АСТРАДЬ

Содержание

1	Аст	рофизика													2	,
	1.1	Вырожденные звёзды													2	

1 Астрофизика

1.1 Вырожденные звёзды

Вырожденные звезды — звезды в которых гравитации противостоит давление вырожденного газа. К ним относятся белые карлики и нейтронные звезды.

Белый карлик — проэволюционировавшие звёзды с массой, не превышающей предел Чандрасекара (максимальная масса, при которой звезда может существовать как белый карлик), лишённые собственных источников термоядерной энергии. Масса белого карлика меняется в диапазоне от $0.6 M_{\odot}$ до $1.44 M_{\odot}$, а радиус примерно в 100 раз меньше солнечного, т.е. сравним с радиусом Земли. Плотность белых карликов состовляет $10^8 - 10^{12}$ кг/м³.

Hейтронная звезда — сверхплотная звезда, образующаяся в результате взрыва Сверхновой. Вещество нейтронной звезды состоит в основном из нейтронов.

Масса нейтронной звезды лежит в пределах от $1.44 M_{\odot}$ до $2.5 M_{\odot}$ (предел Оппенгеймера-Волкова). Размер данной звезды состовляет лишь $10-20~\rm km$, а плотность $10^{16}-10^{18}~\rm kr/m^3$. Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов.

Так как нейтронные звёзды образуются в результате коллапса массивных звёзд, то из-за сохранения момента импульса скорость их вращения очень велика — максимальная скорость может достигать 10^5 км/с.