Computational biology

Co-evolution to predict protein structures

Clovis Galiez

Grenoble

Statistiques pour les sciences du Vivant et de l'Homme

December 11, 2019

Goal

- Get an overview of computational biology topics
 - Topics (genomics, metagenomics, proteomics, etc.)
 - Know some important databases
 - Know standard tools (Blast, PyMoI) and libraries (BioPython)
- Have a basic culture of order of magnitude in computational biology
 - Quantity of data
 - Size of genomes
 - Size of organisms
- Toward autonomy for design and implementation of methods
 - Case study of SNP detection
 - Case study of protein structure prediction

Today's outline: from gene sequence to protein structure

- Sequence-structure-function paradigm
 - Genomes, genes, proteins
 - Databases
- Evolution
 - Selective pressure
 - Multiple sequence alignment
 - Co-evolution

ACGATGTATTCAGCGATTACGATAAAGCTACGTAGTGGCA

On a genome (\sim 5Mbp), specific motifs define beginning and end of a gene

December 11, 2019

4 / 17

ACGATGTATTCAGCGATTACGATAAAGCTACGTAGTGGCA

Transcription + translation, to form a chain of amino acids (\sim 300-3000AA)

4 / 17

ACGATGTATTCAGCGATTACGATAAAGCTACGTAGTGGCA

C. Galiez (LJK-SVH)

ACGATGTATTCAGCGATTACGATAAAGCTACGTAGTGGCA

Protein endowed with a function (biochemical reactions, transport, etc.)

Data at every steps

Nucleic seq.

..ATTGTCGATGAC..

Amino acid seq.

Protein

Function

V G G S F A D M G

Data at every steps

Nucleic seq.

Amino acid seq.

Protein

Function

..ATTGTCGATGAC..

ncbi.nlm.nih.gov

uniprot.org

rcsb.org

Protein evolution through mutations

Protein evolution through mutations

Sequence conservation

Aligning the sequences (MSA, multiple sequence alignment):

```
RYDSRTTIFSP..EGRLYQVEYAMEAIGNA.GSAIGILS
RYDSRTTIFSPLREGRLYQVEYAMEAISHA.GTCLGILS
RYDSRTTIFSP..EGRLYQVEYAMEAISHA.GTCLGILS
RYDSRTTIFSP..EGRLYQVEYAMEAISHA.GTCLGILA
RYDSRTTIFSP..EGRLYQVEYAMEAIGHA.GTCLGILA
RYDSRTTIFSP..EGRLYQVEYAMEAIGNA.GSALGVLA
RYDSRTTTFSP..EGRLYQVEYALEAINNA.SITIGLIT
SYDSRTTIFSP..EGRLYQVEYALEAINHA.GVALGIVA
```

Tools	Database
ClustalW [Larkin et al. 07]	Pfam pfam.xfam.org

Sequence conservation

Aligning the sequences (MSA, multiple sequence alignment):

```
RYDSRTTIFSP...EGRLYQVEYAMEAIGNA.GSAIGILS
RYDSRTTIFSPLREGRLYQVEYAMEAISHA.GTCLGILS
RYDSRTTIFSP...EGRLYQVEYAQEAISNA.GTAIGILS
RYDSRTTIFSP...EGRLYQVEYAMEAISHA.GTCLGILA
RYDSRTTIFSP...EGRLYQVEYAMEAIGHA.GTCLGILA
RYDSRTTIFSP...EGRLYQVEYAMEAIGNA.GSALGVLA
RYDSRTTTFSP...EGRLYQVEYALEAINNA.SITIGLIT
SYDSRTTIFSP...EGRLYQVEYALEAINHA.GVALGIVA
```

Tools	Database
ClustalW [Larkin et al. 07]	Pfam pfam.xfam.org

Why some positions are conserved, some other aren't?

Structure is determined by amino acid interactions

Preserving the function: coevolution of residues

As protein function is vital, **evolution selects mutations preserving structures**.

Leading to compensatory mutations:

Computers and protein structure prediction

Structure determined by X-Rays through a cristal of proteins

A simple approach for protein structure prediction

- Build or get multiple manio acid sequence alignments (e.g. in Pfam database)
- Quantify coevolution between positions in the sequence
- Infer what are the position in contact

What measure for co-evolution? Correlation would work?

Conservation vs. co-evolution

Conserved position carries no information in terms of co-evolution (entropy is zero).

Conservation vs. co-evolution

Conserved position carries no information in terms of co-evolution (entropy is zero). A standard approach is to measure it through Mutual Information:

$$MI(i,j) = \sum_{a,b} p(x_i = a, x_j = b) \log \frac{p(x_i = a, x_j = b)}{p(x_i = a) p(x_j = b)}$$

Where

- ullet x_i is the amino acid at position i
- $\bullet~p(x_i=a)$ is estimated in the MSA by $\frac{\# {\sf sequences~having~"a"}}{N}$ at position i
- ullet N the number of sequences in the MSA
- $p(x_i=a,x_j=b)$ is estimated in the MSA by #sequence having "a" at i and "b" at j

In paractice you need N>1,000 to have reasonable estimation of $p(x_i=a,x_j=b)$.

Over-repdiction at entropic position

When applying the rule

$$MI(i,j) > \tau \Rightarrow$$
 contact between i and j

some positions predict too many contacts, often position with high entropy. Several corrections can be applied¹.

In your project

You can try using the simple correction:

$$MI'(i,j) = MI(i,j) - \frac{1}{N} \sum_{k} (MI(k,j) + MI(i,k))$$

and fix a au to predict a contact as soon as:

$$MI'(i,j) > \tau$$

¹See https://doi.org/10.1093/bioinformatics/bti671

Hints concerning your Salmonella project

- The mutated gene you identified in the resistant bacteria have a large multiple sequence alignment in Pfam, search for its name in the Pfam browser.
- WP1.T2 consists in creating a tool taking as input an MSA in Fasta format and outputing a contact matrix².
- You can model the structure using FT-comar³ software, and compare to the native structure ⁴ using RasMol or PyMol software:

²see the *cheatsheet* for details about the file format

4 clovisg.github.io/teaching/protein-structure-prediction/target.pdb

³clovisg.github.io/teaching/protein-structure-prediction/ft-comar.tgz

Summary

Check what you've learn:

- What is a genome, a gene, a protein, its structure
- How real sequencing data look like
- What is a SNP, what can be the impact
- Main tools and databases in computational biology
- Potential application of computational biology for public health studies

The project involved basic skills from different area:

- biology
- statistics (Poisson distribution)
- algorithmics (linear time algorithms required)

Projects

Remember that your project should be like professional answers to the call:

- Clarity
- Fulfillment of the call
- Trustworthiness in the description of the approach

You should send:

- a report, including:
 - description of the strategy
 - approximations and choices
 - application to the project data (what gene is impacted by the SNP)
- your code
- a step-by-step guide to reproduce the results of the report

The TATFAR waits for interesting answers to its call!