Epreuve Mathématiques

II-Algèbre Session PRINCIPALE

<u>Date :</u> 10/06/2021 <u>Durée :</u> 02 heures

Nombre de Pages : <u>01</u>

Université de Sousse

HEC

Institut des Hautes Etudes Commerciales de Sousse Niveau : 1ère Année

<u>Filière</u>: Licence en Monnaie, Finance, Banque et Assurances

Chargés de cours : Boubaker Heni

Hamrita Mohamed Essaied

Exercice 1: (3 pts)

Soit
$$A = \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix}$$
 et $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

- 1. Exprimer $J^k \ \forall k \in \mathbb{N}$. (1 pt)
- 2. Trouver a et b tels que $A = aI_2 + bJ$. (1 pt)
- 3. En déduire $A^n \ \forall n \in \mathbb{N}$. (1 pt)

Exercice 2: (13 pts)

Soit
$$A = \begin{pmatrix} -1 & 2 & 1 \\ 3 & 0 & -1 \\ 3 & 2 & -3 \end{pmatrix}$$
.

- 1. Montrer que $\mathcal{P}_A(\lambda) = (\lambda + 4)(\lambda 2)(\lambda + 2)$. (1 pt)
- 2. Justifier que A est diagonalisable. (1pt)
- 3. Déterminer les vecteurs propres associés aux valeurs propres de $A.\ (1.5\ \mathrm{pt})$
- 4. Donner une matrice inversible P et la matrice D diagonale telle que $A=PDP^{-1}$ (les valeurs propres doivent être arrangées par ordre croissant). (1 pt)
- 5. Calculer P^{-1} . (1.5 pt)
- 6. Calculer $A^n \ \forall n \in \mathbb{N}$. (1.5pt)
- 7. Justifier que A est inversible et calculer A^{-1} .(1.5 pt)
- 8. En déduire ker (A) et préciser sa dimention. (1 pt)
- 9. Calculer $A^3 + 4A^2 4A 16I_3$; en déduire alors A^{-1} . (1.5 pt)

10. Résoudre
$$(S)$$
 :
$$\begin{cases} -x + 2y + z = 1 \\ 3x - z = 1 \\ 3x + 2y - 3z = 1 \end{cases}$$
 . (1.5 pt)

Exercice 3: (4 pts)

On considère la matrice
$$A = \begin{pmatrix} -2 & -1 & -7 & 7 \\ 3 & -4 & 5 & 6 \\ -1 & -1 & -4 & 5 \end{pmatrix}$$

- 1. Déterminer la ligne réduite échelonneé \mathcal{R}_A de la matrice A. (1 pt)
- 2. Déterminer $\mathcal{C}(A)$, l'espace colonne de A et en donner une base. (1 pt)

1

- 3. Déterminer $\mathcal{L}(A)$, l'espace ligne de A et en donner une base. (1 pt)
- 4. Déterminer $\ker(A)$ et en donner une base. (1 pt)

Bon travail