Russ Johnson Problem Set #5 March 17, 2013

Activity 24.12 Write a formal proof of Lagrange's Theorem (Theorem 24.4).

Proof. Let G be a finite group and let H be a subgroup of G. From Theorem 24.3 we know that the left cosets of H form a partition of G. Let n be the number of distinct cosets of H in G. Each left coset of H contains |H| elements. (Activity 24.7). And so, |G| = n|H|. In conclusion, |H| divides |G|.

Activity 24.13. Let G be a group with identity e and assume that \sim is a congruence relation on G.

(a) Let $H = \{x \in G : x \sim e\}$. Show that H is a subgroup of G.

First of all, we know that $e \sim e$ from the reflexive property of the congruence relation \sim . And so, the identity element of G is also in H.

Next, let $a \in H$. From the definition of the set H, we know that $a \sim e$. Because \sim is a congruence relation, $a^{-1} \sim e^{-1}$. And so, $a^{-1} \sim e$ which means that $a^{-1} \in H$. In conclusion, every element in H has an inverse that is also in H. (Which is the same as the inverse of this element in G).

Finally, let $a, b \in H$. From the definition of the set H, we know that $a \sim e$ and $a \sim e$. Because \sim is a congruence relation, $ab \sim e^2$. And so $ab \sim e$ which means that $ab \in H$. In conclusion, the operation in G is closed in H. The identity of G is in H, every element in H has an inverse, and the operator of G is closed in the set H. And so, the set H is a subgroup of G.

(b) Let $a, b \in G$. Prove that $a \sim b$ if and only if $a^{-1}b \in H$.

Let $a,b \in G$ such that $a \sim b$. From the reflexive property of the congruence relation \sim we know that $a^{-1} \sim a^{-1}$. Applying (c) Explain why \sim_H is the only possible congruence relation on a group G.

Activity 24.14.

- (a) State the converse of Lagrange's Theorem. What do we need to do to show that the converse of Lagrange's Theorem is not true?
- (b) Consider the group $G = A_4$. List the elements of A_4 in cycle notation and determine the order of A_4 .
- (c) Assume that H is a subgroup of A_4 of order 6.
- (i) Explain why the nonidentity elements of H must have order 2 or 3.
- (ii) Explain why there must be an element α of A_4 of order 3 that is not in

H

- (iii) Explain why the left cosets H, αH and $\alpha^2 H$ cannot all be distinct.
- (iv) Show that it is not possible for any two of H, αH and $\alpha^2 H$ to be equal.
- (d) Explain why the converse of Lagrange's Theorem is not true.
- (4) A group G contains elements of every order from 1 to 10. What is the smallest order G could have? Find a group G of that order that contains elements of every order from 1 through 10.
- (6) Let $H = \{I, r\}$ in D_4 .
- (a) Determine all of the distinct left cosets of H in D_4 .

First of all, $D_4 = \{I, R, R^2, R^3, r, Rr, R^2r, R^3r\}$ and so $|D_4| = 8$. The number of distinct left cosets of H in D_4 is referred to as the index and is $\frac{|D_4|}{|H|} = 4$. These four distinct left cosets are

$$IH = rH = \{I, r\},$$

$$RH = RrH = \{R, Rr\},$$

$$R^{2}H = R^{2}rH = \{R^{2}, R^{2}r\},$$

and

$$R^3H = R^3rH = \{R^3, R^3r\}.$$

(b) Determine all of the distinct right cosets of H in D_4 . Like in part (a), there are four distinct right cosets. These right cosets are

$$HI = Hr = \{I, r\},$$

$$HR = HR^3r = \{R, R^3\},$$

$$HR^2 = HR^2r = \{R^2, R^2r\},$$

and

$$HR^3 = HRr = \{R^3, Rr\}.$$