ETI

Questo file, a differenza degli altri, vuole essere un luogo dove raccolgo tutti i trucchetti vari di Teoria Degli Insiemi. Ciò viene reso necessario dal fatto che al corso si definiscono solo delle cose, e gli esercizi c'entrano poco con tutto quanto.

ASSIOMI

- (Estensionalità) Due classi sono uguali se hanno gli stessi elementi
- (**Di Astrazione**) Data una proprietà ben definita *P*, esiste una classe i cui elementi sono gli oggetti che verificano *P*.
- (Di Comprensione) Una sottoclasse di un insieme è un insieme
- (Insieme Vuoto) La classe vuota è un insieme
- (Coppia) Dati due insiemi a,b la coppia $\{a,b\}$ è un insieme
- (Unione) Se X è un insieme, allora $\cup X = \{z \mid z \in y \in X\}$ è un insieme
- (**Dell'Infinito**) $\exists X$ insieme tale che $\emptyset \in X$ e $a \in X \implies a \cup a \in X$
- (**Potenza**) Se X è un insieme, allora $\mathcal{P}(X) = \{Y \mid Y \subseteq X\}$ è un insieme
- (**Di Rimpiazzamento**) Se $F: X \to Y$ è una funzione tra classi ed il suo dominio X è un insieme, allora la sua immagine Im F è un insieme.
- (Scelta) Ne diamo un po' di formulazioni equivalenti:
 - 1. Dato un insieme *X* i cui elementi sono insiemi non vuoti a due a due disgiunti, esiste un insieme *S* che interseca ciascuno degli elementi di *X* in un singolo elemento.
 - 2. Data una famiglia $(X_i:i\in I)$ di insiemi non vuoti X_i , esiste una funzione f che associa a ciascun $i\in I$ un elemento $f(i)\in X_i$.
 - 3. Data una famiglia \mathcal{F} di insiemi non vuoti, esiste una funzione g che associa a ciascun $X \in \mathcal{F}$ un elemento $g(X) \in X$. In particolare, fissato un insieme non vuoto A, possiamo considerare la famiglia $\mathcal{F} = \mathcal{P}(A) \setminus \{\emptyset\}$ di tutti i sottoinsiemi non vuoti di X ottenendo una funzione $g: \mathcal{P}(A) \setminus \{\emptyset\} \to A$ che associa a ciascun sottoinsieme non vuoto $X \subseteq A$ un elemento $g(A) \in A$
 - 4. Siano X,Y due insiemi e sia $R\subseteq X\times Y$ una relazione tra X ed Y. Supponiamo che $(\forall x\in X)(\exists y\in Y)$ R(x,y). Allora esiste $f:X\to Y$ tale che $(\forall x\in X)$ R(x,f(x))
 - 5. Per ogni famiglia $(X_i:i\in I)$ non vuota di insiemi non vuoti, il prodotto cartesiano $\prod_{i\in I}X_i$ è non vuoto.
 - 6. Data una funzione surgettiva $f: X \to Y$ tra due insiemi, esiste una funzione iniettiva $g: Y \to X$ tale che $f(g(y)) = y \quad \forall y \in Y$

TEOREMI IMPORTANTI

SCRITTURA IN BASE DI ORDINALI

Dato un ordinale $\gamma \neq 0$ possiamo rappresentare ogni ordinale $\alpha \neq 0$ in modo unico nella forma $\alpha = \gamma^{\alpha_1}t_1 + \ldots + \gamma^{\alpha_k}t_k$ con $k \in \omega$, $t_1, \ldots, t_k < \gamma$ e $\alpha_1 > \ldots > \alpha_k$.

ORDINALI FISSI

Sia $f: ON \to ON$ una funzione crescente e continua, ovvero tale che $f(\lambda) = \sup_{\alpha < \lambda} f(\alpha)$ per ogni ordinale limite λ . Allora esistono ordinali x arbitrariamente grandi tali che f(x) = x.

TEOREMA DI KÖNIG

Per $i \in I$ sia α_i un cardinale. Definiamo la somma $\sum_{i \in I} \alpha_i$ come la cardinalità di $\cup_{i \in I} A_i$ dove gli A_i sono insiemi disgiunti tali che card $(A_i) = \alpha_i$.

König: Per ogni $i \in I$ siano α_i e β_i cardinali tali che $\alpha_i < \beta_i$. Allora $\sum_{i \in I} \alpha_i < \prod_{i \in I} \beta_i$.

Da notare che è praticamente l'unico teorema sui cardinali che prende disuguaglianze strette e ci dà una disuguaglianza stretta. Può quindi essere molto utile nei ragionamenti per assurdo

DEFINIZIONI VUOTE

• (Rango di un insieme) Assumendo BF definiamo il concetto di rango di un insieme per ricorsione sulla relazione ben fondata ∈:

$$\rho(X) = \sup\{\rho(y) + 1 \mid y \in X\}$$

- . Notiamo che il rango è una funzione $\rho: \mathsf{Set} \to \mathsf{ON}$
- (+) Per ogni cardinale α esiste un cardinale α^+ con la proprietà che: α^+ è più grande di α e non esiste nessun cardinale tra α ed α^+ .
- (Aleph) $\aleph_0 = \operatorname{card}(\mathbb{N})$, $\aleph_{\alpha+1} = \aleph_{\alpha}^+$, $\aleph_{\lambda} = \sup_{\beta < \alpha} \aleph_{\beta}$ se λ è ordinale limite.
- (Beth) $\beth_0 = \aleph_0$, $\beth_{\alpha+1} = 2^{\beth_{\alpha}}$, $\beth_{\lambda} = \sup_{\alpha < \lambda} \beth_{\alpha}$ per λ limite.
- (Funzione di Hartogs) Dato un insieme X sia H(X) la classe degli ordinali α di cardinalità \leq card (X)

CARDINALI, ALEPH, BETH

- (Sup di Cardinali) Se X è un insieme di ordinali iniziali (cardinali) allora $\sup X$ è un ordinale iniziale (cardinale)
- (Crescenza degli Aleph) $\alpha < \beta \implies \aleph_{\alpha} < \aleph_{\beta}$
- (Biggezione Ordinali-Cardinali) La funzione $\alpha \mapsto \aleph_{\alpha}$ è una biggezione dalla classe ON degli ordinali verso la classe dei cardinali infiniti
- (Operazioni tra cardinali) Dati due cardinali infiniti α, β vale che

$$\alpha + \beta = \alpha \cdot \beta = \max\{\alpha, \beta\}$$

dove le operazioni sono tra cardinali.

FUNZIONE DI HARTOGS

- H(X) è un ordinale.
- card $(H(X)) \not\leq \operatorname{card}(X)$

GERARCHIA DI VON NEUMANN

Viene definita per ricorsione transfinita la seguente famiglia di (? insiemi) indicizzata da ordinali:

- $V_0 = \emptyset$
- $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$
- $V_{\lambda} = \bigcup_{\alpha < \lambda} V_{\alpha}$ per λ ordinale limite.

Valgono i seguenti fatti:

- Ogni V_{α} è transitivo
- $\beta < \alpha \implies V_{\beta} \subseteq V_{\alpha}$
- $x \in V_{\alpha} \Leftrightarrow \rho(x) < \alpha$
- BF equivale all'affermazione che $\forall X \quad \exists \alpha \quad x \in V_{\alpha}$, ovvero che $V = \bigcup_{\alpha \in \text{ON}} V_{\alpha}$ (V è l'universo degli insiemi)
- $x \subseteq y \in V_{\alpha} \implies x \in V_{\alpha}$
- (Assumendo BF) Una classe $X \subseteq V$ è un insieme $\Leftrightarrow \exists \alpha \in ON \text{ t.c. } X \in V_{\alpha}$
- $\forall \alpha \text{ si ha card } (V_{\omega+\alpha}) = \beth_{\alpha} \geq \aleph_{\alpha}$

COFINALITÀ

Una funzione $f:A\to B$ tra due insiemi ordinati si dice cofinale o illimitata se l'immagine di f non ha maggioranti stretti in B. La cofinalità di B è il minimo ordinale α tale che esiste una funzione cofinale $f:\alpha\to B$

- Se β è un ordinale successore si ha $cof(\beta) = 1$
- (La somma è intesa ordinale) $cof(\alpha + \beta) = cof(\beta)$ (Basta accorgersi che è sufficiente mandare gli ordinali nella parte che contiene solo β affinché siano cofinali)
- (Il prodotto è ordinale) Se β è limite si ha $cof(\alpha \cdot \beta) = cof(\beta)$ (Come sopra, basta mandare gli ordinali in cose del tipo $(0, \gamma) \in \alpha\beta$). Se β non fosse limite si può spezzare $\alpha \cdot \beta$ ed utilizzare la formula di sopra.
- (L'esponenziazione è ordinale) Se β è limite allora si ha $cof(\alpha^{\beta}) = cof(\beta)$ (Mandando gli ordinali in cose del tipo $f_{\gamma}: \beta \to \alpha$ definita da $f_{\gamma}(\varepsilon) = 1$ se $\varepsilon = \gamma$ oppure = 0 se $\varepsilon \neq \gamma$). Se β non fosse limite, si può spezzare α^{β} in cose più semplici ed utilizzare la formula di sopra.
- $\beta \ge \operatorname{cof}(\alpha) \Leftrightarrow \exists f : \beta \to \alpha \text{ cofinale.}$
- Per ogni ordinale α vale $cof(\alpha) \leq card(\alpha) \leq \alpha$
- $cof(\beta) = \beta \implies \beta$ è un cardinale (ordinale iniziale)
- Ogni cardinale successore κ^+ (ovvero il minimo cardinale maggiore di κ) è tale che $cof(\kappa^+) = \kappa^+$
- Vale $cof(\kappa) = \kappa \Leftrightarrow per$ ogni famiglia $(A_i : i \in I)$ di insiemi A_i tali che card $(A_i) < \kappa$ e card $(I) < \kappa$ si ha card $(\cup_{i \in I} A_i) < \kappa$
- Per ogni ordinale α si ha $cof(2^{\aleph_{\alpha}}) > \aleph_{\alpha}$ (Esponenziazione cardinale, non ordinale)
- Se un ordinale limite α NON è un cardinale si ha $cof(\alpha) < \alpha$
- Per ogni ordinale limite $cof(cof(\alpha)) = cof(\alpha)$
- Se λ è limite vale che $cof(\aleph_{\lambda}) = cof(\lambda)$
- Se ν è successore allora vale che $\mathrm{cof}(\aleph_{\nu})=\aleph_{\nu}$

ARITMETICA CARDINALE

Nel seguito diamo qualche risultato sull'esponenziazione di cardinali

- $2 \le \kappa \le \lambda$ e λ infinito $\implies \kappa^{\lambda} = 2^{\lambda}$
- Inoltre si ha $2^{\lambda} \ge \kappa \implies \kappa^{\lambda} = 2^{\lambda}$
- $\lambda \ge \operatorname{cof}(\kappa) \implies \kappa < \kappa^{\lambda}$
- Definiamo ora detto λ cardinale e card $(A) \ge \lambda$ l'insieme $[A]^{\lambda} = \{X \subseteq A : \text{card } (X) = \lambda\}.$
- card $(A) = \kappa \ge \lambda$ implica che $[A]^{\lambda}$ ha cardinalità κ^{λ}
- λ cardinale infinito e $\kappa_i > 0 \quad \forall i < \lambda$, allora

$$\sum_{i<\lambda} \kappa_i = \lambda \cdot \sup_{i<\lambda} \kappa_i$$

TRUCCHI PER GLI ESERCIZI

CALCOLI CON LE FORME NORMALI DI CANTOR

Diamo ora delle regole di calcolo per fare conti con prodotti di cose in forma normale di Cantor

- Se $\alpha > \beta$ si ha $\omega^{\beta}b + \omega^{\alpha}a = \omega^{\alpha}a$ Dim: Visto che $\alpha > \beta$ si ha $\exists \gamma \neq 0 \quad \alpha = \beta + \gamma$. Allora $\omega^{\beta}b + \omega^{\alpha}a = \omega^{\beta}(b + \omega^{\gamma}a)$ Mostrando che $b + \omega^{\gamma}a = \omega^{\gamma}a \quad \forall \gamma \neq 0$ si avrebbe la tesi. Siccome $b \in \omega$ si può definire in maniera piuttosto semplice la biggezione di ordinamenti in questione: mandiamo un elemento $n \in b$ nella γ -upla $(n, 0, 0, \ldots)$ e data una γ -upla $(U_i)_{i \in \gamma}$ la si può mandare in $(U_0 + b, U_i)$.
- Se $0 < \alpha = \omega^{\alpha_1} c_1 + \ldots + \omega^{\alpha_k} c_k$ in CNF e $0 < \beta$ allora si ha

$$\alpha\omega^{\beta} = \omega^{\alpha_1 + \beta}$$

ed anche, per ogni $n \in \mathbb{N}$, $n \neq 0$

$$\alpha n = \omega^{\alpha_1} c_1 n + \omega^{\alpha_2} c_2 + \ldots + \omega^{\alpha_k} c_k$$

FATTI DA TENERE A MENTE

- $A \subseteq \mathbb{R}$ bene ordinato \implies card $(A) \le \aleph_0$ (Infatti dato un insieme bene ordinato dentro \mathbb{R} riesco a trovarne un'immersione che preserva l'ordine di A in \mathbb{Q} e quindi si ha la tesi) (Basta mandare α in un razionale tra $f(\alpha)$ e $f(\alpha+1)$)
- Dato $\alpha > 0$ sono proprietà equivalenti:

1.
$$\forall \beta < \alpha \quad \beta + \alpha = \alpha$$

2.
$$\forall \beta, \gamma < \alpha \quad \beta + \gamma < \alpha$$

3.
$$\alpha = \omega^{\delta}$$
 per un qualche δ

• Dato $\alpha > 0$ sono proprietà equivalenti:

1.
$$\forall \beta < \alpha \quad \beta \alpha = \alpha$$

2.
$$\forall \beta, \gamma < \alpha \quad \beta \gamma < \alpha$$

3.
$$\exists \delta \quad \alpha = \omega^{\omega^{\delta}}$$

1.
$$\forall \beta < \alpha \quad \beta^{\alpha} = \alpha$$

2.
$$\forall \beta, \gamma < \alpha \quad \beta^{\gamma} < \alpha$$

- λ è limite $\Leftrightarrow \lambda = \bigcup_{\gamma < \lambda} \gamma \Leftrightarrow$ è della forma $\lambda = \omega \gamma$ per un qualche γ
- Se β è un successore allora $\exists \lambda$ limite oppure $\lambda = 0$ ed $\exists k \in \omega$ tali che $\beta = \lambda + k$ (Si dimostra poiché non esistono catene discendenti infinite di ordinali, e sapendo che β è successore si può scrivere $\beta = \alpha + 1$ e per induzione su α)
- Gli ordinali α con la proprietà che $\forall X \subseteq \alpha$ si ha X ha il tipo d'ordine di α oppure $\alpha \setminus X$ ha il tipo d'ordine di α dovrebbero essere soltanto $\alpha = 0$ e tutti gli ordinali limite. [Ancora da controllare]
- Se $f: \nu \to \kappa$ è iniettiva e illimitata, allora $\kappa = \sum_{\alpha \le \nu} \operatorname{card} (f(\alpha))$ dove ν e κ sono cardinali infiniti

PUNTI FISSI DI FUNZIONI

- ullet Data f: ON o ON strettamente crescente e continua ai limiti, esistono punti fissi arbitrariamente grandi
- Supponiamo che κ sia [Qualche ipotesi ancora da determinare per bene] allora si ha che, data una qualunque famiglia \mathcal{F} [massima cardinalità da esplicitare] di funzioni $f_i : \kappa \to \kappa$ esistono punti fissi comuni a tutte le f_i arbitrariamente grandi.

Diamo un'idea della dimostrazione: Sia λ un ordinale iniziale tale che $\lambda=$ card (\mathcal{F}) . Allora definiamo per ricorsione ordinale le seguenti funzioni: $\Phi_0=f_0$, $\Phi_{\alpha+1}=f_{\alpha+1}\circ \mathrm{Fix}\ (\Phi_\alpha)$, $\Phi_\lambda(\delta)=\sup_{\gamma<\lambda}\Phi_\gamma(\delta)$ se λ è limite, dove Fix è la funzione che enumera i punti fissi.

Controllando bene quando esistono punti fissi e quando si possono unire tutti per gli ordinali limite si ottengono le ipotesi, che prima o poi scriverò.

Ci chiediamo inoltre quanti sono i punti fissi della funzione... E claimiamo che siano come κ

GERARCHIA DI VON NEUMANN

- $X \subseteq V_{\alpha} \Leftrightarrow X \in V_{\alpha+1}$
- $a \in A \in V_{\alpha} \implies \exists \beta < \alpha \quad a \in V_{\beta}$
- $\alpha < \beta \implies V_{\alpha} \in V_{\beta}$
- $B \subseteq A \in V_{\alpha} \implies B \in V_{\alpha}$
- $A \in V_{\alpha} \Leftrightarrow TC(A) \in V_{\alpha}$ dove TC è la chiusura transitiva di A
- $A \in V_{\omega} \Leftrightarrow \operatorname{card} (\operatorname{TC}(A)) < \aleph_0$
- $\forall \alpha \text{ si ha card } (V_{\omega+\alpha}) = \beth_{\alpha}$
- $A \in V_{\alpha} \implies \operatorname{card}(A) < \operatorname{card}(V_{\alpha})$
- λ limite. Allora si ha $f \in V_{\lambda+1} \Leftrightarrow \mathsf{Dom} f, \mathsf{Imm} f \in V_{\lambda+1}$
- Se α è limite allora si ha $V_\alpha \times V_\alpha \subseteq V_\alpha$ e $\alpha \times \alpha \subseteq V_\alpha$
- κ cardinale infinito, α ordinale. Allora $cof(\alpha) > k \Leftrightarrow \forall X \subseteq V_{\alpha}$ t.c. card $(X) \le \kappa$ si ha che $X \in V_{\alpha}$
- κ cardinale infinito, allora vale che $\kappa < \operatorname{cof}(\alpha) \Leftrightarrow \operatorname{Fun}(\kappa, V_{\alpha}) \subseteq V_{\alpha}$

•

- Sia $A \subseteq V_{\lambda}$, con A finito e λ limite. Allora $A \in V_{\lambda}$ (Infatti $X \in A \implies X \in V_{\lambda} \implies \exists \alpha < \lambda \quad X \in V_{\alpha}$. Sfruttando il fatti che gli X sono in numero finito allora si ha che, chiamato γ il massimo degli α così ottenuti si ha $\gamma < \lambda$ e $\forall X \in A \quad X \in V_{\gamma}$, ovvero $A \in V_{\gamma+1} \subseteq V_{\lambda}$, tesi)
- Se α NON è limite, allora si ha $\exists A \subseteq V_{\alpha}$ finito e non vuoto tale che $V_{\alpha} \setminus A$ è ancora transitivo. Infatti $\alpha = \lambda + k$ con λ limite (oppure zero) e $k \in \omega$. Allora si prenda $A = \{V_{\lambda}, V_{\lambda+1}, V_{\lambda+2}, \dots, V_{\lambda+(k-1)}\}$ e si verifichi la transitività
- Fun(ω , ω) $\subseteq V_{\omega}$ (e anche $\omega \times \omega \subseteq V_{\omega}$)
- $cF \in V_{\alpha} \implies \bigcup_{F \in \mathcal{F}} F \in V_{\alpha}$

ALEPH

• $X \subseteq \aleph_{\alpha+1}$ è illimitato se e solo se card $(X) = \aleph_{\alpha+1}$

Cardinalità Note

- card $(\mathbb{N}) = \aleph_0$ (e sono la più piccola cardinalità infinita)
- card $(\mathbb{N}^{\mathbb{N}}) = \text{card } (\mathbb{R}) = \text{card } (\mathbb{R}^{\mathbb{N}}) = \mathfrak{c}$ (cardinalità del continuo)
- $\forall \alpha, \beta \geq \omega$ ordinali vale che card $(\alpha^{\beta}) = \max \text{ card }(\alpha), \text{ card }(\beta)$ dove l'esponenziazione è ordinale
- $X = \{A \subseteq \omega_k \mid \operatorname{card}(A) = \aleph_n\} \operatorname{con} n \leq k \in \mathbb{N}$. Allora possiamo calcolare la cardinalità di X, assumendo GCH: $[\omega_k]^{\aleph_n} = \omega_k^{\aleph_n}$ con esponenziazione cardinale. $\operatorname{card}(X) = \aleph_k^{\aleph_n} = \aleph_k \cdot \aleph_0^{\aleph_n} = \aleph_k \cdot 2^{\aleph_n} = \aleph_k \cdot \aleph_{n+1} = \aleph_{\max k, n+1}$
- $X = \{f : \omega_k \to \omega_n \mid f \text{ è illimitata } \}$. Allora, sempre assumendo GCH si ha: Supponiamo k > n. Allora card $(X) \le (\aleph_n)^{\aleph_k} = \aleph_{k+1}$. Per la disuguaglianza opposta si può considerare la seguente funzione: per ogni $A \in \mathcal{P}(\omega_k \setminus \omega_n)$ sia $f_A : \omega_k \to \omega_n$ la funzione così definita:

$$f_A(\alpha) = \begin{cases} \alpha & \text{se } \alpha \in \omega_n \\ \chi_A(\alpha) & \text{se } \alpha \in \omega_k \setminus \omega_n \end{cases}$$

dove χ_A è la funzione caratteristica di A. Allora si ha che f_A è suriettiva visto che $f\mid_{\omega_n}$ è l'identità, quindi $f_A\in X$. Ponendo $\Phi(A)=f_A$ allora si ottiene una funzione iniettiva $\Phi:\mathcal{P}(\omega_k\setminus\omega_n)\to X$. Poiché card $(\omega_k\setminus\omega_n)=\aleph_k$ segue che $\aleph_{k+1}=\mathrm{card}\;(\mathcal{P}(\omega_k\setminus\omega_n))\leq\mathrm{card}\;(X)$. Allora concludiamo che card $(X)=\aleph_{k+1}$

- $X = \{f : \omega_k \to \omega_n \mid f \text{ è strettamente crescente}\}$ con k < n. Assumiamo GCH e si ha che, visto che X è sottoinsieme di tutte le funzioni, card $(X) \le (\aleph_n)^{\aleph_k} = \aleph_{\max(n,k+1)} = \aleph_n$. Notiamo ora che $\forall \alpha \in \omega_n$ e $\forall \beta \in \omega_k$ si ha che $\alpha + \beta \in \omega_n$ (per verificarlo basta notare ad esempio che la cardinalità dell'ordinale $\alpha + \beta$ è \max card (α) , card $(\beta) < \omega_n$.
 - Dunque per ogni $\alpha \in \omega_n$ possiamo definire la funzione $f_\alpha: \omega_k \to \omega_n$ ponendo $f_\alpha(\beta) = \alpha + \beta$. È semplice verificare che f_α è strettamente crescente. Ponendo $\Phi(\alpha) = f_\alpha$ si ottiene una funzione iniettiva $\Phi: \omega_n \to X$ ed otteniamo così anche la disuguaglianza inversa $\aleph_n \le \operatorname{card}(X)$
- Le partizioni di κ in λ insiemi di cardinalità μ sono come le funzioni biggettive $\lambda \times \mu \to \kappa$ attraverso l'ovvia mappa che manda l'elemento μ -esimo della copia λ -esima della partizione nell'elemento che rappresenta. Inoltre si ha che le funzioni biggettive da λ a λ sono nello stesso numero di tutte le funzioni da λ in λ che sono $\lambda^{\lambda} = 2^{\lambda}$. Si può ad esempio identificare λ con $\lambda \sum \lambda$ e poi mandare un sottoinsieme di λ ($\mathcal{P}(\lambda) = 2^{\lambda}$ nella funzione biggettiva che scambia tra di loro gli elementi delle due copie di λ solo se appartengono ad A, altrimenti le lascia fisse.

ARITMETICA CARDINALE

- Se κ è infinito e $cof(\kappa) \le \lambda$ allora $\kappa^{\lambda} > \kappa$
- Per λ infinito abbiamo $cof(2^{\lambda}) > \lambda$ (dove l'esponenziazione è cardinale)
- Se κ è un cardinale limite e $\lambda \ge \operatorname{cof}(\kappa)$ allora $\kappa^{\lambda} = \left(\cup_{\mu < \kappa} \mu^{\lambda} \right)^{\operatorname{cof}}(\kappa)$ dove μ scorre sui cardinali
- (Hausdorff) Se κ e λ sono cardinali infiniti, allora $(\kappa^+)^\lambda = \kappa^\lambda \cdot \kappa^+$
- Siano κ e λ cardinali con $2 \le \kappa$ e $\lambda \ge \omega$. Allora si ha
 - 1. Se $\kappa \leq \lambda$ allora $\kappa^{\lambda} = 2^{\lambda}$
 - 2. Se κ è infinito ed $\exists \mu < \kappa$ tale che $\mu^{\lambda} \geq \kappa$ allora $\kappa^{\lambda} = \mu^{\lambda}$
 - 3. Assumiamo che κ sia infinito e $\mu^{\lambda} < \kappa$ per tutti i $\mu < \kappa$. Allora $\lambda < \kappa$ e:
 - Se $cof(\kappa) > \lambda$ allora $\kappa^{\lambda} = \kappa$
 - Se $cof(\kappa) \le \lambda$ allora $\kappa^{\lambda} = \kappa^{cof}(\kappa)$

- Se assumiamo GCH e supponiamo che κ e λ siano cardinali con $2 \le \kappa$ e λ infinito allora si ha:
 - 1. Se $\kappa < \lambda$ allora $\kappa^{\lambda} = \lambda^{+}$
 - 2. Se $cof(\kappa) \le \lambda < \kappa$ allora $\kappa^{\lambda} = \kappa^{+}$
 - 3. Se $\lambda < \operatorname{cof}(\kappa)$ allora $\kappa^{\lambda} = \kappa$

FALSITÀ

• Non è vero che se $cof(\kappa) \le \nu \le \kappa$ allora $\exists f : \nu \to \kappa$ crescente ed illimitata. (Mentre invece esiste se parte da $cof(\kappa)$)

SUCCESSORE O LIMITE?

Elenchiamo di seguito, a seconda se α e β sono limiti o successori, che cosa sono quelli ottenuti dalle operazioni elementari

Inoltre α^{β} è successore $\Leftrightarrow \alpha$ è successore e β è finito.

DISUGUAGLIANZE STUPIDE MA DA DIMOSTRARE

Con gli ordinali dovrebbero valere (devo ancora verificarle) le seguenti disuguaglianze stupide

- $\forall \alpha \neq 0, \beta \geq 2 \quad \alpha\beta > \alpha + 1$
- $\bullet \ \forall \chi > \alpha, \gamma \neq 0 \quad \gamma^{\chi} > \alpha$
- $\forall \alpha \geq 2, \beta \geq 2$ $\alpha^{\beta} > \alpha \beta$ (con uguaglianza solo nel caso $\alpha = \beta = 2$)

Assiomi Utilizzati

Viene di seguito riportata una tabella con i principali teoremi di Insiemi, e gli assiomi necessari per dimostrarli (per come li abbiamo dimostrati in classe)