Senior Test 4

Stellenbosch Camp 2018

Time: $2\frac{1}{2}$ hours

1. Prove that it is impossible to write a positive integer in every cell of an infinite chessboard, in such a manner that, for all positive integers m, n, the sum of numbers in every $m \times n$ rectangle is divisible by m + n.

2.

- 3. Let A_1, A_2, A_3 be three points in the plane, and for convenience, let $A_4 = A_1, A_5 = A_2$. For n = 1, 2 and 3, suppose that B_n is the midpoint of $A_n A_{n+1}$ and suppose that C_n is the midpoint of $A_n B_n$. Suppose that $A_n C_{n+1}$ and $B_n A_{n+2}$ meet at D_n and that $A_n B_{n+1}$ and $C_n A_{n+2}$ meet at E_n . Calculate the ratio of the area of triangle $\Delta D_1 D_2 D_3$ to the area of triangle $\Delta E_1 E_2 E_3$.
- 4. Lets a, b and c be positive real numbers such that abc = 1. Prove that

$$a^{2} + b^{2} + c^{2} + 3 \ge 2(ab + bc + ca).$$

5. Let $p_1 = 2$ and define a sequence of prime numbers p_1, p_2, p_3, \ldots such that, for all positive integers n, p_{n+1} is the least prime factor of $n \cdot p_1^{1!} \cdot p_2^{2!} \dots p_n^{n!} + 1$. Prove that all primes appear in the sequence.

Figure 1: This is **not** real math.