1 Асимптотика частичных сумм расходящегося ряда (случай гармонического ряда). Постоянная Эйлера.

$$\frac{1}{1+k} = \frac{\frac{1}{k}}{\frac{1}{k}+1} < \ln(1+\frac{1}{k}) < \frac{1}{k} \Rightarrow 0 < \frac{1}{k} - \ln(1+\frac{1}{k}) < \frac{1}{k} - \frac{1}{k+1}$$

Значит,

$$\begin{split} 0 < \sum_{k=1}^{n} \left(\frac{1}{k} - \ln(1 + \frac{1}{k}) \right) < \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) = \\ &= 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots + \frac{1}{n} - \frac{1}{n-1} = \\ &= 1 - \frac{1}{n+1} = \frac{n}{n+1} < 1 \ \forall n \in \mathbb{N} \end{split}$$

$$\Rightarrow S_n := \sum_{k=1}^n \left(\frac{1}{k} - \ln(1 + \frac{1}{k})\right) \nearrow$$
 и ограничено сверху $\Rightarrow \exists \lim_{n \to \infty} S_n$

$$\sum_{k=1}^n \ln(1+\frac{1}{k}) = \sum_{k=1}^n (\ln(k+1) - \ln(k)) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n)$$

$$= \ln(n+1) \Rightarrow \exists \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \ln(n+1) = \lim_{n \to \infty} (\sum_{k=1}^{n} \frac{1}{k} - \ln n)$$

Опр

$$\gamma:=\lim_{n o\infty}(\sum\limits_{k=1}^nrac{1}{k}-\ln n)=0,5722...$$
 - постоянная Эйлера

2 Несобственные интегралы. Примеры. Несобственный интеграл в смысле главного значения. Критерий Больцано-Коши для несобственных интегралов.

Опр (1)

$$f:[a,+\infty)\to\mathbb{R},\,f\in R[a,b]\;\forall b\in(a,+\infty).$$

Если $\exists \lim_{b \to \infty} \int_a^b f$, то говорят, что несобственный интеграл

$$\int\limits_{a}^{+\infty}f$$
 - сходится и равен $\lim\limits_{b\to\infty}\int\limits_{a}^{b}f$

Опр (2)

$$f: [a, \omega) \to \mathbb{R}, -\infty < a < \omega \leqslant +\infty, f \in R[a, b] \ \forall b \in (a, +\infty).$$

Если $\exists \lim_{b \to \omega_-} \int_a^b f$, то говорят, что несобственный интеграл

$$\int_{a}^{\omega} f - \text{сх и равен } \lim_{b \to \omega_{-}} \int_{a}^{b} f$$

Опр (3)

$$f:\mathbb{R} o \mathbb{R}$$
 и $\forall a < b \in \mathbb{R}: f \in R[a,b],$ тогда $\int\limits_{-\infty}^{+\infty} f := \lim_{a o -\infty} \int\limits_{a}^{0} f + \lim_{b o +\infty} \int\limits_{0}^{b} f,$

Если оба предела \exists и конечны, то говорят что $\int\limits_{-\infty}^{+\infty} f$ - сходится

Опр (4)

Аналогично
$$\int\limits_{\omega_1}^{\omega_2}$$
, если $f\in R[a,b]$ $\forall [a,b]\subset (\omega_1,\omega_2)$. $\int\limits_{\omega_1}^{\omega_2}f=\int\limits_{\omega_1}^cf+\int\limits_c^{\omega_2}$

Пример

1.
$$\alpha = 1$$
, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{b \to +\infty} \ln|x| \Big|_{1}^{b} = +\infty$ - pacx

2.
$$\alpha > 1$$
, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{b \to +\infty} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{1}^{b} = 0 - \frac{1}{1-\alpha} - cx$

3.
$$\alpha < 1$$
, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = +\infty$ - pacx

$$\int\limits_{-1}^{1} \frac{dx}{x} = \lim_{a \to 0_{-}} \int\limits_{-1}^{a} \frac{dx}{x} + \lim_{b \to 0_{+}} \int\limits_{b}^{1} \frac{dx}{x}$$
 - расх по опр, т.к. оба предела расх

Опр

$$f:\mathbb{R} o\mathbb{R}$$
 и $orall a < b \in \mathbb{R}: f \in R[a,b],$ тогда (V.P.) $\int\limits_{-\infty}^{+\infty} f := \lim\limits_{A o +\infty} \int\limits_{-A}^{A} f$

Пример

$$(V.P.) \quad \int_{-\infty}^{+\infty} x = \lim_{A \to +\infty} \int_{-A}^{A} x = \lim_{A \to +\infty} \frac{x^2}{2} \Big|_{-A}^{A} = 0$$

(Ho
$$\int_{-\infty}^{+\infty} x = \lim_{a \to -\infty} \int_{a}^{0} x + \lim_{b \to +\infty} \int_{0}^{b} x - \text{pacx}$$
)

Теорема (критерий Больцано-Коши для несобственных интегралов)

$$f:[a,\omega) o \mathbb{R}, \quad -\infty < a < \omega \leqslant +\infty, \quad f \in R[a,b] \quad orall b \in (a,+\infty),$$
 тогда:

$$\int_{a}^{\omega} f - \operatorname{cx} \iff \forall \mathcal{E} > 0 \; \exists B \in (a, \omega) : \forall b_{1}, b_{2} \in (B, \omega) \mid \int_{b_{1}}^{b_{2}} | < \mathcal{E}$$

Док-во

$$\int_{a}^{\omega} f$$

- cx
$$\Leftrightarrow \exists \lim_{b \to \omega} \int_a^b f \Leftrightarrow$$
 (кр Коши для пределов ф.)

$$\forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall b_1, b_2 \in (\omega - \delta, \omega) \mid \int_a^{b_1} f - \int_a^{b_2} f \mid \langle \mathcal{E} \Rightarrow | \int_{b_1}^{b_2} f \mid \langle \mathcal{E} \rangle \mid \langle$$

3 Свойства несобственных интегралов (линейность, аддитивность, монотонность, формула Ньютона-Лейбница).

Свойство (1, линейность)

$$\int_{a}^{\omega} f_1, \int_{a}^{\omega} f_2 - \operatorname{cx} \implies \forall k_1, k_2 \in \mathbb{R} \quad \int_{a}^{\omega} (k_1 f_1 + k_2 f_2) = k_1 \int_{a}^{\omega} f_1 + k_2 \int_{a}^{\omega} f_2$$

Свойство (2, монотонность)

$$f,g:[a,\omega)\to\mathbb{R},\quad f,g\in R[a,b],\quad \forall b\subset [a,\omega),\quad f(x)\leqslant g(x),$$

$$\forall x\in [a,\omega)\Rightarrow \int\limits_a^\omega f\leqslant \int\limits_a^\omega g(x),$$

Лемма

$$f:[a,\omega) o\mathbb{R},\quad f\in R[a,b],\ \forall b\in(a,\omega).$$
 Пусть $c\in(a,\omega),\$ тогда $\int\limits_a^\omega f$ и $\int\limits_c^\omega f$ - сх или расх одновременно

Док-во

$$\int_{0}^{\infty} f$$

-
$$\operatorname{cx} \Leftrightarrow \lim_{b \to \omega_{-}} \int_{a}^{b} f = A \in \mathbb{R}$$

Тогда
$$\int_{c}^{\omega} f = \lim_{b \to \omega_{-}} \int_{c}^{b} f = \lim_{b \to \omega_{-}} (\int_{a}^{b} f - \int_{c}^{c} f) = A - \int_{a}^{c} f \in \mathbb{R} \Rightarrow \int_{c}^{\omega} f - cx$$

Свойство (3, аддитивность)

$$f:[a,\omega)\to\mathbb{R},\quad f\in R[a,b]\;\forall b\subset[a,\omega)$$

$$\forall c \in [a,\omega) \Rightarrow \int\limits_a^\omega f = \int\limits_a^c f + \int\limits_c^\omega f,$$
 причем $\int\limits_a^\omega f$ и $\int\limits_c^\omega f$ - сх или расх одновременно

Свойство (4, формула Н-Л)

Если F - первообразная f, то:

$$\int_{a}^{\omega} f = \lim_{b \to \omega_{-}} (F(b) - F(a)) =: F \big|_{a}^{\omega_{-}} = F(\omega_{-}) - F(a)$$

Свойство (5)

Если
$$f \in R[a, \omega]$$
 ($\omega \in \mathbb{R}$), то (несоб. инт) $\int\limits_a^\omega f = \int\limits_a^\omega f$ (инт Римана)

Док-во

$$f \in R[a, \omega] \Rightarrow F(x) := \int_{a}^{x} f \in C[a, \omega],$$
 (несоб. инт)
$$\int_{a}^{\omega} f = \lim_{b \to \omega} \int_{a}^{b} f(=F(b) \text{ (непр. в т } \omega)) = F(\omega) = \int_{a}^{\omega} f \text{ (инт Римана)}$$

4 Свойства несобственных интегралов (интегрирование по частям, замена переменной).

Свойство (интегрирование по частям)

Пусть
$$f,g\in C^1[a,\omega),\quad\exists\lim_{x\to\omega_-}f(x)g(x)\in\mathbb{R},\;$$
 тогда:
$$\int\limits_a^\omega f'g\;\mathrm{i}\int\limits_a^\omega fg'\;\text{-}\;\mathrm{cx}\;\mathrm{или}\;\mathrm{расx}\;\mathrm{одновременно},\;\mathrm{причем}$$

$$\int\limits_a^\omega fg'=fg|_a^\omega-\int\limits_a^\omega f'g(fg|_a^\omega=\lim_{x\to\omega_-}(f(x)g(x)-f(a)g(a))$$

Свойство (замена переменной)

Если
$$\int\limits_a^\omega f$$
 - cx, $\phi: [\alpha, \upsilon) \to [a, \omega), \quad \phi \in C^1[\alpha, \upsilon), \quad \phi$ - монот.,
$$\phi(\alpha) = a, \quad \lim_{t \to \upsilon} \phi(t) = \omega, \text{ тогда } \int\limits_a^\omega f = \int\limits_\alpha^\upsilon (f \circ \phi) \phi'$$

Интегральный признак Коши сходимости несобственных интегралов и рядов.

Теорема

Пусть $f:[1,+\infty) \to [0,+\infty), \, f \in R[1,A] \,\, \forall A>1, \, f$ - строго убывает (можно строго возрастает)

Тогда $\int\limits_{0}^{\infty}f$ и $\sum\limits_{n=1}^{\infty}f(n)$ - сх или расх одновременно, причем

$$\sum_{n=1}^{\infty} f(n+1) \leqslant \int\limits_{1}^{\infty} f \leqslant \sum_{n=1}^{\infty} f(n)$$

Лемма

Если
$$f > 0, f \in [a, \omega] \to [0, +\infty), f \in R[a, b] \ \forall b \in (a, \omega)$$

Тогда $\int_{a}^{\omega} f - cx \Leftrightarrow F(x) = \int_{a}^{x} f, \ \exists M < \infty : F(x) \leqslant M \ \forall x \in [a, \omega)$

Док-во

 (\Rightarrow) очевидно

(
$$\Leftarrow$$
) почти очевидно, $f\geqslant 0\Rightarrow F\nearrow$ и огр $\Rightarrow \exists\lim_{x\to\omega}F(x)=\int\limits_a^\omega f<+\infty$

Док-во

$$\frac{1}{n} f(n+1) \leqslant \int\limits_{n}^{n+1} f \leqslant f(n)$$
 (видно через суммы Дарбу) | $\sum\limits_{n=1}^{N} f(n+1)$

$$\sum\limits_{n=1}^N f(n+1)\leqslant \int\limits_1^{N+1} f\leqslant \sum\limits_{n=1}^N f(n),$$
 при $N\to +\infty$ получим наше уравнение

1) Если
$$\sum\limits_{1}^{\infty}f(n)$$
 - cx \Leftrightarrow $\sum\limits_{1}^{N}f(n)\leqslant A\in\mathbb{R}$ \Rightarrow $F(N+1)=\int\limits_{1}^{N+1}f\leqslant A\in\mathbb{R}$ cx

2) Если
$$\int\limits_1^\infty f$$
 - cx $\Rightarrow \sum\limits_1^N f(n+1) \leqslant \int\limits_1^{N+1} f \leqslant \int\limits_1^\infty f \in \mathbb{R}$ - orp $\Rightarrow \sum\limits_1^N f(n+1)$ cx

$$\frac{\mathbf{\Pi}\mathbf{римеры}}{1. \sum_{n=1}^{\infty} \frac{1}{n^2}. \ \mathrm{Рассмотрим} \ \int\limits_{1}^{\infty} \frac{1}{x^2} = -\frac{1}{x}|_{1}^{\infty} = 0 - (-1) - \mathrm{cx}$$

2.
$$\sum\limits_{n=1}^{\infty}\frac{1}{n^{\alpha}}$$
. Сх. при $\alpha>1$, расх. при $\alpha\leqslant 1$ (аналогично интегралу $\int\limits_{1}^{\infty}\frac{1}{x^{\alpha}}$)

6 Признаки сравнения для несобственных интегралов.

Теорема (I признак сравнения)

$$f,g:[a,\omega)\to\mathbb{R},\quad f,g\geqslant 0,\quad f,g\in R[a,b],\quad b\in(a,\omega),$$

$$0\leqslant f(x)\leqslant g(x)\quad \forall x\in[a,\omega)$$
 Тогда $\int\limits_a^\infty g$ - cx \Rightarrow $\int\limits_a^\omega f$ - cx $(\int\limits_a^\omega f$ - pacx \Rightarrow $\int\limits_a^\infty g$ - pacx)

Док-во

$$F(b) := \int_{a}^{b} f \leqslant \int_{a}^{b} g \leqslant \int_{a}^{\omega} g \in \mathbb{R}$$

То есть $\int\limits_a^\omega f$ - сх, т.к. $F\nearrow$ и огр сверху на $[a,\omega)$

Теорема (II признак сравнения)

$$f,g:[a,\omega)\to(0,+\infty)$$

, $f,g\in R[a,b]$ $\forall b\in (a,\omega)$ Тогда если $\exists\lim_{x\to\omega_-} \frac{f(x)}{g(x)}\in (0,+\infty)$, то $\int\limits_a^\omega f$ и $\int\limits_a^\omega g$ - сх или расх одновременно

Док-во

$$k := \lim_{x \to \omega_{-}} \frac{f(x)}{g(x)} \in (0, +\infty)$$

$$,\,\mathcal{E}:=\frac{k}{2}$$

$$\Rightarrow \exists b \in (a, \omega) : \forall x \in (b, \omega) \mid \frac{f(x)}{g(x)} - k \mid < \mathcal{E} \Rightarrow \mathcal{E} < \frac{f(x)}{g(x)} < 3\mathcal{E}$$

То есть с некоторого места $f(x)\leqslant g(x)$, а так как $\int\limits_a^\omega=\int\limits_a^b+\int\limits_b^\omega$ и $\int\limits_a^bf,\int\limits_a^bg$ - конечные числа, то $\int\limits_a^\omega f$ и $\int\limits_a^\omega g$ - сх или расх одновременно по первому признаку

$$\int_{0}^{+\infty} e^{-x^{2}} dx = \int_{0}^{1} + \int_{1}^{+\infty}$$

$$e^{-x^2} \geqslant e^{-x} \Rightarrow x \in [0, 1], \quad \int_{0}^{1} e^{-x} = \frac{1}{e} \underset{\text{no I np. cp.}}{\Rightarrow} \int_{1}^{+\infty} e^{-x^2} - cx$$

$$\int_{1}^{+\infty} \sin^2 \frac{1}{x} dx$$

$$\lim_{x\to\infty}\frac{\sin^2\frac{1}{x}}{\frac{1}{x^2}}=1\in(0,+\infty)\Rightarrow\int\limits_1^{+\infty}\sin^2\frac{1}{x}dx$$
 и
$$\int\limits_1^{+\infty}\frac{1}{x^2}dx$$
 - сх или расх одновр \Rightarrow сх

Абсолютная и условная сходимость интегралов. Сходимость следует из абсолютной сходимости.

Опр

$$f:[a,\omega)\to\mathbb{R},\ f\in R[a,b]\ \forall b\in(a,\omega)$$

$$\int\limits_a^\omega f\text{ - cx абсолютно}\Leftrightarrow\int\limits_a^\omega |f|\text{ - cx}$$

$$\int\limits_a^\omega f\text{ - cx условно}\Leftrightarrow\int\limits_a^\omega f\text{ - cx},\int\limits_a^\omega |f|\text{ - pacx}$$

$$\underbrace{\mathbf{y_{TB}}}_{a} \mathop{\int}\limits_{a}^{\omega} f$$
 - сх абсолютно \Rightarrow сходится

Док-во

Пусть
$$\int_{a}^{\omega} |f|$$
 - cx \Leftrightarrow (кр. Больцано-Коши) $\forall \mathcal{E} > 0 \; \exists A \in (a, \omega) : \forall b_1, b_2 \in (A, \omega)$ $|\int_{b_1}^{b_2} |f|| < \mathcal{E} \Rightarrow \text{т.к.} \; |\int_{b_1}^{b_2} f| \leqslant |\int_{b_1}^{b_2} |f|| < \mathcal{E}, \; \text{то по кр. Б-K} \int_{b_1}^{b_2} f \; - \; \text{cx}$

$$\int_{0}^{+\infty} \cos(x^{3}) dx = \begin{vmatrix} x^{3} = t \\ x = \sqrt[3]{t} \end{vmatrix} = \frac{1}{3} \int_{0}^{\infty} \cos t \frac{dt}{t^{\frac{2}{3}}} = \frac{1}{3} \frac{\sin t}{t^{\frac{2}{3}}} \Big|_{0}^{\infty} + \frac{2}{9} \int_{0}^{\infty} \frac{\sin t}{t^{\frac{5}{3}}} = \frac{2}{9} \int_{0}^{\infty} \frac{\sin t}{t^{\frac{5}{3}}}$$
Исследуем
$$\int_{0}^{\infty} \frac{|\sin t|}{t^{\frac{5}{3}}} = \int_{0}^{1} \frac{|\sin t|}{t^{\frac{5}{3}}} + \int_{1}^{\infty} \frac{|\sin t|}{t^{\frac{5}{3}}} :$$

$$a) \int_{0}^{1} \frac{|\sin t|}{t^{\frac{5}{3}}}$$

,
$$|sint| \leqslant t$$
 на $[0,1]$

$$\int_{0}^{1} \frac{t}{t^{\frac{5}{3}}} = \int_{0}^{1} t^{-\frac{2}{3}} = 3t^{\frac{1}{3}}|_{0}^{1} = 3 - \text{cx} \underset{\text{по I пр cp}}{\Rightarrow} \int_{0}^{1} \frac{|\sin t|}{t^{\frac{5}{3}}} - \text{cx}$$

$$6) \int_{1}^{\infty} \frac{|\sin t|}{t^{\frac{5}{3}}}, \quad \frac{|\sin t|}{t^{\frac{5}{3}}} \leqslant \frac{1}{t^{\frac{5}{3}}}$$

$$\int_{1}^{\infty} \frac{1}{t^{\frac{5}{3}}} = -\frac{3}{2}t^{-\frac{2}{3}}|_{1}^{\infty} = \frac{3}{2} - \text{cx} \underset{\text{по I пр cp}}{\Rightarrow} \int_{1}^{\infty} \frac{|\sin t|}{t^{\frac{5}{3}}} - \text{cx}$$
Значит
$$\int_{0}^{\infty} \frac{\sin t}{t^{\frac{5}{3}}} - \text{a6c cx} \Rightarrow \int_{0}^{+\infty} \cos(x^{3}) - \text{cx}$$

8 Абсолютная и условная сходимость. Пример: $\int\limits_0^\infty \frac{\sin x}{x}$

Определения и теорему см. в билете 27

Пример

$$\int_{0}^{\infty} \frac{\sin x}{x} = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{x} + \int_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x}$$

1)
$$\int_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x} = \frac{-\cos x}{x} \Big|_{\frac{\pi}{2}}^{\infty} - \int_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2} = \int_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2}$$

Исследуем $\int\limits_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2}$ на абс сходимость. $\frac{|\cos x|}{x^2} \leqslant \frac{1}{x^2}$, а $\int\limits_{\frac{\pi}{2}}^{\infty} \frac{1}{x^2}$ - сходится

$$\Rightarrow$$
 по 1 признаку сравнения $\int\limits_{\frac{\pi}{2}}^{\infty} \frac{|\cos x|}{x^2}$ - cx $\Rightarrow \int\limits_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2}$ - cx абс $\Rightarrow \int\limits_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x}$ - cx

$$2) \quad \int_{0}^{\frac{\pi}{2}} \frac{|\sin x|}{x}$$

Знаем, что $\lim_{x\to 0}\frac{|\sin x|}{x}=1$. Кроме того, $\frac{|\sin x|}{x}<1$, значит на конечном

промежутке
$$(0,\frac{\pi}{2}]$$
 интеграл конечный $\Rightarrow \int_{0}^{\infty} \frac{\sin x}{x}$ - cx

3) Покажем, что
$$\int\limits_{\frac{\pi}{2}}^{\infty} \frac{|\sin x|}{x}$$
 - расх. $\Rightarrow \int\limits_{0}^{\infty} \frac{|\sin x|}{x}$ - расх

$$|\sin x| \geqslant |\sin^2 x|, \quad \int_{\frac{\pi}{2}}^{\infty} \frac{\sin^2 x}{x} = \int_{\frac{\pi}{2}}^{\infty} \frac{1 - \cos 2x}{x} = \frac{1}{2} \int_{\frac{\pi}{2}}^{\infty} \frac{dx}{x} (\operatorname{pacx}) + \int_{\frac{\pi}{2}}^{\infty} \frac{\cos 2x}{x} (\operatorname{cx})$$

9 Признаки Дирихле и Абеля для несобственных интегралов (док-во одного из них).

Теорема (признак Абеля-Дирихле)

$$f,g:[a,\omega)\to\mathbb{R},\quad f\in C[a,\omega),\quad g\in C^1[a,\omega),\ \mathrm{g}$$
 - монотонна.

Тогда если выполнено одно из условий:

(A)
$$\int_a^{\omega} f - cx$$
, g - orp

(Д)
$$F(x) := \int_{a}^{x} f - \text{ orp, } g(x) \underset{x \to \omega_{-}}{\longrightarrow} 0$$

Тогда
$$\int_{a}^{\omega} fg$$
 - cx

Док-во

(Д) без теоремы Бонне

$$|F(x)| \leqslant C : g(x) \underset{x \to \omega_{-}}{\longrightarrow} 0$$

$$\lim_{b \to \omega_{-}} \int_{a}^{b} fg = \lim_{b \to \omega_{-}} (Fg|_{a}^{b} - \int_{a}^{b} Fg') = F(a)g(a) - \lim_{b \to \omega_{-}} \int_{a}^{b} Fg'$$

Исследуем интеграл на абс сходимость.

$$\int\limits_a^b |Fg'| \leqslant C \int\limits_a^b |g'| = (\text{т.к. g - монотонна})C |\int\limits_a^b g'| = C|g(b) - g(a)| \underset{b \to \omega_-}{\longrightarrow} C|g(a)|$$

Таким образом инт. ограничен ⇒ изначальный сходится

10 Признаки Дирихле и Абеля для рядов (док-во одного из них).

Опр

$$A_n := \sum_{k=1}^n a_k, A_0 = 0$$

Теорема (преобразование Абеля)

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$

Док-во

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n} (A_k - A_{k-1}) b_k = \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n} A_{k-1} b_k =$$

$$= \sum_{k=1}^{n} A_k b_k - \sum_{k=0}^{n-1} A_k b_{k+1} = A_n b_n + \sum_{k=0}^{n-1} A_k (b_k - b_{k+1})$$

Теорема (признак Дирихле для рядов)

Пусть
$$A_n$$
 - огр., $b_k o 0$, b_k - монотонно. Тогда $\sum\limits_{k=1}^\infty a_k b_k$ - сх

Док-во

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}) \underset{n \to \infty}{\to} \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$

Ряд
$$\sum_{k=1}^{\infty} a_k b_k$$
 - $\operatorname{cx} \Leftrightarrow \sum_{k=1}^{\infty} A_k (b_k - b_{k+1})$ - $\operatorname{cx} \Leftrightarrow$ все частичные суммы огр $\sum_{k=1}^{N} |A_k| |b_k - b_{k+1}| \leqslant M \sum_{k=1}^{N} |b_k - b_{k+1}| = M |b_1 - b_{N+1}| \leqslant 2M |b_1| \Rightarrow$ исх ряд cx

Теорема (признак Абеля для рядов)

Пусть
$$A_n$$
 - cx. b_k - монотонно, b_k - огр. Тогда $\sum\limits_{k=1}^\infty a_k b_k$ - cx