Lógica para Computação

Formas Normais da Lógica de Primeira Ordem

Thiago Alves Rocha

thiagoalvesifce@gmail.com

Tópicos

- Introdução
- Porma Normal Prenex
- Skolemização
- Forma Normal Clausal

Tópicos

- Introdução
- Porma Normal Prenex
- Skolemização
- Forma Normal Clausal

- Precisamos de uma forma normal para as fórmulas da lógica de primeira ordem
- Podemos nos basear na forma normal conjuntiva da lógica proposicional
- Temos que colocar os quantificadores na parte mais externa da fórmula
- A parte sem quantificadores deve ficar na forma normal conjuntiva

Tópicos

- Introdução
- 2 Forma Normal Prenex
- Skolemização
- Forma Normal Clausal

Definição

Uma fórmula da lógica de primeira ordem está na forma normal prenex conjuntiva prenex se é da forma

$$Q_1x_1...Q_kx_k\psi$$

em que os Q_i são quantificadores e ψ é uma fórmula livre de quantificadores na forma normal conjuntiva.

Exemplo

$$\forall x \forall y ((P(f(x)) \vee \neg P(g(y))) \wedge (\neg Q(y) \vee Q(x) \vee \neg P(g(y)))).$$

- Toda fórmula da lógica de primeira ordem é equivalente a uma fórmula na forma normal prenex
- Podemos usar as seguintes equivalências:

Conversão

```
(Qx\varphi) \land \psi \equiv Qx(\varphi \land \psi) em que x não ocorre livre em \psi. (Qx\varphi) \lor \psi \equiv Qx(\varphi \lor \psi) em que x não ocorre livre em \psi. (\forall x\varphi) \land (\forall x\psi) \equiv \forall x(\varphi \land \psi). (\exists x\varphi) \lor (\exists x\psi) \equiv \exists x(\varphi \lor \psi). (Q_1x\varphi) \land (Q_2y\psi) \equiv Q_1xQ_2y(\varphi \land \psi) em que x \neq y. (Q_1x\varphi) \lor (Q_2y\psi) \equiv Q_1xQ_2y(\varphi \lor \psi) em que x \neq y.
```

 E as equivalências dos conectivos para deixar na forma normal conjuntiva

Exemplo 1

```
\forall x (P(x) \land (\exists y P(y) \land \forall z R(x, z))).
\forall x (P(x) \land \exists y \forall z (P(y) \land R(x, z))).
\forall x (\exists y (P(x) \land \forall z (P(y) \land R(x, z)))).
\forall x \exists y \forall z (P(x) \land P(y) \land R(x, z)).
```

Exemplo 2

```
((\forall x P(x)) \land R(y)) \lor (\forall x R(x)).(\forall x (P(x) \land R(y))) \lor (\forall x R(x)).
```

Exemplo 1

```
\forall x (P(x) \land (\exists y P(y) \land \forall z R(x, z))).
\forall x (P(x) \land \exists y \forall z (P(y) \land R(x, z))).
\forall x (\exists y (P(x) \land \forall z (P(y) \land R(x, z)))).
\forall x \exists y \forall z (P(x) \land P(y) \land R(x, z)).
```

Exemplo 2

```
((\forall x P(x)) \land R(y)) \lor (\forall x R(x)).(\forall x (P(x) \land R(y))) \lor (\forall x R(x)).
```

 Nem toda fórmula pode ser convertida para a forma normal prenex usando apenas as regras que definimos

Renomeação de Variáveis

Exemplo

$$((\forall x P(x)) \land R(y)) \lor (\forall x R(x)).$$

$$(\forall x (P(x) \land R(y))) \lor (\forall x R(x)).$$

$$(\forall z (P(z) \land R(y))) \lor (\forall x R(x)).$$

Definição

Considere a fórmula $Qx\psi$. A renomeação da variável x pela variável y em $Qx\psi$ é a fórmula:

 $Qy\psi[x\leftarrow y]$ em que $\psi[x\leftarrow y]$ é uma substituição segura.

Renomeação de Variáveis

Exemplo 1

Seja $\varphi = \forall x (P(x) \rightarrow (\exists x Q(x, y))).$

A renomeação de x por z em φ é $\forall z(P(z) \rightarrow (\exists xQ(x,y)))$.

Exemplo 2

Seja $\varphi = \forall x (P(x) \rightarrow (\exists x Q(x, y))).$

A renomeação de x por w em $(\exists x Q(x, y))$ é $\exists w Q(w, y)$.

Substituindo em φ : $\forall x (P(x) \rightarrow (\exists w Q(w, y)))$.

Exemplo 3

 $\forall x \forall y P(x, y).$

x não pode ser renomeada para y em $\forall x \forall y P(x, y)$.

A substituição $\forall y P(x, y)[x \leftarrow y]$ não é segura.

Exemplo

Seja $\varphi = \forall x((P(x) \land R(y)) \rightarrow (\exists x R(x)))$. Vamos renomear x por y em φ . A substituição $(P(x) \land R(y)) \rightarrow (\exists x R(x))[x \leftarrow y]$ é segura. A fórmula obtida é $\forall y((P(y) \land R(y)) \rightarrow (\exists x R(x)))$ que não é equivalente a φ .

Exemplo

Seja $\varphi = \forall x((P(x) \land R(y)) \rightarrow (\exists x R(x)))$. Vamos renomear x por y em φ . A substituição $(P(x) \land R(y)) \rightarrow (\exists x R(x))[x \leftarrow y]$ é segura. A fórmula obtida é $\forall y((P(y) \land R(y)) \rightarrow (\exists x R(x)))$ que não é equivalente a φ .

 As regras para transformar uma fórmula na forma normal prenex não podem deixar isso ocorrer

Regra Prenex de Renomeação de Variáveis

Regra Prenex de Renomeação de Variáveis

Seja φ uma fórmula com os quanticadores $Q_1x_1, Q_2x_2, ..., Q_nx_n$ e variáveis livres $z_1, ..., z_k$. Podemos renomear $x_1, ..., x_n$ por $y_1, ..., y_n$ respectivamente tal que $y_i \neq y_j$ para $i \neq j$ e $y_i \notin \{x_1, ..., x_n, z_1, ..., z_k\}$.

Exemplo

Seja $\forall x (P(x) \rightarrow (\exists x Q(x, y))).$

Vamos renomear x do $\forall x$ e x do $\exists x$ por z e w, respectivamente:

$$\forall z (P(z) \rightarrow (\exists w Q(w, y)))$$

Regra Prenex de Renomeação de Variáveis

- Toda fórmula da lógica de primeira ordem é equivalente a uma fórmula na forma normal prenex
- Podemos usar as equivalências anteriores e a regra prenex de renonemação de variáveis:

Exemplo

Seja $\forall x P(x) \lor \forall x Q(x)$.

Vamos renomear x do primeiro $\forall x$ e x do segundo $\forall x$ por y e z, respectivamente:

 $\forall y P(y) \lor \forall z Q(z).$

Pela equivalência: $\forall y \forall z (P(y) \lor Q(z))$.

Exemplo

```
Seja \forall x P(x) \land ((\forall x Q(x)) \rightarrow (\exists y R(x, y, z))).

\forall x P(x) \land (\neg(\forall x Q(x)) \lor (\exists y R(x, y, z))).

\forall x P(x) \land ((\exists x \neg Q(x)) \lor (\exists y R(x, y, z))).

\forall y_1 P(y_1) \land ((\exists y_2 \neg Q(y_2)) \lor (\exists y_3 R(x, y_3, z))).

\forall y_1 \exists y_2 P(y_1) \land \exists y_3 (\neg Q(y_2) \lor R(x, y_3, z)).

\forall y_1 \exists y_2 P(y_1) \land (\neg Q(y_2) \lor P(x, y_3, z)).
```

Tópicos

- Introdução
- Porma Normal Prenex
- Skolemização
- Forma Normal Clausal

- Temos que remover os quantificadores existenciais:
- Considere a fórmula $\exists x \forall y P(x, y)$
- $\exists x \forall y P(x, y)$ é satisfatível
- Como remover o ∃ e manter a fórmula satisfatível

- Temos que remover os quantificadores existenciais:
- Considere a fórmula $\exists x \forall y P(x, y)$
- $\exists x \forall y P(x, y)$ é satisfatível
- Como remover o ∃ e manter a fórmula satisfatível
- $\forall y P(a, y)$ em que a é um símbolo de constante

- Seja $\forall x \exists y R(y, x)$ que claramente é satisfatível
- Como remover o ∃ sem mudar muito a interpretação que satisfaz a fórmula?

- Seja $\forall x \exists y R(y, x)$ que claramente é satisfatível
- Como remover o ∃ sem mudar muito a interpretação que satisfaz a fórmula?
- $\forall x R(b, x)$?

- Seja $\forall x \exists y R(y, x)$ que claramente é satisfatível
- Como remover o ∃ sem mudar muito a interpretação que satisfaz a fórmula?
- $\forall x R(b, x)$?
- Em $\forall x R(b, x)$, o b é o mesmo para qualquer x
- Em $\forall x \exists y R(y, x)$, o y pode ser diferente para cada x

- Seja $\forall x \exists y R(y, x)$ que claramente é satisfatível
- Como remover o ∃ sem mudar muito a interpretação que satisfaz a fórmula?
- $\forall x R(b, x)$?
- Em $\forall x R(b, x)$, o b é o mesmo para qualquer x
- Em $\forall x \exists y R(y, x)$, o y pode ser diferente para cada x
- $\forall x R(f(x), x)$

- Seja $\forall x \exists y R(y, x)$ que claramente é satisfatível
- Como remover o ∃ sem mudar muito a interpretação que satisfaz a fórmula?
- $\forall x R(b, x)$?
- Em $\forall x R(b, x)$, o b é o mesmo para qualquer x
- Em $\forall x \exists y R(y, x)$, o y pode ser diferente para cada x
- $\forall x R(f(x), x)$
- Observação: perceba que $\forall x \exists y R(y,x)$ e $\forall x R(f(x),x)$ não são equivalentes

• E para remover o quantificador existencial de $\forall z \forall x \exists y Q(z, y, x)$?

- E para remover o quantificador existencial de $\forall z \forall x \exists y Q(z, y, x)$?
- $\forall z \forall x \exists y Q(z, g(z, x), x)$

- E para remover o quantificador existencial de $\forall z \forall x \exists y Q(z, y, x)$?
- $\forall z \forall x \exists y Q(z, g(z, x), x)$
- E para $\exists x \exists y R(y, x)$?

- E para remover o quantificador existencial de $\forall z \forall x \exists y Q(z, y, x)$?
- $\forall z \forall x \exists y Q(z, g(z, x), x)$
- E para $\exists x \exists y R(y,x)$?
- R(a, b)

- E para remover o quantificador existencial de $\forall z \forall x \exists y Q(z, y, x)$?
- $\forall z \forall x \exists y Q(z, g(z, x), x)$
- E para $\exists x \exists y R(y, x)$?
- R(a, b)
- E para $\exists x \forall w \exists y Q(x, w, y)$?

- E para remover o quantificador existencial de $\forall z \forall x \exists y Q(z, y, x)$?
- $\forall z \forall x \exists y Q(z, g(z, x), x)$
- E para $\exists x \exists y R(y, x)$?
- R(a, b)
- E para $\exists x \forall w \exists y Q(x, w, y)$?
- $\forall w \exists y Q(a, w, f(w))$

Skolemização

- Regras de Eliminação dos ∃
- Skolemização da fórmula

Definição

Seja $\phi = \forall x_1... \forall x_n \exists y \psi(x_1,...,x_n,y)$ em que ψ está na forma normal prenex. A eliminação do $\exists y$ em ϕ gera $\forall x_1... \forall x_n \psi(x_1,...,x_n,f(x_1,...,x_n))$ em que f é um novo símbolo de função que não aparece em ϕ . Seja $\phi = \exists y Q_1 x_1... Q_n x_n \psi(x_1,...,x_n,y)$ em que ψ está na forma normal prenex. A eliminação do $\exists y$ em ϕ gera $Q_1 x_1... Q_n x_n \psi(x_1,...,x_n,a)$ em que a é um novo símbolo de constante que não aparece em ϕ .

Definição

Seja ϕ uma fórmula na forma normal prenex. A skolemização de ϕ é a fórmula ψ sem quantificador existencial obtida a partir de ϕ usando as regras de eliminação dos \exists .

Exemplo

Exemplo

Seja a fórmula $\phi_1 = \forall x \exists y \forall w \exists z (\neg P(x, y) \lor P(z, w)).$

A eliminação do $\exists y$ em ϕ gera $\phi_2 = \forall x \forall w \exists z (\neg P(x, f_1(x)) \lor P(z, w)).$

A eliminação do $\exists z$ em ϕ_2 gera $\forall x \forall w (\neg P(x, f_1(x)) \lor P(f_2(x, w), w))$.

Teorema de Skolem

Teorema

Seja ϕ uma fórmula na forma normal prenex e ψ a skolemização de ϕ . ϕ é satisfatível se e somente se ψ é satisfatível.

Tópicos

- Introdução
- Porma Normal Prenex
- Skolemização
- Forma Normal Clausal

Forma Normal Clausal

Definição

Uma fórmula ϕ está na forma normal clausal quando não possui variáveis livres e é da forma

 $\phi = \forall x_1... \forall x_n \psi$ em que ψ é livre de quantificadores e está na forma normal conjuntiva.

• Fórmulas da lógica de primeira ordem na forma normal clausal também possuem uma representação de conjuntos

Exemplo

Exemplo

 $\forall y \forall z ((P(f(y)) \lor \neg P(g(z)) \lor Q(z)) \land (\neg P(g(z)) \lor Q(y) \lor \neg Q(z)))$ está na formal normal clausal.

Na representação de conjuntos:

$$\{\{P(f(y)), \neg P(g(z)), Q(z)\}, \{\neg P(g(z)), Q(y), \neg Q(z)\}\}.$$

 Os quantificadores podem ser omitidos pois a fórmula não tem variáveis livres e todos os quantificadores são ∀.