## PRU LearnR - Pedestrian to Novice Series

Prospect RNinjas

Invalid Date

## Table of contents

| Preface |                | 3 |
|---------|----------------|---|
| 1       | Test chapter   | 4 |
| 2       | ggplot         | 5 |
|         | 2.0.1 ggplot   | 5 |
|         | 2.0.2 Basics   | 5 |
|         | 2.0.3 Grouping | 6 |

## **Preface**

This quarto-book was developed with the help of many colleagues. It is also used to trial run the use of {webr} to allow for interactive content in online books.

This skeleton was setup for the {ggplot2} familiarisation and homework. Just awesome!

While this might be disappointing for a first interaction. This could be the basis for transferring all our sessions into this format and support future "pedestrians" to get achieve the "novice" level ... before embarking to become a "R/RStudio ecosystem ninja/jedi"!

May the forRce be with you!

# 1 Test chapter

just a test

```
# set a random seed and generate data
set.seed(123)
x <- rnorm(100)

# calculate mean
mean(x)</pre>
```

### 2 ggplot



#### Warning

Installing and loading ggplot2 on webR takes a little while. The install is happening in the background. Don't worry, once you've waited to load the package everything else will be quick.

#### 2.0.1 ggplot

- Very popular plotting package
- Good plots quickly
- Declarative describe what you want not how to build it
- Contrasts w/Imperative how to build it step by step

#### 2.0.2 Basics

• Load the package and some data

#### library(ggplot2)

• To build a plot using ggplot we start with the ggplot() function

#### ggplot()

- ggplot() creates a base ggplot object that we can then add things to like a blank
- We can also add optional arguments for information to be shared across different components of the plot
- The two main arguments we typically use here are
- data which is the name of the data frame we are working with, so acacia
- mapping which describes which columns of the data are used for different aspects of the plot

- We create a mapping by using the aes function, which stands for "aesthetic", and then linking columns to pieces of the plot
- We'll start with telling ggplot what value should be on the x and y axes
- Let's plot the relationship betwen the circumference of an acacia and its height

```
ggplot(data = mtcars, mapping = aes(x = mpg, y = hp))
```

- This still doesn't create a figure, it's just a blank canvas and some information on default values for data and mapping columns to pieces of the plot
- We can add data to the plot using layers
- We do this by adding a + after the the ggplot function and then adding something called a geom, which stands for geometry
- To make a scatter plot we use geom\_point

```
ggplot(data = mtcars, mapping = aes(x = mpg, y = hp)) +
  geom_point()
```

- To change things about the layer we can pass additional arguments to the geom
- We can do things like change
  - the size of the points, we'll set it to 3
  - the color of the points, we'll set it to "blue"
  - the transparency of the points, which is called alpha, we'll set it to 0.5

```
ggplot(data = mtcars, mapping = aes(x = mpg, y = hp)) +
geom_point(size = 3, color = "blue", alpha = 0.5)
```

- Try changing these values to make the graph look like you want it to
- To add labels (like documentation for your graphs!) we use the labs function

#### 2.0.3 Grouping

- Group on a single graph
- Look at influence of experimental treatment

```
ggplot(data = mtcars, mapping = aes(x = mpg, y = hp, color = cyl)) +
  geom_point(size = 3, alpha = 0.5)
```

- Try changing the above code to color based on the gear
- We can also split each group into different subplots (known as facets)

```
ggplot(data = mtcars, mapping = aes(x = mpg, y = hp)) +
  geom_point(size = 3, alpha = 0.5) +
  facet_wrap(~cyl)
```

• Try changing this code to create a subplot for each value in vs with points of size 4

#### i Exercise

Make a scatter plot with hp on the x axis and wt on the y axis. Label the x axis "Horse Power" and the y axis "Weight". Make one subplot for each value in gear.

```
# Add you code here
```

Your result should look like the plot below



# Solution Code library(ggplot2) ggplot(mtcars, aes(x = hp, y = wt)) + geom\_point() + labs(x = "Horse Power", y = "Weight") + facet\_wrap(~gear)