

Battle of the Neighbourhoods

Toronto

Introduction

- We are a Consultancy in Toronto which main activity is the Strategic support for new business into the City.
- We are supporting a new Spanish customer to select the best tye of business and the Best Venue to place it.
- To be able to give a proper advise to our customer, we will do an analysis of of the density of businesses in Toronto depending on the venue.

Wikipedia

(https://en.wikipedia.org/wiki/List of postal code s of Canada: M) to get Postal code, Borough and Neighbourhood in Toronto.

- Geospatial data from Toronto(http://cocl.us/Geospatial data) to get the geographical coordinated of each postal code.
- Foursquare API to obtain more information about venues.
- Random user data, with a random number of preferences to check, how our system works.

- 1. We will retrieve Geospatial data from for Toronto Neighbourhood from the sources.
- 2. Using Foursquare API we retrieve the data about "Popular Spots" venues
- 3. We cluster unsing Kmeans algorithm acc. Location and number of venues.
- 4. We detect areas with low density of Popular venues where giving a hint about where to place a nes business.

1.Retrieving Geospatial Data

From Wikipedia

(https://en.wikipedia.org/wiki/List of postal codes of Canada: M) to get Postal code, Borough and Neighbourhood in Toronto.

Neighbourhood	Borough	Postal Code	
Parkwoods	North York	МЗА	2
Victoria Village	North York	M4A	3
Regent Park, Harbourfront	Downtown Toronto	M5A	4
Lawrence Manor, Lawrence Heights	North York	M6A	5
Queen's Park, Ontario Provincial Government	Downtown Toronto	M7A	6

1.Retrieving Geospatial Data

From Geospatial data from Toronto(http://cocl.us/Geospatial data) to get the geographical coordinated of each postal code.

	Postal Code	Latitude	Longitude
0	M1B	43.806686	-79.194353
1	M1C	43.784535	-79.160497
2	M1E	43.763573	-79.188711
3	M1G	43.770992	-79.216917
4	M1H	43.773136	-79.239476

M1H Scarborough

18

	PostCode	Borough	Neighborhood	Latitude	Longitude
0	M1B	Scarborough	Malvern, Rouge	43.806686	-79.194353
1	M1C	Scarborough	Rouge Hill, Port Union, Highland Creek	43.784535	-79.160497
2	M1E	Scarborough	Guildwood, Morningside, West Hill	43.763573	-79.188711
-	1.14.5		100	40.770000	70.040047

Cedarbrae 43.773138 -79.239476

1.Retrieving Geospatial Data

From Geospatial data from Toronto(http://cocl.us/Geospatial data) to get the geographical coordinated of each postal code.

	Postal Code	Latitude	Longitude
0	M1B	43.806686	-79.194353
1	M1C	43.784535	-79.160497
2	M1E	43.763573	-79.188711
3	M1G	43.770992	-79.216917
4	M1H	43.773136	-79.239476

M1H Scarborough

18

	PostCode	Borough	Neighborhood	Latitude	Longitude
0	M1B	Scarborough	Malvern, Rouge	43.806686	-79.194353
1	M1C	Scarborough	Rouge Hill, Port Union, Highland Creek	43.784535	-79.160497
2	M1E	Scarborough	Guildwood, Morningside, West Hill	43.763573	-79.188711
-	1.14.5		100	40.770000	70.040047

Cedarbrae 43.773138 -79.239476

Retrieving venues data From APIS FOURSQUARE + postprocessing

'https://api.foursquare.com/v2/venues/explore?&client_id=GEHGRDNDQ0CH0GJG3DJFG4B4QLLALBZVIVHR3MXRLGYGGGPG&client_secret=5BZJ0LMQSCST0P3YHL5NPQ4P0SYC11T5TQEXS0UNPAKLZK2S&v=20200728&11=43.80668629 9999996,-79.19435340000001&radius=5000&limit=1000'

114]: print(toronto_venues.shape)
 toronto_venues.head()

(2152, 8)

ut[114]:

	Neighbourhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category	Venue Summary
0	Malvern, Rouge	43.806686	-79.194353	Wendy's	43.807448	-79.199056	Fast Food Restaurant	This spot is popular
1	Rouge Hill, Port Union, Highland Creek	43.784535	-79.160497	RIGHT WAY TO GOLF	43.785177	-79.161108	Golf Course	This spot is popular
2	Rouge Hill, Port Union, Highland Creek	43.784535	-79.160497	Royal Canadian Legion	43.782533	-79.163085	Bar	This spot is popular
3	Guildwood, Morningside, West Hill	43.763573	-79.188711	RBC Royal Bank	43.766790	-79.191151	Bank	This spot is popular
4	Guildwood, Morningside, West Hill	43.763573	-79.188711	G & G Electronics	43.765309	-79.191537	Electronics Store	This spot is popular

Adding number of venues per Neighbourhood

venues per neighbourghood

In [185]: toronto_venues_grouped = toronto_venues.groupby(['Neighbourhood', 'Neighborhood Latitude', 'Neighborhood Longitude']).count().reset_index()
toronto_venues_grouped.head()

Out[185]:

	Neighbourhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category	Venue Summary
0	Agincourt	43.794200	-79.262029	4	4	4	4	4
1	Alderwood, Long Branch	43.602414	-79.543484	9	9	9	9	9
2	Bathurst Manor, Wilson Heights, Downsview North	43.754328	-79.442259	22	22	22	22	22
3	Bayview Village	43.788947	-79.385975	4	4	4	4	4
4	Bedford Park, Lawrence Manor East	43.733283	-79.419750	27	27	27	27	27

In [186]: toronto_venues_grouped.shape

Out[186]: (100, 8)

100 Elements

Sorting to appraise optimal number of clusters

Aprox 6 elements

62 Old Mill South, King's Mill Park, Sunnylea, Hu 43.636258 -79.498509 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
53 Malvern, Rouge 43.806886 -79.194353 1 1 1 1 1 1 92 Weston 43.706876 -79.518188 1 1 1 1 1	
92 Weston 43.706876 -79.518188 1 1 1 1	1
	1
00 What Books But Disease Control Martin Control 40 050040 TO 554704 4 4 4 4	1
90 West Deane Park, Princess Gardens, Martin Grov 43.650943 -79.554724 1 1 1 1	1
74 Scarborough Village 43.744734 -79.239476 1 1 1 1 1	1
54 Milliken, Agincourt North, Steeles East, L'Amo 43.815252 -79.284577 2 2 2 2	2
17 Cliffside, Cliffcrest, Scarborough Village West 43.716316 -79.239476 2 2 2 2	2
70 Roselawn 43.711695 -79.416936 2 2 2 2	2
99 York Mills West 43.752758 -79.400049 2 2 2 2 2	2
73 Runnymede, The Junction North 43.673185 -79.487262 2 2 2 2	2
85 The Kingsway, Montgomery Road, Old Mill North 43.653654 -79.506944 2 2 2 2	2

100/6 = aprox **20** clusters

Clustering (Kmeans) and labeling

Comentario en la lógica del Kmeans

```
# import k-means from clustering stage
from sklearn.cluster import KMeans

# set number of clusters
kclusters = 20

toronto_venues_grouped_clustering = toronto_venues_grouped.drop(['Neighbourhood','Venue Latitude','Venue Longitude','Venue Category','Venue Summary'], axis = 1)

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(toronto_venues_grouped_clustering)

# check cluster Labels generated for each row in the dataframe
kmeans.labels_[0:10]
```

Out[156]: array([0, 7, 16, 0, 6, 13, 0, 16, 18, 18], dtype=int32)

Clustering and labeling

Insertamos indice Kmeans

Cluster 11 contains the least number of venues (1 or 2)

```
In [163]: toronto_venues_grouped_merged = toronto_venues_grouped
In []: toronto_venues_grouped_merged.insert(0, 'Cluster Labels', kmeans.labels_)
In [179]:
toronto_venues_grouped_merged_sorted = toronto_venues_grouped_merged.sort_values('Venue')
```

In [180]: toronto_venues_grouped_merged_sorted.head(100)

Out[180]:

	Cluster Lab	oels	Neighbourhood	Neighborhood Latitude	Neighborhood Longitude	Venue V	enue Latitude	Venue Longitude	Venue Category	Venue Summary
62		11 -	Old Mill South, King's Mill Park, Sunnylea, Hu	43.636258	-79.498509	1 /	1	1	1	1
43		11	Humberlea, Emery	43.724768	-79.532242	1	1	1	1	1
53		11	Malvern, Rouge	43.806686	-79.194353	1	1	1	1	1
92		11	Weston	43.706876	-79.518188	1	1	1	1	1
90		11 V	Vest Deane Park, Princess Gardens, Martin Grov	43.650943	-79.554724	1	1	1	1	1
74		11	Scarborough Village	43.744734	-79.239476	1	1	1	1	1
54		11	Milliken, Agincourt North, Steeles East, L'Amo	43.815252	-79.284577	2	2	2	2	2
17		11	Cliffside, Cliffcrest, Scarborough Village West	43.716316	-79.239476	2	2	2	2	2
70		11	Roselawn	43.711695	-79.416936	2	2	2	2	2
99		11	York Mills West	43.752758	-79.400049	2	2	2	2	2
73		11	Runnymede, The Junction North	43.673185	-79.487262	2	2	2	2	2
85		11	The Kingsway, Montgomery Road, Old Mill North	43.653654	-79.506944	2	2	2	2	2
7.			0 100 0 100 100 100 1	10 70 1505	70.400.407	_	_	_		_

Mapping

```
import numpy as np # library to handle data in a vectorized manner
# Matplotlib and associated plotting modules
import matplotlib.cm as cm
import matplotlib.colors as colors
map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11)
# set color scheme for the clusters
x = np.arange(kclusters)
ys = [i + x + (i*x)**2 \text{ for } i \text{ in } range(kclusters)]
colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
rainbow = [colors.rgb2hex(i) for i in colors_array]
# add markers to the map
markers_colors = []
for lat, lon, poi, cluster, venue in zip(toronto_venues_grouped_merged['Neighborhood Latitude'], toronto_venues_grouped_merged['Neighborhood Longitude'], toronto_venues_grouped_merged['Neighborhood'], toronto_venues_grouped_merged['Neighborhood'], toronto_venues_grouped_merged['Neighborhood Longitude'], toronto_venues_grouped_merged['Neighborhood'], to
            folium.CircleMarker(
                        [lat, lon],
                        radius=5,
                        popup=label,
                        color=rainbow[cluster-1],
                        fill=True,
                        fill_color=rainbow[cluster-1],
                       fill_opacity=0.7).add_to(map_clusters)
map_clusters
```

Conclusions Let's explore the light green dotted Neighbourhoods(Cluster 11) for the new business

Cluster 11

Jupiter notebook in Watson Studio (you see the map here)

https://eu-de.dataplatform.cloud.ibm.com/analytics/notebooks/v2/ffd5cb12-47f0-46d4-bd3b-e57bb4e91698/view?access_token=8a2fe9d14ee052fb2c1c0df5c5fb2b547d0c73fcffbf7fff8019612fc7c7c39d

GIT hub repository

https://github.com/pertres/capstone