Tópicos de Matemática

Licenciatura em Ciências da Computação - 1º ano

1º teste - 6 nov 2015 Duração: 2 horas

- 1. Sejam p, q, r e s proposições. Sabendo que são verdadeiras as proposições $p \Rightarrow (q \Rightarrow \sim r)$, $r \Rightarrow p$, $(\sim s \lor \sim p) \Rightarrow r$ e $\sim s$, podemos afirmar que a proposição $\sim q$ é verdadeira?
 - Se $v(\sim s)=V$ então $v(\sim s\vee \sim p)=V$. Uma vez que $v((\sim s\vee \sim p)\Rightarrow r)=V$, concluímos que v(r)=V. Este facto, juntamente com o facto de $v(r\Rightarrow p)=V$, leva-nos a concluir que v(p)=V. Estamos em condições de afirmar que $v(q\Rightarrow \sim r)=V$, uma vez que $(v(p\Rightarrow (q\Rightarrow \sim r))=V$. De $v(q\Rightarrow \sim r)=V$, sabendo que $v(\sim r)=F$, concluímos que v(q)=F, ou seja, que $v(\sim q)=V$.
- 2. Seja s(X,Y)= "X é subconjunto de Y.", onde o conjunto de variação de X e Y é $\mathcal{P}(A)$, para um dado conjunto A.
 - (a) Utilizando a condição dada, exprima, por meio de uma proposição lógica, a afirmação "Todos os elementos de $\mathcal{P}(A)$ admitem pelo menos dois subconjuntos distintos." $\forall X \in \mathcal{P}(A) \exists Y, Z \in \mathcal{P}(A) : s(Y,X) \land s(Z,X) \land Y \neq Z.$
 - (b) Formule a negação da proposição dada e indique a valoração da proposição obtida. Negar a proposição apresentada é afirmar que existe pelo menos um elemento de $\mathcal{P}(A)$ que não admite subconjuntos ou que admite um único subconjunto:

$$\exists X \in \mathcal{P}(A) : (\forall Y \in \mathcal{P}(A), \sim s(Y, X)) \quad \forall \quad \exists^1 Y \in \mathcal{P}(A) : s(Y, X)).$$

Esta proposição é verdadeira porque $\emptyset \in \mathcal{P}(A)$ e \emptyset admite um único subconjunto, que é o próprio \emptyset .

- 3. Usando indução matemática, prove que:
 - (a) para todo $n \in \mathbb{N}$, $n^2 + n + 2$ é par;
 - (1) Comecemos por verificar o caso base: considerando n=1, temos que $1^2+1+2=4$, que é um número par;
 - (2) Suponhamos agora que $n \in \mathbb{N}$ é tal que $n^2 + n + 2$ é par. Queremos provar que $(n+1)^2 + (n+1) + 2$ é um número par. De facto, como

$$(n+1)^2 + (n+1) + 2 = n^2 + 2n + 1 + n + 1 + 2 = (n^2 + n + 1) + (2n+2),$$

podemos afirmar, aplicando a hipótese de indução, que $(n+1)^2 + (n+1) + 2$ é um número par, pois é a soma de dois números pares.

- Por (1) e (2), aplicando o Princípio de Indução, podemos concluir que a igualdade se verifica para todo natural n.
- (b) para todo o natural $n \ge 2$, $\sum_{k=1}^{n} k \cdot k! = (n+1)! 1$.

(1) Comecemos por verificar o caso base: considerando n=2, temos:

$$\sum_{k=1}^{2} k \cdot k! = (2+1)! - 1,$$

o que é verdade, pois, efetuando os cálculos, obtemos $1 \cdot 1! + 2 \cdot 2! = 5 = 6 - 1 = 3! - 1$;

(2) Suponhamos agora que o natural $n \geq 2$ é tal que $\sum_{k=1}^n k \cdot k! = (n+1)! - 1$. Queremos

provar que $\sum_{k=1}^{n+1} k \cdot k! = (n+2)! - 1$. De facto,

$$\sum_{k=1}^{n+1} k \cdot k! = \sum_{k=1}^{n} k \cdot k! + (n+1) \cdot (n+1)!$$

$$= (n+1)! - 1 + (n+1)(n+1)!$$
 (aplicando a hipótese de indução)
$$= [1+n+1](n+1)! - 1$$

$$= (n+2)(n+1)! - 1$$

$$= (n+2)! - 1.$$

Por (1) e (2), aplicando o Princípio de Indução, podemos concluir que a igualdade se verifica para todo natural n.

- 4. Dê, ou justifique que não existe, um exemplo de:
 - (a) conjuntos A, B e C tais que $A\times B=A\times C$ e $B\neq C$; Sejam $A=\emptyset$, $B=\{1\}$ e $C=\{2\}$. Então, $A\times B=\emptyset=A\times C$ e $B\neq C$.
 - (b) conjuntos A e B tais que $A \cup B = A \cap B$ e $A \neq B$; Não existe. Se $A \cup B = A \cap B$ então $A \subseteq A \cup B = A \cap B \subseteq B$ e $B \subseteq A \cup B = A \cap B \subseteq A$, pelo que A = B.
 - (c) uma família de conjuntos $(A_i)_{i\in\mathbb{N}}$ tal que $\bigcup_{i\in\mathbb{N}}A_i=\mathbb{Z}$ e $\bigcap_{i\in\mathbb{N}}A_i=\{-1,1\}$; Para cada $i\in\mathbb{N}$, seja $A_i=\{1-i,-1,1,i\}$. Então, $\bigcup_{i\in\mathbb{N}}A_i=\mathbb{Z}$ e $\bigcap_{i\in\mathbb{N}}A_i=\{-1,1\}$.
 - (d) um conjunto A e uma relação binária R em A tais que $R \neq \omega_A$ e $R \circ R = \omega_A$. Sejam $A = \{1,2\}$ e $R = \{(1,2),(2,1),(2,2)\}$. Então, $R \neq \omega_A$, uma vez que $(1,1) \not \in R$ e

$$R \circ R = \{(1,1), (1,2), (2,2), (2,1)\} = \omega_A$$
.

5. Sejam A, B, C e D conjuntos tais que $C \subseteq A$ e $A \cap B = \emptyset$. Prove que

$$A \cup B \subseteq C \cup D \Rightarrow B \subseteq D$$
:

2

(a) fazendo uma prova direta;

Tendo por hipóteses que $C \subseteq A$, $A \cap B = \emptyset$ e $A \cup B \subseteq C \cup D$, pretendemos provar que $B \subseteq D$. Para isso, vamos provar que todo o elemento de B é elemento de D:

$$x \in B \Rightarrow x \in A \cup B \qquad [A \subseteq A \cup B]$$

$$\Rightarrow x \in C \cup D \qquad [A \cup B \subseteq C \cup D]$$

$$\Rightarrow x \in C \lor x \in D$$

$$\Rightarrow x \in A \lor x \in D \qquad [C \subseteq A]$$

$$\Rightarrow cond. imp. \lor x \in D \qquad [A \cap B = \emptyset \land x \in B]$$

$$\Rightarrow x \in D.$$

Estamos em condições de afirmar que $B \subseteq D$.

(b) fazendo uma prova por redução ao absurdo.

Para efetuarmos uma prova por redução ao absurdo, começamos por supor que, sabendo que $A\cap B=\emptyset$ e $C\subseteq A$, temos

$$A \cup B \subseteq C \cup D \land B \not\subseteq D$$
.

De $B \not\subseteq D$, podemos concluir que existe $x \in B$ tal que $x \not\in D$. Mas, se $x \in B$, temos que $x \in A \cup B$ e, como $A \cup B \subseteq C \cup D$, temos que $x \in C \cup D$. Como $x \not\in D$, temos que $x \in C$ e, como $C \subseteq A$, $x \in A$. Logo, $x \in A \cap B = \emptyset$, o que é um absurdo. O absurdo resulta de termos suposto que $A \cup B \subseteq C \cup D \land B \not\subseteq D$. Logo, se $A \cup B \subseteq C \cup D$, temos de ter $B \subseteq D$.

- 6. Sejam $A = \{1, 2, 3\}$ e $R = \{(1, 2), (1, 3), (2, 2), (3, 1), (3, 3)\}$ uma relação binária em A.
 - (a) Mostre que $id_A \subseteq R \circ R$ mas que $id_A \neq R \circ R$.

Como $A = \{1, 2, 3\}, id_A = \{(1, 1), (2, 2), (3, 3)\}.$ Como

- $(1,3) \in R \land (3,1) \in R$, temos que $(1,1) \in R \circ R$;
- $(2,2) \in R \land (2,2) \in R$, temos que $(2,2) \in R \circ R$;
- $(3,3) \in R \land (3,3) \in R$, temos que $(3,3) \in R \circ R$,

concluímos que $id_A \subseteq R \circ R$. Por outro lado, como $(1,2) \in R$ e $(2,2) \in R$, temos que $(1,2) \in R \circ R$. Assim, como $(1,2) \notin id_A$, concluímos que $id_A \neq R \circ R$.

(b) Justifique que $(1,2) \in R^{-1} \circ R$ e que $(1,2) \notin R \circ R^{-1}$.

Por um lado, como $(1,2),(2,2)\in R$, podemos afirmar que $(1,2)\in R$ e $(2,2)\in R^{-1}$, e, portanto, $(1,2)\in R^{-1}\circ R$.

Por outro lado, provemos que $(1,2) \not\in R \circ R^{-1}$ por redução ao absurdo. Se $(1,2) \in R \circ R^{-1}$, tem de existir $x \in A$ tal que $(1,x) \in R^{-1}$ e $(x,2) \in R$, ou seja, tal que $(x,1),(x,2) \in R$. Assim $x \in R^{-1}(\{1\}) \cap R^{-1}(\{2\}) = \emptyset$, pois $R^{-1}(\{1\}) = \{3\}$ e $R^{-1}(\{2\}) = \{1,2\}$. Logo, não podemos ter $(1,2) \in R \circ R^{-1}$.

(c) Determine $R \cup R^{-1}$ e $R \cap R^{-1}$.

Como $R^{-1} = \{(2,1), (3,1), (2,2), (1,3), (3,3)\}$, temos que

$$R \cup R^{-1} = \{(1,2), (2,1), (3,1), (2,2), (1,3), (3,3)\}$$

 $R \cap R^{-1} = \{(3,1), (2,2), (1,3), (3,3)\}$

(d) Considere, em $\mathcal{P}(A)$, a relação binária S definida por

$$(X,Y) \in S \Leftrightarrow (\exists x \in X)(\forall y \in Y) \ (x,y) \in R.$$

Determine $S(\{2\})$ e $S^{-1}(\{2\})$.

Por definição de conjunto imagem e conjunto imagem completa inversa, temos que

$$\begin{split} S(\{2\}) &= \{Y \subseteq A : (\{2\}, Y) \in S\} \\ &= \{Y \subseteq A : (\forall y \in Y) \ (2, y) \in R\} \\ &= \{\{2\}, \emptyset\} \end{split}$$

e

e

$$\begin{split} S^{\leftarrow}(\{2\}) &= \{X \subseteq A : (X,\{2\}) \in S\} \\ &= \{X \subseteq A : (\exists x \in X) \ (x,2) \in R\} \\ &= \{\{1\},\{2\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}. \end{split}$$

Cotação: 1. 2.0 2. 2×1.5 3. 2×1.5 4. 4×1.0 5. 2×1.5 6. 1.0 + 1.0 + 1.0 + 2.0.