1 Dodelson ch.4, Exercice 8

On veut montrer que $T \propto a^{-2}$ lorsque T représente la température (à l'équilibre) de particules massives nonrelativistiques sans interactions. Pour ce faire, on doit dériver l'équation de Boltzmann. On définit la direction du vecteur de quantité de mouvement \hat{p}^i et la magnitude de la quantité de mouvement

$$p^2 \equiv g_{ij}P^iP^j$$

Par définition, la lettre majuscule P réfère au 4-vecteur de la quantité de mouvement

$$P^{\alpha} \equiv \frac{dx^{\alpha}}{d\lambda}$$

Notons que

$$\delta_{ij}\hat{p}^i\hat{p}^j=1$$

de sortes que $\hat{p}^i = \hat{p}_i$.

En supposant que $f = f^{(0)}$ est une distribution à l'équilibre, f = f(E(p), t) ne peut que dépendre du temps et de la magnitude de la quantité de mouvement (ou de l'énergie dans notre cas). Aussi, le terme de collision C[f] = 0 par supposition de sortes que l'équation de Boltzmann est

$$\frac{df(E,t)}{t} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial E} \frac{dE}{dt} = 0 \tag{1.1}$$

Pour poursuivre, on doit déterminer $\frac{dE}{dt}$. Notons que l'énergie remplace la quantité de mouvement p pour le cas des photons (et se réduit à ce cas lorsque la particule a une masse nulle). On travaille avec la métrique FRW

$$g_{00} = -1$$

$$g_{0i} = 0$$

$$g_{ij}(t) = a^2 \delta_{ij}$$

Par définition, l'équation de conservation de l'énergie est

$$\frac{dP^0}{d\lambda} = -\Gamma^0_{\alpha\beta} P^\alpha P^\beta$$

On peut exprimer P^0 en terme de l'énergie en réalisant que

$$P^2 = g_{\alpha\beta}P^{\alpha}P^{\beta} = -(P^0)^2 + p^2 = -m^2$$

d'où

$$P^0 = \sqrt{p^2 + m^2} = E$$

On utilise aussi la définition $P^0 \equiv \frac{dt}{d\lambda}$, de sortes que multiplier $\frac{dP^0}{d\lambda}$ par $\frac{1}{P^0}$ revient à changer la variable $\lambda \to t$ dans la derivée:

$$\frac{1}{P^0} \frac{dP^0}{d\lambda} = \frac{dE}{dt} = -\frac{1}{E} \Gamma^0_{\alpha\beta} P^\alpha P^\beta$$

On se rappel que les seuls symbols de Christoffels temporels non-nuls sont $\Gamma^0_{ij} = \frac{da}{dt} a \delta_{ij} = a^2 H \delta_{ij}$. Ainsi,

$$\frac{dE}{dt} = -\frac{a^2H}{E}\delta_{ij}P^iP^j$$

On écrit

$$P^i = C\hat{p}^i$$

où C est une constante de normalisation qu'on trouve avec la définition de p^2 :

$$p^2 = C^2 a^2 \underbrace{\delta_{ij} \hat{p}^i \hat{p}^j}_{\equiv 1}$$

puisque $\hat{\mathbf{p}}$ est un vecteur unitaire. Ainsi, $C=\frac{p}{a}$ et on trouve

$$\frac{dE}{dt} = -\frac{p^2H}{E}$$

L'équation de Boltzmann devient

$$\frac{\partial f}{\partial t} - \frac{p^2 H}{E} \frac{\partial f}{\partial E} = 0$$

Dans la limite non-relativiste, on peut prendre

$$E(p) \simeq m + \frac{p^2}{2m}$$

De sortes que

$$\frac{p^2}{E}\frac{\partial f}{\partial E} \simeq \frac{p^2}{m}\frac{m}{p}\frac{\partial f}{\partial p}$$

D'où

$$\frac{\partial f}{\partial t} - pH \frac{\partial f}{\partial p} = 0$$

Pour déterminer le comportement de la température en fonction du facteur d'échelle, on suppose que f est la distribution de Maxwell-Boltzmann:

 $f(p,t) \propto \exp\left\{-\frac{p^2}{2mT(t)}\right\}$

De sortes que,

$$\frac{\partial f}{\partial p} = f\left(-\frac{p}{mT}\right)$$

et

$$\frac{\partial f}{\partial T} = f\left(\frac{p^2}{2mT^2}\right)$$

On trouve la relation

$$\frac{\partial f}{\partial T} = -\frac{p}{2T} \frac{\partial f}{\partial p}$$

En remplaçant dans l'équation de Boltzmann, on obtient

$$\left(-\frac{1}{2T}\frac{dT}{dt} - \frac{1}{a}\frac{da}{dt}\right)p\frac{\partial f}{\partial E} = 0$$

Ce qui est satisfait seulement lorsque

$$T \propto a^{-2}$$

2 Le faux vide

a) Densité de cordes cosmiques

Une corde cosmique aurait une densité linéaire

$$\mu \simeq \frac{M^2}{\hbar c}$$

Si on suppose que la distance typique entre deux cordes est de 100 Mpc alors la densité d'énergie est

$$\rho \simeq \frac{\mu}{(100\,\mathrm{Mpc})^2}$$

b) Les domaines cosmologiques

Si on suppose que ce mur possède une coordonnée comobile constante, alors son énergie est équivalente à son énergie de masse $E \sim \rho V$. La pression exercée par ce mur est

$$P = -\frac{dE}{dV} = -\rho$$

De sortes que

$$w \sim \frac{\rho}{P} \sim -1$$

3 Dodelson ch.6, Exercice 4

a) Flatness problem

Le flatness problem stipule est la réalisation que le paramètre de courbure κ est très proche de 0 (Univers plat), ce qui requiert en principe une condition initiale très précise pour Ω . On exprime le paramètre de courbure en terme du paramètre de densité d'énergie totale dans l'Univers Ω :

$$1 - \Omega(t) = -\frac{\kappa}{a^2(t)H^2(t)}$$

Lorsque $a(t) \to 0$, le côté droit de l'équation $\to \infty$ si $\kappa \neq 0$, de sortes que si le côté gauche est différent de 0 lors des premiers moments de l'Univers, κ va devoir prendre une valeur absolue très grande $|\kappa| \gg 1$ pour compenser la petitesse du paramètre d'échelle. On peut visualiser le comportement du côté droit en posant $\Omega_0 = \Omega_{r,0} + \Omega_{m,0} = 0.3$:

$$\Omega(t) \equiv \frac{8\pi G \rho(t)}{3H^2(t)}$$

où ρ est la densité d'énergie de la radiation et de la matière. On pose que

$$H^{2}(t) = H_{0}^{2} \left(\Omega_{r,0} a^{-4} + \Omega_{m,0} a^{-3} + (1 - \Omega_{0}) a^{-2} \right)$$

Où Ω_0 est la valeur du paramètre de densité total observé aujourd'hui. On a négligé le paramètre d'énergie sombre pour simplifier l'argument. On a que

$$\rho(t) = \Omega_{m,0} \rho_{\rm crit} a^{-3} + \Omega_{r,0} \rho_{\rm crit} a^{-4}$$

De sortes que

$$\Omega(t) = \frac{\Omega_{m,0}a + \Omega_{r,0}}{\Omega_{r,0} + \Omega_{m,0}a + (1 - \Omega_0)a^2}$$

 et

$$1 - \Omega(t) = \frac{(1 - \Omega_0)a^{-2}}{\Omega_{r,0} + \Omega_{m,0}a + (1 - \Omega_0)a^2}$$

Naturellement, lorsque $a \to 0$, la valeur précise de Ω_0 importe peu et $|1 - \Omega(t)| \to 0$.

Figure 1: Paramètre de densité au début de l'Univers.

b) Inflation

L'inflation est une époque dans l'univers où l'accélération de l'expansion $\ddot{a}>0$. La seconde équation de Friedmann s'écrit

$$\frac{\ddot{a}}{a} = \frac{\Lambda_i}{3} > 0$$

où on a supposé que l'équation d'état de cette énergie du vide est $P=-\rho/3$. Cette équation différentielle a comme solution

$$a(t) \propto e^{H_i t}$$

où H_i est la constante de Hubble durant l'inflation (constante en fonction du temps). Ainsi, durant l'inflation, on a

$$1 - \Omega(t) \propto \frac{1}{H_i} (1 - \Omega_0) e^{-2H_i t}$$

Si on pose t_i comme le temps au début de l'inflation et t_f le temps à la fin, alors

$$|1 - \Omega(t_f)| = e^{-2N} |1 - \Omega(t_i)|$$

où N est le nombre de repliements exponentiels ayant eu lieu durant l'inflation $t_f \simeq (N+1)t_{\rm GUT}$. Si N est suffisamment grand, alors la valeur de $\Omega(t_i)$ n'a plus besoin d'être aussi proche de 1, comme dans le cas étudié au sous numéro précédent. En particulier, on peut choisir $\Omega(t_{\rm GUT})=0$ pour une inflation qui perdure durant N=60 repliement exponentiels.

$$a_{\rm GUT} \simeq \frac{T_{\rm CMB}}{T_{\rm GUT}} \simeq 2.73 \times 10^{-28}$$

On peut déterminer $a(t_f)$, soit le facteur d'échelle après l'inflation à partir de la valeur de N choisit

$$a(t_f) \simeq a_{\rm GUT} \sqrt{N+1}$$

puisque $a \sim t^{1/2}$ dans l'Univers jeune. On utilise cette valeur pour extrapoler la valeur de $|1 - \Omega(t)|$ avant et durant l'inflation.

Figure 2: L'inflation fait en sortes que $\Omega(t_i)$ peut prendre n'importe quelle valeur, et les observations faites aujourd'hui sont respectées.

4