Факультет БИТ

Физика

Скачать презентацию

Лекция №9

Диффузия. Вязкость. Теплопроводность.

Распределение Больцмана.

Распределение Максвелла.

Явления переноса в газах

Диффузия

Диффузия от латинского diffusio – распространение, растекание - взаимное проникновение соприкасающихся веществ друг в друга, вследствие теплового движения частиц вещества. Диффузия происходит в направлении уменьшения концентрации вещества и ведет к его равномерному распределению по занимаемому объему.

Диффузия имеет место в газах, жидкостях и твердых телах.

Наиболее быстро диффузия происходит в газах, медленнее в жидкостях, еще медленнее в твердых телах, что обусловлено характером движения частиц в этих средах.

концентрация n(x)

Диффузия

Градиент концентрации в общем случае:

grad
$$n = \frac{\mathrm{d}n}{\mathrm{d}x}\mathbf{i} + \frac{\mathrm{d}n}{\mathrm{d}y}\mathbf{j} + \frac{\mathrm{d}n}{\mathrm{d}z}\mathbf{k}$$

Так как у нас одномерная задача, то $\operatorname{grad} n = \frac{\mathrm{d}n}{\mathrm{d}x}$

При наличии grad n хаотическое движение будет более направленным и возникнет поток молекул примеси, направленный от мест с большей концентрацией к местам с меньшей концентрацией.

Пусть в плоскости с координатой х находится единичная площадка dS, перпендикулярная оси х. Число молекул, проходящих со скоростью < v > через площадку в направлении слева направо dN $_{\scriptscriptstyle +}$ и справа налево dN $_{\scriptscriptstyle -}$, за время dt:

$$dN_{+} = \frac{1}{6}n_{1}\langle v\rangle dSdt$$

$$dN_{-} = \frac{1}{6}n_{2}\langle v\rangle dSdt$$

$$dN = dN_{+} - dN_{-}$$

где n_1 - концентрация молекул слева от площади, а n_2 - концентрация молекул справа от площадки dS.

grad $n = \frac{dn}{dx}$

Диффузия (Первый закон Фика)

в сторону уменьшения концентрации.

равен диффузионному потоку через единицу

площади в единицу времени при $\operatorname{grad} n = 1$.

Измеряется коэффициент диффузии D в M/c^2 .

Из уравнения Фика видно, что поток направлен При этом коэффициент диффузии D численно

$$dN = dN_{+} - dN_{-} = \frac{1}{6} \langle v \rangle dS dt (n_{1} - n_{2})$$

Результирующий диффузионный

поток частиц через единицу

поток частиц через единицу площади в единицу времени:
$$J = \frac{\mathrm{d}N}{\mathrm{d}S\mathrm{d}t} = \frac{1}{6}\langle v \rangle (n_1 - n_2)$$

перепишем в виде: $J = -\frac{1}{2} \langle v \rangle \lambda \frac{n_2 - n_1}{2^2}$

$$\begin{array}{c} n_2 \text{-} n_1 = dn, \\ 2\lambda = dx, \end{array} \Rightarrow \frac{n_2 - n_1}{2\lambda} = \frac{dn}{dx}$$

$$J = -\frac{1}{3} \langle v \rangle \lambda \frac{\mathrm{d}n}{\mathrm{d}x}$$

$$D = \frac{1}{3} \langle v \rangle \lambda$$
 – коэффициент диффузии

Тогда диффузионный поток: $J=-D\,rac{\mathrm{d}n}{\mathrm{d}x}$

или в общем случае (в трёхмерной системе): $J=rac{\mathrm{d}N}{\mathrm{d}S\mathrm{d}t}=-D\,\,\mathrm{grad}\,n$ – первый закон Фика

Диффузия (Первый закон Фика)

$$D = \frac{1}{3} \langle v \rangle \lambda$$
 - коэффициент диффузии

$$< v > = \sqrt{\frac{8RT}{\pi M}}$$

$$\lambda = \frac{\langle v \rangle}{v} = \frac{1}{\sqrt{2}n\sigma} = \frac{kM}{\sqrt{2}\sigma\rho R}$$

$$J = \frac{\mathrm{d}N}{\mathrm{d}S\mathrm{d}t} = -D\,\frac{\mathrm{d}n}{\mathrm{d}x}$$

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -D \frac{\mathrm{d}n}{\mathrm{d}x} \, \mathrm{d}S$$

$$m = Nm_0$$

$$\frac{\mathrm{d}m}{\mathrm{d}t} = -m_0 D \frac{\mathrm{d}n}{\mathrm{d}x} \,\mathrm{d}S$$

$$\rho = nm_0$$

$$\frac{\mathrm{d}m}{\mathrm{d}t} = -D \frac{\mathrm{d}\rho}{\mathrm{d}x} \,\mathrm{d}S$$

$$J = \frac{\mathrm{d}N}{\mathrm{d}S\mathrm{d}t} = -D\,\frac{\mathrm{d}n}{\mathrm{d}x}$$

Диффузия (Второй закон Фика)

$$\Phi = JdS = \frac{dN}{dt} = -D\frac{dn}{dx}dS$$

Увеличение числа частиц dN в пространстве между площадками за время dt равно разности числа входящих и выходящих частиц:

$$dN = (\Phi(x) - \Phi(x + dx))dt = -(\Phi(x + dx) - \Phi(x))dt = -d\Phi dt$$

Изменение концентрации частиц за время dt:

$$dn = \frac{dN}{V} = -\frac{d\Phi dt}{V} = -\frac{d\Phi dt}{dxdS} = -\frac{dt}{dS}\frac{d}{dx}\left(-D\frac{dn}{dx}dS\right)$$

$$\frac{\partial n}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial n}{\partial x} \right)$$

$$\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2}$$

$$D = \frac{1}{3} \langle v \rangle \lambda - \text{коэффициент}$$
 диффузии

Второй закон Фика позволяет найти зависимость концентрации диффундирующих частиц от времени

Вязкость газа (внутреннее трение)

Через площадку dS за время dt влево и вправо переходят потоки молекул:

$$dN_{+} = dN_{-} = \frac{1}{6}n\langle v\rangle dSdt$$

Их импульсы: $p_{+} = m_0 v_1 dN_{+}$

$$p_- = m_0 v_2 dN_-$$

Второй з-н Ньютона:

$$F = \frac{dp}{dt}$$

$$Fdt = dp = m_0 v_1 dN_+ - m_0 v_2 dN_- = m_0 \frac{1}{6} n \langle v \rangle dS dt (v_1 - v_2)$$

Сила, действующая на единицу площади поверхности, разделяющей два соседних слоя газа:

$$\frac{F}{dS} = m_0 \frac{1}{6} n \langle v \rangle (v_1 - v_2) = -\frac{1}{3} m_0 n \langle v \rangle \lambda \frac{(v_2 - v_1)}{2 \lambda}$$
 перепишем

$$(v_2 - v_1) = dv$$
,
 $2\lambda = dx$,
 $\rho = nm_0$

$$F = -\frac{1}{3}\rho \langle v \rangle \lambda \frac{dv}{dx} dS$$

$$\eta = \frac{1}{3}\rho\langle v\rangle\lambda$$

– коэффициент внутреннего трения

https://online.mephi.ru

Число степеней свободы механической системы – количество независимых величин, с помощью которых может быть задано положение системы.

степени свободы (ввсего 3N (N – число атомов в молекуле)):

- Поступательные (3)
- Вращательные (0, 2 или 3 зависит от конфигурации молекулы)
- *Колебательные (остальные до 3N)

$$E_{K} = \frac{m < v >^{2}}{2} = \frac{i}{2}kT$$

Теплопроводность

Через площадку dS за время dt влево и вправо переходят потоки молекул:

$$dN_{+} = dN_{-} = \frac{1}{6}n\langle v\rangle dSdt$$

Их кинетические энергии:

$$E_{K1} = \frac{i}{2}kT_1$$
$$E_{K2} = \frac{i}{2}kT_2$$

Поток энергии через dS равен разности потоков:

$$dQ = dQ_{+} - dQ_{-} = E_{K1}N_{+} - E_{K2}dN_{-} = \frac{1}{6}n\langle v\rangle dSdt \frac{i}{2}k(T_{1} - T_{2})$$

$$= -\frac{1}{6}n\langle v\rangle dSdt\lambda \frac{i}{2\lambda}k(T_{2} - T_{1}) = -\frac{1}{6}n\langle v\rangle dSdt\lambda ik \frac{dT}{dx}$$

Поток через единичную площадку в единицу времени q направлен в сторону противоположную направлению градиента:

$$q=rac{dQ}{dtdS}=-rac{1}{6}n\langle v
angle \lambda ikrac{dT}{dx}=-\chi rac{dT}{dx}$$
- закон Фурье

$$\chi = \frac{1}{6} n \langle v \rangle \lambda i k = \frac{1}{3} \lambda \langle v \rangle \rho c V - коэффициент теплопроводности$$

$x + \lambda$

Теплопроводность

$$q=\frac{dQ}{dtdS}=-\frac{1}{6}n\langle v\rangle\lambda ik\frac{dT}{dx}=-\chi\,\frac{dT}{dx}$$
- закон Фурье
$$\chi=\frac{1}{6}n\langle v\rangle\lambda ik-\text{коэффициент теплопроводности}$$

$$dQ = (q(x) - q(x + dx)) dtdS = -dqdtdS = -\frac{dq}{dx} dxdtdS$$
$$dQ = mc_V dT = \rho dx dS c_V dT$$

$$-\frac{dq}{dx}dxdtdS = \rho dxdScVdT$$

$$-\frac{dq}{dx} = \rho c_V \frac{dT}{dt}$$

$$q = -\chi \frac{dT}{dx} \qquad -\frac{d(-\chi \frac{dT}{dx})}{dx} = \rho c_V \frac{dT}{dt}$$

$$q=-\chi rac{dT}{dx}$$
 $-rac{d(-\chi rac{dT}{dx})}{dx}=
ho c_V rac{dT}{dt}$ $\chi rac{d^2T}{dx^2}=
ho c_V rac{dT}{dt}$ уравнение теплопроводности

$$a=rac{\chi}{
ho c_{_{V}}}$$
 к-т температуропроводности

Барометрическая формула

Как изменяется давление атмосферы (или плотность воздуха) по мере удаления от поверхности Земли?

Выделим вертикальный столб воздуха с площадью горизонтального сечения S.

Предположим, что:

- этот столб находится в тепловом равновесии, то есть температура везде одинакова (в реальной атмосфере это не так, но для простоты анализа T = const);
- газ идеальный, то есть для него справедливо уравнение Клапейрона Менделеева $pV = \nu RT$;
- можно пренебречь изменением ускорения свободного падения g с высотой (справедливо для не очень больших высот).

Атмосферное давление на высоте h обусловлено весом вышележащих слоев газа.

Пусть на высоте h давление p, тогда на высоте h + dh давление p + dp.

При этом, если dh > 0, то давление уменьшается, dp < 0, так как уменьшается вес вышележащих слоев атмосферы.

Барометрическая формула

$$\sum_{i} F_i = 0.$$

$$p = \frac{F}{S}$$

$$p = \frac{F}{S}$$
 $F = pS$ $F = gm$

$$F = gm$$

В проекции на вертикальную ось:

$$(p+dp)S-pS+g
ho dhS=0$$
, где $ho-$ плотность газа на высоте h.

 $m = \rho V = \rho dhS$

Раскрываем скобки и приводим подобные члены:

$$dp = -\rho g dh$$

$$\rho = \frac{m}{V} = \frac{pM}{RT}$$

$$pV = \nu RT$$
 $pV = \frac{m}{M}RT$ $p = \frac{RTm}{MV}$

Это уравнение можно проинтегрировать в случае изотермической атмосферы $\int_{p_0}^{p} \frac{dp}{p} = \int_{0}^{h} -\frac{Mg}{RT} dh$ (T = const):

 p_0 - давление на поверхности (h = 0)

$$p(h) = p_0 \exp\left(-\frac{Mgh}{RT}\right)$$

$$\int_{p_0}^{p} \frac{dp}{p} = \int_{0}^{n} -\frac{Mg}{RT} dh$$

$$Mg$$

$$\ln p - \ln p_0 = -\frac{Mg}{RT}h$$

$$\ln \frac{p}{p_0} = -\frac{Mg}{RT}h$$

Барометрическая формула

описывает распределение давления газа по высоте в однородном поле тяжести при

постоянной температуре:

 $p(h) = p_0 \exp\left(-\frac{Mgh}{RT}\right)$

 p_0 - давление на поверхности (h = 0)

Зависимости относительного давления $p(h)/p_0$ от высоты при температуре T = 300 K (27 °C)

- для водорода H_2 ($M_1 = 2,016$ г/моль),
- азота N_2 ($M_2 = 28,013$ г/моль)
- кислорода 0_2 ($M_3 = 31,999$ г/моль).

 $M = \text{m/v} = \text{m}_0 \text{N}_A$ $R = kN_A$

Барометрическая формула: $p(h) = p_0 \exp\left(-\frac{Mgh}{PT}\right)$

 $N_A = M/m_0$ $R = kM/m_0$

$$= p_0 \exp\left(-\frac{m_0 g h}{kT}\right)$$

$$R/k=M/m_0$$

Уравнение состояния идеального газа: p = nkT, =>

$$n(h) = n_0 \exp\left(-\frac{Mgh}{RT}\right) = n_0 \exp\left(-\frac{m_0 gh}{kT}\right)$$

$$n(E_{\Pi}) = n_0 \exp\left(-\frac{E_{\Pi}}{kT}\right)$$

 $m_0 gh$ - потенциальная энергия одной молекулы в поле тяжести Земли

 $k_{B}T$ — величина, пропорциональная средней энергии теплового движения молекулы

- распределение Больцмана

- закон изменения с высотой концентрации молекул *n* (числа молекул N в единице объема V)
- закон распределения молекул по значениям потенциальной энергии (для потенциального поля любой природы)

$$n(h) = n_0 \exp\left(-\frac{Mgh}{RT}\right) = n_0 \exp\left(-\frac{m_0 gh}{kT}\right)$$

Относительные концентрации $n(h)/n_0$ молекул кислорода ${\rm O_2}$ на разных высотах при двух различных температурах

$$T_1 = 1300$$
 К и

$$T_2 = 300 \text{ K}$$

(для 1300 К не реальное и используется как иллюстрация).

Число частиц в единице объема при большей температуре медленнее убывает с высотой

$$n(h) = n_0 \exp\left(-\frac{Mgh}{RT}\right) = n_0 \exp\left(-\frac{m_0 gh}{kT}\right)$$

Вероятность

 N_i — число измерений, каждое из которых дает значение измеряемой величины x, равное x_i . Вероятность w_i того, что величина x имеет значение x_i , определяется как предел отношения числа N_i к полному числу измерений N при стремлении N к бесконечности:

$$w_i = \lim_{N \to \infty} \frac{N_i}{N} \approx \frac{N_i}{N}$$

N — число опытов

 N_i – число опытов, в которых был результат i

Сумма вероятностей всех возможных результатов = 1:

для дискретной случайной величины: $\sum_{i=1}^{\infty} w_i = 1$

для непрерывной случайной величины: $\int w = 1$

Распределение концентраци $n(E_{\Pi}) = n_0 \exp\left(-\frac{E_{\Pi}}{L_{\Pi}}\right)$ молекул по значениям потенциальной энергиии:

 $dN = ndV = n_0 \exp\left(-\frac{E_{\pi}}{\nu \tau}\right) dx dy dz$ Число молекул в элементе объема:

Вероятность вероятность обнаружить молекулу $dw=rac{dN}{N}=rac{n_0}{N}\exp\left(-rac{\mathbb{E}_{_{\Pi}}}{kT}\right)dxdydz$ в элементе объема:

Распределение Максвелла

Вероятность обнаружения молекулы в бесконечно малом прямоугольном параллелепипеде в пространстве скоростей:

(вероятность того, что молекула имеет проекцию скорости на ось х в интервале от v_r до v_r + dv_r , на ось у в интервале от v_{ν} до v_{ν} + dv_{ν} , на ось z в интервале от v_z до v_z + dv_z)

$$dw_{v} = = A \exp\left(-\frac{E_{K}}{kT}\right) dv_{x} dv_{y} dv_{z}$$

$$E_{K} = \frac{m_{0}v^{2}}{2} = \frac{m_{0}(v_{x}^{2} + v_{y}^{2} + v_{z}^{2})}{2}$$

$$dw_{v} = Ae^{-\frac{m_{0}(v_{x}^{2} + v_{y}^{2} + v_{z}^{2})}{2kT}}dv_{x}dv_{y}dv_{z}$$
23

Вероятность обнаружения молекулы в бесконечно малом прямоугольном параллелепипеде в пространстве скоростей:

$$dw_v = Ae^{-rac{m_0\left(v_x^2+v_y^2+v_z^2
ight)}{2kT}}dv_x dv_y dv_z$$
 Условие нормировки: $\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}Ae^{-rac{m_0\left(v_x^2+v_y^2+v_z^2
ight)}{2kT}}dv_x dv_y dv_z = 1$

$$A = \left(\frac{m_0}{2\pi kT}\right)^{\frac{3}{2}}$$

$$v = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

$$dw_v = \left(\frac{m_0}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m_0 v^2}{2kT}} dv_x dv_y dv_z$$

Вероятность обнаружения молекулы в бесконечно малом прямоугольном параллелепипеде в пространстве скоростей:

$$dv_y$$
 прямоугольном параллелепипеде в пространстве скоро dv_y $dv_y = \left(\frac{m_0}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{m_0 v^2}{2k_B T}\right) dv_x dv_y dv_z$

Объём шарового слоя $V=4\pi v^2 dv$

$$dw_v = \left(\frac{m_0}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{m_0 v^2}{2k_B T}\right) 4\pi v^2 dv$$

молекула имеет скорость в интервале от
$$v$$
 до $v+dv$: (относительное число молекул (dN/N), абсолютные скорости которых заключены в единичном интервале скоростей от v до $v+dv$)

вероятность того, что

$$dw_v = f(v)dv$$

$$f(v) = \left(rac{m_0}{2\pi k_B T}
ight)^{3/2} \exp\left(-rac{m_0 v^2}{2k_B T}
ight) 4\pi v^2$$
 - функция распределения Максвелла (молекул по модулям скорости)

- плотность вероятности (отношение вероятности того, что скорость молекулы лежит в интервале от v до v+dv, к величине этого интервала)

$$f(v) = \left(\frac{m_0}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{m_0 v^2}{2k_B T}\right) 4\pi v^2 = \frac{4}{\sqrt{\pi}} \left(\frac{m_0}{2k_B T}\right)^{3/2} \exp\left(-\frac{m_0 v^2}{2k_B T}\right) v^2$$

Распределение Максвелла. Наиболее вероятная скорость молекул

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m_0}{2k_B T}\right)^{3/2} \exp\left(-\frac{m_0 v^2}{2k_B T}\right) v^2$$

Наиболее вероятная скорость V_{BEP} — это скорость, отвечающая максимальному значению функции распределения Максвелла

$$\frac{df(v)}{dv} = 0 \qquad \frac{d}{dv} \left(v^2 \exp\left(-\frac{m_0 v^2}{2k_B T}\right) \right) = 0$$

$$2v \exp\left(-\frac{m_0 v^2}{2k_B T}\right) + v^2 \exp\left(-\frac{m_0 v^2}{2k_B T}\right) \left(-\frac{2m_0 v}{2k_B T}\right) = 0$$

$$v \exp\left(-\frac{m_0 v^2}{2k_B T}\right) \left(2 + \left(-\frac{m_0 v^2}{k_B T}\right)\right) = 0$$

$$\left(2 - \frac{m_0 v^2}{k_B T}\right) = 0$$

$$v_{\text{Bep}} = \sqrt{\frac{2k_BT}{m_0}} = \sqrt{\frac{2RT}{M}} \qquad k/m_0 = R/M$$

Распределение Максвелла. Наиболее вероятная скорость молекул

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m_0}{2k_B T}\right)^{3/2} \exp\left(-\frac{m_0 v^2}{2k_B T}\right) v^2$$

 $V_{Bep\,2}$

V_{Bepl}

Наиболее вероятная скорость V_{BEP} — это скорость, отвечающая максимальному значению функции распределения Максвелла

$$\frac{df(v)}{dv} = 0$$

$$v_{\text{Bep}} = \sqrt{\frac{2k_BT}{m_0}} = \sqrt{\frac{2RT}{M}}$$

$$f(v_{\text{Bep}}) = \frac{4}{\sqrt{\pi}} \left(\frac{m_0}{2k_B T}\right)^{3/2} \frac{2k_B T}{m_0 e^1} = \frac{4}{e\sqrt{\pi}} \sqrt{\frac{m_0}{2k_B T}} = 0.587 \sqrt{\frac{m_0}{k_B T}}$$

Распределение Максвелла. Наиболее вероятная скорость молекул

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m_0}{2k_B T}\right)^{3/2} \exp\left(-\frac{m_0 v^2}{2k_B T}\right) v^2$$

$$m_1 > m_2 > m_3$$
 (при T = const)

Наиболее вероятная скорость V_{BEP} — это скорость, отвечающая максимальному значению функции распределения Максвелла

$$\frac{df(v)}{dv} = 0$$

$$v_{\text{Bep}} = \sqrt{\frac{2k_BT}{m_0}} = \sqrt{\frac{2RT}{M}}$$

$$f(v_{\text{Bep}}) = 0.587 \sqrt{\frac{m_0}{k_B T}}$$

Вычисление средних значений

1) x — изменяется дискретно

$$\langle x \rangle = \frac{1}{N} \sum_{i} N_{i} x_{i} = \sum_{i} w_{i} x_{i}$$

 w_i — вероятность того, что величина x имеет значение x_i .

2) х – изменяется непрерывно

$$\langle x \rangle = \int x dw = \int x f(x) dx$$

по интервалу
всех возможных всех возможных значений х значений х

f(x) — функция распределения величины x.

Распределение Максвелла. Средняя скорость молекул

среднее
$$\langle x \rangle = \int x dw$$
 значение: $\begin{cases} x \rangle = \int x dw \\ no \ u + mep \ валу \\ всех \ возможных \\ значений \ x \end{cases}$

$$dw_v = f(v)dv$$

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m_0}{2k_B T}\right)^{3/2} \exp\left(-\frac{m_0 v^2}{2k_B T}\right) v^2$$

$$\langle v \rangle = \int_0^\infty v dw_v = \int_0^\infty v f(v) dv$$

$$\langle v \rangle = \frac{4}{\sqrt{\pi}} \left(\frac{m_0}{2k_B T} \right)^{3/2} \int_0^\infty \exp\left(-\frac{m_0 v^2}{2k_B T} \right) v^3 dv$$

$$\langle v \rangle = \sqrt{\frac{8k_BT}{\pi m_0}} = \sqrt{\frac{8RT}{\pi M}}$$
 $R/k=M/m_0$
 $k/m_0=R/M$

Распределение Максвелла. Средняя квадратичная скорость молекул

$$\langle x \rangle = \int x dw$$
по интервалу
всех возможных
значений x

$$dw_v = f(v)dv$$

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m_0}{2k_B T}\right)^{3/2} \exp\left(-\frac{m_0 v^2}{2k_B T}\right) v^2$$

$$\langle v^2 \rangle = \int_0^\infty v^2 dw = \int_0^\infty v^2 f(v) dv$$

$$v_{\rm cp \, KB} = \sqrt{\int_0^\infty v^2 f(v) dv}$$

$$v_{\text{cp KB}} = \sqrt{\frac{4}{\sqrt{\pi}} \left(\frac{m_0}{2k_B T}\right)^{3/2}} \int_0^\infty \exp\left(-\frac{m_0 v^2}{2k_B T}\right) v^4 dv$$

$$v_{\text{cp KB}} = \sqrt{\frac{3k_BT}{m_0}} = \sqrt{\frac{3RT}{M}} \qquad k/m_0 = R/M$$

 $v_{Bep}: \langle v \rangle: v_{CP \ KB} = 1:1,13:1,22$

Среднеквадратическая скорость

$$\frac{1}{2}m_0\overline{v^2} = \frac{3}{2}k_{\rm B}T \qquad \qquad v_{\rm rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3k_{\rm B}T}{m_0}} = \sqrt{\frac{3RT}{M}}$$

Gas	Molar Mass (g/mol)	at 20° C (m/s)	Gas	Molar Mass (g/mol)	${\rm at} \ 20^{\circ}{\rm C} \ (\rm m/s)$
H_2	2.02	1902	NO	30.0	494
He	4.00	1352	O_2	32.0	478
H_2O	18.0	637	$\overline{\mathrm{CO}}_2$	44.0	408
Ne	20.2	602	SO_2	64.1	338
N_2 or CO	28.0	511	-		

 $v_{Bep}:\langle v \rangle: v_{Cp \ KB} = 1:1,13:1,22$

$$dw_v = f(v)dv$$

$$f(v) = rac{4}{\sqrt{\pi}} igg(rac{m_0}{2k_B T}igg)^{3/2} \expigg(-rac{m_0 v^2}{2k_B T}igg) v^2$$
 (плотность вероятности (отношение вероятности того, что скорость молекулы лежит в интервале от v до v+dv, к величине этого интервала)

$$dN_v = Nf(v)dv = Ndw_v = Nrac{4}{\sqrt{\pi}} {\left(rac{m_0}{2k_BT}
ight)}^{3/2} \exp{\left(-rac{m_0v^2}{2k_BT}
ight)} v^2 dv$$
 количество молекул со скоростями в интервале от v до v+dv

Количество молекул, скорость которых лежит в интервале от v_1 до v_2 :

$$dN(v_1 \le v \le v_2) = N \int_{v_1}^{v_2} f(v) dv$$

$$dw_v = f(v)dv$$

$$f(v) = rac{4}{\sqrt{\pi}} igg(rac{m_0}{2k_B T}igg)^{3/2} \expigg(-rac{m_0 v^2}{2k_B T}igg) v^2$$
 (плотность вероятности (отношение вероятности того, что скорость молекулы лежит в интервале от v до v+dv, к величине этого интервала)

$$dN_v = Nf(v)dv = Ndw_v = Nrac{4}{\sqrt{\pi}} igg(rac{m_0}{2k_BT}igg)^{3/2} \expigg(-rac{m_0v^2}{2k_BT}igg)v^2dv$$
 количество молекул со скоростями в интервале от v до v+dv

Количество молекул, скорость которых превышает некоторое значение v_0 :

$$dN(v \ge v_0) = N \int_{v_0}^{\infty} f(v) dv$$

На графике этому интегралу соответствует лежащая справа от v₀ часть площади (отмечена штриховкой), ограниченная кривой F(v) и осью скоростей.

Распределение Максвелла по величинам безразмерной скорости

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m_0}{2k_B T}\right)^{3/2} \exp\left(-\frac{m_0 v^2}{2k_B T}\right) v^2$$

$$v_{\text{Bep}} = \sqrt{\frac{2k_BT}{m_0}} = \sqrt{\frac{2RT}{M}}$$

Безразмерная скорость:
$$u = \frac{v}{v_{\text{вер}}}$$

$$dv = v_{\text{Bep}} du \qquad v^2 = u^2 v_{\text{Bep}}^2$$

$$f(v)dv = \frac{4}{\sqrt{\pi}} \left(\frac{m_0}{2kT}\right)^{3/2} \frac{u^2 2kT}{m_0} exp\left(-\frac{m_0}{2kT} \frac{2kT}{m_0} u^2\right) \sqrt{\frac{2kT}{m_0}} du$$

$$= F(u)du = \frac{4}{\sqrt{\pi}} u^2 exp(-u^2) du$$

Функция F(u) одинакова для всех температур для всех молекул

Число молекул со соростями в единичном $\dfrac{dN}{N}=\dfrac{4}{\sqrt{\pi}}e^{-u^2}u^2du$ интервале du

