МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.Ломоносова

Факультет вычислительной математики и кибернетики

Отчет по тестовому заданию «Сравнительный анализ реализации и оптимизации нейронной сети в PyTorch и TensorFlow» Отчет выполнил

Броничев Александр Русланович

Содержание

Введение	2
Постановка задачи	2
Описание датасета	2
Методы	3
Описание архитектуры	3
Примененные оптимизации	3
Результаты	5
Таблицы сравнения производительности	5
Графики обучения	26
Анализ trade-off «скорость-память»	
Анализ точности обучения	
Выводы	40
Сравнение АРІ фрэймворков	40
Рекомендации по использованию оптимизаций	
Ограничения метолов	

Введение

Постановка задачи

Провести анализ производительности простой модели с использованием различных инструментов. Исследуются показатели между фрэймворками PyTorch и TensorFlow. Так же изучается влияние графовых оптимизаций на скорость обучения. Обучается трехслойный перцептрон имеющий входной слой (по размеру признаков), скрытый слой (128 нейронов, ReLU) и выходной слой (1 нейрон). Для выполнения задачи нужно реализовать данную модель на обоих фрэймворках и исследовать скорость обучения, используемую память, точность обучения на некотором датасете.

Описание датасета

Для решения задачи используется датасет California Housing Dataset. Этот датасет содержит информацию о недвижимости в Калифорнии (цены на жильё и характеристики районов) и часто используется для задач регрессии (прогнозирования стоимости домов). Источником является библиотека sklearn (в реализации на TF и PT из sklearn.datasets берется fetch_california_housing). Размер используемого датасета состовляет 20 640 записей, а каждая запись имеет 8 признаков. Целевой переменной является средняя стоимость дома в сотнях тысяч долларов. Каждая строка - это один район Калифорнии. Рассмотрим признаки датасета:

- Средний доход жителей района (float, 0.5 15)
- Средний возраст домов района (float, 1 52)
- Среднее количество комнат в доме (float, 0.8 141)
- Среднее количество спален в доме (float, 0.3 34)
- Население района (float, 3 35 682)
- Среднее количество жильцов в доме (float, 0.7 1 243)
- Широта расположения района (float, 32.5 41.9)
- Долгота расположения района (float, -124.3 -114.3)
- ЦЕЛЬ: Средняя стоимость дома (float, 0.15 5)

В датасете нет пропусков. Числовые признаки взяты небольшими, отчего удобны. Однако масштаб разный, поэтому была проведена нормализация.

Методы

Описание архитектуры

В задаче изучается обучение трехслойного перцептрона. Перцептрон - это простейший вид нейронных сетей, в основе которого лежит математическая модель восприятия информации мозгом, состоящая из сенсоров, ассоциативных и реагирующих элементов. Опишем принцип работы данной архитектуры:

- 1. Первыми в работу включаются элементы-сенсоры.
- 2. Далее сенсоры передают сигналы ассоциативным элементам
- 3. Если сумма сигналов на ассоциативный элемент привысила какой-то порог, то этот элемент передает сигнал реагирующему элементу
- 4. Реагирующие элементы получают сигнал с некоторым весом и в зависимости от некоторого порога дают ответ

В выполняемой задаче рассматривается перцептрон, у которого:

- Количество сенсоров зависит от количества признаков датасета (в случае California Housing Dataset 8) (входной слой)
- 128 ассоциативных нейронов ReLU (скрытый слой)
- 1 реагирующий элемент (выходной слой)

Примененные оптимизации

В реализации на TensorFlow в качестве оптимизации используется декоратор @tf.function. С его помощью функция Python преобразуется в граф TensorFlow, что значительно ускоряет ее выполнение при работе с большими вычислениями, которые встречаются при обучении моделей. Рассмотрим основные параметры:

- *input_signature* принимает ожидаемые размеры и типы данных входных тензоров, позволяет избежать лишних ретрассировок при изменении формы входных данных
- autograph автоматически конвертирует условия и циклы в граф, если равен True, иначе использует только операции TensorFlow, теряя часть оптимизации
- jit compile включает компиляцию XLA
- \bullet $reduce_retracing$ уменьшает количество ретрассировок при изменении входных данных
- experimental_relax_shapes разрешает более гибкое поведение при изменении форм входных данных
- $experimental_follow_type_hints$ автоматически приводит типы данных к указанным в аннотациях Python

В работе все параметры выставлены по умолчанию.

В реализации на РуТогсh используется оптимизация torch.compile. Эта функция ускоряет выполнение моделей за счет компиляции графов вычислений. Она автоматически оптимизирует код, уменьшая накладные расходы интерпретатора Python. Рассмотрим режимы torch.compile, которые включаются через mode= после параметра модели:

- mode="default" баланс между скоростью компиляции и производительностью
- mode="reduce-overhead" уменьшает накладные расходы интерпретатора Python
- mode="max-autotune" максимально агрессивная оптимизация, включая автоподбор лучших ядер для операций
- mode="no-compile" отключает компиляцию, оставляя оригинальный РуТогсһ-код

В работе используется режим max-autotune

Результаты

Испытания были проведены на двух различных устройствах (на одном на сри, на втором на двух). Было взято различное количество эпох (10, 20 и 30). Размер батча составляет 64. На обучение взято 80% датасета, оставшиеся 20% используются для проверки точности обучения.

Таблицы сравнения производительности

Приведу таблицы времени и потерь для испытаний TensorFLow на сри

Номер эпохи	Время (сек)	Потери МАЕ
1	11.69	0.5515
2	12.62	0.4595
3	11.98	0.4385
4	11.17	0.4262
5	11.33	0.4176
6	10.91	0.4102
7	11.06	0.4052
8	12.33	0.4002
9	9.57	0.3971
10	9.46	0.3934

Таблица 1: Таблица обучения TensorFlow без оптимизации, 10 эпох

Номер эпохи	Время (сек)	Потери МАЕ
1	12.85	0.5556
2	9.72	0.4606
3	9.83	0.4365
4	10.48	0.4258
5	9.48	0.4187
6	10.40	0.4119
7	13.37	0.4087
8	12.26	0.4035
9	13.98	0.4000
10	14.25	0.3985
11	12.38	0.3953
12	10.77	0.3936
13	10.26	0.3906
14	10.63	0.3897
15	10.28	0.3882
16	11.14	0.3872
17	10.37	0.3858
18	9.73	0.3841
19	9.67	0.3826
20	8.99	0.3810

Таблица 2: Таблица обучения TensorFlow без оптимизации, 20 эпох

Номер эпохи	Время (сек)	Потери МАЕ
1	9.60	0.5568
2	8.91	0.4637
3	8.69	0.4408
4	9.03	0.4294
5	9.45	0.4231
6	9.36	0.4163
7	9.57	0.4130
8	10.48	0.4090
9	10.46	0.4052
10	9.88	0.4020
11	11.88	0.4009
12	10.50	0.3979
13	11.05	0.3948
14	9.00	0.3927
15	9.69	0.3912
16	9.14	0.3900
17	9.49	0.3877
18	9.13	0.3872
19	9.70	0.3845
20	9.89	0.3847
21	9.58	0.3848
22	9.35	0.3830
23	10.06	0.3809
24	9.36	0.3800
25	8.97	0.3802
26	9.08	0.3788
27	10.21	0.3776
28	9.79	0.3764
29	8.75	0.3748
30	10.07	0.3746

Таблица 3: Таблица обучения TensorFlow без оптимизации, 30 эпох

Номер эпохи	Время	Потери МАЕ
1	3.47	0.7682
2	2.97	0.5069
3	2.91	0.4617
4	3.07	0.4481
5	3.01	0.4313
6	3.00	0.4334
7	3.33	0.4299
8	3.49	0.4245
9	2.91	0.4201
10	3.02	0.4163

Таблица 4: Таблица обучения TensorFlow с оптимизацией, 10 эпох

Номер эпохи	Время	Потери МАЕ
1	2.67	0.5511
2	3.36	0.4586
3	3.71	0.4435
4	4.05	0.4325
5	3.10	0.4250
6	3.67	0.4192
7	3.38	0.4139
8	3.00	0.4084
9	3.13	0.4057
10	3.08	0.4020
11	2.55	0.3979
12	2.69	0.3955
13	2.33	0.3930
14	2.74	0.3907
15	2.48	0.3888
16	2.93	0.3875
17	3.03	0.3858
18	2.42	0.3871
19	2.93	0.3857
20	2.70	0.3828

Таблица 5: Таблица обучения TensorFlow с оптимизацией, 20 эпох

Номер эпохи	Время	Потери МАЕ
1	2.97	0.5497
2	2.72	0.4584
3	2.36	0.4400
4	2.44	0.4271
5	2.31	0.4192
6	2.51	0.4122
7	2.33	0.4064
8	2.32	0.4018
9	2.34	0.3993
10	2.29	0.3954
11	2.41	0.3932
12	2.69	0.3919
13	2.40	0.3900
14	2.37	0.3876
15	2.35	0.3865
16	2.35	0.3856
17	2.33	0.3853
18	2.34	0.3842
19	2.32	0.3818
20	2.35	0.3817
21	2.33	0.3804
22	2.35	0.3795
23	2.34	0.3790
24	2.33	0.3780
25	2.32	0.3780
26	2.33	0.3771
27	2.33	0.3766
28	2.32	0.3754
29	2.33	0.3738
30	2.48	0.3750

Таблица 6: Таблица обучения TensorFlow с оптимизацией, 30 эпох

Приведу таблицы времени и потерь для испытаний PyTorch на сри:

Номер эпохи	Время (сек)	Потери МАЕ
1	0.48	0.8085
2	0.43	0.5329
3	0.42	0.4800
4	0.43	0.4616
5	0.42	0.4514
6	0.43	0.4465
7	0.42	0.4403
8	0.43	0.4355
9	0.43	0.4306
10	0.42	0.4251

Таблица 7: Таблица обучения РуТогсh без оптимизации, 10 эпох

Номер эпохи	Время (сек)	Потери МАЕ
1	0.49	0.7494
2	0.46	0.5117
3	0.42	0.4668
4	0.46	0.4514
5	0.42	0.4414
6	0.42	0.4357
7	0.43	0.4293
8	0.43	0.4246
9	0.43	0.4221
10	0.46	0.4167
11	0.44	0.4138
12	0.44	0.4116
13	0.44	0.4065
14	0.44	0.4054
15	0.44	0.4013
16	0.45	0.4030
17	0.45	0.3976
18	0.45	0.3943
19	0.45	0.3926
20	0.45	0.3906

Таблица 8: Таблица обучения РуТогсh без оптимизации, 20 эпох

Номер эпохи	Время (сек)	Потери МАЕ
1	0.50	0.8783
2	0.49	0.5589
3	0.44	0.4899
4	0.67	0.4652
5	0.54	0.4529
6	0.59	0.4456
7	0.83	0.4406
8	0.55	0.4354
9	0.41	0.4304
10	0.41	0.4263
11	0.43	0.4226
12	0.43	0.4169
13	0.42	0.4150
14	0.43	0.4115
15	0.44	0.4092
16	0.49	0.4053
17	0.48	0.4038
18	0.44	0.4018
19	0.44	0.4062
20	0.44	0.3976
21	0.46	0.3957
22	0.45	0.3954
23	0.44	0.3930
24	0.44	0.3911
25	0.44	0.3904
26	0.44	0.3884
27	0.45	0.3900
28	0.44	0.3864
29	0.45	0.3893
30	0.45	0.3849

Таблица 9: Таблица обучения РуТогсh без оптимизации, 30 эпох

Номер эпохи	Время (сек)	Потери МАЕ
1	0.66	0.7858
2	0.57	0.5302
3	0.51	0.4808
4	0.76	0.4634
5	0.65	0.4522
6	0.67	0.4443
7	0.53	0.4377
8	0.56	0.4322
9	0.59	0.4284
10	0.56	0.4237

Таблица 10: Таблица обучения PyTorch с оптимизацией, 10 эпох

Номер эпохи	Время (сек)	Потери МАЕ
1	0.49	0.8521
2	0.54	0.5226
3	0.62	0.4764
4	0.58	0.4590
5	0.56	0.4500
6	0.84	0.4433
7	0.65	0.4406
8	0.55	0.4340
9	0.75	0.4305
10	0.63	0.4268
11	0.56	0.4230
12	0.55	0.4187
13	0.67	0.4159
14	0.56	0.4136
15	0.55	0.4093
16	0.54	0.4051
17	0.56	0.4030
18	0.56	0.4001
19	0.64	0.3984
20	0.57	0.3977

Таблица 11: Таблица обучения PyTorch с оптимизацией, 20 эпох

Номер эпохи	Время (сек)	Потери МАЕ
1	0.51	0.8159
2	0.49	0.5332
3	0.50	0.4849
4	0.49	0.4627
5	0.62	0.4511
6	0.60	0.4443
7	0.50	0.4389
8	0.51	0.4339
9	0.50	0.4300
10	0.51	0.4270
11	0.52	0.4213
12	0.52	0.4195
13	0.52	0.4151
14	0.73	0.4121
15	0.52	0.4095
16	0.53	0.4045
17	0.53	0.4029
18	0.53	0.4023
19	0.55	0.4009
20	0.54	0.3988
21	0.55	0.3997
22	0.55	0.3936
23	0.54	0.3928
24	0.54	0.3898
25	0.55	0.3894
26	0.55	0.3907
27	0.66	0.3880
28	0.58	0.3874
29	0.58	0.3851
30	0.57	0.3838

Таблица 12: Таблица обучения PyTorch с оптимизацией, 30 эпох

Приведу таблицы времени и потерь для испытаний TensorFlow на gpu:

Номер эпохи	Время (сек)	Потери МАЕ
1	10.89	0.5655
2	10.75	0.4639
3	11.00	0.4411
4	10.81	0.4262
5	10.67	0.4200
6	10.62	0.4120
7	10.66	0.4074
8	10.84	0.4034
9	11.06	0.3991
10	11.13	0.3966

Таблица 13: Таблица обучения Tensor
Flow без оптимизации, 10 эпох

Номер эпохи	Время (сек)	Потери МАЕ
1	12.02	0.5532
2	11.33	0.4601
3	10.70	0.4356
4	10.64	0.4222
5	10.82	0.4152
6	10.94	0.4091
7	10.62	0.4035
8	10.59	0.4012
9	10.63	0.3957
10	10.61	0.3945
11	12.16	0.3921
12	11.83	0.3908
13	11.38	0.3887
14	11.15	0.3861
15	11.28	0.3867
16	12.08	0.3848
17	12.07	0.3842
18	11.76	0.3836
19	10.89	0.3820
20	10.66	0.3825

Таблица 14: Таблица обучения Tensor
Flow без оптимизации, 20 эпох

1 10.59 0.5563 2 10.70 0.4650 3 10.65 0.4434 4 10.64 0.4300 5 10.62 0.4211 6 10.64 0.4144 7 11.32 0.4097 8 11.66 0.4041 9 11.60 0.4008 10 11.69 0.4021 11 11.51 0.3982 12 11.61 0.3924 13 12.15 0.3903 14 11.15 0.3887 15 11.38 0.3868 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99<	Номер эпохи	Время (сек)	Потери МАЕ
3 10.65 0.4434 4 10.64 0.4300 5 10.62 0.4211 6 10.64 0.4144 7 11.32 0.4097 8 11.66 0.4041 9 11.60 0.4008 10 11.69 0.4021 11 11.51 0.3982 12 11.61 0.3924 13 12.15 0.3903 14 11.15 0.3887 15 11.38 0.3863 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3755 29 11.1	1	10.59	0.5563
4 10.64 0.4300 5 10.62 0.4211 6 10.64 0.4144 7 11.32 0.4097 8 11.66 0.4041 9 11.60 0.4008 10 11.69 0.4021 11 11.51 0.3982 12 11.61 0.3924 13 12.15 0.3903 14 11.15 0.3887 15 11.38 0.3868 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3755 29 11.19 0.3757	2	10.70	0.4650
5 10.62 0.4211 6 10.64 0.4144 7 11.32 0.4097 8 11.66 0.4041 9 11.60 0.4008 10 11.69 0.4021 11 11.51 0.3982 12 11.61 0.3924 13 12.15 0.3903 14 11.15 0.3887 15 11.38 0.3868 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3755 29 11.19 0.3757	3	10.65	0.4434
6 10.64 0.4144 7 11.32 0.4097 8 11.66 0.4041 9 11.60 0.4008 10 11.69 0.4021 11 11.51 0.3982 12 11.61 0.3924 13 12.15 0.3903 14 11.15 0.3887 15 11.38 0.3868 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3755 29 11.19 0.3757	4	10.64	0.4300
7 11.32 0.4097 8 11.66 0.4041 9 11.60 0.4008 10 11.69 0.4021 11 11.51 0.3982 12 11.61 0.3924 13 12.15 0.3903 14 11.15 0.3887 15 11.38 0.3868 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3755 29 11.19 0.3757	5	10.62	0.4211
8 11.66 0.4041 9 11.60 0.4008 10 11.69 0.4021 11 11.51 0.3982 12 11.61 0.3924 13 12.15 0.3903 14 11.15 0.3887 15 11.38 0.3868 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	6	10.64	0.4144
9 11.60 0.4008 10 11.69 0.4021 11 11.51 0.3982 12 11.61 0.3924 13 12.15 0.3903 14 11.15 0.3887 15 11.38 0.3868 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3755 29 11.19 0.3757	7	11.32	0.4097
10 11.69 0.4021 11 11.51 0.3982 12 11.61 0.3924 13 12.15 0.3903 14 11.15 0.3887 15 11.38 0.3868 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3755 29 11.19 0.3757	8	11.66	0.4041
11 11.51 0.3982 12 11.61 0.3924 13 12.15 0.3903 14 11.15 0.3887 15 11.38 0.3868 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3755 29 11.19 0.3757	9	11.60	0.4008
12 11.61 0.3924 13 12.15 0.3903 14 11.15 0.3887 15 11.38 0.3868 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3755 29 11.19 0.3757	10	11.69	0.4021
13 12.15 0.3903 14 11.15 0.3887 15 11.38 0.3868 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	11	11.51	0.3982
14 11.15 0.3887 15 11.38 0.3868 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	12	11.61	0.3924
15 11.38 0.3868 16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	13	12.15	0.3903
16 11.49 0.3863 17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	14	11.15	0.3887
17 11.48 0.3851 18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	15	11.38	0.3868
18 11.35 0.3839 19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	16	11.49	0.3863
19 11.36 0.3831 20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	17	11.48	0.3851
20 10.89 0.3826 21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	18	11.35	0.3839
21 11.24 0.3805 22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	19	11.36	0.3831
22 11.99 0.3799 23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	20	10.89	0.3826
23 11.70 0.3800 24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	21	11.24	0.3805
24 11.84 0.3775 25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	22	11.99	0.3799
25 11.80 0.3783 26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	23	11.70	0.3800
26 11.99 0.3794 27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	24	11.84	0.3775
27 11.93 0.3773 28 12.25 0.3755 29 11.19 0.3757	25	11.80	0.3783
28 12.25 0.3755 29 11.19 0.3757	26	11.99	0.3794
29 11.19 0.3757	27	11.93	0.3773
	28	12.25	0.3755
30 11.50 0.3742	29	11.19	0.3757
	30	11.50	0.3742

Таблица 15: Таблица обучения Tensor
Flow без оптимизации, 30 эпох

Номер эпохи	Время (сек)	Потери МАЕ
1	3.84	0.8204
2	2.63	0.5125
3	2.63	0.4660
4	2.62	0.4514
5	2.62	0.4406
6	2.64	0.4348
7	2.66	0.4299
8	2.62	0.4260
9	2.64	0.4211
10	2.62	0.4174

Таблица 16: Таблица обучения TensorFlow с оптимизацией, 10 эпох

Номер эпохи	Время (сек)	Потери МАЕ
1	2.62	0.5626
2	2.64	0.4612
3	2.66	0.4430
4	2.65	0.4334
5	2.64	0.4264
6	2.69	0.4195
7	2.64	0.4151
8	2.65	0.4103
9	2.65	0.4058
10	2.65	0.4036
11	2.65	0.4012
12	2.64	0.3975
13	2.64	0.3949
14	2.67	0.3920
15	2.67	0.3898
16	2.67	0.3905
17	2.68	0.3889
18	2.66	0.3867
19	2.66	0.3861
20	2.67	0.3839

Таблица 17: Таблица обучения TensorFlow с оптимизацией, 20 эпох

Номер эпохи	Время (сек)	Потери МАЕ
1	2.66	0.5584
2	2.64	0.4571
3	2.66	0.4359
4	2.63	0.4254
5	2.63	0.4185
6	2.63	0.4121
7	2.64	0.4093
8	2.63	0.4048
9	2.63	0.4012
10	2.63	0.3969
11	2.63	0.3950
12	2.63	0.3929
13	2.63	0.3913
14	2.63	0.3892
15	2.63	0.3880
16	2.63	0.3861
17	2.63	0.3855
18	2.63	0.3838
19	2.64	0.3844
20	2.63	0.3808
21	2.63	0.3807
22	2.63	0.3822
23	2.63	0.3796
24	2.63	0.3803
25	2.64	0.3804
26	2.65	0.3781
27	2.69	0.3768
28	2.64	0.3772
29	2.68	0.3760
30	2.67	0.3758

Таблица 18: Таблица обучения TensorFlow с оптимизацией, 30 эпох

Приведу таблицы времени и потерь для испытаний РуТогсh на gpu:

Номер эпохи	Время (сек)	Потери МАЕ
1	2.01	0.8380
2	1.01	0.5341
3	1.00	0.4791
4	1.04	0.4590
5	0.98	0.4484
6	1.03	0.4417
7	1.03	0.4345
8	1.03	0.4296
9	1.03	0.4239
10	1.07	0.4206

Таблица 19: Таблица обучения PyTorch без оптимизации, 10 эпох

Номер эпохи	Время (сек)	Потери МАЕ
1	1.05	0.7924
2	0.99	0.5135
3	1.01	0.4724
4	0.99	0.4586
5	1.01	0.4486
6	1.06	0.4413
7	1.09	0.4384
8	1.08	0.4312
9	1.05	0.4271
10	1.10	0.4224
11	1.00	0.4168
12	1.08	0.4141
13	1.10	0.4114
14	1.08	0.4067
15	1.06	0.4027
16	1.08	0.4002
17	1.07	0.3992
18	1.02	0.3966
19	1.15	0.3923
20	1.09	0.3920

Таблица 20: Таблица обучения РуТогсh без оптимизации, 20 эпох

1 1.09 0.7945 2 1.14 0.5169 3 1.09 0.4708 4 0.90 0.4556 5 0.96 0.4475 6 0.95 0.4400 7 0.92 0.4353 8 0.94 0.4304 9 0.92 0.4250 10 0.93 0.4232 11 0.94 0.4185 12 0.90 0.4151 13 0.94 0.4114 14 0.93 0.4080 15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.393 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3873 25 0.91 0.3873 26 0.94 0.3874	Номер эпохи	Время (сек)	Потери МАЕ
3 1.09 0.4708 4 0.90 0.4556 5 0.96 0.4475 6 0.95 0.4400 7 0.92 0.4353 8 0.94 0.4304 9 0.92 0.4250 10 0.93 0.4232 11 0.94 0.4185 12 0.90 0.4151 13 0.94 0.4114 14 0.93 0.4080 15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3861 28 0.97 0.3844 29 0.93 0.3854 <td>1</td> <td>1.09</td> <td>0.7945</td>	1	1.09	0.7945
4 0.90 0.4556 5 0.96 0.4475 6 0.95 0.4400 7 0.92 0.4353 8 0.94 0.4304 9 0.92 0.4250 10 0.93 0.4232 11 0.94 0.4185 12 0.90 0.4151 13 0.94 0.4114 14 0.93 0.4080 15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3854	2	1.14	0.5169
5 0.96 0.4475 6 0.95 0.4400 7 0.92 0.4353 8 0.94 0.4304 9 0.92 0.4250 10 0.93 0.4232 11 0.94 0.4185 12 0.90 0.4151 13 0.94 0.4114 14 0.93 0.4080 15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3854	3	1.09	0.4708
6 0.95 0.4400 7 0.92 0.4353 8 0.94 0.4304 9 0.92 0.4250 10 0.93 0.4232 11 0.94 0.4185 12 0.90 0.4151 13 0.94 0.4114 14 0.93 0.4080 15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.348 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3854	4	0.90	0.4556
7 0.92 0.4353 8 0.94 0.4304 9 0.92 0.4250 10 0.93 0.4232 11 0.94 0.4185 12 0.90 0.4151 13 0.94 0.4114 14 0.93 0.4080 15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3873 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3854	5	0.96	0.4475
8 0.94 0.4304 9 0.92 0.4250 10 0.93 0.4232 11 0.94 0.4185 12 0.90 0.4151 13 0.94 0.4114 14 0.93 0.4080 15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3854	6	0.95	0.4400
9 0.92 0.4250 10 0.93 0.4232 11 0.94 0.4185 12 0.90 0.4151 13 0.94 0.4114 14 0.93 0.4080 15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	7	0.92	0.4353
10 0.93 0.4232 11 0.94 0.4185 12 0.90 0.4151 13 0.94 0.4114 14 0.93 0.4080 15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	8	0.94	0.4304
11 0.94 0.4185 12 0.90 0.4151 13 0.94 0.4114 14 0.93 0.4080 15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	9	0.92	0.4250
12 0.90 0.4151 13 0.94 0.4114 14 0.93 0.4080 15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	10	0.93	0.4232
13 0.94 0.4114 14 0.93 0.4080 15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	11	0.94	0.4185
14 0.93 0.4080 15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3854	12	0.90	0.4151
15 0.91 0.4059 16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	13	0.94	0.4114
16 0.95 0.4027 17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	14	0.93	0.4080
17 0.91 0.4015 18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3854 29 0.97 0.3854	15	0.91	0.4059
18 0.96 0.3997 19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	16	0.95	0.4027
19 0.92 0.3980 20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	17	0.91	0.4015
20 0.90 0.3948 21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	18	0.96	0.3997
21 0.95 0.3939 22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	19	0.92	0.3980
22 0.93 0.3916 23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	20	0.90	0.3948
23 0.94 0.3904 24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	21	0.95	0.3939
24 0.93 0.3923 25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	22	0.93	0.3916
25 0.91 0.3873 26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	23	0.94	0.3904
26 0.94 0.3874 27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	24	0.93	
27 0.99 0.3861 28 0.97 0.3844 29 0.97 0.3854	25	0.91	0.3873
28 0.97 0.3844 29 0.97 0.3854	26	0.94	0.3874
29 0.97 0.3854	27	0.99	0.3861
	28	0.97	0.3844
30 0.93 0.3832	29	0.97	0.3854
	30	0.93	0.3832

Таблица 21: Таблица обучения PyTorch без оптимизации, 30 эпох

К сожалению на gpu не получилось запустить PyTorch с оптимизацией, поскольку видеокарта слишком старая и не поддерживает triton, необходимый для компиляции.

Графики обучения

Графики обучения на TensorFlow (cpu):

Рис. 1: График обучения к таблице 1

Рис. 2: График обучения к таблице 2

Рис. 3: График обучения к таблице 3

Рис. 4: График обучения к таблице 4

Рис. 5: График обучения к таблице 5

Рис. 6: График обучения к таблице 6

Графики обучения на PyTorch (cpu):

Рис. 7: График обучения к таблице 7

Рис. 8: График обучения к таблице 8

Рис. 9: График обучения к таблице 9

Рис. 10: График обучения к таблице 10

Рис. 11: График обучения к таблице 11

Рис. 12: График обучения к таблице 12

Графики обучения на TensorFlow (gpu):

Рис. 13: График обучения к таблице 13

Рис. 14: График обучения к таблице 14

Рис. 15: График обучения к таблице 15

Рис. 16: График обучения к таблице 16

Рис. 17: График обучения к таблице 17

Рис. 18: График обучения к таблице 18

Графики обучения на PyTorch (gpu):

Рис. 19: График обучения к таблице 19

Рис. 20: График обучения к таблице 20

Рис. 21: График обучения к таблице 21

Анализ trade-off «скорость-память»

Количество эпох	Время	максимальная па-
		АТРМ
10	112.17 (11.21 на эпо-	0.66 MB
	xy)	
20	220.91 (11.04 на эпо-	0.26 MB
	xy)	
30	290.17 (9.67 на эпо-	0.21 MB
	xy)	

Таблица 22: Таблица использования памяти и времени(TensorFlow без оптимизации срu)

Количество эпох	Время	максимальная па-
		АТРМ
10	31.26 (3.12 на эпоху)	2.93 MB
20	60.04 (9.04	0.47.14D
20	60.94 (3.04 на эпоху)	0.47 MB
30	72.06 (2.40 на эпоху)	0.19 MB
	(2.10 He short)	0110 1112

Таблица 23: Таблица использования памяти и времени(TensorFlow с оптимизацией срu)

Количество эпох	Время	максимальная па-
		АТРМ
10	4.30 (0.43 на эпоху)	0.71 MB
20	2 22 (2 11	0.61.MD
20	8.88 (0.44 на эпоху)	0.61 MB
30	14.34 (0.48 на эпоху)	0.60 MB
	11.51 (5.15 Ha 5H5Xy)	0.00 1112

Таблица 24: Таблица использования памяти и времени(PyTorch без оптимизации срu)

Количество эпох	Время	максимальная па-
		МЯТЬ
10	6.06 (0.61 на эпоху)	1.34 MB
	11.00 (0.00	1.00.710
20	11.96 (0.60 на эпоху)	1.00 MB
30	16.40 (0.55 на эпоху)	0.70 MB
90	10.10 (0.55 na 5noxy)	0.10 1111

Таблица 25: Таблица использования памяти и времени(PyTorch с оптимизацией срu)

Количество эпох	Время	максимальная па-
		АТРМ
10	108.47 (10.84 на эпо-	0.24 MB
	xy)	
20	224.23 (11.21 на эпо-	0.25 MB
	xy)	
30	341.99 (11.40 на эпо-	0.24 MB
	xy)	

Таблица 26: Таблица использования памяти и времени(TensorFlow без оптимизации gpu)

Количество эпох	Время	максимальная па-
		АТРМ
10	27.57 (2.75 на эпоху)	1.01 MB
20	F0.17 (0.05	0.70 MD
20	53.17 (2.65 на эпоху)	0.70 MB
30	79.26 (2.64 на эпоху)	0.23 MB
)	

Таблица 27: Таблица использования памяти и времени(TensorFlow с оптимизацией gpu)

Количество эпох	Время	максимальная па-
		АТРМ
10	11.22 (1.12 на эпоху)	0.66 MB
20	21 17 (1 06)	0.67
20	21.17 (1.06 на эпоху)	0.07
30	28.55 (0.95 на эпоху)	0.67 MB
	,	

Таблица 28: Таблица использования памяти и времени(PyTorch без оптимизации gpu)

Анализ точности обучения

Исследования CPU:

За 10 эпох обучения на TensorFlow с оптимизацией на тестовой выборке:

- MSE: 0.3601
- MAE: 0.4175

За 20 эпох обучения на TensorFlow с оптимизацией на тестовой выборке:

- MSE: 0.3407
- MAE: 0.3952

За 30 эпох обучения на TensorFlow с оптимизацией на тестовой выборке:

- MSE: 0.3122
- MAE: 0.3839

За 10 эпох обучения на TensorFlow без оптимизации на тестовой выборке:

- MSE: 0.3382
- MAE: 0.4050

За 20 эпох обучения на TensorFlow без оптимизации на тестовой выборке:

- MSE: 0.3191
- MAE: 0.3935

За 30 эпох обучения на TensorFlow без оптимизации на тестовой выборке:

- MSE: 0.3080
- MAE: 0.3812

За 10 эпох обучения на PyTorch с оптимизацией на тестовой выборке:

- MSE: 0.3649
- MAE: 0.4289

За 20 эпох обучения на PyTorch с оптимизацией на тестовой выборке:

- MSE: 0.3466
- MAE: 0.4043

За 30 эпох обучения на PyTorch с оптимизацией на тестовой выборке:

- MSE: 0.3262
- MAE: 0.3881

За 10 эпох обучения на РуТогсh без оптимизации на тестовой выборке:

- MSE: 0.3649
- MAE: 0.4282

За 20 эпох обучения на РуТогсh без оптимизации на тестовой выборке:

- MSE: 0.3252
- MAE: 0.3939

За 30 эпох обучения на РуТогсh без оптимизации на тестовой выборке:

- MSE: 0.3173
- MAE: 0.3900

Исследования GPU:

За 10 эпох обучения на TensorFlow с оптимизацией на тестовой выборке:

- MSE: 0.3564
- MAE: 0.4195

За 20 эпох обучения на TensorFlow с оптимизацией на тестовой выборке:

- MSE: 0.3233
- MAE: 0.3932

За 30 эпох обучения на TensorFlow с оптимизацией на тестовой выборке:

- MSE: 0.3084
- MAE: 0.3789

За 10 эпох обучения на TensorFlow без оптимизации на тестовой выборке:

- MSE: 0.3360
- MAE: 0.4057

За 20 эпох обучения на TensorFlow без оптимизации на тестовой выборке:

- MSE: 0.3324
- MAE: 0.3938

За 30 эпох обучения на TensorFlow без оптимизации на тестовой выборке:

- MSE: 0.3141
- MAE: 0.3804

За 10 эпох обучения на РуТогсh без оптимизации на тестовой выборке:

- MSE: 0.3637
- MAE: 0.4260

За 20 эпох обучения на РуТогсh без оптимизации на тестовой выборке:

- MSE: 0.3344
- MAE: 0.3994

За 30 эпох обучения на PyTorch без оптимизации на тестовой выборке:

- MSE: 0.3167
- MAE: 0.3846

Выводы

Сравнение АРІ фрэймворков

Начну с простоты использования. Для себя я определенно выделю в простоте TensorFlow, так как существует автоматическое обучение. Однако для оптимизации с помощью @tf.function нужно было писать обучение вручную, что делает удобтво и простоту примерно на одном уровне с РуТогсh. Реализация перцептрона на обоих фрэймворках достаточно проста.

Расскажу так же о выводах сделанных после эксперименатов. На небольшой и простой модели трехслойного перцептрона РуТогсh показал себя заметно лучше по скорости обучения, нежели TensorFlow (примерно 0.5 секунд на эпоху у РуТогсh против 10 без @tf.funcion и 2-3 с указанной оптимизацией у TensorFlow), причем, как с оптимизацией, так и без, как на сри, так и на gpu. В точности при тестах на выборке из датасета, не учавствовавшей в обучении результат получен неоднозначный. Выделить очевидного лидера в качестве обучения реализованной модели я не смог.

Рассмотрим полученную информацию по оптимизациям. @tf.function дает прирост скорости примерно в 5 раз при обучении взятой модели. Точность обучения при проведении эксперементов TensorFlow отличалась, но показатели потерь MSE и MAE были примерно одинаковы, что говорит либо о малом влиянии на точность, либо о его отсутствии. В это время оптимизация torch.compile показала менее очевидный результат. Проверка была сделана только на сри, где реализация с оптимизацией показала результат хуже, чем реализация без. Отличие было в примерно 0.1-0.15 секунд, что составляет примерно 20% разницы.

Различия в реализациях на сри и gpu была не в пользу последнего устройства как на TensorFlow, так и на PyTorch. Связываю это с простотой модели и маленьким размером батча, отчего видеокарта нагружается не целиком при сохранении накладных расходов при передаче данных на графический процессор.

В большинстве случаев РуТогсh сильнее нагружал память. Нагрузка на память была незначительной, поскольку выбранное количество батчей не велико (64).

Таким образом, я могу порекомендовать PyTorch для обучения простых моделей, не требующих большого количества сложных вычислений из-за очень большого преимущества в скорости, а так же советую обучать простые модели на сри в связи с образованием накладных расходов при обучении на gpu.

Рекомендации по использованию оптимизаций

При проведении эксперементов выяснил, что для простых моделей на TensorFlow использование @tf.function обязательно. Преобразование действий в граф и сохранение последовательноти действий выгодно увеличивает скорость обучения. Предполагаю, что на более сложных моделях выигрыш может быть меньше в связи с усложнением графа, но считаю, что он все еще будет.

С оптимизацией torch.compile все не так однозначно. Сравнение было только на сри, поэтому буду писать именно о нем. torch.compile анализирует граф, использует некоторые

компиляции, хорошие для больших моделей, однако исследуемая модель мала и нужные оптимизации не только тормозят выполнение из-за самой компиляции, но и выбираемые оптимизации тормозят обучение модели, что было выявленно на всех испытаних (10, 20, 30 эпох). Для малых моделей рекомендую не использовать torch.compile при обучении на сри.

Еще одна рекомендация: перед началом обучения пропустить модель сквозь датасет без обучения при испоьзовании PyTorch. "Разогрев"таким образом модель дальнейшее обучение будет точнее и быстрее. Первые эпохи обучения без выполнения рекомендации будут очень неточны и медленны.

Ограничения методов

Для обучения трехслойного перцептрона написание кода на PyTorch выглядит избыточным, поскольку требуется прописания многих вещей (например функцию обучения и функцию оценки) вручную, в то время как в TensorFlow присутствует model.fit(), служащий для обучения модели без излишнего кода.

TensorFlow кажется избыточным решением для простой модели из-за времени обучения, которое должно быть меньше у моделей сложнее.

По рзультатам исследований незначительна, но заметна большая скорость обучения простых моделей на сри.