Non-Deterministic Finite Automata

Dr. Ankit Rajpal
Assistant Professor
Department of Computer Science
University of Delhi

Nondeterminism

- NFAs were introduced in 1959 by <u>Michael O.</u> <u>Rabin</u> and <u>Dana Scott</u>.
- A nondeterministic finite automaton has the ability to be in several states at once.
- Transitions from a state on an input symbol can be to any set of states.
- Start in one start state.
- Accept if any sequence of choices leads to a final state.

Formal NFA

- A finite set of states, typically Q.
- An input alphabet, typically Σ .
- A transition function, typically δ .
- A start state in Q, typically q_0 .
- A set of final states $F \subseteq Q$.

Language of an NFA

- A string w is accepted by an NFA if $\delta(q_0, w)$ contains at least one final state.
- The language of the NFA is the set of strings it accepts.

Equivalence of DFA's, NFA's

- Surprisingly, for any NFA there is a DFA that accepts the same language.
- Proof is the subset construction.
- The number of states of the DFA can be exponential in the number of states of the NFA.
- Thus, NFA's accept exactly the regular languages.

Subset Construction

- Given an NFA with states Q, inputs Σ , transition function δ_N , state state q_0 , and final states F, construct equivalent DFA with:
 - States 2^Q (Set of subsets of Q).
 - Inputs Σ .
 - Start state $\{q_0\}$.
 - Final states = all those with a member of F.

NFA's With €-Transitions

- We can allow state-to-state transitions on ∈ input.
- These transitions are done spontaneously, without looking at the input string.
- A convenience at times, but still only regular languages are accepted.

Example: ∈-NFA

Closure of States

- CL(q) = set of states you can reach from state q following only arcs labeled €.
- Example: CL(A) = {A};CL(E) = {B, C, D, E}.

 Closure of a set of states = union of the closure of each state.