 mL formamide) mixed with 200 mL distilled water and 180 mL formamide) and the background staining eliminated after rinsing in distilled water for 45 minutes. The gels were photographed with the photo documentation system Image Master VDS from Pharmacia.

Figures 10 to 17 show the serum stability of dsRNA after incubation with human and murine serum and subsequent electrophoretic separation in 20% 7 M urea gel.

Fig. 10: Incubation of S2 (0-22-0) in mouse serum

- 1. at time 0 (without serum)
- 2. at time 0
- 3. for 30 minutes
- 4. for 1 hour
- 5. for 2hours
- 6. for 4 hours

- 7. for 12 hours
- 8. 2 μL 100 μM S1 without incubation
- S1A) Sense strand S1 (10 µL 20 µm S1A)
- S1B) Anti-sense strand S1 (10 µL 20 µM S1B)

Fig. 11: Incubation of S1 (0-22-0) in human serum

- 1. 2 µL 100 µM S1 untreated (without incubation)
- 2. for 30 minutes
- 3. for 2 hours
- 4. for 4 hours
- 5. for 6 hours
- 6. for 8 hours
- 7. for 12 hours
- 8. for 24 hours
- S1A) Sense strand S1 (10 µL 20 µm S1A)
- S1B) Anti-sense strand S1 (10 µL 20 µM S1B)

Fig. 12: Incubation at S7 (2-19-20) in mouse serum

- 1. at time 0 (without serum)
- 2. for 30 minutes
- 3. for 4hours
- 4. for 12 hours

Fig. 13: Incubation of S7 (2-19-2) in human serum

- 1. Sense strand S7 (10 μL 20 μM S7A)
- 2. Anti-sense strand S7 (10 µL 20 µM S7B)
- 3. for 30 minutes
- 4. for 1 hour
- 5. for 2 hours
- 6. for 4 hours
- 7. for 6 hours

- 8. for 12 hours
- 9. for 24 hours
- 10. at time 0 (without serum)

Fig. 14: Incubation of K3 (2-19-20) in mouse serum

- 1. Sense strand K3 (10 μL 20 μM K3A)
- 2. Anti-sense strand K3 (10 L 20 μ M K3B)
- 3. at time 0 (without serum)
- 4. at time 0 (with serum)
- 5. for 30 minutes
- 6. for 1 hour
- 7. for 2 hours
- 8. for 4 hours
- 9. for 12 hours

Fig. 15: Incubation of PKC1/2 (0-22-2) in mouse serum

- 1. for 30 minutes
- 2. for 1 hour
- 3. for 2 hours
- 4. for 4 hours
- 5. for 12 hours
- 6. 2 μ L 100 μ M PKC1/2 (untreated)

Fig. 16: Incubation of S1A/S4B (0-22-2) in human serum

- 1. at time 0 (without serum)
- 2. for 24 hours
- 3. for 12 hours
- 4. for 8 hours
- 5. for 6 hours
- 6. for 4 hours
- 7. for 2 hours

- 8. for 30 minutes
- 9. Sense strand S1A (10 μ L 20 μ M S1A)
- 10. Anti-sense strand S4B (10 μL 20 μM S4B)

Fig. 17: Incubation of K2 (2-22-2) in human serum

- 1. Sense strand K2 (10 μ L 20 μ M K2A)
- 2. Anti-sense strand K2 (10 µL 20 µM K2B)
- 3. at point 0 (without serum)
- 4. for 30 minutes
- 5. for 2 hours
- 6. for 4 hours
- 7. for 6 hours
- 8. for 8 hours
- 9. for 12 hours
- 10. for 24 hours

Results:

dsRNAs without single-strand regions on the 3' ends are much more stable in both human and murine serum than dsRNAs with single-strand 2nt overhangs on the 3' ends (Figures 10 to 14 and 17). After 12 and 24 hours incubation at S1 in murine or human serum, bands in the original size are almost fully retained. On the other hand, in dsRNAs with 2nt overhangs on both 3' ends, the stability in human and murine serum diminishes significantly. After only 4 hours of incubation of S7 (Figures 12 and 13) or K3 (Fig. 14), no bands can be detected in the original size.

In order to increase the stability of dsRNA in serum, it is sufficient if the dsRNA has a smooth end. In mouse serum after 4 hours incubation (Fig. 15, track 4), the bands in the original size are scarcely broken down in comparison with S7 (after 4 hours complete degradation; Fig. 12, track 3).

As an optimal compromise with respect to biological efficacy of dsRNA, the use of dsRNA with a smooth end and a single-strand region of 2 nucleotides can be considered, in which the single-strand overhang should be situated on the 3' end of the anti-sense strand.

The sequences used here are apparent from the following Table 2 and the sequence protocols SQ148-151 and 153-167.

Name	Sequenz-	Sequenz - dsRNA-Sequenz	
	proto-		
	koll-Nr.		
s1	SQ148	(A) 5'- CCACAUGAAGCAGCACGACUUC -3'	
	SQ149	(B) 3'- GGUGUACUUCGUCGUGCUGAAG -5'	0-22-0
S 7	SQ150	(A) 5'- CCACAUGAAGCAGCACGACUU -3'	
	SQ151	(B) 3'- CUGGUGUACUUCGUCGUGCUG -5'	2-19-2
K1	SQ153	(A) 5'- ACAGGAUGAGGAUCGUUUCGCA -3'	
	SQ154	(B) 3'- UGUCCUACUCCUAGCAAAGCGU -5'	0-22-0
К3	SQ155	(A) 5´-GAUGAGGAUCGUUUCGCAUGA-3´	
	SQ156	(B) 3 - UCCUACUCCUAGCAAAGCGUA-5	2-19-2
К2			
	SQ157	(A) 5'- ACAGGAUGAGGAUCGUUUCGCAUG -3'	
	SQ158	(B) 3'- UCUGUCCUACUCCUAGCAAAGCGU -5'	2-22-2
SlA/	SQ148	(A) 5´- CCACAUGAAGCAGCACGACUUC -3´	
S4B	SQ159	(B) 3'- CUGGUGUACUUCGUCGUGCUGAAG -5'	0-22-2

PKC 1/2	SQ160	(A)	5'- CUUCUCCGCCUCACACCGCUGCAA -3']
; 	SQ161	(B)	3'- GAAGAGGCGGAGUGUGGCGACG -5'	2-22-0
S7/S12		 		
	SQ150	(A)	5'- CCACAUGAAGCAGCACUU -3'	0-21-0
	SQ162	(B)	3'- GGUGUACUUCGUCGUGCUGAA -5'	<u> </u>
S7/S11	SQ150	(A)	5'- CCACAUGAAGCAGCACGACUU -3'	1
	SQ163	(B)	3 - CUGGUGUACUUCGUCGUGCUGAA -5	0-21-2
S13	SQ164	(A)	5'- CCACAUGAAGCAGCACGACU -3'	
	SQ165	(B)	3 - CUGGUGUACUUCGUCGUGCUGA -5	0-20-2
S13/14	SQ164	(A)	5'- CCACAUGAAGCAGCACGACU -3'	
	SQ166	 	3'- GGUGUACUUCGUCGUGCUGA -5'	0-20-0
S4	SQ167	(A)	5'- CCACAUGAAGCAGCACGACUUCUU -3'	
i	SQ159	! ! !	3 - CUGGUGUACUUCGUCGUGCUGAAG -5	2-22-2
****		(A)	E : ACACCAMON CONTICO DE CONTICO	
K1A/	SQ153	İ	5'- ACAGGAUGAGAUCGUUUCGCA -3'	0-22-2
K2B	SQ158	(B)	3'- UCUGUCCUACUCCUAGCAAAGCGU -5'	
K1B/	SQ154	(A)	5'- ACAGGAUGAGGAUCGUUUCGCAUG -3'	
K2A	SQ157	(B)	3 - UGUCCUACUCCUAGCAAAGCGU -5	2-22-0
S1B/	SQ149	(A)	5'- CCACAUGAAGCAGCACGACUUCUU -3'	
S4A	SQ167	(B)	3 - GGUGUACUUCGUCGUGCUGAAG -5	2-22-0
		L		

Key to figure: (Headings)

Name

Sequence protocol no.

dsRNA sequence

Table 2

IV. In Vivo Study:

Double-strand RNA (dsRNA) that was derived from the GFP sequence where unspecific dsRNA was injected intravenously into the caudal vein of "GFP laboratory mice" that express the green fluorescent protein (GFP) in all cells that conduct protein biosynthesis. At the end of the experiment, the animals were killed and the GFP expression analyzed in tissue sections and in plasma.

Experimental Protocol:

Synthesis of dsRNA:

By means of an RNA synthesizer (type Expedite 8909, Applied Biosystems, Weiterstadt, Germany), and ordinary chemical methods, the RNA single strands apparent from the sequence protocols and the single strand complementary to them were synthesized. Purification of the crude synthesis products then occurred with HPLC. As columns, NucleoPac PA-100, 9 × 250 mm from the Dionex company were used; 20 mM Tris, 10 mM NaClO₄, pH 6.8, 10% acetonitrile was used as low salt buffer and 20 mM Tris, 400 mM NaClO₄, pH 6.8, 10% acetonitrile as high salt buffer. The flow rate was 3 mL/minute. Hybridization of the single strands to a double strand occurred by heating of the stoichiometric mixture of the single strands in 10 mM sodium phosphate buffer, pH 6.8, 100 mM NaCl, to 80-90°C and subsequent slow cooling over 6 hours to room temperature.

Experimental Animal Keeping and Performance of the Experiment

The transgenic laboratory mouse strain TgN (GFPU) 5Nagy (Jackson Laboratory, Bar Harbor, Maine, USA) was used, which expresses GFP (with a beta-actin promoter and a CMV intermediate early enhancer) in all previously investigated cells (Hadjantonakis AK et al. 1993, Mech. Dev. 76: 79-90; Hadjantonakis AK et al., 1998 Nature Genetics 19: 220-222). GFP-transgenic mice can be clearly distinguished from the corresponding wild types (WT) by means of fluorescence (with a UV hand lamp). For breeding, the corresponding WT was paired with a heterozygous GFP type.

The experiment was performed according to the German Animal Protection Regulations. The animals were kept under controlled environmental conditions in groups of 3-5 animals in type III Makrolon cages from the Ehret company, Emmendingen, at a constant temperature of 22°C and a light-dark rhythm of 12 h. Softwood granulate 8/15 from the Altromin company, Lage, was used as sawdust litter. The animals received tap water and standard feed Altromin 1324 pelletized (Altromin) ad libitum.

To perform the experiment, the heterozygous GFP animals were kept in groups of 3 animals each in cages, as described above. Injections of the dsRNA solution occurred intravenously (IV) into the caudal vein in 12-hour cycles (between 5:30 and 7:00 a.m. and between 5:30 and 7:00 p.m.) over 5 days. The injection volumes were $60~\mu L$ for per 10~g of body weight and the dose was 2.5~g mg dsRNA and $50~\mu g$ per kg of body weight. Division into groups was as follows:

- Group A: PBS (phosphate buffered saline) 60 µL per 10 kg of body weight,
- Group B: 2.5 mg per kg of body weight of a nonspecific control dsRNA (K1 control with smooth ends and a double-strand region of 22 nucleotide pairs),
- Group C: 2.5 mg per kg of body weight of another unspecific control dsRNA (K3 control with 2nt overhangs on both 3' ends and a double-strand region of 19 nucleotide pairs),
- Group D: 2.5 mg per kg of body weight dsRNA (specific against GFP, subsequently referred to as S1, with smooth ends and a double-strand region of 22 nucleotide pairs),
- Group E: 2.5 mg dsRNA per kg of body weight (specific against GFP, subsequently referred to as S7, with 2nt overhangs on the 3' ends of both strands and a double-strand region of 19 nucleotide pairs)
- Group F: 50 µg S1-dsRNA per kg of body weight (i.e., 1/50 of the dose of group D).

After the last injection of a total of 10 injections, the animals were killed after 14-20 h and the organs and blood taken as described.

Organ Removal:

Immediately after killing the animals by CO₂ inhalation, blood and different organs were taken (thymus, lungs, heart, spleen, stomach, intestines, pancreas, brain, kidneys and liver). The organs were rinsed briefly in cold sterile PBS and divided with a sterile scalpel. One part was fixed for immunohistochemical staining in methylcarnoys (MC, 60% methanol, 30% chloroform, 10% glacial acetic acid) for 24 hours, one part was shock frozen for frozen sections and for protein isolation immediately in liquid nitrogen and stored at -80°C, and another smaller part was frozen for RNA isolation in RNAeasy-Protect (Qiagen) at -80°C. The blood was immediately held for 30 minutes on ice after sampling, mixed, centrifuged for 5 minutes at 2000 rpm (Mini spin, Eppendorf), the supernatant removed and stored at -80°C (here referred to as plasma).

Processing of the Biopsies:

After 24 h of fixation of the tissue in MC, the tissue pieces were dehydrated in an increasing alcohol series at RT (room temperature): every 40 minutes 70% methanol, 80% methanol, $2 \times 96\%$ methanol and $3 \times 100\%$ isopropanol. The tissue was then heated in 100% isopropanol to 60° C in an incubator, then incubated for 1 hour in an isopropanol/paraffin mixture at 60° C and $3 \times 60^{\circ}$ C hours in paraffin and then imbedded in paraffin. For immunoperoxidase staining, tissue sections with 3 μ m section thickness were prepared with a rotary microtome (Leica), mounted on slides (Superfrost, Vogel) and incubated for 30 minutes at 60° C in an incubator.

Immunoperoxidase Staining versus GFP:

The sections were deparaffinized 3×5 minutes in xylene, rehydrated in an increasing alcohol series (3×3 min 100% ethanol, 2×2 min 95% ethanol) and then incubated for 20 minutes in 3% H_2O_2 /methanol to block endogenous peroxidases. All incubation steps were conducted subsequently in a moist chamber. After 3×3 minutes of washing with PBS, they were incubated

with the first antibody (goat anti-GFP, sc-5384, Santa Cruz, Biotechnology) 1:500 in 1% BSA/PBS overnight at 4°C. Incubation with the biotinylated secondary antibody (donkey antigoat; Santa Cruz Biotechnology; 1:2000 dilution) occurred for 30 minutes at RT, whereupon they were incubated for 30 minutes with Avidin D Peroxidase (1:2000 dilution, Vector Laboratories). After each antibody incubation, the sections were washed 3 × 3 min in PBS and the buffer residues removed from the sections with wadding. All antibodies were diluted in 1% bovine serum albumin (BSA)/PBS. Staining with 3,3'-diaminobenzidine (DAB) was conducted with the DAB substrate kit (Vector Laboratories) according to the manufacturer's data. As nuclear counterstain, hematoxylin III according to Gill (Merck) was used. After dehydration in a rising alcohol series at 3 × 5 minutes xylene, the sections were covered with Entellan (Merck). Microscopic evaluation of staining occurred with the IX50 microscope from Olympus, equipped with a CCD camera (Hamamatsu).

Protein Isolation from Tissue Pieces:

800 μ L isolation buffer (50 mM HEPES, pH 7.5, 150 mM NaCl; 1 mM EDTA; 2.5 mM EGTA; 10% glycerol; 0.1% Tween; 1 mM DTT, 10 mM β -glycerol phosphate; 1 mM NaF; 0.1 mM Na₃VO₄ with a protease inhibitor tablet "Complete" from Roche) were added to the still frozen tissue pieces and homogenized 2 × 30 seconds with an Ultraturrax (DIAX 900, dispersal die 6 G, Heidolph), and cooled in between on ice. After 30 minutes of incubation on ice, they were mixed and centrifuged for 20 minutes at $1000 \times g$, 4°C (3K30, Sigma). The supernatant was incubated for another 10 minutes on ice, mixed and centrifuged for 20 minutes to $15000 \times g$, 4°C. A protein determination according to Bradford, 1976, modified after Zor & Selinger, 1996, was conducted with the supernatant with the Roti-Nanoquant system of Roth according to the data of the manufacturer. BSA (bovine serum albumin) in concentrations from 10 to 100 μ g/mL was used for the protein calibration line.

SDS Gel Electrophoresis:

Electrophoretic separation of the proteins occurred in a multigel long electrophoresis chamber from Biometra with a denaturing, discontinuous 15% SDS-PAGE (polyacrylamide gel electrophoresis) according to Lämmli (Nature 277: 680-685, 1970). For this purpose, a

separation gel 1.5 mM thick was initially poured: 7.5 mL acrylamide/bisacrylamide (30%, 0.9%), 3.8 mL 1.5 M tris/HCl, pH 8.4, 150 μ L 10% SDS, 3.3 mL doubly distilled water, 250 μ L ammonium persulfate (10%), 9 μ L TEMED (N,N,N',N'-tetramethylenediamine) and coated up to polymerization with 0.1% SDS. The collected gel was then poured: 0.83 μ L acrylamide/bisacrylamide (30%/0.9%), 630 μ L 1 M Tris/HCl, pH 6.8, 3.4 mL doubly distilled water, 50 μ L 10% SDS, 50 μ L 10% ammonium persulfate, 5 μ L TEMED.

Before application of the gel, the proteins were mixed with a corresponding amount of 4-fold sample buffer (200 mM tris, pH 6.8, 4% SDS, 100 mM DTT (dithiotreithol), 0.02% bromophenol blue, 20% glycerol), denatured for 5 minutes in a heating unit at 100°C, briefly centrifuged after cooling on ice and applied to the gel. The same plasma or protein amounts were used per track (3 µL plasma and 25 µg total protein each). Electrophoresis occurred water-cooled at RT and a constant 50 V. The protein gel marker from Bio-Rad (kaleidoscope prestained standard) was used as length standard.

Western Blot and Immune Detection:

Transfer of the proteins from SDS-PAGE to a PVDF (polyvinyl difluoride) membrane (Hybond-P, Amersham) occurred in the semi-dry method according to Kyhse-Anderson (J. Biochem. Biophys. Methods 10: 203-210, 1984) at RT and a constant current intensity of 0.8 mA/cm² for 1.5 h. A Tris/glycine buffer was used as transfer buffer (39 mM glycine, 465 mM Tris, 0.1% SDS and 20% methanol). To check the electrophoretic transfer, both the gels after blotting and the blot membranes after immune detection were stained with Coomassie (0.1% Coomassie G250, 45% methanol, 10% glacial acetic acid). For saturation of nonspecific bonds, the blot membrane after transfer was incubated in 1% skim milk powder/PBS for 1 h at RT. It was then washed three times for 3 minutes with 0.1% Tween-20/PBS. All subsequent antibody incubations and washing steps occurred in 0.1% Tween-20/PBS. Incubation with the primary antibody (goat anti-GFP, sc 5384, Santa Cruz Biotechnology) occurred in a dilution of 1:1000 for 1 h at RT. It was then washed 3 × 5 min and incubated for 1 hour at RT with a secondary antibody (donkey anti-goat IgG horseradish peroxidase labeled, Santa Cruz Biotechnology) in a dilution of 1:1000. Detection occurred with the ECL system from Amersham according to the data of the manufacturer.

Figures 18 to 20 show inhibition of GFP expression after intravenous injection of dsRNA specifically directed against GFP with immunoperoxidase staining relative to GFP on 3 μm paraffin sections. During the experiment, dsRNA directed against GFP with a double-strand region of 22 nucleotide (nt) pairs without overhangs on the 3' ends (D) and the corresponding unspecific control dsRNA (B), as well as dsRNA directed specifically against GFP with a double-strand region containing 19 nucleotide pairs with 2 nt overhangs on the 3' ends (E) and the corresponding nonspecific control dsRNA (C) were applied in 12-hour cycles over 5 days. (F) received 1/50 of the dose of group D. Animals without dsRNA administration (A) and WT animals were investigated as additional controls. Fig. 18 shows inhibition of GFP expression in kidney sections, Fig. 19 in heart tissue and Fig. 20 in pancreas tissue. Figures 21 to 23 show Western blot analyses of GFP expression in plasma and tissues. Inhibition of GFP expression in plasma is shown in Fig. 21, in the kidneys in Fig. 22 and in the heart in Fig. 23. Total protein isolates from different animals are shown in Fig. 23. The same total protein amounts per track were applied. In the animals, to which unspecific control dsRNA was administered (animals of groups B and C), the GFP expression relative to animals that received no dsRNA is not reduced. Animals that received dsRNA specifically directed against GFP with 2 nt overhangs on the 3' ends of both strands and a double-strand region containing 19 nucleotide pairs exhibited a significantly inhibited GFP expression in the investigated tissues (heart, kidneys, pancreas and blood), compared with the untreated animals (Figures 18 to 23). In the animals of groups D and F, in which dsRNA directed specifically against GFP with smooth ends and double-strand region containing 22 nucleotide pairs was administered, only those animals that received dsRNA in a dose of 50 µg/kg of body weight per day exhibited a specific inhibition of GFP expression, which, however, was much less pronounced than that of the animals in group E. The summarizing evaluation of GFP inhibition in the tissue sections and in Western blot shows that inhibition of GFP expression in blood and the kidneys is strongest (Figures 18, 21 and 22).

V. Inhibition of Gene Expression of EGF Receptor with dsRNA as a Therapeutic Approach in Forms of Cancer with EGFR Overexpression or EGFR-induced Proliferation:

The epidermal growth factor (EGF) receptor (EGFR) belongs to the receptor tyrosine kinases, transmembrane proteins with an intrinsic tyrosine kinase activity, which participate in the control

of a series of cellular processes, like cell growth, cell differentiation, migratory processes or cell vitality (review in: Van der Geer et al. 1994). The EGFR family consists of 4 members, EGFR (ErbB1), HER2 (ErbB2, HER3 (ErbB3) and HER4 (ErbB4) with a transmembrane domain, a cysteine-rich extracellular domain and an intracellular catalytic domain. The sequence of EGFR, a 170 kDa protein, has been known since 1984 (Ullrich et al., 1984).

EGFR is activated by peptide growth factors, like EGF, TGFα (transforming growth factor), amphiregulin, beta-cellulin, HB-EGF (heparin-binding EGF-like growth factor) and neureguline. Ligand bonding induces formation of homo- or heterodimers with subsequent autophosphorylation of cytoplasmic tyrosine (Ullrich & Schlessinger, 1990; Alroy & Yarden, 1997). The phosphorylated amino acids form the bonding sites for a number of proteins that participate in the proximal steps of signal conduction in a complex network. EGFR participates in a wide variety of tumor diseases and is therefore a suitable target for therapeutic approaches (Huang & Harari, 1999). The mechanisms that lead to an aberrant EGFR activation can be due to overexpression, amplification, constituted activation of mutant receptor forms or autocrine loops (Voldborg et al., 1997). An overexpression of EGFR was described for a number of tumors, like breast cancer (Walker & Dearing, 1999), non-small lung carcinoma (Fontanini et al., 1998), pancreatic carcinomas, colon carcinoma (Salomon et al., 1995) and glioblastomas (Rieske et al., 1998). No efficient and specific therapeutic agents have thus far been available for malignant glioblastomas, in particular.

Practical Example:

To demonstrate the efficacy of dsRNA during specific inhibition of EGFR gene expression, U-87 MG cells (human glioblastoma cells), ECCAC (European Collection of Animal Cell Cultures) no. 89081402 were used, which were transfected with dsRNA directed specifically against the EGF receptor (sequence protocol SQ 51). After about 72 hours' incubation, the cells were harvested, the protein isolated and the EGFR expression investigated in the Western blot method.

Experimental Protocol:

dsRNA Synthesis:

By means of an RNA synthesizer (type Expedite 8909, Applied Biosystems, Weiterstadt, Germany) and an ordinary chemical method, the RNA single strands apparent from the sequence protocols and the single strands complementary to them were synthesized. Purification of the crude synthesis products then occurred with HPLC. The column NucleoPac PA-100, 9 × 250 mm, from the Dionex company was used; 20 mM Tris, 10 mM NaClO₄, pH 6.8, 10% acetonitrile was used as low salt buffer and 20 mM Tris, 400 mM NaClO₄, pH 6.8, 10% acetonitrile as high salt buffer. The flow rate was 3 mL/minute. Hybridization of the single strands to a double-strand occurred by heating of the stoichiometric mixture of the single strands in 10 mM sodium phosphate buffer, pH 6.8, 100 mM NaCl, to 80-90°C and subsequent slow cooling over 6 hours to room temperature.

Seeding of the Cells:

All cell culture work was conducted under sterile conditions and an appropriate work bench (HS18, Her safe, Kendro, Heraeus). Cultivation of U-87 MG cells occurred in an incubator (CO₂ incubator T20, Hera cell, Kendro, Heraeus) at 37°C, 5% CO₂ and saturated atmospheric humidity in DMEM (Dulbecco's modified eagle medium, Biochrom) with 10% FCS (fetal calf serum, Biochrom), 2 mM L-glutamine (Biochrom), 1 mM sodium pyruvate (Biochrom), 1 × NEAA (nonessential amino acids, Biochrom) and penicillin/streptomycin (100 IU/100 μg/mL, Biochrom). In order to keep the cells in the exponential growth phase, the cells were subjected to passage every 3 days. 24 hours before application of dsRNA by transfection, the cells were trypsinized (10 × trypsin/EDTA, Biochrom, Germany) and seeded with a cell density of 5 × 10⁵ cells/well in a 6-well plate (6-well plates, Labor Schubert & Weiss GmbH) in 1.5 mL growth medium.

Application of dsRNA in Cultivated U-87 MG Cells:

Application of dsRNA occurred by transfection with OLIGOFECTAMINETM reagent (Life Technologies) according to the information of the manufacturer. The total transfection volume was 1 mL. The dsRNA was first diluted in serum-free medium: for this purpose, 0.5 μL of a 20

μm stock solution of dsRNA specifically directed against EGFR and 9.5 μL of a 20 μm stock solution of unspecific dsRNA (K1A/K2B) with 175 μL serum-free medium were diluted per well (200 nM dsRNA in transfection charge and 10 nM specific EGFR-dsRNA). The OLIGOFECTAMINETM reagent was also diluted in serum-free mediums: 3 μL with 12 μL medium per well and then incubated for 10 minutes at room temperature. The diluted OLIGOFECTAMINETM reagent was then added to the dsRNAs diluted in medium, mixed and incubated for another 20 minutes at RT. During incubation, a medium change was performed. The cells were washed for this purpose once with 1 mL serum-free medium and incubated further in the incubator with 800 μL serum-free medium, up to addition of dsRNA/OLIGOFECTAMINETM reagent. After addition of 200 μL dsRNA/OLIGOFECTAMINETM reagent per well, the cells were further incubated in the incubator to protein isolation.

Protein Isolation:

About 72 hours after transfection, the cells were harvested and protein isolation carried out. For this purpose, the medium was removed and the cell monolayer washed once with PBS. After addition of 200 µL protein isolation buffer (1 × protease inhibitor "Complete", Roche, 50 mM HEPES, pH 7.5, 1509 mM NaCl, 1 mM EDTA, 2.5 mM EGTA, 10% glycerol, 0.1% Tween-20, 1 mM DTT, 10 mM β-glycerol phosphate, 1 mM NaF, 0.1 mM Na₃VO₄), the cells were separated by means of a cell scraper, incubated for 10 minutes on ice, transferred to an Eppendorf reaction vessel and stored at -80°C for at least 30 minutes. After thawing, the lysate was homogenized on stage 3 for 10 seconds with a disperser (DIAX 900, dispersing die 6G, Heidolph Instruments GmbH & Co KG, Schwabach), incubated on ice for 10 minutes and centrifuged for 15 minutes at 14000 x g, 4°C (3K30, Sigma). A protein determination was conducted with the supernatant according to Bradford with the Roti® Nanoquant system from Roth (Roth GmbH & Co., Karlsruhe) according to the information of the manufacturer. For this purpose, 200 µL protein solution in appropriate dilution was mixed with 800 µL 1 × working solution and the extinction measured in semi-microcells at 450 and 590 nm versus distilled water in a Beckman spectrophotometer (DU 250). The corresponding BSA dilutions were used for the calibration line (beaded BSA, Sigma).

SDS Gel Electrophoresis:

Electrophoretic separation of the proteins occurred in a multi-gel long electrophoresis chamber from Biometra with a denaturing, discontinuous 7.5% SDS-PAGE (polyacrylamide gel electrophoresis) according to Lämmli (Nature 277: 680-685, 197). For this purpose, a separation gel was initially poured with 1.5 mM thickness: 3.7 mL acrylamide/bisacrylamide (30%, 0.9%), 3.8 mL 1 M Tris/HCl, pH 8.4, 150 μL 10% SDS, 7.15 mL doubly distilled water, 150 μL ammonium persulfate (10%), 9 μL TEMED (N,N,N',N'-tetramethylenediamine) and coated with 0.1% SDS to polymerization. The collection gel was then poured: 0.83 mL acrylamide/bisacrylamide (30%/0.9%), 630 μL 1 M Tris/HCl, pH 6.8, 3.4 mL doubly distilled water, 50 μL 10% SDS, 50 μL 10% ammonium persulfate, 5 μL TEMED.

For application to the gel, the protein samples were mixed 1:3 with 4 × sample buffer (200 mM tris, pH 6.8, 4% SDS, 100 mM DTT (dithiotreithol), 0.02% bromophenol blue, 20% glycerol), denatured for 5 minutes at 100°C, briefly centrifuged after cooling on ice and applied to the gel. 35 µg total protein was applied per track. The run occurred water cooled at RT and a constant 50 V. The kaleidoscope protein gel marker (BioRad) was used as length standard.

Western Blot and Immunodetection:

Transfer of the proteins from SDS-PAGE to a PVDF (polyvinyl difluoride) membrane (Hybond-P, Amersham) occurred in the semi-dry method according to Kyhse-Anderson (J. Biochem. Biophys. Methods 10: 203-210, 1984) at RT and a constant current intensity of 0.5 mA/cm² for 1.5 h. The following were used as transfer buffer: cathode buffer (30 mM Tris, 40 mM glycine, 10% methanol, 0.01% SDS; pH 9.4), anode buffer I (300 mM Tris, pH 10.4, 10% methanol) and anode buffer II (30 mM Tris, pH 10.4, 10% methanol). Before combining the blot stack with 3 mm Whatman paper (Schleicher & Schüll), the gel was incubated in the cathode buffer and the PVDF membrane (30 seconds beforehand in 100% methanol) in anode buffer II (5 min): 2 layers 3 mm paper (anode buffer I), 1 layer 3 mm paper (anode buffer II), PVDF membrane, gel, 3 layers 3 mm paper (cathode buffer). To check electrophoretic transfer, both the gels after blotting and the blot membranes after immunodetection were stained with Coomassie (0.1% Coomassie G250, 45% methanol, 10% glacial acetic acid).

The blot membrane was incubated after transfer in 1% skim milk powder/ PBS/0.1% Tween-20 for 1 h at RT. It was then washed three times for 3 minutes with 0.1% Tween-20/PBS. All subsequent antibody incubations and washing steps occurred in 0.1% Tween-20/PBS. Incubation with the primary antibody (human EGFR extracellular domain, specific goat IgG, catalog no. AF231, R&D Systems) occurred on a rocking device for 2 h at RT and a concentration of 1.5 μ g/mL. It was then washed 3 × for 6 minutes and incubated for 1 hour at RT with the secondary antibody (donkey anti-goat IgG horseradish peroxidase label, Santa Cruz Biotechnology) (diluted 1:10000). After washing (3 × 3 min in PBS/0.1% Tween-20), detection occurred immediately with ECL reaction (enhanced chemiluminescence): 200 μ L solution A (250 mM luminol, Roth, dissolved in DMSO), 89 μ L solution B (90 mM p-coumaric acid, Sigma, dissolved in DMSO) and 2 mL 30% H_2O_2 solution were pipetted into 18 mL distilled water. Depending on the membrane size, 4-6 mL was pipetted directly onto the membrane, incubated for 1 minute at RT and then an x-ray film (Biomax MS, Kodak) applied immediately.

The sequences used here are shown in the following Table 3 and in the sequence protocols S!153, 157, 158, 168-173.

ES-7	SQ168 SQ169	(A)							
ES-8	SQ170 SQ171	(A) (B)	5'- AAGUUAAAAUUCCCGUCGCUAU -3' 3'- CAAUUUUAAGGGCAGCGAUAGU -5'	2 ⁵ -19-2 ⁵					
ES2A/ ES5B	SQ172 SQ173	(A) (B)	5'- AGUGUGAUCCAAGCUGUCCCAA -3' 3'- UUUCACACUAGGUUCGACAGGGUU -5'	0-22-2					
К2	SQ157 SQ158	(A) (B)	5'- ACAGGAUGAGGAUCGUUUCGCAUG -3' 3'- UCUGUCCUACUCCUAGCAAAGCGU -5'	2-22-2					

K1A/	SQ153	(A)	5'- ACAGGAUGAGGAUCGUUUCGCA	-3´	0-22-2
K2B	SQ158	(B)	3'- UCUGUCCUACUCCUAGCAAAGCGU	-5´	

Table 3

Inhibition of EGFR Expression in U-87 MG Glioblastoma Cells:

24 hours after seeding of the cells, they were transfected with 10 nM dsRNA as stated (oligofectamine). After 72 hours, the cells were harvested and the protein isolated. Separation of the proteins occurred in 7.5% SDS-PAGE. 35 μg total protein was applied per track. Fig. 4 shows the corresponding Western blot analysis, from which it follows that the EGFR expression after transfection in U-87 MG cells can be significantly inhibited relative to the corresponding controls with the dsRNA specifically directed against the EGFR gene with a 2 nt overhang on the 3' end of the anti-sense strand. This inhibition of expression of an endogenous gene by specific dsRNA therefore confirms the results stated in the practical example II concerning inhibition of expression of an artificial gene introduced to the cell after transient transfection. The inhibition of EGFR expression mediated by ES-7 and ES-8 is much lower. The dsRNAs used in Fig. 24 can be gathered from Table 3.

VI. Inhibition of Expression of the Multidrug Resistance Gene 1 (MDR1):

Experimental Protocol:

In vitro detection for blocking of MDR1 expression was conducted in the colon carcinoma cell line LS174T (ATCC – American Type Culture Collection, Tom et al., 1976). It is known of this cell line that expression of MDR1 can be induced by addition of rifampoin to the culture medium (Geick et al., 2001). Transfections were conducted with different commercial transfection kits (Lipofectamine, Oligofectamine, both Invitrogen; TransMessenger, Qiagen), in which the TransMessenger transfection kit also proved to be best suited for this cell line.

To run the RNA interference experiments, 4 short double-strand ribonucleic acids R1-R4 were used, whose sequences are shown in Table 4. The ribonucleic acids are homologous with sections of the coding sequence of MDR1 (sequence protocol SQ 30). Sequences R1-R3 consists of a 22-mer sense and a 24-mer anti-sense strand, in which the forming double-strand has a two nucleotide overhang on the 3' end of the anti-sense strand (0-22-2). The sequence R4 corresponds to R1, but consists of a 19-mer double strand with 2 nucleotide overhangs on each 3' end (2-19-2).

<u>Name</u>	Sequenz- proto- koll-Nr.	Sequenz	Position in Daten- bank-# AF016535
Seq	SQ141	5'- CCA UCU CGA AAA GAA GUU AAG A-3'	1320-1342
R1	SQ142	3'-UG GGU AGA GCU UUU CUU CAA UUC U-5'	1335-1318
Seq	SQ143	5'- UAU AGG UUC CAG GCU UGC UGU A-3'	2599-2621
R2	SQ152	3'-CG AUA UCC AAG GUC CGA ACG ACA U-5'	2621-2597
Seq	SQ144	5'- CCA GAG AAG GCC GCA CCU GCA U-3'	3778-3799
R3	SQ145	3'-UC GGU CUC UUC CGG CGU GGA CGU A-5'	3799-3776
Seq	SQ146	5'- CCA UCU CGA AAA GAA GUU AAG-3'	1320-1341
R4	SQ147	3'-UG GGU AGA GCU UUU CUU CAA U -5'	1339-1318

	•	<u> </u> 									Position in
	! !										Daten-
											bank-#
											AF402779
K1A/	SQ153	5'-	ACA	GGA	UGA	GGA	UCG	טטט	CGC	A-3'	2829-2808
K2B	SQ158	3'-UC	UGU	CCU	ACU	CCU	AGC	AAA	GCG	υ-5 <i>'</i>	2808-2831

Key to figure: (Headings)

Name

Sequence Protocol no.

Sequence

Table 4

The sequences shown in Table 4 are shown again in the sequence protocol as sequences SO 141-147, 152, 153, 158. The dsRNAs were transfected in a concentration of 175 nM as double charges into the cells, which were seeded the day before in 12-well plates at 3.8×10^5 cells/well. For this purpose, 93.3 µL EC-R buffer (TransMessenger kit, Qiagen, Hilden) was mixed with 3.2 μL Enhancer-R per transfection charged, thoroughly mixed and incubated for 5 minutes at room temperature. After addition of 6 µL TransMessenger transfection reagent, the transfection charges were vigorously mixed for 10 seconds and incubated for 10 minutes at room temperature. In the meantime, the medium was withdrawn from the cells by suction, washed once with PBS (phosphate buffered saline) and 200 µL fresh medium without FCS per well was added to the cells. After 10 minutes of incubation, 100 µL FCS-free medium was pipetted into the transfection charged, mixed and the mixture pipetted dropwise into the cells (the dsRNA concentration of 175 µm refers to 400 µL of medium total volume). The dsRNA/TransMessenger complexes were incubated for 4 hours at 37°C with the cells in FCSfree medium. A medium change was then conducted, in which the fresh medium contained 10 μm Rifampicin and 10% FCS. As control, and unspecific dsRNA sequence, having no homology with the MDR1 gene sequence, was used (K) and a MOCK transfection carried out, which contained all reagents, except dsRNA.

The cells were harvested after 24, 48 and 72 hours and a total RNA extracted with the RNeasy-Mini-Kit from Qiagen. 10 μ g total RNA of each sample was separated on a 1% agarose formaldehyde gel electrophoretically, blotted onto a nylon membrane and specific probes, random marked with 5'- α ³²-P-dCTP, were hybridized exposed first relative to MDR1 and, after stripping of the blot, relative to GAPDH as internal control and exposed on x-ray film.

The x-ray films were digitized (Image Master, VDS Pharmacia) and quantified with the Image-Quant software. Balancing of the MDR1-specific bands with the corresponding GAPDH bands was then carried out.

Results:

Figures 25 and 26 show Northern blots (Figures 25a, 26a) with quantitative evaluation of the MDR1-specific bands after balancing with the corresponding GADPH values (Figures 25b, 26b). A reduction of MDR1-mRNA by up to 55% could be observed in comparison with MOCK transfection and by up to 45% in comparison with unspecific control transfection. After 48 h, a significant reduction of MDR1-mRNA levels was achieved with the dsRNA constructs designated R1, R2, R3 (Table 4). After 48 hours, no significant reduction relative to the controls was observed with the R4 dsRNA constructs (Figures 26a, 26b). After 72 hours, a much stronger reduction of MDR1-mRNA levels was observed with R1, R2 and R2 relative to the controls, in comparison with the 48-hour values (Figures 25a and 25b).

With R4 at this point a significant reduction of MDR1-mRNA levels could also be achieved. The constructs with a 2 nt overhang on the 3' end of the anti-sense strand and a double-strand region of 22 nucleotide pairs therefore reduced the MDR1-mRNA more efficiently than the constructs of the 2 nt overhangs on the 3' ends of both strands (anti-sense and sense strand) and a double-strand region of 19 nucleotide pairs relatively independently of the sequence region homologous to the MDR1 gene (after 48 hours; Fig. 26b). The results therefore confirm the inhibition of EGFR gene expression described in practical example 4 by specific dsRNAs after transfection in U-87 MG cells.

The transfection efficiency was determined in a separate experiment by means of a Texas-Red-labeled DNA oligonucleotide (TexRed-A (GATC)₅T; also 175 nM transfected) (Figures 27a, 27b; 400-fold magnification, 48 hours after transfection). The amount is about 50% based on the red fluorescent cells, in comparison with the total cell count. If one considers the transfection rate of the cells at about 50%, the observed reduction of MDR1-mRNA level lies at about 45-55% (compared with the controls), with the conclusion that in all cells that could be transfected

successfully with specific dsRNA, the MDR1-mRNA was almost fully broken down and specifically.

Literature:

Alroy I & Yarden Y (1997): The Erb signalling network in embryogenesis and oncogenesis: signal deversification through combinatorial ligand-receptor interactions. FEBS Letters 410: 83-86.

Bass, B.L., 2000. Double-stranded RNA as a template for gene silencing. Cell 101, 235-238.

Bosher, J.M. and Labouesse, M., 2000. RNA interference: genetic wand and genetic watchdog. Nature Cell Biology 2, E31-E36.

Bradford MM (1976): Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.

Caplen, N.J., Fleenor, J., Fire, A., and Morgan, R.A., 2000. dsRNA-mediated gene silencing in cultured *Drosophila* cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95-105.

Clemens, J.C., Worby, C.A., Simonson-Leff, N., Muda, M., Mae-hama, T., Hemmings, B.A., and Dixon, J.E., 2000. Use of double-stranded RNA interference in *Drosophila* cell lines to dissect signal transduction pathways. *Proc.Natl.Acad.Sci.USA* 97, 6499-6503.

Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton V, Shak S, Liebermann G & Slamon DJ (1999): Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that

has progressed after chemotherapy for metastatic disease. Journal of Clinical Oncology 17: 2639-2648.

Ding, S.W., 2000. RNA silencing. Curr. Opin. Biotechnol. 11, 152-156.

Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. Nature 391, 806-811.

Fire, A., 1999. RNA-triggered gene silencing. Trends Genet. 15, 358-363.

Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T., and Turner, D.H., 1986. Improved free-energy parameters for prediction of RNA duplex stability. Proc. Natl. Acad. Sci. USA 83, 9373-9377.

Geick, A., Eichelbaum, M., Burk, O. (2001). Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J. Biol. Chem. 276 (18), 14581-14587.

Fontanini G, De Laurentiis M, Vignati S, Chine S, Lucchi M, Silvestri V, Mussi A, De Placido S, Tortora G, Bianco AR, Gullick W, Angeletti CA, Bevilaqua G & Ciardiello F (1998): Evaluation of epidermal growth factor-related growth factors and receptors and of neoangiogenesis in completely resected stage I-IIIA non-small-cell lung cancer: amphiregulin and microvessel count are independent prognostic factors of survival. Clinical Cancer Research 4: 241-249.

Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J., 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells. Nature 404, 293-296.

Higgins, C.F. (1995). The ABC of channel regulation. Cell, 82, 693-696.

Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M & Nagy A (1993): Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev. 76: 79-90.

Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M & Nagy A (1998): Non-invasive sexing of preimplantation mammalian embryos. Nature Genetics 19: 220-222.

Kyhse-Anderson J (1984): Electroblotting of multiple gels: A simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J. Biochem. Biophys. Methods 10: 203-210.

Lämmli UK (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277: 680-685.

Loc, T.W., and Clarke, D.M. (1999) Biochem. Cell Biol. 77, 11-23.

Huang SM & Harari PM (1999): Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. Investigational New Drugs 17: 259-269.

Limmer, S., Hofmann, H.-P., Ott, G., and Sprinzl, M., 1993. The 3'-terminal end (NCCA) of tRNA determines the structure and

stability of the aminoacyl acceptor stem. Proc. Natl. Acad. Sci. USA 90 , 6199-6202.

Montgomery, M.K. and Fire, A., 1998. Double-stranded RNA as a mediator in sequence-specific genetic silencing and cosuppression. Trends Genet. 14, 255-258.

Montgomery, M.K., Xu, S., and Fire, A., 1998. RNA as a target of double-stranded RNA-mediated genetic interference in *Caeno-rhabditis elegans*. Proc. Natl. Acad. Sci. USA 95, 15502-15507.

Rieske P, Kordek R, Bartkowiak J, Debiec-Rychter M, Bienhat W & Liberski PP (1998): A comparative study of epidermal growth factor (EGFR) and mdm2 gene amplification and protein immunoreactivity in human glioblastomas. Polish Journal of Pathology 49: 145-149.

Robert, J. (1999). Multidrug resistance in oncology: diagnostic and therapeutic approaches. Europ J Clin Invest 29, 536-545.

Stavrovskaya, A.A. (2000) Biochemistry (Moscow) 65 (1), 95-106.

Salomon DS, Brandt R, Ciardiello F & Normanno N (1995): Epidermal growth factor related peptides and their receptors in human malignancies: Critical Reviews in Oncology and Haematology 19: 183-232.

Tom, B.H., Rutzky, L.P., Jakstys, M.M., Oyasu, R., Kaye, C.I., Kahan, B.D. (1976), In vitro, 12, 180-191.

Tsuruo, T., Iida, H., Tsukagoshi, S., Sakurai, Y. (1981). Cvercoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res, 41, 1967-72.

Ui-Tei, K., Zenno, S., Miyata, Y., and Saigo, K., 2000. Sensitive assay of RNA interference in *Drosophila* and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett. 479, 79-82.

Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Liebermann TA, Schlessinger J et al. (1984): Human epidermal growth factor receptor cDNA sequences and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309: 418-425.

Ullrich A & Schlessinger J (1990): Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203-212.

Van der Geer P, Hunter T & Linberg RA (1994): Receptor protein-tyrosine kinases and their signal transduction pathways. Annual review in Cell Biology 10: 251-337.

Voldborg BR, Damstrup L, Spang-Thopmsen M & Poulser HS (1997): Epidermal growth factor Receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Annuals of Oncology 8: 1197-1206.

Walker RA & Dearing SJ (1999): Expression of epidermal growth factor receptor mRNA and protein in primary breast carcinomas. Breast Cancer Research Treatment 53: 167-176.

Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P., 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33.

Zor T & Selinger Z (1996): Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal. Biochem. 236: 302-308.

Claims

1. Method for inhibition of expression of a target gene in a cell, comprising the following steps:

introduction of at least one double-strand ribonucleic acid (dsRNA I) in an amount sufficient to inhibit expression of the target gene,

in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs, and in which one strand (as1) or at least a section of one strand (as1) of the double-strand structure is complementary to the target gene,

and in which the dsRNA has an overhang formed from 1 to 4 nucleotides at least on one end (E1, E2) of dsRNA I.

- 2. Method according to Claim 1, in which the dsRNA has the overhang on a 3' end of one strand (as1) and/or on the 3' end of the other strand (ss1).
- 3. Method according to Claim 1 or 2, in which the dsRNA I is formed smooth on one end (E1, E2).
- 4. Method according to Claim 3, in which the smooth end (E1, E2) contains the 5' end of one strand (as1).
- 5. Method according to one of the preceding claims, in which the overhang is formed from 1 to 4 nucleotides, preferably 1 or 2 nucleotides.
- 6. Method according to one of the preceding claims, in which at least one additional double-strand ribonucleic acid (dsRNA II), formed according to the dsRNA I according to one of the preceding claims, is introduced to the cell, in which one strand (as1) or at least a section of one strand (as1) of dsRNA I is complementary to a first region (B1) of the target gene, and in which

an additional strand (as2) or at least a section of the additional strand (as2) of dsRNA II is complementary to a second region (B2) of the target gene.

- 7. Method according to one of the preceding claims, in which the dsRNA I and/or dsRNA II have a length of less than 25, preferably 19 to 23, consecutive nucleotide pairs.
- 8. Method according to one of the preceding claims, in which the first region (B1) and the second region (B2) overlap or abut each other in sections.
- 9. Method according to one of the preceding claims, in which the first region (B1) and the second region (B2) are spaced from each other.
- 10. Method according to one of the preceding claims, in which the target gene has one of the sequences SQ001 to SQ140.
- 11. Method according to one of the preceding claims, in which the target gene is chosen from the following group: oncogene, cytokine gene, id-protein gene, prion gene, genes of angiogenesis-inducing molecules, of adhesion molecules and of cell surface receptors, genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules.
- 12. Method according to one of the preceding claims, in which the target gene is the MDR1 gene.
- 13. Method according to one of the preceding claims, in which one of the sequences SQ141-173 is used as dsRNA I/II and a combined dsRNA construct of the sequences SQ141-173 from two related anti-sense (as1/2) and sense sequences (ss1/2) is used.
- 14. Method according to one of the preceding claims, in which expression is inhibited according to the principle of RNA interference.

- 15. Method according to one of the preceding claims, in which the target gene is expressed in pathogenic organisms, preferably in plasmodia.
- 16. Method according to one of the preceding claims, in which the target gene is a component of a virus or a viroid.
- 17. Method according to Claim 16, in which the virus is a human pathogenic virus or viroid.
- 18. Method according to one of the Claims 16, in which the virus or viroid is an animal or plant pathogenic virus or viroid.
- 19. Method according to one of the preceding claims, in which unpaired nucleotides are substituted by nucleoside thiophosphate.
- 20. Method according to one of the preceding claims, in which at least one end (E1, E2) of dsRNA I/II is modified, in order to counteract degradation in the cell or dissociation into single strands.
- 21. Method according to one of the preceding claims, in which the cohesion of the double-strand structure caused by the complementary nucleotide pairs is increased by at least one chemical link.
- 22. Method according to one of the preceding claims, in which the chemical link is formed by a covalent or ionic bond, hydrogen bridge bond, hydrophobic interactions, preferably van der Waals or stacking interactions, or by metal-ion coordination.
- 23. Method according to one of the preceding claims, in which the chemical link is formed in the vicinity of one end (E1, E2).

- 24. Method according to one of the preceding claims, in which the chemical link is formed by means of one or more compound groups, in which the compound groups are preferably poly-(oxyphosphinicooxy-1,3-propanediol) and/or oligoethylene glycol chains.
- 25. Method according to one of the preceding claims, in which the chemical link is formed by branched nucleotide analogs instead of nucleotides.
- 26. Method according to one of the preceding claims, in which the chemical link is formed by purine analogs.
- 27. Method according to one of the preceding claims, in which the chemical link is formed by azabenzene units.
- 28. Method according to one of the preceding claims, in which, to produce the chemical link, at least one of the following groups is used: methylene blue; bifunctional groups, preferably bis-(2-chloroethyl)-amine; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamine; 4-thiouracil, psoralene.
- 29. Method according to one of the preceding claims, in which the chemical link is formed by thiophosphoryl groups applied in the vicinity of the ends (E1, E2) of the double-strand region.
- 30. Method according to one of the preceding claims, in which the chemical link is produced by triple helix bonds situated in the vicinity of the ends (E1, E2).
- 31. Method according to one of the preceding claims, in which the dsRNA I/II is enclosed in micellar structures, advantageously in liposomes.
- 32. Method according to one of the preceding claims, in which the dsRNA I/II is bonded to at least one viral sheath protein originating from the virus, derived from it or synthetically produced, associated with it or enclosed by it.

- 33. Method according to one of the preceding claims, in which the sheath protein is derived from polyoma virus.
- 34. Method according to one of the preceding claims, in which the sheath protein contains the virus protein 1 (VP1) and/or the virus protein 2 (VP2) of polyoma virus.
- 35. Method according to one of the preceding claims, in which, during formation of a capsid or capsid-like structure from the sheath protein, one side faces the interior of the capsid or capsid-like structure.
- 36. Method according to one of the preceding claims, in which one strand (as1/as2) of dsRNA I/II is complementary to the primary or processed RNA transcript of the target gene.
- 37. Method according to one of the preceding claims, in which the cell is a vertebrate cell or a human cell.
- 38. Method according to one of the preceding claims, in which the dsRNA I/II is administered in an amount of, at most, 5 mg per kilogram of body weight per day to a mammal, preferably a human.
- 39. Method according to one of the preceding claims, in which the dsRNA I/II is taken up in a buffer solution for application.
- 40. Method according to one of the preceding claims, in which the dsRNA I/II is administered orally or by means of injection or infusion, intravenously, intratumorally, by inhalation, intraperitoneally.
- 41. Use of a double-strand ribonucleic acid (dsRNA I) to inhibit expression of a target gene in a cell,

in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs, and in which one strand (as1) or at least a section of one strand (as1) of the double-strand structure is complementary to the target gene,

and in which the dsRNA I has an overhang formed from 1 to 4 nucleotides at least on one end (E1, E2).

- 42. Use according to Claim 41, in which the dsRNA I has the overhang on the 3' end of one strand (as1) and/or on the 3' end of the other strand (ss1).
- 43. Use according to Claim 41 or 42, in which the dsRNA I is formed smooth on one end (E1, E2).
- 44. Use according to Claim 43, in which the smooth end (E1, E2) contains the 5' end of one strand (as1).
- 45. Use according to one of the Claims 41 to 44, in which the overhang is formed from 1 to 4 nucleotides, preferably one or two nucleotides.
- 46. Use according to one of the Claims 41 to 45, in which one additional double-strand ribonucleic acid (dsRNA II), formed according to the dsRNA I according to one of the Claims 41 to 45, is introduced to the cell, in which the one strand (as1) or at least a section of the one strand (as1) of dsRNA I is complementary to a first region (B1) of the sense strand of the target gene, and in which the other strand (as2) or at least a section of the other strand (as2) of dsRNA II is complementary to a second region (B2) of the target gene.
- 47. Use according to one of the Claims 41 to 46, in which the dsRNA I and/or the dsRNA II have a length of less than 25, preferably 19 to 23, consecutive nucleotide pairs.
- 48. Use according to one of the Claims 41 to 47, in which the first (B1) and the second region (B2) overlap or abut each other in sections.

- 49. Use according to one of the Claims 41 to 48, in which the first (B1) and the second region (B2) are spaced from each other.
- 50. Use according to one of the Claims 41 to 49, in which the target gene has the sequences S1001 to SQ140.
- 51. Use according to one of the Claims 41 to 50, in which the target gene is chosen from the following group: oncogene, cytokine gene, id-protein gene, prion gene, genes of angiogenesis-inducing molecules, of adhesion molecules and of cell-surface receptors, genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules.
- 52. Use according to one of the Claims 41 to 51, in which the target gene is the MDR1 gene.
- 53. Use according to one of the Claims 41 to 52, in which one of the sequences SQ141-173 is used as dsRNA I/II and a dsRNA construct of sequences SQ141-173 combined from two related anti-sense (as1/2) and sense sequences (ss1/2) is used.
- 54. Use according to one of the Claims 41 to 53, in which expression is inhibited according to the principle of RNA interference.
- 55. Use according to one of the Claims 41 to 54, in which the target gene is expressed in pathogenic organisms, preferably in plasmodia.
- 56. Use according to one of the Claims 41 to 55, in which the target gene is a component of a virus or viroid.
- 57. Use according to Claim 56, in which the virus is a human pathogenic virus or viroid.

- 58. Use according to Claim 56, in which the virus or viroid is an animal or plant pathogenic virus or viroid.
- 59. Use according to one of the Claims 41 to 58, in which unpaired nucleotides are substituted by nucleoside thiophosphates.
- 60. Use according to one of the Claims 41 to 59, in which at least one end (E1, E2) of dsRNA is modified, in order to counteract degradation in the cell or dissociation into single strands.
- 61. Use according to one of the Claims 41 to 60, in which cohesion of the double-strand structure caused by the complementary nucleotide pairs is increased by at least one chemical link.
- 62. Use according to one of the Claims 41 to 61, in which the chemical link is formed by a covalent or ionic bond, a hydrogen bridge bond, a hydrophobic interaction, preferably van der Waals or stacking interactions, or by metal ion coordination.
- 63. Use according to one of the Claims 41 to 62, in which the chemical link is formed in the vicinity of one end (E1, E2).
- 64. Use according to one of the Claims 41 to 63, in which the chemical link is formed by means of one or more compound groups, in which the compound groups are preferably poly-(oxyphosphinicooxy-1,3-propanediol) and/or oligoethylene glycol chains.
- 65. Use according to one of the Claims 41 to 64, in which the chemical link is formed by branched nucleotide analogs used instead of nucleotides.
- 66. Use according to one of the Claims 41 to 65, in which the chemical link is formed by purine analogs.

- 67. Use according to one of the Claims 41 to 66, in which the chemical link is formed by azabenzene units.
- 68. Use according to one of the Claims 41 to 67, in which at least one of the following groups is used to produce the chemical link: methylene blue; bifunctional groups, preferably (bis-(2-chloroethyl)-amine; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamine; 4-thiouracil; psoralene.
- 69. Use according to one of the Claims 41 to 68, in which the chemical link is formed by thiophosphoryl groups applied in the vicinity of the ends (E1, E2) of the double-strand region.
- 70. Use according to one of the Claims 41 to 69, in which the chemical link is produced by triple helix bonds situated in the vicinity of ends (E1, E2).
- 71. Use according to one of the Claims 41 to 70, in which the dsRNA I/II is enclosed in micellar structures, advantageously in liposomes.
- 72. Use according to one of the Claims 41 to 71, in which the dsRNA I/II is bonded to at least one viral sheath protein originating from a virus, derived from it or a synthetically produced viral sheath protein, associated with it or enclosed by it.
- 73. Use according to one of the Claims 41 to 72, in which the sheath protein is derived from polyoma virus.
- 74. Use according to one of the Claims 41 to 73, in which the sheath protein contains the virus protein 1 (VP1) and/or the virus protein 2 (VP2) of polyoma virus.
- 75. Use according to one of the Claims 41 to 74, in which, during formation of a capsid or capsid-like structure from the sheath protein, one side faces the interior of the capsid or capsid-like structure.

- 76. Use according to one of the Claims 41 to 75, in which one strand (as1, as2) of dsRNA I/II is complementary to the primary or processed RNA transcript of the target gene.
- 77. Use according to one of the Claims 41 to 76, in which the cell is a vertebrate cell or a human cell.
- 78. Use according to one of the Claims 41 to 77, in which the dsRNA I/II is administered in an amount of, at most, 5 mg per kilogram of body weight per day to a mammal, preferably a human.
- 79. Use according to one of the Claims 41 to 78, in which the dsRNA I/II is taken up in a buffer solution for application.
- 80. Use according to one of the Claims 41 to 79, in which the dsRNA I/II is administered orally or by injection or infusion intravenously, intraturmorally, by inhalation, intraperitoneally.
- 81. Medicament to inhibit expression of a target gene in a cell, containing a double-strand ribonucleic (dsRNA I) in an amount sufficient to inhibit expression of a target gene,

in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs,

and in which one strand (as1) or at least one section of one strand (as1) of the double-strand structure is complementary to the target gene,

and in which the dsRNA I has an overhang formed on at least one end (E1, E2) from 1 to 4 nucleotides.

82. Medicament according to Claim 81, in which the dsRNA I has the overhang on the 3' end of one strand (as1) and/or on the 3' end of the other strand (ss1).

- 83. Medicament according to Claim 81 or 82, in which the dsRNA I is formed smooth on one end (E1, E2).
- 84. Medicament according to one of the Claims 83, in which the smooth end (E1, E2) contains the 5' end of one strand (as1).
- 85. Medicament according to one of the Claims 81 to 84, in which the overhang is formed from 1 to 4 nucleotides, preferably 1 or 2 nucleotides.
- 86. Use according to one of the Claims 81 to 85, containing at least one additional double-strand ribonucleic acid (dsRNA II), formed according to the dsRNA I according to one of the Claims 81 to 85, in which the one strand (as1) or at least a section of the one strand (as1) of dsRNA I is complementary to a first region (B1) of the target gene, and in which the additional strand (as2) or at least a section of the additional strand (as2) of dsRNA II is complementary to a second region (B2) of the target gene.
- 87. Use according to one of the Claims 81 to 86, in which the dsRNA I and/or the dsRNA II have a length of less than 25, preferably 19 to 23, consecutive nucleotide pairs.
- 88. Use according to one of the Claims 81 to 87, in which the first (B1) and the second region (B2) overlap or abut each other in sections.
- 89. Use according to one of the Claims 81 to 88, in which the target gene has one of the sequences S1001 to SQ140.
- 90. Use according to one of the Claims 81 to 89, in which the target gene is chosen from the following group: oncogene, cytokine gene, id-protein gene, prion gene, genes of angiogenesis-inducing molecules, of adhesion molecules and of cell-surface receptors, genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules.

- 91. Use according to one of the Claims 81 to 90, in which the target gene is the MDR1 gene.
- 92. Use according to one of the Claims 81 to 91, in which one of the sequences SQ141-173 is used as dsRNA I/II and a dsRNA construct of sequences SQ141-173 combined from two related anti-sense (as1/2) and sense sequences (ss1/2) is used.
- 93. Use according to one of the Claims 81 to 92, in which expression is inhibited according to the principle of RNA interference.
- 94. Use according to one of the Claims 81 to 93, in which the target gene is expressed in pathogenic organisms, preferably in plasmodia.
- 95. Use according to one of the Claims 81 to 94, in which the target gene is a component of a virus or viroid.
- 96. Use according to Claim 95, in which the virus is a human pathogenic virus or viroid.
- 97. Use according to Claim 95, in which the virus or viroid is an animal or plant pathogenic virus or viroid.
- 98. Use according to one of the Claims 81 to 97, in which unpaired nucleotides are substituted by nucleoside thiophosphates.
- 99. Use according to one of the Claims 81 to 98, in which at least one end (E1, E2) of dsRNA is modified, in order to counteract degradation in the cell or dissociation into single strands.
- 100. Use according to one of the Claims 81 to 99, in which cohesion of the double-strand structure caused by the complementary nucleotide pairs is increased by at least one chemical link.

- 101. Use according to one of the Claims 81 to 100, in which the chemical link is formed by a covalent or ionic bond, a hydrogen bridge bond, a hydrophobic interaction, preferably van der Waals or stacking interactions, or by metal ion coordination.
- 102. Use according to one of the Claims 81 to 101, in which the chemical link is formed in the vicinity of one end (E1, E2).
- 103. Use according to one of the Claims 81 to 102, in which the chemical link is formed by means of one or more compound groups, in which the compound groups are preferably poly-(oxyphosphinicooxy-1,3-propanediol) and/or oligoethylene glycol chains.
- 104. Use according to one of the Claims 81 to 103, in which the chemical link is formed by branched nucleotide analogs used instead of nucleotides.
- 105. Use according to one of the Claims 81 to 104, in which the chemical link is formed by purine analogs.
- 106. Use according to one of the Claims 81 to 105, in which the chemical link is formed by azabenzene units.
- 107. Use according to one of the Claims 81 to 106, in which at least one of the following groups is used to produce the chemical link: methylene blue; bifunctional groups, preferably (bis-(2-chloroethyl)-amine; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamine; 4-thiouracil; psoralene.
- 108. Use according to one of the Claims 81 to 107, in which the chemical link is formed by thiophosphoryl groups applied in the vicinity of the ends (E1, E2) of the double-strand region.
- 109. Use according to one of the Claims 81 to 108, in which the chemical link is produced by triple helix bonds situated in the vicinity of ends (E1, E2).

- 110. Use according to one of the Claims 81 to 109, in which the dsRNA I/II is enclosed in micellar structures, advantageously in liposomes.
- 111. Use according to one of the Claims 81 to 110, in which the dsRNA I/II is bonded to at least one viral sheath protein originating from a virus, derived from it or a synthetically produced viral sheath protein, associated with it or enclosed by it.
- 112. Use according to one of the Claims 81 to 111, in which the sheath protein is derived from polyoma virus.
- 113. Use according to one of the Claims 81 to 112, in which the sheath protein contains the virus protein 1 (VP1) and/or the virus protein 2 (VP2) of polyoma virus.
- 114. Use according to one of the Claims 81 to 113, in which, during formation of a capsid or capsid-like structure from the sheath protein, one side faces the interior of the capsid or capsid-like structure.
- 115. Use according to one of the Claims 81 to 114, in which one strand (as1, as2) of dsRNA I/II is complementary to the primary or processed RNA transcript of the target gene.
- 116. Use according to one of the Claims 81 to 114, in which the cell is a vertebrate cell or a human cell.
- 117. Use according to one of the Claims 81 to 116, in which the first (B1) and second region (B2) are spaced from each other.
- 118. Use according to one of the Claims 81 to 117, in which the dsRNA I/II is contained in an amount of, at most, 5 mg per administration unit.
- 119. Use according to one of the Claims 81 to 118, in which the dsRNA I/II is taken up in a buffer solution.

- 120. Use according to one of the Claims 81 to 119, in which the dsRNA I/II is administered orally or by injection or infusion intravenously, intraturmorally, by inhalation, intraperitoneally.
- 121. Method for inhibition of expression of a target gene in a cell, comprising the following steps:

introduction of at least one double-strand ribonucleic acid (dsRNA I) in an amount sufficient to inhibit expression of the target gene,

in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs, and in which one strand (as1) or at least a section of one strand (as1) of the double-strand structure is complementary to the target gene,

and in which the dsRNA has an overhang formed from 1 to 4 nucleotides on at least one end (E1, E2) of dsRNA I.

- 122. Method according to Claim 1, in which the dsRNA has the overhang on a 3' end of one strand (as1) and/or on the 3' end of the other strand (ss1).
- 123. Method according to Claim 1 or 2, in which the dsRNA I is formed smooth on one end (E1, E2).
- 124. Method according to Claim 3, in which the smooth end (E1, E2) contains the 5' end of one strand (as1).
- 125. Method according to one of the preceding claims, in which the overhang is formed from 1 to 4 nucleotides, preferably 1 or 2 nucleotides.
- 126. Method according to one of the preceding claims, in which at least an additional double-strand ribonucleic acid (dsRNA II), formed according to the dsRNA I according to one of the

preceding claims, is introduced to the cell, in which one strand (as1) or at least a section of one strand (as1) of dsRNA I is complementary to a first region (B1) of the target gene, and which an additional strand (as2) or at least a section of the additional strand (as2) of dsRNA II is complementary to a second region (B2) of the target gene.

- 127. Method according to one of the preceding claims, in which the dsRNA I and/or dsRNA II have a length of less than 25, preferably 19 to 23, consecutive nucleotide pairs.
- 128. Method according to one of the preceding claims, in which the first (B1) and the second region (B2) overlap or abut each other in sections.
- 129. Method according to one of the preceding claims, in which the first (B1) and the second region (B2) are spaced from each other.
- 130. Method according to one of the preceding claims, in which the target gene has one of the sequences SQ001 to SQ140.
- 131. Method according to one of the preceding claims, in which the target gene is chosen from the following group: oncogene, cytokine gene, id-protein gene, prion gene, genes of angiogenesis-inducing molecules, of adhesion molecules and of cell surface receptors, genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules.
- 132. Method according to one of the preceding claims, in which the target gene is the MDR1 gene.
- 133. Method according to one of the preceding claims, in which one of the sequences SQ141-173 is used as dsRNA I/II and a dsRNA construct of the sequences SQ141-173 combined from two related anti-sense (as1/2) and sense sequences (ss1/2) is used.

- 134. Method according to one of the preceding claims, in which expression is inhibited according to the principle of RNA interference.
- 135. Method according to one of the preceding claims, in which the target gene is expressed in pathogenic organisms, preferably in plasmodia.
- 136. Method according to one of the preceding claims, in which the target gene is a component of a virus or a viroid.
- 137. Method according to Claim 16, in which the virus is a human pathogenic virus or viroid.
- 138. Method according to one of the Claims 16, in which the virus or viroid is an animal or plant pathogenic virus or viroid.
- 139. Method according to one of the preceding claims, in which unpaired nucleotides are substituted by nucleoside thiophosphate.
- 140. Method according to one of the preceding claims, in which at least one end (E1, E2) of dsRNA I/II is modified, in order to counteract degradation in the cell or dissociation into single strands.
- 141. Method according to one of the preceding claims, in which the cohesion of the double-strand structure caused by the complementary nucleotide pairs is increased by at least one chemical link.
- 142. Method according to one of the preceding claims, in which the chemical link is formed by a covalent or ionic bond, hydrogen bridge bond, hydrophobic interactions, preferably van der Waals or stacking interactions, or by metal-ion coordination.
- 143. Method according to one of the preceding claims, in which the chemical link is formed in the vicinity of one end (E1, E2).

- 144. Method according to one of the preceding claims, in which the chemical link is formed by means of one or more compound groups, in which the compound groups are preferably poly-(oxyphosphinicooxy-1,3-propanediol) and/or oligoethylene glycol chains.
- 145. Method according to one of the preceding claims, in which the chemical link is formed by branched nucleotide analogs used instead of nucleotides.
- 146. Method according to one of the preceding claims, in which the chemical link is formed by purine analogs.
- 147. Method according to one of the preceding claims, in which the chemical link is formed by azabenzene units.
- 148. Method according to one of the preceding claims, in which, to produce the chemical link, at least one of the following groups is used: methylene blue; bifunctional groups, preferably bis-(2-chloroethyl)-amine; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamine; 4-thiouracil, psoralene.
- 149. Method according to one of the preceding claims, in which the chemical link is formed by thiophosphoryl groups applied in the vicinity of the ends (E1, E2) of the double-strand region.
- 150. Method according to one of the preceding claims, in which the chemical link is produced by triple helix bonds situated in the vicinity of the ends (E1, E2).
- 151. Method according to one of the preceding claims, in which the dsRNA I/II is enclosed in micellar structures, advantageously in liposomes.
- 152. Method according to one of the preceding claims, in which the dsRNA I/II is bonded to at least one sheath protein originating from the virus, derived from it or synthetically produced, associated with it or enclosed by it.

- 153. Method according to one of the preceding claims, in which the sheath protein is derived from polyoma virus.
- 154. Method according to one of the preceding claims, in which the sheath protein contains the virus protein 1 (VP1) and/or the virus protein 2 (VP2) of polyoma virus.
- 155. Method according to one of the preceding claims, in which, during formation of a capsid or capsid-like structure from the sheath protein, one side faces the interior of the capsid or capsid-like structure.
- 156. Method according to one of the preceding claims, in which one strand (as1/as2) of dsRNA I/II is complementary to the primary or processed RNA transcript of the target gene.
- 157. Method according to one of the preceding claims, in which the cell is a vertebrate cell or a human cell.
- 158. Method according to one of the preceding claims, in which the dsRNA I/II is administered in an amount of, at most, 5 mg per kilogram of body weight per day to a mammal, preferably a human.
- 159. Method according to one of the preceding claims, in which the dsRNA I/II is taken up in a buffer solution for application.
- 160. Method according to one of the preceding claims, in which the dsRNA I/II is administered orally or by means of injection or infusion, intravenously, intratumorally, by inhalation, intraperitoneally.
- 161. Use of one of double-strand ribonucleic acid (dsRNA I) to inhibit expression of a target gene in a cell,

in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs, and in which one strand (as1) or at least a section of one strand (as1) of the double-strand structure is complementary to the target gene,

and in which the dsRNA I has an overhang formed from 1 to 4 nucleotides at least on one end (E1, E2).

- 162. Use according to Claim 41, in which the dsRNA I has the overhang on the 3' end of one strand (as1) and/or on the 3' end of the other strand (ss1).
- 163. Use according to Claim 41 or 42, in which the dsRNA I is formed smooth on one end (E1, E2).
- 164. Use according to Claim 43, in which the smooth end (E1, E2) contains the 5' end of one strand (as1).
- 165. Use according to one of the Claims 41 to 44, in which the overhang is formed from 1 to 4 nucleotides, preferably one or two nucleotides.
- 166. Use according to one of the Claims 41 to 45, in which one additional double-strand ribonucleic acid (dsRNA II), formed according to the dsRNA I according to one of the Claims 41 to 45, is introduced to the cell, in which the one strand (as1) or at least a section of the one strand (as1) of dsRNA I is complementary to a first region (B1) of the sense strand of the target gene, and in which the other strand (as2) or at least a section of the other strand (as2) of dsRNA II is complementary to a second region (B2) of the target gene.
- 167. Use according to one of the Claims 41 to 47, in which the dsRNA I and/or the dsRNA II have a length of less than 25, preferably 19 to 23, consecutive nucleotide pairs.
- 168. Use according to one of the Claims 41 to 47, in which the first (B1) and the second region (B2) overlap or abut each other in sections.

- 169. Use according to one of the Claims 41 to 48, in which the first (B1) and the second region (B2) are spaced from each other.
- 170. Use according to one of the Claims 41 to 49, in which the target gene has the sequences S1001 to SQ140.
- 171. Use according to one of the Claims 41 to 50, in which the target gene is chosen from the following group: oncogene, cytokine gene, id-protein gene, prion gene, genes of angiogenesis-inducing molecules, of adhesion molecules and of cell-surface receptors, genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules.
- 172. Use according to one of the Claims 41 to 51, in which the target gene is the MDR1 gene.
- 173. Use according to one of the Claims 41 to 52, in which one of the sequences SQ141-173 is used as dsRNA I/II and a dsRNA construct of sequences SQ141-173 combined from two related anti-sense (as1/2) and sense sequences (ss1/2) is used.
- 174. Use according to one of the Claims 41 to 53, in which expression is inhibited according to the principle of RNA interference.
- 175. Use according to one of the Claims 41 to 54, in which the target gene is expressed in pathogenic organisms, preferably in plasmodia.
- 176. Use according to one of the Claims 41 to 55, in which the target gene is a component of a virus or viroid.
- 177. Use according to Claim 56, in which the virus is a human pathogenic virus or viroid.

- 178. Use according to Claim 56, in which the virus or viroid is an animal or plant pathogenic virus or viroid.
- 179. Use according to one of the Claims 41 to 58, in which unpaired nucleotides are substituted by nucleoside thiophosphates.
- 180. Use according to one of the Claims 41 to 59, in which at least one end (E1, E2) of dsRNA is modified, in order to counteract degradation in the cell or dissociation into single strands.
- 181. Use according to one of the Claims 41 to 60, in which cohesion of the double-strand structure caused by the complementary nucleotide pairs is increased by at least one chemical link.
- 182. Use according to one of the Claims 41 to 61, in which the chemical link is formed by a covalent or ionic bond, a hydrogen bridge bond, a hydrophobic interaction, preferably van-der-Waals or stacking interactions, or by metal ion coordination.
- 183. Use according to one of the Claims 41 to 62, in which the chemical link is formed in the vicinity of one end (E1, E2).
- 184. Use according to one of the Claims 41 to 63, in which the chemical link is formed by means of one or more compound groups, in which the compound groups are preferably poly-(oxyphosphinicooxy-1,3-propanediol) and/or oligoethylene glycol chains.
- 185. Use according to one of the Claims 41 to 64, in which the chemical link is formed by branched nucleotide analogs used instead of nucleotides.
- 186. Use according to one of the Claims 41 to 65, in which the chemical link is formed by purine analogs.

- 187. Use according to one of the Claims 41 to 66, in which the chemical link is formed by azabenzene units.
- 188. Use according to one of the Claims 41 to 67, in which at least one of the following groups is used to produce the chemical link: methylene blue; bifunctional groups, preferably (bis-(2-chloroethyl)-amine; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamine; 4-thiouracil; psoralene.
- 189. Use according to one of the Claims 41 to 68, in which the chemical link is formed by thiophosphoryl groups applied in the vicinity of the ends (E1, E2) of the double-strand region.
- 190. Use according to one of the Claims 41 to 69, in which the chemical link is produced by triple helix bonds situated in the vicinity of ends (E1, E2).
- 191. Use according to one of the Claims 41 to 70, in which the dsRNA I/II is enclosed in micellar structures, advantageously in liposomes.
- 192. Use according to one of the Claims 41 to 71, in which the dsRNA I/II is bonded to at least one sheath protein originating from a virus, derived from it or a synthetically produced viral sheath protein, associated with it or enclosed by it.
- 193. Use according to one of the Claims 41 to 72, in which the sheath protein is derived from polyoma virus.
- 194. Use according to one of the Claims 41 to 73, in which the sheath protein contains the virus protein 1 (VP1) and/or the virus protein 2 (VP2) of polyoma virus.
- 195. Use according to one of the Claims 41 to 74, in which, during formation of a capsid or capsid-like structure from the sheath protein, one side faces the interior of the capsid or capsid-like structure.

- 196. Use according to one of the Claims 41 to 75, in which one strand (as1, as2) of dsRNA I/II is complementary to the primary or processed RNA transcript of the target gene.
- 197. Use according to one of the Claims 41 to 76, in which the cell is a vertebrate cell or a human cell.
- 198. Use according to one of the Claims 41 to 77, in which the dsRNA I/II is administered in an amount of, at most, 5 mg per kilogram of body weight per day to a mammal, preferably a human.
- 199. Use according to one of the Claims 41 to 78, in which the dsRNA I/II is taken up in a buffer solution for application.
- 200. Use according to one of the Claims 41 to 79, in which the dsRNA I/II is administered orally or by injection or infusion intravenously, intraturmorally, by inhalation, intraperitoneally.
- 201. Medicament to inhibit expression of a target gene in a cell, containing a double-strand ribonucleic (dsRNA I) in an amount sufficient to inhibit expression of a target gene,

in which the dsRNA I has a double-strand structure formed from, at most, 49 consecutive nucleotide pairs,

and in which one strand (as1) or at least one section of one strand (as1) of the double-strand structure is complementary to the target gene,

and in which the dsRNA I has an overhang formed on at least one end (E1, E2) from 1 to 4 nucleotides.

202. Medicament according to Claim 81, in which the dsRNA I has the overhang on the 3' end of one strand (as1) and/or on the 3' end of the other strand (ss1).

- 203. Medicament according to Claim 81 or 82, in which the dsRNA I is formed smooth on one end (E1, E2).
- 204. Medicament according to one of the Claims 83, in which the smooth end (E1, E2) contains the 5' end of one strand (as1).
- 205. Medicament according to one of the Claims 81 to 84, in which the overhang is formed from 1 to 4 nucleotides, preferably 1 or 2 nucleotides.
- 206. Use according to one of the Claims 81 to 85, containing at least one additional double-strand ribonucleic acid (dsRNA II), formed according to the dsRNA I according to one of the Claims 81 to 85, in which the one strand (as1) or at least a section of the one strand (as1) of dsRNA I is complementary to a first region (B1) of the target gene, and in which the additional strand (as2) or at least a section of the additional strand (as2) of dsRNA II is complementary to a second region (B2) of the target gene.
- 207. Use according to one of the Claims 81 to 86, in which the dsRNA I and/or the dsRNA II have a length of less than 25, preferably 19 to 23, consecutive nucleotide pairs.
- 208. Use according to one of the Claims 81 to 87, in which the first (B1) and the second region (B2) overlap or abut each other in sections.
- 209. Use according to one of the Claims 81 to 88, in which the target gene has one of the sequences S1001 to SQ140.
- 210. Use according to one of the Claims 81 to 89, in which the target gene is chosen from the following group: oncogene, cytokine gene, id-protein gene, prion gene, genes of angiogenesis-inducing molecules, of adhesion molecules and of cell-surface receptors, genes of proteins that participate in metastasizing and/or invasive processes, genes of proteinases, as well as apoptosis and cell cycle-regulating molecules.

- 211. Use according to one of the Claims 81 to 90, in which the target gene is the MDR1 gene.
- 212. Use according to one of the Claims 81 to 90, in which one of the sequences SQ141-173 is used as dsRNA I/II and a dsRNA construct of sequences SQ141-173 combined from two related anti-sense (as1/2) and sense sequences (ss1/2) is used.
- 213. Use according to one of the Claims 81 to 92, in which expression is inhibited according to the principle of RNA interference.
- 214. Use according to one of the Claims 81 to 93, in which the target gene is expressed in pathogenic organisms, preferably in plasmodia.
- 215. Use according to one of the Claims 81 to 94, in which the target gene is a component of a virus or viroid.
- 216. Use according to Claim 95, in which the virus is a human pathogenic virus or viroid.
- 217. Use according to Claim 95, in which the virus or viroid is an animal or plant pathogenic virus or viroid.
- 218. Use according to one of the Claims 81 to 97, in which unpaired nucleotides are substituted by nucleoside thiophosphates.
- 219. Use according to one of the Claims 81 to 98, in which at least one end (E1, E2) of dsRNA is modified, in order to counteract degradation in the cell or dissociation into single strands.
- 220. Medicament according to one of the Claims 81 to 99, in which cohesion of the doublestrand structure caused by the complementary nucleotide pairs is increased by at least one chemical link.

- 221. Medicament according to one of the Claims 81 to 100, in which the chemical link is formed by a covalent or ionic bond, a hydrogen bridge bond, a hydrophobic interaction, preferably van der Waals or stacking interactions, or by metal ion coordination.
- 222. Medicament according to one of the Claims 81 to 101, in which the chemical link is formed in the vicinity of one end (E1, E2).
- 223. Medicament according to one of the Claims 81 to 102, in which the chemical link is formed by means of one or more compound groups, in which the compound groups are preferably poly-(oxyphosphinicooxy-1,3-propanediol) and/or oligoethylene glycol chains.
- 224. Medicament according to one of the Claims 81 to 103, in which the chemical link is formed by branched nucleotide analogs used instead of nucleotides.
- 225. Medicament according to one of the Claims 81 to 104, in which the chemical link is formed by purine analogs.
- 226. Medicament according to one of the Claims 81 to 105, in which the chemical link is formed by azabenzene units.
- 227. Medicament according to one of the Claims 81 to 106, in which at least one of the following groups is used to produce the chemical link: methylene blue; bifunctional groups, preferably (bis-(2-chloroethyl)-amine; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamine; 4-thiouracil; psoralene.
- 228. Medicament according to one of the Claims 81 to 107, in which the chemical link is formed by thiophosphoryl groups applied in the vicinity of the ends (E1, E2) of the double-strand region.
- 229. Medicament according to one of the Claims 81 to 108, in which the chemical link is produced by triple helix bonds situated in the vicinity of ends (E1, E2).

- 230. Medicament according to one of the Claims 81 to 109, in which the dsRNA I/II is enclosed in micellar structures, advantageously in liposomes.
- 231. Medicament according to one of the Claims 81 to 110, in which the dsRNA I/II is bonded to at least one viral sheath protein originating from a virus, derived from it or a synthetically produced viral sheath protein, associated with it or enclosed by it.
- 232. Medicament according to one of the Claims 81 to 111, in which the sheath protein is derived from polyoma virus.
- 233. Medicament according to one of the Claims 81 to 112, in which the sheath protein contains the virus protein 1 (VP1) and/or the virus protein 2 (VP2) of polyoma virus.
- 234. Medicament according to one of the Claims 81 to 113, in which, during formation of a capsid or capsid-like structure from the sheath protein, one side faces the interior of the capsid or capsid-like structure.
- 235. Medicament according to one of the Claims 81 to 114, in which one strand (as1, as2) of dsRNA I/II is complementary to the primary or processed RNA transcript of the target gene.
- 236. Medicament according to one of the Claims 81 to 114, in which the cell is a vertebrate cell or a human cell.
- 237. Medicament according to one of the Claims 81 to 116, in which the first (B1) and second region (B2) are spaced from each other.
- 238. Medicament according to one of the Claims 81 to 117, in which the dsRNA I/II is contained in an amount of, at most, 5 mg per administration unit.

- 239. Medicament according to one of the Claims 81 to 118, in which the dsRNA I/II is taken up in a buffer solution.
- 240. Medicament according to one of the Claims 81 to 119, in which the dsRNA I/II is administered orally or by injection or infusion intravenously, intraturmorally, by inhalation, intraperitoneally.

//Key to Figures//

Relative Fluoreszenz = Relative fluorescence

Maus = mouse

Mensch = human

MOCK Transfection = MOCK transfection

Hellfeld = bright field

Variante = variant

Zielgen = target gene

SEQUENZPROTOCKOLL = SEQUENCE PROTOCOL

<120> Method for Inhibition of Expression of a Target Gene

<213> Artificial sequence

<223> Description of artificial sequence sense strand (R1A) of a dsRNA that is homologous to the MDR1 sequence

<213> Artificial sequence

<223> Description of artificial sequence anti-sense strand (R1B) of a dsRNA strand, complementary to the MDR1 sequence

<213> Artificial sequence

<223> Description of artificial sequence sense strand (R2A) of a dsRNA that is homologous to the MDR1 sequence

<213> Artificial sequence

<223> Description of artificial sequence sense strand (R3A) of a dsRNA that is homologous to the MDR1 gene

<213> Artificial sequence

<223> Description of artificial sequence anti-sense strand (R3B) of a dsRNA, complementary to the MDR1 sequence

<213> Artificial sequence

<223> Description of artificial sequence sense strand (R4A) of a dsRNA that is homologous to the MDR1 sequence

<213> Artificial sequence

- <223> Description of artificial sequence anti-sense strand (R4B) of a dsRNA, complementary to the MDR1 sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (S1A) of a dsRNA that is homologous to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S1B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S7A) of a dsRNA that is homologous to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (S7B) of a dsRNA that is homologous to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (R2B) of a dsRNA, complementary to the MDR1 sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (K1A) of a dsRNA that is homologous to the 5' UTR of the neomycin sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (K1B) of a dsRNA, complementary to the 5' UTR of the neomycin sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (K3A) of a dsRNA that is homologous to the 5' UTR of the neomycin sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (K3B) of a dsRNA, complementary to the 5' UTR of the neomycin sequence
- <213> Artificial sequence

- <223> Description of artificial sequence sense strand (K2A) of a dsRNA that is homologous to the 5' UTR of the neomycin sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (K2B) of a dsRNA, complementary to the 5' UTR of the neomycin sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S4B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (PKC1 A) of a dsRNA that is homologous to the protein kinease C sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (PKC2 B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S12B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S11B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (S13A) of a dsRNA that is homologous to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S13B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (S14B) of a dsRNA, complementary to the YFP or GFP sequence
- <213> Artificial sequence

- <223> Description of artificial sequence sense strand (S13A) of a dsRNA that is homologous to the YFP or GFP sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (ES-7A) of a dsRNA that is homologous to the human EGFR sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (ES-7B) of a dsRNA, complementary to the human EGFR sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (ES-8A) of a dsRNA that is homologous to the human EGFR sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (ES-8B) of a dsRNA, complementary to the human EGFR sequence
- <213> Artificial sequence
- <223> Description of artificial sequence sense strand (ES-2A) of a dsRNA that is homologous to the human EGFR sequence
- <213> Artificial sequence
- <223> Description of artificial sequence anti-sense strand (ES-5B) of a dsRNA, complementary to the human EGFR sequence

reiche ist. Bei dem "Zielgen" handelt es sich also im allgemeienen um den Sinnstrang. Der eine Strang bzw. Antisinnstrang (as1) kann komplementär zu einem bei der Expression des Zielgens gebildeten RNA-Transkipt oder deren Prozes-5 sierungsprodukt, z.B. eine mRNA, sein. Unter "Einführen" wird die Aufnahme in die Zelle verstanden. Die Aufnahme kann durch die Zelle selbst erfolgen; sie kann auch durch Hilfsstoffe oder Hilfsmittel vermittelt werden. Unter einem "Überhang" wird ein endständiger einzelsträngiger Überstand verstanden, 10 welcher nicht nach Watson & Crick gepaarte Nukleotide aufweist. Unter einer "doppelsträngigen Struktur" wird eine Struktur verstanden, bei der die Nukleotide der Einzelstränge im Wesentlichen nach Watson & Crick gepaart sind. Im Rahmen der vorliegenden Erfindung kann eine doppelsträngige Struktur auch einzelne Fehlpaarungen ("Mismatches") aufweisen.

Nach einer besonderes vorteilhaften Ausgestaltung weist die dsRNA I den Überhang am 3'-Ende des einen Strangs bzw. Antisinnstrangs as1 und/oder am 3'-Ende des anderen Strangs bzw. 20 Sinnstrang ssl auf. Die dsRNA I kann auch an einem Ende glatt ausgebildet sein. In diesem Fall befindet sich das glatte Ende vorteilhafterweise auf der Seite der dsRNA I, die das 5'-Ende des einen Strangs (Antsinnstrang; as1). In dieser Ausbildung zeigt die dsRNA I einerseits eine sehr gute Effektivität und andererseits eine hohe Stabilität im lebenden Orga-25 nismus. Die Effektivität insgesamt in vivo ist hervorragend. Der Überhang ist zweckmäßigerweise aus 1 bis 4 Nukleotiden, vorzugsweise aus 1 oder 2 Nukleotiden, gebildet.

15

30 Nach einem weiteren Ausgestaltungsmerkmal kann die Effektivität des Verfahrens weiter erhöht werden, wenn zumindest eine entsprechend der erfindungsgemäßen dsRNA I ausgebildete weitere dsRNA II in die Zelle eingeführt wird, wobei der eine Strang oder zumindest ein Abschnitt des einen Strangs der 35 doppelsträngigen Struktur der dsRNA I komplementär zu einem ersten Bereich des Sinnstrangs des Zielgens ist, und wobei

ein weiterer Strang oder zumindest ein Abschnitt des weiteren Strangs der doppelsträngigen Struktur der weiteren dsRNA II komplementär zu einem zweiten Bereich des Sinnstrangs des Zielgens ist. Die Hemmung der Expression des Zielgens ist in diesem Fall deutlich gesteigert. Der erste und der zweite Bereich können abschnittsweise überlappen, aneinander grenzen oder auch voneinander beabstandet sein.

Es hat sich weiter als vorteilhaft erwiesen, wenn die dsRNA I und/oder die weitere dsRNA II eine Länge von weniger als 25 aufeinander folgenden Nukleotidpaaren aufweisen. Als besonders effektiv hat sich eine Länge im Bereich zwischen 19 und 23 Nukleotidpaaren erwiesen. Die Effizienz kann weiter gesteigert werden, wenn an den vorzugsweise aus 19 bis 23 Nukleotidpaaren gebildeten Doppelsträngen einzelsträngige Überhänge von 1 bis 4 Nukleotiden vorhanden sind.

20

25

30

Das Zielgen kann nach einem weiteren Ausgestaltungsmerkmal eine der in dem anhängenden Sequenzprotokoll wiedergegebenen Sequenzen SQ001 bis SQ140 aufweisen. Es kann auch aus der folgenden Gruppe ausgewählt sein: Onkogen, Cytokin-Gen, Id-Protein-Gen, Priongen, Gene zur Expression von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteinasen sowie Apoptose- und Zellzyklus-regulierende Molekülen sowie Gene zur Expression des EGF-Rezeptors. Beim Zielgen kann es sich insbesondere um das MDR1-Gen handeln. Es kann in diesem Zusammenhang eine der Sequenzen SQ141 - 173 bestehende bzw. ein aus jeweils zusammengehörenden Antisinn (as) - und Sinnsequenzen (ss) kombinierte dsRNA I/II verwendet werden.

Nach einem weiteren vorteilhaften Ausgestaltungsmerkmal wird 35 die Expression nach dem Prinzip der RNA-Interferenz gehemmt. Das Zielgen wird zweckmäßigerweise in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert. Es kann Bestandteil eines Virus oder Viroids, insbesondere eines humanpathogenen Virus oder Viroids, sein. Das Virus oder Viroid kann auch ein tier- oder pflanzenpathogenes Virus oder Viroid sein.

Nach einem weiteren Ausgestaltungsmerkmal ist vorgesehen, dass die ungepaarten Nukleotide durch Nukleosidthiophosphate substituiert sind.

10

15

20

25

35

Zumindest ein Ende der dsRNA I/II kann modifiziert werden, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken. Vorteilhafterweise wird dazu der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht. Die chemische Verknüpfung kann durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechelwirkungen, oder durch Metall-Ionenkoordination gebildet werden. Es hat sich weiter als zweckmäßig und die Stabilität erhöhend erwiesen, wenn die chemische Verknüpfung in der Nähe des einen Endes gebildet ist. Weitere vorteilhafte Ausgestaltungen hinsichtlich der chemischen Verknüpfung können den Merkmalen der Ansprüche 24 bis 30 entnommen werden, ohne dass es dafür einer näheren Erläuterung bedarf.

Die dsRNA I/II kann dann besonders einfach in die Zelle eingeschleust werden, wenn sie in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird. Zum Transport der dsRNA I/II in die Zelle hat es sich auch als vorteilhaft erwiesen, dass diese an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben werden. Das Hüllprotein kann vom Polyomavirus abgeleitet sein. Das Hüllprotein kann insbesondere das Virus-Protein

1 und/oder das Virus-Protein 2 des Polyomavirus enthalten.
Nach einer weiteren Ausgestaltung ist vorgesehen, dass bei
Bildung eines Kapsids oder kapsidartigen Gebildes aus dem
Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist. Ferner ist es von Vorteil,
dass der eine Strang der dsRNA I/II (as1/2) zum primären oder
prozessierten RNA-Transkript des Zielgens komplementär ist.
Die Zelle kann eine Vertebratenzelle oder eine menschliche
Zelle sein.

10

15

20

25

30

35

Weiterhin hat es sich gezeigt, dass die dsRNA I/II vorteilhafterweise bereits in einer Menge von höchstens 5 mg/kg Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht werden kann. Bereits in dieser geringen Dosis wird eine ausgezeichnete Effektivität erzielt.

Überraschenderweise hat sich gezeigt, dass die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen und dann oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht werden kann.

Erfindungsgemäß ist weiterhin die Verwendung einer doppelsträngigen Ribonukleinsäure (dsRNA I) zur Hemmung der Expression eines Zielgens in einer Zelle vorgesehen, wobei die
dsRNA I eine doppelsträngige aus höchstens 49 aufeinander
folgenden Nukleotidpaaren gebildete Struktur aufweist, und
wobei ein Strang (Antisinnstrang; as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur
komplementär zum Sinnstrang des Zielgens ist, und wobei die
dsRNA I zumindest an einem Ende einen aus 1 bis 4 Nukleotiden
gebildeten Überhang aufweist.

Nach weiterer Maßgabe der Erfindung ist ein Medikament zur Hemmung der Expression eines Zielgens in einer Zelle vorgesehen, enthaltend eine doppelsträngige Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreiWO 02/055693 PCT/EP02/00152 6

tung unter dem Fluoreszenzmikroskop erfolgte frühestens 3 Stunden nach Injektion anhand der grünen Fluoreszenz.

Vorbereitung der Zellkulturen:

5 Die Kultivierung der Zellen erfolgte in DMEM mit 4,5 g/l Glucose, 10 % fötalem Kälberserum (FCS), 2 mM L-Glutamin, Penicillin/Streptomycin (100 IE/100 μg/ml, Biochrom) im Brutschrank unter 5 % CO₂-Atmosphäre bei 37°C. Die Zellen wurden alle 3 Tage passagiert, um sie in der exponentiellen Wachs-10 tumsphase zu halten. Einen Tag vor der Durchführung der Transfektion wurden die Zellen trypsiniert (10x Trypsin/TEDTA, Biochrom) und mit einer Zelldichte von 0,3 x 10^5 Zellen in beschichteten Petrischalen (CORNING® Cell Culture Dish, 35 mm, Corning Inc., Corning, USA) ausgesät. Die Petrischalen wurden mit 0,2 % Gelatine (Biochrom) für mindestens 15 30 Minuten bei 37°C inkubiert, einmal mit PBS gewaschen und sofort für die Aussaat der Zellen verwendet. Um ein Wiederfinden individueller Zellen zu ermöglichen, wurden CELLocate Coverslips der Fa. Eppendorf (Square size 55 μ m) verwendet.

20

Mikroinjektion:

Zur Durchführung der Mikroinjektion wurden die Petrischalen ca. 10 Minuten aus dem Brutschrank genommen. Pro Schale und Ansatz wurden ca. 50 Zellen mikroinjiziert (FemtoJet; Mikromanipulator 5171, Eppendorf). Für die Mikroinjektion wurden 25 Glaskapillaren (FemtoTip) der Firma Eppendorf mit einem Spitzeninnendurchmesser von 0,5 µm verwendet. Die Injektionsdauer betrug 0,8 Sekunden und der Druck 30 hPa. Durchgeführt wurden die Mikroinjektionen an einem Olympus IX50 Mikroskop mit Fluoreszenzeinrichtung. Als Injektionspuffer wurde 14 mM 30 NaCl, 3 mM KCl, 10 mM KH₂PO₄, pH 7,0 verwendet, der 0,01 $\mu g/\mu l$ pcDNA-YFP enthielt. Zur Überprüfung einer erfolgreichen Mikroinjektion wurde der Injektionslösung jeweils 0,08% (w/v) an Dextran-70000 gekoppeltes Texas-Rot (Molecular Probes, Leiden, Niederlande) zugesetzt. Um die Inhibition der YFP-35 Expression mit spezifischer dsRNA zu untersuchen, wurden der

WO 02/055693 PCT/EP02/00152

Injektionslösung dsRNAs zugegeben: Ansatz 1: 0,1 µM dsRNA (Sequenzprotokoll SQ148/149); Ansatz 2: 0,1 µM dsRNA (Sequenzprotokoll SQ148/159); Ansatz 3: ohne RNA. Nach der Mikroinjektion wurden die Zellen für mindestens drei weitere Stunden im Brutschrank inkubiert. Danach wurden die intrazelluläre YFP-Fluoreszenz am Mikroskop ausgewertet: gleichzeitig rot und grün-fluoreszierende Zellen: Mikroinjektion war erfolgreich, es wird keine Inhibition der YFP-Expression durch dsRNA beobachtet; bzw. es handelt sich um Kontrollzellen, in die keine dsRNA injiziert wurde; nur rot-fluoreszierende Zellen: Mikroinjektion war erfolgreich, die dsRNA inhibiert YFP-Expression.

Ergebnisse:

25

30

Bei einer dsRNA-Konzentration von 0,1 μM konnte beim Einsatz der dsRNA mit den an beiden 3´-Enden um je zwei Nukleotide überstehenden Einzelstrangbereichen (Sequenzprotokoll SQ148/159) eine merklich erhöhte Hemmung der Expression des YFP-Gens in Fibroblasten beobachtet werden im Vergleich zur dsRNA ohne überstehende Einzelstrangenden (Tabelle 1).

Die Verwendung von kurzen, 19-25 Basenpaare enthaltenden, dsRNA-Molekülen mit Überhängen aus wenigen, vorzugsweise 1 bis 3 nicht-basengepaarten, einzelsträngigen Nukleotiden ermöglicht somit eine vergleichsweise stärkere Hemmung der Genexpression in Säugerzellen als die Verwendung von dsRNAs mit derselben Anzahl von Basenpaaren ohne die entsprechenden Einzelstrangüberhänge bei jeweils gleichen RNA-Konzentrationen.

Ansatz	Name	Sequenzprotokoll-Nr.	0.1 μΜ
1	S1A/	SQ148	+
	S1B	SQ149	
2	S1A/	SQ148 (überstehende Enden)	+++
	S4B	SQ159	
3		ohne RNA	-

Tabelle 1: Die Symbole geben den relativen Anteil an nicht oder schwach grün-fluoreszierenden Zellen an (+++ > 90%; ++ 60-90%; + 30-60%; - < 10%).

5

II. Hemmung der Genexpression eines Zielgens in kultivierten HELA-S3-Zellen und Mausfibroblasten durch dsRNA:

Die Effektivität der Inhibition der YFP-Expression nach transienter Transfektion eines YFP-codierenden Plasmids auf der Basis der RNA-Interferenz mit dsRNAs läßt sich durch Gestaltung der 3'-Enden und der Länge des basengepaarten Bereichs modulieren.

15

20

25

Ausführungsbeispiel:

Zum Wirksamkeitsnachweis der dsRNA bei der spezifischen Inhibition der Genexpression wurden transient transfizierte NIH/3T3-Zellen (Fibroblasten aus NIH Swiss Mausembryo, ECCAC (European collection of animal cell culture) Nr. 93061524) und HELA-S3 (humane cervikale Karzinomzellen, DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen) Nr. ACC 161) verwendet. Für die Transfektion wurde das Plasmid pcDNA-YFP verwendet, das ein 800 bp großes Bam HI /Eco RI-YFP-Fragment in den entsprechenden Schnittstellen des Vektors pcDNA3 enthält. Aus der Sequenz des gelb-fluoreszierenden Proteins (YFP) abgeleitete doppelsträngige RNAs (dsRNAs) wurden herge-

stellt und zusammen mit dem Plasmid pcDNA-YFP transient in die Fibroblasten transfiziert (Die verwendeten spezifischen dsRNAs sind in ihren Antisinn-Strängen komplementär zu entsprechenden Abschnitten der Gensequenzen von sowohl YFP als auch GFP). Nach 48 Stunden wurde die Fluoreszenzabnahme quantifiziert. Als Kontrollen fungierten Zellen, die entweder nur mit pcDNA-YFP oder mit pcDNA-YFP und einer Kontroll-dsRNA (nicht aus der YFP-Sequenz abgeleitet) transfiziert wurden.

10 Versuchsprotokoll:

dsRNA-Synthese:

Mittels eines RNA-Synthesizers (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher che-15 mischer Verfahren wurden die aus den Sequenzprotokollen ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reinigung der rohen Syntheseprodukte mit Hilfe der HPLC. Verwendet wurde die Säule NucleoPac PA-100, 9x250 mm, der Fa. Dionex; 20 als Niedersalz-Puffer 20 mM Tris, 10 mM NaClO4, pH 6,8, 10% Acetonitril und als Hochsalz-Puffer 20 mM Tris, 400 mM NaClO4, pH 6,8, 10% Acetonitril. Der Fluß betrug 3 ml/ Minute. Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Erhitzen des stöchiometrischen Gemischs der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM 25 NaCl, auf 80-90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur.

Aussaat der Zellen:

Alle Zellkulturarbeiten wurden unter sterilen Bedingungen in einer entsprechenden Werkbank (HS18, Hera Safe, Kendro, Heraeus) durchgeführt. Die Kultivierung der NIH/3T3-Zellen und der HELA-S3 erfolgte im Brutschrank (CO2-Inkubator T20, Hera cell, Kendro, Heraeus) bei 37°C, 5% CO2 und gesättigter

Luftfeuchtigkeit in DMEM (Dulbecco's modified eagle medium, Biochrom), für die Mausfibroblasten, und Ham's F12 für die HELA-Zellen mit 10% FCS (fetal calf serum, Biochrom), 2 mM L-Glutamin (Biochrom) und Penicillin/Streptomycin (100 IE/100 μ g/ml, Biochrom). Um die Zellen in der exponentiellen Wachstumsphase zu halten, wurden die Zellen alle 3 Tage passagiert. 24 Stunden vor der Durchführung der Transfektion wurden die Zellen trypsiniert (10x Trypsin/EDTA, Biochrom, Deutschland) und mit einer Zelldichte von 1,0 x 10⁴ Zellen/Vertiefung in einer 96-Loch-Platte (Multiwell Schalen 96-Well Flachboden, Labor Schubert & Weiss GmbH) in 150 μ l Wachstumsmedium ausgesät.

15

20

25

30

10

Durchführung der transienten Transfektion:

Die Transfektion wurde mit Lipofectamine Plus™ Reagent (Life Technologies) gemäß den Angaben des Herstellers durchgeführt. Pro Well wurden 0,15 µg pcDNA-YFP-Plasmid eingesetzt. Das Gesamt-Transfektionsvolumen betrug 60 µl. Es wurden jeweils3fach-Proben angesetzt. Die Plasmid-DNA wurde zuerst zusammen mit der dsRNA komplexiert. Dazu wurde die Plasmid-DNA und die dsRNA in serumfreiem Medium verdünnt und pro 0,1 μg Plasmid-DNA 1 μ l PLUS Reagent eingesetzt (in einem Volumen von 10 μ l) und nach dem Mischen für 15 Minuten bei Raumtemperatur inkubiert. Während der Inkubation wurde pro 0,1 μg Plasmid-DNA 0,5 μ l Lipofectamine in insgesamt 10 μ l serumfreiem Medium verdünnt, gut gemischt, zu dem Plasmid/dsRNA/PLUS-Gemisch zugegeben und nochmals 15 Minuten inkubiert. Während der Inkubation wurde ein Mediumwechsel durchgeführt. Die Zellen wurden dazu 1 x mit 200 μ l serumfreiem Medium gewaschen und danach mit 40 μ l serumfreiem Medium bis zur Zugabe von DNA/dsRNA/PLUS/Lipofectamine weiter im Brutschrank inkubiert. Nach der Zugabe von 20 µl DNA/dsRNA/PLUS/Lipofectamine pro

16

PCT/EP02/00152

Well wurden die Zellen für 2,5 Stunden im Brutschrank inkubiert. Anschließend wurden die Zellen nach der Inkubation 1 x mit 200 μ l Wachstumsmedium gewaschen und für 24 Stunden bis zur Detektion der Fluoreszenz in 200 μ l Wachstumsmedium im Brutschrank inkubiert.

Detektion der Fluoreszenz:

24 Stunden nach dem letzten Mediumwechsel wurde die Fluoreszenz der Zellen am Fluoreszenz-Mikroskop (IX50-S8F2, Fluores-10 zenz-Einheit U-ULS100Hq, Brenner U-RFL-T200, Olympus) mit einer USH-I02D-Quecksilber-Lampe (USHIO Inc., Tokyo, Japan), ausgestattet mit einem WIB-Fluoreszenz-Würfel und einer digitalen CCD-Kamera (Orca IIIm, Hamamatsu) und C4742-95 Kamera-Controller) photographiert. Die Auswertung der Fluores-15 zenzaufnahmen erfolgte mit der analysis-Software 3.1 (Soft Imaging Sytem GmbH, Deutschland). Um die YFP-Fluoreszenz in Relation zur Zelldichte zu setzen, wurde eine Zellkernfärbung (Hoechst-Staining) durchgeführt. Dazu wurden die Zellen in 100 μ l Methylcarnoy (75% Methanol, 25% Eisessig) zuerst für 5 und danach nochmals für 10 Minuten in Methylcarnoy fixiert. 20 Nach dem Lufttrocknen wurden die fixierten Zellen für 30 Minuten im Dunkeln mit 100 μ l pro Well Hoechst-Farbstoff (75 ng/ml) inkubiert. Nach 2maligem Waschen mit PBS (PBS Dulbecco w/o Ca 2+, Mg 2+, Biochrom) wurden die Hoechst-gefärbten Zellen unter dem Fluoreszenz-Mikroskop (Olympus, WU-Fluoreszenz-25 Würfel für Hoechst) photographiert. In den Fig. 3 bis 9 sind die Ergebnisse zur Inhibition der YFP-Expression durch dsRNA in kultivierten Zellen zusammengefasst:

30

In Fig. 3, 4, 5 und 6 sind die Effekte von YFP-spezifischen dsRNAs und von Kontroll-dsRNAs auf die YFP-Expression in NIH/3T3-Mausfibroblasten nach transienter Transfektion zusammengefasst. Die Experimente wurden wie im Versuchsprotokoll

WO 02/055693 PCT/EP02/00152 22

Die Fig. 10 bis 17 zeigen die Serumstabilität der dsRNA nach Inkubation mit humanem bzw. murinem Serum und nachfolgender elektrophoretischer Auftrennung im 20% igem 7M Harnstoffgel.

5 Fig. 10: Inkubation von S1 (0-22-0) in Maus-Serum

- 1. zum Zeitpunkt 0 (ohne Serum)
- 2. zum Zeitpunkt 0
- 3. für 30 Minuten
- 4. für 1 Stunde
- 5. für 2 Stunden 10
 - 6. für 4 Stunden
 - 7. für 12 Stunden
 - 8.2 μ l 100 μ M S1 ohne Inkubation
 - S1A) Sinnstrang S1 (10 μ l 20 μ M S1A)
- 15 S1B) Antisinnstrang S1 (10 μ l 20 μ M S1B)

Fig. 11: Inkubation von S1 (0-22-0) in humanem Serum

- 1. 2 μ l 100 μ M S1 unbehandelt (ohne Inkubation)
- 2. für 30 Minuten
- 3. für 2 Stunden
- 4. für 4 Stunden 20
 - 5. für 6 Stunden
 - 6. für 8 Stunden
 - 7. für 12 Stunden
 - 8. für 24 Stunden
- 25 S1A) Sinnstrang S1 (10 μ l 20 μ M S1A)
 - S1B) Antisinnstrang S1 (10 μ l 20 μ M S1B)

Fig. 12: Inkubation von S7 (2-19-2) in Maus-Serum

- 1. zum Zeitpunkt 0 (ohne Serum)
- 2. für 30 Minuten
- 3. für 4 Stunden 30
 - 4. für 12 Stunden

Fig. 13: Inkubation von S7 (2-19-2) in humanem Serum

1. Sinnstrang S7 (10 μ l 20 μ M S7A)

PCT/EP02/00152

- 2. Antisinnstrang S7 (10 μ l 20 μ M S7B)
- 3. für 30 Minuten
- 4. für 1 Stunde
- 5. für 2 Stunden
- 5 6. für 4 Stunden
 - 7. für 6 Stunden
 - 8. für 12 Stunden
 - 9. für 24 Stunden
 - 10. zum Zeitpunkt 0 (ohne Serum)
- 10 Fig. 14: Inkubation von K3 (2-19-2) in Maus-Serum
 - 1. Sinnstrang K3 (10 μ l 20 μ M K3A)
 - 2. Antisinnstrang K3 (10 μ l 20 μ M K3B)
 - 3. zum Zeitpunkt 0 (ohne Serum)
 - 4. zum Zeitpunkt 0 (mit Serum)
- 15 5. für 30 Minuten
 - 6. für 1 Stunde
 - 7. für 2 Stunden
 - 8. für 4 Stunden
 - 9. für 12 Stunden
- 20 Fig. 15: Inkubation von PKC1/2 (0-22-2) in Maus-Serum
 - 1. für 30 Minuten
 - 2. für 1 Stunde
 - 3. für 2 Stunden
 - 4. für 4 Stunden
- 25 5. für 12 Stunden
 - 6. 2 μ l 100 μ M PKC1/2 (unbehandelt)
 - Fig. 16: Inkubation von S1A/S4B (0-22-2) in humanem Serum
 - zum Zeitpunkt 0 (ohne Serum)
 - 2. für 24 Stunden
- 30 3. für 12 Stunden
 - 4. für 8 Stunden
 - 5. für 6 Stunden
 - 6. für 4 Stunden

24

- 7. für 2 Stunden
- 8. für 30 Minuten
- 9. Sinnstrang S1A (10 µl 20 µM S1A)
- 10. Antisinnstrang S4B (10 μl 20 μM S4B)
- Fig. 17: Inkubation von K2 (2-22-2) in humanem Serum
 - 1. Sinnstrang K2 (10 μ l 20 μ M K2A)
 - 2. Antisinnstrang K2 (10 μ l 20 μ M K2B)
 - 3. zum Zeitpunkt 0 (ohne Serum)
 - 4. für 30 Minuten
- 10 5. für 2 Stunden
 - 6. für 4 Stunden
 - 7. für 6 Stunden
 - 8. für 8 Stunden
 - 9. für 12 Stunden
- 15 10. für 24 Stunden

Ergebnisse:

dsRNAs ohne einzelsträngige Bereiche an den 3'-Enden sind im Serum sowohl von Mensch und Maus wesentlich stabiler als 20 dsRNAs mit einzelsträngigen 2nt-Überhängen an den 3´-Enden (Fig. 10 bis 14 und 17). Nach 12 bzw. 24 Stunden Inkubation von S1 in murinem bzw. humanem Serum ist noch immer eine Bande in der ursprünglichen Größe fast vollständig erhalten. Dagegen nimmt bei dsRNAs mit 2nt-Überhängen an beiden 3´-Enden die Stabilität in humanem als auch im murinen Serum deutlich ab. Bereits nach 4 Stunden Inkubation von S7 (Fig. 12 und 13) oder K3 (Fig. 14) ist keine Bande in der Originalgröße mehr detektierbar.

30

25

Um die Stabilität von dsRNA im Serum zu erhöhen, ist es ausreichend, wenn die dsRNA ein glattes Ende besitzt. Im Maus-Serum ist nach 4 Stunden Inkubation (Fig. 15, Bahn 4) die

Bande in der Originalgröße kaum abgebaut im Vergleich zu S7 (nach 4 Stunden vollständiger Abbau; Fig. 12, Bahn 3).

Als optimaler Kompromiß hinsichtlich der biologischen Wirksamkeit von dsRNA kann die Verwendung von dsRNA mit einem glattem Ende und einem einzelsträngigem Bereich von 2 Nukleotiden angesehen werden, wobei sich der einzelsträngige Überhang am 3'-Ende des Antisinn-Stranges befinden sollte.

Die hier verwendeten Sequenzen sind aus der nachstehenden Tabelle 2 und den Sequenzprotokollen SQ148-151 und 153-167 ersichtlich.

Name	Sequenz- proto- koll-Nr.	dsRNA-Sequenz	
s1	SQ148 SQ149	(A) 5'- CCACAUGAAGCAGCACGACUUC -3' (B) 3'- GGUGUACUUCGUCGUGCUGAAG -5'	0-22-0
S7	SQ150 SQ151	(A) 5'- CCACAUGAAGCAGCACGACUU -3' (B) 3'- CUGGUGUACUUCGUCGUGCUG -5'	2-19-2
K1	SQ153 SQ154	(A) 5'- ACAGGAUGAGGAUCGUUUCGCA -3' (B) 3'- UGUCCUACUCCUAGCAAAGCGU -5'	0-22-0
к3	SQ155 SQ156	(A) 5´-GAUGAGGAUCGUUUCGCAUGA-3´ (B) 3´-UCCUACUCCUAGCAAAGCGUA-5´	2-19-2
K2	SQ157 SQ158	(A) 5'- ACAGGAUGAGGAUCGUUUCGCAUG -3' (B) 3'- UCUGUCCUACUCCUAGCAAAGCGU -5'	2-22-2
S1A/ S4B	SQ148 SQ159	(A) 5'- CCACAUGAAGCAGCACGACUUC -3' (B) 3'- CUGGUGUACUUCGUCGUGCUGAAG -5'	0-22-2

SQ160 SQ161	(A) (B)	5'- CUUCUCCGCCUCACACCGCUGCAA -3' 3'- GAAGAGGCGGAGUGUGGCGACG -5'	2-22-0
SQ150	(A) (B)	5'- CCACAUGAAGCAGCACGACUU -3' 3'- GGUGUACUUCGUCGUGCUGAA -5'	0-21-0
SQ150 SQ163	(A) (B)	5'- CCACAUGAAGCAGCACGACUU -3' 3'- CUGGUGUACUUCGUCGUGCUGAA -5'	0-21-2
SQ164 SQ165	(A) (B)	5'- CCACAUGAAGCAGCACGACU -3' 3'- CUGGUGUACUUCGUCGUGCUGA -5'	0-20-2
SQ164 SQ166	(A) (B)	5'- CCACAUGAAGCAGCACGACU -3' 3'- GGUGUACUUCGUCGUGCUGA -5'	0-20-0
SQ167 SQ159	(A) (B)	5'- CCACAUGAAGCAGCACGACUUCUU -3' 3'- CUGGUGUACUUCGUCGUGCUGAAG -5'	2-22-2
SQ153 SQ158	(A) (B)	5'- ACAGGAUGAGGAUCGUUUCGCA -3' 3'- UCUGUCCUACUCCUAGCAAAGCGU -5'	0-22-2
SQ154 SQ157	(A) (B)	5'- ACAGGAUGAGGAUCGUUUCGCAUG -3' 3'- UGUCCUACUCCUAGCAAAGCGU -5'	2-22-0
SQ149 SQ167	(A)	5'- CCACAUGAAGCAGCACGACUUCUU -3' 3'- GGUGUACUUCGUCGUGCUGAAG -5'	2-22-0
	SQ150 SQ150 SQ162 SQ163 SQ164 SQ165 SQ164 SQ166 SQ167 SQ159 SQ153 SQ158 SQ154 SQ157	SQ161 (B) SQ150 (A) SQ162 (B) SQ162 (A) SQ163 (B) SQ164 (A) SQ165 (B) SQ164 (A) SQ166 (B) SQ167 (A) SQ159 (B) SQ158 (A) SQ158 (B) SQ154 (A) SQ157 (B) SQ149 (A)	SQ161 (B) 3'- GAAGAGGCGGAGUGUGGCGACG -5' SQ150 (A) 5'- CCACAUGAAGCAGCACGACUU -3' SQ162 Sq162 S'- CGACAUGAAGCAGCACGACUU -3' SQ150 (A) 5'- CCACAUGAAGCAGCACGACUU -3' SQ163 (B) 3'- CUGGUGUACUUCGUCGUGCUGAA -5' SQ164 (A) 5'- CCACAUGAAGCAGCACGACU -3' SQ165 (B) 3'- CUGGUGUACUUCGUCGUGCUGA -5' SQ164 (A) 5'- CCACAUGAAGCAGCACGACU -3' SQ166 (B) 3'- GGUGUACUUCGUCGUGCUGA -5' SQ167 (A) 5'- CCACAUGAAGCAGCACGACUUCUU -3' SQ159 (B) 3'- CUGGUGUACUUCGUCGUGGUGCUGAAG -5' SQ153 (B) 3'- CUGGUGUACUUCGUCGUGCUGAAGCGU -5' SQ158 (B) 3'- UCUGUCCUACUCCUAGCAAAGCGU -5' SQ154 (A) 5'- ACAGGAUGAGGAUCGUUUCGCAUG -3' SQ157 (B) 3'- UGUCCUACUCCUAGCAAAGCGU -5' SQ157 (B) 3'- UGUCCUACUCCUAGCAAAGCGU -5' SQ149 (A) 5'- CCACAUGAAGCAGCACGACUUCUU -3'

Tabelle 2

5

10

IV. In vivo-Studie:

Es wurde "GFP-Labormäusen", die das Grün-fluoreszierende Protein (GFP) in allen Proteinbiosynthese betreibenden Zellen exprimieren, doppelsträngige RNA (dsRNA), die aus der GFP-Sequenz abgeleitet wurde, bzw. unspezifische dsRNA intravenös in die Schwanzvene injiziert. Am Versuchsende wurden die Tie-

SDS überschichtet. Danach wurde das Sammelgel gegossen: 0,83 μ l Acrylamid/Bisacrylamid (30%/0,9%), 630 μ l 1 M Tris/HCl, pH 6,8, 3,4 ml Aqua bidest., 50 μ l 10% SDS, 50 μ l 10% Ammoniumpersulfat, 5 μ l TEMED.

5

10

15

20

25

Vor dem Auftrag auf das Gel wurden die Proteine mit einer entsprechenden Menge an 4fach Probenpuffer (200 mM Tris, pH 6,8, 4% SDS, 100 mM DTT (Dithiotreithol), 0,02% Bromphenolblau, 20% Glycerin) versetzt, für 5 min im Heizblock bei 100°C denaturiert, nach dem Abkühlen auf Eis kurz abzentrifugiert und auf das Gel aufgetragen. Pro Bahn wurde die gleichen Plasma- bzw. Proteinmengen eingesetzt (je 3μ l Plasma bzw. 25 µg Gesamtprotein). Die Elektrophorese erfolgte wassergekühlt bei RT und konstant 50 V. Als Längenstandard wurde der Proteingelmarker von Bio-Rad (Kaleidoscope Prestained Standard) verwendet.

Western Blot und Immundetektion:

Der Transfer der Proteine vom SDS-PAGE auf eine PVDF (Polyvenyldifluorid) -Membran (Hybond-P, Amersham) erfolgte im semidry Verfahren nach Kyhse-Anderson (J. Biochem. Biophys. Methods 10: 203-210, 1984) bei RT und einer konstanten Stromstärke von 0,8 mA/cm² für 1,5 h. Als Transferpuffer wurde ein Tris/Glycin-Puffer eingesetzt (39 mM Glycin, 46 mM Tris, 0,1 % SDS und 20% Methanol). Zum Überprüfen des elektrophoretischen Transfers wurden sowohl die Gele nach dem Blotten als auch die Blotmembranen nach der Immundetektion mit Coomassie qefärbt (0,1% Coomassie G250, 45% Methanol, 10% Eisessig). Zum Absättigen unspezifischer Bindungen wurde die Blotmembran nach dem Transfer in 1% Magermilchpulver/PBS für 1h bei RT inkubiert. Danach wurde je dreimal für 3 min mit 0,1% Tween-20/PBS gewaschen. Alle nachfolgenden Antikörperinkubationen und Waschschritte erfolgten in 0,1% Tween-20/ PBS. Die Inkubation mit dem Primärantikörper (goat anti-GFP, sc-5384, Santa Cruz Biotechnology) in einer Verdünnung von 1:1000 erfolgte für 1h bei RT. Danach wurde 3 x 5 min gewaschen und für 1h bei RT mit dem Sekundärantikörper (donkey anti-goat IgG Hoseradish Peroxidase gelabelt, Santa Cruz Biotechnology) in einer Verdünnung von 1:10.000 inkubiert. Die Detektion erfolgte mit dem ECL-System von Amersham nach den Angaben des Herstellers.

In den Fig. 18 bis 20 ist die Inhibition der GFP-Expression nach intravenöser Injektion von spezifisch gegen GFP gerich-10 teter dsRNA mit Immunperoxidase-Färbungen gegen GFP an 3 μ m Paraffinschnitten dargestellt. Im Versuchsverlauf wurde gegen GFP gerichtete dsRNA mit einem doppelsträngigen Bereich von 22 Nukleotid-(nt)paaren ohne Überhänge an den 3´-Enden (D) und die entsprechende unspezifische Kontroll-dsRNA (B) sowie 15 spezifisch gegen GFP gerichtete dsRNA mit einem 19 Nukleotidpaare umfassenden Doppelstrangbereich mit 2nt-Überhängen an den 3'-Enden (E) und die entsprechende unspezifische Kontroll-dsRNA (C) im 12 Stunden-Turnus über 5 Tage hinweg 20 appliziert. (F) erhielt 1/50 der Dosis von Gruppe D. Als weitere Kontrolle wurden Tiere ohne dsRNA-Gabe (A) bzw. WT-Tiere untersucht. Die Fig. 18 zeigt die Inhibition der GFP-Expression in Nierenschnitten, Fig. 19 in Herz- und Fig. 20 in Pankreasqewebe. In den Fig. 21 bis 23 sind Western Blot-Analysen der GFP-Expression in Plasma und Geweben darge-25 stellt. In der Fig. 21 ist die Inhibition der GFP-Expression im Plasma, in Fig. 22 in der Niere und in Fig. 23 in Herz gezeigt. In Fig. 23 sind Gesamtproteinisolate aus verschiedenen Tieren aufgetragen. Es wurden jeweils gleiche Gesamtproteinmengen pro Bahn aufgetragen. In den Tieren, denen unspezifi-30 sche Kontroll-dsRNA verabreicht wurde (Tiere der Gruppen B und C), ist die GFP-Expression gegenüber Tieren, die keinerlei dsRNA erhielten, nicht reduziert. Tiere, die spezifisch gegen GFP gerichtete dsRNA mit 2nt-Überhängen an den 3´-Enden beider Stränge und einen 19 Nukleotidpaare umfassenden Doppelstrangbereich erhielten, zeigten eine signifikant inhibierte GFP-Expression in den untersuchten Geweben (Herz, Niere, Pankreas und Blut), verglichen mit unbehandelten Tieren (Fig. 18 bis 23). Bei den Tieren der Gruppen D und F, denen spezifisch gegen GFP gerichtete dsRNA mit glatten Enden und einem 22 Nukleotidpaare umfassenden Doppelstrangbereich appliziert wurde, zeigten nur jene Tiere, die die dsRNA in einer Dosis von 50 μ g/kg Körpergewicht pro Tag erhielten, eine spezifische Inhibition der GFP-Expression, die allerdings weniger deutlich ausgeprägt war als die der Tiere in Gruppe E.

10

20

25

30

Die zusammenfassende Auswertung von GFP-Inhibition in den Gewebeschnitten und im Western Blot ergibt, dass die Inhibition der GFP-Expression im Blut und in der Niere am stärksten ist (Fig. 18, 21 und 22).

V. Hemmung der Genexpression des EGF-Rezeptors mit dsRNA als therapeutischer Ansatz bei Krebsformen mit EGFRÜberexpression oder EGFR-induzierter Proliferation:

Der Epidermal Growth Factor (=EGF).)-Rezeptor (=EGFR) gehört zu den Rezeptor-Tyrosinkinasen, transmembranen Proteinen mit einer intrinsischen Tyrosinkinase-Aktivität, die an der Kontrolle einer Reihe von zellulären Prozessen wie Zellwachstum, Zelldifferenzierungen, migratorischen Prozessen oder der Zellvitalität beteiligt sind (Übersicht in: Van der Geer et al. 1994). Die Familie der EGFR besteht aus 4 Mitgliedern, EGFR (ErbB1), HER2 (ErbB2), HER3 (ErbB3) und HER4 (ErbB4) mit einer transmembranen Domäne, einer cysteinreichen extrazellulären Domäne und einer intrazellullären katalytischen Domäne. Die Sequenz des EGFR, einem 170 kDa Protein, ist seit 1984 bekannt (Ullrich et al., 1984).

Aktiviert wird der EGFR durch Peptid-Wachstumsfaktoren wie EGF, $TGF\alpha$ (transforming growth factor), Amphiregulin, Betacellulin, HB-EGF (heparin-binding EGF-like growth factor) und Neureguline. Ligandenbindung induziert die Bildung von Homooder Heterodimeren mit nachfolgender Autophosphorylierung zytoplasmatischer Tyrosine (Ullrich & Schlessinger, 1990; Alroy & Yarden, 1997). Die phosphorylierten Aminosäuren bilden die Bindungsstellen für eine Vielzahl von Proteinen, die an den proximalen Schritten der Signalweiterleitung in einem 10 komplexen Netzwerk beteiligt sind. Der EGFR ist an den verschiedensten Tumorerkrankungen beteiligt und damit ein geeignetes Target für therapeutische Ansätze (Huang & Harari, 1999). Die Mechanismen, die zu einer aberranten EGFR-Aktivierung führen, können auf Überexpression, Amplifikation, konstitutiver Aktivierung mutanter Rezeptor-Formen oder auto-15 krinen Loops beruhen (Voldborg et al., 1997). Eine Überexpression des EGFR wurde für eine Reihe von Tumoren beschrieben, wie z.B. Brustkrebs (Walker & Dearing, 1999), Nicht-Klein-Lungenkarzinom (Fontanini et al., 1998), Pankreaskarzi-20 nomen, Kolonkarzinom (Salomon et al., 1995) und Glioblastomen (Rieske et al., 1998). Insbesondere für maligne Glioblastome sind bisher keine effizienten und spezifischen Therapeutika verfügbar.

25 Ausführungsbeispiel:

30

Zum Nachweis der Wirksamkeit der dsRNA bei der spezifischen Inhibition der EGFR-Genexpression wurden U-87 MG-Zellen (humane Glioblastomzellen), ECCAC (European collection of animal cell culture) Nr. 89081402, verwendet, die mit spezifisch gegen den EGF-Rezeptor (Sequenzprotokoll SQ 51) gerichteten dsRNA transfiziert wurden. Nach ca. 72 Stunden Inkubation wurden die Zellen geerntet, Protein isoliert und im Western Blot Verfahren die EGFR-Expression untersucht.

Versuchsprotokoll:

dsRNA-Synthese:

Mittels eines RNA-Synthesizers (Typ Expedite 8909, Applied 5 Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reini-10 gung der rohen Syntheseprodukte mit Hilfe der HPLC. Verwendet wurde die Säule NucleoPac PA-100, 9x250 mm, der Fa. Dionex; als Niedersalz-Puffer 20 mM Tris, 10 mM NaClO4, pH 6,8, 10% Acetonitril und als Hochsalz-Puffer 20 mM Tris, 400 mM NaClO4, pH 6,8, 10% Acetonitril. Der Fluß betrug 3 ml/Minute. Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Erhitzen des stöchiometrischen Gemischs der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 80-90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur.

20

25

30

Aussaat der Zellen:

Alle Zellkulturarbeiten wurden unter sterilen Bedingungen in einer entsprechenden Werkbank (HS18, Hera Safe, Kendro, Heraeus) durchgeführt. Die Kultivierung der U-87 MG-Zellen erfolgte im Brutschrank (CO2-Inkubator T20, Hera cell, Kendro, Heraeus) bei 37°C, 5% CO2 und gesättigter Luftfeuchtigkeit in DMEM (Dulbecco's modified eagle medium, Biochrom) mit 10% FCS (fetal calf serum, Biochrom), 2 mM L-Glutamin (Biochrom), 1 mM Natrium-Pyruvat (Biochrom), 1xNEAA (Nonessetial Aminoacids, Biochrom) und Penicillin/Streptomycin (100 IE/100 µg/ml, Biochrom). Um die Zellen in der exponentiellen Wachstumsphase zu halten, wurden die Zellen alle 3 Tage passagiert. 24 Stunden vor der Applikation der dsRNA mittels Transfektion wurden die Zellen trypsiniert (10x Trypsin/EDTA,

Kontrolle wurde eine unspezifische dsRNA-Sequenz, die keinerlei Homologie mit der MDR1-Gensequenz aufweist, eingesetzt (K) und eine MOCK-Transfektion durchgeführt, die alle Reagenzien außer dsRNA enthielt.

5

10

Die Zellen wurden nach 24, 48 und 72 Stunden geerntet und die Gesamt-RNA mit dem RNeasy-Mini-Kit von Qiagen extrahiert. 10 μ g Gesamt-RNA jeder Probe wurden auf einem 1%igen Agarose-Formaldehyd-Gel elektrophoretisch aufgetrennt, auf eine Nylon-Membran geblottet und mit 5'- α^{32} P-dCTP random-markierten, spezifischen Sonden zuerst gegen MDR1 und nach dem Strippen des Blots gegen GAPDH als interne Kontrolle hybridisiert und auf Röntgenfilmen exponiert.

Die Röntgenfilme wurden digitalisiert (Image Master, VDS Pharmacia) und mit der Image-Quant-Software quantifiziert.

Dabei wurde ein Abgleich der MDR1-spezifischen Banden mit den entsprechenden GAPDH-Banden durchgeführt.

20 Ergebnisse:

Die Fig. 25 und 26 zeigen Northern-Blots (Fig. 25a, 26a) mit quantitativer Auswertung der MDR1-spezifischen Banden nach Abgleich mit den entsprechenden GAPDH-Werten (Fig. 25b, 26b). Es konnte eine Reduktion der MDR1-mRNA um bis zu 55 % im Ver-25 gleich zur MOCK-Transfektion und um bis zu 45 % im Vergleich zur unspezifischen Kontroll-Transfektion beobachtet werden. Nach 48 h ist eine signifikante Reduktion des MDR1-mRNA-Niveaus mit den als R1, R2, R3 (Tabelle 4) bezeichneten dsRNA-Konstrukten erreicht worden. Mit den R4-dsRNA-Konstrukten wurde nach 48 h keine signifikante Reduktion ge-30 genüber den Kontrollen beobachtet (Fig. 26a und 26b). Nach 74 h war eine deutlich stärkere Reduktion des MDR1-mRNA-Levels mit R1, R2 und R3 gegenüber den Kontrollen im Vergleich zu den 48 h-Werten zu beobachten (Fig. 25a und 25b).

Mit R4 konnte konnte zu diesem Zeitpunkt ebenfalls eine siginifikante Verringerung des MDR1-mRNA-Niveaus erzielt werden.

Somit reduzieren die Konstrukte mit einem 2nt-Überhang am 3′-Ende des Antisinnstrangs und einem doppelsträngigen Bereich

aus 22 Nukleotidpaaren, relativ unabhängig von dem jeweiligen zum MDR1-Gen homologen Sequenzbereich (nach 48 h; Fig. 26b) das MDR1-mRNA-Level effizienter als die Konstrukte mit mit 2nt-Überhängen an den 3′-Enden beider Stränge (Antisinn- und Sinnstrang) und einem Doppelstrangbereich von 19 Nukleotidpaaren. Die Ergebnisse bekräftigen damit die in Ausführungsbeispiel IV beschriebene Inhibition der EGFR-Genexpression durch spezifische dsRNAs nach Transfektion in U-87 MG-Zellen.

Die Transfektionseffizienz wurde in einem getrennten Experiment mit Hilfe eines Texas-Red-markierten DNA-Oligonukleotids (TexRed-A(GATC)₅T; ebenfalls 175 nM transfiziert) ermittelt (Fig. 27a, 27b; 400fache Vergrößerung, 48h nach Transfektion). Sie betrug etwa 50% auf der Grundlage der rot fluoreszierenden Zellen im Vergleich zur Gesamtzellzahl. Berücksichtigt man die Transfektionsrate der Zellen von etwa 50%, so legt die beobachtete Verringerung des MDR1-mRNA-Niveaus um ca. 45-55% liegt (verglichen mit den Kontrollen), den Schluss nahe, dass in allen Zellen, die mit spezifischer dsRNA erfolgreich transfiziert werden konnten, die MDR1-mRNA nahezu vollständig und spezifisch abgebaut wurde.

Literatur:

Alroy I & Yarden Y (1997): The Erb signalling network in embryogenesis and oncogenesis: signal deversification through combinatorial ligand-receptor interactions. FEBS Letters 410: 83-86.

Bass, B.L., 2000. Double-stranded RNA as a template for gene silencing. Cell 101, 235-238.

10

20

25

5

Bosher, J.M. and Labouesse, M., 2000. RNA interference: genetic wand and genetic watchdog. Nature Cell Biology 2, E31-E36.

Bradford MM (1976): Rapid and sensitive method for the quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.

Caplen, N.J., Fleenor, J., Fire, A., and Morgan, R.A., 2000. dsRNA-mediated gene silencing in cultured *Drosophila* cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95-105.

Clemens, J.C., Worby, C.A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B.A., and Dixon, J.E., 2000. Use of double-stranded RNA interference in *Drosophila* cell lines to dissect signal transduction pathways. *Proc.Natl.Acad.Sci.USA* 97, 6499-6503.

Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fe30 hrenbacher L, Wolter JM, Paton V, Shak S, Liebermann G &
Slamon DJ (1999): Multinational study of the efficacy and
safety of humanized anti-HER2 monoclonal antibody in women
who have HER2-overexpressing metastatic breast cancer that

.....

has progressed after chemotherapy for metastatic disease. Journal of Clinical Oncology 17: 2639-2648.

Ding, S.W., 2000. RNA silencing. Curr. Opin. Biotechnol. 11, 5 152-156.

Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. Nature 391, 806-811.

Fire, A., 1999. RNA-triggered gene silencing. Trends Genet. 15, 358-363.

- 15 Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T., and Turner, D.H., 1986. Improved free-energy parameters for prediction of RNA duplex stability.

 Proc. Natl. Acad. Sci. USA 83, 9373-9377.
- 20 Geick, A., Eichelbaum, M., Burk, O. (2001). Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J. Biol. Chem. 276 (18), 14581-14587.
- Fontanini G, De Laurentiis M, Vignati S, Chine S, Lucchi M,
 Silvestri V, Mussi A, De Placido S, Tortora G, Bianco AR,
 Gullick W, Angeletti CA, Bevilaqua G & Ciardiello F (1998):
 Evaluation of epidermal growth factor-related growth factors
 and receptors and of neoangiogenesis in completely resected
 stage I-IIIA non-small-cell lung cancer: amphiregulin and microvessel count are independent prognostic factors of survival. Clinical Cancer Research 4: 241-249.

Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J., 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells. Nature 404, 293-296.

5 Higgins, C.F. (1995). The ABC of channel regulation. Cell, 82, 693-696.

Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M & Nagy A (1993): Generating green fluorescent mice by germline transnission of green fluorescent ES cells. Mech. Dev. 76: 79-90.

Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M & Nagy A (1998): Non-invasive sexing of preimplantation mammalian embryos. Nature Genetics 19: 220-222.

15

Kyhse-Anderson J (1984): Electroblotting of multiple gels: A simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J. Biochem. Biophys. Methods 10: 203-210.

20

30

Lämmli UK (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277: 680-685.

25 Loo, T.W., and Clarke, D.M. (1999) *Biochem. Cell Biol.* 77, 11-23.

Huang SM & Harari PM (1999): Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. Investigational New Drugs 17: 259-269.

Limmer, S., Hofmann, H.-P., Ott, G., and Sprinzl, M., 1993. The 3'-terminal end (NCCA) of tRNA determines the structure and

- 47. Verwendung nach einem der Ansprüche 41 bis 47, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.
 - 48. Verwendung nach einem der Ansprüche 41 bis 47, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

- 49. Verwendung nach einem der Ansprüche 41 bis 48, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.
- 15 50. Verwendung nach einem der Ansprüche 41 bis 49, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.
 - 51. Verwendung nach einem der Ansprüche 41 bis 50, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen,
- 20 Cytokin-Gen, Id-Protein-Gen, Priongen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteinasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.
 - 52. Verwendung nach einem der Ansprüche 41 bis 51, wobei das Zielgen das MRD1-Gens ist.
- 30 53. Verwendung nach einem der Ansprüche 41 bis 52, wobei als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 173 verwendet wird.

- 54. Verwendung nach einem der Ansprüche 41 bis 53, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.
- 5 55. Verwendung nach einem der Ansprüche 41 bis 54, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert wird.
- 56. Verwendung nach einem der Ansprüche 41 bis 55, wobei das 10 Zielgen Bestandteil eines Virus oder Viroids ist.
 - 57. Verwendung nach Anspruch 56, wobei das Virus ein humanpathogenes Virus oder Viroid ist.
- 15 58. Verwendung nach Anspruch 56, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.
- 59. Verwendung nach einem der Ansprüche 41 bis 58, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert 20 sind.
 - 60. Verwendung nach einem der Ansprüche 41 bis 59, wobei zumindest ein Ende (E1, E2) der dsRNA modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

25

- 61. Verwendung nach einem der Ansprüche 41 bis 60, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.
- 62. Verwendung nach einem der Ansprüche 41 bis 61, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwir-

kungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

- 63. Verwendung nach einem der Ansprüche 41 bis 62, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.
- 64. Verwendung nach einem der Ansprüche 41 bis 63, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicooxy-1,3-propandiol)- und/oder Oligoethylenglycol-Ketten sind.
- 65. Verwendung nach einem der Ansprüche 41 bis 64, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet wird.
 - 66. Verwendung nach einem der Ansprüche 41 bis 65, wobei die chemische Verknüpfung durch Purinanaloga gebildet wird.
 - 67. Verwendung nach einem der Ansprüche 41 bis 66, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

- 68. Verwendung nach einem der Ansprüche 41 bis 67, wobei zur
 Herstellung der chemischen Verknüpfung mindestens eine der
 folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle
 Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.
- 30 69. Verwendung nach einem der Ansprüche 41 bis 68, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.

- 70. Verwendung nach einem der Ansprüche 41 bis 69, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt wird.
- 5 71. Verwendung nach einem der Ansprüche 41 bis 70, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.
- 72. Verwendung nach einem der Ansprüche 41 bis 71, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.
- 15 73. Verwendung nach einem der Ansprüche 41 bis 72, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.
 - 74. Verwendung nach einem der Ansprüche 41 bis 73, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

20

25

- 75. Verwendung nach einem der Ansprüche 41 bis 74, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.
- 76. Verwendung nach einem der Ansprüche 41 bis 75, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.
- 77. Verwendung nach einem der Ansprüche 41 bis 76, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

78. Verwendung nach einem der Ansprüche 41 bis 77, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

5

- 79. Verwendung nach einem der Ansprüche 41 bis 78, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.
- 10 80. Verwendung nach einem der Ansprüche 41 bis 79, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht wird.
- 15 81. Medikament zur Hemmung der Expression eines Zielgens in einer Zelle enthaltend eine doppelsträngige Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,
- 20 wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist,
- und wobei ein Strang (asl) oder zumindest ein Abschnitt des 25 einen Strangs (asl) der doppelsträngigen Struktur komplementär zum Zielgen ist,
 - und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

30

82. Medikament nach Anspruch 81, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

126. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest eine entsprechend der dsRNA I nach einem der vorhergehenden Ansprüche ausgebildete weitere doppelsträngige Ribonukleinesäure (dsRNA II) in die Zelle eingeführt wird, 5 wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei ein weiterer Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

127. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweis 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.

128. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

20

10

- 129. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.
- 130. Verfahren nach einem der vorhergehenden Ansprüche, wobei 25 das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.
- 131. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, 30 Cytokin-Gen, Id-Protein-Gen, Priongen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Ge-

ne von Proteinasen sowie Apoptose- und Zellzyklusregulierenden Molekülen.

10

- 132. Verfahren nach einem der vorhergehenden Ansprüche, wobei 5 das Zielgen das MDR1-Gens ist.
 - 133. Verfahren nach einem der vorhergehenden Ansprüche, wobei als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 173 verwendet wird.
- 134. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.
 - 135. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert wird.
 - 136. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.
- 137. Verfahren nach Anspruch 16, wobei das Virus ein humanpa-25 thogenes Virus oder Viroid ist.
 - 138. Verfahren nach Anspruch 16, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.
- 30 139. Verfahren nach einem der vorhergehenden Ansprüche, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

140. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest ein Ende (E1, E2) der dsRNA I/II modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

5

141. Verfahren nach einem der vorhergehenden Ansprüche, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.

10

15

20

25

- 142. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.
- 143. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.
- 144. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol) und/oder Oligoethylenglycol-Ketten sind.
- 145. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet wird.
- 146. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Purinanaloga gebildet wird.

15

20

- 147. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.
- 5 148. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; Nacetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.
 - 149. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.
 - 150. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (El, E2) befindliche Tripelhelix-Bindungen hergestellt wird.
 - 151. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.
- 152. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.
 - 153. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

- 154. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.
- 155. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.
- 10 156. Verfahren nach einem der vorhergehenden Ansprüche, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.
- 157. Verfahren nach einem der vorhergehenden Ansprüche, wobei 15 die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.
- 158. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm 20 Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.
- 159. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenom25 men ist.
 - 160. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht wird.

198. Verwendung nach einem der Ansprüche 41 bis 77, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

5

- 199. Verwendung nach einem der Ansprüche 41 bis 78, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.
- 200. Verwendung nach einem der Ansprüche 41 bis 79, wobei die 10 dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht wird.
- 15 201. Medikament zur Hemmung der Expression eines Zielgens in einer Zelle enthaltend eine doppelsträngige Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,
- wobei die dsRNA I eine doppelsträngige aus höchstens 49 auf-20 einander folgenden Nukleotidpaaren gebildete Struktur aufweist,
- und wobei ein Strang (asl) oder zumindest ein Abschnitt des 25 einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,
 - und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

30.

202. Medikament nach Anspruch 81, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ssl) aufweist.

Cytokin-Gen, Id-Protein-Gen, Priongen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteinasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.

- 211. Medikament nach einem der Ansprüche 81 bis 90, wobei das Zielgen das MRD1-Gen ist.
- 212. Medikament nach einem der Ansprüche 81 bis 91, wobei als dsRNA eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 -
- 15 173 verwendet wird.

- 213. Medikament nach einem der Ansprüche 81 bis 92, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.
- 20 214. Medikament nach einem der Ansprüche 81 bis 93, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimierbar ist.
- 215. Medikament nach einem der Ansprüche 81 bis 94, wobei das 25 Zielgen Bestandteil eines Virus oder Viroids ist.
 - 216. Medikament nach Anspruch 95, wobei das Virus ein humanpathogenes Virus oder Viroid ist.
- 30 217. Medikament nach Anspruch 95, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

- 218. Medikament nach einem der Ansprüche 81 bis 97, wobei unqepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.
- 219. Medikament nach einem der Ansprüche 81 bis 98, wobei zumindest ein Ende (E1, E2) der dsRNA modifiziert ist, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.
- 220. Medikament nach einem der Ansprüche 81 bis 99, wobei der 10 durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht ist.
- 221. Medikament nach einem der Ansprüche 81 bis 100, wobei 15 die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet 20 ist.
 - 222. Medikament nach einem der Ansprüche 81 bis 101, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

25

- 223. Medikament nach einem der Ansprüche 81 bis 102, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicooxy-1,3-propandiol)- und/oder Oligoethylenglycol-Ketten sind.
- 224. Medikament nach einem der Ansprüche 81 bis 103, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet ist.

- 225. Medikament nach einem der Ansprüche 81 bis 104, wobei die chemische Verknüpfung durch Purinanaloga gebildet ist.
- 5 226. Medikament nach einem der Ansprüche 81 bis 105, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet ist.
- 227. Medikament nach einem der Ansprüche 81 bis 106, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; Nacetyl-N´-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

15

228. Medikament nach einem der Ansprüche 81 bis 107, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet ist.

- 229. Medikament nach einem der Ansprüche 81 bis 108, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt ist.
- 25 230. Medikament nach einem der Ansprüche 81 bis 109, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen ist.
- 231. Medikament nach einem der Ansprüche 81 bis 110, wobei 30 die dsRNA I an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist/sind.

- 232. Medikament nach einem der Ansprüche 81 bis 111, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.
- 233. Medikament nach einem der Ansprüche 81 bis 112, wobei 5 das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.
- 234. Medikament nach einem der Ansprüche 81 bis 113, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem 10 Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.
- 235. Medikament nach einem der Ansprüche 81 bis 114, wobei der eine Strang (as1, as2) der dsRNA I zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.
 - 236. Medikament nach einem der Ansprüche 81 bis 115, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.
 - 237. Medikament nach einem der Ansprüche 81 bis 116, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.
- 25 238. Medikament nach einem der Ansprüche 81 bis 117, wobei die dsRNA in einer Menge von höchstens 5 mg pro Verabreichungseinheit enthalten ist.

- 239. Medikament nach einem der Ansprüche 81 bis 118, wobei 30 die dsRNA in eine Pufferlösung aufgenommen ist.
 - 240. Medikament nach einem der Ansprüche 81 bis 119, wobei die dsRNA oral oder mittels Injektion oder Infusion intrave-

nos, intratumoral, inhalativ, intraperitoneal verabreichbar ist.

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18


```
SEQUENZPROTOKOLL
     <110> Ribopharma AG
 5
     <120> Verfahren zur Hemmung der Expression
            eines Zielgens
     <130>
10
     <140>
     <141>
     <160> 142
15
     <170> PatentIn Ver. 2.1
     <210> 1
     <211> 2955
     <212> DNA
20
     <213> Homo sapiens
     <300>
     <302> Eph A1
     <310> NM00532
25
     <300>
     <302> ephrin A1
     <310> NM00532
30
     <400> 1
     atggagegge getggeecet ggggetaggg etggtgetge tgetetgege eeegetgeee 60
     ccgggggcgc gcgccaagga agttactctg atggacacaa gcaaggcaca gggagagctg 120
     ggctggctgc tggatccccc aaaagatggg tggagtgaac agcaacagat actgaatggg 180
     acacccctct acatgtacca ggactgccca atgcaaggac gcagagacac tgaccactgg 240
35
     cttcgctcca attggatcta ccgcggggag gaggcttccc gcgtccacgt ggagctgcag 300
     ttcaccgtgc gggactgcaa gagtttccct gggggagccg ggcctctggg ctgcaaggag 360
     accttcaacc ttctgtacat ggagagtgac caggatgtgg gcattcagct ccgacggccc 420
     ttgttccaga aggtaaccac ggtggctgca gaccagagct tcaccattcg agaccttgcg 480
     tctggctccg tgaagctgaa tgtggagcgc tgctctctgg gccgcctgac ccgccgtggc 540
40
     ctctacctcg ctttccacaa cccgggtgcc tgtgtggccc tggtgtctgt ccgggtcttc 600
     taccageget gteetgagae cetgaatgge ttggeecaat teccagacae tetgeetgge 660
     cccgctgggt tggtggaagt ggcgggcacc tgcttgcccc acgcgcgggc cagccccagg 720
     ccctcaggtg caccoggat gcactgcagc cctgatggcg agtggctggt gcctgtagga 780
     cggtgccact gtgagcctgg ctatgaggaa ggtggcagtg gcgaagcatg tgttgcctgc 840 cctagcggct cctaccggat ggacatggac acaccccatt gtctcacgtg cccccagcag 900
45
     agcactgctg agtctgaggg ggccaccatc tgtacctgtg agagcggcca ttacagagct 960
     cccggggagg gcccccaggt ggcatgcaca ggtccccct cggccccccg aaacctgagc 1020
     ttctctgcct cagggactca gctctccctg cgttgggaac ccccagcaga tacgggggga 1080
     cgccaggatg tcagatacag tgtgaggtgt tcccagtgtc agggcacagc acaggacggg 1140
     gggccctgcc agccctgtgg ggtgggcgtg cacttctcgc cgggggcccg ggcgctcacc 1200 acacctgcag tgcatgtcaa tggccttgaa ccttatgcca actacacctt taatgtggaa 1260
50
     geceaaaatg gagtgteagg getgggeage tetggeeatg ceageacete agteageate 1320
     agcatggggc atgcagagtc actgtcaggc ctgtctctga gactggtgaa gaaagaaccg 1380
     aggeaactag agetgacetg ggeggggtee eggeeecgaa geeetgggge gaacetgace 1440
     tatgagctgc acgtgctgaa ccaggatgaa gaacggtacc agatggttct agaacccagg 1500
55
     gtcttgctga cagagetgca gcctgacacc acatacateg tcagagtccg aatgctgacc 1560
     ccactgggtc ctggcccttt ctcccctgat catgagtttc ggaccagccc accagtgtcc 1620
     aggggcctga ctggaggaga gattgtagcc gtcatctttg ggctgctgct tggtgcagcc 1680
     ttgctgcttg ggattctcgt tttccggtcc aggagagccc agcggcagag gcagcagagg 1740
60
     cacgtgaccg cgccaccgat gtggatcgag aggacaagct gtgctgaagc cttatgtggt 1800
```

acctccagge atacgaggac cctgcacagg gagccttgga ctttacccgg aggctggtct 1860 aattttcctt cccgggagct tgatccagcg tggctgatgg tggacactgt cataggagaa 1920

ggagagtttg gggaagtgta tegagggacc ctcaggctcc ccagccagga ctgcaagact 1980 gtggccatta agaccttaaa agacacatcc ccaggtggcc agtggtggaa cttccttcga 2040 gaggcaacta tcatgggcca gtttagccac ccgcatattc tgcatctgga aggcgtcgtc 2100 acaaagcgaa agccgatcat gatcatcaca gaatttatgg agaatgcagc cctggatgcc 2160 ttcctgaggg agcgggagga ccagctggtc cctgggcagc tagtggccat gctgcagggc 2220 atagcatctg gcatgaacta cctcagtaat cacaattatg tccaccggga cctggctgcc 2280 agaaacatet tggtgaatea aaacetgtge tgeaaggtgt etgaetttgg eetgaetege 2340 ctcctggatg actttgatgg cacatacgaa acccagggag gaaagatccc tatccgttgg 2400 acagccctg aagccattgc ccatcggatc ttcaccacag ccagcgatgt gtggagcttt 2460 10 gggattgtga tgtgggaggt gctgagcttt ggggacaagc cttatgggga gatgagcaat 2520 caggaggtta tgaagagcat tgaggatggg taccggttgc cccctcctgt ggactgccct 2580 geceetetgt atgageteat gaagaactge tgggeatatg accgtgeeeg eeggeeacae 2640 ttccagaage ttcaggcaca tctggagcaa ctgcttgeca acccccactc cctgcggacc 2700 attgccaact ttgaccccag ggtgactctt cgcctgccca gcctgagtgg ctcagatggg 2760 15 atcccgtatc gaaccgtctc tgagtggctc gagtccatac gcatgaaacg ctacatcctg 2820 cacttccact cggctgggct ggacaccatg gagtgtgtgc tggagctgac cgctgaggac 2880 ctgacgcaga tgggaatcac actgcccggg caccagaagc gcattctttg cagtattcag 2940 ggattcaagg actga 20 <210> 2 <211> 3042 <212> DNA <213> Homo sapiens 25 <300> <302> ephrin A2 <310> XM002088 30 <400> 2 gaagttgcgc gcaggccggc gggcgggagc ggacaccgag gccggcgtgc aggcgtgcgg 60 gtgtgcggga gccgggctcg gggggatcgg accgagagcg agaagcgcgg catggagctc 120 caggcagccc gcgcctgctt cgccctgctg tggggctgtg cgctggccgc ggccgcggcg 180 gcgcagggca aggaagtggt actgctggac tttgctgcag ctggagggga gctcggctgg 240 35 ctcacacacc cgtatggcaa agggtgggac ctgatgcaga acatcatgaa tgacatgccg 300 atctacatgt actccgtgtg caacgtgatg tctggcgacc aggacaactg gctccgcacc 360 aactgggtgt accgaggaga ggctgagcgt atcttcattg agctcaagtt tactgtacgt 420 gactgcaaca gcttccctgg tggcgccagc tcctgcaagg agactttcaa cctctactat 480 gccgagtcgg acctggacta cggcaccaac ttccagaagc gcctgttcac caagattgac 540 40 accattgcgc ccgatgagat caccgtcagc agcgacttcg aggcacgcca cgtgaagctg 600 aacgtggagg agcgctccgt ggggccgctc acccgcaaag gcttctacct ggccttccag 660 gatateggtg cetgtgtgge getgetetee gteegtgtet actacaagaa gtgeeeegag 720 ctgctgcagg gcctggccca cttccctgag accatcgccg gctctgatgc accttccctg 780 gccactgtgg ccggcacctg tgtggaccat gccgtggtgc caccgggggg tgaagagcc 840 45 cgtatgcact gtgcagtgga tggcgagtgg ctggtgccca ttgggcagtg cctgtgccag 900 gcaggctacg agaaggtgga ggatgcctgc caggcctgct cgcctggatt ttttaagttt 960 gaggcatctg agagcccctg cttggagtgc cctgagcaca cgctgccatc ccctgagggt 1020 gccacetect gegagtgtga ggaaggette tteegggeae eteaggaeee agegtegatg 1080 ccttgcacac gaccccctc cgccccacac tacctcacag ccgtgggcat gggtgccaag 1140 50 gtggagetge getggaegee ceetcaggae agegggggee gegaggaeat tgtetacage 1200 gtcacctgcg aacagtgctg gcccgagtct ggggaatgcg ggccgtgtga ggccagtgtg 1260 cgctactcgg agcctcctca cggactgacc cgcaccagtg tgacagtgag cgacctggag 1320 ccccacatga actacacctt caccgtggag gcccgcaatg gcgtctcagg cctggtaacc 1380 agccgcagct tccgtactgc cagtgtcagc atcaaccaga cagagccccc caaggtgagg 1440 55 ctggagggcc gcagcaccac ctcgcttagc gtctcctgga gcatcccccc gccgcagcag 1500 agccgagtgt ggaagtacga ggtcacttac cgcaagaagg gagactccaa cagctacaat 1560 gtgcgccgca ccgagggttt ctccgtgacc ctggacgacc tggccccaga caccacctac 1620 ctggtccagg tgcaggcact gacgcaggag ggccaggggg ccggcagcaa ggtgcacgaa 1680 ttccagacgc tgtccccgga gggatctggc aacttggcgg tgattggcgg cgtggctgtc 1740 ggtgtggtcc tgcttctggt gctggcagga gttggcttct ttatccaccg caggaggaag 1800 60 aaccagegtg cccgccagte cccggaggac gtttacttet ccaagtcaga acaactgaag 1860

cccctgaaga catacgtgga cccccacaca tatgaggacc ccaaccaggc tgtgttgaag 1920

ttcactaccg agatccatcc atcctgtgtc actcggcaga aggtgatcgg agcaggagag 1980

```
tttggggagg tgtacaaggg catgctgaag acatcctcgg ggaagaagga ggtgccggtg 2040
     gccatcaaga cgctgaaagc cggctacaca gagaagcagc gagtggactt cctcggcgag 2100
     gccggcatca tgggccagtt cagccaccac aacatcatcc gcctagaggg cgtcatctcc 2160
     aaatacaagc ccatgatgat catcactgag tacatggaga atggggccct ggacaagttc 2220
     cttcgggaga aggatggcga gttcagcgtg ctgcagctgg tgggcatgct gcggggcatc 2280
     gcagctggca tgaagtacct ggccaacatg aactatgtgc accgtgacct ggctgcccgc 2340
     aacatcctcg tcaacagcaa cetggtetge aaggtgtetg actttggeet gteeegegtg 2400
     ctggaggacg accccgaggc cacctacacc accagtggcg gcaagatccc catccgctgg 2460
10
     accgccccgg aggccatttc ctaccggaag ttcacctctg ccagcgacgt gtggagcttt 2520
     ggcattgtca tgtgggaggt gatgacctat ggcgagcggc cctactggga gttgtccaac 2580 cacgaggtga tgaaagccat caatgatggc ttccggctcc ccacacccat ggactgcccc 2640
     tecgecatet accageteat gatgeagtge tggcagcagg agegtgeeeg cegececaag 2700
     ttegetgaca tegteageat cetggacaag etcattegtg eccetgaete ceteaagace 2760
15
     etggetgaet ttgacceceg egtgtetate eggetececa geaegagegg eteggagggg 2820
     gtgcccttcc gcacggtgtc cgagtggctg gagtccatca agatgcagca gtatacggag 2880
     cacttcatgg eggceggeta cactgecate gagaaggtgg tgcagatgac caacgacgac 2940
     atcaagagga ttggggtgcg gctgcccggc caccagaagc gcatcgccta cagcctgctg 3000
     ggactcaagg accaggtgaa cactgtgggg atccccatct ga
20
     <210> 3
     <211> 2953
     <212> DNA
25
     <213> Homo sapiens
     <300>
     <302> ephrin A3
     <310> NMO05233
30
     <400> 3
     atggattgtc agctctccat cctcctcctt ctcagctgct ctgttctcga cagcttcggg 60
     gaactgatte egeageette caatgaagte aatetaetgg atteaaaaae aatteaaggg 120
     gagetggget ggatetetta tecateacat gggtgggaag agateagtgg tgtggatgaa 180
     cattacacac ccatcaggac ttaccaggtg tgcaatgtca tggaccacag tcaaaacaat 240
35
     tggctgagaa caaactgggt ccccaggaac tcagctcaga agatttatgt ggagctcaag 300
     ttcactctac gagactgcaa tagcattcca ttggttttag gaacttgcaa ggagacattc 360
     aacctgtact acatggagtc tgatgatgat catggggtga aatttcgaga gcatcagttt 420
     acaaagattg acaccattgc agctgatgaa agtttcactc aaatggatct tggggaccgt 480
40
     attetgaage teaacactga gattagagaa gtaggteetg teaacaagaa gggattttat 540
     ttggcatttc aagatgttgg tgcttgtgtt gccttggtgt ctgtgagagt atacttcaaa 600
     aagtgcccat ttacagtgaa gaatctggct atgtttccag acacggtacc catggactcc 660
     cagtccctgg tggaggttag agggtcttgt gtcaacaatt ctaaggagga agatcctcca 720
     aggatgtact gcagtacaga aggcgaatgg cttgtaccca ttggcaagtg ttcctgcaat 780
     getggetatg aagaaagagg ttttatgtge caagettgte gaccaggttt etacaaggea 840
45
     ttggatggta atatgaagtg tgctaagtgc ccgcctcaca gttctactca ggaagatggt 900
     tcaatgaact gcaggtgtga gaataattac ttccgggcag acaaagaccc tccatccatg 960
     gcttgtaccc gacctccatc ttcaccaaga aatgttatct ctaatataaa cgagacctca 1020
     gttatcctgg actggagttg gcccctggac acaggaggcc ggaaagatgt taccttcaac 1080
50
     atcatatgta aaaaatgtgg gtggaatata aaacagtgtg agccatgcag cccaaatgtc 1140 cgcttcctcc ctcgacagtt tggactcacc aacaccacgg tgacagtgac agaccttctg 1200
     gcacatacta actacacctt tgagattgat gccgttaatg gggtgtcaga gctgagctcc 1260
     ccaccaagac agtttgctgc ggtcagcatc acaactaatc aggctgctcc atcacctgtc 1320
     ctgacgatta agaaagatcg gacctccaga aatagcatct ctttgtcctg gcaagaacct 1380 gaacatccta atgggatcat attggactac gaggtcaaat actatgaaaa gcaggaacaa 1440
55
     gaaacaagtt ataccattct gagggcaaga ggcacaaatg ttaccatcag tagcctcaag 1500
     cctgacacta tatacgtatt ccaaatccga gcccgaacag ccgctggata tgggacgaac 1560
     agccgcaagt ttgagtttga aactagtcca gactctttct ccatctctgg tgaaagtagc 1620
     caagtggtea tgategeeat tteageggea gtageaatta tteteeteae tgttgteate 1680
60
     tatgttttga ttgggaggtt ctgtggctat aagtcaaaac atggggcaga tgaaaaaaga 1740
     cttcattttg gcaatgggca tttaaaactt ccaggtctca ggacttatgt tgacccacat 1800
     acatatgaag accetaceca agetgtteat gagtttgeca aggaattgga tgecaceaac 1860
```

```
atatccattg ataaagttgt tggagcaggt gaatttggag aggtgtgcag tggtcgctta 1920
     aaactteett caaaaaaaga gattteagtg gecattaaaa ceetgaaagt tggetacaca 1980
     gaaaagcaga ggagagactt cctgggagaa gcaagcatta tgggacagtt tgaccacccc 2040
     aatatcattc gactggaagg agttgttacc aaaagtaagc cagttatgat tgtcacagaa 2100
     tacatggaga atggttcctt ggatagtttc ctacgtaaac acgatgccca gtttactgtc 2160
     attcagctag tggggatget tcgagggata gcatctggca tgaagtacct gtcagacatg 2220
     ggctatgttc accgagacct cgctgctcgg aacatcttga tcaacagtaa cttggtgtgt 2280
     aaggtttctg atttcggact ttcgcgtgtc ctggaggatg acccagaagc tgcttataca 2340
     acaagaggag ggaagatccc aatcaggtgg acatcaccag aagctatagc ctaccgcaag 2400
10
     ttcacgtcag ccagcgatgt atggagttat gggattgttc tctgggaggt gatgtcttat 2460
     ggagagagac catactggga gatgtccaat caggatgtaa ttaaagctgt agatgagggc 2520
     tategactge cacecccat ggaetgeeca getgeettgt ateagetgat getggactge 2580
     tggcagaaag acaggaacaa cagacccaag tttgagcaga ttgttagtat tctggacaag 2640
     cttatcegga atcceggcag cctgaagatc atcaccagtg cagcegcaag gccatcaaac 2700
15
     cttcttctgg accaaagcaa tgtggatatc tctaccttcc gcacaacagg tgactggctt 2760
     aatggtgtcc ggacagcaca ctgcaaggaa atcttcacgg gcgtggagta cagttcttgt 2820 gacacaatag ccaagatttc cacagatgac atgaaaaagg ttggtgtcac cgtggttggg 2880
     ccacagaaga agatcatcag tagcattaaa gctctagaaa cgcaatcaaa gaatggccca 2940
     gttcccgtgt aaa
20
     <210> 4
     <211> 2784
      <212> DNA
25
     <213> Homo sapiens
      <300>
     <302> ephrin A4
      <310> XM002578
30
      <400> 4
     atggatgaaa aaaatacacc aatccgaacc taccaagtgt gcaatgtgat ggaacccagc 60
     cagaataact ggctacgaac tgattggatc acccgagaag gggctcagag ggtgtatatt 120
     gagattaaat tcaccttgag ggactgcaat agtcttccgg gcgtcatggg gacttgcaag 180
35
     gagacgttta acctgtacta ctatgaatca gacaacgaca aagagcgttt catcagagag 240
     aaccagtttg tcaaaattga caccattgct gctgatgaga gcttcaccca agtggacatt 300
     ggtgacagaa tcatgaagct gaacaccgag atccgggatg tagggccatt aagcaaaaag 360
     gggttttacc tggcttttca ggatgtgggg gcctgcatcg ccctggtatc agtccgtgtg 420
     ttctataaaa agtgtccact cacagtccgc aatctggccc agtttcctga caccatcaca 480
40
     ggggctgata cgtcttccct ggtggaagtt cgaggctcct gtgtcaacaa ctcagaagag 540
     aaagatgtgc caaaaatgta ctgtggggca gatggtgaat ggctggtacc cattggcaac 600
     tgcctatgca acgctgggca tgaggagcgg agcggagaat gccaagcttg caaaattgga 660
     tattacaagg ctctctccac ggatgccacc tgtgccaagt gcccacccca cagctactct 720 gtctgggaag gagccacctc gtgcacctgt gaccgaggct ttttcagagc tgacaacgat 780
45
     getgeeteta tgeeetgeac cegteeacea tetgeteece tgaacttgat tteaaatgte 840
     aacgagacat ctgtgaactt ggaatggagt agccctcaga atacaggtgg ccgccaggac 900
     atttcctata atgtggtatg caagaaatgt ggagctggtg accccagcaa gtgccgaccc 960
     tgtggaagtg gggtccacta caccccacag cagaatggct tgaagaccac caaagtctcc 1020
     atcactgacc tectagetea taccaattac acetttgaaa tetgggetgt gaatggagtg 1080
50
     tecaaatata accetaacec agaceaatea gtttetgtea etgtgaceae caaceaagea 1140
     gcaccatcat ccattgcttt ggtccaggct aaagaagtca caagatacag tgtggcactg 1200
     gcttggctgg aaccagatcg gcccaatggg gtaatcctgg aatatgaagt caagtattat 1260
     gagaaggatc agaatgagcg aagctategt atagttegga cagetgeeag gaacaeagat 1320
     atcaaaggcc tgaaccctct cacttcctat gttttccacg tgcgagccag gacagcagct 1380 ggctatggag acttcagtga gcccttggag gttacaacca acacagtgcc ttcccggatc 1440
55
     attggagatg gggctaactc cacagteett etggtetetg tetegggeag tgtggtgetg 1500
```

```
<211> 3147
     <212> DNA
     <213> Homo sapiens
 5
     <300>
     <302> alpha v intergrin
     <310> NM0022210
     <400> 12
10
     atggetttte egeegeggeg aeggetgege eteggteeee geggeeteee gettettete 60
     tegggaetee tgetacetet gtgeegegee tteaacetag acgtggaeag teetgeegag 120
     tactctggcc ccgagggaag ttacttcggc ttcgccgtgg atttcttcgt gcccagcgcg 180
     tetteeegga tgtttettet egtgggaget eecaaageaa acaecaecea geetgggatt 240
     gtggaaggag ggcaggtcct caaatgtgac tggtcttcta cccgccggtg ccagccaatt 300
15
     gaatttgatg caacaggcaa tagagattat gccaaggatg atccattgga atttaagtcc 360
     catcagtggt ttggagcatc tgtgaggtcg aaacaggata aaattttggc ctgtgcccca 420
     ttgtaccatt ggagaactga gatgaaacag gagcgagagc ctgttggaac atgctttctt 480
     caagatggaa caaagactgt tgagtatgct ccatgtagat cacaagatat tgatgctgat 540
     ggacagggat tttgtcaagg aggattcagc attgatttta ctaaagctga cagagtactt 600 cttggtggtc ctggtagctt ttattggcaa ggtcagctta tttcggatca agtggcagaa 660
20
     atogtatota aatacgacco caatgtttac agcatcaagt ataataacca attagcaact 720
     eggactgcac aagetatttt tgatgacage tatttgggtt attetgtgge tgteggagat 780
     ttcaatggtg atggcataga tgactttgtt tcaggagttc caagagcagc aaggactttg 840
     ggaatggttt atatttatga tgggaagaac atgtcctcct tatacaattt tactggcgag 900
25
     cagatggctg catatttcgg attttctgta gctgccactg acattaatgg agatgattat 960
     gcagatgtgt ttattggagc acctetette atggategtg getetgatgg caaactecaa 1020
     gaggtggggc aggtctcagt gtctctacag agagcttcag gagacttcca gacgacaaag 1080
     ctgaatggat ttgaggtett tgeacggttt ggeagtgeea tageteettt gggagatetg 1140
     gaccaggatg gtttcaatga tattgcaatt gctgctccat atgggggtga agataaaaaa 1200
30
     ggaattgttt atatetteaa tggaagatea acaggettga acgcagteee ateteaaate 1260
     cttgaagggc agtgggctgc tcgaagcatg ccaccaagct ttggctattc aatgaaagga 1320
     gccacagata tagacaaaaa tggatatcca gacttaattg taggagcttt tggtgtagat 1380
     cgagctatct tatacagggc cagaccagtt atcactgtaa atgctggtct tgaagtgtac 1440
     cctagcattt taaatcaaga caataaaacc tgctcactgc ctggaacagc tctcaaagtt 1500
35
     tcctgtttta atgttaggtt ctgcttaaag gcagatggca aaggagtact tcccaggaaa 1560
     cttaatttcc aggtggaact tcttttggat aaactcaagc aaaagggagc aattcgacga 1620
     gcactgtttc tctacagcag gtccccaagt cactccaaga acatgactat ttcaaggggg 1680
     ggactgatgc agtgtgagga attgatagcg tatctgcggg atgaatctga atttagagac 1740
     aaactcactc caattactat ttttatggaa tatcggttgg attatagaac agctgctgat 1800
40
     acaacaggct tgcaacccat tcttaaccag ttcacgcctg ctaacattag tcgacaggct 1860
     cacattetae ttgactgtgg tgaagacaat gtetgtaaac ccaagetgga agtttetgta 1920 gatagtgate aaaagaagat etatattggg gatgacaace etetgacatt gattgttaag 1980
     gctcagaatc aaggagaagg tgcctacgaa gctgagctca tcgtttccat tccactgcag 2040
     gctgatttca tcggggttgt ccgaaacaat qaagccttag caagactttc ctgtgcattt 2100
45
     aagacagaaa accaaactcg ccaggtggta tgtgaccttg gaaacccaat gaaggctgga 2160
     actcaactct tagctggtct tcgtttcagt gtgcaccagc agtcagagat ggatacttct 2220
     gtgaaatttg acttacaaat ccaaagctca aatctatttg acaaagtaag cccagttgta 2280
     tctcacaaag ttgatcttgc tgttttagct gcagttgaga taagaggagt ctcgagtcct 2340
     gatcatatct ttcttccgat tccaaactgg gagcacaagg agaaccctga gactgaagaa 2400
50
     gatgttgggc cagttgttca gcacatctat gagctgagaa acaatggtcc aagttcattc 2460
     agcaaggcaa tgctccatct tcagtggcct tacaaatata ataataacac tctgttgtat 2520
     atcetteatt atgatattga tggaccaatg aactgcaett cagatatgga gatcaaccet 2580
     ttgagaatta agateteate tttgcaaaca actgaaaaga atgacaeggt tgeegggcaa 2640
     ggtgagcggg accateteat cactaagegg gatettgeee teagtgaagg agatatteae 2700
55
     actttgggtt gtggagttgc tcagtgcttg aagattgtct gccaagttgg gagattagac 2760
     agaggaaaga gtgcaatctt gtacgtaaag tcattactgt ggactgagac ttttatgaat 2820
     aaagaaaatc agaatcattc ctattctctg aagtcgtctg cttcatttaa tgtcatagag 2880
     tttccttata agaatcttcc aattgaggat atcaccaact ccacattggt taccactaat 2940
     gtcacctggg gcattcagcc agegcecatg cctgtgcctg tgtgggtgat cattttagca 3000 gttctagcag gattgttgct actggctgtt ttggtatttg taatgtacag gatgggcttt 3060
60
     tttaaacggg tccggccacc tcaagaagaa caagaaaggg agcagcttca acctcatgaa 3120
     aatggtgaag gaaactcaga aacttaa
```

WO 02/055693 PCT/EP02/00152 13/95

```
<210> 13
     <211> 402
     <212> DNA
     <213> Homo sapiens
     <300>
     <302> CaSm (cancer associated SM-like oncogene)
10
     <310> AF000177
     <400> 13
     atgaactata tgcctggcac cgccagcctc atcgaggaca ttgacaaaaa gcacttggtt 60
     ctgcttcgag atggaaggac acttataggc tttttaagaa gcattgatca atttgcaaac 120
15
     ttagtgctac atcagactgt ggagcgtatt catgtgggca aaaaatacgg tgatattcct 180
     cgagggattt ttgtggtcag aggagaaaat gtggtcctac taggagaaat agacttggaa 240
     aaggagagtg acacacccct ccagcaagta tccattgaag aaattctaga agaacaaagg 300
     gtggaacagc agaccaagct ggaagcagag aagttgaaag tgcaggccct gaaggaccga 360
     ggtctttcca ttcctcgagc agatactctt gatgagtact aa
20
     <210> 14
     <211> 1923
     <212> DNA
25
     <213> Homo sapiens
     <300>
     <302> c-myb
     <310> NM005375
30
     <400> 14
     atggcccgaa gaccccggca cagcatatat agcagtgacg aggatgatga ggactttgag 60
     atgtgtgacc atgactatga tgggctgctt cccaagtctg gaaagcgtca cttggggaaa 120
     acaaggtgga cccgggaaga ggatgaaaaa ctgaagaagc tggtggaaca gaatggaaca 180
35
     gatgactgga aagttattgc caattatete eegaategaa eagatgtgea gtgeeageae 240
     cgatggcaga aagtactaaa ccctgagctc atcaagggtc cttggaccaa agaagaagat 300
     cagagagtga tagagcttgt acagaaatac ggtccgaaac gttggtctgt tattgccaag 360
     cacttaaagg ggagaattgg aaaacaatgt agggagaggt ggcataacca cttgaatcca 420
     gaagttaaga aaacctcctg gacagaagag gaagacagaa ttatttacca ggcacacaag 480
40
     agactgggga acagatgggc agaaatcgca aagctactgc ctggacgaac tgataatgct 540
     atcaagaacc actggaattc tacaatgcgt cggaaggtcg aacaggaagg ttatctgcag 600
     gagtetteaa aageeageea geeageagtg geeacaaget tecagaagaa cagteatttg 660
     atgggttttg ctcaggctcc gcctacagct caactccctg ccactggcca gcccactgtt 720
     aacaacgact attcctatta ccacatttct gaagcacaaa atgtctccag tcatgttcca 780
45
     taccetgtag egetacatgt aaatatagte aatgteeete ageeagetge egeageeatt 840
     cagagacact ataatgatga agaccctgag aaggaaaagc gaataaagga attagaattg 900
     ctcctaatgt caaccgagaa tgagctaaaa ggacagcagg tgctaccaac acagaaccac 960
     acatgcaget accoegggtg gcacagcacc accattgceg accacaccag acctcatgga 1020
     gacagtgeac ctgtttcctg tttgggagaa caccactcca ctccatctct gccagcggat 1080
50
     cctggctccc tacctgaaga aagegccteg ccagcaaggt gcatgategt ccaccagggc 1140
     accattctgg ataatgttaa gaacctctta gaatttgcag aaacactcca atttatagat 1200
     tetttettaa acaetteeag taaccatgaa aacteagaet tggaaatgee ttetttaact 1260
     tccaccccc tcattggtca caaattgact gttacaacac catttcatag agaccagact 1320
     gtgaaaactc aaaaggaaaa tactgttttt agaaccccag ctatcaaaag gtcaatctta 1380
55
     gaaagctctc caagaactcc tacaccattc aaacatgcac ttgcagctca agaaattaaa 1440
     tacggtcccc tgaagatgct acctcagaca ccctctcatc tagtagaaga tctgcaggat 1500
     gtgatcaaac aggaatctga tgaatctgga tttgttgctg agtttcaaga aaatggacca 1560
     cccttactga agaaaatcaa acaagaggtg gaatctccaa ctgataaatc aggaaacttc 1620
     ttctgctcac accactggga aggggacagt ctgaataccc aactgttcac gcagacctcg 1680
60
     cctgtgcgag atgcaccgaa tattcttaca agctccgttt taatggcacc agcatcagaa 1740
     gatgaagaca atgttctcaa agcatttaca gtacctaaaa acaggtccct ggcgagcccc 1800
     ttgcagcctt gtagcagtac ctgggaacct gcatcctgtg gaaagatgga ggagcagatg 1860
```

```
acatetteca gteaageteg taaataegtg aatgeattet eageceggae getggteatg 1920
 5
     <210> 15
     <211> 544
     <212> DNA
     <213> Homo sapiens
10
     <300>
     <302> c-myc
     <310> J00120
     <400> 15
     gacccccgag ctgtgctgct cgcggccgcc accgccgggc cccggccgtc cctggctccc 60
     ctcctgcctc gagaagggca gggcttctca gaggcttggc gggaaaaaga acggagggag 120
     ggatcgcgct gagtataaaa gccggttttc ggggctttat ctaactcgct gtagtaattc 180
     cagcgagagg cagagggagc gagcgggcgg ccggctaggg tggaagagcc gggcgagcag 240
     agctgcgctg cgggcgtcct gggaagggag atccggagcg aatagggggc ttcgcctctg 300
20
     geccageest ecegetgate ecccageeag eggteegeaa ecettgeege atecaegaaa 360
     ctttgcccat agcagcggc gggcactttg cactggaact tacaacaccc gagcaaggac 420
     gcgactctcc cgacgcggg aggctattct gcccatttgg ggacacttcc ccgccgctgc 480
     caggaccege ttetetgaaa ggeteteett geagetgett agaegetgga tttttttegg 540
     gtag
25
     <210> 16
     <211> 618
     <212> DNA
30
     <213> Homo sapiens
     <300>
     <302> ephrin-Al
     <310> NM004428
35
     <400> 16
     atggagttcc tctgggcccc tctcttgggt ctgtgctgca gtctggccgc tgctgatcgc 60
     cacaccgtct tctggaacag ttcaaatccc aagttccgga atgaggacta caccatacat 120
     gtgcagctga atgactacgt ggacatcatc tgtccgcact atgaagatca ctctgtggca 180
40
     gacgctgcca tggagcagta catactgtac ctggtggagc atgaggagta ccagctgtgc 240
     cagccccagt ccaaggacca agtccgctgg cagtgcaacc ggcccagtgc caagcatggc 300 ccggagaagc tgtctgagaa gttccagcgc ttcacacctt tcaccctggg caaggagttc 360
     aaagaaggac acagctacta ctacatctcc aaacccatcc accagcatga agaccgctgc 420
     ttgaggttga aggtgactgt cagtggcaaa atcactcaca gtcctcaggc ccatgtcaat 480
45
     ccacaggaga agagacttgc agcagatgac ccagaggtgc gggttctaca tagcatcggt 540
     cacagtgctg ecceacgest citeceactt geetggactg tgetgetest tecaettetg 600
     ctgctgcaaa ccccgtga
50
     <210> 17
     <211> 642
     <212> DNA
     <213> Homo sapiens
55
     <400> 17
     atggcgcccg cgcagcgccc gctgctcccg ctgctgctcc tgctgttacc gctgccgccg 60
     ccgcccttcg cgcgcccga ggacgccgcc cgcgccaact cggaccgcta cgccgtctac 120
     tggaaccgca gcaaccccag gttccacgca ggcgcggggg acgacggcgg gggctacacg 180
     gtggaggtga gcatcaatga ctacctggac atctactgcc cgcactatgg ggcgccgctg 240
60
     ccgccggccg agcgcatgga gcactacgtg ctgtacatgg tcaacggcga gggccacgcc 300
     tcctgcgacc accgccagcg cggcttcaag cgctgggagt gcaaccggcc cgcggcgccc 360
     ggggggccgc tcaagttctc ggagaagttc cagctettca egecettete eetgggette 420
```

```
gagttccggc ccggccacga gtattactac atctctgcca cgcctcccaa tgctgtggac 480
     eggecetgee tgegaetgaa ggtgtaegtg eggeegaeca acgagaecet gtaegagget 540
     cctgagccca tcttcaccag caataactcg tgtagcagcc cgggcggctg ccgcctcttc 600
     ctcagcacca tccccgtgct ctggaccctc ctgggttcct ag
 5
     <210> 18
     <211> 717
     <212> DNA
10
     <213> Homo sapiens
     <300>
     <302> ephrin-A3
     <310> XM001787
15
     <400> 18
     atggeggegg etecgetget getgetgetg etgetegtge eegtgeeget getgeegetg 60
     ctggcccaag ggcccggagg ggcgctggga aaccggcatg cggtgtactg gaacagctcc 120
     aaccagcacc tgcggcgaga gggctacacc gtgcaggtga acgtgaacga ctatctggat 180
20
     atttactgcc cgcactacaa cagctcgggg gtggggccccg gggcgggacc ggggcccgga 240
     ggcggggcag agcagtacgt gctgtacatg gtgagccgca acggctaccg cacctgcaac 300
     gccagccagg gcttcaagcg ctgggagtgc aaccggccgc acgccccgca cagccccatc 360
     aagttotogg agaagttoca gogotacago goottototo tgggotacga gttocacgoc 420
     ggccacgagt actactacat ctccacgccc actcacaacc tgcactggaa gtgtctgagg 480
25
     atgaaggtgt tegtetgetg egeeteeaca tegcaeteeg gggagaagee ggteeecact 540
     ctccccagt tcaccatggg ccccaatatg aagatcaacg tgctggaaga ctttgaggga 600
     gagaaccete aggtgeecaa gettgagaag ageateageg ggaecageee caaacgggaa 660
     cacctgcccc tggccgtggg catcgccttc ttcctcatga cgttcttggc ctcctag
30
     <210> 19
     <211> 606
     <212> DNA
     <213> Homo sapiens
35
     <300>
     <302> ephrin-A3 <310> XM001784
40
     <400> 19
     atgoggotge tgeccetget geggactgte etetgggeeg egtteetegg eteccetetg 60
     egeggggget ccagectecg ccacgtagte tactggaact ccagtaaccc caggttgctt 120
     cgaggagacg ccgtggtgga gctgggcctc aacgattacc tagacattgt ctgccccac 180
     tacgaaggcc cagggcccc tgagggcccc gagacgtttg ctttgtacat ggtggactgg 240 ccaggctatg agtcctgcca ggcagagggc ccccgggcct acaagcgctg ggtgtgctcc 300
45
     etgecetttg gecatgttca atteteagag aagatteage getteacace etteteete 360
     ggctttgagt tcttacctgg agagacttac tactacatct cggtgcccac tccagagagt 420
     tetggeeagt gettgagget ceaggtgtet gtetgetgea aggagaggaa gtetgagtea 480
     geceatectg ttgggageee tggagagagt ggeacateag ggtggegagg gggggacaet 540
50
     eccageeece tetgtetett getattactg etgettetga ttettegtet tetgegaatt 600
     ctgtga
     <210> 20
55
     <211> 687
     <212> DNA
     <213> Homo sapiens
     <300>
60
     <302> ephrin-A5
     <310> NMO01962
```

5	caggacccgg cccagattcc ttctgccctc atggtgaact gaatgtaacc ttcactccct tctgcaatcc acaaatagct gtagaaaatt ggcgagaacg	gctccaaggc agaggggtga actatgagga ttgatggcta ggcctcactc tttctctagg cagataatgg gtatgaaaac cattagaacc	cgtcgccgac ctaccatatt ctccgtccca cagtgcctgc tccaaatgga atttgaattc aagaaggtcc tataggtgtt agcagatgac accaaggata	cgctacgctg gatgtctgta gaagataaga gaccacactt ccgctgaagt aggccaggcc	tctactggaa tcaatgacta ctgagcgcta ccaaagggtt tctctgaaaa gagaatattt tcaaagtctt ttttcgatgt agtcagccga	tgtgttcagc cagcagcaac cctggatgtt tgtcctctac caagagatgg attccagctc ctacatctcc tgtgagacca taacgacaaa gccatcccgc cctactgttc	120 180 240 300 360 420 480 540 600
15							
	<210> 21 <211> 2955						
	<212> DNA <213> Homo	canienc					
20		Dapions					
	acgttaatgg	acaccagaac	ggctactgca	gagctgggct	ggacggccaa	gatggaagaa tcctgcgtcc	120
25						ctaccaggtg caaccggcgg	
	ggggcccatc	gcatctacac	agagatgcgc	ttcactgtga	gagactgcag	cagcctccct	300
	attgccacca	agaagtcagc	cttctggtct	gaggccccct	acctcaaagt	tgactctgtc agacaccatt	420
30	gctgcagatg	agagcttctc	ccaggtggac	tttgggggaa	ggctgatgaa	ggtaaacaca tcaggattat	480
- -	ggagcctgta	tgtctcttct	ttctgtccgt	gtcttcttca	aaaagtgtcc	cagcattgtg tctggtgatt	600

<213> Homo sapiens

```
<400> 27
     atggggcccc cccattctgg gccgggggc gtgcgagtcg gggccctgct gctgctgggg 60
     gttttggggc tggtgtctgg gctcagcctg gagcctgtct actggaactc ggcgaataag 120
     aggttccagg cagagggtgg ttatgtgctg taccctcaga tcggggaccg gctagacctg 180
     ctctgcccc gggcccggcc tcctggccct cactcctctc ctaattatga gttctacaag 240
     ctgtacctgg tagggggtgc tcagggccgg cgctgtgagg cacccctgc cccaaacctc 300
     cttctcactt gtgatcgccc agacctggat ctccgcttca ccatcaagtt ccaggagtat 360
10
     agecetaate tetggggeea egagtteege tegeaceaeg attactaeat cattgeeaea 420
     teggatggga eeegggaggg eetggagage etgeagggag gtgtgtgeet aaceagagge 480
     atgaaggtgc ttctccgagt gggacaaagt ccccgaggag gggctgtccc ccgaaaacct 540
     gtgtctgaaa tgcccatgga aagagaccga ggggcagccc acagcctgga gcctgggaag 600
     gagaacctgc caggtgaccc caccagcaat gcaacctccc ggggtgctga aggccccctg 660
15
     ccccctccca gcatgcctgc agtggctggg gcagcagggg ggctggcgct gctcttgctg 720
     ggcgtggcag gggctggggg tgccatgtgt tggcggagac ggcgggccaa gccttcggag 780
     agtegecace etggteetgg eteetteggg aggggagggt etetgggeet ggggggtgga 840
     ggtgggatgg gacctcggga ggctgagcct ggggagctag ggatagctct gcggggtggc 900
     ggggctgcag atccccctt ctgcccccac tatgagaagg tgagtggtga ctatgggcat 960
20
     cctgtgtata tcgtgcagga tgggccccc cagagccctc caaacatcta ctacaaggta 1020
     <210> 28
25
     <211> 3399
     <212> DNA
     <213> Homo sapiens
30
     <302> telomerase reverse transcriptase
     <310> AF015950
     <400> 28
     atgeogegeg etcecegetg eegageegtg egeteeetge tgegeageea etacegegag 60
35
     gtgctgccgc tggccacgtt cgtgcggcgc ctggggcccc agggctggcg gctggtgcag 120
     cgcggggacc cggcggcttt ccgcgcgctg gtggcccagt gcctggtgtg cgtgccctgg 180
     gacgcacggc cgccccccgc cgccccctcc ttccgccagg tgtcctgcct gaaggagctg 240
     gtggcccgag tgctgcagag gctgtgcgag cgcggcgcga agaacgtgct ggccttcggc 300
     ttegegetge tggaegggge cegeggggge cececegagg cetteaceae cagegtgege 360
40
     agctacetge ccaacaeggt gaccgaegea etgeggggga geggggegtg ggggetgetg 420
     ctgcgccgcg tgggcgacga cgtgctggtt cacctgctgg cacgctgcgc gctctttgtg 480
     ctggtggctc ccagctgcgc ctaccaggtg tgcgggccgc cgctgtacca gctcggcgct 540
     gccactcagg cccggcccc gccacacgct agtggacccc gaaggcgtct gggatgcgaa 600
     cgggcctgga accatagcgt cagggaggcc ggggtccccc tgggcctgcc agccccgggt 660
     gcgaggaggc gcgggggcag tgccagccga agtctgccgt tgcccaagag gcccaggcgt 720
     ggegetgeee etgageegga geggaegeee gttgggeagg ggteetggge ceaeceggge 780
     aggacgcgtg gaccgagtga ccgtggtttc tgtgtggtgt cacctgccag acccgccgaa 840
     gaagccacct ctttggaggg tgcgctctct ggcacgcgcc actcccaccc atccgtgggc 900
     egecageace aegegggeee eccatecaca tegeggeeae caegteeetg ggacaegeet 960
50
     tgtcccccgg tgtacgccga gaccaagcac ttcctctact cctcaggcga caaggagcag 1020
     ctgcggccct ccttcctact cagetetetg aggeccagec tgactggcgc tcggaggetc 1080
     gtggagacca tetttetggg ttecaggeee tggatgeeag ggacteeeeg caggttgeee 1140
     cgcctgcccc agcgctactg gcaaatgcgg cccctgtttc tggagctgct tgggaaccac 1200
     gcgcagtgcc cctacggggt gctcctcaag acgcactgcc cgctgcgagc tgcggtcacc 1260
55
     ccagcagccg gtgtctgtgc ccgggagaag ccccagggct ctgtggcggc ccccgaggag 1320
     gaggacacag accccegtcg cctggtgcag ctgctccgcc agcacagcag cccctggcag 1380
     gtgtacggct tcgtgcgggc ctgcctgcgc cggctggtgc ccccaggcct ctggggctcc 1440
     aggcacaacg aacgccgctt cctcaggaac accaagaagt tcatctccct ggggaagcat 1500
     gccaagctct cgctgcagga gctgacgtgg aagatgagcg tgcgggactg cgcttggctg 1560
60
     cgcaggagcc caggggttgg ctgtgttccg gccgcagagc accgtctgcg tgaggagatc 1620
     ctggccaagt tectgcactg getgatgagt gtgtacgteg tegagetget caggtettte 1680
     ttttatgtca cggagaccac gtttcaaaag aacaggctct ttttctaccg gaagagtgtc 1740
```

```
tggagcaagt tgcaaagcat tggaatcaga cagcacttga agagggtgca gctgcgggag 1800
     ctgtcggaag cagaggtcag gcagcatcgg gaagccaggc ccgccctgct gacgtccaga 1860
     ctccgcttca tccccaagcc tgacgggctg cggccgattg tgaacatgga ctacgtcgtg 1920
     ggagccagaa cgttccgcag agaaaagagg gccgagcgtc tcacctcgag ggtgaaggca 1980
     ctgttcagcg tgctcaacta cgagcgggcg cggcgccccg gcctcctggg cgcctctgtg 2040
     ctgggcctgg acgatateca cagggcctgg cgcaccttcg tgctgcgtgt gcgggcccag 2100
     gacccgccgc ctgagctgta ctttgtcaag gtggatgtga cgggcgcgta cgacaccatc 2160
     ccccaggaca ggctcacgga ggtcatcgcc agcatcatca aaccccagaa cacgtactgc 2220
     gtgegteggt atgeegtggt ceagaaggee geecatggge acgteegeaa ggeetteaag 2280
10
     agccacgtct ctaccttgac agacctccag ccgtacatgc gacagttcgt ggctcacctg 2340
     caggagacca gcccgctgag ggatgccgtc gtcatcgagc agagctcctc cctgaatgag 2400
     gecageagtg geetettega egtetteeta egetteatgt gecaecaege egtgegeate 2460
     aggggcaagt cctacgtcca gtgccagggg atcccgcagg gctccatcct ctccacgctg 2520
     ctctgcagcc tgtgctacgg cgacatggag aacaagctgt ttgcgggggat tcggcgggac 2580
15
     aaaaccttcc tcaggaccct ggtccgaggt gtccctgagt atggctgcgt ggtgaacttg 2700
     cggaagacag tggtgaactt ccctgtagaa gacgaggccc tgggtggcac ggcttttgtt 2760
     cagatgccgg cccacggcct attcccctgg tgcggcctgc tgctggatac ccggaccctg 2820
     gaggtgeaga gegactaete cagetatgee eggaceteea teagageeag teteacette 2880 aacegegget teaaggetgg gaggaacatg egtegeaaac tetttggggt ettgeggetg 2940 aagtgteaca geetgtttet ggatttgeag gtgaacagee tecagaeggt gtgcaccaac 3000
20
     atctacaaga tectectget geaggegtae aggttteaeg catgtgtget geageteeca 3060
     tttcatcagc aagtttggaa gaaccccaca tttttcctgc gcgtcatctc tgacacggcc 3120
     tecetetget actecatect gaaagecaag aacgeaggga tgtegetggg ggecaaggge 3180
25
     gccgccggcc ctctgccctc cgaggccgtg cagtggctgt gccaccaagc attcctgctc 3240
     aagctgactc gacaccgtgt cacctacgtg ccactcctgg ggtcactcag gacagcccag 3300
     acgcagctga gtcggaagct cccggggacg acgctgactg ccctggaggc cgcagccaac 3360
     ccggcactgc cctcagactt caagaccatc ctggactga
30
     <210> 29
     <211> 567
     <212> DNA
     <213> Homo sapiens
35
     <300>
     <302> K-ras
     <310> M54968
40
     <400> 29
     atgactgaat ataaacttgt ggtagttgga gcttgtggcg taggcaagag tgccttgacg 60
     atacagetaa tteagaatea ttttgtggae gaatatgate caacaataga ggatteetae 120
     aggaagcaag tagtaattga tggagaaacc tgtctcttgg atattctcga cacagcaggt 180
     caagaggagt acagtgcaat gagggaccag tacatgagga ctggggaggg ctttctttgt 240
45
     gtatttgcca taaataatac taaatcattt gaagatattc accattatag agaacaaatt 300
     aaaagagtta aggactctga agatgtacct atggtcctag taggaaataa atgtgatttg 360
     ccttctagaa cagtagacac aaaacaggct caggacttag caagaagtta tggaattcct 420
     tttattgaaa catcagcaaa gacaagacag ggtgttgatg atgccttcta tacattagtt 480
     cgagaaattc gaaaacataa agaaaagatg agcaaagatg gtaaaaagaa gaaaaagaag 540
50
     tcaaagacaa agtgtgtaat tatgtaa
     <210> 30
     <211> 3840
55
     <212> DNA
     <213> Homo sapiens
     <300>
     <302> mdr-1
60
     <310> AF016535
     <400> 30
```

	atggatcttg	aaggggaccg	caatggagga	gcaaagaaga	agaacttttt	taaactgaac	60
	aataaaagtg	aaaaagataa	gaaggaaaag	aaaccaactg	tcagtgtatt	ttcaatgttt	120
			caagttgtat				
			catgatgctg				
5	aatgcaggaa	atttagaaga	tctgatgtca	aacatcacta	atagaagtga	tatcaatgat	300
			ggaggaagac				
			tgctgcttac				
	ggaagacaaa	tacacaaaat	tagaaaacag	ttttttcatg	ctataatgcg	acaggagata	480
	ggctggtttg	atgtgcacga	tgttggggag	cttaacaccc	gacttacaga	tgatgtctcc	540
10	aagattaatg	aaggaattgg	tgacaaaatt	ggaatgttct	ttcagtcaat	ggcaacattt	600
			atttacacgt				
			gtcagctgct				
	gataaagaac	tcttagcgta	tgcaaaagct	ggagcagtag	ctgaagaggt	cttggcagca	780
			tggaggacaa				
15			tgggataaag				
	gctgctttcc	tgctgatcta	tgcatcttat	gctctggcct	tctggtatgg	gaccaccttg	960
	gtcctctcag	gggaatattc	tattggacaa	gtactcactg	tattttctgt	attaattggg	1020
	gcttttagtg	ttggacaggc	atctccaagc	attgaagcat	ttgcaaatgc	aagaggagca	1080
	gcttatgaaa	tcttcaagat	aattgataat	aagccaagta	ttgacagcta	ttcgaagagt	1140
20			taagggaaat				
			gatcttgaag				
			cagtggctgt				
	.aggctctatg						
			aatcattggt				
25			tegetatgge				
			tgcctatgac				
			ggcccagttg				
			ccccaagatc				
			ggttcaggtg				
30			tttgtctaca				
			gaaaggaaat				
			gcagacagca				
			tgatgccttg				
2 5			tcgtaggagt				
35	cttagtacca	aagaggetet	ggatgaaagt	atacctccag	tttccttttg	gaggattatg	2100
			gccttatttt				
			tgcaataata				
			acgacagaat				
40			tacatttttc				
40			ccgatacatg				
			aaacaccact				
			tataggttcc				
			tatatccttc tgcaatagca				
45			agaactagaa				
43			ttctttgact				
			cagaaactct				
			gatgtatttt				
			catgagettt				
50							
50			ggggcaagtc catcatgatc				
	addatattag	cageecacae	gaacacattg	accyaaaaaa	tesentttee	tgacagetat	2120
			ggacatccca				
55			ggtgggcagc ccccttggca				
J J			gctccgagca				
	ctatttaact	acaccattca	tgagaacatt	acctatages	acaacaccc	agtagtata	3420
			agcaaaggag				
			agtaggagac				
60			tgcccttgtt				
-			agaaagtgaa				
			tgtgattgct				
	3.3.433	J	5-5550				

ttaatagtgg tgtttcagaa tggcagagtc aaggagcatg gcacgcatca gcagctgctg 3780 gcacagaaag gcatctattt ttcaatggtc agtgtccagg ctggaacaaa gcgccagtga 3840

```
5
     <210> 31
     <211> 1318
     <212> DNA
     <213> Homo sapiens
10
     <300>
     <302> UPAR (urokinase-type plasminogen activator receptor)
     <310> XM009232
     <400> 31
15
     atgggtcacc cgccgctgct gccgctgctg ctgctgctcc acacctgcgt cccagcctct 60
     tggggcctgc ggtgcatgca gtgtaagacc aacggggatt gccgtgtgga agagtgcgcc 120
     ctgggacagg acctctgcag gaccacgatc gtgcgcttgt gggaagaagg agaagagctg 180
     gagetggtgg agaaaagetg tacccactca gagaagacca acaggaccct gagetategg 240
     actggcttga agatcaccag ccttaccgag gttgtgtgtg ggttagactt gtgcaaccag 300
20
     ggcaactctg gccgggctgt cacctattcc cgaagccgtt acctcgaatg catttcctgt 360
     ggctcatcag acatgagctg tgagaggggc cggcaccaga gcctgcagtg ccgcagccct 420
     gaagaacagt gcctggatgt ggtgacccac tggatccagg aaggtgaaga agggcgtcca 480
     aaggatgacc gecaceteeg tggetgtgge tacetteeeg getgeeeggg etceaatggt 540
     ttccacaaca acgacacctt ccacttcctg aaatgctgca acaccaccaa atgcaacgag 600
25
    ggcccaatcc tggagcttga aaatctgccg cagaatggcc gccagtgtta cagctgcaag 660
     gggaacagca cccatggatg ctcctctgaa gagactttcc tcattgactg ccgaggcccc 720
     atgaatcaat gtctggtagc caccggcact cacgaaccga aaaaccaaag ctatatggta 780
     agaggetgtg caacegeete aatgtgeeaa catgeeeace tgggtgaege etteageatg 840
     aaccacattg atgtctcctg ctgtactaaa agtggctgta accacccaga cctggatgtc 900
30
     cagtaccgca gtggggctgc tcctcagcct ggccctgccc atctcagcct caccatcacc 960
     ctgctaatga ctgccagact gtggggaggc actctcctct ggacctaaac ctgaaatccc 1020
     cetetetgee etggetggat cegggggace cetttgeeet teeetegget cecageeeta 1080
     cagacttgct gtgtgacctc aggccagtgt gccgacctct ctgggcctca gttttcccag 1140
     ctatgaaaac agctatctca caaagttgtg tgaagcagaa gagaaaagct ggaggaaggc 1200
     cgtgggccaa tgggagagct cttgttatta ttaatattgt tgccgctgtt gtgttgttgt 1260
     tattaattaa tattcatatt atttattta tacttacata aagattttgt accagtgg 1318
     <210> 32
40
     <211> 636
     <212> DNA
     <213> Homo sapiens
     <300>
45
     <302> Bak
     <310> U16811
     <400> 32
     50
     tetgettetg aggageaggt ageceaggae acagaggagg tttteegeag etaegttttt 120
     taccgccatc agcaggaaca ggaggctgaa ggggtggctg cccctgccga cccagagatg 180
     gtcaccttac ctctgcaacc tagcagcacc atggggcagg tgggacggca gctcgccatc 240
     ateggggacg acatcaaceg acgetatgae teagagttee agaccatgtt geageacetg 300
     cageccaegg cagagaatge ctatgagtae tteaccaaga ttgecaecag cetgtttgag 360
55
     agtggcatca attggggccg tgtggtggct cttctgggct tcggctaccg tctggcccta 420
     cacgictace ageatggeet gaetggeite etaggeeagg tgaecegett egtggtegae 480
     ttcatgctgc atcactgcat tgcccggtgg attgcacaga ggggtggctg ggtggcagcc 540
     ctgaacttgg gcaatggtcc catcctgaac gtgctggtgg ttctgggtgt ggttctgttg 600
     ggccagtttg tggtacgaag attcttcaaa tcatga
60
```

```
<211> 579
      <212> DNA
      <213> Homo sapiens
 5
     <300>
      <302> Bax alpha
      <310> L22473
      <400> 33
10
      atggacgggt ccggggagca gcccagaggc ggggggccca ccagctctga gcagatcatg 60
      aagacagggg cccttttgct tcagggtttc atccaggatc gagcagggcg aatggggggg 120
      gaggcacccg agctggccct ggacccggtg cctcaggatg cgtccaccaa gaagctgagc 180
      gagtgtctca agcgcatcgg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
      gccgccgtgg acacagactc cccccgagag gtctttttcc gagtggcagc tgacatgttt 300 tctgacggca acttcaactg gggccgggtt gtcgcccttt tctactttgc cagcaaactg 360 gtgctcaagg ccctgtgcac caaggtgccg gaactgatca gaaccatcat gggctggaca 420
15
      ttggacttcc tccgggagcg gctgttgggc tggatccaag accagggtgg ttgggacggc 480.
      ctcctctcct actttgggac gcccacgtgg cagaccgtga ccatctttgt ggcgggagtg 540
      ctcaccgcct cgctcaccat ctggaagaag atgggctga
20
      <210> 34
      <211> 657
      <212> DNA
25
      <213> Homo sapiens
      <300>
      <302> Bax beta
      <310> L22474
30
      <400> 34
      atggacgggt ccggggagca gcccagaggc ggggggccca ccagctctga gcagatcatg 60
```

```
gaggatgctg aggtccagct ctccttccag ctacagatca atgtccctgt ccgagtgctg 1260
     gagetaagtg agagecacce tgacagtggg gaacagacag teegetgteg tggeegggge 1320 atgeeceage egaacateat etggtetgee tgeagagace teaaaaggtg teeaegtgag 1380
     ctgccgccca cgctgctggg gaacagttcc gaagaggaga gccagctgga gactaacgtg 1440
     acgtactggg aggaggagca ggagtttgag gtggtgagca cactgcgtct gcagcacgtg 1500
     gateggeeac tgteggtgeg etgeaegetg egeaaegetg tgggeeagga caegeaggag 1560
     gtcatcgtgg tgccacactc cttgcccttt aaggtggtgg tgatctcagc catcctggcc 1620
     ctggtggtgc tcaccatcat ctcccttatc atcctcatca tgctttggca gaagaagcca 1680
     cgttacgaga tccgatggaa ggtgattgag tctgtgagct ctgacggcca tgagtacatc 1740
     tacgtggacc ccatgcagct gccctatgac tccacgtggg agctgccgcg ggaccagctt 1800
10
     gtgctgggac gcaccctcgg ctctggggcc tttgggcagg tggtggaggc cacggttcat 1860
     ggcctgagcc attttcaagc cccaatgaaa gtggccgtca aaaatgctta a
15
     <210> 46
     <211> 1176
     <212> DNA
     <213> Homo sapiens
20
     <300>
     <302> TGFbetal
     <310> NM000660
     <400> 46
25
     atgccgccct ccgggctgcg gctgctgccg ctgctgctac cgctgctgtg gctactggtg 60
     ctgacgcctg gcccgccggc cgcgggacta tccacctgca agactatcga catggagctg 120
     gtgaagcgga agcgcatcga ggccatccgc ggccagatcc tgtccaagct gcggctcgcc 180
     agccccccga gccaggggga ggtgccgccc ggcccgctgc ccgaggccgt gctcgccctg 240
     tacaacagca cccgcgaccg ggtggccggg gagagtgcag aaccggagcc cgagcctgag 300
30
     gccgactact acgccaagga ggtcacccgc gtgctaatgg tggaaaccca caacgaaatc 360
     tatgacaagt tcaagcagag tacacacagc atatatatgt tcttcaacac atcagagetc 420
     cgagaagcgg tacctgaacc cgtgttgctc tcccgggcag agctgcgtct gctgaggagg 480
     ctcaagttaa aagtggagca gcacgtggag ctgtaccaga aatacagcaa caattcctgg 540
     cgatacctca gcaaccggct gctggcaccc agcgactcgc cagagtggtt atcttttgat 600
35
     gtcaccggag ttgtgcggca gtggttgagc cgtggagggg aaattgaggg ctttcgcctt 660
     agcgcccact gctcctgtga cagcagggat aacacactgc aagtggacat caacgggttc 720
     actaccggcc gccgaggtga cctggccacc attcatggca tgaaccggcc tttcctgctt 780
     ctcatggcca ccccgctgga gagggcccag catctgcaaa gctcccggca ccgccgagcc 840
     ctggacacca actattgctt cagctccacg gagaagaact gctgcgtgcg gcagctgtac 900
40
     attgacttcc gcaaggacct cggctggaag tggatccacg agcccaaggg ctaccatgcc 960
     aacttetgee tegggeeetg eecetaeatt tggageetgg acaegeagta cageaaggte 1020
     etggccetgt acaaccagca taacceggge gccteggegg egcegtgetg egtgcegeag 1080
     gcgctggagc cgctgcccat cgtgtactac gtgggccgca agcccaaggt ggagcagctg 1140
     tccaacatga tcgtgcgctc ctgcaagtgc agctga
                                                                          1176
45
     <210> 47
     <211> 1245
     <212> DNA
50
     <213> Homo sapiens
     <300>
     <302> TGFbeta2
     <310> NM003238
55
     <400> 47
     atgcactact gtgtgctgag cgcttttctg atcctgcatc tggtcacggt cgcgctcagc 60
     ctgtctacct gcagcacact cgatatggac cagttcatgc gcaagaggat cgaggcgatc 120
     cgcgggcaga tcctgagcaa gctgaagctc accagtcccc cagaagacta tcctgagccc 180
60
     gaggaagtcc ccccggaggt gatttccatc tacaacagca ccagggactt gctccaggag 240
     aaggegagee ggagggegge egeetgegag egegagagga gegaegaaga gtaetaegee 300
     aaggaggttt acaaaataga catgccgccc ttcttcccct ccgaaaatgc catcccgccc 360
```

```
actitictaca gaccctacti cagaattgti cgatttgacg tctcagcaat ggagaagaat 420
     gettecaatt tggtgaaage agagtteaga gtetttegtt tgeagaacee aaaageeaga 480
     gtgcctgaac aacggattga gctatatcag attctcaagt ccaaagattt aacatctcca 540
     acccageget acategacag caaagttgtg aaaacaagag cagaaggega atggetetee 600
     ttcgatgtaa ctgatgctgt tcatgaatgg cttcaccata aagacaggaa cctgggattt 660
     aaaataagct tacactgtcc ctgctgcact tttgtaccat ctaataatta catcatccca 720
     aataaaagtg aagaactaga agcaagattt gcaggtattg atggcacctc cacatatacc 780
     agtggtgatc agaaaactat aaagtccact aggaaaaaaa acagtgggaa gaccccacat 840
     ctcctgctaa tgttattgcc ctcctacaga cttgagtcac aacagaccaa ccggcgqaaq 900
10
     aagcgtgctt tggatgcggc ctattgcttt agaaatgtgc aggataattg ctgcctacgt 960
     ccactttaca ttgatttcaa gagggatcta gggtggaaat ggatacacga acccaaaggg 1020
     tacaatgcca acttetgtgc tggagcatgc ccgtatttat ggagttcaga cactcagcac 1080
     agcagggtcc tgagcttata taataccata aatccagaag catctgcttc tccttgctgc 1140
     gtgtcccaag atttagaacc tctaaccatt ctctactaca ttggcaaaac acccaagatt 1200
15
     gaacagcttt ctaatatgat tgtaaagtct tgcaaatgca gctaa
     <210> 48
     <211> 1239
20
     <212> DNA
     <213> Homo sapiens
     <300>
     <302> TGFbeta3
25
     <310> XM007417
     <400> 48
     atgaagatgc acttgcaaag ggctctggtg gtcctggccc tgctgaactt tgccacggtc 60
     agcctctctc tgtccacttg caccaccttg gacttcggcc acatcaagaa gaagagggtg 120
30
     gaagccatta ggggacagat cttgagcaag ctcaggctca ccagcccccc tgagccaacg 180
     gtgatgaccc acgtcccta tcaggtcctg gccctttaca acagcacccg ggagctgctg 240 gaggagatgc atggggagag ggaggaaggc tgcacccagg aaaacaccga gtcggaatac 300
     tatgccaaag aaatccataa attegacatg atccaggggc tggcggagca caacgaactg 360
     gctgtctgcc ctaaaggaat tacctccaag gttttccgct tcaatgtgtc ctcagtggag 420
35
     aaaaatagaa ccaacctatt ccgagcagaa ttccgggtct tgcgggtgcc caaccccagc 480
     tctaagcgga atgagcagag gatcgagctc ttccagatcc ttcggccaga tgagcacatt 540 gccaaacagc gctatatcgg tggcaagaat ctgcccacac ggggcactgc cgagtggctg 600 tcctttgatg tcactgacac tgtgcgtgag tggctgttga gaagagagtc caacttaggt 660
     ctagaaatca gcattcactg tccatgtcac acctttcagc ccaatggaga tatcctggaa 720
40
     aacattcacg aggtgatgga aatcaaattc aaaggcgtgg acaatgagga tgaccatggc 780
     cgtggagatc tggggcgcct caagaagcag aaggatcacc acaaccctca tctaatcctc 840
     atgatgattc ccccacaccg gctcgacaac ccgggccagg ggggtcagag gaagaagcgg 900
     getttggaca ccaattactg ettccgcaac ttggaggaga actgetgtgt gegeeecete 960
     tacattgact teegacagga tetgggetgg aagtgggtee atgaacetaa gggetactat 1020
45
     gccaacttct gctcaggccc ttgcccatac ctccgcagtg cagacacaac ccacagcacg 1080
     gtgctgggac tgtacaacac tctgaaccct gaagcatctg cctcgccttg ctgcgtgccc 1140
     caggacetgg ageceetgae cateetgtae tatgttggga ggaceeccaa agtggageag 1200
     ctctccaaca tggtggtgaa gtcttgtaaa tgtagctga
50
     <210> 49
     <211> 1704
     <212> DNA
     <213> Homo sapiens
55
     <300>
     <302> TGFbetaR2
     <310> XM003094
60
     <400> 49
     atgggtcggg ggctgctcag gggcctgtgg ccgctgcaca tcgtcctgtg gacgcgtatc 60
     gccagcacga tcccaccgca cgttcagaag tcggttaata acgacatgat agtcactgac 120
```

```
aacaacggtg cagtcaagtt tccacaactg tgtaaatttt gtgatgtgag attttccacc 180
     tgtgacaacc agaaatcctg catgagcaac tgcagcatca cctccatctg tgagaagcca 240
     caggaagtet gtgtggetgt atggagaaag aatgacgaga acataacact agagacagtt 300
     tgccatgacc ccaagetece ctaccatgac tttattetgg aagatgetge ttetecaaag 360
     tgcattatga aggaaaaaaa aaagcctggt gagactttct tcatgtgttc ctgtagctct 420
     gatgagtgca atgacaacat catcttctca gaagaatata acaccagcaa tcctgacttg 480
     ttgctagtca tatttcaagt gacaggcatc agcctcctgc caccactggg agttgccata 540
     tetgteatea teatetteta etgetaeege gttaaeegge ageagaaget gagtteaaee 600
   tgggaaaccg gcaagacgcg gaagctcatg gagttcagcg agcactgtgc catcatcctg 660 gaagatgacc gctctgacat cagctccacg tgtgccaaca acatcaacca caacacagag 720
10
     ctgctgccca ttgagctgga caccctggtg gggaaaggtc gctttgctga ggtctataag 780
     gccaagctga agcagaacac ttcagagcag tttgagacag tggcagtcaa gatctttccc 840
     tatgaggagt atgcctcttg gaagacagag aaggacatct tctcagacat caatctgaag 900
     catgagaaca tactccagtt cctgacggct gaggagcgga agacggagtt ggggaaacaa 960
15
     tactggctga tcaccgcctt ccacgccaag ggcaacctac aggagtacct gacgcggcat 1020
     gtcatcagct gggaggacct gcgcaagctg ggcagctccc tcgcccgggg gattgctcac 1080
     ctccacagtg atcacactcc atgtgggagg cccaagatgc ccatcgtgca cagggacctc 1140
     aagageteea atateetegt gaagaaegae etaacetget geetgtgtga etttgggett 1200
     tecetgegte tggaccetae tetgtetgtg gatgacetgg etaacagtgg geaggtggga 1260
20
     actgcaagat acatggctcc agaagtccta gaatccagga tgaattttgga gaatgttgag 1320
     teetteaage agacegatgt etacteeatg getetggtge tetgggaaat gacatetege 1380 tgtaatgeag tgggagaagt aaaagattat gageeteeat ttggtteeaa ggtgegggag 1440
     cacccctgtg tcgaaagcat gaaggacaac gtgttgagag atcgagggcg accagaaatt 1500
     cccagcttct ggctcaacca ccagggcatc cagatggtgt gtgagacgtt gactgagtgc 1560
25
     tgggaccacg acccagaggc ccgtctcaca gcccagtgtg tggcagaacg cttcagtgag 1620
     ctggagcatc tggacaggct ctcggggagg agctgctcgg aggagaagat tcctgaagac 1680
     ggctccctaa acactaccaa atag
30
     <210> 50
     <211> 609
     <212> DNA
     <213> Homo sapiens
35
     <300>
     <302> TGFbeta3
     <310> XM001924
     <400> 50
40
     atgtctcatt acaccattat tgagaatatt tgtcctaaag atgaatctgt gaaattctac 60
     agtcccaaga gagtgcactt tcctatcccg caagctgaca tggataagaa gcgattcagc 120
     tttgtcttca agcctgtctt caacacctca ctgctctttc tacagtgtga gctgacgctg 180
     tgtacgaaga tggagaagca cccccagaag ttgcctaagt gtgtgcctcc tgacgaagcc 240
     tgcacctcgc tggacgcctc gataatctgg gccatgatgc agaataagaa gacgttcact 300
45
     aagccccttg ctgtgatcca ccatgaaqca gaatctaaag aaaaaggtcc aagcatgaag 360
     gaaccaaatc caatttctcc accaattttc catggtctgg acaccctaac cgtgatgggc 420
     attgcgtttg cagcctttgt gatcggagca ctcctgacgg gggccttgtg gtacatctat 480
     totcacacag gggagacagc aggaaggcag caagtcccca cotcoccgcc agcotcggaa 540
     aacagcagtg ctgcccacag catcggcagc acgcagagca cgccttgctc cagcagcagc 600
50
     acggcctag
     <210> 51
     <211> 3633
55
     <212> DNA
     <213> Homo sapiens
     <300>
     <302> EGFR
60
     <310> X00588
     <400> 51
```

atgcgaccct ccgggacggc cggggcagcg ctcctggcgc tgctggctgc gctctgcccg 60 gcgagtcggg ctctggagga aaagaaagtt tgccaaggca cgagtaacaa gctcacgcag 120 ttgggcactt ttgaagatca ttttctcagc ctccagagga tgttcaataa ctgtgaggtg 180 gtccttggga atttggaaat tacctatgtg cagaggaatt atgatctttc cttcttaaag 240 5 accatccagg aggtggctgg ttatgtcctc attgccctca acacagtgga gcgaattcct 300 ttggaaaacc tgcagatcat cagaggaaat atgtactacg aaaattccta tgccttagca 360 gtcttatcta actatgatgc aaataaaacc ggactgaagg agctgcccat gagaaattta 420 caggaaatcc tgcatggcgc cgtgcggttc agcaacaacc ctgccctgtg caacgtggag 480 agcatccagt ggcgggacat agtcagcagt gactttctca gcaacatgtc gatggacttc 540 10 cagaaccacc tgggcagctg ccaaaagtgt gatccaagct gtcccaatgg gagctgctgg 600 ggtgcaggag aggagaactg ccagaaactg accaaaatca tctgtgccca gcagtgctcc 660 gggcgctgcc gtggcaagtc ccccagtgac tgctgccaca accagtgtgc tgcaggctgc 720 acaggecece gggagagega etgeetggte tgeegeaaat teegagaega ageeaegtge 780 aaggacacct gcccccact catgctctac aaccccacca cgtaccagat ggatgtgaac 840 15 cccgagggca aatacagctt tggtgccacc tgcgtgaaga agtgtccccg taattatgtg 900 gtgacagate acggetegtg egicegagee tgtggggeeg acagetatga gatggaggaa 960 gacggcgtcc gcaagtgtaa gaagtgcgaa gggccttgcc gcaaagtgtg taacggaata 1020 ggtattggtg aatttaaaga ctcactctcc ataaatgcta cgaatattaa acacttcaaa 1080 aactgcacct ccatcagtgg cgatctccac atcctgccgg tggcatttag gggtgactcc 1140 20 ttcacacata ctcctcctct ggatccacag gaactggata ttctgaaaac cgtaaaggaa 1200 atcacagggt ttttgctgat tcaggcttgg cctgaaaaca ggacggacct ccatgccttt 1260 gagaacctag aaatcatacg cggcaggacc aagcaacatg gtcagttttc tcttgcagtc 1320 gtcagcctga acataacatc cttgggatta cgctccctca aggagataag tgatggagat 1380 gtgataattt caggaaacaa aaatttgtgc tatgcaaata caataaactg gaaaaaactg 1440 25 tttgggacct ccggtcagaa aaccaaaatt ataagcaaca gaggtgaaaa cagctgcaag 1500 gccacaggcc aggtctgcca tgccttgtgc tcccccgagg gctgctgggg cccggagccc 1560 agggactgcg tctcttgccg gaatgtcagc cgaggcaggg aatgcgtgga caagtgcaag 1620 cttctggagg gtgagccaag ggagtttgtg gagaactctg agtgcataca gtgccaccca 1680 gagtgcctgc ctcaggccat gaacatcacc tgcacaggac ggggaccaga caactgtatc 1740 30 cagtgtgccc actacattga cggccccac tgcgtcaaga cctgcccggc aggagtcatg 1800 ggagaaaaca acaccctggt ctggaagtac gcagacgccg gccatgtgtg ccacctgtgc 1860 catccaaact gcacctacgg atgcactggg ccaggtcttg aaggctgtcc aacgaatggg 1920 cctaagatcc cgtccatcgc cactgggatg gtgggggccc tcctcttgct gctggtggtg 1980 gccctgggga tcggcctctt catgcgaagg cgccacatcg ttcggaagcg cacgctgcgg 2040 35 aggetgetge aggagaggga gettgtggag cetettaeae ceagtggaga ageteecaae 2100 caagetetet tgaggatett gaaggaaact gaattcaaaa agatcaaagt getgggetee 2160 ggtgcgttcg gcacggtgta taagggactc tggatcccag aaggtgagaa agttaaaatt 2220 cccgtcgcta tcaaggaatt aagagaagca acatctccga aagccaacaa ggaaatcctc 2280 gatgaagcet acgtgatgge cagcgtggac aacccccacg tgtgccgcct gctgggcatc 2340 40 tgcctcacct ccaccgtgca actcatcacg cagctcatgc ccttcggctg cctcctggac 2400 tatgtccggg aacacaaaga caatattggc tcccagtacc tgctcaactg gtgtgtgcag 2460 atcgcaaagg gcatgaacta cttggaggac cgtcgcttgg tgcaccgcga cctggcagcc 2520 aggaacgtac tggtgaaaac accgcagcat gtcaagatca cagattttgg gctggccaaa 2580 ctgctgggtg cggaagagaa agaataccat gcagaaggag gcaaagtgcc tatcaagtgg 2640 atggcattgg aatcaatttt acacagaatc tatacccacc agagtgatgt ctggagctac 2700 45 ggggtgaccg tttgggagtt gatgaccttt ggatccaagc catatgacgg aatccctgcc 2760 agggagatet cetecateet ggagaaagga gaacgeetee etcageeace catatgtace 2820 atcgatgtct acatgatcat ggtcaagtgc tggatgatag acgcagatag tcgcccaaag 2880 ttccgtgagt tgatcatcga attctccaaa atggcccgag acccccagcg ctaccttgtc 2940 50 attcaggggg atgaaagaat gcatttgcca agtcctacag actccaactt ctaccgtgcc 3000 ctgatggatg aagaagacat ggacgacgtg gtggatgccg acgagtacct catcccacag 3060 cagggettet teageageee etecaegtea eggaeteece teetgagete tetgagtgea 3120 accagcaaca attccaccgt ggcttgcatt gatagaaatg ggctgcaaag ctgtcccatc 3180 aaggaagaca gettettgea gegatacage teagaceeea caggegeett gaetgaggae 3240 55 agcatagacg acacetteet eccagtgeet gaatacataa accagteegt teccaaaagg 3300 cccgctggct ctgtgcagaa tcctgtctat cacaatcagc ctctgaaccc cgcgcccagc 3360 agagacccac actaccagga cccccacagc actgcagtgg gcaaccccga gtatctcaac 3420 actgtccagc ccacctgtgt caacagcaca ttcgacagcc ctgcccactg ggcccagaaa 3480 ggcagccacc aaattagcct ggacaaccct gactaccagc aggacttctt tcccaaggaa 3540 60 gccaagccaa atggcatctt taagggctcc acagctgaaa atgcagaata cctaagggtc 3600 gcgccacaaa gcagtgaatt tattggagca tga

```
<210> 52
     <211> 3768
     <212> DNA
 5
     <213> Homo sapiens
     <300>
     <302> ERBB2
     <310> NM004448
10
     <400> 52
     atggagetgg eggeettgtg eegetggggg etecteeteg eeetettgee eeeeggagee 60
     gcgagcaccc aagtgtgcac cggcacagac atgaagctgc ggctccctgc cagtcccgag 120
     acceaectgg acatgeteeg ceaectetac cagggetgee aggtggtgca gggaaacetg 180
15
     gaactcacct acctgcccac caatgccagc ctgtccttcc tgcaggatat ccaggaggtg 240
     cagggctacg tgctcatcgc tcacaaccaa gtgaggcagg tcccactgca gaggctgcgg 300
     attgtgcgag gcacccagct ctttgaggac aactatgccc tggccgtgct agacaatgga 360
     gaccegetga acaataccac ccetgtcaca ggggcctccc caggaggcct gegggagetg 420
     cagettegaa geeteacaga gatettgaaa ggaggggtet tgatecageg gaacceccag 480
20
     ctctgctacc aggacacgat tttgtggaag gacatcttcc acaagaacaa ccagctggct 540
     ctcacactga tagacaccaa ccgctctcgg gcctgccacc cctgttctcc gatgtgtaag 600
     ggeteceget getggggaga gagttetgag gattgteaga geetgaegeg caetgtetgt 660
     geoggtgget gtgcccgctg caaggggcca ctgcccactg actgctgcca tgagcagtgt 720
     gctgccggct gcacgggccc caagcactct gactgcctgg cctgcctcca cttcaaccac 780
25
     agtggcatct gtgagctgca ctgcccagcc ctggtcacct acaacacaga cacgtttgag 840
     tccatgccca atcccgaggg ccggtataca ttcggcgcca gctgtgtgac tgcctgtccc 900
     tacaactacc tttctacgga cgtgggatcc tgcaccctcg tctgccccct gcacaaccaa 960
     gaggtgacag cagaggatgg aacacagcgg tgtgagaagt gcagcaagcc ctgtgcccga 1020
     gtgtgctatg gtctgggcat ggagcacttg cgagaggtga gggcagttac cagtgccaat 1080
30
     atccaggagt ttgctggctg caagaagatc tttgggagcc tggcatttct gccggagagc 1140
     tttgatgggg acccagcctc caacactgcc ccgctccagc cagagcagct ccaagtgttt 1200
     gagactotgg aagagatoac aggttaccta tacatotoag catggcogga cagootgoot 1260
```

5	aagcccagta ccctcacaga acctccaacc cccgacaccc	actgcaccaa gacccacctt aggagtacct ggagctctac	cgagctgtac caagcagctg ggacctgtcc gtgctcctca	aagctgctga atgatgatgc gtggaagacc atgcccctgg ggggaggatt ccagcccagc	gggactgctg tggaccgcat accagtactc ccgtcttctc	gcatgcagtg cgtggccttg ccccagcttt tcatgagccg	2220 2280 2340 2400
10	<210> 72 <211> 2409 <212> DNA <213> Homo	sapiens					
15	<300> <302> FGFR <310> XM003						
20	tccctggagg	cctctgagga	agtggagctt	ctgctgagtg gagccctgcc cagcctgtgc	tggctcccag	cctggagcag	120
25	ggctggaggg tgcctggcac ttgacctcca	gccgcctaga gaggctccat gcaacgatga	gattgccagc gatcgtcctg tgaggacccc	agtcgcctgg ttcctacctg cagaatctca aagtcccata cacccccagc	aggatgctgg ccttgattac gggacctctc	ccgctacctc aggtgactcc gaataggcac	300 360 420
30	gcagtacctg accatccgct cggctgcgcc acatacacct	cggggaacac ggcttaagga atcagcactg gcctggtaga	cgtcaagttc tggacaggcc gagtctcgtg gaacgctgtg	cgctgtccag tttcatgggg atggagagcg ggcagcatcc ctgcaggccg	ctgcaggcaa agaaccgcat tggtgccctc gttataacta	ccccacgccc tggaggcatt ggaccgcggc cctgctagat	540 600 660 720
35	gccgtggtgg atccagtggc tatgtgcaag cggaacgtgt	gcagcgacgt tgaagcacat tcctaaagac cagccgagga	ggagctgctg cgtcatcaac tgcagacatc cgcaggcgag	tgcaaggtgt ggcagcagct aatagctcag tacacctgcc ctgccagagg	acagcgatgc tcggagccga aggtggaggt tcgcaggcaa	ccagcccac cggtttcccc cctgtacctg ttccatcggc	840 900 960 1020
40	gcagegeeeg gctgtgetee egeeegeeeg gagteagget	aggccaggta tgctgctggc ccactgtgca cttccggcaa	tacggacatc caggctgtat gaagctctcc gtcaagctca	atcctgtacg cgagggcagg cgcttccctc tccctggtac	cgtcgggctc cgctccacgg tggcccgaca gaggcgtgcg	cctggccttg ccggcacccc gttctccctg tctctcctcc	1140 1200 1260 1320
45	gagttccccc gtagtacgtg gccgtcaaga atggaggtga	gggacaggct cagaggcctt tgctcaaaga tgaagctgat	ggtgcttggg tggcatggac caacgcctct cggccgacac	agtctagatc aagcccctag cctgcccggc gacaaggacc aagaacatca	gcgagggctg ctgaccaagc tggccgacct tcaacctgct	ctttggccag cagcactgtg ggtctcggag tggtgtctgc	1440 1500 1560 1620
50	ttcctgcggg gaggggccgc cagtatctgg actgaggaca	cccggcgccc tctccttccc agtcccggaa atgtgatgaa	cccaggcccc agtcctggtc gtgtatccac gattgctgac	gagtgcgccg gacctcagcc tcctgcgcct cgggacctgg tttgggctgg	ccgacggtcc accaggtggc ctgcccgcaa cccgcggcgt	tcggagcagt ccgaggcatg tgtgctggtg ccaccacatt	1740 1800 1860 1920
55	gactactata ttgtttgacc gagatcttca ctgctgcggg	agaaaaccag gggtgtacac ccctcggggg agggacatcg	caacggccgc acaccagagt ctccccgtat gatggaccga	ctgcctgtga gacgtgtggt	agtggatggc cttttgggat cggtggagga gccccccaga	gcccgaggcc cctgctatgg gctgttctcg gctgtacggg	1980 2040 2100 2160
60	gaggcgctgg	acaaggtcct attccccctc	gctggccgtc tggtggggac	tctgaggagt gccagcagca	acctcgacct cctgctcctc	ccgcctgacc cagcgattct	2280 2340

PCT/EP02/00152

```
<210> 73
<211> 1695
     <212> DNA
     <213> Homo sapiens
 5
     <300>
     <302> MT2MMP
     <310> D86331
10
     <400> 73
     atgaagcggc cccgctgtgg ggtgccagac cagttcgggg tacgagtgaa agccaacctg 60
     cggcggcgtc ggaagcgcta cgccctcacc gggaggaagt ggaacaacca ccatctgacc 120
     tttagcatcc agaactacac ggagaagttg ggctggtacc actcgatgga ggcggtgcgc 180
     agggcettee gegtgtggga geaggeeacg eccetggtet teeaggaggt gecetatgag 240
15
     gacatcoggc tgcggcgaca gaaggaggcc gacatcatgg tactctttgc ctctggcttc 300
     cacggcgaca gctcgccgtt tgatggcacc ggtggctttc tggcccacgc ctatttccct 360
     ggccccggcc taggcgggga cacccatttt gacgcagatg agccctggac cttctccagc 420
     actgacctgc atggaaacaa cetetteetg gtggeagtgc atgagetggg ceaegegetg 480
     gggctggagc actccagcaa ccccaatgcc atcatggcgc cgttctacca gtggaaggac 540
20
     gttgacaact tcaagctgcc cgaggacgat ctccgtggca tccagcagct ctacggtacc 600
     ccagacggtc agccacagcc tacccagcct ctccccactg tgacgccacg gcggccaggc 660
     eggeetgace aceggeegee eeggeeteee cagecaceae eeccaggtgg gaagecagag 720
     cggcccccaa agccgggccc cccagtccag ccccgagcca cagagcggcc cgaccagtat 780
     ggccccaaca tctgcgacgg ggactttgac acagtggcca tgcttcgcgg ggagatgttc 840
25
     gtgttcaagg gccgctggtt ctggcgagtc cggcacaacc gcgtcctgga caactatccc 900
    atgcccatcg ggcacttctg gcgtggtctg cccggtgaca tcagtgctgc ctacgagcgc 960 caagacggtc gttttgtctt tttcaaaggt gaccgctact ggctctttcg agaagcgaac 1020
     ctggagcccg gctacccaca gccgctgacc agctatggcc tgggcatccc ctatgaccgc 1080
     attgacacgg ccatctggtg ggagcccaca ggccacacct tcttcttcca agaggacagg 1140
30
     tactggcgct tcaacgagga gacacagcgt ggagaccctg ggtaccccaa gcccatcagt 1200
     gtctggcagg ggatccctgc ctcccctaaa ggggccttcc tgagcaatga cgcagcctac 1260
     acctacttct acaagggcac caaatactgg aaattcgaca atgagcgcct gcggatggag 1320
     cceggctacc ccaagtccat cctgegggac ttcatgggct gccaggagca cgtggagcca 1380
     ggccccgat ggcccgacgt ggcccggccg cccttcaacc cccacggggg tgcagagccc 1440
     ggggcggaca gcgcagaggg cgacgtgggg gatggggatg gggactttgg ggccggggtc 1500
     aacaaggaca ggggcagccg cgtggtggtg cagatggagg aggtggcacg gacggtgaac 1560 i
     gtggtgatgg tgctggtgcc actgctgctg ctgctctgcg tcctgggcct cacctacgcg 1620
     ctggtgcaga tgcagcgcaa gggtgcgcca cgtgtcctgc tttactgcaa gcgctcgctg 1680
     caggagtggg tctga
40
     <210> 74
     <211> 1824
     <212> DNA
45
     <213> Homo sapiens
     <300>
     <302> MT3MMP
     <310> D85511
50
     <400> 74
     atgatettae teacatteag caetggaaga eggttggatt tegtgeatea ttegggggtg 60
     tttttcttgc aaaccttgct ttggatttta tgtgctacag tctgcggaac ggagcagtat 120
     ttcaatgtgg aggtttggtt acaaaagtac ggctaccttc caccgactga ccccagaatg 180
     teagtgetge getetgeaga gaccatgeag tetgecetag etgecatgea geagttetat 240
     ggcattaaca tgacaggaaa agtggacaga aacacaattg actggatgaa gaagccccga 300
     tgcggtgtac ctgaccagac aagaggtagc tccaaatttc atattcgtcg aaagcgatat 360
     gcattgacag gacagaaatg gcagcacaag cacatcactt acagtataaa gaacgtaact 420
     ccaaaagtag gagaccctga gactcgtaaa gctattcgcc gtgcctttga tgtgtggcag 480 aatgtaactc ctctgacatt tgaagaagtt ccctacagtg aattagaaaa tggcaaacgt 540
60
     gatgtggata taaccattat tittgcatct ggtttccatg gggacagctc tccctttgat 600
     ggagagggag gatttttggc acatgcctac ttccctggac caggaattgg aggagatacc 660
```

```
cattttgact cagatgagcc atggacacta ggaaatccta atcatgatgg aaatgactta 720
     tttcttgtag cagtccatga actgggacat gctctgggat tggagcattc caatgacccc 780
     actgccatca tggctccatt ttaccagtac atggaaacag acaacttcaa actacctaat 840
     gatgatttac agggcatcca gaagatatat ggtccacctg acaagattcc tccacctaca 900
     agacetetae egacagtgee eccaeacege tetatteete eggetgacee aaggaaaaat 960
     gacaggccaa aacctcctcg gcctccaacc ggcagaccct cctatcccgg agccaaaccc 1020
     aacatctgtg atgggaactt taacactcta gctattcttc gtcgtgagat gtttgttttc 1080
     aaggaccagt ggttttggcg agtgagaaac aacagggtga tggatggata cccaatgcaa 1140
     attacttact tetggegggg ettgeeteet agtategatg cagtttatga aaatagegae 1200
10
     gggaattttg tgttctttaa aggtaacaaa tattgggtgt tcaaggatac aactcttcaa 1260
     cctggttacc ctcatgactt gataaccett ggaagtggaa ttccccctca tggtattgat 1320
     tcagccattt ggtgggagga cgtcgggaaa acctatttct tcaagggaga cagatattgg 1380
     agatatagtg aagaaatgaa aacaatggac cctggctatc ccaagccaat cacagtctgg 1440
     aaagggatcc ctgaatctcc tcagggagca tttgtacaca aagaaaatgg ctttacgtat 1500
15
     ttctacaaag gaaaggagta ttggaaattc aacaaccaga tactcaaggt agaacctgga 1560
     tatccaagat ccatcctcaa ggattttatg ggctgtgatg gaccaacaga cagagttaaa 1620
     gaaggacaca gcccaccaga tgatgtagac attgtcatca aactggacaa cacagccagc 1680
     actgtgaaag ccatagctat tgtcattccc tgcatcttgg ccttatgcct ccttgtattg 1740
     gtttacactg tgttccagtt caagaggaaa ggaacacccc gccacatact gtactgtaaa 1800
20
     cgctctatgc aagagtgggt gtga
     <210> 75
     <211> 1818
25
     <212> DNA
     <213> Homo sapiens
     <300>
     <302> MT4MMP
30
     <310> AB021225
     <400> 75
     atgeggegee gegeageeeg gggaceegge cegeegeeee cagggeeegg actetegegg 60
     etgeegetge tgeegetgee getgetgetg etgetggege tggggaeceg egggggetge 120
35
     gccgcgccgg aacccgcgcg gcgcgccgag gacctcagcc tgggagtgga gtggctaagc 180
     aggttcggtt acctgcccc ggctgacccc acaacagggc agctgcagac gcaagaggag 240
     ctgtctaagg ccatcacage catgcagcag tttggtggcc tggaggccac cggcatcctg 300
     gacgaggcca ccctggccct gatgaaaacc ccacgctgct ccctgccaga cctccctgtc 360
     ctgacccagg ctcgcaggag acgccaggct ccagccccca ccaagtggaa caagaggaac 420
40
     ctgtcgtgga gggtccggac gttcccacgg gactcaccac tggggcacga cacggtgcgt 480
     gcactcatgt actacgccct caaggtetgg agcgacattg cgcccetgaa cttccacgag 540
     gtggcgggca gcaccgccga catccagatc gactteteca aggccgacca taacgacggc 600 tacccettcg acgcccggcg gcaccgtgcc cacgcettet tecccggcca ccaccacacc 660
     geegggtaca eccaetttaa egatgaegag geetggaeet teegeteete ggatgeecae 720
45
     gggatggacc tgtttgcagt ggctgtccac gagtttggcc acgccattgg gttaagccat 780
     gtggccgctg cacactccat catgcggccg tactaccagg gcccggtggg tgacccgctg 840
     cgctacgggc tcccctacga ggacaaggtg cgcgtctggc agctgtacgg tgtgcgggag 900
     tetgtgtete ceaeggegea geeegaggag ceteceetge tgeeggagee ceeagacaae 960
     eggteeageg eccegeeag gaaggaegtg ecceaeagat geageactea etttgaegeg 1020
50
     gtggcccaga tccggggtga agctttcttc ttcaaaggca agtacttctg gcggctgacg 1080
     cgggaccggc acctggtgtc cctgcagccg gcacagatgc accgcttctg gcggggcctg 1140
     ccgctgcacc tggacagcgt ggacgccgtg tacgagcgca ccagcgacca caagatcgtc 1200
     ttctttaaag gagacaggta ctgggtgttc aaggacaata acgtagagga aggatacccg 1260
     cgcccgtct ccgacttcag cctcccgcct ggcggcatcg acgctgcctt ctcctgggcc 1320 cacaatgaca ggacttattt ctttaaggac cagctgtact ggcgctacga tgaccacacg 1380
55
     aggcacatgg accocggeta coccgcccag agcccctgt ggaggggtgt ccccagcacg 1440
     ctggacgacg ccatgcgctg gtccgacggt gcctcctact tcttccgtgg ccaggagtac 1500
     tggaaagtgc tggatggcga gctggaggtg gcacccgggt acccacagtc cacggcccgg 1560
     gactggctgg tgtgtggaga ctcacaggcc gatggatctg tggctgcggg cgtggacgcg 1620
60
     gcagagggc cccgcgccc tccaggacaa catgaccaga gccgctcgga ggacggttac 1680
     gaggtetget catgeacete tggggcatec tetecceegg gggeceeagg cecaetggtg 1740
```

getgecacca tgetgetget getgeegeea etgteaccag gegeeetgtg gaeageggee 1800

```
1818
     caggccctga cgctatga
     <210> 76
 5
     <211> 1938
     <212> DNA
     <213> Homo sapiens
     <300>
10
     <302> MT5MMP
     <310> AB021227
     <400> 76
     15
     ggccaggccc cgcgctggag ccgctggcgg gtccctgggc ggctgctgct gctgctgctg 120
     cccgcgctct gctgcctccc gggcgccgcg cgggcggcgg cggcggcggc gggggcaggg 180
     aaccgggcag cggtggcggt ggcggtggcg cgggcggacg aggcggaggc gcccttcgcc 240
     gggcagaact ggttaaagtc ctatggctat ctgcttccct atgactcacg ggcatctgcg 300
     ctgcactcag cgaaggcctt gcagtcggca gtctccacta tgcagcagtt ttacgggatc 360
20
     ccggtcaccg gtgtgttgga tcagacaacg atcgagtgga tgaagaaacc ccgatgtggt 420
     gtccctgatc acccccactt aagccgtagg cggagaaaca agcgctatgc cctgactgga 480
     cagaagtgga ggcaaaaaca catcacctac agcattcaca actatacccc aaaagtgggt 540
     gagetagaca egeggaaage tattegeeag getttegatg tgtggeagaa ggtgaececa 600
     ctgacctttg aagaggtgcc ataccatgag atcaaaagtg accggaagga ggcagacatc 660
25
     atgatetttt ttgettetgg tttecatgge gacagetece catttgatgg agaaggggga 720
     ttcctggccc atgcctactt ccctggccca gggattggag gagacaccca ctttgactcc 780
     gatgagccat ggacgctagg aaacgccaac catgacggga acgacctctt cctggtggct 840
     gtgcatgagc tgggccacgc gctgggactg gagcactcca gcgaccccag cgccatcatg 900
     gegecettet accagtacat ggagaegeae aactteaage tgeeceagga egateteeag 960
30
     ggcatccaga agatctatgg acccccagcc gagcctctgg agcccacaag gccactccct 1020
     acacteceeg teegeaggat ceacteacea teggagagga aacaegageg ceageecagg 1080
     ccccctcggc cgcccctcgg ggaccggcca tccacaccag gcaccaaacc caacatctgt 1140
     gacggcaact tcaacacagt ggccctette cggggcgaga tgtttgtett taaggatege 1200
     tggttctggc gtctgcgcaa taaccgagtg caggagggct accccatgca gatcgagcag 1260
35
     ttctggaagg gcctgcctgc ccgcatcgac gcagcctatg aaagggccga tgggagattt 1320
     gtcttcttca aaggtgacaa gtattgggtg tttaaggagg tgacggtgga gcctgggtac 1380
     ceccacagee tgggggaget gggcagetgt ttgccccgtg aaggcattga cacagetetg 1440
     cgctgggaac ctgtgggcaa gacctacttt ttcaaaggcg agcggtactg gcgctacagc 1500
     gaggagegge gggccaegga ceetggetae cetaageeea teacegtgtg gaagggcate 1560
40
     ccacaggete eccaaggage etteateage aaggaaggat attacaceta tttetacaag 1620
     ggccgggact actggaagtt tgacaaccag aaactgagcg tggagccagg ctacccgcgc 1680
     aacatcctgc gtgactggat gggctgcaac cagaaggagg tggagcggcg gaaggagcgg 1740 cggctgcccc aggacgacgt ggacatcatg gtgaccatca acgatgtgcc gggctccgtg 1800
     aacgccgtgg ccgtggtcat ccctgcatc ctgtccctct gcatcctggt gctggtctac 1860
45
     accatettee agtteaagaa caagacagge ceteageetg teacetaeta taageggeea 1920
     gtccaggaat gggtgtga
     <210> 77
50
     <211> 1689
     <212> DNA
     <213> Homo sapiens
     <300>
55
     <302> MT6MMP
     <310> AJ27137
     <400> 77
     atgeggetge ggeteegget tetggegetg etgettetge tgetggeace geeegegege 60
60
     geccegaage ceteggegea ggacgtgage etgggegtgg aetggetgae tegetatggt 120
     tacetgeege caccecacce tgeccaggee cagetgeaga gecetgagaa gttgegegat 180
     gccatcaaag tcatgcagag gttcgcgggg ctgccggaga ccggccgcat ggacccaggg 240
```

	acagtggcca	ccatgcgtaa	gccccgctgc	tccctgcctg	acgtgctggg	ggtggcgggg	300
	ctggtcaggc	ggcgtcgccg	gtacgctctg	agcggcagcg	tgtggaagaa	gcgaaccctg	360
	acatggaggg	tacgttcctt	ccccagagc	tcccagctga	gccaggagac	cgtgcgggtc	420
	ctcatgagct	atgccctgat	ggcctggggc	atggagtcag	gcctcacatt	tcatgaggtg	480
5	gattcccccc	agggccagga	gcccgacatc	ctcatcgact	ttgcccgcgc	cttccaccag	540
	gacagctacc	ccttcgacgg	gttggggggc	accctagccc	atgccttctt	ccctggggag	600
		ccggggacac					660
	gacggcgagg	ggaccgacct	gtttgccgtg	gctgtccatg	agtttggcca	cgccctgggc	720
	ctgggccact	cctcagcccc	caactccatt	atgaggccct	tctaccaggg	tccggtgggc	780
10		agtaccgcct					840
	aaggcgcccc	aaaccccata	tgacaagccc	acaaggaaac	ccctggctcc	tccgccccag	900
	ccccggcct	cgcccacaca	cagcccatcc	ttccccatcc	ctgatcgatg	tgagggcaat	960
	tttgacgcca	tcgccaacat	ccgaggggaa	actttcttct	tcaaaggccc	ctggttctgg	1020
	cgcctccagc	cctccggaca	gctggtgtcc	ccgcgacccg	cacggctgca	ccgcttctgg	1080
15	gaggggctgc	ccgcccaggt	gagggtggtg	caggccgcct	atgctcggca	ccgagacggc	1140
	cgaatcctcc	tctttagcgg	gccccagttc	tgggtgttcc	aggaccggca	gctggagggc	1200
	ggggcgcggc	cgctcacgga	gctggggctg	ccccgggag	aggaggtgga	cgccgtgttc	1260
	tcgtggccac	agaacgggaa	gacctacctg	gtccgcggcc	ggcagtactg	gcgctacgac	1320
	gaggcggcgg	cgcgcccgga	ccccggctac	cctcgcgacc	tgagcctctg	ggaaggcgcg	1380
20	ccccctccc	ctgacgatgt	caccgtcagc	aacgcaggtg	acacctactt	cttcaagggc	1440
	gcccactact	ggcgcttccc	caagaacagc	atcaagaccg	agccggacgc	ccccagccc	1500
	atggggccca	actggctgga	ctgcccgcc	ccgagctctg	gtccccgcgc	ccccaggccc	1560
		cccccgtgtc					
	ggacgttggc	ctgctcccat	cccgctgctc	ctcttgcccc	tgctggtggg	gggtgtagcc	1680
25	tcccgctga			-			1689

<210> 78 <211> 1749 30 <212> DNA <213> Homo sapiens

gatgatgcca cagagaaaga cctttctgat ctggtgtcag agatggagat gatgaagatg 1620 attgggaaac acaagaatat cataaatctt cttggagect gcacacagga tgggcctctc 1680 tatgtcatag ttgagtatgc ctctaaaggc aacctccgag aatacctccg agcccggagg 1740 ccacceggga tggagtacte ctatgacatt aaccgtgtte etgaggagea gatgacette 1800 5 aaggacttgg tgtcatgcac ctaccagctg gccagaggca tggagtactt ggcttcccaa 1860 aaatgtattc atcgagattt agcagccaga aatgttttgg taacagaaaa caatgtgatg 1920 aaaatagcag actttggact cgccagagat atcaacaata tagactatta caaaaagacc 1980 accaatgggc ggcttccagt caagtggatg gctccagaag ccctgtttga tagagtatac 2040 actcatcaga gtgatgtctg gtccttcggg gtgttaatgt gggagatctt cactttaggg 2100 ggctcgcct acccagggat tcccgtggag gaacttttta agctgctgaa ggaaggacac 2160 10 agaatggata agccagccaa ctgcaccaac gaactgtaca tgatgatgag ggactgttgg 2220 catgcagtgc cctcccagag accaacgttc aagcagttgg tagaagactt ggatcgaatt 2280 ctcactctca caaccaatga ggaatacttg gacctcagcc aacctctcga acagtattca 2340 cctagttacc ctgacacaag aagttcttgt tcttcaggag atgattctgt tttttctcca 2400 15 gaccccatgc cttacgaacc atgccttcct cagtatccac acataaacgg cagtgttaaa 2460 acatga 2466 <210> 86

<210> 86
20 <211> 2421
<212> DNA
<213> Homo sapiens

<300>

25 <302> FGFR3 <310> NM000142

<400> 86

atgggegeee etgeetgege cetegegete tgegtggeeg tggeeategt ggeeggegee 60 30 tecteggagt cettggggae ggageagege gtegtgggge gageggeaga agteeeggge 120 ccagagcccg gccagcagga gcagttggtc ttcggcagcg gggatgctgt ggagctgagc 180 tgtcccccgc ccgggggtgg tcccatgggg cccactgtct gggtcaagga tggcacaggg 240 ctggtgccct cggagcgtgt cctggtgggg ccccagcggc tgcaggtgct gaatgcctcc 300 cacgaggact ccggggccta cagctgccgg cagcggctca cgcagcgcgt actgtgccac 360 35 ttcagtgtgc gggtgacaga cgctccatcc tcgggagatg acgaagacgg ggaggacgag 420 gctgaggaca caggtgtgga cacaggggcc ccttactgga cacggcccga gcggatggac 480 aagaagetge tggeegtgee ggeegeeaae acegteeget teegetgeee ageegetgge 540 aaccccactc cctccatctc ctggctgaag aacggcaggg agttccgcgg cgagcaccgc 600 attggaggca tcaagctgcg gcatcagcag tggagcctgg tcatggaaag cgtggtgccc 660 40 teggacegeg geaactacae etgegtegtg gagaacaagt ttggcageat eeggeagaeg 720 tacacgetgg acgtgctgga gcgctccccg caccggccca tcctgcaggc ggggctgccg 780 gccaaccaga cggcggtgct gggcagcgac gtggagttcc actgcaaggt gtacagtgac 840 gcacagcccc acatccagtg gctcaagcac gtggaggtga acggcagcaa ggtgggcccg 900 gacggcacac cctacgttac cgtgctcaag acggcgggcg ctaacaccac cgacaaggag 960 45 ctagaggttc tetecttgca caacgtcacc tttgaggacg ccggggagta cacctgcctg 1020 gegggeaatt etattgggtt tteteateae tetgegtgge tggtggttget geeageegag 1080 gaggagctgg tggaggctga cgaggcgggc agtgtgtatg caggcatcct cagctacggg 1140 gtgggettet teetgtteat eetggtggtg geggetgtga egetetgeeg eetgegeage 1200 eeeeccaaga aaggeetggg eteeeccaee gtgcacaaga teteeegett eeegetcaag 1260 50 cgacaggtgt ccctggagtc caacgcgtcc atgagctcca acacaccact ggtgcgcatc 1320 gcaaggctgt cctcagggga gggccccacg ctggccaatg tctccgagct cgagctgcct 1380 gccgacccca aatgggagct gtctcgggcc cggctgaccc tgggcaagcc ccttggggag 1440 ggctgcttcg gccaggtggt catggcggag gccatcggca ttgacaagga ccgggccgcc 1500 aagcctgtca ccgtagccgt gaagatgctg aaagacgatg ccactgacaa ggacctgtcg 1560 55 gacctggtgt ctgagatgga gatgatgaag atgatcggga aacacaaaaa catcatcaac 1620 ctgctgggcg cctgcacgca gggcgggccc ctgtacgtgc tggtggagta cgcggccaag 1680 ggtaacctgc gggagtttct gcgggcgcgg cggcccccgg gcctggacta ctccttcgac 1740 acctgcaage egecegagga geageteace tteaaggace tggtgteetg tgeetaceag 1800 gtggcccggg gcatggagta cttggcctcc cagaagtgca tccacaggga cctggctgcc 1860 60 cgcaatgtgc tggtgaccga ggacaacgtg atgaagatcg cagacttcgg gctggcccgg 1920 gacgtgcaca acctcgacta ctacaagaag acaaccaacg gccggctgcc cgtgaagtgg 1980

atggcgcctg aggccttgtt tgaccgagtc tacactcacc agagtgacgt ctggtccttt 2040

```
ggggtcctgc tctgggagat cttcacgctg gggggctccc cgtaccccgg catccctgtg 2100
     gaggagetet teaagetget gaaggaggge cacegeatgg acaageeege caactgeaca 2160
     cacgacctgt acatgateat gegggagtge tggcatgeeg egeceteeca gaggeecace 2220
     ttcaagcagc tggtggagga cctggaccgt gtccttaccg tgacgtccac cgacgagtac 2280
     ctggacctgt cggcgccttt cgagcagtac tccccgggtg gccaggacac ccccaqctcc 2340
     ageteeteag gggaegaete egtgtttgee caegaeetge tgeeceegge eecaeecage 2400
     agtgggggct cgcggacgtg a
10
     <210> 87
     <211> 2102
     <212> DNA
     <213> Homo sapiens
15
     <300>
     <302> HGF
     <310> E08541
     <400> 87
20
     atgcagaggg acaaaggaaa agaagaaata caattcatga attcaaaaaa tcagcaaaga 60
     ctaccctaat caaaatagat ccagcactga agataaaaac caaaaaagtg aatactgcag 120
     accaatgtgc taatagatgt actaggaata aaggacttcc attcacttgc aaggcttttg 180
     tttttgataa agcaagaaaa caatgcctct ggttcccctt caatagcatg tcaagtggag 240
     tgaaaaaaga atttggccat gaatttgacc tctatgaaaa caaagactac attagaaact 300
25
     gcatcattgg taaaggacgc agctacaagg gaacagtatc tatcactaag agtggcatca 360 aatgtcagcc ctggagttcc atgataccac acgaacacag ctttttgcct tcgagctatc 420
     ggggtaaaga cctacaggaa aactactgtc gaaatcctcg aggggaagaa gggggaccct 480
     ggtgtttcac aagcaatcca gaggtacgct acgaagtctg tgacattcct cagtgttcag 540
     aagttgaatg catgacctgc aatggggaga gttatcgagg tctcatggat catacagaat 600
30
     caggcaagat ttgtcagcgc tgggatcatc agacaccaca ccggcacaaa ttcttgcctg 660
     aaagatatcc cgacaagggc tttgatgata attattgccg caatcccgat ggccagccga 720
     ggccatggtg ctatactett gaccetcaca eccgetggga gtactgtgca attaaaacat 780
     gcgctgacaa tactatgaat gacactgatg ttcctttgga aacaactgaa tgcatccaag 840
     gtcaaggaga aggctacagg ggcactgtca ataccatttg gaatggaatt ccatgtcagc 900
35
     gttgggattc tcagtatcct cacgagcatg acatgactcc tgaaaatttc aagtgcaagg 960
     acctacgaga aaattactgc cgaaatccag atgggtctga atcaccctgg tgttttacca 1020
     ctgatccaaa catccgagtt ggctactgct cccaaattcc aaactgtgat atgtcacatg 1080
     gacaagattg ttatcgtggg aatggcaaaa attatatggg caacttatcc caaacaagat 1140
     ctggactaac atgttcaatg tgggacaaga acatggaaga cttacatcgt catatcttct 1200
40
     gggaaccaga tgcaagtaag ctgaatgaga attactgccg aaatccagat gatgatgctc 1260
     atggaccetg gigetacaeg ggaaatecae teatteettg ggattatige eetattete 1320
     gttgtgaagg tgataccaca cctacaatag tcaatttaga ccatcccgta atatcttgtg 1380
     ccaaaaggaa acaattgcga gttgtaaatg ggattccaac acgaacaaac ataggatgga 1440
     tggttagttt gagatacaga aataaacata tctgcggagg atcattgata aaggagagtt 1500
45
     gggttcttac tgcacgacag tgtttccctt ctcgagactt gaaagattat gaagcttggc 1560
     ttggaattca tgatgtccac ggaagaggag atgagaaatg caaacaggtt ctcaatgttt 1620
     cccagctggt atatggccct gaaggatcag atctggtttt aatgaagctt gccaggcctg 1680
     ctgtcctgga tgattitgtt agtacgattg atttacctaa ttatggatgc acaattcctg 1740
     aaaagaccag ttgcagtgtt tatggctggg gctacactgg attgatcaac tatgatggcc 1800
50
     tattacgagt ggcacatctc tatataatgg gaaatgagaa atgcagccag catcatcgag 1860
     ggaaggtgac tetgaatgag tetgaaatat gtgetgggge tgaaaagatt ggateaggac 1920
     catgtgaggg ggattatggt ggcccacttg tttgtgagca acataaaatg agaatggttc 1980 ttggtgtcat tgttcctggt cgtggatgtg ccattccaaa tcgtcctggt atttttgtcc 2040
     gagtagcata ttatgcaaaa tggatacaca aaattatttt aacatataag gtaccacagt 2100
55
     <210> 88
     <211> 360
60
     <212> DNA
     <213> Homo sapiens
```

```
<300>
     <302> ID3
     <310> XM001539
     <400> 88
     atgaaggege tgageceggt gegeggetge taegaggegg tgtgetgeet gteggaaege 60
     agtetggeea tegecegggg cegagggaag ggeeeggeag etgaggagee getgagettg 120
     ctggacgaca tgaaccactg ctactcccgc ctgcgggaac tggtacccgg agtcccgaga 180
     ggcactcagc ttagccaggt ggaaatccta cagcgcgtca tcgactacat tctcgacctg 240
10
     caggtagtec tggccgagcc agcccctgga ccccctgatg gcccccacct tcccatccag 300
     acagcogago toactoogga acttgtoato tocaacgaca aaaggagott ttgccactga 360
     <210> 89
15
     <211> 743
     <212> DNA
     <213> Homo sapiens
     <300>
20
    <302> IGF2
     <310> NM000612
     <400> 89
     atgggaatcc caatggggaa gtcgatgctg gtgcttctca ccttcttggc cttcgcctcg 60
25
     tgctgcattg ctgcttaccg ccccagtgag accctgtgcg gcggggagct ggtggacacc 120
     ctccagttcg tctgtgggga ccgcggcttc tacttcagca ggcccgcaag ccgtgtgagc 180
     cgtcgcagcc gtggcatcgt tgaggagtgc tgtttccgca gctgtgacct ggccctcctg 240
     gagacgtact gtgctacccc cgccaagtcc gagagggacg tgtcgacccc tccgaccgtg 300
     cttccggaca acttccccag ataccccgtg ggcaagttct tccaatatga cacctggaag 360
30
     cagtocacco agegeotgeg caggggcotg cotgeoctco tgcgtgcocg coggggtcac 420
     gtgctcgcca aggagctcga ggcgttcagg gaggccaaac gtcaccgtcc cctgattgct 480
     ctacccaccc aagaccccgc ccacgggggc gccccccag agatggccag caatcggaag 540
     tgagcaaaac tgccgcaagt ctgcagcccg gcgccaccat cctgcagcct cctcctgacc 600
     acggacgttt ccatcaggtt ccatcccgaa aatctctcgg ttccacgtcc ccctggggct 660
35
     tetectgace cagteccegt geoeggete ecegaaacag getactetee teggececet 720
     ccatcgggct gaggaagcac agc
                                                                        743
     <210> 90
40
     <211> 7476
     <212> DNA
     <213> Homo sapiens
     <300>
45
     <302> IGF2R
     <310> NM000876
     <400> 90
     atgggggccg ccgccggccg gagcccccac ctggggcccg cgcccgcccg ccgcccgcag 60
50
     cgctetetgc tcctgctgca gctgctgctg ctcgtcgctg ccccggggtc cacgcaggcc 120
     caggeegeee egtteeeega getgtgeagt tatacatggg aagetgttga taccaaaaat 180
     aatgtacttt ataaaatcaa catctgtgga agtgtggata ttgtccagtg cgggccatca 240
     agtgctgttt gtatgcacga cttgaagaca cgcacttatc attcagtggg tgactctgtt 300
     ttgagaagtg caaccagatc tctcctggaa ttcaacacaa cagtgagctg tgaccagcaa 360
55
     ggcacaaatc acagagtcca gagcagcatt gccttcctgt gtgggaaaac cctgggaact 420
     cotgaatttg taactgcaac agaatgtgtg cactactttg agtggaggac cactgcagcc 480
     tgcaagaaag acatatttaa agcaaataag gaggtgccat gctatgtgtt tgatgaagag 540
     ttgaggaagc atgatctcaa tcctctgatc aagcttagtg gtgcctactt ggtggatgac 600
     tecgateegg acaettetet atteateaat gtttgtagag acatagaeac actacgagae 660
60
     ccaggttcac agctgcgggc ctgtccccc ggcactgccg cctgcctggt aagaggacac 720
     caggegtttg atgttggcca gccccgggac ggactgaagc tggtgcgcaa ggacaggctt 780
     gtcctgagtt acgtgaggga agaggcagga aagctagact tttgtgatgg tcacagccct 840
```

	gcggtgacta	ttacatttgt	ttgcccgtcg	gagcggagag	agggcaccat	tcccaaactc	900
						ctgccacaga	
						ctccatagac	
						agaatatitg	
5						acaagctgca	
						ataccacaat	
						tgatgaatgc	
	agctcagggt	ttcagcggat	gagcgtcata	aactttgagt	gcaataaaac	cgcaggtaac	1320
						cttcacatgg	
10						caccgacggg	
						gaattgggaa	
						tatttgtcac	
						gtgtgcagtg	
	gataaaaatg	gaagtaaaaa	tctgggaaaa	tttatttcct	ctcccatgaa	agagaaagga	1680
15						aattaaaact	
						gagaacttct	
						tgtgctgtct	
	aagacagaag	gggagaactg	cacggtettt	gactcccagg	cagggttttc	ttttgactta	1920
						tgacttttat	
20						agcctgccag	
						gctttcatat	
						tgaaagacac	
						gggcttccct	
						ctatgcctgc	
25	ccqqaqqaqc	ccctggaatg	cqtaqtqacc	gacccctcca	cactagagca	gtacgacctc	2340
						ggacaactca	
						gaatccagtg	
						tcagggctcc	
						ggtggttgag	
30	gacageggca	gcctccttct	ggaatacgtg	aatgggtcgg	cctgcaccac	cagcgatggc	2640
						gctgaacagc	
*						cacagaggct	
	gcctgtccca	ttcagacaac	gacggataca	gaccaggctt	gctctataag	ggatcccaac	2820
	agtggatttg	tgtttaatct	taatccgcta	aacagttcgc	aaggatataa	cgtctctggc	2880
35						gaccatcctg	
						gaattggaag	
						cttcatcact	
	ctgacctaca	aagggcctct	ctctgccaaa	ggtaccgctg	atgcttttat	cgtccgcttt	3120
						tatcgactct	
40	gggcaaggga	tccgaaacac	ttactttgag	tttgaaaccg	cgttggcctg	tgttccttct	3240
						tggcctaagc	
	acagtcagga	aaccttggac	ggctgttgac	acctctgtcg	atgggagaaa	gaggactttc	3360
						cgcagtgggg	
	tcttgcttag	tgtcagaagg	caatagctgg	aatctgggtg	tggtgcagat	gagtccccaa	3480
45	gccgcggcga	atggatcttt	gagcatcatg	tatgtcaacg	gtgacaagtg	tgggaaccag	3540
	cgcttctcca	ccaggatcac	gtttgagtgt	gctcagatat	cgggctcacc	agcatttcag	3600
						tcccgttgtc	
						gtatgacctg	
	aagcccctgg	gcctcaacga	caccatcgtg	agcgctggcg	aatacactta	ttacttccgg	3780
50	gtctgtggga	agctttcctc	agacgtctgc	cccacaagtg	acaagtccaa	ggtggtctcc	3840
						cctgactcag	
						cacttgccat	
	aaggtttatc	agcgctccac	agccatcttc	ttctactgtg	accgcggcac	ccagcggcca	4020
						gcagtatgcc	
55	tgcccacctt	tcgatctgac	tgaatgttca	ttcaaagatg	gggctggcaa	ctccttcgac	4140
						gggggacccg	
	gagcactacc	tcatcaatgt	ctgcaagtct	ctggccccgc	aggctggcac	tgagccgtgc	4260
						cggcagggta	
	agggacggac	ctcagtggag	agatggcata	attgtcctga	aatacgttga	tggcgactta	4380
60	tgtccagatg	ggattcggaa	aaagtcaacc	accatccgat	tcacctgcag	cgagagccaa	4440
	gcgaactcca	ggcccatgtt	Catcagcgcc	gtggaggact	gtgagtacac	ctttgcctgg	4500
	eccacageca	cageetgtee	catgaagagc	aacgagcatg	acgactgcca	ggtcaccaac	4560

ccaagcacag gacacctgtt tgatctgagc tccttaagtg gcagggcggg attcacagct 4620 gettacageg agaaggggtt ggtttacatg agcatetgtg gggagaatga aaactgeeet 4680 cctggcgtgg gggcctgctt tggacagacc aggattagcg tgggcaaggc caacaagagg 4740 ctgagatacg tggaccaggt cctgcagctg gtgtacaagg atgggtcccc ttgtccctcc 4800 5 aaatccggcc tgagctataa gagtgtgatc agtttcgtgt gcaggcctga ggccgggcca 4860 accaataggc ccatgctcat ctccctggac aagcagacat gcactctctt cttctcctgg 4920 cacacgccgc tggcctgcga gcaagcgacc gaatgttccg tgaggaatgg aagctctatt 4980 gttgacttgt ctccccttat tcatcgcact ggtggttatg aggcttatga tgagagtgag 5040 gatgatgect cegataccaa ceetgattte tacateaata tttgteagee actaaateee 5100 10 atgeaegeag tgeeetgtee tgeeggagee getgtgtgea aagtteetat tgatggteee 5160 cccatagata teggccgggt agcaggacca ccaatactca atccaatagc aaatgagatt 5220 tacttgaatt ttgaaagcag tactccttgc ttagcggaca agcatttcaa ctacacctcg 5280 ctcatcgcgt ttcactgtaa gagaggtgtg agcatgggaa cgcctaagct gttaaggacc 5340 agcgagtgcg actttgtgtt cgaatgggag actcctgtcg tctgtcctga tgaagtgagg 5400 15 atggatgget gtaccetgae agatgageag etcetetaea getteaactt gtecageett 5460 tecaegagea cetttaaggt gaetegegae tegegeacet acagegttgg ggtgtgeace 5520 tttgcagtcg ggccagaaca aggaggctgt aaggacggag gagtctgtct gctctcaggc 5580 accaaggggg catcetttgg acggetgeaa teaatgaaac tggattacag geaccaggat 5640 gaageggteg ttttaagtta egtgaatggt gategttgee etceagaaac egatgaegge 5700 20 gtcccctgtg tcttcccctt catattcaat gggaagagct acgaggagtg catcatagag 5760 agcagggcga agctgtggtg tagcacaact gcggactacg acagagacca cgagtggggc 5820 ttctgcagac actcaaacag ctaccggaca tccagcatca tatttaagtg tgatgaagat 5880 gaggacattg ggaggccaca agtcttcagt gaagtgcgtg ggtgtgatgt gacatttgag 5940 tggaaaacaa aagttgtctg ccctccaaag aagttggagt gcaaattcgt ccagaaacac 6000 25 aaaacctacg acctgcggct geteteetet etcaccgggt cetggteeet ggtecacaac 6060 ggagtetegt aetatataaa tetgtgeeag aaaatatata aagggeeeet gggetgetet 6120 gaaagggcca gcatttgcag aaggaccaca actggtgacg tccaggtcct gggactcgtt 6180 cacacgcaga agctgggtgt cataggtgac aaagttgttg tcacgtactc caaaggttat 6240 ccgtgtggtg gaaataagac cgcatcctcc gtgatagaat tgacctgtac aaagacggtg 6300 30 ggcagacctg cattcaagag gtttgatatc gacagctgca cttactactt cagctggac 6360 tcccgggctg cctgcgccgt gaagcctcag gaggtgcaga tggtgaatgg gaccatcacc 6420 aaccctataa atggcaagag cttcagcctc ggagatattt attttaagct gttcagagcc 6480

```
cctgaagttc tcgatgattc cataaatatg aaacattttg aatccttcaa acgtgctgac 1200
     atctatgcaa tgggcttagt attctgggaa attgctcgac gatgttccat tggtggaatt 1260
     catgaagatt accaactgcc ttattatgat cttgtacctt ctgacccatc agttgaagaa 1320
     atgagaaaag ttgtttgtga acagaagtta aggccaaata tcccaaacag atggcagagc 1380
 5
     tgtgaagcct tgagagtaat ggctaaaatt atgagagaat gttggtatgc caatggagca 1440
     gctaggctta cagcattgcg gattaagaaa acattatcgc aactcagtca acaggaaggc 1500
     atcaaaatgt aa
10
     <210> 94
     <211> 4044
     <212> DNA
     <213> Homo sapiens
15
     <300>
     <302> Flk1
     <310> AF035121
     <400> 94
20
     atgcagagca aggtgctgct ggccgtcgcc ctgtggctct gcgtggagac ccgggccgcc 60
     tctgtgggtt tgcctagtgt ttctcttgat ctgcccaggc tcagcataca aaaagacata 120
     cttacaatta aggctaatac aactcttcaa attacttgca ggggacagag ggacttggac 180
     tggctttggc ccaataatca gagtggcagt gagcaaaggg tggaggtgac tgagtgcagc 240
     gatggcctct tctgtaagac actcacaatt ccaaaagtga tcggaaatga cactggagcc 300
25
     tacaagtget tetaceggga aactgaettg geeteggtea tttatgteta tgtteaagat 360
     tacagatete catttattge ttetgttagt gaccaacatg gagtegtgta cattactgag 420
     aacaaaaaca aaactgtggt gattccatgt ctcgggtcca tttcaaatct caacgtgtca 480
     ctttgtgcaa gatacccaga aaagagattt gttcctgatg gtaacagaat ttcctgggac 540
     agcaagaagg gctttactat tcccagctac atgatcagct atgctggcat ggtcttctgt 600
30
     gaagcaaaaa ttaatgatga aagttaccag tctattatgt acatagttgt cgttgtaggg 660
     tataggattt atgatgtggt tctgagtccg tctcatggaa ttgaactatc tgttggagaa 720
     aagcttgtct taaattgtac agcaagaact gaactaaatg tggggattga cttcaactgg 780
     gaataccett ettegaagea teageataag aaacttgtaa accgagacet aaaaacceag 840
     tctgggagtg agatgaagaa atttttgagc accttaacta tagatggtgt aacccggagt 900
35
     gaccaaggat tgtacacctg tgcagcatcc agtgggctga tgaccaagaa gaacagcaca 960
     tttgtcaggg tccatgaaaa accttttgtt gcttttggaa gtggcatgga atctctggtg 1020
     gaagccacgg tgggggagcg tgtcagaatc cctgcgaagt accttggtta cccacccca 1080
     gaaataaaat ggtataaaaa tggaataccc cttgagtcca atcacacaat taaagcgggg 1140
     catgtactga cgattatgga agtgagtgaa agagacacag gaaattacac tgtcatcctt 1200
40
     accaatccca tttcaaagga gaagcagagc catgtggtct ctctggttgt gtatgtccca 1260
     ccccagattg gtgagaaatc tctaatctct cctgtggatt cctaccagta cggcaccact 1320
     caaacgctga catgtacggt ctatgccatt cctcccccgc atcacatcca ctggtattgg 1380
     cagttggagg aagagtgcgc caacgagccc agccaagctg tctcagtgac aaacccatac 1440
     ccttgtgaag aatggagaag tgtggaggac ttccagggag gaaataaaat tgaagttaat 1500
45
     aaaaatcaat ttgctctaat tgaaggaaaa aacaaaactg taagtaccct tgttatccaa 1560
     cccactgagc aggagagcgt gtctttgtgg tgcactgcag acagatctac gtttgagaac 1740
     ctcacatggt acaagcttgg cccacagcct ctgccaatcc atgtgggaga gttgcccaca 1800
50
     cctgtttgca agaacttgga tactctttgg aaattgaatg ccaccatgtt ctctaatagc 1860
     acaaatgaca ttttgatcat ggagcttaag aatgcatcct tgcaggacca aggagactat 1920
     gtctgccttg ctcaagacag gaagaccaag aaaagacatt gcgtggtcag gcagctcaca 1980 gtcctagagc gtgtggcacc cacgatcaca ggaaacctgg agaatcagac gacaagtatt 2040
     ggggaaagca tcgaagtctc atgcacggca tctgggaatc cccctccaca gatcatgtgg 2100
55
     tttaaagata atgagaccct tgtagaagac tcaggcattg tattgaagga tgggaaccgg 2160
     aacctcacta toogcagagt gaggaaggag gacgaaggcc totacacctg ccaggcatgc 2220
     agtgttcttg gctgtgcaaa agtggaggca tttttcataa tagaaggtgc ccaggaaaag 2280
     acgaacttgg aaatcattat totagtaggc acggcggtga ttgccatgtt cttctggcta 2340
     cttcttgtca tcatcctacg gaccgttaag cgggccaatg gaggggaact gaagacaggc 2400
60
     tacttgtcca tcgtcatgga tccagatgaa ctcccattgg atgaacattg tgaacgactg 2460
     cettatgatg ceageaaatg ggaatteece agagacegge tgaagetagg taageetett 2520
     ggccgtggtg cctttggcca agtgattgaa gcagatgcct ttggaattga caagacagca 2580
```

```
acttgcagga cagtagcagt caaaatgttg aaagaaggag caacacag tgagcatcga 2640
     geteteatgt etgaacteaa gateeteatt catattggte accateteaa tgtggteaac 2700
     cttctaggtg cctgtaccaa gccaggaggg ccactcatgg tgattgtgga attctgcaaa 2760
     tttggaaacc tgtccactta cctgaggagc aagagaaatg aatttgtccc ctacaagacc 2820
     aaaggggcac gattccgtca agggaaagac tacgttggag caatccctgt ggatctgaaa 2880
     cggcgcttgg acagcatcac cagtagccag agctcagcca gctctggatt tgtggaggag 2940
     aagtccctca gtgatgtaga agaagaggaa gctcctgaag atctgtataa ggacttcctg 3000
     accttggagc atctcatctg ttacagcttc caagtggcta agggcatgga gttcttggca 3060
     tcgcgaaagt gtatccacag ggacctggcg gcacgaaata tcctcttatc ggagaagaac 3120 gtggttaaaa tctgtgactt tggcttggcc cgggatattt ataaagatcc agattatgtc 3180
     agaaaaggag atgctcgcct ccctttgaaa tggatggccc cagaaacaat ttttgacaga 3240
     gtgtacacaa tccagagtga cgtctggtct tttggtgttt tgctgtggga aatattttcc 3300
     ttaggtgett etecatatee tggggtaaag attgatgaag aattttgtag gegattgaaa 3360
     gaaggaacta gaatgagggc ccctgattat actacaccag aaatgtacca gaccatgctg 3420 gactgctggc acggggagcc cagtcagaga cccacgtttt cagagttggt ggaacatttg 3480
15
     ggaaatetet tgcaagetaa tgctcagcag gatggcaaag actacattgt tettccgata 3540
     tcagagactt tgagcatgga agaggattct ggactctctc tgcctacctc acctgtttcc 3600
     tgtatggagg aggaggaagt atgtgacccc aaattccatt atgacaacac agcaggaatc 3660
     agtcagtatc tgcagaacag taagcgaaag agccggcctg tgagtgtaaa aacatttgaa 3720
20
     gatatcccgt tagaagaacc agaagtaaaa gtaatcccag atgacaacca gacggacagt 3780
     ggtatggttc ttgcctcaga agagctgaaa actttggaag acagaaccaa attatctcca 3840
     tettttggtg gaatggtgee cageaaaage agggagtetg tggcatetga aggeteaaac 3900
     cagacaageg getaceagte eggatateae teegatgaca cagacaecae egtgtactee 3960
     agtgaggaag cagaactttt aaagctgata gagattggag tgcaaaccgg tagcacagcc 4020
25
     cagattetee ageetgaete gggg
     <210> 95
     <211> 4017
30
     <212> DNA
     <213> Homo sapiens
     <300>
     <302> Flt1
35
     <310> AF063657
     <400> 95
     atggtcagct actgggacac cggggtcctg ctgtgcgcgc tgctcagctg tctgcttctc 60
     acaggatcta gttcaggttc aaaattaaaa gatcctgaac tgagtttaaa aggcacccag 120
40
     cacatcatgc aagcaggcca gacactgcat ctccaatgca ggggggaagc agcccataaa 180
     tggtctttgc ctgaaatggt gagtaaggaa agcgaaaggc tgagcataac taaatctgcc 240
     tgtggaagaa atggcaaaca attctgcagt actttaacct tgaacacagc tcaagcaaac 300
     cacactggct tctacagctg caaatatcta gctgtaccta cttcaaagaa gaaggaaaca 360
     gaatetgeaa tetatatatt tattagtgat acaggtagae etttegtaga gatgtacagt 420
45
     gaaatccccg aaattataca catgactgaa ggaagggagc tcgtcattcc ctgccgggtt 480
     acgtcaccta acatcactgt tactttaaaa aagtttccac ttgacacttt gatccctgat 540
     ggaaaacgca taatctggga cagtagaaag ggcttcatca tatcaaatgc aacgtacaaa 600
     gaaatagggc ttctgacctg tgaagcaaca gtcaatgggc atttgtataa gacaaactat 660
     ctcacacatc gacaaaccaa tacaatcata gatgtccaaa taagcacacc acgcccagtc 720
50
     aaattactta gaggecatac tettgteete aattgtactg etaccaetee ettgaacaeg 780
     agagttcaaa tgacctggag ttaccctgat gaaaaaaata agagagcttc cgtaaggcga 840
     cgaattgacc aaagcaattc ccatgccaac atattctaca gtgttcttac tattgacaaa 900
     atgcagaaca aagacaaagg actttatact tgtcgtgtaa ggagtggacc atcattcaaa 960
     tetgttaaca ceteagtgca tatatatgat aaagcattca teaetgtgaa acategaaaa 1020
55
     cagcaggtgc ttgaaaccgt agctggcaag cggtcttacc ggctctctat gaaagtgaag 1080
     gcatttccct cgccggaagt tgtatggtta aaagatgggt tacctgcgac tgagaaatct 1140
     gctcgctatt tgactcgtgg ctactcgtta attatcaagg acgtaactga agaggatgca 1200
     gggaattata caatcttgct gagcataaaa cagtcaaatg tgtttaaaaa cctcactgcc 1260
     actctaattg tcaatgtgaa accccagatt tacgaaaagg ccgtgtcatc gtttccagac 1320
60
     ccggctctct acccactggg cagcagacaa atcctgactt gtaccgcata tggtatccct 1380
     caacctacaa tcaagtggtt ctggcacccc tgtaaccata atcattccga agcaaggtgt 1440
     gacttttgtt ccaataatga agagtccttt atcctggatg ctgacagcaa catgggaaac 1500
```

```
agaattgaga gcatcactca gcgcatggca ataatagaag gaaagaataa gatggctagc 1560
     accttggttg tggctgactc tagaatttct ggaatctaca tttgcatagc ttccaataaa 1620
     gttgggactg tgggaagaaa cataagcttt tatatcacag atgtgccaaa tgggtttcat 1680
     gttaacttgg aaaaaatgcc gacggaagga gaggacctga aactgtcttg cacagttaac 1740
     aagttettat acagagacgt tacttggatt ttactgegga cagttaataa cagaacaatg 1800
     cactacagta ttagcaagca aaaaatggcc atcactaagg agcactccat cactcttaat 1860
     cttaccatca tgaatgtttc cctgcaagat tcaggcacct atgcctgcag agccaggaat 1920
     gtatacacag gggaagaaat cctccagaag aaagaaatta caatcagaga tcaggaagca 1980
     ccatacctec tgcgaaacct cagtgatcac acagtggcca tcagcagttc caccacttta 2040
10
     gactgtcatg ctaatggtgt ccccgagcct cagatcactt ggtttaaaaa caaccacaaa 2100
     atacaacaag agcctggaat tattttagga ccaggaagca gcacgctgtt tattgaaaga 2160
     gtcacagaag aggatgaagg tgtctatcac tgcaaagcca ccaaccagaa gggctctgtg 2220 gaaagttcag catacctcac tgttcaagga acctcggaca agtctaatct ggagctgatc 2280
     actotaacat gcacctgtgt ggctgcgact ctcttctggc tcctattaac cctctttatc 2340
15
     cgaaaaatga aaaggtette ttetgaaata aagactgact acetateaat tataatggac 2400
     ccagatgaag ttcctttgga tgagcagtgt gagcggctcc cttatgatgc cagcaagtgg 2460
     gagtttgccc gggagagact taaactgggc aaatcacttg gaagaggggc ttttggaaaa 2520 gtggttcaag catcagcatt tggcattaag aaatcaccta cgtgccggac tgtggctgtg 2580
     aaaatgctga aagagggggc cacggccagc gagtacaaag ctctgatgac tgagctaaaa 2640
20
     atcttgaccc acattggcca ccatctgaac gtggttaacc tgctgggagc ctgcaccaag 2700
     caaggagggc ctctgatggt gattgttgaa tactgcaaat atggaaatct ctccaactac 2760
     ctcaagagca aacgtgactt atttttctc aacaaggatg cagcactaca catggagcct 2820
     aagaaagaaa aaatggagcc aggcctggaa caaggcaaga aaccaagact agatagcgtc 2880
     accagcagcg aaagctttgc gagctccggc tttcaggaag ataaaagtct gagtgatgtt 2940
25
     gaggaagagg aggattetga eggtttetae aaggageeea teaetatgga agatetgatt 3000
     tettacagtt tteaagtgge cagaggeatg gagtteetgt ettecagaaa gtgeatteat 3060
     cgggacctgg cagcgagaaa cattctttta tctgagaaca acgtggtgaa gatttgtgat 3120
     tttggccttg cccgggatat ttataagaac cccgattatg tgagaaaagg agatactcga 3180
     cttcctctga aatggatggc tcctgaatct atctttgaca aaatctacag caccaagagc 3240
30
     gacgtgtggt cttacggagt attgctgtgg gaaatcttct ccttaggtgg gtctccatac 3300
     ccaggagtac aaatggatga ggacttttgc agtcgcctga gggaaggcat gaggatgaga 3360
     geteetgagt actetactee tgaaatetat cagateatge tggactgetg geacagagae 3420
     ccaaaagaaa ggccaagatt tgcagaactt gtggaaaaac taggtgattt gcttcaagca 3480
     aatgtacaac aggatggtaa agactacatc ccaatcaatg ccatactgac aggaaatagt 3540 gggtttacat actcaactcc tgccttctct gaggacttct tcaaggaaag tatttcagct 3600.
35
     ccgaagttta attcaggaag ctctgatgat gtcagatatg taaatgcttt caagttcatg 3660
     agcctggaaa gaatcaaaac ctttgaagaa cttttaccga atgccacctc catgtttgat 3720
     gactaccagg gcgacagcag cactetgttg gcctetecca tgctgaagcg cttcacctgg 3780
     actgacagca aacccaaggc ctcgctcaag attgacttga gagtaaccag taaaagtaag 3840
40
     gagtegggge tgtetgatgt cageaggeec agtttetgee attecagetg tgggcaegte 3900
     agcgaaggca agcgcaggtt cacctacgac cacgctgagc tggaaaggaa aatcgcgtgc 3960
      tgctccccgc ccccagacta caactcggtq gtcctgtact ccaccccacc catctag
45
     <210> 96
     <211> 3897
      <212> DNA
      <213> Homo sapiens
50
      <300>
      <302> Flt4
     <310> XM003852
     <400> 96
55
     atgcagcggg gcgccgcgct gtgcctgcga ctgtggctct gcctgggact cctggacggc 60
     ctggtgagtg gctactccat gaccccccg accttgaaca tcacggagga gtcacacgtc 120
     atcgacaccg gtgacagcct gtccatctcc tgcaggggac agcaccccct cgagtgggct 180
     tggccaggag ctcaggaggc gccagccacc ggagacaagg acagcgagga cacgggggtg 240
     gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300
60
     gtacatgcca acgacacagg cagctacgtc tgctactaca agtacatcaa ggcacgcatc 360
     gagggcacca cggccgccag ctcctacgtg ttcgtgagag actttgagca gccattcatc 420
     aacaageetg acacgetett ggteaacagg aaggaegeea tgtgggtgee etgtetggtg 480
```

	tccatccccg	gcctcaatgt	cacgctgcgc	tcgcaaagct	cggtgctgtg	gccagacggg	540
			ccggcggggc				
			gaccacctgg				
			cgagctctat				
5			gctggtcctg				
	ggtgtcacct	ttgactggga	ctacccaggg	aagcaggcag	agcggggtaa	atagataccc	840
	gagcgacgct	cccagcagac	ccacacagaa	ctctccagca	tcctgaccat	ccacaacatc	900
			gtatgtgtgc				
			gcatgaaaat				
10			aggagacgag				
			gtggtacaag				
			ggaggtgaca cctgaggcgc				
15	ccccccaga	cacacyayaa	ggaggcctcc	ceeeeeagea	teraceegeg	teaeageege	1320
13			ctacggggtg				
			gatgtttgcc				
			tgactggagg				
			gaccgagttt				
			cgtgtctgcc				
20			ctacttctat				
			gctactagag				
			tctgcgctgg				
			gctcgactgc				
			ggcacctggg				
25			cgagggccac				
	catgacaagc	actgccacaa	gaagtacctg	tcggtgcagg	ccctggaagc	ccctcggctc	2040
			cctggtgaac				
			cagcatcgtg				
			ggactccaac				
30			gtgcagcgtg				
			ctccgaggat				
			cttcttctgg				
			catcaagacg				
			atgcgaatac				
35			ggggagagtg				
	gaagcctccg	ctttcggcat	ccacaagggc	agcagctgtg	acaccgtggc	cgtgaaaatg	2640
	ctgaaagagg	gcgccacggc	cagcgagcag	cgcgcgctga	tgtcggagct	caagatcctc	2700
	attcacatcg	gcaaccacct	caacgtggtc	aacctcctcg	gggcgtgcac	caagccgcag	2760
	ggccccctca	tggtgatcgt	ggagttctgc	aagtacggca	acctctccaa	cttcctgcgc	2820
40	gccaagcggg	acgccttcag	cccctgcgcg	gagaagtctc	ccgagcagcg	cggacgcttc	2880
	cgcgccatgg	tggagctcgc	caggctggat	cggaggcggc	cggggagcag	cgacagggtc	2940
	ctcttcgcgc	ggttctcgaa	gaccgagggc	ggagcgaggc	gggcttctcc	agaccaagaa	3000
	gctgaggacc	tgtggctgag	cccgctgacc	atggaagatc	ttgtctgcta	cagcttccag	3060
	gtggccagag	ggatggagtt	cctggcttcc	cgaaagtgca	tccacagaga	cctggctgct	3120
45			aagcgacgtg				
			ctacgtccgc				
	atggcccctg	aaagcatctt	cgacaaggtg	tacaccacgc	agagtgacgt	gtggtccttt	3300
	ggggtgcttc	tctgggagat	cttctctctg	ggggcctccc	cgtaccctgg	ggtgcagatc	3360
	aatgaggagt	tetgecageg	gctgagagac	qqcacaaqqa	tgagggcccc	ggagctggcc	3420
50	actecegeca	tacgccgcat	catgctgaac	tactaatcca	qaqaccccaa	ggcgagacct	3480
	gcattctcgg	agctggtgga	gatcctgggg	gacctgctcc	agggcagggg	cctgcaagag	3540
	gaagaggagg	tctgcatggc	cccgcgcagc	tctcagagct	cagaagaggg	cagcttctcg	3600
	caggtqtcca	ccatggccct	acacategee	caggetgacg	ctgaggacag	cccgccaagc	3660
	ctgcagcgcc	acagcctggc	cgccaggtat	tacaactqqq	tgtcctttcc	cgggtgcctq	3720
55	gccagaqqqq	ctgagacccg	tggttcctcc	aggatgaaga	catttqaqqa	attccccatq	3780
	accccaacga	cctacaaagg	ctctgtggac	aaccagacag	acagtgggat	ggtgctggcc	3840
	tcggaggagt	ttgagcagat	agagagcagg	catagacaag	aaagcqqctt	caggtag	3897
			J. J. J 23	3	5 55	-	

60 <210> 97 <211> 4071 <212> DNA <213> Homo sapiens

<300> <302> KDR

5 <310> AF063658

<400> 97 atggagagea aggtgetget ggeegtegee etgtggetet gegtggagae eegggeegee 60 tetgtgggtt tgcctagtgt ttetettgat etgcccagge teagcataca aaaagacata 120 10 cttacaatta aggctaatac aactetteaa attacttgca ggggacagag ggacttggac 180 tggctttggc ccaataatca gagtggcagt gagcaaaggg tggaggtgac tgagtgcagc 240 gatggcctct tctgtaagac actcacaatt ccaaaagtga tcggaaatga cactggagcc 300 tacaagtgct tctaccggga aactgacttg gcctcggtca tttatgtcta tgttcaagat 360 tacagatete catttattgc ttetgttagt gaccaacatg gagtegtgta cattactgag 420 15 aacaaaaaca aaactgtggt gattccatgt ctcgggtcca tttcaaatct caacgtgtca 480 ctttgtgcaa gatacccaga aaagagattt gttcctgatg gtaacagaat ttcctgggac 540 agcaagaagg gctttactat tcccagctac atgatcagct atgctggcat ggtcttctgt 600 gaagcaaaaa ttaatgatga aagttaccag tctattatgt acatagttgt cgttgtaggg 660 tataggattt atgatgtggt tctgagtccg tctcatggaa ttgaactatc tgttggagaa 720 20 aagettgtet taaattgtae ageaagaact gaactaaatg tggggattga etteaactgg 780 gaataccctt cttcgaagca tcagcataag aaacttgtaa accgagacct aaaaacccag 840 tctqqqaqtq aqatqaaqaa atttttqaqc accttaacta taqatqqtqt aacccqqaqt 900 gaccaaggat tgtacacctg tgcagcatcc agtgggctga tgaccaagaa gaacagcaca 960 tttgtcaggg tccatgaaaa accttttgtt gcttttggaa gtggcatgga atctctggtg 1020 25 gaagccacgg tgggggagcg tgtcagaatc cctgcgaagt accttggtta cccacccca 1080 gaaataaaat ggtataaaaa tggaataccc cttgagtcca atcacacaat taaagcgggg 1140 catgtactga cgattatgga agtgagtgaa agagacacag gaaattacac tgtcatcctt 1200 accaatccca tttcaaagga gaagcagagc catgtggtct ctctggttgt gtatgtccca 1260 ccccagattg gtgagaaatc tctaatctct cctgtggatt cctaccagta cggcaccact 1320 30 caaacgctga catgtacggt ctatgccatt cctccccgc atcacatcca ctggtattgg 1380 cagttggagg aagagtgcgc caacgagccc agccaagctg tctcagtgac aaacccatac 1440 ccttgtgaag aatggagaag tgtggaggac ttccagggag gaaataaaat tgaagttaat 1500

```
tttgatgatg atgaaacctg gacaagtagt tccaaaggct acaacttgtt tcttgttgct 660
     gegeatgagt teggeeacte ettaggtett gaccaeteca aggaecetgg ageacteatg 720
     tttcctatct acacctacac cggcaaaagc cactttatgc ttcctgatga cgatgtacaa 780
     gggatccagt ctctctatgg tccaggagat gaagacccca accctaaaca tccaaaaacg 840
     ccagacaaat gtgaccettc cttatccett gatgccatta ccagtetccg aggagaaaca 900
     atgatettta aagacagatt ettetggege etgeateete ageaggttga tgeggagetg 960
     tttttaacga aatcattttg gccagaactt cccaaccgta ttgatgctgc atatgagcac 1020
     ccttctcatg acctcatctt catcttcaga ggtagaaaat tttgggctct taatggttat 1080
     gacattotgg aaggttatoo caaaaaaata totgaactgg gtottocaaa agaagttaag 1140
10
     aagataagtg cagctgttca ctttqaqqat acaqqcaaqa ctctcctqtt ctcaqqaaac 1200
     caggtctgga gatatgatga tactaaccat attatggata aagactatcc gagactaata 1260
     gaagaagact tcccaggaat tggtgataaa gtagatgctg tctatgagaa aaatggttat 1320
     atctattttt tcaacggacc catacagttt gaatacagca tctggagtaa ccgtattgtt 1380
     cgcgtcatgc cagcaaattc cattttgtgg tgttaa
15
     <210> 103
     <211> 1749
     <212> DNA
20
     <213> Homo sapiens ·
     <300>
     <302> MMP14
     <310> NM004995
25
     <400> 103
     atgteteceg ecceaagace ecceegitgi etectgetee eccigeteae geteggeace 60
     gegetegeet eceteggete ggeccaaage ageagettea geccegaage etggetacag 120
     caatatggct acctgcctcc cggggaccta cgtacccaca cacagcgctc accccagtca 180
30
     ctctcagcgg ccatcgctgc catgcagaag ttttacggct tgcaagtaac aggcaaagct 240
     gatgcagaca ccatgaaggc catgaggcgc ccccgatgtg gtgttccaga caagtttggg 300
     gctgagatca aggccaatgt tcgaaggaag cgctacgcca tccagggtct caaatggcaa 360
     cataatgaaa tcactttctg catccagaat tacaccccca aggtgggcga gtatgccaca 420
     tacgaggcca ttcgcaaggc gttccgcgtg tgggagagtg ccacaccact gcgcttccgc 480
35
     gaggtgccct atgcctacat ccgtgagggc catgagaagc aggccgacat catgatcttc 540
     tttgccgagg gcttccatgg cgacagcacg cccttcgatg gtgagggcgg cttcctggcc 600
     catgcctact teccaggece caacattgga ggagacacce actttgacte tgeegageet 660
     tggactgtca ggaatgagga tctgaatgga aatgacatct tcctggtggc tgtgcacgag 720
     ctgggccatg ccctggggct cgagcattcc agtgacccct cggccatcat ggcaccett 780
40
     taccagtgga tggacacgga gaattttgtg ctgcccgatg atgaccgccg gggcatccag 840
     caactttatg ggggtgagtc agggttcccc accaagatgc cccctcaacc caggactacc 900
     tcccggcctt ctgttcctga taaacccaaa aaccccacct atgggcccaa catctgtgac 960
     gggaactttg acaccgtggc catgctccga ggggagatgt ttgtcttcaa ggagcgctgg 1020
     ttctggcggg tgaggaataa ccaagtgatg gatggatacc caatgcccat tggccagttc 1080
45
     tggcggggcc tgcctgcgtc catcaacact gcctacgaga ggaaggatgg caaattcgtc 1140
     ttcttcaaag gagacaagca ttgggtgttt gatgaggcgt ccctggaacc tggctacccc 1200
     aagcacatta aggagctggg ccgagggctg cctaccgaca agattgatgc tgctctcttc 1260
     tggatgecca atggaaagae etaettette egtggaaaca agtactaceg ttteaaegaa 1320
     gageteaggg cagtggatag egagtaceee aagaacatea aagtetggga agggateeet 1380
50
     gagtetecca gagggteatt catgggeage gatgaagtet teaettaett ctacaagggg 1440
     aacaaatact ggaaattcaa caaccagaag ctgaaggtag aaccgggcta ccccaagtca 1500
     gccctgaggg actggatggg ctgcccatcg ggaggccggc cggatgaggg gactgaggag 1560
     gagacggagg tgatcatcat tgaggtggac gaggagggcg gcggggcggt gagcgcggct 1620
     geogtggtge tgeeegtget getgetgete etggtgetgg eggtgggeet tgeagtette 1680
55
     ttetteagac gecatgggac ceceaggega etgetetaet gecagegtte cetgetggac 1740
                                                                        1749
     aaggtctga
     <210> 104
     <211> 2010
60
     <212> DNA
```

<213> Homo sapiens

```
<300>
      <302> MMP15
      <310> NM002428
 5
      <400> 104
      atgggcageg accegagege geeeggaegg eegggetgga egggeageet eeteggegae 60
      cgggaggagg cggcgcggcc gcgactgctg ccgctgctcc tggtgcttct gggctgcctg 120
      ggccttggcg tagcggccga agacgcggag gtccatgccg agaactggct gcggctttat 180
10
      ggctacctgc ctcagcccag ccgccatatg tccaccatgc gttccgccca gatcttggcc 240
      teggecettg cagagatgea gegettetae gggateecag teaceggtgt getegaegaa 300
      gagaccaagg agtggatgaa gcggccccgc tgtggggtgc cagaccagtt cggggtacga 360
      gtgaaagcca acctgcggcg gcgtcggaag cgctacgccc tcaccgggag gaagtggaac 420
      aaccaccatc tgacctttag catccagaac tacacggaga agttgggctg gtaccactcg 480
15
     atggaggegg tgcgcagggc cttccgcgtg tgggagcagg ccacgcccct ggtcttccag 540
     gaggtgccct atgaggacat ccggctgcgg cgacagaagg aggccgacat catggtactc 600
     tttgcctctg gcttccacgg cgacagctcg ccgtttgatg gcaccggtgg ctttctggcc 660
     cacgcctatt tecetggeec eggeetagge ggggacaece attttgaege agatgageec 720
     tggacettet ecageactga cetgeatgga aacaacetet teetggtgge agtgeatgag 780
20
     ctgggccacg cgctggggct ggagcactcc agcaacccca atgccatcat ggcgccgttc 840
     taccagtgga aggacgttga caacttcaag ctgcccgagg acgatctccg tggcatccag 900
     cagetetacg gtaccecaga eggteageca cageetacec ageetetece caetgtgacg 960
     ccacggegge caggeeggee tgaccacegg ccgeecegge etceecagee accacececa 1020
     ggtgggaagc cagagcggcc cccaaagccg ggccccccag tccagccccg agccacagag 1080
25
     cggcccgacc agtatggccc caacatctgc gacggggact ttgacacagt ggccatgctt 1140
     cgcggggaga tgttcgtgtt caagggccgc tggttctggc gagtccggca caaccgcgtc 1200
     ctggacaact atcccatgcc catcgggcac ttctggcgtg gtctgcccgg tgacatcagt 1260
     getgeetaeg agegeeaaga eggtegtttt gtetttttea aaggtgaeeg etaetggete 1320
     tttcgagaag cgaacctgga gcccggctac ccacagccgc tgaccagcta tggcctgggc 1380
30
     atcccctatg accgcattga cacggccatc tggtgggagc ccacaggcca caccttcttc 1440
     ttccaagagg acaggtactg gcgcttcaac gaggagacac agcgtggaga ccctgggtac 1500
     cccaagccca tcagtgtctg gcaggggatc cctgcctccc ctaaaggggc cttcctgagc 1560 aatgacgcag cctacaccta cttctacaag ggcaccaaat actggaaatt cgacaatgag 1620
     cgcctgcgga tggagcccgg ctaccccaag tccatcctgc gggacttcat gggctgccag 1680
     gagcacgtgg agccaggccc ccgatggccc gacgtggccc ggccgccctt caacccccac 1740
     gggggtgcag agcccggggc ggacagcgca gagggcgacg tgggggatgg ggatggggac 1800
     tttggggccg gggtcaacaa ggacgggggc agccgcgtgg tggtgcagat ggaggaggtg 1860
     gcacggacgg tgaacgtggt gatggtgctg gtgccactgc tgctgctgct ctgcgtcctg 1920
     ggcctcacct acgcgctggt gcagatgcag cgcaagggtg cgccacgtgt cctgctttac 1980
40
     tgcaagcgct cgctgcagga gtgggtctga
                                                                         2010
     <210> 105
     <211> 1824
45
     <212> DNA
     <213> Homo sapiens
     <300>
     <302> MMP16
50
     <310> NM005941
     <400> 105
     atgatettae teacatteag eactggaaga eggttggatt tegtgeatea ttegggggtg 60
     tttttcttgc aaaccttgct ttggatttta tgtgctacag tctgcggaac ggagcagtat 120
     ttcaatgtgg aggtttggtt acaaaagtac ggctaccttc caccgactga ccccagaatg 180
     tragtgrige gricigraga garcatgrag trigcrotag rigcratgra gragttriat 240
     ggcattaaca tgacaggaaa agtggacaga aacacaattg actggatgaa gaagccccga 300
     tgcggtgtac ctgaccagac aagaggtagc tccaaatttc atattcgtcg aaagcgatat 360
     gcattgacag gacagaaatg gcagcacaag cacatcactt acagtataaa gaacgtaact 420
60
     ccaaaagtag gagaccctga gactcgtaaa gctattcgcc gtgcctttga tgtgtggcag 480
     aatgtaactc ctctgacatt tgaagaagtt ccctacagtg aattagaaaa tggcaaacgt 540
     gatgtggata taaccattat tittgcatct ggtttccatg gggacagctc tccctttgat 600
```

```
ggagagggag gatttttggc acatgcctac ttccctggac caggaattgg aggagatacc 660
      cattttgact cagatgagcc atggacacta ggaaatccta atcatgatgg aaatgactta 720
      tttcttgtag cagtccatga actgggacat gctctgggat tggagcattc caatgacccc 780
      actgccatca tggctccatt ttaccagtac atggaaacag acaacttcaa actacctaat 840
     gatgatttac agggcatcca gaaaatatat ggtccacctg acaagattcc tccacctaca 900
      agacetetae egacagtgee eccacacege tetatteete eggetgacee aaggaaaaat 960
     gacaggccaa aacctcctcg gcctccaacc ggcagaccct cctatcccgg agccaaaccc 1020 aacatctgtg atgggaactt taacactcta gctattcttc gtcgtgagat gtttgttttc 1080
      aaggaccagt ggttttggcg agtgagaaac aacagggtga tggatggata cccaatgcaa 1140
10
      attacttact tctggcgggg cttgcctcct agtatcgatg cagtttatga aaatagcgac 1200
      gggaattttg tgttctttaa aggtaacaaa tattgggtgt tcaaggatac aactcttcaa 1260
      cctggttacc ctcatgactt gataaccctt ggaagtggaa ttccccctca tggtattgat 1320
      tcagccattt ggtgggagga cgtcgggaaa acctatttct tcaagggaga cagatattgg 1380
      agatatagtg aagaaatgaa aacaatggac cctggctatc ccaagccaat cacagtctgg 1440
15
      aaagggatcc ctgaatctcc tcagggagca tttgtacaca aagaaaatgg ctttacgtat 1500
      ttctacaaag gaaaggagta ttggaaattc aacaaccaga tactcaaggt agaacctgga 1560
      catccaagat ccatcctcaa ggattttatg ggctgtgatg gaccaacaga cagagttaaa 1620
      gaaggacaca gcccaccaga tgatgtagac attgtcatca aactggacaa cacagccagc 1680
      actgtgaaag ccatagctat tgtcattccc tgcatcttgg ccttatgcct ccttgtattg 1740
20 gtttacactg tgttccagtt caagaggaaa ggaacacccc gccacatact gtactgtaaa 1800
      cgctctatgc aagagtgggt gtga
                                                                             1824
      <210> 106
25
      <211> 1560
      <212> DNA
      <213> Homo sapiens
      <300>
30
      <302> MMP17
      <310> NM004141
      <400> 106
      atgcagcagt ttggtggcct ggaggccacc ggcatcctgg acgaggccac cctggccctg 60
35
     atgaaaaccc cacgctgctc cctgccagac ctccctgtcc tgacccaggc tcgcaggaga 120
      cgccaggete cagececcae caagtggaac aagaggaace tgtcgtggag ggtccggacg 180
      ttcccacggg actcaccact ggggcacgac acggtgcgtg cactcatgta ctacgccctc 240
      aaggtotgga gegacattgc geccetgaac ttecaegagg tggegggcag caeegeegac 300
     atccagatcg acttetecaa ggccgaccat aacgacggct acccettega eggccceggc 360
40
     ggcaccgtgg cccacgcctt cttccccggc caccaccaca ccgccgggga cacccacttt 420
     gacgatgacg aggcctggac cttccgctcc tcggatgccc acgggatgga cctgtttgca 480
      gtggctgtcc acgagtttgg ccacgccatt gggttaagcc atgtggccgc tgcacactcc 540
     atcatgegge egtactacea gggeceggtg ggtgaceege tgegetaegg geteceetae 600 gaggacaagg tgegegtetg geagetgtae ggtgtgeggg agtetgtgte teceaeggeg 660
45
     cagocogagg agoctoccot gotgooggag coccoagaca acoggtocag ogcocogcoc 720
      aggaaggacg tgccccacag atgcagcact cactttgacg cggtggccca gatccggggt 780
     gaagetttet tetteaaagg caagtaette tggeggetga egegggaeeg geacetggtg 840
      tecetgeage eggeaeagat geaeegette tggeggggee tgeegetgea eetggaeage 900
     gtggacgccg tgtacgagcg caccagcgac cacaagatcg tcttctttaa aggagacagg 960
50
      tactgggtgt tcaaggacaa taacgtagag gaaggatacc cgcgccccgt ctccgacttc 1020
     agcetecege etggeggeat egacgetgee tteteetggg eccaeaatga caggaettat 1080
      ttetttaagg accagetgta etggegetae gatgaceaca egaggeacat ggaceeegge 1140
     taccccgccc agagccccct gtggaggggt gtccccagca cgctggacga cgccatgcgc 1200
     tggtccgacg gtgcctccta cttcttccgt ggccaggagt actggaaagt gctggatggc 1260
     gagetggagg tggcacccgg gtacccacag tccacggccc gggactggct ggtgtgtgga 1320 gactcacagg ccgatggatc tgtggctgcg ggcgtggacg cggcagaggg gccccgcgcc 1380
55
     cctccaggac aacatgacca gagccgctcg gaggacggtt acgaggtctg ctcatgcacc 1440
     tetggggcat cetetecce gggggeecca ggeccaetgg tggetgeeac catgetgetg 1500
     etgetgeege cactgteace aggegeectg tggacagegg eccaggeect gacgetatga 1560
60
```

```
<211> 1983
     <212> DNA
     <213> Homo sapiens
 5
     <300>
     <302> MMP2
     <310> NM004530
     <400> 107
10
     atggaggcgc taatggcccg gggcgcgctc acgggtcccc tgagggcgct ctgtctcctg 60
     ggctgcctgc tgagccacgc cgccgccgcg ccgtcgccca tcatcaagtt ccccggcgat 120
     gtegeeccca aaacggacaa agagttggca gtgcaatacc tgaacacctt ctatggctgc 180
     cccaaggaga gctgcaacct gtttgtgctg aaggacacac taaagaagat gcagaagttc 240
     tttggactgc cccagacagg tgatcttgac cagaatacca tcgagaccat gcggaagcca 300
15
     cgctgcggca acccagatgt ggccaactac aacttcttcc ctcgcaagcc caagtgggac 360
     aagaaccaga tcacatacag gatcattggc tacacacctg atctggaccc agagacagtg 420
     gatgatgcct ttgctcgtgc cttccaagtc tggagcgatg tgaccccact gcggttttct 480
     cgaatccatg atggagaggc agacatcatg atcaactttg gccgctggga gcatggcgat 540
     ggatacccct ttgacggtaa ggacggactc ctggctcatg ccttcgcccc aggcactggt 600
20
     gttgggggag actcccattt tgatgacgat gagctatgga ccttgggaga aggccaagtg 660
     gtccgtgtga agtatggcaa cgccgatggg gagtactgca agttcccctt cttgttcaat 720 ggcaaggagt acaacagctg cactgatact ggccgcagcg atggcttcct ctggtgctcc 780
     accacctaca actttgagaa ggatggcaag tacggcttct gtccccatga agccctgttc 840
     accatgggcg gcaacgctga aggacagccc tgcaagtttc cattccgctt ccagggcaca 900
25
    .tcctatgaca gctgcaccac tgagggccgc acggatggct accgctggtg cggcaccact 960
     gaggactacg accgcgacaa gaagtatggc ttctgccctg agaccgccat gtccactgtt 1020
     ggtgggaact cagaaggtgc cccetgtgtc tteecettea ettteetggg caacaaatat 1080
     gagagetgea ccagegeegg cegeagtgae ggaaagatgt ggtgtgegae cacageeaac 1140
     tacgatgacg accgcaagtg gggcttctgc cctgaccaag ggtacagcct gttcctcgtg 1200
30
     gcagcccacg agtttggcca cgccatgggg ctggagcact cccaagaccc tggggccctg 1260
     atggcaccca tttacaccta caccaagaac ttccgtctgt cccaggatga catcaagggc 1320
     atteaggage tetatgggge eteteetgae attgacettg geaceggece cacceccaea 1380
     ctgggccctg tcactcctga gatctgcaaa caggacattg tatttgatgg catcgctcag 1440
     atccgtggtg agatcttctt cttcaaggac cggttcattt ggcggactgt gacgccacgt 1500
     gacaagccca tggggcccct gctggtggcc acattctggc ctgagctccc ggaaaagatt 1560
     gatgcggtat acgaggcccc acaggaggag aaggctgtgt tctttgcagg gaatgaatac 1620
     tggatctact cagccagcac cctggagcga gggtacccca agccactgac cagcctggga 1680
     ctgcccctg atgtccagcg agtggatgcc gcctttaact ggagcaaaaa caagaagaca 1740
     tacatctttg ctggagacaa attctggaga tacaatgagg tgaagaagaa aatggatcct 1800
40
     ggettteeca ageteatege agatgeetgg aatgecatee eegataacet ggatgeegte 1860
     gtggacctgc agggcggcgg tcacagctac ttcttcaagg gtgcctatta cctgaagctg 1920
     gagaaccaaa gtctgaagag cgtgaagttt ggaagcatca aatccgactg gctaggctgc 1980
     tga
                                                                         1983
45
     <210> 108
     <211> 1434
     <212> DNA
     <213> Homo sapiens
50
     <300>
     <302> MMP2
     <310> XM006271
55
     <300>
     <302> MMP3
     <310> XM006271
     <400> 108
60
     atgaagagte ttecaateet actgttgetg tgegtggeag tttgeteage etatecattg 60
     gatggagctg caaggggtga ggacaccagc atgaaccttg ttcagaaaata tctagaaaac 120
     tactacgacc tcgaaaaaga tgtgaaacag tttgttagga gaaaggacag tggtcctgtt 180
```

	gttaaaaaaa	tccgagaaat	gcagaagttc	cttggattgg	aggtgacggg	gaagctggac	240
	tccgacactc	tggaggtgat	gcgcaagccc	aggtgtggag	ttcctgacgt	tggtcacttc	300
	agaacctttc	ctggcatccc	gaagtggagg	aaaacccacc	ttacatacag	gattgtgaat	360
_		atttgccaaa					
5		tgactccact					
	atctcttttg	cagttagaga	acatggagac	ttttaccctt	ttgatggacc	tggaaatgtt	540
		cctatgcccc			_		
		caaaggatac					
	ggccactccc	tgggtctctt	tcactcagcc	aacactgaag	ctttgatgta	cccactctat	720
10	cactcactca	cagacctgac	teggtteege	ctgtctcaag	atgatataaa	tggcattcag	780
	-	gacctccccc	_				
		ctgggacgcc					
	actctgaggg	gagaaatcct	gatctttaaa	gacaggcact	tttggcgcaa	atccctcagg	960
	aagcttgaac	ctgaattgca	tttgatctct	tcattttggc	catctcttcc	ttcaggcgtg	1020
15		atgaagttac					
		gaggaaatga					
	ttccctccaa	ccgtgaggaa	aatcgatgca	gccatttctg	ataaggaaaa	gaacaaaaca	1200
		tagaggacaa					
	ggctttccca	agcaaatagc	tgaagacttt	ccagggattg	actcaaagat	tgatgctgtt	1320
20		ttgggttctt				_	1380
	aatgcaaaga	aagtgacaca	cactttgaag	agtaacagct	ggcttaattg	ttga	1434
0.5	<210> 109						
25	<211> 1404						
	<212> DNA						
	<213> Homo	sapiens					
	-200-						
30	<300>						
30	<302> MMP8	2424					
	<310> NM002	444					

```
<213> Homo sapiens
     <300>
     <302> PKC eta
     <310> NM006255
     <400> 114
     atgtcgtctg gcaccatgaa gttcaatggc tatttgaggg tccgcatcgg tgaggcagtg 60
     gggctgcagc ccacccgctg gtccctgcgc cactcgctct tcaagaaggg ccaccagctg 120
10
     ctggacccct atctgacggt gagcgtggac caggtgcgcg tgggccagac cagcaccaag 180
     cagaagacca acaaacccac gtacaacgag gagttttgcg ctaacgtcac cgacggcggc 240
     cacctogagt tggccgtctt ccacgagacc cccctgggct acgacttcgt ggccaactgc 300
     accetgeagt tecaggaget egteggeacg accggegeet eggacacett egagggttgg 360
     gtggatctcg agccagaggg gaaagtattt gtggtaataa cccttaccgg gagtttcact 420
15
     gaagctactc tccagagaga ccggatcttc aaacatttta ccaggaagcg ccaaagggct 480
     atgcgaaggc gagtccacca gatcaatgga cacaagttca tggccacgta tctgaggcag 540
     cccacctact gctctcactg cagggagttt atctggggag tgtttgggaa acagggttat 600
     cagtgccaag tgtgcacctg tgtcgtccat aaacgctgcc atcatctaat tgttacagcc 660
     tgtacttgcc aaaacaatat taacaaagtg gattcaaaga ttgcagaaca gaggttcggg 720
20
     atcaacatcc cacacaagtt cagcatccac aactacaaag tgccaacatt ctgcgatcac 780
     tgtggctcac tgctctgggg aataatgcga caaggacttc agtgtaaaat atgtaaaatg 840
     aatgtgcata ttcgatgtca agcgaacgtg gcccctaact gtggggtaaa tgcggtggaa 900
     cttgccaaga ccctggcagg gatgggtctc caacccggaa atatttctcc aacctcgaaa 960 ctcgtttcca gatcgacct aagacgacag ggaaaggaga gcagcaaaga aggaaatggg 1020
25
     attggggtta attcttccaa ccgacttggt atcgacaact ttgagttcat ccgagtgttg 1080
     gggaagggga gttttgggaa ggtgatgctt gcaagagtaa aagaaacagg agacctctat 1140
     gctgtgaagg tgctgaagaa ggacgtgatt ctgctggatg atgatgtgga atgcaccatg 1200
     accgagaaaa ggatcctgtc tctggcccgc aatcacccct tcctcactca gttgttctgc 1260
     tgctttcaga cccccgatcg tctgtttttt gtgatggagt ttgtgaatgg gggtgacttg 1320
30
     atgttccaca ttcagaagtc tcgtcgtttt gatgaagcac gagctcgctt ctatgctgca 1380
     gaaatcattt cggctctcat gttcctccat gataaaggaa tcatctatag agatctgaaa 1440
     ctggacaatg tcctgttgga ccacgagggt cactgtaaac tggcagactt cggaatgtgc 1500
     aaggaggga tttgcaatgg tgtcaccacg gccacattct gtggcacgcc agactatatc 1560 gctccagaga tcctccagga aatgctgtac gggcctgcag tagactggtg ggcaatgggc 1620
     gtgttgctct atgagatgct ctgtggtcac gcgccttttg aggcagagaa tgaagatgac 1680
     ctctttgagg ccatactgaa tgatgaggtg gtctacccta cctggctcca tgaagatgcc 1740
     acagggatcc taaaatcttt catgaccaag aaccccacca tgcgcttggg cagcctgact 1800
     cagggaggcg agcacgccat cttgagacat ccttttttta aggaaatcga ctgggcccag 1860
     ctgaaccatc gccaaataga accgcctttc agacccagaa tcaaatcccg agaagatgtc 1920
40
     agtaattttg accetgactt cataaaggaa gagecagttt taactecaat tgatgaggga 1980
     catcttccaa tgattaacca ggatgagttt agaaactttt cctatgtgtc tccagaattg 2040
     caaccatag
45
     <210> 115
     <211> 948
     <212> DNA
     <213> Homo sapiens
50
     <300>
     <302> PKC epsilon
     <310> XM002370
     <400> 115
55
     atgttggcag aactcaaggg caaagatgaa gtatatgctg tgaaggtctt aaagaaggac 60
     gtcatccttc aggatgatga cgtggactgc acaatgacag agaagaggat ttttggctctg 120
     gcacggaaac accegtacet tacccaacte tactgetget tecagaccaa ggacegeete 180
     tttttcgtca tggaatatgt aaatggtgga gacctcatgt ttcagattca gcgctcccga 240
     aaattcgacg agcctcgttc acggttctat gctgcagagg tcacatcggc cctcatgttc 300
     ctccaccage atggagtcat ctacagggat ttgaaactgg acaacatcct tctggatgca 360
     gaaggtcact gcaagctggc tgacttcggg atgtgcaagg aagggattct gaatggtgtg 420
     acgaccacca cgttctgtgg gactcctgac tacatagctc ctgagatcct gcaggagttg 480
```

```
gagtatggcc cctccgtgga ctggtgggcc ctgggggtgc tgatgtacga gatgatggct 540
      ggacagcetc cetttgagge egacaatgag gaegacetat ttgagtecat cetecatgae 600
      gacgtgctgt acccagtctg gctcagcaag gaggctgtca gcatcttgaa agctttcatg 660
      acgaagaatc cccacaagcg cctgggctgt gtggcatcgc agaatggcga ggacgccatc 720
      aagcagcacc cattetteaa agagattgac tgggtgetee tggagcagaa gaagatcaag 780
      ccaccettca aaccacgcat taaaaccaaa agagacgtca ataattttga ccaagacttt 840
      accogggaag agcoggtact caccottgtg gacgaagcaa ttgtaaagca gatcaaccag 900
      gaggaattca aaggtttctc ctactttggt gaagacctga tgccctga
10
      <210> 116
      <211> 1764
      <212> DNA
      <213> Homo sapiens
15
      <300>
      <302> PKC iota
      <310> NM002740
20
      <400> 116
      atgtcccaca cggtcgcagg cggcggcagc ggggaccatt cccaccaggt ccgggtgaaa 60
      gcctactacc gcggggatat catgataaca cattttgaac cttccatctc ctttgagggc 120
      ctttgcaatg aggttcgaga catgtgttct tttgacaacg aacagctctt caccatgaaa 180
      tggatagatg aggaaggaga cccgtgtaca gtatcatctc agttggagtt agaagaagcc 240
25
      tttagacttt atgagctaaa caaggattet gaactettga ttcatgtgtt cccttgtgta 300
      ccagaacgtc ctgggatgcc ttgtccagga gaagataaat ccatctaccg tagaggtgca 360
      cgccgctgga gaaagcttta ttgtgccaat ggccacactt tccaagccaa gcgtttcaac 420
     aggegtgete actgtgecat etgeacagae egaatatggg gaettggaeg ecaaggatat 480 aagtgeatea actgeaaaet ettggtteat aagaagtgee ataaaetegt eacaattgaa 540
30
      tgtgggcggc attctttgcc acaggaacca gtgatgccca tggatcagtc atccatgcat 600
      totgaccatg cacagacagt aattocatat aatcottcaa gtoatgagag tttggatcaa 660
      gttggtgaag aaaaagaggc aatgaacacc agggaaagtg gcaaagcttc atccagtcta 720
     ggtcttcagg attttgattt gctccgggta ataggaagag gaagttatgc caaagtactg 780 ttggttcgat taaaaaaaac agatcgtatt tatgcaatga aagttgtgaa aaaagagctt 840
35
     gttaatgatg atgaggatat tgattgggta cagacagaga agcatgtgtt tgagcaggca 900
      tccaatcatc ctttccttgt tgggctgcat tcttgctttc agacagaaag cagattgttc 960
      tttgttatag agtatgtaaa tggaggagac ctaatgtttc atatgcagcg acaaagaaaa 1020
      cttcctgaag aacatgccag attttactct gcagaaatca gtctagcatt aaattatctt 1080
      catgagcgag ggataattta tagagatttg aaactggaca atgtattact ggactctgaa 1140
40
      ggccacatta aactcactga ctacggcatg tgtaaggaag gattacggcc aggagataca 1200
      accagcactt tetgtggtac tectaattac attgeteetg aaattttaag aggagaagat 1260
     tatggtttca gtgttgactg gtgggctctt ggagtgctca tgtttgagat gatggcagga 1320 aggtctccat ttgatattgt tgggagctcc gataaccctg accagaacac agaggattat 1380 ctcttccaag ttattttgga aaaacaaatt cgcataccac gttctctgtc tgtaaaagct 1440
      gcaagtgttc tgaagagttt tcttaataag gaccctaagg aacgattggg ttgtcatcct 1500
45
      caaacaggat ttgctgatat tcagggacac ccgttcttcc gaaatgttga ttgggatatg 1560
      atggagcaaa aacaggtggt acctcccttt aaaccaaata tttctgggga atttggtttg 1620
      gacaactttg atteteagtt tactaatgaa cetgteeage teacteeaga tgacgatgae 1680
      attgtgagga agattgatca gtctgaattt gaaggttttg agtatatcaa tcctcttttg 1740
50
      atgtctgcag aagaatgtgt ctga
      <210> 117
      <211> 2451
55
      <212> DNA
      <213> Homo sapiens
      <300>
      <302> PKC mu
60
      <310> XM007234
      <400> 117
```

WO 02/055693 PCT/EP02/00152

	atgtatgata	agatectget	ttttcgccat	gaccctacct	ctgaaaacat	ccttcagctg	60
						gtcagcttcc	
						atacagagct	
						aggtcttaaa	
5						caacaattgc	
						caccatccgc	
						aaaatcacca	
						tggacgacca	
	attcaccttq	acaaqatttt	gatgtctaaa	gttaaagtgc	cacacacatt	tgtcatccac	540
10	tcctacaccc	qqcccacaqt	gtgccagtac	tgcaagaagc	ttctgaaggg	gcttttcagg	600
						accgaaagta	
						tggggcagag	
						cagtgggctc	
	atggatgata	tggaagaagc	aatggtccaa	gatgcagaga	tggcaatggc	agagtgccag	840
15	aacgacagtg	gcgagatgca	agatccagac	ccagaccacg	aggacgccaa	cagaaccatc	900
	agtccatcaa	caagcaacaa	tatcccactc	atgagggtag	tgcagtctgt	caaacacacg	960
	aagaggaaaa	gcagcacagt	catgaaagaa	ggatggatgg	tccactacac	cagcaaggac	1020
	acgctgcgga	aacggcacta	ttggagattg	gatagcaaat	gtattaccct	ctttcagaat	1080
	gacacaggaa	gcaggtacta	caaggaaatt	cctttatctg	aaattttgtc	tctggaacca	1140
20	gtaaaaactt	cagctttaat	tcctaatggg	gccaatcctc	attgtttcga	aatcactacg	1200
						atcaccaaat	
	aacagtgttc	tcaccagtgg	cgttggtgca	gatgtggcca	ggatgtggga	gatagccatc	1320
						aaccaacttg	
	cacagagata	tctctgtgag	tatttcagta	tcaaattgcc	agattcaaga	aaatgtggac	1440
25	atcagcacag	tatatcagat	ttttcctgat	gaagtactgg	gttctggaca	gtttggaatt	1500
	gtttatggag	gaaaacatcg	taaaacagga	agagatgtag	ctattaaaat	cattgacaaa	1560
	ttacgatttc	caacaaaaca	agaaagccag	cttcgtaatg	aggttgcaat	tctacagaac	1620
						aagagtgttt	
20	gttgttatgg	aaaaactcca	tggagacatg	ctggaaatga	tcttgtcaag	tgaaaagggc	1740
30						tttgcggcac	
	cttcatttta	aaaatategt	ccactgtgac	ctcaaaccag	aaaatgtgtt	gctagcctca	1860
	getgateett	tteeteaggt	gaaactttgt	gattttggtt	ttgcccggat	cattggagag	1920
	aagtetttee	ggaggtcagt	ggtgggtacc	cccgcttacc	tggctcctga	ggtcctaagg	1980
35						ctatgtaagc	
33	ccaageggea	stangan	taatgaagat	gaagacacac	acgaccaaat	tcagaatgca	2100
	ascastttac	tocaactaaa	astragasag	gaaacacccc	tagataga	tgatcttatc	710U
	ccttccctac	aggagtata	aacyayaaay	catttenana	regardagac	cttgagccac caaaatcggg	2220
						aggcgagcag	
40						cactcctgag	
	actoaacaaa	cadaaatdaa	agccctcggt	gagggggg	gccacagega	acticityay	2451
	accyaayaaa	cagaaacgaa	ageceegge	gagegegeea	gcaccccacg	α	2451
	<210> 118						
45	<211> 2673						
	<212> DNA						
	<213> Homo	saniens					
	12207 1100						
	<300>						
50	<302> PKC n	ıu					
	<310> NM005	813					
	<400> 118						
	atgtctgcaa	ataattcccc	tccatcaqcc	cagaagtctg	tattacccac	agctattcct	60
55	gctgtgcttc	cagctgcttc	tccgtgttca	agtcctaaga	cgggactctc	tgcccgactc	120
	tctaatggaa	gcttcagtgc	accatcactc	accaactcca	gaggctcagt	gcatacagtt	180
	tcatttctac	tgcaaattgg	cctcacacgg	gagagtgtta	ccattgaagc	ccaggaactg	240
	tctttatctg	ctgtcaagga	tcttgtgtgc	tccatagttt	atcaaaagtt	tccagagtgt	300
	ggattctttg	gcatgtatga	caaaattctt	ctctttcgcc	atgacatgaa	ctcagaaaac	360
60	attttgcagc	tgattacctc	agcagatgaa	atacatgaag	gagacctagt	ggaagtggtt	420
	ctttcagctt	tagccacagt	agaagacttc	cagattcgtc	cacatactct	ctatgtacat	480
	tcttacaaag	ctcctacttt	ctgtgattac	tgtggtgaga	tgctgtgggg	attggtacgt	540

WO 02/055693 PCT/EP02/00152

	caaggactga	aatgtgaagg	ctgtggatta	aattaccata	aacgatgtgc	cttcaagatt	600
						accaggaccc	
	ggcctctcag	ttccaagacc	cctacagcct	gaatatgtag	cccttcccag	tgaagagtca	720
	catgtccacc	aggaaccaag	taagagaatt	ccttcttgga	gtggtcgccc	aatctggatg	780
5	gaaaagatgg	taatgtgcag	agtgaaagtt	ccacacacat	ttgctgttca	ctcttacacc	840
	cgtcccacga	tatgtcagta	ctgcaagcgg	ttactgaaag	gcctctttcg	ccaaggaatg	900
	cagtgtaaag	attgcaaatt	caactgccat	aaacgctgtg	catcaaaagt	accaagagac	960
	tgccttggag	aggttacttt	caatggagaa	ccttccagtc	tgggaacaga	tacagatata	1020
	ccaatggata	ttgacaataa	tgacataaat	agtgatagta	gtcggggttt	ggatgacaca	1080
10						tctcgatgtg	
						tattccgcta	
	atgagggttg	tacaatccat	caagcacaca	aagaggaaga	gcagcacaat	ggtgaaggaa	1260
	gggtggatgg	tccattacac	cagcagggat	aacctgagaa	agaggcatta	ttggagactt	1320
	gacagcaaat	gtctaacatt	atttcagaat	gaatctggat	caaagtatta	taaggaaatt	1380
15						ttcacaaggc	
						tggtgagaac	
						tgatgtagca	
						agcaagtgtt	
	tgcacttctc	cagggcaagg	gaaagatcac	aaagatttgt	ctacaagtat	ctctgtatct	1680
20	aattgtcaga	ttcaggagaa	totogatato	agtactgttt	accadatett	tgcagatgag	1740
	gtgcttggtt						
	gatgtggcta	ttaaagtaat	tgataagatg	agattcccca	casaacaaca	aagtcaactc	1860
	cotaatoaao	taactatttt	acadaatttd	caccatcctd	coattotasa	cctggaatgt	1920
						agatatgttg	
25						attcatggtc	
23						ctgtgattta	
	acacagacac	atgregatest	tacataaaa	caccicaaga	ataccytyca	gctgtgtgac	2100
	tttccatttc	caccatcat	tactasasa	tasttasaas	cicaggigaa	aggaactcca	2100
						aggaacteca	
30							
30	ccagtgggag	ccaccacca	tgtgageete	agregeacar	tteetttaa	tgaggatgaa	2340
						atggagagaa	
	accetggeg	aaycaactga	tetgataaac	aatetgette	aagtgaagat	gagaaaacgt	2460
	cacagegeeg	acaaaccccc	tagtcatece	tggctacagg	actatcagac	ttggcttgac	2520
35						tgatgatgct	
35					caaagcactt	cattatggct	
	cctaatccag	atgatatgga	agaagatcct	taa			2673
	.010. 110						
40	<210> 119						
40	<211> 2121						
	<212> DNA	•					
	<213> Homo	sapiens					
	<300>						
45	<302> PKC t						
	<310> NM006	257					
	<400> 119						
	atgtcgccat	ttcttcggat	tggcttgtcc	aactttgact	gcgggtcctg	ccagtcttgt	60
50	cagggcgagg	ctgttaaccc	ttactgtgct	gtgctcgtca	aagagtatgt	cgaatcagag	120
						cagcactttt	
	gatgcccata	tcaacaaggg	aagagtcatg	cagatcattg	tgaaaggcaa	aaacgtggac	240
	ctcatctctg	aaaccaccgt	ggagctctac	tcgctggctg	agaggtgcag	gaagaacaac	300
	gggaagacag	aaatatggtt	agagctgaaa	cctcaaggcc	gaatgctaat	gaatgcaaga	360
55	tactttctgg	aaatgagtga	cacaaaggac	atgaatgaat	ttgagacgga	aggettettt	420
						caagtgccac	
						cgagtttgtc	
						tcacaagaag	
						agaaaccatg	
60						caattacaag	
-	agcccgacct	tctgtgaaca	ctqtqqqacc	ctactataaa	gactggcacg	gcaaggactc	780
	aagtgtgatg	catqtqqcat	qaatqtqcat	catagatge	agacaaaggt	ggccaacctt	840
			5 5 - 5 - 40	- ~	-3		-

	tgtggcataa	accagaagct	aatggctgaa	gcgctggcca	tgattgagag	cactcaacag	900
	gctcgctgct	taagagatac	tgaacagatc	ttcagagaag	gtccggttga	aattggtctc	960
	ccatgctcca	tcaaaaatga	agcaaggccg	ccatgtttac	cgacaccggg	aaaaagagag	1020
	cctcagggca	tttcctggga	gtctccgttg	gatgaggtgg	ataaaatgtg	ccatcttcca	1080
5	gaacctgaac	tgaacaaaga	aagaccatct	ctgcagatta	aactaaaaat	tgaggatttt	1140
	atcttgcaca	aaatgttggg	gaaaggaagt	tttggcaagg	tcttcctggc	agaattcaag	1200
	aaaaccaatc	aatttttcgc	aataaaggcc	ttaaagaaag	atgtggtctt	gatggacgat	1260
	gatgttgagt	gcacgatggt	agagaagaga	gttctttcct	tggcctggga	gcatccgttt	1320
	ctgacgcaca	tgttttgtac	attccagacc	aaggaaaacc	tctttttgt	gatggagtac	1380
10	ctcaacggag	gggacttaat	gtaccacatc	caaagctgcc	acaagttcga	cctttccaga	1440
		atgctgctga					
	gtctacaggg	acctgaagct	agataacatc	ctgttagaca	aagatggaca	tatcaagatc	1560
	gcggattttg	gaatgtgcaa	ggagaacatg	ttaggagatg	ccaagacgaa	taccttctgt	1620
	gggacacctg	actacatcgc	cccagagatc	ttgctgggtc	agaaatacaa	ccactctgtg	1680
15	gactggtggt	ccttcggggt	tctcctttat	gaaatgctga	ttggtcagtc	gcctttccac	1740
	gggcaggatg	aggaggagct	cttccactcc	atccgcatgg	acaatccctt	ttacccacgg	1800
	tggctggaga	aggaagcaaa	ggaccttctg	gtgaagctct	tcgtgcgaga	acctgagaag	1860
	aggctgggcg	tgaggggaga	catccgccag	caccctttgt	ttcgggagat	caactgggag	1920
		ggaaggagat					
20		tcgacaaaga					
		acagcatgga		ttcaggaact	tttccttcat	gaaccccggg	2100
	atggagcggc	tgatatcctg	a				2121

- 25 <210> 120 <211> 1779 <212> DNA <213> Homo sapiens
- 30 <300> <302> PKC zeta <310> NM2744

```
atggaccggg agatggcagc atcgtgcgga ggcgcggttt tcgtaggtct gatactcttg 60
     accttgtcac cgcactataa gctgttcctc gctaggctca tatqqtqqtt acaatatttt 120
     atcaccaggg ccgaggcaca cttgcaagtg tggatccccc ccctcaacgt tcgggggggc 180
     cgcgatgccg tcatcctcct cacgtgcgcg atccacccag agctaatctt taccatcacc 240
 5
     aaaatcitgc tegecataet eggiceaete atggtgetee aggetggtat aaccaaagtg 300
     ccgtacttcg tgcgcgcaca cgggctcatt cgtgcatgca tgctggtgcg gaaggttgct 360
     gggggtcatt atgtccaaat ggctctcatg aagttggccg cactgacagg tacgtacgtt 420
     tatgaccatc teacceact gegggactgg geccaegegg gectaegaga cettgeggtg 480
     gcagttgagc ccgtcgtctt ctctgatatg gagaccaagg ttatcacctg gggggcagac 540
10
     accgcggcgt gtggggacat catcttgggc ctgcccgtct ccgcccgcag ggggagggag 600
     atacatetgg gaceggeaga cageettgaa gggeaggggt ggegaeteet e
     <210> 129
15
     <211> 161
     <212> DNA
     <213> Hepatitis C virus
     <300>
20
     <302> NS4A
     <310> AJ238799
     <400> 129
     gcacctgggt gctggtaggc ggagtcctag cagctctggc cgcgtattgc ctgacaacag 60
25
     gcagcgtggt cattgtgggc aggatcatct tgtccggaaa gccggccatc attcccgaca 120
     gggaagtcct ttaccgggag ttcgatgaga tggaagagtg c
     <210> 130
30
     <211> 783
     <212> DNA
     <213> Hepatitis C virus
     <300>
35
     <302> NS4B
     <310> AJ238799
     <400> 130
     gcctcacacc tcccttacat cgaacaggga atgcagctcg ccgaacaatt caaacagaag 60
40
     gcaatcgggt tgctgcaaac agccaccaag caagcggagg ctgctgctcc cgtggtggaa 120
     tecaagtgge ggaccetega agcettetgg gegaageata tgtggaattt cateageggg 180
     atacaatatt tagcaggett gtccactetg cetggcaace cegegatage atcactgatg 240
     gcattcacag cetetateae cagecegete accaeceaae ataceeteet gtttaacate 300
     ctggggggat gggtggccgc ccaacttgct cctcccagcg ctgcttctgc tttcgtaggc 360
45
     gccggcatcg ctggagcggc tgttggcagc ataggccttg ggaaggtgct tgtggatatt 420
     ttggcaggtt atggagcagg ggtggcaggc gcgctcgtgg cctttaaggt catgagcqqc 480
     gagatgccct ccaccgagga cctggttaac ctactccctg ctatcctctc ccctggcgcc 540
     50
     accatcactc agctgctgaa gaggcttcac cagtggatca acgaggactg ctccacgcca 780
     tgc
55
     <210> 131
     <211> 1341
     <212> DNA
     <213> Hepatitis C virus
60
     <300>
     <302> NS5A
     <310> AJ238799
```

PCT/EP02/00152 WO 02/055693

```
<400> 131
      tccggctcgt ggctaagaga tgtttgggat tggatatgca cggtgttgac tgatttcaag 60
     acctggctcc agtccaagct cctgccgcga ttgccgggag tccccttctt ctcatgtcaa 120
     cgtgggtaca agggagtctg gcggggcgac ggcatcatgc aaaccacctg cccatgtgga 180
     gcacagatca ccggacatgt gaaaaacggt tccatgagga tcgtggggcc taggacctgt 240
     agtaacacgt ggcatggaac attccccatt aacgcgtaca ccacgggccc ctgcacgccc 300
     tccccggcgc caaattattc tagggcgctg tggcgggtgg ctgctgagga gtacgtggag 360
     gttacgcggg tgggggattt ccactacgtg acgggcatga ccactgacaa cgtaaagtgc 420
10
     ccgtgtcagg ttccggcccc cgaattcttc acagaagtgg atggggtgcg gttgcacagg 480
     tacgetecag egtgeaaace cetectaegg gaggaggtea catteetggt egggeteaat 540 caatacetgg ttgggteaca geteceatge gageeegaac eggaegtage agtgeteact 600
     tccatgctca ccgacccctc ccacattacg gcggagacgg ctaagcgtag gctggccagg 660
     ggatctcccc cctccttggc cagctcatca gctagccagc tgtctgcgcc ttccttgaag 720
     gcaacatgca ctacccgtca tgactccccg gacgctgacc tcatcgaggc caacctcctg 780
     tggcggcagg agatgggcgg gaacatcacc cgcgtggagt cagaaaataa ggtagtaatt 840
     ttggactctt tcgagccgct ccaagcggag gaggatgaga gggaagtatc cgttccggcg 900 gagatcctgc ggaggtccag gaaattccct cgagcgatgc ccatatgggc acgcccggat 960
     tacaaccete cactgttaga gteetggaag gacceggact aegteeetee agtggtacae 1020
20
     gggtgtccat tgccgcctgc caaggcccct ccgataccac ctccacggag gaagaggacg 1080
     gttgtcctgt cagaatctac cgtgtcttct gccttggcgg agctcgccac aaagaccttc 1140
     ggcageteeg aategtegge egtegacage ggcaeggeaa eggeetetee tgaecageee 1200 teegaegaeg gegaegeggg atecgaegtt gagtegtaet eetecatgee eeceettgag 1260
     ggggagccgg gggatcccga tctcagcgac gggtcttggt ctaccgtaag cgaggaggct 1320
25
     agtgaggacg tcgtctgctg c
     <210> 132
     <211> 1772
30
     <212> DNA
     <213> Hepatitis C virus
     <300>
     <302> NS5B
35
     <310> AJ238799
     <400> 132
     togatgtoot acacatggac aggogecetg atcacgccat gegetgegga ggaaaccaag 60
     ctgcccatca atgcactgag caactctttg ctccgtcacc acaacttggt ctatgctaca 120
40
     acatetegea gegeaageet geggeagaag aaggteacet ttgacagaet geaggteetg 180
     gacgaccact accgggacgt gctcaaggag atgaaggcga aggcgtccac agttaaggct 240
     aaacttctat ccgtggagga agcctgtaag ctgacgcccc cacattcggc cagatctaaa 300
     tttggctatg gggcaaagga cgtccggaac ctatccagca aggccgttaa ccacatccgc 360
     tccgtgtgga aggacttgct ggaagacact gagacaccaa ttgacaccac catcatggca 420
     aaaaatgagg ttttctgcgt ccaaccagag aaggggggcc gcaagccagc tcgccttatc 480
     gtattcccag atttgggggt tcgtgtgtgc gagaaaatgg ccctttacga tgtggtctcc 540
     accetecete aggregtgat gggetettea taeggattee aatactetee tggacagegg 600
     gtcgagttcc tggtgaatgc ctggaaagcg aagaaatgcc ctatgggctt cgcatatgac 660
     accegetgtt ttgactcaac ggtcactgag aatgacatee gtgttgagga gtcaatetac 720
     caatgttgtg acttggcccc cgaagccaga caggccataa ggtcgctcac agagcggctt 780
     tacatcgggg gccccctgac taattctaaa gggcagaact gcggctatcg ccggtgccgc 840
     gcgagcggtg tactgacgac cagctgcggt aataccctca catgttactt gaaggccgct 900
     gcggcctgtc gagctgcgaa gctccaggac tgcacgatgc tcgtatgcgg agacgacctt 960
     gtcgttatct gtgaaagcgc ggggacccaa gaggacgagg cgagcctacg ggccttcacg 1020
55
     gaggetatga etagataete tgeececeet ggggaceege ccaaaccaga atacgaettg 1080
     gagttgataa catcatgete etecaatgtg teagtegege acgatgeate tggcaaaagg 1140
     gtgtactatc tcacccgtga ccccaccacc ccccttgcgc gggctgcgtg ggagacagct 1200
     agacacactc cagtcaattc ctggctaggc aacatcatca tgtatgcgcc caccttgtgg 1260
     gcaaggatga tcctgatgac tcatttcttc tccatccttc tagctcagga acaacttgaa 1320
60
     aaagccctag attgtcagat ctacggggcc tgttactcca ttgagccact tgacctacct 1380
     cagatcattc aacgactcca tggccttagc gcattttcac tccatagtta ctctccaggt 1440
     gagatcaata gggtggcttc atgcctcagg aaacttgggg taccgccctt gcgagtctgg 1500
```

agacateggg ccagaagtgt ccgegetagg etactgteec agggggggag ggetgeeact 1560

```
tgtggcaagt acctetteaa etgggcagta aggaccaage teaaacteae tecaateeeg 1620
     gctgcgtccc agttggattt atccagctgg ttcgttgctg gttacagcgg gggagacata 1680
     tateacagee tgtetegtge cegacecege tggtteatgt ggtgeetaet cetaetttet 1740
     gtaggggtag gcatctatct actccccaac cg
     <210> 133
     <211> 1892
10
     <212> DNA
     <213> Hepatitis C virus
     <300>
     <302> NS3
15
     <310> AJ238799
     <400> 133
     cgcctattac ggcctactcc caacagacgc gaggcctact tggctgcatc atcactagcc 60
     tcacaggccg ggacaggaac caggtcgagg gggaggtcca agtggtctcc accgcaacac 120
20
     aatctttcct ggcgacctgc gtcaatggcg tgtgttggac tgtctatcat ggtgccggct 180
     caaagaccct tgccggccca aagggcccaa tcacccaaat gtacaccaat gtggaccagg 240
     acctegtegg ctggcaageg cccccegggg cgcgttcctt gacaccatgc acctgeggca 300 gcteggacct ttacttggtc acgaggcatg ccgatgtcat tccggtgcgc cggcggggcg 360
     acagcagggg gagcctactc tcccccaggc ccgtctccta cttgaagggc tcttcgggcg 420
25
     gtceactgct ctgcccctcg gggcacgctg tgggcatctt tcgggctgcc gtgtgcaccc 480
     gaggggttgc gaaggcggtg gactttgtac ccgtcgagtc tatggaaacc actatgcggt 540
     ccccggtctt cacggacaac tcgtcccctc cggccgtacc gcagacattc caggtggccc 600
     atctacacgc ccctactggt agcggcaaga gcactaaggt gccggctgcg tatgcagccc 660
     aagggtataa ggtgcttgtc ctgaacccgt ccgtcgccgc caccctaggt ttcggggcgt 720
30
     atatgtctaa ggcacatggt atcgacccta acatcagaac cggggtaagg accatcacca 780
     cgggtgcccc catcacgtac tccacctatg gcaagtttct tgccgacggt ggttgctctg 840
     ggggcgccta tgacatcata atatgtgatg agtgccactc aactgactcg accactatcc 900
     tgggcatcgg cacagtcctg gaccaagcgg agacggctgg agcgcgactc gtcgtgctcg 960
     ccaccgctac gcctccggga tcggtcaccg tgccacatcc aaacatcgag gaggtggctc 1020
     tgtccagcac tggagaaatc cccttttatg gcaaagccat ccccatcgag accatcaagg 1080
     gggggaggca ceteatttte tgccatteca agaagaaatg tgatgagete geegegaage 1140
     tgtccggcct cggactcaat gctgtagcat attaccgggg ccttgatgta tccgtcatac 1200
     caactagogg agacgtcatt gtogtagcaa oggacgctct aatgacgggc tttacoggog 1260
     atttcgactc agtgatcgac tgcaatacat gtgtcaccca gacagtcgac ttcagcctgg 1320
40
     accegacett caccattgag acgaegaceg tgccacaaga egeggtgtea egetegeage 1380
     ggcgaggcag gactggtagg ggcaggatgg gcatttacag gtttgtgact ccaggagaac 1440
     ggccctcggg catgttcgat tcctcggttc tgtgcgagtg ctatgacgcg ggctgtgctt 1500
     'ggtacgagct cacgcccgcc gagacctcag ttaggttgcg ggcttaccta aacacaccag 1560
     ggttgccegt ctgccaggac catctggagt tctgggagag cgtctttaca ggcctcaccc 1620
45
     acatagacgc ccatttcttg tcccagacta agcaggcagg agacaacttc ccctacctgg 1680
     tagcatacca ggctacggtg tgcgccaggg ctcaggctcc acctccatcg tgggaccaaa 1740
     tgtggaagtg teteataegg etaaageeta egetgeaegg geeaaegeee etgetgtata 1800
     ggctgggagc cgttcaaaac gaggttacta ccacacaccc cataaccaaa tacatcatgg 1860
     catgcatgtc ggctgacctg gaggtcgtca cg
50
     <210> 134
     <211> 822
     <212> DNA
55
     <213> Homo sapiens
     <300>
     <302> stmn cell factor
     <310> M59964
60
     <400> 134
     atgaagaaga cacaaacttg gattctcact tgcatttatc ttcagctgct cctatttaat 60
```

PCT/EP02/00152

```
cctctcgtca aaactgaagg gatctgcagg aatcgtgtga ctaataatgt aaaagacgtc 120
     actaaattgg tggcaaatct tccaaaagac tacatgataa ccctcaaata tgtccccggg 180
     atggatgttt tgccaagtca ttgttggata agcgagatgg tagtacaatt gtcagacagc 240
     ttgactgatc ttctggacaa gttttcaaat atttctgaag gcttgagtaa ttattccatc 300
     atagacaaac ttgtgaatat agtcgatgac cttgtggagt gcgtcaaaga aaactcatct 360
     aaggatotaa aaaaatoatt caagagooca gaacccaggo totttactoo tgaagaatto 420
     tttagaattt ttaatagatc cattgatgcc ttcaaggact ttgtagtggc atctgaaact 480
     agtgattgtg tggtttcttc aacattaagt cctgagaaag attccagagt cagtgtcaca 540
     aaaccattta tgttaccccc tgttgcagcc agctccctta ggaatgacag cagtagcagt 600
10
     aataggaagg ccaaaaatcc ccctggagac tccagcctac actgggcagc catggcattg 660
     ccagcattgt tttctcttat aattggcttt gcttttggag ccttatactg gaagaagaga 720
     cagccaagtc ttacaagggc agttgaaaat atacaaatta atgaagagga taatgagata 780
     agtatgttgc aagagaaaga gagagagttt caagaagtgt aa
15
     <210> 135
     <211> 483
     <212> DNA
     <213> Homo sapiens
20
     <300>
     <302> TGFalpha
     <310> AF123238
25
     <400> 135
     atggtcccct cggctggaca gctcgccctg ttcgctctgg gtattgtgtt ggctgcgtgc 60
     caggccttgg agaacagcac gtccccgctg agtgcagacc cgcccgtggc tgcagcagtg 120
     gtgtcccatt ttaatgactg cccagattcc cacactcagt tctgcttcca tggaacctgc 180
     aggtttttgg tgcaggagga caagccagca tgtgtctgcc attctgggta cgttggtgca 240
30
     cgctgtgagc atgcggacct cctggccgtg gtggctgcca gccagaagaa gcaggccatc 300
     acceptiting togetigete categinges organization that categing at 360
     atacactgct gccaggtccg aaaacactgt gagtggtgcc gggccctcat ctgccggcac 420
     gagaagccca gcgccctcct gaagggaaga accgcttgct gccactcaga aacagtggtc 480
35
     <210> 136
     <211> 1071
     <212> DNA
40
     <213> Homo sapiens
     <300>
     <302> GD3 synthase
     <310> NM003034
45
     <400> 136
     atgageceet gegggeggge eeggegaeaa aegteeagag gggeeatgge tgtaetggeg 60
     tggaagttcc cgcggacccg gctgcccatg ggagccagtg ccctctgtgt cgtggtcctc 120
     tgttggctct acatcttccc cgtctaccgg ctgcccaacg agaaagagat cgtgcagggg 180
50
     gtgctgcaac agggcacggc gtggaggagg aaccagaccg cggccagagc gttcaggaaa 240
     caaatggaag actgctgcga coctgcccat ctctttgcta tgactaaaat gaattcccct 300
     atggggaaga gcatgtggta tgacggggag tttttatact cattcaccat tgacaattca 360
     acttactctc tetteccaca ggcaacccca ttecagetge cattgaagaa atgegeggtg 420
     gtgggaaatg gtgggattct gaagaagagt ggctgtggcc gtcaaataga tgaagcaaat 480
55
     tttgtcatgc gatgcaatct ccctcctttg tcaagtgaat acactaagga tgttggatcc 540
     aaaagtcagt tagtgacagc taatcccagc ataattcggc aaaggtttca gaaccttctg 600
     tggtccagaa agacatttgt ggacaacatg aaaatctata accacagtta catctacatg 660
     cctgcctttt ctatgaagac aggaacagag ccatctttga gggtttatta tacactgtca 720
     gatgttggtg ccaatcaaac agtgctgttt gccaacccca actttctgcg tagcattgga 780
60
     aagttotgga aaagtagagg aatocatgoo aagogootgt ocacaggact ttttctggtg 840
     agcgcagete tgggtetetg tgaagaggtg gecatetatg gettetggee ettetetgtg 900
     aatatgcatg agcagcccat cagccaccac tactatgaca acgtcttacc cttttctggc 960
```

					ttcataaaat ccacttccta		1020 1071
5	<210> 137 <211> 744 <212> DNA <213> Homo	sapiens					
10	<300> <302> FGF14 <310> NM004 <400> 137						
15	atggccgcgg tgggaccggc aacggcaacc ttgcggcgcc	cgtctgccag tggtggatat aagatcccca	caggaggcgg cttctccaaa gctcaagggt	agcagcccca gtgcgcatct atagtgacca	ggcaggcgcg gcaagaaccg tcggcctcaa ggttatattg ccaaggatga	cgggctctgc gaagcgcagg caggcaaggc	120 180 240
20	tctacactct acagggttgt cctgaatgca ttgtacagac	tcaacctcat atatagccat agtttaaaga aacaggaatc	accagtggga gaatggagaa atctgttttt tggtagagcc	ctacgtgttg ggttacctct gaaaattatt tggtttttgg	ttgccatcca acccatcaga atgtaatcta gattaaataa ctcattttct	gggagtgaaa actttttacc ctcatccatg ggaagggcaa	360 420 480 540
25	ttggaagttg cctggggtga	ccatgtaccg	agaaccatct aagcacaagt	ttgcatgatg	ttggggaaac taatgaatgg	ggtcccgaag	660
30	<210> 138 <211> 1503 <212> DNA						

	zur YFP- bzw. GFP-Sequenz ist	
5	<400> 150 ccacaugaag cagcacgacu u	21.
10	<210> 151 <211> 21 <212> RNA <213> Künstliche Sequenz	
15	<220> <223> Beschreibung der künstlichen Sequenz: antisense-Strang (S7B) einer dsRNA, die komplementär zur YFP- bzw. GFP-Sequenz ist	
	<400> 151 gucgugcugc uucauguggu c	21
20	<210> 152 <211> 24 <212> RNA <213> Kūnstliche Sequenz	
25 30	<220> <223> Beschreibung der künstlichen Sequenz: antisense-Strang (R2B) einer dsRNA, die komplementär zur MDR-1-Sequenz ist	
30	<400> 152 uacagcaagc cuggaaccua uagc	24
35	<210> 153 <211> 22 <212> RNA <213> Künstliche Sequenz	
40	<220> <223> Beschreibung der künstlichen Sequenz: sense-Strang (K1A) einer dsRNA, die homolog zur 5`-UTR der Neomycin-Sequenz ist	
45	<400> 153 acaggaugag gaucguuucg ca	22
50	<210> 154 <211> 22 <212> RNA <213> Kůnstliche Sequenz	
55	<220> <223> Beschreibung der künstlichen Sequenz: antisense-Strang (K1B) einer dsRNA, die komplementär zur 5`-UTR der Neomycin-Sequenz ist	
60	<400> 154 ugcgaaacga uccucauccu gu	22

5	<210><211><212><212><213>	21	
J		Beschreibung der künstlichen Sequenz: sense-Strang (K3A) einer dsRNA, die homolog zur 5`-UTR der Neomycin-Sequenz ist	
10	<400>		21
15	<210> <211> <212> <213>	21	
20	<220> <223>	Beschreibung der künstlichen Sequenz: antisense-Strang (K3B) einer dsRNA, die komplementär zur 5`-UTR der Neomycin-Sequenz ist	
25	<400> augcga	156 naacg auccucaucc u	21
30	<210> <211> <212> <213>	24	
35		Beschreibung der künstlichen Sequenz: sense-Strang (K2A) einer dsRNA, die homolog zur 5`-UTR der Neomycin-Sequenz ist	
40	<400> acagga	157 uugag gaucguuucg caug	24
45	<210> <211> <212> <213>	24	
50		Beschreibung der künstlichen Sequenz: antisense-Strang (K2B) einer dsRNA, die komplementär zur 5`-UTR der Neomycin-Sequenz ist	
55	<400> ugcgaa	158 lacga uccucauccu gucu	24
60	<210><211><211><212><213>	24	
	<220>		

	<223> Beschreibung der künstlichen Sequenz: antisense-Strang (S4B) einer dsRNA, die komplementär zur YFP-bzw. GFP-Sequenz ist	
5	<400> 159 gaagucgugc ugcuucaugu gguc	24
10	<210> 160 <211> 24 <212> RNA <213> Künstliche Sequenz	
15	<220> <223> Beschreibung der künstlichen Sequenz: sense-Strang (PKC1 A) einer dsRNA, die homolog zur Proteinkinase C-Sequenz ist	
20	<400> 160 cuucuccgcc ucacaccgcu gcaa	24
25	<210> 161 <211> 22 <212> RNA <213> Künstliche Sequenz	
30	<220> <223> Beschreibung der künstlichen Sequenz: antisense-Strang (PKC2 B) einer dsRNA, die komplementär zur Proteinkinase C-Sequenz ist	
35	<400> 161 gcagcggugu gaggcggaga ag	22
40	<210> 162 <211> 21 <212> RNA <213> Künstliche Sequenz	
45	<pre><220> <223> Beschreibung der künstlichen Sequenz: antisense-Strang (S12B) einer dsRNA, die komplementär zur YFP- bzw. GFP-Sequenz ist</pre>	
	<400> 162 aagucgugcu gcuucaugug g	21
50	<210> 163 <211> 23 <212> RNA <213> Künstliche Sequenz	
55	<pre><220> <223> Beschreibung der künstlichen Sequenz: antisense-Strang (S11B) einer dsRNA, die komplementär zur YFP- bzw. GFP-Sequenz ist</pre>	
60	<400> 163 aagucgugcu gcuucaugug guc	23

5	<210> 164 <211> 20 <212> RNA <213> Künstliche Sequenz	
10	<220> <223> Beschreibung der künstlichen Sequenz: sense-Strang (S13A) einer dsRNA, die homolog zur YFP- bzw. GFP-Sequenz ist	
15	<400> 164 ccacaugaag cagcacgacu	20
20	<210> 165 <211> 22 <212> RNA <213> Künstliche Sequenz	
25	<220> <223> Beschreibung der künstlichen Sequenz: antisense-Strang (S13B) einer dsRNA, die	
25	komplementär zur YFP- bzw. GFP-Sequenz ist <400> 165 agucgugcug cuucaugugg uc	22
30 35	<210> 166 <211> 20 <212> RNA <213> Künstliche Sequenz	
	<pre><220> <223> Beschreibung der künstlichen Sequenz: antisense-Strang (S14B) einer dsRNA, die komplementär zur YFP- bzw. GFP-Sequenz ist</pre>	
40	<400> 166 agucgugcug cuucaugugg	20
45	<210> 167 <211> 24 <212> RNA <213> Künstliche Sequenz	
50	<220> <223> Beschreibung der künstlichen Sequenz: sense-Strang (S4A) einer dsRNA, die homolog zur YFP- bzw. GFP-Sequenz ist	
55	<400> 167 ccacaugaag cagcacgacu ucuu	24
60	<210> 168 <211> 21 <212> RNA <213> Künstliche Sequenz	

5	<220> <223> Beschreibung der künstlichen Sequenz: sense-Strang (ES-7A) einer dsRNA, die homolog zur humanen EGFR-Sequenz ist	
	<400> 168 aacaccgcag caugucaaga u	21
10		
	<210> 169	
	<211> 21	
	<212> RNA <213> Künstliche Sequenz	
15	des names and sequent	
	<220>	
	<223> Beschreibung der künstlichen Sequenz: antisense-Strang (ES-7B) einer dsRNA, die komplementär zur humanen EGFR-Sequenz ist	
20		
	<400> 169 cuugacaugc ugcgguguuu u	21
25	<210> 170	
	<211> 22 <212> RNA	
	<213> Künstliche Sequenz	
30	<220>	
30	<223> Beschreibung der künstlichen Sequenz: sense-Strang (ES-8A) einer dsRNA, die homolog zur humanen EGFR-Sequenz ist	
35	<400> 170	
	aaguuaaaau ucccgucgcu au	22
	<210> 171	
40	<211> 22	
	<212> RNA	
	<213> Künstliche Sequenz	
	<220>	
45	<223> Beschreibung der künstlichen Sequenz:	
	antisense-Strang (ES-8B) einer dsRNA, die	
	komplementär zur humanen EGFR-Sequenz ist	
	<400> 171	
50	ugauagcgac gggaauuuua ac	22
	<210> 172	
c c	<211> 22	
55	<212> RNA <213> Künstliche Sequenz	
	2215 manacrione aeduens	
	<220>	
60	<223> Beschreibung der künstlichen Sequenz: sense-Strang (ES-2A) einer dsRNA, die homolog zur humanen EGFR-Sequenz ist	

WO 02/055693 PCT/EP02/00152

	< 4 00> 172	
	agugugaucc aagcuguccc aa	22
5	<210> 173	
	<211> 24	
	<212> RNA	
	<213> Künstliche Sequenz	
10	<220>	
	<223> Beschreibung der künstlichen Seguenz:	
	antisense-Strang (ES-5B) einer dsRNA, die	
	komplementär zur humanen EGFR-Sequenz ist	
15	<400> 173	
	uugggacagc uuggaucaca cuuu	24

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.