REAL OR NOT REAL, THAT IS THE QUESTION

ICI R 2020

Yuanbo Xianglil*, Yubin Dengl*, Bo Dail*, Chen Change Loy2, Dahua Linl

Abstract

- Generalize the standard GAN to a new perspective by treating realness as a random variable that can be estimated from multiple angles.
- In this generalized framework, referred to as RealnessGAN, the discriminator outputs a distribution as the measure of realness
- Compared to multiple baselines, RealnessGAN provides stronger guidance for the generator, achieving improvements on both synthetic and real-world datasets

Background - GAN

Generative Adversarial Networks (GANs)

GAN training procedure pits two neural networks against each other, a generator and a discriminator.

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

log prob of D predicting that real-world data is genuine

log prob of D predicting that G's generated data is not genuine

$$L_D = -\mathbb{E}_{x \sim p_{\text{data}}}[\log D(x)] - \mathbb{E}_{z \sim p_z}[1 - \log D(G(z))]$$

$$L_G = -\mathbb{E}_{z \sim p_z}[\log D(G(z))]$$

Introduction

- In the standard formulation (Goodfellow et al., 2014), the realness of an input sample is estimated by the discriminator using a single scalar.
- However, for high dimensional data such as images, we naturally perceive them from more than
 one angles and deduce whether it is life-like based on multiple criteria.
- In this paper they propose to **generalize the standard framework (Goodfellow et al., 2014) by** treating realness as a random variable, represented as a distribution rather than a single scalar

Figure 1: The perception of realness depends on various aspects. (a) Human-perceived flawless. (b) Potentially reduced realness due to: inharmonious facial structure/components, unnatural background, abnormal style combination and texture distortion.

A Distributional view of Realness

substituting the scalar output of a discriminator D with a distribution P_{realness}

$$D(\boldsymbol{x}) = \{p_{\text{realness}}(\boldsymbol{x}, u); u \in \Omega\}$$

- Where Ω is the set of outcomes of $P_{realness}$ and each outcome u can be viewed as a potential realness measure
- While the standard GAN used two virtual ground-truth scalars, in our case two virtual ground-truth distributions are A_1 (real) A_0 (fake) which are also defined on Ω will represent real/fake.

$$\max_{G} \min_{D} V(G, D) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\mathcal{D}_{\text{KL}}(\mathcal{A}_1 || D(\boldsymbol{x}))] + \mathbb{E}_{\boldsymbol{x} \sim p_g} [\mathcal{D}_{\text{KL}}(\mathcal{A}_0 || D(\boldsymbol{x}))].$$

A Distributional view of Realness

• Note: if we let $P_{realness}$ be a discrete distribution with two outcomes $\{u_0, u_1\}$, and set:

$$A_0(u_0) = A_1(u_1) = 1$$
 $A_0(u_1) = A_1(u_0) = 0$

the updated objective in equation 3 can be explicitly converted to the original objective in equation 2, suggesting RealnessGAN is a generalized version of the original GAN.

In this paper, analysis concerns the space of probability density functions, where D and G are assumed to have infinite capacities, We start from finding the optimal realness discriminator D for any given generator G.
 Then finding the optimal G given optimal D

Theorem 1

Theorem: When G is fixed, for any outcome u and input sample x, the optimal discriminator D satisfies

$$D_G^{\star}(\boldsymbol{x}, u) = \frac{\mathcal{A}_1(u)p_{data}(\boldsymbol{x}) + \mathcal{A}_0(u)p_g(\boldsymbol{x})}{p_{data}(\boldsymbol{x}) + p_g(\boldsymbol{x})}.$$

Proof: Given a fixed G, the objective of D is

$$\min_{D} V(G, D) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\mathcal{D}_{\text{KL}}(\mathcal{A}_1 || D(\boldsymbol{x}))] + \mathbb{E}_{\boldsymbol{x} \sim p_g} [\mathcal{D}_{\text{KL}}(\mathcal{A}_0 || D(\boldsymbol{x}))],$$

Theorem 1 - Proof

$$\min_{D} V(G, D) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\mathcal{D}_{\text{KL}}(\mathcal{A}_{1} || D(\boldsymbol{x}))] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} [\mathcal{D}_{\text{KL}}(\mathcal{A}_{0} || D(\boldsymbol{x}))], \qquad (5)$$

$$= \int_{\boldsymbol{x}} \left(p_{\text{data}}(\boldsymbol{x}) \int_{u} \mathcal{A}_{1}(u) \log \frac{\mathcal{A}_{1}(u)}{D(\boldsymbol{x}, u)} du + p_{g}(\boldsymbol{x}) \int_{u} \mathcal{A}_{0}(u) \log \frac{\mathcal{A}_{0}(u)}{D(\boldsymbol{x}, u)} du \right) dx, \qquad (6)$$

$$= -\int_{\boldsymbol{x}} \left(p_{\text{data}}(\boldsymbol{x}) h(\mathcal{A}_{1}) + p_{g}(\boldsymbol{x}) h(\mathcal{A}_{0}) \right) dx$$

$$- \int_{\boldsymbol{x}} \left(p_{\text{data}}(\boldsymbol{x}) \mathcal{A}_{1}(u) + p_{g}(\boldsymbol{x}) \mathcal{A}_{0}(u) \right) \log D(\boldsymbol{x}, u) du dx, \qquad (7)$$

Where $h(A_1)$ and $h(A_0)$ are their entropies. Marking the first term in equation 7 as C1 since it is irrelevant to D, the objective thus is equivalent to:

Theorem 1 - Proof

Marking the first term in the lase eq as C1 since it is irrelevant to D, the objective thus is equivalent to:

$$\min_{D}V(G,D) = -\int_{\boldsymbol{x}}(p_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x}))\int_{u}\frac{p_{\text{data}}(\boldsymbol{x})\mathcal{A}_1(u) + p_g(\boldsymbol{x})\mathcal{A}_0(u)}{p_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})}\log D(\boldsymbol{x},u)dudx + C_1$$
 Let,
$$p_{\boldsymbol{x}}(u) = \frac{p_{\text{data}}(\boldsymbol{x})\mathcal{A}_1(u) + p_g(\boldsymbol{x})\mathcal{A}_0(u)}{p_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})} \text{ and } C_2 = p_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})$$
 Then:

Then:

$$\min_{D} V(G, D) = C_1 + \int_{\boldsymbol{x}} C_2 \left(-\int_{\boldsymbol{u}} p_{\boldsymbol{x}}(\boldsymbol{u}) \log D(\boldsymbol{x}, \boldsymbol{u}) d\boldsymbol{u} + h(p_{\boldsymbol{x}}) - h(p_{\boldsymbol{x}}) \right) dx,
= C_1 + \int_{\boldsymbol{x}} C_2 \mathcal{D}_{\mathrm{KL}}(p_{\boldsymbol{x}} || D(\boldsymbol{x})) dx + \int_{\boldsymbol{x}} C_2 h(p_{\boldsymbol{x}}) dx.$$

Observing the last equation, one can see that for any valid x, when $D_{KI}(P_x \mid \mid D(x))$ achieves its minimum, D obtains its optimal D*, leading to D* (x) = P_{v} which concludes the proof.

Theorem 2

Next, we move on to the conditions for G to reach its optimal when $D = D_{G}^{*}$.

Theorem: When $D = D_{G}^{*}$, and there exists an outcome $u \in \Omega$ such that $A_{1}(u) \neq A_{0}(u)$, the maximum of $V(G, D_{G}^{*})$ is achieved if and only if $P_{g} = P_{data}$.

Proof: Our goal is to maximize V (G, D*_G)

First, calculate $V^*(G, D_G^*)$ - the case which $P_g = P_{data}$

$$D_G^{\star}(\boldsymbol{x},u) = \frac{\mathcal{A}_1(u)p_{data}(\boldsymbol{x}) + \mathcal{A}_0(u)p_g(\boldsymbol{x})}{p_{data}(\boldsymbol{x}) + p_g(\boldsymbol{x})}. \quad \text{Turns into} \quad D_G^{\star}(\boldsymbol{x},u) = \frac{\mathcal{A}_1(u) + \mathcal{A}_0(u)}{2}$$

 $\text{Lets, plug D}^*_{\mathsf{G}}(\mathsf{x,u}) \text{ into } \quad V(G,D) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}}[\mathcal{D}_{\mathsf{KL}}(\mathcal{A}_1 \| D(\boldsymbol{x}))] + \mathbb{E}_{\boldsymbol{x} \sim p_g}[\mathcal{D}_{\mathsf{KL}}(\mathcal{A}_0 \| D(\boldsymbol{x}))].$

Theorem 2 - Proof

Proof:

$$V^{\star}(G, D_G^{\star}) = \int_u \mathcal{A}_1(u) \log \frac{2\mathcal{A}_1(u)}{\mathcal{A}_1(u) + \mathcal{A}_0(u)} + \mathcal{A}_0(u) \log \frac{2\mathcal{A}_0(u)}{\mathcal{A}_1(u) + \mathcal{A}_0(u)} du.$$

Now, Subtracting $V^*(G, D^*_G)$ from $V(G, D^*_G)$ gives:

$$V'(G, D_{G}^{\star}) = V(G, D_{G}^{\star}) - V^{\star}(G, D_{G}^{\star})$$

$$= \int_{\boldsymbol{x}} \int_{u} (p_{\text{data}}(\boldsymbol{x}) \mathcal{A}_{1}(u) + p_{g}(\boldsymbol{x}) \mathcal{A}_{0}(u)) \log \frac{(p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x}))(\mathcal{A}_{1}(u) + \mathcal{A}_{0}(u))}{2(p_{\text{data}}(\boldsymbol{x}) \mathcal{A}_{1}(u) + p_{g}(\boldsymbol{x}) \mathcal{A}_{0}(u))} du dx,$$

$$= -2 \int_{\boldsymbol{x}} \int_{u} \frac{p_{\text{data}}(\boldsymbol{x}) \mathcal{A}_{1}(u) + p_{g}(\boldsymbol{x}) \mathcal{A}_{0}(u)}{2} \log \frac{\frac{p_{\text{data}}(\boldsymbol{x}) \mathcal{A}_{1}(u) + p_{g}(\boldsymbol{x}) \mathcal{A}_{0}(u)}{2}}{\frac{(p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x}))(\mathcal{A}_{1}(u) + \mathcal{A}_{0}(u))}{4}} du dx,$$

$$= -2 \mathcal{D}_{\text{KL}} (\frac{p_{\text{data}} \mathcal{A}_{1} + p_{g} \mathcal{A}_{0}}{2} \| \frac{(p_{\text{data}} + p_{g})(\mathcal{A}_{1} + \mathcal{A}_{0})}{4}). \tag{14}$$

Theorem 2 - Proof

Proof:

Since $V^*(G, D^*_G)$ is a constant with respect to G, maximizing $V(G, D^*_G)$ is equivalent to maximizing $V'(G, D^*_G)$. The optimal $V'(G, D^*_G)$ is achieved if and only if the KL divergence reaches its minimum, where:

$$\frac{p_{\text{data}}\mathcal{A}_1 + p_g\mathcal{A}_0}{2} = \frac{(p_{\text{data}} + p_g)(\mathcal{A}_1 + \mathcal{A}_0)}{4}$$
$$(p_{\text{data}} - p_g)(\mathcal{A}_1 - \mathcal{A}_0) = 0$$

for any valid x and u. Hence, as long as there exists a valid u that $A_1(u) \neq A_0(u)$, We have $P_{data} = P_g$ for any valid x.

Discussion

Effectiveness of anchors:

view the last equation as a cost function to minimize, when $P_{data} \neq P_g$, for some $u \in \Omega$, the larger the difference between $A_1(u)$ and $A_0(u)$ is, the stronger the constraint on G becomes. Intuitively, RealnessGAN can be more efficiently trained if we choose A_0 and A_1 to be adequately different.

 $\bullet \quad \text{Objective of G:} \quad \max_{G} \min_{D} V(G, D) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\mathcal{D}_{\text{KL}}(\mathcal{A}_1 \| D(\boldsymbol{x}))] + \mathbb{E}_{\boldsymbol{x} \sim p_g} [\mathcal{D}_{\text{KL}}(\mathcal{A}_0 \| D(\boldsymbol{x}))].$

according to this equation, the best way to fool D is to increase the KL divergence between D(x) and the anchor distribution A_0 of fake samples, rather than decreasing the KL divergence between D(x) and the anchor distribution A_1 of real samples

Discussion

Number of outcomes:

In the case of discrete distributions, along with the increment of the number of outcomes, the constraints imposed on G accordingly become more rigorous and can cost G more effort to learn. This is due to the fact that having more outcomes suggests a more fine-grained shape of the realness distribution for G to match.

Flexibility of RealnessGAN:

As a generalization of the standard framework, it is straightforward to integrate RealnessGAN with different GAN architectures.

Implementation

• The realness distribution prealness chose to be a discrete distribution over N outcomes $\Omega = \{u_0, u_1, ..., u_{N-1}\}$. Given an input sample x, the discriminator D returns N probabilities on these outcomes, following:

$$p_{\text{realness}}(\boldsymbol{x}, u_i) = \frac{e^{\boldsymbol{\psi}_i(\boldsymbol{x})}}{\sum_j e^{\boldsymbol{\psi}_j(\boldsymbol{x})}}$$

Similarly, A_1 and A_0 are discrete distributions defined on Ω .

As shown in the theoretical analysis, the ideal objective for G is:

$$(G_{\text{objective1}}) \quad \min_{G} - \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\mathcal{D}_{\text{KL}}(\mathcal{A}_{0} || D(G(\boldsymbol{z})))]$$

Implementation - G objective

- The discriminator D is not always at its optimal, standard objective in practice could only lead to a generator with limited generative power.
- There are several choices for the regularizer:
 - term that minimizes the KL divergence between D(x) of generated samples and random real samples
 - \circ term that minimizes the KL divergence between A₁ and D(x) of generated samples

$$(G_{\text{objective1}}) \quad \min_{G} -\mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\mathcal{D}_{\text{KL}}(\mathcal{A}_{0} \| D(G(\boldsymbol{z}))]$$

$$(G_{\text{objective2}}) \quad \min_{G} \quad \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}, \boldsymbol{z} \sim p_{\boldsymbol{z}}} [\mathcal{D}_{\text{KL}}(D(\boldsymbol{x}) \| D(G(\boldsymbol{z}))] - \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\mathcal{D}_{\text{KL}}(\mathcal{A}_{0} \| D(G(\boldsymbol{z}))]$$

$$(G_{\text{objective3}}) \quad \min_{G} \quad \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\mathcal{D}_{\text{KL}}(\mathcal{A}_{1} \| D(G(\boldsymbol{z}))] - \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\mathcal{D}_{\text{KL}}(\mathcal{A}_{0} \| D(G(\boldsymbol{z}))] .$$

Implementation - Feature resampling

Introduce a resampling technique performed on the realness output to augment data variance

Given a mini-batch $\{x_0, ..., x_{M-1}\}$, a Gaussian distribution N (μ_i, σ_i) is fitted on $\{\psi_i(x_0), \psi_i(x_1), ..., \psi_i(x_{M-1})\}$, which are logits computed by D on i-th outcome. Then, resample M new logits $\{\psi_i'(x_0), \psi_i'(x_1), ..., \psi_i'(x_{M-1}); \psi_i' \sim N (\mu_i, \sigma_i)\}$ for i-th outcome and use them succeedingly.

Advantages using resampling technique:

- More robust models.
- Demands instances of ψ i(x) to be homologous throughout the mini-batch, such that each outcome reflects realness consistently across samples.

Experiments - Synthetic dataset

• 100,000 2D points sampled from a mixture of 9 isotropic Gaussian distributions whose means are arranged in a 3 by 3 grid, with variances equal to 0.05.

Figure 2: Left: real data sampled from the mixture of 9 Gaussian distributions. Right: samples generated by *Std-GAN*, *WGAN-GP*, *LSGAN*, *HingeGAN* and *RealnessGAN*.

• To evaluate P_g, draw 10,000 samples and measure their quality and diversity

Experiments - Synthetic dataset

Figure 3: First row: the results of RealnessGAN when fixing $k_G = k_D = 1$ and increasing the number of outcomes. Second row: the results of RealnessGAN when k_G is properly increased. Bottom curves: under the settings of second row, the ratio of high quality samples and the number of recovered modes.

Experiments - Real World datasets

	Method	FID ↓				SWD (×10 ³) \downarrow			
		Min	Max	Mean	SD	Min	Max	Mean	SD
	Std-GAN	27.02	70.43	34.85	9.40	14.81	68.06	30.58	15.39
CelebA	WGAN-GP	70.28	104.60	81.15	8.27	17.85	30.56	22.09	2.93
	LSGAN	30.76	57.97	34.99	5.15	16.72	23.99	20.39	2.25
	HingeGAN	25.57	75.03	33.89	10.61	14.91	54.30	28.86	10.34
	RealnessGAN	23.51	81.3	30.82	7.61	12.72	31.39	17.11	3.59
CIFAR10	Std-GAN	38.56	88.68	47.46	15.96	28.76	57.71	37.55	7.02
	WGAN-GP	41.86	79.25	46.96	5.57	28.17	36.04	30.98	1.78
	LSGAN	42.01	75.06	48.41	7.72	31.99	40.46	34.75	2.34
	HingeGAN	42.40	117.49	57.30	20.69	32.18	61.74	41.85	7.31
	RealnessGAN	34.59	102.98	42.30	11.84	22.80	53.38	26.98	5.47

Experiments - Resampling technique

Despite the results are similar, feature resampling stabilizes the training process especially in the latter stage.

Figure 5: Training FID curves of *Realness-GAN* with and without feature re-sampling.

Experiments - Different anchor distributions

$\mathcal{D}_{\mathrm{KL}}(\mathcal{A}_1 \ \mathcal{A}_0)$	Min	Max	Mean	SD	
1.66	31.01	96.11	40.75	11.83	
5.11	26.22	87.98	36.11	9.83	
7.81	25.98	85.51	36.30	10.04	
11.05	23.51	81.30	30.82	7.61	

Figure 6: Samples generated by *RealnessGAN* trained with the ideal objective (equation 18). Toprow: samples when $\mathcal{D}_{\mathrm{KL}}(\mathcal{A}_1 \| \mathcal{A}_0) = 11.05$. Bottom-row: samples when $\mathcal{D}_{\mathrm{KL}}(\mathcal{A}_1 \| \mathcal{A}_0) = 33.88$.

Experiments - Different G objectives

Table 3: FID scores of G on CIFAR10, trained with different objectives.

G Objective	FID	
Objective1 (equation 18)	36.73	
Objective2 (equation 19)	34.59	
Objective3 (equation 20)	36.21	
DCGAN	38.56	
WGAN-GP	41.86	
LSGAN	42.01	
HingeGAN	42.40	

Figure 7: Training curves of *RealnessGAN* on CelebA using objective2 (equation 19) and objective3 (equation 20).

Questions?

