Programação Dinâmica

Ennio Ferreira e Victor Matheus 08/06/2019 - LAMFO /UnB

AGENDA

- INTRODUÇÃO
- CARACTERIZAÇÃO DO PROBLEMA
- TIPOS DE SOLUÇÕES
- DESEMPENHO
- PROBLEMA AVANÇADO
- REFERÊNCIAS

INTRODUÇÃO

INTRODUÇÃO Conceito - Programação Dinâmica

A programação dinâmica é um método de desenvolvimento que busca encontrar a solução de vários subproblemas para, daí então, encontrar a solução do problema geral.

A grande novidade dessa metodologia é que <u>os subresultados são</u> <u>armazenados em memória</u> pois eles são utilizados em diversos momentos dentro do cômputo da solução.

INTRODUÇÃO Conceito - Programação Dinâmica

DIVISÃO-E-CONQUIS<mark>T</mark>A

DEPENDÊNCIA DE SOLUÇÕES

INTRODUÇÃO Exemplo - Caminho mínimo

INTRODUÇÃO Exemplo - Caminho mínimo

CARACTERIZAÇÃO DO PROBLEMA Exemplo - Série de Fibonacci

FIB(N) =
$$\begin{cases} FIB[N-1] + FIB[N-2], \text{ se N > 1} \\ 0, \text{ se N = 0} \\ 1, \text{ se N = 1} \end{cases}$$

Encontrar o termo N da sequência de Fibonacci é um problema que pode ser resolvido com Programação Dinâmica. Mas por quê?

1º) Identificar problema como sendo de Programação Dinâmica

• **Subestrutura ótima:** a solução ótima do problema provém das soluções de subproblemas dependentes.

1º) Identificar problema como sendo de Programação Dinâmica

 Sobreposição de soluções: a solução ótima passa pela resolução de subproblemas que aparecem duas ou mais vezes.

2°) Definir o valor da solução ótima recursivamente

Para o caso da série de Fibonacci, esta etapa é bastante simples tendo em vista que já na explicação do problema é possível notar que a própria função que encontra a solução do termo N é demandada novamente para descoberta dos termos N-1 e N-2.

```
def fibonacci(n):
    if n == 1 or n == 0:
        return n
    return fibonacci(n-1) + fibonacci(n-2)
```

3°) Calcular valor da solução ótima da forma "bottom-up" ou topdown"

 Top-down (memoization): parte-se da solução geral ótima que se deseja encontrar e, então, analisa-se quais subproblemas são necessários resolver até que se chegue em um subproblema com resolução trivial.

$$fib(N) \rightarrow fib(N-1) \rightarrow fib(N-2) \rightarrow \dots \rightarrow fib(2) \rightarrow fib(1) \rightarrow fib(0)$$

Os resultados vão sendo armazenados em uma tabela e são reutilizados se o mesmo subproblema aparecer novamente.

```
def fibonacciTopDown(n, table = {}):
    if n == 1 or n == 0:
                                        Solução
        return n
                                         Trivial
    try:
                                        Busca na
        return table[n]
                                         tabela
    except:
        table[n] = fibonacciTopDown(n-1) + fibonacciTopDown(n-2)
                                                                          Armazena
                                                                           resultado
        return table[n]
```

3°) Calcular valor da solução ótima da forma "bottom-up" ou topdown"

 Bottom-up (tabulation): parte-se da solução trivial e desenvolvem-se os cálculos até encontrar a solução ótima do problema.

$$fib(0) \rightarrow fib(1) \rightarrow fib(2) \rightarrow ... \rightarrow fib(N-2) \rightarrow fib(N-1) \rightarrow fib(N)$$

Os resultados também vão sendo armazenados em uma tabela para serem reutilizados.

DESEMPENHO

DESEMPENHO Top-down x Bottom-up

TOP-DOWN x BOTTOM-UP

Quesitos	Top-down	Bottom-up
Especificação do problema	É mais fácil de se pensar no problema	Formular o problema pode ser complexo
Código	Codificação mais simples e com regras mais simples	Torna-se inviável quando há muitas condições
Resolução dos Subproblemas	Resolve apenas os subproblemas que são necessários	Resolve todos os subproblemas do problema original
Parâmetros na Tabela	A tabela é preenchida apenas com as soluções necessárias	Como parte da solução mais básica, preenche a tabela com soluções que podem ser desnecessárias

DESEMPENHO Código

```
import time
for n in range(35, 40):
   start = time.time()
   result = fibonacci(n)
   finish = time.time()
   print("======================="")
   print("Fibonacci(", n, ")")
   print("Resultado - Fibonacci 1 (Original): ", result)
   print("Tempo Total de Execução - Fibonacci 1: ", round(finish - start, 2), "segundos")
   start = time.time()
   result = fibonacciTopDown(n)
   finish = time.time()
   print("Resultado - Fibonacci 2 (Top-Down): ", result)
   print("Tempo Total de Execução - Fibonacci 2: ", round(finish - start, 20), "segundos")
   start = time.time()
   result = fibonacciBottomUp(n)
   finish = time.time()
   print("Resultado - Fibonacci 3 (Bottom-Up): ", result)
   print("Tempo Total de Execução - Fibonacci 3: ", round(finish - start, 20), "segundos")
```

DESEMPENHO Recursivo x Top-down x Bottom-up

Multiplicação de Matrizes - Especificação do problema

Por ser uma operação associativa, a multiplicação de matrizes em sequência pode gerar diferentes custos computacionais.

- (A₁ x A₂) x A₃ = 4 * 10 * 3 + 4 * 3 * 12 = 264 operações
- $A_1 \times (A_2 \times A_3) = 10 * 3 * 12 + 4 * 10 * 12 = 840$ operações

1º) Identificar problema como sendo de Programação Dinâmica

Subestrutura Ótima: vamos considerar uma cadeia de matrizes representadas por $A_{i...j}$ ($A_i \times A_{i+1} \times ... \times A_j$) e que a solução ótima divide as matrizes na posição k conforme abaixo:

$$(A_{i...k})x (A_{k+1...i})$$

Perceba que a solução ótima do problema geral depende da solução ótima de $A_{i...k}$ e $A_{k+1...i}$.

1º) Identificar problema como sendo de Programação Dinâmica

Sobreposição : vamos considerar uma sequência de multiplicação de 4 matrizes

•
$$k = 1$$

(A₁) x (A₂ x A₃ x A₄)

1...1 2...4

• $k = 2$

(A₁ x A₂) x (A₃ x A₄)

1...2 3...4

Multiplicação de Matrizes

 $(A_1 \times A_2 \times A_3 \times A_4)$

Multiplicação de Matrizes

Multiplicação de Matrizes

 $(A_1 \times A_2) \times (A_3 \times A_4)$

Multiplicação de Matrizes

Multiplicação de Matrizes

Multiplicação de Matrizes

 $(A_1 \times A_2 \times A_3 \times A_4)$

2°) Definir o valor da solução ótima recursivamente

Como visto anteriormente, podemos dividir a solução geral em subproblemas pela divisão da matrizes na k-ésima posição de tal forma que gere o menor número de multiplicações.

200 300
(
$$A_{i...k}$$
)x ($A_{k+1...j}$)
 4×10 10×3

Por não sabermos que valor de k será, esse parâmetro assume valores no intervalo de i \leq k < j. Definindo M[i,j] como sendo o custo para se realizar a multiplicação das matrizes i até j, temos que para a divisão anterior

2°) Definir o valor da solução ótima recursivamente

$$M[i, j] = M[i, k] + M[k + 1, j] + p[i-1]p[k]p[j]$$

Dessa forma, no exemplo anterior teríamos

$$M[i, j] = 200 + 300 + 4*10*3 = 620$$
 operações

Assim, define-se a fórmula recursiva final será:

$$M[i, j] = \begin{cases} 0, \text{ se } i = j \\ \min_{i \le k < j} \{ M[i, k] + M[k + 1, j] + p[i-1]p[k]p[j] \} \end{cases}$$

3°) Calcular valor da solução ótima da forma "bottom-up" ou topdown"

(A ₁	X	A_2	X	A_3	X	A ₄)
4 x 10		10 x 3		3 x 12		12 x 20
p0 p1		p1 p2		p2 p3		p3 p4

Para este exemplo, vamos escolher resolvê-lo pela abordagem bottom-up.

Multiplicação de Matrizes

(A ₁ 4 x 10 p0 p1	X	A ₂ 10 x 3	X	A ₃ 3 x 12	X	A ₄) 12 x 20 p3 p4	M[i, j] =	0, se i = j $\min_{i \le k < j} \{ M[i, k] + M[k + 1, j] + p[i-1]p[k]p[j] \}$
p0 p1		p1 p2		p2 p3		p3 p4		

i\j	1	2	3	4
1	0			
2	X	0		
3	X	X	0	
4	Х	Х	Х	0

$$M[1, 2] = M[1, 1] + M[2, 2] + p[0]p[1]p[2]$$

= 0 + 0 + 4 * 10 * 3 = 120

Multiplicação de Matrizes

4 x 10 10 x 3 3 x 12 12 x 20 $\min_{i \le k < j} \{ M[i, K] + M[K + 1, j] + p[i-1]p$	(A ₁ 4 x 10 p0 p1	X	A ₂ 10 x 3 p1 p2	X	A ₃ 3 x 12 p2 p3	x	A ₄) 12 x 20 p3 p4	M[i, j] =
--	------------------------------------	---	--	---	--	---	---	-----------

i\j	1	2	3	4
1	0	120		
2	X	0		
3	Х	Х	0	
4	Х	Х	Х	0

$$M[1, 2] = M[1, 1] + M[2, 2] + p[0]p[1]p[2]$$

= 0 + 0 + 4 * 10 * 3 = 120

$$M[2, 3] = M[2, 2] + M[3, 3] + p[1]p[2]p[3]$$

= 0 + 0 + 10 * 3 * 12 = 360

(A ₁ 4 x 10 p0 p1	X	A ₂ 10 x 3 p1 p2	X	A ₃ 3 x 12 p2 p3	X	A ₄) 12 x 20 p3 p4	$M[i, j] = \frac{0, \text{ se } i = j}{\min_{i \le k < j} \{ M[i, k] + M[k + 1, j] \}}$] + p[i-1]p[k]p[j] }

i\j	1	2	3	4
1	0	120		
2	X	0	360	
3	X	Х	0	
4	Х	Х	Х	0

$$M[1, 2] = M[1, 1] + M[2, 2] + p[0]p[1]p[2]$$

= 0 + 0 + 4 * 10 * 3 = 120

$$M[2, 3] = M[2, 2] + M[3, 3] + p[1]p[2]p[3]$$

= 0 + 0 + 10 * 3 * 12 = 360

$$M[3, 4] = M[3, 3] + M[4, 4] + p[2]p[3]p[4]$$

= 0 + 0 + 3 * 12 * 20= 720

3°) Calcular valor da solução ótima da forma "bottom-up" ou topdown"

	1]p[k]p[j]
--	------------

i\j	1	2	3	4
1	0	120		
2	X	0	360	
3	Х	Х	0	720
4	Х	Х	Х	0

• k = 1

$$M[1, 3] = M[1, 1] + M[2, 3] + p[0]p[1]p[3]$$

= 0 + 360 + 4 * 10 * 12 = 840

• k = 2

$$M[1, 3] = M[1, 2] + M[3, 3] + p[0]p[2]p[3]$$

= 120 + 0 + 4 * 3 * 12 = 264

Multiplicação de Matrizes

(A ₁ 4 x 10 p0 p1	X	A ₂ 10 x 3 p1 p2	X	A ₃ 3 x 12 p2 p3	X	A ₄) 12 x 20 p3 p4	$M[i, j] = -\begin{cases} 0, s \\ mir \end{cases}$	se i = j $\mathbf{n}_{i \le k < j} \{ M[i, k] + M[k + 1, j] + p[i-1]p[k]p[j] \}$
рорт		pı pz		pz p3		p3 p4		

i\j	1	2	3	4
1	0	120	264	
2	X	0	360	
3	Х	Х	0	720
4	Х	Х	Х	0

(A ₁ 4 x 10 p0 p1	X	A ₂ 10 x 3 p1 p2	X	A ₃ 3 x 12 p2 p3	X	A_4) M[i, j] = -	0, se i = j $\min_{i \le k < j} \{ M[i, k] + M[k + 1, j] + p[i-1]p[k]p[j] \}$
						• k = '	

i\j	1	2	3	4
1	0	120	264	
2	X	0	360	1320
3	X	X	0	720
4	Х	Х	Х	0

$$M[1, 4] = M[1, 1] + M[2, 4] + p[0]p[1]p[4]$$

= 0 + 1320 + 4 * 10 * 20 = 2120

•
$$k = 2$$

 $M[1, 4] = M[1, 2] + M[3, 4] + p[0]p[2]p[4]$
 $= 120 + 720 + 4 * 3 * 20 = 1080$

•
$$k = 3$$

 $M[1, 4] = M[1, 3] + M[4, 4] + p[0]p[3]p[4]$
 $= 264 + 0 + 4 * 12 * 20 = 1224$

3°) Calcular valor da solução ótima da forma "bottom-up" ou topdown"

(A ₁ 4 x 10 p0 p1	X	A ₂ 10 x 3 p1 p2	X	A ₃ 3 x 12 p2 p3	X	A ₄) 12 x 20 p3 p4	$M[i, j] = \begin{cases} 0, \text{ se } i = j \\ \min_{i \le k < j} \{ M[i, k] + M[k + 1, j] + p[i-1]p[k]p[j] \end{cases}$
							• k – 1

i\j	1	2	3	4
1	0	120	264	1080
2	X	0	360	1320
3	Х	Х	0	720
4	Х	Х	Х	0

• k = 1

$$M[1, 4] = M[1, 1] + M[2, 4] + p[0]p[1]p[4]$$

= 0 + 1320 + 4 * 10 * 20 = 2120

- k = 2 M[1, 4] = M[1, 2] + M[3, 4] + p[0]p[2]p[4]= 120 + 720 + 4 * 3 * 20 = 1080
- k = 3
 M[1, 4] = M[1, 3] + M[4, 4] + p[0]p[3]p[4]
 = 264 + 0+ 4 * 12 * 20= 1224

Multiplicação de Matrizes

3°) Calcular valor da solução ótima da forma "bottom-up" ou topdown"

	(A ₁ 4 x 10 p0 p1	X	A ₂ 10 x 3 p1 p2	X	A ₃ 3 x 12 p2 p3	x	A ₄) 12 x 20 p3 p4	M[i, j] =	0, se i = j $\min_{i \le k < j} \{ M[i, k] + M[k + 1, j] + p[i-1]p[k]p[j] \}$
--	------------------------------------	---	--	---	-----------------------------------	---	--------------------------------------	-----------	--

i∖j	1	2	3	4
1	0	120	264	1080
2	X	0	360	1320
3	Х	Х	0	720
4	Х	Х	Х	0

Como saber ao final quais matrizes multiplicar primeiro?

•
$$k = 2$$

$$M[1, 4] = M[1, 2] + M[3, 4] + p[0]p[2]p[4]$$

$$= 120 + 720 + 4 * 3 * 20 = 1080$$

$$(A_1 \quad x \quad A_2 \quad)x(\quad A_3 \quad x \quad A_4)$$

$$M[1,2] \qquad M[3,4]$$

REFERÊNCIAS

REFERÊNCIAS

- CORMEN, Thomas H. et al. Introduction to algorithms. MIT press, 2009.
- Geeks for Geeks: https://www.geeksforgeeks.org/dynamicprogramming/#concepts
- Introduction to Computational Thinking and Data Science (MIT Course): https://www.edx.org/course/introduction-to-computational-thinking-and-data-science-2
- Matrix Chain Multiplication Dynamic Programming: https://www.youtube.com/watch?v=GMzVeWpyTN0

Obrigado!