Annals of Nuclear Energy 63 (2014) 751-762 Contents lists available at ScienceDirect Annals of Nuclear Energy journal homepage: www.elsevier.com/locate/anucene

Multi-group formulation of the temperature-dependent resonance scattering model and its impact on reactor core parameters

Shadi Z. Ghrayeb a, Abderrafi M. Ougouag b,*, Mohamed Ouisloumen c, Kostadin N. Ivanov a

- ⁸ Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reher Building, University, Park, PA 16802, USA
- b Idaho National Laboratory, MS-3860, PO Box 1625, Idaho Falls, Idaho 83415, USA
- CWestinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 1606, USA

Guillermo Ibarra

Nuclear Engineering Research Seminar, March 24th, 2020

Slowing Down Equation Brief Introduction

$$\Sigma_t(E')\phi(E') = \int_0^\infty P(E \to E')\sigma_s(E)\phi(E)dE$$

$$\Sigma_t(E')\phi(E') = \int_0^\infty P(E \to E')\sigma_s(E)\phi(E)dE$$

$$\Sigma_{t}(E')\phi(E') = \int_{E'}^{E'/\alpha} \frac{\sigma_{s}(E)}{(1-\alpha)E} \phi(E) dE$$

$$\sigma_{s}(E)P(E \to E') = \begin{cases} \frac{\sigma_{s}(E)}{E(1-\alpha)}, & \alpha E \leq E' \leq E, \\ 0, & otherwise. \end{cases}$$

History of the Resonance Scattering Model

- Ouisloumen and Sanchez (1990) RSM
- ▶ Rothenstein, 2004; Dagan, 2004 $S(\alpha, \beta)$ tables
- ▶ Becker et al. (2009b) Doppler broadened rejection correction (DBRC) approach

Summary of Results with the Mosteller Benchmark

Table 1 Summary of results performed using the resonance scattering model applied to the Mosteller benchmark.

#	Researcher(s)	Energy range	Nuclei	Method	CODE	LIBRARY	Fuel	Δk (pcm)	FTC diff. (%)1
1	Becker et al., 2009c	<210 eV	²³⁸ U	SVT vs. DBRC	MCNP5	JEFF3.1	UOX	-	8-16 ²
				SVT vs. DBRC			MOX ^a		
				SVT vs. DBRC			MOX ^b		
2	Sunny et al., 2012	<210 eV	²³⁸ U	DBRC	MCNP5	ENDF/B-VII	UOX	6 ± 25-194 ± 40	4.2 ± 0.3-15.2 ± 1.0
3	Sunny 2013	<210 eV	²³⁸ U	DBRC	MCNP5	ENDF/B-VII	UOX	20 ± 40-271 ± 41	8.8 ± 0.6-25.1 ± 1.7
1	Mori and Nagaya, 2009	>4.5 eV	238U, 235U	ASY vs. WCM	MVP-2	JENDL-3.3	UOX	72 ± 8-222 ± 14	$7.2 \pm 0.1 - 11.7 \pm 0.2$
5	Zoia et al., 2013	<210 eV	²³⁸ U	SVT vs. DBRC	TRIPOLI-4	ENDF/B-VII	UOX	66 ± 13-225 ± 14	$6.2 \pm 0.2 - 12.8 \pm 0.3$
5		<210 eV	²³⁸ U	SVT vs. WCM		ENDF/B-VII	UOX	77 ± 13-274 ± 18	$8.7 \pm 0.2 - 15.6 \pm 0.4$
,		0.1 eV-1 keV	²³⁸ U	SVT vs. DBRC		CEAV5.1	UOX	59 ± 6-232 ± 7	$9.6 \pm 0.1 - 12.7 \pm 0.3$
3		0.1 eV-1 keV	All nuclei	SVT vs. DBRC		CEAV5.1	UOX	62 ± 6-233 ± 7	$9.3 \pm 0.1 - 12.4 \pm 0.1$
)		0.1 eV-1 keV	²³⁸ U	SVT vs. DBRC		CEAV5.1	MOX ^a	67 ± 7-177 ± 6	$7.0 \pm 0.1 - 9.1 \pm 0.1$
0		0.1 eV-1 keV	All nuclei	SVT vs. DBRC		CEAV5.1	MOX ^a	108 ± 7-222 ± 6	$8.0 \pm 0.1 - 11.2 \pm 0.1$
1		0.1 eV-1 keV	Actinides	SVT vs. DBRC		CEAV5.1	MOX ^a	113 ± 7-232 ± 6	$7.5 \pm 0.1 - 11 \pm 0.1$
2	Ono et al., 2012	4-200 eV	Not specified	Deterministic	Not specified	Not specified	UOX	50-200	$9.3-10.1^3$
3		4-200 eV					MOX ^a	70-160	6.5-7.24
14	Lee et al., 2009	<1000 eV	²³⁸ U	ASY vs. WCM	CASMO-55	ENDF/B-VII	UOX	59-212	9.2-9.8
15	Ghrayeb et al.	<20 MeV	Actinides	Deterministic	DRAGON	ENDF/B-VII	UOX	68-208	8.6-9.8
16	(current work)	<20 MeV	²³⁸ U				UOX	68-205	8.6-9.7
17		<20 MeV	²³⁸ U				MOX ^a	74-165	6.2-7.9
18		<20 MeV	Actinides				MOX ^a	115-216	7.5-8.7
19		<20 MeV	²³⁸ U				MOX ^b	89-187	6.9-9.6
20		<20 MeV	Actinides				MOX ^b	109-218	7.7-9.8

 $^{^1}$ FTC Diff.(%) = $\frac{FTC_{SM}-FTC_{SM}}{FTC_{SM}}\times 100$, see Eq. (8) for FTC. 2 The FTC differences for each enrichment case were not individually documented.

The difference in the Doppler reactivity coefficient were calculated manually and vary from the numbers reported in their paper.

⁴ Based on Pu₂O₂ content of 4 wt.%, and 8 wt.% (their 20 wt.% cases was excluded due to a typo in their paper).

⁵ The resonance integral data was calculated using their Monte Carlo Slowing Down code: MCSD code and supplied to CASMO-5.

a Reactor-Recycle MOX fuel.

b Weapons-Grade MOX fuel.

Formulation

Ousilomen and Sanchez, 1990:

$$\sigma_{sn}^{T}(E \to E') = \frac{\beta^{5/2}}{4E} e^{\frac{E}{kT}} \int_{0}^{\infty} t \sigma_{s}^{\mathsf{tab}} \left(\frac{\beta kT}{A} t^{2} \right) e^{-\frac{t^{2}}{A}} \Psi_{n}(t) dt$$

Formulation

Ousilomen and Sanchez, 1990:

$$\sigma_{sn}^{T}(E \to E') = \frac{\beta^{5/2}}{4E} e^{\frac{E}{kT}} \int_{0}^{\infty} t \sigma_{s}^{\mathsf{tab}} \left(\frac{\beta kT}{A} t^{2} \right) e^{-\frac{t^{2}}{A}} \Psi_{n}(t) dt$$

For isotropic scattering:

$$\sigma_{s_0,g \to g'}^T = \frac{1}{\delta_g \delta_g'} \int_{E_g}^{E_{g+1}} dE \int_{E_{g'}}^{E_{g'+1}} dE' \sigma_{s_0}^T (E \to E')$$

Formulation

Ousilomen and Sanchez, 1990:

$$\sigma_{sn}^{T}(E \to E') = \frac{\beta^{5/2}}{4E} e^{\frac{E}{kT}} \int_{0}^{\infty} t \sigma_{s}^{\mathsf{tab}} \left(\frac{\beta kT}{A} t^{2} \right) e^{-\frac{t^{2}}{A}} \Psi_{n}(t) dt$$

For isotropic scattering:

$$\sigma_{s_0, g \to g'}^T = \frac{1}{\delta_g \delta_g'} \int_{E_g}^{E_{g+1}} dE \int_{E_{g'}}^{E_{g'+1}} dE' \sigma_{s_0}^T (E \to E')$$

For within group scattering:

$$\sigma_{s_0,g \to g'}^T = \frac{1}{\delta_g \delta_g} \int_{E_g}^{E_{g+1}} dE \left\{ \int_{E_g}^{E} dE' \sigma_{s_0}^T(E \to E') + \int_{E}^{E_{g+1}} dE' \sigma_{s_0}^T(E \to E') \right\}$$

Test Implementation

Multi-group implementation of the scattering kernel with $\delta_g < 10^{-3} eV$

$$\begin{split} \delta_g &\to 0, \delta_{g'} \to 0 \Rightarrow \sigma_{s_0, t \to g'}^T \approx \sigma_{s_0}^T (\overline{E}_g \to \overline{E}_{g'}); \\ \overline{E}_g, \overline{E}_{g'} &= \frac{E_{g+1} + E_g}{2}, \frac{E_{g'+1} + E_{g'}}{2} \end{split}$$

Scattering kernel of ²³⁸U at 1000 K

Comparison with NJOY

Fig. 3. The elastic cross section for ²³⁸U at 900 K comparing NJOY multi-group results with those of the RSM using the same energy group structure.

Multi-group RSM with Mosteller Benchmark

▶ Using DRAGON Code, Marleau et al., 2010

Multi-group RSM with Mosteller Benchmark

- Using DRAGON Code, Marleau et al., 2010
- Scattering matrices generated with RSM calculation combined with NJOY data

Multi-group RSM with Mosteller Benchmark

- Using DRAGON Code, Marleau et al., 2010
- Scattering matrices generated with RSM calculation combined with NJOY data
- ► Fuel temperature coefficient:

$$FTC = \left(\frac{1}{k_{HZP}} - \frac{1}{k_{HFP}}\right) \frac{1 \times 10^5}{\Delta T}$$

Mosteller UOX benchmark, RSM kernel applied only to ²³⁸U

Table 2
Fuel temperature coefficients for the Mosteller UOX benchmark with uranium enrichments ranging from 0.711% to 5.0% and the RSM kernel applied only to 238U.

wt (%)	k (asymptotic kernel)			k (RSM kernel or	FTC diff (%)		
	HZP	HFP	FTC	HZP	HFP	FTC	
0.711	0.6621394	0.6560206	-4.70	0.6614598	0.6548324	-5.10	-8.62
1.6	0.9562254	0.9478355	-3.09	0.9553188	0.9461777	-3.37	-9.25
2.4	1.0939660	1.0847290	-2.59	1.0929660	1.0828760	-2.84	-9.52
3.1	1.1716930	1.1620540	-2.36	1.1706490	1.1601060	-2.59	-9.66
3.9	1.2341210	1.2242040	-2.19	1.2330470	1.2221950	-2.40	-9.70
4.5	1.2694110	1.2593600	-2.10	1.2683240	1.2573230	-2.30	-9.72
5.0	1.2936360	1.2835050	-2.03	1.2925430	1.2814540	-2.23	-9.72

Mosteller UOX benchmark, RSM kernel applied to all heavy nuclides

Table 3Fuel temperature coefficients for the Mosteller UOX benchmark with uranium enrichments ranging from 0.711% to 5.0% and the RSM kernel applied for all the heavy nuclei.

wt (%)	k (RSM kernel	clei)	FTC diff (%)	
	HZP	HFP	FTC	
0.711	0.6614576	0.6548296	-5.10	-8.63
1.6	0.9553133	0.9461702	-3.37	-9.27
2.4	1.0929570	1.0828640	-2.84	-9.56
3.1	1.1706380	1.1600910	-2.59	-9.70
3.9	1.2330470	1.2221950	-2.40	-9.70
4.5	1.2683090	1.2573000	-2.30	-9.81
5.0	1.2925260	1.2814290	-2.23	-9.81

FTCs, RSM kernel applied to all heavy nuclides

Table 4
Fuel temperature coefficients for the Mosteller Reactor-Recycle MOX fuel benchmark with 1–8 wt.% PuO₂ and the RSM kernel applied to all the heavy nuclei.

MOX composition (PuO ₂ wt.%)	k (asymptotic kernel)			k (RSM kernel)	FTC diff. (%)		
	HZP	HFP	FTC	HZP	HFP	FTC	
1.0	0.9407429	0.9312128	-3.63	0.9395729	0.9292448	-3.94	-8.74
2.0	1.0183990	1.0076460	-3.49	1.0171230	1.0055030	-3.79	-8.43
4.0	1.0759170	1.0644960	-3.32	1.0746340	1.0623330	-3.59	-8.05
6.0	1.1057560	1.0942010	-3.18	1.1045310	1.0921170	-3.43	-7.76
8.0	1.1297120	1.1181500	-3.05	1.1285580	1.1161660	-3.28	-7.48

Table 5
Fuel temperature coefficients for the Mosteller Weapons-Grade MOX fuel benchmark with 1-6 wt.% PuO₂ and the RSM kernel applied to all the heavy nuclei.

MOX composition (PuO2 wt.%)	k (asymptotic k	ternel)		k (RSM kernel)	k (RSM kernel)				
	HZP	HFP	FTC	HZP	HFP	FTC			
1.0	1.0838630	1.0748170	-2.59	1.0827770	1.0728730	-2.84	-9.79		
2.0	1.1765110	1.1656680	-2.64	1.1753040	1.1635420	-2.87	-8.79		
4.0	1.2472990	1.2352440	-2.61	1.2460520	1.2330640	-2.82	-8.04		
6.0	1.2847710	1.2725020	-2.50	1.2835640	1.2703840	-2.69	-7.71		

FTCs, RSM kernel applied only to ²³⁸U

Table 6Fuel temperature coefficients for the Mosteller Reactor-Recycle MOX fuel benchmark with 1–8 wt.% PuO₂ and the RSM kernel applied to ²³⁸U only.

MOX composition (PuO ₂ wt.%)	HZP	HFP	FTC	FTC diff. (%)
1.0	0.9398723	0.9296191	-3.91	-7.87
2.0	1.0175060	1.0059940	-3.75	-7.33
4.0	1.0750620	1.0628910	-3.55	-6.81
6.0	1.1049570	1.0926810	-3.39	-6.46
8.0	1.1289670	1.1167140	-3.24	-6.18

Table 7Fuel temperature coefficients for the Mosteller Weapons-Grade MOX fuel benchmark with 1–6 wt.% PuO₂ and the RSM kernel applied to ²³⁸U only.

370 1.0730010		
1.0/30010	-2.84	-9.57
180 1.1637980	-2.86	-8.35
530 1.2334410	-2.80	-7.35
350 1.2707980	-2.67	-6.88
3	3530 1.2334410	3530 1.2334410 –2.80

FTCs, RSM kernel applied to individual nuclei

Table 8

The up-scattering percentage contribution of each nucleus towards the eigenvalue for Mosteller Reactor-Recycle MOX fuel benchmark with 1-8 wt.% PuO- at 600 K.

MOX composition (PuO ₂ wt.%)	²³⁸ U	²³⁵ U	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu
1.0	74.51	0.09	0.04	2.59	22.58	0.19
2.0	70.15	0.16	0.08	6.13	23.33	0.16
4.0	66.85	0.39	0.23	11.65	20.72	0.16
6.0	65.60	0.49	0.33	15.19	18.23	0.16
8.0	64.84	0.78	0.52	17.75	15.93	0.17

Table 9

The up-scattering percentage contribution of each nucleus towards the eigenvalue for Mosteller Reactor-Recycle MOX fuel benchmark with 1–8 wt.% PuO₂ at 900 K.

MOX composition (PuO_2 wt.%)	²³⁸ U	²³⁵ U	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu
1.0	81.17	0.07	0.03	1.65	16.95	0.14
2.0	77.30	0.14	0.09	4.07	18.25	0.14
4.0	74.62	0.28	0.14	8.00	16.83	0.14
6.0	73.54	0.39	0.24	10.64	15.05	0.15
8.0	73.12	0.56	0.31	12.53	13.39	0.10

Table 10 The up-scattering percentage contribution of each nucleus towards the eigenvalue for Mosteller Weapons-Grade MOX fuel benchmark with 1–6 wt.% PuO₂ at 600 K.

MOX composition (PuO ₂ wt.%)	²³⁸ U	²³⁵ U	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pt
1.0	89.87	0.18	0.00	0.00	9.76	0.18
2.0	82.41	0.33	0.00	0.00	17.10	0.17
4.0	75.98	0.64	0.00	0.00	23.21	0.16
6.0	73.59	0.91	0.00	0.00	25.33	0.17

Table 11 The up-scattering percentage contribution of each nucleus towards the eigenvalue for Mosteller Weapons-Grade MOX fuel benchmark with 1–6 wt.% PuO₂ at 900 K.

MOX composition (PuO_2 wt.%)	²³⁸ U	²³⁵ U	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Рι
1.0	93.51	0.15	0.00	0.00	6.18	0.15
2.0	88.08	0.28	0.00	0.00	11.49	0.14
4.0	82.90	0.51	0.00	0.00	16.46	0.14
6.0	80.80	0.71	0.00	0.00	18.40	0.09

Neutron Flux Near Third Resonance of ²³⁸U

Fig. 5. Neutron flux of the fuel region for UO₂ pin-cell at 0.711 wt.% enrichment at 600 K near the third resonances of ²³⁸U, 36.68 eV, using the RSM (dashed curve) and the traditional asymptotic (dotted curve) model. The elastic scattering cross section is also plotted (solid curve).

Relative Differences

Fig. 6. Relative difference in flux (%, solid curve above) between the asymptotic model and the resonance scattering model plotted against the macroscopic cross-section of the fuel (dotted curve below). Where the flux is almost zero, the relative error is very large (which cannot be seen in Fig. 5 due to the scale in that figure).

Comparison of Works with the Mosteller Benchmark

Fig. 7. Comparison of the FTC differences for UOX Mosteller benchmark. The results of Chrayeb et al. (long dashed curve) and Lee et al. 2009 (dash dot curve) compare relatively well against each other showing a nearly constant behavior in FTC difference with respect to 235U enrichment. However, there is no consensus among the work of others to show consistency in FTC difference with respect to 235U enrichment. The numbers in parentheses correspond to the first column of Table 1.

► Temperature-dependent resonance scattering and up scattering effects are considered in slowing down calculation.

- ► Temperature-dependent resonance scattering and up scattering effects are considered in slowing down calculation.
- Asymptotic model for neutron-nuclei elastic scattering under predicts the Doople coefficient by as much as 10% in LWR lattices.

- ► Temperature-dependent resonance scattering and up scattering effects are considered in slowing down calculation.
- ► Asymptotic model for neutron-nuclei elastic scattering under predicts the Doople coefficient by as much as 10% in LWR lattices.
- In the case of the UO_2 fuel, the contribution of up-scattering was overwhelmingly due to ^{238}U .

- ► Temperature-dependent resonance scattering and up scattering effects are considered in slowing down calculation.
- ► Asymptotic model for neutron-nuclei elastic scattering under predicts the Doople coefficient by as much as 10% in LWR lattices.
- In the case of the UO_2 fuel, the contribution of up-scattering was overwhelmingly due to ^{238}U .
- ▶ When using RSM instead of asymptotic model, in case of UO₂ fuel, change in eigenvalues varies from 68 to 208 pcm.

- ► Temperature-dependent resonance scattering and up scattering effects are considered in slowing down calculation.
- Asymptotic model for neutron-nuclei elastic scattering under predicts the Doople coefficient by as much as 10% in LWR lattices.
- In the case of the UO_2 fuel, the contribution of up-scattering was overwhelmingly due to ^{238}U .
- ▶ When using RSM instead of asymptotic model, in case of UO₂ fuel, change in eigenvalues varies from 68 to 208 pcm.
- ▶ In the case of the weapons-grade MOX fuel the largest and most significant contribution to resonance up-scattering after that of ²³⁸U is that of ²⁴¹Pu, which is responsible for as much as 25% of up-scattering

Thanks!

Questions?