SNUPC 2021 풀이

Official Solutions

SNUPC 2021

SNUPC 2021 풀이 2021년 9월 11일

	Div 2 문제	의도한 난이도	출제자
Α	5의 수난	Easy	kipa00
В	박스 그림 문자	Easy	16silver
С	실 전화기	Medium	doju
D	누텔라 트리 (Easy)	Medium	dlalswp25
Ε	뛰는 기물	Medium	kipa00
F	AND와 OR	Hard	kipa00
G	자연수 색칠하기	Hard	16silver
Н	트리 찾기	Hard	dlalswp25
	큰 수 뒤집기	Challenging	16silver

	Div 1 문제	의도한 난이도	출제자
Α	트리 조각하기	Easy	onjo0127
В	별 보는 교준이	Medium	yclock
С	큰 수 뒤집기	Medium	16silver
D	여우 국수	Hard	doju
Ε	자연수 색칠하기	Easy	16silver
F	고슴도치 그래프	Hard	kipa00
G	데칼코마니 트리	Hard	yclock
Н	RMQ	Challenging	moonrabbit2
1	두 트리	Challenging	yclock
J	문자열 X	Hard	dlalswp25
K	누텔라 트리 (Hard)	Challenging	dlalswp25

2A. 5의 수난

math, implementation 출제진 의도 - **Easy**

• 제출 77번, 정답 69명 (정답률 89.61%)

• 처음 푼 사람: **양창석**, 0분

• 출제자: kipa00

2A. 5의 수난

- 다섯 자리 수가 주어졌을 때, 각 자릿수의 다섯제곱의 합을 구하는 문제입니다.
- 문제에 설명되어 있는 그대로 구현하면 됩니다.

SNUPC 2021 풀이

4

2A. 5의 수난

- 어떤 수 n의 일의 자릿수가 n을 10으로 나눈 나머지이고, 십의 자릿수 이상이 n을 10으로 나눈 몫이라는 것을 이용하면 정수 입력으로 풀 수 있습니다.
- 문자열로 입력받아서 각 자리를 순회하며 **다섯**제곱을 해서 풀 수도 있습니다.
- C/C++의 경우 %1d를 이용하면, 최대 한 글자를 입력받아서 수로 반환한 결과를 돌려주기 때문에 이를 이용해도 됩니다.

2B. 박스 그림 문자

implementation 출제진 의도 **- Easy**

• 제출 109번, 정답 60명 (정답률 55.56%)

• 처음 푼 사람: **신원석**, 8분

• 출제자:16silver

SNUPC 2021 풀이

6

2B. 박스 그림 문자

3년만에 돌아온 .#문제입니다. (출제자도 동일합니다.)

- 일단 채워야 하는 칸의 3×3 중 가운데는 반드시 #입니다.
- 이 #을 기준으로 상하좌우가 . # 중 어떤 것인지 결정하면 됩니다.
- 대각선으로 인접한 칸들은 항상 . 입니다.

비어 있는 칸의 상하좌우로 인접한 칸을 확인합니다. 이 칸은

- 1. 없거나 (모서리),
- 2. 채워져 있습니다.

2B. 박스 그림 문자

- 모서리 쪽의 경우 문제 조건에 의해 답은 . 입니다.
- 채워져 있는 경우 해당 방향으로 한 칸 더 갔을 때의 문자가 답입니다.

case_work 출제진 의도 – **Medium**

- 제출 130번, 정답 29명 (정답률 28.16%)
- 처음 푼 사람: **박세현**, 25분
- 출제자: doju

• 다섯 개의 정점들이 정오각형 모양으로 놓여 있고 그 사이에 간선들이 일직선으로 그어져 있을 때, 점을 옮겨서 간선들이 교차하지 않도록 하는 문제입니다.

• 처음 상태에서 생길 수 있는 교차점은 총 다섯 개가 있습니다.

- 다섯 개의 교차점이 하나도 발생하지 않았다면 답은 0입니다.
- 교차점이 있는지 확인하려면 각 교차점을 이루는 두 개의 간선이 모두 입력에 포함되었는지 확인하면 됩니다.
 - 예를 들어 2-4 간선과 3-5 간선이 모두 주어지면 가장 아래쪽의 교차점이 만들어집니다.

• 다음으로, 답이 1이 되는 경우를 생각해 봅시다.

- 다음으로, 답이 1이 되는 경우를 생각해 봅시다.
- 흥미롭게도, 정점을 하나 없애서 교차점을 모두 없앨 수 있다면 답은 1이 됩니다.

• 그 이유는 정점을 없애는 것과 충분히 멀리 떨어뜨려 놓는 것이 같은 결과를 내기 때문입니다.

• 이것만으로도 구현을 할 수는 있지만, 좀 더 간단하게 정리해 봅시다.

SNUPC 2021 풀이

15

- 이것만으로도 구현을 할 수는 있지만, 좀 더 간단하게 정리해 봅시다.
- 정점 하나를 지우면 정점이 네 개밖에 남지 않으므로, 생길 수 있는 교차점은 단 하나뿐입니다.
- 즉, 다섯 개의 교차점 중 어느 하나가 생기지 않았다면, 그 반대쪽의 정점을 없애면 교차점이 모두 없어집니다.

- 이것만으로도 구현을 할 수는 있지만, 좀더 간단하게 정리해 봅시다.
- 정점 하나를 지우면 정점이 네 개밖에 남지 않으므로, 생길 수 있는 교차점은 단 하나뿐입니다.
- 즉, 다섯 개의 교차점 중 어느 하나가 생기지 않았다면, 그 반대쪽의 정점을 없애면 교차점이 모두 없어집니다.

• 따라서 다섯 개의 교차점 중 하나라도 생기지 않았다면 답은 1이 됩니다.

- 남은 경우는 다섯 개의 교차점이 모두 주어진 경우입니다.
- 가장자리의 간선 다섯 개가 모두 주어질 경우, 예제로 주어졌듯 답은 -1입니다.
- 그렇지 않은 경우 답이 2임을 어렵지 않게 확인할 수 있습니다.

- 정리하면 답은 0, 1, 2, -1 중 하나입니다.
- 입력된 실 전화기의 배치를 적절한 조건문을 사용해 네 가지 경우 중 하나로 분류해 주면 문제를 풀 수 있습니다.

trees, dfs, disjoint_set 출제진 의도 – Medium

• 제출 157번, 정답 29명 (정답률 30.85%)

• 처음 푼 사람: **이재찬**, 22분

• 출제자: dlalswp25

- 각 정점이 빨간색 또는 검은색으로 칠해진 트리가 주어질 때, 이 트리에서 **누텔라 경로**의 개수를 구하는 문제입니다.
 - 누텔라 경로란, 첫 번째 정점이 검은색이고 나머지 정점이 모두 빨간색인 길이 2 이상의 경로를 뜻합니다.

- 먼저 단순한 방법부터 생각해 봅시다.
- 경로의 시작점에 해당하는 검은색 정점을 고정합시다. 이때 경로의 끝점으로 가능한 정점은 몇 개일까요?

- 먼저 단순한 방법부터 생각해 봅시다.
- 경로의 시작점에 해당하는 검은색 정점을 고정합시다. 이때 경로의 끝점으로 가능한 정점은 몇 개일까요?

- **빨간색 정점만 따라가면서 도달할 수 있는 정점의 수**임을 알 수 있습니다.
- 각 검은색 정점에 대해 DFS 등으로 이러한 빨간색 정점의 개수를 구할 수 있으며, 이를 모두 더하면 답이 됩니다.
- 그러나 이 풀이의 시간 복잡도는 $\mathcal{O}(N^2)$ 으로, 너무 느립니다.

- 이 풀이가 느린 이유는 빨간색 정점들을 매번 새로 탐색하기 때문입니다.
- 어떻게 하면 더 효율적으로 해결할 수 있을까요?
- 트리에서 검은색 정점을 전부 무시하고, 각 빨간색 컴포넌트의 크기를 미리 구해 놓읍시다.

• Union-Find나 DFS 등으로 처리할 수 있습니다.

• 트리에서 검은색 정점을 전부 무시하고, 각 빨간색 컴포넌트의 크기를 미리 구해 놓읍시다.

• 트리에서 검은색 정점을 전부 무시하고, 각 빨간색 컴포넌트의 크기를 미리 구해 놓읍시다.

- 이제 각 검은색 정점에 대해 트리 전체를 탐색하는 대신, 인접한 빨간색 컴포넌트의 크기를 더해 주면 됩니다.
- 시간 복잡도는 $\mathcal{O}(N)$ 입니다.

math, case_work 출제진 의도 – Medium

• 제출 134번, 정답 26명 (정답률 34.67%)

• 처음 푼 사람: **김태형**, 27분

• 출제자: kipa00

- (n,m)-기물이 좌표평면의 임의의 격자점을 방문하기 위해서 최소 몇 개의 시작점이 필요한지를 구하는 문제입니다.
- 예를 들어 (1,2)-기물은 하나의 지점에서 다른 어떤 지점이든 갈 수 있습니다.

- 만일 $gcd(n, m) \neq 1$ 이면 어떻게 될까요?
 - 즉, n 과 m을 동시에 나누는 가장 큰 g > 1 이 있다면 어떻게 될까요?
- 예를 들어 n=2, m=4라고 하면 g=2가 n과 m을 동시에 나눕니다.

• 그림에서 볼 수 있듯이, $\gcd(n,m)$ 단위로 큰 칸을 새로 나누면, 같은 큰 칸에 속한 작은 칸끼리는 절대로 만날 수 없습니다.

- 따라서, $gcd(n,m) =: g \neq 1$ 인 경우 (n/g, m/g)-기물의 답에 g^2 를 곱하면 됩니다.
 - 문제를 서로소인 경우로 축소했습니다!
- 이제부터 gcd(n, m) = 1이라고 가정합니다. 문제를 더 줄일 수 있을까요?

- ullet (n,m) 중 큰 쪽을 줄이려고 해 봅시다. 몇 가지 예외 사항을 제외하고 $n>m\geq 1$ 이라 합시다.
 - 만일 m > n이면 (m, n)-기물을 대신 생각합니다.
 - 만일 m=n 이면 $\gcd(n,m)=\gcd(n,n)=n=1$ 이므로 m=n=1 인데, 이 경우 답은 2 입니다.
 - 체스판 색칠이라는 아주 유명한 테크닉입니다. 아래 그림에서 현재 말이 있는 색의 다른 색으로는 절대 이동할 수 없습니다.

• 만일 m=0 이면 $\gcd(n,m)=1$ 이므로 n=1 일 것이고 이 경우 답 (1) 은 매우 자명합니다.

- 이제 n > m > 1 이라 가정해도 좋습니다.
- 만일 n>2m 이면, (n,m)-기물이 다음과 같은 과정을 통해 (n-2m,m)-기물이 됩니다:

$$(0,0) \to (n,m) \to (n-m,m+n) \to (n-2m,m).$$

• 이때 (n-2m,m)-기물로도 (n,m)-기물을 흉내낼 수 있습니다. 즉 두 기물은 완전히 동등합니다.

$$(0,0) \to (n-2m,m) \to (n-2m+m,m-(n-2m)) \to (n-2m+m+m,m) = (n,m).$$

• n 과 m 중 최댓값은 n 인데, n-2m 과 m 모두 n 보다 작으므로 최댓값 줄이기에 성공했습니다.

• 만일 m < n < 2m이면, (n,m)-기물이 다음과 같은 과정을 통해 (2m-n,m)-기물이 됩니다:

$$(0,0) \to (-n,m) \to (m-n,m+n) \to (2m-n,m).$$

• 이때 (2m-n,m)-기물로도 (n,m)-기물을 흉내낼 수 있습니다. 즉 두 기물은 완전히 동등합니다.

$$(0,0) \to (-(2m-n), m) \to (m - (2m-n), m + (2m-n))$$

 $\to (2m - (2m-n), m) = (n, m)$

• n 과 m 중 최댓값은 n 인데, 2m-n 과 m 모두 n보다 작으므로 최댓값 줄이기에 성공했습니다.

- 만일 n = 2m이면, gcd(m, n) = gcd(m, 2m) = m = 1이므로 (1, 2)-기물이 됩니다.
- 우리 모두는 이 기물이 한 칸씩 이동할 수 있다는 사실을 알고 있습니다. 예제에 있기 때문이죠.

$$(0,0) \to (1,2) \to (3,1) \to (1,0).$$

• 상하좌우로 한 칸씩 이동할 수 있는 "기물" 이 (1,2)-기물을 흉내낼 수 있음은 말할 것도 없습니다.

- 즉 우리는 다음과 같은 변환을 찾았습니다.
 - n > 2m이면 (n, m)-기물은 (n 2m, m)-기물과 동등
 - m < n < 2m이면 (n, m)-기물은 (2m n, m)-기물과 동등
- 각 과정에서 주의깊게 보아야 할 부분이 있습니다.
 - 모든 과정은 최대공약수를 변화시키지 않습니다. 따라서 $n \neq 2m, n \neq m, m \neq 0$ 인 한 이 과정은 계속해서 적용할 수 있습니다.
 - 모든 과정은 n+m의 홀짝성을 유지합니다.

세 가지의 끝나는 경우에 대해 살펴봅시다.

- n=2m이 되어 끝나는 경우, 즉 (1,2)-기물로 환원되는 경우
 - 이 경우는 n+m이 $\frac{2}{9}$ 수여야 도달 가능하며, 예제에서 보았듯이 최종적으로는 답이 $\frac{1}{9}$ 이 됩니다.
- n=m이 되어 끝나는 경우, 즉 (1,1)-기물로 환원되는 경우
 - 이 경우는 n + m이 짝수여야 도달 가능하며, 최종적으로는 답이 2가 됩니다.
- m=0이 되어 끝나는 경우, 즉 $\gcd(n,m)=\gcd(n,0)=n=1$ 이므로 (1,0)-기물로 환원되는 경우
 - 이 경우는 n + m이 $\frac{2}{9}$ 수여야 도달 가능하며, 최종적으로는 답이 1이 됩니다.

...?

- 어떻게 끝나는지에 관계없이 n+m이 홀수이면 답이 1, 짝수이면 답이 2가 됩니다!
- 즉, 최종적인 풀이는 다음과 같습니다.
 - 1. gcd(n, m) = g를 계산합니다.
 - 2. (n/g + m/g)가 홀수이면 답은 g^2 , 짝수이면 답은 $2g^2$ 이 됩니다.

- q를 찾기 위해 가능한 모든 수로 나눠 보는 방법으로는 시간 초과가 납니다.
- n 과 m 을 $\mathcal{O}(\sqrt{n} + \sqrt{m})$ 에 각각 소인수분해하는 풀이는 통과할 수 있습니다.
- 위에서 소개드린 테크닉과 비슷한 테크닉, 즉 **둘 중 큰 수 줄이기**를 이용해서 최대공약수를 $\mathcal{O}(\log\min(n,m))$ 시간에 구할 수 있습니다.
 - 사실 이렇게까지 장황하게 설명하지 않아도 되는데 다소 길게 설명한 이유입니다. 부디 insight를 얻어가시기를 바랍니다...
 - 구체적인 알고리즘에 대해서는 "유클리드 호제법"을 찾아보시면 여기에 적는 것보다 훨씬 잘 설명된 자료가 많으므로 따로 설명하지는 않겠습니다.

• C++17의 numeric 헤더에는 함수 gcd가 내장되어 있습니다!

math, ad_hoc, greedy 출제진 의도 - **Hard**

• 제출 67번, 정답 35명 (정답률 59.32%)

• 처음 푼 사람: **김태형**, 12분

• 출제자: kipa00

- 음이 아닌 정수 *N* 개가 주어집니다.
- 두 개의 수 a 와 b 를 x 와 y 로 바꾸는 연산을 원하는 만큼 할 수 있습니다.
 - 이때, (a,b)와 (x,y) 쌍의 bitwise AND와 bitwise OR가 모두 같아야 합니다.
- 최종적으로 바뀐 N 개의 수의 곱을 최소화하세요.

- 관찰을 어떻게 하냐에 따라 천차만별의 방법으로 같은 결론에 도달하셨을 거라 생각합니다.
- 자명한 관찰부터 시작합니다.

Theorem

임의의 음이 아닌 정수 a, b에 대해, a와 b 모두 폐구간 [a AND b, a OR b] 안에 있다.

- a AND b는 a나 b의 비트에 포함된 비트 중 일부만 사용한 수이기 때문에 당연히 a와 b보다는 작거나 같습니다.
- a OR b는 a 나 b의 비트를 모두 가져오고 이후 새로 비트를 추가한 수이기 때문에 당연히 a와 b 보다는 크거나 같습니다.

• 이 관찰은 그리 자명하지 않은 관찰입니다.

Theorem

임의의 음이 아닌 정수 a, b 에 대해, $a+b=(a \, \mathrm{AND} \, b)+(a \, \mathrm{OR} \, b)$.

• 증명은 여러 가지 방법으로 할 수 있습니다.

- a와 b를 더하는 과정을 생각합시다.
- 받아올림이 없이 더한다면 결과는 $a \times OR b$ 입니다.
- 받아올림이 일어나는 자리는 a AND b 자리이고, 실제로는 이 값의 2 배를 더해 주어야 덧셈이 올바릅니다.
- 즉, a + b = (a XOR b) + 2(a AND b) 입니다. 그런데

$$a + b = (a \text{ XOR } b) + 2(a \text{ AND } b)$$

= $(a \text{ XOR } b) + (a \text{ AND } b) + (a \text{ AND } b)$
= $(a \text{ OR } b) + (a \text{ AND } b)$

11

이므로 증명이 완료됩니다.

- 이 사실은 N 개의 수를 어떻게 바꾸더라도 합이 일정하다는 의미입니다.
- 그렇다면 두 수를 최대한 멀리 떨어뜨리는 게 좋지 않을까요?
 - 우리는 a 와 b = a AND b 와 a OR b로 떨어뜨릴 수 있고, 첫 번째 관찰에 의해 이보다 더 멀리 떨어뜨릴 수는 없습니다.
 - 이렇게 떨어지지 않은 쌍이 있다면 곱이 최소가 되지 않음을 알 수 있습니다: 이렇게 떨어뜨리는 과정을 시행하면 곱이 더 작아질 것이기 때문입니다.

- 이제 이런 $\mathcal{O}(N^2)$ 풀이를 생각할 수 있습니다.
 - 1. N 개의 수를 보면서 "떨어뜨리기" 과정을 반복해 모든 수의 OR 값을 구해서 맨 오른쪽에 저장한다.
 - 이 수와 연산을 해서 절대로 더 떨어뜨릴 수 없기 때문에, 이 수를 수열에서 제외하고 생각할 수 있습니다.
 - 2. 왼쪽에서 (N-1)개, (N-2)개, \cdots , 2개의 수로 1.을 반복한다
 - 3. N 개의 수의 곱을 출력한다

- 그런데 이 과정을 시행할 때 N 이 매우 크면, 대부분의 계산 결과는 변하지 않습니다!
 - 이 연산 결과는 제한에서 30 번보다 많이 변할 수는 없습니다.
 - OR을 할 때 1로 설정된 비트는 다시 0으로 설정되는 일이 없고, 가용 비트는 총 30개이기 때문입니다.
- 만일 매 단계마다 30 개의 수를 잘 찾을 수만 있다면 $\mathcal{O}(30N)$ 에 문제를 해결할 수 있습니다.
- 이 방법으로도 문제를 해결할 수는 있으나, 구현이 그렇게 쉽지는 않습니다.

- 성질을 조금 더 관측해 봅시다.
 - a 와 b 중 양쪽 모두 1 인 비트는 a AND b 에도 속하고, a OR b 에도 속할 수밖에 없습니다.
 - $a ext{ } ext{ } b ext{ } ext{$
 - a 와 b 모두 없는 비트는 a AND b에도 a OR b에도 들어갈 수 없습니다.
- 위 사실을 정리하면, 각 자리의 비트의 개수가 유지됩니다.
- 제곱 알고리즘에서 OR을 오른쪽으로 보낸다는 것은 각 자리의 비트를 오른쪽으로 몰아서계산하는 것으로 바꾸어 생각할 수 있습니다!

			1							1
		1		1					1	1
1	1	1	1	1	\rightarrow	1	1	1	1	1
	1	1							1	1
2	3	7	10	6		2	2	2	7	15

- 따라서 다음과 같은 방법으로 문제를 해결할 수 있습니다.
 - 1. 모든 N 개의 수에 대해, 각 자리의 1 로 설정된 비트 개수를 센다.
 - 2. 개수가 남은 모든 비트에 대해 그 비트를 1 로 설정한 수를 추가하고, 설정된 각 비트의 개수를 1 뺀다.
 - 3. 2.를 N 번 반복하여 얻은 수를 모두 곱한다.
- 시간 복잡도는 동일하게 $\mathcal{O}(30N)$ 이나 직전에 소개드린 방법보다 구현이 훨씬 간단합니다.

constructive, number_theory 출제진 의도 **- Hard**

제출 80번, 정답 53명 (정답률 74.65%)

• 처음 푼 사람: **정성재**, 19분

• 출제자:16silver

- 가능한 최소 색의 수를 알아야 합니다.
- 반드시 모두 다른 색로 칠해야 하는 K 개의 수를 찾아야 합니다.
- 임의의 서로 다른 두 소수는 서로소입니다.

N 이하의 소수의 개수를 $\pi(N)$ 이라 하자. 최소 $\pi(N)+1$ 개의 색이 필요하다.

Proof. N 이하의 소수들을 $p_1, p_2, \cdots, p_{\pi(N)}$ 이라 하자. 이 때, $1, p_1, p_2, \cdots, p_{\pi(N)}$ 을 모두 다른 색으로 칠해야 하므로 색은 최소 $\pi(N)+1$ 개 필요하다.

- 이제 소수가 아닌 다른 수들을 색칠해봅시다.
- 모든 합성수 x를 어떤 소수 p와 같은 색으로 칠하고 싶습니다.
- 색칠에 대한 조건은 이것만으로 충분합니다. (그리고 필요조건이기도 합니다.)

 $\pi(N)+1$ 개의 색으로 N 이하의 모든 자연수를 조건에 맞게 색칠할 수 있다.

Proof. $1, p_1, p_2, \cdots, p_{\pi(N)}$ 을 모두 다른 색으로 칠한 뒤, 합성수 x 는 x의 (임의의) 소인수 p와 같은 색으로 칠한다. 이 때

- 1. 1은 모든 수와 다른 색
- 2. x, y가 같은 색 \Rightarrow 그 색의 소수 p에 대해 x, y는 모두 p의 배수 $\Rightarrow x, y$ 는 서로소가 아님

• 에라토스테네스의 체를 이용하여 답을 만들어낼 수 있습니다.

시간복잡도: $\mathcal{O}(n \log \log n)$

trees, binary_search 출제진 의도 – **Hard**

제출 27번, 정답 2명 (정답률 66.67%)

• 처음 푼 사람: **신기준**, 144분

• 출제자: dlalswp25

- 정점이 N 개인 트리 T 가 있습니다.
- 다음 질의를 최대 11 111 번 사용하여 이 트리의 간선들을 알아내야 합니다.
 - 서로 다른 K 개의 정점 u_1, u_2, \cdots, u_K 를 선택합니다.
 - 이 질의에 대해, 다음 조건을 만족하는 정점 v의 개수를 알 수 있습니다.
 - u_i 와 u_j 를 잇는 최단 경로 상에 v가 있도록 하는 $1 \le i \le j \le K$ 가 존재한다.

• " u_i 와 u_j 를 잇는 최단 경로 상에 v가 있도록 하는 $1 \leq i \leq j \leq K$ 가 존재한다."

- 문제에서 주어진 질의는 " u_1,u_2,\cdots,u_K 를 모두 포함하는 컴포넌트의 최소 크기"를 묻는 것과 동치입니다.
- 질의의 형태가 복잡하니, 가장 단순한 경우인 K=2부터 고려해 봅시다.
- 정점 두 개를 골라 질의를 하면 이들 사이의 거리를 알 수 있습니다.
- ullet N-1 번의 질의를 사용해서 1 번 정점으로부터 나머지 정점까지의 거리를 모두 구해줍시다.
- 이제 트리의 루트를 1번 정점이라 하면 각 정점의 깊이를 알 수 있습니다.
- 남은 것은 각 정점의 부모를 결정하는 일입니다.

- 깊이가 d인 정점 x의 부모는 다음과 같이 결정할 수 있습니다.
 - x의 부모가 될 수 있는 후보는 깊이가 d-1인 정점 전부입니다.
 - 다음 과정을 통해 후보를 절반씩 줄여 나갈 수 있습니다.
 - S= (깊이가 d-2 이하인 정점 전부) \cup (후보 정점의 절반) \cup $\{x\}$ 에 대해 질의를 합니다.
 - 만약 S 에 속하는 정점들 중 x 의 부모가 있다면, 질의의 답은 |S| 가 될 것입니다.
 - 그렇지 않다면, 질의의 답은 |S| + 1이 될 것입니다.
 - 즉, 질의의 결과에 따라 후보의 절반을 제거할 수 있습니다.
 - 따라서 최대 $\lceil \log_2 N \rceil$ 번의 질의를 통해 후보를 하나만 남길 수 있고, 이 정점이 x의 부모가됩니다.

- 맨 처음 N-1 번의 질의를 사용하였고, 각 정점의 부모를 결정하는 데 최대 $\lceil \log_2 N \rceil$ 번의 질의를 사용하므로 총 질의 횟수는 $N+N\lceil \log_2 N \rceil$ 이하입니다.
- N=1000일 때 이 값은 $11\,000$ 으로, 횟수 제한 안에 들어옵니다.

21. 큰수뒤집기

math, prefix_sum 출제진 의도 - Challenging

• 제출 32번, 정답 0명 (정답률 0.00%)

• 처음 푼 사람: -, -분

• 출제자:16silver

"20658번: 파이썬은 너무 느려"를 풀다 영감을 받아서 만든 문제 맞습니다.

- 뒤집는 연산이 없을 때의 문제를 풀어봅시다.
- 직접 수를 더해나간다면 $\mathcal{O}(n^2)$ 이 되어 오래 걸립니다.
- 각 숫자가 답에 얼마나 기여하는지를 살펴봅시다.

1	1	1	1	1	1	1	1	1
	2	2	2	2	2	2	2	2
		3	3	3	3	3	3	3
			4	4	4	4	4	4
				5	5	5	5	5
					6	6	6	6
						7	7	7
							8	8
								9

방법 1. 누적 합

- 1. 왼쪽부터 숫자를 하나씩 채웁니다.
- 2. 한 칸씩 오른쪽으로 가면서, 이전 값을 더합니다.
- 3. 오른쪽부터 받아올림을 진행하여 답을 얻어냅니다.

방법 2. 등비수열의 합 활용

- 1. 각 숫자마다 곱해야 하는 값은 $\frac{1}{9}(10^n 1)$ 입니다.
- 2. 구하려는 답에 9를 곱한 값은 숫자 채워넣기와 받아올림으로 구할 수 있습니다.
- 3. 이제 이 값을 9로 나누면 됩니다. 직접 나눗셈을 해도 시간복잡도는 $\mathcal{O}(n)$ 입니다.

- 뒤집는 연산이 있을 때도 각 숫자가 답에 얼마나 기여하는지 살펴봅니다.
- 뒤집은 횟수가 홀수일 때와 짝수일 때를 나눠서 보면 좋습니다.

											1
										1	2
									1	2	3
								1	2	3	4
							4	3	2	1	5
						4	3	2	1	5	6
					4	3	2	1	5	6	7
				7	6	5	1	2	3	4	8
			7	6	5	1	2	3	4	8	9
		9	8	4	3	2	1	5	6	7	1
	9	8	4	3	2	1	5	6	7	1	2
9	8	4	3	2	1	5	6	7	1	2	3

1 1 1 1 1 1	1
2 2 2 2	2
3 3 3	3
4 4	4
5 5 5 5 5	5
6 6 6 6	6
ר ר ר	7
8	8
	9
1 1	1
2	2
-	3

		3	2	2	2	_				
		2			2	2	2	2		
		3	3	3	3	3	3			
	4	4	4	4	4	4				
				5	5					
			6	6						
		7	7							
3	8	8								
9	9									
	-		8 8 8	7 7 8 8 8	6 6 7 7 8 8 8	6 6 7 7 8 8 8	6 6 7 7 8 8 8	6 6 7 7 7 8 8 8	6 6 7 7 7 8 8 8	6 6 7 7 8 8 8

2I. 큰 수 뒤집기

- i 번째로 들어간 숫자가 (들어갈 때 기준) 뒤집히지 않은 상태로 더해진 횟수 a_i
- ullet i 번째로 들어간 숫자가 (들어갈 때 기준) 뒤집힌 상태로 더해진 횟수 b_i

i 번째로 들어간 숫자 x_i 가 전체 답에 얼마나 기여할까?

- 1. 뒤집히지 않은 상태에서 $x_i imes rac{1}{9} \cdot (10^{a_i} 1)$
- 2. 뒤집힌 상태에서 $x_i imes 10^i \cdot \frac{1}{9} \cdot (10^{b_i} 1)$
- 따라서 뒤집는 연산이 없었을 때처럼 누적 합이나 등비수열의 합을 이용하여 문제를 풀 수 있습니다.

2I. 큰 수 뒤집기

• a_i, b_i 는 간단한 dp를 이용해 $\mathcal{O}(n)$ 에 구할 수 있습니다.

$$(a_i,b_i) = egin{cases} (a_{i+1}+1,b_{i+1}) & ext{(뒤집힌 경우)} \ (b_{i+1}+1,a_{i+1}) & ext{(뒤집히지 않은 경우)} \end{cases}$$

			10									
ai												
bi	0	0	0	3	3	2	2	2	6	6	6	6

전체 시간복잡도: $\mathcal{O}(n)$

스코어보드 보러 갑시다!

This Page is Intentionally Left Blank

bfs, parametric_search 출제진 의도 - Easy

• 제출 90번, 정답 23명 (정답률 41.82%)

• 처음 푼 사람: **조승현**, 5분

• 출제자: onjo0127

- 트리 T=(V,E)가 주어집니다. T의 각 정점에 대해 그 정점을 제거해야 하거나 제거하지 않아야 한다는 정보도 주어집니다.
- 원하는 정점들을 골라 폭탄을 설치할 수 있고, 폭탄이 모두 터지고 난 후 폭탄이 설치된 정점과 거리가 p 미만인 정점들은 모두 제거됩니다.
- 폭탄의 세기 p로 가능한 값 중에서 최댓값을 찾는 문제입니다.

- 세기가 k 인 폭탄을 정점 u 에 설치한다고 해 봅시다.
- 그렇게 하는 대신에 u, 그리고 u와 이웃한 정점들에 세기가 k-1인 폭탄을 설치하면 완전히 같은 효과를 낼 수 있습니다.
- 같은 논리로 세기가 k 인 폭탄들로 원하는 정점 집합을 제거하면서 나머지 정점들은 제거하지 않을 수 있다면, 세기가 k-1 인 폭탄들로도 같은 작업이 가능합니다.
- 귀납적 논리에 의해서 세기가 $k-2,\cdots,2,1$ 인 폭탄들로도 같은 작업을 할 수 있습니다.

- 방금의 논의를 통해서 **파라메트릭 서치**(정답에 대한 이분 탐색)를 사용할 수 있다는 점을 알 수 있습니다.
- 폭탄의 세기가 k일 때 결정 문제를 어떻게 해결할 수 있을까요?

- 제거해야 할 정점들의 집합을 A, 제거하지 않아야 할 정점들을 집합을 B 라고 합시다. 문제 조건에 의해 $A \cup B = V$ 입니다.
- ullet A 에 속한 정점 가운데 B 로부터 거리가 k 이상 떨어진 정점들의 집합을 R 이라고 정의합시다.
- 정의에 의해 R 에 속한 정점에는 폭탄을 설치해도 무방합니다. 그렇지 않다면, 폭탄을 설치하면 안 됩니다.
- R에 속한 모든 정점에 폭탄을 설치해도 무방하므로, 그렇게 합니다.
- 폭탄이 터지는 것을 시뮬레이션합니다. 만약 A에 속한 정점 중 제거되지 않은 정점이 있다면 결정 문제의 답은 **불가능**입니다.
- A에 속한 정점들이 모두 제거되었다면 결정 문제의 답은 **가능**입니다.

- B 에서부터 Multi Source BFS를 수행하면 $\mathcal{O}(N)$ 시간에 R을 계산할 수 있습니다.
- 마찬가지로 R에서부터 Multi Source BFS를 수행하면 $\mathcal{O}(N)$ 시간에 폭발 과정을 시뮬레이션할 수 있습니다.
- 결정 문제를 $\mathcal{O}(N)$ 시간에 해결할 수 있으므로, 전체 문제를 $\mathcal{O}(N\log N)$ 시간에 해결할 수 있습니다.

geometry 출제진 의도 – **Medium**

• 제출 54번, 정답 17명 (정답률 56.67%)

• 처음 푼 사람: **시제연**, 25분

• 출제자: yclock

- 이차원 평면에 놓인 N 개의 점을 두 집합 A, B로 분리하는 경우의 수를 구하는 문제입니다.
- 단, $A \neq \emptyset$, $B \neq \emptyset$ 이며, 두 집합을 분리하는 직선이 존재해야 합니다.
- A와 B에 속하는 점을 각각 속이 찬 빨간 원과 속이 빈 파란 원으로 표현합시다.

• 먼저, 두 집합을 분리하는 직선이 존재한다는 것은, 각 집합이 형성하는 볼록 껍질 (Convex hull)을 분리하는 직선이 있다는 것과 동치입니다.

- 직선으로 분리 가능한 두 볼록 껍질은 두 개의 공통접선을 가집니다.
- 모든 점이 한 직선 위에 있는 경우에는 성립하지 않지만, 나중에 생각합시다.

- 문제 조건을 만족하는 분할과 하나의 공통접선이 주어졌을 때, "공통접선 상에서 인접한 빨간색 점과 파란색 점의 순서쌍" 으로 상태를 나타냅시다.
- 아래의 경우, ((3,2), (4,3)) 으로 나타낼 수 있습니다.

- 어떤 분할과 공통접선의 상태가 (p,q) 라면, 서로 다른 두 점 p,q를 잇는 선분 위에 다른 어떤 점도 없어야 합니다.
 - 두 점을 지나는 직선 위에서 p와 q는 서로 인접하기 때문입니다.
- 문제의 답은, "어떤 분할과 공통접선의 상태"의 경우의 수의 절반과 같습니다.
 - 각 분할에 대하여 공통접선은 정확하게 두 개 존재하기 때문입니다.
- 서로 다른 두 점 p,q를 잇는 선분 위에 다른 어떤 점도 없는 순서쌍 (p,q)의 경우의 수는

입니다.

• $d \geq 2$ 개의 점을 지나는 직선에 대하여 총 2(d-1) 개의 (p,q) 순서쌍을 뽑을 수 있습니다.

- 앞에서 서술한 순서쌍 (p,q)에 대하여, (p,q)를 상태로 가지는 분할과 공통접선은 정확하게 두 개 존재합니다.
 - 공통접선은 p,q를 지나는 직선입니다.
 - 공통접선 위의 점의 색을 결정하는 방법은 유일합니다.
 - 공통접선 밖의 점의 색을 결정하는 방법은 두 가지입니다.
 - 이렇게 해서 얻어진 분할은 문제 조건을 만족합니다.

• 예를 들어, p=(3,2), q=(4,3) 라면, (p,q)를 상태로 가지는 분할과 공통접선은 아래와 같이 두 가지가 있습니다.

- 이 모든 내용을 정리하면 다음과 같습니다:
 - "문제 조건을 만족하는 분할"과 "분할과 공통접선의 상태"의 개수비는 1 : 2
 - "분할과 공통접선의 상태"와 "(p,q) 순서쌍"의 개수비는 2:1
 - "(p,q) 순서쌍"의 개수는

- 따라서 답은 위의 값과 같습니다.
- 위 공식은 모든 점이 한 직선 위에 있어도 성립합니다.

- 서로 다른 두 점을 잡고 이를 지나는 직선을 벡터에 추가합시다.
- $d \geq 2$ 개의 점을 지나는 직선은 벡터에서 총 d(d-1) 번 등장합니다.
- 즉, 벡터에서 n 번 등장하는 직선 위에는 총 $\frac{1+\sqrt{1+4n}}{2}$ 개의 점이 있습니다.
- 따라서 벡터를 정렬하면 앞에서 등장한 식을 계산할 수 있습니다.
- (x,y)와 $(x+\Delta x,y+\Delta y)$ 를 지나는 직선은 최대 공약수 $g=\gcd\left(\Delta x,\Delta y\right)$ 에 대하여 튜플 $\left(\frac{\Delta x}{g},\frac{\Delta y}{g},\frac{x\Delta y-y\Delta x}{g}\right)$ 로 표현할 수 있습니다.
- 전체 시간 복잡도는 $\mathcal{O}\left(N^2 \lg N\right)$ 입니다.

1C. 큰수뒤집기

math, prefix_sum 출제진 의도 - **Medium**

제출 37번, 정답 21명 (정답률 77.78%)

• 처음 푼 사람: **김세빈**, 49분

• 출제자:16silver

greedy, stack 출제진 의도 – **Hard**

• 제출 23번, 정답 3명 (정답률 42.86%)

• 처음 푼 사람: **시제연**, 101분

• 출제자: doju

- 여우는 사랑입니다.
 - 문제 설정은 일본의 면 요리인 키츠네 우동과 타누키 우동에서 가져왔습니다.
- (대충 $\mathcal{O}\left(N\log N\right)$ 때려주고 싶었다는 말)

- 문제를 좀 더 형식적으로 표현하면
- 알파벳 Y와 N으로 이루어진 문자열이 두 개 주어지고
- 스택 하나를 사용해 첫 번째 문자열을 두 번째 문자열로 바꾸는데
- 첫 번째 문자열의 n 번째 문자가 두 번째 문자열의 첫 번째 문자에 대응되어야 합니다.
 - 즉 처음에는 반드시 n 번 push를 하고 한 번 pop을 해야 합니다.

• 이 문제는 매개 변수 탐색 (parametric search) 으로 접근하기에 굉장히 좋은 형태입니다.

- 결정 문제로 쉽게 바꿀 수 있고,
- 처음에 조리만을 n 번 했을 때, 이후 모든 손님을 만족시킬 수 있는가?
- ullet 어떤 n이 조건을 만족한다면 그보다 작은 모든 값 또한 조건을 만족합니다.
- 이 방향으로 먼저 접근해 봅시다.

• 장인 여우가 사용할 수 있는 가장 간단한 전략을 생각해 봅시다.

• 만약 지금 진열대에서 꺼낼 수 있는 국수가 맨 앞의 손님과 대응된다면 국수를 내놓습니다.

• 아니면 다음 국수를 조리합니다.

- 장인 여우가 사용할 수 있는 가장 간단한 전략을 생각해 봅시다.
- 만약 지금 진열대에서 꺼낼 수 있는 국수가 맨 앞의 손님과 대응된다면 국수를 내놓습니다.
- 아니면 다음 국수를 조리합니다.
- 이 전략은 성립할까요?
 - 만약 장인 여우가 적절한 순서로 조리와 판매를 반복해서 모든 손님을 만족시킬 수 있다고 할
 때, 이 전략으로도 똑같이 목적을 달성할 수 있을까요?

- 결론부터 말하면, 이 전략은 성립합니다.
- 따라서 이 전략을 구현하면 $\mathcal{O}\left(N\log N\right)$ 풀이를 만들 수 있습니다.
 - (대충 $\mathcal{O}\left(N\log N\right)$ 때려주고 싶었다는 말)
- 더 좋은 풀이를 찾기 위해, 이 전략을 더 깊게 이해해 봅시다.

- 먼저 진열대가 비어 있는 상태에서 시작해서 모든 손님을 만족시키는 것만이 목표인 상황을 생각해 봅시다.
- 이때 이 전략이 성립함을 귀납법으로 보일 수 있습니다.
- 앞으로 편의상 두 문자열을 S와 T 라고 부르겠습니다.

- N=1인 경우는 자명하게 성립합니다.
- N>1일 때, 모든 $1\leq n\leq N-1$ 에 대해 S와 T가 길이 n이고 알파벳 구성이 같다면 전략이 성립한다고 가정합니다.
- 이때 어떤 $1 \leq i < N$ 에 대해 $S[1 \dots i]$ 와 $T[1 \dots i]$ 의 구성이 같다면 이 전략은 성립합니다.
 - n=i 에서 이 전략이 성립하므로, i 번 국수까지 만들면 i 번째 손님까지를 모두 만족시키고 진열대는 비게 됩니다.
 - n=N-i에서도 마찬가지로 성립하므로, 남은 N-i 명의 손님들도 모두 만족시킬 수 있습니다.

- 그런 i 가 없다면, 첫 번째 국수는 중간에 진열대를 빠져나올 수 없습니다.
- 이때 S[1] = T[N] 임을 보일 수 있습니다.
 - $1 \le i \le N$ 에 대해 $(S[1 \dots i]$ 에 포함된 Y의 개수) $-(T[1 \dots i]$ 에 포함된 Y의 개수) 를 생각해 보면 쉽게 관찰할 수 있습니다.
- 따라서 $S[2 \dots N]$ 과 $T[1 \dots N-1]$ 은 구성이 같습니다.
- 그러므로 2 번부터 N 번까지의 국수로 처음 N-1 명의 손님의 주문이 처리되고, 마지막으로 1 번 국수를 마지막 손님에게 내놓게 됩니다.

- 이제 처음에 n그릇의 국수가 진열대에 놓여 있는 경우를 생각해 봅시다.
- 여기서는 모든 주문을 만족시키는 어떤 작업 순서가 있을 때, 이 전략이 이 순서에 비해 손해를 보지 않음을 증명합니다.

- n 그릇의 국수는 반드시 역순으로 진열대를 빠져나옵니다.
- 아래 그림은 n=5의 예시이며, 점선은 두 구간이 서로 대응됨을 의미합니다.

- 이제 이 전략을 사용해서 주문을 처리해 봅시다.
- 만약 어떤 $i \leq n$ 번 국수에서 처음으로 기존의 순서와 차이가 생겼다고 가정합니다.
- 이때 전략상 i 번 국수를 받은 손님은 기존 순서에서 i 번 국수를 받은 손님보다 앞섭니다.

• 이제 기존 순서에서 i 번 국수를 받는 손님을 교체하더라도 이후 순서에 영향이 없음을 보입니다.

• 위의 점선으로 연결된 두 구역이 대응될 수 있다면, 즉 두 구역의 구성이 같다면 새로운 순서역시 올바른 순서일 것입니다.

• 위의 그림에서 점선으로 나뉘어진 세 개의 작은 구역은 모두 구성이 같음을 어렵지 않게 관찰할수 있습니다.

- 구역들의 대응 관계를 명시하면 위의 그림과 같습니다.
- 앞에서 제시된 두 구역이 서로 구성이 같음을 확인할 수 있습니다.

- 이제 증명이 모두 끝났습니다.
- 이 간단한 전략은 어떤 $0 \le n \le N$ 이 주어지면, 처음 n 그릇의 국수를 진열대에 쌓아 둔 상태에서 주문을 모두 완료할 수 있는지 판단할 수 있습니다.

• 이제 시간복잡도를 줄이는 일만이 남았습니다.

- 전략과 증명을 좀더 관찰해 봅시다.
- 이 전략은 진열대에 쌓여 있던 모든 국수를 가능한 한 앞의 손님에게 내어 줍니다.
- 따라서 진열대에 n 그릇을 쌓았을 때의 결과와 n+1 그릇을 쌓았을 때의 결과가 완전히 달라집니다.

• 이를 어떻게 극복할 수 있을까요?

장인 여우는 맨 앞에 있는 손님에게서 눈을 떼고 고개를 들었습니다. 그러자 N 마리의 손님들의 행렬이 눈에 들어왔습니다.

장인 여우는 생각했습니다...

장인 여우는 맨 앞에 있는 손님에게서 눈을 떼고 고개를 들었습니다. 그러자 N 마리의 손님들의 행렬이 눈에 들어왔습니다.

장인 여우는 생각했습니다...

모든 손님의 순서를 알고 있으므로, 진열대의 국수를 가져갈 손님을 미리 배정할 수 있다! 국수들을 먼저 만든 것부터 **가능한 한 뒤의** 손님에게 배정해 주면 어떨까?

• 뒤에서부터 배정하면 n을 늘리더라도 기존에 결정된 내용이 변하지 않습니다!

- 기존 전략의 증명과 완전히 같은 방법으로, 진열대의 국수를 가능한 한 뒤의 손님에게 배정하는 것 역시 타당함을 증명할 수 있습니다.
- n을 하나씩 늘려 나가면, 모든 주문을 처리할 수 있는 가장 큰 n을 $\mathcal{O}\left(N\right)$ 에 구할 수 있습니다.

• 따라서 $\mathcal{O}(N)$ 에 문제를 해결할 수 있습니다.

1E. 자연수 색칠하기

constructive, number_theory 출제진 의도 **- Easy**

제출 37번, 정답 27명 (정답률 75.00%)

• 처음 푼 사람: **시제연**, 4분

• 출제자:16silver

graphs, ad_hoc, pollard_rho 출제진 의도 – **Hard**

• 제출 13 번, 정답 0명 (정답률 0.00%)

• 처음 푼 사람: **-**, -분

• 출제자: kipa00

- 정점이 $V=10^6$ 개 있는, 연결된 유향 functional graph가 주어집니다.
- 이 functional graph에는 cycle이 유일하게 존재하는데,
 - cycle의 길이는 3 이상이고
 - cycle에 속하지 않은 정점은 cycle과 간선으로 직접 연결되어 있습니다.
- 다음 질의를 Q = 1204 번 할 수 있습니다.
 - 정점 v와 양의 정수 $x \le 10^{12.4}$ 를 고르면, v 에서 functional graph에 대응하는 함수 f 를 x 번 적용한 결과 $f^x(v)$ 를 돌려줍니다.
- cycle의 길이를 알아내야 합니다.
- 위 작업을, $N \leq 10$ 개의 독립된 functional graph에 대해 수행해야 합니다.

- 시간은 아마도 별 문제가 아니니 문제를 해결하는 방법부터 생각해 봅시다.
- 일단 두 가지를 관찰합니다.
 - 서로 다른 정점 번호는 아무 상관이 없습니다. (특정 정점 번호를 다른 정점 번호로 바꿔치기하면 그만입니다.) 다시 말하면, 우리가 정보를 얻어낼 수 있는 방법은 다른 방법으로 같은 정점에 도달했다는 정보뿐입니다.
 - 위 사실을 생각하면, 사이클이 아닌 정점은 어느 정점에서부터도 도달이 불가능하므로 아무 쓸모가 없습니다.
- 따라서 아무 정점이나 잡고 V 번 이상을 이동해서 사이클에 있는 정점 하나를 알아내고 나면, 굳이 사이클이 아닐 수 있는 정점을 고르는 모험을 할 이유가 없어집니다. 그 정점에서 도달 가능한 모든 정점은 사이클 안에 있으니까요.

- 질의 **한 번**을 사용해 사이클 안에 있는 정점 v_0 를 얻고 나면, 우리가 할 수 있는 일은 뭐가 있을까요?
- 가장 단순한 생각은, v_0 부터 아무 길이 x 로나 점프를 해서 다시 v_0 에 돌아오게 된다면 문제를 해결한 것이나 다름없습니다.
 - 조건을 만족하는 x를 찾은 경우 x의 소인수를 구해서, 각 소인수마다 이분탐색하는 방법으로 소인수의 지수를 모두 결정할 수 있습니다.
- 이렇게 될 확률이 얼마나 될까요? x가 주기의 배수이면 되므로 x를 찾을 확률은 최소 1/V 이고, 이것을 Q번 반복할 수 있으므로...
 - $Q \approx V/2$ 라도 $1-\left(1-\frac{1}{V}\right)^Q \approx 1-\frac{1}{\sqrt{e}} \approx 39.3\%$ 인데, $Q^2 \approx V$ 라서 가망이 없어 보입니다.

- 굳이 v₀ 랑 겹쳐야 할 이유는 없죠!
- v_0 에서 x_i 번 이동한 v_i 와 x_j 번 이동한 v_j 에 대해 $v_i=v_j$ 이고 $x_i\neq x_j$ 인 것으로 충분합니다.
- 확률 분석은 상당히 어려운데, Birthday Paradox라는 문제로 잘 알려져 있습니다.
 - 생각해 보면 N 명의 사람이 있을 때 쌍의 수가 $\mathcal{O}(N^2)$ 이기 때문에, 생일이 겹치는 것을 독립 시행으로 생각해도 확률 $\approx 1/N^2$ 인 시행이 한 번 성공할 확률은 꽤 높습니다.
- 다음 결과를 사용합니다 : $N\gg 1$ 일 때 N 개 중 $c\sqrt{N}$ 번을 (복원 추출로) 뽑았을 때 그중 하나라도 겹치지 않을 확률은 $\exp\left(-\frac{c^2}{2}\right)$ 이다.
 - 증명은 다음 장부터 있습니다. 궁금하지 않으신 분은 읽지 않으셔도 좋습니다.

• N 개 중 $c\sqrt{N}$ 번을 뽑았을 때, 하나라도 겹치지 않을 확률 p(N,c)는 다음과 같습니다.

$$p(N,c) = \frac{1}{N^{c\sqrt{N}}} \prod_{1 \le i \le c\sqrt{N}} (N-i+1).$$

• 위 식의 오른쪽 곱 기호는 $\frac{N!}{(N-c\sqrt{N})!}$ 으로 바꾸어 쓸 수 있습니다.

$$p(N,c) = \frac{N!}{N^{c\sqrt{N}}(N - c\sqrt{N})!}.$$

• $N\gg 1$ 이므로, 스털링 근사 $x! \approx \sqrt{2\pi x}e^{-x}x^x$ 을 N!과 $(N-c\sqrt{N})!$ 에 모두 적용합니다.

$$p(N,c) = \frac{N!}{N^{c\sqrt{N}}(N - c\sqrt{N})!}$$

$$\approx \frac{\sqrt{2\pi N}}{\sqrt{2\pi(N - c\sqrt{N})}} \cdot \frac{N^N e^{N - c\sqrt{N}}}{e^N(N - c\sqrt{N})^{N - c\sqrt{N}}N^{c\sqrt{N}}}$$

$$= \left(1 - \frac{c}{\sqrt{N}}\right)^{-0.5} \cdot \frac{1}{e^{c\sqrt{N}}} \cdot \left(1 - \frac{c}{\sqrt{N}}\right)^{-(N - c\sqrt{N})}$$

$$= \frac{1}{e^{c\sqrt{N}}} \cdot \left(1 - \frac{c}{\sqrt{N}}\right)^{-(N - c\sqrt{N} + 0.5)}.$$

• 양변에 로그를 씌우고 테일러 전개를 이용하면 증명이 완료됩니다.

$$\begin{split} \log p(N,c) &\approx -c\sqrt{N} - \left(N - c\sqrt{N} + \frac{1}{2}\right) \log\left(1 - \frac{c}{\sqrt{N}}\right) \\ &= -c\sqrt{N} + \left(N - c\sqrt{N} + \frac{1}{2}\right) \left(\frac{c}{\sqrt{N}} + \frac{c^2}{2N} + o(N^{-1.5})\right) \\ &= -c\sqrt{N} + c\sqrt{N} - c^2 + \frac{c^2}{2} + o(N^{-0.5}) \\ &\approx -\frac{c^2}{2} \\ \therefore p(N,c) &\approx \exp\left(-\frac{c^2}{2}\right). \end{split}$$

- $Q/\sqrt{V}=1.204$ 이므로 실패할 확률은 $\exp(1.204^2/2)\approx 48.44\%$ 입니다.
 - 한 그래프에 대한 성공 확률이 50% 를 간신히 넘겼습니다. N 번 해서 모두 다 맞기에는 여전히 턱도 없습니다.
- 그래도 이 접근법은 중요한 사실을 일깨워 줍니다 : Q 개의 질의를 알차게 쓰면, 쌍의 수가 $\mathcal{O}(Q^2)$ 정도이므로 가능성이 있다!

- 각 쌍을 모두 잘 쓰는 방법을 생각해 봅시다.
- 무작위로 건너뛰지 않는다면, 몇 칸을 건너뛰든 최악의 경우 별로 상관이 없습니다. 처음에는 무조건 **한 칸씩** 뛰어 봅시다.
 - 주기가 소수인 경우는 세 칸씩 건너뛰는 거나 한 칸씩 건너뛰는 거나 사실상 같습니다.
- 한 칸씩 뛰는 걸 L 번 반복해서 $v_0 o v_1 o \cdots o v_L$ 의 열이 생겼다고 합시다.
- 이런 이후에는 L칸씩 뛰어도 주기가 돌아옴이 보장됩니다!
 - 한 칸씩 뛴 결과를 알고 있는 길이 L의 구간이 있으므로, 아무 데서나 L칸씩 뛰어도 결국에는 이 구간 중 하나와 겹치게 됩니다.

- 이 방법은 deterministic 한 방법이므로 질의 제한에만 들어오면 성공합니다.
- 산술기하평균부등식을 이용해 최소의 L을 찾을 수 있습니다.

$$L + \frac{V}{L} \ge 2\sqrt{V} = 2000$$
 when $L = \sqrt{V} = 1000$.

- 안타깝게도 질의 제한인 1 204 번 안에는 들어오지 못합니다.
- 같은 횟수를 쓸 수 있는 확률적 솔루션의 성공 확률이 $1-e^{-2} \approx 86.47\%$ 밖에 되지 않는다는 점을 고려하면 큰 발전입니다.

- 제한이 2000이라고 생각하면, 마구잡이로 해 보는 게 쌍의 개수는 훨씬 많습니다.
 - "마구잡이" 솔루션은 $2\,000 \cdot 1\,999/2 = 1\,999\,000$ 개의 쌍 중 겹치는 것을 찾습니다.
 - deterministic 솔루션은 처음 $L=1\,000\,$ 개끼리와 나중 $L=1\,000\,$ 개끼리의 쌍은 각각 천 개만 고려하므로, $1\,000^2+2\cdot 1\,000=1\,002\,000\,$ 개의 쌍 중 겹치는 것을 찾습니다.
- 대체 deterministic 한 솔루션이 어디서 이점을 가져가기에, 확률 차이가 나는 것일까요?
- 문제는 길이끼리도 겹칠 확률이 생각보다 높다는 것입니다.
 - 만일 주기가 7이라면, 2에서 3칸 뛴 것을 해 보았다면 4에서 10칸 뛴 것을 해 볼 필요는 없습니다. 하지만 우리는 주기를 사전에 알지 못하고 마구잡이로 생성하기 때문에, 주기가 V에 가까운 경우 offset이 겹치는 것이 많이 생성될 확률도 올라갑니다.
 - deterministic 한 솔루션은 주기가 V 에 가까워도 겹치는 부분이 아예 없이, 10^6 개의 쌍이 1부터 10^6 까지의 offset 차를 **고루 생성합니다.**

- 이 방법이 가지는 특성을 분석해 봅시다.
- 아래 행렬에서 좌우 차는 1, 상하 차는 $L=\sqrt{V}=1\,000\,$ 입니다. 좌우 차가 행에 관계없이 일정하고, 상하 차가 열에 관계없이 일정합니다.

$$\begin{bmatrix} 1 & 2 & \cdots & L \\ L+1 & L+2 & \cdots & 2L \\ \vdots & \vdots & \ddots & \vdots \\ (L-1)L+1 & (L-1)L+2 & \cdots & L^2 \end{bmatrix}$$

- 이 행렬의 좌우 차와 상하 차를 이용해서 원하는 수를 항상 만들어낼 수 있습니다.
- $1 \cdots 11L \cdots L$ 은 이 행렬의 역순 좌우 차를 이동하고, 처음 이동 1을 이동하고, 상하 차를 이동한 것입니다.

- 이제 여기에 첫 번째 아이디어를 섞읍시다.
- 우리에게 중요한 것은 **주기 혹은 주기의 배수를 겹치지 않게 생성하는 것**입니다.
- 일단 생성해야 할 수의 개수를 줄여 봅시다.
 - $1 \neq 5000000$ 까지는 두 배 해도 V 보다 작거나 같으므로, $500001 \neq 5100001$ 부터 10^6 까지가 고려된다면 해 보지 않아도 됩니다.
 - 이제 x 제한이 큰 걸 생각합시다. **배수만 생성**하면 되므로, 남은 $500\,000$ 개를 **둘씩 곱해서** $250\,000$ 개의 곱을 아까처럼 배열할 수 있으면 됩니다.
- 수가 $250\,000$ 개로 줄어든다면, 아까처럼 했을 때 수의 개수 걱정은 없습니다. $(2\sqrt{250\,000}=1\,000\,0$ 므로.) 근데 그게 정말 가능할까요?

• 이렇게 하려고 노력하다 보면 배치를 찾을 수 있습니다.

$$\begin{bmatrix} \left(\frac{V}{2}+1\right)\left(\frac{V}{2}+L\right) & \left(\frac{V}{2}+2\right)\left(\frac{V}{2}+L-1\right) & \cdots & \left(\frac{V}{2}+\frac{L}{2}\right)\left(\frac{V}{2}+\frac{L}{2}+1\right) \\ \left(\frac{V}{2}+L+1\right)\left(\frac{V}{2}+2L\right) & \left(\frac{V}{2}+L+2\right)\left(\frac{V}{2}+2L-1\right) & \cdots & \left(\frac{V}{2}+\frac{3L}{2}\right)\left(\frac{V}{2}+\frac{3L}{2}+1\right) \\ \vdots & \vdots & \ddots & \vdots \\ \left(\frac{V}{2}+\left(\frac{L}{2}-1\right)L+1\right)\left(\frac{V}{2}+\frac{L^{2}}{2}\right) & \left(\frac{V}{2}+\left(\frac{L}{2}-1\right)L+2\right)\left(\frac{V}{2}+\frac{L^{2}}{2}-1\right) & \cdots & \left(\frac{V}{2}+\left(\frac{L}{2}-1\right)L+\frac{L}{2}\right)\left(\frac{V}{2}+\left(\frac{L}{2}-1\right)L+\frac{L}{2}+1\right) \end{bmatrix}$$

• 접근 방식은 사람마다 굉장히 많은 차이가 있을 수 있습니다.

$$\begin{bmatrix} \left(\frac{V}{2}+1\right)\left(\frac{V}{2}+L\right) & \left(\frac{V}{2}+2\right)\left(\frac{V}{2}+L-1\right) & \cdots & \left(\frac{V}{2}+\frac{L}{2}\right)\left(\frac{V}{2}+\frac{L}{2}+1\right) \\ \left(\frac{V}{2}+L+1\right)\left(\frac{V}{2}+2L\right) & \left(\frac{V}{2}+L+2\right)\left(\frac{V}{2}+2L-1\right) & \cdots & \left(\frac{V}{2}+\frac{3L}{2}\right)\left(\frac{V}{2}+\frac{3L}{2}+1\right) \\ \vdots & \ddots & \vdots \\ \left(\frac{V}{2}+\left(\frac{L}{2}-1\right)L+1\right)\left(\frac{V}{2}+\frac{L^{2}}{2}\right) & \left(\frac{V}{2}+\left(\frac{L}{2}-1\right)L+2\right)\left(\frac{V}{2}+\frac{L^{2}}{2}-1\right) & \cdots & \left(\frac{V}{2}+\left(\frac{L}{2}-1\right)L+\frac{L}{2}\right)\left(\frac{V}{2}+\left(\frac{L}{2}-1\right)L+\frac{L}{2}+1\right) \end{bmatrix}$$

• i 번째 행과 그 아래 행의 차이는 열 j 에 **관계없이** $(LV + 2iL^2)$ 입니다 :

$$\left(\frac{V}{2} + iL + j\right) \left(\frac{V}{2} + (i+1)L - j + 1\right) - \left(\frac{V}{2} + (i-1)L + j\right) \left(\frac{V}{2} + iL - j + 1\right) = LV + 2iL^{2}.$$

• 이 값은 10^9 scale 입니다.

$$\begin{bmatrix} \begin{pmatrix} \frac{V}{2}+1 \end{pmatrix} \begin{pmatrix} \frac{V}{2}+L \end{pmatrix} & \begin{pmatrix} \frac{V}{2}+2 \end{pmatrix} \begin{pmatrix} \frac{V}{2}+L-1 \end{pmatrix} & \cdots & \begin{pmatrix} \frac{V}{2}+\frac{L}{2} \end{pmatrix} \begin{pmatrix} \frac{V}{2}+\frac{L}{2}+1 \end{pmatrix} \\ \begin{pmatrix} \frac{V}{2}+L+1 \end{pmatrix} \begin{pmatrix} \frac{V}{2}+2L \end{pmatrix} & \begin{pmatrix} \frac{V}{2}+L+2 \end{pmatrix} \begin{pmatrix} \frac{V}{2}+2L-1 \end{pmatrix} & \cdots & \begin{pmatrix} \frac{V}{2}+\frac{3L}{2} \end{pmatrix} \begin{pmatrix} \frac{V}{2}+\frac{3L}{2}+1 \end{pmatrix} \\ \vdots & \vdots & \ddots & \vdots \\ \begin{pmatrix} \frac{V}{2}+\begin{pmatrix} \frac{L}{2}-1 \end{pmatrix} L+1 \end{pmatrix} \begin{pmatrix} \frac{V}{2}+\frac{L^2}{2} \end{pmatrix} & \begin{pmatrix} \frac{V}{2}+\begin{pmatrix} \frac{L}{2}-1 \end{pmatrix} L+2 \end{pmatrix} \begin{pmatrix} \frac{V}{2}+\frac{L^2}{2}-1 \end{pmatrix} & \cdots & \begin{pmatrix} \frac{V}{2}+\begin{pmatrix} \frac{L}{2}-1 \end{pmatrix} L+\frac{L}{2} \end{pmatrix} \begin{pmatrix} \frac{V}{2}+\begin{pmatrix} \frac{L}{2}-1 \end{pmatrix} L+\frac{L}{2}+1 \end{pmatrix} \end{bmatrix}$$

• j 번째 열과 그 오른쪽 열의 차이는 행 i 에 **관계없이** (L-2j) 입니다:

$$\left(\frac{V}{2} + (i-1)L + (j+1)\right) \left(\frac{V}{2} + iL - j\right) - \left(\frac{V}{2} + (i-1)L + j\right) \left(\frac{V}{2} + iL - j + 1\right) = L - 2j.$$

이 값은 10³ scale입니다.

• 즉, 다음과 같이 하면 1000 번에 모든 수를 커버할 수 있습니다!

- 1. (L-2j)를 j 역순으로 이동한다: 즉 $2, 4, \dots, 998$.
- 2. 첫 수 $\left(\frac{V}{2}+1\right)\left(\frac{V}{2}+L\right)=250\,500\,501\,000$ 만큼 이동한다.
- 3. $(LV + 2iL^2)$ 를 i 순서대로 이동한다: 즉 $1\,002\,000\,000,\,1\,004\,000\,000$ · · ·

128

- 시간에 대해 생각해 봅시다.
- 이동하고 겹치는 것을 확인하는 것은 상수 시간에 할 수 있으므로 큰 문제가 아닙니다.
- 소인수분해를 하는 것은 **큰 문제이지만**, 나중에 생각해 봅시다.
- N 개의 테스트 케이스를 처리하기 위한 초기화를 어떻게 시행해야 할까요?
 - ullet 단순히 초기화하는 것으로는 초기화 시간이 $\mathcal{O}(VN)$ 으로 살짝 아슬아슬합니다...

- 메모리 참조가 $\mathcal{O}(Q)$ 번밖에 안 일어나니 참조한 메모리만 초기화하는 전략을 이용해 봅시다.
- vector에 참조한 인덱스를 모두 저장해 둡니다.
- 초기화할 때는, vector에 저장된 인덱스를 모두 초기화하고 vector를 비우면 됩니다.
- 참조한 것만 초기화하므로, 초기화 시간이 amortized $\mathcal{O}(1)$ 이 되었습니다.
- 참고로, 인터랙터 역시 그래프를 전부 받으면 $\mathcal{O}(VN)$ 의 시간이 걸리기 때문에, 그래프를 시드 (seed)의 형태로 표현해 두고 질의가 올 때마다 그래프의 정점을 발견해 나가는 방식으로 구현되어 있습니다.

- 소인수분해는 어떻게 하는 게 좋을까요?
- 우리가 구하는 값들은 표에 있는 값이고, 이 값은 굉장히 가까이 있는 두 수의 곱 ab 입니다.
 - *a* 와 *b* 는 **주기**이기 때문에 *V* 보다 작습니다.
 - a와 b를 구할 수 있다면, 에라토스테네스의 체 등을 활용한 $\mathcal{O}(V\log\log V)$ 의 전처리로 $\mathcal{O}(\log V)$ 만에 a와 b의 소인수분해를 모두 구할 수 있습니다.
- 즉, $4ab = (a+b)^2 (a-b)^2$ 에서 $(a-b)^2$ 이 굉장히 작습니다.
- 모든 가능한 $(a+b)^2$ 을 작은 것부터 해 보면 거의 상수 시간에 4ab를 두 개의 짝수 2a, 2b로 쪼갤 수 있습니다.
 - 이렇게 구한 수를 각각 2로 나누어 줄 필요가 있습니다.

- 질의 횟수는 총 1 053회를 넘지 않으므로 상당히 넉넉하게 돌아갑니다.
 - 먼저 사이클에 집어넣는 것 1회
 - 표에 있는 수들의 차를 출력하는 것이 1 000회
 - 소인수분해하는 수는 2^{40} 을 넘지 않고 각 소인수를 binary search 1 회 할 때마다 수의 후보군이 절반으로 줄어드므로 40 회를 넘지 않아야 하나, 각 소인수가 항상 완전히 절반으로 줄일 수 있는 것은 아닐 수 있으므로 소인수 당 1 회씩 추가 (제한을 지키는 최대 소인수의 개수는 12 개) 하여 52 회
- 제한을 넉넉하게 잡은 이유는
 - 12월 4일이 출제자의 생일이기도 하고
 - 비슷한 수준의 다른 풀이 (각 수의 자승을 곱해서 확인하거나 하는 풀이)를 빡빡하게나마 통과시켜 주고 싶었기 때문입니다. 문제가 풀리길 바랐어요.

- 시간을 고려해 봅시다.
- 아까 논의한 대로 초기화 시간은 고려할 필요가 없습니다.
- 겹치는 걸 확인하는 Q 번의 질의 이후, 상수 시간에 절반으로 쪼개고, 시간 $\mathcal{O}(\log V)$ 의 소인수분해를 두 번 한 다음, $\mathcal{O}(\log V)$ 번의 binary search 시간이 들어갑니다.
- 총 시간은 전처리 $\mathcal{O}(V\log\log V)$ 에 그래프 당 $\mathcal{O}(Q+\log V)$ 이므로, $\mathcal{O}(V\log\log V+N(Q+\log V))$ 입니다.

- 소인수분해하는 수의 성질 분석 없이 pollard's ρ 를 이용할 수도 있는데 이 경우는 expected $\mathcal{O}(\sqrt{V})$ 의 소인수분해 시간이 걸리게 됩니다.
 - ullet 우연의 일치이지만 pollard's ho 역시 birthday paradox에 기반을 둔 알고리즘입니다.
- 이 경우 총 시간은 전처리 없이 $\mathcal{O}(N(Q+\sqrt{V}))$ 입니다. 이렇게 해도 무난하게 통과할 수 있습니다.

tree_isomorphism 출제진 의도 **- Hard**

• 제출 26번, 정답 1명 (정답률 16.67%)

• 처음 푼 사람: **강태규**, 243분

• 출제자: yclock

• 트리를 선대칭이 되도록 이차원 평면에 임베딩이 가능한지 판별하는 문제입니다.

• 트리가 두 개의 센트로이드를 가진다면, 둘 사이에 새로운 정점을 하나 추가해도 답에 영향을 주지 않습니다.

• 이때, 새로운 정점은 유일한 센트로이드가 됩니다.

- 이제, 트리가 유일한 센트로이드를 가진다고 합시다.
- 데칼코마니 트리의 센트로이드는 항상 대칭축 위에 놓입니다.
 - 그렇지 않다면, 센트로이드와 대칭을 이루는 정점 또한 센트로이드가 되어야 합니다.

• 대칭축 위에 올라가는 정점은 하나의 단순 경로를 이룹니다.

- 유일한 센트로이드 r을 루트로 하여, 루트가 있는 트리를 만듭시다.
- 정점 v를 루트로 가지는 부트리를 T_v 로 부릅시다.
- 두 루트가 있는 트리 T_u , T_v 가 동형 (Isomorphism) 이라면 $T_u \equiv T_v$ 로 나타냅시다.

- 정점 v가 대칭축 위에 놓여 있다고 합시다.
- 정점 v의 자식 정점이 u_1, u_2, \cdots, u_K 라고 합시다.
- 아직 매칭이 안 된 두 자식 정점 u_i, u_j 가 있어 $T_{u_i} \equiv T_{u_j}$ 라고 합시다.
 - 이 경우, T_{u_i} 와 T_{u_i} 는 대칭축 위에 올라가지 않으며, 서로 대응됩니다.
- 위의 매칭 작업을 최대한 많이 수행합시다.
 - 모든 자식 정점을 대응시켜 줄 수 있다면, 선대칭을 이루도록 T_v 를 임베딩할 수 있습니다.
 - 단 하나의 자식 정점 u 만 매칭이 안 되었다면, u 는 반드시 대칭축 위에 올라가야 하며, T_u 를 임베딩할 수 있는지 재귀적으로 확인해야 합니다.
 - 예외적으로, 루트r은 매칭이 안 된 자식 정점을 두 개까지 허용합니다.

• 그 외의 경우, T_v 는 데칼코마니 트리가 아닙니다.

- 따라서, 두 부트리가 동형인지 빠르게 판별할 수 있어야 합니다.
- 가장 쉬운 방법은 부트리의 해시 (Hash) 를 동형 판별에 이용하는 것입니다.
- 부트리 T_i 의 해시 H_i 를 모두 계산할 수 있다면, 앞에서 자식 정점 u_1,u_2,\cdots,u_K 의 매칭 작업을 단순하게 $H_{u_1},H_{u_2},\cdots,H_{u_K}$ 를 정렬함으로써 구현할 수 있습니다.

• 그러면 해시 H_i 를 어떻게 계산할 수 있을까요?

- 아주 큰 수 X 에 대하여, 범위 [1, X) 에서 N 개의 정수 P_1, P_2, \dots, P_N 을 랜덤하게 뽑습니다.
- 정점 하나로 이루어진 부트리의 해시는 1로 정의합니다.
- 부트리 T_v 의 해시 H_v 는 다음과 같이 계산합니다.
 - 정점 v의 자식 정점 u_1, u_2, \cdots, u_K 를 $H_{u_1} \leq H_{u_2} \leq \cdots \leq H_{u_K}$ 가 되도록 정렬합니다.
 - $H_v := \left(\sum_{i=1}^K H_{u_i} \times P_i\right) \mod X$
- N 개의 부트리의 해시를 \mathcal{O} $(N \lg N)$ 에 계산할 수 있으며, 따라서 전체 문제를 \mathcal{O} $(N \lg N)$ 에 해결할 수 있습니다.

- ullet 이 문제를 $\mathcal{O}\left(N
 ight)$ 에 결정론적으로 해결하는 방법 또한 존재합니다.
- 데칼코마니 트리를 선대칭이 되도록 정수점 위에 임베딩하는 것 또한 가능합니다.

• 이 문제는 선인장 그래프여도 선형에 해결할 수 있습니다.

segtree 출제진 의도 – **Challenging**

• 제출 1번, 정답 1명 (정답률 100.00%)

• 처음 푼 사람: **신승원**, 148분

• 출제자: moonrabbit2

- 편의상 l > r일 때 RMQ(l, r) = 0으로 정의합시다.
- 이제 각 쿼리는 $l \leq i \leq r$, $s \leq j \leq e$ 인 모든 (i,j) 쌍에 대해 RMQ(i,j) 의 합을 구하는 쿼리입니다.

- 2차원 직사각형 영역에 대한 합 쿼리이므로 부분합을 이용합시다.
- $l \le i \le r, 1 \le j \le x$ 인 모든 (i, j) 쌍에 대해 RMQ(i, j) 의 합을 구할 수 있다고 합시다.
- ullet x=e일 때의 값에서 x=s-1일 때의 값을 빼면 쿼리에 대한 답을 구할 수 있습니다.
- 이제 각 (l, r, s, e) 쿼리를 (l, r, x) 쿼리 2개로 분해할 수 있습니다.

- 이제 x = 1 씩 증가시키면서, 해당 x 에 대한 쿼리들을 해결해 봅시다.
- 각 i 마다 $\mathrm{RMQ}(i,1)+\cdots+\mathrm{RMQ}(i,x)$ 을 잘 관리한다면, 세그먼트 트리 등으로 (l,r) 쿼리를 통해 구간합을 구해 (l,r,x) 쿼리를 해결할 수 있을 것입니다.

- 우선 각 i마다 $\mathrm{RMQ}(i,x)$ 를 구하는 법을 알아봅시다. 물론 그냥 구간 최솟값 쿼리, 구간 최댓값 쿼리를 이용해 구할 수도 있겠지만 이대로는 $\mathrm{RMQ}(i,1)+\cdots+\mathrm{RMQ}(i,x)$ 를 구하기는 어려워 보입니다.
- RMQ(i,x)의 값이 RMQ(i,x-1)의 값과 다르다면 A_x 가 [i,x] 구간에서 최솟값이거나 최대값이라는 사실을 이용합니다.
- $\mathrm{RMQ}(i,x-1)$ 과 $\mathrm{RMQ}(i,x)$ 가 다른 i 들을 빠르게 구하고, 값들을 업데이트하면 될 것 같습니다.

- 어떤 i 에 대해 $\min(A_i, \dots, A_x) = A_j$ 인 j 들을 생각해보면, j 가 증가할수록 A_j 값이 증가합니다. 해당 j 들은 스택을 이용해 관리할 수 있습니다.
- 스택의 top j에 대해 $A_j > A_x$ 일 동안 스택에서 pop을 한 후, x를 push하면 됩니다.
- pop을 했다는 것은 해당 j 가 관리하던 i 들에 대해, 이제 $\min(A_i,\cdots,A_x)=A_x$ 라는 뜻입니다. $\mathrm{RMQ}(i,x-1)$ 에 $\frac{A_x}{A_j}$ 를 곱해 $\mathrm{RMQ}(i,x)$ 을 구할 수 있습니다.
- 해당 i 들은 스택의 크기가 1 이었다면 [1,j], 그렇지 않다면 스택의 다음 $top\ j'$ 에 대해 [j'+1,j]로 구간을 이룹니다. 따라서 모듈로 역원을 이용하면 구간에 어떤 값을 곱하는 쿼리로 이 과정을 처리할 수 있습니다.
- 마지막 push는 $min(A_x, \dots, A_x) = A_x$ 라는 뜻입니다.
- \max 에 대해서도 비슷하게, 스택을 이용해 $\mathrm{RMQ}(i,x)$ 들을 구할 수 있습니다.

- 이제 i < x 인 i 들에 대해 RMQ(i, x 1) 에서 RMQ(i, x) 를 구할 수 있습니다!
- RMQ(x,x)는 A_x^2 입니다. 이 경우만 따로 처리하면 됩니다.
- 구간에 어떤 값을 곱하는 쿼리는 lazy propagation을 이용한 세그먼트 트리를 이용해 $\mathcal{O}\left(\log N\right)$ 에 처리할 수 있습니다.
- 모듈러 역원은 $\mathcal{O}(\log P)$ 에 구할 수 있습니다. $(P = 10^9 + 7)$
- 각 스택에 대해, 각 x는 한 번 push되고 최대 한 번 pop됩니다. 따라서 쿼리는 $\mathcal{O}\left(N\right)$ 개입니다.
- 따라서 시간복잡도 $\mathcal{O}\left(N\log N + N\log P\right)$ 에 $\mathrm{RMQ}(i,x)$ 들을 구할 수 있습니다.

- 이제 $l \le i \le r$ 인 i에 대해 $\mathrm{RMQ}(i,1) + \cdots + \mathrm{RMQ}(i,x)$ 를 구해야 합니다.
- 처음에는 모든 값이 0인 길이 N의 수열 v와 s에 대해 다음과 같은 쿼리들을 처리할 수 있다면 가능합니다.
 - ullet [l,r]과 x에 대해, $l \leq i \leq r$ 인 모든 i에 $v_i = v_i imes x$
 - i와x에 대해, $v_i=x$
 - $1 \leq i \leq N$ 인 모든 i에 $s_i = s_i + v_i$
 - [l,r]에 대해, $s_l+\cdots+s_r$ 을 구함
- 기존 lazy propagation 세그먼트 트리에서 추가적으로 3, 4번 쿼리를 처리할 수 있게 수정하면 될 것 같습니다.

- 우선 기존 세그먼트 트리의 구조를 살펴봅시다.
- 세그먼트 트리의 각 노드 i 에 대해, 두 값 V_i 를 노드 i 의 구간의 v_i 의 합으로 정의합시다.
- 세그먼트 트리의 각 노드 i 에 대해, lazy 값 $L_{1,i}$ 를 정의합니다. 처음에 모든 $L_{1,i}=1$ 입니다.
- lazy값을 propagate하는 과정에서, V_i 를 다음과 같이 바꿀 것입니다.
 - $V_i = V_i \times L_{1,i}$
- 이후 노드 i의 각 자식 노드 j에 대해, $L_{1,j}$ 를 다음과 같이 바꿀 것입니다.
 - $L_{1,j} = L_{1,j} \times L_{1,i}$
- 이후 $L_{1,i} = 1$ 로 초기화합니다.

- 이제 s_i 들의 합 S_i 도 저장한다고 합시다. V_i 의 값이 propagate 과정에서 변하면서 이 값은 어떻게 변할까요?
- $L_{1,i}$ 는 여러 업데이트 쿼리들이 합쳐진 결과이니, V_i 와 $L_{1,i}$ 만을 가지고 변화한 값을 표현하긴 어려워 보입니다.
- 다만, S_i 에 더해지는 값은 쿼리 순서대로 $V_i,\cdots,V_i,aV_i,\cdots,aV_i,abV_i\cdots,abV_i,\cdots$ 꼴이었을 것입니다. 이 사실을 이용합시다. $L_{2,i}$ 를 정의해, propagate 과정에서 S_i 에 $V_i \times L_{2,i}$ 를 더한다고 합시다. $L_{2,i}$ 는 0으로 초기화해야 합니다.

- $L_{1,j} = L_{1,j} \times L_{1,i}$ 과정에서, V_j 에 어떤 값을 곱하는 두 업데이트 쿼리가 합쳐집니다.
- 이때, $L_{1,j}, L_{2,j}$ 에 해당하는 쿼리들은 $L_{1,i}, L_{2,i}$ 에 해당하는 쿼리들보다 먼저 행해진 쿼리들입니다.
- $L_{1,j}$, $L_{2,j}$ 가 새로 초기화된 값인 경우 이 논리가 틀릴 수도 있지만, 이 경우 그냥 쿼리가 자식으로 내려갔다고 생각하면 됩니다.
- 이 사실을 이용하면 $L_{2,i}$ 값도 자식으로 전파할 수 있습니다. V_j 값이 아니라 $L_{1,j}V_j$ 값에 $L_{2,i}$ 를 적용한다고 생각하면 됩니다. 즉, $L_{2,j}=L_{2,j}+L_{1,j}\times L_{2,i}$ 입니다. 이를 먼저 처리하고 $L_{1,j}=L_{1,j}\times L_{1,i}$ 를 처리해야 함에 유의합시다.

- 결국, 다음과 같은 세그먼트 트리를 이용해 쿼리들을 처리할 수 있습니다.
- 세그먼트 트리의 각 노드 i 에 대해, 두 값 V_i 와 S_i 를 각각 노드 i 의 구간의 v_i 의 합, s_i 의 합으로 정의합시다.
- 세그먼트 트리의 각 노드 i에 대해, 두 lazy 값 $L_{1,i}$ 와 $L_{2,i}$ 를 정의합니다.
- lazy 값을 propagate 하는 과정에서, V_i 와 S_i 를 다음과 같이 바꿀 것입니다.
 - $\bullet \ S_i = S_i + V_i \times L_{2,i}$
 - $V_i = V_i \times L_{1,i}$
- 이후 노드 i의 각 자식 노드 j 에 대해, $L_{1,j}$ 와 $L_{2,j}$ 를 다음과 같이 바꿀 것입니다.
 - $L_{2,j} = L_{2,j} + L_{1,j} \times L_{2,i}$
 - $L_{1,j} = L_{1,j} \times L_{1,i}$
- 이후 $L_{1,i}=1$, $L_{2,i}=0$ 으로 초기화합니다.

- 모든 쿼리들을 해당 세그먼트 트리를 이용해 $\mathcal{O}(\log N)$ 에 처리할 수 있습니다.
- 따라서 $\mathcal{O}(N \log N + N \log P + Q \log N)$ 에 문제를 해결할 수 있습니다.
- 각 세그먼트 트리 노드마다, 가장 최근에 방문한 시점 t를 저장하는 식으로 해결하는 방법도 있습니다. 결과적으로는 큰 차이가 없는 방법입니다.
- 사용하는 세그먼트 트리만 놓고 보면 수열과 쿼리 13 등과 굉장히 비슷합니다. 다만 생각하기는 훨씬 더 힘든 것 같습니다.

matroid 출제진 의도 **- Challenging**

제출 8번, 정답 0명 (정답률 0.00%)

• 처음 푼 사람: -, -분

• 출제자: yclock

ullet 2(N-1) 개의 간선을 분할하여 각각 트리를 이루는 것이 가능한지 판별하는 문제입니다.

- 간선 집합을 E 라고 합시다.
- 부분집합 $F\subseteq E$ 가 포레스트를 이루면 F를 독립집합으로 정의하는 매트로이드 $\mathcal{M}_1\left(E,\mathcal{I}_1\right)$ 과, $E\setminus F$ 가 연결되어 있으면 F를 독립집합으로 정의하는 매트로이드 $\mathcal{M}_2\left(E,\mathcal{I}_2\right)$ 를 생각합니다.
- $I\in\mathcal{I}_1\cap\mathcal{I}_2$ 를 만족하는 최대 크기의 공통 독립 집합 I 가 |I|=N-1을 만족한다면, 분할이 가능합니다.
- 이러한 문제를 매트로이드 교차 문제 (Matroid Intersection Problem) 라고 부릅니다.

• 여기까지만 관찰해도 $\mathcal{O}\left(N^3\right)$ 풀이가 나옵니다.

- 매트로이드 교차를 명시적으로 구현하지 않는 효율적인 알고리즘은 다음과 같습니다.
- 두 개의 포레스트 F_0, F_1 를 관리합니다.
- 입력으로 주어진 간선 e를 차례대로 보면서, $F_0 \cup F_1$ 에 e를 추가합니다.
 - 이때, F_0 과 F_1 가 항상 포레스트가 되도록 잘 관리해야 합니다.
 - 모든 간선을 $F_0 \cup F_1$ 에 추가할 수 있어야만 분할이 가능합니다.

• $F_0 \cup F_1$ 에 간선 e_0 을 추가하는 방법에 대해 알아보기 전에, Augmenting 간선열 $[e_0,e_1,e_2,\cdots,e_k]$ 를 정의합시다.

Definition

서로 다른 간선으로 이루어진 간선열 $[e_0,e_1,e_2,\cdots,e_k]$ 가 다음을 모두 만족하면, 이를 Augmenting 간선열이라 합니다.

- $e_0 \not\in F_0 \cup F_1$
- $e_i \in F_{(i \mod 2)}(e_{i-1}) \quad (1 \le i \le k)$
- $F_{(k+1 \mod 2)}(e_k) = \emptyset$
- $e_i \notin F_{(i+1 \mod 2)}(e_i) \quad (i+1 < j)$

• 여기서, $F_i(e)$ 는 간선 $e = \{u, v\}$ 에 대하여, F_i 상에서 u 에서 v 로 가는 경로 상의 간선열을 의미합니다. 그러한 경로가 없다면 \emptyset 으로 정의합니다.

- Augmenting 간선열 $[e_0, e_1, e_2, \cdots, e_k]$ 가 주어지면, 다음과 같은 방법으로 $F_0 \cup F_1$ 에 간선 e_0 을 추가할 수 있습니다.
 - $e_0 \ni F_1$ 에 추가합니다.
 - e_i 를 $F_{(i \mod 2)}$ 에서 제거하고 $F_{(i+1 \mod 2)}$ 에 추가합니다. $(1 \le i \le k)$
- Augmenting 간선열의 마지막 조건 때문에, 위의 작업을 수행한 후에도 F_0 과 F_1 에는 사이클이 생기지 않습니다.
 - 마지막 조건을 없애면, F_0 과 F_1 이 포레스트가 됨을 보장할 수 없습니다.

- 따라서, 주어진 e_0 에 대하여 Augmenting 간선열을 찾을 수 있다면, 문제를 해결할 수 있습니다.
- 이는 BFS와 유사한 방법으로 효율적으로 찾을 수 있습니다.

- 먼저, Augmenting 간선열의 두 번째 조건만 고려합시다.
- Augmenting 간선열에서 간선 e' 다음에 간선 e가 올 수 있다면, e를 e'으로 라벨링합시다.
- 다음과 같은 방법으로 라벨링 작업을 하면서 Augmenting 간선열을 찾을 수 있습니다.
 - 큐에 간선 *e*₀ 을 넣습니다.
 - 큐가 빌 때까지 다음을 반복합니다.
 - 큐에서 간선 e = 뽑습니다. $e \in F_i$ 라고 합시다. 만약, $e = e_0$ 이라면 i = 0 입니다.
 - 만일, $e \notin F_{(i+1 \mod 2)}(e)$ 라면, e로 끝나는 Augmenting 간선열이 존재합니다. 이는 e 에서 시작하여 라벨링 간선을 따라가면 얻을 수 있습니다.
 - 그렇지 않다면, $F_{(i+1 \mod 2)}(e)$ 에서 아직 라벨링이 되지 않은 간선을 차례대로 보면서 e로 라벨링하고 큐에 넣습니다.

- 만일, Augmenting 간선열을 찾기 전에 앞의 알고리즘이 종료되었다면, Augmenting 간선열은 없으며 $F_0 \cup F_1$ 에 e_0 을 추가할 수 없습니다.
- 앞의 알고리즘에서 찾은 간선열이 Augmenting 간선열의 모든 조건을 만족함은 어렵지 않게 확인할 수 있습니다.
 - 특히, Augmenting 간선열의 마지막 조건을 만족한다는 점에 유의하세요.

- 앞의 알고리즘에서, $F_{(i+1 \mod 2)}(e)$ 에서 라벨링이 되지 않은 간선을 찾을 때, 이미 라벨링이 되어 있는 간선까지 모두 참조하면 안 됩니다.
 - 이 경우, 하나의 Augmenting 간선열을 찾는 데에 $\mathcal{O}\left(N^2\right)$ 의 시간이 소요되어, 전체 시간 복잡도가 $\mathcal{O}\left(N^3\right)$ 가 됩니다.
- $F_{(i+1 \mod 2)}(e)$ 에서 이미 라벨링이 되어 있는 간선은 모두 연속하게 등장한다는 성질을 이용하면, 한 Augmenting 간선열을 $\mathcal{O}\left(N\right)$ 에 찾을 수 있습니다.
- $e_0 = \{u, v\}$ 라면, F_0 과 F_1 의 루트를 u 로 잡으면 편합니다.

- 따라서, 전체 문제를 $\mathcal{O}\left(N^2\right)$ 에 해결할 수 있습니다.
- 그래프의 절선을 잘 관리하면서 매트로이드 교차 문제를 $\mathcal{O}\left(N^2\lg N\right)$ 혹은 $\mathcal{O}\left(N^2\right)$ 에 해결하는 풀이도 있습니다.

suffix_array 출제진 의도 – **Hard**

• 제출 9번, 정답 5명 (정답률 55.56%)

• 처음 푼 사람: **조승현**, 125분

• 출제자: dlalswp25

- N 개의 문자열 단서 S_1, S_2, \cdots, S_N 이 주어집니다.
- 이들 중 정확히 K 개의 단서가 X 를 부분문자열로 갖도록 하는 문자열 X 의 개수를 세는 문제입니다.
- 편의를 위해, "정확히 K 개"라는 문구를 "K 개 이상"으로 바꾸겠습니다.
- "K 개 이상"일 때의 답에서 "K+1 개 이상"일 때의 답을 빼면 원래 문제의 답을 얻을 수 있습니다.

- 주어진 모든 단서를 합쳐 하나의 큰 문자열을 만듭시다.
 - 이때 인접한 두 단서 사이에는 의미 없는 문자 ('#' 등) 를 끼워 넣습니다.

bc#bac#abc#bca

• 위 문자열에 대해 접미사 배열 (SA) 과 LCP 배열 (LCP) 을 각각 구해 놓습니다. 또한, 접미사 배열의 각 인덱스가 어느 단서에 포함되는지도 기록해둡니다. 이 배열을 C 라 하겠습니다.

bc#bac#abc#bca

인덱스	SA	LCP	C	접미사
:	:	:	:	:
4	14	0	4	a
5	8	1	3	abc#bca
6	5	1	2	ac#abc#bca
7	4	0	2	bac#abc#bca
8	1	1	1	bc#bac#abc#bca
9	9	4	3	bc#bca
10	12	2	4	bca
11	6	0	2	c#abc# bca
12	2	2	1	c#bac#abc#bca
13	10	3	3	c#bca
14	13	1	4	са

- SA_i 에서 시작하는 문자열의 개수를 구해 봅시다.
- 중복이 발생하면 안 되므로 문자열의 길이는 LCP_i 보다 길어야 합니다.
- 또한, 문자열이 #을 포함하면 안 되므로 길이는 특정 값을 넘지 못합니다.
- 이제 남은 것은 **문자열이** *K* **개 이상의 단서에 포함되어야 한다**는 조건입니다.

- 문자열의 길이가 결정되었다고 하면, 이 문자열을 포함하는 시작 위치들은 접미사 배열 상에서 어떠한 구간 [i,x]로 나타날 것입니다.
- 이 문자열이 K 개 이상의 단서에 포함되려면 $C_i, C_{i+1}, \cdots, C_x$ 중 서로 다른 수가 K 개 이상이어야 합니다.
- 이를 만족하는 최소의 x를 r_i 라 합시다. 이때 문자열의 길이는 $\min(LCP_{i+1},\cdots,LCP_{r_i})$ 를 넘을 수 없습니다.
 - 문자열의 길이가 이보다 길어지면 구간이 짧아지고, 서로 다른 수의 개수가 K 보다 작아지기 때문입니다.
 - i가 증가할 때마다 r_i 가 단조증가한다는 사실을 이용하면, 투 포인터 기법으로 r_i 를 효율적으로 찾을 수 있습니다.

• K = 3, i = 8인 경우의 예시입니다.

• 이때 $r_i = 10$ 이고, 문자열의 최소 길이와 최대 길이는 각각 2입니다.

인덱스	SA	LCP	C	접미사
:	:	:	:	:
7	4	0	2	bac#abc#bca
8	1	1	1	bc#bac#abc#bca
9	9	4	3	<mark>bc#</mark> bca
10	12	2	4	bса
11	6	0	2	c#abc# bca
:	:	:	:	;
•		•	•	•

- 이와 같은 방법으로 각 위치에서 시작하는 문자열의 최소 길이와 최대 길이를 구할 수 있습니다.
- 최소 길이와 최대 길이 사이에 있는 문자열은 모두 조건을 만족합니다. 따라서 각 위치에서 시작하는 문자열의 개수 또한 구할 수 있습니다.
- 시간 복잡도는 구현에 따라 $\mathcal{O}(S)$ 또는 $\mathcal{O}(S\log S)$ 입니다. 이때 S 는 모든 단서의 길이의 합입니다.

centroid_decomposition 출제진 의도 - Challenging

• 제출 0번, 정답 0명 (정답률 0.00%)

• 처음 푼 사람: **-**, -분

• 출제자: dlalswp25

- 각 정점이 빨간색 또는 검은색으로 칠해진 트리가 주어질 때, 이 트리에서 **누텔라 경로**의 개수를 구하는 문제입니다.
 - 누텔라 경로란, 첫 번째 정점이 검은색이고 나머지 정점이 모두 빨간색인 길이 2 이상의 경로를 뜻합니다.
- 단, 정점의 색을 바꾸는 쿼리가 Q개 주어집니다.

- 매 쿼리마다 빨간색 컴포넌트의 크기가 변하기 때문에 Easy 문제의 풀이는 활용하기 어려워 보입니다.
- 경로의 개수를 다른 방식으로 세어야 합니다.

- 센트로이드 분할을 한 후, 각 센트로이드를 지나는 경로의 개수를 세어 봅시다.
- 센트로이드와 인접한 정점 v에 대해,
 - v 가 빨간색이라면
 - ullet $R_v=$ 센트로이드와 검은색 정점을 모두 무시할 때, v를 포함하는 컴포넌트의 크기
 - $B_v =$ 위 컴포넌트에 인접한 검은색 정점의 개수 (단, 센트로이드는 제외)
 - v 가 검은색이라면
 - $R_v = 0$
 - $B_v = 1$

이라고 정의합시다.

• 각 서브트리에서 빨간색으로 표시된 정점의 개수가 R_v , 검은색으로 표시된 정점의 개수가 B_v 입니다.

• 센트로이드가 검은색인 경우, 센트로이드를 지나는 경로의 개수는

$$\sum_{v} R_{v}$$

입니다.

• 센트로이드가 빨간색인 경우, 센트로이드를 지나는 경로의 개수는

$$\left(1 + \sum_{v} R_v\right) \left(\sum_{v} B_v\right) - \sum_{v} R_v B_v$$

입니다.

• 따라서 매 쿼리마다 R_v 와 B_v 를 잘 관리하면 문제를 해결할 수 있습니다.

- R_v 를 관리하는 방법은 다음과 같습니다.
 - 모든 정점이 빨간색이라고 가정합시다.
 - 검은색 정점이 생겨날 때마다, 이 정점을 루트로 하는 서브트리 전체에 검은색을 한 겹 칠한다고 생각합시다 (검은색 정점이 사라질 때에는 한 겹을 지운다고 생각합시다).
 - R_v 는 검은색으로 칠해지지 않은 정점의 수입니다.
 - 정점을 DFS 방문 순서대로 나열하면 서브트리 쿼리가 구간 쿼리로 바뀌므로, 세그먼트 트리를 이용하여 이를 처리할 수 있습니다.

- B_n 를 관리하는 방법은 다음과 같습니다.
 - R_v 에 포함되는 각 정점의 자식 수를 모두 합하면 R_v+B_v-1 이 됩니다. 이 값을 관리할 수 있다면 B_v 도 관리할 수 있습니다.
 - R_v 를 관리할 때와 동일한 세그먼트 트리를 사용하면 됩니다.

- 따라서 하나의 센트로이드를 지나는 경로의 수를 $\mathcal{O}(\log N)$ 에 업데이트할 수 있습니다.
- 각 쿼리에 대해 $\mathcal{O}(\log N)$ 개의 센트로이드에서 업데이트가 이루어지므로, 총 시간 복잡도는 쿼리당 $\mathcal{O}(\log^2 N)$ 입니다.
- 이외에도 Heavy-Light Decomposition을 이용하는 풀이가 있습니다.