

Data Science

Dr. Muhammad Adeel Nisar

Assistant Professor – Department of IT, Faculty of Computing and Information Technology, University of the Punjab, Lahore

Recap of the Last Lecture

• Univariate Linear Regression $y' = h_{\theta}(x) = \theta_0 + \theta_1 x$

• Cost/Loss function, Mean Squared Error
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (y'^{(i)} - y^{(i)})^2 = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient Descent Algorithm

Gradient descent algorithm

repeat until convergence {
$$\theta_{j} := \theta_{j} - \partial \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) \quad \text{(simultaneously update } j = 0 \text{ and } j = 1)$$

$$tempo & := \theta_{0} - d & \int (\theta_{0}, \theta_{1}) \\ tempo & := \theta_{0} - d & \int (\theta_{0}, \theta_{1}) \\ tempo & := \theta_{0} - d & \int (\theta_{0}, \theta_{1}) \\ \theta_{0} := temp_{0} \\ \theta_{1} := temp_{1}$$

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Derivatives

$$f(x) = x^3 \qquad = 3n^2$$

$$f(x) = (x + 2)^4$$
 = $4(x + 2)^4$

$$f(x,y) = \frac{3(3x+2y+2)^{2}}{3(3x+2y+2)} = \frac{3(3x+2y+2)^{-3}}{3(3x+2y+2)} = \frac{5(3x+2y+2)^{-3}}{3(3x+2y+2)} = \frac{5(3x+2y+2)^{-3}}{3(3x$$

Gradient Descent Algorithm

- $\vartheta_j := \vartheta_j \alpha \frac{\partial}{\partial \vartheta_j} J(\vartheta_{0,} \vartheta_1)$ (for j = 0 and j = 1)
- $\frac{\partial}{\partial \vartheta_i} J(\vartheta_{0_i} \vartheta_1)$ is a partial derivative term
- α : (Alpha) is learning rate
- Simultaneous Update
- temp0 = $\vartheta_0 \alpha \frac{\partial}{\partial \vartheta_0} J(\vartheta_{0,} \vartheta_1)$ temp1 = $\vartheta_1 \alpha \frac{\partial}{\partial \vartheta_1} J(\vartheta_{0,} \vartheta_1)$
- $\vartheta_0 \coloneqq \mathsf{temp0}$
- $\vartheta_1 \coloneqq \text{temp1}$

Linear Regression with Gradient Descent

$$\vartheta_j \coloneqq \vartheta_j - \alpha \frac{\partial}{\partial \vartheta_j} J(\vartheta_0, \vartheta_1)$$

$$\frac{\partial}{\partial \vartheta_{j}} J(\vartheta_{0,}\vartheta_{1}) = \frac{\partial}{\partial \vartheta_{j}} \left(\frac{1}{2m} \sum_{i=1}^{m} \left(h \vartheta(x^{(i)}) - y^{(i)} \right)^{2} \right)$$

$$\frac{\partial}{\partial \vartheta_{i}} J(\vartheta_{0,}\vartheta_{1}) = \frac{\partial}{\partial \vartheta_{i}} \left(\frac{1}{2m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})^{2} \right)$$

Linear Regression with Gradient Descent

$$\frac{\partial}{\partial \vartheta_{j}} J(\vartheta_{0,}\vartheta_{1}) = \frac{\partial}{\partial \vartheta_{j}} \left(\frac{1}{2m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})^{2} \right)$$

$$\frac{\partial}{\partial \vartheta_{0}} J(\vartheta_{0,}\vartheta_{1}) = \frac{\partial}{\partial \vartheta_{0}} \left(\frac{1}{2m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})^{2} \right)$$

$$\frac{\partial}{\partial \vartheta_{0}} J(\vartheta_{0,}\vartheta_{1}) = \frac{1}{m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})$$

$$\frac{\partial}{\partial \vartheta_{1}} J(\vartheta_{0,}\vartheta_{1}) = \frac{\partial}{\partial \vartheta_{1}} \left(\frac{1}{2m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})^{2} \right)$$

$$\frac{\partial}{\partial \vartheta_{1}} J(\vartheta_{0,}\vartheta_{1}) = \frac{1}{m} \sum_{i=1}^{m} ((\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})^{2})$$

$$\frac{\partial}{\partial \vartheta_{1}} J(\vartheta_{0,}\vartheta_{1}) = \frac{1}{m} \sum_{i=1}^{m} (((\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)}))^{2})$$

Linear Regression with Gradient Descent

Repeat until converge

$$\vartheta_0 \coloneqq \vartheta_0 - \alpha \left(\frac{1}{m} \sum_{i=1}^m (\vartheta_0 + \vartheta_1 x^{(i)} - y^{(i)}) \right)$$

$$\vartheta_1 \coloneqq \vartheta_1 - \alpha \left(\frac{1}{m} \sum_{i=1}^m (\vartheta_0 + \vartheta_1 x^{(i)} - y^{(i)}) \right) x^{(i)})$$

Simultaneous update

Solving Minimization Problem

Review of Univariate Linear Regression

• Univariate Linear Regression

$$y' = h_{\theta}(x) = \theta_0' + \theta_1 x$$

Cost/Loss function, Mean Squared Error

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (y'^{(i)} - y^{(i)})^2 = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient Descent Algorithm

$$\vartheta_j \coloneqq \vartheta_{j-\alpha} \frac{\partial}{\partial \vartheta_j} J(\vartheta_{0, \vartheta_1}) \quad \text{(for j = 0 and j = 1)}$$

Linear Regression with Multiple Features

	/			, <u> </u>	
Size of Plot	Locality Value	Facing Park	Distance from School	Price	
x_{1}	x ₂	X ₃	X ₄	У	,
5	1.0	1	2	15	} x ⁽¹⁾
10	0.9	0	2.5	25	
7	1.5	1	1.9	35	
•••	•••	•••	•••	•••	
4	0.5	0	10	5	} x ^(m)
<u> </u>	<u>/</u>	γ _n	J		,
		11			

Multivariate Linear Regression

Hypothesis Function (Uni-variate)

$$y' = h_{\vartheta}(x) = \vartheta_0 + \vartheta_1 x_1$$

Hypothesis Function (multivariate)

$$y' = h_{\vartheta}(x) = \vartheta_{0} + \vartheta_{1}x_{1} + \vartheta_{2}x_{2} + ... + \vartheta_{n}x_{n}$$

where, \varkappa_{o} x_{j} is jth feature γ_{0} - γ_{0} is the number of features

$$y' = h_{\vartheta}(x) = \vartheta_0 x_0 + \vartheta_1 x_1 + \vartheta_2 x_2 + \dots + \vartheta_n x_n \text{ where } x_0 = 1$$

$$\mathbf{\theta}^{\mathsf{T}} = [\vartheta_0, \vartheta_1, \vartheta_2, \dots, \vartheta_n]^{\mathsf{T}}, \qquad \mathbf{x} = [x_0, x_1, x_2, \dots, x_n]^{\mathsf{T}}$$

$$y' = h_{\vartheta}(x) = \mathbf{\theta}^{\mathsf{T}} \mathbf{x}$$

Gradient Descent For Multivariate Linear Regression

Hypothesis Function

$$y' = h_{\vartheta}(x) = \mathbf{\Theta}^{\mathsf{T}} \mathbf{x} = \vartheta_0 x_0 + \vartheta_1 x_1 + \vartheta_2 x_2 + \dots + \vartheta_n x_n$$
 where $x_0 = 1$
Parameters $= \vartheta_0$, ϑ_1 , ϑ_2 , ..., $\vartheta_n = \mathbf{\Theta}$ n+1 feature vector

Cost Function

$$J(\theta_{0}, \theta_{1}, \theta_{2}, \dots, \theta_{n}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Gradient Descent

Repeat until convergence:

$$\vartheta_{j} := \vartheta_{j-\alpha} \frac{\partial}{\partial \vartheta_{j}} J(\vartheta_{0,} \vartheta_{1, \dots, \vartheta_{n}}) = \vartheta_{j-\alpha} \frac{\partial}{\partial \vartheta_{j}} J(\boldsymbol{\theta})$$

Simultaneous update for each j = 0, 1, 2, ..., n

Gradient Descent for Multivariate Regression

$$\frac{\partial J(0)}{\partial \theta_{0}} = \frac{1}{N} \underbrace{\begin{cases} \partial_{0} + \Theta[X^{(i)}] - y^{(i)} \\ - y^{(i)} \end{cases}}_{i=1}$$

$$= \frac{1}{N} \underbrace{\begin{cases} h_{0}(x) - y^{(i)} \\ h_{0}(x) - y^{(i)} \end{cases}}_{i=1}$$

$$= \frac{1}{N} \underbrace{\begin{cases} h_{0}(x) - y^{(i)} \\ - y^{(i)} \end{cases}}_{i=1}$$

$$\frac{\partial J(0)}{\partial \theta_{1}} = \frac{1}{N} \underbrace{\begin{cases} h_{0}(x) - y^{(i)} \\ - y^{(i)} \end{cases}}_{i=1}$$

$$\frac{\partial J(0)}{\partial \theta_{1}} = \frac{1}{N} \underbrace{\begin{cases} h_{0}(x) - y^{(i)} \\ - y^{(i)} \end{cases}}_{i=1}$$

$$\frac{\partial J(0)}{\partial \theta_{1}} = \frac{1}{N} \underbrace{\begin{cases} h_{0}(x) - y^{(i)} \\ - y^{(i)} \end{cases}}_{i=1}$$

Gradient Descent for Multivariate Regression

Repeat until converge (for n = 1) { $\vartheta_0 \coloneqq \vartheta_0 - \alpha \left(\frac{1}{m} \sum_{i=1}^m (h_{\vartheta}(x^{(i)}) - y^{(i)}) \right)$ $\vartheta_1 \coloneqq \vartheta_1 - \alpha \left(\frac{1}{m} \sum_{i=1}^m (h_{\vartheta}(x^{(i)}) - y^{(i)}) \right) \quad x^{(i)}$ Repeat until converge (for n >= 1) { $\vartheta_i \coloneqq \vartheta_i - \alpha \left(\frac{1}{m} \sum_{i=1}^m (h_{\vartheta}(x^{(i)}) - y^{(i)}) \right) \quad x_j^{(i)})$ $\vartheta_0 \coloneqq \vartheta_0 - \alpha \left(\frac{1}{m} \sum_{i=1}^m (h_{\vartheta}(x^{(i)}) - y^{(i)}) \right) \quad x_0^{(i)})$ $\vartheta_1 \coloneqq \vartheta_1 - \alpha \left(\frac{1}{m} \sum_{i=1}^m (h_{\vartheta}(x^{(i)}) - y^{(i)}) \right) \quad x_1^{(i)})$

Feature Scaling

Gradient Descent:

$$\vartheta_j \coloneqq \vartheta_j - \alpha \left(\frac{1}{m} \sum_{i=1}^m (h_{\vartheta}(x^{(i)}) - y^{(i)}) \right) \quad x_j^{(i)})$$

- Different Strategies
- Specific Range: -1 <= x <= +1
- Mean Normalization: (x mean) / max or (x mean) / (max-min)-0.5 <= x <= +0.5

Selection of Learning Rate

- When Gradient Descent works properly then the cost $J(\theta)$ should decrease after every iteration.
- A model is assumed to be converged if it decreases the cost less than a threshold value in subsequent iterations.
- Gradient Descent doesn't work properly if cost increases or fluctuates in subsequent iterations. Solution: try a smaller learning rate.
- If learning rate is too small: slow convergence
- If learning rate is too large: Gradient descent might not converge
- Solution: Try a range of values for the learning rate and then pick the best

Polynomial Regression

• If the relationship between data is not linear:

Normal Eqautions

- Method to solve for θ analytically
- $J(\vartheta) = a\vartheta^2 + b\vartheta + c$
- $\frac{d}{d(\vartheta)}J(\vartheta)=0$

Linear Regression with One Variable

The Hypothesis Function / Model

•
$$y' = h_{\vartheta}(x) = \vartheta_0 + \vartheta_1 x$$

•
$$y'^{(i)} = h_{\vartheta}(x^{(i)}) = \vartheta_0 + \vartheta_1 x^{(i)}$$

Cost function:

$$J(\vartheta_{0},\vartheta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} (y'^{(i)} - y^{(i)})^{2}$$

Objective:

$$\min_{\vartheta_{0,}\vartheta_{1}} J(\vartheta_{0,}\vartheta_{1})$$

$$\frac{\partial}{\partial \vartheta_0} J(\vartheta_{0,} \vartheta_1) = 0$$
$$\frac{\partial}{\partial \vartheta_1} J(\vartheta_{0,} \vartheta_1) = 0$$

$$\frac{\partial}{\partial \vartheta_{0}} J(\vartheta_{0}, \vartheta_{1}) = \frac{\partial}{\partial \vartheta_{0}} \left(\frac{1}{2m} \sum_{i=1}^{m} (y'^{(i)} - y^{(i)})^{2} \right)
= \frac{\partial}{\partial \vartheta_{0}} \left(\frac{1}{2m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})^{2} \right)
= \frac{2}{2m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)}) \frac{\partial}{\partial \vartheta_{0}} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})
= \frac{1}{m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})
\frac{1}{m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)}) = 0
= > \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)}) = 0
= > \sum_{i=1}^{m} \vartheta_{0} + \sum_{i=1}^{m} \vartheta_{1} x^{(i)} - \sum_{i=1}^{m} y^{(i)} = 0$$

 $=> \sum_{i=1}^{m} \vartheta_{0} + \sum_{i=1}^{m} \vartheta_{1} x^{(i)} = \sum_{i=1}^{m} y^{(i)}$ -----> A

$$\sum_{i=1}^{m} \vartheta_{0} x^{(i)} + \sum_{i=1}^{m} \vartheta_{1} x^{2(i)} = \sum_{i=1}^{m} y^{(i)} x^{(i)}$$

Linear Regression using simultaneous equation

•
$$\sum_{i=1}^{m} \vartheta_0 + \sum_{i=1}^{m} \vartheta_i x^{(i)} = \sum_{i=1}^{m} y^{(i)}$$

•
$$\sum_{i=1}^{m} \vartheta_0 x^{(i)} + \sum_{i=1}^{m} \vartheta_1 x^{2(i)} = \sum_{i=1}^{m} y^{(i)} x^{(i)}$$

$$8x + 2y = 46$$

 $7x + 3y = 47$

$$\begin{bmatrix} 8 & 2 \\ 7 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 46 \\ 47 \end{bmatrix}$$

$$\bullet \begin{bmatrix} \sum_{i=1}^{m} 1 & \sum_{i=1}^{m} x^{(i)} \\ \sum_{i=1}^{m} x^{(i)} & \sum_{i=1}^{m} x^{2(i)} \end{bmatrix} \begin{bmatrix} \vartheta_0 \\ \vartheta_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} y^{(i)} \\ \sum_{i=1}^{m} y^{(i)} & x^{(i)} \end{bmatrix}$$

$$\bullet \begin{bmatrix} m & \sum_{i=1}^{m} x^{(i)} \\ \sum_{i=1}^{m} x^{(i)} & \sum_{i=1}^{m} x^{2(i)} \end{bmatrix} \begin{bmatrix} \vartheta_0 \\ \vartheta_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} y^{(i)} \\ \sum_{i=1}^{m} y^{(i)} & x^{(i)} \end{bmatrix}$$

A
$$\nabla^m \mathbf{v}(i)$$
] [∇

$$\begin{bmatrix} m & \sum_{i=1}^{m} x^{(i)} \\ \sum_{i=1}^{m} x^{(i)} & \sum_{i=1}^{m} x^{2(i)} \end{bmatrix} \begin{bmatrix} \vartheta_0 \\ \vartheta_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} y^{(i)} \\ \sum_{i=1}^{m} y^{(i)} & X^{(i)} \end{bmatrix}$$

ht (x)	wt (y)
1	10
2	20
3	30
4	40

Comparison of Gradient Descent and Normal Equation

Gradient Descent

- Need to choose learning rate
- Need many iterations
- Works well for even large number of features

Normal Equation

- No Need to choose learning rate
- No iterations required
- Works slow if number of features is very large O(n³)

Quadratic Model

Quadratic Model

The Hypothesis Function / Model

•
$$y' = h_{.9}(x) = \vartheta_0 + \vartheta_1 x + \vartheta_2 x^2$$

•
$$y'^{(i)} = h_{\vartheta}(x^{(i)}) = \vartheta_0 + \vartheta_1 x^{(i)} + \vartheta_2 x^{2(i)}$$

Cost function:

$$J(\vartheta_{0,}\vartheta_{1,}\vartheta_{2}) = \frac{1}{2m} \sum_{i=1}^{m} (y'^{(i)} - y^{(i)})^{2}$$

$$\begin{split} &\frac{\partial}{\partial \vartheta_{0}} J(\vartheta_{0,}\vartheta_{1,}\vartheta_{2}) = \frac{\partial}{\partial \vartheta_{0}} \left(\frac{1}{2m} \sum_{i=1}^{m} (\ y'^{(i)} - \ y^{(i)} \)^{2} \right) \\ &= \frac{\partial}{\partial \vartheta_{0}} \left(\frac{1}{2m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} + \vartheta_{2} x^{2(i)} - \ y^{(i)} \)^{2} \right) \\ &= \frac{2}{2m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)+} \vartheta_{2} x^{2(i)} - y^{(i)}) \frac{\partial}{\partial \vartheta_{0}} (\vartheta_{0} + \vartheta_{1} x^{(i)+} \vartheta_{2} x^{2(i)} - y^{(i)}) \\ &= \frac{1}{m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)+} \vartheta_{2} x^{2(i)} - y^{(i)}) \\ &= \frac{1}{m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)+} \vartheta_{2} x^{2(i)} - y^{(i)}) \\ &= > \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)+} \vartheta_{2} x^{2(i)} - y^{(i)}) = 0 \\ &= > \sum_{i=1}^{m} (\vartheta_{0} + \Sigma_{i=1}^{m} \vartheta_{1} x^{(i)} + \sum_{i=1}^{m} \vartheta_{2} x^{2(i)} - \sum_{i=1}^{m} y^{(i)} = 0 \\ &= > \sum_{i=1}^{m} \vartheta_{0} + \sum_{i=1}^{m} \vartheta_{1} x^{(i)} + \sum_{i=1}^{m} \vartheta_{2} x^{2(i)} = \sum_{i=1}^{m} y^{(i)} - \cdots > A \end{split}$$

Objective:

$$\min_{\vartheta_0,\vartheta_1,\vartheta_2} J(\vartheta_{0,}\vartheta_{1,}\vartheta_2)$$

$$\frac{\partial}{\partial \vartheta_0} J(\vartheta_0, \vartheta_1, \vartheta_2) = 0$$

$$\frac{\partial}{\partial \vartheta_1} J(\vartheta_0, \vartheta_1, \vartheta_2) = 0$$

$$\frac{\partial}{\partial \vartheta_2} J(\vartheta_0, \vartheta_1, \vartheta_2) = 0$$

Linear Regression using simultaneous equation

•
$$\sum_{i=1}^{m} \vartheta_0 + \sum_{i=1}^{m} \vartheta_1 x^{(i)} + \sum_{i=1}^{m} \vartheta_2 x^{2(i)} = \sum_{i=1}^{m} y^{(i)}$$
 -----> A

•
$$\sum_{i=1}^{m} \vartheta_0 x^{2(i)} + \sum_{i=1}^{m} \vartheta_1 x^{3(i)} + \sum_{i=1}^{m} \vartheta_2 x^{4(i)} = \sum_{i=1}^{m} y^{(i)} x^{2(i)}$$
 _----> C

$$\bullet \begin{bmatrix} \sum_{i=1}^{m} 1 & \sum_{i=1}^{m} x^{(i)} & \sum_{i=1}^{m} x^{2(i)} \\ \sum_{i=1}^{m} x^{(i)} & \sum_{i=1}^{m} x^{2(i)} & \sum_{i=1}^{m} x^{3(i)} \\ \sum_{i=1}^{m} x^{2(i)} & \sum_{i=1}^{m} x^{3(i)} & \sum_{i=1}^{m} x^{4(i)} \end{bmatrix} \begin{bmatrix} \vartheta_{0} \\ \vartheta_{1} \\ \vartheta_{2} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} y^{(i)} \\ \sum_{i=1}^{m} y^{(i)} & x^{(i)} \\ \sum_{i=1}^{m} y^{(i)} & x^{2(i)} \end{bmatrix} \\
\bullet \begin{bmatrix} m & \sum_{i=1}^{m} x^{(i)} & \sum_{i=1}^{m} x^{2(i)} \\ \sum_{i=1}^{m} x^{(i)} & \sum_{i=1}^{m} x^{2(i)} & \sum_{i=1}^{m} x^{3(i)} \\ \sum_{i=1}^{m} x^{2(i)} & \sum_{i=1}^{m} x^{3(i)} & \sum_{i=1}^{m} x^{4(i)} \end{bmatrix} \begin{bmatrix} \vartheta_{0} \\ \vartheta_{1} \\ \vartheta_{2} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} y^{(i)} \\ \sum_{i=1}^{m} y^{(i)} & x^{(i)} \\ \sum_{i=1}^{m} y^{(i)} & x^{(i)} \\ \sum_{i=1}^{m} y^{(i)} & x^{2(i)} \end{bmatrix}$$

$$8x + 2y + 3z = 46$$

 $7x + 3y + 4Z = 47$
 $2x + y + 2z = 1$

$$\begin{bmatrix} 8 & 2 & 3 \\ 7 & 3 & 4 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 46 \\ 47 \\ 1 \end{bmatrix}$$