Set 15: The Normal Distribution

Stat 260 A01: June 18, 2024

A continuous random variable X with a normal probability distribution, with mean μ and standard deviation σ , has density function

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
 for $-\infty < x < \infty$

- Parameters:
- The graph of a normal density function is a:

The exact shape of the curve depends upon μ and σ .

- Changing μ shifts the curve left or right.
- Changing σ makes the curve flatter or taller.

For a normal random variable X, the probability $P(X \leq x)$ is given by the CDF,

$$F(x) = \int_{-\infty}^{x} f(y)dy = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2} dy$$

Standard Normal Distribution: A standard normal random variable Z has mean _____ and variance _____.

The pdf of Z is
$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$
.

The CDF of Z is
$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} f(y) dy = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$

Example 1: (a) Find $P(Z \le 2.56)$

(b) $P(Z \le -3.14)$

(c) $P(Z \ge 0.09)$

(d) $P(-1.27 \le Z \le 2.67)$

Symmetry of a Normal Distribution

- (e) $P(Z \ge 0.09)$
- (f) $P(Z \le -4.00)$
- (g) P(Z = 3.14)

Notation: z_{α} is the z value where the area under the standard normal curve to the **right** of z_{α} is equal to α . That is, so that $P(Z \ge z_{\alpha}) = \alpha$; z_{α} is called the **critical value**.

By symmetry, $-z_{\alpha}$ is the z value where the area under the standard normal curve to the **left** of $-z_{\alpha}$ is equal to α . That is, so that $P(Z \leq -z_{\alpha}) = \alpha$.

(h) Find c such that 25% of the standard normal distribution is below c.

(i) Find c such that 30.5% of z-values exceed c.

(j) Find c such that $P(-c \le Z \le c) = 0.85$.

Standardizing a Normal Random Variable

If a normal random variable X has mean μ and standard deviation σ then the random variable

$$Z = \frac{X - \mu}{\sigma}$$

has the standard normal distribution.

Example 2: Suppose that X is a normal random variable with $\mu = 10$ and $\sigma = 4$.

(a) Find $P(X \ge 12)$

(b) Find $P(8 \le X \le 12)$

(c) Determine the value c such that 5% of the distribution lies above c .
The Empirical Rule: If the population distribution of a variable is (approximately) normal
Roughly 68% of observations are within 1 standard deviation of the mean.
Roughly 95% of observations are within 2 standard deviations of the mean.
▶ Roughly 99.7% of observations are within 3 standard deviations of the mean.
Example 3: Suppose that among a certain population of adult humans, the mean length of the lateral incisor tooth is known to be 8.30mm, with a standard deviation of 0.95mm.

Extra Example 1: In female migraine patients, serum estradiol (E2) levels were found to be normally distributed with mean $\mu=46$ pg/ml and standard deviation $\sigma=6$ pg/ml.
(a) What is the probability that the estradiol levels of a random patient are less than 40 pg/ml?
(b) What is the probability that the estradiol levels of a random patient are between 40 pg/ml and 60 pg/ml?

(c) What level of estradiol characterizes the top 5% of the population?

Ans: (a) 0.1587 (b) 0.8314 (c) 55.87