Basic Theory

N-body Schrödinger equation: $H\Psi(r_1, \dots, r_N) = E\Psi(r_1, \dots, r_N)$

- Ab Initio: seeking wavefunction Ψ with 3N DOFs
- computationally unfeasible for large N
- Hohenberg-Kohn: electron density in ground state

$$n(r) = \int dr_2 \cdots dr_N \|\Psi_{\mathsf{GS}}(r, r_2, \cdots, r_N)\|$$

determines all system-related observables

• Total energy: $E[n] = T_s[n] + T_{ext}[n] + T_{ee}[n] + E_{xc}[n]$

Sai-Mang Pun DFT May 15, 2023 1/10

Kohn-Sham Equation

Ideas:

- Introduce one-particle system with the same ground-state energy
- ullet Find $n(r)=\sum |\psi_i(r)|^2$ such that it minimizes E[n]
- Normalization condition for each ψ_i
- Using method of Lagrange multiplier obtain Kohn-Sham equation:

$$egin{align} H_{\mathsf{KS}}\psi_i &= arepsilon_i \psi_i, \ H_{\mathsf{KS}} := -rac{1}{2}
abla^2 + V_{\mathsf{ext}}(r) + \int dr' rac{n(r')}{|r-r'|} + V_{\mathsf{xc}}(r), \ V_{\mathsf{xc}}(r) := rac{\delta E_{\mathsf{xc}}[n]}{\delta n(r)}. \end{split}$$

A nonlinear eigenvalue problem

Sai-Mang Pun May 15, 2023

2 / 10

KS-DFT Self-Consistent Field Iteration

Suppose XC potential (or functional) is given.

- **1** Start with an initial electron density $\rho = \rho_0$
- ② Solve the KS equation with ρ to obtain $\{\psi_i\}$
- **1** Update electron density ρ with the new orbitals
- lacktriangledown If converges, output ho and and do post-processing
- **5** If not, continue Step 2 with the new ρ

Post-processing: compute desired molecular properties

3 / 10

Sai-Mang Pun DFT May 15, 2023

XC approximation via Machine Learning

Idea: Parameterize the XC potential via ML techniques.

Example: parametrize XC potential using CNN¹

- Size of H_2/HeH^+ Training Data Set
 - Input data: electron densities w/ spatial derivatives (generated by CCSD/aug-cc-pVQZ)
 - Labels: effective XC potentials by Wu-Yang (or ZMP) method
- **②** Each data: $(\rho, \rho_x, \rho_y, \rho_z)$ $4 \times 9 \times 9 \times 9$ (values at LL quadrature)
- **Model:** 2 CNN layers, 1 max pooling, flatten, 4 FC layers
- Train: compute loss (forward) and update parameters (backward)

Once model obtained, perform SCF procedure.

Sai-Mang Pun DFT May 15, 2023 4 / 10

¹J. Phys. Chem. Lett. 2019, 10, 7264-7269

XC approximation via Machine Learning (Cont.)

Example: parametrize XC functional based on B3LYP²

$$E_{XC}[\rho] := a_0[\rho] E_X^{Sla}[\rho] + (1 - a_0[\rho]) E_X^{HF}[\rho] + a_X[\rho] \Delta E_X^{Bec} + a_C[\rho] E_C^{LYP} + (1 - a_C[\rho]) E_C^{VWN}$$

- Training Data Set
 - Input data: electron densities wo/ spatial derivatives (generated by CCSD/aug-cc-pVQZ)
 - Labels: effective XC potentials by Wu-Yang (or ZMP) method
- 2 Each data: 1×30 data size
- Model: graphical neural network employed
- Train: compute loss (forward) and update parameters (backward)

Once model obtained, compute XC potential and perform SCF procedure.

²Chem. Phys. Lett. 2004, 390, 186-192

Sai-Mang Pun DFT May 15, 2023 5 / 10

Model Training and SCF

SCF loss: computed via AD w.r.t. spatial coordinates.

Combining training with SCF iteration

Kohn-Sham self-consistent calculation $n_{ m initial}$

single Kohn-Sham iteration

neural XC functional

Multi-stage strategy

Model Problem:

$$u_t = \mathcal{F}(x, u, \nabla u; a, \xi), \ \mathcal{B}(x, u, \nabla u) = 0, \ a(x, u) := \kappa(x) \exp(\gamma u)$$

Precise Demonstration

 (m_1, r_1) : hyper-parameters to be tuned; D_i : dimension reduction modules; M_i , C_i , and G_i : trainable modules; C_i : fully connected layers

$$F_0 \in \mathbb{R}^{m_0,n} \xrightarrow{D_1} F_{1,s_1} \in \mathbb{R}^{m_0,r_0} \xrightarrow{M_1} F_{2,s_1} \in \mathbb{R}^{m_1,r_1} \xrightarrow{G_1} u_{H,s_1} \in \mathbb{R}^l,$$

$$F_0 \in \mathbb{R}^{m_0,n} \xrightarrow{D_2} F_{1,s_2} \in \mathbb{R}^{m_0,r_0} \xrightarrow{M_2} F_{2,s_2} \in \mathbb{R}^{m_1,r_1} \xrightarrow{G_2} u_{H,s_2} \in \mathbb{R}^l \xrightarrow{C_2} u_{H,s_2}^c \in \mathbb{R}^l,$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩

Sai-Mang Pun DFT May 15, 2023 9 / 10

Numerical Demonstration: nonlinear parametrized PDE

$$u_t = \nabla \cdot (a(x, u)\nabla u) + f_{\xi}$$
 with BC + IC, $a(x, u) := \kappa(x) \exp(\gamma u)$

(m_1, r_1)	1 st	2 nd	3 rd
(30, 10)	.13322	.08701	.08439
(25, 12)	.11515	.08538	.08162
(20, 15)	.09814	.08788	.08210
(15, 20)	.12591	.08538	.08054
(10, 30)	.29105	.09888	.07815

Table: MRE with Decoupled Information

