Table of Contents

Question 1	
Question 2	5
Question 3	7
Question 4	8
Question 5	13
Question 6	15
Ouestion 7	

1.1 Draw histograms for 'Air temperature' and 'Air Pressure" values, and comment on them.

Air Temperature:

- a) The peak of Air Temperature occurs between 25.5 to 26.5
- b) Temperature spreads from 24 to 28
- c) Data seems to be symmetrical as per histogram and also mean and median is similar (26.13 and 26.10 respectively)
- d) Data is unimodal
- e) Data seems to have outliers below 25 and above 27

Air Pressure:

- a) The peak of Air Pressure occurs between 1011 to 1013
- b) Air Pressure spreads from 1008 to 1016
- c) Data seems to be symmetrical as per histogram and also mean and median is similar (1013 and 1013 respectively)
- d) Data is unimodal
- e) Data seems to have outliers near 1008

1.2 Draw a parallel Box plot using the two variables; 'Air Temperature' and the 'Wind Speed'. Find five number summaries of these two variables. Comment on boxplot and five number summaries.

Air Temperature:

- a) Data seems to be symmetrical as per boxplot and also mean and median is similar (26.13 and 26.10 respectively)
- b) Data has outliers below 25 and above 27

Wind Speed:

- a) Data seems to be symmetrical as per boxplot and also mean and median is similar (45.72 and 46.08 respectively)
- b) Data has few outliers above 70.

Five number summaries:

Variable	Minimum	1 st Quartile	Median	3 rd Quartile	Maximum
Air Temperature	24.20	25.80	26.10	26.40	27.80
Wind Speed	24.48	39.24	46.08	51.48	74.52

1.3 Which summary statistics would you choose to summarize the center and spread for the 'Humidity' data? Why (support your answer with proper plot/s)? Find those summary statistics for the "Humidity" data.

As per statistical tests such as Shapiro test and JB test, Humidity data does not follow normal distribution, but as per density plot and similarity between mean and median. Thus, I would use mean and median for center and standard deviation for the spread to summarize the data.

Variable	Minimum	1 st Quartile	Median	Mean	3 rd Quartile	Maximum
Humidity	58.20	70.60	73.55	74.36	77.20	91.00

1.4 Draw a scatterplot of "Air Temperature" (as x) and 'Humidity' (as y) for the first 1000 data vectors selected from the "my.data" (name the axes). Fit a linear regression model to the above two variables and plot the (regression) line on the same scatter plot. Write down the linear regression equation. Compute the correlation coefficient and the coefficient of Determination. Explain what these results reveal.

Linear Regression Equation:

 $\hat{y} = 132.9877 - 2.2441 \,\mathrm{X}$

Correlation Coefficient between Air Temperature and humidity is -0.2345 Coefficient of determination (R²) is approximately 0.055 (it is square of correlation coefficient)

Interpretation of above results:

Linear equation: In absence of Air Temperature, humidity will be approximately 133. For each unit increase in Air Temperature, humidity will decrease by 2.2441. Model is signification as p-value is less than 0.05 (alpha).

Correlation coefficient: There is weak negative correlation of 23.45% between these two variables. i.e. weak linear relationship between these two variables.

Coefficient of determination: Only 5.5% variation in humidity is explained by the variation in Air Temperature. This model is weak and need to consider other variables which affects humidity or to fit non-linear models.

					Date	
9.2.						
2.1	State					
			NSW(H)	Victoria (V)	gueensland (9)	Total
		Footy (F)	1000	2000	1300	4300
-	+2	Basketball (B)	1500	500	500	2500
	300	Cricket (C)	1400	1000	800	3200
-	0,	Total	3400	3500	2600	10,000
		July halo		A STATE OF THE PARTY OF THE PAR		-
-	Supp	pose we select	a perso	m at rand	om;	
a)	b(V) = 3500	35%	18300		-
1)	Suppose we select a person at random; P(V) = 3500 = 35%					
رط	P(C n H) = 1400 = 14%					
c)	$P(F g) = P(F \cap g) = 1300 = 50\%$					
	P(g) 2600					
d)	P(VIB) = P(VB) = 500 = 20%					
	P(B) 2500					
e)	$P(V \cup C) = P(V) + P(C) - P(V \cap C)$					
1000	= <u>8500 + 3200 - 1000</u> 10,000					
	= 57%					
-5)	Footy (=) Brokethall (a) (michet (C)					
	Sports Footy (F) Basketball (B) Cricket (C) Marginal probability 43% 25% 32%					
	Each sport and state has joint probability, thus					
9)	Each sport and state has joint probability, thus these are not disjoint or mutually cardusive					
	events.					
h)	P(FIR) = 50% # P(F) = 4370				-	
	Thus, sports and state are not independent					

2.2 Computed manually

2.2)	
	Given :
	P(today = min Yesterday = main) = 0.75
	P(today = rain Yesterday = rain) = 0.75 P(today = sunny Yesterday = sunny) = 0.30 P(Yesterday = rain) = 0.6 => Prior
	P(Yesterday = ania) = 0:6 => Paigr
	From aires
	From given,
	P(today = sunny Yesterday = rain) = 1-0.75 = 0.25 P(today = rain Yesterday = sunny) = 1-0.30 = 0.70 P(Yesterday = sunny) = 1-0.6 = 0.4
	D(4 1 1 - 0.30 = 0.70
	(resterday = surry) = 1-0.6 = 0.4
	To find:
	P(Yesterday = Surny today = rain) =
	P(today = rain Yesterday = sunny) x P(Yesterday = Sunny) P(today = rain)
	(Today = rain)
	= 0.7 × 0.4
	0.6(0.75)+0.70)
	0.8(0.73)
	= 0.28
	0.87
	≈ 0·3218
	9 9218
	As probability of mine reduced to car
	As probability of rainy reduced to 60%, probability sunny increased to 32.18% approximat
	July survey to 32 10 10 approximal

3.1	Two differences between frequentist way and t	he Bayesian way of estimating a parameter
	Frequentist	Bavesian

θ is considered to be fixed parameter whose	$\boldsymbol{\theta}$ is considered to be random variable and the	
value is determined by some form of	uncertainty in the parameter is expressed	
estimator which provides the point estimate.	through a probability distribution over prior θ .	
Error bars on the estimate are obtained from	Single observed dataset D is used and the	
sub-samples (distribution) of dataset D	output is complete probability distribution	
(Bootstrap method).	(posterior) $p(\theta D) = p(D \theta) \times p(\theta)/p(D)$	
Widely used estimator is Maximum likelihood	Prior distribution over θ in the Bayesian	
Estimator. But there are chances of overfitting	setting avoids overfitting.	

3.2 Why conjugate priors are useful in Bayesian statistics?

In Bayesian statistics, using a conjugate prior gives closed form expressions for posterior,

- No need to use numerical integration when computing the posterior
- Computationally efficient

Examples;

- Gaussian –Gaussian model (Gaussian prior, Gaussian likelihood => Gaussian posterior)
- Dirichlet-Multinomial model (Dirichlet prior, Multinomial likelihood => Dirichlet posterior)

3.3 Give two examples of Conjugate pairs (i.e., give two pairs of distributions that can be used for prior and likelihood)

- Exponential Gamma model (Gamma prior, Exponential likelihood => Gamma posterior)
- Bernoulli Beta model (Beta prior, Bernoulli likelihood => Beta posterior)

Question 4

4.1 Computed manually

4.1	$\alpha_i \sim E \propto p(\theta)$
	$Exp(0) = p(x;10) = 0e^{-(x;0)}$
a)	Joint distribution of lifetime of M servers
3dh	$p(X \theta) = p(x a) = p(x a)$
	$p(x \theta) = p(x_1 y \theta) = p(x_1 \theta) \cdot p(x_2 \theta) \cdot \dots \cdot p(x_n \theta)$
	p(x10) = 0 e - 0x, x de - 0x, x de - 0x,
	= 0 × [e-0 [x xi]
	= 6 ^N x e ⁻⁶³
	where S = I' x;
b)	Simplified expression for the log-likelihered L(0)=In(0×10)
Sol	Simplified expression for the log-likelihered L(0)=In(p(x10)) L(0)=In(0"x[e-0s])
	: L(6) = In 0" + In(e-05)
	: L(0) = N In 0 +1 - 0 S; where S = Zin xi
	The Co street Section
E)	Show that MIE(Q) of the association a is given by
	Show that MLE(ô) of the parameter o is given by: $\hat{\theta} = \frac{1}{x} \text{where } \hat{x} = \frac{1}{x} \sum_{i=1}^{n} x_i$
	X Where X - N Ziei
Sol	d1(0) = d [nh0-05]=0
300	de do
	do no do do do
	$\frac{S}{S} = 0$
	0
	° n = S
	0
	6'- 0 = n
	5
	0 8 = h
	$\sum_{i=1}^{n} x_i$
	.: 0 = 1 = where x = 1 \(\sigma \) \(\times \)
	$\frac{\sum_{i=1}^{N} 1}{X} \Rightarrow \text{where } X = 1 \sum_{i=1}^{N} \infty_{i}$

	Page No. Date
d) Sol ⁿ :	Lifetime of 6 servers {2,7,6,10,8,39. MLE ô of parameter?
	$\hat{\Theta} = \frac{h}{S} = \frac{6}{2+7+6+10+8+3} = \frac{6}{36} = \frac{1}{6} \approx 0.167$
e)	On an average of servers should last for 42 years if they are used one after another.
(a)NA	μ = mean life of seners = $\frac{1}{6}$ = $\frac{1}{1/6}$ = 6 years
2)	7 servers × 6 years = 42 years
	Probability that server lasts between six and twelve years;
· .	$P(6 \le x \le 12) = P(x \le 12) - P(x \le 6)$ $P(6 \le x \le 12) = 1 - e^{-6x}, -(1 - e^{-6x}2)$ $P(6 \le x \le 12) = 1 - e^{-0.167 \times 12} - (1 - e^{-0.167 \times 6})$
	$P(6 \leq x \leq 12) = 1 - e \qquad - (1 - e)$ $P(6 \leq x \leq 12) \approx 0.2323$

4.2 Computed manually a and b

1.2 Comput	ted manually a and b (tamma (A,b) price
	Exponential (o) likelihood
	Carrie - Grand til 2 C
	Gamma Exponential > Gamma (a', 6') posterior
	Gamma(a,b)= k belane be; where k is a constant (a)
	Gamma (a, b) - K bolan e bo; where k is a amplant
	X = 1
	r(a)
a)	
	Show that posteries distribution is also Gamma(a', b') posterior & likelihood × prior
	$\rho(e p) = \rho(p e) \times \rho(e)$
	= 0" e-0" x ba o(a-1) x e-bo
	$p(0 0) = p(0 0) \times p(0)$ $= 0^{H} e^{-0.5} \times b^{0.5} e^{-0.5} \times e^{-0.5}$ $= 0^{H} \times e^{(0.1)} \times b^{0.5} \times e^{-0.5} \times e^{-0.5}$ $= 0^{H} \times e^{(0.1)} \times b^{0.5} \times e^{-0.5} \times e^{-0.5}$ $= 0^{H} + a^{-1} \times b^{0.5} \times e^{-0.5} \times e^{-0.5}$
	= 0N+a-1 x bax e-0s+(-b0)
	- Nta-
	- 00 × 0 0 0
	where a' = N+a= and b'= (s+b) .: p(0 0) = b x 0 x 0 x 0
	: p(010) = b x 0 x 0
	((a)
	where b' = constant
	(a)
	Here posterior forlerus Camma (H+a, b+nx)
	Thus, prior and partener are conjugate distribution
1	6 Servers lifetime => {2,7,6,10,8,33. Find a', b' and
6)	posterior mean estimate of o.
Sol":-	r=6, a=0.1, b=0.1, 5=36
201 =	1 al - 3 a - 6 a h = 5th 36 l
	. 6 = F(010) = mean [Gamma (0 a, b) = -
	= 6.1 2 0.108.1
	36.1

4.2.C Plot of prior, likelihood, and posterior distributions

5 Computed manually

mean and
5)
s of n.
HMIL = 1 Zman
0 0
of pasterior.

Postenor variance is less than prior and likelihood variance.

a) h = 100, Jud mean and standard deviation of postenior.

Both:

Phio = 0.0625 × 4 + 20×4 × 5 100×4+0.0625

- 120 ≈ 5 cm

1 = 1 + 100 = 1600.25

- 120 ≈ 5 cm

1 = 1 + 100 = 1600.25

- 100 ≈ 0.0006.249

As H increases, the precision (1/02) increases, i.e. variance decreases.

5.d Triangle prior distribution

Posterior mean of theta is 4.96 cm

6.1 Kmeans clustering:

6.1.a Scatter plot of the data

6.1.b Looking at the plot, 3 clusters can be found in the data.

6.1.c Scatter plot with 3 clusters. Since, shape of the scatter is spherical, it is difficult to identify which cluster a data point should go. For example, the line in the circle should be half green and half black.

6.1.d As per graph, TOTWSS goes on decreasing as iterations increases. However, after 10 iterations, improvement in TOTWSS slows down. Thus, I would use 15 clusters where the curve becomes flat.

6.2 Spectral Clustering

First plot is from Kmeans clustering with K=3 and second plot is from Spectral clustering and Kmeans clustering with k=3. From both the plot we can infer, that Spectral clustering has more observations in cluster 3 (green color) whereas Kmeans clustering is evenly clustered with slightly more observations in cluster 1 (black). (Clusters might change due to randomness, but clustering pattern would be similar with one of the cluster having maximum data points assigned).

Kmeans clustering from 6.1 task

Kmeans clustering with K = 3 and Spectral clustering

Question 7

7.1 Time series plot of WT data

7.2 Histogram of WT data

From histogram, we can infer that WT data is negatively skewed with two modes.

7.3 Fitting a single Gaussian model

MLE parameters of Gaussian distribution is same as its empirical mean and variance. Thus, MLE mean is 24.15 and standard deviation is 2.056

Plot of Gaussian distribution parameters density and original histogram

7.4 Fitting a mixture of two Gaussians as data is bimodal.

	Comp 1	Comp 2
Mixing coefficients	0.5420	0.4579
Mean	22.541	26.0747
Standard deviation	1.3357	0.5739

7.5 Plotting these Gaussians on histogram

7.6 Log-Likelihood values over iterations

Log-Likelihood is stable after 10 iterations.

7.7 Comment on the distribution models obtained in Q7.3 and Q7.4. Which one is better?

Data is bimodal and left skewed, thus, fitting a single Gaussian distribution will provide less accurate parameters. Distribution obtained in 7.4 is mixture of two Gaussians fits data better than single Gaussian and provides more accurate parameters. Data points are probabilistically assigned to either of the Gaussian distribution, thus we get an overall better fit and parameters. For eg. black density curve in 7.5 fits the data better than the red density curve in 7.3.

7.8 What is the main problem that you might come across when performing a maximum likelihood estimation using mixture of Gaussians? How can you resolve that problem in practice?

Problems in maximizing likelihood using mixture of Gaussians:

1) Presence of Singularities:

Consider a covariance matrix $\sum_K = \sigma^2 I$, If $\mu_K = x_n$ for some n value, i.e. mean is exactly equal to one of the data point.

$$N(x_n|x_n, \sigma_k^2 I) = \frac{1}{(2\pi)^{\frac{1}{2}}\sigma_j}$$

If $\sigma_j \rightarrow 0$, then the term goes to infinity and so log-likelihood will also go to infinity which will pose a severe overfitting problem.

To overcome this, use heuristics to detect this and reset the mean to a randomly chose value while resetting its covariance to some large value, and then continue with the optimization.

2) Identifiability problem:

A K component mixture has a total of K! equivalent solutions

- corresponding to the K! ways of assigning K sets of parameters to K solutions.
- Example, if K = 3, then K! = 3! = 6. So, there are 6 possible ways to assign parameters for the 3 components.
- i.e, for any given point in the space of parameter values there will be a further K!-1
 additional points all giving exactly same distribution This is known as Identifiability
 problem
- Needs to be considered when parameters discovered by a model are interpreted.
- However, for the purpose of finding a good density model, it is irrelevant because any
 of the equivalent solution is as good as any other.

3) Complexity of maximizing the log likelihood in mixture of Gaussians:

Presence of summation over k that appears inside the log makes it harder. i.e., log function no longer directly acts on the Gaussian.

$$\ln p(X|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n|\mu_k,\Sigma_k) \right\}$$

Setting the derivative to zero will no longer results in a closed form solution and may have to use gradient based optimization.

To overcome this, we can use Expectation Maximization algorithm. It is used to find maximum likelihood solutions for model with latent variables.