

Honors Linear Algebra

MATH0540

PROFESSOR MELODY CHAN

Brown University

EDITED BY
RICHARD TANG

Contents

1	\mathbf{Set}	Theor	y					
	1.1	Sets .		 	 	 		
		1.1.1	Set Builder notation	 	 			
		1.1.2	Cartesian Products	 	 			
		1.1.3	Functions	 	 			
	1.2	Fields						

Set Theory

Sets serve as a fundamental construct in higher-level mathematics. We start with a brief introduction to set theory.

§1.1 Sets

Definition 1.1.1: Sets

A set is a collection of elements.

- 1. $x \in X$ means x is an element of X.
- 2. $x \notin \text{means } x \text{ is not an element of } X$.
- 3. $X \subset Y$ means X is a subset of Y (i.e. $\forall x \in X, x \in Y$.)
- $4. \ X = Y \iff X \subset Y \land Y \subset X.$
- 5. $A \cap B := \{x \mid x \in A \land x \in B\}$ means set intersection.
- 6. $A \cup B := \{x \mid x \in A \lor x \in B\}$ means set union.
- 7. $A \setminus B := \{x \mid x \in A \land x \notin B\}$ means set difference.

Example 1. Let

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, \ldots\}.$$

denote the set of integers, and let

$$\mathbb{Z}^+ = \{0, 1, \ldots\}.$$

denote the set of positive integers.

§1.1.1 Set Builder notation

Sets may be defined formally with set-builder notation:

$$X = \{ expression \mid rule \}.$$

Example 2. 1. Let E represent the set of all even numbers. This set is expressed

$$E = \{ n \in \mathbb{Q} \mid \exists k \in \mathbb{Z} \text{ s.t. } n = 2k \}.$$

2. Let A represent the set of real numbers whose squares are rational numbers:

$$A = \{ a \in \mathbb{R} \mid a^2 \in \mathbb{Q} \}.$$

§1.1.2 Cartesian Products

Definition 1.1.2: Ordered Tuples

An **ordered pair** is defined (x,y). An *n*-ordered tuple is an ordered list of n items

$$(x_1,\ldots,x_n)$$
.

Definition 1.1.3: Cartesian Products

Let A, B be sets. The **cartesian product** $A \times B$ is defined

$$A \times B := \{(a, b) \mid a \in A, b \in B\}.$$

Similarly, define the n-fold cartesian product

$$A^n := A \times A \times \cdots \times A.$$

Example 3. \mathbb{R}^2 and \mathbb{R}^3 are examples of commonly known Cartesian products, which represent the 2D- and 3D-plane respectively.

Example 4. \mathbb{R}^n is a first example of a vector space. Let $n \in \mathbb{Z}^+ \cup \{0\}$:

1. (Addition in \mathbb{R}^n) We define an **addition operation** on \mathbb{R}^n by adding coordinatewise

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n).$$

2. (Scaling) Given $(x_1, \ldots, x_n) \in \mathbb{R}^n, \lambda \in \mathbb{R}$, we define

$$\lambda \cdot (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n).$$

Remark 1. $\mathbb{R}_0 = \{0\}.$

§1.1.3 Functions

Let A, B be sets. Informally, a function $f: A \to B$ deterministically returns an element $b \in B$ for each $a \in A$. We write f(a) = b.

Example 5. The function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ maps \mathbb{R} to the subset

$$S \subset \mathbb{R} = \{(x, x^2) \mid x \in \mathbb{R}\}.$$

Definition 1.1.4: Functions

Let A, B be sets. A function $f: A \to B$ is a subset $G_f \subset A \times B$ such that $\forall a \in A, ! \exists b \in B \text{ s.t. } (a, b) \in G_f$. We write f(a) = b when $(a, b) \in G_f$.

Definition 1.1.5: Codomain

Given a function $f: A \to B$, A is the **domain** of f, and B is the **codomain** or **target** of f. Let the **range** of f be defined as

$$\{b \in B \mid f(a) = b, a \in A\}.$$

The range is the subset of B.

Definition 1.1.6: Bijectivity

Let $f:A\to B$ be a function.

- 1. f is **injective**, or an **injection**, if $a_1, a_2 \in A$ and $f(a_1) = f(a_2)$ implies $a_1 = a_2$.
- 2. f is **surjective**, or a **surjection**, if $\forall b \in B, \exists a \in A \text{ s.t. } f(a) = b$. Equivalently, the range is the whole codomain.
- 3. f is **bijective**, or a **bijection**, if it is both injective and surjective. Equivalently, $\forall b \in B$, there is a unique $a \in A$ such that f(a) = b.

§1.2 Fields

Roughly speaking, a **field** is a set, together with operations addition and multiplication. Vector spaces may be defined *over* fields.

Definition 1.2.1: Fields

A field is a set \mathbb{F} containing elements named 0 and 1, together with binary operations + and \cdot satisfying:

- commutativity: $a + b = b + a, a \cdot b = b \cdot a \ \forall a, b \in \mathbb{F}$.
- associativity: $a + (b + c) = (a + b) + c \ \forall a, b, c \in \mathbb{F}$.
- identities: $0 + a = a, 1 \cdot a = a \ \forall a \in \mathbb{F}$.

- additive inverse: $\forall a \in \mathbb{F}, \exists b \in \mathbb{F} \text{ s.t. } a+b=0.$
- multiplicative inverse: $\forall a \in \mathbb{F} \setminus \{0\}, \exists c \in \mathbb{F} \text{ s.t. } ac = 1.$
- distributivity: $a \cdot (b+c) = a \cdot b + a \cdot c \ \forall a,b,c \in \mathbb{F}$.

Example 6. $\mathbb{R}^+ \setminus \{0\}$ is **not** a field under $+, \cdot$.

Example 7. (Finite Fields) Let p prime (e.g. p = 5). Define the field

$$\mathbb{F}_p = \{0, \dots, p-1\},\$$

with binary operations $+_p$, \cdot_p given by addition and multiplication modulo p.