统计学习笔记

Stanley Wu GmaxInfo bleedtodry@hotmail.com

Contents

1.	线性模型	2
	1.1. 特征选择	2
2.	分类算法	2
	2.1. Logistic Regression	1
	2.2. Linear Discriminant Analysis	2
3.	重抽样	2
	3.1. Cross-Validation	2
	3.1.1. Leave-One-Out Cross-Validation	2
	3.1.2. k-Folder Cross-Validation	2
	3.2. Bootstrap	3

1.

1.1.

2.

2.1. Logistic Regression

基本模型:

$$p(X) = \frac{e^{\beta_0 + \beta_{1X}}}{1 + e^{\beta_0 + \beta_{1X}}} \tag{1}$$

Log-odds logit:

$$\log(\frac{p(X)}{1 - p(X)}) = \beta_0 + \beta_{1X}$$
 (2)

最大似然参数估计:

$$\zeta(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i))$$
(3)

2.2. Linear Discriminant Analysis

Logistic Regression适用于二元离散回归,当因变量大于2个时,使用LDA

3.

3.1. Cross-Validation

3.1.1. Leave-One-Out Cross-Validation

$$CV = \frac{1}{n} \sum_{i=1}^{n} MSE_i \tag{4}$$

3.1.2. k-Folder Cross-Validation

$$CV_{(K)} = \sum_{k=1}^{K} \frac{n_k}{n} MSE_k \tag{5}$$

LOOCV是k-Folder CV的一种特殊情况,即k = n。

3.2. Bootstrap

Created with Madoko.net.