Bài tập chương 5. SỐ NGUYÊN

Phần 1. Bài tập

Ký hiệu : $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ và $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$.

Bài 5.1. Tìm tất cả $k \in \mathbb{Z}$ thỏa

a)
$$(k^2 + 5k + 5)(k^2 - 2k - 9) = 1$$

b)
$$(3k^2 + 4k - 17)(-5k^2 + k + 49) = -2$$

Bài 5.2. Tìm tất cả $x, y \in \mathbb{Z}$ thỏa

a)
$$x + y + xy = 0$$
 b) $3^x = 4y + 1$

b)
$$3^x = 4y + 1$$

c)
$$\frac{1}{x} = \frac{1}{6} + \frac{y}{3}$$
 d) $\frac{x}{4} = \frac{1}{y} + \frac{3}{4}$

d)
$$\frac{x}{4} = \frac{1}{u} + \frac{3}{4}$$

Bài 5.3. Cho $n \in \mathbb{N}$ và $m, k \in \mathbb{Z}$. Chứng minh

a)
$$7 \mid (2^n - 1) \Leftrightarrow 3 \mid n$$

e) 121 không chia hết
$$(k^2 + 3k + 5)$$

b) 7 không chia hết
$$(2^n + 1)$$

f)
$$11 \mid (6k - 7m) \Leftrightarrow 11 \mid (4m - 5k)$$

c) 100 không chia hết
$$(9^n + 1)$$

g)
$$13 \mid (m+4k) \Leftrightarrow 13 \mid (10m+k)$$

d)
$$11 \mid (k^2 + 3k + 5) \Leftrightarrow k = 4t + 11 \text{ v\'oi } t \in \mathbb{Z}$$
 h) $17 \mid (3m + 2k) \Leftrightarrow 17 \mid (5m + 9k)$

h)
$$17 \mid (3m+2k) \Leftrightarrow 17 \mid (5m+9k)$$

Bài 5.4. Cho $a, b, c, d \in \mathbb{Z}$ và $n \in \mathbb{N}^*$ sao cho $a \equiv b \pmod{n}$ và $c \equiv d \pmod{n}$. Chứng minh

a)
$$ac \equiv bd \pmod{n}$$

b)
$$(a \pm c) \equiv (b \pm d) \pmod{n}$$
.

Bài 5.5. Tìm số nguyên a sao cho

a)
$$a \equiv -15 \pmod{27}$$
 và $126 \le a \le 152$.
c) $a \equiv 99 \pmod{41}$ và $100 \le a \le 140$.

c)
$$a \equiv 99 \pmod{41}$$
 và $100 \le a \le 140$.

b)
$$a \equiv 24 \pmod{31}$$
 và $-85 \le a \le -55$. d) $a \equiv 16 \pmod{42}$ và $201 \le a \le 242$.

d)
$$a \equiv 16 \pmod{42}$$
 và $201 \le a \le 242$.

Bài 5.6. Cho a, b là những số nguyên và $a \equiv 11 \pmod{19}$, $b \equiv 3 \pmod{19}$. Tìm số nguyên c với $0 \le c \le 18$ sao cho

a)
$$c \equiv 13a \pmod{19}$$
.

c)
$$c \equiv a - b \pmod{19}$$
.

c)
$$c \equiv a - b \pmod{19}$$
. e) $c \equiv 2a^2 + 3b^2 \pmod{19}$.

b)
$$c \equiv 8b \pmod{19}$$
.

b)
$$c \equiv 8b \pmod{19}$$
. d) $c \equiv 7a + 3b \pmod{19}$. f) $c \equiv a^3 + 4b^3 \pmod{19}$.

$$f) c \equiv a^3 + 4b^3 \pmod{19}$$

Bài 5.7. Tìm d=(m,n), e=[m,n] theo 2 cách khác nhau (bằng thuật chia Eulide và phân tích ra thừa số nguyên tố), chỉ ra dạng tối giản của $\frac{m}{n}$ rồi chọn $a,b,u,v\in\mathbb{Z}$ sao cho d=am+bn

và $\frac{1}{e} = \frac{u}{m} + \frac{v}{n}$ nếu m và n có các giá trị sau đây:

d)
$$-675$$
 và -459

g)
$$-35298$$
 và 6768

e)
$$936$$
 và 715

h)
$$-8820$$
 và -36288

- j) 87657 và -44441
- k) -654321 và 123456
- 1) -148500 và -7114800

Bài 5.8. Cho $m, n \in \mathbb{Z}^*$. Chứng minh $(m, n) = [m, n] \Leftrightarrow |m| = |n|$.

Bài 5.9. Cho $r, s \in \mathbb{Z}^*$. Khi đó $\forall a, b \in \mathbb{Z}$, đặt $a\mathbb{Z} = \{ak \mid k \in \mathbb{Z}\}$ và $a\mathbb{Z} + b\mathbb{Z} = \{ak + bt \mid k, t \in \mathbb{Z}\}$.

- a) Chúng minh $r\mathbb{Z} \subset s\mathbb{Z} \Leftrightarrow s \mid r; \quad r\mathbb{Z} + s\mathbb{Z} = (r, s)\mathbb{Z} \text{ và } r\mathbb{Z} \cap s\mathbb{Z} = [r, s]\mathbb{Z}.$
- b) Rút gon $(24\mathbb{Z} + 36\mathbb{Z} + 60\mathbb{Z} + 84\mathbb{Z})$ và $(4\mathbb{Z} \cap 6\mathbb{Z} \cap 9\mathbb{Z} \cap 10\mathbb{Z} \cap 15\mathbb{Z})$.

Bài 5.10. Chứng minh $\forall k \in \mathbb{Z}$,

- a) (14k+3, 21k+4) = 1
- c) (18k 12, 21 30k) = 3
- b) (24k+2, -60k-4) = 2 d) (20-75k, 25-100k) = 5.

Bài 5.11. Cho $m, n \in \mathbb{N}^*$. Giả sử $n = p_1^{r_1} p_2^{r_2} ... p_k^{r_k}$ là dạng phân tích thừa số nguyên tố của n.

- a) n có bao nhiều ước số dương và có bao nhiều ước số?
- b) Giả sử n có 2m ước số dương. Chứng minh $\forall j \in 1, 2, \ldots, k, \exists s_j \in \mathbb{N}^*, r_j = 2^{s_j} 1$.

Bài 5.12. Cho $n = 2^{14}3^95^87^{10}11^313^837^{10}$.

- a) n có bao nhiều ước số dương và có bao nhiều ước số?
- b) n có bao nhiều ước số dương chia hết cho $2^33^45^711^237^2$?
- c) n có bao nhiều ước số dương chia hết cho $1\,166\,400\,000$?

Bài 5.13. Phân tích 15!, 20! và 25! thành tích của các thừa số nguyên tố.

Bài 5.14. Cho $k \in \mathbb{N}^*$. Tìm một $n \in \mathbb{N}^*$ sao cho n có đúng k ước số dương.

Bài 5.15. Cho $m, n \in \mathbb{N}^*$ và $n \geq 2$.

- a) Chứng minh $\sqrt[n]{m} \in \mathbb{N} \Leftrightarrow \sqrt[n]{m} \in \mathbb{Q}$.
- b) Giả sử $m = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ là dạng phân tích thừa số nguyên tố của m và có $j \in \{1, 2, \dots, k\}$ thỏa r_i lẻ. Chứng minh $\sqrt[n]{m} \in \mathbb{Q}$.

Cho $n, b \in \mathbb{N}^*$. Khi đó n được viết duy nhất dưới dạng $n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$ với $k \in \mathbb{N}$ và $0 \le a_i < b$. Khi đó, ta gọi $(a_k a_{k-1} \dots a_1 a_0)_b$ là dạng biểu diễn của n theo cơ số b.

- Khi b=2, thì biểu diễn này được gọi là hệ nhị phân
- Khi b = 8, thì biểu diễn này được gọi là hệ bát phận
- Khi b = 10, thì biểu diễn này được gọi là hệ thập phân
- Khi b=16, thì biểu diễn này được gọi là hệ thập lục phân. Trong hệ thập lục phân người ta sử dụng A, B, C, D, E và F để biểu diễn các số 10 đến 15.

Bài 5.16. Hãy chuyển các số sau sang hệ nhị phân, bát phân và thập lục phân

- a) 15 c) 3453 e) 45324523
- b) 234 d) 24234535 f) 65646434234

Bài 5.17. Hãy biểu diễn các số mà có biểu diễn sau theo hệ thập phân

- a) $(1\,1011)_2$ e) $(572)_8$ i) $(80E)_{16}$
- b) $(10\,1011\,0101)_2$ f) $(1604)_8$ j) $(135AB)_{16}$
- c) $(11\,1011\,1110)_2$ g) $(423)_8$ k) $(ABBA)_{16}$

h) (2417)8

1) $(DEFACED)_{16}$

Bài 5.18. Hãy tính tổng và tích của các cặp số sau và biểu diễn chúng theo cơ số tương ứng.

- a) $(100\ 0111)_2$, $(111\ 0111)_2$ i) $(763)_8$, $(147)_8$
- b) $(11101111)_2$, $(10111101)_2$ j) $(6001)_8$, $(272)_8$
- c) $(10\,1010\,1010)_2$, $(1\,1111\,0000)_2$ k) $(1111)_8$, $(777)_8$
- d) $(10\,0000\,0001)_2$, $(11\,1111\,1111)_2$ l) $(54321)_8$, $(3456)_8$
- e) $(112)_3$, $(210)_3$ m) $(1AE)_{16}$, $(BBC)_{16}$
- f) $(2112)_3$, $(12021)_3$ n) $(20CBA)_{16}$, $(A01)_{16}$
- g) $(20001)_3$, $(1111)_3$ o) $(ABCDE)_{16}$, $(1111)_{16}$
- h) $(120021)_3$, $(2002)_3$ p) $(E0000E)_{16}$, $(BAAA)_{16}$

Phần 1. Thực hành

d) (111 1100 0001 1111)₂

Một số hàm liên quan đến số nguyên trong MAPLE

- iquo(a, b): tính phần thương của a chia cho b
- \bullet irem(a,b): tính phần dư của a chia cho b
- $\mathbf{igcd}(a_1, a_2, \dots, a_n)$: tính ước chung lớn nhất của a_1, a_2, \dots, a_n .
- $ilcm(a_1, a_2, ..., a_n)$: tính bội chung nhỏ nhất của $a_1, a_2, ..., a_n$.
- $\mathbf{igcdex}(a, b, 's', 't')$: trả về giá trị $d = \mathbf{igcd}(a, b)$ và hai giá trị s, t sao cho d = sa + tb
- isprime(a): kiểm tra a có phải là số nguyên tố không?
- ithprime(n): số nguyên tố thứ n
- $\mathbf{nextprime}(a)$: số nguyên tố nhỏ nhất mà lớn hơn hay bằng a
- **prevprime**(a): số nguyên tố lớn nhất mà nhỏ hơn hay bằng a
- ifactor(a): phân tích a thành thừa số nguyên tố.
- ifactors(a): phân tích a thành thừa số nguyên tố và được viết dưới dạng danh sách.

- convert(n, base, b): biểu diễn n theo cơ số b.
- convert($[a_k, a_{k-1}, \ldots, a_1, a_0]$, base, b, c): biểu diễn một số từ cơ số b sang cơ số c.
- convert(n, binary): biểu diễn một số theo hệ nhị phân
- convert(n, octal): biểu diễn một số theo hệ bát phân
- convert(n, hex): biểu diễn một số theo hệ thập lục phân
- **Bài 5.1.** Cho n và b là hai số nguyên dương lớn hơn 1. Hãy viết chương trình để tìm biểu diễn của n theo cơ số b.
- **Bài 5.2.** Cho n và m được biểu diễn dưới dạng cơ số b. Hãy viết chương trình tính tổng và tích và biểu diễn chúng dưới dạng cơ số b.
- **Bài 5.3.** Cho b, c là số nguyên dương lớn hơn 1 và một biểu diễn n theo cơ số b. Hãy viết chương trình để tìm biểu diễn của n theo cơ số c.
- **Bài 5.4.** Cho a, b là hai số nguyên dương. Viết chương trình để tính ước chung lớn nhất của a và b theo thuật toán Euclid.
- **Bài 5.5.** Cho a, b là hai số nguyên. Goi d = (a, b), hãy viết chương trình để tìm m, n sao cho d = ma + nb.