Problema 1

- a) Calcule el valor numérico de las siguientes expresiones:
 - i) $i^{2000} + i^{1999} + i^{82} + i^{-47}$;
 - ii) $i^1 \cdot i^2 \cdot i^3 \cdot \cdots \cdot i^{2000}$:
 - iii) $\sum_{\ell=0}^{n} i^{\ell}$, para cada $n \in \mathbb{N}$.
- b) Si $z_1, z_2 \in \mathbb{C}$ tal que $|z_1| = |z_2| = 1$ y $z_1 z_2 \neq -\alpha$, para α un número real. Determine para qué valor(es) de α la expresión $\frac{z_1 + z_2}{\alpha + z_1 z_2}$ es un número real.

Problema 2

Pruebe que si $z \in \mathbb{C}$ es una raíz del polinomio $\sum_{j=0}^{n} a_{j}x^{j}$, $a_{j} \in \mathbb{R}, \forall j \in \{1, n\}$, entonces su conjugado también es raíz. ¿Vale generalmente lo mismo si alguno de los coeficientes es un número complejo que no es real? Justifique.

Problema 3.

i) Sea $(a_n), (b_n) \subseteq \mathbb{R}$, para $n \in \mathbb{N}$, se define $a_n + ib_n = \left(\frac{1 + i\sqrt{3}}{2}\right)^n$. Entonces, determine un valor numérico (independiente de n) para la siguiente expresión:

$$a_{n-1}b_n - a_nb_{n-1}$$
.

Hint. Puede ser de utilidad la siguiente identidad trigonométrica:

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta),$$

para cada $\alpha, \beta \in \mathbb{R}$.

ii) Sea z_0, z_1 las dos raíces de la ecuación: $z^2 - 2z + 2 = 0$. Pruebe que

$$\frac{1}{z_0 - z_1} ((x + z_0)^{101} - (x + z_1)^{101}) = \sin(101 \cdot \theta) \csc^{101}(\theta),$$

donde $\cot(\theta) = x + 1, x \in \mathbb{R}$.

Hint. Puede ser de utilidad emplear el Teorema de De Moivre.

Problema 4.

1. Encuentre todos los números complejos Z que satisfacen la ecuación

$$(Z+2i)^3 = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$$

2. Demuestre que el perímetro del polígono con vértices en las raíces octavas de la unidad es $8\sqrt{2-\sqrt{2}}$. **Hint:** La distancia entre dos números complejos z y w es |z-w|.

Problema 5.

- a) Escriba -1 en su forma polar y determine las soluciones de la ecuación $z^4+1=0$.
- b) Determine las soluciones de $z^4 1 = 0$.
- c) Dibuje las soluciones de ambas ecuaciones en el plano complejo.
- d) Muestre que las soluciones de $z^4 + 1 = 0$ y $z^4 1 = 0$ son también soluciones de $z^8 1 = 0$.
- e) Determine las soluciones de la ecuación $z^6 + z^4 + z^2 + 1 = 0$.

Problema 6.

- 1. Exprese $z = \left(\frac{1+i}{\sqrt{3}-i}\right)^{144}$ en forma a+bi
- 2. Demuestre que para todo $n \in \mathbb{N}$ tenemos que

$$(1+i)^n + (1-i)^n \in \mathbb{R}$$

y que

$$(1+2i)^n + (1-2i)^n \in \mathbb{R}$$

Problema 7.

1. Determine $Re(\omega)$, $Im(\omega)$, módulo y conjugado para

$$\omega = \frac{\left[8\left(\cos\left(\frac{3\pi}{8}\right) + i\sin\left(\frac{3\pi}{8}\right)\right)\right]^3}{\left[2\left(\cos\left(\frac{\pi}{16}\right) + i\sin\left(\frac{\pi}{16}\right)\right)\right]^{10}}$$

2. Para $n \in \mathbb{N}$ a las raíces de la ecuación $z^n = 1$ las denotaremos por

$$\xi_{\lambda} := \cos\left(\frac{2\lambda\pi}{n}\right) + \mathrm{i} \operatorname{sen}\left(\frac{2\lambda\pi}{n}\right), \qquad \lambda \in \{0, 1, ..., n-1\}.$$

Verifique que:

(a)
$$\xi_{\lambda} \cdot \xi_{\mu} = \xi_{\lambda+\mu}$$

(b)
$$\forall \ell \in \mathbb{Z} : (\xi_{\lambda}^{\ell} = \xi_{\ell\lambda})$$
 (c) $\xi_{\lambda}^{-1} = \overline{\xi}_{\lambda}$

(c)
$$\xi_{\lambda}^{-1} = \overline{\xi}_{\lambda}$$

Problema 8. Se define el número complejo

$$\omega_1 = \cos\left(\frac{2\pi}{5}\right) + i \sin\left(\frac{2\pi}{5}\right)$$

como una raíz quinta de la unidad.

a) Si $\omega_0 = 1$, ω_2 , ω_3 y ω_4 son las otras raíces quintas de la unidad, escríbalas como potencias de ω_1 .

b) Use la suma geométrica para determinar el valor numérico de $\sum_{k=0}^{4} \omega_k$. Luego, obtenga el valor numérico

$$\det \sum_{k=1}^{4} \omega_k.$$

c) Use los ítem anteriores para calcular el producto

$$(1-\omega_1)\cdot(1-\omega_2)\cdot(1-\omega_3)\cdot(1-\omega_4).$$