

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Кафедра теоретических основ радиотехники

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ Тема 5 Эффекты квантования (Лекция 1)

Эффекты квантования

- □ Представление чисел в цифровых системах
- □ Квантование, шум квантования
- Эффекты квантования и округления в цифровых фильтрах

Способы представления чисел в цифровых системах

- Для хранения чисел отводится память конечного размера
- \square Если для хранения числа отводится n бит, можно представить 2^n различных чисел
- \square *Формат* хранения чисел соглашение о трактовке этих n-битовых комбинаций
- □ Два основных формата:
 - c фиксированной запятой (fixed point)
 - с плавающей запятой (floating point)

Формат с фиксированной запятой

- □ Для хранения целой и дробной частей отведено фиксированное число битов
- □ Для представления отрицательных чисел используется дополнительный код
- □ Обозначение: M.N
 - \blacksquare M число разрядов целой части (включая знак)
 - ightharpoonup N число разрядов дробной части
- \square По сути дела, при этом хранятся *целые числа*, которые мы *договорились* делить на 2^N
- □ В 16-разрядных сигнальных процессорах используется формат 1.15

Пример формата с фиксированной запятой — формат 1.15

Двоичное представление	Целое число	Число в формате 1.15
0.000 0000 0000 0000	0	0
0.000 0000 0000 0001	1	1/32768
0.000 0000 0000 0010	2	2/32768
•••		•••
0.111 1111 1111 1110	32766	32766/32768
0.111 1111 1111 1111	32767	$32767/32768 = 1-2^{-15}$
1.000 0000 0000 0000	-32768	-1
1.000 0000 0000 0001	-32767	-32767/32768
		•••
1.111 1111 1111 1110	-2	-2/32768
1.111 1111 1111 1111	-1	-1/32768

Формат с фиксированной запятой

- □ Свойства
 - Представимые числа образуют равномерный ряд с шагом 2^{-N}
 - Максимальное по модулю *отрицательное* число равно -2^{M-1}
 - Максимальное по модулю положительное число равно $2^{M-1}-2^{-N}$
- □ Достоинства
 - Равномерность ряда чисел
 - Простота реализации
- □ Недостаток
 - \blacksquare Малый динамический диапазон (2^{M+N-1})

Формат с плавающей запятой

□ *Экспоненциальное* представление чисел:

- □ Достоинство
 - Большой динамический диапазон
- Недостатки
 - Неравномерный ряд чисел
 - Сложность реализации

Процесс квантования

- Числовая ось делится на зоны квантования
- □ В каждой зоне выбирается квантованное значение

Равномерное квантование

- ☐ Квантование безынерционное нелинейное преобразование
- □ Характеристика преобразования является ступенчатой
- □ Δ интервал квантования

Шум квантования

Неквантованный сигнал

Квантованное представление

$$S_{K}(t) = S(t) + e(t)$$

Шум квантования

Математическая модель шума квантования

- □ Шум квантования дискретный *случайный процесс*
- □ *Равномерное* распределение вероятности в пределах $-\Delta/2...+\Delta/2$
 - Дисперсия равна $\Delta^2/12$
- □ Отсчеты шума *некоррелированы* друг с другом
 - СПМ равномерна (дискретный белый шум)
- Шум квантования статистически независим от полезного сигнала

Математическая модель шума квантования

□ Предположения *хорошо* выполняются, если соседние отсчеты попадают в *разные* зоны квантования

Математическая модель шума квантования

□ Предположения плохо выполняются, если сигнал надолго «зависает» между двумя уровнями квантования

