Proofs and solutions for Elementary Differential Geometry 2nd Ed. by Barrett O'Neil

Jack Runburg

May 23, 2019

$\S 0.1$ Introduction

Contents

	§0.1 Introduction	1
1	Calculus on Euclidean Space	3
	§1.1 Euclidean Space	3
	§1.2 Tangent Vectors	3
	§1.3 Directional Derivatives	3
	§1.4 Curves in \mathbb{R}^3	3
	§1.5 1-Forms	3
	§1.6 Differential Forms	3
	§1.7 Mappings	7
2	Frame Fields	10
	§2.1 Euclidean Space	10
	§2.2 Tangent Vectors	10
	§2.3 Directional Derivatives	10
	§2.4 Curves in \mathbb{R}^3	10
	§2.5 1-Forms	10
	§2.6 Differential Forms	10
	§2.7 Mappings	14
	82.8 Dot Product	16

Chapter 1

Calculus on Euclidean Space

- §1.1 Euclidean Space
- §1.2 Tangent Vectors
- §1.3 Directional Derivatives
- §1.4 Curves in \mathbb{R}^3
- §1.5 1-Forms

§1.6 Differential Forms

Problem 1. Let $\phi = y \, \mathrm{d}x + \mathrm{d}z$, $\psi = \sin z \, \mathrm{d}x + \cos z \, \mathrm{d}y$, $\xi = \mathrm{d}y + z \, \mathrm{d}z$. Find the standard expressions (in terms of $\mathrm{d}x \, \mathrm{d}y$,...) for (a) $\phi \wedge \psi$, $\psi \wedge \xi$, $\xi \wedge \phi$. (b) $d\phi$, $d\psi$, $d\xi$.

Solution: (a) Applying the definition

$$\phi \wedge \psi = \sin z \, dz \, dx + y \cos z \, dx \, dy + \cos z \, dz \, dy \tag{1.1}$$

$$\psi \wedge \xi = \sin z \, dx \, dy + z \sin z \, dx \, dz + z \cos z \, dy \, dz \tag{1.2}$$

$$\xi \wedge \phi = dy dx + yz dz dx + dy dz \tag{1.3}$$

(b) Using definition 6.3,

$$d\phi = \mathrm{d}y\,\mathrm{d}x\tag{1.4}$$

$$d\psi = \cos z \, dz \, dx - \sin z \, dz \, dy \tag{1.5}$$

$$d\xi = 0 \tag{1.6}$$

Problem 2. Let $\psi = dx/y$ and $\psi = z dy$. Check the Leibnizian formula (3) of Theorem 6.4 in this case by computing each term separately.

Solution: We have $d(\phi \wedge \psi) = d\phi \wedge \psi - \phi \psi$. The first term is

$$d(\phi \wedge \psi) = d(z/y \, \mathrm{d}x \, \mathrm{d}y) \tag{1.7}$$

$$=1/y\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,.\tag{1.8}$$

The second term is

$$d\phi \wedge \psi = 0 \tag{1.9}$$

The third term is

$$\phi\psi = 1/y \,\mathrm{d}x \,\mathrm{d}z \,\mathrm{d}y \tag{1.10}$$

$$= -1/y \,\mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z \,. \tag{1.11}$$

Problem 3. For any function f show that d(df) = 0. Deduce that $d(f dg) = df \wedge dg$.

Solution: Using $df = \frac{\partial f}{\partial x_i} dx_i$,

$$d(\mathrm{d}f) = d(\frac{\partial f}{\partial x_i} dx_i) \tag{1.12}$$

$$=d(\frac{\partial f}{\partial x_i})x_i \tag{1.13}$$

$$= \frac{\partial^2 f}{\partial x_i \partial x_j} dx_j x_i \tag{1.14}$$

$$=0 (1.15)$$

by antisymmetry (alternation). Point is the partial derivative is symmetric in i and j but the wedge product is antisymmetric in those indices so the whole term is zero. Combining this result with $d(f\phi) = df \wedge \phi + fd\phi$, we see that the second term is zero so that $d(f dg) = df \wedge dg$.

Problem 4. Simplify the following forms

- (a) d(f dg + g df)
- (b) d((f-g)(df+dg))
- (c) $d(f dg \wedge g df)$
- (d) d(gf df) + d(f dg)

Solution: (a)

$$d(f dg + g df) = df \wedge dg + dg \wedge df$$
(1.16)

$$=0 (1.17)$$

by the alternation rule.

(b)

$$d((f-g)(df+dg)) = d(f-g) \wedge (df+dg)$$
(1.18)

$$= df \wedge dg - dg \wedge df \tag{1.19}$$

$$= 2 \,\mathrm{d} f \wedge \mathrm{d} g \tag{1.20}$$

(c)

$$d(f dg \wedge g df) = d(f dg) \wedge (g df) - (f dg (g df))$$
(1.21)

$$= df \wedge dg \wedge (g df) - (f dg) \wedge dg \wedge df$$
 (1.22)

$$= d(fg) \wedge df dg \tag{1.23}$$

(d)

$$d(gf df) + d(f dg) = d(gf) \wedge df + df \wedge dg$$
(1.24)

$$= (g df + f dg) \wedge df + df \wedge dg$$
 (1.25)

$$= (f-1) dg \wedge df \tag{1.26}$$

Problem 5. For any three 1-forms $\phi_i = \sum_j f_{ij} dx_j \ (1 \le i \le 3)$, prove

$$\phi_1 \wedge \phi_2 \wedge \phi_3 = \begin{pmatrix} f_{11} & f_{22} & f_{33} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{pmatrix} dx_1 dx_2 dx_3.$$
 (1.27)

Solution:

$$\phi_1 \wedge \phi_2 \wedge \phi_3 = \sum_{i,j,k} f_{1i} f_{2j} f_{3k} \epsilon^{ijk} \, dx_1 \, dx_2 \, dx_3$$
 (1.28)

(1.29)

because repeats are zero so we need the antisymmetric product of all of the $f_i j$ giving the determinant.

Problem 6. If r, θ, z are the cylindrical coordinate functions on \mathbf{R}^2 , then $x = r \cos \theta$, $y = r \sin \theta$, z = z. Compute the *volume element dx dy dz* of \mathbf{R}^3 in cylindrical coordinates. (That is, express dx dy dz in terms of the functions r, θ, z , and their differentials.)

Solution:

$$dx dy dz = (\cos\theta dr - r\sin\theta)(\sin\theta dr + r\cos\theta) dz$$
 (1.30)

$$= r(-\sin^2\theta \,dr + \cos^2\theta \,dr \,d\theta) \,dz \tag{1.31}$$

$$= r \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}z \tag{1.32}$$

(1.33)

by the alternation rule.

Problem 7. For a 2-form $\eta = f \, \mathrm{d}x \, \mathrm{d}y + g \, \mathrm{d}x \, \mathrm{d}z + h \, \mathrm{d}y \, dz$, the exterior derivative $d\eta$ is defined to be the 3-form obtained by replacing f, g, and h by their differentials. Prove that for any 1-form ϕ , $\mathrm{d}(\mathrm{d}f) = 0$. Exercises 3 and 7 show that $\mathrm{d}^2 = 0$, that is, for any form ξ , $\mathrm{d}(\mathrm{d}\xi) = 0$. (If ξ is a 2-form, then $d(\mathrm{d}\xi) = 0$, since its degree exceeds 3.)

Solution: We have $df = \sum_{i} \frac{\partial f}{\partial x_i} dx_i$. Then

$$d(df) = \sum_{i} df_i \wedge dx_i$$
 (1.34)

$$= \sum_{i,j} \frac{\partial^2 f}{\partial x_i \partial x_j} \, \mathrm{d}x_i \, \mathrm{d}x_j \tag{1.35}$$

but the partial derivative is symmetric in i,j and the differentials are antisymmetric so this product is zero. \Box

Problem 8. Prove that all three operations may be expressed by exterior derivatives as follows:

- (a) $df \leftrightarrow \nabla f$.
- (b) If $\phi \leftrightarrow V$, then $d\phi \leftrightarrow \nabla \times V$.
- (c) If $\eta \leftrightarrow V$, then $d\eta = (\nabla \cdot V) dx dy dz$.

Solution: (a) This one works out by definition. Since dx_i is dual to U_i . (b)

$$d\phi = \sum_{i} df_i \wedge dx_i \tag{1.36}$$

(1.37)

(c) Using $\eta = f dx dy + q dx dz + h dy dz$,

$$d\eta = \frac{\partial f}{\partial z} dz dx dy + \frac{\partial g}{\partial y} dy dx dz + \frac{\partial h}{\partial x} dx dy dz$$
 (1.38)

(1.39)

and the equality holds using (2).

Problem 9. Let f and g be real-valued functions on \mathbf{R}^2 . Provethat $\mathrm{d}f \wedge \mathrm{d}g = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} \mathrm{d}x \, \mathrm{d}y$. (1.40) Solution:

$$df \wedge dg = \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy\right) \left(\frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy\right)$$
(1.41)

$$= \frac{\partial f}{\partial x} dx \frac{\partial g}{\partial y} dy + \frac{\partial f}{\partial y} dy \frac{\partial g}{\partial x} dx \qquad (1.42)$$

$$= \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} dx dy \tag{1.43}$$

§1.7 Mappings

Problem 1. With $F(u,v)=(u^2-v^2,2uv)$, find all points **p** such that (a) $F(\mathbf{p})=(0,0)$ (b) $F(\mathbf{p})=(8,6)$

(c) $F(\mathbf{p}) = \mathbf{p}$.

Solution: (a) u, v) = (0, 0)(b) u, v) = $(\pm 3, \pm 1)$ (c) (u, v) = (1, 0)

Problem 2. (a)

Problem 3. With $F(u, v) = (u^2 - v^2, 2uv)$, let $\mathbf{v} = (v_1, v_2)$ be a tangent vector to $\mathbf{R}^2 at \mathbf{p} = (p_1, p_2)$. Apply Definition 7.4 directly to express $F * (\mathbf{v})$ in terms of the coordinates of \mathbf{v} and \mathbf{p} .

Solution:

$$F * (\mathbf{v}) = (\mathbf{v}[u^2 - v^2], \mathbf{v}[2uv])$$

$$\tag{1.44}$$

$$= (2p_1v_1 - 2p_2v_2, 2p_1v_2 + 2p_2v_1) (1.45)$$

Problem 4. With $F(u,v)=(u^2-v^2,2uv)$, find a formula for the Jacobian matrix of F at all points, and deduce that $F*_p$ is a linear isomorphism at every point of \mathbf{R}^2 except the origin. Solution:

$$\begin{vmatrix} 2u & -2v \\ 2v & 2u \end{vmatrix} \tag{1.46}$$

this matrix has rank 2 so given the conditions below Def. 7.9, the map F* is one-to-one. So it is a linear isopmorphism.

Problem 5. If $F: \mathbf{R}^n \to \mathbf{R}^m$ is a linear transformation, prove that $F*(\mathbf{v}_p) = F(\mathbf{v})_{F(p)}$.

Solution: I don't understand this notation...

Problem 6. (a) Give an example to demonstrate that a one-to-one and onto mapping need not be a diffeomorphism. (Hint: Take m = n = 1.)

(b) Prove that if a one-to-one and onto mapping $F: \mathbf{R}^n \to \mathbf{R}^n$ is regular, then it is a diffeomorphism.

Solution: (a) Any mapping defined by $f(x) = x^{\alpha}$ for α is odd doesn't have smooth inverse at the origin but is still one-to-one and onto.

(b) If a mapping is one-to-one at every point and onto, then there is a well-defined inverse mapping making it a diffeomorphism.

Problem 7. Prove that a mapping $F: \mathbf{R}^n \to \mathbf{R}^m$ preserves directional derivatives in this sense: If \mathbf{v}_p is a tangent vector to \mathbf{R}^n and g is a differentiable function on \mathbf{R}^m , then $F*(\mathbf{v}_p)[g] = \mathbf{v}_p[g(F)]$.

Solution:

$$\mathbf{v}_p[g(F)] = \mathrm{d}(g(F))[\mathbf{p}] \tag{1.47}$$

$$= dg (dF [\mathbf{p}]) \tag{1.48}$$

П

$$\equiv F * (\mathbf{v}_p)[g] \tag{1.49}$$

Problem 8. In the definition of tangent map (Def. 7.4), the straight line $t \to \mathbf{p} + t\mathbf{v}$ can be replaced by any curve a with initial velocity \mathbf{v}_p .

Solution: The function F* gives the initial velocity of a curve $\alpha'(0)$. Any curve $\beta(t)$ with $\beta'(0)$ will have the same tangent vector and so won't affect the value of F*.

Problem 9. Let $F: \mathbf{R}^n \to \mathbf{R}^m$ and $G: \mathbf{R}^m \to \mathbf{R}^p$ be mappings. Prove:

- (a) Their composition $GF: \mathbf{R}^n \to \mathbf{R}^p$ is a (differentiable) mapping. (Take m = p = 2 for simplicity.)
- (b) (GF)*=G*F*. (Hint: Use the preceding exercise.) This concise formula is the general chain rule. Unless dimensions are small, it becomes formidable when expressed in terms of Jacobian matrices.
- (c) If F is a diffeomorphism, then so is its inverse mapping F^{-1} .

Solution: (a) A mapping is a function with differentiable coordinate functions. Since differentiation is well-defined for composite functions using chain rule, the composite function GF is a mapping.

(b) By definition, $F * (v) = \beta'(0)$. So,

$$(GF) * (\beta'(0)) = (GF(\beta))'(0)$$
(1.50)

$$= G * (F(\beta)'(0))$$
 (1.51)

$$= G * F * (\beta'(0)) \tag{1.52}$$

(c) If F is a diffeomorphism, then it has an inverse F^{-1} . The function F^{-1} has an inverse. Its tangent map also has an inverse by the previous exercise that maps only the zero vector to 0 (i.e. $F^{-1}F = I \to (F^{-1}F)* = I* \to F^{-1}*F* = I$).

Problem 10. Show (in two ways) that the map $F: \mathbf{R}^2 \to \mathbf{R}^2$ such that $F(u,v) = (v e^u, 2u)$ is a diffeomorphism:

(a) Prove that it is one-to-one, onto, and regular; (b) Find a formula for its inverse $F^{-1}: \mathbf{R}^2 \to \mathbf{R}^2$ and observe that F^{-1} is differentiable. Verify the formula by checking that both FF^{-1} and $F^{-1}F$ are identity maps.

Solution: (a) The map is one-to-one and onto since the coordinate functions are one-to-one and onto. The Jacobian matrix is rank two so the tangent map is one-to-one so the map is regular.

(b) Let
$$F^{-1} = (ue^{-u}/v, v/(2u))$$
. Then $FF^{-1} = F^{-1}F = I$.

Chapter 2

Frame Fields

$\S 2.1$	Euclidean	Space
Q⊿.⊥	Luchaean	Space

- §2.2 Tangent Vectors
- §2.3 Directional Derivatives
- $\S 2.4$ Curves in \mathbb{R}^3
- $\S 2.5$ 1-Forms

§2.6 Differential Forms

Problem 1. Let $\phi = y \, \mathrm{d}x + \mathrm{d}z$, $\psi = \sin z \, \mathrm{d}x + \cos z \, \mathrm{d}y$, $\xi = \mathrm{d}y + z \, \mathrm{d}z$. Find the standard expressions (in terms of $\mathrm{d}x \, \mathrm{d}y$,...) for

(a)
$$\phi \wedge \psi$$
, $\psi \wedge \xi$, $\xi \wedge \phi$. (b) $d\phi$, $d\psi$, $d\xi$.

Solution: (a) Applying the definition

$$\phi \wedge \psi = \sin z \, dz \, dx + y \cos z \, dx \, dy + \cos z \, dz \, dy \tag{2.1}$$

$$\psi \wedge \xi = \sin z \, dx \, dy + z \sin z \, dx \, dz + z \cos z \, dy \, dz \tag{2.2}$$

$$\xi \wedge \phi = dy dx + yz dz dx + dy dz \tag{2.3}$$

(b) Using definition 6.3,

$$d\phi = \mathrm{d}y\,\mathrm{d}x\tag{2.4}$$

$$d\psi = \cos z \, dz \, dx - \sin z \, dz \, dy \tag{2.5}$$

$$d\xi = 0 \tag{2.6}$$

Problem 2. Let $\psi = dx/y$ and $\psi = z dy$. Check the Leibnizian formula (3) of Theorem 6.4 in this case by computing each term separately.

Solution: We have $d(\phi \wedge \psi) = d\phi \wedge \psi - \phi \psi$. The first term is

$$d(\phi \wedge \psi) = d(z/y \, \mathrm{d}x \, \mathrm{d}y) \tag{2.7}$$

$$=1/y \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \,. \tag{2.8}$$

The second term is

$$d\phi \wedge \psi = 0 \tag{2.9}$$

The third term is

$$\phi\psi = 1/y \,\mathrm{d}x \,\mathrm{d}z \,\mathrm{d}y \tag{2.10}$$

$$= -1/y \,\mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z \,. \tag{2.11}$$

Problem 3. For any function f show that d(df) = 0. Deduce that $d(f dg) = df \wedge dg$.

Solution: Using $df = \frac{\partial f}{\partial x_i} dx_i$,

$$d(\mathrm{d}f) = d(\frac{\partial f}{\partial x_i} dx_i) \tag{2.12}$$

$$=d(\frac{\partial f}{\partial x_i})x_i \tag{2.13}$$

$$= \frac{\partial^2 f}{\partial x_i \partial x_j} dx_j x_i \tag{2.14}$$

$$=0$$
 (2.15)

by antisymmetry (alternation). Point is the partial derivative is symmetric in i and j but the wedge product is antisymmetric in those indices so the whole term is zero. Combining this result with $d(f\phi) = df \wedge \phi + fd\phi$, we see that the second term is zero so that $d(f dg) = df \wedge dg$.

Problem 4. Simplify the following forms

(a)
$$d(f dg + g df)$$
 (

(b)
$$d((f-g)(df+dg))$$

(c)
$$d(f dg \wedge g df)$$

$$(d) d(gf df) + d(f dg)$$

Solution: (a)

$$d(f dg + g df) = df \wedge dg + dg \wedge df$$
(2.16)

$$=0 (2.17)$$

by the alternation rule.

$$d((f-g)(df+dg)) = d(f-g) \wedge (df+dg)$$
(2.18)

$$= df \wedge dg - dg \wedge df \tag{2.19}$$

$$= 2 \,\mathrm{d} f \wedge \mathrm{d} g \tag{2.20}$$

$$d(f dg \wedge g df) = d(f dg) \wedge (g df) - (f dg (g df))$$
(2.21)

$$= df \wedge dg \wedge (g df) - (f dg) \wedge dg \wedge df \qquad (2.22)$$

$$= d(fg) \wedge df dg \tag{2.23}$$

$$d(gf df) + d(f dg) = d(gf) \wedge df + df \wedge dg$$
(2.24)

$$= (g df + f dg) \wedge df + df \wedge dg \qquad (2.25)$$

$$= (f-1) \,\mathrm{d}g \wedge \mathrm{d}f \tag{2.26}$$

Problem 5. For any three 1-forms $\phi_i = \sum_j f_{ij} dx_j \ (1 \le i \le 3)$, prove

$$\phi_1 \wedge \phi_2 \wedge \phi_3 = \begin{pmatrix} f_{11} & f_{22} & f_{33} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{pmatrix} dx_1 dx_2 dx_3.$$
 (2.27)

Solution:

$$\phi_1 \wedge \phi_2 \wedge \phi_3 = \sum_{i,j,k} f_{1i} f_{2j} f_{3k} \epsilon^{ijk} \, dx_1 \, dx_2 \, dx_3$$
 (2.28)

(2.29)

because repeats are zero so we need the antisymmetric product of all of the f_{ij} giving the determinant.

Problem 6. If r, θ, z are the cylindrical coordinate functions on \mathbf{R}^2 , then $x = r\cos\theta$, $y = r\sin\theta$, z = z. Compute the *volume element dx dy dz* of \mathbf{R}^3 in cylindrical coordinates. (That is, express $dx\ dy\ dz$ in terms of the functions r, θ, z , and their differentials.)

Solution:

$$dx dy dz = (\cos \theta dr - r \sin \theta)(\sin \theta dr + r \cos \theta) dz$$
 (2.30)

$$= r(-\sin^2\theta \,dr + \cos^2\theta \,dr \,d\theta) \,dz \tag{2.31}$$

$$= r \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}z \tag{2.32}$$

(2.33)

by the alternation rule.

Problem 7. For a 2-form $\eta = f dx dy + g dx dz + h dy dz$, the exterior derivative $d\eta$ is defined to be the 3-form obtained by replacing f, g, and h by their differentials. Prove that for any 1-form ϕ , d(df) = 0. Exercises 3 and 7 show that $d^2 = 0$, that is, for any form ξ , $d(d\xi) = 0$. (If ξ is a 2-form, then $d(d\xi) = 0$, since its degree exceeds 3.)

Solution: We have $df = \sum_i \frac{\partial f}{\partial x_i} dx_i$. Then

$$d(df) = \sum_{i} df_i \wedge dx_i$$
 (2.34)

$$= \sum_{i,j} \frac{\partial^2 f}{\partial x_i \partial x_j} \, \mathrm{d}x_i \, \mathrm{d}x_j \tag{2.35}$$

but the partial derivative is symmetric in i, j and the differentials are antisymmetric so this product is zero.

Problem 8. Prove that all three operations may be expressed by exterior derivatives as follows:

- (a) $df \leftrightarrow \nabla f$.
- (b) If $\phi \leftrightarrow V$, then $d\phi \leftrightarrow \nabla \times V$. (c) If $\eta \leftrightarrow V$, then $d\eta = (\nabla \cdot V) dx dy dz$.

Solution: (a) This one works out by definition. Since dx_i is dual to U_i . (b)

$$d\phi = \sum_{i} df_i \wedge dx_i \tag{2.36}$$

(2.37)

(c) Using $\eta = f dx dy + q dx dz + h dy dz$,

$$d\eta = \frac{\partial f}{\partial z} dz dx dy + \frac{\partial g}{\partial y} dy dx dz + \frac{\partial h}{\partial x} dx dy dz$$
 (2.38)

(2.39)

and the equality holds using (2).

Problem 9. Let f and g be real-valued functions on \mathbb{R}^2 . Provethat $df \wedge dg =$ $\begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} dx dy . (2.40)$

$$df \wedge dg = \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy\right) \left(\frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy\right)$$
 (2.41)

$$= \frac{\partial f}{\partial x} dx \frac{\partial g}{\partial y} dy + \frac{\partial f}{\partial y} dy \frac{\partial g}{\partial x} dx \qquad (2.42)$$

$$= \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} dx dy \tag{2.43}$$

§2.7 Mappings

Problem 1. With $F(u, v) = (u^2 - v^2, 2uv)$, find all points **p** such that (a) $F(\mathbf{p}) = (0, 0)$ (b) $F(\mathbf{p}) = (8, 6)$

(c)
$$F(\mathbf{p}) = \mathbf{p}$$
.

Solution: (a) u, v = (0, 0)

(b)
$$u, v$$
) = $(\pm 3, \pm 1)$

(c)
$$(u, v) = (1, 0)$$

Problem 2. (a)

Problem 3. With $F(u, v) = (u^2 - v^2, 2uv)$, let $\mathbf{v} = (v_1, v_2)$ be a tangent vector to $\mathbf{R}^2 at \mathbf{p} = (p_1, p_2)$. Apply Definition 7.4 directly to express $F * (\mathbf{v})$ in terms of the coordinates of \mathbf{v} and \mathbf{p} .

Solution:

$$F * (\mathbf{v}) = (\mathbf{v}[u^2 - v^2], \mathbf{v}[2uv])$$
(2.44)

$$= (2p_1v_1 - 2p_2v_2, 2p_1v_2 + 2p_2v_1)$$
(2.45)

Problem 4. With $F(u,v) = (u^2 - v^2, 2uv)$, find a formula for the Jacobian matrix of F at all points, and deduce that $F*_p$ is a linear isomorphism at every point of \mathbf{R}^2 except the origin. Solution:

$$\begin{vmatrix} 2u & -2v \\ 2v & 2u \end{vmatrix} \tag{2.46}$$

this matrix has rank 2 so given the conditions below Def. 7.9, the map F* is one-to-one. So it is a linear isopmorphism.

Problem 5. If $F: \mathbf{R}^n \to \mathbf{R}^m$ is a linear transformation, prove that $F*(\mathbf{v}_p) = F(\mathbf{v})_{F(p)}$.

Solution: I don't understand this notation...

Problem 6. (a) Give an example to demonstrate that a one-to-one and onto mapping need not be a diffeomorphism. (Hint: Take m=n=1.)

(b) Prove that if a one-to-one and onto mapping $F: \mathbf{R}^n \to \mathbf{R}^n$ is regular, then it is a diffeomorphism.

Solution: (a) Any mapping defined by $f(x) = x^{\alpha}$ for α is odd doesn't have smooth inverse at the origin but is still one-to-one and onto.

(b) If a mapping is one-to-one at every point and onto, then there is a well-defined inverse mapping making it a diffeomorphism. \Box

Problem 7. Prove that a mapping $F: \mathbf{R}^n \to \mathbf{R}^m$ preserves directional derivatives in this sense: If \mathbf{v}_p is a tangent vector to \mathbf{R}^n and g is a differentiable function on \mathbf{R}^m , then $F*(\mathbf{v}_p)[g] = \mathbf{v}_p[g(F)]$.

Solution:

$$\mathbf{v}_p[g(F)] = \mathrm{d}(g(F))[\mathbf{p}] \tag{2.47}$$

$$= dg \left(dF \left[\mathbf{p} \right] \right) \tag{2.48}$$

$$\equiv F * (\mathbf{v}_p)[g] \tag{2.49}$$

Problem 8. In the definition of tangent map (Def. 7.4), the straight line $t \to \mathbf{p} + t\mathbf{v}$ can be replaced by any curve a with initial velocity \mathbf{v}_p .

Solution: The function F* gives the initial velocity of a curve $\alpha'(0)$. Any curve $\beta(t)$ with $\beta'(0)$ will have the same tangent vector and so won't affect the value of F*.

Problem 9. Let $F: \mathbf{R}^n \to \mathbf{R}^m$ and $G: \mathbf{R}^m \to \mathbf{R}^p$ be mappings. Prove:

- (a) Their composition $GF: \mathbf{R}^n \to \mathbf{R}^p$ is a (differentiable) mapping. (Take m = p = 2 for simplicity.)
- (b) (GF)*=G*F*. (Hint: Use the preceding exercise.) This concise formula is the general chain rule. Unless dimensions are small, it becomes formidable when expressed in terms of Jacobian matrices.
- (c) If F is a diffeomorphism, then so is its inverse mapping F^{-1} .

Solution: (a) A mapping is a function with differentiable coordinate functions. Since differentiation is well-defined for composite functions using chain rule, the composite function GF is a mapping.

(b) By definition, $F * (v) = \beta'(0)$. So,

$$(GF) * (\beta'(0)) = (GF(\beta))'(0)$$
(2.50)

$$= G * (F(\beta)'(0))$$
 (2.51)

$$= G * F * (\beta'(0))$$
 (2.52)

(c) If F is a diffeomorphism, then it has an inverse F^{-1} . The function F^{-1} has an inverse. Its tangent map also has an inverse by the previous exercise that maps only the zero vector to 0 (i.e. $F^{-1}F = I \to (F^{-1}F)* = I* \to F^{-1}*F* = I$).

Problem 10. Show (in two ways) that the map $F: \mathbf{R}^2 \to \mathbf{R}^2$ such that $F(u,v) = (v e^u, 2u)$ is a diffeomorphism:

(a) Prove that it is one-to-one, onto, and regular; (b) Find a formula for its inverse $F^{-1}: \mathbf{R}^2 \to \mathbf{R}^2$ and observe that F^{-1} is differentiable. Verify the formula by checking that both FF^{-1} and $F^{-1}F$ are identity maps.

Solution: (a) The map is one-to-one and onto since the coordinate functions are one-to-one and onto. The Jacobian matrix is rank two so the tangent map is one-to-one so the map is regular.

(b) Let
$$F^{-1} = (u e^{-u} / v, v / (2u))$$
. Then $FF^{-1} = F^{-1}F = I$.

§2.8 Dot Product

Problem 1. Let $\mathbf{v} = (1, 2, -1)$ and $\mathbf{w} = (-1, 0, 3)$ be tangent vectors at a point of \mathbf{R}^3 .

- (a) $\mathbf{v} \cdot \mathbf{w}$ (b) $\mathbf{v} \times \mathbf{w}$
- (c) $\mathbf{v}/||\mathbf{v}||$, $\mathbf{w}/||\mathbf{w}||$ (d) $||\mathbf{v} \times \mathbf{w}||$
- (e) the cosine of the angle between \mathbf{v} and \mathbf{w} .

Solution: (a) -1 + 0 - 3 = -4.

- (b) $6\mathbf{e_1} 2\mathbf{e_2} + 2\mathbf{e_3}$.
- (c) $\mathbf{v}/||\mathbf{v}|| = \mathbf{v}/\sqrt{6}, \ \mathbf{w}/||\mathbf{w}|| = \mathbf{w}/\sqrt{10}$
- (d) $2\sqrt{10}$.
- (e) $-4/\sqrt{60}$.

Problem 2. Prove that Euclidean distance has the properties

- (a) $d(\mathbf{p}, \mathbf{q}) \ge 0$; $d(\mathbf{p}, \mathbf{q}) = 0$ if and only if $\mathbf{p} = \mathbf{q}$,
- (b) $d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}),$
- (c) $d(\mathbf{p}, \mathbf{q}) + d(\mathbf{q}, \mathbf{r}) \ge d(\mathbf{p}, \mathbf{r})$, for any points $\mathbf{p}, \mathbf{q}, \mathbf{r}$ in \mathbf{R}^3 .

Solution: (a) The norm is the square root of the sum of squares. Squares in \mathbf{R}^3 are positive and taking the positive branch of the square root function, the result is proven. If $d(\mathbf{p}, \mathbf{q}) = 0$, then $(p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2 = 0$ but since all squares are positive, each term much be zero, thus $\mathbf{p} = \mathbf{q}$. If $\mathbf{p} = \mathbf{q}$, from the definition of the norm $d(\mathbf{p}, \mathbf{q}) = 0$.

- (b) The norm is symmetric under interchange of its arguments since the square of a difference is symmetric under interchange of its arguments.
- (c) Squaring both sides gives, on the right $\mathbf{p} \cdot \mathbf{p} 2\mathbf{p} \cdot \mathbf{q} + \mathbf{q} \cdot \mathbf{q} + \mathbf{q} \cdot \mathbf{q} 2\mathbf{q} \cdot \mathbf{r} + \mathbf{r} \cdot \mathbf{r}$, and on the left $\mathbf{p} \cdot \mathbf{p} 2\mathbf{p} \cdot \mathbf{r} + \mathbf{r} \cdot \mathbf{r}$. The difference is $2\mathbf{q} \cdot \mathbf{q} 2(\mathbf{p} + \mathbf{r}) \cdot \mathbf{q} + 2\mathbf{p} \cdot \mathbf{r} = 2(\mathbf{p} \cdot (\mathbf{r} \mathbf{q}) + \mathbf{q} \cdot (\mathbf{q} \mathbf{r})) = 2(\mathbf{p} \mathbf{q}) \cdot (\mathbf{r} \mathbf{q})$. In the minimal case, the points are on a line. Then using $\mathbf{r} = \mathbf{q} + \mathbf{p}$ gives zero.