ISOMERIA

ISOMERIA RES

1) Fórmulas de projeção de Fischer

PROFESSOR: THÉ

LIÇÃO: **195**

FÓRMULAS DE PROJEÇÃO DE FISCHER

Hermann Emil Fischer químico alemão, nascido no dia 9 de outubro de 1952 e falecido no dia 15 de julho de 1919.

É considerado o pai da química orgânica. Recebeu o Nobel de Química de 1902, devido aos seus trabalhos na estrutura e síntese de açúcares.

Hermann Emil Fischer (1852 - 1919)

1- Apresentação)

Fischer propôs uma maneira mais simples de "enxergar" as moléculas com carbonos quirais, hoje chamadas "Fórmulas de projeção de Fischer".

Inicialmente, examinando a molécula na "forma tridimensional" dentro de um cubo imaginário (Tetraedro no cubo).

CUNHA (►) → PARA CIMA

LINHA TRACEJADA (·····) \longrightarrow PARA BAIXO

Colocando o observador em posição diametralmente oposta ao ligante 4.

Colocando o observador agora vendo "de cima".

Nas fórmulas de projeção de Fischer, os ligantes para abaixo da folha de papel aparecem sempre:

- Com linha tracejada
- Na posição vertical

Já os ligantes que se encontram **acima** da folha de papel aparecem desenhados sempre:

- Com cunha
- Na posição horizontal

2) Identificando a configuração absoluta usando asa projeções de Fischer

1) Fórmula mais fácil:

Quando o ligante 4 já está na **vertical** (tanto faz na posição **NORTE ou SUL**).

Ignora-se o ligante 4.

Passando o ligante 4 para a posição sul lembrando que para **não alterar a molécula**, realizam-se duas permutações.

Fórmula menos fácil Ligante 4 na posição horizontal. (Tanto faz na posição leste ou oeste)

Outro exemplo:

IGNORA-SE SEMPRE O LIGANTE 4 NA POSIÇÃO VERTICAL

EXEMPLO - 1

Identifique a configuração (R ou S) de cada carbono assimétrico no seguinte composto:

RESOLUÇÃO

1) Detalhando um pouco mais

▷ 1° átomo

Está ligado ao carbono quiral (com seu número atômico).

$$C^* \rightarrow \begin{pmatrix} 0 & , & C & , & C & , & H \end{pmatrix}$$

$$Z \rightarrow \begin{pmatrix} 8 & , & 6 & , & 6 & , & 1 \\ 1 & & & & \text{empatados} & 4 \end{pmatrix}$$

$$H_3C \leftarrow C^* \leftarrow CH_2CH_3$$

Até o momento as prioridades estabelecidas são 1 e 4.

▷ 2° átomo do ligante

Para estabelecer a prioridade dos outros dois ligantes empatados, examina-se o 2° átomo do ligante.

Entre os ligantes (\mathbf{CH}_3) e $(\mathbf{CH}_2\mathbf{CH}_3)$ o de maior prioridade é aquele cujo segundo átomo apresenta o maior número atômico.

REPETINDO

1) Numere os ligantes de acordo com a prioridade

2) Trocar as letras por números

3) Posição do ligante 4 – vertical

Então, verificar a sequência $1 \rightarrow 2 \rightarrow 3$

4) Configuração absoluta (R)

$$H_3C \xrightarrow{\text{CH}_2CH} R$$

RESUMO

1) Moléculas com carbono quiral

CARBONO QUIRAL: apresenta 4 ligantes diferentes

A sequência de prioridade para os ligantes estabelece a **configuração absoluta.**

 $R \rightarrow$ Sequência $1 \rightarrow 2 \rightarrow 3$ para a direita (sentido horário)

S \rightarrow Sequência $1 \rightarrow 2 \rightarrow 3$ para a esquerda (sentido antihorário)

IGNORA-SE O LIGANTE 4 QUANDO ELE SE ENCONTRA NA POSIÇÃO VERTICAL

- 2) Dada a fórmula em perspectiva, faz-se a projeção tomando o seguinte cuidado:
 - # Ligantes de linhas tracejadas são projetos na posição vertical.
 - # Ligantes em cunha são projetados na posição horizontal.

3) Identificando a configuração absoluta.

Examinando a posição do ligante 4.

A projeção de Fischer (1891) é uma representação bidimensional de uma molécula orgânica tridimensional