МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов адресации и формирования исполнительного адреса.

Студентка гр. 9383	 Карпекина А.А
Преподаватель	Ефремов М.А.

Санкт-Петербург 2020

Цель работы.

Изучить режимы адресации в языке программирования Ассемблер и исправить ошибки в программе.

Текст задания.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции.

Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.

На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Исходный код.

```
; Программа изучения режимов адресации процессора IntelX86

EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)
```

```
AStack ENDS
;Данные программы
         SEGMENT ;
;Директивы описания данных
mem1
                0
         DW
mem2
         DW 0
mem3
         DW 0
         DB 12,11,10,9,5,6,7,8
vec1
              -40,-50,40,50,-20,-30,20,30
vec2
        DB
                5, 6, 7, 8, -8, -7, -6, -5, 1, 2, 3, 4, -4, -3, -2, -1
matr
         DB
DATA
         ENDS
; Код программы
CODE
          SEGMENT
      ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main
         PROC FAR
     push DS
     sub AX, AX
     push AX
     mov AX, DATA
     mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
       mov ax, n1
       mov cx,ax
       mov bl, EOL
       mov bh, n2
; Прямая адресация
       mov mem2, n2
       mov bx, OFFSET vec1
       mov mem1,ax
```

; Косвенная адресация

```
mov al, [bx]
       mov mem3, [bx]
  Базированная адресация
       mov
           al, [bx] + 3
       mov cx, 3[bx]
 Индексная адресация
       mov di, ind
       mov al, vec2[di]
       mov cx, vec2[di]
 Адресация с базированием и индексированием
       mov bx, 3
       mov al, matr[bx][di]
       mov cx, matr[bx][di]
       mov ax, matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
  Переопределение сегмента
; ----- вариант 1
       mov ax, SEG vec2
       mov es, ax
       mov ax, es:[bx]
       mov ax, 0
 ---- вариант 2
       mov es, ax
       push ds
       pop es
       mov cx, es:[bx-1]
       xchg cx,ax
 ----- вариант 3
       mov di, ind
       mov es:[bx+di],ax
; ----- вариант 4
       mov bp,sp
       mov ax,matr[bp+bx]
       mov ax,matr[bp+di+si]
```

; Использование сегмента стека

push mem1

push mem2

mov bp,sp

mov dx,[bp]+2

ret 2

Main ENDP

CODE ENDS

END Main

Ошибки, обнаруженные в коде.

Строка «mov mem3,[bx]» (46) - error A2052: Improper operand type. Нельзя писать в память и читать из памяти одной командой.

Строки «mov cx, vec2[di]» и «cx,matr[bx][di]» (53,57) - warning A4031: Operand types must match. Несоответствие типов операнд. Размер элемента cx – 2 байта, а размер vec2[di] и matr[bx][di] – 1 байт.

Строка «ax,matr[bx*4][di]» (58) - error A2055: Illegal register value. Нельзя умножать 16-битовые регистры.

Строка «ax,matr[bp+bx]» (78) - error A2046: Multiple base registers. Множественно использование базовых регистров. Разрешен только 1.

Строка «ax,matr[bp+di+si]» (79) - error A2047: Multiple index registers. Множественное использование индексных регистров. Разрешен только 1.

Листинг успешной программы.

; Программа изучения режиЙ

чов адресации процессора I

ntelX86

= 0024

= 0002

ind EQU 2

= 01F4

n1 EQU 500

n2 EQU −50

0000 AStack SEGMENT STACK 0000 0000[DW 12 DUP(?) 3333] 0018 AStack ENDS ;Данные программы 0000 DATA SEGMENT ; ;Директивы описания данны 0000 0000 mem1 DW 0002 0000 mem2 0 DW 0004 0000 0 mem3 DW 0006 OC OB OA 09 05 06 vec1 DB 12,11,10,9,5,6,7,8 07 08 000E D8 CE 28 32 EC E2 vec2 DB -40, -50, 40, 50, -20, -30, 20, 30 14 1E DB 5, 6, 7, 8, -8, -7, -6, -5, 1, 2, 3, 4, -4, -3, -2, -1 FA FB 01 02 03 04 FC FD FE FF 0026 DATA ENDS ; Код программы 0000 CODE SEGMENT ASSUME CS:CODE, DS:DATA, SS:AStack ; Головная процедура 0000 Main PROC FAR 0000 1E push DS 0001 2B CO sub AX, AX

; Стек программы

push AX

0003 50

```
0007 8E D8
                         mov DS,AX
                ; ПРОВЕРКА РЕЖИМОВ АДРЕСА
                ЦИИ НА УРОВНЕ СМЕЩЕНИЙ
                ; Регистровая адресация
    0009 B8 01F4
                                mov ax, n1
    000C 8B C8
                               mov cx, ax
    000E B3 24
                               mov bl, EOL
    0010 B7 CE
                                mov bh, n2
                ; Прямая адресация
    0012 C7 06 0002 R FFCE mov mem2, n2
    0018 BB 0006 R
                               mov bx, OFFSET vec1
   Microsoft (R) Macro Assembler Version 5.10
10/14/20 22:58:3
Page 1-2
    001B A3 0000 R
                               mov mem1,ax
              ; Косвенная адресация
    001E 8A 07
                               mov al,[bx]
                ; mov mem3,[bx]
                ; Базированная адресация
    0020 8A 47 03
                                mov al, [bx]+3
    0023 8B 4F 03
                               mov cx, 3[bx]
              ; Индексная адресация
    0026 BF 0002
                               mov di, ind
    0029 8A 85 000E R
                           mov al, vec2[di]
                 ; mov cx, vec2[di]
                ; Адресация с базирование
                м и индексированием
    002D BB 0003
                               mov bx,3
    0030 8A 81 0016 R mov al, matr[bx][di]
                 ; mov cx, matr[bx][di]
```

0004 B8 ---- R mov AX, DATA

```
; ПРОВЕРКА РЕЖИМОВ АДРЕСА
            ЦИИ С УЧЕТОМ СЕГМЕНТОВ
            ; Переопределение сегменэ
            а
            ; ---- вариант 1
0034 B8 ---- R
                            mov ax, SEG vec2
0037 8E CO
                            mov es, ax
0039 26: 8B 07
                            mov ax, es:[bx]
003C B8 0000
                            mov ax, 0
         ; ----- вариант 2
003F 8E C0
                           mov es, ax
0041
    1E
                       push ds
0042 07
                       pop es
0043 26: 8B 4F FF
                           mov cx, es:[bx-1]
0047 91
                       xchg cx,ax
         ; ----- вариант 3
0048 BF 0002
                           mov di, ind
004B 26: 89 01
                            mov es:[bx+di],ax
           ; ----- вариант 4
004E 8B EC
                           mov bp,sp
            ; mov ax,matr[bp+bx]
            ; mov ax, matr[bp+di+si]
            ; Использование сегмента
            стека
0050 FF 36 0000 R
                           push mem1
0054 FF 36 0002 R
                           push mem2
0058 8B EC
                           mov bp,sp
005A 8B 56 02
                           mov dx, [bp] + 2
005D CA 0002
                            ret 2
0060
                Main
                         ENDP
0060
                CODE
                        ENDS
           END Main
```

; mov ax, matr[bx*4][di]

10/1	Microso 4/20 22:		}	(R)	Λ	Macr	0		Ass	sembler	Vers	sion	5.10
Symb	ols-1												
	Segment	ts an	d G	roup	S:								
				N a	am∈	9				Length	Alic	Jn	
Comb	ine Clas	SS											
	ASTACK CODE . DATA .							•		0018 PARA 0060 PARA 0026 PARA	NONE	ζ	
	Symbols	5 :											
				N a	am e	2				Type Valı	ıe	Attr	
	EOL .						•	•		NUMBER	0024		
	IND .						•	•		NUMBER	0002		
= 00	MAIN .						•	•	•	F PROC	0000	CODE	Length
	MATR .								•	L BYTE	0016	DATA	
	MEM1 .								•	L WORD	0000	DATA	
	MEM2 .									L WORD	0002	DATA	
	мемз .									L WORD	0004	DATA	
	N1 N2							•		NUMBER NUMBER	01F4 -0032	2	

VEC2 L BYTE 000E DATA

0006 DATA

VEC1 L BYTE

```
TEXT
                                            0101h
@FILENAME
                                     TEXT
                                            OWE
@VERSION . .
                                            510
                                     TEXT
     88 Source
                Lines
     88 Total
                Lines
     19 Symbols
  47826 + 459431 Bytes symbol space free
      0 Warning Errors
      0 Severe
                Errors
```

Протокол работы на компьютере.

Рисунок 1 – Начальные значения регистров и ячеек памяти.

Таблица 1 – Результаты пошагового выполнения lab_2.asm.

Адрес	Символический код	16-ричный код	Содержимое регистров и ячеек памяти		
команды	команды	команды	До выполнения	После выполнения	
0000	PUSH DS	1E	(SP) = 0018	(SP) = 0016	
			(DS) = 19F5	(DS) = 19F5	
			Stack: +0 0000	Stack: +0 19F5	
0001	SUB AX,AX	2BC0	(AX) = 0000	(AX) = 0000	
0003	PUSH AX	50	(AX) = 0000	(AX) = 0000	
			(SP) = 0016	(SP) = 0014	
			Stack: +0 19F5	Stack: +0 0000	
			Stack: +2 0000	Stack: +2 19F5	
0004	MOV AX, 1A07	BB071A	(AX) = 0000	(AX) = 1A07	
0007	MOV DS,AX	8ED8	(DS) = 19F5	(DS) = 1A07	
			(AX) = 1A07	(AX) = 1A07	
0009	MOV AX, 01F4	B8F401	(AX) = 1A07	(AX) = 01F4	
000C	MOV CX, AX	8BC8	(CX) = 00B0	(CX) = 01F4	
			(AX) = 01F4	(AX) = 01F4	
000E	MOV BL, 24	B324	(BX) = 0000	(BX) = 0024	
0010	MOV BH, CE	B7CE	(BX) = 0024	(BX) = CE24	
0012	MOV [0002], FFCE	C7060200CEFF	DS: 0002 = 00	DS: 0002 = CE	
			DS: $0003 = 00$	DS: $0003 = FF$	
0018	MOV BX, 0006	BB0600	(BX) = CE24	(BX) = 0006	
001B	MOV [0000], AX	A30000	(AX) = 01F4	(AX) = 01F4	
			DS: $0000 = 00$	DS: $0000 = F4$	
			DS: 0001 = 00	DS: $0001 = 01$	
001E	MOV AL, [BX]	8A07	(AX) = 01F4	(AX) = 010C	
			(BX) = 0006	(BX) = 0006	

Продолжение 1.

	T	T	T	
0020	MOV AL, [BX+03]	8A4703	(AX) = 010C	(AX) = 0109
			(BX) = 0006	(BX) = 0006
0023	MOV CX, [BX+03]	8B4F03	(CX) = 01F4	(CX) = 0509
			(BX) = 0006	(BX) = 0006
0026	MOV DI, 0002	BF0200	(DI) = 0000	(DI) = 0002
0029	MOV AL, [000E+DI]	8A850E00	(AX) = 0109	(AX) = 0128
			(DI) = 0002	(DI) = 0002
002D	MOV BX, 0003	BB0300	(BX) = 0006	(BX) = 0003
0030	MOV AL,	8A811600	(AX) = 0128	(AX) = 01F9
	[0016+BX+DI]		(BX) = 0003	(BX) = 0003
			(DI) = 0002	(DI) = 0002
0034	MOV AX, 1A07	B8071A	(AX) = 01F9	(AX) = 1A07
0037	MOV ES, AX	8EC0	(ES) = 19F5	(ES) = 1A07
			(AX) = 1A07	(AX) = 1A07
0039	MOV AX, ES:[BX]	268B07	(AX) = 1A07	(AX) = 00FF
			(ES) = 1A07	(ES) = 1A07
			(BX) = 0003	(BX) = 0003
003C	MOV AX,0000	B80000	(AX) = 00FF	(AX) = 0000
003F	MOV ES, AX	8EC0	(AX) = 0000	(AX) = 0000
			(ES) = 1A07	(ES) = 0000
0041	PUSH DS	1E	(DS) = 1A07	(DS) = 1A07
			(SP) = 0014	(SP) = 0012
			Stack: +0 0000	Stack: +0 1A07
			Stack: +2 19F5	Stack: +2 0000
			Stack: +4 0000	Stack: +4 19F5
		1		

Продолжение 1.

0042	POP ES	07	(ES) = 0000	(ES) = 1A07
			(SP) = 0012	(SP) = 0014
			Stack: +0 1A07	Stack: +0 0000
			Stack: +2 0000	Stack: +2 19F5
			Stack: +4 19F5	Stack: +4 0000
0043	MOV CX, ES:[BX-01]	268B4FFF	(CX) = 0509	(CX) = FFCE
			(ES) = 1A07	(ES) = 1A07
			(BX) = 0003	(BX) = 0003
0047	XCHG AX, CX	91	(AX) = 0000	(AX) = FFCE
			(CX) = FFCE	(CX) = 0000
0048	MOV DI, 0002	BF0200	(DI) = 0002	(DI) = 0002
004B	MOV ES:[BX+DI],	268901	(ES) = 1A07	(ES) = 1A07
	AX		(BX) = 0003	(BX) = 0003
			(DI) = 0002	(DI) = 0002
			(AX) = FFCE	(AX) = FFCE
			DS:0005 = 00	DS: $0005 = CE$
			DS: 0006 = 08	DS: 0006 = FF
004E	MOV BP, SP	8BEC	(BP) = 0000	(BP) = 0014
			(SP) = 0014	(SP) = 0014
0050	PUSH [0000]	FF360000	DS:0000 = F4	DS:0000 = F4
			DS:0001 = 01	DS:0001 = 01
			(SP) = 0014	(SP) = 0012
			Stack: +0 0000	Stack: +0 01F4
			Stack: +2 19F5	Stack: +2 0000
			Stack: +4 0000	Stack: +4 19F5

Продолжение 1.

0054	PUSH [0002]	FF360200	DS:0002 = CE	DS:0002 = CE
			DS:0003 = FF	DS:0003 = FF
			(SP) = 0012	(SP) = 0010
			Stack: +0 01F4	Stack: +0 FFCE
			Stack: +2 0000	Stack: +2 01F4
			Stack: +4 19F5	Stack: +4 0000
			Stack: +6 0000	Stack: +6 19F5
0058	MOV BP, SP	8BEC	(BP) = 0014	(BP) = 0010
			(SP) = 0010	(SP) = 0010
005A	MOV DX, [BP+02]	8B5602	(DX) = 0000	(DX) = 01F4
			(BP) = 0010	(BP) = 0010
005D	FAR 0002	CA0200	(SP) = 0010	(SP) = 0016
			(CS) = 1A0A	(CS) = 01F4
			Stack: +0 FFCE	Stack: +0 19F5
			Stack: +2 01F4	Stack: +2 0000
			Stack: +4 0000	Stack: +4 0000
			Stack: +6 19F5	Stack: +6 0000

Выводы.

Получены навыки в области отладки программы на языке Ассемблер, усвоены знания в области регистровой адресации. Были найдены ошибки в программе.

ПРИЛОЖЕНИЕ А ИСПРАВЛЕННЫЙ КОД ПРОГРАММЫ

Название файла: lab_2.asm

```
; Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
 DW 12 DUP(?)
AStack ENDS
;Данные программы
DATA
        SEGMENT;
;Директивы описания данных
       DW 0
mem1
mem2
      DW = 0
      DW = 0
mem3
      DB 12,11,10,9,5,6,7,8
vec1
      DB -40,-50,40,50,-20,-30,20,30
vec2
      DB 5,6,7,8,-8,-7,-6,-5,1,2,3,4,-4,-3,-2,-1
matr
DATA
        ENDS
; Код программы
CODE
        SEGMENT
  ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
       PROC FAR
Main
  push DS
  sub AX,AX
```

```
push AX
   mov AX,DATA
   mov DS,AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
    mov ax,n1
    mov cx,ax
    mov bl,EOL
    mov bh,n2
; Прямая адресация
    mov mem2,n2
    mov bx,OFFSET vec1
    mov mem1,ax
; Косвенная адресация
    mov al,[bx]
    mov mem3,[bx]
; Базированная адресация
    mov al, [bx]+3
    mov cx,3[bx]
; Индексная адресация
    mov di,ind
    mov al,vec2[di]
    mov cx,vec2[di]
; Адресация с базированием и индексированием
    mov bx,3
    mov al,matr[bx][di]
    mov cx,matr[bx][di]
    mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
    mov ax, SEG vec2
```

```
mov es, ax
    mov ax, es:[bx]
    mov ax, 0
; ----- вариант 2
    mov es, ax
    push ds
    pop es
    mov cx, es:[bx-1]
    xchg cx,ax
; ----- вариант 3
    mov di,ind
    mov es:[bx+di],ax
; ----- вариант 4
    mov bp,sp
    mov ax,matr[bp+bx]
    mov ax,matr[bp+di+si]
; Использование сегмента стека
    push mem1
    push mem2
    mov bp,sp
    mov dx,[bp]+2
    ret 2
Main
       ENDP
CODE
         ENDS
END Main
```