Color Network Document

Ji-Chong Yang

目录

目录

由于对本领域并不熟悉,本文档会夹杂中文。

第一章 Basic Topics

1.0.1 NRG and DMRG

Here we will introduce numerical renormalization group and density matrix renormalization group using an example to solve an equation of a single particle.

We will consider solving such an equation in range $x \in [-1, 1]$.

$$\frac{\partial^2}{\partial x^2} f(x) = af(x),$$

$$f(-1) = f(1) = 0,$$
(1.1)

with

$$\frac{\partial^2}{\partial x^2} f(x) \approx \frac{f(x + \Delta x) + f(x - \Delta x) - 2f(x)}{\Delta x^2},\tag{1.2}$$

the discretized version is an eigen-problem

$$\frac{1}{\Delta x^2} \begin{pmatrix}
2 & -1 & 0 & 0 & \dots & 0 & 0 \\
-1 & 2 & -1 & 0 & \dots & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & \dots & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & \dots & 0 & 0 & 0 & 0 \\
\dots & \dots \\
0 & 0 & 0 & 0 & \dots & 2 & -1 & 0 & 0
\end{pmatrix} f = af, \tag{1.3}$$

It can be written as

$$\frac{1}{\Delta x^2} \begin{pmatrix} H_0 & L_0 & 0 & 0 & \dots & 0 & 0 \\ L_0 & H_0 & L_0 & 0 & \dots & 0 & 0 \\ 0 & L_0 & H_0 & L_0 & \dots & 0 & 0 \\ 0 & 0 & L_0 & H_0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & H_0 & L_0 \\ 0 & 0 & 0 & 0 & \dots & L_0 & H_0 \end{pmatrix} f \approx \frac{1}{\Delta x^2} \begin{pmatrix} H_0 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & H_0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & H_0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & H_0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & H_0 & 0 \\ 0 & 0 & 0 & 0 & \dots & H_0 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & H_0 \end{pmatrix} = af,$$

$$(1.4)$$

with

The first step is to solve eigen system of H, the two lowest eigen values and eigen vectors are

$$H_{0} \begin{pmatrix} \frac{1}{5+\sqrt{5}} & -\frac{1}{5-\sqrt{5}} \\ \frac{1}{2\sqrt{5}} & -\frac{1}{2\sqrt{5}} \\ \frac{1}{2\sqrt{5}} & \frac{1}{2\sqrt{5}} \\ \frac{1}{5+\sqrt{5}} & \frac{1}{5-\sqrt{5}} \end{pmatrix} = \begin{pmatrix} \frac{1}{5+\sqrt{5}} & -\frac{1}{5-\sqrt{5}} \\ \frac{3-\sqrt{5}}{2} \times \frac{1}{2\sqrt{5}} & \frac{5-\sqrt{5}}{2} \times \frac{1}{2\sqrt{5}} \\ \frac{1}{5+\sqrt{5}} & \frac{1}{5-\sqrt{5}} \end{pmatrix}$$
(1.6)

Then, truncate use

$$U = \begin{pmatrix} \frac{1}{5+\sqrt{5}} & -\frac{1}{5-\sqrt{5}} \\ \frac{1}{2\sqrt{5}} & -\frac{1}{2\sqrt{5}} \\ \frac{1}{2\sqrt{5}} & \frac{1}{2\sqrt{5}} \\ \frac{1}{5+\sqrt{5}} & \frac{1}{5-\sqrt{5}} \end{pmatrix}$$

$$H' = U^{T}H_{0}U = \begin{pmatrix} \frac{1}{2} - \frac{1}{\sqrt{5}} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}, \quad L' = U^{T}L_{0}U = \begin{pmatrix} -\frac{1}{(5+\sqrt{5})^{2}} & -\frac{1}{20} \\ \frac{1}{20} & \frac{1}{(5-\sqrt{5})^{2}} \end{pmatrix}.$$

$$(1.7)$$

Now, we are dealing with a truncated problem

$$\frac{1}{\Delta x^{2}} \begin{pmatrix}
H_{1} & L_{1} & 0 & 0 & \dots & 0 & 0 \\
L_{1} & H_{1} & L_{1} & 0 & \dots & 0 & 0 \\
0 & L_{1} & H_{1} & L_{1} & \dots & 0 & 0 \\
0 & 0 & L_{1} & H_{1} & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots & \dots \\
0 & 0 & 0 & 0 & \dots & H_{1} & L_{1} \\
0 & 0 & 0 & 0 & \dots & L_{1} & H_{1}
\end{pmatrix} f = af, \tag{1.8}$$

with

$$H_{1} = \begin{pmatrix} H' & L' \\ L' & H' \end{pmatrix} = \begin{pmatrix} \frac{1}{2} - \frac{1}{\sqrt{5}} & 0 & -\frac{1}{(\sqrt{5}+5)^{2}} & \frac{1}{20} \\ 0 & \frac{1}{2} & -\frac{1}{20} & \frac{1}{(5-\sqrt{5})^{2}} \\ -\frac{1}{(\sqrt{5}+5)^{2}} & -\frac{1}{20} & \frac{1}{2} - \frac{1}{\sqrt{5}} & 0 \\ \frac{1}{20} & \frac{1}{(5-\sqrt{5})^{2}} & 0 & \frac{1}{2} \end{pmatrix},$$
(1.9)
$$L_{1} = \begin{pmatrix} 0 & L' \\ 0 & 0 \end{pmatrix}$$

Again, we solve $H_1f=af$, the lowest two eigenvalues are 0.067 and 0.026. As a compare, the lowest two eigenvalues of a 16 \times 16 original matrix are 0.135 and 0.034.

第二章 Decompose Methods

2.1 Matrix Decompose

2.1.1 Matrix SVD using Lanczos

The matrix SVD is to decompose

$$t_{i_1,i_2,\dots,i_m,j_1,j_2,\dots,j_n} = \sum_{k_l,k_r} V_{i_1,i_2,\dots,i_m,k_l} S_{k_l,k_r} U_{k_r,j_1,j_2,\dots,j_n},$$
(2.1)

where

$$\sum_{k_l} V_{I_1,I_2,\dots,I_m,k_l}^* V_{i_1,i_2,\dots,i_m,k_l} = \delta_{(i_m)=(I_m)},$$

$$\sum_{k_r} U_{J_1,J_2,\dots,J_n,k_r}^* U_{j_1,j_2,\dots,j_m,k_l} = \delta_{(J_n)=(j_n)},$$

$$S_{k_l \neq k_r} = 0,$$
(2.2)

One can imagine that, $\{i_n\}$ is ONE combined index of a matrix. Then, it is the normal SVD. Usually, dim(k) is small.

2.1.1.1 Lanczos bidiagonalization

Lanczos bidiagonalization is for such task:

For $A = C^{m \times n}$, find $A \approx UBV^{\dagger}$ such that B is a bidiagonal matrix

$$B = \begin{pmatrix} \alpha_1 & \beta_1 & 0 & 0 & 0 \\ 0 & \alpha_2 & \beta_2 & 0 & 0 \\ & \dots & & & \\ 0 & 0 & 0 & \alpha_{k-1} & \beta_{k-1} \\ 0 & 0 & 0 & 0 & \alpha_k \end{pmatrix}$$
 (2.3)

Note here $||v|| = \sqrt{\sum_i |v_i|^2}$.

Algorithm 1 Lanczos bidiagonalization

```
A = C^{m \times n}
\mathbf{v}_1 \text{ is an n-vectors satisfying } ||\mathbf{v}_1|| = 1.
\mathbf{for } i = 1 \text{ to } k \text{ do}
\mathbf{if } i > 1 \text{ then}
\mathbf{v}_i = \mathbf{p}/\beta_{i-1}.
\mathbf{end if}
\mathbf{r} = A\mathbf{v}_i - \beta_{i-1}\mathbf{u}_{i-1}.
\alpha_i = ||\mathbf{r}||.
\mathbf{u}_i = \mathbf{r}/\alpha_i.
\mathbf{if } i < k \text{ then}
\mathbf{p} = A^{\dagger}\mathbf{u}_i - \alpha_i\mathbf{v}_i
\beta_i = ||\mathbf{p}||
\mathbf{end if}
```

It is expected that β approaches zero, if $\beta = 0$, than $A = UTV^{\dagger}$.

Although the B obtained is not a diagonal matrix, the goal has been archived, and we do not further diagonalize it.