RACHUNEK ZDAŃ I METODY DOWODZENIA

- 1. Które z następujących wyrażeń są zdaniami? Podaj wartości logiczne tych zdań.
 - (a) 2 jest liczbą pierwszą lub nie jest prawdą, że 3 jest liczbą parzystą.
 - (b) Dlaczego logika jest ważna?
 - (c) Liczba 4 jest dodatnia, a liczba 3 jest ujemna.
 - (d) x y = y x.
 - (e) Jeżli $3 \cdot 2 = 1$, to $\cos(2006^{\circ}) > \frac{1}{2}$.
 - (f) Matematyka jest zabawna.
- 2. Niech p, q, r i s będą następującymi zdaniami:
 - $p = warto\acute{s}\acute{c}(X) > 0$,
 - $q = warto\acute{s}\acute{c}(Y) > 0$,
 - r = wyniki są wyświetlane na ekranie,
 - s = wartość(X) := wartość(X) + 1.

Zapisz każde z poniższych zdań za pomocą symboliki logicznej.

- (a) Jeśli nie jest prawdą, że wartość(X) > 0, to wartość(X) := wartość(X) + 1.
- (b) Wyniki są wyświetlane na ekranie wtedy i tylko wtedy, gdy wartość(X) > 0.
- (c) Jeśli wartość(X) > 0 i wartość(Y) > 0, to wyniki są wyświetlane na ekranie.
- 3. Określ wartość logiczną zdania:
 - (a) 1 jest liczbą pierwszą wtedy i tylko wtedy, gdy 1 jest liczbą niewymierną i 1 jest liczbą nieparzystą.
 - (b) 5 jest liczbą nieparzystą wtedy i tylko wtedy, gdy 2 jest liczbą nieparzystą lub 3 jest liczbą parzysta.
 - (c) Jeśli 2 jest liczbą parzystą, to 4 jest liczbą nieparzystą lub 5 jest liczbą nieparzystą.
 - (d) Jeśli 2 nie jest liczbą naturalną, to ln(3,24) > 5 lub log(3,24) > 5.
 - (e) Jeśli $\sin 5 > \frac{1}{2}$, to 5 jest liczbą nieparzystą.
 - (f) Jeśli $\ln e > \frac{1}{2}$, to $\ln 100 > \frac{1}{2}$ i $\ln 1 > \frac{1}{2}$.
- 4. Wykaż, że następujące wyrażenia są tautologiami rachunku zdań. Zastosuj dwie metody: "zerojedynkową" i "nie wprost".
 - (a) $(p \to q) \leftrightarrow (\neg p \lor q)$ określenie implikacji za pomocą alternatywy
 - (b) $\neg (p \lor q) \leftrightarrow (\neg p \land \neg q)$ prawo de Morgana
 - (c) $((p \to q) \land (p \to r)) \leftrightarrow (p \to (q \land r))$
 - (d) $((p \lor q) \to r) \to ((p \to r) \land (q \to r))$
 - (e) $((p \land q) \rightarrow r) \leftrightarrow ((p \rightarrow r) \lor (q \rightarrow r))$
- 5. Sprawdź, czy następujące formuły są tautologiami rachunku zdań. Jeśli nie, to podaj dla jakich wartości zmiennych p,q,r formuły te są fałszywe.
 - (a) $p \to (\neg p \lor q)$
 - (b) $(p \to q) \leftrightarrow (q \lor \neg p)$
 - (c) $(p \to q) \to (p \to (q \lor r))$

- (d) $((p \rightarrow \neg q) \lor (p \rightarrow r)) \leftrightarrow (q \lor r)$
- (e) $(p \to (\neg q \lor r)) \to (\neg p \to (q \land r))$
- 6. Dla każdej z podanych formuł zaproponuj najkrótszą formułę jej równoważną, jaką umiesz znaleźć. Dopuszczalne są także formuły *true* i *false*. Udowodnij równoważność.
 - (a) $p \to (p \land q)$
 - (b) $(p \to q) \lor q$
 - (c) $((p \to q) \land (q \to r)) \to (p \to r)$
 - (d) $((p \land q) \leftrightarrow (q \land r)) \rightarrow \neg q$
- 7. Chcemy zbudować tabelę wartości logicznych dla formuły zawierającej n zmiennych. Ile wartościowań należy rozważyć?
- 8. Ile można zdefiniować różnych spójników
 - (a) unarnych,
 - (b) binarnych,
 - (c) ternarnych?
- 9. Czy za pomocą spójników ¬, ∧ można wydefiniować spójniki
 - (a) \vee ,
 - (b) \rightarrow ,
 - (c) \leftrightarrow ?
- 10. Czy za pomocą spójników \neg, \to można wydefiniować spójniki
 - (a) \vee ,
 - (b) ∧,
 - (c) \leftrightarrow ?
- 11. Alternatywa wykluczająca XOR jest zdefiniowana za pomocą matrycy:

p	q	p XOR q
0	0	0
0	1	1
1	0	1
1	1	0

Zbuduj matryce logiczne dla zdań:

- (a) $(p \ XOR \ p) \ XOR \ p$
- (b) $(p \ XOR \ q) \leftrightarrow \neg (p \leftrightarrow q)$
- 12. Podaj dowód formalny twierdzenia $(p \wedge \neg r)$ z $(q \to p)$ i $(q \wedge \neg r)$.
- 13. Z tautologii $(p \to (q \to p))$ i $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$ wyprowadź za pomocą regularioskowania tautologie:
 - (a) $p \to p$,
 - (b) $(q \to r) \to ((p \to q) \to (p \to r))$
- 14. Udowodnij, że jeżeli zdanie p jest fałszywe, to dla każdego zdania q mamy:
 - (a) $p \lor q \leftrightarrow q$,
 - (b) $p \wedge q \leftrightarrow p$.

- 15. Zaproponuj zdanie złożone ze zmiennych zdaniowych p, q, r, które:
 - (a) jest prawdziwe wttw gdy dokładnie jedna z trzech zmiennych p, q, r jest prawdziwa,
 - (b) jest prawdziwe wttw gdy dokładnie dwie z trzech zmiennych p, q, r są prawdziwe.
- 16. Rozważ następujący zbiór zdań:
 - Jeśli się nie mylę, to dzisiaj jest sobota.
 - Albo dzisiaj to nie wczoraj, albo dzisiaj jest piątek.
 - Nie mylę się, jeśli jesteś tutaj.
 - Jeśli dzisiaj jest piątek, to dzisiaj nie jest sobota.
 - Jeśli dzisiaj jest sobota, to wczoraj był piątek.

Zapisz powyższe zdania w postaci formuł rachunku zdań. Zbadaj niesprzeczność tego zbioru. Zakładając, że powyższe zdania są prawdziwe, zbadaj czy poniższe zdania są prawdziwe? Odpowiedź starannie uzasadnij.

- (a) Jeśli się nie mylę, to jesteś tutaj.
- (b) Jeśli dzisiaj jest piątek, to nie mylę się.
- (c) Jeśli się mylę, to wczoraj był piątek.
- 17. Zapisz poniższe zdania w postaci formuł rachunku zdań i zbadaj, czy tworzą one zbiór niesprzeczny.
 - (a) Jeśli x jest liczbą dodatnią, to x jest liczbą parzystą. Jeśli x nie jest liczbą parzystą, to x nie jest liczbą wymierną lub x jest liczbą dadatnią. x jest liczbą wymierną.
 - (b) Jeśli x nie spełnia warunku W, to x spełnia warunku Q lub x spełnia warunku R. Jeśli x spełnia warunku Q, to x nie spełnia warunku R lub x nie spełnia warunku W i x nie spełnia warunku R.
 - (c) xspełnia warunek W wtedy i tylko wtedy, gdy x jest liczbą parzystą i x jest liczbą pierwszą. Jeśli x nie jest liczbą pierwszą, to x nie jest liczbą parzystą. x spełnia warunek W lub x jest liczbą pierwszą.
 - (d) Jeśli x spełnia warunek P, to x spełnia warunek Q i x spełnia warunek S. Jeśli x nie nie spełnia warunku R, to x nie spełnia warunku Q. x spełnia warunek P i x nie spełnia warunku R.
- 18. Zbadaj, czy podane rozumowanie jest poprawne. Jeśli tak, to wskaż regułę, na której jest ono oparte.
 - (a) Jeśli $f = \Theta(g)$, to f = O(g). Wiem, że $f = \Theta(g)$. Zatem f = O(g).
 - (b) Jeśli $f = \Theta(g)$, to f = O(g). Nieprawda, że f = O(g). Zatem nieprawda, że $f = \Theta(g)$.
 - (c) Relacja r jest symetryczna na zbiorze U. Zatem relacja r jest symetryczna na zbiorze U lub relacja r jest przechodnia na zbiorze U.
 - (d) Relacja r jest symetryczna na zbiorze U i relacja r jest zwrotna na zbiorze U. Zatem relacja r jest symetryczna na zbiorze U.
 - (e) Jeśli funkcja $f:U\to U$ jest funkcją różnowartościową, to jest funkcją na zbiór U. Jeśli funkcja $f:U\to U$ nie jest funkcją różnowartościową, to jest funkcją na zbiór U. Zatem $f:U\to U$ jest funkcją na zbiór U.
 - (f) Jeśli dana wejściowa programu P spełnia warunek W, to program P ma obliczenie skończone. Zatem jeśli program P nie ma obliczenia skończonego, to dana wejściowa nie spełnia warunku W.
 - (g) Jeśli dana wejściowa programu P spełnia warunek W, to program P ma obliczenie skończone. Zatem jeśli program P ma obliczenie skończone, to dana wejściowa spełnia warunek W.
 - (h) Z faktu, że dana wejściowa programu P spełnia warunek W i program P nie ma obliczenia skończonego wynika, że dana wejściowa programu P nie spełnia warunku W. Zatem jeśli dana wejściowa spełnia warunek W, to program P ma obliczenie skończone.

(i) Jeśli dana wejściowa programu P spełnia warunek W, to program P ma obliczenie skończone. Zatem jeśli dana wejściowa programu P nie spełnia warunku W, to program P nie ma obliczenia skończonego.

- (j) Jeśli dana wejściowa programu P spełnia warunek W, to program P ma obliczenie skończone. Zatem dana wejściowa programu P nie spełnia warunku W lub program P ma obliczenie skończone.
- (k) Jeśli dana wejściowa programu P spełnia warunek W1, to dana wyjściowa programu P spełnia warunek W2. Jeśli dana wyjściowa programu P spełnia warunek W3. Zatem dana wejściowa programu P spełnia warunek W1 lub dana wyjściowa programu P spełnia warunek W3.
- 19. Znajdź kontrprzykłady na poniższe stwierdzenia.
 - (a) Jeśli m, n są niezerowymi liczbami całkowitymi, które są nawzajem podzielne przez siebie, to m=n.
 - (b) Dla każdej liczby naturalnej n prawdą jest, że $n^2 < 2^n$.
- 20. Udowodnij wprost poniższe stwierdzenia.
 - (a) Jeżeli a i b są nieparzystymi liczbami całkowitymi, to a+b jest parzystą liczbą całkowitą.
 - (b) Jeżeli a jest liczbą całkowitą taką, że a-4 jest podzielne przez 5, to a^3+1 jest podzielne przez 5.
- 21. Udowodnij poniższe stwierdzenia. Zastosuj metodę "nie wprost".
 - (a) Udowodnić nie wprost, że jeżeli n^2 jest liczbą nieparzystą, to n też jest liczbą nieparzystą.
 - (b) Jeśli iloczyn dwóch liczb całkowitych a i b jest liczbą parzystą, to a jest liczbą parzystą lub b jest liczbą parzystą.
 - (c) Jeśli liczba naturalna N nie jest liczbą pierwszą, to posiada dzielnik różny od 1 i nie większy niż \sqrt{N} .
- 22. Stosując metodę "nie wprost" udowodnij, że
 - (a) Złożeniem funkcji różnowartościowych jest funkcja różnowartościowa.
 - (b) Jeśli relacja r określona w zbiorze U jest symetryczna, to relacja r^{-1} też jest symetryczna.
 - (c) Jeśli r jest symetryczną i przechodnią relacją określoną w zbiorze U, to r jest relacją zwrotną.
 - (d) Jeśli relacje r_1 i r_2 określone w zbiorze U są antysymetryczne, to relacja $r_1 \cap r_2$ też jest antysymetryczna.
 - (e) Jeżeli r i s są przechodnimi relacjami określonymi w zbiorze U, to ich przecięcie $r\cap s$ też jest relacją przechodnią.
 - (f) Jeżeli relacje r i s określone w zbiorze U są symetryczne, to ich suma $r \cup s$ też jest relacją symetryczną.
 - (g) Element najmniejszy w zbiorze częściowo uporządkowanym jest elementem minimalnym w tym zbiorze.
 - (h) Element maksymalny w zbiorze liniowo uporządkowanym, o ile istnieje, jest elementem największym w tym zbiorze.