

Aprendizaje Automático Profundo (Deep Learning)

Mejora de Modelos

¿Cómo mejorar un modelo?

- Opción A
- Diseñar un modelo mejor.
- Requiere:
 - Conocimiento
 - Inteligencia
 - Mucho tiempo/trabajo.

¿Cómo mejorar un modelo?

- Opción B
- Entrenar un modelo común
 - Con más datos.
- Requiere
 - Más datos
- Primera estrategia a probar

THE UNREASONABLE EFFECTIVENSS OF MATHEMATICS IN THE NATURAL

The Unreasonable Effectiveness of Data

Math auste the g perfe exalt excel

Alon Halevy, Peter Norvig, and Fernando Pereira,

- DENTRAND RUSSELL, Study of Madic matics

Los datos son el mejor regularizador del modelo

Los datos son el mejor regularizador del modelo

Los datos son el mejor regularizador del modelo

Error vs #ejemplos de train (MNIST)

Error vs #ejemplos de train (NLP)

¿Cómo mejorar un modelo?

- Los datos etiquetados son "caros"
- Opción A:
 - Hacer un crawler, bajar imágenes, etiquetarlas a mano [1]
 - Buenos resultados
 - Mucho tiempo de etiquetado y verificación
 - Usualmente, crowdsourcing
 - Generalmente solo reservado para compañias
- Opción B:
 - Data augmentation
 - Multiplicar los datos existentes

¿Cómo diseñar una arquitectura?

- No es un problema resuelto
- 2 enfoques complementarios
 - Generar muchas arquitecturas y compararlas
 - Entender los errores, diseñar soluciones
- Evolución de modelos
 - VGG: Convoluciones 3x3, esquema de Bloques
 - AllConvolutional: GlobalAveragePooling, sin MaxPooling/Densas
 - MobileNets: Bloques con Convoluciones Separables Depthwise
 - Inception: Bloques Inception
- No hay una solución correcta
 - Varias arquitecturas funcionan
 - Unas mejores que otras