Appendix: Frobenius' Method

I will demonstrate this technique. Consider the following differential equation.

$$x^2y'' + 4xy' + (x^2 + 2)y = 0$$

The solution will take the form

$$y = \sum_{n=0}^{\infty} a_n x^{n+s}$$

Substituting this into each term, we have

$$x^{2}y'' = \sum_{n=0}^{\infty} (n+s)(n+s-1)a_{n}x^{n+s}$$

$$4xy' = \sum_{n=0}^{\infty} 4(n+s)a_{n}x^{n+s}$$

$$xy = \sum_{n=0}^{\infty} a_{n}x^{n+s+2}$$

$$2y = \sum_{n=0}^{\infty} 2a_{n}x^{n+s}$$

Then we put them into table.

Using the terms on x^s column, we have the following indicial equation.

$$s(s-1)a_0 + 4sa_0 + 2a_0 = 0$$
$$a_0 [s(s+3) + 2] = 0$$

Since a_0 cannot be zero, we write

$$s^2 + 3s + 2 = 0$$

By solving the indicial equation we obtain s = (-1, -2). From the x^{n+s} , we obtain the general formula for a_n in terms of a_{n-2}

$$a_n [(n+s)(n+s+3)+2] = -a_{n-2}$$

We also obtain the fact the value of a_1 is zero, proved by the terms in x^{s+1} column

$$a_1[(s+1)(s+4)+2] = 0$$

 $s = (-1, -2)$ $\implies a_0 = 0$

Since we have two value of s, we first consider the case for s = -1. The general a_n formula evaluated into

$$a_n = -\frac{a_{n-2}}{(n-1)(n+2)+2} = -\frac{a_{n-2}}{n^2+n} = -\frac{a_{n-2}}{n(n+1)}$$

The values of a_n for few n are as follows

$$a_2 = -\frac{a_0}{3!}$$

$$a_4 = -\frac{a_2}{4 \cdot 5} = \frac{a_0}{5!}$$

$$a_6 = -\frac{a_4}{6 \cdot 7} = -\frac{a_0}{7!}$$

Thus the solution for this case is

$$y_{-1} = \sum_{n=0}^{\infty} a_n x^{n-1} = \frac{a_0}{x} - \frac{a_0}{3!} x + \frac{a_0}{5!} x^3 - \frac{a_0}{7!} x^5 + \dots$$
$$= \frac{a_0}{x^2} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \right) = \frac{a_0}{x^2} \sin x$$

For the case of s = -2, the general a_n formula evaluated into

$$a_n = -\frac{a_{n-2}}{(n-2)(n+1)+2} = -\frac{a_{n-2}}{n^2 - n} = -\frac{a_{n-2}}{n(n-1)}$$

The values of a_n for few n are as follows

$$a_2 = -\frac{a_0}{2!}$$

$$a_4 = -\frac{a_2}{4 \cdot 3} = \frac{a_0}{4!}$$

$$a_6 = -\frac{a_4}{6 \cdot 5} = -\frac{a_0}{6!}$$

Thus the solution for this case is

$$y_{-2} = \sum_{n=0}^{\infty} a_n x^{n-2} = \frac{a_0}{x^2} - \frac{a_0}{2!} + \frac{a_0}{4!} x^2 - \frac{a_0}{6!} x^4 + \dots$$
$$= \frac{a_0}{x^2} \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \right) = \frac{a_0}{x^2} \cos x$$

Hence, the complete form of the solution is

$$y = \frac{a_0}{r^2} \left(\cos x + \sin x\right)$$

Bessel Equation

Ex. 1. Suppose we are going to solve

$$y'' + 9xy = 0$$

We know that the equation has no y' factor, then

$$\frac{1-2a}{x} = 0 \implies a = \frac{1}{2}$$

By assuming

$$2c - 2 = 1 \implies c = \frac{3}{2}$$

We can equate the first x coefficient

$$(bc)^2 = 9 \implies b = 2$$

And

$$\frac{a^2 - p^2 c^2}{x^2} = 0 \implies p = \sqrt{\frac{a^2}{c^2}} = \frac{1}{3}$$

The solution takes the form of

$$y = x^{1/2} Z_{1/3}(2x^{3/2}) = x^{1/2} \left[A J_{1/3}(2x^{3/2}) + B N_{1/3}(2x^{3/2}) \right]$$