The Five Miracles of Mirror Descent

Hadar Tal

hadar.tal@mail.huji.ac.il

This paper is a summary of the educational materials and lectures from Professor Sebastian Bubeck, enhanced by Claire Boyer's comprehensive notes, and structured according to Tomer Koren's course on Optimization for Computer Science.

Contents

1	Mat	thematical Background	1
	1.1	Multivariable Calculus	1
	1.2	Taylor series	3
	1.3	Important subsets of \mathbb{R}^n	4
	1.4	Convexity	6
		1.4.1 Definitions and Fundamental Theorems	6
		1.4.2 Inequalities and Characterizations	6
		1.4.3 Optimization and Projection	7
	1.5	Properties of Convex Functions	
	1.6	Important Inequalities	8
		1.6.1 $1+x \leq e^x$	8

ii CONTENTS

Chapter 1

Mathematical Background

1.1 Multivariable Calculus

Definition 1.1.1. Diffrentiability, single variable

Let $f:(a,b)\to\mathbb{R}$ be a function. We say that f is differentiable at $x_0\in(a,b)$ if

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \tag{1.1}$$

exists. If f is differentiable at x_0 , then $f'(x_0)$ is the derivative of f at x_0 .

Definition 1.1.2. Diffrentiability, single variable (alternative)

Let $f:(a,b)\to\mathbb{R}$ be a function. We say that f is differentiable at $x_0\in(a,b)$ if there exists a number m such that:

$$f(x_0 + h) = f(x_0) + m \cdot h + E(h) \text{ where } \lim_{h \to 0} \frac{E(h)}{h} = 0$$
 (1.2)

If f is differentiable at x_0 , then $f'(x_0) = m$ is the derivative of f at x_0 .

Definition 1.1.3. Diffrentiability, multivariable

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. We say that f is differentiable at x_0 if there exists a vector $m \in \mathbb{R}^n$ such that:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - m \cdot h}{||h||} = 0 \tag{1.3}$$

If f is differentiable at x_0 , then m is the gradient of f at x_0 , denoted $\nabla f(x_0)$.

Suppose the $S \subseteq \mathbb{R}^n$ and $f: S \to \mathbb{R}$ is a function.

Definition 1.1.4. Limit, multivariate function

We say that the limit of f at x_0 is L if for all $\epsilon > 0$, there exists $\delta > 0$ such that for all x such that $||x - x_0|| < \delta$, we have $|f(x) - L| < \epsilon$.

Definition 1.1.5. Diffrentiability, multivariable (alternative)

We say that f is differentiable at x_0 if there exists a vector $m \in \mathbb{R}^n$ such that:

$$f(x_0 + h) = f(x_0) + m^T \cdot h + E(h) \text{ where } \lim_{h \to 0} \frac{E(h)}{||h||} = 0$$
 (1.4)

If f is differentiable at x_0 , then m is the gradient of f at x_0 , denoted $\nabla f(x_0)$.

Definition 1.1.6. Partial Derivative

The partial derivative of f with respect to the i-th variable at x is:

$$\frac{\partial f}{\partial x_i}(x) = \lim_{h \to 0} \frac{f(x + h \cdot e_i) - f(x)}{h} \tag{1.5}$$

where e_i is the i-th standard basis vector.

Theorem 1.1.1. (Diffrentiability vs. Partial Derivatives)

If f is differentiable at x, then all partial derivatives of f exist at x and:

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right) \tag{1.6}$$

- If any partial derivative of f does not exist at x, then f is not differentiable at x.
- If all partial derivatives of f exist at x, then f may still not be differentiable at x and the vector $m = \nabla f(x)$ is the only possible vector that satisfies the definition of differentiability.

Definition 1.1.7. Continuously Differentiable

We say that f is continuously differentiable or of class C^1 if all partial derivatives of f exist and are continuous at every point in S.

Theorem 1.1.2. If f is continuously differentiable, then f is differentiable.

Definition 1.1.8. The directional derivative

For a given $x \in S$ and a unit vector $u \in \mathbb{R}^n$, the directional derivative of f at x in the direction of u is:

$$\partial_u f(x) = \lim_{h \to 0} \frac{f(x + h \cdot u) - f(x)}{h} \tag{1.7}$$

Equivalently, $\partial_u f(x) = g'(0)$ where $g(h) = f(x + h \cdot u)$.

Theorem 1.1.3. If f is differentiable at x, then for all $u \in \mathbb{R}^n$, the directional derivative of f at x in the direction of u exists and is given by:

$$\partial_u f(x) = \nabla f(x) \cdot u \tag{1.8}$$

Theorem 1.1.4. Fermat's Theorem

If f is differentiable at x and x is a local minimum of f, then $\nabla f(x) = 0$.

Theorem 1.1.5. Suppose that $f: S \to \mathbb{R}$ is differentiable at x. Then $\nabla f(x)$ is orthogonal to the level set of f that passes through x.

Theorem 1.1.6. The mean value theorem

If $f: S \to \mathbb{R}$ is differentiable on the open interval between a and b, then there exists $c \in [a,b]$ such that:

$$f(b) - f(a) = \nabla f(c) \cdot (b - a) \tag{1.9}$$

where $[a, b] = a + t(b - a)|t \in [0, 1]$.

1.2. TAYLOR SERIES 3

Definition 1.1.9. Second-order partial derivatives

Suppose that f is a C^1 function. If the partial derivatives of f are differentiable, then the second-order partial derivatives of f are:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) \tag{1.10}$$

Equivalently, $\frac{\partial^2 f}{\partial i \partial j} = \partial_j \partial_j f$. If i = j we denote $\frac{\partial^2 f}{\partial x_i^2}$ or $(\partial_i^2 f)$

Definition 1.1.10. The C^2 class

We say that f is of class C^2 if all second-order partial derivatives of f exist and are continuous.

Theorem 1.1.7. Clairaut's Theorem If f is of class C^2 , then $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$.

Definition 1.1.11. Hessian Matrix

The Hessian matrix of f at x is the matrix of second-order partial derivatives of f at x:

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

$$(1.11)$$

Corollary. The interpretation of the Hessian matrix Let $u \in \mathbb{R}^n$ be a unit vector. then

$$\partial_{uu}^2 f(x) = \sum_{i,j=1}^n \partial_{ij} f(x) u_i u_j = u^T \nabla^2 f(x) u$$
(1.12)

1.2 Taylor series

Definition 1.2.1. Taylor Series

Let $f : \mathbb{R} \to \mathbb{R}$ be a function that is k times differentiable at x_0 . Then the Taylor series of f at x_0 is given by:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k + R_k(x)$$
 (1.13)

where $R_k(x) = \frac{f^{(k+1)}(c)}{(k+1)!}(x-x_0)^{k+1}$ for some c between x and x_0 .

Definition 1.2.2. Taylor Series for Multivariable Functions (k=2)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function that is C^2 at x_0 . Then for any h such that $x_0 + h \in S$, there exists $\theta \in [0,1]$ such that:

$$f(x_0 + h) = f(x_0) + \nabla f(x_0) \cdot h + \frac{1}{2} h^T \nabla^2 f(x_0 + \theta h) h$$
 (1.14)

1.3 Important subsets of \mathbb{R}^n

Definition 1.3.1. Open set

A set $S \subseteq \mathbb{R}^n$ is open if for all $x \in S$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq S$.

Definition 1.3.2. Closed set

A set $S \subseteq \mathbb{R}^n$ is closed if its complement is open.

Definition 1.3.3. Interior point

A point $x \in S$ is an interior point of S if there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq S$.

Corollary 1.3.1. Open set characterization

A set $S \subseteq \mathbb{R}^n$ is open if and only if every point in S is an interior point of S.

Definition 1.3.4. Boundary point

A point $x \in S$ is a boundary point of S if for all $\epsilon > 0$, $B(x, \epsilon) \cap S \neq \emptyset$ and $B(x, \epsilon) \cap S^c \neq \emptyset$.

Definition 1.3.5. *Half-space*

A half-space in \mathbb{R}^n is a set of the form $\{x \in \mathbb{R}^n : a^Tx \leq b\}$ for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$.

Definition 1.3.6. Hyperplane

A hyperplane in \mathbb{R}^n is a set of the form $\{x \in \mathbb{R}^n : a^Tx = b\}$ for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$.

Definition 1.3.7. Polyhedron (Polyhedra)

A polyhedron in \mathbb{R}^n is a set of the form $\{x \in \mathbb{R}^n : Ax \leq b\}$ for some $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Equivalently, a polyhedron is the intersection of finitely many half-spaces.

Definition 1.3.8. Polytope

A polytope in \mathbb{R}^n is a bounded polyhedron - i.e., there exists r > 0 such that $\forall x \in \{x \in \mathbb{R}^n : Ax \leq b\} \implies ||x|| \leq r$. Equivalently, a polytope is the convex hull of finitely many points.

Figure 1.1: Polytope

Definition 1.3.9. Convex set

A set $S \subseteq \mathbb{R}^n$ is convex if for all $x, y \in S$ and $\lambda \in [0, 1]$, we have $\lambda t + (1 - \lambda)y \in S$.

Figure 1.2: Convex set

Definition 1.3.10. Convex hull

The convex hull of a set $S \subseteq \mathbb{R}^n$ is the smallest convex set that contains S.

Definition 1.3.11. Conic combination

A point $x \in \mathbb{R}^n$ is a conic combination of $y_1, \ldots, y_k \in \mathbb{R}^n$ if there exist $\lambda_1, \ldots, \lambda_k \geq 0$ such that $x = \sum_{i=1}^k \lambda_i y_i$.

Definition 1.3.12. Conic hull

The conic hull of a finite set $S \subseteq \mathbb{R}^n$ is the set of all conic combinations of points in S.

Definition 1.3.13. Convex cone

A set $S \subseteq \mathbb{R}^n$ is a convex cone if for all $x \in S$ and $\lambda \geq 0$, we have $\lambda x \in S$.

(a) Convex cone that is not a conic hull of finitely (b) Convex cone genrated by the conic combination many generators.

of three black vectors (conic hull).

Definition 1.3.14. Normal cone

The normal cone to a set S at a point x is defined as

$$N_S(x) = \{ v \in \mathbb{R}^n : \langle v, y - x \rangle \le 0 \text{ for all } y \in S \}$$
 (1.15)

Definition 1.3.15. Tangent cone

The tangent cone to a set S at a point x is defined as

$$T_S(x) = \{ v \in \mathbb{R}^n : \lim_{t \to 0^+} \frac{x + tv - x}{t} \in S \}$$
 (1.16)

Figure 1.4: Normal and tangent cones

Theorem 1.3.1. Normal cone of polyhedron

The normal cone to a polyhedron $S = \{x \in \mathbb{R}^n : \forall j \in [m] \mid a_j \cdot x \leq b_j\}$ at a point x is given by

$$N_S(x) = \{ \sum_j \lambda_j a_j : \lambda_j \ge 0 \text{ and } a_j \cdot x = b_j \}$$

$$(1.17)$$

1.4 Convexity

1.4.1 Definitions and Fundamental Theorems

Definition 1.4.1. (Convex function): A function $f: S \to \mathbb{R}$ defined on a convex set S is convex if, for all $x, y \in S$ and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Figure 1.5: Convex function

Theorem 1.4.1. (Characterization via epigraph): A function $f: S \to \mathbb{R}$ is convex if and only if its epigraph $\{(x,t) \in S \times \mathbb{R} : f(x) \leq t\}$ is a convex set.

Figure 1.6: Epigraph of a convex function

claim 1.4.1. (Convexity of sublevel sets): If $f: S \to \mathbb{R}$ is convex, then the sublevel set $S_t = \{x \in S: f(x) \leq t\}$ is convex for any $t \in \mathbb{R}$.

1.4.2 Inequalities and Characterizations

Theorem 1.4.2. (Jensen's inequality): If f is a convex function, then for any $x_1, x_2, \ldots, x_n \in S$ and any non-negative weights α_i such that $\sum_{i=1}^n \alpha_i = 1$,

$$f\left(\sum_{i=1}^{n} \alpha_i x_i\right) \le \sum_{i=1}^{n} \alpha_i f(x_i).$$

Theorem 1.4.3. (First-order characterization, aka "the gradient inequality"): If f is a differentiable convex function on an open set S, then for all $x, y \in S$,

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x).$$

1.4. CONVEXITY 7

Figure 1.7: First-order characterization of convexity

Theorem 1.4.4. (Jensen's inequality, generalized for expectation): If f is a convex function and X is a random variable over S, then

$$f(\mathbb{E}[X]) \le \mathbb{E}[f(X)].$$

Theorem 1.4.5. (Second-order characterization of convexity): A twice differentiable function f is convex on an open set S if and only if the Hessian matrix of f is positive semidefinite at every point in S.

1.4.3 Optimization and Projection

Definition 1.4.2. (Convex optimization): The problem of minimizing a convex function over a convex set.

Theorem 1.4.6. (Optimality conditions, unconstrained): If f is convex and differentiable, x^* is a local minimum of $f \Leftrightarrow x^*$ is a global minimum of $f \Leftrightarrow \nabla f(x^*) = 0$.

Theorem 1.4.7. (Optimality conditions, constrained): If f is differentiable and C is a convex set, x^* is a local minimum of f on C if and only if $\langle \nabla f(x^*), x - x^* \rangle \geq 0$ for all $x \in C$.

Figure 1.8: Optimality conditions, constrained

Corollary 1.4.1. Optimality conditions, constrained (alternative) If f is differentiable and C is a convex set, then x^* is a local minimum of f on C if and only if $-\nabla f(x^*) \in N_C(x^*)$. **Definition 1.4.3.** (Projection): The projection of a point x onto a convex set S is defined as $\Pi_S(x) = \arg\min_{y \in S} \|y - x\|$.

Figure 1.9: Projection

Theorem 1.4.8. Generalized cosine theorem

Let $S \subseteq \mathbb{R}^d$ be convex and $x \in \mathbb{R}^d$. Then the projection $\Pi_S[x]$ is unique and satisfies:

$$||x - \Pi_S[x]||^2 + ||\Pi_S[x] - y||^2 \le ||x - y||^2, \quad \forall y \in S.$$
(1.18)

 $In\ particular:$

$$\|\Pi_S[x] - y\| \le \|x - y\|, \quad \forall y \in S.$$
 (1.19)

1.5 Properties of Convex Functions

1.6 Important Inequalities

1.6.1
$$1 + x \le e^x$$