

RECEIVED

FEB 20 2004

SEQUENCE LISTING

<110> GOTO, Masaaki
TSUDA, Eisuke
MOCHIZUKI, Shin'ichi
YANO, Kazuki
KOBAYASHI, Fumie
SHIMA, Nobuyuki
YASUDA, Hisataka
NAKAGAWA, Nobuaki
MORINAGA, Tomonori
UEDA, Masatsugu
HIGASHIO, Kanji

<120> Novel Proteins and Methods for Producing the Proteins

<130> 16991.012

<140> US 09/062,113

<141> 1998-04-17

<150> US 08/915,004

<151> 1997-08-20

<150> PCT/JP96/00374

<151> 1996-02-20

<150> JP 207508/1995

<151> 1995-07-21

<150> JP 054977/1995

<151> 1995-02-20

<160> 108

<170> PatentIn version 3.1

<210> 1

<211> 6

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> X = unknown

<400> 1

Xaa Tyr His Phe Pro Lys

1 5

<210> 2

<211> 14

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE
<222> (1)..(1)
<223> X = unknown

<220>

<221> MISC_FEATURE
<222> (5)..(5)
<223> X = unknown

<220>

<221> MISC_FEATURE
<222> (13)..(13)
<223> X = unknown

<400> 2

Xaa Gln His Ser Xaa Gln Glu Gln Thr Phe Gln Leu Xaa Lys
1 5 10

<210> 3

<211> 12

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE
<222> (1)..(1)
<223> X = unknown

<400> 3

Xaa Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys
1 5 10

<210> 4

<211> 380

<212> PRT

<213> Homo sapiens

<400> 4

Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His
1 5 10 15

Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His
20 25 30

Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr
35 40 45

Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro
50 55 60

Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His
65 70 75 80

Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe
85 90 95

Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala
100 105 110

Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe
115 120 125

Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn
130 135 140

Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His
145 150 155 160

Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile
165 170 175

Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr
180 185 190

Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly
195 200 205

Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser
210 215 220

Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn
225 230 235 240

Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys
245 250 255

Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu
260 265 270

Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala
275 280 285

Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile
290 295 300

Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr
305 310 315 320

Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe
325 330 335

Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His
340 345 350

Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile
355 360 365

Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu
370 375 380

<210> 5
<211> 401
<212> PRT
<213> Homo sapiens

<400> 5

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg
195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val
210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu
245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln
260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala
275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly
290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys
305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn
325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser
340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr
355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu
370 375 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys
385 390 395 400

Leu

<210> 6
<211> 1206
<212> DNA
<213> Homo sapiens

<400> 6
atgaacaact tgctgtgctg cgcgctcgta tttctggaca tctccattaa gtggaccacc 60
cagggAACGT ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240
ctatactgca gccccgtgtg caaggagctg cagtagtca agcaggagtg caatcgacc 300
cacaaccgcg tgtgcgaatg caaggaaggg cgctaccctt agatagagtt ctgcttgaaa 360
cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca 420
gtttgcaaaa gatgtccaga tgggttcttc tcaaattgaga cgtcatctaa agcaccctgt 480
agaaaaacaca caaattgcag tgtctttggc ctcctgctaa ctcagaaagg aatgcaaca 540
cacgacaaca tatgttccgg aaacagtgaa tcaactcaa aatgtgaaat agatgttacc 600
ctgtgtgagg aggattttt caggtttgct gttcctacaa agtttacgccc taactggctt 660

agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata	720
aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa	780
aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc	840
gtgcagcggc acattggaca tgctaaccctc accttcgagc agcttcgttag cttgatggaa	900
agcttaccgg gaaagaaaagt gggagcagaa gacattgaaa aaacaataaa ggcatgcaaa	960
cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaaatgg cgaccaagac	1020
accttgaagg gcctaattgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact	1080
gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg	1140
tatcagaagt tatttttaga aatgataggt aaccagggtcc aatcagtaaa aataagctgc	1200
ttataa	1206

<210> 7
 <211> 15
 <212> PRT
 <213> Homo sapiens

<400> 7

Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser			
1	5	10	15

<210> 8
 <211> 1185
 <212> DNA
 <213> Homo sapiens

<400> 8	
atgaacaact tgctgtgtc cgcgctcggt tttctggaca tctccattaa gtggaccacc	60
cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg	120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc	180
gtgtgcgccccc cttgcccgtga ccactactac acagacagct ggcacaccag tgacgagtgt	240
ctatactgca gccccgtgtc caaggagtgc aatgcacccc acaaccgcgt gtgcgaatgc	300
aaggaagggc gctaccttga gatagagtgc tgcttggaaac ataggagctg ccctcctggaa	360
tttggagtgg tgcaagctgg aaccccagag cgaaatacag tttgcaaaag atgtccagat	420
gggttcttct caaatgagac gtcatctaaa gcaccctgtta gaaaacacac aaattgcagt	480
gtctttggtc tcctgctaac tcagaaagga aatgcaacac acgacaacat atgtccggaa	540
aacagtgaat caactcaaaa atgtggaata gatgttaccc tggatgtgagga ggcattttc	600

aggtttgctg	ttcctacaaa	gtttagcct	aactggctta	gtgtcttgg	agacaatttg	660
cctggcacca	aagttaaacgc	agagagtgt	gagaggataa	aacggcaaca	cagctcacaa	720
gaacagactt	tccagctgct	gaagttatgg	aaacatcaaa	acaaagacca	agatatagtc	780
aagaagatca	tccaagatat	tgacctctgt	gaaaacagcg	tgcagcggca	cattggacat	840
gctaacctca	ccttcgagca	gcttcgtagc	ttgatggaaa	gcttaccggg	aaagaaaagt	900
ggagcagaag	acattgaaaa	aacaataaag	gcatgcaa	ccagtgacca	gatcctgaag	960
ctgctcagtt	tgtggcgaat	aaaaaatggc	gaccaagaca	ccttgaaggg	cctaattgcac	1020
gcactaaagc	actcaaagac	gtaccactt	cccaaaactg	tcactcagag	tctaaagaag	1080
accatcaggt	tccttcacag	cttcacaatg	tacaaattgt	atcagaagtt	attttagaa	1140
atgataggt	accaggtcca	atcagtaaaa	ataagctgct	tataa		1185

<210> 9
<211> 394
<212> PRT
<213> Homo sapiens

<400> 9

Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser	Ile
1					5				10				15		

Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His	Tyr	Asp
							20		25			30			

Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro	Pro	Gly	Thr
							35		40			45			

Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr	Val	Cys	Ala	Pro
							50		55			60			

Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His	Thr	Ser	Asp	Glu	Cys
							65		70			75		80	

Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg
							85		90			95			

Val	Cys	Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu
							100		105			110			

Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr
115 120 125

Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser
130 135 140

Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser
145 150 155 160

Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn
165 170 175

Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val
180 185 190

Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe
195 200 205

Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys
210 215 220

Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln
225 230 235 240

Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp
245 250 255

Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn
260 265 270

Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu
275 280 285

Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp
290 295 300

Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys
305 310 315 320

Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys
325 330 335

Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys

340

345

350

Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe
355 360 365

Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn
370 375 380

Gln Val Gln Ser Val Lys Ile Ser Cys Leu
385 390

<210> 10
<211> 1089
<212> DNA
<213> Homo sapiens

<400> 10
atgaacaagt tgctgtgctg cgcgctcgta tttctggaca tctccattaa gtggaccacc 60
cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240
ctatactgca gccccgtgtg caaggagctg cagtagtca agcaggagtg caatcgacc 300
cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360
cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca 420
gtttgcaaaa gatgtccaga tgggttcttc tcaaattgaga cgtcatctaa agcacccctgt 480
agaaaaacaca caaattgcag tgtcttttgtt ctcctgctaa ctcagaaagg aatgcaaca 540
cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 600
ctgtgtgagg aggcatctt caggtttgct gttcctacaa agtttacgccc taactggctt 660
agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720
aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780
aacaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc 840
gtgcagcggc acattggaca tgctaaccctc agtttgtggc gaataaaaaa tggcggaccaa 900
gacaccccttga agggcctaat gcacgcacta aagcactcaa agacgtacca ctttcccaaa 960
actgtcactc agagtctaaa gaagaccatc aggttccttc acagcttac aatgtacaaa 1020
ttgttatcaga agttatTTT agaaatgata ggtaaccagg tccaatcagt aaaaataagc 1080

tgcttataa

1089

<210> 11
<211> 362
<212> PRT
<213> Homo sapiens

<400> 11

Met Asn Lys Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg
195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val
210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu
245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln
260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala
275 280 285

Asn Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys
290 295 300

Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys
305 310 315 320

Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe
325 330 335

Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn
340 345 350

Gln Val Gln Ser Val Lys Ile Ser Cys Leu
355 360

<210> 12

<211> 465

<212> DNA

<213> Homo sapiens

<400> 12

atgaacaagt tgctgtgctg ctcgctcgta tttctggaca tctccattaa gtggaccacc 60

cagaaaaacgt ttccctccaaa gtacacctcat tatgacgaag aaacctctca tcagctttg 120

tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180

gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240
ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgacc 300
cacaaccgcg tgtgcgaatg caaggaaggg cgctaaccttgc agatagagtt ctgcttgc 360
cataggagct gccctcctgg atttgagtg gtgcaagctg gtacgtgtca atgtgcagca 420
aaattaatta ggatcatgca aagtcaagata gttgtgacag tttag 465

<210> 13
<211> 154
<212> PRT
<213> *Homo sapiens*

<400> 13

Met	Asn	Lys	Leu	Leu	Cys	Cys	Ser	Leu	Val	Phe	Leu	Asp	Ile	Ser	Ile
1				5					10					15	

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
 65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Cys Gln Cys Ala Ala Lys Leu Ile Arg
130 135 140

Ile Met Gln Ser Gln Ile Val Val Thr Val
145 150

<210> 14
<211> 438
<212> DNA
<213> Homo sapiens

<400> 14
atgaacaagt tgctgtgctg cgcgctcgta tttctggaca tctccattaa gtggaccacc 60
cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgtt 120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaa gtggaagacc 180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240
ctatactgca gccccgtgtg caaggagctg cagtagtca agcaggagtg caatcgacc 300
cacaaccgcg tgtgcgaatg caaggaaggg cgctaccctt agatagagtt ctgcttgaaa 360
cataggagct gccctcctgg atttggagtg gtgcaagctg gatgcaggag aagacccaag 420
ccacagatat gtatctga 438

<210> 15
<211> 145
<212> PRT
<213> Homo sapiens

<400> 15

Met Asn Lys Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Cys Arg Arg Arg Pro Lys Pro Gln Ile Cys
130 135 140

Ile
145 .

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 16
aattaaccct cactaaaggg 20

<210> 17
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 17
gtaatacgcac tcactatagg gc 22

<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 18
acatcaaaac aaagacccaag 20

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 19	
tcttggtctt tgtttgatg	20
<210> 20	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 20	
ttattcgcca caaactgagc	20
<210> 21	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 21	
tttgtaagct gtgaaggaac	20
<210> 22	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 22	
gctcagtttgcggcaataa	20
<210> 23	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 23	
gtgggagcag aagacattga	20
<210> 24	
<211> 20	
<212> DNA	
<213> Artificial Sequence	

<220>		
<223> Synthetic Sequence		
<400> 24		
aatgaacaac ttgctgtgct		20
<210> 25		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 25		
tgacaaatgt cctcctggta		20
<210> 26		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 26		
aggttaggtac caggaggaca		20
<210> 27		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 27		
gagctgccct cctggatttg		20
<210> 28		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 28		
caaactgtat ttcgctctgg		20
<210> 29		

```

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 29
gttgaggag gcattttca                                20

<210> 30
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 30
gaatcaactc aaaaaatgg aatagatgtt ac                32

<210> 31
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 31
gtaacatcta ttccactttt ttgagttgat tc                32

<210> 32
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 32
atacatgtt ccctgagtga ggaggcattc                      30

<210> 33
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 33
aatgcctcc tcactcaggg taacatctat                      30

```

<210> 34
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 34
caagatattg acctcagtga aaacagcgtg c 31

<210> 35
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 35
gcacgctgtt ttcactgagg gcaatatctt g 31

<210> 36
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 36
aaaacaataa aggcaagcaa acccagtgac c 31

<210> 37
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 37
ggtaactggg tttgcttgcc tttattgttt t 31

<210> 38
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 38		
tcagtaaaaa taagcagctt ataactggcc a		31
.		
<210> 39		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
.		
<220>		
<223> Synthetic Sequence		
<400> 39		
tggccagttt taagctgctt atttttactg a		31
.		
<210> 40		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
.		
<220>		
<223> Synthetic Sequence		
<400> 40		
ttggggttta ttggaggaga tg		22
.		
<210> 41		
<211> 36		
<212> DNA		
<213> Artificial Sequence		
.		
<220>		
<223> Synthetic Sequence		
<400> 41		
accacccagg aaccttgccc tgaccactac tacaca		36
.		
<210> 42		
<211> 36		
<212> DNA		
<213> Artificial Sequence		
.		
<220>		
<223> Synthetic Sequence		
<400> 42		
gtcagggcaa ggttcctggg tggccactt aatgga		36
.		
<210> 43		
<211> 36		
<212> DNA		
<213> Artificial Sequence		

```

<220>
<223> Synthetic Sequence

<400> 43
accgtgtcgccgaaatgcggaaagggcgc tacctt 36

<210> 44
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 44
ttccttgcattcggcgacacggcttcca ctttgc 36

<210> 45
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 45
aacccgcgtgtcgagatgtcc agatgggttc ttctca 36

<210> 46
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 46
atctggacatctgcacacgc ggttgtgggt gcgatt 36

<210> 47
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<400> 47
acagtttgca aatccggaaa cagtgaatca actcaa 36

<210> 48

```

<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 48	
actgtttccg gatttgcaaa ctgtatccg ctctgg	36
<210> 49	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 49	
aatgtggaat agatattgac ctctgtgaaa acagcg	36
<210> 50	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 50	
agaggtaat atctattcca catttttagt ttgatt	36
<210> 51	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 51	
agatcatcca agacgcacta aagcactcaa agacgt	36
<210> 52	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 52	
gcttagtgc gtcttggatg atcttcttga ctatat	36

<210> 53	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 53	
ggctcgagcg cccagccgcc gcctccaag	29
<210> 54	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 54	
tttgagtgct ttagtgcgtg	20
<210> 55	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 55	
tcagtaaaaa taagctaact ggaaatggcc	30
<210> 56	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 56	
ggccatttcc agttagctta ttttactga	30
<210> 57	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	

<400> 57	
ccggatcctc agtgcttag tgcgtgcat	29
<210> 58	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 58	
ccggatcctc attggatgat cttcttgac	29
<210> 59	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 59	
ccggatcctc atattccaca ttttgagt	29
<210> 60	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 60	
ccggatcctc atttgcaaac tgtatttcg	29
<210> 61	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 61	
ccggatcctc attcgcacac gcggttgtg	29
<210> 62	
<211> 401	
<212> PRT	
<213> Homo sapiens	

<400> 62

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Ser Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg
195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val
210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu
245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln
260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala
275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly
290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys
305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Ser Leu Trp Arg Ile Lys Asn
325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser
340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr
355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu
370 375 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys
385 390 395 400

Leu

<210> 63
<211> 401
<212> PRT
<213> Homo sapiens

<400> 63

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Ser Glu Glu Ala Phe Phe Arg
195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val
210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile

225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu
245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln
260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala
275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly
290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys
305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn
325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser
340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr
355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu
370 375 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys
385 390 395 400

Leu

<210> 64
<211> 401
<212> PRT
<213> Homo sapiens

<400> 64

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg
195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val
210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu
245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln
260 265 270

Asp Ile Asp Leu Ser Glu Asn Ser Val Gln Arg His Ile Gly His Ala
275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly
290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys
305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn
325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser
340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr
355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu
370 375 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys
385 390 395 400

Leu

<210> 65
<211> 401
<212> PRT
<213> Homo sapiens

<400> 65

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg
195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val
210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu
245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln
260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala
275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly
290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Ser Lys
305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn
325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser
340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr
355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu
370 375 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys
385 390 395 400

Leu

<210> 66
<211> 401
<212> PRT
<213> Homo sapiens

<400> 66

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr

35

40

45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg
195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val
210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu
245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln
260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala
275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly
290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys
305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn
325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser
340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr
355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu
370 375 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Ser
385 390 395 400

Leu

<210> 67
<211> 360
<212> PRT
<213> Homo sapiens

<400> 67

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser
20 25 30

Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu
35 40 45

Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys
50 55 60

Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His
65 70 75 80

Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu
85 90 95

Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu
100 105 110

Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe
115 120 125

Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys
130 135 140

Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu
145 150 155 160

Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro
165 170 175

Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn
180 185 190

Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln
195 200 205

Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp
210 215 220

Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val
225 230 235 240

Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser
245 250 255

Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu
260 265 270

Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu

275

280

285

Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
290 295 300

Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val
305 310 315 320

Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met
325 330 335

Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val
340 345 350

Gln Ser Val Lys Ile Ser Cys Leu
355 360

<210> 68
<211> 359
<212> PRT
<213> Homo sapiens

<400> 68

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Glu
50 55 60

Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg
65 70 75 80

Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg
85 90 95

Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr
100 105 110

Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly
115 120 125

Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser
130 135 140

Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys
145 150 155 160

Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn
165 170 175

Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala
180 185 190

Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr
195 200 205

Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile
210 215 220

Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln
225 230 235 240

Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu
245 250 255

Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys
260 265 270

Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser
275 280 285

Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met
290 295 300

His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr
305 310 315 320

Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr
325 330 335

Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln
340 345 350

Ser Val Lys Ile Ser Cys Leu
355

<210> 69
<211> 363
<212> PRT
<213> Homo sapiens

<400> 69

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Arg Cys Pro Asp Gly Phe Phe
100 105 110

Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys
115 120 125

Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp
130 135 140

Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp
145 150 155 160

Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys
165 170 175

Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr
180 185 190

Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser
195 200 205

Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys
210 215 220

Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu
225 230 235 240

Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln
245 250 255

Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu
260 265 270

Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu
275 280 285

Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu
290 295 300

Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro
305 310 315 320

Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser
325 330 335

Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly
340 345 350

Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu
355 360

<210> 70
<211> 359
<212> PRT
<213> Homo sapiens

<400> 70

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Ser
130 135 140

Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys
145 150 155 160

Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn
165 170 175

Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala
180 185 190

Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr
195 200 205

Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile
210 215 220

Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln

225	230	235	240
Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu			
245	250	255	
Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys			
260	265	270	
Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser			
275	280	285	
Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met			
290	295	300	
His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr			
305	310	315	320
Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr			
325	330	335	
Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln			
340	345	350	
Ser Val Lys Ile Ser Cys Leu			
355			
<210> 71			
<211> 326			
<212> PRT			
<213> Homo sapiens			
<400> 71			
Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile			
1	5	10	15
Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp			
20	25	30	
Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr			
35	40	45	
Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro			
50	55	60	

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg
195 200 205

His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met
210 215 220

Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr
225 230 235 240

Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu
245 250 255

Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His
260 265 270

Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln
275 280 285

Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys
290 295 300

Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser
 305 310 315 320

Val Lys Ile Ser Cys Leu
325

<210> 72
<211> 327
<212> PRT
<213> Homo sapiens

<400> 72

Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser	Ile
1				5					10					15	

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg
195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val
210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu
245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln
260 265 270

Asp Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr
275 280 285

Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr
290 295 300

Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln
305 310 315 320

Ser Val Lys Ile Ser Cys Leu
325

<210> 73
<211> 399
<212> PRT
<213> Homo sapiens

<400> 73

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg
195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val
210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu

245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln
260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala
275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly
290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys
305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn
325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser
340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr
355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu
370 375 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser
385 390 395

<210> 74
<211> 351
<212> PRT
<213> Homo sapiens

<400> 74

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg
195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val
210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu
245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln
260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala
275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly
290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys
305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn
325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His
340 345 350

<210> 75
<211> 272
<212> PRT
<213> Homo sapiens

<400> 75

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg
195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val
210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu
245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Ile Ile Gln
260 265 270

<210> 76
<211> 197
<212> PRT
<213> Homo sapiens

<400> 76

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile
195

<210> 77
<211> 143
<212> PRT
<213> Homo sapiens

<400> 77

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys
130 135 140

<210> 78
<211> 106
<212> PRT
<213> Homo sapiens

<400> 78

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu
100 105

<210> 79
<211> 393
<212> PRT
<213> Homo sapiens

<400> 79

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg
195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val
210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu
245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln
260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala
275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly
290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys
305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn
325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser
340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr
355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu
370 375 380

Phe Leu Glu Met Ile Gly Asn Leu Val
385 390

<210> 80
<211> 321
<212> PRT

<213> Homo sapiens

<400> 80

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg
195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val

8

210	215	220
Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile		
225	230	235
240		
Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu		
245	250	255
Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln		
260	265	270
Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala		
275	280	285
Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly		
290	295	300
Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Ser Leu		
305	310	315
320		
Asp		
<210> 81		
<211> 187		
<212> PRT		
<213> Homo sapiens		
<400> 81		
Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile		
1	5	10
15		
Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp		
20	25	30
Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr		
35	40	45
Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro		
50	55	60
Cys Pro Asp His Tyr Tyr Asp Ser Trp His Thr Ser Asp Glu Cys		
65	70	75
80		

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu
85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr
100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg
130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys
145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly
180 185

<210> 82

<211> 84

<212> PRT

<213> Homo sapiens

<400> 82

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr
35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro
50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80

Leu Tyr Leu Val

<210> 83
 <211> 1206
 <212> DNA
 <213> Homo sapiens

<400> 83
 atgaacaact tgctgtgctg cgcgctcgta tttctggaca tctccattaa gtggaccacc 60
 cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgtg 120
 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaa gtggaagacc 180
 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240
 ctatactgca gccccgtgtg caaggagctg cagtagtca agcaggagtg caatcgacc 300
 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccctg agatagagtt ctgcttgaaa 360
 cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca 420
 gtttgcaaaa gatgtccaga tgggttcttc tcaaattgaga cgtcatctaa agcaccctgt 480
 agaaaaacaca caaattgcag tgtcttttgtt ctcctgctaa ctcagaaagg aaatgcaaca 540
 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aaagtggaat agatgttacc 600
 ctgtgtgagg aggcatctt caggtttgct gttcctacaa agttacgccc taactggctt 660
 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720
 aaacggcaac acagtcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780
 aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc 840
 gtgcagcggc acattggaca tgctaaccctc accttcgagc agcttcgttag cttgatggaa 900
 agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcattgcaaa 960
 cccagtgacc agatcctgaa gctgctcagt ttgtggcga taaaaaatgg cgaccaagac 1020
 accttgaagg gcctaattgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact 1080
 gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg 1140
 tatcagaagt tatttttaga aatgataggt aaccagggtcc aatcagtaaa aataagctgc 1200
 ttataa 1206

<210> 84
 <211> 1206
 <212> DNA
 <213> Homo sapiens

<400> 84
 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60
 cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgtg 120
 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180
 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240
 ctatactgca gccccgtgtg caaggagctg cagtagtca agcaggagtg caatcgacc 300
 cacaaccgcg tgtgcgaatg caaggaaggg cgctacccctg agatagagtt ctgcttgaaa 360
 cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca 420
 gtttgcaaaa gatgtccaga tgggttcttc tcaaattgaga cgtcatctaa agcaccctgt 480
 agaaaaacaca caaattgcag tgtcttttgtt ctcctgctaa ctcagaaagg aaatgcaaca 540
 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 600
 ctgagtgagg aggattttt caggttttgtt gttcctacaa agtttacgcc taactggctt 660
 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720
 aaacggcaac acagtcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780
 aacaaagacc aagatatagt caagaagatc atccaagata ttgacccctg tgaaaacagc 840
 gtgcagcggc acattggaca tgctaaccctc accttcgagc agcttcgttag ctgtatggaa 900
 agcttaccgg gaaagaaaagt gggagcagaa gacattgaaa aaacaataaa ggcattgc 960
 cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaatgg cgaccaagac 1020
 accttgaagg gcctaattgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact 1080
 gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg 1140
 tatcagaagt tattttttaga aatgataggt aaccagggtcc aatcagtaaa aataagctgc 1200
 ttataa 1206

<210> 85
 <211> 1206
 <212> DNA
 <213> Homo sapiens

<400> 85
 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60
 cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgtg 120
 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180
 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240

ctatactgca	gccccgtgt	caaggagctg	cagtacgtca	agcaggagtg	caatcgacc	300
cacaaccgcg	tgtgcgaatg	caaggaaggg	cgctacctt	agatagagtt	ctgcttggaa	360
cataggagct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaattgaga	cgtcatctaa	agcaccctgt	480
agaaaaacaca	caaattgcag	tgtcttttgt	ctcctgctaa	ctcagaaagg	aatgcaaca	540
cacgacaaca	tatgttccgg	aaacagtgaa	tcaactcaaa	aatgtggaa	agatgttacc	600
ctgtgtgagg	aggcatttctt	caggttttgt	gttcctacaa	agtttacgccc	taactggctt	660
agtgtcttgg	tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720
aaacggcaac	acagctcaca	agaacagact	ttccagctgc	tgaagttatg	gaaacatcaa	780
aacaaagacc	aagatatagt	caagaagatc	atccaagata	ttgacctcag	tgaaaacagc	840
gtgcagcggc	acattggaca	tgctaaccctc	accttcgagc	agcttcgttag	cttgatggaa	900
agcttaccgg	gaaagaaagt	gggagcagaa	gacattgaaa	aaacaataaa	ggcatgcaaa	960
cccagtgacc	agatcctgaa	gctgctcagt	ttgtggcgaa	taaaaaatgg	cgaccaagac	1020
accttgaagg	gcctaattgca	cgcactaaag	cactcaaaga	cgtaccactt	tcccaaact	1080
gtcactcaga	gtctaaagaa	gaccatcagg	ttccttcaca	gcttcacaat	gtacaaattt	1140
tatcagaagt	tatttttaga	aatgataggt	aaccagggtcc	aatcagtaaa	aataagctgc	1200
ttataa						1206

<210> 86
 <211> 1206
 <212> DNA
 <213> Homo sapiens

<400>	86					
atgaacaact	tgctgtgt	cgcgctcg	tttctggaca	tctccattaa	gtggaccacc	60
cagggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgtt	120
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaa	gtgaaagacc	180
gtgtgcggcc	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca	gccccgtgt	caaggagctg	cagtacgtca	agcaggagtg	caatcgacc	300
cacaaccgcg	tgtgcgaatg	caaggaaggg	cgctacctt	agatagagtt	ctgcttggaa	360
cataggagct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaattgaga	cgtcatctaa	agcaccctgt	480

agaaaaacaca	caaattgcag	tgtcttggt	ctcctgctaa	ctcagaaaagg	aaatgcaaca	540
cacgacaaca	tatgttccgg	aaacagtcaa	tcaactcaa	aatgtggaat	agatgttacc	600
ctgtgtgagg	aggcattctt	caggttgct	gttcctacaa	agtttacgcc	taactggctt	660
agtgtcttgg	tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720
aaacggcaac	acagctcaca	agaacagact	ttccagctgc	tgaagttatg	gaaacatcaa	780
aacaaagacc	aagatatagt	caagaagatc	atccaagata	ttgacctctg	tgaaaacagc	840
gtgcagcggc	acattggaca	tgctaaccctc	accttcgagc	agttcgttag	cttgatggaa	900
agcttaccgg	gaaagaaaagt	gggagcagaa	gacattgaaa	aaacaataaa	ggcaagcaaa	960
cccagtgacc	agatcctgaa	gctgctcagt	ttgtggcgaa	taaaaaatgg	cgaccaagac	1020
accttgaagg	gcctaattgca	cgcactaaag	cactcaaaga	cgtaccactt	tcccaaaact	1080
gtcactcaga	gtctaaagaa	gaccatcagg	ttccttcaca	gcttcacaat	gtacaaattg	1140
tatcagaagt	tatTTTtaga	aatgataggt	aaccagggtcc	aatcagtaaa	aataagctgc	1200
ttataa						1206

<210> 87
 <211> 1206
 <212> DNA
 <213> Homo sapiens

<400>	87					
atgaacaact	tgctgtgctg	cgcgctcg	tttctggaca	tctccattaa	gtggaccacc	60
cagggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgtt	120
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaa	gtggaagacc	180
gtgtgcgccc	cttgcctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca	gccccgtgt	caaggagctg	cagtagtca	agcaggagtg	caatcgacc	300
cacaaccg	tgtgcgaatg	caaggaaggg	cgctacctt	agatagagtt	ctgcttggaa	360
cataggagct	gccctcctgg	atTTGGAGTG	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaattgaga	cgtcatctaa	agcaccctgt	480
agaaaaacaca	caaattgcag	tgtcttggt	ctcctgctaa	ctcagaaaagg	aaatgcaaca	540
cacgacaaca	tatgttccgg	aaacagtcaa	tcaactcaa	aatgtggaat	agatgttacc	600
ctgtgtgagg	aggcattctt	caggttgct	gttcctacaa	agtttacgcc	taactggctt	660
agtgtcttgg	tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720

aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa	780
aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc	840
gtgcagcggc acattggaca tgctaaccctc accttcgagc agcttcgtag cttgatggaa	900
agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcatgcaaa	960
cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaaatgg cgaccaagac	1020
accttgaagg gcctaattgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact	1080
gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg	1140
tatcagaagt tattttaga aatgataggt aaccagggtcc aatcagtaaa aataaggcagc	1200
ttataa	1206

<210> 88
 <211> 1083
 <212> DNA
 <213> Homo sapiens

<400> 88	
atgaacaact tgctgtgctg cgcgcgttg tttctggaca tctccattaa gtggaccacc	60
caggaacctt gccctgacca ctactacaca gacagctggc acaccagtga cgagtgtcta	120
tactgcagcc ccgtgtgcaa ggagctgcag tacgtcaagc aggagtgcaa tcgcacccac	180
aaccgcgtgt gcgaatgcaa ggaagggcgc taccttgaga tagagttctg cttgaaacat	240
aggagctgcc ctcttgatt tggagtggtg caagctggaa ccccagagcg aaatacagtt	300
tgcaaaagat gtccagatgg gttcttctca aatgagacgt catctaaagc accctgtaga	360
aaacacacaa attgcagtgt ctgggtctc ctgctaactc agaaaggaaa tgcaacacac	420
gacaacatat gttccggaaa cagtgaatca actcaaaaat gtggaataga tgttaccctg	480
tgtgaggagg cattcttcag gtttgctgtt cctacaaaat ttacgcctaa ctggcttagt	540
gtcttggtag acaatttgcc tggcaccaaa gtaaacgcag agagtgtaga gaggataaaa	600
cggcaacaca gctcacaaga acagactttc cagctgctga agttatggaa acatcaaaaac	660
aaagaccaag atatagtcaa gaagatcatc caagatattg acctctgtga aaacagcgtg	720
cagcggcaca ttggacatgc taacctcacc ttcgagcagc ttctgtgtttt gatggaaagc	780
ttaccggaaa agaaagtggg agcagaagac attgaaaaaaaa caataaaggc atgcaaacc	840
agtgaccaga tcctgaagct gctcagttt gttgtttt gatggaaagc ccaagacacc	900
ttgaaggggcc taatgcacgc actaaaggcac tcaaagacgt accactttcc caaaactgtc	960

actcagagtc taaagaagac catcagggttc cttcacagct tcacaatgta caaattgtat 1020
cagaagttat ttttagaaat gataggtAAC caggtccaat cagaaaaat aagctgctta 1080
taa 1083

<210> 89
<211> 1080
<212> DNA
<213> Homo sapiens

<400> 89
atgaacaact tgctgtgctg cgcgctcg TGTTCTGGACA TCTCCATTAA GTGGACCACC 60
cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180
gtgtgcGCCG aatgcaagga agggcgctac cttgagatAG agttctgctt gaaacatagg 240
agctgccctc ctggatttgg agtggtgcaa gctggAACCC cagagcggaa tacagttgc 300
aaaagatgtc cagatgggtt cttctcaaAT gagacgtcat ctaaAGCACC ctgtagaaaa 360
cacacaaatt gcagtgtctt tggTCTCCTG ctaactcaga aaggaaatgc aacacacgac 420
aacatATgtt ccggaaacag tgaatcaact caaaaatgtg gaatagatgt taccctgtgt 480
gaggaggcat tcttcaggtt tgctgttccT acaaAGTTA CGCCTAACTG GCTTAGTGTc 540
ttggtagaca atttgcctgg caccaagta aacgcagaga gtgtagagag gataaaacgg 600
caacacagct cacaagaaca gactttccag ctgctgaagt tatggaaaca tcaaaacaaa 660
gaccaagata tagtcaagaa gatcatccaa gatattgacc tctgtgaaaa cagcgtgcag 720
cggcacattg gacatgctaa CCTCACCTC gagcagCTC gtagcttgat ggaaagctt 780
ccgggaaaga aagtgggagc agaagacatt gaaaaaacaA taaaggcatg caaACCCAGT 840
gaccagatcc tgaagctgct cagtttgg cgaataaaaa atggcgacca agacacccTT 900
aaggGCCTAA tgcacgcact aaagcactca aagacgtacc actttccaa aactgtcact 960
cagagtctaa agaagaccat caggttccTT cacagctca caatgtacAA attgtatcag 1020
aagttatTTT tagaaatgtat aggtAAccAG gtccaaatcAG taaaaataAG ctgcttataA 1080

<210> 90
<211> 1092
<212> DNA
<213> Homo sapiens

<400> 90

atgaacaact	tgctgtgctg	cgcgctcg	tttctggaca	tctccattaa	gtggaccacc	60
cagggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgtt	120
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaa	gtgaaagacc	180
gtgtgcgccc	cttgcctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca	gccccgtgt	caaggagctg	cagtacgtca	agcaggagt	caatcgacc	300
cacaaccg	tgtgcagatg	tccagatgg	ttcttctcaa	atgagacgtc	atctaaagca	360
ccctgttagaa	aacacacaaa	ttgcagtgtc	tttggtctcc	tgctaactca	gaaagggaaat	420
gcaacacacg	acaacatatg	ttccggaaac	agtgaatcaa	ctcaaaaatg	tggaatagat	480
gttaccctgt	gtgaggaggc	attttcagg	tttgcgtt	ctacaaagtt	tacgccta	540
tggcttagt	tcttggtaga	caatttgct	ggcacccaa	taaacgcaga	gagtgttagag	600
aggataaaac	ggcaacacag	ctcacaagaa	cagacttcc	agctgctgaa	gttatggaaa	660
catcaaaaaca	aagaccaaga	tatagtcaag	aagatcatcc	aagatattga	cctctgtgaa	720
aacagcgtgc	agcggcacat	tggacatgct	aacctcacct	tcgagcagct	tcgtagctt	780
atggaaagct	taccggaaa	gaaagtgg	gcagaagaca	ttgaaaaac	aataaaggca	840
tgcaaacc	gtgaccagat	cctgaagctg	ctcagttgt	ggcgaataaa	aatggcgac	900
caagacacct	tgaaggcc	aatgcacgca	ctaaagact	caaagacgta	ccactttccc	960
aaaactgtca	ctcagagtct	aaagaagacc	atcaggttcc	ttcacagctt	cacaatgtac	1020
aaattgtatc	agaagttatt	tttagaaatg	ataggttaacc	aggccaatc	agtaaaaata	1080
agctgcttat	aa					1092

<210> 91
 <211> 1080
 <212> DNA
 <213> Homo sapiens

<400> 91	atgaacaact	tgctgtgctg	cgcgctcg	tttctggaca	tctccattaa	gtggaccacc	60
cagggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgtt	120	
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaa	gtgaaagacc	180	
gtgtgcgccc	cttgcctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240	
ctatactgca	gccccgtgt	caaggagctg	cagtacgtca	agcaggagt	caatcgacc	300	
cacaaccg	tgtgcgaatg	caaggaaggg	cgctacctt	agatagagtt	ctgcttgaaa	360	

cataggagct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420	
gtttgcaa	at	ccggaaacag	tgaatcaact	caaaaatgtg	aatagatgt	taccctgtgt	480
gaggaggcat	tcttcagg	tt	tgctgttcc	acaaagttt	cgcctaactg	gcttagtg	540
ttggtagaca	at	ttgcctgg	caccaaagta	aacgcagaga	gtgtagagag	gataaaacgg	600
caacacagct	cacaagaaca	gacttccag	ctgctgaagt	tatggaaaca	tcaaaacaaa	660	
gaccaagata	tagtcaagaa	gatcatccaa	gatattgacc	tctgtgaaaa	cagcgtgcag	720	
cggcacattg	gacatgctaa	cctcaccttc	gagcagcttc	gtagcttgat	ggaaagctta	780	
ccggaaaga	aagtgggagc	agaagacatt	aaaaaaacaa	taaaggcatg	caaaccagt	840	
gaccagatcc	tgaagctgct	cagtttgtgg	cgaataaaaa	atggcgacca	agacaccttg	900	
aaggcctaa	tgcacgcact	aaagcactca	aagacgtacc	acttccaa	aactgtcact	960	
cagagtctaa	agaagaccat	cagttcctt	cacagcttca	caatgtacaa	attgtatcag	1020	
aagtatttt	tagaaatgtat	aggttaaccag	gtccaatcag	taaaaataag	ctgcttataa	1080	

<210> 92
 <211> 981
 <212> DNA
 <213> Homo sapiens

<400>	92	atgaacaact	tgctgtgctg	cgcgctcg	tttctggaca	tctccattaa	gtggaccacc	60
		cagggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgtt	120
		tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaa	gtggaagacc	180
		gtgtgcgccc	cttgcctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
		ctatactgca	ccccgtgt	caaggagctg	cagtacgtca	agcaggagtg	caatcgacc	300
		cacaaccgcg	tgtgcgaatg	caaggaaggg	cgctacc	ttg	agatagagtt	360
		cataggagct	gccctcctgg	at	ttggagtg	gtgcaagctg	gaaccccaga	420
		gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
		agaaaacaca	caaattgcag	tgtcttttgt	ctcctgctaa	ctcagaaagg	aatgcaaca	540
		cacgacaaca	tatgtccgg	aaacagtgaa	tcaactcaa	aatgtggaat	agatattgac	600
		ctctgtgaaa	acagcgtgca	gcggcacatt	ggacatgcta	acctcacctt	cgagcagctt	660
		cgtagcttga	tggaaagctt	accggaaag	aaagtggag	cagaagacat	tgaaaaaaca	720
		ataaaggcat	gcaaaccag	tgaccagatc	ctgaagctgc	tcagttgtg	gcgaataaaa	780

aatggcgacc aagacaccctt gaagggccta atgcacgcac taaaagcactc aaagacgtac 840
cactttccca aaactgtcac tcagagtcta aagaagacca tcaggttcct tcacagcttc 900
acaatgtaca aattgtatca gaagttatTT ttagaaatga taggtAACCA ggtccaatca 960
gtaaaaataa gctgcttata a 981

<210> 93
<211> 984
<212> DNA
<213> Homo sapiens

<400> 93
atgaacaact tgctgtgctg cgcgctcgta tttctggaca tctccattaa gtggaccacc 60
cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgtt 120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaaagacc 180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240
ctatactgca gccccgtgtg caaggagctg cagtaCGtca agcaggagtg caatcgacc 300
cacaaccgcg tgtgcgaatg caaggaaggg cgctacctt 360
catagggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca 420
gtttgcaaaa gatgtccaga tgggttcttc tcaaATgaga cgtcatctaa agcaccctgt 480
agaaaaacaca caaattgcag tgtcttttgt ctccctgctaa ctcagaaagg aaatgcaaca 540
cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 600
ctgtgtgagg aggattttt caggtttgct gttcctacaa agtttacgcc taactggctt 660
agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720
aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780
aacaagacc aagatatagt caagaagatc atccaagacg cactaaagca ctcaaagacg 840
taccactttc ccaaaactgt cactcagagt ctaaagaaga ccatcaggtt cttcacagc 900
ttcacaatgt acaaattgtt tcagaagttt ttttagaaaa tgataggtaa ccaggtccaa 960
tcagaaaaa taagctgctt ataa 984

<210> 94
<211> 1200
<212> DNA
<213> Homo sapiens

<400> 94
atgaacaact tgctgtgctg cgcgctcgta tttctggaca tctccattaa gtggaccacc 60

cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgtt	120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaa gtggaagacc	180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt	240
ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgacc	300
cacaaccgcg tgtgcgaatg caaggaaggg cgctacctt agatagagtt ctgcttgaaa	360
cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca	420
gtttgcaaaa gatgtccaga tgggttcttc tcaaattgaga cgtcatctaa agcaccctgt	480
agaaaaacaca caaattgcag tgtcttttgt ctccctgctaa ctcagaaagg aaatgcaaca	540
cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc	600
ctgtgtgagg aggcatctt caggtttgt gttcctacaa agtttacgcc taactggctt	660
agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata	720
aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa	780
aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc	840
gtgcagcggc acattggaca tgctaaccctc accttcgagc agttcgttag cttgatggaa	900
agcttaccgg gaaagaaaagt gggagcagaa gacattgaaa aaacaataaa ggcatgcaaa	960
cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaaatgg cgaccaagac	1020
accttgaagg gcctaattgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact	1080
gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg	1140
tatcagaagt tatttttaga aatgataggt aaccagggtcc aatcagtaaa aataagctaa	1200

<210> 95
 <211> 1056
 <212> DNA
 <213> Homo sapiens

<400> 95 atgaacaact tgctgtgctg cgcgctcggt tttctggaca tctccattaa gtggaccacc	60
cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgtt	120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaa gtggaagacc	180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt	240
ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgacc	300
cacaaccgcg tgtgcgaatg caaggaaggg cgctacctt agatagagtt ctgcttgaaa	360

cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca	420
gtttgc当地 gatgtccaga tgggttcttc tcaaattgaga cgtcatctaa agcaccctgt	480
agaaaacaca caaattgcag tgtcttttgt ctccctgctaa ctcagaaagg aaatgcaaca	540
cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc	600
ctgtgtgagg aggcatctt caggttttgt gttcctacaa agtttacgcc taactggctt	660
agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata	720
aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa	780
aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc	840
gtgcagcggc acattggaca tgctaaccctc accttcgagc agcttcgttag cttgtatggaa	900
agcttaccgg gaaagaaaagt gggagcagaa gacattgaaa aaacaataaa ggcatgcaaa	960
cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaaatgg cgaccaagac	1020
accttgaagg gcctaattgca cgcactaaag cactga	1056

<210> 96
 <211> 819
 <212> DNA
 <213> Homo sapiens

<400> 96	
atgaacaact tgctgtgctg cgcgctcggt tttctggaca tctccattaa gtggaccacc	60
cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg	120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaaagacc	180
gtgtgcgccc cttggccctga ccactactac acagacagct ggcacaccag tgacgagtgt	240
ctatactgca gccccgtgtg caaggagctg cagtagtca agcaggagtg caatcgccacc	300
cacaaccgcg tgtgcgaatg caaggaaggg cgctaccctt agatagagtt ctgcttggaaa	360
cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca	420
gtttgc当地 gatgtccaga tgggttcttc tcaaattgaga cgtcatctaa agcaccctgt	480
agaaaacaca caaattgcag tgtcttttgt ctccctgctaa ctcagaaagg aaatgcaaca	540
cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc	600
ctgtgtgagg aggcatctt caggttttgt gttcctacaa agtttacgcc taactggctt	660
agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata	720
aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa	780

aacaaagacc aagatatagt caagaagatc atccaatga 819

<210> 97
<211> 594
<212> DNA
<213> Homo sapiens

<400> 97
atgaacaact tgctgtgctg cgcgctcgta tttctggaca tctccattaa gtggaccacc 60
cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240
ctatactgca gccccgtgtg caaggagctg cagtagtca agcaggagtg caatcgacc 300
cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360
cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca 420
gtttgcaaaa gatgtccaga tgggttcttc tcaaattgaga cgtcatctaa agcaccctgt 480
agaaaaacaca caaattgcag tgtcttttgt ctcctgctaa ctcagaaagg aaatgcaaca 540
cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat atga 594

<210> 98
<211> 432
<212> DNA
<213> Homo sapiens

<400> 98
atgaacaact tgctgtgctg cgcgctcgta tttctggaca tctccattaa gtggaccacc 60
cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240
ctatactgca gccccgtgtg caaggagctg cagtagtca agcaggagtg caatcgacc 300
cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360
cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca 420
gtttgcaaat ga 432

<210> 99
<211> 321
<212> DNA

<213> Homo sapiens

<400> 99
atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60
cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttgc 120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240
ctatactgca gccccgtgtg caaggagctg cagtagtca agcaggagtg caatcgacc 300
cacaaccgcg tgtgcgaatg a 321

<210> 100

<211> 1182

<212> DNA

<213> Homo sapiens

<400> 100
atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60
cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttgc 120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240
ctatactgca gccccgtgtg caaggagctg cagtagtca agcaggagtg caatcgacc 300
cacaaccgcg tgtgcgaatg caaggaaggg cgctacccctg agatagagtt ctgcttgaaa 360
cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca 420
gtttgcaaaa gatgtccaga tgggttcttc tcaaattgaga cgtcatctaa agcaccctgt 480
agaaaaacaca caaattgcag tgtcttttgt ctccctgtaa ctcagaaagg aaatgcaaca 540
cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggat agatgttacc 600
ctgtgtgagg aggatttctt caggtttgct gttccctacaa agtttacgccc taactggctt 660
agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720
aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780
aacaagacc aagatatagt caagaagatc atccaagata ttgacccctgt tgaaaacagc 840
gtgcagcggc acattggaca tgctaaccctc accttcgagc agcttcgttag cttgatggaa 900
agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcattgc 960
cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaatgg cgaccaagac 1020
accttgaagg gcctaattgca cgcactaaag cactcaaaga cgtaccactt tccaaaact 1080

gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg 1140
tatcagaagt tattttaga aatgatatgtt aacctagtct ag 1182

<210> 101
<211> 966
<212> DNA
<213> Homo sapiens

<400> 101
atgaacaact tgctgtgctg cgcgctcgta tttctggaca tctccattaa gtggaccacc 60
cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240
ctatactgca gccccgtgtg caaggagctg cagtagtca agcaggagtg caatcgacc 300
cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttggaa 360
cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca 420
gtttgcacaa gatgtccaga tgggttcttc tcaaattgaga cgtcatctaa agcacccctgt 480
agaaaaacaca caaattgcag tgtcttttgtt ctccctgctaa ctcagaaagg aaatgcaaca 540
cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 600
ctgtgtgagg aggattttt caggtttgct gttcctacaa agtttacgccc taactggctt 660
agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720
aaacggcaac acagtcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780
aacaagacc aagatatagt caagaagatc atccaagata ttgaccccttg tgaaaacagc 840
gtgcagcggc acattggaca tgctaaccctc accttcgagc agcttcgttag cttgatggaa 900
agcttaccgg gaaagaaaagt gggagcagaa gacattgaaa aaacaataaa ggctagtcta 960
gactag 966

<210> 102
<211> 564
<212> DNA
<213> Homo sapiens

<400> 102
atgaacaact tgctgtgctg cgcgctcgta tttctggaca tctccattaa gtggaccacc 60
cagggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120

tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc	180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt	240
ctatactgca gccccgtgtg caaggagctg cagtagtca agcaggagtg caatcgacc	300
cacaaccgcg tgtgcgaatg caaggaaggg cgctacccctg agatagagtt ctgcttggaaa	360
cataggagct gccctcctgg atttggagtg gtgcaagctg gaaccccaga gcgaaataca	420
gtttgcaaaa gatgtccaga tgggttcttc tcaaattgaga cgtcatctaa agcaccctgt	480
agaaaaacaca caaattgcag tgtcttggt ctccctgctaa ctcagaaagg aaatgcaaca	540
cacgacaaca tatgttccgg ctag	564

<210> 103
<211> 255
<212> DNA
<213> Homo sapiens

<400> 103 atgaacaact tgctgtgctg cgcgctcgta tttctggaca tctccattaa gtggaccacc	60
cagggaaacgt ttcctccaaa gtacccat tatgacgaag aaacctctca tcagctgttg	120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc	180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt	240
ctatacctag tctag	255

<210> 104
<211> 1317
<212> DNA
<213> Homo sapiens

<400> 104 ctggagacat ataacttcaa cacttggccc ttagtggaa gcaagctctgc agggactttt	60
tcagccatct gtaaacaatt tcagtgccaa cccgcgaact gtaatccatg aatggacca	120
cactttacaa gtcatcaagt ctaacttcta gaccaggaa ttaatgggg agacagcgaa	180
cccttagagca aagtgcacaa cttctgtcga tagcttgagg ctagtgaaa gacctcgagg	240
aggctactcc agaagttcag cgcgttagaa gctccgatac caatagccct ttgatgtatgg	300
tgggttgggt gaagggaaaca gtgctccgca aggttatccc tgccccaggc agtccaattt	360
tcactctgca gattctctct ggctctaact accccagata acaaggagtg aatgcagaat	420
agcacggct ttagggccaa tcagacatta gtttagaaaaa ttcctactac atggtttatg	480
taaacttcaa gatgaatgtat tgcaactcc ccgaaaagg ctcagacaat gccatgcata	540

aagaggggcc	ctgtatTTG	aggTTcaga	accCGaagtG	aaggGGTcaG	gcAGCCGGGT	600
acggcgaaa	ctcacagCTT	tcgcccAGCG	agaggacAAA	ggtctGGGAC	acactCCAAC	660
tgcgtccGGA	tctTggCTGG	atcggaCTtC	caggGTggAG	gagacaCAAG	cacAGCAGCT	720
gcccAGCGTG	tgcccAGCCC	tccCACCGCT	ggtcccGGCT	gccaggAGGC	tggccGCTGG	780
cggGAAGGGG	ccggGAaaACC	tcAGAGCCCC	gcggAGACAG	cAGCCGCTT	gttCCTCAGC	840
ccggTggCTT	tttttcccc	tgctCTCCCA	ggggACAGAC	accACCGCCC	cACCCCTCAC	900
gccccacCTC	cctggggat	ccttCCGCC	ccAGCCtGA	aAGCgttaAT	cctggAGCTT	960
tctgcacACC	ccccgACCGC	tcccGCCAA	gCTTCCTAA	aaAGAAAGGT	gCAAAGTTG	1020
gtccaggATA	aaaaatGAC	tGATCAAAGG	caggCGatac	ttcctgttGC	cgggACGCTA	1080
tatataACGT	gatgAGCGCA	cgggCTGCGG	agacGCACCG	gagCGCTCGC	ccAGCCGCCG	1140
cctccaAGCC	cctgaggTTT	ccggggACCA	caatGAACAA	gttGCTGTGC	tgcgcGCTCG	1200
tggtaAGTCC	ctggGCCAGC	cgacGGGTGC	ccggCGCCTG	gggaggCTGC	tgccACCTGG	1260
tctcccaACC	tcccAGCGGA	ccggCGGGGA	aaaaggCTCC	actcgCTCCC	tcccaAG	1317

<210> 105
 <211> 10190
 <212> DNA
 <213> Homo sapiens

<400>	105					
gcttactttg	tgccaaatct	cattaggCTT	aaggtaatac	aggacttGA	gtcaaATGAT	60
actgttgcac	ataagaacAA	acctatTTc	atgctaAGAT	gatGCCACTG	tgttCCttc	120
tccttctagt	ttctggacat	ctccattaAG	tggaccACCC	aggAAACGTT	tcctccAAAG	180
tactttcatt	atgacgaAGA	aacctctcat	cagctgttgt	gtgacAAATG	tcctcCTGgt	240
acctacctaa	aacaACACTG	tacAGCAAAG	tggAAAGACCG	tgtgcGCCcC	ttgcCcTGAC	300
cactactaca	cagACAGCTG	gcacACCGT	gacgAGTGTc	tataCTGAG	ccccGTGTGC	360
aaggagCTGC	agtacgtCAA	gcaggAGTGC	aatCGCACCC	acaACCGCGT	gtgcGAATGC	420
aagGAAGGGC	gctacCTTGA	gatAGAGTTC	tgcttGAAAC	ataggAGCTG	ccctCCtGGA	480
tttggagtgg	tgcaagCTGG	tacgtGTCAA	tgtgcAGCAA	aattaATTAG	gatcatGCAA	540
agtcaGATAG	ttgtgacAGT	ttaggAGAAC	actTTGTTc	tGATGACATT	ataggATAGC	600
aaattGCAA	ggtaatGAAA	cctGCCAGGT	aggTACTATG	tgtctGGAGT	gcttccAAAG	660
gaccattGCT	cagAGGAATA	cttGCCACT	acaggGAAT	ttaatGACAA	atctCAAATG	720

cagcaaattt ttctctcatg agatgcata tggtttttt ttttttttt aaagaaaaca 780
actcaaggttt cactattgtt agttgatcta tacctctata tttcacttca gcatggacac 840
cttccaaactg cagcactttt tgacaaacat cagaaatgtt aatttataacc aagagagtaa 900
ttatgctcat attaatgaga ctctggagtg ctaacaataa gcagttataa ttaattatgt 960
aaaaaatgag aatggtgagg ggaattgcat ttcatttata aaaacaaggc tagttcttcc 1020
tttagcatgg gagctgagtg tttgggaggg taaggactat agcagaatct cttcaatgag 1080
cttattctt atcttagaca aaacagattt tcaagccaag agcaagcact tgcctataaa 1140
ccaagtgcct tctctttgc atttgaaca gcattggtca gggctcatgt gtattgaatc 1200
ttttaaacca gtaacccacg tttttttctt gccacatttgc aagacttca gtgcagccta 1260
taactttca tagcttgaga aaattaagag tatccactta cttagatgga agaagtaatc 1320
agtatagatt ctgatgactc agtttgaagc agtgtttctc aactgaagcc ctgctgat 1380
tttaagaaat atctggattt ctaggctgga ctcccttttgg tggcagctg tcctgcgcatt 1440
tgtagaattt tggcagcacc cctggactct agccactaga taccaatagc agtccttccc 1500
ccatgtgaca gccaatgtt tcttcagaca ctgtcaaatttgc tcgcagggtg gcaaaatcac 1560
tcctgggttga gaacagggtc atcaatgcta agtatctgtt actattttaa ctctcaaaac 1620
ttgtgatata caaagtctaa attattagac gaccaataact ttaggtttaa aggcatacaa 1680
atgaaacatt caaaaatcaa aatctattctt gtttctcaaa tagtgaatct tataaaat 1740
atcacagaag atgcaaatttgc catcagagtc cctttaatttgc cctcttcgtt tgagtatttgc 1800
agggaggaat tggtgatagt tcctactttc tattggatgg tactttgaga ctcaaaagct 1860
aagctaagtt gtgtgtgtt caggggtgcgg ggtgtggat cccatcagat aaaagcaaatttgc 1920
ccatgttaatttgc cattcagtaa gttgtatatttgc tagaaaaatgc aaaagtgggc tatgcagtttgc 1980
ggaaactaga gaattttgaa aaataatgga aatcacaagg atctttctta aataagtaag 2040
aaaatctgtt tgtagaatgaa agcaagcagg cagccagaag actcagaaca aaagtacaca 2100
ttttactctg tgtacactgg cagcacagtg ggatttttttgc acctctccctt ccctaaaaac 2160
ccacacagcg gttcctcttg ggaaataaga gttttccagc ccaaaagagaa ggaaagacta 2220
tgtgggttta ctctaaaaatgc tattttataa ccgtttttgtt gttgctgttgc ctgttttgc 2280
atcagattgtt ctccctcttca tattttatttgc acttcatttgc gtttatttgc gtggaaatttgc 2340
tttagagcaag catggtgaaat tctcaactgtt aaagccaaat ttctccatca ttataatttgc 2400

acattttgcc tggcaggta taattttat atttccactg atagtaataa ggtaaaatca	2460
ttacttagat ggatagatct ttttcataaa aagtaccatc agttatagag ggaagtcatg	2520
ttcatgttca ggaaggtcat tagataaagc ttctgaatat attatgaaac attagttctg	2580
tcattcttag attcttttg ttaaataact ttaaaagcta acttacctaa aagaaatatc	2640
tgacacatat gaacttctca ttaggatgca ggagaagacc caagccacag atatgtatct	2700
gaagaatgaa caagattctt aggccccgca cggtggtca catctgtaat ctcaagagtt	2760
tgagaggtca aggccccgag atcacctgag gtcaggagtt caagaccagc ctggccaaca	2820
tgtgaaacc ctgcctctac taaaataca aaaattagca gggcatggtg gtgcattgcct	2880
gcaaccctag ctactcagga ggctgagaca ggagaatctc ttgaaccctc gaggcgagg	2940
ttgtggtgag ctgagatccc tctactgcac tccagcctgg gtgacagaga tgagactccg	3000
tccctgccgc cgccccccgc ttccccccca aaaagattct tcttcattgca gaacatacgg	3060
cagtcaacaa agggagacct gggtccaggt gtccaaatca cttatttcga gtaaattagc	3120
aatgaaagaa tgccatggaa tccctgccc aatacctctg cttatgatat tgtagaattt	3180
gatatacgat tgtatccat ttaaggagta ggatgtagta ggaaagtact aaaaacaaac	3240
acacaaacag aaaaccctct ttgcattgtta aggtggttcc taagataatg tcagtgcatt	3300
gctgaaata atattaata tgtgaagggtt ttaggctgtg tttccctc ctgtttttt	3360
tttctgccag cccttgcata ttttgcagg tcaatgaatc atgtagaaag agacaggaga	3420
tgaaactaga accagtccat tttgcccattt ttttattttt ctggttttgg taaaagatac	3480
aatgaggtag gaggttgaga tttataatg aagtttaata agttctgtt gctttgattt	3540
ttctctttca tatttgttat cttgcataag ccagaattgg cctgtaaaat ctacatatgg	3600
atattgaagt ctaaatctgt tcaactagct tacactagat ggagatattt tcatttcag	3660
atacactgga atgtatgatc tagccatgctg taatatagtc aagtgtttga aggtatttt	3720
ttttaatagc gtcttagtt gtggactgg tcaagttttt ctgccaatga tttttcaaa	3780
tttatcaaattt attttccat catgaagtaa aatgcccttgcagtcaccct tcctgaagtt	3840
tgaacgactc tgctgttttta aacagttaa gcaaattgtt tatcatcttc cgtttactat	3900
gtagcttaac tgcaggctta cgctttgag tcagcggcca actttattgc caccttcaaa	3960
agtttattat aatgttgaa attttactt ctcaaggta gcatacttag gagttgttc	4020
acaatttagga ttcaaggaaag aaagaacttc agtaggaact gattgaaatt taatgtatgca	4080
gcattcaatg ggtactaatt tcaaagaatg atattacagc agacacacag cagttatctt	4140

gattttctag	gaataattgt	atgaagaata	tggctgacaa	cacggccta	ctgccactca	4200
gcggaggctg	gactaatgaa	caccctaccc	ttcttcctt	tcctctcaca	tttcatgagc	4260
gtttttagg	taacgagaaa	attgacttgc	atttgcatta	caaggaggag	aaactggcaa	4320
aggggatgtat	ggtggaagtt	ttgttctgtc	taatgaagtg	aaaaatgaaa	atgctagagt	4380
tttgcaac	ataatagtag	cagtaaaaac	caagtaaaaa	gtcttc当地	aactgtgtta	4440
agagggcatc	tgctggaaaa	cgatttgagg	agaaggtact	aaattgctt当地	gtatttccg	4500
taggaacccc	agagcgaaat	acagtttgc当地	aaagatgtcc	agatgggtt当地	ttctcaa当地	4560
agacgtcatc	taaagcaccc	tgtagaaaac	acacaaattt当地	cagtgtctt当地	ggtctc当地	4620
taactcagaa	aggaaatgca	acacacgaca	acatatgtt当地	cggaaacagt当地	gaatcaactc当地	4680
aaaaatgtgg	aataggtaat	tacattccaa	aatacgtctt当地	tgtacgattt当地	tgtagtatca当地	4740
tctctctctc	tgagttgaac	acaaggcctc	cagccacatt当地	cttggtcaaa当地	cttacattt当地	4800
cccttcttg	aatcttaacc	agctaaggct当地	actctcgat当地	cattactgct当地	aaagctacca当地	4860
ctcagaatct	ctcaaaaact	catcttctca	cagataaacac当地	ctcaaagctt当地	gattttctct当地	4920
ccttcacac	tgaaatcaaa	tcttgc当地	aggcaaaagg当地	cagtgtcaag当地	tttgc当地	4980
agatgaaatt	aggagagttc当地	aaactgtaga当地	attcacgtt当地	tgtgtt当地	cttc当地	5040
tgtctgtatt	attaactaaa	gtatataattt当地	gcaactaaga当地	agcaaagtga当地	tataaacat当地	5100
atgacaattt	aggccaggca	tggtggctt当地	ctcctataat当地	cccaacattt当地	tggggggcca当地	5160
agtaggcag	atcacttgag	gtcaggattt当地	caagaccagc当地	ctgaccaaca当地	tggtgaard当地	5220
ttgtctctac	taaaaataca	aaaattagct当地	gggcatggta当地	gcaggcactt当地	ctagtaccag当地	5280
ctactcaggg	ctgaggcagg	agaatcgctt当地	gaacccagga当地	gatggaggtt当地	gcagtgagct当地	5340
gagattgtac	cactgcactc	cagtctggc当地	aacagagcaa当地	gatttcatca当地	cacacacaca当地	5400
cacacacaca	cacacacaca	ttagaaatgt当地	gtacttggct当地	ttgttaccta当地	tggtatttagt当地	5460
gcatctattt	catggaactt当地	ccaagctact当地	ctgggtgtgt当地	taagctctt当地	attgggtaca当地	5520
ggtcactagt	attaagttca当地	ggttattcgg当地	atgcattcca当地	cggtagtgat当地	gacaattcat当地	5580
caggctagtg	tgtgtgttca当地	ccttgc当地	cccaccacta当地	gactaatctc当地	agaccttc当地	5640
tcaaagacac	attacactaa当地	agatgattt当地	ctttttgtg当地	tttaatcaag当地	caatggtata当地	5700
aaccagctt当地	actctccccca当地	aacagttttt当地	cgtactacaa当地	agaagtttat当地	gaagcagaga当地	5760
aatgtgaatt	gatatatata当地	tgagattcta当地	acccagttcc当地	agcattgttt当地	cattgtgtaa当地	5820

ttgaaatcat agacaaggcca	ttttagcctt tgctttctta	tctaaaaaaaaaaaaaaa	5880
aatgaaggaa ggggtattaa aaggagtat	caaattttaa cattctcttt	aattaattca	5940
tttttaattt tactttttt catttattgt	gcacttacta tgggtactg	tgctatagag	6000
gctttaacat ttataaaaac actgtgaaag	ttgcttcaga tgaatataagg	tagagaacg	6060
gcagaactag tattcaaagc caggtctgat	gaatccaaaa acaaacaccc	attactccca	6120
ttttctggga catacttact ctacccagat	gctctggct ttgtaatgcc	tatgtaaata	6180
acatagttt atgtttggtt atttccatat	gtaatgtcta cttatatac	tgtatctatc	6240
tcttgctttg tttccaaagg taaactatgt	gtctaaatgt gggcaaaaaa	taacacacta	6300
ttccaaatta ctgttcaaatt tccttaagt	cagtgataat tatttggttt	gacattaatc	6360
atgaagttcc ctgtgggtac taggtaaacc	tttaatagaa tgttaatgtt	tgtattcatt	6420
ataagaattt ttggctgtta cttatattaca	acaatatttc actctaatta	gacatttact	6480
aaactttctc ttgaaaacaa tgccaaaaaa	agaacattag aagacacgta	agctcagttg	6540
gtctctgcca ctaagaccag ccaacagaag	cttgattttt ttcaaacttt	gcattttagc	6600
atattttatc ttggaaaatt caatttgttt	ggttttttgt ttttgtttgt	attgaataga	6660
ctctcagaaa tccaaattgtt gagtaatct	tctgggtttt ctaaccttcc	tttagatgtt	6720
accctgtgtg aggaggcatt cttaggttt	gctgttccata caaagttac	gcctaactgg	6780
cttagtgtct tggtagacaa ttgcctggc	accaaagtaa acgcagagag	tgtagagagg	6840
ataaaaacggc aacacagctc acaagaacag	actttccagc tgctgaagtt	atggaaacat	6900
caaaacaaag accaagatata	agtcaagaag atcatccaag	gtaattacat	6960
gtcttgcattc gattttgttag tatcatctct	ctctctgagt tgaacacaag	gcctccagcc	7020
acattcttgg tcaaacttac atttccctt	tcttgaatct taaccagcta	aggctactct	7080
cgtgcatttta ctgctaaagc taccactcag	aatctctcaa aaactcatct	tctcacagat	7140
aacacctcaa agtttgattt tctctcctt	cacactgaaa tcaaatttttgc	cccataggca	7200
aaggcagtg tcaagtttgc cactgagatg	aaatttaggag agtccaaact	gtagaattca	7260
cgttgtgtgt tattactttc acgaatgtct	gtattattaa ctaaaagtata	tattggcaac	7320
taagaagcaa agtgatataa acatgatgac	aaatttaggccc aggcattgg	gcttactcct	7380
ataatcccaa catttgggg ggccaaggta	ggcagatcac ttgaggtcag	gatttcaaga	7440
ccagcctgac caacatggtg aaaccttgc	tctactaaaa atacaaaaat	tagctggca	7500
tggtagcagg cacttcttagt accagctact	caggcgtgag gcaggagaat	cgcttgaacc	7560

caggagatgg aggttgcagt gagctgagat tgtaccactg cactccagtc tgggcaacag	7620
agcaagattt catcacacac acacacacac acacacacac acacattaga aatgtgtact	7680
tggctttgtt acctatggta ttagtgcattc tattgcattgg aacttccaag ctactctgg	7740
tgtgttaagc tcttcattgg gtacaggtca ctagtattaa gttcaggtta ttccggatgca	7800
ttccacggta gtgatgacaa ttcatcaggc tagtgtgtgt gttcaccttg tcactcccac	7860
cactagacta atctcagacc ttcaactcaaa gacacattac actaaagatg atttgcttt	7920
ttgtgtttaa tcaagcaatg gtataaacca gcttgactct ccccaaacag ttttcgtac	7980
tacaaaagaag tttatgaagc agagaaatgt gaattgatat atatatgaga ttctaacc	8040
gttccagcat tgtttcattg tgtaattgaa atcatagaca agccattta gccttgctt	8100
tcttatctaa aaaaaaaaaaaaaaa aaaaaaatga aggaagggtt attaaaagga gtgatcaa	8160
tttaacattc tctttaatta attcatttt aattttactt ttttcattt attgtgcact	8220
tactatgtgg tactgtgcta tagaggctt aacattata aaaacactgt gaaagtgc	8280
tcagatgaat ataggttagta gaacggcaga actagtattc aaagccaggt ctgatgaatc	8340
caaaaaacaaa caccattac tcccatatttc tgggacatac ttactctacc cagatgtct	8400
gggctttgtt atgcctatgt aaataacata gttttatgtt tggttatttt cctatgtaat	8460
gtctacttat atatctgtat ctatctttg ctttgcattcc aaaggtaaac tatgtgtcta	8520
aatgtggca aaaaataaca cactattcca aattactgtt caaattcatt taagtca	8580
ataattattt gtttgacat taatcatgaa gttccctgtg ggtacttaggt aaacctttaa	8640
tagaatgtta atgtttgat tcattataag aattttggc tggttacttat ttacaacaat	8700
atttcactct aattagacat ttactaaact ttctcttgaa aacaatgccc aaaaaagaac	8760
attagaagac acgtaaagctc agttggtctc tgccactaag accagccaaac agaagcttga	8820
ttttattcaa actttgcatt ttagcatatt ttatcttgaa aaattcaatt gtgttggtt	8880
tttggggatgtt atagactctc agaaatccaa ttgttgagta aatcttctgg	8940
gttttctaactt ctttcttag atattgaccc ctgtgaaaac agcgtgcagc ggcacattgg	9000
acatgctaactt ctcacccctcg agcagcttcg tagcttgatg gaaagcttac cgggaaagaa	9060
agtgggagca gaagacattg aaaaaacaat aaaggcatgc aaacccagtg accagatc	9120
gaagctgctc agtttgatgc gaataaaaaaa tggcgaccaaa gacaccttga agggccta	9180
gcacgcacta aagcactcaa agacgtacca ctttcccaaactgtcactc agagtctaa	9240

gaagaccatc	aggttccttc	acagcttacac	aatgtacaaa	ttgtatcaga	agttatttt	9300
agaaatgata	ggtaaccagg	tccaatcagt	aaaaataagc	tgcttataac	tggaaatggc	9360
cattgagctg	tttcctcaca	attggcgaga	tcccattggat	gagtaaactg	tttctcaggc	9420
acttgaggct	ttcagtgata	tctttctcat	taccagtgcac	taatttgcc	acagggtact	9480
aaaagaaaact	atgatgtgga	gaaaggacta	acatctcctc	caataaacc	caaatggta	9540
atccaactgt	cagatctgga	tcgttatcta	ctgactatat	tttcccttat	tactgcttgc	9600
agtaattcaa	ctggaaatta	aaaaaaaaaa	actagactcc	actgggcctt	actaaatatg	9660
ggaatgtcta	acttaaata	ctttggatt	ccagctatgc	tagaggctt	tattagaaag	9720
ccatattttt	ttctgtaaaa	gttactaata	tatctgtaac	actattacag	tattgttatt	9780
tatattcatt	cagatataag	atttggacat	attatcatcc	tataaagaaa	cggtatgact	9840
taattttaga	aagaaaatta	tattctgttt	attatgacaa	atgaaagaga	aaatatatat	9900
ttttaatgga	aagtttgtag	cattttcta	ataggtactg	ccatattttt	ctgtgtggag	9960
tattttata	attttatctg	tataagctgt	aatatcattt	tatagaaaat	gcattattt	10020
gtcaattgtt	taatgttgg	aaacatatga	aatataaatt	atctgaatat	tagatgtct	10080
gagaaattga	atgtacctta	tttaaaagat	tttatggttt	tataactata	taaatgacat	10140
tattaaagtt	ttcaaattat	tttttattgc	tttctctgtt	gcttttattt		10190

<210> 106
 <211> 391
 <212> PRT
 <213> Homo sapiens

<400> 106

Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro
 1 5 10 15

Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp
 20 25 30

Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp
 35 40 45

Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp
 50 55 60

His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

65 70 75 80

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu
85 90 95

Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg
100 105 110

Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg
115 120 125

Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr
130 135 140

Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly
145 150 155 160

Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser
165 170 175

Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys
180 185 190

Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn
195 200 205

Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala
210 215 220

Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr
225 230 235 240

Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile
245 250 255

Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln
260 265 270

Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu
275 280 285

Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys
290 295 300

Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser
305 310 315 320

Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met
325 330 335

His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr
340 345 350

Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr
355 360 365

Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln
370 375 380

Ser Val Lys Ile Ser Cys Leu
385 390

<210> 107
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<220>
<221> misc_feature
<222> (12)..(12)
<223> n = unknown

<400> 107
cargarcara cnttgcaryt

20

<210> 108
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Sequence

<220>
<221> misc_feature
<222> (10)..(10)
<223> n = unknown

<220>
<221> misc_feature
<222> (16)..(16)
<223> n = unknown

<400> 108
yttrtacatn gtraanswrt g

21