Cours De Résidanat

Sujet : 20

Diabète sucré

Epidémiologie, Etiopathogénie, Diagnostic, Complications, Traitement.

Objectifs:

- 1. Etablir le diagnostic des troubles de la tolérance glucidique (diabète et prédiabète) selon les dernières recommandations de l'American Diabetes Association (ADA).
- 2. Indiquer la prévalence actuelle du diabète de type 2 en Tunisie selon les données de l'International Diabetes Federation (IDF).
- 3. Identifier dans une population donnée les sujets qui risquent de développer un diabète sucré en précisant les modalités du dépistage.
- 4. Réunir les arguments anamnestiques, cliniques et paracliniques pour reconnaître les différents types de diabète sucré selon la classification de l'O.M.S.
- 5. Expliquer l'étiopathogénie et l'histoire naturelle du diabète en fonction de son type (Diabète de type 1, Diabète de type 2, Diabète secondaire, Diabète gestationnel).
- 6. Décrire les conséquences physiopathologiques de l'hyperglycémie.
- 7. Expliquer les mécanismes physiopathologiques des décompensations hyperglycémiques du diabète.
- 8. Etablir le diagnostic positif et étiologique d'une décompensation hyperglycémique du diabète en évaluant son degré de sévérité.
- 9. Planifier le traitement et la surveillance d'une décompensation hyperglycémique du diabète.
- 10. Identifier la gravité et les facteurs impliqués dans la survenue d'une hypoglycémie chez un diabétique.
- 11. Préciser le degré de sévérité d'une hypoglycémie chez un diabétique.
- 12. Planifier la prévention, le traitement et la surveillance d'une hypoglycémie chez un diabétique.

- 13. Citer les facteurs favorisant la survenue des complications chroniques suivantes chez un diabétique : neuropathie, rétinopathie, néphropathie.
- 14. Reconnaître à partir des données de l'examen clinique et des examens complémentaires, les complications chroniques (neuropathie, rétinopathie, néphropathie) du diabète à leurs différents stades évolutifs en identifiant celles qui nécessitent une prise en charge thérapeutique urgente.
- 15. Evaluer le risque cardiovasculaire chez un diabétique selon le type du diabète.
- 16. Planifier la stratégie de prévention des complications chroniques et de la cardioprotection chez un malade diabétique.
- 17. Expliquer les mécanismes d'action des médicaments utilisés pour le traitement du diabète.
- 18. Définir les objectifs thérapeutiques chez un diabétique en fonction du type de diabète et du terrain du patient (âge, grossesse, tares).
- 19. Justifier le choix d'une stratégie thérapeutique en fonction des objectifs thérapeutiques fixés, du mode d'action des médicaments, de leurs bénéfices prouvés et de leurs risques potentiels.
- 20. Décrire les modalités de la surveillance du diabète et de son traitement.
- 21. Planifier une grossesse chez une patiente diabétique.
- 22. Planifier le traitement et la surveillance du diabète pendant la grossesse.
- 23. Planifier une stratégie d'éducation thérapeutique personnalisée chez un patient diabétique.
- 24. Planifier la réinsertion socio-professionnelle du diabétique en fonction de son handicap.
- 25. Décrire les modalités de la prévention primordiale et primaire du diabète de type 2 à l'échelle individuelle et collective.

DIAGNOSTIC ET CLASSIFICATION DU DIABETE SUCRE INTRODUCTION -**DEFINITION:**

Le diabète sucré est défini par l'OMS comme : « un groupe de maladies métaboliques, caractérisé par une hyperglycémie chronique de degré variable résultant d'un défaut de la sécrétion de l'insuline ou de l'action de l'insuline ou des deux anomalies conjuguées ».

Il est le résultat d'une interaction entre un terrain prédisposé génétiquement et un environnement incluant plusieurs facteurs souvent intriqués.

Le diabète sucré est responsable d'une surmortalité (espérance de vie raccourcie d'une dizaine d'années en rapport avec les complications cardio-vasculaires et métaboliques) et d'une morbidité lourde incluant les complications dégénératives, gravidiques, infectieuses...

L'amélioration du pronostic du diabète sucré est basée sur une stratégie basée sur les moyens hygiéno-diététiques, les médications et l'éducation thérapeutique permettant d'atteindre des objectifs métaboliques personnalisés.

I. ANOMALIES DE LA TOLERANCE GLUCIDIQUE

A.LE DIABETE SUCRE

1. Circonstances de découverte :

Le diagnostic clinique d'un diabète sucré peut se poser dans 4 circonstances :

• Les signes cardinaux du diabète :

Asthénie, syndrome polyuro-polydipsique, amaigrissement rapide, qui contraste avec un appétit conservé.

Cette situation doit faire éliminer une urgence métabolique inaugurale : cétose ou hyperosmolarité et nécessite un traitement urgent.

• Lors de la découverte de complications dégénératives.

La découverte de lésions rétiniennes ou nerveuses peut révéler un DT2 ancien, méconnu.

• Lors d'une affection intercurrente.

Découverte fortuite lors d'un bilan préopératoire, infection...

• Lors d'un dépistage.

Dosage de la glycémie lors d'un bilan de santé, d'une campagne de dépistage (à l'occasion de la journée mondiale du diabète, le 14 novembre de chaque année), du départ au pèlerinage, d'un bilan d'embauche...

2. Confirmation du diagnostic (tableau I)

- En présence de signes cardinaux : une seule glycémie aléatoire (à n'importe quel moment de la journée) veineuse ou capillaire supérieure à 2 g/l (11,1 mmol/l) suffit pour poser le diagnostic. Le traitement est urgent.
- En l'absence de signes cardinaux : la découverte d'une glycémie à jeun (8 heures de jeûne calorique) supérieure ou égale à 1,26 g/l(7 mmol/l)ou une glycémie aléatoire supérieure ou égale à 2 g/l(11,1 mmol/l) impose de refaire un 2^{ème} contrôle de la glycémie à jeun. Si elle est supérieure ou égale à 1,26 g/l (7 mmol/l), le diagnostic de diabète est posé.
- Si la glycémie à jeun est inférieure à 1,26 g/l, on peut réaliser une épreuve d'hyperglycémie provoquée par voie orale (HGPO) avec une dose de charge orale de 75 g de glucose; une glycémie 2 heures après cette charge supérieure ou égale à 2 g/l (11,1 mmol/l) permet de poser le diagnostic. Cette épreuve est lourde, coûteuse et peu reproductible.
- Hémoglobine glyquée (HbA1c) supérieure à 6,5%. Pour servir de paramètre de diagnostic, ce dosage nécessite une technique validée.

Son utilisation est pratique puisque son taux n'est pas influencé par les maladies aigues et les repas. Néanmoins, plusieurs affections modifient son taux comme les carences martiales, les hémoglobinopathies ou encore l'insuffisance rénale.

B.LE PREDIABETE

Il s'agit d'une anomalie de la tolérance glucidique infra clinique et réversible si une stratégie de prévention est appliquée.

Elle est définie par :

- une glycémie à jeun entre 1 et 1,25 g/l (hyperglycémie modérée à jeun ou IFG « impaired fasting glucose »).
- ou une glycémie 2 heures après charge glucosée orale, entre 1,4 et 2 g/l(baisse de la tolérance aux hydrates de carbone ou IGT)
- ou une hémoglobine glyquée entre 5,7 et 6,4%

Critères de diagnostic des anomalies de la tolérance glucidique (ADA 2017):

Moyens de diagnostic :

- Glycémie à jeun : critère de diagnostic par excellence

Le dosage de la glycémie repose sur une méthode enzymatique utilisant la glucose oxydase. Le dosage glycémique se caractérise par sa fiabilité, sa facilité de réalisation et son coûtmodéré.

- Hyperglycémie provoquée par voie orale (HGPO):

Il s'agit d'une méthode standardisée qui étudie l'évolution de la glycémie après l'absorption, en moins de 5 minutes, de 75 grammes de glucose, dissous dans 200 à 300 ml d'eau. La glycémie veineuse est mesurée après 8 heures de jeûne, puis deux heures après la charge en glucose. l'HGPO est un test onéreux et contraignant pour les patients. En pratique, l'utilisation de ce test est donc réservée à des situations particulières.

- Glycémie post-prandiale ou aléatoire:

La glycémie post prandiale est classiquement réalisée deux heures après un repas. Elle peut permettre la mise en évidence d'une anomalie de la tolérance glucidique notamment chez des sujets ne présentant pas d'hyperglycémie à jeun.

- Hémoglobineglyquée (HbA1c) : Retenue récemment comme moyen de diagnostic du diabète sucré, à condition d'être dosée par méthode certifiée et standardisée

Tableau I : confirmation du diagnostic du diabète

	Glycémie à jeun	Glycémie + signes cardinaux	Glycémie 2 h post charge glucosée (HGPO)
Diabète	≥ 1,26 g/l (7 mmol/l)	≥ 2 g/l (11,1 mmol/l)	≥ 2 g/l (11,1 mmol/l)
Prédiabète	Hyperglycémie		Baisse de la tolérance aux
	modérée à jeun		hydrates de carbone
	> 1 g/l (5,6 mmol/l)		≥ 1,40 g/l (7,8 mmol/l)
	et < 1,26 g/l (7 mmol/l)		et< 2 g/l (11,1 mmol/l)
Normalité	≤ 1 g/l (5,6 mmol/l)		< 1,40 g/l (7,8 mmol/l)

Sujet 20 : Diabète sucré

N° Validation: 0820201933

Tableau II : Classification du diabète sucré selon l'OMS (1998)

I -Diabète de type 1

- a. lié à la destruction auto-immune des cellules béta langerhansiennes.
- b. Idiopathique.

II - Diabète de type 2

- a. prédominance de l'insulinorésistance.
- b. prédominance du déficit de l'insulinosécrétion endogène.

III - Diabètes spécifiques

- Défaut génétique de la fonction des cellules béta : diabètes de type Mody ((MaturityOnsetDiabetes of the Young).
- Diabète mitochondrial par mutation de l'ADN mitochondrial.
- Défaut génétique de l'action de l'insuline : insulinorésistance de type A, diabète lipoatrophique.
- Diabète pancréatique : Pancréatites, cancer du pancréas, pancréatite chronique calcifiante, hémochromatose, mucoviscidose...
- Endocrinopathies : acromégalie, syndrome de phéochromocytome, Cushing, hyperaldostéronisme primaire.
- Diabètes induits par des médicaments : glucocorticoïdes, œstro-progestatifs, diurétiques thiazidiques, interféron ...
- Formes rares de diabète auto-immun (par anticorps antirécepteur de l'insuline).
- Autres syndromes génétiques parfois accompagnés d'un diabète : trisomie 21, syndrome de Klinefelter, syndrome de Turner...

IV- Diabète gestationnel

II. CLASSIFICATION DU DIABETE SUCRE

L'OMS classe le diabète sucré en 4 types : le diabète de type 1, le diabète de type 2, les diabètes spécifiques et le diabète gestationnel. Cette classification remplace les anciennes appellations (diabète insulino-dépendant, juvénile...).

A.LE DIABETE DE TYPE 1 (DT1)

1. Epidémiologie du DT1:

Le DT1 représente 10% de l'ensemble des diabètes. Sa prévalence est d'environ 1,2 cas pour 1000 habitants dans la plupart des pays d'Europe et aux USA.

Son incidence (nouveaux cas répertoriés annuellement dans une zone géographique définie), varie fortement selon les pays. Elle est la plus élevée en Europe du nord en particulier dans les pays scandinaves (50 cas/100 000 habitants/an).

La Tunisie fait partie des pays à incidence faible (gradient nord-sud). Elle est estimée à 7 cas/100 000 habitants/an.

Une incidence particulièrement élevée est constatée dans les îles méditerranéennes (Sardaigne, Chypre, Malte...)

Le diabète type 1 est auto-immun dans 90% des cas et idiopathique dans 10% des cas(Caractérisé par l'absence d'autoanticorps).

2. Etiopathogénie du DT1:

Le DT1 est dû à une destruction auto-immune des cellules β pancréatiques, aboutissant à un déficit de l'insulino-sécrétion.

La réaction auto-immune survient sur un terrain génétique de susceptibilité, à la faveur de facteurs déclenchants.

a) Susceptibilité génétique

Pour un enfant né d'un parent atteint de DT1, l'incidence cumulée de développer la maladie est de5 à 7% avant l'âge de 20 ans, soit une augmentation du risque de DT1 d'un facteur 10 par rapport à la population générale. La concordance pour les jumeaux est d'environ 50%.

Il s'agit d'une susceptibilité pluri-génique. De nombreux gènes sont en cause :

Le principal gène de prédispositionse situe sur le chromosome 6. Il est représenté par le Complexe Majeur d'Histocompatibilité, en liaison avec les antigènes de classe 2 : HLA DR3, DR4, DQ B1 0201 et DQ B1 0302

Le risque relatif est de 3 à 5, lorsqu'il existe un antigène HLA DR3 ou DR4. Il atteint 30 à 50 lorsque les deux antigènes DR3 et DR4 sont associés.

Inversement, les individus HLA DR2, DR15, DQ W1-2, DQB1*0602 semblent protégés.

D'autres gènes candidats ont été caractérisés :

- le VNTR (Variable Number Tandem Repeat) du gène de l'insuline, pouvant être responsable d'une sous expression de l'insuline au niveau des cellules épithéliales thymiques,
- le gène codant la molécule CTLA-4, récepteur lié au phénomène d'immunomodulation des lymphocytes T,
- le TNP N22, codant pour une tyrosine phosphatase modulant l'activation du récepteur T. Le lien avec cette mutation est retrouvé pour beaucoup de maladies auto-immunes.

Leur étude permettra probablement à l'avenir d'améliorer le dépistage et de mieux comprendre la physiopathologie de la maladie.

b) Facteurs environnementaux

Infections: cette hypothèse repose sur des études épidémiologiques (augmentation de l'incidence du DT1 en automne et en hiver, haute prévalence du DT1 en cas de rubéole congénitale, oreillons, infections à coxsackie B4, cytomégalovirus, virus Epstein-Barr) et par l'existence de modèles de diabètes induits par les virus chez l'animal.

Facteurs nutritionnels: implication possible des protéines du lait de vache, introduites précocement dans l'alimentation avant l'âge de 3 mois ou des nitrosamines, présentes dans le mouton fumé consommé rituellement en Islande.

Agents chimiques toxiques pour la cellule β : streptozotocine, alloxane, pentamidine...

Le stress: pourrait intervenir en diminuant la vigilance des lymphocytes T suppresseurs.

L'obésité juvénile a récemment été proposée pour expliquer la hausse de l'incidence constatée lors des dernières décennies. Du fait de la destruction autoimmune du pancréas, l'augmentation de la demande en insuline liée à l'obésité déclenche la maladie plus précocement.

c) Déroulement de la réaction immunitaire :

La survenue de la réaction auto-immune serait due à une faillite des mécanismes physiologiques de tolérance immunitaire et à l'activation de lymphocytes T auto réactifs.

La destruction de la cellule β est due:

- d'une part, à une infiltration des îlots par des lymphocytes T helper CD4 et des lymphocytes T cytotoxiques CD8. Ce processus se déroule à bas bruit pendant de nombreuses années, avant l'apparition du diabète.
- d'autre part, à la production, au cours de cette réaction, d'auto-anticorps dirigés contre certains antigènes pancréatiques.

Ces anticorps sont essentiellement :

- Les anticorps anti-îlots (islet cell antibody: ICA).
- Les anticorps anti-GAD-65 (glutamate acide décarboxylase). Ces anticorps sont dirigés contre une enzyme ubiquitaire qui est exprimée au niveau pancréatique. Les anticorps anti-GAD s'observent à tout âge et peuvent persister pendant toute la durée de l'évolution.
- Les auto-anticorps anti-insuline, retrouvés surtout chez l'enfant.
- L'anticorps anti-IA2, dirigé contre une phosphatase membranaire des cellules β.

• L'anticorps Zinc transporter 8 : nouveau marquer d'autoimmunité mais pratiqué dans certains laboratoires.

Ces auto-anticorps peuvent être mis en évidence plusieurs mois avant le début du diabète. Ils n'ont pas tous un rôle pathogène mais sont des marqueurs fiables du déroulement du processus auto-immun.

La destruction des cellules βse traduit histologiquement par l'insulite : réaction inflammatoire caractérisée par une infiltration lymphoplasmocytaire du pancréas.

Histoire naturelle du DT1:

L'histoire naturelle du DT1 peut schématiquement être décomposée en 3 étapes:

Un patient génétiquement prédisposé, va être soumis à un facteur d'environnement qui va activer le système immunitaire. A ce stade, le pancréas est intact et la tolérance glucidique est normale.

La seconde phase est cliniquement silencieuse. La masse insulaire va être progressivement détruite mais est suffisante pour assurer la normoglycémie dans des conditions de vie normale. Cette phase dure 5 à 10 ans. Les anticorps peuvent être détectés à ce stade.

On estime que le diabète clinique apparaît lorsque plus de 80 % de la masse insulaire est détruite. Il s'installe rapidement avec une symptomatologie bruyante.

3. Aspects cliniques du DT1:

a) Le DT1 aigu cétosique :

Il est l'apanage des jeunes. Les signes cardinaux s'installent en quelques jours, chez un sujet de poids normal et évoluent en quelques semaines vers la cétose.

En cas de positivité des anticorps anti pancréas, on parle de **DT1 auto-immun**. Si les anticorps sont négatifs, on parle de DT1 idiopathique.

b) Le DT1 lent ou LADA (Latent Autoimmune Diabetes in Adult):

Le début est tardif (> 30 ans) et progressif, voisin de celui du type 2, mais les anticorps sont positifs (surtout anti-GAD) et le recours à l'insulinothérapie va s'avérer nécessaire en 2 à 10 ans. Le LADA représenterait jusqu'à 10 % des diabètes apparemment de type 2.

Le DT1peut être associé à d'autres maladies auto-immunes (thyréopathies, insuffisance surrénalienne et maladie cœliaque, plus rarement, vitiligo, maladie de Biermer...). Ces associations se font préférentiellement avec le LADA.

B. LE DIABETE DE TYPE 2 (DT2)

1. Epidémiologie du DT2:

Le diabète sucré est la maladie métabolique la plus fréquente. Selon l'IDF, on estime qu'il existe actuellement 420 millions de diabétiques dans le monde et ce chiffre atteindra 500 millions en 2025.

Plusieurs études épidémiologiques ont été réalisées en Tunisie. La prévalence du diabète dans la population adulte a connu une croissance exponentielle :

En milieu urbain, elle est passée de 3,8% en 1976 à 9,2% en 2005. (9,4% selon IDF 2011)

En milieu rural, elle est plus basse : 1,3% en 1980 ; 2,4% en 1990 ; 6% en 1996.

Dans le monde, certains pays ont dépassé la prévalence de 20% : pays du Golfe, indiens Pima de l'Arizona, îles Nauru du Pacifique.

2. Etiopathogénie du DT2:

Le diabète de type 2 (DT2) est caractérisé par une hyperglycémie chronique, due à une insuffisance de la capacité du pancréas endocrine à faire face à un état d'insulinorésistance, le plus souvent en rapport avec un surpoids.

Plusieurs facteurs interviennent dans l'étiopathogénie du DT2 :

a) La prédisposition héréditaire

Le DT2 est une maladie polygénique, à expression variable.Il n'y a pas de liaison au système HLA. Le mode de transmission n'est pas connu.

La prédisposition génétique est beaucoup plus importante que dans le DT1. Lorsque l'un des parents est diabétique, le risque pour les enfants est de 30 %.Lorsque les deux parents sont diabétiques, le risque est d'environ 50 %.La concordance pour la maladie est en moyennede 25 % pour la fratrie d'un diabétique et de 90 % pour un jumeau monozygote.

Il existe un très grand nombre de gènes de prédisposition au DT2. Les études génétiques ont déjà découvert les mutations responsables des diabètes MODY et des diabètes mitochondriaux qui ont été reclassés dans les formes spécifiques de diabète.

De nombreux autres gènes de susceptibilité ont été identifiés, dont certains sont communs à l'obésité et au diabète de type 2 (gènes impliqués dans le métabolisme des glucides, la différenciation des cellules β, la signalisation de l'insuline...), mais aucun de ces gènes n'est considéré comme un gène «majeur» du DT2.

b) Facteurs environnementaux prédisposants:

L'obésité:

La majorité des cas de DT2 s'associe à une surcharge adipeuse, abdominale et préviscérale (obésité androïde), même en l'absence de surpoids évident.

L'obésité androïde est source d'insulinorésistance. Elle s'associe fréquemment aux dyslipidémies (hypertriglycéridémie, hypoHDLémie), à l'hyperglycémie et à l'hypertension artérielle pour constituer le syndrome métabolique. Le syndrome métabolique expose aux maladies cardio-vasculaires.

Les facteurs d'hygiène de vie:

L'abondance alimentaire (consommation excessive de graisses saturées et de sucres rapides) et l'activité physique réduite(sédentarité) prédisposent au DT2.

La réduction de l'excès de poids, la réduction des apports lipidiques et l'augmentation de l'activité physique permettent une réduction de 60% de la progression vers le DT2 dans les populations à risque.

L'âge:

La prévalence du DT2 augmente avec l'âge, du fait de l'augmentation de la masse grasse et de l'insulinorésistance.

3. Physiopathologie du DT2:

Elle fait intervenir 2 anomalies métaboliques : l'insulinorésistance et les anomalies de l'insulinosécrétion.

a) L'insulinorésistance:

Elle est définie comme une diminution d'efficacité de l'insuline au niveau des tissus périphériques pour l'utilisation du glucose.

L'insulinorésistanceprécède le diabète et s'observe chez les obèses. Elle se traduit au niveau des tissus cibles de l'insuline:

- au niveau des muscles et du tissu adipeux par une diminution du nombre de récepteurs membranaires à l'insuline.
- au niveau du foie par une augmentation de la production de glucose à jeun, normalement inhibée par l'insuline.

L'insulinorésistance n'explique pas seule la survenue du DT2. Elle précède le diabète et aggrave les troubles de l'insulinosécrétion.

Un certain degré d'insulinorésistance peut être retrouvé dans certaines situations physiologiques ou pathologiques en dehors du diabète (puberté, grossesse, hypercorticisme...).

L'insulinorésistance est responsable d'un hyperinsulinisme compensateur.

L'hyperglycémie chronique (glucotoxicité) et l'excès d'acides gras libres (lipotoxicité) aggravent l'insulinorésistance.

b) Les anomalies de l'insulino-sécrétion :

Elles sont quantitatives et qualitatives et s'accentuent au cours de l'évolution de la maladie :

Anomalies quantitatives:

Élévation des concentrations plasmatiques d'insuline, mais ces concentrations sont insuffisamment élevées par rapport à la glycémie (le rapport insulinémie/glycémie est bas, comparé à celui d'un sujet non diabétique). L'insulino-sécrétion est insuffisante pour compenser l'insulinorésistance.

Anomalies qualitatives de la cinétique de sécrétion de l'insuline en réponse à l'hyperglycémie:

- * Disparition du pic précoce de sécrétion en réponse à un stimulus glucosé.
- * Phase tardive conservée mais émoussée.
- * Abolition de la pulsatilité sécrétoire de l'insuline.

L'hyperglycémie s'installe lorsque les capacités sécrétoires des cellules béta sont dépassées.

Les anomalies de l'insulino-sécrétion sont aggravées par l'hyperglycémie chronique (glucotoxicité) et par l'excès d'AG libres (lipotoxicité). La glucotoxicité précipite la mort précoce des cellules β (apoptose) entrainant un déclin progressif et inéluctable de la cellule béta qui s'étale sur plusieurs décennies.

c) Histoire naturelle du diabète de type 2 :

La pathogénie du DT2 repose sur la prédisposition génétique. L'expression des gènes de susceptibilité, dépend de facteurs d'environnement, au premier rang desquels figurent l'obésité, la consommation excessive de graisses saturées et de sucres rapides, et la sédentarité.

Le DT2 est uneaffectionévolutive caractérisée une diminution de la sensibilité des cellules cibles à l'action de l'insuline (insulinorésistance) et/ou par une production insuffisante d'insuline.

L'insulinorésistance des tissus périphériques, anomalie métabolique fondamentale, précède le DT2. Elle est responsable pendant 10 ou 20 ans d'une hypersécrétion insulinique

(hyperinsulinisme avec maintien d'une tolérance normale au glucose), qui précède l'insulinodéficience, responsable d'une baisse de la tolérance au glucose et enfin d'un authentique diabète sucré.

4. Aspects cliniques du DT2:

Il débute classiquement après 40 ans. Néanmoins, il devient de plus en plus précoce, pouvant intéresser les adolescents atteints d'obésité juvénile.

La forte héritabilitéde la maladie inclut l'obésité, l'HTA, le diabète et les dyslipidémies.

Le DT2 est souvent précédé d'un syndrome métabolique évoluant depuis plusieurs années.

L'installation du diabète est progressive et insidieuse, passant par le stade de prédiabète et évoluant à bas bruit.Le DT2 peut se révéler par des complications microangiopathiques et neuropathiques, en l'absence de dépistage.

Les complications macro-vasculaires peuvent être déjà présentes au moment du diagnostic, car elles sont secondaires au syndrome métabolique. La recherche systématique des complications dégénératives est donc nécessaire dès la découverted'unDT2.

L'évolution naturelle du diabète de type 2 se fait vers l'insulinorequérance à plus ou moins long terme.

Le tableau III dresse une comparaison entre les aspects cliniques du DT1 et du DT2.

Sujet 20 : Diabète sucré

N° Validation: 0820201933

Tableau III : Caractéristiques des diabètes de type 1 et de type 2

	Type 1	Type 2
Antécédents familiaux du même type	rares	Fréquents
Age de survenue	plutôt avant 35 ans	plutôt après 40 ans
Début	Brutal	Lent et insidieux
Facteur déclenchant	souvent absent	souvent présent
Symptomatologie	bruyante	pauvre ou absente
Poids	normal ou maigre	obésité ou surcharge adipeuse abdominale
Hyperglycémie au diagnostic	majeure> 3 g/l	souvent< 2 g/l
Cétose	souvent présente	le plus souvent absente
Complications dégénératives au moment du diagnostic	absentes	présentes dans 50 % des cas
Cause principale de mortalité	insuffisance rénale	maladie cardiovasculaire

C. LES DIABETES SPECIFIQUES

1. Diabètes monogéniques :

Ils représentent 2 à 5% des diabètes sucrés.

Il s'agit d'un diabète survenant avant l'âge de 25 ans, parfois même dans l'enfance, d'hérédité autosomique dominante. Le tableau clinique est très variable allant de formes asymptomatiques à des formes aigues cétosiques.

Les anticorps anti pancréas sont négatifs. Le diagnostic repose sur la biologie moléculaire.

a) Le diabète de type MODY (Maturity Onset Diabetes of Young):

On distingue plusieurs types de diabètes MODY:

Le diabète MODY 2 est dû à des mutations du gène de la glucokinase, situé sur le bras court du chromosome 7. La glucokinase est l'enzyme clé de la glycolyse. Elle régule la libération d'insuline en réponse au glucose (seuil glycémique qui déclenche la sécrétion d'insuline). Le diabète MODY 2 réalise une hyperglycémie bénigne familiale. L'hyperglycémie est modérée et l'insulino-requérance rare et tardive.

Les diabètes MODY 1, 3 et 4 sont dus à des mutations de gènes codant pour des facteurs de transcription nucléaire (HNF), retrouvés au niveau du foie et du pancréas. Ils s'accompagnent

d'une carence insulinosécrétoire. L'évolution vers l'insulinorequérance est plus fréquente et plus précoce qu'au cours du MODY 2.

b) Diabète mitochondrial:

Les maladies mitochondriales sont des maladies pluri-viscérales en rapport avec des déficits enzymatiques de la chaîne respiratoire mitochondriale.

Les diabètes mitochondriaux sont des diabètes de transmission purement maternelle, liés à des délétions ou des mutations de l'ADN mitochondrial. Selon les études, ils représentent 1 à 10% de l'ensemble des diabètes.

Ils peuvent survenir à tout âge. Le diabète est associé à des anomalies ou des pertes de fonctions de certains organes : comitialité, myopathie, surdité...

Le syndrome MIDD (MaternallyInheritedDiabetes and Deafness) est le plus fréquent. Il associe une surdité de perception bilatérale, une rétinite pigmentaire atypique, parfois des signes neurologiques variés et des atteintes tissulaires diverses, musculaires, cardiaques...

Le trouble de la glycorégulation peut aller de la baisse de la tolérance au glucose au diabète d'emblée insulino-requérant. Il n'y a pas d'insulinorésistance.

c) Le syndrome de Wolfram ou DIDMOAD

Il s'agit d'un diabète monogénique en rapport avec une mutation du gène de la wolframine. Le diabète est cétosique et associé à un diabète insipide, une atrophie optique et une surdité.

2. Diabète lipoatrophique, lié à une insulinorésistance majeure :

Il est caractérisé par une anomalie génétiquement déterminée de l'action de l'insuline. Les patients ont une atrophie généralisée du tissu adipeux, avec une hypertrophie musculaire apparente. Il existe une hypertriglycéridémie et une stéatose hépatique.

A l'examen clinique, on peut retrouver un acanthosis nigricans (pigmentation brunâtre avec aspect épaissi et velouté de la peau au niveau du cou, des aisselles, de l'ombilic),témoin de l'insulino-résistance.

3. Le diabète pancréatique :

* Chirurgie pancréatique

* Pancréatite aigue et chronique : d'origine éthylique ou primitive pouvant être calcifiante. Elle associe au déficit endocrine, une insuffisance pancréatique exocrine avec diarrhée chronique, stéatorrhée et malabsorption.

Des calcifications pancréatiques peuvent être mises en évidence sur le cliché d'abdomen sans préparation ou le scanner abdominal.

Chez ces malades, l'insulinothérapie comporte un risque majeur d'hypoglycémies sévères en raison d'une carence associée en glucagon.

* Mucoviscidose

- *Hémochromatose:Le diabète est secondaire à la surcharge pancréatique en fer. Le dosage du fer sérique et du coefficient de saturation de la transferrinepermet le diagnostic, confirmé par la mise en évidence de la mutation HFE. Le seul traitement efficace de la surcharge ferrique consiste en des saignées hebdomadaires. Le diabète est irréversible.
- * Cancer du pancréas: Il sera évoqué chez un sujet de plus de 50 ans, sans antécédent familial de diabète, présentant un amaigrissement, une fièvre, un ictère, une vitesse de sédimentation accélérée... La confirmation repose sur les examens d'imagerie (échographie et scanner du pancréas) etles marqueurs biologiques à la recherche d'un cancer du pancréas.

4. Les affections endocriniennes :

Phéochromocytome, syndrome de Cushing, acromégalie, syndrome de Conn, plus rarement, tumeurs endocrines du pancréas: glucagonome (évoqué devant un érythème cutané nécrotique), vipome, somatostatinome (associés à une diarrhée). Seuls les signes cliniques évocateurs de ces différentes pathologies doivent amener à pratiquer les dosages hormonaux nécessaires au diagnostic.

5. Les diabètes iatrogènes :

hyperglycémie provoquée par des médicaments ayant différents modes d'action: destruction des cellules β, diminution de la sécrétion d'insuline, insulinorésistance...

Ces médicaments incluent : les glucocorticoïdes (sous toutes leurs formes), les oestroprogestatifs, les diurétiques hypokaliémiants (thiazidiques, diurétiques de l'anse), les β bloquants non cardio-sélectifs, le diazoxide, la phénytoïne, la pentamidine...

DIABETE GESTATIONNEL

1. Définition :

Trouble de la tolérance glucidique, de sévérité variable, débutant ou diagnostiqué pour la première fois pendant la grossesse, quel qu'en soit le traitement et l'évolution dans le postpartum.

La prévalence varie de 1 à 14 % des grossesses selon les populations et les critères retenus.

L'hyperglycémie se développe le plus souvent au 2^{ème} trimestre de la grossesse. Le diagnostic est généralement fait entre la 24 ème et la 28 emaine d'aménorrhée.

Si le diagnostic est posé avant la 17^{ème} semaine, il s'agit plus probablement d'un diabète de type 2 antérieur à la grossesse et méconnu.

Seule l'évolution post-gravidique peut dire si le diabète est transitoire(retour à la normale de la tolérance au glucose, à distance de l'accouchement) ou persistant. La récidive lors des grossesses ultérieures est la règle.

2. Complications du diabète gestationnel :

Immédiates:

L'organogenèse étant déjà effectuée, il n'existe pas de risque demalformation fœtale.Le risque est principalement lié à l'hyperinsulinisme fœtal etaura pour principales conséquences, la macrosomie et les complications néo-natales (voir chapitre traitement). Des complications obstétricales peuvent se voir : toxémie gravidique, hydramnios, accouchement prématuré, mort fœtale...

A long terme:

Le risque ultérieur de DT2 chez la mère est de 50 %.

Pour l'enfant, le risque est une obésité pendant l'enfance et un diabète de type 2 à début précoce.

3. Les facteurs de risque :

- 1'âge maternel (≥ 30 ans ou ≥25 ans pour les femmes qui ont une hérédité de premier degré de diabète),
- le surpoids maternel avant la grossesse (BMI > 25 kg/m²) ou la prise de poids excessive pendant la grossesse,
- les antécédents familiaux marqués de diabète,
- la parité élevée.
- la notion de perturbations glycémiques antérieures à la grossesse,
- les antécédents de diabète gestationnel, de macrosomie, d'accouchement prématuré, de mort fœtale in utéro, d'hydramnios, de toxémie gravidique, d'hypertension artérielle, d'infections urinaires répétées ...

Cependant, 30 à 50 % des femmes atteintes d'un diabète gestationnel n'ont pas de facteurs de risque connu.

4. Diagnostic du diabète gestationnel :

L'ADA préconisede dépister le diabète gestationnel, en utilisant les critères diagnostiques classiques (glycémie à jeun, glycémie au hasard), dès la première visite prénatale, au premier trimestre.

- Si les valeurs observées atteignent ou dépassent les valeurs seuils, il s'agit d'un DT2 méconnu.

- Si les valeurs seuils ne sont pas atteintes, mais que la glycémie à jeun est ≥ 5,1 mmol/l (0,92 g/l), la patiente est considérée comme ayant un diabète gestationnel et sera prise en charge de façon adaptée.

- Si les valeurs seuils ne sont pas atteintes et que la glycémie à jeun est < 5,1 mmol/l (0,92 g/l), onproposera à la patiente de réaliser le dépistage du diabète gestationnel entre 24 et 28 semaines d'aménorrhée.

Ce test de dépistage est l'HGPO à 75 g de glucose sur 2 heures. Le diabète gestationnel est retenu lorsqu'une seule de ces valeurs-seuil est franchie.

• Glycémie à jeun : 0,92 g/l (5,1 mmol/l)

• Glycémie à 1 heure : 1,80 g/l (10,0 mmol/l).

• Glycémie à 2 heures : 1,53 g/l (8,5 mmol/l).

Le risque élevé d'un DT2 ultérieur chez les femmes ayant fait un diabète gestationnel justifie de réaliser le dépistage du diabète entre 6 et 12 semaines du post-partum, puis tous les 1 à 3 ans.

COMPLICATIONS METABOLIQUES DU DIABETE SUCRE

Les complications métaboliques du diabète sont des urgences vitales. Elles doivent toujours être traitées en urgence et surtout prévenues.

Quatre types de complications métaboliques menacent le diabétique :

- L'acidocétose diabétique et le coma hyperosmolaire qui résultent d'une carence insulinique de degré variable, responsables d'un déséquilibre profond de l'équilibre hydro-électrolytique et acido-basique.
- L'hypoglycémie survient exclusivement chez le diabétique traité par l'insuline ou les sulfamides hypoglycémiants. C'est une urgence fréquente et le plus souvent, rapidement réversible. Cependant, sa forme majeure, le coma hypoglycémique, est grave, avec risque de décès et de lésions neurologiques irréversibles.
- L'acidose lactique, est devenue exceptionnelle depuis le retrait du marché des biguanides de 1^{ère} génération. Elle survient en présence de tares viscérales ou de complications sévères du diabète. Elle est grave et doit être prévenue par le respect strict des contre indications des biguanides.

I. L'ACIDO-CETOSE DIABETIQUE

C'est une urgence métabolique fréquente: son incidence annuelle est estimée à 6 à 8 épisodes / 1000 diabétiques /an.

Elle complique le plus souvent le DT1, dont elle est parfois inaugurale (20 à 30 % des acidocétoses). Elle complique aussi souvent le DT 2.

L'acido-cétose peut être grave: la mortalité se situe entre 4 et 10%.

Le pronostic vital dépend de l'âge, des tares associées et de la précocité de la prise en charge.

La prévention vise à éviter sa survenue et à minimiser ses risques.

A. PHYSIOPATHOLOGIE:

L'acidocétose est habituellement le témoin d'une carence insulinique profonde.

La carence en insuline détermine : l'hyperglycémie, la cétose et l'acidose métabolique.

1. L'hyperglycémie:

Elle est liée à trois facteurs, en relation avec la carence insulinique:

- La diminution de la captation et de l'oxydation du glucose par les tissus insulinosensibles (muscle, tissu adipeux).La baisse de l'utilisation du glucose est favorisée par l'excès d'acides gras libres, oxydés en priorité.
- La mise en jeu de la néoglucogenèse hépatique, à partir des acides aminés, du lactate et du glycérol, du fait de la mauvaise utilisation cellulaire du glucose.
- La glycogénolyse hépatique.

carence hypersécrétion Α en insuline, s'associe une d'hormones hyperglycémiantes: glucagon, adrénaline, cortisol...

L'hyperglycémie induit :

- une hyperosmolarité extracellulaire (plasmatique) responsable d'un appel d'eau du secteur intracellulaire, d'où déshydratationintracellulaire.
- unediurèse osmotique avec perte rénale d'eau et d'électrolytes, lorsque l'hyperglycémie dépasse le seuil rénal.

2. La cétose :

Elle est liée à la carence insulinique et favorisée par l'action lipolytique des hormones de la contre-régulation.

L'apparition d'une cétonémie et d'une cétonurie résulte de l'augmentation de la lipolyse avec libération d'acides gras (AG). Ces AG en excès saturent le cycle de Krebs et empruntent la voie de la cétogénèse hépatique induisant une accumulation plasmatiquede corps cétoniques.

Les corps cétoniques en excès sont *éliminés par voie rénale* (cétonurie) et par voie *respiratoire* (acétone), donnant à l'haleine une odeur caractéristique.

3. L'acidose:

Les corps cétoniques étant des acides forts (acide bêta-hydroxybutyrique, acide acéto-acétique surtout, acétone dans une moindre mesure), ils vont déterminer une acidose métabolique.

La déshydratation

Les pertes liquidiennes sont importantes : diurèse osmotique et vomissements et aggravées par l'acidose et par la polypnée.

La déshydratation devient globale. Il en résulte une hypovolémie et souvent une insuffisance rénale fonctionnelle qui aggrave l'hyperglycémie et les désordres hydro-électrolytiques.

4. L'hypokaliémie

Le déficit potassique est constant dans la cétose diabétique. Il est dû à plusieurs facteurs : pertes digestives, hyperaldostéronisme secondaire, acidose.

La carence en insuline et l'acidose empêchent l'ion K⁺ de pénétrer dans la cellule. La sortie du potassium des cellules vers le secteur vasculaire masque l'hypokaliémie et explique des valeurs initiales de potassium normales ou même élevées. L'hypokaliémie va se démasquer au cours du traitement lors de l'administration de l'insuline.

B. ASPECTS CLINIQUES DE L'ACIDO CETOSE

1. Facteurs déclenchants :

Il faut les rechercher devant toute décompensation cétosique, surtout en cas de déficit relatif en insuline (DT2 ou DT1 traité)

- a) Erreurs de traitement :
- arrêt de l'insulinothérapie
- erreurs répétées de dose d'insuline (réduction de la dose), ou de type d'insuline
- injections répétées dans des zones de lipodystrophies où l'insuline diffuse mal.

b) Infections:

pulmonaires, urinaires ou cutanées sévères, bactériennes (à staphylocoque, streptocoque, BG-) ou virales (grippe).

c) Accidents cardio-vasculaires:

Accident vasculaire cérébral (AVC) ouinfarctus du myocarde (IDM). L'IDM peut se révéler par une acido-cétose chez le diabétique de type 2, même en l'absence de douleurs précordiales. Il doit être recherché systématiquement par : ECG, enzymes cardiaques.

• Un stress physique (chirurgie, traumatisme, douleur, accouchement...) ou psychique.

- Une pancréatite aigue.
- Une hypokaliémie.
- Une prise médicamenteuse : corticoïdes ++

2. Tableau clinique:

a) Stade de cétose

L'installation de la décompensation est rapidement progressive. Elle va évoluer sur plusieurs heures. Elle débute par :

Les signes cardinaux : asthénie, polyurie, polydispsie qui attirent l'attention et font demander la recherche de glucose et d'acétone (bandelettes Kétodiastix) dans les urines qui s'avère positive

Les troubles digestifs: nausées, vomissements, douleurs abdominales pouvant mimer un abdomen chirurgical.

La polyurie et les pertes digestives induisent une déshydratation extra-cellulaire : hypotension artérielle, tachycardie, pli cutané, sécheresse des muqueuses et hypotonie des globes oculaires.

b) Stade d'acidose :

Ce stade est caractérisé par l'installation de signes respiratoires *sine materia* : d'abord une polypnéerapide (> 20 cycles/mn) et superficielle, puis au fur et à mesure de l'aggravation de l'acidose, une dyspnée de Kussmaul: respiration profonde, ample, bruyante en « soufflet de forge », pénible et suffocante. La dyspnée s'accompagne d'une odeur « acétonique » de l'haleine.

A ce stade, on assiste à une baisse significative du pH sanguin au dessous de 7,2 et des bicarbonates sanguins au dessous de 10 mmol/l.

c) Stade de coma

C'est un stade tardif. Le coma s'installe progressivement après un phase d'obnubilation et de somnolence.

Il s'agit d'un coma calme, flasque, de profondeur variable, avec abolition des réflexes ostéotendineux, sans signe de localisation.

A l'examen : le patient est déshydraté et dyspnéique. La déshydratation est globale, à la fois intracellulaire (soif intense, langue sèche « rôtie », globes oculaires hypotoniques, parfois fièvre) et extracellulaire (pli cutané, peau sèche et hypotension artérielle).

d) Stade de collapsus

C'est le stade ultime, attesté par une un pouls accéléré filant, une hypotension et une anurie.

Sujet 20 : Diabète sucré

N° Validation: 0820201933

3. Examens complémentaires:

a) Confirmation du diagnostic :

La décompensation cétosique est confirmée par la présence de corps cétoniques dans les urines par les bandelettes Kétodiastix®, toujours associés à une forte glycosurie.

Les prélèvements sanguins doivent être faits en urgence et on n'en attendra pas le résultat pour instituer le traitement. Ils vont objectiver:

- L'hyperglycémie, généralement modérée.
- Une augmentation parfois majeure des triglycérides.
- Les troubles ioniques:hyponatrémie et kaliémie faussement normale ou élevée.

Dans l'acido-cétose, il existe une pseudo-hyponatrémie du fait de l'hyperglycémie et de l'hypertriglycéridémie.

La formule de Katz permet d'estimer la natrémie réelle.

• L'acidoseobjectivée par un pH bas < 7,2 et des bicarbonates < 10mmol/l.

Le trou anionique plasmatique doit être déterminé devant toute acidose métabolique. Il représente les anions non dosés du plasma.

Il est calculé selon la formule:

Trou anionique :
$$(Na^+ + K^+) - (Cl^- + HCO_3^-)$$
.

Normalement, il est d'environ12mmol/l.

Dans l'acido-cétose, le trou anionique est augmenté(> 16 mmol/l)du fait de l'augmentation des corps cétoniques.

- Une hémoconcentration avec élévation de l'hématocrite et de la protidémie.
- Une insuffisance rénale fonctionnelle avec augmentation de l'urée et de la créatinine.
- Une élévation de certaines enzymes est possible (amylases, transaminases...)
 - e) Recherche d'un facteur déclenchant:

Certains examens seront demandés en fonction de l'orientation clinique:

- <u>En cas de fièvre</u>, rechercher une infection : NFS, prélèvements bactériologiques (ECBU et hémocultures), radiographie du thorax à la recherche d'un fover pulmonaire...
- ECG et enzymes cardiaques à la <u>recherche d'un IDM silencieux</u>. L'ECG peut aussi montrer des signes d'hyperkaliémie (ondes T amples, symétriques).
- <u>Si les douleurs abdominales sont au premier plan</u> : amylasémie à la recherche d'une pancréatite aigue. Mais une hyperamylasémie modérée peut être observée dans l'acido-cétose.

C. CONDUITE THERAPEUTIQUE:

Elle doit se faire en milieu hospitalier car elle nécessite une surveillance continue et une adaptation du traitement en fonction de l'évolution.

Les objectifs du traitement sont :

- En priorité : restaurer la volémie et corriger les troubles hydroélectrolytiques et acidobasiques.
- Corriger la glycémie : par l'insulinothérapie.
- Traiter le facteur déclenchant.

1. Mise en condition du patient :

Le traitement de l'acido-cétose impose la mise en œuvre d'un monitorage :

- mise en place d'une ou de 2 bonnes voies d'abord veineuses pour procéder au remplissage et aux prélèvements sanguins répétés.
- surveillance cardiaque par scope, si le malade a des antécédents cardio-vasculaires.
- mise en place d'une sonde gastrique en cas de vomissements importants.
- mise en place d'une sonde vésicale. Elle facilite la surveillance horaire de la glycosurie et de la cétonurie sur des urines fraîches. Elle sera réalisée avec une asepsie rigoureuse. Elle n'est pas systématique si le malade est bien conscient et coopérant.

2. Réhydratation et correction des troubles électrolytiques :

La réhydratation est une phase capitale du traitement. Elle permet de :

- restaurer la volémie
- améliorer la perfusion tissulaire, notamment glomérulaire
- réduire l'hyperglycémie.

On considère que le déficit hydrique au cours des premières 24 heures est d'environ10% du poids corporel(soit 6 à 8 litres en 24 heures).

La moitié de ce déficit est à restaurer au cours des 8 premières heures, le reste pendant les 16 heures qui suivent.

Les solutés de perfusion :

- Les solutés macromoléculaires sont indiqués lorsqu'il existe un choc hypovolémique.
- La réhydratation repose principalement sur le sérum salé à 9‰. On préconise de passer 1 à
 2 litres de sérum salé dans les 2 premières heures, 500 ml par heure pendant les 4 heures
 suivantes et 250 ml par heure dans les 8 heures qui suivent.

Eviter les solutions hypotoniques et le débit trop rapide en raison du risque d'œdème cérébral.

Le débit de perfusion est modulé selon la tolérance hémodynamique.

• La perfusion de bicarbonates est remise en question dans les acidoses métaboliques car elle risque d'aggraver l'hypokaliémie.

En pratique, elle reste réservée aux acidoses sévères (si pH < 7,1) et se fera en début de perfusion, parallèlement au soluté de remplissage : 250 ml en 1 à 2 heures.

L'apport de potassium :

Il doit commencer dès le début du traitement si la kaliémie est initialement normale ou basse ou dès la normalisation de la kaliémie si celle-ci est initialement élevée :1 à 2 g de KCl par heure.

Il sera poursuivi tout au long de la réanimation car la correction de l'acidose et l'administration d'insuline vont favoriser la pénétration intracellulaire du potassium.La persistance d'une diurèse osmotique ou d'une diarrhée peuvent entretenir ou aggraver le déficit potassique.

La persistance d'une hypokaliémie est un facteur de persistance ou de rechute de la cétose.

3. L'insulinothérapie :

Elle sera instituée après le début de la réhydratation.

Seule une insuline d'action rapide doit être utilisée. Un bolus initial de 10 à 20 Unités sera administré dès l'arrivée du patient.

L'administration se fait idéalement, par voie intraveineuse continue à la seringue électrique (solution de 1U/ml, obtenue en ajoutant 1 ml de la solution d'Actrapid,dont la concentration est de 100U/ml, à 99 ml de sérum physiologique), à raison de 3 à 6 unités par heure.

Si l'on ne dispose pas de seringue électrique : injections horaires en intraveineux direct, de 5 à 10 unités d'insuline rapide par heure.

La voie intramusculaire peut être utilisée en l'absence de déshydratation.

L'analogue ultra rapide peut être utilisé en sous cutané, toutes les 2 heures.

4. Autres mesures thérapeutiques :

- Instituer une **antibiothérapie**, après les prélèvements bactériologiques si la décompensation est due à une infection.
- Instituer une **héparinothérapie à doses préventives**, chez les patients à risque thromboembolique.

5. Surveillance

La surveillance horaire de la glycémie permettra de moduler la vitesse de perfusion ou les doses horaires administrées.

Elle doit être rigoureuse, rapprochée et consignée sur une pancarte. Elle repose sur :

- les paramètres cliniques : constantes vitales (pouls, TA, fréquence respiratoire), état de conscience et diurèse horaire.
- les paramètres biologiques : la glycosurie et la cétonurie horaires et les glycémies capillaires.

Certains examens seront répétés à la 4^{ème} heure et toutes les 4 heures tant que la cétose persiste: glycémie au laboratoire, ionogramme sanguin, ECG.

6. Evolution:

Dans les cas favorables, l'amélioration des paramètres de surveillance : état de conscience, dyspnée d'acidose, disparition de la cétonurie, atteste d'une réanimation adéquate.

<u>Réhydratation et électrolytes</u>: dès que la glycémie s'abaisse en dessous de 13 mmol/l, le sérum salé est remplacé par du sérum glucosé à 5%, enrichi en NaCl.

<u>Insulinothérapie</u>: dès la disparition de la cétonurie, l'insuline par voie intraveineuse sera relayée par des injections sous cutanées d'insuline toutes les 4 heures, la dose étant adaptée en fonction de la glycémie capillaire.

La persistance ou la réapparition d'une cétonurie doit faire rechercher :

- Un facteur déclenchant non reconnu : hyperthyroïdie, infarctus du myocarde, infection résistante, traitement hyperglycémiant (corticoïde à effet retard).
- Une hypokaliémie non corrigée.
- Une cause iatrogène: infection sur sonde, infection sur cathéter veineux périphérique...

La détérioration secondaire de la conscience doit faire craindre :

- Avant tout une hypoglycémie, chez un patient qui n'a pas repris son alimentation.
- Une complication redoutable : l'œdème cérébral, que l'on attribue à une réhydratation accélérée.

D. PREVENTION DE L'ACIDO-CETOSE

Elle repose sur **l'administration précoce de l'insuline** chez tout diabétique ayant un syndrome d'insulinopénie ou d'insulino-requérance avant la survenue de la cétose.

Une fois l'insuline administrée, il faut veiller à **éduquer le diabétique** à s'injecter correctement l'insuline en veillant à :

- Bien connaître les différents types d'insuline.
- Procéder à une bonne technique d'injection en sous cutané, en respectant la dose prescrite.
- Bien conserver les flacons d'insuline à 4°C.
- Assurer la rotation des sites d'injections (abdomen, bras et cuisses).

Le diabétique doit assurer **une auto-surveillance** avec évaluation pluriquotidienne des glycémies capillaires et une adaptation des doses. En cas

de réapparition de signes cardinaux avec une glycémie capillaire élevée, il doit réaliser une recherche systématique de cétonurie.

La conduite à tenir à domicile, devant une cétonurie avec glycosurie :

- Injection supplémentaire d'insuline rapide par voie sous-cutanée (5 à 10 U), avec un apport hydrique et glucidique suffisant.
- Contrôle de la glycémie capillaire et de la cétonurie après 2-3 heures :

Si l'hyperglycémie et la cétonurie persistent : refaire une injection d'insuline rapide (5 à 10 U). Au terme de 2 ou 3 injections, si la cétonurie persiste et/ou encas de vomissements interdisant l'alimentation, le patient devra immédiatement consulter.

IV. L'HYPEROSMOLARITE DU DIABETIQUE OU DECOMPENSATION HYPERGLYCEMIQUE NON CETOSIQUE

Le coma hyperosmolaire représente 5 à 10% des comas du diabétique.

Il survient électivement chez le sujet âgé, porteur d'un DT2.

Sa fréquence reste sous-estimée. C'est un coma grave : la mortalité est entre 40 et 70% des cas.

A. PHYSIOPATHOLOGIE:

La déshydratation est la conséquence de plusieurs facteurs intriqués :

La polyurie: polyurie osmotique en rapport avec une élévation brutale de la glycémie par des facteurs divers (traitement inadéquat, boissons sucrées hypertoniques, stress, infection, médicaments...). La polyurie osmotique est souvent aggravée par la prise de diurétiques.

Les pertes digestives : vomissements, diarrhée.

Les pertes sudorales : fièvre, période de canicule (été, pèlerinage).

Cette déshydratation est aggravée par un *manque d'apport hydrique* à cause d'une *perte d'autonomie*.

L'hypovolémie induit une insuffisance rénale fonctionnellequi va limiter la glycosurie et majorer ainsi l'hyperglycémie.

La polyurie persisteentraînant une déshydratation globale, jusqu'à ce que la chute de la perfusion rénale aboutisse à une oligo-anurie.

L'insuffisance rénale peut donner une acidose modérée.

L'absence de cétogénèse serait expliquée par la persistance d'une sécrétion résiduelle d'insuline, insuffisante pour permettre la pénétration intra-cellulaire du glucose, mais suffisante pour inhiber la lipolyse.

B. ASPECTS CLINIQUES:

1. Tableau clinique

a) Le terrain:

La décompensation hyperosmolaire est l'apanage des DT2 âgés, handicapés, tarés. Le handicap peut être moteur ou mental, lié à un accident cardiovasculaire (hémiplégie), une complication du diabète(amputation) ou à l'âge avancé (déclin cognitif, maladie de Parkinson, fracture...). Le rôle de l'entourage est crucial.La solitude est un facteur de mauvais pronostic.

b) Phase de début:

Le développement du coma hyperosmolaire est progressif sur plusieurs jours à plusieurs semaines.

La phase initiale est marquée par : une asthénie, un syndrome polyuro-polydipsique intense et un amaigrissement marqué, qui doivent attirer l'attention.

c) Coma constitué:

Il associe:

- *Des signes généraux* : altération de l'état général, fièvre (liée à la déshydratation ou à une infection), oligurie.
- *Des signes neurologiques* : une altération de la conscience de degré variable allant de l'obnubilation au coma.

L'examen clinique objective des signes de souffrance cérébrale : asymétrie des réflexes, signe de Babinski.

- Les troubles digestifs : nausées, vomissements, douleurs abdominales qui peuvent égarer le diagnostic.
- La déshydratation est globale, intra et extracellulaire avec tendance au collapsus.
- Il n'y a *pas d'acidose* : pas de dyspnée, ni d'odeur acétonique de l'haleine.

L'examen des urines au lit du malade objective une glycosurie massive, sans cétonurie, fortement évocatrice du diagnostic.

2. Les examens complémentaires :

Ils ne doivent pas retarder l'institution du traitement. Ils vont objectiver :

- Une hyperglycémie majeure
- Une hyperosmolarité plasmatique > 320 mOsm/l.

L'osmolarité plasmatique peut être mesurée par le delta cryoscopique ou évaluée selon la formule :

Osmolarité (mosm/l)= 2 Na + 10 + glycémie (mmol/l)

- Natrémie supérieure à 140 mmol/l (élevée du fait de l'hémoconcentration, mais le pool sodé est diminué).
- Kaliémie variable, souvent élevée mais déficit potassique intracellulaire profond.
- Acidose métabolique modérée à trou anionique élevé : (bicarbonates < 20 mmoles/l, mais pH > 7,2)
- Une hémoconcentration : hématocrite et protidémie élevées
- Une insuffisance rénale fonctionnelle : urée élevée.

3. Recherche d'un facteur déclenchant :

- prélèvements bactériologiques locaux à la recherche d'une infection, NFS, hémocultures, radiographie pulmonaire au lit...
- évaluation cardiaque à la recherche d'une nécrose myocardique ou d'un trouble du rythme : ECG, enzymes cardiaques.

C. CONDUITE THERAPEUTIQUE:

Le patient en coma hyperosmolaire doit être hospitalisé en urgence.

La mise en condition du patient est d'autant plus importante que le terrain de ces patients est plus précaire. Elle est identique à celle de l'acido-cétose.

1. Réhydratation et correction des troubles électrolytiques :

C'est la principale mesure thérapeutique. Elle permet à elle seule d'abaisser la glycémie jusqu'à 75% de sa valeur initiale.

Le déficit hydrique est estimé à 12-15 litres. La moitié sera perfusée durant les 12 premières heures, le reste au cours des 36 heures qui suivent.

• En cas de collapsus, on perfusera des macromolécules.

- Le sérum salé isotonique à 9‰ est toujours employé en première intention : 1 à 2 litres au cours des 2 premières heures.
 - Les solutés hypotoniques (réservés en milieu de réanimation) ne doivent jamais être utilisés d'emblée, avant la restauration d'une volémie efficace.
- A partir de la 3^{ème} heure, le relais peut se faire :
 - o soit par du soluté glucosé à 5% quand la glycémie < 2,50 g/l
 - o soit plus rarement, par du soluté hypotonique (sérum salé à 4,5 pour mille)en cas d'hyperosmolarité excessive persistante.

L'apport de potassium :

La déplétion potassique doit être corrigée d'emblée ou après la 1^{ère} heure de la réhydratation, parallèlement à l'insulinothérapie :KCl (2 g/h), sauf en cas d'oligo-anurie.

2. L'insulinothérapie :

Elle obéit aux mêmes recommandations que l'acido-cétose, concernant :

- le type d'insuline,
- la voie d'abord,
- et la surveillance.

Les <u>doses nécessaires</u> sont moins importantes que dans l'acido-cétose : après un bolus intraveineux de 10 Unités d'**insuline rapide** (0,1 à 0,2 Unités/kg), une perfusion continue de 0,05 Unité/kg ou l'administration intraveineuse horaire de 3 à 5 Unités/heure est instituée.

La diminution des chiffres glycémiques doit être progressive pour prévenir le risque d'œdème cérébral.

3. Le traitement du facteur déclenchant, la thromboprophylaxie, les mesures de nursing :

Cesmesures sont nécessaires, chez ce patient déshydraté, en hypercoagulabilité, immobilisé :kinésithérapie, matelas anti-escarres...

4. La surveillanceest indispensable pour adapter le traitement selon l'évolution(voir acido-cétose).

5. Evolution:

Le pronostic est fonction de l'âge et du terrain.

Les complications sont essentiellement représentées par:

- Accidents vasculaires: collapsus, thromboses veineuses, CIVD.
- Accidents rénaux: anurie, insuffisance rénale aiguë.
- Accidents neurologiques : œdème cérébral, lors de la réhydratation +++

Sujet 20 : Diabète sucré

N° Validation: 0820201933

D. PREVENTION DE L'HYPEROSMOLARITE:

Elle s'adresse à tous les diabétiques à risque osmolaire : DT2 âgé, taré, handicapé :

- Dépister les hyperglycémies :ne pas négliger un diabète mal équilibré chez un sujet âgé et ne pas hésiter à instituer l'insulinothérapie précocement.
- Eviter certains médicaments chez les sujets âgés : diurétiques, corticoïdes.
- Traiter énergiquement toute cause de déshydratation (maladie fébrile, infection..).
- Eduquer l'entourage de la personne âgée handicapée pourassurer un apport hydriquerégulier et suffisant, éviter les boissons hypertoniques et consulter rapidement en cas de maladie intercurrente ou d'accentuation de la polyurie.

III. L'HYPOGLYCEMIE DU DIABETIQUE

L'hypoglycémie est définie par la baisse de la glycémie en dessous de 0,7 g/l.

Il s'agit de la complication métabolique la plus fréquente chez le diabétique.

Elle survient toujours chez le diabétique traité soit par l'insuline soit par les antidiabétiques oraux insulino-sécréteurs, notamment les sulfamides hypoglycémiants.

A.PHYSIOPATHOLOGIE:

1. Mécanismes de l'hypoglycémie

- La cause la plus fréquente est la cause diététique: jeune de Ramadan, saut d'un repas, repas non glucidique.
- Pratique d'un effort physique imprévu.
- Erreurs de technique de l'injection de l'insuline : dose excessive, erreur de flacon, lipodystrophie...
- Associations médicamenteuses aux sulfamides : sulfamides anti-bactériens, aspirine, antivitamine K, disopyramide, IEC, fibrates, prise d'alcool.
- Dégradation de la fonction rénale ou insuffisance hépatique.
- Insuffisance endocrinienne : hypopituitarisme, insuffisance surrénalienne.
- Malabsorption : maladie cœliaque, neuropathie autonome digestive.

2. Conséquences de l'hypoglycémie

Pour des valeurs de glycémie entre 0,7 et 0,5 g/l, les hormones de contre-régulation sont mises en jeu : le glucagon, l'adrénaline et secondairement, le cortisol et la GH.

Les signes d'alarme de l'hypoglycémie (sueurs, palpitations, tremblement, crampe épigastrique...)sont en rapport avec la sécrétion d'adrénaline.

Pour des valeurs de glycémie inférieures à 0,5 g/l, il existe une souffrance cérébrale car le glucose est le seul substrat énergétique du cerveau. Cette neuroglycopénie va déterminer des troubles fonctionnels, qui vont se manifester par des signes neuro-psychiatriques.

La prolongation de la neuroglycopénie corticale peut laisser des séquelles cérébrales irréversibles.

B. ASPECTS CLINIQUES:

1. Tableaux cliniques

a) Le malaise hypoglycémique ou hypoglycémie mineure :

Il réunit des signes adrénergiques d'installation brutale : asthénie brutale, sueurs profuses, palpitations, céphalée, tremblements, diplopie, difficulté à se concentrer, irritabilité, troubles de l'élocution, faim douloureuse appelant le patient à se resucrer, ce qui fait régresser le malaise.

b) L'hypoglycémie grave : (5% des cas)

Elle est définie par une hypoglycémie qui nécessite l'intervention d'une tierce personne, du fait de l'installation de signes de neuroglycopénie.

Plusieurs facteurs concourent à son installation : indisponibilité du sucre (sommeil), non-reconnaissance des signes d'alerte de l'hypoglycémie (béta-bloquants, neuropathie végétative), gastroparésie diabétique...

Elle se manifeste par

- des signes psychiatriques : troubles du comportement : agressivité, amnésie, confusion mentale...
- et surtout neurologiques : diplopie, convulsions, hémiplégie et coma.

Le coma est profond, le plus souvent agité, convulsif ou spastique. L'attention est attirée d'emblée par l'hypersudation froide, abondante et la tachycardie. Il s'accompagne souvent de signes d'irritation pyramidale (trismus, hyper-réflectivité ostéo-tendineuse, signe de Babinski bilatéral).

2. Confirmation du diagnostic :

La constatation d'une hypoglycémie impose la réalisation en urgence d'une glycémie capillaire, qui est inférieure ou égale à 0,7 g/l,voire à 0,5 g/l en cas d'hypoglycémie grave. En l'absence de lecteur de glycémie, on peut prélever une glycémie veineuse, dont on n'attendra pas le résultat pour traiter le patient.

Dans tous les cas, le resucrage est un geste à la fois diagnostique et thérapeutique. En cas de doute sur la nature d'un trouble de la conscience chez un diabétique, le premier geste sera toujours d'éliminer une hypoglycémie par l'administration de sérum glucosé.

3. Evolution:

- * L'hypoglycémie grave est grevée d'une mortalité lourde.
- * Des manifestations cardio-vasculaires ont été documentées au cours des hypoglycémies nocturnes, non ressenties et au cours des hypoglycémies sévères : allongement de l'espace QT, poussée tensionnelle, aggravation d'un angor. Des accidents cardiovasculaires grevant le pronostic vital peuvent se produire à la faveur de ces hypoglycémies: infarctus du myocarde, accident vasculaire cérébral, mort subite (dead-in-bed syndrome).
- * Le principal risque des hypoglycémies, même mineures, répétées chez le diabétique insulino-traité est **l'abaissement du seuil de la contre-régulation** aboutissant à l'absence de perception des symptômes d'alerte adrénergique. Le patient est incapable de se resucrer seul et il existe alors un risque important de neuroglycopénie sévère (coma, convulsions...). Le jeune adulte diabétique, actif est alors exposé au **risque de traumatismes**pouvant être très graves (chute avec fractures, accident de la voie publique...).
- * La récidive des hypoglycémies graves est responsable d'une **encéphalopathie hypoglycémique** entraînant une comitialité, des séquelles psychiatriques et un déclin cognitif notamment chez l'enfant (retard scolaire) et chez le sujet âgé.

C. TRAITEMENT DE L'HYPOGLYCEMIE:

1. Traitement du malaise hypoglycémique chez un patient conscient :

Le resucrage sera réalisé **per os** : 15 à 20 g de sucre.

- 3 à 4 morceaux de sucre, une cuilleréeà soupe de miel ou de confiture, un verre de soda...
- ou 1 à 2 ampoules (20 ml) de sérum glucosé à 30% ...

2. Traitement de l'hypoglycémie grave :

Chez le diabétique traité à l'insuline :

- On débutera par 2 à 4 ampoules de 20 ml de sérum glucosé à 30 %.
- Puis le relaissera fait parune perfusion de sérum glucosé à 10% qui sera maintenue jusqu'au réveil du patient (possibilité de s'alimenter).

<u>Chez le diabétique de type 1</u>: On peut utiliser du glucagon : une ampoule de 1 mg en sous cutanéou en intramusculaire.

Chez le diabétique traité par les sulfamides hypoglycémiants :seul le glucose par voie parentérale peut être utilisé.Le glucagon est contre-indiqué pour la correction de l'hypoglycémie aux sulfamides, caril risque de provoquer un rebond de l'insulinosécrétion.

L'hypoglycémie aux sulfamides est plus sévère et plus prolongée que l'hypoglycémie à l'insuline, notamment en cas d'insuffisance rénale chronique. Elle risque de récidiver quelques heures après un premier resucrage, en raison de la durée d'action prolongée du sulfamide (nettement supérieure à sa demi-vie). Il est donc recommandé d'hospitaliser le patient afin de maintenir une perfusion prolongée de sérum glucosé pendant 24 à 48 heures.

D. PREVENTION DE L'HYPOGLYCEMIE

Elle est toujours possible. Elle repose sur l'éducation du patient et de son entourage familial, scolaire ou professionnel.

Pour le patient :

- Respecter les apports glucidiques au cours des repas, connaître la valeur glucidique des différents aliments, prendre une collation glucidique en attendant un repas tardif, prendre une collation au coucher si la glycémie au coucher est inférieure à un seuil à fixer pour chaque patient (en général <1,20 g/l),
- Adapter son traitement en cas d'activité physique ou sportive : prendre une collation glucidique avant un exercice physique prévu, diminuer d'environ 20 % la dose d'insuline avant un effort physique prévu, mais aussi après l'effort (hypoglycémies retardées fréquentes).
- contrôler sa glycémie capillaire avant de conduire un véhicule.
- reconnaître les signes du malaise hypoglycémique et les moyens de resucrage par voie orale, avoir toujours sur soi 3 à 6 sucres dans la poche pour se resucrer dès les premiers symptômes.
- Ne pas jeûner Ramadan, sans avoir préalablement consulté son médecin. Le jeune est interdit, en particulier, aux diabétiques de type 1 et aux femmes enceintes diabétiques.
- Eduquer le patient sur la technique d'injection de l'insuline.

Pour l'entourage :

- Enseigner à l'entourage les signes neurologiques de l'hypoglycémie.
- Eduquer l'entourage du diabétique de type 1, **sur la technique d'injection du glucagon** et veiller à la disponibilité d'une ampoule de glucagon non périmée au domicile et sur les lieux habituels d'activité du patient.

IV. L'ACIDOSE LACTIQUE

A.ASPECTS CLINIQUES

Elle a été identifiée dans les années 60, à la suite d'une intoxication par la phenformine, biguanide de première génération. Actuellement avec la metformine, elle est devenue exceptionnelle.

Elleest définie par un tableau sévère d'acidose métabolique en relation avec une hyperlactacidémie(> 5 mmol/l).

C'est une complication métabolique de pronostic extrêmement sévère, avec une mortalité élevée (60%).

Elle n'est pas spécifique du diabète, mais survient préférentiellement chez le diabétique de type 2, traité aux biguanides (metformine), utilisés alors qu'ils sont contre indiqués : insuffisance rénale, insuffisance hépatique, hypoxie (insuffisance cardiaque, respiratoire).

Le tableau clinique associe :

Un syndrome douloureux : douleurs diffuses abdominales et thoraciques et crampes musculaires.

Une hyperpnée sans odeur acétonique de l'haleine

Des troubles de la conscience variables, allant de l'agitation extrême au coma calme et profond.

Parfois des troubles du rythme cardiaque, secondaires à l'acidose et à l'hyperkaliémie.

L'examen physique trouve des signes de choc, avec oligoanurie et hypothermie.

Sur le plan biologique :

- L'hyperglycémie est constante, mais modérée.
- L'acidose est constante et majeure : le pH est < 7,10.
- Le taux plasmatique de l'acide lactique est très élevé, ce qui explique le trou anionique élevé.

B. TRAITEMENT

Il comporte 3 éléments :

La lutte contre l'anoxie :

- En assurant une ventilation correcte, par l'oxygénothérapie.
- En assurant un retour à la normale de la pression artérielle, par le remplissage vasculaire.
- En rétablissant une diurèse correcte : par le furosémide intraveineux.

La lutte contre l'acidose :

- Par les bicarbonates ou le THAM.
- L'épuration extra-rénale peut s'avérer nécessaire. Elle permet d'éliminer la metformine circulante.

L'insulinothérapie à faible dose, ne doit pas dépasser 10 Unités/heure.

C. PREVENTION

Les biguanides étant à l'origine de la plupart des cas d'acidose lactique répertoriés, il importe de respecter les contre-indications des biguanides(cf traitement). Ceux-ci sont formellement contre-indiqués en cas :

- D'insuffisance rénale (clairance de la créatine inférieure à 30 ml/mn).
- D'insuffisance hépatique, d'insuffisance cardiaque ou respiratoire.
- D'alcoolisme.

Les biguanides doivent être interrompus au moins 48 heures avant une anesthésie générale ou une intervention chirurgicaleou un examen radiologique avec un produit de contraste iodé (risque d'insuffisance rénale aigue).

Les biguanides doivent être interrompus immédiatement lors de la survenue inopinée d'une agression aiguë (infarctus du myocarde, infection sévère, déshydratation...), qui nécessitent le recours temporaire à l'insulinothérapie.

COMPLICATIONS CHRONIQUES DU DIABETE

Les complications chroniques du diabète surviennent en moyenne après 10 ans d'évolution d'un diabète mal équilibré, avec une importante susceptibilité individuelle. Leur caractère insidieux et peu symptomatique explique le plus souvent leur diagnostic tardif. Elles sont source de morbidité, de mortalité et de handicaps. Elles doivent être prévenues par une bonne prise en charge des diabétiques, car une fois installées, elles sont irréversibles.

I. PHYSIOPATHOLOGIE DES COMPLICATIONS DEGENERATIVES

Le dénominateur commun des complications dégénératives est l'hyperglycémie. La persistance prolongée d'une glycémie au-dessus d'un certain seuil provoque des altérations biochimiques, puis physiologiques anatomiques et enfin cliniques des cellules endothéliales (dysfonction endothéliale), mais aussi des cellules musculaires lisses, des péricytes....

L'hyperglycémie chronique va inonder la voie de la glycolyse et mettre en jeu des voies habituellement mineures (voie des polyols, des hexosamines, de la protéine kinase C et des

produits terminaux de la glycation), provoquer des modifications irréversibles des protéines et des constituants cellulaires :

- **Perturbations métaboliques** altérant la cellule nerveuse : accumulation de sorbitol, déplétion en myo-insositol.
- Glycoxydation des protéines: processus associant une glycosylation et une oxydation (stress oxydant), formant des produits glycoxydés (AGE: advancedglycationendproducts), concourant à une altération progressive des membranes basales des capillaires sanguins (microangiopathie) causant des anomalies de perfusion des organes, mais également de l'ADN, de la substance fondamentale (collagène), ou encore des lipoprotéines. Elle touche préférentiellement la rétine, le glomérule rénal, le cristallin...
- Le stress oxydant est également source d'une dysfonction endothéliale par la formation de péroxynitrite (vasoconstricteur) à la place du monoxyde d'azote (vasodilatateur). Il est aggravé dans le diabète de type 2 par les effets délétères sur la cellule endothéliale des cytokines du tissu adipeux viscéral qui vont être à la base des complications vasculaires : cytokines pro-inflammatoires (TNF-alpha, interleukine-6) et prothrombotiques (augmentation de l'inhibiteur 1 de l'activateur du plasminogène PAI-1) qui vont faire le lit de la plaque d'athérome et des accidents cardio-vasculaires.

On distingue 2 principaux types de complications dégénératives :

* *La microangiopathie* est complication spécifique de l'hyperglycémie chronique. Elle est responsable de la rétinopathie et de la néphropathie.

Les microvaisseaux ont une paroi épaissie mais anormalement perméable aux protéines et aux lipoprotéines. La neuropathie diabétique associe la toxicité nerveuse et microvasculaire de l'hyperglycémie.

* *La macroangiopathie* : (complications cardio-vasculaires) est multifactorielle.Le rôle de l'hyperglycémie est intriqué avec les autres facteurs de risque vasculaires classiques (tabac, HTA, hypercholestérolémie, micro-albuminurie) et non classiques (homocystéine, Lp(a)...).

II. LA MICROANGIOPATHIE DIABETIQUE

A. LA NEUROPATHIE DIABETIQUE

1. Physiopathologie:

La neuropathie touche 20 à 30 % des diabétiques. Elle n'est symptomatique que dans 10 % des cas.

Il existe différents facteurs de risque de la neuropathie diabétique :

Les deux principaux facteurs sont: la **durée du diabète** (on estime sa prévalence à 50 % chez les diabétiques dont la maladie évolue depuis plus de 20 ans) et le **mauvais équilibre** du diabète.

D'autres facteurs de susceptibilité individuelle interviennent également.

- l'âge, la majorité des neuropathies diabétiques surviennent après l'âge de 50 ans,
- lesexe masculin,
- lagrande taille (peut être en raison de la longueur des fibres nerveuses),
- untabagisme ou un alcoolisme associés,
- desfacteurs nutritionnels (carences vitaminiques, dénutrition),
- l'hérédité peut augmenter la susceptibilité à la neuropathie.

La neuropathie atteint :

- les petites fibres sensitives non myélinisées ou myélinisées, les premières à être touchées : douleurs, dysesthésies (hyperesthésie ou hypoesthésie) de contact, perte de la sensibilité thermique et douloureuse.
- les moyennes et grosses fibres, sensitives myélinisées : atteinte de la sensibilité tactile, vibratoire et proprioceptive.
- les fibres motrices myélinisées : paralysie, amyotrophie.

Sur le plan morphologique:

La lésion fondamentale est une dégénérescence axonale progressive avec démyélinisation segmentaire, qui intéresse d'abord la partie distale des fibres nerveuses. Elle est plus marquée dans les fibres amyéliniques que dans les fibres myélinisées, ce qui explique l'atteinte prédominante de la sensibilité thermique et douloureuse.

A ces anomalies, s'ajoute l'épaississement des membranes basales des capillaires des gaines nerveuses, en rapport avec la microangiopathie.

2. Aspects cliniques des neuropathies diabétiques :

La neuropathie diabétique entre dans l'une des 3 catégories suivantes:

- Les polynévrites : polyneuropathies distales et symétriques, les plus fréquentes
- Les mono et multinévrites (neuropathies focales et multifocales).
- La neuropathie végétative ou autonome.
 - a) La polynévrite ou polyneuropathie des membres inférieurs :

Elle représente 80 à 85 % des neuropathies diabétiques.

Le plus souvent, il s'agit d'une atteinte sensitive d'installation progressive, de topographie préférentiellement distale et symétrique aux membres inférieurs.

- La polynévrite est le plus souvent asymptomatique et expose le patient aux risques de brûlures ou de traumatismes indolores. Elle devra donc être recherchée par un examen clinique rigoureux.
- Lorsqu'elle est symptomatique, elle se manifeste essentiellement par destroubles subjectifs de la sensibilité:
 - Lesparesthésies à type de fourmillements, d'engourdissement, de démangeaisons, de sensation de froid, de chaud ou de marche sur du coton...
 - ou des douleurs : sensation de brûlure, d'élancements, de picotements (aiguille, punaise...), allodynies, continues ou intermittentes.

Ces signes sont de topographie en chaussette, s'exacerbent la nuit et sont souvent atténués par la marche, l'exercice musculaire.

Il existe des formes hyperalgiques de la polynévrite : très douloureuses, insomniantes et invalidantes, parfois responsables d'une altération de l'état général et d'une cachexie.

L'examen neurologique objective :

- Des troubles de la sensibilité:
 - profonde vibratoire et du sens de position des orteils.
 - superficielle thermo-algésique et tactile, systématisés aux extrémités distales réalisant une hypo ou une anesthésie avec un grand risque de blessure ou de brûlure.
- Une abolition précoce bilatérale des réflexes achilléens, plus rarement rotuliens.

L'électromyogramme, s'il est réalisé, objective un ralentissement des vitesses de conduction nerveuse ainsi qu'une diminution de l'amplitude des potentiels d'action des nerfs sensitifs puis moteurs. Il ne permet pas d'explorer les fibres de la douleur. C'est un examen le plus souvent inutile pour le diagnostic et la surveillance de la neuropathie diabétique.

La polynévrite se complique de <u>troubles trophiques distaux</u> dominés par les maux perforants plantaires et par l'ostéoarthropathie diabétique, qui participent à la constitution des complications graves touchant le pied du diabétique, aboutissant à l'amputation.

b) Les mononévrites et multinévrites :

Elles ne représentent que 10 à 15 % des neuropathies diabétiques. Elles se voient chez l'adulte après 50 ans.

Leur début est brutal.

Ce sont des atteintes focales habituellement unilatérales. Elles associent des douleurs, évocatrices par leur exacerbation nocturne, un déficit moteur et des troubles réflexes dans un territoire donné.

Les mononévritesouradiculonévrites intéressent surtout les membres inférieurs (cruralgie, méralgieparesthésique par atteinte du nerf fémoro-cutané) et les paires crâniennes : paralysie oculo-motrice ou ptosis (VI, III extrinsèque), paralysie faciale (VII).

Les multinévrites peuvent réaliser des paralysies étendues de type quadriplégie.

L'évolution des mono et des multinévrites est lentement favorable en quelques semaines ou mois. Mais les récidives sont possibles. Les séquelles motrices et/ou sensitives sont fréquentes.

c) La neuropathie autonome:

Elle touche les petites fibres amyéliniques des systèmes sympathique et parasympathique.

La neuropathie autonome peut toucher le système cardio-vasculaire, le tractus digestif, le système uro-génital, le système sudoral et la motricité pupillaire.

La neuropathie autonome patente augmente la morbidité, la mortalité et altère le confort de vie des diabétiques.

Manifestations cardio-circulatoires:

- Tachycardie sinusale de repos permanente (> 100 battements/mn) avec perte des variations posturales ou à l'effort (dénervation cardiaque parasympathique). Elle comporte un risque de mort subite.
- Hypotension orthostatique, plus tardive (atteinte sympathiquepériphérique intéressant les membres inférieurs et le territoire splanchnique). Elle est le plus souvent asymptomatique et devra être recherchée systématiquement. Les symptômes d'hypotension orthostatique s'accentuent en période post-prandiale. Elle est aggravée par les traitements anti-hypertenseurs ou vasodilatateurs.
- La neuropathie autonome cardiaque est responsable du caractère parfois asymptomatique des nécroses myocardiques chez le diabétique.

Neuropathie autonome gastro-intestinale:

- La gastroparésieest le plus souvent asymptomatique, mais peut se traduire par des troubles digestifs post prandiaux (pesanteur épigastrique post-prandiale, nausées, éructations malodorantes parfois vomissements).
 - Elle est un facteur d'instabilité du diabète avec des hypoglycémies postprandiales d'horaire inhabituel et parfois des cétoses inexpliquées.
- L'achlorydrie gastrique peut favoriser la pullulation microbienne et participe à la pathogénie de la diarrhée diabétique.
- La diarrhée motrice : hydrique, fécale, indolore.

La fréquence des selles va de 10 à 30 selles par jour, impérieuses, survenant souvent après les repas et parfois la nuit. Elle s'accompagne dans 50 % des cas, d'une incontinence anale.

L'évolution se fait par poussées de quelques jours à quelques semaines, suivies d'un retour du transit à la normale ou fréquemment d'une constipation.

Neuropathie autonome génito-urinaire:

- La vessie neurogèneest fréquente. Elle est responsable d'une baisse de la sensation de plénitude vésicale qui se traduit par un espacement du besoin d'uriner. Le jet d'urine s'affaiblit, et le sujet a la sensation d'avoir incomplètement vidé sa vessie.
 - La persistance d'un résidu vésical de plus en plus important évolue vers le stade de la rétention d'urine avec miction par regorgement. Le risque majeur est l'infection récidivante des urines résiduelles avec reflux vésico-urétéral menaçant le haut appareil (néphropathie interstitielle et insuffisance rénale).
- La dysfonction érectileatteint 50 % des hommes diabétiques.
 - Elle est multifactorielle La part de la neuropathie est prépondérante, mais l'obstruction artérielle et les facteurs psychologiques jouent parfois un rôle important.
 - Elle peut être aggravée par de nombreux médicaments, (anti-hypertenseurs, fibrates, diurétiques, β bloquants...)
- L'éjaculation rétrogradepar perte du tonus du sphincterinterne de l'urètre peut être responsable de stérilité. Elle est détectée par la recherche de spermatozoïdes dans les urines.

La dysautonomie diabétique périphériquepeut être responsable d'une grande variété de symptômes:

- Elle est incriminée dans **certaines hypoglycémies non ressenties**, du fait du défaut de sécrétion de catécholamines et plus tardivement de glucagon.
- L'atteinte sudoraleest classique et fréquente dans le diabète : anhydrose prédominant aux membres inférieurs dont elle aggrave les troubles trophiques ou au contraire crises sudorales profuses du thorax et du dos ressemblant à une hypoglycémie.

3. Traitement des neuropathies diabétiques :

Il n'existe pas de traitement curatif.

L'amélioration du contrôle glycémiqueest à l'heure actuelle le seul traitement spécifique de la neuropathie, car l'hyperglycémie abaisse le seuil de la perception douloureuse.

Les formes hyperalgiques chez le diabétique de type 2, répondent favorablement à une insulinothérapie transitoire optimalisée.

Traitement de la douleur des polynévrites douloureuses :

Il fait appel à plusieurs médications:

- La vitaminothérapie B, les antalgiques simples (paracétamol).
- Les antidépresseurs tricycliques:amitriptyline (Laroxil®, Elavil®) à doses progressives.
- <u>Les neuroleptiques anti-convulsivants</u>: carbamazépine (Tegretol®), gabapentine (Neurontin®), prégabaline (Lyrica®).

La gastroparésie et les vomissements sont améliorés par le fractionnement des repas, par le métoclopramide (Primpéran®) et l'érythromycine.

La diarrhée motrice peut être améliorée par des cures d'antibiothérapie comme la néomycine.

L'hypotension orthostatique peut être améliorée par le port de bas élastiques et par la fluoro-hydrocortisone (Florinef®).

La vessie neurogène peut être améliorée par des mesures de rééducation.

La dysfonction érectile d'origine neuropathique est nettement améliorée par les inhibiteurs des phosphodiestérases de type V (sildénafil (Viagra®, Viatec®), tadalafil (Cialis®), dont les contre-indications doivent être strictement respectées.

B.LA RÉTINOPATHIE DIABÉTIQUE

1. Physiopathologie:

La rétinopathie diabétique (RD) est aujourd'hui la première cause de cécité chez les sujets de 20 à 60 ans, dans les pays développés.

Elle apparaît en moyenne après 10 ans d'évolution du diabète et sa prévalence augmente avec la durée du diabète. Après 15 ans d'évolution, elle touche 80 % des DT1 et 65 % des DT2.

La RD est une conséquence de l'hyperglycémie chronique. Néanmoins certains facteurs peuvent l'aggraver : HTA, grossesse, fluctuations brutales de la glycémie, puberté.

L'hyperglycémie induit un épaississement de la membrane basale des capillaires rétiniens, responsable de la réduction du nombre des péricytes puis des cellules endothélialesdes capillaires aboutissant à une fragilité des parois vasculaires, leur dilatation et leur obstruction.

Ces lésions sont associées à des altérations fonctionnelles aboutissant à deux phénomènes intriqués:

- hyperperméabilité capillaire menant à l'extravasation du contenu vasculaire et à l'ædème rétinien,
- occlusion capillaire menant à l'ischémie rétinienne.

Les phénomènes occlusifs et œdémateux évoluent de façon concomitante.

Les phénomènes œdémateux prédominent dans la région centrale de la rétine, la macula.

L'œdème maculaire est responsable de la baisse de la vision.

Des *exsudats secs*, secondaires à la précipitation de lipoprotéines plasmatiques dans l'épaisseur de la rétine, sont principalement observés au niveau de la macula.

Les phénomènes occlusifs affectent surtout la rétine périphérique induisant des territoires d'ischémie rétinienne.

Lorsque celle-ci est étendue, une prolifération réactionnelle de néo-vaisseaux par production de *facteurs de croissance*,dont le VEGF, se produit à la surface de la rétine, puis dans le corps vitré.Les néo vaisseaux extra-rétiniens peuvent induire des complications à haut risque de cécité.

2. Classification clinique de la rétinopathie

- *a)* Rétinopathie non proliférante:
- *Minime*: microanévrysmes, hémorragies rétiniennes ponctuées en petit nombre
- Modéréeà sévère, selon le degré de l'ischémie rétinienne : micro-anévrysmes, hémorragies en flamèchesplus étendues, anomalies veineuses (dilatations en chapelet et boucles veineuses)nodules et exsudats cotonneux, groupement d'anomalies micro-vasculaires intra-rétiniennes (A.M.I.R.)
- Très sévère : RD ischémique étendue ou préproliférante : à haut risque d'évolution vers la néovascularisation.
 - b) Rétinopathie proliférante(présence de néovaisseaux)
- *Minime* :néo-vaisseauxprérétiniens de petite taille.
- *Modérée*: néo-vaisseauxprérétiniens de grande taille et/ou prépapillaires de petite taille.
- **Sévère**: néo-vaisseaux prépapillaires de grande taille.
- Compliquée: hémorragieprérétinienne, intra-vitréenne, décollement de la rétine, prolifération de néovaisseaux sur l'iris (rubéose irienne) et dans l'angle irido-cornéen (glaucome néo-vasculaire).

c) A part, la maculopathie, quel que soit le stade de la RD

Localisation de l'œdème et del'ischémie dans lamacula (rétine centrale), entrainant son épaississement. Elle fait toute la gravité de la RDcar elle aboutit à la malvoyance.

3. Diagnostic de la rétinopathie diabétique:

La rétinopathie diabétique se développe à bas bruit.Il est essentiel de **ladépister** par un examen systématique**du fond d'œil.**

L'examen ophtalmologique doit être complet, car, indépendamment de la rétinopathie, le diabète s'accompagne d'une fréquence accrue de cataracte(métabolique) et de glaucome(chronique ou néovasculaire). Il peut aussi s'accompagner précocement d'un trouble de la vision des couleurs(dyschromatopsie).

Les photographies du fond d'œil servent d'examen de référence pour classer la rétinopathie et quantifier l'ischémie rétinienne périphérique.

L'angiographie à la fluorescéineest un complément de l'examen du fond d'œil. Elle permet d'apprécier la perfusion capillaire rétinienne et de déceler une hyperperméabilité capillaire. Elle aide au traitement par photocoagulation au laser des œdèmes maculaires et évalue le degré de l'ischémie maculaire.

La tomographie en cohérence optique (OCT) : donne une coupe de profil de la macula et permet de mesurer l'épaisseur de l'œdème maculaire. Essentielle pour le diagnostic et le suivi de l'œdème maculaire.

4. Stratégie du dépistagede la RD:

Le dépistage de la RD doit être réalisé :

- Dans le DT2 : lors du bilan initial à la découverte du diabète,
- Dans le DT1 : à partir de 5 ans d'ancienneté du diabète ou au début de la puberté chez les enfants.
- En l'absence de RD ou en présence d'une RD minime, l'examen doit être renouvelé tous les ans.
- Une surveillance plus rapprochée (2 à 6 mois) sera instituée si la RD est plus évoluée ou en présence de facteurs aggravants.

5. Prise en charge de la rétinopathie

Le traitement de la rétinopathie diabétique par la **photo-coagulation au laser** a bouleversé le pronostic évolutif de la RD, en retardant la survenue des accidents graves. Il a pour but de sauvegarder la vision menacée, mais il ne guérit pas les lésions rétiniennes.

Les meilleurs **traitements préventifs** de la rétinopathie diabétique sont l'équilibrestrict de la glycémie et le traitement de l'HTA.

C.LA NEPHROPATHIE DIABETIQUE

1. Physiopathologie:

C'est la manifestation la plus grave de la micro-angiopathie, car elle témoigne d'une angiopathie sévère, diffuse. La néphropathie diabétique conditionne le pronostic vital. Ellemultiplie le risque cardiovasculaire par 10 chez les DT1 et par 3 chez les DT2. Sa présence confère d'emblée au diabétique un haut risque vasculaire.

Contrairement à la RD qui touche 100% des DT1 après 25 à 30 ans d'évolution, la néphropathie ne touche que 30 à 40% des diabétiques. Des facteurs de prédisposition ou de protection génétique seraient impliqués.

Son incidence n'est pas croissante avec la durée du diabète. Elle présente un pic à 15 ans d'évolution, puis il y a une décroissance (un patient qui n'a pas de néphropathie après 25 ans de diabète, court un risque faible de la développer).

La néphropathie diabétique constitue la première cause d'insuffisance rénale chronique terminale, nécessitant le recours à l'épuration extrarénale ou à la transplantation.

- 15 à 30 % des dialysés sont diabétiques.
- 50 à 80 % des diabétiques dialysés sont des diabétiques de type 2.

2. Classification de la néphropathie diabétique :

Stade 1 : néphropathie fonctionnelle (stadepréalbuminurique) :

Stade précoce, caractérisé par une hyperfiltration glomérulaire et une augmentation de la taille des reinsliées à l'hyperglycémie chronique.

Stade 2 : **néphropathie latente** : lésions histologiques minimes des glomérules, sans traduction clinique.

Stade 3 : néphropathie incipiens ou néphropathie débutante :

Seuls 30 à 40 % des diabétiques évoluent vers ce stade : apparition d'une micro-albuminurie (> 30 mg/24 heures) qui va progresser annuellement de 20 à 50 %, puis apparition ou aggravation d'une HTA. La filtration glomérulaire est toujours élevée.

Le diagnostic est plus facile dans le DT1 qui inaugure son risque vasculaire avec la néphropathie. Par contre, dans le DT2, la microalbuminurie peut être non spécifique, due aux autres éléments du syndrome métabolique.

Stade 4 : néphropathie patenteou néphropathie clinique:

Marquée par l'apparition de la macro-protéinurie (> 300 mg/24 heures),non réversible pouvant aboutir à un syndrome néphrotique (> 3 g/j). L'HTA est constante(> 140/90 mmHg).

La filtration glomérulaire peut encore être normale, mais elle décroît inexorablement et à un rythme constant. La fonction rénale, normale au début, va se détériorer de façon inéluctable (diminution de la clairance de la créatinine de 10 ml/mn et par an, en moyenne, en l'absence de prise en charge). L'insuffisance rénale s'installe en moyenne, 7 à 10 ans après la découverte de la macro-protéinurie.

Stade 5 : insuffisance rénale chronique

Elle comprend 3 stades:

IRC modérée : clearance de la créatinine entre 90 et 60 ml/mn.

IRC sévère : clearance de la créatinine entre 60 et 30 ml/mn.

IRC terminale : clearance de la créatinine < 30 ml/mn.

Le diagnostic de la néphropathie diabétique ne nécessite pas de biopsie rénale. L'association à une rétinopathie permet d'affirmer son origine diabétique.

La biopsie rénale est indiquée en cas de :

- Absence de rétinopathie.
- Evolutivité rapide.
- Hématurie macroscopique.
- Signes extra –rénaux.
 - 3. Traitement et prévention (néphroprotection)
 - a) La prévention de la néphropathie diabétique :
- * Contrôle glycémique optimal, dès le début du diabète, chez le diabétique de type 1. L'intérêt d'un contrôle rigoureux est probable mais insuffisant à lui seul chez le diabétique de type 2.L'objectif métabolique recommandé pour la majorité des patients diabétiques est <7%. Il est <6,5% chez les diabétiques nouvellement diagnostiqués et non compliqués.
- * *Equilibre tensionnel strict*.Chez le diabétique de type 2 hypertendu, les bloqueurs du système rénine-angiotensine (IEC ARA2) diminuent le risque d'apparition d'une microalbuminurie. Objectif de TA < 140/90 mm Hg en l'absence de microalbuminurie.
- * *Arrêt du tabac*: cette mesure diminuerait de 30% le risque de survenue et d'aggravation de la macroalbuminurie dans les 2 formes de diabète.

b) Néphropathie diabétique débutante et avérée :

* Si *un contrôle glycémique strict* est institué à un stade précoce, la microalbuminurie peut régresser et disparaître. Par contre, au stade de macroproténurie permanente, l'équilibre glycémique permet seulement de stabiliser la progression de la néphropathie et de ralentir l'évolution vers l'insuffisance rénale.

* Blocage du système rénine angiotensine au stade de microalbuminurie sans HTA.En raison de leur rôle spécifique de protection néphronique,les inhibiteurs de l'enzyme de conversion même à faibles doses, ont démontré leur efficacité pour ralentir l'évolutionde la néphropathie.Les ARA2 sont indiqués en cas d'intolérance aux IEC. Objectif: maintenir la microalbuminurie< 30 mg/24 heures ou réduire la protéinurie < 0,5 g/ 24 chez les patients macroprotéinuriques.

Rechercher une sténose de l'artère rénale si la fonction rénale s'altère sous IEC. Surveillance biologique et régulière de la kaliémie et de la créatininémie.

- * *Equilibre tensionnel strict*: IEC ARA2. Cible tensionnelle > 130/80 mm Hg, en présence d'une microalbuminurie. L'association d'autres antihypertenseurs: diurétique, inhibiteur calcique, sera discutée en fonction de chaque patient.
- * Contrôle des facteurs de risque cardiovasculaires: statines (correction du LDL-cholestérol), aspirine, arrêt du tabac.
- * **Régime hypo protidique :** 0,8 g/kg/jour, chez l'insuffisant rénal chronique.
- * Rechercher et traiterles infections urinaires. Eviter les produits néphro-toxiques : médicaments, produits de contraste iodés...

III. LA MACROANGIOPATHIE DIABETIQUE

A.*EPIDEMIOLOGIE* :

L'athérosclérose est la principale cause de décès des diabétiques: 75 % des diabétiques décèdent d'accidents vasculaires, au premier rang desquels l'ischémie coronarienne, responsable de 50 % des décès.

La macroangiopathie (athérosclérose), n'est pas spécifique du diabète, mais est plus fréquente et plus précoce chez le diabétique.

Rôle des facteurs de risque et de l'hyperglycémie :

- Le risque de survenue des complications macrovasculaires est important au cours du DT2. Mais contrairement à la microangiopathie, <u>le risque vasculaire n'augmente pas parallèlement au degré de l'hyperglycémie</u>. Le diabète intervient enpotentialisant les facteurs de risque <u>d'athérosclérose</u>, qui lui sont fréquemment associés : l'HTA dont la prévalence est accrue chez le DT2, les dyslipidémies liées au diabète (hypertriglycéridémie et baisse du HDL-cholestérol), le tabagisme... La combinaison des facteurs de risque chez le diabétique multiplie le risque vasculaire.

- En matière d'athérosclérose, la femme diabétique perd son avantage naturel sur l'homme avec un sex-ratio hommes/femmes entre 1 et 2 alors qu'il se situe, dans la population non diabétique de moins de 50 ans, entre 5 et 10.
- Le risque vasculaire est également majeur dès qu'il existe une atteinte rénale, quel que soit le type de diabète.

B.*LA CORONAROPATHIE:*

C'est une cause majeure de mortalité chez le diabétique.

Elle associe macroangiopathie, microangiopathie et neuropathie.

1. Clinique:

La douleur angineuse est la manifestation clinique la plus commune. Toutes les formes de coronaropathie peuvent être observées :

- •angor d'effort,
- •angor spastique nocturne récidivant...

L'infarctus du myocarde(IDM):

- •fréquent, parfois bruyant.
- •très souvent trompeur: y penser devant des troubles digestifs(douleurs épigastriques), des troubles du rythme, une asthénie à l'effort, un déséquilibre du diabète, une baisse de la pression artérielle...
- •souvent asymptomatique, découvert à l'ECG systématique.

L'IDM est fréquemment à l'origine d'une acidocétose diabétique.

Il risque de se compliquer d'insuffisance cardiaque congestive.

Les anomalies électrocardiographiques isolées: l'ischémie myocardique est deux à trois fois plus souvent indolore chez le diabétique que chez le non diabétique, du fait de la neuropathie cardiaque, de sorte que la maladie coronaire peut être révélée par un IDM ou par une mort subite.

Le dépistage par l'épreuve d'effort ou la scintigraphie myocardique doit être large chez les patients à risque. Il trouve une coronaropathie asymptomatique dans 50 % des cas.

2. Les explorations :

Le dépistage reposesur l'ECGau repos ou à l'effort, répété tous les ans.

Les explorations plus coûteuses ou invasives seront réalisées en cas d'anomalies cliniques (douleur angineuse, malaises, dysfonction érectile, dyspnée) ou électriques : échographie cardiaque, coronarographie, scintigraphie myocardique au thallium...

3. Le traitement :

Le traitement de l'ischémie coronarienne et de l'IDM ne diffère pas de celui des sujets non diabétiques: dérivés nitrés, inhibiteurs calciques, IEC, β-bloquants, antiagrégants plaquettaires.Si un traitement anticoagulant est nécessaire, il faut s'assurer de l'absence de RD.

Le traitement de l'infarctus en phase aiguë nécessite l'optimalisation du contrôle glycémique : arrêt des hypoglycémiants oraux et recours à une insulinothérapie adaptée.Un meilleur contrôle glycémique en phase aigueaméliore le pronostic immédiat et à long terme. Maisil faut éviter les hypoglycémies qui risquent d'aggraver l'ischémie myocardique.

C. ARTERIOPATHIE OBLITERANTE DES MEMBRES INFERIEURS

Elle est plus précoce, plus fréquente et plus sévère au cours du diabète. Les lésions sont diffuses, mais prédominent au niveau distal.

A côté du déséquilibre glycémique, le tabac est un puissant facteur de risque.

1. Clinique:

Les signes cliniques ne sont pas spécifiques chez le diabétique :

- L'artériopathie est très souvent **asymptomatique**, découverte lors d'un examen systématique des axes artériels.
- En présence d'une **claudication intermittente**, l'interrogatoire doit préciser le siège de la douleur et le périmètre de marche. L'examen clinique recherche un souffle et/oul'abolition d'un pouls, qui orientent vers le siège de la lésion.
- La **douleur de décubitus**sur un pied froid aux téguments atrophiques et dépilés traduit une sténose serrée.
- Au stade d'obstruction complète, l'artériopathie peut être découverte devant une **nécrose** (gangrène), surinfectée ou non.

2. Explorations:

Le siège de l'oblitération vasculaire sera précisé par l'échographie-doppler des membres inférieurs ou par l'angioscanner .L'artériographie n'est indiquée que si un geste de revascularisation est envisagé.

3. Traitement:

Doit être avant tout préventif :

- -équilibration du diabète
- arrêt du tabac,
- correction d'une hyperlipidémie

Sujet 20 : Diabète sucré

N° Validation: 0820201933

- traitement d'une HTA.

Le traitement médical lorsque les lésions sont constituées, repose sur:

- les antiagrégants plaquettaires,
- les vasodilatateurs.

Le traitement chirurgical:

- La <u>revascularisation</u>, quand elle est possible, consiste à effectuer un pontage des segments obstrués.
- L'<u>amputation</u> est souvent la seule ressource en cas de gangrène. Elle sera la plus conservatrice possible.

D. ATTEINTE DES TRONCS SUPRA-AORTIQUES (CAROTIDES):

Le risque d'accident vasculaire cérébral (AVC) est multiplié par 2 chez l'homme et par 3 chez la femme diabétique.Un diabétique sur 5 meurt d'AVC.

Les AVC sont principalement favorisés par l'HTA, mais aussi par le tabac et les dyslipidémies.Les hypoglycémies peuvent en précipiter la survenue.

L'atteinte vasculaire doit être recherchée systématiquement par l'examen clinique (recherche de souffle carotidien) et par l'échographie-doppler annuelle des carotides, au-delà de l'âge de 45 ans.

La prévention repose sur la lutte contre les facteurs de risque, les statines.

Lorsque les lésions sont constituées, le traitement est médical (antiagrégants plaquettaires) ou chirurgical.

E. AUTRES ATTEINTES

Génitale : L'obstruction du carrefour aortique et des artères honteuses est à l'origine de la dysfonction érectile organique, d'origine vasculaire.

Mésentérique entraînant des angors et infarctus mésentériques.

Rénale: sténose de l'artère rénale.

IV. LE PIED DU DIABETIQUE

5 à 10 % des diabétiques seront un jour victimes d'une amputation, mais 50 % de ces amputations pourraient être évitées.

Il est donc indispensable d'identifier les diabétiques à risque podologique. Ces patients doivent recevoir une éducation ciblée.

A. FACTEURS PATHOGENIQUES:

Trois mécanismes, diversement associés, peuvent être impliqués.

1. La neuropathie associe 3 atteintes:

- la <u>perte de la sensibilité</u> favorise les zones de frottement et d'hyperpression.
- le <u>déficit moteur</u> est responsable d'un déséquilibre entre les muscles extenseurs et les fléchisseurs du pied.
- -l'atteinte végétative est source de sécheresse cutanée, d'œdèmes et de troubles vasomoteurs.
- **2.** L'ischémie résulte de l'artériopathie des membres inférieurs. Son évolution est plus grave, souvent indolore du fait de la neuropathie. Elle est fréquemment révélée par un trouble trophique.
- **3.** L'infection peut être profonde, menaçant les gaines et tendons et surtout l'os. Elle est souvent polymicrobienne et de diffusion rapide. Elle est favorisée par le déséquilibre glycémique qu'elle aggrave.

B. FACTEURS DECLENCHANTS:

Les lésions du pied sont souvent occasionnées par des traumatismes mineurs. Les facteurs déclenchants les plus fréquemment en cause sont les chaussures inadaptées, une hygiène insuffisante, des soins de pédicurie mal faits, des sources de chaleur non perçues...

C. EXAMEN CLINIQUE DES PIEDS:

Il doit être fait au moins annuellement pour dépister une artériopathie ou une neuropathie diabétique.

Le pied ischémique se caractérise par des pouls distaux abolis ou faibles et des troubles trophiques : une peau fine, fragile, dépilée, des ongles épais pouvant blesser le lit de l'ongle sous-jacent, une froideur relative du pied, parfois une amyotrophie. Les réflexes et la sensibilité sont normaux.

Le pied neuropathique se caractérise par une chaleur relative, des pouls parfois bondissants, une peau épaisse et sèche, une hyperkératose au niveau des points d'appui (sous la tête des métatarsiens, au niveau de la styloïde du 5ème métatarsien et sous le talon). Les réflexessont abolis. Les troubles sensitifs sont recherchés par la diminution de la perception vibratoire, des troubles du sens de position segmentaire des orteils, une diminution de la perception du chaud et du froid, et un défaut de perception de la douleur.

D. LES COMPLICATIONS DU PIED DIABETIQUE:

Elles sont essentiellement représentées par les **maux perforants plantaires** et l'**ostéoarthropathie.**

Les ulcérations ischémiques compliquent le pied ischémique.

1. Les maux perforants plantaires:

La perte de la sensibilité nociceptive du pied chez un patient qui peut marcher, l'empêche de ressentir les stimuli douloureux résultant de chaussures usées, d'une hygiène défectueuse ou de traumatismes mineurs du pied.

Non reconnus et non traités, ces microtraumatismes indolores aboutissent à l'apparition de cals (durillons) aux points d'appui ou de friction.

Il s'en suit une zone de nécrose hémorragique sous-cutanée qui va s'ulcérer.

La pénétration des bactéries peut conduire à des lésions d'ostéomyélite chronique. L'infection est souvent polymicrobienne, à germes aérobies et anaérobies. Elle déséquilibre le diabète. Elle peut s'étendre aux tissus profonds et entrainer un phlegmon du pied, pouvant aboutir à l'amputation.

2. L'ostéoarthropathie:

C'est une complication des neuropathies anciennes.

L'atrophie musculaire, secondaire au déficit moteur, peut provoquer un déséquilibre de la statique du pied causant des micro-fractures peu ou pas douloureuses, une ostéolyse et des dislocations articulaires du tarse et du métatarse aboutissant à une déformation indolore et progressive du pied. Ces déformations réalisent un pied de forme cubique par effondrement de la voûte plantaire et raccourcissement du pied avec des orteils en griffe. Ce pied est le siège de zones d'appui anormales, où s'installe une hyperkératose et rapidement un ou plusieurs maux perforants plantaires.

Points d'appui anormaux et déformations du pied neuropathique

3. Les ulcérations ischémiques:

Ellessont souvent provoquées par le frottement du pourtour du pied dans la chaussure, par une couture interne saillante, ou par un ongle incarné ou mal taillé... La plaie siège au pourtour du pied. La peau est fine, fragile, elle peut être arrachée par la simple ablation d'un sparadrap collé à la peau.

E. PREVENTION DES LESIONS DU PIED :

Chez le patient à risque, **l'éducationspécifique** revêt une importance fondamentale.

Sujet 20 : Diabète sucré

N° Validation: 0820201933

Deux ordres de conseils doivent êtresdonnés: les gestes à éviter et ceux qui assurent la protection des pieds.

1. Gestes à éviter :

IL NE FAUT PAS:

- Marcher pieds nus.
- Couper les ongles trop courts (il faut les limer).
- Utiliser un instrument tranchant pour enlever un cor ou un durillon.
- Utiliser des substances coricides.
- Prendre des bains de pieds prolongés.

2. Gestes qui assurent la protection des pieds :

IL FAUT:

- INSPECTER chaque jour ses pieds, au besoin à l'aide d'un miroir.

Demander l'aide d'une tierce personne si nécessaire.

- SIGNALER immédiatement toute lésion suspecte.
- -SE LAVER chaque jour les pieds à l'eau tiède et au savon. Bien SECHER, notamment entre les orteils.
- En cas de peau sèche, appliquer une CREME HYDRATANTE neutre.
- PONCER les zones d'hyperkératose avec une pierre-ponce.
- -Porter des CHAUSSETTES en fibres naturelles, changées tous les jours.
- Être attentif au choix des CHAUSSURES qui doivent être achetées en fin de journée.

Plusieurs paires sont nécessaires pour varier les appuis et frottements.

- CONTROLER A LA MAINI'absence de corps étranger avant de se chausser.
- Limiter les talons à 5 cm.

V. COMPLICATIONS FIBROSANTES DU DIABETE

Elles sont rares et sont l'apanage des diabètes de plus de 10 ans d'ancienneté.

Elles comprennent:

- Le syndrome du canal carpien.
- La capsulite rétractile de l'épaule.
- La maladie de Dupuytren : rétraction de l'aponévrose palmaire superficielle des mains.
- La cheiro-arthropathie : rétraction des tendons fléchisseurs de la main.
- Autres localisations : rétro-péritonéale, mammaire, génitale (maladie de La Peyronie).

TRAITEMENT DU DIABETE SUCRE

I. INTRODUCTION

La prise en charge du diabète doit être globale.

Les objectifs du traitement sont multiples :

- Equilibrer le diabète en atteignant des objectifs glycémique personnalisés et en évitant les hypoglycémies.
- Prévenir les complications métaboliques.
- Prévenir les complications chroniques responsables de la mortalité et de la morbidité de la maladie.
- Assurer une bonne qualité de vie au diabétique pour lui permettre une vie familiale, professionnelle et personnelle normales.

Les moyens du traitement sont :

- Les mesures hygiéno-diététiques.
- Les antidiabétiques oraux,utilisés depuis une cinquantaine d'années et actuellement de plus en plus nombreux.
- L'insulinothérapie, utilisée depuis 1921.

La réalisation des objectifs thérapeutiques nécessite une participation active des patients, ce qui impose à l'équipe soignante un effort de transfert de connaissances : « éducation thérapeutique » des diabétiques.

II. MOYENS THERAPEUTIQUES

A. MESURES HYGIENO DIETETIQUES

Elles comprennent : la diététique, l'activité physique, la lutte contre les addictions, la gestion du stress...

1. Diététique du diabétique :

- a) Les besoins caloriques quotidiens sont déterminés en fonction de l'indice de masse corporelle ou body mas index (BMI), du niveau d'activité physique et de l'état physiologique (âge, sexe, grossesse, maladie intercurrente...).
 - Chez un sujet de poids normal : le régime sera normo calorique: 2000 à 2400 kcal/j (30 35 kcal/kg).

• En cas d'excès pondéral (BMI>25 kg/m²), le régime sera modérément hypocalorique : 1600 à 2000 kcal/j.

b) La répartition des nutriments :

• Les glucides doivent représenter 50 à 55% de l'apport calorique total (soit environ 200 à 250 g/jour). Le régime sera dans tous les cas normo-glucidique car les régimes à faible teneur en glucides laissent une grande place aux graisses alimentaires et sont athérogènes.

L'index glycémique, permet de classer les aliments en fonction de la réponse glycémique post-prandiale (importance de l'hyperglycémie après l'ingestion d'un aliment dont la masse est calibrée pour apporter une quantité fixe de glucides (ex : 50 g), comparé à un aliment de référence : le glucoseou le pain blanc, dont l'index glycémique est de 100%.

L'index glycémique des aliments est variable : élevé (sodas, pain blanc, pomme de terre), modéré (riz, pâtes alimentaires, semoule,fruits(40-60%)), ou bas (laitages, légumineuses (haricots, lentilles) et légumes verts).

Le patient peut moduler l'index glycémique des aliments en agissant sur :

- * le mode de préparation : la réponse glycémique est plus élevée pour les féculents cuits que crus.
- * la richesse en fibres diminue l'indexglycémique : ex : fruit entier vs jus de fruit.
- * les glucides pris au cours ou à la fin d'un repas mixte sont moins hyperglycémiants que s'ils sont pris à distance d'un repas.

Le diabétique doit également connaître les **tables d'équivalences glucidiques** (Ex : 20g de glucides = 400 ml de lait, un fruit de 150g, 30 g de pain) et également les équivalences protidiques et lipidiques des aliments non glucidiques (huile, beurre, œufs, viandes).

Les édulcorants sans apport calorique sont tolérés.Les édulcorants acaloriques sont utiles à l'observance du traitement et préservent le confort psychologique des diabétiques « dépendants » du goût sucré.

- Les lipides : doivent représenter 30 à 35% de l'apport calorique total(soit 60 à 70 g/jour) répartis en :
 - 15% acides gras poly-insaturés (poisson gras, huiles végétales, fruits secs)
 - 8% acides gras mono-insaturés (huile d'olive)
 - 7% acides gras saturés (origine animale)
 - < 2% acides gras trans et hydrogénés (margarine, pâte à tartiner...)

L'apport en cholestérol doit être inférieur à 300 mg/jour.

• Les protides : doivent représenter 10 à 15% de l'apport calorique total(0,8 à 1 g/kg/jour), dont 50% d'origine animale et 50% d'origine végétale

2. L'exercice physique :

Il a de nombreux effets bénéfiques sur l'équilibre glycémique, la perte du poids, la sensibilité périphérique à l'insuline, l'équilibre lipidique et tensionnel, c'est-à-dire sur tous les facteurs de risque cardiovasculaire du patient.

La prescription de l'exercice physique consiste :

- en des modifications réalistes du mode de vie quotidien, de façon à être plus actif (descendre du bus à la station précédent son arrêt, garer sa voiture loin de son lieu de travail, prendre les escaliers au lieu de l'ascenseur...).
- en un exercice modéréet régulier:
 - modéré :sans dépasser 50 à 70 % de la fréquence maximale théorique (FMT = 220 âge). Par exemple chez sujet de 50 ans, la fréquence cardiaque à l'effort ne doit pas dépasser 119 bat/min.
 - régulier :30 minutes par jour, tous les jours de la semaine.
 - privilégier les activités d'endurance : marche d'un pas soutenu, cyclisme, jardinage,
 vélo d'appartement...

Le programme proposé doit être réaliste et adapté au patient.

La réintroduction d'une activité physique chez un sujet sédentaire, doit être progressive.

Les activités sportivessont autorisées, voire conseillées chez les patients jeunes et indemnes de complications (diabétiques de type 1+++). Certains sports sont cependant contre indiqués, notamment lessports violents, en raison du risque rétinien accru (boxe, sports de combat), les sports en solitaire (plongée sous marine) et les sports mettant en jeu la vie des coéquipiers (alpinisme, spéléologie).

Certaines précautions doivent être prises avant de conseiller une activité sportive :

- l'ECG d'effort est systématique, chez les personnes de plus de 50 ans surtout en présenced'un tabagisme ou d'autres facteurs de risques associés au diabète.Il sera complété par uneépreuve d'effort, voire une scintigraphie myocardique.
- un examen du fond d'œil doit être systématique. La rétinopathie proliférante est une contre-indication temporaire aux activités physiques violentes.
- —l'examen des pieds est indispensable à la recherche d'une artériopathie oud'une neuropathie qui nécessiterait des précautions particulières.

— l'éducation du patient pour éviter le risque hypoglycémique et adapter le traitement hypoglycémiant (insuline,sulfamides).

B. MEDICAMENTS HYPOGLYCEMIANTS (ANTIDIABETIQUES ORAUX):

Il existe plusieurs familles d'hypoglycémiants :

- Les insulino-sensibilisateurs : biguanides (metformine).
- Les glitazones ou thiazolidinedionesretirées du marché en Tunisie et en France.
- Les insulinosécréteurs :
 - o sulfamideshypoglycémiantset les glinides
 - o incrétinagogues : inhibiteurs de la DPP4 ou gliptines et les analogues de la GLP-1
- Les ralentisseurs de l'absorption du glucose : inhibiteurs des alpha-glucosidases (acarbose).
- Les inhibiteurs de la SGLT-2
 - 1. Les biguanides:

Mode d'action:

- Leur action essentielle se situe surtout au niveau du foie et du muscle dont ils améliorent
 l'insulino-sensibilité et l'utilisation périphérique du glucose.
- Ils inhibent la néoglucogenèse hépatique.
- Ils n'ont pas d'action insulino-secrétrice et n'entraînent donc pas d'hypoglycémie.
- Réduction moyenne de l'hémoglobine glyquée de l'ordre de 1 à 1,5%.

La metformine est l'unique molécule de cette classe : Glucophage_{850mg} et _{1000mg}, Metforal®_{850mg}, Diaformine®_{850mg}, Formidiab®_{850mg}, Mefor®_{850mg} et _{1000mg}...

La posologie optimale est de 2 g/j.

Effets secondaires: troubles digestifs (douleurs abdominales, nausées, flatulence, diarrhée) fréquents mais souvent transitoires et qui s'améliorent en réduisant la dose. La tolérance est améliorée par l'augmentation progressive des doses et la prise au milieu ou en fin de repas.

L'acidose lactique est un risque vital mais exceptionnel des biguanides lorsqu'ils sont prescrits chez un diabétique insuffisant rénal par blocage de la néoglucogénèse.

Il existe également un faible risque de carence en vitamine B12 par interférence avec son absorption intestinale

Contre indications:

- Insuffisance rénale :
 - o Moitié dose si clearance de la créatinine entre 30 et 60 ml/mn

- Arrêt si clearance de la créatinine < 30 ml/mn
- Insuffisance hépato-cellulaire,
- Hypoxie sévère : ex : insuffisance respiratoire chronique
- Les biguanides doivent être arrêtés dans certaines situations aigues : Phase aigue d'un IDM ou d'insuffisance cardiaque, intervention chirugicale, examens radiologiques avec produit de contraste iodé.
- Grossesse.
 - 2. Les glitazones (thiazolidinediones):

Agonistes des récepteurs nucléaires PPAR-gamma. Ils diminuent l'insulinorésistance musculaire et hépatique. Ils agiraient par ailleurs, en réduisant la quantité de tissu adipeux abdominal, les lipides circulants (baisse des TG et hausse du HDL cholestérol) et en abaissant modestement la pression artérielle.

La commercialisation de la **pioglitazone**(Actos_{15 et 30mg}®, Piagtos_{15mg}®) a été suspendue en Tunisie depuis Juin 2011, en attendant de lever le doute sur son potentiel carcinogène sur la vessie.

3. Les sulfamides hypoglycémiants :

Mode d'action:

Ils stimulent l'insulinosécrétion, en se liant à un récepteur spécifique sur la membrane de la cellule β pancréatique. Ils ne peuvent donc être efficaces qu'en présence d'une sécrétion pancréatique d'insuline.

Réduction moyenne de l'hémoglobine glyquée de l'ordre de 1,5 à 2 %.

Sulfamides à durée d'action prolongée: une seule prise par jour.

Glimépiride (Amarel_{1,2,3,4 et 6mg}®, Glimid_{1,2,3,4 et 6mg}®, Monorel_{1,2,3 et 4mg}®, Diabirel_{1,2,3 et 4mg}
 ®, Irys_{1,2,3 et 4mg}®, Glitra_{1,2,3,4mg}®, Glimepiride-Winthrop_{1,2,3 et 4mg}®).

Demi-vie : 5 à 8 heures, durée d'action : 24 heures.

Posologie: 1 à 6 mg/jour.

• Gliclazide (Diamicron LM 30 et 60 mg®, Diamezid LM30mg®)(forme à libération modifiée).

Demi-vie : 10 à 12 heures, durée d'action \geq 24 heures.

Posologie : 30 à 120 mg jour en une prise.

Sulfamides à durée d'action courte : 3 prises par jour.

• Glibenclamide: (Glibenclamide_{5 et 2,5mg}®, Daonil_{5mg}®, Diabenil_{5mg}®, Hemi-Daonil_{2,5mg}®, Mi-Diabenil_{2,5mg}®)

Demi-vie plasmatique relativement courte (5 heures) mais durée d'action prolongée (plus de 24 heures).

Posologie: 2,5 à 15 mg/ jour, à doses progressives.

• **Glipizide**(Sucrazide_{5mg}®)

Demi-vie : 2 à 4 heures, durée d'action < 24 heures.

Posologie: 1 à 3 cp/jour.

• Gliquidone (Glurénor_{30mg}®). Elimination en majorité biliaire, élimination rénale : 5 %.

Demi-vie : 1,5 heure, durée d'action d'environ 7 heures.

Posologie: 1 à 3cp/jour.

Règles de prescription :

Utiliser des doses progressives (risque d'hypoglycémie).

Préférer les sulfamides à durée d'action courte chez le sujet âgé et en cas d'insuffisance rénale modérée :gliquidone.

Prise: 15 à 30 minutes avant les repas.

Ne pas dépasser la dose maximale.

Effets secondaires:

- Hypoglycémie et prise de poids: s'observent avec tous les sulfamides hypoglycémiants sans exception. L'hypoglycémie est surtout importanteavec le glibenclamide, sulfamide puissant et de durée d'action prolongée.
- Hépatites, allergies : exceptionnelles.

Contre-indications:

- Insuffisance rénale avec clairance de la créatinine < 30 ml/mn.
- Insuffisance hépato-cellulaire.
- Allergie aux sulfamides
- Grossesse.
 - 4. Les glinides (ou métaglinides):

Mode d'action:

Ils stimulent l'insulinosécrétion, en se liant à un récepteur spécifique sur la membrane de la cellule β pancréatique, mais sur un site différend de celui des sulfamides hypoglycémiants. Leur demi-vie plasmatique est courte et ils sont métabolisés principalement au niveau du foie et excrétés dans la bile.

Ils réduisent la glycémie post-prandiale.

Le répaglinide(Novonorm_{0,5, 1 et 2 mg}®) est le seul représentant de cette classe.

Posologie: 0,5 à 6 mg/j, en 3 prises, 15 mn avant chaque repas

Contre-indications:

- Insuffisance rénale avec clairance de la créatinine < 30 ml/mn.
- Insuffisance hépato-cellulaire.
 - 5. Les incrétinomimémiques (analogues du GLP-1 et inhibiteurs de la DPP4 (gliptines))
 - a) Bases physiologiques : « l'effet incrétine »

Le **Glucagon-Like Peptide 1** (GLP-1) est une hormone polypeptidique de 30 acides aminés, secrétée par les cellules endocrines de la paroi digestive (estomac et intestin proximal), sous l'effet de la prise alimentaire.

Il appartient avec le GIP (glucose-dependantinsulinotropicpaptide) à la famille des **incrétines**, qui jouent un rôle actif dans la médiation des réponses des cellules pancréatiques alpha et bêta à l'ingestion d'aliments:

- Stimulation de la sécrétion d'insulineen réponse au glucose (action strictement dépendante du glucose)
- Réduction de la sécrétion de glucagon
- Ralentissement de la vidange gastrique et diminution de la prise alimentaire.

Deux types de médicaments utilisent l'effet incrétine :

- * Les inhibiteurs de la dipeptidyl peptidase-4(DPP4): Le GLP-1 endogène est rapidement dégradé par une enzyme, la DPP4. Ces agents, en inhibant la dégradation du GLP1 endogène, augmentent sa demi-vie et sa concentration plasmatique, et ainsi, son effet insulinosécréteur physiologique.
- * Les agonistes du GLP-1: ils agissent en stimulant les récepteurs du GLP1 et induisent une concentrationplasmatique élevée de GLP1.

Ces médicaments ont pour but de restaurer l'effet incrétinetrès altéré chez le diabétique de type 2, du fait d'un déficit en GLP1. Grâce à leur effet glucose-dépendant, les hypoglycémies sont rares.

b) Les inhibiteurs de la DPP-4 (gliptines) :

Ils sont commercialisés en Tunisie depuis 2012.

Ils augmentent la sécrétion d'insuline de façon glucose-dépendante. Il n'y a pas d'effet du GLP-1 sur la sécrétion d'insuline pour des glycémies inférieures à 4.5 mmol/l.

La baisse de l'HbA1c est au mieux de 0,5 à 0,8%.

Produits commercialisés en Tunisie :

Sitagliptine (Januvia_{100 mg}®): 1cp/jour

Vildagliptine (Galvus_{50 mg} ®): 2 cp par jour

Saxagliptine (Onglyza_{5 mg}): 1 cp/jour

D'autres gliptines n'existent pas encore en Tunisie : Alogliptine, Linagliptine...

Effets secondaires rapportés: infections des voies respiratoires supérieures, infections urinaires, céphalées, douleurs abdominales, dyspepsie, diarrhées...Des dysfonctionnements hépatiques (incluant des hépatites) réversibles à l'arrêt du traitement et de rares cas d'angio-oedèmes ont été signalés.

Sur le plan cardio-vasculaire, la sitagliptine (étude TECOS) et la saxagliptine (étude SAVOR) sont neutres concernant la survenue d'accidents cardio-vasculaires fatals ou pas. Néanmoins la saxagliptine semble augmenter l'incidence des hospitalisations pour insuffisance cardiaque.

Précautions:

- Si IRC < 30 ml/mn: utiliser moitié dose pour les gliptines sauf pour la linagliptine.

c) Les analogues du GLP-1:

Ils sont commercialisés en Tunisie depuis 2017 (liraglutide)

Ils n'existent que sous forme injectable (stylos à injection sous-cutanée).

Ils abaissent la glycémie en stimulant la sécrétion d'insuline et en inhibant celle du glucagon. De plus, ils entraînent une perte de poids durable en améliorent la satiété et en ralentissent la vidange gastrique.

Produits:

Exénatide (Byetta®)_{5 et 10 μg} (stylo injecteur pré-rempli jetable). Posologie : 2 injections/ jour. **Liraglutide** (Victoza®)_{6 mg/ml}(stylo pré rempli jetablede 3 ml). Posologie : 1 injection par jour (1,2 mg/j).

Effets secondaires:

surtout digestifs (nausées, vomissements, diarrhée...) avec un risque potentiel de pancréatite aiguë.

L'étude LEADER sur le liraglutide, a démontré un effet bénéfique de réduction de la mortalité et des évènements cardio-vasculaires majeurs.

Contre-indications:

- Insuffisance rénale sévère (clairance <30 ml/mn).
- Gastroparésie.
- Patient < 18 ans.

6. Les inhibiteurs des alpha-glucosidases :

Mode d'action:

Ils agissent exclusivement dans le tube digestif (peu de passage systémique), en inhibant de façon compétitive les alpha-glucosidases de l'intestin grêle. Ils retardent l'hydrolyse et l'absorption des glucides complexes : polysaccharides et amidons. Ils réduisent l'hyperglycémie postprandialede 20 à 30 %.

Leur efficacité sur l'HbA1c est modeste : réduction de l'ordre de 0,5 à 1%.

Acarbose (Glucor_{50 et 100mg}®) :seul représentant de cette classe.

Posologie : 1 cpau début de chaque repas.Les doses initiales devront être faibles puis augmentées lentement (50 à 300 mg/j).

Effets secondaires : Troubles digestifs : ballonnement, flatulence post prandiale et abondance de gaz intestinaux. Cestroubles dépendent des individus, de la posologie et de la vitesse de progression des doses, de l'association à des régimes riches en fibres.

Contre-indications:

- Insuffisance rénale sévère (clairance < 25 ml/mn).
- Maladies inflammatoires chroniques du colon.

7. Les inhibiteurs du sodium-glucose co-transporteur de type 2 (SGLT-2) ou gliflozines.

De commercialisation récente. Non encore disponibles en Tunisie.

Mécanisme d'action :

Cette classe médicamenteuse a un mécanisme d'action indépendant de l'insuline et ne cause pas d'hypoglycémies.

La réabsorption du glucose au niveau rénal se fait à 90% dans le tubule proximal, où l'expression des récepteurssodium-glucose co-transporteur de type 2 (SGLT-2) est la plus élevée. Ces récepteurs sont surexprimés chez lespatients diabétiques, causant ainsi une hyperglycémie par excès de réabsorption.

Les inhibiteurs des SGLT-2 causent une augmentation de la glucosurie avec réduction de la glycémie et de l'HbA1c (de 0,5 à 1%, selon les études), mais aussi une réduction pondérale (2 à 3 kg) et de la TA (3 à 4 mm Hg, environ).

En 2016, l'étude EMPA-REG sur la sécurité cardio-vasculaire de ces molécules a montré une réduction de la mortalité cardio-vasculaire de 35% chez des patients diabétiques de type 2 âgés et cardiaques et un ralentissement de la néphropathie diabétique.

Trois produits sont actuellement utilisés dans le monde :empagliflozine (Jardiance®), canagliflozine et dapagliflozine.

Effets secondaires:

- Infections génitales et plus rarement urinaires : 10 à 15% chez les femmes et 1 à 4% chez les hommes.
- Des cas d'acidocétose euglycémique(par inhibition du glucagon) et une atteinte osseuse pour la canagliflozine et la dapagliflozine ont été décrits.
- Risque accru d'amputations

Contre indications:

Association aux autres diurétiques, surtout chez les patients âgés et fragiles (à haut risque d'hypo volémie et de déshydratation).

Patients prédisposés aux infections génitales ou urinaires.

Patients ayant des troubles de la néoglucogénèse et patients sous diète faible en hydrates de carbone.

Insuffisance rénale.

C. *INSULINOTHERAPIE* :

1. Types d'insuline (tableauxIV et V) :

Les insulines utilisées aujourd'hui sont :

- soit strictement identiques à l'insuline humaine, fabriquées parla méthode de recombinaison génétique.
- Soitdes insulines recombinantes, ayant subi de légères modifications de structure : analogues de l'insuline.

Tableau IV - Les insulines humaines commercialisées en Tunisie

Durée d'action	Nom commercial	Présentation			
	Actrapid®HM	Suspension injectable, flacon de 10 ml			
Insuline	Insuman rapide	(100 UI/ml)			
rapide	A atranid@UMDanfill@	Suspension injectable, boite de 5			
	Actrapid®HMPenfill®	cartouches de 3 ml (100 UI/ml)			
Insuline	Insulatard® HM NPH	Suspension injectable, flacon de 10 ml			
intermédiaire	Insumanbasale	(100 UI/ml)			

	Insulatard® HM NPH Penfill®	Suspension injectable, boite de 5				
	Insulatard® HM NPH Pentill®	cartouches de 3 ml (100 UI/ml)				
	Mixtard® 30 HM	Suspension injectable, flacon de 10 ml				
Insuline	Insumancomb	(100 UI/ml)				
biphasique	Mixtard® 30 HM Penfill®	Suspension injectable, boite de 5				
	IVIIAtaide 30 IIIVI FEIIIIII	cartouches de 3 ml (100 UI/ml)				

Tableau V - Les analogues de l'insuline commercialisés en Tunisie

Durée d'action	Nom de la molécule	Nom commercial	Présentation				
Analogue	Asparte	NovoRapid® FlexPen®					
rapide	Glulisine	Apidra® Solostar®					
Analogue lent	Glargine U100	Lantus® Solostar®	Suspension injectable (100 UI/ml), boite de 5 stylos pré-remplis (3 ml)				
	Levemir	Levemir® FlexPen®					
Analogue biphasique	Asparte biphasique	NovoMix® 30 FlexPen®					

> LES ANALOGUES NON COMMERCIALISES EN TUNISIE :

- Analogues lents : Glargine U300 (Toujeo®), Degludec (Tresiba®)
- Analogues Rapides : Lispro(Humalog ®)
 - 2. Cinétique d'action des insulines (tableau VI) :

Les insulines diffèrent par leur durée d'action lorsqu'elles sont administrées par voie souscutanée:

- Les insulines d'action courte (reconnues à leur aspect limpide): les analogues rapides (3 heures) et les insulines humaines rapides (4 à 6 h) couvrent les besoins prandiaux.
- Les insulines intermédiaires et les insulines lentes (insuline NPH : 9 à 16 h, analogue lent : environ 24 h) couvrent les besoins basaux.
- Les insulines biphasiques sont des « mélanges » d'insulines d'action rapide et intermédiaire ou d'analogues en proportions variables.

Tableau VI- Cinétique d'action des différentes insulines

	Délai d'action	Pic d'action	Durée d'action
Insuline Rapide			
Insuline	30 mn - 1 h	2 - 3 h	4 - 6 h
Intermédiaire	2 - 4 h	7 - 8 h	9-16 h
Insuline Biphasique	30mn	2 - 8 h	Jusqu'à 24 h
Analogues Rapides	< 15 mn	1 h	3 h
Analogues Lents	1 - 2 h	-	24 h
Analogues	10 -20mn	1 - 4 h	Jusqu'à 24 h
Biphasiques			

3. Voies d'administration:

Les voies intramusculaire et intraveineuse sont réservées aux situations d'urgence. Seules les insulines humaines rapides sont utilisables par les voies IV, IM et sous-cutanée.

Les délais d'action dépendent de la voie d'administration:

- par voie IV : l'action est immédiate et dure 10 20 mn.
- par voie IM : elle agit en 5 mn et se maintient 1 à 2 heures.

Toutes les autres insulines doivent être administrées par voie sous-cutanée.

Les sites d'injection utilisés (8 points d'injection par site), avec un programme de **rotation régulière**, sont :

- parties antérieures et externes des cuisses et partie haute des fesses.
- parties latérales de l'abdomen (à 2 cm du pourtour de l'ombilic).
- parties supérieures et externes des bras.

La vitesse de résorption varie selon les lieux d'injection :

abdomen (plus rapide) >bras> cuisses et fesses (plus lente)

Il faut proscrire la rotation anarchique des points d'injection. On conseille en général d'injecter l'insuline retard du soir dans les cuisses(zones lentes). L'insuline du matin et de midi peut être injectée selon le choix du malade dans le ventre ou dans le bras (zones rapides), en variant le point d'injection de quelques cm.

4. Méthodes d'injection:

Elles ont beaucoup progressé.

- Les seringues à insuline jetables : de 1 ou 2 ml graduées en unités d'insuline avec aiguilles ultra fines de 8 mm, 12 mm ou 15 mm selon l'épaisseur du pannicule adipeux.
- Les stylos injecteurs rechargeables ou jetables : ont permis d'améliorer l'acceptabilité de l'insulinothérapie.
- Les pompes portables : permettent une perfusion horaire continue à débit constant, et la possibilité de délivrer des bolus avant les repas.
 - 5. Réalisation pratique de l'insulinothérapie :

L'institution d'une insulinothérapie sera réalisée au mieux en milieu hospitalier, afin de déterminer les besoins en insuline par 24 heures du patient et le schéma insulinique le mieux adapté à son mode de vie.

L'hospitalisation est aussi l'occasion d'enseigner au patient la technique d'injection, l'autocontrôle et l'ajustement des doses.

a) Besoins théoriques :

Chez le diabétique de type 1, les besoins théoriques moyens sont de 0,4 à 0,9 U/kg dont 0,3 à 0,4 U/kg d'insuline basale et le reste pour les besoins prandiaux. Les besoins sont moindres s'il persiste une réserve en insuline. Ils sont accrus chez l'obèse du fait de l'insulinorésistance.

b) Schémas d'insulinothérapie :

Les protocoles d'insulinothérapie sont multiples. Le choix dépend de différents facteurs surtout:

- des objectifs glycémiques (eux-mêmes fonction de l'âge, de l'état physiologique, de la présence ou non de complications ou de handicap...).
- de l'activité du sujet et de son alimentation.
- de la réalisation ou non de l'autosurveillance.
- de la motivation du patient.

Protocole bed-time: une injection d'insuline NPH ou d'un analogue lent le soir et desantidiabétiques oraux pendant la journée. Ce protocole est adapté à un déclin débutant de la cellule béta.

Protocole basal :l'injection d'un analogue lent le soir ne permet de corriger que la glycémie à jeun.Le protocole à deux injections d'insuline NPH par jour permet de corriger la glycémie à jeun et la glycémie préprandiale du soir.

L'administration de 2 insulines prémixées (humaines ou analogues) permet de mieux contrôler la variabilité glycémique.

Protocole basal plus : une insuline basale(deux injections d'insuline NPH par jour ou une injection d'un analogue lent par jour) + une seule injection préprandiale d'insuline rapide.

Protocole basal-bolus :ou insulinothérapie optimalisée :

- Deux injections d'insuline NPH par jour + une injection d'insuline rapide à chaque repas :protocole à 3 injections (mélange d'insuline intermédiaire et rapide matin et soir).
- Ou une injection d'un analogue lent le soir + une injection d'un analogue rapide à chaque repas :protocole à 4 injections.
- Ou une injection d'insuline intermédiaire ou d'un analogue lent au coucher+ 3 injections d'insuline rapide avant chaque repas(protocole à 4 injections).

Ces protocoles sont adaptés à un déclin important de la cellule béta. Ils permettent d'atteindre les objectifs glycémiques pré et post prandiaux. Ils exposent à plus un grand risque d'hypoglycémieet nécessitent une éducation plus poussée des patients. Ils permettent, chez les patients les mieux éduqués, d'évoluer vers un protocole d'« insulinothérapie fonctionnelle » qui consiste à adapter les doses d'insuline rapide aux apports glucidiques.

<u>Pompes portables</u>: elles contiennent des cartouches d'insuline ou d'analogue rapide à 100 U/ml.L'insuline est infusée par l'intermédiaire d'un cathéter sous-cutané.

Elles offrent un schéma d'insulinothérapie plus physiologique et une plus grande flexibilité des horaires des repas. L'équilibre glycémique est souvent meilleur, au prix d'une auto surveillance extrêmement stricte.

Indications : Elles son réservées aux échecs de l'insulinothérapie optimalisée. Inconvénients:Plus contraignantes et plus coûteuses.Les problèmes de cathéter sont fréquents.

- 6. Incidents et accidents de l'insulinothérapie :
- * Allergies : douleurs et rougeur au point d'injection ont considérablement diminué avec les progrès de la purification des insulines.
- * Lipodystrophies : modifications du tissu sous cutané liées à l'action locale de l'insuline:
- Lipoatrophies liées à l'immunogénicité de l'insuline.
- •Lipohypertrophies secondaires à une mauvaise technique d'injection.

Les lipodystrophies modifient la résorption sous cutanée de l'insuline et peuvent provoquer des hyper ou des hypoglycémies anarchiques.

- * La complication essentielle de l'insulinothérapie est **l'hypoglycémie.** Elle est favorisée par le protocole intensif et le manque d'éducation des patients. Ses conséquences sont multiples (cf hypoglycémie):
- •le rebond hyperglycémique(hyperglycémie réactionnelle). Si les hypoglycémiessont fréquentes, elles peuvent aboutir à un diabète instable.
- •le risque d'AVC ou d'accident coronarien chez le diabétique âgé.
- le retentissement psychologique: l'hypoglycémie est source d'angoisse et peut pousser le patient à maintenir une hyperglycémie de sécurité.

III. STRATEGIE THERAPEUTIQUE

A.IMPORTANCE DE L'EQUILIBRE GLYCEMIQUE

Elle a été confirmée par de grandes études interventionnelles.

Dans le DT2 : l'étude United Kingdom Prospective DiabetesStudy (UKPDS) réalisée entre 1977 et 1997 sur 5102 diabétiques, en comparant les effets d'un contrôle glycémique optimal (obtenu avec des ADO, avec ou sans insuline) àun contrôle conventionnel, a permis de démontrer que la réduction de l'hémoglobine glyquée de 1%, réduisait de 25 à 30 % le risque demicroangiopathie et de 16% celui de la macroangiopathie.

Chez les patients revus après un recul de 10 ans, alors que leur équilibre glycémique avait rejoint celui du groupe « conventionnel », l'étude a permis de démontrer que les patients les mieux équilibrés dès la découverte de leur diabète présentaient moins de complications cardiovasculaires que les patients du groupe « conventionnel ». Cette observation a donné naissance au concept de« mémoire métabolique ».

Dans le DT1 :l'étude Diabetes Control and Complications Trial (DCCT)ayant porté sur 1441 DT1 traités par insuline (protocole intensif vs conventionnel) a permis de démontrer que l'équilibre glycémique (HbA1c <7%) a permis de réduire la microangiopathie et la neuropathie. L'étude STENO-2 faisant suite à cette étude a également permis de démontrer un bénéfice cardio-vasculaire.

En 2008, 3 grandes études interventionnelles (ADVANCE, ACCORD et VADT) ont mis l'accent sur les risquesd'une intensification du traitement chez les DT2 âgés et déjà porteurs d'atteintes cardiovasculaires. Ces études ont objectivé une surmortalité cardio-vasculaire, dont le principal facteur de risque était la survenue d'hypoglycémies. Ces études ont abouti à la recommandation de « personnaliser » les objectifs glycémiques et la prise en charge.

B. PRISE EN CHARGE DU DT2

Le traitement du DT2 vise à éviter les complications dégénératives et surtout cardiovasculaires.

1. Objectifs thérapeutiques :

a) Objectifs glycémiques :

Il ressort des résultats des grandes études, que les objectifs doivent être personnalisés et adaptés à chaque patient (stratégie centrée sur le patient) tenant compte des facteurs suivants : (ADA 2015)

- Age du patient et espérance de vie.
- Ancienneté du diabète.
- Risques de l'hypoglycémie.
- Complications cardio-vasculaires.
- Co-morbidité : rénale, hépatique...
- Motivation du patient.
- Ressources : assurance-maladie, moyens d'auto-surveillance, prise en charge par l'entourage...
- * Pour le DT2 récent chez un patient jeune, indemne et non complique, l'objectif thérapeutique est strict! : HbA1c à 6,5 %.

Cet objectif correspond à:

- Une glycémie à jeun entre 0,8 et 1,2 g/l,
- Une glycémie post prandiale $\leq 1,6$ g/l.

- * Lorsque le diabète est ancien chez un patient compliqué et / ou une atteinte vasculaire avérée et/ou un risque hypoglycemique important et/ou âgé, l'objectif doit être allégé avec une HbA1c à 7,5 voire 8%, ce qui correspond à :
 - une glycémie à jeun ≤ 1.5 g/l.
 - une glycémie post prandiale ≤ 1,8 g/l.
- * Pour la majorité de patients DT2, l'objectif d'HbA1c est ≤ à 7 %, soit :
 - Une glycémie à jeun < 1,3 g/l.
 - Une glycémie post prandiale < 1,6 -1,8 g/l.

L'objectif peut varier en fonction des circonstances, un objectif moins strict peut être recommandé transitoirement chez un patient jeune en difficulté psychologique ou professionnelle.

Même quand l'HbA1c reste au-dessus de ces objectifs, il ne faut pas oublier que de passer de 11 à 9 % diminue le risque de complications de 60 %.

b) Objectifs visant la réduction des facteurs de risque vasculaire :

En plus de l'obtention d'un équilibre glycémique conforme aux objectifs thérapeutiques, grâce àun choix adéquat des agents thérapeutiques et en évitant les hypoglycémies, la prise en charge du DT2 exige un contrôle adéquat de tous les facteurs de risque cardiovasculaires associés :

- stabilisation ou réduction pondérale
- arrêt du tabac
- TA < 14 /9 cm Hg voir 13/8 cmHg pour les patients avec une atteinte d'un organe cible
- LDL-C < 1 g/l en prévention primaire ou <0,7 g/l en prévention secondaire.
- HDL-C > 1 mmol/l.
- triglycérides < 1,5 g/l.
- microalbuminurie < 30 mg/24 heures.

2. Indications thérapeutiques chez le diabétique de type 2 :

- * Les prescriptions hygiéno-diététiques. Elles sont au premier plan, visant à faire adopter au patient une bonne hygiène de vie, incluant :
- Une diététique visant à corriger tous les facteurs de risque vasculaire en évitant l'excès calorique, les glucides à index glycémique élevé, les graisses saturées et trans, le sodium et en privilégiant les aliments riches en fibres...
- Une activité physique, adaptée aux possibilités physiques du patient, à son activité quotidienne et à son mode de vie.

- La lutte contre les addictions : tabac, alcool.

* Prescription médicamenteuse :

- En dehors des urgences inaugurales, la metformine est le premier ADO prescrit, sauf si elle est mal tolérée.
- En cas d'échappement ou d'intolérance ou de contre-indication de la metformine, toutes les autres médications (bithérapie, trithérapie ou insuline +ADO), peuvent être utilisées en fonction des objectifs assignés et avec l'accord du patient. La prescription sera guidée par le mode d'action des médicaments, leurs contre-indications et par l'écart de l'HbA1c par rapport à l'objectif (tableau VI).

Les recommandations de l'ADA 2019 privilégient l'objectif cardio-vasculaire en recommandant l'utilisation du liraglutide et des inhibiteurs de la SGLT-2 en cas de cardiopathie ischémique avérée et d'inhibiteurs SGLT2 en cas d'insuffisance cardiaque et de maladie rénale avérée.

Tableau VII : Stratégie thérapeutique centrée sur le patient

Objectif	Médications indiquées avec la	Médications à éviter		
	metformine			
Correction de la glycémie	Acarbose, glinides, gliptines,			
post prandiale	insuline rapide			
Eviter les hypoglycémies	Acarbose, gliptines, agonistes de	Sulfamides ++		
	GLP-1, i-SGLT-2, analogues de			
	l'insuline			
Eviter la prise de poids	Agonistes de GLP-1, Gliptines	Sulfamides, insuline		
IRC	Glinides, gliquidone, insuline,	Metformine, sulfamides,		
	gliptines (moitié dose)	i-SGLT-2		

N° Validation: 0820201933	ľ	٧°	V	a	lid	lati	on	:	082	0	121	01	93	3
---------------------------	---	----	---	---	-----	------	----	---	-----	---	-----	----	----	---

Réduction du coût	Sulfamides, insuline	humaine,	Gliptines,	es, analogue	
	génériques		GLP-1,	analogues	de
			l'insuline		
Protection cardio-vasculaire	Analogues GLP-1, i-SG	GLT-2	Sulfamide	es,glitazones	

L'observance thérapeutique étant souvent altérée par la polymédication (ADO, antihypertenseurs, statines, anti-agrégants plaquettaires...) et par le nombre de prises médicamenteuses quotidiennes,la commercialisation de diverses associations fixes : antidiabétiques oraux (metformine + sulfamides :Amaryl®, Glucovance®, metformine +gliptines : Janumet®, Galvumet®,Kombiglyze®), antihypertenseurs (IEC ou ARA2 et/ou diurétiques...), antihypertenseurs + statines... permettent d'alléger le protocole thérapeutique.

* L'insulinothérapie est indiquée en cas :

- d'intolérance ou de contre-indications aux ADO.
- d'échappement aux ADO (insulinorequérance). Elle inclut 3 critères : objectif HbA1c non atteint, malgré des doses maximales de sulfamides et une bonne observance thérapeutique.

L'insulinothérapie sera habituellement introduite selon un **protocole** « **bed-time** », puis **intensifiée** au fur et à mesure du déclin de l'insulinosécrétion, afin de maintenir les objectifs glycémiques adaptés au patient.

Une insulinothérapie transitoirepeut être indiquée dans d'autres situations, telles que :

- infections sévères.
- neuropathie hyperalgique ou artériopathie compliquée (gangrène, mal perforant plantaire).
- interventions chirurgicales.
- contre indications transitoires à un traitement antidiabétique oral (exploration radiologique).
- mise en route d'un traitement hyperglycémiant (exemple : corticothérapie).
- complications aiguës vasculaires qui nécessitent un bon contrôle du diabète et contre indiquent les traitements oraux (infarctus du myocarde, accident vasculaire cérébral ...).

La poursuite de l'insulinothérapie sera rediscutée une fois dépassé le cap aigu.

Insulinothérapie à objectif limité (de survie).

Elle est indiquée, quel que soit le type de diabète, lorsque l'espérance de vie est limitée du fait de l'âge ou d'une maladie associée qui menace le pronostic vital ou en présence d'un handicap important.

Elle a pour buts:

- d'éviter les complications métaboliques aiguës,
- de limiter les hyperglycémies symptomatiques (lever nocturne, risque de chute...)
- d'éviter les hypoglycémies.

Objectifs du traitement:

- HbA1C ≤ 8 %
- glycémies durant le nycthémère : 1,5 à 2 g/l.

Modalités: 1 injection unique, qui peut être réalisée par le patient lui même ou par une tierce personne.

Enseignement minimal: manger régulièrement, savoir se piquer...

Auto surveillance minimale (tierce personne).

Consultations plus espacées : tous les 4 à 6 mois ou à la demande.

C. PRISE EN CHARGE DU DT1:

1. Objectifs glycémiques :

Des objectifs glycémiques clairs doivent être fixés avec chaque patient. Ces objectifs sont exprimés en termes de glycémie à jeun, de glycémie post prandiale et de taux d'HbA1C souhaitables.

Pour la majorité des DT1 (en dehors de la grossesse):

- Hb A1c < 7 % (normale: 4 à 5,6%).
- Glycémies entre 0,80 et 1,30 g/lavant les repas,
- Glycémies ≤ 1,60 g/l, 90 à 120 minutes après le repas.

Des objectifs plus stricts : (HbA1c <6,5%) peuvent être proposés à certains patients dont le diabète est récent, dont l'espérance de vie est prolongée et en l'absence de complication ou de tare associée, lorsqu'ils peuvent les atteindre sans hypoglycémies significatives et sans autres effets secondaires du traitement.

2. Indications thérapeutiques chez le diabétique de type 1 :

* Les mesures hygiéno-diététiques doivent s'adapter au protocole insulinique afin de minimiser le risque hypoglycémique.

Cours Commun de Résidanat Juillet 2019

73

Sujet 20 : Diabète sucré

N° Validation: 0820201933

Le régime est normocalorique avec ajout de collations en cas de protocole insulinique intensif.

Le jeune de Ramadan est interdit.

Selon le schéma d'insulinothérapie, on proposera :

- Si le patient est traité par des insulines humaines conventionnelles : 3 repas et 2 collations, avec une répartition des glucides entre les différents repas (exemple : 20% au petit déjeuner, 10% en collation à10h, 30% au déjeuner, 10% au goûter et 30% au dîner (ou 20% au dîner et 10% en collation au coucher).
- Si le patient reçoit un schéma basal-bolus associant un analogue lent et 3 injections d'analogue rapide, les collations sont superflues.La répartition conseillée des glucides entre les différents repas est de 30% au petit déjeuner, 40% au déjeuner, et 30% au dîner.

L'activité physique est autorisée en lui associant les recommandations pour éviter les hypoglycémies

* Protocoles d'insulinothérapie chez le diabétique de type 1 :

Le schéma idéal est le **schéma basal-bolus** (une insuline basale + 3 insulines rapides). Il devrait être institué chez tous les sujets jeunes. En pratique,il est envisagé chez un patient informé, motivé et qui a accepté les inconvénients d'un traitement intensif (injections multiples, autosurveillance, risque accru d'hypoglycémies ...).

Enseignement: auto-injection, autosurveillance et adaptation des doses.

Consultations: tous les 3 mois.

Insulinothérapie conventionnelle (2 injections par jour).

Souvent, les conditions socio-économiques des diabétiques de type 1 (coût élevé des moyens d'auto surveillance) imposent un protocole d'insulinothérapie conventionnelle à 2 injections/jour (insuline intermédiaire mélangée ou non à de l'insuline rapide),qui permet rarement d'atteindre la normoglycémie.

* Education à l'autosurveillance et à l'autocontrôle :

L'auto surveillancedoit être fréquente : au moins 4 glycémies capillaires par jour pour couvrir le nycthémère (avant les repas et au coucher).

L'obtention d'un équilibre optimal nécessite, en plus du protocole basal-bolus et de l'autosurveillance, une éducation pour pratiquer **l'auto-contrôle glycémique**(auto-adaptation des doses d'insuline). <u>L'adaptation prévisionnelle</u>est la méthode de base de l'adaptation à long terme des doses d'insuline. Ellese base sur les résultats glycémiques des 2 à 3 jours précédents.

<u>Principe</u>: L'adaptation prévisionnelle consiste à étudier « la tendance de la glycémie» sous l'effet de la dose injectée à la même heure les jours précédents.

La glycémie qui sert à déterminer la dose d'insuline à injecter est la glycémie de fin d'action de cette insuline (exemples : la glycémie de 20 heures sert à adapter la dose d'insuline intermédiaire injectée à 8 heures. La glycémie de 10 heures sert à ajuster la dose d'insuline rapide injectée à 8 heures).

Le patient devra se baser sur les **glycémies de plusieurs jours** en ne tenant compte que des anomalies constantes, reproductibles et sans cause de variation identifiable (maladie intercurrente, erreur diététique ou changement d'activité physique). Il en déduit :

- soit qu'il faut garder la même dose si la glycémie de fin d'action de cette dose était correcte,
- soit qu'il faut la modifier, en plus ou en moins, si la glycémie de fin d'action était trop élevée ou trop basse.

Les adaptations ponctuelles :

Les adaptations ponctuelles, anticipatrice et correctrice ne permettent pas d'améliorer le contrôle glycémique à long terme, lorsqu'elles sont utilisées seules.

L'adaptation correctrice est basée sur la glycémie du moment (ex : augmentation de la dose d'insuline rapide d'une ou 2 unités en présence d'une glycémie élevée).

L'adaptation anticipatrice tient compte de 2 paramètres : la quantité de glucides du repas à venir et l'activité physique prévisible des heures suivantes.

Ainsi, pour déterminer sa dose d'insuline rapide à injecter avant un repas, le diabétique éduqué va s'interroger :

- 1. que vais-je manger ? (adaptation anticipatrice)
- 2. quelle va être mon activité physique ? (adaptation anticipatrice)
- 3. comment étaient mes glycémies correspondant à la durée d'action de cette injection, les jours précédents ? (adaptation prévisionnelle)
- 4. comment est ma glycémie avant le repas ? (adaptation correctrice).

D. PRISE EN CHARGE DU DIABETIQUE EN PERIODE PERIOPERATOIRE

1. L'apport glucidique:

La période de jeûne préopératoire, l'intervention et les 4 heures postopératoires sont couvertes par une perfusion de sérum glucosé. Le débit de perfusion doit être parfaitement contrôlé

durant toute la période opératoire, pour adapter efficacement l'insulinothérapie. Les quantités habituellement recommandées sont comprises entre 5 et 10 g/·h (soit 125 ml/h de sérum glucosé à 5 % chez un adulte de corpulence moyenne).

2. L'apport d'insuline:

Les insulines biosynthétiques humaines sont les seules utilisées.

L'insulinothérapie par voie intraveineuse discontinue doit être évitée car la demi-vie plasmatique brève de l'insuline (8 mn) est responsable d'importantes oscillations glycémiques.

L'insulinothérapie intraveineuse à débit constant, à la seringue électrique, modulable en fonction de contrôles glycémiques capillaires horaires est la méthode de référence.

- Les précautions à prendre pour le contrôle glycémique du diabétique en période opératoire justifient que **l'intervention soit programmée en début de matinée** pour éviter une période prolongée de jeune avec perfusion glucosée et le stress surajouté.
- Le retour au traitement antérieur, quel que soit le type de diabète, se fait lors de la reprise alimentaire. L'intervention d'un diabétologue est souhaitable chez les patients pour lesquels l'arrêt de l'insuline ou le changement du protocole thérapeutique sont source de difficultés.

Tableau VIII : Modalités de contrôle de la glycémie en fonction des caractéristiques du diabète et des divers types d'interventions

	Intervention		
	Chirurgie courte et/ou mineure	Chirurgie longue et/ou lourde	Urgence
Diabète non	Poursuite des antidiabétiques	Passage à	Surveillance
insulinotraité	oraux	l'insulinothérapie	glycémique simple si

Equilibré	sauf biguanides	IV à débi	chirurgie courte et/ou
		constant	mineure
	Passage à l'insulinothérapie IV à		Passage à
Non équilibré	débit constant		l'insulinothérapie IV à
	Apport de soluté glucosé 5 % IV	Apport de soluté	débit constant
Diabète insulinotraité Equilibré	Maintien à l'insulinothérapie sous-cutanée Apport de soluté glucosé 5 % IV	glucosé 5 % IV	Apport de soluté glucosé 5 %
Non équilibré	Passage à l'insulinothérapie IV à débit continu constant Apport de soluté glucosé 5 % IV		Insulinothérapie IV + + rééquilibration hydroélectrolytique et acidobasique Apport de soluté glucosé 5 % IV

E. DIABETE ET GROSSESSE

1. Rationnel de la prise en charge :

Le diabète retentit sur la grossesse (complications fœtales et néonatales) et la grossesse retentit sur le diabète (complications maternelles).

Effets du diabète sur la grossesse :

1^{er} trimestre:

Le mauvais contrôle périconceptionnel du diabète expose au *risque de* <u>malformations</u>liées à l'hyperglycémie lors des 1^{ères} semaines de grossesse. Le risque d'embryo-fœtopathie diabétique se situe entre 3 et 5% (2 à 3 fois plus que la population générale). Le passage des acides gras, du glycérol et des corps cétoniques à travers le placenta sont aussi incriminés et peuvent perturber tous les stades du développement.

Les malformations observées ne sont pas spécifiques du diabète :

- le plus souvent, malformations **cardiaques** :persistance du canal artériel, CIV, coarctation aortique.
- malformations neurologiques : spina-bifida, hydrocéphalie, anencéphalie.
- malformations rénales,

• syndrome de régression caudale, exceptionnel.

Ces malformations sont responsables d'une augmentation des fausses couches spontanées etde la mortalité néonatale.

2^{ème} et 3^{ème} trimestres :

A ce stade, le diabète va retentir sur la croissance fœtale. L'hyperglycémie, l'excès d'acides aminés et d'acides gras libres induisent un hyperinsulinisme fœtal, qui stimule l'anabolisme fœtal:

- macrosomie (définie par un poids de naissance >4 kg),
- hydramnios,
- cardiomyopathie hypertrophique transitoire,
- mort fœtale in utero.

Accouchement: les risques sont:

- le traumatisme fœtal (paralysie du plexus brachial), secondaire à la macrosomie,
- l'hypoglycémie sévère du nouveau-né (hyperinsulisme et inhibition des enzymes de la glycogénolyse du nouveau-né),
- l'hypocalcémie (carence brutale des apports maternels),
- l'hyperbilirubinémie(polyglobulie secondaire à l'hypoxie),
- la détresse respiratoire (retard de résorption du liquide amniotique et maladie des membranes hyalines).

Effets de la grossesse sur le diabète:

Modification des besoins en insuline :

- Ils diminuent au 1^{er} trimestre (vomissements gravidiques): risque accru d'**hypoglycémies.**
- Ils augmentent de façon importante à partir du 2^{ème} trimestre : risque **d'acido-cétose diabétique** (mortalité fœtale in-utéro de 50 %), ou de **cétose simple prolongée** (rôle néfaste sur le développement du système nerveux central du fœtus).

Aggravation des complications dégénératives préexistantes :

- Rétinopathie surtout si elle est déjà évoluée et qu'elle s'associe à une HTA.
- Aggravation d'une HTA, d'une protéinurie, risque d'insuffisance rénale (avec risque accru d'hypotrophie fœtale et de **mortalité fœtale** in-utéro).
- Coronaropathie: risque de **mortalité maternelle** de 50 %, donc indication d'une *interruption thérapeutique* de la grossesse.

- **Pré-éclampsie**: fréquente chez les diabétiques de type 1 ayant une microangiopathie et chez les diabétiques de type 2 obèses. Elle met en jeu le **pronostic maternel et fœtal**.

La surveillance de la grossesse doit se faire en milieu spécialisé (collaboration entre obstétricien et diabétologue).

2. Programmation de la grossesse:

Elle doit être envisagée 3 mois avant la conception. On conseillera à la diabétique de réaliser ses grossesses tôt, avant la survenue des complications du diabète, mais de ne pas envisager de grossesse immédiatement après le mariage pour permettre cette planification.

Cette planification comprend:

- Mise sous contraception orale fiable (progestatifs microdosés) avant la conception.
 L'arrêt de la contraception sera autorisé lorsque les objectifs glycémiques seront atteints.
- Arrêt des hypoglycémiants oraux et institution d'une insulinothérapie optimalisée avec des objectifs stricts Stabilisation des complications dégénératives : refaire un fond d'œil ++

La grossesse est permise en cas d'obtention d'une HBA1c < 7%.

- Glycémies entre 0,80 et 1,30 g/lavant les repas,
- Glycémies $\leq 1,60$ g/l, 90 à 120 minutes après le repas.

3. Pendant la grossesse:

Protocole insulinique basal-bolus. Les analogues peuvent être utilisés. Le régime est normocalorique.

Les objectifs sont stricts :

- HbA1c < 6% et fructosamine normale.
- Glycémies <0,95 g/l avant les repas,
- Glycémies < 1,20 g/l en post prandial.

L'enseignement est intensif.

Auto surveillance : jusqu'à 7 glycémies/j.

Les consultations sont mensuelles chez les femmes enceintes.

IV. SURVEILLANCE DU DIABETIQUE

La prise en charge du diabète de la première ligne (centres de santé de base) à la 3^{ème} ligne (services spécialisés des CHU) est régie par un programme national.

Les diabétiques affiliés à la Caisse Nationale d'Assurance Maladie (CNAM) bénéficient d'une prise en charge intégrale de leurs frais de soins (code APCI 01).

La surveillance médicale des patients diabétiques inclut des consultations trimestrielles et un bilan annuel.

A. L'AUTOSURVEILLANCE

1. Auto-surveillanceglycémique:

Elle repose essentiellement sur la réalisation de glycémies capillaires.

Elle est nécessaire pour atteindre les objectifs glycémiques et obtenir un contrôle glycémique satisfaisant.

Elle est un préalable indispensable à l'apprentissage de l'adaptation des doses d'insuline.

2. Autosurveillance urinaire:

Elle consiste à rechercher une glycosurie et une acétonurie. La glycosurie survient lorsque la glycémie dépasse le seuil rénal (1,80 g/l).

L'autosurveillance urinaire a pour principal intérêt le dépistage de la cétose dès que la glycémie capillaire dépasse 2,5 g/l.

3. Autres paramètres d'autosurveillance:

On recommande également aux diabétiques, quel que soit le type de diabète, de surveiller régulièrement :

- Leur poids (la prise de poids peut être secondaire à une dose excessive d'insuline).
- Leur TA, à l'aide de brassards d'automesure, notamment chez les diabétiques de type 2.

B. PROTEINES GLYQUEES:

La glycation non enzymatique des protéines est un processus physiologique, dont l'intensité augmente avec la glycémie. L'hémoglobine glyquée (HbA1c) et la fructosamine sont des marqueurs de l'équilibre glycémique, utilisés pour le suivi des patients diabétiques.

1. L'hémoglobine glyquée (HbA1c):

Elle permet d'apprécier la qualité l'équilibre glycémique sur une période de 120 jours (durée de vie des hématies).

Sa valeur augmente lorsque les périodes d'hyperglycémie ont été fréquentes durant les 120 jours précédant le dosage et diminue lorsque la glycémie a été correctement équilibrée.

<u>Le suivi du contrôle glycémique</u> du diabète repose sur le dosage de l'HbA1c effectué tous les 3 à 4 mois

2. La fructosamine

Elleest un témoin du niveau moyen du glucose dans le sang au cours des 2 ou 3 dernières semaines.

Valeur normale: entre 200 et 290 micromoles/l.

Son utilisation est moins fréquente car la période sur laquelle elle donne des informations est beaucoup plus courte que celle de l'HbA1c.

Elle est un meilleur outil de surveillance que l'hémoglobine A1c dans 3 circonstances :

- chez les personnes ayant une **anomalie de l'hémoglobine** qui fausse le dosage de l'HbA1c (anémie hémolytique, hémoglobinopathie).
- lors de l'évaluation à court terme d'un changement thérapeutique.
- au cours de la grossesse. Les besoins insuliniques de la mère changent rapidement pendant la gestation. Le dosage de la fructosamine peut aider à adapter rapidement les doses d'insuline.

C. SURVEILLANCE ANNUELLE DU DIABETIQUE

Le diabétique bénéficie également d'un bilan annuel incluant :

- L'examen ophtalmologique
- Une exploration rénale
- Une exploration lipidique
- Une exploration cardio-vasculaire

D. COUVERTURE DES FRAIS MEDICAUX:

* Chez les patients bénéficiant d'une couverture de leurs frais médicaux par la Caisse Nationale d'Assurance Maladie (CNAM), les médications remboursées intégralement sont : la metformine, les sulfamides, l'acarbose, les glinides et l'insuline humaine. Les médications nécessitant un accord préalable sont les analogues de l'insuline et les statines. Les gliptines (inhibiteurs de la DPP4) ne sont pas encore prises en charge par la CNAM. Certains patients (ou certains groupes professionnels) bénéficient d'une prise en charge supplémentaire par des sociétés d'assurance privées.

Les glucomètres sont octroyés par la CNAM aux diabétiques de type 1 jusqu'à l'âge de 18 ans.Unflaconde 50 bandelettes leur est accordé tous les 3 mois.

* Les patients ne bénéficiant d'une couverture de leurs frais médicaux par la CNAM (patients indigents) ne peuvent bénéficier que des médicaments inscrits sur la nomenclature

hospitalière, dans la limite de leur disponibilité : insulines conventionnelles, metformine, sulfamides (glimépiride) et statines (atorvastatine).

V. EDUCATION THERAPEUTIQUE DES DIABETIQUES :

A.BUTS:

Elle fait partie intégrante de toutes les étapes de la prise en charge du patient diabétique, quel que soit le type de diabète.

L'éducation du patient l'aide à accepter et à comprendre sa maladie, à réaliser ses objectifs thérapeutiques et à adhérer au traitement.

La gestion de sa maladie par le patient lui-même lui assure un meilleur vécu de la maladie et une qualité de vie satisfaisante.

B.MODALITES:

- L'éducation implique la participation effective d'une équipe soignante préalablement formée à l'éducation: médecin, infirmière, diététicienne...
- Elle peut être réalisée en milieu hospitalier (en hospitalisation ou en ambulatoire), en consultation, dans les cabinets de libre pratique...
- Elle peut se faire de façon **individuelle** ou **par groupes homogènes** de diabétiques ayant des objectifs thérapeutiques comparables.

<u>L'éducation de groupe</u> favorise l'échange d'expériences et de connaissances entre les patients et facilite la communication avec l'équipe soignante.

- L'éducation doit être interactive et comporter des démonstrations pratiques.

C. PERIODICITE:

- A la découverte du diabète, l'éducation se limite aux notions d'utilité immédiate. Elle permet au patient d'acquérir une autonomie.
- L'éducation sera ensuite reprise au cours des semaines et mois suivants.Un véritable programme éducatif sera établi pour chaque patient après un **diagnostic éducatif**. Ce programme permettra de faire progresser le patient dans l'acquisition de l'autonomie.
- L'éducation devra être ensuite périodiquement entretenue (réévaluation continue des connaissances théoriques et pratiques et mise à niveau), en règle à un rythme annuel.

D. THEMES EDUCATIONNELS

Plusieurs thèmes éducationnels doivent être inclus dans les programmes d'éducation thérapeutique :

- Connaissances générales sur le diabète
- Injection de l'insuline
- Education diététique
- Auto-surveillance et auto-contrôle
- Hypoglycémie
- Education pour les pieds
- Planification des grossesses

Les thèmes de l'éducation seront individualisés au décours d'un diagnostic éducationnel préalable, qui repose sur les paramètres suivants :

- Les données cliniques: type et anciennetédu diabète, traitement, comorbidités.
- Les données socio-culturelles: ressources du patient, pré-requis, croyances, préjugés...
- Les aspects psychologiques du patient : acceptation, motivation.

Les indications et les thèmes éducatifs sont réunis dans le tableau IV.

E. L'EVALUATION DE L'EDUCATION

Grâce à des **questionnaires** et des **exercices pratiques.**Elle permet de juger de l'aptitude du patient à se prendre en charge et de l'effet de cette éducation sur la qualité de l'équilibre glycémique.

Tableau IX : indications des thèmes éducationnels pour les diabétiques

Thème éducationnel	Indications	Facteurs	
Connaissances générales	Diabète récent	Croyances et préjugés	
Education diététique	Selon le type	Habitudes alimentaires	
Injection de l'insuline	Traitement insulinique	Protocole ressources	
		handicap entourage	
Auto-surveillance et auto-	Tous	Ressources motivation handicap	

Sujet 20 : Diabète sucré

N° Validation: 0820201933

contrôle		
Pieds	Selon état des pieds	
Hypoglycémie	Traitement par	
	sulfamides ou insuline	Co-morbidité ++
Planification de grossesse	Activité génitale	

VI. PREVENTION DU DIABETE SUCRE

A. DANS LE DIABETE DE TYPE 1 :

Les essais de prévention dans le DT1 par un traitement immunosuppresseur (type cyclosporine...) ont donné des résultats décevants, même s'il est possible d'identifier les personnes à risque : antécédents familiaux ou personnels de maladie auto-immune, HLA prédisposant, positivité des anticorps anti pancréas...

B. Dans le diabète de type 2 :

La prévention n'est efficace que dans le diabète de type 2. On identifie 2 types de prévention :

- La **prévention primordiale** visant à éviter les facteurs de risque du DT2 : lutte contre l'obésité juvénile, adoption d'habitudes alimentaires saines, promotion de l'activité physique, lutte contre les addictions...
- La **prévention primaire**, qui vise à éviter le DT2 chez les personnes à risque : hérédité de diabète, état prédiabétique, antécédents de syndrome métabolique (obésité androïde, HTA, hyperlipidémie, SOPK...) antécédents de diabète transitoire : diabète gestationnel, diabète induit par un médicament ou secondaire à une affection aigue.

Cette prévention est basée sur :

- Les mesures hygiéno-diététiques visant à réduire le poids d'au moins 7 à 10% chez les sujets obèses ou en surpoids par les mesures diététiques et l'activité physique modérée et régulière (150 mn/ semaine) (ADA 2015).
- O Des précautions lors des prescriptions médicamenteuses : une attention particulière doit être portée aux anti-hypertenseurschez les sujets porteurs de syndrome métabolique : les diurétiques et les béta-bloquants favorisent le diabète, alors que les bloqueurs du SRAA (IEC et ARA2) préviennent le diabète. Les autres médicaments diabétogènes doivent être évités : corticoïdes, pilule contraceptivenormodosée.
- La prescription médicamenteuse de metformine a été proposée par l'ADA en 2015 pour les personnes obèses (IMC > 35 kg/m²), âgées de moins de 60 ans et les femmes ayant eu un diabète gestationnel.

o Dépistage annuel du diabète, chez les sujets à risque.