Lecture 14
Segment 3
Factorial ANOVA

- Two IVs (treatments)
- One continuous DV (response)

Example

- IV = driving difficulty (easy, difficult)
- IV = conversation difficulty (none, easy, difficult)
- DV = errors made in driving simulator

Driving errors

Conversation

- Three hypotheses can be tested in this one experiment:
 - More errors in the difficult simulator?
 - More errors with more difficult conversations?
 - More errors due to the interaction of these factors?

- Three F ratios
 - $\bullet \overline{F_A}$
 - F_B
 - ullet F_{AxB}

- <u>Main effect</u>: the effect of one IV averaged across the levels of the other IV
- <u>Interaction effect</u>: the effect of one IV depends on the other IV (the simple effects of one IV change across the levels of the other IV)
- <u>Simple effect</u>: the effect of one IV at a particular level of the other IV

- Main effects and interaction effect are independent from one another
 - Note that this is different from studies that don't employ an experimental design
 - For example, in MR, when predicting faculty salary, the effects of publications and years since the Ph.D. were correlated..

- In fact, factorial ANOVA is just a special case of multiple regression.
 - It is a multiple regression with perfectly independent predictors (IVs).
 - This is why we like it so much!

Partition SS in the DV

Illustration from multiple regression

Illustration from multiple regression

Remember, GLM

- Multiple regression
 - $Y = B_0 + B_1 X_1 + B_2 X_2 + B_3 X_3 + e_1$
 - Y = faculty salary
 - X1 = years since Ph.D.
 - X2 = # of publications
 - X3 = (years x pubs)

Remember, GLM

- Factorial ANOVA
 - $Y = B_0 + B_1 X_1 + B_2 X_2 + B_3 X_3 + e_1$
 - Y = faculty salary
 - X1 = gender
 - X2 = race
 - X3 = interaction (gender x race)

F ratios

- $F_A = \overline{MS_A} / \overline{MS_{S/AB}}$
- $F_B = \overline{MS_B} / \overline{MS_{S/AB}}$
- $F_{AxB} = MS_{AxB} / MS_{S/AB}$

MS

- $\overline{MS_A} = \overline{SS_A} / \overline{df_A}$
- $MS_B = SS_B / df_B$
- $MS_{AxB} = \overline{SS_{AxB}} / df_{AxB}$
- $\overline{MS_{S/AB}} = \overline{SS_{S/AB}} / \overline{df_{S/AB}}$

df

•
$$df_A = a - 1$$

•
$$df_B = b - 1$$

•
$$df_{AxB} = (a - 1)(b - 1)$$

•
$$df_{S/AB} = ab(n - 1)$$

•
$$df_{Total} = abn - 1 = N - 1$$

Follow-up tests

- Main effects
 - Post-hoc tests
- Interaction
 - Analysis of simple effects
 - Conduct a series of one-way ANOVAs
 - For example, we could conduct 3 one-way ANOVAs
 comparing high and low spans at each level of the other IV

Effect size

- Complete η^2
 - $\eta^2 = SS_{effect} / SS_{total}$
- Partial η^2
 - $\eta^2 = SS_{\text{effect}} / (SS_{\text{effect}} + SS_{\text{S/AB}})$

Effect size (complete)

 η^2 for the interaction = SS_{AxB} / SS_{total}

Effect size (partial)

 η^2 for the interaction = $SS_{AxB} / (SS_{AxB} + SS_{S/AB})$

Assumptions

- Assumptions underlying the factorial ANOVA are the same as for the one-way ANOVA
 - DV is continuous
 - DV is normally distributed
 - Homogeneity of variance

Back to the driving example

- Strayer and Johnson (2001) conducted an experiment to examine the effect of talking on a cell-phone on driving
- They tested subjects in a driving simulator
- Here's the interesting part...
 - They manipulated the difficulty of the driving
 - AND the difficulty of the conversation.

Back to the driving example

• To manipulate driving difficulty, they simply made the driving course in the simulator more or less difficult

Back to the driving example

- To manipulate conversation difficulty, they included two "talking" conditions:
 - In one, the subject simply had to repeat what they heard on the other line of the phone
 - In the other, the subject had to think of and then say a word beginning with the last letter of the last word spoken on the phone
 - e.g., if you hear "ship" then respond with a word that begins with p "pear"
 - And there was a no-talking condition (control)

Summary of the design

- IV 1 = driving difficulty (easy, difficult)
- IV 2 = conversation difficulty (none, easy, difficult)
- DV = errors made in driving simulator

Driving errors

Conversation

Summary table

Source	SS	df	MS	F	p	η^2
Intercept	26641.200	1	26641.200	4251.255	.000	.994
Converse	450.600	2	225.300	35.952	.000	.750
Driving	1825.200	1	1825.200	291.255	.000	.924
Converse* Driving	92.600	2	46.300	7.388	.003	.381
Error	150.400	24	6.267			
Total	2518.800	29				

Follow-up tests

- Post-hoc tests
 - Need to conduct post-hoc tests on the conversation IV
 - No need for driving difficulty because there's only 2 levels
- Simple effects
 - Simple effect of conversation at each level of driving difficulty OR
 - Simple effect of driving difficulty at each level of conversation

- $F_{a \text{ at bk}} = MS_{a \text{ at bk}} / MS_{S/AB}$
- $MS_{a \text{ at bk}} = SS_{a \text{ at bk}} / \overline{df_{a \text{ at bk}}}$
- \bullet df_{a at bk} = a 1
- $SS_{a \text{ at bk}} = n \Sigma (Y_{jk} Y_{Bk})^2$

• Simple effect of driving difficulty at each level of conversation

- No conversation
 - $F = MS_{A \text{ at b1}} / MS_{S/AB}$
 - F = 324.9 / 6.267 = 51.84
- Easy
 - $F = MS_{A \text{ at } b2} / MS_{S/AB}$
 - F = 592.9 / 6.267 = 94.61
- Difficult
 - $F = MS_{A \text{ at b3}} / MS_{S/AB}$
 - F = 1000 / 6.267 = 159.57

- No conversation
 - $\eta^2 = SS_{A \text{ at b1}} / (SS_{A \text{ at b1}} + SS_{S/AB})$
 - $\eta^2 = 324.9 / (324.9 + 150.4) = .68$
- Easy
 - $\eta^2 = SS_{A \text{ at } b2} / (SS_{A \text{ at } b2} + SS_{S/AB})$
 - $\eta^2 = 592.9 / (592.9 + 150.4) = .80$
- Difficult
 - $\eta^2 = SS_{A \text{ at } b3} / (SS_{A \text{ at } b3} + SS_{S/AB})$
 - $\eta^2 = 1000 / (1000 + 150.4) = .87$