Classification K-Nearest-Neighbors

Chris Bentz

14/10/2023

Description

k-nearest neighbor analyses of the feature vectors per character string (loaded from NaLaFi/results/features.csv). The results are stored in NaLaFi/results/KNN. Note that the number of characters has to be chosen manually (via num.char = ""), likewise, the features to be included can be chosen in the lines defining estimations.subset below. Also, subcorpora can be excluded via the "selected" object.

Load Packages

If the libraries are not installed yet, you need to install them using, for example, the command: install.packages("ggplot2"). For the Hrate package this is different, since it comes from github. The devtools library needs to be installed, and then the install_github() function is used.

```
library(ggplot2)
library(dplyr)
library(class)
library(gridExtra)
library(gmodels)
library(caret)
library(ggExtra)
library(ggpubr)
```

Load Data

Load data table with values per text file.

```
# load estimations from stringBase corpus
estimations.df <- read.csv("~/Github/NaLaFi/results/features.csv")
#head(features.csv)</pre>
```

Exclude subcorpora (if needed). Choose the subcorpus to be excluded via "selected".

```
estimations.df <- estimations.df[!(estimations.df$subcorpus %in% selected), ]
Split into separate files by length of chunks in characters.
# choose number of characters
num.char = 100
# subset data frame
estimations.df <- estimations.df [estimations.df $num.char == num.char, ]
nrow(estimations.df)
## [1] 3223
Select relevant columns of the data frame, i.e. the measures to be included in classification and the "corpus"
or "subcorpus" column.
estimations.subset <- estimations.df[c("corpus", "subcorpus",</pre>
                                           #"huni.chars",
                                          #"hrate.chars",
                                           "ttr.chars",
                                           "rm.chars"
Remove NAs (whole row)
```

Center and scale the data

estimations.subset <- na.omit(estimations.subset)</pre>

```
estimations.scaled <- cbind(estimations.subset[1:2], scale(estimations.subset[3:ncol(estimations.subset
nrow(estimations.scaled)</pre>
```

[1] 3223

Create Training and Test Sets

```
# Generating seed
set.seed(1234)
# Randomly generating our training and test samples with a respective ratio of 2/3 and 1/3
datasample <- sample(2, nrow(estimations.scaled), replace = TRUE, prob = c(0.67, 0.33))
# Generate training set
estimations.training <- estimations.scaled[datasample == 1, 3:ncol(estimations.scaled)]
nrow(estimations.training)
## [1] 2194
# Generate test set
estimations.test <- estimations.scaled[datasample == 2, 3:ncol(estimations.scaled)]
nrow(estimations.test)
## [1] 1029</pre>
```

Get training and test labels

```
# Generate training labels
training.labels <- estimations.scaled[datasample == 1, 1]
# Generate test labels
test.labels <- estimations.scaled[datasample == 2, 1]</pre>
```

Initialize data frame

Building knn classifier

```
# choose maximum number of neighbors n
# run a loop over different numbers of neighbors up to n
for (k in 1:n){
  # knn estimation of labels
  predictions.knn <- knn(train = as.data.frame(estimations.training),</pre>
                          test = as.data.frame(estimations.test),
                          cl = training.labels, k = k)
  # model evaluation
  # creating a dataframe from known (true) test labels
  test.labels <- data.frame(test.labels)</pre>
  # combining predicted and known classes
  class.comparison <- data.frame(predictions.knn, test.labels)</pre>
  # qiving appropriate column names
  names(class.comparison) <- c("predicted", "observed")</pre>
  # inspecting our results table
  head(class.comparison)
  # get confusion matrix
  cm <- confusionMatrix(data = class.comparison$predicted,</pre>
                       reference = as.factor(class.comparison$observed))
  print(cm)
  # get precision, recall, and f1 from the output list of confusionMatrix()
  accuracy <- cm$overall['Accuracy']</pre>
  f1 <- cm[["byClass"]]["F1"]</pre>
  recall <- cm[["byClass"]]["Recall"]</pre>
  precision <- cm[["byClass"]]["Precision"]</pre>
  # prepare data frame with results
  local.results <- data.frame(k, accuracy, precision, recall, f1, row.names = NULL)</pre>
  local.results.rounded <- round(local.results, 2)</pre>
  # print(local.results.rounded)
  knn.results <- rbind(knn.results, local.results.rounded)</pre>
```

```
## Confusion Matrix and Statistics
##
##
                Reference
## Prediction
                 non-writing writing
##
     non-writing
                         412
                                  110
##
     writing
                         104
                                  403
##
##
                  Accuracy: 0.792
##
                    95% CI: (0.7659, 0.8165)
##
       No Information Rate: 0.5015
##
       P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa: 0.584
##
##
    Mcnemar's Test P-Value: 0.7325
##
##
               Sensitivity: 0.7984
               Specificity: 0.7856
##
            Pos Pred Value: 0.7893
##
            Neg Pred Value: 0.7949
##
##
                Prevalence: 0.5015
##
            Detection Rate: 0.4004
##
      Detection Prevalence: 0.5073
##
         Balanced Accuracy: 0.7920
##
##
          'Positive' Class : non-writing
##
  Confusion Matrix and Statistics
##
##
                Reference
## Prediction
                 non-writing writing
##
     non-writing
                         412
                                  112
                         104
                                  401
##
     writing
##
                  Accuracy: 0.7901
##
                    95% CI: (0.7639, 0.8146)
##
##
       No Information Rate: 0.5015
##
       P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa: 0.5802
##
   Mcnemar's Test P-Value : 0.6339
##
##
##
               Sensitivity: 0.7984
##
               Specificity: 0.7817
##
            Pos Pred Value: 0.7863
##
            Neg Pred Value: 0.7941
##
                Prevalence: 0.5015
##
            Detection Rate: 0.4004
##
      Detection Prevalence: 0.5092
##
         Balanced Accuracy: 0.7901
##
##
          'Positive' Class : non-writing
```

```
## Confusion Matrix and Statistics
##
##
                Reference
## Prediction
                 non-writing writing
##
     non-writing
                         430
                                  108
##
     writing
                          86
                                  405
##
##
                  Accuracy: 0.8115
##
                    95% CI: (0.7862, 0.8349)
##
       No Information Rate: 0.5015
##
       P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa: 0.6229
##
##
    Mcnemar's Test P-Value: 0.1316
##
##
               Sensitivity: 0.8333
               Specificity: 0.7895
##
            Pos Pred Value: 0.7993
##
            Neg Pred Value: 0.8248
##
##
                Prevalence: 0.5015
##
            Detection Rate: 0.4179
##
      Detection Prevalence : 0.5228
##
         Balanced Accuracy: 0.8114
##
##
          'Positive' Class : non-writing
##
  Confusion Matrix and Statistics
##
##
                Reference
## Prediction
                 non-writing writing
##
     non-writing
                         432
                                  108
                          84
                                  405
##
     writing
##
                  Accuracy: 0.8134
##
                    95% CI: (0.7882, 0.8368)
##
##
       No Information Rate: 0.5015
##
       P-Value [Acc > NIR] : < 2e-16
##
##
                     Kappa: 0.6268
##
   Mcnemar's Test P-Value : 0.09694
##
##
##
               Sensitivity: 0.8372
##
               Specificity: 0.7895
##
            Pos Pred Value: 0.8000
##
            Neg Pred Value: 0.8282
##
                Prevalence: 0.5015
            Detection Rate: 0.4198
##
      Detection Prevalence: 0.5248
##
##
         Balanced Accuracy: 0.8133
##
##
          'Positive' Class : non-writing
```

```
## Confusion Matrix and Statistics
##
##
                Reference
## Prediction
                 non-writing writing
##
     non-writing
                         433
                                  109
##
     writing
                          83
                                  404
##
##
                  Accuracy: 0.8134
##
                    95% CI: (0.7882, 0.8368)
##
       No Information Rate: 0.5015
##
       P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa: 0.6268
##
##
    Mcnemar's Test P-Value : 0.0712
##
##
               Sensitivity: 0.8391
               Specificity: 0.7875
##
            Pos Pred Value: 0.7989
##
            Neg Pred Value: 0.8296
##
##
                Prevalence: 0.5015
##
            Detection Rate: 0.4208
##
      Detection Prevalence: 0.5267
##
         Balanced Accuracy: 0.8133
##
##
          'Positive' Class : non-writing
##
  Confusion Matrix and Statistics
##
##
                Reference
## Prediction
                 non-writing writing
##
     non-writing
                         433
                                  107
                          83
                                  406
##
     writing
##
                  Accuracy: 0.8154
##
                    95% CI: (0.7903, 0.8386)
##
##
       No Information Rate: 0.5015
##
       P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa: 0.6307
##
    Mcnemar's Test P-Value : 0.0952
##
##
##
               Sensitivity: 0.8391
##
               Specificity: 0.7914
            Pos Pred Value: 0.8019
##
            Neg Pred Value: 0.8303
##
##
                Prevalence: 0.5015
            Detection Rate: 0.4208
##
      Detection Prevalence: 0.5248
##
##
         Balanced Accuracy: 0.8153
##
##
          'Positive' Class : non-writing
```

```
## Confusion Matrix and Statistics
##
##
                Reference
                 non-writing writing
## Prediction
##
     non-writing
                         442
                                  112
##
     writing
                          74
                                  401
##
##
                  Accuracy : 0.8192
##
                    95% CI: (0.7943, 0.8423)
       No Information Rate: 0.5015
##
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.6384
##
##
    Mcnemar's Test P-Value: 0.006668
##
##
               Sensitivity: 0.8566
               Specificity: 0.7817
##
            Pos Pred Value: 0.7978
##
            Neg Pred Value: 0.8442
##
##
                Prevalence: 0.5015
##
            Detection Rate: 0.4295
##
      Detection Prevalence: 0.5384
##
         Balanced Accuracy: 0.8191
##
##
          'Positive' Class : non-writing
##
  Confusion Matrix and Statistics
##
##
                Reference
## Prediction
                 non-writing writing
##
     non-writing
                         440
                                  109
                          76
                                  404
##
     writing
##
                  Accuracy: 0.8202
##
                    95% CI: (0.7954, 0.8432)
##
##
       No Information Rate: 0.5015
##
       P-Value [Acc > NIR] : < 2e-16
##
##
                     Kappa: 0.6404
##
   Mcnemar's Test P-Value : 0.01864
##
##
##
               Sensitivity: 0.8527
##
               Specificity: 0.7875
            Pos Pred Value: 0.8015
##
            Neg Pred Value: 0.8417
##
##
                Prevalence: 0.5015
            Detection Rate: 0.4276
##
      Detection Prevalence: 0.5335
##
##
         Balanced Accuracy: 0.8201
##
##
          'Positive' Class : non-writing
```

```
## Confusion Matrix and Statistics
##
##
                Reference
## Prediction
                 non-writing writing
##
     non-writing
                         448
                                  113
##
     writing
                          68
                                  400
##
##
                  Accuracy: 0.8241
##
                    95% CI: (0.7994, 0.8469)
       No Information Rate: 0.5015
##
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.6481
##
##
    Mcnemar's Test P-Value: 0.001074
##
##
               Sensitivity: 0.8682
##
               Specificity: 0.7797
            Pos Pred Value: 0.7986
##
            Neg Pred Value: 0.8547
##
##
                Prevalence: 0.5015
##
            Detection Rate: 0.4354
##
      Detection Prevalence : 0.5452
##
         Balanced Accuracy: 0.8240
##
##
          'Positive' Class : non-writing
##
  Confusion Matrix and Statistics
##
##
                Reference
## Prediction
                 non-writing writing
##
     non-writing
                         447
                                  115
                          69
                                  398
##
     writing
##
                  Accuracy: 0.8212
##
                    95% CI: (0.7964, 0.8441)
##
##
       No Information Rate: 0.5015
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.6423
##
   Mcnemar's Test P-Value : 0.0009085
##
##
##
               Sensitivity: 0.8663
##
               Specificity: 0.7758
            Pos Pred Value: 0.7954
##
            Neg Pred Value: 0.8522
##
##
                Prevalence: 0.5015
            Detection Rate: 0.4344
##
      Detection Prevalence: 0.5462
##
##
         Balanced Accuracy: 0.8211
##
##
          'Positive' Class : non-writing
```

print(knn.results)

```
##
       k accuracy precision recall
                                      f1
## 1
             0.79
                       0.79
                               0.80 0.79
## 2
       2
             0.79
                        0.79
                               0.80 0.79
                               0.83 0.82
## 3
       3
             0.81
                        0.80
## 4
       4
             0.81
                        0.80
                               0.84 0.82
             0.81
                               0.84 0.82
## 5
       5
                        0.80
## 6
             0.82
                        0.80
                               0.84 0.82
       6
                               0.86 0.83
## 7
       7
             0.82
                        0.80
             0.82
                               0.85 0.83
## 8
       8
                        0.80
## 9
       9
             0.82
                        0.80
                               0.87 0.83
## 10 10
             0.82
                        0.80
                               0.87 0.83
```

Write to file. Note that the file names have to be changed manually here.