TAREA 1. ANALISIS DE ALGORITMOS. Juan Carlos Faz Leal. 22 febrero 2022.

1. Codificar el algoritmo deordenamiento por inserción (INSERTION-SORT), y calcular el tiempo de ejecución para diez valores distintos de n. Realizar lo anterior para un arreglo ordenado en orden creciente (mejor caso), ordenado en forma decreciente (peor caso) y un arreglo aleatorio (caso promedio). Para cada caso calcular los tiempos y graficarlos.

2. Codificar el algoritmo deordenamiento por selección (SELECTION-SORT) y calcular los tiempo de cómputopara diez valores distintos de n. Realizar lo anterior para un arreglo ordenado en orden creciente (mejor caso), ordenado en forma decreciente (peor caso) y un arreglo aleatorio (caso promedio). Para cada caso calcular los tiempos y graficarlos.

3. Codifique el algoritmo deordenamiento por confluencia (MERGE-SORT) y calcular el tiempo de ejecución para diez valores distintos de n. Realizar lo anterior para un arreglo ordenado en orden creciente (mejor caso), ordenado en forma decreciente (peor caso) y un arreglo aleatorio (caso promedio). Para cada caso calcular los tiempos y graficarlos.

4. Determinar la función T(n), en el mejor y el peor de los casos, del algoritmo de ordenamiento por selección.

SELECTION_SORT (A)	Cost.	Times
for $i \leftarrow 1$ to $n-1$ do	C1	n
$\min j \leftarrow i;$	C2	n-1
$\min x \leftarrow A[i]$	C3	n-1
for $j \leftarrow i + 1$ to n do	C4	
If $A[j] < \min x$ then	C4	n(n+1)/2
$\min j \leftarrow j$	C4	
$\min x \leftarrow A[j]$	C4	
$A[\min j] \leftarrow A[i]$	C5	n-1
$A[i] \leftarrow \min x$	C6	n-1

$$T(n) = C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \left(\frac{n(n+1)}{2}\right) + C_5 (n-1) + C_6 (n-1)$$

$$= \frac{C_4}{2} n^2 + \left[C_1 + C_2 + C_3 + \frac{C_4}{2} + C_5 + C_6\right] n + \left[-C_2 - C_3 - C_5 - C_6\right]$$

El mayor termino de n es n^2 por lo tanto la complejidad es de $\mathcal{O}(n^2)$ en cualquier caso.

5. Realizar la graficación de las siguientes funciones: f(n) = log(n), f(n) = n, $f(n) = n \cdot log(n)$, $f(n) = n^2$, $f(n) = n^3$. Todas las curvas deben ser colocadas en la misma gráfica.

