Duration: 45 min

BEEE101L

BEEE101L - Basic Electrical Engineering

Maximum Power Transfer Theorem

(Deemed to be University under section 3 of UGC Act, 1956)

Objective

- To introduce Thevenin's theorem.
- To apply Thevenin's theorem to solve electric circuits and formulate condition for maximum power transfer.

Thevenin's Theorem:

- Any linear active network consisting of independent or dependent voltage and current source and the network elements can be replaced by an equivalent circuit having a voltage source in series with a resistance.
 - Where the voltage source being the open-circuited voltage across the open-circuited load terminals and the resistance being the internal resistance of the source.

Example:

• Find the Thevenin's equivalent circuit across AB.

- The solution has 3 steps:
 - To find Thevenin equivalent resistance (R_{TH}).
 - To find open circuit voltage across terminals AB.
 - Draw the equivalent circuit

4

Simplifying the circuit to find R_{TH} :

Disconnect the load resistance Ri:

$$R_{TA} = 10 + (10115)$$

$$= 10 + 10x5$$

$$= 10 + 50$$

$$= 10 + 50$$

$$R_{TA} = 13.3352$$

Simplifying the circuit to find R_{TH}:

To find V_{TH}:

Applying KCL at rade1, we have $T_1 = T_2 + T_3$

$$20 - V_1 = V_1 + V_1 - V_{TH}$$
5 10

$$4 = \left[\frac{1}{5} + \frac{1}{10} + \frac{1}{10}\right] \vee_{1} - \frac{1}{10} \vee_{7h} - \bigcirc$$

$$A = \frac{4}{10}V_1 - \frac{1}{10}V_{45} - \frac{1}{10}$$

Applying KCL at node 2, $I_3 + 4 = 0$

$$\frac{V_1 - V_{th}}{10} + 4 = 0$$

$$\frac{V_1 + A}{10}$$

$$\frac{V_1}{V_1} + A = \frac{V_1}{10}$$

$$\frac{V_1}{V_1} + A = \frac{V_1}{40}$$

Seub 2 in and solve for Vi

$$8 = \frac{3}{10}V_1 \qquad \therefore V_1 = \frac{80}{3} = 26.67V$$

$$V_{45} = V_1 + V_{40} = 66.67V$$

To find V_{TH}:

To find the load current with Thevenin's Equivalent circuit,

Rot = 13-33 SLA R = 2002

To verify therenin's theorem, Let us compute the load current for actual circuit.

Appleping kcc @ node 1, $I_1 = I_2 + I_3$

$$4 = \frac{4}{10}V_1 - \frac{1}{10}V_2 - \frac{1}{10}V_1$$

 $A = \frac{4}{10}V_1 - \frac{1}{10}V_2 - 9$ Applying kelle node 2, $I_3 + 4 = I_L$

$$\frac{\sqrt{1-\sqrt{2}}}{10} + 4 = \frac{\sqrt{2}}{20}$$

$$4 = \frac{1}{10}V_1 + \left(\frac{1}{10} + \frac{1}{20}\right)V_2$$

Simplified Circuit

The load current
$$I_L = \frac{V_2}{20}$$
To find V_2 , write conditions (D & D) in matrix form

 $0.4V_1 - 0.1V_2 = 4 - D$
 $-0.1V_1 + 0.15V_2 = 4$ (D)

 $\begin{bmatrix} 0.4 & -0.1 \end{bmatrix} \begin{bmatrix} V_1 \end{bmatrix} = \begin{bmatrix} 4 \end{bmatrix} \\ -0.1 & 0.15 \end{bmatrix} \begin{bmatrix} V_2 \end{bmatrix} = \begin{bmatrix} 4 \end{bmatrix}$
 $V_2 = \frac{D_2}{D}$ where $D = \begin{bmatrix} 0.4 & -0.1 \\ -0.1 & 0.15 \end{bmatrix} \begin{bmatrix} 0.4 & -0.1 \\ -0.1 & 0.15 \end{bmatrix}$ & $D_2 = \begin{bmatrix} 0.4 & 4 \\ -0.1 & 4 \end{bmatrix}$
 $V_2 = \frac{D_2}{D} = 4D$

The load current $I_L = \frac{V_2}{20} = \frac{40}{20} = 2A$

The power delivered to the load Pi = I,2R, By therenin's theorem. IL = With

Power delivered to the bood will be maximum it

Demax
$$=$$
 $R_L = R_{Th}$
 $R_$

to verify max pouler transfer theorem, R(s) I(A) P(W) Applied for implementing

Prove the power delivered by the 10V source is maximum for $R_l = R_{th}$ at

node2.

$$Now$$
, $T = \frac{10}{Req}$

$$T = \frac{10}{6.82}$$

$$T_1 = \frac{R_2}{R_1 + R_2}. T$$

$$=\frac{2}{20+2}$$

$$T_1 = 0.13 A$$

Now,
$$T = \frac{10}{Req}$$
 Req = $(20112) + 5$
 $= \frac{40}{22} + 5$
 $T = \frac{10}{6.82}$ = $1.82 + 5$
 $= 6.8252$

$$V_{Th} = V_{AB} = 10I_1 + 5I$$

$$= (0 \times 0.13) + (5 \times 1.47)$$

$$= 1.3 + 7.35$$

To find the load current and power delivered to the load using Thevenin's equivalent circuit,

$$R_{Th} = 5.33\Omega$$

$$V_{Th} = \frac{8.65}{1}$$

$$R_{Th} = 5.33\Omega$$

$$R_{Th} = 5.33\Omega$$

$$T_{L} = \frac{V_{rh}}{R_{rh}} + R_{L}$$

$$= \frac{8.65}{5.33 + 5}$$

$$= 0.837A$$

The power delivered to the load in $P_{L} = I_{L}^{2}R_{L} = (0.837)^{2} \times 5 = 3.50 \text{ W}$

To Verify maximum pouler transfer theorem, Let us consider the following:

$$R_{L}(Q)$$
 $I_{L}(A)$ $P_{L}(W)$
 $A = 0.927 - 3.44$
 $5 = 0.837 - 3.50$
 $S=33 - 0.811 - 3.51$ $R_{L} = R_{TR}$

From the above table, the power delivered by 101 Source at made 2 is maximum for R_ = Roots the given not work:

Find the maximum power delivered by the 10V source in the circuit.

$$R_{Th} = 3.33 \Omega_{A}$$

$$V_{Th} = 6.67 V$$

$$V_{Th}$$

DC Circuits

15