Zadania na czwarta kartkówke

1. Dany jest ciąg (X_n) zmiennych losowych, adaptowany do pewnej filtracji (\mathcal{F}_n) . Niech

$$\tau = \inf\{n > 5 : X_n + n \le X_{n-1}\}.$$

Czy τ jest momentem zatrzymania względem tej filtracji?

- **2.** Załóżmy, że X_1, X_2, \ldots są niezależne i mają ten sam rozkład $\mathbb{P}(X_n = 1) = p$, $\mathbb{P}(X_n = -1) = 1 p$, gdzie p > 1/2 jest ustalone. Niech $S_0 = 0$, $S_n = X_1 + X_2 + \ldots + X_n$ dla $n \ge 1$. Dla ustalonych $a, b \in \{1, 2, \ldots\}$, niech $\tau_{a,b} = \inf\{n : S_n \in \{-a, b\}\}$.
 - a) Wyznaczyć rozkład zmiennej $S_{\tau_{a,b}}$.
 - b) Obliczyć $\mathbb{E}\tau_{a,b}$.
- 3. Zmienne losowe X_0, X_1, X_2, \ldots są niezależne i mają średnią 0. Niech $Z_0=0$ oraz $Z_n=X_0X_1+X_1X_2+\ldots+X_{n-1}X_n$ dla $n\geq 1$. Udowodnić, że (Z_n) jest martyngałem.
- **4.** Zmienne losowe X_1, X_2, \ldots są niezależne i mają ten sam rozkład zadany przez $\mathbb{P}(X_n=1/2)=\mathbb{P}(X_n=3/2)=1/2$. Udowodnić, że ciąg $(X_1X_2\ldots X_n)_{n=1}^{\infty}$ jest zbieżny p.n., ale nie jest zbieżny w L^1 .
- 5. Niech (S_n) będzie symetrycznym błądzeniem losowym po liczbach całkowitych i $\tau = \inf\{n : S_n n/2 = a\}$, gdzie a jest ustaloną liczbą całkowitą dodatnią. Wykorzystując nadmartyngał wykładniczy $(\exp(\lambda S_n \lambda^2 n/2))_{n=0,1,2,\dots}$, podać oszacowanie z góry na $\mathbb{P}(\tau < \infty)$.
- **6.** Niech (S_n) będzie błądzeniem losowym po liczbach całkowitych (niekoniecznie symetrycznym). Czy (S_n/n) jest łańcuchem Markowa? Czy ciąg $(S_n \mod 5)$ jest łańcuchem Markowa?
- 7. Po wierzchołkach czworościanu foremnego ABCD porusza się pionek, w każdym ruchu przeskakując do jednego z sąsiadujących wierzchołków z prawdopodobieństwem 1/3. W chwili 0 pionek znajduje się w punkcie A.

- a) Jakie jest prawdopodobieństwo tego, że pionek dojdzie do punktu D przed dotarciem do punktu C?
 - b) Obliczyć średni czas oczekiwania na dojście pionka do punktu D.
 - c) Obliczyć średni czas oczekiwania na powrót pionka do punktu A.
- d) Wyznaczyć przybliżone prawdopodobieństwo tego, że po 10000 ruchów pionek będzie w punkcie A.
- **8.** Rzucamy kostką aż do momentu, gdy wyrzucimy dwie nieparzyste liczby oczek pod rząd lub szóstkę. Obliczyć wartość oczekiwaną liczby rzutów oraz wartość oczekiwaną liczby wyrzuconych czwórek.
- 9. Dany jest łańcuch Markowa (X_n) na przestrzeni stanów $E = \{1, 2, 3, 4\}$, o macierzy przejścia

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 \\ 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 0 & 1/3 \\ 0 & 1/2 & 1/2 & 0 \end{bmatrix}.$$

- a) Czy łańcuch jest nieprzywiedlny?
- b) Czy łańcuch jest okresowy?
- c) Jakie jest prawdopodobieństwo przejścia ze stanu 3 do stanu 3 w dwóch krokach?
- d) Załóżmy, że $X_0=1$. Obliczyć średni czas oczekiwania na powrót do stanu 1 oraz prawdopodobieństwo tego, że łańcuch dojdzie do stanu 4 przed dojściem do stanu 2.