MAT 2555/255I ANÁLISIS FUNCIONAL TAREA 2

PLAZO: EL 16 DE OCTUBRE

Profesor: Nikola Kamburov nikamburov@mat.uc.cl

Ayudante: Matías Díaz midiaz8@uc.cl

El plazo para entregar Tarea 2 es el **16 de octubre, lunes, antes del inicio de la clase.** Note que se corregirá sólo una selección de los ejercicios enunciados.

Reading: Melrose, Functional Analysis (Lecture Notes), 3.10-3.11 (Teorema de Riez), más apuntes de clase (Series de Fourier + Teorema de Banach-Steinhaus).

El campo de escalares \mathbb{K} en las preguntas abajo es $\mathbb{K} = \mathbb{R}$ o $\mathbb{K} = \mathbb{C}$. Denotamos por \mathbb{T} el círculo unitario (i.e. el intervalo $[-\pi, \pi]$ con términos identificados) y por $e_n(x) := (2\pi)^{-1/2}e^{inx}$, $n \in \mathbb{Z}$, los elementos de la base de Fourier para $L^2(\mathbb{T})$.

Pregunta 1. [Operadores adjuntos] Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert y sea $T \in \mathcal{B}(H, H)$ un operador lineal acotado. Demuestre que existe un único operador $T^* \in \mathcal{B}(H, H)$ tal que

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$
 para todos $x, y \in H$.

El operador $T^*: H \to H$ se llama el **operador adjunto** de T. Pruebe que T^* satisface:

- (i) $||T^*|| = ||T||$,
- (ii) $(T^*)^* = T$.

Pregunta 2. Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert separable y sea $\{x_n\}_{n \in \mathbb{N}} \subseteq H$ una sucesión acotada: $\sup_n \|x_n\| < \infty$. Demuestre que existe $x \in H$ y una subsucesión $\{x_{n_k}\}_k$ tal que

$$\lim_{k \to \infty} \langle x_{n_k}, y \rangle = \langle x, y \rangle \quad \text{para todo } y \in H.$$

Se dice que $\{x_{n_k}\}$ converge débilmente a x. (Sugerencia: Tome y igual a cada uno de los miembros de una base ortonormal y ejecute un argumento diagonal).

Pregunta 3. [Sumabilidad de Abel de la serie de Fourier] Sea $f \in C(\mathbb{T})$ y sea

$$f(\theta) \sim \sum_{n=-\infty}^{\infty} \hat{f}(n)e_n(\theta)$$

la serie de Fourier de f.

(a) Demuestre que para todo $r \in [0, 1)$ la serie

$$u(r,\theta) := \sum_{n=-\infty}^{\infty} r^{|n|} \hat{f}(n) e_n(\theta)$$

define una función $u(r,\theta) \in C^2([0,1] \times \mathbb{T})$, la cual satisface la **ecuación de Laplace** en coordenadas polares (r,θ) :

$$\Delta u = \left(\partial_r^2 + \frac{1}{r}\partial_r + \frac{1}{r^2}\partial_\theta^2\right)u = 0 \quad \text{en el disco unitario } \mathbb{D} = \{0 \le r < 1, \theta \in \mathbb{T}\}.$$

2 TAREA 2

(b) Pruebe que podemos expresar $u(r,\theta) = P_r * f(\theta)$ como una convolución de f con el **kernel de Poisson**

$$P_r(\theta) := \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} r^{|n|} e^{in\theta} = \frac{1}{2\pi} \frac{1 - r^2}{1 - 2r\cos\theta + r^2}.$$

(c) Demuestre que

$$\lim_{r \to 1} u(r, \theta) = f(\theta) \quad \text{uniformemente en } \theta.$$

(Sugerencia: Verifique que $\{P_r\}_{r\in[0,1)}$ es una familia de buenos kernels en $L^1(\mathbb{T})$.)

Pregunta 4. Denote por $F_N \in L^1(\mathbb{T})$, $N \in \mathbb{N}$, el kernel de Fejèr. Sea $\sigma_N f := f * F_N$. Demuestre que para todo $p \in [1, \infty]$

$$\|\sigma_N f\|_{L^p(\mathbb{T})} \le \|f\|_{L^p(T)} \quad \forall f \in L^p(\mathbb{T}).$$

Sugerencia: Utilice la desigualdad de Hölder en estimar

$$\int_{\mathbb{T}} F_N(y) |f(x-y)| \, dy = \int_{\mathbb{T}} F_N(y)^{1/q} F_n(y)^{1/p} |f(x-y)| \, dy, \qquad \frac{1}{p} + \frac{1}{q} = 1,$$

en combinación con el Teorema de Fubini-Tonelli:

$$\int_{\mathbb{T}} \left(\int_{\mathbb{T}} K(x,y) \, dy \right) \, dx = \int_{\mathbb{T}} \left(\int_{\mathbb{T}} K(x,y) \, dx \right) \, dy, \quad \text{para toda } K : \mathbb{T}^2 \to [0,\infty] \text{ (Lebesgue) medible.}$$

Pregunta 5. Sea f una función 2π -periodica en \mathbb{R} de clase C^1 .

- (a) Pruebe que $\hat{f}'(n) = in\hat{f}(n)$. Concluya que $\lim_{|n| \to \infty} |n|\hat{f}(n) = 0$.
- (b) Suponga que adicionalmente $\int_T f(x)dx = 0$. Utilizando la identidad de Parseval, demuestre la Designaldad de Wirtinger:

$$\int_{-\pi}^{\pi} |f(x)|^2 dx \le \int_{-\pi}^{\pi} |f'(x)|^2 dx.$$

Pregunta 6. Considere la función en T, dada por

$$f(x) = \begin{cases} 0 & \text{si } |x| > \delta \\ 1 - |x|/\delta & \text{si } |x| \le \delta \end{cases}, \quad \delta \in (0, \pi).$$

Pruebe que

$$f(x) = \frac{\delta}{2\pi} + 2\sum_{n=1}^{\infty} \frac{1 - \cos n\delta}{n^2 \pi \delta} \cos(nx).$$

Pregunta 7. ["Débilmente acotado" \Leftrightarrow "acotado"] Sea X un espacio normado y $J \subset X$. Demuestre que $\{f(x): x \in J\}$ es acotado para todo funcional lineal acotado $f \in X^*$ si y solo si el conjunto J es acotado:

$$\exists M > 0, \quad ||x|| \le M \quad \text{para todos } x \in J.$$

Pregunta 8. Sean X,Y dos espacios de Banach y sea $\{T_n\}_n \subset \mathcal{B}(X,Y)$ una sucesión de operadores lineales acotados. Suponga que para todo $x \in X$, el límite $Tx := \lim_{n \to \infty} T_n x$ existe. Pruebe que si $x_n \to x$, entonces $T_n x_n \to Tx$ para todo $x \in X$.