

Program	B. Tech. (SoCS & SoAE)	Semester	I
Course	Advanced Engineering Mathematics I	Course	MATH 1059
		Code	
Session	July-Dec 2025	Unit	Prerequisite

1. Find the domain of the following functions:

(i)
$$f(x) = \sqrt{x+4} + \sqrt{9-x}$$
 (ii) $f(x) = \sqrt{\frac{1-|x|}{2-|x|}}$

2. Find the range of the following functions:

(i)
$$f(x) = \frac{1}{1 - \cos 3x}$$
 (ii) $f(x) = \frac{|x|}{x}$

3. Evaluate the following limits:

(i)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

(ii)
$$\lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2}$$

$$(iii) \lim_{x \to \infty} \left(\frac{x-3}{x+2} \right)^x$$

(iv)
$$\lim_{x \to \infty} \frac{\sqrt{x}}{\sqrt{x + \sqrt{x + \sqrt{x}}}}$$

4. Find the value of a, b, and c, such that $\lim_{\theta \to 0} \frac{ae^{\theta} - b\cos{\theta} + ce^{\theta}}{\theta\sin{\theta}} = 2$.

5. Let $f(x) = \frac{\log(1+ax) - \log(1-bx)}{x}$, $x \neq 0$. If f(x) is continuous at x = 0, then find the value of f(0).

6. A function f(x) is defined as follows

$$f(x) = \begin{cases} -x^2, & when \ x \le 0 \\ 5x^2, & when \ 0 < x < 1 \ ; \\ 4 + x^2, & when \ x \ge 1 \end{cases}$$

Then show that the function is continuous at x = 0 and x = 1.

7. Discuss the continuity and differentiability of the function at x = 0 defined on \mathbb{R} ,

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

8. Find the derivative of the function:

(i)
$$Sin^{-1}x + Sin^{-1}\sqrt{1-x^2}$$

(ii)
$$\frac{x^2 - 4x + 1}{x^3 - 2x^2 - x - 2}$$

(iii)
$$Sin y = x Sin (a + y)$$

$$(iv)7^{x^2+3x}$$

(v)
$$x^{1+x+x^2}$$

$$(vi)x = at^2$$
, $y = 2at$.

(vii)
$$(1-x)(1-2x)(1-3x)$$

9. Evaluate the Integration

(i)
$$\int_0^\infty \frac{dx}{1+x^2}$$

(ii)
$$\int_{-1}^{1} \sqrt{\frac{1+x}{1-x}} dx$$

(iii)
$$\int_{1}^{2} \frac{dx}{2+x}$$

$$(\mathrm{iv}) \int_0^\infty x^2 e^{-x^2} dx$$

(v)
$$\int_0^{\pi} \frac{a^2}{(\sin\theta + \cos\theta)^2} d\theta$$

10. Find the area above the x – axis, included between the parabola $y^2 = ax$ and the circle $x^2 + y^2 = a^2$.

11. Find the area bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.

12. Find the area bounded by the curve $y = x^3$, and the ordinates x = 1, x = 4.

13. Evaluate the area of the curve $xy^2 = a^2(a-x)$ and the y - axis.

14. Show that the expression $(1 + a_1 + a_2 + \cdots + a_n)$ obtained from the determinant,

$$\begin{vmatrix} 1 + a_1 & a_2 & a_3 & \cdots & a_n \\ a_1 & 1 + a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 & 1 + a_3 & \cdots & a_n \\ \vdots & & & \ddots & \\ a_1 & a_2 & a_3 & \cdots & 1 + a_n \end{vmatrix}$$

- **15.** (a) Find the derivative of the determinant $\begin{vmatrix} x & 1 & 2 \\ x^2 & 2x+1 & x^3 \\ 0 & 3x-2 & x^2+1 \end{vmatrix}$ and expand it.
 - (b) Find the value of x, for which the determinant $\begin{vmatrix} 3-x & 2 & 2 \\ 2 & 4-x & 1 \\ -2 & -4 & -1-x \end{vmatrix}$ is nonzero.
